Predicting Student Success In STAT 119

By Tristan Hillis, Travis Klipp, Ryan Tomiyama

Description Of Dataset and Problem

- Demographic and class data
 - o Demographic: Prior academic statistics (HS GPA, SAT), ethnicity, college, year, etc.
 - Class: Grades for various assignments
 - Response: Final grade in the class transformed as Pass/Fail
 - Over 3000 instances collected over 3 semesters (Fall 2017-Fall 2018), 131 total variables

Problem:

- 24% failure rate-high failure rates lead to bottlenecking
- Proposed Solution:
 - Develop an accurate model that can detect early in the semester if a student is likely to fail the class
 - "Early Alert" system intervention

Data Preprocessing

- 1. Drop irrelevant and repetitive variables
 - Lots of missing values
 - Second major, ethnicity subgroups, etc
- 2. Throw out variables highly correlated to response
 - Term GPA, Total GPA (after class), academic status, term units earned, etc.
- 3. Imputing:
 - Conversion from ACT to SAT using official concordance tables
 - Use MICE (Multivariate Imputation by Chained Equations) w/ RF method to impute HSGPA and SAT
- 4. Throw out observations where we can't impute missing features
 - Fathers/mothers education, ethnicity, grade, etc.

Exploratory Data Analysis

EDA: Year and Matriculation

EDA: Distribution of Colleges

EDA: SAT Composite

EDA: High School GPA

EDA: Math SAT

Random Forest

- Randomly split data into ²/₃ training and ¹/₃ testing
- Performed tuning on training
- Predicted based on testing

Random Forest Importance

SVM

- Classification technique where hyperplanes are created to separate and classify the data in some feature space into different regions.
- Parameters:
 - Gamma: values of 0.1 and 0.01 are used for the before_data model and after_data model, respectively
 - Cost: value of 1 is used for both models
 - Kernel: Radial
- Number of support vectors for before_data model: 1107
- Number of support vectors for after_data model: 779

Results

Time Frame	Test Misclass. Rate
Before	22.5% (2 mtry)
~4 weeks	16.2% (4 mtry)

Time Frame	Test Misclass. Rate
Before	23.7% (γ=0.1, cost=1)
~4 weeks	16.9% (γ=0.01, cost=1)

Conclusion

- Technique choice inconclusive
 - RF more intuitive
 - Lots of support vectors; SVM could be overfitting
- Not a complete early alert system
 - Week-by-week approach would be better
- There's a point in the semester where students can't recover
- Incorporating variables summarizing student behavior could be stronger
- Want to get the highest accuracy as early as possible to establish an intervention in time