

Z、R'、R¹、およびR²がそれぞれ下記の表1に示す基であるビペリジン誘導体があげられるが、本発明はこれらの例示化合物に限定されるものではない。

[0024]

1

番号	R ¹	R ²	Z	R ³	-NSO ₂ -R ⁵ R ⁴
1	C ₆ H ₅	C ₆ H ₅	-CH ₂ -	H	2-NHSO ₂ CH ₃
2	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₂ -	H	2-NHSO ₂ CH ₃
3	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃
4	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	3-NHSO ₂ CH ₃
5	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	4-NHSO ₂ CH ₃
6	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ C ₂ H ₅
7	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ C ₃ H ₇
8	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ CF ₃
9	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ - -S-
10	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ - -S-
11	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-N((CH ₃)SO ₂ CH ₃)
12	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃
13	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃
14	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	5-F	2-NHSO ₂ CH ₃
15	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	4-Cl	2-NHSO ₂ CH ₃
16	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	3-CH ₃	2-NHSO ₂ CH ₃
17	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	4-CH ₃	2-NHSO ₂ CH ₃
18	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	5-CH ₃	2-NHSO ₂ CH ₃
19	C ₆ H ₅	C ₆ H ₅	-CH-C ₆ H ₅ -CH ₂ -	4-OCH ₃	2-NHSO ₂ CH ₃
					H

〔表2〕

[00251]

特朗平 5—3 4 5 7 5 9

20	C ₈ H ₅	C ₆ H ₅	-CH ₂ -CH-C ₆ H ₅ -	H	2-NHSO ₂ CH ₃
----	-------------------------------	-------------------------------	--	---	-------------------------------------

$$\text{CH}_2\text{CH}_2-\{\text{Z}\}$$

25	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$-\text{CH}_2-\text{C}\equiv\text{C}-\text{CH}_2-$ CH_3	H	$2-\text{NHSSO}_2\text{CH}_3$
26	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$-\overset{\text{C}}{\underset{\text{CH}_3}{\text{C}}} \text{H}_2-\text{CH}_2-$	H	$2-\text{NHSSO}_2\text{CH}_3$
27	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	CH_3 $-\text{CH}_2-\overset{\text{C}}{\underset{\text{CH}_3}{\text{C}}} \text{H}_2-$	H	$2-\text{NHSSO}_2\text{CH}_3$
28	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$-(\text{CH}_2)_5-$	H	$2-\text{NHSSO}_2\text{CH}_3$
29	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$-\text{C}(\text{H}_2)_3-$	H	$2-\text{NHSSO}_2\text{CH}_3$
30	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$2,4-\text{F}_2\text{C}_6^{\text{H}}\text{J}_3$	H	$2-\text{NHSSO}_2\text{CH}_3$
31	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$2-\text{ClC}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
32	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$4-\text{ClC}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
33	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$3-\text{CF}_3\text{C}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
34	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$4-\text{CF}_3\text{C}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
35	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$2-\text{Cl}_2\text{C}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
36	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$3-\text{CH}_2\text{C}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
37	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$4-\text{CH}_3\text{C}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
38	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$4-\text{C}_2\text{H}_5\text{C}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
39	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$4-\text{CH}_3\text{OC}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
40	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$4-\text{FC}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
41	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$4-\text{CC}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$
42	$\text{C}_6^{\text{H}}\text{S}^{\text{H}}_5$	$4-\text{CH}_3\text{C}_6^{\text{H}}\text{J}_4$	H	$2-\text{NHSSO}_2\text{CH}_3$

[CXXI]

特開平5-345759

特開平5-345759

(7)

特開平5-345759

43	4-CH ₃ OCH ₂ H ₄	-C(CH ₃)OC ₆ H ₄	-CH ₂ -(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
44	2-Et [¶]	C ₆ H ₅	-CH ₂ -(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
45	2-Et [¶]	C ₆ H ₅	-CH ₂ -(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
46	2-Et [¶]	C ₆ H ₅	-CH ₂ -(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
47	2-Et [¶]	C ₆ H ₅	-CH-CH ₂ -CH ₂ -	H	2-NHSO ₂ CH ₃	
48	2-Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E) #]	H	2-NHSO ₂ CH ₃	
49	2-Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z) #]	H	2-NHSO ₂ CH ₃	
50	2-Et [¶]	4-C ₆ H ₄ H ₄	-CH ₂ -(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
51	3-Et [¶]	C ₆ H ₅	-CH ₂ -(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
52	3-Et [¶]	C ₆ H ₅	-CH-CH ₂ -CH ₂ -	H	2-NHSO ₂ CH ₃	
53	3-Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E) #]	H	2-NHSO ₂ CH ₃	
54	3-Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z) #]	H	2-NHSO ₂ CH ₃	
55	4-Et [¶]	C ₆ H ₅	-CH ₂ -(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
56	4-Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E) #]	H	2-NHSO ₂ CH ₃	
57	4-Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z) #]	H	2-NHSO ₂ CH ₃	
58	2-‡Et [¶]	C ₆ H ₅	-CH ₂ -(CH ₂) ₂ -	H	2-NHSO ₂ CH ₃	
59	2-‡Et [¶]	C ₆ H ₅	-CH ₂ -(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
60	2-‡Et [¶]	C ₆ H ₅	-CH-CH ₂ -CH ₂ -	H	2-NHSO ₂ CH ₃	
61	2-‡Et [¶]	C ₆ H ₅	-CH ₂ -CH ₂ -CH-	H	2-NHSO ₂ CH ₃	
62	2-‡Et [¶]	C ₆ H ₅	-CH ₂ -(CH ₂) ₄ -	H	2-NHSO ₂ CH ₃	
63	2-‡Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E) #]	H	2-NHSO ₂ CH ₃	
64	2-‡Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z) #]	H	2-NHSO ₂ CH ₃	
65	2-‡Et [¶]	C ₆ H ₅	CH ₃ -C-CH ₂ -CH ₂ -	H	2-NHSO ₂ CH ₃	

【表4】

[0027]

66	2-‡Et [¶]	C ₆ H ₅	CH ₃ -CH ₂ -C(CH ₃) ₂ -	H	2-NHSO ₂ CH ₃	
67	3-‡Et [¶]	C ₆ H ₅	-(CH ₂) ₂ -	H	2-NHSO ₂ CH ₃	
68	3-‡Et [¶]	C ₆ H ₅	-(CH ₂) ₃ -	H	2-NHSO ₂ CH ₃	
69	3-‡Et [¶]	C ₆ H ₅	-CH-CH ₂ -CH ₂ -	H	2-NHSO ₂ CH ₃	
70	3-‡Et [¶]	C ₆ H ₅	-(CH ₂) ₄ -	H	2-NHSO ₂ CH ₃	
71	3-‡Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E) #]	H	2-NHSO ₂ CH ₃	
72	3-‡Et [¶]	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z) #]	H	2-NHSO ₂ CH ₃	
73	3-‡Et [¶]	C ₆ H ₅	-C-CH ₂ -CH ₂ -	H	2-NHSO ₂ CH ₃	
74	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -(CH ₂) ₂ -	
75	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -(CH ₂) ₃ -	
76	2-‡Et [¶]		CH ₃ -CH-CH ₂ -CH ₂ -	H	2-CH ₂ -(CH ₂) ₄ -	
77	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -(CH ₂) ₅ -	
78	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -CH=CH-CH ₂ -[(E) #]	
79	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -CH=CH-CH ₂ -[(Z) #]	
80	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -CH ₂ -	
81	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -(CH ₂) ₂ -	
82	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -(CH ₂) ₃ -	
83	2-‡Et [¶]		CH ₃ -CH-CH ₂ -	H	2-CH ₂ -(CH ₂) ₄ -	
84	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -(CH ₂) ₅ -	
85	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -CH=CH-CH ₂ -[(E) #]	
86	2-‡Et [¶]		CH ₃ -CH ₂ -	H	2-CH ₂ -CH=CH-CH ₂ -[(Z) #]	

【表5】

[0028]

87	2- <i>t</i> Bu#	3- <i>t</i> Bu#	$\text{CH}_3 - \text{C}(\text{H}_2) - \text{CH}_2 - \text{CH}_3$	H	2-NHSO ₂ CH ₃
88	3- <i>t</i> Bu#	3- <i>t</i> Bu#	$-(\text{CH}_2)_2^-$	H	2-NHSO ₂ CH ₃
89	3- <i>t</i> Bu#	3- <i>t</i> Bu#	$-(\text{CH}_2)_3^-$	H	2-NHSO ₂ CH ₃
90	3- <i>t</i> Bu#	3- <i>t</i> Bu#	$-\text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3$	H	2-NHSO ₂ CH ₃
91	3- <i>t</i> Bu#	3- <i>t</i> Bu#	$-(\text{CH}_2)_4^-$	H	2-NHSO ₂ CH ₃
92	3- <i>t</i> Bu#	3- <i>t</i> Bu#	$-\text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_2 - \text{[(E) } \ddot{\text{x}} \text{]}$	H	2-NHSO ₂ CH ₃
93	3- <i>t</i> Bu#	3- <i>t</i> Bu#	$-\text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_2 - \text{[(Z) } \ddot{\text{x}} \text{]}$	H	2-NHSO ₂ CH ₃
94	3- <i>t</i> Bu#	3- <i>t</i> Bu#	$\text{CH}_3 - \text{C}(\text{H}_2) - \text{CH}_2 - \text{CH}_3$	H	2-NHSO ₂ CH ₃
95	3- <i>t</i> Bu#	3- <i>t</i> Bu#	$\text{CH}_3 - \text{CH}_2 - \overset{\text{C}(\text{H}_2)}{\underset{\text{CH}_3}{\text{C}}} - \text{CH}_2 - \text{CH}_3$	H	2-NHSO ₂ CH ₃
96	2-Et ¹³ C#	2-Et ¹³ C#	$-(\text{CH}_2)_2^-$	H	2-NHSO ₂ CH ₃
97	2-Et ¹³ C#	2-Et ¹³ C#	$-(\text{CH}_2)_3^-$	H	2-NHSO ₂ CH ₃
98	2-Et ¹³ C#	2-Et ¹³ C#	$-\text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3$	H	2-NHSO ₂ CH ₃
99	2-Et ¹³ C#	2-Et ¹³ C#	$-(\text{CH}_2)_4^-$	H	2-NHSO ₂ CH ₃
100	2-Et ¹³ C#	2-Et ¹³ C#	$-\text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_2 - \text{[(E) } \ddot{\text{x}} \text{]}$	H	2-NHSO ₂ CH ₃
101	2-Et ¹³ C#	2-Et ¹³ C#	$-\text{CH}_2 - \text{CH} = \text{CH} - \text{CH}_2 - \text{[(Z) } \ddot{\text{x}} \text{]}$	H	2-NHSO ₂ CH ₃
102	2-Et ¹³ C#	2-Et ¹³ C#	$\text{CH}_3 - \text{C}(\text{H}_2) - \text{CH}_2 - \text{CH}_3$	H	2-NHSO ₂ CH ₃
103	3-Et ¹³ C#	3-Et ¹³ C#	$-(\text{CH}_2)_2^-$	H	2-NHSO ₂ CH ₃
104	3-Et ¹³ C#	3-Et ¹³ C#	$-(\text{CH}_2)_3^-$	H	2-NHSO ₂ CH ₃
105	3-Et ¹³ C#	3-Et ¹³ C#	$-\text{CH} - \text{CH}_2 - \text{CH}_2 - \text{CH}_3$	H	2-NHSO ₂ CH ₃

