

Matrix Decomposition

1145×1718 pixels image

→ Require 1,967,110 numbers to store

An Approximation of the image needs only 50*(1718 +1145+1)

= **143,200** numbers

Matrix Approximation – Ex

image $\mathbf{A} \in \mathbb{R}^{1145 \times 1718}$

 $\hat{A}(5)$, error = 0.647

 $\widehat{A}(10)$, error = 0.592

 $\widehat{A}(50)$, error = 0.393

 $\widehat{A}(100)$, error = 0.280

 $\hat{A}(200)$, error = 0.164

Contents

Matrix Decomposition

Eigenvalue Decomposition

- $A = PDP^{-1}$
- Eigenvalues and Eigenvectors
- Singular Value Decomposition (SVD) $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$
 - Left-singular vectors (columns of **U**)
 - Singular values (diagonal entries of singular matrix Σ)
 - Right-singular vectors (columns of **V**)
- Matrix Approximation
 - Rank-1 matrix $\mathbf{A}_i = \mathbf{u}_i \mathbf{v}_i^T$
 - $\mathbf{A} = \sum_{i=1..r} \sigma_i \mathbf{A}_i$
 - $\mathbf{A} \approx \widehat{A}(k) = \sum_{i=1}^{k} \sigma_i \mathbf{A}_i$

Computer project 1

- Chia nhóm: 6 nhóm x 5 bạn = 30 SV (Group = No. mod 6 + 1)
- Project 1
 - Sử dụng SVD xấp xỉ 1 ảnh (kích thước tuỳ chọn) với sai số < 20%
 - Yêu cầu: không sử dụng hàm SVD được dựng sẵn trong Python (nếu có)
- Tiêu chí đánh giá
 - Hoàn thành đúng yêu cầu: 5 đ
 - Giải thích được: 3đ
 - Nhóm khác cho điểm: 1, 2, 3, 4, 5 → cao nhất & nhì: +2, ba & tư: +1, thứ năm, sáu: +0

Trace of a square matrix

Definition. The *trace* of a matrix $\mathbf{A} = [a_{ii}] \in \mathbb{R}^{n \times n}$ is defined as

tr
$$A := \sum_{i=1}^{n} a_{ii}$$

Properties

•
$$tr(A + B) = tr(A) + tr(B)$$
, for A, $B \in \mathbb{R}^{n \times n}$

- $tr(\alpha A) = \alpha tr(A)$, $\alpha \in \mathbb{R}$ and $A \in \mathbb{R}^{n \times n}$
- $tr(I_n) = n$
- tr(ABC) = tr(CAB)

for
$$\mathbf{A} \in \mathbb{R}^{n \times k}$$
, $\mathbf{B} \in \mathbb{R}^{k \times m}$, $\mathbf{C} \in \mathbb{R}^{m \times n}$

• In particular, $tr(xy^T) = tr(x^Ty) = x^Ty$ for $x, y \in \mathbb{R}^n$

$$A = \begin{pmatrix}
1 & 5 & 2 \\
2 & 8 & 4 \\
-3 & -12 & 7
\end{pmatrix}$$

$$→ tr(A) = 1 + 8 + 7 = 16$$

Characteristic Polynomial

Definition. For $\lambda \in \mathbb{R}$ and a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$

$$p_{A}(\lambda) := det(A - \lambda I) = c_0 + c_1 \lambda + c_2 \lambda^2 + \cdots + c_{n-1} \lambda^{n-1} + (-1)^n \lambda^n$$

where $c_0, \ldots, c_{n-1} \in \mathbb{R}$, is the *characteristic polynomial* of **A**.

