2IC30: Essential computer architecture.
Number systems.

Jan Friso Groote

Technische Universiteit Eindhoven University of Technology

Where innovation starts

How does a computer work?

Von Neumann architecture.

Program is stored in memory.

(1903-1957)

Computer Science

How does a computer work?

Components

Arithmetical logical unit (ALU).

Registers (IP, REGS).

Multiplexers.

Memory address register (ΣA)

Memory Registers (ΣW , ΣR)

Instruction Register (IR)

ALU processes 'numbers'.

How do we represent and manipulate numbers?

- ■Number systems:
 - > Represention of natural numbers
 - > Represention of negative numbers
 - Addition, subtraction, multiplication, division, ...
 - > Overflow conditions
- ☐ Implementation:
 - > Arithmetic circuits
 - ➤ Arithmetic Logical Units

Positional number systems

1) base 10 (decimal; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

$$\langle 154 \rangle_{10} = 1 \times 100 + 5 \times 10 + 4 \times 1$$

 $= 1 \times 10^2 + 5 \times 10^1 + 4 \times 10^0$

2) base 2 (binary; 0, 1)

$$\langle 10011010 \rangle_2 = 1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$$

= 128 + 16 + 8 + 2 = 154

3) base 8 (octal; 0, 1, 2, 3, 4, 5, 6, 7)

$$\langle 232 \rangle_8 = 2 \times 8^2 + 3 \times 8^1 + 2 \times 8^0$$

= 2 x 64 + 3 x 8 + 2 x 1 = 128 + 24 + 2 = 154

4) base 16 (hexadecimal; 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F)

$$\langle 9A \rangle_{16} = 9 \times 16^1 + 10 \times 16^0$$

= 144 + 10 = 154

General formula

The value of a number a_{n-1} a_{n-2} ... a_0 in base b is:

$$\langle a_{n-1}a_{n-2}...a_0 \rangle_b =$$

$$a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + a_{n-3}b^{n-3} + a_{n-4}b^{n-4} + ... + a_3b^3 + a_2b^2 + a_1b^1 + a_0b^0$$

$$\langle a_{n-1}a_{n-2}...a_0 \rangle_b = \sum_{i=0}^{n-1} a_i b^i$$

Numbers in a table.

b_3 b_2	b_1	b_0	decimal	hexadecimal	octal
0 0	0	0	0	0	00
0 0	0	1	1	1	01
0 0	1	0	2	2	02
0 0	1	1	3	3	03
0 1	0	0	4	4	04
0 1	0	1	5	5	05
0 1	1	0	6	6	06
0 1	1	1	7	7	07
1 0	0	0	8	8	10
1 0	0	1	9	9	11
1 0	1	0	10	A	12
1 0	1	1	11	В	13
1 1	0	0	12	C	14
1 1	0	1	13	D	15
1 1	1	0	14	Е	16
1 1	1	1	15	F	17

Octal machine.

Binary → octal → hexadecimal

recall:
$$\langle 154 \rangle_{10} = \langle 10011010 \rangle_2 = \langle 232 \rangle_8 = \langle 9A \rangle_{16}$$

grouping bits

10011010

2 3 2 8 9 A 16

why does this work?

Consider a
$$n=4k$$
 bits binary number $\rightarrow k$ digit hexadecimal number $a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + a_{n-3}2^{n-3} + a_{n-4}2^{n-4} = 2^{4(k-1)} + ... + a_32^3 + a_22^2 + a_12^1 + a_02^0 = (a_{n-1}2^3 + a_{n-2}2^2 + a_{n-3}2^1 + a_{n-4}2^0)2^{4(k-1)} + ... + (a_32^3 + a_22^2 + a_12^1 + a_02^0)2^{4(0)} = b_{k-1}16^{k-1} + ... + b_016^0$ with b_i as digits

also works the other way round!

