零死角玩转STM32—M4系列

高级定时器

淘宝: firestm32.taobao.com

野火论坛: www.firebbs.cn

主讲内容

01

定时器简介

02

高级定时器功能框图讲解

参考资料:《零死角玩转STM32》

"TIM—高级定时器"章节

定时器简介

定时器功能:定时、输出比较、输入捕获、断路输入

定时器分类:基本定时器、通用定时器、高级定时器

定时器资源:407有2个高级定时器、10个通用定时

器、2个基本定时器

定时器简介

各个定时器特性

表 31-1 各个定时器特性

定时器类型	Timer	计数器分辨率	计数器类型	预分频系数	DMA 请 求生成	捕获/ 比较 通道	互补 输出	最大接口时 钟(MHz)	最大定时器 时钟(MHz)
高级控制	TIM1 和 TIM8	16 位	递增、递 减、递增/ 递减	1~65536(整 数)	有	4	有	90 (APB2)	180
通用	TIM2, TIM5	32 位	递增、递减、递增/ 递减	1~65536(整 数)	有	4	无	45 (APB1)	90/180
	TIM3, TIM4	16 位	递增、递 减、递增/ 递减	1~65536(整 数)	有	4	无	45 (APB1)	90/180
	TIM9	16 位	递增	1~65536(整 数)	无	2	无	90 (APB2)	180
	TIM10, TIM11	16 位	递增	1~65536(整 数)	无	1	无	90 (APB2)	180
	TIM12	16 位	递增	1~65536(整 数)	无	2	无	45 (APB1)	90/180
	TIM13, TIM14	16 位	递增	1~65536(整 数)	无	1	无	45 (APB1)	90/180
基本	TIM6 和 TIM7	16 位	递增	1~65536(整 数)	有	0	无	45 (APB1)	90/180

高级定时器简介

高级定时器功能简介

1-计数器16bit,上/下/两边 计数,TIM1和TIM8,还

有一个重复计数器RCR,独有。

2-有4个GPIO,其中通道1~3还有互补输出GPIO

3-时钟来自PCLK2,可实现1~65536分频

高级定时器GPIO说明

表 33-1 高级控制和通用定时器通道引脚分布↵

高级控制₽			通用定时器₽										1
ته	TIM1¢	TIM8↔	TIM2	TIM 5₽	TIM3₽	TIM4₽	TIM 9₽	TIM 10₽	TIM 11₽	TIM1 2↔	TIM 13¢	TIM 14₽],
CH 1€	PA8/PE9₽	PC6₽	PA0/PA5₽	PA0₽	PA6/P C6/PB 4₽	PD12/ PB6₽	PE5/ PA2₽	PF6/ PB8₽	PF7/ PB9₽	PB14₽	PF8/ PA6₽	PF9/ PA7₽],
CH 1N₽	PA7/PE8/ PB13₽	PA5/P A7₽	¢	¢	4	ţ	¢	÷,	÷,	ţ.	¢	÷2	ŀ
CH 2€	PE11/PA 9₽	PC7₽	PA1/PB3₽	PA1 ₽	PA7/P C7/PB 5₽	PD13/ PB7 <i>₽</i>	PE6/ PA3₽	÷	Þ	PB15₽	¢	¢	١
CH 2N₽	PB0/PE10 /PB14+2	PB0/P B14€	Đ	¢	₽	ą.	ą.	¢	ą.	ą.	¢	¢	١
CH 3€	PE13/PA 10€	PC8₽	PA2/PB1 0€	PA2₽	PB0/P C8₽	PD14/ PB8₽	¢	ţ.	ţ	t	t	ţ	
CH 3N₽	PB1/PE12 /PB15&	PB1/P B15€	¢	¢	₽	¢	¢	¢	¢	¢	¢	¢	ŀ
CH 4₽	PE14/PA 11€	PC9₽	PA3/PB1 1 <i>₽</i>	PA3₽	PB1/P C9₽	PD15/ PB9€	ą.	¢	ą.	¢	¢	¢]
ET R¢	PE7/PA1 2€	PA0/P I3 ₽	PA0/PA5 /PA15 ₽	¢	PD2₽	PE0₽	ą.	÷2	Þ	÷.	¢	¢	
BK IN∉	PA6/PE1 5/PB12 <i>₽</i>	PA6/P I4 € ³	Đ	Ţ.	Ę.	Đ	ą	Đ	Đ	Đ	ą.	Ð	•

