Calculating Limits Using the Limit Laws 2.3

1. (a)
$$\lim_{x \to 2} [f(x) + 5g(x)] = \lim_{x \to 2} f(x) + \lim_{x \to 2} [5g(x)]$$
 [Limit Law 1] (b) $\lim_{x \to 2} [g(x)]^3 = \left[\lim_{x \to 2} g(x)\right]^3$ [Limit Law 6]
$$= \lim_{x \to 2} f(x) + 5 \lim_{x \to 2} g(x)$$
 [Limit Law 3]
$$= (-2)^3 = -8$$

$$= 4 + 5(-2) = -6$$

(c)
$$\lim_{x \to 2} \sqrt{f(x)} = \sqrt{\lim_{x \to 2} f(x)}$$
 [Limit Law 11]
 $= \sqrt{4} = 2$
(d) $\lim_{x \to 2} \frac{3f(x)}{g(x)} = \frac{\lim_{x \to 2} [3f(x)]}{\lim_{x \to 2} g(x)}$ [Limit Law 5]
 $= \frac{3 \lim_{x \to 2} f(x)}{\lim_{x \to 2} g(x)}$ [Limit Law 3]
 $= \frac{3(4)}{-2} = -6$

(e) Because the limit of the denominator is 0, we can't use Limit Law 5. The given limit, $\lim_{x\to 2} \frac{g(x)}{h(x)}$, does not exist because the denominator approaches 0 while the numerator approaches a nonzero number.

(f)
$$\lim_{x \to 2} \frac{g(x) h(x)}{f(x)} = \frac{\lim_{x \to 2} [g(x) h(x)]}{\lim_{x \to 2} f(x)}$$
 [Limit Law 5]
$$= \frac{\lim_{x \to 2} g(x) \cdot \lim_{x \to 2} h(x)}{\lim_{x \to 2} f(x)}$$
 [Limit Law 4]
$$= \frac{-2 \cdot 0}{4} = 0$$

2. (a)
$$\lim_{x\to 2} [f(x)+g(x)]=\lim_{x\to 2} f(x)+\lim_{x\to 2} g(x)$$
 [Limit Law 1]
$$=-1+2$$

$$=1$$

(b) $\lim_{x\to 0} f(x)$ exists, but $\lim_{x\to 0} g(x)$ does not exist, so we cannot apply Limit Law 2 to $\lim_{x\to 0} [f(x)-g(x)]$.

The limit does not exist.

(c)
$$\lim_{x\to -1}[f(x)\,g(x)]=\lim_{x\to -1}f(x)\cdot\lim_{x\to -1}g(x)$$
 [Limit Law 4]
$$=1\cdot 2$$

$$=2$$

(d) $\lim_{x\to 3} f(x) = 1$, but $\lim_{x\to 3} g(x) = 0$, so we cannot apply Limit Law 5 to $\lim_{x\to 3} \frac{f(x)}{g(x)}$. The limit does not exist.

$$\textit{Note:} \lim_{x \to 3^-} \frac{f(x)}{g(x)} = \infty \text{ since } g(x) \to 0^+ \text{ as } x \to 3^- \text{ and } \lim_{x \to 3^+} \frac{f(x)}{g(x)} = -\infty \text{ since } g(x) \to 0^- \text{ as } x \to 3^+.$$

Therefore, the limit does not exist, even as an infinite limit.

(e)
$$\lim_{x\to 2} \left[x^2 f(x)\right] = \lim_{x\to 2} x^2 \cdot \lim_{x\to 2} f(x)$$
 [Limit Law 4]
= $2^2 \cdot (-1)$ not defined.

3.
$$\lim_{x \to 3} (5x^3 - 3x^2 + x - 6) = \lim_{x \to 3} (5x^3) - \lim_{x \to 3} (3x^2) + \lim_{x \to 3} x - \lim_{x \to 3} 6$$
 [Limit Laws 2 and 1]
 $= 5 \lim_{x \to 3} x^3 - 3 \lim_{x \to 3} x^2 + \lim_{x \to 3} x - \lim_{x \to 3} 6$ [3]
 $= 5(3^3) - 3(3^2) + 3 - 6$ [9, 8, and 7]
 $= 105$

4.
$$\lim_{x \to -1} (x^4 - 3x)(x^2 + 5x + 3) = \lim_{x \to -1} (x^4 - 3x) \lim_{x \to -1} (x^2 + 5x + 3)$$
 [Limit Law 4]
$$= \left(\lim_{x \to -1} x^4 - \lim_{x \to -1} 3x\right) \left(\lim_{x \to -1} x^2 + \lim_{x \to -1} 5x + \lim_{x \to -1} 3\right)$$
 [2, 1]
$$= \left(\lim_{x \to -1} x^4 - 3 \lim_{x \to -1} x\right) \left(\lim_{x \to -1} x^2 + 5 \lim_{x \to -1} x + \lim_{x \to -1} 3\right)$$
 [3]
$$= (1+3)(1-5+3)$$
 [9, 8, and 7]
$$= 4(-1) = -4$$

5.
$$\lim_{t \to -2} \frac{t^4 - 2}{2t^2 - 3t + 2} = \frac{\lim_{t \to -2} (t^4 - 2)}{\lim_{t \to -2} (2t^2 - 3t + 2)}$$
 [Limit Law 5]
$$= \frac{\lim_{t \to -2} t^4 - \lim_{t \to -2} 2}{2 \lim_{t \to -2} t^2 - 3 \lim_{t \to -2} t + \lim_{t \to -2} 2}$$
 [1, 2, and 3]
$$= \frac{16 - 2}{2(4) - 3(-2) + 2}$$
 [9, 7, and 8]
$$= \frac{14}{16} = \frac{7}{8}$$