TU/e Technische Universiteit Eindhoven University of Technology

Octal → hexadecimal

Base 10 → base X: division with remainder

$$\langle 154 \rangle_{10}$$
 154/3 = 51 remains 1 $\langle 12201 \rangle_3$
51/3 = 17 remains 0 = 1 + 18 + 54 + 81 = 154
17/3 = 5 remains 2
5/3 = 1 remains 2
1/3 = 0 remains 1

why does this work?

let
$$N = \langle a_{n-1}a_{n-2}...a_1a_0 \rangle_b$$

 $= a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + ...a_1b^1 + a_0b^0$
 $Q_0 = N/b = a_{n-1}b^{n-2} + a_{n-2}b^{n-3} + ... + a_1b^0$ remains a_0
 $Q_1 = Q_0/b = a_{n-1}b^{n-3} + a_{n-2}b^{n-4} + ... + a_2b^0$ remains a_1
 \vdots
 $Q_{n-1} = Q_{n-2}/b = 0$ remains a_{n-1}

Conversions overview

Horner's rule to evaluate polynomials

$$a \times y^{3} + b \times y^{2} + c \times y^{1} + d \times y^{0}$$

$$= \{ \text{ isolate } d \text{ and factor out } y \}$$

$$(a \times y^{2} + b \times y^{1} + c \times y^{0}) \times y + d$$

$$= \{ \text{ isolate } c \text{ and factor out } y \}$$

$$((a \times y^{1} + b \times y^{0}) \times y + c) \times y + d$$

$$= \{ \text{ isolate } b \text{ and factor out } y \}$$

$$((a \times y + b) \times y + c) \times y + d$$

Hence: only 3 multiplications needed instead of 6.

Generally: evaluation of a polynomial with n+1 terms requires n multiplications, instead of $\frac{1}{2}n(n+1)$ if exponentiation is calculated by iterative multiplication.

Horner's rule: conversion of binary to decimal

```
\langle 10011010 \rangle_2
= { definition of binary value }
   1 \times 2^7 + 0 \times 2^6 + 0 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0
= { Horner's rule }
   = { arithmetic: inside out }
   (((((((2 \times 2 + 0) \times 2 + 1) \times 2 + 1) \times 2 + 0) \times 2 + 1) \times 2 + 0)
= { arithmetic }
   (((((4 \times 2 + 1) \times 2 + 1) \times 2 + 0) \times 2 + 1) \times 2 + 0)
= \{ and so on ... \}
   77 \times 2 + 0
= { arithmetic }
   154.
```


Questions?

Addition and subtraction

addition base 3

subtraction base 3

Arithmetic operations: Addition

Arithmetic operations: Subtraction

Binary addition of 2 bits: Half Adder

(c, s) = "binary representation of a + b"

half adder

a	b	C	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

b	0	1
0	0	1
1	1	0

$$s = (\neg a \land b) \lor (a \land \neg b)$$
 $c = a \land b$

$$= a \oplus b$$

 $= a \oplus b$ (exclusive OR)

Binary addition of 3 bits: Full Adder

(cout, s) = "binary representation of a + b + cin"

full adder

a	b	cin	cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$s = a \oplus b \oplus cin$$

$$cout = (a \land cin) \lor (b \land cin) \lor (a \land b)$$
$$= ((a \oplus b) \land cin) \lor (a \land b)$$

Binary addition of n-bit numbers

multi-bit adder (ripple-carry)

The adder is part of the ALU

Questions?

Representing negative numbers

- Representation of natural numbers is usually the same for all systems.
- \square n+1-bits numbers: 2^{n+1} possible combinations, range: $0,...,2^{n+1}-1$.
- ☐ Three different ways to represent negative numbers:
 - sign-and-magnitude;
 - > 1s-complement;
 - > 2s-complement.
- ☐ Sign-and-magnitude: used in *floating-point* numbers *-reals*—.
- 1s-complement is inconvenient for integer arithmetic.
- 2s-complement most convenient for integer arithmetic.

Sign-and-Magnitude Representation

Highest order bit is sign bit: 0 = positive (or zero), 1 = negative (or zero).

Three lower order bits are value: 0 (000) t/m 7 (111).

Range for n+1 bits $-(2^n-1) \dots 2^n-1$, symmetric around 0.

2 representations for 0: +0 and -0.

Complicated addition and subtraction.

Sign-and-Magnitude: Addition and Subtraction

General remark

Subtraction is possible with negation and addition:

Adding number with equal sign bits:

Adding numbers with different sign bits:

subtract smallest from the biggest and use the sign of the latter

requires subtraction AND comparison

1s-complement

Highest order bit is sign bit: 0 = positive, 1 = negative.

Range for n+1 bits $-2^n+1,...,2^n-1$, symmetric around 0.

Positive numbers: lower order bits are "value".

Negative numbers: lower order bits are: $-2^n + 1 +$ 'value' (with n+1 bits).

A *double* representation for 0.

