2014-2015 学年第二学期《大学物理 I》课内考试(A 卷)

授课班号 年级专业 物联网学院 14 级 学号 姓名

题号	_		三.1	三.2	三.3	得分	审核
题分	24	36	10	14	16		
得分							

得分

一、选择题(共 24 分,每题 3 分)

1. 均匀细棒 OA 可绕通过其一端 O 且与棒垂直的水平固定光滑轴转动,如图所示。今使棒 从水平位置由静止开始自由下落, 在棒摆到竖直位置的过程中, 下列说法正确的是(

\mathbf{C}

- (A) 角速度从小到大, 角加速度不变;
- (B) 角速度从小到大, 角加速度从小到大;
- (C) 角速度从小到大, 角加速度从大到小;
- (D) 角速度不变, 角加速度为零。

- 2. 在图(a)和(b)中各有一半径相同的圆形回路 L_1 、 L_2 ,圆周内有电流 I_1 、 I_2 ,其分布相 同,且均在真空中,但在(b)图中 L_2 回路外有电流 I_3 , P_1 、 P_2 为两圆形回路上相对应 \mathbf{C}
- (A) $\oint_{L_1} \vec{B} \cdot d\vec{l} = \oint_{L_2} \vec{B} \cdot d\vec{l}, B_{P_1} = B_{P_2}$ (B) $\oint_{L_1} \vec{B} \cdot d\vec{l} \neq \oint_{L_2} \vec{B} \cdot d\vec{l}, B_{P_1} = B_{P_2}$
- (C) $\oint_{I} \vec{B} \cdot d\vec{l} = \oint_{I} \vec{B} \cdot d\vec{l}, B_{P_{1}} \neq B_{P_{2}}$
- (D) $\oint_{I} \vec{B} \cdot d\vec{l} \neq \oint_{I} \vec{B} \cdot d\vec{l}, B_{P_{1}} \neq B_{P_{2}}$

3. 一个圆盘绕一固定轴转动的转动惯量为J,初始角速度为 ω_0 ,后来变为 $\frac{1}{2}\omega_0$,在上述过

B)

(B)
$$-\frac{3}{8}J\omega_0^2$$

(A)
$$\frac{1}{4}J\omega_0^2$$
 (B) $-\frac{3}{8}J\omega_0^2$ (C) $-\frac{1}{4}J\omega_0^2$ (D) $\frac{1}{8}J\omega_0^2$

(D)
$$\frac{1}{8}J\omega_0^2$$

- **4.** 如图所示,abc 是弯成直角的载流导线,其中ab:bc=4:3,将它 放在与一均匀磁场垂直的平面内,已知 ab 段导线受到安培力的大小为
- F ,则整段导线所受到安培力大小为······· (\mathbf{D}

- (A) 5F; (B) $\frac{5}{2}F$; (C) $\frac{4}{5}F$; (D) $\frac{5}{4}F$.
- 5. 如图,在一导体 B 的左侧放一无限大均匀带电平面 A (面电荷密度为 σ_1),现测得 B 的 外表面靠 P 点处的电荷面密度为 σ_2 ,P 点很靠近导体,则 P 点的场强为············

 \mathbf{C})

(A)
$$\frac{\sigma_2}{\varepsilon_0} - \frac{\sigma_1}{2\varepsilon_0}$$

(A)
$$\frac{\sigma_2}{\varepsilon_0} - \frac{\sigma_1}{2\varepsilon_0}$$
 (B) $\frac{\sigma_2}{\varepsilon_0} + \frac{\sigma_1}{2\varepsilon_0}$

(C)
$$\frac{\sigma_2}{\varepsilon_0}$$

(**D**)
$$rac{\sigma_2}{2arepsilon_0} - rac{\sigma_1}{2arepsilon_0}$$

6. 在点电荷+q 的电场中,若取距离+q 为 a 处的 P 点为电势零点,

D)

$$(\mathbf{A}) \ \frac{q}{4\pi\varepsilon_0 a}$$

(B)
$$\frac{q}{8\pi\varepsilon_0 a}$$

(C)
$$-\frac{q}{4\pi\varepsilon_0 a}$$

(A)
$$\frac{q}{4\pi\varepsilon_0 a}$$
 (B) $\frac{q}{8\pi\varepsilon_0 a}$ (C) $-\frac{q}{4\pi\varepsilon_0 a}$ (D) $-\frac{q}{8\pi\varepsilon_0 a}$

7. 一质量为 1 Kg 的物体置于水平地面上,物体与地面间的静摩擦系数 $\mu_0 = 0.20$,滑动摩

擦系数 $\mu = 0.16$,现对物体施一水平拉力 F = t + 1(SI),则摩擦力一时间图(f - t 图)

