Modélisation

Le modèle proposé comporte :

3 éléments finis (1), (2), (3)

4 nœuds à 2 ddl / nœud (u_i, v_i)

→ 8 variables déplacements :

Bilan équations - inconnues

Conditions aux limites

$$\rightarrow$$
 $(u_i, v_i) = (0,0)$ pour i=2, 3, 4

Il reste deux déplacements nodaux inconnus : $U_1^T = \langle u_1 | v_1 \rangle \rightarrow 2$ déplacements inconnus

Le bilan des efforts extérieurs nous donne

1 effort donné au nœud 1

$$F_D^T = <0, -F, 0, 0, 0, 0, 0, 0, 0 >$$

6 efforts de liaison aux nœuds 2, 3, 4
$$F_I^T = <0,0,X_2,Y_2,X_3,Y_3,X_4,Y_4>$$

6 efforts inconnus

1 Lu, Déplacements inconnus

Effort donné

Efforts de liaison

Vous devez savoir écrire le travail virtuel des efforts, pour obtenir ces vecteurs de type force généralisée.

Bilan des équations :

Équations de la statique : $[K]\{U\} = \{F_D\} + \{F_I\}$

→ 8 équations / 8 inconnues

Nous pouvons résoudre.

En pratique pour limiter les calculs à la main on peut se limiter à la construction du système réduit aux déplacements inconnus.

$$[K_{red}] \{U_I\} = \{\phi_D\} \text{ avec } \{U_I\} = \{u_1\} \\ v_1$$
 et $\{\phi_D\} = \{0\}$

La décomposition du système par blocs est présentée dans le cours, ainsi que le calcul des efforts inconnus utilisant les 6 équations restantes.

Calcul de la matrice raideur

$$\text{Rappel:} \quad \left[K_{e}\right] = \frac{ES}{\ell_{e}} \begin{bmatrix} C_{\alpha}^{2} & C_{\alpha}S_{\alpha} & -C_{\alpha}^{2} & -C_{\alpha}S_{\alpha} \\ C_{\alpha}S_{\alpha} & S_{\alpha}^{2} & -C_{\alpha}S_{\alpha} & -S_{\alpha}^{2} \\ -C_{\alpha}^{2} & -C_{\alpha}S_{\alpha} & C_{\alpha}^{2} & C_{\alpha}S_{\alpha} \\ -C_{\alpha}S_{\alpha} & -S_{\alpha}^{2} & C_{\alpha}S_{\alpha} & S_{\alpha}^{2} \end{bmatrix} \text{ sur } (u_{i}, v_{i}, u_{j}, v_{j})$$

Application à la structure étudiée

Élément 1 $1 \rightarrow 2$

Matrice raideur :
$$k_1 = \frac{ES}{h\sqrt{2}}$$

$$\alpha = \frac{3\pi}{4}$$

$$[K_1] = k_1 \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} \end{bmatrix} \text{ sur } (u_1, v_1, u_2, v_2)$$

1**→**3

Matrice raideur :
$$k_2 = \frac{ES}{h}$$

$$\begin{bmatrix} K_2 \end{bmatrix} = k_2 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \quad \text{sur} \quad (v_1, v_3)$$

Élément 3

1→4

Matrice raideur :
$$k_3 = \frac{ES}{h\sqrt{2}}$$

$$[K_3] = k_3 \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{-1}{2} & \frac{-1}{2} \\ \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{-1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \quad \text{sur} \quad (u_1, v_1, u_4, v_4)$$

D'où la matrice raideur assemblée sur : $U^T = \langle u_1, v_1, u_2, v_2, u_3, v_3, u_4, v_4 \rangle$

Vous comprenez maintenant pourquoi, à la main pour éviter des écritures fastidieuses, il est pratique de ne calculer que la matrice réduite

Résolution statique - Efforts aux appuis

Compte tenu de la numérotation choisie, il est très simple d'extraire la matrice réduite car elle forme déjà un bloc.

La matrice raideur réduite :
$$\begin{bmatrix} K_{red} \end{bmatrix} = \frac{ES}{h} \begin{bmatrix} \frac{1}{\sqrt{2}} & 0 \\ 0 & 1 + \frac{1}{\sqrt{2}} \end{bmatrix}$$
 sur $\{U_I\} = \begin{cases} u_1 \\ v_1 \end{cases}$

$$[K_{red}]\{U_I\} = \{\phi_D\} \text{ avec } \{\phi_D\} = \{0 \\ -F\}$$
 $\Rightarrow |\{X_I\} = \{-\frac{0}{\sqrt{2}} \frac{Fh}{1 + \sqrt{2}} \frac{Fh}{ES}\}|$

La déformée respecte la symétrie du problème.

Nous obtenons la solution analytique du problème statique à partir d'une formulation matricielle basée sur la notion d'approximation. En effet pour un treillis chargé aux nœuds, la solution en déplacement est linéaire par morceaux.

