Hello Everyone

- helcome to intermediate module of D.S.A
- Jitender Punia (Jcetu)
- B. Tech from USICT, co-founder of pepcoding
- → ~3 years of teaching experience.

FAQ's.

- (-> Notes will be uploaded after the class.
- Assignments will be unlocked after the class ends. G
 - There is no deadline for assignments.
 - Separate Clauses for HIW/assigned problems.

Today's Quote -

quation → public.

[to everyone]

answer → private

[to me].]

- Epecr to peer 3 learing

O Count of factors

any no which divides N completely.

$$N=24$$
 $\{1,2,3,4,6,8,12,243\rightarrow 8\}$ factors.

 $N=10$
 $\{1,2,5,103\}$
 $N/i=0$
 $\Rightarrow i$ is a factor of N.

bseudo-code.

{Assumption - 108 iterations per sec }

N	i terations	Execution Time?
108	108 iterations	1 800.
109	.، ^و ه ا	10 86 6.
10/8	1018 "	10° scc. = 317 years.

$$|0|^{8} \text{ iterations} \rightarrow 1 \text{ scc.}$$

You - children - Grand-ehildren - 4th - 5th/6th.

Optimise.

$$i + j = N$$
 = $\begin{cases} i \text{ and } j \text{ are } factors of N \end{cases}$
 $\Rightarrow \begin{cases} j = N'i \end{cases}$ = $\begin{cases} i \text{ and } N'i \text{ are } factors of N \end{cases}$

$\frac{1}{2}$ $\frac{\frac{1}{2}}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{8}{4}$ $\frac{6}{6}$
238
3 8
3
4 6
(
-64
8 3
12 2
24 1

Gam. :

$$S = 1 + 2 + 3 + - - 99 + 100$$

$$S = 100 + 99 + 98 + - - - 2 + 1$$

$$2S = [0] + [0] + [0] + [---- [0] + [0]$$

$$S = \frac{(101) * (100)}{2}$$

$$S = 1 + 2 + 8 + ---$$
 (N-1) + N

$$S = N + (N-1) + (N-2) + - - 2 + 1$$

$$25 = (N+1) + (N+1) + (N+1) + - - - (N+1) + (N+1)$$

$$S = \frac{N(N+1)}{2}$$

int sqrt (N) {

(a)
$$\log_2 N$$

(b) N

if (i*i == N) return i;

(d) None

Amazon MlQ.

- (d) None of there.

(1) find sgrt (N).

If N is not a perfect square return floor (sqrt(N))

N= 50.

$$\frac{1}{1}$$
 $\frac{1}{2}$
 $\frac{1}$

$$N=29.$$
 $i=12,$
 34
 86

Log-Basics

$$b = a$$

$$g^{?} = 64$$

$$\log_{2} 10 = 3$$
 $2^{\frac{2}{10}}$

De Civen a +ve integer N. How many times do we need to divide it by 2 until it reaches 1.

N = 100 $1/2$	N=324 [Homework]
50 \\\/2	162
25	81
<u>]</u> /2 12	J/2 40
<u> </u>	1/2
6 1/2 3	20 √2
3	10
J/2 1	J /2 5
any = 6,	J/2 2
	<u></u> 1/2
	1 _Ans=&`_i

Intermediate content

- Introduction to Problem Solving
- Time Complexity -1,2
- Arrays 6 & prefly Sum, subarrays, carry-forward, sliding window, 2-D matrix
- Interview Problems 2
- [Bit manipulations 2]
 Modular Arithmetic -1]
- Sorting -1 ~
- Strings -1
- Hashing -2 -
- Recursion 2
 - claises & objects -1 ~
 - Linkedlist Bosics 1 ~
 - Trees Basics 1 ~

2 months.

Advany module.

2 4 months.

- Ping me on slack [Istender Punia]

- & fun while problem solving }

Stime Complexity }