

QUÍMICA NIVEL MEDIO PRUEBA 1

Jueves 10 de mayo de 2007 (tarde)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.

							,		
0	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,80	54 Xe 131,30	86 Rn (222)			_
٢		9 F 19,00	17 Cl 35,45	35 Br 79,90	53 I 126,90	85 At (210)		71 Lu 174,97	103 Lr (260)
9		8 O 16,00	16 S 32,06	34 Se 78,96	52 Te 127,60	84 Po (210)		70 Yb 173,04	102 No (259)
w		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,75	83 Bi 208,98		69 Tm 168,93	101 Md (258)
4		6 C 12,01	14 Si 28,09	32 Ge 72,59	50 Sn 118,69	82 Pb 207,19		68 Er 167,26	100 Fm (257)
က		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 TI 204,37		67 Ho 164,93	99 Es
				30 Zn 65,37	48 Cd 112,40	80 Hg 200,59		66 Dy 162,50	98 Cf (251)
æ				29 Cu 63,55	47 Ag 107,87	79 Au 196,97		65 Tb 158,92	97 Bk (247)
riódic				28 Ni 58,71	46 Pd 106,42	78 Pt 195,09		64 Gd 157,25	96 Cm (247)
Tabla periódica				27 Co 58,93	45 Rh 102,91	77 Ir 192,22		63 Eu 151,96	95 Am (243)
Ta				26 Fe 55,85	44 Ru 101,07	76 Os 190,21		62 Sm 150,35	94 Pu (242)
			1	25 Mn 54,94	43 Tc 98,91	75 Re 186,21		61 Pm 146,92	93 N p (237)
	atómico	ento tómica		24 Cr 52,00	42 Mo 95,94	74 W 183,85		60 Nd 144,24	92 U 238,03
	Número atómico	Elemento Masa atómica		23 V 50,94	41 Nb 92,91	73 Ta 180,95		59 Pr 140,91	91 Pa 231,04
	,		ı	22 Ti 47,90	40 Zr 91,22	72 Hf 178,49		58 Ce 140,12	90 Th 232,04
				21 Sc 44,96	39 Y 88,91	57 † La 138,91	89 ‡ Ac (227)	·;	**
7		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,34	88 Ra (226)		
1	1 H 1,01	3 Li 6,94	11 Na 22,99	19 K 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		

1.	El metano, CH ₄ , arde con oxígeno gaseoso para formar dióxido de carbono y	agua.	¿Cuántos moles
	de dióxido de carbono se formarán a partir de 8,0 g de metano?		

- A. 0,25
- B. 0,50
- C. 1,0
- D. 2,0

2. ¿Cuál es la fórmula empírica de un compuesto que contiene 50 % en masa del elemento $X(A_r = 20)$ y 50 % en masa del elemento $Y(A_r = 25)$?

- A. XY
- B. X_3Y_2
- C. X_4Y_5
- D. X_5Y_4

3. Suponiendo que la reacción es completa, ¿qué volumen de solución de hidróxido de potasio (KOH(aq)), de concentración $0,200 \text{ mol dm}^{-3}$ se requiere para neutralizar $25,0 \text{ cm}^3$ de ácido sulfúrico acuoso ($H_2SO_4(aq)$), de concentración $0,200 \text{ mol dm}^{-3}$?

- A. 12,5 cm³
- B. 25.0 cm^3
- C. 50.0 cm^3
- D. $75,0 \text{ cm}^3$

4. Considere la siguiente reacción

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$

Si la reacción es completa ¿qué volumen de amoníaco (expresado en dm³) se puede preparar con 25 dm³ de nitrógeno y 60 dm³ de hidrógeno? Todos los volúmenes son medidos a la misma temperatura y presión.

- A. 40
- B. 50
- C. 85
- D. 120
- 5. ¿En qué se diferencian dos átomos neutros representados por los símbolos $^{210}_{84}$ Po y $^{210}_{85}$ At?
 - A. Sólo en el número de neutrones.
 - B. Sólo en el número de protones y electrones.
 - C. Sólo en el número de protones y neutrones.
 - D. En el número de protones, neutrones y electrones.
- **6.** ¿Qué enunciados son correctos cuando se refieren al espectro de emisión de un átomo de hidrógeno?
 - I. Las líneas convergen a baja energía.
 - II. Las transiciones electrónicas n = 1 son responsables de las líneas en la región UV.
 - III. Las líneas se producen cuando los electrones se mueven de niveles energéticos mayores a menores.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III

