In the claims:

1. (previously presented) A process for the preparation of acylphosphanes of formula I

$$R_{1} = \begin{bmatrix} R_{3} \\ P \end{bmatrix}_{2-m} \begin{bmatrix} O \\ C - R_{2} \end{bmatrix}_{m}$$

(I), wherein

n and m are each independently of the other 1 or 2;

R_1 , if n = 1, is

 C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O atoms, phenyl- C_1 - C_4 alkyl, C_2 - C_8 alkenyl, phenyl, naphthyl, biphenyl, C_5 - C_{12} cycloalkyl or a 5- or 6-membered O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl, C_5 - C_{12} cycloalkyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C_1 - C_8 alkyl, C_1 - C_8 alkylthio, C_1 - C_8 alkoxy and/or $-N(R_8)_2$;

R_1 , if n = 2, is

 C_1 - C_{18} alkylene, C_2 - C_{18} alkylene which is interrupted by one or several non-successive O atoms; or R_1 is C_1 - C_6 alkylene which is substituted by C_1 - C_4 alkoxy, phenyl, C_1 - C_4 alkylphenyl, phenyl- C_1 - C_4 alkyl or C_1 - C_6 alkoxyphenyl; or R_1 is phenylene or xylylene, which radicals are unsubstituted or substituted by

one to three C_1 - C_4 alkyl and/or C_1 - C_4 alkoxy, or R_1 is a - CH_2 CH=CHCH $_2$ -,

$$-CH_{2}CH_{2} - CH_{2}CH_{2} - CH_{2}CH_{2}O - CH_{2}CH_{2}O$$

group;

 R_2 is C_1 - C_{18} alkyl, C_3 - C_{12} cycloalkyl, C_2 - C_{18} alkenyl, phenyl- C_1 - C_4 alkyl, phenyl, naphthyl, biphenyl or a 5- or 6-membered O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C_1 - C_8 alkyl, C_1 - C_8 alkoxy and/or C_1 - C_8 alkylthio;

 R_3 is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O atoms or which is interrupted by -CO-, -COO-, -OCO-, -CO-N(R₉)-, -N(R₉)-CO-, -N(R₉)-CO-N(R₉)-, -N(R₉)-CO-; C_1 - C_{18} alkyl substituted by -OR₁₀, -OCO-R₁₀, -COO-R₁₀, -N(R₉)-CO-R₁₀, -CO-N(R₉)-R₁₀, -C(R₁₁)=C(R₁₂)-CO-OR₁₀ or -C(R₁₁)=C(R₁₂)-phenyl;

 C_2 - C_{12} alkenyl or C_2 - C_{12} alkenyl which is interrupted by one or several non-successive O atoms; phenyl- C_1 - C_4 alkyl, phenyl, naphthyl, biphenyl, C_5 - C_{12} cycloalkyl or a 5- or 6-membered O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl, C_5 - C_{12} cycloalkyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C_1 - C_8 alkyl, C_1 - C_8 alkylthio C_1 - C_8 alkoxy and/or $-N(R_8)_2$; or R_3 is -CO- OR_9 or -CO- $N(R_9)_2$;

Q is a single bond, CR_6R_7 , -O- or -S-;

R₄ and R₅ are each independently of the other hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy;

R₆ and R₇ are each independently of the other hydrogen or C₁-C₄alkyl;

 R_8 is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O-atoms; or - $N(R_8)_2$ forms a 5- or 6-membered O-, S- or N-containing heterocyclic ring;

 R_9 is hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O atoms, C_3 - C_{12} -cycloalkyl, C_2 - C_{18} -alkenyl, phenyl- C_1 - C_4 -alkyl, phenyl, naphthyl, pyridyl, the radicals phenyl, naphthyl or pyridyl being unsubstituted or substituted by one to five C_1 - C_8 -alkyl, C_1 - C_8 -alkylthio and/or halogen; or -N(R_9)₂ forms a 5- or 6-membered O-, S- or N-containing heterocyclic ring;

 R_{10} is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O-atoms, C_3 - C_{12} -cycloalkyl, phenyl- C_1 - C_4 -alkyl, C_2 - C_{18} -alkenyl, phenyl, naphthyl or biphenyl, the radicals phenyl- C_1 - C_4 -alkyl, phenyl, naphthyl or biphenyl being unsubstituted or substituted by one to five C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkylthio and/or halogen;

