

IEEE AEROSPACE CONFERENCE 2023

MARCH 5-12, 2023 AT THE YELLOWSTONE CONFERENCE CENTER IN BIG SKY, MONTANA

THE EFFECTS OF SPACE FLIGHT AND MICROGRAVITY EXPOSURE ON FEMALE ASTRONAUT HEALTH AND PERFORMANCE

Nicole Strock, Ph.D., KBR, Houston, TX
Eric Rivas, Ph.D., KBR, Houston, TX
Karina Marshall-Goebel, Ph.D., NASA Johnson Space Center, Houston, TX

Space Flight as a Multifactorial Physiological Stressor

- Current understanding of space flightinduced impacts to physiology & performance
 - Based on research in predominantly MALE populations
- Hormonal influence on numerous body systems can lead to sex-specific differences
 - Cardiovascular Function
 - Bone Health
 - Energy Balance & Adiposity
 - Muscle Mass & Strength
 - Response to Physiological Stress & Energetic Status

Delayed Inclusion of Females to NASA Astronaut Corps

- "Mercury 13"
 - Trained to be part America's first human spaceflight program in the early 1960s
 - Completed same intensive test battery used for male astronauts in the Mercury Program
 - Funding limitations, concerns for safety
- 1963: First female in Space
 - Valentina Tereshkova (Cosmonaut)
- 1977: First NASA astronaut class to include females
- 1983: First U.S. female in space
 - Dr. Sally Ride, Challenger STS-7

Sex differences in space flight-related research requires more research

- Sex differences exist in numerous physiological systems
 - Ignored/ understudied for decades
 - Males considered appropriate proxy for all humans
- NASA has sponsored workshops to address sex differences in space flight
 - Sex, Space and Environmental Adaptation: University of Missouri, 2002
 - NASA & NSBRI Virtual Workshop: The Impact of Sex & Gender on Adaptation to Space- 2013
 - 2014 J Women Health Vol 23 (11): The Impact of Sex and Gender on Adaptation to Space: A NASA Decadal Review
- Artemis Lunar Exploration program increases diversity
 - First female astronaut to Lunar surface by 2030
 - 50% female astronauts in Artemis-specific astronaut corps

➤ Greater understanding of sex differences in space flight adaptations is critical to develop/improve countermeasures to minimize risk and maintain health in **ALL** astronauts

Primary Objectives

- Review of literature from space flight and bed rest to address gaps related to female astronaut health
 - Hormones & menstrual characteristics
 - Bone health
 - Tendon & ligament health
 - Body mass & Energy Requirements
 - Menstrual Cycle Impacts on Performance
 - Sex Differences in Aerobic Capacity
 - Sex Differences in Muscle Strength & Endurance
- Characterization of Female and Male Astronauts
 - Demographic health characteristics
 - Musculoskeletal injury prevalence
 - Aerobic capacity
 - Muscle strength

Methods

- Demographic & Musculoskeletal (MSK) Injury/Diagnosis Data
 - Queried from Lifetime Surveillance of Astronaut Health (LSAH)- Aug. 2022
 - Available data from Mercury through ISS Expedition 66
 - Total 360 astronauts

- MSK included muscle sprains/strains, tendonitis, ACL injury, fractures, diagnosis of osteopenia/osteoporosis
 - Fracture data through May 2022
 - Osteopenia/Osteoporosis through March 2019
 - All other injuries through March 2020

Reported as In-Flight or Postflight (R+0 to 2 years postflight)

Methods

- Aerobic Capacity (VO₂pk) Characteristics
 - Data from standardized medical assessments (MEDB)

• Preflight: L-3/1 month

Postflight: R+3 days

- VO₂pk testing on upright cycle ergometer, ramped protocol
 - Variables of interest: VO2pk, peak watt
- Sample Size (n=47)
 - 11 Female
 - 36 Male

Methods

- Leg Muscle Strength & Endurance Characteristics
 - Data from MEDB

• Preflight: L-3/1 month

Postflight: R+5 days

- Isokinetic testing on dynamometer
 - Strength: Knee extension @ 60°/sec
 - Endurance: Knee extension @ 180°/sec
- Sample Size (n=87)
 - 17 Female
 - 70 Male

Results: Demographic Data

- As of 2022
 - 360 NASA astronauts
 - Early programs (Mercury, Gemini, Apollo) male only crews

- Fewer Females (17% of total)
 - Fewer spaceflight missions
 - Comparable age at selection & first mission
 - Greater cumulative duration in space

