

Artificial Intelligence and Machine Learning

Neural Networks

Lecture Outline

أكاديمية كاوست KAUST ACADEMY

- Logistic Regression Review
- Neural Networks
 - Forward pass
 - Backward pass

Review: Logistic Regression

Introduction to Deep Learning

What is a Neural Network?

Introduction to Deep Learning

Supervised Learning with Neural Networks

Input(x)	Output (y)	Application	
Home features	Price	Real Estate	
Ad, user info	Click on ad? (0/1)	Online Advertising	
Image	Object (1,,1000)	Photo tagging	
Audio	Text transcript	Speech recognition	
English	Chinese	Machine translation	
Image, Radar info	Position of other cars	Autonomous driving	

Neural Network examples

Standard NN

Convolutional NN

Recurrent NN

Supervised Learning

Structured data

Size	#bedrooms	•••	Price (1000\$s)
2104	3		400
1600	3		330
2400	3		369
:	:		:
3000	4		540

User Age	Ad ID	•••	Click
41	93242		1
80	93287		0
18	87312		1
:	:		:
27	71244		1

Unstructured data

Audio Image

Four score and seven years ago

Text

One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

input layer hidden layer output layer

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z_1^{[1]} = w_1^{[1]T} x + b_1^{[1]}, \ a_1^{[1]} = \sigma(z_1^{[1]})$$

$$z_2^{[1]} = w_2^{[1]T} x + b_2^{[1]}, \ a_2^{[1]} = \sigma(z_2^{[1]})$$

$$z_3^{[1]} = w_3^{[1]T} x + b_3^{[1]}, \ a_3^{[1]} = \sigma(z_3^{[1]})$$

$$z_4^{[1]} = w_4^{[1]T} x + b_4^{[1]}, \ a_4^{[1]} = \sigma(z_4^{[1]})$$

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

for i = 1 to m:
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

Vectorizing across multiple examples

$$X = \begin{bmatrix} & & & & & & \\ & & & & & & \\ & \chi^{(1)} & \chi^{(2)} & \dots & \chi^{(m)} \\ & & & & & & \end{bmatrix}$$

$$A^{[1]} = \begin{vmatrix} a^{1} & a^{[1](2)} & a^{[1](m)} \\ a^{[1]} & a^{[1](m)} \end{vmatrix}$$

for i = 1 to m
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple example e

$$A^{[1]} = \begin{vmatrix} a^{1} & a^{[1](2)} & \dots & a^{[1](m)} \\ a^{[1]} & a^{[1](2)} & \dots & a^{[1](m)} \end{vmatrix}$$

for i = 1 to m
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

One hidden layer Neural Network

Activation functions

Activation functions

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = \sigma(z^{[2]})$$

Pros and cons of activation functions

sigmoid:
$$a = \frac{1}{1 + e^{-z}}$$

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$

Activation function

Given x:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$a^{[1]} = g^{[1]}(z^{[1]})$$

$$z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$$

$$a^{[2]} = g^{[2]}(z^{[2]})$$

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

```
Parameters: W^{[1]}, b^{[1]}, W^{[2]}, b^{[2]}
```

Cost function:
$$J(W^{[1]}, b^{[1]}, W^{[2]}, b^{[2]}) = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}, y)$$

```
Repeat {
    Compute predictions: (\hat{y}^{(i)}, i = 1, ... m)
dW^{[1]} = \frac{\partial J}{\partial W^{[1]}} , db^{[1]} = \frac{\partial J}{\partial b^{[1]}} , ....
W^{[1]} = W^{[1]} - \alpha dW^{[1]}
b^{[1]} = b^{[1]} - \alpha db^{[1]}
```

Formulas for computing derivatives KAUST ACADEMY

Forward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$= \sigma(Z^{[2]})$$

Back propagation

$$dZ^{[2]} = A^{[2]} - Y$$

$$dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]^T}$$

$$db^{[2]} = \frac{1}{m} np. sum(dZ^{[2]}, axis = 1, keepdims = True)$$

$$dZ^{[1]} = W^{[2]T}dZ^{[2]} * g^{[1]'}(Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} X^T$$

$$db^{[1]} = \frac{1}{m} np. sum(dZ^{[1]}, axis = 1, keepdims = True)$$

One hidden layer Neural Network

Backpropagation intuition

$$da = \frac{d}{da} \mathcal{L}(a, y) = \frac{d}{da} (-y \log(a) - (1 - y) \log(1 - a))$$
$$= -\frac{y}{a} + \frac{1 - y}{1 - a}$$

