数据挖掘课程 作业三

刘扬 171850524

1.问题描述

在给定数据集上分别使用决策树、朴素贝叶斯、支持向量机、神经网络和 k 近邻的方法以及它们的 Bagging 版本进行分类,以正确率和 AUC 值作为指标比较不同方法的性能,并讨论如何提升 k 近邻 Bagging 版本的性能.

2.数据集描述

给定十个数据集, 其中包括 3 个不平衡的数据集和一个多分类数据集. 每个数据集包含的样本数量和属性个数均不同.

3.实验流程

使用 Weka3.8.4 对数据进行分类.

3.1 决策树

使用 weka 自带的 J48 分类器,参数使用默认值

单个模型 集成版本

数据集	正确率	AUC	数据集	正确率	AUC
breast-w	94.6%	0.955	breast-w	96.3%	0.985
colic	85.3%	0.813	colic	85.6%	0.864
credit-a	86.1%	0.887	credit-a	86.8%	0.928
credit-g	70.5%	0.639	credit-g	73.3%	0.753
diabetes	73.8%	0.751	diabetes	74.6%	0.798
hepatitis	83.9%	0.708	hepatitis	83.9%	0.865
mozilla4	94.8%	0.954	mozilla4	95.1%	0.976
pc1	93.3%	0.668	pc1	93.6%	0.855
рс5	97.5%	0.817	pc5	97.5%	0.959
waveform-5000	75.8%	0.830	waveform-5000	81.2%	0.949

3.2 朴素贝叶斯

使用 weka 自带的 NaiveBayes,参数使用默认值

集成版本

数据集	正确率	AUC
breast-w	96.0%	0.986
colic	78.0%	0.842
credit-a	77.7%	0.896
credit-g	75.4%	0.787
diabetes	76.3%	0.819
hepatitis	84.5%	0.860
mozilla4	68.6%	0.829
pc1	89.2%	0.650
рс5	96.4%	0.833
waveform-5000	80.0%	0.956

数据集	正确率	AUC
breast-w	95.9%	0.989
colic	78.0%	0.842
credit-a	77.8%	0.896
credit-g	74.8%	0.787
diabetes	76.6%	0.817
hepatitis	85.8%	0.890
mozilla4	68.7%	0.830
pc1	88.9%	0.628
рс5	96.5%	0.845
waveform-5000	80.0%	0.956

3.3 支持向量机

使用 weka 自带的 SMO 分类器,参数使用默认值

单个模型

集成版本

数据集	正确率	AUC
breast-w	97.0%	0.968
colic	82.6%	0.809
credit-a	84.9%	0.856
credit-g	75.1%	0.671
diabetes	77.3%	0.720
hepatitis	85.2%	0.756
mozilla4	83.2%	0.838
pc1	93.0%	0.500
pc5	97.2%	0.541
waveform-5000	86.7%	0.932

数据集	正确率	AUC
breast-w	97.0%	0.975
colic	84.0%	0.868
credit-a	85.2%	0.888
credit-g	75.4%	0.754
diabetes	77.5%	0.747
hepatitis	85.8%	0.828
mozilla4	83.1%	0.849
pc1	93.1%	0.512
рс5	97.2%	0.572
waveform-5000	86.3%	0.954

3.4 神经网络使用 weka 自带的 MultilayerPerceptron,参数使用默认值单个模型集成版本

数据集	正确率	AUC	数据集	正确率	AUC
breast-w	95.3%	0.986	breast-w	96.0%	0.989
colic	80.4%	0.857	colic	84.5%	0.876
credit-a	83.6%	0.895	credit-a	84.9%	0.908
credit-g	72.1%	0.734	credit-g	76.1%	0.776
diabetes	75.4%	0.793	diabetes	76.8%	0.822
hepatitis	80.0%	0.823	hepatitis	84.5%	0.846
mozilla4	91.2%	0.940	mozilla4	91.3%	0.945
pc1	93.6%	0.723	pc1	93.3%	0.835
рс5	97.1%	0.941	pc5	97.3%	0.954
waveform-5000	83.6%	0.963	waveform-5000	85.7%	0.969

3.5 k 近邻

使用 weka 自带的 IBK,参数使用默认值

数据集	正确率	AUC	数据集	正确率	AUC
breast-w	95.1%	0.973	breast-w	95.9%	0.987
colic	81.3%	0.802	colic	81.3%	0.824
credit-a	81.2%	0.808	credit-a	81.3%	0.886
credit-g	72.0%	0.660	credit-g	72.1%	0.694
diabetes	70.2%	0.650	diabetes	71.1%	0.725
hepatitis	80.6%	0.653	hepatitis	81.3%	0.782
mozilla4	89.0%	0.877	mozilla4	88.9%	0.928
pc1	92.1%	0.740	pc1	91.1%	0.793
pc5	97.3%	0.932	pc5	97.4%	0.953
waveform-5000	73.6%	0.802	waveform-5000	74.5%	0.900

3.6 集成版本的 kNN 方法参数优化

bagging 的 kNN 在 diabetes 数据集上表现最差, 选择此数据集进行参数 优化.

