Physics-Informed Neural Network and its applications

Hung Tran-Nam^{1,2}

¹Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam ²Faculty of Fundamental Sciences, Van Lang University, Ho Chi Minh City, Vietnam

Ngày 6 tháng 4 năm 2025

Contents

Introduction to PINNs

- Mathematical Foundations
- 3 Numerial examples
- 4 Pros and Cons

Khái niệm

Physics-Informed Neural Network (PINN) là một phương pháp học sâu có giám sát, kết hợp **dữ liệu** và các **định luật** vật lý trong quá trình huấn luyện để xấp xỉ nghiệm của các phương trình vi phân.

- Sử dụng mạng nơ-ron lan truyền thẳng (feed-forward neural network)
- Tích hợp trực tiếp các toán tử vi phân vào hàm mất mát.

Các ký hiệu

Giả sử miền không gian $\Omega \subset \mathbb{R}^d$ với biên $\partial \Omega$,

Phương trình vi phân:
$$\mathscr{F}(u^*(t,x);\gamma) = f(t,x), \quad (t,x) \in [0,T] \times \Omega,$$

Điều kiện biên/ban đầu: $\mathscr{B}(u^*(t,x)) = g(t,x), \quad (t,x) \in [0,T] \times \partial \Omega,$

trong đó:

- $u^*(t,x)$ là nghiệm chính xác, phụ thuộc vào thời gian t và không gian x.
- γ là tập các tham số vật lý của hệ.
- \mathscr{F} là toán tử vi phân xác định động lực học của hệ và f(t,x) là hàm nguồn.
- \mathscr{B} là toán tử điều kiện biên/ban đầu, với g(t,x) là hàm biên/ban đầu tương ứng.

1.1. Mạng nơ-ron truyền thẳng (Feed-forward Neural Network)

Giả sử mạng có H lớp ẩn, mỗi lớp có n_h nơ-ron,

$$\hat{u}_{\theta}(t, \mathbf{x}) = \ell^{(H)} \circ \ell^{(H-1)} \circ \cdots \circ \ell^{(1)}(t, \mathbf{x}), \quad (1)$$

với mỗi lớp $\ell^{(h)}$ được định nghĩa bởi:

$$\ell^{(h)}(\mathbf{x}) = \sigma^{(h)}\left(\mathbf{W}^{(h)}\mathbf{x} + \mathbf{b}^{(h)}\right), \quad h = 1, \dots, H, (2)^{-1}$$

trong đó:

- $W^{(h)} \in \mathbb{R}^{n_h \times n_{h-1}}$ là ma trân trong số.
- $\boldsymbol{b}^{(h)} \in \mathbb{R}^{n_h}$ là vector bias.
- $\sigma^{(h)}$ là hàm kích hoạt của lớp h.

A fully connected feed-forward neural network

Input Layer $\in \mathbb{R}^2$

Hidden Layer $∈ \mathbb{R}^4$

Output Layer $\in \mathbb{R}^1$

1.2. Một số hàm kích hoạt phổ biến

2. Hàm mất mát

Cho \hat{u}_{θ} là nghiệm xấp xỉ của u^* bằng mạng nơ-ron.

$$\mathscr{L}(\theta) = \omega_{\mathsf{PDE}} \mathscr{L}_{\mathsf{PDE}}(\theta) + \omega_{\mathsf{BC}} \mathscr{L}_{\mathsf{BC}}(\theta) + \omega_{\mathsf{data}} \mathscr{L}_{\mathsf{data}}(\theta) \tag{3}$$

trong đó:

- Loss phương trình vi phân: $\mathscr{L}_{PDE} = \frac{1}{N_{PDE}} \sum_{i=1}^{N_{PDE}} \|\mathscr{F}(\hat{u}_{\theta}(t_i, \mathbf{x}_i)) f(t_i, \mathbf{x}_i)\|^2$
- Loss điều kiện biên/ban đầu: $\mathscr{L}_{BC} = \frac{1}{N_{BC}} \sum_{i=1}^{N_{BC}} \|\mathscr{B}(\hat{u}_{\theta}(t_i, \mathbf{x}_i)) g(t_i, \mathbf{x}_i)\|^2$
- Loss dữ liệu: $\mathcal{L}_{\mathsf{data}} = \frac{1}{N_{\mathsf{tot}}} \sum_{i=1}^{N_{\mathsf{data}}} \|\hat{u}_{\theta}(t_i, \mathbf{x}_i) u_i^*\|^2$

