Modélisation de la diffusion thermique.

Josselin SCOUARNEC

Mai 2021

Présentation de l'expérience

On note T(x,t) la température de la bare à la position x et à l'instant t. La température vérifie l'équation suivante :

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}$$

La variation de température en x à l'instant t par rapport à t est proportionnelle à une variation de température par rapport à x.

Discrétisation du problème

La valeur de t ne peut que croître alors pour x on doit prendre en compte sa variation "vers la gauche" et "vers la droite".

$$\frac{\partial T}{\partial t} \longrightarrow \frac{T(x, t + \Delta T) - T(x, t)}{\Delta t}$$

$$\frac{\partial^2 T}{\partial x^2} \longrightarrow \frac{T(x + \Delta x, t) - T(x, t) + T(x - \Delta x, t) - T(x, t)}{\Delta x^2}$$

L'équation devient :

$$T(x, t + \Delta t) = T(x, t) + k\Delta t \frac{T(x + \Delta x, t) + T(x - \Delta x, t) - 2T(x, t)}{\Delta x^2}$$

Normalisation et conditions limites

On pose $\theta(x,t) = \frac{T(x,t)-T_1}{T_0-T_1}$ la température normalisée, ainsi les paramètres T_0 et T_1 n'interviennent plus :

On remarque que pour tout t, $\theta(0,t)=1$ et $\theta(L,t)=0$, les conditions limites aux extrémités de la bare.

De plus avec les conditions initiales $T(x,0) = T_1$ on a $\theta(x,0) = 0$. On expérimentera avec différents profiles de températures initiales.

En fixant k=1 et en remplaçant θ dans l'équation par $T= heta(T_0-T_1)+T_1$ on obtient une équation similaire :

$$\theta(x, t + \Delta t) = \theta(x, t) + \Delta t \frac{\theta(x + \Delta x, t) + \theta(x - \Delta x, t) - 2\theta(x, t)}{\Delta x^2}$$

Résolution numérique

À partir des paramètres L, t_f , Δx et Δt , on défini un tableau que l'on va remplir avec les valeurs que l'on va calculer. On peut déjà renseigner les conditions initiales et limites.

x, t	0	t ₂	t ₃	 t_f
0	0	1	1	1
<i>x</i> ₂	0	$\theta_{1,1}$	$\theta_{1,2}$	$\theta_{1,f}$
<i>X</i> 3	0	$\theta_{2,1}$	$\theta_{2,2}$	$\theta_{2,f}$
$x_n = L$	0	0	0	0

Chaque colonne décrit un instant et peut être calculée à partir de la colonne précédente en appliquant la formule de récurrence à chaque valeur.

Code utilisé

Initialisation

```
import numpy as np
import matplotlib.pyplot as plt
#constantes
I_{.} = 10.0
dx = 0.1
t.f = 50.0
dt = 0.001
#vérification humaine si le pas est trop grand
if (delta := dt/(dx*dx)) > 0.1:
    input(f'Delta = {delta}, continuer ?')
n_x = int(L/dx) #nombre de valeurs de X
n t = int(tf/dt) #nombre de valeurs de t
thet = np.zeros((n_x, n_t)) #matrice de résultats
thet[:, 0].fill(0) #conditions initiales
thet[0].fill(1) #conditions limites
thet[-1].fill(0)
#différentielle
d theth = lambda x.t : (thet[x+1][t-1] + thet[x-1][t-1] - 2*thet[x][t-1])/(dx*dx)
```

Code utilisé

Exécution

```
#argument des ranges : ignorer les conditions initiales/limites
#énite les erreurs d'indices
for t in range(1, n_t):
    #traité comme un système de n_x équations
    for x in range(1, n_x-1):
        thet[x][t] = thet[x][t-1] + d_theth(x,t) * dt
    #pourcentage de complétion
    print(f'Simulation {round(t/n_t*100)}%', end='\r')
print("\nOK")
#affichage histogramme 2D
plt.imshow(thet, extent=(0, tf, 0, L), cmap='inferno', interpolation='nearest', aspect='auto')
cb = plt.colorbar()
#titre et légendes
cb.set label('Température')
plt.xlabel('Temps')
plt.ylabel('Position')
plt.title('Évolution de la température dans une barre métallique')
plt.show()
```

Profile initial uniforme en 1

Profile initial uniforme en 0.5

Profile initial sinusoïdal (2 périodes, tf=5)

Profile initial linéaire

Profile initial linéaire "inversé"

