(19)日本国特許庁 (JP)·

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-11340 (P2001-11340A)

(43)公開日 平成13年1月16日(2001-1.16)

(51) Int.Cl.'		識別記号		FΙ			-	i-7]-}*(参考)	
C 0 9 C	1/28			C09C	1/28		•	4C083	
A 6 1 K	7/00			A 6 1 K	7/00		v	4 J 0 3 7	
,							.N		
	7/02				7/02		. Р		
•	7/021				7/021		_		
			STC-ACTE -P	-t- 41 -D - A-	ATE	·			

審査請求 未請求 請求項の数3 OL (全 12 頁) 最終頁に続く

特願2000-71967(P2000-71967) (21)出願番号 (71) 出願人 000004008 日本板硝子株式会社 (22)出願日 平成12年3月15日(2000.3.15) 大阪府大阪市中央区道修町3丁目5番11号 (72)発明者 横井 浩司 (31) 優先権主張番号 特願平11-121814 大阪府大阪市中央区道修町3丁目5番11号 (32)優先日 平成11年4月28日(1999.4.28) 日本板硝子株式会社内 (33)優先権主張国 日本 (JP) (74)代理人 100069084 弁理士 大野 精市

最終頁に続く

(54) 【発明の名称】 真珠光沢顕料およびそれを配合した化粧料

(57)【要約】

【課題】 化粧料に配合した場合に、くすみがなく、非常に良好な光輝性を発現し、肌上でのざらつき感がなく、のびおよびフィット感に優れる安価な真珠光沢顔料、さらにはそれを配合する光輝感に優れた化粧料を提供する。

【解決手段】 シリカ (SiO_2) を $45\sim75$ 重量% 含有し、平均厚さ $0.1\sim2.5$ μ m、平均粒径 $1\sim300$ μ m、アスペクト比 $10\sim500$ のガラスフレークを熔融法により製造する。アスペクト比とは、平均粒径を平均厚さで除した値(平均粒径/平均厚さ)をいう。

【特許請求の範囲】

【請求項1】 母材がシリカ(SiO₂)を45~75重量% 含有し、平均厚さが0.1~2.5μm、平均粒径が1~300μm、アスペクト比が10~500である真珠光沢顔料。

【請求項2】 上記母材の表面に貴金属およびチタニアが付着した請求項1 に記載の真珠光沢顔料。

【請求項3】 請求項1または2に記載の真珠光沢顔料を配合した化粧料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、母材の組成、厚さ、粒径およびアスペクト比が一定範囲にある真珠光沢を有する顔料およびその顔料を配合した化粧料に関する。さらには、前記真珠光沢顔料が金属酸化物の被膜を備えたガラスフレークであるものに関する。

[0002]

【従来の技術】真珠光沢を示す光輝性薄片状粉体として、天然や合成の雲母(マイカ)を母材とし、その表面に酸化チタンや酸化鉄などをコーティングしたいわゆるパールマイカが従来から知られている。しかし、マイカは劈開性があるため、その表面に段差ができ易く、表面平滑性が十分でない場合が多い。そのため、マイカを母材とした真珠光沢顔料は良好な光輝感を発現するとは言い難い。また、天然雲母には不純物が多く含まれることから、これを母材とする真珠光沢顔料は、化粧料に配合された場合にくすみの原因となる。

【0003】真珠光沢顔料としては、特開平9-176515号公報に、平均形状比(平均厚さ/平均粒度)1/9~1、粒度25~500μmの金属酸化物コーティングフレーク状粉体が記載されている。このフレーク状粉体は、化粧料材料に使用された場合、計算上その厚さが2.78μm以上となることから、肌上でざらざら感を与え、また平均形状比が大きく立方体に近い形状のため、肌上でののびまたはフィット感が悪く、さらに同重量の薄いフレークに比べて枚数が少なくなるため、反射による光輝感が少ないなどの問題がある。

【0004】また、特開平6-116507号公報には、金属アルコキシドから製造したフレーク状シリカガラスを母村とし、チタニアまたはジルコニアをコーティングした真珠光沢顔料が記載されている。このフレーク状シリカガラスは、金属アルコキシドが非常に高価であることからコスト上の問題がある。また、シリカガラスは通常のガラスと比較してシリカ含有率が高く硬度が高いため、化粧料材料に用いられた場合、材料配合工程で練り込まれる際に破砕され、その粒度が保てなくなるおそれが高い。粒度が小さくなるほど化粧料中に均一に分散され易くなる利点はあるが、一方で真珠光沢顔料としての光輝感を発現し難くなるなどの問題がある。

【0005】さらに、特開昭62-187770号公報

には、ガラスフレークに微粒子酸化チタンをコーティングしてなる紫外線連へい顔料が記載されている。しかし、この紫外線連へい顔料は、真珠光沢感が事実上発現しない量の酸化チタンをコーティングするものである。 【0006】

【発明が解決しようとする課題】上述のように真珠光沢 顔料を化粧品に配合することは従来から広く行われいるが、天然または合成のマイカを母材とする真珠光沢顔料は、その不十分な表面平滑性のために、良好な光輝感を 発現するとは言い難い面がある。また、天然雲母を母材 とする場合では、不純物が含まれているため、化粧料に 配合した場合、くすみの原因となる。さらに、フレーク 状シリカガラスを母材とする場合では、コスト面および 粒度が維持できない問題がある。

【0007】この発明は、このような従来技術に存在する問題に着目してなされたものである。その目的とするところは、化粧料に配合した場合に、くすみがなく、非常に良好な光輝性を発現し、肌上でのざらつき感がなく、のびおよびフィット感に優れる安価な真珠光沢顔料を提供することにある。さらには、のびがよく、フィット感に優れ、ざらつき感を生じることのない、光輝感に優れた化粧料を提供することにある。

[0008]

【課題を解決するための手段】上記目的を達成するために、請求項1に記載の発明の真珠光沢顔料は、母材がシリカ(SiO₂)を45~75重量%含有し、平均厚さ0.1~2.5μm、平均粒径1~300μm、アスペクト比10~500であるものである。なお、前記アスペクト比とは、平均粒径を平均厚さで除した値(平均粒径/平均厚さ)をいう。

【0009】請求項2に記載の発明の真珠光沢顔料は、 請求項1に記載の発明において、母材の表面に貴金属お よびチタニアが付着したものである。

【0010】請求項3に記載の発明の化粧料は、請求項1または2に記載の真珠光沢顔料を配合したものである

[0011]

【発明の実施の形態】以下、この発明の実施形態について詳細に説明する。この発明の真珠光沢顔料は、母材がシリカ(SiO₂)を45~75重量%含有するものである。この母材としては、熔融法で製造されるガラスフレークが挙げられる。ガラスフレークは、公知の技術、たとえば特公昭41-17148号公報、特公昭45-3541号公報に記載の方法で製造することができる。すなわち、熔融したガラスを円型スリットから押し出し、そのガラスの内部に空気などを注入して中空状の円筒にあらませ薄く均一なガラスフィルムとし、それを粉砕する方法で製造される。このガラスフレークは、安価な原料を熔融して製造するため、コストを低く抑えることができる。また、自由表面を持つ熔融ガラスを冷却固化するた

め、その表面は非常に平滑である。さらに、非晶質で劈開性を有しないので、その表面に段差が生じない。また、シリカが80重量%以上含有されるシリカガラスに比べ若干の柔軟性を有するため、化粧料に配合されても破砕され難く、配合時の粒度を保つことができる。ガラスとしては、熔融成形できるものならどのような組成でもよいが、一股に使われているソーグライムガラス、Cガラス、Eガラスなどが例示される。これらガラスは、シリカを上記範囲で含有するものである。

【0012】また、平均厚さ0.1~2.5μmのガラスフィルムを粉砕分級することにより、平均粒径1~300μm、アスペクト比10~500のガラスフレークが製造される。ガラスフレークは、製造技術上0.1μmより薄くできず、一方2.5μmより厚い場合、それが配合された化粧料にざらつき感を生じさせ、かつ光輝感を低下させる。アスペクト比が10より小さい場合は、配合された化粧料の肌でののびおよびフィット感を悪化させ、一方500より大きい場合は、その化粧料の肌へののりを悪化させ、ぎらぎら感を強くし過ぎる。その平均粒径が1μm未満の場合は、配合された化粧料に十分な光輝感を付与することができず、一方300μmより大きい場合は、配合された化粧料において粒子が目立ち過ぎ、仕上がり感を不自然なものにしてしまう。

【0013】母村の形状が上記範囲にある場合、その母村のシリカの含有率によって、ガラスフレークの性質が異なる。シリカの含有率が75重量%より高くなると、熔融法による生産が困難になり、ゾルゲル法による生産が実際上主となる。シリカの含有率が高く、ゾルゲル法で製造されるガラスを以下「シリカガラス」と称するが、形状が上記範囲にあるシリカガラスのフレークは、上述の如く硬度が高くかつ脆いため、一定以上の外力が

加わると容易に破砕される。たとえば、シリカガラスのフレークに超音波を照射すると、その平均粒径が小さくなることが確認される。具体的には、超音波照射装置付きレーザー回折粒度分布測定装置(セイシン企業社製Pro7000S)を65Wで1分間出力させ、シリカガラスのフレークに超音波を照射すると、その平均粒径は下記「表1」のように変化する。

[0014]

【表1】

シリカガラスのフレークに超音波を照射した場合の粒径の変化

項目	初期平均粒径(μm)	超音波照射後(µm)
サンブル1	6.02	5.90
サンプル2	9.36	9.20
サンブル3	15.62	15.40
サンブル4	24.49	21.78
サンブル5	25.93	23.30
サンブル6	26.69	25.13
サンブルフ	28.41	23.19
サンブル8	50.19	35.58
サンブル9	55.50	38.48
サンブル10	58.93	39.04

注)サンブル1~10には、SGシリーズ(日本板硝子社製) を用いた。

【0015】また、超音波の照射時間が増加するにしたがって、シリカガラスのフレークの平均粒径は小さくなることが確認される。具体的には、超音波洗浄装置(ヴェルヴォクーリア商会社製 VS-70R)を60Wで出力させ、シリカガラスのフレークに超音波を照射すると、その平均粒径は経時的に下記「表2」のように変化する。

