Supp_MaterialCH1

Ana Silverio

2024-02-15

Time series analysis plots

Figure S1: Red Drum montly averaged CPUE over the last ten years parsed out by bay system. Dotted lines signifing two extreme events, Hurricane Harvey and the 2021 Texas Freeze, left to right.

Figure S2: Spotted Seatrout montly averaged CPUE over the last ten years parsed out by bay system. Dotted lines signifing two extreme events, Hurricane Harvey and the 2021 Texas Freeze, left to right.

Figure S3: Black Drum montly averaged CPUE over the last ten years parsed out by bay system. Dotted lines signifing two extreme events, Hurricane Harvey and the 2021 Texas Freeze, left to right.

Figure S4: Southern Flounder montly averaged CPUE over the last ten years parsed out by bay system. Dotted lines signifing two extreme events, Hurricane Harvey and the 2021 Texas Freeze, left to right.

Recruitment Windows

Figure S5: Red Drum CPUE monthly average raw data points plots over julian day establishing the recruitment window for Red Drum.

Figure S6: Spotted Seatrout CPUE monthly average raw data points plots over julian day establishing the recruitment window for Spotted Seatrout.

Figure S7: Black Drum CPUE monthly average raw data points plots over julian day establishing the recruitment window for Black Drum.

Figure S8: Southern Flounder CPUE monthly average raw data points plots over julian day establishing the recruitment window for Southern Flounder.

Hurricane Harvey Percent Change Tables

Table S1: Red Drum percent changes after Hurricane Harvey

MAJOR_AREA_CODE	SPECIES	10 yrs	1st year	2nd year	first_perChange	second_perChange
SabineLake	Red Drum	18.46	25.79	7.595	39.7	-58.9
GalvestonBay	Red Drum	27.26	22.58	24.109	-17.2	-11.5
MatagordaBay	Red Drum	12.57	8.75	12.998	-30.4	3.44
SanAntonioBay	Red Drum	35.42	93.75	93.333	165	163
AransasBay	Red Drum	34.80	53.96	43.542	55	25.1
CorpusChristiBay	Red Drum	28.69	43.31	37.317	51	30.1
UpperLagunaMadre	Red Drum	21.65	12.58	6.458	-41.9	-70.2
LowerLagunaMadre	Red Drum	35.50	37.08	50.208	4.45	41.4

Table S2: Spotted Seatrout percent changes after Hurricane Harvey

$MAJOR_AREA_CODE$	SPECIES	10 yrs	1st year	2nd year	$first_perChange$	$second_perChange$
SabineLake	Spotted Seatrout	5.926	4.048	1.667	-31.7	-71.9
GalvestonBay	Spotted Seatrout	22.470	13.333	35.523	-40.7	58.1
MatagordaBay	Spotted Seatrout	10.218	9.592	8.571	-6.12	-16.1
SanAntonioBay	Spotted Seatrout	29.361	44.197	48.333	50.5	64.6
AransasBay	Spotted Seatrout	60.999	40.476	25.899	-33.6	-57.5
CorpusChristiBay	Spotted Seatrout	21.365	13.909	24.088	-34.9	12.7
UpperLagunaMadre	Spotted Seatrout	26.590	20.144	18.095	-24.2	-31.9
${\bf Lower Laguna Madre}$	Spotted Seatrout	11.350	4.048	12.143	-64.3	6.99

Table S3: Black Drum percent changes after Hurricane Harvey

MAJOR_AREA_CODE	SPECIES	10 yrs	1st year	2nd year	first_perChange	second_perChange
SabineLake	Black Drum	4.402	1.1905	2.3810	-73	-45.9
GalvestonBay	Black Drum	8.214	1.4388	3.3573	-82.5	-59.1
MatagordaBay	Black Drum	4.608	5.2381	3.5714	13.7	-22.5
SanAntonioBay	Black Drum	9.971	43.4568	23.5714	336	136
AransasBay	Black Drum	5.906	1.9048	1.4286	-67.8	-75.8
CorpusChristiBay	Black Drum	2.269	0.2398	0.0000	-89.4	-100
UpperLagunaMadre	Black Drum	96.679	76.9784	41.1905	-20.4	-57.4
${\bf Lower Laguna Madre}$	Black Drum	1.073	0.7143	0.4762	-33.4	-55.6

