NIK Recurence

Jose Tamez

2023-05-18

U	ont	ents
L	NIK	and RRPlots
	1.1	The libraries
	1.2	Getting the clinical data
	1.3	ROC Plots
	1.4	RR Plot Signature correlation
	1.5	Node positive data
	1.6	RR Plot Signature correlation
	1.7	Node Negative data
	1.8	RR Plot Signature correlation
	1.9	RRPlot Cox Model
	1.10	Expected time to event
	1.11	RRPlot Cox Adjusted Model
	1.12	Expected time to event
	1.13	Calibrating the index
	1.14	Expected time to event
	1.15	Comparing Risks
	1.16	Compare the ROC AUC
1	N	IK and RRPlots
_	Τ.	
1.	1 Т	The libraries
	v	(survival)
	or ar y	(A EVENUEL OLD)

```
## Loading required package: Rcpp
## Loading required package: stringr
## Loading required package: miscTools
## Loading required package: Hmisc
##
## Attaching package: 'Hmisc'
## The following objects are masked from 'package:base':
##
       format.pval, units
##
## Loading required package: pROC
## Type 'citation("pROC")' for a citation.
```

```
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
       cov, smooth, var
library(Biobase)
## Loading required package: BiocGenerics
## Attaching package: 'BiocGenerics'
## The following object is masked from 'package:pROC':
##
##
       var
## The following objects are masked from 'package:stats':
##
##
       IQR, mad, sd, var, xtabs
## The following objects are masked from 'package:base':
##
       anyDuplicated, append, as.data.frame, basename, cbind, colnames,
##
##
       dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep,
##
       grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget,
       order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank,
##
##
       rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply,
##
       union, unique, unsplit, which.max, which.min
## Welcome to Bioconductor
##
##
       Vignettes contain introductory material; view with
##
       'browseVignettes()'. To cite Bioconductor, see
##
       'citation("Biobase")', and for packages 'citation("pkgname")'.
##
## Attaching package: 'Biobase'
## The following object is masked from 'package:Hmisc':
##
##
       contents
## The following object is masked from 'package:miscTools':
##
##
       rowMedians
op <- par(no.readonly = TRUE)
pander::panderOptions('digits', 3)
pander::panderOptions('table.split.table', 400)
pander::panderOptions('keep.trailing.zeros',TRUE)
if (!require("BiocManager", quietly = TRUE))
{
    install.packages("BiocManager")
    BiocManager::install("seventyGeneData")
}
```

Bioconductor version '3.15' is out-of-date; the current release version '3.17'

```
## is available with R version '4.3'; see https://bioconductor.org/install
library(seventyGeneData)
data(vanDeVijver)
class(vanDeVijver)

## [1] "ExpressionSet"
## attr(,"package")
## [1] "Biobase"
```

1.2 Getting the clinical data

```
pdata <- pData(vanDeVijver)</pre>
```

1.3 ROC Plots

table(pdata\$Posnodes)

n y 151 144

pander::pander(table(pdata\$TTMevent))

0	1
194	101

pmroc <- plotModels.ROC(cbind(pdata\$TTMevent,-pdata\$C1used),name="NIK",thr= -0.4) ## Using paper thresh</pre>

par(op)

1.4 RR Plot Signature correlation

Relative Risk: Signature: Breast Cancer

ROC: Signature: Breast Cancer

Kaplan-Meier: Signature: Breast Cancer

par(op)

1.4.1 CI Performance all data

pander::pander(t(RRAnalysisCI\$keyPoints),caption="Threshold values")

Table 2: Threshold values

	@:0.1	@:0.05	@MAX_BACC	$@MAX_RR$	@SPE100
Thr	0.519	0.619	0.465	0.623	7.56e-01
$\mathbf{R}\mathbf{R}$	3.806	3.548	4.160	5.069	3.91e + 01
RR_LCI	2.082	1.642	2.391	1.954	8.17e-02
RR_UCI	6.957	7.666	7.237	13.150	1.87e + 04
\mathbf{SEN}	0.901	0.941	0.881	0.960	1.00e+00
\mathbf{SPE}	0.397	0.247	0.485	0.242	5.67e-02
BACC	0.649	0.594	0.683	0.601	5.28e-01

pander::pander(RRAnalysisCI\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.698	0.698	0.649	0.747

pander::pander(t(RRAnalysisCI\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 4: ROC AUC

est	lower	upper
0.692	0.631	0.752

pander::pander((RRAnalysisCI\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 5: Sensitivity

est	lower	upper
0.891	0.813	0.944

pander::pander((RRAnalysisCI\$ROCAnalysis\$specificity),caption="Specificity")

