Análisis de lineas de transmisión utilizando el Diagrama de Schmidt

Luis Guillermo Macias Rojas

4 de abril de 2025

Resumen: Este estudio exploró el comportamiento de cinco condiciones de carga en líneas de transmisión (Z_0) utilizando el Diagrama de Schmidt, con el objetivo de correlacionar la ubicación de impedancias normalizadas $(z=\frac{Z_L}{Z_0})$ con el coeficiente de reflexión (Γ) . Los casos analizados incluyeron: cortocircuito $(Z_L=0)$, circuito abierto $(Z_L\to\infty)$, acoplamiento perfecto $(Z_L=Z_0)$, y cargas resistivas con $Z_L>Z_0$ y $Z_L< Z_0$. El análisis reveló que la posición de Γ en el diagrama indica la relación entre Z_{ref} y Z_0 , mientras que el radio de la circunferencia indica la magnitud de la reflexión (determinada por la relación entre Z_L y Z_0).

Introducción

El Diagrama de Schmidt es una herramienta gráfica fundamental en el diseño y análisis de circuitos de microondas, especialmente para trabajar con líneas de transmisión y problemas de acoplamiento de impedancias. Este diagrama permite visualizar y resolver de manera intuitiva relaciones complejas entre impedancias (o admitancias), coeficientes de reflexión (Γ) y parámetros de líneas de transmisión, evitando cálculos matemáticos extensos. Γ determina la pérdida por retorno de una línea de transmisión, que es la proporción de la onda reflejada respecto a la onda incidente y está determinanado por la impedancia de carga (Z_L) y la impedancia característica de la línea (Z_0) mediante la ecuacion (1).

$$\Gamma = \frac{Z_L - Z_0}{Z_L + Z_0} \tag{1}$$

La posición de Γ en el diagrama indica si la carga está acoplada (Γ =0), cortocircuitada (Γ =-1), o en circuito abierto (Γ =1).

Metodología

En este trabajo, se analizaron cinco escenarios de carga en una línea de transmisión de impedancia característica Z_0 , utilizando el Diagrama de Schmidt para visualizar las diferencias en las impedancias normalizadas y los coeficientes de reflexión (Γ). Los casos incluyeron condiciones extremas (cortocircuito y circuito abierto), acoplamiento perfecto ($Z_{ref}=Z_0$), y cargas resistivas con $Z_{ref}>Z_0$ y $Z_{ref}< Z_0$. Para cada caso, se ubicó la impedancia normalizada en el diagrama, se calculó Γ y se observó su posición relativa al centro (Γ =0).

Los modelos de linea de transmisión se construyeron utilizando la herramienta ADS (Advanced Design System) de Keysight utilizando una tangente de pérdidas de 0.0001 @ 1 GHz en un rango de frecuencias de 1 MHz hasta 4 GHz, una longitud física de 1000 mil y considerando $Z_0=50~\Omega$. Las características de los diferentes escenarios se definen a continuación:

- Caso 1: $Z_L \rightarrow \infty$ (circuito abierto)
- Caso 2: $Z_L \rightarrow 0$ (cortocircuito)
- Caso 3: $Z_{ref} = Z_0 = Z_L$ (carga acoplada)
- Caso 4: $Z_{ref} < Z_0(Z_L = 100\Omega, Z_{ref} = 25\Omega)$
- Caso 5: $Z_{ref} > Z_0(Z_L = 100\Omega, Z_{ref} = 100\Omega)$

Resultados

La figura 1 muestra el Diagrama de Schmidt, donde se observa la ubicación de Γ para los diferentes casos de impedancia de referencia y carga.

Figura 1: Diagrama de Schmidt de los 5 casos estudiados.

Las diferencias clave se evidenciaron en la ubicación de los puntos dentro del diagrama: cargas puramente resistivas se alinearon en el eje real, mientras que condiciones extremas ocuparon los bordes del diagrama ($\Gamma=1$). El acoplamiento ($z_L=Z_0$) se situoo en el centro, sin reflexión ($\Gamma=0$), mientras que $Z_L>Z_0$ y $Z_L< Z_0$ mostraron Γ real positivo y negativo respectivamente. La ausencia de componentes reactivasmantuvo todos los casos en el eje real, simplificando la comparación directa de magnitudes.

Conclusiones

El diagrama de Schmidt es una herramienta valiosa para el análisis de circuitos de microondas, permitiendo visualizar relaciones complejas entre impedancias y coeficientes de reflexión. En este estudio, se observaron diferencias significativas en la ubicación de Γ para diferentes escenarios de carga; la posición de Γ en el diagrama indica la relación entre Z_{ref} y Z_0 , mientras que el radio de la circunferencia indica la magnitud de la reflexión (determinada por la relación entre Z_L y Z_0). La ausencia de componentes reactivas simplificó la comparación entre los casos, permitiendo una evaluación directa de las magnitudes.