

Universidade Federal do Amazonas Faculdade de Tecnologia FT

2º Trabalho: raciocínio probabilistico

Manaus, novembro de 2024

Aluno: Thiago Rodrigo Monteiro Salgado (21954456);

Professor: Edjard Mota (ICOMP – UFAM)

Segundo trabalho prático: raciocínio probabilístico.

Este trabalho será entregue com a sua primeira parte neste documento contendo as questões cujo desenvolvimento foi realizado a mão e com tabelas de descrição dos valores estipulados *arbritariamente* e calculados de acordo com os procedimentos estabelecidos na disciplina relacionados a raciocínio probabilístico. A segunda parte desta avaliação encontra-se no *github* com acesso aberto a qualquer usuário.

Acesso ao github clicando <u>aqui</u>.

2º Trabalho: raciocínio probabilistico

Manaus, novembro de 2024

Primeira questão:

A. Desenhe a rede causalidade entre as variáveis Str, Flw, R, V, B, K e Li.

Figura 1 - Rede de causalidade

R é o Dínamo deslizante e ele depende da condição da rua (Str), e depende também do dínamo estar desgatado ou não (Flw). Para haver tensão (V), depende somente do dínamo, logo R é nó pai de V. Já B e K (cabo Ok e lâmpada Ok respectivamente), são independentes do dínamo, porém influenciam se a luz está ligada ou não que é o Li, que também tem forte influência de V.

B. CPTs faltantes:

P(Str = Dry)	P(Str = wet)
0.95	0.2

P(Flw)
0.4

Str	Flw	P(R)
Dry	True	0.03
Dry	False	0.01
Wet	True	0.4
Wet	False	0.06
SnowCovered	True	0.98
SnowCovered	False	0.5

P(B)
0.98
P(K)
0.85

Apenas ressaltando que estas probabilidades foram definidas arbitrariamente de uma maneira lógica.

- C. Está contida em B.
- D. A aresta (Str, Li) não existe porque Li e Str são independentes. Dado o V. Por tanto, P(Li | V, Str) = P(Li | v), ou seja, dínamo que é quem gera energia. P(Li, V, Str) e P(Li|V).
- E. Segue abaixo os cálculos realizados a mão:

```
e) Pana P(R|stn = Snaw (covened)

P(R|stn = Snaw (ovened, FLW = True) = 098

P(R|stn = Snaw (ovened, FLW = Folse) = 0,5

P(R|stn = True) = 0,4

P(RLW = True) = 1 - P(FLW = True) = 0,6

P(R|stn = Covened Inoue)

P(RIstn) = 0,98.94 + 0,5.96

= 0,392 + 0,3

= 0,6924
```

Figura 2 - P (R | Str = SnowCovered)

Figura 3 - P (V | Str = SnowCovered)

```
Agona pana L/:

P(Li) stn = Smouloward)

P(Li) hin = Smouloward = Z, P(Li) y B, k) . P(x).

1) Quando V = True,

B = True

K = True

P(Li) v, P(k) = 0,99

P(V) . P(B) . P(K) = 0,90. 0,90. 0,85 = 0,5935

P(Li) = 0,99 . 0,5825 = 9,594269

2) V = true B = True 4 = Palse

P(Li) v, B, K) = 0,01

P(V) . P(B) . P(TK) = 0,9. 0,98. (J-985)=0,1029

P(Li) = 0,01. 0,5024 = 0,001029

3) Quando V = True, B = Polse K = Polse

P(Li) x, B, TK) = 0,001

P(V) . P(TB) . P(TK) = 0,9. (1-0,98).0,85 = 0,119

P(Li) = 0,01. 0,0119 = 0,000119
```

Figura 4 - Parte 1 do cálculo para Li

```
4) V= + rue B= False K= Polse
 P(LIVM3, TK) = 0,001
P(V). P(TB). P(TK) = 0,7.(1-0,08).(1-0,85)
= 6,0023
5) V= Palse, B= True, K= True
       P(L, (7V, B) = 97
        P(\neg v) \cdot P(0) \cdot P(x) = (1 - 0.7) \cdot 0.98 \cdot 0.85
= 0,2499
 6) v= rolse, B= True, K= rolse
         p(1:17v, B,7K)=0,005
       P(7V).P(8). P(7K) = 93.0,98.(1-0,85)=0,513
        P(4) = 6,005 · 6,0513 = 0,000 2565
7) V = Palse, B= Folse, K= True
             P(4/7V,7B,4)=9005
           P(4) = 0,005 - 0.00765 = 0,000 7825
  V = Folse
P(L_i, | TV_i, TB_i, TK_i) = 9,0
K = folse
P(L_i, | -9,0 = 0,0009 = 0)
```

Figura 5 - parte 2 do cálculo para Li

Para finalizar:

P(Li|Str=SnowCovered) = 0.577269 + 0.001029 + 0.000119 + 0.0000021 + 0.17493 + 0.0002565 + 0.00003825 + 0 P(Li|Str=SnowCovered)

- = 0.75364485 P(Li**|**Str=SnowCovered)
- = 0.75364485.

A probabilidade para P (Li | Str = SnowCovered) P(Li|Str=SnowCovered) é aproximadamente 0.7536 ou 75.36%.

Segunda questão:

O resultado ficou da seguinte forma:

Figura 6 - Resultado no problog

Figura 7 – Resultado

Para execução do código foi utilizado o site:

compilador problog online!