Quantitative Assessment of Thermodynamics on the Solution Space of Genome-Scale Metabolic Models

Joshua J. Hamilton, Vivek Dwivedi, and Jennifer L. Reed

Department of Chemical and Biological Engineering University of Wisconsin-Madison

> AIChE Annual Meeting October 31, 2012

Outline

- 1 Introduction and Background
- 2 Incorporating Thermodynamics into Flux-Balance Analysis
- 3 Quantitative Assessment of Thermodynamics on the Solution Space
- 4 Conclusions

Constraint-Based Models

Why models?

- Understanding cellular behavior
- Contextualize high-throughput data

Constraint-Based Models

Why models?

- Understanding cellular behavior
- Contextualize high-throughput data

Flux distribution subject to

- Steady-state mass balance constraints
- · Limits on fluxes

And want to

Maximize growth

Flux Balance Analysis (FBA)

Why Thermodynamics?

Tighter Constraints on the Flux Space

• Elimination of thermodynamically infeasible loops: $A \rightarrow B \rightarrow C \rightarrow A$

Insight into Cellular Metabolism

- Thermodynamic feasibility of cellular pathways
- Quantitative information on intracellular concentrations

Incorporating Thermodynamics

EBA: Beard, et al, *Biophys J* 2002. **II-COBRA**: Schellenberger, et al, *Biophys J* 2011.

NET: Kummel, et al, *Mol Syst Biol* 2006. **TMFA**: Henry, et al, *Biophys J* 2007.

Incorporating Thermodynamics

EBA: Beard, et al, *Biophys J* 2002. **II-COBRA**: Schellenberger, et al, *Biophys J* 2011.

NET: Kummel, et al, *Mol Syst Biol* 2006. **TMFA**: Henry, et al, *Biophys J* 2007.

Incorporating Thermodynamics

Thermodynamic flux-balance analysis (TFBA) enables a *quantitative* approach to thermodynamics without relying on prior knowledge of reaction directions

TFBA: Hamilton et al, under review.

Outline

- 1 Introduction and Background
- 2 Incorporating Thermodynamics into Flux-Balance Analysis
- 3 Quantitative Assessment of Thermodynamics on the Solution Space
- 4 Conclusions

TFBA Formulation

max cellular growth

s.t. mass balance

all reactions bidirectional

 $\Delta_r G' \cdot v \leq 0$

 $\Delta_r G'$ calculation

 $\Delta_r G'^0$ definition

global concentration bounds

Transport: Henry, et al, *Biophys J* 2007.

GC Method: Jankoswki et al, Biophys J 2008.

TFBA: Hamilton, et al, under review.

TFBA: Thermodynamics Flux Balance Analysis

TFBA Formulation

max cellular growth

s.t. mass balance

all reactions bidirectional

$$\Delta_r G' \cdot v < 0$$

 $\Delta_r G'$ calculation

 $\Delta_r G^{\prime 0}$ definition

global concentration bounds

MIP Formulation of $\Delta G_i \cdot v < 0$

$$\Delta_r G' < 0 \implies \delta_{fwd} = 1$$
 $v < 0 \implies \delta_{rev} = 1$

 $v > 0 \implies \delta_{fwd} = 1$

$$\Delta_r G' > 0 \implies \delta_{rev} = 1$$
 $\delta_{fwd} + \delta_{rev} < 1$

Transport: Henry, et al, *Biophys J* 2007.

GC Method: Jankoswki et al, Biophys J 2008.

TFBA: Hamilton, et al, under review.

TFBA: Thermodynamics Flux Balance Analysis

TFBA Formulation

max cellular growth

s.t. mass balance

all reactions bidirectional

$$\Delta_r G' \cdot v \leq 0$$

 $\Delta_r G'$ calculation

 $\Delta_r G^{\prime 0}$ definition

global concentration bounds

Calculating $\Delta_r G'$

$$\Delta_r G' = \Delta_r G'^0 + RT \sum S \ln C + \Delta_t G'^0$$

 $\Delta_r G^{\prime 0}$ by Group Contribution (GC)

$$\Delta_r G'^0 = \sum S \Delta_f G'^0$$

Transport: Henry, et al, *Biophys J* 2007.

GC Method: Jankoswki et al, Biophys J 2008.

TFBA: Hamilton, et al, under review.

Outline

- 1 Introduction and Background
- ② Incorporating Thermodynamics into Flux-Balance Analysis
- 3 Quantitative Assessment of Thermodynamics on the Solution Space
- 4 Conclusions

Elimination of ATP-Generating Cycles

• TFBA predicts ATP-generating cycles

Elimination of ATP-Generating Cycles

TFBA predicts ATP-generating cycles

TFBA: Hamilton et al, under review.

