STUDYPE

Predicting Financial Time Series using Deep Learning

Module2. Recurrent Neural Network

Jongho Kim

NICE Pricing & Information Inc.

Fall, 2018

Note. This content mainly refers the summer session of KAIST organized by Jiyong Park(2018)

Recurrent Neural Network

Review: What is RNN?

- Unlike CNN, RNN can use past information to learn the present task.
 - > Example: Natural Language Processing (NLP)
 - "The clouds are in the ()."
 - "I grew up in France I speak fluent ()."
 - ➤ Vanishing gradient problem
 - As that gap grows, RNN becomes unable to learn to connect the information. (the past information would be vanishing or exploding)

Review: What is RNN?

• Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) allows RNN to learn how much past information would pass to the next.

(b) Gated Recurrent Unit

RNN in Keras

 We can stack RNN, LSTM or GRU by passing a list of layer using Keras Sequential API

• Although RNN and GRU yield two states (output and hidden), LSTM yields three states (output, hidden, and cell)

```
from tensorflow.keras.layers import LSTM, GRU
encoder_outputs, h, c = LSTM(LATENT_DIM, name='encoder_lstm')(x)
encoder_outputs, h = GRU(LATENT_DIM, name='encoder_gru')(x)
```


Hands-on-Labs Recurrent Neural Network

Recurrent Neural Network

Lab4_Recurrent Neural Network.ipynb

https://colab.research.google.com/drive/1RH5tnTrTPRZkWfNj7PAuPaM_E55coxwp

RNN Model for Image Classification

- Let's "pretend" the image is a sequence of vectors
- Height as Time / Width as Features

Bidirectional RNN

- Bidirectional Recurrent Neural Networks (BRNN) connects two hidden layers of opposite directions to the same output
- BRNNs were introduced to increase the amount of input information available to the network

Bidirectional RNN

- Bidirectional RNN can improve performance
- Apply Bidirectional RNN, Top -> Bottom and Bottom -> Top
- Also, we can rotate images so that we go in 4 directions!

Features Features

Time

Time

Sequence-to-Sequence Model

Sequence-to-Sequence Model

- Our understanding of contexts
 - Answer on Question / Translation etc
 - ightharpoonup (Listening/Reading) \rightarrow (Understanding) \rightarrow (Speaking/Writing)
- Understanding of sequence-to-sequence models
 - \triangleright (Encoding) \rightarrow (Thought Vector) \rightarrow (Decoding)

Seq2Seq Model for Time Series Prediction

• For time series prediction, we can apply seq2seq model

• Input: x1, x2, ... xN

• Output: xN+1

Thank you ©

Contact Info: quantic.jh@gmail.com

References

• Jiyong Park (2018), KAIST Summer Session, Retrieved from https://sites.google.com/view/kaist-mis-session2018/overview?authuser=0