Cross-Modal Fine-Tuning Align then Refine

Tran Trong Khiem

AI lab tranning

2024/05/29

Tran Trong Khiem Cross-Modal Fine-Tuning 1 / 56

- 1 Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- **5** LORA+
- **6** QLORA
- **7** LOW-RANK ADAPTATION
- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 2 / 56

Idea

Problem setup:

- Tranformers pre-train body model g_s in domain D^s .
- Dataset $\{x_i^t, y_i^t\}_{i=1}^N$ in domain D^t .
- Dataset $\{x_i^s, y_i^s\}_{i=1}^N$ in domain D^s

Figure 1: proposed model

embedder: f extract feature from input f(.)

- random init for f_t .
- using pre-train and freezing for f_s

predictor: h generate output h(.).

Tran Trong Khiem Cross-Modal Fine-Tuning 3 / 56

Idea(cnt.)

Proposed workflow:

- ① Stage 1 : Embedder training: mitigate modality gap.
- 2 Stage 2 : Modality gap and rank estimation.
- 3 Stage 3: Full fine-tuning using LoRA.

Figure 2: LORA.

Tran Trong Khiem Cross-Modal Fine-Tuning 4 / 56

Stage 3: LORA training

LORA:

- A pre-trained weight matrix $W_0 \in R^{d \times k}$.
- Low-rank decomposition : $W_0 + \Delta W = W_0 + BA$.
 - $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$, the rank $r << \min(d, k)$
- During training, W_0 is **frozen**, while A and B contain **trainable** parameters.

Expectation:

- Adapt the rank r depending on the **current modality gap**.
- r_i = r(D_i) in layer i. The larger the modality gap, the larger the rank r.

Tran Trong Khiem Cross-Modal Fine-Tuning 5 / 56

Modality gap and rank estimation

We have:

- D_i is modaily gap at layer i.
- r_i is rank LORA at layer i.
- $r \sim P(r|D)$.

Problem:

- What hypothesis determines the relationship between the optimal rank r in LoRA and the modality gap D?
- How to derive P(r|D) ?

Tran Trong Khiem Cross-Modal Fine-Tuning 6 / 56

Goal: Hypothesis for testing

• The LoRA rank adapted in cross-modality transfer is directly proportional to the modality gap.

Experiment setup two experiments for hypothesis testing:

- **1** Adapt LORA in ORCA model with different rank r (1,2,4,8,16,64, 128, 256, 512, . . .) in large modality task.
 - · Target dataset: Darcy flow.
 - Source dataset: ImageNet-21k.
- 2 Adapt LORA in ORCA model with different rank r (1,2,4,8,16,64, 128, 256, 512, ...) in small modality task.
 - Target dataset : CIFAR100.
 - Source dataset: ImageNet-21k.

Tran Trong Khiem Cross-Modal Fine-Tuning 7 / 56

Experiment 2 Setup:

- Source dataset: ImageNet-21k.
- Target dataset: CIFAR100.
- Embedder training: disable.
- Full fine-tune training: 50 epochs.
- LORA rank: 1.

Experiment 2 result:

Models	Trainable params	Prediction errors (↓)		
ORCA(100 epochs pp)	90M	0.0653		
ORCA(50 epochs)	90M	0.0664		
LORA $r = 1(50 \text{ epochs})$	0.18 M	0.0849		

Table 1: Prediction errors (↓)

Tran Trong Khiem Cross-Modal Fine-Tuning 8 / 56

Experiment1 setup:

- Source dataset : ImageNet-21k.
- Target dataset : Darcy-flow.
- Pre-train model : Swin Transformers(90 M params).
- Train embedder: Disable.
- Full fine-tuning: 100 epochs
- Using LoRa with different rank: 1,2,4,8,16,64.

