3.1 Variable Elimination Algorithm

(a)

$$P(T = 0|S = 1, R = 1) = \frac{P(T = 0, S = 1, R = 1)}{P(S = 1, R = 1)}$$

$$= \frac{P(T = 0, S = 1, R = 1)}{P(T = 0, S = 1, R = 1) + P(T = 1, S = 1, R = 1)}$$

Therefore, all we need to calculate is P(T, S = 1, R = 1)

$$\begin{split} &P(T,S=1,R=1)\\ &=\sum_{F=0}^{1}\sum_{A=0}^{1}\sum_{L=0}^{1}P(T,A,F,L,S=1,R=1)\\ &=\sum_{F=0}^{1}\sum_{A=0}^{1}\sum_{L=0}^{1}P(T)P(A|T,F)P(F)P(L|A)P(S=1|F)P(R=1|L)\\ &=P(T)\sum_{F=0}^{1}P(S=1|F)P(F)\sum_{A=0}^{1}P(A|T,F)\sum_{L=0}^{1}P(L|A)P(R=1|L)\\ &=f_{0}(T)\sum_{F=0}^{1}f_{3}(F,1)P(F)\sum_{A=0}^{1}f_{2}(T,F,A)\sum_{L=0}^{1}f_{4}(A,L)f_{5}(L,1)\\ &=f_{0}(T)\sum_{F=0}^{1}f_{3}'(F)f_{1}(F)\sum_{A=0}^{1}f_{2}(T,F,A)\sum_{L=0}^{1}f_{4}(A,L)f_{5}'(L) \end{split}$$

Assume that $f_6(A,L) = f_4(A,L) * f_5'(L)$, then

A	L	$f_6(A,L)$
0	0	0.00999

A	L	$f_6(A,L)$	
0	1	0.00075	
1	0	0.0012	
1	1	0.66	

and

$$P(T,S=1,R=1) = f_0(T) \sum_{F=0}^1 f_3'(F) \sum_{A=0}^1 f_2(T,F,A) \sum_{L=0}^1 f_6(A,L)$$

Assume that $f_7(A) = \sum_{L=0}^1 f_6(A,L)$, then

A	$f_7(A)$
0	0.01074
1	0.6612

and

$$P(T,S=1,R=1) = f_0(T) \sum_{F=0}^1 f_3'(F) \sum_{A=0}^1 f_2(T,F,A) f_7(A)$$

Assume that $f_8(T,F,A)=f_2(T,F,A)*f_7(A)$, then

T	F	A	$f_8(T,F,A)$
0	0	0	0.10738926
0	0	1	0.00006612
0	1	0	0.0001074
0	1	1	0.654588
1	0	0	0.01611
1	0	1	0.56202
1	1	0	0.0537

T	F	A	$f_8(T,F,A)$	
1	1	1	0 3306	

and

$$P(T,S=1,R=1) = f_0(T) \sum_{F=0}^1 f_3'(F) \sum_{A=0}^1 f_8(T,F,A)$$

Assume that $f_9(T,F) = \sum_{A=0}^1 f_8(T,F,A)$, then

T	F	$f_{9}(T,F)$
0	0	0.10745538
0	1	0.6546954
1	0	0.57813
1	1	0.3843

and

$$P(T,S=1,R=1) = f_0(T) \sum_{F=0}^1 f_3'(F) f_9(T,F)$$

Assume that $f_{10}(T,F)=f_3'(F)*f_9(T,F)$, then

T	F	$f_{10}(T,F)$
0	0	0.0010745538
0	1	0.58922586
1	0	0.0057813
1	1	0.34587

and

$$P(T,S=1,R=1) = f_0(T) \sum_{F=0}^1 f_{10}(T,F)$$

Assume that $f_{11}(T)=\sum_{F=0}^1 f_{10}(T,F)$, then

T	$f_{11}(T)$	
0	0.5903004138	
1	0.2516512	

and

$$P(T, S = 1, R = 1) = f_0(T)f_{11}(T)$$

Assume that $f_{12}(T) = f_0(T) * f_{11}(T)$, then

$$T$$
 $f_{12}(T)$ 0 0.578494405524 1 0.007033026

Therefore

$$P(T, S = 1, R = 1) = f_{12}(T)$$

In conclusion

$$P(T = 0|S = 1, R = 1) = \frac{P(T = 0, S = 1, R = 1)}{P(T = 0, S = 1, R = 1) + P(T = 1, S = 1, R = 1)}$$

