

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 832 061 B1

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent: 05.09.2001 Bulletin 2001/36
- (21) Application number: 96916324.5
- (22) Date of filing: 06.06.1996

- (51) Int CI.7: **C07C 237/42**, C07C 237/44, A61K 31/165, A61K 31/33, C07D 295/18, C07D 295/20, C07D 211/58, C07D 211/46, C07D 213/80, C07D 209/48, C07C 271/16
- (86) International application number: PCT/JP96/01533
- (87) International publication number: WO 96/41795 (27.12.1996 Gazette 1996/56)
- (54) BENZAMIDE DERIVATIVES AND THEIR USE AS VASOPRESSIN ANTAGONISTS

 BENZAMID-DERIVATE UND DEREN VERWENDUNG ALS VASOPRESSIN-ANTAGONISTEN

 DERIVES DE TYPE BENZAMIDE ET LEUR UTILISATION COMME ANTAGONISTES DE LA

 VASOPRESSINE
- (84) Designated Contracting States:
 AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL
 PT SE
- (30) Priority: 09.06.1995 GB 9511694
- (43) Date of publication of application: 01.04.1998 Bulletin 1998/14
- (73) Proprietor: FUJISAWA PHARMACEUTICAL CO., LTD.
 Osaka-shi Osaka 541-8514 (JP)
- (72) Inventors:
 - SETOI, Hiroyuki Ibaraki 305 (JP)
 - OHKAWA, Takehiko Ibaraki 300-27 (JP)
 - ZENKOH, Tatsuya Ibaraki 302-01 (JP)

- SAWADA, Hitoshi Ibaraki 305 (JP)
- SATO, Kentaro Ibaraki 305 (JP)
- TANAKA, Hirokazu Hyogo 665 (JP)
- (74) Representative:
 Gille Hrabal Struck Neidlein Prop Roos
 Patentanwälte
 Brucknerstrasse 20
 40593 Düsseldorf (DE)
- (56) References cited: **EP-A- 0 620 216**
 - BOLL. CHIM. FARM. (1983), 122(4), 190-5
 CODEN: BCFAAI;ISSN: 0006-6648, 1983,
 XP000601221 PLESCIA, S. ET AL: "A new pyrazolo[4,3-c][1,5]benzodiazocine derivative"

P 0 832 061 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

5

10

15

20

25

30

45

50

[0001] This invention relates to new benzamide derivatives and pharmaceutically acceptable salts thereof which are useful as a medicament:.

BACKGROUND ART

[0002] Some benzamide derivatives have been known as vasopressin antagonist, for example, in PCT International Publication Nos. WO 91/05549 and WO 95/29152, and EP Application Publication No. 0620216.

DISCLOSURE OF INVENTION

[0003] This invention relates to new benzamide derivatives and pharmaceutically acceptable salts thereof.

[0004] More particularly, it relates to new benzamide derivatives and pharmaceutically acceptable salts thereof which possess activities as vasopressin antagonistic activity, vasodilating activity, hypotensive activity, activity for inhibiting saccharide release in liver, activity for inhibiting growth of mesangium cells, water diuretic activity, platelet agglutination inhibitory activity, oxytocin antagonistic activity and the like, to a pharmaceutical composition comprising the same and the use of the compounds for the manufacture of a medicament for the treatment and/or prevention of hypertension, heart failure, renal insufficiency, edema, ascites, vasopressin parasecretion syndrome, hepatocirrhosis, hyponatremia, hypokalemia, diabetic, circulation disorder, cerebrovascular disease (e.g. cerebral edema, cerebral infarction, etc.), Meniere's syndrome (e.g. Meniere's disease, etc.), motion sickness and the like in human beings or animals.

[0005] One object of this invention is to provide new and useful benzamide derivatives which possess aforesaid activities.

[0006] Another object of this invention is to provide processes for the preparation of said benzamide derivatives and salts thereof.

[0007] A further object of this invention is to provide a pharmaceutical composition comprising, as an active ingredient, said benzamide derivatives and pharmaceutically acceptable salts thereof.

[0008] Some benzamide derivatives have been known as vasopressin antagonist, for example, in PCT International Publication Nos. WO 91/05549 and WO 95/29152, and EP Application Publication No. 0620216.

[0009] The object benzamide derivatives of this invention are new and can be represented by the following general formula (I):

wherein

group consisting of halogen; hydroxy; nitro; amino; acyl; substituted acyl; acyl(lower)alkylsulfinyl; acyl(lower)alkylsulfinyl; acyl(lower)alkylsulfinyl; acyl(lower)alkylsulfinyl; acyl(lower)alkylsulfinyl; acyloxy; lower alkylamino(lower)alkylsulfinyl; acyloxy; aryl; cyano; a heterocyclic group; lower alkenyl optionally substituted with acyl, substituted acyl, aryl or acyl-substituted aryl; lower alkynyl optionally substituted with halogen, amino, lower alkylamino, acylamino, substituted acylamino, hydroxy, acyloxy, acyl(lower)alkanoyloxy, acyl, substituted acyl, acyl(lower)alkoxyimino, aryl or acyl-substituted aryl; lower alkylthio optionally substituted with acyl or substituted acyl; alkoxy optionally substituted with aryl, substituted aryl, hydroxy, acyloxy, amino, lower alkylamino, protected ami-

is aryl, cyclo(lower)alkyl, pyridyl or thienyl, each of which may be substituted with substituent(s) selected from the

no, a heterocyclic group, acyl-substituted pyridyl, substituted acyl-substituted pyridyl, halogen, acyl(lower) alkylamino, N-protected-acyl(lower)alkylamino, N-acyl(lower)alkyl-N-lower alkylamino, acyl, substituted acyl, acylamino, substituted acylamino, lower alkylhydrazinocarbonylamino, hydroxyimino, acyl(lower)alkoxyimino, substituted acyl(lower)alkoxyimino, acyl(lower)alkoxy, guanidino or N-protected guanidino; and lower alkenyloxy optionally substituted with acyl or substituted acyl;

- R² is hydrogen; lower alkyl optionally substituted with hydroxy, aryl or acyl; or cyclo(lower)alkyl;
- R3 is hydrogen; halogen; hydroxy; acyloxy; substituted acyloxy; lower alkyl optionally substituted with hydroxy or lower alkoxy; lower alkoxy optionally substituted with aryl, amino, protected amino, acyl, hydroxy, cyano or lower alkylthio; nitro; amino; acyl; substituted acyl; or cyclo(lower)alkyloxy;
- 10 R4 is hydroxy; halogen; nitro; amino; protected amino; lower alkylamino; acyloxy; amino(lower)alkylamino; N-protected amino(lower)alkylamino; lower alkoxy optionally substituted with hydroxy, aryl, substituted aryl, acyl, substituted acyl, amino, lower alkylamino; lower alkylamino, protected amino, a heteroxyclic group or quantilino; lower alkylamino protected amino, a heteroxyclic group or quantilino; lower alkylamino priore.

lower alkoxy optionally substituted with hydroxy, aryl, substituted aryl, acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group or guanidino; lower alkylthio optionally substituted with acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, lower alkylsulfonyloxy, arylsulfonyloxy, ar(lower)alkoxy or substituted ar (lower)alkoxy; lower alkyl substituted with acyl, substituted acyl, amino, lower alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, lower alkylsulfonyloxy or arylsulfonyloxy; lower alkenyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; amino(lower)alkylsulfonyl; N-protected amino(lower)alkylsulfonyl; lower alkylaminosulfonyl; a heterocyclicsulfonyl; amino(lower)alkylsulfinyl; N-protected amino(lower)alkylsulfinyl; piperidyloxy; or N-protected piperidyloxy;

- R5 is hydrogen, lower alkyl, lower alkoxy or halogen;
- A is a single bond, O or NH;
- E is lower alkylene, lower alkenylene,

-c-, -ÿ-,

or a group of the formula:

-G-J-

35

40

45

5

15

20

25

30

in which G is lower alkylene and J is O or

дб - Х-

(wherein R⁶ is hydrogen or N-protective group);

X is -CH=CH-, -CH=N- or S; and Y is CH or N;

and pharmaceutically acceptable salts thereof.

[0010] The object compound (I) or its salt can be prepared by the processes as illustrated in the following reaction schemes.

55

(III)

Process 1

or the sulfo group, or a salt thereof 20

40

45

50

5

(IV)

or its saslt

(V)

or its reactive derivative at the carboxy group or a salt thereof

20

25

30

35

40

Process 3

50

45

5

10

15

20

35

40

45

50

55

Process 5

elimination of the N-protective group

(If)

or its salt

elimination R¹ N R²

group

(Ig)

or its salt

Process 6

or a salt thereof

Process 7

(Ii) or its salt

or its reactive derivative

at the carboxy group or a salt thereof

Process 8

.

Process 9

Process 10

Process 11

Process 12

Process 13

Process 14

$$R^{1}$$
 R^{2}
 R^{5}
 R^{5

Process 15

Process 16

R1 R2

R1 R2

R1 R2

R5

reduction

R1 R2

R5

reduction

(Iw)

or its salt:

or its salt

Process 17

20

35

40

50

55

Process 18

45

Remark Remarks A-E-Remarks A-E-Remarks

Process 19

Process 20

Process 21

In the second s

Process 23

20

25 R^{1} R^{2} R^{2} R^{5} R^{5}

Process 24

55

 R^{1} R^{2} R^{5} R^{5} R^{5} R^{5} R^{6} R^{1} R^{2} R^{5} R^{5} R^{5} R^{5} R^{7} R^{7} R^{1} R^{2} R^{5} R^{5} R^{5} R^{5} R^{7} R^{7} R^{1} R^{2} R^{5} R^{5

Process 26

Process 27

5 10 acylation (I-15) or its salt (I-14) or its salt

Process 29

15

20

35

50

55

25 reduction 30 (I-17) or its salt (I-16a) or its salt

Process 30

40 45 (I-16) or its salt (I-18) or its salt

Process 31

at the carboxy group or a salt thereof

Process 32

Process 33

Process 35

Process 36

5

10

15

20

Process 38

25

R¹

R²

R⁵

R⁵

R⁵

R⁷

Or its reactive derivative or its salt

at the carboxy group or a salt thereof

35

40

$$R^{1}$$
 R^{2}
 R^{5}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{3}
 R^{4}
 R^{5}
 R^{5}
 R^{4}

or its reactive derivative

at the carboxy group or a salt thereof

R¹ R²

O R⁵

R⁶

(I-32)

or its salt

wherein

 $R^1,\,R^2,\,R^3,\,R^4,\,R^5,\,A,\,E,\,X$ and Y $\,$ are each as defined above, is

55

5

10

 R_a^1

15

20 R_b¹

25

30 R₂

R_b⁴

35 R_c⁴

R_d

40

45 R_c¹

50

55

-C- or -S-;

is aryl, haloaryl, cyclo(lower)alkyl,

pyridyl or thienyl group, each of which is substituted with esterified carboxy; lower alkenyl substituted with esterified carboxy or esterified carboxy-substituted aryl;

lower alkyl substituted with esterified carboxy, esterified carboxy(lower)alkanoyloxy or esterified carboxy(lower)alkoxyimino;

lower alkylthio substituted with esterified carboxy; alkoxy substituted with esterified carboxy-substituted aryl, esterified carboxy-substituted pyridyl, esterified carboxy(lower)alkylamino, N-protected-esterified carboxy(lower)alkylamino, N-esterified carboxy(lower)alkyl-N-lower alkylamino, esterified carboxy or esterified carboxy(lower)alkoxyimino; or lower alkenyloxy substituted with esterified carboxy;

is aryl, haloaryl, cyclo(lower)alkyl, pyridyl or thienyl, each of which is substituted with carboxy; lower alkenyl substituted with carboxy or carboxy-substituted aryl;

lower alkyl substituted with carboxy, carboxy(lower)-alkanoyloxy or carboxy(lower)alkoxyimino;

lower alkylthio substituted with carboxy;

alkoxy substituted with carboxy-substituted aryl, carboxy-substituted pyridyl, carboxy(lower)-alkylamino, N-protected-carboxy(lower)alkylamino, N-carboxy(lower)alkyl-N-lower alkylamino, carboxy or carboxy(lower)alkoxyimino; or lower alkenyloxy substituted with carboxy;

is lower alkoxy substituted with esterified carboxy; lower alkylthio substituted with esterified carboxy; lower alkyl substituted with esterified carboxy; or lower alkenyl substituted with esterified carboxy;

is lower alkoxy substituted with carboxy; lower alkylthio substituted with carboxy; lower alkyl substituted with carboxy; or lower alkenyl substituted with carboxy;

is protected amino; N-protected piperidyloxy; N-protected amino(lower) alkylamino;

lower alkoxy substituted with protected amino; lower alkylthio substituted with protected amino; lower alkyl substituted with protected amino;

lower alkynyl substituted with protected amino; or N-protected amino(low-er)alkylsulfonyl;

is amino; piperidyloxy; amino(lower)alkylamino;

lower alkoxy substituted with amino; lower alkylthio substituted with amino; lower alkyl substituted with amino; lower alkynyl substituted with amino; or amino(lower)alkylsulfonyl;

is aryl, haloaryl, cyclo(lower)alkyl, pyridyl or thienyl group, each of which is substituted with substituted

or unsubstituted N-containing heterocycliccarbonyl; carbamoyl; substituted or unsubstituted lower alkylcarbamoyl; lower alkenyl substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl, substituted or unsubstituted lower alkylcarbamoyl or N-containing heterocycliccarbonyl-substituted aryl;

lower alkyl substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl, substituted or unsubstituted lower alkylcarbamoyl, substituted or unsubstituted N-containing heterocycliccarbonyl (lower)alkanoyloxy, carbamoyl(lower)alkanoyloxy, substituted or unsubstituted lower alkylcarbamoyl(lower)alkanoyloxy, substituted or unsubstituted N-containing heterocycliccarbonyl (lower)alkoxyimino, carbamoyl-(lower)alkoxyimino, carbamo

er)alkoxyimino or substituted or unsubstituted lower alkylcarbamoyl(lower) alkoxyimino; lower alkylthio substituted with substituted or unsubstituted N-containing

heterocycliccarbonyl, carbamoyl or substituted or unsubstituted lower alkylcarbamoyl; alkoxy substituted with substituted or unsubstituted Ncontaining heterocycliccarbonyl-substituted aryl, carbamoyl-substituted aryl, substituted or unsubstituted lower alkylcarbamoyl-substituted aryl, substituted or unsubstituted N-containing heterocycliccarbonyl-substituted pyridyl, carbamoyl-substituted pyridyl, substituted or unsubstituted lower alkylcarbamoyl-substituted pyridyl, substituted or unsubstituted N-conheterocycliccarbonyl (lower)alkylamino, carbamoyl(lower) alkylamino, substituted or unsubstituted lower alkylcarbamoyl(lower) alkylamino. N-protected-(substituted or unsubstituted N-containing hete-N-protected-carbamoyl(lower) rocyclic)carbonyl(lower)alkylamino, alkylamino, N-protected substituted or unsubstituted lower alkylcarbamoyl (lower)alkylamino, N-(substituted or unsubstituted N-containing heterocyclic)carbonyl(lower)alkyl-N-lower alkylamino, N-carbamoyl(lower)alkyl-Nlower alkylamino, substituted or unsubstituted N-lower alkylcarbamovl-Nlower alkylamino, substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl, aminocarbamoyl, pyridylcarbamoyl, N-(lower alkyl) piperazinylcarbonyl, substituted or unsubstituted lower alkylcarbamoyl, substituted or unsubstituted N-containing heterocycliccarbonyl(lower) alkoxyimino, carbamoyl(lower)alkoxyimino or substituted or unsubstituted lower alkylcarbamoyl(lower)alkoxyimino;

or lower alkenyloxy substituted with substituted or unsubstituted N-containing heterocycliccarbonyl, carbamoyl or substituted or unsubstituted lower alkylcarbamoyl;

is lower alkoxy, lower alkylthio, lower alkyl or lower alkenyl, each of which is substituted with substituted or unsubstituted N-containing heterocyclic-carbonyl, carbamoyl, or substituted or unsubstituted lower alkylcarbamoyl; is methoxy substituted with aryl or substituted aryl; or lower alkylthio which is substituted with methoxy substituted with aryl or substituted aryl;

is hydroxy; or lower alkylthio substituted with hydroxy;

is hydroxy;

is lower alkyl substituted with hydroxy, aryl, substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group; or N-protected piperidyl;

is hydroxy; or acid residue;

is lower alkoxy substituted with hydroxy, aryl, substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group; or N-protected piperidyloxy;

is lower alkoxy substituted with amino; lower alkylthio substituted with amino; or lower alkyl substituted with amino;

is lower alkoxy substituted with acylamino or substituted acylamino; lower alkylthio substituted with acylamino or substituted acylamino; or lower alkyl substituted with acylamino or substituted acylamino;

is amino; lower alkoxy substituted with amino; lower alkylthio substituted with amino; or lower alkyl substituted with amino;

is lower alkoxy substituted with lower alkylamino; lower alkylthio substituted with lower alkylamino; lower alkylamino; lower alkylamino; lower alkylamino; or N-protected amino(lower)alkylamino;

is acyloxy;

is acid residue;

is lower alkylene;

is lower alkylthio substituted with amino or protected amino;

is lower alkylsulfinyl substituted with amino or protected amino, or lower alkylsulfonyl substituted with amino or protected amino;

is lower alkenylene;

5 10 15 20 25 35 Ζ¹ R_h 40 R_{da}^{4} R_i 45 R_{db}^{4} R_i^4 50 R_k² E_b⁴ e⁴ R_m

Ec

apyt; is aryl which is substituted with hydroxy; is lower alkyl optionally substituted pyridyl or N-protected amino, aryl, substituted aryl, acyl-substituted pyridyl or N-protected guanidino; is aryl which is substituted with lower alkoxy optionally substituted with acyl, acyl-substituted pyridyl or N-protected guanidino; is methoxy substituted with lower alkoxy optionally substituted apyl, acyl-substituted pyridyl or N-protected guanidino; is methoxy substituted with aryl, acyloxy; or substituted acyloxy; is acid residue; is lower alkyl optionally substituted with esterified carboxy; is lower alkyl optionally substituted with esterified carboxy; is lower alkyl optionally substituted with esterified carboxy; is lower alkyl substituted with esterified carboxy; is lower alkylsuffonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylne; is acid residue; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted with lower alkylamino; is anyl which is substituted with lower alkoxy substituted with ower alkoxy substituted with ower alkylamino or oxperiently-carbonyl; is anyl which is substituted with lower alkoxy substituted with lower alkylamino or oxperiently-carbonyl; is anyl which is substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkylamino or alkylamino or oxperiently-carbonyl; is anyl which is substituted with lower alkoxy substituted with lower alkoxy	aryt: is anyt which is substituted with hydroxy; is hydroxy; or acid residue; is lower alkyl optionally substituted with acyl, acylamino, protected amina, anyt, substituted anyt, acylamino, protected amina, anyt, substituted anyt, acylamino, protected quanidino; is anyt which is substituted with lower alkoxy optionally substituted anyt, acylamino, protected quanidino; is anyt which is substituted with aryt; acyloxy; or substituted acylaxy; is acid residue; is ower alkyl optionally substituted with esterified carboxy; is acid residue; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkyny optionally substituted with hydroxy; is lower alkyny substituted with carboxy; is lower alkyny substituted with carboxy; is lower alkyny substituted with carboxy; is lower alkyny optionally substituted with hydroxy, amino, protected am no, lower alkynyl optionally substituted with hydroxy, amino, protected am no, lower alkylsulfonyloxy or anysulfonyloxy; is a single bond or lower alkynyl, each of which is substitute with hydroxy, amino, protected amino lower alkylsulfonyloxy or anysulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with hydroxy, amino, protected amino lower alkylsulfonyloxy or anysulfonyloxy; is a single bond or lower alkyloxy anysulfonyloxy; is anyt which is substituted with lower alkoxy substituted with hydroxy; is anyt which is substituted with lower alkoxy substituted with hydroxy; is anyt which is substituted with lower alkoxy substituted with hornyl, is anyt which is substituted with lower alkoxy substituted w		R ¹ _d	is aryl which is substituted with methoxy substituted with aryl or substituted
s lower alkyl optionally substituted with acyl, acylamino, protected amino, anyl, substituted anyl, acyl-substituted prividy or N-protected guanidino; is anyl which is substituted with lower alkoxy optionally substituted with acyl, acylamino, protected amino, anyl, substituted anyl, acyl-substituted prividy or N-protected guanidino; is methoxy substituted with anyl, acyloxy; or substituted acyloxy; is acid residue; is lower alkyl optionally substituted with sterified carboxy; is lower alkoxy substituted with seterified carboxy; is lower alkoxy substituted with seterified carboxy; is lower alkoxy substituted with seterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkynyl optionally substituted with pydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyly or lower alkynyl, each of which is substituted with hydroxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with lower alkylsulfonyloxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with pydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is lower alkyloxy or anylsulfonyloxy; is a single bond or lower alkyloxy, each of which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkyloxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with own piperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with own alkyloxy substituted with own alkyloxy substituted with own al	is lower alkyl optionally substituted with acyl, acylamino, protected quantification and substituted and subst		_	aryl;
s lower alkyl optionally substituted with acyl, acylamino, protected amino, anyl, substituted anyl, acyl-substituted prividy or N-protected guanidino; is anyl which is substituted with lower alkoxy optionally substituted with acyl, acylamino, protected amino, anyl, substituted anyl, acyl-substituted prividy or N-protected guanidino; is methoxy substituted with anyl, acyloxy; or substituted acyloxy; is acid residue; is lower alkyl optionally substituted with sterified carboxy; is lower alkoxy substituted with seterified carboxy; is lower alkoxy substituted with seterified carboxy; is lower alkoxy substituted with seterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkynyl optionally substituted with pydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyly or lower alkynyl, each of which is substituted with hydroxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with lower alkylsulfonyloxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with pydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is lower alkyloxy or anylsulfonyloxy; is a single bond or lower alkyloxy, each of which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkyloxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with own piperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with own alkyloxy substituted with own alkyloxy substituted with own al	is lower alkyl optionally substituted with acyl, acylamino, protected quantification and substituted and subst		R _g ¹	
R1 is abstituted aryl, acyl-substituted aryl, acyl-substituted with lower alkoxy optionally substituted with acyl, acyl-substituted with acyl, acyl-substituted with acyl, acyl-substituted aryl, acyl-substituted aryl, acyl-substituted aryl, acyl-substituted aryl, acyl-substituted aryl, acyl-substituted aryl, acyl-substituted pyridyl or N-protected guanidino; is methoxy substituted with aryl; acyloxy; or substituted acyloxy; is acid residue; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with acyloxy; is lower alkyryl optionally substituted with hydroxy, amino, protected amino, lower alkyribilo, lower alkyryl, each of which is substituted with hydroxy; is lower alkyryloxy; is lower alkyryloxy; is lower alkyrsulfonyloxy; is lower alkyrsulfonyloxy; is lower alkyrsulfonyloxy or arylsulfonyloxy; is lower alkyrsulfonyloxy; is lower alkyrsulfonyloxy; is a single bond or lower alkyrol prover alkyryl, each of which is substituted with phthalimido; is lower alkyloptionally substituted with hydroxy, amino, protected amino, lower alkyloptionally substituted with hydroxy, amino, protected amino, lower alkyloptionally substituted with hower alkoxy substituted with acylamino is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypipendylcarbony; is anyl which is substituted with lower alkoxy substituted with hydroxypipendylcarbony; is anyl which is substituted with lower alkoxy substituted	anyl, substituted aryl, acyl-substituted pyridyl or N-protected guanidino; is anyl which is substituted with lower alkoxy optionally substituted aryl, acyl-substituted pyridyl or N-protected guanidino; Z4 is acid residue; is methoxy substituted with aryl; acyloxy; or substituted acyloxy; is acid residue; is lower alkyl optionally substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with carboxy; is lower alkyl optionally substituted with hydroxy, amino, protected am no, lower alkyl or lower alkynyl, each of which is substitute with hydroxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substitute with hydroxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substitute with hydroxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substitute with hydroxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substitute with ower alkystulionyloxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substitute with lower alkystulionyloxy; is lower alkylthio, lower alkyl or arylsulfonyloxy; is lower alkylthio, lower alkyl or arylsulfonyloxy; is lower alkylthio, lower alkyl or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is anyl which is substituted with hydroxy, amino, protected amino lower alkylsulfonyloxy or arylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl whic	_		
R1 is anyl which is substituted with lower alkoxy optionally substituted with acyl, acylamino, protected amino, aryl, substituted aryl, acyl-substituted pryidy or N-protected guanidino; is methoxy substituted with aryl; acyloxy; or substituted acyloxy; is acid residue; is lower alkoxy optionally substituted with esterified carboxy; is lower alkoxy optionally substituted with esterified carboxy; is lower alkoxy substituted with carboxy; is lower alkysulfonyloxy or arylsulfonyloxy; is lower alkysulfonyloxy or arylsulfonyloxy; is lower alkysulfonyloxy or arylsulfonyloxy; is lower alkysulfonyloxy; is a single bond or lower alkysulfonyloxy; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with oxopiperidylicarbonyl; is anyl which is substituted with lower alkoxy substituted with oxopiperidylicarbonyl; is anyl which is substituted with lower alkoxy substituted with ordinary; is anyl which is substituted with lower alkoxy substituted with lower alkox	R1 is anyl which is substituted with lower alkoxy optionally substituted with acyl, acylamino, protected amino, anyl, substituted anyl, acyl-substituted by pringly or N-protected guanidino; R3 is methoxy substituted with anyl; acyloxy; or substituted acyloxy; is acid residue; is lower alkoy optionally substituted with esterified carboxy; is lower alkoy substituted with esterified carboxy; is lower alkoys potionally substituted with hydroxy, amino, protected am no, lower alkyly optionally substituted with hydroxy, amino, protected am no, lower alkyly optionally substituted with is substitute with lower alkyly and protected amino lower alkyly and lower alkylynyl, each of which is substituted with hydroxy; is lower alkylysulfonyloxy or anylsulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with nower alkoys substituted with anylor acyl; is anyl which is substituted with lower alkoxy substituted with acylamino; is anyl which is substituted with lower alkoxy substituted with acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxy; iperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted wit	5	K°	and substituted and acyl-substituted pyridyl or N-protected quanidino:
acyl, acylamino, protected amino, aryl, substituted aryl, acyl-substituted pyridyl or N-protected guanidino; is methoxy substituted with aryl; acyloxy; or substituted acyloxy; is acid residue; is lower alkyl optionally substituted with esterified carboxy; is lower alkoxy optionally substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is halogen; is lower alkylysulfonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonylox; is lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with phthalimido; is lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylsulfonyloxy; is a single bond or lower alkylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with hower alkoxy substituted with lower alkoxy substituted with low	acyl, acylamino, protected amino, aryl, substituted aryl, acyl-substitute pyridyl or N-protected guanidino; Is methoxy substituted with aryl; acyloxy; or substituted acyloxy; is acid residue; Is lower alkyo optionally substituted with esterified carboxy; Is lower alkoxy optionally substituted with esterified carboxy; Is lower alkoxy substituted with esterified carboxy; Is lower alkoxy substituted with esterified carboxy; Is lower alkoxy substituted with carboxy; Is halogen; Is lower alkynyl optionally substituted with hydroxy, amino, protected am no, lower alkylaulfonyloxy or arylsulfonyloxy; Is lower alkylaulfonyloxy; Is lower alkylaulfonyloxy; Is lower alkylaulfonyloxy; Is as a single bond or lower alkylaulfonyloxy; Is as a single bond or lower alkylaulfonyloxy; Is as a single bond or lower alkylaulfonyloxy; Is anyl which is substituted with lower alkoxy substituted with anyl or acyl; Is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; Is aryl which is substituted with lower alkoxy substituted with oxplamino or opiperidylcarbonyl; Is anyl which is substituted with lower alkoxy substituted with carboxy; Is anyl which is substituted with lower alkoxy substituted with oxplamino or opiperidylcarbonyl; Is anyl which is substituted with lower alkoxy substituted with		R!	is anyl which is substituted with lower alkoxy optionally substituted with
Is methoxy substituted with aryl; acyloxy; or substituted acyloxy; is acid residue; is lower alkyl optionally substituted with esterified carboxy; is lower alkoxy optionally substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with esterified carboxy; is lower alkoxy substituted with carboxy; is lower alkoxy substituted with carboxy; is lower alkynyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylsulfonyloxy; is a single bond or lower alkylsulfonyloxy; is anyl which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with l	is methoxy substituted with aryl; acyloxy; or substituted acyloxy; is acid residue; is lower alkyl optionally substituted with esterified carboxy; is lower alkoy optionally substituted with seterified carboxy; is lower alkoy optionally substituted with esterified carboxy; is lower alkoy substituted with esterified carboxy; is lower alkoys substituted with carboxy; is lower alkoys substituted with carboxy; is lower alkynyl optionally substituted with hydroxy, amino, protected am no, lower alkynyl optionally substituted with hydroxy, amino, protected am no, lower alkylution/loxy or arylsulfonyloxy; is a single bond or lower alkylution/loxy; is a single bond or lower alkylution/loxy; is a single bond or lower alkylution/loxy; is anyl which is substituted with lower alkoxy substituted with acylamino of substituted acylamino; is anyl which is substituted with lower alkoxy substituted with acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxy; ipericylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alko		• • •	
R9 R3 R5	R9 R3 R3 R5			
R9 R3 R5	R9 R3 R3 R5	10	R_a^3	·
no, lower alkylsulfonyloxy or anylsulfonyloxy; is lower alkylsulfonyloxy; is lower alkyl or lower alkynyl, each of which is substituted with hydroxy; is halogen; is lower alkylsulfonyl; is lower alkylsulfonyl; is lower alkylsulfonyloxy or anylsulfonyl, each of which is substituted with lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alkox	no, lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyly or lower alkynyl, each of which is substitute with hydroxy; is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl, each of which is substitute with lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is acid residue; is acid residue; is anyl which is substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with arylor or or opperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is lower alkyloxy substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkylox		Z ⁴	•
no, lower alkylsulfonyloxy or anylsulfonyloxy; is lower alkylsulfonyloxy; is lower alkyl or lower alkynyl, each of which is substituted with hydroxy; is halogen; is lower alkylsulfonyl; is lower alkylsulfonyl; is lower alkylsulfonyloxy or anylsulfonyl, each of which is substituted with lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alkox	no, lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyly or lower alkynyl, each of which is substitute with hydroxy; is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl, each of which is substitute with lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is acid residue; is acid residue; is anyl which is substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with arylor or or opperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is lower alkyloxy substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkylox		R ⁹	
no, lower alkylsulfonyloxy or anylsulfonyloxy; is lower alkylsulfonyloxy; is lower alkyl or lower alkynyl, each of which is substituted with hydroxy; is halogen; is lower alkylsulfonyl; is lower alkylsulfonyl; is lower alkylsulfonyloxy or anylsulfonyl, each of which is substituted with lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alkox	no, lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyly or lower alkynyl, each of which is substitute with hydroxy; is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl, each of which is substitute with lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is acid residue; is acid residue; is anyl which is substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with arylor or or opperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is lower alkyloxy substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkylox		R _b B3	
no, lower alkylsulfonyloxy or anylsulfonyloxy; is lower alkylsulfonyloxy; is lower alkyl or lower alkynyl, each of which is substituted with hydroxy; is halogen; is lower alkylsulfonyl; is lower alkylsulfonyl; is lower alkylsulfonyloxy or anylsulfonyl, each of which is substituted with lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alkox	no, lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyly or lower alkynyl, each of which is substitute with hydroxy; is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl, each of which is substitute with lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is acid residue; is acid residue; is anyl which is substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with arylor or or opperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is lower alkyloxy substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkylox	15	R ³	
no, lower alkylsulfonyloxy or anylsulfonyloxy; is lower alkylsulfonyloxy; is lower alkyl or lower alkynyl, each of which is substituted with hydroxy; is halogen; is lower alkylsulfonyl; is lower alkylsulfonyl; is lower alkylsulfonyloxy or anylsulfonyl, each of which is substituted with lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alkox	no, lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyly or lower alkynyl, each of which is substitute with hydroxy; is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl, each of which is substitute with lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is acid residue; is acid residue; is anyl which is substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with arylor or or opperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is lower alkyloxy substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkylox		R ²	
no, lower alkylsulfonyloxy or anylsulfonyloxy; is lower alkylsulfonyloxy; is lower alkyl or lower alkynyl, each of which is substituted with hydroxy; is halogen; is lower alkylsulfonyl; is lower alkylsulfonyl; is lower alkylsulfonyloxy or anylsulfonyl, each of which is substituted with lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkynyl, each of which is substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkylsulfonyloxy or anylsulfonyloxy; is anyl which is substituted with lower alkoxy substituted with amino; is anyl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alkox	no, lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyly or lower alkynyl, each of which is substitute with hydroxy; is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl, each of which is substitute with lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is acid residue; is acid residue; is anyl which is substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with arylor or or opperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with lower, is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is lower alkyloxy substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkylox		R ⁴	
with hydroxy; is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylthio, lower alkynyl, each of which is substituted with lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with phthalimido; is lower alkyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted wi	with hydroxy; is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl, is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylyloptionally substituted with hydroxy, amino, protected amino lower alkylsulfonyloxy or arylsulfonyloxy, amino, protected amino lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted aryl is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with acylamino or opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substitute			no, lower alkylsulfonyloxy or arylsulfonyloxy;
z5 is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; R2 is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is su	z5 is halogen; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyl; is lower alkylsulfonyl or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylsulfonyloxy arylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkyloptionally substituted with hydroxy, amino, protected amino lower alkyloptionally substituted with hydroxy, amino, protected amino lower alkyloptionally substituted with aryl or acyl; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is anyl which is substituted with lower alkoxy substituted with acylamino; is anyl which is substituted with lower alkoxy substituted with acylamino; is anyl which is substituted with lower alkoxy substituted with oxopiperidy carbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxy; iperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl; is anyl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl; is anyl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy; is anyl which is substituted with lower alkoxy substituted with lower alkoxy; is anyl which is substituted with lower alkoxy substituted with lower; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with formyl; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with cormyl; is anyl which is substituted with lower alkoxy substituted wit	20	R ⁴ p ,	
is lower alkylsulfonyl or arylsulfonyl; is lower alkylthio, lower alkylor lower alkynyl, each of which is substituted with lower alkylythio, lower alkylor lower alkynyl, each of which is substituted with phthalimido; is lower alkyl optionally substituted with hydroxy, amino, protected amino, lower alkylor lower alkyloryloxy; is a single bond or lower alkylene; is acid residue; is lower alkyloptionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkyloptionally substituted with aryl or acyl; is acid residue; is lower alkyloptionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with amino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with nydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which	R10 R4 R4 R4 R5	20		
is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with lower alkylsulfonyloxy; is lower alkylsulfonyloxy; is lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted with phthalimido; is lower alkyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidyl-carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which	is lower alkylthio, lower alkyl or lower alkynyl, each of which is substitute with lower alkylsulfonyloxy; is lower alkylthio, lower alkylsulfonyloxy; is lower alkylthio, lower alkylor or arylsulfonyloxy; is lower alkylthio, lower alkyl or lower alkynyl, each of which is substitute with phthalimido; is lower alkyl optionally substituted with hydroxy, amino, protected amino lower alkyloptionally substituted with hydroxy, amino, protected amino lower alkyloptionally substituted with hydroxy, amino, protected amino lower alkyloptionally substituted with aryl or acyl; is a single bond or lower alkyloptionally substituted with aryl or acyl; is anyl which is substituted with lower alkoxy substituted with acylamino; is anyl which is substituted with lower alkoxy substituted with acylamino; is anyl which is substituted with lower alkoxy substituted with oxopiperidy carbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxy, iperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl; is anyl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy; is anyl which is substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; i		_	
with lower alkylsulfonyloxy or arylsulfonyloxy; is lower alkylthio, lower alkyl or lower alkynl, each of which is substituted with phthalimido; is lower alkyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cormyl; is aryl which is substituted with lower alkoxy substituted with cormyl; is aryl which is substituted with lower alkoxy substituted with cormyl; is aryl which is substituted with lower alkoxy substituted with cormyl; is aryl which is substituted with lower alkoxy substituted with cormyl; is aryl which is substituted with lower alkoxy substituted with cormology.	with lower alkylsultonyloxy or arylsultonyloxy; is lower alkylthio, lower alkyl or lower alkynl, each of which is substitute with phthalimido; is lower alkyl optionally substituted with hydroxy, amino, protected amino lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is anyl which is substituted with lower alkoxy substituted with amino; is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidy carbonyl; is anyl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is anyl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is anyl which is substituted with lower alkoxy substituted with carboxy; is anyl which is substituted with lower alkoxy substituted with lower alky substituted with lower alky substituted with lower alky substituted with lower alky substituted with lower alkoxy substituted with lower alky substituted with lower alkoxy substituted with lower alky substituted with lower alky substituted with lower alkoxy substituted with lower alkoxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with hydroxy; is anyl which is substituted with lower alkoxy substituted with comply; is anyl which is substituted with lower alkoxy substituted with comply; is anyl which is substituted with lower alkoxy substituted with tetrazoly substituted anyl; is anyl which is substituted with lower alkoxy substituted with tetrazoly substituted anyl; is anyl which is substituted with lower alkoxy subst			is lower alkylthio, lower alkyl or lower alkynyl, each of which is substituted
with phthalimido; is lower alkyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; R2 is lower alkyl optionally substituted with aryl or acyl; R3 is aryl which is substituted with lower alkoxy substituted with acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidyl-carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyp-iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with cormyl; is aryl which is substituted with lower alkoxy substituted with cormyl; is aryl which is substituted with lower alkoxy substituted with cormyl; is aryl which is substituted with lower alkoxy substituted with cryano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	with phthalimido; is lower alkyl optionally substituted with hydroxy, amino, protected amino lower alkylsulfonyloxy or arylsulfonyloxy; Ed is a single bond or lower alkylene; is a single bond or lower alkylene; is a scid residue; is lower alkyl optionally substituted with aryl or acyl; is a sryl which is substituted with lower alkoxy substituted with amino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidy carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxygiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;			with lower alkylsulfonyloxy or arylsulfonyloxy;
Is lower alkyl optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyloxy or arylsulfonyloxy; Ed	Is lower alkyl optionally substituted with hydroxy, amino, protected amino lower alkylsulfonyloxy or arylsulfonyloxy; Is a single bond or lower alkylene; Is aryl which is substituted with lower alkoxy substituted with amino; Is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; Is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; Is aryl which is substituted with lower alkoxy substituted with formyl or or opiperidylcarbonyl; Is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; Is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; Is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; Is aryl which is substituted with lower alkoxy substituted with exterified carboxy; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted with formyl; Is aryl which is substituted with lower alkoxy substituted	25	R ⁴ _r	
lower alky/sulfonyloxy or ary/sulfonyloxy; is a single bond or lower alkylene; is a single bond or lower alkylene; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with amino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidyl-carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyp-iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted wi	lower alkylsulfonyloxy or arylsulfonyloxy; is a single bond or lower alkylene; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with amino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidy carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyg iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower; is aryl which is substituted with lower alkoxy substituted with lower; is aryl which is substituted with lower alkoxy substituted with lower; is aryl which is substituted with lower alkoxy substituted with lower; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lowe		D4	·
Ed is a single bond or lower alkylene; is acid residue; is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with amino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidyl-carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with lower alkylpimino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkylpimino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	Ed		K _s	
is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidyl-carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxypiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with lower alkoxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-sub-situted aryl;	is acid residue; is lower alkyl optionally substituted with aryl or acyl; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; is aryl which is substituted with lower alkoxy substituted with acylamino or substituted acylamino; R1 is aryl which is substituted with lower alkoxy substituted with oxopiperidy carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is alwayl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		Ea	
substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidyl- carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyp- iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox- opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperi- dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with esterified car- boxy; R¹ is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-sub- stituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; Ro is aryl which is substituted with lower alkoxy substituted with esterified carboxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;	30	Z ⁶	
substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidyl- carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyp- iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox- opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperi- dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with esterified car- boxy; R¹ is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-sub- stituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; Ro is aryl which is substituted with lower alkoxy substituted with esterified carboxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		$R_{\mathfrak{g}}^2$	
substituted acylamino; is aryl which is substituted with lower alkoxy substituted with oxopiperidyl- carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyp- iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox- opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperi- dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with esterified car- boxy; R¹ is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-sub- stituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	substituted acylamino; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; Ro is aryl which is substituted with lower alkoxy substituted with esterified carboxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		R'	
is aryl which is substituted with lower alkoxy substituted with oxopiperidyl- carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyp- iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox- opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperi- dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; Rn is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with esterified car- boxy; Rn is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-sub- stituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	is aryl which is substituted with lower alkoxy substituted with hydroxyn iperidylcarbonyl; R1 is aryl which is substituted with lower alkoxy substituted with hydroxyn iperidylcarbonyl; R2 is aryl which is substituted with lower alkoxy substituted with formyl or on opiperidylcarbonyl; R3 is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; R3 is aryl which is substituted with lower alkoxy substituted with carboxy; R3 is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R4 is aryl which is substituted with lower alkoxy substituted with hydroxy; R5 is aryl which is substituted with lower alkoxy substituted with hydroxy; R6 is aryl which is substituted with lower alkoxy substituted with formyl; R7 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		K _h	
carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyp- iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox- opiperidylcarbonyl; Rt is aryl which is substituted with lower alkoxy substituted with aminopiperi- dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; Rt is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with esterified car- boxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-sub- stituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	carbonyl; is aryl which is substituted with lower alkoxy substituted with hydroxyr iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; R1 is aryl which is substituted with lower alkoxy substituted with carboxy; R2 is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R3 is aryl which is substituted with lower alkoxy substituted with hydroxy; R4 is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;	35	R ¹	
iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; R R R R R R R R R R R R R R R R R R R	iperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with formyl or ox opiperidylcarbonyl; is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with esterified carboxy; is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		1	carbonyl;
is aryl which is substituted with lower alkoxy substituted with formyl or oxopiperidylcarbonyl; R¹ is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; R¹ is aryl which is substituted with lower alkoxy substituted with carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R¹ is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with hydroxy; R¹ is aryl which is substituted with lower alkoxy substituted with formyl; So R¹ is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	is aryl which is substituted with lower alkoxy substituted with formyl or ox opiperidylcarbonyl; R¹ is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; R¹ is aryl which is substituted with lower alkoxy substituted with carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R¹ is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with hydroxy; R¹ is aryl which is substituted with lower alkoxy substituted with formyl; saryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		R_j^1	
opiperidylcarbonyl; R1 is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; R1 is aryl which is substituted with lower alkoxy substituted with carboxy; R1 is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R2 is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R3 is aryl which is substituted with lower alkoxy substituted with hydroxy; R4 is aryl which is substituted with lower alkoxy substituted with formyl; S0 R4 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	opiperidylcarbonyl; R1 is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; R1 is aryl which is substituted with lower alkoxy substituted with carboxy; R1 is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R2 is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R3 is aryl which is substituted with lower alkoxy substituted with hydroxy; R4 is aryl which is substituted with lower alkoxy substituted with formyl; R5 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		D1	
is aryl which is substituted with lower alkoxy substituted with aminopiperidylcarbonyl or N-lower alkylpiperazinyl; R¹ is aryl which is substituted with lower alkoxy substituted with carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R¹ is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R¹ is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; So R¹ is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	is aryl which is substituted with lower alkoxy substituted with aminopiper dylcarbonyl or N-lower alkylpiperazinyl; R1 is aryl which is substituted with lower alkoxy substituted with carboxy; R1 is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R2 is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R3 is aryl which is substituted with lower alkoxy substituted with hydroxy; R4 is aryl which is substituted with lower alkoxy substituted with formyl; S50 R4 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;	40	κ _k	
dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R1 is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	dylcarbonyl or N-lower alkylpiperazinyl; is aryl which is substituted with lower alkoxy substituted with carboxy; R1 is aryl which is substituted with lower alkoxy substituted with lower alkylamino(lower)-alkoxycarbonyl; R2 is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R3 is aryl which is substituted with lower alkoxy substituted with hydroxy; R4 is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		R1:	
alkylamino(lower)-alkoxycarbonyl; R1 is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R1 is aryl which is substituted with lower alkoxy substituted with hydroxy; R3 is aryl which is substituted with lower alkoxy substituted with formyl; S0 R4 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R5 is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	alkylamino(lower)-alkoxycarbonyl; R ¹ is aryl which is substituted with lower alkoxy substituted with esterified cal boxy; R ¹ is aryl which is substituted with lower alkoxy substituted with hydroxy; R ¹ is aryl which is substituted with lower alkoxy substituted with formyl; so R ¹ is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R ¹ is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		•	dylcarbonyl or N-lower alkylpiperazinyl;
alkylamino(lower)-alkoxycarbonyl; R1 is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R1 is aryl which is substituted with lower alkoxy substituted with hydroxy; R3 is aryl which is substituted with lower alkoxy substituted with formyl; S0 R4 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R5 is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	alkylamino(lower)-alkoxycarbonyl; R ¹ is aryl which is substituted with lower alkoxy substituted with esterified cal boxy; R ¹ is aryl which is substituted with lower alkoxy substituted with hydroxy; R ¹ is aryl which is substituted with lower alkoxy substituted with formyl; so R ¹ is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R ¹ is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;		R _m ¹	
is aryl which is substituted with lower alkoxy substituted with esterified carboxy; R1 is aryl which is substituted with lower alkoxy substituted with hydroxy; R3 is aryl which is substituted with lower alkoxy substituted with formyl; S0 R4 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R5 is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	R ₀ is aryl which is substituted with lower alkoxy substituted with esterified can boxy; R ₀ R ₁ is aryl which is substituted with lower alkoxy substituted with hydroxy; is aryl which is substituted with lower alkoxy substituted with formyl; is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; is lower alkoxy substituted with amino;	4-	R _n ¹	
boxy; R1 is aryl which is substituted with lower alkoxy substituted with hydroxy; R3 is aryl which is substituted with lower alkoxy substituted with formyl; 50 R4 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R5 is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	boxy; R1 is aryl which is substituted with lower alkoxy substituted with hydroxy; R3 is aryl which is substituted with lower alkoxy substituted with formyl; 50 R7 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R3 is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; R4 is lower alkoxy substituted with amino;	45	p1	
R1 is aryl which is substituted with lower alkoxy substituted with hydroxy; R1 is aryl which is substituted with lower alkoxy substituted with formyl; 50 R1 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R1 is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	R1 is aryl which is substituted with lower alkoxy substituted with hydroxy; R2 is aryl which is substituted with lower alkoxy substituted with formyl; 50 R7 is aryl which is substituted with lower alkoxy substituted with cyano-substituted aryl; R3 is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; R4 is lower alkoxy substituted with amino;		N ₀	
stituted aryi; R ¹ is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	stituted aryr; R_s^1 is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; R_t^4 is lower alkoxy substituted with amino;		R _a 1	•
stituted aryi; R ¹ is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	stituted aryr; R_s^1 is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; R_t^4 is lower alkoxy substituted with amino;		R ^Y	
stituted aryi; R ¹ is aryl which is substituted with lower alkoxy substituted with tetrazolyl-	stituted aryr; R_s^1 is aryl which is substituted with lower alkoxy substituted with tetrazoly substituted aryl; R_t^4 is lower alkoxy substituted with amino;	50	R _r †	
substituted aryl;	substituted aryl; R^4_t is lower alkoxy substituted with amino;			
Substituted drys;	R _t ⁴ is lower alkoxy substituted with amino;		K's	•
R ⁴ is lower alkoxy substituted with amino;	Ţ		R4:	
is lower alkoxy substituted with guanidino;	→ ¬¬ is lower alkoxy substituted with guantomo;	55	R ⁴	· · · · · · · · · · · · · · · · · · ·
P ^T is anyl which is substituted with lower alknyy substituted with protected ami-			R _t	is aryl which is substituted with lower alkoxy substituted with protected ami-
· ·	no. N-protected amino (lower) alkanovlamino. N-protected pinerazinylea:			
no, N-protected amino (lower) alkanoylamino, N-protected piperazinylcar-				conyr or in-protected guarilatilo;
· · · · · · · · · · · · · · · · · · ·	no, re-protected armino (lower) aixanoyiamino, re-protected piperazinyida			bonyl or N-protected guanidino;
no, N-protected amino (lower) alkanoylamino, N-protected piperazinylcar-				

5	R_u^1	is aryl which is substituted with lower alkoxy substituted with amino, amino (lower)alkanoylamino, piperazinylcarbonyl or guanidino;
	R_{ν}^{1}	is aryl which is substituted with lower alkoxy substituted with phenoxycar- bonylamino;
	R _w ¹	is aryl which is substituted with lower alkoxy substituted with N-lower alkyl- piperazinylcarbonylamino, dimethylaminopiperidylcarbonylamino, car-
	R^3_{e}	bamoylamino or dimethylcarbamoylamino; and is lower alkoxy which is substituted with carbamoyl optionally substituted with lower alkyl.
	e	with lower alkyl.

10

15

20

35

[0011] In the above and subsequent description of the present specification, suitable examples of the various definitions to be included within the scope of the invention are explained in detail in the following.

[0012] The term "lower" is intended to mean a group having 1 to 6 carbon atom(s), unless otherwise provided.

[0013] The "higher" is intended to mean 7 to 20 carbon atoms, unless otherwise provided.

[0014] The lower moiety in the terms "cyclo(lower)alkyl" and "cyclo(lower)alkyloxy" is intended to mean a group having 3 to 6 carbon atoms.

[0015] The lower moiety in the terms "lower alkenyl", "lower alkenyloxy" and "lower alkynyl" is intended to mean a group having 2 to 6 carbon atoms.

[0016] The term "alkoxy" may included lower alkoxy and higher alkoxy.

[0017] Suitable "lower alkoxy" and lower alkoxy moiety in the terms "acyl(lower)alkoxy", "acyl(lower)alkoxyimino", "esterified carboxy(lower)alkoxyimino", "carboxy(lower)alkoxyimino", "N-containing heterocycliccarbonyl(lower)alkoxyimino", "carbamoyl (lower)alkoxyimino", "lower alkoxyimino", "lower alkoxycarbonyl" and "ar (lower)alkoxy" may be straight or branched C₁-C₆ alkoxy such as methoxy, ethoxy, propoxy, isopropoxy, methylpropoxy, butoxy, isobutoxy, tert-butoxy, pentyloxy, hexyloxy or the like.

25 [0018] Suitable "higher alkoxy" may be straight or branched C₇-C₂₀ alkoxy such as heptyloxy, octyloxy, nonyloxy, decyloxy, undecyloxy, tridecyloxy, tetradecyloxy, pentadecyloxy, hexadecyloxy, heptadecyloxy, octadecyloxy, nonadecyloxy, eicosyloxy, methylheptyloxy, methyloctyloxy, methylnonyloxy, ethylheptyloxy, ethylnonyloxy, ethylheptyloxy or the like, in which preferable one is heptyloxy.

[0019] Suitable "lower alkyl" and lower alkyl moiety in the terms "acyl(lower)alkylsulfinyl", "acyl(lower)alkylsulfonyl", "lower alkylamino(lower)alkylcarbamoyloxy", "acyl(lower)alkylamino", "N-protected-acyl(lower)-alkylamino", "N-acyl (lower)alkyl-N-lower alkylamino", "lower alkylhydrazinocarbonylamino", "esterified carboxy(lower)alkylamino", "N-protected-esterified carboxy(lower)alkylamino". "N-esterified carboxy(lower)alkyl-N-lower alkylamino", "carboxy(lower) alkylamino", "N-protected-carboxy(lower)-alkylamino", "N-carboxy(lower)alkyl-N-lower alkylamino", "lower alkylcarbamoyl", "lower alkylcarbamoyl(lower)alkanoyloxy", "lower alkylcarbamoyl(lower)alkoxyimino", "lower alkylthio", "Nprotected-(substituted or unsubstituted N-containing heterocyclic)carbonyl (lower)alkylamino", "N-protected-carbamoyl(lower)alkylamino", "N-protected-substituted or unsubstituted lower alkylcarbamoyl(lower)alkylamino", "N-(substituted or unsubstituted N-containing heterocyclic)carbonyl(lower)alkyl-N-lower alkylamino", "N-carbamoyl(lower) alkyl-N-lower alkylamino", "N-lower alkylcarbamoyl-N-lower alkylamino", "lower alkylcarbamoyl-(lower)alkoxyimino", "1-hydroxy(lower)alkyl", "1-(lower alkyl)amino(lower) alkyl", "mono(lower)alkylamino", "acyl(lower)alkyl", "di(lower) alkylamino", "lower alkylsulfinyl", "lower alkylsulfonyl", "lower alkylamino", "amino(lower)alkylamino", "N-protected amino(lower)alkylamino", "lower alkylsulfonyloxy", "amino(lower)alkylsulfonyl", "N-protected amino(lower)alkylsulfonyl", "lower alkylaminosulfonyl", "amino(lower)alkylsulfinyl" and "N-protected amino(lower)alkylsulfinyl" may be straight or branched C1-C6 alkyl such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, ethylpropyl, hexyl or the like.

[0020] Suitable "cyclo(lower)alkyl" and cyclo(lower)alkyl moiety in the term "cyclo(lower)alkyloxy" may be cyclo(C₃-C₆)alkyl such as cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, in which preferable one is cyclopentyl or cyclohexyl. [0021] Suitable "lower alkenyl" and lower alkenyl moiety in the term "lower alkenyloxy" may be straight and branched C₂-C₆ alkenyl such as ethenyl, propenyl, pentenyl, isopropenyl, butenyl, hexenyl or the like, in which preferable one is ethenyl, propenyl, pentenyl or hexenyl.

[0022] Suitable "lower alkynyl" may be straight and branched C₂-C₆ alkynyl such as ethynyl, propargyl, butynyl or the like, in which preferable one is butynyl.

[0023] Suitable "aryl" and aryl moiety in the terms "haloaryl", "arylsulfonyl", "acyl-substituted aryl", "ar(lower)alkoxy", "substituted ar(lower)alkoxy" and "arylsulfonyloxy" may be phenyl, naphthyl, phenyl substituted with lower alkyl [e.g. tolyl, xylyl, mesityl, cumenyl, di(tert-butyl)phenyl, etc.] and the like, in which preferable one is phenyl, tolyl or xylyl.

[0024] Suitable "substituted aryl" may be aryl substituted with suitable substituent(s) such as acyl, substituted acyl, N-protected piperazinylsulfonyl, piperazinylsulfonyl, N-lower alkylpiperazinylsulfonyl, hydroxy(lower)alkyl, a heterocyclic(lower)alkyl, halogen, nitro, amino, lower alkylamino, a heterocyclic group [e.g. thiazolyl, oxazolyl, tetrazolyl, oxazolinyl, pyridyl, pyrimidinyl, pyrrolyl optionally substituted with lower alkyl and cyano, etc.], cyano, lower alkoxy or the

like, in which preferable one for the substituent of alkoxy for R1 is aryl substituted with

10

N-methylpiperazinylsulfonyl, N-t-butoxycarbonylpiperazinylsulfonyl, piperazinylsulfonyl, carboxy, esterified carboxy, N-lower alkylpiperazinylcarbonyl, lower alkanoyl, hydroxy(lower)alkyl, N-lower alkylpiperazinyl(lower)alkyl, thiazolyl, oxazolyl, tetrazolyl, oxazolyl, pyrimidinyl, pyrrolyl substituted with lower alkyl and cyano, cyano, lower alkoxy, lower alkylaminopiperidylcarbonyl, and preferable one for R⁴ is aryl substituted with halogen, nitro, amino, lower alkylamino or lower alkoxy.

[0025] Suitable "halogen" and halo moiety in the term "haloaryl" may be fluorine, chlorine, bromine and iodine, in which preferable one is chlorine or bromine.

[0026] Suitable "lower alkylamino" and lower alkylamino moiety in the terms "lower alkylamino(lower)-alkylcarbamoy-loxy", "acyl(lower)alkylamino", "esterified carboxy(lower)alkylamino", "carboxy(lower)alkylamino", "N-containing hete-rocycliccarbonyl(lower)alkylamino", "carbamoyl(lower)alkylamino", "lower alkylcarbamoyl(lower)alkylamino" "amino (lower)alkylamino", "N-protected amino(lower)alkylamino", "lower alkylaminosulfonyl" and "lower alkylaminopiperidyl-carbonyl" may be mono or di(lower alkyl)amino such as methylamino, ethylamino, propylamino, isopropylamino, butylamino, tert-butylamino, isobutylamino, pentylamino, hexylamino, dimethylamino, diethylamino, dipropylamino, dibutylamino, disopropylamino, dipentylamino, dihexylamino, N-methylethylamino or the like, in which preferable one is methylamino, dimethylamino or diethylamino.

[0027] Suitable "1-hydroxy(lower)alkyl" may be 1-hydroxy-(C₁-C₆)alkyl such as hydroxymethyl, 1-hydroxyethyl, 1-hydroxyethyl, 1-hydroxybutyl, 1-hydroxy-3-methylpropyl or the like, in which preferable one is hydroxymethyl or 1-hydroxyethyl.

[0028] Suitable "1-(lower alkyl)amino(lower)alkyl" may be 1-mono or di(C₁-C₆ alkyl)amino(C₁-C₆)alkyl such as methylaminomethyl, dimethylaminomethyl, 1-methylaminoethyl, 1-dimethylaminoethyl, ethylaminomethyl, 1-ethylaminoethyl or the like, in which preferable one is methylaminomethyl, dimethylaminomethyl, 1-methylaminoethyl or 1-dimethylaminoethyl.

[0029] Suitable "heterocyclic group" may be one containing at least one hetero atom selected from nitrogen, sulfur and oxygen atom, and may include saturated or unsaturated, monocyclic or polycyclic heterocyclic group, and preferable heterocyclic group may be N-containing heterocyclic group such as unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, pyrazolyl, pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazolyl [e.g. 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl, etc.], tetrazolyl [e.g. 1H-tetrazolyl, 2H-tetrazolyl, etc.], etc.;

saturated 3 to 7-membered heteromonocyclic group containing 1 to 4 nitrogen atoms [e.g. pyrrolidinyl, imidazolidinyl, piperidyl, piperazinyl, homopiperazinyl, etc.]; unsaturated condensed heterocyclic group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, imidazopyridyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g. tetrazolo[1,5-b]pyridazinyl, etc.], etc.; unsaturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, pyranyl, furyl, etc.;

saturated 3 to 6-membered heteromonocyclic group containing an oxygen atom, for example, 1H-tetrahydropyranyl, tetrahydrofuranyl, etc.; unsaturated, 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms, for example, thienyl, etc.; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, isoxazolyl, oxadiazolyl [e.g. 1,2,4-oxadiazolyl, 1,3,4-oxadiazolyl, 1,2,5-oxadiazolyl, etc.], oxazolinyl [e.g. 2-oxazolinyl, etc.], etc.; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. morpholinyl, etc.];

unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g. benzofurazanyl, benzoxazolyl, benzoxadiazolyl, etc.]; unsaturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl [e.g., 1,2,4-thiadiazolyl, 1,3,4-thiadiazolyl, 1,2,5-thiadiazolyl, etc.], etc.;

saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl, etc.];

unsaturated condensed heterocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., benzothiazolyl, benzothiadiazolyl, etc.];

unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms [e.g. benzofuranyl, benzodioxolyl, etc.] and the like

[0030] Said "heterocyclic group" may be substituted with lower alkyl as exemplified above or oxo, in which preferable one is N-methylpiperazinyl, tetrazolyl, morpholinyl, pyrrolidinyl, N-methylpiperidyl, N-methylpiperazinyl, 1H-tetrahydropyranyl, thienyl, pyridyl, piperidyl or oxopiperidyl.

[0031] Suitable acyl and acyl moiety in the terms "acyl (lower)alkylsulfinyl", "acyl(lower)alkylsulfonyl", "acyloxy", "acylamino", "acyl(lower)alkanoyloxy", "acyl(lower)alkoxyimino", "acyl(lower)alkylamino", "N-protected-acyl(lower)alkylamino", "N-acyl(lower)alkyl-N-lower alkylamino" and "acyl(lower)alkoxy" may be carboxy, esterified carboxy, carbamoyl, lower alkylcarbamoyl, lower alkanoyl, aroyl, a heterocycliccarbonyl and the like.

[0032] The esterified carboxy may be substituted or unsubstituted lower alkoxycarbonyl [e.g. methoxycarbonyl,

ethoxycarbonyl, propoxycarbonyl, butoxycarbonyl, tert-butoxycarbonyl, hexyloxycarbonyl, 2-iodoethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, dimethylaminopropoxycarbonyl, dimethylaminoethoxycarbonyl, etc.], substituted or unsubstituted aryloxycarbonyl [e.g. phenoxycarbonyl, 4-nitrophenoxycarbonyl, 2-naphthyloxycarbonyl, etc.], substituted or unsubstituted ar(lower)alkoxycarbonyl [e.g. benzyloxycarbonyl, phenethyloxycarbonyl, benzhydryloxycarbonyl, 4-nitrobenzyloxycarbonyl, etc.], N-containing heterocyclicoxycarbonyl [e.g. N-methylpiperidyloxycarbonyl, etc.] and the like, in which preferable one is lower alkoxycarbonyl, N-methylpiperidyloxycarbonyl, dimethylaminopropoxycarbonyl or dimethylaminoethoxycarbonyl.

[0033] The lower alkylcarbamoyl may be mono or di(lower alkyl)carbamoyl such as methylcarbamoyl, ethylcarbamoyl, propylcarbamoyl, dimethylcarbamoyl, diethylcarbamoyl, N-methyl-N-ethylcarbamoyl or the like.

[0034] The lower alkanoyl may be substituted or unsubstituted C₁-C₆ alkanoyl such as formyl, acetyl, propionyl, butyryl, isobutyryl, valeryl, isovaleryl, pivaloyl, hexanoyl, trifluoroacetyl or the like, in which preferable one is formyl, acetyl or butyryl.

[0035] The aroyl may be benzoyl, naphthoyl, toluoyl, di(tert-butyl)benzoyl and the like, in which preferable one is benzoyl.

[0036] The heterocyclic moiety in the terms "a heterocycliccarbonyl", "heterocyclicoxycarbonylamino" and "heterocyclicsulfonyl" may be one mentioned above as a heterocyclic group.

[0037] Preferred "a heterocycliccarbonyl" may be N-containing heterocycliccarbonyl.

20

25

35

[0038] The "N-containing heterocycliccarbonyl" may be one containing at least one nitrogen atom in heterocyclic group mentioned above, in which preferable one is N-(lower alkyl)piperazinylcarbonyl (e.g. N-methylpiperazinylcarbonyl, etc.), N-(lower alkyl)-homopiperazinylcarbonyl (e.g. N-methylhomopiperazinylcarbonyl, piperazinylcarbonyl, pyrrodinylcarbonyl, piperidylcarbonyl, morpholinocarbonyl, lower alkylpiperidylcarbonyl (e.g. methylpiperidylcarbonyl, etc.) or oxopiperidylcarbonyl.

[0039] Suitable "substituted acyl" may be carbamoyl substituted with amino, a heterocyclic group [e.g. N-(lower alkyl) piperazinyl, pyridyl, etc.], lower alkylsulfonyl or arylsulfonyl, substituted lower alkylcarbamoyl [e.g. N-lower alkylamino-N-lower alkylcarbamoyl, pyridyl(lower)alkylcarbamoyl, morpholino(lower)alkylcarbamoyl, bis[hydroxy(lower)alkylcarbamoyl, carbamoyl, lower alkylcarbamoyl, lower alkylcarbamoyl, lower alkylcarbamoyl, N-lower alkylcarbamoyl, etc.], substituted N-containing heterocycliccarbonyl [e.g. trifluoroacetylpiperazinylcarbonyl, pyridylpiperazinylcarbonyl, dimethylaminopiperidylcarbonyl, diethylaminopiperidylcarbonyl, carbamoylpyrrolidinylcarbonyl, dimethylaminopiperazinylcarbonyl, hydroxyethoxyethylpiperazinylcarbonyl, pyrrolidinylcarbonylpiperazinylcarbonyl, etc.], N-protected-N-containing heterocycliccarbonyl [e.g. N-t-butoxycarbonylpiperidylcarbonyl, N-t-butoxycarbonylpiperazinylcarbonyl, etc.], N-protected amino(lower)alkanoyl, amino (lower)alkanoyl, benzyloxybenzoyl, and the like.

[0040] "N-Protective group" in "protected amino" may be common N-protective group such as substituted or unsubstituted lower alkanoyl [e.g. formyl, acetyl, propionyl, trifluoroacetyl, etc.], phthaloyl, lower alkoxycarbonyl [e.g. tert-butoxycarbonyl, tert-amyloxycarbonyl, etc.], substituted or unsubstituted aralkyloxycarbonyl [e.g. benzyloxycarbonyl, p-nitrobenzyloxycarbonyl, etc.], 9-fluorenylmethoxycarbonyl, substituted or unsubstituted arenesulfonyl [e.g. benzenesulfonyl, tosyl, etc.], nitrophenylsulfenyl, aralkyl [e.g. trityl, benzyl, etc.] or the like, in which preferable one is phthaloyl, tert-butoxycarbonyl or 9-fluorenylmethoxycarbonyl.

[0041] "N-protective group" in "N-protected guanidino" may be common N-protective group such as lower alkoxy-carbonyl [e.g. tert-butoxycarbonyl, etc.] or the like.

[0042] Suitable "acid residue" may be halogen [e.g. fluoro, chloro, bromo, iodo], arenesulfonyloxy [e.g. benzenesulfonyloxy, tosyloxy, etc.], alkanesulfonyloxy [e.g. mesyloxy, ethanesulfonyloxy, etc.], and the like, in which preferable one is halogen.

[0043] Suitable "lower alkylsulfonyl" and lower alkylsulfonyl moiety in the term "lower alkylsulfonyloxy" may be (C₁-C₆)alkylsulfonyl such as methylsulfonyl, ethylsulfonyl, propylsulfonyl or the like, in which preferable one is methylsulfonyl.

[0044] Suitable "lower alkylene" may be straight or branched C_1 - C_6 alkylene such as methylene, ethylene, propylene or the like, in which preferable one is methylene or ethylene.

[0045] Suitable "lower alkenylene" may be straight or branched C₂-C₆ alkenylene such as ethenylene, propenylene or the like, in which preferable one is ethenylene.

[0046] The substituent(s) on aryl for R¹ may be plural and in such case the substituents may be the same or different. [0047] Preferred "aryl" for R¹ may be phenyl or phenyl substituted with lower alkyl.

[0048] Preferred "cyclo(lower)alkyl" for R1 may be cyclopentyl.

[0049] Preferred compound (I) is one having aryl (more preferably phenyl or phenyl substituted with lower alkyl) which may be substituted with lower alkoxy optionally substituted with acylamino or acyl for R¹, lower alkyl for R², hydrogen, lower alkyl or lower alkoxy for R³, hydroxy, or lower alkoxy, lower alkylthio or lower alkyl, each of which may be substituted with hydroxy, aryl, substituted aryl, acyl, amino, lower alkylamino, acylamino, protected amino or a heterocyclic group for R⁴, hydrogen, lower alkyl, lower alkoxy or halogen for R⁵, NH for A,

_U__

5 for E, -CH=CH- for X, and CH for Y.

[0050] More preferred compound (I) is one having phenyl or tolyl, each of which is substituted with lower alkoxy substituted with N-(lower alkyl)piperazinylcarbonyl for R¹, lower alkyl for R², hydrogen, lower alkyl or lower alkoxy for R³, lower alkoxy substituted with amino for R⁴, hydrogen for R⁵, NH for A,

10

15

이 --

for E, -CH=CH- for X and CH for Y.

[0051] Most preferred compound (I) is one having tolyl which is substituted with lower alkoxy substituted with N-(lower alkyl)piperazinylcarbonyl for R¹, lower alkyl for R², lower alkoxy for R³, lower alkoxy substituted with amino for R⁴, hydrogen for R⁵, NH for A,

20

30

35

45

-ë-

for E, -CH=CH- for X and CH for Y.

[0052] Suitable pharmaceutically acceptable salts of the object compound (I) are conventional non-toxic salts and include an acid addition salt such as an inorganic acid addition salt [e.g. hydrochloride, hydrobromide, sulfate, phosphate, etc.], an organic acid addition salt [e.g. formate, acetate, trifluoroacetate, maleate, tartrate, methanesulfonate, benzenesulfonate, toluenesulfonate, etc.], a metal salt such as an alkali metal salt [e.g. sodium salt, potassium salt, etc.] and an alkaline earth metal salt [e.g. calcium salt, magnesium salt, etc.] and the like.

[0053] The processes for preparing the object compound (I) are explained in detail in the following.

Process 1

[0054] The object compound (Ia) or its salt can be prepared by reacting a compound (II) or its salt with a compound (III) or its reactive derivative at the carboxy group or the sulfo group, or a salt thereof.

[0055] Suitable salts of the compounds (Ia) and (II) may be the same as those exemplified for the compound (I).

[0056] Suitable salts of the compound (III) and its reactive derivative at the carboxy group or the sulfo group may be base salts as exemplified for the compound (I).

[0057] Suitable reactive derivative at the carboxy group or the sulfo group of the compound (III) may include an acid halide, an acid anhydride containing intramolecular, intermolecular and a mixed ones, an activated amide, an activated ester, and the like. Suitable examples of the reactive derivatives may be an acid chloride; an acid azide; a mixed acid anhydride with an acid such as substituted phosphoric acid [e.g. dialkylphosphoric acid, phenylphosphoric acid, diphenylphosphoric acid, dibenzylphosphoric acid, halogenated phosphoric acid, etc.], dialkylphosphorous acid, sulfurous acid, thiosulfuric acid, sulfuric acid, sulfonic acid [e.g. methanesulfonic acid, etc.], aliphatic carboxylic acid [e.g. acetic acid, propionic acid, butyric acid, isobutyric acid, pivalic acid, pentanoic acid, isopentanoic acid, 2-ethylbutyric acid, trichloroacetic acid, etc.] or aromatic carboxylic acid [e.g. benzoic acid, etc.]; a symmetrical acid anhydride; an activated amide with imidazole, 4-substituted imidazole, dimethylpyrazole, triazole or tetrazole; or an activated ester [e.g. cyanomethyl ester, methoxymethyl ester, dimethyliminomethyl [(CH₃)₂N=CH-] ester, vinyl ester, propargyl ester, p-nitrophenyl ester, 2,4-dinitrophenyl ester, trichlorophenyl ester, pentachlorophenyl ester, mesylphenyl ester, phenylazophenyl ester, phenyl thioester, p-nitrophenyl thioester, p-cresyl thioester, carboxymethyl thioester, pyridyl ester, piperidyl ester, 8-quinolyl thioester, etc.] or an ester with an N-hydroxy compound [e.g. N,N-dimethylhydroxylamine, 1-hydroxy-2-(1H)-pyridone, N-hydroxysuccinimide, N-hydroxyphthalimide, 1-hydroxy-IH-benzotriazole, etc.], and the like. These reactive derivatives can optionally be selected from them according to the kind of the compound (III) to be used.

[0058] The reaction is usually carried out in a conventional solvent such as water, alcohol [e.g. methanol, ethanol, etc.], acetone, dioxane, acetonitrile, chloroform, methylene chloride, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvent which does not adversely influence the reaction. These conventional solvents may also be used in a mixture with water.

