COM 105

1 Codage correcteur d'erreur

Def (Le modèle de transmission).

$$\stackrel{D_1,\dots,D_k}{\longrightarrow} \text{ \'Emetteur } f \stackrel{X_1,\dots,X_n}{\longrightarrow} \text{ Canal } \stackrel{Y_1,\dots,Y_n}{\longrightarrow} \text{ R\'ecepteur } g \stackrel{\hat{D}_1,\dots,\hat{D}_k}{\longrightarrow}$$

Voc. • Bits d'information : $\mathbf{D} = (D_1, \dots, D_k)$, représentent les données à transmettre, supposés iid $\mathcal{B}\left(\frac{1}{2}\right)$.

• Transmission en bloc : les k bits d'information sont envoyés sur un bloc de n utilisations du canal.

• Émetteur : associe $\mathbf{X} = (X_1, \dots, X_k n)$ à $\mathbf{D} = (D_1, \dots, D_k)$, supposé déterministe et avec f injective.

• Récepteur : associe $\hat{\mathbf{D}} = \left(\hat{D}_1, \dots, \hat{D}_k\right)$ à $\mathbf{Y} = (Y_1, \dots, Y_k n)$, supposé déterministe.

• Erreur : cas où $(\hat{D}_1, \ldots, \hat{D}_k) \neq (D_1, \ldots, D_k)$.

Les canaux

Def (Canaux discrets sans mémoire (**DMC**)). Un DMC est complètement caractérisé par le triplet $(\mathcal{X}, \mathcal{Y}, \mathbf{P}_{X|Y}(\cdot \mid \cdot))$ où

 $-\mathcal{X}$ est un alphabet fini contenant toutes les valeurs possibles à l'entrée du DMC,

-y est un alphabet fini contenant toutes les valeurs possibles à la sortie du DMC,

— $\mathbf{P}_{X|Y}(\cdot \mid \cdot)$ est une loi de probabilité conditionnelle, dite loi de transition, décrivant comment une sortie Y_t est obtenue à partir d'une entrée x_t .

Def (Canal binaire symétrique (**BSC**)). On a $\mathcal{X} = \mathcal{Y} = \{0,1\}$ et $\forall t \in [1;n]$, $\mathbf{P}(Y_t = x_t) = p \in [0;1]$ et $\mathbf{P}(Y_t \neq x_t) = 1 - p$. On peut toujours supposer $p < \frac{1}{2}$.

Def (Canal binaire à effacement (**BEC**)). On a $\mathcal{X} = \{0,1\}$ et $\mathcal{Y} = \{0,1,\Delta\}$ où Δ représente un effacement. Pour tout $t \in [1;n]$, $\mathbf{P}(Y_t = x_t) = \epsilon \in [0;1]$ et $\mathbf{P}(Y_t = \Delta) = 1 - \epsilon$.

Codage par des codes en bloc

Def. Un code en bloc \mathcal{C} de longueur n sur un alphabet \mathcal{X} est un sous-ensemble de \mathcal{X}^n , c'est l'ensemble d'arrivée de f. Les éléments de \mathcal{C} sont appelés les mots de code de \mathcal{C} .

$$\text{Principe}: [\begin{array}{c} m \\ k \text{ bits} \end{array}] \longrightarrow [\begin{array}{c} c \in \mathcal{C} \end{array}] \text{ avec } n > k.$$

Def. Le **rendement** (binaire) d'un code en bloc \mathcal{C} de longueur n, aussi appelé taux de codage, est $R = \frac{\log_2(|\mathcal{C}|)}{n}$ où $|\mathcal{C}|$ est le nombre de mots du code $|\mathcal{C}|$.

1

Distances

Def. Poids de Hamming pour $\mathbf{x} = (x_1, \dots, x_n) : w_H(\mathbf{x}) = \operatorname{Card}(\{x_i \neq 0\}).$

Def. La distance de Hamming entre deux mots \mathbf{x} et $\hat{\mathbf{x}}$ est donnée par $d_H(\mathbf{x}, \hat{\mathbf{x}}) = w_H(\mathbf{x} - \hat{\mathbf{x}})$.