Table 6: Specificity

est	lower	upper
0.397	0.328	0.469

pander::pander(t(RRAnalysisCI\$thr_atP),caption="Probability Thresholds")

Table 7: Probability Thresholds

10%	5%
0.517	0.618

pander::pander(RRAnalysisCI\$surdif,caption="Logrank test")

Table 8: Logrank test Chisq = 28.085735 on 2 degrees of freedom, p = 0.000001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	55	6	23.5	13.01	17.1
class=1	33	5	12.9	4.87	5.6
class=2	207	90	64.6	10.00	27.9

1.5 Node positive data

1.6 RR Plot Signature correlation

NodePdata <- subset(pdata,Posnodes=="y")</pre>

rdata <- cbind(NodePdata\$TTMevent,NodePdata\$C1used)</pre>

Relative Risk: Signature: Breast Cancer

Kaplan-Meier: Signature: Breast Cancer

par(op)

1.6.1 CI Performance positive data

pander::pander(t(RRAnalysisPos\$keyPoints),caption="Threshold values")

Table 9: Threshold values

	@:0.9	@:0.95	@MAX_BACC	@MAX_RR	@SPE100
Thr	0.486	0.655	0.267	0.486	7.17e-01
$\mathbf{R}\mathbf{R}$	3.231	1.579	3.083	3.231	1.34e + 01
RR_LCI	1.377	0.563	1.746	1.377	2.94e-02
RR_UCI	7.578	4.431	5.444	7.578	6.14e + 03
\mathbf{SEN}	0.894	0.936	0.745	0.894	1.00e+00
\mathbf{SPE}	0.361	0.113	0.639	0.361	4.12e-02
BACC	0.627	0.525	0.692	0.627	5.21 e-01

pander::pander(RRAnalysisPos\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.7	0.7	0.629	0.768

pander::pander(t(RRAnalysisPos\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 11: ROC AUC

est	lower	upper
0.669	0.576	0.761

pander::pander((RRAnalysisPos\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 12: Sensitivity

est	lower	upper
0.894	0.769	0.965

pander::pander((RRAnalysisPos\$ROCAnalysis\$specificity),caption="Specificity")

Table 13: Specificity

est	lower	upper
0.371	0.275	0.475

pander::pander(t(RRAnalysisPos\$thr_atP),caption="Probability Thresholds")

Table 14: Probability Thresholds

10%	5%
0.484	0.651

pander::pander(RRAnalysisPos\$surdif,caption="Logrank test")

Table 15: Logrank test Chisq = 11.060876 on 2 degrees of freedom, p = 0.003964

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	15	3	5.80	1.35	1.55
class=1	26	2	9.73	6.14	7.77
class=2	103	42	31.47	3.52	10.71

1.7 Node Negative data

1.8 RR Plot Signature correlation

NodeNdata <- subset(pdata,Posnodes=="n")</pre>

rdata <- cbind(NodeNdata\$TTMevent,NodeNdata\$C1used)</pre>

Relative Risk: Signature: Breast Cancer

ROC: Signature: Breast Cancer

Kaplan-Meier: Signature: Breast Cancer

par(op)

1.8.1 CI Performance negative data

pander::pander(t(RRAnalysisNeg\$keyPoints),caption="Threshold values")