Note. $c_0 = det(A), c_{n-1} = (-1)^{n-1}trace(A)$

Characteristic Polynomial - Ex

Find the characteristic polynomial of the matrix

$$\mathbf{A} = \begin{pmatrix} 2 & 3 & 0 \\ 1 & 4 & 3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det\begin{pmatrix} 2 - \lambda & 3 & 0 \\ 1 & 4 - \lambda & 3 \\ 0 & 0 & 1 - \lambda \end{pmatrix}$$

$$= (1 - \lambda)[(2 - \lambda)(4 - \lambda) - 3] = 5 - 11\lambda + 7\lambda^2 - \lambda^3$$

$$\mathbf{Note.} \ c_0 = \det(\mathbf{A}) = \mathbf{5}, \ c_3 = (-1)^3 = -1, \ c_2 = (-1)^{3-1} \mathrm{trace}(\mathbf{A}) = \mathbf{7}$$

Eigenvalues and Eigenvectors

Definition. Let $A \in \mathbb{R}^{n \times n}$ be a square matrix. Then $\lambda \in \mathbb{R}$ is an *eigenvalue* of A and $x \in \mathbb{R}^n \setminus \{0\}$ is the corresponding eigenvector of A if *eigenvalue eigenvector* $Ax = \lambda x$.

We call $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$ the eigenvalue equation.

Ex. If
$$\mathbf{A} = \begin{pmatrix} -3 & 2 \\ 0 & 1 \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$ then $\mathbf{A}\mathbf{x} = \begin{pmatrix} -3 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} = \begin{pmatrix} -6 \\ 0 \end{pmatrix} = -3\begin{pmatrix} 2 \\ 0 \end{pmatrix} = -3\mathbf{x}$

→ x is an eigenvector of A corresponding to eigenvalue -3

Theorem. $\lambda \in \mathbb{R}$ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$ if and only if λ is a root of the characteristic polynomial $p_{\mathbf{A}}(\lambda)$ of \mathbf{A}

The following statements are equivalent:

- λ is an eigenvalue of $\mathbf{A} \in \mathbb{R}^{n \times n}$
- There exists an $\mathbf{x} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ with $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$,
- $(A \lambda I_n)x = 0$ can be solved non-trivially, i.e., $x \neq 0$
- $rk(\mathbf{A} \lambda \mathbf{I}_n) < n$
- $det(\mathbf{A} \lambda \mathbf{I}_n) = 0$

Eigenvalues and Eigenvectors - Ex

• Find eigenvalues and eigenvectors, eigenspaces of the matrix

$$\mathbf{A} = \begin{pmatrix} -3 & 2 \\ 0 & 1 \end{pmatrix}.$$

• The characteristic polynomial $p_{A}(\lambda)$ of **A** $p_{A}(\lambda) = \lambda^{2} + 2\lambda - 3 = 0$

•
$$p_A(\lambda) = 0 \Leftrightarrow \lambda_1 = 1, \lambda_2 = -3$$
 // eigenvalues

Eigenvalues and Eigenvectors - Ex

• $\lambda_1 = 1$: solve the system $(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{x} = \mathbf{0}$

$$\begin{pmatrix} -4 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 $\Rightarrow x = t \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, $t \in \mathbb{R}$ and all $x \neq 0$ are 1-eigenvectors

• $\lambda_2 = -3$: solve the system $(\mathbf{A} - \lambda_2 \mathbf{I})\mathbf{x} = \mathbf{0}$

$$\begin{pmatrix} 0 & 2 & 0 \\ 0 & -4 & 0 \end{pmatrix} \Rightarrow x = t \begin{pmatrix} 1 \\ 0 \end{pmatrix}, t \in \mathbb{R} \text{ and all } x \neq \mathbf{0} \text{ are } -3\text{-eigenvectors}$$

Theorems

Theorem. The *determinant* of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the *product* of its eigenvalues, i.e.,

$$det(\mathbf{A}) = \lambda_1 \lambda_2 \cdots \lambda_n$$

where $\lambda_i \in \mathbb{C}$ are (possibly repeated) eigenvalues of **A**

Theorem. The *trace* of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is the *sum* of its eigenvalues, i.e., $\operatorname{tr}(\mathbf{A}) = \lambda_1 + \lambda_2 + \cdots + \lambda_n$

