

수학I



# 08. **사인** 법칙과 **코사인** 법칙

이 단원에서는 삼각형의 변의 길이와 내각의 크기 사이에 존재하는 여러 가지 성질을 알아본다. 또, 그를 이용하여 삼각형의 변 또는 각의 크기를 구해보고, 삼각형의 넓이를 살펴본다.



- 의반각과 호도법 사각함수의 정의
- ---- 삼각함수의 상호 관계

### ■ 삼각함수의 그래프

- 삼각함수의 그래프 ● 여러 가지 삼각함수의 그래프
- ----- 삼각함수의 여러 가지 공식

### ■ 삼각방정식과 삼각부등식

삼각방정식 삼각부등식

### ■사인법칙과 코사인법칙

사인법칙
 코사인법칙
 삼각형의 넓이

# **사인**법칙

P.I

### • 사인법칙과 코사인법칙

1.사인법칙 (대응각과 변의 관계) 2. 코사인법칙 3. 삼각형의 넓이 "삼각형의 세 변과 세 내각에 대한 사인법칙의 의미를 알아본다. 또, 그를 이용하여 삼각형과 관련된 여러 가지 문제를 해결하여 본다."

049.

### 사인법칙

 $\triangle$ ABC에서 세 내각의 크기를 A, B, C라 하고 이들의 대변 BC, CA, AB의 길이를 각각 a, b, c라 할 때,  $\triangle$ ABC의 외접원의 반지름의 길이를 R이라 하면 다음이 성립한다. 이를 사인법칙이라고 한다.

핵심

사인법칙

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

해설

위의 사인법칙을 증명하여 보자.

i) 0°<∠A<90°일 때 ∧ABC의 외정워의 중신을

 $\triangle ABC$ 의 외접원의 중심을 O라 하고,  $\overline{BO}$ 의 연장선과 외접원의 교점을 A'이라 하면 원의 원주각의 성질에서

$$\angle A = \angle A'$$

△BA'C에서 ∠C=90°이고,

$$\sin A' = \frac{\overline{BC}}{\overline{BA'}} = \frac{a}{2R}$$

$$\therefore \sin A = \frac{a}{2R}$$



ii) 
$$\angle A=90^\circ$$
일 때  $a=\overline{BC}=2R\circ$ ]고,  $\sin A=\sin 90^\circ=1=\frac{a}{2R}$ 



ii) 90°< / A < 180°일 때

 $\triangle ABC$ 의 외접원의 중심을 O라 하고  $\overline{BO}$ 의 연장선과 외접원의 교접을 A'이라 하면

□ABA'C는 내접사각형이므로

$$\angle A + \angle A' = 180^{\circ}, \angle A' = 180^{\circ} - \angle A$$

이때 
$$\sin A' = \frac{\overline{BC}}{\overline{BA'}} = \frac{a}{2R}$$

$$\stackrel{\text{\tiny Z}}{=}$$
,  $\sin A = \sin (180^\circ - A') = \sin A' = \frac{a}{2R}$ 

이상으로부터 
$$\frac{a}{2R}$$
= $\sin A$ 

이상으로부터  $\frac{a}{2R}\!=\!\sin A$  마찬가지로 위와 같이 살펴보면  $\frac{b}{2R}\!=\!\sin B,\,\frac{c}{2R}\!=\!\sin C$ 를 얻는다.

$$\therefore 2R = \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin B}$$

### 사인법칙의 변형

위의 사인법칙에서 다음이 성립한다.

사인법칙의 변형
(1) 
$$a:b:c=\sin A:\sin B:\sin C$$
 ← 사인법칙을 비율로 생각
(2)  $\sin A=\frac{a}{2R}$ ,  $\sin B=\frac{b}{2R}$ ,  $\sin C=\frac{a}{2R}$  ← 각을 변으로 비꿈

(3) a=2Rsin A, b=2Rsin B, c=2Rsin C ← 변을 각으로 바꿈

에  $\triangle$  ABC에서  $A=30^\circ$ ,  $B=60^\circ$ , a=5일 때, 사인법칙을 써서 나머지 각의 크기 와 변의 길이를 구해 보자.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 이고,  $A + B + C = 180$ °에서  $C = 90$ °

$$\therefore \frac{5}{\sin 30^{\circ}} = \frac{b}{\sin 60^{\circ}} = \frac{c}{\sin 90^{\circ}}, = \frac{5}{\sin 90^{\circ}}, = 10$$

050

다음 삼각형 ABC에서 나머지 각의 크기와 변의 길이를 구하여라.

(1) 
$$a=12$$
,  $B=45^{\circ}$ ,  $C=75^{\circ}$  (\text{\text{U}}, \sin  $75^{\circ} = \frac{\sqrt{6} + \sqrt{2}}{4}$ )

(2) 
$$b=15$$
,  $c=15\sqrt{3}$ ,  $B=30^{\circ}$ 

**풀이** (1) 
$$A+B+C=180$$
°에서  $A=60$ °

$$\frac{a}{\sin A} = \frac{b}{\sin B} \text{ on } \frac{12}{\sin 60^{\circ}} = \frac{b}{\sin 45^{\circ}}$$

$$\therefore b = \frac{12}{\sin 60^{\circ}} \times \sin 45^{\circ} = 12 \times \frac{2}{\sqrt{3}} \times \frac{\sqrt{2}}{2} = 4\sqrt{6}$$

$$\text{II.}, \quad \frac{a}{\sin A} = \frac{c}{\sin C} \text{ on } \frac{12}{\sin 60^{\circ}} = \frac{c}{\sin 75^{\circ}}$$

$$\therefore c = \frac{12}{\sin 60^{\circ}} \times \sin 75^{\circ} = 12 \times \frac{2}{\sqrt{3}} \times \frac{\sqrt{6} + \sqrt{2}}{4} = 6\sqrt{2} + 2\sqrt{6}$$

따라서, 구하는 값은

$$A=60^{\circ}, b=4\sqrt{6}, c=6\sqrt{2}+2\sqrt{6}$$

$$(2) \frac{b}{\sin B} = \frac{c}{\sin C} \text{ on } \frac{15}{\sin 30^{\circ}} = \frac{15\sqrt{3}}{\sin C}$$

$$\therefore \sin C = 15\sqrt{3} \times \frac{\sin 30^{\circ}}{15} = \frac{\sqrt{3}}{2}$$

즉. C=60° 또는 C=120°

$$A=90^{\circ}$$
,  $C=60^{\circ}$ ,  $a=30$  또는  $A=30^{\circ}$ ,  $C=120^{\circ}$ ,  $a=15$ 

답(1) 풀이 참조 (2) 풀이 참조

화인문제 **070-1** 

 $\triangle$ ABC에서 a=20.  $A=45^{\circ}$ .  $B=60^{\circ}$ 일 때, b의 값과 외접원의 반지름의 길이 R의 값을 각각 구하여라.

확인문제

**070-**2

△ABC의 외접원의 반지름의 길이가 6이고, 호 BC의 중심각의 크기가 60°일 때, BC의 길이를 구하여라.

### 기본문제 **071**

삼각형 ABC에 대하여 다음 물음에 답하여라.

- (1) A:B:C=3:2:1일 때, a:b:c를 구하여라.
- (2)  $\sin^2 A = \sin^2 B + \sin^2 C$ 이면  $\triangle$  ABC는 어떤 삼각형인가?

풀이

$$(1)\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \text{ on } k$$

 $a:b:c=\sin A:\sin B:\sin C$ 이므로

 $a:b:c=\sin 90^\circ:\sin 60^\circ:\sin 30^\circ$ 

$$=1:\frac{\sqrt{3}}{2}:\frac{1}{2}$$

 $\therefore a:b:c=2:\sqrt{3}:1$ 

(2) 
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R(R$$
는 외접원의 반지름의 길이)

에서 
$$\sin A = \frac{a}{2R}$$
,  $\sin B = \frac{b}{2R}$ ,  $\sin C = \frac{c}{2R}$ 

이를 주어진 식에 대입하면

$$\left(\frac{a}{2R}\right)^2 = \left(\frac{b}{2R}\right)^2 + \left(\frac{c}{2R}\right)^2 \quad \therefore \quad a^2 = b^2 + c^2$$

따라서,  $\triangle ABC는 A=90$ °인 직각삼각형

[](1) 풀이 참조 (2) 풀이 참조

확인문제 **071**-1

 $\triangle$ ABC의 세 변의 길이 a, b, c에 대하여 a-2b+c=0, 3a+b-2c=0일 때,

071-1

 $\sin A$  :  $\sin B$  :  $\sin C$ 를 구하여라.

