

Gowin RAM Based Shift Register IP 用户指南

IPUG512-1.2,2023-09-08

版权所有 © 2023 广东高云半导体科技股份有限公司

GO◇IN高云、**◇** 、**Gowin**、云源以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止反言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明	
2018/08/10	1.0	初始版本。	
2019/03/28	1.1	适用产品更新。	
2023/09/08	1.2	新增 GW5A、GW5AT、GW5AST 器件;删除 BSRAM 相关内容。	

目录

目	录…		İ
图	目录	ii	İ
表	目录	i	V
1	关于	本手册	1
	1.1	手册内容	1
	1.2	相关文档	1
	1.3	术语、缩略语	2
	1.4	技术支持与反馈	2
2	概述		3
	2.1	Gowin RAM Based Shift Register IP 介绍	3
	2.2	主要特征	3
	2.3	最大频率	4
	2.4	资源利用	4
3	功能	描述	6
	3.1	Gowin RAM Based Shift Register IP 功能	6
	3.1.	1 固定移位	6
	3.1.	2 有损可变移位	6
	3.1.	3 无损可变移位	7
	3.1.	4 SSET/SCLR	7
4	端口	描述	3
5	时序	说明	9
	5.1	固定移位时序	9
	5.2	有损可变移位时序	9
	5.3	无损可变移位模式时序1	0
6	配置	及调用 1	1
	6.1	RAM Based Shift Register 配置界面1	1

6.2 RAM Based Shift Register Options 选项配置.......12

IPUG512-1.2 ii

图目录

图	5-1	固定移位模式时序图(ADDR=3)	9
图	5-2	有损可变移位模式 ADDR 稳定时序图(ADDR=3)	9
图	5-3	有损可变移位模式 ADDR 变化时序图(ADDR 由 3 变为 5)	10
图	5-4	无损可变移位 ADDR 稳定时序图(ADDR=3)	10
图	5-5	无损可变移位模式 ADDR 变化时序图(ADDR 由 3 变为 5)	10
冬	6-1	RAM Based Shift Register 配置界面	11

IPUG512-1.2 iii

表目录

表 1-1 术语、缩略语	2
表 2-1 Gowin RAM Based Shift Register IP	3
表 2-2 Gowin RAM Based Shift Register IP 最大频率示例	4
表 2-3 有损可变移位模式下 RAM Based Shift Register 资源占用情况	4
表 2-4 无损可变移位模式下 RAM Based Shift Register 资源占用情况	4
表 2-5 固定移位模式下 RAM Based Shift Register 资源占用情况	5
表 4-1 Gowin RAM Based Shift Register IP 的 IO 端口	8
表 6-1 RAM Based Shift Register Options 选项配置	12

IPUG512-1.2 iv

1.1 手册内容

1 美于本手册

1.1 手册内容

Gowin[®] RAM Based Shift Register IP 用户指南主要内容包括功能特点、端口描述、时序说明、配置调用等,旨在帮助用户快速了解 Gowin RAM Based Shift Register IP 的产品特性、特点及使用方法。本手册中的软件界面截图参考的是 1.9.9 Beta-3 版本,因软件版本升级,部分信息可能会略有差异,具体以用户软件版本的信息为准。

1.2 相关文档

通过登录高云®半导体网站 <u>www.gowinsemi.com</u> 可以下载、查看以下相关文档:

- DS100, GW1N 系列 FPGA 产品数据手册
- DS821, GW1NS 系列 FPGA 产品数据手册
- DS117, GW1NR 系列 FPGA 产品数据手册
- DS861, GW1NSR 系列 FPGA 产品数据手册
- DS841, GW1NZ 系列 FPGA 产品数据手册
- DS102, GW2A 系列 FPGA 产品数据手册
- DS226, GW2AR 系列 FPGA 产品数据手册
- DS981, GW5AT 系列 FPGA 产品数据手册
- DS1103, GW5A 系列 FPGA 产品数据手册
- SUG100, Gowin 云源软件用户指南

IPUG512-1.2 1(12)

1 关于本手册 1.3 术语、缩略语

1.3 术语、缩略语

表 1-1 中列出了本手册中出现的相关术语、缩略语及相关释义。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
FIFO	First Input First Output	先进先出队列
GSR	Global Set/Reset	全局置位/复位
IP	Intellectual Property	知识产权
LUT	Look-up Table	查找表
OSC	Oscillator	片内晶振
RAM	Random Access Memory	随机存取存储器
REG	Register	寄存器
SSRAM	Shadow Static Random Access Memory	分布式静态随机存储器

