

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

AGH UNIVERSITY OF KRAKOW

Model Standardowy

Agnieszka Obłąkowska-Mucha

Wydział Fizyki i Informatyki Stosowanej Katedra Oddziaływań i Detekcji Cząstek Oddziaływania elektrosłabe Oscylacje zapachu

Oddziaływania słabe

- Rozpady β zachodzą poprzez oddziaływania słabe:
 - neutron zmienia się w proton i emituje elektron i neutrino
- 1930 W.Pauli zaproponował hipotezę neutrino (odkryte w 1956)
- Obecnie rozpady β uważane są jako zmianę kwarków $u \leftrightarrow d$ spowodowaną emisją bozonu W^{\pm} :

Oddziaływania słabe

- Oddziaływania słabe są INNE niż elektromagnetyczne i silne:
 - są przenoszone przez ciężkie bozony
 - zmieniają rodzaj cząstki (leptonów i kwarków)
- WSZYSTKIE cząstki (również neutrina) oddziałują słabo

Słabe rozpady są słabe, a więc cząstka żyje stosunkowo długo

Gargamelle bubble chamber, CERN PS 1971-77

a <u>leptonic neutral current interaction</u>.

A <u>neutrino</u> interacts with an <u>electron</u>, the track of which is seen horizontally, and emerges as a neutrino without producing a <u>muon</u>. [Wikipedia]

Oddziaływania słabe a silne i elm

- Oddziaływania elektromagnetyczne:
 - ✓ pomiędzy kwarkami i naładowanymi leptonami
 - ✓ przenoszone przez bezmasowy foton
 - \checkmark foton oddziałuje z ładunkiem elektrycznym, lpha pprox 1/100
 - ✓ nie zmieniają rodzaju cząstek
 - \checkmark na odległości 10^{-15} m $F_{elm} \approx$ 200 N
- Oddziaływania silne
 - ✓ pomiędzy kwarkami i gluonami
 - ✓ przenoszone przez bezmasowe gluony
 - ullet gluony oddziałują z ładunkiem kolorowym, $lpha_spprox 1$
 - ✓ nie zmieniają rodzaju cząstek
 - ✓ na odległości $10^{-15}~{\rm m}\,F_{strong}\approx$ 160 000 N
- Oddziaływania słabe
 - ✓ pomiędzy kwarkami i wszystkimi leptonami
 - \checkmark przenoszone przez ciężkie bozony (bo mały zasięg), $\alpha_W \approx 1/40$
 - ✓ zmieniają rodzaj cząstki
 - ✓ na odległości $10^{-15}~{\rm m}\,F_{weak}\approx 0.002~{\rm N}$

które oddziaływania są podobne?

Oddziaływania słabe i elektromagnetyczne

- dla niskich energii, gdy $q^2 \ll M_W^2$ propagator w postaci $rac{1}{M_W}$ czyli punktowego oddziaływania Fermiego,
 - ciężki bozon oznacza krótki zasięg oddziaływania,

$$M_W = 80.4 \pm 0.1 \,GeV$$
$$Z \approx 0.002 \,fm$$

- wymieniany bozon przenosi ładunek elektromagnetyczny,
- oddziaływanie ZMIENIA ZAPACH KWARKA!
- oddziaływanie łamie parzystości

Oddziaływania słabe i trzy bozony

- Przy rozpraszaniu neutrino-elektron wg. teorii Fermiego, przekrój czynny zmierza do nieskończoności.
 - jeśli oddziaływanie zachodzi z wymianą ciężkiego bozonu propagator powoduje zmniejszenie szybko rosnących równań,
- Przy rozpraszaniu $e^+e^- o W^+W^-$ przekrój czynny również miał zbyt szybki wzrost

 \mathbf{e}^{-} $\mathbf{g}_{\mathbf{W}}$ $\mathbf{v}_{\mathbf{e}}$ \mathbf{W}^{+} $\frac{1}{\mathbf{q}^{2} - \mathbf{M}_{\mathbf{W}}^{2}}$ $\mathbf{g}_{\mathbf{W}} \mathbf{\mu}^{-}$

- Oddziaływanie zachodzi poprzez wymianę bozonów pośredniczących – fotonu, W⁺, W⁻ i Z⁰, które są ze sobą związane.
- Jedynie taka teoria opisuje wyniki doświadczalne i przewiduje nowe efekty.

