# PERTEMUAN 3 LIMIT FUNGSI ALJABAR

Informatika

Universitas Ahmad Dahlan



#### LIMIT FUNGSI

Bilangan L disebut limit fungsi f(x) untuk mendekati suatu harga a, ditulis:

$$\lim_{x \to a} f(x) = L$$

Jika untuk setiap bilangan positif  $\varepsilon$  yang diberikan (bagaimanapun kecilnya) dapat ditemukan bilangan  $\delta>0$  sedemikian hingga untuk semua harga x dimana

$$0 < |x - a| < \delta$$
 berlaku  $|f(x) - L| < \epsilon$ 

## Limit Fungsi di Satu Titik

Perhatikan fungsi

$$\bullet f(x) = \frac{x^2 - 1}{x - 1}$$

Fungsi diatas tidak terdefinisi di x=1, karena di titik tersebut f(x)
berbentuk 0/0. Tapi masih bisa ditanyakan berapa nilai f(x) jika x
mendekati 1 Dengan bantuan kalkulator dapat diperoleh nilai f(x) bila
x mendekati 1, seperti pada tabel berikut

| 1    | 1   | 1    |       | 0.9999 |          |     |        |       |      |     |
|------|-----|------|-------|--------|----------|-----|--------|-------|------|-----|
| f(x) | 1.9 | 1.99 | 1.999 | 1.9999 | <b>→</b> | ? ← | 2.0001 | 2.001 | 2.01 | 2.1 |

Animad Daniani



 Dari tabel dan grafik disamping terlihat bahwa f(x) mendekati 2 jika x mendekati 1 Secara matematis dapat dituliskan

• 
$$\lim_{x \to 1} = \frac{x^2 - 1}{x - 1} = 2$$



#### TEOREMA LIMIT

1. 
$$\lim_{x \to c} k = k$$
• Contoh: 1.  $\lim_{x \to c} 4 = 4$ 
2.  $\lim_{x \to c} 7 = 7$ 

2. 
$$\lim_{x \to c} x = c$$
• Contoh: 1.  $\lim_{x \to 8} x = 8$ 
2.  $\lim_{x \to -3} x = -3$ 

3. 
$$\lim_{\substack{x \to c \\ g(x)}} [f(x) + \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

Contoh:

• 
$$\lim_{x \to 5} (x+9) = \lim_{x \to 5} x + \lim_{x \to 5} 9 = 5 + 9 = 14$$

$$4. \lim_{\substack{x \to c \\ g(x)}} [f(x) - \lim_{x \to c} f(x) - \lim_{x \to c} g(x)]$$

Contoh:

• 
$$\lim_{x \to -2} (x - 5) = \lim_{x \to -2} x - \lim_{x \to -2} 5$$

• 
$$= -2 - 5 = -7$$

#### TEOREMA LIMIT

5. 
$$\lim_{x \to c} [f(x).g(x)] = \lim_{x \to c} f(x).\lim_{x \to c} g(x)$$
  
contoh:  

$$\lim_{x \to 5} [(8-x)(x+4)] = \lim_{x \to 5} (8-x).\lim_{x \to 5} (x$$
  

$$= (3)(9) = 27$$

6. 
$$\lim_{x \to c} \left[ \frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$$

contoh:

$$\lim_{x \to -4} \frac{x}{3 - x} = \frac{\lim_{x \to -4} x}{\lim_{x \to -4} 3 - x} = \frac{-4}{7} = -\frac{4}{7}$$

7. 
$$\lim_{x \to c} af(x) = a \lim_{x \to c} f(x)$$

contoh:

a) 
$$\lim_{x \to e} 9x = 9 \lim_{x \to e} x = 9e$$

b) 
$$\lim_{x \to \pi} 3(4-x) = 3 \lim_{x \to \pi} (4-x) = 3(4-\pi)$$

8. 
$$\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n$$
  
contoh:  $\lim_{x \to 2} (x - 3)^7 = \left[\lim_{x \to 2} (x - 3)\right]^7 = (-1)^7 = -1$ 

9. 
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$$
asalkan 
$$\lim_{x \to c} f(x) > 0$$
 untuk n bilangan genap (Dijelaskan Selanjutnya)

#### ATURAN AKAR

Andaikan n genap dan  $f(x) \ge 0$  untuk x dekat c maka

$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)}$$

#### **Contoh**

Hitung nilai limit berikut:

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 16} - 4}{x^2} = \frac{\sqrt{x^2 + 16} - 4}{x^2} \cdot \frac{\sqrt{x^2 + 16} + 4}{\sqrt{x^2 + 16} + 4} = \frac{x^2 + 16 - 16}{x^2(\sqrt{x^2 + 16} + 4)}$$

$$=\frac{x^2}{x^2(\sqrt{x^2+16}+4)}=\frac{1}{8}$$

## Penyelesaian Limit dengan Perhitungan

- Substitusi langsung
  - $\lim_{x \to 1} 2x^2 + 3x + 1$
  - $2(1)^2 + 3(1) + 1 = 6$
- Pemfaktoran (bentuk 0/0)
  - $\bullet \lim_{x\to 2} \frac{x^3-8}{x-2}$
  - $\lim_{x\to 2} \frac{(x-2)(x^2+2x+4)}{x-2}$
  - $\lim_{x\to 2} (x^2 + 2x + 4)$
  - $(2)^2 + 2(2) + 4 = 12$

Dikali sekawan (bentuk akar)

