PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2004-133055

(43)Date of publication of application: 30.04.2004

(51)Int.Cl.

GO3F 7/004 GO3F 7/039

(21)Application number : 2002-295260

H01L 21/027

(22)Date of filing: 08.10.2002

(71)Applicant : JSR CORP

(72)Inventor : YOKOYAMA KENICHI MIYAJIMA FUMINAO

> nagai tomoki Yoneda eiji

(54) RADIATION SENSITIVE RESIN COMPOSITION

(57)Abstract:

preservable stability as a chemical amplification type resist sensitive to active radiations, for example, UV rays, such as g rays and i rays, KrF excimer laser, ArF excimer laser or F2 excimer laser, far UV rays as represented by EUV (Extreme Ultraviolet) or electron beams, etc. SOLUTION: The positive radiation sensitive resin composition contains (A) 1 place replacement imidazoles, (B)

PROBLEM TO BE SOLVED: To provide a radiation sensitive composition having excellent resolution and

SOLUTION: The positive radiation sensitive resin composition contains (A) I place replacement imidazoles, (b) a radiation—sensitive acid generator, and (C) the following (a) or (b); (a) a resin which is alkali—soluble or hardly alkali—soluble resin protected by a hardly acid soluble group and is made alkali—soluble when the hardly acid soluble group is dissociated, and (b) an alkali—soluble resin and alkali solublity controlling agent. Also, the negative radiation sensitive resin composition contains (A), (B), (D) the alkali—soluble resin, and (E) a compound which can crosslink the alkali—soluble resin in the presence of the acid.

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-133055 (P2004-133055A)

(43) 公開日 平成16年4月30日 (2004.4.30)

(61) Int.Cl. ⁷ F1 7. **GO3F 7/004** GO3F **7/004** 501 21 **GO3F 7/039** GO3F **7/039** 601 **HO1L 21/097** 602 R

テーマコード (参考) 2HO25

審査請求 未請求 請求項の数 7 〇L (全 40 頁)

(21) 出願番号 特願2002-295260 (P2002-295260) (71) 出願人 000004178 (22) 出願日 平成14年10月8日 (2002.10.8) JSR株式会社 東京都中央区築地五丁目6番10号 (72) 発明者 横山 健一 東京都中央区築地二丁目11番24号 ジ ェイエスアール株式会社内 (72) 発明者 宮島 史尚 東京都中央区築地二丁目11番24号 ジ ェイエスアール株式会社内 (72) 発明者 永井 智樹 東京都中央区籍地二丁目11番24号 ジ ェイエスアール株式会社内 (72) 発明者 米田 英司 東京都中央区築地二丁目11番24号 ジ ェイエスアール株式会社内 最終頁に続く

(54) 【発明の名称】感放射性樹脂組成物

(57)【要約】

【課題】活性放射線、例えば、g線、i線等の紫外線、KrFエキシマレーザー、ArF エキシマレーザーもしくはF2エキシマレーザー、EUVに代表される遠紫外線、もしく は電子線などに感応する化学増幅型レジストとして、解像度および保存安定性に優れる感 放射性組成物を提供すること。

【解決手段】(A) 1位置換イミダゾール類、(B) 感放射線性酸発生剤、並びに(C)下記(イ)または(口)

(イ) 酸解離性基で保護されたアルカリ不溶性またはアルカリ 難溶性の樹脂であって、該 酸解離性基が解離したときにアルカリ可溶性となる樹脂

(ロ) アルカリ可溶性樹脂およびアルカリ溶解性制御剤

を含有することを特徴とするポジ型感放射線性樹脂組成物、並びに

(A)、(B)、(D)アルカリ可溶性樹脂、並びに(E)酸の存在下でアルカリ可溶性 樹脂を架橋しうる化合物を含有することを特徴とするネガ型感放射線性樹脂組成物を提供 する。

【選択図】 なし

30

40

【請求項1】

(A) 下記一般式(1) で表される化合物、

- (B) 感放射線性酸発生剤、並びに
- (C) 下記(イ) または(ロ)
- (イ)酸解離性基で保護されたアルカリ不溶性またはアルカリ難溶性の樹脂であって、該 酸解離性基が解離したときにアルカリ可溶性となる樹脂

(2)

(ロ)アルカリ可溶性樹脂およびアルカリ溶解性制御剤

を含有することを特徴とするポジ型感放射線性樹脂組成物。

(式中、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 および R_6 は、互いに独立に、水素原子、シアノ基、炭素数 $1\sim2$ 0の置換若しくは非置換のアルキル基、炭素数 $3\sim2$ 0の置換若しくは非置換の脂環族基、炭素数 $2\sim2$ 0のアルケニル基、置換若しくは非置換のプリール基、置換若しくは非置換のヘテロアリール基を示し、 $R_1\sim R_6$ から選ばれる 2つが相互に結合して、ヘテロ原子を含んでもよい環を形成してもよく、これらを介して二量体を形成していてもよい。)

【請求項2】

(A) 下記一般式(1) で表される化合物、

- (B) 感放射線性酸発生剤、
- (D) アルカリ可溶性樹脂、並びに
- (E)酸の存在下でアルカリ可溶性樹脂を架橋しうる化合物を含有することを特徴とするネガ型感放射線性樹脂組成物。

[化2]

(式中、 R_1 、 R_2 、 R_3 、 R_4 、 R_5 および R_6 は、互いに独立に、水素原子、シアノ基、炭素数 $1\sim20$ の置換若しくは非置換のアルキル基、炭素数 $3\sim20$ の置換若しくは非置換の脂環族基、炭素数 $2\sim20$ のアルケニル基、置換若しくは非置換のアリール基、置換者しくは非置換のプラロアリール基を示し、 $R_1\sim R_6$ から選ばれる 2 つが相互に結合して、ヘテロ原子を含んでもよい環を形成してもよく、これらを介して二量体を形成し

ていてもよい。) 【請求項3】

(B) 感放射線性酸発生剤がオニウム塩化合物、スルホン化合物、スルホン酸エステル化 合物、スルホンイミド化合物、ジアゾメタン化合物、ジスルホニルメタン化合物およびオ 50

20

30

40

50

(3) キシムスルホネート化合物から選ばれる少なくとも一種である請求項1あるいは2記載の 感放射線性樹脂組成物。

【請求項4】

(B) 感放射線性酸発生剤が、オニウム塩化合物およびオキシムスルホネート化合物から 選ばれる少なくとも一種である、請求項1乃至2記載の感放射線性樹脂組成物。

【請求項5】

(C) (イ) 酸解離性基で保護されたアルカリ不溶性またはアルカリ難溶性の樹脂であっ て、該酸解離性基が解離したときにアルカリ可溶性となる樹脂が下記一般式(10)で表 される繰り返し単位を有する請求項1記載の感放射線性樹脂組成物。

(式中、R, っは水素原子又は一価の有機基を示す。また a および b は 1 から 3 の自然数 を表す。)

【請求項6】

(C) (イ)酸解離性基で保護されたアルカリ不溶性またはアルカリ難溶性の樹脂であっ て、 該 酸 解 離 件 基 が 解 離 した とき に ア ル カ リ 可 溶 性 と な る 樹 脂 が 下 記 一 般 式 (1 4) で 表 される繰り返し単位および下記一般式(15)で表される繰り返し単位から選ばれる少な くとも一種を有する請求項1記載の感放射線性樹脂組成物。

【化4】

(式中、AおよびBは互いに独立に水素原子または酸解離性基を示し、かつAおよびBの 少なくとも 1 つが 酸 解 離 性 基 で あり、 D お よび E は 耳 い に 独 立 に 水 素 原 子 ま た は 炭 素 数 1 ~4の直鎖状もしくは分岐状の1価のアルキル基を示し、nは0~2の整数である。)

[(k 5]

(式中、 R_1 。は水素原子またはメチル基を示し、 AR_1 。は互いに独立に炭素数 $1 \sim 4$ の 直鎖 状 も し く は 分 岐 状 の ア ル キ ル 基 ま た は 置 換 さ れ て も 良 い 炭 素 数 4 ~ 2 0 の 1 価 の 脂 環式炭化水素基を示すか、あるいは何れか2つのR」。が互いに結合して、それぞれが結

20

50

合している炭素原子とともに置換されても良い炭素数 $4 \sim 20$ の 2 価の脂環式炭化水素基を形成し、残りの $R_{1:d}$ が炭素数 $1 \sim 4$ の直鎖状もしくは分岐状のアルキル基または置換されても良い炭素数 $4 \sim 20$ の 1 価の脂環式炭化水素基である。)

(4)

【請求項7】

(C) (イ) 酸解離性基で保護されたアルカリ不溶性またはアルカリ難溶性の樹脂であって、該酸解離性基が解離したときにアルカリ可溶性となる樹脂が下記一般式(16)で表される繰り返し単位および下記一般式(17)で表される繰り返し単位から選ばれる少なくとも一種を有する請求項1記載の感放射線性樹脂組成物。

[化6]

(式中、Aは互いに独立に酸解離性基を有する1価の有機基を示し、R₁₄は置換しても良い炭素数1~20の直鎖状、分岐状もしくは環状の炭化水素基を示す。)

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、g線、i線等の紫外線、Kr F エキシマレーザー、Ar F エキシマレーザー、 F_2 エキシマレーザー、E U V 等の(超) 遊紫外線、シンクロトロン放射線等のX線、電子線等の荷電粒子線の如き各種の放射線による微細加工に適した化学増幅型レジストとして使用される感放射線性樹脂組成物に関する。

[0002]

【従来の技術】

集積回路素子の製造に代表される微細加工の分野においては、より高い集積度を得るために、最近では0.20μm以下のレベルでの微細加工が可能なリソグラフィー技術が必要とされている。

しかし、従来のリソグラフィープロセスでは、一般に放射線としてi線等の近紫外線が用いられているが、この近紫外線では、サブクオーターミクロンレベルでの微細加工が極めて困難であると言われている。

そこで、 0.25μ m以下のレベルにおける微細加工を可能とするために、より波長の別い放射線の利用が検討されている。このような短波長の放射線としては、例えば、水銀灯の解線スペクトルやエキシマレーザーに代表される遠紫外線、X線、電子線を挙げることができるが、これらのうち、特にKrF エキシマレーザー(波長 248nm)、ArF エキシマレーザー(波長 157nm)、EU V (波長 13nm 等)、電子線がが注目されている。

[0003]

前記短波長の放射線に適した感放射線性樹脂組成物として、酸解離性官能基を有する成分 と放射線の照射(以下、「露光」という)により酸を発生する感放射線性酸発生剤との間 の化学増幅効果を利用した組成物(以下、「化学増幅型感放射線性組成物」という)が数 多く提案されている。

化学増幅型感放射線性組成物としては、カルボン酸の $t - プチルエステル基またはフェノールの<math>t - プチルカーボナート基を有する重合体と感放射線性酸発生剤とを含有する組成物が提案されている。この組成物は、霧光により発生した酸の作用により、重合体中に存在する<math>t - プチルエステル基もしくは<math>t - \mathcal{T}$ チルカーボナート基が解離して、該重合体がカルボキシル基やフェノール性水酸基からなる酸性基を形成し、その結果、レジスト被膜の露光領域がアルカリ現像症 局別管性となる現象を利用したものである。このような窓の解機性順組成物においては、霧光により発生する酸が未線光部にまで拡散してしまい、

40

高解像度のレジストが得られないという問題があった。このため、酸拡散制御剤として、 アミン類等の塩基性化合物を用いることが提案されている(例えば、特許文献1乃至3参 照)。

[0004]

ところで、近年の微細化するフォトリソプロセスに用いられる酸発生剤としては、従来の トリアリールスルホニウム塩にかわって、各種放射線に対する透明性がより高く、さらに 活性の高いアルキルスルホニウム塩に加え、ヨードニウム塩、スルホンイミド、オキシム スルホネート等が特に注目されている。これらの酸発生剤はトリアリールスルホニウム塩 に比べ解像性能等でメリットがある場合が多いが、一般に塩基に対する安定性が低い。そ のため、従来酸拡散抑制剤として用いていたトリアルキルアミンや置換されていないイミ ダゾール等を用いると、レジスト組成物中で酸発生剤を求核的に分解するため、レジスト 組成物としての保存安定性が悪くなる。しかしながら、従来の塩基性の低い酸拡散抑制剤 では十分な酸拡散抑制効果が得られなかったり、環境中の塩基性物質の影響を受けやすく なり、環境耐性が悪くなったりする。

[0005]

【特許文献1】

特開平5-127369号公報

【特許文献2】

特開平6-266111号公報

【特許文献3】

特開平7-146558号公報

[0006]