[卷六]

1

[卷7]

127	3-ビリジン 2-フリニ	- $(\text{CH}_2)_4^-$	H	2-NHSO ₂ CH ₃
128	3-ビリジン 2-フリニ	- $\text{Cl}_2=\text{CH}-\text{CH}_2^-$ 〔(E)体〕	H	2-NHSO ₂ CH ₃
129	3-ビリジン 2-フリニ	- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2^-$ 〔(Z)体〕	H	2-NHSO ₂ CH ₃
130	3-ビリジン 2-フリニ	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H	2-NHSO ₂ CH ₃
131	3-ビリジン 3-フリニ	- $(\text{CH}_2)_2^-$	H	2-NHSO ₂ CH ₃
132	3-ビリジン 3-フリニ	- $(\text{CH}_2)_3^-$	H	2-NHSO ₂ CH ₃
133	3-ビリジン 3-フリニ	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H	2-NHSO ₂ CH ₃
134	3-ビリジン 3-フリニ	- $(\text{CH}_2)_4^-$	H	2-NHSO ₂ CH ₃
135	3-ビリジン 3-フリニ	- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2^-$ 〔(E)体〕	H	2-NHSO ₂ CH ₃
136	3-ビリジン 3-フリニ	- $\text{Cl}_2-\text{CH}=\text{CH}-\text{CH}_2^-$ 〔(Z)体〕	H	2-NHSO ₂ CH ₃
137	3-ビリジン 3-フリニ	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H	2-NHSO ₂ CH ₃
138	4-ビリジン 2-フリニ	- $(\text{CH}_2)_2^-$	H	2-NHSO ₂ CH ₃
139	4-ビリジン 2-フリニ	- $(\text{CH}_2)_3^-$	H	2-NHSO ₂ CH ₃
140	4-ビリジン 2-フリニ	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H	2-NHSO ₂ CH ₃
141	4-ビリジン 2-フリニ	- $(\text{CH}_2)_4^-$	H	2-NHSO ₂ CH ₃
142	4-ビリジン 2-フリニ	- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2^-$ 〔(E)体〕	H	2-NHSO ₂ CH ₃
143	4-ビリジン 2-フリニ	- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2^-$ 〔(Z)体〕	H	2-NHSO ₂ CH ₃
144	4-ビリジン 2-フリニ	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H	2-NHSO ₂ CH ₃
145	4-ビリジン 3-フリニ	- $(\text{CH}_2)_2^-$	H	2-NHSO ₂ CH ₃
146	4-ビリジン 3-フリニ	- $(\text{CH}_2)_3^-$	H	2-NHSO ₂ CH ₃
147	4-ビリジン 3-フリニ	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{CH}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H	2-NHSO ₂ CH ₃

〔表8〕

〔0032〕一般式(1)のビペリジン誘導体の薬理学的に評価される塩も本発明に包含される。これらの塩としては、フッ化水素酸塩、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩などのハロゲン化水素酸塩、由酸塩、硫酸塩、塩、硝酸塩、リン酸塩、炭酸塩、無機酸塩、メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタノンスルホン酸塩などの低級アルキルスルホン酸塩、ゼンソルホン酸塩、p-トルエンスルホン酸塩などのアリールスルホン酸塩、フマル酸塩、コハク酸塩、クエン酸塩、酒石酸塩、シュウ酸塩、マレイン酸塩などの有機酸塩およびグリシン塩、アラニン塩、グルタミン酸塩、アラバギン酸塩などのアミノ酸塩などがあげられる。

〔0033〕また、一般式(1)のR'が水素のばあいにトリウム塩、カリウム塩などのアルカリ金属塩もあげられる。

〔0034〕また一般式(1)および(11)で示される本発明のビペリジン誘導体の具体例としては、一般式(11)中のR'、R'、2およびR'がその下記の表2に示す基であるビペリジン誘導体があげられるが、本発明はこれらの例示化合物に限定されるものではない。

〔0035〕表2に示す基があげられる。

〔0036〕表2

(13)

特開平5-345759

23

23

 $\text{R}'_1\text{CHO}-\text{C}_6\text{H}_4-\text{N}-\text{Z}-\text{O}-\text{R}'_2$

表 2

24

 $\text{R}'_1\text{CHO}-\text{C}_6\text{H}_4-\text{N}-\text{Z}-\text{O}-\text{R}'_2-\text{NH}_2-\text{NO}_2$

番号	R ¹	R ²	Z	R ³ (11)-NO ₂ 式 ^式	(11)-NO ₂ 式 ^式	
					(11)-NH ₂ 式 ^式	(11)-NH ₂ 式 ^式
1	C ₆ H ₅	C ₆ H ₅	-CH ₂ -	H	2-	2-
2	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₂ -	H	2-	2-
3	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	2-	2-
4	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	3-	2-
5	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	H	4-	2-
6	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	5-F	2-	2-
7	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	4-Cl	2-	2-
8	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	3-OCH ₃	2-	2-
9	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	4-CH ₃	2-	2-
10	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	5-OCH ₃	2-	2-
11	C ₆ H ₅	C ₆ H ₅	-(CH ₂) ₃ -	4-OCH ₃	2-	2-
12	C ₆ H ₅	C ₆ H ₅	-CH ₂ -CH ₂ -CH ₂ -	H	2-	2-
13	C ₆ H ₅	C ₆ H ₅	-CH ₂ -CH-CH ₂ -	H	2-	2-
14	C ₆ H ₅	C ₆ H ₅	-CH ₂ -CH ₂ -CH-	CH ₃	2-	2-
15	C ₆ H ₅	C ₆ H ₅	-	(CH ₂) ₄ -	2-	2-
16	C ₆ H ₅	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -	(E)*	H	2-
17	C ₆ H ₅	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -	(Z)*	H	2-
18	C ₆ H ₅	C ₆ H ₅	-CH ₂ -C≡C-CH ₂ -	H	2-	2-

40 [表10]

(14)

特開平5-345759
26

番号	R ¹	R ²	Z	R ³ (11)-NO ₂ 式 ^式	(11)-NO ₂ 式 ^式	
					CH ₃ -	-CH ₂ -C(CH ₃) ₂ -
19	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	CH ₃ -	-CH ₂ -C(CH ₃) ₂ -	H
20	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	CH ₃	-CH ₂ -C(CH ₃) ₂ -	H
21	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	-CH ₂ -	-CH ₂ -C(CH ₃) ₂ -	H
22	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-FC ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
23	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	2,4-F ₂ C ₆ H ₃	-CH ₂ -C(CH ₃) ₂ -	H
24	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	2-ClC ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
25	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-ClC ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
26	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	3-CP ₃ C ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
27	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-CP ₃ C ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
28	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	2-CH ₃ C ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
29	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	3-CH ₃ C ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
30	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-CH ₃ C ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
31	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-C ₂ H ₅ C ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
32	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-CH ₃ OC ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
33	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-FC ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
34	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-ClC ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
35	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-CH ₃ C ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
36	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	4-CH ₃ OC ₆ H ₄	-CH ₂ -C(CH ₃) ₂ -	H
37	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	3-PO ₃ V#	-CH ₂ -C(CH ₃) ₂ -	H
38	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	3-Po ₃ V#	-CH ₂ -C(CH ₃) ₂ -	H
39	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	2-PPV#	-CH ₂ -C(CH ₃) ₂ -	H
40	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	2-TPP#	-CH ₂ -C(CH ₃) ₂ -	H
41	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	2-EVV#	-CH ₂ -C(CH ₃) ₂ -	H
42	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅	2-EV#	-CH ₂ -C(CH ₃) ₂ -	H

41 [表10]
42 [表10]

[表11]

43	2- <i>VII</i>	4-C ₁ C ₈ H ₄	-(CH ₂) ₃ -	H	2-
44	3- <i>VII</i>	C ₆ H ₅	-(CH ₂) ₃ -	H	2-
45	3- <i>VII</i>	C ₆ H ₅	-CH-CH ₂ -CH ₂ - C ₆ H ₅	H	2-
46	3- <i>VII</i>	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E)•]	H	2-
47	3- <i>VII</i>	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z)•]	H	2-
48	4- <i>VII</i>	C ₆ H ₅	-(CH ₂) ₃ -	H	2-
49	4- <i>VII</i>	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E)•]	H	2-
50	4- <i>VII</i>	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z)•]	H	2-
51	2-† _L I	C ₆ H ₅	-(CH ₂) ₂ -	H	2-
52	2-† _L I	C ₆ H ₅	-(CH ₂) ₃ -	H	2-
53	2-† _L I	C ₆ H ₅	-CH-CH ₂ -CH ₂ - C ₆ H ₅	H	2-
54	2-† _L I	C ₆ H ₅	-CH ₂ -CH ₂ -CH- C ₆ H ₅	H	2-
55	2-† _L I	C ₆ H ₅	-(CH ₂) ₄ -	H	2-
56	2-† _L I	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E)•]	H	2-
57	2-† _L I	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z)•]	H	2-
58	2-† _L I	C ₆ H ₅	-C-CH ₂ -CH ₂ - C ₆ H ₅	H	2-
59	2-† _L I	C ₆ H ₅	CH ₃ -CH ₂ -C-CH ₂ - C ₆ H ₅	H	2-
60	3-† _L I	C ₆ H ₅	-(CH ₂) ₂ -	H	2-
61	3-† _L I	C ₆ H ₅	-(CH ₂) ₃ -	H	2-
62	3-† _L I	C ₆ H ₅	-CH-CH ₂ -CH ₂ - C ₆ H ₅	H	2-
63	3-† _L I	C ₆ H ₅	-(CH ₂) ₄ -	H	2-
64	3-† _L I	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(E)•]	H	2-
65	3-† _L I	C ₆ H ₅	-CH ₂ -CH=CH-CH ₂ -[(Z)•]	H	2-