확인문제

 $\triangle$ ABC에서  $a\sin A = b\sin B$ 이면  $\triangle$ ABC는 어떤 삼각형인가?

**071-**2



# **코사인**법칙

P.I

### •사인법칙과 코사인법칙

··• 1. 사인법칙

2. 코사인법칙 (두 변과 끼인각의 관계)

3. 삼각형의 넓이

66삼각형의 세 변과 세 각에 대한 코사인법칙을 알아보고, 그를 이용하여 여러 가지 변 또는 각의 크기를 구해본다. 또 제이코사인법칙과 관련된 여러 가지 변화된 식의 의미를 이해한다. \*\*

051.

### 코사인법칙

 $\triangle$ ABC의 세 변의 길이를 a, b, c라 하고 대응각의 크기를 각각 A, B, C라 할 때, 다음이 성립한다. 이를 코사인법칙이라 한다. 코사인법칙은 제일코사인법칙과 제이코사인법칙이 있다.

### 핵심

### 제일코사인법칙

 $a=b\cos C+c\cos B$ 

 $b = c \cos A + a \cos C$ 

 $c = a \cos B + b \cos A$ 

해설

꼭짓점 A에서  $\overline{BC}$  또는 그 연장선에 내린 수선의 발을 H라 하자.

i) 점 C가 BH 위의 점인 경우

즉, C=C<sub>1</sub>이면.

 $\overline{BC_{\scriptscriptstyle 1}}{=}\overline{BH}{-}\overline{C_{\scriptscriptstyle 1}H}$ 

이때,  $\overline{BH} = c \cos B$ ,

 $\overline{C_1H} = b\cos(180^\circ - C_1) = -b\cos C_1$ 



ii) 점 C가 H인 경우

즉,  $C=H(C_2)$ 이면,  $\cos C_2=0$ 이므로

 $\overline{BH} = \overline{BH} + 0 = c \cos B + b \cos C_2$ 

 $\therefore a = c \cos B + b \cos C_2$ 

 $\overline{BH}$ 의 연장선 위의 점인 경우

즉,  $C=C_3$ 이면  $\overline{BC_3}=\overline{BH}+\overline{HC_3}$ 

 $\overline{BH} = c \cos B$ ,  $\overline{HC_3} = b \cos C_3$ 

 $\therefore a = c \cos B + b \cos C_3$ 

이상에서  $a=b\cos C+c\cos B$ 

마찬가지로 생각하면  $b=c\cos A+a\cos C$ ,  $c=a\cos B+b\cos A$ 



$$a^{2}=b^{2}+c^{2}-2bc\cos A$$

$$b^{2}=c^{2}+a^{2}-2ca\cos B$$

$$c^{2}=a^{2}+b^{2}-2ab\cos C$$

해설 제일코사인법칙의 각 식에 차례로 a, b, c를 곱하면

$$a^2 = ab\cos C + ac\cos B$$
 .....  $\bigcirc$   
 $b^2 = bc\cos A + ab\cos C$  ....  $\bigcirc$   
 $c^2 = ac\cos B + bc\cos A$  ....  $\bigcirc$ 

$$b^2 = c^2 + a^2 - 2ca\cos B$$
,  $c^2 = a^2 + b^2 - 2ab\cos C$ 

### 제이코사인법칙의 변형

삼각형의 세 변의 길이를 알 때, 내각의 크기는 다음을 이용하여 구한다.

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$

$$\cos B = \frac{c^{2} + a^{2} - b^{2}}{2ca}$$

$$\cos C = \frac{a^{2} + b^{2} - c^{2}}{2ab}$$

제이코사인법칙  $a^2=b^2+c^2-2bc\cos A$ 에서 해설

$$2bc\cos A = b^2 + c^2 - a$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
 마찬가지로 생각하면  $\cos B = \frac{c^2 + a^2 - b^2}{2ca}$ ,  $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$ 

에 a=2, b=4,  $c=2\sqrt{3}$ 일 때, C의 값을 구해 보지

$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} \text{ out } \cos C = \frac{2^2 + 4^2 - (2\sqrt{3})^2}{2 \cdot 2 \cdot 4} = \frac{1}{2}$$

$$C = 60^{\circ} (C < 180^{\circ})$$

052.

다음  $\triangle$ ABC에 대하여 a의 값을 구하여라.

- (1)  $A=105^{\circ}$ ,  $B=30^{\circ}$ ,  $b=\sqrt{2}$ , c=2
- (2)  $A = 60^{\circ}$ , b = 3, c = 4

### 풀이

(1) A+B+C=180°이므로

$$C=45^{\circ}$$

$$\therefore a = b\cos C + c\cos B$$

$$= \sqrt{2}\cos 45^{\circ} + 2\cos 30^{\circ}$$

$$= \sqrt{2} \cdot \frac{\sqrt{2}}{2} + 2 \cdot \frac{\sqrt{3}}{2} = 1 + \sqrt{3}$$



(2) 
$$a^2 = b^2 + c^2 - 2bc\cos A$$
  
=  $9 + 16 - 2 \cdot 3 \cdot 4 \cdot \cos 60^\circ$   
=  $25 - 12 = 13$ 

$$\therefore a = \sqrt{13}$$

$$(1) a = 1 + \sqrt{3} (2) a = \sqrt{13}$$

확인문제 다음 △ABC에서 나머지 각의 크기와 변의 길이를 구하여라.

**072-1** (1) 
$$b=2$$
,  $c=2\sqrt{2}$ ,  $B=30^{\circ}$ ,  $C=45^{\circ}$ 

(2) 
$$a=2$$
,  $b=\sqrt{3}+1$ ,  $C=60^{\circ}$ 

# 기본문제

 $\triangle$ ABC에서 a=7, b=3, c=5일 때,  $\angle$ A의 크기를 구하면?

- $\bigcirc 30^{\circ}$
- ②  $60^{\circ}$

③ 90°

- (4) 120°
- ⑤ 150°

### 풀이

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$
이므로

$$\cos A = \frac{3^2 + 5^2 - 7^2}{2 \cdot 3 \cdot 5} = -\frac{1}{2}$$

$$A = 120^{\circ} \ ( \ 0^{\circ} < A < 180^{\circ} )$$

**4** 

확인문제

 $\triangle$ ABC의 세 변의 길이가 a=13, b=8, c=7일 때, 최대각의 크기는?

**073**-1

① 105°

② 120°

③ 135°

④ 150°

 $(5) 165^{\circ}$ 

**073-**2

확인문제  $\triangle$ ABC의 세 변의 길이 a, b, c에 대하여 a:b:c=2:3:4가 성립한다. 이때.  $\cos A$ 의 값을 구하여라.

# 기본문제

 $\triangle$ ABC에서  $a\cos A = b\cos B$ 가 성립할 때.  $\triangle$ ABC는 어떤 삼각형인 가?

① 정삼각형

- ② 이등변삼각형
- ③ A=90°인 직각삼각형 ④ C=90°인 직각삼각형
- (5) a=b인 이등변삼각형 또는 C=90°인 직각삼각형

### 풀이 주어진 조건에서

교 한 그 전 교 전 에서 
$$a \cdot \frac{b^2 + c^2 - a^2}{2bc} = b \cdot \frac{a^2 + c^2 - b^2}{2ac}$$
  $2ca^2(b^2 + c^2 - a^2) = 2cb^2(a^2 + c^2 - b^2)$   $a^2(b^2 + c^2 - a^2) = b^2(a^2 + c^2 - b^2)$   $a^4 - b^4 - a^2c^2 + b^2c^2 = 0$   $(a^2 - b^2)(a^2 + b^2) - c^2(a^2 - b^2) = 0$   $(a + b)(a - b)(a^2 + b^2 - c^2) = 0$   $a + b > 0$ 이므로  $a - b = 0$  또는  $a^2 + b^2 - c^2 = 0$   $\therefore a = b$  또는  $a^2 + b^2$  따라서,  $\triangle ABC$ 는  $a = b$ 인 이등변삼각형 또는  $a = b$ 인 직각삼각형



확인문제 다음을 만족시키는 △ABC의 꼴을 말하여라.