Table 16: Threshold values

	@:0.9	@:0.95	@MAX_BACC	@MAX_RR	@SPE100
Thr	0.507	0.585	0.465	0.623	7.56e-01
$\mathbf{R}\mathbf{R}$	4.454	5.920	5.130	15.402	3.42e + 01
RR_LCI	2.040	1.959	2.344	2.211	7.18e-02
RR_UCI	9.723	17.889	11.228	107.305	1.63e + 04
\mathbf{SEN}	0.889	0.944	0.889	0.981	1.00e+00
\mathbf{SPE}	0.495	0.371	0.546	0.340	9.28e-02
BACC	0.692	0.658	0.718	0.661	5.46e-01

pander::pander(RRAnalysisNeg\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.695	0.695	0.629	0.76

pander::pander(t(RRAnalysisNeg\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 18: ROC AUC

est	lower	upper
0.708	0.626	0.79

pander::pander((RRAnalysisNeg\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 19: Sensitivity

est	lower	upper
0.889	0.774	0.958

pander::pander((RRAnalysisNeg\$ROCAnalysis\$specificity), caption="Specificity")

Table 20: Specificity

est	lower	upper
0.495	0.392	0.598

pander::pander(t(RRAnalysisNeg\$thr_atP),caption="Probability Thresholds")

Table 21: Probability Thresholds

10%	5%
0.513	0.583

pander::pander(RRAnalysisNeg\$surdif,caption="Logrank test")

Table 22: Logrank test Chisq = 24.223875 on 2 degrees of freedom, p = 0.000005

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	40	3	18.18	12.67	19.29
class=1	14	3	5.43	1.09	1.21
class=2	97	48	30.39	10.21	23.58

1.9 RRPlot Cox Model

timeinterval <- 5 # Five years

h0 <- sum(pdata\$TTMevent & pdata\$RFS <= timeinterval)
h0 <- h0/sum((pdata\$RFS > timeinterval) | (pdata\$TTMevent==1))

mcox <- coxph(Surv(RFS,TTMevent)~Clused,pdata)
pander::pander(summary(mcox)\$coefficients)</pre>

	coef	$\exp(\mathrm{coef})$	se(coef)	${f z}$	$\Pr(> z)$
C1used	-1.5	0.224	0.263	-5.69	1.3e-08

Cumulative vs. Observed: NIK: Breast Cancer

Decision Curve Analysis: NIK: Breast Cancer

Relative Risk: NIK: Breast Cancer

ROC: NIK: Breast Cancer

Time vs. Events: NIK: Breast Cancer

Kaplan-Meier: NIK: Breast Cancer

par(op)

1.10 Expected time to event

```
toinclude <- rdata[,1]==1
obstiemToEvent <- pdata[,"RFS"]
tmin<-min(obstiemToEvent)
sum(toinclude)</pre>
```

[1] 101

```
timetoEvent <- meanTimeToEvent(rdata[,2],timeinterval)
tmax<-max(c(obstiemToEvent,timetoEvent))
lmfit <- lm(obstiemToEvent[toinclude]~0+timetoEvent[toinclude])
sm <- summary(lmfit)
pander::pander(sm)</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
${\bf time to Event [to include]}$	0.432	0.0308	14	2.1e-25

Table 25: Fitting linear model: obstiem ToEvent[toinclude] $\sim 0 + timetoEvent[toinclude]$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
101	2.67	0.664	0.66