[0059] In this reaction, when the compound (III) is used in a free acid form or its salt form, the reaction is preferably

carried out in the presence of a conventional condensing agent such as N,N'-dicyclohexylcarbodiimide; N-cyclohexyl-N'-morpholinoethylcarbodiimide; N-cyclohexyl-N'-(4-diethylaminocyclohexyl)carbodiimide; N,N'-diethylcarbodiimide, N,N'-diisopropylcarbodiimide; N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide; N,N'-carbonylbis-(2-methylimidazole); pentamethyleneketene-N-cyclohexylimine; diphenylketene-N-cyclohexylimine; ethoxyacetylene; 1-alkoxy-1-chloroethylene; trialkyl phosphite; ethyl polyphosphate; isopropyl polyphosphate; phosphorus oxychloride (phosphoryl chloride); phosphorus trichloride; diphenylphosphoryl azide; diphenyl chlorophosphate; diphenylphosphinic chloride; thionyl chloride; oxalyl chloride; lower alkyl haloformate [e.g. ethyl chloroformate, isopropyl chloroformate, etc.]; triphenylphosphine; 2-ethyl-7-hydroxybenzisoxazolium salt; 2-ethyl-5-(m-sulfophenyl)isoxazolium hydroxide intramolecular salt; 1-(p-chlorobenzenesulfonyloxy)-6-chloro-1H-benzotriazole; so-called Vilsmeier reagent prepared by the reaction of N,N-dimethylformamide with thionyl chloride, phosgene, trichloromethyl chloroformate, phosphorus oxychloride, etc.; or the like.

[0060] The reaction may also be carried out in the presence of an inorganic or organic base such as an alkali metal bicarbonate, tri(lower)alkylamine, pyridine, 4-dimethylaminopyridine, N-(lower)alkylmorpholine, N,N-di(lower)alkylbenzylamine, or the like.

[0061] The reaction temperature is not critical, and the reaction is usually carried out under cooling to heating.

Process 2

10

15

20

25

[0062] The object compound (I) or its salt can be prepared by reacting a compound (IV) or its salt with a compound (V) or its reactive derivative at the carboxy group or a salt thereof.

[0063] Suitable salts of the compounds (IV) and (V) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

[0064] This reaction can be carried out in substantially the same manner as <u>Process 1</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 1.

Process 3

[0065] The object compound (Ic) or its salt can be prepared by subjecting a compound (Ib) or its salt to deesterification reaction.

[0066] Suitable salt of the compound (Ic) may be the same as those exemplified for the compound (I).

[0067] Suitable salt of the compound (lb) may be an acid addition salt as exemplified for the compound (l).

[0068] The reaction is carried out in accordance with a conventional method such as hydrolysis, reduction or the like.

[0069] The hydrolysis is preferably carried out in the presence of a base or an acid including Lewis acid. Suitable base may include an inorganic base and an organic base such as an alkali metal [e.g. lithium, sodium, potassium, etc.], an alkaline earth metal [e.g. magnesium, calcium, etc.], the hydroxide or carbonate or bicarbonate thereof, trialkylamine [e.g. trimethylamine, triethylamine, etc.], picoline, 1,5-diazabicyclo[4.3.0]-non-5-ene, 1,4-diazabicyclo [2.2.2]octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, or the like. Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.], an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, hydrolodic acid, sulfuric acid, etc.] and Lewis acid [e.g. boron tribromide, etc.].

[0070] The reaction is usually carried out in a solvent such as water, an alcohol [e.g. methanol, ethanol, etc.], xylene, diethylene glycol monomethyl ethyl, methylene chloride, tetrahydrofuran, a mixture thereof or any other solvent which does not adversely influence the reaction. A liquid base or acid can be also used as the solvent.

[0071] The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

[0072] The reduction can be applied preferably for elimination of the ester moiety such as 4-nitrobenzyl, 2-iodoethyl, 2,2,2-trichloroethyl, or the like. The reduction method applicable for the elimination reaction may include chemical reduction and catalitic reduction.

[0073] Suitable reducing agents to be used in chemical reduction are a combination of metal [e.g. tin, zinc, iron, etc.] or metallic compound [e.g. chromium chloride, chromium acetate, etc.] and an organic or inorganic acid [e.g. formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.].

[0074] Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts [e.g. platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.], palladium catalyst [e.g. spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.], nickel catalyst [e.g. reduced nickel, nickel oxide, Raney nickel, etc.], cobalt catalyst [e.g. reduced cobalt, Raney cobalt, etc.], iron catalyst [e.g. reduced iron, Raney iron, etc.], copper catalyst [e.g. reduced copper, Raney copper, Ullman copper, etc.] or the like.

[0075] The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, an alcohol [e.g. methanol, ethanol, propanol, etc.], N,N-dimethylformamide, or a mixture thereof. Addi-

tionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent. Further, a suitable solvent to be used in catalytic reduction may be the above-mentioned solvent, and other conventional solvent such as diethyl ether, dioxane, tetrahydrofuran, etc., or a mixture thereof.

[0076] The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling to warming.

[0077] In this reaction, in case that the compound (lb) having lower alkyl substituted with esterified carboxy for R² and/or acyloxy, lower alkoxy substituted with esterified carboxy, lower alkylthio substituted with esterified carboxy, or lower alkyl substituted with esterified carboxy for R⁴ is used as a starting compound, the compound (lc) having lower alkyl substituted with carboxy for R² and/or hydroxy, lower alkoxy substituted with carboxy, lower alkyl substituted with carboxy, or lower alkyl substituted with carboxy for R⁴ may be obtained according to reaction condition. This case is included within the scope of this reaction.

Process 4

10

[0078] The object compound (le) or its salt can be prepared by subjecting a compound (ld) or its salt to deesterification

[0079] Suitable salt of the compound (Id) may be an acid addition salt as exemplified for the compound (I).

[0080] Suitable salt of the compound (le) may be the same as those exemplified for the compound (l).

[0081] This reaction can be carried out in substantially the same manner as hydrolysis in <u>Process 3</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in hydrolysis in Process 3.

[0082] In this reaction, in case that the compound (Id) having aryl, haloaryl, cyclo(lower)alkyl or a heterocyclic group, each of which is substituted with esterified carboxy; lower alkenyl substituted with esterified carboxy; lower alkyl substituted with esterified carboxy, esterified carboxy(lower)alkanoyloxy or esterified carboxy(lower)alkoxyimino; lower alkylthio substituted with esterified carboxy; alkoxy substituted with esterified carboxy(lower)alkylamino, N-protected-esterified carboxy(lower)alkylamino, N-esterified carboxy(lower)alkyl-N-lower alkylamino, esterified carboxy or esterified carboxy(lower)alkoxyimino; or lower alkenyloxy substituted with esterified carboxy for R¹ and/or lower alkyl substituted with esterified carboxy for R² is used as a starting compound, the compound (Ie) having aryl, haloaryl, cyclo(lower)alkyl or a heterocyclic group, each of which is substituted with carboxy; lower alkenyl substituted with carboxy; lower alkyl substituted with carboxy (lower)alkoxyimino; lower alkylthio substituted with carboxy; alkoxy substituted with carboxy-substituted aryl, carboxy-substituted pyridyl, carboxy(lower)-alkylamino, N-protected-carboxy(lower)alkylamino, N-carboxy(lower)alkyl-N-lower alkylamino, carboxy or carboxy(lower)alkoxyimino; or lower alkenyloxy substituted with carboxy for R¹ and/or lower alkyl substituted with carboxy for R² may be obtained according to reaction condition. This case is included within the scope of this reaction.

Process 5

35

[0083] The object compound (Ig) or its salt can be prepared by subjecting a compound (If) or its salt to elimination reaction of the N-protective group.

[0084] Suitable salts of the compounds (If) and (Ig) may be acid addition salts as exemplified for the compound (I).

[0085] This reaction is carried out in accordance with a conventional method such as hydrolysis, reduction or the like.

[0086] The hydrolysis is preferably carried out in the presence of a base or an acid including Lewis acid.

[0087] Suitable base may include an inorganic base and an organic base such as an alkali metal [e.g. sodium, potassium, etc.], an alkaline earth metal [e.g. magnesium, calcium, etc.], the hydroxide or carbonate or bicarbonate thereof, hydrazine, alkylamine [e.g. methylamine, trimethylamine, triethylamine, etc.], picoline, 1,5-diazabicyclo[4.3.0] non-5-ene, 1,4-diazabicyclo[2.2.2]octane, 1,8-diazabicyclo[5.4.0]undec-7-ene, or the like.

[0088] Suitable acid may include an organic acid [e.g. formic acid, acetic acid, propionic acid, trichloroacetic acid, trifluoroacetic acid, etc.], an inorganic acid [e.g. hydrochloric acid, hydrobromic acid, sulfuric acid, hydrogen chloride, hydrogen bromide, hydrogen fluoride, etc.] and an acid addition salt compound [e.g. pyridine hydrochloride, etc.].

[0089] The elimination using trihaloacetic acid [e.g. trichloroacetic acid, trifluoroacetic acid, etc.] or the like is preferably carried out in the presence of cation trapping agents [e.g. anisole, phenol, etc.].

[0090] The reaction is usually carried out in a solvent such as water, an alcohol [e.g. methanol, ethanol, etc.], methylene chloride, chloroform, tetrachloromethane, tetrahydrofuran, a mixture thereof or any other solvent which does not adversely influence the reaction. A liquid base or acid can be also used as the solvent. The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

[0091] The reduction method applicable for the elimination reaction may include chemical reduction and catalytic reduction.

[0092] Suitable reducing agents to be used in chemical reduction are a combination of metal [e.g. tin, zinc, iron, etc.] or metallic compound [e.g. chromium chloride, chromium acetate, etc.] and an organic or inorganic acid [e.g. formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.]. [0093] Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts [e.g. platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.], palladium catalysts [e.g. spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.], nickel catalysts [e.g. reduced nickel, nickel oxide, Raney nickel, etc.], cobalt catalysts [e.g. reduced cobalt, Raney cobalt, etc.], iron catalysts [e.g. reduced iron, Raney iron, etc.], copper catalysts [e.g. reduced copper, Raney copper, Ullman copper, etc.] and the like.

[0094] In case that the N-protective group is benzyl, the reduction is preferably carried out in the presence of a combination of palladium catalysts [e.g. palladium black, palladium on carbon, etc.] and formic acid or its salt [e.g. ammonium formate, etc.].

[0095] The reduction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, methanol, ethanol, propanol, N,N-dimethylformamide, or a mixture thereof. Additionally, in case that the above-mentioned acids to be used in chemical reduction are in liquid, they can also be used as a solvent. Further, a suitable solvent to be used in catalytic reduction may be the above-mentioned solvent, and other conventional solvent such as diethyl ether, dioxane, tetrahydrofuran, etc. or a mixture thereof.

[0096] The reaction temperature of this reduction is not critical and the reaction is usually carried out under cooling to heating.

[0097] In this reaction, in case that the compound (If) having aryl which is substituted with alkoxy substituted with protected amino, N-protected amino (lower)alkanoylamino, N-protected piperazinylcarbonyl or N-protected guanidino for R¹ is used as a starting compound, the compound (Ig) having aryl which is substituted with alkoxy substituted with amino, amino (lower)alkanoylamino, piperazinylcarbonyl or guanidino for R¹ may be obtained according to reaction condition. This case is included within the scope of this reaction.

Process 6

10

15

25

35

50

[0098] The object compound (Ih) or its salt can be prepared by reacting a compound (Ic) or its reactive derivative at the carboxy group or a salt thereof with an amine or its salt.

[0099] Suitable salt of amine may be an acid addition salt as exemplified for the compound (I).

[0100] Suitable salts of the compounds (Ih) and (Ic) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

[0101] Suitable "amine" may be ammonia, substituted or unsubstituted lower alkylamine, substituted or unsubstituted N-containing heterocyclic compound, a heterocyclic group substituted with amino and the like.

[0102] The substituted or unsubstituted lower alkylamine may be mono or di(lower)alkylamine (e.g. methylamine, ethylamine, propylamine, isopropylamine, butylamine, isobutylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, di-isopropylamine, dipentylamine, dihexylamine, etc.), pyridyl(lower) alkylamine, (e.g. pyridylmethylamine, etc.), lower alkylamino(lower)alkylamine (e.g. N-dimethylaminoethylamine, N-dimethylaminopropylamine, N-diethylaminoethyl-N-methylamine, etc.), morpholino(lower)alkylamine (e.g. morpholinoethylamine, etc.) or the like.

[0103] The substituted or unsubstituted N-containing heterocyclic compound may be a heterocyclic group substituted with amino (e.g. aminopyridine, N-methyl-N'-aminopiperazine, etc.), saturated 5 or 6-membered N-, or N- and S-, or N- and O-containing heterocyclic compound such as pyrrolidine, imidazolidine, piperidine, piperidone, piperazine, lower alkylaminopiperidine (e.g. dimethylaminopiperidine, etc.), N-(lower)alkylhomopiperazine (e.g. N-methylpiperazine, etc.), N-(lower)alkylpiperazine (e.g. N-methylpiperazine, N-ethylpiperazine, etc.), morpholine, thiomorpholine, N-pyridylpiperazine, N-hydroxy(lower)alkylpiperazine (e.g. N-pyrrolidinylcarbonyl(lower)alkylpiperazine (e.g. N-pyrrolidinylcarbonyl(lower)alkylpiperazine (e.g. N-methylpiperazine, etc.), or the like, in which preferable one is N-methylpiperazine.

[0104] This reaction can be carried out in substantially the same manner as <u>Process 1</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 1</u>.

Process 7

The object compound (li) or its salt can be prepared by reacting a compound (le) or its reactive derivative at the carboxy group or a salt thereof with an amine or its salt.

[0106] Suitable salt of amine may be an acid addition salt as exemplified for the compound (I).

[0107] Suitable salts of the compounds (Ii) and (Ie) and its reactive derivative at the carboxy group may be the same

as those exemplified for the compound (I).

[0108] This reaction can be carried out in substantially the same manners as <u>Processes 1 and 6</u>, and therefore the reaction mode and reaction condition (e.g. amine, solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Processes 1 and 6.

Process 8

5

10

20

35

- [0109] The object compound (lk) or its salt can be prepared by subjecting a compound (lj) or its salt to debenzylation
- [0110] Suitable salts of the compounds (Ij) and (Ik) may be the same as those exemplified for the compound (I).
 - [0111] This reaction can be carried out in substantially the same manner as hydrolysis using an acid or catalytic reduction in <u>Process 5</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in hydrolysis using an acid or catalylic reduction in <u>Process</u> 5.
- [0112] In this catalytic reduction, in case that the compound (Ij) having nitro for R³ is used as a starting compound, the compound (Ik) having amino for R³ may be obtained according to reaction condition. This case is included within the scope of this reaction.

Process 9

- [0113] The object compound (I ℓ) or its salt can be prepared by reacting a compound (Ika) or its salt with a compound (VI) or its salt.
- [0114] Suitable salts of the compounds (lka), (I\ell) and (VI) may be the same as those exemplified for the compound (I).
- [0115] When the compound (VI) having halogen for Z¹ is used in this reaction, the reaction is preferably carried out in the presence of a base such as an alkali metal (e.g. sodium, potassium, etc.), an alkaline earth metal (e.g. magnesium, calcium, etc.), the hydride or hydroxide or carbonate or bicarbonate thereof.
 - [0116] When the compound (VI) having hydroxy for Z^1 is used in this reaction, the reaction is preferably carried out in the presence of diethyl azodicarboxylate and triphenylphosphine.
- [0117] The reaction is usually carried out in a conventional solvent which does not adversely influence the reaction such as water, dioxane, alcohol (e.g. methanol, ethanol, etc.), acetonitrile, tetrahydrofuran, acetic acid, N,N-dimethylformamide, or a mixture thereof.
- [0118] The reaction temperature is not critical and the reaction can be carried out under cooling to heating.

Process 10

- [0119] The object compound (Im) or its salt can be prepared by reacting a compound (Iga) or its salt with an acylating agent.
- [0120] Suitable salts of the compounds (Iga) and (Im) may be the same as those exemplified for the compound (I).
- [0121] The acylating agent may include an organic acid represented by the formula: R¹¹-OH, in which R¹¹ is acyl or substituted acyl as illustrated above, or its reactive derivative.
- [0122] The suitable reactive derivative of organic acid may be a conventional one such as an acid halide [e.g. acid chloride, acid bromide, etc.], an acid azide, an acid anhydride containing intramolecular and intermolecular ones, an activated amide, an activated ester or the like.
- [0123] When free acid is used as an acylating agent, the acylation reaction may preferably be conducted in the presence of a conventional condensing agent such as N,N'-dicyclohexylcarbodiimide or the like.
 - [0124] The reaction is usually carried out in a conventional solvent such as water, pyridine, acetone, dioxane, chloroform, methylene chloride, acetonitrile, ethylene chloride, tetrahydrofuran, ethyl acetate, N,N-dimethylformamide, pyridine or any other organic solvent which does not adversely influence the reaction, or a mixture thereof.
 - [0125] The reaction is also preferably carried out in the presence of a conventional base such as triethylamine, pyridine, sodium hydroxide or the like.
 - [0126] The reaction temperature is not critical, and the reaction can be carried out under cooling to heating.

Process 11

- [0127] The object compound (In) or its salt can be prepared by reacting a compound (Igb) or its salt with lower alkanal or N-protected amino(lower)alkanal in the presence of a reducing agent.
 - [0128] Suitable salts of the compounds (Igb) and (In) may be the same as those exemplified for the compound (I).
 - [0129] Suitable lower alkanal may be C1-C6 alkanal such as formaldehyde, ethanal, propanal or the like, in which

preferable one is formaldehyde.

[0130] Suitable N-protected amino(lower)alkanal may be N-protected amino(C₁-C₆)alkanal such as phthalimidopropanal or the like.

[0131] Suitable reducing agent may be diborane, borane-organic amine complex [e.g. borane-pyridine complex, etc.], alkali metal cyanoborohydride [e.g. sodium cyanoborohydride, lithium cyanoborohydride, etc.], sodium borohydride and the like.

[0132] The reaction is preferably carried out in the presence of molecular sieves.

[0133] The reaction is usually carried out in a conventional solvent such as water, an alcohol [e.g. methanol, ethanol, etc.], dioxane, tetrahydrofuran, a mixture thereof or any other organic solvent which does not adversely influence the reaction

[0134] The reaction may also be carried out in an acidic condition [e.g. presence of acetic acid, sulfuric acid, etc.] and the reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

Process 12

15

20

10

[0135] The object compound (Ip) or its salt can be prepared by subjecting a compound (Io) or its salt to reduction.

[0136] Suitable salts of the compounds (Io) and (Ip) may be the same as those exemplified for the compound (I).

[0137] The reduction may include chemical reduction and catalytic reduction, which are carried out in a conventional manner.

[0138] Suitable reducing agents to be used in chemical reduction are a metal [e.g. thin, zinc, iron, nickel, etc.], a combination of such metal and/or metallic compound [e.g. nickel chloride, chromium chloride, chromium acetate, etc.] and an organic or inorganic acid [e.g. formic acid, acetic acid, propionic acid, trifluoroacetic acid, p-toluenesulfonic acid, hydrochloric acid, hydrobromic acid, etc.], a combination of such metal and/or metallic compound and base [e.g. ammonia, ammonium chloride, sodium hydroxide, etc.], a metal hydride compound such as aluminum hydride compound [e.g. lithium aluminum hydride, sodium aluminum hydride, aluminum hydride, lithium trimethoxyaluminum hydride, lithium tri-t-butoxyaluminum hydride, etc.], borohydride compound [e.g. sodium borohydride, lithium borohydride, sodium cyanoborohydride, tetramethylammonium borohydride, borane, diborane, etc.], a phosphorus compound [e.g. phosphorus tribromide, triphenylphosphine, triethylphosphine, etc.] and the like.

[0139] Suitable catalysts to be used in catalytic reduction are conventional ones such as platinum catalysts [e.g. platinum plate, spongy platinum, platinum black, colloidal platinum, platinum oxide, platinum wire, etc.], palladium catalyst [e.g. spongy palladium, palladium black, palladium oxide, palladium on carbon, colloidal palladium, palladium on barium sulfate, palladium on barium carbonate, etc.], nickel catalyst [e.g. reduced nickel, nickel oxide, Raney nickel, etc.], cobalt catalyst [e.g. reduced cobalt, Raney cobalt, etc.], iron catalyst [e.g. reduced iron, Raney iron, etc.], copper catalyst [e.g. reduced copper, Raney copper, Ullman copper, etc.], or the like.

[0140] The reduction is usually carried out in a solvent. A suitable solvent to be used may be water, and alcohol [e. g. methanol, ethanol, propanol, etc.], acetonitrile or any other conventional organic solvent such as diethyl ether, dioxane, tetrahydrofuran, etc. or a mixture thereof.

[0141] The reaction temperature is not critical, and the reaction is preferably carried out under cooling to heating.

40 Process 13

[0142] The object compound (Ir) or its salt can be prepared by subjecting a compound (Iq) or its salt to deacylation reaction.

[0143] Suitable salts of the compounds (Iq) and (Ir) may be the same as those exemplified for the compound (I).

[0144] This reaction can be carried out in substantially the same manner as <u>Process 3</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 3.

Process 14

50

[0145] The object compound (Is) or its salt can be prepared by reacting a compound (VII) or its salt with a compound (VIII) or its salt.

[0146] Suitable salts of the compounds (Is), (VII) and (VIII) may be the same as those exemplified for the compound (I).

[0147] This reaction can be carried out in substantially the same manner as <u>Process 9</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 9</u>.

Process 15

- [0148] The object compound (Iu) or its salt can be prepared by reacting a compound (It) or its salt with an oxidizing agent.
- [0149] Suitable salts of the compounds (It) or (Iu) may be the same as those exemplified for the compound (I).
- [0150] The suitable oxidizing agent may be hydrogen peroxide, Jones reagent, peracid [e.g. peracetic acid, perbenzoic acid, m-chloroperbenzoic acid, etc.], chromic acid, potassium permanganate, alkali metal periodate [e.g. sodium periodate, etc.] and the like.
- [0151] This reaction is usually carried out in a solvent which does not adversely influence the reaction such as acetic acid, dichloromethane, acetone, ethyl acetate, chloroform, water, an alcohol [e.g. methanol, ethanol, etc.], a mixture thereof or the like.
 - [0152] The reaction temperature is not critical, and the reaction is usually carried out under cooling to warming.

Process 16

15

30

40

50

[0153] The object compound (Iw) or its salt can be prepared by subjecting a compound (Iv) or its salt to catalytic reduction.

[0154] Suitable salts of the compounds (Iv) and (Iw) may be the same as those exemplified for the compound (I).

[0155] This reaction can be carried out in substantially the same manner as catalytic reduction in <u>Process 5</u>, and threfore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in catalytic reduction in <u>Process 5</u>.

Process 17

- 25 [0156] The object compound (Iy) or its salt can be prepared by subjecting a compound (Ix) or its salt to debenzylation reaction.
 - [0157] Suitable salts of the compounds (Ix) and (Iy) may be the same as those exemplified for the compound (I).
 - [0158] This reaction can be carried out in substantially the same manner as <u>Process 8</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 8</u>.

Process 18

- [0159] The object compound (Iz) or its salt can be prepared by reacting a compound (Iy) or its salt with a compound (IX) or its salt.
 - [0160] Suitable salts of the compounds (Iy), (Iz) and (IX) may be the same as those exemplified for the compound (I).
 - [0161] This reaction can be carried out in substantially the same manner as <u>Process 9</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in <u>Process 9</u>.

Process 19

- [0162] The object compound (I-2) or its salt can be prepared by subjecting a compound (I-1) or its salt to elimination reaction of the hydroxy protective group.
- [0163] Suitable salts of the compounds (I-1) and (I-2) may be the same as those exemplified for the compound (I).
 - [0164] Suitable hydroxy protective group may be benzyloxy, acyloxy, substituted acyloxy or the like.
 - [0165] This reaction can be carried out in substantially the same manner as <u>Processes 8 and 13</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Processes 8 and 13.

Process 20

- [0166] The object compound (I-3) or its salt can be prepared by reacting a compound (I-2) or its salt with a compound (X) or its salt.
- [0167] Suitable salts of the compounds (I-2), (I-3) and (X) may be the same as those exemplified for the compound (I).

 [0168] This reaction can be carried out in substantially the same manner as Process 9, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 9.

Process 21

[0169] The object compound (I-4) or its salt can be prepared by subjecting a compound (I-3a) or its salt to deester-ification reaction.

[0170] Suitable salts of the compounds (I-3a) and (I-4) may be the same as those exemplified for the compound (I).

[0171] This reaction can be carried out in substantially the same manner as <u>Process 3</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 3.

10 Process 22

[0172] The object compound (I-6) or its salt can be prepared by reacting a compound (I-5) or its salt with an alkyne compound in the presence of a palladium compound and a copper compound.

[0173] Suitable salts of the compounds (I-5) and (I-6) may be the same as those exemplified for the compound (I).

5 [0174] Suitable alkyne compound may be lower alkyne optionally substituted with hydroxy, amino, protected amino, lower alkylsulfonyl, arylsulfonyl or the like, in which preferable one is 3-butyn-1-ol.

[0175] Suitable palladium compound may be bis(triphenylphosphine)palladium(II) chloride, or the like.

[0176] Suitable copper compound may be copper(I) iodide, or the like.

[0177] The reaction is usually carried out in a conventional solvent which does not adversely influence the reaction such as tetrahydrofuran, dioxane, ethylamine, or a mixture thereof.

[0178] The reaction temperature is not critical and the reaction is usually carried out under warming or heating.

Process 23

20

35

25 [0179] The object compound (I-8a) or its salt can be prepared by reacting a compound (I-7) or its salt with a compound (XI)

[0180] Suitable salts of the compounds (I-7) and (I-8a) may be the same as those exemplified for the compound (I).

[0181] The reaction is preferably carried out in the presence of a base such as trialkylamine (e.g. trimethylamine, triethylamine, etc.) or the like.

30 [0182] The reaction is usually carried out in a conventional solvent which does not adversely influence the reaction such as tetrahydrofuran, methylene chloride or the like.

[0183] The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

Process 24

[0184] The object compound (I-9) or its salt can be prepared by reacting a compound (I-8) or its salt with alkali metal phthalimide.

[0185] Suitable salts of the compounds (I-8) and (I-9) may be the same as those exemplified for the compound (I).

[0186] The reaction is carried out in a conventional solvent which does not adversely influence the reaction such as dimethyl sulfoxide, N,N-dimethylformamide, or the like.

[0187] The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

Process 25

45 [0188] The object compound (I-10) or its salt can be prepared by reacting a compound (I-6) or its salt with a reducing agent.

[0189] Suitable salts of the compounds (I-6) and (I-10) may be the same as those exemplified for the compound (I).

[0190] Suitable reducing agent may be a combination of nickel chloride and sodium borohydride, and the like.

[0191] The reaction is carried out in a conventional solvent which does not adversely influence the reaction such as an alcohol (e.g. methanol, ethanol, etc.), tetrahydrofuran, or a mixture thereof.

[0192] The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

Process 26

[0193] The object compound (I-11) or its salt can be prepared by reacting a compound (II) or its salt with a compound (XII) or its salt.

[0194] Suitable salts of the compounds (I-11), (II) and (XII) may be the same as those exemplified for the compound (I).

[0195] This reaction can be carried out in substantially the same manner as <u>Process 11</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 11.

5 Process 27

[0196] The object compound (I-13) or its salt can be prepared by reacting a compound (I-12) or its salt with a compound (XIII) in the presence of a base.

[0197] Suitable salts of the compounds (I-12) and (I-13) may be the same as those exemplified for the compound (I).

10 [0198] Suitable base may be an alkali metal (e.g. sodium, potassium, etc.), an alkali metal hydride (e.g. sodium hydride), and the like.

[0199] The reaction is carried out in a solvent such as N,N-dimethylformamide, tetrahydrofuran, dioxane, a mixture thereof or any other solvent which does not adversely influence the reaction.

[0200] The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

Process 28

15

[0201] The object compound (I-15) or its salt can be prepared by reacting a compound (I-14) or its salt with an acylating agent.

[0202] Suitable salts of the compounds (I-14) and (I-15) may be the same as those exemplified for the compound (I). [0203] This reaction can be carried out in substantially the same manner as <u>Process 10</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 10.

25 Process 29

[0204] The object compound (I-17) or its salt can be prepared by reacting a compound (I-16a) or its salt with a reducing agent.

[0205] Suitable salts of the compounds (I-16a) and (I-17) may be the same as those exemplified for the compound (I).

[0206] Suitable reducing agent may be alkali metal borohydride (e.g. sodium borohydride, etc.), and the like.

[0207] The reaction is carried out in a solvent such as an alcohol (e.g. methanol, ethanol, etc.), tetrahydrofuran, or the like.

[0208] The reaction temperature is not critical and the reaction is usually carried out under cooling to warming.

35 Process 30

[0209] The object compound (I-18) or its salt can be prepared by reacting a compound (I-16) or its salt with an amine compound or its salt in the presence of a reducing agent.

[0210] Suitable salts of the compounds (I-16) and (I-18) may be the same as those exemplified for the compound (I).

[0211] Suitable amine compound may be ammonia, N-lower alkylpiperazine, and the like.

[0212] Suitable salt of amine compound may be an acid addition salt (e.g. acetate, hydrochloride, etc.), and the like.

[0213] This reaction can be carried out in substantially the same manner as <u>Process 11</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 11.

Process 31

45

[0214] The object compound (I-20) or its salt can be prepared by reacting a compound (I-19) or its reactive derivative at the carboxy group or a salt thereof with lower alkylamino(lower)alkanol.

[0215] Suitable salts of the compounds (I-20) and (I-19) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

[0216] Suitable lower alkylamino(lower)alkanol may be dimethylaminoethanol, and the like.

[0217] This reaction can be carried out in substantially the same manner as <u>Process 1</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 1.

Process 32

- [0218] The object compound (I-22) or its salt can be prepared by reacting a compound (I-21) or its salt with a reducing agent.
- [0219] Suitable salts of the compounds (1-21) and (I-22) may be the same as those exemplified for the compound (I).
 - [0220] Suitable reducing agent may be diborane, lithium aluminum hydride and the like.
 - [0221] The reaction is usually carried out in a solvent which does not adversely influence the reaction such as diethyl ether, tetrahydrofuran or the like.
 - [0222] The reaction temperature is not critical and the reaction can be carried out under cooling to heating.

Process 33

10

15

20

30

- [0223] The object compound (I-23) or its salt can be prepared by subjecting a compound (I-22) or its salt to oxidation reaction.
- [0224] Suitable salts of the compounds (I-22) and (I-23) may be the same as those exemplified for the compound (I).
- [0225] Suitable oxidizing agent used in this reaction may be manganese dioxide, dimethyl sulfoxide, a mixture of dimethyl sulfoxide and oxalyl chloride and the like.
- [0226] The reaction is usually carried out in a conventional solvent such as pentane, hexane, benzene, diethyl ether, dimethoxyethane, acetone, chloroform, dichloromethane or any other solvent which does not adversely influence the reaction.
- [0227] Additionally in case that the above-mentioned oxidizing agent is liquid, it can be used as a solvent.
- [0228] In this reaction, in case that dimethyl sulfoxide or a mixture of dimethyl sulfoxide and oxalyl chloride is used as an oxidizing agent, the reaction is preferably carried out in the presence of alkali metal iodide (e.g. sodium iodide, etc.) and alkali metal carbonate (e.g. sodium carbonate) or tri(lower)alkylamine (e.g. triethylamine, etc.).
- 25 [0229] The reaction temperature is not critical, and the reaction is usually carried out under cooling to heating.

Process 34

- [0230] The object compound (I-25) or its salt can be prepared by reacting a compound (I-24) or its salt with an azide compound.
 - [0231] Suitable salts of the compounds (I-24) and (I-25) may be the same as those exemplified for the compound (I).
 - [0232] Suitable azide compound may be sodium azide, trimethyltin azide and the like.
 - [0233] The reaction is usually carried out in a solvent which does not adversely influence the reaction such as dioxane, an aromatic hydrocarbon (e.g. benzene, toluene, xylene) or the like.
- 35 [0234] The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

Process 35

- [0235] The object compound (I-27) or its salt can be prepared by reacting a compound (I-26) or its salt with an isourea compound.
- [0236] Suitable salts of the compounds (I-26) and (I-27) may be the same as those exemplified for the compound (I).
- [0237] Suitable isourea compound may be O-alkylisourea (e.g. O-methylisourea, etc.) and the like.
- [0238] The reaction is usually carried out in a solvent which does not adversely influence the reaction such as an alcohol (e.g. methanol, ethanol, etc.) or the like.
- 45 [0239] The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

Process 36

- [0240] The object compound (I-29) or its salt can be prepared by subjecting a compound (I-28) or its salt to elimination reaction of the N-protective group.
- [0241] Suitable salts of the compounds (I-28) and (I-29) may be the same as those exemplified for the compound (I).
- **[0242]** This reaction can be carried out in substantially the same manner as <u>Process 5</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 5.

Process 37

55

[0243] The object compound (I-31) or its salt can be prepared by reacting a compound (I-30) or its salt with N-lower

alkylpiperazine, dimethylaminopiperidine, ammonia or N,N-dimethylformamide.

[0244] Suitable salts of the compounds (I-30) and (I-31) may be the same as those exemplified for the compound (I).

[0245] The reaction is usually carried out in a solvent which does not adversely influence the reaction such as N,N-dimethylformamide, dioxane or the like.

5 [0246] The reaction temperature is not critical and the reaction is usually carried out under warming to heating.

Process 38

10

15

30

[0247] The object compound (I-3a) or its salt can be prepared by reacting a compound (I-4) or its reactive derivative at the carboxy group or a salt thereof with a hydroxy compound or a diazo compound.

[0248] Suitable salts of the compounds (I-3a) and (I-4) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

[0249] Suitable reactive derivative at the carboxy group (I-4) may be acid halide (e.g. acid chloride, acid bromide, etc.) and the like.

[0250] Suitable hydroxy compound may be an alcohol (e.g. methanol, ethanol, etc.), phenol, naphthol and the like.

[0251] Suitable diazo compound may be methyldiazomethane, trimethylsilyldiazomethane and the like.

[0252] The reaction is usually carried out in a conventional solvent such as diethyl ether, tetrahydrofuran, dioxane, methylene chloride, or any other organic solvent which does not adversely influence the reaction.

[0253] Additionally, in case that the above-mentioned hydroxy compound is in liquid, it can also be used as a solvent.

20 [0254] The reaction temperature is not critical and the reaction is usually carried out under cooling to heating.

Process 39

[0255] The object compound (I-32) or its salt can be prepared by reacting a compound (I-4) or its reactive derivative at the carboxy group or a salt thereof with an amine.

[0256] Suitable salts of the compounds (I-32) and (I-4) and its reactive derivative at the carboxy group may be the same as those exemplified for the compound (I).

[0257] Suitable amine may be ammonia, lower alkylamine (e.g. methylamine, dimethylamine, etc.) and the like.

[0258] This reaction can be carried out in substantially the same manner as <u>Process 6</u>, and therefore the reaction mode and reaction condition (e.g. solvent, reaction temperature, etc.) of this reaction are to be referred to those as explained in Process 6.

[0259] The compounds obtained by the above processes can be isolated and purified by a conventional method such as pulverization, recrystallization, column chromatography, reprecipitation, or the like.

[0260] It is to be noted that the compound (I) and the other compounds may include one or more stereoisomer(s) such as optical isomer(s) or geometrical isomer(s) due to asymmetric carbon atom(s) and double bond(s), and all of such isomers and mixture thereof are included within the scope of this invention.

[0261] Additionally, it is to be noted that any hydrate of the compound (I) is also included within the scope of this invention.

[0262] The object compound (I) and pharmaceutically acceptable salts thereof possess activities as vasopressin antagonistic activity, vasodilating activity, hypotensive activity, activity for inhibiting saccharide release in liver, activity for inhibiting growth of mesangium cells, water diuretic activity, platelet agglutination inhibitory activity, oxytocin antagonistic activity and the like, and are useful for the treatment and/or prevention of hypertension, heart failure, renal insufficiency, edema, ascites, vasopressin parasecretion syndrome, hepatocirrhosis, hyponatremia, hypokalemia, diabetic, circulation disorder, cerebrovascular disease (e.g. cerebral edema, cerebral infarction, etc.), Meniere's syndrome (e.g. Meniere's disease, et.), motion sickness and the like in human beings and animals.

[0263] In order to illustrate the usefulness of the object compound (I), the pharmacological data of the compound (I) are shown in the following.

Test 1

50

[0264] Vasopressin 1 (V1) receptor binding

(i) Test Method:

[0265] Blood was obtained by venipuncture from normal subjects. Platelet-rich plasma (PRP) was prepared by centrifugation of whole blood at 200 xg for 10 minutes. PRP was centrifuged at 45,000 xg for 30 minutes. The remaining pellet was resuspended in 10 volume of ice cold 100 mM Tris-HCl (pH 7.4) buffer (containing 5 mM MgCl₂, 0.1% bovine serum albumin and 1 mM EGTA), and centrifuged at 45,000 xg for 30 minutes again. The final pellet was resuspended

in 100 mM Tris-HCl buffer. The resulting membrane preparation was used immediately for the binding assay. **[0266]** Competition assays were conducted at equilibrium (15 minutes at 30°C) by using 1.5 nM 3 H-vasopressin (40-87 Ci/mmol; New England Nuclear) in 100 mM Tris-HCl (pH 7.4) buffer. Nonspecific binding was determined by using 1 μ M vasopressin. After incubation, reaction was terminated by adding 5 ml of ice-cold 100 mM Tris-HCl (pH 7.4) buffer, and then filtered rapidly through Whatman glass filter (GF/C). The filter was washed twice with the same buffer. The glass filter was mixed with liquid scintilation cocktail, and radioactivity was counted in a liquid scintilation counter. Competition activity of the test compound was represented by IC₅₀ values.

(ii) Test Result:

[0267]

10

15

20

25

30

35

40

Test Compound (Example No.) IC₅₀ (nM)
5-2) 51
16 14
17-20) 31

Test 2

[0268] Vasopressin 2 (V2) receptor binding

(i) Test Method:

[0269] For binding assays, the receptor cDNA was permanently expressed in Chinese hamster ovary (CHO) cells. CHO cells were transfected with a vector directing expression of the cDNA for the human V2 receptor and the clonal cell lines expressing human V2 receptor was established essentially as described previously (Nakajima, Y., et. al. J. Biol. Chem., 1992, 267, 2437).

[0270] DNA-transfected cells were harvested and homogenized in ice cold 250 mM sucrose buffer containing 25 mM Tris-HCl (pH 7.4), 10 mM MgCl₂, 1 mM EDTA and 5 μg/ml p-amidinophenylmethylsulfonyl fluoride (A-PMSF). The homogenate was centrifuged at 500 xg for 10 minutes. The supernatant was centrifuged at 100,000 xg for 1 hour. The final pellet was suspended in 25 mM Tris-HCl (pH 7.4) buffer (containing 10 mM MgCl₂, 1 mM EDTA and 5 μg/ml A-PMSF), and stored in small aliquots at -80°C.

[0271] Competition assays were conducted at equilibrium (2 hours at 22°C) by using 0.5 nM 3 H-vasopressin (40-87 Ci/mmol, New England Nuclear) in 100 mM Tris-HCl (pH 7.4) buffer (containing 5 mM MgCl₂, 5 μ g/ml A-PMSF, 4 μ g/ml leupeptin, 40 μ g/ml bacitracin, 20 μ g/ml chymostatin and 0.1% bovine serum albumin). Nonspecific binding was determined by using 1 μ M vasopressin. After incubation, reaction mixture was rapidly filtered through Whatman glass filter (GF/C). The filter was washed twice with the same buffer. The radioactivity was counted in a liquid scintilation counter. Competition activity of the test compound was represented by IC₅₀ values.

(ii) Test Result:

[0272]

45

50

Test Compound (Example No.)	IC ₅₀ (nM)
5-2)	1300
16	1400
17-20)	1300

[0273] For therapeutic purpose, the compound (I) of the present invention can be used in a form of pharmaceutical preparation containing one of said compounds, as an active ingredient, in admixture with a pharmaceutically acceptable carrier such as an organic or inorganic solid, semi-solid or liquid excipient suitable for oral, parenteral or external (topical) administration. The pharmaceutical preparations may be capsules, tablets, dragees, granules, suppositories, solution, lotion, suspension, emulsion, ointment, gel, or the like. If desired, there may be included in these preparations, auxiliary substances, stabilizing agents, wetting or emulsifying agents, buffers and other commonly used additives.

[0274] While the dosage of the compound (I) will vary depending upon the age and condition of the patient, an average single dose of about 0.1 mg, 1 mg, 10 mg, 50 mg, 100 mg, 250 mg, 500 mg and 1000 mg of the compound (I) may be effective for treating the above-mentioned diseases. In general, amounts between 0.1 mg/body and about 1,000 mg/body may be administered per day.

[0275] The following Preparations and Examples are given for the purpose of illustrating this invention.

Preparation 1

10

15

20

25

30

45

55

[0276] To a solution of [N-methyl-N-(4-nitrobenzoyl]-2-hydroxyaniline (1.2 g) in N,N-dimethylformamide (30 ml) was added potassium carbonate (1.22 g), ethyl 6-bromohexanoate (1.03 g) and sodium iodide (catalytic amount) at 60°C. The reaction mixture was stirred at same temperature for 8 hours. The reaction mixture was cooled in an ice bath and quenched with 1N hydrochloric acid (10 ml) and water (30 ml). The mixture was extracted with ethyl acetate. The organic phase was washed with water and brine. The organic solution was dried over magnesium sulfate. The solvent was removed by evaporation to give 2-(5-ethoxycarbonylpent-1-yloxy)-[N-methyl-N-(4-nitrobenzoyl)]aniline (1.7 g).

NMR (CDCl₃, δ): 1.26 (3H, t, J=7.5Hz), 1.45-1.58 (2H, m), 1.67-1.76 (2H, m), 1.79-1.88 (2H, m), 2.34 (2H, t, J=7.5Hz), 3.38 (3H, s), 3.84-4.00 (2H, m), 4.13 (2H, t), 6.72-6.82 (2H, m), 7.01 (1H, d, J=7Hz), 7.17 (1H, t, J=7Hz), 7.45 (2H, d, J=8.5Hz), 7.98 (2H, d, J=8.5Hz)

Preparation 2

[0277] A solution of 3-methoxy-4-nitro-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]-N-methylbenzamide (7.6 g) in ethanol (76 ml) was treated with 1N sodium hydroxide solution (33 ml) at ambient temperature and the mixture was stirred at the same temperature for 6 hours. The reaction was quenched by the dropwise addition of 1N hydrochloric acid (35 ml). The mixture was concentrated and the residue was dissolved in a mixture of ethyl acetate and 1N hydrochloric acid. The extracted organic layer was washed with brine and dried over magnesium sulfate. The suspension was filtered and the solvent was removed by evaporation to give 3-methoxy-4-nitro-N- [2-(5-carboxypent-1-yloxy)-4-methylphenyl]-N-methylbenzamide (7.1 g) as an oil.

NMR (CDCl₃, δ): 1.48-1.63 (2H, m), 1.66-1.91 (4H, m), 2.28 (3H, s), 2.41 (2H, t, J=7Hz), 3.34 (3H, s), 3.78 (3H, s), 3.81-3.98 (2H, m), 6.58-6.67 (2H, m), 6.89 (1H, d, J=8Hz), 6.94 (1H, d, J=8Hz), 7.09 (1H, s), 7.61 (1H, d, J=8Hz)

Preparation 3

[0278] 3-Methoxy-4-nitro-N- [2- (5-carboxypent-1-yloxy)-4-methylphenyl]-N-methylbenzamide (5.2 g), 1-methylpiperazine (1.45 g) and 1-hydroxybenzotriazole (1.96 g) were dissolved in N,N-dimethylformamide (50 ml) and the solution was cooled in an ice bath. To the mixture was added N-ethyl-N'-(3-dimethylaminopropyl)-carbodiimide hydrochloride (2.78 g) and the solution was stirred at the same temperature for 30 minutes. The reaction mixture was allowed to warm to ambient temperature and stirring was continued for additional 20 hours. The reaction mixture was diluted with ethyl acetate and the solution was washed successively with saturated sodium hydrogen carbonate and brine, and dried over sodium sulfate. The sodium sulfate was removed and the solvent was removed by evaporation to give oil. The crude material was subjected to a silica gel column chromatography (SiO₂; 120 g, 2% methanol in chloroform) to give 3-methoxy-4-nitro-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide (6.2 g).

NMR (CDCl₃, δ): 1.43-1.60 (2H, m), 1.60-1.92 (4H, m), 2.28 (3H, s), 2.30 (3H, s), 2.25-2.47 (6H, m), 3.34 (3H, s), 3.44-3.54 (2H, m), 3.58-3.70 (2H, m), 3.78 (3H, s), 3.82-4.03 (2H, m), 6.56-6.66 (2H, m), 6.86 (1H, d, J=8Hz), 6.94 (1H, d, J=8Hz), 7.07 (1H, s), 7.61 (1H, d, J=8Hz)

Preparation 4

[0279] A mixture of 3-methoxy-4-nitro-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy] phenyl]benzamide (6.2 g) and iron powder (3.43 g) in a mixture of ethanol (65 ml) and ethyl acetate (6 ml) was refluxed for 2 hours. After being cooled to ambient temperature, the solution was filtered through a bed of Celite and the filtrate was evaporated in vacuo. The residue was diluted with ethyl acetate and the solution was washed with saturated sodium hydrogen carbonate and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide (4.7 g).

NMR (CDCl₃, δ): 1.43-1.58 (2H, m), 1.61-1.91 (4H, m), 2.26 (3H, s), 2.30 (3H, s), 2.23-2.44 (6H, m), 3.29 (3H, s), 3.41-3.53 (2H, m), 3.61 (3H, s), 3.57-3.68 (2H, m), 3.75-4.03 (4H, m), 6.36-6.46 (1H, m), 6.53-6.67 (2H, m), 6.76-6.89 (3H, m)

Preparation 5

25

35

[0280] The following compounds were obtained according to a similar manner to that of Preparation 4.

- 5 1) 4-Amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)phenylbenzamide NMR (CDCl₃, δ): 1.26 (3H, t, J=7.5Hz), 1.41-1.54 (2H, m), 1.62-1.73 (2H, m), 1.75-1.84 (2H, m), 2.32 (2H, t, J=7.5Hz), 3.30 (3H, s), 3.84 (2H, br), 3.90 (2H, br), 4.13 (2H, t), 6.38 (2H, d, J=8.5Hz), 6.79 (2H, d, J=8.5Hz), 6.99 (2H, s), 7.09-7.18 (3H, m)
- 2) 4-Amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl] benzamide NMR (CDCl₃, δ): 1.29-1.95 (10H, m), 2.23-2.43 (12H, m), 2.57 (1H, m), 3.01 (1H, m), 3.31 (3H, s), 3.62 (3H, s), 3.73-4.03 (5H, m), 4.63 (1H, m), 6.42 (1H, d, J=9Hz), 6.54-6.67 (2H, m), 6.77-6.89 (3H, m)
- 3) 4-Amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide MASS (m/z): 399 (M+1)
- 4) 4-Amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide NMR (CDCl₃, δ) : 2.27 (3H, s), 2.32 (3H, s), 2.35-2.55 (4H, m), 3.31 (3H, s), 3.38-3.54 (2H, m), 3.66-3.87 (4H, m), 4.90-5.10 (2H, m), 6.38 (2H, d, J=8Hz), 6.62-6.69 (2H, m), 6.94 (1H, d, J=7Hz), 7.13 (2H, d, J=8Hz), 7.31-7.43 (4H, m)
 - 5) 2-(4-Methoxycarbonyl)phenylmethoxy-4-methylamine NMR (CDCl₃, δ) : 2.24 (3H, s), 3.90 (3H, s), 5.11 (3H, s), 6.60-6.68 (3H, m), 7.50 (2H, d, J=8Hz), 8.05 (2H, d, J=8Hz)
- 6) 4-Amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]-phenylben-zamide
 NMR (CDCl₃, δ): 2.28 (3H, s), 2.33 (3H, s), 2.37-2.53 (4H, m), 3.36 (3H, s), 3.41-3.54 (2H, m), 3.57 (3H, s), 3.65-3.90 (4H, m), 4.90 (1H, d, J=14Hz), 5.06 (1H, d, J=14Hz), 6.38 (1H, d, J=7Hz), 6.62-6.70 (2H, m), 6.78 (1H, d, J=7Hz), 6.84 (1H, s), 6.98 (1H, d, J=7Hz), 7.33 (2H, d, J=8Hz), 7.41 (2H, d, J=8Hz)
 - 7) Methyl 4-[(E and Z)-2-(2-aminophenyl)ethen-1-yl]benzoate NMR (CDCl $_3$, δ) : 3.72 (2H, br), 3.86 (3Hx2/3, s), 3.90 (3Hx1/3, s), 6.57-7.43 (7H, m), 7.55 (1H, d, J=7Hz), 7.86 (1H, d, J=7Hz), 8.01 (7H, d)
 - 8) 4-Amino-3-methoxy-N-[(E and Z) -2- (4-methoxycarbonylphenyl) ethen-1-yl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 3.39 (3Hx2/3, s), 3.40 (3Hx1/3, s), 3.50 (3Hx2/3, s), 3.51 (3Hx1/3, s), 3.81-3.96 (2H, m), 3.84 (3Hx2/3, s), 3.41 (3Hx1/3, s), 6.30-8.05 (13H, m)
- 9) 4-Amino-3-methoxy-N-[2- (4-methoxycarbonyl)-phenylmethoxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 2.21 (3H, s), 3.34 (3H, s), 3.50 (3H, s), 3.83 (2H, s), 3.90 (3H, s), 4.79-5.14 (2H, m), 6.37 (1H, d, J=7Hz), 6.60 (1H, s), 6.70 (1H, d, J=7Hz), 6.77 (1H, d, J=7Hz), 6.81 (1H, s), 6.99 (1H, d, J=7Hz), 7.34 (2H, d, J=8Hz), 8.01 (2H, d, J=8Hz)
- 45 10) 2-[3-(Ethoxycarbonylmethyl)oxyprop-1-yl]oxyaniline NMR (CDCl₃, δ) : 1.27 (3H, t, J=7.5Hz), 2.08-2.28 (2H, m), 3.72 (2H, t, J=7.5Hz), 3.79 (2H, s), 4.09 (2H, s), 4.14 (2H, t, J=7.5Hz), 4.21 (2H, q, J=7.5Hz), 6.65-6.82 (4H, m)
- 11) 4-Amino-3-methoxy-N-[2-[3-(ethoxycarbonylmethyl)-oxyprop-1-yl]oxy]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 1.26 (3H, t, J=7.5Hz), 2.03-2.15 (2H, m), 3.31 (3H, s), 3.61 (3H, s), 3.69-3.77 (4H, m), 4.02 (2H, s), 4.20 (2H, q, J=7.5Hz), 6.41 (1H, d, J=7.5Hz), 6.64-6.89 (4H, m), 7.00 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz)
- 12) 2-[(E)-5-Ethoxycarbonyl-4-penten-1-yl]oxy-4-methylaniline
 NMR (CDCl₃, δ) : 1.29 (3H, t, J=7.5Hz), 1.90-2.05 (2H, m), 2.23 (3H, s), 2.35-2.50 (2H, m), 3.65 (2H, br), 4.00 (2H, t, J=7.5Hz), 4.18 (2H, q, J=7.5Hz), 5.98 (1H, d, J=15Hz), 6.53-6.67 (2H, m), 6.81 (1H, s), 7.00 (1H, dt, J=15, 7.5Hz)
 - 13) 4-Amino-3-methoxy-N-[2-[(E)-5-ethoxycarbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl $_3$, δ) : 1.27 (3H, t, J=7.5Hz), 1.84-1.98 (2H, m), 2.36 (3H, s), 2.31-2.41 (2H, m), 3.29 (3H, s), 3.62 (3H, s), 2.31-2.41 (2H, m), 3.29 (3H, s), 3.62 (3H, s), 3.62 (3H, s), 3.63 (3H, s), 3.63 (3H, s), 3.63 (3H, s), 3.63 (3H, s), 3.64 (3H, s), 3.65 (3H

- s), 3.75-3.96 (4H, m), 4.18 (2H, q, J=7.5Hz), 5.84 (1H, d, J=15Hz), 6.40 (1H, d, J=7Hz), 6.58-6.63 (2H, m), 6.78-7.01 (4H, m)
- 14) 2-(5-Ethoxycarbonylpent-1-yloxy)-4-methylaniline
 NMR (CDCl₃, δ) : 1.26 (3H, t, J=7Hz), 1.45-1.60 (2H, m), 1.63-1.89 (4H, m), 2.25 (3H, s), 2.33 (2H, t, J=7Hz), 3.98 (2H, t, J=7Hz), 4.13 (2H, q, J=7Hz), 6.54-6.68 (3H, m)
- 15) 3-Methoxy-4-amino-N-(2-benzyloxy-4-methylphenyl)-N-methylbenzamide NMR (CDCl₃, δ): 2.28 (3H, s), 3.32 (3H, s), 3.49 (3H, s), 3.83 (2H, br), 4.80-5.11 (2H, br), 6.34 (1H, d, J=8Hz), 6.62-6.84 (5H, m), 6.92 (1H, d, J=8Hz), 7.25-7.39 (4H, m)
 - 16) 4-Amino-3-methyl-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
- NMR (CDCl₃, δ): 1.48-1.59 (2H, m), 1.63-1.88 (4H, m), 2.00 (3H, s), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.40 (6H, m), 3.29 (3H, s), 3.43-3.48 (2H, m), 3.62 (4H, br), 3.90 (2H, br), 6.32 (1H, d, J=7Hz), 6.56-6.61 (2H, m), 6.83 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 7.17 (1H, s)
 - 17) 4-Amino-3-hydroxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
- NMR (CDCl₃, δ): 1.62 (6H, br), 2.28 (3H, s), 2.31 (3H, s), 2.38-2.49 (6H, m), 3.28 (3H, s), 3.52 (2H, br), 3.78 (2H, br), 3.91 (2H, br), 6.32-6.38 (1H, m), 6.57-6.67 (3H, m), 7.00-7.03 (2H, m)

Preparation 6

5

- 25 [0281] The following compounds were obtained by reacting the compounds, which were prepared according to a similar manner to that of Preparation 4, with hydrogen chloride.
 - 1) Benzyl 4-amino-3-benzyloxybenzoate hydrochloride NMR (DMSO- d_6 , δ) : 5.18 (2H, s), 5.25 (2H, s), 5.98 (2H, br), 6.78 (1H, d, J=7Hz), 7.29-7.52 (12H, m)
 - 2) Methyl 2-amino-5-thiophenecarboxylate hydrochloride NMR (DMSO- d_6 , δ) : 3.68 (3H, s), 5.90 (1H, d, J=5Hz), 7.32-7.37 (2H, m)

Preparation 7

30

35

40

45

[0282] The following compounds were obtained according to a similar manner to that of Preparation 1.

- 1) 2-(3-Hydroxyprop-1-yl)oxynitrobenzene NMR (CDCl₃, δ) : 2.07-2.14 (2H, m), 2.22 (1H, t, J=7.5Hz), 3.90 (2H, dd, J=7.5, 7.5Hz), 4.29 (2H, t, J=7Hz), 7.01 (1H, t, J=7Hz), 7.12 (1H, t, J=7Hz), 7.54 (1H, t, J=7Hz), 7.89 (1H, d, J=7Hz)
- 2) 3- (3-Ethoxycarbonylprop-1-yl)oxy-4-nitrotoluene NMR (CDCl₃, δ) : 1.24 (3H, t, J=7.5Hz), 2.09-2.19 (2H, m), 2.56 (2H, t, J=7.5Hz), 4.08-4.20 (4H, m), 6.81 (1H, d, J=7Hz), 6.97 (1H, s), 7.77 (7H, d)
- 3) Benzyl 2-(3-phthalimidopropoxy)benzoate NMR (CDCl₃, δ) : 2.08-2.23 (2H, m), 3.85 (2H, t, J=7Hz), 4.07 (2H, t, J=7Hz), 5.32 (2H, s), 6.86-7.02 (2H, m), 7.20-7.50 (6H, m), 7.61-7.74 (2H, m), 7.75-7.90 (3H, m)
- 4) 2-(5-Ethoxycarbonylpent-1-yloxy)-4-methylnitrobenzene
 NMR (CDCl₃, δ): 1.25 (3H, t, J=7Hz), 1.46-1.63 (2H, m), 1.63-1.78 (2H, m), 1.79-1.94 (2H, m), 2.34 (2H, t, J=7Hz),
 2.40 (3H, s), 4.00-4.19 (4H, m), 6.80 (1H, d, J=9Hz), 6.84 (1H, s), 7.76 (1H, d, J=9Hz)
- 5) 2-Benzyloxy-N-tert-butoxycarbonylaniline NMR (CDCl₃, δ): 1.49 (9H, s), 5.10 (2H, s), 6.88-6.98 (3H, m), 7.09 (1H, s), 7.32-7.43 (5H, m), 8.10 (1H, br)
 - 6) Methyl 4-[N-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]phenyl]-tert-butoxycarbonylamino]methyl-3-methoxybenzoate

NMR (CDCl₃, δ): 1.33 and 1.42 (total 18H, s), 1.92-2.00 (2H, m), 3.26-3.32 (2H, m), 3.70 and 3.77 (total 3H, s), 3.90 (3H, s), 4.03 (2H, br), 4.72 (2H, br), 6.72-6.97 (3H, m), 7.10-7.23 (2H, m), 7.40-7.53 (2H, m), 7.62 (1H, br)

- 7) 1-Benzyloxy-2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzene
 NMR (CDCl₃, δ): 1.40 and 1.47 (9H, s), 1.98-2.06 (2H, m), 3.23-3.47 (2H, m), 4.10 (2H, t, J=6Hz), 5.18 (2H, s),
 5.42 (1H, br), 6.82-6.90 (4H, m), 7.28-7.47 (5H, m)
- 8) Methyl 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxymethyl-3-methoxybenzoate NMR (CDCl₃, δ) : 1.38 (9H, s), 2.02 (2H, br), 3.38 (2H, br), 3.90-3.92 (6H, m), 4.10-4.16 (2H, m), 5.23 (1H, s), 5.25 (1H, s), 5.44 (1H, br), 6.83-6.92 (4H, m), 7.53-7.57 (2H, m), 7.65-7.69 (1H, m)
- 9) Benzyl 3-benzyloxy-4-nitrobenzoate NMR (CDCl₃, δ) : 5.28 (2H, s), 5.89 (2H, s), 7.30-7.48 (9H, m), 7.70-7.73 (1H, m), 7.81-7.85 (2H, m)
- 10) Benzyl 3-benzyloxy-4-[2-[(3-tert-butoxycarbonylamino-prop-1-yl)oxy]benzoyl]aminobenzoate NMR (CDCl₃, δ) : 1.38 (9H, s), 1.60-1.70 (2H, m), 2.95-3.02 (2H, m), 3.80 (2H, t, J=6Hz), 4.42 (1H, br), 5.22 (2H, s), 5.38 (2H, s), 6.93 (1H, d, J=8Hz), 7.10 (1H, t, J=7Hz), 7.32-7.50 (12H, m), 7.71-7.72 (1H, m), 7.80-7.83 (1H, m), 8.23-8.28 (1H, m), 8.78 (1H, d, J=7Hz)
 - 11) Methyl 2-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-5-thiophenecarboxylate

[0283] This compound was used for further reaction without purification.

Preparation 8

5

10

20

25

30

35

40

45

50

[0284] The following compounds were obtained according to a similar manner to that of Preparation 2.

- 1) 4-[N-Methyl-2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxybenzoic acid NMR (CDCl₃, δ) : 1.45 (9H, s), 1.97-2.06 (2H, m), 3.33-3.42 (5H, m), 3.87 (3H, s), 3.98-4.07 (2H, m), 5.27-5.35 (1H, br), 6.67-6.76 (2H, m), 7.03-7.19 (3H, m), 7.44-7.50 (2H, m) ESI-MASS (m/z) : 459 (M+H)
- 2) 4-Nitro-N-[2-(4-carboxyphenyl)methoxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 2.27 (3H, s), 3.40 (3H, s), 4.97 (1H, d, J=14Hz), 5.10 (1H, d, J=14Hz), 6.65 (1H, s), 6.68 (1H, d, J=7Hz), 7.00 (1H, d, J=7Hz), 7.33-7.49 (4H, m), 7.97 (2H, d, J=8Hz), 8.10 (2H, d, J=8Hz)
- 3) 3-Methoxy-4-nitro-N-[2-(4-carboxy)phenylmethoxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 2.30 (3H, s), 3.42 (3H, s), 3.61 (3H, s), 4.92 (1H, d, J=14Hz), 5.11 (1H, d, J=14Hz), 6.65 (1H, s), 6.73 (1H, d, J=7Hz), 6.86 (1H, d, J=7Hz), 7.02-7.08 (2H, m), 7.48 (2H, d, J=8Hz), 7.54 (1H, d, J=7Hz), 8.16 (2H, d, J=8Hz)
- 4) 2-(4-Carboxyphenylmethyl)oxy-4-methyl-N,N-dimethylaniline NMR (CDCl₃, δ): 2.31 (3H, s), 2.89 (6H, s), 5.08 (2H, s), 6.76-7.82 (2H, m), 7.03 (1H, d, J=7Hz), 7.40 (2H, d, J=8Hz), 7.77 (2H, d, J=8Hz)
- 5) 2-[3-(4-Methoxyphenyl)methoxypropyl-1-yl]thiobenzoic acid NMR (CDCl₃, δ) : 1.95-2.06 (2H, m), 3.03 (2H, t, J=7.5Hz), 3.59 (2H, t, J=7.5Hz), 3.77 (3H, s), 4.46 (2H, s), 6.89 (2H, d, J=8Hz), 7.19 (1H, t, J=7Hz), 7.16 (2H, d, J=8Hz), 7.36 (1H, d, J=7Hz), 7.45 (1H, t, J=7Hz), 8.10 (1H, d, J=7Hz)
- 6) 4-Amino-3-methoxy-N-[2-(4-carboxy)phenylmethoxy-4-methyl]phenyl-N-methylbenzamide NMR (DMSO-d $_6$, δ) : 2.21 (3H, s), 3.15 (3H, s), 3.41 (3H, s), 4.95-5.23 (2H, m), 6.33 (1H, d, J=7Hz), 6.63-6.72 (3H, m), 6.87 (1H, s), 7.04 (1H, d, J=7Hz), 7.44 (2H, d, J=8Hz), 7.95 (2H, d, J=8Hz)
- 7) 4-Amino-3-methoxy-N-[2-[3-(carboxymethyl)oxyprop-1-yl]oxyphenyl-N-methylbenzamide NMR (CDCl₃, δ) : 2.00-2.12 (2H, m), 3.32 (3H, s), 3.60 (3H, s), 3.63-3.74 (2H, m), 3.89-4.14 (2H, m), 4.05 (2H, s), 4.50 (2H, br), 6.40 (1H, d, J=7Hz), 6.80-6.95 (4H, m), 6.95 (1H, d, J=7Hz), 7.16 (1H, t, J=7Hz)

- 8) 4-Amino-3-methoxy-N-[2-[(E)-5-ethoxycarbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.87-1.99 (2H, m), 2.28 (3H, s), 2.34-2.45 (2H, m), 3.31 (3H, s), 3.61 (3H, s), 3.71-4.00 (2H, m), 5.87 (1H, d, J=15Hz), 6.41 (1H, d, J=7Hz), 6.57-6.68 (2H, m), 6.80-7.12 (4H, m)
- 9) 3-(5-Carboxypent-1-yloxy)-4-(tert-butoxycarbonylamino)toluene
 NMR (CDCl₃, δ): 1.45-1.63 (11H, m), 1.64-1.95 (4H, m), 2.28 (3H, s), 2.42 (2H, t, J=7Hz), 3.99 (2H, t, J=7Hz),
 6.65 (1H, s), 6.72 (1H, d, J=8Hz), 6.98 (1H, s), 7.87 (1H, m)
- 10) 4-[(2-Benzyloxy)benzoyl]amino-3-chlorobenzoic acid

 NMR (CDCl₃, δ) : 5.49 (2H, s), 7.18 (1H, t, J=6Hz), 7.32-7.42 (4H, m), 7.50-7.62 (3H, m), 7.89-7.93 (2H, m), 8.10 (1H, d, J=7Hz), 8.58-8.62 (1H, m)
 - 11) 4-[2-(Benzyloxy)benzoyl]amino-2-nitrobenzoic acid
 NMR (DMSO-d₆, δ) : 5.22 (2H, s), 7.10 (1H, t, J=7Hz), 7.28-7.38 (4H, m), 7.50-7.58 (3H, m), 7.65-7.69 (1H, m), 7.86 (2H, s), 8.16 (1H, s)
 - 12) 2-[2-(Benzyloxy)benzoyl]amino-5-pyridinecarboxylic acid NMR (DMSO- d_6 , δ) : 5.18 (1H, s), 5.32 (2H, s), 6.98-7.20 (2H, m), 7.29-7.67 (6H, m), 7.84-7.88 (1H, m), 8.28-8.37 (2H, m), 8.80 (1H, s)
 - 13) 4-[N-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]phenyl]-tert-butoxycarbonylamino]methyl-3-methoxyben-zoic acid NMR (CDCl₃, δ): 1.35 and 1.43 (total 18H, s), 1.92-2.00 (2H, m), 3.28 and 3.32 (total 2H, m), 3.20 and 3.28 (total 3H, s), 4.02 (2H, br), 4.77 (2H, br), 6.77-7.99 (3H, m), 7.10-7.20 (2H, m), 7.44-7.56 (2H, m), 7.69 (1H, br)
 - 14) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxymethyl-3-methoxybenzoic acid NMR (CDCl₃, δ) : 1.37 (9H, s), 2.05 (2H, br), 3.40 (2H, br), 3.93 (3H, s), 4.10-4.17 (2H, m), 5.27 (2H, s), 5.50 (1H, br), 6.87-6.93 (4H, m), 7.59 (2H, s), 7.72-7.77 (1H, m)
- 30 15) 3-Benzyloxy-4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]aminobenzoic acid
 NMR (DMSO-d₆, δ): 1.30 (9H, s), 1.62-1.72 (2H, m), 2.88-2.92 (2H, m), 3.95 (2H, t, J=6Hz), 5.37 (2H, s), 6.80 (1H, br), 7.13 (1H, t, J=7Hz), 7.21 (1H, d, J=7Hz), 7.30-7.67 (9H, m), 8.08 (1H, d, J=7Hz), 8.60 (1H, d, J=7Hz)
- 16) 2-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-5-thiophenecarboxylic acid
 NMR (DMSO-d₆, δ): 1.32 (9H, s), 1.82-1.90 (2H, m), 3.08-3.14 (2H, m), 4.10 (2H, t, J=6Hz), 6.81 (1H, d, J=5Hz),
 6.93-7.00 (1H, m), 7.07 (1H, t, J=7Hz), 7.19 (1H, d, J=7Hz), 7.50-7.58 (2H, m), 7.67 (1H, d, J=7Hz)

Preparation 9

15

20

25

- 40 [0285] The following compounds were obtained according to a similar manner to that of Preparation 3.
 - 1) 3-Methoxy-4-nitro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl] benzamide NMR (CDCl₃, δ): 1.30-1.96 (10H, m), 2.28 (9H, s), 2.30-2.41 (3H, m), 2.58 (1H, m), 3.02 (1H, m), 3.33 (3H, s),
- NMR (CDCl₃, δ): 1.30-1.96 (10H, m), 2.28 (9H, s), 2.30-2.41 (3H, m), 2.58 (1H, m), 3.02 (1H, m), 3.33 (3H, s), 3.77 (3H, s), 3.82-4.00 (3H, m), 4.63 (1H, m), 6.56-6.66 (2H, m), 6.84 (1H, d, J=9Hz), 6.93 (1H, d, J=9Hz), 7.06 (1H, s), 7.61 (1H, d, J=9Hz)
 - 2) 4-Nitro-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide NMR (CDCl₃, δ) : 2.26 (3H, s), 2.32 (3H, s), 2.36-2.57 (4H, m), 3.37 (3H, s), 3.42-3.59 (2H, m), 3.71-3.89 (2H, m), 4.94 (1H, d, J=14Hz), 5.07 (1H, d, J=14Hz), 6.60-6.69 (2H, m), 6.94 (1H, d, J=7Hz), 7.36-7.50 (5H, m), 7.95 (2H, d, J=8Hz)
 - 3) 4-Amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]-phenylben-zamide
- NMR (CDCl₃, δ): 2.28 (3H, s), 2.33 (3H, s), 2.37-2.53 (4H, m), 3.36 (3H, s), 3.41-3.54 (2H, m), 3.57 (3H, s), 3.65-3.90 (4H, m), 4.90 (1H, d, J=14Hz), 5.06 (1H, d, J=14Hz), 6.38 (1H, d, J=7Hz), 6.62-6.70 (2H, m), 6.78 (1H, d, J=7Hz), 6.84 (1H, s), 6.98 (1H, d, J=7Hz), 7.33 (2H, d, J=8Hz), 7.41 (2H, d, J=8Hz)

- 4) 4-Amino-3-methoxy-N-[2-[4-(4-dimethylaminopiperidin-1-yl)carbonyl]phenylmethoxy-4-methyl]phenyl-N-methylbenzamide
- NMR (CDCl₃, δ): 1.14-1.58 (2H, m), 1.75-2.00 (2H, m), 2.26 (3H, s), 2.30 (3H, s), 2.40 (1H, m), 2.73-3.10 (4H, m), 3.36 (3H, s), 3.57 (3H, s), 3.87 (3H, s), 4.83-5.12 (2H, m), 6.39 (1H, d, J=7Hz), 6.61-6.71 (2H, m), 6.28 (1H, d, J=7Hz), 6.33 (1H, s), 6.97 (1H, d, J=7Hz), 7.33 (2H, d, J=8Hz), 7.40 (2H, d, J=8Hz)
- 5) 4-Amino-3-methoxy-N-methyl-N- [2-[3-(4-methylpiperazin-1-yl)carbonylmethoxyprop-1-yl]oxy]phenylbenzamide
- NMR (CDCl₃, δ): 1.98-2.13 (2H, m), 2.27 (3H, s), 2.29-2.38 (4H, m), 3.30 (3H, s), 3.36-3.47 (2H, m), 3.52-3.74 (4H, m), 3.60 (3H, s), 3.94-4.17 (2H, m), 4.11 (2H, s), 6.42 (1H, d, J=7Hz), 6.78-6.92 (4H, m), 7.00 (1H, d, J=7Hz), 7.14 (1H, t, J=7Hz)
 - 6) 4-Amino-3-methoxy-N-[2-[(E)-5-(4-dimethylaminopiperidin-1-yl)carbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide
- NMR (CDCl₃, δ): 1.30-1.47 (2H, m), 1.80-1.98 (2H, m), 2.21 (3H, s), 2.26 (6H, s), 2.26-2.43 (2H, m), 2.45-3.67 (6H, m), 3.30 (3H, s), 3.61 (3H, s), 3.85 (2H, br), 3.85-4.04 (2H, m), 4.62 (1H, m), 6.29 (1H, d, J=15Hz), 6.41 (1H, d, J=7Hz), 6.57-6.63 (2H, m), 6.77-6.90 (4H, m)
- 7) 3-[5-(4-Dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-(tert-butoxycarbonylamino)toluene NMR (CDCl₃, δ) : 1.27-2.00 (19H, m), 2.21-2.44 (12H, m), 2.59 (1H, m), 3.01 (1H, m), 3.89 (1H, m), 4.00 (2H, t, J=7Hz), 4.64 (1H, m), 6.64 (1H, s), 6.72 (1H, d, J=8Hz), 6.94 (1H, s), 7.89 (1H, m)

Preparation 10

5

30

35

- 25 [0286] The following compounds were obtained according to a similar manner to that of Example 1.
 - 1) Methyl 4-(2-benzyloxybenzoyl)amino-3-methoxybenzoate NMR (CDCl $_3$, δ) : 3.50 (3H, s), 3.90 (3H, s), 5.36 (2H, s), 7.08 (1H, d, J=9Hz), 7.15 (1H, t, J=9Hz), 7.33-7.49 (8H, m), 7.73 (1H, dd, J=1, 8Hz), 8.30 (1H, d, J=8Hz), 8.72 (1H, d, J=8Hz) ESI-MASS (m/z) : 392 (M+H)
 - 2) Methyl 4-(2-acetoxybenzoyl)amino-3-methoxybenzoate NMR (CDCl₃, δ): 2.38 (3H, s), 3.92 (3H, s), 3.99 (3H, s), 7.19 (1H, d, J=8Hz), 7.38 (1H, t, J=8Hz), 7.55 (1H, t, J=8Hz), 7.60 (1H, s), 7.75 (1H, dd, J=2, 9Hz), 7.99 (1H, dd, J=1, 9Hz), 8.66 (1H, d, J=8Hz), 9.03-9.07 (1H, br s) ESI-MASS (m/z): 344 (M+H)
 - 3) 3-Methoxy-4-nitro-N-[2-(4-methoxycarbonyl)-phenylmethoxy-4-methyl]phenylbenzamide NMR (DMSO-d $_6$, δ) : 2.31 (3H, s), 3.84 (3H, s), 3.98 (3H, s), 5.27 (2H, s), 6.81 (1H, d, J=7Hz), 7.00 (1H, s), 7.49 (1H, d, J=7Hz), 7.62 (2H, d, J=8Hz), 7.79 (1H, s), 7.92 (2H, d, J=8Hz), 8.00 (1H, d, J=7Hz), 9.85 (1H, s)
 - 4) 4-Nitro-3-methoxy-N-[(E and Z)-2-(4-methoxycarbonylphenyl)ethen-1-yl]phenylbenzamide NMR (CDCl $_3$, δ) : 3.87 (3Hx2/3, s), 3.91 (3Hx1/3, s), 3.95 (3Hx2/3, s), 4.00 (3Hx1/3, s), 6.71-8.20 (13H, m)
- 5) 3-Methoxy-4-nitro-N-[2-[3-(ethoxycarbonylmethyl)-oxyprop-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ): 1.22 (3H, t, J=7.5Hz), 2.10-2.23 (2H, m), 3.78 (2H, t, J=7.5Hz), 4.01 (2H, s), 4.06 (3H, s), 4.14 (2H, q, J=7.5Hz), 4.26 (2H, t, J=7.5Hz), 6.91-7.06 (3H, m), 7.42 (1H, d, J=7Hz), 7.74 (1H, s), 7.93 (1H, d, J=7Hz), 8.49 (1H, d, J=7Hz), 7.78 (1H, s)
- 6) 3-Methoxy-4-nitro-N-[2-[(E)-5-ethoxycarbonyl-4-penten-1-yl]oxy-4-methyl]phenylbenzamide NMR (CDCl₃, δ) : 1.27 (3H, t, J=7.5Hz), 1.93-2.08 (2H, m), 2.27-2.50 (2H, m), 2.32 (3H, s), 4.02 (3H, s), 4.01-4.11 (2H, m), 4.18 (2H, q, J=7.5Hz), 5.88 (1H, d, J=15Hz), 6.72 (1H, s), 6.83 (1H, t, J=7Hz), 6.99 (1H, dt, J=15, 7.5Hz), 7.35 (1H, d, J=7Hz), 7.81 (1H, s), 7.92 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz), 8.45 (1H, s)
- 7) 4-Benzyloxy-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphe-nyl]benzamide
 NMR (DMSO-d₆, δ): 1.35-1.49 (2H, m), 1.49-1.63 (2H, m), 1.64-1.79 (2H, m), 2.23 (3H, s), 2.37 (2H, t, J=7Hz), 2.72 (3H, m), 2.78-3.11 (2H, m), 3.16 (3H, s), 3.28-3.60 (5H, m), 3.71-4.13 (5H, m), 4.43 (1H, m), 4.99 (2H, s), 6.63 (1H, d, J=8Hz), 6.80 (2H, d, J=2Hz), 6.86 (2H, s), 6.98 (1H, d, J=8Hz), 7.26-7.44 (5H, m)

- 8) 3-Methoxy-4-nitro-N-(2-benzyloxy-4-methylphenyl)-benzamide NMR (CDCl₃, δ): 2.38 (3H, s), 3.90 (3H, s), 5.12 (2H, s), 6.88 (1H, s), 7.30 (1H, s), 7.51 (4H, s), 7.59 (1H, s), 7.82 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz), 8.53 (1H, br)
- 5 9) 3-Methyl-4-nitro-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.48-1.60 (2H, m), 1.69-1.77 (2H, m), 1.79-1.90 (2H, m), 2.25 (3H, s), 2.29 (3H, s), 2.33-2.42 (6H, m), 2.47 (3H, s), 3.32 (3H, s), 3.45-3.50 (2H, m), 3.58-3.63 (2H, m), 3.82-3.95 (2H, m), 6.55-6.59 (2H, m), 6.83 (1H, d, J=7Hz), 7.14 (1H, d, J=7Hz), 7.37 (1H, s), 7.70 (1H, d, J=7Hz)
- 10) Ethyl 4-[(2-benzyloxy)benzoyl]amino-3-chlorobenzoate NMR (CDCl₃, δ) : 1.38 (3H, t, J=7Hz), 4.34 (2H, q, J=7Hz), 5.38 (1H, s), 5.39 (1H, s), 7.03-7.16 (2H, m), 7.33-7.50 (6H, m), 7.92-7.99 (2H, m), 8.24-8.32 (1H, m), 8.73-8.29 (1H, m)
- 11) 3-Hydroxy-4-nitro-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.48-1.60 (2H, m), 1.68-1.80 (2H, m), 1.82-1.91 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.37-2.42 (6H, m), 3.32 (3H, s), 3.48-3.50 (2H, m), 3.62-3.68 (2H, m), 3.90-3.97 (2H, m), 6.57-6.58 (2H, m), 6.80-6.87 (2H, m), 7.08-7.10 (1H, m), 7.85 (1H, d, J=7Hz)
- 12) Ethyl 4-[2-(benzyloxy)benzoyl]amino-2-nitrobenzoate
 NMR (CDCl₃, δ): 1.32 (3H, t, J=7Hz), 4.32 (2H, q, J=7Hz), 5.22-5.30 (2H, m), 7.12-7.27 (2H, m), 7.37-7.69 (9H, m), 8.20-8.34 (1H, m)
- 13) Methyl 2-[2-(benzyloxy)benzoyl]amino-5-pyridinecarboxylate
 25 NMR (CDCl₃, δ) : 3.92 (3H, s), 5.12 (1H, s), 5.36 (2H, s), 6.90-7.01 (1H, m), 7.10-7.18 (2H, m), 7.32-7.55 (5H, m), 8.27-8.34 (2H, m), 8.46 (1H, d, J=6Hz), 8.87-8.88 (1H, m)
 - 14) Benzyl 4-(2-acetoxybenzoyl)amino-3-benzyloxybenzoate

 NMR (CDCl₃, δ): 2.05 (3H, s), 5.20 (2H, s), 5.87 (2H, s), 7.13 (1H, d, J=8Hz), 7.32-7.47 (10H, m), 7.50-7.57 (1H, m), 7.73 (1H, s), 7.80 (1H, d, J=8Hz), 7.96 (1H, d, J=8Hz), 8.68 (1H, d, J=7Hz), 9.13 (1H, s)
 - 15) Methyl 2- (2-acetoxybenzoyl)amino-5-thiophenecarboxylate NMR (CDCl₃, δ) : 2.39 (3H, s), 3.88 (3H, s), 6.69 (1H, d, J=5Hz), 7.19-7.21 (1H, m), 7.35-7.30 (iH, m), 7.52-7.59 (1H, m), 7.63-7.66 (1H, m), 7.92-7.95 (1H, m), 9.18 (1H, s)

Preparation 11

30

35

40

45

50

[0287] The following compound was obtained by reacting the compound, which was prepared according to a similar manner to that of Example 1, with hydrogen chloride.

