

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Бутиков Илья Иванович, 614 группа

# Отчёт по выполнению задания курса «Суперкомпьютерное моделирование и технологии»

## Содержание

| 1        | Постановка задачи |                           |   |
|----------|-------------------|---------------------------|---|
| <b>2</b> | Чис               | сленный метод решения     | 4 |
|          | 2.1               | Метод фиктивных областей  | 4 |
|          | 2.2               | Разностная схема решения  | 5 |
|          | 2.3               | Метод минимальных невязок | 6 |
| 3        | Опи               | исание проделанной работы | 8 |
| 4        | Рез               | ультаты                   | ç |

## 1 Постановка задачи

В области  $D\subset R^2$ , ограниченной контуром  $\gamma$ , рассматривается дифференциальное уравнение Пуассона:

$$-\Delta u = 1 \tag{1.1}$$

с граничными условием Дирихле:

$$u(x,y) = 0, (x,y) \in \gamma. \tag{1.2}$$

Требуется найти функцию u(x,y), удовлетворяющую уравнению 1 в области D и краевому условию 1 на ее границе.

Область D - трапеция с вершинами в точках A(0,0), B(3,0), C(2,3), D(0,3).

## 2 Численный метод решения

Для решения поставленной задачи используется метод фиктивных областей. Полученная новая краевая задача решается численно методом конечных разностей.

#### 2.1 Метод фиктивных областей

Пусть область D принадлежит прямоугольнику  $\Pi = \{(x,y)|\ A.x < x < B.x, A.y < y < C.y\}$ . Обозначим границу прямоугольника  $\Pi$  как  $\Gamma$ .

Разность множеств  $\hat{D} = \Pi \setminus \bar{D}$ , называется фиктивной областью.

В прямоугольнике П рассмотрим следующую задачу Дирихле :

$$-\frac{\partial}{\partial x}(k(x,y)\frac{\partial v}{\partial x}) - \frac{\partial}{\partial y}(k(x,y)\frac{\partial v}{\partial y}) = F(x,y)$$
 (2.1)

Где  $v(x,y) = 0, (x,y) \in \Gamma$ ,

k(x,y) - кусочно-постоянный коэффициент:

$$k(x,y) = \begin{cases} 1, & (x,y) \in D, \\ 1/\varepsilon & (x,y), \in \hat{D} \end{cases}$$
 (2.2)

и правой частью:

$$F(x,y) = \begin{cases} 1, & (x,y) \in D, \\ 0, & (x,y) \in \hat{D} \end{cases}$$
 (2.3)

Требуется найти непрерывную в  $\bar{\Pi}$  функцию v(x,y), удовлетворяющую дифференциальному уравнению (2.1) всюду в  $\Pi \setminus \gamma$ , равную нулю на границе  $\Gamma$  прямоугольника, и такую, чтобы вектор потока:

$$W(x,y) = -k(x,y)\left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}\right) \tag{2.4}$$

имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника  $\Pi.$ 

Последнее означает, что в каждой точке  $(x0, y0) \in \gamma \cap \Pi$  должно выполняться равенство:

$$\lim_{(x,y)\to(x0,y0),(x,y)\in D,} (x,y)\in D, = \lim_{(x,y)\to(x0,y0),(x,y)\in D,} (x,y)\hat{D}, \tag{2.5}$$

Известно [2], что функция v(x,y) равномерно приближает решение u(x,y) задачи (1) в области D, а именно,

$$\max_{(x,y)\in\bar{D}} \|v(x,y) - u(x,y)\| \le C\varepsilon, C > 0 \tag{2.6}$$

Таким образом, решение новой задачи (2.1) позволяет получить решение исходной задачи (1) с любой наперед заданной точностью  $\varepsilon > 0$ , решая при этом задачу Дирихле с кусочно-постоянным коэффициентомk(x,y), но в в прямоугольнике  $\Pi$ , содержащем исходную область, что существенно упрощает вычисления.

#### 2.2 Разностная схема решения

В замыкании прямогольника  $\bar{\Pi}$  определим равномерную прямоугольную сетку  $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$ , где

$$\bar{\omega}_1 = \{ x_i = A.x + ih_1, i = 0, \dots, M \}, \quad h_1 = (B.x - A.x)/M$$

$$\bar{\omega}_2 = \{ y_j = A.y + jh_2, j = 0, \dots, N \}, \quad h_2 = (C.y - A.y)/N$$
(2.7)

Множество внутренних узлов сетки  $\bar{\omega}_h$  обозначим  $\omega_h$ .