A. Todos los iones haluro son agentes reductores y los iones yoduro son los más débiles.

-5-

- B. Todos los halógenos son agentes oxidantes y el cloro es el más fuerte.
- C. Los iones cloruro se pueden oxidar a cloro por acción del bromo.
- D. Los iones yoduro se pueden oxidar a yodo por acción del cloro.
- **8.** ¿Cuáles de los siguientes enunciados son correctos?
 - I. Para los metales alcalinos, los puntos de fusión disminuyen desde $Li \rightarrow Cs$.
 - II. Para los halógenos, los puntos de fusión aumentan desde $F \rightarrow I$.
 - III. Para los elementos del periodo 3, los puntos de fusión diminuyen desde $Na \rightarrow Ar$.
 - A. Sólo I y II
 - B. Sólo I y III
 - C. Sólo II y III
 - D. I, II y III
- **9.** ¿En qué opción los compuestos C_2H_4 , C_2H_2 y C_2H_6 están ordenados de forma **creciente** respecto de la longitud del enlace C-C?
 - A. C_2H_6, C_2H_2, C_2H_4
 - B. C_2H_4, C_2H_2, C_2H_6
 - C. C_2H_2 , C_2H_4 , C_2H_6
 - D. C_2H_4 , C_2H_6 , C_2H_2

- 10. ¿Qué compuesto contiene ambos enlaces, iónico y covalente?
 - A. MgCl₂
 - B. HCl
 - C. H₂CO
 - D. NH₄Cl
- 11. ¿En qué opción las especies BF_2^+ , BF_3 y BF_4^- están ordenadas de forma **creciente** respecto del ángulo de enlace F-B-F?
 - A. BF_3 , BF_4^- , BF_2^+
 - B. BF_4^-, BF_3, BF_2^+
 - C. $BF_{2}^{+}, BF_{4}^{-}, BF_{3}^{-}$
 - D. BF_2^+ , BF_3 , BF_4^-
- 12. ¿Qué especie tiene forma trigonal plana?
 - A. CO_3^{2-}
 - B. SO₃²⁻
 - C. NF₃
 - D. PCl₃

- 13. Se duplica la temperatura en Kelvin de 1,0 dm³ de un gas ideal y su presión se triplica. ¿Cuál es el volumen final del gas expresado en dm³?
 - A. $\frac{1}{3}$
 - B. $\frac{2}{3}$
 - C. $\frac{3}{2}$
 - D. $\frac{1}{6}$
- 14. En un recipiente cerrado a 298 K, se colocan 1 mol de hidrógeno, 2 moles de oxígeno y 3 moles de dióxido de carbono. ¿Cuál es la relación de la energía cinética **media** de cada gas en dichas condiciones?
 - A. 1:2:3
 - B. 3:2:1
 - C. 1:1:1
 - D. 1:2:1
- 15. Considere la capacidad calorífica específica de los siguientes metales.

Metal	Capacidad calorífica específica / J kg ⁻¹ K ⁻¹
Cu	385
Ag	234
Au	130
Pt	134

¿Qué metal presentará el mayor aumento de temperatura si se le aportan 50 J de calor a una muestra de 0,001 kg de cada metal inicialmente a la misma temperatura?

- A. Cu
- B. Ag
- C. Au
- D. Pt

$$S(s) + 1\frac{1}{2}O_2(g) \rightarrow SO_3(g)$$
 $\Delta H^{\oplus} = -395 \text{ kJ mol}^{-1}$

-8-

$$SO_2(g) + \frac{1}{2}O_2(g) \to SO_3(g)$$
 $\Delta H^{\Theta} = -98 \text{ kJ mol}^{-1}$

¿Cuál es el valor de ΔH^{Θ} (expresado en kJ mol⁻¹) para la siguiente reacción?

$$S(s) + O_2(g) \rightarrow SO_2(g)$$

17. La siguiente reacción es espontánea sólo a temperaturas superiores a 850 °C.

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

¿Qué combinación es correcta para esta reacción a 1000 °C?

	ΔG	ΔΗ	ΔS
A.	_	_	-
B.	+	+	+
C.	_	+	+
D.	+	_	_

- 18. ¿Qué enunciado es correcto para una reacción endotérmica?
 - A. Los enlaces de los productos son más fuertes que los enlaces de los reactivos.
 - B. Los enlaces de los reactivos son más fuertes que los enlaces de los productos.
 - C. La entalpía de los productos es menor que la de los reactivos.
 - D. La reacción es espontánea a temperatura baja, pero se torna no espontánea a temperatura elevada.

- **19.** En general, las siguientes acciones producen un incremento de la velocidad de una reacción, **excepto**
 - A. aumentar la temperatura.
 - B. aumentar la energía de activación.
 - C. aumentar la concentración de los reactivos.
 - D. aumentar la superficie de contacto de los reactivos.
- **20.** A 25 °C, 100 cm³ de ácido clorhídrico de concentración 1,0 mol dm⁻³ se añaden a 3,5 g de carbonato de magnesio. Si la muestra de carbonato de magnesio se mantiene constante ¿qué combinación **no** aumentará la velocidad inicial de reacción?