【0016】¹ 【表2】

シリカガラスのフレークに超音波を照射した場合の粒径の経時的変化

項目乀照射時間	Omin	0. 5min	1 min	2min	5mln
サンプル1(µm)		14.70	13.63	12.35	11.25
サンプル2(μm)	89.08	37.79	34.30	30.74	27.89
サンブル3(μm)	183.80	85.73	67.70	60.04	58.05

注)サンブル1~3には、SGシリーズ(日本板硝子社製)を用いた

【0017】「表1」および「表2」より、シリカガラスのフレークは、粒径が大きいほど超音波による破砕が起こり易いことが判る。また、経時的には、超音波照射の初期に破砕が起こり易いことが判る。このようにシリカガラスのフレークは、超音波の衝撃によっても破砕されてしまうが、ガラスフレークではこのような現象は確認されない。これは、ガラスフレークがシリカガラスのフレークほど硬度が高くなく若干の柔軟性を有するためであると考えられる。したがって、ガラスフレークを母材とする真珠光沢顔料は、化粧料の材料として他の材料と配合され練り込まれた場合に、シリカガラスのフレークよりも当初の粒径を維持でき、その結果化粧料中でより効果的に光輝感を発現できる。なお、ガラスフレーク

のシリカの含有率は、母材に必要な強度と適度な柔軟性 とを兼ね備えるために、50~70重量%、さらには5 5~65重量%であることが好ましい。

【0018】この真珠光沢顔料は、その名の如く外観上真珠に似た光沢を示すものであり、これはガラスフレークにチタニア(TiO₂)、ジルコニアまたは酸化鉄などの金属酸化物からなる被膜を設けることにより得られる。この被膜の成形方法は、公知の技術を利用すればよく、たとえば特公昭43-25644号公報、特開昭47-34529号公報に記載されている。具体的には、硫酸チタニル溶液または四塩化チタン溶液にガラスフレークを懸濁させ、かかる溶液を昇温することによりチタニアを析出させ、ガラスフレーク上に被膜を設ける方法であ

る。ただし、この方法に限定するものではなく、ガラスフレーク上に薄く被膜を設けることができる方法であれば、どのような方法でもよい。

【0019】ガラスフレーク上の被膜の厚さを制御することにより、干渉による任意の色調を発現させることができる。この被膜の厚さは、20~250nmが好ましく、20nm未満では光輝窓が発現し難く、一方250nmより厚ければ原料が多く必要となるためコスト的に好ましくない。

【0020】この被膜にチタニアを用いる場合は、被膜成形後にガラスフレークを800~1、200℃で加熱処理することが多い。これは、チタニアにはアナタース型、ブルーカイト型およびルチル型の3つの結晶系があり、アナタース型をルチル型に転移させるために行われるものである。上述のように溶液からの析出によりチタニア被膜を設ける場合は、まずアナタース型が折出する。アナタース型はルチル型に比べ化学的に不安定型であるため、ガラスフレークに耐久性および耐候性が要求される場合は、アナタース型よりルチル型が指向される。さらに、ルチル型のチタニア被膜は、アナタース型よりも殺密な膜を形成することから、より高い光輝感すなわち鮮やかな色感を発現する。よって、ガラスフレークの被膜としては、ルチル型のチタニアからなるものが好ましく、また指向されている。

【0021】上記結晶系転移のための加熱処理温度が8 00℃以下の場合は、チタニアの結晶系はアナタース型 のままであるが、一方800℃より高くするとルチル型 に転移することが知られている。しかし、800℃以上 に加熱した場合、ガラスフレークは変形することがあ る。この変形を防止するため、本発明者は、800℃以 下の加熱処理でもルチル型に転移する方法を、鋭意研究 の末見出した。それは、上記の溶液からチタニアを析出 させる際に、ガラスフレークに貴金属を做量触媒として 付着させておく方法である。ここで貴金属とは、金、銀 および白金族(Ru, Rh, Pd, Os, Ir, Pt)を指す。貴金属をガ ラスフレークに付着させる方法は、とくに限定されるも のではなく、たとえば塩化白金酸の溶液中にガラスフレ 一クを投入してしばらく放置する方法が挙げられる。こ の方法において、600℃以下の加熱処理でルチル型へ の結晶系転移が起こることを確認した。

【0022】ガラスフレーク上の被膜の屈折率によって、ある色調を発現させる被膜の厚さは若干異なるが、一般的には被膜の厚さと発色(反射光)の関係は以下の「表3」のとおりである。

[0023]

【表3】

発色	・ 被膜厚さ (皿)		
シルバー	40~60		
黄	60~80		
赤	80~100		
育	100~140		
₩	120~160		

【0024】上記金属酸化物の被膜を備えた特定の形状のガラスフレークすなわち真珠光沢顔料を配合することにより、くすみがなく澄んだ発色を示し、肌上でざらつき感がなく、さらに肌上でののびおよびフィット感に優れる化粧料が得られる。

【0025】この化粧料における真珠光沢顔料の配合率は、1~100重量%が好ましい。配合率が1重量%未満の場合は、真珠光沢顔料の光輝感が十分に発揮されない。一方、100重量%であっても、肌上では人脂などが存在するため、これらと結合し化粧料として機能しうる。

【0026】この化粧料には、フェーシャル化粧料、メーキャップ化粧料、ヘア化粧料など幅広い範囲の化粧料が含まれる。これらの中でも、とくにファンデーション、粉白粉、アイシャドー、ブラッシャー、化粧下地、ネイルエナメル、アイライナー、マスカラ、口紅、ファンシーパウダーなどのメーキャップ化粧料において、この真珠光沢顔料は好適に使用される。

【0027】この真珠光沢顔料は、化粧料の目的に応じて、適宜疎水化処理が施されてもよい。疎水化処理の方法としては、第一にメチルハイドロジェンポリシロキサン、高粘度シリコーンオイルおよびシリコーン樹脂などのシリコーン化合物による処理方法、第二にアニオン活性剤などの界面活性剤による処理方法、第三にナイロン、ポリメチルメタクリレート、ポリエチレン、テフロン、ポリアミノ酸などの高分子化合物による処理方法、第四にパーフルオロ基含有化合物、レンチン、コラーゲン、金属石鹸、親油性ワックス、多価アルコール部分エステルまたは完全エステルなどによる処理方法、第五にこれらを複合した処理方法が挙げられる。ただし、一般に粉末の疎水化処理に適用できる方法であれば、上記の方法に限定されるのではない。

【0028】この化粧料には、通常化粧料に用いられる他の材料を必要に応じて適宜配合することができる。たとえば、タルク、カオリン、セリサイト、白雲母、金雲母、紅雲母、黒雲母、リチア雲母、バーミキュライト、炭酸マグネシウム、炭酸カルシウム、珪ソウ土、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸バリウム、硫酸バリウム、ケイ酸ストロンチウム、タングステン酸金属塩、シリカ、ヒドロキシアバ

タイト、ゼオライト、窒化ホウ素、セラミックスパウダ ーなどの無機粉末、ナイロンパウダー、ポリエチレンパ ウダー、ポリスチレンパウダー、ベンゾグアナミンパウ ダー、ポリ四弗化エチレンパウダー、ジスチレンベンゼ ンポリマーパウダー、エポキシパウダー、アクリルパウ ダー、微結晶性セルロースなどの有機粉末、酸化チタ ン、酸化亜鉛などの無機白色顔料、酸化鉄(ベンガ ラ)、チタン酸鉄などの無機赤色系顔料、ア酸化鉄など の無機褐色系顔料、黄酸化鉄、黄土などの無機黄色系顔 料、黒酸化鉄、カーボンブラックなどの無機黒色系顔 料、マンゴバイオレット、コバルトバイオレットなどの 無機紫色系顔料、酸化クロム、水酸化クロム、チタン酸 コバルトなどの無機緑色系顔料、群青、紺青などの無機 青色系顔料、酸化チタン被膜雲母、酸化チタン被膜オキ シ塩化ビスマス、オキシ塩化ビスマス、酸化チタン被膜 タルク、魚鱗箔、着色酸化チタン被膜雲母などのパール 顔料、アルミニウムパウダー、カッパーパウダーなどの 金属粉末頗料、赤色201号、赤色202号、赤色20 4号、赤色205号、赤色220号、赤色226号、赤 色228号、赤色405号、橙色203号、橙色204 号、黄色205号、黄色401号および青色404号な どの有機顔料、赤色3号、赤色104号、赤色106 号、赤色227号、赤色230号、赤色401号、赤色 505号、橙色205号、黄色4号、黄色5号、黄色2 02号、黄色203号、緑色3号および青色1号のジル コニウム、パリウムまたはアルミニウムレーキなどの有 機顔料、クロロフィル、β-カロチンなどの天然色累、 スクワラン、流動パラフィン、ワセリン、マイクロクリ スタリンワックス、オケゾライト、セレシン、ミリスチ ン酸、パルミチン酸、ステアリン酸、オレイン酸、イソ ステアリン酸、セチルアルコール、ヘキサデシルアルコ ール、オレイルアルコール、2-エチルヘキサン酸セチ ル、パルミチン酸2-エチルヘキシル、ミリスチン酸2 - オクチルドデシル、ジー2 - エチルヘキサン酸ネオペ ンチルグリコール、トリー2-エチルヘキサン酸グリセ ロール、オレイン酸-2-オクチルドデシル、ミリスチ ン酸イソプロピル、トリイソステアリン酸グリセロー ル、トリヤシ油脂肪酸グリセロール、オリーブ油、アボ ガド油、ミツロウ、ミリスチン酸ミリスチル、ミンク 油、ラノリンなどの各種炭化水素、シリコーン油、高級 脂肪酸、油脂類のエステル類、高級アルコール、ロウな どの油性成分、アセトン、トルエン、酢酸ブチル、酢酸 エステルなどの有機溶剤、アルキド樹脂、尿素樹脂など の樹脂、カンファ、クエン酸アセチルトリブチルなどの 可塑剤、紫外線吸収剤、酸化防止剤、防腐剤、界面活性 剤、保湿剤、香料、水、アルコール、増粘剤などが挙げ られる。

【0029】この化粧料の形態は、とくに限定されるものではなく、粉末状、ケーキ状、ペンシル状、スティック状、軟膏状、液状、乳液状、クリーム状などである。

【0030】なお、この発明は次のような実施形態として具現化することも可能である、・ガラスフレークに白金などの貴金属を付着させ、そこにアナタース型のチタニアを付着させ、600℃以下に加熱することにより、ルチル型チタニアからなる被膜を備えたガラスフレークを製造する方法。

