Parental Investment and Intergenerational mobility:

An Estimable Dynamic Tournament Model of College Admission

Hyunjae "Jay" Kang

Stony Brook University

August 18, 2021

Summary of Motivation

- The competition aspects of parental investment
 - Private tutoring expenditure accounts for about 10% of household income in many countries
 - Seats for elite/good colleges are finite
 - ▶ Parental investment participation drops once the child graduates from high school
- College as the predictor of your lifetime income
 - Evidence shows that getting above the cutoff for elite college makes big difference (Zimmerman 2019, Sekhri 2019, Jia and Li 2019)
 - ▶ The elite college premium grows over time
 - ▶ Parental Investment increases the probability of getting into elite colleges ⇒ Implications for intergenerational mobility
- You have to beat your competitors to go to better colleges (for better lifetime income)
 - ► How?: parental investment, self-study, good initial conditions
 - Dynamic incentives: marginal effects of the modes might change over time

Motivation: Tutoring Participation after high school

Korea Education Longitudinal Study (2005) back

College Wage Differentials grow over time

Figure: Average Income by Graduated College Tier

Source: Author's Calculation using KLIPS Dataset (Unit :10,000 KRW= 9 USD)

Motivation : Dynamics of Parental Investment and Students' efforts

Figure: Dynamics of Tutoring and Hours-Studied

Research Questions

- How much does parental investment (private tutoring expenditure) affect intergenerational mobility?
 - Simulate the world without parental investment controlling for students' self-efforts and parental education
- 4 How do the effects of tutoring expenditure and hours studied change with age?
 - Dynamic substitutability and complementarity
- How would households react if there are fewer people to compete for elite college?
 - ▶ How would households respond to the low fertility regime?
- 4 How productive is the parental investment?
 - ▶ Is it mostly for winning the competition rather than to enhance human capital? (simulate the world colleges provide equal outcome)

What this paper does

- Develop a dynamic tournament model incorporating competition between households
 - ▶ Model builds on Lazear and Rosen to incorporate the competition
 - Each household chooses (i) quantity and (ii) quality of parental investment and (iii) hours of self-study (efforts) to get its children into the better colleges
 - Colleges differ in income prospects (prizes) of graduates
- 2 Estimate the structural model using maximum simulated likelihood
- Quantification and policy experiments using the estimated model
 - Quantify the effects of tutoring expenditure on intergenerational mobility
 - ★ China's tutoring ban policy
 - Tutoring subsidy for the low income households
 - ▶ Cohort shrinking → Response of the households

Where I am

- I started with the model with one choice variable (parental investment), estimated the model, and conducted counterfactuals
 - Stronger marginal effects of tutoring expenditure in earlier age (the effects decrease as students get older)
 - Intergenerational elasticity of earnings about 6 times higher with the existence of private tutoring
 - ★ Tutoring expenditure leads to less intergenerational mobility
- Extension: adding hours of self-study and parental education to elicit more rich implications
 - Stronger marginal effects of tutoring expenditure in earlier age. The effects of self-study stays stable over time.
 - Parental education increases the effects of self-study, not so much for parental investment
- Ourrently finishing up with the estimation of the extended model and writing code for the counterfactuals

8 / 21

Difficulties I am facing/faced

- Missing test scores
 - The model period is from 7th to 12th grade, but the test scores of 10th and 11th grade are missing
 - ► I simulate those test scores, but the searching algorithm produced unreasonably large numbers
- Heavy computation in terms of model solving
 - ▶ Three continuous choice variables. Six continuous state variables.
- Efforts to find the "best" interpolation routine
 - ▶ I need to interpolate 6 dimension value function and to get first/second order partial derivatives, allowing for extrapolation
 - Options on the table: Bspline, Keane-Wolpin Interpolation,
 Habermann-Kinderman fast spline, and variation diminishing spline

Summary of the dynamic tournament model

- $lue{1}$ Household i starts with initial academic performance q_{i1}
- ② As soon as the household enters into time t, the consumption shock (ε_{it}^c) , the leisure shock (ε_{it}^l) , and the self-study productivity shock (ε_{it}^s) are realized.
- **3** Each household chooses quality of tutoring (p_{it}) , hours of tutoring (x_{it}) , and hours self-studied (s_{it}) to maximize its value function
- **1** The future lifetime income of its child is determined by the final test score $(q_{i,T+1})$, and the tournament structure
- **1** To get into college tier j, the child's score $(q_{i,T+1})$ should be greater than the cutoff of college tier j (\bar{Q}_j)
- **1** The test score is a function of previous year's test score (q_{it}) , parental investment, and students' efforts.