Mục tiêu tìm $\theta^* = \{ \boldsymbol{W}^{(h)}, b^{(h)} \}$ tối ưu bằng cách giảm hàm mất mát tổng:

$$oldsymbol{ heta}^* = rg\min_{oldsymbol{ heta}} \mathscr{L}(oldsymbol{ heta})$$

3. Tối ưu tham số θ trong PINN

1. Lan truyền sai số:

• Tính sai số lớp đầu ra:

$$\delta^{(2)} = (\hat{u}_{\theta}(t, \mathbf{x}) - u^*(t, \mathbf{x})) \cdot \sigma'\left(z^{(2)}\right)$$

Tính sai số lớp ẩn:

$$\boldsymbol{\delta^{(1)}} = (\textbf{\textit{W}}^{(2)})^{\intercal} \boldsymbol{\delta^{(2)}} \odot \boldsymbol{\sigma'} \left(\textbf{\textit{z}}^{(1)} \right)$$

2. Tính gradient và cập nhật:

$$\frac{\partial \mathscr{L}}{\partial \mathbf{W}^{(2)}} = \delta^{(2)}(\mathbf{a}^{(1)})^{\mathsf{T}}, \quad \frac{\partial \mathscr{L}}{\partial \mathbf{b}^{(2)}} = \delta^{(2)}$$

$$\frac{\partial \mathscr{L}}{\partial W^{(1)}} = \delta^{(1)}(\mathbf{z}^{(0)})^{\mathsf{T}}, \quad \frac{\partial \mathscr{L}}{\partial \mathbf{b}^{(1)}} = \delta^{(1)}$$

Cập nhật tham số:

$$\mathbf{W}^{(h)} \leftarrow \mathbf{W}^{(h)} - \alpha \frac{\partial \mathscr{L}}{\partial \mathbf{W}^{(h)}}, \quad \mathbf{b}^{(h)} \leftarrow \mathbf{b}^{(h)} - \alpha \frac{\partial \mathscr{L}}{\partial \mathbf{b}^{(h)}}, \\ h = 1, 2$$

Thuật toán huấn luyện PINN

Algorithm 1 Huấn luyện PINN bằng Mini-batch Gradient Descent

```
Require: Tập điểm biên \{(z_b^i, u_b^{*i})\}_{i=1}^{N_{\text{BC}}}, tập điểm PDE \{z_f^i\}_{i=1}^{N_{\text{PDE}}}, (tuỳ chọn) dữ liệu thực \{(z_d^i, u_d^{*i})\}_{i=1}^{N_{\text{data}}}
```

- 1: Khởi tạo mạng nơ-ron với tham số θ ngẫu nhiên
- 2: Thiết lập siêu tham số huấn luyện (số epoch, learning rate α , dropout)
- 3: **for** mỗi epoch **do**
- 4: Chia dữ liệu thành các mini-batch
- 5: **for** mỗi mini-batch **do**
- 6: Dự đoán tại điểm biên: $\hat{u}_{\theta}(t_b, x_b)$
- 7: Tính phần dư PDE: $\mathscr{F}(\hat{u}_{\theta}(t_f, \mathbf{x}_f)) f(t_f, \mathbf{x}_f)$
- 8: Tính hàm mất mát: $\mathscr{L} = \omega_{\text{PDE}} \mathscr{L}_{\text{PDE}} + \omega_{\text{BC}} \mathscr{L}_{\text{BC}} + \omega_{\text{data}} \mathscr{L}_{\text{data}}$
- 9: Tính gradient: $\nabla_{\theta} \mathscr{L}$ bằng backpropagation
- 10: Cập nhật tham số: $\theta \leftarrow \theta \alpha \nabla_{\theta} \mathcal{L}$
- 11: end for
- 12: end for

Đạo hàm tự động trong PINN

- PINN yêu cầu đạo hàm của $\hat{u}_{\theta}(t,x)$ theo t,x
- Dùng autograd.grad để tính các đạo hàm bậc cao

$$\frac{\partial \hat{u}_{\theta}}{\partial t} = \frac{\mathrm{d}\hat{u}_{\theta}}{\mathrm{d}z^{(H)}} \cdot \frac{\mathrm{d}z^{(H)}}{\mathrm{d}z^{(H-1)}} \cdot \cdots \cdot \frac{\mathrm{d}z^{(1)}}{\mathrm{d}t}$$