```
plot(timetoEvent,obstiemToEvent,
     col=1+rdata[,1],
     xlab="Expected time",
     ylab="Observed time",
     main="Expected vs. Observed",
     xlim=c(tmin,tmax),
     ylim=c(tmin,tmax),
     log="xy")
lines(x=c(tmin,tmax),y=lmfit$coefficients*c(tmin,tmax),lty=1,col="blue")
txt <- bquote(paste(R^2 == .(round(sm$r.squared,3))))</pre>
text(tmin+0.005*(tmax-tmin),tmax,txt,cex=0.7)
text(tmin+0.015*(tmax-tmin),tmax,sprintf("Slope=%4.3f",sm$coefficients[1]),cex=0.7)
legend("bottomright",legend=c("No Event","Event","Linear fit"),
             pch=c(1,1,-1),
             col=c(1,2,"blue"),
             lty=c(-1,-1,1)
```

Expected vs. Observed

MADerror2 <- mean(abs(timetoEvent[toinclude]-obstiemToEvent[toinclude]))
pander::pander(MADerror2)</pre>

4.75

1.10.1 Unadjusted Cox Performance

pander::pander(t(RRAnalysisCox\$keyPoints),caption="Threshold values")

Table 26: Threshold values

	@:0.9	@:0.95	@MAX_BACC	C @MAX_RR	@SPE100	p(0.5)
Thr	0.176	0.154	0.190	0.153	1.27e-01	0.5041
$\mathbf{R}\mathbf{R}$	3.806	3.548	4.160	5.069	3.91e + 01	0.9241
RR_LCI	2.082	1.642	2.391	1.954	8.17e-02	0.4906
RR_UCI	6.957	7.666	7.237	13.150	1.87e + 04	1.7407
\mathbf{SEN}	0.901	0.941	0.881	0.960	1.00e+00	0.0693
\mathbf{SPE}	0.397	0.247	0.485	0.242	5.67e-02	0.9227
BACC	0.649	0.594	0.683	0.601	5.28e-01	0.4960
${f NetBenefit}$	0.223	0.232	0.222	0.239	2.52 e-01	-0.0279

pander::pander(t(RRAnalysisCox\$0ERatio\$estimate),caption="0/E Ratio")

Table 27: O/E Ratio

O/E	Low	Upper	p.value
0.806	0.656	0.979	0.0285

pander::pander(t(RRAnalysisCox\$0E95ci),caption="0/E Mean")

Table 28: O/E Mean

mean	50%	2.5%	97.5%
0.952	0.952	0.926	0.977

pander::pander(t(RRAnalysisCox\$OAcum95ci),caption="0/Acum Mean")

Table 29: O/Acum Mean

mean	50%	2.5%	97.5%
1.15	1.15	1.14	1.17

pander::pander(RRAnalysisCox\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.698	0.7	0.65	0.746

pander::pander(t(RRAnalysisCox\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 31: ROC AUC

est	lower	upper
0.692	0.631	0.752

pander::pander((RRAnalysisCox\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 32: Sensitivity

est	lower	upper
0.891	0.813	0.944

pander::pander((RRAnalysisCox\$ROCAnalysis\$specificity), caption="Specificity")

Table 33: Specificity

est	lower	upper
0.397	0.328	0.469

pander::pander(t(RRAnalysisCox\$thr_atP),caption="Probability Thresholds")

Table 34: Probability Thresholds

10%	5%
0.177	0.154

pander::pander(RRAnalysisCox\$surdif,caption="Logrank test")

Table 35: Logrank test Chisq = 28.085735 on 2 degrees of freedom, p = 0.000001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	55	6	23.5	13.01	17.1
class=1	33	5	12.9	4.87	5.6
class=2	207	90	64.6	10.00	27.9

1.11 RRPlot Cox Adjusted Model

This time we will include Lymph node status from pathology report and Estrogen receptor alpha expression measurement from microarray

mcox <- coxph(Surv(RFS,TTMevent)~Clused*(ESR1 + Posnodes),pdata)
pander::pander(summary(mcox)\$coefficients)</pre>

	coef	$\exp(\operatorname{coef})$	se(coef)	Z	$\Pr(> z)$
C1used	-0.403	0.668	0.629	-0.640	0.52186
$\mathbf{ESR1}$	0.123	1.131	0.255	0.481	0.63079
Posnodesy	-0.305	0.737	0.217	-1.401	0.16112
C1used:ESR1	-1.913	0.148	0.739	-2.588	0.00966
C1used:Posnodesy	0.378	1.460	0.583	0.649	0.51661

Cumulative vs. Observed: Adjusted: Breast Cancer

Decision Curve Analysis: Adjusted: Breast Cancer

Relative Risk: Adjusted: Breast Cancer

Time vs. Events: Adjusted: Breast Cancer

Kaplan-Meier: Adjusted: Breast Cancer

par(op)

1.12 Expected time to event

timetoEvent <- meanTimeToEvent(rdata[,2],timeinterval)
tmax<-max(c(obstiemToEvent,timetoEvent))
lmfit <- lm(obstiemToEvent[toinclude]~0+timetoEvent[toinclude])
sm <- summary(lmfit)
pander::pander(sm)</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
${\bf time to Event [to include]}$	0.402	0.0289	13.9	4.17e-25

Table 38: Fitting linear model: obstiem ToEvent[toinclude] $\sim 0 + timetoEvent[toinclude]$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
101	2.69	0.659	0.656

Expected vs. Observed


