<u>UC San Diego</u>

Nepal 2015 Earthquake Data Analysis

ECE 143

Group 10: Jialu Liang, Callie Hartzog, Wei Qin, Yuxin Wang, Yu Yong

Motivation

- Earthquakes are unpreventable and cause extensives amounts of damage
- Rural communities are disproportionately affected, due to improper building practices
- Loss of lives and property damages can be prevented by using appropriate building methods

Image Source: https://earth.stanford.edu/news/2015-nepal-earthquake-offers-clues-about-hazards

Data Explanation

- 2015 Nepal Earthquake
 - Records affected buildings
 - Details building location, materials, age, purpose
- 762,106 buildings recorded
- Investigating how age and materials affect stability of buildings

- Correlation Matrix between age, number of floors in a building as well as damage grade.
- There is some weak correlation between the number of floors in a building and the damage grade.

- Count of floors: most buildings have less than 4 floors
- Why such correlation exists?

- Across any damage grade, buildings with lesser floors are most affected.
- Across all damage grades, the ratio of buildings with second floors damaged by the earthquake is the highest

Two groups of buildings: number of floors <= 3 or >= 4

a) Histogram of foundation type

b) Histogram of ground floor type

c) Histogram of roof type

- By fixing other structure features, the plot of average damage grade is almost a horizontal line: hardly any correlation between count of floors and damage grade
- Simpson's paradox

Plot of the average damage grade

- blue: structure features fixed (Brick foundation; Mud ground floor; Bamboo roof)
- yellow: structure features unfixed

Impact of Height Percentage

 Higher height percentage leads to a greater damage grade.

Higher height percentage

More torque exerted on the base and higher likelihood of disastrous outcomes

Impact of Area Percentage

 Higher area percentage leads to lesser damage grades.

Larger area coverage

Parts of the structure are taking less concentrated forces

Impact of Superstructure Materials (Single Materials)

- X: mean damage grade
- Y: materials type

Fig. Mean Damage Grade of Using Different Superstructure Materials

Impact of Superstructure Materials(Combined Materials)

- X: materials type
- Y: materials type
- Heatmap value: mean damage grade of materials combination

- Choices for Single Materials
 - Rc non engineered
 - Rc engineered
 - cement mortar brick

Impact of Materials by Age Group - Recent Buildings

Impact of Materials by Age Group - Older Buildings

Thank You!