$$dz = da \cdot g'(z)$$

$$da = \frac{d}{da}\mathcal{L}(a,y) = \frac{d}{da}(-y\log(a) - (1-y)\log(1-a))$$
$$= -\frac{y}{a} + \frac{1-y}{1-a}$$
$$dz = da \cdot g'(z)$$

to do: gradient of
$$g(z) = \frac{1}{1+e^{-z}}$$

$$da = \frac{d}{da}\mathcal{L}(a,y) = \frac{d}{da}(-y\log(a) - (1-y)\log(1-a))$$

$$= -\frac{y}{a} + \frac{1-y}{1-a}$$

$$dz = da \cdot g'(z)$$

$$g'(z) = a(1-a)$$

$$da = \frac{d}{da}\mathcal{L}(a,y) = \frac{d}{da}(-y\log(a) - (1-y)\log(1-a))$$

$$= -\frac{y}{a} + \frac{1-y}{1-a}$$

$$dz = da \cdot g'(z) = a - y$$

$$da = \frac{d}{da}\mathcal{L}(a, y) = \frac{d}{da}(-y\log(a) - (1 - y)\log(1 - a))$$

$$= -\frac{y}{a} + \frac{1 - y}{1 - a}$$

$$dz = da \cdot g'(z) = a - y$$

$$dw = dz \cdot x$$

$$db = dz$$

Neural network gradients $W^{[2]}$

Neural network gradients

$$dz^{[2]} = a^{[2]} - y$$

 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$

Neural network gradients

$$dz^{[2]} = a^{[2]} - y$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[2]} = dz^{[2]}$$

$$db^{[1]} = dz^{[1]}$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

Vectorization implementation

$$X = \begin{bmatrix} & | & & | & & | \\ & \chi^{(1)} & \chi^{(2)} & \dots & \chi^{(m)} \\ & | & & | & & | \end{bmatrix}$$

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = \sigma(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = \sigma(Z^{[2]})$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]}) dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dZ^{[2]} = A^{[2]} - Y$$

$$dZ^{[2]} = A^{[2]} - Y$$

$$dW^{[2]} = \frac{1}{m} dZ^{[2]} A^{[1]^T}$$

$$db^{[2]} = \frac{1}{m} np. sum(dZ^{[2]}, axis = 1, keepdims = True)$$

$$dZ^{[1]} = W^{[2]T}dZ^{[2]} * g^{[1]'}(Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} X^T$$

$$db^{[1]} = \frac{1}{m} np. sum(dZ^{[1]}, axis = 1, keepdims = True)$$

Introduction to Neural Networks

Why is Deep Learning taking off?

Scale drives deep learning progress

Scale drives deep learning progress

• Data

Computation

• Algorithms

One hidden layer Neural Network

Random Initialization

What happens if you initialize weights tero?

Initial weights = $0 \rightarrow \text{symmetry} \rightarrow \text{similar updates}$

Random initialization

small values for $W^{[1]}$ and $W^{[2]}$

Deep Neural Networks

Getting your matrix dimensions right

Parameters $W^{[l]}$ and $b^{[l]}$

$$W^{[l]}$$
: $(n^{[l]}, n^{[l-1]})$

$$b^{[l]}$$
: $(n^{[l]}, 1)$

Vectorized implementation

 $Z^{[l]}, A^{[l]}: (n^{[l]}, m)$

Deep Neural Networks

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Example: xor

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Forward and backward functions

Forward and backward functions

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer /

Input $a^{[l-1]}$

Output $a^{[l]}$, cache $(z^{[l]})$

Forward propagation for layer I

Input $a^{[l-1]}$

Output $a^{[l]}$, cache $(z^{[l]})$

$$Z^{[l]} = W^{[l]}A^{[l-1]} + b^{[l]}$$
$$A^{[l]} = g^{[l]}(Z^{[l]})$$

Backward propagation for layer /

Input $da^{[l]}$

Output $da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[l]} = da^{[l]} * g^{[l]'}(z^{[l]})$$

$$dW^{[l]} = dz^{[l]}a^{[l-1]}$$

$$db^{[l]} = dz^{[l]}$$

$$da^{[l-1]} = W^{[l]T} dz^{[l]}$$