> Theorem

Theorem. The eigenvectors \mathbf{x}_1 , \mathbf{x}_2 , ..., \mathbf{x}_n of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ with distinct eigenvalues λ_1 , λ_2 , ..., λ_n are linearly independent

Ex. If $\mathbf{A} = \begin{pmatrix} -3 & 2 \\ 0 & 1 \end{pmatrix}$, then $\mathbf{x}_1 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, $\mathbf{x}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ are two eigenvectors with distinct eigenvalues $\lambda_1 = -3$, $\lambda_2 = 1$, respectively

 \rightarrow x_1 and x_2 are linearly independent

Useful properties regarding eigenvalues and eigenvectors

For $\mathbf{A} \in \mathbb{R}^{n \times n}$, we define

- λ -eigenspace: $\mathbf{E}_{\lambda} = \{\mathbf{x} \in \mathbb{R}^n \mid (\mathbf{A} \lambda \mathbf{I})\mathbf{x} = \mathbf{0}\}$
- spectrum of A is the set of all eigenvalues of A
- A and its transpose A^T possess the same eigenvalues
- \mathbf{E}_{λ} is the *null space* of $\mathbf{A} \lambda \mathbf{I}$ (the *kernel* of $\mathbf{A} \lambda \mathbf{I}$)
- Symmetric, positive definite matrices always have positive, real eigenvalues

Algebraic multiplicity vs Geometric multiplicity

Let λ be an eigenvalue of a square matrix **A**

- Algebraic multiplicity of λ is the number of times λ appears
- Geometric multiplicity of λ is the number of linearly independent vectors associated with $\lambda = \dim(\mathbf{E}_{\lambda})$
- Algebraic multiplicity of $\lambda \geqslant$ Geometric multiplicity of λ
- Ex. If A = $\begin{pmatrix} 3 & 1 \\ 0 & 3 \end{pmatrix}$, A has only one eigenvalue $\lambda = 3$ ($\lambda_1 = \lambda_2 = 3$)
 - Algebraic multiplicity of $\lambda = 2$,
 - Algebraic multiplicity of $\lambda = dim(\mathbf{E}_2) = 1$

Spectral Theorem

Theorem (Spectral Theorem). If $S \in \mathbb{R}^{n \times n}$ is symmetric, there exists an orthonormal basis of the corresponding vector space V consisting of eigenvectors of S, and each eigenvalue is real.

Note.

If S is a symmetric matrix and λ_1 , λ_2 are distinct eigenvalues of S, then eigenvectors v_1 , v_2 corresponding to λ_1 , λ_2 are orthogonal.

Spectral Theorem - Ex

Find an *orthonormal basis* of the corresponding vector space **V** consisting of eigenvectors of **A**, where

$$\mathbf{A} = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$

$$p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \det\begin{pmatrix} 3 - \lambda & 2 & 2 \\ 2 & 3 - \lambda & 2 \\ 2 & 2 & 3 - \lambda \end{pmatrix} = -\lambda^3 + 9\lambda^2 - 15\lambda + 7 = -\lambda^3 + 3\lambda^2 +$$

Spectral Theorem - Ex

• For $\lambda_1 = 1$, solve the system $(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{x} = 0$, we have solutions $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -m - n \\ 1 \end{pmatrix}$

$${-m-n \choose n} = m {-1 \choose 0} + n {-1 \choose 1}, m, n \in \mathbb{R}$$

So, eigenspace
$$\mathbf{E_1} = \text{span}\left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

Similarly, eigenspace for
$$\lambda_2 = 7$$
 is $\mathbf{E}_7 = \text{span}\{\mathbf{x}_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}\}$

Spectral Theorem - Ex

Next, construct an orthogonal basis from

$$x_1 = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$
, $x_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, and $x_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

