Theoretical Computer Science

Turing Machines

Lecture 10 - Manuel Mazzara

Turing Machines

Informal description

- States and alphabet are as in the other automata
 - Input
 - Output
 - Control device
 - Memory alphabet
- Tapes are represented as infinite cell sequences with a special "blank" symbol (or barred 'b' or '_' or '-')
 - Tapes contain only a finite number of non-blank symbols

Moves

- Moves are based on
 - one symbol read from the input tape
 - K symbols, one for each memory tape
 - state of the control device
- Actions
 - Change state
 - Write a symbol replacing the one read on each memory tape
 - Move the K+1 heads

Moves of the heads

- Memory and input scanning heads can be "moved" in three ways
 - One position right (R)
 - One position left (L)
 - Stand still (S)
- The direction of each head must be specified explicitly

Graphically

- 'i' is the input symbol
- A_i is the symbol read from the jth memory tape
- A_j' is the symbol replacing A_j
- M₀ is the direction of the head of the input tape
- M_j (1 $\leq j \leq k$) is the direction of the head of the j^{th} memory tape

Example 1

Formally

- A TM with K tapes is a tuple of 7 elements $M=\langle Q,I,\Gamma,\delta,q_0,Z_0,F\rangle$
 - Q is a <u>finite set of states</u>
 - I is the <u>input alphabet</u>
 - $-\Gamma$ is the memory alphabet
 - $-\delta$ is the <u>transition function</u>
 - $-q_0 \in Q$ is the <u>initial state</u>
 - $-Z_0 \in \Gamma$ is the <u>initial memory symbol</u>
 - F⊆Q is the <u>set of final states</u>

Transition function

The transition function is defined as

$$\delta: (Q-F) \times I \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{R,L,S\}^{k+1}$$

- Remarks
 - The function can be partial
 - No transitions outgoing from the final states

Example 2

$$L = \{a^nb^{2n}a^n \mid n \ge 1\}$$

 We write 2n A's on a memory tape and we use them to check the b's and then the a's

Configuration, Informally

- A configuration of a TM is a snapshot of the machine
- A configuration should include:
 - state of the control device
 - string on the input tape and the position of the head
 - string and position of the head for each memory tape

Definition

A <u>configuration</u> *c* of a TM with K memory tapes is the following (K+2)-tuple:

c=x \uparrow iy,
$$\alpha_1 \uparrow A_1 \beta_1$$
, ..., $\alpha_K \uparrow A_K \beta_K$ >

where

- $-q\in Q$
- $-x,y\in I^*, i\in I$
- $-\alpha_r, \beta_r \in \Gamma^*, A_r \in \Gamma \ \forall r \ 1 \le r \le K$
- $-\uparrow\notin I\cup\Gamma$

Initial configuration

$$c_0 = \langle q_0, \uparrow iy, \uparrow Z_0, ..., \uparrow Z_0 \rangle$$

Formally:

- 3=x-
- $-\alpha_r, \beta_r = \varepsilon, A_r = Z_0 \forall r \ 1 \le r \le K$

Informally:

- The control device is in the initial state
- All the heads are at the beginning of the corresponding tape

Example

c=
$$, \uparrow aabbcc, $\uparrow Z_0 >$$$

c= $<q_1$, \uparrow aabbcc, $Z_0 \uparrow>$

c= $<q_1$, aa \uparrow bbcc, $Z_0AA\uparrow>$

Acceptance condition (1)

 A string x∈I* is accepted by a TM M with K memory tapes if and only if:

$$c_0 = \langle q_0, \uparrow x, \uparrow Z_0, ..., \uparrow Z_0 \rangle$$
 $|-^*-_M c_F = \langle q, x' \uparrow iy, \alpha_1 \uparrow A_1 \beta_1, ..., \alpha_K \uparrow A_K \beta_K \rangle$
with $q \in F$ (and $x = x'iy$)

c_F is called final configuration

• |-*-_M is the reflexive transitive closure of the |--_M relation

Acceptance condition (2)