6.
$$\lim_{u \to -2} \sqrt{u^4 + 3u + 6} = \sqrt{\lim_{u \to -2} (u^4 + 3u + 6)}$$
 [11]
$$= \sqrt{\lim_{u \to -2} u^4 + 3 \lim_{u \to -2} u + \lim_{u \to -2} 6}$$
 [1, 2, and 3]
$$= \sqrt{(-2)^4 + 3(-2) + 6}$$
 [9, 8, and 7]
$$= \sqrt{16 - 6 + 6} = \sqrt{16} = 4$$

7.
$$\lim_{x \to 8} (1 + \sqrt[3]{x}) (2 - 6x^2 + x^3) = \lim_{x \to 8} (1 + \sqrt[3]{x}) \cdot \lim_{x \to 8} (2 - 6x^2 + x^3)$$
 [Limit Law 4]
$$= \left(\lim_{x \to 8} 1 + \lim_{x \to 8} \sqrt[3]{x}\right) \cdot \left(\lim_{x \to 8} 2 - 6\lim_{x \to 8} x^2 + \lim_{x \to 8} x^3\right)$$
 [1, 2, and 3]
$$= \left(1 + \sqrt[3]{8}\right) \cdot \left(2 - 6 \cdot 8^2 + 8^3\right)$$
 [7, 10, 9]
$$= (3)(130) = 390$$

8.
$$\lim_{t \to 2} \left(\frac{t^2 - 2}{t^3 - 3t + 5} \right)^2 = \left(\lim_{t \to 2} \frac{t^2 - 2}{t^3 - 3t + 5} \right)^2$$
 [Limit Law 6]
$$= \left(\frac{\lim_{t \to 2} (t^2 - 2)}{\lim_{t \to 2} (t^3 - 3t + 5)} \right)^2$$
 [5]
$$= \left(\frac{\lim_{t \to 2} t^2 - \lim_{t \to 2} 2}{\lim_{t \to 2} t^3 - 3 \lim_{t \to 2} t + \lim_{t \to 2} 5} \right)^2$$
 [1, 2, and 3]
$$= \left(\frac{4 - 2}{8 - 3(2) + 5} \right)^2$$
 [9, 7, and 8]
$$= \left(\frac{2}{7} \right)^2 = \frac{4}{49}$$

9.
$$\lim_{x \to 2} \sqrt{\frac{2x^2 + 1}{3x - 2}} = \sqrt{\lim_{x \to 2} \frac{2x^2 + 1}{3x - 2}}$$
 [Limit Law 11]
$$= \sqrt{\frac{\lim_{x \to 2} (2x^2 + 1)}{\lim_{x \to 2} (3x - 2)}}$$
 [5]
$$= \sqrt{\frac{2 \lim_{x \to 2} x^2 + \lim_{x \to 2} 1}{3 \lim_{x \to 2} x - \lim_{x \to 2} 2}}$$
 [1, 2, and 3]
$$= \sqrt{\frac{2(2)^2 + 1}{3(2) - 2}} = \sqrt{\frac{9}{4}} = \frac{3}{2}$$
 [9, 8, and 7]

- **10.** (a) The left-hand side of the equation is not defined for x = 2, but the right-hand side is.
 - (b) Since the equation holds for all $x \neq 2$, it follows that both sides of the equation approach the same limit as $x \to 2$, just as in Example 3. Remember that in finding $\lim_{x \to a} f(x)$, we never consider x = a.

11.
$$\lim_{x \to 5} \frac{x^2 - 6x + 5}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x - 1)}{x - 5} = \lim_{x \to 5} (x - 1) = 5 - 1 = 4$$

12.
$$\lim_{x \to -3} \frac{x^2 + 3x}{x^2 - x - 12} = \lim_{x \to -3} \frac{x(x+3)}{(x-4)(x+3)} = \lim_{x \to -3} \frac{x}{x-4} = \frac{-3}{-3-4} = \frac{3}{7}$$

13.
$$\lim_{x \to 5} \frac{x^2 - 5x + 6}{x - 5}$$
 does not exist since $x - 5 \to 0$, but $x^2 - 5x + 6 \to 6$ as $x \to 5$.

14.
$$\lim_{x \to 4} \frac{x^2 + 3x}{x^2 - x - 12} = \lim_{x \to 4} \frac{x(x+3)}{(x-4)(x+3)} = \lim_{x \to 4} \frac{x}{x-4}$$
. The last limit does not exist since $\lim_{x \to 4^-} \frac{x}{x-4} = -\infty$ and $\lim_{x \to 4^+} \frac{x}{x-4} = \infty$.

15.
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3} = \lim_{t \to -3} \frac{(t+3)(t-3)}{(2t+1)(t+3)} = \lim_{t \to -3} \frac{t-3}{2t+1} = \frac{-3-3}{2(-3)+1} = \frac{-6}{-5} = \frac{6}{5}$$

16.
$$\lim_{x \to -1} \frac{2x^2 + 3x + 1}{x^2 - 2x - 3} = \lim_{x \to -1} \frac{(2x + 1)(x + 1)}{(x - 3)(x + 1)} = \lim_{x \to -1} \frac{2x + 1}{x - 3} = \frac{2(-1) + 1}{-1 - 3} = \frac{-1}{-4} = \frac{1}{4}$$

$$\textbf{17. } \lim_{h \to 0} \frac{(-5+h)^2 - 25}{h} = \lim_{h \to 0} \frac{(25-10h+h^2) - 25}{h} = \lim_{h \to 0} \frac{-10h+h^2}{h} = \lim_{h \to 0} \frac{h(-10+h)}{h} = \lim_{h \to 0} (-10+h) = -10$$

18.
$$\lim_{h \to 0} \frac{(2+h)^3 - 8}{h} = \lim_{h \to 0} \frac{\left(8 + 12h + 6h^2 + h^3\right) - 8}{h} = \lim_{h \to 0} \frac{12h + 6h^2 + h^3}{h}$$
$$= \lim_{h \to 0} \left(12 + 6h + h^2\right) = 12 + 0 + 0 = 12$$

