Билет № 16. Ограниченность функции, непрерывной на отрезке.

Непрерывность на множестве.

 $X \neq \emptyset, f: X \to \mathbb{R}$. Функция **непрерывна на множестве** X, если $\forall x_0 \in X$: f непрерывна в x_0 по множеству X. Обозначение: $f \in C(X)$.

Теорема (Образ компакта - компакт).

 $K \subset \mathbb{R}$ - непустой компакт, $f \in C(K)$. Тогда $f(K) = \{f(x) : x \in K\}$ - компакт.

Пример:
$$K = [0, 1], f(x) = x + 2$$
. Тогда $f(K) = [2, 3]$

Доказательство: Пусть $\{y_n\} \subset f(K)$.

 $\forall n \in \mathbb{N} \ \exists x_n \in f^{-1}(y_n)$. Получим $\{x_n\} \subset K$.

По определению компакта \exists подпоследовательность $\{x_{n_i}\}$ и точка $x^* \in K: x_{n_i} \to x^*, j \to \infty$.

По непрерывности по Гейне в точке x^* : $y_{n_i} = f(x_{n_i}) \to f(x^*), j \to \infty$.

 \Rightarrow подпоследовательность $\{y_{n_i}\}$ сходится к $f(x^*)$. Но $x^* \in K \Rightarrow f(x^*) \in f(K)$.

 $\{y_n\}$ взята произвольно $\Rightarrow f(K)$ - компакт.

Следствие 1.

 Φ ункция, непрерывная на компакте K, принимает наибольшее и наименьшее значения.

Доказательство: Пусть $m=\inf_K f,\, M=\sup_K f.$ Докажем, что $m,M\in f(K).$

f(K) - ограничено и замкнуто. По определению супремума и инфимума: m, M - точки прикосновения $f(K) \Rightarrow m, M \in f(K)$.

Тогда $\exists x_m, x_M \in K: f(x_m) = m, f(x_M) = M.$

Следствие 2.

Функция, непрерывная на компакте K, ограничена.

Доказательство: Пусть $C = \max\{|m|, |M|\}$. Тогда $\forall x \in K : |f(x)| \le C$.

Отрезок [a,b] - компакт (ограничен и замкнут) \Rightarrow функция, непрерывная на отрезке, ограничена.