General formula

The value of a number a_{n-1} a_{n-2} ... a_0 in 1-complement is:

If $a_{n-1}=0$ then:

$$a_{n-2}2^{n-2} + a_{n-3}2^{n-3} + \dots + a_32^3 + a_22^2 + a_12^1 + a_02^0$$

If $a_{n-1}=1$ then:

$$-(1-a_{n-2})2^{n-2} + (1-a_{n-3})2^{n-3} + \dots + (1-a_3)2^3 + (1-a_2)2^2 + (1-a_1)2^1 + (1-a_0)2^0$$

$$\sum_{i=0}^{n-2} a_i 2^i \qquad \text{if } a_{n-1}=0,$$

$$-\sum_{i=0}^{n-2} (1-a_i) 2^i \qquad \text{if } a_{n-1}=1.$$

2s-complement (1)

Highest order bit is sign bit: 0 = positive (or 0), 1 = negative.

Range for n+1 bits $-2^n,..., 2^n-1, not$ symmetric around 0.

Positive numbers: lower order bits are "value".

Negative numbers: lower order bits are: $-2^n +$ 'value' (with n+1 bits).

A single representation for 0 and no complications with addition.

General formula

The value of a number a_{n-1} a_{n-2} ... a_0 in 2-complement is:

$$[a_{n-1}a_{n-2}...a_0] = -a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + a_{n-3}b^{n-3} + a_{n-4}b^{n-4} + ... + a_3b^3 + a_2b^2 + a_1b^1 + a_0b^0$$

$$[a_{n-1}a_{n-2}...a_0] = -a_{n-1}2^{n-1} + \sum_{i=0}^{n-2} a_i b^i$$

2-s complement (3)

Let m be a 2s complement number in n bits.

What is the 2s-complement *n*-bit representation of -m?

$$-m = -(-a_{n-1} \times 2^{n-1} + a_{n-2} \times 2^{n-2} + \dots + a_1 \times 2^1 + a_0 \times 2^0)$$

$$= a_{n-1} \times 2^{n-1} - a_{n-2} \times 2^{n-2} - \dots - a_1 \times 2^1 - a_0 \times 2^0$$

$$= a_{n-1} \times 2^{n-1} - a_{n-2} \times 2^{n-2} - \dots - a_1 \times 2^1 - a_0 \times 2^0 + \sum_{i=0}^{n-2} 2^i + 1 - 2^{n-1}$$

$$= -(1 - a_{n-1}) \times 2^{n-1} + (1 - a_{n-2}) \times 2^{n-2} + \dots + (1 - a_1) \times 2^1 + (1 - a_0) \times 2^0 + 1$$

This number is representable as an 2s-complement number, except if m is the smallest negative number.

In 4 bits: If m=1000, then -m has value 0111 + 1, which is 8, which cannot be represented. If m=1111, then -m has value 0000 + 1, which is 1, represented by 0001.

2-s complement (3)

Let m be a 2s-complement number in n bits.

What is the 2s-complement *n*-bits representation of -m?

Calculate 2^n -m where m is interpreted as a positive number and the result is interpreted as an n digit number.

$$2^{n}-m = 2^{n} - \sum_{i=0}^{n-1} a_{i} \times 2^{i}$$

$$= 2^{n} - \sum_{i=0}^{n-1} a_{i} \times 2^{i} - 2^{n} + \sum_{i=0}^{n-1} 2^{i} + 1$$

$$= \sum_{i=0}^{n-1} (1-a_{i}) \times 2^{i} + 1$$

$$-m = -(1-a_{n-1})2^{n-1} + \sum_{i=0}^{n-2} (1-a_i) \times 2^i + 1$$

If $1-a_{n-1}=0$, they are the same.

If $1-a_{n-1}=1$, we interpret the first digit of the result at the left as negative and they are also equal.

2-s complement (3)

Let m be a positive number.

What is the 2s-complement n+1-bits representation of -m?