[0031]

【実施例】以下に実施例および比較例を挙げてこの発明をより詳細に説明するが、この発明の要旨を越えない限り、以下の実施例に限定されるものではない。まず、ガラスフレークに金属酸化物を被膜した真珠光沢顔料について説明する。

【0032】(実施例1)~(実施例4)

Cガラス (SiO₂:65重量%、AI₂O₃:4重量%、CaO:14重量%、MgO:3重量%、B₂O₃:5重量%、Na₂O:8重量%、K₂O:1重量%)を1,200℃で熔融し、円筒形にブローし延伸薄膜化して冷却固化することにより所定の厚さにし、それを粉砕分級して、所定の厚さ、位度およびアスペクト比を有するガラスフレークを製造した。このガラスフレークを硫酸チタニル溶液中に懸濁させ、この懸濁液を加熱し1時間沸騰させることにより、ガラスフレーク表面に種々の厚さのチタニアを被膜させ、デ過水洗後乾燥させ、その後600℃で30分間熱処理して、チタニア被膜を備えたガラスフレークを得た。チタニア被膜の結晶系をX線回折で調べたところ、いずれもアナタース型であった。

【0033】ここで、チタニア被膜の厚さによりガラスフレークの発色が異なり、またガラスフレークの厚さおよび粒度により比表面積が異なるため、各実施例で目的とするチタニア被膜を得るための条件は一義的には決定できない。そのため、チタニア被膜の形成段階でガラスフレークを懸濁液中から適宜サンプリングし、その色目を確認しながら硫酸チタニルの添加量を加減して、任意の色調のガラスフレークを製造した。

【0034】これら種々の厚さ、粒度およびアスペクト比を有するガラスフレークを、直径60mm×高さ10mのシリカのセル中に詰め、それを色彩色差計(ミノルタ社製CR300)で明度(L値)を測定した。また、光沢計(日本電色工業株式会社製 VGS-1001DP)で、45°/0°の拡散反射率を測定し、輝度を評価した。これらガラスフレークの特性および輝度評価の結果を、下記「表4」に示す。

【0035】(比較例1)~(比較例3)市販のアナタース型のチタニア被膜を備えたマイカと、ガラスフレーク(RCF-140 日本板硝子社製)に上記実施例の方法でアナタース型のチタニア被膜を成形したものとについて、上記と同様の方法で、明度(し値)および45・/0・の拡散反射率を測定し、その輝度を評価した。その結果を、下記「表4」に併せて示す。なお、比較例3のガラスフレークには、貴金属は付着していない。

【0036】実施例1~4のガラスフレークは、いずれ も輝度(L値および拡散反射率)が比較例1および2の マイカに比べ高く、非常に澄んだ明るく高い光輝感を示

すことが判る。 【0037】 【表4】

アナタース型のチタニア被膜を備えたが ラスフレークおよびマイカの輝度と光沢性

実施例 .	1	2	3	4	比較例:	1 2	3
母材	ガラス	<i>*</i> ! ラス	カ'ラス	ガラス	711;	 7イカ	ナーーー ー が ラス
平均厚さ(μロ)	2.3	2.3	2.3	1.3	0.4	0.6	5.0
平均粒径(μ四)	450	80	40	25.	40	80	140
アスペクト比	196	35	17	19	100	113	28
反射色	WN -	がバー	9 1 /11 -	赤	. VAN -	YAN' -	₩N' -
明度(L值)	93	. 92	91	· 91	88	89 .	90
拡散反射率	66	62	· 61	63	52	54	60
		UZ	, 01	65	52	54	60

【0038】(実施例5)~(実施例8)

上記実施例1~4と同様にして、所定の形状のガラスフレークを製造した。このガラスフレークを塩化白金酸を添加した四塩化チタン溶液中に懸濁させ、この懸濁液を加熱し1時間沸騰して、ガラスフレーク表面に種々の厚さのチタニア被膜を設けた。このガラスフレークを沪過水洗後乾燥させ、その後600℃で30分間熱処理した。チタニア被膜の結晶系をX線回折で調べたところ、いずれもルチル型であった。これは、ガラスフレークに付着した白金が、ルチル型への転移を促進する触媒とし

て作用したためと考えられる。これら種々の厚さ、粒度 およびアスペクト比を有するガラスフレークについて、 上記実施例】~4と同様にして輝度を評価した。その結 果を下記「表5」に示す。

【0039】(比較例4)~(比較例7) 市販のルチル型のチタニア被膜を備えるマイカについ て、上記同様にして輝度を評価した。その結果を下記 「表6」に示す。

【0040】

ルチル型のチタニア被膜を備えたガラスフレークの輝度と光沢性

実施例 	5	6	7	8	-
母材	<i>か</i> ラス	カ・ラス	カラス .	ナラス	•
平均厚さ(μロ)	2.3	1.3	1.3	0.7	
平均粒径(μ៣)	300	80	80	25	•
アスペクト比	130	62	62	36	
反射色	シルバー	J' -NF'	赤	骨	
明度(L值)	95	94	93	92	
拡散反射率	70 .	62	74	74	

[0041]

【表6】 ルチル型のチタニア被膜を備えたマイカの輝度と光沢性

比較例	4	5	6	7	
母材	711	71#	マイカ	マイカ	_
平均厚さ(μn)	0.4	0.4	0.4	0.6	
平均粒径(μm)	40	40	40	, 80	
アスペクト比	100	100	100	133	
,反射色	シルバー	J' -N}'	赤	背	
明度(L值)	91	90	90	89	
拡散反射率	50	60	65	. 63	

【0042】「表5」および「表6」より、実施例5~ 8のガラスフレークは、いずれも輝度(L値および拡散 反射率)が比較例4~7のマイカに比べ高く、非常に澄 んだ明るく高い光輝感を示すことが判る。

【0043】つぎに、上記チタニア被膜を備えたガラス 化粧料に関する官能評価 フレークすなわち真珠光沢顔料を配合した化粧料について説明する。化粧料の評価は、下記「表7」に基づきパネラー10人によるう段階の官能評価により行った。 【0044】 【表7】

評価\項目	のび	密着感 	ーーーー 滑らかさ ーーーーー	 光輝感	色のきれいさ
1	悪い	ない	ない	ない	汚い
2	やや悪い	ややない	ややない	あまりない	ややくすむ
3	普通	普通	普通	ややある	普通
4	ややよい	ややある	ややある	ある	きれい
5	よい	非常にある	非常にある	非常に高い	非常にきれい

【0045】官能評価の結果は、パネラー10名の5段 階評価の平均値であり、その評価を分かり易くするため に下記の記号で表す。

◎・・・4.5以上5.0まで

〇・・・3.5以上4.5未満

●・・・・2.5以上3.5未満

△···1.5以上2.5未満

×···1.0以上1.5未満

【0046】(実施例9):パウダーファンデーション下記「表8」に示す材料からなるパウダーファンデーションを製造した。

[0047]

【表8】

(1)酸化チタン	7	
(2) タルク	20	-
(3)白雲母	3.	•
(4)実施例2のガラスフレーク	55	•
(5)ナイロンパウダー	2 .	
(6)赤色酸化鉄	0.5	
(7) 黄色酸化鉄	1	
(8) 黑色酸化鉄	0.1	
(9)シリコーンオイル	1	
(10) バルミチン酸2 -エチルヘキシル	9	•
(11)セスキオレイン酸ソルビタン	1	•
(12)防腐剤 `	0.3	
(13)香料	0.1	(重量%)

【0048】上記材料(1)~(8)をヘンシェルミキサーで混合し、この混合物に上記材料(9)~(13)を加熱溶解させ混合したものを添加混合し、これをパルベライザーで粉砕した。さらに、これを直径5.3 mの中皿に吐出し、 160kg/cm^2 の圧力で押圧成形し、パウダーファンデーションを製造した。この化粧料の官能評価の結果を、下記「表9」に示す。

【0049】(比較例8): パウダーファンデーション 上記材料(4)ガラスフレークを比較例1のマイカに置換し、それ以外を実施例9と同様にしてパウダーファン デーションを製造した。この化粧料の官能評価の結果 を、下記「表9」に示す。

【0050】(比較例9):パウダーファンデーション上記材料(4)ガラスフレークを比較例3のガラスフレークに置換し、それ以外を実施例9と同様にしてパウダーファンデーションを製造した。この化粧料の官能評価の結果を、下記「表9」に併せて示す。

[0051]

【表9】

						_
実施例9	Ó	0	Ο.	(C)	©	
比較例8	0	. 0	0	0	0	
比較例9	•	•	Δ	0	0	

【0052】「表9」より、実施例9の化粧料は、比較 例8と比べ光輝感および色のきれいさで、比較例9と比 べのび、密着感および滑らかさで優れていることが判 る 【0053】(実施例10):ブラッシャー下記 |表10」に示す材料からなるブラッシャーを製造した。 【0054】

(1) タルク	12.6
(2)絹雲母	8. 1
(3)マイカ	25.4
(4)実施例3のガラスフレーク	45.0
(5)赤色226号	0.4
(6)スクワラン	3.0
(7)パルミチン酸2-エチルヘキシル	5.0
(8)防腐剤	0.3
(9)香料	0.2 (重量%)

【0055】上記材料(1)~(5)をヘンシェルミキサーで混合し、この混合物に上記材料(6)~(9)を加熱溶解させ混合したものを吹き付け混合した後、バルベライザーを用いてこれを粉砕した。さらに、これを4×6cmの中皿に吐出し、120kg/cm²で押圧成形して、ブラッシャーを製造した。この化粧料の官能評価の結果を、下記「表11」に示す。

【0056】(比較例10):ブラッシャー 実施例10の材料(4)ガラスフレークを比較例2のマイカに置換し、それ以外を実施例10と同様にしてブラ ッシャーを製造した。この化粧料の官能評価の結果を、 下記「表11」に示す。

【0057】(比較例11):ブラッシャー 実施例10の材料(4)ガラスフレークを比較例3のガラスフレークに置換し、それ以外を実施例10と同様にしてブラッシャーを製造した。この化粧料の官能評価の結果を、下記「表11」に併せて示す。