Prop. La distance de Hamming est bien une distance (symétrie, positivité et inégalité triangulaire).

Def. La distance minimale du code en bloc \mathcal{C} est $d_{\min}(\mathcal{C}) = \min_{\mathbf{c} \neq \hat{\mathbf{c}}} d_H(\mathbf{c}, \hat{\mathbf{c}})$.

Décodage

On décompose la fonction de décodage en deux étapes : $g = g_2 \circ g_1$, g_1 trouve pour toute observation Y le mot de code $\hat{\mathbf{c}} \in \mathcal{C}$ qui paraît le plus probable et $g_2 = f^{-1}$ produit la suite des bits détectés $\hat{D}_1, \ldots, \hat{D}_k$ qui est associée à \hat{c} .

Def. Soit g_1 fixée. La région de décision associée à $c \in \mathcal{C}$ est $\Omega_{\mathbf{c}} := g_1^{-1}(c)$. Ces régions forment une partition de \mathcal{Y}^n .

On a $P_e := \mathbf{P}(\hat{\mathbf{C}} \neq \mathbf{C})$ la probabilité d'erreur et $P_c := \mathbf{P}(\hat{\mathbf{C}} = \mathbf{C})$ la probabilité de succès.

Prop (Optimalité de la règle de maximum vraisemblance, **maximum likelihood**). Si les mots de code sont équiprobables en entrée, minimiser P_e revient à choisir $\hat{c} \in \arg\max_{x \in \mathcal{C}} p(Y \mid x)$.

Prop (Règle du voisin le plus proche). Dans le cas d'un BSC on a $\forall p \in \left[0; \frac{1}{2}\right], \mathbf{P}(\mathbf{Y} = \mathbf{y} \mid \mathbf{C} = \mathbf{c}) = (1-p)^n \left(\frac{p}{1-p}\right)^{d_H(\mathbf{y},\mathbf{c})}$ donc minimiser P_e revient à trouver le mot de code $\mathbf{c} \in \mathcal{C}$ qui minimise $d_H(\mathbf{y},\mathbf{c})$.

Voc. On dit qu'un code en bloc $\mathcal C$ corrige t erreurs si il existe un décodeur qui permet de corriger toutes les configurations d'erreurs dont le nombre est inférieur ou égal à t.

Prop (Capacité de correction d'un code). Le décodeur décide toujours du bon mot $\hat{\mathbf{c}} = \mathbf{c}$ lorsque $2d_H(\mathbf{c}, \mathbf{y}) < d_{\min}$. Donc le code peut corriger $t = \left| \frac{d_{\min} - 1}{2} \right|$ erreurs.

Lorsque l'on fait de la détection d'erreur, on a $g_1 \colon \mathcal{Y}^n \to \mathcal{C} \cup \Delta$. La question est alors : est-ce que le mot reçu est bien égal au mot envoyé ? Dans le cas où $d_H(\mathbf{c}, \mathbf{y}) = l \geqslant 1$ et le décodeur produit Δ , on dit que le décodeur a détecté l erreurs.

Voc. Dans le cas d'un BEC, on dit qu'un code en bloc C détecte t erreurs si il existe un décodeur qui permet de corriger toutes les configurations d'erreurs dont le nombre est inférieur ou égal à t.

Prop (Capacité de détection d'un code). Un code en bloc est capable de détecter $t'=d_{\min}-1$ erreurs. Il suffit pour cette détection de déclarer Δ dès que $\mathbf{y} \notin \mathcal{C}$.

2 Codes linéaires en bloc

Def. Un code en bloc linéaire binaire de longueur n est un sous-espace vectoriel de \mathbb{F}_2^n .

Def. La dimension k d'un code en bloc linéaire est sa dimension en tant que ss-ev de \mathbb{F}_2^n .

On peut alors simplifier l'expression du rendement et de la distance minimale :

$$R = \frac{\log_2(|\mathcal{C}|)}{n} = \frac{k}{n}$$
 et $d_{\min}(\mathcal{C}) = \min_{\mathbf{c} \in \mathcal{C}, \mathbf{c} \neq 0} w_H(\mathbf{c})$.

