Depicting Networks and Trees

The yEd Graph Editor www.yworks.com

Archambault, D. "Visual Analytics: an Introduction", Swansea University, 2020

Kerren, A. "Information Visualisation: Perception", Linnaeus University, 2020

Networks/Graphs

Network: relationships between objects

Graph: edges between nodes

Examples:

- train routes between cities
- friendships between people
- management of employees
- links between webpages
- predator-prey relationships

Graph Data: directed

	Α	В	С	D	E	F	G
Α	0	1	0	0	0	0	0
В	0	0	1	0	1	0	1
С	0	0	0	1	0	0	1
D	0	0	0	0	1	0	0
E	0	0	0	0	0	1	0
F	0	0	0	0	0	0	0
G	0	0	0	0	0	0	0

Α	В		
В	С	Ε	G
С	D	G	
D	Ε		
E	F		

graph adjacency matrix

graph adjacency list graph drawing

Graph Data: bi-directed

	Α	В	С	D	Ε	F	G
Α	0	1	0	0	0	0	0
В	1	0	1	0	1	0	1
С	0	1	0	1	0	0	1
D	0	0	1	0	1	0	0
Ε	0	1	0	1	0	1	0
F	0	0	0	0	1	0	0
G	0	1	1	0	0	0	0

Α	В			
В	Α	С	Ε	G
С	Α	D	G	
D	С	Ε		
Ε	В	D	F	
F	Ε			
G	В	С		

graph adjacency matrix graph adjacency list graph drawing

Graph Data: undirected

	Α	В	С	D	E	F	G
Α	0	1	0	0	0	0	0
В	1	0	1	0	1	0	1
С	0	1	0	1	0	0	1
D	0	0	1	0	1	0	0
E	0	1	0	1	0	1	0
F	0	0	0	0	1	0	0
G	0	1	1	0	0	0	0

Α	В		
В	С	Ε	G
С	D	G	
D	Ε		
E	F		

graph adjacency matrix graph adjacency list graph drawing

- Graph have nodes (vertices) and edges
- Edges can be directed or undirected
- The degree of a node: number of connecting edges
- For directed graphs (or 'digraphs')
 - in-degree: number of incoming edges
 - out-degree: number of outgoing edges
- Directed graphs can have cycles
- Edges can have attributes (particularly numerical weights)
- Nodes can have attributes
- Trees are graphs with a hierarchical structure
- Graph drawing: placing the nodes on the plane
- Graph visualisation: providing interactive features for exploring the graph
- Graph visual encoding:
 - nodes: shape, colour, size
 - edges: straight/curved/polyline, colour, thickness, texture

Approaches to Graph Drawing

- Straight line
- Polyline
- Orthogonal
- Grid
- Upward
- Circular

Several graph layout methods, embodied in graph layout algorithms

Choose algorithm to best support understanding

Graph drawing aesthetics/ principles

Reduce

- node overlap
- node/edge overlap
- edge crossings
- total area
- edge lengths: maximum, variance, total
- edge bends: number

Increase

- depiction of symmetry
- minimum angle at nodes

Aesthetic conflicts

Conforming to aesthetic criteria can also be computationally expensive Thus: aesthetics can only be *heuristic guidelines*, not *mandatory requirements*

Types of graph

- Directed Acyclic: directed edges, no cycles
- Planar: can be drawn with no edge crossings
- General graphs: no assumptions
- Trees: strict hierarchy

Directed Acyclic graphs

K. Sugiyama, S. Tagawa and M. Toda, Methods for Visual Understanding of Hierarchical System Structures, in IEEE Transactions on Systems, Man, and Cybernetics, 11(2):109-125, Feb. 1981.

- If the graph has cycles, reverse the direction so that the cycles are removed
 - (remember which ones; you will need to re-reverse the direction at the end)
- 2. Assign nodes to vertical layers
 - create dummy nodes so that each edge only traverses one layer
 - directed edges go from one layer to the next
- 3. Order the nodes horizontally within each layer to minimise crossings
- 4. Move the nodes horizontally within each layer to straighten edges
- 5. Re-reverse the direction of the edges changed in step 1

Planar graphs

Tutte, W. T. (1963), How to Draw a Graph. Proceedings of the London Mathematical Society, s3-13: 743-767

Drawing a "3-connected" planar graph with no edge crossings

- 1. Nodes on the outer face placed at vertices of a convex polygon
- 2. Each internal node is placed at the barycentre average of its neighbours, solving a set of linear equations

Face: set of nodes connected in a loop

Outer face: connected nodes that are unbounded

Barycentre: point where three medians of a triangle meet

3-connected: you need to delete at least 3 nodes to disconnect the graph

Vismara, Ch 6, Handbook of Graph Drawing and Visualization, 2013 http://cs.brown.edu/people/rtamassi/gdhandbook/

General graphs

- No assumptions made
- Typically stochastic approach
 - randomly place nodes
 - improvement by iteration
 - may be non-deterministic
- Different principles
 - Circular
 - Radial
 - Orthogonal
 - Force-directed

General Graphs: force-directed layout

Peter Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149–160, 1984

Fruchterman, T. M. J.; Reingold, E. M.. Graph Drawing by Force-Directed Placement, Software – Practice & Experience, 21(11): 1129–1164, 1991.

