IN2010 – Algoritmer og datastrukturer

Lars Tveito

Institutt for informatikk, Universitetet i Oslo larstvei@ifi.uio.no

• Det er to store kategorier med anvendelser av trær:

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur
 - Effektiv implementasjon for datasamlinger (eksempelvis mengder og ordbøker)

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur
 - Effektiv implementasjon for datasamlinger (eksempelvis mengder og ordbøker)
- Dere kjenner allerede til lister, som er definert som

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur
 - Effektiv implementasjon for datasamlinger (eksempelvis mengder og ordbøker)
- Dere kjenner allerede til lister, som er definert som
 - en tom liste ofte representert med null eller

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur
 - Effektiv implementasjon for datasamlinger (eksempelvis mengder og ordbøker)
- Dere kjenner allerede til lister, som er definert som
 - en tom liste ofte representert med null eller
 - en node som består av en peker til et element og en peker til en liste

l

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur
 - Effektiv implementasjon for datasamlinger (eksempelvis mengder og ordbøker)
- Dere kjenner allerede til lister, som er definert som
 - en tom liste ofte representert med null eller
 - en node som består av en peker til et element og en peker til en liste
- Alle lister *er trær*, men ikke alle trær er lister

l

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur
 - Effektiv implementasjon for datasamlinger (eksempelvis mengder og ordbøker)
- Dere kjenner allerede til lister, som er definert som
 - en tom liste ofte representert med null eller
 - en node som består av en peker til et element og en peker til en liste
- Alle lister *er trær*, men ikke alle trær er lister
- Vi kan se på trær som en enkel utvidelse av lister

L

- Det er to store kategorier med anvendelser av trær:
 - Det du jobber med har en iboende hierarkisk struktur
 - Effektiv implementasjon for datasamlinger (eksempelvis mengder og ordbøker)
- Dere kjenner allerede til lister, som er definert som
 - en tom liste ofte representert med null eller
 - en node som består av en peker til et element og en peker til en liste
- Alle lister *er trær*, men ikke alle trær er lister
- Vi kan se på trær som en enkel utvidelse av lister
 - der vi tillater at en node har flere neste-pekere

L

• Syntaksen i programmeringspråk utgjør trær

- Syntaksen i programmeringspråk utgjør trær
 - Det første en kompilator gjør, er å gjøre koden din om til et abstrakt syntakstre

- Syntaksen i programmeringspråk utgjør trær
 - Det første en kompilator gjør, er å gjøre koden din om til et abstrakt syntakstre
- HTML er et filformat som lar deg uttrykke trær

- Syntaksen i programmeringspråk utgjør trær
 - Det første en kompilator gjør, er å gjøre koden din om til et abstrakt syntakstre
- HTML er et filformat som lar deg uttrykke trær
 - Så en nettside kan ses på som en bestemt måte å vise frem et tre

- Syntaksen i programmeringspråk utgjør trær
 - Det første en kompilator gjør, er å gjøre koden din om til et abstrakt syntakstre
- HTML er et filformat som lar deg uttrykke trær
 - Så en nettside kan ses på som en bestemt måte å vise frem et tre
 - (Dette treet kalles DOM-treet, der DOM står for Document Object Model)

- Syntaksen i programmeringspråk utgjør trær
 - Det første en kompilator gjør, er å gjøre koden din om til et abstrakt syntakstre
- HTML er et filformat som lar deg uttrykke trær
 - Så en nettside kan ses på som en bestemt måte å vise frem et tre
 - (Dette treet kalles DOM-treet, der DOM står for Document Object Model)
- En stamtavle (eller slektstre eller familietre) viser etterfølgerne til en person

- Syntaksen i programmeringspråk utgjør trær
 - Det første en kompilator gjør, er å gjøre koden din om til et abstrakt syntakstre
- HTML er et filformat som lar deg uttrykke trær
 - Så en nettside kan ses på som en bestemt måte å vise frem et tre
 - (Dette treet kalles DOM-treet, der DOM står for Document Object Model)
- En stamtavle (eller slektstre eller familietre) viser etterfølgerne til en person
- Filsystemer er trær

- Syntaksen i programmeringspråk utgjør trær
 - Det første en kompilator gjør, er å gjøre koden din om til et abstrakt syntakstre
- HTML er et filformat som lar deg uttrykke trær
 - Så en nettside kan ses på som en bestemt måte å vise frem et tre
 - (Dette treet kalles DOM-treet, der DOM står for Document Object Model)
- En stamtavle (eller slektstre eller familietre) viser etterfølgerne til en person
- Filsystemer er trær
- Alle mulige sjakkpartier kan representeres som et (enormt) tre

• Et tre er definert som

- Et tre er definert som
 - ullet det tomme treet ofte representert med null eller

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - ullet en node v med en peker til

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - \bullet en node v med en peker til
 - et element

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - \bullet en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - ullet en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og
 - nøyaktig én foreldernode (med mindre v er roten)

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - ullet en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og
 - nøyaktig én foreldernode (med mindre v er roten)
 - Et tre kan ikke inneholde sykler