Not. Un code linéaire \mathcal{C} de longueur n, de dimension k et de distance minimale d_{\min} sera noté $C(n,k,d_{\min})$.

Def. Un codeur linéaire associe au bits d_1, \ldots, d_k la valeur $\sum_{i=1}^n d_i \mathbf{e}_i$ où $\mathcal{B} = (\mathbf{e}_1, \ldots, \mathbf{e}_k)$ est une base du code.

Def. On appelle matrice génératrice du code \mathcal{C} toute matrice $G \in \mathfrak{M}_{k,n}$ de la forme $G = \begin{bmatrix} \mathbf{e}_1 \\ \vdots \\ \mathbf{e}_k \end{bmatrix}$. Tout

mot de code $\mathbf{c} \in \mathcal{C}$ peut s'écrire alors $\mathbf{c} = \mathbf{d} \cdot G$ où \mathbf{d} est le mot d'information.

Deux codes \mathcal{C} et $\tilde{\mathcal{C}}$ sont dits équivalents si et seulement si $\exists \sigma \in \mathfrak{S}_n, \forall \mathbf{c} \in \mathcal{C}, \exists \tilde{\rfloor} \in \tilde{\mathcal{C}}, (\tilde{c}_1, \dots, \tilde{c}_n) = (c_{\sigma(1)}, \dots, c_{\sigma(n)})$. Deux opérations sont permises sur G pour trouver une autre matrice génératrice pour le même code (ou un code équivalent) : combinaisons linéaires de lignes et permutations de colonnes.

Def. On appelle **matrice génératrice systématique** du code \mathcal{C} toute matrice obtenue à la sortie du pivot de Gauss appliqué à une matrice génératrice G quelconque de \mathcal{C} . Elle est sous la forme $G_s = [I_k \parallel P]$ où P dépend du code \mathcal{C} .

On a alors $\mathbf{c} = \mathbf{d} \cdot G_s = [\mathbf{d} \ \mathbf{d} \cdot P]$. Ainsi les k premiers bits sont les bits d'information alors que les (n-k) bits restants dépendent de \mathbf{d} et du code et sont appeles **bits de parité**.

Ex. On appelle code de parité binaire de longueur n un code binaire de longueur n dont les mots sont tous les n-uplets binaires de poids de Hamming pair. Sa dimension est n-1 et $d_{\min}=2$. Sa matrice

génératrice systématique est
$$G_s = \begin{pmatrix} 1 & 0 & \dots & 0 & 1 \\ 0 & 1 & \dots & 0 & 1 \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & 0 & \dots & \vdots & 1 \end{pmatrix}$$
.

Def. Deux mots \mathbf{x} et $\tilde{\mathbf{x}}$ sont dits orthogonaux si $\mathbf{x} \cdot \tilde{\mathbf{x}}^\mathsf{T} = \sum_{i=1}^n x_i \tilde{x}_i = 0$. À la différence de l'espace euclidien, tout mot de poids de Hamming pair est orthogonal à lui-même.

Def. Le code dual de
$$\mathcal{C}$$
 sur \mathcal{X} est $\mathcal{C}^{\perp} := \{ \mathbf{x} \in \mathcal{X}^n \mid \forall \mathbf{c} \in \mathcal{C}, \mathbf{x} \cdot \mathbf{c}^{\mathsf{T}} = 0 \}$.

Def. Une **matrice de contrôle de parité** de C est toute matrice H qui est matrice génératrice de C^{\perp} . Ainsi H est une matrice à n-k lignes et n colonnes de rang n-k.

Th. Soit G une matrice génératrice de C. Toute matrice $H \in \mathfrak{M}_{n-k,n}$ de rang n-k qui vérifie $G \cdot H^{\mathsf{T}} = 0$ est une matrice de contrôle de parité de C.

On en déduit la matrice de contrôle de parité systématique $H_s = [-P^T \parallel I_{n-k}]$.

