The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

* Independence.

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

- * Independence.
- * The subtlety of bias.

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

* Independence.

* The subtlety of bias.

A model of a poll

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

A model of a poll

- * Independence.
- The subtlety of bias.

Repeated independent trials: $X_1, X_2, ..., X_n, \cdots \sim Bernoulli(p)$

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

A model of a poll

- * Independence.
- * The subtlety of bias.

Repeated independent trials: $X_1, X_2, ..., X_n, \cdots \sim Bernoulli(p)$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n \sim \text{Binomial}(n, p)$

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

* Independence.

* The subtlety of bias.

A model of a poll

Repeated independent trials: $X_1, X_2, ..., X_n, \cdots \sim Bernoulli(p)$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n \sim \text{Binomial}(n, p)$

Estimate the unknown population proportion p by the relative frequency of successes S_n/n

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

- * Independence.
- * The subtlety of bias.

A model of a poll

Repeated independent trials: $X_1, X_2, ..., X_n, \cdots \sim Bernoulli(p)$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n \sim \text{Binomial}(n, p)$

Estimate the unknown population proportion p by the relative frequency of successes S_n/n

The dance of error, confidence, and sample size

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

- * Independence.
- * The subtlety of bias.

A model of a poll

Repeated independent trials: $X_1, X_2, ..., X_n, \cdots \sim Bernoulli(p)$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n \sim \text{Binomial}(n, p)$

Estimate the unknown population proportion p by the relative frequency of successes S_n/n

The dance of error, confidence, and sample size

We want:

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - \mathbf{p}\right| > \epsilon\right\} \le \delta$$

The fabulous limit laws
Chebyshev's enduring inequality, the magisterial law of large numbers

Random sample

- * Independence.
- * The subtlety of bias.

A model of a poll

Repeated independent trials: $X_1, X_2, ..., X_n, \cdots \sim Bernoulli(p)$

Accumulated successes: $S_n = X_1 + X_2 + \cdots + X_n \sim \text{Binomial}(n, p)$

Estimate the unknown population proportion p by the relative frequency of successes S_n/n

The dance of error, confidence, and sample size

We want:

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - \mathbf{p}\right| > \epsilon\right\} \le \delta$$

Chebyshev's inequality, the law of large numbers

$$\mathbf{P}\left\{\left|\frac{S_n}{n} - \mathbf{p}\right| > \epsilon\right\} \le \frac{1}{4n\epsilon^2} \to 0 \qquad (n \to \infty)$$

Error	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

Error E	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

Error E	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

Applications * Why polls work:

Error €	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

- * Why polls work:
 - * Estimate p by S_n/n .

Error €	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

- * Why polls work:
 - * Estimate p by S_n/n .
 - * A sample of size 5,556 achieves error of no more than 3% with confidence 95%.

Error E	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

- * Why polls work:
 - * Estimate p by S_n/n .
 - * A sample of size 5,556 achieves error of no more than 3% with confidence 95%.
- * Why drug testing works:

Error E	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

- * Why polls work:
 - * Estimate p by S_n/n .
 - * A sample of size 5,556 achieves error of no more than 3% with confidence 95%.
- * Why drug testing works:
 - * Randomised double sample (drug, placebo): estimate the chances of the observed discrepancy if the drug were ineffective (or has a dangerous side effect).

Error €	Confidence 1 – δ	Sample size n
0.10	0.90	250
0.05	0.95	2000
0.03	0.95	5556

- * Why polls work:
 - * Estimate p by S_n/n .
 - * A sample of size 5,556 achieves error of no more than 3% with confidence 95%.
- * Why drug testing works:
 - * Randomised double sample (drug, placebo): estimate the chances of the observed discrepancy if the drug were ineffective (or has a dangerous side effect).
 - * A doubling of sample size for a given confidence.