```
MADerror2 <-c(MADerror2,mean(abs(timetoEvent-obstiemToEvent)))
pander::pander(MADerror2)</pre>
```

4.75 and 6.09

1.12.1 Adjusted Cox Performance

```
pander::pander(t(RRAnalysisAdCox$keyPoints), caption="Threshold values")
```

Table 39: Threshold values

	@:0.9	@:0.95	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.159	0.133	0.205	0.133	9.92 e-02	0.50740
RR	3.422	4.043	3.235	4.699	3.54e + 01	1.72657
RR_LCI	1.928	1.863	2.100	2.004	7.42e-02	1.06501
RR_UCI	6.075	8.773	4.984	11.015	1.69e + 04	2.79908
\mathbf{SEN}	0.891	0.941	0.802	0.950	1.00e+00	0.07921
\mathbf{SPE}	0.392	0.278	0.572	0.273	5.15 e-02	0.96907
\mathbf{BACC}	0.641	0.609	0.687	0.612	5.26 e-01	0.52414
${f NetBenefit}$	0.230	0.249	0.202	0.252	2.74e-01	0.00617

pander::pander(t(RRAnalysisAdCox\$0ERatio\$estimate),caption="0/E Ratio")

Table 40: O/E Ratio

O/E	Low	Upper	p.value
0.825	0.672	1	0.0519

pander::pander(t(RRAnalysisAdCox\$0E95ci),caption="0/E Mean")

Table 41: O/E Mean

mean	50%	2.5%	97.5%
0.973	0.974	0.945	0.999

pander::pander(t(RRAnalysisAdCox\$OAcum95ci),caption="0/Acum Mean")

Table 42: O/Acum Mean

mean	50%	2.5%	97.5%
1.18	1.18	1.17	1.19

pander::pander(RRAnalysisAdCox\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.707	0.706	0.661	0.751

pander::pander(t(RRAnalysisAdCox\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 44: ROC AUC

est	lower	upper
0.702	0.642	0.763

pander::pander((RRAnalysisAdCox\$ROCAnalysis\$sensitivity),caption="Sensitivity")

Table 45: Sensitivity

est	lower	upper
0.891	0.813	0.944

pander::pander((RRAnalysisAdCox\$ROCAnalysis\$specificity), caption="Specificity")

Table 46: Specificity

est	lower	upper
0.397	0.328	0.469

pander::pander(t(RRAnalysisAdCox\$thr_atP),caption="Probability Thresholds")

Table 47: Probability Thresholds

10%	5%
0.159	0.133

pander::pander(RRAnalysisAdCox\$surdif,caption="Logrank test")

Table 48: Logrank test Chisq = 28.504862 on 2 degrees of freedom, p = 0.000001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	60	6	25.3	14.73	19.76
class=1	28	5	11.2	3.45	3.89
class=2	207	90	64.5	10.11	28.16

1.13 Calibrating the index

h0	Gain	DeltaTime
0.421	1.04	7.45

```
h0 <- calprob$h0
timeinterval <- calprob$timeInterval;
rdata <- cbind(pdata$TTMevent,calprob$prob)</pre>
```

Cumulative vs. Observed: Cal. NIK: Breast Cancer

Decision Curve Analysis: Cal. NIK: Breast Cancer

Relative Risk: Cal. NIK: Breast Cancer

ROC: Cal. NIK: Breast Cancer

Time vs. Events: Cal. NIK: Breast Cancer

Kaplan-Meier: Cal. NIK: Breast Cancer

par(op)

1.14 Expected time to event

timetoEvent <- meanTimeToEvent(rdata[,2],timeinterval)
tmax<-max(c(obstiemToEvent,timetoEvent))
lmfit <- lm(obstiemToEvent[toinclude]~0+timetoEvent[toinclude])
sm <- summary(lmfit)
pander::pander(sm)</pre>

	Estimate	Std. Error	t value	$\Pr(> t)$
${\bf time to Event [to include]}$	0.395	0.0284	13.9	4.17e-25

Table 51: Fitting linear model: obstiem ToEvent[toinclude] $\sim 0 + timetoEvent[toinclude]$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
101	2.69	0.659	0.656

Expected vs. Observed