 The initial tape content is said to be accepted by M if it eventually halts in a final state

• L(M)= $\{x \mid x \in I^* \text{ and } x \text{ is accepted by M} \}$

Example

 $c_0 = \langle q_0, \uparrow aabbcc, \uparrow Z_0 \rangle$ $c_F = \langle q_F, aabbcc\uparrow, Z_0 AA\uparrow \rangle$

TM vs PDA

- aⁿbⁿcⁿ or aⁿbⁿ∪aⁿb²ⁿ cannot be recognized by any PDA
- They can be recognized by a TM
 - We have seen a TM for aⁿbⁿcⁿ
- Every language recognizable by a PDA can be recognized by a TM
 - A TM can always be built to use (one of) its memory tape(s) as a stack
- The languages accepted by TMs are called <u>recursively enumerable</u>

Languages

• TMs have a higher expressive power than PDAs

Example 3: aⁿbⁿ∪aⁿb²ⁿ

aⁿb²ⁿ

 $a,Z_0|Z_0 < S,R >$ $a,_|A<R,R>$ q_1 q_0 3a. YOU REACHED THE BEGINNING OF b,_|_<S,L> THE TAPE AND THE **END OF INPUT:** $_{,}Z_{0}|Z_{0}<S,S>$ anbn q_3 q_2 b,A|A<R,L> $b, Z_0 | Z_0 < S, R > 4$ _,_|_<S,S> b,A|A < R,R > q_4 4. YOU REACHED THE **END OF BOTH MEMORY AND INPUT TAPE:**

1. STORE A'S IN THE MEMORY TAPE

2. COUNT THE FIRST n B's

3b. YOU REACHED THE
BEGINNING OF THE TAPE
BUT THERE IS MORE INPUT,
YOU CAN NAVIGATE THE
TAPE AGAIN RIGHTWARDS
TO COUNT n MORE B's:
VERIFY IF IT IS anb2n

Operations on TMs (1)

- TMs are closed under
 - Intersection
 - Union
 - Concatenation
 - Kleene star
- TMs are not closed under complement
 - They are not closed under difference either (why?)
 - $-A\setminus B=A\cap C(B)$

Operations on TM (2)

- Closure for union, intersection, ...: positive answer
- A TM can easily simulate two other TMs
 - In series or
 - In parallel
 - ... and this explains the closure

Complement

- Are loop-free TMs closed under complement?
 - Yes: it suffices to define the set of halting states and partition it into accepting and non-accepting states
- Problems arise from nonterminating computations (to be discussed later)

How do we use TMs?

- TMs can
 - Recognize languages (Acceptors)
 - Translate accepted languages (Transducers)
- ... but also compute functions
 - They are equivalent to VNMs
- A TM is an <u>abstract model of "computer"</u> with sequential memory access

Mechanical view

Input tape

TM generic model

Single tape TM

Single tape

- It can be unlimited in both directions
- it serves as input, memory and output tape

Bidimensional tape TM

- A head for each dimension
- It can be generalized to d dimensions

Relation among different models

- Both single and multi-tape TMs can be equipped with d-dimensional tapes
- All these TM models are equivalent
 - They can recognize the same class of languages

Theoretical Computer Science

Recap and spoilers

Lecture 10 - Manuel Mazzara

Our itinerary

- Automata Theory and Transducer Theory
- Deterministic automata (done)
 - FSA
 - PDA
 - TM
- Nondeterministic Automata (we will do now)
 - FSA
 - TM
 - PDA

Memory Model

- The choice of a memory model influences the expressiveness of a computational model
- FSA have a fixed memory: finite and fixed number of state
 - You cannot count "more" than the number of states allows
- Stack has an extensible memory, but destructive
 - Once a symbol is read, it is destroyed
 - You can count variable ns, but when you consume the symbol on stack, they are gone
- TMs have persistent memory tapes
 - They behave like the von Neumann architecture

PDAs have a <u>destructive</u> external memory

Languages

FSA can only count fixed numbers (finite states), no generic *n*

In programming languages we need to syntactically check <u>nested</u> structures

Nondeterminism: spoiler!

