Devoir à la maison n° 21

À rendre le 19 mai

I. Un exercice

On signale $m \in \mathbb{N}^*$ soucoupes volantes dans le ciel américain. L'armée envoie nm missiles, où $n \in \mathbb{N}^*$, ayant chacun une probabilité $p \in]0,1[$ d'atteindre son objectif (sinon, il ne touche rien).

On suppose de plus que les missiles agissent indépendamment les uns des autres.

On dispose de deux stratégies :

- **S1** on vise chaque soucoupe avec n missiles;
- **S2** on laisse chaque missile choisir une cible au hasard.

On pourra noter q = 1 - p.

- 1) Quelle est la probabilité d'atteindre une soucoupe donnée avec chacune de deux stratégies?
- 2) Que se passe-t-il lorsque m tend vers l'infini, n étant fixé? Quelle stratégie choisir?

II. Un autre exercice

Soit K et n deux entiers strictements positifs, X_0, X_1, \ldots, X_n des variables aléatoires indépendantes et identiquement distribuées selon une loi uniforme sur l'ensemble $\{1, \ldots, K\}$.

- 1) Soit $S \subset \{1, \ldots, K\}$. Donner la valeur de $P(X_0 \in S)$ en fonction de Card S.
- 2) Soit $z \in \{1, ..., K\}$. Calculer $P(X_1 \neq z, ..., X_n \neq z)$.
- 3) Déterminer E [Card $\{X_1, \ldots, X_n\}$]. Indication: on pourra calculer $P(X_0 \notin \{X_1, \ldots, X_n\})$ de deux manières, en conditionnant selon X_0 ou selon $\{X_1, \ldots, X_n\}$, pour en déduire une expression de l'espérance demandée.
- 4) Déterminer un équivalent de $E[\operatorname{Card}\{X_1,\ldots,X_n\}]$ lorsque :
 - a) K est fixe et $n \to +\infty$;
 - **b)** n est fixe et $K \to +\infty$;
 - c) $n = K \to +\infty$.

— **FIN** —