```
MADerror2 <-c(MADerror2,mean(abs(timetoEvent-obstiemToEvent)))
pander::pander(MADerror2)</pre>
```

4.75, 6.09 and 6.23

1.14.1 Calibrated and Adjusted Cox Performance

```
pander::pander(t(RRAnalysisCalAdCox$keyPoints),caption="Threshold values")
```

Table 52: Threshold values

	@:0.9	@:0.95	@MAX_BACC	@MAX_RR	@SPE100	p(0.5)
Thr	0.224	0.189	0.285	0.188	1.42e-01	0.4924
$\mathbf{R}\mathbf{R}$	3.422	4.043	3.235	4.699	3.54e + 01	1.8140
RR_LCI	1.928	1.863	2.100	2.004	7.42e-02	1.3369
RR_UCI	6.075	8.773	4.984	11.015	1.69e + 04	2.4614
\mathbf{SEN}	0.891	0.941	0.802	0.950	1.00e+00	0.3564
\mathbf{SPE}	0.392	0.278	0.572	0.273	5.15e-02	0.8299
\mathbf{BACC}	0.641	0.609	0.687	0.612	5.26e-01	0.5932
${\bf Net Benefit}$	0.190	0.211	0.162	0.215	2.39e-01	0.0135

pander::pander(t(RRAnalysisCalAdCox\$0ERatio\$estimate),caption="0/E Ratio")

Table 53: O/E Ratio

O/E	Low	Upper	p.value
0.839	0.683	1.02	0.0831

pander::pander(t(RRAnalysisCalAdCox\$0E95ci),caption="0/E Mean")

Table 54: O/E Mean

mean	50%	2.5%	97.5%
0.99	0.99	0.963	1.02

pander::pander(t(RRAnalysisCalAdCox\$OAcum95ci),caption="0/Acum Mean")

Table 55: O/Acum Mean

mean	50%	2.5%	97.5%
1	1	0.994	1.01

pander::pander(RRAnalysisCalAdCox\$c.index\$cstatCI,caption="C. Index")

mean.C Index	median	lower	upper
0.707	0.708	0.661	0.75

pander::pander(t(RRAnalysisCalAdCox\$ROCAnalysis\$aucs),caption="ROC AUC")

Table 57: ROC AUC

est	lower	upper
0.702	0.642	0.763

pander::pander((RRAnalysisCalAdCox\$ROCAnalysis\$sensitivity), caption="Sensitivity")

Table 58: Sensitivity

est	lower	upper
0.891	0.813	0.944

pander::pander((RRAnalysisCalAdCox\$ROCAnalysis\$specificity), caption="Specificity")

Table 59: Specificity

est	lower	upper
0.397	0.328	0.469

pander::pander(t(RRAnalysisCalAdCox\$thr_atP),caption="Probability Thresholds")

Table 60: Probability Thresholds

10%	5%
0.224	0.189

pander::pander(RRAnalysisCalAdCox\$surdif,caption="Logrank test")

Table 61: Logrank test Chisq = 28.504862 on 2 degrees of freedom, p = 0.000001

	N	Observed	Expected	(O-E)^2/E	(O-E)^2/V
class=0	60	6	25.3	14.73	19.76
class=1	28	5	11.2	3.45	3.89
class=2	207	90	64.5	10.11	28.16

1.15 Comparing Risks

1.15.1 Comparing concordance Index

