2.4

Suites minorées, majorées, bornées. Monotonie et convergence

Maths Spé terminale - JB Duthoit

Définition

- Une suite (u_n) est **majorée** par un nombre réel M si, pour tout $n \in \mathbb{N}$, $u_n \leq M$.
- Une suite (u_n) est **minorée** par un nombre réel m si, pour tout $n \in \mathbb{N}$, $u_n \geq m$.
- Une suite (u_n) est **bornée** si elle est à la fois majorée et minorée.

Exemple

- Une suite à termes tous positifs est minorée par 0
- Une suite croissante est minorée par son 1er terme : $u_0 \le u_1 \le u_2 \le ... \le u_n$
- Une suite décroissante est majorée par son 1er terme : $u_0 \ge u_1 \ge u_2 \ge ... \ge u_n$

Remarque

- Les nombres m et M (appelés minorants et majorants) sont des réels indépendants de n.
- Si une suite est majorée par M, elle a une infinité de majorants. En particulier, tout nombre supérieur à M est aussi un majorant de la suite.

Exercice 2.16

On considère la suite (u_n) définie par $u_0 = 1, 8$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$ avec $f(x) = \frac{2}{3-x}$.

- Montrer que f est croissante sur [0;3[
- Démontrer par récurrence que la suite (u_n) est bornée par 1 et 2.
- Démontrer par récurrence que la suite (u_n) est décroissante.

Savoir-Faire 2.4

DÉMONTRER QU'UNE SUITE EST MAJORÉE OU MINORÉE

- 1. Soit (u_n) la suite définie pour tout $n \ge 1$ par $u_n = \frac{4n+1}{1-5n}$. Démontrer que (u_n) est minorée par $\frac{-5}{4}$.
- 2. Soit (u_n) la suite définie pour tout $n \ge 0$ par $u_{n+1} = \frac{2}{3}u_n + \frac{4}{3}$, avec $u_0 = 1$. Démontrer par récurrence que (u_n) est majorée par 4.

Exercice 2.17

Montrer que la suite (u_n) définie pour tout entier naturel n par $u_n = n^2 - 2n + 3$ est minorée par 2.

Exercice 2.18

Montrer que la suite (u_n) définie pour tout entier naturel n par $u_0 = 1$ et $u_{n+1} = 0.75u_n + 2$ est majorée

Exercice 2.19

Montrer que la suite (u_n) définie pour tout entier naturel n par $u_n = \frac{5n}{n+1}$ est majorée par 5.

Propriété

- Si une suite croissante a pour limite l, alors tous les termes de la suite sont inférieurs ou égaux à l (autrement dit, elle est majorée par l).
- \bullet De même, si une suite décroissante a pour limite l, alors tous les termes de la suite sont supérieurs ou égaux à l (autrement dit, elle est minorée par l).

Propriété Théorème de la convergence monotone

- Toute suite croissante majorée converge.
- De même, toute suite décroissante minorée converge.

Remarque

Si une suite croissante est majorée par un réel M, on sait qu'elle converge vers un réel $l \leq M.$ On ne peut pas conclure qu'elle est égale à M.

🗘 Ce théorème donne donc une condition suffisante pour qu'une suite converge mais ne donne pas la limite de cette suite.

Propriété

- Une suite croissante non majorée a pour limite $+\infty$
- De même, toute suite décroissante non minorée a pour limite $-\infty$

^Démonstration 4- Démonstration au programme -

Soit (u_n) une suite croissante non majorée. Montrer que (u_n) a pour limite $+\infty$

Remarque

les réciproques des propriétés précédentes sont fausses. Par exemple, la suite (u_n) définie par $u_n = n^2 + (-1)^n$ diverge vers $+\infty$ mais elle n'est pas croissante.

Savoir-Faire 2.5

ÉTUDIER LA CONVERGENCE D'UNE SUITE MONOTONE

Soit (u_n) la suite définie pour tout $n \in \mathbb{N}$ par $u_{n+1} = \frac{1}{3}u_n + \frac{14}{3}$, avec $u_0 = 1$

- 1. Démontrer par récurrence que (u_n) est majorée par 7
- 2. En déduire que la suite (u_n) est croissante
- 3. Conclure quant à la convergence de la suite (u_n) .

Exercice 2.20

Soit la suite (u_n) définie pour tout entier naturel n par $u_0 = -2$ et $u_{n+1} = 0.5u_n + 1$.