**074**-1

- (1)  $\sin A = 2\sin C\cos B$ 
  - (2)  $a\cos A + b\cos B = c\cos C$

# **삼각형**의 넓이



44 사인법칙, 코사인법칙을 통해 삼각형의 넓이를 구하는 방법을 살펴보고, 그를 이용하여 여러 가지 문제를 해결하여 본다. \*\*

### ■ 사인법칙과 코사인법칙

1. 사인법칙
 2. 코사인법칙
 3. 삼각형의 넓이
 (1/2 × 밑변× 높이와 사인법칙)

053.

삼각형의 넓이

삼각형의 넓이는 다음 중 하나를 이용하여 구할 수 있다.

핵심

삼각형의 넓이

삼각형 ABC에서 각각의 대변이 a, b, c일 때, 넓이 S는

(1) 두 변의 길이와 그 끼인각의 크기를 알 때



$$\Rightarrow S = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B$$

(2) 외접원의 반지름의 길이 R과 세 변의 길이를 알 때

$$\Rightarrow S = \frac{abc}{4R}$$

- (3) 외접원의 반지름의 길이 R과 세 각의 크기를 알 때
  - $\Rightarrow S = 2R^2 \sin A \sin B \sin C$
- (4) 내접원의 반지름의 길이 r과 세 변의 길이를 알 때

$$\rightarrow S = rs \left($$
단,  $s = \frac{a+b+c}{2}\right)$ 

(5) 세 변의 길이를 알 때 (혜론의 공식)

$$\rightarrow S = \sqrt{s(s-a)(s-b)(s-c)}$$
 (단,  $s = \frac{a+b+c}{2}$ )

### 해설

(1) 오른쪽 그림과 같이  $\triangle ABC$ 의 꼭짓점 A에서 대변  $\overline{BC}$  또는 그 연장선 위에 내린 수선의 발을 H라고 하자.

 $\overline{AH} = h$ 라고 하면 B가 예각, 둔각, 직각 어느 경우에나

$$h{=}c\sin B$$
이므로  $\triangle ABC$ 의 넓이  $S$ 는

$$S = \frac{1}{2}ah = \frac{1}{2}ac\sin B$$



같은 방법으로 살펴보면 다음도 성립함을 알 수 있다.

$$S = \frac{1}{2}bc\sin A$$
,  $S = \frac{1}{2}ab\sin C$ 

$$(2) S = \frac{1}{2}ab\sin C$$
,  $\sin C = \frac{C}{2R}$ 이므로

$$S = \frac{1}{2}ab \cdot \frac{C}{2R} = \frac{abc}{4R}$$

 $(3)a=2R\sin A$ ,  $b=2R\sin B$ ,  $c=2R\sin C$ 이므로

$$S = \frac{abc}{4R} = \frac{2R\sin A \cdot 2R\sin B \cdot 2R\sin C}{4R} = 2R^2\sin A\sin B\sin C$$

(4) 
$$S = \triangle ABO + \triangle BCO + \triangle CAO$$
  

$$= \frac{1}{2} \cdot c \cdot r + \frac{1}{2} \cdot a \cdot r + \frac{1}{2} \cdot b \cdot r$$

$$= \frac{1}{2} (a + b + c) \cdot r = rs$$

$$(5) S = \frac{1}{2} ab \sin C = \frac{1}{2} ab \sqrt{1 - \cos^{2} C}$$

$$= \frac{1}{2} ab \sqrt{1 - \left(\frac{a^{2} + b^{2} - c^{2}}{2ab}\right)^{2}}$$

$$= \sqrt{\frac{4a^{2}b^{2} - (a^{2} + b^{2} - c^{2})^{2}}{16}}$$

$$= \sqrt{\frac{(2ab + a^{2} + b^{2} - c^{2})(2ab - a^{2} - b^{2} + c^{2})}{16}}$$

$$= \sqrt{\frac{\{(a+b)^{2} - c^{2}\}\{c^{2} - (a-b)^{2}\}}{16}}$$

$$= \sqrt{\frac{(a+b+c)(a+b-c)(a+c-b)(b+c-a)}{16}}$$

$$= \sqrt{\frac{a+b+c}{2} \cdot \frac{a+b-c}{2} \cdot \frac{a+c-b}{2} \cdot \frac{b+c-a}{2}} = \sqrt{s(s-c)(s-b)(s-a)}$$

$$S = \frac{1}{2} \cdot 4 \cdot 2 \cdot \sin 60^{\circ} = \frac{1}{2} \cdot 4 \cdot 2 \cdot \frac{\sqrt{3}}{2} = 2\sqrt{3}$$

다음 △ABC의 넓이를 구하여라.

(1) 
$$b=4$$
,  $c=5$ ,  $A=60^{\circ}$ 

(1) 
$$b=4$$
,  $c=5$ ,  $A=60^{\circ}$  (2)  $a=2\sqrt{3}$ ,  $b=2$ ,  $C=30^{\circ}$ 

풀이



$$S = \frac{1}{2}bc\sin A = \frac{1}{2} \cdot 4 \cdot 5 \cdot \sin 60^{\circ}$$
$$= 10 \cdot \frac{\sqrt{3}}{2} = 5\sqrt{3}$$



$$S = \frac{1}{2}ab\sin C = \frac{1}{2} \cdot 2\sqrt{3} \cdot 2 \cdot \sin 30^{\circ}$$
$$= 2\sqrt{3} \cdot \frac{1}{2} = \sqrt{3}$$

 $(1) 5\sqrt{3} (2) \sqrt{3}$ 

확인문제

 $\triangle$ ABC에서 a=4, b=6,  $C=60^{\circ}$ 일 때, 삼각형의 넓이는?

**075**-1

① 6

② 12

③  $6\sqrt{3}$ 

 $4) 12\sqrt{3}$ 

⑤ 15

확인문제 두 변의 길이가 각각 10, 8인 삼각형의 넓이가 20일 때. 그 두 변 사이의 끼인각  $\theta$ 의 **075-2** 크기를 구하여라.

삼각형 ABC에서 a=5, b=6, c=7일 때, 다음을 구하여라.

- (1) △ABC의 넓이 S
- $(2) \sin A$
- (3) 외접원의 반지름의 길이 R (4) 내접원의 반지름의 길이  $\gamma$

### 풀이

(1) 헤론의 공식을 이용하면

$$s = \frac{a+b+c}{2} = \frac{5+6+7}{2} = 9$$
이므로  
 $S = \sqrt{s(s-a)(s-b)(s-c)}$   
 $= \sqrt{9\cdot 4\cdot 3\cdot 2} = 6\sqrt{6}$ 

$$(2)S = \frac{1}{2}bc\sin A$$
이므로

$$6\sqrt{6} = \frac{1}{2} \cdot 6 \cdot 7 \cdot \sin A$$
  $\therefore \sin A = \frac{2}{7} \sqrt{6}$ 

$$(3) \frac{a}{\sin A} = 2R$$
에서

$$R = \frac{a}{2\sin A} = \frac{5}{2 \cdot \frac{2}{7}\sqrt{6}} = \frac{35}{4\sqrt{6}} = \frac{35}{24}\sqrt{6}$$

$$r = \frac{S}{S} = \frac{6\sqrt{6}}{9} = \frac{2\sqrt{6}}{3}$$

$$(1) 6\sqrt{6} (2) \frac{2}{7}\sqrt{6} (3) \frac{35}{24}\sqrt{6} (4) \frac{2\sqrt{6}}{3}$$

확인문제 삼각형의 세 변의 길이가 각각 다음과 같을 때, 삼각형의 넓이를 구하여라.

**076-1** (1) 5, 7, 8

(2)  $\sqrt{3}$ , 2,  $\sqrt{5}$ 

다음 물음에 답하여라

- (1) 두 대각선의 길이가 b. q이고, 두 대각선이 이루는 각의 크기가  $\theta$ 인 사 각형이 있다. 사각형의 넓이 S = b, q,  $\theta = \text{ 써서 나타내어라.}$
- (2)(1)을 이용하여 두 대각선의 길이가 6, 8이고, 두 대각선이 이루는 각 의 크기가 30°인 □ABCD의 넓이를 구하여라.