 R_{11} is hydrogen or C_1 - C_4 -alkyl;

 R_{12} is hydrogen or C_1 - C_4 -alkyl;

by

(1) reacting a phosphorous halide of formula IIa or a phosphorous halide oxide of formula IIb or a phosphorous halide sulfide of formula IIc

$$R_{1} = \begin{bmatrix} \begin{bmatrix} R_{3} \end{bmatrix}_{2-m} \\ P = \begin{bmatrix} Hal \end{bmatrix}_{m} \end{bmatrix}_{n} R_{1} = \begin{bmatrix} \begin{bmatrix} R_{3} \end{bmatrix}_{2-m} \\ P = \begin{bmatrix} Hal \end{bmatrix}_{m} \end{bmatrix}_{n} R_{1} = \begin{bmatrix} \begin{bmatrix} R_{3} \end{bmatrix}_{2-m} \\ P = \begin{bmatrix} Hal \end{bmatrix}_{m} \end{bmatrix}_{n}$$
(IIb), (IIb),

wherein R₁, R₃, n and m have the meaning cited above and Hal is F, Cl, Br or I; with an alkali metal in a solvent (**metallation**) in the presence of a proton source (**reduction**);

(2) subsequent reaction with m acid halides of formula III

wherein R₂, Hal and m have the meaning cited above.

2.(currently amended) A process according to claim 1, wherein in step (1) the metallation is carried out by reacting a compound of the formula IIa, IIb, or IIc with an alkali metal in a solvent, whereby a metallized phosphanide of the formula V

R_4 -P(Me)-P(Me)- R_4 -(V)

is formed together with cyclic phosphanes $(R_1P)_n$, $n \ge 3$ as intermediates, wherein Me is lithium, sodium or potassium or magnesium in combination with lithium in a solvent., and R_1 is as defined in claim 1; and wherein the reduction is carried out by reacting the intermediate V and/or $(R_1P)_n$, $n \ge 3$ with a proton source.

3. **(previously presented)** A process according to claim 2, wherein the alkali metal is sodium;

the proton source is selected from the group consisting of sterically hindered alcohols, trialkylamine hydrohalogenes, bisarylamines, malono nitrile, malonic acid esters, amidine hydrohalogene and carboxylic acids;

the solvent is one or more compounds selected from the group consisting of benzene, toluene, o-, m- or p-xylene, mesitylene, ethylbenzene, diphenylethane, 1,2,3,4-tetrahydronaphthaline (tetraline) and isopropylbenzene (cumol); and

the reaction temperature of step (1) is in the range from -20°C to +160°C.

4. **(previously presented)** A process according to claim 3, wherein the sterically hindered alcohol is selected from the group consisting of secondary and tertiary C₃-C₁₈alcohols.

10/564,711 - 4 - SE/2-22920/A/PCT

 $OR_{\mathcal{F}}$

- 5. (previously presented) A process according to claim 1, wherein metallation is carried out in the presence of catalytic amounts of alkali or earth alkali hydroxides or of Na, K or Li alcoholates or of alcohols.
- 6. **(previously presented)** A process according to claim 1, wherein the metallation and reduction step is carried out in the presence of an activator.
- 7. **(previously presented)** A process according to claim 6, wherein the activator is an amine selected from the group consisting of triethylamine, tributylamine, piperidine, morpholine, N-methyl piperidine, N-methyl morpholine and polyamines.
- 8. **(previously presented)** A process according to claim 1 for the preparation of **monoacylphosphanes** of the formula I'

$$R_{1} \hspace{-1mm} \stackrel{\textstyle R_{3} \quad \mbox{O}}{\stackrel{\textstyle II}{-}} R_{2} \hspace{-1mm} \stackrel{\textstyle (I')}{-} \mbox{by}$$
 by

(1) reacting organic phosphorus halides of formula II'

$$R_1$$
-P(Hal)₂ (II')

with an alkali metal in a solvent in the presence of a proton source; and either

(2a) subsequent reaction with an acid halide of formula III'

$$\mathsf{Hal} \overset{\mathsf{O}}{=\!\!\!\!\perp} \mathsf{R_2} \ \ (\mathsf{III'})$$

followed by the reaction with an electrophilic compound R₃-Hal, or

(2b) subsequent reaction with with an electrophilic compound R_3 -Hal followed by the reaction with an acid halide of formula III'

Hal
$$\stackrel{\mathsf{O}}{=} \mathsf{R}_2$$
 (III'),

wherein R_1 , R_2 and R_3 and Hal are as defined in claim 1.