其他型号STM32可参考数据手册的引脚说明章节

- 1-时钟源
- 2-控制器
- 3-时基
- 4-输入捕获
- 5-输出比较
- 6-断路功能

一、时钟源

- 1-内部时钟源CK_INT
- 2-外部时钟模式1—外部的GPIO Tix (x=1234)
- 3-外部时钟模式2—外部的GPIO ETR
- 4-内部触发输入—ITRx(x=1234)

内部时钟源

1-内部时钟源来自RCC的TIMx_CLK

2-TIMx_CLK等于多少呢?如何确定?

具体的查看:RCC 专用时钟配置寄存器 (RCC_DCKCFGR)

外部时钟1(有点像编码器模式)

外部时钟模式1

图 32-2 外部时钟模式 1 框图

①时钟信号输入引脚

1-外部的GPIO TIx,对应:TIMx_CH1/2/3/4

2-TIM_CCMRx 的位 CCxS[1:0]配置,其中 CCMR1

控制 TI1/2, CCMR2 控制 TI3/4

②滤波器

1-如果来自外部的时钟信号的频率过高或者混杂有高频干扰信号的话,我们就需要使用滤波器对 ETRP 信号重新采样,来达到降频或者去除高频干扰的目的,2-由TIMx_CCMx 的位 ICxF[3:0]配置。

③边沿检测

1-边沿检测的信号来自于滤波器的输出,在成为触发信号之前,需要进行边沿检测,决定是上升沿有效还是下降沿有效。

2-由 TIMx_CCER 的位 CCxP 和 CCxNP 配置。

4触发选择

1-当使用外部时钟模式 1 时,触发源有两个,一个是滤波后的定时器输入 1(TI1FP1)和滤波后的定时器输入 2(TI2FP2)。

2-由 TIMx SMCR 的位 TS[2:0]配置。

⑤从模式选择

1-选定了触发源信号后,最后我们需把信号连接到TRGI引脚,让触发信号成为外部时钟模式1的输入,最终等于CK_PSC,然后驱动计数器CNT计数。2-具体的配置TIMx_SMCR的位SMS[2:0]为000即可选择外部时钟模式1。

⑥使能计数器

1-经过上面的 5 个步骤之后,最后我们只需使能计数

器开始计数,外部时钟模式1的配置就算完成。

2-使能计数器由 TIMx_CR1 的位 CEN 配置。

外部时钟2

外部时钟模式 2

图 32-3 外部时钟模式 2 框图

①时钟信号输入引脚

当使用外部时钟模式 2 的时候, 时钟信号来自于定时器的特定输入通道 TIMx_ETR, 只有 1 个。

②外部触发极性

1-来自 ETR 引脚输入的信号可以选择为上升沿或者下降沿有效。

2-具体的由 TIMx_SMCR的位 ETP 配置。

③外部触发预分频器

- 1-由于 ETRP 的信号的频率不能超过 TIMx_CLK (180M)的 1/4,当触发信号的频率很高的情况下,就必须使用分频器来降频。
- 2-具体的由 TIMx_SMCR 的位 ETPS[1:0]配置。

④滤波器

1-如果 ETRP 的信号的频率过高或者混杂有高频干扰信号的,需要使用滤波器对 ETRP 信号重新采样,来 达到降频或者去除高频干扰的目的。

2-具体的由 TIMx_SMCR 的位 ETF[3:0]配置,其中的 fDTS 是由内部时钟 CK_INT 分频得到,具体的由 TIMx_CR1 的位CKD[1:0]配置。

⑤从模式选择

- 1-经过滤波器滤波的信号连接到 ETRF 引脚后,触发信号成为外部时钟模式 2 的输入,最终等于 CK_PSC,然后驱动计数器 CNT 计数。
- 2-具体的配置 TIMx_SMCR 的位 ECE 为 1即可选择外部时钟模式 2。