4-Benzyloxy-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

NMR (DMSO- d_6 , δ): 1.35-1.49 (2H, m), 1.49-1.63 (2H, m), 1.64-1.79 (2H, m), 2.23 (3H, s), 2.37 (2H, t, J=7Hz), 2.72 (3H, m), 2.78-3.11 (2H, m), 3.16 (3H, s), 3.28-3.60 (5H, m), 3.71-4.13 (5H, m), 4.43 (1H, m), 4.99 (2H, s), 6.63 (1H, d, J=8Hz), 6.80 (2H, d, J=2Hz), 6.86 (2H, s), 6.98 (1H, d, J=8Hz), 7.26-7.44 (5H, m)

Preparation 12

[0288] The following compound was obtained according to a similar manner to that of Example 4.

4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxybenzoic acid

NMR (DMSO-d₆, δ) : 1.35 (9H, s), 2.04 (2H, quintet, J=7Hz), 3.13 (2H, q, J=7Hz), 3.98 (3H, s), 4.29 (2H, t, J=7Hz), 6.95-7.00 (1H, m), 7.16 (1H, t, J=8Hz), 7.28 (1H, d, J=8Hz), 7.57-7.65 (3H, m), 8.11 (1H, dd, J=1, 8Hz), 8.63 (1H, d, J=8Hz)

ESI-MASS (m/z): 445 (M+H)

55 Preparation 13

[0289] The following compounds were obtained according to a similar manner to that of Example 10.

1) 4-Hydroxy-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide

NMR (CDCl₃, δ): 1.44-1.59 (2H, m), 1.62-1.92 (4H, m), 2.22-2.45 (12H, m), 3.31 (3H, 5), 3.42-3.53 (2H, m), 3.58-3.74 (5H, m), 3.77-4.02 (2H, m), 6.53-6.70 (3H, m), 6.80-6.96 (3H, m)

2) Methyl 4-(N-methyl-2-hydroxybenzoylamino)-3-methoxybenzoate NMR (CDCl₃, δ): 3.37 (3H, s), 3.69 (3H, s), 3.91 (3H, s), 6.38 (1H, t, J=8Hz), 6.72 (1H, d, J=8Hz), 6.91 (1H, d, J=8Hz), 7.15 (1H, t, J=8Hz), 7.21 (1H, d, J=9Hz), 7.49 (1H, d, J=1Hz), 7.62 (1H, dd, J=1, 9Hz) ESI-MASS (m/z): 316 (M+H)

3) 4-Hydroxy-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl] benzamide NMR (CDCl₃, δ) : 1.25-2.00 (10H, m), 2.06-2.40 (6H, m), 2.52 (1H, m), 2.73 (6H, br s), 3.02 (1H, m), 3.30 (3H, s), 3.67 (3H, s), 3.76-4.07 (3H, m), 4.82 (1H, m), 6.56-6.72 (3H, m), 6.78-6.96 (3H, m)

4) Methyl 4-[N-(2-hydroxyphenyl)-tert-butoxycarbonylamino]methyl-3-methoxybenzoate NMR (CDCl $_3$, δ): 1.38 (9H, s), 3.82 and 3.83 (total 3H, s), 3.90 and 3.91 (total 3H, s), 4.88 (2H, s), 6.80-6.87 (1H, m), 6.95 (1H, br), 7.03-7.12 (2H, m), 7.25-7.30 (2H, m), 7.48-7.50 (1H, m), 7.58-7.60 (1H, m)

5) 2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxyphenol
NMR (CDCl₃, δ): 1.45 (9H, s), 1.95-2.07 (2H, m), 3.25-3.45 (2H, m), 4.10 (2H, t, J=6Hz), 4.68 (1H, br), 6.22 (1H, br), 6.78-6.97 (4H, m)

Preparation 14

5

10

15

25

30

35

40

50

55

[0290] The following compounds were obtained according to a similar manner to that of Example 12.

- 1) Methyl 4-[N-methyl-2-[(3-tert-butoxycarbonylamino-prop-1-yl)oxy]benzoyl]amino-3-methoxybenzoate NMR (CDCl $_3$, δ): 1.43 (9H, s), 1.95-2.05 (2H, m), 3.30-3.40 (5H, m), 3.83 (3H, s), 3.85 (3H, s), 3.96-4.04 (2H, m), 5.23-5.32 (1H, br), 6.65-6.73 (2H, m), 7.00-7.16 (3H, m), 7.38-7.45 (2H, m) ESI-MASS (m/z): 473 (M+H)
- 2) Methyl 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxybenzoate NMR (CDCl₃, 5): 1.40 (9H, s), 2.13-2.21 (2H, m), 3.33 (2H, q, J=7Hz), 3.92 (3H, s), 4.00 (3H, s), 4.29 (2H, t, J=7Hz), 4.72-4.78 (1H, br), 7.03 (1H, d, J=8Hz), 7.23 (1H, t, J=8Hz), 7.49 (1H, t, J=8Hz), 7.60 (1H, s), 7.75 (1H, d, J=8Hz), 8.27 (1H, d, J=8Hz), 8.77 (1H, d, J=8Hz) ESI-MASS (m/z): 459 (M+H)
- 3) 4-Nitro-N-[2-(4-methoxycarbonylphenyl)methoxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 2.27 (3H, s), 3.40 (3H, s), 3.94 (3H, s), 4.95 (1H, d, J=14Hz), 5.09 (1H, d, J=14Hz), 6.62 (1H, s), 6.69 (1H, d, J=7Hz), 6.97 (1H, d, J=7Hz), 7.31-7.49 (4H, m), 7.95 (2H, d, J=8Hz), 8.10 (2H, d, J=8Hz)

Preparation 15

45 [0291] The following compound was obtained according to a similar manner to that of Example 16.

4-Amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.33-1.64 (4H, m), 1.64-1.81 (2H, m), 2.20 (3H, s), 2.29-2.43 (2H, m), 2.73 (3H, s), 2.79-3.10 (4H, m), 3.14 (3H, s), 3.22-3.56 (4H, m), 3.62 (3H, s), 3.72-4.18 (3H, m), 4.42 (1H, m), 6.62 (1H, d, J=8Hz), 6.74-6.92 (3H, m), 6.92-7.10 (2H, m)

Preparation 16

[0292] The following compounds were obtained according to a similar manner to that of Example 43.

1) Methyl 4-(2-hydroxybenzoyl)amino-3-methoxybenzoate NMR (CDCl₃, δ) : 3.93 (3H, s), 4.03 (3H, s), 6.96 (1H, t, J=8Hz), 7.04 (1H, d, J=8Hz), 7.47 (1H, t, J=8Hz), 7.54 (1H, dd, J=1, 8Hz), 7.62 (1H, s), 7.76 (1H, d, J=8Hz), 8.51 (1H, d, J=8Hz), 8.85-8.89 (1H, br s)

ESI-MASS (m/z): 302 (M+H)

- 2) Benzyl 3-benzyloxy-4-(2-hydroxybenzoyl)aminobenzoate NMR (CDCl₃, δ) : 5.23 (2H, s), 5.38 (2H, s), 6.82 (1H, t, J=7Hz), 7.01 (1H, d, J=7Hz), 7.30-7.49 (12H, m), 7.70-7.73 (1H, m), 7.80-7.83 (1H, m), 7.52 (1H, d, J=7Hz), 8.95 (1H, s)
- 3) Methyl 2-(2-hydroxybenzoyl)amino-5-thiophenecarboxylate NMR (DMSO-d₆, δ) : 3.79 (3H, s), 6.95-7.03 (3H, m), 7.42-7.48 (1H, m), 7.62-7.64 (1H, m), 7.88 (1H, d, J=7Hz)

10 Preparation 17

mide

5

15

20

40

50

[0293] The following compound was obtained according to a similar manner to that of Example 30. 3-Methoxy-4-nitro-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]-phenylbenza-

NMR (CDCl₃, δ): 2.29 (3H, s), 2.35 (3H, s), 2.38-2.54 (4H, m), 3.39 (3H, s), 3.43-3.53 (2H, m), 3.66 (3H, s), 3.71-3.88 (2H, m), 4.92 (1H, d, J=14Hz), 5.07 (1H, d, J=14Hz), 6.65-6.72 (2H, m), 6.87 (1H, d, J=7Hz), 6.98 (1H, d, J=7Hz), 7.03 (1H, s), 7.37 (2H, d, J=8Hz), 7.45 (2H, d, J=8Hz), 7.56 (1H, d, J=7Hz)

Preparation 18

[0294] To a mixture of 2-(4-methoxycarbonylphenyl)methoxy-4-methylaniline (420 mg) and 37% formaldehyde solution (69.7 mg) in a mixture of methanol (10 ml) and acetic acid (0.1 ml) was added sodium cyanoborohydride (146 mg) and the mixture was stirred at ambient temperature for 3 hours. The solution was diluted with ethyl acetate (30 ml) and washed successively with saturated aqueous sodium hydrogen carbonate, water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo. The residue was purified by silica gel column (chloroform) to give 2-(4-methoxycarbonylphenyl)methoxy-4-methyl-N-methylaniline (356 mg) .

NMR (CDCl₃, δ): 2.22 (3H, s), 2.80 (3H, s), 3.91 (3H, s), 5.11 (2H, s), 6.53 (1H, d, J=7Hz), 6.63 (1H, s), 6.72 (1H, d, J=7Hz), 7.49 (2H, d, J=8Hz), 8.04 (2H, d, J=8Hz)

30 Preparation 19

[0295] A solution of 2-benzyioxy-N-tert-butoxycarbonylaniline (1 g) in N,N-dimethylformamide (40 ml) was treated with sodium hydride (147 mg, 60% w/w in mineral oil) at 0°C. The reaction mixture was stirred at 0°C for 30 minutes and then at ambient temperature for 1 hour. Methyl 4-bromomethyl-3-methoxybenzoate (909 mg) was added, and the mixture was stirred at ambient temperature for 30 minutes. The reaction was quenched with water and the mixture diluted with ethyl acetate. The organic phase was washed with 0.5K hydrochloric acid, saturated aqueous sodium hydrogen carbonate, and brine. The solution was concentrated in vacuo and the residue was purified by silica gel column chromatography (hexane:ethyl acetate = 9:1) to give methyl 4-[N-[2-(benzyloxy)phenyl-tert-butoxycarbonylamino]methyl-3-methoxybenzoate (1.38 g).

NMR (CDCl₃, δ): 1.32 and 1.40 (total 9H, s), 3.65 and 3.71 (total 3H, s), 3.90 (3H, s), 4.77 (2H, s), 5.07 (2H, s), 6.78-7.00 (3H, m), 7.09-7.20 (1H, m), 7.27-7.55 (8H, m)

Preparation 20

- 45 [0296] The following compounds were obtained according to a similar manner to that of Preparation 19.
 - 1) 4-Nitro-3-methoxy-N-[(E and Z)-2-(4-methoxycarbonylphenyl)ethen-1-yl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 3.40 (3Hx2/3, s), 3.49 (3Hx1/3, s), 3.54 (3Hx1/3, s), 3.60 (3Hx2/3, s), 3.86 (3Hx2/3, s), 3.95 (3Hx1/3, s), 6.41-8.07 (7H, m)
 - 2) 3-Methoxy-4-nitro-N-[2-[3-(ethoxycarbonylmethyl)-oxyprop-1-yl]oxy]phenyl-N-methylbenzamide NMR (CDCl $_3$, δ) : 1.27 (3H, t, J=7.5Hz), 2.04-2.17 (2H, m), 3.37 (3H, s), 3.71 (2H, t, J=7.5Hz), 3.76 (3H, s), 4.20 (2H, q, J=7.5Hz), 6.78-7.01 (4H, m), 7.04 (1H, s), 7.19 (1H, t, J=7Hz), 7.60 (1H, d, J=7Hz)
- 3) 3-Methoxy-4-nitro-N-(2-benzyloxy-4-methylphenyl)-N-methylbenzamide
 NMR (CDCl₃, δ): 2.28 (3H, s), 3.39 (3H, s), 3.58 (3H, s), 4.85 (1H, d, J=12Hz), 5.07 (1H, d, J=12Hz), 6.68 (2H, s), 6.83 (1H, d, J=9Hz), 6.96 (1H, d, J=9Hz), 7.00 (1H, s), 7.30-7.44 (5H, m), 7.52 (1H, d, J=9Hz)

Preparation 21

[0297] To an ice bath cooled solution of methyl 2-(3-hydroxyprop-1-yl)thiobenzoate (3.7 g) in N,N-dimethylformamide (30 ml) was added sodium hydride (60% in oil, 719 mg) and the solution was stirred at the same temperature for 30 minutes. 4-Methoxybenzyl chloride (2.56 g) was added to the solution and the mixture was stirred at ambient temperature for 5 hours. The mixture was diluted with ethyl acetate (100 ml) and the solution was washed with water and brine. The organic phase was dried over magnesium sulfate and the solvent was evaporated in vacuo to give a crude oil. The crude product was purified by silica gel column chromatography (hexane:ethyl acetate = 10:1) to give methyl 2-[3-(4-methoxyphenyl)methoxyprop-1-yl]thiobenzoate (2.13 g).

NMR (CDCl₃, δ): 1.94-2.07 (2H, m), 3.03 (2H, t, J=7.5Hz), 3.58 (2H, t, J=7.5Hz), 3.80 (3H, s), 3.90 (3H, s), 4.39 (2H, q, J=7.5Hz), 4.45 (2H, s), 6.87 (2H, d, J=8Hz), 7.13 (1H, t, J=7Hz), 7.21-7.46 (4H, m), 7.96 (1H, d, J=7Hz)

Preparation 22

10

30

40

45

55

15 [0298] The following compound was obtained according to a similar manner to that of Preparation 21.

2-[3-(Ethoxycarbonylmethyl)oxyprop-1-yl]oxynitrobenzene

NMR (CDCl₃, δ): 1.25 (3H, t, J=7.5Hz), 2.08-2.20 (2H, m), 3.73 (2H, t, J=7.5Hz), 4.06 (2H, s), 4.13-4.32 (4H, m), 7.01 (1H, m), 7.10 (1H, d, J=7Hz), 7.50 (1H, t, J=7Hz), 7.82 (1H, d, J=7Hz)

20 Preparation 23

[0299] To an ice bath cooled solution of 3-methoxy-4-nitro-N-[2-(4-methoxycarbonyl)phenylmethoxy-4-methyl]-phenylbenzamide (7.67 g) in N,N-dimethylformamide (50 ml) was added sodium hydride (60% in oil, 817 mg) and the solution was stirred at the same temperature for 30 minutes. Iodomethane (1.27 ml) was added to the solution and the mixture was stirred at ambient temperature for 2 hours. The mixture was diluted with ethyl acetate (100 ml) and the solution was washed with water and brine. The organic phase was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an oil. The oil was solidified with diethyl ether to give 3-methoxy-4-nitro-N-[2-(4-methoxycarbonyl)phenylmethoxy-4-methyl]phenyl-N-methylbenzamide (6.65 g).

NMR (CDCl₃, δ) : 2.28 (3H, s), 3.40 (3H, s), 3.60 (3H, s), 3.94 (3H, s), 4.91 (1H, d, J=14Hz), 5.09 (1H, d, J=14Hz), 6.64 (1H, s), 6.71 (1H, d, J=7Hz), 6.84 (1H, d, J=7Hz), 7.00-7.04 (2H, m), 7.42 (2H, d, J=8Hz), 7.52 (1H, d, J=7Hz), 8.08 (2H, d, J=8Hz)

Preparation 24

35 **[0300]** The following compound was obtained according to a similar manner to that of Preparation 23. 3-Methoxy-4-nitro-N-[2-[(E)-5-ethoxycarbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.28 (3H, t, J=7.5Hz), 1.90-2.00 (2H, m), 2.00 (3H, s), 2.34-2.45 (2H, m), 3.35 (3H, s), 3.77 (3H, s), 3.84-3.97 (2H, m), 4.19 (2H, q, J=7.5Hz), 5.88 (1H, d, J=15Hz), 6.58-6.64 (2H, m), 6.84-7.02 (3H, m), 7.07 (1H, s), 7.60 (1H, d, J=7Hz)

Preparation 25

[0301] The following compound was obtained according to a similar manner to that of Example 45.

2-[5-(4-Dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylaniline

NMR (CDCl₃, δ): 1.18-2.00 (10H, m), 2.14-2.69 (13H, m), 2.99 (1H, m), 3.44-4.07 (5H, m), 4.64 (1H, m), 6.45-6.70 (3H, m)

Preparation 26

[0302] The following compound was obtained according to a similar manner to that of Example 38.

2-Hydroxy-N-tert-butoxycarbonylaniline

 $NMR\ (CDCl_3,\delta): 1.55\ (9H,s), 6.63\ (1H,s), 6.82-6.89\ (1H,m), 6.97-6.99\ (1H,m), 7.02-7.08\ (2H,m), 8.13\ (1H,br)$

Preparation 27

[0303] The following compound was obtained according to a similar manner to that of Example 87. Methyl 2-nitro-5-thiophenecarboxylate

NMR (CDCl₃, δ): 3.95 (3H, s), 7.70 (1H, d, J=5Hz), 7.86-7.88 (1H, m)

Preparation 28

[0304] To a suspension of phosphonium bromide (1.9 g) in tetrahydrofuran (35 ml) at 0°C was added 1.0M lithium bis(trimethylsilyl)amide in tetrahydrofuran (7.88 ml) over 5 minutes period. After 40 minutes, the cooling bath was removed and the red suspension was stirred for 15 minutes at ambient temperature. The suspension was recooled to -78°C, and a solution of 2-[3-(phthalimido)prop-1-yl]oxybenzaldehyde (1.16 g) in 10 ml of tetrahydrofuran (plus a 5 ml rinse) was added via cannula. The red reaction mixture was stirred at 0°C to ambient temperature. After 20 hours, the solution was quenched by 0.5N hydrochloric acid at 0°C. The resulting mixture was concentrated and extracted with chloroform. The organic extract was washed with brine and dried over magnesium sulfate, filtered, and concentrated to give 4-[2-[3-(phthalimido)prop-1-yl]oxy]phenyl]vinyl-3-methoxybenzoic acid (2.4 g).

NMR (DMSO-d₆, δ): 1.99-2.22 (2H, m), 3.72-3.94 (5H, m), 3.98-4.17 (2H, m), 6.38-7.88 (11H, m)

Preparation 29

10

15

20

25

30

35

45

50

55

[0305] To a suspension of sodium hydride (60% oil suspension, 88.3 mg) in N,N-dimethylformamide (6 ml) was added a solution of methyl 4-(2-benzyloxybenzoyl)amino-3-methoxybenzoate (600 mg) in N,N-dimethylformamide (4 ml) and the mixture was stirred at 0°C for 1 hour. Methyl iodide (0.14 ml) was added dropwise to the above solution and the mixture was stirred at 0°C for 30 minutes. The reaction temperature was raised to ambient temperature over 30 minutes and the reaction was quenched with 1N hydrochloric acid, and then the resulting solution was extracted with ethyl acetate. Drying, filtering and removal of solvents afforded a crude product. The crude product was purified by column chromatography (eluent; hexane:ethyl acetate = 3:1) to give methyl 4-(N-methyl-2-benzyloxybenzoylamino)-3-methoxybenzoate (650 mg).

NMR (CDCl₃, δ): 3.35 (3H, s), 3.72 (3H, s), 3.87 (3H, s), 4.93-5.00 (2H, m), 6.65 (1H, d, J=8Hz), 6.76 (1H, t, J=8Hz), 7.00-7.12 (2H, m), 7.18-7.23 (1H, m), 7.30-7.43 (6H, m), 8.02 (1H, s)

ESI-MASS (m/z): 406 (M+H)

Preparation 30

[0306] To a solution of (S)-1,3-butanediol (1.0 g) and triethylamine (1.12 g) in dichloromethane (30 ml) was added portionwise p-toluenesulfonyl chloride (2.12 g) at 0°C, and then the mixture was stirred at ambient temperature for 3 hours and stand overnight. The resulting solution was diluted with dichloromethane (30 ml) and the organic layer was washed successively with 1N hydrochloric acid, saturated sodium bicarbonate aqueous solution and brine. Drying, filtering and removal of solvents afforded (S)-3-hydroxybutyl p-toluenesulfonate (2.26 g).

NMR (CDCl₃, δ): 1.20 (3H, d, J=8Hz), 1.63-1.77 (1H, m), 1.78-1.93 (1H, m), 2.47 (3H, s), 3.89-4.00 (1H, m), 4.08-4.16 (1H, m), 4.20-4.29 (1H, m), 7.37 (2H, d, J=9Hz), 7.80 (2H, d, J=9Hz)

Preparation 31

[0307] A mixture of (S)-3-hydroxybutyl p-toluenesulfonate (2.25 g) and phthalimide potassium salt (3.41 g) in N,N-dimethylformamide (40 ml) was stirred at 60°C for 3.5 hours. The resulting mixture was diluted with water (50 ml) and the aqueous layer was extracted with ethyl acetate. Drying, filtering and removal of solvents afforded a crude product. The crude product was chromatographed on silica gel (eluent; hexane-ethyl acetate = 2:1) to give (S)-4-(phthalimido-1-yl)-2-butanol (910 mg).

NMR (CDCl₃, δ) : 1.22 (3H, d, J=7Hz), 1.64-1.88 (2H, m), 2.73 (1H, d, J=4Hz), 3.68-3.78 (1H, m), 3.82-3.89 (2H, m), 7.70-7.77 (2H, m), 7.83-7.89 (2H, m)

Preparation 32

[0308] To an ice-bath cooled solution of 4-methoxycarbonylphenylmethyl-tri-phenylphosphonium bromide (9.75 g) in N,N-dimethylacetamide (50 ml) was added potassium tert-butoxide (2.23 g). After being stirred in an ice-bath for 30 minutes, 2-nitrobenzaldehyde (3.0 g) was added to the solution and the mixture was stirred at the same temperature for 1 hour. The mixture was diluted with ethyl acetate and the solution was washed with water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an oil. The crude oil was subjected to silica gel column (10% ethyl acetate in n-hexane). Trans isomer was eluted first (1.4 g) and next cis and trans mixture (3.7 g).

Methyl 4-[(E)-2-(2-nitrophenyl)ethen-1-yl]benzoate

NMR (CDCl₃, δ) : 3.92 (3H, s), 7.10 (1H, d, J=15Hz), 7.41-7.50 (2H, m), 7.55-7.79 (4H, m), 8.00 (1H, d, J=7Hz), 8.07 (2H, d, J=8Hz)

Methyl 4-[E and Z)-2-(2-nitrophenyl)ethen-1-yl]benzoate NMR (CDCl₃, δ) : 3.83 (3Hx2/3 (Z), s), 3.91 (3Hx1/3 (E), s), 6.79 (1Hx2/3, d, J=12Hz), 6.98-8.14 (9H+1/3H, m)

Preparation 33

5

15

20

25

30

35

40

45

55

[0309] To a solution of 3-(3-ethoxycarbonylprop-1-yl)oxy-4-nitrotoluene (2.67 g) in dichlormethane (30 ml) was added diisobutylaluminum hydride (1.5 M solution in toluene, 7 ml) at -78°C and the solution was stirred at the same temperature for 2 hours. The reaction was quenched with addition of small amount of water and a mixture of chloroform (30 ml) and 1N hydrochloric acid (20 ml) was added. The organic phase was separated and washed with water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an oil. A mixture of the crude aldehyde and carbethoxymethylene triphenylphosphorane (3.49 g) in tetrahydrofuran (20 ml) was stirred at ambient temperature overnight and the solvent was evaporated in vacuo. The residue was subjected to silica gel column and the column was eluted with 10% ethyl acetate in n-hexane to give 3-[(E)-5-ethoxycarbonyl-4-penten1-ylloxy-4-nitrotoluene (2.29 g).

NMR (CDCl₃, δ): 1.27 (2H, t, J=7.5Hz), 1.93-2.04 (2H, m), 2.37 (3H, s), 2.40-2.50 (2H, m), 4.09 (2H, t, J=7.5Hz), 4.18 (2H, q, J=7.5Hz), 5.89 (1H, d, J=15Hz), 6.80 (1H, d, J=7Hz), 6.82 (1H, s), 7.00 (1H, dt, J=15, 7.5Hz), 7.78 (1H, d, J=7Hz)

Preparation 34

[0310] A 300 ml of hydrogenation bottle was flushed with nitrogen, and 10% palladium on carbon (1.5 g) was added into the bottle. A solution of benzyl 2-(3-phthalimidopropyloxy)benzoate (1.50 g) in methanol (50 ml) and 1,4-dioxane (50 ml) was added to the bottle, along with one drop of acetic acid. The mixture was shaken in a Parr apparatus at 3 atm of hydrogen at 35°C for 8 hours. The catalyst was removed by filtration through a bed of Celite, and washed with 1,4-dioxane (20 ml x 2). The combined solution was concentrated with a rotary evaporator to give crude solid. The crude solid in methanol (57 ml) and 1,4-dioxane (10 ml) was heated and the product was recrystallized on cooling. The crystal was collected by filtration, washed with cold methanol (5 ml) and ari-dried to give 2-(3-phthalimidopropyloxy)-benzoic acid (4.18 g).

mp: 155-157°C

NMR (DMSO- d_6 , δ): 1.98-2.14 (2H, m), 3.79 (2H, t, J=7Hz), 4.08 (2H, t, J=7Hz), 6.99 (1H, dd, J=8, 8Hz), 7.08 (1H, d, J=8Hz), 7.47 (1H, m), 7.62 (1H, d, J=8Hz), 7.77-7.92 (4H, m)

Preparation 35

[0311] A mixture of 4-amino-3-methoxy-N-[2-(4-carboxyphenylmethyl)oxy-4-methylphenyl]-N-methylbenzamide (500 mg), ethanolamine (109 mg), triphenylphosphine (936 mg) and carbon tetrachloride (0.57 ml) in a mixture of pyridine and acetonitrile (1:1, 15 ml) was stirred at ambient temperature for 18 hours. The solvent was evaporated and the residue was purified on silica gel column chromatography (SiO₂ 0-10% methanol in chloroform) to give 4-amino-3-methoxy-N-[2-[4-[N-(2-hydroxyethyl)-carbamoyl]phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide (392 mg).

NMR (CDCl₃, δ): 2.27 (3H, s), 3.33 (3H, s), 3.48 (3H, s), 3.60 (2H, q, J=5Hz), 3.78-3.84 (2H, m), 4.97 (2H, br), 6.35 (1H, d, J=8Hz), 6.61 (1H, s), 6.68-6.79 (3H, m), 7.04 (1H, d, J=8Hz), 7.11 (1H, br), 7.20 (2H, d, J=8Hz), 7.76 (2H, d, J=8Hz)

Preparation 36

[0312] To an ice-cooled 4-amino-3-methoxy-N-[2-[4-[N-(2-hydroxyethyl)carbamoyl]phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide (387 mg) was added dropwise thionyl chloride (129 mg), and the mixture was stirred at ambient temperature for 1 hour. The resulting mixture was added aqueous sodium hydrogen carbonate solution (15 ml). The solution was extracted with ethyl acetate (10 ml x 3).

The organic layer was washed with brine and dried over magnesium sulfate. The solvent was removed under reduced pressure to give 4-amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide (315 mg).

NMR (CDCl₃, δ): 2.26 (3H, s), 3.35 (3H, s), 3.52 (3H, s), 4.08 (2H, t, J=10Hz), 4.25 (2H, t, J=10Hz), 4.94 (1H, br), 5.07 (1H, br), 6.40 (1H, d, J=8Hz), 6.40-6.88 (4H, m), 7.00 (1H, d, J=8Hz), 7.36 (2H, d, J=8Hz), 7.96 (2H, d, J=8Hz)

Preparation 37

[0313] To a solution of 3-bromopropylamine hydrobromide (5.0 g) and diisopropylethylamine (5.90 g) in dichlorometh-

ane (80 ml) was added portionwise 9-fluorenylmethoxycarbonyl chloride (5.91 g) and the mixture was stirred at ambient temperature for 3 hours and stand overnight. The resulting mixture was diluted with dichloromethane (50 ml) and the organic layer was washed successively with 1N hydrochloric acid and brine. Drying, filtering and removal of solvents afforded a crude product. The crude product was triturated with diethyl ether-hexane (1:5) to give 3-(9-fluorenylmethoxycarbonylamino)propyl bromide (7.82 g).

NMR (CDCl₃, δ): 2.02-2.12 (2H, m), 3.30-3.45 (4H, m), 4.21 (1H, t, J=8Hz), 4.44 (2H, d, J=8Hz), 4.82-4.90 (1H, br), 7.32 (2H, t, J=8Hz), 7.40 (2H, t, J=8Hz), 7.58 (2H, d, J=8Hz), 7.78 (2H, d, J=8Hz) ESI-MASS (m/z): 360 (M+H)

10 Preparation 38

5

20

25

35

40

45

50

55

[0314] To a solution of thiosalicylic acid (500 mg) in ethanol (15 ml) and 2N sodium hydroxide aqueous solution (3.2 ml) was added 3-(9-fluorenylmethoxycarbonylamino)-propyl bromide at ambient temperature and the suspension was stirred for 2 hours. The resulting clear solution was diluted with water (20 ml) and acidified with 1N hydrochloric acid (6.5 ml). White crystals were collected by filtration and the solid was washed with ethanol-water (1:3, 15 ml) and then with n-hexane - diethyl ether (2:1, 15 ml) to give 2-[3-(9-fluorenylmethoxycarbonylamino)-propylthio]benzoic acid (1.07 q).

NMR (DMSO-d₆, δ) : 1.69-1.79 (2H, m), 2.90 (2H, t, J=8Hz), 3.08-3.18 (2H, m), 4.21 (1H, t, J=6Hz), 4.32 (2H, d, J=6Hz), 7.20 (1H, t, J=8Hz), 7.28-7.45 (6H, m), 7.50 (1H, t, J=8Hz), 7.68 (2H, d, J=8Hz), 7.85-7.91 (3H, m) ESI-MASS (m/z) : 434 (M+H)

Example 1

[0315] To a mixture of 2-benzyloxybenzoic acid (1.17 g) and oxalyl chloride (0.536 ml) in dichioromethane (30 ml) was added 2 drops of N,N-dimethylformamide and the mixture was stirred at ambient temperature for 1 hour. After removing a solvent by evaporation, a solution of residual acid chloride in dichloromethane (5 ml) was added to a mixture of 4-amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide (1.97 g) and triethylamine (1.07 ml) in dichloromethane (5 ml) and the resulting solution was stirred at ambient temperature for 3 hours. The reaction mixture was washed successively with 1N hydrochloric acid, water (20 ml) and brine (20 ml), and dried over magnesium sulfate. The solvent was evaporated to give an oil and the crude product was purified by silica gel column (chloroform) to give 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-(5-ethoxycarbonylpent-l-yloxy)phenyl]benzamide (2.89 g) as a colorless oil

NMR (CDCl₃, δ): 1.23 (3H, t, J=7.5Hz), 1.41-1.54 (2H, m), 1.63-1.75 (2H, m), 1.75-1.85 (2H, m), 2.32 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.80-3.95 (2H, br), 4.12 (2H, q, J=7.5Hz), 5.18 (2H, s), 6.82-6.90 (2H, m), 6.92-7.00 (3H, m), 7.07-7.19 (5H, m), 7.38-7.52 (6H, m), 8.27 (1H, d, J=7Hz)

Example 2

[0316] The following compounds were obtained according to a similar manner to that of Example 1.

- 1) 4-(2-Benzyloxybenzoyl)amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylaminoprop-1-yloxy]-phenyl] benzamide NMR (CDCl₃, δ): 2.00 (2H, m), 2.26 (3H, s), 2.32-2.39 (4H, m), 3.32 (3H, s), 3.34-3.41 (6H, m), 3.81-4.02 (2H, m), 5.20 (2H, s), 6.78-7.26 (9H, m), 7.38-7.53 (7H, m), 8.27 (1H, d, J=7Hz)
- 2) 3-Methoxy-4-(2-nitrobenzoyl)amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy] phenyl]benzamide NMR (CDCl₃, δ): 1.43-1.60 (2H, m), 1.61-1.90 (4H, m), 2.30 (6H, s), 2.31-2.44 (6H, m), 3.33 (3H, s), 3.44-3.53 (2H, m), 3.57-3.67 (2H, m), 3.71 (3H, s), 3.81-4.03 (2H, m), 6.56-6.69 (2H, m), 6.82-6.99 (2H, m), 7.03 (1H, s), 7.57-7.66 (2H, m), 7.67-7.76 (1H, m), 8.02-8.13 (2H, m), 8.21 (1H, d, J=8Hz)
- 3) 4-(2-Methoxybenzoyl)amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.25 (3H, t, J=7Hz), 1.43-1.59 (2H, m), 1.63-1.90 (4H, m), 2.26 (3H, s), 2.34 (2H, t, J=7Hz), 3.32 (3H, s), 3.79-3.99 (2H, m), 4.02 (3H, s), 4.11 (2H, q, J=7Hz), 6.53-6.66 (2H, m), 6.87 (1H, d, J=8Hz), 7.01 (1H, d, J=8Hz), 7.12 (1H, dd, J=8, 8Hz), 7.29-7.40 (2H, m), 7.42-7.56 (3H, m), 8.18-8.28 (1H, m), 9.81 (1H, br s)
- 4) 4-(2-Benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide NMR (CDCl₃, δ) : 1.25 (3H, t, J=7Hz), 1.42-1.58 (2H, m), 1.62-1.90 (4H, m), 2.32 (2H, t, J=7Hz), 3.28 (3H, s), 3.33

(3H, s), 3.78-4.03 (2H, m), 4.12 (2H, q, J=7Hz), 5.30 (2H, s), 6.72-7.22 (8H, m), 7.28-7.55 (6H, m), 8.20-8.29 (1H, m), 8.38 (1H, d, J=8Hz)

- 5) 4-[2-(Acetyloxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.32-2.01 (10H, m), 2.21-2.46 (15H, m), 1.57 (1H, m), 3.02 (1H, m), 3.32 (3H, s), 3.83-4.03 (3H, m), 4.69 (1H, m), 6.54-6.67 (2H, m), 6.80-8.33 (8H, m)
- 6) 4- [2- (Acetyloxy)benzoyl] amino-3-methoxy-N-methyl-N-[4-methyl-2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide
 NMR (CDCl₃, δ): 1.26 (3H, t, J=7Hz), 1.44-1.91 (6H, m), 2.21-2.41 (8H, m), 3.32 (3H, s), 3.80 (3H, s), 3.82-4.03 (2H, m), 6.54-6.67 (2H, m), 6.80-6.95 (2H, m), 7.07 (1H, s), 7.15 (1H, d, J=8Hz), 7.35 (1H, m), 7.51 (1H, m), 7.94 (1H, m), 8.28 (1H, d, J=8Hz), 8.87 (1H, s)

5

35

40

45

- 7) 4-(2-Benzyloxybenzoyl)amino-2-chloro-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide NMR (CDCl₃, δ) : 1.26 (3H, t, J=7Hz), 1.47-1.98 (6H, m), 2.36 (2H, t, J=7Hz), 3.34 (3H, s), 3.96 (2H, t, J=7Hz), 4.14 (2H, q, J=7Hz), 5.17 (2H, s), 6.64-6.82 (3H, m), 6.96 (1H, d, J=8Hz), 7.02-7.21 (5H, m), 7.41-7.62 (6H, m), 8.25 (1H, m)
- 20 8) 4-(2-Acetoxybenzoyl)amino-3-methoxy-N-methyl-N-(2-methylphenyl)benzamide NMR (CDCl₃, δ) : 2.21 (3H, s), 2.31 (3H, s), 3.38 (3H, s), 3.73 (3H, s), 6.87 (1H, d, J=8Hz), 7.00 (1H, s), 7.03-7.24 (5H, m), 7.29-7.43 (1H, m), 7.51 (1H, dd, J=8, 8Hz), 7.92 (1H, d, J=8Hz), 8.30 (1H, d, J=8Hz), 8.87 (1H, br s)
- 9) 4-(3-Benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-yl)carbon-ylpent-1-yloxy]phenyl]benzamide
 NMR (CDCl₃, δ): 1.32-1.42 (2H, m), 1.50-1.58 (2H, m), 1.67-1.90 (6H, m), 2.28 (3H, s), 2.29 (6H, s), 2.37 (2H, t, J=8Hz), 2.52-2.62 (1H, m), 2.98-3.07 (1H, m), 3.34 (3H, s), 3.78 (3H, s), 3.85-3.98 (3H, m), 4.59-4.67 (1H, m), 5.12 (2H, s), 6.58 (1H, d, J=8Hz), 6.63 (1H, d, J=8Hz), 6.84 (1H, d, J=8Hz), 6.92 (1H, d, J=8Hz), 7.02 (1H, s), 7.12-7.17 (1H, m), 7.33-7.50 (8H, m), 8.28 (1H, d, J=8Hz), 8.48 (1H, s)
 30 ESI-MASS (m/z): 721 (M+H)
 - 10) 4-(2-Benzyloxybenzoyl)amino-N-[2-(5-ethoxycarbonyl-pent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 1.25 (3H, t, J=7.5Hz), 1.43-1.56 (2H, m), 1.65-1.84 (4H, m), 2.25 (3H, s), 2.32 (2H, t, J=7.5Hz), 3.29 (3H, s), 3.77-3.93 (2H, m), 4.12 (2H, q, J=7.5Hz), 5.19 (2H, s), 6.51 (2H, m), 6.81 (1H, d, J=7Hz), 6.98 (2H, d, J=8Hz), 7.07-7.19 (4H, m), 7.39-7.53 (6H, m), 8.27 (1H, d, J=7Hz)
 - 11) 4-(2-lodobenzoyl)amino-N-[2-(4-methoxyphenyl)-methoxy]phenyl-N-methylbenzamide NMR (\dot{CDCl}_3 , δ) : 3.35 (3H, s), 3.82 (3H, s), 4.90-5.05 (2H, m), 6.83 (1H, t, J=7Hz), 6.89-6.96 (3H, m), 7.04 (1H, d, J=7Hz), 7.10-7.19 (2H, m), 7.22-7.32 (4H, m), 7.37-7.48 (3H, m), 7.53 (1H, s), 7.88 (1H, d, J=7Hz)
 - 12) 3-Methoxy-4-[2-(4-methoxyphenylmethyl)oxybenzoyl]-amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide NMR (CDCl $_3$, δ): 2.27 (3H, s), 2.31 (3H, s), 2.35-2.52 (2H, m), 3.24 (3H, s), 3.37 (3H, s), 3.40-3.53 (2H, m), 3.62-3.81 (2H, m), 3.39 (3H, s), 4.89 (1H, d, J=14Hz), 5.06 (1H, d, J=14Hz), 5.21 (2H, s), 6.61-6.70 (2H, m), 6.80-7.18 (7H, m), 7.30-7.45 (7H, m), 8.22 (1H, d, J=7Hz), 8.31 (1H, d, J=7Hz)
 - 13) 4-[2-(E)-(2-Ethoxycarbonylethen-1-yl)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 1.30 (3H, t, J=7.5Hz), 1.49-1.60 (2H, m), 1.67-1.77 (2H, m), 1.79-1.90 (2H, m), 2.29 (6H, sx2), 2.33-2.43 (6H, m), 3.33 (3H, s), 3.45-3.53 (2H, m), 3.60-3.67 (2H, m), 3.71 (3H, s), 3.85-4.01 (2H, m), 4.23 (2H, q, J=7.5Hz), 6.40 (1H, d, J=15Hz), 6.58-6.67 (2H, m), 6.86 (1H, d, J=7Hz), 6.92 (1H, d, J=7Hz), 7.02 (1H, s), 7.40-7.52 (2H, m), 7.58 (1H, d, J=7Hz), 7.68 (1H, d, J=7Hz), 8.02-8.15 (2H, m), 8.27 (1H, d, J=7Hz)
- 14) 4-(2-Dimethylamino-4-methyl)phenoxymethyl-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenylbenzamide
 NMR (CDCl₃, δ): 1.20 (3H, t, J=7.5Hz), 1.45-1.58 (2H, m), 1.66-1.77 (2H, m), 1.80-1.95 (2H, m), 2.25 (3H, s), 2.29-2.34 (2H, m), 2.31 (3H, s), 2.80 (6H, s), 4.00-4.16 (4H, m), 5.20 (2H, s), 6.68-6.89 (5H, m), 7.58 (2H, d, J=8Hz), 7.88 (2H, d, J=8Hz), 8.37 (1H, d, J=7Hz), 8.50 (1H, s)

- 15) 4-(2-Benzyloxy)benzoylamino-3-methoxy-N-[(E and Z)-2-(4-methoxycarbonylphenyl)ethen-1-yl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 3.06 (3Hx2/3, s), 3.10 (3Hx1/3, s), 3.40 (3Hx2/3, s), 3.43 (3Hx1/3, s), 3.46 (3Hx2/3, s), 3.91 (3Hx1/3, s), 5.20 (2Hx2/3, s), 5.27 (2Hx1/3, s), 6.38-8.37 (22H, m)
- 3-Methoxy-4-[2-[3-(4-methoxyphenyl)methoxyprop-1-yl]thiobenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]-phenylbenzamide NMR (CDCl₃, δ) : 1.44-1.58 (2H, m), 1.61-1.73 (2H, m), 1.68-1.92 (4H, m), 2.25 (3H, s), 2.27 (3H, s), 2.30-2.41 (6H, m), 2.99 (2H, t, J=7.5Hz), 3.30 (3H, s), 3.43-3.52 (4H, m), 3.57-3.66 (2H, m), 3.70 (3H, s), 3.78 (3H, s), 3.82-3.90 (2H, m), 4.38 (2H, s), 6.53-6.65 (2H, m), 6.79-6.93 (3H, m), 7.02 (1H, s), 7.17-7.29 (4H, m), 7.33-7.45 (2H, m), 7.65 (1H, d, J=7Hz), 8.29 (1H, d, J=7Hz), 8.80 (1H, s)

5

10

15

30

35

- 17) 4-(2,4-Dimethoxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yl]oxy]phenylbenzamide
 NMR (CDCl₃, δ): 1.43-1.57 (2H, m), 1.64-1.72 (2H, m), 1.72-1.91 (2H, m), 2.24 (3H, s), 2.27 (3H, s), 2.30-2.40 (6H, m), 3.31 (3H, s), 3.42-3.50 (2H, m), 3.59-3.65 (2H, m), 3.77 (3H, s), 3.80 (3H, s), 3.80-4.02 (2H, m), 3.96 (3H, s), 6.52-6.63 (2H, m), 6.81-7.04 (5H, m), 7.79 (1H, m), 8.38 (1H, d, J=7Hz)
- 18) 4- [2- (Acetoxy)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent1-yloxy]phenyl]benzamide
 NMR (CDCl₃, δ): 1.47-1.61 (2H, m), 1.64-1.93 (4H, m), 2.22-2.46 (15H, m), 3.33 (3H, s), 3.44-3.53 (2H, m),
 3.58-3.68 (2H, m), 3.79 (3H, s), 3.82-4.04 (2H, m), 6.54-6.68 (2H, m), 6.80-6.95 (2H, m), 7.04 (1H, s), 7.14 (1H, d, J=8Hz), 7.35 (1H, m), 7.51 (1H, m), 7.92 (1H, m), 8.29 (1H, br d, J=8Hz), 8.86 (1H, s)
- 19) 4-(2-Benzyloxy-4-methylbenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.48-1.61 (2H, m), 1.69-1.91 (4H, m), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.44 (6H, m), 2.38 (3H, s), 3.20 (3H, s), 3.32 (3H, s), 3.50 (2H, t, J=5Hz), 3.64 (2H, t, J=4Hz), 3.85-4.06 (2H, m), 4.89 (2H, s), 6.60-6.68 (2H, m), 6.82-6.95 (4H, m), 7.18 (1H, dd, J=2, 7Hz), 7.27-7.40 (5H, m), 7.98 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
 - 20) 4- (2-Benzyloxy-4-methylbenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.47-1.86 (6H, m), 2.28 (3H, s), 2.30 (3H, s), 2.36 (3H, s), 2.32-2.48 (6H, m), 3.30 (3H, s), 3.45-3.51 (2H, m), 3.60-3.66 (2H, m), 3.63 (3H, s), 3.79-4.00 (2H, m), 5.24 (2H, d, J=9Hz), 6.56-6.68 (2H, m), 6.80-6.93 (5H, m), 7.31-7.58 (5H, m), 8.11 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)
 - 21) 4-(2-Benzyloxy-5-methylbenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.47-1.99 (8H, m), 2.28 (3H, s), 2.31 (3H, s), 2.31-2.45 (6H, m), 3.25 (3H, s), 3.29 (2H, s), 3.48 (3H, s), 3.48-3.53 (2H, m), 3.60-3.64 (2H, m), 3.82-4.01 (2H, m), 5.27 (2H, s), 6.54-6.63 (2H, m), 6.81-6.95 (4H, m), 7.19-7.47 (7H, m), 8.02 (1H, s), 8.36 (1H, d, J=8Hz)
 - $22) \quad 4-(2-Benzyloxy-4-chlorobenzoyl) a mino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yl]oxy-4-methylphenyl] benzamide$
- ⁴⁵ NMR (CDCl₃, δ): 1.46-1.86 (6H, m), 2.15-2.31 (2H, m), 2.29 (6H, s), 2.30-2.58 (4H, m), 3.28 (3H, s), 3.49 (2H, t, J=5Hz), 3.60 (3H, s), 3.61 (2H, t, J=5Hz), 3.85-4.00 (2H, m), 5.15 (2H, s), 6.54-6.67 (2H, m), 6.83-7.16 (4H, m), 7.34-7.49 (7H, m), 8.01 (1H, d, J=8Hz), 8.19 (1H, d, J=8Hz)
- 23) 4-(2-Benzyloxy-4-methoxybenzoyl)amino-3-methoxy-N-methyl-N-[2- [5-(4-methylpiperazin-1-ylcarbonyl) pent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.44-1.59 (2H, m), 1.63-1.84 (4H, m), 2.28 (3H, s), 2.30 (3H, s), 2.25-2.40 (6H, m), 3.28 (3H, s), 3.30 (3H, s), 3.48 (2H, t, J=4Hz), 3.62 (2H, t, J=4Hz), 3.89-4.01 (2H, m), 5.26 (2H, s), 6.52-6.67 (4H, m), 6.81-6.92 (4H, m), 7.35-7.48 (5H, m), 8.21 (1H, d, J=9Hz), 8.38 (1H, d, J=8Hz)
- 24) 4-(2-Acetoxybenzoyl)amino-3-methoxy-N-(2-benzyloxy-4-methylphenyl)-N-methylbenzamide
 NMR (CDCl₃, δ): 2.29 (3H, s), 3.39 (3H, s), 3.60 (3H, s), 4.88 (1H, d, J=12Hz), 5.02 (1H, d, J=12Hz), 6.68-6.73 (2H, m), 6.82 (1H, d, J=8Hz), 7.02 (1H, s), 7.11-7.20 (2H, m), 7.31-7.42 (5H, m), 7.46-7.53 (1H, m), 7.93 (1H, d, J=8Hz), 8.27 (1H, d, J=8Hz), 8.86 (1H, br)

25) 4-(2-Acetoxybenzoyl)amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide

NMR (CDCl₃, δ): 2.27 (3H, s), 2.31 (3H, s), 3.39 (3H, s), 3.63 (3H, s), 4.07 (2H, t, J=10Hz), 4.42 (2H, t, J=10Hz), 4.91 (1H, d, J=12Hz), 5.11 (1H, d, J=12Hz), 6.61 (1H, br), 6.77 (1H, d, J=8Hz), 6.82-7.15 (5H, m), 7.24-7.50 (4H, m), 7.90 (2H, d, J=8Hz), 8.20 (1H, d, J=8Hz)

- 26) 4-[2-[3-(9-Fluorenylmethyl)oxycarbonylaminoprop-1-yl]thiobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.32-1.92 (12H, m), 2.29 (9H, s), 2.39 (2H, t, J=5Hz), 2.60 (1H, t, J=10Hz), 2.90-3.12 (3H, m), 3.29 (2H, q, J=5Hz), 3.33 (3H, s), 3.75 (3H, s), 3.82-4.00 (4H, m), 4.38 (2H, t, J=4Hz), 6.55-6.67 (3H, m), 6.83 (1H, d, J=8Hz), 6.92 (1H, d, J=8Hz), 7.02 (1H, s), 7.25-7.46 (6H, m), 7.59 (2H, d, J=7Hz), 7.63 (1H, d, J=8Hz), 7.77 (2H, d, J=8Hz), 8.30 (1H, d, J=8Hz), 8.70 (1H, s)
- 27) 4-[2-(Acetyloxy)benzoyl]amino-3-methyl-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.53 (2H, br), 1.63-1.89 (4H, m), 2.22 (3H, s), 2.30 (3H, s), 2.36 (3H, s), 2.22-2.50 (10H, m), 3.32-3.38 (3H, m), 3.52-3.57 (2H, m), 3.67 (2H, br), 3.95 (2H, br), 6.61 (2H, s), 6.83-6.93 (2H, m), 7.02-7.20 (2H, m), 7.32-7.58 (2H, m), 7.68 (1H, d, J=7Hz), 7.85 (1H, br)
- 28) 4-[(2-Benzyloxy)benzoyl]amino-3-[(2-benzyloxy)-benzoyl]oxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.44-1.53 (2H, m), 1.60-1.87 (4H, m), 2.28 (3H, s), 2.29 (3H, s), 2.32-2.38 (7H, m), 3.33 (3H, s), 3.43 (2H, br), 3.60 (2H, br), 3.90 (2H, br), 4.79 (2H, s), 4.93 (2H, s), 6.11-6.20 (3H, m), 6.82-7.43 (18H, m), 7.83-7.88 (1H, m), 8.12-8.15 (1H, m), 8.37-8.42 (1H, m)
 - 29) 4-[4-(Benzyloxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.30-1.45 (1H, m), 1.47-1.58 (2H, m), 1.60-1.75 (4H, m), 1.78-1.91 (2H, m), 2.27 (9H, s), 2.30-2.40 (3H, m), 2.50-2.63 (1H, m), 2.95-3.07 (1H, m), 3.30 (3H, s), 3.77 (3H, s), 3.82-3.98 (4H, m), 4.56-4.67 (1H, m), 5.11 (2H, s), 6.56-6.62 (2H, m), 6.80-6.93 (2H, m), 7.00-7.05 (3H, m), 7.34-7.45 (4H, m), 7.78-7.82 (2H, m), 8.22-8.30 (1H, m), 8.46 (1H, s)
 - 30) 4-[4-(Benzyloxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl $_3$, δ) : 1.48-1.59 (2H, m), 1.69-1.90 (4H, m), 2.28 (3H, s), 2.30 (3H, s), 2.35-2.42 (6H, m), 3.31 (3H, s), 3.48-3.50 (2H, m), 3.62-3.66 (2H, m), 3.78 (3H, s), 3.82-4.00 (2H, m), 5.13 (2H, s), 6.57-6.60 (2H, m), 6.81-6.92 (2H, m), 7.00-7.02 (3H, m), 7.30-7.43 (5H, m), 7.78-7.82 (2H, m), 8.27 (1H, d, J=7Hz), 8.43 (1H, s)
- 31) 4-[2-(Benzyloxy)benzoyl]amino-2-nitro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.30-1.44 (2H, m), 1.50-1.94 (8H, m), 2.20 (3H, s), 2.27 (6H, s), 2.30-2.43 (3H, m), 2.52-2.63 (1H, m), 2.97-3.10 (1H, m), 3.32 (3H, s), 3.85-3.97 (4H, m), 4.57-4.68 (1H, m), 5.20 (2H, s), 6.41-6.48 (2H, m), 6.52 (1H, s), 6.90-6.93 (1H, m), 7.11-7.20 (3H, m), 7.32 (1H, s), 7.48-7.59 (6H, m), 7.69-7.73 (1H, m), 8.29 (1H, d, J=7Hz)
 - 2-[2-(Benzyloxy)benzoyl]amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-5-pyridinecarboxamide NMR (CDCl₃, δ): 1.30-1.44 (2H, m), 1.44-1.60 (2H, m), 1.60-1.95 (6H, m), 2.20 and 2.28 (total 9H, s), 2.29-2.41 (3H, m), 2.47-2.64 (1H, m), 2.93-3.09 (1H, m), 3.32 (3H, s), 3.79-3.98 (4H, m), 4.57-4.69 (1H, m), 4.97-5.17 (1H, m), 5.32 (1H, s), 6.39-6.50 (1H, m), 6.60-6.78 (2H, m), 6.85-6.90 (1H, m), 7.00-7.12 (2H, m), 7.27-7.50 (7H, m), 7.56-8.25 (2H, m)

Example 3

5

10

25

30

35

45

50

[0317] To a mixture of 2-benzyloxybenzoic acid (1.55 g) and oxalyl chloride (1.18 ml) in dichloromethane (30 ml) was added 1 drop of N,N-dimethylformamide and the mixture was stirred at ambient temperature for 1 hour. After removing a solvent by evaporation, a solution of residual acid chloride in dichloromethane (30 ml) was added to a mixture of 4-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide

(3.28 g) and pyridine (1.1 ml) in dichloromethane (50 ml) and the mixture was stirred at ambient temperature for 2.5 hours. The mixture was washed with saturated sodium hydrogen carbonate solution and brine, and dried over sodium sulfate. The solvent was removed by evaporation and purified by silica gel column chromatography (SiO₂; 85 g, 2% methanol in dichloromethane) to give 4-(2-benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yloxyl-4-methylphenyl]benzamide (4.5 g).

NMR (CDCl₃, δ): 1.44-1.59 (2H, m), 1.62-1.90 (4H, m), 2.27 (3H, s), 2.28 (3H, s), 2.30-2.43 (6H, m), 3.30 (3H, s), 3.32 (3H, s), 3.43-3.53 (2H, m), 3.57-3.67 (2H, m), 3.78-4.03 (2H, m), 5.30 (2H, s), 6.52-6.66 (2H, m), 6.78-6.96 (3H, m), 7.04 (1H, d, J=9Hz), 7.10 (1H, dd, J=9, 9Hz), 7.30-7.49 (6H, m), 8.20-8.28 (1H, m), 8.37 (1H, d, J=9Hz)

10 Example 4

[0318] A solution of 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide (2.80 g) in a mixture of ethanol (50 ml) and 1N sodium hydroxide solution (10 ml) was stirred at ambient temperature for 4 hours. After removing ethanol by evaporation, the aqueous solution was adjusted to pH 2 with iN hydrochloric acid and the mixture was extracted with chloroform (30 x 2). The organic phase was washed with water (40 ml) and brine (30 ml), and dried over magnesium sulfate. The solvent was evaporated to give 4-(2-benzyloxybenzoyl)-amino-N-methyl-N-[2-(5-carboxylpent-1-yloxy)phenyl]-benzamide (1.76 g) as a colorless oil.

NMR (CDCl₃, δ): 1.45-1.57 (2H, m), 1.66-1.83 (4H, m), 2.37 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.78-3.96 (2H, br), 5.17 (2H, s), 6.75-6.82 (2H, m), 6.93-7.02 (3H, m), 7.10-7.22 (5H, m), 7.36-7.51 (6H, m), 8.28 (1H, d, J=7Hz)

Example 5

20

30

[0319] The following compounds were obtained according to a similar manner to that of Example 4.

25 1) 4-[2-(Carboxymethoxy)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide

NMR (CDCl₃, δ): 1.63 (2H, m), 1.73 (2H, m), 1.85 (2H, m), 2.28 (3H, s), 2.35-2.41 (6H, m), 3.36 (3H, s), 3.47 (2H, m), 3.61 (2H, m), 3.91 (2H, m), 4.76 (2H, s), 6.72-6.82 (2H, m), 6.86-7.01 (2H, m), 7.07-7.18 (2H, m), 7.35 (2H, d, J=8.5Hz), 7.47 (1H, t, J=7Hz), 7.72 (2H, d, J=8.5Hz), 8.25 (1H, d, J=7Hz)

2) 4-(2-Aminobenzoyl)amino-N-methyl-N-[2-(5-carboxypent-1-yloxy)-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.45-1.59 (2H, m), 1.64-1.85 (4H, m), 2.27 (3H, s), 2.38 (2H, t, J=7Hz), 3.32 (3H, s), 3.73-4.00 (2H, m), 6.56-6.76 (4H, m), 6.93 (1H, d, J=9Hz), 7.18-7.48 (6H, m), 7.86 (1H, br s)

- 35 3) 4-(2-Methoxybenzoyl)amino-N-methyl-N-[2-(5-carboxypent-1-yloxy)-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.46-1.62 (2H, m), 1.65-1.88 (4H, m), 2.26 (3H, s), 2.39 (2H, t, J=7Hz), 3.33 (3H, s), 3.73-4.00 (2H, m), 4.01 (3H, s), 6.54-6.68 (2H, m), 6.91 (1H, br d, J=9Hz), 6.99 (1H, d, J=9Hz), 7.10 (1H, dd, J=9, 9Hz), 7.35 (2H, br d, J=9Hz), 7.41-7.57 (3H, m), 8.17-8.27 (1H, m), 9.84 (1H, br s)
- 40 4) 4-(2-Benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1-yloxy)phenyl]benzamide NMR (CDCl₃, δ) : 1.43-1.60 (2H, m), 1.62-1.88 (4H, m), 2.38 (2H, t, J=7Hz), 3.28 (3H, s), 3.34 (3H, s), 3.76-4.02 (2H, m), 5.28 (2H, s), 6.74-6.85 (2H, m), 6.86-6.97 (2H, m), 6.97-7.20 (4H, m), 7.28-7.50 (6H, m), 8.16-8.27 (1H, m), 8.36 (1H, d, J=8Hz)
- 5) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1-yloxy)-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.31-1.96 (17H, m), 2.00-2.48 (6H, m), 3.14-3.39 (5H, m), 3.62-4.07 (5H, m), 4.10-4.30 (2H, m), 4.86 (1H, m), 6.52-6.72 (2H, m), 6.81-7.16 (5H, m), 7.37-7.53 (2H, m), 8.11-8.51 (2H, m)
- 6) 4-(2-Benzyloxybenzoyl)amino-2-chloro-N-methyl-N-[2-(5-carboxypent-1-yloxy)phenyl]benzamide
 NMR (CDCl₃, δ): 1.50-1.67 (2H, m), 1.68-1.98 (4H, m), 2.42 (2H, t, J=7Hz), 3.34 (3H, s), 3.99 (2H, t, J=7Hz), 5.16
 (2H, s), 6.65-6.80 (3H, m), 6.98 (1H, d, J=8Hz), 7.02-7.22 (5H, m), 7.40-7.61 (6H, m), 8.24 (1H, m)
- 7) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]-benzoyl]amino-3-methoxy-N-methyl-N-[4-(5-carboxypent-1-yloxy)phenyl]benzamide
 NMR (CDCl₃, δ): 1.40 (9H, s), 1.45-1.80 (8H, m), 2.18-2.27 (2H, m), 2.32-2.40 (2H, m), 3.25-3.35 (2H, m), 3.48 (3H, s), 3.80 (3H, s), 3.93 (2H, t, J=6Hz), 4.19-4.28 (2H, m), 4.73-4.83 (1H, br), 6.73-6.80 (3H, m), 6.93-7.12 (6H, m), 7.46 (1H, t, J=8Hz), 8.17-8.27 (1H, m)

ESI-MASS (m/z): 686 (M+Na)

5

20

25

30

35

50

- 8) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (DMSO-d₆, δ) : 1.31-1.80 (6H, m), 1.95-2.07 (4H, m), 2.22 (3H, s), 2.86 (2H, t, J=7.5Hz), 3.16 (3H, s), 3.70 (1H, m), 3.93 (1H, m), 4.16 (2H, t, J=7.5Hz), 6.65 (1H, d, J=7Hz), 6.78 (1H, s), 7.00-7.10 (2H, m), 7.20 (1H, d, J=7Hz), 7.23 (2H, d, J=8Hz), 7.43-7.62 (4H, m)
- 9) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide
- NMR (CDCl₃, δ): 1.36-1.50 (2H, m), 1.41 (9H, s), 1.50-1.62 (2H, m), 1.66-1.84 (2H, m), 2.05-2.19 (2H, m), 2.25 (3H, s), 2.36-2.44 (2H, m), 3.23-3.41 (2H, m), 3.31 (3H, s), 3.77-4.00 (2H, m), 4.16-4.29 (2H, m), 4.88 (1H, br), 6.53-6.67 (2H, m), 6.98 (2H, d, J=8Hz), 7.08 (1H, m), 7.30-7.53 (3H, m), 8.11 (1H, m)
- 10) 4-[(2-Benzyloxy)benzoyl]amino-N-[2-(3-carboxyprop-1-yl)oxy]phenyl-N-methylbenzamide

 NMR (DMSO-d₆, δ): 1.90-2.01 (2H, m), 2.42 (2H, t, J=7.5Hz), 3.20 (3H, s), 3.85-4.02 (2H, m), 5.20 (2H, s), 6.85 (1H, t, J=7Hz), 6.98 (1H, d, J=7Hz), 7.09 (1H, t, J=7Hz), 7.15-7.37 (6H, m), 7.49 (2H, d, J=8Hz), 7.62 (1H, d, J=7Hz)
 - 11) 4-(2-lodobenzoyl)amino-N-[2-(5-carboxypent-1-yl)oxy]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.45-1.58 (2H, m), 2.65-2.75 (2H, m), 2.75-2.84 (2H, m), 2.35 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.82-3.98 (2H, m), 6.77-6.86 (2H, m), 7.04 (1H, d, J=7Hz), 7.09-7.21 (2H, m), 7.28-7.48 (5H, m), 7.82-7.90 (2H, m)
 - 12) 4- (2-Dimethylamino-4-methyl)phenoxymethyl-N-[2-(5-carboxypent-1-yl)oxy]phenyl-N-methylbenzamide NMR (CDCl $_3$, δ): 1.38-1.52 (2H, m), 1.59-1.69 (2H, m), 1.72-1.85 (2H, m), 2.23 (3H, s), 2.25 (3H, s), 2.30 (2H, t, J=7.5Hz), 2.75 (6H, s), 3.33 (3H, s), 3.11-3.25 (2H, m), 3.88-4.00 (2H, m), 5.02 (2H, s), 6.56-6.67 (3H, m), 6.71 (1H, d, J=7Hz), 6.90-6.99 (2H, m), 7.24 (2H, d, J=8Hz), 7.38 (2H, d, J=8Hz)
 - 13) 3-Methoxy-4-[2-[1-(tert-butoxycarbonyl)piperidin-4-yl]oxybenzoyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 1.40-1.57 (2H, m), 1.45 (9H, s), 1.60-1.94 (6H, m), 2.01-2.22 (2H, m), 2.29 (3H, s), 2.38 (2H, t, J=7.5Hz), 2.97-3.20 (2H, m), 3.33 (3H, s), 3.41 (2H, t, J=7.5Hz), 3.71 (3H, s), 3.78-4.00 (2H, m), 4.67 (1H, m), 6.60-6.65 (2H, m), 6.87-7.12 (5H, m), 7.44 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 14) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)amino-1-methylprop-1-yl)oxybenzoyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.40 (9H, s), 1.42 (3H, d, J=7.5Hz), 1.43-1.96 (8H, m), 2.25 (3H, s), 2.33-2.42 (2H, m), 3.11-3.33 (2H, m), 3.33 (3H, s), 3.65-3.97 (5H, m), 4.70 (1H, m), 6.53-6.70 (2H, m), 6.79-7.13 (4H, m), 7.44 (1H, t, J=7Hz), 8.23 (1H, m), 8.39 (1H, m)
- 15) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-(3-carboxypyrid-6-yl)meth-40 oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 1.40 (9H, s), 2.05-2.16 (2H, m), 2.27 (3H, s), 3.28 (2H, br), 3.42 (3H, br), 3.58 (3H, br), 3.86-4.00 (2H, m), 4.10-4.25 (2H, m), 4.95 (1H, br), 5.16 (1H, br), 6.62 (3H, br), 6.86-7.18 (4H, m), 7.41 (3H, br), 8.14 (1H, br), 8.33 (1H, br), 9.17 (1H, br)
- 16) 4- [2- (E)-(2-Carboxyethen-1-yl)benzoylamino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl]oxy]phenylbenzamide

 NMR (CDCl₃, δ): 1.50-2.00 (6H, m), 2.27-2.52 (10H, m), 2.60-2.81 (2H, m), 3.31 (3H, s), 3.43-3.66 (2H, m), 3.83-4.22 (7H, m), 5.60 (1H, m), 6.57 (1H, m), 6.65-6.76 (4H, m), 7.01-7.12 (2H, m), 7.21 (1H, d, J=7Hz), 7.42-7.60 (3H, m), 7.85 (1H, m)
 - 17) 4-[2-(3-Carboxyprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl]oxy]phenylbenzamide
 NMR (CDCl₃, δ): 1.44-1.57 (2H, m), 1.64-1.75 (2H, m), 1.75-1.87 (2H, m), 2.20 (3H, s), 2.34 (3H, s), 2.35-2.50 (6H, m), 2.61-2.74 (2H, m), 3.30 (3H, s), 3.33-3.46 (2H, m), 3.49-3.69 (4H, m), 3.75 (3H, s), 3.90-4.02 (2H, m), 4.17-4.27 (2H, m), 6.56-6.72 (2H, m), 6.83-6.92 (2H, m), 6.93-7.00 (2H, m), 7.07 (1H, t, J=7Hz), 7.43 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 18) 4-[2-(Carboxymethoxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-

1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.51-1.92 (6H, m), 2.02 (3H, s), 2.30 (3H, s), 2.32 (2H, t, J=5Hz), 2.43-2.68 (4H, m), 3.33 (3H, s), 3.40-3.55 (4H, m), 3.72 (3H, s), 3.75-4.07 (2H, m), 4.73 (2H, s), 6.57-6.68 (2H, m), 6.81-7.10 (6H, m), 7.35-7.45 (1H, m), 8.18 (1H, d, J=7Hz), 8.32 (1H, d, J=8Hz)

Example 6

5

25

30

35

[0320] A mixture of 4-[2-[3-(phthalimido)prop-1-yl]oxy]-benzoylamino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (470 mg) and hydrazine hydrate (158 mg) in ethanol (5 ml) was stirred at ambient temperature for 6 hours and filtered through a bed of Celite. The filtrate was evaporated and the residue was subjected to silica gel column. The column was eluted with a mixture of chloroform, methanol and aqueous ammonia (10:1:0.1). The object fractions were evaporated to give 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]-amino-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl)-carbonylpent-1-yloxy]phenyl]benzamide (256 mg) as a colorless amorphous.