第121

29								
66	3- \ddagger Lz	C ₆ H ₅	CH ₃ -C-CH ₂ -CH ₂ - CH ₃	H	2-			
67	2- \ddagger Lz	2- \ddagger Lz	(CH ₂) ₂ -	H	2-			
68	2- \ddagger Lz	2- \ddagger Lz	(CH ₂) ₃ -	H	2-			
69	2- \ddagger Lz	2- \ddagger Lz	-CH-CB ₂ -CH ₂ - CH ₃	H	2-			
70	2- \ddagger Lz	2- \ddagger Lz	-(CH ₂) ₄ -	H	2-			
71	2- \ddagger Lz	2- \ddagger Lz	-CH ₂ -CH=CH-CH ₂ -[(E)‡] -CH ₂ -CH=CH-CH ₂ -[(Z)‡]	H	2-			
72	2- \ddagger Lz	2- \ddagger Lz	CH ₃ -C-CH ₂ -CH ₂ -	H	2-			
73	2- \ddagger Lz	2- \ddagger Lz	CH ₃ -C-CH ₂ -CH ₂ - CH ₃	H	2-			
74	2- \ddagger Lz	3- \ddagger Lz	-(CH ₂) ₂ -	H	2-			
75	2- \ddagger Lz	3- \ddagger Lz	(CH ₂) ₃ -	H	2-			
76	2- \ddagger Lz	3- \ddagger Lz	-CH-CB ₂ -CH ₂ - CH ₃	H	2-			
77	2- \ddagger Lz	3- \ddagger Lz	-(CH ₂) ₄ -	H	2-			
78	2- \ddagger Lz	3- \ddagger Lz	-CH ₂ -CH=CH-CH ₂ -[(E)‡] -CH ₂ -CH=CH-CH ₂ -[(Z)‡]	H	2-			
79	2- \ddagger Lz	3- \ddagger Lz	CH ₃ -C-CH ₂ -CH ₂ -	H	2-			
80	2- \ddagger Lz	3- \ddagger Lz	CH ₃ -C-CH ₂ -CH ₂ - CH ₃	H	2-			
81	3- \ddagger Lz	3- \ddagger Lz	-(CH ₂) ₂ -	H	2-			
82	3- \ddagger Lz	3- \ddagger Lz	(CH ₂) ₃ -	H	2-			
83	3- \ddagger Lz	3- \ddagger Lz	-CH-CB ₂ -CH ₂ - CH ₃	H	2-			
84	3- \ddagger Lz	3- \ddagger Lz	-(CH ₂) ₄ -	H	2-			
85	3- \ddagger Lz	3- \ddagger Lz	-CH ₂ -CH=CH-CH ₂ -[(E)‡] -CH ₂ -CH=CH-CH ₂ -[(Z)‡]	H	2-			
86	3- \ddagger Lz	3- \ddagger Lz	CH ₃	H	2-			

[卷13] [0039]

87	3- τ - C_2H_5	3- τ - C_2H_5	CH_3 CH_3	- $\text{C}-\text{CH}_2-\text{CH}_2-$	H	2-
88	3- τ - C_2H_5	3- τ - C_2H_5	CH_3 CH_3	- $\text{CH}_2-\overset{\text{C}}{\underset{\text{C}}{\text{CH}_2}}-\text{CH}_2-$	H	2-
89	2- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_2-$	H	2-
90	2- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_3-$	H	2-
91	2- C_2H_5	2- C_2H_5		- $\text{CH}-\text{CH}_2-\text{CH}_2-$	H	2-
92	2- C_2H_5	2- C_2H_5	CH_3	- $\text{CH}_2-\overset{\text{C}}{\underset{\text{C}}{\text{CH}_2}}-\text{CH}_2-$	H	2-
93	2- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_4-$	H	2-
94	2- C_2H_5	2- C_2H_5		- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-$	H	2-
95	2- C_2H_5	2- C_2H_5	CH_3 CH_3	- $\overset{\text{C}}{\underset{\text{C}}{\text{CH}_2}}-\text{CH}_2-\text{CH}_2-$	H	2-
96	3- C_2H_5	3- C_2H_5		- $(\text{CH}_2)_2-$	H	2-
97	3- C_2H_5	3- C_2H_5		- $(\text{CH}_2)_3-$	H	2-
98	3- C_2H_5	3- C_2H_5	CH_3	- $\text{CH}-\text{CH}_2-\text{CH}_2-$	H	2-
99	3- C_2H_5	3- C_2H_5		- $(\text{CH}_2)_4-$	H	2-
100	3- C_2H_5	3- C_2H_5		- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-$	H	2-
101	3- C_2H_5	3- C_2H_5	CH_3	- $\overset{\text{C}}{\underset{\text{C}}{\text{CH}_2}}-\text{CH}_2-\text{CH}_2-$	H	2-
102	3- C_2H_5	3- C_2H_5	CH_3 CH_3	- $\text{C}-\text{CH}_2-\text{CH}_2-$	H	2-
103	2- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_2-$	H	2-
104	2- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_3-$	H	2-
105	2- C_2H_5	2- C_2H_5	CH_3	- $\text{CH}-\text{CH}_2-\text{CH}_2-$	H	2-

[表 14]

[0040]

106	2- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_4-$	H	2-
107	2- C_2H_5	2- C_2H_5		- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-$	[E] (#)	H
108	2- C_2H_5	2- C_2H_5		- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-$	[Z] (#)	H
109	2- C_2H_5	2- C_2H_5		- $\overset{\text{C}}{\underset{\text{C}}{\text{CH}_2}}-\text{CH}_2-$		H
110	2- C_2H_5	3- C_2H_5	CH_3	- $(\text{CH}_2)_2-$	H	2-
111	2- C_2H_5	3- C_2H_5		- $(\text{CH}_2)_3-$	H	2-
112	2- C_2H_5	3- C_2H_5	CH_3	- $\text{CH}-\text{CH}_2-\text{CH}_2-$		H
113	2- C_2H_5	3- C_2H_5		- $(\text{CH}_2)_4-$	H	2-
114	2- C_2H_5	3- C_2H_5		- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-$	[E] (#)	H
115	2- C_2H_5	3- C_2H_5	CH_3	- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-$	[Z] (#)	H
116	2- C_2H_5	3- C_2H_5	CH_3	- $\overset{\text{C}}{\underset{\text{C}}{\text{CH}_2}}-\text{CH}_2-$		H
117	3- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_2-$	H	2-
118	3- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_3-$	H	2-
119	3- C_2H_5	2- C_2H_5	CH_3	- $\text{CH}-\text{CH}_2-\text{CH}_2-$		H
120	3- C_2H_5	2- C_2H_5		- $(\text{CH}_2)_4-$	H	2-
121	3- C_2H_5	2- C_2H_5		- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-$	[E] (#)	H
122	3- C_2H_5	2- C_2H_5	CH_3	- $\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-$	[Z] (#)	H
123	3- C_2H_5	2- C_2H_5	CH_3	- $\overset{\text{C}}{\underset{\text{C}}{\text{CH}_2}}-\text{CH}_2-$		H
124	3- C_2H_5	3- C_2H_5		- $(\text{CH}_2)_2-$	H	2-
125	3- C_2H_5	3- C_2H_5		- $(\text{CH}_2)_3-$	H	2-
126	3- C_2H_5	3- C_2H_5	CH_3	- $\text{CH}-\text{CH}_2-\text{CH}_2-$		H

[表 15]

[0041]

36

3

127	3- $\text{C}(\text{H})_2\text{J}$	$3-\text{CH}_2-\text{Cl}=\text{CH}-\text{CH}_2-\{\text{X}\}$	$-(\text{CH}_2)_2^-$	H
128	3- $\text{C}(\text{H})_2\text{J}$	$-\text{CH}_2-\text{Cl}=\text{CH}-\text{CH}_2-\{\text{X}\}$	H	2-
129	3- $\text{C}(\text{H})_2\text{J}$	$-\text{CH}_2-\text{Cl}=\text{CH}-\text{CH}_2-\{\text{Z}\}$	H	2-
130	3- $\text{C}(\text{H})_2\text{J}$	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H	2-
131	4- $\text{C}(\text{H})_2\text{J}$	$2-\text{CH}_2-\text{J}$	$-(\text{CH}_2)_2^-$	H
132	4- $\text{C}(\text{H})_2\text{J}$	$2-\text{CH}_2-\text{J}$	$-(\text{CH}_2)_3^-$	H
133	4- $\text{C}(\text{H})_2\text{J}$	$2-\text{CH}_2-\text{J}$	$-\text{CH}-\text{CH}_2-\text{CH}_2-$	H
134	4- $\text{C}(\text{H})_2\text{J}$	$2-\text{CH}_2-\text{J}$	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{CH}_2-\text{CH}_2-\{\text{X}\} \\ \\ \text{CH}_3 \end{array}$	H
135	4- $\text{C}(\text{H})_2\text{J}$	$2-\text{CH}_2-\text{J}$	$-\text{CH}_2-\text{Cl}=\text{CH}-\text{CH}_2-\{\text{X}\}$	H
136	4- $\text{C}(\text{H})_2\text{J}$	$2-\text{CH}_2-\text{J}$	$-\text{CH}_2-\text{Cl}=\text{CH}-\text{CH}_2-\{\text{Z}\}$	H
137	4- $\text{C}(\text{H})_2\text{J}$	$2-\text{CH}_2-\text{J}$	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H
138	4- $\text{C}(\text{H})_2\text{J}$	$3-\text{CH}_2-\text{J}$	$-(\text{CH}_2)_2^-$	H
139	4- $\text{C}(\text{H})_2\text{J}$	$3-\text{CH}_2-\text{J}$	$-(\text{CH}_2)_3^-$	H
140	4- $\text{C}(\text{H})_2\text{J}$	$3-\text{CH}_2-\text{J}$	$-\text{CH}-\text{CH}_2-\text{CH}_2-$	H
141	4- $\text{C}(\text{H})_2\text{J}$	$3-\text{CH}_2-\text{J}$	$-(\text{CH}_2)_4^-$	H
142	4- $\text{C}(\text{H})_2\text{J}$	$3-\text{CH}_2-\text{J}$	$-\text{CH}_2-\text{Cl}=\text{CH}-\text{CH}_2-\{\text{X}\}$	H
143	4- $\text{C}(\text{H})_2\text{J}$	$3-\text{CH}_2-\text{J}$	$-\text{CH}_2-\text{Cl}=\text{CH}-\text{CH}_2-\{\text{Z}\}$	H
144	4- $\text{C}(\text{H})_2\text{J}$	$3-\text{CH}_2-\text{J}$	$\begin{array}{c} \text{CH}_3 \\ \\ -\text{C}-\text{CH}_2-\text{CH}_2- \\ \\ \text{CH}_3 \end{array}$	H

