Statistical Machine Learning 2016

Exercises and answers, week 6

6 October 2016

Exercise 1

Find the eigenvalues and a set of mutually orthogonal eigenvectors of the symmetric matrix:

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

ANSWER: In order to find the eigenvalues of the matrix, which we will henceforth denote as A, we have to solve the characteristic equation $(\det(A - \lambda I) = 0)$.

$$|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 2 & 4 \\ 2 & -\lambda & 2 \\ 4 & 2 & 3 - \lambda \end{vmatrix} = -\lambda^3 + 6\lambda^2 + 15\lambda + 8 = -(\lambda - 8)(\lambda + 1)^2$$

The characteristic equation for our matrix is $(\lambda - 8)(\lambda + 1)^2 = 0$ and it has roots $\lambda_1 = \lambda_2 = -1$ and $\lambda_3 = 8$. Note that -1 is a double root. We now have to find two (orthogonal) eigenvectors for $\lambda = -1$ and one eigenvector for $\lambda = 8$.

First, let us solve Av = -v corresponding to the eigenvalue $\lambda = -1$.

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = - \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \iff \begin{cases} 3v_1 + 2v_2 + 4v_3 = -v_1 \\ 2v_1 + 2v_3 = -v_2 \\ 4v_1 + 2v_2 + 3v_3 = -v_3 \end{cases} \iff \begin{cases} 4v_1 + 2v_2 + 4v_3 = 0 \\ 2v_1 + v_2 + 2v_3 = 0 \\ 4v_1 + 2v_2 + 4v_3 = 0 \end{cases}$$

We can see that this system reduces to the single equation $2v_1 + v_2 + 2v_3 = 0$. We have three variables to determine, but only one equation, so we arbitrarily choose for example $v_1 = s$ and $v_3 = t$ as parameters and use them to express v_2 . Thus, the two eigenvectors of $\lambda = -1$ must have the form:

$$\begin{bmatrix} s \\ -2s - 2t \\ t \end{bmatrix}. \tag{1}$$

We now have to choose values for s and t that yield two orthogonal vectors. We can arbitrarily set the parameter values to s = 1 and t = 0 to get the first eigenvector (the only restriction is that it has to be a non-zero vector):

$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} \quad \left(\text{Verify} : \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} = (-1) \cdot \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix} \right)$$

Now, we have to find a vector \mathbf{u}_2 of the form in Equation 1 such that $\mathbf{u}_1^T \mathbf{u}_2 = 0$.

$$\mathbf{u}_1^T \mathbf{u}_2 = 0 \iff s + (-2)(-2s - 2t) = 0 \iff 5s + 4t = 0$$
 (2)

We can choose for example s=4 and t=-5, which satisfy Equation 2. We then get:

$$\mathbf{u}_2 = \begin{bmatrix} 4\\2\\-5 \end{bmatrix} \quad \left(\text{Verify} : \begin{bmatrix} 3 & 2 & 4\\2 & 0 & 2\\4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4\\2\\-5 \end{bmatrix} = \begin{bmatrix} -4\\-2\\5 \end{bmatrix} = (-1) \cdot \begin{bmatrix} 4\\2\\-5 \end{bmatrix} \right)$$

To get our final eigenvector, we have to solve Av = 8v, corresponding to the eigenvalue $\lambda = 8$.

$$\begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = 8 \cdot \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \iff \begin{cases} 3v_1 + 2v_2 + 4v_3 = 8v_1 \\ 2v_1 + 2v_3 = 8v_2 \\ 4v_1 + 2v_2 + 3v_3 = 8v_3 \end{cases} \iff \begin{cases} -5v_1 + 2v_2 + 4v_3 = 0 \\ 2v_1 - 8v_2 + 2v_3 = 0 \\ 4v_1 + 2v_2 - 5v_3 = 0 \end{cases}$$

By solving the linear equation system above, we can show that the eigenvectors for $\lambda=8$ are of the form:

$$\begin{bmatrix} 2r \\ r \\ 2r \end{bmatrix} \tag{3}$$

It is easy to check that this vector is orthogonal to \mathbf{u}_1 and \mathbf{u}_2 (and in general to all vectors of the form in Equation 1) for any choice of r, so let's take for example r = 1. We then get:

$$\mathbf{u}_{3} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \quad \left(\text{Verify} : \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 16 \\ 8 \\ 16 \end{bmatrix} = 8 \cdot \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} \right)$$

Note that since this real-valued matrix is symmetric we do indeed have 3 eigenvalues and a set of 3 orthogonal (and thus linearly independent) eigenvectors (one for each eigenvalue).