• 
$$\lim_{x\to 0} \frac{x}{2-\sqrt{4-x}}$$

$$\bullet = \frac{x}{2 - \sqrt{4 - x}} \cdot \frac{2 + \sqrt{4 - x}}{2 + \sqrt{4 - x}}$$

$$\bullet = \frac{(x)(2+\sqrt{4-x})}{4-4+x}$$

$$\bullet = 2 + \sqrt{4 - (0)}$$

### Contoh

1. 
$$\lim_{x \to 1} 3x + 5 = 8$$

2. 
$$\lim_{x \to 1} \frac{2x^2 + 3x + 2}{x - 2}$$

• 
$$\lim_{x \to 1} \frac{(2x+1)(x-2)}{x-2}$$

• 
$$\lim_{x \to 1} (2x + 1)$$

• 
$$\lim_{x \to 1} (2x + 1) = 5$$

$$3.\lim_{x\to 0} \frac{x}{\sqrt{x+9}-3} =$$

$$\bullet = \frac{x}{\sqrt{x+9}-3} \cdot \frac{\sqrt{x+9}+3}{\sqrt{x+9}+3}$$

$$\bullet = \frac{x(\sqrt{x+9}+3)}{\left(\sqrt{x+9}\right)^2 - 3^2}$$

$$\bullet = \frac{x(\sqrt{x+9}+3)}{x+9-9}$$

$$\bullet = \frac{x(\sqrt{x+9+3})}{x+9-9}$$

$$\bullet = \frac{x(\sqrt{x+9}+3)}{x}$$

$$\bullet = \sqrt{x+9} + 3$$

$$x \to 0, \sqrt{0+9+3}$$

$$= 6$$

### Latihan:

1. 
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2}$$

$$2. \lim_{x \to 1} \frac{\sqrt{x} - 1}{x - 1}$$

3. 
$$\lim_{x \to -2} \frac{x^2 - x - 6}{x^2 + 3x + 2}$$

4. 
$$\lim_{x \to 4} \frac{\sqrt{x}-2}{x-4}$$

#### LIMIT KIRI DAN LIMIT KANAN

#### Limit kiri:

- apabila x mendekati a didekati dari kiri (dari arah bilangan yang lebih kecil dari a)
- Notasinya
  - $\lim_{x \to a_{-}} f(x) = L$

#### Limit kanan:

- apabila x mendekati a didekati dari kanan (dari arah bilangan yang lebih besar dari a)
- Notasinya
  - $\lim_{x \to a_+} f(x) = L$

### LIMIT KIRI DAN LIMIT KANAN





#### LIMIT DENGAN HASIL TAK HINGGA

• 
$$\lim_{x \to a_+} f(x) = +\infty$$

• 
$$\lim_{x \to a_+} f(x) = -\infty$$

• 
$$\lim_{x \to a} f(x) = +\infty$$



• 
$$\lim_{x \to a_{-}} f(x) = +\infty$$

• 
$$\lim_{x \to a_{-}} f(x) = -\infty$$

• 
$$\lim_{x \to a} f(x) = -\infty$$



## CONTOH

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

| х      | $\frac{1}{x^2}$ |
|--------|-----------------|
| ±1     | 1               |
| ±0.5   | 4               |
| ±0.2   | 25              |
| ±0.1   | 100             |
| ±0.05  | 400             |
| ±0.01  | 10,000          |
| ±0.001 | 1,000,000       |



#### LIMIT TAK HINGGA

Sama dengan definisi  $\lim_{x \to -\infty} f(x)$ 

$$\bullet \lim_{x \to \pm \infty} \frac{1}{x} = 0$$

$$\bullet \lim_{x \to \pm \infty} e^{-x} = 0$$

• 
$$\lim_{x \to \pm \infty} e^x = \pm \infty$$

#### LIMIT TAK HINGGA FUNGSI RASIONAL

$$f(x) = p(x)/q(x) \text{ merupakan fungsi rasional, } p(x), q(x) \text{ polinomial, maka}$$
 
$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{p(x)}{q(x)} = \begin{cases} 0, & jika \deg(p) < \deg(q) \\ L \neq 0 & atau \ \pm \infty, jika \deg(p) = \deg(q) \\ \pm \infty, & jika \deg(p) > \deg(q) \end{cases}$$

Dimana deg = derajat

- → Jika bentuknya sudah pecahan: dibagi pangkat tertinggi
- → Jika bentuknya belum pecahan: dikali sekawan, baru dibagi pangkat tertinggi



### **LATIHAN**

• 
$$\lim_{x \to \infty} \frac{2x}{x+13}$$

• 
$$\lim_{x \to \infty} \frac{2x^{13} + 5x^2 + 7}{x^{13} + 69x^2 + 6}$$

$$\bullet \lim_{x \to \infty} \frac{1 - x + 13x^2}{5x - 27x^2}$$

$$\bullet \lim_{x \to \infty} \frac{5 - 44x^2}{6 - 7x}$$

$$\bullet \lim_{x \to \infty} \frac{10 - x^4}{3 + x^6}$$

## Tugas

- Ganjil
  - $\lim_{x \to 3} 5x^2$

• 
$$\lim_{x \to 2} \frac{x^2 + 3x - 10}{x^2 + x - 6}$$

• 
$$\lim_{x \to 3} \frac{9 - x^2}{4 - \sqrt{x^2 + 7}}$$

• 
$$\lim_{x \to \infty} \frac{3x^2 + 4x - 1}{2x^2 - x + 3}$$

- Genap
  - $\lim_{x\to 2} 3x^3$

• 
$$\lim_{x \to 3} \frac{x^2 + 3x - 18}{x^2 - 3x}$$

• 
$$\lim_{x \to 0} \frac{x}{2 - \sqrt{4 - x}}$$

• 
$$\lim_{x \to \infty} \frac{x^2 + 3x + 2}{2x^2 - 347x + 45}$$

$$\lim_{x \to \infty} \frac{3x^2 - x + 5}{x^3 + 2x - 1}$$