### 풀이

(1) 오른쪽 그림에서 □ABCD의 두 대 각선에 평행하고 □ABCD의 꼭짓 점을 지나는 선분을 그어 만나는 점 을 각각 P. Q. R. S로 놓으면 □PQRS는 평행사변형이다. 이때. 평행사변형의 대각선은 넓이를 이등분하므로 오른쪽 그림에서



$$\square ABCD = \frac{1}{2} \square PQRS$$

그런데 □PQRS=2△PQR이므로

 $\Box PQRS = 2 \cdot \frac{1}{2} \cdot \overline{PQ} \cdot \overline{QR} \cdot \sin \theta = pq \sin \theta$ 

$$\therefore S = \frac{1}{2} pq \sin \theta$$

(2)(1)의 ⑤을 이용하여 □ABCD의 넓이를 구하면

$$S = \frac{1}{2} \cdot 6 \cdot 8 \cdot \sin 30^{\circ} = 12$$

$$(1) S = \frac{1}{2} pq \sin \theta$$
 (2) 12

확인문제 등변사다리꼴에서 두 대각선이 이루는 각의 크기가  $120^\circ$ 이고. 넓이가  $\sqrt{3}$ 일 때. 대각 **077-**1 선의 길이를 구하여라.

# RedTree **완성**



# 부록



## 상용로그표 (1)

|                                 |                                                |                                                |                                                |                                                |                                                |                                                | 비                                              | 비례부분                                           |                                                |                                                |                       |                       |                           |                            |                            |                            |                            |                            |                            |
|---------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|-----------------------|-----------------------|---------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| 수                               | 0                                              | 1                                              | 2                                              | 3                                              | 4                                              | 5                                              | 6                                              | 7                                              | 8                                              | 9                                              | 1                     | 2                     | 3                         | 4                          | 5                          | 6                          | 7                          | 8                          | 9                          |
| 1.0<br>1.1<br>1.2<br>1.3<br>1.4 | 0.0000<br>0.0414<br>0.0792<br>0.1139<br>0.1461 | 0.0043<br>0.0453<br>0.0828<br>0.1173<br>0.1492 | 0.0086<br>0.0492<br>0.0864<br>0.1206<br>0.1523 | 0.0128<br>0.0531<br>0.0899<br>0.1239<br>0.1553 | 0.0170<br>0.0569<br>0.0934<br>0.1271<br>0.1584 | 0.0212<br>0.0607<br>0.0969<br>0.1303<br>0.1614 | 0.0253<br>0.0645<br>0.1004<br>0.1335<br>0.1644 | 0.0294<br>0.0682<br>0.1038<br>0.1367<br>0.1673 | 0.0334<br>0.0719<br>0.1072<br>0.1399<br>0.1703 | 0.0374<br>0.0755<br>0.1106<br>0.1430<br>0.1732 | 4<br>4<br>3<br>3<br>3 | 8<br>8<br>7<br>6<br>6 | 12<br>11<br>10<br>10<br>9 | 17<br>15<br>14<br>13<br>12 | 21<br>19<br>17<br>16<br>15 | 25<br>23<br>21<br>19<br>18 | 29<br>26<br>24<br>23<br>21 | 33<br>30<br>28<br>26<br>24 | 37<br>34<br>31<br>29<br>27 |
| 1.5<br>1.6<br>1.7<br>1.8<br>1.9 | 0.1761<br>0.2041<br>0.2304<br>0.2553<br>0.2788 | 0.1790<br>0.2068<br>0.2330<br>0.2577<br>0.2810 | 0.1818<br>0.2095<br>0.2355<br>0.2601<br>0.2833 | 0.1847<br>0.2122<br>0.2380<br>0.2625<br>0.2856 | 0.1875<br>0.2148<br>0.2405<br>0.2648<br>0.2878 | 0.1903<br>0.2175<br>0.2430<br>0.2672<br>0.2900 | 0.1931<br>0.2201<br>0.2455<br>0.2695<br>0.2923 | 0.1959<br>0.2227<br>0.2480<br>0.2718<br>0.2945 | 0.1987<br>0.2253<br>0.2504<br>0.2742<br>0.2967 | 0.2014<br>0.2279<br>0.2529<br>0.2765<br>0.2989 | 3<br>3<br>2<br>2<br>2 | 6<br>5<br>5<br>5<br>4 | 8<br>8<br>7<br>7<br>7     | 11<br>11<br>10<br>9<br>9   | 14<br>13<br>12<br>12<br>11 | 17<br>16<br>15<br>14<br>13 | 20<br>18<br>17<br>16<br>16 | 22<br>21<br>20<br>19<br>18 | 25<br>24<br>22<br>21<br>20 |
| 2.0<br>2.1<br>2.2<br>2.3<br>2.4 | 0.3010<br>0.3222<br>0.3424<br>0.3617<br>0.3802 | 0.3032<br>0.3243<br>0.3444<br>0.3636<br>0.3820 | 0.3054<br>0.3263<br>0.3464<br>0.3655<br>0.3838 | 0.3075<br>0.3284<br>0.3483<br>0.3674<br>0.3856 | 0.3096<br>0.3304<br>0.3502<br>0.3692<br>0.3874 | 0.3118<br>0.3324<br>0.3522<br>0.3711<br>0.3892 | 0.3139<br>0.3345<br>0.3541<br>0.3729<br>0.3909 | 0.3160<br>0.3365<br>0.3560<br>0.3747<br>0.3927 | 0.3181<br>0.3385<br>0.3579<br>0.3766<br>0.3945 | 0.3201<br>0.3404<br>0.3598<br>0.3784<br>0.3962 | 2<br>2<br>2<br>2<br>1 | 4<br>4<br>4<br>4      | 6<br>6<br>6<br>5          | 8<br>8<br>8<br>7<br>7      | 11<br>10<br>10<br>9<br>9   | 13<br>12<br>12<br>11<br>11 | 15<br>14<br>14<br>13<br>12 | 17<br>16<br>15<br>15<br>14 | 19<br>18<br>17<br>17<br>16 |