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - ullet en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og
 - nøyaktig én foreldernode (med mindre v er roten)
 - Et tre kan ikke inneholde sykler
 - Altså: fra en node \boldsymbol{v} kan du ikke nå \boldsymbol{v} ved å følge pekere fra \boldsymbol{v}

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - ullet en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og
 - nøyaktig én foreldernode (med mindre v er roten)
 - Et tre kan ikke inneholde sykler
 - Altså: fra en node v kan du ikke nå v ved å følge pekere fra v
- Merk: Boka tillater ikke tomme trær

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - ullet en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og
 - nøyaktig én foreldernode (med mindre v er roten)
 - Et tre kan ikke inneholde sykler
 - Altså: fra en node v kan du ikke nå v ved å følge pekere fra v
- Merk: Boka tillater ikke tomme trær
- Vi skal definere trær mer presist som en spesiell type grafer

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - ullet en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og
 - nøyaktig én foreldernode (med mindre v er roten)
 - Et tre kan ikke inneholde sykler
 - Altså: fra en node v kan du ikke nå v ved å følge pekere fra v
- Merk: Boka tillater ikke tomme trær
- Vi skal definere trær mer presist som en spesiell type grafer
 - Da vil disse trærne kalles trær med rot

- Et tre er definert som
 - det tomme treet ofte representert med null eller
 - ullet en node v med en peker til
 - et element
 - 0 eller flere pekere til barnenoder, og
 - nøyaktig én foreldernode (med mindre v er roten)
 - Et tre kan ikke inneholde sykler
 - Altså: fra en node v kan du ikke nå v ved å følge pekere fra v
- Merk: Boka tillater ikke tomme trær
- Vi skal definere trær mer presist som en spesiell type grafer
 - Da vil disse trærne kalles trær med rot
- En samling trær kalles en skog

Trær – terminologi

Dette er et tre, hver v_i er en node

Trær - terminologi

 v_1 er *roten* av treet

Trær – terminologi

 v_2, v_3 og v_4 er barn av v_1

Trær - terminologi

 v_1 er forelder til v_2, v_3 og v_4

Trær - terminologi

 v_2, v_3 og v_4 er søsken

Trær - terminologi

 v_{11}, \ldots, v_{16} er *løvnoder*, eller *eksterne* noder

Nodene v_1, \ldots, v_{10} er ikke løvnoder, eller *interne* noder

Trær - terminologi

 v_3 , v_7 , v_8 , v_{13} og v_{14} utgjør et subtre, hvor v_3 er roten

Trær - terminologi

 v_1, v_3, v_8 og v_{14} er forfedre av v_{14}

Trær – terminologi

 v_1, v_3, v_8 og v_{14} er etterkommere av v_1

Trær – terminologi

Sekvensen v_1, v_3, v_8, v_{14} kalles en sti

 $\bullet\,$ null representerer et tomt tre

- null representerer et tomt tre
- Anta at v er en node, da gir

- null representerer et tomt tre
- Anta at v er en node, da gir
 - v.element dataen som er lagret i noden

- null representerer et tomt tre
- Anta at v er en node, da gir
 - ullet v.element dataen som er lagret i noden
 - ullet v.parent foreldrenoden til v

- null representerer et tomt tre
- Anta at v er en node, da gir
 - v.element dataen som er lagret i noden
 - ullet v.parent foreldrenoden til v
 - v.children barnenodene til v

• Dybden til en node er én mer enn foreldrenoden

- Dybden til en node er én mer enn foreldrenoden
- Roten har dybde 0

- Dybden til en node er én mer enn foreldrenoden
- Roten har dybde 0
- Siden vi tillater et tomt tre gir vi det dybde -1

- Dybden til en node er én mer enn foreldrenoden
- Roten har dybde 0
- Siden vi tillater et tomt tre gir vi det dybde -1

- Dybden til en node er én mer enn foreldrenoden
- Roten har dybde 0
- Siden vi tillater et tomt tre gir vi det dybde -1

ALGORITHM: FINN DYBDEN AV EN GITT NODE

Input: En node v

Output: Dybden av noden

- Dybden til en node er én mer enn foreldrenoden
- Roten har dybde 0
- Siden vi tillater et tomt tre gir vi det dybde -1

ALGORITHM: FINN DYBDEN AV EN GITT NODE

Input: En node v

Output: Dybden av noden

 ${\tt 1} \ \ {\tt Procedure} \ {\tt Depth}(v)$

- Dybden til en node er én mer enn foreldrenoden
- Roten har dybde 0
- Siden vi tillater et tomt tre gir vi det dybde -1

ALGORITHM: FINN DYBDEN AV EN GITT NODE

```
Input: En node v
Output: Dybden av noden
Procedure Depth(v)
if v = \text{null then}
return -1
```

- Dybden til en node er én mer enn foreldrenoden
- Roten har dybde 0
- Siden vi tillater et tomt tre gir vi det dybde -1

ALGORITHM: FINN DYBDEN AV EN GITT NODE

```
Input: En node v
Output: Dybden av noden
Procedure Depth(v)

if v = \text{null then}
| \text{return } -1
return 1 + \text{Depth}(v, parent)
```

 $\mathsf{Depth}(v_{14})$

 $\begin{aligned} \mathsf{Depth}(v_{14}) \\ &= (1 + \mathsf{Depth}(v_8)) \end{aligned}$