Th. Pour tout code linéaire en bloc, d_{\min} est égal au plus petit nombre de colonnes dépendantes de H.

Th (Borne de Singleton). *Pour tout code linéaire en bloc* (n, k, d_{\min}) , *on a* $d_{\min} \leq n - k + 1$.

Def. Soit $\mathbf{y} \in \mathcal{Y}^n$. On appelle **vecteur syndrôme** la quantité $\mathbf{s} = \mathbf{y} \cdot H^\mathsf{T} \in \mathfrak{M}_{1,n-k}$. Alors $\mathbf{y} \in \mathcal{C} \iff \mathbf{s} = 0$.

Def. Soit $m \ge 3$ entier. Un **code de Hamming binaire** est un code de longueur $2^m - 1$ et de dimension $2^m - m - 1$. Sa matrice de contrôle de parité contient, en tant que colonnes, tous les m-uplets binaires non nuls (il y en a bien $2^m - 1$).

Algorithme de décodage par syndrome

- 1. Calculer le syndrome $\mathbf{s} = \mathbf{y} \cdot H^{\mathsf{T}}$.
- 2. Si s = 0 alors on déclare $\hat{c} = y$ et l'algorithme se termine.
- 3. Vérifier si \mathbf{y}^{T} est égal à une colonne de H. Si $\mathbf{y}^{\mathsf{T}} = \mathbf{h}_i$, déclarer $\mathbf{c} = (y_1, \dots, y_{i-1}, 1 y_i, y_{i+1}, \dots, y_n)$ et l'algorithme se termine. S'il existe plusieurs i, en choisir un au hasard.
- 4. Vérifier si \mathbf{y}^{T} est égal à la somme de deux colonnes de H. Si $\mathbf{y}^{\mathsf{T}} = \mathbf{h}_i + \mathbf{h}_j$, déclarer \mathbf{c} en inversant y_i et y_j et l'algorithme se termine. S'il existe plusieurs paires, en choisir un au hasard.
- 5. Continuer ainsi de suite.

Cet algorithme utilisé sur un canal BSC peut corriger $\left\lfloor \frac{d_{\min}-1}{2} \right\rfloor$ erreurs.

Performances

Probabilité d'erreur par mot : $P_{e, \text{mot}} \leqslant \sum_{i=t+1}^n \binom{n}{i} p^i (1-p)^{n-i}$ en considérant que au moins toutes les configurations dont le nombre d'erreurs est inférieur ou égal à t sont corrigées. On peut donc approcher la probabilité d'erreur par bit décodé (en supposant que bits d'information et bits de parits auront la même probabilité d'erreur) par $P_b \simeq \frac{d_{\min}}{n} \binom{t+1}{n} p^{t+1} (1-p)^{n-(t-1)} \stackrel{p \ll 1}{\simeq} \frac{d_{\min}}{n} \binom{t+1}{n} p^{t+1}$.

3 Théorie de l'information

On montrera ici que la probabilité d'erreur peut être rendue artificiellement faible pour peu que R ne dépasse pas un certain seuil et sous l'hypothèse que k et n tendent vers l'infini.

Entropie et information mutuelle

Def. Soit X une v.a. sur \mathcal{X} fini avec loi de probabilité \mathbf{P}_X . Son **entropie** est $H(X) := -\sum_{x \in \mathcal{X}} \mathbf{P}_X(x) \log_2(\mathbf{P}_X(x))$ avec, par convention, $0 \cdot \log_2(0) = 0$.

L'entropie permet de capter le degré d'incertitude contenue dans une variable aléatoire. Elle ne dépend pas des valeurs prises, mais seulement des probabilités associées.

Th (Valeurs extrêmes de l'entropie). Pour toute v.a. X sur \mathcal{X} fini, on a

$$0 \leqslant H(X) \leqslant \log_2(|\mathcal{X}|)$$
.

En outre H(X) = 0 si et seulement si X est déterministe et $H(X) = \log_2(|\mathcal{X}|) \iff X \sim \mathcal{U}(\mathcal{X})$.

