CAP 6. REQUISITOS E SUPORTES DE REDE PARA MULTIMÍDIA

Requisitos de Redes para Comunicação Multimídia

INE5431 SISTEMAS MULTIMÍDIA PROF. ROBERTO WILLRICH (INE/UFSC) ROBERTO.WILLRICH@UFSC.BR

HTTPS://MOODLE.UFSC.BR

Introdução

Objetivos do Capítulo

- Identificação os principais requisitos de rede de comunicação para transmissão de áudio e vídeo
- Analisar algumas tecnologias de redes locais

Conteúdo

- Definição de alguns parâmetros de desempenho de redes de computadores importantes para a comunicação multimídia
 - Taxa de bits, vazão, atraso, variação de atraso, taxa de perdas de pacote
- Caracterização das fontes de áudio e vídeo tempo-real
- Identificação dos principais requisitos de rede para a comunicação de áudio e vídeo
- Análise de algumas tecnologias: Ethernet e ADSL

Requisitos de rede para áudio e vídeo

Identificação dos principais requisitos para áudio e vídeo

- Verificar níveis de desempenho que a rede deve oferecer para se obter boa qualidade. Requisitos avaliados:
 - Eficiência de uso de recursos da rede
 - A tecnologia usa de maneira eficiente seus recursos para transportar os dados multimídia?
 - Requisitos de vazão
 - A rede oferece banda suficiente para transportar meus dados de áudio/vídeo?
 - Requisitos de atraso e variação de atraso
 - A rede oferece um atraso pequeno e constante para meu tráfego de mídia?
 - Requisitos de confiabilidade
 - A rede produz muita perda de pacotes que afeta a qualidade de apresentação das mídias?

Eficiência de uso de recursos da rede Comutação de Pacotes vs de Circuito

Comutação

Processo de alocação de recursos para a transmissão.

Existem dois tipos básicos de comutação

- Comutação de pacotes: não são reservados recursos
 - Pacotes usam os recursos sob demanda e, como consequência, poderão ter de aguardar (entrar na fila) para conseguir acesso ao enlace de rede.
- Comutação de circuito: reserva de recursos
 - Recursos necessários ao longo de um caminho (buffers, taxa de transmissão de enlaces) para prover a comunicação entre os sistemas finais são reservados pelo período da sessão de comunicação

Eficiência de uso de recursos da rede Comutação de Pacotes vs de Circuito

Comutação de circuito não usa recursos de maneira eficiente quando dados multimídia são transmitidos em rajadas

- Se usuário reserva uma largura de banda igual a seu pico de taxa de transmissão:
 - o parte da largura de banda é desperdiçada em redes de comutação de circuitos
 - É baseada em reserva de recursos

Eficiência de uso de recursos da rede Comutação de Pacotes vs de Circuito

Comutação de pacotes utiliza recursos sob demanda e o tráfego é agregado no enlace (multiplexação estatística)

- Melhor técnica para uso eficiente da rede
 - o aplicação pode usar tanta largura de banda quanto necessário sujeito a um valor máximo
 - quando uma, aplicação não usa toda a sua largura de banda outra aplicação pode usar

- Requisito dependentes da qualidade/codec escolhida para áudios e vídeos transmitidos e da técnica de compressão utilizada
- MP3 (compressão com perda com diferentes qualidades)
 - 32 kbps qualidade aceitável para voz
 - 96 kbps geralmente usada para voz ou streaming de baixa qualidade
 - 128 ou 160 kbps qualidade intermediária
 - 192 kbps qualidade média
 - 256 kbps taxa comumente usada para alta qualidade
 - 320 kbps Qualidade mais alta suportada pelo MP3
- Taxas de bits geradas na codificação
 - Na rede há uma sobrecarga de protocolos, aumentando as taxas nominais indicadas

- Requisito dependentes da qualidade/codec escolhida para áudios e vídeos transmitidos e da técnica de compressão utilizada
- VoIP (codecs ITU-T)
 - 5.3 a 64 kbps de vazão gerados por fluxo de áudio (depende do codec)
 - 20 a 80 kbps ao nível de rede (depende do tamanho do pacote de voz)
- VoIP outros codecs.
 - 700 bps usando codec Codec2 na mais baixa taxa, som melhor com 1,2 kbps
 - 800 bps taxa minima necessária para entender as palavras, usando codec de voz FS-1015
 - 2.15 kbps taxa minima do codec Speex
 - 6 kbps taxa minima do codec Opus
- Taxas de bits geradas na codificação
 - Na rede há uma sobrecarga de protocolos, aumentando as taxas nominais indicadas