[0058]

【表10】

【表11】

項目	のび	密省感	滑らかさ	光輝感	色のきれいさ
実施例10	0	0	0	©	©
比較例10 比較例11	•		Ο Δ	0	O ©

【0059】「表11」より、実施例10の化粧料は、 比較例10と比べ光輝感および色のきれいさで、比較例 11と比べのび、密奢感、滑らかさおよび光輝感で優れ ていることが判る。

下記「表12」に示す材料からなるネイルエナメルを製造した。

[0061]

【表12】

【0060】(実施例11):ネイルエナメル

(1)ニトロセルロース	1 2
(2)変成アルキド樹脂	1 2
(3) クエン酸アセチルトリブチル	. 5
(4)酢酸 n ープチル	36.4
(5) 酢酸エチル	6
(6) nーブチルアルコール	2
(7)トルエン	21

(8)酸	化鉄顔料	0.5	5
· (9) =	酸化チタン	0. 1	
(10)	実施例7のガラスフレーク	3	
(11)	マイカ	1	
(12)	有機変成モンモリロナイト	1	(重量%)

【0062】上記材料(1)~(7)(ただし材料(4)は一部分)を溶解し、この溶液に材料(12)と材料(4)の残部とを混合してゲル状にしたものを添加混合し、さらに材料(8)~(11)を添加混合した。この混合物を所定の容器に充填し、ネイルエナメルを製造した。この化粧料の官能評価の結果を、下記「表13」に示す。

【0063】(比較例12): ネイルエナメル 実施例11の材料(10)ガラスフレークを比較例6の マイカに置換し、それ以外は実施例11と同様にしてネ イルエナメルを製造した。この化粧料の官能評価の結果 を、下記「表13」に示す。

【0064】(比較例13):ネイルエナメル 実施例11の材料(10)ガラスフレークを比較例3の ガラスフレークに置換し、それ以外は実施例11と同様 にしてネイルエナメルを製造した。この化粧料の官能評 価の結果を、下記「表13」に示す。

【0065】 【表13】

項目	のび	~= 密着感	ーーーー 滑らかさ ーーーー	光輝感	色のきれいさ
実施例1.1 比較例1.2	0	0	© O	© 0	©
比較例13	•	•	Δ	Ŏ	0

【0066】「表13」より、実施例11の化粧料は、 比較例12と比べ滑らかさ、光輝感および色のきれいさ で、比較例13と比べのび、密着感、滑らかさおよび光 輝感で優れていることが判る。

下記「表14」に示す材料からなる乳化ファンデーションを製造した。

【0068】 【表14】

【0067】(実施例12):乳化ファンデーション

(1)ステアリン酸	0.4
(2)イソステアリン酸	0.3
(3)2-エチルヘキサン酸セチル	4
(4)流動パラフィン	1 1
(5)ポリオキシエチレン(10)ステアリルコ	エーテル 2
(6)タルク・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8 .
(7)顔料	4
(8) セチルアルコール	0.3
(9)防腐剤	0.07
(10)実施例6のガラスフレーク	1 0
(11)トリエタノールアミン	0.42
(12) プロピレングリコール	5
(13)防腐剤	0.02
(14)イオン交換水	54.19
(15)香料	0.3 (重量%)

【0069】上記材料(1)~(9)を85℃で溶解させ混合し、これに上記材料(10)を添加し均一に分散させた。また、これに上記材料(11)~(14)を85℃で溶解させ混合した混合物を徐々に添加し乳化させた。乳化時の温度を10分間保持して撹拌した後、撹拌

しながら45℃まで冷却した。これに材料(15)を加え35℃まで撹拌冷却を続け、その後これを容器に充填して乳化ファンデーションを得た。この化粧料の官能評価の結果を、下記「表15」に示す。

【0070】(比較例14):乳化ファンデーション

実施例12の材料(10)ガラスフレークを比較例5のマイカに置換し、それ以外を実施例12と同様にして乳化ファンデーションを製造した。この化粧料の官能評価の結果を、下記「表15」に示す。

【0071】(比較例15):乳化ファンデーション 実施例12の材料(10)ガラスフレークを比較例3の ガラスフレークに置換し、それ以外を実施例12と同様にして乳化ファンデーションを製造した。この化粧料の官能評価の結果を、下記「表15」に併せて示す。 【0072】 【表15】

項目 	のび	 密着感 	ーーーー 滑らかさ ーーーー	光輝感	色のきれいさ	-
実施例12	0	0	0	©	©	
比較例14	0	. 0	0	0	Δ	
比較例15	. •	•	Δ	0	. 🔘	

【0073】「表15」より、実施例12の化粧料は、 比較例14と比べ滑らかさ、光輝感および色のきれいさ で、比較例15と比べのび、密着感、滑らかさおよび光 輝感で優れていることが判る。

【0074】(実施例13):口紅 下記「表16」に示す材料からなる口紅を製造した。 【0075】 【表16】

(1)炭化水素ワックス	20
(2) キャンデリラワックス	, 3
(3) グリセリルイソステアレ	√− ト 40
(4)流動パラフィン	26.8
(5)二酸化チタン	4
(6)実施例7のガラスフレー	-9 · 4
(7)有機頗料	2
(8)香料	0.2 (重量%)

【0076】上記材料(1)~(4)を85℃で加熱溶解させ、これに(5)~(7)を加え撹拌混合した後、さらに(8)を混合撹拌し、その後所定の容器に充填して口紅を得た。この化粧料の官能評価の結果を、下記「表17」に示す。

【0077】(比較例16):口紅 実施例13の材料(6)ガラスフレークを比較例6のマイカに置換し、それ以外を実施例13と同様にして口紅を製造した。この化粧料の官能評価の結果を、下記「表 17」に示す。

【0078】(比較例17):口紅

実施例13の材料(6)ガラスフレークを比較例3のガラスフレークに置換し、それ以外を実施例13と同様にして口紅を製造した。この化粧料の官能評価の結果を、下記「表17」に併せて示す。

[0079]

【表17】

項目	のび	~~~~ 密着感	 滑らかさ	 光輝感	 色のきれいさ	-
実施例13 比較例16 比較例17	0	0 0 •	© O A	© O	⊙ ⊙	

【0080】「表17」より、実施例13の化粧料は、 比較例16と比べ滑らかさ、光輝感および色のきれい さ、比較例17と比べのび、密着感、滑らかさおよび光 輝感で優れていることが判る。

【0081】(実施例14):アイシャドー

下記「表18」に示す材料からなるアイシャドーを製造した。

[0082]

【表18】

(2)白雲母	20
(3)実施例8のガラスフレーク	4 0
(4)頗料	1 2
(5)スクワラン	. 4
(6)セチル2-エチルヘキサノエート	1 9
(7)ソルビタンセスキオレート	0. 8
(8)防腐剤	0. 1
(9)香料	0.2 (重量%)

【0083】上記材料(1)~(4)をヘンシェルミキサーで混合し、これに(5)~(9)を加熱混合したものを吹き付け混合した後粉砕した。これを所定の中皿に吐出して、アイシャドーを得た。この化粧料の官能評価の結果を、下記「表19」に示す。

【0084】(比較例18):アイシャドー 実施例14の材料(3)ガラスフレークを比較例7のマイカに置換し、それ以外を実施例14と同様にしてアイシャドーを製造した。この化粧料の官能評価の結果を、 下記「表19」に示す。

【0085】(比較例19):アイシャドー

実施例14の材料(3)ガラスフレークを比較例3のガラスフレークに置換し、それ以外を実施例14と同様にしてアイシャドーを製造した。この化粧料の官能評価の結果を、下記「表19」に示す。

【0086】 【表19】

項目 	のび 	密着感	滑らかさ	光輝感	色のきれいさ
実施例14	0	0	©	- -	©
比較例18	0	0	0	0	Δ.
比較例19	•	•	Δ	0	© .

【0087】「表19」より、実施例14の化粧料は、 比較例18と比べのび、密着感、滑らかさ、光輝感およ び色のきれいさで、比較例19と比べのび、密着感、滑 らかさおよび光輝感で優れていることが判る。 【0088】

【発明の効果】この発明は、以上のように構成されているため、次のような効果を奏する。請求項1に記載の発明の真珠光沢顔料によれば、平均厚さ0.1~2.5μm、平均粒径1~300μmおよびアスペクト比10~500であり、母材がシリカを45~75重量%含有する表面が平滑なガラスフレークであって、さらに母材表面が酸化チタンなどの金属酸化物で被膜された真珠光沢顔料であるので、化粧料材料としてくすみがなく、非常に

良好な光輝感を発現し、肌上でのざらつき感がなく、の び、フィット感に優れる安価な真珠光沢顔料を提供する ことができる。

【0089】請求項2に記載の発明の真珠光沢顔料によれば、請求項1の発明の効果に加えて、母材の表面に貴金属およびチタニアが付着するので、600℃以下の加熱で緻密で安定型のルチル型チタニアの膜が形成される。

【0090】請求項3に記載の発明の化粧料によれば、この真珠光沢顔料を化粧料材料として用いるので、肌上でののびがよくかつフィット感に優れ、ざらつき感を生じさせることのない、光輝感に優れる発色のきれいな化粧料を提供することができる。

フロントページの続き

(51) Int. C1.7		識別記号	FI		- テーマコード(参考)
A61K	7/027		. A61K	7/027	7,1-1 (3-4)
	7/031			. 7/031	
	7/032			7/032	•
	7/043			7/043	
C09C	3/06		C09C	3/06	

Fターム(参考) 4C083 AA122 AB171 AB172 AB232

AB242 AB372 AB432 AB442

AC012 AC022 AC032 AC072

AC102 AC122 AC182 AC242

AC262 AC342 AC352 AC372

AC442 AC542 AC862 AD072

AD092 AD152 AD262 BB25

BB26 CC01 CC12 CC13 CC14

CC28 DD17 DD31 EE06 EE07

FF01 FF05

4J037 AA18 AA30 CA09 DD09 DD10

EE03 EE25 EE44 FF03 FF09

Japan Patent Office

Kokai Patent Publication No. 2001 - 11340, January 16, 2001

Patent Application No. 71967 – 2000 Date of Application: March 15, 2000

Priority Right Claim No. Japan Patent Application No. 121814 - 1999

Priority Date: April 28, 1999 Priority Right Clam Country: Japan

Applicant: 000004008

Nippon Sheet Glass K. K.

