

TECHDAYS AEROSTAR

Sensors, compensations and dashboarding on machines 4.0

February, 2nd 2023
Presented by Pierre-Albert Landel *Pierre-albert.landel@fivesgroup.com*

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

IO-LINK WHAT IS IO-LINK?

IO-Link:

Normalized point-to-point communication on 3-wire, between master and sensors / actuators on 20m max.

Figure 3: Pin assignment of IO-Link device

Open standard used by many manufacturers, including:

IO-LINK IMPLEMENTATION ON FIVES' MACHINES

Identify

 Define meaningful data per functional sub-assemblies

- Select manufacturer and sensor
- Develop PLC block
- Perform implementation

- Test sensor on machine
- Check manufacturer spare part availability

IO-LINKFIVES' PHILOSOPHY

IO-LINK FIT MACHINE SENSORS TO YOUR NEEDS

Define your configuration with us!

Process tailored

Connect

Standard configuration

- Reduced hardware
 (1 sensor = multiple measures)
- Standard wiring (molded cables)

Better reliability!

Reduced wiring...

fives

Accessibility & parameters

- Remote configuration
- Standard parameters files
- Automatic reconfiguration

Better accessibility!

Lower downtime!

IO-Link

Advantages

Qualified process values

- In-process remote monitoring
- Sensor malfunction detection
- Numerical values

Improved diagnostic!

Early malfunction detection

Costs

- Reduced overcost (open chip)
- Standard implementation

Easy implementation

Upscalable

- Ready for data recorder
- Adaptable configuration

Agile system

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

VIBRATIONS MONITORINGWHY IS IT IMPORTANT?

Energy for spindle rotation inertia and friction

Energy for cutting

Energy loss in vibration

VIBRATION MONITORING THE MAGIC BEHIND - SENSORS

Frequency range
[45Hz - 4500Hz]
(can go up to 10kHz)

3-axes accelerometer as close as possible to the spindle front bearing.

Possible monitoring of spindle internal accelerometers (option)

VIBRATION MONITORING THE MAGIC BEHIND - COMPUTATION

100

kHz

Sampling frequency

Т

Acceleration Velocity Displacement

> Filters RMS Peak

FFT

Acceleration Velocity Displacement

> Enveloppe Filters RMS Peak

H

Historical Counters

Ready for monitoring and first analysis!

VIBRATIONS MONITORING VALIDATION PROCESS

- Define hardware configuration
- Position sensor on machine
- Define KPIs to monitor

- Test sensor response
- Set thresholds
- Test machines reactions

Follow

- Adjust program cutting conditions
- Adjust monitoring if needed
- Support production
- Perform first analysis if needed

VIBRATIONS MONITORING IMPLEMENTATION ON FIVES' MACHINES

- Shocks detection
- Tool balancing check before milling

- Improve part quality
- Continuous vibration monitoring in process
- Tool breakage check in process
- Adjustable indicators
 (rough, finishing, drilling...)

Reduce machine wear

- Excessive vibrations
 limitation (fatigue)
- Best spindle rotation range identification
- Indicator to tune milling program to machine

Plan the maintenance

- Integrated spindle KM0
- ISO 17243 indicators (LTSC and STSC)
- Automated bearings diagnostic (inner & outer rings, bearing track)

Indicators and functions may vary between hard and soft materials cutting. Hard material cutting still under development.

VIBRATION MONITORING BECOME SIMPLE!

For process

For maintenance

Easy indicators with integration to data acquisition systems (Fives CortX, IFM Moneo, ...)

VIBRATION MONITORING READY FOR RETROFIT...

Qualified replacement solution for systems no more available on the market.

