Problem 1 a)

We prove $(a)\Leftrightarrow(c)$, $(c)\Leftrightarrow(b)$, and $(a)\Leftrightarrow(d)$.

 $(a) \Leftrightarrow (c)$

- $(a) \Rightarrow (c)$. If f is continuous, then for any closed $B \subseteq Y$ its complement $Y \setminus B$ is open, so $f^{-1}(Y \setminus B)$ is open in X. But $f^{-1}(Y \setminus B) = X \setminus f^{-1}(B)$, so $f^{-1}(B)$ is closed.
- $(c) \Rightarrow (a)$. If preimages of closed sets are closed, take any open $U \subseteq Y$. Then $Y \setminus U$ is closed, so $f^{-1}(Y \setminus U)$ is closed. But $f^{-1}(Y \setminus U) = X \setminus f^{-1}(U)$, so $f^{-1}(U)$ is open. Hence f is continuous.

Thus (a) and (c) are equivalent.

 $(c) \Leftrightarrow (b)$

• $(b) \Rightarrow (c)$. Let $C \subseteq Y$ be closed and set $A = f^{-1}(C) \subseteq X$. Then $f(A) \subseteq C$. By (b),

$$f(\overline{A}) \subseteq \overline{f(A)} \subseteq \overline{C} = C,$$

so every $x \in \overline{A}$ satisfies $f(x) \in C$. Hence $\overline{A} \subseteq f^{-1}(C) = A$. Since $A \subseteq \overline{A}$ always, we obtain $A = \overline{A}$, i.e. A is closed. Therefore $f^{-1}(C)$ is closed for every closed C, so (c) holds.

• $(c) \Rightarrow (b)$. Fix $A \subseteq X$. Note $f(A) \subset \overline{f(A)}$, so

$$A \subseteq f^{-1}(\overline{f(A)}).$$

By (c) the set $f^{-1}(\overline{f(A)})$ is closed, and it contains A; hence it contains the closure of A:

$$\overline{A} \subseteq f^{-1}(\overline{f(A)}).$$

Apply f to both sides to get

$$f(\overline{A}) \subseteq f(f^{-1}(\overline{f(A)})) \subseteq \overline{f(A)},$$

the last inclusion because $f(f^{-1}(S)) \subseteq S$ for any $S \subseteq Y$. Thus (b) holds.

So (b) and (c) are equivalent.

 $(a) \Leftrightarrow (d)$

- $(a) \Rightarrow (d)$. Suppose f is continuous. Fix $x \in X$ and let V be a neighbourhood of f(x); by definition there exists an open set $W \subseteq Y$ with $f(x) \in W \subset V$. Then $U := f^{-1}(W)$ is open (by continuity), contains x, and $f(U) \subseteq W \subset V$. Thus U is the required neighbourhood of x.
- $(d) \Rightarrow (a)$. Suppose (d) holds. Let $B \subseteq Y$ be open and take any $x \in f^{-1}(B)$. Then $f(x) \in B$, so B is a neighbourhood of f(x); by (d) there is a neighbourhood U of x with $f(U) \subset B$. Hence $U \subset f^{-1}(B)$, and so $f^{-1}(B)$ is a union of open neighbourhoods U of each of its points, i.e. $f^{-1}(B)$ is open. Therefore f is continuous.

Thus (a) and (d) are equivalent.

This completes Problem 1(a).

Problem 1 b)

Proof.

Suppose $f: \mathbb{R} \to \mathbb{R}$ satisfies the ε - δ condition at every point:

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists \delta > 0 \text{ such that } |t - x| < \delta \implies |f(t) - f(x)| < \varepsilon$$

Let $V \subseteq \mathbb{R}$ be open and pick any $x \in f^{-1}(V)$. Then $f(x) \in V$, so there exists $\varepsilon > 0$ with the open interval

$$I_{\varepsilon}(f(x)) = (f(x) - \varepsilon, f(x) + \varepsilon) \subset V$$

.

