一个Linux上用python直接处理csv文件的方法

汪兴元

2015 年7 月21 日

摘要

我们常常需要处理体积很大的csv数据或日志文件。一般来讲,导入RDBMS来处理是常用的一种办法,但此办法也不完美,尤其是SQL这种描述型的语言。在表达算法的时候不如一般的程序设计语言的表达力强,某些应用场合虽然能够实现,但是难度太高,优化不易;批量处理大数据,通过在RDBMS上运行SQL效率并不高。

另一种办法就是使用Hadoop或Spark,或导入NoSQL中,再使用MapReduce。但是使用类似Hadoop之类的工具又可能太重,数据量不够运作一个Hadoop集群,还得承受其代价。

本文界绍了直接处理csv文件的一套办法,作为另一个数据处理的选项,示例代码用python,运行的操作系统为Linux,源程序及csv数据文件的编码采用utf8。在从原始数据到最终的目标结果,需要组合本文提到的各种算法,才能达到目的。通过管道-过滤器连接每一个算法,能够将整个处理算法分而治之,同时得到比较好的性能。

本文假设要处理的整个数据集无法一次装入机器的内存。

目录

1	校验数据	2
2	选择列	3
3	排序	4
4	转换ID字段	4
5	去重复值, distinct()	6
6	· 连接	6
	6.1 内连接	6
	6.2 左连接	6
	6.3 全外连接	6
7	过滤数据	6
	7.1 谓词及表示方法	6
	7.2 谓词的连接关系	6
	7.2.1 AND	6
	7.2.2 OR	6
	7.2.3 优先级	6

8	聚集	6
	8.1 max(), min(), avg()	6
	8.2 group by, having	6
	8.3 having	6
9	补缺失值	6
10	· 转置	6

1 校验数据

csv文件可能存在错误。在正常情况下,csv文件不应存在错误。但是写入csv的过程并非事务型的,不象RDBMS那样有很好的ACID保证,故磁盘耗尽,进程异常退出、挂起等因素,直接导致csv文件的格式并非预期。

检查数据没有统一的方法,要视数据自身的特点来做检查。一般是检查一些数据正确所需的必要条件,但必要并不一定充分。一般的检查方法有:

- 1. 检查列数。如果列数不等于预期值,可以确定此行数据错误。
- 2. 检查每列数据的格式,比如,数字,日期,或其它满足指定格式的文本串。可以偿试将其解析为对应的类型,看能否成功,或用正则表达式验证。
- 3. 校验字段的值。前两项都对的情况下,可以检查数据值的取值范围。比如健在的人的年龄不能是负数,也不能是数百以上,历史数据中的记录时间不可能超过当前的日历时钟。

```
1 #! /usr/bin/python
2 \# coding = utf - 8
3 # validate_history_ai.py
5 import csv
6 import sys
8 if __name__ == '__main__':
   infile = sys.stdin
   outfile = sys.stdout
10
11
12
   reader = csv.reader(infile, delimiter=',', quotechar='"',
13
      quoting=csv.QUOTE_ALL, skipinitialspace=True)
    writer = csv.writer(outfile, delimiter=',', quotechar='"',
14
15
      quoting=csv.QUOTE_ALL, skipinitialspace=True)
16
    for row in reader:
17
18
      \mathbf{trv}:
19
         # check if the number of columns is right.
20
        if len(row) != 12
21
           continue;
22
         # check the format of each column...skipped.
         # check the value range of each column...skipped.
23
24
         writer.writerow(row)
25
      except:
```

```
26 pass
27 finally:
28 pass
```

如果数据是已经通过有严格校验的系统中生成或导出的,原始数据本身无误,一般做以上三项检查可以查出我们能见到的全部错误。但是如果数据是人工填写或是有故障的机器生成的,这三项 检查仍不能确保检查出全部错误。

对于错误的数据该如何处理,要视情况而定。有的业务场景,例如Web服务器的access log,价值不高;又如水温传感器输入的每分钟一次的历史数据,可以丢弃,之后使用插补法补缺;有的场景是不可以这样做的,如交易记录,需要重新导出此段数据或人工处理。样例代码中我们采用了丢弃的方法处理。

以上代码没有直接打开csv文件,而是从标准输入中读取文件,处理完毕之后再写到标准输出。 这样的好处是便于通过管道过滤器连接多个处理进程,避免过高的耦合度。本文所有的处理程序 都使用管道过滤器连接,不再赘述。

程序中对校验2.和3.未实现,可以练习下。对于机器导出的数据,做完1.可以去掉大部分错误。如果不打算实现2.和3.

可以将列数从命令行上读取,成为更通用的子程序。这个作为练习。

2 选择列

原始数据中有可能只有部分列是所要关心的,其它的与要解决的问题无关,可以丢弃。因此要选择列,类似SQL语句中的SELECT所要办的事情。样例程序如下所示,这里我们只对第1,3,4,5列感兴趣。

```
1 #! /usr/bin/python
2 \# coding = utf - 8
3 # select_history_ai.py
5 import csv
6 import sys
7
8 if __name__ == '__main__':
   infile = sys.stdin
10
    outfile = sys.stdout
11
12
   reader = csv.reader(infile, delimiter=',', quotechar='"',
13
      quoting=csv.QUOTE_ALL, skipinitialspace=True)
14
    writer = csv.writer(outfile, delimiter=',', quotechar='"',
      quoting=csv.QUOTE_ALL, skipinitialspace=True)
15
16
17
    for row in reader:
      outrow = []
18
19
      outrow.append(row[0])
20
      outrow.append(row[2])
21
      outrow.append(row[3])
22
      outrow.append(row[4])
23
      writer.writerow(outrow)
```

