Jiaxi Tang*, Francois Belletti*, Sagar Jain, Minmin Chen, Alex Beutel, Can Xu and Ed H. Chi

SFU

1. Abstract

- We empirically analyze the temporal dependencies in YouTube data, and find statistically significant Long Range Dependence (LRD).
- We propose a tailored solution to predict which item will be viewed that can model temporal dependencies with different ranges within the same neural model.
- Experiments on both public dataset (MovieLens 20M)
 and production dataset (YouTube) demonstrate the
 effectiveness of our proposed method.

2. Temporal Dependencies in YouTube

- LRD in sequential recommendations: users' history from long ago may still **influence** their current preference.
- What are statistical indications that sequences in our data are LRD?
- We examine the trace of the covariance matrix of embedding sequences as a measurement of dependency, i.e. the decay of item similarity with time.

$$Dep_L = tr (Cov (Q_{e_N}, Q_{e_{N-L}}))$$

• Results from *YouTube* dataset: dependencies decay slowly (power-law rate) in user behavior showing LRD.

3. Limitations of Previous works

- Limitations of some existing Sequential Models:
- 1. Temporal dependencies are limited to a short window (e.g., Caser, Fossil, *etc*).
- 2. RNNs tend to have difficulties leveraging the information contained far into the past due to gradient propagation issues (e.g., GRU4Rec)
- 3. Maintaining user latent factors for extended periods of time is challenging (privacy issues, storage issue, etc)
- Limitations of Single Monolithic Models
- 1. Temporal dependencies are noisier and sequential order matters less when looking further into the past.
- 2. Different scales of temporal dependencies co-exist, each of them best captured by a different architecture.

4. Multi-temporal-range Mixture Model (M3)

- In M3, we jointly employ three different sequence models (encoders). Each of them focus on different ranges of temporal dependencies in user sequences.
- We regard the three encoders as a Mixture-of-Experts (MOE) trained end-to-end as a single model. This structure allows the model adapt to different recommendation scenarios and provide insightful interpretability.

5. Temporal encoders and interpretability

 The Tiny-range encoder only focuses on the user's last event, ignoring all previous events. It learns the item-to-item direct co-occurrence pattern.

The Short-range encoder (a GRU, LSTM, Temporal Convolution Network) is highly sensitive to order and carries more information from recent interactions in the user sequence.

HomePage

- DetailPage

 0.8

 0.6

 0.4

 0.2

 0.0

 0.7
- The Long-range sequence encoder consists of an Attention Model which has a potentially unlimited temporal range, is robust to noise but is not sensitive to sequential ordering.
 - Monitoring the average activation of the gate enables some interpretability

7. Experimental Results

- o FMC: Factorizing model for the first-order Markov chain.
- o **DeepBow**: Deep Bag-of-word model representing user by averaging item embeddings from all past events and making predictions through a feed-forward layer.
- o GRU4Rec: Using a GRU-RNN over user sequences.
- o Caser: Applying horizontal and vertical convolutional filters over the embedding matrix.
- Context-FMC: contextual version of FMC.
- o DeepYouTube: concatenating: (1) item embedding from users' last event, (2) item embeddings averaged by all past events and (3) context features and makes predictions through a feed-forward layer.
- Context-GRU: contextual version of *GRU4Rec*.

Overall performance:

M3R and M3C provide *significant improvements* over the baselines on two standard datasets for recommendations.

Results on MovieLens 20M:

Only sequential information, no context feature.

mAP@5	mAP@10	mAP@20
0.0256	0.0291	0.0317
0.0065	0.0079	0.0093
0.0256	0.0304	0.0343
0.0225	0.0269	0.0304
0.0295	0.0342	0.0379
0.0315	0.0367	0.0421
+23.4%	+20.7%	+22.7%
	0.0256 0.0256 0.0225 0.0295 0.0315	0.0256 0.0291 0.0065 0.0079 0.0256 0.0304 0.0225 0.0269 0.0315 0.0367

Overall performance on YouTube:

Sequential information + context features

	mAP@5	mAP@10	mAP@20
Context-FMC	0.1103	0.119	0.1240
DeepYouTube	0.1295	0.1399	0.1455
Context-GRU	0.1319	0.1438	0.1503
МЗС	0.1469	0.1591	0.1654
M3R	0.1541	01670	0.1743
Improv.	+16.8%	+16.1%	+16.0%

Ablation study

Encoders can address each other's shortcomings. M3R-TSL performs best on both datasets.

	MovieLens 20M	YouTube Dataset
M3R-T	0.0269	0.1406
M3R-S	0.0363	0.1673
M3R-L	0.0266	0.1359
M3R-TS	0.0412	0.1700
M3R-TL	0.0293	0.1485
M3R-SL	0.0403	0.1702
M3R-TSL	0.0421	0.1743