	Volumen de HCl / cm ³	Concentración de HCl / mol dm ⁻³	Temperatura / °C
A.	200	1,0	25
B.	100	2,0	25
C.	100	1,0	35
D.	200	2,0	25

21. Considere la siguiente reacción de equilibrio que se produce en un recipiente cerrado a 350 °C.

$$SO_2(g) + Cl_2(g) \rightleftharpoons SO_2Cl_2(g)$$
 $\Delta H^{\ominus} = -85 \text{ kJ}$

¿Qué enunciado es correcto?

- A. Disminuir la temperatura aumentará la cantidad de SO₂Cl₂(g).
- B. Aumentar el volumen del recipiente aumentará la cantidad de $SO_2Cl_2(g)$.
- C. Aumentar la temperatura aumentará la cantidad de SO₂Cl₂(g).
- D. Añadir un catalizador aumentará la cantidad de SO₂Cl₂(g).

2207-6128 Véase al dorso

- **22.** ¿Cuál de los siguientes equilibrios **no** se verá afectado por variaciones de presión a temperatura constante?
 - A. $4HCl(g) + O_2(g) \rightleftharpoons 2H_2O(g) + 2Cl_2(g)$
 - B. $CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g)$
 - C. $C_2H_4(g) + H_2O(g) \rightleftharpoons C_2H_5OH(g)$
 - D. $PF_3Cl_2(g) \rightleftharpoons PF_3(g) + Cl_2(g)$
- 23. ¿Qué mezcla, disuelta en 1,0 dm³ de agua, produciría una solución buffer?
 - A. 0,30 moles de NH₃(aq) y 0,30 moles de HCl(aq)
 - B. 0.30 moles de NH₃(aq) y 0.15 moles de HCl(aq)
 - C. 0.30 moles de NH₃(aq) y 0.60 moles de HCl(aq)
 - D. 0.30 moles de NH₃(aq) y 0.15 moles de H₂SO₄(aq)
- 24. En recipientes separados, se hicieron reaccionar completamente soluciones de ácido clorhídrico (HCl (aq)) y ácido etanoico (CH₃COOH(aq)) de la misma concentración con 5,0 g de carbonato de calcio. ¿Qué enunciado es correcto?
 - A. El CH₃COOH (aq) reaccionó más lentamente porque tiene menor pH que el HCl (aq).
 - B. El volumen de CO₂(g) producido con el CH₃COOH(aq) es menor que el producido con HCl (aq).
 - C. El volumen de CO₂(g) producido con el CH₃COOH(aq) es mayor que el producido con HCl (aq).
 - D. El volumen de CO₂(g) producido con CH₃COOH(aq) es el mismo que el producido con el HCl(aq).

25. Considere las siguientes reacciones espontáneas.

Fe(s) + Cu²⁺ (aq)
$$\rightarrow$$
 Fe²⁺ (aq) + Cu(s)
Cu(s) + 2Ag⁺ (aq) \rightarrow Cu²⁺ (aq) + 2Ag(s)
Zn(s) + Fe²⁺ (aq) \rightarrow Zn²⁺ (aq) + Fe(s)

¿Cuál es la combinación correcta del agente oxidante más fuerte y el agente reductor más fuerte?

	Agente oxidante más fuerte	Agente reductor más fuerte
A.	Ag(s)	Zn(s)
B.	Ag ⁺ (aq)	Zn(s)
C.	Zn ²⁺ (aq)	Ag(s)
D.	Zn(s)	Ag ⁺ (aq)

26. ¿En cuál de los siguientes cambios el nitrógeno experimenta una oxidación?

- A. $NO_2 \rightarrow N_2O_4$
- B. $NO_3^- \rightarrow NO_2$
- C. $N_2O_5 \rightarrow NO_3^-$
- $D. \quad NH_3 \rightarrow N_2$

27. ¿Qué enunciado es correcto?

- A. En una celda electrolítica las reacciones rédox espontáneas producen electricidad.
- B. La electricidad se usa para llevar a cabo reacciones rédox no espontáneas en una pila.
- C. La oxidación tiene lugar en el electrodo negativo en una pila y en el electrodo positivo en una celda electrolítica.
- D. La oxidación tiene lugar en el electrodo negativo en una pila y la reducción tiene lugar en el electrodo positivo en una celda electrolítica.

- **28.** El nylon es un polímero de condensación formado por ácido hexanodioico y 1,6-diaminohexano. ¿Qué tipo de enlace presenta el nylon?
 - A. Amida
 - B. Ester
 - C. Amina
 - D. Carboxilo
- **29.** ¿Cuál es el nombre del siguiente compuesto de acuerdo con la IUPAQ?

- A. 3,3,4-trimetilhexano
- B. 3,4,4-trimetilhexano
- C. 4-etil-3,4-dimetilpentano
- D. 2-etil-2,3-dimetilpentano

30. ¿Cuántos átomos de carbono quirales hay en una molécula de glucosa?

- A. 1
- B. 2
- C. 3
- D. 4