

Areal statistics

Barry Rowlingson Research Fellow

Borders

US Congressional Borders

Similar Population

Different Area

Similar Area

Similar Area

Different Population

Cartogram

Population Cartogram

Spatially Random

Spatial Structure

Adjacent

Nearest

Adjacency Representations

```
[[1]]
[1] 6 16 21
[[2]]
[1] 7 10 18 31 32
[[3]]
       8 9 12 22
[[4]]
[1] 3 9 12 26
[[5]]
[1] 10 28 31
[[6]]
   1 16 32
```


Moran I

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (z_{i} - \bar{z})(z_{j} - \bar{z})}{\sum_{i} (z_{i} - \bar{z})^{2}}$$

Moran I Test

Density plot of permutation outcomes

Monte-Carlo simulation of Moran I

Let's practice!

Spatial health data

Barry Rowlingson Spatially Healthy

Incidence Rate

$$R_i = \frac{N_i}{P_i}$$

$${\rm Rate} \ {\bf is} \ \frac{{\rm Number} \ {\rm of} \ {\rm Cases}}{{\rm Population} \ {\rm At} \ {\rm Risk}}$$

Standardized Morbidity Ratio

SMR in region
$$i = \frac{R_i}{\text{Overall Rate}}$$

Overall Rate

$$\mathbf{R} = \frac{\sum N_i}{\sum P_i}$$

Overall Rate is
$$\frac{\text{Total Cases}}{\text{Total Population}}$$

Expected Cases

$$E_i = \mathbf{R} \times P_i$$

Expected Cases is Overall Rate × Population

Standardized Morbidity Ratio

$$SMR_i = \frac{N_i}{E_i}$$

Std Morbidity Rate is
$$\frac{\text{No. of Cases}}{\text{Expected}}$$

SMR Map

Exceedence Probability Map

Let's practice!

Generalized linear models in space

Barry Rowlingson Generally Linear

Linear Model

$$Y \sim N(X\beta, \sigma^2)$$

Generalized Linear Model

$$Y \sim D(\mu(X\beta))$$

Poisson (Count) GLM

$$Y \sim Poisson(e^{X\beta})$$

Parameter Estimation

> summary(fit)

	Estimate	Std. Error	t value	$\Pr(> t)$	
(Intercept)	24.28	25.44	0.95	0.3448	
AGE	1.69	0.53	3.16	0.0028	**
SHOESIZE	0.17	1.61	0.11	0.9155	

Fit

Misfit

Random Residuals

Spatially Structured Residuals

Let's practice!

Correlation in spatial GLMs

Barry Rowlingson Spatially Correlated

Correlated Residuals

New Covariates

Model for Spatial Correlation

$$Y = X\beta + \mathbf{S}(x, y)$$

Conditional Autocorrelation

Bayesian Statistics

Bayesian Statistics

Let's practice!