Review 1

$$\mathcal{P} = \{ P_{\theta} : \theta \in \Theta \} \tag{1.1}$$

$$H_0: \theta \in \Theta_0 \subset \Theta \tag{1.2}$$

$$H_1: \theta \in \Theta_1 = (\Theta \setminus \Theta_1) \tag{1.3}$$

Critical function: $\phi(x) \in [0,1]$, probability we reject if X = x.

Power function: $\beta_{\phi}(\theta) = \mathbb{E}_{\theta}(\phi(X))$.

Goal: Maximize $\beta(\theta)$ for $\theta \in \Theta_1$ while constraining significance level

$$\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha \tag{1.4}$$

Simple vs Simple: $\Theta = \{\theta_0\} (= \{0\}), \Theta_1 = \{\theta_1\} (= \{1\}).$ Likelihood Ratio Test:

$$L(x) = \frac{p_1(x)}{p_0(x)} \quad \left(=\frac{\text{bang}}{\text{buck}}\right)$$
 (1.5)

LRT:
$$\phi^*(x) = \begin{cases} 0, & \text{if } L(x) < c \\ \gamma, & \text{if } L(x) = c \\ 1, & \text{if } L(x) > c \end{cases}$$
 (1.6)

2 **Neyman-Pearson**

Proposition 2.1 (Keener 12.1). *Suppose* $c \ge 0$, ϕ^* *maximizes* $\mathbb{E}_1 [\phi(X)] - c\mathbb{E}_0 [\phi(X)]$ *among* all critical functions.

If $\mathbb{E}_0[\phi^*(X)] = \alpha$, then ϕ^* maximizes $\mathbb{E}_1[\phi(X)]$ among all ϕ with level $\leq \alpha$.

Proof. Suppose $\mathbb{E}_0[\phi(X)] \leq \alpha$. Then

$$\mathbb{E}_1[\phi(X)] \le \mathbb{E}_1[\phi(X)] - c\mathbb{E}_0[\phi(X)] + c\alpha \tag{2.1}$$

$$\mathbb{E}_{1}[\phi(X)] \leq \mathbb{E}_{1}[\phi(X)] - c\mathbb{E}_{0}[\phi(X)] + c\alpha$$

$$\leq \mathbb{E}_{1}[\phi^{*}(X)] - c\mathbb{E}_{0}[\phi^{*}(X)] + c\alpha$$
(2.1)

Lemma 2.2 (Neyman-Pearson). *LRT with level* α *is optimal, among level* $\leq \alpha$ *tests (Simple vs* Simple).

Proof.

$$\mathbb{E}_1[\phi(X)] - c\mathbb{E}_0[\phi(X)] \tag{2.3}$$

$$= \int (p_1(x) - cp_0(x))\phi(x)d\mu(x)$$
 (2.4)

$$= \int_{p_1(x) > cp_0(x)} |p_1 - cp_0(x)| \phi(x) d\mu(x) - \int_{p_1(x) < cp_0(x)} |p_1 - cp_0(x)| \phi(x) d\mu(x)$$
 (2.5)

Any test maximizing eq. (2.5) has

$$\phi^*(x) = \begin{cases} 1, & \text{if } p_1 > cp_0 \\ 0, & \text{if } p_1 < cp_0 \end{cases}$$
 (2.6)

Take *c* s.t.

$$\mathbb{P}_0[p_1(X) < cp_0(X)] \le 1 - \alpha \tag{2.7}$$

$$\mathbb{P}_1[p_1(X) > cp_0(X)] \le \alpha \tag{2.8}$$

Example 2.3. $X \sim \mathcal{N}(\theta, 1)$.

 $H_0: \theta = \theta_0, H_1: \theta = \theta_1, \theta_1 > \theta_0)$

$$L(x) = \frac{p_{\theta_1}(x)}{p_{\theta_0}(x)} = \frac{e^{-(x-\theta_1)^2/2}}{e^{-(x-\theta_0)^2/2}} = \frac{e^{\theta_1 x - \theta_1^2/2}}{e^{\theta_0 x - \theta_0^2/2}} = e^{(\theta_1 - \theta_0)x + (\theta_1^2/2 - \theta_0^2/2)}$$
(2.9)

L(x) is monotone in X

$$\implies \phi^*(X) = 1_{L(x)>c} = 1_{x>\tilde{c}} = 1_{x>\theta_0 + z_q} \tag{2.10}$$

This is true for all $\theta_1 > \theta_0$: uniformly most powerful.

