

NASIONALE SENIOR SERTIFIKAAT-EKSAMEN NOVEMBER 2020

WISKUNDE: VRAESTEL I

NASIENRIGLYNE

Tyd: 3 uur 150 punte

Hierdie nasienriglyne word voorberei vir gebruik deur eksaminatore en hulpeksaminatore. Daar word van alle nasieners vereis om 'n standaardiseringsvergadering by te woon om te verseker dat die nasienriglyne konsekwent vertolk en toegepas word tydens die nasien van kandidate se skrifte.

Die IEB sal geen gesprek aanknoop of korrespondensie voer oor enige nasienriglyne nie. Daar word toegegee dat verskillende menings rondom sake van beklemtoning of detail in sodanige riglyne mag voorkom. Dit is ook voor die hand liggend dat, sonder die voordeel van bywoning van 'n standaardiseringsvergadering, daar verskillende vertolkings mag wees oor die toepassing van die nasienriglyne.

IEB Copyright © 2020 BLAAI ASSEBLIEF OM

NEEM KENNIS:

- Indien 'n kandidaat 'n vraag meer as een keer beantwoord, sien slegs die EERSTE poging na.
- Deurlopende akkuraatheid geld vir alle aspekte van die nasienmemorandum.

AFDELING A

VRAAG 1

(a)(1)	$px^{2} + 2x - 3 = 0$ $x = \frac{(-2) \pm \sqrt{(2)^{2} - 4(p)(-3)}}{2(p)}$ $x = \frac{-2 \pm \sqrt{4 + 12p}}{2p}$ $x = \frac{-2 \pm 2\sqrt{1 + 3p}}{2p}$ $x = \frac{-1 \pm \sqrt{1 + 3p}}{p}$ Niereële wortels vir: $1 + 3p < 0$	gebruik kwadratiese formule $x = \frac{-2 \pm \sqrt{4 + 12p}}{2p}$ vereenvoudigde oplossing
(a)(2)	Niereële wortels vir: $1+3p<0$ $p<-\frac{1}{3}$	$\Delta < 0$ $p < -\frac{1}{3}$ Geen punte vir $\Delta > 0$
(b)	$\sqrt{x-2} + 4 = x$ $(x-2) = (x-4)^{2}$ $x-2 = x^{2} - 8x + 16$ $x^{2} - 9x + 18 = 0$ $x = 6 \text{ of } x = 3$ nie geldig vir $x = 3$	Isoleer wortelvorm $x^{2} - 4x + 4$ $x^{2} - 8x + 16$ faktore antwoord met seleksie
(c)	$(x+3)(x-1) \ge 0$ Kritieke waardes: -3 ; 1 $x \le -3$ of $x \ge 1$	Getallelyn/grafiek $x \le -3$ of $x \ge 1$

