RPITEM P-209 CRUSHED AGGREGATE BASE COURSE DESCRIPTION

209-1.1 This item consists of a base course composed of crushed aggregate base constructed on a prepared course in accordance with these specifications and in conformity to the dimensions and typical cross-sections shown on the plans.

MATERIALS

209-2.1 Crushed aggregate base. Crushed aggregate shall consist of clean, sound, durable particles of crushed stone, crushed gravel, or crushed slag and shall be free from coatings of clay, silt, organic material, clay lumps or balls or other deleterious materials or coatings. The method used to produce the crushed gravel shall result in the fractured particles in the finished product as consistent and uniform as practicable. Fine aggregate portion, defined as the portion passing the No. 4 (4.75 mm) sieve shall consist of fines from the coarse aggregate crushing operation. The fine aggregate shall be produced by crushing stone, gravel, or slag that meet the coarse aggregate requirements for wear and soundness. Aggregate base material requirements are listed in the following table.

CRUSHED AGGREGATE BASE MATERIAL REQUIREMENTS

Material Test	Requirement	Standard		
Coarse Aggregate				
Resistance to Degradation	Loss: 45% maximum	ASTM C131		
Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate	Loss after 5 cycles: 12% maximum using Sodium sulfate - or - 18% maximum using magnesium sulfate	ASTM C88		
Percentage of Fractured Particles	Minimum 90% by weight of particles with at least two fractured faces and 98% with at least one fractured face ¹	ASTM D5821		
Flat Particles, Elongated Particles, or Flat and Elongated Particles	10% maximum, by weight, of flat, elongated, or flat and elongated particles ²	ASTM D4791		
Bulk density of slag	Weigh not less than 70 pounds per cubic foot	ASTM C29		
Clay lumps and friable particles	Less than or equal to 3 percent	ASTM C142		
Fine Aggregate				
Liquid limit	Less than or equal to 25	ASTM D4318		
Plasticity Index	Not more than five (5)	ASTM D4318		

¹ The area of each face shall be equal to at least 75% of the smallest mid-sectional area of the piece. When two fractured faces are contiguous, the angle between the planes of fractures shall be at least 30 degrees to count as two fractured faces.

209-2.2 Gradation requirements. The gradation of the aggregate base material shall meet the requirements of the gradation given in the following table when tested per ASTM C117 and ASTM C136. The gradation shall be well graded from coarse to fine and shall not vary from the lower limit on one sieve to the high limit on an adjacent sieve or vice versa.

² A flat particle is one having a ratio of width to thickness greater than five (5); an elongated particle is one having a ratio of length to width greater than five (5).

GRADATION OF AGGREGATE BASE

Sieve Size	Design Range Percentage by Weight passing	Contractor's Final Gradation	Job Control Grading Band Tolerances ¹ (Percent)
2 inch (50 mm)	100		0
1-1/2 inch (37.5 mm)	95-100		±5
1 inch (25.0 mm)	70-95		±8
3/4 inch (19.0 mm)	55-85		±8
No. 4 (4.75 mm)	30-60		±8
No. 40 ² (425 µm)	10-30		±5
No. 200 ² (75 µm)	0-10		±3

¹ The "Job Control Grading Band Tolerances for Contractor's Final Gradation" in the table shall be applied to "Contractor's Final Gradation" to establish a job control grading band. The full tolerance still applies if application of the tolerances results in a job control grading band outside the design range.

209-2.3 Sampling and Testing.

- **a. Aggregate base materials.** The Contractor shall take samples of the aggregate base in accordance with ASTM D75 to verify initial aggregate base requirements and gradation. Material shall meet the requirements in paragraph 209-2.1. This sampling and testing will be the basis for approval of the aggregate base quality requirements.
- **b. Gradation requirements.** The Contractor shall take at least two aggregate base samples per day in the presence of the Owner's Authorized Representative (OAR) to check the final gradation. Sampling shall be per ASTM D75. Material shall meet the requirements in paragraph 209-2.2. The samples shall be taken from the in-place, un-compacted material at sampling points and intervals designated by the OAR.
- **209-2.4 Separation Geotextile**. Separation geotextile shall be Class 2 , 0.02 sec⁻¹ permittivity per ASTM D4491, Apparent opening size per ASTM D4751 with 0.60 mm maximum average roll value.

