BIO634: making sense of gene lists

Adapted from **Stefan Wyder** class on BIO634

Gene list annotation

you performed a genomic experiment and obtained a gene list hundreds of genes is too much, you would like to pinpoint interesting gene candidates

Gene list annotation

Biological insight

interpretation of an experiment find regulated processes / pathways find involved regulatory elements, TF, RNA-binding proteins identify new members of a pathway find similar experiments

Analysis based on gene lists expected to be more robust and reproducible compared to single gene analysis.

Enrichment analysis

1 Over-representation analysis

hypergeometric / Fisher's exact test setting a cutoff a priori different results at different thresholds

2 GSEA, gene set enrichment analysis

bypasses the need for a cutoff

input: list of all measured genes ranked by some measure / effect size weak but consistent regulation of several members of a gene set can be detected

Molecular Profile Data

Gene Set Database

GSEA

Enriched Sets

3 Network analysis

also covers less understood parts of gene interactions often inferred from co-expression data

string-db.org, combines co-expression, co-citation, protein-protein interaction

1 Over-representation analysis

5.000 black and 10 red "genes"10 red "genes" are cytochromes

our list of differentially expressed genes

CYP4F11

CYP1A

MEP1A

CYP26B

CYP3A43

what is the probability?

selected not-selected

red 4

6

black 1

4989

one sided Fisher's exact test p-value: 4.03e-11

Gene Ontology

describes how gene products behave in a cellular context: biological process, cellular component, molecular function

controlled vocabulary of terms

transparent (sources)

manually curated lists for model species

transfer to orthologs in other species (inferred annotation)

Gene Ontology

GO table view

Gene Ontology example

murine ADAM10

Molecular Function

GO:0008237 metallopeptidase activity

GO:0042169 SH2 domain binding

. .

Biological Process

GO:0007220 Notch receptor processing

GO:0001701 in utero embryonic development

GO:0008284 positive regulation of cell proliferation

. .

Cellular Compartment

GO:0005794 Golgi apparatus

GO:0009986 cell surface

2 Gene Set Enrichment Analysis

Pathways

pathway maps (aka reaction networks / wiring diagrams) represent experimental knowledge on metabolism and various other functions of the cell and the organism

manually curated

the main databases are **KEGG** and **Reactome**

KEGG is free to use over the web but file download requires subscription

KEGG covers > 3.800 species (Archae, Bacteria, Plants, Animals) and Reactome covers 20 species (mostly mammals + fly + plants + E.coli)

KEGG: example

3 Network analysis: string-db.org

string-db.org

functional association networks (physical or functional interactions) focus on useability and speed

integrated scoring scheme (each interaction has confidence score)

information transfer between species (>5000 species: Animals, Bacteria, Plants)

Network

currently showing

Summary view: shows current interactions. Nodes can be moved; popups provide information on nodes & edges.

Neighborhood

Groups of genes that are frequently observed in each other's genomic neighborhood.

Experiments

Co-purification, co-crystallization, Yeast2Hybrid, Genetic Interactions, etc ... as imported from primary sources.

Fusion

Genes that are sometimes fused into single open reading frames.

Databases

Known metabolic pathways, protein complexes, signal transduction pathways, etc ... from curated databases.

Cooccurrence

Gene families whose occurrence patterns across genomes show similarities.

Textmining

Automated, unsupervised textmining - searching for proteins that are frequently mentioned together.

Coexpression

Proteins whose genes are observed to be correlated in expression, across a large number of experiments.

string-db.org

More than gene-list annotation

predict gene function

identify candidates for an unknown enzyme in a pathway

identify new member genes of a biological process

find relevant literature

STRING performs well compared with single-species databases

R package to access STRING functionality from R

Annotation sources

FDR: false discovery rate

"if you repeat a test enough times, you're going to find an effect...but that effect may not actually exist"

The FDR approach adjusts the p-value for a series of tests. A p-value gives you the probability of a false positive on a single test; If you're running a large number of tests from small samples (which are common in fields like genomics and protoemics), you should use q-values instead.

- A p-value of 5% means that 5% of all tests will result in false positives.
- A q-value of 5% means that 5% of *significant* results will be false positives.

The procedure to control the FDR, using q-values, is called the Benjamini-Hochberg procedure, named after Benjamini and Hochberg (1995), who first described it.

Summary

Gene list annotation with Pathways and Gene Ontology can help to obtain biological insight

A Over-Representation Analysis

B Gene Set Enrichment Analysis, GSEA

C Network Analysis

Biological interpretation requires broad knowledge of physiology & biochemistry and is often the most difficult and time-consuming step of an experiment

Even experts can usually not make sense of all the significantly enriched processes/ pathways in well understood biological systems

Good experiments start with good experimental design, think of possible confounders