【発明が解決しようとする課題】

本発明の課題は、活性放射線、例えば、g線、i線等の紫外線、KrFエキシマレーザー 、AェFエキシマレーザーもしくはF。エキシマレーザー、EUVに代表される遠紫外線 、もしくは電子線などに感応する化学増幅型レジストとして、解像度および保存安定性に 優れる感放射性組成物を提供することにある。

[0007]

【課題を解決するための手段】

本発明者等は、種々検討した結果、後述する特定の化合物およびこれを用いた樹脂組成物 が上記問題を解決することができるものであることを見いだし、本発明に到達した。 本発明によると、上記課題は、第一に、

(A) 下記一般式(1) で表される化合物(以下「化合物(A)」ともいう)、

(B) 威放射線性酸発生剤(以下「酸発生剤(B)」ともいう)、並びに

(C)下記(イ)または(ロ)

(イ) 酸解離性基で保護されたアルカリ不溶性またはアルカリ難溶性の樹脂であって、該 酸解離性基が解離したときにアルカリ可溶性となる樹脂(以下、「酸解離性基含有樹脂」

ともいう)

(ロ)アルカリ可溶性樹脂およびアルカリ溶解性制御剤

を含有することを特徴とするボジ型感放射線性樹脂組成物により達成される。

[0008]

[化7]

20

40

50

$$R^{1}$$
 C C R^{3} R^{6} N N R^{4} (1)

[0009]

(式中、 R_1 、 R_2 、 R_3 、 R_4 、 R_6 および R_6 は、互いに独立に、水素原子、シアノ 基、炭素数 1~20の置換若しくは非置換のアルキル基、炭素数 3~20の置換若しくは非置換のの脂環族基、炭素数 2~20のアルケニル基、置換若しくは非置換のヘテロアリール基を示し、 R_1 ~ R_6 から選ばれる 2 つが相互に結合して、ヘテロ原子を含んでもよい環を形成してもよく、これらを介して二量体を形成していてもよい。)

(6)

[0010]

本発明によると、上記課題は、第二に、

- (A) 上記式(1) で表される化合物、
- (B) 感放射線性酸発生剤、
- (D) アルカリ可溶性樹脂、並びに

(E)酸の存在下でアルカリ可溶性樹脂を架橋しうる化合物 を含有することを特徴とするネガ型感放射線性樹脂組成物により違成される。

[0011]

以下、本発明を詳細に説明する。

< 化 合 物 (A) >

本発明における化合物(A)は、前記一般式(1)で表される窒素含有化合物からなる。 化合物(A)は、従来の酸拡散抑制剤として用いられているトリアルキルアミン類に比べ 塩基性が弱いため、レジスト組成物中で酸発生剤の球核的な反応による分解を抑制出来る が、窒素原子上の水素原子をアルキル基で置換しているので無置換のものに比べ塩基性が 増すために、レジスト組成物中で十分な酸拡散抑制効果が得られる。

[0012]

上記式における $R_1 \sim R_6$ が示す、置換しても良い炭素数 $1 \sim 20$ の直鎖状、分岐状若しくは環状炭化水素基としては、

メチル基、エチル基、n-プロピル基、n-プチル基、n-ペンチル基、n-ペンチル基、n-ペンデシル基、n-オクチル基、n-プラル基、n-アシル基、n-アシル基、n-ア・デシル基、n-ペンタデシル基、n-8、n-8、n-8、n-8、n-8、n-8、n-8、n-8、n-8、n-8、n-8、n-9、n-8、n-9、n-

シクロペンチル基、シクロプチル基、シクロペンチル基、シクロヘキシル基等の炭素数3

~20のシクロアルキル基; フェニル基、トルイル基、ペンジル基、メチルベンジル基、キシリル基、メシチル基、ナ

フチル基、アントリル基等の炭素数6~20のアリール基; ノルボルニル基、トリシクロデカニル基、テトラシクロドデシル基、アダマンチル基、メ チルアダマンチル基、エチルアダマンチル基、プチルアダマンチル基等の炭素数6~20

の有橋脂環式炭化水素基等が挙げられる。 炭素原子数 1 ~ 2 0 のアルケニル基としては、ビニル基、プロペニル基等が挙げられる。

[0013]

また、上記炭化水素基は置換されていてもよく、この置換基としては、

40

50

ヒドロキシル基:カルボキシル基:ヒドロキシメチル基、 1-ヒドロキシエチル基、 2-ヒドロキシエチル基、 1-ヒドロキシブロピル基、 2-ヒドロキシガル基、 3-ヒドロキシアル基、 1-ヒドロキシブロピル基、 2-ヒドロキシブル区ル基、 3-ヒドロキシブサル基、 3-ヒドロキシブサル基、 3-ヒドロキシブサル基、 3-ヒドロキンブサル基、 3-ヒドロキシブチル基、 3-ビドロキシブチル基、 3-ビドロキシブチル基、 3-ビドロキシブチル基、 3-ビドロキシブチル基、 3-ビドロキシブチル基、 3-ビドロキシブチル基、 3-ビアーボキシ基、 3-ビアーボーシエ・ 3-ビアーボーシ基・ 3-ビアーボーシエ・ 3-ビアーボーシ基・ 3-ビアーボーシエ・ 3-ビアーボーン 3-ビアー 3-ビアーボーン 3-ビアーズ 3-ビアーズ 3-ビアーズ 3-ビアーズ 3-ビアー 3-ビアーズ 3-ビアー 3-

[0014]

 $R_1\sim R_6$ は、選ばれた 2つが結合して、ヘテロ原子を含んでもよい環を形成してもよい。これは、上記 $R_1\sim R_6$ のうち選ばれた 2つにおいて、各 1 個の原子によば基が解離して残基を形成し、該残基同士が結合するか、又は該残基が確黄原子れよび事の 2 価のアウェー原子あるいはメチレン基、エチレン基等の 2 価のアルキル基等の 2 価の有機基を介して結合することにより、環状構造を形成していてもよいという意味である。具体的な環状構造としては、 $R_1\sim R_6$ のうち選ばれた 2つがメチレン基、エチレン基、プロピレン基、 1, 2 ージメチルエチレン基、又はカルボニル基等で互いに結合した構造が挙げられる。

また、 $R_1 \sim R_6$ は、これらを介して二量体を形成していてもよい。これは、2 つの化合物 (A) が、それぞれの $R_1 \sim R_6$ から選ばれる少なくとも1 つの基同士が結合することにより、二量体を形成していてもよいという意味である。

上記二量体としては、例えば、下記式で表される構造を有する化合物が挙げられる。

[0015]

[化8]

$$\mathbb{R}^{3}$$
 \mathbb{R}^{4}
 \mathbb{R}^{6}
 \mathbb{R}^{5}
 \mathbb{R}^{5}

[0016]

(式中、 R^{-1} は、別々の分子に属する 2 個の R^{-1} から各 1 個の原子または基が解離して 残基が結合して形成された形である 2 価の基である。)

[0017]

化合物 (A) の具体例としては、1-メチルイミダゾール、1-エチルイミダゾール、1- ハーキシルイミダゾール、1-ノニルイミダゾール、1-i ープチルイミダゾール、1-シクロペンチルイミダゾール、1-シクロペキミタゾール、1-シクロペキシルイミダゾール、1-シクロペキシルイミダゾール、1-ナフチルイミダゾール、1-ナフェニルイミダゾール、1-プロペキシルイミダゾール、1-アントリルイミダゾール、1-アントリルイミダゾール、1-アントリルイミダゾール、1-アントリルイミダゾール、1-(2'ーヒドロキシエチル) イミダゾール、1-(3'ーヒドロキシーアープナル) イミダゾール、1-メトキシイミダゾール、1-(2'ーメチルー1-プロポキシ)イミダゾール、1-3アノイミダゾール、1-10(2'ーメチル) イミダゾール、1-10(2'ーメチル) イミダゾール、1-10(2'ーンアノメチル) イミダゾール、1-10(1)

50

カルボニルエトキシイミダゾール、1-トリフルオロメチルイミダゾール、1.2-ジメ チルイミダゾール、1,2,4-トリメチルイミダゾール、1,2,4,5-テトラメチ ルイミダゾール、1-エチル-2-メチルイミダゾール、1-ブチル-2-メチルイミダ ゾール、1.2-ジヘキシルイミダゾール、1-エチル-2-シクロヘキシルイミダゾー ル、1,2-ジシクロペンチルイミダゾール、1,2,4,5-テトラシクロペンチルイ ミダゾール、1-ベンジル-2-メチルイミダゾール、1,2-ジナフチルイミダゾール 、1、2-ジノルボルニルイミダゾール、1、2、4-トリアダマンチルイミダゾール、 1.2,4.5-テトラエトキシカルボニルイミダゾール、1-シアノ-2-メチルイミ ダゾール、1-エチル-2-メトキシイミダゾール、1-(t-ブトキシカルボニルメチ ル) イミダゾール、1-(2', 3'-ジヒドロキシルプロピル)-2-メチルイミダゾ ール、1、3-ジ(2'-メチルー1'-イミダゾイルメチル)ベンゼン等が挙げられる 。中でも好ましいものとしては、1-メチルイミダゾール、1,2-ジメチルイミダゾー ル、1,2,4-トリメチルイミダゾール、1,2,4,5-テトラメチルイミダゾール 、1-エチルイミダゾール、1-エチル-2-メチルイミダゾール、1-ブチル-2-メ チルイミダゾール、1-ベンジルイミダゾール、1-ベンジル-2-メチルイミダゾール 、1-(tert-ブトキシカルボニルメチル)イミダゾール、1-(2'.3'-ジヒ ドロキシルプロピル) -2-メチルイミダゾール、1、3-ジ(2'-メチル-1'-イ ミダゾイルメチル)ベンゼン等が挙げられる。

本発明において、化合物(A)は、単体でもしくは2種類以上の組み合わせで用いることができ、後述するその他の酸拡散抑制剤と組み合わせて用いることもできる。

【0018】 <酸発生剤(B)>

酸発生剤(B)としては、▲1 ▼オニウム塩化合物、▲2 ▼スルホン化合物、▲3 ▼スルホン酸エステル化合物、▲4 ▼スルホンイミド化合物、▲5 ▼ジアゾメタン化合物、▲6 ▼ジスルホニルメタン化合物等を挙げることができる。

以下に、これらの酸発生剤(B)の例を示す。

[0019]

▲ 1 ▼オニウム塩化合物:

オニウム塩化合物としては、例えば、ヨードニウム塩、スルホニウム塩 (但し、テトラヒドロチオフェニウム塩を含む。)、ホスホニウム塩、ジアゾニウム塩、アンモニウム塩、ピリジニウム塩等を挙げることができる。

オニウム塩化合物の具体例としては、

yフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムノナフルオローn ープタンスルホネート、ジフェニルヨードニウムピレンスルホネート、ジフェニルヨードニウムn ード デシルベンゼンスルホネート、ジフェニルヨードニウムy ールエンスルホネート、ジフェニルヨードニウムスルホネート、ジフェニルヨードニウム10 ーカンファースルホネート、ジフェニルヨードニウム10 ーカンファースルホネート、ジフェニルヨードニウム110 ーオンタンスルホネート、ジフェニルヨードニウムパーフルオローy

50

ドニウム 2 ートリフルオロメチルベンゼンスルホネート、ジフェニルヨードニウム4 ート リフルオロメチルベンゼンスルホネート、ジフェニルヨードニウム 2 . 4 ージフルオロベ ンゼンスルホネート、

[0020]

トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウム ノナフルオロ-n-ブタンスルホネート、トリフェニルスルホニウムピレンスルホネート 、トリフェニルスルホニウムn-ドデシルベンゼンスルホネート、トリフェニルスルホニ ウム p - トルエンスルホネート、トリフェニルスルホニウムベンゼンスルホネート、トリ フェニルスルホニウム 1 0 - カンファースルホネート、トリフェニルスルホニウム n - オ クタンスルホネート、トリフェニルスルホニウムパーフルオロー n - オクタンスルホネー ト、トリフェニルスルホニウム2ートリフルオロメチルベンゼンスルホネート、トリフェ ニルスルホニウム 4 - トリフルオロベンゼンスルホネート、トリフェニルスルホニウム 2 ,4-ジフルオロベンゼンスルホネート、トリフェニルスルホニウムヘキサフルオロアン チモネート、トリフェニルスルホニウム1-ナフタレンスルホネート、4-1-ブチルフ ェニル・ジフェニルスルホニウムトリフルオロメタンスルホネート、4-t-ブチルフェ ニル・ジフェニルスルホニウムノナフルオローn-ブタンスルホネート、4-t-ブチル フェニル・ジフェニルスルホニウムピレンスルホネート、4-t-ブチルフェニル・ジフ ェニルスルホニウム n ードデシルベンゼンスルホネート、4 - t ープチルフェニル・ジフ ェニルスルホニウム p - トルエンスルホネート、4 - t - ブチルフェニル・ジフェニルス ルホニウムベンゼンスルホネート、4-t-ブチルフェニル・ジフェニルスルホニウム1 0-カンファースルホネート、4-t-プチルフェニル・ジフェニルスルホニウムn-オ クタンスルホネート、4-t-ブチルフェニル・ジフェニルスルホニウム2-トリフルオ ロメチルベンゼンスルホネート、4-t-ブチルフェニル・ジフェニルスルホニウム4-トリフルオロメチルベンゼンスルホネート、4-t-プチルフェニル・ジフェニルスルホ ニウム 2 , 4 - ジフルオロベンゼンスルホネート、4 - t - プトキシフェニル・ジフェニ ルスルホニウムノナフルオローn-プタンスルホネート、4-ヒドロキシフェニル・ベン ジル・メチルスルホニウムャートルエンスルホネート

シクロヘキシル・2 - オキソシクロヘキシル・メチルスルホニウムトリフルオロメタンス ルホネート、ジシクロヘキシル・2 - オキソシクロヘキシルスルホニウムトリフルオロメ タンスルホネート、2 - オキソシクロヘキシルジメチルスルホニウムトリフルオロメタン スルホネート、

1- ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、1- ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4- シアノ- 1- ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4- ニトロ- 1- ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4- メチル- 1- ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、4- メチル- 1- ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、

4-シアノ-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-ニトロ-1-ナフチルジェチルスルホニウムトリフルオロメタンスルホネート、4-メチル-1-ナフチルジエチルスルホニウムトリフルオロメタンスルホネート、4-ヒドロキシ-1-ナフチルジメチルスルホニウムトリフルオロメタンスルホネート、

[0021]

 $4 - \mathsf{E} \, \mathsf{F} \, \mathsf{G} \, \mathsf{F} \, \mathsf{E} - \mathsf{F} \, \mathsf{$

4-Xトキシー 1- ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-Xトキシー 1- ナフチルテトラヒドロチオフェニウムノナフルオローn- ブタンスルホネート、4- メトキシー 1- ナフチルテトラヒドロチオフェニウムパーフルオローn- オクタンスルホネート、

4-エトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネー

40

ト、4-xトキシ-1-ナフチルテトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、4-xトキシ-1-ナフチルテトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、

4-n-7トキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-n-7トキシ-1-ナフチルテトラヒドロチオフェニウムノナフルオロ-n-7タンスルホネート、4-n-7トキシ-1-ナフチルテトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、

4-Xトキシメトキシー 1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4- Xトキシメトキシー 1- ナフチルテトラヒドロチオフェニウムノナフルオローn-プタンスルホネート、4- Xトキシメトキシー 1-ナフチルテトラヒドロチオフェニウムパーフルオローn- オクタンスルホネート、

4-xトキシメトキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-xトキシメトキシ-1-ナフチルテトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、4-xトキシ-1-ナフチルテトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、

[0022]

4-(1-x)トキシエトキシ) -1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-(1-x)トキシエトキシ) -1-ナフチルテトラヒドロチオフェニウムノナフルオロ-n-ブタンスルホネート、4-(1-x)トキシエトキシ)-1-ナフチルテトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、

4-(2-x+x+2x+x+2)-1-t-y+x+x+5 +(2-x+x+2)-1-t-y+x+2x+x+5 +(2-x+x+2)-1-t-y+x+x+5 +(2-x+x+2)-1-t-y+x+5 +(2-x+x+2)-1-t-t+5 +(2-x+x+2)-1-t-t+5 +(2-x+x+2)-1-t-t+5 +(2-x+x+2)-1-t-t+5 +(2-x+x+2)-1-t-t+5 +(2-x+x+2)-1-t-t+5 +(2-x+x+2)-1-t-t+5 +(2-x+x+2)-1-t-t+5 +(2-x+2)-1-t-t+5 +(2-x+2)-1-t-t+5 +(2-x+2)-1-t-t+5 +(2-x+2)-1-t+5 +(2-x+2)-1-t+5 +(2-x+2)-1-t+5 +(2-x+2)-1-t+5 +(2-x+2)-1-t+5 +(2-x+2)-t+5 +(2-x+

4- メトキシカルボニルオキシ- 1- ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルボネート、4- メトキシカルボニルオキシ- 1- ナフチルテトラヒドロチオフェニウムノナフルオロ- n- ブタンスルホネート、4- メトキシカルボニルオキシ- 1- ナフチルテトラヒドロチオフェニウムパーフルオロ- 1- 1- オクタンスルホネート、

4-xトキシカルボニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-xトキシカルボニルオキシ-1-ナフチルテトラヒドロチオフェニウムノナフルオロ-n-プタンスルホネート、4-xトキシカルボニルオキシ-1-

エニッムノーノルイローローファンスルポポード、モーエドエンガルホールオヤンーコー ナフチルテトラヒドロチオフェニウムパーフルオローn-オクタンスルホネート、 4-n-プロボキシカルボニルオキシ-1-ナフチルテトラヒドロチオフェニウムトリフ

4-i - プロポキシカルボニルオキシ- 1 - ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-i - プロポキシカルボニルオキシ- 1 - ナフチルテトラヒドロチオフェニウムノナフルオロ- n - ブタンスルホネート、4-i - プロポキシカルボニルオキシ- 1 - ナフチルテトラヒドロチオフェニウムパーフルオロ- n - オクタンスルホネート、

[0023]

4-n-7トキシカルボニルオキシー1-ナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート、4-n-7トキシカルボニルオキシー1-ナフチルテトラヒドロチオフェニウムノナフルオロ-n-7タンスルホネート、4-n-7トキシカルボニルオキシー1-ナフチルテトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート、

4-t-ブトキシカルボニルオキシー1-ナフチルテトラヒドロチオフェニウムトリフル オロメタンスルホネート、4-t-ブトキシカルボニルオキシー1-ナフチルテトラヒド 50 ロチオフェニウムノナフルオローnープタンスルホネート、4 - t - プトキシカルポニル オキシ-1-ナフチルテトラヒドロチオフェニウムパーフルオロ-n-オクタンスルホネート。

 $1-(3,5-\vec{y}$ メチルー $4-\vec{v}$ ー $4-\vec{v}$ ー

等を挙げることができる。

[0024]

▲2▼スルホン化合物:

スルホン化合物としては、例えば、β - ケトスルホン、β - スルホニルスルホンや、これ 5 の α - ジアゾ化合物等を挙げることができる。

スルホン化合物の具体例としては、フェナシルフェニルスルホン、メシチルフェナシルス ルホン、ビス (フェニルスルホニル)メタン、4-トリスフェナシルスルホン等を挙げる ことができる。

[0025]

▲3▼スルホン酸エステル化合物:

▲ 4 ▼ スルホンイミド化合物:

スルホン酸エステル化合物としては、例えば、アルキルスルホン酸エステル、ハロアルキルスルホン酸エステル、アリールスルホン酸エステル、イミノスルホネート等を挙げることができる。

スルホン酸エステル化合物の具体例としては、ベンゾイントシレート、ピロガロールトリス (トリフルオロメタンスルホネート)、ピロガロールトリス (ノナフルオロー n- プンスルホネート)、ピロガロールトリス (メタンスルホネート)、ニトロベンジルー9、 10- ジェトキシアントラセンー2- スルホネート、 $\alpha-$ メチロールベンゾイントシレート、 $\alpha-$ メチロールベンゾイン n- オクタンスルホネート、 $\alpha-$ メチロールベンゾイントリフルオロメタンスルホネート、 $\alpha-$ メチロールベンゾイント等を挙げることができる。

[0026]

スルホンイミド化合物としては、例えば、下記式 (7)

[0027]

[0028]

(式中、Vはアルキレン基、アリーレン基、アルコキシレン基等の2価の基を示し、R₂ はアルキル基、アリール基、ハロゲン置換アルキル基、ハロゲン置換アリール基等の1 価の基を示す。)

で表される化合物を挙げることができる。

[0029]

スルホンイミド化合物の具体例としては、

ンスルホニルオキシ) フタルイミド、N-(トリフルオロメタンスルホニルオキシ) ジフ ェニルマレイミド、N-(トリフルオロメタンスルホニルオキシ)ビシクロ「2.2.1] ヘプト-5-エン-2, 3-ジカルボキシイミド、N-(トリフルオロメタンスルホニ ルオキシ) -7 - オキサビシクロ「2、2、1」ヘプト-5 - エン-2、3 - ジカルボキ シイミド、N-(トリフルオロメタンスルホニルオキシ)ビシクロ「2.2.1] ヘプタ ン-5,6-オキシ-2,3-ジカルボキシイミド、N-(トリフルオロメタンスルホニ ルオキシ) ナフチルイミド、

N - (10 - h) - (10 - h) - (10 - h) - (10 - h) - (10 - h)ルホニルオキシ)フタルイミド、N-(10-カンファースルホニルオキシ)ジフェニル マレイミド、N-(10-カンファースルホニルオキシ) ビシクロ[2.2.1] ヘプト -5-エン-2.3-ジカルボキシイミド、N-(10-カンファースルホニルオキシ) -7-オキサビシクロ「2.2.1] ヘプト-5-エン-2.3-ジカルボキシイミド、 N - (10 - h) - (2 - h) - (3 - h) -オキシー2. 3-ジカルボキシイミド、N-(10-カンファースルホニルオキシ)ナフチルイミド、

N- (p-トルエンスルホニルオキシ) スクシンイミド、N- (p-トルエンスルホニル

[0030]

オキシ) フタルイミド、N-(p-トルエンスルホニルオキシ) ジフェニルマレイミド、 $N - (p - h \mu x) x + h \mu x +$ 3 - ジカルボキシイミド、N - (p - トルエンスルホニルオキシ) - 7 - オキサビシクロ $[2. 2. 1] \land 7 \land -5 - x \lor -2, 3 - i$ ルホニルオキシ)ビシクロ「2.2.1]ヘプタン-5,6-オキシ-2,3-ジカルボ キシイミド、N-(n-トルエンスルホニルオキシ)ナフチルイミド、 N-(2-1)トリフルオロメチルベンゼンスルホニルオキシ) フタルイミド、N-(2-トリフルオロ メチルベンゼンスルホニルオキシ) ジフェニルマレイミド、N- (2-トリフルオロメチ ルベンゼンスルホニルオキシ) ビシクロ[2.2.1] ヘプト-5-エン-2,3-ジカ ルボキシイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)-7-オキ サビシクロ「2.2.11 ヘプト-5-エン-2,3-ジカルボキシイミド、N-(2-トリフルオロメチルベンゼンスルホニルオキシ)ビシクロ[2.2.1] ヘプタン-5, 6-オキシ-2.3-ジカルボキシイミド、N-(2-トリフルオロメチルベンゼンスル ホニルオキシ) ナフチルイミド、 [0031]

N- (4-トリフルオロメチルベンゼンスルホニルオキシ) スクシンイミド、N- (4-

トリフルオロメチルベンゼンスルホニルオキシ) フタルイミド、N - (4 - トリフルオロメチルベンゼンスルホニルオキシ) ジフェニルマレイミド、N - (4 - トリフルオロメチルベンゼンスルホニルオキシ) ビシクロ [2.2.1] - ペプト- 5 - エン- 2,3 - ジルボキシイミド、N - (4 - トリフルオロメチルベンゼンスルホニルオキシ) - 7 - オキサビシクロ [2.2.1] - 7 - 7 - 7 - 7 + 7 - 8 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 7 - 9 -

 $N-(\sqrt{x})\sqrt{y}$ \sqrt{y} \sqrt{y}

等を挙げることができる。

▲ 5 ▼ ジアゾメタン化合物:

ジアゾメタン化合物としては、例えば、下記式(8)

[0033]

(式中、R₈ およびR₉ は相互に独立にアルキル基、アリール基、ハロゲン置換アル キル基、ハロゲン置換アリール基等の1 価の基を示す。) で表される化合物を挙げることができる。

[0034]

