Al Robotics KR Network Acceleration study #2

Neural Network Inference on Mobile SoCs

Siqi Wang, et al. Archive 2020

Presenter: Ji-ye Jeon (jyeah05@gmail.com) 2020-04-28

- Introduction
- Experimental Setup
- Experiments and Results
 - Comparing Each components of SoCs
 - Roofline Analysis
 - How to Improve?
- Conclusion and Insights
- Discussion

Introduction

- Heterogenous Multi-processor SoCs for ML inference
 - CPU cluster (ARM big.Little)
 - GPUs
 - NPUs
- However, "The majority of mobile inference run on CPUs[1]"
 - Programmability
 - Little performance gap between CPUs and GPUs

Introduction

- 1) Conducting quantitative experiments on each components of Mobile SoCs
 - Characterize inference capability of each components
- 2) Roofline Model Analysis
 - Find clues for improvements
 - Comparing effect of quantization etc...

[1] "Machine Learning at FaceBook: Understanding Inference at the Edge", FaceBook Inc, HPCA, 2019.

- Introduction
- Experimental Setup
- Experiments and Results
 - Comparing Each components of SoCs
 - Roofline Analysis
 - How to Improve?
- Conclusion and Insights
- Discussion

Background –ARM big.LITTLE Architecture

- Heterogeneous Architecture
 - big: High performance, High Power consumption
 - LITTLE: Low performance, Low Power consumption
 - DVFS (Dynamic Voltage and Frequency Switching)
 - CCI/GIC
 - GIC: Generic Interrupt Controller
 - CCI: Cache Coherence Interconnect

Experimental Setup – Exynos 5422 vs. Kirin 970

Mid-end and High-end AP

	Exynos 5422 Kirin 970		
Release date	2014	2017	
area	28nm	10nm	
CPU-big	Cortex-A15(In-order) 2GHz	Cortex-A73 (OoO) 2.36GHz	1.18x
CPU-LITTLE	Cortex-A7(In-order) 1.4GHz	Cortex-A53(In-order) 1.8GHz	1.29x
GPU	Mali T628 MP6 57.6GFLOPs	Mali G72 MP12 244.8GFLOPs	
NPU	X	Cambricon-1A	HiAi DDK API

- Introduction
- Experimental Setup
- Experiments and Results
 - Comparing Each components of SoCs
 - Roofline Analysis
 - How to Improve?
- Conclusion and Insights
- Discussion

- Throughput
 - ✓ Exynos vs. Kirin
 - Big (4.4x), LITTLE (2.6x), GPU (4.2x)
 - ✓ Big vs. LITTLE
 - $4x \sim 2.5x$
 - ✓ NPU vs. GPU
 - NPU is only 1.6x better than G72

TABLE I: Throughput of different networks on different mobile SoCs components running at their peak frequencies.

	Exynos 5422			Kirin 970				
Network	Throughput (Imgs/s)			Throughput (Imgs/s)				
	A7	A15	T628	A53	A73	<i>G72</i>	NPU	
AlexNet	1.1	3.1	7.8	2.2	7.6	32.5	32.5	
GoogLeNet	0.9	3.4	5.2	3.0	7.1	19.9	34.4	
MobileNet	1.5	5.7	8.5	6.5	17.7	29.1	Not Supported	
ResNet50	0.2	1.3	2.1	1.5	2.8	8.4	21.9	
SqueezeNet	1.5	5.0	8.0	6.8	15.7	43.0	49.3	

Energy efficiency

- ✓ Comparing each component
 - NPU > GPU > LITTLE > big
- ✓ Comparing each platform
 - Kirin > Exynos
 - Except LITTLE cluster
 - A53: larger TLB, complex branch prediction

Fig. 2: Energy efficiency of different components while running at their peak frequencies.

Technology scaling vs. Architectural Innovation?

	Exynos 5422 Kirin 970		
Release date	2014	2017	
area	28nm	10nm	
CPU-big	Cortex-A15(In-order) 2GHz	Cortex-A73 (OoO) 2.36GHz	1.18x
CPU-LITTLE	Cortex-A7(in-order) 1.4GHz	Cortex-A53(in-order) 1.8GHz	1.29x

- ✓ Impact of uArch Innovation!
 - $4.4x \sim 2.5x$ throughput improvements
 - · Larger cache, branch predictor, cache prefetecher etc..
- ✓ Meanwhile, power consumption increased in A53
 - A53 has 2x power consumption compared to A7
 - Increased area

- Insight
 - ✓ GPUs can be better option than NPUs
 - Generality, easy optimization
 - Has comparable performance(1.6x) and satisfactory Energy Efficiency
 - ✓ CPUs, are still critical for inferencing
 - Especially in Low-end mobile SoCs
 - ✓ Running individual component alone is not enough
 - Co-execution is needed

TABLE I: Throughput of different networks on different mobile SoCs components running at their peak frequencies.

