CHEM 223 (2024) SI Session #21

Learning Objectives: By the end of this session, students should be able to:

- Synthesize alcohol products
- Synthesize alcohol derivatives

Section 1: ALL Alcohol Oxidation Reactions

1. Fill out the following table of oxidation reactions

Reaction Name	Reaction Reagents	Reaction Description
Chromic Acid	Noz C207 + Hz509 OR H2 GO4 Same thing	Uses a heavy metal to oxidize alcohols. Uncontrollable.
PCC	CICrO3 Protision Chloro - Chromote	Oxidizes alcoholy to Contanyls. Oxidizes 1° alcoholy to aldehyde
Blench (+ TEMPO)	NaOCl, water OR TEMPO	Oxidizes alcohols to Corrhayls. Oxidizes 1° alcohols to aldehyde
Sum oxidation	DMSO, ((OCI)2 EtaN:, CH2Cl2	Uses an aprotic solvent as a main reagent
Dess-Martin Perivolane (DMP)	ALO I OAC	Takes place under mild conditions

Section 2: Displacing alcohols

2. Draw TsCl, and draw its reaction with cyclohexanol (NO MECHANISM)

3. Provide the best reagent for replacing OH with Br

5. Provide syntheses for the following compounds

Section 3: Misc reactions that might matter

6. Provide a mechanism for the following reaction.

7. Provide 2 different methods to synthesize the following compound, starting with the given reagents

Section 4: Practice Problems (from 2022 & 2023)

8. Synthesis practice: synthesize the following compounds, using any valid starting reagents.

9. Using the given reactants and reagent paths, provide structures for A-E.

10. Mechanism practice: Provide a mechanism for the following reaction