Depth (v_{14}) = $(1 + Depth(v_8))$ = $(1 + (1 + Depth(v_3)))$

$\begin{aligned} & \mathsf{Depth}(v_{14}) \\ &= (1 + \mathsf{Depth}(v_8)) \\ &= (1 + (1 + \mathsf{Depth}(v_3))) \\ &= (1 + (1 + (1 + \mathsf{Depth}(v_1)))) \end{aligned}$

$$\begin{split} \mathsf{Depth}(v_{14}) &= (1 + \mathsf{Depth}(v_8)) \\ &= (1 + (1 + \mathsf{Depth}(v_3))) \\ &= (1 + (1 + (1 + \mathsf{Depth}(v_1)))) \\ &= (1 + (1 + (1 + (1 + \mathsf{Depth}(\mathsf{null})))) \end{split}$$

$\begin{aligned} &\mathsf{Depth}(v_{14}) \\ &= (1 + \mathsf{Depth}(v_8)) \\ &= (1 + (1 + \mathsf{Depth}(v_3))) \\ &= (1 + (1 + (1 + \mathsf{Depth}(v_1)))) \\ &= (1 + (1 + (1 + (1 + \mathsf{Depth}(\mathbf{null})))) \\ &= (1 + (1 + (1 + (1 + -1)))) \end{aligned}$

$\begin{aligned} \mathsf{Depth}(v_{14}) &= (1 + \mathsf{Depth}(v_8)) \\ &= (1 + (1 + \mathsf{Depth}(v_3))) \\ &= (1 + (1 + (1 + \mathsf{Depth}(v_1)))) \\ &= (1 + (1 + (1 + (1 + \mathsf{Depth}(\mathbf{null})))) \\ &= (1 + (1 + (1 + (1 + -1)))) \\ &= (1 + (1 + (1 + 0))) \end{aligned}$


```
\begin{split} \mathsf{Depth}(v_{14}) \\ &= (1 + \mathsf{Depth}(v_8)) \\ &= (1 + (1 + \mathsf{Depth}(v_3))) \\ &= (1 + (1 + (1 + \mathsf{Depth}(v_1)))) \\ &= (1 + (1 + (1 + (1 + \mathsf{Depth}(\mathsf{null}))))) \\ &= (1 + (1 + (1 + (1 + -1)))) \\ &= (1 + (1 + (1 + (1 + 0)))) \\ &= (1 + (1 + 1)) \end{split}
```



```
Depth(v_{14})
=(1+\mathsf{Depth}(v_8))
= (1 + (1 + Depth(v_3)))
= (1 + (1 + (1 + Depth(v_1))))
= (1 + (1 + (1 + (1 + Depth(null)))))
=(1+(1+(1+(1+-1))))
=(1+(1+(1+0)))
=(1+(1+1))
=(1+2)
```



```
Depth(v_{14})
=(1+\mathsf{Depth}(v_8))
= (1 + (1 + Depth(v_3)))
= (1 + (1 + (1 + Depth(v_1))))
= (1 + (1 + (1 + (1 + Depth(null)))))
=(1+(1+(1+(1+-1))))
=(1+(1+(1+0)))
=(1+(1+1))
=(1+2)
```

• Høyden av et tre er gitt av den høyeste avstanden til en etterkommer

- Høyden av et tre er gitt av den høyeste avstanden til en etterkommer
- Det vil si dybden av den dypeste *løvnoden*

- Høyden av et tre er gitt av den høyeste avstanden til en etterkommer
- Det vil si dybden av den dypeste *løvnoden*

- Høyden av et tre er gitt av den høyeste avstanden til en etterkommer
- Det vil si dybden av den dypeste *løvnoden*

ALGORITHM: FINN HØYDEN AV EN GITT NODE

Input: En node v

Output: Høyden av noden 1 Procedure height(v)

- Høyden av et tre er gitt av den høyeste avstanden til en etterkommer
- Det vil si dybden av den dypeste *løvnoden*

ALGORITHM: FINN HØYDEN AV EN GITT NODE

```
Input: En node v
Output: Høyden av noden
Procedure height(v)
h \leftarrow -1
if v = \text{null then}
| return h
```

- Høyden av et tre er gitt av den høyeste avstanden til en etterkommer
- Det vil si dybden av den dypeste *løvnoden*

ALGORITHM: FINN HØYDEN AV EN GITT NODE

```
Input: En node v
Output: Høyden av noden
Procedure height(v)
h \leftarrow -1
if v = \text{null then}
| \text{return } h
for c \in v.children do
| h \leftarrow \text{Max}(h, \text{height}(c))
```

- Høyden av et tre er gitt av den høyeste avstanden til en etterkommer
- Det vil si dybden av den dypeste *løvnoden*

ALGORITHM: FINN HØYDEN AV EN GITT NODE

```
Input: En node v
Output: Høyden av noden
Procedure height(v)
h \leftarrow -1
if v = \text{null then}
| \text{return } h
for c \in v.children do
| h \leftarrow \text{Max}(h, \text{height}(c))
return 1 + h
```

