Évaluation nº 9 Suites (1)	$\frac{dur\acute{e}e}{dur\acute{e}e} \approx 0h$ 45min	mars 2023
NOM:	. 3C 2A 2B	○2C ○1B2
Prénom :	. 0 01 02 03	
email : (si changement)		$\bigcirc 4 \bigcirc 5 \bigcirc 6 \bigcirc 7 \bigcirc 8 \bigcirc 9$
Aucun document n'est autorisé. L'usage de la calculatrice La clarté de la rédaction sera prise en compte da Toute action volontaire rendant impossible ou difficile l'i dégradation de la note finale.	ns la notation. Le total d	
Exercice 1 Compléter : « Une suite (u_n) est arithmétiq	ue de raison r si »	0 0.5 1 Réservé!
Exercice 2 Soit (u_n) la suite définie pour tout entier na	turel n par $u_n = 1 - \frac{1}{2n+1}$	Ī·
1) Calculer les valeurs u_0, u_1, u_2 .		
2) Est-il possible de déterminer directement u_{25} ? Justifi	er votre réponse.	
3) Par la méthode de votre choix, donner u_{100} .		
$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3$		Réservé!

Exercice 3 On considère la suite (v_n) définie par $v_1=-1$ et pour tout $n>1, \quad v_n=2(5-2v_{n-1})$

1) Calculer v_2 et v_3 . Montrer les calculs.

2) Est-il possible de déterminer directement \boldsymbol{v}_{25} ? Justifier votre réponse.

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3$	Réservé!
Exercice 4 On considère la suite (v_n) vérifiant pour tout $n \geqslant 0$: par $v_{n+1} = 0$	$= 2(v_n + 4).$
Carland	\bigcirc
Sachant que $v_1 = 20$, déterminer v_0 .	○0 ○0.5 ○1 Réservé!
Sachant que $v_1=20$, déterminer v_0 .	
Sachant que $v_1=20$, déterminer v_0 .	0 0.5 1 Réservé!
Sachant que $v_1=20$, déterminer v_0 .	○0 ○0.5 ○1 Réservé!
Exercice 5 Soit un réel k . On considère la suite (u_n) vérifiant pour tout $n \geqslant$	$\geq 1, u_n = 4u_{n-1} - k \ .$

Exercice 6 c est un réel. On se donne une suite (u_n) vérifiant pour tout $n \in \mathbb{N}$ la relation $u_{n+1} = u_n + c$.

- 1) Justifier la nature de la suite (u_n) .
- 2) On suppose que $u_1=2\,$ et $u_5=30\,$. En déduire la raison de la suite $(u_n).$
- 3) Donner une forme explicite de la suite (u_n) .

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3$	Réservé!

Exercice 7 On considère la suite géométrique (u_n) définie pour $n \ge 0$, de raison 1,5. On suppose que $u_3 = 18$.

- 1) Donner la relation de récurrence vérifiée par (u_n) .
- 2) Donner une forme explicite de (u_n) et en déduire u_0 .

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3$	Réservé!

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1$	Réservé
	······

Exercice 9 Soit (a_n) l	a suite	définie	pour	tout	entier	naturel	n	par	a_n	= n) ² -	+3n	+	2.
-------------------	-----------	---------	---------	------	------	--------	---------	---	-----	-------	-----	------------------	-----	---	----

- 1) Soit n un entier naturel. Exprimer a_{n+1} en fonction de n.
- 2) À l'aide du calcul précédent, montrer que la suite (a_n) est croissante.

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4 \bigcirc 4.5 \bigcirc 5$	Réservé!

Exercice 10 On considère la suite (b_n) définie pour tout entier naturel n par $b_n = \frac{n+2}{n+1}$.

- 1) Soit n un entier naturel. Exprimer b_{n+1} en fonction de n
- 2) En déduire que $b_{n+1} b_n = \frac{-1}{(n+1)(n+2)}$ 3) Justifier le sens de variation de la suite (b_n) .

$\bigcirc 0 \bigcirc 0.5 \bigcirc 1 \bigcirc 1.5 \bigcirc 2 \bigcirc 2.5 \bigcirc 3 \bigcirc 3.5 \bigcirc 4$	Réservé!

+1/6/55+