Def. La fonction d'**entropie binaire** est définie par $H_b(p) := -p \log_2(p) - (1-p) \log_2(1-p)$ où $p \in [0;1]$. Donc $H_b(p) = H(X)$ si $X \sim \mathcal{B}(p)$.

Def. Soit X et Y deux v.a. sur \mathcal{X} et \mathcal{Y} discrets avec \mathbf{P}_{XY} comme loi de probabilité conjointe. Leur **entropie conjointe** est définie comme $H(X,Y) := -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{P}_{XY}(x,y) \log_2{(\mathbf{P}_{XY}(x,y))}$.

L'entropie conjointe est symétrique et on retrouve H(X,X) = H(X).

Th (Valeurs extrêmes de l'entropie conjointe). Pour toute paire de v.a. X et Y sur X et Y discrets, on a

$$\max\{H(X), H(Y)\} \leqslant H(X, Y) \leqslant H(X) + H(Y).$$

En outre $H(X,Y) = H(X) \iff Y = g(X)$ avec g quelconque, et $H(X,Y) = H(X) + H(Y) \iff X \perp \!\!\! \perp Y$.

Def. L'entropie conditionnelle de *X* sachant *Y* est

$$H(x \mid Y) := \sum_{y \in \mathcal{Y}} \mathbf{P}_Y(y) H(X \mid Y = y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} \mathbf{P}_{XY}(x, y) \log_2(\mathbf{P}_{X|Y}(x \mid y)).$$

Prop (Valeurs extrêmes de l'entropie conditionnelle). *Pour toute paire de v.a.* X *et* Y *sur* X *et* Y *, on a* $0 \le H(X \mid Y) \le H(X)$. *En outre* $H(X \mid Y) = 0 \iff X = f(Y)$ *avec* f *une fonction quelconque, et* $H(X,Y) = H(X) \iff X \perp\!\!\!\perp Y$.

Prop (Règle de chaînage (chain rule)). $H(X,Y) = H(Y) + H(X \mid Y) = H(X) + H(Y \mid X)$ pour n'importe quel X et Y.

Def. L'information mutuelle de X et Y est $I(X;Y) := H(X) + H(Y) - H(X,Y) = H(X) - H(X \mid Y) = H(Y) - H(Y \mid X)$.

Cette information mutuelle (car symétrique) permet de quantifier l'information commune entre X et Y.

Prop (Valeurs extrêmes de l'information mutuelle). *Pour toute paire de v.a.* X *et* Y *sur* X *et* Y *finis, on* a $0 \le I(X;Y) \le \min\{H(X),H(Y)\}$. *En outre* $I(X;Y) = 0 \iff X \perp \!\!\!\perp Y$, *et* $I(X;Y) = H(X) \iff X = f(Y)$ *avec* f *une fonction quelconque.*

Définition et théorème de la capacité pour le DMC

Not. On note $f^{(n)}$ et $g^{(n)}$ les fonctions de codage et décodage pour indiquer la taille des blocs. On les inclut dans la définition des codes, qui sont alors spécifiés par $(n, k, f^{(n)}, g^{(n)})$.

On considère les probabilités d'erreur en bloc $P_e^{(n)} := \mathbf{P}\left((D_1, \dots, D_k) \neq (\hat{D}_1, \dots, \hat{D}_k)\right)$.

Def. Un taux R > 0 est dit **atteignable** sur un DMC $(\mathcal{X}, \mathcal{Y}, \mathbf{P}_{Y|X})$ s'il existe une suite $\left(n, k = \lfloor nR \rfloor, f^{(n)}, g^{(n)} \right)_{n \in \mathbf{N}^*}$ de codes, telle que $P_e^{(n)} \underset{n \to \infty}{\longrightarrow} 0$.

Def. La **capacité** C d'un DMC $(\mathcal{X}, \mathcal{Y}, \mathbf{P}_{Y|X})$ est $C = \max_{\mathbf{P}_X} I(X;Y)$ où la maximisation se fait sur toutes les lois de probabilité de X et où $Y \sim \mathbf{P}_{X|Y}(\cdot \mid X)$. Donc, dans cette expression, la paire (X,Y) suit la loi de probabilité $\mathbf{P}_{XY}(x,y) = \mathbf{P}_{X}(x)\mathbf{P}_{Y|X}(x\mid Y)$.