IEB Copyright © 2020 BLAAI ASSEBLIEF OM

(-)	2	T
(a)	$x^{\frac{2}{3}} = 4$	3
		$\left(x^{\frac{2}{3}} \right)^{\frac{3}{2}} = \left(2^2 \right)^{\frac{3}{2}}$
	$\left(x^{\frac{2}{3}}\right)^{\frac{3}{2}} = \left(2^{2}\right)^{\frac{3}{2}}$	$ x^3 = (2^2)^2$
		` '
	$x = \pm 8$	x = 8
		x = -8
	Alternatief:	X = 0
	$\sqrt[3]{x^2} = 4$	
	$\left(\sqrt[3]{x^2}\right)^3 = \left(4\right)^3$	$(3\sqrt{2})^3$ (4) ³
	$\left(\sqrt[4]{X^2}\right) = (4)$	$\left(\sqrt[3]{x^2}\right)^3 = \left(4\right)^3$
	$x^2 = 64$	<i>x</i> = 8
	x = 8 of $x = -8$	x = -8
(b)	$x^2 + 1 = x - y$	$x^2 + 1 = x - y$
	Vervang: $y = 2 - 3x$	Vervang: $y = 2 - 3x$
		$x^2 + 1 = 4x - 2$
	$x^2 + 1 = 4x - 2$	
	$x^2 - 4x + 3 = 0$	$\begin{array}{c} x = 1 \\ y = -1 \end{array}$
	x=1 of $x=3$	$\begin{array}{c} y = 1 \\ x = 3 \end{array}$
	Wanneer $x = 1$; $y = -1$	y = -7
	Wanneer $x = 3$; $y = -7$, .
	Alternatief:	
	Alternatief: $y = 2 - 3x$ verg. 1	2 x ² +1 3 ^x
	y = 2 - 3x verg. 1	$3^{x^2+1} = \frac{3^x}{3^y}$ vervang verg. 1
	y = 2 - 3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1	•
	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$	$3^{x^2+1} = 3^{4x-2}$
	y = 2 - 3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$	$3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$
	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2}+1 = 4x-2$ $x = 1$
	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$
	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2}+1 = 4x-2$ $x = 1$
	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3Wanneer x = 1; y = -1$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$
	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3Wanneer x = 1; y = -1$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2+1=4x-2$ $x^2+1=4x-2$ $x^2-4x+3=0$ x=1 of $x=3Wanneer x=1; y=-1Wanneer x=3; y=-7$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2+1=4x-2$ $x^2+1=4x-2$ $x^2-4x+3=0$ x=1 of $x=3Wanneer x=1; y=-1Wanneer x=3; y=-7$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3Wanneer x = 1; y = -1Wanneer x = 3; y = -7A = P(1+i)^n25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$ $25000 = 20000 \left(1 + \frac{4}{100}\right)^{n}$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3Wanneer x = 1; y = -1Wanneer x = 3; y = -7A = P(1+i)^n25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$ $25000 = 20000 \left(1 + \frac{4}{100}\right)^{n}$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3Wanneer x = 1; y = -1Wanneer x = 3; y = -7A = P(1+i)^n25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^n\frac{5}{4} = (1,04)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3Wanneer x = 1; y = -1Wanneer x = 3; y = -7A = P(1+i)^n25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^n\frac{5}{4} = (1,04)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2}+1=4x-2$ $x=1$ $y=-1$ $x=3$ $y=-7$ $25000 = 20000 \left(1 + \frac{4}{100}\right)^{n}$ $n = \log_{1.04} \left(\frac{5}{4}\right)$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3Wanneer x = 1; y = -1Wanneer x = 3; y = -7A = P(1+i)^n25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^n\frac{5}{4} = (1,04)^nn = \log_{1,04} \left(\frac{5}{4}\right)$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$ $25000 = 20000 \left(1 + \frac{4}{100}\right)^{n}$
(c)	y = 2-3x verg. 1 $3^{x^2+1} = 3^{x-y}$ vervang verg. 1 $3^{x^2+1} = 3^{x-(2-3x)}$ $3^{x^2+1} = 3^{4x-2}$ $x^2 + 1 = 4x - 2$ $x^2 - 4x + 3 = 0$ x = 1 of $x = 3Wanneer x = 1; y = -1Wanneer x = 3; y = -7A = P(1+i)^n25\ 000 = 20\ 000 \left(1 + \frac{4}{100}\right)^n\frac{5}{4} = (1,04)^n$	$3^{x^{2}+1} = 3^{4x-2}$ $x^{2} + 1 = 4x - 2$ $x = 1$ $y = -1$ $x = 3$ $y = -7$ $25000 = 20000 \left(1 + \frac{4}{100}\right)^{n}$ $n = \log_{1,04} \left(\frac{5}{4}\right)$

	T	
(a)	$f(0) = 3 - \frac{4}{0 - 2}$ $f(0) = 5$	f(0) = 5
(b)	$f(0) = 5$ $3 - \frac{4}{x - 2} = 0$ $3(x - 2) - 4 = 0 \text{ beperking } x \neq 2$ $3x - 6 - 4 = 0$ $x = \frac{10}{3}$ $x = 3\frac{1}{3}$	3(x-2)-4=0 $x=3\frac{1}{3}$
(c)	20 - y 16 - 12 - 8 -	Vorm Vertikale asimptoot Horisontale asimptoot Afsnitte
(d)(1)	$f(x+p) = 3 - \frac{4}{x+p-2}$ $f(x+p) = -\frac{4}{[x+(p-2)]} + 3$	$f(x+p) = 3 - \frac{4}{x+p-2}$
(d)(2)	Grafiek van f sal p eenhede na regs skuif	Verduideliking