interferencja dwóch diagramów e^+ Z^0

MS- oddziaływania

W ramach MS opisujemy elementarne fermiony ich oddziaływania:

ELEKTROMAGNETYCZNE

rozpraszanie

ładunek elektryczny

SŁABE CC (charge current)

SILNE

ładunek silny

SŁABE NC (neutral current)

oddz. słabe zmieniają rodzaj kwarków pomiędzy generacjami!

rozpraszanie

anihilacja

Oddziaływania słabe

Procesy słabe można podzielić ze względu na rodzaj oddziałujących cząstek:

- leptonowe:
$$\mu^-
ightarrow e^-
u_\mu ar{
u}_e$$

- półleptonowe:
$$n \to p \ e^- \ \bar{\nu}_e$$

$$p \rightarrow n e^+ \nu_e$$

$$\pi^- \to \mu^- \bar{\nu}_\mu$$

$$D^0 \to K^- \, \pi^+$$

$$B^0 \to K^- \, \pi^+$$

- bozonu pośredniczącego W^\pm (prądy naładowane)
- bozonu pośredniczącego Z^0 (prądy neutralne)

Zajmiemy się tu prądami naładowanymi:

Oddziaływania słabe i elektromagnetyczne

- Przy niskich energiach (małych przekazach pędu) oddziaływania słabe i elektromagnetyczne różnią się wyraźnie (zasięg, czas życia),
- Przy wyższych energiach (rozpraszanie neutrin) opis Fermiego oddz. słabych daje złe przewidywania.
- pojawia się idea UNIFIKACJI ODDZIAŁYWAŃ SŁABYCH I ELEKTROMAGNETYCZNYCH (Glashow, Salam, Weinberg 1961-67, nagroda Nobla 1979).
- Idea unifikacji polega na opisaniu teorii tym samym lagranżianem i tymi samymi bozonami pośredniczącymi.
- Przesłaniem nowej teorii były FAKTY DOŚWIADCZALNE.

 $\alpha_s \approx 0.2$

 $\alpha_W \approx 0.03$

 $\alpha_{elm} \approx 0.01$

Słabe rozpady leptonów

• Prądy naładowane (oddz. przenoszone przez bozon W) działają w obrębie dubletów (tego samego pokolenia):

$$egin{pmatrix} e^- \
u_e \end{pmatrix}, egin{pmatrix} \mu^- \
u_\mu \end{pmatrix}, egin{pmatrix} au^- \
u_ au \end{pmatrix}$$

BRAK: $W \rightarrow e^- \nu_{\mu}$

nie ma oddziaływań pomiędzy leptonami z różnych pokoleń !!!

Słabe rozpady kwarków

Podobnie mogłoby być dla kwarków:

gdyby nie obserwacja procesu: $K^+(u \bar{s}) \rightarrow \mu^+\nu_{\mu}$

w którym widać wierzchołek $W^+ \rightarrow u\bar{s}$ ze **ZMIANĄ POKOLENIA!**

 Oznacza to, że słabe rozpady kwarków wyglądają trochę inaczej, bo mogą zachodzić ze zmianą pokolenia

Mieszanie kwarków

 Stany, które biorą udział w słabych oddziaływaniach są ortogonalnymi kombinacjami stanów o określonym zapachu, czyli:

oddz. słabe "widzą" zamiast kwarka d – jego stan będący kombinacją d i s:

STANY SŁABE stany masowe (silne, o określonycm zapachu, flavorze)

$$\begin{pmatrix} d' \\ s' \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \begin{pmatrix} d \\ s \end{pmatrix}$$

• W oddziaływaniach słabych częściej występują człony z $\cos \theta_c$,

$$d' = d\cos\theta_c + s\sin\theta_c$$

$$s' = s\cos\theta_c - d\sin\theta_c$$

kąt mieszania (kąt Cabbibo)

$$\theta_C = 13^{\circ}$$

Mieszanie w trzech rodzinach kwarków

Uogólnienie na trzy rodziny kwarków:

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

najbardziej częste są przejścia na diagonalach, przejścia ze zmianą dwóch pokoleń są **silnie TŁUMIONE**

Mieszanie w trzech rodzinach kwarków

• Kwark d dla oddziaływań słabych "widziany jest" jako d', czyli mieszanina d, s, i b:

Mieszanie w trzech rodzinach leptonów?

Jak by wyglądało mieszanie pomiędzy generacjami leptonów?

