COMPUTER LOGIC AND DIGITAL CIRCUIT DESIGN (PHYS306/COSC330): UNIT 2.4

Jordan Hanson February 14, 2018

Whittier College Department of Physics and Astronomy

UNIT 2.4 SUMMARY - THEORETICAL LOGIC GATES, AND OPERATIONS

Reading: DF Chapter 3-4 (Moodle)

- 1. Logic Gates
 - · Circuit diagram
 - Truth table
 - · Timing diagram
 - · Boolean logic
- 2. Boolean algebra I
- 3. IC Circuits, data sheets
- 4. Boolean algebra II

Homework: Chapter 3, ex. 1-22 (two weeks)

A Karnaugh Map, or K-map, is a *cell-array*, with 2^N cells, where N is the number of logical inputs.

C AB	0	1	C AB	0	1
00	000	001	00	Ā B C	$\overline{A} \overline{B} C$
01	010	011	01	ĀBĒ	Ā B C
11	110	111	11	A B \overline{C}	Ā B C
10	100	101	10	ΑBC	ĀBC

Table 1: The 3-input Karnaugh map, or K-map, lists all possible outcomes of a logic operation for all possible input combinations. (Left) Bit sequence representation of all input combinations. (Right) Symbolic representation of all input combinations.

	AB		00		01	11			
	00		0000		0001	0011	(0010	
	01		0100)	0101	0111	(0110	
	11		1100)	1101	1111	-	1110	
	10		1000)	1001 1011		-	1010	
AB	CD	(00		01	11		10)
	00	ĀĒ	$\overline{C}\overline{D}$	Ā	ABCD	ĀBC	D	ĀB	$C\overline{D}$
	01	ĀE	$\overline{C}\overline{D}$	7	Ā B C D	ĀBC	D	ĀB	$C\overline{D}$
	11	A E	$\overline{C}\overline{D}$	1	A B \overline{C} D	ABC	D	АВ	$C\overline{D}$
	10	ΑĒ	$\overline{C}\overline{D}$	/	$A \overline{B} \overline{C} D$	ΑBC	D	$A \overline{B}$	$C\overline{D}$

Table 2: The 4-input K-map, in the same notation as Tab. 1.

K-maps have several requirements for adjacent cells.

- 1. Only one bit change between adjacent cells.
- 2. Cells have wrap-around adjacency.
- 3. Diagonal cells are not adjacent.

A S-SOP expression may be mapped to a K-map:

CD AB	00	01	11	10
00	1	1		
01		1	1	
11		1		
10		1		

Table 3: The 4-input K-map, with an S-SOP mapped.

S-SOP expression that is being mapped:

$$\overline{A}\overline{B}\overline{C}\overline{D} + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}\overline{C}D$$

CD AB	00	01	11	10
00		1		
01		1		
11		1		
10		1		

Table 4: The 4-input K-map, with an S-SOP mapped.

S-SOP expression that is being mapped:

$$\overline{A} \overline{B} \overline{C} D + \overline{A} \overline{B} \overline{C} D + A \overline{B} \overline{C} D + A \overline{B} \overline{C} D$$

KARNAGH MAPS: MAPPING NON-STANDARD SOP EXPRESSIONS

CD AB	00	01	11	10
00		1	1	
01		1	1	
11		1	1	
10		1	1	

Table 5: The 4-input K-map, with an S-SOP mapped.

S-SOP expression that is being mapped:

$$\overline{A} \overline{B} \overline{C} D + \overline{A} B \overline{C} D + D$$

(We must enumerate the non-standard term). We could convert to standard form, but this is faster.

