Equation of State Solver for Smoothed Particle Hydrodynamics

Julian Karrer

Figure 1: Colour coded velocity field of a simulation with 250000 particles, where the solver handles complex boundary conditions, turbulent flow at low viscosity and a pronounced free surface with less than 0.1% compression. [1]

Lab Course
Master of Science in Computer Science

Faculty of Engineering
Department of Computer Science
Supervised by Prof. Dr.-Ing. Matthias Teschner

universitätfreiburg

Contents

ı	Introduction	2
2	Governing Equations of Fluid Flow 2.1 Continuity and Convservation Laws	3
3	Smoothed Particle Hydrodynamics Discretization 3.1 Kernel Functions	
4	Solving for Incompressibility 4.1 Weakly Compressible SPH	
5	Boundary and Initial Conditions 5.1 Non-Uniform Single Layer Boundaries	6
6	Analysis 6.1 Oscillation Frequency and Error as a Function of Speed of Sound 6.2 Stability as a Function of Viscosity, Stiffness and Timestep 6.3 Stability over Viscosity and Stiffness	7
7	Conclusion	8
Bi	ibliography	9

Introduction

GOVERNING EQUATIONS OF FLUID FLOW

- 2.1 Continuity and Convservation Laws
- 2.2 The Lagrangian Navier-Stokes equations
- 2.3 Equations of State

SMOOTHED PARTICLE HYDRODYNAMICS DISCRETIZATION

- 3.1 Kernel Functions
- 3.2 Discretizations and Properties

SOLVING FOR INCOMPRESSIBILITY

- 4.1 Weakly Compressible SPH
- 4.2 Operator Splitting and Iterative Solver

BOUNDARY AND INITIAL CONDITIONS

- 5.1 Non-Uniform Single Layer Boundaries
- 5.2 Jittered Initialization and Lattices
- 5.3 Solving for Equilibrated Density

ANALYSIS

- 6.1 Oscillation Frequency and Error as a Function of Speed of Sound
- 6.2 Stability as a Function of Viscosity, Stiffness and Timestep
- 6.3 Stability over Viscosity and Stiffness

Conclusion

Bibliography

¹A. Lahiri, "Chapter 3 - Ray Optics: Optical Systems and Optical Imaging", in *Basic optics*, edited by A. Lahiri (Elsevier, Amsterdam, 2016), pp. 203–307.