VIBRATION MONITORING DEVELOPPEMENT ROAD

Hard Metal Cutting

Ski slope management

Creation of
low frequencies
specific indicators

Process applications

Indicators to improve milling quality

Rails monitoring

Adaptative milling

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

VOLUMETRIC COMPENSATION TRADITIONAL COMPENSATIONS

Conventional 1 machine = 3 cartesian axes = 9 (3 positional errors / axis) 3 squareness errors 12 errors **Rotational error** not evaluated

VOLUMETRIC COMPENSATION VCS MODEL

VCS model

1 machine

- = 3 cartesian axes
 - = 3 positional errors / axis
 - 3 rotational errors / axis
 - 3 squareness errors

21 errors

Rotational error evaluated

Possible TCP orientation compensation

VOLUMETRIC COMPENSATIONMEASURING – LARGE SCALE MACHINES CASE

Laser Tracker

Adapted for small volumes

VOLUMETRIC COMPENSATIONMEASURING – LARGE SCALE MACHINES CASE

2. Génération des trajectoires

3. Mesure

4. Calcul des erreurs

5. Génération des tables

VOLUMETRIC COMPENSATION

CONCLUSION

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

DILATATIONAPPLICATION ON LARGE SCALE MACHINES

Magnitudes

Aluminium: 23 µm/m/°C

Steel: $12 \mu m / m / ^{\circ}C$

Glass: $6 \mu m / m / ^{\circ}C$

Between Summer and Winter

(Temperature magnitude : 15°C)

Material	Dilatation on 10m
Aluminium	3,450 mm
Steel	1,800 mm
Glass	0,900 mm

Causes

- Motor heating (Joule, coolant)
- Environment temperature

Linear measurement ribbons

(Glass / Steel)

Spindle head (Steel)

Mitigation

- Motor cooling
- Air blowing
- Climatisation

RIBBONS DILATATION INSTRUMENTATION

On our demo Aerostar

Measure temperature on every machine part

Better machine reaction understanding in cutting conditions

SPINDLE DILATATION MODELISATION

Up to 200 µm

Dilatation of a spindle rotating at 30 000rpm

5 temperature sensors

- 1 for each bearing
- 1 for the spindle motor

+/- 20 μm

Deviation measured on a surface milling with a model-based compensation

$$\delta = f(S_{rot}, T)$$

Testing new sensor integration

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

DATA ACQUISITION

FIVES MACHINING'S PHILOSOPHY

Core machine systems (sensors, CN, PLC, servo)

OPC UA

Diziscop

Data acquisition

Monitoring, process systems

(vibrations, ...)

Other

protocols

Machine

Deliver 4.0 machine...

Let the customer the freedom to use it!

DATA ACQUISITION EDGE VS CLOUD

Direct access via web browser on a local network

DATA ACQUISITION EDGE VS CLOUD

Cloud

- Store data
- Compute data

Access via secured Internet website

- Send data to cloud service
- Protect connections (firewall)

Vibrations (VSE IFM, OPC UA)

data

DATA ACQUISITION EDGE VS CLOUD

Solution	Pros	Cons
Edge	 Complete control on data Local installation (limited dependancy on factory network) 	Limited data storageLimited computing capacityLocal network management
Cloud	Data storage redundancyData storage capacityHigher computing capacity	 Data stored on a server Need to secure an access over Internet

DATA ACQUISITIONFIVES EXPERTISE ON DATA COLLECTION

Identify

- Define users
- Choose systems to monitor
- Identify relevant data to collect

Collect

- Commission network and databases
- Define protocols and storage systems
- Collect data

Monitor

- Define relevant KPIs
- Create dashboards
- Create monitoring routines

14:32

14:34

14:38

14:40

14:44

14:48

14:50

14:52

Operator dashboard

14:24

14:26

Dilatation thermique
 Dilation mécanique
 Dilation toltale

14:28

Maintenance dashboard

- Pression SP380 - Pression SP382 - Courant Y - Position Y

Maintenance: enregistrement des alertes pour re-contextualisation

CONCLUSION

IO-Link inside

Volumetric compensation

Integrated protection & maintenance

Temperature compensation

Dashboarding

