Limites de suites

Exercice 1 (Possible ou pas?)

Une suite u peut-elle satisfaire les propriétés suivantes? Lorsque c'est le cas, donner un exemple.

- (a) u est bornée et n'admet pas de limite.
- (b) u n'est pas bornée et n'admet pas de limite.
- (c) u converge mais n'est pas majorée.
- (d) u tend vers $+\infty$ mais n'est pas
- "croissante à partir d'un certain rang".
- (e) $(u_n)_{n\in\mathbb{N}}$ converge, mais $(u_{2n})_{n\in\mathbb{N}}$ ne converge pas.

Calcul direct de limites

Exercice 2 (Des suites explicites)

Déterminer la limite des expressions suivantes quand $n \to +\infty$:

(a)
$$\frac{e^n}{2n+1}$$

(b)
$$\frac{\ln(n+1)}{n}$$

(c)
$$\frac{-3n^2 + 2n - 1}{1 + 2n}$$
 (d) $\ln(n + 1)$
(e) $\frac{\sqrt{2n}}{(n+1)!}$ (f) $\frac{2^n - 3^n}{3^n - 5^n}$

(d)
$$\ln(n+1) - \ln(n)$$

(e)
$$\frac{\sqrt{2n}}{(n+1)!}$$

(f)
$$\frac{2^n - 3^n}{3^n - 5^n}$$

(g)
$$e^n - 2^n + n!$$

(h)
$$n^{1/n}$$

(i)
$$\frac{100^n + n!}{n^{100} + (n+1)!}$$

Encadrements et limites

Exercice 3 (Encadrement de suites explicites)

Déterminer la limite des expressions suivantes quand $n \to +\infty$:

(a)
$$\frac{(-1)^n}{\sqrt{n+1}}$$

(a)
$$\frac{(-1)^n}{\sqrt{n+1}}$$
 (b) $1 - \frac{\cos(n)}{n}$ (c) $e^n - 3\sin(2n)$

(c)
$$e^n - 3\sin(2n)$$

Exercice 4 (Une suite récurrente)

Soit u une suite définie par :

$$u_0 > 0$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \frac{2u_n}{3 + u_n}$

- 1. Montrer que u est bien définie et à termes strictement positifs.
- 2. Montrer: $\forall n \in \mathbb{N}, u_{n+1} \leqslant \frac{2}{3}u_n$.
- 3. En déterminant un encadrement de u_n , montrer que $\lim_{n\to+\infty} u_n = 0$.

Exercice 5 (Encadrement de sommes)

Encadrer le terme général de la somme, déduire un encadrement de u_n puis déterminer $\lim_{n\to+\infty} u_n$.

(a)
$$u_n = \sum_{k=1}^n \frac{1}{n + \sqrt{k}}$$

(a)
$$u_n = \sum_{k=1}^n \frac{1}{n + \sqrt{k}}$$
 (b) $u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$.

Exercice 6 (Convergence vers un point fixe)

Soit $k \in]0,1[$ et $f \in \mathcal{F}(\mathbb{R},\mathbb{R})$ satisfaisant :

$$\forall (x_1, x_2) \in \mathbb{R}^2, |f(x_1) - f(x_2)| \leqslant k|x_1 - x_2|.$$

On admet qu'il existe $\alpha \in \mathbb{R}$ tel que $f(\alpha) = \alpha$. On considère la suite u définie par :

$$u_0 \in \mathbb{R}$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- 1. Montrer que : $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq k|u_n \alpha|$.
- 2. En déduire : $\forall n \in \mathbb{N}, |u_n \alpha| \leq k^n |u_0 \alpha|$.
- 3. Déterminer la limite de la suite u.

Étude de suites récurrentes

Exercice 7 (Étude n°1)

On considère une suite u définie par :

$$u_0 \in]0,1[$$
 et $\forall n \in \mathbb{N}, u_{n+1} = u_n(1-u_n)$

- 1. Étudier le sens de variation de la suite u.
- 2. Montrer que u converge et déterminer sa limite.

Exercice 8 (Étude n°2)

On considère la suite u définie par :

$$u_0 = 3 \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n^2 + 2}{3}$$

- 1. Étudier le sens de variation de la suite u.
- 2. Si jamais u converge vers un réel ℓ , que dire de ℓ ?
- 3. En déduire $\lim_{n\to+\infty} u_n$.

