Einführung in die Theorie der Neuronalen Netze

Vorlesung 5

Unüberwachtes Lernen

Alexander Förster Universität Bremen

Wintersemester 2016 / 2017

Aufgabenbesprechung

- 1) Implementiere den Perzeptron Lernalgorithmus für n-dimensionale Vektoren und teste ihn an zufälligen Daten:
 - Wähle einen Gewichtsvektor w zufällig.
 - Generiere p Punkte zufällig im Raum und klassifizieren sie diese in P und N mit dem gegebenen Gewichtsvektor w.
 - Teste den Algorithmus in Bezug auf die Anzahl der notwendigen Iterationen mit einem neu initialisierten Gewichtsvektor w_0 .
 - Zeichne einen Graphen, der n und p bezüglich der Laufzeit für bis zu 10 Dimensionen und 100 Punkte zeigt.
- 2) **Verständnisfrage:** Gebe ein Beispiel für eine Trainingmenge an, bei der der Perzeptron Lernalgorithmus viele Iterationen braucht. Begründe.

Zusatzaufgabe

Konvolution. Benutze ein Bildbearbeitungsprogramm, um die Kanten in einem Bild (schwarz/weiß) zu erkennen. Nehmen alle Pixel des Bildes um ein gegebenes Pixel für die Eingabemenge und den Wert des Pixels in dem Kantenbild als Klassifizierung P oder N. Lerne ein Perzeptron.

- Welche Werte haben die Gewichte?
- Teste den Algorithmus an dem ursprünglichen und einem weiteren Bild.

Zusatzaufgabe

Gestartet wurde mit den Gewichten

0.9003 -0.5377 0.2137

-0.0280 0.7826 0.5242

-0.0871 -0.9630 0.6428

und Schwellwert -0.1105.

- Es wurden nach 280 Korrekturen 10000 Tests ohne Korrektur durchgeführt (gesamt 17090 Tests).
- Gewichtsmatrix nachher:

-3.0997 -5.5377 -2.7863

-5.0280 29.7826 -3.4758

-5.0871 -4.9630 -5.3572

mit dem Schwellwert -0.1105.

 Normalisiert auf den Schwellwert 0.5 und das mittlere Gewicht 8 ergibt sich die Gewichtsmatrix:

-0.6552 -1.2969 -0.5727

-1.1627 8.0000 -0.7542

-1.1783 -1.1456 -1.2494

Differenz

Unüberwachtes Lernen

- Der Perzeptron Lernalgoritmus ist ein Beispiel für überwachtes Lernen eines Neurons.
- Bei unüberwachtem Lernen organisiert sich das Netz selbst. Wir können zwischen Verstärkungslernen (Hebbian Learning) und Wettbewerbslernen unterscheiden.
- Beim Verstärkungslernen werden Gewichte (Verbindungen) verstärkt, die gleichzeitig aktiv sind.
- Beim **Wettbewerbslernen** stehen die Neuronen in Konkurrenz zueinander. Das Neuron mit der "richtigsten" Antwort darf seine Gewichte optimieren. Alle anderen Neuronen werden unterdrückt.
- Anwendungen:
 - (verlustbehaftete) Datenkompression (Bild, Ton, hochdimensionale Daten)
 - Mustererkennung (Sprache, Zeichen)
 - Kodierung und Fehlerkorrektur in der Signalverarbeitung

• Ein Perzeptron ist oft nicht genug, wenn die Daten nicht linear trennbar sind.

- Ein Perzeptron ist oft nicht genug, wenn die Daten nicht linear trennbar sind.
- Kein Perzeptron mit Gewichtsvektor w kann P und N für alle $p \in P$, $n \notin P$ mit $pw \ge 0$ und nw < 0 trennen.

- Ein Perzeptron ist oft nicht genug, wenn die Daten nicht linear trennbar sind.
- Kein Perzeptron mit Gewichtsvektor w kann P und N für alle $p \in P$, $n \notin P$ mit $pw \ge 0$ und nw < 0 trennen.
- Wir können aber drei Vektoren w_1 , w_2 , w_3 finden, die als Repräsentanten für jeweils eine Region (einen Cluster) stehen.