| 2.5<br>2.6<br>2.7<br>2.8<br>2.9 | 0.3979<br>0.4150<br>0.4314<br>0.4472<br>0.4624 | 0.3997<br>0.4166<br>0.4330<br>0.4487<br>0.4639 | 0.4014<br>0.4183<br>0.4346<br>0.4502<br>0.4654 | 0.4031<br>0.4200<br>0.4362<br>0.4518<br>0.4669 | 0.4048<br>0.4216<br>0.4378<br>0.4533<br>0.4683 | 0.4065<br>0.4232<br>0.4393<br>0.4548<br>0.4698 | 0.4082<br>0.4249<br>0.4409<br>0.4564<br>0.4713 | 0.4099<br>0.4265<br>0.4425<br>0.4579<br>0.4728 | 0.4116<br>0.4281<br>0.4440<br>0.4594<br>0.4742 | 0.4133<br>0.4298<br>0.4456<br>0.4609<br>0.4757 | 1<br>1<br>1<br>1      | 3<br>3<br>3<br>3      | 5<br>5<br>5<br>5<br>4     | 7<br>7<br>6<br>6<br>6      | 9<br>8<br>8<br>8<br>7      | 10<br>10<br>9<br>9         | 12<br>11<br>11<br>11<br>10 | 14<br>13<br>13<br>12<br>12 | 15<br>15<br>14<br>14<br>13 |
| 3.0<br>3.1<br>3.2<br>3.3<br>3.4 | 0.4771<br>0.4914<br>0.5051<br>0.5185<br>0.5315 | 0.4786<br>0.4928<br>0.5065<br>0.5198<br>0.5328 | 0.4800<br>0.4942<br>0.5079<br>0.5211<br>0.5340 | 0.4814<br>0.4955<br>0.5092<br>0.5224<br>0.5353 | 0.4829<br>0.4969<br>0.5105<br>0.5237<br>0.5366 | 0.4843<br>0.4983<br>0.5119<br>0.5250<br>0.5378 | 0.4857<br>0.4997<br>0.5132<br>0.5263<br>0.5391 | 0.4871<br>0.5011<br>0.5145<br>0.5276<br>0.5403 | 0.4886<br>0.5024<br>0.5159<br>0.5289<br>0.5416 | 0.4900<br>0.5038<br>0.5172<br>0.5302<br>0.5428 | 1<br>1<br>1<br>1      | 3<br>3<br>3<br>3      | 4<br>4<br>4<br>4          | 6<br>6<br>5<br>5<br>5      | 7<br>7<br>7<br>6<br>6      | 9<br>8<br>8<br>8           | 10<br>10<br>9<br>9         | 11<br>11<br>11<br>10<br>10 | 13<br>12<br>12<br>12<br>12 |
| 3.5<br>3.6<br>3.7<br>3.8<br>3.9 | 0.5441<br>0.5563<br>0.5682<br>0.5798<br>0.5911 | 0.5453<br>0.5575<br>0.5694<br>0.5809<br>0.5922 | 0.5465<br>0.5587<br>0.5705<br>0.5821<br>0.5933 | 0.5478<br>0.5599<br>0.5717<br>0.5832<br>0.5944 | 0.5490<br>0.5611<br>0.5729<br>0.5843<br>0.5955 | 0.5502<br>0.5623<br>0.5740<br>0.5855<br>0.5966 | 0.5514<br>0.5635<br>0.5752<br>0.5866<br>0.5977 | 0.5527<br>0.5647<br>0.5763<br>0.5877<br>0.5988 | 0.5539<br>0.5658<br>0.5775<br>0.5888<br>0.5999 | 0.5551<br>0.5670<br>0.5786<br>0.5899<br>0.6010 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 4<br>4<br>3<br>3<br>3     | 5<br>5<br>5<br>5<br>4      | 6<br>6<br>6<br>6<br>5      | 7<br>7<br>7<br>7           | 9<br>8<br>8<br>8           | 10<br>10<br>9<br>9         | 11<br>11<br>10<br>10<br>10 |
| 4.0<br>4.1<br>4.2<br>4.3<br>4.4 | 0.6021<br>0.6128<br>0.6232<br>0.6335<br>0.6435 | 0.6031<br>0.6138<br>0.6243<br>0.6345<br>0.6444 | 0.6042<br>0.6149<br>0.6253<br>0.6355<br>0.6454 | 0.6053<br>0.6160<br>0.6263<br>0.6365<br>0.6464 | 0.6064<br>0.6170<br>0.6274<br>0.6375<br>0.6474 | 0.6075<br>0.6180<br>0.6284<br>0.6385<br>0.6484 | 0.6085<br>0.6191<br>0.6294<br>0.6395<br>0.6493 | 0.6096<br>0.6201<br>0.6304<br>0.6405<br>0.6503 | 0.6107<br>0.6212<br>0.6314<br>0.6415<br>0.6513 | 0.6117<br>0.6222<br>0.6325<br>0.6425<br>0.6522 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 3<br>3<br>3<br>3          | 4<br>4<br>4<br>4           | 5<br>5<br>5<br>5<br>5      | 7<br>6<br>6<br>6<br>6      | 8<br>7<br>7<br>7           | 9<br>8<br>8<br>8           | 10<br>9<br>9<br>9          |
| 4.5<br>4.6<br>4.7<br>4.8<br>4.9 | 0.6532<br>0.6628<br>0.6721<br>0.6812<br>0.6902 | 0.6637<br>0.6730<br>0.6821                     | 0.6646<br>0.6739<br>0.6830                     | 0.6656<br>0.6749<br>0.6839                     |                                                | 0.6580<br>0.6675<br>0.6767<br>0.6857<br>0.6946 | 0.6684<br>0.6776<br>0.6866                     |                                                | 0.6702<br>0.6794<br>0.6884                     | 0.6618<br>0.6712<br>0.6803<br>0.6893<br>0.6981 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 3 3 3 3                   | 4<br>4<br>4<br>4           | 5<br>5<br>5<br>4<br>4      | 6<br>6<br>5<br>5           | 7<br>7<br>6<br>6<br>6      | 8<br>7<br>7<br>7           | 9<br>8<br>8<br>8           |
| 5.0<br>5.1<br>5.2<br>5.3<br>5.4 | 0.6990<br>0.7076<br>0.7160<br>0.7243<br>0.7324 | 0.7084<br>0.7168<br>0.7251                     | 0.7093<br>0.7177<br>0.7259                     | 0.7185                                         | 0.7110<br>0.7193<br>0.7275                     | 0.7118<br>0.7202                               | 0.7210<br>0.7292                               | 0.7135<br>0.7218<br>0.7300                     |                                                | 0.7067<br>0.7152<br>0.7235<br>0.7316<br>0.7396 | 1<br>1<br>1<br>1      | 2<br>2<br>2<br>2<br>2 | 3<br>3<br>2<br>2<br>2     | 3<br>3<br>3<br>3           | 4<br>4<br>4<br>4           | 5<br>5<br>5<br>5<br>5      | 6<br>6<br>6<br>6           | 7<br>7<br>7<br>6<br>6      | 8<br>8<br>7<br>7<br>7      |