Exercice 9 (Le cas "f décroissant")

On pose $\forall x \in \mathbb{R}_+^*, \ f(x) = 1 + \frac{2}{x}$ et on considère la suite u définie par :

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n).$

- 1. (a) Dessiner la courbe représentative de f ainsi que la droite d'équation y = x. Prévoir sur ce dessin le comportement de la suite u.
- (b) Montrer que l'intervalle [1,3] est stable par f, i.e: $f([1,3]) \subset [1,3]$. Qu'en déduit-on sur u?
- 2. Pour tout $n \in \mathbb{N}$, on pose $v_n = u_{2n}$ et $w_n = u_{2n+1}$.
- (a) Montrer que pour tout $n \in \mathbb{N}$, $v_{n+1} = (f \circ f)(v_n)$ et $w_{n+1} = (f \circ f)(w_n)$.
- (b) Déterminer le sens de variation des suites v et w.
- (c) En déduire que v et w sont convergentes et déterminer leurs limites respectives.
- (d) Qu'en déduit-on pour la suite u?

Suites adjacentes

Exercice 10 (Critère des séries alternées)

Soit $(a_n)_{n\geqslant 1}$ décroissante, telle que $\lim_{n\to +\infty} a_n=0$.

Pour tout $n \ge 1$, on pose $S_n = \sum_{k=1}^n (-1)^k a_k$.

- 1. Montrer que les suites $(u_n)_{n\geqslant 1}=(S_{2n})_{n\geqslant 1}$ et $(v_n)_{n\geqslant 1}=(S_{2n+1})_{n\geqslant 1}$ sont adjacentes.
- 2. En déduire que $(S_n)_{n\geqslant 1}$ converge.

Exercice 11 (Récurrence couplée)

Soient $(u_n)_{n \in \mathbb{N}}$ et $(v_n)_{n \in \mathbb{N}}$ satisfaisant $0 < u_0 < v_0$ et :

$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{2u_n v_n}{u_n + v_n} \ \text{et} \ v_{n+1} = \frac{u_n + v_n}{2}.$$

- 1. Montrer: $\forall n \in \mathbb{N}, 0 < u_n < v_n$.
- 2. Étudier le sens de variation de u et v.
- 3. (a) Montrer que $\forall n \in \mathbb{N}, \ v_{n+1} u_{n+1} \leqslant \frac{1}{2}(v_n u_n)$
- (b) En déduire : $\forall n \in \mathbb{N}, \ v_n u_n \leqslant \frac{1}{2^n}(v_0 u_0).$
- (c) Montrer que u et v convergent vers la même limite ℓ .
- 4. (a) Que dire de la suite $(u_n v_n)_{n \in \mathbb{N}}$?
- (b) En déduire la valeur de ℓ en fonction de u_0 et v_0 .

Adapté ESCP 2016:

Partie A

Soit $(a_n)_{n\geq 1}$ une suite croissante et convergente.

On note
$$\ell = \lim_{n \to +\infty} a_n$$
. Pour tout $n \ge 1$, on pose $c_n = \frac{a_1 + a_2 + \dots + a_n}{n}$.

- 1. Montrer que la suite $(c_n)_{n\geq 1}$ est croissante et majorée par ℓ . Qu'en déduit-on?
- 2. Montrer que pour tout entier n non nul : $c_{2n} \ge \frac{a_n + c_n}{2}$.

Indication : On pensera à séparer la somme $a_1 + \ldots + a_{2n}$ en deux.

3. En déduire que la suite $(c_n)_{n\geqslant 1}$ converge également vers ℓ .

Partie B

On admet que le résultat de la Partie A est valable même sans l'hypothèse de croissance :

pour toute suite
$$(a_n)_{n\geqslant 1} \in \mathbb{R}^{\mathbb{N}^*}$$
, $\lim_{n\to +\infty} a_n = \ell \Longrightarrow \lim_{n\to +\infty} \left(\frac{1}{n}\sum_{k=1}^n a_k\right) = \ell$ (\star)

On se propose d'étudier la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0\in[0,1[$ et $\forall n\in\mathbb{N},\ u_{n+1}=\frac{u_n^2+1}{2}.$

- 1. Étudier rapidement la suite $(u_n)_{n\in\mathbb{N}}$: montrer qu'elle est convergente et déterminer sa limite.
- 2. Pour tout $n \in \mathbb{N}$, on pose $v_n = 1 u_n$.
 - (a) Pour tout $n \in \mathbb{N}$, exprimer $\frac{1}{v_{n+1}} \frac{1}{v_n}$ en fonction de u_n et en déduire que $\lim_{n \to \infty} \left(\frac{1}{v_{n+1}} \frac{1}{v_n} \right) = \frac{1}{2}$.
 - (b) En utilisant le résultat (\star) avec une suite (a_n) appropriée, calculer $\lim_{n\to+\infty} n \, v_n$.
 - (c) En déduire qu'il existe un rang à partir duquel $1 \frac{3}{n} \le u_n \le 1 \frac{1}{n}$.