⑥使能计数器

1-经过上面的 5 个步骤之后 , 最后我们只需使能计数器开始计数 , 外部时钟模式 2 的配置就算完成。

2-使能计数器由 TIMx_CR1 的位 CEN 配置。

内部触发输入

- 1-内部触发输入是使用一个定时器作为另一个定时器的预分频器。硬件上高级控制定时器和通用定时器在内部连接在一起,可以实现定时器同步或级联。
- 2-由TIMx_SMCR的位TS[2:0]配置。

内部触发连接

表 72. TIMx 内部触发连接

从 TIM	ITR0 (TS = 000)	ITR1 (TS = 001)	ITR2 (TS = 010)	ITR3 (TS = 011)
TIM1	TIM5	TIM2	TIM3	TIM4
TIM8	TIM1	TIM2	TIM4	TIM5

TIM1为TIM2提供时钟

图 32-4 为主模式定时器(TIM1)为从模式定时器(TIM2)提供时钟,即 TIM1 用作 TIM2 的预分频器。

图 32-4 TIM1 用作 TIM2 的预分频器

二、控制器

1-控制器就是用来控制的,发送命令的

2-CR1、CR2、SMCR、CCER,主要学习这几个寄存器即可。

三、时基单元

图 32-5 高级定时器时基单元

时基单元的组成

- 1-16位的预分频器 PSC, TIMx_PSC
- 2-16位的计数器CNT, TIMx_CNT
- 3-8位的重复计数器RCR, TIMx_RCR(高级定时器独有)
- 3-16位的自动重装载寄存器ARR, TIMx_ARR

预分频器

预分频器 PSC

预分频器 PSC,有一个输入时钟 CK_PSC 和一个输出时钟 CK_CNT。输入时钟 CK_PSC 就是上面时钟源的输出,输出 CK_CNT 则用来驱动计数器 CNT 计数。通过设置 预分频器 PSC 的值可以得到不同的 CK_CNT,实际计算为: f_{CK_CNT} 等于 $f_{CK_PSC}/(PSC[15:0]+1)$,可以实现 1 至 65536 分频。

计数器(上/下/两边)

- (1) 递增计数模式下,计数器从 0 开始计数,每来一个 CK_CNT 脉冲计数器就增加 1,直到计数器的值与自动重载寄存器 ARR 值相等,然后计数器又从 0 开始计数并生成计数器上溢事件,计数器总是如此循环计数。如果禁用重复计数器,在计数器生成上溢事件就马上生成更新事件(UEV);如果使能重复计数器,每生成一次上溢事件重复计数器内容就减 1,直到重复计数器内容为 0 时才会生成更新事件。
- (2) 递减计数模式下,计数器从自动重载寄存器 ARR 值开始计数,每来一个 CK_CNT 脉冲计数器就减 1,直到计数器值为 0,然后计数器又从自动重载寄存器 ARR 值开始递减计数并生成计数器下溢事件,计数器总是如此循环计数。如果禁用重复计数器,在计数器生成下溢事件就马上生成更新事件;如果使能重复计数器,每生成一次下溢事件重复计数器内容就减 1,直到重复计数器内容为 0 时才会生成更新事件。
- (3) 中心对齐模式下, 计数器从 0 开始递增计数, 直到计数值等于(ARR-1)值生成计数器上溢事件, 然后从 ARR 值开始递减计数直到 1 生成计数器下溢事件。然后又从 0 开始计数, 如此循环。每次发生计数器上溢和下溢事件都会生成更新事件。

自动重装载寄存器

自动重载寄存器 ARR

自动重载寄存器 ARR 用来存放与计数器 CNT 比较的值,如果两个值相等就递减重复计数器。可以通过 TIMx_CR1 寄存器的 ARPE 位控制自动重载影子寄存器功能,如果 ARPE 位置 1,自动重载影子寄存器有效,只有在事件更新时才把 TIMx_ARR 值赋给影子寄存器。如果 ARPE 位为 0,则修改 TIMx_ARR 值马上有效。

重复计数器

自动重载寄存器 ARR

自动重载寄存器 ARR 用来存放与计数器 CNT 比较的值,如果两个值相等就递减重复计数器。可以通过 TIMx_CR1 寄存器的 ARPE 位控制自动重载影子寄存器功能,如果 ARPE 位置 1,自动重载影子寄存器有效,只有在事件更新时才把 TIMx_ARR 值赋给影子寄存器。如果 ARPE 位为 0,则修改 TIMx_ARR 值马上有效。