5-11 3-Chome, Doshu Cho, Chuo Ku, Osaka Shi, Osaka Fu

Inventor: Koji Yokoi

c/o Nippon Sheet Glass K. K.

5-11 3-Chome, Doshu Cho, Chuo Ku, Osaka Shi, Osaka Fu

Attorney: 100069084

S. Ohno, Patent Counsel

[Title of Invention] Pearlescent pigment and the cosmetic in which it is blended

[Abstract]

[Problem] To provide an inexpensive pearlescent pigment that, when blended into cosmetic, has no lackluster, exhibits very good brightness, gives no feeling of roughness on the skin and has excellent spreading and gives good feel of fit and, further, to provide the cosmetic that contains it and gives excellent feel of brightness.

[Means of Solution] Glass flake containing silica (SiO2) by 45 \sim 75 wt % and having an average thickness of 0.1 \sim 2.5 μ m, average particle size of 1 \sim 300 μ m and an aspect ratio of 10 \sim 500 is made by the melting method. The aspect ratio means the value obtained by dividing the average particle size with the average thickness (average particle size/ average thickness).

[Claims of the Patent]

[Claim 1] Pearlescent pigment whose parent material contains silica (SiO2) by 45 \sim 75 wt %, the pigment having an average thickness of 0.1 \sim 2.5 μ m, average particle size of 1 \sim 300 μ m and an aspect ratio of 10 \sim 500.

[Claim 2] The pearlescent pigment described in Claim 1 in which, on the surface of the said parent material, precious metal and titania are attached.

[Claim 3] Cosmetic in which the pearlescent pigment described in Claim 1 or 2 is blended.

[Detailed Description of the Invention]

[0001]

[Field of Technology Where the Invention Belongs] This invention is related to the pearlescent pigment for which the composition of parent material, the thickness, particle size and aspect ratio are within fixed ranges and to the cosmetic in which this pigment is blended. Further, the invention is related also to the said pearlescent pigment which is the glass flake having the coated film of metal oxide.

[0002]

[Existing Technology] As the bright, flaky powder that exhibits pearlescence, the so called pearl mica obtained by using the natural or synthetic mica as the base material and coating its surface with titanium oxide or iron oxide has been known from the past. However, as the mica has cleaving characteristics, difference of level can form easily on its surface and so, frequently, its surface smoothness is inadequate. For this reason, it can not be said that the pearlescent pigment from the base material of mica exhibits good brightness. Also, as many impurities are contained in the natural mica, the pearlescent pigment using it as the base material causes lackluster when blended in cosmetic.

[0003] As a pearlescent pigment, Kokai JP No. 176515 – 1997 describes a flaky powder coated with metal oxide having an average shape ratio (average thickness/ average particle size) of $1/9 \sim 1$ and particle size of $25 \sim 500$ µm. When this flaky powder is used in a cosmetic material, the calculated thickness becomes more than 2.78 µm and so it gives rough feeling on the skin; also, as the average shape ratio is large and the shape is close to that of a cube, spreading on the skin or the feel of fit is poor; further, compared to the thin flake of equal weight, number of sheets is smaller and so there is the problem of less feel of brightness due to reflection.

[0004] Also, Kokai JP No. 116507 – 1994 describes a pearlescent pigment that uses, as the base material, the flaky silica glass made from metal alkoxide and is coated with titania or zirconia. This flaky silica glass has the cost problem because the metal alkoxide is very expensive. Also, as the silica glass has higher silica content high and higher hardness in comparison to the common glass, it is pulverized when mixed during the material blending process in the case of using it as the cosmetic material and so there is the danger that its particle size can not be maintained. When the particle size becomes smaller, there is the advantage of the uniform dispersion in the cosmetic material becoming easier but, on the other hand, there is the problem that it is difficult to express the brightness as the pearlescent pigment.

[0005] Further, Kokai JP No. 187770 – 1987 describes a UV ray- blocking pigment made by coating the glass flake with fine grain particles of titanium oxide. However, this UV

ray- blocking pigment is coated with an amount of titanium oxide by which the pearlescence is actually not expressed.

[0006]

[The Problem That the Invention Intends to Solve] As has been described above, the blending of pearlescent pigment in the cosmetic products has been practiced widely from the past but the pearlescent pigment that uses the natural or synthetic mica as its base material has the problem that, because of its inadequate surface smoothness, it can not be said to express good brightness. Also, in the case of using the natural mica as the base material, impurities are contained and so, when blended in cosmetic, this causes the lack-luster. Further, in the case of using the flaky silica glass as the base material, there are problems of the cost and the difficulty of maintaining the particle size.

[0007] This invention was accomplished in view of such problems of the existing technology. Its objective is to provide an inexpensive pearlescent pigment that, when blended into cosmetic, has no lackluster, exhibits very good brightness, gives no feeling of roughness on the skin and has excellent spreading and gives good feel of fit. Further, the objective is to provide the cosmetic that has good spreading and feel of fit, does not generate rough feel and has excellent brightness.

[8000]

[The Means for Solving the Problem] To achieve the above mentioned objective, the parlescent pigment of the invention described in Claim 1 is the one whose parent material contains silica (SiO2) by $45 \sim 75$ wt %, the pigment having an average thickness of $0.1 \sim 2.5$ µm, average particle size of $1 \sim 300$ µm and an aspect ratio of $10 \sim 500$. Here, the aspect ratio means the value obtained by dividing the average particle size with the average thickness (average particle size/ average thickness).

[0009] The pearlescent pigment of the invention described in Claim 2 is the one described in Claim 1 in which, on the surface of the said parent material, precious metal and titania are attached.

[0010] The cosmetic material of the invention described in Claim 3 is the one in which the pearlescent pigment described in Claim 1 or 2 is blended.

[0011]

[Mode of Application of the Invention] In the following, detailed explanation is given on the mode of application of this invention. The pearlescent pigment of this invention is the one in which the base material contains silica (SiO2) by 45 ~ 75 wt %. As for this base material, the example is the glass flake that is made by the melting method. The glass flake can be made by the known technologies, e.g. the methods described in, for example, JP No. 17148 – 1966, JP No. 3541 – 1970. Thus, the molten glass is extruded from a circular slit and air is injected inside the glass to expand this into a hollow cylinder to make the thin and uniform glass film and this is pulverized to make the glass flake. This

glass flake is made by melting inexpensive raw material and so its cost can be kept low. Also, as the molten glass having free surface is cooled and solidified, its surface is very smooth. Also, as the material is amorphous and does not have the cleaving characteristics, difference of level is not formed on its surface. Also, compared with the silica glass which contains silica by more than 80 wt %, it has some flexibility and, so, when blended in the cosmetic, pulverization does not occur easily and the particle size at the time of blending can be maintained. As for the glass, that of any composition is good as long as melt-shaping is possible and the examples are soda lime glass, C glass, E glass, etc. which are commonly used. These glasses contain the silica by the above said range.

[0012] Also, by pulverizing and classifying the glass film of average thickness of $1\sim2.5~\mu m$, the glass flake of average particle size $1\sim300~\mu m$ and aspect ratio of $10\sim500~i s$ made. Because of the production technology, the glass flake can not be made thinner than 0.1 μm . On the other hand, when it is thicker than 2.5 μm , this generates the feel of roughness in the cosmetic in which it was blended and it also reduces the brightness. When the aspect ratio is smaller than 10, the spreading and the feel of fit of the cosmetic in which it was blended is made worse; on the other hand, when it is greater than 500, spreading of the cosmetic onto the skin is made poor and the feel of roughness is made excessively strong. When the average particle size is less than 1 μm , sufficient brightness can not be imparted to the cosmetic in which it was blended; on the other hand, if it is greater than 300 μm , the particles show too much in the cosmetic in which it is blended and the finishing becomes unnatural.

[0013] When the shape of the base material is within the above said range, property of the glass flake varies with the silica content of the base material. When the silica content is higher than 75 wt %, the production by the melting method is difficult and the production by the sol-gel method actually becomes the main stream. The glass that has high silica content and is made by the sol- gel method is called [silica glass], hereinafter. Flake of the silica glass whose shape is in the above said range has high hardness and is brittle as mentioned above and so, when an external force above a certain level is applied, it breaks easily. For example, when ultra sonic wave is irradiated to the flake of silica glass, its average particle size is found to decrease. Specifically, when the laser diffraction particle size distribution measuring apparatus (Pro 7000 S made by Seishin Kogyo Col) attached with the ultra sonic wave irradiating apparatus is used to obtain 65 W output for 1 minute and the ultrasonic wave is irradiated to the flake to silica glass, its average particle size changed as shown in the [Table 1] below.

[0014] [Table 1] Change in particle size when ultra sonic wave is irradiated on the flake of silica glass

Item	lnitial average particle size (µm)	After the irradiation of ultrasonic wave (µm)
Sample		5.90
Sample	5.50	9.20
Sample	e 3 15.62	15.40

Sample 4	24.49	21.79
Sample 5	25.93	23.30
Sample 6	26.69	25.13
Sample 7	28.41	23.10
Sample 8	50.19	35.58
Sample 9	55.50	. 38.48
Sample 10	58.93	39.04

Table 1. Footnote. For the samples $1 \sim 10$, SG series (made by Nippon Sheet Glass K. K.) were used.

[0015] Also, it was confirmed that, as the irradiation time of ultrasonic wave increased, average particle size of the flake of silica glass decreased. Specifically, when the ultra sonic cleansing apparatus (made by Velvo Clear Commerce Co, VS-70R) was used to obtain 60 W output and the ultrasonic wave was irradiated to the flake of silica glass, its average particle size changed as shown in [Table 2]

[0016] [Table 2] Change of particle size with time when ultrasonic wave was irradiated to the flake of silica glass

Item/ irradiation time	0 min	0.5 min	1 min	2 min	5 min
Sample 1 (µm)	23.19	14.70	13.63	12.35	11.25
Sample 2 (µm)	69.08	37.79	34.30	30.74	27.89
Sample 3 (µm)	183.80	85.73	67.70	60.04	58.05

Note) For the samples 1 ~ 3, SG series (made by Nippon Sheet Glass K. K.) were used.