The structure of the dynamic model: Timing of the decision

Expected Lifetime income (Terminal Value)

Expected lifetime income is defined as,

$$\sum_{j=1}^{J} \left[\underbrace{\ln(v_j)}_{\text{Prize of going to the } j^{th} \text{ tier college}} \times \underbrace{Prob(\bar{Q}_{j-1} \geq \underline{q_{i,T+1}} \geq \bar{Q}_j)}_{\text{Probability of going to the } j^{th} \text{ tier college}} \right]$$

 v_j : Average lifetime income of graduates of j^{th} tier colleges

 $q_{iT+1}:\ i's$ CSAT score which determines the college to attend

 $ar{Q}_j$: Threshold to be admitted into j^{th} tier colleges

• Then how is $q_{i,T+1}$ generated?

Test score function

$$\ln q_{i,t+1} = \delta_{0t} + \delta_{1t} \ln q_{it} + \delta_{2t} \ln(1 + p_{it}^{\kappa} x_{it}^{1-\kappa}) + \varepsilon_{it}^{s} \delta_{3t} \ln(1 + s_{it}) + \delta_{4t} \ln pedu_{i} + \lambda_{i} + \eta_{it}^{q};$$

 q_{it} : Test score at time t

 p_{it} : tutoring quality

 x_{it} : time spent for tutoring

 s_{it} : time spent for self-study

 η_{it}^q : Random shock of the test at time t

I also let δ_{2t} and δ_{3t} depend on the years of parental education

Issue #1 Missing test scores and weak identification

- Test score for t=4,5 are missing (but other input data is available)
- I simulate them:
 - ▶ Draw R random shocks ε_{it}^{qr} , R = 1, 2, ...R
 - \blacktriangleright Each random draw has corresponding simulated test score $q^r_{i,t+1}$
- Problem: the parameter searching algorithms pick unrealistically big parameters. (Weakly Identified)
 - ▶ For other periods, test score $q_{it} \in [250, 550]$
 - ▶ The searching algorithms pick parameters so that q_5 and q_6 be something like 8000

Simple but drastic solution

- I linearly interpolate δ_{0t} and δ_{1t} for t=4,5 using the coefficients of periods t=3 and t=6.
- So

$$\delta_{04} = \delta_{03} + \frac{1}{3}(\delta_{06} - \delta_{03})$$
$$\delta_{05} = \delta_{03} + \frac{2}{3}(\delta_{06} - \delta_{03})$$

- With this assumption the test score level becomes stable
- But this is probably drastic solution

The recursive representation

$$\begin{split} V_{it}(Z_{it},\bar{\varepsilon}_{it}) &= \max_{x_{it},p_{it},s_{it}} \left\{ \varepsilon_{it}^c \ln(c_{it}) + \alpha_1 \varepsilon_{it}^l \ln(l_{it}) \right. \\ &+ \beta \sum_{\varepsilon_{it}^q,\bar{\varepsilon}_{i,t+1}} \left[V_{i,t+1}(Z_{it+1},\bar{\varepsilon}_{i,t+1} \Big| \Gamma_{it}) \right] \right\}, \\ &\text{for } t < T; \\ V_{iT}(Z_{iT},\bar{\varepsilon}_{iT}) &= \max_{x_{iT},p_{iT},s_{iT}} \left\{ \varepsilon_{iT}^c \ln(c_{iT}) + \alpha_1 \varepsilon_{iT}^l \ln(l_{iT}) \right. \\ &+ \alpha_2 \sum_{j=1}^J \ln(v_j) \times Prob(\ln \bar{q}_{j-1} \geq \ln q_{i,T+1} \geq \ln \bar{q}_j \Big| \Gamma_{iT}) \right\}, \\ s.t. \ c_{it} + e_{it} \leq w_{it}; \\ e_{it} &= p_{it}x_{it} \\ s_{it} + l_{it} + x_{it} \leq h; \\ \bar{\varepsilon}_{it} &= \left\{ \varepsilon_{it}^c, \varepsilon_{it}^l, \varepsilon_{it}^s \right\}, \ Z_{it} = \left\{ w_{it}, \ln q_{it}, pedu_i \right\}. \\ \Gamma_{it} &= \left\{ q_{it}, \left\{ \bar{q}_j \right\}_{j=1}^J, \left\{ w_{it} \right\}_{t=1}^T, x_{it}, s_{it}, p_{it} \right\}; \end{split}$$

