# JPEG - codificação de entropia

## Codificação de entropia

#### Objetivo:

Compressão sem perdas

#### Etapas:

- Ordenamento zigzag do bloco DCT quantizado
- Codificação da diferença do coeficiente DC
- Codificação dos coeficientes AC

### Contexto



## Ordenamento zigzag do bloco DCT quantizado

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|----|----|----|----|----|----|----|----|
| 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
| 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |



### Ordenamento zigzag do bloco DCT quantizado

#### Exemplo:



Bloco 8x8 DCT

Bloco 8x8 DCT quantizado

$$[-26 -31 -3 -2 -62 -41 -41150200 -1200000 -1 -1 EOB]$$

 $b_n = \overline{[-26, (0,-3), (0,1), (0,-3), (0,-2), (0,-6), (0,2), (0,-4), (0,1), (0,-4), (0,1), (0,1), (0,5), (1,2), (2,-1), (0,2), (5,-1), (0,-1), EOB]$ 

## Codificação da diferença do coeficiente DC

Deve-se calcular a diferença do coeficiente DC em relação ao bloco anterior:

## Codificação da diferença do coeficiente DC

Determina-se a categoria da componente DC:

b\_n = [ -9, (0,-3), (0,1), (0,-3), (0,-2), (0,-6), (0,2), (0,-4), (0,1), (0,-4), (0,1), (0,1), (0,5), (1,2), (2,-1), (0,2), (5,-1), (0,-1), EOB ]

| Range                                          | DC Difference<br>Category | AC Category |
|------------------------------------------------|---------------------------|-------------|
| 0                                              | 0                         | N/A         |
| <sup>-1, 1</sup> Categoria 4                   | 1                         | 1           |
| -3, -2, 2, 3 Categoria 4                       | 2                         | 2           |
| $-7, \ldots, -4, 4, \ldots, 7$                 | 3                         | 3           |
| $-15, \ldots, -8, 8, \ldots, 15$               | 4                         | 4           |
| $-31, \ldots, -16, 16, \ldots, 31$             | 5                         | 5           |
| $-63, \ldots, -32, 32, \ldots, 63$             | 6                         | 6           |
| $-127, \ldots, -64, 64, \ldots, 127$           | 7                         | 7           |
| $-255, \ldots, -128, 128, \ldots, 255$         | 8                         | 8           |
| $-511, \ldots, -256, 256, \ldots, 511$         | 9                         | 9           |
| $-1023, \ldots, -512, 512, \ldots, 1023$       | A                         | A           |
| $-2047, \ldots, -1024, 1024, \ldots, 2047$     | В                         | В           |
| $-4095, \ldots, -2048, 2048, \ldots, 4095$     | C                         | C           |
| $-8191, \ldots, -4096, 4096, \ldots, 8191$     | D                         | D           |
| $-16383, \ldots, -8192, 8192, \ldots, 16383$   | E                         | E           |
| $-32767, \ldots, -16384, 16384, \ldots, 32767$ | F                         | N/A         |

## Codificação da diferença do coeficiente DC

Determina-se o código base e o valor da componente em binário:

$$b_n = [-9, (0,-3), (0,1), (0,-3), (0,-2), (0,-6), (0,2), (0,-4), (0,1), (0,-4), (0,1), (0,1), (0,5), (1,2), (2,-1), (0,2), (5,-1), (0,-1), EOB]$$

| Category | Base Code | Length | Category | Base Code | Length |
|----------|-----------|--------|----------|-----------|--------|
| 0        | 010       | 3      | 6        | 1110      | 10     |
| 1        | 011       | 4      | 7        | 11110     | 12     |
| 2        | 100       | 5      | 8        | 111110    | 14     |
| 3        | 00        | 5      | 9        | 1111110   | 16     |
| 4        | 101       | 7      | A        | 11111110  | 18     |
| 5        | 110       | 8      | В        | 111111110 | 20     |

**TABLE A.4** JPEG default DC code (luminance).

Categoria 4!!

#### Código base + valor da componente: 1010110

- Valor da componente: expressa a magnitude usando k bits (k é a categoria).
- Se for negativo, acha o complemento a 1.

