Introduction to Computer Networks

IP Forwarding (§5.6.1-5.6.2)

Topic

- How do routers <u>forward</u> packets?
 - We'll look at how IP does it
 - (We'll cover routing later)

Recap

We want the network layer to:

Scale to large networks

 Using addresses with hierarchy
 Support diverse technologies
 Internetworking with IP

 Use link bandwidth well

 Lowest-cost routing

IP Addresses

- IPv4 uses 32-bit addresses
 - Later we'll see IPv6, which uses 128-bit addresses
- Written in "dotted quad" notation
 - Four 8-bit numbers separated by dots

$$\begin{array}{c}
A + B - 51 \\
A \cdot B \cdot C \cdot D \\
\\
\leftrightarrow |8.3| \cdot 0.
\end{array}$$

IP Prefixes

- Addresses are allocated in blocks called <u>prefixes</u>
 - Addresses in an L-bit prefix have the same top L bits
 - There are 2^{32-L} addresses aligned on 2^{32-L} boundary

IP Prefixes (2)

- Written in "IP address/length" notation \(\sellow \square{\sqrt{\sq}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}}}} \end{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\end{\sqin{\sqrt{\sqrt{\sqrt{\sint{\sq}}}}}}}}}} \end{\sqrt{\sqrt{\sint{\sint{\sint{\sq
 - Address is lowest address in the prefix, length is prefix bits
 - E.g., 128.13.0.0/16 is 128.13.0.0 to 128.13.255.255
 - So a /24 ("slash 24") is 256 addresses, and a /32 is one address

Classful IP Addressing

- Originally, IP addresses came in fixed size blocks with the class/size encoded in the high-order bits
 - They still do, but the classes are now ignored

IP Forwarding

All addresses on one network belong to the same prefix Node uses a table that lists the next hop for prefixes

	Prefix	Next Hop		
4	192.24.0.0/19	D		
	192.24.12.0/22	В		
A				
	B	C		

Longest Matching Prefix

- Prefixes in the table might overlap!
 - Combines hierarchy with flexibility
- Longest matching prefix forwarding rule:
 - For each packet, find the longest prefix that contains the destination address, i.e., the most specific entry
 - Forward the packet to the next hop router for that prefix

Longest Matching Prefix (2)

Host/Router Distinction

- In the Internet:
 - Routers do the routing, know which way to all destinations
 - Hosts send remote traffic (out of prefix) to nearest router

Host Forwarding Table

- Give using longest matching prefix
 - 0.0.0.0/0 is a default route that catches all IP addresses

	Prefix	Next Hop	
	My network prefix	Send to that IP	
4	0.0.0.0/0	Send to my router	

Flexibility of Longest Matching Prefix

- Can provide default behavior, with less specifics
 - To send traffic going outside an organization to a border router
- Can special case behavior, with more specifics
 - For performance, economics, security, ...

Performance of Longest Matching Prefix

- Uses hierarchy for a compact table
 - Relies on use of large prefixes
- Lookup more complex than table
 - Used to be a concern for fast routers
 - Not an issue in practice these days

Other Aspects of Forwarding

It's not all about addresses ...

Other Aspects (2)

- Decrement TTL value
 - Protects against loops
- Checks header checksum
 - To add reliability
- Fragment large packets
 - Split to fit it on next link
- Send congestion signals
 - Warns hosts of congestion
- Generates error messages
 - To help mange network
- Handle various options

Coming later

END

© 2013 D. Wetherall

Slide material from: TANENBAUM, ANDREW S.; WETHERALL, DAVID J., COMPUTER NETWORKS, 5th Edition, © 2011. Electronically reproduced by permission of Pearson Education, Inc., Upper Saddle River, New Jersey