

Order Relations

1 Why

We want to handle elements of a set in a particular order.

2 Definition

Let R be a relation on a non-empty set A. R is a **partial order** if it is reflexive, transitive, and anti-symmetric. If $(a, b) \in R$ we say that a **precedes** b and that b **succeeds** a.

A partially ordered set is a set and a partial order. The language partial is meant to suggest that two elements need not be comparable. For example, suppose R is $\{(a, a) \mid a \in A\}$; we may justifiably call this no order at all and call A totally unordered, but it is a partial order by our definition.

Often we want all elements of the set A to be comparable. We call R **connexive** if for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$. If R is a partial order and connexive, we call it a **total order**.

A totally ordered set is a set together with a total order. The language is a faithful guide: we can compare any two elements. Still, we prefer one word to three, and so we will use the shorter term chain for a totally ordered set; other terms include simply ordered set and linearly ordered set.

Let C = (A, R) be a chain. A **minimal element** of C is an element which precedes all other elements. A **maximial element** of C is an element which is preceded by all other elements.

2.1 Notation

We denote total and partial orders on a set A by \leq . We read \leq aloud as "precedes or equal to" and so read $a \leq b$ aloud as "a precedes or is equal to b." If $a \leq b$ but $a \neq b$, we write $a \prec b$, read aloud as "a precedes b."