# 상용로그표 (2)

|             | •      |        | •      |        |        | -      | ,      | -      | _      |        |   | 비례부분 |     |   |   |   |   |   |   |
|-------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---|------|-----|---|---|---|---|---|---|
| 수           | 0      | 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 1 | 2    | 3   | 4 | 5 | 6 | 7 | 8 | 9 |
| 5.5         | 0.7404 | 0.7412 | 0.7419 | 0.7427 | 0.7435 | 0.7443 | 0.7451 | 0.7459 | 0.7466 | 0.7474 | 1 | 2    | 2   | 3 | 4 | 5 | 5 | 6 | 7 |
| 5.6         | 0.7482 | 0.7490 | 0.7497 | 0.7505 | 0.7513 | 0.7520 | 0.7528 | 0.7536 | 0.7543 | 0.7551 | 1 | 2    | 2   | 3 | 4 | 5 | 5 | 6 | 7 |
| 5.7         | 0.7559 | 0.7566 | 0.7574 | 0.7582 | 0.7589 | 0.7597 | 0.7604 | 0.7612 | 0.7619 | 0.7627 | 1 | 2    | 2   | 3 | 4 | 5 | 5 | 6 | 7 |
| 5.8         | 0.7634 | 0.7642 | 0.7649 | 0.7657 | 0.7664 | 0.7672 | 0.7679 | 0.7686 | 0.7694 | 0.7701 | 1 | 1    | 2   | 3 | 4 | 4 | 5 | 6 | 7 |
| 5.9         | 0.7709 | 0.7716 | 0.7723 | 0.7731 | 0.7738 | 0.7745 | 0.7752 | 0.7760 | 0.7767 | 0.7774 | 1 | 1    | 2   | 3 | 4 | 4 | 5 | 6 | 7 |
| 6.0         | 0.7782 | 0.7789 | 0.7796 | 0.7803 | 0.7810 | 0.7818 | 0.7825 | 0.7832 | 0.7839 | 0.7846 | 1 | 1    | 2   | 3 | 4 | 4 | 5 | 6 | 6 |
| 6.1         | 0.7853 | 0.7860 | 0.7868 | 0.7875 | 0.7882 | 0.7889 | 0.7896 | 0.7903 | 0.7910 | 0.7917 | 1 | 1    | 2   | 3 | 4 | 4 | 5 | 6 | 6 |
| 6.2         | 0.7924 | 0.7931 | 0.7938 | 0.7945 | 0.7952 | 0.7959 | 0.7966 | 0.7973 | 0.7980 | 0.7987 | 1 | 1    | 2   | 3 | 3 | 4 | 5 | 6 | 6 |
| 6.3         | 0.7993 | 0.8000 | 0.8007 | 0.8014 | 0.8021 | 0.8028 | 0.8035 | 0.8041 | 0.8048 | 0.8055 | 1 | 1    | 2 2 | 3 | 3 | 4 | 5 | 5 | 6 |
| 6.4         | 0.8062 | 0.8069 | 0.8075 | 0.8082 | 0.8089 | 0.8096 | 0.8102 | 0.8109 | 0.8116 | 0.8122 | 1 | 1    | 2   | 3 | 3 | 4 | 5 | 5 | 6 |
| 6.5         | 0.8129 | 0.8136 | 0.8142 | 0.8149 | 0.8156 | 0.8162 | 0.8169 | 0.8176 | 0.8182 | 0.8189 | 1 | 1    | 2   | 3 | 3 | 4 | 5 | 5 | 6 |
| 6.6         | 0.8195 | 0.8202 | 0.8209 | 0.8215 | 0.8222 | 0.8228 | 0.8235 | 0.8241 | 0.8248 | 0.8254 | 1 | 1    | 2   | 3 | 3 | 4 | 5 | 5 | 6 |
| 6.7         | 0.8261 | 0.8267 | 0.8274 | 0.8280 | 0.8287 | 0.8293 | 0.8299 | 0.8306 | 0.8312 | 0.8319 | 1 | 1    | 2   | 3 | 3 | 4 | 5 | 5 | 6 |
| 6.8         | 0.8325 | 0.8331 | 0.8338 | 0.8344 | 0.8351 | 0.8357 | 0.8363 | 0.8370 | 0.8376 | 0.8382 | 1 | 1    | 2   | 3 | 3 | 4 | 4 | 5 | 6 |
| 6.9         | 0.8388 | 0.8395 | 0.8401 | 0.8407 | 0.8414 | 0.8420 | 0.8426 | 0.8432 | 0.8439 | 0.8445 | 1 | 1    | 2   | 2 | 3 | 4 | 4 | 5 | 6 |
| 7.0         | 0.8451 | 0.8457 | 0.8463 | 0.8470 | 0.8476 | 0,8482 | 0.8488 | 0.8494 | 0.8500 | 0.8506 | 1 | 1    | 2   | 2 | 3 | 4 | 4 | 5 | 6 |
| <i>7</i> .1 | 0.8513 | 0.8519 | 0.8525 | 0.8531 | 0.8537 | 0.8543 | 0.8549 | 0.8555 | 0.8561 | 0.8567 | 1 | 1    | 2   | 2 | 3 | 4 | 4 | 5 | 5 |
| 7.2         | 0.8573 | 0.8579 | 0.8585 | 0.8591 | 0.8597 | 0.8603 | 0.8609 | 0.8615 | 0.8621 | 0.8627 | 1 | 1    | 2   | 2 | 3 | 4 | 4 | 5 | 5 |
| 7.3         | 0.8633 | 0.8639 | 0.8645 | 0.8651 | 0.8657 | 0.8663 | 0.8669 | 0.8675 | 0.8681 | 0.8686 | 1 | 1    | 2   | 2 | 3 | 4 | 4 | 5 | 5 |
| 7.4         | 0.8692 | 0.8698 | 0.8704 | 0.8710 | 0.8716 | 0.8722 | 0.8727 | 0.8733 | 0.8739 | 0.8745 | 1 | 1    | 2   | 2 | 3 | 4 | 4 | 5 | 5 |
| 7.5         | 0.8751 | 0.8756 | 0.8762 | 0.8768 | 0.8774 | 0.8779 | 0.8785 | 0.8791 | 0.8797 | 0.8802 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 5 | 5 |
| 7.6         | 0.8808 | 0.8814 | 0.8820 | 0.8825 | 0.8831 | 0.8837 | 0.8842 | 0.8848 | 0.8854 | 0.8859 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 5 | 5 |
| 7.7         | 0.8865 | 0.8871 | 0.8876 | 0.8882 | 0.8887 | 0.8893 | 0.8899 | 0.8904 | 0.8910 | 0.8915 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 7.8         | 0.8921 | 0.8927 | 0.8932 | 0.8938 | 0.8943 | 0.8949 | 0.8954 | 0.8960 | 0.8965 | 0.8971 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 7.9         | 0.8976 | 0.8982 | 0.8987 | 0.8993 | 0.8998 | 0.9004 | 0.9009 | 0.9015 | 0.9020 | 0.9025 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 8.0         | 0.9031 | 0,9036 | 0.9042 | 0.9047 | 0.9053 | 0,9058 | 0,9063 | 0.9069 | 0.9074 | 0.9079 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 8.1         | 0.9085 | 0,9090 | 0.9096 | 0.9101 | 0.9106 | 0.9112 | 0.9117 | 0.9122 | 0.9128 | 0.9133 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 8.2         | 0.9138 | 0.9143 | 0.9149 | 0.9154 | 0.9159 | 0.9165 | 0.9170 | 0.9175 | 0.9180 | 0.9186 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 8.3         | 0.9191 | 0.9196 | 0.9201 | 0.9206 | 0.9212 | 0.9217 | 0.9222 | 0.9227 | 0.9232 | 0.9238 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 8.4         | 0.9243 | 0.9248 | 0.9253 | 0.9258 | 0.9263 | 0.9269 | 0.9274 | 0.9279 | 0.9284 | 0.9289 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 8.5         | 0.9294 | 0.9299 | 0.9304 | 0.9309 | 0.9315 | 0.9320 | 0.9325 | 0.9330 | 0.9335 | 0.9340 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 8.6         | 0.9345 | 0.9350 | 0.9355 | 0.9360 | 0.9365 | 0.9370 | 0.9375 | 0.9380 | 0.9385 | 0.9390 | 1 | 1    | 2   | 2 | 3 | 3 | 4 | 4 | 5 |
| 8.7         | 0.9395 | 0.9400 | 0.9405 | 0.9410 | 0.9415 | 0.9420 | 0.9425 | 0.9430 | 0.9435 | 0.9440 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 8.8         | 0.9445 | 0.9450 | 0.9455 | 0.9460 | 0.9465 | 0.9469 | 0.9474 | 0.9479 | 0.9484 | 0.9489 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 8.9         | 0.9494 | 0.9499 | 0.9504 | 0.9509 | 0.9513 | 0.9518 | 0.9523 | 0.9528 | 0.9533 | 0.9538 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.0         | 0.9542 | 0.9547 | 0.9552 | 0.9557 | 0.9562 | 0.9566 | 0.9571 | 0.9576 | 0.9581 | 0.9586 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.1         |        | 0.9595 | 0.9600 |        | 0.9609 | 0.9614 |        | 0.9624 | 0.9628 | 0.9633 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.2         | 0.9638 | 0.9643 | 0.9647 |        | 0.9657 | 0.9661 | 0.9666 | 0.9671 | 0.9675 | 0.9680 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.3         | 0.9685 | 0.9689 | 0.9694 | 0.9699 | 0.9703 | 0.9708 | 0.9713 | 0.9717 | 0.9722 | 0.9727 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.4         | 0.9731 | 0.9736 | 0.9741 | 0.9745 | 0.9750 | 0.9754 | 0.9759 | 0.9763 | 0.9768 | 0.9773 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.5         | 0.9777 | 0.9782 | 0.9786 | 0.9791 | 0.9795 | 0.9800 | 0.9805 | 0.9809 | 0.9814 | 0.9818 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.6         | 0.9823 | 0.9827 | 0.9832 |        | 0.9841 | 0.9845 | 0.9850 | 0.9854 | 0.9859 | 0.9863 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.7         | 0.9868 | 0.9872 | 0.9877 | 0.9881 | 0.9886 | 0.9890 | 0.9894 | 0.9899 | 0.9903 | 0.9908 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.8         | 0.9912 | 0.9917 | 0.9921 | 0.9926 | 0.9930 | 0.9934 | 0.9939 | 0.9943 | 0.9948 | 0.9952 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
| 9.9         | 0.9956 | 0.9961 | 0.9965 | 0.9969 | 0.9974 | 0.9978 | 0.9983 | 0.9987 | 0.9991 | 0.9996 | 0 | 1    | 1   | 2 | 2 | 3 | 3 | 4 | 4 |
|             |        |        |        |        |        |        |        |        |        |        |   |      |     |   |   |   |   |   |   |

