Statistical Machine Learning (STAT W4400)

Homework 2

Linan Qiu 1q2137

October 13, 2015

Note: since submission only allows .pdf and .R, I did not preserve the directory structure of this project. The .R files will not run properly due to imports and assumed directory structure. For a functional version, go to https://github.com/linanqiu/stat-w4400-homework/tree/master/hw2/r

1 Linear Classification

1.1 Classification Results

 \mathbf{v}_h is a unit vector.

$$r_1 = \operatorname{sgn}(\langle \mathbf{x}_1, \mathbf{v}_h \rangle - c) = -1$$
$$r_1 = \operatorname{sgn}(\langle \mathbf{x}_2, \mathbf{v}_h \rangle - c) = 1$$

1.2 SVM with Margin

Concept of margin applies only to training, not classification. Classification works for any linear classifier. For the test point \mathbf{x} ,

$$r = \operatorname{sgn}(\langle \mathbf{x}_1, \mathbf{v}_h \rangle - c)$$

still applies. Hence the predicted classes will still be the same.

1.3 Cost Function Approximated by Perceptron Cost Function

It approximates the empirical risk function. Empirical risk function is piece-wise constant, hence would not allow us to gradient descent optimally. The perceptron cost function, by using $\left|\left\langle \mathbf{z}, \begin{pmatrix} 1 \\ \tilde{\mathbf{x}}_i \end{pmatrix} \right\rangle\right|$ instead of just the loss function.

2 Perceptron

2.1 Classify

Included in file problem2.R

2.2 Perceptron Training Algorithm

Included in file problem2.R

2.3 Train and Test

Included in file problem2.R

2.4 2D Representation

Slope can be obtained from \mathbf{v}_h by

$$v_x x + v_y y - c = 0$$

and solving accordingly.

Figure 1: Plot of test data against obtained classifier from ${\tt z}.$

Figure 2: Plot of training data against history of classifiers from **z_history**. Earlier iterations have lower alpha.

3 SVM

3.1 Cross Validation Estimates

Figure 3: Plot of error against margin parameter (cost) for linear kernel SVM

Figure 4: Plot of error against margin parameter (cost) for different kernel bandwidth (gamma) for RBF kernel SVM

3.2 Test

Selected parameter values are:

```
Parameter tuning of 'svm':

16
17 - sampling method: 10-fold cross validation

18
19 - best parameters:
20 gamma cost
21 0.001 0.5

22
23 - best performance: 0.01875
```

It seems from the training data tuning that the RBF kernel has a better performance. However, upon testing, this is not immediately clear.

```
1 > linear_model = svm(labels ~ ., data=data, method="C-
     classification", kernel="linear", cost=tuned_linear$best.
     parameter$cost[1])
2|> linear_predict = predict(linear_model, testset[, -ncol(
     data)])
3 > classAgreement(table(pred = linear_predict, true = testset
     [, ncol(data)]))
4 $diag
5 [1] 0.975
6
7 $kappa
8 [1] 0.9497487
10 $rand
11 [1] 0.95
12
13 $crand
14 [1] 0.8999645
15
16 >
17 > rbf_model = svm(labels ~ ., data=data, method="C-
     classification", kernel="radial", cost=tuned_rbf$best.
     parameter$cost[1], gamma=tuned_rbf$best.parameter$gamma
18 > rbf_predict = predict(rbf_model, testset[, -ncol(data)])
19 > classAgreement(table(pred = rbf_predict, true = testset[,
     ncol(data)]))
20 $diag
21 [1] 0.975
22
23 | $kappa
```

Both models give the same accuracy rate (hence misclassification rate).