LAPORAN PRAKTIKUM 3 KOMPLEKSITAS WAKTU ASIMPTOTIK DARI ALGORITMA

MATA KULIAH ANALISIS ALGORITMA D10G.4205 & D10K.0400601

PENGAJAR : (1) MIRA SURYANI, S.Pd., M.Kom

(2) INO SURYANA, Drs., M.Kom (3) R. SUDRAJAT, Drs., M.Si

FAKULTAS : MIPA

SEMESTER : IV dan VI

DISUSUN OLEH: AHMAD FAAIZ A (140810180023)

PROGRAM STUDI S-1 TEKNIK INFORMATIKA
DEPARTEMEN ILMU KOMPUTER
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
UNIVERSITAS PADJADJARAN
MARET 2019

Latihan Analisa

Minggu ini kegiatan praktikum difokuskan pada latihan menganalisa, sebagian besar tidak perlu menggunakan komputer dan mengkoding program, gunakan pensil dan kertas untuk menjawab persoalan berikut!

1. Untuk $T(n)=2+4+8+16+\cdots+2^n$, tentukan nilai $C,f(n),n_0$, dan notasi Big-O sedemikian sehingga T(n)=O(f(n)) jika $T(n)\leq untuk$ semua $n\geq n_0$

Penyelesaian:

$$T(n) = 2 + 4 + 8 + 16 + \dots + 2^n = 2^{n+1} - 2$$
 (menggunakan rumus deret geometri)

$$T(n) = 2^{n+1} - 2 = 2 \cdot 2^n - 2 = O(2^n)$$

$$T(n) \le c \cdot f(n), \qquad f(n) = 2^n$$

$$2.2^n - 2 \le c.2^n$$

$$2.2^n - 2 \le 2.2^n + 2.2^n = 4.2^n$$
, $untuk \ge 1$

$$2.2^n - 2 < 4.2^n$$

Sehingga
$$C=4$$
, $f(n)=2^n$, $n_0=1$, didapat $T(n)=O(2^n)$

2. Buktikan bahwa untuk konstanta-konstanta positif p, q, dan r:

$$T(n) = pn^2 + qn + r$$
 adalah $O(n^2)$, $\Omega(n^2)$, $dan \Theta(n^2)$

Big-O Notation:

$$T(n) = pn^2 + qn + r = O(n^2)$$

Kita mengamati bahwa $n \geq 1$, maka $n \leq n^2$ dan $1 \leq n^2$ sehingga

$$pn^2 + qn + r = O(n^2) \le pn^2 + qn^2 + rn^2 = n^2(p + q + r),$$
 untuk $n \ge 1$

Maka kita bisa mengambil C= $p + q + r \operatorname{dan} n_0 = 1$ untuk memperlihatkan:

$$T(n) = pn^2 + qn + r = O(n^2)$$

Big-Ω Notation:

$$T(n) = pn^2 + qn + r = \Omega(n^2)$$

Karena $pn^2 + qn + r \ge pn^2$ untuk $n \ge 1$, dengan mengambil C=p, kita memperoleh

$$pn^2 + qn + r = \Omega(n^2)$$

<u>Big-θ Notation:</u>

Karena $pn^2 + qn + r = O(n^2)$ dan $pn^2 + qn + r = \Omega(n^2)$, maka $pn^2 + qn + r = \theta(n^2)$

3. Tentukan waktu kompleksitas asimptotik (Big-O, Big-Ω, dan Big-Θ) dari kode program berikut: for k ← 1 to n do
for i ← 1 to n do
for j ← to n do
W_{ij} ← W_{ij} or W_{ik} and W_{kj}
endfor
endfor

```
Penyelesaian:
    <u>for</u> k ← 1 <u>to</u> n <u>do</u>
                                                                            O(n)
            for i ← 1 to n do
                                                                            O(n)
                    \underline{\text{for j}} \leftarrow \underline{\text{to}} \, \underline{\text{n}} \, \underline{\text{do}}
                                                                            O(n)
                         W_{ij} \leftarrow W_{ij} \underline{\text{or}} W_{ik} \underline{\text{and}} W_{kj}
                                                                            O(1)
                    endfor
            endfor
    endfor
Penjelasan:
O(n) \times O(n) \times O(n) \times O(1) = O(n \times n \times n \times 1) = O(n^3)
                                                                                                                   Teorema 2(b)
Maka, didapat kompleksitas asimptotiknya:
Big-O = O(n^3)
Big-\Omega = \Omega(n^3)
Big-\Theta = \theta(n^3)
```

4. Tulislah algoritma untuk menjumlahkan dua buah matriks yang masing-masing berukuran n x n. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big- Ω , dan Big- Ω ?

```
Penyelesaian:
   for k ← 1 to n do
                                                          O(n)
         <u>for j</u> ← 1 <u>to</u> n <u>do</u>
                                                          O(n)
             Sum[k][j] \leftarrow A[k][j] + B[k][j]
                                                         O(1)
   endfor
Kompleksitas Waktu:
T(n) = O(n) \times O(n) \times O(1)
         = 0(n \times n \times 1)
         = O(n^2)
Maka, kompleksitas asimptotiknya:
Big-O = O(n^2)
Big-\Omega = \Omega(n^2)
Big-\Theta = \theta(n^2)
```