### 삼각함수표

| θ            | $\sin 	heta$ | $\cos \theta$ | an	heta | θ   | $\sin	heta$ | $\cos \theta$ | an	heta |
|--------------|--------------|---------------|---------|-----|-------------|---------------|---------|
| 0°           | 0.0000       | 1.0000        | 0.0000  | 45° | 0.7071      | 0.7071        | 1.0000  |
| 1°           | 0.0175       | 0.9998        | 0.0175  | 46° | 0.7193      | 0.6947        | 1.0355  |
| 2°           | 0.0349       | 0.9994        | 0.0349  | 47° | 0.7314      | 0.6820        | 1.0724  |
| 3°           | 0.0523       | 0.9986        | 0.0524  | 48° | 0.7431      | 0.6691        | 1,1106  |
| <b>4</b> °   | 0.0698       | 0.9976        | 0.0699  | 49° | 0.7547      | 0.6561        | 1.1504  |
| 5°           | 0.0872       | 0.9962        | 0.0875  | 50° | 0.7660      | 0.6428        | 1.1918  |
| 6°           | 0.1045       | 0.9945        | 0.1051  | 51° | 0.7771      | 0.6293        | 1.2349  |
| 7°           | 0.1219       | 0.9925        | 0.1228  | 52° | 0.7880      | 0.6157        | 1.2799  |
| 8°           | 0.1392       | 0.9903        | 0.1405  | 53° | 0.7986      | 0.6018        | 1.3270  |
| 9°           | 0.1564       | 0.9877        | 0.1584  | 54° | 0.8090      | 0.5878        | 1.3764  |
| 10°          | 0.1736       | 0.9848        | 0.1763  | 55° | 0.8192      | 0.5736        | 1.4281  |
| 11°          | 0.1908       | 0.9816        | 0.1944  | 56° | 0.8290      | 0.5592        | 1.4826  |
| 12°          | 0.2079       | 0.9781        | 0.2126  | 57° | 0.8387      | 0.5446        | 1.5399  |
| 13°          | 0.2250       | 0.9744        | 0.2309  | 58° | 0.8480      | 0.5299        | 1,6003  |
| 14°          | 0.2419       | 0.9703        | 0.2493  | 59° | 0.8572      | 0.5150        | 1.6643  |
| 15°          | 0.2588       | 0.9659        | 0.2679  | 60° | 0.8660      | 0.5000        | 1.7321  |
| 16°          | 0.2756       | 0.9613        | 0.2867  | 61° | 0.8746      | 0.4848        | 1.8040  |
| 1 <i>7</i> ° | 0.2924       | 0.9563        | 0.3057  | 62° | 0.8829      | 0.4695        | 1.8807  |
| 18°          | 0.3090       | 0.9511        | 0.3249  | 63° | 0.8910      | 0.4540        | 1.9626  |
| 19°          | 0.3256       | 0.9455        | 0.3443  | 64° | 0.8988      | 0.4384        | 2.0503  |
| 20°          | 0.3420       | 0,9397        | 0.3640  | 65° | 0.9063      | 0.4226        | 2,1445  |
| 21°          | 0.3584       | 0,9336        | 0.3839  | 66° | 0.9135      | 0.4067        | 2.2460  |
| 22°          | 0.3746       | 0.9272        | 0.4040  | 67° | 0.9205      | 0.3907        | 2,3559  |
| 23°          | 0.3907       | 0.9205        | 0.4245  | 68° | 0.9272      | 0.3746        | 2.4751  |
| 24°          | 0.4067       | 0.9135        | 0.4452  | 69° | 0.9336      | 0.3584        | 2.6051  |
| 25°          | 0.4226       | 0.9063        | 0.4663  | 70° | 0.9397      | 0.3420        | 2,7475  |
| 26°          | 0.4384       | 0.8988        | 0.4877  | 71° | 0,9455      | 0.3256        | 2,9042  |
| 27°          | 0.4540       | 0.8910        | 0.5095  | 72° | 0.9511      | 0.3230        | 3.0777  |
| 28°          | 0.4695       | 0.8829        | 0.5317  | 73° | 0.9563      | 0.3090        | 3.2709  |
| 29°          | 0.4848       | 0.8746        | 0.5543  | 74° | 0.9613      | 0.2324        | 3.4874  |
| 30°          | 0.4040       | 0.8660        | 0.5543  | 75° | 0.9659      | 0.2730        | 3.7321  |
| 31°          | 0.5150       | 0,8572        | 0.6009  | 76° | 0.9703      | 0.2419        | 4.0108  |
| 32°          | 0.5299       | 0.8480        | 0.6249  | 77° | 0.9744      | 0.2250        | 4.3315  |
| 33°          | 0.5446       | 0.8387        | 0.6494  | 78° | 0.9744      | 0.2230        | 4.7046  |
| 34°          | 0.5592       | 0.8290        | 0.6745  | 79° | 0.9816      | 0.1908        | 5.1446  |
| 35°          | 0.5736       | 0.8192        | 0.7002  | 80° | 0.9848      | 0.1736        | 5.6713  |
| 36°          | 0.5878       | 0.8090        | 0.7265  | 81° | 0.9877      | 0.1564        | 6,3138  |
| 37°          | 0.6018       | 0.7986        | 0.7536  | 82° | 0.9903      | 0.1392        | 7.1154  |
| 38°          | 0.6157       | 0.7880        | 0.7813  | 83° | 0.9925      | 0.1219        | 8.1443  |
| 39°          | 0.6293       | 0.7771        | 0.8098  | 84° | 0.9945      | 0.1045        | 9.5144  |
| 40°          | 0.6428       | 0.7660        | 0.8391  | 85° | 0.9962      | 0.0872        | 11.4301 |
| 41°          | 0.6561       | 0.7547        | 0.8693  | 86° | 0.9976      | 0.0698        | 14.3007 |
| 42°          | 0.6691       | 0.7431        | 0.9004  | 87° | 0.9986      | 0.0523        | 19.0811 |
| 43°          | 0.6820       | 0.7314        | 0.9325  | 88° | 0.9994      | 0.0349        | 28.6363 |
| 44°          | 0.6947       | 0.7193        | 0.9657  | 89° | 0.9998      | 0.0175        | 57.2900 |
| 45°          | 0.7071       | 0.7071        | 1.0000  | 90° | 1.0000      | 0.0000        | ∞       |
|              |              |               |         |     |             |               |         |

# 확인문제하는



**069-1.** 정답 
$$0 \le \theta < \frac{\pi}{2}$$
 또는  $\frac{3}{2}\pi < \theta \le 2\pi$ 

 $f(x)=x^2-2x\cos\theta+2\cos\theta$ 라 하면 모든 실수 x에 대하여 f(x)>0이 성립하므로

$$\frac{D}{4} = \cos^2 \theta - 2\cos \theta = \cos \theta (\cos \theta - 2) < 0$$

그런데 
$$-1 \le \cos \theta \le 1$$
이므로

 $0 \le \theta < \frac{\pi}{2}$  또는  $\frac{3}{2}\pi < \theta \le 2\pi$ 

$$\therefore 0 < \cos \theta \le 1$$
  
따라서, 오른쪽 그림으로부터  $\theta$ 의 값의 범위는



확인문제 [p. 126~137]

P

### 08. 사인법칙과 코사인법칙

**070-1.** 정답  $b=10\sqrt{6}$ ,  $R=10\sqrt{2}$ 

$$\frac{a}{\sin A} = \frac{b}{\sin B} \text{ and } \frac{20}{\sin 45^\circ} = \frac{b}{\sin 60^\circ}$$

$$\therefore b = \frac{20}{\sin 45^{\circ}} \times \sin 60^{\circ} = 20\sqrt{2} \times \frac{\sqrt{3}}{2} = 10\sqrt{6}$$

또, 외접원의 반지름의 길이 R의 값은

$$\frac{20}{\sin 45^{\circ}} = 2R, 2R = 20\sqrt{2}$$
  $\therefore R = 10\sqrt{2}$ 



**072-2.** 정답 
$$\overline{BC}$$
=6

호 BC의 중심각의 크기가 60°이므로 원주각의

크기, 즉 
$$\angle A$$
의 크기는  $\frac{60^{\circ}}{2}$  =  $30^{\circ}$  따라서,  $\frac{\overline{BC}}{\sin A}$  =  $2R$ 에서

 $\frac{\overline{BC}}{\sin 30^{\circ}} = 2 \times 6$ 

$$\therefore \overline{BC} = 12 \sin 30^{\circ} = 6$$

**071-1.** 정답 3:5:7

$$a-2b+c=0$$

.....

$$3a+b-2c=0$$

.....(L)

$$5a - 3b = 0 \qquad \therefore a = \frac{3}{5}b$$

이때, 
$$\neg$$
에서  $c = -a + 2b$ 

$$\therefore c = \frac{7}{5}b$$

$$\stackrel{\text{Res}}{=}$$
,  $a:b:c=\frac{3}{5}b:b:\frac{7}{5}b$   
=3:5:7

따라서.

$$\sin A : \sin B : \sin C = a : b : c$$

$$=3:5:7$$

참고

사인법칙

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$

$$(2) a : b : c = \sin A : \sin B : \sin C$$

(3) 
$$a=2R\sin A$$
,  $b=2R\sin B$ ,  $c=2R\sin C$ 

### **071-2.** 정답 a=b인 이등변삼각형

사인법칙에서 
$$\sin A = \frac{a}{2R}$$
,  $\sin B = \frac{b}{2R}$ 이므로

이를 
$$a \sin A = b \sin B$$
에 대입하면

$$a \times \frac{a}{2R} = b \times \frac{b}{2R} : a^2 = b^2$$

$$a>0, b>0$$
이므로 $a=b$ 

따라서, 
$$\triangle ABC$$
는  $a=b$ 인 이등변삼각형이다.