〔0042〕つぎに一般式(I)、(II)および(III)の比ペリシン継縫体の製造法について説明する。一般式(I)、(II)および(III)の比ペリシン継縫体は、以下に示す方法により製造することができる。
〔0043〕
〔化8〕

卷之三

附錄 A - 2

製法 A - 3

製法 B

解法 C

製法 D

卷之二十一

一九四

【0048】溶媒中の量は、一般に過剰量は、活性溶媒中で脱水反応させる使用する。

般式(IV)を示す化合物1モルに刈して

[0111] (c) 上記(b) にされたアミノ体を用いて、実施例1(c) と同様の方法で標題化合物を得た。
 [0112] $^1\text{H-NMR}$ (CDCl_3) δ: 1.70~2.02(4H, m), 2.47(2H, m), 2.70~2.92(4H, m), 3.15(3H, s), 4.53(1H, m), 4.71(1H, m), 5.48(1H, s), 6.90~7.05 (2H, m), 7.18~7.44(10H, m)

[0118] (a) シフェニルメチルブロミドヒドロキシ- [3-(4-ニトロキシ)ブロモ]ベリ ジンを用いて、 アセト酸ナトリウムアルコール溶 液中で、 水素化ナトリウムを用いて、 水素化して得られるジフェニルメチル ブロミドヒドロキシ- [3-(4-ニトロキシ)ブロモ]ベリ ジン。
[0118] (b) ジフェニルメチルブロミドヒドロ キシ- [3-(4-ニトロキシ)ブロモ]ベリ ジン。
[0118] (c) ベリジン。
[0118] (d) 6,6'-メチレンブリッジを有する ジフェニルメチルブロミドヒドロ キシ- [3-(4-ニトロキシ)ブロモ]ベリ ジン。
[0118] (e) 6,6'-メチレンブリッジを有する ジフェニルメチルブロミドヒドロ キシ- [3-(4-ニトロキシ)ブロモ]ベリ ジン。

(b) 上記(a)でえられた二トロ体を用いて、実施例1
実施例12

(b) と同様の方法でジフェニルメトキシジ-1-[3-(4-アミノフェノキシ)プロピル]ビペリジンを得た。

[0.120] $^1\text{H-NMR}$ (CDCl₃) δ値 : 1.63~1.80(2H, m), 1.82~1.98(4H, m), 2.13(2H, br t), (2H, t), 2.76(2H, m), 3.26~3.50(3H, m), 3.91(2H, t), [化1.8]

[0.122] [0.12.2]

[0.13.3] (a) ジフェニルメチルブロミドと4-ヒドロキシ-1-[3-(4-メチル-2-ニトロフェノエキシ)プロピル]ビペリジンを用いて、実施例1(a)と同様の方法で液状オーフェニルメトキシ-1-[3-(4-メチル-2-二トロフェノキシ)プロピル]ビペリジンを得た。

[0.13.4] $^1\text{H-NMR}$ (CDCl₃) δ値 : 1.65~1.81(2H, m), 1.83~2.01(4H, m), 2.16(2H, br t), (2H, s), 2.47(2H, t), 2.76(2H, m), 2.93(2H, s), 3.46(1H, m), 4.04(2H, t), 5.52(1H, s), 6.76~6.93(2H, m), 7.12~7.38(1H, m)

実施例15

(b) 上記(a)でえられた二トロ体を用いて、実施例1
実施例16

(b) と同様の方法でジフェニルメトキシ-1-[3-(5-メチルフェノキシ)プロピル]ビペリジンの製造

〔0 1 3 7〕 (a) ジフェニルメチルブロミド&ヒドロキシ-1-〔3-〔5-メチル-2-ニトロフェノキシ〕〕プロピベリジンを用いて、実施例 1(a) と同様の方法で標準化合物を得た。

〔0 1 4 0〕 (c) 上記(b) でえられたアミノ体を用いて、実施例 1(c) と同様の方法で標準化合物を得た。

〔0 1 4 1〕 ^1H -NMR (CDCl₃) δ 値 : 1.65-

1.81(2H, m), 1.83~2.02(4H, m), 2.17(2H, br t)、2.32

(3H, s), 2.47(2H, t), 2.76(2H, m), 2.90(3H, s), 3.48(1

H, d), 4.06(2H, t), 5.52(1H, s), 6.71~6.79(2H, m), 7.

18~7.40(1H, m)

実施例 1.6

4-ジフェニルメトキシ-1-〔3-〔2-メタンスルホニルアミノフェノキシ〕〕-2-メチルブロピル〕ビベリジンをえた。

(b) 上記(a) でえられたニトロ体を用いて、実施例 1

(b) と同様の方法でジフェニルメトキシ-1-〔3-〔2-

アミノ-5-メチルフェノキシ〕〕プロピル〕ビベリジンをえた。

〔0 1 4 2〕

〔0 1 4 3〕

4-ジフェニルメチルブロミド&ヒドロ

キシ-1-〔3-〔5-メチル-3-〔2-ニトロフェノキシ〕〕ブロピ

油状の4-ジフェニルメトキシ-1-〔3-〔5-メチル-2-ニ

トロフェノキシ〕〕プロピル〕ビベリジンを得た。

〔0 1 4 4〕 ^1H -NMR (CDCl₃) δ 値 : 0.96(3H, d), 1.55~

2.00(6H, m), 2.17(1H, br t)、2.40(1H, br t)、2.67(1

H, d), 1.50~2.02(6H, m), 2.12(1H, m), 2.35(1H, m), 2.

59~2.80(2H, m), 2.81~2.96(1H, m), 3.37(1H, m), 4.

00~4.18(2H, m), 5.52(1H, s), 6.88~7.54(14H, m)

実施例 1.7

4-ジフェニルメトキシ-1-〔3-〔2-メタンスルホニルア

ミノフェノキシ〕〕-2-メチルブロピル〕ビベリジンの製

造

〔0 1 4 5〕 (c) 上記(b) でえられたアミノ体を用い

て、実施例 1(c) と同様の方法で標準化合物を得た。

〔0 1 4 6〕 脳点 : 114 ~ 115.5 °C (エタノールから再

結晶)

〔0 1 4 7〕

4-ジフェニルメチルブロミド&ヒドロ

キシ-1-〔3-〔5-メチル-3-〔2-ニトロフェノキシ〕〕ブロピ

油状の4-ジフェニルメトキシ-1-〔3-〔5-メチル-2-ニ

トロフェノキシ〕〕プロピル〕ビベリジンを得た。

〔0 1 4 8〕 (a) ジフェニルメチルブロミド&ヒドロ

キシ-1-〔3-〔5-メチル-3-〔2-ニトロフェノキシ〕〕ブロピ

油状の4-ジフェニルメトキシ-1-〔3-〔2-

アミノフェノキシ〕〕-2-メチルブロピル〕ビベリジンを得た。

〔0 1 4 9〕 ^1H -NMR (CDCl₃) δ 値 : 1.04(3

H, d), 1.50~2.02(6H, m), 2.12(1H, m), 2.35(1H, m), 2.

59~2.80(2H, m), 2.81~2.96(1H, m), 3.37(1H, m), 4.

00~4.18(2H, m), 5.52(1H, s), 6.88~7.54(14H, m)

実施例 1.8

4-ジフェニルメトキシ-1-〔3-〔2-メタンスルホニルア

ミノフェノキシ〕〕-2-メチルブロピル〕ビベリジンの製

造

〔0 1 4 10〕 (c) 上記(b) でえられたアミノ体を用い

て、実施例 1(c) と同様の方法で標準化合物を得た。

〔0 1 4 11〕 ^1H -NMR (CDCl₃) δ 値 : 1.82~1.81(2H, m), 1.82~1.97(4H, m), 2.07~2.

28(2H, m), 2.32~2.55(2H, m), 2.75(2H, m), 2.94(3H,

3H, d), 3.46(2H, m), 4.50(1H, m), 5.51(1H, s), 6.89~7.53

実施例 1.9

4-ジフェニルメトキシ-1-〔3-〔2-メタンスルホニルア

ミノフェノキシ〕〕-2-メチルブロピル〕ビベリジンの製

造

〔0 1 4 12〕

〔0 1 4 13〕

4-ジフェニルメチルブロミド&ヒドロ

キシ-1-〔3-〔5-メチル-3-〔2-ニトロフェノキシ〕〕ブロピ

油状の4-ジフェニルメトキシ-1-〔3-〔5-メチル-2-ニ

トロフェノキシ〕〕プロピル〕ビベリジンを得た。

〔0 1 4 14〕 ^1H -NMR (CDCl₃) δ 値 : 0.96(3H, d), 1.55~

2.00(6H, m), 2.17(1H, br t)、2.40(1H, br t)、2.67(1

H, d), 1.50~2.02(6H, m), 2.12(1H, m), 2.35(1H, m), 2.

59~2.80(2H, m), 2.81~2.96(1H, m), 3.37(1H, m), 4.

00~4.18(2H, m), 5.52(1H, s), 6.88~7.54(14H, m)