 $(-\varepsilon,\hat{-}$

9. **(previously presented)** A process according to claim 1 for the preparation of **symmetric bisacylphosphanes** of the formula I"

$$R_{2}$$
— C — P — C - R_{2}
 R_{1} (I"), by

(1) reacting organic phosphorus halides of formula II"

$$R_1$$
-P(Hal)₂ (II")

with an alkali metal in a solvent in the presence of a proton source;

(2) subsequent reaction with an acid halide of formula III"

wherein R₁ and R₂ and Hal are as defined in claim 1.

10. **(original)** A process according to claim 1 for the preparation of **unsymmetric bisacylphosphanes** of the formula I'''

$$R_2'$$
— C — P — C - R_2
 R_1 (I''') by

(1) reacting organic phosphorus halides of formula II"

with an alkali metal in a solvent in the presence of a proton source;

(2) subsequent reaction with an acid halide of formula III"

(3) subsequent reaction with a second acid halide III"

wherein

R₁ is as defined in claim 1 and

 R_2 and R_2 ' independently of one another are as defined in claim 1 under R_2 with the proviso that R_2 is not equal R_2 ',

Hal is as defined in claim 1.

11. (cancelled)

12. **(previously presented)** A process according to claim 1 for the preparation of mono acylated phosphanes of the formula VI and VI'

(1) reacting organic phosphorus halides of formula II" R_1 -P(Hal)₂ (II")

with an alkali metal in a solvent in the presence of a proton source;

(2) subsequent reaction with an acid halide of formula III" or III"

wherein R_1 , R_2 are as defined in claim 1, R_2 is as defined in claim 1 under R_2 with the proviso that R_2 is not equal R_2 and Me is Li, Na, K or Mg in combination with Li.

13. **(currently amended)** A process according to claim 1, further comprising an additional step of oxiding the acylphosphane of formula (I) to prepare acylphosphane oxides or reacting the acylphosphane of formula (I) with sulfur to prepare acylphosphane oxides and acylphosphane sulfides of formula IV

 R_1 , R_2 , R_3 , n and m are as defined in claim1, and Z is O or S.

- 14. (previously presented) A process according to claim 4, wherein the secondary and tertiary C_{3} - C_{18} alcohols are selected from the group consisting of t-butanol, t-amyl-alcohol, 3-methyl-3-pentanol, 3-ethyl-3-pentanol, triphenylmethanol, 3,7-dimethyl-3-octanol, 2-methyl-1-phenyl-2-propanol, 2-methyl-4-phenyl-2-butanol, fenchyl alcohol, 2,4-dimethyl-3-pentanol, 1-dimethylamino-2-propanol or hexylene glycol.
- 15. (previously presented) A process according to claim 5, wherein metallation is carried out in the presence of catalytic amounts of Na, K or Li sterically hindered alcoholates or sterically hindered alcohols.
- 16. **(previously presented)** A process according to claim 7, wherein the polyamine is N,N,N',N'-tetramethylethylenediamine.
- 17. (previously presented) A process according to claim 13, wherein a monoacylphosphane of $R_1 = R_2 = R_3 = R_3 = R_4 = R_4$
- 18. (previously presented) A process according to claim 13, wherein a symmetric bisacylphosphane

19. (previously presented) A process according to claim 13, wherein an unsymmetric

20. (new) A process for the preparation of acylphosphanes of formula I

$$R_{1} = \begin{bmatrix} \begin{bmatrix} R_{3} \end{bmatrix}_{2-m} & O \\ C & C - R_{2} \end{bmatrix}_{m}$$

(I), wherein

n and m are each independently of the other 1 or 2;

R_1 , if n = 1, is

 C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O atoms, phenyl- C_1 - C_4 alkyl, C_2 - C_8 alkenyl, phenyl, naphthyl, biphenyl, C_5 - C_{12} cycloalkyl or a 5- or 6-membered O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl, C_5 - C_{12} cycloalkyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C_1 - C_8 alkyl, C_1 - C_8 alkylthio, C_1 - C_8 alkoxy and/or $-N(R_8)_2$;

