Olimpiada Națională de Matematică

Etapa Județeană și a Municipiului București, 9 Martie 2013

CLASA a V-a

Problema 1. a) Calculați $5^3 + 6^3 + 7^3 + 11^3$;

b) Arătați că numărul 2015^{2014} poate fi scris ca o sumă de patru cuburi perfecte.

Gazeta Matematică

Soluţie : a) $5^3 = 125$; $6^3 = 216$; $7^3 = 343$; $11^3 = 1331$ şi apoi suma $125 + 216 + 343 + 1331 = 2015$
Problema 2. Determinați cifrele nenule a, b, c astfel încât $\overline{ab}^2 = \overline{cab}$.
Relația din enunț se scrie $\overline{ab} \cdot (\overline{ab} - 1) = 100 \cdot c$

Problema 3. Se consideră un număr natural A scris cu n cifre nenule, $n \geq 1$. Numărul B este obținut din numărul A prin rearanjarea cifrelor acestuia. Știind că $A + B = 10^n$ se cere:

- a) Pentru n=3, dați un exemplu de numere A și B cu proprietatea din enunț.
 - b) Arătați că n este număr impar.
 - c) Demonstrați că în scrierea lui A există cel puțin o cifră egală cu 5.

A		a			b-1	c	a
В		b-1			a	d	b
	9	9	9	9	9	9	10

Tabelul are n coloane. Pe prima linie a tabelului sunt trecute cifrele numărului A, iar pe a doua linie sunt cifrele corespunzătoare ale numărului B.

Analog se întâmplă pentru oricare pereche de cifre (c, d), c + d = 9.

Problema 4. Se consideră mulţimea $M = \{2^1, 2^2, 2^3, ..., 2^{15}\}.$

- a) Dați un exemplu de trei mulțimi, $A,\ B,\ C,$ nevide și disjuncte două câte două astfel încât $A\cup B\cup C=M,$ iar produsul elementelor fiecărei mulțimi să fie același?
- b) Arătați că nu există trei mulțimi, X, Y, Z, nevide și disjuncte două câte două astfel încât $X \cup Y \cup Z = M$, iar suma elementelor fiecărei mulțimi să fie aceeași?

Notă: Numai prezentarea exemplului se apreciază cu 3 puncte.

b) Presupunem că există mulțimile X, Y și Z astfel încât $X \cup Y \cup Z = M$ și s(X) = s(Y) = s(Z) (Am notat s(X), s(Y), s(Z) sumele elementelor din mulțimile X, Y, Z)

Fie 2^x , 2^y , 2^z cele mai mici elemente din mulțimile x, Y respectiv Z. Putem considera că x < y < z.

Rezultă că 2^x divide s(X) și 2^{x+1} nu divide s(X), iar 2^y divide s(Y)... $\mathbf{2}$ \mathbf{p} Cum $x+1 \leq y$, deducem că 2^{x+1} divide s(Y). Înseamnă că $s(X) \neq s(Y)$... $\mathbf{2}$ \mathbf{p}