

Ashley, Chase, Christian, Mariana, Paula Group 11

Background: Mast Cell Development

Bosveld, Guth, & Pundir., Cells 2023

Background: Mast Cell Development

Hypothesis

Q

What programs cell li embryor dev

‡2

bryonic nent from loid m cells?

Created on BioRender

Data Overview

Created on BioRender

Analysis Workflow

Analysis Workflow

Purpose: To Study Differences in DEGs Between Adult and Embryonic Mast Cells

Analysis Workflow

Purpose: To Study Differences in DEGs Between Adult and Embryonic Mast Cells

in Hematopoiesis Related to Mast Cells

Pre-processing

Pre-processing

<2~ % Mitochondrial reads & <7000 Counts.

Normalization, Integration, and Clustering..

Iterated through several ways of integration...

We probably could have done our whole project on this step alone for these datasets

harmony.clusters

Yolk Sac Cluster 0

Yolk sac cells from cluster 0 compared against all other cells

GO terms	TFs
Catalytic complex Vesicle-mediated transport Microtubule cytoskeleton Endosome Protein DNA complex organization Mitochondrion Vesicle membrane Post-translational protein modification Establishment of protein localization Nuclear protein containing complex	DIDO1 ELF2 SUPT20H ZNF711 SKIL ATF6 CEBPZ DACH1

Yolk Sac Cluster 1

Yolk sac cells from cluster 1 compared against all other cells

GO terms	TFs
Mitochondrion DNA metabolic processes Catalytic complex Nuclear protein containing complex Protein DNA complex organization Envelope Organelle inner membrane Chromosome Chromatin remodeling Mitochondrial envelope	SUPT20H DIDO1 SKIL ZNF711 ADA2 BRCA2 SETD1A ZNF407 SALL4 ZFHX3

Transcriptional regulators

Supt20H: regulation of transcription by RNA polymerase 2

DIDO1 (Death-inducer obliterator): Promotes embryonic stem cell self-renewal

ADA2: growth factor

Embryonic Yolk Sac Data Annotation For Pseudootime Trajectory

HSPCs: Hematopoietic stem cells CMPs: Common myeloid progenitor cells EMPs: EO/Baso/Mast Precursors

Distribution of Cell Types in Yolk Sac Data Based on Carnegie Stage

HSPCs: Hematopoietic stem cells CMPs: Common myeloid progenitor cells EMPs: EO/Baso/Mast Precursors

Ratio of cells expressed In Each Stage of Development

Stage of Development

Does Pseudotime Trajectory Analysis Model Hematopoiesis?

Does Pseudotime Trajectory Is Able to Capture Expected Mast Differentiation Pathway

Cells Within Yolk Sac Data Follow Expected Trends in Pseudotime Analysis

Cells Within Yolk Sac Data Follow Expected Trends in Pesudotime Analysis

Samples Separate in Pseudotime Based on Carnegie Stage of Development But Do Not Completely Follow A Trend Based On Age

Samples separate in Pesudotime Based on Carnegie Stage of Development: But Do Not Completely Follow A Trend Based On Age

Does Pseudotime Trajectory Analysis Model Hematopoiesis?

Pseudotime Trajectory of Yolk Sac Data Follows Expected Trajectory

Pseudotime Trajectory of Yolk Sac Data Follows Expected Trajectory

Interesting Finding: Seurat Anchors Clustering give a much different output.

Subset of Mast Cells and Progenitors Show No Clear Difference Based on Stage of Development

Conclusions

- Chromatin associated proteins enriched in clusters 1 & 0 (DIDO1, SUPT, BRCA2, etc.)
 - Might suggest cells annotated as mast cells were progenitors / less differentiated in the embryonic dataset.
- We were able to do pseudotime analysis to map hematopoiesis of mast cells.
 - The more primitive cells did not seem to be closely related to MCs?
 - If primitive hspcs are connected to MC lineage fate there seems to be an intermediate state that is missing in the pseudotime plot.
- Small subsets of two separate data sets
 - Could have done a whole project on QC!

Thank You! Questions?