- 1. Démontrer par récurrence que la suite (u_n) est majorée par 2
- 2. En déduire que la suite (u_n) est croissante
- 3. Conclure quant à la convergence de la suite (u_n) .

Exercice 2.21

1. Montrer que la suite (u_n) définie pour tout entier naturel n par

$$u_n = 2n^2 + 4n - 3$$

est minorée par -5.

2. Montrer que la suite (v_n) définie par $v_0=0$ et pour tout entier naturel n :

$$v_{n+1} = \sqrt{\frac{1}{2}v_n^2 + 8}$$

est majorée par 8.

• Exercice 2.22

Fin 2020, un club de rugby comptait 7 000 abonnés. À la fin de chaque année, le club constate que 20% des abonnés ne se réabonnent pas et que 4 000 nouveaux abonnés arrivent. On note a_n le nombre d'abonnés à la fin de l'année 2020 + n.

1. Préciser a_0 et expliquer pourquoi, pour tout entier naturel n,

$$a_{n+1} = 0.8 a_n + 4000.$$

- 2. Démontrer que la suite (a_n) est majorée par 20 000.
- 3. Démontrer que la suite (a_n) est croissante.
- 4. En déduire la convergence de la suite (a_n) .

2.4.1 problèmes

Exercice 2.23

On considère les suites (u_n) et (v_n) définies pour tout entier naturel n par

$$\begin{cases} u_0 = 2, \\ u_{n+1} = -\frac{1}{2}u_n^2 + 3u_n - \frac{3}{2} \end{cases}$$
 et $v_n = u_n - 3.$

- 1. Calculer les valeurs exactes, données en fractions irréductibles, de u_1 et u_2 .
- 2. Démontrer que pour tout entier naturel n, on a

$$v_{n+1} = -\frac{1}{2} v_n^2.$$

- 3. Démontrer par récurrence que pour tout entier naturel n, on a $-1 \le v_n \le 0$.
- 4. Démontrer que pour tout entier naturel n, on a

$$v_{n+1} - v_n = -v_n \left(\frac{1}{2}v_n + 1\right).$$

5. En déduire le sens de variation de la suite (v_n) .

Exercice 2.24

Soit (u_n) la suite définie par $u_0 = 2$ et, pour tout entier naturel n,

$$u_{n+1} = \frac{2}{3}u_n + \frac{1}{3}n + 1.$$

- 1. a) Calculer u_1 et u_2 .
 - b) Conjecturer le sens de variation de la suite (u_n) .
- 2. a) Démontrer que, pour tout entier naturel n, on a : $u_n \le n + 3$.
 - b) Démontrer que, pour tout entier naturel n, on a :

$$u_{n+1} - u_n = \frac{1}{3}(n+3-u_n).$$

- c) En déduire la validation de la conjecture précédente.
- 3. On désigne par (v_n) la suite définie pour tout entier naturel n par $v_n = u_n n$.
 - a) Démontrer que la suite (v_n) est géométrique de raison $\frac{2}{3}$.
 - b) En déduire que, pour tout entier naturel n, on a $u_n = 2\left(\frac{2}{3}\right)^n + n$.
 - c) Déterminer la limite de la suite (u_n) .

Exercice 2.25

Soit (v_n) la suite définie par $v_0 = 1$ et, pour tout $n \in \mathbb{N}$,

$$v_{n+1} = \frac{v_n}{1 + v_n}.$$

- 1. Démontrer que, pour tout $n \in \mathbb{N}$, $v_n > 0$.
- 2. On définit la suite (u_n) pour tout $n \in \mathbb{N}$ par $u_n = \frac{1}{v_n}$.
 - a) Démontrer que (u_n) est une suite arithmétique.
 - b) En déduire, pour tout $n \in \mathbb{N}$, l'expression de u_n , puis celle de v_n , en fonction de n.

Exercice 2.26

Soit (u_n) la suite définie par $u_0 = 2$ et, pour tout $n \in \mathbb{N}$,

$$u_{n+1} = 2u_n - 3.$$

1. Démontrer par récurrence que $u_n = 3 - 2^n$ pour tout $n \in \mathbb{N}$.

- 2. Soit (v_n) la suite définie par $v_n = u_n 3$.
 - a) Démontrer que (v_n) est une suite géométrique et déterminer sa raison.
 - b) En déduire, pour tout $n \in \mathbb{N}$, l'expression de v_n en fonction de n, puis retrouver le résultat de la question 1.