可以将列下标从命令行输入,这样这个程序就成为一个通用的选择程序,而不是仅用于示例的场景。这个作为练习。

3 排序

我们对数据做去重、转置、分组、聚集,都需要先对数据排序。因此排序是非常重要的功能。 不可或缺。

大数据的排序由于无法直接一次装入内存,故必须使用外部排序。如果能将数据切成能用内部排序的小块,排好序之后,再合并,那么我们就可以完成对大数据的排序。

我们不打算从头实现一个大数据排序工具。利用Linux的工具sort来做排序。先将csv文件拆分。可以在导出或生成csv的时候,每达到某一固定尺寸就rotate一下,当前文件改名,再创建一个新文件当作当前文件。

假设文件已经切成能用内存装下的多个小文件。注意,使用切割工具切文件,必须从整行数据的位置断开,否则,切口处的那条数据被切坏了。

对每一个文件,执行sort。下面的两段代码是在Linux的终端上输入的命令,"\$"表示命令提示符。示例中有两个文件,这里只写了第一个文件的排序,另一个省略。

```
1 $ cat data/att-rec-utf8_part-1.txt \
2    | python python-src/select_att_rec.py \
3    | sort --field-separator=, --ignore-leading-blanks --stable \
4    --key=1.2n,2 --key=2,3 >part-1.csv
```

此命令先用select_att_rec.py选择所要的列,再对选择的结果排序,之后将结果重定向到文件part-1.csv。所有小文件都排序好之后,再对排序后的文件做merge:

```
1 $ sort --field-separator=, --ignore-leading-blanks --stable \
2 --key=1.2n,2 --key=2,3 -m part-*.csv > merge-sorted.csv
```

注意在做merge之前,必须先对每个文件排好序; merge时,使用的关键字、分隔符等参数必须与sort的时候所用的参数完全一致。

merge完之后,得到一个已经排好序的大文件。

4 转换ID字段

一般在集成两个系统的数据的时候,需要将两个系统的数据合并起来。但是两个系统的数据ID一般是相互独立分配的,因此,如果ID都是同一种类型,比如整数,几乎100%会发生冲突,即不相同的两个对象,其ID相同。即使用字符串之类的做ID,也难以不发生冲突。因此必须要建立两个系统间的对象的对应关系。

例如,商品销售网站和库管理系统如果是两套独立的系统,分别由不同的团队开发,比如库存管理系统是外购的,商品销售网站是自建的,如果要将两套系统的数据整起来合做分析,又没有办法修改系统达到统一,就需要做ID转换。

下面的程序从标准输入读入历史数据,从命令行读取基础数据文件名,加载基础数据到字典中,利用基础数据中的 $R(ID_{src},ID_{dest})$ 关系,做了一个映射。逐行将原ID映射到目标ID的方法替换掉ID,实现ID转换的目的。

```
1 #! /usr/bin/python
2 # coding=utf-8
3 # transform_data_id.py
```

```
5 import csv
6 import sys
 7 import traceback
9 dataObjectIds = {}
10
11 if __name__ == '__main__':
    infile = sys.stdin
12
13
   outfile = sys.stdout
14
   cfgfile = None
15
    if(len(sys.argv) > 1):
16
       cfgfile = open(sys.argv[1], 'rb')
17
    cfgreader = csv.reader(cfgfile, delimiter=',', quotechar='"',
18
19
      quoting=csv.QUOTE_ALL, skipinitialspace=True)
    reader = csv.reader(infile, delimiter=',', quotechar='"',
20
      quoting=csv.QUOTE_ALL, skipinitialspace=True)
21
22
    writer = csv.writer(outfile, delimiter=',', quotechar='"',
23
      quoting=csv.QUOTE_ALL, skipinitialspace=True)
24
25
    for row in cfgreader:
26
      trv:
27
         key = int(row[0]), int(row[1])
28
         value = int(row[2])
29
         dataObjectIds[key] = value
      except ValueError:
30
31
         pass
32
       finally:
33
         pass
34
35
    for row in reader:
      try:
36
37
         key = int(row[0]), int(row[2])
38
         dataId = dataObjectIds.get(key, None)
39
         converted = []
40
         if dataId != None:
41
           converted = [dataId, row[1]]
           converted.extend(row[3:])
42
43
           writer.writerow(converted)
44
      except:
45
         print >> sys.stderr, row, traceback.format_exc()
```

一般来讲,大多数系统中的某一基础数据对象的ID是可以一次全部装入内存的。比如超市的商品ID,虽然可能有数十万条,但是对于现代计算机的内存来讲并不算多。

对于历史记录,其身的ID,或Primary Key的数量大,其总体积有可能单台机器的内存装不下。不过一般情况下,需要做转换的必要性往往不大,只对其通过Foreign Key引用的基础数据对象的ID有转换的价值。如果实在需要转换,使用6.1提到的内连接方法来做大表的连接,再选择所

- 5 去重复值, distinct()
- 6 连接
- 6.1 内连接
- 6.2 左连接
- 6.3 全外连接
- 7 过滤数据
- 7.1 谓词及表示方法
- 7.2 谓词的连接关系
- 7.2.1 AND
- 7.2.2 OR
- 7.2.3 优先级
- 8 聚集
- 8.1 max(), min(), avg()
- 8.2 group by, having
- 8.3 having
- 9 补缺失值
- 10 转置