Лабораторная работа № 5

Программирование ветвлений

<u>Щель работы:</u> Практическое овладение навыками разработки программного кода на языке Ассемблер. Изучение команд условного и безусловного перехода. Исследование организации переходов.

Задачи: Разработка простой программы использующей операторы передачи управления и приемов программирования арифметических выражений, содержащих разветвления.

Порядок выполнения работы

- 1. Создать рабочую папку для текстов программ на ассемблере и записать в нее файлы tasm.exe, tlink.exe, rtm.exe и td.exe. из пакета tasm, а также файл с исходным текстом программы на ассемблере, который сохранить с именем prog5.asm.
- 2. Разработка простой программы использующей операторы передачи управления и приемов программирования арифметических выражений, содержащих разветвления.
- 3. Создать загрузочный модуль, загрузить его в отладчик и выполнить программу в пошаговом режиме.

Содержание отчета:

- 1. Цель и задачи работы.
- 2. Постановка задачи (вариант).
- 3. Листинг программы.
- 4. Пояснения к программе.
- 5. Результат работы программы в 16-тиричном и 10-тичном виде (3 окна ТD).
- 6. Вывол.

Теоретическая часть

Безусловные переходы

JMP(JuMP)

Назначение:

Используется в программе для организации безусловного перехода как внутри текущего сегмента команд, так и за его пределы. При определенных условиях в защищенном режиме работы команда jmp может использоваться для переключения задач.

Применение:

Команду јтр применяют для осуществления ближних и дальних безусловных переходов без сохранения контекста точки перехода.

Алгоритм работы:

Команда **jmp** в зависимости от типа своего операнда изменяет содержимое либо только одного регистра еір, либо обоих регистров сѕ и еір:

- если операнд в команде jmp метка в текущем сегменте команд (а8, 16, 32), то ассемблер формирует машинную команду, операнд которой является значением со знаком, являющимся смещением перехода относительно следующей за **jmp** команды. При этом виде перехода изменяется только регистр eip/ip;
- если операнд в команде jmp символический идентификатор ячейки памяти (m16, 32, 48), то ассемблер предполагает, что в ней находится адрес, по которому необходимо передать управление. Этот адрес может быть трех видов:
 - значением абсолютного смещения метки перехода относительно начала сегмента кода. Размер этого смещения может быть 16 или 32 бит в зависимости от режима адресации;
 - о дальним указателем на метку перехода в реальном и защищенном режимах, содержащим два компонента адреса сегментный и смещение. Размеры этих компонентов также зависят от установленного режима адресации (use16 или use32). Если текущим режимом является use16, то адрес сегмента и смещение занимают по 16 бит, причем смещение располагается в младшем слове двойного слова, отводимого под этот полный адрес метки перехода. Если текущим режимом является use32, то адрес сегмента и смещение занимают, соответственно, 16 и 32 бит, в младшем двойном слове находится смещение, в старшем адрес сегмента;
 - о адресом в одном из 16 или 32-разрядных регистров этот адрес представляет собой абсолютное смещение метки, на которую необходимо передать управление, относительно начала сегмента команд.

Состояние флагов после выполнения команды (за исключением случая переключения задач): выполнение команды не влияет на флаги

Условные переходы

Инструкция условного перехода может осуществлять или нет переход на целевую (указанную в ней) метку, в зависимости от состояния регистра флагов.

CMP (CoMPare operands)

Сравнение операндов стр операнд1, операнд2

Назначение:

Сравнение двух операндов.

Алгоритм работы:

- выполнить вычитание (операнд1-операнд2), при этом ни один из операндов не модифицируется;
- в зависимости от результата установить флаги, операнд 1 и операнд 2 не изменять (то есть результат не запоминать).