Tran Trong Khiem Cross-Modal Fine-Tuning 9 / 56

Experiment result1

Experiment result1:

Models	Trainable params	Prediction errors (↓)
ORCA	90M	0.0076
Fine-tune	90M	0.0078
LORA r= 1	0.08 M	0.0968
LORA r= 2	0.15 M	0.0885
LORA r= 4	0.3 M	0.0823
LORA r= 8	0.6 M	0.0797
LORA r= 16	1.2 M	0.0782
LORA r= 64	4.6 M	0.0771
LORA r= 128	9.2 M	0.0771
LORA r= 256	18.4 M	0.0771
LORA r= 512	36.9 M	0.0770
LORA r= 1024	73.9 M	0.0771

Table 2: Prediction errors (\downarrow)

Tran Trong Khiem Cross-Modal Fine-Tuning 10 / 56

Experiment result3

Experiment result3:

Models	Trainable params	Prediction errors (↓)
ORCA	90M	0.0076
Fine-tune	90M	0.0078
LORA r= 1	3.4 M	0.0104
LORA r= 2	3.6 M	0.0094
LORA r= 4	4 M	0.0086
LORA r= 5	4.23 M	0.0095
LORA r= 6	4.45 M	0.0088
LORA r= 7	4.67 M	0.0087
LORA r= 8	4.8 M	0.0096
LORA r= 16	6.6 M	0.0095
LORA r= 64	17 M	0.0092
LORA r= 128	30.8 M	0.0087

Table 3: Prediction errors (\downarrow)

Tran Trong Khiem Cross-Modal Fine-Tuning 11 / 56

Experiment 1.1

Experiment setup1.1:

- Source dataset: ImageNet-21k.
- Embedder dataset : CIFAR10.
- Target dataset : Darcy-flow.
- Pre-train model: Swin Transformers(90 M params).
- Train embedder: Using OTDD 60 epochs(same OTDD loss).
- Full fine-tuning: 100 epochs.
- Using LoRa with different rank: 1,2,4,8,16,64.

Tran Trong Khiem Cross-Modal Fine-Tuning 12 / 56

Experiment result 1.1

Models	Trainable params	Prediction errors (↓)
ORCA	90M	0.0076
ORCA-LORA r= 1	0.08 M	0.1003
ORCA-LORA r= 2	0.15 M	0.0873
ORCA-LORA r= 4	0.3 M	0.0825
ORCA-LORA r= 8	0.6 M	0.0799
ORCA-LORA r= 16	1.2 M	0.0783
ORCA-LORA r= 64	4.6 M	0.0774

Table 4: Prediction errors (↓)

Tran Trong Khiem Cross-Modal Fine-Tuning 13 / 56

Conclusion

Result of Experiment on Darcy

Tran Trong Khiem Cross-Modal Fine-Tuning 14 / 56

Conclusion

With large modality:

- With (*r* < 64), A larger LoRA rank results in better model performance.
- Performance increases slowly from r = 16
- Embedder training does not affect model performance.
- With r > 64, A larger LoRA rank does not affect model performance.

With small modality:

• with r = 1, LORA achieves good performance.

Tran Trong Khiem Cross-Modal Fine-Tuning 15 / 56

Relatework

Problem: There is a substantial performance gap when comparing LoRA to full fine-tuning.

- Updating only a **fraction of the model's parameters**.
- It inadequate to fit the intricacies presented in the training data.

Delta-LoRA:

• Base on the mathematical property : $\frac{\partial L}{\partial W} = \frac{\partial L}{\partial AB}$

```
Algorithm 1: Delta-LoRA

Input: Learning rate η; weight decay β; total training iterations T; low rank r; scale factor \alpha; start steps K; update ratio \lambda. \lambda is initialized by Kaiming Initialization, B = 0 and W is initialized with pre-trained weights. for t = 0, ..., T - 1 do

Sample a mini-batch and compute gradients for \{A, B\} in each Delta-LoRA module. Update the first and second moments maintained by the optimizer with the computed gradients, and get the normalized gradients \widehat{g}_A and \widehat{g}_B.

A^{(t+1)} \leftarrow A^{(t)} - \eta \widehat{g}_A - \eta \beta A^{(t)}
B^{(t+1)} \leftarrow B^{(t)} - \eta \widehat{g}_B - \eta \beta B^{(t)}
if t > K do
W^{(t+1)} \leftarrow W^{(t)} + \lambda \cdot \frac{\alpha}{r} \cdot (A^{(t+1)}B^{(t+1)} - A^{(t)}B^{(t)})
end if end for
Output: the fine-tuned parameters \{W^{(T)}, A^{(T)}, B^{(T)}\}
```