Ví dụ 1: PINN cho dao động tắt dần

Bài toán vật lý

• Mô tả hệ dao động tắt dần:

$$u''(t) + 2\gamma u'(t) + \omega^2 u(t) = 0$$

với
$$\gamma = 0.3$$
 và $\omega = 3.0$

• Điều kiện ban đầu:

$$u^*(0) = 1, \quad u^{*'}(0) = 0$$

Nghiệm chính xác:

$$u^*(t) = e^{-\gamma t} \cos(\omega t)$$

Dữ liệu thực nghiệm:

ID	t	$u_i^*(\pm 0.01)$	$u_i^*(\pm 0.05)$	$u_i^*(\pm 0.1)$
1	0.000	0.999	0.994	0.989
2	0.310	0.542	0.555	0.571
3	0.630	-0.260	-0.308	-0.368
4	1.250	-0.568	-0.582	-0.601
5	1.880	0.441	0.402	0.354
6	2.500	0.165	0.170	0.176
7	2.810	-0.238	-0.242	-0.248
8	3.130	-0.389	-0.381	-0.370
9	3.750	0.079	0.070	0.058
10	4.380	0.221	0.190	0.153

Hàm mất mát trong PINN cho dao động tắt dần

• Tổng hàm mất mát:

$$\mathscr{L} = \omega_{\mathsf{PDE}} \mathscr{L}_{\mathsf{PDE}} + \omega_{\mathsf{BC}} \mathscr{L}_{\mathsf{BC}} + \omega_{\mathsf{data}} \mathscr{L}_{\mathsf{data}}$$

• Thành phần phương trình vi phân:

$$\mathscr{L}_{\mathsf{PDE}} = \left\|\hat{u}_{ heta}''(t) + 2\gamma\hat{u}_{ heta}'(t) + \omega^2\hat{u}_{ heta}(t)
ight\|^2$$

• Điều kiện ban đầu:

$$\mathscr{L}_{\mathsf{BC}} = \|\hat{u}_{\theta}(0) - 1\|^2 + \|\hat{u}'_{\theta}(0) - 0\|^2$$

So sánh với dữ liệu thu thập được:

$$\mathcal{L}_{\mathsf{data}} = \|\hat{u}_{\theta}(t_i) - u_i^*\|^2, i = 1, \dots, 10$$

Flowchart

- So sánh khả năng học của PINN qua các hàm kích hoạt khác nhau;
- So sánh PINN khi data có nhiễu 1%, 5% và 10%;
- So sánh PINN và FCN khi có data có nhiễu 1%, 5% và 10%;
- So sánh PINN và các phương pháp Euler, Improved Euler, RK2 và RK4.

Kết quả: Các phương pháp Deep Learning


```
{ "activation_name": "sine", "num_hidden_layers": 6, "dropout_rate": 0.0, "num_neurons": 64, "num_epochs": 10000, "learning_rate": 0.001, "weight_decay": 0.0001, "omega_eq": 1.0, "omega_bc": 1.0, "omega_dt": 1.0}
```

Kích hoạt	Noise 1%	Noise 5%	Noise 10%
PINN sine PINN swish PINN tanh PINN sigmoid	0.000680 0.001093 0.017900 0.058383	0.000674 0.001315 0.017136 0.058381	0.000732 0.001078 0.017242 0.058378
- I II VI V SIGIII OIG	0.00000	0.00001	0.030370

Tổng hợp kết quả

Phương pháp	Kích hoạt	Noise 1%	Noise 5%	Noise 10%
PINN	sine	0.000680	0.000674	0.000732
	swish	0.001093	0.001315	0.001078
	tanh	0.017900	0.017136	0.017242
	sigmoid	0.058383	0.058381	0.058378
FCN	sine	0.493524	0.426112	0.513035
	swish	2.754098	8.398537	9.707447
	tanh	0.115148	0.034842	0.598950
	sigmoid	0.067203	0.065018	0.062720
Euler			9.708041	
Improved Euler			0.000266	
Runge Kutta 2			0.000266	
Runge Kutta 4			0.000907	

PINN vs FCN

Noise 5%

Ví dụ 2: PINN cho dòng qua vật cản (hình trụ tròn)

- Miền dòng: hình chữ nhật kích thước 1.0 m × 0.4 m.
- Vật cản là hình trụ tròn, đường kính $\Phi = 0.1 \, \text{m}$, tâm tại $(0.2 \, \text{m}, 0.2 \, \text{m})$.
- Biên trên và dưới: $u^*(z) = 0$ với z = (x, y).
- Lối vào: vận tốc parabol tổng hợp

$$u_x^*(0,y) = \frac{4y(H-y)}{H^2}, \quad u_y^*(0,y) = 0,$$

- Lối ra: áp suất tổng hợp $p^*(x = 1.0, y) = 0$.
- Không sử dụng dữ liệu thực nghiệm — điều kiện biên đều được tổng hợp từ vật lý.