- Outros áudios
 - 32–500 kbps áudio com perda usando o Ogg Vorbis
 - 256 kbps MP2 Digital Audio Broadcasting (DAB) necessário para alta qualidade
 - 400 kbps–1.411 kbps áudio sem perda usado nos formatos como Free Lossless Audio Codec, WavPack
 - 1.411,2 kbps format de som PCM linear CD-DA
 - 5.644,8 kbps DSD, usado no Super Audio CD
- Taxas de bits geradas na codificação
 - Na rede há uma sobrecarga de protocolos, aumentando as taxas nominais indicadas

- Vídeos
 - 16 kbps qualidade mínima para videofonia
 - 128–384 kbps videoconferência orientada negócios
 - 400 kbps YouTube 240p videos (H.264)
 - 750 kbps YouTube 360p videos (H.264)
 - 1 mbps YouTube 480p videos (H.264)
 - 1.15 mbps max qualidade VCD (MPEG-1)
 - 2.5 mbps YouTube 720p videos (H.264)
 - 3.5 mbps typ SDTV (usando MPEG-2)
 - 3.8 mbps YouTube 720p (60fps) videos (H.264)
 - 4.5 mbps YouTube 1080p videos (H.264)

- 8 to 15 mbps typ HDTV quality (MPEG-4 AVC)
- 19 mbps aprox. HDV 720p (MPEG-2)
- 24 mbps max AVCHD (MPEG4 AVC)
- 25 mbps aprox. HDV 1080i (MPEG-2)
- 29.4 mbps max HD DVD
- 1.4 gbps- 10-bit 4:4:4 não compactado 1080p com 24fps

Requisito de vazão de transmissão

Para assistir a séries e filmes na Netflix, recomendamos uma conexão estável com a internet com a velocidade de download mostrada abaixo em megabits por segundo (Mbps).

Qualidade de vídeo	Resolução	Velocidade recomendada
Alta definição (HD)	720p	3 Mbps ou mais
Máxima alta definição (FHD)	1080p	5 Mbps ou mais
Ultra alta definição (UHD)	4K	15 Mbps ou mais

Requisitos de atraso e variação de atraso

Atraso fim-a-fim

- Sempre existe um atraso entre a captura/leitura de uma informação em uma fonte e sua apresentação em um destino
 - gerado pelo processamento da informação na fonte, sistema de transmissão e processamento no destino
- Para videoconferência e VoIP: entre 150 e 400ms
- Para aplicações baseadas em servidor: na ordem de segundos

Requisitos de atraso e variação de atraso

Variação de atrasos

- Em redes a comutação de pacotes, os pacotes de dados não chegam ao destino em intervalos fixos
 - necessário para transmissão de mídias contínuas
- Para videoconferência e VoIP: deve ser limitada a um pequeno valor (inferior a 30 a 60ms)
- Para aplicações baseadas em servidor: pode ser mais alta

Requisitos de atraso e variação de atraso

Variação de Atraso é removida com buffer FIFO no destino

- Técnica de bufferização:
 - pacotes que chegam são colocados no buffer em taxas variadas
 - o dispositivo de apresentação retira amostragens em uma taxa fixa
 - princípio: adicionar um valor de atraso variável a cada pacote de tal forma que o atraso total de cada pacote seja o mesmo

Supondo:

- dmin: tempo mínimo de atraso do pacote
- dmax: tempo máximo de atraso

Se um pacote com atraso de d é bufferizado durante (dmax-d)

- todos os pacotes terão um atraso fixo de dmax
 - destino partirá a apresentação dmax
 - cada pacote será apresentado em tempo

Tempo máximo de bufferização é dmax-dmin

- maior este valor, maior é o tamanho do buffer necessário
- buffer não deve sofrer sobrecarga ou subutilização
- tamanho do buffer não dever ser muito grande
 - significa que o sistema é caro e o atraso fim-a-fim é grande

Buffer de Apresentação

- Existem duas classes de operação para os buffers de apresentação:
 - Tempo de bufferização fixo
 - Tempo de bufferização adaptável

Tempo de Bufferização fixo

- Primeiro pacote do fluxo é bufferizado por um período de tempo de B
- Pacote seguinte é apresentado numa taxa fixa se ele é disponível
- Quando a variação de atraso não é muito grande e B é apropriadamente selecionado
 - variação de atraso da rede pode ser removida eficientemente.

