

Pengunaan Program linier

- Keputusan manajemen harus segera diambil untuk segera mencapai tujuan – profit maksimal
- Namun hal ini tidak mudah karena faktor pembatas meliputi sumber daya :
 - Waktu
 - OTenaga kerja
 - **O**Energi
 - OBahan baku dll.
- Upaya pemecahan masalah keterbatasan dengan memaksimalkan tujuan dapat diselesaikan dengan program linier

3 tahap program linier

- Identifikasi masalah
- Formulasi model matematika
- Teknik matematika

Variabel apakah yang dapat diidentifikasi dari produksi:

Komponen Model Program Linier

Variabel keputusan

O Simbol matematik yang menggambarkan aktifitas perusahaan (pabrik ingin memproduksi x1=radio, x2 televisi, x3 mesin cuci. Dimana x1, x2, dan x3 lambang jumlah variabel setiap jenis produksi yang merupakan keputusan dari jumlah produk. Misalnya produksi radio = 100 unit, tv = 200 unit dst)

Fungsi tujuan

O Merupakan hubungan matematika linier yang menjelaskan tujuan perusahaan dalam terminologi variabel keputusan. Targetnya adalah : memaksimalkan / meminimalkan.

Batasan model

OMenunjukkan keterbatasan perusahaan karena lingkungan operasi.

Ada dua program linier

Model Maksimisasi

Model Minimisasi

Contoh Model Maksimisasi

Sebuah perusahaan keramik

OAkan memproduksi mangkok dan cangkir. Sumber daya utama pembuatannya : tanah liat dan tenaga kerja. Dengan keterbatasan tanah liat dan tenaga kerja perusahaan ingin mengatahui berapa banyak mangkok dan cangkir yang harus dibuat untuk

Tabel identifikasi masalah

Produk	Tenaga	Tanah	Laba
	Jam kerja/ unit	Pon/ unit	Rp/ unit
Mangkok	1	4	40
Cangkir	2	3	50

Sumber daya yang dimiliki perusahaan adalah : 120 pon tanah liat dan 40 jam tenaga kerja.

Variabel keputusan :

Berapa jumlah mangkok (x1) dan cangkir (x2) yang harus dibuat untuk memperoleh laba maksimal?

Penyelesaian

Fungsi tujuan :

- Jika fungsi tujuan dilambangkan dengan Z
- Dan variabel keputusan dilambangkankan dengan x
- Maka fungsi tujuan dapat dimaksimalkan menjadi model matematika sbb :

$$Z = 40X1 + 50 X2$$

- Dimana:
- Z = total laba
- X1 = laba dari tiap mangkok
 - X2 = laba dari tiap cangkir

Tabel identifikasi masalah

O			
Produk	Tenaga	Tanah	Laba
	Jam kerja/ unit	Pon/ unit	Rp/ unit
Mangkok	1	4	40
Cangkir	2	3	50
Sumber daya yang dimiliki perusahaan adalah : 120 pon			

tanah liat dan 40 jam tenaga kerja.

Batasan Model

Tabel identifikasi masalah

<u> </u>			
Produk	Tenaga	Tanah	Laba
	Jam kerja/ unit	Pon/ unit	Rp/ unit
Mangkok	1	4	40
Cangkir	2	3	50

Sumber daya yang dimiliki perusahaan adalah : 120 pon tanah liat dan 40 jam tenaga kerja.

- Jam Kerja
- Tanah Liat
- Mangkok
- Cangkir

$$X1 + 2X2 \le 40$$

$$4X1 + 3X2 \le 120$$

Dengan demikian ada 5 model matematika

- Faktor Tujuan
 - Memaksimalkan
- Faktor pembatas
 - Jam Kerja
 - Tanah Liat
 - Mangkok
 - Cangkir

$$Z = 40X1 + 50 X2$$

- $X1 + 2X2 \le 40$
- $4X1 + 3X2 \le 120$
- **X1** ≥ **0**
- **X2** ≥ **0**

Cara Penyelesaian Program Linear

1. Solusi matematika

2. Solusi grafik

3. Solusi excel

4. Solusi QM for Windows

Solusi Matematika

Produk	Tenaga	Tanah	Laba
	Jam kerja/ unit	Pon/ unit	Rp/ unit
Mangkok	1	4	40
Cangkir	2	3	50

Sumber daya yang dimiliki perusahaan adalah : 120 pon tanah liat dan 40 jam tenaga kerja.

