Propositional Equivalences

Course Code: CSC 1204 Course Title: Discrete Mathematics

Dept. of Computer Science Faculty of Science and Technology

Lecture No:	3	Week No:	2	Semester:	Summer 2021-2022
Lecturer:	S.M.	Abdur Rouf Bhi	uiyan [d	arouf@aiub.e	du]

Lecture Outline

1.2 Propositional Equivalences

- Tautology
- Contradiction
- Contingency
- Logical Equivalences

Objectives and Outcomes

- Objectives: To understand the terms Tautology, Contradiction, Contingence with examples, to understand the standard logical equivalences, to determine whether a compound proposition is a Tautology or Contradiction, to determine whether two compound propositions are logically equivalent.
- Outcomes: Students are expected to be able to write the definitions of Tautology, Contradiction and Contingency with examples, be able to determine whether a compound proposition is a Tautology or Contradiction using a Truth Table and standard logical equivalences, be able to determine whether two compound propositions are logically equivalent using a Truth Table and logical equivalences.

Tautology

Tautology: A compound proposition that is always true is called a tautology.

Examples:

- a) $p \vee \neg p$
- b) The professor is either a woman or a man
- c) People either like watching TV or they don't

Contradiction

Contradiction: A compound proposition that is always false is called a contradiction.

Examples:

- a) $p \wedge \neg p$
- b) x is prime and x is an even integer greater than 8
- c) All men are good and all men are bad

Examples of *Tautology* and *Contradiction*

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 1	Examples	of a	Tautology	and	a
Contradicti					

p	$\neg p$	$p \lor \neg p$	$p \wedge \neg p$
T	F	T	F
F	T	T	F

Contingency

Contingency: A compound proposition that is neither a tautology nor a contradiction is called a contingency. In other words, a compound proposition whose truth value is not constant is called a contingency.

Examples:

- a) $p \rightarrow \neg p$
- b) *P*
- c) ¬p

How to determine whether a compound proposition is a Tautology or Contradiction?

- We can determine whether a compound proposition is a Tautology or Contradiction in two ways:
 - Using a truth table The easiest way to see if a compound proposition is a tautology or contradiction is to use a truth table. Show that the compound proposition is always true
 - 2) Using (Laws of) Logical Equivalences

Tautology: Example

Show that $[\neg p \land (p \lor q)] \rightarrow q$ is a tautology using a Truth Table

PAESIDIUM PRAESIDIUM P

p	q	٦p	p v q	¬p ∧(p ∨q)	$[\neg p \land (p \lor q)] \rightarrow q$
т	Т				
Т	F				
F	Т				
F	F				

p	q	٦p	p v q	¬p ∧(p ∨q)	$[\neg p \land (p \lor q)] \rightarrow q$
Т	\dashv	E			
Т	F	F			
F	Т	Т			
F	F	Т			

p	q	٦p	p v q	¬p ∧(p ∨q)	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Т	F	Т		
Т	F	F	Т		
F	Т	Т	Т		
F	F	Т	F		

PRAESIDIUM PRAESIDIUM

p	q	٦p	p v q	¬p ∧(p ∨q)	$[\neg p \land (p \lor q)] \rightarrow q$
Т	Τ	E	Т	H	
Т	F	F	Т	F	
F	Т	Т	Т	Т	
F	F	Т	F	F	

Solution

p	q	٦p	p∨q	¬p ∧(p ∨q)	$[\neg p \land (p \lor q)] \rightarrow q$
T	Т	F	Т	Ŧ	Т
T	F	F	Т	F	Т
F	Т	Т	Т	Т	Т
F	F	Т	F	F	Т

Since the truth table shows all the true values of compound proposition $[\neg p \land (p \lor q)] \rightarrow q$ are true(T), so it is a tautology.

Class Work

- 1) Determine whether $\neg (p \land q) \lor p$ is a tautology or contradiction.
- 2) Determine whether $p \wedge (q \wedge \neg p)$ is a tautology or contradiction.

Logical Equivalences

 Compound propositions that have the same truth values in all possible cases are called logically equivalent.

• <u>Definition</u>: Compound propositions p and q are logically equivalent if $p \leftrightarrow q$ is a tautology (denoted by $p \equiv q$ or $p \Leftrightarrow q$)

NOTE: We will use the notation: $p \equiv q$

How to determine whether two compound propositions are logically equivalent?

- We can determine whether two compound propositions are logically equivalent in two ways:
 - 1) Using a Truth Table
 - 2) Using (laws of) Logical Equivalences

Using a Truth Table to determine whether two compound propositions are logically equivalent

- Two compound propositions are logically equivalent if they
 always have the same truth values in the corresponding rows.
- Construct a truth table for the given two compound propositions [in one table]
- If the truth values of both of the compound propositions are same in the corresponding rows, then they are logically equivalent.
- If the true values of both of the compound propositions are different in one or more rows, then they are NOT logically equivalent.