Trær – traversering

• Vi har måter for å systematisk gå gjennom (traversere) et tre på

Trær – traversering

- Vi har måter for å systematisk gå gjennom (traversere) et tre på
- Underveis har vi en operasjon vi ønsker å utføre

Trær – traversering

- Vi har måter for å systematisk gå gjennom (traversere) et tre på
- Underveis har vi en operasjon vi ønsker å utføre
- For mange operasjoner har rekkefølgen vi utfører operasjonen i en betydning

Trær – traversering

- Vi har måter for å systematisk gå gjennom (traversere) et tre på
- Underveis har vi en operasjon vi ønsker å utføre
- For mange operasjoner har rekkefølgen vi utfører operasjonen i en betydning
 - preorder utfører operasjonen på seg selv først, og barna etterpå

Trær - traversering

- Vi har måter for å systematisk gå gjennom (traversere) et tre på
- Underveis har vi en operasjon vi ønsker å utføre
- For mange operasjoner har rekkefølgen vi utfører operasjonen i en betydning
 - preorder utfører operasjonen på seg selv først, og barna etterpå
 - postorder utfører operasjonen på barna først, og seg selv etterpå

Trær - traversering

- Vi har måter for å systematisk gå gjennom (traversere) et tre på
- Underveis har vi en operasjon vi ønsker å utføre
- For mange operasjoner har rekkefølgen vi utfører operasjonen i en betydning
 - preorder utfører operasjonen på seg selv først, og barna etterpå
 - postorder utfører operasjonen på barna først, og seg selv etterpå
- For å kopiere et tre egner *preorder* seg bedre enn *postorder*

Trær - traversering

- Vi har måter for å systematisk gå gjennom (traversere) et tre på
- Underveis har vi en operasjon vi ønsker å utføre
- For mange operasjoner har rekkefølgen vi utfører operasjonen i en betydning
 - preorder utfører operasjonen på seg selv først, og barna etterpå
 - postorder utfører operasjonen på barna først, og seg selv etterpå
- For å kopiere et tre egner *preorder* seg bedre enn *postorder*
- For å slette et tre kan egner *postorder* seg bedre enn *preorder*

ALGORITHM: PREORDER TRAVERSERING

```
Input: En node v (som ikke er null)
Output: Utfør en operasjon på v, deretter barna til v
Procedure Preorder(v)

if v = \text{null then}

return
```

ALGORITHM: PREORDER TRAVERSERING

```
Input: En node v (som ikke er null)
Output: Utfør en operasjon på v, deretter barna til v
Procedure Preorder(v)

if v = \text{null then}

return
Operate on v
```

ALGORITHM: PREORDER TRAVERSERING

```
Input: En node v (som ikke er null)

Output: Utfør en operasjon på v, deretter barna til v

Procedure Preorder(v)

if v = \text{null then}

return

Operate on v

for c \in v.children do

Preorder(c)
```

ALGORITHM: PREORDER TRAVERSERING

Input: En node v (som ikke er null) Output: Utfør en operasjon på v, deretter barna til vProcedure Preorder(v)

```
egin{array}{c|c} z & 	ext{if } v = 	ext{null then} \\ \hline zeturn \\ 0 	ext{perate on } v \\ \hline zeta & 	ext{for } c \in v. 	ext{children do} \\ \hline zeta & 	ext{Preorder}(c) \\ \hline \end{array}
```

ALGORITHM: POSTORDER TRAVERSERING

```
Input: En node v (som ikke er null)
Output: Utfør en operasjon på barna til v, deretter v
Procedure Postorder(v)
```

```
\begin{array}{c|c} 2 & \text{if } v = \text{null then} \\ 3 & \text{return} \end{array}
```

ALGORITHM: PREORDER TRAVERSERING

Input: En node v (som ikke er null) Output: Utfør en operasjon på v, deretter barna til vProcedure Preorder(v)

 $egin{array}{c|c} z & ext{if } v = ext{null then} \\ z & ext{return} \\ z & ext{Operate on } v \\ z & ext{for } c \in v. ext{children do} \end{array}$

Preorder(c)

ALGORITHM: POSTORDER TRAVERSERING

Input: En node v (som ikke er null)
Output: Utfør en operasjon på barna til v, deretter vProcedure Postorder(v)

```
\left. egin{array}{lll} \mathbf{if} \ v = \mathbf{null\ then} \\ \mathbf{if} \ v = \mathbf{turn} \\ \mathbf{for} \ c \in v. \mathbf{children\ do} \\ \mathbf{o} \ & | \ \mathbf{Postorder}(c) \end{array} \right.
```

ALGORITHM: PREORDER TRAVERSERING Input: En node v (som ikke er null) Output: Utfør en operasjon på v, deretter barna til vProcedure Preorder(v)if v = null thenreturn Operate on vfor $c \in v$.children do Preorder(c)

ALGORITHM: POSTORDER TRAVERSERING

```
Input: En node v (som ikke er null)
Output: Utfør en operasjon på barna til v, deretter v

Procedure Postorder(v)

if v = \text{null then}

return

for c \in v.children do

Postorder(c)
Operate on v
```


