

20

Rappresentazione decimale e binaria

- Base 10 → cifre da 0 a 9
- Base 2 → cifre 0 e 1
- Sequenza di cifre decimali

$$d_k d_{k-1} \dots d_1 d_0$$

→ numero intero

$$d_k \times 10^k + d_{k-1} \times 10^{k-1} + \dots d_1 \times 10 + d_0$$

- Esempio: 102 in base 10 è 1x100+0x10+2x1
- In generale: $\sum_{(k=n,n-1,...,0)} d_k 10^k$

Valore di una rappresentazione binaria

- Per un numero binario d_k d _{k-1} ... d₁ d₀
- Stesso procedimento ma su base 2:

$$\sum\nolimits_{(k=n,n\text{-}1,\dots,0)}\mathsf{d}_k\,2^k$$

Esempio:

$$0101101_2 = 1.2^5 + 1.2^3 + 1.2^2 + 1.2^0$$
$$= 32 + 8 + 4 + 1$$
$$= 45_{10}$$

Valore di una rappresentazione binaria

Rappresentazione binaria

- Valore minimo di una sequenza di n cifre binarie: 000 ... 0 (n volte) = 0₁₀
- Valore massimo: 1111...111 (n volte) = $2^{n-1} + 2^{n-2} + ... + 2^2 + 2^1 + 2^0 = 2^n 1$
- Esempio con n=3: $111 = 2^2 + 2 + 1 = 7 = 2^3 1$
- Da 0 a 8 (su 4 bit):
 0 1 2 3 4 5 6 7 8
 0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000

Kilo, Mega, Giga, Tera, ...

- Byte = 8 bit
- Kilo, dal greco khiloi (1000 = 10³)
 - \Box 2¹⁰ = 1024 = 1K (vicino a 1000)
- Mega, dal greco mega (grande)
 - \square 1.000.000 = 10⁶
 - \square 2²⁰ = 1.048.576
- Giga, dal latino gigas (gigante)
 - \square 1.000.000.000 = 10⁹
 - □ 2³⁰
- Tera, dal greco tera (mostro)
 - \Box 10¹²
 - □ 2⁴⁰
- Peta, dal greco pente (5)
 - \square 1000⁵ = 10¹⁵
 - □ 2⁵⁰

Notazione ottale (base 8)

- 8 simboli: 0, 1, 2, ..., 7
- Un simbolo per rappresentare ogni gruppo di 3 cifre binarie (ce ne sono 8 diversi)

5523 (ottale)

Es.: 101101010011 (binario)

101 101 010 011

■ Di solito lunghezza multipla di 3

- - ☐ Es.: 3 simboli per 8 bit

Notazione esadecimale

- 16 simboli: 0, 1, 2, ..., 9, A, B, ..., F
- Un simbolo per rappresentare ogni gruppo di 4 cifre binarie (ce ne sono 16 diversi)
- Es.: 101101010011
- Di solito lunghezza multipla di 4
- Es.: 3 simboli per 12 bit

Notazione esadecimale

• Es.: 101101010011 diventa B53

Bit pattern	Hexadecimal representation			
0000	0			
0001	1			
0010	2			
0011	3			
0100	4			
0101	5			
0110	6			
0111	7			
1000	8			
1001	9			
1010	A			
1011	В			
1100	С			
1101	D			
1110	E			
1111	F			

W

Manipolazione logica di bit

- Algebra di Boole (utile per la specifica di funzioni logiche):
 - variabili logiche (binarie) e operazioni logiche
 - □ una variabile A può prendere valore 0 (FALSO) o 1 (VERO)
 - operazioni logiche di base: AND, OR, NOT

Altrimenti D è uguale a 0.

$$\begin{array}{c|cc} A & R \\ \hline 0 & 1 & R = NOT A \\ 1 & 0 & \end{array}$$

Operatori booleani su due variabili

$$A \text{ AND } B = A \cdot B$$

 $A \text{ OR } B = A + B$
 $NOT A = \overline{A}$

Esempio:
$$D = A + (\overline{B} \cdot C)$$

D è uguale a 1 se A è 1 o se B = 0 e C = 1.

7

Manipolazione logica di bit

Operatori booleani su due variabili

P	Q	NOT P (P)	P AND Q (P·Q)	P OR Q (P + Q)	$\begin{array}{c} P \text{ NAND } Q \\ (\overline{P \cdot Q}) \end{array}$	$\frac{P \text{ NOR } Q}{(\overline{P} + \overline{Q})}$	P XOR Q (P \oplus Q)
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0

Algebra booleana: postulati e identità

Basic Postulates							
$A \cdot B = B \cdot A$	A + B = B + A	Commutative Laws					
$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	$A + (B \cdot C) = (A + B) \cdot (A + C)$	Distributive Laws					
$1 \cdot A = A$	0 + A = A	Identity Elements					
$\mathbf{A} \cdot \overline{\mathbf{A}} = 0$	$A + \overline{A} = 1$	Inverse Elements					
Other Identities							
$0 \cdot A = 0$	1 + A = 1						
$A \cdot A = A$	A + A = A						
$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	A + (B + C) = (A + B) + C	Associative Laws					
$\overline{\mathbf{A} \cdot \mathbf{B}} = \overline{\mathbf{A}} + \overline{\mathbf{B}}$	$\overline{A + B} = \overline{A} \cdot \overline{B}$	DeMorgan's Theorem					