(e)(1)	Λ	
(6)(1)	Vir $f^{-1}(x)$: $x = 3 - \frac{4}{y-2}$	
	$x = 3 - \frac{4}{y - 2}$	
	$\frac{4}{y-2}=3-x$	$x=3-\frac{4}{y-2}$
	4 = (3-x)(y-2) 4 = 3y-6-xy+2x	4=(3-x)(y-2)
	3y - xy = 4 + 6 - 2x y(3 - x) = 10 - 2x	$\therefore f^{-1}(x) = \frac{10-2x}{3-x}$
	$y = \frac{10 - 2x}{3 - x}$	Alternatiewe finale antwoord:
	$\therefore f^{-1}(x) = \frac{10-2x}{3-x}$	$f^{-1}(x) = \frac{2x-10}{x^2-3}$
	Alternatiewe finale antwoord:	X-3
	$f^{-1}(x) = \frac{2x - 10}{x - 3}$	Alternatiewe finale antwoord:
		$y = -\frac{4}{x-3} + 2$
(e)(2)	Definisiegebied van $f^{-1}(x)$: $x \in R$; $x \neq 3$	$x \in R$; $x \neq 3$

(4)(a)	$ar^2 = 7$	$ar^2 = 7$
	$ar^5 = -2401$	⁵ 0.404
	$\therefore \frac{ar^5}{ar^2} = -\frac{2401}{7}$	$ar^5 = -2401$
	$\begin{array}{c} ar^2 & 7 \\ \therefore r^3 = -343 \end{array}$	$\therefore \frac{ar^5}{ar^2} = -\frac{2401}{7}$
	∴ r = -7	$\frac{1}{100}$ ar ² $\frac{1}{100}$ $\frac{1}{100}$
	$T_n = a(-7)^{n-1}$	r = -7
	$T_3 = a(-7)^{3-1} = 7$	$a=\frac{1}{7}$
	$a = \frac{7}{49}$	7
	$\therefore a = \frac{1}{7}$ 3 7 15 27 Ry	
(4)(b)(1)	3 7 15 27 Ry 4 8 12 Eerste verskil	Ry Eerste verskil
	4 4 Konstante tweede	Konstante tweede verskil
(b)(2)	verskil 2a = 4 ∴ a = 2	
(-)(-)		Matada
	3a+b=4 : $b=-2$	Metode
	a+b+c=3 : $c=3$	a = 2
	$T_n = 2n^2 - 2n + 3$	<i>b</i> = −2
	Alternatief:	c = 3
	T _n = $7(n-1) - 3(n-2) + \frac{(n-1)(n-2)}{2} \times (4)$	Motodo
	2	Metode
	$T_n = 7n - 7 - 3n + 6 + (n^2 - 3n + 2)(2)$	a = 2
	$T_n = 2n^2 - 2n + 3$	<i>b</i> = −2
		c = 3

(a)	$a(x) = \log x $	
(α)	$g(x) = \log_t x \text{ vervang } (2;-1)$	
	$-1 = \log_t 2$	$-1 = \log_t 2$
	$t^{-1}=2$	
	$t=\frac{1}{2}$	$-1 = \log_t 2$ $t = \frac{1}{2}$
(b)	X-afsnit van normale/standaard log-grafiek is	2
(D)	altyd:	∴ C(1;0)
	$(1,0)$ aangesien $\log_t 1 = 0$	(,0)
	∴ C(1; 0)	
	Alternatief: Vir koördinate van C: X-afsnit, laat $y = 0$.	
	$y = \log_{\underline{1}} x$	
	2	∴ C(1;0)
	$0 = \log_{\frac{1}{2}} x$	
	$x = \left(\frac{1}{2}\right)^0$	
	x=1	
	∴ C(1;0)	
(c)	$f(x)=2p^x+q$	
	q = -1 aangesien asimptoot deur A(2;-1) gaan	g = -1
	$f(x) = 2p^x - 1$ vervang (1;0)	$0 - 2n^{1}$
	$0=2p^1-1$	$q = -1$ $0 = 2p^{1} - 1$ $p = \frac{1}{2}$
	$\therefore p = \frac{1}{2}$	$p = \frac{1}{2}$
	2	
(d)	D is die y-afsnit van f : Laat $x = 0$.	
	$f(x) = 2 \times \left(\frac{1}{2}\right)^x - 1$ vervang $x = 0$	$y = 2 \times \left(\frac{1}{2}\right)^0 - 1$
	$y = 2 \times \left(\frac{1}{2}\right)^0 - 1$	D(0;1)
	<i>y</i> = 1	
	∴ D(0;1)	
(e)	$f(x) = 2\left(\frac{1}{2}\right)^{x} - 1$ vervang B(2; y)	(1)2
	$f(x) = 2\left(\frac{1}{2}\right)^2 - 1$	$f(x) = 2\left(\frac{1}{2}\right)^2 - 1$
	$f(x)=y=-\frac{1}{2}$	Lengte van AB = $\frac{1}{2}$
	Lengte van AB = $\frac{1}{2}$	
(f)	Waardegebied van f: y > -1	<i>y</i> > −1