NMR (CDCl₃, δ): 1.56 (2H, m), 1.74 (2H, m), 1.87 (2H, m), 2.09 (2H, m), 2.29 (3H, s), 2.34-2.43 (6H, m), 2.97 (2H, t, J=7.5Hz), 3.33 (3H, s), 3.50 (2H, m), 3.65 (2H, m), 3.96 (2H, m), 4.30 (2H, t, J=7.5Hz), 6.73-6.83 (2H, m), 6.95-7.03 (2H, m), 7.77-7.16 (2H, m), 7.34 (2H, d, J=8.5Hz), 7.42-7.50 (3H, m), 8.22 (1H, d, J=7Hz)

Example 7

- 20 [0321] The following compounds were obtained according to a similar manner to that of Example 6.
 - 1) 4-[2-(3-Aminoprop-1-yl)oxy]benzoylamino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylaminoprop-1-yloxy]phenyl]benzamide
 - NMR (CDCl₃, δ): 2.00 (2H, m), 2.10 (2H, m), 2.27 (3H, s), 2.34-2.39 (4H, m), 2.98 (2H, t, J=7.5Hz), 3.35 (3H, s), 3.35-3.61 (6H, m), 3.98 (2H, m), 4.30 (2H, t, J=7.5Hz), 6.80-6.91 (2H, m), 7.02 (2H, d, J=7Hz), 7.07-7.21 (3H, m), 7.33-7.51 (5H, m), 8.22 (1H, d, J=7Hz)
 - 2) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
 - NMR (CDCl₃, δ): 1.53 (2H, m), 1.70 (2H, m), 1.84 (2H, m), 2.07 (2H, m), 2.26 (3H, s), 2.28 (3H, s), 2.31-2.40 (6H, m), 2.90 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.49 (2H, m), 3.60 (2H, m), 3.89 (3H, s), 3.82-3.99 (2H, m), 4.28 (2H, t, J=7.5Hz), 6.54-6.64 (2H, m), 6.82-6.94 (2H, m), 7.00-7.11 (3H, m), 7.45 (1H, m), 8.20 (1H, m), 8.39 (1H, m)
 - 3) (R)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide
 - NMR (CDCl₃, δ) : 1.42 and 1.45 (total 3H, s), 1.50-1.89 (8H, m), 2.02-2.12 (1H, m), 2.29 (3H, s), 2.31 (3H, s), 2.33-2.42 (6H, m), 2.84-2.90 (2H, m), 3.33 (3H, s), 3.46-3.52 (2H, m), 3.60-3.67 (2H, m), 3.80 (3H, s), 3.87-4.00 (2H, m), 4.78-4.87 (1H, m), 6.58 (1H, d, J=7Hz), 6.65 (1H, s), 6.82-6.92 (2H, m), 7.03-7.10 (3H, m), 7.45 (1H, t, J=8Hz), 8.21 (1H, dd, J=1, 8Hz), 8.40 (1H, d, J=7Hz)
- 40 ESI-MASS (m/z): 674 (M+H)
 - 4) (R)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperid-in-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
- NMR (CDCl₃, δ): 1.43 and 1.45 (total 3H, s), 1.46-1.91 (12H, m), 2.02-2.12 (1H, m), 2.29 (9H, s), 2.30-2.41 (4H, m), 2.52-2.63 (1H, m), 2.87 (2H, t, J=8Hz), 2.97-3.07 (1H, m), 3.35 (3H, s), 3.80 (3H, s), 3.87-3.98 (4H, m), 4.59-4.68 (1H, m), 4.79-4.88 (1H, m), 6.59 (1H, d, J=8Hz), 6.64 (1H, s), 6.83-6.93 (2H, m), 7.05-7.10 (3H, m), 7.45 (1H, t, J=8Hz), 8.23 (1H, d, J=9Hz), 8.42 (1H, d, J=8Hz) ESI-MASS (m/z): 702 (M+H)
- 5) (S)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperid-in-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
 - NMR (CDCl₃, δ): 1.43 and 1.45 (total 3H, s), 1.46-1.92 (12H, m), 2.02-2.13 (1H, m), 2.28 (9H, s), 2.30-2.40 (4H, m), 2.52-2.63 (1H, m), 2.86 (2H, t, J=8Hz), 2.97-3.07 (1H, m), 3.35 (3H, s), 3.81 (3H, s), 3.87-3.98 (4H, m), 4.60-4.68 (1H, m), 4.79-4.89 (1H, m), 6.59 (1H, d, J=8Hz), 6.54 (1H, s), 6.83-6.93 (2H, m), 7.05-7.10 (3H, m), 7.46 (1H, t, J=8Hz), 8.23 (1H, d, J=9Hz), 8.43 (1H, d, J=8Hz)
- 55 J=8Hz), 8.23 (1H, d, J=9Hz), 8 ESI-MASS (m/z): 702 (M+H)
 - 6) 4-[2-[4-Aminobut-1-yl]oxybenzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl]oxybenzoyl]phe-

nv	lber	ารล	mi	de

NMR (CDCl₃, δ): 1.47-1.74 (8H, m), 1.77-1.88 (2H, m), 1.95-2.06 (2H, m), 2.27 (3H, s), 2.31-2.40 (4H, m), 2.78 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.45-3.50 (2H, m), 3.58-3.65 (2H, m), 3.84-3.98 (2H, m), 4.20 (2H, t, J=7.5Hz), 6.72-6.80 (2H, m), 6.93-7.00 (2H, m), 7.04-7.14 (2H, m), 7.30 (2H, d, J=8Hz), 7.40-7.48 (3H, m), 8.19 (1H, d, J=7Hz)

5

7) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.24 (3H, t, J=7.5Hz), 1.44-1.56 (2H, m), 1.63-1.87 (6H, m), 2.06-2.16 (2H, m), 2.28 (3H, s), 2.33

10

(2H, t, J=7.5Hz), 2.97 (2H, t, J=7.5Hz), 3.30 (3H, s), 3.82-3.96 (2H, m), 4.11 (2H, q, J=7.5Hz), 4.30 (2H, t, J=7.5Hz), 6.54-6.60 (2H, m), 6.83 (1H, d, J=7Hz), 7.00 (1H, d, J=7Hz), 7.09 (1H, t, J=7Hz), 7.30 (2H, d, J=8Hz), 7.41-7.48 (3H, m), 8.20 (1H, d, J=7Hz)

15

8) 4- [2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylprop-1-yl]oxy] phenylbenzamide NMR (CDCl₃, δ): 2.03-2.17 (2H, m), 2.29 (3H, s), 2.33-2.42 (2H, m), 2.53 (2H, t, J=7.5Hz), 2.96 (2H, t, J=7.5Hz),

3.38 (3H, s), 3.46-3.53 (2H, m), 3.59-3.68 (2H, m), 3.92-4.08 (2H, m), 4.28 (2H, t, J=7.5Hz), 6.77-6.83 (2H, m), 6.98-7.18 (4H, m), 7.31 (2H, d, J=8Hz), 7.43-7.50 (3H, m), 8.20 (1H, d, J=7Hz)

20

9) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]-phenylmethoxy]phenylbenzamide

NMR (CDCl₃, δ): 2.02-2.14 (2H, m), 2.37 (3H, s), 2.30 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, s), 2.32-2.51 (4H, m), 2.94 (2H, t, J=7.5Hz), 3.35 (3H, t, J=7.5Hz), s), 3.41-3.57 (2H, m), 3.67-3.86 (2H, m), 4.30 (2H, t, J=7.5Hz), 4.96 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.63-6.71 (2H, m), 6.95-7.02 (2H, m), 7.11 (1H, t, J=7Hz), 7.31 (2H, d, J=8Hz), 7.36-7.50 (7H, m), 8.22 (1H, d,

25

10) 4-[2-(4-Amino-1-butyn-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy] phenylbenzamide

NMR (CDCI₃, δ): 1.42-1.90 (10H, m), 2.28 (3H, s), 2.32-2.41 (6H, m), 3.37 (3H, s), 3.46-3.51 (2H, m), 3.59-3.67 (2H, m), 3.82-4.02 (2H, m), 6.73-6.82 (2H, m), 7.00 (1H, d, J=7Hz), 7.08-7.20 (2H, m), 7.35-7.64 (5H, m), 7.81-7.88 (2H, m)

30

11) 4-[2-(4-Aminobut-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide

MASS (m/z): 614 (M+1)

35

12) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide

NMR (CDCl₃, δ): 2.01-2.11 (2H, m), 2.28 (3H, s), 2.31 (3H, s), 2.33-2.51 (4H, m), 2.90 (2H, t, J=7.5Hz), 3.39 (3H, s), 2.31 (3H, s), 2.32-2.51 (4H, m), 2.90 (2H, t, J=7.5Hz), 3.39 (3H, s), 2.31 (3H, s), 2.32 (3H, s), 2.33 (3H, s), 2.33 (3H, s), 2.33 (3H, s), 2.34 (3H, s), 2.35 s), 3.40-3.52 (2H, m), 3.61-3.86 (2H, m), 3.67 (3H, s), 4.79 (2H, t, J=7.5Hz), 4.90 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.61-6.70 (2H, m), 7.86 (1H, d, J=7Hz), 6.94-7.10 (4H, m), 7.31-7.46 (5H, m), 8.20 (1H, d, J=7Hz), 8.37 (1H, d, J=7Hz)

40

45

13) 3-Methoxy-4-[2-(3-aminoprop-1-yl)oxy]phenylmethyl]-amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-

1-yl)carbonylpent-1-yl]oxy]phenylbenzamide

NMR (CDCl₃, δ): 1.45-1.54 (2H, m), 1.62-1.71 (2H, m), 1.76-1.85 (2H, m), 1.87-2.00 (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.31-2.40 (4H, m), 2.90 (2H, t, J=7.5Hz), 3.28 (3H, s), 3.45-3.50 (2H, m), 3.57-3.64 (2H, m), 3.61 (3H, s), 3.80-3.97 (2H, m), 4.07 (2H, t, J=7.5Hz), 4.27 (2H, s), 4.70 (1H, br), 6.37 (1H, d, J=7Hz), 6.59 (1H, d, J=7Hz), 6.62 (1H, s), 6.78 (1H, s), 6.82-6.90 (4H, m), 7.16-7.71 (2H, m)

50

4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[4-(4-methylpiperazin-1-yl)carbonyl]phenyleth-1-yl]phenylbenzamide NMR (CDCI₃, δ): 2.00-2.11 (2H, m), 2.29 (3H, s), 2.32-2.50 (4H, m), 2.61-2.93 (6H, m), 3.32 (3H, s), 3.35-3.89 (2H, m), 3.59-3.81 (2H, m), 3.71 (3H, s), 4.22-4.32 (2H, m), 6.83 (1H, d, J=7Hz), 6.94-7.33 (11H, m), 7.43 (1H, t,

J=7Hz), 8.20 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz) 4-[2-(3-Aminoprop-1-yl)thiobenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)

55

carbonylpent-1-ylloxylphenylbenzamide

MASS (m/z): 676 (M+1)

- 16) 4-[2-(3-Aminoprop-1-yl)sulfonylbenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide MASS (m/z) : 724 (M+1)
- 5 17) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(4-dimethylaminopiperidin-1-yl)carbonyl]-phenylmethoxy-4-methyl]phenyl-N-methylbenzamide MASS (m/z): 708 (M+1)
- 18) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylmethoxyprop-1-yl]oxy]phenylbenzamide
 NMR (CDCl₃, δ) : 2.00-2.14 (4H, m), 2.23 (3H, s), 2.29-2.38 (4H, m), 2.88 (2H, t, J=7.5Hz), 3.35 (3H, s), 3.37-3.45
 (2H, m), 3.54-3.61 (2H, m), 3.66-3.76 (2H, m), 3.77 (3H, s), 3.94-4.17 (4H, m), 4.30 (2H, t, J=7.5Hz), 6.75-7.18
 (8H, m), 7.45 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)
- 19) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[(E)-5-(4-dimethylaminopiperidin-1-yl)carbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide

 MASS (m/z): 686 (M+1)
- 20) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-[2-(4-aminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 1.41 (9H, s), 1.50-1.67 (2H, m), 1.77-1.89 (2H, m), 2.06-2.21 (2H, m), 2.27 (3H, s), 2.80 (2H, t, J=7.5Hz), 3.23-3.36 (2H, m), 3.36 (3H, s), 3.80 (3H, s), 3.84-4.03 (2H, m), 4.26 (2H, t, J=7.5Hz), 6.57-6.68 (2H, m), 6.83-7.15 (5H, m), 7.45 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
- 21) 4-[2-(3-Amino-1-methylprop-1-yl)oxybenzoyl]amino-3-methoxy-N-(2-benzyloxy-4-methyl)phenyl-N-methylbenzamide
 NMR (CDCl₃, δ): 1.41 (3H, d, J=7.5Hz), 1.70-1.83 (1H, m), 1.96-2.10 (1H, m), 2.26 (3H, s), 2.80-2.89 (2H, m), 3.37 (3H, s), 3.62 (3H, s), 4.82 (1H, m), 4.89 (1H, d, J=14Hz), 5.07 (1H, d, J=14Hz), 6.63-6.72 (2H, m), 7.86 (1H, d, J=7Hz), 6.98 (1H, d, J=7Hz), 7.02-7.11 (3H, m), 7.28-7.49 (6H, m), 8.22 (1H, d, J=7Hz), 8.37 (1H, d, J=7Hz)

30

35

40

50

55

J=8Hz)

- 22) 4-[2-(4-Aminobut-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 1.46-2.03 (10H, m), 2.24 (3H, s), 2.28 (3H, s), 2.31-2.40 (6H, m), 2.73 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.44-3.50 (2H, m), 3.59-3.65 (2H, m), 3.77 (3H, s), 3.83-4.00 (2H, m), 4.20 (2H, t, J=7.5Hz), 6.58 (1H, d, J=7Hz), 7.61 (1H, s), 6.85 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 6.87-7.10 (3H, m), 7.45 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 23) 4-[2-(3-Aminoprop-1-yl)oxy-3-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl $_3$, δ) : 1.49-1.91 (6H, m), 1.96-2.07 (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.35 (3H, s), 2.32-2.40 (6H, m), 2.95 (2H, t, J=5Hz), 3.32 (3H, s), 3.46-3.53 (2H, m), 3.60-3.67 (2H, m), 3.81 (3H, s), 3.85-4.02 (4H, m), 6.56-6.66
- 24) 4-[2-(3-Aminoprop-1-yl)oxy-4-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcar-bonyl)pent-1-yloxy]-4-methylphenyl]benzamide
 NMR (CDCl₃, δ) : 1.46-1.90 (6H, m), 2.13-2.25 (2H, m), 2.26 (3H, s), 2.28 (3H, s), 2.30-2.58 (6H, m), 2.37 (3H, s), 2.99 (2H, t, J=5Hz), 3.30 (3H, s), 3.49 (3H, s), 3.49 (2H, t, J=5Hz), 3.61 (2H, t, J=5Hz), 3.79 (3H, s), 3.83-3.92 (2H, m), 4.28 (2H, t, J=5Hz), 6.56-6.65 (2H, m), 6.80-6.93 (4H, m), 7.00 (1H, s), 8.02 (1H, d, J=8Hz), 8.39 (1H, d,

(2H, m), 6.82-7.18 (4H, m), 7.33 (1H, d, J=8Hz), 7.80 (1H, d, J=7Hz), 8.36 (1H, d, J=7Hz)

- 25) 4-[2-(3-Aminoprop-1-yl)oxy-5-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl $_3$, δ) : 1.49-1.90 (6H, m), 1.98-2.20 (4H, m), 2.28 (3H, s), 2.29 (3H, s), 2.31 (3H, s), 2.31-2.42 (4H, m), 2.95 (2H, t, J=5Hz), 3.31 (3H, s), 3.50 (2H, t, J=4Hz), 3.62 (2H, t, J=4Hz), 3.79 (3H, s), 3.80-4.00 (2H, m), 4.25 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.82-7.04 (4H, m), 7.24 (1H, d, J=8Hz), 7.95 (1H, s), 8.39 (1H, d, J=8Hz)
- 26) 4-[2-(3-Aminoprop-1-yl)oxy-4-chlorobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.48-1.60 (2H, m), 1.62-1.90 (2H, m), 2.10 (2H, t, J=6Hz), 2.27 (3H, s), 2.29 (3H, s), 2.30-2.41 (4H, m), 2.93 (2H, t, J=5Hz), 3.31 (3H, s), 3.45-3.53 (2H, m), 3.58-3.66 (2H, m), 3.78 (3H, s), 3.82-4.01 (2H, m), 4.29 (2H, t, J=5Hz), 6.55-6.68 (2H, m), 6.80-6.91 (2H, m), 6.99-7.10 (4H, m), 8.13 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)

27) 4-[2-(3-Aminoprop-1-yl)oxy-4-methoxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.47-1.89 (6H, m), 2.04-2.15 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.31-2.42 (6H, m), 2.93 (2H, t, J=5Hz), 3.31 (3H, s), 3.44-3.52 (2H, m), 3.57-3.65 (2H, m), 3.79 (3H, s), 3.83 (3H, s), 3.83-4.00 (2H, m), 4.26 (2H, t, J=5Hz), 7.50-7.68 (4H, m), 6.82-6.95 (2H, m), 7.03 (3H, s), 8.16 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

Example 8

5

10

15

20

25

30

35

40

50

55

[0322] A mixture of 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-(5-carboxypent-1-yloxy)phenyl]benzamide (1.76 g), N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (714 mg), N-methylpiperazine (311 mg) and 1-hydroxybenzotriazol (504 mg) in N,N-dimethylformamide (20 ml) was stirred at ambient temperature for 2 hours and the mixture was diluted with ethyl acetate (40 ml). The solution was washed successively with saturated aqueous sodium hydrogen carbonate solution (40 ml), water (40 ml) and brine (40 ml), and dried over magnesium sulfate. The solvent was evaporated to give 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxyl phenyl]benzamide (1.98 g) as a colorless oil.

NMR (CDCl₃, δ): 1.46-1.58 (2H, m), 1.64-1.88 (4H, m), 2.30 (3H, s), 2.32-2.41 (6H, m), 3.32 (3H, s), 3.49 (2H, m), 3.62 (2H, m), 3.81-4.00 (2H, br), 5.20 (2H, s), 6.73-6.82 (2H, m), 6.94-7.00 (3H, m), 7.08-7.20 (5H, m), 7.40-7.53 (6H, m), 8.28 (1H, d, J=7Hz)

Example 9

[0323] The following compound was obtained by using 4-[2-(carboxymethoxy)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide as a starting compound according to a similar manner to that of Example 8.

4-[2-[(4-Methylpiperazin-1-yl)carbonylmethoxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide

MASS: 699 (M+1)

Example 10

[0324] A solution of 4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy] phenyl]benzamide (1.90 g) in methanol (30 ml) was hydrogenated under atmospheric presser in the presence of palladium hydroxide (400 mg) for 6 hours and the catalyst was removed by filtration. The filtrate was evaporated to give 4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (1.60 g) as a colorless amorphous.

NMR (CDCl₃, δ): 1.51 (2H, m), 1.66 (2H, m), 1.79 (2H, m), 2.30 (2H, m), 2.63 (3H, s), 2.82-2.95 (4H, m), 3.33 (3H, s), 3.72 (2H, m), 3.86 (2H, m), 3.99 (2H, m), 6.78-6.93 (3H, m), 7.05 (2H, m), 7.17 (1H, t, J=7Hz), 7.27 (2H, d, J=8.5Hz), 7.40 (1H, t, J=7Hz), 7.53 (2H, d, J=8.5Hz), 7.91 (1H, m), 9.21 (1H, br)

45 Example 11

[0325] The following compounds were obtained according to a similar manner to that of Example 10.

1) 4-(2-Hydroxybenzoyl)amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylaminoprop-1-yloxy]phenyl]benzamide

NMR (CDCl $_3$, δ): 2.00 (2H, m), 2.71 (3H, s), 2.90-3.09 (4H, m), 3.33 (3H, s), 3.50-3.80 (6H, m), 3.97 (2H, m), 6.76-7.03 (5H, m), 7.11-7.22 (2H, m), 7.29-7.44 (3H, m), 7.45-7.54 (2H, m), 7.88 (1H, m)

2) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.46-1.62 (2H, m), 1.65-1.90 (4H, m), 2.29 (3H, s), 2.30-2.43 (2H, m), 2.82 (3H, s), 2.88-3.30 (4H, m), 3.31 (3H, s), 3.48 (3H, s), 3.79 (3H, s), 3.77-4.07 (6H, m), 6.58-6.69 (2H, m), 6.84-7.08 (5H, m), 7.43 (1H, dd, J=9, 9Hz), 7.52 (1H, d, J=9Hz), 8.20 (1H, d, J=9Hz), 8.82 (1H, br s)

- 3) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide NMR (CDCl₃, δ): 1.47-1.63 (2H, m), 1.64-1.90 (4H, m), 2.38 (2H, t, J=7Hz), 2.78 (3H, s), 2.90-3.31 (4H, m), 3.33 (3H, s), 3.77 (3H, s), 3.80-4.07 (6H, m), 6.77-7.11 (7H, m), 7.12-7.23 (1H, m), 7.37-7.58 (2H, m), 8.21 (1H, d, J=9Hz), 8.79 (1H, s)
- 4) 2-Chloro-4-[2-(hydroxy)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-phenyl]benzamide
 NMR (CDCl₃, δ): 1.38-1.98 (6H, m), 2.21-2.46 (2H, m), 2.73 (3H, br s), 2.92-3.25 (4H, m), 3.36 (3H, s), 3.70-4.20 (6H, m), 6.67-6.82 (2H, m), 6.82-7.08 (4H, m), 7.08-7.20 (2H, m), 7.21-7.50 (2H, m), 7.70 (1H, br s), 7.92 (1H, br d, J=8Hz), 9.48 (1H, s)

5

50

- 5) 4-(3-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-yl)carbon-ylpent-1-yloxy]phenyl]benzamide

 NMR (CDCl₃, δ): 1.34-1.58 (4H, m), 1.64-1.97 (6H, m), 2.28 (3H, s), 2.32 (6H, s), 2.33-2.38 (3H, m), 2.51-2.61 (1H, m), 2.97-3.06 (1H, m), 3.34 (3H, s), 3.78-3.81 (3H, br s), 3.85-3.97 (3H, m), 4.60-4.69 (1H, m), 6.58-6.65 (2H, m), 6.84-7.06 (4H, m), 7.38-7.60 (3H, m), 8.17-8.23 (1H, m)

 ESI-MASS (m/z): 631 (M+H)
- 6) 4-(2-Hydroxybenzoyl)amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 1.23 (3H, t, J=7.5Hz), 1.41-1.53 (2H, m), 1.62-1.84 (4H, m), 2.27 (3H, s), 2.32 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.78-3.97 (2H, m), 4.13 (2H, q, J=7.5Hz), 6.56-6.61 (2H, m), 6.84-6.91 (2H, m), 7.02 (1H, d, J=7Hz), 7.28-7.45 (4H, m), 7.62 (1H, d, J=7Hz), 8.47 (1H, s)
- 4-(2-Hydroxybenzoyl)amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylprop-1-yl]oxy]-phenylbenzamide
 NMR (CDCl₃, δ): 2.00 (2H, m), 2.71 (3H, s), 2.90-3.09 (4H, m), 3.33 (3H, s), 3.50-3.80 (6H, m), 3.97 (2H, m), 6.76-7.03 (5H, m), 7.11-7.22 (2H, m), 7.29-7.44 (3H, m), 7.45-7.54 (2H, m), 7.88 (1H, m)
- 8) 4-(2-Hydroxy)benzoylaminc-3-methoxy-N-methyl-N-[2-[4-(4-methylpiperazin-1-yl)carbonyl]phenyleth-1-yl]phenylbenzamide

 MASS (m/z): 607 (M+1)
- 9) 4-(2-Hydroxy-3-methylbenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]
 35 oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.50-1.90 (6H, m), 2.27 (6H, s), 2.28 (3H, s), 2.33-2.40 (4H, m), 2.70-2.78 (2H, m), 3.30 (3H, s),
 3.80 (3H, s), 3.85-4.10 (6H, m), 6.59-6.65 (2H, m), 6.77-6.97 (6H, m), 8.19 (1H, d, J=8Hz), 8.70 (1H, br s)
- 10) 4- (2-Hydroxy-4-methylbenzoyl) amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.49-1.91 (6H, m), 2.24 (3H, s), 2.29 (3H, s), 2.32 (3H, s), 2.30-2.42 (6H, m), 3.32 (3H, s), 3.49 (2H, t, J=5Hz), 3.63 (2H, t, J=5Hz), 3.80 (3H, s), 3.88-4.01 (2H, m), 6.68-6.65 (2H, m), 6.80 (1H, s), 6.84 (1H, d, J=8Hz), 6.93 (1H, d, J=7Hz), 7.03 (1H, s), 7.37 (1H, d, J=7Hz), 8.19 (1H, d, J=8Hz), 8.71 (1H, br)
- 45 11) 4-(2-Hydroxy-4-methylbenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.50-1.91 (10H, m), 2.28 (3H, s), 2.34 (3H, s), 2.35 (3H, s), 2.30-2.41 (6H, m), 2.80 (2H, br), 3.31 (3H, s), 3.80 (3H, s), 3.81-4.09 (4H, m), 6.60-6.68 (2H, m), 6.84-7.02 (4H, m), 7.20-7.30 (2H, m), 8.20 (1H, br), 8.37 (1H, br)
 - 12) 4-(2-Hydroxy-4-chlorobenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl] oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.46-1.89 (6H, m), 2.23-2.45 (6H, m), 2.27 (3H, s), 2.32 (3H, s), 3.30 (3H, s), 3.44-3.68 (4H, m), 3.80 (3H, s), 3.80-3.99 (2H, m), 6.53-6.65 (2H, m), 6.72-7.03 (5H, m), 7.41 (1H, d, J=8Hz), 8.12 (1H, d, J=8Hz), 8.74 (1H, br)
 - 13) 4-(2-Hydroxy-4-methoxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.48-1.60 (2H, m), 1.63-1.84 (4H, m), 2.28 (3H, s), 2.37 (2H, t, J=5Hz), 2.25-2.40 (6H, m), 2.79 (3H, s), 3.30 (3H, s), 3.79 (3H, s), 3.82 (3H, s), 3.90-4.01 (2H, m), 6.44-6.50 (2H, m), 6.60-6.66 (2H, m), 6.88-6.97 (3H, m), 7.41 (1H, d, J=8Hz), 8.18 (1H, d, J=8Hz), 8.40 (1H, br)

5 14) 4- (2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N- [2- [5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide NMR (CDCl₃, δ) : 1.22-1.45 (2H, m), 1.45-1.58 (2H, m), 1.62-1.78 (2H, m), 1.80-1.96 (4H, m), 2.30 (6H, s), 2.30-2.40 (3H, m), 2.50-2.62 (1H, m), 2.97-2.37 (1H, m), 3.37 (3H, s), 3.78 (3H, s), 3.82-4.02 (4H, m), 4.57-4.68 (1H, m), 6.77-7.02 (8H, m), 7.10-7.20 (1H, m), 7.37-7.45 (1H, m), 7.46-7.62 (1H, m), 8.20 (1H, br)

15) 4-(2-Hydroxybenzoyl)amino-3-chloro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.30-2.08 (10H, m), 2.20-2.60 (13H, m), 2.89-3.05 (1H, m), 3.30 (3H, s), 3.82-4.02 (4H, m),

NMR (CDCl₃, δ): 1.30-2.08 (10H, m), 2.20-2.60 (13H, m), 2.89-3.05 (1H, m), 3.30 (3H, s), 3.82-4.02 (4H, m), 4.62-4.79 (1H, m), 6.62 (2H, s), 6.73-7.02 (4H, m), 7.28-7.57 (3H, m), 7.99 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)

- 16) 3-Ethoxy-4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl $_3$, δ): 1.40 (3H, t, J=6Hz), 1.47-1.57 (2H, m), 1.65-1.72 (2H, m), 1.78-1.88 (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.31-2.42 (7H, m), 3.30 (3H, s), 3.48-3.50 (2H, m), 3.52-3.65 (2H, m), 3.82-4.02 (4H, m), 6.58-6.61 (2H, m), 6.82-6.94 (3H, m), 6.98-7.02 (2H, m), 7.40-7.47 (2H, m), 8.20 (1H, d, J=7Hz), 8.83 (1H, s)
- 3-Hydroxy-4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.62 (2H, br), 1.75 (2H, br), 1.85 (2H, br), 2.27 (3H, s), 2.30 (3H, s), 2.42 (7H, br), 3.30 (3H, s), 3.53 (2H, br), 3.68 (3H, br), 3.90 (1H, br), 6.52 (1H, s), 6.63-6.73 (2H, m), 6.87 (1H, t, J=7Hz), 6.97 (1H, d, J=7Hz), 7.08 (1H, d, J=7Hz), 7.15 (1H, s), 7.38 (1H, t, J=7Hz), 7.58 (1H, d, J=7Hz), 7.98 (1H, br), 9.02 (1H, br)
- 18) 2-(2-Hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-5-pyridinecarboxamide
 NMR (CDCl₃, δ): 1.32-2.15 (10H, m), 2.29-2.42 (12H, m), 2.47-2.62 (1H, m), 2.95-3.09 (1H, m), 3.32 (3H, s),

3.75-4.10 (4H, m), 4.58-4.77 (2H, m), 6.33-8.47 (15H, m)

- 19) 4-(4-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl $_3$, δ) : 1.38-1.55 (4H, m), 1.62-1.72 (2H, m), 1.72-1.83 (2H, m), 1.83-1.97 (2H, m), 2.27 (3H, s), 2.32-2.37 (8H, m), 2.43-2.60 (2H, m), 2.93-3.05 (1H, m), 3.31 (3H, s), 3.70 (3H, s), 3.78-3.95 (4H, m), 4.60-4.70 (1H, m), 6.57-6.60 (2H, m), 6.80-6.97 (5H, m), 7.67 (2H, d, J=7Hz), 8.22 (1H, d, J=7Hz), 8.40 (1H, s)
- 20) 4-(4-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]40 4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.47-1.58 (2H, m), 1.67-1.75 (2H, m), 1.75-1.87 (2H, m), 2.27 (3H, s), 2.32 (3H, s), 2.38-2.48 (7H, m), 3.35 (3H, s), 3.48-3.53 (2H, m), 3.60-3.70 (2H, m), 3.70 (3H, s), 3.80-3.90 (1H, m), 3.90-4.00 (1H, m), 3.58-3.60 (2H, m), 6.82-6.97 (5H, m), 7.68 (2H, d, J=7Hz), 8.24 (1H, d, J=7Hz), 8.40 (1H, s)

45 Example 12

10

15

20

25

30

35

[0326] A solution of 4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy] phenyl]benzamide (400 mg) in N,N-dimethylformamide (15 ml) was added potassium carbonate (99 mg) and N-(3-bromopropyl)phthalimide (192 mg) and the mixture was stirred at 60°C for 4 hours. The mixture was poured into water (30 ml) and the aqueous solution was extracted with ethyl acetate (20 ml x 2). The organic phase was washed with water (20 ml) and brine (20 ml), and dried over magnesium sulfate. The solvent was evaporated to give 4-[2-[3-(phthalimido)prop-1-yl]oxy]benzoylamino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (484 mg) as a colorless amorphous.

NMR (CDCl₃, δ) : 1.56 (2H, m), 1.63-1.76 (4H, m), 1.86 (2H, m), 2.30 (3H, s), 2.32-2.41 (6H, m), 3.35 (3H, s), 3.50 (2H, m), 3.63 (2H, m), 3.83-3.97 (4H, m), 4.20 (2H, t, J=7.5Hz), 6.73-6.81 (2H, m), 6.92 (1H, d, J=7Hz), 7.00-7.14 (3H, m), 7.32 (2H, d, J=8.5Hz), 7.42 (1H, m), 7.50 (2H, d, J=8.5Hz), 7.65-7.74 (4H, m), 8.08 (1H, d, J=7Hz), 9.69 (1H, s)

Example 13

15

25

30

35

40

55

[0327] The following compounds were obtained according to a similar manner to that of Example 12.

- 5 1) 4-[2-(Ethoxycarbonylmethoxy)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy] phenyl]benzamide
 NMR (CDCl₃, δ): 1.31 (3H, t, J=7.5Hz), 1.62 (2H, m), 1.71 (2H, m), 1.83 (2H, m), 2.29 (3H, s), 2.33-2.41 (6H, m), 3.35 (3H, s), 3.49 (2H, m), 3.62 (2H, m), 3.93 (2H, m), 4.33 (2H, q, J=7.5Hz), 4.76 (2H, s), 6.72-6.82 (2H, m), 6.87 (1H, d, J=7Hz), 7.00 (1H, d, J=7Hz), 7.07-7.18 (2H, m), 7.33 (2H, d, J=8.5Hz), 7.46 (1H, t, J=7Hz), 7.71 (2H, d, J=8.5Hz), 8.26 (1H, d, J=7Hz)
 - 2) 4-[2-(3-Piperidinoprop-1-yloxy)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-l-yloxy] phenyl]benzamide NMR (CDCl₃, δ): 1.45 (2H, m), 1.50-1.60 (4H, m), 1.71 (2H, m), 1.85 (2H, m), 2.14 (2H, m), 2.28 (3H, s), 2.30-2.41 (10H, m), 2.49 (2H, t, J=7.5Hz), 3.34 (3H, s), 3.49 (2H, m), 3.63 (2H, m), 3.94 (2H, m), 4.23 (2H, t, J=7.5Hz), 6.73-6.82 (2H, m), 6.96-7.02 (2H, m), 7.04-7.15 (2H, m), 7.32 (2H, d, J=8.5Hz), 7.43-7.50 (3H, m), 8.22 (1H, d, J=7Hz)
- 3) 4-[2-[2-(Dimethylamino)eth-1-yloxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide NMR (CDCl₃, δ) : 1.56 (2H, m), 1.70 (2H, m), 1.85 (2H, m), 2.23 (6H, s), 2.30 (3H, s), 2.33-2.41 (6H, m), 2.78 (2H, t, J=7.5Hz), 3.35 (3H, s), 3.50 (2H, m), 3.64 (2H, m), 3.93 (2H, m), 4.22 (2H, t, J=7.5Hz), 6.74-6.81 (2H, m), 6.95-7.01 (2H, m), 7.06-7.15 (2H, m), 7.30 (2H, d, J=8.5Hz), 7.43 (1H, m), 7.56 (2H, d, J=8.5Hz), 8.21 (1H, d, J=7Hz)
 - 4) 4-[2-[3-(Phthalimido)prop-1-yl]oxy]benzoylamino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)-carbonylamino-prop-1-yloxy]phenyl]benzamide NMR (CDCl₃, δ): 2.01 (2H, m), 2.25 (3H, s), 2.25-2.38 (6H, m), 3.33-3.45 (6H, m), 3.35 (3H, s), 3.87-4.00 (4H, m), 4.21 (2H, t, J=7.5Hz), 6.78-7.00 (3H, m), 7.06-7.20 (3H, m), 7.33-7.56 (4H, m), 7.65-7.75 (4H, m), 7.86 (1H, m), 8.10 (1H, d, J=7Hz), 9.73 (1H, br)
 - 5) $4-[2-[3-(Phthalimido)prop-1-yl]benzoylamino]-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, <math>\delta$): 1.46-1.62 (2H, m), 1.63-1.93 (4H, m), 2.10-2.46 (14H, m), 3.33 (3H, s), 3.40-3.53 (2H, m), 3.57-3.68 (2H, m), 3.78 (3H, s), 3.79-4.04 (4H, m), 4.26 (2H, t, J=7Hz), 6.54-6.68 (2H, m), 6.74-7.11 (5H, m), 7.37-7.48 (1H, m), 7.52-7.63 (3H, m), 7.66-7.77 (1H, m), 7.80-7.90 (1H, m), 8.06-8.23 (2H, m)
 - 6) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide NMR (CDCl $_3$, δ): 1.47-1.63 (2H, m), 1.63-1.93 (6H, m), 2.29 (3H, s), 2.29-2.44 (6H, m), 3.36 (3H, s), 3.44-3.53 (2H, m), 3.58-3.68 (2H, m), 3.76 (3H, s), 3.81-4.05 (4H, m), 4.27 (2H, t, J=7Hz), 6.74-6.91 (3H, m), 6.92-7.20 (5H, m), 7.38-7.48 (1H, m), 7.58 (3H, s), 7.68-7.77 (1H, m), 7.82-7.90 (1H, m), 8.09-8.16 (1H, m), 8.20 (1H, d, J=9Hz)
- 7) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yi]oxybenzoyl]-amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl) carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.32-2.00 (12H, m), 2.16-2.48 (12H, m), 2.57 (1H, m), 3.02 (1H, m), 3.33 (3H, s), 3.78 (3H, s), 3.80-4.05 (5H, m), 4.27 (2H, t, J=7Hz), 4.64 (1H, m), 6.56-6.70 (2H, m), 6.78-7.12 (5H, m), 7.43 (1H, m), 7.59 (2H, s), 7.66-7.91 (2H, m), 8.05-8.24 (2H, m)
- 50 8) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.26 (3H, t, J=7Hz), 1.34-1.92 (17H, m), 2.23-2.40 (5H, m), 3.20-3.40 (5H, m), 3.78 (3H, s), 3.82-4.01 (2H, m), 4.12 (2H, q, J=7Hz), 4.25 (2H, t, J=7Hz), 4.78 (1H, m), 6.52-6.69 (2H, m), 6.79-7.15 (5H, m), 7.40-7.52 (2H, m), 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
 - 9) 2-Chloro-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yloxy]phenyl]benzamide NMR (CDCl₃, δ) : 1.51-1.67 (2H, m), 1.68-1.82 (2H, m), 1.82-2.01 (2H, m), 2.22-2.48 (11H, m), 3.38 (3H, s),

3.47-3.56 (2H, m), 3.58-3.69 (2H, m), 3.90 (2H, t, J=7Hz), 3.94-4.11 (2H, m), 4.21 (2H, t, J=7Hz), 6.69-6.82 (2H, m), 6.93 (1H, d, J=8Hz), 7.02-7.20 (4H, m), 7.30 (1H, m), 7.43 (1H, m), 7.68 (4H, s), 8.07 (1H, m), 9.62 (1H, s)

10) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]-benzoyl]amino-3-methoxy-N-methyl-N-(2-methylphenyl)-benzamide NMR (CDCl₃, δ) : 1.41 (9H, s), 2.02-2.18 (2H, m), 2.21 (3H, s), 3.21-3.34 (2H, m), 3.39 (3H, s), 3.75 (3H, s), 4.24 (2H, t, J=7Hz), 4.74 (1H, m), 6.83-7.22 (9H, m), 7.44 (1H, m), 8.20 (1H, m), 8.42 (1H, d, J=8Hz)

5

10

15

35

40

45

- 11) 4-[3-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]-benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy}]phenyl]benzamide NMR (CDCl₃, δ) : 1.32-1.45 (2H, m), 1.43 (9H, s), 1.49-1.58 (2H, m), 1.64-1.90 (6H, m), 1.97-2.03 (2H, m), 2.29 (3H, s), 2.30 (6H, s), 2.33-2.39 (3H, m), 2.51-2.61 (1H, m), 2.97-3.07 (1H, m), 3.28-3.38 (2H, m), 3.33 (3H, s), 3.79 (3H, s), 3.86-3.97 (3H, m), 4.08 (2H, t, J=7Hz), 4.59-4.67 (1H, m), 4.70-4.78 (1H, m), 6.57-6.64 (2H, m), 6.84 (1H, d, J=8Hz), 6.93 (1H, d, J=8Hz), 7.02 (1H, s), 7.03-7.07 (1H, m), 7.33-7.40 (3H, m), 8.27 (1H, d, J=8Hz), 8.49 (1H, s) ESI-MASS (m/z) : 788 (M+1)
 - 12) 4-[2-[4-(Phthalimido)but-1-yl]oxybenzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl] oxy]phenylbenzamide
- NMR (CDCl₃, δ) :1.48-1.60 (2H, m), 1.65-1.77 (4H, m), 1.80-2.06 (6H, m), 2.29 (3H, s), 2.33-2.41 (6H, m), 3.38 (3H, s), 3.45-3.51 (2H, m), 3.60-3.67 (2H, m), 3.78 (2H, t, J=7.5Hz), 3.88-4.00 (2H, m), 4.23 (2H, d, J=7.5Hz), 6.73-6.42 (2H, m), 6.99 (2H, d, J=8Hz), 7.08-7.17 (2H, m), 7.36 (2H, d, J=8Hz), 7.44-7.50 (3H, m), 7.68-7.77 (2H, m), 7.81-7.91 (2H, m), 8.22 (1H, d, J=7Hz)
- 13) $4-[2-[3-(Phthalimido)prop-1-yl]oxybenzoyl]amino-N-[2-(5-ethoxycarbonyylpent-1-yl)oxy-4-methyl]phenyl]-N-methylbenzamide NMR (CDCl₃, <math>\delta$) : 1.24 (3H, t, J=7.5Hz), 1.45-1.57 (2H, m), 1.64-1.88 (4H, m), 2.25 (3H, s), 2.28-2.37 (4H, m), 3.31 (3H, s), 3.84-3.95 (4H, m), 4.10 (2H, q, J=7.5Hz), 4.20 (2H, t, J=7.5Hz), 6.52-6.62 (2H, m), 6.88 (1H, d, J=7Hz), 6.92 (1H, d, J=7Hz), 7.07 (1H, t, J=7Hz), 7.31 (2H, d, J=8Hz), 7.39-7.50 (3H, m), 7.62-7.64 (4H, m), 8.10 (1H, d, J=7Hz), 9.68 (1H, s)
 - 14) 4-[2-[3-(Phthalimido)prop-1-yl]oxybenzoyl]amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylprop-1-yl]oxy]phenylbenzamide MASS (m/z): 718 (M+1)
 - 15) 4-[2-[3-(Phthalimdo)prop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbon-yl]phenylmethoxy]phenylbenzamide NMR (CDCl $_3$, δ) : 2.25 (3H, s), 2.25-2.31 (2H, m), 2.31 (3H, s), 2.36-2.51 (4H, m), 3.38 (3H, s), 3.63-3.85 (4H, m), 3.91 (2H, t, J=7.5Hz), 4.20 (2H, t, J=7.5Hz), 4.98 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.63-6.70 (2H, m), 6.90-7.00 (2H, m), 7.09 (1H, t, J=7Hz), 7.32 (2H, d, J=8Hz), 7.40-7.77 (7H, m), 8.10 (1H, d, J=7Hz), 9.70 (1H, s)
 - 16) 4-[2-(3-Hydroxyprop-1-yl)oxybenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy] phenylbenzamide NMR (CDCl₃, δ) : 1.43-1.56 (2H, m), 1.60-1.86 (4H, m), 2.11-2.23 (2H, m), 2.14 (3H, s), 2.37-2.90 (6H, m), 3.33 (3H, s), 3.40-3.47 (2H, m), 3.51-3.59 (2H, m), 3.86 (2H, t, J=7.5Hz), 3.86-4.00 (2H, m), 4.32 (2H, t, J=7.5Hz), 6.78-6.85 (2H, m), 6.99-7.19 (4H, m), 7.31 (2H, d, J=8Hz), 7.41-7.53 (3H, m), 8.21 (1H, d, J=8Hz)
 - 17) 4-[2-(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yl]oxy]phenylbenzamide
 NMR (CDCl₃, δ): 1.43-1.54 (2H, m), 1.60-1.70 (2H, m), 1.74-1.85 (2H, m), 2.10-2.21 (2H, m), 2.26 (6H, sx2), 2.30-2.41 (6H, m), 3.32 (3H, s), 3.40-3.48 (2H, m), 3.55-3.61 (2H, m), 3.77 (3H, s), 3.77-4.00 (4H, m), 4.31 (2H, t, J=7.5Hz), 6.57-6.63 (2H, m), 6.85-6.92 (2H, m), 7.00-7.11 (3H, m), 7.44 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
- 55 18) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide NMR (CDCl₃, δ) : 2.19-2.32 (2H, m), 2.25 (3H, s), 2.33 (3H, s), 2.36-2.52 (4H, m), 3.33-3.50 (2H, m), 3.39 (3H, s), 3.67 (3H, s), 3.71-3.91 (4H, m), 4.28 (2H, t, J=7.5Hz), 4.95 (1H, d, J=14Hz), 5.09 (1H, d, J=14Hz), 6.62-6.72 (2H, m), 3.35 (2H, m), 3.35 (3H, s), 3.37 (3H, s), 3

- m), 6.81 (1H, d, J=7Hz), 6.93-7.08 (4H, m), 7.34-7.47 (4H, m), 7.59 (1H, m), 7.68-7.75 (2H, m), 7.82-7.88 (2H, m), 8.10-8.19 (2H, m)
- 19) 4-[2-(3-Ethoxycarbonylprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yl]oxylphenylbenzamide

 NMR (CDCl₃, δ): 1.22 (3H, t, J=7.5Hz), 1.45-1.57 (2H, m), 1.63 (3H, s), 1.63-1.73 (2H, m), 1.76-1.88 (2H, m), 2.20-2.32 (2H, m), 2.24 (3H, s), 2.27 (3H, s), 2.32-2.40 (6H, m), 2.50 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.43-3.50 (2H, m), 3.58-3.67 (2H, m), 3.78 (3H, s), 3.83-4.00 (2H, m), 4.12 (2H, q, J=7.5Hz), 4.22 (2H, t, J=7.5Hz), 6.57 (1H, d, J=7Hz), 6.62 (1H, s), 6.80-6.90 (2H, m), 6.97-7.11 (3H, m), 7.45 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxy]-phenylmethylamino-N-methyl-N-[4-methyl-2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yl]oxy]-phenylbenzamide NMR (CDCl $_3$, δ) : 1.44-1.57 (2H, m), 1.62-1.72 (2H, m), 1.72-1.95 (4H, m), 2.18 (2H, t, J=7.5Hz), 2.25 (3H, s), 2.28 (3H, s), 2.28-2.43 (4H, m), 3.28 (3H, s), 3.43-3.50 (2H, m), 3.57-3.65 (2H, m), 3.58 (3H, s), 3.80-3.96 (2H, m), 4.02 (2H, t, J=7.5Hz), 4.24 (2H, s), 4.80 (1H, s), 6.27 (1H, d, J=7Hz), 6.60 (1H, d, J=7Hz), 6.64 (1H, s), 6.80-6.95 (5H, m), 7.12-7.21 (2H, m), 7.64-7.88 (4H, m)
- 21) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-N-methyl-N-[2- [4- (4-methylpiperazin-1-yl)carbonyl]phenyleth-1-yl]phenylbenzamide
 NMR (CDCl₃, δ): 2.20-2.50 (6H, m), 2.29 (3H, s), 2.61-2.94 (6H, m), 3.30 (3H, s), 3.37-3.68 (2H, m), 3.68 (3H, s), 3.68-3.92 (2H, m), 4.20-4.30 (2H, m), 6.80 (1H, d, J=7Hz), 6.90-6.98 (2H, m), 7.05 (1H, t, J=7Hz), 7.10-7.49 (9H, m), 7.53-7.89 (4H, m), 8.12 (1H, d, J=7Hz), 8.20 (1H, d, J=7Hz)

15

35

- 25 22) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-N-[2-[4-(4-dimethylaminopiperidin-1-yl)carbon-yl]phenylmethoxy-4-methyl]phenyl-N-methylbenzamide

 MASS (m/z): 824 (M+1)
- 23) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yi]oxybenzoyi]-amino-N-methyl-N-[2- [3-(4-methylpiperazin-1-yl)carbonylmethoxyprop-1-yi]oxy]phenylbenzamide
 NMR (CDCl₃, δ): 2.04-2.17 (2H, m), 2.25 (3H, s), 2.28-2.40 (6H, m), 3.33 (3H, s), 3.38-3.46 (2H, m), 3.54-3.62 (2H, m), 3.66-3.76 (2H, m), 3.74 (3H, s), 3.80-3.90 (2H, m), 3.98-4.11 (4H, m), 4.28 (2H, t, J=7.5Hz), 6.78-7.10 (7H, m), 7.14 (1H, t, J=7Hz), 7.43 (1H, t, J=7Hz), 7.55 (2H, s), 7.68-7.75 (1H, m), 7.81-7.90 (1H, m), 8.13 (1H, d, J=7Hz), 8.20 (1H, d, J=7Hz)
 - 24) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-N-[2-[(E)-5-(4-dimethylaminopiperidin-1-yl)carbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.27-1.47 (2H, m), 1.83-2.02 (2H, m), 2.10-2.48 (6H, m), 2.23 (3H, s), 2.26 (6H, s), 2.50-4.13 (8H, m), 3.32 (3H, s), 3.78 (3H, s), 4.26 (2H, t, J=7.5Hz), 4.62 (2H, m), 6.32 (1H, d, J=15Hz), 6.57-6.67 (2H, m), 6.80-7.16 (5H, m), 7.44 (1H, t, J=7Hz), 7.53-7.88 (5H, m), 7.57 (2H, s), 8.09-8.19 (2H, m)
- 25) 3-Methoxy-4-[2-(pyrid-3-yl)methoxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbo-nylpent-1-yl]oxy]phenylbenzamide
 NMR (CDCl₃, δ): 1.44-1.57 (2H, m), 1.63-1.72 (2H, m), 1.75-1.86 (2H, m), 2.27 (3H, s), 2.30 (3H, s), 2.32-2.40 (6H, m), 3.29 (3H, s), 3.31 (3H, s), 3.45-3.51 (2H, m), 3.58-3.65 (2H, m), 3.80-4.00 (2H, m), 5.30 (2H, s), 6.58 (1H, d, J=7Hz), 6.61 (1H, s), 6.83 (1H, d, J=7Hz), 6.88-6.92 (2H, m), 7.05 (1H, d, J=7Hz), 7.14 (1H, t, J=7Hz), 7.29 (1H, m), 7.46 (1H, t, J=7Hz), 7.79 (1H, d, J=7Hz), 8.22 (1H, d, J=7Hz), 8.37 (1H, d, J=7Hz), 8.62 (6H, d, J=7Hz), 8.73 (1H, s)
- 26) 3-Methoxy-4-[2-[4-(phthalimido)but-1-yl]oxybenzoyl]-amino-N-methyl-N-[4-methyl-2- [5- (4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide
 NMR (CDCl₃, δ): 1.46-1.59 (2H, m), 1.65-1.74 (2H, m), 1.78-2.03 (6H, m), 2.26 (3H, s), 2.30 (3H, s), 2.32-2.41 (6H, m), 3.31 (3H, s), 3.43-3.50 (2H, m), 3.60-3.65 (2H, m), 3.74 (2H, t, J=7.5Hz), 3.77 (3H, s), 3.82-4.01 (2H, m), 4.22 (2H, t, J=7.5Hz), 6.58 (1H, d, J=7Hz), 6.63 (1H, s), 6.85 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 7.00 (1H, d, J=7Hz), 7.02 (1H, s), 7.08 (1H, t, J=7Hz), 7.45 (1H, t, J=7Hz), 7.70-7.76 (2H, m), 7.80-7.87 (2H, m), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 27) 4-[2-(3-Dimethylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)car-

bonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl $_3$, δ) : 1.50-1.91 (6H, m), 2.07-2.18 (2H, m), 2.25 (6H, s), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.44 (2H, m), 2.48 (2H, t, J=5Hz), 3.32 (3H, s), 3.49 (2H, t, J=5Hz), 3.63 (2H, t, J=3Hz), 3.78 (3H, s), 3.81-3.92 (2H, m), 4.25 (2H, t, J=5Hz), 6.54-6.64 (2H, m), 6.80-6.91 (2H, m), 6.99-7.11 (4H, m), 7.40-7.48 (1H, m) 8.18 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)

5

10

15

35

40

50

- 28) 4-[2-(Ethoxycarbonylmethoxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.23 (3H, t, J=5Hz), 1.50-1.91 (6H, m), 2.28 (3H, s), 2.31 (3H, s), 2.35-2.47 (6H, m), 3.33 (3H, s), 3.52 (2H, t, J=5Hz), 3.67 (2H, t, J=5Hz), 3.76 (3H, s), 3.84-4.02 (2H, m), 4.24 (2H, q, J=5Hz), 4.85 (2H, s), 6.55-6.67 (2H, m), 6.81-7.19 (6H, m), 7.41-7.49 (1H, m), 8.20 (1H, d, J=8Hz), 8.34 (1H, d, J=7Hz)
- 29) 4-[2-[3-(Phthalimido-1-yl)prop-1-yloxy]-3-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yloxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.50-1.92 (6H, m), 2.14-2.44 (8H, m), 2.25 (3H, s), 2.28 (3H, s), 2.36 (3H, s), 3.33 (3H, s), 3.50 (2H, t, J=5Hz), 3.58 (2H, t, J=5Hz), 3.63 (2H, t, J=5Hz), 3.81 (3H, s), 3.81-4.03 (8H, m), 6.55-6.68 (2H, m), 6.82-7.38 (6H, m), 7.59-7.88 (5H, m), 8.32 (1H, d, J=8Hz)
- 30) 4-[2-[3-(Phthalimido-1-yl)prop-1-yl]oxy-4-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.50-1.91 (8H, m), 2.27 (3H, s), 2.30 (3H, s), 2.31-2.42 (6H, m), 2.38 (3H, s), 3.32 (3H, s), 3.50 (2H, t, J=5Hz), 3.63 (2H, t, J=5Hz), 3.78 (3H, s), 3.85-4.02 (6H, m), 4.28 (2H, t, J=5Hz), 6.58-6.67 (2H, m), 6.77 (1H, s), 6.80-6.92 (4H, m), 7.00 (1H, s), 7.58 (4H, s), 8.01 (1H, d, J=8Hz), 8.18 (1H, d, J=8Hz)
- 31) 4-[2-[3-(Phthalimido-1-yl)propyloxy]-5-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.52-1.91 (10H, m), 2.25 (3H, s), 2.30 (3H, s), 2.31 (3H, s), 2.31-2.45 (2H, m), 3.31 (3H, s), 3.5C (2H, t, J=4Hz), 3.59 (2H, t, J=5Hz), 3.64 (2H, t, J=4Hz), 3.78 (3H, s), 3.85-4.02 (4H, m), 4.24 (2H, t, J=5Hz), 6.58 (2H, m), 6.81-6.92 (3H, m), 7.00 (1H, s), 7.25 (1H, d, J=8Hz), 7.59 (3H, s), 7.71-7.79 (1H, m), 7.82-7.89 (1H, m), 7.92 (1H, s), 8.20 (1H, d, J=8Hz)
 - 32) 4-[2-[3-(Phthalimido-1-yl)propyloxy]-4-chlorobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl $_3$, δ) : 1.45-1.92 (6H, m), 2.25 (3H, s), 2.30 (3H, s), 2.29-2.44 (8H, m), 3.32 (3H, s), 3.46-3.54 (2H, m), 3.61-3.68 (2H, m), 3.78 (3H, s), 3.80-4.01 (4H, m), 4.25 (2H, t, J=5Hz), 6.56-6.77 (2H, m), 6.79-7.04 (7H, m), 7.44 (2H, s), 7.70-7.78 (1H, m), 7.81-7.88 (1H, m), 8.06 (1H, d, J=8Hz)
 - 33) 4-[2-[3-(Phthalimido-1-yl)propyloxy]-4-methoxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.49-1.90 (6H, m), 2.15-2.24 (2H, m), 2.28 (3H, s), 2.32 (3H, s), 2.30-2.42 (6H, m), 3.33 (3H, s), 3.50 (2H, t, J=4Hz), 3.60 (2H, t, J=5Hz), 3.63 (2H, t, J=4Hz), 3.79 (3H, s), 3.85 (3H, s), 3.82-4.02 (6H, m), 4.24 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.82 (1H, d, J=8Hz), 6.89 (1H, d, J=8Hz), 7.00 (1H, s), 7.57 (2H, s), 7.71-7.76 (2H, m), 7.82-7.88 (2H, m), 8.11 (1H, d, J=9Hz), 8.17 (1H, d, J=8Hz)
- 34) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-(2-benzyloxy-4-methylphenyl)-N-methylbenzamide
 NMR (CDCl₃, δ): 1.40 (9H, s), 2.10 (2H, t, J=5Hz), 2.29 (3H, s), 3.28 (2H, q, J=5Hz), 3.39 (3H, s), 3.62 (3H, s), 4.21 (2H, t, J=5Hz), 4.90 (1H, d, J=13Hz), 5.08 (1H, d, J=13Hz), 6.63-6.71 (3H, m), 6.87 (1H, d, J=7Hz), 6.96-7.11 (6H, m), 7.31-7.48 (6H, m), 8.21 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
 - 35) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenyl-methyl]oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ): 1.40 (9H, s), 2.09-2.17 (2H, m), 2.28 (3H, s), 3.27 (1H, q, J=5Hz), 3.40 (3H, s), 3.65 (3H, s), 4.05 (2H, t, J=10Hz), 4.23 (2H, t, J=5Hz), 4.40 (2H, t, J=10Hz), 4.88 (1H, d, J=12Hz), 5.08 (1H, d, J=12Hz), 6.62 (1H, s), 6.68 (1H, d), 6.97-7.11 (6H, m), 7.32 (1H, d, J=8Hz), 7.41 (1H, d, J=8Hz), 7.92 (2H, d, J=8Hz), 8.21 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz)
 - 36) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-

1-yl)carbonylpent-1-yloxy]phenyl]benzamide

NMR (CDCl₃, δ) : 1.22-1.47 (2H, m), 1.47-1.80 (6H, m), 1.80-1.92 (4H, m), 2.29 (6H, s), 2.31-2.41 (3H, m), 2.50-2.63 (1H, m), 2.95-3.07 (1H, m), 3.36 (3H, s), 3.48 (1H, s), 3.49 (1H, s), 3.75 (3H, s), 3.82-4.03 (4H, m), 4.22-4.30 (2H, m), 4.60-4.70 (1H, m), 6.78-6.90 (3H, m), 6.92-7.20 (4H, m), 7.40-7.50 (1H, m), 7.55-7.63 (3H, m), 7.70-7.80 (1H, m), 7.82-7.90 (1H, m), 8.10-8.22 (2H, m)

37) 3-Methyl-4-[2-[[3-(phthalimido)prop-1-yl]oxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbo-nylpent-1-yloxy]-4-methylphenyl]benzamide MASS (m/z): 774 (M+H)

10

15

20

25

5

- 38) $4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-chloro-N-methyl-N-[2-[5-(4-dimethylaminoprop-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, <math>\delta$): 1.32-1.45 (2H, m), 1.41 (9H, s), 1.48-1.59 (2H, m), 1.62-1.91 (8H, m), 2.08-2.18 (2H, m), 2.27 (6H, s), 2.28 (3H, s), 2.30-2.40 (3H, m), 2.52-2.61 (1H, m), 2.97-3.07 (1H, m), 3.22-3.30 (2H, m), 3.30 (3H, s), 3.83-4.00 (3H, m), 4.30 (2H, t, J=6Hz), 4.57-4.68 (1H, m), 6.60-6.63 (2H, m), 6.87-6.90 (1H, m), 7.02-7.15 (3H, m), 7.46-7.57 (2H, m), 8.20-8.22 (1H, m), 8.40 (1H, d, J=7Hz)
- 39) 3-Ethoxy-4-[2-[[3-(phthalimido)prop-1-yl]oxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbo-nylpent-1-yloxy]-4-methylphenyl]benzamide MASS (m/z): 804 (M+H)
- 40) 3-(3-tert-Butoxycarbonylaminoprop-I-yl)oxy-4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ) : 1.40 and 1.43 (total 18H, s), 1.49-1.60 (2H, m), 1.62-1.98 (6H, m), 2.00-2.10 (2H, m), 2.27 (3H, s), 2.29 (3H, s), 2.31-2.41 (6H, m), 3.17-3.29 (4H, m), 3.30 (3H, s), 3.45-3.50 (2H, m), 3.59-3.69 (2H, m), 3.84-4.05 (4H, m), 4.22-4.30 (2H, m), 5.04 (2H, br), 6.55-6.63 (2H, m), 6.85 (1H, d, J=7Hz), 6.93 (1H, d, J=7Hz), 6.98-7.03 (2H, m), 7.09 (1H, t, J=7Hz), 7.43 (1H, t, J=7Hz), 8.14 (1H, d, J=7Hz), 8.36 (1H, d, J=7Hz)
- 41) 2-Amino-4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-l-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.25-1.39 (2H, m), 1.42 and 1.46 (total 9H, s), 1.48-1.60 (2H, m), 1.62-1.93 (8H, m), 2.08-2.18 (2H, m), 2.27 and 2.28 (total 9H, s), 2.33-2.39 (3H, m), 2.50-2.60 (1H, m), 2.96-3.05 (1H, m), 3.29 (3H, s), 3.31-3.40 (2H, m), 3.85-3.98 (3H, m), 4.19 (2H, t, J=6Hz), 4.57-4.67 (1H, m), 6.57-6.59 (1H, m), 6.63 (2H, s), 6.78-6.89 (2H, m), 6.96 (1H, d, J=7Hz), 7.09 (1H, t, J=6Hz), 7.15 (1H, s), 7.40-7.46 (1H, m), 8.17 (1H, d, J=6Hz)

35

40

42) 2-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-5-pyridinecarboxamide NMR (CDCl $_3$, δ): 1.30 (9H, s), 1.35-1.93 (12H, m), 2.10-2.22 (2H, m), 2.28 (9H, s), 2.30-2.40 (3H, m), 2.50-2.62 (1H, m), 2.95-3.08 (1H, m), 3.33 (3H, s), 3.38-3.49 (2H, m), 3.82-3.98 (4H, m), 4.29 (2H, t, J=6Hz), 4.57-4.67 (1H, m), 6.60-6.62 (2H, m), 6.90 (1H, d, J=6Hz), 6.99 (1H, d, J=7Hz), 7.09 (1H, t, J=7Hz), 7.44-7.55 (2H, m), 8.13-8.21 (2H, m), 8.39 (1H, s)

Example 14

[0328] To an ice bath cooled solution of 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (200 mg) in dichloromethane (10 ml) were added triethylamine (36.2 mg) and acetic anhydride (36.5 mg) and the mixture was stirred at ambient temperature for 4 hours. The reaction mixture was washed successively with water (10 ml), saturated aqueous sodium hydrogen carbonate solution (10 ml) and brine (10 ml), and dried over magnesium sulfate. The solvent was evaporated to give 4-[2-[(3-acetylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (201 mg) as a colorless amorphous.

NMR (CDCl₃, δ): 1.51 (2H, m), 1.62-1.86 (4H, m), 1.93 (3H, s), 2.11 (2H, m), 2.29 (3H, s), 2.30-2.40 (6H, m), 3.35 (3H, s), 3.40-3.50 (4H, m), 3.59 (2H, m), 3.92 (2H, m), 4.18 (2H, t, J=7.5Hz), 6.28 (1H, m), 6.75-6.83 (2H, m), 6.94-7.17 (4H, m), 7.31 (2H, d, J=8.5Hz), 7.40-7.49 (3H, m), 8.08 (1H, d, J=7Hz), 9.18 (1H, s)

Example 15

[0329] To a mixture of 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbo-

nylpent-1-yloxy]phenyl]benzamide (220 mg) and 37% aqueous formaldehyde (290 mg) in a mixture of methanol (10 ml) and acetic acid (0.2 ml) was added sodium cyanoborohydride (44.8 mg) and the mixture was stirred at ambient temperature for 4 hours. The reaction mixture was diluted with chloroform (20 ml) and the solution was washed successively with saturated aqueous sodium hydrogen carbonate solution (20 ml), water (10 ml) and brine (10 ml). The organic phase was dried over magnesium sulfate and the solvent was evaporated to give 4-[2-[(3-dimethylaminoprop1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (215 mg) as a colorless amorphous.

NMR (CDCl₃, δ): 1.55 (2H, m), 1.73 (2H, m), 1.84 (2H, m), 2.11 (2H, m), 2.20 (6H, s), 2.30 (3H, s), 2.32-2.40 (6H, m), 2.46 (2H, t, J=7.5Hz), 3.35 (3H, s), 3.49 (2H, m), 3.62 (2H, m), 4.24 (2H, t, J=7.5Hz), 6.74-6.83 (2H, m), 6.97-7.03 (2H, m), 7.07-7.16 (2H, m), 7.32 (2H, d, J=8.5Hz), 7.42-7.50 (3H, m), 8.22 (2H, d, J=7Hz)

Example 16

10

15

20

30

35

50

55

[0330] To a solution of 4-[2-[(3-aminoprop-1-yl)oxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (250 mg) was added 4N hydrogen chloride in ethyl acetate (1 ml) and the solution was stirred at ambient temperature for 10 minutes. The white solid was filtered and dried under reduced pressure to give 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride (205 mg) as a white powder.