Dengan cara substitusi-eliminiasi faktor pembatas

$$-X1 + 2X2 \le 40 \qquad x \neq 4$$

$$-4X1 + 3X2 \le 120$$
 x 1

Elimiminasi X1 dan X2

$$4X1 + 8X2 \le 160$$

 $4X1 + 3X2 \le 120$ -
 $5X2 \le 40$
 $X2 \le 8$

Nilai X2 disubstitusikan ke:

$$X1 + 2X2 \le 40$$

 $X1 + 2.8 \le 40$
 $X1 \le 40 - 16$
 $X1 \le 24$

- Dengan demikian mangkok yang harus dibuat adalah X1 ≤
 24 buah dan cangkir X2 ≤ 8
- Keuntungan maksimal Z = 40X1 + 50 X2, yaitu : 40x24 + 50 x 8 = Rp. 1360

Solusi Grafik

Faktor pembatas : model matematika jam kerja dan tanah liat dibuat perpotongan garis dengan sumbu X dan Y

Produksi X1 ≥ 0 dan X2 ≥ 0

. Jam kerja

- X1 + 2X2 = 40
- Jika X1 = 0, maka X2 = 20
- Jika X2 = 0, maka X1 = 40
- Diperoleh titik A (0,20) dan titik B (40,0)

Tanah liat

- 4X1 + 3X2 = 120
- Jika X1 = 0, maka X2 = 40
- Jika X2 = 0, maka X1 = 30
- Diperoleh titik C (0,40) dan D (30,0)

Kasus 1

Seorang penjual ayam goreng membutuhkan 1/8 ekor ayam untuk membuat 1 porsi ayam goreng. Tiap porsi membutuhkan biaya Rp. 10.000,- dan dijual dengan harga Rp. 12.500,-. Jika ia hanya memiliki 20 ekor ayam.

- a.Buatlah dua model matematiknya
- b.Tentukan jumlah maksimal porsi yang dibuat
- c.Dan berapa keuntungannya.

Jawaban

- Batasan : 1/8X= 20
- Tujuan : Z=12500X-10000X

Kasus 2

Pabrik tekstil memproduksi 2 jenis kain, yaitu kain sutera dan kain wol. Untuk memproduksi kain tersebut diperlukan : benang sutera, benang wol dan tenaga kerja. Maksimum penyediaan benang sutera adalah 60kg/ hari, benang wol 30kg/ hari dan tenaga kerja 40 jam/ hari. Kebutuhan setiap unti produk akan bahan baku dan jam tenaga kerja dapat dilihat pada tabel berikut :

Jenis bahan baku	Kebutuhan bahan baku dan tenaga kerja		Maksimum
dan tenaga kerja	Kain sutera	Kain wol	penyediaan
Benang sutera	2	3	60 kg
Benang wol	-	2	30 kg
Tenaga kerja	2	1	40 jam

Jika keuntungan kain sutera adalah Rp. 40 juta dan kain wol adalah Rp 30 juta.

- a. Buatlah model matematiknya
- b. Tentukan manakah variabel tujuan dan variabel kendala
- c. Berapakah jumlah kain sutera dan wol yang diproduksi maksimal.
- d. Berapakah keuntungannya

Jawaban

- Z=40X1+30X2
- 2x1+X2<=40
- 2X1+3x2<=60
- 2X2<=30
- X1>0
- X2>0

Penyelesaian

Kasus 3

Perusahaan ROYAL merencanakan untuk membuat dua jenis makanan yaitu roral bee dan royal jelly. Kedua jenis makanan tersebut mengandung vitamin dan protein. Royal bee paling sedikit diproduksi 2 unit, sedangkan royal jelly paling sedikit 1 unit. Tabel berikut menunjukkan jumlah vitamin dan protein dalam setiap jenis makanan

•	
•	

Jenis makanan	Vitamin (unit)	Protein (unit)	Biaya perunit (Rp.1000)
Royal bee	2	2	100
Royal Jelly	1	3	80
Minimum kebutuhan	8	12	

- a. Buatlah model matematiknya
- b. Tentukanlah variabel tujuan dan variabel kendala
- c. Bagaimana mengkombinasikan produksi kedua jenis makanan tersebut agar meminimumkan biaya produksi.

Jawaban

- X1>=2
- X2>=1
- 2X1+x2>=8
- 2x1+3x2>=12
- Z=100X1+80X2

Solusi

Latihan

- 1. Maksimumkan $Z = 3X_1 + 5X_2$
 - 1. $2X_1 \le 8$
 - 2. $3X_2 \le 15$
 - 3. $6X_1 + 5X_2 \le 30$
 - 4. $X_1 >= 0$ dan $X_2 >= 0$
- 2. Maksimumkan Z = 5X1+2X2
 - 1. $6X_1 + X_2 > = 6$
 - 2. $4X_1 + 3X_2 > = 2$
 - 3. $X_1+2X_2>=4$
 - 4. $X_1 > = 0$