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com

E-mail: support@gowinsemi.com

Tel: 86 755 8262 0391

IPUG512-1.2 2(12)

2概述

2.1 Gowin RAM Based Shift Register IP 介绍

Gowin RAM Based Shift Register IP 提供有效的多比特宽度移位寄存器,可以用作类似于 FIFO 的数据缓存或延时线功能,利用该 IP 可创建固定长度和可变长度的移位寄存器,如表 2-1 所示。

表 2-1 Gowin RAM Based Shift Register IP

Gowin RAM Based Shift Register IP					
IP 核应用					
逻辑资源	见表 2-3、表 2-4、表 2-5。				
交付文件					
设计文件	Verilog (encrypted)				
参考设计	Verilog				
TestBench	Verilog				
测试设计流程					
综合软件	GowinSynthesis [®]				
应用软件	Gowin Software(V1.9.9 Beta-3 及以上)				

2.2 主要特征

● 支持 GW1N、GW1NR、GW2A、GW2AR、GW5A、GW5AT、GW5AST系列芯片。

注!

GW1N 系列中的 1K、2K、2K B 版、4K、4K B 版与 GW1NR 系列中的 4K、4K B 版不支持SSRAM,进行 RAM Type 选择时,SSRAM 选项灰色不可选。

- 可以创建固定长度、有损可变或无损可变移位寄存器。
- 可以对变长移位寄存器设计速度最优或资源最优。

IPUG512-1.2 3(12)

2.3 最大频率

● 设计基于 LUT 实现、基于 SSRAM 实现。

2.3 最大频率

Gowin RAM Based Shift Register IP 的最大频率主要根据所占用资源及所用器件的速度等级(speed grade of the devices)确定如表 2-2 所示。

表 2-2 Gowin RAM Based Shift Register IP 最大频率示例

器件系列	速度等级	最大频率(MHz)	备注
	6	160	IP 设置为:8位,REG,Variable Shift
GW2A-55	7	179	Lossy, Max Number of Shifts=16;
	8	223	本结果仅供参考,具体结果以实际 测试为准;
	4	95	1次 (4人) (正)
GW1N-4	5	115	
	6	137	

2.4 资源利用

通过 Verilog 语言实现基于 RAM 的移位寄存器(RAM Based Shift Register),其资源因其实现方式不同有较大区别,该 IP 可基于 LUT 实现、基于 SSRAM 实现,如表 2-3、表 2-4 和表 2-5 所示。

表 2-3 有损可变移位模式下 RAM Based Shift Register 资源占用情况

器件系列	速度等级	实现方式	器件名称	资源利用	备注
GW2A-55	8	LUT Based	LOGICS	3002	Data Wdith=8; MAX Number of Shifts=512; 未配置 SET 与 CLEAR 信号。
			REG	4113	
		SSRAM Based	LOGICS	603	
			REG	18	

表 2-4 无损可变移位模式下 RAM Based Shift Register 资源占用情况

器件系列	速度等级	实现方式	器件名称	资源利用	备注
GW2A-55	8	LUT Based	LOGICS	2997	Data Wdith=8; MAX Number of Shifts=512; 未配置 SET 与 CLEAR 信号
			REG	4139	
		SSRAM Based	LOGICS	655	
			REG	42	

IPUG512-1.2 4(12)

2.4 资源利用

表 2-5 固定移位模式下 RAM Based Shift Register 资源占用情况

器件系列	速度等级	实现方式	器件名称	资源利用	备注
GW2A-55	8	LUT Based	LOGICS	2987	Data Wdith=8;
			REG	4113	Number of
		SSRAM	LOGICS	584	Shifts=512; 未配置 SET 与 CLEAR
		Based	REG	18	未配直 SET与 CLEAR 信号

IPUG512-1.2 5(12)

3功能描述

3.1 Gowin RAM Based Shift Register IP 功能

Gowin RAM Based Shift Register IP 包含三种移位方式:

- 固定移位(Fixed Shift)
- 有损可变移位(Variable Shift Lossy)
- 无损可变移位(Variable Shift Lossless)

3.1.1 固定移位

固定移位模式,输入数据移位相应移位值(Number of Shifts)后输出。 移位值的范围为 2~1024。

3.1.2 有损可变移位

有损可变移位模式的移位长度由"ADDR"的输入控制,输入数据延迟"ADDR+1"个周期后输出。

当 "ADDR"发生变化时,输出数据在一定时钟周期内无效,具体可见第5章节时序说明。

注!