是下列四个中的哪一个? (取 $g = 10m/s^2$) · · · · · · · · · (

 \mathbf{C}

第2页(共6页)

- - (A) 电流由 b 点流入, a 点流出, 并逐渐减少;
 - (B) 电流由 a 点流入, b 点流出, 并逐渐减少;
 - (C) 电流由 b 点流入, a 点流出, 并逐渐增大;
 - (D) 电流由 a 点流入, b 点流出, 并逐渐增大。

_						
\cap			I I I	11	1 1	
+ _1.		$L \cdot L \cdot L$	1_1		L.J	
-1 7	- · F · ·	$\Gamma \cdot \Gamma I$	ΠT	77.	Г Т —	
			\perp	\perp	ш	
M		5			Y	
	i	4				
	· ·	,			а	

阅卷	得分

」 二、填空题(共 36 分,每空 2 分):

- 1. 感应电场是由_变化磁场_产生的,它的电场线的特点是_任一电场线为闭曲线_。
- 2. 如图所示在直角坐标系 O-xy 中一质点做半径为 R=2m、速率为 v=2m/s 的顺时针匀速圆周运动,在某一瞬间质点位于图示 A 点处。此时的位置矢量可以表示为 $\vec{r}=\sqrt{3\vec{i}+3\vec{j}}$ (m); 速度的矢量表达式为 $\vec{v}=\vec{i}-\sqrt{3\vec{j}}$ (m/s); 加速度的矢量表达式为 $\vec{a}=-\sqrt{3\vec{i}-\vec{j}}$ (m/s^2) 。

- 3. 如图所示,长为 L,质量为 m 的均质细杆,其左端与墙用光滑铰链 A 连接,右端用以铅直细线悬挂着,使杆处于水平状态,此时细线中的张力 $F=\frac{1}{2}mg$; 若将细线突然烧断,则杆瞬间的角加速度为 $\alpha=\frac{3g}{2L}$,细杆右侧端点的瞬间线加速度 $a=\frac{3}{2}g$ 。
- 4. 两相同的静止质点可沿光滑的 x 轴运动,在两种不同的受力(如图所示)情况下从相同

第3页(共6页)

的初始位置同时向同一方向运动,则: t时间内两个力的冲量<u>一定</u>相同; t时间内两个力作的功<u>一定</u>相同。 (填"一定"、"一定不"、"不一定")。

- 7. 一半径为 R ,均匀带有电量 Q 的圆盘面绕其中心垂直轴以 ω 的角速度转动时,产生的磁矩为 $\frac{\omega QR^2}{4}$,若将该圆盘面放在与盘面成 θ 角的均匀磁场 \bar{B} 中时,圆盘面所受到的磁力矩为 $\frac{\omega QR^2B\cos\theta}{4}$
- 8. 一无限长载流导线,弯成如图所示的形状,其中 ABCD 段在 xOy 平面内,BCD 弧是半径为 R 的半 第 4 页 (共 6 页)

圆弧,DE 段平行于 Oz 轴,则圆心处的磁感应强度在 y 轴上的大小为 $\frac{\mu_0 I}{4\pi R}$;在 z 轴上的

大小为
$$_{---}$$
 $\frac{\mu_0 I}{4\pi R} + \frac{\mu_0 I}{4R}$ 。

三、计算题(共 40 分)

阅卷	得分

- 1. $(10\, \text{分})$ 如图所示,有两根相距为d 的无限长平行直导线,它们通以大小相等流向相反的恒定电流I,有一边长为d 的正方形线圈与两导线处于同一平面内,求:
- (1) 穿过线圈的净磁通量(4分),并说明是垂直卷面穿进还是穿出(1分):
- (2)若电流为变化电流 $I=I_0e^{-2\pi}$,求线圈中感应电动势的大小(3分)及方向(2

解: (1)
$$\Phi_{m1} = \int_{2d}^{3d} \frac{\mu_0 I}{2\pi r} d \cdot dr = \frac{\mu_0 I d}{2\pi} \ln \frac{3}{2}$$
 (2分)

$$\Phi_{m2} = \int_{1}^{2d} \frac{\mu_0 I}{2\pi r} d \cdot dr = \frac{\mu_0 Id}{2\pi} \ln 2 \quad (2 \text{ }\%)$$

(2)
$$\varepsilon_i = -\frac{d\Phi_m}{dt} = \mu_0 I_0 d \cdot e^{-2\pi} \left(\ln 2 - \ln \frac{3}{2} \right)$$
 (3分); 方向: 逆时针。(2分)

阅卷	得分

2. (14) 如图所示,一长为L 的均匀细杆自然下垂,现有一质量为细杆质量 $\frac{3}{5}$ 的子弹以某水平速度于悬挂点下方 $\frac{2}{3}L$ 处打击

细杆并陷入其中随细杆一起刚好能摆到水平位置。求: (1) 打击后瞬间细杆的角速度(5分); (2) 求此水平初速度(5分); (3) 打击过程系统机械能损失几分

之几(4分)?

