Quantum Computing @ FII

Tema 1 - Laborator

Termen limită a temei: 19 decembrie 2024

- 1. (10p) Scrieți o funcție în Python care primește ca input trei vectori $|a\rangle, |b\rangle, |c\rangle \in \mathbb{C}^2$ și returnează expresia $|ab\rangle\langle ca|$, unde prin $|ab\rangle$ întelegem $|a\rangle\otimes|b\rangle$.
- 2. (10p) Scrieți o funcție în Python care verifică dacă o matrice pătratică, cu elemente numere complexe, dată ca input, A, este unitară. Amintim că că matricea A este unitară dacă $A^{\dagger}A = AA^{\dagger} = I_n$.

Indicație Pentru a testa dacă două matrici A și B sunt egale, vom evalua: $||A-B|| \le \varepsilon$, unde ε este un număr foarte mic, numim *precizia mașină*, $\varepsilon = 10^{-6}$, iar $||\cdot||$ reprezintă norma de matrici. Puteți utiliza orice normă matriceală implementată în biblioteca *numpy*.

3. **(30p)** Se consideră următorul circuit:

- a. (5p) Scrieți un program în Python care implementează circuitul de mai sus.
- b. (10p) Afișați matricea $U\in\mathcal{M}_4(\mathbb{C})$ asociată circuitului de mai sus și verificați că aceasta este unitară.
- c. (10p) În circuitul U definit mai sus, adăugați o poartă Hadamard pe primul qubit, și apoi măsurați ambii qubiti. Rulați circuitul obținut de 2000 de ori (shots=2000) și afișati rezultatele. Reprezentați histograma corespunzătoare pentru a vizualiza rezultatele.
- d. (5p) Inițializați starea de input de 2-qubiți $|\psi\rangle$ cu cele patru stări ale lui Bell $|\beta_{xy}\rangle$. Ce rezultate obțineți și cu ce probabilitate?
- 4. (10p) Scrieți o funcție care având ca input o stare de 2-qubiți, determină daca qubiții sunt entangled sau nu. Inputul va fi un vector din $|\psi\rangle\in\mathbb{C}^4$, iar funcția va returna TRUE dacă starea este entangled, respectiv FALSE în caz contrar.

Observații:

- Termenul limită pentru incarcarea temei 1 pe formular este de 19 Decembrie 2024.
- Tema va fi realizată în Python, utilizând Qiskit, iar fisierul *.py sau *.ipynb (sau link-ul catre Google Colab nu uitati să dati acces) se va încărca înainte de a fi prezentat la laborator, în următorul formular https://forms.gle/RBqq5EFdnJLmTSsF6

În situația în care aveti mai multe fisiere de încărcat, creați o arhiva *.zip și încărcați-o la aceeasi adresa.

- Punctajul pentru tema va fi acordat, numai dupa prezentarea temei profesorului de laborator
- Punctajul final al temei se imparte la 10.