R_1 , if n = 2, is

 C_1 - C_{18} alkylene, C_2 - C_{18} alkylene which is interrupted by one or several non-successive O atoms; or R_1 is C_1 - C_6 alkylene which is substituted by C_1 - C_4 alkoxy, phenyl, C_1 - C_4 alkylphenyl, phenyl- C_1 - C_4 alkyl or C_1 - C_6 alkoxyphenyl; or R_1 is phenylene or xylylene, which radicals are unsubstituted or substituted by

-CH₂-C \equiv C-CH₂-one to three C₁-C₄alkyl and/or C₁-C₄alkoxy, or R₁ is a -CH₂CH=CHCH₂-,

$$-CH_2CH_2 - CH_2CH_2 - CH_2CH_2O - CH_2CH_2O - OCH_2CH_2 - OCH_2$$

group;

R₂ is C₁-C₁₈alkyl, C₃-C₁₂cycloalkyl, C₂-C₁₈alkenyl, phenyl-C₁-C₄alkyl, phenyl, naphthyl, biphenyl or a 5- or 6-membered O-, S- or N-containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C₁-C₈alkyl, C₁-C₈alkoxy and/or C₁-C₈alkylthio;

 R_3 is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O atoms or which is interrupted by -CO-, -COO-, -OCO-, -CO-N(R₉)-, -N(R₉)-CO-, -N(R₉)-CO-N(R₉)-, -N(R₉)-COO-; C_1 - C_{18} alkyl substituted by -OR₁₀, -OCO-R₁₀, -COO-R₁₀, -N(R₉)-CO-R₁₀, -CO-N(R₉)-R₁₀, -C(R₁₁)=C(R₁₂)-CO-OR₁₀ or -C(R₁₁)=C(R₁₂)-phenyl;

C₂-C₁₂alkenyl or C₂-C₁₂alkenyl which is interrupted by one or several non-successive O atoms; phenyl-C₁-C₄alkyl, phenyl, naphthyl, biphenyl, C₅-C₁₂cycloalkyl or a 5- or 6-membered O-, S- or N-

containing heterocyclic ring, the radicals phenyl, naphthyl, biphenyl, C₅-C₁₂cycloalkyl or the 5- or 6-membered O-, S- or N-containing heterocyclic ring being unsubstituted or substituted by one to five halogen, C₁-C₈alkyl, C₁-C₈alkylthio C₁-C₈alkoxy and/or –N(R₈)₂; or R₃ is –CO-OR₉ or –CO-N(R₉)₂;

Q is a single bond, CR_6R_7 , -O- or -S-;

R₄ and R₅ are each independently of the other hydrogen, C₁-C₄alkyl or C₁-C₄alkoxy;

R₆ and R₇ are each independently of the other hydrogen or C₁-C₄alkyl;

 R_8 is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O-atoms; or - $N(R_8)_2$ forms a 5- or 6-membered O-, S- or N-containing heterocyclic ring;

R₉ is hydrogen, C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O atoms, C_3 - C_{12} -cycloalkyl, C_2 - C_{18} -alkenyl, phenyl- C_1 - C_4 -alkyl, phenyl, naphthyl, pyridyl, the radicals phenyl, naphthyl or pyridyl being unsubstituted or substituted by one to five C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkylthio and/or halogen; or -N(R₉)₂ forms a 5- or 6-membered O-, S- or N-containing heterocyclic ring;

 R_{10} is C_1 - C_{18} alkyl, C_2 - C_{18} alkyl which is interrupted by one or several non-successive O-atoms, C_3 - C_{12} -cycloalkyl, phenyl- C_1 - C_4 -alkyl, C_2 - C_{18} -alkenyl, phenyl, naphthyl or biphenyl, the radicals phenyl- C_1 - C_4 -alkyl, phenyl, naphthyl or biphenyl being unsubstituted or substituted by one to five C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -alkylthio and/or halogen;

 R_{11} is hydrogen or C_1 - C_4 -alkyl;

 R_{12} is hydrogen or C_1 - C_4 -alkyl;

by

- (1) reacting diphospanes of the formula $(R_1)_2$ -P-P(R_1)₂ or polyphosphanes of the formula $[R_1P]_n$, wherein n is ≥ 3 and R_1 is any group as defined for R_1 above with an alkali metal in a solvent in the presence of a proton source,
- (2) followed by the reaction with acid halides of formula III

Hal $\stackrel{O}{=}$ R_2 (III), and/or by reaction with electrophilic compounds R_3 -Hal, wherein R_2 , R_3 and Hal have the meaning cited above.

ijs.

1: :