5. Tulislah algoritma untuk menyalin (copy) isi sebuah larik ke larik lain. Ukuran elemen larik adalah n elemen. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big-Ω, dan Big-O?

```
Penyelesaian:

\begin{array}{l}
for \ i \leftarrow 1 \ to \ n \ do \\
A_i \leftarrow B_i \\
endfor
\end{array}

Kompleksitas Waktu:

T(n) = O(n) \times O(1) \\
= O(n \times 1) \\
= O(n)

Maka, kompleksitas asimptotiknya:

Big-O = O(n) \\
Big-O = O(n) \\
Big-O = O(n)

Big-O = O(n)
```

6. Diberikan algoritma Bubble Sort sebagai berikut:

```
procedure BubbleSort(input/output a1, a2, ..., an : integer)
 ( Mengurut tabel integer TabInt[1..n] dengan metode pengurutan bubble-
  Masukan: a_1, a_2, ..., a_n
   Keluaran: a_1, a_2, ..., a_n (terurut menaik)
    k : integer ( indeks untuk traversal tabel )
    pass : integer { tahapan pengurutan }
    temp : integer ( peubah bantu untuk pertukaran elemen tabel )
Algoritma
    for pass \leftarrow 1 to n - 1 do
      for k ← n downto pass + 1 do
         if a_k < a_{k-1} then
              ( pertukarkan ak dengan ak-1 )
             temp \leftarrow a_k
             a_k \leftarrow a_{k-1}
             a<sub>k-1</sub>←temp
         endif
      endfor
    endfor
```

(a) Hitung berapa jumlah operasi perbandingan elemen-elemen tabel!

Jawab:

$$1+2+3+\cdots+(n-1)=\frac{n}{2}(n-1), \qquad (dengan\ rumus\ deret\ aritmatika)$$

(b) Berapa kali maksimum pertukaran elemen-elemen tabel dilakukan?

Jawab:

$$1+2+3+\cdots+(n-1)=\frac{n}{2}(n-1),$$
 (dengan rumus deret aritmatika)

(c) Hitung kompleksitas waktu asimptotik (Big-O, Big- Ω , dan Big- Θ) dari algoritma Bubble Sort tersebut!

Jawab:

1. Best Case

$$T(n) = \frac{n}{2}(n-1)$$
 , maka Big- Ω = $\Omega(n^2)$

2. Worst Case

$$T(n) = \frac{n}{2}(n-1)$$
 , maka Big-O = $O(n^2)$

3. Average Case

Karena Big-
$$\Omega = \Omega(n^2)$$
 dan Big-O = $O(n^2)$, maka Big- $O = \theta(n^2)$

- 7. Untuk menyelesaikan problem X dengan ukuran N tersedia 3 macam algoritma:
 - (a) Algoritma A mempunyai kompleksitas waktu O(log N)
 - (b) Algoritma B mempunyai kompleksitas waktu O(N log N)
 - (c) Algoritma C mempunyai kompleksitas waktu O(N²)

Untuk problem X dengan ukuran N=8, algoritma manakah yang paling cepat? Secara asimptotik, algoritma manakah yang paling cepat?

Penyelesaian:

Jika N = 8, maka

- (a) Algoritma A: $O(\log N) \Rightarrow \log(8) = 0.9031$
- (b) Algoritma B: $O(N \log N) \implies 8 \log(8) = 7,2247$
- (c) Algoritma C: $O(N^2) \Rightarrow 8^2 = 64$

Berdasarkan ketiga data di atas, dapat disimpulkan bahwa algoritma yang paling cepat adalah $Algoritma\ A$ dengan waktu 0,9031

Namun, secara amsimptotik urutan Algoritma dari yang paling cepat ke yang lebih lambat adalah sebagai berikut:

$$O(\log N) < O(N \log N) < N^2$$
 Atau A < B < C

Jadi, Algoritma A adalah algoritma yang paling cepat dibanding algoritma B dan C.

8. Algoritma mengevaluasi polinom yang lebih baik dapat dibuat dengan metode Horner berikut:

$$p(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + ... + x(a_{n-1} + a_n x)))...))$$

```
function p2(input x : real) → real
( Mengembalikan nilai p(x) dengan metode Horner)

Deklarasi
    k : integer
    b<sub>1</sub>, b<sub>2</sub>, ..., b<sub>n</sub> : real

Algoritma
    b<sub>n</sub> ← a<sub>n</sub>
    for k ← n - 1 downto 0 do
        b<sub>k</sub> ← a<sub>k</sub> + b<sub>k+1</sub> * x
endfor
    return b<sub>0</sub>
```

Hitunglah berapa operasi perkalian dan penjumlahan yang dilakukan oleh algoritma diatas, Jumlahkan kedua hitungan tersebut, lalu tentukan kompleksitas waktu asimptotik (Big-O)nya. Manakah yang terbaik, algoritma p atau p2?

Penyelesaian:

Algoritma P1:

Operasi perkalian: 1+2+3+ ... + n = $\frac{n}{2}(n+1)$ kali

Operasi penjumlahan: n kali

Kompleksitas waktu asimptotik: $T(n) = \frac{n}{2}(n+1) + n = O(n^2)$

Algoritma P2:

Operasi perkalian: n kali

Operasi penjumlahan: n kali

Kompleksitas waktu asimptotik: T(n) = n + n = 2n = O(n)

Dari kedua algoritma di atas, algoritma yang paling baik adalah **algoritma P2** karena memiliki kompleksitas waktu asimptotik yang lebih kecil dibandingkan dengan algoritma P.