By (ε, δ) -continuity at x there is $\delta > 0$ with $|t - x| < \delta \implies |f(t) - f(x)| < \varepsilon$, i.e. $t \in (x - \delta, x + \delta)$ implies $f(t) \in I_{\varepsilon}(f(x)) \subset V$.

Thus, $(x - \delta, x + \delta)$ is an open neighbourhood of x contained in $f^{-1}(V)$. Since this is true for each $x \in f^{-1}(V)$, the preimage $f^{-1}(V)$ is open. Hence f is continuous in the topological sense.

Problem 2

Example. Let $\|\cdot\|$ be the Euclidean norm on \mathbb{R}^2 . Define

$$d(x,y) = ||x - y||, \qquad d'(x,y) = \min\{1, ||x - y||\}.$$

We claim d and d' are not equivalent.

Proof. Assume by contradiction there is C>0 with $d(x,y) \leq C \, d'(x,y)$ for all x,y. For any R>C pick x,y with ||x-y||=R. Then $d'(x,y)=\min\{1,R\}=1$, so the inequality would give $R=d(x,y)\leq C\cdot 1=C$, contradicting R>C. Hence no such C exists, so the metrics are not equivalent.

Problem 3 a)

• Positive definiteness. Each term

$$a_n(f,g) := 2^{-n} \frac{\|f - g\|_{C([0,n])}}{1 + \|f - g\|_{C([0,n])}}$$

is nonnegative and equals 0 iff $||f - g||_{C([0,n])} = 0$ (i.e. f = g on [0,n]). If $f \equiv g$ on all [0,n] for every n then f = g on $[0,\infty)$, so d(f,g) = 0 iff f = g. Also symmetry is obvious since ||f - g|| = ||g - f||.

• Triangle inequality. We show for any nonnegative real numbers s, t

$$\frac{s}{1+s} + \frac{t}{1+t} \ge \frac{s+t}{1+s+t}.$$

This is elementary algebra: compute the difference

$$\frac{s}{1+s} + \frac{t}{1+t} - \frac{s+t}{1+s+t} = \frac{st(s+t+2)}{(1+s)(1+t)(1+s+t)} \ge 0.$$

Hence

$$\frac{\|f-h\|_{[0,n]}}{1+\|f-h\|_{[0,n]}} \leq \frac{\|f-g\|_{[0,n]}}{1+\|f-g\|_{[0,n]}} + \frac{\|g-h\|_{[0,n]}}{1+\|g-h\|_{[0,n]}}.$$

Multiply by 2^{-n} and sum over n to obtain

$$d(f,h) \le d(f,g) + d(g,h).$$

Thus d satisfies the triangle inequality.

Therefore d is a metric.

Problem 3 b)

Let V be a real vector space and d a metric on V.

• If d is induced by a norm $\|\cdot\|$ via $d(x,y) = \|x-y\|$, then for all $x,y,z \in V$ and $\lambda \in \mathbb{R}$

$$d(x+z,y+z) = ||x+z-(y+z)|| = ||x-y|| = d(x,y)$$

(translation-invariance), and

$$d(\lambda x, \lambda y) = \|\lambda x - \lambda y\| = |\lambda| \|x - y\| = |\lambda| d(x, y)$$

(homogeneity).

• Conversely, suppose d is translation-invariant and homogeneous. Define ||v|| := d(v, 0). Then $||v|| \ge 0$, $||v|| = 0 \iff v = 0$ (because d is a metric), and for scalar λ ,

$$\|\lambda v\| = d(\lambda v, 0) = d(\lambda v, \lambda 0) = |\lambda| d(v, 0) = |\lambda| \|v\|.$$

For the triangle inequality:

$$||u+v|| = d(u+v,0) = d(u+v,v) \le d(u,0) + d(v,0) = ||u|| + ||v||,$$

where we used translation invariance to reduce d(u+v,v)=d(u,0). Thus $\|\cdot\|$ is a norm and $d(x,y)=\|x-y\|$.

So a metric is induced by a norm iff it is translation-invariant and homogeneous.

Problem 3 c)

No.