19. By the formula for the sum of cubes, we have

$$\lim_{x \to -2} \frac{x+2}{x^3+8} = \lim_{x \to -2} \frac{x+2}{(x+2)(x^2-2x+4)} = \lim_{x \to -2} \frac{1}{x^2-2x+4} = \frac{1}{4+4+4} = \frac{1}{12}.$$

20. We use the difference of squares in the numerator and the difference of cubes in the denominator.

$$\lim_{t \to 1} \frac{t^4 - 1}{t^3 - 1} = \lim_{t \to 1} \frac{(t^2 - 1)(t^2 + 1)}{(t - 1)(t^2 + t + 1)} = \lim_{t \to 1} \frac{(t - 1)(t + 1)(t^2 + 1)}{(t - 1)(t^2 + t + 1)} = \lim_{t \to 1} \frac{(t + 1)(t^2 + 1)}{t^2 + t + 1} = \frac{2(2)}{3} = \frac{4}{3}$$

21.
$$\lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h} = \lim_{h \to 0} \frac{\sqrt{9+h} - 3}{h} \cdot \frac{\sqrt{9+h} + 3}{\sqrt{9+h} + 3} = \lim_{h \to 0} \frac{\left(\sqrt{9+h}\right)^2 - 3^2}{h\left(\sqrt{9+h} + 3\right)} = \lim_{h \to 0} \frac{\left(9+h\right) - 9}{h\left(\sqrt{9+h} + 3\right)}$$
$$= \lim_{h \to 0} \frac{h}{h\left(\sqrt{9+h} + 3\right)} = \lim_{h \to 0} \frac{1}{\sqrt{9+h} + 3} = \frac{1}{3+3} = \frac{1}{6}$$

22.
$$\lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2} = \lim_{u \to 2} \frac{\sqrt{4u+1}-3}{u-2} \cdot \frac{\sqrt{4u+1}+3}{\sqrt{4u+1}+3} = \lim_{u \to 2} \frac{\left(\sqrt{4u+1}\right)^2 - 3^2}{\left(u-2\right)\left(\sqrt{4u+1}+3\right)}$$
$$= \lim_{u \to 2} \frac{4u+1-9}{\left(u-2\right)\left(\sqrt{4u+1}+3\right)} = \lim_{u \to 2} \frac{4(u-2)}{\left(u-2\right)\left(\sqrt{4u+1}+3\right)}$$
$$= \lim_{u \to 2} \frac{4}{\sqrt{4u+1}+3} = \frac{4}{\sqrt{9}+3} = \frac{2}{3}$$

23.
$$\lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3} = \lim_{x \to 3} \frac{\frac{1}{x} - \frac{1}{3}}{x - 3} \cdot \frac{3x}{3x} = \lim_{x \to 3} \frac{3 - x}{3x(x - 3)} = \lim_{x \to 3} \frac{-1}{3x} = -\frac{1}{9}$$

24.
$$\lim_{h \to 0} \frac{(3+h)^{-1} - 3^{-1}}{h} = \lim_{h \to 0} \frac{\frac{1}{3+h} - \frac{1}{3}}{h} = \lim_{h \to 0} \frac{3 - (3+h)}{h(3+h)3} = \lim_{h \to 0} \frac{-h}{h(3+h)3}$$
$$= \lim_{h \to 0} \left[-\frac{1}{3(3+h)} \right] = -\frac{1}{\lim_{h \to 0} [3(3+h)]} = -\frac{1}{3(3+0)} = -\frac{1}{9}$$

$$\mathbf{25.} \lim_{t \to 0} \frac{\sqrt{1+t} - \sqrt{1-t}}{t} = \lim_{t \to 0} \frac{\sqrt{1+t} - \sqrt{1-t}}{t} \cdot \frac{\sqrt{1+t} + \sqrt{1-t}}{\sqrt{1+t} + \sqrt{1-t}} = \lim_{t \to 0} \frac{\left(\sqrt{1+t}\right)^2 - \left(\sqrt{1-t}\right)^2}{t\left(\sqrt{1+t} + \sqrt{1-t}\right)}$$

$$= \lim_{t \to 0} \frac{(1+t) - (1-t)}{t\left(\sqrt{1+t} + \sqrt{1-t}\right)} = \lim_{t \to 0} \frac{2t}{t\left(\sqrt{1+t} + \sqrt{1-t}\right)} = \lim_{t \to 0} \frac{2}{\sqrt{1+t} + \sqrt{1-t}}$$

$$= \frac{2}{\sqrt{1+\sqrt{1}}} = \frac{2}{2} = 1$$

$$\textbf{26.} \ \lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t^2+t}\right) = \lim_{t\to 0} \left(\frac{1}{t} - \frac{1}{t(t+1)}\right) = \lim_{t\to 0} \frac{t+1-1}{t(t+1)} = \lim_{t\to 0} \frac{1}{t+1} = \frac{1}{0+1} = 1$$

27.
$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{16x - x^2} = \lim_{x \to 16} \frac{(4 - \sqrt{x})(4 + \sqrt{x})}{(16x - x^2)(4 + \sqrt{x})} = \lim_{x \to 16} \frac{16 - x}{x(16 - x)(4 + \sqrt{x})}$$
$$= \lim_{x \to 16} \frac{1}{x(4 + \sqrt{x})} = \frac{1}{16(4 + \sqrt{16})} = \frac{1}{16(8)} = \frac{1}{128}$$

