Francisco Ribeiro (118993), Catarina Rabaça (119582), Alexandre Pereira (119871) Grupo Salsa, Feb 17, 2025

Relatório do Lab 02

Introdução

Distribuição do trabalho

Referências e materiais consultados

Atividades

Atividade 1

Atividade 2

Atividade 3

Introdução

Distribuição do trabalho

A coordenação deste lab, no nosso grupo, foi assegurada por Alexandre Pereira O trabalho resultou das seguintes contribuições:

- O Alexandre ficou responsável por elaborar uma resposta para a atividade 3 e por redigir o documento.
- O Francisco ficou com a atividade 2.
- A Catarina respondeu à atividade 1.
- A distribuição das atividades entre os membros do grupo foi realizada de forma aleatória.

Referências e materiais consultados

Para realizar esta atividade consultamos os recursos disponíveis no e-learning da disciplina, tal como os Tutoriais do Visual Paradigm.

Atividades

Atividade 1

O diagrama representa um sistema de compras online, no qual diferentes tipos de clientes interagem com as funcionalidades disponíveis.

UNIVERSIDADE DE AVEIRO | 41951 Análise de Sistemas

Existem três tipos de clientes: Web Customer, Registered Customer e New Customer, sendo que os dois primeiros são especializações do terceiro.

Os clientes podem visualizar produtos (View Items), efetuar compras (Make Purchase), concluir o pagamento (Checkout) e registar-se no sistema Client Register.

O processo de compra inclui obrigatoriamente a finalização do pagamento, tornando o Checkout um passo essencial.

Além dos clientes, o sistema integra-se com serviços externos.

A autenticação é realizada através de um Identity Provider, sugerindo um sistema de login externo. No que respeita aos pagamentos, o sistema suporta serviços como Credit Payment Service e PayPal, permitindo diferentes métodos de transação.

O diagrama também utiliza relações como include para indicar que determinados processos, como o Checkout, fazem parte obrigatória da compra.

No contexto da modelação de casos de utilização (UML), um ator representa um papel externo ao sistema que interage com ele para alcançar um objetivo. Este ator pode ser:

- I. Um ser humano (como um cliente a fazer login num site);
- II. Outro sistema de software (como um serviço de pagamento que comunica com uma loja online);
- III. Um dispositivo externo (como um sensor que envia dados a um servidor).

O utilizador, por outro lado, refere-se apenas a uma pessoa que opera o sistema. Assim, por exemplo, num sistema bancário:

- O cliente que consulta o saldo é um utilizador e um ator
- O sistema de pagamentos que comunica com o banco é um ator, mas não é um utilizador

Atividade 2

Casos de Utilização Principais:

- Criar testes.
- Responder aos testes criados.
- Visualizar materiais.
- Enviar documentos.
- Gerir utilizadores e monitorizar atividades.

Atores:

- Student.
- Professor.
- Administrator

Atividade 3

Para determinarmos os casos de utilização da aplicação *Spotify*, recorremos à utilização das plataformas de IA: Gemini e Perplexity.

Com o objetivo de obter respostas que seguissem as boas práticas UML, utilizámos dois prompts específicos para guiar a pesquisa:

 Prompt 1 – "Identifica e descreve casos de utilização para a aplicação Spotify, considerando uma abordagem UML rigorosa, fornece pelo menos 6 casos de utilização e indica os atores externos e nomeia os casos com verbos que reflitam ações dos atores e resultados claros."

UNIVERSIDADE DE AVEIRO | 41951 Análise de Sistemas

 Prompt 2 – "Identifica e descreve casos de utilização avançados ou diferenciados da aplicação Spotify, além das funcionalidades básicas como ouvir música e criar playlists, considera interações que envolvam outros atores, como artistas e anunciantes, e explora funcionalidades menos evidentes e segue as boas práticas UML, nomeando casos com verbos e identificando claramente os atores."

Relativamente ao Prompt 1, considerámos que a resposta fornecida pela plataforma Gemini se revelou superior.

A resposta foi mais completa e detalhada, apresentando uma descrição rigorosa dos casos de utilização, incluindo fluxos, pré-condições e resultados, o que garante uma melhor compreensão das interações, alinhando-se assim de forma mais eficaz com os princípios da modelação UML.

Por outro lado, a resposta do Perplexity, embora tenha evidenciado mais atores, o que é um ponto positivo, não alcançou o mesmo nível de detalhe e rigor na descrição dos casos e omitiu vários aspetos operacionais importantes.

No que concerne ao <u>Prompt 2</u>, também considerámos que a plataforma Gemini se destacou como a melhor.

A sua resposta apresentou casos de utilização avançados muito bem estruturados e coerentes, com identificação clara dos atores envolvidos, incluindo os comerciais (como artistas e anunciantes). Além disso, descreveu de forma pormenorizada os fluxos e as condições dos casos, cobrindo funcionalidades diferenciadas e menos evidentes do *Spotify*.

Embora o Perplexity tenha levantado funcionalidades relevantes e inovadoras, a sua resposta revelou falta de profundidade e não identificou devidamente atores essenciais como artistas e anunciantes, o que compromete a aplicabilidade prática das informações obtidas para uma modelação UML rigorosa.

Desta forma, após a análise e comparação das respostas fornecidas por ambas as plataformas relativamente aos dois prompts apresentados, concluímos que a plataforma Gemini é a mais adequada para servir de base à modelação dos casos de utilização avançados da aplicação *Spotify*.