

LAMBDA CALCULUS: PART II

Chandreyee Chowdhury

COMPUTING WITH NATURAL NUMBERS

$$\begin{array}{ccc} 1 & \equiv & \lambda sz.s(z) \\ 2 & \equiv & \lambda sz.s(s(z)) \\ 3 & \equiv & \lambda sz.s(s(s(z))) \end{array}$$

```
The successor function
                      successor n =_{def} \lambda n. \lambda f. \lambda x. f(nfx)
Successor of 0 (S0) is _{def} (\lambda nfx.f(nfx)) (\lambda sz.z)
                             \lambda yx.y((\lambda sz.z)yx) = \lambda yx.y((\lambda z.z)x) = \lambda yx.y(x) \equiv 1
Successor of 1 (S1) is _{def} (\lambda wyx.y(wyx)) (\lambda sz.s(z))
Addition
 _{\text{def}} \lambda \text{m.} \lambda \text{n.} \lambda \text{f.} \lambda \text{x.} \text{ m(f)(n(f)(x))}
2S3 is _{def} (\lambda sz.s(s(z)))(\lambda wyx.y(wyx))(\lambda uv.u(u(u(v))))
                                                  _{\text{def}} \lambda \text{m.} \lambda \text{n.} \lambda \text{f.} \lambda \text{x.m}(\text{n(f)})(\text{x})
Multiplication
```

SOLVING A LAMBDA EXPRESSION

The main goal of manipulating a lambda expression is to reduce it to a "simplest form" and consider that as the value of the lambda expression.

Definition: A lambda expression is in **normal for m** if it contains no β -redexes (and no δ -rules in an applied lambda calculus), so that it cannot be further reduced using the β -rule or the δ -rule. An expression in normal form has no more function applications to evaluate.

Expressions $e := \lambda x. x \mid e \mid e_1 e_2$

The only reduction possible for an expression in normal form is an a-reduction.

LAMBDA CALCULUS TO PROGRAMMING

Data Types

- Booleans, numbers
- Collections

Conditional expressions

Arithmetic expressions

Recursions

a *combinator* is a λ -term with no free variables

ENCODING BOOLEANS IN LAMBDA CALCULUS

What can we do with a boolean?

- we can make a binary choice
- ConditionFunction (condition, then_do, else_do) {
- If (condition)
- retun then_do
- Else
- return else_do
- }
- def λcond.λthen_do. λelse_do.??

ENCODING BOOLEANS IN LAMBDA CALCULUS

What can we do with a boolean?

```
we can make a binary choiceConditionFunction (condition, then_do, else_do) {
```

- If (true)
- return then_do
- Else
- return else_do
- }
- True= def λthen_do. λelse_do.then_do
- False= $_{def}$ $\lambda then_{do.}$ $\lambda else_{do.}$ else_do

def λcond.λthen_do. λelse_do.?? then_do else_do

BOOLEAN DATA TYPE

A boolean is a function that given two choices selects one of them

```
• true =_{def} \lambda then_{do}. \lambda else_{do}. then_do
```

• false $=_{def} \lambda then_{do}$. $\lambda else_{do}$. $else_{do}$

• if_then_else= def λcond.λthen_do. λelse_do. Cond (then_do) (else_do)

Example: semester_time

SleepHours=if_then_else(semester_time) (six) (ten)

HANDLING BOOLEANS

- = λ then_do. λ else_do. (true) (else_do) (then_do)
- = λ then_do. λ else_do. (λ td. λ ed. td) (else_do) (then_do)
- = λ then_do. λ else_do. else_do

Boolean	Outcome of the expression
true	false
false	true

```
Red_Green=tru
NOT(Red_Green)
NOT(NOT(Red_Green))
NOT(NOT(NOT(Red_Green)))
(five)(NOT)(Red_Green)
(four)(NOT)(Red_Green)
ls_even=
\lambda n. n(NOT)(true)
```


MORE PREDICATES

```
(zero) (\lambda x. (decorated))(plain_tree)
=(\lambda f.\lambda s.(s)) (\lambda x. (decorated))(plain_tree)
=(plain_tree)
```

 $\lambda n.n(\lambda x. decorated)(plain_tree)$

 λ n.n (λ x. false)(true)

Is_Zero= $(\lambda n.n (\lambda x. false)true)$

PREDICATES

```
is_zero=\lambdan.n(\lambdax. false)(true)
is_zero(zero)=zero(\lambdax. false)(true)
=(\lambda f.\lambda S.(S)) (\lambdax. false)(true)
=true
```

For all other cases the result is false

BOOLEAN DATA TYPE

A boolean is a function that given two choices selects one of them

```
• true =_{def} \lambda then_{do}. \lambda else_{do}. then_do
```

• false
$$=_{def} \lambda then_{do}$$
. $\lambda else_{do}$ else_do

• if_then_else=
$$_{def} \lambda cond.\lambda then_{do}. \lambda else_{do}. Cond (then_do) (else_{do})$$

Example: Any_Assignment_Deadlines

SleepHours=if_then_else(Any_Assignment_Deadlines) (six) (ten)

NOT = $\binom{def}{def} \lambda boolean. \lambda then_do. \lambda else_do. \underline{boolean} (else_do) (then_do)$)

Is_even= λ n. n(NOT)(true)

Is_Zero= (λ n.n (λ x. false)true)

AND == λ a. λ b.a b FALSE

OR == λ a. λ b.a TRUE b

Boolean	Outcome of the expression
true	false
false	true