Characterising representable positive relation algebras via Priestley duality

Daniel Rogozin

1 Distributive lattice representation and priestley duality

Lemma 1. Let $h: \mathcal{L} \to \mathcal{R}$ be a representation, then then

$$h^{-1}[x] = \{ a \in \mathcal{L} \mid x \in h(a) \}$$

is prime filter in \mathcal{L} .

Proof. Let $c \in h^{-1}[x]$ and $c \leq d$, then $x \in h(c)$, but h is order-preserving, so $x \in h(d)$. If $c, d \in h^{-1}[x]$, then $x \in h(c)$ and $x \in h(d)$, so $x \in h(c) \cap h(d)$, then $x \in h(c \cdot d)$, so $c \cdot d \in h^{-1}[x]$. Let $c + d \in h^{-1}[x]$, then $x \in h(c + d) = h(c) \cup h(d)$, so either $x \in h(c)$ or $x \in h(d)$, so either $c \in h^{-1}[x]$ or $d \in h^{-1}[x]$.

2 Positive relation algebras and their representatition

3 Spectral spaces for positive relation algebras

4 Complete representability

An element a of a lattice \mathcal{L} is completely join-irreducible if for every $A \subseteq \mathcal{L}$ such that $a \leq \bigvee A$ there exists $b \in A$ such that $a \leq b$.

A distributive lattice \mathcal{L} is completely representable if there exists a representation $h: \mathcal{L} \to \mathcal{R}$ such that

$$\begin{array}{l} f(\Sigma A) = \bigcup \{f(a) \mid a \in A\} \\ f(\Pi A) = \bigcap \{f(a) \mid a \in A\} \end{array}$$

for each $A \subseteq \mathcal{L}$ such that ΣA and ΠA exist.

A representation $h: \mathcal{L} \to \mathcal{R}$ is refined if for all $a \in \mathcal{L}$ there exists a completely join-irreducible j such that $a \in h(j)$.

Lemma 2. Let $h: \mathcal{L} \to \mathcal{R}$ be a refined representation, then each $h^{-1}[x]$ is principal and is generated by completely join-irreducible element.

Theorem 1. Let \mathcal{L} be a distributive lattice and let $h: \mathcal{L} \to \mathcal{R}$ be representation of \mathcal{L} over the base set X, then h is refined iff it is complete.

Proof. Suppose h is refined. Take any $b \in \mathcal{L}$, then

$$h(b) = \{ | \{h(j) \mid j \in \mathcal{JR}(\mathcal{L}) \& j \leq a \} \}$$

Take $A \subseteq \mathcal{L}$ such that ΣA and ΠA exist. TODO:

For converse, suppose h is complete

4.1 Completely representable distibutive lattices

4.2 Completely representable positive relation algebras

5 The main result

Theorem 2. Let A be a positive relation algebra, then R is representable iff $(R_+)^+$ is completely representable.

Theorem 3. RPRA is a canonical variety.