线性代数 I (H) 期中/小测历年卷试题集

2020-2021 学年线性代数 I (H) 小测 1

任课老师: 谈之奕 考试时长: 90 分钟

- 一、(10 分)求全部实数 a,使线性方程组 $\begin{cases} 3x_1 + 2x_2 + x_3 = 2 \\ x_1 x_2 2x_3 = -3 \end{cases}$ 的解集非空. $ax_1 2x_2 + 2x_3 = 6$
- 二、(10 分)设 \mathbf{R}^4 是 4 维欧氏空间(标准内积), $\alpha=(1,1,1,1)$, $\beta=(-1,-1,0,2)$, $\gamma=(1,-1,0,0)\in\mathbf{R}^4$,求:
 - (1) 与 α , β , γ 都正交的一个单位向量 δ ;
 - (2) $||\alpha + \beta + \gamma + \delta||$.
- 三、(15 分) 记线性映射 σ 的核为 $\ker \sigma$, 像为 $\operatorname{im} \sigma$. 设 $\sigma_1, \sigma_2 : V \to V$ 是线性映射, 证明:
 - (1) $\ker \sigma_1 \subseteq \ker(\sigma_2 \circ \sigma_1);$
 - (2) $\operatorname{im}(\sigma_2 \circ \sigma_1) \subseteq \operatorname{im} \sigma_2$.
- 四、(15 分) 设 $\alpha_1, \alpha_2, \alpha_3$ 是线性空间 V 的一组基, $T \in \mathcal{L}(V)$,且 $T(\alpha_1) = \alpha_1 + \alpha_2$, $T(\alpha_2) = \alpha_1 \alpha_2$, $T(\alpha_3) = \alpha_1 + 2\alpha_2$.求 T 的像空间和核空间,以及 T 的秩.
- 五、 (15 分) 设 W 是线性方程组 $\begin{cases} x_1 x_2 + 4x_3 x_4 = 0 \\ x_1 + x_2 2x_3 + 3x_4 = 0 \end{cases}$ 的解空间,求 W 的一组 单位正交基,并将其扩充成 \mathbf{R}^4 的单位正交基,这里 \mathbf{R} 是实数域.

六、(15 分)设 $\mathbf{R}[x]_4$ 是数域 \mathbf{R} 上次数小于 4 的多项式所构成的线性空间(约定零多项式 次数为 $-\infty$). $\mathbf{M}_2(\mathbf{R})$ 是 \mathbf{R} 上 2 阶方阵所构成的线性空间,定义 $T: \mathbf{R}[x]_4 \to \mathbf{M}_2(\mathbf{R})$ 如下,对 $f(x) \in \mathbf{R}[x]_4$,

$$T(f(x)) = \begin{pmatrix} f(0) & f(1) \\ f(-1) & f(0) \end{pmatrix}$$

- (1) 求出 T 的核空间 N(T) 和像空间 R(T);
- (2) 验证关于 T 的维数公式.
- 七、(20分)判断下列命题的真伪,若它是真命题,请给出简单的证明;若它是伪命题,给出理由或举反例将它否定.
 - (1) 若 S 是线性空间 V 的线性相关子集,则 S 的每个向量都是 S 的其他向量的线性组合;
 - (2) 若线性映射 $T: V \to W$ 的核是 K, 则 $\dim V = \dim W + \dim K$;
 - (3) 线性空间 V 的任何子空间 W 都是某个映射 $T: V \to V$ 的核;
 - (4) 在 5 维欧式空间 V 中,存在两组线性无关向量 $S_1 = \{v_1, v_2, v_3\}$ 和 $S_2 = \{w_1, w_2, w_3\}$,使其满足内积 $\langle v_i, w_j \rangle = 0$,其中 i, j = 1, 2, 3.