Efforts aux appuis:

Utilisons les 6 dernières équations du système complet.

Compte tenu de la numérotation choisie, nous utilisons un autre bloc de la matrice assemblée pour écrire ces équations.

$$\begin{bmatrix} X_2 \\ Y_2 \\ X_3 \\ Y_3 \\ X_4 \\ Y_4 \end{bmatrix} = \underbrace{ES}_{h} \begin{bmatrix} \frac{-1}{2\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{1}{2\sqrt{2}} & \frac{-1}{2\sqrt{2}} \\ 0 & 0 \\ 0 & -1 \\ \frac{-1}{2\sqrt{2}} & \frac{-1}{2\sqrt{2}} \\ \frac{-1}{2\sqrt{2}} & \frac{-1}{2\sqrt{2}} \end{bmatrix} \left\{ -\frac{0}{\sqrt{2}} \underbrace{Fh}_{ES} \right\} \text{ soit } \begin{bmatrix} X_2 \\ Y_2 \\ X_3 \\ Y_3 \\ X_4 \\ Y_4 \end{bmatrix} = -\frac{\sqrt{2}}{1+\sqrt{2}} F \begin{cases} \frac{1}{2\sqrt{2}} \\ \frac{-1}{2\sqrt{2}} \\ 0 \\ -1 \\ \frac{-1}{2\sqrt{2}} \\ \frac{-1}{2\sqrt{2}} \end{cases} = \underbrace{F}_{2(1+\sqrt{2})} \begin{bmatrix} -1 \\ 1 \\ 0 \\ 2\sqrt{2} \\ 1 \\ 1 \end{bmatrix}$$

Il est alors possible de vérifier les équations d'équilibre de la structure

Pour les résultantes :
$$\begin{cases} X_2 + X_3 + X_4 = 0 \\ Y_2 + Y_3 + Y_4 - F = 0 \end{cases}$$

La solution respecte la symétrie, l'équation d'équilibre des moments est donc vérifiée.

Post traitement

Le calcul des efforts dans les barres utilise la loi de comportement intégrée : $N = ES \ \overline{u}_{x}$

Application à la structure étudiée

Élément 1

1→2

Élément 2

Le changement de base est inutile : $N_2 = -\frac{ES}{h} v_1$ \rightarrow $N_2 = \frac{F\sqrt{2}}{1+\sqrt{2}}$

Élément 3

Par symétrie nous avons : $N_3 = N_1 = \frac{F}{2 + \sqrt{2}}$

1→4

 $1\rightarrow 3$

Vérifions l'équilibre du nœud 1

Du point de vue numérique, un calcul identique nous donne une information sur l'erreur numérique du modèle. Ici l'approximation représente le champ exact il n'y a donc pas d'erreur de discrétisation.

30

Efforts aux nœuds:

Le calcul des efforts aux nœuds utilise les équations d'équilibre élémentaire :

$$\forall e \quad \{F_{ie}\} = [K_e] \{U_e\}$$

Prenons par exemple l'élément 3 :

$$k_{3} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ v_{1} \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} X_{13} \\ Y_{13} \\ X_{4} \\ Y_{4} \end{bmatrix}$$

D'où
$$\begin{cases} X_{13} \\ Y_{13} \\ X_4 \\ Y_4 \end{cases} = \frac{ES}{2h\sqrt{2}} v_1 \begin{cases} 1 \\ 1 \\ -1 \\ -1 \end{cases} = \frac{F}{2(1+\sqrt{2})} \begin{cases} -1 \\ -1 \\ 1 \\ 1 \end{cases}$$

Nous retrouvons les efforts aux appuis (nœud 4).

Un calcul identique pour les éléments 1 et 2, nous permettrait de déterminer tous les efforts agissant sur le nœud 1, il serait alors possible de vérifier l'équilibre du nœud interne.

$$\begin{cases} -\sum_{e} X_{1e} = 0 \\ -\sum_{e} Y_{1e} - F = 0 \end{cases}$$

Le fichier MEFLAB proposé sur le site vous permettra de retrouver tous ces résultats à partir d'un calcul numérique. Pour utiliser ces fichiers de données il faut préalablement avoir téléchargé le dossier compressé de l'application pour l'installer dans votre répertoire de travail.

Utilisation de la symétrie

Attention aux conditions de symétrie

L'élément 2 et la charge appartiennent au plan de symétrie

Ce modèle ne possède qu'un degré de liberté v_1

→ La matrice raideur réduite :
$$[K_{red}] = \frac{ES}{2h} \left(1 + \frac{1}{\sqrt{2}}\right)$$

D'où la solution cherchée
$$v_1 = -\frac{\sqrt{2}}{1+\sqrt{2}} \frac{Fh}{ES}$$

Lorsqu'une structure possède des symétries, il est toujours avantageux de les utiliser dans les modèles éléments finis.