$$= \frac{f_{12}(0)}{f_{12}(0) + f_{12}(1)}$$

$$= \frac{0.578494405524}{0.578494405524 + 0.007033026}$$

$$\approx 0.9880$$

and

$$P(T = 1|S = 1, R = 1) = \frac{P(T = 1, S = 1, R = 1)}{P(T = 0, S = 1, R = 1) + P(T = 1, S = 1, R = 1)}$$

$$= \frac{f_{12}(1)}{f_{12}(0) + f_{12}(1)}$$

$$= \frac{0.007033026}{0.578494405524 + 0.007033026}$$

$$\approx 0.0120$$

(b)

Phase of algorithm	# multiplications	# additions	# divisions
Eliminate S (evidence)	0	0	0
Eliminate R (evidence)	0	0	0
Eliminate L	4	2	0
Eliminate A	8	4	0
Eliminate F	4	2	0
Combine T factors	2	0	0
Normalize distribution over T	0	1	2
Total	18	9	2

(c)

Phase of algorithm	# multiplications	# additions	# divisions
Compute $P(T=0,S=1,R=1)$	40	7	0
Compute $P(T=1,S=1,R=1)$	40	7	0
Normalize distribution over T	0	1	2
Total	80	15	2

3.2 To be, or not to be, a polytree: that is the question

Polytrees:

Cluster nodes:

Cluster C, D into a single node ${\cal F}$, then the DAG is a polytree.

2.

Cluster C,E into a single node H, then the DAG is a polytree.

3.

Cluster D, E into a single node I, then the DAG is a polytree.

4.

Cluster B, H into a single node K, then the DAG is a polytree.

3.3 Node clustering

Y_1	Y_2	Y_3	Y	P(Y X=0)	P(Y X=1)	$P(Z_1=1 Y)$	$P(Z_2=1 Y)$
0	0	0	1	0.0525	0.14625	0.8	0.2
1	0	0	2	0.2975	0.04875	0.7	0.3
0	1	0	3	0.0225	0.07875	0.6	0.4
0	0	1	4	0.0525	0.34125	0.5	0.5
1	1	0	5	0.1275	0.02625	0.4	0.6
1	0	1	6	0.2975	0.11375	0.3	0.7
0	1	1	7	0.0225	0.18375	0.2	0.8
1	1	1	8	0.1275	0.06125	0.1	0.9

3.4 Maximum likelihood estimation for an n-sided die

(a)

$$egin{aligned} \mathcal{L}(p) &= \log P(ext{data}) \ &= \log P(X_1 = x^{(1)}, X_2 = x^{(2)}, \dots, X_k = x^{(T)}) \ &\stackrel{i.i.d.}{=} \log \left[P(X = x^{(1)}) P(X = x^{(2)}) \dots P(X = x^{(T)})
ight] \ &= \log \left[P(X = 1)^{C_1} P(X = 2)^{C_2} \dots P(X = n)^{C_n}
ight] \ &= C_1 \log P(X = 1) + C_2 \log P(X = 2) + \dots + C_n \log P(X = n) \ &= \sum_{i=1}^n C_k \log p_k \end{aligned}$$

(b)

$$egin{aligned} \sum_{k=1}^n q_k \log q_k - rac{\mathcal{L}(p)}{T} &\stackrel{(a)}{=} \sum_{k=1}^n (q_k \log q_k - rac{C_k}{T} \log p_k) \ &= \sum_{k=1}^n (q_k \log q_k - q_k \log p_k) \ &= \sum_{k=1}^n q_k \log rac{q_k}{p_k} \ &\stackrel{1.6}{=} \mathrm{KL}(q,p) \end{aligned}$$

(c)

Using the conclusion of question 1.6, we can find that when $\frac{q_1}{p_1} = \frac{q_2}{p_2} = \ldots = \frac{q_n}{p_n}$, then $\mathrm{KL}(q,p)$ get the minimum value, which means that $\mathcal{L}(p)$ get the maximum number. In conclusion,

$$p_k=q_k=rac{C_k}{T}$$

is the maximum-likelihood estimate.