# TREES AND GRAPHS

DAVIDE YI XIAN HU

EMAIL: DAVIDEYI.HU@POLIMI.IT





# Intro Presentation

#### DAVIDE YI XIAN HU

Ph.D. Student Information Technology

MAIL: <u>DAVIDEYI.HU@POLIMI.IT</u>

FRESEARCH INTERESTS:

DEEP LEARNING TESTING

COMPUTER VISION APPLICATIONS





# TREE DEFINITION

#### TREE DATA STRUCTURE

- EACH NODE CAN HAVE MANY CHILDREN
- EACH NODE HAVE **EXACTLY ONE PARENT** (EXCEPT FOR THE ROOT NODE)
- **♦ No Cycles/Loops**



# **EXAMPLE OF TREE**





# BINARY TREE



EACH NODE CAN HAVE

AT MOST **TWO CHILDREN**(K-ARY TREE WITH K=2)





# BINARY SEARCH TREE 🎉



#### THE **KEY** OF A NODE IS:

- GREATER THAN THE KEYS IN THE LEFT SUBTREE.
- LESS THAN THE KEYS IN THE RIGHT SUBTREE.





# BALANCED TREES

BINARY SEARCH TREES
ARE NOT BALANCED

#### **BALANCED TREE:**

THE **HEIGHT** OF THE

LEFT AND THE RIGHT

SUBTREE FOR EACH NODE

IS EITHER ZERO OR ONE

| Algorithm | Average     | Worst case     |
|-----------|-------------|----------------|
| Space     | 0(n)        | 0 ( <i>n</i> ) |
| Search    | $O(\log n)$ | 0 ( <i>n</i> ) |
| Insert    | $O(\log n)$ | 0 ( <i>n</i> ) |
| Delete    | $O(\log n)$ | 0 ( <i>n</i> ) |
|           |             |                |





# BALANCED TREES

BINARY SEARCH TREES

ARE **NOT BALANCED** 

#### **BALANCED TREE:**

THE **HEIGHT** OF THE

LEFT AND THE RIGHT

SUBTREE FOR EACH NODE

IS EITHER ZERO OR ONE

| Algorithm | Average        | Worst case     |  |
|-----------|----------------|----------------|--|
| Space     | 0 ( <i>n</i> ) | 0 ( <i>n</i> ) |  |
| Search    | $O(\log n)$    | 0 ( <i>n</i> ) |  |
| Insert    | $O(\log n)$    | 0 ( <i>n</i> ) |  |
| Delete    | $O(\log n)$    | 0 ( <i>n</i> ) |  |
|           |                |                |  |





# BALANCED SEARCH TREES 🌲



#### **EXAMPLES OF BALANCED TREES:**





**B-Tree** (K-ARY)

SEARCH, INSERTION AND DELETION COST O(LOG N)







KNOWN ALSO AS **DIGITAL TREE** OF **PREFIX TREE** 

STRING-INDEXED LOOKUP DATA STRUCTURE

#### **APPLICATIONS:**



**FULL-TEXT SEARCH** 

BLOCKCHAIN (MERKLE-PATRICIA)







#### KNOWN ALSO AS **DIGITAL TREE** OF **PREFIX TREE**

STRING-INDEXED LOOKUP DATA STRUCTURE

#### **APPLICATIONS:**



FULL-TEXT SEARCH

BLOCKCHAIN (MERKLE-PATRICIA)







KNOWN ALSO AS **DIGITAL TREE** OF **PREFIX TREE** 

STRING-INDEXED LOOKUP DATA STRUCTURE

#### **APPLICATIONS:**



AUTOCOMPLETE



FULL-TEXT SEARCH



BLOCKCHAIN (MERKLE-PATRICIA)



**COMPRESSED TRIE** 











# GRAPHS DEFINITION

#### **GRAPH DATA STRUCTURE**

- GRAPHS CAN BE

  DIRECTED (DIGRAPH)

  OR UNDIRECTED (GRAPH)
- BOTH VERTICES AND EDGES CAN HOLD VALUES
- TREES ARE A PARTICULAR

  TYPE OF GRAPH





GRAPHS CAN BE IMPLEMENTED AS:



**ADJACENCY MATRIX** 

**INCIDENCE MATRIX** 





#### **ADJACENCY LIST**

LIST OF VERTICES AND
EACH VERTEX HAS A LIST OF
ADJACENT VERTICES

```
[ v1 [v2, v3],
    v2 [v1, v3],
    v3 [v1, v2, v3, v4],
    v4 [v3, v5]
    v5 [v3, v4]
]
```