実施例 1.10

4-ジフェニルメチルブロミド&ヒドロ

キシ-1-〔3-〔5-メチル-3-〔2-ニトロフェノキシ〕〕ブロピ

油状の4-ジフェニルメトキシ-1-〔3-〔2-

アミノフェノキシ〕〕-2-メチルブロピル〕ビベリジンを得た。

〔0 1 4 15〕 (a) ジフェニルメチルブロミド&ヒドロ

キシ-1-〔3-〔5-メチル-3-〔2-ニトロフェノキシ〕〕ブロピ

油状の4-ジフェニルメトキシ-1-〔3-〔2-

アミノフェノキシ〕〕-2-メチルブロピル〕ビベリジンを得た。

〔0 1 4 16〕

〔0 1 4 17〕

〔0 1 4 18〕

〔0 1 4 19〕

〔0 1 4 20〕

〔0 1 4 21〕

〔0 1 4 22〕

〔0 1 4 23〕

〔0 1 4 24〕

〔0 1 4 25〕

〔0 1 4 26〕

〔0 1 4 27〕

〔0 1 4 28〕

〔0 1 4 29〕

〔0 1 4 30〕

〔0 1 4 31〕

〔0 1 4 32〕

〔0 1 4 33〕

〔0 1 4 34〕

〔0 1 4 35〕

〔0 1 4 36〕

〔0 1 4 37〕

〔0 1 4 38〕

〔0 1 4 39〕

〔0 1 4 40〕

〔0 1 4 41〕

〔0 1 4 42〕

〔0 1 4 43〕

〔0 1 4 44〕

〔0 1 4 45〕

〔0 1 4 46〕

〔0 1 4 47〕

〔0 1 4 48〕

〔0 1 4 49〕

〔0 1 4 50〕

〔0 1 4 51〕

〔0 1 4 52〕

〔0 1 4 53〕

〔0 1 4 54〕

〔0 1 4 55〕

〔0 1 4 56〕

〔0 1 4 57〕

〔0 1 4 58〕

〔0 1 4 59〕

〔0 1 4 60〕

〔0 1 4 61〕

〔0 1 4 62〕

〔0 1 4 63〕

〔0 1 4 64〕

〔0 1 4 65〕

〔0 1 4 66〕

〔0 1 4 67〕

〔0 1 4 68〕

〔0 1 4 69〕

〔0 1 4 70〕

〔0 1 4 71〕

〔0 1 4 72〕

〔0 1 4 73〕

〔0 1 4 74〕

〔0 1 4 75〕

〔0 1 4 76〕

〔0 1 4 77〕

〔0 1 4 78〕

〔0 1 4 79〕

〔0 1 4 80〕

〔0 1 4 81〕

〔0 1 4 82〕

〔0 1 4 83〕

〔0 1 4 84〕

〔0 1 4 85〕

〔0 1 4 86〕

〔0 1 4 87〕

〔0 1 4 88〕

〔0 1 4 89〕

〔0 1 4 90〕

〔0 1 4 91〕

〔0 1 4 92〕

〔0 1 4 93〕

〔0 1 4 94〕

〔0 1 4 95〕

〔0 1 4 96〕

〔0 1 4 97〕

〔0 1 4 98〕

〔0 1 4 99〕

〔0 1 4 100〕

〔0 1 4 101〕

〔0 1 4 102〕

〔0 1 4 103〕

〔0 1 4 104〕

〔0 1 4 105〕

〔0 1 4 106〕

〔0 1 4 107〕

〔0 1 4 108〕

〔0 1 4 109〕

〔0 1 4 110〕

〔0 1 4 111〕

〔0 1 4 112〕

〔0 1 4 113〕

〔0 1 4 114〕

〔0 1 4 115〕

〔0 1 4 116〕

〔0 1 4 117〕

〔0 1 4 118〕

〔0 1 4 119〕

〔0 1 4 120〕

〔0 1 4 121〕

〔0 1 4 122〕

〔0 1 4 123〕

〔0 1 4 124〕

〔0 1 4 125〕

〔0 1 4 126〕

〔0 1 4 127〕

〔0 1 4 128〕

〔0 1 4 129〕

〔0 1 4 130〕

〔0 1 4 131〕

〔0 1 4 132〕

〔0 1 4 133〕

〔0 1 4 134〕

〔0 1 4 135〕

〔0 1 4 136〕

〔0 1 4 137〕

〔0 1 4 138〕

〔0 1 4 139〕

〔0 1 4 140〕

〔0 1 4 141〕

〔0 1 4 142〕

〔0 1 4 143〕

〔0 1 4 144〕

〔0 1 4 145〕

〔0 1 4 146〕

〔0 1 4 147〕

〔0 1 4 148〕

〔0 1 4 149〕

〔0 1 4 150〕

〔0 1 4 151〕

〔0 1 4 152〕

〔0 1 4 153〕

〔0 1 4 154〕

〔0 1 4 155〕

〔0 1 4 156〕

〔0 1 4 157〕

〔0 1 4 158〕

〔0 1 4 159〕

〔0 1 4 160〕

〔0 1 4 161〕

〔0 1 4 162〕

〔0 1 4 163〕

〔0 1 4 164〕

〔0 1 4 165〕

〔0 1 4 166〕

〔0 1 4 167〕

〔0 1 4 168〕

〔0 1 4 169〕

〔0 1 4 170〕

〔0 1 4 171〕

〔0 1 4 172〕

〔0 1 4 173〕

〔0 1 4 174〕

〔0 1 4 175〕

〔0 1 4 176〕

〔0 1 4

55

NHSO₂CH₃

- [0 1 6 3] (a) 4-ジフェニルメトキシビペリジン-2-ニトロ-4-(2-クロロ-2(E)-ブチニル)ビペリジン-2(E)-ブチニル N-メチル-N-ジイソブチルアミン、10.68gをジクロメタングリルに溶解し、室温下、48時間攪拌した。反応液を水で洗浄し、減圧下に溶媒を留ました。残留物をシリカルムクロマトグラフィーにて付しえタノール-酢酸エチル(1 : 5)で溶出して油状の4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(E)-ブチニル]ビペリジン-2(E)-ブチニルをえた。

実施例2 1

- [0 1 6 4] ¹H-NMR (CDCl₃) δ値 : 1.64~1.97(4H, m), 2.05~2.25(2H, m), 2.64~2.81(2H, m), 3.01(2H, br d)、3.45(1H, m), 4.66(2H, br d)、5.5(1H, s)、5.75~6.00(2H, m), 6.94~7.52(13H, m), 7.81(1H, d)

上記(a)でえられたニトロ体を用いて、実施例1

NHSO₂CH₃

- [0 1 6 5] (c) 上記(b)でえられたアミノ体を用いて、実施例1(c)と同様の方法で4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(E)-ブチニル]ビペリジン-2(E)-ブチニルを用いて、実施例1(b)でえられたニトロ体を用いて、実施例1(b)と同様の方法で4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(E)-ブチニル]ビペリジン-2(E)-ブチニルをえた。

実施例2 3

- [0 1 6 6] ¹H-NMR (CDCl₃) δ値 : 1.65~1.98(4H, m), 2.08~2.25(2H, m), 2.73(2H, m), 2.94(3H, s)、3.02(2H, br d)、3.47(1H, m), 4.57(2H, br d)、5.5(1H, s)、5.74~5.92(2H, m), 6.88~7.58(14H, m)

実施例2 1

- [0 1 6 7] ¹H-NMR (CDCl₃) δ値 : 1.64~1.97(4H, m), 2.05~2.25(2H, m), 2.64~2.81(2H, m), 3.01(2H, br d)、3.45(1H, m), 4.66(2H, br d)、5.5(1H, s)、5.75~6.00(2H, m), 6.94~7.52(13H, m), 7.81(1H, d)

上記(a)でえられたニトロ体を用いて、実施例1

NHSO₂CH₃

- [0 1 6 8] (a) 4-ジフェニルメトキシビペリジンピロクロロ-4-(2-ニトロフェノキシ)-2(Z)-ブテンを用いて、実施例2(a)と同様の方法で油状の4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(Z)-ブチニル]ビペリジン-2(Z)-ブチニルをえた。

- [0 1 6 9] ¹H-NMR (CDCl₃) δ値 : 1.64~1.97(4H, m), 2.05~2.25(2H, m), 2.64~2.81(2H, m), 3.06(2H, br d)、3.45(1H, m), 4.75(2H, br d)、5.5(1H, s)、5.70~5.87(2H, m), 6.94~7.52(13H, m), 7.81(1H, d)

上記(a)でえられたニトロ体を用いて、実施例1

- [0 1 7 0] (c) 上記(b)でえられたアミノ体を用いて、実施例1(c)と同様の方法で溶媒を用いて、実施例1(d)と同様の方法で4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(Z)-ブチニル]ビペリジン-2(Z)-ブチニルをえた。

実施例2 2

- [0 1 7 1] ¹H-NMR (CDCl₃) δ値 : 1.61~1.83(2H, m), 2.52(2H, m), 5.51(1H, s)、5.62~7.44(13H, m)

上記(a)でえられたニトロ体を用いて、実施例1

- [0 1 7 2] ¹H-NMR (CDCl₃) δ値 : 1.61~1.83(2H, m), 2.52(2H, m), 5.51(1H, s)、5.62~7.44(13H, m)

実施例2 3

上記(a)で溶出して油状の4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(E)-ブチニル]ビペリジンの製造

をえた。

[0 1 7 3] (a) 4-ジフェニルメトキシビペリジン-2-ニトロ-4-(2-クロロ-2(E)-ブチニル)ビペリジンをえた。

上記(a)でえられたニトロ体を用いて、実施例1

- [0 1 7 4] ¹H-NMR (CDCl₃) δ値 : 1.62~1.94(4H, m), 2.21(2H, m), 2.70(2H, m), 3.29(2H, s)、3.37(1H, m), 4.77(2H, s), 5.5(1H, s)、6.75~7.54(14H, m)

実施例2 3

- [0 1 7 5] (c) 上記(b)でえられたアミノ体を用いて、実施例1(c)と同様の方法で4-ジフェニルメトキシ-1-[4-(2-メタンスルホニル)ビペリジン]ペンチルをえた。

[0 1 7 6]

上記(b)でえられたニトロ体を用いて、実施例1

- [0 1 7 7] ¹H-NMR (CDCl₃) δ値 : 1.65~1.98(4H, m), 2.08~2.25(2H, m), 2.73(2H, m), 2.94(3H, s)、3.02(2H, br d)、3.47(1H, m), 4.57(2H, br d)、5.5(1H, s)、5.74~5.92(2H, m), 6.88~7.58(14H, m)

実施例2 1

- [0 1 7 8] (a) 4-ジフェニルメトキシ-1-[4-(2-メタンスルホニル)ビペリジン]ペンチルを用いて、実施例1(a)と同様の方法で油状の4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(Z)-ブチニル]ビペリジンをえた。

[0 1 7 9]

- ¹H-NMR (CDCl₃) δ値 : 1.40~1.65(4H, m), 1.96(6H, m), 2.18(2H, m), 2.36(2H, br t)、2.76(2H, m), 2.94(2H, m), 3.46(1H, m), 4.02(2H, t)、5.51(1H, s)、6.84~7.54(14H, m)

実施例2 4

上記(a)でえられたニトロ体を用いて、実施例1

- [0 1 8 1] ¹H-NMR (CDCl₃) δ値 : 1.38~1.65(4H, m), 1.66~1.96(6H, m), 2.17(2H, m), 2.35(2H, t)、2.76(2H, m), 2.94(2H, m), 3.46(1H, m), 4.02(2H, t)、5.51(1H, s)、6.94~7.54(14H, m)

実施例2 5

上記(b)でえられたニトロ体を用いて、実施例1

- [0 1 8 2] ¹H-NMR (CDCl₃) δ値 : 1.40~1.64(4H, m), 1.96(6H, m), 2.18(2H, m), 2.36(2H, br t)、2.77(2H, m), 3.46(1H, m), 4.08(2H, t)、5.51(1H, s)、6.94~7.54(14H, m)

実施例2 6

上記(a)でえられたアミノ体を用いて、実施例1

- [0 1 8 3] (b) 4-ジフェニルメトキシ-1-[4-(2-メタンスルホニル)ビペリジン]ペンチルを用いて、実施例1(b)と同様の方法で4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(Z)-ブチニル]ビペリジンをえた。

