

₽ Forums

Hangout

← Back to Portal

Select Language
English

powered by

Submission Deadline: 25/11/2020 09:50

THIRD QUIZ A

01:28:49

Q.1 [3 Marks, MCQ question]

Let $a,b,c,d\in\mathbb{R}$. Consider the PDE $\left(a\partial_x+b\partial_y\right)\left(c\partial_x+d\partial_y\right)u=0$. If $u_{xy}=u_{yx}$ is assumed then, the above PDE is

- a). always Hyperbolic
- b). always parabolic
- c). never parabolic
- d). never elliptic.
- e). None of the above.

This is a long answer type question. You can either upload a file or type your answer below.

UPLOAD A FILE

or

Consider the following equations:

$$8u_{xx} + 2u_{xy} - 3u_{yy} = 0.$$

- a) Is the above equation Parabolic, Hyperbolic or Elliptic.
- b) Reduce it to its cannonical form.

This is a long answer type question. You can either upload a file or type your answer below.

UPLOAD A FILE

or

Q.3 [3 Marks, MCQ question]

Which of the following function are "not" harmonic

a).
$$f(x) = ax + b$$

$$b)f(x,y) = x^2 - y^2$$

c)
$$f(x, y) = \frac{\sin^2(xy)}{1+x^2+y^2}$$

d) none of the above.

This is a long answer type question. You can either upload a file or type your answer below.

UPLOAD A FILE

Q.4 [3 Marks, MCQ question]

Let u be the unique solution of

$$u_{tt} = u_{xx}, x \in \mathbb{R}, t > 0, u(x, 0) = f(x), u_t(x, 0) = 0, x \in \mathbb{R}$$

where $f: \mathbb{R} \to \mathbb{R}$ satisfies the relations

$$f(x) = x(1-x), \forall x \in [0,1] \text{ and } f(x+1) = f(x), \ \forall x \in \mathbb{R}.$$

Then $u(\frac{1}{2}, \frac{5}{4})$ is,

- a) 1/8
- b) 3/16
- c) 1/16
- d) 5/16
- e) None of the above.

This is a long answer type question. You can either upload a file or type your answer below.

UPLOAD A FILE

or

Q.5 [3 Marks, MCQ question]

Let u(x, t) be the solution of the initial value problem

$$u_{tt}=u_{xx}, t>0$$

$$u(x, 0) = x^3, \ u_t(x, 0) = \sin x$$

Then $u(\pi,\pi)$ is

- a) $4\pi^{3}$
- b) 0
- c) π^3
- d) 4
- e). None of the above.

This is a long answer type question. You can either upload a file or type your answer below.

UPLOAD A FILE

or

SAVE

SUBMIT