DFSA and NFSA have the same expressive power

DTM and NTM have the same expressive power

- What about NPDA?
 - Deterministic vs nondeterministic context-free languages

Deterministic vs nondeterministic CFL

The bigger picture

Recursively Enumerable Languages: spoiler

 The set of C program-input pairs that do not run into an infinite loop is recursive

The set of C programs that contain an infinite loop is recursively enumerable

We will see the details of this

Theory of Computation

Nondeterministic FSA

Lecture 10 - Manuel Mazzara

Nondeterministic models (1)

- Usually, one thinks of an algorithm as a determined sequence of operations
 - In a certain **state** with a certain **input** there is no doubt on the next step

Example: let us compare

Nondeterministic models (2)

- Let us consider the case construct of Pascal
- Imagine if we have something like the following:

```
case x=y then S1 z>y+3 then S2 ... then endcase
```

Nondeterministic models (3)

Nondeterminism (ND) is a model of computation of parallel computing

- Abstraction to describe algorithms
- It can be applied to various computational models
- ND models must not be confused with stochastic models

Adding nondeterminsm

$$\delta(q_1,a) = \{q_2, q_3\}$$

Nondeterministic FSA

A nondeterministic FSA (NDFSA) is a tuple

$$<$$
Q, I, δ , q₀, F>, where

- -Q, I, q_0 , F are defined as in (D)FSAs
- $-\delta: Q \times I \to \mathcal{P}(Q)$

A set of states

• What happens to δ^* ?

Move sequence

• δ^* is **inductively** defined from δ

$$\delta^*(q, \varepsilon) = \{q\}$$

$$\delta^*(q, y.i) = \bigcup_{q' \in \delta^*(q, y)} \delta(q', i)$$

• Example:

$$\delta(q_1, a) = \{q_2, q_3\},\$$

$$\delta(q_2, b) = \{q_4, q_5\},\$$

$$\delta(q_3, b) = \{q_5, q_6\}\$$

$$\rightarrow \delta^*(q_1, ab) = \{q_4, q_5, q_6\}\$$

DFSA vs NDFSA

- Starting from q_1 and reading ab the automaton reaches a state that belongs to the set $\{q_4, q_5, q_6\}$
- We call "state" the set of possible states in which the NDFSA can be during the run

Acceptance condition

$$x \in L \Leftrightarrow \delta^*(q_0,x) \cap F \neq \emptyset$$

Among the various possible runs (with the same input) of the NDFSA, it is sufficient that **one of them succeeds** to accept the input string

→ Existential nondeterminism

- There exists also a **universal interpretation**: $\delta^*(q_0,x)\subseteq F$

NDFSA into DFSA

- NDFSA have the same power then DFSA
- Given a NDFSA, an equivalent DFSA can be <u>automatically</u> computed as follows:

If
$$A_{ND} = \langle Q, I, \delta, q_0, F \rangle$$
 then $A_D = \langle Q_D, I, \delta_D, q_{0D}, F_D \rangle$ with $-Q_D = \mathcal{P}(Q)$
 $\delta_{A}(q_1, i) = \frac{1}{2} \frac{1}{2} \delta_{A}(q_2, i)$

$$-\delta_{D}(q_{D},i) = \bigcup_{q \in q_{D}} \delta(q,i)$$

$$- q_{0D} = \{q_0\}$$

$$- F_D = \{q_D | q_D \in Q_D \land q_D \cap F \neq \emptyset\}$$

Example (in lab)

• The concept is simple, just take some time to fully go trough an example

You will see an example in detail during the lab sessions

Why ND?

- NDFSAs are not more powerful than FSAs, but they are not useless
 - It can be easier to design a NDFSA
 - They can be exponentially smaller w.r.t. the number of states
 - See the example in the lab

• Example: a NDFSA with 5 states becomes in the worst case an FSA with 2⁵ states