Exercise 2

Consider a discrete variable x that can take K values, $x \in \{1, ..., K\}$. If we denote the probability of x = k by the parameter θ_k , then the distribution of x is given by

$$P(x = k | \boldsymbol{\theta}) = \theta_k \tag{4}$$

where $\boldsymbol{\theta} = (\theta_1, \dots, \theta_K)^T$ and the parameters are constrained to satisfy

$$\theta_k \ge 0$$
 and $\sum_{k=1}^K \theta_k = 1$ (5)

1. Explain why the parameters should satisfy these constraints.

ANSWER: Probabilities are non-negative, and should add up to one.

Now consider a dataset χ of N independent observations, $\chi = \{x_1, \dots, x_N\}$.

2. Show that the log-likelihood $\ln P(\chi|\boldsymbol{\theta})$ is of the form

$$\ln P(\chi|\boldsymbol{\theta}) = \sum_{k=1}^{K} m_k \ln \theta_k \tag{6}$$

What are the m_k 's (in terms of the x_i 's, k's etc.)?

ANSWER: Note first that each of the data points x_n has a value in 1, ..., K and that $P(x_n|\boldsymbol{\theta}) = \theta_{x_n}$. So

$$\ln P(\chi|\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \theta_{x_n}.$$

Now it is convenient to introduce a Kronecker delta and rewrite and reshuffle a bit,

$$\ln P(\chi|\boldsymbol{\theta}) = \sum_{n=1}^{N} \ln \theta_{x_n}$$

$$= \sum_{n=1}^{N} \sum_{k=1}^{K} \delta_{x_n k} \ln \theta_k$$

$$= \sum_{k=1}^{K} \sum_{n=1}^{N} \delta_{x_n k} \ln \theta_k$$

$$= \sum_{k=1}^{K} m_k \ln \theta_k$$

in which the 'counts' $m_k = \sum_{n=1}^N \delta_{x_n k}$ are the number of observations $x_n = k$.

3. Show that the maximum likelihood solution θ^* is given by

$$\theta_k^* = \frac{m_k}{N} \tag{7}$$

Hint: Use a Lagrange multiplier for the constraint $\sum_{k=1}^{K} \theta_k - 1 = 0$.

ANSWER: Define the Lagrangian

$$L(\theta_1, \dots, \theta_K, \lambda) = \sum_{k=1}^K m_k \ln \theta_k + \lambda (\sum_{k=1}^K \theta_k - 1)$$

Take the derivative with respect to θ_k and set to zero,

$$0 = \frac{\partial L}{\partial \theta_k} = \frac{m_k}{\theta_k} + \lambda$$

which gives

$$\theta_k = -\frac{m_k}{\lambda}$$

We solve for λ by substitution of the constraint $\sum_k \theta_k = 1$, so

$$\sum_{k=1}^{K} \theta_k = -\sum_{k=1}^{K} \frac{m_k}{\lambda} = -\frac{N}{\lambda} = 1$$

(note that $\sum_{K} m_k = N$), so we find $\lambda = -N$ and

$$\theta_k^* = \frac{m_k}{N}$$

Method 2: without Lagrange multipliers. Note that we can get rid of the constraints by considering log-likelihood as a function that directly depends on the K-1 independent parameters $\theta_1, \ldots, \theta_{K-1}$, and indirectly via the last dependent parameter θ_K , which is now considered as a function of the K-1 independent parameters

$$\theta_K(\theta_1, \dots, \theta_{K-1}) = 1 - \sum_{k=1}^{K-1} \theta_k.$$

The log-likelihood as function of the independent parameters is then

$$L(\theta_1, \dots, \theta_{K-1}) = \sum_{k=1}^{K-1} m_k \ln \theta_k + m_K \ln \theta_K(\theta_1, \dots, \theta_{K-1})$$

Set partial derivatives to zero. Use the chain rule together with $\partial \theta_K/\partial \theta_k = -1$ for the last term,

$$0 = \frac{\partial L}{\partial \theta_k} = \frac{m_k}{\theta_k} - \frac{m_K}{\theta_K}, \quad \text{for } k = 1, \dots, K - 1$$

Multiply all partial derivatives by $\theta_k \theta_K$, then expand θ_K and substitute $m_K = N - \sum_{k=1}^{K-1} m_k$ (and use other letters for dummy indices) to obtain

$$0 = m_k \theta_K - m_K \theta_k$$

= $m_k (1 - \sum_{i=1}^{K-1} \theta_i) - (N - \sum_{i=1}^{K-1} m_i) \theta_k$ for $k = 1, ..., K-1$

