Modelling light propagation through radial-director liquid crystal waveguides

Miha Čančula¹, Miha Ravnik^{1,2}, Slobodan Žumer^{1,2,3}

 $^1\mbox{Faculty}$ of Mathematics and Physics, University of Ljubljana, Slovenia

²Centre of excellence NAMASTE, Ljubljana, Slovenia

³ Jožef Stefan Institute, Ljubljana, Slovenia

July 5, 2013

Outline

- Motivation
- FDTD Method
 - Maxwell's equations
 - Numerical modelling
 - Testing
- Results
 - Electric field
 - Pulse shape
 - Eigenmodes
- Conclusions

Motivation

- Anisotropic birefringent profiles of liquid crystals for guiding light
- Sm A fibres with radial director profile using 8CB
- Defects in LC ↔ defects in optical fields

K. Peddireddy et al., Langmuir 28 (2012)

Methods - Maxwell's Equations

$$\nabla \cdot \vec{D} = \rho_f \qquad \nabla \cdot \vec{B} = 0$$

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \nabla \times \vec{H} = \vec{J}_f + \frac{\partial \vec{D}}{\partial t}$$

Nice for simulations

- ullet Time-derivative of one field \propto space-derivative of other
- Alternate between calculating E and H
- Suitable for parallel computation

Methods – Finite-difference time-domain

$$\varepsilon \frac{\partial \vec{E}}{\partial t} = \nabla \times \vec{H} \qquad \frac{\partial \vec{H}}{\partial t} \quad = -\nabla \times \vec{E}$$

- Direct time evolution of electromagnetic fields
- Anisotropic and non-uniform arepsilon, follows director as $\Delta arepsilon \propto Q$
- Staggered grid, fields known at different times

Methods – Testing

- Uniform director
- Refraction on interface
- Photonic bandgap of periodic structure

Radial-director waveguide

- \bullet Fibre radius 10 μ m
- Gaussian pulse, wavelength 480 nm
- ullet 8CB with $n_o=1.51$ and $n_e=1.68$, surrounded by water
- Long waveguide simulated with periodic boundary conditions

Results – Electric field

- ullet Gaussian beam o Laguerre-Gaussian, dark spot at the axis
- The difference in refraction index deforms the beam

Results – Pulse shape

- 8 intensity regions in 2 ranks
- Positioned diagonally to incident polarization
- Two propagation modes with different polarizations

Results - Propagation modes

Mode 2

- Polarization forms -1 disclination line
- Disclination lines are rotated by 45° with respect to each other

Conclusions

Method

- Model the propagation of light through media with non-uniform fully-anisotropic dielectric tensor
- Direct solving of discretized Maxwell's equations

Results

- ullet Topological defect in LC o topological defect in optical field
- Propagation modes of a radial-director liquid crystal waveguide
- Splitting of a single pulse into eight intensity regions