20

30

40

50

ジアゾメタン化合物の具体例としては、ピス(トリフルオロメタンスルホニル)ジアゾメタン、ピス(シクロへキサンスルホニル)ジアゾメタン、ピス(ベンゼンスルホニル)ジアゾメタン、ピス(pートルエンスルホニル)ジアゾメタン、メタンスルホニルーpートルエンスルホニルジアゾメタン、シクロへキサンスルホニルー1, 1- ジメチルエチルスルホニルジアゾメタン、ピス(1, 1- ジメチルエタンスルホニル)ジアゾメタン、ピス(3, 3- ジメチルー1, 5- ジオキサスピロ [5.5] ドデカン-8- スルホニル)ジアゾメタン、ピス(1, 4- ジオキサスピロ [4.5] デカン-7- スルホニル)ジアゾメタン、デスタン等を挙げることができる。

[0035]

▲6▼ジスルホニルメタン化合物:

ジスルホニルメタン化合物としては、例えば、下記式(9)

[0036]

[0037]

「式中、 R_{10} および R_{11} は相互に独立に直鎖状もしくは分岐状の 1 価の脂肪族膜化水素基、シクロアルキル基、アリール基、アラルキル基またはへテロ原子を有する 1 価の何機基を示し、 X および Y は相互に独立にアリール基、水素原子、直鎖状もしくは分岐状の 1 価の脂肪族膜化水素基またはヘテロ原子を有する 1 価の他の有機基を示し、かつ X および Y の少なくとも一方がアリール基であるか、もしくは X と Y が相互に連結して少なくとも 1 個の不飽和結合を有する単環または多環を形成しているか、もしくは X と Y が相互に連結して下記式

[0038] [化12] 次

(c)_n

[0039]

(但し、X' および Y' は相互に独立に水素原子、ハロゲン原子、直鎖状もしくは分岐状のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示すか、もしくは同一のもしくは異なる炭素原子に結合した X' と Y' が相互に連結して炭素単環構造を形成しており、複数存在する X' および Y' はそれぞれ相互に同一でも異なってもよく、n は $2 \sim 1$ 0 の整数である。)

で表される基を形成している。)

で表される化合物を挙げることができる。

[0040]

酸発生剤(B)としては、 \blacktriangle 1 \bigvee オニウム塩化合物および \blacktriangle 4 \bigvee スルホンイミド化合物が好ましく、特に、ビス(4-tープチルフェニル)ヨードニウムトリフルオロメタンスルホネート、ビス(4-tープチルフェニル)ヨードニウムパーフルオロ-nープタンスルホネート、ビス(4-tープチルフェニル)ヨードニウム p-トルエンスルホネート、ビス(4-tープチルフェニル)ヨードニウム 10-カンファースルホネート、ビス(4-tープチルフェニル)ヨードニウム 10-カンファースルホネート、ビス t-プチルフェニル)ヨードニウム 2-トリフルオロメチルペンゼンスルホネート、ビス

40

50

(4-t-7 + v-7 + v-2 + v-2

[0041]

< 酸解離性基含有樹脂>

本発明に用いられる酸解離性基含有樹脂は、フェノール性水酸基、カルボキシル基等の 1 種以上の酸性官能基を含有する樹脂中の酸性官能基の水素原子を、酸の存在下で解離することができる 1 種以上の酸解離性基で置換した、それ自体としてはアルカリ不溶性またはアルカリ非溶性」とはアルカリ難溶性の樹脂である。ここで言う「アルカリ不溶性またはアルカリ難溶性」とは、酸解離性基含有樹脂を含有する感は解射性樹脂組成物を用いて形成されるレジスト被膜の50%以上が見像後に残存する性質を意味する。

[0042]

酸解離性基含有樹脂における前記酸解離性基としては、例えば、置換メチル基、1 一置換 エチル基、1 一置換 - n ープロピル基、1 ー 分岐アルキル基、シリル基、ゲルミル基、ア ルコキシカルボニル基、アシル基、環式酸解離性基等を挙げることができる。

また、前記1- 置換エチル基としては、例えば、1- メトキシエチル基、1- メチルチオエチル基、1, 1- ジメトキシエチル基、1- エトキシエチル基、1- エアルチオエチル基、1, 1- ジェトキシエチル基、1- フェニルチオエチル基、1, 1- ジェトキシエチル基、1- フェニルチオエチル基、1, 1- ジフェノキシエチル基、1- マンデルオキンエチル基、1- ベンジルオキシエチル基、1- ベンジルオキシエチル基、1- ベンジルオキシエチル基、1- エニルエチル基、1, 1- ジフェニルエチル基、1- メトキシカルボニルエチル基、1- エトキシカルボニルエチル基、1- ロポキシカルボニルエチル基、1- ロポキシカルボニルエチル基、1- ロポーントキシカルボニルエチル基、1- ロプトキシカルボニルエチル基、1- エープトキシカルボニルエチル基、1- エープトキシカルボニルエチル基等を挙げることができる。

[0043]

また、前記1一置換-n-プロピル基としては、例えば、1-メトキシ-n-プロピル基 、1-エトキシ-n-プロピル基等を挙げることができる。

40

50

(16)

また、前記 1-分岐アルキル基としては、例えば、i-プロピル基、sec-プチル基、t-プチル基、1, 1-ジメチルプロピル基、1-メチルプチル基、1, 1-ジメチルプチル基等を挙げることができる。

また、前記シリル基としては、例えば、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、i - プロピルジメチルシリル基、メチルジーi - プロピルシリル基、トリーi - プロピルシリル基、- - プチルジ・メチルシリル基、メチルン・エーブチルンリル基、トリーi - アチルシリル基、フェニルジメチルシリル基、メチルジーi - アェニルジリル基、トリーエープチルシリル基等を挙げることができる。

また、前記ゲルミル基としては、例えば、トリメチルゲルミル基、エチルジメチルゲルミル基、メチルジエチルゲルミル基、トリエチルゲルミル基、i ープロピルジメチルゲルミル基、メチルジーi ープロピルゲルミル基、トリーi ープロピルゲルミル基、t ープチルゲルミル基、トリーt ープロピルゲルミル基、t ープチルゲルミル基、メチルグーt ープチルゲルミル基、トリーt ープチルゲルミル基、メチルジーt ープチルゲルミル基、トリーt ープチルゲルミル基等を挙げることができる。

また、前記アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシ カルボニル基、i - プロポキシカルボニル基、t - プトキシカルボニル基等を挙げること ができる。

[0044]

また、前記アシル基としては、例えば、アセチル基、プロピオニル基、プチリル基、ヘブタノイル基、ヘキサノイル基、バレリル基、ピパロイル基、イソパレリル基、ラウリロイル基、メラストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジボイル基、ビベロイル基、スペロイル基、アゼラオイル基、セパコイル基、アウリロイル基、プロピオロイル基、メウリロイル基、クロトレスル基、オレオイル基、マレオイル基、フマロイル基、チレフタロイル基、カンホロイル基、ベンゾイル基、フタロイル基、デレフタロイル基、フロイル基、トルオイル基、ヒドロアトロボイル基、アトロボイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、スシル基、アトロボイル基、アートルエンスルホニル基、メシル基等を挙げることができる。

さらに、前記環式酸解離性基としては、例えば、シクロプロピル基、シクロペンチル基、シクロペキシル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、ラトラヒドロチオフラニル基、3-プロモテトラヒドロジラニル基、4-メトキシテトラヒドロピラニル基、4-メトキシテトラヒドロチオピラニル基、オーメトキシテトラヒドロチオピラニル基、オータト等シテトラとドロチオピラニル基、カーテトラヒドロチオフェン-1,1-ジオキンド基等を挙げることができる。

[0045]

酸解離性基含有樹脂中における酸解離性基の導入率(酸解離性基合有樹脂中の酸性官能基 と酸解離性基との合計数に対する酸解離性基の数の割合)は、酸解離性基や該基が導入さ なるアルカリ可溶性樹脂の種類により一般には規定できないが、好ましくは10~100 %、さらに好ましくは15~100%である。

[0046]

酸解離性基含有樹脂は、例えば、予め製造したアルカリ可溶性樹脂に 1 種以上の酸解離性 基を導入する方法のほか、酸解離性基を有する 1 種以上の重合性不飽和単量体を、場合に より 1 種以上の他の重合性不飽和単量体と共に、(共)重合する方法、酸解離性基を有す る 1 種以上の重縮合成分を、場合により 1 種以上の他の重縮合成分と共に、(共)重縮合 する方法等によって製造することができる。

30

40

50

[0047]

酸解離性基含有樹脂のゲルパーミエーションクロマトグラフィーで測定したポリスチレン 接算重量分子量(以下、「Mw」という。) は、好ましくは1,000~500,000 、さらに好ましくは3,000~300,000である。

また、樹脂のM w と ゲルバーミエーションクロマトグラフィー(G P C)で測定したポリスチレン換算数分子量(以下、「M n」という。)との比(M w / M n)は、通常、1 \sim 1 \sim 1

[0048]

KrFエキシマレーザーを用いる感放射線性樹脂組成物に特に好適に用いられる酸解離性 基含有樹脂としては、下記式 (10)で表される繰り返し単位および酸解離性基を有する 繰り返し単位を含むアルカリ不(難)溶性樹脂(以下、「樹脂(C1)」ともいう)が好 ましい。樹脂(C1)は、 F_2 エキシマレーザー、電子線等を用いる感放射線性樹脂組 成物にも好適に用いることができる。

[0049]

[0050]

(式中、R $_{1}$ 2 は水素原子又は一価の有機基を示す。また $_{a}$ および $_{b}$ は $_{1}$ から $_{3}$ の自然数を表す。)

[0051]

[0052]

酸解離性基を含む繰り返し単位としては、上記繰り返し単位のフェノール性水酸基もしく はカルポキシル基を、上述した酸解離性基で保護した繰り返し単位を挙げることができる

[0053]

樹脂 (C 1) における他の繰返し単位としては、例えば、スチレン、 α - メチルスチレン、 2 - メチルスチレン、 3 - メチルスチレン、 4 - メチルスチレン、 4 - メトキシスチレン、 4 - 1 + カンスチレン、 4 - 1 + カンスチレン、 4 - 1 + カンスチレン、 4 - 1 + カルボニルメチルオキシスチレン、 4 + 1 + カルボニルメチルオキシスチレン、 4 + 1 + カルボニルメチルオキシスチレン

ン、4 - (2'-t-プトキシカルポニルエチルオキシ)スチレン、4 - テトラヒドロフ ラニルオキシスチレン、4 - テトラヒドロピラニルオキシスチレン等のピニル芳香族化合 物:

[0054]

(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸 n-プロピル、(メタ)アクリル酸 i-プロピル、(メタ)アクリル酸 i-プロピル、(メタ)アクリル酸 i-プロピル、(メタ)アクリル酸 i-プロピル、(メタ)アクリル酸 i-プロピル、(メタ)アクリル酸 i-プロピル、(メタ)アクリル酸 i- アクリル酸 i- アンステル i- アクリル酸 i- アクリル酸 i- アンステル i- アクリル酸 i-

[0055]

【化14】

$$\begin{array}{c|c} & & & CH_{9} \\ \hline & & & \\ \hline & \\ \hline & \\ \hline & & \\$$

[0056]

(式中、nは1以上6以下の自然数を表す。)

[0057]

(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、けい皮酸等の不飽和カルボン酸類;

(メタ) アクリル酸 2 - カルボキシエチル、(メタ) アクリル酸 2 - カルボキシプロピル、(メタ) アクリル酸 3 - カルボキシプロピル等の不飽和カルボン酸のカルボキシアルキルエステル 哲:

ルエステル頭, (メタ) アクリロニトリル、α-クロロアクリロニトリル、クロトンニトリル、マレイン ニトリル、フマロニトリル等の不飽和ニトリル化合物:

- インス・フィー・フィット (メタ) アクリルアミド、クロトンアミド、マレインアミド、フマルアミド等の不衡和アミド化合物:

マレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド等の不飽和イミド 化合物;

20

30

40

(19)等の他の含窒素ビニル化合物等の重合性不飽和結合が開裂した単位を挙げることができる

[0058]

これらの他の繰返し単位のうち、スチレン、α-メチルスチレン、4-t-ブトキシスチ レン、4-t-ブトキシカルボニルオキシスチレン、4-t-ブトキシカルボニルメチル オキシスチレン、4-(2'-t-プトキシカルボニルエチルオキシ)スチレン、(メタ)アクリル酸 t - ブチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸トリシ クロデカニル、前記式(11) および(12) で表される単量体等の重合性不飽和結合が 開裂した単位が好ましい。

[0059]

ArFエキシマレーザーを用いる感放射線性樹脂組成物に特に好適に用いられる酸解離性 基含有樹脂としては、下記一般式(14)で表される繰り返し単位および下記一般式(1 5) で表される繰り返し単位から選ばれる少なくとも一種を有するアルカリ不 (難) 溶件 樹脂(以下、「樹脂(C2)」ともいう)が好ましい。樹脂(C2)は、F。 エキシマ レーザー、電子線等を用いる感放射線性樹脂組成物にも好適に用いることができる。