Состояние флагов после выполнения команды:

11	07	06	04	02	00
OF	SF	ZF	AF	PF	CF

Применение:

Данная команда используется для сравнения двух операндов методом вычитания, при этом операнды не изменяются. По результатам выполнения команды устанавливаются флаги. Команда стр применяется с командами условного перехода и командой установки байта по значению setcc.

```
len equ 10
...
cmp ax,len
jne m1 ;переход если (ax)<>len
jmp m2 ;переход если (ax)=len
```

JCC/JCXZ/JECXZ(Jump if condition)

(Jump if CX=Zero/ Jump if ECX=Zero)

Переход, если выполнено условие Переход, если CX/ECX равен нулю

	јсс метка
Схема команды:	јсхи метка
	јесхи метка

Назначение: переход внутри текущего сегмента команд в зависимости от некоторого условия.

Алгоритм работы команд (кроме jcxz/jecxz):

Проверка состояния флагов в зависимости от кода операции (оно отражает проверяемое условие):

- если проверяемое условие истинно, то перейти к ячейке, обозначенной операндом;
- если проверяемое условие ложно, то передать управление следующей команде.

Алгоритм работы команды jcxz/jecxz:

Проверка условия равенства нулю содержимого регистра *ecx/cx*:

- если проверяемое условие истинно, то есть содержимое *ecx/cx* равно 0, то перейти к ячейке, обозначенной операндом метка;
- если проверяемое условие ложно, то есть содержимое ecx/cx не равно 0, то передать управление следующей за jcxz/jecxz команде программы.

Состояние флагов после выполнения команды:

11	07	06	05	04	03	02	01	00
OF	SF	ZF	0	AF	0	PF	1	CF
?	?	?		r		?		r

Применение (кроме jcxz/jecxz):

Команды условного перехода удобно применять для проверки различных условий, возникающих в ходе выполнения программы. Как известно, многие команды формируют признаки результатов своей работы в регистре eflags/flags. Это обстоятельство и используется

командами условного перехода для работы. Ниже приведены перечень команд условного перехода, анализируемые ими флаги и соответствующие им логические условия перехода.

Таблица 1 - Инструкции условных переходов

Название	Состояние проверяемых флагов ¹	Проверяемые флаги
JB/JNAE	Перейти, если меньше / перейти, если не больше или равно	CF = 1
JAE/JNB	Перейти, если больше или равно / перейти, если не меньше	CF = 0
JBE/JNA	Перейти, если меньше или равно / перейти, если не больше	CF = 1 или ZF = 1
JA/JNBE	Перейти, если больше / перейти, если не меньше или равно	CF = 0 и ZF = 0
JE/JZ	Перейти, если равно	ZF = 1
JNE/JNZ	Перейти, если не равно	ZF = 0
JL/JNGE	Перейти, если меньше чем / перейти, если не больше чем или равно	SF = OF
JGE/JNL	Перейти, если больше чем или равно /перейти, если не меньше чем	SF = OF
JLE/JNLE	Перейти, если меньше чем или равно / перейти, если не больше, чем	ZF = 1 или SF = OF
JG/JNLE	Перейти, если больше чем / перейти, если не меньше чем или равно	ZF = 0 или SF = OF
JP/JPE	Перейти по четности	PF = 1
JNP/JPO	Перейти по нечетности	PF = 0
JS	Перейти по знаку	SF = 1
JNS	Перейти, если знак не установлен	SF = 0
JC	Перейти при наличии переноса	CF = 1
JNC	Перейти при отсутствии переноса	CF = 0
JO	Перейти по переполнению	OF = 1
JNO	Перейти при отсутствии переполнения	OF = 0

Логические условия "больше" и "меньше" относятся к сравнениям целочисленных значений со знаком, а "выше и "ниже" — к сравнениям целочисленных значений без знака. Если внимательно посмотреть, то у многих команд можно заметить одинаковые значения флагов для

 $^{^{1}}$ CF - флаг переноса, SF - флаг знака, OF - флаг переполнения, ZF - флаг нуля, PF - флаг четности.