```
## Correlation Index
cindex <- RRAnalysisCI$c.index$cstatCI
## Cox Index
cindex <- rbind(cindex,RRAnalysisCox$c.index$cstatCI)
## Adjusted Cox Index
cindex <- rbind(cindex,RRAnalysisAdCox$c.index$cstatCI)
## Adjusted and Calibrated Cox Index
cindex <- rbind(cindex,RRAnalysisCalAdCox$c.index$cstatCI)
rownames(cindex) <- c("CI", "Cox", "Adj. Cox", "Cal. Adj. Cox")
pander::pander(cindex)</pre>
```

	mean.C Index	median	lower	upper
CI	0.698	0.698	0.649	0.747
\mathbf{Cox}	0.698	0.700	0.650	0.746
Adj. Cox	0.707	0.706	0.661	0.751
Cal. Adj. Cox	0.707	0.708	0.661	0.750

1.15.2 Comparing Risk Ratios Index

```
## Correlation Index
RRratio <- c(RR=RRAnalysisCI$keyPoints$RR[1],
             LCI=RRAnalysisCI$keyPoints$RR_LCI[1],
             UCI=RRAnalysisCI$keyPoints$RR_UCI[1])
## Cox Index
RRratio <- rbind(RRratio,c(RR=RRAnalysisCox$keyPoints$RR[1],
                           LCI=RRAnalysisCox$keyPoints$RR_LCI[1],
                           UCI=RRAnalysisCox$keyPoints$RR_UCI[1]))
## Adjusted Cox Index
RRratio <- rbind(RRratio,c(RR=RRAnalysisAdCox$keyPoints$RR[1],
                           LCI=RRAnalysisAdCox$keyPoints$RR_LCI[1],
                           UCI=RRAnalysisAdCox$keyPoints$RR_UCI[1]))
## Adjusted and Calibrated Cox Index
RRratio <- rbind(RRratio,c(RR=RRAnalysisCalAdCox$keyPoints$RR[1],
                           LCI=RRAnalysisCalAdCox$keyPoints$RR_LCI[1],
                           UCI=RRAnalysisCalAdCox$keyPoints$RR_UCI[1]))
rownames(RRratio) <- c("CI","Cox","Adj. Cox","Cal. Adj. Cox")</pre>
pander::pander(RRratio)
```

	RR	LCI	UCI
CI	3.81	2.08	6.96
\mathbf{Cox}	3.81	2.08	6.96
Adj. Cox	3.42	1.93	6.07
Cal. Adj. Cox	3.42	1.93	6.07

1.15.3 Comparing logRank values

```
## Correlation Index
SurvDif <- c(chisq=RRAnalysisCI$surdif$chisq,pvalue=RRAnalysisCI$surdif$pvalue)
## Cox Index
SurvDif <- rbind(SurvDif,c(chisq=RRAnalysisCox$surdif$chisq,pvalue=RRAnalysisCox$surdif$pvalue))
## Adjusted Cox Index
SurvDif <- rbind(SurvDif,c(chisq=RRAnalysisAdCox$surdif$chisq,pvalue=RRAnalysisAdCox$surdif$pvalue))
## Adjusted and Calibrated Cox Index
SurvDif <- rbind(SurvDif,c(chisq=RRAnalysisCalAdCox$surdif$chisq,pvalue=RRAnalysisCalAdCox$surdif$pvalue
rownames(SurvDif) <- c("CI","Cox","Adj. Cox","Cal. Adj. Cox")

pander::pander(SurvDif)</pre>
```

	chisq	pvalue
CI	28.1	7.97e-07
\mathbf{Cox}	28.1	7.97e-07

	chisq	pvalue
Adj. Cox	28.5	6.46 e - 07
Cal. Adj. Cox	28.5	6.46 e - 07

1.15.4 Comparing Sensitivity

```
## Correlation Index
sensi <- RRAnalysisCI$ROCAnalysis$sensitivity
## Cox Index
sensi <- rbind(sensi,RRAnalysisCox$ROCAnalysis$sensitivity)
## Adjusted Cox Index
sensi <- rbind(sensi,RRAnalysisAdCox$ROCAnalysis$sensitivity)
## Adjusted and Calibrated Cox Index
sensi <- rbind(sensi,RRAnalysisCalAdCox$ROCAnalysis$sensitivity)
rownames(sensi) <- c("CI","Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(sensi)</pre>
```

	est	lower	upper
CI	0.891	0.813	0.944
\mathbf{Cox}	0.891	0.813	0.944
Adj. Cox	0.891	0.813	0.944
Cal. Adj. Cox	0.891	0.813	0.944

1.15.5 Comparing Specificity