Example 1

Show that $p \leftrightarrow q$ is **logically equivalent** to $(p \rightarrow q) \land (q \rightarrow p)$

P	q	$p \rightarrow q$	$q \rightarrow p$	$p \leftrightarrow q$	$(p \rightarrow q) \land (q \rightarrow p)$
T	Т	Т	T	T	T
T	F	F	T	F	F
F	Τ	T	F	F	F
F	F	Τ	Τ	T	T

Since the truth values of both of the compound propositions are same in the corresponding rows, they are logically equivalent.

Class Work

Show that $p \lor (q \land r)$ and $(p \lor q) \land (p \lor r)$ are logically equivalent

Solution

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 5	A Demonstration	That $p \vee (q$	$\wedge r$) and $(p$	$\vee q) \wedge (p)$	$\langle r \rangle$ Are Logically
Equivalent	•				

p	q	r	$q \wedge r$	$p \vee (q \wedge r)$	$p \vee q$	$p \vee r$	$(p \vee q) \wedge (p \vee r)$
Т	T	Т	Т	Т	Т	T	Т
T	T	F	F	T	Т	T	Т
T	F	Т	F	Т	Т	T	Т
T	F	F	F	T	Т	T	T
F	T	T	Т	Т	Т	Т	Т
F	T	F	F	F	Т	F	F
F	F	T	F	F	F	Т	F
F	F	F	F	F	F	F	F

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Since the truth values of both of the compound propositions are same in the corresponding rows, they are logically equivalent.

Logical Equivalences

Table 6 (page 24) → Rosen, 7th edition

© The McGraw-Hill Companies, Inc. all rights reserved.

Equivalence	Name
$p \wedge T = p$ $p \vee F = p$	Identity laws
$p \lor T = T$ $p \land F = F$	Domination laws
$p \lor p \equiv p$ $p \land p \equiv p$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$	Commutative laws
$(p \lor q) \lor r = p \lor (q \lor r)$ $(p \land q) \land r = p \land (q \land r)$	Associative laws
$p \lor (q \land r) = (p \lor q) \land (p \lor r)$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Distributive laws
$\neg (p \land q) \equiv \neg \ p \lor \neg \ q$ $\neg (p \lor q) \equiv \neg \ p \land \neg \ q$	De Morgan's laws
$p \lor (p \land q) \equiv p$ $p \land (p \lor q) = p$	Absorption laws
$\rho \lor \neg \rho = \mathbf{T}$	Negation laws

PRAESIDIUM UNITERNATIONAL UNITERNATI

A very Useful Logical Equivalence(**ULE**)

$$p \rightarrow q \equiv \neg p \vee q$$

Example 1

Show that $\neg(p \rightarrow q)$ and $p \land \neg q$ are logically equivalent.

$$\neg(p \to q) \equiv \neg(\neg p \lor q)$$
 by the second De Morgan law
$$\equiv p \land \neg q$$
 by the double negation law

Example 7 (page 26)

Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences.

Solution:

$$\neg(p \lor (\neg p \land q)) \equiv \neg p \land \neg(\neg p \land q) \qquad \text{by the second De Morgan law}$$

$$\equiv \neg p \land [\neg(\neg p) \lor \neg q] \qquad \text{by the first De Morgan law}$$

$$\equiv \neg p \land (p \lor \neg q) \qquad \text{by the double negation law}$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q) \qquad \text{by the second distributive law}$$

$$\equiv \mathbf{F} \lor (\neg p \land \neg q) \qquad \text{because } \neg p \land p \equiv \mathbf{F}$$

$$\equiv (\neg p \land \neg q) \lor \mathbf{F} \qquad \text{by the commutative law for disjunction}$$

$$\equiv \neg p \land \neg q \qquad \text{by the identity law for } \mathbf{F}$$

Consequently $\neg (p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent.

Exercise

Show that $(\neg p \land (p \lor q)) \rightarrow q$ is a **tautology** using a series of logical equivalences.

$(\neg p \land (p \lor q)) \rightarrow q$	
$\equiv ((\neg p \land p) \lor (\neg p \land q)) \rightarrow q$	Distributive Law
$\equiv (F \vee (\neg p \wedge q)) \rightarrow q$	Negation Law
$\equiv (\neg p \land q) \rightarrow q$	Identity Law
$\equiv \neg (\neg p \land q) \lor q$	ULE
$\equiv (\neg(\neg p) \vee \neg q) \vee q$	De Morgan's Law
$\equiv (p \lor \neg q) \lor q$	Double Negation Law
$\equiv p \vee (\neg q \vee q)$	Associative Law
$\equiv p \vee T$	Domination Law
\equiv T So, $(\neg p \land (p \lor q)) \rightarrow q$ is a tautology.	