Tran Trong Khiem Cross-Modal Fine-Tuning 16 / 56

- Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- 5 LORA+
- **6** QLORA
- LOW-RANK ADAPTATION
- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 17 / 56

Figure 4: India buffet process

- A stochastics process define a distribution over infinite binary matrices.
- Indian restaurants offer buffets with an infinite number of dishes.
- N customers enter a restaurant one after another.
- **First customer** takes first $d_0 \sim Poisson(\alpha)$ dishes.
- *i* **th customer** moves along the buffet.
 - Sampling dishes with $p_k = \frac{m_k}{i}$.
 - m_k is the number of previous customers who have chosen dish k.
 - tries a $d_k \sim Poisson(\frac{\alpha}{i})$ number of new dishes.

Tran Trong Khiem Cross-Modal Fine-Tuning 18 / 56

- Indicate which customers chose which dishes using a binary matrix Z.
 - N rows and infinitely many columns.
 - $z_{ik} = 1$ if the i-th customer sampled the k-th dish.
- The probability of any particular matrix being produced by this process is

$$P(Z) = \frac{\alpha_{+}^{K}}{\prod_{i=1}^{N} K_{1}^{(i)}!} \exp(-\alpha H_{N}) \prod_{k=1}^{K_{+}} \frac{(N - m_{k})!(m_{k} - 1)!}{N!}$$

- $H_N = \sum_{i=1}^{N} \frac{1}{i}$
- m_k is the number of previous customers who have chosen dish k.
- $K_1^{(i)}$ is the **number of new dishes** sampled by the i-th customer.
- K_+ is the number of disshes for which $m_k > 0$.

Tran Trong Khiem Cross-Modal Fine-Tuning 19 / 56

Figure 5: A binary matrix generated by the Indian buffet process with $\alpha = 10$.

Tran Trong Khiem Cross-Modal Fine-Tuning 20 / 56

Figure 6: Poisson distribution

Tran Trong Khiem Cross-Modal Fine-Tuning 21 / 56

- 1 Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- **5** LORA+
- **6** QLORA
- **7** LOW-RANK ADAPTATION
- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 22 / 56

INTRODUCTION

Goal: Fine tuning by adapting only some parameters for new tasks.

- Store and load a **small number** of task-specific parameters.
- Boost the operational efficiency.

Hypothesis:

- The change in weights during model adaptation has a low "intrinsic rank"
- proposed Low-Rank Adaptation (LoRA) approach.

LORA:

- Train some dense layers in a neural network indirectly by optimizing rank decomposition matrices of the dense layers' change during adaptation.
- Keeping the **pre-trained weights frozen**.

Tran Trong Khiem Cross-Modal Fine-Tuning 23 / 56

LORA

Figure 7: LORA.

- A pre-trained weight matrix $W_0 \in R^{d \times k}$.
- Represent a **low-rank decomposition** : $W_0 + \Delta W = W_0 + BA$
 - $B \in \mathbb{R}^{d \times r}$ and $A \in \mathbb{R}^{r \times k}$. The rank r << min(d, k).
- W_0 is frozen, while A and B contain trainable parameters.
- For $h = W_0 x$, modified forward pass yields :

$$h = W_0 x + \Delta W x = W_0 x + BA x$$

Tran Trong Khiem Cross-Modal Fine-Tuning 24 / 56

UNDERSTANDING THE LOW-RANK UPDATES

Research questions:

- Which weight matrices in a Transformer model should we apply LORA to ?
- **2** What is the optimal rank r for **LoRA**?