(a)	$f(x) = 1 - 2x + x^2$	
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	$1-2(x+h)+(x+h)^2$
	$f'(x) = \lim_{h \to 0} \frac{1 - 2(x+h) + (x+h)^2 - (1 - 2x + x^2)}{h}$	$-(1-2x+x^2)$
	$f'(x) = \lim_{h \to 0} \frac{1 - 2x - 2h + x^2 + 2xh + h^2 - 1 + 2x - x^2}{h}$	Kwadrering en verspreiding
	· · · · · · · · · · · · · · · · · · ·	Faktorisering
	$f'(x) = \lim_{h \to 0} \frac{-2h + 2xh + h^2}{h}$	Notasie
	$f'(x) = \lim_{h \to 0} \frac{h(-2+2x+h)}{h}$	Vervang om 2x-2 te kry
	$f'(x) = \lim_{h \to 0} (-2 + 2x + h)$	
	2x-2	
(b)	$v - v^{10} + 10v$	10 <i>x</i> ⁹
	$\frac{dy}{dx} = 10x^9 + 10$	10
(c)	$y = \frac{5}{x^3} + \frac{x^{\frac{1}{2}}}{x^3}$ $y = 5x^{-3} + x^{-\frac{5}{2}}$	
	$\int_{0}^{\infty} x^3 x^3$	$y = 5x^{-3} + x^{-\frac{5}{2}}$
	$y = 5x^{-3} + x^{-\frac{3}{2}}$	y - Ox + X
	$\frac{dy}{dx} = -15x^{-4} - \frac{5}{2}x^{-\frac{7}{2}}$	$\frac{dy}{dx} = -15x^{-4} - \frac{5}{2}x^{-\frac{7}{2}}$
		Penaliseer 1 vir notasie

IEB Copyright © 2020

AFDELING B

(a)	Vir: $x < -4$ en $x > 1$	x < -4
		x > 1
(b)	↑ v	Marina
		Vorm
		X-afsnitte
	3 -4 -3 -2 -1 2	
(c)	k > p of $k < q$	k > p
		<i>k</i> < <i>q</i>
(d)	$x > -1\frac{1}{2}$	$x > -1\frac{1}{2}$

(a)(1)	86	8 ⁶
(a)(2)		$8 \times 7 \times 6 \times 5 \times 4 \times 3$
	= 20 160	20 160
(b)(1)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{3}{15}$; $\frac{5}{15}$ en $\frac{7}{15}$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	14 Takke met korrekte waardes
(b)(2)	$ \frac{\left(\frac{5}{15} \times \frac{7}{14}\right) + \left(\frac{7}{15} \times \frac{5}{14}\right)}{1} $	$\left(\frac{5}{15} \times \frac{7}{14}\right)$
	$=\frac{1}{3}$	$\left(\frac{7}{15} \times \frac{5}{14}\right)$ $= \frac{1}{3}$
(c)	$P(A \cap B) = P(A) \times P(B)$ $\therefore P(A \cap B) = 0,08 \times 0,02$ $= 0,0016$ maar $P(AUB) = P(A) + P(B) - P(A \cap B)$ $\therefore P(AUB) = 0,08 + 0,02 - 0,0016$ $= 0,0984$	∴ $P(A \cap B) = 0,0016$ $P(AUB) = P(A) + P(B) - P(A \cap B)$ ∴ $P(AUB) = 0,08 + 0,02$ = 0,0984
	Alternatief:	
	P(minstens een wen) = P(een of meer wenne) = $1 - P(geen wenne)$ = $1 - P(L) \times P(L)$ = $1 - 0.98 \times 0.92$ = 0.0984	= 1-P(geen wenne) 0,98 0,92 = 0,0984