[0060]

(式中、AおよびBは互いに独立に水素原子または酸解離性基を示し、かつAおよびBの 少なくとも1つが酸解離性基であり、DおよびEは互いに独立に水素原子または炭素数1 ~ 4 の 直 鎖 状 も し く は 分 岐 状 の 1 価 の ア ル キ ル 基 を 示 し 、 n は 0 ~ 2 の 整 数 で あ る 。)

[0062] 【化16】

[0061]

$$\begin{array}{ccc}
R_{13} & H_2 \\
-C & -C^2 \\
C & = 0 \\
C & = 0
\end{array}$$

$$\begin{array}{ccc}
C & R_{14} \\
R_{14} & C & R_{14} \\
R_{14} & C & R_{14}
\end{array}$$
(15)

[0063]

(式中、R₁₃は水素原子またはメチル基を示し、各R₁₄は互いに独立に炭素数1~4 の直鎖状もしくは分岐状のアルキル基または置換されても良い炭素数4~20の1価の脂 環式炭化水素基を示すか、あるいは何れか2つのR」。が互いに結合して、それぞれが結 合している炭素原子とともに置換されても良い炭素数4~20の2価の脂環式炭化水素基 を形成し、残りのR、、が炭素数1~4の直鎖状もしくは分岐状のアルキル基または置換 されても良い炭素数 4~20の1価の脂環式炭化水素基である。)

[0064]

上記一般式(14)で表される繰り返し単位としては、5-t-プトキシカルボニルビシ 50

ルボニルビシクロ「2. 2. 1] ヘプト-2-エン. 5-(1-x)キシエトキシ)カル ボニルビシクロ「2.2.1] ヘプト-2-エン、5-(1-シクロヘキシルオキシエト キシ) カルボニルビシクロ「2.2.1] ヘプト-2-エン、5-t-プトキシカルボニ ルメトキシカルボニルビシクロ「2.2.1] ヘプト-2-エン.5-テトラヒドロフラ ニルオキシカルボニルビシクロ「2、2、11 ヘプト-2-エン、5-テトラヒドロピラ ニルオキシカルボニルビシクロ「2.2.1] ヘプト-2-エン、8-t-プトキシカル ボニルテトラシクロ $[4, 4, 0, 1^{2, 5}, 1^{7, 10}]$ ドデカー3ーエン、8-(4 - t - プチルシクロヘキシルオキシ)カルボニルテトラシクロ[4.4.0.1^{2.5}. 1⁷・10] ドデカー3-エン、8-(1-エトキシエトキシ) カルボニルテトラシクロ 「4. 4. 0. 1^{2,5}, 1^{7,10}] ドデカ-3-エン、8-(1-シクロヘキシルオ キシエトキシ) カルボニルテトラシクロ [4.4.0.1^{2,5}.1^{7,10}] ドデカー 3-エン、8-t-ブトキシカルボニルメトキシカルボニルテトラシクロ[4.4.0. 12,5,17,10]ドデカー3-エン、8-テトラヒドロフラニルオキシカルボニル テトラシクロ「4. 4. 0. 1^{2, 5}. 1^{7, 10}] ドデカー3-エン、8-テトラヒド ロピラニルオキシカルボニルテトラシクロ $[4, 4, 0, 1^2, 5, 1^7, 1^0]$ ドデカ 3 - エン等のノルボルネン環の二重結合が開裂した単位が挙げられる。

[0065]

上記一般式 (15) で表される繰り返し単位としては、t - プトキシカルボニル (メタ) アクリレートに由来する繰り返し単位や、下記式で表される繰り返し単位が好ましいもの として挙げられる。

[0066]

【化17】

[0067]

(式中、R₁₃は、水素原子またはメチル基である。)

7.0

報題(C 2)における他の繰返し単位としては、例えば、ノルボルネン(ビシクロ [2 . 2 . 1] ヘプトー2ーエン)、5-メチルビシクロ [2 . 2 . 1] ヘプトー2ーエン、5-エチルビシクロ [2 . 2 . 1] ヘプトー2ーエン、5-エチルビシクロ [2 . 2 . 1] ヘプトー2ーエン、5-ロ [3 . 2 . 1] ヘプトー2ーエン、5-ロ [4 . 4 . 0 . 1 2 · 5 . 1 7 · 1 °] ドデカー3 ーエン、8 ーメチルテトラシクロ [4 . 4 . 0 . 1 2 · 5 . 1 7 · 1 °] ドデカー3 ーエン、8 ーエチルテトラシクロ [4 . 4 . 0 . 1 2 · 5 . 1 7 · 1 °] ドデカー3 ーエン、8 ーエチルテトラシクロ [4 . 4 . 0 . 1 2 · 5 . 1 7 · 1 °] ドデカー3 ーエン、8 ーフルオロテトラシクロ [4 . 4 . 0 . 1 2 · 5 . 1 7 · 1 °] ドデカー3 ーエンなどのノルボルネン骨格を有する単量 最 、

無水マレイン酸、無水イタコン酸などの酸無水物;

樹脂(C1)における他の繰り返し単位として上述した(メタ)アクリル酸エステルの他 50

20

30

、下記式(i)で表される(メタ)アクリル酸エステル等の重合性不飽和結合が開裂した 単位を挙げることができる。

[0069]

 $\begin{array}{c|c}
(R + 8) \\
-C - C \\
-C - C
\end{array}$ (i)

[0070]

(式中、R₁₃は、水素原子またはメチル基である。)

【0071】 特に、上記一般式(14)で表される繰り返し単位を有する樹脂(C2)は、他の繰り返 し単位として無水マレイン酸由来の繰り返し単位を有するものであることが好ましい。

[0072]

 F_2 エキシマレーザーを用いる感放射線性樹脂組成物に特に好適に用いられる酸解離性基含有樹脂としては、下記一般式 (16) で表される繰り返し単位および下記一般式 (17) で表される繰り返し単位から選ばれる少なくとも一種を有するアルカリ不 (難) 溶性のポリシロキサン (以下、「樹脂 (C3)」ともいう) が好ましい。樹脂 (C3) は、A F F エキシマレーザー、電子線等を用いる感放射線性樹脂組成物にも好適に用いることができる。

[0073]

【化19】

[0074]

(式中、Aは互いに独立に酸解離性基を有する1価の有機基を示し、R₁₄は置換しても 良い炭素数1~20の直鎖状、分岐状もしくは環状の炭化水素基を示す。)

[0075]

上記一般式(16)および(17)における A としては、シクロアルキル基、トリシクロデカニル基、テトラシクロドデシル基、アダマンチル基等の脂環式炭化水素基や、当該脂環式炭化水素基のハロゲン化物、ハロゲン化芳香族炭化水素基を有する基が好ましい。特に、上記式(16)で表される繰り返し単位が好ましく、特に好ましい具体例としては、下記式(ii)~(v)で表される繰り返し単位を挙げることができる。

[0076]

【化20】

[0077]

樹脂(C3)における他の繰返し単位としては、例えば、メチルトリメトキシシラン、メ チルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン等のア ルキルアルコキシシランを加水分解させた構造を有する繰り返し単位;

下記式(vi)~(ix)で表される繰り返し単位等を好ましいものとして挙げることができる。

[0078]

【化21】

$$(i)$$

50

40

20

30

[0079]

樹脂(C3)は、酸解離性基を含有するシラン化合物を共縮合させるか、ポリシロキサン に酸解離性基を導入することにより得られる。酸解離性基を含有するシラン化合物を共縮 合させる場合には、触媒として、酸性触媒を用いることが好ましい。特に、シラン化合物 を酸性触媒の存在下で重縮合させた後、塩基性触媒を加えてさらに反応させることが好ま しい。

[0080]

上記酸性触媒としては、塩酸、硫酸、硝酸、ホウ酸、燐酸、四塩化チタン、塩化亜鉛、塩化アルミニウム等の無機酸類;蟻酸、酢酸、n-プロピオン酸、酪酸、吉草酸、シュウ酸、マロン酸、こはく酸、マレイン酸、フマル酸、アジピン酸、フタル酸、テレフタル酸、無水酢酸、無水マレイン酸、クエン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メタンスルホン酸等の有機酸類を挙げることができる。これらのうち、塩酸、硫酸、酢酸、シュウ酸、マロン酸、マレイン酸、フマル酸、無水酢酸、無水マレイン酸等が好ましい

[0081]

また、上記塩基性触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化パリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム等の無機塩揺類;トリエチルアミン、トリーnープロピルアミン、トリーnーブチルアミン、ピリジン等の有機塩揺類を挙げることができる。

[0082]

<アルカリ可溶性樹脂>

本発明の (C) (口) 成分および (D) 成分として使用されるアルカリ可溶性樹脂は、アルカリ現像液と親和性を示す官能碁、例えば、フェノール性水酸碁、カルボキシル碁等の酸性官能基を 1 種以上有する、アルカリ現像液に可溶な樹脂である。

このようなアルカリ可溶性樹脂としては、例えば、下記式(18)~(20)で表される 繰返し単位を1種以上有する付加重合系樹脂、下記式(21)で表される繰返し単位を1 種以上有する重縮合系樹脂等を挙げることができる。

[0083]

【化22】

[0084]

(式中、 R $_1$ $_5$ は水素原子またはメチル基を示し、 R $_1$ $_6$ は水酸基、カルボキシル基、 - R $_1$ $_7$ C O O H 、 - O R $_1$ $_7$ C O O H 、 - C C R $_1$ $_7$ C O O H (但し、 R $_1$ $_7$ は - (C H $_2$) $_8$ - を示し、 g は 1 ~ 4 の整数である。)を示す。)

[0085]

【化23】

30

40

50

$$\begin{array}{c|c}
OH \\
R_{18} \\
\hline
R_{18} \\
R_{18}
\end{array}$$
(21)

[0086]

(式中、各R1。は相互に独立に水素原子または炭素数1~4のアルキル基を示す。)

[0087]

アルカリ可溶性機脈が付加重合系ಳ脂の場合、前記式 (18) ~ (20) で表される繰返 し単位のみから構成されていてもよいが、生成した模脂がアルカリ現像液に可溶である暖 りでは、1種以上の他の繰返し単位をさらに有することもできる。

このような他の繰返し単位としては、例えば、上述した樹脂(C1)における他の繰り返し単位等を挙げることができる。

前記付加重合系離順は、例えば式(18)~(20)で表される繰返し単位に対応する単 量体を、場合により前記他の繰返し単位を形成する単量体と共に、(共)重合することに より製造することができる。

これらの(共)重合は、単量体や反応媒質の種類等に応じて、ラジカル重合開始剤、アニオン重合触媒、配位アニオン重合触媒、カチオン重合触媒等の重合開始剤あるいは重合触媒、を適宜に選定し、塊状重合、溶液重合、沈澱重合、乳化重合、懸濁重合、塊状一懸濁重合等の適宜の重合方法により実施することができる。

[0088]

また、アルカリ可溶性樹脂が重縮合系樹脂の場合、前配式(21)で表される繰返し単位 のみから構成されていてもよいが、生成した樹脂がアルカリ現像液に可溶である限りでは 、1種以上の他の繰返し単位をさらに有することもできる。

このような重縮合系樹脂は、式(21)で表される繰返し単位に対応するフェノール類と アルデヒド類とを、場合により他の繰返し単位を形成しうる重縮合成分と共に、酸性触媒 の存在下、水媒質中または水と親水性溶媒との混合媒質中で(共)重縮合することによっ て製造することができる。

前記フェノール類としては、例えば、 $o-\rho$ レゾール、 $m-\rho$ レゾール、 $p-\rho$ レゾール、2, 3-4シレノール、2, 4-4シレノール、2, 5-4シレノール、3, 4-4シレノール、3, 5-4シレノール、2, 3, 5-6り以チルフェノール、4, 5-6り以チルフェノール等を挙げることができ、また前記アルデヒド類としては、例えば、ホルムアルデヒド、インズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド等を挙げることができる。

[0089]

アルカリ可溶性機脂中の式(18)~(21)で表される繰返し単位の含有率は、場合により含有される前記他の繰返し単位の種類により一概に規定できないが、好ましくは10~100年ル%、さらに好ましくは20~100年ル%である。