	Exynos 5422			Kirin 970			
Network	Throughput (Imgs/s)			Throughput (Imgs/s)			
	A7	A15	T628	A53	A73	G72	NPU
AlexNet	1.1	3.1	7.8	2.2	7.6	32.5	32.5
GoogLeNet	0.9	3.4	5.2	3.0	7.1	19.9	34.4
MobileNet	1.5	5.7	8.5	6.5	17.7	29.1	Not Supported
ResNet50	0.2	1.3	2.1	1.5	2.8	8.4	21.9
SqueezeNet	1.5	5.0	8.0	6.8	15.7	43.0	49.3

Fig. 2: Energy efficiency of different components while running at their peak frequencies.

- Introduction
- Experimental Setup
- Experiments and Results
 - Comparing Each components of SoCs
 - Roofline Analysis
 - How to Improve?
- Conclusion and Insights
- Discussion

- Building Roofline Model for Exynos 5422
 - Exynos 5422 specifications
 - 3.44 GB/s (A15), 0.49 GB/s (A7), 6.15 GB/s (T628)
 - Theoretical $OI_t = GOPS/Mem_Access$
 - Calculated by analyzing the code
 - Empirical $OI_e = GOPS/DRAM_Access$
 - Aware of cache
 - Calculated by using actual DRAM access

- Across Different Component
 - ✓ A7 (LITTLE) and T628 (GPU)
 - Severe memory bottleneck
 - ✓ A15 (big)
 - Larger cache size (L2: 2MB)
 - Performance falls in both region
 - Compute-bound : ResNet50, GoogLeNet
 - ✓ Network Characteristics
 - AlexNet : huge parameter
 - Small filter size leads sub-optimal parallelization

Major layer analysis on A15 (big)

- ✓ AlexNet (◆)
 - Conv : compute-bound
 - FC: memory-bound
- ✓ Layer-level optimization could be key of improvement
 - Per-layer DVFS
 - Fine-grain layer level co-execution

- Introduction
- Experimental Setup
- Experiments and Results
 - Comparing Each components of SoCs
 - Roofline Analysis
 - How to Improve?
- Conclusion and Insights
- Discussion

Improving Performance

- ✓ Quantization was not enough
 - Quantized MobileNet in ARM-CL to 8bit-weight
 - Reduced memory access
 - De-quantization / re-quantization overhead
- ✓ NPU is memory-bound
- ✓ Co-execution with multiple components
 - 50% throughput improvement over GPU
 - Has better energy efficiency than big cluster

TABLE II: Throughput improvement on *Exynos 5422* and *Hikey 970* by co-execution over the best throughput with a single component (*T628* and *G72* GPU).

N . 1	TL	Exynos 5422		Kirin 970			
Network	Throughput (Imgs/s)			Throughput (Imgs/s)			
	T628	Co-	Gain G72		Co-	Gain	
	1020	execution	Gain	0/2	execution	Gain	
AlexNet	7.8	10.3	32.4%	32.5	33.4	2.8%	
GoogLeNet	5.2	8.7	66.3%	19.9	28.4	42.8%	
MobileNet	8.5	14.9	76.7%	29.1	51.5	77.1%	
ResNet50	2.1	2.9	38.6%	8.4	12.3	46.3%	
SqueezeNet	8.0	13.8	73.9%	43.0	54.5	26.7%	

Fig. 4: Energy efficiency of co-execution on *Exynos 5422* with all components, on *Kirin 970* with CPU and GPU (excluding NPU) and all components (including NPU).

- Introduction
- Experimental Setup
- Experiments and Results
 - Comparing Each components of SoCs
 - Roofline Analysis
 - How to Improve?
- Conclusion and Insights
- Discussion

Conclusion and Insights

- ✓ Anyway, CPU clusters will take major part in mobile inference
 - Optimization / Flexibility
 - Performance gap between CPUs and GPUs was "actually" under 3x
- ✓ Rooms for improvements
 - LITTLE CPU / GPU / NPU : memory bounded
 - big CPU: memoty bounded / computation bounded
 - Especially for Conv
- ✓ Throughput increase by 2x using co-execution

TABLE I: Throughput of different networks on different mobile SoCs components running at their peak frequencies.

	Exynos 5422 Throughput (Imgs/s)			Kirin 970				
Network				Throughput (Imgs/s)				
	A7	A15	T628	A53	A73	G72	NPU	
AlexNet	1.1	3.1	7.8	2.2	7.6	32.5	32.5	
GoogLeNet	0.9	3.4	5.2	3.0	7.1	19.9	34.4	
MobileNet	1.5	5.7	8.5	6.5	17.7	29.1	Not Supported	
ResNet50	0.2	1.3	2.1	1.5	2.8	8.4	21.9	
SqueezeNet	1.5	5.0	8.0	6.8	15.7	43.0	49.3	

Exynos: 4-core A15 Exynos: 6-core T628 Exirin: 4-core A53

Fig. 2: Energy efficiency of different components while running at their peak frequencies.

- Introduction
- Experimental Setup
 - Exynos & Kirin
- Experiments and Results
 - Comparing Each components of SoCs
 - Roofline Analysis
 - How to Improve?
- Conclusion and Insights
- Discussion

Question?