Proof. There are two cases: (1) $\det(A) = 0$ or $\det(B) = 0$, or (2) $\det(A) \neq 0$ and $\det(B) \neq 0$. In the first case, at least one of A or B is not invertible. Thus AB is not invertible, so $\det(AB) = 0$. Thus $\det(AB) = \det(A) \det(B)$.

In the second case, A and B are invertible. Therefore, $A=E_m\cdots E_n$ and $B=E_p\cdots E_q$ for elementary matrices E_i . Then $AB=E_m\cdots E_nE_p\cdots E_q$, so

$$\det(AB) = \det(E_m \cdots E_n E_p \cdots E_q)$$

$$= \det(E_m) \det(E_{m+1} \cdots E_n E_p \cdots E_q)$$

$$= \cdots$$

$$= \det(E_m) \cdots \det(E_n) \det(E_p) \cdots \det(E_q)$$

$$= \det(E_m E_{m+1}) \cdots \det(E_n) \det(E_p E_{p+1}) \cdots \det(E_q)$$

$$= \cdots$$

$$= \det(E_m \cdots E_n) \det(E_p \cdots E_q)$$

$$= \det(A) \det(B).$$

Thus in both cases det(AB) = det(A) det(B), as desired.