Elimination of ATP-Generating Cycles

- TFBA predicts ATP-generating cycles
- Adding concentration constraints eliminates cycles

TFBA	[x] _{min} (mM)	[x] _{max} (mM)	[x] _{meas} (mM)
ADP	0.095	20	0.56
ATP	0.01	2.1	9.6

TFBA: Hamilton et al, under review.

Effect of Thermodynamics on the Flux Space

- TFBA assumes all reactions can be bidirectional
- Thermodynamic interactions shrink the flux space

TFBA: Hamilton et al, under review.

Using TFBA to Predict Growth Phenotypes

- CONGA identifies single-gene deletions for which TFBA and FBA give different predictions (Growth vs. No Growth)
- Better prediction in 7 cases: TFBA predicts a reversible reaction which FBA does not
- Worse prediction in 12 cases: TFBA predicts a reversible reaction which is physiologically irreversible
- Synthetic Lethal (SL) Finder identifies the reaction responsible for the phenotype difference

CONGA: Hamilton and Reed, *PLoS ONE* 2011. TFBA: Hamilton, et al., *under review*.

Exp. Data: Baba, et al, Mol Syst Biol 2006. SL Finder: Suthers, et al, Mol Syst Biol 2009.

Analyzing Better Predictions

- ΔaspC predicted to be rescued by aspA
- Constructed $\triangle aspC\triangle aspA$ mutant

aspC: aspartate aminotransferase

aspA: aspartate-ammonia lyase

Analyzing Better Predictions

- $\triangle aspC\triangle aspA$ mutant proved viable
- Sequence similarity suggested tyrB as an isoform for aspC

Analyzing Better Predictions

- ΔaspCΔtyrB mutant proved nonviable tyrB is an isoform for aspC
- Constrain the direction of aspC

Batch Culture						
	Uncons.	Cons.	Total			
Overlap	46	33	79			
No Over.	9	19	28			
No Data	409	96	505			
Total	474	138	612			

TFBA: Hamilton, et al, under review.

Batch Data: Bennett, et al, Nature Chem Biol 2009.

Using TFBA to Predict Metabolite Concentrations

Batch Culture

	Uncons.	Cons.	Total
Overlap	46	33	79
No Over.	9	19	28
No Data	409	96	505
Total	474	138	612

TFBA: Hamilton, et al, under review.

Batch Data: Bennett, et al, Nature Chem Biol 2009.

Using TFBA to Predict Metabolite Concentrations

Batch Culture

	Uncons.	Cons.	Total
Overlap	46	33	79
No Over.	9	19	28
No Data	409	96	505
Total	474	138	612

TFBA: Hamilton, et al, under review.

Batch Data: Bennett, et al, Nature Chem Biol 2009.

Outline

- 1 Introduction and Background
- 2 Incorporating Thermodynamics into Flux-Balance Analysis
- 3 Quantitative Assessment of Thermodynamics on the Solution Space
- 4 Conclusions

Conclusions

Thermodynamic Flux-Balance Analysis

- Enables quantitative prediction of reaction free energies and metabolite concentrations
- Does not rely on predefined reaction directions
- First comparison of a thermodynamic model to large-scale datasets

Conclusions

Thermodynamic Flux-Balance Analysis

- Enables quantitative prediction of reaction free energies and metabolite concentrations
- Does not rely on predefined reaction directions
- First comparison of a thermodynamic model to large-scale datasets

Lessons Learned

- Experimental measurements are crucial to accurate predictions
- · Identify measurements which are most useful

Conclusions

Thermodynamic Flux-Balance Analysis

- Enables quantitative prediction of reaction free energies and metabolite concentrations
- Does not rely on predefined reaction directions
- First comparison of a thermodynamic model to large-scale datasets

Lessons Learned

- Experimental measurements are crucial to accurate predictions
- · Identify measurements which are most useful
- Predicted concentration measurements remain large
- Incorporate physiochemical correlations or kinetic constraints

Acknowledgements

Prof. Jennifer Reed

- Dr. Dave Baumler
- Dr. Joonhoon Kim
- Camo Cotten
- Klaus Lovendahl
- Wai Kit Ong
- Chris Tervo
- Trang Vu
- Xiaolin Zhang
- Undergraduate Students
 - Vivek Dwivedi
 - Mink Arunrattanamook
 - John de Friel

Questions?

Thermodynamic Flux-Balance Analysis

- Enables quantitative prediction of reaction free energies and metabolite concentrations
- Does not rely on predefined reaction directions
- First comparison of a thermodynamic model to 'omics' datasets

Lessons Learned

- Experimental measurements are crucial to accurate predictions
- Identify measurements which are most useful
- Predicted concentration measurements remain large
- Incorporate physiochemical correlations or kinetic constraints