Example 2.4. $X_1, \dots, X_n \stackrel{\text{iid}}{\sim} p_{\eta}(x) = e^{\eta T(x) - A(\eta)} h(x)$. $H_0: \eta = \eta_0 \text{ vs } H_1: \eta = \eta_1. \ \eta \in \mathbb{R}, \eta_1 > \eta_0.$

$$L(x) = \frac{\prod_{i=1}^{n} p_{\eta_1}(x)}{\prod_{i=1}^{n} p_{\eta_0}(x)} = \frac{e^{\eta_1 \sum_i T(x_i) - nA(\eta_1)}}{e^{\eta_0 \sum_i T(x_i) - nA(\eta_0)}} = e^{(\eta_1 - \eta_0) \sum_i T(x_i) - n(A(\eta_1) - A(\eta_0))}$$
(2.11)

$$\phi^*(x) = \begin{cases} 1, & \text{if } \sum_i T(X_i) > c \\ \gamma, & \text{if } \sum_i T(X_i) = c \\ 1, & \text{if } \sum_i T(X_i) < c \end{cases}$$
 (2.12)

Again L(x) is monotone in T(X).

3 Uniformly most powerful test

Definition 3.1. If $\phi^*(x)$ has level α and $\mathbb{E}_{\theta}[\phi^*(X)] \geq \mathbb{E}_{\theta}[\phi(X)] \ \forall \theta \in \Theta_1, \forall \phi \text{ with level } \leq \alpha$. Then ϕ^* is uniformly most powerful (UMP).

Typically exist only for 1-param families and 1-sided tests

$$\mathcal{P} = \{ p_{\theta} : \theta \in \Theta \subset \mathbb{R} \} \tag{3.1}$$

$$H_0: \theta \le \theta_0 \text{ vs } H_1: \theta > \theta_0 \tag{3.2}$$

Definition 3.2. Let $\mathcal{P} = \{p_{\theta} : \theta \in \Theta \subset \mathbb{R}\}$ be a dominated family. Then \mathcal{P} has *monotone likelihood ratio* (*MLR*) if for some T(X)

$$\theta_1 < \theta_2 \implies \frac{p_{\theta_2}(x)}{p_{\theta_1}(x)}$$
 is a non-decreasing function of $T(x)$ (3.3)

(Also $p_{\theta_1} \overset{\text{a.s.}}{\neq} p_{\theta_2}$ for any $\theta_1 \neq \theta_2$)

Corollary 3.3 (Keener cor. 12.4). If $p_0 \not= p_1$, ϕ is LRT level $\alpha \in (0,1)$, p_0 vs p_1 . Then $\mathbb{E}_1[\phi(X)] > \alpha$.

Theorem 3.4. Suppose P has MLR

$$\phi^{*}(X) = \begin{cases} 0, & \text{if } T(x) < c \\ \gamma, & \text{if } T(x) = c \\ 1, & \text{if } T(x) > c \end{cases}$$
 (3.4)

- (a) ϕ^* is UMP for testing $\theta \leq \theta_0$ vs $\theta > \theta_0$ amongst tests with level $\alpha = \mathbb{E}_{\theta_0}[\phi^*(X)]$
- (b) Constants c, γ can be adjusted to get any level
- (c) $\beta_{\phi^*}(\theta) = \mathbb{E}_{\theta}[\phi^*(X)]$ is non-decreasing in θ , strictly increasing when $\beta_{\phi^*}(\theta) \in (0,1)$.
- (d) If $\theta_1 < \theta_0$, then ϕ^* minimizes $\mathbb{E}_{\theta_1}[\phi(X)]$ among all tests with $\mathbb{E}_{\theta_0}[\phi(X)] = \alpha$.

Proof (*c*). Suppose $\theta_1 < \theta_2$. Let $L(x) = \frac{p_{\theta_2}(x)}{p_{\theta_1}(x)}$. L(x) non-decreasing function of T(x), so $φ^*(x)$ is a LRT for $\theta = \theta_1$ vs $\theta = \theta_2$ for some $\tilde{α} = \mathbb{E}_{\theta_1}[φ^*(X)]$. By corollary 3.3, $β_{\theta^*}(\theta_2) > \tilde{α}$.

Proof (a). Suppose $\theta_1 > \theta_0$ and $\tilde{\phi}$ has level $\leq \alpha$. Then $\mathbb{E}_{\theta_1}[\tilde{\phi}(X)] \leq \mathbb{E}_{\theta_1}[\phi^*(X)]$

 $\textit{Proof (d)}. \ \ \theta_1 < \theta_0, \mathbb{E}_{\theta_0}[\tilde{\phi}(X)] = \alpha. \ \text{Suppose } \tilde{\delta} = \mathbb{E}_{\theta_1}[\tilde{\phi}(X)] < \mathbb{E}_{\theta_1}[\phi^*(X)] = \delta^*.$

TODO: Figure out answer from Keener

4 Two-sided tests