Th (Théorème de Shannon de la capacité). Pour un DMC $(\mathcal{X}, \mathcal{Y}, \mathbf{P}_{Y|X})$: tous les débits 0 < R < C sont atteignables et aucun débit R > C ne l'est.

Prop. La capacité d'un BSC(p) est égale à $C_{BSC(p)} = 1 - H_b(p)$.

Prop. La capacité d'un BEC(ϵ) est égale à $C_{\text{BEC}(\epsilon)} = 1 - \epsilon$.

4 Modulations numériques

Canal de propagation

Hyp. Le bruit b(t) est i.i.d. gaussien de moyenne nulle, de fonction d'autocorrélation $r_{bb}(\tau) := \mathbf{E}(b(t+\tau)b(t))$ et satisfait $r_{bb}(\tau) = \frac{N_0}{2}$.

Prop. Soit x(t) le signal émis et y(t) le signal reçu. Le canal multi-trajets conduit à $y(t) = c_p(t) \star x(t) + b(t)$.

Lorsque $c_p(t) = \delta(t)$ le canal est appelé **canal gaussien**, car seul le bruit gaussien vient perturber la transmission. Dans ce cas y(t) = x(t) + b(t). C'est notamment vrai dans les cas suivants :

- Faisceaux hertziens : entre antenne fixes avec une visibilité directe entre elles \rightarrow antenne émettrice directive orienté vers l'antenne de réception \rightarrow ni dispersion, ni écho.
- Liaisons satellitaires : en première approximation l'onde ne subit pas d'obstacle entre l'émission par le satellite et la réception par une antenne parabolique.
- Réseaux câblés co-axiaux : produisent très peu de multitrajets.

Lorsque $c_p(t) \neq \delta(t)$, le canal est appelé **canal sélectif en fréquence**, car alors $Y(f) = C_p(f)X(f) +$ B(f) (en prenant les TF) $\to C_p$ n'est plus constante et donc agit différemment selon les fréquences.

Description de l'émetteur

Def. Transmission d'un signal provenant d'un code correcteur d'erreur, mathématiquement on a :

$$x(t) = \sum_{n=0}^{N-1} s_n g(t - nT_s)$$

avec g(t) le filtre d'émission, $\{s_n\}_n$ la suite de symboles s'exprimant en fonction des données et T_s le temps-symbole.

Def. On note \mathcal{M} l'ensemble des valeurs possibles pour chaque symbole s_n et $M = \operatorname{Card}(\mathcal{M})$ le nombre de valeurs possibles pour chaque symbole.

Une fois M fixé, on appelle **constellation** la manière dont sont répartis les M valeurs possibles des symboles sur l'axe des réels. Voici les deux constellations les plus utilisées :

- M-OOK : $\{0; A; 2A; ...; (M-2)A; (M-1)A\}$, les valeurs sont espacées de A.
- M-PAM: $\{-(M-1)A; -(M-3)A; ...; -A; A; ...; (M-3)A; (M-1)A\}$, les valeurs sont espacées de 2A.

Hyp. Soit $\{s_n\}_{n=0,\dots,N-1}$ et $\mathcal{M}=\left\{s^{(m)}\right\}_{m=0,\cdots,M-1}$ rangé par ordre croissant. On considère que : • La suite $\{s_n\}_{n=0,\dots,N-1}$ est i.i.d.

- Chaque s_n prend une valeur dans \mathcal{M} de façon équiprobable : $\forall m, n, \mathbf{P}\left(s_n = s^{(m)}\right) = \frac{1}{M}$.