NMR (D_2O , δ): 1.40 (2H, m), 1.59 (2H, m), 1.70 (2H, m), 2.09 (2H, m), 2.42 (2H, t, J=7.5Hz), 2.92 (3H, s), 2.96-3.17 (6H, m), 3.24 (3H, s), 3.41-3.59 (2H, m), 3.69 (1H, m), 3.82 (1H, m), 4.04-4.20 (3H, m), 4.53 (1H, m), 6.72 (1H, d, J=7Hz), 6.81 (1H, t, J=7Hz), 6.93-7.60 (11H, m)

Example 17

- 25 [0331] The following compounds were obtained according to a similar manner to that of Example 16.
 - 1) 4-[2-[(3-Acetylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride NMR (D_2O , δ) : 1.38 (2H, m), 1.50-1.68 (4H, m), 1.48 (2H, m), 1.81 (3H, s), 2.42 (2H, m), 2.90 (3H, s), 2.97-3.15 (6H, m), 3.24 (3H, s), 3.40-3.61 (4H, m), 3.71-3.92 (2H, m), 4.14 (1H, m), 4.54 (1H, m), 6.62-6.77 (2H, m), 6.79-6.90 (2H, m), 7.00 (1H, m), 7.11 (1H, m), 7.19-7.33 (5H, m), 7.59 (1H, d, J=7Hz)
 - 2) $4-[2-[(3-Dimethylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-metylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (D₂O, <math>\delta$): 1.51 (2H, m), 1.67 (2H, m), 1.81 (2H, m), 2.22 (2H, m), 2.53 (2H, t, J=7.5Hz), 2.65 (6H, s), 2.82 (3H, s), 3.00-3.17 (2H, m), 3.23 (2H, t, J=7.5Hz), 3.37 (3H, s), 3.89 (1H, m), 4.13 (1H, m), 4.07-4.20 (3H, m), 4.58 (1H, m), 6.92-7.00 (2H, m), 7.11-7.18 (2H, m), 7.26-7.48 (6H, m), 7.54-7.60 (2H, m)
- 3) 4-[2-[(4-Methylpiperazin-1-yl)carbonylmethoxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride
 NMR (D₂O, δ): 1.36 (2H, m), 1.53 (2H, m), 1.66 (2H, m), 2.98 (6H, s), 2.91-3.25 (10H, m), 3.30 (3H, s), 3.37-3.69 (4H, m), 3.77-3.96 (2H, m), 4.35-4.56 (2H, m), 4.82 (2H, s), 6.75 (1H, d, J=7Hz), 6.84 (1H, t, J=7Hz), 6.92 (1H, d, J=7Hz), 7.03-7.15 (2H, m), 7.22 (1H, d, J=7Hz), 7.29 (2H, d, J=8.5Hz), 7.43-7.58 (3H, m), 7.80 (1H, d, J=7Hz)
- 45 4) 4-[2-(3-Piperidinoprop-1-yloxy)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy] phenyl]benzamide dihydrochloride NMR (D₂O, δ): 1.42-1.67 (10H, m), 1.78 (2H, m), 2.20 (2H, m), 2.51 (2H, t, J=7.5Hz), 2.65 (2H, m), 2.94 (3H, s), 2.95-3.21 (6H, m), 3.32 (2H, m), 3.35 (3H, s), 3.57 (2H, m), 3.92-4.04 (2H, m), 4.16-4.25 (4H, m), 6.91-6.99 (2H, m), 7.08-7.17 (2H, m), 7.23-7.47 (6H, m), 7.52-7.60 (2H, m)
 - 5) $4-[2-[2-(Dimethylamino)eth-1-yloxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (D₂O, <math>\delta$) : 1.52 (2H, m), 1.68 (2H, m), 1.81 (2H, m), 2.52 (2H, t, J=7.5Hz), 2.82 (6H, s), 2.93 (3H, s), 2.97-3.21 (4H, m), 3.37 (3H, s), 3.48-3.62 (2H, m), 3.87 (1H, m), 4.01 (1H, m), 4.24 (1H, m), 4.47 (2H, m), 4.57 (1H, m), 6.92-7.00 (2H, m), 7.13-7.48 (8H, m), 7.52-7.62 (2H, m)
 - 6) 4-[2-(3-Aminoprop-1-yl)oxy]benzoylamino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylaminoprop-1-yloxy]phenyl]benzamide dihydrochloride

NMR (D₂O, δ): 2.01 (2H, m), 2.17 (2H, m), 2.91 (3H, s), 2.95-3.46 (8H, m), 3.40 (3H, s), 3.54 (2H, m), 4.02-4.16 (4H, m), 4.27 (2H, m), 6.93-7.00 (2H, m), 7.12-7.21 (2H, m), 7.26-7.37 (2H, m), 7.39-7.48 (4H, m), 7.54-7.64 (2H, m)

7) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (D_2O , δ): 1.43 (2H, m), 1.60 (2H, m), 1.72 (2H, m), 2.07 (2H, m), 2.18 (3H, s), 2.45 (2H, t, J=7.5Hz), 2.90 (3H, s), 2.92-3.13 (4H, m), 3.30 (3H, s), 3.41-3.63 (4H, m), 3.64 (3H, s), 3.82 (1H, m), 3.92 (1H, m), 4.04-4.61 (3H, m), 4.50 (1H, m), 6.66-6.74 (3H, m), 6.93-7.04 (3H, m), 7.10 (1H, d, J=7Hz), 7.41 (1H, t, J=7Hz), 7.73 (1H, d, J=7Hz), 7.95 (1H, d, J=7Hz)

10

15

20

25

5

- 8) 4-[2-(3-Aminoprop-1-yl)oxy-4-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonvi)pent-1-vloxy]-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.48-1.96 (8H, m), 2.27 (3H, s), 2.32-2.42 (2H, m), 2.78 (3H, s), 3.11-3.22 (2H, m), 3.28 (3H, s), 3.79 (3H, s), 3.80-4.11 (2H, m), 4.22-4.32 (2H, m), 6.58-6.67 (2H, m), 6.79-6.96 (5H, m), 7.87 (1H, d, J=8Hz), 8.69-8.75 (1H, m), 9.41 (1H, br)
- 9) 4-[2-(3-Aminoprop-1-yl)oxy-3-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.46-1.92 (6H, m), 2.15-2.57 (4H, m), 2.24 (3H, s), 2.30 (3H, s), 2.62-2.98 (6H, m), 2.80 (3H, s),
- 3.02-3.29 (4H, m), 3.28 (3H, s), 3.73-4.18 (5H, m), 4.46 (1H, br), 4.62 (1H, br), 6.56-6.68 (2H, m), 6.81-6.96 (3H, m), 7.10 (1H, dd, J=2, 8Hz), 7.30 (1H, d, J=8Hz), 7.66-7.77 (1H, m), 8.28-8.52 (4H, m), 9.65 (1H, br)
- 10) 4-[2-(3-Acetylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl) carbonylpent-1-yl]oxy-4-methylphenyl]benzamide hydrochloride $NMR\ (CDCl_3,\ \delta): 1.48-1.92\ (6H,\ m),\ 1.91\ (3H,\ s),\ 1.96-2.25\ (2H,\ m),\ 2.30\ (3H,\ s),\ 2.30-2.39\ (2H,\ m),\ 2.68\ (6H,\ s),\ 2.30-2.39\ (2H,\ m),\ 2.68\ (2H,\ m),\$ 3.32 (3H, s), 3.35-3.47 (2H, m), 3.76 (3H, s), 4.26 (2H, br), 4.75 (1H, br), 6.56-7.12 (6H, m), 7.47 (1H, br), 8.10 (1H, br), 8.39 (1H, br)
- 11) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(3-aminopropionyl)aminobut-1-yl]oxy-4-methylphenyl]-N-methylbenzamide dihydrochloride 30 NMR (CDCl₃, δ): 1.59-1.90 (4H, m), 2.04-2.15 (2H, m), 2.27 (3H, s), 2.30-2.44 (2H, m), 2.87-3.08 (4H, m), 3.21-3.38 (2H. m), 3.30 (3H. s), 3.75-3.94 (2H. m), 3.76 (3H, s), 4.21-4.33 (2H, m), 6.55-6.68 (2H, m), 6.86-7.10 (5H, m), 7.29-7.48 (2H, m), 8.17 (1H, br), 8.35 (1H, br)
- 12) 4-[2-(3-Guanidinoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl) 35 carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.49-1.93(6H, m), 2.05-2.41 (8H, m), 2.27 (3H, s), 2.75 (6H, s), 3.08 (2H, br), 3.29 (3H, s), 3.47 (2H, br), 3.67-4.10 (4H, m), 3.77 (3H, s), 4.27 (2H, br), 6.56-6.71 (2H, m), 6.81-7.09 (5H, m), 7.44 (1H, br), 7.98-8.19 (2H, m), 8.28-8.45 (1H, m)

40

45

- 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide hydrochloride NMR (DMSO-d₆, δ): 1.35-1.66 (4H, m), 1.66-1.83 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7Hz), 2.74 and 2.76 (total 3H, s), 2.80-3.10 (4H, m), 3.18 (3H, s), 3.28-3.63 (2H, m), 3.68 (3H, s), 3.77-4.18 (3H, m), 4.34-4.52 (1H, m), 6.64 (1H, d, J=9Hz), 6.75-7.12 (6H, m), 7.40 (1H, m), 7.98 (1H, d, J=9Hz), 8.23 (1H, d, J=9Hz)
- (S)-4-[2-[(3-Amino-1-methylprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO- d_6 , δ): 1.35 (3H, d, J=7Hz), 1.40-1.65 (4H, m), 1.66-1.82 (2H, m), 1.92-2.20 (2H, m), 2.23 (3H, s), 2.38 (2H, t, J=7Hz), 2.64 (3H, s), 2.78-3.43 (11H, m), 3.51-4.07 (7H, m), 4.93-5.09 (1H, m), 6.65 (1H, d, J=8Hz), 6.82 (1H, s), 6.89 (1H, d, J=8Hz), 6.98 (1H, s), 7.04 (1H, d, J=8Hz), 7.12 (1H, dd, J=8, 8Hz), 7.36 (1H, d, J=8Hz), 7.57 (1H, dd, J=8, 8Hz), 7.98-8.35 (4H, m)
- 4-(2-Aminobenzenesulfonyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d_s, δ): 1.36-1.45 (2H, m), 1.50-1.59 (2H, m), 1.65-1.73 (2H, m), 2.23 and 2.29 (total 3H, s), 2.34-2.42 (4H, m), 2.77 (3H, d, J=1Hz), 2.92-3.00 (2H, m), 3.11 and 3.13 (total 3H, s), 3.19 (1H, s), 3.36-3.70 (10H, m), 4.03-4.11 (1H, m), 4.40-4.48 (1H, m), 6.44-6.50 (1H, m), 6.60-6.88 (6H, m), 6.94-7.10 (2H, m), 7.27-7.32 (1H, m)

ESI-MASS (m/z): 638 (M+H)

ESI-MASS (m/z): 702 (M+H)

٠ 5

10

15

30

35

50

16) (R)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride

NMR (DMSO- d_6 , δ): 1.37 and 1.39 (total 3H, s), 1.40-1.78 (8H, m), 1.94-2.12 (3H, m), 2.23 (3H, s), 2.30-2.40 (4H, m), 2.87-2.96 (2H, m), 3.18 (3H, s), 3.32 (3H, s), 3.46-3.58 (2H, m), 3.77 (3H, s), 3.83-3.99 (3H, m), 4.94-5.02 (1H, m), 6.65 (1H, d, J=8Hz), 6.82 (1H, s), 6.88 (1H, d, J=8Hz), 6.98 (1H, s), 7.03 (1H, d, J=8Hz), 7.13 (1H, t, J=8Hz), 7.33 (1H, d, J=9Hz), 7.58 (1H, t, J=8Hz), 7.88-8.02 (2H, br), 8.04 (1H, d, J=9Hz), 8.27 (1H, d, J=8Hz) ESI-MASS (m/z): 674 (M+H)

17) (R)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5- (4-dimethylaminopiperidin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ) : 1.36 and 1.38 (total 3H, s), 1.40-1.80 (12H, m), 1.88-2.13 (3H, m), 2.24 (3H, s), 2.35 (2H, t, J=8Hz), 2.51 (6H, s), 2.89-3.03 (4H, m), 3.19 (3H, s), 3.76 (3H, s), 3.83-4.00 (3H, m), 4.43-4.51 (1H, m), 4.96-5.03 (1H, m), 6.65 (1H, d, J=8Hz), 6.83 (1H, s), 6.87-6.92 (1H, m), 6.98 (1H, s), 7.03 (1H, d, J=8Hz), 7.14 (1H, t, J=8Hz), 7.34 (1H, d, J=8Hz), 7.58 (1H, t, J=8Hz), 8.04 (1H, d, J=8Hz), 8.24-8.30 (1H, m)

18) (S)-4-[2-[(4-Aminobut-2-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.35 and 1.38 (total 3H, s), 1.42-1.79 (12H, m), 1.88-2.14 (3H, m), 2.25 (3H, s), 2.36 (2H, t, J=8Hz), 2.51 (6H, s), 2.89-3.02 (4H, m), 3.20 (3H, s), 3.76 (3H, s), 3.84-4.00 (3H, m), 4.43-4.50 (1H, m), 4.97-5.03 (1H, m), 6.65 (1H, d, J=8Hz), 6.82 (1H, s), 6.88-6.92 (1H, m), 6.98 (1H, s), 7.02 (1H, d, J=8Hz), 7.15 (1H, t, J=8Hz), 7.34 (1H, d, J=8Hz), 7.58 (1H, t, J=8Hz), 8.03 (1H, d, J=8Hz), 8.24-8.30 (1H, m)

ESI-MASS (m/z): 702 (M+H)

19) 4-[2-(4-Aminobut-1-yl)oxybenzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]-phenylbenzamide dihydrochloride NMR (D₂O, δ) : 1.35-1.50 (2H, m), 1.56-1.64 (2H, m), 1.68-1.83 (4H, m), 2.47 (2H, t, J=7.5Hz), 2.82-3.12 (5H, m), 2.92 (3H, s), 3.33 (3H, s), 3.43-3.61 (3H, m), 3.81 (1H, m), 3.95 (1H, m), 6.84 (1H, d, J=7Hz), 6.91 (1H, t, J=7Hz), 7.00-7.08 (3H, m), 7.19 (1H, t, J=7Hz), 7.26-7.37 (4H, m), 7.48 (1H, t, J=7Hz), 7.62 (1H, d, J=7Hz)

20) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide hydrochoiride NMR (DMSO- d_6 , δ) : 1.16 (3H, t, J=7.5Hz), 1.38-1.49 (2H, m), 1.55-1.64 (2H, m), 1.67-1.77 (2H, m), 1.98-2.08 (2H, m), 2.21 (3H, s), 2.31 (2H, t, J=7.5Hz), 2.87-2.97 (2H, m), 3.16 (3H, s), 3.80-3.98 (2H, m), 4.03 (2H, q, J=7.5Hz), 4.19 (2H, t, J=7.5Hz), 6.62 (1H, d, J=7Hz), 6.80 (1H, s), 6.98-7.07 (2H, m), 7.15 (1H, d, J=7Hz), 7.22 (2H, d, J=8Hz), 7.43-7.57 (4H, m), 7.86-8.00 (3H, br)

40 21) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.38-1.49 (2H, m), 1.52-1.62 (2H, m), 1.68-1.78 (2H, m), 1.96-2.09 (2H, m), 2.21 (3H, s), 2.38 (2H, t, J=7.5Hz), 2.73 (3Hx1/2, s), 2.75 (3Hx1/2, s), 2.81-3.07 (4H, m), 3.15 (3H, s), 3.30-3.54 (4H, m), 3.81-4.21 (5H, m), 4.45 (1H, m), 6.65 (1H, d, J=7Hz), 6.81 (1H, s), 6.99-7.08 (2H, m), 7.15 (1H, d, J=7Hz), 7.22 (2H, d, J=8Hz), 7.45-7.60 (4H, m), 8.04 (2H, br)

22) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylprop-1-yl]oxy]-phenylbenzamide dihydrochloride NMR (DMSO-d $_6$, δ) : 1.90-2.09 (4H, m), 2.48-2.59 (2H, m), 2.72 (3Hx1/2, s), 2.73 (3Hx1/2, s), 2.83-3.10 (4H, m), 3.20 (3H, s), 3.33-3.56 (3H, m), 3.88-4.09 (3H, m), 4.18 (2H, t, J=7.5Hz), 4.47 (1H, m), 4.80 (1H, m), 6.87 (1H, t, t)

3.20 (3H, s), 3.33-3.56 (3H, m), 3.88-4.09 (3H, m), 4.18 (2H, t, J=7.5Hz), 4.47 (1H, m), 4.80 (1H, m), 6.87 (1H, t, J=7Hz), 6.98 (1H, d, J=7Hz), 7.04 (1H, t, J=7Hz), 7.11-7.26 (5H, m), 7.44-7.59 (4H, m), 8.05 (2H, br)

23) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-(4-methylpiperazin-1-ylcarbonyl)phenyl-methoxy]-phenylbenzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.97-2.07 (2H, m), 2.26 (3H, s), 2.75 (3Hx1/2, s), 2.77 (3Hx1/2, s), 2.82-2.95 (2H, m), 3.02-3.14 (2H, m), 3.21 (3H, s), 3.30-3.49 (4H, m), 3.97-4.21 (4H, m), 5.09 (1H, d, J=14Hz), 5.20 (1H, d, J=14Hz), 6.70 (1H, d, J=7Hz), 6.93 (1H, s), 7.02-7.25 (5H, m), 7.43-7.57 (8H, m), 7.92-8.04 (3H, br)

- 24) 4-[2-(3-Hydroxyprop-1-yl)oxybenzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl] oxy]-phenylbenzamide hydrochloride NMR (DMSO-d $_6$, δ) : 1.39-1.50 (2H, m), 1.52-1.62 (2H, m), 1.69-1.79 (2H, m), 1.84-1.93 (2H, m), 2.40 (2H, t, J=7.5Hz), 2.70 (3Hx1/2, s), 2.72 (3Hx1/2, s), 2.82-3.07 (4H, m), 3.19 (3H, s), 3.28-3.60 (4H, m), 3.80-3.98 (2H, m), 4.10 (1H, m), 4.17 (2H, t, J=7.5Hz), 4.45 (1H, m), 6.85 (1H, t, J=7Hz), 6.98 (1H, d, J=7Hz), 7.03 (1H, t, J=7Hz), 7.13-7.24 (5H, m), 7.43-7.54 (3H, m), 7.62 (1H, d, J=7Hz)
- 25) 4-[2-(4-Hydroxy-1-butyn-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl] oxy]-phenylbenzamide hydrochloride
- NMR (DMSO-d₆, δ): 1.42-1.52 (2H, m), 1.54-1.64 (2H, m), 1.70-1.82 (2H, m), 2.37-2.47 (6H, m), 2.49 (3H, s), 2.51 (3H, s), 2.84-3.05 (2H, m), 3.32-3.46 (4H, m), 3.84-3.98 (2H, m), 4.08 (1H, m), 4.47 (1H, m), 6.84 (1H, t, J=7Hz), 6.97 (1H, d, J=7Hz), 7.13-7.25 (4H, m), 7.41-7.53 (6H, m)

5

10

40

- 26) $4-[2-(4-Aminobut-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]-phenylbenzamide dihydrochloride NMR (DMSO-d₆, <math>\delta$): 1.39-1.62 (8H, m), 1.67-1.80 (2H, m), 2.39 (3H, t, J=7.5Hz), 2.50 (3H, s), 2.63-2.73 (4H, m), 2.81-3.08 (2H, m), 3.18 (3H, s), 3.31-3.42 (4H, m), 3.85-4.00 (2H, m), 4.04 (1H, m), 4.43 (1H, m), 6.84 (1H, t, J=7Hz), 6.99 (1H, d, J=7Hz), 7.11-7.42 (6H, m), 7.50-7.56 (2H, m), 7.75-7.91 (2H, m)
- 27) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yl]oxy]phenylbenzamide hydrochloride

 NMR (DMSO-d₆, δ): 1.40-1.51 (2H, m), 1.53-1.62 (2H, m), 1.69-1.80 (2H, m), 1.98 (3H, s), 1.98-2.03 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.71 (3Hx1/2, s), 2.74 (3Hx1/2, s), 2.83-3.05 (2H, m), 3.31-3.50 (3H, m), 3.56 (2H, t, J=7.5Hz), 3.72 (3H, s), 3.81-4.11 (5H, m), 4.32 (2H, t, J=7.5Hz), 4.43 (1H, m), 6.65 (1H, d, J=7Hz), 6.81 (1H, s), 6.87-6.95 (2H, m), 7.05 (1H, d, J=7Hz), 7.11 (1H, t, J=7Hz), 7.26 (1H, d, J=7Hz), 7.54 (1H, t, J=7Hz), 8.03 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz)
 - 28) 3-Methoxy-4-(2-hydroxybenzoyl)amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]-phenyl-methoxylphenylbenzamide hydrochloride
- NMR (DMSO-d₆, δ): 2.23 (3H, s), 2.75 (3Hx1/2, s), 2.77 (3Hx1/2, s), 2.97-3.15 (2H, m), 3.21 (3H, s), 3.24-3.80 (6H, m), 5.06 (1H, d, J=14Hz), 5.19 (1H, d, J=14Hz), 6.70 (1H, d, J=7Hz), 6.90-7.01 (3H, m), 7.10 (1H, d, J=7Hz), 7.22 (2H, d, J=8Hz), 7.41 (1H, d, J=7Hz), 7.44-7.55 (7H, m), 7.87 (1H, d, J=7Hz)
- 29) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide dihydrochloride
 NMR (DMSO-d₆, δ): 2.06-2.19 (2H, m), 2.23 (3H, s), 2.75 (3H, s), 2.87-2.98 (2H, m), 3.02-3.15 (2H, m), 3.23 (3H, s), 3.32-3.49 (2H, m), 3.65 (3H, s), 3.71-3.96 (4H, m), 4.29-4.40 (2H, m), 5.04 (1H, d, J=14Hz), 5.20 (1H, d, J=14Hz), 6.76 (1H, d, J=7Hz), 6.88 (1H, d, J=7Hz), 6.90-6.98 (2H, m), 7.09-7.19 (2H, m), 7.28 (1H, d, J=7Hz), 7.50-7.62 (2H, m), 7.98-8.15 (4H, m), 8.23 (1H, d, J=7Hz)
 - 30) 3-Methoxy-4-[2-(3-aminoprop-1-yl)cxy]phenylmethyl]-amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide trihydrochloride NMR (DMSO- d_6 , δ): 1.35-1.47 (2H, m), 1.49-1.59 (2H, m), 1.64-1.74 (2H, m), 2.00-2.10 (2H, m), 2.22 (3H, s), 2.30-2.38 (2H, m), 2.69 (3Hx1/2, s), 2.73 (3Hx1/2, s), 2.82-3.03 (6H, m), 3.09 (3H, s), 3.29-3.41 (2H, m), 3.53 (3H, s), 3.83-4.12 (6H, m), 4.22 (2H, s), 4.70 (1H, br), 6.21 (1H, d, J=7Hz), 6.58-6.66 (2H, m), 6.71-6.99 (5H, m), 7.09 (1H, d, J=7Hz), 7.20 (1H, t, J=7Hz), 8.02 (2H, br d)
- 31) 4- (2-Dimethylamino-4-methyl)phenoxymethyl-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yl]oxy]phenylbenzamide dihydrochloride

 50 NMR (DMSO-d₆, δ): 1.37-1.47 (2H, m), 1.50-1.61 (2H, m), 1.67-1.80 (2H, m), 2.20 (3H, s), 2.29 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.71 (3Hx1/2, s), 2.73 (3Hx1/2, s), 2.80-3.58 (4H, m), 3.03 (6H, s), 3.17 (3H, s), 3.72-4.48 (6H, m), 5.21 (2H, s), 6.62 (1H, d, J=7Hz), 6.78 (1H, s), 6.91 (1H, d, J=7Hz), 7.02 (1H, d, J=7Hz), 7.11 (1H, d, J=7Hz), 7.26 (2H, d, J=8Hz), 7.37 (2H, d, J=8Hz), 7.70 (1H, d, J=7Hz)
- 55 32) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[4-(4-methylpiperazin-1-yl)carbonyl]-phenyleth-1-yl]phenylbenzamide dihydrochloride NMR (DMSO-d₆, δ): 2.06-2.19 (2H, m), 2.55-3.12 (10H, m), 2.71 (3Hx1/2, s), 2.73 (3Hx1/2, s), 3.18 (3H, s), 3.23-3.48 (2H, m), 3.66 (3H, s), 3.66-3.81 (2H, m), 4.30-4.40 (2H, m), 6.86-6.90 (2H, m), 7.11 (1H, t, J=7Hz),

7.20-7.42 (9H, m), 7.59 (1H, t, J=7Hz), 8.01 (1H, d, J=7Hz), 8.08 (2H, br), 8.27 (1H, d, J=7Hz)

- 33) 4-[2-(3-Aminoprop-1-yl)thiobenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride NMR (DMSO-d₆, δ) : 1.40-1.51 (3H, m), 1.52-1.63 (2H, m), 1.70-1.88 (4H m), 2.23 (3H, s), 2.40 (3H, t, J=7.5Hz), 2.71 (3Hx1/2, s), 2.72 (3Hx1/2, s), 2.80-2.91 (2H, m), 2.94-3.06 (2H, m), 3.17 (3H, s), 3.32-3.67 (8H, m), 3.60 (3H, s), 3.81-4.10 (3H, m), 4.41 (1H, m), 6.65 (1H, d, J=7Hz), 6.82 (1H, s), 6.86-6.92 (2H, m), 7.02 (1H, d, J=7Hz), 7.27 (1H, t, J=7Hz), 7.41-7.52 (3H, m), 7.71 (1H, d, J=7Hz), 9.37 (1H, s)
- 34) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(4-dimethylaminopiperidin-1-yl)carbonyl]phenylmethoxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.57-1.73 (2H, m), 2.00-2.20 (4H, m), 2.23 (3H, s), 2.70 (3H, s), 2.71 (3H, s), 2.87-3.05 (3H, m), 3.24 (3H, s), 3.33-3.50 (1H, m), 3.66 (3H, s), 3.71-4.05 (4H, m), 4.37 (2H, t, J=7.5Hz), 5.02 (1H, d, J=14Hz), 5.20 (1H, d, J=14Hz), 6.73 (1H, d, J=7Hz), 6.86 (1H, d, J=7Hz), 6.96 (2H, s), 7.10-7.19 (2H, m), 7.29 (1H, d, J=7Hz), 7.43-7.52 (4H, m), 7.58 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz), 8.03 (1H, d, J=7Hz)
 - 35) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonyl-methoxyprop-1-yl]oxy]phenylbenzamide dihydrochloride NMR (DMSO-d₆, δ) : 1.94-2.04 (2H, m), 2.10-2.20 (2H, m), 2.71 (3Hx1/2, s), 2.23 (3Hx1/2, s), 2.84-3.10 (6H, m), 3.21 (3H, s), 3.31-3.50 (2H, m), 3.57-3.81 (4H, m), 3.74 (3H, s), 3.90-4.01 (2H, m), 4.20 (2Hx1/2, s), 4.22 (2Hx1/2, d), 4.35 (2H, t, J=7.5Hz), 6.82-6.97 (3H, m), 7.01 (1H, d, J=7Hz), 7.10-7.28 (4H, m), 7.58 (1H, t, J=7Hz), 8.03 (1H, d, J=7Hz), 8.27 (1H, d, J=7Hz)
- 36) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[(E)-5-(4-dimethylaminopiperidin-1-yl)carbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.36-1.63 (2H, m), 1.84-1.92 (2H, m), 1.97-2.08 (2H, m), 2.10-2.22 (2H, m), 2.22 (3H, s), 2.29-2.43 (2H, m), 2.63 (3H, s), 2.65 (3H, s), 2.70-2.86 (2H, m), 2.88-3.00 (2H, m), 3.14 (3Hx1/2, s), 3.17 (3Hx1/2, s), 3.28-3.42 (2H, m), 3.71 (3H, s), 3.84-4.06 (2H, m), 4.37 (2H, t, J=7.5Hz), 4.51 (1H, m), 6.52 (1H, d, J=7Hz), 6.60 (1H, m), 6.73-7.07 (5H, m), 7.13 (1H, t, J=7Hz), 7.27 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 8.01 (1H, d, J=7Hz), 8.30 (1H, d, J=7Hz)

20

35

- 37) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperidin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide hydrochloride NMR (CDCl₃, δ): 0.88 (3H, d, J=7.5Hz), 0.90-1.10 (2H, m), 1.34-1.61 (6H, m), 1.70-1.80 (2H, m), 2.10-2.20 (2H, m), 2.23 (3H, s), 2.30 (2H, t, J=7.5Hz), 2.45 (1H, m), 2.85-3.00 (3H, m), 3.18 (3H, s), 3.74 (3H, s), 3.75-4.02 (4H, m), 4.38 (2H, t, J=7.5Hz), 4.78 (1H, m), 6.65 (1H, d, J=7Hz), 6.82 (1H, s), 6.88 (1H, d, J=7Hz), 6.98 (1H, s), 7.02 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.26 (1H, d, J=7Hz), 7.59 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz), 8.22 (1H, d, J=7Hz)
- 40 38) 4-(2,4-Dimethoxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yl]oxy]phenylbenzamide hydrochloride NMR (DMSO-d₆, δ): 1.40-1.51 (2H, m), 1.51-1.64 (2H, m), 1.69-1.82 (2H, m), 2.22 (3H, s), 2.38 (2H, t, J=7.5Hz), 2.73 (3H, s), 2.81-3.09 (4H, m), 3.19 (3H, s), 3.25-3.50 (2H, m), 3.76 (6H, sx2), 3.77-4.15 (3H, m), 4.00 (3H, s), 4.44 (1H, m), 6.64 (1H, d, J=7Hz), 6.81 (1H, s), 6.88-6.95 (2H, m), 7.03 (1H, d, J=7Hz), 7.12-7.23 (2H, m), 7.57 (1H, m), 8.29 (1H, d, J=7Hz)
 - 39) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(3-aminoprop-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride NMR (DMSO- d_6 , δ): 2.00-2.11 (2H, m), 2.13-2.20 (2H, m), 2.25 (3H, s), 2.87-3.00 (4H, m), 3.19 (3H, s), 3.77 (3H, s), 3.89-4.10 (2H, m), 4.36 (2H, t, J=7.5Hz), 6.69 (1H, d, J=7Hz), 6.82 (1H, s), 6.89 (1H, d, J=7Hz), 7.04 (1H, s), 7.05 (1H, d, J=7Hz), 7.15 (1H, d, J=7Hz), 7.38 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 8.01 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz)
- 40) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-aminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.66-1.85 (4H, m), 2.10-2.20 (2H, m), 2.22 (3H, s), 2.80-3.01 (4H, m), 3.18 (3H, s), 3.75 (3H, s), 3.81-4.03 (2H, m), 4.36 (2H, t, J=7.5Hz), 6.64 (1H, d, J=7Hz), 6.34 (1H, s), 6.90 (1H, d, J=7Hz), 6.96 (1H, s), 7.01 (1H, d, J=7Hz), 7.14 (1H, t, J=7Hz), 7.27 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz), 8.25 (7H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz), 8.25 (7H, d, J=7Hz), 8.25

d, J=7Hz)

5

20

35

40

- 41) $4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-acetylaminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide hydrochloride NMR (DMSO-d₆, <math>\delta$): 1.49-1.59 (2H, m), 1.67-1.77 (2H, m), 1.80 (3H, s), 2.06-2.20 (2H, m), 2.21 (3H, s), 2.86-3.00
- NMR (DMSO-d₆, δ) : 1.49-1.59 (2H, m), 1.67-1.77 (2H, m), 1.80 (3H, s), 2.06-2.20 (2H, m), 2.21 (3H, s), 2.86-3.00 (2H, m), 3.03-3.13 (2H, m), 3.18 (3H, s), 3.74 (3H, s), 3.80-4.02 (2H, m), 4.35 (2H, t, J=7.5Hz), 6.64 (1H, d, J=7Hz), 7.82 (1H, s), 7.88 (1H, d, J=7Hz), 7.96 (1H, s), 7.02 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.26 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz), 8.23 (1H, d, J=7Hz)
- 42) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-aminoacetylaminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.53-1.64 (2H, m), 1.70-1.81 (2H, m), 2.09-2.21 (2H, m), 2.22 (3H, s), 2.86-2.98 (2H, m), 3.11-3.23 (2H, m), 3.17 (3H, s), 3.47-3.56 (2H, m), 3.65-4.00 (2H, m), 3.76 (3H, s), 4.38 (2H, t, J=7.5Hz), 6.65 (1H, d, J=7Hz), 6.82 (1H, s), 6.89 (1H, d, J=7Hz), 6.95 (1H, s), 7.03 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.25 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 8.00 (1H, d, J=7Hz) 8.22 (1H, d, J=7Hz)
 - 43) 3-Methoxy-4-[2-(piperidin-4-yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yl]oxy]phenylbenzamide dihydrochloride NMR (DMSO-d₆, δ): 1.38-1.49 (2H, m), 1.49-1.61 (2H, m), 1.66-1.76 (2H, m), 1.85-1.97 (2H, m), 2.20 (3H, s), 2.67 (2H, t, J=7.5Hz), 2.73 (3Hx1/2, s), 2.74 (3Hx1/2, s), 2.80-3.13 (6H, m), 3.13 (3H, s), 3.22-3.51 (6H, m), 3.60-4.13 (3H, m), 3.74 (3H, s), 4.43 (1H, m), 4.91 (1H, m), 6.65 (1H, d, J=7Hz), 6.81 (1H, s), 6.89 (1H d, J=7Hz), 6.96 (1H, s), 7.03 (1H, d, J=7Hz), 7.12 (1H, c, J=7Hz), 7.35 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 7.81 (1H, d, J=7Hz), 8.27 (1H, d, J=7Hz)
- 44) 4-[2-(3-Amino-1-methylprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.35 (3H, d, J=7.5Hz), 1.40-1.63 (4H, m), 1.67-1.80 (2H, m), 1.90-2.18 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.71 (3Hx1/2, s), 2.74 (3Hx1/2, s), 2.80-3.09 (4H, m), 3.18 (3H, s), 3.30-3.52 (4H, m), 3.77 (3H, s), 3.83-4.18 (3H, m), 4.42 (1H, m), 5.01 (1H, m), 6.64 (1H, d, J=7Hz), 6.81 (1H, s), 6.89 (1H, d, J=7Hz), 6.96 (1H, s), 7.03 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.34 (1H, d, J=7Hz), 7.58 (1H, t, J=7Hz), 8.03 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz)
 - 45) 3-Methoxy-4-[2-(pyrid-3-yl)methoxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride
 - NMR (DMSO- d_6 , δ) : 1.36-1.49 (2H, m), 1.49-1.60 (2H, m), 1.66-1.79 (2H, m), 2.20 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.68 (3Hx1/2, s), 2.70 (3Hx1/2, s), 2.80-3.10 (4H, m), 3.16 (3H, s), 3.35 (3H, s), 3.35-3.60 (2H, m), 3.79-4.11 (3H, m), 4.41 (1H, m), 5.58 (2H, s), 6.64 (1H, d, J=7Hz), 6.80-6.90 (3H, m), 7.02 (1H, d, J=7Hz), 7.16 (1H, t, J=7Hz), 7.33 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 7.93-8.00 (2H, m), 8.19 (1H, d, J=7Hz), 8.55 (1H, d, J=7Hz), 8.88 (1H, d, J=6Hz), 9.04 (1H, s)
 - 46) 4-[2-(4-Aminobut-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide dihydrochloride NMR (DMSO-d₆, δ): 1.40-1.50 (2H, m), 1.50-1.61 (2H, m), 1.66-1.79 (4H, m), 1.86-1.95 (2H, m), 2.21 (3H, s), 2.39 (2H, t, J=7.5Hz), 2.73 (3Hx1/2, s), 2.75 (3Hx1/2, s), 2.79-3.10 (4H, m), 3.19 (3H, s), 3.31-3.52 (4H, m), 3.74 (3H, s), 3.82-4.12 (3H, m), 4.30 (2H, t, J=7.5Hz), 4.43 (1H, m), 6.65 (1H, d, J=7Hz), 7.81 (1H, s), 6.89 (1H, d, J=7Hz), 6.97 (1H, s), 7.03 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.30 (1H, d, J=7Hz), 7.58 (1H, d, J=7Hz), 8.04 (1H, d, J=7Hz), 8.30 (1H, d, J=7Hz)
- 47) 4-(2-Hydroxy-5-methylbenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide hydrochloride NMR (DMSO-d₆, δ): 1.53-1.96 (6H, m), 2.29 (3H, s), 2.31 (3H, s), 2.33-2.40 (2H, m), 2.79 (3H, s), 3.30 (3H, s), 3.79 (3H, s), 3.80-4.03 (2H, m), 6.63 (2H, br), 6.88-6.98 (4H, m), 7.25 (1H, d, J=8Hz), 8.19 (1H, d, J=8Hz), 8.71 (1H, br)
- 48) 4-(2-Hydroxy-4-methoxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide hydrochloride
 NMR (CDCl₃, δ): 1.48-1.92 (6H, m), 2.28 (3H, s), 2.32-2.45 (2H, m), 2.64-3.05 (4H, m), 2.79 (3H, s), 3.29 (3H, s), 3.29-3.51 (4H, m), 3.76 (3H, s), 3.80 (3H, s), 3.81-4.05 (4H, m), 6.43-6.50 (2H, m), 6.61 (1H, br), 6.85-6.96 (3H, m)

m), 7.36-7.43 (1H, m), 8.12-8.18 (1H, m), 8.58 (1H, br)

Example 18

10

15

25

35

40

45

50

55

- ⁵ [0332] The following compounds were obtained by separating the compounds, which were prepared according to a similar manner to Example 4, by using silica gel column chromatography.
 - 1) 4-(2-Benzyloxy)benzoylamino-3-methoxy-N-[(E)-2-(4-carboxyphenyl)ethen-1-yl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 3.08 (3H, s), 3.41 (3H, s), 5.19 (2H, s), 6.47 (1H, d, J=14Hz), 6.58 (1H, d, J=14Hz), 6.73 (2H, d, J=8Hz), 6.84 (1H, d, J=7Hz), 6.90-7.10 (5H, m), 7.20-7.40 (8H, m), 7.71 (2H, d, J=8Hz), 8.26 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)
 - 2) 4-(2-Benzyloxy)benzoylamino-3-methoxy-N-[(Z)-2-(4-carboxyphenyl)ethen-1-yl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 3.09 (3H, s), 3.48 (3H, s), 5.25 (2H, s), 6.72-7.42 (15H, m), 7.51-7.64 (3H, m), 8.10 (2H, d, J=8Hz), 8.22 (1H, d, J=7Hz), 8.33 (1H, d, J=7Hz)

Example 19

[0333] The following compound was obtained according to a similar manner to that of Example 4 by using 4-[2-20 (acetoxy)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide as a starting compound.

 $4-[2-(Hydroxy)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-(5-carboxypent-1-yloxy)phenyl]benzamide NMR (CDCl₃, <math>\delta$): 1.46-1.61 (2H, m), 1.63-1.90 (4H, m), 2.28 (3H, s), 2.39 (2H, t, J=7Hz), 3.33 (3H, s), 3.73-4.00 (5H, m), 6.61 (2H, br s), 6.82-7.11 (5H, m), 7.35-7.53 (2H, m), 8.16 (1H, d, J=8Hz), 8.75 (1H, br s)

Example 20

[0334] The following compounds were obtained according to a similar manner to that of Example 8.

- 4-[2-(4-Methoxybenzyl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]-phenylmethoxy]phenylbenzamide
 NMR (CDCl₃, δ): 2.27 (3H, s), 2.31 (3H, s), 2.35-2.53 (4H, m), 3.32 (3H, s), 3.39-3.54 (2H, m), 3.67-3.85 (3H, m), 3.82 (3H, s), 4.95 (1H, d, J=14Hz), 5.06 (1H, d, J=14Hz), 5.12 (2H, s), 6.59-6.67 (2H, m), 6.86-7.02 (5H, m), 7.07-7.21 (4H, m), 7.33-7.52 (7H, m), 8.28 (1H, d, J=7Hz)
 - 2) 4-(2-Benzyloxybenzoyl)amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide NMR (CDCl₃, δ) : 1.46-1.60 (2H, m), 1.63-1.92 (4H, m), 2.30 (3H, s), 2.31-2.46 (6H, m), 3.28 (3H, s), 3.44-3.54 (2H, m), 3.58-3.69 (2H, m), 3.80-4.04 (2H, m), 5.30 (2H, s), 6.73-7.22 (8H, m), 7.30-7.49 (6H, m), 8.19-8.28 (1H, m), 8.38 (1H, d, J=9Hz)
 - 3) $4-[2-(Benzyloxy)benzoyl]amino-2-chloro-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide NMR (CDCl₃, <math>\delta$): 1.48-1.65 (2H, m), 1.65-1.97 (4H, m), 2.30 (3H, s), 2.32-2.48 (6H, m), 3.34 (3H, s), 3.43-3.56 (2H, m), 3.58-3.70 (2H, m), 3.97 (2H, t, J=7Hz), 5.16 (2H, s), 6.63-6.81 (3H, m), 6.96 (1H, d, J=8Hz), 7.02-7.20 (5H, m), 7.40-7.59 (6H, m), 8.24 (1H, m)
 - 4) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[4-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide NMR (CDCl₃, δ) : 1.42 (9H, s), 1.45-1.82 (8H, m), 2.10-2.19 (2H, m), 2.30 (3H, s), 2.31-2.41 (6H, m), 3.27-3.35 (2H, m), 3.43-3.50 (5H, m), 3.60-3.67 (2H, m), 3.82 (3H, s), 3.90 (1H, t, J=7Hz), 4.27 (1H, t, J=7Hz), 4.75-4.82 (1H, br), 6.76 (2H, d, J=8Hz), 6.82 (1H, d, J=8Hz), 6.95-7.04 (3H, m), 7.07-7.13 (1H, m), 7.47 (1H, t, J=8Hz), 8.22 (1H, dd, J=1, 8Hz), 8.42 (1H, d, J=8Hz) ESI-MASS (m/z) : 746 (M+H)
 - 5) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]-amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 1.40 (9H, s), 1.45-1.60 (2H, m), 1.65-1.74 (2H, m), 1.78-1.89 (2H, m), 2.04-2.15 (2H, m), 2.27

(3H, s), 2.30 (3H, s), 2.32-2.42 (6H, m), 3.27-3.39 (2H, m), 3.33 (3H, s), 3.44-3.50 (2H, m), 3.58-3.64 (2H, m), 3.82-4.00 (2H, m), 4.19 (2H, t, J=7.5Hz), 4.86 (1H, br), 6.55-6.62 (2H, m), 6.86 (1H, d, J=7Hz), 6.97 (1H, d, J=7Hz), 7.08 (1H, t, J=7Hz), 7.31 (2H, d, J=8Hz), 7.40-7.53 (3H, m), 8.13 (1H, d, J=7Hz), 9.88 (1H, s)

6) 4-(2-lodobenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ): 1.43-1.54 (2H, m), 1.61-1.70 (2H, m), 1.74-1.86 (2H, m), 2.28 (3H, s), 2.28-2.41 (6H, m), 3.34 (3H, s), 3.44-3.50 (2H, m), 3.52-3.59 (2H, m), 3.73-3.99 (2H, m), 6.77-6.84 (2H, m), 7.03 (1H, d, J=7Hz), 7.10-7.19 (2H, m), 7.29-7.50 (5H, m), 7.80 (1H, s), 7.89 (1H, d, J=7Hz)

5

15

20

25

- 7) 4-(2-Dimethylamino-4-methyl)phenoxymethyl-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 1.47-1.58 (2H, m), 1.64-1.75 (2H, m), 1.77-1.88 (2H, m), 2.22 (3H, s), 2.25 (3H, s), 2.28 (3H, s), 2.31-2.41 (6H, m), 2.72 (6H, s), 3.32 (3H, s), 3.43-3.51 (2H, m), 3.58-3.67 (2H, m), 3.79-3.97 (2H, m), 5.02 (2H, s), 6.49-6.61 (3H, m), 6.71 (1H, d, J=7Hz), 7.80-7.85 (2H, m), 7.19 (2H, d, J=8Hz), 7.28 (2H, d, J=8Hz)
 - 8) 4-(2-Benzyloxy)benzoylamino-3-methoxy-N-methyl-N-[(E)-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylethen-1-yl]phenylbenzamide
 NMR (CDCl₃, δ): 2.11-2.40 (4H, m), 2.17 (3H, s), 3.11 (3H, s), 3.18-3.38 (2H, m), 3.44 (3H, s), 3.49-3.68 (2H, m), 5.27 (2H, s), 6.41 (1H, d, J=14Hz), 6.56 (1H, d, J=14Hz), 6.70 (2H, d, J=8Hz), 6.88-7.48 (16H, m), 8.26 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)
 - 9) 3-Methoxy-4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperidin-1-yl]carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 0.93 (3H, d, J=7.5Hz), 0.98-1.14 (2H, m), 1.40 (9H, s), 1.42-1.87 (8H, m), 2.07-2.17 (2H, m), 2.25 (3H, s), 2.32 (2H, t, J=7.5Hz), 2.50 (1H, m), 2.97 (1H, m), 3.21-3.32 (2H, m), 3.32 (1H, s), 3.79-4.00 (4H, m), 4.24 (2H, t, J=7.5Hz), 4.55 (1H, m), 4.84 (1H, m), 6.59 (1H, d, J=7Hz), 6.63 (1H, s), 6.85 (1H, d, J=7Hz), 6.92 (1H, d, J=7Hz), 6.95-7.13 (3H, m), 7.45 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
- 10) 3-Methoxy-4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-N-[2-[5-[(2S)-carbamoylpyrrolidin-1-yl]carbonylpent-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide
 NMR (CDCl₃, δ): 1.28-2.20 (12H, m), 1.39 (9H, s), 2.27 (3H, s), 3.19-3.25 (2H, m), 3.21 (3H, s), 3.25-3.61 (2H, m), 3.78 (3H, s), 3.81-4.03 (2H, m), 4.16-4.29 (2H, m), 4.57 (1H, m), 6.55-6.68 (2H, m), 6.80-7.13 (5H, m), 7.44 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
- 11) 3-Methoxy-4-[2-[1-(tert-butoxycarbonyl)piperidin-4-yi]-oxybenzoyl)amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide
 NMR (CDCi₃, δ): 1.41-1.59 (2H, m), 1.46 (9H, s), 1.69-1.94 (6H, m), 2.00-2.13 (2H, m), 2.26 (3H, s), 2.33-2.41 (8H, m), 2.96-3.17 (2H, m), 3.31 (3H, s), 3.45-3.51 (2H, m), 3.59-3.67 (2H, m), 3.74 (3H, s), 3.80-4.01 (2H, m), 4.68 (1H, m), 6.58-6.63 (2H, m), 6.85 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 6.99-7.11 (2H, m), 7.35-7.61 (2H, m), 8.19 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 12) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)amino-1-methylprop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 1.30 (9H, s), 1.31 (3H, d, J=7.5Hz), 1.45-2.10 (8H, m), 2.27 (3H, s), 2.29 (3H, s), 2.32-2.43 (6H, m), 3.20-3.30 (2H, m), 3.32 (3H, s), 3.45-3.50 (2H, m), 3.60-3.66 (2H, m), 3.79 (3H, s), 3.82-4.00 (2H, m), 4.72 (1H, m), 6.60 (1H, d, J=7Hz), 6.64 (1H, s), 6.81-6.93 (2H, m), 7.00-7.11 (3H, m), 7.43 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)
- 13) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-(5-aminocarbonylpent-1-yl)oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.42 (9H, s), 1.50-1.92 (6H, m), 2.12-2.26 (2H, m), 2.29 (2H, t, J=5Hz), 2.30 (3H, s), 3.30 (2H, q, J=5Hz), 3.35 (3H, s), 3.77 (3H, s), 3.80-4.02 (2H, m), 4.25 (2H, t, J=5Hz), 6.61-6.70 (2H, m), 6.93-7.15 (6H, m), 7.41-7.51 (1H, m), 8.20 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)
- 14) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-[4-(tert-butoxy-carbonyl)piperazin-1-yl]carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.40 (9H, s), 1.49 (9H, s), 1.50-1.90 (6H, m), 2.12-2.23 (2H, m), 2.30 (3H, s), 2.39 (2H, t, J=5Hz), 3.30 (2H, q, J=5Hz), 3.33 (3H, s), 3.35-3.42 (4H, m), 3.44 (4H, s), 3.55-3.62 (2H, m), 3.80 (3H, s), 3.85-4.06 (2H, m), 3.80 (3H, s), 3.80 (3H, s),

m), 4.24 (2H, t, J=5Hz), 4.93 (1H, br), 6.57-6.66 (2H, m), 6.85-7.13 (6H, m), 7.44-7.52 (1H, m), 8.20 (1H, d, J=7Hz), 8.41 (1H, d, J=7Hz)

- 15) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-morpholin-4-yl) carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl $_3$, δ) : 1.41 (9H, s), 1.50-1.88 (6H, m), 2.10-2.21 (2H, m), 2.30 (3H, s), 2.36 (2H, t, J=5Hz), 3.30 (2H, q, J=5Hz), 3.34 (3H, s), 3.47 (2H, t, J=4Hz), 3.58-3.70 (6H, m), 3.79 (3H, s), 3.84-4.03 (2H, m), 4.25 (2H, t, J=5Hz), 4.89 (1H, br), 6.56-6.68 (2H, m), 6.84-7.16 (6H, m), 7.41-7.51 (2H, m), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)
- 16) 4-[2-[3-(tert-Butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-methylhomo-piperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.41 (9H, s), 1.46-1.97 (8H, m), 2.09-2.21 (2H, m), 2.29 (3H, s), 2.32 (2H, t, J=5Hz), 2.33 (3H, s), 2.52-2.66 (4H, m), 3.30 (2H, q, J=5Hz), 3.33 (3H, s), 3.50-3.69 (4H, m), 3.79 (3H, s), 3.84-4.03 (2H, m), 4.24 (2H, t, J=5Hz), 4.94 (1H, br), 6.56-6.67 (2H, m), 6.82-7.12 (6H, m), 7.40-7.49 (1H, m), 8.20 (1H, d, J=7Hz), 8.41 (1H, d, J=8Hz)

5

20

35

40

45

- 17) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(2-dimethylaminoeth-1-yl)aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.40 (9H, s), 1.42-1.59 (4H, m), 1.67-1.90 (4H, m), 1.97-2.32 (4H, m), 2.28 (3H, s), 2.34 (6H, s), 2.56 (2H, br), 3.25-3.42 (4H, m), 3.32 (2H, s), 3.50 (1H, s), 3.78-4.01 (2H, m), 3.80 (3H, s), 4.25 (2H, t, J=6Hz), 4.91 (1H, br), 6.52-6.76 (3H, m), 6.87-7.13 (7H, m), 7.45 (1H, m), 8.19 (1H, d, J=8Hz), 8.41 (1H, br)
- 18) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-[N-(3-dimethyl-amino-prop-1-yl)-N-methylcarbamoylpent-1-yl]oxy-4-methylphenyl]benzamide
 25 NMR (CDCl₃, δ) : 1.41 (9H, s), 1.50-1.96 (6H, m), 2.11-2.25 (2H, m), 2.27 (3H, s), 2.30-2.43 (2H, m), 2.50 (6H, s), 2.91 and 3.02 (total 3H, s, rotamer), 3.08 and 3.32 (total 2H, q, rotamer, J=5Hz), 3.33 (3H, s), 3.43 (2H, t, J=5Hz), 3.79 (3H, s), 3.83-4.02 (2H, m), 4.25 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.82-7.13 (6H, m), 7.42-7.50 (1H, m), 8.21 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)
- 19) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2- [5-[bis(2-hydroxyeth-1-yl)amino]carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.40 (9H, s), 1.55-1.89 (6H, m), 2.11-2.20 (2H, m), 2.28 (3H, s), 2.40-2.56 (2H, m), 3.29 (2H, t, J=5Hz), 3.40-3.57 (4H, m), 3.68-4.02 (6H, m), 4.26 (2H, t, J=5Hz), 6.60-6.68 (2H, m), 6.90-7.15 (6H, m), 7.42-7.51 (1H, m), 8.19 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
 - 20) 4-[2- (3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(2,2-dimethylhydrazino)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (DMSO-d $_6$, δ) : 1.40 (9H, s), 1.45-1.90 (6H, m), 2.08-2.20 (2H, m), 2.28 (3H, s), 2.30-2.45 (2H, m), 2.51 (3H, s), 2.60 (3H, s), 3.29 (2H, t, J=5Hz), 3.33 (3H, s), 3.75 (3H, s), 3.79-4.02 (2H, m), 4.25 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.80-7.14 (5H, m), 7.41-7.50 (1H, m), 8.21 (1H, d, J=8Hz), 8.40-8.48 (1H, br)
 - 21) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(carbamoylmethylamino)-carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.41 (9H, s), 1.50-1.90 (6H, m), 2.12-2.19 (2H, m), 2.28 (3H, s), 2.53 (2H, t, J=5Hz), 3.30 (2H, t, J=5Hz), 3.33 (3H, s), 3.80 (3H, s), 3.84-3.99 (2H, m), 4.05 (2H, br), 4.25 (2H, t, J=5Hz), 4.84 (1H, br), 6.58-6.67 (2H, m), 6.72-7.12 (6H, m), 7.42-7.50 (1H, m), 8.18-8.23 (1H, m), 8.41 (1H, d, J=8Hz)
 - 22) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(carbamoylethyl-amino)-carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.41 (9H, s), 1.46-1.86 (6H, m), 2.12-2.25 (4H, m), 2.30 (3H, s), 2.41 (2H, t, J=5Hz), 3.30 (1H, q, J=5Hz), 3.37 (3H, s), 3.49 (1H, q, J=5Hz), 3.79 (3H, s), 3.82-4.03 (2H, m), 4.27 (2H, t, J=5Hz), 6.45-6.67 (4H, m), 6.88-7.15 (6H, m), 7.43-7.51 (1H, m), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)
- 23) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-diethylamino-piperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]-benzamide
 NMR (CDCl₃, δ): 1.12 (6H, t, J=5Hz), 1.41 (9H, s), 1.42-1.92 (6H, m), 2.10-2.18 (2H, m), 2.27 (3H, s), 2.27-2.69 (9H, m), 3.26 (2H, t, J=5Hz), 3.31 (3H, s), 3.77 (3H, s), 3.87-4.02 (4H, m), 4.23 (2H, t, J=5Hz), 6.54-6.67 (2H, m), 6.72-7.15 (6H, m), 7.42-7.51 (1H, m), 8.19 (1H, d, J=8Hz), 8.42 (1H, d, J=8Hz)

- 24) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-[3-(4-methylpiperazin-1-yl) carbonylpyrid-6-yl]methoxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 1.39 (9H, s), 2.06-2.18 (2H, m), 2.28 (3H, s), 2.31 (3H, s), 2.35-2.51 (4H, m), 3.27 (2H, q, J=5Hz), 2.42 (2H, m), 2.42 (2H, m), 2.43 (4H, m), 2.53 (2H, m), 2.43 (2H, m), 2.44 (4H, m), 2.53 (2H, m), 2.44 (4H, m), 2.53 (2H, m), 2.45 (2H, m), 2.4
- 3.38-3.49 (2H, m), 3.41 (1H, s), 3.63 (3H, s), 3.68-3.76 (2H, m), 4.21 (2H, t, J=5Hz), 4.97 (1H, d, J=12Hz), 5.14 (1H, d, J=12Hz), 6.58 (1H, s), 6.72 (1H, d, J=8Hz), 6.91-7.11 (7H, m), 7.20-7.25 (1H, m), 7.43 (1H, dd, J=2, 8Hz), 7.68 (1H, d, J=8Hz), 8.19 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz), 8.60 (1H, s)
- 25) 4- [2- (Benzyloxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-phenyl]benzamide
- NMR (CDCl₃, δ): 1.30-1.42 (2H, m), 1.48-1.58 (2H, m), 1.63-1.93 (6H, m), 2.29 (6H, s), 2.30-2.40 (3H, m), 2.50-2.60 (1H, m), 2.95-3.06 (1H, m), 3.29 (3H, s), 3.38 (3H, s), 3.80-4.00 (4H, m), 4.57-4.70 (1H, m), 5.30 (2H, s), 6.74-7.20 (9H, m), 7.32-7.45 (5H, m), 8.20-8.37 (1H, m), 8.37-8.42 (1H, m)
- 26) 4-[(2-Benzyloxy)benzoyi]amino-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylprop-1-yl]oxy]-phenybenzamide NMR (CDCl₃, δ) : 2.05-2.16 (2H, m), 2.28 (3H, s), 2.32-2.40 (4H, m), 2.50 (2H, t, J=7.5Hz), 3.33 (3H, s), 3.43-3.50 (2H, m), 3.59-3.65 (2H, m), 3.88-4.05 (2H, m), 5.19 (2H, s), 6.77-6.84 (2H, m), 6.95-7.02 (3H, m), 7.09-7.20 (5H, m), 7.39-7.52 (6H, m), 8.27 (1H, d, J=7Hz)

20 Example 21

30

35

5

[0335] The following compounds were obtained according to similar manners to those of Examples 8 and 16.

- 1) 4-(6-Hydroxy-2-pyridylcarbonyl)amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride
 NMR (CDCl₃, δ): 1.47-1.58 (2H, m), 1.64-1.73 (2H, m), 1.78-1.87 (2H, m), 2.27 (3H, s), 2.29 (3H, s), 2.28-2.41 (8H, m), 3.33 (3H, s), 3.45-3.51 (2H, m), 3.59-3.68 (6H, m), 3.86-3.94 (1H, br), 6.55-6.61 (2H, m), 6.86 (1H, d, J=8Hz), 7.30-7.38 (4H, m), 7.47-7.54 (2H, m), 8.06-8.10 (1H, m)
 ESI-MASS (m/z): 574 (M+H)
 - 2) 4-[2-(Methoxy)benzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide hydrochloride NMR (DMSO-d₆, δ): 1.36-1.66 (4H, m), 1.66-1.83 (2H, m), 2.23 (3H, s), 2.39 (2H, t, J=7Hz), 2.74 (3H, s), 2.80-3.10 (3H, m), 3.17 (3H, s), 3.23-3.53 (3H, m), 3.86 (3H, s), 3.79-3.99 (2H, m), 4.00-4.17 (1H, m), 4.37-4.52 (1H, m), 6.64 (1H, d, J=9Hz), 6.79 (1H, s), 6.98-7.09 (2H, m), 7.11-7.28 (3H, m), 7.43-7.64 (4H, m)

Example 22

- [0336] To a solution of 4-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide (327 mg) and pyridine (80.3 mg) in dichloromethane (6 ml) was added dropwise 2-nitrobenzenesulfonyl chloride (150 mg) at ambient temperature and the mixture was stirred at ambient temperature for 5 hours. The resulting mixture was diluted with dichloromethane (10 ml) and the organic layer was washed successively with saturated sodium bicarbonate aqueous solution and brine. Drying, filtering and removal of solvents afforded a crude product. The crude product was chromatographed on silica gel (eluent; 2-4% methanol in chloroform) to give 4-(2-ni-trobenzenesulfonyl)-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (460 mg).
 - NMR (CDCl₃, δ): 1.47-1.82 (6H, m), 2.28 (3H, s), 2.31 (3H, s), 2.35-2.42 (6H, m), 3.30 (3H, s), 3.46-3.53 (5H, m), 3.60-3.68 (4H, m), 6.56-6.96 (6H, m), 7.53-7.88 (4H, m)

50 Example 23

[0337] A solution of 4-[2-[2-[3-(phthalimido)prop-1-yl]oxy]phenyl]vinyl-3-methoxybenzoic acid (370 mg) in tetrahydrofuran (20 ml) was treated at ambient temperature with triethylamine (246 mg), N-methyl-4-methyl-2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]aniline (297 mg), and diphenyl phosphorochloridate (326 mg). The reaction mixture was stirred at 80°C for 18 hours. After concentration, the residue was dissolved in chloroform and washed with brine and dried over magnesium sulfate. The crude product was purified by silica gel column chromatography (SiO₂ 30 g, 3% methanol in chloroform) to give 4-[2-[2-[(3-(phthalimido)prop-1-yl)oxy]phenyl]vinyl]-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (550 mg).

NMR (CDCl₃, δ): 1.47-1.95 (8H, m), 2.18-2.44 (12H, m), 3.31 and 3.34 (total 3H, s), 3.42-3.52 (2H, m), 3.57-3.72 (5H, m), 3.82-4.16 (6H, m), 6.30-7.80 (16H, m)

Example 24

5

15

20

25

30

35

50

[0338] The following compounds were obtained according to a similar manner to that of Example 23.

- 1) 4-[N-Methyl-2-[(3-tert-butoxycarbonylaminoprop-1-yl)-oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide
- NMR (CDCl₃, δ): 1.40-1.75 (8H, m), 1.44 (9H, s), 1.89-1.97 (2H, m), 2.29 (6H, s), 2.32-2.42 (6H, m), 3.24 (6H, s), 3.26-3.34 (2H, m), 3.44-3.67 (6H, m), 3.77-3.88 (3H, m), 6.48-6.82 (9H, m), 6.90-6.96 (1H, m), 7.06-7.13 (1H, m) ESI-MASS (m/z): 774 (M+H)
 - 4-[2-[(3-tert-Eutoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-(4-benzyloxyphenyl) benzamide
 - NMR (CDCl₃, δ) : 1.42 (9H, s), 2.09-2.20 (2H, m), 3.28-3.37 (2H, m), 3.48 (3H, s), 3.81 (3H, s), 4.22-4.33 (2H, m), 4.70-4.78 (1H, br), 5.00 (2H, s), 6.82-6.88 (3H, m), 6.97-7.13 (6H, m), 7.31-7.48 (6H, m), 8.23 (1H, d, J=8Hz), 8.44 (1H, d, J=8Hz)

ESI-MASS (m/z): 640 (M+H)

- 3) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-benzyloxy-N-methyl-N-cyclohexylbenza-mide
- NMR (CDCl₃, δ): 1.01-1.12 (2H, br), 1.40 (9H, s), 1.45-1.82 (10H, m), 2.81-3.07 (5H, m), 3.80-3.89 (2H, m), 4.40-4.49 (1H, m), 5.18 (2H, s), 6.94 (1H, d, J=8Hz), 7.02 (1H, d, J=8Hz), 7.07-7.15 (2H, m), 7.35-7.48 (6H, m), 8.27 (1H, d, J=8Hz) 8.68 (1H, d, J=8Hz) ESI-MASS (m/z): 616 (M+H)
- 4) 4-[(2-Benzyloxy)benzoyl]amino-3-chloro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
- NMR (CDCi₃, δ): 1.30-1.45 (2H, m), 1.45-1.57 (2H, m), 1.62-1.93 (6H, m), 2.22-2.40 (12H, m), 2.50-2.63 (1H, m), 2.95-3.08 (1H, m), 3.31 (3H, s), 3.80-4.00 (4H, m), 4.58-4.70 (1H, m), 5.37 (2H, s), 6.56-6.62 (2H, m), 6.83-6.88 (1H, m), 7.02-7.13 (3H, m), 7.36-7.47 (7H, m), 8.27 (1H, d, J=7Hz), 8.42 (1H, d, J=7Hz)
- 5) 4-[N-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]phenyl]-tert-butoxycarbonylamino]methyl-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.30 and 1.33 (total 9H, s), 1.43 (9H, s), 1.49-1.60 (2H, m), 1.62-1.98 (6H, m), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.42 (6H, m), 3.20-3.29 (2H, m), 3.32 (3H, s), 3.39 (1H, s), 3.46-3.55 (4H, m), 3.62 (2H, br), 3.82 (1H, br), 3.88-4.03 (3H, m), 6.50-6.60 (2H, m), 6.65-7.00 (6H, m), 7.06-7.22 (2H, m)
- 6) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]phenoxy]-methyl-3-methoxy-N-methyl-N-[2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.37 (9H, s), 1.47-1.57 (2H, m), 1.66-1.73 (2H, m), 1.73-1.88 (2H, m), 1.93-2.02 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.32-2.40 (6H, m), 3.32 (3H, m), 3.25-3.38 (2H, m), 3.47-3.50 (2H, m), 3.62-3.67 (2H, m), 3.70 (3H, s), 3.80-3.88 (1H, m), 3.90-3.98 (2H, m), 4.07-4.17 (2H, m), 5.10 (2H, s), 5.50 (1H, br), 6.53-6.60 (2H, m), 6.70-6.90 (7H, m), 7.15-7.20 (1H, m)
 - 7) 3-Benzyloxy-4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiper-azin-1-yl)carbonyipent-1-yloxy]-4-methylphenyl]-benzamide NMR (CDCl $_3$, δ) : 1.40 (9H, s), 1.45-1.85 (10H, m), 2.28 (3H, s), 2.29 (3H, s), 2.32-2.39 (6H, m), 2.90-2.98 (2H, m), 3.30 (3H, s), 3.47-3.49 (2H, m), 3.60-3.63 (2H, m), 3.77-3.98 (4H, m), 4.97 (2H, s), 6.56-6.60 (2H, m), 6.80
 - 8) 2-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-l-yloxy]-4-methylphenyl]-5-thiophenecarboxamide

(1H, d, J=7Hz), 6.89-6.97 (2H, m), 7.04-7.12 (2H, m), 7.33-7.45 (6H, m), 8.19 (1H, d, J=6Hz), 8.41 (1H, d, J=7Hz)

NMR (CDCl₃, δ): 1.37 (9H, s), 1.48-1.62 (2H, m), 1.62-1.76 (6H, m), 1.97-2.11 (2H, m), 2.17-2.38 (9H, m), 2.39 (3H, s), 3.31 (3H, s), 3.33-3.65 (6H, m), 3.87 (1H, br), 3.94 (1H, br), 4.02 (1H, s), 4.13-4.20 (2H, m), 6.40-6.57 (2H, m), 6.74-6.82 (2H, m), 6.92-7.14 (3H, m), 7.40-7.52 (1H, m), 8.10-8.27 (1H, m)

Example 25

[0339] A solution of (S)-4-[2-[1-methyl-3-(phthalimido)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (1.1 g) in methanol (30 ml) was stirred and treated with 40% methylamine in methanol (10 ml). The reaction mixture was refluxed for 30 minutes. Then the solvent was concentrated and purified by silica gel column chromatography (SiO₂ 40 g, chloroform/methanol/ammonia = 90/10/0.5) to give (S)-4-[2-[(3-amino-1-methylprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yloxy]phenyl]benzamide.

NMR (CDCl₃, δ): 1.42 (3H, d, J=7Hz), 1.46-1.92 (9H, m), 1.98-2.16 (1H, m), 2.20-2.45 (12H, m), 2.86 (2H, t, J=7Hz), 3.32 (3H, s), 3.42-3.53 (2H, m), 3.57-3.67 (2H, m), 3.79 (3H, s), 3.82-4.03 (2H, m), 4.73-4.90 (1H, m), 6.51-6.68 (2H, m), 6.79-6.95 (2H, m), 6.98-7.12 (3H, m), 7.37-7.49 (1H, m), 8.21 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

Example 26

10

20

25

30

35

50

[0340] A solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1-yloxy)-4-methylphenyl]benzamide (3.5 g) in ethyl acetate (30 ml) was treated at ambient temperature with triethylamine (575 mg), N-methylpiperazine (569 mg), and diphenylphosphoryl azide (1.56 g). The reaction mixture was stirred at the same temperature for 17 hours. The reaction mixture was washed with brine and dried over magnesium sulfate. The crude product was purified by silica gel column chromatography (SiO₂ 100 g, 3% methanol in chloroform) to give 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (2.93 g).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.42-1.60 (2H, m), 1.62-1.90 (4H, m), 2.06-2.20 (2H, m), 2.22-2.42 (12H, m), 3.21-3.36 (5H, m), 3.42-3.51 (2H, m), 3.56-3.67 (2H, m), 3.77 (3H, s), 3.81-4.02 (2H, m), 4.23 (2H, t, J=7Hz), 4.86 (1H, m), 6.51-6.67 (2H, m), 6.79-6.93 (2H, m), 6.94-7.13 (3H, m), 7.44 (1H, m), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

Example 27

[0341] The following compound was obtained according to a similar manner to that of Example 26.

4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.41 (9H, s), 1.46-1.95 (8H, m), 2.06-2.42 (16H, m), 2.56 (1H, m), 3.00 (1H, m), 3.22-3.38 (5H, m), 3.79 (3H, s), 3.83-4.03 (3H, m), 4.25 (2H, t, J=7Hz), 4.61 (1H, m), 4.87 (1H, m), 6.52-6.68 (2H, m), 6.79-6.95 (2H, m), 6.96-7.17 (3H, m), 7.46 (1H, m), 8.21 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

Example 28

[0342] To a solution of 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1-yl)oxy-4-methylphenyl]benzamide (300 mg) and N-methylmorpholine (45 mg), in N,N-dimethylformamide (5 ml) was added isobutyl chloroformate (61 mg) at -15°C and the solution was stirred at the same temperature for 5 minutes. N,N,N'-Trimethylethylenediamine (54 mg) was added to the solution and the mixture was stirred at -15°C for 30 minutes, and then at ambient: temperature for 1 hour. The mixture was diluted with ethyl acetate (20 ml) and the solution was washed successively with aqueous sodium hydrogen carbonate solution, water (15 ml x 3) and brine. The solution was dried over potassium carbonate and the solvent was removed under reduced pressure. The residue was purified on silica gel column chromatography (SiO₂ 40 g, 1-5% methanol in chloroform) to give 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[(2-dimethylaminoeth-1-yl)-N-methylaminocarbonyl]pent-1-yl]oxy-4-methylphenyl]benzamide (312 mg).

NMR (CDCl₃, δ) : 1.40 (9H, s), 1.44-2.21 (8H, m), 2.25 (3H, s), 2.27 (6H, s), 2.29-2.50 (4H, m), 2.91 (1H, s), 3.00 (2H, s), 3.26-3.51 (4H, m), 3.31 (3H, s), 3.77 (3H, s), 3.81-4.02 (2H, m), 4.22 (2H, t, J=5Hz), 4.88 (1H, br), 6.52-6.68 (2H, m), 6.79-7.11 (5H, m), 7.43 (1H, m), 8.20 (1H, d, J=9Hz), 8.40 (1H, d, J=8Hz)

Example 29

[0343] The following compounds were obtained according to a similar manner to that of Example 28.

1) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(3-dimethylaminoprop-1-yl)aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.40 (9H, s), 1.42-1.57 (2H, m), 1.61-1.85 (6H, m), 2.04-2.35 (8H, m), 2.25 (3H, s), 2.29 (9H, s), 2.46 (2H, t, J=6Hz), 3.20-3.38 (4H, m), 3.30 (3H, s), 3.76 (3H, s), 3.80-4.00 (2H, m), 4.24 (2H, t, J=5Hz), 4.90 (1H, m), 4.24 (2H, t, J=5Hz), 4.90 (1H, m)

br), 6.61-6.72 (2H, m), 6.84-7.12 (6H, m), 7.43 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

- 2) $4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-oxopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, <math>\delta$): 1.40 (9H, s), 1.50-1.92 (8H, m), 2.15 (2H, t, J=6Hz), 2.29 (2H, t, J=5Hz), 2.38-2.51 (6H, m), 3.30 (2H, t, J=5Hz), 3.32 (3H, s), 3.70-4.05 (6H, m), 3.80 (3H, s), 4.25 (2H, t, J=5Hz), 4.85 (1H, br), 6.55-6.67 (2H, m), 6.83-7.15 (6H, m), 7.40-7.51 (1H, m), 8.20 (1H, d, J=8Hz), 8.40 (1H, br)
- 3) 4-[2-(3-tert-Butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-pyridylaminocarbonyl)pent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.40 (9H, s), 1.50-1.61 (2H, m), 1.75-1.93 (4H, m), 2.09-2.20 (2H, m), 2.30 (3H, s), 2.42 (2H, br), 3.30 (1H, q, J=5Hz), 3.36 (3H, s), 3.70 (3H, s), 3.72-4.00 (2H, m), 4.25 (2H, t, J=5Hz), 4.90 (1H, br), 6.60 (1H, br), 6.72 (1H, d, J=8Hz), 6.99-7.12 (6H, m), 7.43-7.51 (1H, m), 7.63 (1H, d, J=8Hz), 8.19 (1H, d, J=8Hz), 8.42 (1H, d, J=7Hz), 8.46 (1H, br), 9.22 (1H, br)

Example 30

5

10

15

20

30

35

40

45

50

[0344] To a solution of 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-carboxypent-1-yl)oxy-4-methylphenyl]benzamide (250 mg) and N-methylmorpholine (37 mg) in dichloromethane (5 ml) was added pivaloyl chloride (45 mg) at -15°C. After being stirred at the same temperature for 5 minutes, to the mixture was added 1-amino-4-methylpiperazine (47 mg) and the mixture was stirred at -15°C for 1 hour and then stirred at ambient temperature for additional 2 hours. The resulting mixture was poured into saturated aqueous sodium hydrogen carbonate solution (20 ml) and the solution was extracted with chloroform (15 ml x 3). The organic layer was washed with brine and dried over magnesium sulfate. The solvent was evaporated and the residue was purified on silica gel column chromatography (SiO₂ 30 g, 1-15% methanol in chloroform) to give 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide (208 mg).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.45-1.90 (6H, m), 2.10-2.19 (2H, m), 2.24 (3H, s), 2.25 (3H, s), 2.51 (2H, t, J=5Hz), 2.54-2.91 (8H, m), 3.30 (2H, t, J=5Hz), 3.34 (3H, s), 3.75 (3H, s), 3.80-4.03 (2H, m), 4.24 (2H, t, J=5Hz), 4.78-4.97 (1H, br), 6.53-6.67 (2H, m), 6.73-7.14 (6H, m), 7.40-7.50 (1H, m), 8.21 (1H, d, J=8Hz), 8.45 (1H, d, J=8Hz)

Example 31

[0345] The following compounds were obtained according to a similar manner to that of Example 9.

- 1) $4-[2-(E)-[2-(4-Methylpiperazin-1-yl)carbonylethen-1-yl]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]-phenylbenzamide NMR (CDCl₃, <math>\delta$): 1.48-1.59 (2H, m), 1.67-1.76 (2H, m), 1.79-1.87 (2H, m), 2.21 (3H, s), 2.26 (3H, s), 2.31 (3H, s), 2.31-2.44 (10H, m), 3.17-3.25 (2H, m), 3.34 (3H, s), 3.47-3.52 (2H, m), 3.56-3.67 (3H, m), 3.62 (3H, s), 3.82-3.99 (3H, m), 5.71 (1H, m), 6.60-6.67 (2H, m), 6.86 (1H, d, J=7Hz), 6.92 (1H, d, J=7Hz), 6.98-7.03 (2H, m), 7.14 (1H, d, J=7Hz), 7.43-7.62 (4H, m), 7.85 (1H, d, J=7Hz)
- 2) 4-[2-[(4-Methylpiperazin-1-yl)carbonylmethoxy]benzoyl]-amino-3-methoxy-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.30-1.90 (6H, m), 2.14 (3H, s), 2.26 (3H, s), 2.35-2.46 (3H, m), 3.34 (3H, s), 3.46-3.55 (4H, m), 3.59-3.68 (4H, m), 3.72 (3H, s), 3.80-4.01 (2H, m), 4.90 (2H, s), 6.58-6.68 (2H, m), 6.82-7.06 (4H, m), 7.13-7.20 (2H, m), 7.46-7.51 (1H, m), 8.19 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

Example 32

[0346] A solution of 4-(2-iodobenzoyl)amino-N-[2-(4-methoxyphenyl)methoxy]phenyl-N-methylbenzamide (2.30 g) in a mixture of dichloromethane (30 ml) and trifluoroacetic acid (15 ml) was stirred at ambient temperature for 2 hours and the solvent was evaporated in vacuo. The residual oil was dissolved in chloroform (50 ml) and the solution was washed successively with water (50 ml), aqueous sodium hydrogen carbonate (50 ml) and brine (25 ml). The solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give 4-(2-iodobenzoyl)amino-N-(2-hydroxy)phenyl-N-methylbenzamide (1.20 g).