- Jeder Gewichtsvektor bestimmt ein Neuron, das nur feuert, wenn der Eingabevektor nahe genug am Gewichtsvektor liegt (Skalarprodukt ist positiv und groß). Halbraum geht nun nicht mehr.
- Wir können Repräsentanten per Hand auswählen.
- Im Allgemeinen ist die Anzahl der Cluster unbekannt. Das ist das Cluster-Problem.

Netz von konkurrierenden Neuronen

- Die Perzeptrone haben zusätzliche inhibitorische Leitungen, die nach dem Prinzip winner-takes-all funktioniert. Nachteil: Dafür ist globale Information über die das Aktivierungspotential alle Neuronen notwendig.
- Auch die Lernregel wird dementsprechend modifiziert, dass nur das am stärksten erregte Neuron seinen Gewichtsvektor ändert.
- Eine negative Menge brauchen wir in dem Sinne nicht mehr.

Konkurrenzlernalgorithmus

Eingabe: Erweiterte und *normalisierte* Eingabevektoren $X=\{x_1,...,x_l\}$ eines n-dim VR, die in k unterschiedliche Cluster klassifiziert werden sollen.

Start: Die erweiterten Gewichtsvektoren $w_1,...,w_k$ werden zufällig initialisiert und *normalisiert*.

Test:

- Wähle Vektor $x_i \in X$ zufällig.
- Berechne $x_j \cdot w_i$ für alle i=1,...,k.
- Wähle w_m mit $x_i \cdot w_m \ge x_i \cdot w_i$ für alle i=1,...,k.
- Weiter mit Update

Update:

- Ersetze w_m mit w_m+x_i und normalisiere.
- Weiter mit Test.

Konkurrenzlernalgorithmus

- Knoten, die nie eine Update bekommen werden als tote Knoten (dead units) bezeichnet.
- Die Update-Regel $w_m \leftarrow w_m + x_j$ kann auch abgeändert werden:
 - Mit Lernrate: $\Delta w_m = \eta x_j \text{ mit } \eta \in (0,1]$
 - Mit Differenz: $\Delta w_m = \eta(x_j w_m)$
 - Stapelbearbeitung: Δw_m wird für den entsprechenden Vektor m akkumuliert. Erst nach einer gewissen Zeit werden alle Gewichte korrigiert.

- Die Konvergenzanalyse ist bei unüberwachtem Lernen schwierig. Kann bei schlechter Initialisierung oder falscher Anzahl von Gewichtsvektoren auch nicht konvergieren.
- Beispiel im 1-dimensionalen mit Punkten {−1,3; −1,0; −0,7; 0,7; 1,0; 1,3} (nicht normiert):

• Bei **einem** Gewicht wird es sich bei 0 einpendeln, wenn η geeignet sinkt.

- Die Konvergenzanalyse ist bei unüberwachtem Lernen schwierig. Kann bei schlechter Initialisierung oder falscher Anzahl von Gewichtsvektoren auch nicht konvergieren.
- Beispiel im 1-dimensionalen mit Punkten {−1,3; −1,0; −0,7; 0,7; 1,0; 1,3} (nicht normiert):

• Bei **zwei** Gewichten α, β ist eine stabile Lösung bei z.B. α =-1 und β =1. Die Gewichte verlassen wegen des großen Abstands nicht "ihr Gebiet".

- Die Konvergenzanalyse ist bei unüberwachtem Lernen schwierig. Kann bei schlechter Initialisierung oder falscher Anzahl von Gewichtsvektoren auch nicht konvergieren.
- Beispiel im 1-dimensionalen mit Punkten {−1,3; −1,0; −0,7; 0,7; 1,0; 1,3} (nicht normiert):

• Bei **zwei** Gewichten α, β und der Initialisierung α =0 und β =10 wird β nie gewählt und α deckt beide Cluster ab.