[0 1 8 4]

- ¹H-NMR (CDCl₃) δ値 : 1.38~1.71(4H, m), 1.93~2.15(6H, m), 2.32(2H, m), 2.74(2H, t)、5.51(1H, s)、6.85~7.54(14H, m)

実施例2 7

上記(b)でえられたニトロ体を用いて、実施例1

- [0 1 8 5] (c) 4-ジフェニルメトキシ-1-[4-(2-クロロフェニル)-2(E)-ブチニル]ビペリジンの製造

をえた。

- [0 1 8 6] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 8

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 7] ¹H-NMR (CDCl₃) δ値 : 1.172~1.61(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 9

上記(a)で溶出して油状の4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(E)-ブチニル]ビペリジンの製造

をえた。

- [0 1 8 8] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 10

- [0 1 8 9] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 11

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 10] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 12

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 11] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 13

上記(b)でえられたニトロ体を用いて、実施例1

- [0 1 8 12] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 14

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 13] (a) 4-ジフェニルメトキシビペリジン-2-ブチニル-2-(2-クロロエニル)-ブチニルを用いて、実施例1(a)と同様の方法で4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(Z)-ブチニル]ビペリジンをえた。

上記(a)でえられたニトロ体を用いて、実施例1

- [0 1 8 14] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 15] (c) 上記(b)でえられたアミノ体を用いて、実施例1(c)と同様の方法で4-ジフェニルメトキシ-1-[4-(2-クロロエニル)-2(E)-ブチニル]ビペリジンの製造

をえた。

- [0 1 8 16] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 17

上記(b)でえられたニトロ体を用いて、実施例1

- [0 1 8 17] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 18

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 18] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 19

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 19] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 20

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 20] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 21

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 21] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 22

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 22] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 23

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 23] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 24

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 24] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 25

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 25] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 26

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 26] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 27

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 27] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 28

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 28] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 29

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 29] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 30

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 30] ¹H-NMR (CDCl₃) δ値 : 1.172~1.69(4H, m), 1.93~2.15(6H, m), 2.42(2H, m), 2.64(2H, br t)、2.78~2.92(2H, m), 2.96(3H, s), 3.52(1H, m)

実施例2 31

上記(b)でえられたアミノ体を用いて、実施例1

- [0 1 8 31] (a) 4-ジフェニルメトキシビペリジン-2-ブチニル-2-(2-クロロエニル)-ブチニルを用いて、実施例1(a)と同様の方法で4-ジフェニルメトキシ-1-[4-(2-ニトロフェノキシ)-2(Z)-ブチニル]ビペリジンをえた。

上記(a)でえられたニトロ体を用いて、実施例1

6

CC(C(=O)c1ccc(F)cc2ccc(F)cc12)N1CCc3ccccc3OCCc4ccccc4NS(=O)(=O)Cc5ccccc5

[0213] (a) ジ(4-フルオロフェニル)メチルクロリドと4-ヒドロキシ-1-[3-(2-ニトロフェノキシ)プロピル]ビペリジンを用いて、実施例1(a)と同様の方法で油状のジ(4-フルオロフェニル)メチキシリ-1-[3-(2-ニトロフェノキシ)プロピル]ビペリジンをえた。

[0214] $^1\text{H-NMR}$ (CDCl₃) δ 値: 1.54~1.77(2H, m), 1.80~1.94(2H, m), 1.98(2H, quintet, m), 2.12 (2H, m), 2.32(2H, t), 2.75(2H, m), 3.38(1H, m), 4.15(2H, t), 5.47(1H, s), 6.90~7.14(6H, m), 7.20~7.35(4H, m), 7.50(1H, t), 7.82(1H, d).

(b) 上記(a)でえられたニトロ体を用いて、実施例1(b)と同様の方法で4-ジ[3-(2-アミノフェノキシ)プロドリル]ベテリジンを得た。

[0215] (c) 上記(b)でえられた(2-フルオロフェニル)メトキシリ-1-[3-(2-アミノフェノキシ)プロドリル]ベテリジンを、(2-ニトロフェノキシ)プロピルビペリジンを用いて、実施例1(c)と同様の方法で、油状のジ(4-フルオロフェニル)メチキシリ-1-[3-(2-ニトロフェノキシ)プロピル]ビペリジンを得た。

[0216] $^1\text{H-NMR}$ (CDCl₃) δ 値: 1.32~2.03(4H, m), 2.75(2H, m), 2.94(3H, t), 5.47(1H, s), 6.89~7.31(8H, t).

実施例3 1
4-(シクロヘンチル-フェニルメタンスルホニル)アミノフェニジンの製造

[化37]

CN(Cc1ccccc1)Cc2ccccc2Cc3ccccc3Cc4ccccc4Cc5ccccc5

[0218] (a) シクロヘンチル-フェニルメチルクロロブリドキシ-1-[3-(2-ニトロフェノキシ)プロピル]ヒペリジン-9,72g,4ヒドロキシ-1-[3-(2-ニトロフェノキシ)プロピル]エタノールアミン、72%をメチルエチルケトンで抽出した。冷後、水洗して、油状の(シクロヘンチル-フェニルメチルクロロメタン(1:1:1)で溶出して(2-ニトロフェノキシ)プロピル】ヒペリジン-9,72g,4ヒドロキシ-1-[3-(2-ニトロフェノキシ)プロピル]ヒペリジン-9,72gおよびN-ジエチソブリドエタノールアミンをえた。

(b) 同様の方法で4-(シクロヘンチル-フェニルメチルクロロブリドキシ-1-[3-(2-ニトロフェノキシ)プロピル]ヒペリジン-9,72g,4ヒドロキシ-1-[3-(2-ニトロフェノキシ)プロピル]ヒペリジン-9,72gを用いて、実施例1(c)と同様の方法で精製化合物を得た。

[0219] H-NMR(CDCl₃) δ: 1.03~1.74(1H, s)、1.78~2.26(6H, m)、2.47(2H, t)、2.59~2.80(2H, m)、2.94(3H, s)、3.21(1H, n)、3.98~4.13(3H, n)、6.88~7.37(8H, m)、7.51(1H, dd)

実施例3 2-ヒドロキシ-1-[3-(2-メタカルボニルアミノ)フェノキシ]プロピル】ヒペリジン-9,72g(2.88g)を得た。

[0220] H-NMR(CDCl₃) δ: 1.00~

(b) 上記(a)でえられた二トロ体を用いて、実施例1

[0223] (a) フェニル-2-ビリジルメタノール^{16,74}、4-ヒドロキシ-1-[3-(2-エトロフェノキシ)プロ⁵⁰]の混合物を120 °Cで4時間煮沸した。油浴、反応液

水を水中へ注ぎ、か楳化ナトリウム水溶液でアルカリ性にして、トルエンで抽出した。水洗後、減圧下にトルエンを留めし、残留物をシリカゲルカラムクロマトグラフィーにて付し、酢酸エチル-エタノール-ジクロロメタン(1:1:1)で溶出して油状油(フェニル-2-ビジルメトキシ)-1-[3-(2-ニトロフェノキシ)プロピル]-ビペリジン-3,6TGを得た。	[0.2 2.4] H-NMR (CDCl ₃) δ值: 1.60~2.05[6H, m], 2.14[2H, m], 2.51[2H, m], 2.75[2H, m], 3.49[1H, m], 4.15[2H, t], 5.65[1H, s], 6.82~7.87[7H, t], 10.5[4H, s], 8.51[1H, dd]	10	[0.2 2.6] H-NMR (CDCl ₃) δ值: 1.65~1.83[2H, m], 1.84~2.03[4H, m], 2.17[2H, m], 2.49[2H, m], 2.94[3H, s], 3.50[1H, m], 4.08[2H, m], 5.65[1H, s], 6.88~7.71[12H, m], 8.51[1H, dd]	10	発酵例 3 4-[4-クロロフェニル]-2-ビリジルメトキシ]-1-[3-(2-メタンスルホニルアミノフェノキシ)プロピル]ビペリジンの製造
[0.2 2.5] (c) 上記(b)でえられたアミノ体②-25日に溶解し、水がビペリジン-1-基をジクロロメタド ²⁵ 日に溶解し、	[0.2 2.7] [化3.9]				

<p>1</p>	[0.228] (a) (4-クロロフェニル)-2-ビリジルメタノールビ-ヒドロビリジン-1-[3-(2-ニトロフェニオキソ)プロビル]ビペリジンを用いて、実験例2(a)と同様の方法で油状の「[4(クロロフェニル)-2-ビリジルメトキシ]-1-[2-(ニトロフェニオキシ)プロピル]ビペリジン」を得た。 [0.229] $^1\text{H-NMR}$ (CDCl_3) δ: 1.60~2.30(8H, m), 2.56(2H, m), 2.79(2H, m), 3.49(1H, m), 4.15(1H, t), 5.59(1H, s), 6.05~7.85(11H, m), 8.51(1H, d)	
<p>2</p>	(b) 上記(a)でえられたニトロ体を用いて、実験例1(b)と同様の方法で「[4(クロロフェニル)-2-ビリジルメトキシ]-1-[3-(2-アミノフェニオキシ)プロピル]ビペリジン」を得た。	
<p>3</p>	(c) 上記(a)でえられたアミノ体を用いて、実験例2(c)と同様の方法で標準化合物をえた。	
<p>4</p>	(d) 上記(a)でえられたニトロ体を用いて、実験例1(d)と同様の方法で「[4(クロロフェニル)-2-ビリジルメトキシ]-1-[3-(2-アミノフェニオキシ)プロピル]ビペリジン」の製造	
<p>5</p>	(e) 上記(a)でえられたアミノ体を用いて、実験例1(e)と同様の方法で「[4(クロロフェニル)-2-ビリジルメトキシ]-1-[3-(2-アミノフェニオキシ)プロピル]ビペリジン」を得た。	

<p>[0233] (a) 4-(フェニル-3-ビリジルメトキシ)ビペリジンヒドロ-3-(2-ニトロフェノキシ)クロロ-3-(2-ニトロフェノキシ)プロパンを用いて、実験例4(a)と同様の方法で油状の4-(フェニル-3-ビリジルメトキシ)-1-[3-(2-ニトロフェノキシ)プロピル]ビペリジンヒドロ-3-(2-ニトロフェノキシ)クロロ-3-(2-ニトロフェノキシ)プロパンを得た。</p>	<p>[0234] $^1\text{H-NMR}$ (CDCl_3) : $\delta = 1.50$ (s, 3H), 1.60 (s, 3H), 1.78 (d, 1H, br), 1.87 (d, 1H, br), 1.99 (2H, quint), 2.15 (2H, m), 2.52 (2H, t), 2.76 (2H, m), 3.44 (1H, m), 4.16 (2H, t), 5.55 (1H, s), 6.90~7.86 (11H, m), 8.49 (1H, br d), 8.60 (1H, br s)</p>
<p>(b) 上記(a)でえられた二トロ体を用いて、実験例1</p>	<p>(b) 上記(a)でえられた二トロ体を用いて、実験例1</p>