- Note that x_3 is orthogonal to both x_1 , x_2 , but x_1 and x_2 are not orthogonal to each other.
- Use Gram-Schmidt process:

$$x'_{2} = x_{2} - \text{proj}_{x1}(x_{2}) = x_{2} - \frac{x_{1}^{T}x_{2}}{\|X_{1}\|^{2}} x_{1} = \begin{pmatrix} -1/2 \\ 0 \\ 1/2 \end{pmatrix}$$

Now, $\{x_1, x_2', x_3\}$ is an *orthogonal basis* of \mathbb{R}^3

Definitions

- Diagonal matrix. A diagonal matrix is a matrix that has value zero on all off-diagonal elements
- Similar matrices. Two matrices A, D are similar if there exists an invertible matrix P, such that D = P⁻¹AP
- **Diagonalizable.** A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is *diagonalizable* if it is *similar* to a *diagonal matrix*, i.e., if there exists an invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{D} = \mathbf{P}^{-1}\mathbf{AP}$.

Example

• Two matrices
$$\mathbf{A} = \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix}$$
 and $\mathbf{D} = \begin{pmatrix} -3 & 0 \\ 0 & 1 \end{pmatrix}$ are similar as
$$\mathbf{D} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$$
 where $\mathbf{P} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ and $\mathbf{P}^{-1} = \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix}$

• A is called *diagonalizable* as **D** is a diagonal matrix

$$A = PDP^{-1}$$

$$\rightarrow$$
 AP = PD

We have,

$$AP = A[p_1, p_2, ..., p_n] = [Ap_1, Ap_2, ..., Ap_n]$$

$$PD = [p_1, p_2, ..., p_n] \begin{bmatrix} \lambda_1 & ... & 0 \\ ... & ... & ... \\ 0 & ... & \lambda_n \end{bmatrix} = [\lambda_1 p_1, ..., \lambda_n p_n]$$

$$Ap_i = \lambda_i p_i, \text{ for } i = 1, ..., n$$

Egendecomposition

Theorem. A square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be factored into

$$\mathbf{A} = \mathbf{P}\mathbf{D}\mathbf{P}^{-1},$$

where $P \in \mathbb{R}^{n \times n}$ and **D** is a *diagonal matrix* whose diagonal entries are the *eigenvalues* of **A**, if and only if the *eigenvectors* of **A** form a *basis* of \mathbb{R}^n .

Example.
$$\begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix}$$

Eigendecomposition - Ex

- Find the eigenvalue decomposition of $\mathbf{A} = \begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix}$.
- $p_{\mathbf{A}}(\lambda) = \det(\mathbf{A} \lambda \mathbf{I}) = \det\begin{pmatrix} 2-\lambda & -3 \\ 0 & 1-\lambda \end{pmatrix} = (2-\lambda)(1-\lambda) = \lambda^2 3\lambda + 2$
- $p_A(\lambda) = 0 \Leftrightarrow \lambda_1 = 1, \lambda_2 = 2$
- $\lambda_1 = 1$: solve the system $(\mathbf{A} \lambda_1 \mathbf{I})\mathbf{x} = \mathbf{0}$

$$\begin{pmatrix} 1 & -3 \\ 0 & 0 \end{pmatrix} \mathbf{X} = \mathbf{0} \rightarrow \mathbf{X} = \mathbf{t} \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

• λ_2 = 2: solve the system $(\mathbf{A} - \lambda_2 \mathbf{I})\mathbf{x} = \mathbf{0}$

$$\begin{pmatrix} 0 & -3 \\ 0 & -1 \end{pmatrix} \mathbf{X} = \mathbf{0} \rightarrow \mathbf{X} = \mathbf{t} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

P has columns as eigenvectors of A

•
$$\mathbf{P} = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \mathbf{P}^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix}$$

• Then, **A** = **PDP**-1

where **D** =
$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 // 1, 2 are eigenvalues of A

Eigendecomposition of A

$$\begin{pmatrix} 2 & -3 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -3 \end{pmatrix}$$

Theorems

Theorem. A symmetric matrix $S \in \mathbb{R}^{n \times n}$ can always be diagonalized.