28.
$$\lim_{x \to 2} \frac{x^2 - 4x + 4}{x^4 - 3x^2 - 4} = \lim_{x \to 2} \frac{(x - 2)^2}{(x^2 - 4)(x^2 + 1)} = \lim_{x \to 2} \frac{(x - 2)^2}{(x + 2)(x - 2)(x^2 + 1)}$$
$$= \lim_{x \to 2} \frac{x - 2}{(x + 2)(x^2 + 1)} = \frac{0}{4 \cdot 5} = 0$$

84 CHAPTER 2 LIMITS AND DERIVATIVES

$$\mathbf{29.} \lim_{t \to 0} \left(\frac{1}{t\sqrt{1+t}} - \frac{1}{t} \right) = \lim_{t \to 0} \frac{1 - \sqrt{1+t}}{t\sqrt{1+t}} = \lim_{t \to 0} \frac{\left(1 - \sqrt{1+t}\right)\left(1 + \sqrt{1+t}\right)}{t\sqrt{t+1}\left(1 + \sqrt{1+t}\right)} = \lim_{t \to 0} \frac{-t}{t\sqrt{1+t}\left(1 + \sqrt{1+t}\right)} = \lim_{t \to 0} \frac{-1}{\sqrt{1+t}\left(1 + \sqrt{1+t}\right)} = \frac{-1}{\sqrt{1+0}\left(1 + \sqrt{1+0}\right)} = -\frac{1}{2}$$

30.
$$\lim_{x \to -4} \frac{\sqrt{x^2 + 9} - 5}{x + 4} = \lim_{x \to -4} \frac{\left(\sqrt{x^2 + 9} - 5\right)\left(\sqrt{x^2 + 9} + 5\right)}{(x + 4)\left(\sqrt{x^2 + 9} + 5\right)} = \lim_{x \to -4} \frac{(x^2 + 9) - 25}{(x + 4)\left(\sqrt{x^2 + 9} + 5\right)}$$
$$= \lim_{x \to -4} \frac{x^2 - 16}{(x + 4)\left(\sqrt{x^2 + 9} + 5\right)} = \lim_{x \to -4} \frac{(x + 4)(x - 4)}{(x + 4)\left(\sqrt{x^2 + 9} + 5\right)}$$
$$= \lim_{x \to -4} \frac{x - 4}{\sqrt{x^2 + 9} + 5} = \frac{-4 - 4}{\sqrt{16 + 9} + 5} = \frac{-8}{5 + 5} = -\frac{4}{5}$$

31.
$$\lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} = \lim_{h \to 0} \frac{(x^3 + 3x^2h + 3xh^2 + h^3) - x^3}{h} = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h}$$
$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h} = \lim_{h \to 0} (3x^2 + 3xh + h^2) = 3x^2$$

32.
$$\lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h} = \lim_{h \to 0} \frac{\frac{x^2 - (x+h)^2}{(x+h)^2 x^2}}{h} = \lim_{h \to 0} \frac{x^2 - (x^2 + 2xh + h^2)}{hx^2 (x+h)^2} = \lim_{h \to 0} \frac{-h(2x+h)^2}{hx^2 (x+h)^2}$$

$$= \lim_{h \to 0} \frac{-(2x+h)}{x^2(x+h)^2} = \frac{-2x}{x^2 \cdot x^2} = -\frac{2}{x^3}$$

$$\lim_{x \to 0} \frac{x}{\sqrt{1+3x} - 1} \approx \frac{2}{3}$$

-	h)	
- (υı	

x	f(x)
-0.001	0.6661663
-0.0001	0.6666167
-0.00001	0.6666617
-0.000001	0.6666662
0.000001	0.6666672
0.00001	0.6666717
0.0001	0.6667167
0.001	0.6671663

The limit appears to be $\frac{2}{3}$.

(c)
$$\lim_{x \to 0} \left(\frac{x}{\sqrt{1+3x}-1} \cdot \frac{\sqrt{1+3x}+1}{\sqrt{1+3x}+1} \right) = \lim_{x \to 0} \frac{x\left(\sqrt{1+3x}+1\right)}{(1+3x)-1} = \lim_{x \to 0} \frac{x\left(\sqrt{1+3x}+1\right)}{3x}$$

$$= \frac{1}{3} \lim_{x \to 0} \left(\sqrt{1+3x}+1\right) \qquad \text{[Limit Law 3]}$$

$$= \frac{1}{3} \left[\sqrt{\lim_{x \to 0} (1+3x)} + \lim_{x \to 0} 1 \right] \qquad \text{[1 and 11]}$$

$$= \frac{1}{3} \left(\sqrt{\lim_{x \to 0} 1+3\lim_{x \to 0} x} + 1 \right) \qquad \text{[1, 3, and 7]}$$

$$= \frac{1}{3} \left(\sqrt{1+3\cdot 0} + 1 \right) \qquad \text{[7 and 8]}$$

$$= \frac{1}{3} (1+1) = \frac{2}{3}$$

x	f(x)
-0.001	0.2886992
-0.0001	0.2886775
-0.00001	0.2886754
-0.000001	0.2886752
0.000001	0.2886751
0.00001	0.2886749
0.0001	0.2886727
0.001	0.2886511

The limit appears to be approximately 0.2887.