 Je nach Anfangsbedingungen fallen die Gewichte (beide!) in (ein!) globales Minimum oder sie bleiben auf einem Plateau (lokales Minimum).

Vektorquantisierung

- Der Konkurrenzlernalgorithmus ist ein Vektorquantisierungsalgorithmus (VQ).
- Bei der VQ werden die Datensätze in Merkmalsvektoren zusammengefasst.
- Andere bekannte Verfahren zum Clustering sind
 - k-means (nicht zu verwechseln mit knächsten Nachbarn)
 - LBG (Linde-Buzo-Gray)
 - EM (Expectation-Maximization)

– ...

Vergleich k-means - EM

Clustering-Ergebnisse auf dem "Maus" Datensatz:

Cluster-Problem

- Zu viele Cluster oder zu wenig Cluster?
- Kostenfunktion kann helfen:

Kosten =
$$k+\alpha\sum_{j=1...k}(1-w_j\cdot x)$$

mit $x\in \text{Cluster } j$

 α geeignet setzen

 Kosten müssen minimiert werden!

Hauptkomponentenanalyse

- Die Hauptkomponentenanalyse (Principal Component Analysis, PCA) findet die Richtung in den Daten, an denen die Varianz am größten ist, d.h. die Richtung, an der der Informationsgehalt am größten ist.
- Dies kann zur Dimensionsreduktion der Daten genutzt werden, sodass möglichst wenig Information verloren geht und trotzdem der Datensatz kleiner ist.
- Das hilft evtl. auch bei späterem Lernen.

Hauptkomponentenanalyse

• **Definition:** Gegeben ist eine Menge $X = \{x_1, x_2, ..., x_m\}$ von n-Dim Vektoren ist gegeben. Die erste Hauptkomponente von X ist ein Vektor W, der

$$\frac{1}{m} \sum_{i=1}^{m} \|\mathbf{w} \cdot \mathbf{x}_i\|^2,$$

maximiert.

Hauptkomponenten

• Die 2. Hauptkomponente wird berechnet, indem von jedem Vektor x_i dessen Projektion auf die 1. Hauptkomponente abgezogen wird.

- Die 2. Hauptkomponente ist orthogonal zur ersten.
- Die 3. Hauptkomponente usw. wird rekursiv genauso berechnet.

Klassische PCA

- Das übliche Vorgehen zur Berechnung der Hauptkomponenten ist es die Eigenvektoren der Kovarianzmatrix der Daten zu berechnen.
- Die erste Hauptkomponente ist Richtung des längsten Eigenvektors.
- Diese Methode ist zuverlässig und nicht besonders schwierig, aber mit wachsender Anzahl von Vektoren steigt auch der Aufwand.
- Nachteil: Wenn sich die Eingabevektoren ändern muss alles neu berechnet werden.

Hauptkomponentenanalyse

 Die zugehörige Berechnungseinheit ist ein linearer Assoziator. Ein Perzptron ohne Schwellwertberechnung.

 Es wird die Projektion des Vektors auf die jeweilige Hauptkomponente berechnet.

Oja Algorithmus

Eingabe: Eingabevektoren $X=\{x_1,...,x_l\}$, um den Ursprung zentriert, eines n-dim VR, deren 1. Hauptkomponente berechnet werden soll.

Start:

- Der Gewichtsvektoren w wird zufällig initialisiert ($w \neq 0$).
- Die Lernrate γ wird mit $0 < \gamma \le 1$ gewählt.

Update:

- Wähle Vektor $x \in X$ zufällig.
- Berechne das Skalarprodukt $\varphi = x \cdot w$.
- Setze $w \leftarrow w + \gamma \varphi (x \varphi w)$.
- Verringere γ.
- Weiter mit Update.

Eigenschaften vom Oja Algorithmus

- Der Gewichtsvektor wird automatisch normalisiert.
- Außer dem Skalarprodukt wird alles lokal berechnet. Das Skalarprodukt wird vom linearen Assoziator berechnet.

