Project Design Phase Proposed Solution

Date	25 June 2025
Team ID	LTVIP2025TMID36697
Project Name	Smart Sorting: Identifying rotten fruits and
	vegetables using transfer learning
Maximum Marks	2 Marks

Proposed Solution Template:

S.No.	Parameter	Description
1.	Problem Statement	Manual identification of rotten fruits and vegetables is time-consuming, error-prone, and
		inconsistent. It leads to supply chain losses,
		reduced quality assurance, and increased labour
		costs. There is a need for an automated, low-cost,
		and reliable solution for early spoilage detection.
2.	Idea / Solution description	The project uses transfer learning with
		MobileNetV2 to develop a smart sorting system
		that can classify fruits and vegetables as fresh or
		rotten using camera images. The solution runs on
		smartphones or low-end devices, making it
		accessible and easy to use. It provides real-time
		predictions and confidence scores to assist
		farmers, vendors, and wholesalers in sorting
2	NY 14 /YY '	produce accurately.
3.	Novelty / Uniqueness	The solution combines the power of Artificial
		Intelligence, Machine Learning and Computer
		Vision with affordability and simplicity. It
		brings cutting-edge technology to low-resource environments without requiring expensive
		hardware or internet access. By leveraging pre -
		trained models and transfer learning, it
		achieves high accuracy with minimal data and
		infrastructure.
4.	Social Impact / Customer Satisfaction	The system reduces food wastage, increases
••	Social impact / Sustainer Satisfaction	income for farmers/vendors, and ensures better
		quality for end consumers. It empowers rural users
		with modern tools, improves supply chain
		efficiency, and supports sustainable agriculture.
		Enhanced accuracy in sorting leads to higher
		customer satisfaction and trust.
5.	Business Model (Revenue Model)	The solution can be offered as a mobile/web
		application, where basic features are free and
		advanced analytics or bulk usage is part of a paid
		plan. Revenue can also be generated through B2B
		licensing to warehouses, food companies, or
		government agri-schemes. Optional hardware
		kits or on-premise deployments can be sold as part
		of a package.

6. Scalability of the Solution	Scalability of the Solution	The model can be scaled geographically to
	different regions and adapted for multiple fruits	
		and vegetables. It can also be extended to
		detect other defects like bruises or over-ripeness.
		The system supports integration with existing
		sorting machines, mobile apps, or cloud
		dashboards for larger enterprises.