Рассмотрим линейное пространство H функций, заданных на сетке  $\omega_h$ . Обозначим через  $w_{ij}$  значение сеточной функции H в узле сетки  $(x_i, y_j) \in \omega_h$ . Определим скалярное произведение и норму в пространстве сеточных функций H:

$$(u,v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij} ||u|| = \sqrt{(u,u)}$$
(2.8)

Будем использовать метод конечных разностей, который заключается в замене дифференциальной задачи математической физики на конечно-разностную операторную задачу вида:

$$A\omega = B,\tag{2.9}$$

где  $A: H \to H$ . Дифференциальное уравнение задачи (3) во всех внутренних точках сетки аппроксимируется разностным уравнением:

$$-\frac{1}{h_1}\left(a_{i+1j}\frac{\omega_{i+1j}-\omega_{ij}}{h_1}-a_{ij}\frac{\omega_{ij}-\omega_{i-1j}}{h_1}\right)-\frac{1}{h_2}\left(b_{ij+1}\frac{\omega_{ij+1}-\omega_{ij}}{h_2}-b_{ij}\frac{\omega_{ij}-\omega_{ij-1}}{h_2}\right)=F_{ij}$$

$$i=1,\ldots,M-1,\ j=1,\ldots,N-1$$
(2.10)

в котором коэффициенты:

$$a_{ij} = \frac{1}{h_2} \int_{y_{j-1/2}}^{y_{j+1/2}} k(x_{i-1/2}, t) dt$$

$$b_{ij} = \frac{1}{h_1} \int_{x_{i-1/2}}^{x_{i+1/2}} k(t, y_{j-1/2}) dt$$
(2.11)

при всех i = 1, ..., M, j = 1, ..., N.

Правая часть разностного уравнения:

$$F_{ij} = \frac{1}{h_1 h_2} \iint_{\Pi_{ij}} F(x, y) \, dx dy, \tag{2.12}$$

где  $\Pi_{ij} = \{(x,y) : x_{i-1/2} \le x \le x_{i+1/2}, y_{j-1/2} \le y \le y_{j+1/2}\},$  $i = 1, \dots, M-1, \ j = 1, \dots, N-1.$ 

Краевые условия Дирихле в задаче (2.1) аппроксимируются точно равенством

$$w_{ij} = w(x_i, y_j) = 0, (x_i, y_j) \in \Gamma$$
 (2.13)

Полуцелые узлы означают  $x_{i\pm 1/2} = x_i \pm 0.5 h_1$ ,  $y_{j\pm 1/2} = y_j \pm 0.5 h_2$ .

Полученная система является линейной относительно неизвестных величин и может быть представлена в виде  $A\omega = B$  с самосопряженным и положительно определенным оператором A. Построенная разностная схема линейна и имеет единственное решение при любой правой части.

Интегралы  $a_{ij}, b_{ij}$  будем вычислять аналитически:

$$a_{ij} = h_2^{-1} l_{ij} + (1 - h_2^{-1} l_{ij})/\varepsilon, (2.14)$$

где  $l_{ij}$  длина части отрезка  $[y_{j-1/2},y_{j+1/2}]$ , которая принадлежит области D .

Аналогично для  $b_{ij}$ 

$$b_{ij} = h_1^{-1} l_{ij} + (1 - h_1^{-1} l_{ij})/\varepsilon, (2.15)$$

где  $l_{ij}$  длина части отрезка  $[x_{j-1/2},x_{j+1/2}],$  которая принадлежит области D .

Для вычисления  $l_{ij}$  проверяем пересечение соотвутсвующего интрервала интергирования с прямой, проходящей через вершины трапеции CB,

Правую часть разностной схемы считаем как  $F_{ij} = s/(h1\dot{h}2)$ , где s - часть площади прямоугольника с центром (xi,yi) и сторонами h1h2, принадлежащяя области D

#### 2.3 Метод минимальных невязок

Приближенное решение разностной схемы предлагается вычислять методом наименьших невязок. Метод позволяет получить последовательность сеточных функций  $\omega^{(k)} \in H, k = 1, 2, ...,$  сходяющуюся по норме пространства H к решению разностной схемы.

$$\|\omega - \omega^{(k)}\| \to 0, \ k \to \infty \tag{2.16}$$

Начальное приближение  $\omega^{(0)}$  выберем равным нулю во всех точках сетки, кроме одной в центре. В центральной устанавливаем значение =1.

Итерация  $\omega^{(k+1)}$  вычисляется по итерации  $\omega^{(k)}$  по формуле:

$$\omega_{ij}^{(k+1)} = \omega_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)} \tag{2.17}$$

где невязка  $r^{(k)}=A\omega^{(k)}-B$ , итерационный параметр  $au_{k+1}=\frac{(Ar^{(k)},r^{(k)})}{\|Ar^{(k)}\|^2}$ 

В качестве критерия останова используется условие:

$$||r^{(k)}|| < \delta \tag{2.18}$$

с некоторой положительной константой  $\delta > 0$ , задающей точность приближенного решения.

Для вычислений использовалась  $\delta=10^{-6}$ 

## 3 Описание проделанной работы

Для выполнения задания был разработан последовательный код, представляющий собой программу на языке C++, реализующий численный метод. Были выполнены расчеты на сгущающихся сетках (M,N)=(10,10),(20,20),(40,40) и построены графики полученных приближенных решений.

Для написания параллельной программы основной цикл вычисления был помечен параллельной областью с помощью директивы opm: #pragma omp parallel private(i, j, rA, tau), в котором так же указал область приватные переменные, объявленые вне цикла и участвующие в различных этапах вычисления.

Область выделена одна для уменьшения накладных расходов на создание и уничтожение параллельных областей.