(a)	a = 725	a = 725
	b = 190	b = 190
(b)	$h = k(x-a)^2 + b$	$h = k(x-725)^2 + 190$
	$h = k(x-725)^2 + 190 \text{ vervang } (0;315)$	$k = \frac{1}{4205}$
	$315 = k(0-725)^2 + 190$. 200
	$k = \frac{1}{4205}$	$210 = \frac{1}{4205} (x - 725)^2$
	4 205	+190
	$h = \frac{1}{4205} (x - 725)^2 + 190 \dots \text{ vervang } (x, 210)$	x = 1015 of $x = 435$
	$210 = \frac{1}{4205} (x - 725)^2 + 190$	Dus is die horisontale
	x = 1015 of $x = 435$	afstand van higrometer van
	Dus is die horisontale afstand van higrometer van die linkertoring af 435 m.	die linkertoring af 435 m.

IEB Copyright © 2020

(a) $F = 8.755 \left[\frac{\left(1 + \frac{6.7}{400}\right)^{(5\times4)} - 1}{\frac{6.7}{400}} \right]$

F = 205973,485

Totale koste van aandele = $8755 \times 4 \times 5$ Totale koste van aandele = 175100

Totale wins = 30873,485

% wins =
$$\frac{30\,873,485}{175\,100} \times 100$$

= 17,6319 %
 $\approx 17,6\%$

Alternatief:

F = 8 755
$$\frac{\left(1 + \frac{6,7}{400}\right)^{(5\times4)} - 1}{\frac{6,7}{400}}$$

F = 205973,485

Totale koste van aandele = $8755 \times 4 \times 5$ Totale koste van aandele = 175100

∴ % wins =
$$\frac{205973,485}{175100}$$

= 1,176319
∴ 17,6%

Binne vierkante hakie

Korrekte *x* in korrekte formule

F = 205973,485

175 100

30 873,485

≈ 17,6% %

Binne vierkante hakie

Korrekte *x* in korrekte formule

F = 205973,485

175 100

% wins $=\frac{205973,485}{175100}$

≈ 17,6% %

(p)	300 000 = <i>x</i>	$1 - \left(1 + \frac{9.5}{1200}\right)^{-(15 \times 12)}$
	300 000 = X	9,5

x = 3132,674049

Saldo van lening = A - F

$$A = 300\ 000 \left(1 + \frac{9.5}{1200}\right)^{12 \times 5}$$

A = 481502,8408

$$F = 3132,674049 \left[\frac{\left(1 + \frac{9,5}{1200}\right)^{(12\times5)} - 1}{\frac{9,5}{1200}} \right]$$

F = 239 405,9954

Saldo van lening

$$=(481\ 502,8408)-(239\ 405,9954)$$

- = 242 096,8454
- $\approx 242\,096,85$

Alternatief:

$$P = 3 \, 132,674049 \left[\frac{1 - \left(1 + \frac{9,5}{1200}\right)^{-(10 \times 12)}}{\frac{9,5}{1200}} \right]$$

 $P = 242\ 096,8454$ $\approx 242\ 096,85$

Nee, daar sal 'n tekort van R36123,36 wees.

300 000

Binne die vierkante hakie

x = 3132,674049

F = 239 405,9954

 $=(481\ 502,8408)-(239\ 405,9954)$

Comparison between 10a and 10b with conclusion

.....