NMR (DMSO- d_6 , δ) : 3.20 (3H, s), 6.69 (1H, t, J=7Hz), 6.82 (1H, d, J=7Hz), 6.98-7.05 (3H, m), 7.40-7.54 (4H, m), 7.90 (1H, d, J=7Hz), 9.84 (1H, s)

Example 33

5

15

20

30

35

50

55

[0347] The following compounds were obtained according to a similar manner to that of Example 32.

- 1) 4-(2-Hydroxybenzoyl)amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]-phenylbenzamide
 - NMR (CDCl₃, δ): 2.28 (3H, s), 2.32 (3H, s), 2.35-2.51 (4H, m), 3.36 (3H, s), 3.59-3.89 (2H, m), 5.02 (2H, s), 6.63-6.72 (2H, m), 6.88 (1H, t, J=7Hz), 7.00 (2H, d, J=8Hz), 7.20-7.46 (9H, m), 7.70 (1H, d, J=7Hz), 8.68 (1H, s)
- 2) 3-Methoxy-4-(2-hydroxybenzoyl)amino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]-phenyl-methoxy]phenylbenzamide
 NMR (CDCl₃, δ): 2.23 (3H, s), 2.30 (3H, s), 2.33-2.51 (4H, m), 3.37 (3H, s), 3.41-3.56 (2H, m), 3.68 (3H, s), 3.72-3.87 (2H, m), 4.91 (1H, d, J=14Hz), 5.09 (1H, d, J=14Hz), 6.63-6.71 (2H, m), 6.35-6.93 (2H, m), 7.00 (2H, d, J=8Hz), 7.33-7.50 (7H, m), 8.14 (1H, d, J=7Hz), 8.72 (1H, s)
 - 3) 4[2-(3-Hydroxyprop-1-yl)thiobenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ): 1.44-1.58 (2H, m), 1.61-1.73 (2H, m), 1.77-1.89 (2H, m), 2.28 (3H, s), 2.31-2.40 (6H, m), 3.02 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.42-3.50 (2H, m), 3.56-3.65 (2H, m), 3.67-3.78 (7H, m), 3.81-4.01 (2H, m), 6.58-6.67 (2H, m), 6.81-6.95 (2H, m), 7.03 (1H, s), 7.25 (1H, m), 7.36-7.50 (2H, m), 7.64 (1H, d, J=7Hz), 8.30 (1H, d, J=7Hz), 8.77 (1H, s)

Example 34

- [0348] The following compound was obtained by using 2-nitro-4-(2-benzyloxybenzoyl)amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide as a starting compound according to a similar manner to that of Example 10.
 - 2-Amino-4-(2-hydroxybenzoyl)amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 - NMR (CDCl₃, δ): 1.21-2.02 (10H, m), 2.28-2.44 (12H, m), 2.48-2.69 (1H, m), 2.93-3.08 (1H, m), 3.30 (3H, s), 3.80-4.06 (4H, m), 4.68 (1H, br), 4.73 (2H, s), 5.32 (1H, s), 6.53-6.62 (3H, m), 6.78-6.96 (5H, m), 7.33-7.44 (1H, m), 7.78-7.88 (1H, m)

Example 35

[0349] A mixture of 4-(2-hydroxybenzoyl)amino-3-methoxy-N-(2-benzyloxy-4-methyl)phenyl-N-methylbenzamide (550 mg), 1-(tert-butoxycarbonyl)-4-hydroxypiperidine (223 mg), diethyl azodicarboxylate (193 mg) and triphenylphosphine (291 mg) in tetrahydrofuran (15 ml) was stirred at ambient temperature for 8 hours and the mixture was diluted with ethyl acetate (25 ml). The solution was washed with water and brine, and organic phase was dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was purified by silica gel column (30% ethyl acetate in n-hexane) to give 3-methoxy-4-[2-[1-(tert-butoxycarbonyl)piperidin-4-yl]oxybenzoyl]amino-N-(2-benzyloxy-4-methyl) phenyl-N-methylbenzamide (562 mg).

NMR (CDCl₃, δ) : 1.44 (9H, s), 1.72-1.90 (2H, m), 1.95-2.12 (2H, m), 2.27 (3H, s), 2.95-3.16 (4H, m), 3.37 (3H, s), 3.60 (3H, s), 3.73-4.00 (2H, m), 4.64 (1H, m), 4.88 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.65-6.71 (2H, m), 6.86 (1H, d, J=7Hz), 6.95-7.03 (3H, m), 7.09 (1H, t, J=7Hz), 7.25-7.50 (6H, m), 8.18 (1H, d, J=7Hz), 8.35 (1H, d, J=7Hz)

Example 36

[0350] The following compounds were obtained according to a similar manner to that of Example 35.

- 1) (S)-4-[2-[1-Methyl-3-(phthalimido)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide NMR (CDCl $_3$, δ): 1.43 (3H, d, J=7Hz), 1.47-1.92 (7H, m), 1.98-2.13 (1H, m), 2.20-2.47 (12H, m), 3.32 (3H, s), 3.42-3.53 (2H, m), 3.57-3.67 (2H, m), 3.73-4.05 (7H, m), 4.77 (1H, m), 6.51-6.69 (2H, m), 6.78-7.12 (5H, m), 7.42 (1H, m), 7.57 (4H, s), 8.08-8.24 (2H, m)
- 2) (R)-4-[2-[[4-[Phthalimido-1-yl]but-2-yl]oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide

NMR (CDCl₃, δ): 1.44 and 1.47 (total 3H, s), 1.52-1.92 (8H, m), 2.02-2.12 (1H, m), 2.28 (3H, s), 2.30 (3H, s), 2.33-2.42 (6H, m), 3.35 (3H, s), 3.47-3.53 (2H, m), 3.60-3.67 (2H, m), 3.80 (3H, s), 3.85-4.00 (2H, br), 3.88 (2H, t, J=8Hz), 4.74-4.82 (1H, br), 6.57-6.69 (2H, m), 6.81-6.95 (2H, m), 6.98-7.09 (3H, m), 7.43 (1H, t, J=8Hz), 7.53-7.60 (4H, br), 8.14 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz)

ESI-MASS (m/z): 804 (M+H)

5

10

35

40

45

- 3) (R)-4-[2-[[4-(Phthalimido-1-yl)but-2-yl]oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethyl-aminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide NMR (CDCl₃, δ): 1.42 and 1.45 (total 3H, s), 1.50-1.90 (12H, m), 2.02-2.10 (1H, m), 2.28 (9H, s), 2.32-2.41 (4H, m), 2.52-2.62 (1H, m), 2.97-3.06 (1H, m), 3.35 (3H, s), 3.80 (3H, s), 3.87 (2H, t, J=8Hz), 3.90-3.97 (2H, m), 4.58-4.68 (1H, m), 4.72-4.81 (1H, m), 6.57-6.67 (2H, m), 6.81-6.93 (2H, m), 6.98-7.08 (3H, m), 7.43 (1H, t, J=8Hz), 7.53-7.59 (4H, br s), 8.13 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz)
- 4) (S)-4-[2-[[4-(Phthalimido-1-yl)but-2-yl]oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethyl-15 aminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]-benzamide
 NMR (CDCl₃, δ): 1.42 and 1.44 (total 3H, s), 1.50-1.91 (12H, m), 2.02-2.10 (1H, m), 2.29 (9H, s), 2.32-2.41 (4H, m), 2.52-2.62 (1H, m), 2.95-3.05 (1H, m), 3.36 (3H, s), 3.80 (3H, s), 3.86 (2H, t, J=8Hz), 3.90-3.97 (2H, m), 4.58-4.66 (1H, m), 4.72-4.80 (1H, m), 6.57-6.67 (2H, m), 6.81-6.92 (2H, m), 6.98-7.08 (3H, m), 7.44 (1H, t, J=8Hz), 7.53-7.60 (4H, br s), 8.13 (1H, d, J=8Hz), 8.21 (1H, d, J=8Hz)
 ESI-MASS (m/z): 832 (M+1)
- 5) 3-Methoxy-4-[2-[3-(phthalimido)-1-methylprop-1-yl]oxybenzoyl]amino-N-(2-benzyloxy-4-methyl)phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 1.41 (3H, d, J=7.5Hz), 1.96-2.12 (2H, m), 2.24 (3H, s), 2.27-2.42 (2H, m), 3.39 (3H, s), 3.60-3.69 (2H, m), 3.86 (2H, t, J=7.5Hz), 4.77 (1H, m), 4.94 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.66-6.82 (3H, m), 6.95-7.08 (4H, m), 7.20-7.71 (10H, m), 8.10-8.21 (2H, m)

Example 37

- 30 [0351] The following compounds were obtained according to a similar manner to that of Example 14.
 - 1) 4-[2-(3-Acetylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-(2-acetoxy-4-methylphenyl)-N-methylbenzamide NMR (CDCl $_3$, δ): 1.86 (3H, s), 2.10-2.19 (2H, m), 2.30 (3H, s), 3.41 (2H, q, J=5Hz), 3.72 (3H, s), 4.21 (2H, t, J=5Hz), 5.94 (1H, br), 6.85 (1H, s), 6.90-7.11 (6H, m), 7.42-7.49 (1H, m), 8.10 (1H, d, J=8Hz), 8.42 (1H, d, J=8Hz)
 - 2) 4-[2-(3-Acetylamincprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl) carbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.48-1.64 (2H, m), 1.58-1.85 (4H, m), 1.88 (3H, s), 2.12 (2H, t, J=5Hz), 2.29 (6H, s), 2.34-2.42 (2H, m), 2.57 (2H, t, J=5Hz), 3.30 (2H, q, J=5Hz), 3.32 (3H, s), 3.39 (2H, q, J=5Hz), 3.72-3.79 (2H, m), 3.76 (3H, s), 3.83-4.00 (2H, m), 4.20 (2H, t, J=5Hz), 6.33 (1H, br), 6.57-6.67 (2H, m), 6.83-7.10 (6H, m), 7.43 (1H, dd, J=2, 7Hz), 8.10 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

Example 38

[0352] To an ice bath cooled solution of 4-[2-(3-aminoprop-1-yl)oxybenzoyl]amino-N-[2-(5-carboxypent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide (650 mg) in dichloromethane (20 ml) were added triethylamine (137 mg) and ditert-butyldicarbonate (296 mg) and the mixture was stirred at ambient temperature overnight. The solution was washed successively with water, 10% hydrochloric acid, saturated aqueous sodium hydrogen carbonate and brine, and the organic phase was dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-[3-(tert-butoxy-carbonyl)-aminoprop-1-yl]oxybenzoyl]amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide (749 mg).

NMR (CDCl₃, δ): 1.25 (3H, t, J=7.5Hz), 1.40 (9H, s), 1.44-1.56 (2H, m), 1.66-1.76 (2H, m), 1.76-1.87 (2H, m), 2.06-2.15 (2H, m), 2.28 (3H, s), 2.34 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.31-3.40 (2H, m), 3.85-3.97 (2H, m), 4.13 (2H, q, J=7.5Hz), 4.21 (2H, t, J=7.5Hz), 4.74 (1H, br), 6.54-6.62 (2H, m), 6.86 (1H, d, J=7Hz), 6.98 (1H, d, J=7Hz), 7.09 (1H, d, J=7Hz), 7.32 (2H, d, J=8Hz), 7.41-7.52 (3H, m), 8.11 (1H, d, J=7Hz), 9.87 (1H, s)

Example 39

[0353] The following compound was obtained according to a similar manner to that of Example 38.

3-Methoxy-4-[2-[3-(tert-butoycarbonyl)amino-1-methylprop-1-yl]oxybenzoyl]amino-N-(2-benzyloxy-4-methyl)-phenyl-N-methylbenzamide

NMR (CDCl₃, δ): 1.37 (9H, s), 1.41 (3H, d, J=7.5Hz), 1.84-2.11 (2H, m), 2.28 (3H, s), 3.20-3.31 (2H, m), 3.40 (3H, s), 3.64 (3H, s), 4.61 (1H, br), 4.72 (1H, m), 4.90 (1H, d, J=14Hz), 5.09 (1H, d, J=14Hz), 6.62-6.70 (2H, m), 6.84 (1H, d, J=7Hz), 6.93-7.12 (4H, m), 7.28-7.72 (6H, m), 8.22 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)

10 Example 40

[0354] A solution of aqueous 4M sulfuric acid (0.5 ml) and 3-(phthalimid-1-yl)propanal (189 mg) in tetrahydrofuran (10 ml) was slowly added to a solution of 4-(2-aminobenzoylamino)-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenylbenzamide (560 mg) in tetrahydrofuran (10 ml) followed by the portionwise addition of sodium borohydride (59.8 mg) at 0°C. The mixture was diluted with 1,4-dioxane (5 ml) and stirred for an additional 1.5 hours at ambient temperature. The mixture was quenched with water (0.5 ml) and concentrated. The residue was partitioned with ethyl acetate and saturated aqueous sodium hydrogen carbonate. The organic extract was washed with brine and dried over sodium sulfate, concentrated, and purified by silica gel column chromatography (SiO₂, 30 g, 3% methanol in chloroform) to give 3-methoxy-4-[2-[3-(phthalimido)prop-1-yl]amino]benzoylamino-N-methyl-N-[2-[5-(4-methylpiperazin-l-yl)carbonylpent-l-yloxy]phenyl]benzamide (200 mg).

NMR (CDCl₃, δ): 1.44-1.62 (2H, m), 1.63-1.93 (4H, m), 1.97-2.12 (2H, m), 2.21-2.46 (12H, m), 3.17-3.38 (5H, m), 3.42-3.56 (2H, m), 3.57-3.69 (2H, m), 3.70-4.04 (7H, m), 6.51-6.73 (4H, m), 6.78-6.96 (2H, m), 7.00 (1H, s), 7.20-7.35 (1H, m), 7.40 (1H, d, J=8Hz), 7.53-7.67 (3H, m), 7.72-7.86 (2H, m), 8.13 (1H, d, J=8Hz), 8.34 (1H, s)

Example 41

20

25

35

40

45

55

[0355] A solution of 4-(2-nitrobenzoyl)amino-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]-N-methylbenzamide (800 mg), 20% palladium hydroxide (200 mg) in ethanol (20 ml) was stirred under atmospheric pressure of hydrogen at ambient temperature. After 2 hours, the reaction mixture was filtered through a bed of Celite, and the solvent was removed by rotary evaporation and the crude product was purified by silica gel column chromatography (SiO₂ 30 g, ethyl acetate/hexane = 3/1) to give 4-(2-aminobenzoyl)amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]-benzamide (700 mg).

NMR (CDCl₃, δ): 1.25 (3H, t, J=7Hz), 1.41-1.57 (2H, m), 1.63-1.87 (4H, m), 2.27 (3H, s), 2.33 (2H, t, J=7Hz), 3.32 (3H, s), 3.78-4.00 (2H, m), 4.12 (2H, q, J=7Hz), 5.38-5.56 (2H, m), 6.55-6.64 (2H, m), 6.64-6.76 (2H, m), 6.87 (1H, d, J=9Hz), 7.22 (1H, d, J=9Hz), 7.28-7.50 (5H, m), 7.79 (1H, br s)

Example 42

[0356] The following compound was obtained according to a similar manner to that of Preparation 4.

4-(2-Aminobenzenesulfonyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yloxy]phenyl]benzamide

NMR (CDCl $_3$, δ) : 1.45-1.54 (2H, m), 1.65-1.82 (4H, m), 2.30 (3H, s), 2.33 (3H, s), 2.35-2.43 (6H, m), 3.29 (3H, s), 3.46-3.51 (5H, m), 3.60-3.65 (4H, m), 4.84-4.89 (2H, m), 6.56-6.89 (6H, m), 7.28-7.48 (4H, m) ESI-MASS (m/z) : 638 (M+H)

Example 43

[0357] A solution of 4-[2-(acetyloxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (400 mg) in methanol (10 ml) was treated with 1N sodium hydroxide solution (3 ml) at ambient temperature. After 6 hours, the reaction mixture was concentrated in vacuo and extracted with the mixture of dichloromethane and diluted hydrochloric acid. The organic phase was washed with brine and dried over sodium sulfate. The crude product was purified by silica gel column chromatography (SiO₂ 30 g, 5% methanol in chloroform) to give 4-[2-(hydroxy)benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (290 mg).

NMR (CDCl₃, δ): 1.27-2.00 (10H, m), 2.21-2.46 (12H, m), 2.56 (1H, m), 3.00 (1H, m), 3.33 (3H, s), 3.80 (3H, s), 3.82-4.05 (4H, m), 4.63 (1H, m), 6.55-6.68 (2H, m), 6.82-7.09 (5H, m), 7.42 (1H, m), 7.55 (1H, m), 8.20 (1H, m)

Example 44

[0358] The following compounds were obtained according to a similar manner to that of Example 43.

- 1) 4-(2-Hydroxybenzoyl)amino-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yloxy)-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.26 (3H, t, J=7Hz), 1.42-1.58 (2H, m), 1.61-1.90 (4H, m), 2.28 (3H, s), 2.33 (2H, t, J=7Hz), 3.32 (3H, s), 3.80 (3H, s), 3.81-4.02 (2H, m), 4.12 (2H, q, J=7Hz), 6.53-6.67 (2H, m), 6.80-6.98 (3H, m), 7.01 (1H, d, J=8Hz), 7.07 (1H, s), 7.42 (1H, dd, J=8, 8Hz), 7.49 (1H, d, J=8Hz), 8.18 (1H, d, J=8Hz), 8.72 (1H, s)
- 2) 4- (2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N- (2-methylphenyl)benzamide
 NMR (CDCl₃, δ): 2.21 (3H, s), 3.40 (3H, s), 3.78 (3H, s), 6.82-7.23 (9H, m), 7.37-7.53 (2H, m), 8.18 (1H, d, J=8Hz),
 8.69 (1H, br s)
- 3) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide
 NMR (CDCl₃, δ): 1.42-1.59 (2H, m), 1.60-1.89 (4H, m), 2.20-2.46 (12H, m), 3.32 (3H, s), 3.42-3.53 (2H, m), 3.57-3.69 (2H, m), 3.71-4.02 (6H, m), 6.51-6.68 (2H, m), 6.79-7.08 (5H, m), 7.40 (1H, m), 7.51 (1H, d, J=8Hz), 8.18 (1H, d, J=8Hz), 8.86 (1H, br s)
- 4) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-(2-benzyloxy-4-methylphenyl)-N-methylbenzamide NMR (CDCl₃, δ) : 2.30 (3H, s), 3.38 (3H, s), 3.63 (3H, s), 4.89 (1H, d, J=13Hz), 5.08 (1H, d, J=13Hz), 6.62-6.68 (2H, m), 6.82-7.00 (6H, m), 7.28-7.42 (5H, m), 7.47 (1H, d, J=8Hz), 8.13 (1H, d, J=8Hz), 8.79 (1H, s)
- 5) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 2.28 (3H, s), 3.40 (3H, s), 3.67 (3H, s), 4.06 (2H, t, J=10Hz), 4.41 (2H, t, J=10Hz), 4.92 (1H, d, J=12Hz), 5.10 (1H, d, J=12Hz), 6.60 (1H, s), 6.71 (1H, d, J=8Hz), 6.87-7.08 (5H, m), 7.28 (1H, d, J=8Hz), 7.42 (1H, dd, J=2, 8Hz), 7.52 (1H, d, J=8Hz), 8.16 (1H, d, J=8Hz), 8.82 (1H, s)
- 6) 4-(2-Hydroxybenzoyl)amino-3-methyl-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.48 (2H, br), 1.60-1.81 (4H, m), 2.19 (3H, s), 2.28 (3H, s), 2.30-2.35 (3H, m), 2.38 (3H, s), 2.50 (4H, br), 3.30 (3H, s), 3.52 (2H, br), 3.69 (2H, br), 3.83 (1H, br), 3.92 (1H, br), 6.62 (2H, s), 6.89-6.93 (2H, m), 7.02-7.10 (2H, m), 7.35 (1H, s), 7.40-7.47 (1H, m), 7.63-7.70 (2H, m), 8.52 (1H, br)

Example 45

35

[0359] A solution of 4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (542 mg) in 90% trifluoroacetic acid (10 ml) was stirred at ambient temperature for 3 hours and the solvent was evaporated in vacuo. The residue was stirred with chloroform (20 ml) and saturated aqueous sodium hydrogen carbonate (10 ml) and the organic phase was separated. The solution was washed with brine and dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-(3-aminoprop-1-yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy] phenylbenzamide (465 mg).

NMR (CDCl₃, δ) : 1.47-1.59 (2H, m), 1.67-2.00 (6H, m), 2.06-2.66 (2H, m), 2.35 (3H, s), 2.39 (3H, s), 2.32-2.41 (4H, m), 2.96 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.45-3.50 (2H, m), 3.58-3.65 (2H, m), 3.89-3.99 (2H, m), 4.29 (2H, d, J=7.5Hz), 6.54-6.62 (2H, m), 6.85 (1H, d, J=7Hz), 7.01 (1H, d, J=7Hz), 7.10 (1H, t, J=7Hz), 7.32 (2H, d, J=8Hz), 7.43-7.50 (3H, m), 8.20 (1H, d, J=7Hz)

50 Example 46

[0360] The following compounds were obtained according to a similar manner to that of Example 45.

1) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)car-bonylpent-1-yloxy]phenyl]benzamide
NMR (CDCl₃, δ): 1.40-1.92 (6H, m), 1.98-2.12 (2H, m), 2.19-2.44 (12H, m), 2.90 (2H, t, J=7Hz), 3.32 (3H, s), 3.40-3.53 (2H, m), 3.56-3.68 (2H, m), 3.78 (3H, s), 3.80-4.02 (2H, m), 4.28 (2H, t, J=7Hz), 6.51-6.67 (2H, m), 6.78-6.95 (2H, m), 6.97-7.16 (3H, m), 7.44 (1H, m), 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

- 2) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl $_3$, δ): 1.26-1.92 (12H, m), 1.98-2.12 (2H, m), 2.27 (9H, s), 2.29-2.42 (3H, m), 2.56 (1H, m), 2.89 (2H, t, J=7Hz), 3.00 (1H, m), 3.32 (3H, s), 3.78 (3H, s), 3.82-4.02 (3H, m), 4.27 (2H, t, J=7Hz), 4.61 (1H, m), 6.52-6.67 (2H, m), 6.79-6.96 (2H, m), 6.97-7.12 (3H, m), 7.43 (1H, m), 8.21 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)
- 3) 4-[2-(3-Aminoprop-1-yl)oxybenzoyi]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperidin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide

 NMR (CDCl₃, δ): 0.95 (3H, d, J=7.5Hz), 1.00-1.14 (2H, m), 1.46-1.90 (8H, m), 2.01-2.12 (2H, m), 2.26 (3H, s),

 2.34 (2H, t, J=7.5Hz), 2.52 (1H, m), 2.85-3.03 (3H, m), 3.31 (3H, s), 3.79 (3H, s), 3.79-4.00 (4H, m), 4.32 (2H, t, J=7.5Hz), 4.55 (1H, m), 6.58 (1H, d, J=7Hz), 6.62 (1H, s), 6.84 (1H, d, J=7Hz), 6.90 (1H, d, J=7Hz), 7.00-7.11 (3H, m), 7.42 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)

5

25

30

35

40

50

- 4) 4- [2- (3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N- [2-[5-[(2S)-carbamoylpyrrolidin-1-yl]carbonylpent-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide
 NMR (CDCl₃, δ) : 1.48-2.20 (12H, m), 2.28 (3H, s), 2.32-2.40 (2H, m), 2.88-3.00 (2H, m), 3.31 (3H, s), 3.33-3.61 (2H, m), 3.80 (3H, s), 3.82-3.99 (2H, m), 4.29 (2H, t, J=7Hz), 4.54 (1H, m), 6.52-6.63 (2H, m), 6.81-7.10 (5H, m), 7.43 (1H, t, J=7Hz), 8.14 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)
- 5) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-aminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide
 NMR (CDCl₃, δ): 1.63-1.94 (4H, m), 1.99-2.18 (2H, m), 2.23 (3H, s), 2.62-3.07 (2H, m), 3.29 (3H, s), 3.29-3.51 (2H, m), 3.75-4.00 (2H, m), 3.76 (3H, s), 4.21 (2H, t, J=7.5Hz), 6.56-6.85 (4H, m), 7.28-7.62 (2H, m), 8.13 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 6) $4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-acetylaminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, <math>\delta$) : 1.60-1.86 (4H, m), 2.00 (3H, s), 2.08-2.20 (2H, m), 2.27 (3H, s), 2.93-3.03 (2H, m), 3.30 (3H, s), 3.30-3.50 (2H, m), 3.77 (3H, s), 3.83-3.98 (2H, m), 4.26 (2H, t, J=7.5Hz), 6.53-6.65 (2H, m), 6.86-7.12 (5H, m), 7.42 (1H, t, J=7Hz), 8.12 (1H, d, J=7Hz), 8.37 (1H, d, J=7Hz)
 - 7) 3-Methoxy-4-[2-(piperidin-4-yl)oxybenzoyl]amino-N-(2-hydroxy-4-methyl)phenyl-N-methylbenzamide NMR (DMSO-d $_6$, δ) : 1.50-1.62 (2H, m), 1.94-2.05 (2H, m), 2.14 (3H, s), 2.57 (2H, t, J=7.5Hz), 2.91-3.00 (2H, m), 3.16 (3H, s), 3.75 (3H, s), 4.73 (1H, m), 6.48 (1H, d, J=7Hz), 6.64 (1H, s), 7.87 (1H, d, J=7Hz), 7.92 (1H, d, J=7Hz), 7.01 (1H, s), 7.09 (1H, t, J=7Hz), 7.32 (1H, d, J=7Hz), 7.52 (1H, t, J=7Hz), 8.02 (1H, d, J=7Hz), 8.27 (1H, d, J=7Hz)
 - 8) 3-Methoxy-4-[2-(piperidin-4-yl)oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbon-ylpent-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 1.46-1.88 (8H, m), 2.07-2.19 (2H, m), 2.26 (3H, s), 2.29 (3H, s), 2.32-2.41 (6H, m), 2.72 (2H, t, J=7.5Hz), 3.10-3.20 (2H, m), 3.32 (3H, s), 3.45-3.50 (2H, m), 3.60-3.66 (2H, m), 3.80 (3H, s), 3.83-4.00 (2H, m), 4.57 (1H, m), 6.58 (1H, d, J=7Hz), 6.62 (1H, s), 6.82-6.91 (2H, m), 6.98-7.11 (3H, m), 7.43 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
- 9) 4-[2-(3-Amino-1-methylprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide

 NMR (CDCl₃, δ) : 1.42 (3H, d, J=7.5Hz), 1.46-1.89 (6H, m), 1.99-2.11 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.31-2.42 (6H, m), 2.85 (2H, t, J=7.5Hz), 3.33 (3H, s), 3.45-3.50 (2H, m), 3.59-3.66 (2H, m), 3.80 (3H, s), 3.84-4.01 (2H, m), 4.80 (1H, m), 6.59 (1H, d, J=7Hz), 6.63 (1H, s), 6.82-6.92 (2H, m), 7.01-7.10 (3H, m), 7.44 (1H, t, J=7Hz), 8.22 (1H, d, J=7Hz), 8.40 (1H, d, J=7Hz)
 - 10) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-aminocarbonylpent-1-yl)oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.40-1.59 (2H, m), 1.61-1.90 (4H, m), 2.11-2.30 (4H, m), 2.35 (3H, s), 3.00 (2H, t, J=6Hz), 3.11 (2H, br), 3.29 (3H, s), 3.75 (3H, s), 3.76-4.02 (2H, m), 4.23 (2H, t, J=5Hz), 6.00 (1H, br), 6.50 (1H, br), 6.55-6.71 (2H, m), 6.87-7.12 (5H, m), 7.42 (1H, dd, J=2, 7Hz), 8.10 (1H, d, J=9Hz), 8.36 (1H, d, J=8Hz)
 - 11) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(morpholin-4-yl)carbonylpent-1-yl] oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.48-1.90 (6H, m), 2.11 (2H, t, J=5Hz), 2.26 (3H, s), 2.21-2.52 (6H, m), 2.79-2.90 (3H, m), 2.96 (2H, t, J=5Hz), 3.31 (3H, s), 3.40-3.49 (2H, m), 3.52-3.62 (2H, m), 3.80 (3H, s), 3.83-4.04 (2H, m), 4.29 (2H, t, J=5Hz), 6.57-6.68 (2H, m), 6.81-7.12 (6H, m), 7.41-7.50 (1H, m), 8.17 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

- 5 12) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-oxopiperidin-1-yl)carbonylpent-1-yl]oxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.45-2.05 (8H, m), 2.11 (2H, t, J=5Hz), 2.28 (3H, s), 2.41-2.52 (2H, m), 2.96 (2H, t, J=5Hz), 3.31 (3H, s), 3.70-4.61 (8H, m), 6.52-7.55 (8H, m), 8.02-8.46 (3H, m)
- 13) $4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-(2-methoxy-4-methylphenyl)-N-methylbenzamide NMR (DMSO-d₆, <math>\delta$): 1.90-1.98 (2H, m), 2.25 (3H, s), 2.71 (2H, t, J=6Hz), 3.19 (3H, s), 3.73 (3H, s), 4.32 (2H, t, J=5Hz), 6.67 (1H, d, J=8Hz), 6.80-6.96 (2H, m), 7.26 (1H, d, J=8Hz), 7.55 (1H, dd, J=2,8Hz), 8.03 (1H, d, J=8Hz), 8.29 (1H, d, J=8Hz)
- 14) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(thiazol-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 2.02-2.10 (2H, m), 2.29 (3H, s), 2.89 (2H, t, J=5Hz), 3.40 (3H, s), 3.64 (3H, s), 4.25 (2H, t, J=5Hz), 4.90 (1H, d, J=11Hz), 5.09 (1H, d, J=11Hz), 6.62-6.71 (2H, m), 6.88 (1H, d, J=8Hz), 6.98-7.10 (5H, m), 7.24-7.48 (4H, m), 7.81 (1H, d, J=3Hz), 7.95 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz)
- 20
 15) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(oxazol-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide
 NMR (CDCl₃, δ): 2.00-2.11 (2H, m), 2.29 (3H, s), 2.89 (2H, t, J=5Hz), 3.40 (3H, s), 3.66 (3H, s), 4.91 (1H, d, J=12Hz), 5.10 (1H, d, J=12Hz), 6.64 (1H, s), 6.70 (1H, d, J=8Hz), 6.87 (1H, d, J=8Hz), 7.00-7.12 (4H, m), 7.21 (1H, s), 7.25-7.49 (4H, m), 7.65 (1H, s), 8.04 (1H, d, J=8Hz), 8.23 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz)
 - 16) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(2-oxazolin-2-yl)phenylmethyl]oxymethylphenyl]-N-methylbenzamide NMR (CDCl₃, δ): 2.02-2.11 (2H, m), 2.28 (3H, s), 2.90 (2H, t, J=5Hz), 3.39 (3H, s), 3.67 (3H, s), 4.05 (2H, t, J=9Hz), 4.29 (2H, t, J=5Hz), 4.41 (2H, t, J=5Hz), 4.89 (1H, d, J=12Hz), 5.09 (1H, d, J=12Hz), 6.63 (1H, s), 6.70 (1H, d, J=8Hz), 6.84 (1H, d, J=8Hz), 7.00-7.12 (4H, m), 7.37 (2H, d, J=8Hz), 7.41 (1H, d, J=8Hz), 7.93 (2H, d, J=5Hz), 8.20 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)
- 17) 4-[2- (3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N- [2-[4-(pyrimidin-2-yl)phenylmethyl]oxy-4-methyl-phenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 2.05-2.14 (2H, m), 2.27 (3H, s), 2.89 (2H, t, J=5Hz), 3.38 (3H, s), 3.64 (3H, s), 4.24 (2H, t, J=5Hz), 4.94 (1H, d, J=13Hz), 5.12 (1H, d, J=13Hz), 6.65-6.72 (2H, m), 6.85 (1H, d, J=8Hz), 6.97-7.18 (5H, m), 7.39-7.46 (3H, m), 8.13 (1H, d, J=8Hz), 8.35 (1H, d, J=8Hz), 8.41 (2H, d, J=8Hz), 8.24 (2H, d, J=3Hz)

30

45

- 40 18) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-cyanophenylmethyl)oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ): 2.09-2.20 (2H, m), 2.28 (3H, s), 2.97 (2H, t, J=5Hz), 3.35 (3H, s), 3.65 (3H, s), 4.24 (2H, br), 4.88 (1H, d, J=12Hz), 5.06 (1H, d, J=12Hz), 6.57 (1H, s), 6.67-6.80 (2H, m), 6.95-7.08 (5H, m), 7.35-7.45 (3H, m), 7.62 (2H, d, J=8Hz), 8.11 (1H, d, J=8Hz), 8.30 (1H, d, J=8Hz)
 - 19) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2-dimethylaminoeth-1-yl)oxycarbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.47-1.60 (2H, m), 1.67-1.88 (4H, m), 2.05-2.14 (2H, m), 2.27 (9H, s), 2.38 (2H, t, J=6Hz), 2.58 (2H, t, J=5Hz), 2.92 (2H, t, J=5Hz), 3.33 (3H, s), 3.80 (3H, s), 3.86-4.00 (2H, m), 4.19 (2H, t, J=5Hz), 4.30 (2H, t, J=5Hz), 6.57-6.67 (2H, m), 6.87 (1H, dd, J=2, 8Hz), 7.00-7.11 (4H, m), 7.44 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
 - 20) 4-[2-(3-Aminoprop-1-yloxy)benzoyl]amino-3-methoxy-N-(2-hydroxy-4-methylphenyl) -N-methylbenzamide NMR (DMSO-d₆, δ): 1.92-2.03 (2H, m), 2.16 (3H, s), 2.75 (2H, t, J=5Hz), 3.20 (3H, s), 3.75 (3H, s), 4.34 (2H, t, J=5Hz), 6.49 (1H, d, J=8Hz), 6.66 (1H, s), 6.87 (1H, d, J=8Hz), 6.92 (1H, d, J=8Hz), 7.12 (1H, dd, J=7, 8Hz), 7.29 (1H, d, J=8Hz), 7.58 (1H, dd, J=2, 8Hz), 8.05 (1H, d, J=8Hz), 8.27 (1H, d, J=8Hz)
 - 21) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(1,5-dimethyl-3-cyanopyrrol-2-yl)phenylmethyl]

oxy-4-methylphenyl]-N-methylbenzamide

5

10

15

30

35

40

50

NMR (CDCl₃, δ): 2.00-2.11 (2H, m), 2.14 (3H, s), 2.21 (3H, s), 2.89 (2H, t, J=5Hz), 3.40 (3H, s), 3.45 (3H, s), 3.62 (3H, s), 4.27 (2H, t, J=5Hz), 4.89 (1H, d, J=13Hz), 5.13 (1H, d, J=13Hz), 6.22 (1H, s), 6.68-6.75 (2H, m), 6.89 (1H, d, J=8Hz), 7.00-7.12 (5H, m), 7.38-7.47 (6H, m), 8.19 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

22) 4-[2-(3-Aminoprop-1-yloxy)benzoyl]amino-3-methoxy-N-[2-[4-(N,N-dimethylureido)but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide

NMR (CDCl₃, δ): 1.62-1.88 (4H, m), 1.90-2.15 (2H, m), 2.27 (3H, s), 2.86-2.94 (2H, m), 2.90 (6H, s), 3.22-3.35 (2H, m), 3.31 (3H, s), 3.77 (3H, s), 3.75-3.98 (2H, m), 4.27 (2H, t, J=5Hz), 6.57-6.70 (2H, m), 6.88-7.11 (6H, m), 7.42 (1H, dd, J=2, 8Hz), 8.19 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

- 23) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[3-(4-methylpiperazin-1-yl)carbonylpyrid-6-yl] methoxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ): 2.09-2.20 (2H, m), 2.28 (3H, s), 2.31 (3H, s), 2.34-2.52 (4H, m), 2.96 (2H, t, J=5Hz), 3.40 (3H, s), 3.42-3.50 (2H, m), 3.69 (3H, s), 3.70-3.84 (2H, m), 4.29 (2H, t, J=5Hz), 4.98 (1H, d, J=13Hz), 5.18 (1H, d, J=13Hz), 6.62 (1H, s), 6.72 (1H, d, J=8Hz), 6.98-7.11 (5H, m), 7.26-7.34 (1H, m), 7.45 (1H, dd, J=2, 8Hz), 7.73 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz), 8.63 (1H, s)
- 24) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(3-dimethylaminoprop-1-yloxycarbonyl)aminobut-1-yl]oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 1.62-1.87 (6H, m), 2.02-2.11 (2H, m), 2.27 (6H, s), 2.41 (2H, t, J=5Hz), 2.91 (2H, t, J=5Hz), 3.22 (2H, q, J=5Hz), 3.30 (3H, s), 3.78 (3H, s), 3.84-3.95 (2H, m), 4.08 (2H, t, J=5Hz), 4.27 (2H, t, J=5Hz), 6.60-6.66 (2H, m), 6.90 (1H, d, J=8Hz), 6.99-7.10 (3H, m), 7.44 (1H, dd, J=2, 8Hz), 8.18 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
- 25) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylhomopiperazin-1-yl)carbon-ylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.50-2.18 (8H, m), 2.30 (3H, s), 2.32 (2H, t, J=5Hz), 2.33 (3H, s), 2.53-2.70 (4H, m), 2.93 (2H, t, J=5Hz), 3.35 (3H, s), 3.52-3.72 (4H, m), 3.80 (3H, s), 3.82-4.09 (2H, m), 4.31 (2H, t, J=5Hz), 6.55-6.70 (2H, m), 6.82-7.18 (6H, m), 7.42-7.53 (1H, m), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)
 - 26) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2- [5- (2-dimethylaminoethyl)aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.45-1.60 (2H, m), 1.66-2.15 (8H, m), 2.22 (6H, s), 2.26 (3H, s), 2.41 (2H, t, J=5Hz), 3.22-3.39 (2H, m), 3.31 (3H, s), 3.70-4.00 (2H, m), 3.78 (3H, s), 4.28 (2H, t, J=5Hz), 6.37 (1H, br), 6.59 (2H, br), 6.81-7.13 (6H, m), 7.42 (1H, dd, J=2, 8Hz), 8.18 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)
 - 27) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(2-dimethylaminoethyl)-N-methyl-aminocarbonyl]pent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl $_3$, δ): 1.40 (9H, s), 1.44-2.21 (8H, m), 2.25 (3H, s), 2.27 (6H, s), 2.29-2.50 (4H, m), 2.91 (1H, s), 3.00 (2H, s), 3.26-3.51 (4H, m), 3.31 (3H, s), 3.77 (3H, br s), 3.81-4.02 (2H, m), 4.22 (2H, t, J=5Hz), 4.88 (1H, br), 6.52-6.68 (2H, br), 6.79-7.11 (5H, m), 7.43-7.50 (1H, m), 8.20 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)
 - 28) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(3-dimethylaminoprop-1-yl)carbamoyl]pent-1-yl]oxy-4-methylpehenyl]benzamide NMR (CDCl $_3$, δ) : 1.46-1.60 (2H, m), 1.63-1.99 (8H, m), 2.03-2.14 (2H, m), 2.21 (2H, t, J=5Hz), 2.24 (6H, s), 2.29 (3H, s), 2.39 (2H, t, J=5Hz), 2.90 (2H, t, J=6Hz), 3.25-3.37 (2H, m), 3.32 (3H, s), 3.79 (3H, s), 3.81-4.01 (2H, m), 4.30 (2H, t, J=5Hz), 6.61 (2H, br), 6.85-7.14 (6H, m), 7.39-7.50 (1H, m), 8.20 (1H, d, J=8Hz), 8.40 (1H, br)
 - 29) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(3-dimethylaminoprop-1-yl)-N-methylcarbamoyl]pent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.52-1.94 (6H, m), 2.05-2.14 (2H, m), 2.20 (3H, s), 2.21 (3H, s), 2.26 (3H, s), 2.20-2.45 (6H, s), 2.90 (2H, t, J=5Hz), 2.91 and 2.99 (total 3H, s, rotamer), 3.32 (3H, s), 3.40 (2H, t, J=5Hz), 3.80 (3H, s), 4.31 (2H, t, J=5Hz), 6.55-6.67 (2H, m), 7.41-7.49 (2H, m), 8.21 (1H, d, J=8Hz), 8.42 (1H, d, J=8Hz)
- 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-hydroxypiperidin-1-yl)carbon-ylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.43-1.95 (6H, m), 2.03-2.51 (8H, m), 2.29 (3H, s), 2.94 (2H, t, J=5Hz), 2.98-3.22 (4H, m), 3.32 (3H, s), 3.46-3.58 (1H, m), 3.79 (3H, s), 3.80-4.26 (6H, m), 4.28 (2H, t, J=5Hz), 6.56-6.67 (2H, m), 6.81-7.13 (6H,

m), 7.36 (1H, dd, J=8, 8Hz), 8.10-8.20 (1H, m), 8.33-8.49 (1H, m)

5

10

20

25

30

35

40

- 31) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-aminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
- NMR (CDCl₃, δ): 1.51-2.03 (6H, m), 2.09-2.19 (2H, m), 2.27 (3H, s), 2.29-2.42 (4H, m), 2.59-2.71 (2H, m), 2.94 (2H, t, J=5Hz), 2.96-3.11 (3H, m), 3.33 (3H, s), 3.78 (3H, s), 3.85-4.02 (2H, m), 4.22 (2H, t, J=5Hz), 6.55-6.67 (2H, m), 6.81-7.12 (6H, m), 7.44 (1H, dd, J=8, 8Hz), 8.19 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
- 32) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)-aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.46-1.89 (6H, m), 1.93-2.05 (4H, m), 2.25 (6H, s), 2.49 (2H, t, J=5Hz), 2.52-2.62 (2H, m), 2.79-2.89 (2H, m), 2.92 (2H, t, J=5Hz), 3.31 (3H, s), 3.79 (3H, s), 3.80-4.01 (2H, m), 4.28 (2H, t, J=5Hz), 6.56-6.64 (2H, m), 6.80-7.12 (6H, m), 7.41-7.50 (1H, m), 8.18 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
- 33) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[bis(2-hydroxyethy-1-yl)-aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide
 NMR (CDCl₃, δ) : 1.54-1.91 (6H, m), 2.11-2.20 (2H, m), 2.26 (3H, s), 2.38-2.59 (4H, m), 3.40-3.57 (4H, m), 3.61-3.97 (6H, m), 4.22 (2H, t, J=5Hz), 6.60-6.68 (2H, m), 6.88-7.16 (6H, m), 7.44-7.54 (1H, m), 8.12 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)
 - 34) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2,2-dimethylhydrazino)carbon-ylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.47-1.91 (6H, m), 2.06-2.40 (4H, m), 2.28 (3H, s), 2.51 (3H, s), 2.57 (3H, s), 2.92 (2H, t, J=5Hz), 3.32 (3H, s), 3.78 (3H, s), 3.80-4.02 (2H, m), 4.28 (2H, t, J=5Hz), 6.55-6.68 (2H, m), 6.80-7.13 (5H, m), 7.46 (1H, dd, J=8Hz), 8.19 (1H, d, J=8Hz), 8.38 (1H, br)
 - 35) 4- [2- (3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(carbamoylmethylamino)carbon-ylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.47-1.58 (2H, m), 1.68-1.85 (4H, m), 2.06-2.17 (2H, m), 2.27 (3H, s), 2.94 (2H, t, J=5Hz), 3.31 (3H, s), 3.80 (3H, s), 3.81-4.00 (2H, m), 3.89 (2H, d, J=5Hz), 4.28 (2H, t, J=5Hz), 5.78 (1H, br), 6.60-6.74 (3H, m), 6.90-7.13 (6H, m), 7.41-7.49 (1H, m), 8.17 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)
 - 36) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2-carbamoylethylamino)carbon-ylpent-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.45-1.58 (2H, m), 1.62-1.84 (4H, m), 2.14 (2H, t, J=5Hz), 2.22 (2H, t, J=5Hz), 2.29 (3H, s), 2.40 (2H, t, J=5Hz), 2.98 (2H, br), 3.30 (3H, s), 3.40-3.55 (2H, m), 3.78 (3H, s), 3.80-4.01 (2H, m), 4.27 (2H, t, J=5Hz), 6.58-6.79 (4H, m), 6.88-7.12 (6H, m), 7.41-7.49 (1H, m), 8.16 (1H, d, J=8Hz), 8.39 (1H, d, J=7Hz)
 - 37) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-pyridylaminocarbonyl)pent-1-yl] oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.52-1.89 (6H, m), 2.10-2.22 (2H, m), 2.26 (3H, s), 2.45 (2H, br), 2.95 (2H, t, J=5Hz), 3.32 (3H, s), 3.72 (3H, s), 3.82-4.00 (2H, m), 4.27 (2H, t, J=5Hz), 6.57-6.72 (2H, m), 6.90-7.15 (6H, m), 7.46 (1H, dd, J=2, 8Hz), 7.56 (2H, br), 8.12 (1H, d, J=8Hz), 8.35-8.50 (3H, m), 9.46 (1H, br)
- 38) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[4-(diethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.05 (6H, t, J=5Hz), 1.35-1.95 (10H, m), 2.04-2.13 (2H, m), 2.28 (3H, s), 2.36 (2H, t, J=5Hz), 2.54 (4H, q, J=5Hz), 2.56-2.80 (2H, m), 2.91 (2H, t, J=5Hz), 2.93-3.07 (2H, m), 3.33 (3H, s), 3.80 (3H, s), 3.82-4.03 (2H, m), 4.30 (2H, t, J=5Hz), 6.56-6.68 (2H, m), 6.81-7.12 (6H, m), 7.42-7.49 (1H, m), 8.22 (1H, d, J=7Hz), 8.41 (1H, d, J=8Hz)
 - 39) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[6-(4-methylpiperazin-1-yl)hex-1-yl]oxy-4-methylphenyl]benzamide NMR (CDCl₃, δ) : 1.45-1.58 (2H, m), 1.62-1.84 (4H, m), 2.14 (2H, t, J=5Hz), 2.29 (3H, s), 2.40 (2H, t, J=5Hz), 2.98 (2H, br), 3.30 (3H, s), 3.40-3.55 (2H, m), 3.78 (3H, s), 3.80-4.01 (2H, m), 4.27 (2H, t, J=5Hz), 6.58-6.79 (4H, m), 7.41-7.49 (1H, m), 8.16 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)
 - 40) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(2-pyridyl)phenylmethyl]oxy-4-methylphenyl]-

N-methylbenzamide

NMR (CDCl₃, δ) : 1.97-2.08 (2H, m), 2.26 (3H, s), 2.85 (2H, t, J=5Hz), 3.40 (3H, s), 3.62 (3H, s), 4.26 (2H, t, J=5Hz), 4.96 (1H, d, J=12Hz), 5.14 (1H, d, J=12Hz), 6.54-6.62 (2H, m), 6.40 (1H, d, J=7Hz), 6.98-7.14 (5H, m), 7.39 (1H, d, J=8Hz), 7.39-7.49 (1H, m), 7.70 (2H, s), 7.98 (1H, d, J=8Hz), 8.22 (1H, d, J=8Hz), 8.39 (1H d, J=8Hz), 8.68 (1H, br)

- 41) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-[(4-methylpiperazin-1-yl)carbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide
- NMR (CDCl₃, δ): 1.62-1.88 (4H, m), 2.30-2.15 (2H, m), 2.28 (6H, s), 2.34-2.42 (4H, m), 2.93 (2H, t, J=5Hz), 3.25-3.48 (6H, m), 3.33 (3H, s), 3.79 (3H, s), 3.79-3.99 (2H, m), 4.30 (2H, t, J=5Hz), 6.58-6.70 (2H, m), 6.90-7.11 (5H, m), 7.45 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
 - 42) 4-[2-(3-Aminoprop-1-yl)oxybenzoylamino]-3-methoxy-N-[2-[4-[(4-dimethylaminopiperidin-1-yl)carbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide
- NMR (CDCl₃, δ): 1.44-1.98 (8H, m), 2.26 (3H, s), 2.49 (6H, s), 2.66-2.93 (3H, m), 3.05 (2H, t, J=5Hz), 3.25-3.32 (2H, m), 3.29 (3H, s), 3.79 (3H, s), 3.81-3.99 (2H, m), 4.15-4.29 (4H, m), 6.57-6.64 (2H, m), 6.91-7.12 (5H, m), 7.46 (1H, dd, J=2, 8Hz), 8.04 (1H, d, J=8Hz), 8.35 (1H, d, J=8Hz)

Example 47

5

10

15

20

25

35

40

[0361] The following compound was obtained by using 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide as a starting compound according to a similar manner to that of Example 45.

4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(3-aminoprop-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide

NMR (CDCl₃, δ): 1.87-1.98 (2H, m), 2.00-2.09 (2H, m), 2.25 (3H, s), 2.83-2.96 (4H, m), 3.30 (3H, s), 3.78 (3H, s), 3.87-4.10 (2H, m), 4.27 (2H, t, J=7.5Hz), 6.57-6.66 (2H, m), 6.90 (1H, m), 7.00-7.10 (3H, m), 7.42 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)

30 Example 48

[0362] The following compounds were obtained according to a similar manner to that of Example 47.

- 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-aminoacetylaminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide
 MASS (m/z): 592 (M+1)
 - 2) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(piperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide
- NMR (CDCl₃, §): 1.48-1.95 (6H, m), 2.07-2.20 (2H, m), 2.28 (3H, s), 2.32-2.63 (5H, m), 2.75-3.01 (3H, m), 3.21 (3H, s), 3.40-3.64 (4H, m), 3.78 (3H, s), 3.83-4.08 (2H, m), 4.27 (2H, t, J=5Hz), 6.55-6.70 (2H, m), 6.82-7.17 (6H, m), 7.20-7.50 (1H, m), 8.29 (1H, d, J=7Hz), 8.39 (1H, d, J=8Hz)
- 3) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(3-aminopropionyl)aminobut-1-yl]oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 1.64-1.88 (4H, m), 2.06-2.19 (2H, m), 2.28 (3H, s), 2.32-2.46 (2H, m), 2.90-3.13 (4H, m), 3.23-3.44 (2H, m), 3.30 (3H, s), 3.77 (3H, s), 3.78-4.01 (2H, m), 4.27 (2H, br), 6.55-6.68 (2H, m), 6.88-7.11 (5H, m), 7.28-7.50 (2H, m), 8.20 (1H, d, J=8Hz) 8.31 (1H, d, J=8Hz)
- 4) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(piperidin-4-yl)carbonylaminobut-1-yl]oxy-4-methylphenyl]-N-methylbenzamide
 NMR (CDCl₃, δ): 1.60-1.91 (8H, m), 2.09-2.21 (2H, m), 2.28 (3H, s), 2.70 (1H, br), 2.97 (2H, t, J=5Hz), 3.11-3.40 (8H, m), 3.30 (3H, s), 3.72-3.96 (2H, m), 3.78 (3H, s), 4.28 (2H, t, J=5Hz), 6.57-6.65 (2H, m), 6.90-7.08 (4H, m), 7.23-7.28 (2H, m), 7.38-7.49 (2H, m), 8.13 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)
 - 5) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-guanidinobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 1.62-1.80 (4H, m), 2.05-2.14 (2H, m), 2.20 (3H, s), 2.55-2.70 (2H, m), 2.94 (2H, t, J=5Hz), 3.31

(3H, s), 3.62-3.73 (2H, m), 3.72 (3H, s), 4.22 (1H, d, J=5Hz), 6.48 (1H, d, J=8Hz), 6.61 (1H, s), 6.75 (1H, d, J=8Hz), 6.95-7.09 (5H, m), 7.43 (1H, dd, J=2, 8Hz), 8.03 (1H, d, J=8Hz), 8.32 (1H, d, J=8Hz)

Example 49

5

15

20

30

35

45

[0363] A solution of 4-hydroxy-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy] phenyl]-benzamide (320 mg) in N,N-dimethylformamide (8 ml) was treated with sodium hydride (29.1 mg, 60% w/w in mineral oil) at 0°C. The reaction mixture was stirred at 0°C for 15 minutes and then at ambient temperature for 10 minutes. o-Nitrobenzyl bromide (143 mg) was added, and the reaction mixture was stirred for 2.5 hours. The reaction was quenched with water and the mixture was diluted with ethyl acetate. The organic phase was washed with saturated aqueous sodium hydrogen carbonate, and brine. The organic solution was dried over magnesium sulfate, concentrated, and purified by silica gel column chromatography (SiO₂ 15 g, 3% methanol in dichloromethane) to give 3-methoxy-4-(2-nitrobenzyloxy)-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (210 mg).

NMR (CDCl₃, δ): 1.43-1.59 (2H, m), 1.61-1.88 (4H, m), 2.21-2.44 (12H, m), 3.31 (3H, s), 3.42-3.52 (2H, m), 3.56-3.67 (2H, m), 3.71 (3H, s), 3.78-4.00 (2H, m), 5.46 (3H, s), 6.52-6.67 (3H, m), 6.77-6.91 (2H, m), 6.95 (1H, br s), 7.46 (1H, m), 7.64 (1H, m), 7.84 (1H, d, J=8Hz), 8.14 (1H, d, J=8Hz)

Example 50

[0364] To a solution of 4-[2-(3-aminopropylthio)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methyl-piperazin-1-yl)-carbonylpent-1-yloxy]phenyl]benzamide (160 mg) in methanol (5 ml) was added a suspension of sodium metaperiodate (50.6 mg) and 5 ml of water. The mixture was stirred for 20 hours at ice-bath temperature and diluted with chloroform. The lower chloroform layer was removed, and the water layer was extracted with chloroform. The combined organic extracts were dried over anhydrous sodium sulfate. The solvent was removed at reduced pressure, and purified by preparative thin layer chromatography (methanol/dichloromethan/ammonia = 10/90/2) co give free amine (70 mg). To a solution of this amine in ethanol (3 ml) was added 1N hydrochloric acid (0.2 ml) and stirred for 5 minutes. The solution was concentrated to give 4-[2-(3-aminopropylsulfinyl)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride.

NMR (DMSO-d₆, δ): 1.38-1.67 (4H, m), 1.68-1.88 (2H, m), 1.94-2.13 (2H, m), 2.22 (3H, s), 2.40 (2H, t, J=7Hz), 2.69-3.12 (9H, m), 3.12-3.58 (7H, m), 3.62 (3H, s), 3.80-4.17 (3H, m), 4.43 (1H, m), 6.64 (1H, d, J=8Hz), 6.83 (1H, s), 6.91 (2H, br s), 7.04 (1H, d, J=8Hz), 7.53 (1H, m), 7.68 (1H, dd, J=8, 8Hz), 7.85 (1H, dd, J=8, 8Hz), 7.90-8.19 (3H, s), 9.84 (1H, s)

Example 51

[0365] To a solution of 3-methoxy-4-[2-[3-(phthalimido)prop-1-yl]thiobenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (150 mg) in dichloromethane (10 ml) was added m-chloroperbenzoic acid (80.3 mg) and the mixture was stirred at ambient temperature for 2 hours. The solution was washed successively with saturated aqueous sodium hydrogen carbonate, water and brine, and the organic phase was dried over magnesium sulfate. The solvent was evaporated in vacuo and the residue was purified by silica gel column (2% methanol in chloroform) to give 3-methoxy-4-[2-[3-(phthalimido)prop-1-yl]sulfonylbenzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (150 mg).

Example 52

MASS (m/z): 839 (M+1)

[0366] A solution of 4-[2-[2-[(3-aminioprop-1-yl)oxy]phenyl]-vinyl]-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (100 mg), 20% palladium hydroxide (30 mg) in methanol (5 ml) was stirred under atmospheric pressure of hydrogen at ambient temperature. After 12 hours, the reaction mixture was filtered through a bed of Celite, and the solvent was removed by rotary evaporation and the crude product was purified by NH-silica gel (chromatorex) column chromatography (SiO $_2$ 10 g, 1% methanol in chloroform) to give free amine. To the solution of amine (80 mg) in ethanol (3 ml) was added 1N hydrochloric acid (0.25 ml) and stirred for 5 minutes. The solution was evaporated to give 4-[2-[2-[(3-aminoprop-1-yl)oxy]phenyl]ethyl]-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride (70 mg) .

NMR (DMSO-d₆, δ): 1.36-1.65 (4H, m), 1.65-1.82 (2H, m), 1.97-2.13 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7Hz), 2.58-3.11 (13H, m), 3.17 (3H, s), 3.26-3.68 (5H, m), 3.72-4.21 (5H, m), 4.42 (1H, m), 6.63 (1H, d, J=8Hz), 6.70-7.05 (8H, m), 7.13 (1H, dd, J=8, 8Hz), 8.00-8.24 (2H, m)

Example 53

15

20

[0367] The following compounds were obtained according to a similar manner to that of Example 10.

- 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-(4-hydroxyphenyl) benzamide
 - NMR (CDCl₃, δ): 1.43 (9H, s), 1.60-1.68 (2H, m), 3.16-3.25 (2H, m), 3.49 (3H, s), 3.63 (3H, s), 4.16-4.23 (2H, m), 4.73-4.80 (1H, br), 6.67-6.74 (3H, m), 6.84-7.01 (5H, m), 7.07-7.14 (2H, m), 7.47 (1H, t, J=8Hz), 8.16 (1H, d, J=8Hz), 8.52 (1H, d, J=8Hz)
- 10 ESI-MASS (m/z): 550 (M+H)
 - 2) 3-Methoxy-4-[2-[1-(tert-butoxycarbonyl)piperidin-4-yl]oxybenzoyl]amino-N-(2-hydroxy-4-methyl)phenyl-N-methylbenzamide
 - NMR (CDCl₃, δ) : 1.43 (9H, s), 1.68-2.10 (4H, m), 2.23 (3H, s), 2.96-3.17 (2H, m), 3.36 (3H, s), 3.64-3.98 (5H, m), 4.60 (1H, m), 6.36-7.03 (7H, m), 7.10 (1H, t, J=7Hz), 7.43 (1H, t, J=7Hz), 8.19 (1H, d, J=7Hz)
 - 3) 4-[2-(3-Amino-1-methylprop-1-yl)oxybenzoyl]amino-3-methoxy-N-(2-hydroxy-4-methyl)phenyl-N-methylbenzamide
 - NMR (DMSO-d₆, δ) : 1.33 (3H, d, J=7.5Hz), 1.63-1.76 (1H, m), 1.87-1.98 (1H, m), 2.14 (3H, s), 2.65 (2H, t, J=7.5Hz), 3.18 (3H, s), 3.74 (3H, s), 4.96 (1H, m), 6.47 (1H, d, J=7Hz), 6.63 (1H, s), 6.86 (1H, d, J=7Hz), 7.91 (1H, d, J=7Hz), 7.01 (1H, s), 7.09 (1H, t, J=7Hz), 7.32 (1H, d, J=7Hz), 7.52 (1H, t, J=7Hz), 8.04 (1H, d, J=7Hz), 8.30 (1H, d, J=7Hz)
 - 4) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)amino-1-methylprop-1-yl]oxybenzoyl]amino-N-(2-hydroxy-4-methyl) phenyl-N-methylbenzamide
- 25 NMR (CDCl₃, δ): 1.36 (3H, d, J=7.5Hz), 1.40 (9H, s), 1.80-2.10 (2H, m), 2.22(3H, s), 3.16-3.28 (2H, m), 3.35 (3H, s), 3.69 (3H, s), 4.64 (1H, m), 4.79 (1H, br), 6.52 (1H, m), 6.70-6.82 (2H, m), 6.91-7.11 (4H, m), 7.41 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.47 (1H, m)
- 5) 4-(2-Hydroxybenzoylamino-3-methoxy-N-(2-hydroxy-4-methylphenyl)-N-methylbenzamide
 30 NMR (CDCl₃, δ): 2.26 (3H, s), 3.36 (3H, s), 6.56 (1H, m), 6.65-6.86 (4H, m), 6.96-7.08 (2H, m), 7.35-7.44 (2H, m), 8.20 (1H, br), 8.61 (1H, br)
 - 6) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-(2-hydroxy-4-methylphenyl)-N-methylbenzamide
- NMR (CDCl₃, δ): 1.42 (9H, s), 1.68 (2H, br), 1.99 (2H, br), 2.22 (3H, s), 3.19 (2H, br), 3.39 (3H, s), 3.49 (2H, br), 5.03 (1H, br), 6.43-6.72 (6H, m), 7.08 (2H, br), 7.39 (1H, br), 8.21 (1H, d, J=8Hz), 8.45 (1H, br)

Example 54

- 40 [0368] The following compounds were obtained according to a similar manner to that of Example 12.
 - 1) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[4-(5-ethoxycarbonylpent-1-yloxy)phenyl]benzamide
- NMR (CDCl₃, δ): 1.21-1.29 (3H, m), 1.40 (9H, s), 1.42-1.90 (8H, m), 2.09-2.19 (2H, m), 3.27-3.34 (2H, m), 3.47 (3H, s), 3.82 (3H, s), 3.89 (2H, t, J=8Hz), 4.08-4.17 (2H, m), 4.26 (2H, t, J=8Hz), 4.70-4.77 (1H, br), 6.75 (2H, d, J=8Hz), 6.83 (1H, d, J=8Hz), 6.94-7.02 (3H, m), 7.07-7.13 (2H, m), 7.46 (1H, t, J=8Hz), 8.21 (1H, d, J=8Hz), 8.42 (1H, d, J=8Hz)
 - ESI-MASS (m/z): 692 (M+H)
- 50 2) 4-[2-Benzyloxy)benzoyl]amino-N-[2-(3-ethoxycarbonylprop-1-yl)oxy]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 1.26 (3H, t, J=7.5Hz), 2.03-2.17 (2H, m), 2.50 (2H, t, J=7.5Hz), 3.32 (3H, s), 3.87-4.04 (2H, m), 4.16 (2H, q, J=7.5Hz), 5.19 (2H, s), 6.78 (2H, d, J=8Hz), 6.92-7.00 (3H, m), 7.07-7.21 (5H, m), 7.38-7.53 (6H, m), 8.26 (1H, d, J=7Hz)
- 3) 4-(2-lodobenzoyl)amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy]phenyl-N-methylbenzamide
 NMR (CDCl₃, δ): 1.24 (3H, t, J=7.5Hz), 1.42-1.55 (2H, m), 1.63-1.72 (2H, m), 1.76-1.88 (2H, m), 2.31 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.81-3.99 (2H, m), 4.11 (2H, q, J=7.5Hz), 6.76-6.83 (2H, m), 7.00 (1H, d, J=7Hz), 8.08-7.17 (2H, m), 7.29-7.49 (5H, m), 7.66 (1H, s), 7.88 (1H, d, J=7Hz)

4) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]-oxybenzoyl]amino-N-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.39 (9H, s), 1.41 (9H, s), 1.93-1.97 (2H, m), 2.07-2.17 (2H, m), 2.26 (3H, s), 3.22-3.32 (4H, m), 3.30 (3H, s), 3.78 (3H, s), 3.82-4.05 (2H, m), 6.60-6.66 (2H, m), 6.86-6.91 (2H, m), 7.00 (1H, d, J=7Hz), 7.03-7.10 (2H, m), 7.43 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)

5

10

20

25

30

40

45

- 5) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-methyl-N-[4-methyl-2-[4-(phthalimido)but-1-yl]oxy]phenylbenzamide NMR (CDCl₃, δ) : 1.40 (9H, s), 1.85-1.92 (2H, m), 2.10-2.17 (2H, m), 2.27 (3H, s), 3.22-3.32 (2H, m), 3.28 (3H, s), 3.74-3.81 (2H, m), 3.81 (3H, s), 3.92-4.15 (2H, m), 4.24 (2H, t, J=7.5Hz), 6.57-6.65 (2H, m), 6.83-6.90 (2H, m), 6.97-7.14 (3H, m), 7.24 (1H, t, J=7Hz), 7.69-7.77 (2H, m), 7.82-7.91 (2H, m), 8.21 (1H, d, J=7Hz), 8.40 (1H, d, I=7Hz)
- 6) 3-Methoxy-4-[2-[1-(tert-butoxycarboyl)piperidin-4-yl]oxybenzoyl]amino-N-[2-(5-ethoxycarbonylpent-1-yl) oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ) : 1.25 (3H, t, J=7.5Hz), 1.42-1.91 (6H, m), 1.45 (9H, s), 2.02 -2.12 (2H, m), 2.27 (3H, s), 2.27-2.88 (2H, m), 2.97-3.18 (2H, m), 3.32 (3H, s), 3.40 (2H, t, J=7Hz), 3.74 (3H, s), 3.89-4.00 (2H, m), 4.13 (2H, q, J=7.5Hz), 4.66 (1H, m), 6.59 (1H, d, J=7Hz), 6.61 (1H, s, J=7Hz), 6.80-6.92 (2H, m), 6.98-7.12 (3H, m), 7.43 (1H, t, J=7Hz), 8.19 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)
 - 7) 3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)amino-1-methyl-prop-1-yl]oxybenzoyl]amino-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide NMR (CDCl₃, δ): 1.24 (3H, t, J=7.5Hz), 1.38 (9H, s), 1.40 (2H, d, J=7.5Hz), 1.41-2.10 (8H, m), 2.26 (3H, s), 2.27-2.33 (2H, m), 3.23-3.30 (2H, m), 3.30 (3H, s), 3.79 (3H, s), 3.83-3.99 (2H, m), 4.12 (2H, q, J=7.5Hz), 4.62-4.77 (2H, m), 6.58-6.63 (2H, m), 6.82 (1H, t, J=7Hz), 7.01 (1H, d, J=7Hz), 7.05-7.12 (2H, m), 7.43 (1H, t, J=7Hz), 8.21 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)
 - 8) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-(2-methoxy-4-methylphenyl)-N-methylbenzamide NMR (CDCl₃, δ): 1.40 (9H, s), 2.08-2.20 (2H, m), 2.29 (3H, s), 3.28 (2H, q, J=5Hz), 3.31 (3H, s), 3.75 (3H, s), 3.80 (3H, s), 4.25 (2H, t, J=5Hz), 4.74 (1H, br), 6.59-6.65 (2H, m), 6.89 (1H, d, J=8Hz), 7.00 (1H, d, J=8Hz), 7.06-7.13 (2H, m), 7.46 (1H, dd, J=2, 8Hz), 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)
- 9) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yi]oxybenzoyl]-amino-3-methoxy-N-[2-[4-(2-pyridyl)phenylmethyl] oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 1.39 (9H, s), 2.09 (2H, t, J=5Hz), 2.29 (3H, s), 3.27 (2H, q, J=5Hz), 3.40 (3H, s), 3.61 (3H, s), 4.21 (2H, t, J=5Hz), 4.82 (1H, br), 4.97 (1H, d, J=12Hz), 5.14 (1H, d, J=12Hz), 6.55-6.74 (2H, m), 6.89-7.12 (7H, m), 7.19-7.24 (1H, m), 7.39 (1H, d, J=8Hz), 7.41-7.49 (1H, m), 7.70 (2H, s), 7.99 (1H, d, J=8Hz), 8.21 (1H, d, J=8Hz), 8.67 (1H, d, J=5Hz)
 - 10) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-[4-(1,5-dimethyl-3-cyano-pyrrol-2-yl)phenylmethyl]oxy-4-methylphenyl)-N-methylbenzamide NMR (CDCl₃, δ): 1.40 (9H, s), 2.03-2.15 (2H, m), 2.13 (3H, s), 2.30 (3H, s), 3.26 (2H, q, J=5Hz), 3.40 (3H, s), 3.46 (3H, s), 3.58 (3H, s), 4.19 (2H, t, J=5Hz), 4.86 (1H, d, J=12Hz), 5.10 (1H, d, J=12Hz), 6.65-6.73 (2H, m), 6.82 (1H, d, J=8Hz), 6.95-7.10 (4H, m), 7.34-7.44 (6H, m), 8.00 (1H, s), 8.19 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)
 - 11) $4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yi]oxybenzoyl]amino-3-methoxy-N-[2-[4-(thiazol-2-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, <math>\delta$): 1.40 (9H, s), 2.05-2.16 (2H, m), 3.27 (2H, q, J=5Hz), 3.40 (3H, s), 3.62 (3H, s), 4.20 (2H, t, J=5Hz), 4.76 (1H, br), 4.89 (1H, d, J=12Hz), 5.07 (1H, d, J=12Hz), 6.62-6.72 (2H, m), 6.89 (1H, d, J=8Hz), 6.96-7.11 (4H, m), 7.28 (1H, d, J=3Hz), 7.31 (2H, d, J=8Hz), 7.42 (1H, dd, J=2, 8Hz), 7.81 (1H, d, J=8Hz), 7.93 (2H, d, J=8Hz), 8.00 (1H, s), 8.20 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

J=8Hz), 8.40 (1H, d, J=8Hz)

- 13) 4-[2-[3- (tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-(pyrimidin-2-yl)phenylme-thyl]oxy-4-methylphenyl]-N-methylbenzamide
- NMR (CDCl₃, δ) : 1.40 (9H, s), 2.05-2.16 (2H, m), 2.28 (3H, s), 3.28 (2H, q, J=5Hz), 3.40 (3H, s), 3.65 (3H, s), 4.22 (2H, t, J=5Hz), 4.78 (1H, br), 4.95 (1H, d, J=12Hz), 5.14 (1H, d, J=12Hz), 6.65-6.70 (2H, m), 6.88 (1H, d, J=8Hz), 6.96-7.19 (5H, m), 7.38-7.46 (3H, m), 8.21 (1H, d, J=8Hz), 8.35-8.44 (3H, m), 8.74 (1H, d, J=3Hz)
- 14) 4-[2-[3- (tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-(4-cyanophenylmethyl)oxy-4-methylphenyl]-N-methylbenzamide
 NMR (CDCl₃, δ): 1.41 (9H, s), 2.08-2.20 (2H, m), 2.30 (3H, s), 3.30 (2H, q, J=5Hz), 3.40 (3H, s), 3.68 (3H, s), 4.26 (2H, t, J=5Hz), 4.89 (1H, d, J=13Hz), 5.09 (1H, d, J=13Hz), 6.60 (1H, s), 6.73 (1H, d, J=8Hz), 6.98-7.12 (5H, m), 7.39-7.52 (3H, m), 7.68 (1H, d, J=8Hz), 8.20 (1H, d, J=8Hz), 8.34 (1H, d, J=8Hz)
- 15) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-(4-phthalimidobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide
 NMR (CDCl₃, δ) : 1.40 (9H, s), 1.72-1.95 (4H, m), 2.08-2.19 (2H, m), 2.29 (3H, s), 3.31 (2H, q, J=5Hz), 3.33 (3H, s), 3.79 (2H, t, J=5Hz), 3.81 (3H, s), 3.84-4.06 (2H, m), 4.25 (2H, t, J=5Hz), 4.82 (1H, br), 6.57 (1H, d, J=8Hz), 6.62 (1H, s), 6.81-6.89 (2H, m), 6.97 (1H, d, J=8Hz), 7.04-7.10 (2H, m), 7.40-7.48 (1H, m), 7.68-7.74 (2H, m), 7.81-7.89 (2H, m), 8.20 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)
- 16) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-(3-methoxycarbonylpyrid-6-yl)methoxy-4-methylphenyl]-N-methylbenzamide
 NMR (CDCl₃, δ): 1.39 (9H, s), 2.07-2.16 (2H, m), 2.27 (3H, s), 3.29 (2H, q, J=5Hz), 3.42 (3H, s), 3.63 (3H, s), 3.89
 (3H, s), 4.24 (2H, t, J=5Hz), 4.95 (1H, d, J=12Hz), 5.08 (1H, d, J=12Hz), 6.58 (1H, s), 6.73 (1H, d, J=8Hz), 6.89
 (1H, d, J=8Hz), 6.98 (2H, d, J=8Hz), 7.05-7.12 (3H, m), 7.34 (1H, d, J=8Hz), 7.44 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.28 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz), 9.14 (1H, s)

Example 55

.30

45

50

5

10

[0369] The following compound was obtained according to a similar manner to that of Example 35.

