Mestrado Integrado em Engenharia Informática 2017/2018

Tópicos de Matemática Discreta

______ 1.º teste — 3 de novembro de 2017 — _____ duração: 2 horas ______

- 1. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira.
 - (a) A palavra $((p_0 \to p_1) \lor (\neg(\bot \lor (\neg p_1))))$ sobre o alfabeto do Cálculo Proposicional é uma fórmula do Cálculo Proposicional.
 - (b) A fórmula proposicional $\psi: p_0 \leftrightarrow p_1$ tem valor lógico verdadeiro só se a fórmula $\varphi: \neg(p_0 \land (p_0 \to p_1))$ tem valor lógico falso.
 - (c) Se σ e θ são fórmulas do Cálculo Proposicional logicamente equivalentes, então a fórmula $(\sigma \lor \theta) \land \neg \theta$ é uma contradição.
- 2. Considerando que p representa a proposição $\forall_{x \in A} ((\exists_{y \in A} x = 5y) \to (y = 2 \lor y^2 = 9)),$
 - (a) Verifique se p é verdadeira para:
 - (i) $A = \{2, 3, 10, 15\};$
 - (ii) $A = \{3, 5, 15, 25\}.$
 - (b) Indique, sem recorrer ao conetivo negação, uma proposição equivalente a $\neg p$.
- 3. (a) Sejam p,q e r proposições. Diga, justificando, se a sequinte afirmação é ou não verdadeira: Para provar que $(p \lor q) \to r$ é verdadeira, basta provar que r é falsa quando p é falsa.
 - (b) Mostre que, para qualquer natural n, se $(n+1)^2$ não é divisível por 7, então $3n^2+6n-18$ não é divisível por 21.
- 4. Considere os conjuntos

$$A = \{-5, 5, \{4\}, 9\}, \quad B = \{x \in \mathbb{R} \mid x^2 \in A\}, \quad C = \{\emptyset, 4, \{5, 9\}\} \text{ e } D = \{1, 2\}.$$

- (a) Justificando, determine B.
- (b) Indique o número de elementos de $\mathcal{P}(C) \setminus A$. Justifique.
- (c) Justificando, determine $(C \times D) \cap \{\emptyset, (1, 4), \{4, 2\}, (\{5, 9\}, 1)\}.$
- 5. Diga, justificando, se cada uma das afirmações que se seguem é ou não verdadeira para quaisquer conjuntos A, B, C e D não vazios.
 - (a) Se $(A \cup B) \cap D = (A \cup C) \cap D$, então B = C.
 - (b) $(A \setminus B) \times (C \setminus D) = (A \times C) \setminus (B \times D)$.
 - (c) Se $\mathcal{P}(A) \subset \mathcal{P}(B)$, então $A \subseteq B$.
- 6. Sejam A, B e C conjuntos. Mostre que $(A \cup B) \setminus (B \cap C) = (A \setminus (B \cap C)) \cup (B \setminus C)$.

Cotações	1.	2.	3.	4.	5.	6
	1,5+1,5+1,5	1,75 + 1,5	1,25+1,75	1,25+1,25+1,25	1,25+1,25+1,25	1,75