Error term specifications

$$\begin{pmatrix} \ln \varepsilon_{it}^{c} \\ \ln \varepsilon_{it}^{l} \\ \ln \varepsilon_{it}^{l} \\ \ln \varepsilon_{it}^{q} \\ \ln \varepsilon_{it}^{s} \end{pmatrix} = \begin{pmatrix} \lambda_{i}^{c} \\ \lambda_{i}^{l} \\ \lambda_{i}^{q} \\ \lambda_{i}^{q} \end{pmatrix} + \begin{pmatrix} \eta_{it}^{c} \\ \eta_{it}^{l} \\ \eta_{it}^{q} \\ \eta_{it}^{s} \end{pmatrix}$$

$$\begin{pmatrix} \lambda_{i}^{c} \\ \lambda_{i}^{l} \\ \lambda_{i}^{q} \\ \lambda_{i}^{s} \end{pmatrix} \sim N \begin{pmatrix} 0, \Omega_{4 \times 4}^{\lambda} \end{pmatrix};$$

$$\begin{pmatrix} \eta_{it}^{c} \\ \eta_{it}^{l} \\ \eta_{it}^{q} \\ \eta_{it}^{s} \\ \eta_{it}^{s} \end{pmatrix} \sim N \begin{pmatrix} 0, \Omega_{4 \times 4}^{\eta} \end{pmatrix};$$

Issue #2 Model solution

There are six state variables. For observed part,

$$Z_{it} = \{w_{it}, \ln q_{it}, pedu_i\}.$$

For the unobserved part,

$$\bar{\varepsilon}_{it} = \{ \varepsilon_{it}^c, \varepsilon_{it}^l, \varepsilon_{it}^s \}.$$

- It takes a long time to solve the dynamic model.
- With OpenMP (40 cores), it still takes about 40 seconds to evaluate the likelihood function once *using Fortran*
- My solution is adopting MPI for the model solving routine. Still work in progress.
- EGM maybe? ⇒ (i) concave utility (ii) state variables can be analytically expressed (iii) realization of shocks?

The advantage of using the Korean Data

- Richness of private tutoring data (Korean Education Longitudinal Studies, Korean Labor & Income Panel)
 - Average monthly tutoring expenditure, hours of tutoring, self-study data from 7th grade
 - Administrative exam score data available for 7-9th grade, and 12th grade
- Straightforward system to understand the effects of competition on tutoring investment
 - National standardized exam (College Scholastic Ability Test) determines the college to attend
 - Fixed seats for each college
 - ► A commonality of college admission competition (China, Turkey, Japan, Singapore etc)

Likelihood function

I denote θ as the set of parameters, S_{it} as the set of state variables, and Λ_i as the set of person-specific shocks. The likelihood contribution of household i is

$$\mathcal{L}_{i}(\theta|q_{i0}, \{w_{it}\}_{t=1}^{T}) = \int_{\Lambda_{i}} \left(\Pi_{t=1}^{T_{i}} \mathcal{L}_{it}(\theta|S_{it}, \Lambda_{i}) \right) \cdot f_{\Lambda_{i}}(\Lambda_{i}) d\Lambda_{i};$$

where

$$\mathcal{L}_{it}(\theta|S_{it}, \Lambda_i) = \left[f_{p_{it}}(p_{it}) \cdot f_{x_{it}}(x_{it}|p_{it}) \cdot f_{s_{it}}(s_{it}|p_{it}, x_{it}) \cdot f_{q_{it}}(q_{it}|p_{it}, x_{it}, s_{it}) \right]^{d_{it}^e d_{it}^3}$$

$$\times \left[f_{p_{it}}(p_{it}) \cdot f_{x_{it}}(x_{it}|p_{it}) \cdot \Pr(s_{it} = 0|p_{it}, x_{it}) \cdot f_{q_{it}}(q_{it}|p_{it}, x_{it}, s_{it}) \right]^{d_{it}^e (1 - 1)}$$

$$\times \left[\Pr(p_{it}x_{it} = 0) \cdot f_{s_{it}}(s_{it}|p_{it}x_{it} = 0) \cdot f_{q_{it}}(q_{it}|p_{it}, x_{it}, s_{it}) \right]^{(1 - d_{it}^e) d_{it}^s}$$

$$\times \left[\Pr(p_{it}x_{it} = 0) \cdot \Pr(s_{it} = 0|p_{it}x_{it} = 0) \cdot f_{q_{it}}(q_{it}|p_{it}, x_{it}, s_{it}) \right]^{(1 - d_{it}^e) (1 - 1)}$$