Summary

- What is Tautology and Contradiction? What is Contingency?
- How to show/determine whether two compound propositions are logically equivalent?
 - Using a truth table
 - Using logical equivalences
- How to show whether a compound proposition is a tautology?
 - Using a truth table
 - Using logical equivalences
- Note: Make sure you learn the important Logical Equivalences in Table 6 (page 24) & ULE ($p \rightarrow q \equiv \neg p \lor q$)
- Practice @ Home: Relevant Odd-numbered Exercises (e.g. 1, 3, 7, 9, 11, 15, 17)

Practice @ Home

- * Practice questions 1-4 without using a Truth Table
- 1. Determine whether $(\neg p \land (q \rightarrow p)) \rightarrow \neg q$ is tautology.
- 2. Determine whether $(\neg q \land (p \rightarrow q)) \rightarrow \neg p$ is tautology.
- 3. Show that $(p \land (p \rightarrow q)) \rightarrow q$ is a tautology.
- 4. Show that $((p \rightarrow q) \land (p \rightarrow r))$ and $(p \rightarrow (q \land r))$ are logically equivalent.
- ** Practice relevant Odd-Numbered Exercises

Answer 1


```
(\neg p \land (q \rightarrow p)) \rightarrow \neg q
\equiv (\neg p \land (\neg q \lor p)) \rightarrow \neg q
                                                                         [ULE]
\equiv ((\neg p \land \neg q) \lor (\neg p \land p)) \rightarrow \neg a
                                                                         [Distributive Law]
\equiv ((\neg p \land \neg q) \lor \mathsf{F}) \to \neg q
                                                                         [Negation Law]
\equiv (\neg p \land \neg q) \rightarrow \neg q
                                                                          [Identity Law]
\equiv \neg(\neg p \land \neg q) \lor \neg q
                                                                          [ULE]
\equiv (p \lor q) \lor \neg q [De Morgan's & Double Negation Law]
\equiv p \vee (q \vee \neg q)
                                                                         [Associative Law]
\equiv p \vee T
                                                                         [Negation Law]
                                                                         [Domination Law]
\equiv \mathsf{T}
So, (\neg p \land (q \rightarrow p)) \rightarrow \neg q is a tautology.
```

Answer 2


```
(\neg q \land (p \rightarrow q)) \rightarrow \neg p
\equiv (\neg q \land (\neg p \lor q)) \rightarrow \neg p \text{ [You MUST write the names of the laws]}
\equiv (\neg q \land \neg p) \lor (\neg q \land q)) \rightarrow \neg p
\equiv (\neg q \land \neg p) \lor F \rightarrow \neg p
\equiv (\neg q \land \neg p) \rightarrow \neg p
\equiv \neg (\neg q \land \neg p) \lor \neg p
\equiv q \lor p \lor \neg p
\equiv q \lor T
\equiv T
So, (\neg q \land (p \rightarrow q)) \rightarrow \neg p is a tautology.
```

Answer 3

$$(p \land (p \rightarrow q)) \rightarrow q$$

$$\equiv (p \land (\neg p \lor q)) \rightarrow q$$

$$\equiv ((p \land \neg p) \lor (p \land q)) \rightarrow q$$

$$\equiv (F \lor (p \land q)) \rightarrow q$$

$$\equiv (p \land q) \rightarrow q$$

$$\equiv \neg (p \land q) \lor q$$

$$\equiv (\neg p \lor \neg q) \lor q$$

$$\equiv \neg p \lor (\neg q \lor q)$$

$$\equiv \neg p \lor T$$

$$\equiv T$$

ULE (Substitution for \rightarrow)

Distributive Law

Negation Law

Identity Law

ULE (Substitution for \rightarrow)

First De Morgan's Law

Associative Law

Negation Law

Domination Law

Books

 Discrete Mathematics and its applications with combinatorics and graph theory (7th edition) by Kenneth H. Rosen [Indian Adaptation by KAMALA KRITHIVASAN], published by McGraw-Hill

References

- 1. Discrete Mathematics, Richard Johnsonbaugh, Pearson education, Inc.
- 2. Discrete Mathematical Structures, *Bernard Kolman*, *Robert C. Busby*, *Sharon Ross*, Prentice-Hall, Inc.
- 3. SCHAUM'S outlines Discrete Mathematics(2nd edition), by Seymour Lipschutz, Marc Lipson