アルカリ可溶性樹脂は、式(18)、式(21)等で表されるような炭素一炭素不飽和結合を含有する繰返し単位を有する場合、水素添加物として用いることもできる。この場合の水素添加率は、式(18)、式(21)等で表される繰返し単位中に含まれる炭素一炭素不飽和結合の、通常、70%以下、70%以下、70%以下、さらに好ましくは40%以下である。この場合、水素添加率が70%を超えると、アルカリ可溶性樹脂のアルカリ現像液による現像性が低下するおそれがある。

[0090]

本発明で用いられるアルカリ可溶性樹脂としては、特に、ポリ(p ーヒドロキシスチレン 、p ーヒドロキシスチレン/p ーヒドロキシー α ーメチルスチレン共重合体、p ーヒド ロキシスチレン/スチレン共重合体等を主成分とする樹脂が好ましい。 (26)

アルカリ可溶性樹脂のMwは、感放射線性樹脂組成物の所望の特性に応じて変わるが、好ましくは1,000~150,000、さらに好ましくは3,000~100,000である。

上記アルカリ可溶性樹脂は、単独でまたは2種以上を混合して使用することができる。

<アルカリ溶解性制御剤>

本発明で用いられるアルカリ溶解性制御剤としては、例えば、フェノール性水酸基、カルボキンル基等の酸性官能基の水素原子を酸解離性基で置換した化合物を挙げることができる。

このような酸解離性基としては、例えば、上記酸解離性基含有樹脂について例示した、置換メチル基、1 一置換エチル基、1 一置換- n 一プロビル基、1 一分岐アルキル基、シリル基、ゲルミル基、アルコキシカルボニル基、アシル基、環式酸解離性基等の酸解離性基と同様の基を発げることができる。

アルカリ溶解性制御剤は、低分子化合物でも高分子化合物でもよいが、低分子化合物の具体例としては、下記式(22)~(26)で表される化合物等を挙げることができる。

[0092] [化24]

$$\begin{pmatrix} R_{19}Q \rangle_{p} & \begin{pmatrix} R_{20}Q \rangle_{s} & R_{20}Q & (R_{20}Q) & R_{20}Q & (R_{20}Q & (R_{20}Q & R_{20}Q & R_{$$

$$\begin{pmatrix}
R_{19}O \\
P_{21} \\
R_{20}
\end{pmatrix}_{q} \begin{pmatrix}
R_{20} \\
R_{20}
\end{pmatrix}_{r} \begin{pmatrix}
R_{19}O \\
R_{20}
\end{pmatrix}_{r} \begin{pmatrix}
R_{20} \\
R_{20}
\end{pmatrix}_{u} \begin{pmatrix}
R_{20} \\
R_{20$$

[0093]

[0094]

10

30

50

また、高分子のアルカリ溶解性制御剤としては、例えば、前述した酸解離性基含有樹脂を 使用することができる。

[0095]

< 架橋剤(E)>

本発明のネガ型感放射線性樹脂組成物において使用される架橋剤としては、例えば、アルカリ可溶性樹脂との架橋反応性を有する1種以上の官能基(以下、「架橋性官能基」という。)を有する化合物を挙げることができる。

[0096]

[0097]

上記架橋性官能基を有する化合物としては、例えば、ピスフェノール A 系エポキシ化合物、ピスフェノール F 系エポキシ化合物、ピスフェノール S 系エポキシ化合物、ノボラック 健脂系エポキシ化合物、レゾール始脂系エポキシ化合物、ボリ (ドロキシストレン) 系 エポキシ化合物、メチロール基含有メラミン化合物、メチロール基含有ペンゾグアナミン化合物、メチロール基含有尿素化合物、メチロール基含有マンゾグアナミン化合物、アルコキシアルキル基含有マンゾグアナミン化合物、アルコキシアルキル基含有フェノール化合物、カルボキシメチル基含有尿素化合物、アルコキシアルキル基含有フェノール化合物、カルボキシメチル基含有スンゾグアナミン樹脂、カルボキシメチル基含有スンゾグアナミン樹脂、カルボキシメチル基含有フェノール樹脂、カルボキシメチル基含有フェノール樹脂、カルボキシメチル基含有スシミン化合物、カルボキシメチル基含有スシミン化合物、カルボキシメチル基含有尿素化合物、カルボキシメチル基含有アミン化合物、カルボキシメチル基含有アミン化合物、カルボキシメチル基含有アミン化合物等を挙げることができる。

[0098]

[0099]

架縣別としては、さらに、アルカリ可溶性樹脂中の酸性官能基の水素原子を前記架橋性官能基で置換して、架橋別としての性質を付与した化合物も好適に使用することができるその場合の架橋性官能基の導入率は、架橋性官能基や該が導入されるアルカリーの水が、アルカリ可溶性樹脂中の全酸性官能基に対して、通常、 $5\sim60$ モル%、好ましくは $10\sim50$ モル%、さらに好ましくは $15\sim40$ モル%である。この場合、架橋性官能基の導入率が5 モル%未満では、残膜率の低下、パターンの定行や影潤等を来しやすくなる傾向があり、また60 モル%を超えると、露光部の現像性が低下する傾向がある。

[0100]

本発明における架橋剤としては、特に、メトキシメチル基含有化合物、例えば、ジメトキシメチルウレア、テトラメトキシメチルグリコールウリル等が好ましい。架橋剤は、単独

50

でまたは2種以上を混合して使用することができる。

[0101]

本発明のポジ型感放射線性樹脂組成物およびネガ型感放射線性樹脂組成物を構成する各成 分の配合割合は、レジストの所望の特性に応じて変わるが、好ましい配合割合は、以下の とおりである。

先ず、ポジ型感放射線性樹脂組成物において、化合物(A)の配合量は、酸解離性基含有樹脂またはアルカリ可溶性樹脂 100 重量部当たり、好ましくは $0.001\sim15$ 重量部、さらに好ましくは $0.001\sim10$ 重量部、特に好ましくは $0.005\sim5$ 重量部である。この場合、化合物(A)の配合量が0.00 1 重量部未満では、本発明の効果が十分得られる場合があり、一方15 重量部を超えると、感度や露光部の現像性が低下する傾向がある。

また、アルカリ溶解性制御剤の配合量は、アルカリ可溶性樹脂 100 重量部当たり、好ましくは $5\sim1$ 5 0 重量部、さらに好ましくは $5\sim1$ 0 0 重量部、特に好ましくは $5\sim5$ 0 重量部である。この場合、アルカリ溶解性制御剤の配合量が 5 重量部未満では、残膜率の低下、パターンの膨潤等を来しやすくなる傾向があり、一方 1 5 0 重量部を超えると、膜面荒れや膜強度の低下を来しやすくなる傾向がある。

[0102]

次に、ネガ型感放射線性樹脂組成物において、化合物(A)の配合量は、アルカリ可溶性樹脂 100 重量部当たり、好ましくは0.001~15 重量部、さらに好ましくは0.005~5 重量部である。この場合、化合物(A)の配合量が0.001 重量部未満では、本発明の効果が十分得られない場合があり、一方15 重量部を超えると、感度や微光部の現像性が低下する傾向がある。

また、酸発生剤 (B) の配合量は、アルカリ可溶性樹脂 100 重量部当たり、好ましくは $0.01 \sim 70$ 重量部、さらに好ましくは $0.1 \sim 50$ 重量部、特に好ましくは $0.5 \sim 20$ 重量部である。この場合、酸発生剤 (B) の配合量が 0.01 重量部未満では、感度や解像度が低下する傾向があり、一方 70 重量部を超えると、レジストの塗布性やパターン形状の劣化を来しやすくなる傾向がある。

また、 架橋剤の配合量は、 アルカリ可溶性樹脂 $100重量部当たり、 好ましくは <math>5\sim95$ 重量部、 さらに 好ましくは $15\sim85$ 重量部、 特に 好ましくは $20\sim75$ 重量部である。 この場合、 架橋剤の配合量が 5 重量部未満では、 残膜率の低下、 パターンの 蛇行や 膨潤等 を 来しやすく なる 傾向があり、 一方 95 重量部を 超えると、 露光部の 現像性が 低下する 傾向がある。

[0103]

<添加剤>

本発明の感放射線性樹脂組成物には、必要に応じて、化合物 (A) 以外の酸拡散制御剤 (以下、「他の酸拡散制御剤」という。)、界面活性剤、增感剤等の各種の添加剤を配合することができる。また、酸解離性基含有樹脂を用いるポジ型感放射線性樹脂組成物に対しては、さらに前記アルカリ可溶性樹脂および/またはアルカリ溶解性制御剤を配合することもできる。

[0104]

[他の酸拡散制御剤]

本発明においては、さらに、線光により機発生剤(B)あるいは他の機発生剤から生じた 酸のレジスト被膜中における拡散現象を制御し、非螺光領域での好ましくない化学反応を 抑制する作用を有する酸拡散制御剤を配合することが好ましい。

このような酸拡散制御剤を使用することにより、レジストとして解像度が向上するととも

40

50

に、露光から現像処理までの引き置き時間(PED)の変動によるレジストパターンの線 幅変化を抑えることができ、プロセス安定性に極めて優れたものとなる。

酸拡散制御剤としては、レジストパターンの形成工程中の露光や加熱処理により塩基性が 変化しない含窒素有機化合物が好ましい。

このような含窒素有機化合物としては、例えば、下記式(27)

[0105]

[
$$(£ 2 5]$$
]
 $R^{21} \longrightarrow N \longrightarrow R^{22}$
 R^{23}
(27)

【式 (27) において、 R^{2-1} 、 R^{2-2} および R^{2-3} は独立に水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換のアリール基または置換もしくは非置換のアラルトル基を示す。」で表される化合物(以下、「含窒素化合物(1)」という。)、同一分子内に窒素原子を2個有するジアミノ化合物(以下、「含窒素化合物(11)」という。)、窒素原子を3個以上有するジアミノ重合体(以下、「含窒素化合物(11)」という。)、アミド基含有化合物、ウレア化合物、含窒素複素環式化合物等を挙げることができる。

[0106]

含窒素化合物 (1) としては、例えば、n- ヘキシルアミン、n- ペプチルアミン、n- オクチルアミン、n- ノニルアミン、n- デシルアミン等のモノアルキルアミン類;ジーn- グチルアミン、ジーn- ペンチルアミン、ジーn- ペンチルアミン、ジーn- ペンチルアミン、ジーn- ペンチルアミン、ジーn- グラー ボラン・ボールアミン、ジーn- オクチルアミン、ジーn- プロピルアミン、トリーn- ブラッピアリエチルアミン、トリーn- ペンチルアミン、トリーn- ペンチルアミン、トリーn- ペンチルアミン、トリーn- ペンチルアミン、トリーn- ペンチルアミン、トリーn- ペンチルアミン、トリーn- オクチルアミン、トリーn- ノニルアミン、トリーn- アミン、カリーn- オクチルアミン、ハー ボラン、カリー アン・カー オクチルアミン、ハー オクチルアニリン、ハー ボラン・カー・カー オクチルアミン、ハー オクチルアニリン、スーメチルアニリン、スーメチルアニリン、スーメチルアニリン、オーニトロアニリン、ジフェニルアミン、トリフェニルアミン、、トリエタノールアミン等のアルカノールアミン類等を挙げることができる。

[0 1 0 7]

含窒素化合物(11)としては、例えば、エチレンジアミン、N, N, N, N, N, N - テトラメチルエチレンジアミン、デトラメチレンジアミン、ヘキサメチレンジアミン、N, N, N, N - N - クトラオス(2 - 2

[0108]

含窒素化合物(111)としては、例えば、ポリエチレンイミン、ポリアリルアミン、ジメチルアミノエチルアクリルアミドの重合体等を挙げることができる。

前記アミド基含有化合物としては、例えば、ホルムアミド、Nーメチルホルムアミド、N ,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチ ルアセトアミド、プロピオンアミド、ベンズアミド、ピロリドン、N-メチルピロリドン 等を挙げることができる。

40

50

[0109]

前記ウレア化合物としては、例えば、尿素、メチルウレア、1,1-ジメチルウレア、1,3-ジメチルウレア、1,1,3,3-デトラメチルウレア、1,3-ジフェニルウレア、トリブチルチオウレア等を挙げることができる。

[0110]

前記含窒素複素環式化合物としては、例えば、イミダゾール、ベンズイミダゾール、2-フェニルベンズイミダゾール、2-メチルイミダゾール、4-メチルイミダゾール、2 ーフェニルイミダゾール 4-スチルイミダゾール、2 ーフェニルイミダゾール 4-スチルイミダゾール 2 ーフェニルイミダゾール 50 イミダゾール 50 イニメール 50 パーカー 50

[0111]