- Problem doświadczalny jak określić rodzaj neutrina?
- Kwarki mają różne masy i można rozróżnić stany końcowe.

MS – podejdźmy teraz formalnie do oddziaływań słabych:

Procesy słabe i mieszanie Cabbibo

 Kąt mieszania (kąt Cabbibo) jest jednym z parametrów MS, który musi zostać zmierzony, nie wynika z teorii

$$\frac{\left|\int_{u}^{w^{-}}\right|^{2}}{\left|\int_{d}^{w^{-}}\right|^{2}} = \tan^{2}\theta_{C} \qquad \frac{\Gamma(K^{+} \to \mu\nu_{\mu})}{\Gamma(\pi^{+} \to \mu\nu_{\mu})} \sim \tan^{2}(\theta_{c})$$

 FCCC (Flavour Changing Charge Currents) mogą teraz sprzęgać się z różną siłą do różnych generacji kwarków!

Mieszanie kwarków z czarmem

 Teoria elektrosłaba – model Glashow-Weinberg-Salam (GIM), m.in. opisuje mieszanie z kwarkiem c:

Dla dwóch generacji kwarków mieszanie opisane jest przez pojedynczy, rzeczywisty parametr – brak łamania parzystości CP.

Mieszanie trzech generacji kwarków

 Idea: kwarki "dolne" w rozpadach słabych uczestniczą jako mieszane stany masowe (taka konwencja, mogły też mieszać się kwarki "górne"):

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$
 Stany (własne) Macierz mieszania Cabbibo-Cobayashi-Maskawa Masowe e-stany słabe

- Elementy V_{ij} macierzy CKM są liczbami zespolonymi.
- Macierz CKM jest UNITARNA (zachowanie prawdopodobieństwa)
- Elementów macierzy CKM nie można wyznaczyć z teorii muszą być ZMIERZONE.

"Słaby" wierzchołek

Idea: kwarki "dolne" w rozpadach słabych uczestniczą jako mieszane stany masowe (taka konwencja, mogły też mieszać się kwarki "górne"):

"Słaby" wierzchołek

Idea: kwarki "dolne" w rozpadach słabych uczestniczą jako mieszane stany masowe (taka konwencja, mogły też mieszać się kwarki "górne"):

Macierz CKM

Elementów macierzy CKM nie można wyznaczyć z teorii – muszą być ZMIERZONE.

Cabibbo matrix

$$\begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}| \\ |V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}| & |V_{ts}| & |V_{tb}| \end{pmatrix} \approx \begin{pmatrix} 0.974 & 0.226 & 0.004 \\ 0.23 & 0.96 & 0.04 \\ 0.01 & 0.04 & 0.999 \end{pmatrix}$$

"Standardowa" parametryzacja macierzy CKM:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} =$$

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}c_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$c_{ij} \equiv \cos \theta_{ij}$$

$$s_{ij} \equiv \sin \theta_{ij}$$

δ – nieredukowalna faza, ona odpowiada za CPV

Trzy typy łamania parzystości CP

I. CP violation in decay (direct CP Violation)

II. CP violation in mixing (indirect CP Violation)

III. CP violation in interference between mixing and decay

Jak znaleźć CPV?

- Obserwacja *CPV* polega na porównaniu szybkości rozpadu (decay rate, czyli liczby rozpadów na czas) $\Gamma(P \to f)$ z $\Gamma(\overline{P}) \to \overline{f}$
- Jest to pośrednie łamanie \mathcal{CP} w mieszaniu neutralnych mezonów
- Definiujemy asymetrię pomiędzy rozpadami neutralnych stanów \mathcal{CP} sprzężonych:

$$A_{CP}(t) = \frac{\Gamma\{B(t) \to f\} - \Gamma\{\overline{B}(t) \to \overline{f}\}}{\Gamma\{B(t) \to f\} + \Gamma\{\overline{B}(t) \to \overline{f}\}}$$

gdzie:
$$\Gamma(P \to f) \propto |A_f|^2$$

Amplituda A_f jest zdefiniowana jako element macierzowy, który opisuje przejście pomiędzy stanem *P* i *f* , takim, że:

$$P \rightarrow f$$
 opisywane jest przez $A_f = \langle f|H|P \rangle$

$$\overline{P} o f$$
 przez: $\overline{A_f} = \langle f | H | \overline{P} \rangle$