#### **ADJACENCY MATRIX**

TWO-DIMENSIONAL MATRIX

Rows represents **Source** vertices

COLUMNS REPRESENTS **DESTINATION** VERTICES

|    | V1 | V2 | V3 | V4 | V5 |
|----|----|----|----|----|----|
| V1 | -  | X  | X  | 0  | 0  |
| V2 | X  | -  | X  | 0  | 0  |
| V3 | X  | X  | -  | X  | X  |
| V4 | 0  | 0  | X  | -  | X  |
| V5 | 0  | 0  | X  | X  | -  |





#### **INCIDENCE MATRIX**

TWO-DIMENSIONAL MATRIX

Rows represents **Vertices** 

COLUMNS REPRESENTS **EDGES** 

|    | E1 | E2 | E3 | E4 | E5 | E6 |
|----|----|----|----|----|----|----|
| V1 | X  | 0  | X  | 0  | 0  | 0  |
| V2 | X  | X  | 0  | 0  | 0  | 0  |
| V3 | 0  | X  | X  | X  | 0  | X  |
| V4 | 0  | 0  | 0  | X  | X  | 0  |
| V5 | 0  | 0  | 0  | 0  | X  | X  |





|                                                                                                | Adjacency list                                                                    | Adjacency matrix                                                            | Incidence matrix                                                                      |
|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| Store graph                                                                                    | O( V + E )                                                                        | $O( V ^2)$                                                                  | $O( V \cdot  E )$                                                                     |
| Add vertex                                                                                     | O(1)                                                                              | $O( V ^2)$                                                                  | $O( V \cdot  E )$                                                                     |
| Add edge                                                                                       | O(1)                                                                              | O(1)                                                                        | $O( V \cdot  E )$                                                                     |
| Remove vertex                                                                                  | O( E )                                                                            | $O( V ^2)$                                                                  | $O( V \cdot  E )$                                                                     |
| Remove edge                                                                                    | O( V )                                                                            | O(1)                                                                        | $O( V \cdot  E )$                                                                     |
| Are vertices <i>x</i> and <i>y</i> adjacent (assuming that their storage positions are known)? |                                                                                   | O(1)                                                                        | O( E )                                                                                |
| Remarks                                                                                        | Slow to remove vertices and edges, because it needs to find all vertices or edges | Slow to add or remove<br>vertices, because matrix<br>must be resized/copied | Slow to add or remove vertices<br>and edges, because matrix<br>must be resized/copied |



#### **GRAPH COMPRESSED REPRESENTATION**

#### SPARSE MATRIX

IS THE MOST EFFICIENT WAY TO REPRESENT

A MATRIX WITH LOT OF ZEROS

**FAST CONSTRUCTION:** 

LIL - LIST OF LISTS (ADJACENCY LIST)

**DOK - DICTIONARY OF KEYS** 

**COO - COORDINATE LIST** 

(FAST DATA ACCESS):

**CSR - COMPRESSED SPARSE ROW** 

**CSC - COMPRESSED SPARSE COLUMN** 



#### **GRAPH COMPRESSED REPRESENTATION**

```
[ v1 [v2, v3],
 v2 [v1, v3],
 v3 [v1, v2, v3, v4],
 v4 [v3, v5]
 v5 [v3, v4]
]
```

[(v1, v2),

(v1, v3), (v2, v3), (v3, v4), (v3, v5), (v4, v5)}

{ (v1, v2),

(v1, v3), (v2, v3), (v3, v4), (v3, v5), (v4, v5)]





# SEARCH ALGORITHMS



# SEARCH ALGORITHMS

#### **SEARCH ALGORITHMS**

- THEY ARE USED TO TRAVERSE OR EXPLORE A GRAPH OR TREE IN ORDER TO FIND A SPECIFIC ELEMENT OR PATH.
- THE MOST POPULAR ALGORITHMS ARE:

  DFS (DEPTH FIRST SEARCH) AND

  BFS (BREADTH FIRST SEARCH).



# DFS DEPTH FIRST SEARCH

#### **DEPTH FIRST SEARCH**

- USES A STACK DATA STRUCTURE.
- VISITS NODES DEPTH-FIRST (I.E., GOES AS DEEP AS POSSIBLE ALONG EACH BRANCH BEFORE BACKTRACKING).
- GOOD FOR TRAVERSING AN ENTIRE TREE OR GRAPH.
- CAN GET STUCK IN AN INFINITE LOOP IF THE GRAPH HAS CYCLES.