S-SOP to K-map exercise:

CD AB	00	01	11	10
00				
01				
11				
10				

Table 6: Map the S-SOP expression below into the K-Map.

$$\overline{A} \overline{B} \overline{C} \overline{D} + ABC$$

S-SOP to K-map exercise:

CD AB	00	01	11	10
00				
01				
11				
10				

Table 7: Map the S-SOP expression below into the K-Map.

$$\overline{A} \ \overline{B} \ \overline{C} \ \overline{D} + ABCD + \overline{A} \ \overline{B} \ C \ D$$

The expression $\overline{A} \ \overline{B} \ \overline{C} \ D + \overline{A} \ B \ \overline{C} \ D + A \ B \ \overline{C} \ D + A \ \overline{B} \ \overline{C} \ D$ probably has a simpler form. How can we use the K-map to simplify?

- 1. Group the 1's in adjacent cells
 - · Group size must be equal to a power of 2
 - Groups must be as large as possible
- 2. Read simplified terms from map
 - One SOP term per group. **Exclude** contradictory variables.
 - 3-variable maps: 1-cell groups have 3-variable products,
 2-cell groups with 2-variable products, 4-cell groups with
 1-variable products.
 - 4-variable maps: 1-cell groups have 4-variable products,
 2-cell groups with 3-variable products, 4-cell groups with
 2-variable products, 8-cell groups with 1-variable products.

K-map to simplified SOP (work several examples):

CD AB	00	01	11	10
00				
01				
11				
10				

Table 8: Place 1's in the K-map to find the corresponding SOP expression.

K-map to simplified SOP (use wrap-around adjacency):

CD AB	00	01	11	10
00				
01				
11				
10				

Table 9: Place 1's in the K-map to find the corresponding SOP expression.

Simplify:
$$\overline{B} \ \overline{C} \ \overline{D} + \overline{A} \ B \ \overline{C} \ \overline{D} + A \ B \ \overline{C} \ \overline{D} + \overline{A} \ \overline{B} \ C \ D + A \ \overline{B} \ C \ D + A \ \overline{B} \ C \ \overline{D} + A \ \overline{D} \ C \ \overline{D} \ C \ \overline{D} + A \ \overline{D} \ C \ \overline{D} + A \ \overline{D} \ C \ \overline{D} \ C \ \overline{D} \ C \ \overline{D} \$$

CD AB	00	01	11	10
00				
01				
11				
10				

Table 10: Place 1's in the K-map to find the corresponding SOP expression. *The final expression has only two terms.* Build the truth table from the final expression, and check against original expression.

TT to minimal SOP (work several examples).

Α	В	С	D	Х					
0	0	0	0						
0	0	0	1						
0	0	1	0		CD				
0	0	1	1		CD	00	01	11	10
0	1	0	0		AB	00	OI	11	10
0	1	0	1		 				
0	1	1	0		00				
0	1	1	1						
1	0	0	0		01				
1	0	0	1		11				
1	0	1	0						
1	0	1	1		10				
1	1	0	0						
1	1	0	1						
1	1	1	0						
1	1	1	1						

Table 11: The minimal SOP may be derived from a TT via the K-map.

TT to minimal SOP (utilize don't care conditions).

Α	В	С	D	Х					
0	0	0	0						
0	0	0	1						
0	0	1	0		CD				
0	0	1	1		CD	00	01	11	10
0	1	0	0		AB	00	UI	11	10
0	1	0	1		 				
0	1	1	0		00				
0	1	1	1						
1	0	0	0		01				
1	0	0	1		11				
1	0	1	0						
1	0	1	1		10				
1	1	0	0						
1	1	0	1						
1	1	1	0						
1	1	1	1						

Table 12: The minimal SOP may be derived from a TT via the K-map.

CONCLUSION

UNIT 2.4 SUMMARY - THEORETICAL LOGIC GATES, AND OPERATIONS

Reading: DF Chapter 3-4 (Moodle)

- 1. Logic Gates
 - · Circuit diagram
 - Truth table
 - · Timing diagram
 - · Boolean logic
- 2. Boolean algebra I
- 3. IC Circuits, data sheets
- 4. Boolean algebra II

Homework: Chapter 3, ex. 1-22 (two weeks)