Are we spreading Hate or Reach? Towards Generating Contextually Relevant Reactions for LinkedIn Data

Group 17

Ajinkya Nagare, Amit Singh, Anay Dhombe, Ashwin Chafale, Sanket Bhilare

Motivation

- LinkedIn gets flooded with 1000s of posts, and there are multiple reactions to react to a post
- Most of the time, such reactions often tend to be against the sentiment of the post
- This **spreads negative sentiments** amongst the users creating a negative psychological impact on the user. (E.g., like/celebrate/funny reaction to a post related to unemployment/protests)
- Novelty: We propose a system that generates only contextually relevant reactions based on the sentiment.
- Our system aims to answer the following research questions:
 - O How many people react with a reaction opposite to the LinkedIn post sentiment?
 - How can we generate contextually relevant reactions to restrict the negative hate spread?

Design

- Custom model architectures such as Deep Bidirectional- LSTMs,
 GRUs and Stacked LSTM-GRUs were trained on 20K posts.
- FastText, Google pre-trained w2v, and GloVe were used to obtain vector representation for words.
- Pre-trained BERT_{BASE} and Roberta_{BASE} models were fine-tuned on our training data.

Dataset

- Used Weak Supervised Learning approach to generate and annotate data from raw LinkedIn posts
- Around 20K posts were scraped using a scraping script and 30 different hashtags
- Posts were further classified into respective sentiments based on the hashtags (E.g., Neg sentiment for #layoffs, #protests, etc.)

Model Architecture & Pipeline

Analysis and Results

- Models were evaluated on ~3K test data posts.
- False positives are of higher concern to us. Hence, we want precision to be high.
- Stacked GRU-LSTM performed better as compared to other custom models.
- Fine-tuned BERT_{BASE} and RoBERTa_{BASE} models were the **top performers.**

Model	Embedding	Avg. P	Avg. F1	Avg. Accuracy
Deep Bidirectional-GRUs	Fast Text	0.87	0.87	0.87
	Glove	0.85	0.85	0.85
	Google-W2V	0.86	0.86	0.86
Stacked GRU-LSTM	Fast Text	0.89	0.88	0.89
	Glove	0.86	0.85	0.85
	Google-W2V	0.87	0.87	0.87
$\overline{\mathtt{BERT}_{BASE}}$	Pre-trained	0.96	0.96	0.96
$RoBERTa_{BASE}$	Pre-trained	0.96	0.96	0.96