(c)
$$\lim_{x \to 0} \left(\frac{\sqrt{3+x} - \sqrt{3}}{x} \cdot \frac{\sqrt{3+x} + \sqrt{3}}{\sqrt{3+x} + \sqrt{3}} \right) = \lim_{x \to 0} \frac{(3+x) - 3}{x \left(\sqrt{3+x} + \sqrt{3} \right)} = \lim_{x \to 0} \frac{1}{\sqrt{3+x} + \sqrt{3}}$$

$$= \frac{\lim_{x \to 0} 1}{\lim_{x \to 0} \sqrt{3+x} + \lim_{x \to 0} \sqrt{3}}$$
[Limit Laws 5 and 1]
$$= \frac{1}{\sqrt{\lim_{x \to 0} (3+x)} + \sqrt{3}}$$

$$= \frac{1}{\sqrt{3+0} + \sqrt{3}}$$
[7 and 11]
$$= \frac{1}{\sqrt{3+0} + \sqrt{3}}$$

$$= \frac{1}{2\sqrt{3}}$$

(b)

35. Let $f(x) = -x^2$, $g(x) = x^2 \cos 20\pi x$ and $h(x) = x^2$. Then $-1 \le \cos 20\pi x \le 1 \quad \Rightarrow \quad -x^2 \le x^2 \cos 20\pi x \le x^2 \quad \Rightarrow \quad f(x) \le g(x) \le h(x).$ So since $\lim_{x\to 0} f(x) = \lim_{x\to 0} h(x) = 0$, by the Squeeze Theorem we have $\lim_{x \to 0} g(x) = 0.$

36. Let $f(x) = -\sqrt{x^3 + x^2}$, $g(x) = \sqrt{x^3 + x^2} \sin(\pi/x)$, and $h(x) = \sqrt{x^3 + x^2}$. Then $-1 \le \sin(\pi/x) \le 1 \quad \Rightarrow \quad -\sqrt{x^3 + x^2} \le \sqrt{x^3 + x^2} \sin(\pi/x) \le \sqrt{x^3 + x^2} \quad \Rightarrow \quad$ $f(x) \le g(x) \le h(x)$. So since $\lim_{x \to 0} f(x) = \lim_{x \to 0} h(x) = 0$, by the Squeeze Theorem we have $\lim_{x\to 0} g(x) = 0$.

- 37. We have $\lim_{x \to 4} (4x 9) = 4(4) 9 = 7$ and $\lim_{x \to 4} (x^2 4x + 7) = 4^2 4(4) + 7 = 7$. Since $4x 9 \le f(x) \le x^2 4x + 7$ for $x \ge 0$, $\lim_{x \to 4} f(x) = 7$ by the Squeeze Theorem.
- **38.** We have $\lim_{x \to 1} (2x) = 2(1) = 2$ and $\lim_{x \to 1} (x^4 x^2 + 2) = 1^4 1^2 + 2 = 2$. Since $2x \le g(x) \le x^4 x^2 + 2$ for all x, $\lim_{x \to a} g(x) = 2$ by the Squeeze Theorem.
- **39.** $-1 \le \cos(2/x) \le 1 \implies -x^4 \le x^4 \cos(2/x) \le x^4$. Since $\lim_{x \to 0} (-x^4) = 0$ and $\lim_{x \to 0} x^4 = 0$, we have $\lim_{x\to 0} \left[x^4 \cos(2/x) \right] = 0$ by the Squeeze Theorem.

40. $-1 \le \sin(\pi/x) \le 1 \quad \Rightarrow \quad e^{-1} \le e^{\sin(\pi/x)} \le e^1 \quad \Rightarrow \quad \sqrt{x}/e \le \sqrt{x} \, e^{\sin(\pi/x)} \le \sqrt{x} \, e.$ Since $\lim_{x \to 0^+} (\sqrt{x}/e) = 0$ and

 $\lim_{x\to 0^+} (\sqrt{x}\,e) = 0$, we have $\lim_{x\to 0^+} \left[\sqrt{x}\,e^{\sin(\pi/x)} \right] = 0$ by the Squeeze Theorem.

41. $|x-3| = \begin{cases} x-3 & \text{if } x-3 \ge 0 \\ -(x-3) & \text{if } x-3 < 0 \end{cases} = \begin{cases} x-3 & \text{if } x \ge 3 \\ 3-x & \text{if } x < 3 \end{cases}$

Thus, $\lim_{x \to 3^+} (2x + |x - 3|) = \lim_{x \to 3^+} (2x + x - 3) = \lim_{x \to 3^+} (3x - 3) = 3(3) - 3 = 6$ and

 $\lim_{x \to 3^{-}} (2x + |x - 3|) = \lim_{x \to 3^{-}} (2x + 3 - x) = \lim_{x \to 3^{-}} (x + 3) = 3 + 3 = 6.$ Since the left and right limits are equal,

 $\lim_{x \to 2} (2x + |x - 3|) = 6.$

42. $|x+6| = \begin{cases} x+6 & \text{if } x+6 \ge 0 \\ -(x+6) & \text{if } x+6 < 0 \end{cases} = \begin{cases} x+6 & \text{if } x \ge -6 \\ -(x+6) & \text{if } x < -6 \end{cases}$

We'll look at the one-sided limits.

$$\lim_{x \to -6^+} \frac{2x+12}{|x+6|} = \lim_{x \to -6^+} \frac{2(x+6)}{x+6} = 2 \quad \text{and} \quad \lim_{x \to -6^-} \frac{2x+12}{|x+6|} = \lim_{x \to -6^-} \frac{2(x+6)}{-(x+6)} = -2$$

The left and right limits are different, so $\lim_{x\to -6} \frac{2x+12}{|x+6|}$ does not exist.

43. $|2x^3 - x^2| = |x^2(2x - 1)| = |x^2| \cdot |2x - 1| = x^2 |2x - 1|$

$$|2x-1| = \begin{cases} 2x-1 & \text{if } 2x-1 \ge 0 \\ -(2x-1) & \text{if } 2x-1 < 0 \end{cases} = \begin{cases} 2x-1 & \text{if } x \ge 0.5 \\ -(2x-1) & \text{if } x < 0.5 \end{cases}$$

So $|2x^3 - x^2| = x^2[-(2x - 1)]$ for x < 0.5.

Thus,
$$\lim_{x \to 0.5^{-}} \frac{2x-1}{|2x^3-x^2|} = \lim_{x \to 0.5^{-}} \frac{2x-1}{x^2[-(2x-1)]} = \lim_{x \to 0.5^{-}} \frac{-1}{x^2} = \frac{-1}{(0.5)^2} = \frac{-1}{0.25} = -4$$
.