Tran Trong Khiem Cross-Modal Fine-Tuning 25 / 56

Which weight matrices in a Transformer model should we apply LORA to ?

	# of Trainable Parameters = 18M						
Weight Type Rank r	$\begin{vmatrix} W_q \\ 8 \end{vmatrix}$	W_k 8	W_v 8	W_o 8	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL (±0.5%) MultiNLI (±0.1%)					71.4 91.3	73.7 91.3	73.7 91.7

Figure 8: Validation accuracy on WikiSQL and MultiNLI after applying LoRA in GPT-3

- W_q , W_k , W_ν , and W_o to refer to the query/key/value/output projection matrices in the self-attention module.
- Preferable to adapt more weight matrices than adapting a single type of weights with a larger rank.

Tran Trong Khiem Cross-Modal Fine-Tuning 26 / 56

What is the optimal rank r for LoRA?

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSQL(±0.5%)	W_q W_q, W_v W_q, W_k, W_v, W_o	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI (±0.1%)	$\begin{array}{c} W_q \\ W_q, W_v \\ W_q, W_k, W_v, W_o \end{array}$	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

Figure 9: Validation accuracy on WikiSQL and MultiNLI with different rank r in GPT-3

Subspace similarity between different r

• The adaptation matrix can indeed have a very low rank.

Tran Trong Khiem Cross-Modal Fine-Tuning 27 / 56

Using Modality gap for rank LORA estimation?

We have:

- D_i is modaily gap at layer i.
- r_i is rank LORA at layer i.
- $r \sim P(r|D)$.

Problem:

- What hypothesis determines the relationship between the optimal rank r in LoRA and the modality gap D?
- How to derive P(r|D) ?

Tran Trong Khiem Cross-Modal Fine-Tuning 28 / 56

- 1 Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- **5** LORA+
- **6** QLORA
- **7** LOW-RANK ADAPTATION
- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 29 / 56

Introduction

LoRA blocks are parameter efficient, they suffer from two problems:

- The size of these blocks is fixed and cannot be modified after training.
- **2** Optimizing their rank requires an exhaustive search and effort.

DyLoRA: technique to address these two problems together.

- trains LoRA blocks for a range of ranks instead of a single rank.
- Outperform LoRA in a much wider range of ranks without adding to the training time.

Tran Trong Khiem Cross-Modal Fine-Tuning 30 / 56

DyLoRA

In each LoRA module:

- The **up-projection** matrix $W_{\text{up}} \in \mathbb{R}^{m \times r}$
- The **down-projection** matrix $W_{dw} \in \mathbb{R}^{r \times d}$.
- Train the LoRA in the range $r \in \text{Range}[r_{\min}, r_{\max}]$.
 - r_{\min} and r_{\max} can be treated as new hyper-parameters.

At each training step,

- Sample $b \sim p_B(\cdot)$, where $b \in \{r_{\min}, r_{\min} + 1, \dots, r_{\max}\}$.
 - p_B is a pre-defined categorical distribution.
- Forward:
 - $W_{\text{dw}\downarrow b} = W_{\text{dw}}[:b,:]$ and $W_{\text{dw}}^b = W_{\text{dw}}[b,:]$
 - $W_{\text{up},b} = W_{\text{up}}[:b,:]$ and $W_{\text{up}}^b = W_{\text{up}}[b,:]$
 - $h = W_0 x + \frac{\alpha}{h} W_{\text{up} \downarrow b} W_{\text{dw} \downarrow b} x$

Tran Trong Khiem Cross-Modal Fine-Tuning 31 / 56

DyLoRA

Backward:

• Given input and output $(x,y) = (x_i,y_i)_{i=1}^N$, define **dynamic loss** function as:

$$\mathcal{L}_{\downarrow b}^{\mathcal{DY}} = \sum_{i=1}^{N} l(f(x_i; W_{\mathrm{dw} \downarrow b}, W_{\mathrm{up} \downarrow b}), y_i)$$

