Arhitektura i organizacija računala

2. kontrolna zadaća – teorijski dio

Ime i prezime: Matični broj: Bodovi:

Napomene: Obvezatno upisati ime i prezime na početku ispita. Zaokruživanje i odgovori moraju biti pisani kemijskom olovkom. Crteži i pomoćni račun mogu biti pisani i dobro čitljivom olovkom, na praznim dijelovima papira. U zadacima s ponuđenim odgovorima zaokružuje se jedan odgovor. Točan odgovor donosi jedan pozitivan, a pogrešno zaokružen odgovor jedan negativan bod, jednako kao i bilo kakav ispravak. Ukoliko nije zaokružen niti jedan odgovor, nema negativnih bodova. Zadaci bez ponuđenih odgovora nemaju negativnih bodova. Ukupno vrijeme trajanja ispita je 120 min, a vrijeme za rješavanje teorijskog dijela ispita je maksimalno 30 minuta.

- 1. Bačvasti posmačni sklop je:
 - a) komponenta koja samo definira stanje procesora
 - (b) jedna od glavnih komponenti puta podataka
 - c) izuzet iz puta podataka jer se obično smješta na izlazu iz ALU
 - d) jedna od manje važnih komponenti puta podataka
- 2. Značajke arhitekture procesora RISC su takve da je najkritičnija vrsta hazarda:
 - a) WAR (Write-After-Read)
 - b) WAW (Write-After-Write)
 - (c) RAW (Read-After-Write)
 - d) RAR (Read-After-Read)
- Ako se logički i fizički adresni prostori podijele na jednake blokove stalne veličine govorimo o virtualnom memorijskom sustavu sa:
 - a) segmentima fiksne duljine
 - b) segmentacijom
 - c) straničenim segmentima
 - d) straničenjem
- 4. Logička se adresa a pohranjuje u:
 - a) registru virtualne adrese
 - b) registru fizičke adrese
 - c) u tablici preslikavanja
 - d) u sekundarnoj memoriji
- 5. U Denningovom modelu za veličinu tablice preslikavanja vrijedi da je jednaka:
 - a) veličini primarne memorije
 - b) veličini sekundarne memorije
 - c) ukupnoj veličini sekundarne i primarne memorije
 - d) priručnoj memoriji

- 6. Navedite barem tri algoritma zamjene blokova:
 - a) FIFC
 - _{b)} LRU
 - ິ(OP1
 - c) RANDOM
- 7. Adresna značka određena je s:
 - a) k namjanje značajnih bitova koji predstavljaju adresu riječi u stranici
 - k najznačajnijih bitova koji predstavljaju bločni broj bloka u glavnoj memoriji
 - c) fizičkom adreom u registru VA
 - d) w najmanje značajnih bitova koji označavaju jednu od b riječi
- 8. Tijekom dekodiranja instrukcije u RISC procesoru:
 - a) istodobno se i dohvaćaju operandi
 - b) operandi se ne mogu dohvaćati jer nije još poznata operacija
 - c) istodobno se računa adresa odredišta
 - d) istodobno se računa efektivna adresa operanada
- 9. Ganttov dijagram služi za:
 - a) procjenu performanse procesora
 - b) prikaz Flynnove klasifikacije
 - c) izravnu detekciju hazarda
 - (d) prikaz instrukcija u protočnoj strukturi
- 10. Jedno od zlatnih pravila: "Žrtvuj sve kako bi smanjio vremenski ciklus puta podataka" vrijedi prvenstveno za:
 - a) data-flow procesore
 - b) procesore CISC
 - c) procesore VLIW
 - d) procesore RISC

- 11. Harvardska arhitektura računala uspješno rješava:
 - a) sukobljavanje oko sredstava (resursa)
 - b) podatkovni hazard
 - c) hazard vrste WAW
 - d) upravljački hazard
- 12. Matrica B izvorne Wilkesove sheme mikroprogramirane upravljačke jedinice sadrži:
 - a) upravljačke bitove koji aktiviraju nezavisne upravljačke točke
 - (b) adresu sljedeće mikroinstrukcije
 - c) adresu nanomemorijske lokacije
 - d) mikroinstrukciju koja utječe na izbor uvjeta
- 13. 8-instrukcijski model procesora je:
 - a) registarsko orijentirani procesor
 - (b) akumulatorski orijentirani procesor
 - c) RISC model
 - d) procesor temeljen na registarskim oknima
- 14. Model mikroprogramirljive upravljačke jedinice rabi trofazni signal vremenskog vođenja. Napišite što se događa u pojedinim fazama, odnosno kraći naziv pojedine faze.
 - P(0) mikroizvrši
 - P(1) definiranje adr. sljedeæe mikroinstr.
 - P(2) mikropribavi
- 15. Emit-polje u mikroinstrukciji predstavlja:
 - a) 8-bitnu informaciju o adresi sljedeće mikroinstrukcije
 - b) područje za definiranje konstante u mikroprogramu
 - c) dodatno binarno polje za upravljačke signale
 - d) dio upravljačke riječi kojim se upravlja inicijalnom jezgrom ulazno-izlaznog podsustava

- 16. U 8-bitnom registru nalazi se zapisan broj B4_H. Nakon izvodenja operacije aritmetičkog posmaka za jedno mjesto u desno, u registru se nalazi broj:
 - a) 69_H
 - b) DA_H
 - c) 68 $_{\rm H}$
 - d) nijedno od ponudenih rješenja
- 17. Napišite logičke jednadžbe za izlaze S_i i C_i potpunog zbrajala kao funkcije ulaznih bitova A_i , B_i te bita prijenosa C_{i-1} iz potpunog zbrajala nižeg stupnja:

$$S_i = A(i) XOR B(i) XOR C(i-1)$$

 $C_i = (A(i) XOR B(i)) XOR C(i-1) + A(i)B(i)$

- 18. Broj ispitnih točaka u instrukcijskom ciklusu za DMA u odnosu na prekidne ispitne točke je:
 - a) 3 DMA ispitne točke naprama 1 prekidnoj ispitnoj točki
 - b) 1:1
 - (c) 5:1
 - d) 2:3
- 19. Mikroprocesor MC68000 ima:
 - a) 8 razina prekida
 - b 7 razina prekida
 - c) 3 razine prekida
 - d) nema hijerarhijsko uređenje prekidnog sustava
- 20. Potpuno asocijativno preslikavanje kod priručne memorije dopušta:
 - a) priključivanje bilo kojeg bloka memorije u bilo koji bločni priključak
 - b) priključivanje bloka s bločnim brojem 2/N u jedan bločni priključak
 - c) priključivanje po modulu k, gdje je k broj bločnih priključaka
 - d) priključivanje po grupama

Zadatke sastavio: prof.dr.sc. S. Ribarić