Tempo de Bufferização fixo

- Mas este esquema n\u00e3o considera o atraso real do pacote
 - Mesmo se o primeiro pacote sofrer o atraso máximo da rede, ele é atrasado de B segundos
 - Causando atraso extra desnecessário
- VoIP: em geral o tempo de bufferização é de duas vezes o tamanho do pacote de voz
 - Exemplo: se o pacote de voz for de 20ms, o tempo de bufferização é de 40ms

Tempo de Bufferização fixo

- Embora esta técnica seja fácil de implementar
 - Pode resultar em qualidade não satisfatória de áudio
 - Atrasos podem variar, e se aumentar aumenta o descarte de pacotes
 - Não há um atraso ótimo quando as condições de rede variam com o tempo

Técnicas de bufferização adaptativas

- Realizam uma estimação contínua dos atrasos de rede
 - Via os parâmetros dos pacotes RTP e RTCP
- Permite acompanhar a situação da rede
- Várias operações devem ser realizadas para o cálculo do tempo de apresentação dos dados
 - Compensação do desvios de relógio
 - Compensação do Comportamento do Emissor quando do uso de técnicas para aumentar a confiabilidade
 - Compensação do Jitter
 - Compensação da trocas de rota
 - Compensação da reordenação de pacotes
 - Definição do momento de adaptar

Análise baseada no modelo cliente/servidor

- Supondo:
 - destino consome dados a uma taxa constante
 - A(t) a função dos dados que chegam e C(t) a função de consumo
 - C(t) aumenta com o tempo em uma taxa constante
 - A(t) não aumenta a taxa fixa devido a variação de atrasos
- Assumindo:
 - 0: tempo de envio do primeiro pacote
 - t1: tempo de chegada do primeiro pacote
 - t2: tempo de apresentação do primeiro pacote
- Para satisfazer os requisitos de continuidade
 - A(t-t1) dever ser igual ou maior que C(t-t2)
 - a diferença é bufferizada

Técnica de Bufferização

Requisitos de largura de banda

- Inclinação de A(t-t1) representa a taxa de chegada de dados
- · Valor médio da taxa de chegada deve ser igual a taxa de consumo
- Se a taxa de consumo é menor
 - diferença A(t-t1) e C(t-t2) (ocupação do buffer) aumenta com o tempo
 - para o sucesso da apresentação
 - tamanho do buffer é infinito ou
 - apresentação do fluxo pode apenas se mantida durante um tempo limitado
 - senão correrá sobrecarga do buffer

04/06/2024

Técnica de Bufferização

Requisitos de largura de banda

 Conclusão: controle da taxa de transmissão deve ser usado para que a taxa de transmissão seja próxima a taxa de consumo

Técnica de Bufferização

Requisitos de largura de banda

- Se a taxa de consumo é maior que a taxa de chegada
 - para satisfazer o requisito que A(t-t1)-C(t-t2) não seja menor que 0
 - t2 deve ser maior (atraso inicial maior)
 - tempo de resposta mais longo
 - requer tamanho de buffer maior
 - maior o fluxo a ser apresentado, maior é o atraso inicial e maior os requisitos do buffer
 - não são desejáveis nem praticáveis
- Conclusão: transmissor deveria enviar na taxa de consumo, e a largura de banda de transmissão fim-a-fim deve ser ao menos igual a taxa de consumo

04/06/2024

Requisitos de confiabilidade

Requisito de difícil quantificação

- As aplicações multimídia são tolerantes a erros de transmissão
 - Devido aos limites da percepção sensorial humana
 - Consequência: perdas geram redução da qualidade de apresentação
- Requisitos de controle de erro e de atraso fim-a-fim são contraditórios
 - pois muitos esquemas de controle de erro envolvem a detecção e retransmissão do pacote com erros ou perda
 - implica no aumento no atraso
 - para transmissão tempo-real de áudio e vídeo, o atraso é mais importante que a taxa de perdas
 - é preferível ignorar o erro e trabalhar simplesmente com o fluxo de dado recebido
- Para VoIP:
 - ideal é inferior a 1%, acima de 25% não é tolerável