对于 kNN 的距离度量函数、k 值和 Bagging 抽样构成的数据集大小三个参数就行调整.

距离度量函数

方法	正确率	AUC
ChebyshevDistance	71.2%	0.730
EuclideanDistance	71.1%	0.725
FilteredDistance	69.0%	0.696
ManhattanDIstance	69.8%	0.717
MinkowskiDistance	71.1%	0.725

k值

k值	正确率	AUC
1	71.2%	0.730
2	72.9%	0.755
3	73.4%	0.769
4	72.8%	0.770
5	73.0%	0.772
6	72.1%	0.777
7	72.7%	0.777
8	72.5%	0.779
9	73.4%	0.782
10	72.4%	0.785
11	73.2%	0.787
12	72.9%	0.791

13	73.7%	0.793
14	73.3%	0.793
15	73.2%	0.794
16	73.6%	0.796
17	73.6%	0.797
18	73.7%	0.798
19	73.4%	0.797
20	73.3%	0.798
21	73.2%	0.799
22	73.0%	0.798
23	72.7%	0.798
24	73.0%	0.798

数据集大小

大小	正确率	AUC
100%	71.2%	0.730
90%	70.4%	0.732
80%	70.7%	0.731
70%	70.7%	0.740
60%	71.4%	0.746
50%	71.2%	0.751
40%	71.6%	0.758
30%	72.0%	0.764
20%	71.9%	0.747
10%	70.6%	0.746

4.实验结果分析

4.1 不同模型在不同数据集上的正确率

- (1)不同模型在不同数据集上的正确率趋势大致相同.
- (2)综合所有给定的数据集来看,表现最好的是 J4.8, 其次是 SVM; 表现最差的是朴素贝叶斯方法,其次是神经网络.
- (3)比较特殊的是朴素贝叶斯模型在第 7 个数据集上的正确率明显低于其他模型. 第 7 个数据集中的属性 start 与 end 之间并不相互独立,不满足朴素贝叶斯的假设,所以朴素贝叶斯效果明显比其他模型差.
- 4.2 不同模型在不同数据集上的 AUC

- (1)在所有给定的数据集上,表现较好的是朴素贝叶斯和神经网络; 表现较差的是 SVM 与 kNN.
- (2)观察到 SVM 在第 8 9 个数据集上 AUC 值很小, 在第 8 个数据集上 AUC 值为 0.5, 这意味着 SVM 对于这个数据集不起任何作用. 这两个数据集都是非常不平衡的数据集, SVM 只需要把所有样本都判定为样例比较多的类,就可以达到 90%以上的正确率,实际上 SVM 并没有真正达到分类的效果.
- 4.3 不同模型的 Bagging 在不同数据集上的正确率

Bagging 与原模型正确率的差值:

- (1)对比不使用 Bagging 的模型, Bagging 对于正确率提升并不明显, 尤其是在不平衡的数据集上更多的会起到相反的效果.
- (2)Bagging 对 J4.8 的影响最大,在给定的数据集上看,Bagging 不会降低 J4.8 的正确率,且整体上正确率的提升也大于其他几个算法
- 4.4 不同模型的 Bagging 在不同数据集上的 AUC

Bagging 与原模型 AUC 的差值:

- (1)除了朴素贝叶斯方法外,Bagging 可以提高 AUC 值,在不平衡数据集上提升效果较明显。
- (2)Bagging 对 J4.8 的 AUC 值提升最为明显.

5. 总结

- 5.1 对不同方法的比较
- (1)朴素贝叶斯方法处理属性相关的数据时,正确率较低;
- (2)SVM 处理非常不平衡的数据时, AUC 值很低;
- (3)Bagging 对于 J4.8 性能提升最明显;
- (4)整体上看,集成版本的性能优于非集成版本;
- (5)正确率与 AUC 值之间并无显著的正相关性;不平衡数据集可能会产生正确率较高的假象,此时以 AUC 为评价指标更好.
- 5.2 调整参数提升 kNN 集成版本的性能
- (1)不同数据集最适合的距离度量函数不同,要结合数据分布与实验验证选择最合适的距离度量函数;
- (2)适当降低抽样组成的新的数据集的大小可以提升 Bagging 的性能;
- (3)随着 k 值增加,kNN 分类器的性能先上升后降低;

6.参考资料

https://blog.csdn.net/smilehehe110/article/details/53463650 https://zhuanlan.zhihu.com/p/41255464

https://www.openml.org/f/5300