- Wir beginnen mit |w|=1.
- Der Vektor x wird ausgewäh
- Das Skalarprodukt $\phi = x \cdot w$ korrespondiert zur Projektior von x auf w.
- Der Vektor x- ϕw ist orthogonal zu w.

- Wir beginnen mit |w|=1.
- Der Vektor x wird ausgewäh
- Das Skalarprodukt $\phi = x \cdot w$ korrespondiert zur Projektior von x auf w.
- Der Vektor x- ϕw ist orthogonal zu w.

- Wir beginnen mit |w|=1.
- Der Vektor x wird ausgewählt.
- Das Skalarprodukt $\phi = x \cdot w$ korrespondiert zur Projektion von x auf w.
- Der Vektor x- ϕw ist orthogonal zu w.
- Somit bewegt sich w beim
 Update w ← w + γ φ (x φw)
 auf x zu (wenn γ geeignet
 gewählt ist).

- Auch wenn das
 Skalarprodukt negativ ist
 wird w in die richtige
 Richtung gezogen.
- Nach einer Zeit sollte w in das Zentrum aller Vektoren gezogen werden.
- Damit die Korrektur in jedem Schritt nur klein ist sollte w nicht wachsen.

Beschränktheit von w

- Sei |w| > 1 und $\varphi > 0$.
- Dann ist φw länger als die Projektion von x auf w und x- φw hat eine negative Projektion auf w:

$$(x-\varphi w)\cdot w = (x - (x\cdot w)w)\cdot w$$
$$= x\cdot w - |w|^2 x\cdot w < 0.$$

• Also wird |w| kürzer beim Update $w \leftarrow w + y \varphi (x - \varphi w)!$

Beschränktheit von w

- Sei |w| < 1 und $\phi > 0$.
- Dann ist φw kürzer als die Projektion von x auf w und x- φw hat eine positive Projektion auf w:

$$(x-\varphi w)\cdot w = (x - (x\cdot w)w)\cdot w$$
$$= x\cdot w - |w|^2 x\cdot w > 0.$$

• Also wird |w| länger beim Update $w \leftarrow w + \gamma \varphi (x - \varphi w)!$

Mehrere Hauptkomponenten

- Spezielles Netz zur Berechnung der ersten 3 Hauptkomponenten.
- Auch die Berechnung der Gewichte kann gleichzeitig mit dem Oja Algorithmus erfolgen.

Beispiele unüberwachtes Lernen

Mustererkennung.

Handgeschriebene Ziffern werden durch Vorverarbeitung zentriert uns skaliert. **Bipolare** Vektoren kodieren die Pixel (1=schwarz,-1=weiß). Es sind 10 Cluster zu erkennen (Ziffern 0-9).

Ähnlichkeiten der Ziffern

Bester Nachbar vom Zentrum wachsend

Beste Ziffer an besten Kristallisationspunkt

Aufgaben

- 1) Implementiere einen optischen Ziffernerkenner:
 - Wähle zehn Gewichtsvektoren geeignet oder zufällig.
 - Benutze den Konkurrenz-Lernalgorithmus, um die Gewichte an die Zifferndaten anzupassen (ohne die Klassifizierung zu benutzen). Die Datensätze sind auf Stud.IP.
 - Wie hoch ist der Fehler für die Trainingsmenge, bzw. welche Ziffern werden welchem Cluster zugeordnet. Dazu soll die Klassifizierung benutzt werden. Die Ergebnisse können in einer Tabelle / Zuordnungs-Matrix gespeichert werden.
 - Wie hoch ist der Fehler für die Testmenge?
 - **Zusatz:** Erhöhe die Anzahl der Cluster. Wie ändert sich die Zuordnung? Unterscheide Trainings- und Testmenge.
- 2) **Verständnisfrage:** Wie können tote Knoten in einem Netz konkurrierender Knoten vermieden werden. Gebe zwei oder drei unterschiedliche Vorgehensweisen an.