Theorem. Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, we can always obtain a *symmetric*, *positive* semidefinite matrix $S \in \mathbb{R}^{n \times n}$ by defining

 $S := A^T A$

Morerover, if rk(A) = n, then A^TA is positive definite.

Singular Value Decomposition (SVD) - Introduction

 The singular value decomposition (SVD) of a matrix is a central matrix decomposition method in linear algebra.

• It has been referred to as the "fundamental theorem of linear algebra" because it can be applied to all matrices, not only to square matrices, and it always exists.

SVD-Theorem

Let $A^{m \times n}$ be a rectangular matrix of rank r. The SVD of **A** is a decomposition of the form

Moreover,

- U, V: orthogonal matrices, i.e., $U^TU = I_m$, $V^TV = I_n$
- Σ : a diagonal matrix with $\Sigma_{kk} = \sigma_k \geqslant 0$ and $\Sigma_{ik} = 0$, $i \neq k$

 σ_k are called the *singular values*, $\sigma_1 \geqslant \sigma_2 \geqslant \sigma_2 \geqslant ... \geqslant \sigma_r \geqslant 0$.

$A = U\Sigma V^{T}$

$$\mathbf{A} = \begin{bmatrix} 1 & -0.8 \\ 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} -0.79 & 0 & -0.62 \\ 0.38 & -0.78 & -0.49 \\ -0.48 & -0.62 & 0.62 \end{bmatrix} \begin{bmatrix} 1.62 & 0 \\ 0 & 1.0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -0.78 & 0.62 \\ -0.62 & -0.78 \end{bmatrix}$$

• First, find P such that $A^TA = PDP^T$ (spectral theorem)

If $A = U\Sigma V^T$ then

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}}(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}) = \mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}} = \mathbf{V}\boldsymbol{\Sigma}^{\mathsf{T}}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}}$$

Compare $A^TA = PDP^T$

and
$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{V}\mathbf{\Sigma}^{\mathsf{T}}\mathbf{\Sigma}\mathbf{V}^{\mathsf{T}}$$

 \rightarrow Choose V = P, and Σ such that $\Sigma^T\Sigma$ = D, or $\sigma_k^2 = \lambda_k$

Hbw to choose U

• If we know $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$

$$\Rightarrow \mathbf{A}\mathbf{A}^{\mathsf{T}} = (\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\mathsf{T}})^{\mathsf{T}} = \mathbf{U}\boldsymbol{\Sigma}\boldsymbol{\Sigma}^{\mathsf{T}}\mathbf{U}^{\mathsf{T}} = \mathbf{U}\begin{bmatrix}\boldsymbol{\sigma}_{1}^{\ 2} & \dots & \boldsymbol{0}\\ \dots & \dots & \dots\\ \boldsymbol{0} & \dots & \boldsymbol{\sigma}_{m}^{\ 2}\end{bmatrix}\mathbf{U}^{\mathsf{T}}$$

 \Rightarrow The orthonormal eigenvectors of AA^T are the *left-singular vectors*

U can be chosen from singular value equations $AV_k = \sigma_k U_k$

Note. $\{\mathbf{u}_1, ..., \mathbf{u}_r\}$ is an *orthonormal* set

$$\|\mathbf{A}\mathbf{v}_{k}\|^{2} = (\mathbf{A}\mathbf{v}_{k})^{T}(\mathbf{A}\mathbf{v}_{k}) = \lambda_{k}\mathbf{v}_{k}^{T}\mathbf{v}_{k} = \lambda_{k}$$

$$\Rightarrow \|\mathbf{u}_{k}\| = 1, k = 1, ..., r$$

SVD-Ex2

Find the singular value decomposition of A = $\begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}$

We follow three steps (suppose m < n)