Nodes: steel rings

Edges: springs

Connected nodes: attractive force

Unconnected nodes: repulsive forces

- 1. Start with random placement of nodes
- 2. Calculate the energy represented by the attractive and repulsive forces
- 3. Move nodes until there is minimum energy
- 4. F&R: "temperature adjustment" adjustments become smaller as layout improves

Trees

Any two nodes are connected by only one path

Every node has one unique parent

Connected: a path between all pairs of nodes

The number of edges is one less than the number of nodes

Directed or undirected

Other Tree approaches

- Bubble trees: S. Grivet, D. Auber, J.-P. Domenger, G. Melançon. Bubble Tree
 Drawing Algorithm. International Conference on Computer Vision and Graphics,
 2004.
- Scalable Tree Visualisation: T. Munzner, F. Guimbretiere, S. Tasiran, L. Zhang, and Y. Zhou. TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context with Guaranteed Visibility, ACM Transactions on Graphics 22(3):453-462, 2003.
- **Cone trees**: G. G. Robertson, J. D. Mackinlay, and S. K. Card, "Cone trees: Animated 3D visualizations of hierarchical information," ACM SIGCHI conference on Human Factors in Computing Systems, pp. 189–194, 1991.
- **Tree maps**: B. Johnson and B. Shneiderman. Tree-maps: a space-filling approach to the visualization of hierarchical information structures. IEEE Conference on Visualization '91, pp. 284-291, 1991.
 - Cushion Tree maps: J. J. Van Wijk and H. Van de Wetering, "Cushion treemaps: visualization of hierarchical information," *Proceedings 1999 IEEE Symposium on Information Visualization* (*InfoVis'99*), pp. 73-78, 1999.

Bubble trees

maximising angular resolution identifies symmetric sub-trees

TreeJuxtaposer

Interactive tree comparisons

Choose areas to stretch, and areas to compress

"We have presented a system that allows interaction with and detailed structural comparisons between trees of over 100,000 nodes each, and browsing single trees of half a million nodes"

Cone Trees

3D extension of typical tree visualisations

Tree levels are arranged on circular 'disks'

Animations bring nodes of interest to the front (by spinning the disks)

Up to 10 levels, 1000 nodes

Tree Maps

Space-filling representation
Hierarchical order shown by rectangle containment

Figure 4. Nested Tree-Map

Figure 5. Tree-Map

Cushion Tree Maps

WinDirStat

File hierarchies on a disk

Colours: different file types (.pdf, .docx etc.)

Graph Visualisation

Many interactive techniques for interaction with graphs are designed to address the problem of exploring very large graphs

- Overview+Detail: T. Dwyer, et al. "Exploration of Networks using overview+detail with Constraint-based cooperative layout," in IEEE TVCG, vol. 14, no. 6, pp. 1293-1300, 2008.
- Edge Clustering: W. Cui et al. "Geometry-Based Edge Clustering for Graph Visualization". In Proceedings of Information Visualization 2008.
 - Edge Bundling: D. Holten. "Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data." IEEE TVCG, 12(5):741-748, 2006.
- **Dense Networks:** A. Nocaj, M. Ortmann and U. Brandes: Untangling the Hairballs of Multi-Centered, Small-World Online Social Media Networks. Journal of Graph Algorithms and Applications 19(2):595-618, 2015.

Overview+Detail

Small window shows the overview and context Main display shows the detail

Edge Clustering

"capture the underlying edge patterns and generate informative and less cluttered

Groups edges into bundles; all edges in a bundle go through the same point Loss of detailed information, but indicative structure shown (and details recoverable)

Edge Bundling

Particular focus on hierarchies

"quickly gaining insight in the adjacency relations present in hierarchically organized systems...aesthetically pleasing."

Dense Networks

Identifying communities in social networks – finding the 'backbone' between strong communities

Only keep edges that are important:

- support short cycles (length 3)
- key in defining communities

Then use a layout algorithm on the reduced graph

- Graphs: abstract data structures
 - directed, undirected, connected, trees, planar
- Graph drawings: visual representations of graphs
 - node-link: algorithms, aesthetics
 - trees: node-link & space-filling
- Graph visualisations: interactive techniques for exploring graphs

Depicting Networks and Trees