

University of California, San Diego
Department of Electrical and Computer Engineering
ECE 143 - Programming for Data Analysis

The Impact of Natural Disasters on U.S. Real Estate Prices

Group 20: Avyakta Kalipattapu, Keke Hu, Mohammed Kharroub, Rohan Shingre

Outline

01 Significance

02 Data

03 Key Findings

04 Conclusion

Significance

- Increasing Frequency of Natural Disasters
- Informed Policy-making
- Urban Planning
- Investment Strategies

Significance: Our Aim

- Fill the Gaps in Current Knowledge:
 - Comprehensive Overview of the Correlation
 - Short- & Long-term Impacts

Data: Sources

- Housing
 - Federal Housing Finance Agency
 - House Price Index (HPI) Datasets (1980-2022)

- Natural Disasters
 - National Oceanic and Atmospheric Administration (NOAA)
 - Storm Events Database (1950-2023)

Data: Acknowledgements

Access Limitations

Limited to Continental United States

Storm Events Include Most Natural Disasters

Preprocessed Natural Disasters Data Loaded Into Pandas

	EVENT_ID	STATE	STATE_FIPS	YEAR	MONTH_NAME	EVENT_TYPE	CZ_TYPE	CZ_FIPS	CZ_NAME	WFO	BEGIN_DATE_TIME
0	10046120	LOUISIANA	22.0	1980	April	Hail	С	79	RAPIDES	Т	13-APR-80 00:30:00
1	10065016	NEBRASKA	31.0	1980	May	Hail	С	107	KNOX	NG	29-MAY-80 14:10:00
2	10065375	NEBRASKA	31.0	1980	July	Thunderstorm Wind	С	57	DUNDY	ATA	22-JUL-80 00:10:00
3	10054907	MINNESOTA	27.0	1980	September	Thunderstorm Wind	С	129	RENVILLE	NG	03-SEP-80 18:30:00
4	9975991	ALABAMA	1.0	1980	September	Thunderstorm Wind	С	7	BIBB	TS	17-SEP-80 08:30:00
5	9975992	ALABAMA	1.0	1980	November	Tornado	С	3	BALDWIN	NaN	23-NOV-80 14:30:00
6	10075651	NEW YORK	36.0	1980	June	Hail	С	37	GENESEE	RY	26-JUN-80 18:50:00
7	10058560	MISSOURI	29.0	1980	May	Thunderstorm Wind	С	39	CEDAR	Т	26-MAY-80 16:55:00

- -1,027,339 Events
- -Events Without Damage Value Dropped
- -Events Outside Continental US Dropped

Frequency and Damage of Natural Disasters 1980-2023

- Indeed, Damage and Frequency Increase Over Time
- Matches Expectation from Research

-Locations with Most Costly Disasters

-Locations with Most Disasters

Data: Storm Events Database (1980-2023)

Top 5 Most Common Climate Disasters Top 5 Damage-causing Climate Disasters

Data: House Price Index Datasets (1980-2022)

Preprocessed Housing Price Data Loaded Into Pandas

	State	County	FIPS code	Year	Annual Change (%)	HPI	HPI with 1990 base	HPI with 2000 base
0	AL	Autauga	1001	1986		100.00	94.92	70.22
1	AL	Autauga	1001	1987	-2.22	97.78	92.81	68.66
2	AL	Autauga	1001	1988	3.80	101.49	96.33	71.26
3	AL	Autauga	1001	1989	4.33	105.88	100.51	74.35
4	AL	Autauga	1001	1990	-0.51	105.35	100.00	73.97
97656	WY	Weston	56045	2018	-1.01	201.28		185.31
97657	WY	Weston	56045	2019	8.88	219.16		201.77
97658	WY	Weston	56045	2020	4.44	228.88		210.72
97659	WY	Weston	56045	2021	5.06	240.46		221.39
97660	WY	Weston	56045	2022	10.68	266.15		245.04

-2,783 Counties

Data: House Price Index Datasets

Average House Price Index of US Counties 1980-2022

- Indeed, Average US HPI Increase Over Time
- There are Some Dips in the Graph

Key Findings: Correlation

Disasters Frequency & House Price Index of US 1980-2023

- Hard to See Correlation Using Plot Only
- Further Calculations Needed

Key Findings: Correlation

Correlation Coefficient of Disasters & House Price Change

- *** p-values less than 0.01** p-values less than 0.05* p-values less than 0.1
- Damage and Frequency have Significant Negative Impact on House Price
- Frequency has Higher Correlation and Smaller p-value
- Negative correlation is higher as the years increase

- -Heavily-affected = High Frequency of Natural Disasters (75th percentile)
- -Less-affected = Lower Frequency of Natural Disasters (25th percentile)

Average House Price Change (%) of Year of Disaster's Occurrence

- Price Change Of Heavily-Affected Counties is Negative Compared With Less-affected Counties

Average House Price Change (%) of 10-Year Lag after Disasters' Happened

- Price Change Of Heavily-Affected Counties is Negative Compared With Less-affected Counties
- More Visible in This Long-term Plot

Difference of House Price Change (%): Heavily-affected Counties minus Neighboring Less-affected Counties

- Paired Sample T-test: Compares the Means of Two Related Groups
- Assesses if Their Differences are Statistically Significant
- The Impact is Long-lasting and Difference Goes Up to 3.25%

Conclusion

- Significant Negative Correlation
- Long-term Impact is more visible
- Less-affected Neighbouring Counties Price Rise More
- For Future Work:
 - More Variables: Population, Economic Factors, Insurance
 - Machine Learning Models

Thank You