Example: 2s-complement of -7

$$(2^{4})_{10} = (1)0000 \ _{2}$$

$$(7)_{10} = \underbrace{\begin{array}{c} 0111 \ _{2c} \\ \hline 1001 \ _{2c} = (-7)_{10} \end{array}}_{2}$$

also works with negative numbers!

$$(2^{4})_{10} = (1)0000_{2}$$

$$(-7)_{10} = 1001_{2c}$$

$$0111_{2c} = (7)_{10}$$

Fast method: invert bits + 1

$$0111 \rightarrow 1000 + 1 \rightarrow 1001$$
(7) (-7)

as does the fast method

$$1001 \longrightarrow 0110 + 1 \longrightarrow 0111$$

$$(-7) \qquad (7)$$

2-s complement: sign extension and truncation

- Question: what is -4 represented in 4 bits? Answer: 1 1 0 0.
- Question: what is -4 represented in 8 bits?
- Answer: just *sign-extend* the 4-bits answer, by replicating the sign bit:

11111100

- Question: what is -4 represented in 3 bits?
- Answer: just *truncate* the previous 4-bits answer, by deleting the sign bit:

11111100

• If the sign bit is not changed by truncation the result is correct, but if the sign bit is changed the result is not representable: overflow!

2s-complement: Addition and Subtraction

As before,

Subtraction by addition and negation.

Adder and bit inverter suffice for implementing addition AND subtraction.

Because of the simpler addition scheme, 2s-complement is the predominant choice for computations with integer number in digital systems.

Result not Representable: Overflow

Adding two positive numbers yields a negative number or adding two negative numbers yields a positive number.

with addition, overflows only occur in numbers with equal signs!

5 + 3 = -8

Detecting overflow (1)

There is an overflow if and only if most significant carries are different.

Detecting overflow (1)

Overflow occurs when carry-in ≠ carry-out.

$$\frac{carry_{n-1}}{carry_n} \longrightarrow \underbrace{\hspace{1cm}} \text{overflow}$$

Detecting overflow (method for use by hand)

- *Overflow* occurs if the result of the addition/subtraction is *not representable* in the number of bits used.
- If we are working with *n*-bits 2s complement numbers:

 Sign-extend the two numbers with 1 additional bit, and calculate the result in *n*+1 bits. The result is representable in *n*+1 bits, say:

```
a_n \ a_{n-1} \dots a_2 \ a_1 \ a_0 represents the result in n+1 bits; now:
if a_n = a_{n-1} the result is also representable in n bits: no overflow!
if a_{n+1} \neq a_{n-1} the result is not representable in n bits: overflow!
```

- Use?
- Calculations by hand: simple, but *don't forget* the sign-extension!
- Circuit implementations, if the last-but-one carry is not available.

Detecting overflow (method for use by hand)

overflow

bits different? overflow!

no overflow

sign extend

sign extend

bits equal? no overflow!

overflow if and only if the left-most 2 bits are different

Questions?

Nice theory: now what?

- ☐ We will implement all of this with logical gates
- □ but only for 2s-complement numbers
- and only for addition and subtraction

Binary addition of n-bit numbers

multi-bit adder (ripple-carry)

Addition and Subtraction in one circuit

$$(a + b)_{10} = (a + b)_{2c}$$

$$(a - b)_{10} = (a + (-b))_{10} = (a)_{2c} + \overline{b}_{2c} + 1$$

Addition and Subtraction in one circuit

$$(a + b)_{10} = (a + b)_{2c}$$

$$(a - b)_{10} = (a + (-b))_{10} = (a)_{2c} + \overline{b}_{2c} + 1$$

Addition and Subtraction in one circuit

Condition Codes: How to be used? (1)

Unsigned and Signed Comparisons

Bit Patterns	Unsigned Values	Two's complement values
0100 1101	+4 < +13 ??	+4 < -3 ??
1100 0011	+12 > +3 ??	-4 > +3 ??

Conclusion: the result of a comparison *depends* on how the bit patterns are interpreted: *unsigned* or *two's-complement*.

		unsigned	two's complement
Calculate:	α≤β	<i>C</i> =1∨ <i>Z</i> =1	<i>N</i> ≠ <i>V</i> ∨ <i>Z</i> =1
lpha- eta	$\alpha \!\! < \!\! \beta$	<i>C</i> =1	$N \neq V$
	$\alpha = \beta$	Z =1	Z =1
	$\alpha \neq \beta$	Z=0	Z=0
	$\alpha > \beta$	$C=0 \land Z=0$	$N=V \wedge Z=0$
	α≥β	C=0	N=V

Questions?

Summary

- We know how unsigned numbers are generally represented in other bases and can translate these to each other. Most interesting bases are: decimal, octal, hexadecimal and binary.
- ■We can design addition on numbers using a ripple adder.
- ■We know that negative numbers can be represented in (at least) three different ways: sign and magnitude, ones and two's complement.
- We can add/subtract with negative numbers represented two's complement, and know how to build a circuit to do that for two's complement.