Determina-se a categoria da componente AC:

b\_n = [-9, (0,-3), (0,1), (0,-3), (0,-2), (0,-6), (0,2), (0,-4), (0,1), (0,-4), (0,1), (0,1), (0,5), (1,2), (2,-1), (0,2), (5,-1), (0,-1), EOB]

| Range                                          | DC Difference<br>Category | AC Category |
|------------------------------------------------|---------------------------|-------------|
| Octogorio 2                                    | 0                         | N/A         |
| Categoria 2                                    | 1                         | 1           |
| -3, -2, 2, 3                                   | 2                         | 2           |
| $-7, \ldots, -4, 4, \ldots, 7$                 | 3                         | 3           |
| $-15, \ldots, -8, 8, \ldots, 15$               | 4                         | 4           |
| $-31, \ldots, -16, 16, \ldots, 31$             | 5                         | 5           |
| $-63, \ldots, -32, 32, \ldots, 63$             | 6                         | 6           |
| $-127, \ldots, -64, 64, \ldots, 127$           | 7                         | 7           |
| $-255, \ldots, -128, 128, \ldots, 255$         | 8                         | 8           |
| $-511, \ldots, -256, 256, \ldots, 511$         | 9                         | 9           |
| $-1023, \ldots, -512, 512, \ldots, 1023$       | A                         | A           |
| $-2047, \ldots, -1024, 1024, \ldots, 2047$     | В                         | В           |
| $-4095, \ldots, -2048, 2048, \ldots, 4095$     | C                         | C           |
| $-8191, \ldots, -4096, 4096, \ldots, 8191$     | D                         | D           |
| $-16383, \ldots, -8192, 8192, \ldots, 16383$   | E                         | E           |
| $-32767, \ldots, -16384, 16384, \ldots, 32767$ | F                         | N/A         |

Run 0 Categoria :

 Determina-se a o código base e o valor da componente:

```
b_n = [-9, (0, -3), (0, 1), (0, -3), (0, -2), (0, -6), (0, 2), (0, -4), (0, 1), (0, -4), (0, 1), (0, 1), (0, 5), (1, 2), (2, -1), (0, 2), (5, -1), (0, -1), EOB]
```

## Código base + valor da componente: 0100

- Valor da componente: expressa a magnitude usando k bits (k é a categoria).
- Se for negativo, acha o complemento a 1.

| Run/     |                    |        | Run/     |                    |        |
|----------|--------------------|--------|----------|--------------------|--------|
| Category | Base Code          | Length | Category | Base Code          | Length |
| 0/0      | 1010 (= EOB)       | 4      |          |                    | 00,000 |
| 0/1      | 00                 | 3      | 8/1      | 11111010           | 9      |
| 0/2      | 01                 | 4      | 8/2      | 1111111111000000   | 17     |
| 0/3      | 100                | 6      | 8/3      | 11111111110110111  | 19     |
| 0/4      | 1011               | 8      | 8/4      | 1111111111111000   | 20     |
| 0/5      | 11010              | 10     | 8/5      | 11111111110111001  | 21     |
| 0/6      | 111000             | 12     | 8/6      | 11111111110111010  | 22     |
| 0/7      | 1111000            | 14     | 8/7      | 11111111110111011  | 23     |
| 0/8      | 1111110110         | 18     | 8/8      | 111111111101111100 | 24     |
| 0/9      | 11111111110000010  | 25     | 8/9      | 11111111110111101  | 25     |
| 0/A      | 11111111110000011  | 26     | 8/A      | 111111111101111110 | 26     |
| 1/1      | 1100               | 5      | 9/1      | 111111000          | 10     |
| 1/2      | 111001             | 8      | 9/2      | 11111111110111111  | 18     |
| 1/3      | 1111001            | 10     | 9/3      | 11111111111000000  | 19     |
| 1/4      | 111110110          | 13     | 9/4      | 11111111111000001  | 20     |
| 1/5      | 11111110110        | 16     | 9/5      | 11111111111000010  | 21     |
| 1/6      | 11111111110000100  | 22     | 9/6      | 11111111111000011  | 22     |
| 1/7      | 11111111110000101  | 23     | 9/7      | 11111111111000100  | 23     |
| 1/8      | 11111111110000110  | 24     | 9/8      | 11111111111000101  | 24     |
| 1/9      | 111111111100001111 | 25     | 9/9      | 11111111111000110  | 25     |
| 1/A      | 11111111110001000  | 26     | 9/A      | 11111111111000111  | 26     |
| 2/1      | 11011              | 6      | A/1      | 111111001          | 10     |
| 2/2      | 11111000           | 10     | A/2      | 11111111111001000  | 18     |
| 2/3      | 1111110111         | 13     | A/3      | 11111111111001001  | 19     |
| 2/4      | 11111111110001001  | 20     | A/4      | 11111111111001010  | 20     |
| 2/5      | 11111111110001010  | 21     | A/5      | 11111111111001011  | 21     |
| 2/6      | 1111111110001011   | 22     | A/6      | 11111111111001100  | 22     |
| 2/7      | 11111111110001100  | 23     | A/7      | 11111111111001101  | 23     |
| 2/8      | 11111111110001101  | 24     | A/8      | 11111111111001110  | 24     |
| 2/9      | 11111111110001110  | 25     | A/9      | 11111111111001111  | 25     |
| 2/A      | 1111111110001111   | 26     | A/A      | 11111111111010000  | 26     |
| 3/1      | 111010             | 7      | B/1      | 111111010          | 10     |
| 3/2      | 111110111          | 11     | B/2      | 11111111111010001  | 18     |
| 3/3      | 11111110111        | 14     | B/3      | 1111111111010010   | 19     |
| 3/4      | 11111111110010000  | 20     | B/4      | 11111111111010011  | 20     |
| 3/5      | 1111111110010000   | 21     | B/5      | 1111111111010100   | 21     |
| 3/6      | 1111111110010001   | 22     | B/6      | 1111111111010101   | 22     |
| 3/7      | 11111111110010010  | 23     | B/7      | 11111111111010101  | 23     |