解: (1)
$$\frac{1}{2} \left[\frac{3}{5} m \left(\frac{2}{3} L \right)^2 + \frac{1}{3} m L^2 \right] \omega^2 = \frac{3}{5} m g \frac{2}{3} L + m g \frac{L}{2}$$
, $\omega = \sqrt{\frac{3g}{L}}$

第5页(共6页)

(2)
$$\frac{3}{5}m \cdot \frac{2}{3}L \cdot v_0 = \left[\frac{3}{5}m\left(\frac{2}{3}L\right)^2 + \frac{1}{3}mL^2\right]\omega, \quad v_0 = \frac{3\sqrt{3gL}}{2}$$

(3)
$$E_{K_0} = \frac{1}{2} \cdot \frac{3}{5} m \cdot \frac{27gL}{4} = \frac{81}{40} mgL$$
, $E_{K_2} = \frac{3}{5} mg \frac{2}{3} L + mg \frac{L}{2} = \frac{9}{10} mgL$

$$\Delta E_K = -\frac{9}{8} mgL$$
, 损失: $\frac{5}{9}$

阅卷	得分

3. (16 分) 如图,在一个半径为R的金属球A外面套有一同 心金属球壳B。已知球壳B的内、外半径分别为2R和3R。

已知金属球 A 带电量为 q ,球壳 B 电势为金属球 A 电势的 $\frac{2}{3}$.

- (1) 求球壳 B内、外表面上所带的电荷(6分);
- (2) 求电场总能量(4分);
- (3) 将金属球 A 接地,求金属球 A 和球壳 B 内、外表面上所带的电荷(6 分)。

解: (1)设金属球 A 表面带电量为 q, 球壳 B 内表面带 -q 电量, 外表面带 q+Q 电

量。

球
$$A$$
 电势 $V_A = \int_R^{2R} \frac{q}{4\pi\varepsilon_0 r^2} dr + \int_{3R}^{\infty} \frac{q+Q}{4\pi\varepsilon_0 r^2} dr = \frac{q}{8\pi\varepsilon_0 R} + \frac{q+Q}{12\pi\varepsilon_0 R}$ (2分)

球壳
$$B$$
 电势 $V_B = \int_{3R}^{\infty} \frac{q+Q}{4\pi\varepsilon_0 r^2} dr = \frac{q+Q}{12\pi\varepsilon_0 R}$ (2 分)

$$\frac{q+Q}{12\pi\varepsilon_0R} = \frac{2}{3} \cdot \left(\frac{q}{8\pi\varepsilon_0R} + \frac{q+Q}{12\pi\varepsilon_0R} \right), \quad Q = 2q ,$$

球壳 B 内表面带 -q 电量, 外表面带 3q 电量。(2分)

(2)
$$W_e = \int_{R}^{2R} \frac{1}{2} \varepsilon_0 \left(\frac{q}{4\pi \varepsilon_0 r^2} \right)^2 \cdot 4\pi r^2 dr + \int_{3R}^{\infty} \frac{1}{2} \varepsilon_0 \left(\frac{3q}{4\pi \varepsilon_0 r^2} \right)^2 \cdot 4\pi r^2 dr = \frac{7q^2}{16\pi \varepsilon_0 R}$$
 (4 分)

(3) 设金属球 A 带电 q' ,则球壳 B 内、外表面上所带的电荷分别为 -q' 和 2q+q' 则

球
$$A$$
 电势 $V_A = \int_{R}^{2R} \frac{q'}{4\pi\epsilon_0 r^2} dr + \int_{3R}^{\infty} \frac{q'+2q}{4\pi\epsilon_0 r^2} dr = \frac{q'}{8\pi\epsilon_0 R} + \frac{q'+2q}{12\pi\epsilon_0 R} = 0$,所以 $q' = -\frac{4}{5}q$ (4分)

则:金属球A带电 $-\frac{4}{5}q$,则球壳B内、外表面上所带的电荷分别为 $\frac{4}{5}q$ 和 $\frac{6}{5}q$. (2分)