Trans-Z-source Inverter

Eastern Washington University

Nhat Nguyen

EENG 401: Electromagnetism

Research Project

Images' courtesy of VinFast Auto and Tesla Motors.

Agenda

What is an inverter?

- Converts DC to AC
- High frequency switching achieved with Insulated Gate Bipolar Transistors (IGBTs)

Images' courtesy of <u>The Engineering Mindset</u>, <u>EEWeb</u>, <u>Amazon</u>, <u>Win-source</u>, and <u>Tesla Motors</u>.

Traditional inverter?

- Simple conversion stage
- Prone to Electromagnetic Interference (EMI)
 noise → reduce reliability
- Either be a buck or boost, can not be either
- No two-way power flow

Fig. 1. Traditional V-source converter.

Fig. 2. Traditional I-source converter.

Z-source inverter?

- Unique impedance network (circuit) involves a different way to put capacitor and inductors
- Power conversion and solve the issues that traditional inverter had

Published in: IEEE Transactions on Industry Applications (Volume: 39, Issue: 2, March-April 2003)

Page(s): 504 - 510 **INSPEC Accession Number: 7557765**

Date of Publication: 26 March 2003 2 DOI: 10.1109/TIA.2003.808920

▶ ISSN Information: Publisher: IEEE

College of Electrical Engineering, University of Zhejiang, Hangzhou,

Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA

Fig. 14. Simulation waveforms when the fuel-cell voltage $V_0 = 150 \text{ V}$, inverter modulation index M = 0.642, and shoot-through duty cycle $T_0/T = 0.358$.

Simulation and prototype system configuration.

Fig. 16. Experimental waveforms when the fuel-cell voltage is high. Inverter modulation index M = 1.0, and without using the shoot-through state or shoot-through period ratio $T_0/T = 0$.

Fig. 15. Experimental waveforms when the fuel-cell voltage is low, inverter modulation index M=0.642, and shoot-through period ratio $T_0/T=0.358$ (Vo and Vc2 : 200 V/div, VLab : 2 200 V/div, iLa: 50 A/div, and time: 4 ms/div).

Trans-ZSI?

- Higher boost gain (voltage-fed)
- More motoring operation range (current-fed)
- Broaden use cases, e.g. microinverter for photovoltaic systems, etc.

Published in: IEEE Transactions on Power Electronics (Volume: 26, Issue: 12, December 2011)

Page(s): 3453 - 3463

INSPEC Accession Number: 12391164

Date of Publication: 03 March 2011 2

DOI: 10.1109/TPEL.2011.2122309

▶ ISSN Information:

Publisher: IEEE

Fig. 6. Voltage-fed trans-Z-source inverter.

Fig. 8. Current-fed trans-quasi-Z-source inverter.

Fig. 2. Voltage-fed trans-quasi-Z-source inverter.

Fig. 11. Current-fed trans-Z-source inverter.

EM theory

	$ abla imes E = -rac{\partial B}{\partial t}$	$\nabla \cdot B = 0$	$ abla imes H = J + rac{\partial D}{\partial t}$	$ abla \cdot \mathbf{D} \\ = \mathbf{\rho}_{\mathbf{v}} $	$F = Q(E + u \times B)$	Where?
Faraday's Law (Inductance)	X					Ind. and cap. Config.
No monopoles magnets		x				Ind.
Ampere's Circuit Law			×			Ind. and Cap.
Gauss's Law				x		EMI noise reduction
Lorentz Force					×	AC load (motors, etc.)

Plan for the future

Planning

Conduct more testing and simulation to verify the current results better

Marketing

Connecting research groups to companies of interests

Design

Patent designs for different applications with a cost-aware approaches

Strategy

Manufacture at scale to consider cost

Launch

Implementation in commercial systems

Timeline

Areas of focus

EV charging

Tesla, VinFast, Ford, etc.

Microgrids

Avista, Seattle City Lights, PUDs, etc.

Solar panels

First Solar, Lind, GE, etc.

Large energy storage

Tesla Mega Pack, etc.