 $v_1, v_2, v_5, \frac{v_{11}}{},$

 $v_1, v_2, v_5, v_{11},$

 $v_1, v_2, v_5, v_{11},$

 $v_1, v_2, v_5, v_{11}, v_6, \frac{v_{12}}{},$

 $v_1, v_2, v_5, v_{11}, v_6, v_{12},$

 $v_1, v_2, v_5, v_{11}, v_6, v_{12},$

 $v_1, v_2, v_5, v_{11}, v_6, v_{12}, v_3,$

 $v_1, v_2, v_5, v_{11}, v_6, v_{12}, v_7,$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13},$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13},$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8,$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, \frac{v_{14}}{},$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14},$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14},$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4,$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4, v_9,$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4, v_9, v_{15},$

$$v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4, v_9, v_{15},$$

*v*₁, *v*₂, *v*₅, *v*₁₁, *v*₆, *v*₁₂, *v*₃, *v*₇, *v*₁₃, *v*₈, *v*₁₄, *v*₄, *v*₉, *v*₁₅, *v*₁₀,

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4, v_9, v_{15}, \\ v_{10}, v_{16}$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4, v_9, v_{15}, \\ v_{10}, v_{16}$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4, v_9, v_{15}, \\ v_{10}, v_{16}$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4, v_9, v_{15}, \\ v_{10}, v_{16}$

 $v_1, v_2, v_5, v_{11}, \\ v_6, v_{12}, \\ v_3, v_7, v_{13}, \\ v_8, v_{14}, \\ v_4, v_9, v_{15}, \\ v_{10}, v_{16}$

 $v_{11}, v_5, v_{12}, \frac{v_6}{v_6}$

 $v_{11}, v_5, v_{12}, v_6, \frac{v_2}{v_2},$

 $v_{11}, v_5, v_{12}, v_6, v_2,$

 $v_{11}, v_5, v_{12}, v_6, v_2,$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13},$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7,$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7,$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7, v_{14},$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7, v_{14}, \frac{v_8}{v_8},$

 v_{11} , v_5 , v_{12} , v_6 , v_2 , v_{13} , v_7 , v_{14} , v_8 , v_3 ,

 v_{11} , v_5 , v_{12} , v_6 , v_2 , v_{13} , v_7 , v_{14} , v_8 , v_3 ,

 v_{11} , v_5 , v_{12} , v_6 , v_2 , v_{13} , v_7 , v_{14} , v_8 , v_3 ,

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7, v_{14}, v_8, v_3, v_{15},$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7, v_{14}, v_8, v_3, v_{15}, v_9,$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7, v_{14}, v_8, v_3, v_{15}, v_9,$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7, v_{14}, v_8, v_3, v_{15}, v_9, \frac{v_{16}}{},$

 $v_{11}, v_5, v_{12}, v_6, v_2, v_{13}, v_7, v_{14}, v_8, v_3, v_{15}, v_9, v_{16}, \frac{v_{10}}{v_{10}},$

*v*₁₁, *v*₅, *v*₁₂, *v*₆, *v*₂, *v*₁₃, *v*₇, *v*₁₄, *v*₈, *v*₃, *v*₁₅, *v*₉, *v*₁₆, *v*₁₀, *v*₄,

 $v_{11}, v_5, v_{12}, v_6, v_2, \\ v_{13}, v_7, v_{14}, v_8, v_3, \\ v_{15}, v_9, v_{16}, v_{10}, v_4, \\ v_1$

 $v_{11}, v_5, v_{12}, v_6, v_2, \\ v_{13}, v_7, v_{14}, v_8, v_3, \\ v_{15}, v_9, v_{16}, v_{10}, v_4, \\ v_1$

• Et binærtre er et tre hvor hver node har maksimalt to barn

- Et binærtre er et tre hvor hver node har maksimalt to barn
- I binære trær referer vi til *venstre* og *høyre* barn

- Et binærtre er et tre hvor hver node har maksimalt to barn
- I binære trær referer vi til *venstre* og *høyre* barn
- Hvis v er en node i et binærtre, så gir

- Et binærtre er et tre hvor hver node har maksimalt to barn
- I binære trær referer vi til *venstre* og *høyre* barn
- Hvis v er en node i et binærtre, så gir
 - ullet v.element dataen som er lagret i noden

- Et binærtre er et tre hvor hver node har maksimalt to barn
- I binære trær referer vi til *venstre* og *høyre* barn
- Hvis v er en node i et binærtre, så gir
 - v.element dataen som er lagret i noden
 - v.left venstre barn av v

Binære trær

- Et binærtre er et tre hvor hver node har maksimalt to barn
- I binære trær referer vi til *venstre* og *høyre* barn
- Hvis v er en node i et binærtre, så gir
 - v.element dataen som er lagret i noden
 - v.left venstre barn av v
 - ullet v.right høyre barn av v

• Et binært søketre er et binærtre som oppfyller følgende egenskap

- Et binært søketre er et binærtre som oppfyller følgende egenskap
 - For hver node v så er v.element

- Et binært søketre er et binærtre som oppfyller følgende egenskap
 - For hver node v så er v.element
 - større enn alle elementer i venstre subtre, og

- Et binært søketre er et binærtre som oppfyller følgende egenskap
 - For hver node v så er v.element
 - større enn alle elementer i venstre subtre, og
 - mindre enn alle elementer i høyre subtre