ADDR 的取值范围为 1~ Max Number of Shifts。

IPUG512-1.2 6(12)

3.1.3 无损可变移位

无损可变移位模式的移位长度由"ADDR"的输入控制,输入数据延迟"ADDR+1"个周期后输出。

当 "ADDR" 变化时,输出数据在一定时钟周期内会重复输出之前的延时数据,具体可见第 5 章节时序说明,请根据需求酌情使用。

注!

ADDR 的取值范围为 0~ Max Number of Shifts。

3.1.4 SSET/SCLR

- 勾选 SET 选项时,生成 SSET 输入端口,当 SSET 有效时置 1;
- 勾选勾选 CLEAR 选项时, 生成 SCLR 输入端口, 当 SCLR 有效时置 0;
- 同时勾选 SET、CLEAR,且都有效时,SSET 的优先级高于 SCLR,即会置 1。

IPUG512-1.2 7(12)

4 端口描述

Gowin RAM Based Shift Register IP 端口

有关 Gowin RAM Based Shift Register IP 的 IO 端口详情,如表 4-1 所示。

表 4-1 Gowin RAM Based Shift Register IP 的 IO 端口

名称	I/O	位宽	描述
clk	Input	1	时钟
Reset	Input	1	复位信号,高复位
Din	Input	可变	输入数据: 位宽为[DSIZE-1:0]
ADDR	Input	可变	Variable Shift Lossy /Variable Shift Lossless 模式下延时长度,位宽为根据最大移位长度变化
SSET	Input	1	输出端口置位;即 SET 选项勾选时存在此管脚
SCLR	Input	1	输出端口复位;即 CLEAR 选项勾选时存在此管脚
Q	Output	可变	输出数据;位宽为[DSIZE-1:0]

IPUG512-1.2 8(12)

5 时序说明 5.1 固定移位时序

5时序说明

本节旨在介绍 Gowin RAM Based Shift Register IP 各种模式下输入信号的时序情况。

5.1 固定移位时序

固定移位模式的时序如图 5-1 所示。

图 5-1 固定移位模式时序图(ADDR=3)

5.2 有损可变移位时序

有损可变移位模式的时序如图 5-2 和图 5-3 所示。

图 5-2 有损可变移位模式 ADDR 稳定时序图(ADDR=3)

IPUG512-1.2 9(12)

图 5-3 有损可变移位模式 ADDR 变化时序图 (ADDR 由 3 变为 5)

5.3 无损可变移位模式时序

无损可变移位模式的时序如图 5-4 和图 5-5 所示。

图 5-4 无损可变移位 ADDR 稳定时序图(ADDR=3)

图 5-5 无损可变移位模式 ADDR 变化时序图 (ADDR 由 3 变为 5)

IPUG512-1.2 10(12)

6配置及调用

在高云半导体云源®软件界面菜单栏 Tools 选项下,可启动 IP Core Generator 工具,完成调用并配置 RAM Based Shift Register IP。

6.1 RAM Based Shift Register 配置界面

RAM Based Shift Register 配置界面如图 6-1 所示。

图 6-1 RAM Based Shift Register 配置界面

IPUG512-1.2 11(12)

- 1. 可通过修改 "Create In",更改 RAM Based Shift Register 生成文件的地址:
- 2. 可通过修改 "Module Name", 配置产生的 RAM Based Shift Register 顶层模块名称;
- 3. 可通过修改 "File Name", 配置产生 RAM Based Shift Register 文件名称:
- 4. 可通过配置"Options"选项, 配置 Data Width、RAM Type、Shift Register Type 等;
- 5. 默认配置下,Data Width=8; RAM Type 为 REG; Shift Register Type 为 Fixed Shift(Number of Shifts 为 16); Enable Output Register、SET、CLEAR 不勾选。

6.2 RAM Based Shift Register Options 选项配置

RAM Based Shift Register Options 选项配置如表 6-1 所示。

表 6-1 RAM Based Shift Register Options 选项配置

选项		描述		
Data Width		配置数据宽度(1~256)		
	LUT Based	基于 LUT		
Ram Type	SSRAM Based	基于 SSRAM, Device 为 GW1N-1/GW1N-2/GW1N-4 时, SSRAM Based 设为不可选择状态		
		Fixed shift		
Shift Register	r Туре	Variable shift lossy		
		Variable shift lossless		
Output Regis	ter	指定寄存器用于输出数据,这将使输出产生额外的时钟周期延迟。		
SET/CLEAR		配置 SET 时,生成 SSET 输入端口,SSET 有效时置 1,且 SSET 优先 级高于 SCLR		
		配置 CLEAR 时,生成 SCLR 输入端口,SCLR 有效时置 0,且 SCLR 优先级低于于 SSET		

IPUG512-1.2 12(12)

