CÁLCULO DIFERENCIAL E INTEGRAL

Respostas dos exercícios

Thiago de Paula Oliveira March 5, 2018

② You may copy, distribute and modify this list as long as you cite the author.

Pré-Cálculo: Funções e modelos 1

1.

(a)
$$h(x) = \frac{3x^3 + 5x^2 + 2x + 2}{x + 1}$$
, para $x \neq -1$ (b) $h(x) = \frac{x(3x + 2)}{x + 1}$, para $x \neq -1$

(b)
$$h(x) = \frac{x(3x+2)}{x+1}$$
, para $x \neq -1$

(c)
$$h(x) = \frac{2x+5}{(x+1)^2}$$
, para $x \neq -1$

(d)
$$h(x) = \frac{x(3x+2)}{(x+1)^2}$$
, para $x \neq -1$

(e)
$$h(x) = \frac{3x^2 + 3x + 2}{(x+1)(3x^2 + 2x + 1)}$$
, para $x \neq -1$ (f) $h(x) = \frac{1}{x(3x+2) + 1}$

(f)
$$h(x) = \frac{1}{x(3x+2)+1}$$

2. Verificar pelo Wolfram|Alpha. Site: https://www.wolframalpha.com.

3.

(a)
$$D(f) = \{x \in \mathbb{R}\}, CD(f) = Im(f) = \{y \in \mathbb{R}\}\$$

(b)
$$D(h) = \{x \in \mathbb{R} | -2 \le x \le 2\}, Im(h) = \{y \in \mathbb{R} | 0 \le y \le 2\}, CD(h) = \{y \in \mathbb{R}\}$$

(c)
$$D(f) = \{u \in \mathbb{R}\}, Im(f) = \{y \in \mathbb{R} | y \ge x\}, CD(f) = \{y \in \mathbb{R}\}$$

(d)
$$D(f) = \{z \in \mathbb{R}\}, Im(f) = \{y \in \mathbb{R} | y \ge 0\}, CD(f) = \{y \in \mathbb{R}\}$$

(e)
$$D(g) = \{x \in \mathbb{R} | x \neq 0\}, Im(f) = \left\{ y \in \mathbb{R} | y \ge \frac{8\sqrt{2}}{3^{3/4}} \right\}, CD(f) = \{ y \in \mathbb{R} \}$$

(f)
$$D(f) = \{x \in \mathbb{R} | x > 0\}, Im(f) = \{y \in \mathbb{R} | 0 < y < 1 \cup y > 6\}, CD(f) = \{y \in \mathbb{R}\}$$

(g)
$$D(g) = \{x \in \mathbb{R} | 0 < x < \sqrt{2} \cup x > \sqrt{2} \}, Im(g) = \{y \in \mathbb{R} \}, CD(g) = \{y \in \mathbb{R} \}$$

(h)
$$D(f) = \{x \in \mathbb{R}\}, Im(f) = \{y \in \mathbb{R} | y \le \frac{13}{3} \cup y = 9\}, CD(f) = \{y \in \mathbb{R}\}$$

② You may copy, distribute and modify this list as long as you cite the author.

4. (a)

- (b) A função é dada por f(x)=636.13x e em 2 anos, considerando a mesma alíquota, a pessoa pagará R\$ 15.267,12. O gráfico deve ser feito no Wolfram|Alpha.
- (c) Incremento salarial no período de 1 ano será dado pela função f(x)=100x, logo $f(12)=100\times 12=1.200$. Já a contribuição ao estado será dada pela função:

$$h(x) = f(x) - g(x) = 233,23x.$$

Dessa forma, $h(12) = 233, 23 \times 12 = 2.798, 76$. Portanto, ela receberá 1.200 reais e pagará 2.798, 76 reais de impostos no período de um ano.

- (a) Função par
- (b) Função ímpar
- (c) Função par

5.

- (d) Função par
- (e) Função par
- (f) Função ímpar
- 6. (a) Verificar pelo Wolfram|Alpha.
 - (b) $m = \frac{5}{9}$ e intercepto $-\frac{160}{9}$
- 7. (a) $t \approx 9.57$
 - (b) $f(5.3) \approx 101.21$
 - (c) Verificar pelo Wolfram Alpha.
- **9** You may copy, distribute and modify this list as long as you cite the author.

(a)
$$f \circ g(x) = (x+5)^5$$
 (b) $f \circ g(x) = \log(x+4)$ (c) $f \circ g(x) = |e^{x^3}|$

(b)
$$f \circ g(x) = \log(x + 4)$$

(c)
$$f \circ g(x) = |e^{x^3}|$$

(d)
$$f \circ g(x) = \sqrt{x^2}$$

(e)
$$f \circ g(x) = \cos 2x$$

(d)
$$f \circ g(x) = \sqrt{x^2}$$
 (e) $f \circ g(x) = \cos 2x$ (f) $f \circ g(x) = \frac{1}{\lg(x)}$

(b)
$$\log 2 + 4$$

9. (a) 37 (b)
$$\log 2 + 4$$
 (c) e^6 (d) 2 (e) $2 \cos 2$ (f) $\lg \frac{1}{2}$

(e)
$$2\cos 2$$

(f)
$$tg \frac{1}{2}$$

10. (a)
$$\frac{x^2+2}{x^2}$$
 (b) (

10. (a)
$$\frac{x^2+2}{x^2}$$
 (b) $\left(\frac{x+1}{x}\right)^{\frac{3}{2}} + 3$ (c) $\frac{2-\cos(2x)}{2\sin x + 1}$

11.

(a)
$$D(f) = \{x \in \mathbb{R}\}$$

(a)
$$D(f) = \{x \in \mathbb{R}\}$$
 (b) $D(f) = \{v \in \mathbb{R} | v \neq 0\}$ (c) $D(f) = \{x \in \mathbb{R}\}$

(c)
$$D(f) = \{x \in \mathbb{R}^3\}$$

(d)
$$D(f) = \{x \in \mathbb{R} \mid x \in \mathbb{R}$$

(d)
$$D(f) = \{x \in \mathbb{R}\}$$
 (e) $D(f) = \{t \in \mathbb{R} | -1 \le t \le 1\}$ (f) $D(f) = \{x \in \mathbb{R}\}$

(f)
$$D(f) = \{x \in \mathbb{R}\}$$

12.

(a)
$$D(f) = \{x \in \mathbb{R} | x > 0\}$$
 (b) $D(f) = \{x \in \mathbb{R} | x > 0\}$

(b)
$$D(f) = \{x \in \mathbb{R} | x > 0\}$$

(c)
$$D(f) = \{x \in \mathbb{R} | x < -1 \cup x > 0\}$$

13. (a)
$$f(x) = \frac{x^3 + 2x}{|x| + 1}$$
; (b) $f(x) = \log(x) + x$; (c) $f(x) = e^{x^2}$; (d) $f(x) = \sqrt{x}$