# EEL 4837 Programming for Electrical Engineers II

#### **Ivan Ruchkin**

**Assistant Professor** 

Department of Electrical and Computer Engineering University of Florida at Gainesville

> <u>iruchkin@ece.ufl.edu</u> http://ivan.ece.ufl.edu

## Excursion 1 – Circuit Analysis Tool

#### Readings:

- Excursion 1 Description

#### **Electronic Circuit**

- Electronic circuit: a collection of interconnected electronic components
- A circuit has a well-defined deterministic functionality when running:
  - Voltage sources
  - Current sources
  - Resistors
  - Inductors
  - Capacitors
  - Diodes
  - Transistors
  - O ...



## **Electronic Circuit (cont.)**

- The functionality of a circuit is fully characterized by:
  - The **current** through each component
  - The voltage drop/rise through each component
  - The voltage potential at each of the interconnections relative to an arbitrary ground node



## **Circuit Analysis**

- **Circuit analysis**: a sequence of methods to answer some questions about circuit
  - E.g., what is the voltage drop/rise across a resistor?
- To do that, we may need:
  - Measuring tools
    - E.g., Galvanometer, voltmeter, ohmmeter, etc
  - Theories
    - E.g., Ohm's Law, Voltage Law, Current Law, etc

#### **Circuit Simulation**

- **Circuit simulation**: a technique to check and verify the design of circuits prior to manufacturing and deployment.
- Almost replaced physical prototype
- What can we do with simulation?
  - Model a linear circuit with a single matrix algebraic equation



From: <u>CircuitLab</u>

## **Schematic Diagrams and Digraphs**

• Schematic diagram: a graphical representation of an electrical circuit



 Directed graph (digraph): can represent a circuit more abstractly (from graph theory)



#### **Circuit Netlist**

- Netlist: describes the connectivity of an electronic circuit
- It consists of:
  - A list of electronic components
  - A list of nodes they are connected to
- Format:
  - Branch label
    - First character indicates component type
  - Source node label
  - Destination node label
  - Numeric component value



#### **Circuit Netlist Conventions**

- Ground node is always labeled as 0, while other node can be labeled in any order
- Use positive numeric values
  - Current travels from source to destination.
  - Voltage drops from source to destination.



V1 1 0 5 R1 1 2 10 R2 2 0 20

#### **Data Structure for Circuits**

How can we represent a circuit in a program?



#### **Excursion 1 Goal**

- An elementary interactive circuit analysis tool to:
  - Read a circuit from a file
  - Compute the currents and voltages across different components
  - Outputs them into a file
- You can assume that the given circuits only contain:
  - Voltage sources
  - Resistors

#### **Steps Overview**

- 1. Read a netlist as input to represent a circuit
- 2. Use KCL, KVL, and Ohm's law to construct three matrix equations
- 3. Combine all the matrix equations to solve all the unknown parameters (**e**, **v**, **i** of each part)
- 4. Output voltages and currents

## **Step 1: Read a Netlist**

- Based on a circuit diagram, create its corresponding netlist as input
  - You'll be reading a netlist from a text file



Represent the netlist with an incidence matrix









• Assume "1" is source and "-1" is destination.

branch (aka element)

• In each column, we put a "1" in the source node row and "-1" in the destination node row.



• We can further remove the row for one node (usually the ground node) to get a *reduced incidence matrix*.







- Kirchoff's Current Law (KCL): the algebraic sum of currents that leave any node is zero.
- um of

- KCL equation for each node:
  - Assume leaving is positive and coming is negative:
    - At Node 0: branch currents  $i_1$  and  $i_3$  are coming, so  $-i_1-i_3=0$
    - At Node 1: branch currents  $i_1$  and  $i_2$  are leaving, so  $i_1+i_2=0$
    - At Node 2: branch current  $i_2$  is coming, while  $i_3$  is leaving, so  $-i_2+i_3=0$



R1

 $10\Omega$ 

• (Cont.) Now we have:

$$-i_1 - i_3 = 0$$

$$i_1 + i_2 = 0$$

$$-i_2 + i_3 = 0$$

Represent these equations with matrices:







- Kirchhoff's Voltage Law (KVL): the voltage drop between any two nodes is equal to the difference of the two node voltages.
- KVL equation for each pair of nodes:
  - Voltage drop between n0 and n1 (branch 1):

$$v_1 = e_1 - 0$$

Voltage drop between n1 and n2 (branch 2):

$$v_2 = e_1 - e_2$$

Voltage drop between n0 and n2 (branch 3):

$$v_3 = e_2 - 0$$





• (Cont.) Now we have:

$$v_1 = e_1 - 0$$
  
 $v_2 = e_1 - e_2$   
 $v_3 = e_2 - 0$ 

• Represent these equations with matrices:

$$\begin{bmatrix} v_1 \\ v_2 \\ v_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix} \qquad \boldsymbol{v} = \boldsymbol{A}^T \boldsymbol{e}$$





Comparison between KCL and KVL:

**KCL** 

$$Ai = 0$$

**KVL** 

$$\begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e_1 \\ e_2 \end{bmatrix}$$

$$v = A^T e$$





Combine the KCL and KVL equations:

$$Ai = 0$$
  $v = A^T e$ 



$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & A \\ -A^T & \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} e \\ v \\ i \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$





- Ohm's law: the current through a conductor between two points is directly proportional to the voltage across the two points.
  - $I = \frac{V}{R}$
- Ohm's law equation for each component:

$$v_1 = 5$$

$$v_2 = 10i_2$$

$$v_3 = 20i_3$$





• (Continue) Represent these equations with matrices:



Format:  $av_b + bi_b = u_s$ 

$$Mv + Ni = u_s$$

#### **Step 3: Calculate Unknown Parameters**

- Now, what do we have?
  - KCL + KVL:

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & A \\ -A^T & \mathbf{1} & \mathbf{0} \end{bmatrix} \begin{bmatrix} e \\ v \\ i \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

Ohm's Law:

$$Mv + Ni = u_s$$

Combine all the equations to create the combined matrix:

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & A \\ -A^T & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & M & N \end{bmatrix} \begin{bmatrix} e \\ v \\ i \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ u_s \end{bmatrix}$$
 
$$Tw = u$$

#### **Step 3: Calculate Unknown Parameters**

$$\begin{bmatrix} \mathbf{0} & \mathbf{0} & A \\ -A^T & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & M & N \end{bmatrix} \begin{bmatrix} e \\ v \\ i \end{bmatrix} = \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ u_s \end{bmatrix}$$



Put everything we know into the matrices



Final goal: calculate e, v, and i!

#### **Steps Review**

- 1. Read a netlist as input to represent a circuit
- 2. Use KCL, KVL and Ohm's law to construct three matrix equations
  - Construct A, M, N, and u<sub>s</sub> to represent the netlist.
- 3. Combine all the matrix equations to solve all the unknown parameters (e, v, i of each part)
  - Use Gauss Elimination, LU Factorization, etc.
- 4. Output voltages and currents

## **Bigger Example**

- Input:
  - V1106
  - R1126
  - R2 2 0 3.33
  - R3 2 3 3
  - R4 3 0 11
  - R5344
  - R6407
  - R7457
  - R8507

#### **Bigger Example**

```
0
                                              0
                                   0
                                         0
                                   0
                                         0
                                              0
\mathbf{A} = 0
              0
                                   0
                                              0
                                              0
              0
                         0
                                   0
                    0
                              0
                      0
                          0
             0
                      0
     0
                          0
                      0
                          0
                              0
             0
                      0
                                  0
                          0
                              0
                                      0
\mathbf{M} = 0
     0
             0
                      0
                                  0
                                      0
             0
                      0
                          0
     0
             0
                      0
```

## **Bigger Example**

|   | 0                | 0  | 0     | 0  | 0   | 0  | 0  | 0  | 0  | 6         |
|---|------------------|----|-------|----|-----|----|----|----|----|-----------|
|   | 0                | -6 | 0     | 0  | 0   | 0  | 0  | 0  | 0  | 0         |
|   | 0                | 0  | -3.33 | 0  | 0   | 0  | 0  | 0  | 0  | 0         |
|   | 0                | 0  | 0     | -3 | 0   | 0  | 0  | 0  | 0  | 0         |
| • | $\mathbf{N} = 0$ | 0  | 0     | 0  | -11 | 0  | 0  | 0  | 0  | $u_s = 0$ |
|   | 0                | 0  | 0     | 0  | 0   | -4 | 0  | 0  | 0  | 0         |
|   | 0                | 0  | 0     | 0  | 0   | 0  | -7 | 0  | 0  | 0         |
|   | 0                | 0  | 0     | 0  | 0   | 0  | 0  | -7 | 0  | 0         |
|   | 0                | 0  | 0     | 0  | 0   | 0  | 0  | 0  | -7 | 0         |

# Excursion 1 Quiz