Demographics	Male	Female
Astronauts (n, %)	299 (83.1%)	61 (16.9%)
Astronauts with ≥ 1	270 (84.4%)	50 (15.6%)
space flight (n, %)		
Space Flight Missions	955 (87.3%)	139 (12.7%)
(n, %)		
	Mean±SD	Mean±SD
Age at selection (yr)	34.4±3.7	32.5±3.5
Age at first mission (yr)	40.7±4.6	37.8±4.2
Flight Duration (days)	25.7±49.7	40.6±68.7
Cumulative Duration in	67.6±94.8	102.4±127.2
Space (days)		

Results: Musculoskeletal injuries & Diagnoses

Total MSK injuries/diagnoses reported

- 283 in 151 astronauts
- 49.7% had multiple injuries
- 1.8 injuries per astronaut (range 1-8)

Most common injury

Muscle sprain/strain (59%)

Results: Musculoskeletal injuries & Diagnoses

- Postflight injuries most common (92%)
- Large proportion of injuries (49.6%) occurred within 1 year of landing
 - 7.3% within 1 month
 - 8.1% between 1-3 months
 - 9.2% between 3-6 months
 - 25% between 6-12 months
- Fewer injuries reported in females, but higher prevalence
 - F: 39 injuries in 20 astronauts
 - 1.95 injuries per female
 - 20% of female injuries occurred in flight
 - Low BMD diagnoses in 15% of females
 - M: 244 injuries in 131 astronauts
 - 1.86 injuries per male
 - 4% of injuries occurred in-flight
 - Low BMD diagnosed in 4% male astronauts

Results: Preflight Crew Demographics (Aerobic Capacity)

Females:

- Younger (-4.2±2.0 yrs)
- Weighed less (-12.2±3.1 kg)
- Lower VO_2pk (-4.9±2.1 ml/kg/min)
- Lower Peak Power (-70.0±17.3 W)

	Female (n=11)	Male (n=36)	P-value
Age (yr)	44.5±6.6	48.6±5.6	0.041
Body Mass (kg)	68.8±10.0	81.0±8. 8	< 0.001
Flight Duration (days)	205.0±58.3	176.0 ± 40.5	0.061
VO ₂ peak (ml/kg/min)	32.8±5.9	37.8 ± 6.0	0.021
Peak Watt (W)	229.0±41.5	299.0±52.4	< 0.001
Peak Heart Rate (beats/min)	176.0±7.3	173.0±10.8	0.406

Sex Difference in Aerobic Peak Power Decrements

Results: Preflight Crew Demographics (Strength Cohort)

Females were:

- Younger (-5.6±1.3 yrs)
- Weighed less (-17.2±2.4 kg)
- Lower Absolute Knee Strength (-56.1±10.6 Nm)
 - Normalized knee strength comparable to males
- Lower Absolute Endurance (-828±158 Nm)

	Female (n=17)	Male (n=70)	P-value
Age (yr)	42.8±3.7	48.4±5.1	< 0.001
Body Mass (kg)	65.7±6.3	82.9±8.4	< 0.001
Flight Duration (days)	179.0±50.3	173.0±33.3	0.478
Knee Extension Strength (Nm; 60/sec)	150.0±24.6	206.0±42.0	< 0.001
Normalized Knee Extension Strength (Nm/kg; 60/sec)	2.3±0.3	2.5±0.5	0.199
Knee Extension Endurance (Nm; 180/sec) Normalized	1546±507	2374±585	< 0.001
Knee Extension Endurance (Nm/kg; 180/sec)	23.7±6.4	28.7±7.0	0.019

Comparable Decrement in Strength Among All Astronauts

Summary

- Regardless of sex, space flight deconditioning could impact health and ability to complete EVA-associated tasks
- Data indicates majority of injuries occur postflight*
 - Implications for long term health
- Data indicates majority of injuries occur in males
 - Likely artifact of fewer female astronauts
 - Females have higher proportion of in-flight injuries*
 - Females have higher proportion of postflight low BMD diagnoses (3x)*
- Comparable decrements VO2pk, knee extension muscle strength & endurance for all astronauts
 - Females: greater reduction in maximal external work (peak watts)

Implications for Exploration Missions

- Commercially developed space suit
 - Sex differences in injury risk?
- Exploration Exercise Capabilities
 - Flywheel-based device- similar efficacy in males and females?
 - Sex differences in injury risk? Deconditioning?
- In-flight unknowns
 - Trajectory of muscle strength changes?
 - Sex differences in time course of changes to functional capacity?
- Recovery of muscle strength postflight
 - New data demonstrates females take longer to recover
 - Strategic postflight rehabilitation?

THANK YOU

nicole.c.strock@nasa.gov