300 000

Inside the square bracket

x = 3132,674049

$$P = 3132,674049 \left[\frac{1 - \left(1 + \frac{9,5}{1200}\right)^{-(10 \times 12)}}{\frac{9,5}{1200}} \right]$$

No. of years: -120

 $\approx 242\,096,85$

Comparison between 10a and 10b with conclusion

(a) $\sum_{j=1}^{\infty} \frac{k}{2j} + \sum_{i=1}^{10} 2^{2i} > 1000000$ Werk met: $\sum_{j=1}^{\infty} \frac{k}{2^{j}}$ $T_{1} = \frac{k}{2} ; T_{2} = \frac{k}{4} ; T_{3} = \frac{k}{8}$ Gemene verhouding: $\frac{k}{4} \div \frac{k}{2}$ $r = \frac{1}{2}$ $S_{\infty} = \frac{a}{1-r} \text{vir} -1 < r < 1$ $S_{\infty} = \frac{\frac{k}{2}}{1-\frac{1}{2}}$ $S_{\infty} = k$ Werk met: $\sum_{j=1}^{10} 2^{2j}$ $T_{1} = 2^{2} ; T_{2} = 2^{4} ; T_{3} = 2^{6}$ Korrekte vervanging in korrekte formule om te kry: $S_{\infty} = k$
$T_{1} = \frac{k}{2} ; T_{2} = \frac{k}{4} ; T_{3} = \frac{k}{8}$ Gemene verhouding: $\frac{k}{4} \div \frac{k}{2}$ $r = \frac{1}{2}$ $S_{\infty} = \frac{a}{1-r} \text{vir} -1 < r < 1$ $S_{\infty} = \frac{\frac{k}{2}}{1-\frac{1}{2}}$ $S_{\infty} = k$ Werk met: $\sum_{i=1}^{10} 2^{2i}$ $Korrekte vervanging in korrekte formule om te kry: S_{\infty} = k$
Gemene verhouding: $\frac{k}{4} \div \frac{k}{2}$ $r = \frac{1}{2}$ $S_{\infty} = \frac{a}{1-r} \text{ vir } -1 < r < 1$ $S_{\infty} = \frac{\frac{k}{2}}{1-\frac{1}{2}}$ $S_{\infty} = k$ Werk met: $\sum_{i=1}^{10} 2^{2i}$ $Korrekte vervanging in korrekte formule om te kry: S_{\infty} = k$
$r = \frac{1}{2}$ $S_{\infty} = \frac{a}{1-r} \text{ vir } -1 < r < 1$ $S_{\infty} = \frac{\frac{k}{2}}{1-\frac{1}{2}}$ $S_{\infty} = k$ $Werk met: \sum_{i=1}^{10} 2^{2i}$ $r = \frac{1}{2}$ $Korrekte vervanging in korrekte formule om te kry: S_{\infty} = k$
$S_{\infty} = \frac{a}{1-r} \text{ vir } -1 < r < 1$ $S_{\infty} = \frac{\frac{k}{2}}{1-\frac{1}{2}}$ $S_{\infty} = k$ Werk met: $\sum_{i=1}^{10} 2^{2i}$ Korrekte vervanging in korrekte formule om te kry: $S_{\infty} = k$
$S_{\infty} = \frac{\frac{k}{2}}{1 - \frac{1}{2}}$ $S_{\infty} = k$ $Werk met: \sum_{i=1}^{10} 2^{2i}$ Korrekte vervanging in korrekte formule om te kry: $S_{\infty} = k$
$S_{\infty} = k$ Werk met: $\sum_{i=1}^{10} 2^{2i}$
$S_{\infty} = k$ Werk met: $\sum_{i=1}^{10} 2^{2i}$
<i>j</i> =1
$T_1 = 2^2$; $T_2 = 2^4$; $T_3 = 2^6$
O amana a construction of the construction of
Gemene verhouding: $r = 4$
$S_n = \frac{a(r^n - 1)}{r - 1} ; r \neq 1$
$S_{10} = \frac{4(4^{10} - 1)}{4 - 1}$ Korrekte vervanging in korrekte formule om te kry:
$S_{10} = 1398100$
$\therefore \sum_{i=1}^{\infty} \frac{k}{2i} + \sum_{i=1}^{10} 2^{2i} > 1 \ 000 \ 000 \ \text{kan herskryf word as}$
k+1398100>1000000 $k+1398100>1000000$
$k > -398100$ $\therefore k = -398099 (k \in \mathbb{Z})$
$\therefore k = -398\ 099 (k \in \mathbb{Z})$
(b)(1) $5 + \frac{15}{2} + 10 + + \frac{505}{2}$
Gemene verskil van $\frac{5}{2}$; reeks is rekenkundig $d = \frac{5}{2}$
$T_n = a + (n-1)d$ Korrekte vervanging in die korrekte formule
$\left \frac{505}{2} = 5 + (n-1)\left(\frac{5}{2}\right) \right $ $n = 100$
$250 = \frac{5}{2}n$
n=100