So note that this is a linear system, consisting of K-1 linear equations with K-1 unknowns (namely, $\theta_1, \ldots, \theta_{K-1}$.) We "add up the rows" by summing over k from which we obtain

$$0 = \sum_{k=1}^{K-1} m_k (1 - \sum_{i=1}^{K-1} \theta_i) - (N - \sum_{i=1}^{K-1} m_i) \sum_{k=1}^{K-1} \theta_k$$

$$= \sum_{k=1}^{K-1} m_k - \sum_{k=1}^{K-1} \sum_{i=1}^{K-1} m_k \theta_i - N \sum_{k=1}^{K-1} \theta_k + \sum_{i=1}^{K-1} \sum_{k=1}^{K-1} m_i \theta_k$$

$$= \sum_{k=1}^{K-1} m_k - N \sum_{k=1}^{K-1} \theta_k$$

So

$$\sum_{k=1}^{K-1} \theta_k = \frac{\sum_{k=1}^{K-1} m_k}{N}$$

and therefore also

$$1 - \sum_{k=1}^{K-1} \theta_k = \frac{N - \sum_{k=1}^{K-1} m_k}{N}.$$

In other words,

$$\theta_K = \frac{m_K}{N}.$$

Now we plug this back in the linear system and find

$$0 = m_k \theta_K - m_K \theta_k$$
$$= m_k \frac{m_K}{N} - m_K \theta_k$$

from which we finally can conclude

$$\theta_k = \frac{m_k}{N}$$

Exercise 3

The beta distribution is

Beta
$$(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)}\mu^{a-1}(1-\mu)^{b-1} \qquad 0 \le \mu \le 1$$
 (8)

in which $\Gamma(x)$ is the gamma function (a well defined mathematical function, see book, www exercise 1.17). The gamma function is a generalization of the factorial function (n-1)! as it satisfies

$$\Gamma(x+1) = x\Gamma(x) \tag{9}$$

We are looking for an expression for the expectation value in terms of a and b

$$\langle \mu \rangle = \int_0^1 \mu \operatorname{Beta}(\mu | a, b) d\mu$$
 (10)

Since the beta distribution is normalised, we can start from the relation

$$\int_0^1 \mu^{a-1} (1-\mu)^{b-1} d\mu = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$
 (11)

1. Show that the expectation value is given by

$$\langle \mu \rangle = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)}$$
 (12)

Hint: you do not actually have to compute any integrals.

ANSWER:

$$\begin{split} \langle \mu \rangle &= \int_0^1 \mu \mathrm{Beta}(\mu|a,b) d\mu \\ &= \int_0^1 \mu \times \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1} d\mu \\ &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \int_0^1 \mu^a (1-\mu)^{b-1} d\mu \\ &= \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} \end{split}$$

2. Use this result and the property $\Gamma(x+1) = x\Gamma(x)$ to show that

$$\langle \mu \rangle = \frac{a}{a+b} \tag{13}$$

ANSWER: Continuing from 1:

$$\begin{split} \left\langle \mu \right\rangle &=& \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{\Gamma(a+1)\Gamma(b)}{\Gamma(a+b+1)} \\ &=& \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \frac{a\Gamma(a)\Gamma(b)}{(a+b)\Gamma(a+b)} \\ &=& \frac{a}{a+b} \end{split}$$

Exercise 4

Suppose we have two coins, A and B, and we do not know whether these coins are fair.

1. Let μ be the probability the coin comes up H(eads). Give an expression for the likelihood of a data set \mathcal{D} of N observations of independent tosses of the coin.

ANSWER: Obviously a Bernoulli distribution with $p(H) = p(x = 1) = \mu$, and so for the likelihood of a data set $\mathcal{D} = \{x_1, \dots, x_N\}$ we have

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu) = \prod_{n=1}^{N} \mu^{x_n} (1-\mu)^{1-x_n} = \mu^m (1-\mu)^l$$
 (14)

with m the number of observations of H(eads) in the data set and l the number of T(ails).

Suppose we have observed the following results of two series of coin tosses:

$$\begin{array}{c|c} \text{coin:} & \text{data } \mathcal{D}\text{:} \\ \hline A & H,T,T,H,T,T,T \\ B & H \\ \end{array}$$

2. What is the maximum likelihood estimate for μ_A , the probability that a toss with coin A results in H(eads)? And for μ_B ? Based on these maximum likelihood estimates, what is the probability that the next toss of coin A will result in H(eads)? And the next toss with coin B? Do these results make sense?

