

Canadian Bioinformatics Workshops

www.bioinformatics.ca

bioinformaticsdotca.github.io

Chaitra Sarathy, PhD Analysis Using R June, 28-29, 2023

Overview

- What is dimensionality reduction?
- Why reduce?
- A few flavors of dimensionality reduction:
 - PCA
 - tSNE
 - UMAP

- What is dimension?
- Define terms using data

Simple example data

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

Simple example data

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

2 genes

Simple example data

6 mice

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

2 genes

Simple example data

6 mice → samples

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

2 genes → variables

Simple example data

6 mice → samples

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

2 genes → variables

Other biological data

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
Protein 1	20	15	18	50	45	43
Protein 2	15	13	14	37	35	38

Simple example data

6 mice → samples

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

2 genes → variables

Other biological data

	Cell 1	Cell 2	Cell 3	Cell 4	Cell 5	Cell 6
Protein 1	20	15	18	50	45	43
Protein 2	15	13	14	37	35	38

Non-omic data

		Studen t 2			Studen t 5	Studen t 6
Math	90	85	80	65	60	68
Scienc e	80	73	66	64	63	59

Simple example data

6 mice → samples

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

2 genes → variables

How to visualise differences in samples?

Simple example data

mice → samples

Plot on number line

			Mouse 3			
Gene 1	12	15	10	5	4	2

genes → variables

Simple example data

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

Plot on two dimensional xy axis

Simple example data

		Mouse 2		Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

Plot on two dimensional xy axis

Gene 1

Simple example data

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1

Plot on two dimensional xy axis

Gene 1

Simple example data

		Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1
Gene 3	5	5	6	15	18	22

Plot on three dimensional xyz axis

Simple example data

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6		
Gene 1	12	15	10	5	4	2		
Gene 2	8	13	9	3	3	1		
Gene 3	5	5	6	15	18	22		
Gene 4	22	25	30	30	33	23	 	Plot on four dimensions
Gene 10000	genes >	variable	es			-	—	Plot on 10000 dimensions

Dimensionality reduction to the rescue!

Simple example data

mice → samples

	Mouse 1	Mouse 2	Mouse 3	Mouse 4	Mouse 5	Mouse 6
Gene 1	12	15	10	5	4	2
Gene 2	8	13	9	3	3	1
Gene 3	5	5	6	15	18	22
Gene 4	22	25	30	30	33	23
Gene genes → variables 10000						

Dimensionality reduction:

transform data to a few new variables which explain most of the differences in observations

- Most widely used method for dimension reduction
- One step in analysis pipeline (Refer flowchart in Module 1)

Rotate data into newer axes or dimensions – Principal Components (PC1, PC2, etc)

PC1 - First principal component – axis with maximum variance

PC2 – Second principal component – second highest variance

Rotate data → Map data onto new axes → Projections

Amount by which data points are rotated → loading values

Take away:

Rotate data into newer axes or dimensions – Principal Components (PC1, PC2, etc)

PC1 - First principal component – axis with maximum variance

PC2 - Second principal component - second highest variance

Rotate data → Map data onto new axes → **Projections**

Amount by which data points are rotated → **loading values**

Applications

Applicable to both omic and non-omic datasets

Shows where the dominant structure in your data is

Useful for identifying batches, unmeasured variable effect, etc

Machine learning: Reducing feature set for accurate modelling

A useful PCA paper: https://www.cs.cmu.edu/~elaw/papers/pca.pdf

PCA: base r function "prcomp"

Perform PCA on your mouse gene expression data

```
> pc_out <- prcomp(mouse_exp)
> str(pc_out)
```

PCA: Results of "prcomp"

str(pc_out)

```
pc_out <- prcomp(mouse_exp)</pre>
                    str(pc_out)
Standard
                   List of 5
deviation
                    ⊳$ sdev
                              : num [1:6] 3.236 1.025 0.323 0.29 0.139 ...
                    $ rotation: num [1:6, 1:6] 0.398 0.396 0.392 0.421 0.425 ...
                     ...- attr(*, "dimnames")=List of 2
                      ....$ : chr [1:6] "M1" "M2" "M3<u>" "NC1" ...</u>
                      ....$ : chr [1:6] "PC1" "PC2" "PC3" "PC4" ...
Loading
                    $ center : Named num [1:6] 5.17 5.14 5.23 5.12 5.13 ...
 values
                      ..- attr(*, "names")= chr [1:6] "M1" "M2" "M3" "NC1" ...
                    $ scale : logi FALSE
                    $ x
                               : num [1:147, 1:6] 1.1 -1.69 -3.31 2.29 1.52 ...
                      ..- attr(*, "dimnames")=List of 2
                      .. ..$ : chr [1:147] "1" "2" "3" "4"
                      ....$ : chr [1:6] "PC1" "PC2" "PC3" "PC4" ...
                     - attr(*, "class")= chr "prcomp"
```

PCA: Results of "prcomp"

summary(pc_out)

Standard deviation

Variance explained

- First principal component explains 89.16% of the total variance
- Second principal component explains 8.9% of the variance
- Amount of variance explained reduces further down with each component

1.Scree plot

Wikipedia: Scree is a collection of broken rock fragments at the base of a cliff or other steep rocky mass that has accumulated through periodic rockfall

2.Scatter plot

2.Scatter plot

3.Biplot

tSNE: R package "tsne"

- Stands for "t-Stochastic Neighbor Embedding"
- For data that cannot be separated by any straight line
- Finds few variables that represent many variables preserving neighborhood distances
- Great for visualizations (scRNA-seq)
- Stochastic = random (set seed to make reproducible)
- Difference from PCA
 - focus on local signal (neighborhood) vs global signal (explaining maximum variance)

t-SNE paper: http://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf

tSNE: R package "tsne"

tSNE: R package "tsne"

```
library(tsne)
mouse_tsne10 = tsne(log(mouse_exp), perplexity = 10)
mouse_tsne20 = tsne(log(mouse_exp), perplexity = 20)
mouse_tsne50 = tsne(log(mouse_exp), perplexity = 50)
mouse_tsne100 = tsne(log(mouse_exp), perplexity = 100)
```

Perplexity parameter determines how to balance attention to neighborhood vs global structure (smaller=more focus on the neighborhood)

Plot your tsne's

Note that higher perplexity leads to higher spread in your data

UMAP: R package "umap"

- Stands for "Uniform Manifold Approximation and Projection"
- Similar neighborhood approach as t-SNE

UMAP paper: https://arxiv.org/abs/1802.03426

UMAP: R package "umap"

• Run umap

```
library(umap)
mouse_umap = umap(mouse_exp)
```


PCA vs tSNE vs UMAP

PCA	tSNE	UMAP
Linear combination	Non-linear	Non-linear
Lower dimensions are called Principal components	Embeddings	ТВА
Data is projected onto lower-di	mensional space	
Visualization, Covariates for statistical modeling	Visualization	Visualization
Concerned with preserving largest distances, to maximize variance of each PC.	Concerned with preserving nearest-neighbour distances •Tuned with "perplexity" parameter	TBA

Exercise

- Return to your crabs data
- Compute the principle components (PCs) for the numeric columns
- Plot these PCs and color them by species ("sp") and sex
- Now compute 2 t-SNE components for these data and color by species and sex
- Finally compute 2 UMAP components for these data and color by species and sex
- Do any of these dimensionality reduction methods seem to segregate sex/species groups?

We are on a Coffee Break & Networking Session

Workshop Sponsors:

