МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(национальный исследовательский университет)» (МАИ)

Кафедра 805 «Математическая кибернетика»

Отчет

по лабораторной работе №3

на тему «Численные методы поиска безусловного экстремума ФМП»

Выполнил

студент группы М8О-306Б-19 Аксенов А.Е.

Проверила доцент каф. 805 Лунева С.Ю. Увель - изучение методов безусловной минимизации на примере квазратичной функции, не имеющей ярко воратенной ображной структуры.

Nocmanolka zagaru;

Dano: $f(x) = x^2 + xy + 2y^2 + (5-6)x + 10y - nbagyamuruar gayningur 2-x nepenerums.$

NL=10-hauer naunsomers, za nomorna bunavalmes paroma. NG=6-novegeme gle ungpre Hamera yreknoù zymnen.

Theoremen naumn: f(x) - min

Анаштическое решение зазачи с использованием остарата необходимих и достаточник условий экстремуна:

1. Sammen ynggnerm yerebon grynnym: $\nabla f(x) = \begin{pmatrix} 2x+y-1 \\ x+4y+10 \end{pmatrix}$

2. Banninen Heodragnitte gerobie Exemperyna: $\begin{cases} 2 \times +y - 1 = 0 \\ \times +4y + 10 = 0 \end{cases}$

3. Генни полученную спетелу, решение спетель - координаты станкомарной точки $X^* = (2, -3)'$

 $\begin{cases} 2x + y - 1 = 0 \\ 2x + 8y + 20 = 0 \end{cases} \Rightarrow 7y + 21 = 0 \Rightarrow y = -3 \Rightarrow x = 2$

4. Cocmalun nampung Fecce u bevincimu b morne X*

 $H(X^*) = \begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}$

5. Onpegeum znakoonpegeséntioims nampuser no kommenus Consteamps (1=2, 1=7). $M.\kappa$, $\Delta_1 > 0$ u $\Delta_2 > 0$, mo nommuna nonminellino onpegenetta u, aregobaneumo,

 $X^* = (2, -3)' - \delta eyyerobnour nonauman mununyn.$

Ombem: navyrena morna $X^* = (2, -3)' - Jezyarobnum whanssum untunym geynkym$

 $f(X) = x^2 + xy + 2y^2 + (5-6)x + 10y; f(X^*) = 2^2 - 2\cdot 3 + 2\cdot (-3)^2 - 2 - 10\cdot 3 = -16$

Uncleme penneme zagarn c mornocompo E=0,01 in naramon morne X=(-1,1,2,6)

Методы 1-го порядка

• Метод градиентного спуска (предельное число итераций N=5):

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ -1x₁+ $10x_2$ + 0

Метод градиентного спуска

Точность метода: 0.01, $N_{max} = 5$, Количество итераций: 5

N_{HT}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$ \nabla f(x_1,x_2) $
0	0.22	-1.1	2.6	38.97	-0.6	19.3	19.30932
1	0.58	-0.968	-1.646	-7.54302	-4.582	2.448	5.19494
2	0.25	1.68956	-3.06584	-15.87452	-0.68672	-0.5738	0.89489
3	0.6	1.86124	-2.92239	-15.97947	-0.19991	0.17168	0.26351
4	0.23	1.98119	-3.0254	-15.99788	-0.06303	-0.12041	0.1359
5	0	1.99568	-2.9977	-15.99998	-0.00634	0.00486	0.00799

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^{*}|| = 0.00489$$

$$|f(x) - f(x^*)| = 2.0E-5$$

• Метод градиентного наискорейшего спуска (предельное число итераций N=10):

Расчет окончен

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ -1x₁+ 10x₂+ 0

Метод градиентного наискорейшего спуска

Точность метода: 0.01, N_{max} = 10, Количество итераций: 8

N_{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$ \nabla f(x_1,x_2) $
0	0.25404	-1.1	2.6	38.97	-0.6	19.3	19.30932
1	0.48462	-0.94757	-2.30304	-8.39464	-5.19819	-0.15974	5.20064
2	0.25404	1.57157	-2.22563	-14.94891	-0.08249	2.66905	2.67033
3	0.48458	1.59252	-2.90368	-15.85466	-0.71863	-0.02218	0.71897
4	0.25404	1.94076	-2.89293	-15.9799	-0.01141	0.36904	0.36922
5	0.48462	1.94366	-2.98668	-15.99722	-0.09937	-0.00306	0.09941
6	0.25402	1.99181	-2.9852	-15.99962	-0.00157	0.05103	0.05106
7	0.48469	1.99221	-2.99816	-15.99995	-0.01374	-0.00042	0.01374
8	0	1.99887	-2.99795	-15.99999	-0.00022	0.00705	0.00706

$$||\mathbf{x} - \mathbf{x}^{*}|| = 0.00234$$

$$|f(x) - f(x^*)| = 1.0E-5$$

• Метод Гаусса-Зейделя (предельное число итераций N=10):

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-1x_1+10x_2+0$

Метод Гаусса-Зейделя

Точность метода: 0.01, N_{max} = 10, Количество итераций: 8

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$\ \nabla f(x_1,x_2)\ $
0	0.25005	-1.1	2.6	38.97	-0.6	19.3	19.30932
1	0.49999	-1.1	-2.22594	-7.59125	-5.42594	-0.00377	5.42594
2	0.24997	1.6129	-2.22594	-14.95146	-0.00013	2.70914	2.70914
3	0.50003	1.6129	-2.90314	-15.86889	-0.67733	0.00033	0.67733
4	0.25003	1.95159	-2.90314	-15.98358	4.0E-5	0.33902	0.33902
5	0.49996	1.95159	-2.98791	-15.99795	-0.08472	-4.0E-5	0.08472
6	0.25003	1.99395	-2.98791	-15.99974	-1.0E-5	0.04232	0.04232
7	0.49996	1.99395	-2.99849	-15.99997	-0.01059	-1.0E-5	0.01059
8	0	1.99924	-2.99849	-16	-0	0.00529	0.00529

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00169$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^{\star})| = 0$$

• Метод сопряженных градиентов (предельное число итераций N=2):

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-1x_1+10x_2+0$

Метод сопряженных градиентов

Точность метода: 0.01, N_{max} = 2, Количество итераций: 2

N_{HT}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$ \nabla f(x_1,x_2) $
0	0.25406	-1.1	2.6	38.97	-0.6	19.3	19.30932
1	0.56231	-0.94756	-2.30334	-8.39464	-5.19846	-0.16091	5.20095
2	0	2.00005	-3.0002	-16	-0.0001	-0.00074	0.00075

$$||\mathbf{x} - \mathbf{x}^{*}|| = 0.0002$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

• Метод покоординатного спуска (предельное число итераций N=5):

Расчет окончен

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-1x_1+10x_2+0$

Метод покоординатного спуска

Точность метода: 0.01, N_{max} = 5, Количество итераций: 5

N _{HT}	шаг t	x ₁	x ₂	$f(x_1,x_2)$	f_{x_1}	$\mathbf{f}'_{\mathbf{x}_2}$	$ \nabla f(x_1,x_2) $
0	0.28	-1.1	2.6	38.97	-0.6	19.3	19.30932
1	0.49	-1.1	-2.804	-6.92077	-6.004	-2.316	6.43521
2	0.26	1.84196	-2.804	-15.92917	-0.12008	0.62596	0.63737
3	0.56	1.84196	-2.96675	-15.97807	-0.28283	-0.02504	0.28394
4	0.24	2.00034	-2.96675	-15.99778	0.03394	0.13335	0.1376
5	0	2.00034	-2.99875	-16	0.00194	0.00533	0.00567

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00129$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Методы 2-го порядка

• Метод Ньютона (предельное число итераций N=1):

Расчет окончен

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-1x_1+10x_2+0$

Метод Ньютона

Точность метода: 0.01, N_{max} = 1, Количество итераций: 1

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$ \nabla f(x_1,x_2) $
0	0	-1.1	2.6	38.97	-0.6	19.3	19.30932
1	0	2	-3	-16	0	0	0

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

• Метод Ньютона-Рафсона (предельное число итераций N=5):

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: $f(x_1,x_2)=1x_1^2+1x_1x_2+2x_2^2+-1x_1+10x_2+0$

Метод Ньютона-Рафсона

Точность метода: 0.01, N_{max} = 5, Количество итераций: 2

N _{HT}	шаг t	x ₁	x ₂	f(x ₁ ,x ₂)	f'_{x_1}	$\mathbf{f'}_{\mathbf{x}_2}$	$\ \nabla f(x_1,x_2)\ $
0	0.99	-1.1	2.6	38.97	-0.6	19.3	19.30932
1	0.99	1.969	-2.944	-15.9945	-0.006	0.193	0.19309
2	0	1.99969	-2.99944	-16	-6.0E-5	0.00193	0.00193

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00064$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^*)| = 0$$

Методы 0-го порядка

• Метод конфигураций (предельное число итераций N=8):

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: $\mathbf{f}(\mathbf{x}_1, \mathbf{x}_2) = 1\mathbf{x}_1^2 + 1\mathbf{x}_1\mathbf{x}_2 + 2\mathbf{x}_2^2 + -1\mathbf{x}_1 + 10\mathbf{x}_2 + 0$

Метод конфигураций

Точность метода: 0.01, N_{max} = 8, Количество итераций: 6

N _{HT}	x ₁	x ₂	$f(x_1,x_2)$	dx ₁	dx ₂	коэф-т k
0	-1.1	2.6	38.97	5	5	
1	-1.1	-2.4	-7.53	3	3	0
	1.9	-2.4	-15.33	0.5	0.5	0
3	1.9	-2.9	-15.98	0.11	0.11	0
	1.9	-3.01	-15.9888	0.117	0.117	0
5	2.017	-3.01	-15.99968	0.017	0.017	0
6	2	-2.993	-15.9999			0

$$||\mathbf{x} - \mathbf{x}^{*}|| = 0.007$$

$$|f(x) - f(x^*)| = 0.0001$$

• Метод случайного поиска (предельное число итераций N=8):

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ -1x₁+ 10x₂+ 0

Метод случайного поиска

Точность метода: 0.01, N_{max} = 8, Количество итераций: 5

N _{HT}	радиус г	коэф-т. k	x ₁	x ₂	$f(x_1,x_2)$
0	6	1	-1.1	2.6	38.97
1	0.7	1	2.35816	-2.30318	-14.65102
2	0.08	1	1.97509	-2.88906	-15.97753
3	0.04	1	1.9784	-2.96899	-15.99828
4	0.01	1	2.00928	-2.99442	-15.9998
5			1.99946	-2.99633	-15.99997

Критерий окончания выполнен

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0.00371$$

$$|f(x) - f(x^*)| = 3.0E-5$$

• Метод Нелдера-Мида (предельное число итераций N=8):

Расчет окончен

Сохранить протокол Выбрать другой метод Выход

Протокол расчета

Выполнил: Аксенов Гаврилов, группа 80-306, 06.04.2022

Квадратичная функция: f(x₁,x₂)=1x₁²+ 1x₁x₂+ 2x₂²+ -1x₁+ 10x₂+ 0

Метод Нелдера-Мида

Точность метода: 0.01, N_{max} = 8, Количество итераций: 7

N _{HT}	α	операция	коэффициент	x ₁	x ₂	$f(x_1,x_2)$
	П			2	-3	-16
0	1	редукция		2	-3	-16
	Ш			-1.1	2.6	38.97
	П			2	-3	-16
1	1	редукция		2	-3	-16
				0.45	-0.2	-2.2575
	П			2	-3	-16
2	1	редукция		2	-3	-16
	Ш			1.225	-1.6	-12.56437
	П			2	-3	-16
3	1	редукция		2	-3	-16
	Ш			1.6125	-2.3	-15.14109
	П			2	-3	-16
4	1	сжатие	0.5	2	-3	-16
	╚			1.80625	-2.65	-15.78527
	П			2	-3	-16
5	1	сжатие	0.5	2	-3	-16
	Ш			1.90313	-2.825	-15.94632
	П			2	-3	-16
6	1	сжатие	0.5	2	-3	-16
	Ш			1.95156	-2.9125	-15.98658
				2	-3	-16
7				2	-3	-16
				1.97578	-2.95625	-15.99664

$$||\mathbf{x} - \mathbf{x}^{\star}|| = 0$$

$$|\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}^{\star})| = 0$$