これら含窒素有機化合物のうち、含窒素化合物(1)、含窒素複素環式化合物等が好まし い。また、含窒素化合物(1)の中では、トリアルキルアミン類が特に好ましく、含窒素 複素環式化合物の中では、イミダゾール類が特に好ましい。

前記酸拡散制御剤は、1種単独でまたは2種以上を混合して使用することができる。

[0112]

[界面活性剤]

前記界面活性剤は、感放射線性樹脂組成物の塗布性、ストリエーション、現像性等を改良 する作用を示す。このような界面活性剤としては、アニオン系、カチオン系、ノニオン系 あるいは両性のいずれでも使用することができるが、好ましい界面活性剤は、ノニオン系 製面活性剤である。

[0113]

前記ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等のほか、以下商品名で、KP(信越化学工業製)、ポリフロー(共栄社油脂化学工業製)、エフトップ(トーケムプロダクツ製)、メガファック(大日本インキ化学工業製)、フロラード(住友スリーエム製)、アサヒガード、サーフロン(旭硝子製)等の8をシリーズを挙げることができる。

これらの界面活性剤は、1種単独でまたは2種以上を混合して使用することができる。 界面活性剤の配合量は、感放射線性樹脂組成物中の全樹脂成分100重量部に対して、界

面活性剤の有効成分として、通常、2重量部以下である。

[0114]

「増感剤]

前記增感剤は、放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(A)あるい は他の酸発生剤に伝達し、それにより酸の生成量を増加する作用を示すもので、感放射線 性樹脂組成物のみかけの感度を向上させる効果を有する。

好ましい増感剤は、アセトフェノン類、ベンゾフェノン類、ナフタレン類、ビアセチル、 エオシン、ローズベンガル、ピレン類、アントラセン類、フェノチアジン類等である。

40

50

これらの増感剤は、1種単独でまたは2種以上を混合して使用することができる。増感剤 の配合量は、感放射線性樹脂組成物中の全樹脂成分100重量部に対して、通常、50重 量部以下、好ましくは30重量部以下である。

[0115]

また、染料あるいは顔料を配合することにより、露光部の潜像を可視化させて、露光時の ハレーションの影響を緩和でき、接着助剤を配合することにより、基板との接着性を改善 することができる。

さらに、他の添加剤としては、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等 、具体的には4-ヒドロキシ-4'-メチルカルコン等を挙げることができる。

[0116]

<溶剤>

ポジ型感放射線性樹脂組成物およびネガ型感放射線性樹脂組成物は、使用時に、固形分濃 度が例えば $5 \sim 50$ 重量%となるように溶剤に溶解したのち、例えば孔径 0.2μ m程度 のフィルターでろ過することによって、組成物溶液として調製される。

[0117]

前記溶剤としては、例えば、エーテル類、エステル類、エーテルエステル類、ケトン類、 ケトンエステル類、アミド類、アミドエステル類、ラクタム類、ラクトン類、(ハロゲン 化) 炭化水素類等を挙げることができ、より具体的には、エチレングリコールモノアルキ ルエーテル類、ジエチレングリコールジアルキルエーテル類、プロピレングリコールモノ アルキルエーテル類、プロピレングリコールジアルキルエーテル類、エチレングリコール モノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルアセテ ート類、酢酸エステル類、ヒドロキシ酢酸エステル類、乳酸エステル類、アルコキシ酢酸 エステル類、(非)環式ケトン類、アセト酢酸エステル類、ピルビン酸エステル類、プロ ピオン酸エステル類、N.N-ジアルキルホルムアミド類、N.N-ジアルキルアセトア ミド類、N-アルキルピロリドン類、y-ラクトン類、(ハロゲン化)脂肪族炭化水素類 、 (ハロゲン化) 芳香族炭化水素類等を挙げることができる。

[0118]

このような溶剤の具体例としては、エチレングリコールモノメチルエーテル、エチレング リコールモノエチルエーテル、エチレングリコールモノーn-プロピルエーテル、エチレ ングリコールモノーnープチルエーテル、ジエチレングリコールジメチルエーテル、ジエ チレングリコールジエチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、 ジエチレングリコールジーn-ブチルエーテル、エチレングリコールモノメチルエーテル アセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコール モノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、 プロピレングリコールモノーn-プロピルエーテルアセテート、イソプロペニルアセテー ト、イソプロペニルプロピオネート、トルエン、キシレン、メチルエチルケトン、シクロ ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-ヒドロキシプロピ オン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、 ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチル酪酸メチル、乳酸メチル、乳酸エチ ル、乳酸 n - プロピル、乳酸 i - プロピル、 3 - メトキシブチルアセテート、 3 - メチル -3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、3 - メチル-3-メトキシブチルプチレート、酢酸エチル、酢酸n-プロピル、酢酸n-ブ チル、アセト酢酸メチル、アセト酢酸エチル、3-メトキシプロピオン酸メチル、3-メ トキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン 酸エチル、N-メチルピロリドン、N. N-ジメチルホルムアミド、N. N-ジメチルア セトアミド等を挙げることができる。

[0119]

これらの溶剤のうち、プロピレングリコールモノアルキルエーテルアセテート類、2-へ プタノン、乳酸エステル類、2-ヒドロキシプロピオン酸エステル類、3-アルコキシプ ロピオン酸エステル額等が好ましい。

40

50

前記溶剤は、1種単独でまたは2種以上を混合して使用することができる。

さらに前記溶剤には、必要に応じて、ベンジルエチルエーテル、ジーnーヘキシルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエー、ル、アセトニルアセトン、イソホロン、カブロン酸、カブリル酸、1ーオクタノール、1ーノナノール、ベンジルアルコール、酢酸ベンジル、安息香酸エチル、シュウ酸ジエチル、マレイン酸ジエチル、yープチロラクトン、炭酸エチレン、炭酸プロピレン、エチレングリコールモノフェニルエーテルアセテート等の高沸点溶剤を1種以上添加することもできる。

[0120]

<レジストパターンの形成>

本発明の感放射線性樹脂組成物からレジストパターンを形成する際には、前述のようにして調製された組成物溶液を、回転塗布、流延塗布、ロール塗布等の手段によって、例えば、シリコンウェハー、アルミニウムで被覆されたウェハー等の基板上に塗布することにより、レジスト被膜を形成したのち、加熱処理(以下、「PB」という。)を行い、次次でき 所定のマスクパターンを介して波レジスト被膜に露光する。その際に使用することができる放射線としては、水銀灯の輝線スグトル(波長2 5 4 n m)、K r F エキシマレーザー(波長2 4 8 n m)、A r F エキシマレーザー(で設長1 5 7 n m)等の選紫外線が好ましいが、酸発生剤(B)の種類に応じて、シンクロトロン放射線等のX 線、電子線等の荷電粒子線等を使用することもできる。また、放射線量等の露光条件は、感放射線性樹脂組成物の配合組成、添加剤の種類等に応じて、適宜選定される。

また、前記アルカリ性水溶液からなる現像液には、例えば、メタノール、エタノール等の 水溶性有機溶剤や界面活性剤等を適量添加することもできる。

なお、このようにアルカリ性水溶液からなる現像液を使用する場合には、一般に、現像後、水洗する。

[0121]

【発明の実施の形態】

以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は 、これらの実施例に何ら制約されるものではない。

[0122]

【実施例】

「化合物 (A) の合成]

以下に記載の方法により、化合物 (A-1) ~ (A-2) を合成した。

合成例1

t-7トキシカリウム 2. 0g、テトラヒドロフラン 70 m l および 2 - メチルイミダゾール 1. 2 3 g を 2 0 0 m l フラスコ容器内に入れ、3 0 分間 機 押後、2, 3 - ジヒドロキシル - n - プロピルプロマイド 2. 5 g を t- プタノール 5 m l に 溶解した 溶液を加えて、1 時間 遺流させたのち、さらに 1 N H C l 溶液を5 m l 加え、終夜放置した。放置後、減圧にて溶媒を除去し、ジクロロメタンで抽出後、飽和炭酸水素ナトリウム水溶液にて

洗浄し、無水硫酸マグネシウムにより乾燥を行った。無水硫酸マグネシウムを除去後、減圧にて溶媒を除去し、カラムクロマトグラフィー(展開液:酢酸メチル/メタノール(重量比90/10) 混合溶液)による精製を行い、 $1-(2^*,3^*-$ ジヒドロキシルプロピル)-2-メチルイミダゾール(以下、「化合物(A-1)」とする。) 1.9 gを得た。得5れた化合物の 1 H-NMRスペクトルを図1に示す。

[0123]

合成例 2

 $t-\mathcal{I}$ トキシカリウム 2. 0 g、テトラヒドロフラン 7 0 m l および 2 - メチルイミダゾール1. 2 3 gを 2 0 0 m l \mathcal{I} フラスコ容器内に入れ、3 0 分間 整件後、1、3 - ジベン ルプロモベンゼン 1. 8 gを $t-\mathcal{I}$ プタノール 5 m l に溶解した溶液を加えて、1 時間 還流 させたのち、減圧にて溶媒を除去後、カラムクロマトグラフィー(展開液:酢酸メチル・メタノール(重量比 9 0 / 1 0) 混合溶液)による精製を行い、1、3 - ジ(2 ' - メチルー1 ' - 4 ミダゾイルメチル)ベンゼン(以下、「化合物(A- 2) 」とする。) 1. 2 gを得た。得られた化合物の 1 H - N M R スペクトルを図 2 に示す。

[0124]

「 酸解離性基含有樹脂の合成]

以下に記載の方法により、酸解離性基含有樹脂(C-1)~(C-10)を合成した。また、得られた酸解離性基含有樹脂(C-1)~(C-10)のM w 及びM n は、東ソー(株)製G P C カラム(G 2 0 0 0 H X L 2 本、G 3 0 0 0 H X L 1 本、G 4 0 0 0 H X L 1 本)を用い、流量1 . 0 ミリリットル/分、溶出溶剤テトラヒドロフラン、カラム温度 4 0 C の分析条件で、単分散ポリスチレンを標準とするゲルパーミエーションクロマトグラフィー(G P C)により測定した。

[0125]

< 1 > 酸解離性基含有樹脂(C-1)

p-Tvehキシスチレン101g、スチレン5g、p-t-Tvehキシスチレン42g、A1BN6g及びt-Freeシルメルカプタン1gを、プロピレングリコールモノメチルエーテル160gに溶解した後、窒素雰囲気下、反応温度を70℃に保持して16時間重合させた。重合後、反応溶液を大量のヘキサン中に滴下して、生成した樹脂を凝固精製した。次いで、この精製樹脂に、再度プロピレングリコールモノメチルエーテル150gを加えた後、更にメタノール300g、p-t-Tveh280g及び水15gを加えて、満点にと後、更にメタノール300g、p-t-Tveh280g及び水15gを加えて、満点にと流流させながら、8時間加水分解反応を行なった。反応後、溶剤及びトリエチルアミン80g及び水15gを加えて、満点にと減圧電去し、得られた樹脂をアセトンに溶解し、次いで大量の水中に滴下して漫固させ、生成した白色粉末をろ過して、減圧下50℃で一晩乾燥した。得られた樹脂は、p-t-Tveh16000、p-t-Tveh170 p-t-Tveh170 p-t-Tveh170 p-t-Tveh170 p-t-Tveh170 p-t-Tveh170 p-t-Tveh170 p-t-Tveh170 p-t-Tveh270 p-t-Tveh27

[0126]

< 2 > 酸解離性基含有樹脂(C-2)

[0127]

< 3 > 酸解離性基含有樹脂(C-3)

p-P t-P t-Pt ードデシルメルカプタン1gを、プロピレングリコールモノメチルエーテル160gに 溶解した後、窒素雰囲気下、反応温度を70℃に保持して16時間重合させた。重合後、 反応溶液を大量のヘキサン中に滴下して、生成した樹脂を凝固精製した。次いで、この精 製樹脂に、再度プロピレングリコールモノメチルエーテル150gを加えた後、更にメタ ノール300g、トリエチルアミン80g及び水15gを加えて、沸点にて還流させなが ら、8時間加水分解反応を行なった。反応後、溶剤及びトリエチルアミンを減圧留去し、 得られた樹脂をアセトンに溶解し、次いで大量の水中に適下して凝固させ、生成した白色 粉末をろ過して、減圧下50℃で一晩乾燥した。得られた樹脂は、Mwが16500、M w/Mnが1.7であり、13C-NMR分析の結果、p-ヒドロキシスチレンとp-t -ブトキシスチレンとの共重合モル比が 67:33であった。この樹脂を樹脂(C-3) とする。

[0128]

< 4 > 酸解離性基含有樹脂(C-4)