4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl-amino-3-methoxy-N-[2-[4-(tert-butoxycarbonylguanidi-no)but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide

NMR (CDCl₃, δ): 1.43 (9H, s), 1.44 (9H, s), 1.52-1.60 (2H, m), 1.65-1.74 (2H, m), 1.92-2.07 (2H, m), 2.21 (3H, s), 3.10-3.25 (4H, m), 3.38 (3H, s), 3.50 (2H, br), 3.66 (3H, br), 3.78-4.05 (2H, m), 6.49 (2H, br), 6.63-6.82 (3H, m), 7.01-7.10 (2H, m), 7.38 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.44 (1H, br)

Example 56

- [0370] The following compounds were obtained according to a similar manner to that of Example 10.
 - 1) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-hydroxy-N-methyl-N-cyclohexylbenzamide NMR (CDCl $_3$, δ) : 1.07-1.17 (2H, m), 1.41 (9H, s), 1.47-1.76 (8H, m), 2.10-2.20 (2H, m), 2.92-3.00 (2H, m), 3.36-3.44 (2H, m), 3.49 (3H, s), 4.19-4.27 (2H, m), 4.98-5.06 (1H, br), 6.87-6.92 (1H, br), 6.98-7.03 (2H, m), 7.12 (1H, t, J=8Hz), 7.47 (1H, t, J=8Hz), 8.12-8.22 (1H, br), 8.28 (1H, d, J=8Hz), 9.72-9.80 (1H, br) ESI-MASS (m/z) : 526 (M+H)
 - 2) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl̄]-amino-3-hydroxy-N-methyl-N-[2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl̄]benzamide
 NMR (CDCl₃, δ): 1.42 (9H, s), 1.50-1.90 (8H, m), 2.20-2.22 (2H, m), 2.27 (3H, s), 2.32 (3H, s), 2.35-2.53 (6H, m), 3.29 (3H, s), 3.32-3.42 (2H, m), 3.50-3.66 (3H, m), 3.72 (2H, br), 3.89 (1H, br), 4.20 (2H, t, J=6Hz), 5.29 (1H, br), 6.54 (1H, s), 6.67 (1H, d, J=7Hz), 6.72 (1H, br), 6.96-7.10 (4H, m), 7.40-7.47 (1H, m), 8.10 (1H, br), 8.27 (1H, d, J=6Hz)

55 Example 57

[0371] To a solution of 4-[(2-benzyloxy)benzoyl]amino-3-[(2-benzyloxy)benzoyl]oxy-N-methyl-N-[2-[5-(4-methyl-piperazin-1-vl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (1.2 g) in ethanol (20 ml) was added 1N sodium hy-

droxide solution (10 ml) and the mixture was stirred at ambient temperature for 2 hours. The mixture was concentrated in vacuo and the solution was adjusted to pH 7 with 1N hydrochloric acid. The solution was extracted with ethyl acetate (20 ml) and the organic layer was washed with brine (20 ml). The organic layer was dried over magnesium sulfate and the solution was concentrated in vacuo to give 4-[(2-benzyloxy)benzoyl]amino-3-hydroxy-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (930 mg)

NMR (CDCl₃, δ): 1.48-1.59 (2H, m), 1.70 (4H, br), 2.29-2.42 (13H, m), 3.29 (3H, s), 3.48 (2H, br), 3.53 (2H, br), 3.80 (1H, br), 3.90 (1H, br), 5.28 (2H, s), 6.53-6.65 (3H, m), 6.72 (1H, br), 6.90-7.12 (4H, m), 7.34-7.37 (3H, m), 7.40-7.49 (4H, m), 8.20-8.27 (1H, m)

10 Example 58

20

25

30

45

50

[0372] The following compounds were obtained according to a similar manner to that of Example 12.

- 1) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-ethoxycarbonylmethoxy-N-methyl-N-cy-clohexylbenzamide
 NMR (CDCl₃, δ): 1.29 (3H, t, J=8Hz), 1.41 (9H, s), 1.45-1.85 (10H, m), 2.07-2.12 (2H, m), 2.86-3.06 (3H, br), 3.25-3.32 (2H, m), 4.22-4.33 (4H, m), 4.76 (2H, s), 4.98-5.07 (1H, br), 6.91 (1H, s), 7.01-7.15 (3H, m), 7.48 (1H, t, J=8Hz), 8.23 (1H, d, J=8Hz), 8.69 (1H, d, J=8Hz)
 ESI-MASS (m/z): 634 (M+Na)
 - 2) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyi]-amino-3-isopropoxy-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide NMR (CDCl₃, δ): 1.19-1.28 (6H, m), 1.38 (9H, s), 1.46-1.58 (2H, m), 1.65-1.88 (6H, m), 1.99-2.10 (2H, m), 2.25 (3H, s), 2.29 (3H, s), 2.32-2.42 (6H, m), 3.15-3.23 (2H, m), 3.31 (3H, s), 3.45-3.50 (2H, m), 3.60-3.64 (2H, m), 3.84-3.97 (2H, m), 4.24-4.36 (3H, m), 6.56-6.65 (2H, m), 6.85 (1H, d, J=7Hz), 6.94-7.02 (3H, m), 7.10 (1H, t, J=6Hz), 7.47 (1H, t, J=7Hz), 8.15 (1H, d, J=7Hz), 8.41 (1H, d, J=7Hz)
 - 3) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-3-propoxybenzamide
 NMR (CDCl₃, δ) : 0.97 (3H, t, J=7Hz), 1.42 (9H, s), 1.47-1.58 (2H, m), 1.67-1.88 (8H, m), 1.98-2.10 (2H, m), 2.27 (3H, s), 2.28 (3H, s), 2.31-2.41 (6H, m), 3.16-3.26 (2H, m), 3.31 (3H, s), 3.45-3.50 (2H, m), 3.58-3.65 (2H, m), 3.84-3.97 (4H, m), 4.26 (2H, t, J=7Hz), 6.58 (1H, d, J=7Hz), 6.64 (1H, d, J=6Hz), 6.95 (1H, d, J=7Hz), 6.99-7.03 (2H, m), 7.09 (1H, t, J=7Hz), 7.45 (1H, t, J=7Hz), 8.16 (1H, d, J=7Hz), 8.38 (1H, d, J=7Hz)
- 4) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-(3-ethoxycarbonylprop-1-yl)oxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide

 NMR (CDCl₃, δ): 1.11 and 1.23 (total 3H, t, J=6Hz), 1.40 (9H, s), 1.48-1.60 (2H, m), 1.60-1.75 (4H, m), 1.75-1.88 (2H, m), 1.98-2.10 (4H, m), 2.26 (3H, s), 2.29 (3H, s), 2.32-2.42 (8H, m), 3.18-3.28 (2H, m), 3.30 (3H, s), 3.45-3.50 (2H, m), 3.62 (2H, br), 3.88-4.10 (5H, m), 4.27 (2H, t, J=6Hz), 6.57 (1H, d, J=7Hz), 6.63 (1H, s), 6.82 (1H, d, J=7Hz), 6.87-6.92 (1H, m), 6.98-7.10 (3H, m), 7.42 (1H, t, J=6Hz), 8.10-8.13 (1H, m), 8.37 (1H, d, J=7Hz)
 - 5) 4-[2-[((3-tert-Butoxycarbonylaminoprop-1-yl)oxy]-benzoyl]amino-3-ethoxycarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 NMR (CDCl₃, δ) : 1.29 (3H, t, J=7Hz), 1.39 (9H, s), 1.46-1.90 (8H, m), 2.00-2.10 (2H, m), 2.28 (3H, s), 2.30-2.42 (6H, m), 3.18-3.29 (2H, m), 3.30 (3H, s), 3.42-3.50 (2H, m), 3.58-3.65 (2H, m), 3.85-3.97 (2H, m), 4.18-4.29 (4H, m), 4.52 (2H, s), 6.52-6.13 (2H, m), 6.80 (1H, d, J=7Hz), 6.89-6.99 (3H, m), 7.38-7.48 (1H, m), 8.15 (1H, d, J=7Hz), 8.41 (1H, d, J=7Hz)
 - 6) 4-[(2-Benzyloxy)benzoyl]amino-3-ethoxyl-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide
 NMR (CDCl₃, δ): 1.08 (3H, t, J=6Hz), 1.45-1.57 (2H, m), 1.60-1.75 (2H, m), 1.77-1.87 (2H, m), 2.25 (3H, s), 2.29 (3H, s), 2.31-2.39 (7H, m), 3.30 (3H, s), 3.46-3.49 (2H, m), 3.60-3.63 (2H, m), 3.70-3.80 (2H, m), 3.82-3.98 (2H, m), 5.34 (2H, s), 6.52-6.60 (2H, m), 6.80-7.10 (5H, m), 7.27-7.38 (6H, m), 8.20-8.22 (1H, m), 8.38-8.43 (1H, m)

55 Example 59

[0373] The following compounds were obtained according to a similar manner to that of Example 4.

1) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-carboxymethoxy-N-methyl-N-cyclohexylbenzamide

NMR (CDC13, δ): 1.03-1.17 (2H, m), 1.39 (9H, s), 1.45-1.85 (8H, m), 2.03-2.12 (2H, m), 2.85-2.98 (3H, m), 3.21-3.33 (2H, m), 4.23-4.31 (2H, m), 4.73 (3H, s), 5.08-5.13 (1H, br), 6.98-7.07 (3H, m), 7.10 (1H, t, J=8Hz), 7.48 (1H, t, J=8Hz), 8.18-8.24 (1H, m), 8.56-8.61 (1H, m)

ESI-MASS (m/z): 606 (M+Na)

2) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-carboxymethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carboxylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.38-1.49 (2H, m), 1.49-1.62 (2H, m), 1.67-1.78 (2H, m), 2.02-2.34 (13H, m), 2.78-2.89 (2H, m), 3.38-3.43 (4H, m), 3.58 (3H, s), 3.89-3.96 (2H, m), 4.00-4.18 (2H, m), 4.30 (2H, br), 6.62 (1H, d, J=6Hz), 6.72-6.87 (3H, m), 6.89-6.97 (1H, m), 7.11 (1H, t, J=7Hz), 7.19 (1H, d, J=7Hz) 7.54 (1H, t, J=6Hz), 7.94 (1H, d, J=6Hz), 8.22 (1H, d, J=7Hz)

3) 4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-carboxymethoxy-N-methyl-N- [2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide MASS (m/z): 804 (M+H)

Example 60

5

10

15

20

30

35

40

50

55

[0374] To a mixture of 4-(2-iodobenzoyl)amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (1.12 g) and 3-butyn-1-ol (153 mg) in a mixture of tetrahydrofuran (15 ml) and ethylamine (15 ml) were added bis(triphenylphosphine)palladium(II) chloride (23.5 mg) and copper (I) iodide (3.19 mg) and the mixture was refluxed for 8 hours. The solution was diluted with chloroform (50 ml) and the solution was washed with water and brine. The solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an oil. The oil was purified by silica gel column (2% methanol in chloroform) to give 4-[2-(4-hydroxy-1-butyn-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (755 mg).

NMR (CDCl₃, δ): 1.44-1.57 (2H, m), 1.61-1.86 (4H, m), 2.27 (3H, s), 2.29-2.40 (6H, m), 2.70 (2H, t, J=7.5Hz), 3.33 (3H, s), 3.44-3.49 (2H, m), 3.53-3.60 (2H, m), 3.74 (2H, t, J=7.5Hz), 3.79-3.99 (2H, m), 6.76-6.84 (2H, m), 7.06 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.34 (2H, d, J=8Hz), 7.40-7.47 (2H, m), 7.48-7.56 (3H, m), 7.99 (1H, m), 9.19 (1H, s)

Example 61

[0375] To an ice cooled solution of 4-[2-(4-hydroxy-1-butyn-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (755 mg) in dichloromethane (20 ml) were added triethylamine (150 mg) and methanesulfonyl chloride (156 mg), and the mixture was stirred in an ice bath for 2 hours. The solution was washed successively with water, 10% hydrochloric acid, saturated aqueous sodium hydrogen carbonate and brine, and the organic phase was dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-(4-methanesulfonyloxy-1-butyn-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenyl-benzamide (789 mg).

NMR (CDCl₃, δ): 1.49-1.60 (2H, m), 1.67-1.86 (2H, m), 1.87-1.90 (2H, m), 2.37 (2H, t, J=7.5Hz), 2.68 (3H, s), 2.86-3.06 (6H, m), 2.92 (3H, s), 3.31 (3H, s), 3.77-4.02 (6H, m), 4.32 (2H, t, J=7.5Hz), 6.77-6.87 (2H, m), 7.04 (1H, d, J=7Hz), 7.17 (1H, t, J=7Hz), 7.32 (2H, d, J=8Hz), 7.41-7.53 (5H, m), 7.90 (1H, m), 8.86 (1H, s)

45 Example 62

[0376] The following compounds were obtained according to a similar manner to that of Example 61.

1) 4-[2-(4-Methanesulfonyloxybut-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide MASS (m/z): 693 (M+1)

2) 4-[2-(3-Methanesulfonyloxyprop-1-yl)thiobenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide

NMR (CDCl₃, δ): 1.48-1.60 (2H, m), 1.65-1.74 (2H, m), 1.75-1.86 (2H, m), 1.98-2.07 (2H, m), 2.26 (3H, s), 2.30-2.39 (2H, m), 2.70-2.78 (4H, m), 2.79-3.42 (2H, m), 2.90 (3H, s), 2.95-3.07 (2H, m), 3.26 (3H, s), 3.71 (3H, s), 3.80-4.01 (4H, m), 4.29 (2H, t, J=7.5Hz), 6.56-6.66 (2H, m), 6.82-7.00 (3H, m), 7.30 (1H, m), 7.39-7.47 (2H, m), 7.60 (1H, d, J=7Hz), 8.27 (1H, d, J=7Hz), 8.58 (1H, s)

Example 63

[0377] A mixture of 4-[2-(4-methanesulfonyloxy-1-butyn-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (800 mg) and potassium phthalimide (430 mg) in dimethyl sulfoxide (20 ml) was stirred at 60°C for 5 hours, and the solution was diluted with ethyl acetate (60 ml). The solution was washed with water and brine, and dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-[4-(phthalim-ido)-1-butyn-1-yl]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (620 mg).

NMR (CDCl₃, δ): 1.50-1.61 (2H, m), 1.67-1.92 (6H, m), 2.30 (3H, s), 2.33-2.44 (6H, m), 3.38 (3H, s), 3.48-3.52 (2H, m), 3.60-3.67 (2H, m), 3.84-4.01 (4H, m), 6.78-6.85 (2H, m), 7.02 (1H, d, J=7Hz), 7.09-7.19 (2H, m), 7.30-7.70 (6H, m), 7.70-7.77 (2H, m), 7.81-7.90 (2H, m), 8.18 (1H, m)

Example 64

10

20

25

- 15 [0378] The following compounds were obtained according to a similar manner to that of Example 63.
 - 1) 4-[2-[4-(Phthalimido)but-1-yl]benzoyl]amino-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenyl-N-methylbenzamide

MASS (m/z): 693 (M+1)

2) 3-Methoxy-4-[2-[3-(phthalimido)prop-1-yl]thiobenzoyl]-amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide NMR (CDCl $_3$, δ): 1.47-1.59 (2H, m), 1.61-1.74 (2H, m), 1.78-1.87 (2H, m), 1.92-2.03 (2H, m), 2.26 (3H, s), 2.29 (3H, s), 2.31-2.42 (6H, m), 2.94 (2H, t, J=7.5Hz), 3.31 (3H, s), 3.45-3.53 (2H, m), 3.58-3.67 (2H, m), 3.69-3.81 (2H, m), 3.73 (3H, s), 3.84-4.00 (2H, m), 6.55-6.66 (2H, m), 6.80-6.92 (2H, m), 7.02 (1H, s), 7.27 (1H, m), 7.34-7.44 (2H, m), 7.60-7.90 (5H, m), 8.25 (1H, d, J=7Hz), 8.82 (1H, s)

Example 65

[0379] To an ice cooled mixture of 4-[2-(4-amino-1-butyn-1-yl)benzoyl] amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide (310 mg), nickel chloride hexahydrate (181 mg) in a mixture of tetrahydrofuran (5 ml) and methanol (5 ml) was added sodium borohydride (96.2 mg) in small portions and the mixture was stirred at the same temperature for 2 hours. The mixture was filtered through bed of Celite and the filtrate was evaporated in vacuo. The residue was dissolved in chloroform (20 ml)and washed with water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give a syrup. The residue was purified by silica gel column (chloroform:methanol:ammonia = 100:10:1) to give 4-[2-(4-aminobut-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-l-yl)carbonylpent-1-yl]oxy]phenylbenzamide (295 mg) .

MASS (m/z): 597 (M+1)

40 Example 66

45

50

[0380] The following compound was obtained according to a similar manner to that of Example 65.

4-[2-(4-hydroxybut-1-yl)benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenyl-benzamide

MASS (m/z): 615 (M+1)

Example 67

[0381] A mixture of 4-amino-3-methoxy-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]-phenylbenzamide (200 mg) and salicyl aldehyde (48.6 mg) in methanol (10 ml) was refluxed overnight in the presence of 3Å molecular sieves (100 mg). The solution was filtered and the filtrate was treated with sodium borohydride (15.1 mg) at 5°C for 2 hours. The reaction mixture was diluted with chloroform (20 ml) and the solution was washed with water and brine. The organic solution was dried over magnesium sulfate and the solvent was evaporated in vacuo to give a crude oil. The product was purified by silica gel column (2% methanol in chloroform) to give 3-methoxy-4-(2-hydroxyphenyl)methylamino-N-methyl-N-[4-methyl-2-[4-(4-methylpiperazin-1-yl)carbonyl]phenylmethoxy]phenylbenzamide (152 mg).

NMR (CDCl₃, δ): 2.27 (3H, s), 2.32 (3H, s), 2.32-2.59 (4H, m), 3.34 (3H, s), 3.40-3.55 (2H, m), 3.52 (3H, s), 3.75-3.88 (2H, m), 4.25-4.34 (2H, m), 4.63 (1H, br), 4.42 (1H, d, J=14Hz), 5.08 (1H, d, J=14Hz), 6.43 (1H, d, J=7Hz),

6.62 (1H, s), 6.70 (1H, d, J=7Hz), 6.80-6.88 (4H, m), 7.00 (1H, d, J=7Hz), 7.09-7.18 (2H, m), 7.28 (2H, d, J=8Hz), 7.38 (2H, d, J=8Hz)

Example 68

5

10

25

35

[0382] The following compound was obtained according to a similar manner to that of Example 67.

3-Methoxy-4- (2-hydroxyphenyl)methylamino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy]phenylbenzamide

NMR (CDCl₃, δ): 1.41-1.52 (2H, m), 1.60-1.69 (2H, m), 1.70-1.80 (2H, m), 2.25 (3H, s), 2.29 (3H, s), 2.30-2.43 (6H, m), 3.28 (3H, s), 3.34-3.48 (2H, m), 3.55 (3H, s), 3.65-4.00 (2H, m), 4.30 (2H, d, J=7Hz), 4.62 (1H, br t, J=7Hz), 6.51 (1H, d, J=7Hz), 6.57-6.64 (2H, m), 6.76-6.95 (5H, m), 7.61-7.68 (2H, m)

Example 69

15 [0383] To an ice bath cooled solution of 4-(2-dimethylamino-4-methyl)phenoxymethyl-N-[2-(5-ethoxycarbonylpent-1-yl)oxy]phenylbenzamide (860 mg) in N,N-dimethylformamide (15 ml) was added sodium hydride (60% in oil, 71 mg) and the solution was stirred at the same temperature for 30 minutes. lodomethane (0.121 ml) was added to the solution and the mixture was stirred at ambient temperature for 3 hours. The mixture was diluted with ethyl acetate (50 ml) and the solution was washed with water and brine. The organic phase was dried over magnesium sulfate and the solvent was evaporated in vacuo to give a crude oil. The crude product was purified by silica gel column chromatography (1% methanol in chloroform) to give 4-(2-dimethylamino-4-methyl)-phenoxymethyl-N-[2-(5-ethoxycarbonylpent-1-yl)oxy] phenyl-N-methylbenzamide (632 mg).

NMR (CDCl₃, δ): 1.26 (3H, t, J=7.5Hz), 1.42-1.55 (2H, m), 1.63-1.74 (2H, m), 1.76-1.87 (2H, m), 2.20 (3H, s), 2.23 (3H, s), 2.33 (2H, t, J=7.5Hz), 2.72 (6H, s), 3.30 (3H, s), 3.76-3.97 (2H, m), 4.12 (2H, q, J=7.5Hz), 5.02 (2H, s), 6.52-6.60 (3H, m), 6.70 (1H, d, J=7Hz), 6.80-6.88 (2H, m), 7.20 (2H, d, J=8Hz), 7.31 (2H, d, J=8Hz)

Example 70

[0384] The following compound was obtained by using 3-methoxy-4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxy-benzoyl]amino-N-[2-(4-aminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide as a starting compound according to a similar manner to that of Example 14.

3-Methoxy-4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-[2-(4-acetylaminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide

NMR (CDCl₃, δ): 1.40 (9H, s), 1.65-1.82 (4H, m), 1.76 (3H, s), 2.05 (3H, s), 2.07-2.21 (2H, m), 2.26 (3H, s), 3.22-3.38 (2H, m), 3.38 (3H, s), 3.77 (3H, s), 3.77-3.96 (2H, m), 4.24 (2H, t, J=7.5Hz), 6.53-6.71 (2H, m), 6.93-7.14 (5H, m), 7.25 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.43 (7H, d, J=7Hz)

Example 71

[0385] To a mixture of 3-methoxy-4-[2-[3-(tert-butoxycarbonyl)-aminoprop-1-yl]oxybenzoyl]amino-N-[2- (4-aminobut-1-yl)oxy-4-methyl]phenyl-N-methylbenzamide (365 mg) and N-(tert-butoxycarbonyl)glycine (111 mg) in N,N-dimethylformamide (15 ml) were added N-ethyl-N'-(3-dimethylaminopropyl)carbodiimide hydrochloride (132 mg) and hydroxybenzotriazole (93.2 mg) and the mixture was stirred at ambient temperature overnight. The solution was diluted with ethyl acetate (30 ml) and the solution was washed successively with saturated aqueous sodium hydrogen carbonate, water and brine. The organic phase was dried over magnesium sulfate and the solvent was evaporated in vacuo to give an amorphous. The crude product was purified by silica gel column chromatography (1% methanol in chloroform) to give 3-methoxy-4-[2-[3-tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-N-[2-4-(tert-butoxycarbonylamino)acetylaminobut-l-yl]oxy-4-methyl]phenyl-N-methylbenzamide (320 mg).

NMR (CDCl₃, δ): 1.39 (9H, s), 1.42 (9H, s), 1.58-1.70 (2H, m), 1.70-1.80 (2H, m), 2.05-2.17 (2H, m), 2.27 (3H, s), 3.20-3.34 (4H, m), 3.30 (3H, s), 3.70-3.95 (4H, m), 3.74 (3H, s), 4.22 (2H, t, J=7.5Hz), 6.56-6.68 (2H, m), 6.88-7.11 (5H, m), 7.45 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz), 8.28 (1H, d, J=7Hz)

Example 72

- [0386] The following compounds were obtained according to a similar manner to that of Example 71.
 - 1) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-[4-[3-(tert-butoxycarbonyl)-aminopropionylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide

NMR (CDCl₃, δ): 1.40 (9H, s), 1.41 (9H, s), 1.60-1.82 (4H, m), 2.10-2.19 (2H, m), 2.29 (3H, s), 2.48 (2H, br), 3.25-3.42 (6H, m), 3.32 (3H, s), 3.79 (3H, s), 3.80-3.97 (2H, m), 4.25 (2H, t, J=5Hz), 6.59 (1H, s), 6.67 (1H, d, J=8Hz), 6.94-7.11 (5H, m), 7.45 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

2) $4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-[4-[[1-(tert-butoxycarbonyl)-piperidin-4-yl]carbonylamino]but-1-yl]oxy-4-methylphenyl]-4-methylbenzamide NMR (CDCl₃, <math>\delta$): 1.40 (9H, s), 1.44 (9H, s), 1.60-1.81 (8H, m), 2.08-2.18 (2H, m), 2.29 (3H, s), 2.70 (1H, br), 3.30 (2H, q, J=5Hz), 3.32 (3H, s), 3.76 (3H, s), 3.76-4.15 (6H, m), 4.22 (2H, t, J=5Hz), 6.59 (1H, s), 6.65 (1H, d, J=8Hz), 6.94-7.10 (6H, m), 7.44 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.39 (1H, d, J=8Hz)

Example 73

5

10

15

20

35

40

50

[0387] To an ice-cooled mixture of 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-(4-aminobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide (430 mg) and triethylamine (68 mg) in dichloromethane (10 ml) was added phenyl chlorocarbonate (106 mg) dropwise and the solution was stirred at the same temperature for 30 minutes. The resulting mixture was diluted with dichloromethane (10 ml) and the solution was washed successively with 1N hydrochloric acid saturated aqueous sodium hydrogen carbonate and brine. The solvent was dried over magnesium sulfate and removed under reduced pressure to give 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl] amino-3-methoxy-N-[(2-(4-phenoxycarbonylaminobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide (471 mg) .

NMR (CDCi₃, δ): 1.40 (9H, s), 1.60-1.90 (4H, m), 2.08-2.17 (2H, m), 2.29 (3H, s), 3.27 (2H, q, J=5Hz), 3.31 (2H, t, J=5Hz), 3.36 (3H, s), 3.78 (3H, s), 3.82-4.00 (2H, m), 4.21 (2H, t, J=5Hz), 4.73 (1H, br), 5.38 (1H, br), 6.61-6.68 (2H, m), 6.91-6.99 (4H, m), 7.06-7.20 (5H, m), 7.30-7.38 (2H, m), 7.42 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=6Hz), 8.40 (1H, d, J=8Hz)

25 Example 74

[0388] A mixture of 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N- [2- (4-aminobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide (120 mg) and 3-(dimethylamino)prop-1-yl phenyl carbonate (127 mg) in N,N-dimethylformamide (5 ml) was stirred at 50°C for 8 hours. The reaction mixture was diluted with ethyl acetate (15 ml) and the solution was washed successively with saturated aqueous sodium bicarbonate solution and brine. The solution was dried over potassium carbonate. The solvent was evaporated and the residue was purified on silica gel column chromatography (SiO₂ 20 g, 3-15% methanol in chloroform) to give 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-(3-dimethylaminoprop-1-yl)oxycarbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide (64 mg).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.62-1.87 (6H, m), 2.05-2.18 (2H, m), 2.28 (3H, s), 2.30 (6H, s), 2.44 (2H, t, J=5Hz), 3.20-3.32 (4H, m), 3.32 (3H, s), 3.78 (3H, s), 3.80-4.00 (2H, m), 4.12 (2H, t, J=5Hz), 4.24 (2H, t, J=5Hz), 6.59-6.64 (2H, m), 6.88-7.12 (5H, m), 7.44 (1H, dd, J=2, 8Hz), 8.21 (1H, d, J=8Hz), 8.40 (1H, br)

Example 75

[0389] To a solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-oxopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]-benzamide (192 mg) in methanol (5 ml) was added sodium borohydride (19 mg) at ambient temperature and the mixture was stirred at the same temperate for 1 hour. The reaction was quenched with 0.5N hydrochloric acid (10 ml) and the mixture was extracted with chloroform (15 ml x 3). The organic layer was washed with aqueous sodium hydrogen carbonate and brine, and the solution was dried over magnesium sulfate. The solvent was evaporated in vacuo to give 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[2-[5-(4-hydroxypiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide (199 mg).

NMR (CDCl₃, δ): 1.39 (9H, s), 1.41-1.99 (10H, m), 2.05-2.20 (2H, m), 2.27 (3H, s), 2.30-2.51 (2H, m), 3.01-3.22 (2H, m), 3.30 (3H, s), 3.65-4.14 (7H, m), 3.76 (3H, s), 4.22 (2H, t, J=5Hz), 6.52-6.67 (2H, m), 6.78-7.10 (5H, m), 7.38-7.47 (1H, m), 8.19 (1H, d, J=7Hz), 8.39 (1H, d, J=7Hz)

Example 76

[0390] To a mixture of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-oxopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]-benzamide (250 mg), ammonium acetate (51 mg) and acetic acid (0.5 ml) in methanol (10 ml) was added sodium cyanoborohydride (21 mg) at 0°C and the mixture was stirred at ambient temperature for 12 hours. The mixture was poured into ice-cooled 1N aqueous sodium hydroxide solution

(15 ml) and the solution was extracted with chloroform (15 ml x 3). The organic layer was washed with brine and dried over potassium carbonate. The solvent was evaporated in vacuo and the residue was purified by silica gel column chromatography (SiO_2 40 g, 5-15% methanol in chloroform) to give 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy] benzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-aminopiperidin-1-yl)carbonylpent-l-yl]oxy-4-methylphenyl]benzamide (91 mg) .

NMR (CDCl₃, δ): 1.41 (9H, s), 1.45-2.01 (12H, m), 2.09-2.20 (2H, m), 2.28 (3H, s), 2.23-2.45 (4H, m), 2.56-2.71 (1H, br), 2.93-3.12 (2H, m), 3.25-3.36 (2H, m), 3.32 (3H, s), 3.79 (3H, s), 3.81-4.02 (2H, m), 4.23 (2H, t, J=5Hz), 4.91-4.08 (1H, br), 6.56-6.68 (2H, m), 6.82-7.13 (5H, m), 7.45 (2H, d, J=8Hz), 8.20 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

10 Example 77

15

20

35

[0391] The following compound was obtained according to a similar manner to that of Example 76.

4-[2-(3-tert-Butoxycarbonylaminoprop-l-yl)oxybenzoyl]-amino-3-methoxy-N-methyl-N-[2-[6-(4-methylpiperazin-1-yl)hex-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.39 (9H, s), 1.45-1.84 (8H, m), 2.09-2.22 (2H, m), 2.27 (3H, s), 2.28 (3H, s), 2.32-2.59 (8H, m), 3.32 (1H, q, J=5Hz), 3.34 (3H, s), 3.80 (3H, s), 3.82-4.01 (2H, m), 4.28 (2H, t, J=5Hz), 6.56-6.65 (2H, m), 6.82-7.12 (6H, m), 7.43-7.50 (1H, m), 8.20 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

Example 78

[0392] To a mixture of 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-carboxypent-1-yl]oxy-4-methylphenyl]benzamide (250 mg), 2-dimethylaminoethanol (99 mg) and 4-dimethylaminopyridine (36 mg) in dichloromethane (10 ml) was added N-ethyl-N'-(3-dimethylaminoprop-1-yl)carbodiimide hydrochloride (71 mg) at 0°C and stirred at the same temperature for 7 hours. The mixture was diluted with chloroform (20 ml) and the solution was washed with water (20 ml x 2) and brine. The solution was dried over magnesium sulfate and the solvent was removed under reduced pressure. This residue was purified by silica gel column chromatography (SiO₂ 30 g, 1-10% methanol in chloroform) to give 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2-dimethylaminoeth-1-yl)oxycarbonylpent-1-yl]oxy-4-methylpheyl]-benzamide (238 mg).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.45-1.57 (2H, m), 1.65-1.90 (4H, m), 2.10-2.21 (2H, m), 2.28 (9H, s), 2.39 (2H, t, J=5Hz), 2.55 (2H, t, J=5Hz), 3.30 (2H, t, J=5Hz), 3.32 (3H, s), 3.79 (3H, s), 3.82-4.00 (2H, m), 4.18 (2H, t, J=5Hz), 4.24 (2H, t, J=5Hz), 4.75-4.86 (1H, br), 6.54-6.67 (2H, m), 6.81-7.11 (5H, m), 7.41-7.49 (1H, m), 8.20 (1H, d, J=8Hz), 8.49 (1H, d, J=8Hz)

Example 79

[0393] To a solution of 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-ethoxycarbonylpent-1-yl)oxy-4-methylphenyl]benzamide (400 mg) in tetrahydrofuran (5 ml) was added lithium aluminum hydride (12 mg) at -23°C and the mixture was stirred at 0°C for 3 hours. The reaction was quenched with slow addition of 0.5N hydrochloric acid (15 ml) and the solution was stirred at ambient temperature for 20 minutes. The solution was extracted with chloroform (15 ml x 3) and the organic layer was washed with aqueous saturated sodium bicarbonate solution and brine. The solution was dried over magnesium sulfate and the solvent was removed under reduced pressure to give 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N- [2-(6-hydroxyhex-1-yl)oxy-4-methylphenyl]benzamide (456 mg).

NMR (CDCl₃, δ): 1.40 (9H, s), 1.45-2.20 (10H, m), 2.27 (3H, s), 3.30 (2H, q, J=5Hz), 3.32 (3H, s), 3.64 (2H, t, J=5Hz), 3.78 (3H, s), 3.81-4.02 (2H, m), 4.23 (2H, t, J=5Hz), 6.57-6.63 (2H, m), 6.84-7.13 (6H, m), 7.41-7.49 (1H, m), 8.20 (1H, d, J=7Hz) 8.41 (1H, d, J=7Hz)

Example 80

[0394] To a solution of oxalyl chloride (95 mg) in dichloromethane (10 ml) was added dimethyl sulfoxide (117 mg) dropwise at -78°C. The mixture was warmed to -15°C and a solution of 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl) oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(6-hydroxyhex-1-yl)oxy-4-methylphenyl]benzamide (450 mg) in dichloromethane (10 ml) was added thereto. After being stirred at the same temperature for 10 minutes, to the reaction mixture was added triethylamine (343 mg) and stirred at the same temperature for 5 minutes. The resulting solution was warmed to ambient temperature and poured into water. The mixture was extracted with chloroform (15 ml x 3) and the organic layer was washed with brine. The solution was dried over magnesium sulfate and the solvent was evaporated to give 4-[2-(3-tert-butoxycarbonylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-formylpent-1-yl)oxy-4-methylphenyl]benzamide (546 mg)

NMR (CDCl₃, δ): 1.40 (9H, s), 1.50-1.91 (6H, m), 2.11-2.23 (2H, m), 2.27 (3H, s), 2.50 (2H, t, J=5Hz), 3.31 (1H, q, J=5Hz), 3.34 (3H, s), 3.79 (3H, s), 3.85-4.00 (2H, m), 4.27 (2H, t, J=5Hz), 6.60-6.68 (2H, m), 6.81-7.12 (6H, m), 7.42-7.51 (1H, m), 8.21 (1H, d, J=7Hz), 8.41 (1H, d, J=7Hz), 9.89 (1H, s)

5 Example 81

[0395] To a solution of 4-[2-[3-(tert-butoxycarbonyl)aminoprop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-(4-cyanophenylmethyl)-oxy-4-methylphenyl]-N-methylbenzamide (360 mg) in xylene (8 ml) was added trimethyltin azide (218 mg) and the solution was stirred at 120°C for 3 days. The solution was cooled to ambient temperature and 12N hydrochloric acid (10 ml) was added to the solution to decompose tin salt of the tetrazole compound and the excess reagent. Then the solution was adjusted to pH 7 with saturated aqueous sodium hydroxide at 0°C, and the solution was extracted with ethyl acetate (50 ml x 3). The organic layer was washed with brine, and dried over magnesium sulfate. The solvent was evaporated to give a crude product. The crude product was purified by silica gel column chromatography (SiO₂ 30 g, 2-25% methanol in chloroform) to give 4-[2-(3-aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(tetrazol-5-yl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide (227 mg).

NMR (CDCl₃, δ): 2.15 (3H, br s), 2.14-2.26 (2H, m), 3.17 (2H, q, J=5Hz), 3.40 (3H, s), 3.57 (3H, s), 4.20 (2H, t, J=5Hz), 4.95 (1H, d, J=12Hz), 5.22 (1H, d, J=12Hz), 6.55-6.64 (2H, m), 6.80 (1H, s), 6.92-7.08 (6H, m), 7.23 (1H, br), 7.43 (1H, dd, J=2, 8Hz), 7.78 (2H, d, J=8Hz), 8.20 (1H, d, J=8Hz)

20 Example 82

15

25

30

35

40

45

50

55

[0396] A mixture of 4-[2-(3-aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide (275 mg) and O-methylisourea (44 mg) in ethanol (5 ml) was refluxed for 3 days. The solvent was evaporated in vacuo and the residue was purified on basic silica gel column chromatography (SiO₂ 17 g, 1-80% methanol in chloroform) to give 4-[2-(3-guanidinoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide (53 mg) .

NMR (CDCl₃, δ): 1.40-1.97 (6H, m), 2.06-2.20 (2H, m), 2.27 (6H, s), 2.28 (3H, s), 2.29-2.41 (4H, m), 2.50 (1H, br), 3.04 (2H, br), 3.30 (3H, s), 3.42 (2H, br), 3.76 (3H, s), 3.78 (2H, br), 3.82-4.01 (2H, m), 4.25 (2H, br), 6.55-6.68 (2H, m), 6.81-7.09 (5H, m), 7.28 (1H, s), 7.42 (1H, dd, J=2, 8Hz), 7.99 (1H, d, J=8Hz), 8.29 (1H, br)

Example 83

[0397] The following compound was obtained according to a similar manner to that of Example 6.

4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-(4-aminobut-1-yl)oxy-4-meth-ylphenyl]-N-methylbenzamide

NMR (CDCl₃, δ): 1.40 (9H, s), 1.81-1.99 (4H, m), 2.05-2.14 (2H, m), 2.24 (3H, s), 3.08 (2H, br), 3.29 (2H, br), 3.30 (3H, s), 3.70 (3H, s), 3.76-3.96 (2H, m), 4.14 (2H, t, J=5Hz), 5.07 (1H, br), 6.54-6.61 (2H, m), 6.85-7.04 (4H, m), 7.25 (1H, s), 7.37 (1H, dd, J=2, 8Hz), 8.14 (1H, d, J=8Hz), 8.38 (1H, d, J=8Hz)

Example 84

[0398] To a solution of 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yloxy]benzoylamino]-3-methoxy-N-[2-[4-(phenoxycarbonylamino)but-1-yl]-4-methylphenyl]-N-methylbenzamide (200 mg) in N,N-dimethylformamide (5 ml) was added 1-methylpiperazine (88 μ l) and the solution was stirred at 80°C for 7 hours. The solution was diluted with ethyl acetate (15 ml) and washed successively with water (20 ml x 4) and brine. The solvent was dried over magnesium sulfate and removed under reduced pressure. The crude product was purified on silica gel column chromatography (SiO₂ 25 g, chloroform-methanol 2-10%) to give pure 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yl]oxybenzoyl]amino-3-methoxy-N-[2-[4-[(4-methylpiperazin-1-yl)carbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide (124 mg) .

NMR (CDCl₃, δ): 1.40 (9H, s), 1.60-1.81 (4H, m), 2.13-2.22 (2H, m), 2.29 (6H, s), 2.39 (4H, br), 3.79 (3H, s), 3.25-3.51 (8H, m), 3.32 (3H, s), 3.75-3.99 (2H, m), 4.26 (2H, t, J=5Hz), 6.57-6.71 (2H, m), 6.92-7.18 (6H, m), 7.48 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

Example 85

[0399] The following compounds were obtained according to a similar manner to that of Example 84.

1) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-[4-[(4-dimethylaminopiperid-

in-1-yl)carbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide NMR (CDCl₃, δ) : 1.40 (9H, s), 1.65-1.90 (4H, m), 2.29 (3H, s), 2.30 (6H, s), 2.77 (1H, t, J=11Hz), 3.29 (2H, q, J=5Hz), 3.32 (3H, s), 3.78 (3H, s), 3.85-4.11 (6H, m), 4.25 (2H, t, J=5Hz), 6.55-6.70 (2H, m), 6.92-7.13 (5H, m), 7.45 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

2) 4-[2-[3-(tert-Butoxycarbonylamino)prop-1-yl]oxybenzoyl]-amino-3-methoxy-N-[2-(4-ureidobut-1-yl)oxy-4-meth-ylphenyl]-N-methylbenzamide

NMR (CDCl₃, δ): 1.40 (9H, s), 1.45-1.80 (4H, m), 2.01-2.11 (2H, m), 2.27 (3H, s), 3.22-3.31 (2H, m), 3.30 (3H, s), 3.65-3.77 (2H, m), 3.71 (3H, s), 4.22 (2H, t, J=5Hz), 5.16 (2H, br), 6.48 (1H, s), 6.71 (1H, d, J=8Hz), 6.90-7.15 (5H, m), 7.41 (1H, dd, J=2, 8Hz), 8.11 (1H, d, J=8Hz), 8.35 (1H, d, J=8Hz)

Example 86

5

10

15

20

25

35

40

50

55

[0400] To a solution of 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yloxy]benzoylamino]-3-methoxy-N- [2- [4- (phenoxycarbonylamino)but-1-yl]-4-methylphenyl]-N-methylbenzamide (150 mg) in N,N-dimethylformamide (5 ml) was added dimethylamine hydrochloride (40 mg) and the mixture was stirred at 80°C for 7 hours. The mixture was cooled to ambient temperature and diluted with ethyl acetate (15 ml). The solution was washed with water (15 ml x 5) and brine, and dried over magnesium sulfate. The solvent was removed in vacuo and the residue was purified on silica gel column chromatography (SiO $_2$ 20 g, chloroform-methanol 1-5%) to give 4-[2-[3-(tert-butoxycarbonylamino)prop-1-yloxy]benzoylamino]-3-methoxy-N-[2-[4-(N,N-dimethylureido)but-1-yloxy]-4-methylphenyl]-N-methylbenzamide (115 mg) .

NMR (CDCl₃, δ): 1.40 (9H, s), 1.60-1.87 (4H, m), 2.06-2.18 (2H, m), 2.28 (3H, s), 2.90 (6H, s), 3.30 (2H, q, J=5Hz), 3.34 (3H, s), 3.79 (3H, s), 3.85-4.02. (2H, m), 4.23 (2H, t, J=5Hz), 6.57-6.64 (2H, m), 6.90-7.10 (5H, m), 7.44 (1H, dd, J=2, 8Hz), 8.20 (1H, d, J=8Hz), 8.41 (1H, d, J=8Hz)

Example 87

[0401] To a solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-carboxymethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-benzamide (128 mg) in methanol (5 ml) was added dropwise trimethylsilyldiazomethane (5 ml, 2.0M n-hexane solution) and stirred at ambient temperature for 30 minutes. The solution was concentrated in vacuo and the residue was purified by preparative thin layer silica gel chromatography (chloroform:methanol:28% aqueous ammonia solution, 50:5:1) to give 4-[2-[(3-tert-butoxycarbonylamino-prop-1-yl)oxy]benzoyl]-amino-3-methoxycarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-benzamide (85 mg).

NMR (CDCl₃, δ): 1.39 (9H, s), 1.45-1.37 (8H, m), 2.00-2.10 (2H, m), 2.26 (3H, s), 2.29 (3H, s), 2.30-2.42 (6H, m), 3.18-3.27 (2H, m), 3.30 (3H, s), 3.45-3.51 (2H, m), 3.63 (2H, br), 3.79 (3H, s), 3.87-3.96 (2H, m), 4.22-4.29 (2H, m), 4.54 (2H, s), 6.53-6.13 (2H, m), 6.77-6.85 (1H, m), 6.89 (1H, br), 6.92-7.02 (2H, m), 7.02-7.10 (1H, m), 7.43-7.47 (1H, m), 8.14-8.19 (1H, m), 8.40-8.45 (1H, m)

Example 88

[0402] The following compound was obtained according to a similar manner to that of Example 8.

4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-dimethylaminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-benzamide

NMR (CDCl₃, δ) : 1.39 (9H, s), 1.48-1.58 (2H, m), 1.63-1.88 (6H, m), 1.97-2.09 (2H, m), 2.28 (3H, s), 2.30 (3H, s), 2.31-2.42 (6H, m), 2.99 (3H, s), 3.02 (3H, s), 3.17-3.27 (2H, m), 3.32 (3H, s), 3.50 (2H, br), 3.63 (2H, br), 3.83-3.97 (2H, m), 4.22-4.29 (2H, m), 4.67 (2H, s), 6.53-6.63 (2H, m), 6.80-6.90 (2H, m), 6.96-7.09 (3H, m), 7.93 (1H, t, J=6Hz), 8.14 (1H, d, J=6Hz), 8.38 (1H, d, J=7Hz)

Example 89

[0403] To a solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-ethoxycarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (102 mg) in 7.5N ammonia in methanol (5 ml) was stirred at ambient temperature for 24 hours. The solution was concentrated in vacuo to give 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-aminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide (92 mg).

NMR (CDCl₃, δ): 1.37 (9H, s), 1.48-1.60 (2H, m), 1.60-1.75 (4H, m), 1.75-1.88 (2H, m), 1.97-2.08 (2H, m), 2.27 (3H, s), 2.28 (3H, s), 2.30-2.41 (6H, m), 3.17-3.27 (2H, m), 3.30 (3H, s), 3.47 (3H, s), 3.52-3.62 (2H, m), 3.90-3.97 (2H, m), 4.16-4.29 (4H, m), 5.85 (1H, br), 6.57 (1H, d, J=7Hz), 6.67 (1H, s), 6.75-6.90 (2H, m), 7.00 (1H, d, J=7Hz),

7.07-7.17 (2H, m), 8.00 (1H, s), 8.18-8.21 (1H, m), 8.25 (1H, d, J=7Hz)

Example 90

5 [0404] The following compound was obtained according to a similar manner to that of Example 89.

4-[2-[(3-tert-Butoxycarbonylaminoprop-1-yl)oxy]benzoyl]-amino-3-methylaminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-benzamide

NMR (CDCl₃, δ): 3.37 (9H, s), 1.45-1.77 (6H, m), 1.77-1.88 (2H, m), 1.96-2.08 (2H, m), 2.28 (3H, s), 2.29 (3H, s), 2.29-2.40 (6H, m), 2.82-2.83 (3H, s), 3.18-3.27 (2H, m), 3.30 (3H, s), 3.43-3.50 (3H, m), 3.57 (2H, br), 3.90-3.97 (2H, m), 4.18-4.30 (3H, m), 6.57 (1H, d, J=6Hz), 6.65 (1H, s), 6.76-6.83 (2H, m), 7.00 (1H, d, J=7Hz), 7.06-7.15 (2H, m), 7.45 (1H, t, J=7Hz), 8.16-8.22 (2H, m)

Example 91

10

30

35

45

50

55

The following compound was obtained according to similar manners to those of Examples 8 and 16. 4-(2-Aminobenzoyl)amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]

benzamide dihydrochloride

NMR (DMSO- d_6 , δ): 1.35-1.66 (4H, m), 1.66-1.82 (2H, m), 2.22 (3H, s), 2.40 (2H, t, J=7Hz), 2.73 (3H, s), 2.77-3.11 (3H, m), 3.17 (3H, s), 3.28-3.56 (3H, m), 3.76-4.17 (3H, m), 4.35-4.52 (1H, m), 6.63 (1H, d, J=9Hz), 6.79 (1H, s), 6.91 (1H, dd, J=9, 9Hz), 6.98-7.11 (2H, m), 7.22 (2H, d, J=9Hz), 7.36 (1H, dd, J=9, 9Hz), 7.54 (2H, d, J=9Hz), 7.69 (1H, d, J=9Hz)

Example 92

- 25 [0406] The following compounds were obtained according to similar manners to those of Examples 6 and 16.
 - 1) 4-[2-[(3-Aminoprop-1-yl)amino]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yloxy]phenyl]benzamide trihydrochloride NMR (DMSO- d_6 , δ) : 1.36-1.65 (4H, m), 1.66-1.92 (4H, m), 2.23 (3H, s), 2.38 (2H, t, J=7Hz), 2.68-2.77 (3H, m), 2.77-3.12 (4H, m), 3.18 (3H, s), 3.22 (2H, t, J=7Hz), 3.28-3.56 (3H, m), 3.63 (3H, s), 3.75-4.32 (4H, m), 4.42 (1H, m), 6.58-6.69 (2H, m), 6.78 (1H, d, J=8Hz), 6.83 (1H, s), 6.86-6.96 (2H, m), 7.03 (1H, d, J=8Hz), 7.34 (1H, dd, J=8, 8Hz), 7.61 (1H, d, J=8Hz), 7.67 (1H, d, J=8Hz), 7.91-8.17 (3H, m), 9.23 (1H, s)
 - 2) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.34-1.66 (4H, m), 1.66-1.83 (2H, m), 2.04-2.24 (2H, m), 2.32-2.46 (2H, m), 2.74 (3H, s), 2.79-3.12 (4H, m), 3.22 (3H, s), 3.29-3.58 (3H, m), 3.63-4.19 (7H, m), 4.28-4.52 (3H, m), 6.80-7.08 (4H, m), 7.08-7.36 (4H, m), 7.58 (1H, dd, J=9, 9Hz), 8.02 (1H, d, J=9Hz), 8.13 (2H, br s), 8.28 (1H, d, J=9Hz)
- 3) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)-carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.28-1.82 (8H, m), 1.90-2.51 (11H, m), 2.64 (6H, s), 2.74-3.06 (3H, m), 3.18 (3H, s), 3.22-4.08 (6H, m), 4.29-4.41 (2H, m), 4.51 (1H, m), 6.64 (1H, d, J=8Hz), 6.75-7.20 (5H, m), 7.27 (1H, d, J=8Hz), 7.58 (1H, m), 7.94-8.32 (5H, m)
 - 4) $4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-2-chloro-N-methyl-N-[2-[5-(4-methylpiperazin-1-ylcarbonyl)pent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, <math>\delta$) : 1.35-1.68 (4H, m), 1.69-1.90 (2H, m), 1.92-2.12 (2H, m), 2.31-2.50 (2H, m), 2.73 (3H, br s), 2.79-3.10 (4H, m), 3.17-3.61 (7H, m), 3.92-4.26 (5H, m), 4.42 (1H, m), 6.77 (1H, m), 6.92-7.23 (6H, m), 7.34-7.58 (3H, m), 7.81 (1H, s), 7.90-8.14 (3H, m)
 - 5) 4-[2-(3-Aminoprop-1-yl)oxy-5-methylbenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl $_3$, δ) : 1.50-1.93 (8H, m), 2.28 (3H, s), 2.28-2.36 (2H, m), 2.31 (3H, s), 2.79 (3H, s), 3.09-3.20 (2H, m), 3.29 (3H, s), 3.80 (3H, s), 3.85-4.04 (2H, m), 4.18-4.28 (2H, m), 6.57-6.66 (2H, m), 6.80-6.95 (4H, m), 7.20-7.25 (1H, m), 7.72 (1H, br), 8.51 (1H, br)
 - 6) 4-[2-(3-Aminoprop-1-yl)oxy-4-chlorobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carb-

onylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.45-1.86 (8H, m), 2.23 (3H, s), 2.29-2.43 (2H, m), 2.78 (3H, s), 3.05-3.16 (2H, m), 3.23 (3H, s), 3.78 (3H, s), 3.82-4.03 (2H, m), 4.18-4.32 (2H, m), 6.54-6.64 (2H, m), 6.78-7.08 (4H, m), 7.94 (1H, d, J=8Hz), 8.58 (1H, br)

7) 4-[2-(3-Aminoprop-1-yl)oxy-4-methoxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)-carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.40-1.89 (6H, m), 2.28 (3H, s), 2.30-2.61 (6H, m), 2.70-3.04 (4H, m), 3.08-3.25 (2H, m), 3.28 (3H, s), 3.80 (6H, s), 3.82-4.08 (2H, m), 4.26 (2H, br), 6.49-6.66 (4H, m), 6.78-7.00 (3H, m), 7.93-8.02 (1H, m), 8.30 (1H, br), 8.52 (2H, br)

8) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO- d_6 , δ): 1.42 (2H, br), 1.53 (2H, br), 1.74 (2H, br), 2.03 (2H, br), 2.13-2.20 (2H, m), 2.30-2.38 (2H, m), 2.66 (3H, s), 2.67 (3H, s), 2.94 (4H, br), 3.20 (3H, s), 3.28-3.40 (2H, m), 3.73 (3H, s), 3.82-4.08 (4H, m), 4.33-4.40 (2H, m), 4.47-4.57 (1H, m), 6.82-7.00 (4H, m), 7.10-7.29 (4H, m), 7.53-7.60 (1H, m), 8.00 (1H, d, J=7Hz), 8.22-8.30 (1H, m)

9) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methyl-N-methyl-N- [2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.40-1.53 (2H, m), 1.53-1.65 (2H, m), 1.66-1.82 (2H, m), 2.01-2.13 (2H, m), 2.18 (3H, s), 2.23 (3H, s), 2.36-2.46 (2H, m), 2.73-2.74 (3H, s), 2.78-3.08 (6H, m), 3.18 (3H, s), 4.27 (2H, br), 4.40-4.50 (1H, m), 6.65 (1H, d, J=6Hz), 6.82 (1H, s), 6.98-7.13 (3H, m), 7.17-7.30 (2H, m), 7.45-7.57 (2H, m), 7.22 (1H, d, J=6Hz), 9.67 (1H, s)

10) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-ethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride NMR (DMSO-d $_6$, δ) : 1.23 (3H, t, J=6Hz), 1.38-1.50 (2H, m), 1.50-1.65 (2H, m), 1.65-1.82 (2H, m), 2.05-2.17 (2H, m), 2.21 (3H, s), 2.32-2.43 (2H, m), 2.70-2.73 (3H, m), 2.80-3.08 (7H, m), 3.18 (3H, s), 3.22-3.55 (6H, m), 3.92-4.15 (2H, m), 4.32-4.48 (4H, m), 6.63 (1H, d, J=7Hz), 6.83 (1H, s), 6.89-6.92 (2H, m), 7.02 (1H, d, J=7Hz), 7.13 (1H, t, J=6Hz), 7.29 (1H, d, J=7Hz), 7.58 (1H, t, J=7Hz), 7.99 (1H, d, J=7Hz), 8.18-8.27 (1H, m)

Example 93

5

10

15

20

25

40

45

- 35 [0407] The following compounds were obtained according to similar manners to those of Examples 1 and 16.
 - 1) 4-[2-(Dimethylamino)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d $_6$, δ) : 1.36-1.65 (4H, m), 1.67-1.82 (2H, m), 2.22 (3H, s), 2.38 (2H, t, J=7Hz), 2.64-3.14 (12H, m), 3.18 (3H, s), 3.28-3.42 (2H, m), 3.50 (1H, m), 3.73 (3H, s), 3.79-4.14 (3H, m), 4.42 (1H, m), 6.64 (1H, d, J=8Hz), 6.82 (1H, s), 6.83-6.97 (2H, m), 7.02 (1H, d, J=8Hz), 7.35 (1H, m), 7.52-7.67 (2H, m), 8.07 (1H, d, J=8Hz), 8.14 (1H, m)
 - 2) 4-[2-(Dimethylaminosulfonyl)benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide hydrochloride NMR (DMSO-d $_6$, δ): 1.38-1.64 (4H, m), 1.67-1.82 (2H, m), 2.23 (3H, s), 2.38 (2H, t, J=7Hz), 2.69 (6H, s), 2.74 (3H, s), 2.80-3.12 (4H, m), 3.18 (3H, s), 3.23-3.52 (2H, m), 3.59 (3H, s), 3.81-4.16 (3H, m), 4.44 (1H, m), 6.66 (1H, d, J=9Hz), 6.77-6.96 (3H, m), 7.02 (1H, d, J=9Hz), 7.51 (1H, m), 7.60-7.92 (4H, m)
- 3) 3-Methoxy-4-[2-(morpholinosulfonyl)benzoyl]amino-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbo-nylpent-1-yloxy]phenyl]benzamide hydrochloride
 NMR (DMSO-d₆, δ): 1.37-1.65 (4H, m), 1.66-1.83 (2H, m), 2.23 (3H, s), 2.32-2.44 (2H, m), 2.73 (3H, s), 2.81-3.10 (6H, m), 3.18 (3H, s), 3.25-3.71 (11H, m), 3.80-4.20 (3H, m), 4.42 (1H, m), 6.66 (1H, d, J=8Hz), 6.76-6.96 (3H, m), 7.02 (1H, d, J=8Hz), 7.53 (1H, d, J=8Hz), 7.62-7.93 (4H, m), 8.31 (1H, s)
 - 4) 4-[2-(Isoprop-1-yI)oxybenzoyI]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yI)carbon-ylpent-1-yloxy]phenyI]benzamide hydrochloride NMR (DMSO-d $_{6}$, δ) : 1.39 (6H, d, J=7Hz), 1.38-1.66 (4H, m), 1.67-1.83 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7Hz),

2.76 (3H, s), 2.82-3.11 (4H, m), 3.18 (3H, s), 3.74 (3H, s), 3.79-4.18 (5H, m), 4.36-4.52 (1H, m), 4.98 (1H, m), 6.65 (1H, d, J=8Hz), 6.73-7.17 (5H, m), 7.30 (1H, d, J=8Hz), 7.54 (1H, dd, J=8, 8Hz), 8.04 (1H, d, J=8Hz), 8.31 (1H, d, J=8Hz)

5 Example 94

10

15

25

30

[0408] The following compound was obtained according to similar manners to those of Examples 16 and 30. 4-[2-[2-[(3-Aminoprop-1-yl)oxy]phenyl]vinyl]-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)car-bonylpent-1-yloxylphenyl]benzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.33-1.64 (4H, m), 1.64-1.83 (2H, m), 1.95-2.17 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=7Hz), 2.72 (3H, s), 2.78-3.10 (6H, m), 3.15 and 3.16 (total 3H, s), 3.28-3.60 (2H, m), 3.64 (3H, s), 3.80-4.20 (5H, m), 4.42 (1H, m), 6.44-7.60 (12H, m), 8.00-8.26 (2H, m)

Example 95

[0409] The following compounds were obtained according to similar manners to those of Examples 1 and 43.

- 1) 4-(2-Hydroxybenzoyl)amino-3-methoxy-N-[2-[4-(4-dimethylaminopiperidin-1-yl)carbonyl-4-methyl]phenyl-methoxy]phenyl-N-methylbenzamide
- 20 MASS (m/z): 637 (M+1)
 - 2) 4-(2-Hydroxy)benzoylamino-3-methoxy-N-methyl-N-[2-[3-(4-methylpiperazin-1-yl)carbonylmethoxyprop-1-yl] oxy]-phenylbenzamide NMR (CDCl₃, δ) : 2.05-2.16 (2H, m), 2.28 (3H, s), 2.33-2.40 (4H, m), 3.35 (3H, s), 3.40-3.45 (2H, m), 3.57-3.63

(2H, m), 3.69 (2H, t, J=7.5Hz), 3.78 (3H, s), 3.94-4.11 (2H, m), 4.12 (2H, s), 6.79-7.04 (7H, m), 7.18 (1H, t, J=7Hz), 7.42 (1H, t, J=7Hz), 7.50 (1H, d, J=7Hz), 8.20 (1H, d, J=7Hz), 8.81 (1H, s)

- 3) 4-(2-Hydroxy)benzoyl-3-methoxy-N-[2-[(E)-5-(4-dimethylaminopiperidin-1-yl)carbonyl-4-penten-1-yl]oxy-4-methyl]phenyl-N-methylbenzamide
- NMR (CDCl₃, δ): 1.33-1.53 (2H, m), 1.84-2.05 (4H, m), 2.27 (3H, s), 2.33 (3H, s), 2.40 (3H, s), 2.30-4.13 (11H, m), 3.32 (3H, s), 4.67 (1H, m), 6.30 (1H, d, J=15Hz), 6.55-6.66 (2H, m), 6.78-7.56 (8H, m), 8.18 (1H, m)

Example 96

[0410] The following compound was obtained according to similar manners to those of Examples 4, 16 and 45. 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-(3-carboxyprop-1-yl)oxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride

NMR (DMSO- d_6 , δ): 1.38-1.52 (2H, m), 1.52-1.65 (2H, m), 1.67-1.93 (4H, m), 2.05-2.16 (2H, m), 2.01 (3H, s), 2.29-2.43 (5H, m), 2.73 (3H, s), 3.22-3.56 (4H, m), 3.82-4.14 (5H, m), 4.30-4.47 (3H, m), 8.63 (1H, d, J=7Hz), 8.81 (1H, s), 8.88-8.92 (2H, m), 7.03 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.27 (1H, d, J=7Hz), 7.56 (1H, t, J=6Hz), 7.96 (1H, d, J=6Hz), 8.22 (1H, d, J=7Hz)

Example 97

45 [0411] The following compound was obtained according to similar manners to those of Preparation 4 and Example 16. 4-(2-Aminobenzyloxy)-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy] phenyll-benzamide dihydrochloride

NMR (DMSO-d₆, δ) : 1.35-1.64 (4H, m), 1.64-1.81 (2H, m), 2.23 (3H, s), 2.39 (2H, t, J=7Hz), 2.75 (3H, s), 2.80-3.09 (2H, m), 3.16 (3H, s), 3.27-3.50 (2H, m), 3.57 (3H, s), 3.73-4.15 (5H, m), 4.43 (1H, m), 5.08 (2H, s), 6.64 (1H, d, J=8Hz), 6.76-7.42 (9H, m)

Example 98

55

[0412] The following compound was obtained according to similar manners to those of Examples 14 and 16.

4-[2-(3-Acetylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]phenyl]benzamide hydrochloride

NMR (DMSO- d_6 , δ): 1.36-1.50 (2H, m), 1.50-1.64 (2H, m), 1.67-1.84 (2H, m), 1.92-2.06 (2H, m), 2.22 (3H, s), 2.32-2.44 (2H, m), 2.50 (3H, s), 2.74 and 2.75 (total 3H, s), 2.81-3.08 (3H, m), 3.19 (3H, s), 3.30-3.54 (3H, m), 3.70

(3H, s), 3.79-4.16 (3H, m), 4.20-4.30 (2H, m), 6.64 (1H, d, J=8Hz), 6.81 (1H, s), 6.83-6.97 (2H, m), 7.03 (1H, d, J=8Hz), 7.12 (1H, dd, J=8, 8Hz), 7.25 (1H, d, J=8Hz), 7.51-7.61 (1H, m), 7.92-8.08 (2H, m), 8.28 (1H, d, J=8Hz)

Example 99

5

10

15

20

25

30

[0413] The following compound was obtained according to similar manners to those of Examples 15 and 26. 4-[2-(3-Dimethylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-

1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride

NMR (CDCl₃, δ): 1.46-1.87 (6H, m), 2.26 (3H, s), 2.37 (2H, t, J=5Hz), 2.50 (2H, br), 2.76 (6H, s), 2.77 (6H, s), 3.02-3.30 (3H, m), 3.29 (3H, s), 3.79 (3H, s), 3.80-4.04 (2H, m), 4.33 (2H, br), 6.54-6.62 (2H, m), 6.72-7.13 (5H, m), 8.05 (1H, d, J=8Hz), 8.37 (1H, d, J=8Hz), 9.85 (1H, br)

Example 100

[0414] The following compound was obtained according to similar manners to those of Examples 8 and 45.

4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-(5-dimethylaminocarbonyl)pent-1-yloxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.51-2.19 (10H, m), 2.27 (3H, s), 2.35 (2H, t, J=6Hz), 2.92 (3H, s), 3.00 (3H, s), 3.32 (3H, s), 3.77 (3H, s), 3.80-4.08 (2H, m), 4.29 (2H, t, J=4Hz), 6.55-6.76 (2H, m), 6.83-7.20 (5H, m), 7.46 (1H, br), 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

Example 101

[0415] The following compound was obtained according to similar manners to those of Examples 16 and 41.

4-(2-Aminobenzoyl)amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy] phenyl]-benzamide dihydrochloride

NMR (DMSO-d₆, δ): 1.38-1.66 (4H, m), 1.68-1.83 (2H, m), 2.24 (3H, s), 2.34-2.44 (2H, m), 2.76 (3H, s), 2.80-3.09 (3H, m), 3.19 (3H, s), 3.30-3.53 (3H, m), 3.64 (3H, s), 3.80-4.51 (4H, m), 6.60-6.76 (2H, m), 6.79-6.97 (4H, m), 7.05 (1H, d, J=9Hz), 7.26 (1H, dd, J=9, 9Hz), 7.58-7.72 (2H, m), 9.19 (1H, br s)

Example 102

[0416] To a solution of 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (7.35 g) in ethanol (230 ml) was added 0.5M sulfuric acid in ethanol (22.3 ml) at 80°C. The mixture was stirred for 24 hours at ambient temperature. The precipitate was filtered through a glass funnel followed by rinsing with ethanol. The resulting white, crystalline solid was dried over air for 7 days to give 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-l-yloxy]phenyl]benzamide sulfate (5.2 g).

NMR (DMSO- d_6 , δ): 1.35-1.63 (4H, m), 1.65-1.81 (2H, m), 2.04-2.40 (14H, m), 2.96 (2H, t, J=7Hz), 3.03-4.06 (12H, m), 4.35 (2H, t, J=7Hz), 6.64 (1H, d, J=8Hz), 6.83(1H, s), 6.89 (1H, d, J=8Hz), 6.98 (1H, s), 7.02 (1H, d, J=8Hz), 7.13 (1H, dd, J=8, 8Hz), 7.26 (1H, d, J=8Hz), 7.59 (1H, dd, J=8, 8Hz), 8.01 (1H, d, J=8Hz), 8.23 (1H, d, J=8Hz)

Example 103

[0417] To a solution of 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]-amino-3-methoxy-N-methyl-N-[4-methyl-2-[5- (4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide (10.7 g) in ethanol (155 ml) was added a solution of L-(+) tartaric acid (2.43 g) in ethanol (60 ml) at 80°C. The solution was stirred at ambient temperature for 1 hour. The solvent was removed at reduced pressure and resulting solid was dissolved in distilled water (1 ℓ) and the solution was filtered through micro filter and the filtrate was lyophilized to give 4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]phenyl]benzamide tartrate (5.2 g).

NMR (DMSO- d_6 , δ) : 1.34-1.62 (4H, m), 1.66-1.81 (2H, m), 2.03-2.38 (14H, m), 2.96 (2H, t, J=7Hz), 3.18 (3H, s), 3.37-3.48 (4H, m), 3.74 (3H, s), 3.80-4.04 (4H, m), 4.33 (2H, t, J=7Hz), 6.64 (1H, d, J=8Hz), 6.83 (1H, s), 6.89 (1H, d, J=8Hz), 6.97 (1H, s), 7.02 (1H, d, J=8Hz), 7.13 (1H, dd, J=8, 8Hz), 7.26 (1H, d, J=8Hz), 7.58 (1H, dd, J=8, 8Hz), 8.02 (1H, d, J=8Hz), 8.25 (1H, d, J=8Hz)

Example 104

55

[0418] The following compounds were obtained according to similar manners to those of Examples 16 and 45.