[0017] From [Table 1] and [Table 2], it is seen that when the particle size of silica glass is greater, it breaks more easily by ultra sonic wave. With respect to the time elapsed, it is seen that the breaking occurs easily during the initial period of the ultra sonic wave irradation. In this way, the flake of silica glass breaks by the impact of ultrasonic wave but this phenomenon is not observable with the glass flake. This is believed to be due to the fact that glass flake is not so hard as silica glass and that it has some flexibility. Consequently, with pearlescent pigment that uses the glass flake as the base material, the initial particle size can be maintained better than the flake of silica glass when blended and mixed into other materials as the material of cosmetic and, as the result, the brightness can be expressed more effectively in the cosmetic material also. As to the silica content of the glass flake, $50 \sim 70$ wt %, preferably $55 \sim 65$ wt %, is good to let the base material have the necessary strength and proper flexibility.

[0018] As the name indicates, this pearlescent pigment shows the luster like that of pearl in appearance and this can be obtained by installing on the glass flake the coating film consisting of metal oxide such as titania (TiO2), zirconia or iron oxide. As for the method of forming this coating film, one can use the known technology which is described in, for

example, JP No. 25644 – 1968, Kokai JP No. 34529 – 1972. Specifically, the glass flake is suspended in the titanyl sulfate solution or titantium tetra chloride solution and, by raising the temperature of this solution, the titania is precipitated and the coating film is installed on the glass flake. However, the method is not limited to this and one can use any method as long as it can install a thin coating film on the glass flake.

[0019] By controlling the thickness of the coating film on the glass flake, an optional color tone due to the interference can be expressed. As for the thickness of this coating film, $20 \sim 25$ nm is preferred. When it is less than 20 nm, brightness can not be expressed and, on the other hand, when it is thicker than 250 nm, greater amount of raw material is needed and so this is not preferable for the cost.

[0020] When titania is used for this coating film, the glass flake is heat-treated at 800 ~ 1200 deg C after the formation of coating film in many cases. This heat treatment is conducted to convert the anatase type to the rutile type as there are 3 crystal systems, i.e. the anatase type, bluekite (phonetic translation) type and rutile type, in titania. When the titania coating film is installed by the precipitation from the solution described above, first the anatase type precipitates out. Anatase type is chemically unstable compared to the rutile type and, therefore, when durability and weatherability are required of the glass flake, the rutile type is preferred over the anatase type. The titania coating film of rutile type forms more dense film than the anatase type and so it expresses higher brightness, i.e. more vivid color. Therefore, as the coating film of glass flake, that which consists of the titania of rutile type is preferred and so the process is directed it.

[0021] When the heat treatment temperature for the above mentioned conversion of crystal system is below 800 deg C, crystal system of titiania remains as the anatase type; but, on the other hand, when it is higher than 800 deg C, conversion to the rutile type is known to occur. However, when heating is done to over 800 deg C, there are cases in which the glass flake deforms. To prevent this deformation, the present inventors conducted extensive studies and, as the result, found out a method of converting to the rutile type even at a heating temperature below 800 deg C. It is the method in which, at the time of precipitating titania from the said solution, a minute amount of precious metal is attached to the glass flake as a catalyst. Here, the precious metal indicates gold, silver and platinum family (Ru, Rh, Pd, Os, Ir, Pt). As to the method of attaching precious metal to the glass flake, there is no particular restriction. An example is the method in which the glass flake is put into the solution of chloro planitinic acid and kept there for a while. In this method, it was confirmed that the conversion of crystal system to the rutile type occurs by the heat treatment below 600 deg C.

[0022] Depending on the refractive index of the coating film on the glass flake, the thickness of coating film which expresses a certain color tone varies somewhat but, in general, the relation between the thickness of coating film and the coloring (reflected light) is as shown in [Table 3] below.

[0023] [Table 3]

Coloring	Thickness of coating film (nm)	_
Silver	40 ~ 60	_
Yellow	60 ~ 80	
Red	80 ~ 100	
Blue	100 ~ 140	
Green	120 ~ 160	

[0024] By blending the glass flake of specific shape having the coating film of the above said metal oxide, i.e. the pearlescent pigment, one can obtain the cosmetic material that exhibits clear coloring without lackluster, has no feel of roughness on the skin and, further, has excellent spreading and feel of fit on the skin.

[0025] As for the blending ratio of the pearlescent pigment in this cosmetic, $1 \sim 100$ wt % is preferred. When the blending ratio is less than 1 wt %, the brightness of pearlescent pigment is not expressed sufficiently. On the other hand, even if it is 100 wt %, it can combine with the human fat that is present on the skin and can function as the cosmetic material.

[0026] In this cosmetic material, a wide range of cosmetic material such as the facial cosmetic, makeup cosmetic, hair cosmetic are included. Among these, this pearlescent pigment is used suitably particularly in the makeup cosmetic such as the foundation, white powder, eye shadow, brusher, make up base, nail enamel, eye liner, mascara, rouge, fancy powder, etc.

[0027] Depending on the purpose of the cosmetic material, this pearlescent pigment can be given a treatment for making it suitably hydrophobic. As for the method of hydro phobic treatment, examples are: first, the method of treatment by using the silicone compound such as methyl hydrogen poly siloxane, high viscosity silicone oil and silicon resin, etc., secondly, the method of treatment by using the surfactant such as anionic surfactant, cationic surfactant, etc., thirdly, the method of treatment by using the polymeric compound such as nylon, poly methyl methacrylate, poly ethylene, Teflon, poly amino acid, fourthly, the method of treatment by using the compound containing perfluoro group, lecithin, collagen, metal soap, oleophilic wax, poly hydric alcohol partial ester or complete ester, fifthly, the method of treatment that combines these. However, the method is not restricted to the above mentioned methods if a method is applicable to the common hydrophobic treatment of powder.

[0028] In this cosmetic material, when necessary, one can blend suitably other materials that are used commonly in the cosmetics. The examples are: Inorganic powder such as talcum, kaolin; sericite, white mica, gold mica, red mica, black mica, Lithia mica, barmiculite (phonetic translation), magnesium carbonate, calcium carbonate, diatom earth, magnesium silicate, calcium silicate, aluminum silicate, barium silicate, barium sulfate,

strontium silicate, tungstic acid metal salt, silica, hydroxy apatite (phonetic translation), boron nitride, ceramics powder; Organic powder such as nylon powder, poly ethylene powder, benzo guanamine powder, poly tetra fluoro ethylene powder, distyrene benzene polymer powder, epoxy powder, acryl powder, micro crystalline cellulose; Inorganic redcolored pigment such as iron oxide (Bengala), iron titanate; In organic brown colored pigment such as γ iron oxide, Inorganic yellow colored pigment such as iron yellow oxide, ocher; Inorganic black colored pigment such as black iron oxide, carbon black; Inorganic violet colored pigment such as mango violet, cobalt violet; Inorganic green colored pigment such as chromium oxide, chromium hydroxide, cobalt titanate; Inorganic blue colored pigment such as ultra marine blue, Prussian blue; Pearl pigment such as titanium oxide - coated mica, titanium oxide coated oxy chloro bismuth, titanium oxide coated talcum, fish scale foil, colored titanium oxide- coated mica; Metallic powder pigment such as aluminum powder, copper powder; Organic pigment such as Red Color No. 201, Red Color No. 202, Red Color No. 204, Red Color No. 205, Red Color No. 220, Red Color No. 226, Red Color No. 228, Red Color No. 405, Orange Color No. 203, Orange Color No. 204, Yellow Color No. 205, Yellow Color No. 401 and Blue Color No. 404; Organic pigment such as zirconium, barium or aluminum lake of Red Color No. 3, Red Color No. 104, Red Color No. 106, Red Color No. 227, Red Color No. 230, Red Color No. 401, Red Color No. 505, Orange Color No. 205, Yellow color No. 4, Yellow Color No. 5, Yellow Color No. 202, Yellow Color No. 203, Green Color No. 3 Blue Color No. 1; Natural coloring matter such as chlorophyll, β- carotene; Various hydrocarbons such as sqallane, fluid paraffin, Vaseline, micro crystalline wax, ochezolite, ceresin, myristic acid, palmitic acid, stearic acid, oleic acid, iso stearic acid, cetyl alchol, hexa decyl alcohol, oleyl alcohol, cetyl 2- ethyl hexanoate, 2- e thyl hexyl palmitate, 2octyl dodecyl myristate, neo pentyl glycol di- 2- ethyl hexanoate, glycerol tri -2- ethyl hexanoate, 2- octyl dodecyl oleate, iso propyl myristate, glycerol tri iso stearate, tri cocoanut oil fatty acid glycerol, olive oil, avogard oil, beeswax, myristyl myristate, mink oil, lanolin; Silicone oil, esters of higher fatty acid, oil and fat; Oily component such as higher alcohol, wax, etc.; Organic solvent such as acetone, toluene, butyl acetate, acetic acid ester, etc.; Resin such as alkyd resin, urea resin, etc.; Plasticizing agent such as campha, acetyl tri butyl citrate, etc., UV ray absorbing agent, antioxidant, preservative, surfactant, moisture retaining agent, perfume, water, alcohol, viscosity increasing agent, etc.

[0029] As to the form of this cosmetic, there is no particular restriction and it can be in the form of powder, cake, pencil, stick, ointment, liquid, latex, cream, etc.

[0030] Further, this invention can be realized by the following mode of application: the method in which a precious metal such as platinum is attached to glass flake and then the titania of anatase type is attached to it and, by heating at below 600 deg C, the glass flake having the coating film that consists of the rutile type titania is made.

[0031]

[Examples of Application] In the following, examples of application and comparative

examples are given to explain this invention in further detail. However, the invention is not limited to these examples of application as long as the key point of this invention is not exceeded. First, explanation is given on the pearlescent pigment prepared by film-coating the glass flake with metal oxide.

[0032] (Example of Application 1) ~ (Example of Application 4)
The C glass (SiO2: 65 wt %, Al2O3: 4 wt %, CaO: 14 wt %, MgO: 3 wt %, B2O3: 5 wt %, Na2O: 8 wt %, K2O: 1 wt %) was melted at 1,200 deg C and this was blown into the cylindrical shape to stretch it to thin film and this was cooled and solidified to the prescribed thickness. This was pulverized and classified to make the glass flake having the prescribed thickness, particle size and aspect ratio. This glass flake was suspended in the titanyl sulfate solution and the suspension was heated and boiled for 1 hour to film-coat the surface of glass flake with titania to various thickness. After filtration, water-washing and drying, heat treatment was done at 600 deg C for 30 minutes to obtain the glass flake that has the coated film of titania. The crystal system of the titania coating film was examined by X ray diffraction. In all cases it was the anatase type.