CONSTRUCTION METHODS

209-3.1 Control strip. The first half-day of construction shall be considered the control strip. The Contractor shall demonstrate, in the presence of the OAR, that the materials, equipment, and construction processes meet the requirements of the specification. The sequence and manner of rolling necessary to obtain specified density requirements shall be determined. The maximum compacted thickness may be increased to a maximum of 12 inches upon the Contractor's demonstration that approved equipment and operations will uniformly compact the lift to the specified density. The OAR must witness this demonstration and approve the lift thickness prior to full production.

Control strips that do not meet specification requirements shall be reworked, re-compacted or removed and replaced at the Contractor's expense. Full operations shall not continue until the control strip has been

 $^{^2}$ The fraction of material passing the No 200 (75 $\mu m)$ sieve shall not exceed two-thirds the fraction passing the No 40 (425 $\mu m)$ sieve.

accepted by the OAR. The Contractor shall use the same equipment, materials, and construction methods for the remainder of construction, unless adjustments made by the Contractor are approved by the OAR.

- **209-3.2 Preparing underlying subgrade and/or subbase**. The underlying subgrade and/or subbase shall be checked and accepted by the OAR before base course placing and spreading operations begin. Reproof rolling of the subgrade or proof rolling of the subbase in accordance with Item P-152, at the Contractor's expense, may be required by the OAR if the Contractor fails to ensure proper drainage or protect the subgrade and/or subbase. Any ruts or soft, yielding areas due to improper drainage conditions, hauling, or any other cause, shall be corrected before the base course is placed. To ensure proper drainage, the spreading of the base shall begin along the centerline of the pavement on a crowned section or on the high side of the pavement with a one-way slope.
- **209-3.3 Production**. The aggregate shall be uniformly blended and, when at a satisfactory moisture content per paragraph 209-3.5, the approved material may be transported directly to the placement.
- **209-3.4 Placement**. The aggregate shall be placed and spread on the prepared underlying layer by spreader boxes or other devices as approved by the OAR, to a uniform thickness and width. The equipment shall have positive thickness controls to minimize the need for additional manipulation of the material. Dumping from vehicles that require re-handling shall not be permitted. Hauling over the uncompacted base course shall not be permitted.

The aggregate shall meet gradation and moisture requirements prior to compaction. The base course shall be constructed in lifts as established in the control strip, but not less than 4 inches nor more than 12 inches of compacted thickness.

When more than one lift is required to establish the layer thickness shown on the plans, the construction procedure described here shall apply to each lift. No lift shall be covered by subsequent lifts until tests verify that compaction requirements have been met. The Contractor shall rework, re-compact and retest any material placed which does not meet the specifications at the Contractor's expense.

209-3.5 Compaction. Immediately after completion of the spreading operations, compact each layer of the base course, as specified, with approved compaction equipment. The number, type, and weight of rollers shall be sufficient to compact the material to the required density within the same day that the aggregate is placed on the subgrade.

The field density of each compacted lift of material shall be at least **100%** of the maximum density of laboratory specimens prepared from samples of the base material delivered to the jobsite. The laboratory specimens shall be compacted and tested in accordance with ASTM D1557. The moisture content of the material during placing operations shall be within ±2 percentage points of the optimum moisture content as determined by ASTM D1557. Maximum density refers to maximum dry density at optimum moisture content unless otherwise specified.

- **209-3.6 Weather limitations.** Material shall not be placed unless the ambient air temperature is at least 40°F and rising. Work on base course shall not be conducted when the subgrade or subbase is wet or frozen or the base material contains frozen material.
- **209-3.7 Maintenance.** The base course shall be maintained in a condition that will meet all specification requirements. When material has been exposed to excessive rain, snow, or freeze-thaw conditions, prior to placement of additional material, the Contractor shall verify that materials still meet all specification requirements. Equipment may be routed over completed sections of base course, provided that no damage results and the equipment is routed over the full width of the completed base course. Any damage resulting to the base course from routing equipment over the base course shall be repaired by the Contractor at the Contractor's expense.
- **209-3.8 Surface tolerances.** After the course has been compacted, the surface shall be tested for smoothness and accuracy of grade and crown. Any portion lacking the required smoothness or failing in accuracy of grade or crown shall be scarified to a depth of at least 3 inches, reshaped and recompacted to

grade until the required smoothness and accuracy are obtained and approved by the OAR. Any deviation in surface tolerances shall be corrected by the Contractor at the Contractor's expense. The smoothness and accuracy requirements specified here apply only to the top layer when base course is constructed in more than one layer.

