# Huperl Epp

#### Who are we?



## The Challenge







#### The Result



## Stage 1: Preliminary Design Briefing

- 1200+ Submissions
- 300 SpaceX Approved submissions move onto next round
- Express Preliminary Ideas about how to design The Hyperloop



#### McMaster Hyperloop Moves onto Stage 2

• November 25<sup>th</sup>, 2015:

McMaster Hyperloop was formally invited to present Final Design intentions for The Hyperloop at The SpaceX Hyperloop Pod Design Competition

Final Design Competition

Held from January 29-30 2016 at Texas A&M University; College Station, Texas United States of America



## Stage 2: Final Design Competition

 300 SpaceX approved teams come to Texas A&M from January 29-30, 2016 to present Final Design Intentions to series of Judges (Industry Professional, University Professors, SpaceX & Tesla Engineers selected at random)

Design Only

Design & Build

Nominated Sub-System

### Our Response

Final Design Package

Additional Information for Intent to Build

Presentation of Research

Specification Sheet

Presentation Board







## Pictures From Final Design Competition













### Stage 3: Competition Weekend

• Top 22 Teams from Design Weekend move forward to final round; Stage 3

 Scheduled for August 2016, selected teams to bring their Final Designs to life by building prototypes test on SpaceX Official Test Track





# Current Team Status



# Future Plans

# Huperlæp





RYERSON UNIVERSITY

#### Deployable Hyperloop Landing Gear



"Using an innovative hybrid actuator system to perform extension and retraction at low speeds and emergency scenarios, the deployable wheels system will play a key role in the safe and smooth operation of the pod "-TAMU Engineering

### Requested Task of McMaster University

Design and Manufacture a Test Rig to:

#### 1.) Validate Static Stress Levels

 At critical (and non-critical sections if warranted) using applied forces and measured with strain gauges

#### 2.) Validate Static Deformation

 Certain sections of the wheel system should not deform more than a to be determined amount in order for the gear to function nominally (also this deformation should not be permanent)

#### 3.) Deployment; Retraction Cycle Tests

(measure speeds, loading due to g-forces, stresses on motor and other components)

#### 4.) Active Control System Testing

 (when braking, does system react quick enough to a given scenario? does the system insure all gears touchdown at the same rate, same time and if not does it correct for that?)

#### 5.) Validate Dynamic Loading Cases

• (ie. braking, un even load distribution over the gears, wheels touching ground at different rotational speeds, etc.)





## Meeting Takeaways

#### 2016 Season Performance

 Thoughts/Comments/ Advice

 What could we have done differently?

 Lessons Learned/ Takeaways

#### **Ryerson Collaboration**

Resources

Funding

Agreement Conditions

#### 2017 Season

What can we start doing now?

 Frameworks to Implement

 Advice/Resources for University Engineering Teams

Funding

# Thank You!