- **44.** Since |x| = -x for x < 0, we have $\lim_{x \to -2} \frac{2 |x|}{2 + x} = \lim_{x \to -2} \frac{2 (-x)}{2 + x} = \lim_{x \to -2} \frac{2 + x}{2 + x} = \lim_{x \to -2} 1 = 1$.
- **45.** Since |x| = -x for x < 0, we have $\lim_{x \to 0^-} \left(\frac{1}{x} \frac{1}{|x|} \right) = \lim_{x \to 0^-} \left(\frac{1}{x} \frac{1}{-x} \right) = \lim_{x \to 0^-} \frac{2}{x}$, which does not exist since the

denominator approaches 0 and the numerator does not.

- **46.** Since |x| = x for x > 0, we have $\lim_{x \to 0^+} \left(\frac{1}{x} \frac{1}{|x|} \right) = \lim_{x \to 0^+} \left(\frac{1}{x} \frac{1}{x} \right) = \lim_{x \to 0^+} 0 = 0$.
- **47.** (a)
- (b) (i) Since $\operatorname{sgn} x = 1$ for x > 0, $\lim_{x \to 0^+} \operatorname{sgn} x = \lim_{x \to 0^+} 1 = 1$.
 - (ii) Since $\operatorname{sgn} x = -1$ for x < 0, $\lim_{x \to 0^-} \operatorname{sgn} x = \lim_{x \to 0^-} -1 = -1$.
 - (iii) Since $\lim_{x\to 0^-} \operatorname{sgn} x \neq \lim_{x\to 0^+} \operatorname{sgn} x$, $\lim_{x\to 0} \operatorname{sgn} x$ does not exist.
 - (iv) Since $|\operatorname{sgn} x| = 1$ for $x \neq 0$, $\lim_{x \to 0} |\operatorname{sgn} x| = \lim_{x \to 0} 1 = 1$.

- (i) $\lim_{x \to 0^+} g(x) = \lim_{x \to 0^+} \operatorname{sgn}(\sin x) = 1$ since $\sin x$ is positive for small positive values of x.
- (ii) $\lim_{x\to 0^-} g(x) = \lim_{x\to 0^-} \operatorname{sgn}(\sin x) = -1$ since $\sin x$ is negative for small negative values of x.
- (iii) $\lim_{x\to 0} g(x)$ does not exist since $\lim_{x\to 0^+} g(x) \neq \lim_{x\to 0^-} g(x)$.
- (iv) $\lim_{x \to \pi^+} g(x) = \lim_{x \to \pi^+} \operatorname{sgn}(\sin x) = -1$ since $\sin x$ is negative for values of x slightly greater than π .
- (v) $\lim_{x \to x^-} g(x) = \lim_{x \to x^-} \operatorname{sgn}(\sin x) = 1$ since $\sin x$ is positive for values of x slightly less than π .
- (vi) $\lim_{x \to \pi} g(x)$ does not exist since $\lim_{x \to \pi^+} g(x) \neq \lim_{x \to \pi^-} g(x)$.
- (b) The sine function changes sign at every integer multiple of π , so the signum function equals 1 on one side and -1 on the other side of $n\pi$, n an integer. Thus, $\lim_{x\to a}g(x)$ does not exist for $a=n\pi$, n an integer.

- **49.** (a) (i) $\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} \frac{x^2 + x 6}{|x 2|} = \lim_{x \to 2^+} \frac{(x + 3)(x 2)}{|x 2|}$ $= \lim_{x \to 2^+} \frac{(x + 3)(x 2)}{x 2} \quad [\text{since } x 2 > 0 \text{ if } x \to 2^+]$ $= \lim_{x \to 2^+} (x + 3) = 5$
 - (ii) The solution is similar to the solution in part (i), but now |x-2|=2-x since x-2<0 if $x\to 2^-$. Thus, $\lim_{x\to 2^-}g(x)=\lim_{x\to 2^-}-(x+3)=-5$.
 - (b) Since the right-hand and left-hand limits of g at x=2 are not equal, $\lim_{x\to 2}g(x)$ does not exist.

- **50.** (a) $f(x) = \begin{cases} x^2 + 1 & \text{if } x < 1 \\ (x 2)^2 & \text{if } x \ge 1 \end{cases}$ $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} (x^2 + 1) = 1^2 + 1 = 2, \quad \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x 2)^2 = (-1)^2 = 1$
 - (b) Since the right-hand and left-hand limits of f at x=1 are not equal, $\lim_{x\to 1}f(x)$ does not exist.

(c)

51. For the $\lim_{t\to 2} B(t)$ to exist, the one-sided limits at t=2 must be equal. $\lim_{t\to 2^-} B(t) = \lim_{t\to 2^-} \left(4-\frac{1}{2}t\right) = 4-1=3$ and

$$\lim_{t\to 2^+} B(t) = \lim_{t\to 2^+} \sqrt{t+c} = \sqrt{2+c} \quad \text{Now } 3 = \sqrt{2+c} \quad \Rightarrow \quad 9 = 2+c \quad \Leftrightarrow \quad c = 7.$$

- **52.** (a) (i) $\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} x = 1$
 - $\text{(ii)} \lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} (2 x^2) = 2 1^2 = 1. \text{ Since } \lim_{x \to 1^-} g(x) = 1 \text{ and } \lim_{x \to 1^+} g(x) = 1, \text{ we have } \lim_{x \to 1} g(x) = 1.$

Note that the fact q(1) = 3 does not affect the value of the limit.

(iii) When x = 1, g(x) = 3, so g(1) = 3.

(iv)
$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} (2 - x^{2}) = 2 - 2^{2} = 2 - 4 = -2$$

(v)
$$\lim_{x \to 2^+} g(x) = \lim_{x \to 2^+} (x - 3) = 2 - 3 = -1$$

(vi) $\lim_{x\to 2} g(x)$ does not exist since $\lim_{x\to 2^-} g(x) \neq \lim_{x\to 2^+} g(x)$.