Table S4: Southern Flounder percent changes after Hurricane Harvey

MAJOR_AREA_CODE	SPECIES	10 yrs	1st year	2nd year	$first_perChange$	${\bf second_perChange}$
SabineLake	Southern Flounder	7.673	5.0420	5.6497	-34.3	-26.4
GalvestonBay	Southern Flounder	8.842	7.5362	5.0847	-14.8	-42.5
MatagordaBay	Southern Flounder	4.762	3.0556	1.3889	-35.8	-70.8
SanAntonioBay	Southern Flounder	3.818	0.8696	2.7778	-77.2	-27.3
AransasBay	Southern Flounder	3.122	1.9444	0.0000	-37.7	-100
CorpusChristiBay	Southern Flounder	2.846	0.5556	4.3103	-80.5	51.5
UpperLagunaMadre	Southern Flounder	3.005	3.3898	2.7778	12.8	-7.56
LowerLagunaMadre	Southern Flounder	2.613	3.0556	0.5556	16.9	-78.7

Texas 2021 Freeze Percent Change Tables

Table S5: Red Drum percent changes after freeze event

MAJOR_AREA_CODE	SPECIES	10 yrs	1st year	2nd year	first_perChange	second_perChange
SabineLake	Red Drum	16.40	10.417	5.208	-36.46	-68.23
GalvestonBay	Red Drum	26.37	28.721	11.458	8.911	-56.55
MatagordaBay	Red Drum	11.68	6.289	5.063	-46.13	-56.63
SanAntonioBay	Red Drum	49.00	49.476	21.250	0.9738	-56.63
AransasBay	Red Drum	39.48	54.060	22.917	36.92	-41.96
CorpusChristiBay	Red Drum	29.86	33.333	25.417	11.64	-14.88
UpperLagunaMadre	Red Drum	17.07	18.868	16.667	10.51	-2.384
LowerLagunaMadre	Red Drum	34.67	20.833	18.125	-39.91	-47.72

Table S6: Spotted Seatrout percent changes after freeze event

$MAJOR_AREA_CODE$	SPECIES	10 yrs	1st year	2nd year	$first_perChange$	$second_perChange$
SabineLake	Spotted Seatrout	5.675	4.524	5.952	-20.28	4.892
GalvestonBay	Spotted Seatrout	23.084	21.905	30.476	-5.11	32.02
MatagordaBay	Spotted Seatrout	10.279	11.511	36.869	11.99	258.7
SanAntonioBay	Spotted Seatrout	37.269	25.476	24.762	-31.64	-33.56
AransasBay	Spotted Seatrout	56.129	27.857	33.809	-50.37	-39.76
CorpusChristiBay	Spotted Seatrout	19.396	27.857	17.986	43.63	-7.27
UpperLagunaMadre	Spotted Seatrout	23.861	10.476	22.619	-56.09	-5.204
${\bf Lower Laguna Madre}$	Spotted Seatrout	10.595	5.238	10.476	-50.56	-1.124

Table S7: Black Drum percent changes after freeze event

MAJOR_AREA_CODE	SPECIES	10 yrs	1st year	2nd year	first_perChange	second_perChange
SabineLake	Black Drum	2.718	1.429	6.429	-47.44	136.5
GalvestonBay	Black Drum	5.631	16.905	5.952	200.2	5.699
MatagordaBay	Black Drum	5.580	31.667	38.095	467.6	582.8
SanAntonioBay	Black Drum	17.831	76.191	68.571	327.3	284.6
AransasBay	Black Drum	5.499	58.571	7.381	965.1	34.22
CorpusChristiBay	Black Drum	1.886	9.286	3.357	392.4	78.02
UpperLagunaMadre	Black Drum	88.841	3.333	5.714	-96.25	-93.57
${\bf Lower Laguna Madre}$	Black Drum	1.524	22.381	5.000	1369	228.1

Table S8: Southern Flounder percent changes after freeze event

MAJOR_AREA_CODE	SPECIES	10 yrs	1st year	2nd year	$first_perChange$	${\bf second_perChange}$
SabineLake	Southern Flounder	7.386	4.2424	0.3236	-42.56	-95.62
GalvestonBay	Southern Flounder	7.911	10.5769	5.3872	33.7	-31.9
MatagordaBay	Southern Flounder	2.339	7.1197	7.9208	204.4	238.6
SanAntonioBay	Southern Flounder	3.440	6.0897	6.6007	77.05	91.9
AransasBay	Southern Flounder	2.673	0.3333	0.9709	-87.53	-63.68
CorpusChristiBay	Southern Flounder	2.597	0.3175	0.0000	-87.77	-100
UpperLagunaMadre	Southern Flounder	3.175	1.6181	0.0000	-49.03	-100
LowerLagunaMadre	Southern Flounder	2.446	6.4815	2.7273	164.9	11.48

Models

In the order of

- Hurricane and first year percent change
- Hurricane and second year percent change
- Freeze and first year percent change
- Freeze and second year percent change

Collinerarity, linear relationships among the x-variables themselves, running a pair plot

Figure S9: Correlation between the x-varaibles to observe any signicant linear relationships before building the model

Model Selection

Surface area and mean depth were removed as explanatory variables given the results from the correlation matrix. Max depth dredged was chosen based off the literature (Stevens et al 2016) to test the hypothesis of deeper water as a refuge explaining the variation in percent change. A global model was created for all four models, (First and second percent change during Hurricane Harvey and first and second percent change during the freeze event). From these global models, we ran combinations of the explanatory variables to determined the best fitting model.

