Announcement: Assignment 1 is out and due January the 26th.

Nearest Neighbor method:

Use those predictions in the training set closest in input space to x to from \hat{y}

$$\hat{y} = \frac{1}{k} \Sigma_{x^{(i) \in N_k(x)}} y^{(i)}$$

 $N_k(x)$ -neighberhood of x, closet k points $x^{(i)}$. What metric? Euclidean distance.

$$\hat{y}(x) = \begin{cases} 0 & if \ \hat{y} \le 0.5 \\ 1 & if \ \hat{y} > 0.5 \end{cases}$$

Assumption: This model assumes that the class distribution is locally smooth.

decision boundary is for more irregular and responds to local clusters where one closes dominates.

=> There are still some mis classifications.

The decision boundary is even more irregular than before!

> There one no misclassification.

K is hyper parameter. For k = 1, overfits the training data. We have to choose k based on a validation test.

Q: Are there any other hyper-parameteres for K-NN ?

A: Metric to compute NN.

Least squares VS Nearest neighbor :

- Decision boundary is wiggly and depends on a handful of input points and their positions.

_ less stable.

- does not have any such strong assumptions about the decision boundary.

- low bras, high variance.

 $x \in \mathbb{R}^p$: real valued random input vecor.

 $y \in \mathbb{R}$: ral valued random input variable.

Pr(x,y): joint distribution of x,y. **Goal:** find a function f(x) for predicting y given values of x. L(y,f(x)) = Loss function for penalizing errors in prediction.

$$L(y, f(x)) = (y - f(x))$$

$$EPE = \int \int (y - g(x))^2 Pr(x, y) dx dy$$

using Bayes: f(x,y) = f(y | x) f(x)

$$EPE = \int \int (y - g(x))^2 f(y \mid x) f(x) dx dy$$

$$EPE = \int f(x) \left(\int (y - g(x))^2 f(y \mid x) dy \right) dx$$

$$EPE = E_x \left(\int (y - g(x))^2 f(y \mid x) dy \right)$$

$$EPE = E_x E_{Y \mid X} \left([Y - g(X)]^2 \mid X \right)$$

$$f$$
 = argmin $E_{y|x}[(Y-f)^2|x:x]$

$$\frac{\partial}{\partial f} = \mathbb{E}_{Y(x)} \left[(y-f)^2 \mid x = 0 \right] = 0$$

$$\frac{\partial}{\partial f} E_{y|x} (y^2|x:n) + f^2 - 2 E_{y|x} (y|x=n) f = 0$$

the best prediction of y at any Point X=x 1s the Conditional mean, when best is measured by average Squared error.

What is N.N. doing ?

Two approximations to the regression function:

- 1. Expectation is approximated by according over Sample data.
- 2. Conditioning at a point is relaxed to conditioning on some region. "close" to the target point.

Note 1: For large bearing sample size N, the points in the neighborhood are likely to be close to re.

Note 2: As "k" gods largor, the average will got more stable

take they t

Under mild regularity Conditions on Pr(1,1), one can.

Show that

as N, k
$$\rightarrow \varnothing$$
 Such that $k'_N \rightarrow \varnothing$,
$$\hat{f}(n) \rightarrow E(Y|Y:n)$$

Looks like we have an universal function approximator!?

No. As the number of features increases, in high dimensions,

we need very large Samples.

Local methods in high dimensions: Consider inputs uniformly distributed in a p-dimensional hypercube.

The expected edge length $e_p(r) = r^{\frac{1}{p}} e_{10}(0.01) = 0.63, e_{0.1} = 0.83.$

To capture 1 or 10 percent of data, to from a local range, cover 63 or 83 of the range of the input variable. \Longrightarrow such neighborhood are no longer local. If you reduce "r", with fewer observations, variance will be high.

Warning: Our intuitions breaks down in higher dimensions.

What is Linear regression doing?

$$\hat{f}(x) = x^T w$$

This is a model based approach. We are specifying a model for the regression fn.

$$w = [E(xx^T)]^{-1}E(XY)$$

Assumptions:

- 1. Least squares $-\lambda$ approximated by a gloabally linear fn.
- 2. K-NN -i assumes f(n) is well approximated by a locally constant function. These assumptions \Longrightarrow inductive bias of the algorithm

Additive models:

$$f(x) = \sum_{j=1}^{p} f_j(x_j)$$

This retains the additivity of the linear model but each coordinate function f_j is arbitrary. Q: What happens if we replace L_2 loss with L_1 ?

A: $\hat{f}(x) = median(y|X = x)$

Classification: Output is categorical variable G.

some paradigms work here, we need a different loss function for penelazing prediction error.

G: set of possible classes.

 \hat{G} : prediction.

loss for: kxk matrix where
$$k = Gard(G)$$

Price paid for classifying an observation belonging to class 1 to class k.

L(k,l) - price for classifying an observation belonging to class k to class l.

$$EPE = E[L(G, \hat{G}(x))]$$

Expectation is wit respect to Pr(G,x).

No

$$= E_x \sum_{k=1}^K L(G, \hat{G}(x)) Pr(G, x)$$

Again, it suffices to minimize EPE pointwise:

$$\hat{G}(x) = argmin_{g \in G} \sum_{k=1}^{K} L(G_k, g) Pr(G_k, |X = x)$$

For 0-1 loss:

$$\hat{G}(x) = argmin_{g \in G}(1 - Pr(g|X = x))$$
$$= argmax_{g \in G}Pr(g|X = x)$$

6

COMP 551 Instructor Lecture 3 Sarath Chandar

K-NN directly approximate this solution Majority voting in neighberhood.

1. conditional probability at a point is related to conditional probability within a neighberhoof of a point.

2. Probabilities are estimated by training sample proportions.