Как и в последовательной программе, функция рассчёта Aw была переведена на макроподстановку, что дало большое ускорение.

Двойные циклы помечены директивами shedue(static) и collapse(2). В теле таких циклов нет сильных ветвлений или других операций, которые сильно влияют на время выполнение тела цикла, а так же экспериментальные запуски показали, что это более оптимальные параметры.

Код, отвечающий за вывод промежуточных данных помечен директивами #ifdef COMMAND, чтобы не тормозить вычисления, когда вывод не нужен.

### 4 Результаты

Были проведены расчеты на сетках (40, 40), (80, 80), (160, 160) на разном числе потоков. Время вычисления удалось уменьшить за счет использования распараллеливания программы. В презентационных материалах к курсу неправильно выписан скрипт для запуска программы более 8 нитей, что давало неправильный результат рассчёта эффективности. Все результаты были пересчитаны заново.

Использование  $\epsilon=h^2$  приводит к увеличению времени работы на том же числе процессов при увеличении размера сетки в 2 раза не в 4 раза, а в 20 раз. Возможная причина - достаночно маленькое tau в ходе рассчёта, котое сильно зависит от Ar в фиктивной области, что зависит от  $1/\epsilon$ . Из-за этого часть результатов не удалось получить. Оценка недостающих результатов показывает, что вычисления заняли бы больше 30 минутного лимита.

Несмотря на случайность времени вычисления, связанной с нагрузкой на суперкомпьютер, в среднем использование флага компиляции О2 даёт преимущество в скорости. Но чем больше потоков используется, тем меньше его вклад. Из-за чего ускорение для программы с флагом О2 меньше, так как сама последовательная программа существенно быстрее.

Результат совпадает с последовательным программой. Однако решение на сетке 160 на 160 сильно отличается он меньших сеток. Помино неправильно написанной программы, возможна причина в слишком большом соотношении  $\epsilon/\delta$ .

Так же дополнительно было рассчитана ошибка в каждой точке сетке. Вычисления показывают, что ошибка распределена равномерно по графику, а график ошибки похож на график результата, но с меньшими значениями.

Результаты приведены в таблице.

| Число OpenMP-нитей | Число точек сетки $M \times N$ | Время решения        | Ускорение      |
|--------------------|--------------------------------|----------------------|----------------|
| 2                  | $40 \times 40$                 | 6.261                | 1.666          |
| 4                  | $40 \times 40$                 | 4.371                | 2.387          |
| 8                  | $40 \times 40$                 | 3.197                | 3.263          |
| 16                 | $40 \times 40$                 | 3.809                | 2.739          |
| 2                  | 80 × 80                        | 217.719              | 1.897          |
| 4                  | $80 \times 80$                 | 120.175              | 3.437          |
| 8                  | $80 \times 80$                 | 72.8317              | 5.446          |
| 16                 | $80 \times 80$                 | 59.8206              | 6.904          |
| 4                  | $160 \times 160$               | >1800, ожидаемо 2644 | ожидаемо 2.74  |
| 8                  | $160 \times 160$               | >1800, ожидаемо 2358 | ожидаемо 3.072 |
| 16                 | $160 \times 160$               | 1177.57              | 6.151          |
| 32                 | $160 \times 160$               | 814.319              | 8.896          |

Таблица 1: Зависимость времени решения от числа нитей для разных сеток, использовался флаг компиляции O2

| Число OpenMP-нитей | Число точек сетки $M \times N$ | Время решения        | Ускорение |
|--------------------|--------------------------------|----------------------|-----------|
| 2                  | $40 \times 40$                 | 31.097               | 1.71      |
| 4                  | $40 \times 40$                 | 21.619               | 2.46      |
| 8                  | $40 \times 40$                 | 18.086               | 2.941     |
| 16                 | $40 \times 40$                 | 4.153                | 12.807    |
| 2                  | 80 × 80                        | 674.737              | 1.571     |
| 4                  | $80 \times 80$                 | 375.789              | 2.821     |
| 8                  | $80 \times 80$                 | 156.891              | 6.756     |
| 16                 | $80 \times 80$                 | 64.1665              | 16.52     |
| 4                  | $160 \times 160$               | >1800, ожидаемо 2650 | 3.24      |
| 8                  | $160 \times 160$               | 1401.896             | 6.125     |
| 16                 | $160 \times 160$               | 1227.53              | 6.995     |
| 32                 | $160 \times 160$               | 823.882              | 10.422    |

Таблица 2: Зависимость времени решения от числа нитей для разных сеток, без использования флага компиляции O2



Рис. 1: График ускорения с флагом О2



Рис. 2: График ускорения без флага О2



Рис. 3: Итоговый результат на сетке 80 на 80



Рис. 4: Итоговый результат на сетке 160 на 160



Рис. 5: Итоговый результат на сетке 160 на 160,  $\epsilon = 0.01$ 



Рис. 6: График погрешности для сетки 160 на 160



Рис. 7: График ошибки для сетки 160 на 160



Рис. 8: График нормы невязки для сетки 160 на 160



Рис. 9: График Ar для сетки 160 на 160