TABLE A.5 JPEG default AC code (luminance).

Determina-se a categoria da componente AC:

b\_n = [-9, (0,-3), (0,1), (0,-3), (0,-2), (0,-6), (0,2), (0,-4), (0,1), (0,-4), (0,1), (0,1), (0,5), (1,2), (2,-1), (0,2), (5,-1), (0,-1), EOB]

| Range                                          | DC Difference<br>Category | AC Category |
|------------------------------------------------|---------------------------|-------------|
| 0                                              | 0                         | N/A         |
| -1, 1                                          | 1                         | 1           |
| -3, -2, 2, 3<br>-7,, -4, 4,, 7 Categoria 1     | 1 2                       | 2           |
| $-7, \ldots, -4, 4, \ldots, 7$                 | 3                         | 3           |
| $-15, \ldots, -8, 8, \ldots, 15$               | 4                         | 4           |
| $-31, \ldots, -16, 16, \ldots, 31$             | 5                         | 5           |
| $-63, \ldots, -32, 32, \ldots, 63$             | 6                         | 6           |
| $-127, \ldots, -64, 64, \ldots, 127$           | 7                         | 7           |
| $-255, \ldots, -128, 128, \ldots, 255$         | 8                         | 8           |
| $-511, \ldots, -256, 256, \ldots, 511$         | 9                         | 9           |
| $-1023, \ldots, -512, 512, \ldots, 1023$       | A                         | A           |
| $-2047, \ldots, -1024, 1024, \ldots, 2047$     | В                         | В           |
| $-4095, \ldots, -2048, 2048, \ldots, 4095$     | C                         | C           |
| $-8191, \ldots, -4096, 4096, \ldots, 8191$     | D                         | D           |
| $-16383, \ldots, -8192, 8192, \ldots, 16383$   | E                         | E           |
| $-32767, \ldots, -16384, 16384, \ldots, 32767$ | F                         | N/A         |

Run 0 Categoria

 Determina-se a o código base e o valor da componente:

```
b_n = [-9, (0,-3), (0,1), (0,-3), (0,-2), (0,-6), (0,2), (0,-4), (0,1), (0,-4), (0,1), (0,1), (0,5), (1,2), (2,-1), (0,2), (5,-1), (0,-1), EOB]
```

#### Código base + valor da componente: 001

- Valor da componente: expressa a magnitude usando k bits (k é a categoria).
- Se for negativo, acha o complemento a 1.