- Et binært søketre er et binærtre som oppfyller følgende egenskap
 - For hver node v så er v.element
 - større enn alle elementer i venstre subtre, og
 - mindre enn alle elementer i høyre subtre
- Merk at vi kan si større eller lik dersom vi ønsker å tillate duplikater

- Et binært søketre er et binærtre som oppfyller følgende egenskap
 - For hver node v så er v.element
 - større enn alle elementer i venstre subtre, og
 - mindre enn alle elementer i høyre subtre
- Merk at vi kan si større eller lik dersom vi ønsker å tillate duplikater
- For at vi skal kunne bruke binære søketrær må elementene være sammenlignbare

- Et binært søketre er et binærtre som oppfyller følgende egenskap
 - For hver node v så er v.element
 - større enn alle elementer i venstre subtre, og
 - mindre enn alle elementer i høyre subtre
- Merk at vi kan si større eller lik dersom vi ønsker å tillate duplikater
- For at vi skal kunne bruke binære søketrær må elementene være sammenlignbare
- Binære trær er spesielt gode når de er balanserte

• Idéen bak binærsøk er å halvere søkerommet hver gang vi gjør en sammenligning, som gir $\mathcal{O}(\log(n))$ tid på oppslag

- Idéen bak binærsøk er å *halvere søkerommet* hver gang vi gjør en sammenligning, som gir $\mathcal{O}(\log(n))$ tid på oppslag
- Det fungerer strålende, men det forutsetter at vi jobbber på et sortert array

- Idéen bak binærsøk er å halvere søkerommet hver gang vi gjør en sammenligning, som gir $\mathcal{O}(\log(n))$ tid på oppslag
- Det fungerer strålende, men det forutsetter at vi jobbber på et sortert array
- Et problem oppstår når vi trenger en dynamisk struktur

- Idéen bak binærsøk er å halvere søkerommet hver gang vi gjør en sammenligning, som gir $\mathcal{O}(\log(n))$ tid på oppslag
- Det fungerer strålende, men det forutsetter at vi jobbber på et sortert array
- Et problem oppstår når vi trenger en dynamisk struktur
 - En datastruktur hvor vi stadig legger til og fjerner elementer

- Idéen bak binærsøk er å halvere søkerommet hver gang vi gjør en sammenligning, som gir $\mathcal{O}(\log(n))$ tid på oppslag
- Det fungerer strålende, men det forutsetter at vi jobbber på et sortert array
- Et problem oppstår når vi trenger en dynamisk struktur
 - En datastruktur hvor vi stadig legger til og fjerner elementer
- Et binært søketre er en datastruktur

- Idéen bak binærsøk er å halvere søkerommet hver gang vi gjør en sammenligning, som gir $\mathcal{O}(\log(n))$ tid på oppslag
- Det fungerer strålende, men det forutsetter at vi jobbber på et sortert array
- Et problem oppstår når vi trenger en dynamisk struktur
 - En datastruktur hvor vi stadig legger til og fjerner elementer
- Et binært søketre er en datastruktur
 - som gjør binærsøk enkelt

- Idéen bak binærsøk er å halvere søkerommet hver gang vi gjør en sammenligning, som gir $\mathcal{O}(\log(n))$ tid på oppslag
- Det fungerer strålende, men det forutsetter at vi jobbber på et sortert array
- Et problem oppstår når vi trenger en dynamisk struktur
 - En datastruktur hvor vi stadig legger til og fjerner elementer
- Et binært søketre er en datastruktur
 - som gjør binærsøk enkelt
 - støtter effektiv innsetting og sletting

ALGORITHM: INNSETTING I ET BINÆRT SØKETRE

Input: En node v og et element x

 $\mbox{\bf Output:} \ \mbox{En oppdatert node} \ v \ \mbox{der en node som inneholder} \ x \ \mbox{er en etterkommer av} \ v$

ALGORITHM: INNSETTING I ET BINÆRT SØKETRE

Input: En node v og et element x

Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

1 **Procedure** Insert(v,x)

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v,x)

if v = \text{null then}

v \leftarrow \text{new Node}(x)
```

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v,x)

if v = \text{null then}

v \leftarrow \text{new Node}(x)

else if x < v.element then

v.left \leftarrow \text{Insert}(v.\text{left},x)
```

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v,x)

if v = \text{null then}

v \leftarrow \text{new Node}(x)

else if x < v.element then

v.left \leftarrow \text{Insert}(v.\text{left},x)

else if x > v.element then

v.right \leftarrow \text{Insert}(v.\text{right},x)
```

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v,x)

if v = \text{null then}

v \leftarrow \text{new Node}(x)

else if x < v.element then

v.left \leftarrow \text{Insert}(v.\text{left},x)

else if x > v.element then

v.reight \leftarrow \text{Insert}(v.\text{right},x)
```

ALGORITHM: INNSETTING I ET BINÆRT SØKETRE

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v,x)

if v = \text{null then}

v \leftarrow \text{new Node}(x)

else if x < v.element then

v.left \leftarrow \text{Insert}(v.\text{left},x)

else if x > v.element then

v.right \leftarrow \text{Insert}(v.\text{right},x)
```

• Denne algoritmen har kompleksitet $\mathcal{O}(h)$

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v,x)

if v = \text{null then}

v \leftarrow \text{new Node}(x)

else if x < v.element then

v.left \leftarrow \text{Insert}(v.\text{left},x)

else if x > v.element then

v.right \leftarrow \text{Insert}(v.\text{right},x)
```