- Step 1: Right-singular vectors as the eigenvectors of A^TA.
- Step 2: Singular-value matrix Σ with $\Sigma_{kk} = \sigma_k$ such that $\sigma_k^2 = \lambda_k$, eigenvalues of A^TA .
- Step 3: Left-singular vectors as the normalized image of the right-singular vectors, $\mathbf{u}_k = \frac{\mathbf{A}\mathbf{v}_k}{\sigma_k}$

Step 1: Right-singular vectors as the eigenvectors of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$.

$$\bullet \mathbf{A}^{\mathsf{T}} \mathbf{A} = \begin{pmatrix} 1 & -2 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 5 & -2 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

Apply eigenvalue decomposition to A^TA, which is given as

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \begin{pmatrix} \frac{5}{\sqrt{30}} & 0 & \frac{-1}{\sqrt{6}} \\ \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{5}{\sqrt{30}} & \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{30}} \\ 0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix} = \mathbf{P}\mathbf{D}\mathbf{P}^{\mathsf{T}}$$

We obtain the right-singular vectors as the columns of P

$$\mathbf{V} = \mathbf{P} = \begin{pmatrix} \frac{5}{\sqrt{30}} & 0 & \frac{-1}{\sqrt{6}} \\ \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{30}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$

SVD-Ex2

Step 2: Singular-value matrix Σ with $\Sigma_{kk} = \sigma_k$, where $\sigma_k^2 = \lambda_k$

From the previous step,
$$\mathbf{D} = \begin{pmatrix} 6 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, with $\lambda_1 = 6$, $\lambda_2 = 1$

• Since rk(A) = 2, there are only two nonzero singular values:

$$\sigma_1 = \sqrt{6}$$
 and $\sigma_2 = 1$

• So,
$$\Sigma = \begin{pmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Step 3: Left-singular vectors can be computed by $\mathbf{u}_k = \frac{\mathbf{A}\mathbf{v}_k}{\mathbf{c}}$

$$\mathbf{u}_{1} = \frac{\mathbf{A}\mathbf{v}_{1}}{\sigma_{1}} = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{5}{\sqrt{30}} \\ \frac{-2}{\sqrt{30}} \\ \frac{1}{\sqrt{30}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} \end{pmatrix},$$

$$\mathbf{u}_{2} = \frac{\mathbf{A}\mathbf{v}_{2}}{\sigma_{2}} = \frac{1}{1} \begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} = \begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$
We obtain $\mathbf{U} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$

We obtain
$$\mathbf{U} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

• The SVD of A = $\begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}$ is

$$\begin{pmatrix} 1 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix} \begin{pmatrix} \sqrt{6} & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{5}{\sqrt{30}} & \frac{-2}{\sqrt{30}} & \frac{1}{\sqrt{30}} \\ 0 & \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{-1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{pmatrix}$$

SVD vs Eigenvalue Decomposition

$\begin{array}{c} SVD \\ A = U\SigmaV^T \end{array}$	Eigenvalue Decomposition A = PDP ⁻¹
<i>Always exists</i> for any matrix ℝ ^{m×n}	Only defined for square matrices $\mathbb{R}^{n \times n}$ and NOT
The vectors in the matrices U and V in the SVD are <i>orthonormal</i>	The vectors in the eigendecomposition matrix P are not necessarily orthogonal
U and V are generally not inverse of each other	P and P ⁻¹ are inverses of each other
entries in the diagonal matrix Σ are all real and <i>nonnegative</i>	entries in the diagonal matrix Σ are real or complex

For symmetric matrices $A \in \mathbb{R}^{n \times n}$, the eigenvalue decomposition and the SVD are one and the same, which follows from the spectral theorem