| Run/          |                    |          | Run/        |                    |        |
|---------------|--------------------|----------|-------------|--------------------|--------|
| Category      | Base Code          | Length   | Category    | Base Code          | Length |
| 0/0           | 1010 (= EOB)       | 4        |             |                    |        |
| 0/1           | 00                 | 3        | 8/1         | 11111010           | 9      |
| 0/2           | 01                 | 4        | 8/2         | 1111111111000000   | 17     |
| 0/3           | 100                | 6        | 8/3         | 11111111110110111  | 19     |
| 0/4           | 1011               | 8        | 8/4         | 1111111111111000   | 20     |
| 0/5           | 11010              | 10       | 8/5         | 111111111110111001 | 21     |
| 0/6           | 111000             | 12       | 8/6         | 111111111110111010 | 22     |
| 0/7           | 1111000            | 14       | 8/7         | 11111111110111011  | 23     |
| 0/8           | 1111110110         | 18       | 8/8         | 111111111101111100 | 24     |
| 0/9           | 11111111110000010  | 25       | 8/9         | 11111111110111101  | 25     |
| 0/A           | 11111111110000011  | 26       | 8/A         | 111111111101111110 | 26     |
| 1/1           | 1100               | 5        | 9/1         | 111111000          | 10     |
| 1/2           | 111001             | 8        | 9/2         | 11111111110111111  | 18     |
| 1/3           | 1111001            | 10       | 9/3         | 11111111111000000  | 19     |
| 1/4           | 111110110          | 13       | 9/4         | 11111111111000001  | 20     |
| 1/5           | 11111110110        | 16       | 9/5         | 11111111111000010  | 21     |
| 1/6           | 11111111110000100  | 22       | 9/6         | 11111111111000011  | 22     |
| 1/7           | 11111111110000101  | 23       | 9/7         | 11111111111000100  | 23     |
| 1/8           | 11111111110000110  | 24       | 9/8         | 11111111111000101  | 24     |
| 1/9           | 111111111100001111 | 25       | 9/9         | 11111111111000110  | 25     |
| 1/A           | 11111111110001000  | 26       | 9/A         | 111111111110001111 | 26     |
| 2/1           | 11011              | 6        | A/1         | 111111001          | 10     |
| 2/2           | 11111000           | 10       | A/2         | 11111111111001000  | 18     |
| 2/3           | 1111110111         | 13       | A/3         | 11111111111001001  | 19     |
| 2/4           | 11111111110001001  | 20       | A/4         | 11111111111001010  | 20     |
| 2/5           | 11111111110001010  | 21       | A/5         | 11111111111001011  | 21     |
| 2/6           | 11111111110001011  | 22       | A/6         | 11111111111001100  | 22     |
| 2/7           | 11111111110001100  | 23       | A/7         | 11111111111001101  | 23     |
| 2/8           | 11111111110001101  | 24       | A/8         | 11111111111001110  | 24     |
| 2/9           | 11111111110001110  | 25       | A/9         | 11111111111001111  | 25     |
| 2/A           | 11111111110001111  | 26       | A/A         | 11111111111010000  | 26     |
| 3/1           | 111010             | 7        | B/1         | 111111010          | 10     |
| 3/2           | 111110111          | 11       | B/2         | 11111111111010001  | 18     |
| 3/3           | 11111110111        | 14       | B/3         | 11111111111010010  | 19     |
| 3/4           | 11111111110010000  | 20       | B/4         | 11111111111010011  | 20     |
| 3/5           | 11111111110010001  | 21       | B/5         | 11111111111010100  | 21     |
| 3/6           | 1111111110010010   | 22       | B/6         | 11111111111010101  | 22     |
| 3/7           | 1111111110010011   | 23       | B/7         | 11111111111010110  | 23     |
| ASSESSABLE OF |                    | UNITED . | *********** |                    | 67.50  |

TABLE A.5 JPEG default AC code (luminance).

Determina-se a categoria da componente AC:

b\_n = [-9, (0,-3), (0,1), (0,-3), (0,-2), (0,-6), (0,2), (0,-4), (0,1), (0,-4), (0,1), (0,1), (0,5), (1,2), (2,-1), (0,2), (5,-1), (0,-1), EOB]

| Range                                          | DC Difference<br>Category   | AC Category |
|------------------------------------------------|-----------------------------|-------------|
| 0                                              | 0                           | N/A         |
| -1, 1                                          | 1                           | 1           |
| -3, -2, 2, 3<br>-7,, -4, 4,, 7 Categoria 1     | ‼ <sup>2</sup> <sub>3</sub> | 2 3         |
| -15,, -8, 8,, 15                               | 4                           | 4           |
| $-31, \ldots, -16, 16, \ldots, 31$             | 5                           | 5           |
| $-63, \ldots, -32, 32, \ldots, 63$             | 6                           | 6           |
| $-127, \ldots, -64, 64, \ldots, 127$           | 7                           | 7           |
| $-255, \ldots, -128, 128, \ldots, 255$         | 8                           | 8           |
| $-511, \ldots, -256, 256, \ldots, 511$         | 9                           | 9           |
| $-1023, \ldots, -512, 512, \ldots, 1023$       | A                           | A           |
| $-2047, \ldots, -1024, 1024, \ldots, 2047$     | В                           | В           |
| -4095,, -2048, 2048,, 4095                     | C                           | C           |
| $-8191, \ldots, -4096, 4096, \ldots, 8191$     | D                           | D           |
| -16383,, -8192, 8192,, 16383                   | E                           | E           |
| $-32767, \ldots, -16384, 16384, \ldots, 32767$ | F                           | N/A         |

 Determina-se a o código base e o valor da componente:

```
b_n = [-9, (0,-3), (0,1), (0,-3), (0,-2), (0,-6), (0,2), (0,-4), (0,1), (0,-4), (0,1), (0,1), (0,5), (1,2), (2,-1), (0,2), (5,-1), (0,-1), EOB]
```

## Código base + valor da componente: 11110100

- Valor da componente: expressa a magnitude usando k bits (k é a categoria).
- Se for negativo, acha o complemento a 1.

