Consider predicting variable y using predictors x1 and x2. The first predictor x1 is a three-level categorical variable. In this example we compare two models. One in which x1 is categorical but included as continuous (numerical) variable. The other in which x1 is properly included as categorical variable.

x_1	x_2	y
S	-0.10	19.19
\mathbf{S}	2.53	22.74
\mathbf{S}	4.86	23.91
\mathbf{M}	0.26	7.07
\mathbf{M}	2.55	7.93
\mathbf{M}	4.87	8.93
${\bf L}$	0.08	20.63
${\bf L}$	2.62	23.46
L	5.09	25.75

- 1. Substitute the levels of x_1 with 0, 1, 2.
- 2. Fit a linear regression model. What is the \mathbb{R}^2 of this model?
- 3. Substitute the three levels of the original variable x_1 with binary (dummy) variables 0, 1. Use function as.factor()
- 4. Fit a linear regression model. What is the \mathbb{R}^2 of this model?
- 5. Substitute the three levels of the original variable x_1 with binary (dummy) variables 0, 1. Do not use the as.factor function. Verify that the last two models agree.