Units of variables:

- $\bullet\,$ Maximum depth is in meters
- $\bullet~$ Volume is in cubic kilometers
- Salinity is in parts per thousand

Global model 1

model	aicc	weights
first_perChange ~ 1	376	0.36
first_perChange ~ 1 + Volume	377	0.229
first_perChange ~ 1 + START_SALINITY_NUM	378	0.106
$first_perChange ~ ^{\sim} 1 + Max_DepthDredged$	378	0.106
$\label{eq:first_perChange} $\tilde{\ } 1 + \text{Max_DepthDredged} + \text{Volume}$$	379	0.0762
first_perChange ~ 1 + Volume + START_SALINITY_NUM	379	0.0737
$\label{eq:first_perChange} $\tilde{\ } 1 + \text{Max_DepthDredged} + \text{START_SALINITY_NUM}$$	381	0.0289
$\label{eq:first_perChange} $$\tilde{\ }$ 1 + Max_DepthDredged + Volume + START_SALINITY_NUM$$	381	0.0198

Global model 2

model	aicc	weights
second_perChange ~ 1	359	0.404
second_perChange ~ 1 + Volume	361	0.152
second_perChange ~ 1 + Max_DepthDredged	361	0.15
second_perChange ~ 1 + START_SALINITY_NUM	361	0.124
second_perChange ~ 1 + Max_DepthDredged + START_SALINITY_NUM	363	0.0546
second_perChange ~ 1 + Volume + START_SALINITY_NUM	363	0.053
second_perChange ~ 1 + Max_DepthDredged + Volume	364	0.0447
second_perChange ~ 1 + Max_DepthDredged + Volume + START_SALINITY_NUM	365	0.0179

Global model 3

model	aicc	weights
first_perChange ~ 1	462	0.428
first_perChange ~ 1 + Max_DepthDredged	464	0.158
first_perChange ~ 1 + Volume	464	0.141
first_perChange ~ 1 + START_SALINITY_NUM	464	0.138
first_perChange $\tilde{1} + \text{Max}_DepthDredged} + \text{Volume}$	467	0.0434
first_perChange ~ 1 + Max_DepthDredged + START_SALINITY_NUM	467	0.0426
first_perChange ~ 1 + Volume + START_SALINITY_NUM	467	0.0388
$\label{eq:first_perChange} \ \tilde{\ } \ 1 + \text{Max_DepthDredged} + \text{Volume} + \text{START_SALINITY_NUM}$	470	0.0106

Global model 4

model	aicc	weights
second_perChange ~ 1 + Max_DepthDredged	413	0.283
second_perChange ~ 1	413	0.238
second_perChange $\tilde{}$ 1 + Max_DepthDredged + Volume	414	0.163
second_perChange ~ 1 + START_SALINITY_NUM	415	0.0892
second_perChange ~ 1 + Max_DepthDredged + START_SALINITY_NUM	415	0.0781
second_perChange ~ 1 + Volume	415	0.075
second_perChange ~ 1 + Max_DepthDredged + Volume + START_SALINITY_NUM	417	0.0406
second_perChange ~ 1 + Volume + START_SALINITY_NUM	417	0.0337

All models performed similarly within 2 AIC points and gave the best fitting model with only the intercept. Because they all performed similarly, analysis continued with the global model equation (first_perChange \sim Max_DepthDredged + Volume + START_SALINITY_NUM and second_perChange \sim Max_DepthDredged + Volume + START_SALINITY_NUM for both Hurricane Harvey and Texas Freeze).

