In [22]:

```
import pandas as pd
from matplotlib import pyplot as plt
%matplotlib inline
```

In [23]:

```
df=pd.read_csv(r"C:\Users\jas_m\Downloads\Income.csv")
df
```

Out[23]:

	Gender	Age	Income(\$)
0	Male	19	15
1	Male	21	15
2	Female	20	16
3	Female	23	16
4	Female	31	17
195	Female	35	120
196	Female	45	126
197	Male	32	126
198	Male	32	137
199	Male	30	137

200 rows × 3 columns

In [24]:

df.head

Out[24]:

<bou< th=""><th>nd method</th><th colspan="2">NDFrame.head of</th><th>Gender</th><th>Age</th><th><pre>Income(\$)</pre></th></bou<>	nd method	NDFrame.head of		Gender	Age	<pre>Income(\$)</pre>
0	Male	19	15			
1	Male	21	15			
2	Female	20	16			
3	Female	23	16			
4	Female	31	17			
• •	• • •		•••			
195	Female	35	120			
196	Female	45	126			
197	Male	32	126			
198	Male	32	137			
199	Male	30	137			

[200 rows x 3 columns]>

In [25]:

```
df.tail
```

Out[25]:

```
<bound method NDFrame.tail of</pre>
                                       Gender Age Income($)
       Male
0
               19
1
       Male
               21
                            15
     Female
2
               20
                            16
3
     Female
               23
                            16
4
     Female
               31
                            17
                           . . .
195
     Female
               35
                           120
     Female
               45
196
                           126
       Male
                           126
197
               32
       Male
               32
                           137
198
       Male
199
               30
                           137
```

In [26]:

```
plt.scatter(df["Age"],df["Income($)"])
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[26]:

```
Text(0, 0.5, 'Income($)')
```

[200 rows x 3 columns]>

In [27]:

```
from sklearn.cluster import KMeans
km=KMeans()
km
```

Out[27]:

```
▼ KMeans
KMeans()
```

In [28]:

```
y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto'
in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138
2: UserWarning: KMeans is known to have a memory leak on Windows with MKL,
when there are less chunks than available threads. You can avoid it by set
ting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

Out[28]:

In [29]:

```
df["cluster"]=y_predicted
df.head()
```

Out[29]:

	Gender	Age	Income(\$)	cluster
0	Male	19	15	3
1	Male	21	15	3
2	Female	20	16	3
3	Female	23	16	3
4	Female	31	17	3

In [30]:

```
df1=df[df.cluster==0]
df2=df[df.cluster==1]
df3=df[df.cluster==2]
plt.scatter(df1["Age"],df1["Income($)"],color="red")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[30]:

Text(0, 0.5, 'Income(\$)')

In [31]:

```
from sklearn.preprocessing import MinMaxScaler
scaler=MinMaxScaler()
scaler.fit(df[["Income($)"]])
df["Income($)"]=scaler.transform(df[["Income($)"]])
df.head()
```

Out[31]:

	Gender	Age	Income(\$)	cluster
0	Male	19	0.000000	3
1	Male	21	0.000000	3
2	Female	20	0.008197	3
3	Female	23	0.008197	3
4	Female	31	0.016393	3

In [32]:

```
scaler.fit(df[["Age"]])
df["Age"]=scaler.transform(df[["Age"]])
df.head()
```

Out[32]:

	Gender	Age	Income(\$)	cluster
0	Male	0.019231	0.000000	3
1	Male	0.057692	0.000000	3
2	Female	0.038462	0.008197	3
3	Female	0.096154	0.008197	3
4	Female	0.250000	0.016393	3

In [33]:

```
km=KMeans()
y_predicted=km.fit_predict(df[["Age","Income($)"]])
y_predicted
```

C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto'
in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138
2: UserWarning: KMeans is known to have a memory leak on Windows with MKL,
when there are less chunks than available threads. You can avoid it by set
ting the environment variable OMP_NUM_THREADS=1.
 warnings.warn(

Out[33]:

In [34]:

```
df["New Cluster"]=y_predicted
df.head()
```

Out[34]:

	Gender	Age	Income(\$)	cluster	New Cluster
0	Male	0.019231	0.000000	3	2
1	Male	0.057692	0.000000	3	2
2	Female	0.038462	0.008197	3	2
3	Female	0.096154	0.008197	3	2
4	Female	0.250000	0.016393	3	6

In [35]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["Age"],df1["Income($)"],color="y")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[35]:

Text(0, 0.5, 'Income(\$)')

In [36]:

```
km.cluster_centers_
```

Out[36]:

In [40]:

```
df1=df[df["New Cluster"]==0]
df2=df[df["New Cluster"]==1]
df3=df[df["New Cluster"]==2]
plt.scatter(df1["Age"],df1["Income($)"],color="y")
plt.scatter(df2["Age"],df2["Income($)"],color="green")
plt.scatter(df3["Age"],df3["Income($)"],color="blue")
plt.scatter(km.cluster_centers_[:,0],km.cluster_centers_[:,1],color="red",marker="+")
plt.xlabel("Age")
plt.ylabel("Income($)")
```

Out[40]:

Text(0, 0.5, 'Income(\$)')

In [38]:

```
k_rng=range(1,10)
sse=[]
```

In [45]:

```
for k in k_rng:
    km=KMeans(n_clusters=k)
    km.fit(df[["Age","Income($)"]])
    sse.append(km.inertia_)
#km.inertia_ will give you the value of sum of square error
print(sse)
plt.plot(k_rng,sse)
plt.xlabel("K")
plt.ylabel("Sum of Squared Error")
```

```
C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto'
in 1.4. Set the value of `n_init` explicitly to suppress the warning
   warnings.warn(
C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:138
2: UserWarning: KMeans is known to have a memory leak on Windows with MKL,
when there are less chunks than available threads. You can avoid it by set
ting the environment variable OMP_NUM_THREADS=1.
```

warnings.warn(
C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto'
in 1.4. Set the value of `n_init` explicitly to suppress the warning

warnings.warn(
C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138
2: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by set ting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
 FutureWarning: The default value of `n_init` will change from 10 to 'auto'
 in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(
- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138 2: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by set ting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
 FutureWarning: The default value of `n_init` will change from 10 to 'auto'
 in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(
- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138
 2: UserWarning: KMeans is known to have a memory leak on Windows with MKL,
 when there are less chunks than available threads. You can avoid it by set
 ting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
 FutureWarning: The default value of `n_init` will change from 10 to 'auto'
 in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(
- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138
 2: UserWarning: KMeans is known to have a memory leak on Windows with MKL,
 when there are less chunks than available threads. You can avoid it by set
 ting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
 FutureWarning: The default value of `n_init` will change from 10 to 'auto'
 in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(
- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138
 2: UserWarning: KMeans is known to have a memory leak on Windows with MKL,
 when there are less chunks than available threads. You can avoid it by set
 ting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
 FutureWarning: The default value of `n_init` will change from 10 to 'auto'
 in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(
- C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138
 2: UserWarning: KMeans is known to have a memory leak on Windows with MKL,
 when there are less chunks than available threads. You can avoid it by set

ting the environment variable OMP_NUM_THREADS=1.
 warnings.warn(

C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto'
in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138 2: UserWarning: KMeans is known to have a memory leak on Windows with MKL, when there are less chunks than available threads. You can avoid it by set ting the environment variable OMP_NUM_THREADS=1.

warnings.warn(

C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:870:
FutureWarning: The default value of `n_init` will change from 10 to 'auto'
in 1.4. Set the value of `n_init` explicitly to suppress the warning
 warnings.warn(

C:\Users\jas_m\anaconda3\lib\site-packages\sklearn\cluster_kmeans.py:138
2: UserWarning: KMeans is known to have a memory leak on Windows with MKL,
when there are less chunks than available threads. You can avoid it by set
ting the environment variable OMP_NUM_THREADS=1.
 warnings.warn(

[23.583906150363603, 13.028938428018286, 7.493024843304991, 6.072884728742 5545, 4.713811834695168, 3.865956392529676, 3.054717436369358, 2.657386592 1973026, 2.3135720353543285]

Out[45]:

Text(0, 0.5, 'Sum of Squared Error')

In []:

In []:			
In []:			
In []:			