Conclusion

- Preliminary Results
 - Stronger marginal effects of tutoring expenditure in younger periods.
 - ▶ The effects of self-study are stable over time.
 - Parental education increases the effects of self-study, not so much for parental investment
- 2 ..writing code for the counterfactuals
 - Intergenerational mobility where: (i) Tutoring is not an option (ii) Tutoring and self-study are not options
 - Subsidy for low income households
 - Response of the households in the ultra-low fertiltiy regime
 - Thank you!!!

Sample fit: Test Scores

	7th	8th	9th	10th	11th	12th
Log Test-Score ($\log q$)						
Data						
mean	6.042	6.037	6.040	-	-	6.016
std	(0.111)	(0.117)	(0.118)	-	-	(0.155)
Model						
mean	5.942	5.915	5.930	5.920	5.892	5.851
std	(0.069)	(0.044)	(0.035)	(0.027)	(0.020)	(0.015)

Table: Log Test Scores Sample Fit

Sample fit: Tutoring Quality

Sample fit: Hours spent in tutoring

Sample fit: Hours spent in self-study

Motivation

- 1. Parental Investment (private tutoring) and its potential effects on lifetime income
 - Tutoring has a positive association with subsequent test score
 - The effects of elite college on earnings exist and grow over the life-cycle
 - ► The elite university cutoff effects: China (Jia and Li 2020), India (Sekhri 2019) Chile (Zimmerman 2019)
 - ▶ The premium grows over time: Ko 2011, Koh and Lee 2019
 - China's tutoring ban policy
 - "China is barring tutoring for profit in core school subjects... to ease financial pressures on families that have contributed to low birth rates,..."

Motivation: Competition and Dynamics

- 2. The competitive nature of parental Investment (private tutoring)
 - Tutoring as a means to get finite seats for better colleges
 - The strategic interaction through such competition not formally implemented and estimated in the literature
 - Rapid cohort changes in the countries where private tutoring is popular
- 3. Complementarity and substitutability of parental Investment and the child effort
 - The child effort variable is often ignored in the literature
 - The average self-study hours soars up at the end while many students reduce or quit tutoring
 - The effects of tutoring and self-study might change over time in a different way

The Prize Structure

Average lifetime Earnings of

Ranking	Graduates of each tier
1st	$\$v_1$
2nd	$\$v_2$
:	÷
$(J-1)^{th}$	$$v_{J-1}$
J^{th}	$\$v_J$

- There are J tiers (J-1 college tiers, the high school graduate tier)
- ullet There are N households
- ullet Each tier j has S_j seats such that $\sum_{j=1}^{J-1} S_j = M < N$
- $v_j = \sum_{t=1}^{T^*} \delta^t E(y^j)$

Probabilities of going to the tiers

Probabilities of Ranking going to the tier $Prob_i(\infty > q_{i,T+1} > \bar{Q}_1)$ 1st $Prob_i(\bar{Q}_1 \geq q_i, T+1 > \bar{Q}_2)$ 2nd $Prob_i(\bar{Q}_{.I} \geq q_{i.T+1} \geq Q_{J-1})$ $(J-1)^{th}$ $Prob_{i}(\bar{Q}_{J-1} > q_{i,T+1} > 0)$

- $q_{i,T+1}$ is the final test score of person i
- ullet $ar{Q}_j$ is the cutoff for j^{th} college tier (The lower bound of q_{T+1} of j^{th})
- ullet $ar{Q}_j$ changes with the distribution of the final test score
- ullet $ar{Q}_j$ changes with the tutoring choices of individuals

Estimation procedure

- Generate average lifetime income of each tier using Korean Labor & Income Panel Study Data Details
 - ▶ Using Korean Labor & Income Panel Study, I estimate the wage equation and predict the average income of college tiers

* I sum the discounted tier-specific income for different ages, and define it as tier-specific lifetime income (v_j)

1 Main analysis: estimate the dynamic tournament model

★ Using Korean Educational Longitudinal Studies, I estimate the dynamic tournament model by maximum simulated likelihood

Lifetime income

Using KLIPS, the income equation estimated is

$$\ln y_{it} = \sum\nolimits_{Tier=1}^{5} \left\{ \beta_{tier} (D_{it}^{Tier} \cdot Age_{it}) + \alpha_{tier} D_{it}^{Tier} \right\} + Z\gamma,$$

Figure: Predicted Annual income of Graduates by College Tiers

Literature review and Contribution

- Studies of Income Inequality and Intergenerational Mobility
 - ▶ Becker et al. (2018) Chetty et al. (2014) Becker and Tomes (1979, 1986)
 - The impact of parental investment on intergenerational mobility controlling for child's self efforts and parental education
- Structural model of parental Investment and the child outcome
 - Del Boca, Flinn, Wiswal (2014 Restud): Estimating the effects of time and monetary parental investment using a dynamic model
 - Agostinelli (2018 working paper) : Social Interactions and Parental Investment
 - Bodoh-creed and Hickman (2019 working paper): Pre-college HC investment on college quality & labor market outcome using empirical auction framework
 - The introduction of the child effort variable and estimation with student competition

Literature review and Contribution continued

- Application of Rank-Order Tournament Model
 - Lazear and Rosen (1979) Rosen (1982)
 - Structural estimation of tournament model: Ferrall (1996, 1997) Chen and Shum (2010) Zheng and Vukina (2007)
 - Dynamic tournament with the selection process of heterogeneous agents
 - Reasonable measures of efforts and resources
- Private tutoring literature in economics
 - ► Few papers on welfare implications (Kim Tertilt Yum 2018)
 - ▶ Papers tend to focus on the effects of private tutoring on academic performance only
 - ► First paper to estimate the effects of tutoring on intergenerational mobility

Data

- Korean Education Longitudinal Studies 2005
 - Tracking 6,908 7th grade students for 15 years
 - Household's tutoring expenditure, income, administrative national standardized exam score and CSAT score
 - Relatively more detailed information on tutoring expenditure
- Korean Labor & Income Panel Study
 - Information on income, college they graduated from,
 - ► To predict lifetime income of each individual proceduremain

Standard errors

For parameter set θ , I computed

$$S_{n\times k} = \frac{\mathcal{L}(\boldsymbol{\theta} + \triangle) - \mathcal{L}(\boldsymbol{\theta})}{\triangle};$$

$$V_{k\times k} = (\frac{S'S}{N})^{-1};$$
 Standard error of $\boldsymbol{\theta} = diag\Big(\sqrt{\frac{V}{N}}\Big)$

Auxiliary regression A

Table:

	Dependent variable:
	log(CSAT)
In(Performance 6th)	0.266***
	(0.007)
In(Tutoring-Middle)	0.019***
	(0.002)
intercept	4.557***
·	(0.034)
Observations	3,482
R ²	0.378
Residual Std. Error	0.151 (df = 3479)
Note:	*p<0.1: **p<0.05: ***p<0.0

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■□ *9<○</p>

Auxiliary regression B

Table:

	Dependent variable:
	log(CSAT)
In(Performance 9th)	0.416***
	(0.014)
In(Tutoring-High)	0.078***
	(0.004)
intercept	4.082***
	(0.023)
Observations	5,864
R^2	0.237
Residual Std. Error	0.389 (df = 5861)
Note:	*p<0.1; **p<0.05; ***p<0

Income-Tutoring Regression

Table:

	Dependent variable:
	log(Initial Income)
log(Private tutoring)	0.003
	(0.008)
log(CSAT Score)	0.283***
	(0.047)
intercept	3.717***
	(0.265)
Observations	739
Note:	*p<0.1; **p<0.05; ***p<0.

Complete GPA-Tutoring regression

Table: College GPA and Private tutoring expenditure

			Depende	nt variable:		
			log(Coll	ege GPA)		
	All	Top Tier	2nd Tier	3rd Tier	4th Tier	Bottom Tier
	(1)	(2)	(3)	(4)	(5)	(6)
log(Total Tutoring)	-0.003* (0.002)	-0.014 (0.026)	0.003 (0.008)	0.002 (0.008)	-0.005 (0.005)	-0.003 (0.002)
log(CSAT Score)	0.105*** (0.016)	1.222 (1.208)	0.143 (1.032)	-0.162 (0.653)	0.495 (0.445)	0.108*** (0.022)
intercept	0.762*** (0.095)	-6.169 (7.667)	0.482 (6.455)	2.384 (4.057)	-1.637 (2.740)	0.744*** (0.129)
Observations	2,489	28	90	162	274	1,935

