Day 3 Hands-on: Bandstructures, metals and XC functionals

Tutors: Alberto Carta / Chiara Cignarella / Nelson Dzade / George Manyali / James Sifuna / Fatema Mohamed / Omamuyovwi Rita Jolayemi / Maram Ali Ahmed Musa

Today's Themes:

- 1) Performing band structure calculations
- 2) DFT calculations for metals: smearing parameters
- 3) XC functionals: LDA and PBE

Exercise 1

Performing band structure calculations

The scheme to compute the band structure is the following:

- SCF pw.x calculation (calculation = 'scf')
- 2. "bands"-type non-SCF pw.x calculation (fixed-potential) with:
 - calculation = 'bands'
 - number of bands (variable nbnd) is specified
 - a suitable path of k-points is specified in K-POINTS card. The k-point path must be continuous in k-space.
- 3. bands.x calculation, which, among others, produces data-files for the plot.

Important: we must keep the prefix same outdir and prefix for "nscf" and "scf" pw.x calculations and for the bands.x calculation.

The k-path in BZ for fcc crystal can be specified using xcrysden as follow:

- 1. Open the file si.scf.in with xcrysden.
- 2. Select: Tools \rightarrow k-path selection
- 3. Select the path by clicking on a sequence of high
- 4. symmetry points: $W \Gamma X W L \Gamma$
- 5. Specify how many k points to be calculated (Ex: 100)
- 6. save the k-path to file. (.pwscf extension is required for
- 7. formatting the file for pw.x)

Input file: si.scf.in

```
&CONTROL
  calculation='scf'
  restart mode='from scratch',
  prefix = 'Si',
  pseudo dir = '../../pseudo'
  outdir='./tmp'
[...]
ATOMIC SPECIES
 Si 28.086 Si.pbe-rrkj.UPF
ATOMIC POSITIONS alat
  Si 0.00 0.00 0.00
 Si 0.25 0.25 0.25
K POINTS automatic
 666 111
```

Input file: si.bands.in

```
&CONTROL
  calculation='bands'
  restart mode='from scratch',
  prefix = 'Si'.
  pseudo dir = '../../../pseudo'
  outdir='./tmp'
  verbosity = 'high'
[...]
ATOMIC SPECIES
  Si 28.086 Si.pbe-rrkj.UPF
ATOMIC POSITIONS alat
  Si 0.00 0.00 0.00
  Si 0.25 0.25 0.25
K POINTS (crystal b)
 6
 0.50 0.25 0.75 30 !W
 0.00 0.00 0.00 30
                    !G
 0.50 0.00 0.50 30
 0.50 0.25 0.75 30
 0.50 0.50 0.50 30 !L
 0.00 0.00 0.00 30 !G
```

An input file for the data post processing program bands.x. This program print the eigenvalues to the file specified in "filband"

Run the postprocessing calculation (bands.x):

```
$ bands.x < bands.in | tee bands.out
```

bands data are stored in three files with different formats, among which we have bands.dat.gnu (can be plotted with gnuplot) and bands.dat can be visualized using the program plotband.x.

Exercise 1.1: Si band structure

Si is an insulator, what about metallic systems?

Exercise 1.2: band structure of a metal

Let us consider Aluminum, in the fcc phase. It is a metal, only valence bands and a few k-points will not suffice.

- move to the Day3/example1.bandstructure/ex2.Al directory
- read the pw.x input file al.scf.in
- notice the presence of new variables: occupations, smearing, degauss;
- run pw.x as:

```
$ pw.x < al.scf.in | tee al.scf.out
```

- in the output file notice that
 - the number of bands (Kohn-Sham states) is automatically set to a value larger than the number of electrons divided by 2
 - the Fermi energy is computed.

Exercise 1.2: band structure of a metal

Exercise 2

Performing metallic calculations: smearing

In this exercise we will compute the total energy for this fcc Al with the following values for degauss, k-point meshes and different smearing variables:

- degauss variable, in range from 0.01 to 0.11
- k-points: N×N×N (1×1×1) with N=6,8,10, ..., 16
- smearing variable, possible values: 'gauss' (or 'g'), 'marzari-vanderbilt'
- (or 'm-v'), 'methfessel-paxton' (or 'm-p')
- Follow the instructions in example2.smearing:

Plot the convergence of the total energy with respect to the number of k-points for the different smearing values.

Choose a suitable k-point mesh and plot the total energy as a function of degauss for Marzari-Vanderbilt and Gaussean smearing.

