Combinatorics 2018 Fall

Taught by: Professor Xiande Zhang

2018.12.24

Key words: Linearity of Expectation, Deletion Method

Thm1: G = (V, E), |V| = n, |E| = m, then G contains a bipartite subgraph with at least $\frac{m}{2}$ edges.

proof:

Consider a random partition $L \cup R = V$. $\forall v \in V$, put it into L or R with equal probability, independently. Let X be the number of crossing edges from L to R. Let X_{uv} be the indicator random variable of the event that the edge uv is crossing, then $X = \sum_{v \in V} X_{uv}$

$$E[X_{uv}] = Pr[uv \text{ is crossing}] = Pr[u \in L, v \in R \text{ or } u \in R, v \in L] = \frac{1}{2}$$

 $E[X] = \sum_{u \sim v} E[X_{uv}] = \frac{m}{2}$

 $\implies \exists$ a bipartite subgraph with $\geq \frac{m}{2}$ edges.

Recall: $\alpha(G)$: independent number

$$\bullet \ \chi(G)\alpha(G) \geq |G|$$

•
$$\alpha(G) \le n \frac{-\lambda_n}{\lambda_1 - \lambda_n}$$

 $\alpha(q) \leq \frac{-n dn}{dq - dn}$

Thm2: For any graph G, $\alpha(G) \ge \sum_{v \in V} \frac{1}{1 + deg(v)}$.

proof:

Let V(G) = [n]. For $i \in [n]$, let $N_i = \{j \in [n] : j \sim i\}$, let S_n be the symmetric group over [n].

For given $\pi \in S_n$ we say a vertex $i \in [n]$ is π -dominating, if $\pi(i) < \pi(j)$ for all $j \in N_i$. Let $M_{\pi} = \{\text{all } \pi\text{-dominating vertices.}\}$

<u>Claim:</u> $\forall \pi \in S_n$, M_{π} is a independent set. <u>proof of claim:</u> Suppose not, then $\exists i, j \in M_{\pi}$ with $i \sim j$. $i \in N(j) \Rightarrow \pi(j) < \pi(i)$ and $j \in N(i) \Rightarrow \pi(i) < \pi(j)$, contradiction!

Pick $\pi \in S_n$ uniformly at random, compute $E[|M_{\pi}|]$. For any fixed $i \in [n]$, let $I_{\{i \text{ is } \pi-\text{dominating}\}}$ be a indicator random variable, then $|M_{\pi}| = \sum_{i \in [n]} I_{\{i \text{ is } \pi-\text{dominating}\}}$

$$E[|M_{\pi}|] = \sum_{i \in [n]} E[I_{\{i \text{ is } \pi-\text{dominating}\}}]$$

$$= \sum_{i \in [n]} Pr[i \text{ is } \pi-\text{dominating}]$$

$$= \sum_{i \in [n]} \frac{\binom{n}{\deg(i)+1} \cdot \deg(i)! \cdot (n-\deg(i)-1)!}{n!}$$

$$= \sum_{i \in [n]} \frac{1}{\deg(i)+1}.$$

 $\implies \exists$ independent set of size $\geq \sum_{i \in [n]} \frac{1}{\deg(i)+1}$

Cor1: $\forall G$ with m edges and n vertices, then $\alpha(G) \ge \frac{n^2}{2m+n}$ $m = \frac{nd}{2}$ where d is average degree, then $\alpha(G) \ge \frac{n}{1+d}$.

$$\begin{array}{l} \underline{\textit{proof}} : \\ \overline{2m} = \sum\limits_{v \in V} deg(v), \text{ then } \sum\limits_{v \in V} (deg(v) + 1) = 2m + n. \\ \text{By Cauchy-Schwarz Inequality, } \alpha(G) \geq \sum\limits_{v \in V} \frac{1}{1 + deg(v)} \geq \frac{n^2}{\sum\limits_{v \in V} (1 + deg(v))} = \frac{n^2}{2m + n} \end{array}$$

The deletion method

• Ideas: A random structure doesn't always have the directed property, and may have some very few "blemishes". After deleting all

blemishes, we will obtain the wanted structure.

Thm1: Let G be a graph on n vertices and with average degree d, then $\alpha(G) \geq \frac{n}{2d}$

proof:

Let $S \subset V(G)$ be a random set, for $\forall v \in V, Pr(v \in S) = p$ and value of p will be determined later. Let X = |S| and Y = #edges in S.

Then
$$E[X] = np, E[Y] = |E(G)| \cdot p^2 = \frac{nd}{2}p^2$$
. Then $E[X - Y] = np - \frac{nd}{2}p^2 = n(p - \frac{d}{2}p^2)$.

By choosing $p = \frac{1}{d}$, we have $E[X - Y] = \frac{n}{2d}$ which is maximum.

So there is a particular set S such that $|S| - Y \ge E[X - Y] = \frac{n}{2d}$. Now deleting one vertex form each edge of S, leaving a set S'. This set S' is independent and has at least $\frac{n}{2d}$ vertices.

Recall: $R(k,k) > \frac{1}{e\sqrt{2}}k2^{k/2}$.

Thm2: $\forall n, \ R(k,k) > n - \binom{n}{k} 2^{1-\binom{k}{2}}$

proof :

Consider a random 2-edge-coloring of K_n , where each edge is colored by red or blue with probability $\frac{1}{2}$, independently. For $A \in \binom{[n]}{k}$, Let X_A be the indicator random variable of the event that A is monochromatic. Let X be the number of monochromatic k cliques.

$$E[X] = \sum_{A \in \binom{[n]}{k}} E[X_A] = \binom{n}{k} 2^{1 - \binom{k}{2}}.$$

Then there exists a 2-edge-coloring of K_n , s.t. there are $\leq E[X] = \binom{n}{k} 2^{1-\binom{k}{2}}$ monochromatic k cliques. Fix such a coloring, remove one vertex from each monochromatic k-subset. This will delete $\leq \binom{n}{k} 2^{1-\binom{k}{2}}$ vertices, which has No monochromatic K_k . So R(k,k) > 1

$$n - \binom{n}{k} 2^{1 - \binom{k}{2}}.$$

Cor: $R(k,k) > \frac{1}{e}(1+O(1))k2^{k/2}$.

<u>**Def:**</u> A clique covering of a graph G is a set H_1, \dots, H_t of its clique subgraphs such that each edge of G belongs to at least one of those cliques. Denote $cc(G) = \min \sharp$ cliques in clique covering of G.

<u>Thm3</u> Let G be a graph on n vertices such that every vertex has at least one neighbor and at most d non-neighbors. Then $cc(G) = O(d^2 \ln n)$.

proof:

To be continued.