**072-1.** 정답 (1) 
$$a=\sqrt{2}+\sqrt{6}$$
,  $A=105^{\circ}$  (2)  $c=\sqrt{6}$ ,  $A=45^{\circ}$ ,  $B=75^{\circ}$ 

$$(1)a=b\cos C+c\cos B$$
에서

$$a=2\cos 45^{\circ}+2\sqrt{2}\cos 36^{\circ}$$

$$a=2\cos 45^{\circ} + 2\sqrt{2}\cos 30^{\circ}$$
$$=2\cdot \frac{\sqrt{2}}{2} + 2\sqrt{2}\cdot \frac{\sqrt{3}}{2}$$

$$=\sqrt{2}+\sqrt{6}$$

$$\pm A = 180^{\circ} - (30^{\circ} + 45^{\circ}) = 105^{\circ}$$

$$(2)c^2=a^2+b^2-2ab\cos C$$
에서

$$c^{2}=2^{2}+(\sqrt{3}+1)^{2}-2\cdot2\cdot(\sqrt{3}+1)\cdot\cos 60^{\circ}$$

$$=4+(4+2\sqrt{3})-(2\sqrt{3}+2)=6$$

$$\therefore c = \sqrt{6} \ (\because c > 0)$$

또, 
$$\frac{a}{\sin A} = \frac{c}{\sin C}$$
에서  $\sin A = \frac{2 \cdot \sin 60^{\circ}}{\sqrt{6}} = \frac{\sqrt{2}}{2}$   
 $\therefore A = 45^{\circ}$  또는  $A = 135^{\circ}$ 

그런데. 
$$A=135^\circ$$
이면  $A+C>180^\circ$ 가 되므로  $A=45^\circ$ 

이때.  $B=180^{\circ}-(45^{\circ}+60^{\circ})=75^{\circ}$ 

# 삼각형에서 최대각은 최대변의 대각이므로 $\triangle ABC$ 에서 최대각은 A

이다. 
$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$= \frac{8^2 + 7^2 - 13^2}{2 \cdot 8 \cdot 7} = \frac{-56}{112}$$
$$= -\frac{1}{2}$$

따라서, 
$$\cos A = -\frac{1}{2}$$
에서  $A = 120^{\circ}$ 

$$a:b:c=2:3:4$$
에서

$$a=2k, b=3k, c=4k(k>0)$$
로 놓으면

$$\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$$
$$= \frac{(3k)^{2} + (4k)^{2} - (2k)^{2}}{2 \cdot 3k \cdot 4k}$$

$$=\frac{21k^2}{24k^2}=\frac{7}{8}$$

### 074-1 정답 (1) b=c인 이등변삼각형

(2) B = 90°인 직각삼각형 또는 A = 90°인 직각삼각형

(1) 사인법칙과 제이코사인법칙에서

$$\sin A = \frac{a}{2R}, \sin C = \frac{c}{2R}$$

$$\cos B = \frac{a^2 + c^2 - b^2}{2ac}$$
이므로

$$\frac{a}{2R} = 2 \times \frac{c}{2R} \times \frac{a^2 + c^2 - b^2}{2ac}$$

$$a^2 = a^2 + c^2 - b^2$$

$$b^2-c^2=0$$
  
 $b>0$ .  $c>0$ 이므로  $b=c$ 

따라서,  $\triangle ABC는 b=c$ 인 이등변삼각형이다.

(2) 주어진 식은 제이코사인법칙으로부터

$$a \cdot \frac{b^2 + c^2 - a^2}{2bc} + b \cdot \frac{a^2 + c^2 - b^2}{2ac} = c \cdot \frac{a^2 + b^2 - c^2}{2ab}$$

양변에 2*abc*를 곱하면

$$a^{2}(b^{2}+c^{2}-a^{2})+b^{2}(a^{2}+c^{2}-b^{2})=c^{2}(a^{2}+b^{2}-c^{2})$$

$$a^{2}b^{2}+a^{2}c^{2}-a^{4}+b^{2}a^{2}+b^{2}c^{2}-b^{4}=c^{2}a^{2}+c^{2}b^{2}-c^{4}$$

$$a^{4}+b^{4}-2a^{2}b^{2}-c^{4}=0$$

$$(a^{2}-b^{2})^{2}-c^{4}=0$$

$$(a^2-b^2+c^2)(a^2-b^2-c^2)=0$$

∴ 
$$a^2 - b^2 + c^2 = 0$$
  $\exists = a^2 - b^2 - c^2 = 0$ 

$$\therefore a^2 - b^2 + c^2 = 0$$
 보는  $a^2 - b^2 - c^2 = 0$   
따라서,  $\triangle ABC는 b^2 = a^2 + c^2$  또는  $a^2 = b^2 + c^2$ 이므로  $B = 90^\circ$ 인

직각삼각형 또는 
$$A=90^\circ$$
인 직각삼각형

$$(\triangle ABC$$
의 넓이)= $\frac{1}{2}ab \sin C$ 

$$=\frac{1}{2}\cdot 4\cdot 6\cdot \sin 60^{\circ}$$

$$=12 \cdot \frac{\sqrt{3}}{2} = 6\sqrt{3}$$



오른쪽 그림에서 
$$h=a\sin C$$
이므로

$$S = \frac{1}{2} \cdot b \cdot h$$

$$=\frac{1}{2}ab\sin C$$



삼각형의 넓이를 S라 하면

$$S = \frac{1}{2} \cdot 10 \cdot 8 \cdot \sin \theta = 20$$

$$\therefore \sin \theta = \frac{1}{2}$$

$$\theta$$
=30° 또는 $\theta$ =150°

**076-1.** 정답 (1) 
$$10\sqrt{3}$$
 (2)  $\frac{\sqrt{11}}{2}$ 

$$s = \frac{a+b+c}{2} = \frac{5+7+8}{2} = 10$$

$$S = \sqrt{s(s-a)(s-b)(s-c)}$$

$$= \sqrt{10(10-5)(10-7)(10-8)}$$

$$= \sqrt{10 \cdot 5 \cdot 3 \cdot 2} = 10\sqrt{3}$$

$$(2)a=\sqrt{3}, b=2, c=\sqrt{5}$$
일 때

$$\cos A = \frac{4+5-3}{2 \cdot 2 \cdot \sqrt{5}} = \frac{3}{2\sqrt{5}}$$
 이때,

$$\sin^2 A = 1 - \cos^2 A = 1 - \frac{9}{20} = \frac{11}{20}$$
$$\therefore \sin A = \frac{\sqrt{11}}{2\sqrt{5}}$$

$$\therefore S = \frac{1}{2}bc \sin A$$

$$= \frac{1}{2} \cdot 2 \cdot \sqrt{5} \cdot \frac{\sqrt{11}}{2\sqrt{5}}$$

$$=\frac{\sqrt{11}}{2}$$

두 대각선의 길이가 
$$p$$
,  $q$ 이고, 두 대각선이 이루는 각의 크기가  $\theta$ 인 사

각형의 넓이는

$$S = \frac{1}{2}pq \sin \theta$$

그런데 주어진 조건의 등변사다리꼴은 두 대각선의 길이가 같으므로  $\sqrt{3} = \frac{1}{2} p^2 \sin 120^\circ$ 

$$p^2 = 4 \qquad \therefore p = 2 \; (\because p > 0)$$

따라서, 대각선의 길이는 2이다.