NASIONALL	SENIOR SERVII INAAT. WISKUNDE. WALSTEET - NASIENRIGETIVE	Bladdy 10 vall 17
(b)(2)	Middelste 30 terme sal wees: T_{36} tot T_{65}	
	$T_{36} = 5 + (35)\left(\frac{5}{2}\right)$	T_{36}
	$T_{36} = \frac{185}{2}$	$T_{36} = \frac{185}{2}$
	Laat $a = \frac{185}{2}$; $d = \frac{5}{2}$	
	$S_n = \frac{n}{2} [2a + (n-1)d]$	Korrekte vervanging in korrekte formule
	$S_{30} = \frac{30}{2} \left[2 \left(\frac{185}{2} \right) + (29) \left(\frac{5}{2} \right) \right]$	S ₃₀ = 3 862,5
	$S_{30} = 3.862,5$	
	Alternatief:	
	Middelste 30 terme sal wees: T_{36} tot T_{65}	T ₃₆
	$T_{36} = 5 + \left(35\right)\left(\frac{5}{2}\right)$	$T_{36} = \frac{185}{2}$
	$T_{36} = \frac{185}{2}$ $T_{65} = 5 + (64)\left(\frac{5}{2}\right)$ $T_{65} = 165$ $S_n = \frac{n}{2}(a+1)$	$I_{36} = \frac{1}{2}$
	$T_{65} = 5 + (64) \left(\frac{5}{2}\right)$	
	$T_{65} = 165$	
	$S_n = \frac{n}{2}(a+I)$	Korrekte vervanging in korrekte formule
	$S_{30} = \frac{30}{2} \left(\frac{185}{2} + 165 \right)$	S ₃₀ = 3 862,5

 $S_{30} = 3862,5$

12	Laat $g(1) = h(1)$. $(1)^3 - a(1)^2 + 6 = 2(1)^2 + b(1) + 3$ 1 - a + 6 = 2 + b + 3 a = 2 - b verg. 1	g(1) = h(1) a = 2 - b verg.1
	$g'(x) = 3x^2 - 2ax$ $h'(x) = 4x + b$	$g'(x) = 3x^2 - 2ax$ $h'(x) = 4x + b$
	g'(1) = h'(1) $3(1)^2 - 2a(1) = 4(1) + b$ 3 - 2a = 4 + b vervang verg. 1: $a = 2 - b3 - 2(2 - b) = 4 + bb = 5a = -3$	g'(1) = h'(1) 2a + b = -1 b = 5
	$h(x) = 2x^2 + 5x + 3$ h(1) = 10 Kontakpunt is: (1;10)	(1;10)

13	8x + 4x + 4h = P	8x + 4x + 4h = P
	P=12x+4h	
	P-12x=4h	
	$\therefore h = \frac{1}{4}P - 3x$	$h = \frac{1}{4}P - 3x$
	$V = I \times b \times h$	
	$V = (2x)(x)(h)$ vervang: $h = \frac{1}{4}P - 3x$	
	$V = (2x)(x)\left(\frac{1}{4}P - 3x\right)$	$V = (2x)(x)\left(\frac{1}{4}P - 3x\right)$
	$V = \frac{1}{2}x^2P - 6x^3$	$V = \frac{1}{2}x^2P - 6x^3$
	$V' = Px - 18x^2$	$V' = Px - 18x^2$ $0 = x(P - 18x)$
	0=x(P-18x)	0 = x(P-18x)
	$x = 0 \text{ of } x = \frac{P}{18}$	P=18x
	Dus is lengte van die boks $2x = \frac{P}{9}$.	Lengte van die boks is $2x$ en $P = 18x$
	\therefore lengte van boks is $\frac{1}{9}P$ cm wanneer die	
	volume 'n maksimum is.	

Totaal: 150 punte