• If FROZEN then:

$$egin{aligned} W^b_{ ext{up}} &= W^b_{ ext{up}} - \eta
abla_{W^b_{ ext{up}}} \mathcal{L}^{\mathcal{DY}}_{\downarrow b} \end{aligned} \ W^b_{ ext{dw}} &= W^b_{ ext{dw}} - \eta
abla_{W^b} \mathcal{L}^{\mathcal{DY}}_{\downarrow b} \end{aligned}$$

Else:

$$egin{aligned} W_{ ext{dw}\downarrow b} &= W_{ ext{dw}\downarrow b} - \eta
abla_{W_{ ext{dw}\downarrow b}} \mathcal{L}_{\downarrow b}^{\mathcal{DY}} \ W_{ ext{up}\downarrow b} &= W_{ ext{up}\downarrow b} - \eta
abla_{W_{ ext{up}\downarrow b}} \mathcal{L}_{\downarrow b}^{\mathcal{DY}} \end{aligned}$$

Tran Trong Khiem Cross-Modal Fine-Tuning 32 / 56

	Accuracy	Accuracy	F1	Mathews	Accuracy	Accuracy	Accuracy	Pearson	
Model	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg
				Rank = 1					
LoRA	$34.60_{\pm 3.69}$	$69.61_{\pm 7.99}$	$83.47_{\pm 3.90}$	$25.57_{\pm 9.71}$	$53.00_{\pm 2.95}$	$44.30_{\pm 7.50}$	$57.55_{\pm 5.51}$	$76.07_{\pm 6.06}$	54.90
DyLoRA (Frozen)	$85.36_{\pm0.26}$	$93.51_{\pm 0.49}$	$90.75_{\pm 0.70}$	$56.95_{\pm 1.54}$	$91.70_{\pm 0.28}$	$87.87_{\pm0.17}$	$66.79_{\pm 8.54}$	$89.95_{\pm0.24}$	82.8€
DyLoRA	85.59 ± 0.07	$93.23_{\pm 0.63}$	91.58 ± 0.69	57.93 ± 2.12	91.95 ± 0.14	$88.37_{\pm0.15}$	$74.80_{\pm 1.48}$	90.30 ± 0.13	84.22
				Rank = 2					
LoRA	$40.53_{\pm 6.17}$	$82.75_{\pm 5.08}$	$88.00_{\pm 1.81}$	$43.30_{\pm 4.67}$	$63.42_{\pm 2.99}$	$59.21_{\pm 6.13}$	$68.88_{\pm 1.26}$	$85.51_{\pm 1.94}$	66.45
DyLoRA (Frozen)	$85.74_{\pm0.28}$	$93.76_{\pm 0.52}$	$91.09_{\pm 0.45}$	$56.88_{\pm 2.09}$	$92.03_{\pm0.22}$	$88.21_{\pm 0.07}$	$63.90_{\pm 12.85}$	$90.25_{\pm0.15}$	82.73
DyLoRA	$86.02_{\pm0.06}$	$93.81_{\pm0.30}$	$91.66_{\pm0.46}$	$59.91_{\pm 1.88}$	$92.39_{\pm 0.25}$	$89.33_{\pm 0.05}$	$76.03_{\pm 1.61}$	$90.60_{\pm 0.09}$	84.97
				Rank = 3					
LoRA	$58.95_{\pm 6.02}$	$90.00_{\pm 1.27}$	$89.66_{\pm 1.25}$	$56.78_{\pm 1.88}$	$79.26_{\pm 4.80}$	$72.58_{\pm 4.09}$	$72.49_{\pm 2.30}$	$88.80_{\pm0.29}$	76.07
DyLoRA (Frozen)	85.78 ± 0.25	$93.76_{\pm0.26}$	$91.78_{\pm 0.89}$	$58.86_{\pm0.32}$	$92.17_{\pm 0.18}$	$88.40_{\pm 0.0}$	$70.90_{\pm 6.14}$	$90.50_{\pm0.29}$	84.02
