Ecole Supérieure Privée d'Ingénierie et de Technologies

Théorie des graphes

Chapitre 4: Arbre couvrant à Poids minimal

asma.ghdami@esprit.tn

October 19, 2022

Outline

Arbre couvrant: définitions et propriétés

Algorithme de KrusKal (1956)

Algorithme de Prim (1957)

Arbre couvrant: définitions et propriétés

Définition: Arbre

- ▶ Un arbre est une famille particulière du graphe.
- ► Un arbre A est un graphe tel que: A est connexe et A ne contient pas de cycles.

Rappel: Graphe connexe

Un graphe G est dit connexe si pour tout couple de noeud (i, j) il existe un chemin reliant i et j.

Rappel: Graphe partiel

Un graphe partiel G' = (V, E') d'un graphe G = (V, E) est un graphe qui a le même ensemble de sommet que G et l'ensemble des arêtes $E' \subset E$.

Rappel: Graphe connexe

Un graphe G est dit connexe si pour tout couple de noeud (i, j) il existe un chemin reliant i et j.

Rappel: Graphe partiel

Un graphe partiel G' = (V, E') d'un graphe G = (V, E) est un graphe qui a le même ensemble de sommet que G et l'ensemble des arêtes $E' \subset E$.

Arbres couvrants

Un arbre couvrant d'un graphe *G* est un graphe partiel connexe sans cycle.

Figure : Un graphe connexe non valué et deux arbres recouvrants possibles.

Arbre couvrant à poids minimum

Poids d'un graphe

Le poids (ou coût) d'un graphe est la somme des poids des arêtes du graphe.

Arbre couvrant à poids minimum

Soit un graphe non orienté, valué *G*. On appelle arbre couvrant de poids minimum de G (noté ACPM), tout arbre couvrant dont la somme des poids des arêtes le constituant est minimal.

Remarque

L'arbre couvrant à poids minimal n'est pas forcément unique.

Propriétés

Soit *G* un graphe à "n" sommets et "m" arêtes. Les propriétés suivant sont équivalentes:

- G connexe sans cycles.
- G connexe et m = n 1.
- Entre 2 sommets il existe un unique chemin.
- Un graphe non connexe n'a aucun arbre recouvrant.
- Un graphe connexe a forcément (au moins) un arbre couvrant (par exemple un arbre de parcours).

Content

Arbre couvrant: définitions et propriétés

Algorithme de KrusKal (1956)

Algorithme de Prim (1957)

Algorithme de KrusKal (1956)

Idée générale

- On part d'une forêt (un ensemble d'arbres est appelé une forêt) d'arbres constitués de chacun des sommets isolés du graphe.
- À chaque itération, on ajoute à cette forêt l'arête de poids le plus faible ne créant pas de cycle avec les arêtes déjà choisies.
- On stoppe quand on a examiné toutes les arêtes.

Algorithme de KrusKal (1956)

On définit par "T" l'arbre couvrant, "m" le nombre de liens qui composent T et "n" le nombre de sommets du graphe G.

Algoritme de KrusKal

```
\frac{Etape\ (0):}{T=\phi}\ Initialisation
```

Ordonner les arêtes suivant des poids croissants

On suppose : $P(a_1) \leqslant P(a_2) \leqslant \ldots \leqslant P(a_n)$. (P(a) est le poids de l'arête

$Etape\ (1)$:

Pour $k:1,\ldots n$

Tant Que : m < n - 1

Faire : $T = T \cup \{a_k\}$, $m \leftarrow m+1$ si $T \cup \{a_k\}$ ne contient pas de circuits.

Fin TantQue

1+1+1+1+2+2+3+3=14

Correction exemple 2: Algorithme de Kruskal

Tri des arêtes par poids croissant :

D'après l'algorithme :

On peut choisir [1,5] puis [3,5] puis [2,8] mais pas [3,1] (qui formerait un cycle avec [1,5] et [3,5]).

Puis on peut choisir [6,7] puis [6,8] mais pas [7,8] ni [2,6].

Puis on peut choisir [2,4] puis [2,5].

On s'arrête ici car le nombre d'arêtes choisies est 7 (c'est à dire n-1, puisque n=8).

Correction exemple 2: Algorithme de Kruskal

L'arbre obtenu est de poids 400.

Arbre Couvrant Maximal: Algorithme de Krusk

- L'arbre couvrant maximal est l'arbre couvrant rendant maximal la
- On peut le former en s'inspirant de l'algorithme de Kruskal.

somme des similitudes de ses arêtes.

• On classe les arêtes par similitude décroissante. L'arbre est initialement formé de l'arête présentant la plus grande similitude. Jusqu'à ce que tous les sommets lui appartiennent, on lui ajoute à chaque étape l'arête de plus grande similitude unissant un sommet couvert par l'arbre déjà formé à un sommet non encore couvert.

Déterminer l'arbre Couvrant Maximal.

Content

Arbre couvrant: définitions et propriétés

Algorithme de KrusKal (1956)

Algorithme de Prim (1957)

Algorithme de Prim (1957)

Définition

Dans un graphe G = (V, E), le co-cycle d'un ensemble de sommets V' est l'ensemble des arêtes (u, v) telles que $u \in V'$ et $v \in V \setminus V'$.

Principe

- Au départ un sommet x_i est choisi arbitrairement, ce sommet constitue l'arbre générateur T de poids minimal.
- Parmi toutes les arêtes incidentes à x_i , choisir celle de poids minimal: (x_i, x_j) . Le nouveau arbre obtenu est constitué des sommets x_i et x_j et de l'arête (x_i, x_j) .
- Tant qu'il reste des sommets en dehors de l'arbre T, la nouvelle arête à introduire dans T correspond à l'élément du co-cycle de T de poids minimal.

Algorithme de Prim (1957)

Définition

Dans un graphe G = (V, E), le co-cycle d'un ensemble de sommets V' est l'ensemble des arêtes (u, v) telles que $u \in V'$ et $v \in V \setminus V'$.

Principe

- Au départ un sommet x_i est choisi arbitrairement, ce sommet constitue l'arbre générateur T de poids minimal.
- Parmi toutes les arêtes incidentes à x_i , choisir celle de poids minimal: (x_i, x_j) . Le nouveau arbre obtenu est constitué des sommets x_i et x_j et de l'arête (x_i, x_j) .
- ullet Tant qu'il reste des sommets en dehors de l'arbre T, la nouvelle arête à introduire dans T correspond à l'élément du co-cycle de T de poids minimal.

Algorithme de Prim

Algorithme de Prim

X l'ensemble des sommets du graphe.

 $T=(X_T,A_T)$ l'arbre générateur (Vide au départ)

Ajouter $x_1 \ a \ X_T$

 $CC \leftarrow co$ -cycle de X_T

Tant Que $|X_T| < |X|$, (|X| : le nombre des sommets de X). Faire :

(x,t) arête de CC de poids minimum.

Ajouter (t) à X_T

Ajouter (x, t) à A_T

 $CC \leftarrow$ mise à jour du co-cycle de X_T

Fin Tant Que.

1+2+1+3+3+1+1+2=14

On obtient un arbre recouvrant différent mais de même poids

Exemple 2: Correction