[0033] Here, depending on the thickness of titania coating film, coloring of the glass flake varies and, also depending on the thickness and particle size of glass flake, the specific surface area varies. Therefore, the condition for obtaining the desired titania coating film in each example of application can not be determined univocally. At the stage of forming the titania coating film, glass flake was sampled in a suitable way from the suspension and the amount of addition of titanyl sulfate was adjusted while checking the color to make the glass flake of an optional color tone.

[0034] The glass flake having these various thickness, particle size and aspect ratio was packed in a cell of silica of diameter 60 mm x height 10 mm and its lightness (L value) was measured by using the color difference meter (CR300 made by Minolta Co.). Also, by using a gloss meter (VGS- 1001DP made by Nippon Denshoku Kogyo K. K.), the diffuse reflectance of 45°/0° was measured and the brightness was evaluated. The properties and results of brightness evaluation of these glass flakes are shown in [Table 4] below.

[0035] (Comparative Example 1) ~ (Comparative Example 3) For the mica that had the coating film of commercially available titania of the anatase type and for the nglass flake (RCF- 140 made by Nippon Sheet Glass Co.) on which the titania coating film of anatase type was formed by then method of them example of application described above, the lightness (L value) and the diffuse reflectance of 45°/0° were measured by the same method as described above and its brightness was evaluated. The results are shown also in [Table 4] below. Now, in the glass flake of Comparative Example 3, precious metal is not attached.

[0036] It is seen that all of the glass flake of Examples of Application $1 \sim 4$ have the brightness (L value and diffuse reflectance)) that is higher in comparison to the mica of

Comparative Examples 1 and 2 are very clear and bright and gives a high feel of brightness.

[0037] [Table 4] Brightness and glossiness of glass flake and mica having the coating film of titania of the anatase type

Example of Application	1	2	3	4	Comparative Example 1	2	3
Base material	glass	glass	glass	glass	mica	mica	glass
Average thickness (µm)	2.3	2.3	2.3	1.3	0.4	0.6	5.0
Average particle size (µm)	450	80	40	25	40	80	140
Aspect ratio	196	35	17	19	100	113	28
Reflected color	silver	silver	silver	red	silver	silver	silver
Lightness (L value)	93	92	91	91	88	89	90
Diffuse reflectance	66	62	61	63	52	54	60

[0038] (Example of Application 5) ~ (Example of Application 8)

results are shown in [Table 6] below.

By the same procedure as in Examples of Application 1 ~ 4 described above, glass flake of prescribed shape was made. This glass flake was suspended in the titanium tetra chloride solution to which chloro platinic acid was added. This suspension was heated and boiled for 1 hour to install the titania coating film of various thickness on the surface of glass flake. This glass flake was filtered, water- washed and dried and then it was heat treated at 600 deg C for 30 minutes. Crystal system of the titania coating film was examined by X ray diffraction and all were of the rutile type. This is believed to be due to the fact that the platinum that was attached to the glass flake acted as the catalyst which accelerates the conversion to the rutile type. For these glass flake having various thickness, particle size and aspect ratio, the brightness was evaluated by the same procedure as in Examples of Application 1 ~ 4 described above. The results are shown in [Table 5] below.

[0039] (Comparative Example 4) ~ (Comparative Example 7) For the mica that has the titania coating film of the rutile type that is available commercially, the brightness was evaluated by the same procedure described above. The

[0040] [Table 5] Brightness and glossiness of then glass flake having the titanium coating film of rutile type

Example of	-			
Application	5	6	7	8
Base material	glass	glass	glass	glass
Average thickness (µm)	2.3	. 1.3	1.3	0.7

Average particle size (μm)	300	80	80	25
Aspect ratio	130	62	62	36
Reflected color	silver	gold	red	blue
Lightness (L value)	95	94	93	92
Diffuse reflectance	70	62	74	74 .

[0041] [Table 6]
Brightness and glossiness of then mica having the titanium coating film of rutile type

Comparative					
Example	4	5	6	· 7	
Base material	mica	mica	mica	mica	
Average thickness (µm)	0.4	0.4	0.4	0.6	
Average particle size (µm)	40	40	40	80	
Aspect ratio	100	100	100	133	
Reflected color	silver	gold	red	blue	
Lightness (L value)	91	90	90	89	
Diffuse reflectance	50	60	65	63	· ·

[0042] From [Table 5] and [Table 6], it is seen that all of the glass flake of Examples of Application $5 \sim 8$ have the brightness (L value and diffuse reflectance)) that is higher in comparison to the mica of Comparative Examples $4 \sim 7$ and are very clear and bright and gives a high feel of brightness.

[0043] Next, explanation is given on the cosmetic in which the glass flake having the said titania coating film, i.e. the pearlescent pigment is blended. Evaluation of the cosmetic was conducted by 5 steps of evaluation by senses of 10 panellers based on [Table 7] below.

[0044] [Table 7] Evaluation by senses on the cosmetic

Evaluation/ Item	Spreading	Feel of close fit	Smoothness	Feel of brightness	Beauty of color
2	poor somewhat poor	absent somewhat absent	absent somewhat absent	absent not much present	dirty somewhat lackluster
	ordinary	ordinary	ordinary	somewhat present	ordinary
4	somewhat good	somewhat present	somewhat present	present	beautiful
5 .	good ·	much present	much present	very high	very beauti- ful

[0045] The result of evaluation by senses is the average value of the 5 steps evaluation by 10 panellers and, to facilitate the understanding of the evaluation, the result of evaluation is expressed by the following codes.

Double circle	$4.5 \sim 5.0$
0	$3.5 \sim 4.5$
•	2.5 ~ 3.5
Δ	$1.5 \sim 2.5$
Χ	$1.0 \sim 1.5$

[0046] (Example of Application 9) Powder foundation

The powder foundation consisting of the materials shown in [Table 8 below] was prepared.

[0047] [Table 8]

(1) Titanium oxide	. 7
(2) Talcum	20
(3) White mica	3
(4) Glass flake of Example of Application 2	55
(5) Nylon powder	2
(6) Red colored iron oxide	0.5
(7) Yellow colored iron oxide	1
(8) Black colored iron oxide	0.1
(9) Silicone oil	1
(10) 2- ethyl hexyl palmitate	9 .
(11) Sorbitan sesqui oleate	1
(12) Preservative	0.3
(13) Perfume	0.1 (wt.%)

[0048] The materials (1) \sim (8) shown above were mixed by a Henshell mixer. To this mixture, the mixture obtained by melt-heating and mixing the materials (9) \sim (13) shown above was added and mixed and this was pulverized by using a pulverizer. Further, this was discharged into a dish of diameter 5.3 mm and pressure- molded under a pressure of 160 kg/cm2 to make the powder foundation. Results of the evaluation by senses of this cosmetic are shown in [Table 9] below.

[0049] (Comparative Example 8): Powder foundation

The material (4) shown above, i.e. the glass flake, was substituted with the mica of Comparative Example 1. Other than this, the same procedure as in Example of Application 9 was followed to make he powder foundation. Results of evaluation by senses of this cosmetic are shown in [Table 9] below.

[0050] (Comparative Example 9): Powder foundation

The material (4) shown above, i.e. glass flake, was substituted with the glass flake of Comparative Example 3. Other than this, the same procedure as in Example of Application 9 were followed to make the powder foundation. Results of the evaluation by senses of this cosmetic are shown in [Table 9] below together.

[0051] [Table 9]

Item	Spreading	Feel of close fit	Smoothness	Feel of brightness	Beauty of color
EA 9	. 0	0	0	Double circle	Double circle
CE 8	О	0	O	0	0
CE 9	•	•	Δ	0	Double circle

EA. Example of Application; CE. Comparative Example

[0052] From [Table 9], it is seen that, in comparison to Comparative Example 8, the cosmetic of Example of Application 9 is superior in terms of the feel of brightness and beauty of color and, in comparison to Comparative Example 9, it is superior in terms of the feel of close fit and smoothness.

[0053] (Example of Application 10) Brusher

The brusher that consists of the material shown in Table 10 was prepared.

[0054] [Table 10]

(1) Talcum	12.6
(2) Silk mica	8.1
(3) Mica	25.4
(4) Glass flake of EA 3	45.0
(5) Red Color No. 226	0.4
(6) Squalane	3.0
(7) 2- ethyl hexyl palmitate	5.0
(8) Preservative	0.3
(9) Perfume	0.2 (wt %)

[0055] The materials (1) \sim (5) shown above were mixed with a Henshell mixer. To this mixture, the mixture obtained by heat-melting and mixing the materials (6) \sim (9) shown above was mixed by spraying. Next, this was pulverized by using a pulverizer. Next, this was discharged into a dish of 4 x 6 cm and pressure molded under 129 kg/cm2 to make the brusher. The results of evaluation by senses of this cosmetic are shown in [Table 11] below.

[0056] (Comparative Example 10): Brusher

The material (4) of Example of Application 10, i.e. glass flake, was substituted with the mica of Comparative Example 2. Other than this, the same procedure of Example of

Application 10 was followed to make the brusher. Results of evaluation by senses of this cosmetic are shown in [Table 11] below.

[0057] (Comparative Example 11): Brusher

The material (4) of Example of Application 10, i.e. glass flake, was substituted with the glass flake of Comparative Example 3. Other than this, the same procedure as in Example of Application 10 was followed to make the brusher. Results of evaluation by senses of this cosmetic are shown in [Table 11] below together.

[0058] [Table 11]

Item	Spreading	Feel of close fit	Smoothness	Feel of brightness	Beauty of color
EA 10 .	0	0	0	Double circle	Double circle
CE 10	0	O	0	0	0
CE 11 ·	•	•	Δ	0	double circle

EA. Example of Application; CE. Comparative Example

[0059] From [Table 11], it is seen that, in comparison to Comparative Example 10, the cosmetic of Example of Application 10 is superior in terms of the feel of brightness and beauty of color and, in comparison to Comparative Example 11, it is superior in terms of the feel of close fit, smoothness and feel of brightness.