Hurricane Harvey and first year percent change plotted against each explanatory variable

Units of variables:

- Maximum depth is in meters
- Volume is in cubic kilometers
- Salinity is in parts per thousand

Figure S10: First year percent change during Hurricane Harvey correlated with max depth of bays

Figure S11: First year percent change during Hurricane Harvey correlated with average salinity

Figure S12: First year percent change during Hurricane Harvey correlated with volume of the bays

Figure S13: Residual vs fitted for first year percent change during hurricane harvey model

Figure S14: Normal Q-Q plot for first year percent change during hurricane harvey model

Hurricane Harvey and first year percent change generalized linear regression with a Gaussian error distribution

 $Model\ equation:\ first_perChange \sim Max_DepthDredged\ +\ volume\ +\ START_SALINITY_NUM$

Observations	32
Dependent variable	$first_perChange$
Type	Linear regression

$\chi^{2}(3)$	12943.08
Pseudo-R ² (Cragg-Uhler)	0.06
Pseudo-R ² (McFadden)	0.01
AIC	379.12
BIC	386.44

	Est.	S.E.	t val.	p
(Intercept)	36.27	79.58	0.46	0.65
$Max_DepthDredged$	-1.92	4.62	-0.41	0.68
Volume	-25.29	18.49	-1.37	0.18
START_SALINITY_NUM	0.70	2.09	0.34	0.74

Hurricane Harvey and second year percent change

Figure S15: Second year percent change during Hurricane Harvey correlated with max depth of bay

Figure S16: Second year percent change during Hurricane Harvey correlated with average salinity

Figure S17: Second year percent change during Hurricane Harvey correlated with volume

Predicted values
glm(second_perChange ~ Max_DepthDredged + Volume + START_SALINITY_NUM

Figure S18: Residual vs fitted for second year percent change during hurricane harvey model

Figure S19: Normal Q-Q plot for second year percent change during hurricane harvey model

Hurricane Harvey and second year percent change generalized linear regression with a Gaussian error distribution

 $Model\ equation:\ second_perChange \sim Max_DepthDredged\ +\ volume\ +\ START_SALINITY_NUM$

Observations	32
Dependent variable	$second_perChange$
Type	Linear regression

$\chi^{2}(3)$	6174.54
Pseudo-R ² (Cragg-Uhler)	0.05
Pseudo-R ² (McFadden)	0.00
AIC	363.06
BIC	370.39

	Est.	S.E.	t val.	p
(Intercept)	-57.04	61.74	-0.92	0.36
$Max_DepthDredged$	2.72	3.59	0.76	0.46
Volume	-10.51	14.41	-0.73	0.47
START_SALINITY_NUM	1.54	1.63	0.94	0.35

Freeze and first year percent change

Figure S20: First year percent change during Texas freeze correlated with max depth

Figure S21: First year percent change during Texas freeze correlated with average salinity

Figure S22: First year percent change during Texas freeze correlated with volume

Figure S23: Residual vs fitted for first year percent change during Texas freeze model

Figure S24: Normal Q-Q plot for first year percent change during Texas freeze model

Freeze event and first year percent change generalized linear regression with a Gaussian error distribution

 $\label{eq:model} \mbox{Model equation: first_perChange} \sim \mbox{Max_DepthDredged} + \mbox{volume} + \mbox{START_SALINITY_NUM}$

Observations	32
Dependent variable	$first_perChange$
Type	Linear regression

$\chi^{2}(3)$	46065.88
Pseudo-R ² (Cragg-Uhler)	0.02
Pseudo-R ² (McFadden)	0.00
AIC	467.21
BIC	474.54

	Est.	S.E.	t val.	p
(Intercept)	160.23	314.28	0.51	0.61
$Max_DepthDredged$	-8.03	18.27	-0.44	0.66
Volume	13.11	73.36	0.18	0.86
START_SALINITY_NUM	0.06	8.31	0.01	0.99

Freeze and second year percent change

Figure S25: Second year percent change during Texas freeze correlated with max depth

Figure S26: Second year percent change during Texas freeze correlated with average salinity

Figure S27: Second year percent change during Texas freeze correlated with volume

Predicted values
glm(second_perChange ~ Max_DepthDredged + Volume + START_SALINITY_NUM

Figure S28: Residual vs fitted for second year percent change during Texas freeze model

Figure S29: Normal Q-Q plot for second year percent change during Texas freeze model

Freeze event and second year percent change generalized linear regression with a Gaussian error distribution

 $Model\ equation:\ Second_perChange \sim Max_DepthDredged\ +\ volume\ +\ START_SALINITY_NUM$

Observations	32
Dependent variable	$second_perChange$
Type	Linear regression

$\chi^{2}(3)$	84148.54
Pseudo-R ² (Cragg-Uhler)	0.13
Pseudo-R ² (McFadden)	0.01
AIC	414.37
BIC	421.70

	Est.	S.E.	t val.	p
(Intercept)	-135.04	137.65	-0.98	0.33
$Max_DepthDredged$	13.74	8.00	1.72	0.10
Volume	37.48	32.13	1.17	0.25
START_SALINITY_NUM	-0.73	3.64	-0.20	0.84