- **53.** (a) (i) $[\![x]\!] = -2$ for $-2 \le x < -1$, so $\lim_{x \to -2^+} [\![x]\!] = \lim_{x \to -2^+} (-2) = -2$
 - (ii) $[\![x]\!] = -3$ for $-3 \le x < -2$, so $\lim_{x \to -2^-} [\![x]\!] = \lim_{x \to -2^-} (-3) = -3$.

The right and left limits are different, so $\lim_{x\to -2} [x]$ does not exist.

(iii)
$$[x] = -3$$
 for $-3 \le x < -2$, so $\lim_{x \to -2.4} [x] = \lim_{x \to -2.4} (-3) = -3$.

- (b) (i) $[\![x]\!] = n-1$ for $n-1 \le x < n$, so $\lim_{x \to n^-} [\![x]\!] = \lim_{x \to n^-} (n-1) = n-1$.
 - (ii) $\llbracket x \rrbracket = n$ for $n \le x < n+1$, so $\lim_{x \to n^+} \llbracket x \rrbracket = \lim_{x \to n^+} n = n$.
- (c) $\lim_{x \to a} [x]$ exists \Leftrightarrow a is not an integer.
- **54.** (a) See the graph of $y = \cos x$.

Since $-1 \le \cos x < 0$ on $[-\pi, -\pi/2)$, we have $y = f(x) = [\cos x] = -1$ on $[-\pi, -\pi/2)$.

Since $-1 \le \cos x < 0$ on $(\pi/2, \pi]$, we have f(x) = -1 on $(\pi/2, \pi]$

Note that f(0) = 1.

(b) (i)
$$\lim_{x\to 0^-} f(x) = 0$$
 and $\lim_{x\to 0^+} f(x) = 0$, so $\lim_{x\to 0} f(x) = 0$.

(ii) As
$$x \to (\pi/2)^-$$
, $f(x) \to 0$, so $\lim_{x \to (\pi/2)^-} f(x) = 0$.

(iii) As
$$x \to (\pi/2)^+$$
, $f(x) \to -1$, so $\lim_{x \to (\pi/2)^+} f(x) = -1$.

- (iv) Since the answers in parts (ii) and (iii) are not equal, $\lim_{x\to \pi/2} f(x)$ does not exist.
- (c) $\lim_{x\to a} f(x)$ exists for all a in the open interval $(-\pi,\pi)$ except $a=-\pi/2$ and $a=\pi/2$.
- 55. The graph of $f(x) = \llbracket x \rrbracket + \llbracket -x \rrbracket$ is the same as the graph of g(x) = -1 with holes at each integer, since f(a) = 0 for any integer a. Thus, $\lim_{x \to 2^-} f(x) = -1$ and $\lim_{x \to 2^+} f(x) = -1$, so $\lim_{x \to 2} f(x) = -1$. However, $f(2) = \llbracket 2 \rrbracket + \llbracket -2 \rrbracket = 2 + (-2) = 0$, so $\lim_{x \to 2} f(x) \neq f(2)$.

56.
$$\lim_{v\to c^-} \left(L_0 \sqrt{1-\frac{v^2}{c^2}} \right) = L_0 \sqrt{1-1} = 0$$
. As the velocity approaches the speed of light, the length approaches 0.

A left-hand limit is necessary since L is not defined for v > c.

57. Since
$$p(x)$$
 is a polynomial, $p(x) = a_0 + a_1 x + a_2 x^2 + \cdots + a_n x^n$. Thus, by the Limit Laws,

$$\lim_{x \to a} p(x) = \lim_{x \to a} \left(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n \right) = a_0 + a_1 \lim_{x \to a} x + a_2 \lim_{x \to a} x^2 + \dots + a_n \lim_{x \to a} x^n$$
$$= a_0 + a_1 a + a_2 a^2 + \dots + a_n a^n = p(a)$$

Thus, for any polynomial p, $\lim_{x \to a} p(x) = p(a)$.

58. Let
$$r(x) = \frac{p(x)}{q(x)}$$
 where $p(x)$ and $q(x)$ are any polynomials, and suppose that $q(a) \neq 0$. Then

$$\lim_{x \to a} r(x) = \lim_{x \to a} \frac{p(x)}{q(x)} = \frac{\lim_{x \to a} p(x)}{\lim_{x \to a} q(x)} \quad \text{[Limit Law 5]} \quad = \frac{p(a)}{q(a)} \quad \text{[Exercise 57]} \quad = r(a).$$

59.
$$\lim_{x \to 1} [f(x) - 8] = \lim_{x \to 1} \left[\frac{f(x) - 8}{x - 1} \cdot (x - 1) \right] = \lim_{x \to 1} \frac{f(x) - 8}{x - 1} \cdot \lim_{x \to 1} (x - 1) = 10 \cdot 0 = 0.$$

Thus,
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \{ [f(x) - 8] + 8 \} = \lim_{x \to 1} [f(x) - 8] + \lim_{x \to 1} 8 = 0 + 8 = 8.$$

Note: The value of $\lim_{x\to 1} \frac{f(x)-8}{x-1}$ does not affect the answer since it's multiplied by 0. What's important is that

$$\lim_{x \to 1} \frac{f(x) - 8}{x - 1}$$
 exists.

60. (a)
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left[\frac{f(x)}{x^2} \cdot x^2 \right] = \lim_{x \to 0} \frac{f(x)}{x^2} \cdot \lim_{x \to 0} x^2 = 5 \cdot 0 = 0$$

(b)
$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \left[\frac{f(x)}{x^2} \cdot x \right] = \lim_{x \to 0} \frac{f(x)}{x^2} \cdot \lim_{x \to 0} x = 5 \cdot 0 = 0$$

61. Observe that
$$0 \le f(x) \le x^2$$
 for all x , and $\lim_{x \to 0} 0 = 0 = \lim_{x \to 0} x^2$. So, by the Squeeze Theorem, $\lim_{x \to 0} f(x) = 0$.

