Time Series Decomposition and Transforms

Maria Eduarda Silva

School of Economics, University of Porto

LMU, July 2 2022

Transformations

Trnasformation Are used to adjust historical data and often get a simple time series which are easier to model and lead to more accurate forecasts.

- Calendar adjustments
- Length of the month: since the different months of the year have different number of days and also because of leap year, one may adjust to the length of the month as follows:

$$W_t = \frac{X_t \times 365.25/12}{\text{no days in month } t}$$

- Number of working days
- Mathematical Transformations: to linearize the data and stabilize the variance- Box-Cox transformations (only positive data)

Adjust for length of month: Monthly Milk Prod per cow

Variance Stabilization - Box-Cox Transformations

To stabilize the variability over the series we use the Box-Cox transformations. A particular case is to log the data. Note that the multiplicative representation

$$y_t = T_t S_t R_t$$

becomes

$$log(y_t) = log(T_t) + log(S_t) + log(R_t)$$

$$U_t = \begin{cases} \frac{X_t^{\lambda} - 1}{\lambda} & \text{if} \quad \lambda \neq 0\\ \log X_t & \text{if} \quad \lambda = 0 \end{cases}$$

These transforms are also used to improve approximation to normality (Gaussian distribution).

Antidiabetic drug sales, a10

Box-Cox (log) transform of a10

Now the variance is stable and the trend looks linear. Produce the season plots for the log data and comment.

Finding the appropriate transform

To find the best Box-Cox transform - find λ that minimizes the variance.

[1] 0.1313326

Box-Cox Antidiabetic drug sales

Box-Cox Transform

- Log is the most used transformation
- When you model and forecast the transformed data then you need to back transform.
- Avoiding transforms is best

Decomposition and filtering

Depending on the purpose of our study, our interest may be

- the trend
- the seasonal component
- the random component
- all together

Approaches

- ▶ Decomposition methods estimate the trend /seasonal component
 - ★ with deterministic functions
 - * smooth functions- moving averages
 - * STL
- ▶ Filtering methods Difference and Seasonal Difference

Time Series Decomposition

- Trend-Cycle- aperiodic changes in level over time +Seasonal (almost) periodic changes in level due to seasonal factors
- **Additive decomposition

$$y_t = T_t + S_t + R_t$$

- y_t data at time t
- T_t trend-cycle component at time t
- $ightharpoonup S_t$ seasonal component at time t
- R_t remainder component at time t

Time Series Decomposition by Loess - STL

- The Seasonal Decomposition of Time Series by Loess is implemented in R in the stl() function
- Decomposes a time series into seasonal, trend and irregular components using loess
- Loess is a robust weighted regression smoothing method close to nearest neighbour regression
- The seasonal component is found by loess smoothing the seasonal sub-series (the series of all January values, ...)
- If s.window = "periodic" smoothing is effectively replaced by taking the mean
- The seasonal values are removed, and the remainder smoothed to find the trend
- The overall level is removed from the seasonal component and added to the trend component. This process is iterated a few times
- The remainder component is the residuals from the seasonal plus trend fit.

STL decomposition

- Versatile and Robust
- Seasonal component allowed to change overtime and rate of change controllled by the user
- Smoothness of trend-cycle controlled by the user
- Optionally robust to outliers
- No calendar adjustments
- Only additive
- You need to log the data if multiplicative decomposition is needed

STL decomposition of Cardox - fixed periodicity

STL decomposition of Cardox - not fixed periodicity

STL components

head(cardox.stlper\$time.series)

```
## seasonal trend remainder
## Mar 1958 1.4039091 314.8115 -0.50536160
## Apr 1958 2.5512431 314.9140 -0.01528735
## May 1958 2.9864460 315.0166 -0.50308202
## Jun 1958 2.2977101 315.1059 -0.30364134
## Jul 1958 0.6929085 315.1952 -0.02813505
## Aug 1958 -1.4385111 315.2765 1.09200191
```

Investigate the correlation behaviour of the remainder.

Series cardox

Series cardox.stl\$time.series[, 3]

Some notation

- x_t denotes the observation at time t
- B is called the **backshift or lag** operator: $Bx_t = x_{t-1}$
- $B^{12}x_t = x_{t-12}$
- $\nabla = 1 B$ the difference operator:

$$\nabla x_t = (1 - B)x_t = x_t - Bx_t = x_t - x_{t-1}$$

•

$$y_t = \nabla x_t = x_t - x_{t-1}$$

represents the increments or change of the variable x on consecutive time points

 Applying the difference operator is said **Differencing** and can help stabilise the mean of a time series by removing changes in the level of a time series and therefore eliminating (or reducing) trend

The difference operator applied to the Monthly Price of Chicken

Seasonal difference operator

- Seasonal difference operator $\nabla_S = 1 B^S$, where S is the seasonality
- $y_t = \nabla_S x_t = x_t x_{t-S}$ represents the increments or change of the variable x over consecutive seasonal periods.
- ullet If S=12 then y_t represents the increments from one year to the next
- Applying the seasonal difference operator can help stabilise the mean of a time series by removing changes in the level due to seasonality

SOI (Southern Oscillation Index)

Seasonaly differenced SOI (Southern Oscillation Index)

Simple differences, changes in carbon dioxide from month to month, show a seasonal cycle

1.0

Lag

1.5

0.5

0.0

2.0

Seasonal differences, changes in carbon dioxide from one month to the same month next year , show some trend

- When we apply both operators, simple and seasonal the filtered data data no longer presents trend or seasonality.
- Why is this important?