水を水中へ注ぎ、水酸化ナトリウム水溶液でアルカリ性にして、トルエンで抽出した。水洗後、減圧下にトルエンを留去し、残留物をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル-エタノール-ジメタン(1:1:1)で溶出して標題化合物、78.8 gを得た。

[0.2-4] H-NMR (CDCl ₃) δ值: 1.60~2.05(6H, s), 2.14(2H, m), 2.51(2H, t), 4.71(1H, d), 4.15(2H, t), 5.64(1H, s), 6.82~7.87(12H, m), 8.51(1H, dd)	10	1.83(H, m), 1.84~2.03(4H, m), 2.17(2H, m), 2.49(2H, t), 2.75(2H, m), 3.50(1H, m), 4.08(2H, t), 6.88~7.71(12H, m), 8.51(1H, dd)	10
(b) 上記(a)でえられた二トロ体を用いて、実験例1(b)と同様の方法で、(フェニル-2-ビリジルメトキシ-1-ジン)を得た。	10	4-[(4-クロロフェニル)-2-ビリジルメトキシ]-1-[3-(2-メタノスルホニルアミノフェノキシ)プロピル]ビペリジンの製造	10

<p>1</p>	[0.228] (a) (4-クロロフェニル)-2-ビリジルメタノールビ-ヒドロビリジン-1-[3-(2-ニトロフェニオキソ)プロビル]ビペリジンを用いて、実験例2(a)と同様の方法で油状の「[4(クロロフェニル)-2-ビリジルメトキシ]-1-[2-(ニトロフェニオキシ)プロピル]ビペリジン」を得た。 [0.229] $^1\text{H-NMR}$ (CDCl_3) δ: 1.60~2.30(8H, m), 2.56(2H, m), 2.79(2H, m), 3.49(1H, m), 4.15(1H, t), 5.58(1H, s), 6.05~7.85(11H, m), 8.51(1H, d)	
<p>2</p>	(b) 上記(a)でえられたニトロ体を用いて、実験例1(b)と同様の方法で「[4(クロロフェニル)-2-ビリジルメトキシ]-1-[3-(2-アミノフェニオキシ)プロピル]ビペリジン」を得た。	
<p>3</p>	(c) 上記(a)でえられたアミノ体を用いて、実験例2(c)と同様の方法で標準化合物をえた。	
<p>4</p>	(d) 上記(a)でえられたニトロ体を用いて、実験例1(d)と同様の方法で「[4(クロロフェニル)-2-ビリジルメトキシ]-1-[3-(2-アミノフェニオキシ)プロピル]ビペリジン」の製造	
<p>5</p>	(e) 上記(a)でえられたアミノ体を用いて、実験例1(e)と同様の方法で「[4(クロロフェニル)-2-ビリジルメトキシ]-1-[3-(2-アミノフェニオキシ)プロピル]ビペリジン」を得た。	

75 に付し、酢酸エチル-エタノールから再結晶。
タノール-ジクロロメタン (1 : 1) で溶出し、(a) 上記(a) でえられた二トロ体を用いて、実施例 1
〔(2-チエニル)-3-チエニルメトキシ〕-1-[3-(2-
ニトロフェノキシ) ブロビル〕ビペリジンを得た。
[0 2 8 4] ^1H -NMR (CDCl₃) δ 値 : 1.96(H, s),
2.18~2.48(4H, m), 2.97~3.23(6H, m), 3.81(1H,
m), 4.26(2H, t), 5.78(H, m), 6.82~7.60(9H, m), 7.84
(1H, d), 2.16(6H, d), 2.20~2.48(2H, m), 2.60(2H, m),
2.80~7.33(9H, m), 7.51(1H, dd)
上記でえられた塩酸塩を 5% 酢酸ナトリウム水溶液にて 10
mL に加え、油状の 4-〔(2-チエニル)-3-チエニルメト
キシ〕-1-[3-(2-ニトロフェノキシ) ブロビル〕ビペ
リジンを得た。

[0 2 8 5] ^1H -NMR (CDCl₃) δ 値 : 1.60~
1.80(2H, m), 1.81~2.28(6H, m), 2.53(2H, t), 2.77(2H,
m), 3.51(1H, m), 4.16(2H, t), 5.81(1H, s), 6.83~7.56
(1H, d)

[0 2 8 9] (a) ジ(3-チエニル)メチルクロロドと 4-
ヒドロキシ-1-[3-(2-ニトロフェノキシ) ブロビル〕
ビペリジンを用いて、実施例 9(a) 同様の方法で 4-
〔(3-チエニル)メトキシ〕-1-[3-(2-ニトロフェノキ
シ) ブロビル〕ビペリジンをえた。

[0 2 9 0] ^1H -NMR (CDCl₃) δ 値 : 1.61~
1.80(2H, m), 1.81~1.97(2H, m), 2.02(2H, quint), 2.21
(2H, m), 2.56(2H, t), 2.79(2H, m), 3.46(1H, m), 4.17(2
H, t), 5.65(1H, s), 6.95~7.57(9H, m), 7.82(1H, dd)
(b) 上記(a) の二トロ体の塩酸塩を用いて、実施例 1
〔(2-アミノフェノキシ) ブロビル〕ビペリジン塩酸
塩を得た。

[0 2 9 1] 融点 : 179.5~180 °C (エタノール-
キサンから再結晶) ^1H -NMR (CDCl₃) δ 值 : 1.61~
1.83~2.07(4H, m), 2.22(2H, m), 2.51(2H, t), 2.77(2H,
m), 2.95(2H, s), 3.48(1H, m), 4.09(2H, t), 5.65(1H,
m), 6.90~7.33(9H, m), 7.52(1H, dd)

上記でえられた塩酸塩を 5% 酢酸ナトリウム水溶液にて
処理して、4-〔(3-チエニル)メトキシ〕-1-[3-(2-
アミノフェノキシ) ブロビル〕ビペリジンを得た。

[0 2 9 2] 融点 : 80~82 °C (酢酸エチル-ヘキサン
から再結晶)

上記でえられた塩酸塩を 5% 酢酸ナトリウム水溶液にて
処理して、4-〔(3-チエニル)メトキシ〕-1-[3-(2-
アミノフェノキシ) ブロビル〕ビペリジンを得た。

[0 2 9 3] 融点 : 168.5~171 °C (ジクロロメタ
ン-酢酸エチルから再結晶)

上記でえられた塩酸化合物とシウウ酸塩を得た。

3 と同様の方法で塩酸化合物とフマル酸塩を得た。

[0 2 9 4] 融点 : 188.5~192.5 °C (ジクロロメタ
ン-酢酸エチルから再結晶)

上記でえられた塩酸化合物のシユウ酸塩を得た。

3 と同様の方法で塩酸化合物とフマル酸塩を得た。

[0 2 9 5] 融点 : 188.5~192.5 °C (ジクロロメタ
ン-酢酸エチルから再結晶)

上記でえられた塩酸化合物とシユウ酸塩を得た。

3 と同様の方法で塩酸化合物とフマル酸塩を得た。

[0 2 9 6] 融点 : 168.5~171 °C (ジクロロメタ
ン-酢酸エチルから再結晶)

実施例 4 5

4-ジ(3-チエニル)メトキシ-1-[3-(2-メタシスルホ
ニルアミノフェノキシ)-1-メチルブロビル〕ビペリジ
ンを得た。

[0 2 8 6] (a) 上記(b) でえられたアミノ体を用い、
実施例 1(c) と同様の方法で塩酸化物を得た。

[0 2 8 7] ^1H -NMR (CDCl₃) δ 値 : 1.65~
2.16(6H, m), 2.20~2.48(2H, m), 2.60(2H, m), 2.81(2H,
m), 3.59(1H, m), 4.11(2H, t), 5.80(1H,
m), 2.97(3H, s), 3.59(1H, m), 7.51(1H, dd)

実施例 4 4

4-ジ(3-チエニル)メトキシ-1-[3-(2-メタシスルホ
ニルアミノフェノキシ) ブロビル〕ビペリジンの製造

[0 2 8 8] [0 2 8 9]

実施例 4 6

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 0 1] (a) 上記(a) でえられたアミノ体を用い
て、実施例 1(b) と同様の方法でジ(3-チエニル)メ
トキシ-1-[4-(2-アミノフェノキシ)-1-メチルブロ
ビル〕ビペリジンを得た。

[0 3 0 2] [0 3 0 3]

実施例 4 7

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 0 4] [0 3 0 5] [0 3 0 6]

実施例 4 8

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 0 7] [0 3 0 8]

実施例 4 9

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 0 9] [0 3 1 0]

実施例 4 10

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 1 1] [0 3 1 2]

実施例 4 13

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 1 3] [0 3 1 4]

実施例 4 14

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 1 5] [0 3 1 6]

実施例 4 15

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 1 7] [0 3 1 8]

実施例 4 16

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 1 9] [0 3 2 0]

実施例 4 17

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 2 1] [0 3 2 2]

実施例 4 18

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 2 3] [0 3 2 4]

実施例 4 19

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 2 5] [0 3 2 6]

実施例 4 20

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 2 7] [0 3 2 8]

実施例 4 29

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 3 0] [0 3 3 1]

実施例 4 30

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 3 2] [0 3 3 3]

実施例 4 34

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 3 4] [0 3 3 5]

実施例 4 36

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 3 6] [0 3 3 7]

実施例 4 38

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 3 8] [0 3 3 9]

実施例 4 39

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 4 0] [0 3 4 1]

実施例 4 40

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 4 2] [0 3 4 3]

実施例 4 44

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 4 4] [0 3 4 5]

実施例 4 45

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 4 6] [0 3 4 7]

実施例 4 46

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 4 8] [0 3 4 9]

実施例 4 47

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 5 0] [0 3 5 1]

実施例 4 48

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 5 2] [0 3 5 3]

実施例 4 49

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 5 4] [0 3 5 5]

実施例 4 50

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 5 6] [0 3 5 7]

実施例 4 51

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 5 8] [0 3 5 9]

実施例 4 52

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 6 0] [0 3 6 1]

実施例 4 53

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 6 2] [0 3 6 3]

実施例 4 54

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 6 4] [0 3 6 5]