```
## Correlation Index
speci <- RRAnalysisCI$ROCAnalysis$specificity
## Cox Index
speci <- rbind(speci,RRAnalysisCox$ROCAnalysis$specificity)
## Adjusted Cox Index
speci <- rbind(speci,RRAnalysisAdCox$ROCAnalysis$specificity)
## Adjusted and Calibrated Cox Index
speci <- rbind(speci,RRAnalysisCalAdCox$ROCAnalysis$specificity)
rownames(speci) <- c("CI","Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(speci)</pre>
```

	est	lower	upper
\mathbf{CI}	0.397	0.328	0.469
\mathbf{Cox}	0.397	0.328	0.469
Adj. Cox	0.397	0.328	0.469
Cal. Adj. Cox	0.397	0.328	0.469

1.15.6 Comparing O/E

```
OERatio <- NULL
## Cox Index
OERatio <- rbind(OERatio,RRAnalysisCox$OERatio$estimate)
## Adjusted Cox Index</pre>
```

```
DERatio <- rbind(OERatio,RRAnalysisAdCox$OERatio$estimate)
## Adjusted and Calibrated Cox Index
OERatio <- rbind(OERatio,RRAnalysisCalAdCox$OERatio$estimate)
rownames(OERatio) <- c("Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(OERatio)</pre>
```

	O/E	Low	Upper	p.value
\mathbf{Cox}	0.806	0.656	0.979	0.0285
Adj. Cox	0.825	0.672	1.002	0.0519
Cal. Adj. Cox	0.839	0.683	1.019	0.0831

1.15.7 Comparing O/Acum

```
OARatio <- NULL
## Cox Index
OARatio <- rbind(OARatio,RRAnalysisCox$OARatio$estimate)
## Adjusted Cox Index
OARatio <- rbind(OARatio,RRAnalysisAdCox$OARatio$estimate)
## Adjusted and Calibrated Cox Index
OARatio <- rbind(OARatio,RRAnalysisCalAdCox$OARatio$estimate)
rownames(OARatio) <- c("Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(OARatio)</pre>
```

	O/A	Low	Upper	p.value
Cox	1.15	0.936	1.40	0.165
Adj. Cox	1.18	0.961	1.43	0.104
Cal. Adj. Cox	1.01	0.823	1.23	0.920

1.15.8 Comparing NetBenefit

```
NetBen <- NULL
## Cox Index
NetBen <- rbind(NetBen,RRAnalysisCox$keyPoints$NetBenefit)
## Adjusted Cox Index
NetBen <- rbind(NetBen,RRAnalysisAdCox$keyPoints$NetBenefit)
## Adjusted and Calibrated Cox Index
NetBen <- rbind(NetBen,RRAnalysisCalAdCox$keyPoints$NetBenefit)
colnames(NetBen) <- rownames(RRAnalysisCox$keyPoints)
rownames(NetBen) <- c("Cox","Adj. Cox","Cal. Adj. Cox")
pander::pander(NetBen)</pre>
```

	@:0.9	@:0.95	@MAX_BACC	C @MAX_RR	@SPE100	p(0.5)
Cox	0.223	0.232	0.222	0.239	0.252	-0.02795
Adj. Cox	0.230	0.249	0.202	0.252	0.274	0.00617
Cal. Adj. Cox	0.190	0.211	0.162	0.215	0.239	0.01354

1.16 Compare the ROC AUC

 $\label{lem:pander:pan$

Table 70: DeLong's test for two correlated ROC curves: RRAnalysisCI\$ROCAnalysis\$ROC.analysis\$roc.predictor and RRAnalysisAdCox\$ROCAnalysis\$ROC.analysis\$roc.predictor

Test statistic	P value	Alternative hypothesis	AUC of roc1	AUC of roc2
-0.988	0.323	two.sided	0.692	0.702