TTIC 31230 Fundamentals of Deep Learning

RL Problems.

Problem 1. Consider training machine translation on a corpus of translation pairs (x, y) where x is, say, an English sentence x_1, \ldots, EOS and y is a French sentence y_1, \ldots, EOS where EOS is the "end of sentence" tag.

Suppose that we have a parameterized model defining $P_{\Phi}(y_t|x,y_1,\ldots,y_{t-1})$ so that $P_{\Phi}(y_1,\ldots,y_T|x) = \prod_{t=1}^{T'} P_{\Phi}(y_t|x,y_1,\ldots,y_{t-1})$ where y_T is EOS.

For a sample \hat{y} from $P_{\Phi}(y|x)$ we also have a non-differentiable BLEU score BLUE(haty, y) ≥ 0 that is not computed until the entire output y is complete and which we would like to maximize.

- (a) Give the SGD update equations for the parameters Φ for the REINFORCE algorithm for maximizing $E_{\hat{y}\sim P_{\Phi}(y|x)}$ for this problem.
- (b) Suppose that somehow we reach a parameter setting Φ where $P_{\Phi}(y|x)$ assigns probability close enough to 1 for a particular translation \hat{y} that in practice we will always sample the same \hat{y} . Suppose that this translation \hat{y} has less than optimal BLEU score. Can the REINFORCE algorithm recover from this situation and consider other translations? Explain your answer.
- (c) Repeat part (b) but under the assumption that $\mathrm{BLEU}(\hat{y},y) \leq 0$ (if there is a maximum reward R_{max} we can replace R by $R-R_{\mathrm{max}}$).
- (d) Modify the REINFORCE update equations to use a value function approximation $V_{\Phi}(x)$ to reduce the variance in the gradient samples. Your equations should include updates to train $V_{\Phi}(x)$ to predict $E_{\hat{y} \sim P(y|x)}$ BLEU (\hat{y}, y) . (Replace the reward by the "advantage" of the particular translation).