Note:

*p<0.1; **p<0.05; ***p<0.01

Structural Estimates

	7th	8th	9th	10th	11th	12th
$log(PreviousTest)$ (δ_{1t})	0.2577***	0.4927***	0.5726***	0.5317***	0.9603***	0.8330***
	(0.0015)	(0.0006)	(0.0005)	(0.0007)	(0.0006)	(0.0005)
Constant (δ_{0t})	5.2058***	2.8721***	2.4381***	1.3140***	1.3293***	1.2404***
	(0.0027)	(0.0033)	(0.0027)	(0.0013)	(0.0013)	(0.0011)

Summary of empirical evidence

- 1 Tutoring has potential impacts on the lifetime income of children more
- 4 Household use tutoring as means to get finite seats for elite colleges more
 - ► The strategic interaction through the competition not formally implemented and estimated in the literature
 - Rapid cohort changes in the countries where private tutoring is popular
 - 3 Complimentarity and substitutability of parental Investment and the child effort more
 - ▶ The child effort variable is often ignored in the literature
 - ► The average self-study hours soars up at the end while many students reduce or quit tutoring

Algorithm

back

- $\textbf{ 9 Start with initial guess } \{\bar{Q}_j^0\}_{j=1}^J$
- ② Given $\{\bar{Q}_j^0\}_{j=1}^J$, I generate $\{V_{it}^0(q_{it},\varepsilon_{it}^c;Z_{it})\}_{t=0}^T$ and $\{e_{it}^0(q_{it},\varepsilon_{it}^c;Z_{it})\}_{t=0}^T$ using backward recursion.
- **③** I forwardly simulate each household's behavior, using stored $\{V_{it}^0(q_{it}, \varepsilon_{it}^c; Z_{it})\}_{t=0}^T$ and $\{e_{it}^0(q_{it}, \varepsilon_{it}^c; Z_{it})\}_{t=0}^T$
- lacktriangledown Then I will have a generated q_{iT} and its distribution $F^0(q_T)$
- **⑤** Conditional on the generated test score distribution, $F^0(q_T)$, find a set of generated cutoff $\{\bar{Q}^1_i\}_{i=1}^J$, given the definition of \bar{q}_j
- ${\bf 0}$ Update the guess for the set of cutoffs, using $\{\bar{Q}_j^1\}_{j=1}^J$

Do 2 through 5 until $\|\{\bar{Q}_{j}^{n}\}_{j=1}^{J} - \{\bar{Q}_{j}^{n+1}\}_{j=1}^{J}\| < \varepsilon.$

Define such set of thresholds as $\{\bar{Q}_{j}^{*}\}_{j=1}^{J}$

Predicted Lifetime income

	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5 (Baseline)
Predicted Lifetime Income (\$)	3.08 mil	2.34mil	2.07mil	1.33mil	0.96mil
$\frac{\text{Lifetime Income of the Tier}}{\text{Baseline}} \times 100$	321	244	215	138	100

OLS Results of Lifetime Income

	loginc
intage_1	0.083***
	(0.00)
intage_2	0.065***
	(0.00)
intage_3	0.065**
	(0.00)
intage_4	0.037***
	(0.00)
byear_	0.022***
	(0.00)
age_	0.072***
	(0.00)
agesq	-0.001***
	(0.00)
_cons	-36.255***
	(0.84)
N	47293

Discrete

$$\ln y_{it} = \sum\nolimits_{Tier=1}^{4} \sum\nolimits_{Dage}^{4} \beta_{tier} (D^{Tier}{}_{it} \cdot D_{age}) + Z\gamma,$$

Figure: Predicted Annual income of Graduates by College Tiers

The Model Properties

- Model properties and comparative statics
 - ▶ Households with higher income spend more on tutoring expenditure
 - Tutoring expenditure increases (decreases) probability of going to the higher (lower) tiers
 - As the premium of higher college tier $(v_j v_{j+1})$ increases, households spend more on tutoring expenditure

Probability of going to the 1st tier

Bottom tier

Second tier

Third tier

Additional selection process evidence

Figure: Middle school to high school

Low association with initial wage

Figure: Tutoring and Labor Market Performance

Data: Korean Education and Employment Panel (2005) back