実施例 4 55

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 6 6] [0 3 6 7]

実施例 4 56

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 6 8] [0 3 6 9]

実施例 4 57

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 7 0] [0 3 7 1]

実施例 4 58

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 7 2] [0 3 7 3]

実施例 4 59

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 7 4] [0 3 7 5]

実施例 4 60

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 7 6] [0 3 7 7]

実施例 4 61

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 7 8] [0 3 7 9]

実施例 4 62

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 8 0] [0 3 8 1]

実施例 4 63

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 8 2] [0 3 8 3]

実施例 4 64

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 8 4] [0 3 8 5]

実施例 4 65

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 8 6] [0 3 8 7]

実施例 4 66

4-ジ(3-チエニル)メトキシ-1-[4-(2-メタシスルホ
ニルアミノフェノキシ)-2(E)-ブテニル]ビペリジンの
製造

[0 3 8 8] [0 3 8 9]

[0332] (a) ジ(3-チエニル)メチルクロリドと2-ヒドロキシ-1-[2-メチル-3-(2-ニトロフェノキシ)プロピル]ビペリシンを用いて、実験例6(a)と同様の方法で油状の4-ジ(3-チエニル)メトキシ-1-[2-メチル-3-(2-ニトロフェノキシ)プロピル]ビペリシンを得た。

[0333] $^1\text{H-NMR}$ (CDCl_3 , δ ppm): 1.06(3H,d), 1.55~1.75(2H,m), 1.77~1.92(2H,m), 1.94~2.26(4H,m), 2.30~2.48(1H,m), 2.67(1H,t), 2.80(1H,m), 3.41(1H,m), 3.89~3.99(1H,m), 4.08~4.18(1H,m), 5.65(1H,s), 6.92~7.55(9H,m), 7.82(1H,dd)

(b) 上記(a)でえられた二トロ体を用いて、実験例1(b)と同様の方法で4-ジ(3-チエニル)メトキシ-1-[3-(2-アミノフェノキシ)-2-メチルプロピル]ビペリシンを得た。

[0341] $^1\text{H-NMR}$ (CDCl_3 , δ ppm): 1.05(3H,d), 1.55~1.75(2H,m), 1.77~1.92(2H,m), 1.96~2.24(4H,m), 2.31~2.45(1H,m), 2.61~2.83(2H,m), 3.43(1H,m), 3.68~3.91(3H,m), 3.92~4.01(1H,m), 5.65(1H,s), 6.64~7.31(10H,m)

(c) 上記(b)でえられたアミノ体を用いて、実験例1(c)と同様の方法で脂溶性化合物を得た。

[0345] $^1\text{H-NMR}$ (CDCl_3 , δ ppm): 1.02(3H,d), 1.59~1.78(2H,m), 1.84(2H,m), 2.03~2.28(4H,m), 2.29~2.43(1H,m), 2.67(1H,m), 2.76(1H,m), 3.80~3.90(1H,m), 3.99~4.08(1H,s), 3.45(1H,m), 3.80~3.90(1H,m), 7.52(1H,dd), 5.65(1H,m), 6.30~7.31(9H,m), 7.52(1H,dd)

につぎに本発明のビペリシン誘導体がすぐれたヒスタミン遮断作用、抗ヒスタミン作用および強心作用について検討した。効果の判定は被検化合物液を加5分後に前記と同じにヒスタミンによる收縮を記録し、競合的拮抗作用

の強度を pA_{c} として求め算出した。

[0346] 試験例1 (ヒスタミン遮断作用試験)
抗DNP-卵白アルブミン血清で感作した体液50 g 前後の雄性ハートレースモルモットをチオペンタバッパタール麻酔下に放血致死させ、肺動脈よりタイロード液に

(44)
表 3

化 合 物	試験例1 (25%抑制濃度)		試験例2 (μM)
	実 施 例 1	実 施 例 2	
" 3.4 (マル酸塩)	$1 \times 10^{-6} \text{M}$	8.7	
" 3.6 (マル酸塩)	$1 \times 10^{-6} \text{M}$	9.9	
" 3.7	$1 \times 10^{-7} \text{M}$	8.6	
" 4.0	$1 \times 10^{-7} \text{M}$	8.4	
" 4.4 (マル酸塩)	$3 \times 10^{-8} \text{M}$	8.2	
対照薬アレキサノナックス	$3 \times 10^{-5} \text{M}$	-	
" オキサトイド	$1 \times 10^{-4} \text{M}$	8.9	
" 増強ジフェニヒドラミン	-	8.9	

[0347] 試験例1および2において、对照薬所じして、ヒスタミン遮断作用を有するアンレキサンノック (強張圧、心拍数、収縮力) の変化ひずみ圧用アント (型名R-P-5、日本光電工業株式会社製) を用いて記録した。
[0348] この結果から、変化率を次式により算出した。
[0349] また、オキサトイド、オキヒスタミン作用を有するオキサトイド、オヒスチミン作用を有する塩酸ジフェニヒドラミンを用い、比較した。

[0344] 以上の結果より、本発明の化合物は、すぐれたヒスタミン遮断作用ならびに抗ヒスタミン作用を併せ有することが確認された。
[0345] 試験例3
9-10個鶏の雄性Suid,Mistar系ラット(体重200~300g)から心臓を摘出し、5ml/分の流速でラングンドルフ装置にて灌流した。灌流液には1mmol/Lコфеインを含むクレブス・ヘンゼライト・バイカーカネイコイト液(pH7.4)を95%O₂、+5%CO₂、混合ガスで酸素化して用いた。心臓は灌流圧100mmHg、吸縮力は2 g以上、拍動数は200~300/minを用いた。30~60分安定化させた後、10%DMSOに溶解させた薬液0.1ml(薬物濃度は20~30μg/ml)を用いた。

[0346] その結果を表4に示す。

[0347] 試験例4
A: 薬物投与前の値
B: 薬物投与後の値

A : 薬物投与前の値
B : 薬物投与後の値
[0348] その結果を表4に示す。
[0349] 試験例5
抗DNP-卵白アルブミン血清で感作した体液50 g 前後の雄性ハートレースモルモットをチオペンタバッパタール麻酔下に放血致死させ、肺動脈よりタイロード液に

化合物	濃度 ($\mu\text{g}/\text{heart}$)	灌流圧 ($\triangle\%$)	吸縮力 ($\triangle\%$)	拍動数 ($\triangle\%$)
実施例 1	0.1	-8.39±3.4	2.0±3.6	0.7±1.2
	1	-24.8±3.0**	11.9±2.4	-0.7±1.2
実施例 3.3	10	-42.9±3.2**	11.8±2.3	-0.7±1.2
	100	-49.0±4.8**	-25.0±6.8**	-16.6±15.6**
実施例 4.4	0.1	-7.0±6.1	5.0±4.3	-1.2±2.1
	1	-19.2±2.2**	13.3±1.9	-1.9±1.8
対照薬	10	-39.1±5.4**	16.0±4.5	-4.6±4.7
	100	-40.1±5.2**	-46.2±13.4**	-17.2±10.1**
塩酸ジルチアゼム	0.1	-6.0±13.7	8.8±2.5	-5.7±1.4
	1	-28.9±3.0**	19.1±5.7**	-3.6±4.1
対照 (10 % DMSO)	10	-47.9±4.8**	16.2±11.3	-6.3±1.5
	100	-55.8±3.5**	-46.3±19.4**	-59.9±11.1**
平均標準偏差、n = 3 - 4例、対照 (10 % DMSO) 30例、 ** P < 0.01、対照 (10 % DMSO) に対する有意差	0.1	-10.3±4.0	3.5±6.9	-2.7±1.8
	1	-32.1±6.9**	7.0±16.1	-3.5±2.4
実施例 1.1	10	-47.1±1.4**	-67.1±17.5**	-25.9±30.3**
	100	-48.8±1.4**	-86.5±7.0**	-71.4±11.9**

の混合成分をカプセルに充填してカプセル剤を調製した。

【0356】実施例44の化合物 (フマル酸塩)
成 分
ラクトース 30
コーンスターチ 30
結晶セルロース
ステアリン酸マグネシウム

【0357】
【発明の効果】前記のように本発明の一 般式(I)で示された新規なビペリジン誘導体は、化学伝導物質遮断抑制作用および抗ヒスタミン作用などを有したすぐれた抗アレルギー作用を示し、各種効果を示す選性の少ないすぐれた抗アレルギー剤である。さらに、狭心症、心筋梗塞の予防ないし治療にも有効な化合物である。

【0358】また一般式(I)および(II)で示される化合物の中間体として有用であり、また狭心症や心筋梗塞などの虚血性疾患の治療にも有効である。

実験番号	成 分	性状	別記号	別記号	性状
(51)1at.C1'	C 0.7 D 409/12	211	8820-4C	882-4C	F 1
/CC 0.7 D 401/12	409/14				
		211:00	916-4C		
		213:00	670-4C		
(CC 0.7 D 401/14					
		211:00	916-4C		
		213:00	670-4C		
(CC 0.7 D 409/12					
		211:00	916-4C		
		333:00	725f-4C		
(CC 0.7 D 409/14					
		211:00	916-4C		
		333:00	725f-4C		
(CC 0.7 D 409/14					
		211:00	916-4C		
		213:00	670-4C		
		333:00	725f-4C		
(72)発明者 小山 俊浩					
京都市山科区四ノ宮南河原町14					
株式会社中央研究所(京都)内					
(72)発明者 中村 勉					
京都市山科区四ノ宮南河原町14					
株式会社中央研究所(京都)内					
(72)発明者 小川 騰					
京都市山科区四ノ宮南河原町14					
株式会社中央研究所(京都)内					
(72)発明者 小川 充					
京都市山科区四ノ宮南河原町14					
株式会社中央研究所(京都)内					
(72)発明者 畑 敏光					
京都市山科区四ノ宮南河原町14					
株式会社中央研究所(京都)内					

【0350】実施例における化合物は、塩酸ジルチアゼムに比較し、吸縮力や拍動数を変化させない用量において灌流圧を低下させた。塩酸ジルチアゼム210 $\mu\text{g}/\text{heart}$ において著明な吸縮力、拍動数の低下を示すのに對し、実施例の化合物310 $\mu\text{g}/\text{heart}$ では変化がなく安価であると考えられる。

【0351】以上の結果より、本発明の化合物は、狭心症、心筋梗塞の予防ないし治療に有効であることがわかる。

【0352】毒性試験例

実施例 1、34、37、40、44の化合物のLD₅₀はd_{dy}系マウス(雄性)、5週令、22~27 gにおいて、経口投与で300mg/kg以上で本発明の化合物の割合例を示すが、下記の処方にしたがつて有効成分为10mgを含むする100mg