- Denne algoritmen har kompleksitet $\mathcal{O}(h)$
 - der h er høyden på treet

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v,x)

if v = \text{null then}

v \leftarrow \text{new Node}(x)

else if x < v.element then

v.left \leftarrow \text{Insert}(v.\text{left},x)

else if x > v.element then

v.right \leftarrow \text{Insert}(v.\text{right},x)

return v
```

- Denne algoritmen har kompleksitet $\mathcal{O}(h)$
 - der h er høyden på treet
- Dersom n er antall noder i treet har vi $\mathcal{O}(n)$ i verste tilfelle

```
Input: En node v og et element x
Output: En oppdatert node v der en node som inneholder x er en etterkommer av v

Procedure Insert(v,x)

if v = \text{null then}

v \leftarrow \text{new Node}(x)

else if x < v.element then

v.left \leftarrow \text{Insert}(v.\text{left},x)

else if x > v.element then

v.right \leftarrow \text{Insert}(v.\text{right},x)
```

- Denne algoritmen har kompleksitet $\mathcal{O}(h)$
 - der h er høyden på treet
- Dersom n er antall noder i treet har vi $\mathcal{O}(n)$ i verste tilfelle
 - men hvis treet er balansert, så er kompleksiteten $\mathcal{O}(\log(n))$

ALGORITHM: OPPSLAG I ET BINÆRT SØKETRE

Input: En node v og et element x

Output: Dersom x forekommer i en node u som en etterkommer av v, returner u, ellers null.

ALGORITHM: OPPSLAG I ET BINÆRT SØKETRE

Input: En node v og et element x

Output: Dersom x forekommer i en node u som en etterkommer av v, returner u, ellers null.

 ${\tt 1} \ \ {\bf Procedure} \ {\tt Search}(v,x)$

```
Input: En node v og et element x
Output: Dersom x forekommer i en node u som en etterkommer av v, returner u, ellers null.

Procedure Search(v,x)

if v = \text{null then}

return null
```

```
Input: En node v og et element x
Output: Dersom x forekommer i en node u som en etterkommer av v, returner u, ellers null.

Procedure Search(v,x)

if v = \text{null then}

return null

if v.element = x then

return v
```

```
Input: En node v og et element x
Output: Dersom x forekommer i en node u som en etterkommer av v, returner u, ellers null.

Procedure Search(v,x)

if v = \text{null then}

return null

if v.element = x then

return v

if x < v.element then

return Search(v,x)
```

```
Input: En node v og et element x

Output: Dersom x forekommer i en node u som en etterkommer av v, returner u, ellers null.

Procedure Search(v,x)

if v = \text{null then}

return null

if v.\text{element} = x then

return v

if x < v.\text{element then}

return Search(v.\text{left}, x)

if x > v.\text{element then}

return Search(v.\text{right}, x)
```

```
ALGORITHM: OPPSLAG I ET BINÆRT SØKETRE
```

```
Input: En node v og et element x
Output: Dersom x forekommer i en node u som en etterkommer av v, returner u, ellers null.

Procedure Search(v, x)

if v = \text{null then}
    return null

if v.element = x then
    return v

if x < v.element then
    return Search(v.left, x)

if x > v.element then
    return Search(v.right, x)
```

Oppslag i et binærtre har samme kompleksitet som innsetting

• Sletting fra et binærtre er litt vanskeligere enn innsetting og oppslag

- Sletting fra et binærtre er litt vanskeligere enn innsetting og oppslag
 - men har samme kompleksitet!

- Sletting fra et binærtre er litt vanskeligere enn innsetting og oppslag
 - men har samme kompleksitet!
- Vi må passe på å tette eventuelle «hull»

- Sletting fra et binærtre er litt vanskeligere enn innsetting og oppslag
 - men har samme kompleksitet!
- Vi må passe på å tette eventuelle «hull»
- Vi skiller mellom tre tilfeller

- Sletting fra et binærtre er litt vanskeligere enn innsetting og oppslag
 - men har samme kompleksitet!
- Vi må passe på å tette eventuelle «hull»
- Vi skiller mellom tre tilfeller
 - Noden vi vil slette har ingen barn

- Sletting fra et binærtre er litt vanskeligere enn innsetting og oppslag
 - men har samme kompleksitet!
- Vi må passe på å tette eventuelle «hull»
- Vi skiller mellom tre tilfeller
 - Noden vi vil slette har ingen barn
 - Noden vi vil slette har ett barn

- Sletting fra et binærtre er litt vanskeligere enn innsetting og oppslag
 - men har samme kompleksitet!
- Vi må passe på å tette eventuelle «hull»
- Vi skiller mellom tre tilfeller
 - Noden vi vil slette har ingen barn
 - Noden vi vil slette har ett barn
 - Noden vi vil slette har to barn

Sletting – ingen barn

Sletting – ingen barn

Sletting – ingen barn

• Når det ikke er noen barn er det tilstrekkelig å fjerne pekeren til \boldsymbol{x}

Sletting – ett barn (venstre)

Sletting – ett barn (venstre)

Sletting – ett barn (venstre)

• Når noden har ett barn på venstre side, erstatt $x \bmod T_2$

Sletting – ett barn (høyre)

Sletting – ett barn (høyre)

Sletting – ett barn (høyre)

• Helt tilsvarende, når noden har ett barn på høyre side, erstatt $x \bmod T_2$

Sletting - to barn

Sletting - to barn

Sletting - to barn

Sletting – to barn

• Når noden har to barn, erstatt x med det minste elementet y i høyre subtre

Finn minste

• For sletting trenger vi en prosedyre for å finne minste element

ALGORITHM: FINN MINSTE NODE

Input: En node v

Output: Returner noden som inneholder den minste etterkommeren av v

Finn minste

• For sletting trenger vi en prosedyre for å finne minste element

ALGORITHM: FINN MINSTE NODE

Input: En node v

Output: Returner noden som inneholder den minste etterkommeren av v

Finn minste

• For sletting trenger vi en prosedyre for å finne minste element

ALGORITHM: FINN MINSTE NODE

Input: En node v

Output: Returner noden som inneholder den minste etterkommeren av \boldsymbol{v}

 ${\tt 1} \ \ {\tt Procedure} \ {\tt FindMin}(v)$

Etterlatt som øvelse!

ALGORITHM: SLETT EN NODE I ET BINÆRT SØKETRE

Input: En node v og et element x

Output: Dersom x forekommer i en node u som en etterkommer av v, fjern u.