Về phương trình Navier–Stokes

- Phương trình Navier-Stokes mô tả chuyển động của dòng chất lỏng (khí hoặc lỏng), kết hợp định luật bảo toàn khối lượng và động lượng:
 - (1) Bảo toàn khối lượng (dòng không nén):

$$abla \cdot oldsymbol{u}^* = 0$$

(2) Bảo toàn động lượng:

$$\rho\left(\frac{\partial \mathbf{u}^*}{\partial t} + \mathbf{u}^* \cdot \nabla \mathbf{u}^*\right) = -\nabla \rho^* + \mu \nabla^2 \mathbf{u}^*$$

- Với trường vận tốc $u^* = (u_X^*, u_V^*)$, áp suất p^* , khối lượng riêng ρ , và độ nhớt động lực học μ .
- Trường hợp trong bài toán này giả sử dòng không nén và ổn định $(\partial_t u^* = 0)$.

PINN cho bài toán phương trình Navier-Stokes

- Với miền không gian $\Omega \subset \mathbb{R}^2$, mục tiêu là xấp xỉ các trường $u^*(z) = (u_x^*, u_y^*), \quad p^*(z), \quad z = (x, y)$ thoả mãn hệ phương trình Navier–Stokes trong miền chất lỏng không nén.
- Mạng nơ-ron sinh ra các đầu ra $\hat{u}_{\theta}(z) = (\hat{u}_x, \hat{u}_y), \quad \hat{p}_{\theta}(z), \quad \hat{\sigma}_{xx}(z), \ \hat{\sigma}_{xy}(z), \ \hat{\sigma}_{yy}(z)$
- PINN sử dụng các phần dư vật lý:

$$\begin{split} &\mathcal{R}_{1} = \rho(\hat{u}_{x}\partial_{x}\hat{u}_{x} + \hat{u}_{y}\partial_{y}\hat{u}_{x}) - \partial_{x}\hat{\sigma}_{xx} - \partial_{y}\hat{\sigma}_{xy} \\ &\mathcal{R}_{2} = \rho(\hat{u}_{x}\partial_{x}\hat{u}_{y} + \hat{u}_{y}\partial_{y}\hat{u}_{y}) - \partial_{x}\hat{\sigma}_{xy} - \partial_{y}\hat{\sigma}_{yy} \\ &\mathcal{R}_{3} = -\hat{\rho}_{\theta} + 2\mu\partial_{x}\hat{u}_{x} - \hat{\sigma}_{xx} \\ &\mathcal{R}_{4} = -\hat{\rho}_{\theta} + 2\mu\partial_{y}\hat{u}_{y} - \hat{\sigma}_{yy} \\ &\mathcal{R}_{5} = \mu(\partial_{y}\hat{u}_{x} + \partial_{x}\hat{u}_{y}) - \hat{\sigma}_{xy} \\ &\mathcal{R}_{6} = \partial_{x}\hat{u}_{x} + \partial_{y}\hat{u}_{y} \end{split}$$

Hàm mất mát tổng:

$$\mathscr{L}(\theta) = \mathscr{L}_{\mathsf{PDE}} + \mathscr{L}_{\mathsf{BC}} + \mathscr{L}_{\mathsf{outlet}}$$
 phần dư $\mathscr{R}_1 o \mathscr{R}_6$ vận tốc tại biên áp suất tại lối rư

Kết quả

PINN và FCN

FCN:

- · Cần lượng lớn dữ liệu gán nhãn,
- Không đảm bảo tuân thủ các định luật vật lý,
- Dự đoán không ổn định ngoài phân bố training,
- Hiệu suất giảm khi dữ liệu nhiễu hoặc thiếu.

PINN:

- Tận dụng kiến thức vật lý để bù đắp cho thiếu hụt dữ liệu
- Có thể huấn luyện với ít dữ liệu hoặc không có dữ liệu.
- Tích hợp kiến thức PDE chính xác.

THANK YOU

FOR PARTICIPATING

Hung Tran-Nam

VAN LANG WHERE UNIVERSITY IMPACT MATTERS