- **a. Smoothness.** The finished surface shall not vary more than 3/8-inch when tested with a 12-foot straightedge applied parallel with and at right angles to the centerline. The straightedge shall be moved continuously forward at half the length of the 12-foot straightedge for the full length of each line on a 50-foot grid.
- **b. Grade.** The grade and crown shall be measured on a 50-foot grid and shall be within +0 and -1/2 inch of the specified grade.
- **209-3.9** Acceptance sampling and testing. Crushed aggregate base course shall be accepted for density and thickness on an area basis. Two tests shall be made for density and thickness for each 1200 square yards. Sampling locations will be determined on a random basis per ASTM D3665
 - a. Density. The OAR shall perform all density tests.

Each area shall be accepted for density when the field density is at least 100% of the maximum density of laboratory specimens compacted and tested per ASTM 1557. The in-place field density shall be determined per ASTM D6938 using Procedure A, the direct transmission method, and ASTM D6938 shall be used to determine the moisture content of the material. The machine shall be calibrated in accordance with ASTM D6938. If the specified density is not attained, the area represented by the failed test must be reworked and/or recompacted and two additional random tests made. This procedure shall be followed until the specified density is reached. Maximum density refers to maximum dry density at optimum moisture content unless otherwise specified.

b. Thickness. Depth tests shall be made by test holes at least 3 inches in diameter that extend through the base. The thickness of the base course shall be within +0 and -1/2 inch of the specified thickness as determined by depth tests taken by the Contractor in the presence of the OAR for each area. Where the thickness is deficient by more than 1/2-inch, the Contractor shall correct such areas at no additional cost by scarifying to a depth of at least 3 inches, adding new material of proper gradation, and the material shall be blended and recompacted to grade. The Contractor shall replace, at his expense, base material where depth tests have been taken.

REFERENCES

The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only.

ASTM International (ASTM)

ASTM C29	Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate
ASTM C88	Standard Test Method for Soundness of Aggregates by Use of Sodium Sulfate or Magnesium Sulfate
ASTM C117	Standard Test Method for Materials Finer than 75- μm (No. 200) Sieve in Mineral Aggregates by Washing
ASTM C131	Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine
ASTM C136	Standard Test Method for Sieve or Screen Analysis of Fine and Coarse Aggregates
ASTM C142	Standard Test Method for Clay Lumps and Friable Particles in Aggregates

ASTM D75	Standard Practice for Sampling Aggregates
ASTM D698	Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft³ (600 kN-m/m³))
ASTM D1556	Standard Test Method for Density and Unit Weight of Soil in Place by the Sand-Cone Method
ASTM D1557	Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft³ (2700 kN-m/m³))
ASTM D2167	Standard Test Method for Density and Unit Weight of Soil in Place by the Rubber Balloon Method
ASTM D2419	Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate
ASTM D3665	Standard Practice for Random Sampling of Construction Materials
ASTM D4318	Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils
ASTM D4491	Standard Test Methods for Water Permeability of Geotextiles by Permittivity
ASTM D4643	Standard Test Method for Determination of Water Content of Soil and Rock by Microwave Oven Heating
ASTM D4751	Standard Test Methods for Determining Apparent Opening Size of a Geotextile
ASTM D4791	Standard Test Method for Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate
ASTM D5821	Standard Test Method for Determining the Percentage of Fractured Particles in Coarse Aggregate
ASTM D5821 ASTM D6938	

American Association of State Highway and Transportation Officials (AASHTO)

M288 Standard Specification for Geosynthetic Specification for Highway Applications

END OF ITEM P-209

PAGE INTENTIONALLY LEFT BLANK