```
Input: En node v og et element x
Output: Dersom x forekommer i en node u som en etterkommer av v, fjern u.

Procedure Remove(v,x)

if v= null then

return null
```

```
Input: En node v og et element x
Output: Dersom x forekommer i en node u som en etterkommer av v, fjern u.

Procedure Remove(v,x)

if v = \text{null then}

return null

if x < v.element then

v.left \leftarrow Remove(v.left, x)

return v
```

```
Input: En node v og et element x
Output: Dersom x forekommer i en node u som en etterkommer av v, fjern u.

Procedure Remove(v,x)

if v = \text{null then}

return null

if x < v.element then

v.left \leftarrow Remove(v.left, x)

return v

if x > v.element then

v.right \leftarrow Remove(v.right, x)

return v
```

```
Input: En node v og et element x
  Output: Dersom x forekommer i en node u som en etterkommer av v, fiern u.
1 Procedure Remove(v, x)
       if v = \text{null then}
           return null
      if x < v.element then
           v.left \leftarrow Remove(v.left, x)
           return v
      if x > v.element then
           v.right \leftarrow Remove(v.right, x)
           return v
       if v.left = null then
           return v.right
11
```

```
Input: En node v og et element x
  Output: Dersom x forekommer i en node u som en etterkommer av v, fiern u.
1 Procedure Remove(v, x)
       if v = \text{null then}
           return null
       if x < v.element then
           v.left \leftarrow Remove(v.left, x)
           return v
      if x > v.element then
           v.right \leftarrow Remove(v.right, x)
           return v
       if v.left = null then
           return v.right
11
       if v.right = null then
12
           return v.left
13
```

```
Input: En node v og et element x
  Output: Dersom x forekommer i en node u som en etterkommer av v, fiern u.
1 Procedure Remove(v, x)
       if v = \text{null then}
            return null
       if x < v.element then
            v.left \leftarrow Remove(v.left, x)
            return v
       if x > v.element then
            v.right \leftarrow Remove(v.right, x)
            return v
       if v.left = null then
            return v.right
11
       if v.right = null then
12
            return v.left
13
       u \leftarrow \mathsf{FindMin}(v.\mathsf{right})
14
       v.element \leftarrow u.element
15
```

```
Input: En node v og et element x
   Output: Dersom x forekommer i en node u som en etterkommer av v, fiern u.
1 Procedure Remove(v, x)
        if v = \text{null then}
             return null
        if x < v.element then
             v.left \leftarrow Remove(v.left, x)
             return v
       if x > v.element then
             v.right \leftarrow Remove(v.right, x)
             return v
        if v.left = null then
             return v.right
11
        if v.right = null then
12
             return v.left
13
       u \leftarrow \mathsf{FindMin}(v.\mathsf{right})
14
       v.\mathtt{element} \leftarrow u.\mathtt{element}
15
       v.right \leftarrow Remove(v.right, u.element)
16
```

```
Input: En node v og et element x
   Output: Dersom x forekommer i en node u som en etterkommer av v, fiern u.
  Procedure Remove(v, x)
       if v = \text{null then}
             return null
       if x < v.element then
             v.left \leftarrow Remove(v.left, x)
             return v
       if x > v.element then
             v.right \leftarrow Remove(v.right, x)
             return v
       if v.left = null then
             return v.right
11
       if v.right = null then
12
             return v.left
13
       u \leftarrow \mathsf{FindMin}(v.\mathsf{right})
14
       v.\mathtt{element} \leftarrow u.\mathtt{element}
15
       v.right \leftarrow Remove(v.right, u.element)
16
       return v
17
```