Représentation de Connaissances

Introduction à l'intelligence artificielle

BOUSSEBOUGH Imane

Faculté NTICs

Imane.Boussebough@univ-constantine2.dz

Représentation de Connaissances

- Cours 1 -

Chapitre 1 : Logique de Prédicats

BOUSSEBOUGH Imane

Faculté NTICs

Imane.boussebough@univ-constantine2.dz

Etudiants concernés

Faculté/Institut	Département	Niveau	Spécialité
Nouvelles technologies	IFA	Master I	STIC

Université Constantine 2 2020/2021. Semestre 1

Résumé

Prérequis

- Quelques notions de logique mathématique
- Quelques notions sur le parcours d'arbres

Objectifs du cours

- Introduire quelques concepts d'intelligence artificielle
- Présenter la notion de connaissances en intelligence artificielle
- Présenter la notion de raisonnement sur la connaissance

Introduction

Faire raisonner une machine

Raisonnement logique

Calcul des propositions

Calcul des prédicats

Permet de représenter des connaissances et de raisonner sur ces connaissances

Présentation du calcul propositionnel

- Variables, connecteurs logiques et formules
- les variables propositionnelles ou formules atomiques, notées p, q, etc.
- les connecteurs logiques : et , ou , non , implique , équivaut , etc. ;
- les **parenthèses**: (lever les ambiguïtés dans les formules)

Présentation du calcul propositionnel (Syntaxe)

Les propositions :

• a, b, c, ...

Les constantes:

V et F

Les connecteurs :

- \(\tau(\text{conjonction})\)
- v (disjonction)
- ¬ (négation)
- \rightarrow (implication)
- ↔ (équivalence)

Présentation du calcul propositionnel (construction des formules)

- Une formule ou énoncé bien formé est définie itérativement comme suit :
 - Une proposition est une formule
 - Si a et b sont des formules, alors ¬a, a∨b, a∧b, a→b, a ↔ b
 sont des formules

Présentation du calcul propositionnel (Sémantique)

• Les formules sont interprétées dans {V,F}

• On définit l'interprétation associée à chaque connecteur grâce aux tables de vérité

Tables de vérité des connecteurs

Α	В	¬A	A∧B	AvB	A⊃B
V	٧	F	٧	٧	V
V	F	F	F	V	F
F	V	V	F	V	V
F	F	V	F	F	V

Règles de transformation (1)

• av—a (loi du tiers exclu)

•
$$(a \rightarrow b) \Leftrightarrow (\neg b \rightarrow \neg a)$$
 (contraposition)

• $\neg \neg a \Leftrightarrow a$ (double négation)

•
$$a \rightarrow b \Leftrightarrow \neg a \lor b$$

•
$$a \leftrightarrow b \Leftrightarrow (a \rightarrow b) \land (b \rightarrow a)$$

• $a \lor a \Leftrightarrow a \land a \Leftrightarrow a \text{ (idempotence)}$

Règles de transformation (2)

• Lois de Morgan :

$$\bullet \neg (a \lor b) \Leftrightarrow \neg a \land \neg b$$

$$\bullet \neg (a \land b) \Leftrightarrow \neg a \lor \neg b$$

- Commutativité et associativité de vet A
- Distributivité de v par rapport à n et de n par rapport à v

Règles de transformation (3)

• $((a \rightarrow b) \land a) \rightarrow b \text{ (modus ponens)}$

• $((a \rightarrow b) \land \neg b) \rightarrow \neg a \text{ (modus tollens)}$

Calcul Propositionnel (exemple)

- La logique propositionnelle permet
 - de représenter des connaissances
 - de raisonner sur ces connaissances

Exemple:

- Si il fait beau et qu'on n'est pas samedi alors je fais du vélo
- Si je fais du vélo alors il y a du vent
- Donc s'il fait beau et qu'on est pas samedi alors il y a du vent

$$(b \land \neg s) \rightarrow f \qquad f \rightarrow v \qquad \Rightarrow \qquad (b \land \neg s) \rightarrow v$$

Une énigme policière

- Un meurtre a été commis au laboratoire, le corps se trouve dans la salle de conférences...
- On dispose des informations suivantes :
 - La secrétaire déclare qu'elle a vu l'ingénieur dans le couloir qui donne sur la salle de conférences
 - Le coup de feu a été tiré dans la salle de conférences, on l'a donc entendu de toutes les pièces voisines
 - L'ingénieur affirme n'avoir rien entendu
- On souhaite démontrer que si la secrétaire dit vrai, alors l'ingénieur ment