перехода. Это объясняется наличием нескольких ситуаций, которые могут вызвать одинаковое состояние флагов. В этом случае с целью удобства ассемблер допускает несколько различных мнемонических обозначений одной и той же машинной команды условного перехода. Эти команды ассемблера по действию абсолютно равнозначны, так как это одна и та же машинная команда. Изначально в микропроцессоре i8086 команды условного перехода могли осуществлять только короткие переходы в пределах -128...+127 байт, считая от следующей команды. Начиная с микропроцессора i386, эти команды уже могли выполнять любые переходы в пределах текущего сегмента команд. Это стало возможным за счет введения в систему команд микропроцессора дополнительных машинных команд. Для реализации межсегментных переходов необходимо комбинировать команды условного перехода и команду безусловного перехода jmp. При этом можно воспользоваться тем, что практически все команды условного перехода парные, то есть имеют команды, проверяющие обратные условия.

Применение jcxz/jecxz:

Команда	Состояние флагов в	Условие перехода
	eflags/flags	
JCXZ	не влияет	если регистр CX=0
JECXZ	не влияет	если регистр ЕСХ=0

Команду **jcxz/jecxz** удобно использовать со всеми командами, использующими регистр *есх/сх* для своей работы. Это команды организации цикла и цепочечные команды. Очень важно отметить то, что команда jcxz/jecxz, в отличие от других команд перехода, может выполнять только близкие переходы в пределах -128...+127 байт, считая от следующей команды. Поэтому для нее особенно актуальна проблема передачи управления далее чем в указанном диапазоне. Для этого можно привлечь команду безусловного перехода jmp. Например, команду jcxz/jecxz можно использовать для предварительной проверки счетчика цикла в регистре сх для обхода цикла, если его счетчик нулевой.

Пример1.

```
... jcxz ml ;обойти цикл, если cx=0 cycl: ;некоторый цикл loop cycl ml: ...
```

Варианты

1	$y = y1 + y2$; $y1 = $ $\begin{cases} a + x, & \text{если } x > a \\ 2a - x, & \text{если } x <= a \end{cases}$; $y2 = $ $\begin{cases} a * x, & \text{если } x > 10 \\ x, & \text{если } x <= 10 \end{cases}$.
2	$y = y1 - y2$; $y1 = \begin{cases} x - 2, & \text{если} x >= 2 \\ 8, & \text{если} x < 2 \end{cases}$; $y2 = \begin{cases} 4, & \text{если} x = 0 \\ a - x, & \text{если} x <> 0 \end{cases}$.
3	$y = y1*y2$; $y1 = \begin{cases} x-a, & \text{если } x > a \\ 5, & \text{если } x <= a \end{cases}$; $y2 = \begin{cases} a, & \text{если } a > x \\ a*x, & \text{если } a <= x \end{cases}$.
4	$y = y1 + y2$; $y1 = $ $\begin{cases} 2 - x, & \text{если } x < 2 \\ a + 3, & \text{если } x >= 2 \end{cases}$; $y2 = $ $\begin{cases} a - 1, & \text{если } x < a \\ a * x - 1, & \text{если } x >= a \end{cases}$.
5	$y = y1 - y2$; $y1 = \begin{cases} x , & \text{если } x < 0 \\ x - a, & \text{если } x >= 0 \end{cases}$; $y2 = \begin{cases} a + x, & \text{если } x \mod 3 = 1 \\ 7, & \text{в остальных случаях} \end{cases}$.
6	$y = y1 + y2$; $y1 = \begin{cases} x \mod 4, & \text{если } x > a \\ a, & \text{если } x <= a \end{cases}$; $y2 = \begin{cases} a*x, & \text{если } x/a > 3 \\ x, & \text{если } x/a <= 3 \end{cases}$.
7	$y = y1 + y2$; $y1 = \begin{cases} 4 - x, & \text{если } x < 3 \\ a + x, & \text{в остальных случаях} \end{cases}$; $y2 = \begin{cases} 2, & \text{если } x \text{ четное} \\ a + 2, & \text{в остальных случаях} \end{cases}$.
8	$y = y1 + y2$; $y1 = \begin{cases} 4*x, & \text{если} x <= 4 \\ x - a, & \text{если} x > 4 \end{cases}$; $y2 = \begin{cases} 7, & \text{если} x \text{ нечетное} \\ x/2 + a, & \text{в остальных случаях} \end{cases}$.
9	$y = y1*y2$; $y1 = \begin{cases} a*x, & \text{если } x \mod 3 = 2 \\ 9, & \text{в остальных случаях} \end{cases}$; $y2 = \begin{cases} a-x, & \text{если } a>x \\ a+2, & \text{если } a <= x \end{cases}$.
10	$y = y1 - y2$; $y1 = $ $\begin{cases} a + x , & \text{если } x > a \\ a - 7, & \text{если } x <= a \end{cases}$; $y2 = $ $\begin{cases} a*3, & \text{если } a > 3 \\ 11, & \text{если } a <= 3 \end{cases}$.
11	$y = y1 \mod y2$; $y1 = \begin{cases} 10 + x, & \text{если } x > 1 \\ x + a, & \text{если } x <= 1 \end{cases}$; $y2 = \begin{cases} 2, & \text{если } x > 4 \\ x, & \text{если } x <= 4 \end{cases}$.
12	$y = y1/y2$; $y1 = \begin{cases} 15 + x, & \text{если } x > 7 \\ a + 9, & \text{если } x <= -7 \end{cases}$; $y2 = \begin{cases} 3, & \text{если } x > 2 \\ x - 5, & \text{если } x <= 2 \end{cases}$.
13	$y = y1*y2$; $y1 = \begin{cases} 3+x, & \text{если } x = a \\ a-x, & \text{если } x <> a \end{cases}$; $y2 = \begin{cases} a , & \text{если } a < x \\ a -x, & \text{если } ```a>= x \end{cases}$.
14	$y = y1 - y2$; $y1 = $ $\begin{cases} 2*x + a, & \text{если } x > 2 \\ 2*x + 1, & \text{если } x <= 2 \end{cases}$; $y2 = \begin{cases} x + 1, & \text{если } x > 0 \\ a - 1, & \text{если } x <= 0 \end{cases}$.