**EXAMPLE:** 

FIND A PATH FROM A TO F

VISITED: []

STACK: []





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISIT NODE A

VISITED: [A]

STACK: [B, C]





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISIT NODE B

VISITED: [A, B]

STACK: [D, E, C]





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISIT NODE D

VISITED: [A, B, D]

STACK: [E, C]





**EXAMPLE:** 

FIND A PATH FROM A TO F

BACKTRACKING

AND VISIT NODE E

VISITED: [A, B, D, E]

STACK: [C]





**EXAMPLE:** 

FIND A PATH FROM A TO F

BACKTRACKING

AND VISIT NODE C

VISITED: [A, B, D, E, C]

STACK: [F, G]





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISIT NODE F

VISITED: [A, B, D, E, C, F]

STACK: [G]





# BFS BREADTH FIRST SEARCH

#### **BREADTH FIRST SEARCH**

- USES A QUEUE DATA STRUCTURE.
- VISITS NODES BREADTH-FIRST (I.E., EXPLORES ALL THE NEIGHBORS OF A NODE BEFORE MOVING ON TO THE NEXT LEVEL).
- GOOD FOR FINDING THE SHORTEST PATH BETWEEN TWO NODES.
- MAY USE MORE MEMORY THAN DFS IF THE GRAPH IS LARGE.
- MAY BE SLOWER THAN DFS FOR TRAVERSING THE ENTIRE TREE OR GRAPH.



# **BREADTH FIRST SEARCH**

**EXAMPLE:** 

FIND A PATH FROM A TO F

VISITED: []

QUEUE: []





## **BREADTH FIRST SEARCH**

**EXAMPLE:** 

FIND A PATH FROM A TO F

VISITED: [A]

QUEUE: [B, C]





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISITED: [A, B]

QUEUE: [C, D, E]





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISITED: [A, B, C]

QUEUE: [D, E, F, G]





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISITED: [A, B, C, D]

QUEUE: [E, F, G]





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISITED: [A, B, C, D, E]

QUEUE: [F, G]





**EXAMPLE:** 

FIND A PATH FROM A TO F

VISITED: [A, B, C, D, E, F]

QUEUE: [G]





## SEARCH ALGORITHMS

#### **COMPLEXITY AND OPTIMALITY**

- WORST CASE COMPLEXITIES
  OF BOTH ALGORITHMS ARE THE SAME.
  - $\rightarrow$  TIME COMPLEXITY: O(|V| + |E|)
  - $\triangleright$  Space complexity: O(|V|)
- BFS IS OPTIMAL IF THE PATH COST IS A NON-DECREASING FUNCTION OF D(DEPTH). NORMALLY, BFS IS APPLIED WHEN ALL THE ACTIONS HAVE THE SAME COST.



### **OPTIMALITY COMPARISON**

ASSUME THERE ARE
TWO PATHS TO REACH F

ASSUME EACH STEP
HAVE THE SAME COST
(FOR SIMPLICITY 1)





## **OPTIMALITY COMPARISON**

DEPTH FIRST SEARCH

PATH FOUND:

 $[A \rightarrow B \rightarrow D \rightarrow F]$ 

PATH COST: 4





## **OPTIMALITY COMPARISON**

BREADTH FIRST SEARCH

PATH FOUND:

 $[A \rightarrow C \rightarrow F]$ 

PATH COST: 3







## LEETCODE PROBLEM 1

#### 101 SYMMETRIC TREE

HTTPS://LEETCODE.COM/PROBLEMS/SYMMETRIC-TREE/

GIVEN THE ROOT OF A BINARY TREE, CHECK WHETHER IT IS A MIRROR OF ITSELF (I.E., SYMMETRIC AROUND ITS CENTER).





## LEETCODE PROBLEM 2

#### 98 VALIDATE BINARY TREE

HTTPS://LEETCODE.COM/PROBLEMS/VALIDATE-BINARY-SEARCH-TREE/

GIVEN THE ROOT OF A BINARY TREE, DETERMINE IF IT IS A VALID BINARY SEARCH TREE (BST). A VALID BST IS DEFINED AS FOLLOWS:

- THE LEFT SUBTREE OF A NODE CONTAINS ONLY NODES WITH KEYS LESS THAN THE NODE'S KEY.
- THE RIGHT SUBTREE OF A NODE CONTAINS ONLY NODES WITH KEYS GREATER THAN THE NODE'S KEY.
- BOTH THE LEFT AND RIGHT SUBTREES MUST ALSO BE BINARY SEARCH TREES.



# LEETCODE PROBLEM 3

#### **207 COURSE SCHEDULE**

HTTPS://LEETCODE.COM/PROBLEMS/VALIDATE-BINARY-SEARCH-TREE/

THERE ARE A TOTAL OF NUMCOURSES COURSES YOU HAVE TO TAKE, LABELED FROM 0 TO NUMCOURSES - 1. YOU ARE GIVEN AN ARRAY PREREQUISITES WHERE PREREQUISITES[I] = [AI, BI] INDICATES THAT YOU MUST TAKE COURSE BI FIRST IF YOU WANT TO TAKE COURSE AI.

FOR EXAMPLE, THE PAIR [0, 1], INDICATES THAT TO TAKE COURSE O YOU HAVE TO FIRST TAKE COURSE 1.

RETURN TRUE IF YOU CAN FINISH ALL COURSES. OTHERWISE, RETURN FALSE.