KFold Cross Validation Python Tutorial

```
In [83]: from sklearn.linear model import LogisticRegression
         from sklearn.svm import SVC
         from sklearn.ensemble import RandomForestClassifier
         import numpy as np
         from sklearn.datasets import load digits
         import matplotlib.pyplot as plt
         digits = load digits()
In [84]: from sklearn.model selection import train test split
         X train, X test, y train, y test = train test split(digits.data,digits.
         target,test size=0.3)
         Logistic Regression
In [85]: | lr = LogisticRegression(solver='liblinear', multi class='ovr')
         lr.fit(X train, y train)
         lr.score(X test, y test)
Out[85]: 0.966666666666667
         SVM
In [86]: svm = SVC(gamma='auto')
         svm.fit(X train, y train)
         svm.score(X test, y test)
Out[86]: 0.3685185185185
```

Random Forest

```
In [87]: rf = RandomForestClassifier(n_estimators=40)
    rf.fit(X_train, y_train)
    rf.score(X_test, y_test)

Out[87]: 0.9703703703703703
```

KFold cross validation

```
Basic example
In [88]: from sklearn.model selection import KFold
         kf = KFold(n splits = 3)
         kf
Out[88]: KFold(n splits=3, random state=None, shuffle=False)
In [89]: for train index, test index in kf.split([1,2,3,4,5,6,7,8,9]):
              print(train index,test index)
         [3 4 5 6 7 8] [0 1 2]
         [0 1 2 6 7 8] [3 4 5]
         [0 1 2 3 4 5] [6 7 8]
         Use KFold for our digits example
In [90]: def get score(model, X train, X test, y train, y test):
             model.fit(X train,y train)
             return model.score(X test,y test)
In [91]: from sklearn.model selection import StratifiedKFold
         folds = StratifiedKFold(n splits=3)
         scores logistic = []
         scores svm = []
         scores rf = []
```

```
for train index, test index in folds.split(digits.data,digits.target):
             X train, X test, y train, y test = digits.data[train index], digits
          .data[test index], \
                                                digits.target[train index], digi
         ts.target[test index]
             scores logistic.append(get score(LogisticRegression(solver='libline
         ar',multi class='ovr'), X train, X test, y train, y test))
             scores sym.append(get score(SVC(gamma='auto'), X train, X test, y t
         rain, y test))
             scores rf.append(get score(RandomForestClassifier(n estimators=40),
          X train, X test, y train, y test))
In [92]: scores logistic
Out[92]: [0.8948247078464107, 0.9532554257095158, 0.9098497495826378]
In [93]: | scores_svm
Out[93]: [0.3806343906510851, 0.41068447412353926, 0.5125208681135225]
In [94]: scores rf
Out[94]: [0.9248747913188647, 0.9465776293823038, 0.9248747913188647]
         cross_val_score function
In [95]: from sklearn.model selection import cross val score
         Logistic regression model performance using cross_val_score
In [97]: cross val score(LogisticRegression(solver='liblinear', multi class='ovr'
         ), digits.data, digits.target,cv=3)
Out[97]: array([0.89482471, 0.95325543, 0.90984975])
```

svm model performance using cross_val_score

```
In [98]: cross_val_score(SVC(gamma='auto'), digits.data, digits.target,cv=3)
Out[98]: array([0.38063439, 0.41068447, 0.51252087])
    random forest performance using cross_val_score
```

```
In [99]: cross_val_score(RandomForestClassifier(n_estimators=40),digits.data, di
    gits.target,cv=3)
```

Out[99]: array([0.92988314, 0.93656093, 0.92320534])

cross_val_score uses stratifield kfold by default

Parameter tunning using k fold cross validation

Out[102]: 0.9409931719428926

Out[103]: 0.9443358162631904

Here we used cross_val_score to fine tune our random forest classifier and figured that having around 40 trees in random forest gives best result.

Exercise

Use iris flower dataset from sklearn library and use cross_val_score against following models to measure the performance of each. In the end figure out the model with best performance,

- 1. Logistic Regression
- 2. SVM
- 3. Decision Tree
- 4. Random Forest