第一次习题课(多元函数极限、连续、可微及偏导)

一. 累次极限与重极限

例.1
$$f(x,y) = \begin{cases} x \sin \frac{1}{y} + y \sin \frac{1}{x}, & x \cdot y \neq 0 \\ 0, & x \cdot y = 0 \end{cases}$$
 , 分别求累次极限与二重极限。

例.2
$$f(x,y) = \begin{cases} \frac{3xy}{x^2 + y^2} & x^2 + y^2 \neq 0 \\ 0 & x^2 + y^2 = 0 \end{cases}$$
, 分别求累次极限与二重极限。

例.3
$$f(x,y) = \frac{x^2 y^2}{x^2 y^2 + (x-y)^2}$$
, 证明: $\lim_{y \to 0} \lim_{x \to 0} f(x,y) = \lim_{x \to 0} \lim_{y \to 0} f(x,y) = 0$, 而二重极限
$$\lim_{\substack{x \to 0 \ y \to 0}} f(x,y) \wedge \overline{f} = 0$$

例.4 记
$$D = \{(x, y) \mid x + y \neq 0\}$$
, $f(x, y) = \frac{x - y}{x + y}, (x, y) \in D$ 。证明:
$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) = 1, \lim_{y \to 0} \lim_{x \to 0} f(x, y) = -1$$
,但是 $\lim_{\substack{(x, y) \to (0, 0) \\ (x, y) \in D}} f(x, y)$ 不存在。

二. 多元函数的极限与连续, 连续函数性质

例.5 求下列极限:

(1)
$$\lim_{(x,y)\to(1,0)} (x+y)^{\frac{x+y+1}{x+y-1}};$$
 (2) $\lim_{(x,y)\to(0,0)} (x+y)\ln(x^2+y^2);$

(3)
$$\lim_{(x,y)\to(0,0)} \frac{\sin(xy)}{x}$$
; (4) $\lim_{\substack{x\to\infty\\y\to\infty}} \frac{x+y}{x^2-xy+y^2}$;

(5)
$$\lim_{\substack{x \to +\infty \\ y \to +\infty}} (x^2 + y^2) e^{-(x+y)}.$$

例.6 证明: 极限 $\lim_{(x,y)\to(\infty,\infty)} \left(\frac{|xy|}{x^2+y^2}\right)^{x^2} = 0$.

例.7 若 z = f(x, y)在 R^2 上连续,且 $\lim_{x^2 + y^2 \to +\infty} f(x, y) = +\infty$,证明 函数 f 在 R^2 上一定有最小值点。

例.8 $f(\mathbf{x}) \in \mathbb{R}^n$ 上连续,且 (1) $\mathbf{x} \neq \mathbf{0}$ 时, $f(\mathbf{x}) > 0$ (2) $\forall c > 0$, $f(c\mathbf{x}) = cf(\mathbf{x})$

证明:存在a>0,b>0,使 $a|\mathbf{x}|\leq f(\mathbf{x})\leq b|\mathbf{x}|$.

例.9 若 f(x, y) 在 (0,0) 点的某个邻域内有定义, f(0,0) = 0,且

$$\lim_{(x,y)\to(0,0)} \frac{f(x,y) - \sqrt{x^2 + y^2}}{\sqrt{x^2 + y^2}} = a$$

a 为常数。证明:

- (1) f(x, y)在(0,0)点连续;
- (2) 若 $a \neq -1$,则 f(x, y) 在(0,0) 点连续,但不可微;
- (3) 若a = -1,则f(x, y)在(0,0)点可微。

例.10 函数
$$f(x,y) = \begin{cases} \frac{\sqrt{|xy|}}{x^2 + y^2} \sin(x^2 + y^2), & x^2 + y^2 \neq 0 \\ 0, & x^2 + y^2 = 0 \end{cases}$$
 在 (0,0) 点是否连续?

_____(填是或否);在(0,0)点是否可微?_____(填是或否).

- 三. 多元函数的全微分与偏导数
- **例.11** 有如下做法:

设
$$f(x, y) = (x + y)\varphi(x, y)$$
 其中 $\varphi(x, y)$ 在 $(0,0)$ 点连续,则 $df(x, y) = [\varphi(x, y) + (x + y)\varphi_x(x, y)]dx + [\varphi(x, y) + (x + y)\varphi_y(x, y)]dy$ 令 $x = 0, y = 0, df(0,0) = \varphi(0,0)(dx + dy).$

- (1)指出上述方法的错误;
- (2) 写出正确的解法.

例.12 设二元函数 f(x,y)于全平面 \Re^2 上可微,(a,b) 为平面 \Re^2 上给定的一点,则极限

$$\lim_{x\to 0}\frac{f(a+x,b)-f(a-x,b)}{x}=\underline{\hspace{1cm}}_{\circ}$$

例.13 设函数 f(x,y) 在 (1,1) 点可微, f(1,1)=1 , $f'_x(1,1)=2$, $f'_y(1,1)=3$, g(x)=f(x,f(x,x)),求 g'(1) 。

例.14 设
$$z = f(x^2 y, \frac{y}{x})$$
, 其中 $f \in \mathbb{C}^2$, 求 $\frac{\partial z}{\partial x}$ 和 $\frac{\partial^2 z}{\partial x \partial y}$.

例.15 设 z(x,y) 定义在矩形区域 $D = \{(x,y) | 0 \le x \le a, 0 \le y \le b\}$ 上的可微函数。证明:

(1)
$$z(x, y) = f(y) \Leftrightarrow \forall (x, y) \in D, \frac{\partial z}{\partial x} \equiv 0$$

(2)
$$z(x, y) = f(y) + g(y) \Leftrightarrow \forall (x, y) \in D, \frac{\partial^2 z}{\partial x \partial y} \equiv 0$$

例.16 n 为整数,若任意 t > 0, $f(tx,ty) = t^n f(x,y)$,则称 $f \in n$ 次齐次函数。证明:

f(x,y)是零次齐次函数的充要条件是

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = 0.$$

例.17 下列条件成立时能够推出 f(x,y) 在 (x_0,y_0) 点可微, 且全微分 df=0 的是 ().

(A) 在点
$$(x_0, y_0)$$
两个偏导数 $f'_x = 0, f'_y = 0$

(B)
$$f(x, y)$$
 在点 (x_0, y_0) 的全增量 $\Delta f = \frac{\Delta x \Delta y}{\sqrt{\Delta x^2 + \Delta y^2}}$,

(C)
$$f(x, y)$$
 在点 (x_0, y_0) 的全增量 $\Delta f = \frac{\sin(\Delta x^2 + \Delta y^2)}{\sqrt{\Delta x^2 + \Delta y^2}}$

(D)
$$f(x,y)$$
 在点 (x_0,y_0) 的全增量 $\Delta f = (\Delta x^2 + \Delta y^2) \sin \frac{1}{\Delta x^2 + \Delta y^2}$

例. 18 设 $f(x, y) = \sqrt{|xy|}$, 则在 (0,0) 点()

- (A) 连续, 但偏导数不存在;
- (B) 偏导数存在,但不可微;

(C) 可微:

(D) 偏导数存在且连续,

例.19 设
$$z = \arcsin \frac{x}{y}$$
, 求 dz .

例.21 设函数
$$z = 2\cos^2(x - \frac{y}{2})$$
, 证明 $\frac{\partial^2 z}{\partial x \partial y} + 2\frac{\partial^2 z}{\partial y^2} = 0$.

例.22 设函数
$$z = (x + 2y)^{xy}$$
, 求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$.