- **62.** Let $f(x) = [\![x]\!]$ and $g(x) = -[\![x]\!]$. Then $\lim_{x \to 3} f(x)$ and $\lim_{x \to 3} g(x)$ do not exist [Example 10] but $\lim_{x \to 3} [f(x) + g(x)] = \lim_{x \to 3} ([\![x]\!] [\![x]\!]) = \lim_{x \to 3} 0 = 0$.
- 63. Let f(x) = H(x) and g(x) = 1 H(x), where H is the Heaviside function defined in Exercise 1.3.59. Thus, either f or g is 0 for any value of x. Then $\lim_{x\to 0} f(x)$ and $\lim_{x\to 0} g(x)$ do not exist, but $\lim_{x\to 0} [f(x)g(x)] = \lim_{x\to 0} 0 = 0$.

$$64. \lim_{x \to 2} \frac{\sqrt{6-x} - 2}{\sqrt{3-x} - 1} = \lim_{x \to 2} \left(\frac{\sqrt{6-x} - 2}{\sqrt{3-x} - 1} \cdot \frac{\sqrt{6-x} + 2}{\sqrt{6-x} + 2} \cdot \frac{\sqrt{3-x} + 1}{\sqrt{3-x} + 1} \right)$$

$$= \lim_{x \to 2} \left[\frac{\left(\sqrt{6-x}\right)^2 - 2^2}{\left(\sqrt{3-x}\right)^2 - 1^2} \cdot \frac{\sqrt{3-x} + 1}{\sqrt{6-x} + 2} \right] = \lim_{x \to 2} \left(\frac{6-x-4}{3-x-1} \cdot \frac{\sqrt{3-x} + 1}{\sqrt{6-x} + 2} \right)$$

$$= \lim_{x \to 2} \frac{\left(2-x\right)\left(\sqrt{3-x} + 1\right)}{\left(2-x\right)\left(\sqrt{6-x} + 2\right)} = \lim_{x \to 2} \frac{\sqrt{3-x} + 1}{\sqrt{6-x} + 2} = \frac{1}{2}$$

- **65.** Since the denominator approaches 0 as $x \to -2$, the limit will exist only if the numerator also approaches 0 as $x \to -2$. In order for this to happen, we need $\lim_{x \to -2} \left(3x^2 + ax + a + 3 \right) = 0 \iff 3(-2)^2 + a(-2) + a + 3 = 0 \iff 12 2a + a + 3 = 0 \iff a = 15$. With a = 15, the limit becomes $\lim_{x \to -2} \frac{3x^2 + 15x + 18}{x^2 + x 2} = \lim_{x \to -2} \frac{3(x+2)(x+3)}{(x-1)(x+2)} = \lim_{x \to -2} \frac{3(x+3)}{x-1} = \frac{3(-2+3)}{-2-1} = \frac{3}{-3} = -1$.
- **66.** Solution 1: First, we find the coordinates of P and Q as functions of r. Then we can find the equation of the line determined by these two points, and thus find the x-intercept (the point R), and take the limit as $r \to 0$. The coordinates of P are (0,r). The point Q is the point of intersection of the two circles $x^2 + y^2 = r^2$ and $(x-1)^2 + y^2 = 1$. Eliminating y from these equations, we get $r^2 x^2 = 1 (x-1)^2 \Leftrightarrow r^2 = 1 + 2x 1 \Leftrightarrow x = \frac{1}{2}r^2$. Substituting back into the equation of the shrinking circle to find the y-coordinate, we get $\left(\frac{1}{2}r^2\right)^2 + y^2 = r^2 \Leftrightarrow y^2 = r^2\left(1 \frac{1}{4}r^2\right) \Leftrightarrow y = r\sqrt{1 \frac{1}{4}r^2}$ (the positive y-value). So the coordinates of Q are $\left(\frac{1}{2}r^2, r\sqrt{1 \frac{1}{4}r^2}\right)$. The equation of the line joining P and Q is thus $y r = \frac{r\sqrt{1 \frac{1}{4}r^2} r}{\frac{1}{2}r^2 0}$ (x 0). We set y = 0 in order to find the x-intercept, and get

$$x = -r \frac{\frac{1}{2}r^2}{r\left(\sqrt{1 - \frac{1}{4}r^2} - 1\right)} = \frac{-\frac{1}{2}r^2\left(\sqrt{1 - \frac{1}{4}r^2} + 1\right)}{1 - \frac{1}{4}r^2 - 1} = 2\left(\sqrt{1 - \frac{1}{4}r^2} + 1\right)$$

Now we take the limit as $r \to 0^+$: $\lim_{r \to 0^+} x = \lim_{r \to 0^+} 2\left(\sqrt{1 - \frac{1}{4}r^2} + 1\right) = \lim_{r \to 0^+} 2\left(\sqrt{1} + 1\right) = 4$. So the limiting position of R is the point (4,0).

Solution 2: We add a few lines to the diagram, as shown. Note that $\angle PQS = 90^{\circ}$ (subtended by diameter PS). So $\angle SQR = 90^{\circ} = \angle OQT$ (subtended by diameter OT). It follows that $\angle OQS = \angle TQR$. Also $\angle PSQ = 90^{\circ} - \angle SPQ = \angle ORP$. Since $\triangle QOS$ is isosceles, so is $\triangle QTR$, implying that QT=TR. As the circle C_2 shrinks, the point Qplainly approaches the origin, so the point R must approach a point twice as far from the origin as T, that is, the point (4,0), as above.