四、输入捕获

输入捕获的作用和原理

输入捕获可以对输入的信号的上升沿,下降沿或者双边沿进行捕获,常用的有测量输入信号的脉宽和测量 PWM 输入信号的频率和占空比这两种。

输入捕获的大概的原理就是,当捕获到信号的跳变沿的时候,把计数器 CNT 的值锁存到捕获寄存器 CCR 中,把前后两次捕获到的 CCR 寄存器中的值相减,就可以算出脉宽或者频率。如果捕获的脉宽的时间长度超过你的捕获定时器的周期,就会发生溢出,这个我们需要做额外的处理。

①输入通道

当使用需要被测量的信号从定时器的外部引脚TIMx_CH1/2/3/4 进入,通常叫TI1/2/3/4,在后面的捕获讲解中对于要被测量的信号我们都以TIx为标准叫法。

②输入滤波和边沿检测

当输入的信号存在高频干扰的时候,我们需要对输入信号进行滤波,即进行重新采样,根据采样定律,采样的频率必须大于等于两倍的输入信号。比如输入的信号为 1M,又存在高频的信号干扰,那么此时就很有必要进行滤波,我们可以设置采样频率为 2M,这样可以在保证采样到有效信号的基础上把高于 2M 的高频干扰信号过滤掉。

滤波器的配置由 CR1 寄存器的位 CKD[1:0]和 CCMR1/2 的位 ICxF[3:0]控制。从 ICxF 位的描述可知,采样频率 f_{SAMPLE} 可以由 f_{CK_INT} 和 f_{DTS} 分频后的时钟提供,其中是 f_{CK_INT} 内部时钟, f_{DTS} 是 f_{CK_INT} 经过分频后得到的频率,分频因子由 CKD[1:0]决定,可以是不分频,2 分频或者是 4 分频。

边沿检测器用来设置信号在捕获的时候是什么边沿有效,可以是上升沿,下降沿,或者是双边沿,具体的由 CCER 寄存器的位 CCxP 和 CCxNP 决定。

③捕获通道

捕获通道就是图中的 IC1/2/3/4,每个捕获通道都有相对应的捕获寄存器 CCR1/2/3/4, 当发生捕获的时候,计数器 CNT 的值就会被锁存到捕获寄存器中。

这里我们要搞清楚输入通道和捕获通道的区别,输入通道是用来输入信号的,捕获通道是用来捕获输入信号的通道,一个输入通道的信号可以同时输入给两个捕获通道。比如输入通道 TI1 的信号经过滤波边沿检测器之后的 TI1FP1 和 TI1FP2 可以进入到捕获通道 IC1 和 IC2,其实这就是我们后面要讲的 PWM 输入捕获,只有一路输入信号(TI1)却占用了两个捕获通道(IC1 和 IC2)。当只需要测量输入信号的脉宽时候,用一个捕获通道即可。输入通道和捕获通道的映射关系具体由寄存器 CCMRx 的位 CCxS[1:0]配置。

④预分频器

- 1-ICx 的输出信号会经过一个预分频器,用于决定发生多少个事件时进行一次捕获。
- 2-具体的由寄存器 CCMRx 的位 ICxPSC 配置,如果希望捕获信号的每一个边沿,则不分频。

⑤捕获寄存器

经过预分频器的信号 ICxPS 是最终被捕获的信号,当发生捕获时(第一次),计数器 CNT 的值会被锁存到捕获寄存器 CCR 中,还会产生 CCxI 中断,相应的中断位 CCxIF(在 SR 寄存器中)会被置位,通过软件或者读取 CCR 中的值可以将 CCxIF 清 0。如果发生第二次捕获(即重复捕获: CCR 寄存器中已捕获到计数器值且 CCxIF 标志已置 1),则捕获溢出标志位 CCxOF(在 SR 寄存器中)会被置位,CCxOF 只能通过软件清零。