	[x-a, ecлu x <= 4] [9, ecлu $x <= a$	
20	$y = y1*y2$; $y1 = \begin{cases} 2*x, & \text{если } x < 5 \\ a + x, & \text{если } x >= 5 \end{cases}$;	na <i>№</i> 5
21	$y = y1 + y2 $; $y1 = \begin{cases} 3, & \text{если } x \mod 3 = 1 \\ x - a, & \text{в остальных случаях} \end{cases}$; $y2 = \begin{cases} a/x, & \text{если } x <> 0 \\ 4, & \text{если } x = 0 \end{cases}$.	
22	$y = y1 - y2$; $y1 = \begin{cases} x + a , & \text{если} x <= 3 \\ x * a, & \text{если} x > 3 \end{cases}$; $y2 = \begin{cases} 3, & \text{если} a = x \\ a - x, & \text{если} a <> x \end{cases}$.	
23	$y = y1 + y2$; $y1 = $ $\begin{cases} 2*x, & \text{если } x > 4 \\ 4+a, & \text{в остальных случаях} \end{cases}$; $y2 = $ $\begin{cases} 9, & \text{если } x = 0 \\ a/x, & \text{если } x <> 0 \end{cases}$.	
24	$y = y1*y2$; $y1 = \begin{cases} x, & \text{если } x \mod 4 <> 2 \\ a + x, & \text{в остальных случаях} \end{cases}$; $y2 = \begin{cases} a - x, & \text{если } x < a \\ a*x, & \text{если } x >= a \end{cases}$.	
25	$y = y1/y2$; $y1 = $ $\begin{cases} 12, & \text{если } x < 12 \\ x+1, & \text{если } x >= 12 \end{cases}$; $y2 = $ $\begin{cases} 2, & \text{если } x > 2 \\ a+x, & \text{если } x <= 2 \end{cases}$.	