On définit la moyenne symbole m_s , la variance symbole σ_s^2 et l'énergie symbole E_s . Comme la suite des symboles est i.i.d elles ne dépendent pas de n et on a :

$$\forall n, \quad m_s = \frac{1}{M} \sum_{m=0}^{M-1} s^{(m)} \qquad \sigma_s^2 = \frac{1}{M} \sum_{m=0}^{M-1} (s^{(m)} - m_s)^2 \qquad E_s = \frac{1}{M} \sum_{m=0}^{M-1} s^{(m)^2} = m_s^2 + \sigma_s^2$$

Prop. L'énergie consommée pour émettre un bit d'information (énergie bit) s'écrit :

$$E_b = \frac{1}{\log_2(M)} \left(E_s E_g + m_s \sum_{n \neq 0} h_n \right)$$

Avec $E_g = \int g(t)^2 dt$ l'énergie du filtre d'émission et $h_n = h(nT_s)$ où $h(t) = g(-t) \star g(t)$. Sauf indication contraire, le filtre choisi amènera toujours à $E_g=1$ et $m_s=0$ ou $h_n=0$ pour tout $n\neq 0$. Ainsi, on retiendra :

$$E_b = \frac{E_s}{\log_2(M)}$$

Description du récepteur

Prop. La suite optimale au sens de la probabilité d'erreur est la suivante :

$$z_n = z(nT_s)$$
 avec $z(t) = g(-t) * y(t)$.

Prop. Dans le contexte d'un canal gaussien on a $z_n = h_n \star s_n + w_n$.

Def (Filtre de Nyquist, Filtre en racine de Nyquist). • Un filtre de réponse impulsionnelle l(t)

est dit de Nyquist, si et seulement si :
$$l_n = l(nT_s) = \left\{ \begin{array}{cc} \neq 0 & \text{pour} & n = 0 \\ 0 & \text{pour} & n \neq 0 \end{array} \right.$$

• Un filtre est dit en racine de Nyquist si et seulement si le filtre $l(-t) \star l(t)$ est un filtre de Nyquist. Autrement dit, le filtre convolué à son filtre adapté est de Nyquist.

Prop (Canal gaussien à temps discret). *Une fois la contrainte de filtre de Nyquist vérifiée par* h(t), l'équation $z_n = h_n \star s_n + w_n$ se simplifie en :

$$z_n = s_n + w_n$$

Avec w_n un bruit blanc gaussien de variance $\frac{N_0}{2}$.

Prop. La largeur de bande, notée B, de tout filtre de Nyquist ou en racine de Nyquist vérifie $B \geqslant \frac{1}{T_s}$.

Détecteur optimal

Prop. Soit $\{s_n\}_n$ une suite de symboles et le canal gaussien à temps discret donnée plus haut $(z_n = s_n + w_n)$. Alors le détecteur optimal obtient le symbole \hat{s}_n de la manière suivante :

$$\hat{s}_n = \begin{cases} s^{(0)} & \text{si} \quad z_n \in]-\infty, t^{(0)}] \\ s^{(m)} & \text{si} \quad z_n \in]t^{(m-1)}, t^{(m)}] \text{ pour } m \in \{1, \cdots, M-2\} \\ s^{(M-1)} & \text{si} \quad z_n \in]t^{(M-2)}, +\infty[\end{cases}$$

Avec, pour $m \in \{0, \cdots, M-2\}$, les seuils suivants : $t^{(m)} = \frac{s^{(m)} + s^{(m+1)}}{2}$.

Performances

Prop. Si l'étiquetage permet d'avoir seulement un bit de différent entre deux symboles adjacents, alors on a cette relation :

$$P_b = \frac{1}{\log_2(M)} P_e$$

Avec P_b et P_e les probabilités d'erreur bit et symbole respectives. (NdR : En réalité, le symbole = dans l'équation plus haut est un \approx . Cependant, pour les applications en COM105, on a bien un =.)

Prop. Si l'hypothèse sur l'émetteur est vérifiée, la constellation 2-PAM admet les performances suivantes :

$$P_b = P_e = Q\left(\sqrt{2\frac{E_b}{N_0}}\right) \quad \text{avec} \quad Q := x \mapsto \frac{1}{\sqrt{2\pi}} \int_x^{+\infty} e^{-u^2/2} \,\mathrm{d}u \;.$$

Rem. On a $P_{dB} = 10 \cdot \log_{10}(P)$.