Reason. If d were induced by a norm $\|\cdot\|$, then it would be homogeneous: $d(\lambda f, \lambda g) = |\lambda| d(f, g)$ for every real λ . But for the metric in (a) the dependence on $\|f - g\|_{[0,n]}$ is via the function $\phi(t) = t/(1+t)$, which is not homogeneous: $\phi(|\lambda|t) \neq |\lambda|\phi(t)$ in general. Concretely, take any nonzero h and h > 0. The h-th summand for h (h) equals

$$2^{-n} \frac{|\lambda| ||f - g||_{[0,n]}}{1 + |\lambda| ||f - g||_{[0,n]}}$$

which is not equal to $|\lambda|$ times

$$2^{-n} \frac{\|f - g\|_{[0,n]}}{1 + \|f - g\|_{[0,n]}}.$$

Therefore $d(\lambda f, \lambda g) \neq |\lambda| d(f, g)$ in general, so d is not homogeneous and hence cannot come from a norm.

Problem 4

Proof. For any indices n, m the triangle inequality gives

$$|d(x_n, \tilde{x}_n) - d(x_m, \tilde{x}_m)| \le d(x_n, x_m) + d(\tilde{x}_n, \tilde{x}_m).$$

Since (x_n) and (\tilde{x}_n) are Cauchy, for each $\varepsilon > 0$ there exists N such that for all $n, m \geq N$ both $d(x_n, x_m) < \varepsilon/2$ and $d(\tilde{x}_n, \tilde{x}_m) < \varepsilon/2$. Hence the difference above is $< \varepsilon$ for $n, m \geq N$, so the real sequence $d(x_n, \tilde{x}_n)$ is Cauchy and therefore converges.

To deduce continuity of $d(\cdot,\cdot)$: let $(x_n,y_n) \to (x,y)$ in the product topology (i.e. $x_n \to x$ and $y_n \to y$). Then the same inequality

$$\left| d(x_n, y_n) - d(x, y) \right| \le d(x_n, x) + d(y_n, y)$$

shows the left-hand side tends to 0 as $n \to \infty$. Thus $d(x_n, y_n) \to d(x, y)$ and d is continuous.

Problem 5 a)

- Nonnegativity and symmetry: If d(f,g) = 0 then $d_Y(f(x), g(x)) = 0$ for all x, so f(x) = g(x) for all x, hence f = g. Conversely equal functions give zero distance.
- Triangle inequality: for any $x \in X$,

$$d_Y(f(x), h(x)) \le d_Y(f(x), g(x)) + d_Y(g(x), h(x)) \le \sup_x d_Y(f, g) + \sup_x d_Y(g, h).$$

Taking sup over x yields $d(f,h) \leq d(f,g) + d(g,h)$. Thus d is a metric.

(Compactness of X ensures the supremum is finite for continuous f, q.)

Problem 5 b)

Let (f_n) be a Cauchy sequence in (C(X,Y),d). Then for each fixed $x \in X$ the sequence $(f_n(x))$ is Cauchy in Y because

$$d_Y(f_n(x), f_m(x)) \le d(f_n, f_m) \xrightarrow[m, n \to \infty]{} 0.$$

Since Y is complete, for each x there exists a limit $f(x) := \lim_{n\to\infty} f_n(x) \in Y$. This defines a pointwise limit map $f: X \to Y$.

Next, the Cauchy property in the sup-metric implies uniform convergence: for given $\varepsilon > 0$ choose N with $d(f_n, f_m) < \varepsilon$ for all $n, m \ge N$. Fix $n \ge N$ and let $m \to \infty$; then $d(f_n, f) = \sup_x d_Y(f_n(x), f(x)) \le \varepsilon$. So $f_n \to f$ uniformly.

Uniform limit of continuous functions into a metric space is continuous (no compactness needed here): hence $f \in C(X,Y)$. Finally $d(f_n,f) \to 0$ by the uniform convergence, showing every Cauchy sequence converges in (C(X,Y),d). Thus the space is complete.