- 1) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-(2-methylphenyl)benzamide hydrochloride NMR (DMSO- d_6 , δ): 2.06-2.32 (5H, m), 2.87-3.05 (2H, m), 3.26 (3H, s), 3.72 (3H, s), 4.35 (2H, t, J=7Hz), 6.84-6.98 (2H, m), 7.08-7.36 (6H, m), 7.58 (1H, dd, J=8, 8Hz), 7.89-8.16 (4H, m), 8.26 (1H, d, J=8Hz)
- 2) 4-[3-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-dimethylaminopiperidin-5 1-yl)carbonylpent-1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, 6): 1.38-1.78 (12H, m), 1.98-2.07 (4H, m), 2.24 (3H, s), 2.36 (2H, t, J=8Hz), 2.43-2.54 (1H, m), 2.67 (3H, s), 2.69 (3H, s), 2.92-3.01 (2H, m), 3.19 (3H, s), 3.64 (3H, s), 3.88-4.03 (1H, m), 4.13 (2H, t, J=8Hz), 4.48-4.57 (1H, m), 6.65 (1H, d, J=8Hz), 6.82 (1H, s), 6.88-6.93 (2H, m), 7.03 (1H, d, J=8Hz), 7.17 (1H, d, J=8Hz), 10 7.38-7.52 (3H, m), 7.62 (1H, d, J=8Hz), 7.92-8.01 (2H, br), 9.33 (1H, s) ESI-MASS (m/z): 688 (M+H)
 - 4-[N-Methyl-2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-methyl-2-[5-(4-methylpiperazin-1-vl)carbonylpent-1-yloxylphenyl]benzamide dihydrochloride NMR (DMSO-de, δ): 1.32-1.65 (8H, m), 2.27 (3H, s), 2.33-2.40 (2H, m), 2.77 (3H, s), 2.86-3.02 (5H, m), 3.12 (3H,

s), 3.33-3.70 (13H, m), 4.00-4.10 (1H, m), 4.40-4.50 (1H, m), 6.58-6.78 (6H, m), 6.84-7.00 (3H, m), 7.20 (1H, t, J=8Hz), 7.89-7.97 (2H, br s) ESI-MASS (m/z): 674

15

30

35

50

- 4) 4-[2-[3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-[4-[5-(4-methylpiperazin-1-yl)carbonylpent-20 1-yloxy]phenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.37-1.73 (8H, m), 2.12-2.20 (2H, m), 2.37 (2H, t, J=8Hz), 2.72-2.79 (4H, m), 2.89-3.01 (4H, m), 3.29-3.40 (4H, m), 3.80 (3H, s), 3.89 (2H, t, J=8Hz), 3.98-4.04 (1H, m), 4.34-4.41 (3H, m), 6.80-6.86 (3H, m), 7.04-7.19 (4H, m), 7.29 (1H, t, J=8Hz), 7.59 (1H, t, J=8Hz), 7.95-8.06 (4H, m), 8.27 (1H, d, J=8Hz) 25 ESI-MASS (m/z): 646 (M+H)
 - 5) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylhomopiperazin-1-yl)carbonvlpent-1-vl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.47-1.89 (8H, m), 2.27 (3H, s), 2.30-2.46 (4H, m), 2.77-2.96 (2H, m), 3.15-3.63 (11H, m), 3.30 (3H, s), 3.76-4.04 (5H, m), 4.15-4.40 (2H, m), 6.60 (2H, br), 6.78-7.11 (5H, m), 7.43 (1H, br), 7.98-8.05 (1H, m), 8.29-8.37 (1H, m), 8.52 (2H, br)
 - 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2-dimethylaminoethyl)aminocarbonyl]-pent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.38-1.87 (6H, m), 2.06-2.45 (4H, m), 2.22 (3H, s), 2.25-2.44 (2H, m), 2.76 (3H, s), 2.80 (3H, s), 3.07-3.22 (2H, m), 3.24 (3H, s), 3.54 (2H, br), 3.77-3.95 (2H, m), 3.80 (3H, s), 4.24 (2H, br), 6.57-6.62 (2H, m), 6.80-7.08 (4H, m), 7.39-7.47 (1H, m), 7.97 (1H, d, J=8Hz), 8.20-8.38 (2H, m)
- 7) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(2-dimethylaminoethyl)-N-methylaminocarbonyl]pent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride 40 NMR (CDCl₃, δ): 1.37-1.82 (6H, m), 2.22 (3H, s), 2.29-2.47 (4H, m), 2.85 (6H, s), 3.02 (3H, s), 3.08-3.33 (6H, m), 3.26 (3H, s), 3.58-3.95 (4H, m), 3.83 (3H, s), 4.28 (3H, br), 6.55-6.65 (2H, m), 6.82-7.06 (5H, m), 7.39-7.47 (1H, m), 8.03 (1H, d, J=8Hz), 8.33 (1H, br)
- 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(3-dimethylaminoprop-1-yl)car-45 bamovl]-pent-1-vl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.37-1.99 (8H, m), 2.23 (3H, s), 2.25-2.44 (4H, m), 2.76 (6H, s), 3.05-3.41 (6H, m), 3.22 (3H, s), 3.78-3.94 (2H, m), 4.22 (2H, br), 6.56 (2H, br), 6.81-7.04 (5H, m), 7.39 (1H, br), 8.00 (1H, br), 8.29 (1H, br), 8.56 (3H, br)
 - 4-[2-(3-Aminoprop-1-vl)oxybenzovl]amino-3-methoxy-N-methyl-N-[2-[5-[N-(3-dimethylaminoprop-1-yl)-N-9) methylcarbamoyl]pent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ): 1.33-1.99 (8H, m), 2.26 (3H, s), 2.26-2.47 (4H, m), 2.78 (6H, s), 2.96 (3H, s), 3.05-3.39 (6H, m), 3.26 (3H, s), 3.79-3.99 (2H, m), 3.78 (3H, s), 4.30 (2H, br), 6.62 (2H, m), 6.83-7.08 (5H, m), 7.45 (1H, br), 8.01 (1H, br), 8.35 (1H, br), 8.64 (2H, br)
 - 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-hydroxypiperidin-1-yl)carbon-10) ylpent-1-yl]oxy-4-methylphenyl]benzamide hydrochloride

NMR (CDCl₃, δ): 1.32-2.06 (10H, m), 2.23 (3H, s), 2.25-2.40 (4H, m), 2.99-3.07 (2H, m), 3.23 (3H, s), 3.43-4.00 (7H, m), 4.23 (2H, br), 6.52-6.63 (2H, m), 6.81-7.12 (4H, m), 7.38-7.49 (1H, m), 7.97 (1H, br), 8.30 (1H, br)

- 11) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-aminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ) : 1.40-1.85 (12H, m), 2.24 (3H, s), 2.28-2.45 (2H), 2.87-3.11 (7H, m), 3.25 (3H, s), 3.84-4.00 (2H, m), 3.79 (3H, s), 4.25 (2H, br), 6.54-6.63 (2H, m), 6.95-7.09 (4H, m), 7.43 (1H, br), 8.04 (1H, br), 8.41 (1H, br)
- 12) 4-[2- (3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)aminocarbonylpent-1-yl]oxy-4-methylphenyl]benzamide trihydrochloride
 NMR (CDCl₃, δ): 1.32-1.80 (6H, m), 2.04-2.15 (2H, m), 2.26 (3H, s), 2.90-3.36 (10H, m), 3.24 (3H, s), 3.76 (3H, s), 3.85-4.02 (2H, m), 4.26 (2H, br), 6.54-6.63 (2H, m), 6.75-7.09 (4H, m), 7.40-7.49 (1H, m), 8.00 (1H, d, J=8Hz), 8.39 (1H, br), 8.62 (1H, br)

5

20

25

30

35

- 13) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-[bis(2-hydroxyeth-1-yl)amino]carbon-ylpent-1-yl]oxy-4-methylphenyl]benzamide hydrochloride NMR (CDCl₃, δ): 1.50-1.88 (6H, m), 2.05-2.54 (4H, m), 2.28 (3H, s), 3.03 (2H, br), 3.30 (3H, s), 3.41-3.69 (8H, m), 3.78 (3H, s), 3.82-4.00 (2H, m), 4.23 (2H, br), 6.59-6.69 (2H, m), 6.81-7.22 (4H, m), 7.46 (1H, br), 8.09 (1H, br), 8.38 (1H, br)
 - 14) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2,2-dimethylhydrazino)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ) : 1.36-1.82 (6H, m), 2.22 (3H, s), 2.26-2.39 (4H, m), 2.88-3.11 (2H, m), 3.11 (6H, s), 3.32 (3H, s), 3.70-3.94 (2H, m), 3.77 (3H, s), 4.21 (2H, br), 6.52-6.61 (2H, m), 6.80-7.14 (5H, m), 7.42 (1H, br), 7.97 (1H, br), 8.25 (3H, br)
 - 15) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(carbamoylmethylamino)carbon-ylpent-1-yl]oxy-4-methylphenyl]benzamide hydrochloride NMR (CDCl₃, δ): 1.20-1.68 (6H, m), 2.08-2.41 (7H, m), 2.97-3.35 (5H, m), 3.29-4.27 (9H), 6.38-7.04 (6H, m), 7.90-8.29 (6H, m)
 - 16) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(2-carbamoylethylamino)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide hydrochloride NMR (CDCl₃, δ): 1.36-1.81 (6H, m), 2.06-2.40 (6H, m), 2.23 (3H, s), 3.13 (2H, br), 3.22 (3H, s), 3.32 (2H, br), 3.55-3.93 (2H, m), 3.78 (3H, s), 4.22 (2H, br), 6.53-6.63 (2H, m), 6.81-7.04 (5H, m), 7.39 (1H, br), 7.77 (1H, br), 7.99 (1H, br), 8.28-8.47 (3H, m)
 - 17) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-pyridylaminocarbonyl)pent-1-yl] oxy-4-methylphenyl]benzamide dihydrochloride NMR (CDCl₃, δ) : 1.25-1.83 (6H, m), 2.10-2.49 (4H, m), 2.22 (3H, s), 2.90-3.37 (2H, m), 3.23 (3H, s), 3.68-3.95 (2H, m), 3.76 (3H, s), 4.21 (2H, br), 6.51-6.63 (2H, m), 6.66-7.04 (6H, m), 7.88-8.51 (7H, m)
 - 18) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N- [2- [5-[4-(diethylaminopiperidin-1-yl)carbo-nylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride
- NMR (CDCl₃, δ): 1.38 (6H, t, J=8Hz), 1.45-1.90 (10H, m), 1.93-2.08 (2H, m), 2.28 (3H, s), 2.30-2.48 (2H, m), 2.92-3.23 (5H, m), 3.25-3.36 (4H, m), 3.29 (3H, s), 3.69 (3H, s), 3.75-4.08 (3H, m), 4.28 (2H, br), 6.54-6.65 (2H, m), 6.81-7.08 (5H, m), 7.45 (1H, br), 7.93 (1H, br), 8.36 (1H, br)
- 19) 4- [2- (3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[6-(4-methylpiperazin-1-yl)hex-1-yl] oxy-4-methylphenyl]benzamide trihydrochloride NMR (CDCl₃, δ) : 1.36-1.94 (8H, m), 2.21 (3H, s), 2.25-2.42 (2H, m), 2.90-3.39 (6H, m), 3.10 (3H, s), 3.58-4.04 (6H, m), 3.82 (3H, s), 4.18 (1H, br), 6.46-6.63 (2H, m), 6.74-6.98 (4H, m), 7.38 (1H, br), 7.97 (1H, br), 8.28 (1H, br), 8.45 (2H, br)
- 20) 4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-(2-pyridyl)phenylmethyl]oxy-4-methylphenyl]-N-methylbenzamide dihydrochloride NMR (CDCl₃, δ) : 2.29 (3H, s), 2.39 (2H, br), 3.17 (2H, br), 3.37 (3H, s), 3.44 (3H, br), 4.12-4.30 (2H, m), 4.73 (1H, br), 5.07 (1H, br), 6.61 (1H, br), 6.70-6.79 (2H, m), 6.94-7.03 (2H, m), 7.12 (1H, d, J=8Hz), 7.38-7.47 (3H, m),

7.89-8.23 (5H, m), 8.73 (3H, br), 8.90 (1H, br)

30

45

- 21) $4-[2-(3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-[4-[(4-methylpiperazin-1-yl)carbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide dihydrochloride NMR (CDCl₃, <math>\delta$): 1.62-2.04 (4H, m), 2.23 (3H, s), 2.27-2.40 (2H, m), 2.74 (3H, s), 3.03-3.14 (2H, m), 3.22 (3H, s), 3.35-3.51 (4H, m), 3.78 (3H, s), 3.85-3.96 (2H, m), 4.26 (2H, br), 6.57-6.64 (2H, m), 6.67-7.09 (5H, m), 7.42 (1H, m), 7.96 (1H, d, J=8Hz), 8.30 (1H, d, J=8Hz), 8.60 (3H, br)
- 22) 4-[2-(3-Aminoprop-1-yl)oxybenzoylamino]-3-methoxy-N-[2-[4-[(4-dimethylaminopiperidin-1-yl)carbonylamino]but-1-yl]oxy-4-methylphenyl]-N-methylbenzamide dihydrochloride
 NMR (CDCl₃, δ) : 1.58-2.12 (10H, m), 2.27 (3H, s), 2.30-2.48 (2H, m), 2.57-2.81 (8H, m), 3.05-3.31 (7H, m), 3.27 (3H, s), 3.75-3.99 (5H, m), 4.27 (1H, br), 6.57-6.63 (2H, m), 6.85-7.09 (5H, m), 7.44 (2H, br), 7.96 (1H, br), 8.34 (1H, br), 8.75 (1H, br)
- 23) 4- [2- (3-Aminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-[2-(4-ureidobut-1-yl)oxy-4-methylphenyl]-N-methylbenzamide hydrochloride
 NMR (CDCl₃, δ): 1.42-1.81 (4H, m), 2.00-2.15 (2H, m), 2.25 (3H, s), 2.88 (2H, t, J=5Hz), 2.92 (2H, br), 3.30 (3H, s), 3.63-3.80 (2H, m), 3.71 (3H, s), 4.21 (2H, t, J=5Hz), 6.51 (1H, s), 6.71 (1H, d, J=8Hz), 6.85-7.12 (5H, m), 7.44 (1H, dd, J=2, 8Hz), 8.12 (1H, d, J=8Hz), 8.36 (1H, d, J=8Hz)
- 24) 4-[2-[3-Aminoprop-1-yl)oxy]benzoyl]amino-3-chloro-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbon-ylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.34-1.50 (2H, m), 1.50-1.62 (2H, m), 1.65-1.80 (2H, m), 1.98-2.17 (4H, m), 2.22 (3H, s), 2.30-2.40 (2H, m), 2.66 (3H, s), 2.67 (3H, s), 2.85-3.05 (3H, m), 3.17 (3H, s), 3.33 (1H, br), 3.80-4.07 (3H, m), 4.33-4.42 (2H, m), 4.47-4.57 (1H, m), 6.68 (1H, d, J=7Hz), 6.82 (1H, s), 7.08-7.23 (3H, m), 7.29 (1H, d, J=7Hz), 7.41 (1H, s), 7.68 (1H, t, J=6Hz), 7.92 (1H, d, J=7Hz), 8.09 (1H, d, J=7Hz)
 - 25) 3-(3-Aminoprop-1-yl)oxy-4-[2-[3-aminoprop-1-yl)oxy]-benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide trihydrochloride NMR (DMSO-d₆, δ): 1.37-1.50 (2H, m), 1.50-1.62 (2H, m), 1.67-1.80 (2H, m), 1.97-2.19 (4H, m), 2.22 (3H, s), 2.30-2.41 (2H, m), 2.57 (1H, s), 2.92 (6H, br), 3.17 (3H, s), 3.68 (1H, br), 3.93 (2H, br), 4.10 (2H, br), 4.40 (2H, br), 6.66 (1H, d, J=6Hz), 6.78-6.87 (2H, m), 6.95-7.04 (2H, m), 7.12 (1H, t, J=6Hz), 7.29(1H, d, J=7Hz), 7.57 (1H, t, J=6Hz), 7.93 (1H, d, J=6Hz), 8.14 (1H, d, J=7Hz)
- 26) 2-Amino-4-[2-[(3-aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide trihydrochloride
 NMR (DMSO-d₆, δ): 1.41-1.51 (2H, m), 1.51-1.66 (1H, m), 1.74-1.84 (1H, m), 1.98-2.12 (4H, m), 2.30-2.40 (2H, m), 2.67 (3H, s), 2.68 (3H, s), 2.89-3.06 (4H, m), 3.16 (3H, s), 3.33 (2H, br), 3.96-4.10 (4H, m), 4.13-4.20 (2H, m), 4.47-4.58 (1H, m), 6.60 (1H, d, J=7Hz), 6.78 (2H, s), 6.85 (1H, s), 6.97-7.07 (2H, m), 7.13 (1H, d, J=7Hz), 7.27 (1H, s), 7.43-7.56 (2H, m)
 - 27) 2-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5- (4-dimethylamnopiperidin-1-yl) carbonylpent-1-yloxy]-4-methylphenyl]-5-pyridinecarboxamide trihydrochloride NMR (DMSO-d₆, δ): 1.32-1.80 (8H, m), 1.97-2.20 (4H, m), 2.22 (3H, s), 2.27-2.40 (3H, m), 2.65 (3H, s), 2.67 (3H, s), 2.92-3.10 (4H, m), 3.19 (3H, s), 3.33 (1H, br), 3.80-4.07 (3H, m), 4.22-4.29 (2H, m), 6.69 (1H, d, J=7Hz), 6.82 (1H, s), 7.07-7.14 (2H, m), 7.20 (1H, d, J=7Hz), 7.56 (1H, t, J=6Hz), 7.66 (1H, d, J=6Hz), 7.78 (1H, d, J=7Hz), 8.00-8.04 (1H, m), 8.23 (1H, s)
- 28) $4-[N-[2-[(3-Aminoprop-1-yl)oxy]phenyl]amino]methyl-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl) carbonylpent-1-yloxy]-4-methylphenyl]benzamide trihydrochloride NMR (DMSO-d₆, <math>\delta$): 1.35-1.49 (2H, m), 1.49-1.62 (2H, m), 1.62-1.79 (2H, m), 2.01-2.16 (2H, m), 2.23 (3H, s), 2.34-2.40 (2H, m), 2.71 and 2.72 (total 3H, s), 2.76-3.12 (8H, m), 3.17 (3H, s), 3.27-3.41 (2H, m), 3.41-3.54 (4H, m), 3.70-3.81 (1H, m), 3.89-3.98 (1H, m), 4.02-4.08 (3H, m), 4.25 (2H, s), 4.39-4.45 (1H, m), 6.60-6.80 (6H, m), 6.93 (2H, s), 6.98 (1H, d, J=7Hz), 7.10(1H, d, J=7Hz)
 - 29) 4-[2-[(3-Aminoprop-1-yl)oxy]phenyl]oxymethyl-3-methoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride NMR (DMSO-d $_6$, δ): 1.39-1.50 (2H, m), 1.50-1.63 (2H, m), 1.65-1.82 (2H, m), 1.97-2.10 (2H, m), 2.21 (3H, s),

2.35-2.41 (2H, m), 2.71 and 2.72 (total 3H, s), 2.78-3.10 (7H, m), 3.18 (3H, s), 3.29-3.41 (2H, m), 3.41-3.67 (4H, m), 3.82 (1H, br), 3.89-4.00 (1H, m), 4.00-4.12 (3H, m), 4.38-4.48 (1H, m), 4.57 and 4.93 (total 2H, s), 6.61 (1H, d, J=7Hz), 6.69-6.97 (6H, m), 6.97-7.07 (2H, m), 7.20-7.25 (1H, m)

- 30) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-benzyloxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.37-1.50 (2H, m), 1.50-1.63 (2H, m), 1.63-1.79 (2H, m), 1.79-1.91 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=6Hz), 2.60-2.77 (5H, m), 2.79-3.10 (4H, m), 3.15 (3H, s), 3.30-3.67 (3H, m), 3.77-4.12 (5H, m), 4.37-4.49 (1H, m), 5.06 (2H, s), 6.62 (1H, d, J=6Hz), 6.82 (1H, s), 6.90 (1H, d, J=7Hz), 6.97 (1H, d, J=7Hz), 7.03 (1H, s), 7.12 (1H, t, J=7Hz), 7.22 (1H, d, J=7Hz), 7.30-7.46 (5H, m), 7.54 (1H, t, J=6Hz), 7.97 (1H, d, J=7Hz), 8.23 (1H, d, J=7Hz)
 - 31) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-hydroxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride NMR (DMSO-d $_6$, δ) : 1.43 (2H, br), 1.49-1.62 (2H, m), 1.63-1.82 (2H, m), 2.00-2.40 (16H, m), 2.90-2.97 (2H, m), 3.14 (3H, s), 3.30-3.50 (5H, m), 3.89 (2H, br), 4.20-4.38 (2H, m), 6.50-6.68 (2H, m), 6.80 (1H, s), 6.87-6.99 (2H, m), 7.12 (1H, t, J=6Hz), 7.22 (1H, d, J=6Hz), 7.49-7.60 (1H, m), 7.97-8.18 (2H, m)
- 32) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-ethoxycarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride
 NMR (DMSO-d₆, δ): 1.09 and 1.22 (total 3H, t, J=6Hz), 1.37-1.51 (2H, m), 1.51-1.66 (2H, m), 1.67-1.80 (2H, m), 2.05-2.18 (2H, m), 2.23 (3H, s), 2.38 (2H, t, J=6Hz), 2.73-2.74 (3H, m), 2.90-3.10 (5H, m), 3.17 (3H, s), 3.30-3.58 (2H, m), 3.80-4.00 (2H, m), 4.00-4.20 (3H, m), 4.32-4.50 (3H, m), 4.80 (2H, s), 6.62 (1H, d, J=6Hz), 6.82 (1H, s), 6.89-6.92 (2H, m), 7.01 (1H, d, J=7Hz), 7.15 (1H, t, J=6Hz), 7.27 (1H, d, J=7Hz), 7.58 (1H, t, J=6Hz), 8.00 (1H, d, J=6Hz), 8.27 (1H, d, J=7Hz)

15

30

45

- 33) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methoxycarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiper-azin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.35-1.50 (2H, m), 1.50-1.63 (2H, m), 1.63-1.90 (2H, m), 2.00-2.14 (2H, m), 2.21 (3H, s), 2.25-2.43 (2H, m), 2.71 (3H, s), 2.77-3.05 (5H, m), 3.15 (3H, s), 3.18-3.57 (6H, m), 3.70 (3H, s), 3.73-4.12 (3H, m), 4.12-4.49 (3H, m), 4.80 (2H, s), 6.63 (1H, d, J=7Hz), 6.70-7.20 (5H, m), 7.27 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 7.93-8.10 (1H, m), 8.23 (1H, d, J=6Hz)
- 34) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-dimethylaminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride NMR (DMSO-d₆, δ): 1.37-1.49 (2H, m), 1.50-1.62 (2H, m), 1.63-1.79 (2H, m), 1.98-2.10 (2H, m), 2.21 (3H, s), 2.32-2.43 (2H, m), 2.71 (3H, s), 2.86 (3H, s), 2.98 (3H, s), 2.82-3.05 (5H, m), 3.15 (3H, s), 3.90 (2H, br), 4.02-4.12 (2H, m), 4.28-4.38 (2H, m), 4.38-4.48 (1H, m), 4.83 (2H, s), 6.62 (1H, d, J=7Hz), 6.80 (1H, s), 6.82-6.92 (2H, m), 7.00 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.23 (1H, d, J=7Hz), 7.55 (1H, t, J=7Hz), 8.20 (1H, d, J=7Hz)
 - 35) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-methylaminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methyl-piperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride NMR (DMSO-d $_6$, δ) : 1.38-1.51 (1H, m), 1.51-1.65 (2H, m), 1.68-1.80 (2H, m), 2.00-2.23 (2H, m), 2.22 (3H, s), 2.34-2.40 (3H, m), 2.50 (3H, s), 2.58 (2H, br), 2.62 (3H, s), 2.63 (3H, s), 2.90 (4H, br), 3.15 (3H, s), 3.88-3.97 (2H, m), 4.26-4.33 (2H, m), 4.37-4.54 (2H, m), 6.62 (1H, d, J=7Hz), 6.82 (2H, s), 6.88 (1H, d, J=7Hz), 6.97 (1H, d, J=7Hz), 7.12 (1H, t, J=7Hz), 7.22 (1H, d, J=7Hz), 7.57 (1H, t, J=7Hz), 7.90 (1H, d, J=7Hz), 8.12-8.25 (2H, m)
- 36) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-aminocarbonylmethoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-l-yloxy]-4-methylphenyl]benzamide dihydrochloride

 NMR (DMSO-d₆, δ): 1.38-1.52 (2H, m), 1.52-1.67 (2H, m), 1.68-1.83 (2H, m), 2.00-2.15 (2H, m), 2.23 (3H, s), 2.39 (2H, t, J=6Hz), 2.62 and 2.63 (total 3H, s), 2.72 and 2.73 (total 3H, s), 2.80-3.10 (6H, m), 3.15 (3H, s), 3.87-3.98 (2H, m), 4.03-4.13 (1H, m), 6.27-6.37 (1H, m), 6.37-6.56 (2H, m), 6.62 (1H, d, J=7Hz), 6.82 (2H, s), 6.90 (1H, d, J=7Hz), 6.98 (1H, d, J=6Hz), 7.12 (1H, t, J=7Hz), 7.26 (1H, d, J=7Hz), 7.57 (1H, t, J=6Hz), 7.92 (1H, d, J=7Hz), 8.13-8.30 (2H, m)
 - 37) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-3-propoxybenzamide dihydrochloride NMR (DMSO-d₆, δ) : 0.89 (3H, t, J=6Hz), 1.37-1.50 (2H, m), 1.50-1.68 (4H, m), 1.68-1.80 (2H, m), 2.02-2.18 (2H, m), 1.50-1.68 (4H, m), 1.68-1.80 (2H, m), 2.02-2.18 (2H, m)

m), 2.20 (3H, s), 2.38 (2H, t, J=6Hz), 2.47 (3H, s), 2.75-3.12 (5H, m), 3.17 (3H, s), 3.30-3.42 (2H, m), 3.42-3.56 (1H, m), 3.80-4.00 (4H, m), 4.00-4.13 (1H, m), 4.32-4.50 (4H, m), 6.61 (1H, d, J=7Hz), 6.82 (1H, s), 6.88 (1H, s), 6.94 (1H, d, J=7Hz), 7.02 (1H, d, J=7Hz), 7.13 (1H, t, J=7Hz), 7.29 (1H, d, J=7Hz), 7.56 (1H, t, J=7Hz), 7.97 (1H, d, J=7Hz), 8.22 (1H, d, J=7Hz)

38) 4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-isopropoxy-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbon-ylpent-1-yloxy]-4-methylphenyl]benzamide dihydrochloride

NMR (DMSO- d_6 , δ): 1.10-1.27 (6H, m), 1.37-1.50 (2H, m), 1.50-1.64 (2H, m), 1.67-1.82 (2H, m), 2.03-2.07 (2H, m), 2.22 (3H, s), 2.39 (2H, t, J=6Hz), 2.72 and 2.73 (total 3H, s), 2.78-3.12 (6H, m), 3.17 (3H, s), 3.30-3.43 (2H, m), 3.43-3.60 (1H, m), 3.80-4.02 (2H, m), 4.02-4.13 (1H, m), 4.23-4.50 (4H, m), 6.64 (1H, d, J=7Hz), 6.81-6.90 (2H, m), 6.98 (1H, d, J=7Hz), 7.03 (1H, d, J=7Hz), 7.13 (1H, t, J=6Hz), 7.32 (1H, d, J=7Hz) 7.56 (1H, t, J=6Hz), 7.94 (1H, d, J=6Hz), 8.22 (1H, d, J=7Hz)

39) 2-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-N-methyl-N-[2-[5-(4-methylpiperazin-1-yl)carbonylpent-1-yloxy]-4-methylphenyl]-5-thiophenecarboxamide dihydrochloride

NMR (DMSO- d_6 , δ): 1.20-1.38 (2H, m), 1.38-1.52 (2H, m), 1.53-1.70 (2H, m), 1.98-2.10 (2H, m), 2.22-2.32 (2H, m), 2.33 (3H, s), 2.69-2.72 (3H, m), 2.76-3.07 (5H, m), 3.16 (3H, s), 3.27-3.54 (3H, m), 3.78-4.09 (3H, m), 4.10-4.20 (2H, m), 4.33-4.47 (2H, m), 6.15 (1H, br), 6.55 (1H, d, J=5Hz), 6.81 (1H, d, J=7Hz), 6.97 (1H, s], 7.07 (1H, t, J=6Hz), 7.13-7.20 (2H, m), 7.44-7.60 (2H, m)

Example 105

5

10

15

20

30

35

40

45

50

55

[0419] To a solution of 4-[2-[(3-tert-butoxycarbonylaminoprop-1-yl)oxy]benzoyl]amino-3-methoxy-N-methyl-N-(4-hydroxyphenyl)benzamide (50 mg) in chloroform (3.0 ml) was added a solution of 4N hydrogen chloride in ethyl acetate (1.0 ml) and the mixture was stirred at ambient temperature for 2 hours. The resulting mixture was evaporated in vacuo and the residue was solidified with diethyl ether. Diethyl ether was removed in vacuo to give 4-[2-[(3-aminoprop-1-yl) oxy]benzoyl]amino-3-methoxy-N-methyl-N-(4-hydroxyphenyl)-benzamide hydrochloride (40 mg) .

NMR (DMSO- d_6 , δ): 2.11-2.21 (2H, m), 2.96 (2H, q, J=8Hz), 3.30 (3H, s), 3.78 (3H, s), 4.37 (2H, t, J=8Hz), 6.66 (2H, d, J=8Hz), 6.88 (1H, d, J=8Hz), 6.97 (1H, s), 6.99 (2H, d, J=8Hz), 7.15 (1H, t, J=8Hz), 7.27 (1H, d, J=8Hz), 7.55-7.62 (1H, m), 7.97-8.05 (3H, m), 8.28 (1H, d, J=8Hz), 9.54-9.59 (1H, br s)

ESI-MASS (m/z): 450 (M+H)

Example 106

[0420] The following compound was obtained according to a similar manner to that of Example 105.

 $4-[2-[(3-Aminoprop-1-yl)oxy]benzoyl]amino-3-carboxymethoxy-N-methyl-N-cyclohexylbenzamide hydrochloride NMR (DMSO-d₆, <math>\delta$): 1.02-1.10 (2H, m), 1.46-1.80 (8H, m), 2.08-2.12 (2H, m), 2.80 (3H, s), 2.92-2.99 (2H, m), 3.30-3.47 (2H, br), 4.39 (2H, t, J=7Hz), 4.96 (2H, s), 6.98-7.04 (2H, br s), 7.18 (1H, t, J=8Hz), 7.30 (1H, d, J=8Hz), 7.60 (1H, t, J=8Hz), 7.95-8.05 (3H, br), 8.07 (1H, d, J=8Hz), 8.51 (1H, d, J=8Hz)

ESI-MASS (m/z): 484 (M+H)

Example 107

[0421]

1) A solution of 4-[2-[3- (9-fluorenylmethyl)oxycarbonylamininoprop-1-yl]thiobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl)carbonylpent-1-yl]oxy-4-methylphenyl]benzamide (110 mg) in a mixture of N,N-dimethylformamide and piperidine (4:1, 5 ml) was stirred at ambient temperature for 30 minutes and the resulting solution was diluted with ethyl acetate (20 ml). The solution was washed with water (10 ml x 3) and brine, and the solution was dried over potassium carbonate. The solvent was evaporated and the residue was purified on basic silica gel column chromatography (SiO₂ 30 g, 1-15% methanol in chloroform) to give 4- [2- (3-aminoprop-1-yl)thiobenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl]carbonylpent-1-yl]oxy-4-methylphenyl]benzamide.

NMR (CDCl₃, δ): 1.36-1.92 (12H, m), 2.29 (6H, s), 2.30 (3H, s), 2.36 (2H, t, J=5Hz), 2.59 (1H, t, J=11Hz), 2.77 (2H, t, J=5Hz), 2.99 (2H, t, J=5Hz), 3.32 (3H, s), 3.75 (3H, s), 3.85-4.03 (4H, m), 6.57-6.66 (2H, m), 6.84-6.90 (1H, d, J=8Hz), 7.02 (1H, s), 7.39-7.48 (3H, m), 7.65 (1H, d, J=8Hz), 8.30 (1H, d, J=8Hz), 8.80 (1H, s)

2) To a solution of the obtained compound in ethanol (5 ml) was added 1N hydrochloric acid (0.15 ml). The volatile

solvent was removed by evaporation and the residue was lyophilized to give 4-[2-(3-aminoprop-1-yl)thiobenzoyl] amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl]-carbonylpent-1-yl]oxy-4-methylphenyl]benzamide dihydrochloride (45 mg).

NMR (CDCl₃, δ): 1.44-1.92 (6H, m), 2.02-2.16 (2H, m), 2.28 (3H, s), 2.30-2.41 (2H, m), 2.73 (6H, br), 2.99-3.14 (2H, m), 3.27-3.33 (1H, m), 3.31 (3H, s), 3.62-3.79 (4H, m), 3.71 (3H, s), 3.82-4.10 (2H, m), 6.55-6.67 (2H, m), 6.83-7.02 (5H, m), 7.35-7.52 (2H, m), 8.23 (1H, br), 8.54 (2H, br)

Example 108

5

10

15

20

30

35

40

45

50

55

[0422] The following compound was obtained according to a similar manner to that of Example 15.

4-2-(3-Dimethylaminoprop-1-yl)oxybenzoyl]amino-3-methoxy-N-methyl-N-[2-[5-(4-dimethylaminopiperidin-1-yl) carbonylpent-1-yl]oxy-4-methylphenyl]benzamide

NMR (CDCl₃, δ): 1.49-1.60 (2H, m), 1.66-1.95 (4H, m), 2.21 (6H, s), 2.27 (6H, s), 2.35-2.48 (4H, m), 2.58 (2H, m), 2.58 (2H t, J=11Hz), 3.32 (2H, t, J=11Hz), 3.33 (3H, s), 3.80 (3H, s), 3.82-4.00 (2H, m), 4.25 (2H, t, J=5Hz), 4.64 (1H, br), 6.55-6.64 (2H, m), 6.85 (1H, d, J=8Hz), 6.89 (1H, d, J=8Hz), 7.00-7.11 (3H, m), 7.26 (1H, s), 7.40-7.48 (1H, m), 8.21 (1H, d, J=8Hz), 8.40 (1H, d, J=8Hz)

Claims

1. A compound of the formula:

25 (I)

wherein

R1 is aryl, cyclo(C₃-C₆)alkyl, pyridyl or thienyl,

each of which may be substituted with substituent(s) selected from the group consisting of halogen; hydroxy; nitro; amino; acyl; substituted acyl; acyl(C1-C6)alkylsulfinyl; acyl(C1-C6)alkylsulfonyl; acyloxy; C1-C6 alkylamino (C₁-C₆)alkylcarbamoyloxy; aryl; cyano; a heterocyclic group; C₂-C₆ alkenyl optionally substituted with acyl, substituted acyl, aryl or acyl-substituted aryl;

C2-C6 alkynyl optionally substituted with amino, acylamino or substituted acylamino;

C₁-C₆ alkyl optionally substituted with halogen, amino, C₁-C₆ alkylamino, acylamino, substituted acylamino, hydroxy, acyl(C₁-C₆)alkanoyloxy, acyl, substituted acyl, acyl(C₁-C₆)alkoxyimino, aryl or acyl-substi-

C₁-C₆ alkylthio optionally substituted with acyl or substituted acyl;

alkoxy optionally substituted with aryl, substituted aryl, hydroxy, acyloxy, amino, C₁-C₆ alkylamino, protected amino, a heterocyclic group, acyl-substituted pyridyl, substituted acyl-substituted pyridyl, halogen, acyl(C1-C₆)alkylamino, N-protected-acyl(C₁-C₆)alkylamino, N-acyl(C₁-C₆)alkyl-N- C₁-C₆ alkylamino, acyl, substituted acyl, acylamino, substituted acylamino, C₁-C₆ alkylhydrazinocarbonylamino, hydroxyimino, acyl(C₁-C₆)alkoxyimino, substituted acyl(C1-C6)alkoxyimino, acyl(C1-C6)alkoxy, guanidino or N-protected guanidino; and C2-C6 alkenyloxy optionally substituted with acyl or substituted acyl;

is hydrogen; C1-C6 alkyl optionally substituted with hydroxy, aryl or acyl; or cyclo(C3-C6)alkyl;

is hydrogen; halogen; hydroxy; acyloxy; substituted acyloxy; C₁-C₆ alkyl optionally substituted with hydroxy or C₁-C₆ alkoxy; C₁-C₆ alkoxy optionally substituted with aryl, amino, protected amino, acyl, hydroxy, cyano or C1-C6 alkylthio; nitro; amino; acyl; substituted acyl;

or cyclo(C₃-C₆)alkyloxy;

is hydroxy; halogen; nitro; amino; protected amino;

C₁-C₆ alkylamino; acyloxy; amino(C₁-C₆)alkylamino;

N-protected amino(C₁-C₆)alkylamino;

C₁-C₆ alkoxy optionally substituted with hydroxy, aryl, substituted aryl, acyl, substituted acyl, amino, C₁-C₆ alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group or guanidino; C1-C6 alkylthio optionally substituted with acyl, substituted acyl, amino, C1-C6 alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, C_1 - C_6 alkylsulfonyloxy, arylsulfonyloxy, ar(C_1 - C_6) alkoxy or substituted ar(C1-C6)alkoxy; C1-C6 alkyl substituted with acyl, substituted acyl, amino, C1-C6 alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, C1-C6 alkylsulfonyloxy or arylsulfonyloxy; C2-C6 alkenyl optionally substituted with acyl; C2-C6 alkynyl optionally substituted with hydroxy, amino, protected amino, C₁-C₆ alkylsulfonyloxy or arylsulfonyloxy;

amino(C1-C6)alkylsulfonyl; N-protected amino(C1-C6)alkylsulfonyl; C1-C6 alkylaminosulfonyl; a heterocyclic-

sulfonyl; amino(C₁-C₆)alkylsulfinyl;

 $N\text{-protected amino}(C_1\text{-}C_6) alkyl sulfinyl; piperidyloxy; or N\text{-protected piperidyloxy};\\$

is hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy or halogen;

is a single bond, O or NH;

is C₁-C₆ alkylene, C₂-C₆alkenylene,

20

5

10

15

25

or a group of the formula:

-G-J-

30

in which G is C1-C6 alkylene and J is O or

35

40

(wherein R⁶ is hydrogen or N-protective group);

is -CH=CH-, -CH=N- or S; and

Υ is CH or N;

and pharmaceutically acceptable salts thereof.

45 A compound according to claim 1, wherein

R1 is aryl which may be substituted with C1-C6 alkoxy optionally substituted with acylamino or acyl;

 R^2 is C_1 - C_6 alkyl;

R³ is hydrogen, C₁-C₆ alkyl or C₁-C₆ alkoxy;

 R^4 is hydroxy, or C_1 - C_6 alkoxy or C_1 - C_6 alkylthio, each of which may be substituted with hydroxy, acyl, amino,

C₁-C₆ alkylamino, acylamino, protected amino or a heterocyclic group;

R⁵ is hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy or halogen;

A is NH;

E is

55

X is —CH=CH-; and Y is CH.

3. A compound according to claim 2, wherein

 R^1 is phenyl or tolyl, each of which is substituted with C_1 - C_6 alkoxy substituted with acyl;

R3 is C1-C6 alkyl or C1-C6 alkoxy;

 R^4 is C_1 - C_6 alkoxy or C_1 - C_6 alkylthio, each of which is substituted with amino or hydroxy.

10 4. A compound according to claim 3, wherein

R¹ is phenyl or tolyl, each of which is substituted with C₁-C₆ alkoxy substituted with N-(C₁-C₆)alkyl)piperazinylcarbonyl;

R3 is C1-C6 alkoxy;

R4 is C1-C6 alkoxy substituted with amino; and

R⁵ is hydrogen.

5. A process for preparing the formula:

20

25

15

5

 $R^{1} \qquad R^{2}$ $R^{5} \qquad R^{5}$ $R^{3} \qquad X \qquad R^{4} \qquad (I)$

30

wherein

35

40

45

R1 is aryl, cyclo(C3-C6)alkyl, pyridyl or thienyl,

each of which may be substituted with substituent(s) selected from the group consisting of halogen; hydroxy; nitro; amino; acyl; substituted acyl; acyl(C_1 - C_6)alkylsulfinyl; acyl(C_1 - C_6)alkylsulfonyl; acyloxy; C_1 - C_6 alkylamino (C_1 - C_6)alkylcarbamoyloxy; aryl; cyano; a heterocyclic group;

C2-C6 alkenyl optionally substituted with acyl, substituted acyl, aryl or acyl-substituted aryl;

C2-C6 alkynyl optionally substituted with amino, acylamino or substituted acylamino;

 C_1 - C_6 alkyl optionally substituted with halogen, amino, C_1 - C_6 alkylamino, acylamino, substituted acylamino, hydroxy, acyl(C_1 - C_6)alkanoyloxy, acyl, substituted acyl, acyl(C_1 - C_6)alkoxyimino, aryl or acyl-substituted aryl:

C₁-C₆ alkylthio optionally substituted with acyl or substituted acyl;

alkoxy optionally substituted with aryl, substituted aryl, hydroxy, acyloxy, amino, C_1 - C_6 alkylamino, protected amino, a heterocyclic group, acyl-substituted pyridyl, substituted acyl-substituted pyridyl, halogen, acyl(C_1 - C_6)alkylamino, N-protected-acyl(C_1 - C_6)alkylamino, N-acyl(C_1 - C_6)alkyl-N- C_1 - C_6 alkylamino, acyl, substituted acyl, acylamino, substituted acylamino, C_1 - C_6 alkylhydrazinocarbonylamino, hydroxyimino, acyl(C_1 - C_6)alkoxyimino, substituted acyl(C_1 - C_6)alkoxyimino, acyl(C_1 - C_6)alkoxy, guanidino or N-protected guanidino; and C_2 - C_6 alkenyloxy optionally substituted with acyl or substituted acyl;

50

R² is hydrogen; C₁-C₆ alkyl optionally substituted with hydroxy, aryl or acyl or cyclo(C₂-C₆)alkyl;

55

R³ is hydrogen; halogen; hydroxy; acyloxy; substituted acyloxy; C₁-C₆ alkyl optionally substituted with hydroxy or C₁-C₆ alkoxy; C₁-C₆ alkoxy optionally substituted with aryl, amino, protected amino, acyl, hydroxy, cyano or C₁-C₆ alkylthio; nitro; amino; acyl; substituted acyl;

or cyclo(C3-C6)alkyloxy;

5

10

15

20

R4 is hydroxy; halogen; nitro; amino; protected amino;

C₁-C₆ alkylamino; acyloxy; amino(C₁-C₆)alkylamino;

N-protected amino(C₁-C₆)alkylamino;

 C_1 - C_6 alkoxy optionally substituted with hydroxy, aryl, substituted aryl, acyl, substituted acyl, amino, C_1 - C_6 alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group or guanidino; C_1 - C_6 alkylthio optionally substituted with acyl, substituted acyl, amino, C_1 - C_6 alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, C_1 - C_6 alkylsulfonyloxy, arylsulfonyloxy, ar(C_1 - C_6) alkoxy or substituted ar(C_1 - C_6) alkoxy; C_1 - C_6 alkyl substituted with acyl, substituted acyl, amino, C_1 - C_6 alkylamino, acylamino, substituted acylamino, protected amino, a heterocyclic group, hydroxy, C_1 - C_6 alkylsulfonyloxy or arylsulfonyloxy; C_2 - C_6 alkenyl optionally substituted with acyl; C_2 - C_6 alkynyl optionally substituted with hydroxy, amino, protected amino, C_1 - C_6 alkylsulfonyloxy or arylsulfonyloxy;

 $amino(C_1-C_6) alkylsulfonyl; \ C_1-C_6) alkylsulfonyl; \ C_1-C_6 \ alkylaminosulfonyl; \ a \ heterocyclic-sulfonyl; \ amino(C_1-C_6) alkylsulfinyl; \ amino$

N-protected amino(C₁-C₆)alkylsulfinyl; piperidyloxy; or N-protected piperidyloxy;

R⁵ is hydrogen, C₁-C₆ alkyl, C₁-C₆ alkoxy or halogen;

A is a single bond, O or NH;

E is C₁-C₆ alkylene, C₂-C₆alkenylene,

or a group of the formula:

-G-J-

in which G is C₁-C₆ alkylene and J is O or

R 6

(wherein R⁶ is hydrogen or N-protective group);

45 X is -CH=CH-, -CH=N- or S; and

Y is CH or N;

or pharmaceutically acceptable salts thereof, which comprises,

1) reacting a compound of the formula:

55

$$R^1$$
 R^2 NH_2 R^3 NH_2

or its salt with a compound of the formula:

$$HOE_a$$
 R^5
(III)

or its reactive derivative at the carboxy group or the sulfo group, or a salt thereof to provide a compound of the formula:

$$R^1$$
 R^2
 N
 R^5
 R^5
 R^3
 R^4

or its salt, in the above formulas, $R^1,\,R^2,\,R^3,\,R^4,\,R^5,\,X$ and Y are each as defined above, and Ea is

reacting a compound of the formula:

or

$$R^1$$
 R^2 (IV)

or its salt with a compound of the formula:

HO R^5 R^5 R^5

or its reactive derivative at the carboxy group or a salt thereof to provide a compound of the formula:

or its salt, in the above formulas, R^1 , R^2 , R^3 , R^4 , R^5 , A, E, X and Y are each as defined above.

- **6.** A pharmaceutical composition comprising a compound of claim 1, as an active ingredient, in association with a pharmaceutically acceptable, substantially non-toxic carrier or excipient.
- 7. A compound of claim 1 for use as a medicament.
- 8. Use of a compound of claim 1 for the manufacture of a medicament for treating and/or preventing hypertension, heart failure, renal insufficiency, edema, ascites, vasopressin parasecretion syndrome, hepatocirrhosis, hyponatremia, hypokalemia, diabetic, circulation disorder, cerebrovascular disease, Meniere's syndrome or motion sickness in human beings or animals.

Patentansprüche

1. Verbindung der Formel

55

5

10

15

20

35

40

45

wobei

15

20

25

30

35

40

45

5

10

Aryl, Cyclo (C₃ - C₆) alkyl, Pyridyl oder Thienyl ist, wobei jede Gruppe mit einem oder mehreren Substituenten substituiert sein kann, die aus der Gruppe ausgewählt sind, die besteht aus Halogen; Hydroxy; Nitro; Amino; Acyl; substituiertem Acyl; Acyl (C₁ - C₆) alkylsulfinyl; Acyl (C₁ - C₆) alkylsulfonyl; Acyloxy; C₁ - C₆ Alkylamino (C₁ - C₆) alkylcarbamoyloxy; Aryl; Cyano; einer heterocyklischen Gruppe;

C2 - C6 Alkenyl, optional substituiert mit Acyl, substituiertem Acyl, Aryl oder Acyl-substituiertem Aryl;

C₂ - C₆ Alkinyl, optional substituiert mit Amino, Acylamino oder substituiertem Acylamino;

C₁ - C₆ Alkyl, optional substituiert mit Halogen, Amino, C₁ - C₆Alkylamino, Acylamino, substituiertem Acylamino, Hydroxy, Acyloxy, Acyl (C₁ - C₆) alkanoyloxy, Acyl, substituiertem Acyl, Acyl (C₁ - C₆) alkoxyimino, Aryl oder Acyl-substituiertem Aryl;

C1 - C6 Alkylthio, optional substituiert mit Acyl oder substituiertem Acyl;

Alkoxy, optional substituiert mit Aryl, substituiertem Aryl, Hydroxy, Acyloxy, Amino, C_1 - C_6 Alkylamino, geschütztem Amino, einer heterozyklischen Gruppe, Acyl-substituiertem Pyridyl, substituiertem Acyl-substituiertem Pyridyl, Halogen, Acyl (C_1 - C_6) alkylamino, N-geschütztem Acyl (C_1 - C_6) alkylamino, N-Acyl (C_1 - C_6) alkyl-N- C_1 - C_6 alkylamino, Acyl, substituiertem Acyl, Acylamino, substituiertem Acylamino, C_1 - C_6 Alkylhydrazinocarbonylamino, Hydroxyimino, Acyl (C_1 - C_6) alkoxyimino, substituiertem Acyl(C_1 - C_6) alkoxyimino, Acyl (C_1 - C_6) alkoxy, Guanidino oder N-geschütztem Guanidino; und

C2 - C6 Alkenyloxy, optional substituiert mit Acyl oder substituertem Acyl;

R² Wasserstoff; C₁ - C₆ Alkyl, optional substituiert mit Hydroxy, Aryl oder Acyl;oder Cyclo (C₃ - C₆) alkyl ist;

Wasserstoff; Halogen; Hydroxy; Acyloxy; substituiertes Acyloxy; C₁ - C₆ Alkyl, optional substituiert mit Hydroxy oder C₁ - C₆ Alkoxy; C₁ - C₆ Alkoxy, optional substituiert mit Aryl, Amino, geschütztem Amino, Acyl, Hydroxy, Cyano, oder C₁ - C₆ Alkylthio; Nitro; Amino; Acyl; substituiertes Acyl; oder Cyclo (C₁ - C₆) alkyloxy ist;

Wasserstoff; Halogen; Nitro; Amino; geschütztes Amino; C₁ - C₆ Alkylamino; Acyloxy; Amino (C₁ - C₆) alkylamino; N-geschütztes Amino (C₁ - C₆) alkylamino; C₁ - C₆ Alkoxy, optional substituiert mit Hydroxy, Aryl, substituiertem Aryl, Acyl, substituiertem Acyl, Amino, C₁ - C₆ Alkylamino, Acylamino, substituiertem Acylamino, geschütztem Amino, einer heterozyklischen Gruppe oder Guanidino;

 C_1 - C_6 Alkylthio, optional substituiert mit Acyl, substituiertem Acyl, Amino, C_1 - C_6 Alkylamino, Acylamino, substituiertem Acylamino, geschütztem Amino, einer heterozyklischen Gruppe, Hydroxy, C_1 - C_6 Alkylsulfonyloxy, Arylsulfonyloxy, Ar (C_1 - C_6) alkoxy oder substituiertem Ar (C_1 - C_6) alkoxy; C_1 - C_6 Alkyl, substituiertem Acyl, substituiertem Acyl, Amino, C_1 - C_6 Alkylamino, Acylamino, substituiertem Acylamino, geschütztem Amino, eine heterozyklische Gruppe, Hydroxy, C_1 - C_6 Alkylsulfonyloxy oder Arylsulfonyloxy; C_2 - C_6 Alkinyl, optional substituiert mit Acyl; C_2 - C_6 Alkinyl, optional substituiert mit Hydroxy, Amino, geschütztem Amino, C_1 - C_6 Alkylsulfonyloxy oder Arylsulfonyloxy; Amino (C_1 - C_6) alkylsulfonyl; N-geschütztes Amino (C_1 - C_6) alkylsulfinyl; N-geschütztes Amino (C_1 - C_6) alkylsulfinyl; Piperidyloxy; oder N-geschütztes Piperidyloxy ist;

R⁵ Wasserstoff, C₁ - C₆ Alkyl, C₁ - C₆ Alkoxy oder Halogen ist;

A eine einfache Bindung, O oder NH ist;

E C₁ - C₆ Alkylen, C₂ - C₆ Alkenylen,

55

oder eine Gruppe der Formel -G-J- ist, wobei G C_1 - C_6 Alkylen und J O oder

5

10

20

R⁶ -N-

ist (worin R6 Wasserstoff oder eine N-Schutzgruppe ist);

- X -CH=CH-, -CH=N- oder S ist; und
- Y CH oder N ist:

und pharmazeutisch akzeptable Salze davon.

15 2. Verbindung nach Anspruch 1, wobei

 R^1 Aryl ist, das mit C_1 - C_6 Alkoxy substituiert sein kann, welches optional mit Acylamino oder Acyl substituiert ist:

R² C₁ - C₆ Alkyl ist;

R³ Wasserstoff, C₁ - C₆ Alkyl oder C₁ - C₆ Alkoxy ist;

 R^4 Wasserstoff oder C_1 - C_6 Alkoxy oder C_1 - C_6 Alkylthio ist, wobei jedes mit Hydroxy, Acyl, Amino, C_1 - C_6 Alkylamino, Acylamino, geschütztem Amino oder einer heterozyklischen Gruppe substituiert sein kann; R^5 Wasserstoff, C_1 - C_6 Alkyl, C_1 - C_6 Alkoxy oder Halogen ist;

A NH ist;

Ε

25

070

30

40

45

50

ist; X -CH=CH- ist; und Y CH ist.

35 3. Verbindung nach Anspruch 2, wobei

 R^1 Phenyl oder Tolyl ist, wobei jedes mit C_1 - C_6 Alkoxy substituiert ist, das mit Acyl substituiert ist;

R3 C1 - C6 Alkyl oder C1 - C6 Alkoxy ist;

R⁴ C₁ - C₆ Alkoxy oder C₁ - C₆ Alkylthio ist, wobei jedes mit Amino oder Hydroxy substituiert ist.

4. Verbindung nach Anspruch 3, wobei

R1 Phenyl oder Tolyl ist, wobei jedes mit C1 - C6 Alkoxy substituiert ist, das mit

N-(C₁ - C₆) alkylpiperazinylcarbonyl substituiert ist;

R³ C₁ - C₆ Alkoxy ist;

 $\rm R^4\ C_1$ - $\rm C_6$ Alkoxy ist, das mit Amino substituiert ist; und

R5 Wasserstoff ist.

5. Verfahren zur Herstellung der Formel:

$$R^{1} \qquad R^{2}$$

$$R^{5} \qquad R^{5}$$

$$R^{7} \qquad R^{4} \qquad (I)$$

wobei

5

10

20

25

30

35

40

45

R¹ Aryl, Cyclo (C₃ - C₆) alkyl, Pyridyl oder Thienyl ist, wobei jede Gruppe mit einem oder mehreren Substituenten substituiert sein kann, die aus der Gruppe ausgewählt sind, die besteht aus Halogen; Hydroxy; Nitro; Amino; Acyl; substituiertem Acyl; Acyl (C₁ - C₆) alkylsulfinyl; Acyl (C₁ - C₆) alkylsulfonyl; Acyloxy; C₁ - C₆ Alkylamino (C₁ - C₆) alkylcarbamoyloxy; Aryl; Cyano; einer heterocyklischen Gruppe;

C2 - C6 Alkenyl, optional substituiert mit Acyl, substituiertem Acyl, Aryl oder Acyl-substituiertem Aryl;

C₂ - C₆ Alkinyl, optional substituiert mit Amino, Acylamino oder substituiertem Acylamino;

 C_1^- - C_6^- Alkyl, optional substituiert mit Halogen, Amino, C_1^- - C_6^- Alkylamino, Acylamino, substituiertem Acylamino, Hydroxy, Acyl (C_1^- - C_6^-) alkanoyloxy, Acyl, substituiertem Acyl, Acyl (C_1^- - C_6^-) alkoxyimino, Aryl oder Acyl-substitueirtem Aryl;

C₁ - C₆ Alkylthio, optional substituiert mit Acyl oder substituiertem Acyl;

Alkoxy, optional substituiert mit Aryl, substituiertem Aryl, Hydroxy, Acyloxy, Amino, C_1 - C_6 Alkylamino, geschütztem Amino, einer heterozyklischen Gruppe, Acyl-substituiertem Pyridyl, substituiertem Acyl-substituiertem Pyridyl, Halogen, Acyl (C_1 - C_6) alkylamino, N-geschütztem Acyl (C_1 - C_6) alkylamino, N-Acyl (C_1 - C_6) alkyl-N- C_1 - C_6 alkylamino, Acyl, substituiertem Acyl, Acylamino, substituiertem Acylamino, C_1 - C_6 Alkylhydrazinocarbonylamino, Hydroxyimino, Acyl (C_1 - C_6) alkoxyimino, Substituiertem Acyl (C_1 - C_6) alkoxyimino, Acyl (C_1 - C_6) alkoxy, Guanidino oder N-geschütztem Guanidino; und

C₂ - C₆ Alkenyloxy, optional substituiert mit Acyl oder substituertem Acyl;

R² Wasserstoff; C₁ - C₆ Alkyl, optional substituiert mit Hydroxy, Aryl oder Acyl; oder Cyclo (C₃ - C₆) alkyl ist;

Wasserstoff; Halogen; Hydroxy; Acyloxy; substituiertem Acyloxy; C₁ - C₆ Alkyl, optional substituiert mit Hydroxy oder C₁ - C₆ Alkoxy; C₁ - C₆ Alkoxy, optional substituiert mit Aryl, Amino, geschütztem Amino, Acyl, Hydroxy, Cyano, oder C₁ - C₆ Alkylthio; Nitro; Amino; Acyl; substituiertem Acyl; oder Cyclo (C₁ - C₆) alkyloxy ist;

Wasserstoff; Halogen; Nitro; Amino; geschütztes Amino; C₁ - C₆ Alkylamino; Acyloxy; Amino (C₁ - C₆) alkylamino; N-geschütztes Amino (C₁ - C₆) alkylamino; C₁ - C₆ Alkoxy, optional substituiert mit Hydroxy, Aryl, substituiertem Aryl, Acyl, substituiertem Acyl Amino, C₁ - C₆ Alkylamino, Acylamino, substituiertem Acylamino, geschütztem Amino, einer heterozyklischen Gruppe oder Guanidino; C₁ - C₆ Alkylthio, optional substituiert mit Acyl, substituiertem Acyl, Amino, C₁ - C₆ Alkylamino, Acylamino, substituiertem Acylamino, geschütztem Amino, einer heterozyklischen Gruppe, Hydroxy, C₁ - C₆ Alkylsulfonyloxy, Arylsulfonyloxy, Ar (C₁ - C₆) alkoxy oder substituiertem Ar (C₁ - C₆) alkoxy; C₁ - C₆ Alkyl, substituiert mit Acyl, substituiertem Acyl, Amino, C₁ - C₆ Alkylamino, Acylamino, substituiertem Acylamino, geschütztem Amino, einer heterozyklischen Gruppe, Hydroxy, C₁ - C₆ Alkylsulfonyloxy oder Arylsulfonyloxy; C₂ - C₆ Alkenyl, optional substituiert mit Acyl; C₂ - C₆ Alkinyl, optional substituiert mit Hydroxy, Amino, geschütztem Amino, C₁ - C₆ Alkylsulfonyloxy oder Arylsulfonyloxy; Amino (C₁ - C₆) alkylsulfonyl; N-geschütztes Amino (C₁ - C₆) alkylsulfinyl; Piperidyloxy; oder N-geschütztes Piperidyloxy ist;

R⁵ Wasserstoff, C₁ - C₆ Alkyl, C₁ - C₆ Alkoxy oder Halogen ist;

A eine einfache Bindung, O oder NH ist;

E C₁ - C₆ Alkylen, C₂ - C₆ Alkenylen,

55

0 = 0 -C- , -S-1

5

oder eine Gruppe der Formel -G-J- ist, wobei G C₁ - C₆ Alkylen und J O oder

10

R⁶

15

ist (worin R⁶ ein Wasserstoff oder eine N-Schutzgruppe ist);

- X -CH=CH-, -CH=N- oder S ist und
- Y CH oder N ist;

20

oder von pharmazeutisch akzeptablen Salzen davon, wobei das Verfahren umfasst

1) Reagieren einer Verbindung der Formel:

25

30

35

oder ihres Salzes mit einer Verbindung der Formel:

40

45

oder ihres reaktiven Derivats an der Carboxygruppe oder der Sulfogruppe, oder eines Salzes davon, um eine Verbindung der Formel:

50

oder ihres Salzes bereitzustellen, wobei in den obigen Formeln R^1 , R^2 , R^3 , R^4 , R^5 , X und Y jeweils wie oben definiert sind, und Ea

ist, oder

15

30

40

2) Reagieren einer Verbindung der Formel:

oder ihres Salzes mit einer Verbindung der Formel:

oder ihres reaktiven Derivats an der Carboxygruppe oder eines Salzes davon, um eine Verbindung der Formel:

$$R^1$$
 R^2
 $A-E$
 R^5
 R^5
 R^3

oder ihres Salzes bereitzustellen, wobei in den obigen Formeln R¹, R², R³, R⁴, R⁵, A, E, X und Y jeweils wie oben definiert sind.

- Pharmazeutische Zusammensetzung, umfassend eine Verbindung nach Anspruch 1 als einen Wirkstoff in Assoziation mit einem pharmazeutisch akzeptablen, im wesentlichen nicht-toxischen Träger oder Trägerstoff.
- 7. Verbindung nach Anspruch 1 für die Verwendung als Medikament.
- 8. Verwendung einer Verbindung nach Anspruch 1 für die Herstellung eines Medikamentes für die Behandlung und/ oder Verhinderung von Hypertonie, Herzversagen, Niereninsuffizienz, Ödem, Aszites, Vasopressin-Parasekretionssyndrom, Leberzirrhose, Hyponatriämie, Hypokaliämie, diabetischen Kreislaufstörungen, Stoffwechselstörung, cerebrovaskulärer Krankheit, Morbus Meniere oder Reisekrankheit beim Menschen oder Tier.

Revendications

5

10

15

20

25

30

35

40

45

50

55

1. Composé de formule :

$$\begin{array}{c|c}
R^{1} & R^{2} \\
\hline
 & R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{5} & (1)
\end{array}$$

dans laquelle

R¹ est un aryle, un cycloalkyle (en C₃-C₆), un pyridyle ou un thiényle,

dont chacun peut être substitué par un ou des substituants choisis parmi le groupe constitué d'un halogène, d'un hydroxyde, d'un nitro, d'un amino, d'un acyle, d'un acyle substitué,

un acylalkyl (en C1-C6) sulfinyle, un acylalkyl (en C1-C6) sulfonyle, un acyloxy, un alkyl (en C1-C6) aminoalkyl (en C1-C6) carbamoyloxy, un aryle, un cyano, un groupement hétérocyclique,

un alcényle (en C2-C6) substitué facultativement par un acyle, un acyle substitué, un aryle ou un aryle substitué par un acyle,

un alcynyle (en C2-C6) substitué facultativement par un amino, un acylamino ou un acylamino substitué, un alkyle (en C1-C6) substitué facultativement par un halogène, un amino, un alkyl (en C1-C6) amino, un acylamino, un acylamino substitué, un hydroxy, un acylacy, un acylacylacyle (en C1-C6) oxy, un acyle, un acyle substitué, un acylacyle (en C1-C6) imino, un aryle ou un aryle substitué par un acyle,

un alkyl (en C1-C6) thio substitué facultativement par un acyle ou un acyle substitué,

un alcoxy substitué facultativement par un aryle, un aryle substitué, un hydroxy, un acyloxy, un amino, un alkyl (en C1-C6) amino, un amino protégé, un groupement hétérocyclique, un pyridyle substitué par un acyle,

un pyridyle substitué par un acyle substitué, un halogène, un acylalkyl (en C1-C6) amino, un acylalkyl (en C1-C6) amino à N protégé, un N -acylakyl (en C1-C6) -N -alkyl (en C1-C6) amino, un acyle, un acyle substitué, un acylamino, un acylamino substitué, un alkyl (en C1-C6) hydrazinocarbonylamino, un hydroxy -imino, un acylalcoxy (en C1-C6) imino, un acylalcoxy (en C1-C6), un guanidino ou un guanidino à N protégé, et

- un alcényl (en C2-C6) oxy substitué facultativement par un acyle ou un acyle substitué,
- R² est un hydrogène, un alkyle (en C₁-C₆) substitué facultativement par un hydroxy, un aryle ou un acyle, ou un cycloalkyle (en C₃-C₆),
- est un hydrogène, un halogène, un hydroxy, un acyloxy, un acyloxy substitué, un alkyle (en C₁-C₆) substitué facultativement par un hydroxy ou un alcoxy (en C₁-C₆), un alcoxy (en C₁-C₆) substitué facultativement par un aryle, un amino, un amino protégé, un acyle, un hydroxy, un cyano, ou un alkyl (en C₁-C₆) thio, un nitro, un amino, un acyle, un acyle substitué, ou un cycloalkyl (en C₃-C₆) oxy,
- est un hydroxy, un halogène, un nitro, un amino, un amino protégé, un alkyl (en C₁-C₆) amino, un acyloxy, un aminoalkyl (en C₁-C₆) amino, un aminoalkyl (en C₁-C₆) amino à N protégé, un alcoxy (en C₁-C₆) substitué facultativement par un hydroxy, un aryle, un aryle substitué, un acyle, un acyle substitué, un amino, un alkyl (en C₁-C₆) amino, un acylamino, un acylamino substitué, un amino protégé, un groupement hétérocyclique ou un guanidino, un alkyl (en C₁-C₆) thio substitué facultativement par un acyle, un acyle substitué, un amino, un alkyl (en C₁-C₆) amino, un acylamino, un acylamino substitué, un amino protégé, un groupement hétérocyclique, un hydroxy, un alkyl (en C₁-C₆) sulfonyloxy, un arylsulfonyloxy, un aralcoxy (en C₁-C₆) ou un aralcoxy (en C₁-C₆) substitué, un alkyle (en C₁-C₆) substitué par un acyle, un acyle substitué, un amino, un alkyl (en C₁-C₆) amino, un acylamino, un acylamino substitué, un amino protégé, un groupement hétérocyclique, un hydroxy, un alkyl (en C₁-C₆) sulfonyloxy ou un arylsulfonyloxy, un alcényle (en C₂-C₆) substitué facultativement par un hydroxy, un amino, un amino protégé, un alkyl (en C₁-C₆) sulfonyle à N protégé, un alkyl (en C₁-C₆) sulfonyle à N protégé, un alkyl (en C₁-C₆) sulfonyle, un aminoalkyl (en C₁-C₆) sulfonyle, un aminoalkyl (en C₁-C₆) sulfinyle, un aminoalkyl (e
- R⁵ est un hydrogène, un alkyle (en C₁-C₆), un alcoxy (en C₁-C₆) ou un halogène,
- A est une simple liaison, O ou NH,

5

10

15

20

25

30

35

40

45

50

E est un alcylène (en C₁-C₆), un alcénylène (en C₂-C₆),

ou un groupement de formule :

-G-J-

dans laquelle G est un alcylène (en C1-C6) et J est O ou

(dans laquelle R⁶ est un hydrogène ou un groupement protecteur de N),

- X est -CH=CH-, -CH=N- ou S, et
- Y est CH ou N,

et sels pharmaceutiquement acceptables de celui-ci.

- 2. Composé selon la revendication 1, dans lequel
 - R1 est un aryle qui peut être substitué par un alcoxy (en C₁-C₆) substitué facultativement par un acylamino ou

un acyle,

R² est un alkyle (en C₁-C₆),

R³ est un hydrogène, un alkyle (en C₁-C₆) ou un alcoxy (en C₁-C₆),

est un hydroxy, ou un alcoxy (en C₁-C₆) ou un alkyl (en C₁-C₆) thio, dont chacun peut être substitué par un hydroxy, un acyle, un amino, un alkyl (en C₁-C₆) amino, un acylamino, un amino protégé ou un groupement hétérocyclique,

R⁵ est un hydrogène, un alkyle (en C₁-C₆), un alcoxy (en C₁-C₆) ou un halogène,

A est NH.

E est

-ë-

X est -CH=CH-, et

Y est CH.

3. Composé selon la revendication 2, dans lequel

R1 est un phényle ou un tolyle, dont chacun est substitué par un alcoxy (en C1-C6) substitué par un acyle,

R³ est un alkyle (en C₁-C₆) ou un alcoxy (en C₁-C₆),

R⁴ est un alcoxy (en C₁-C₆) ou un alkyl (en C₁-C₆) thio, dont chacun est substitué par un amino ou un hydroxy.

4. Composé selon la revendication 3, dans lequel

25

5

10

15

20

R¹ est un phényle ou un tollyle, dont chacun est substitué par un alcoxy (en C₁-C₆) substitué par un N-alkyl (en C₁-C₆) pipérazinylcarbonyle,

R³ est un alcoxy (en C₁-C₆),

R4 est un alcoxy (en C₁-C₆) substitué par un amino, et

R⁵ est un hydrogène.

5. Procédé destiné à la préparation de la formule :

. 35

30

45

55

40

dans laquelle

est un aryle, un cycloalkyle (en C₃-C₆), un pyridyle ou un thiényle, dont chacun peut être substitué par un ou des substituants choisis

dont chacun peut être substitué par un ou des substituants choisis parmi le groupe constitué d'un halogène, d'un hydroxy, d'un nitro, d'un amino, d'un acyle, d'un acyle substitué,

un acylalkyl (en C_1 - C_6) sulfinyle, un acylalkyl (en C_1 - C_6) sulfonyle, un acyloxy, un alkyl (en C_1 - C_6) aminoalkyl (en C_1 - C_6) carbamoyloxy, un aryle, un cyano, un groupement hétérocyclique, un alcényle (en C_2 - C_6) substitué facultativement par un acyle, un acyle substitué, un aryle ou un aryle substitué par un acyle,

un alcynyle (en C_2 - C_6) substitué facultativement par un amino, un acylamino ou un acylamino substitué, un alkyle (en C_1 - C_6) substitué facultativement par un halogène, un amino, un alkyl (en C_1 - C_6) amino, un acylamino, un acylamino substitué, un hydroxy, un acylacanoyl (en C_1 - C_6) oxy, un acyle substitué, un acylacoxy (en C_1 - C_6) imino, un aryle ou un aryle substitué par un acyle,

un alkyl (en C_1 - C_6) thio substitué facultativement par un acyle ou un acyle substitué, un alcoxy substitué facultativement par un aryle, un aryle substitué, un hydroxy, un acyloxy, un amino, un alkyl (en C_1 - C_6) amino, un amino protégé, un groupement hétérocyclique, un pyridyle substitué par un acyle, un pyridyle substitué, un acylalkyl (en C_1 - C_6) -N-alkyl (en C_1 - C_6) amino, un acylalmino, un acylalmino acylalmino, un acylalmino acylalmino, un acylalmino, un acylalmino acylalmino, un a

un alcényloxy (en C2-C6) substitué facultativement par un acyle ou un acyle substitué,

- R² est un hydrogène, un alkyle (en C₁-C₆) substitué facultativement par un hydroxy, un aryle ou un acyle, ou un cycloalkyle (en C₃-C₆),
- est un hydrogène, un halogène, un hydroxy, un acyloxy, un acyloxy substitué, un alkyle (en C₁-C₆) substitué facultativement par un hydroxy ou un alcoxy (en C₁-C₆), un alcoxy (en C₁-C₆) substitué facultativement par un aryle, un amino, un amino protégé, un acyle, un hydroxy, un cyano, ou un alkyl (en C₁-C₆) thio, un nitro, un amino, un acyle, un acyle substitué, ou un cycloalkyl (en C₃-C₆) oxy,
- est un hydroxy, un halogène, un nitro, un amino, un amino protégé, un alkyl (en C₁-C₆) amino, un acyloxy, un aminoalkyl (en C₁-C₆) amino, un aminoalkyl (en C₁-C₆) amino à N protégé, un alcoxy (en C₁-C₆) substitué facultativement par un hydroxy, un aryle, un aryle substitué, un acyle, un acyle substitué, un amino, un alkyl (en C₁-C₆) amino, un acylamino, un acylamino substitué, un amino protégé, un groupement hétérocyclique ou un guanidino, un alkyl (en C₁-C₆) thio substitué facultativement par un acyle, un acyle substitué, un aminoalkyl (en C₁-C₆) amino, un acylamino, un acylamino substitué, un amino protégé, un groupement hétérocyclique, un hydroxy, un alkyl (en C₁-C₆) sulfonyloxy, un arylsulfonyloxy, un aralcoxy (en C₁-C₆) ou un aralcoxy (en C₁-C₆) substitué, un alkyl (en C₁-C₆) substitué par un acyle, un acyle substitué, un amino, un alkyl (en C₁-C₆) amino, un acylamino substitué, un amino protégé, un groupement hétérocyclique, un hydroxy, un alkyl (en C₁-C₆) sulfonyloxy ou un arylsulfonyloxy, un alcényle (en C₂-C₆) substitué facultativement par un hydroxy, un amino, un amino protégé, un alkyl (en C₁-C₆) sulfonyloxy ou un arylsulfonyloxy, un aminoalkyl (en C₁-C₆) sulfonyle à N protégé, un alkyl (en C₁-C₆) sulfonyle, un aminoalkyl (en C
- R⁵ est un hydrogène, un alkyle (en C₁-C₆), un alcoxy (en C₁-C₆) ou un halogène,
- A est une simple liaison, O ou NH,

5

10

15

20

25

30

35

40

45

50

55

E est un alcylène (en C₁-C₆), un alcénylène (en C₂-C₆),

-c-, -s-,

ou un groupement de formule :

-G-J-

dans laquelle G est un alcylène (en C1-C6) et J est O ou

(dans laquelle R⁶ est un hydrogène ou un groupement protecteur de N),

X est -CH=CH-, -CH=N- ou S, et

Y est CH ou N,

5

20

30

45

55

et des sels pharmaceutiquement acceptables de celle-ci, qui comprend,

1) la réaction d'un composé de formule :

ou de son sel avec un composé de formule :

HOE
$$\mathbb{R}^5$$
 (III)

ou son dérivé réactif au niveau du groupement carboxy ou du groupement sulfo, ou un sel de celui-ci pour donner un composé de formule :

ou son sel, dans les formules ci-dessus, R^1 , R^2 , R^3 , R^4 , R^5 , X et Y sont chacun tels que définis ci-dessus, et Ea est

2) la réaction d'un composé de formule :

ou

$$R^1 \longrightarrow R^2$$
 (IV)

ou de son sel avec un composé de formule :

10

15

5

20

ou son dérivé réactif au niveau du groupement carboxy ou un sel de celui-ci pour donner un composé de formule :

25

$$\begin{array}{c|c}
R^{1} & R^{2} \\
\hline
 & R^{5}
\end{array}$$

$$\begin{array}{c|c}
R^{5} \\
\hline
 & R^{4}
\end{array}$$

30

ou son sel, dans les formules ci-dessus,

R1, R2, R3, R4, R5, A, E, X et Y sont chacun tels que définis ci-dessus.

35

- 6. Composition pharmaceutique comprenant un composé selon la revendication 1, en tant que principe actif, en association avec un support ou un excipient pharmaceutiquement acceptables, substantiellement non toxiques.
- 7. Composé selon la revendication 1, destiné à une utilisation en tant que médicament.

45

8. Utilisation d'un composé selon la revendication 1, pour la fabrication d'un médicament destiné au traitement et/ ou à la prévention de l'hypertension, d'une insuffisance cardiaque, une insuffisance rénalé, un oedème, une ascite, le syndrome de la parasécrétion de la vasopressine, une cirrhose du foie, une hyponatrémie, une hypokaliémie, un diabète, un trouble de la circulation, une maladie cérébro-vasculaire, un syndrome de Ménière ou le mal des transports chez les êtres humains ou chez les animaux.

50 .