ANSWER: $\mu_{ML} = m/N$, so $\mu_{A,ML} = 2/7$ and $\mu_{B,ML} = 1/1$. This means that the maximum likelihood estimate would predict that the probability that the next toss of coin A will result in H is 2/7, and that with absolute certainty, the next toss of coin B will be H! Although the former seems to be more or less in agreement with common sense, the latter does not make sense at all; it is an example of severe overfitting of the ML solution.

3. Let us now take a Bayesian approach. Find an expression for $p(\mu|\mathcal{D})$ using Bayes' rule and show that a prior proportional to powers of μ and $(1-\mu)$ will lead to a posterior that is also proportional to powers of μ and $(1-\mu)$. Are you free to choose whatever prior you like?

ANSWER: From Bayes' rule

$$p(\mu|\mathcal{D}) = \frac{p(\mathcal{D}|\mu) \ p(\mu)}{p(\mathcal{D})} \propto p(\mathcal{D}|\mu) \ p(\mu)$$
(15)

As $p(\mathcal{D}|\mu)$ in (14) consist of a product of powers of μ and $(1-\mu)$, multiplying by something proportional to the same will result in an expression (the posterior) that remains proportional to powers of μ and $(1-\mu)$.

Note there is nothing priviliged about such a prior that would make it a 'better' choice than any other prior. A prior should, in principle, represent exactly what we know about μ before observing any data used to calculate the posterior. In many cases this makes it a pretty difficult problem: not only is it far from easy to convert all your prior knowledge into a correct probability distribution, but the subsequent computations can also become very hard (integrating over products of functions with complex structures). A reasonable alternative, albeit primarily a convenient one, is to choose a prior that captures important features of the 'true' prior quite well but has a functional form that makes it relatively easy to handle in combination with a certain likelihood: this is known as a conjugate prior.

Such a prior exists and is called the Beta distribution with hyperparameters a and b:

Beta
$$(\mu|a,b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} \mu^{a-1} (1-\mu)^{b-1} \qquad 0 \le \mu \le 1$$
 (16)

in which $\Gamma(x)$ is the gamma function with property $\Gamma(x+1) = x\Gamma(x)$.

4. Give combinations (a, b) for a prior that expresses: a) total ignorance, b) high confidence in a reasonably fair coin. For each prior and each coin, calculate the posterior probability density of μ given the observed coin tosses \mathcal{D} and plot the results (for example by using the betapdf command in MatLab). Do these results make more sense than the ML estimates?

ANSWER: We choose priors Beta(a, b) with, for example: a) (1, 1), b) (10, 10) (see also Bishop, Fig.2.2).

First of all, from Bayes' rule:

$$p(\mu|\mathcal{D}, a, b) \propto p(\mathcal{D}|\mu) p(\mu)$$

$$\propto \mu^{m} (1 - \mu)^{l} \mu^{a-1} (1 - \mu)^{b-1}$$

$$= \mu^{m+a-1} (1 - \mu)^{l+b-1}$$

$$\propto \text{Beta}(\mu|m + a, b + l)$$

The following MATLAB code will produce the requested plots:

Exercise 5

Consider a mixture of K Gaussian densities of the form

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (17)

Show that if the mixing coefficients satisfy

$$\pi_k \ge 0$$
 and $\sum_k \pi_k = 1$

then the mixture of Gaussians in (17) is positive and normalized. (You may assume that the components of the mixture are normalized)

ANSWER:

Positive: At least one of the π_k 's is positive (due to normalization). $\mathcal{N}(x|\mu_k, \Sigma_k)$ is positive everywhere. So the product of the positive π_k and the Gaussian is positive everywhere. Other terms can not make it less positive.

Normalization: Integrate (17) over \mathbf{x} . Interchange sum and integral and then do the integrals over \mathbf{x} , so the Gaussians disappear (since they are normalized). Then a sum of mixture term remains, which sum to one.

In formulas:

$$\int p(\mathbf{x})d\mathbf{x} = \int \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) d\mathbf{x}$$

$$= \sum_{k=1}^{K} \int \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) d\mathbf{x}$$

$$= \sum_{k=1}^{K} \pi_k \int \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) d\mathbf{x}$$

$$= \sum_{k=1}^{K} \pi_k \cdot 1 = 1$$

Conclusion: equation (17) does indeed represent a proper probability distribution.