ポリ(p-ヒドロキシスチレン)25gを酢酸n-ブチル80gに溶解して、窒素ガスに より30分間バブリングを行った。次いで、この溶液にジー1-ブチルジカーボネート4 9gを加え、更にトリエチルアミン25gを添加し、60℃で7時間反応させた。その後 、酢酸n-ブチルを減圧留去し、得られた樹脂をアセトンに溶解し、次いで大量の水中に 適下して凝固させ、生成した白色粉末をろ過して、減圧下50℃で一晩乾燥した。得られ た樹脂は、Mwが12000、Mw/Mnが1.7であった。また、13C-NMR分析 の結果、ポリ (p-ヒドロキシスチレン) 中のフェノール性水酸基の水素原子の26モル %が t - プトキシカルボニル基で置換された構造を有するものであった。この樹脂を樹脂 (C-4) とする。

[0129]

< 5 > 酸解離性基含有樹脂(C-5)

ポリ (p-ヒドロキシスチレン) 2 5 gをプロピレングリコールモノメチルアセテート1 00gに溶解して、窒素ガスにより30分間パブリングを行った。次いで、この溶液にエ チルビニルエーテル 4.8 g を加え、触媒としてp-トルエンスルホン酸ピリジニウム塩 1 gを添加し、室温で12時間反応させた。その後、反応溶液を1重量%アンモニア水溶 液中に滴下して樹脂を沈殿させ、ろ過した後、50℃の真空乾燥器内で一晩乾燥した。得 られた樹脂は、 M w が 1 3 0 0 0 、 M w / M n が 1 . 7 であった。また、 ¹ H – N M R 分 析の結果、ポリ(p-ヒドロキシスチレン)中のフェノール性水酸基の水素原子の34モ ル%がエトキシキシエチル基で置換された構造を有するものであった。この樹脂を樹脂(C-5) とする。

[0130]

< 6 > 酸解離性基含有樹脂(C-6)

モル比 9 2 : 8 の p - ヒドロキシスチレン、 p - t - プトキシカルボニルオキシスチレン 共重合物25gをプロピレングリコールモノメチルアセテート100gに溶解して、窒素 ガスにより30分間バブリングを行った。次いで、この溶液にエチルビニルエーテル3. 3gを加え、触媒としてp-トルエンスルホン酸ピリジニウム塩1gを添加し、室温で1 2時間反応させた。その後、反応溶液を1重量%アンモニア水溶液中に滴下して樹脂を沈 殿させ、ろ渦した後、50℃の真空乾燥器内で一晩乾燥した。得られた樹脂は、Mwが1 3000、Mw/Mnが1.8であった。また、13C-NMR分析の結果、ポリ(p-ヒドロキシスチレン)中のフェノール性水酸基の水素原子の23モル%がエトキシキシエ チル基で、8モル%がt-ブチル基で置換された構造を有するものであった。この樹脂を 樹脂 (C-6) とする。

[0131]

モル比90:10のp-ヒドロキシスチレン、p-t-ブトキシスチレン共重合物25gをプロピレングリコールモノメチルアセテート100gに溶解して、窒素ガスにより30分間パブリングを行った。次いで、エチルピニルエーテル3.3gを加え、触媒としてp-トルエンスルホン酸ピリジニウム塩1gを添加し、室温で12時間反応させた。その後、反応溶液を1重量%アンモニア水溶液中に滴下して樹脂を沈殿させ、ろ過した後、50℃の真空乾燥器内で一晩乾燥した。得5れた樹脂は、Mwが13000、Mw/Mnが101であった。また、「³С-NMR分析の結果、ポリ(p-ヒドロキシスチレン)のフェノール性水酸基の水素原子の23モル%がエトキシキシエチル基で、10モル%がt-ブチル基で置換された構造を有するものであった。この樹脂を樹脂(C-7)とする

[0132]

< 8 > 酸解離性基含有樹脂(C-8)

[0133]

< 9 > 酸解離件基含有樹脂(C-9)

上記一般式(i)で表される化合物(但し、R $_{13}$ はメチル基) 30gとメタクリル酸 2-メチルー2-アダマンチル20gをテトラヒドロフラン 50gに溶解して均一溶液とした後、窒素を 30分間吹き込んだ。次いで、この溶液に重合開始剤としてアゾスインプチロニトリル3gを加え、65℃に加熱した。その後、同温度に保って 6時間加熱攪拌した。反応終了後、反応溶液を室温まで冷却し、テトラヒドロフラン 50gを加えて希釈し後、n-ヘキサン 10000ミリリットル中に投入し、析出した白色粉体を30、乾燥することにより触脂を得た。

得られた樹脂は、M w が 1 2 0 0 0 であり、上記式 (i) の化合物及びメタクリル酸 2 ー メチルー 2 ーアダマンチルに由来する各繰り返し単位の含有率がそれぞれ6 0 モル%及び 4 0 モル%の共重合体であった。この樹脂を樹脂 (C - 9) とする。

[0134]

< 1 0 > 酸解離性基含有樹脂(C-10)

提拌機、寒流冷却器及び温度計を装着した3つロフラスコに、上記一般式(i i i)で表される繰り返し単位を形成するシラン化合物(但し、Si に結合するアルコーシル基はエトキシ基である)1.52g、上記一般式 (vi)で表される繰り返し単位を形成するシラン化合物(但し、Si に結合するアルコキシル基はエトキシ基である)1.57g、メチルトリエトキシシラン1.91g、4-メチルー2-ペンタノン15g、シュウ酸水溶液(濃度1.75質量%)1.31gを加えて、撹拌しつつ80℃で6時間反応させた後液 反応容器を水冷して反応を停止した。その後、反応溶液を分液ロートに移して水層を廃棄し、更に有機層にイオン交換水を加えて水洗し、反応液が中性になるまで水洗を繰り返した。

その後、有機層を減圧留去することにより樹脂 (C-10) を得た。

[0 1 3 5]

実施例および比較例

表1 (但し、部は重量に基づく)に示す各成分を混合して均一溶液としたのち、孔径0. 2 μmのメンブランフィルターでろ過して、組成物溶液を調製した。 その後、各組成物溶液をシリコンウェハー上にスピンコートしたのち、表1に示す条件で

PBを行って、表1に示す膜厚でレジスト被膜を形成した。

[0136]

次いで、 K_1 F $_1$ F $_2$ F $_3$ F $_4$ F $_4$ C $_4$ F $_4$ F

【表1】

比較例1 a-1(0.2)		実施例13 A-2(0.2)	実施例12 A-3(0.1)	実施例11 A-4(0,3)	実施例10 A-2(0.3)	実施例9 A-2(0.2)	実施例8 A-3(0.3)	実施例7 A-2(0.1) A-4(0.2)	実施例6 A-3(0, 4)	実施例5 A-2(0.3)	実施例4 A-4(0.4)	実施例3 A-2(0.3)	実施例2 A-1(0.25)	実施例1 A-2(0, 3)	酸拡散制御剂 (A)(用)
	B-3(5)	B-4(3)	B-4(1.5)	B-4(3)	B-4(1) B-5(2)	B-5(4)	B-3(3)	B-2(5)	B-2(5)	B-1(3)	B-2(4)	B-2(3)	B-2(4)	B-1(3)	融発生剤 (B)(部)
	C-5(65) C-4(35)		C-10(100)	C-1(100)	C-9(100)	C-8(100)	C-7(100)	C-6(100)	C-3(100)	C-2(100)	C-1(100)	C-7(100)	C-5(70) C-3(30)	C-5(65) C-4(35)	酸解離性基 含有樹脂 (C)(部)
		D-1(100)													アルカリ可 溶性樹脂 (D)(部)
		E-1(7)													架 (E) (書)
						F-1(10)									海加利 (F) (特)
G-1(400)	G-1(250) G-3(550)	G-1(550) G-2(250)	G-4(900)	G-1(400) G-3(400)	G-4(600)	G-4(500) G-5(100)	G-1(250) G-3(550)	G-1(250) G-3(550)	G-1(400) G-3(400)	G-1(400) G-3(400)	G-1(800)	G-1(250) G-3(550)	G-3(800)	G-1(250) G-3(550)	溶剤(部)
5000	5000	5000	1000	3000	4000	4000	5000	5000	5000	5000	5000	5000	5000	5000	(A) 編
120°C90#0	4060°001	90°C60秒	130°C90∯	120°C90∯	130°C90∯	130°C90#	100°C90₺	100°C90₩	120°C90∯	120°C90∯	120°C90∯	100°090₩	100°C90∯	100°C90₩	PB 紫 辛
X T	KrF	KrF	F2	看子装	ArF	ArF	KrF	KrF	KrF	KrF	KrF	KrF	KrF	KrF	総 光 光膜
140°C90秒	0≰060°011	110°C60秒	110°C90#¢	130°C90₩	140°C90秒	140°C90秒	110°C90∯	110°C90∯	130°C90∯	140°C90秒	130°C90∯	100°C90₺	110°C90₹♭	110°C90₺	PEB条件
0.16	0.16	0.14	0.13	0.14	0.15	0.15	0.15	0.15	0.15	0.16	0.14	0.15	0.15	0.15	素 (m)
37mJ	36mJ	25mJ	19mJ	3#0	75mJ	70mJ	36mJ	32mJ	41mJ	37mJ	35mJ	35mJ	33mJ	32mJ	暴棄
不良	不良	良好	良好	良好	良好	良好	良好	良好	良好	良好	良好	良好	良好	戾蚌	安保存

[0138]

感度:

シリコンウエハー上に形成したレジスト被膜に露光し、直ちにPEBを行って、アルカリ

10

20

30

ここで、各レジストの評価は、下記の要領で実施した。

現像したのち、水洗し、乾燥して、レジストパターンを形成したとき、線幅0.22μm のライン・アンド・スペースパターン(1L1S)を1対1の線幅に形成する霰光量を最 適露光量とし、この最適露光量により感度を評価した。

解像度:

最適露光量で露光したときに解像されるライン・アンド・スペースパターン(1L1S) の最小寸法 (μm) を解像度とした。

保存安定性:

上記の方法で感放射線性樹脂組成物を調製し、感度を算出した被験サンプルを室温で1月 静置し、再び感度を算出したときに、最初に算出した感度から比較して10%以上感度が 変化しているものを「不良」、変化していないものを「良好」とした。

[0139]

化合物(A)、酸発生剤(B)、その他の酸拡散制御剤、他の添加剤および溶剤は、下記 のとおりである。

化合物 (A):

A-2:1、3-ジ(2'-メチル-1'-イミダゾイルメチル) ベンゼン

A-3:1-ベンジル-2-メチルイミダゾール

A-4:1-ベンジルイミダゾール

酸発生剤(B):

B-1: ビス(4-t-ブチルフェニル) ヨードニウムトリフルオロメタンスルホネート

B-2:n-1 トリフルオロメタンスルホニルオキシー 5-1 ノルボルネンー 2:3-1 ジカル ボキシイミド

B-3: ビス(シクロヘキシルスルホニル) ジアゾメタン

B-4:トリフェニルスルホニウムトリフルオロメタンスルホネート

B-5:4-n-プトキシー1-ナフチルテトラヒドロチオフェニウムノナフルオロブタ ンスルホネート

[0140]

アルカリ可溶性樹脂:

D-1:p-Eドロキシスチレン/スチレン共重合体(共重合モル比= 7.8 / 2.2 、M.w.

= 3. 100、Mw/Mn=1. 13、日本曹達(株) 製 VPS3020)

架橋剤:

E-1:N, N, N, N-テトラ (メトキシメチル) グリコールウリル

[0141]

その他の酸拡散制御剤:

a-1: トリーn-オクチルアミン

添加剂:

F-1:デオキシコール酸 t-ブチル

溶部:

G-1:乳酸エチル

G-2:3-エトキシプロピオン酸エチル

G-3:プロピレングリコールモノメチルエーテルアセテート

G-4:2-0プタノン

G-5:シクロヘキサノン

[0142]

【発明の効果】

本発明により、活性放射線、例えばKrFエキシマレーザー、ArFエキシマレーザーあ るいは F。 エキシマレーザーに代表される 遠紫外線 および 電子線に感応する化学 増幅型 レジストとして、解像度、組成物としての保存安定性に優れる感放射性樹脂組成物を提供 できる。

【図面の簡単な説明】

10

30

【図1】合成例1で得られた化合物の「H-NMRスペクトルを示す。
 【図2】合成例2で得られた化合物の「H-NMRスペクトルを示す。

[M 2]

フロントページの続き

F ターム(参考)2H025 AA02 AA11 AB16 AC01 AC04 AC06 AC08 AD03 BE00 BE10 BC00 CC20 FA03 FA12 FA17