输入捕获的应用

1、测量脉宽和频率

输入捕获的应用

2、PWM输入模式

图 32-12 输入通道和捕获通道的关系映射图

输入捕获的应用

2、PWM输入模式

五、输出比较

输出比较的作用

输出比较就是通过定时器的外部引脚对外输出控制信号,有冻结、将通道 X (x=1,2,3,4) 设置为匹配时输出有效电平、将通道 X 设置为匹配时输出无效电平、翻转、强制变为无效电平、强制变为有效电平、PWM1 和 PWM2 这八种模式,具体使用哪种模式由寄存器 CCMRx 的位 OCxM[2:0]配置。其中 PWM 模式是输出比较中的特例,使用的也最多。

①输出比较寄存器

①比较寄存器

当计数器 CNT 的值跟比较寄存器 CCR 的值相等的时候,输出参考信号 OCxREF 的信号的极性就会改变,其中 OCxREF=1 (高电平)称之为有效电平,OCxREF=0 (低电平)称之为无效电平,并且会产生比较中断 CCxI,相应的标志位 CCxIF (SR 寄存器中)会置位。然后 OCxREF 再经过一系列的控制之后就成为真正的输出信号 OCx/OCxN。

②死区发生器

在生成的参考波形 OCxREF 的基础上,可以插入死区时间,用于生成两路互补的输出信号 OCx 和 OCxN,死区时间的大小具体由 BDTR 寄存器的位 DTG[7:0]配置。死区时间的大小必须根据与输出信号相连接的器件及其特性来调整。下面我们简单举例说明下带死区的PWM 信号的应用,我们以一个板桥驱动电路为例。

带死区插入的半桥驱动电路

图 32-8 半桥驱动电路

带死区插入的互补输出波形图

③输出控制

③输出控制—讲解

在输出比较的输出控制中,参考信号 OCxREF 在经过死区发生器之后会产生两路带死区的互补信号 OCx_DT 和 OCxN_DT (通道 1~3 才有互补信号,通道 4 没有,其余跟通道 1~3 一样),这两路带死区的互补信号然后就进入输出控制电路,如果没有加入死区控制,那么进入输出控制电路的信号就直接是 OCxREF。

进入输出控制电路的信号会被分成两路,一路是原始信号,一路是被反向的信号,具体的由寄存器 CCER 的位 CCxP和 CCxNP 控制。经过极性选择的信号是否由 OCx 引脚输出到外部引脚 CHx/CHxN 则由寄存器 CCER 的位 CxE/CxNE 配置。

如果加入了断路(刹车)功能,则断路和死区寄存器 BDTR 的 MOE、OSSI 和 OSSR 这三个位会共同影响输出的信号。

④输出引脚

输出比较的输出信号最终是通过定时器的外部 IO 来输出的,分别为 CH1/2/3/4,其中前面三个通道还有互补的输出通道 CH1/2/3N。更加详细的 IO 说明还请查阅相关的数据手册。

输出比较的应用

- 1-输出比较模式总共有 8 种,常用的是PWM模式。
- 2-由寄存器 CCMRx 的位 OCxM[2:0]配置。

PWM输出模式

PWM 输出就是对外输出脉宽(即占空比)可调的方 波信号,信号频率由自动重装寄存器 ARR 的值决定, 占空比由比较寄存器 CCR 的值决定。

PWM输出模式—分类

表格 32-1 PWM1 与 PWM2 模式的区别

模式	计数器 CNT 计算方式	说明
PWM1	递增	CNT <ccr, ch="" th="" 为有效,="" 否则为无效<="" 通道=""></ccr,>
	递减	CNT>CCR, 通道 CH 为无效, 否则为有效
PWM2	递增	CNT <ccr, ch="" th="" 为无效,="" 否则为有效<="" 通道=""></ccr,>
	递减	CNT>CCR,通道 CH 为有效,否则为无效

有效:高电平;无效:低电平

边沿对齐 VS 中心对齐

- 1-根据CNT的计数方向,PWM波形分成边沿对齐和中心对齐两种。边沿对齐主要用于直流电机,中心对齐主要用于交流电机。
- 2-边沿对齐时,CNT只工作在递增或者递减。
- 3-中心对齐时,CNT工作在递增和递减。

PWM1边沿对齐模式的波形

PWM1中心对齐模式的波形

2. PWM 中心对齐模式

图 32-15 PWM1 模式的中心对齐波形

零死角玩转STM32—M4系列

野火论坛: www.firebbs.cn

淘宝: firestm32.taobao.com