Formalisation en calcul des propositions

- p : la secrétaire dit vrai
- q : l'ingénieur était dans le couloir au moment du crime
- r : l'ingénieur était dans une pièce voisine de la salle de conférences
- s : l'ingénieur a entendu le coup de feu
- t : l'ingénieur dit vrai

Résolution de l'énigme

• Les informations de l'énoncé se traduisent par les implications :

$$p \rightarrow q$$
, $q \rightarrow r$, $r \rightarrow s$, $t \rightarrow \neg s$

• Il s'agit de prouver la validité de la formule :

$$((p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow s) \land (t \rightarrow \neg s)) \rightarrow (p \rightarrow \neg t)$$

Démonstration

$$(p \rightarrow q) \land (q \rightarrow r) \land (r \rightarrow s) \land (t \rightarrow \neg s) \rightarrow (p \rightarrow \neg t)$$

- La formule ne peut être fausse que si
 - $(p \rightarrow \neg t)$ est faux, soit p et t vrais
 - la prémisse est vraie, soit toutes les implications vraies

• Comme t doit être vrai, s doit être faux, donc r faux, donc q faux, donc p faux, et il y a contradiction

Limites du calcul propositionnel

- Ahmed est étudiant
- P: Ahmed est étudiant
- Mohamed est étudiant
- Q: Mohamed est étudiant
- Lina est étudiante
- R: Lina est étudiante

Calcul des prédicats

Extension du Calcul Propositionnel

 \neg homme(X) \lor mortel(X)

Socrate est un homme
 Tout homme est mortel
 Donc Socrate est mortel
 homme(socrate)
 ∀X homme(X) → mortel(X)
 homme(socrate)
 Unification
 Principe de résolution
 mortel(socrate)

Calcul ou Logique des prédicats

Syntaxe

On définit :

- Les constantes : V et F
- Les connecteurs : \land , \lor , \neg , \rightarrow
- Les variables : x, y, z, ...
- Les fonctions : f, g, h, ...
- Les prédicats : p, q, r, ... dont ceux d'arité 0 : a, b, c,
- Les quantificateurs : \forall , \exists

Définitions

- Terme:
 - Une variable est un terme
 - Une constante est un terme
 - Si t1, t2, ..., tn sont des termes, alors f(t1,t2,...,tn) est un terme
- Atome:
 - Si t1, t2, ..., tn sont des termes, alors p(t1,t2,...,tn) est un atome

Construction d'une formule

- V, F sont des formules
- Un atome est une formule
- Si F1 et F2 sont les formules, alors \neg F1, F1 \wedge F2, F1 \vee F2, F1 \rightarrow F2 sont des formules
- Si F est une formule, \forall x F et \exists x F sont des formules

• Remarque : la logique des propositions est un cas particulier de la logique des prédicats

Exemples de formules valides

•
$$\forall x \neg A \Leftrightarrow \neg \exists x A$$

•
$$\forall x A \Leftrightarrow \neg \exists x \neg A$$

Exemple

- Quand on veut traduire la phrase "La maison est verte",
- on a plusieurs possibilités quant au choix du prédicat et de son arité :

EST_VERTE(maison)

ou COULEUR(maison, verte)

ou VALEUR(couleur, maison, verte)

Exemple

• "Le frère de Ali travaille avec le frère de Omar" peut se traduire par le:

 prédicat TRAVAILLER avec deux arguments et par le symbole de fonction frere:

TRAVAILLER (frere(ali), frere(omar))

Exemple (3)

- 1-/ Traduire des axiomes en logique de prédicats :
 - a-/ Tous les dragons verts peuvent voler
 - b-/ Joe est un dragon vert
- 2-/ Montrer par l'absurde que Joe peut voler.

Exemple (4)

• Soit une base de connaissance est décrite par les axiomes suivants :

```
A1: \forall X étoile (X) \Rightarrow brille(X)
A2: \exists X brille(X) \Lambda - étoile(X)
A3: étoile (Soleil)
A4: planète (Venus)
A5: plusbrillante (X,Y) \Lambda étoile (X) \Lambda planète (Y)
```

- 1. Traduire les axiomes en français.
- 2. Que peut-on conclure comme nouveau fait?

Conclusion

- Les limitations des raisonnements logiques du 1^{er} ordre:
 - Nécessité de formaliser complètement le pb.
 - Pas d'appréciations nuancées
- Existence d'autres logiques:
 - Multivaluées (Valeur de vérité > 2)
 - Modales (modalités d'implication (possible, peut être...))
 - Floue
 - Non monotones (une assertion vraie à un instant, ne le sera plus à l'instant suivant)
 - De description (description de concepts)

— Etc...