Different versions of SVD

- Our construction (full SVD) $\mathbf{A}_{m \times n} = \mathbf{U}_{m \times m} \mathbf{\Sigma}_{m \times n} \mathbf{V}^{\mathsf{T}}_{n \times n}$
- Other versions
 - (reduced SVD) For m \geqslant n, $\mathbf{A}_{m \times n} = \mathbf{U}_{m \times n} \sum_{n \times n} \mathbf{V}_{n \times n}^{\mathsf{T}}$
 - For matrix $\mathbf{A}_{m \times n}$ with rk(A) = r, $\mathbf{A}_{m \times n} = \mathbf{U}_{m \times r} \mathbf{\Sigma}_{r \times r} \mathbf{V}^{T}_{r \times n}$

Matrix Approximation

- A: high rank matrix
- Use SVD to represent A as a sum of simpler (low-rank) matrices
- → matrix approximation

image $A \in \mathbb{R}^{1145 \times 1718}$ rank(A) = 1145

 $\widehat{A}(50)$ Rank $(\widehat{A}) = 50$

Matrix Approximation

• Define rank-1 matrices $A_i := u_i v_i^T$

image $A \in \mathbb{R}^{1145 \times 1718}$

 A_3 , $\sigma_3 \approx 59.4$

 A_1 , $\sigma_1 \approx 828$

 A_4 , $\sigma_4 \approx 54$

 $A_2, \, \sigma_2 \approx 122.7$

 A_5 , $\sigma_5 \approx 48$

Matrix Approximation

• A matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ of rank r can be written as a sum of rank-1 matrices so that

$$\mathbf{A} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}} = \sigma_1 \mathbf{A}_1 + \sigma_2 \mathbf{A}_2 + \dots + \sigma_r \mathbf{A}_r$$

• A can be approximated by $\widehat{A}(k)$, a rank-k approximation of A

$$\mathbf{A} \approx \widehat{A}(\mathbf{k}) = \sum_{i=1}^{\mathbf{k}} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}} = \sum_{i=1}^{\mathbf{k}} \sigma_i \mathbf{A}_i$$

Original image A

 $\widehat{A}(5)$

 $\widehat{A}(10)$

 $\widehat{A}(50)$

Error of an Approximation

Theorem (Eckart-Young, 1936). Consider a matrix $A \in \mathbb{R}^{m \times n}$ of *rank r* and let $B \in \mathbb{R}^{m \times n}$ be a matrix of *rank k*.

For any
$$k \le r$$
, with $\widehat{A}(k) = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^{\mathsf{T}}$ it holds that $\widehat{A}(k) = \operatorname{argmin}_{rk(\mathsf{B})=k} \|\mathsf{A} - \mathsf{B}\|_2$, $\|\mathsf{A} - \widehat{A}(k)\|_2 = \sigma_{k+1}$

- The theorem states explicitly how much *error* we introduce by approximating A using a *rank-k approximation*.
- Note. $\|A\|_2 := \max_{X \neq 0} \frac{\|AX\|}{\|X\|}$ (spectral norm of a matrix)

Errors of Approximations – Ex

image $\mathbf{A} \in \mathbb{R}^{1145 \times 1718}$

 $\hat{A}(5)$, error = 0.647

 $\widehat{A}(10)$, error = 0.592

 $\widehat{A}(50)$, error = 0.393

 $\widehat{A}(100)$, error = 0.280

 $\widehat{A}(200)$, error = 0.164

Summary

Matrix Decomposition

Eigenvalue Decomposition

- $A = PDP^{-1}$
- Eigenvalues and Eigenvectors
- Singular Value Decomposition (SVD) $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$
 - Left-singular vectors (columns of **U**)
 - Singular values (diagonal entries of singular matrix Σ)
 - Right-singular vectors (columns of **V**)
- Matrix Approximation
 - Rank-1 matrix $\mathbf{A}_i = \mathbf{u}_i \mathbf{v}_i^T$
 - $\mathbf{A} = \sum_{i=1..r} \sigma_i \mathbf{A}_i$
 - $\mathbf{A} \approx \widehat{A}(k) = \sum_{i=1}^{k} \sigma_i \mathbf{A}_i$

THANKS