[0060] (Example of Application 11): Nail enamel Nail enamel consisting of the materials shown in [Table 12] was made. [0061] [Table 12]

(1) Nitro cellulose	12
(2) Modified alkyd resin	12
(3) Acetyl tri butyl citrate	5 .
(4) n-butyl acetate	36.4
(5) Ethyl acetate	6
(6) n-butyl alcohol	2
(7) Toluene	21
(8) Iron oxide pigment	0.5
(9) Titanium dioxide	0.1
(10) Glass flake of Example of Application 7	3
(11) Mica	1
(12) Organic modified montmorillonite	1 (wt %)

[0062] The materials (1) \sim (7) shown above (but, only a part of the material (4)) were dissolved and, to this solution, mixture of the material (12) and the remainder of the material (4) in gel form was added and mixed. Then, further, the materials (8) \sim (11) were

added and mixed. This mixture was filled in a prescribed container to make the nail enamel. Results of evaluation by senses of this cosmetic are shown in [Table 13] below.

[0063] (Comparative Example 12): Nail enamel

The material (10) of Example of Application 11, i.e. glass flake, was substituted with the mica of Comparative Example 6. Other than this, the same procedure as that of Example of Application 11 was followed to make the nail enamel. Results of evaluation by senses of this cosmetic are shown in [Table 13] below.

[0064] (Comparative Example 13): Nail enamel

The material (10) of Example of Application 11, i.e. glass flake, was substituted with the glass flake of Comparative Example 3. Other than this, the same procedure as that of Example of Application 11 was followed to make the nail enamel. Results of evaluation by senses of this cosmetic are shown in [Table 13] below.

[0065] [Table 13]

Item	Spreading	Feel of close fit	Smoothness	Feel of brightness	Beauty of color
EA 11	0	0	Double circle	Double circle	Double circle
CE 12	O	O	Ο .	0 .	0
CE 13	•	•	Δ	0	Double circle

EA. Example of Application; CE. Comparative Example

[0066]

From [Table 13], it is seen that, in comparison to Comparative Example 12, the cosmetic of Example of Application 11 is superior in terms of smoothness, the feel of brightness and beauty of color and, in comparison to Comparative Example 13, it is superior in terms of spreading, the feel of close fit, smoothness and feel of brightness.

[0067] (Example of Application 12): Emulsified foundation The emulsified foundation consisting of them materials shown in [Table 14] below was prepared.

[0068] [Table 14]		
(1) Stearic acid	0.4	
(2) Iso stearic acid	0.3	
(3) Cetyl 2-ethyl hexanoate	4	
(4) Fluid paraffin	11	
(5) Poly oxy ethylene (10) stearyl ether	2	
(6) Talcum	8	
(7) Pigment	4	
(8) Cetyl alcohol	0.3	

(9) Preservative	0.07	
(10) Glass flake of Example of Application 6	10	
(11) Tri ethanol amine	0.42	
(12) Propylene glycol		
(13) Preservative	0.02	
(14) Ion exchanged water	54.19	
(15) Perfume	· 0.3 (wt %)	

[0069] The materials (1) \sim (9) described above were dissolved at 85 deg C and mixed and, to this, the material (10) described above was added and dispersed uniformly. To this, the mixture obtained by dissolving the materials (11) \sim (14) described above at 85 deg C and mixing them was added slowly and emulsified. The temperature at the time of emulsification was maintained for 10 minutes and stirring was done. After this, cooling was done down to 45 deg C while stirring. To this, the material (15) was added and stirring and cooling were continued until 35 deg C. Next, this was filled in a container to obtain the emulsified foundation. Results of evaluation by senses of this cosmetic are shown in [Table 15] below.

[0070] (Comparative Example 14): Emulsified foundation

The material (10) of Example of Application 12, i.e. glass flake, was substituted with the mica of Comparative Example 5. Other than this, the same procedure as that of Example of Application 12 was followed to make the emulsified foundation. Results of evaluation by senses of this cosmetic are shown in [Table 15] below.

[0071] (Comparative Example 15): Emulsified foundation

The material (10) of Example of Application 12, i.e. glass flake, was substituted with the glass flake of Comparative Example 3. Other than this, the same procedure as that of Example of Application 12 was followed to make the emulsified foundation. Results of evaluation by senses of this cosmetic are shown in [table 15] below together.

[0072] [Table 15]

				•	•
Item	Spreading	Feel of	Smoothness	Feel of	Beauty of
		close fit		brightness	color
EA 12	0	0	Double circle	Double circle	Double circle
-CE 14	O	O	O	0	Δ
CE 15	•	•	Δ	0	Double circle

EA. Example of Application; CE. Comparative Example

[0073]

From [Table 15], it is seen that, in comparison to Comparative Example 14, the cosmetic of Example of Application 12 is superior in terms of smoothness, the feel of brightness and beauty of color and, in comparison to Comparative Example 15, it is superior in terms of spreading, the feel of close fit, smoothness and feel of brightness.

[0074] (Example of Application 13): Rouge

The rouge consisting of the materials shown in [Table 16] below was made.

[0075] [Table 16]

(1) Hydrocarbon wax	20	<u>. </u>
(2) Canderila wax	3	
(3) Glyceryl iso stearate	40	
(4) Fluid paraffin	26.8	•
(5) Titanium dioxide	4	
(6) Glass flake of Example of Application 7	4	
(7) Organic pigment	2	
(8) Perfume	0.2	(wt %)

[0076] The materials (1) \sim (4) described above were heat-melted at 85 deg C and, to this, (5) \sim (7) were added and stir-mixed. Next, (8) was mixed and stirred and, next, it was filled in a prescribed container to make the rouge. Results of evaluation by senses of this cosmetic are shown in (Table 17) below.

[0077] (Comparative Example 16): Rouge

The material (6) of Example of Application 13, i.e. glass flake, was substituted with the mica of Comparative Example 6. Other than this, the same procedure as that of Example of Application 13 was followed to make the rouge. Results of evaluation by senses of this cosmetic are shown in [Table 17] below.

[0078] (Comparative Example 17): Rouge

The material (6) of Example of Application 13, i.e. glass flake, was substituted with the glass flake of Comparative Example 3. Other than this, the same procedure as that of Example of Application 13 was followed to make the rouge. Results of evaluation by senses of this cosmetic are shown in [Table 17] below together.

[0079] [Table 17]

Item	Spreading	Feel of close fit	Smoothness	Feel of brightness	Beauty of color
EA 13	0	0	Double circle	Double circle	Double circle
CE 16	O	O	Ο .	0	0
CE 17	•	•	Δ	0	Double circle

EA. Example of Application; CE. Comparative Example

[0080] From [Table 17], it is seen that, in comparison to Comparative Example 16, the cosmetic of Example of Application 13 is superior in terms of smoothness, the feel of brightness and beauty of color and, in comparison to Comparative Example 17, it is superior in terms of spreading, the feel of close fit, smoothness and feel of brightness.

[0081] (Example of Application 14): Eye shadow
The eye shadow consisting of the materials shown in [Table 18] below was made.

[0082] [Table 18]	•	•	
(1) Talcum	21		—
(2) White mica	20		
(3) Glass flake of Example of Application 8	40		
(4) Pigment	12	·	
(5) Squallane	4		
(6) Cetyl 2- ethyl hexanoate	1.9		
(7) Sorbitan sesquiolate	. 0.8		
(8) Preservative	0.1		
(9) Perfume	0.2	(not 0/)	

[0083] The materials (1) \sim (4) described above were mixed by a Henshell mixer. To this, the mixture obtained by heat-mixing (5) \sim (9) was mixed by spraying. Next it was pulverized. This was discharged into a prescribed dish to obtain the eye shadow. Results of evaluation by senses of this cosmetic are shown in [Table 19] below.

[0084] (Comparative Example 18): Eye shadow

The material (3) of Example of Application 14, i.e. glass flake, was substituted with the mica of Comparative Example 7. Other than this, the same procedure as that of Example of Application 14 was followed to make the eye shadow. Results of evaluation by senses of this cosmetic are shown in [Table 19] below.

[0085] (Comparative Example 19): Eye shadow

The material (3) of Example of Application 14, i.e. glass flake, was substituted with the glass flake of Comparative Example 3. Other than this, the same procedure as that of Example of Application 14 was followed to make the eye shadow. Results of evaluation by senses of this cosmetic are shown in [Table 19] below.

[0086] [Table 19]

Item	Spreading	Feel of close fit	Smoothness	Feel of brightness	Beauty of color
EA 14	Double circle	Double circle	Double circle	Double circle	Double circle
CE 18	0	.0	0	0	0
CE 19	•	•	Δ	0	Double circle

EA. Example of Application; CE. Comparative Example

[0087] From [Table 19], it is seen that, in comparison to Comparative Example 18, the cosmetic of Example of Application 14 is superior in terms of spreading, feel of close fit,

smoothness and feel of brightness and, in comparison to Comparative Example 17, it is superior in terms of spreading, the feel of close fit, smoothness and feel of brightness.

[8800]

[Effectiveness of the Invention] This invention is constituted as described above and so it has the following effectiveness. The pearlescent pigment of the invention described in Claim 1 can provide inexpensive pearlescent pigment having the following characteristics: it has an average thickness of $0.1 \sim 2.5~\mu m$, average particle size of $1 \sim 300~\mu m$ and an aspect ratio of $10 \sim 500$ and the base material is the glass flake containing silica by $45 \sim 75~v t$ % and having smooth surface. Further, it is the pearlescent pigment in which the surface of base material is film-coated with metal oxide like titanium oxide and so it does not have lackluster as a cosmetic material and it expresses very good feel of brightness and it does not give the feel of roughness on the skin and has excellent spreading and feel of fit.

[0089] According to the pearlescent pigment of the invention described in Claim 2, precious metal and titania are attached to the surface of base material in addition to the effect of the invention of Claim 1 and, consequently, the titania film of rutile type that is dense and stable is formed by heating at a temperature below 600 deg C.

[0090] The cosmetic of the invention described in Claim 3 uses this pearlescent pigment as the cosmetic material and so it can provide a cosmetic that has a good spreading and excellent feel of fit on the skin and does not generate the feel of roughness and has the beauty of coloring with excellent feel of brightness.