DyLoRA	$86.70_{\pm 0.09}$	$94.11_{\pm 0.33}$	$91.56_{\pm 0.86}$	$60.97_{\pm 2.01}$	$92.77_{\pm 0.21}$	$89.76_{\pm 0.07}$	$77.11_{\pm 2.97}$	$90.69_{\pm0.14}$	85.40
				Rank = 4					
LoRA	$72.10_{\pm 5.25}$	$91.56_{\pm0.34}$	$89.62_{\pm 0.92}$	$58.53_{\pm 3.93}$	$85.09_{\pm 1.20}$	$80.78_{\pm 3.73}$	$73.07_{\pm 2.29}$	$89.28_{\pm 0.72}$	80.00
DyLoRA (Frozen)	$85.93_{\pm0.19}$	$93.85_{\pm0.33}$	$91.28_{\pm 0.71}$	$59.25_{\pm 1.05}$	$92.27_{\pm 0.16}$	$88.52_{\pm0.08}$	$71.12_{\pm 2.46}$	$90.53_{\pm 0.18}$	84.10
DyLoRA	$86.82_{\pm0.04}$	$94.40_{\pm0.13}$	$92.06_{\pm 0.46}$	$59.81_{\pm 1.71}$	$92.91_{\pm 0.31}$	$89.80_{\pm0.10}$	$77.40_{\pm 2.72}$	$90.86_{\pm0.06}$	85.53
		2000	2000	Rank = 5	2001			2000	
LoRA	78.61+3.97	$92.82_{\pm 0.46}$	90.75+0.96	60.37+3.10	88.97+0.90	85.26+1.56	$73.21_{\pm 2.17}$	$89.90_{\pm0.30}$	82.49
DyLoRA (Frozen)	85.95+0.17	93.78+0.26	91.28+0.64	$59.41_{\pm 1.30}$	$92.30_{\pm 0.17}$	88.56+0.09	71.48+2.92	90.60+0.20	84.17
DvLoRA	87.00 _{±0.10}	94.29+0.41	$91.73_{\pm 0.60}$	$60.52_{\pm 1.07}$	93.01 _{±0.28}	$90.04_{\pm0.10}$	$76.90_{\pm 2.11}$	$90.97_{\pm 0.20}$	85.50
	20.10	20.41	2000	Rank = 6	1010	20.10	22.01	1.0.20	
LoRA	83.02 ± 1.59	$93.49_{\pm 0.88}$	91.28 ± 0.63	61.94±2.27	90.32 ± 0.76	$87.54_{\pm 1.51}$	76.68 ± 1.16	90.12 ± 0.12	84.30
DyLoRA (Frozen)	85.98±0.16	$93.76_{\pm 0.46}$	$91.12_{\pm 0.43}$	$58.95_{\pm 1.10}$	$92.46_{\pm 0.14}$	88.68 _{±0.13}	$72.64_{\pm 2.44}$	$90.64_{\pm 0.23}$	84.28
DyLoRA	86.97 _{±0.20}	$94.27_{\pm 0.37}$	$91.44_{\pm 0.64}$	60.16±1.70	$93.01_{\pm 0.21}$	$90.07_{\pm 0.14}$	$77.33_{\pm 1.66}$	$91.03_{\pm 0.20}$	85.53
	0 0101 ±0.20	0 0.21 <u>10.31</u>	<u>T</u> 0.04	Rank = 7	0 010 4 1 0.21	55.51 <u>1</u> 0.14	oo_1.00	0 1100 <u>T</u> 0.20	
LoRA	85.44+0.78	93.62+0.35	$91.27_{\pm 0.73}$	$62.19_{\pm 2.66}$	91.88+0.23	89.51+0.30	$75.52_{\pm 1.41}$	$90.35_{\pm0.24}$	84.97
DvLoRA (Frozen)	86.08±0.14	$93.97_{\pm 0.17}$	$91.02_{\pm 0.70}$	58.76+0.94	$92.30_{\pm 0.10}$	88.77 _{±0.06}	73.50 ± 1.67	90.68+0.15	84.38
DyLoRA	86.82±0.10	$94.27_{\pm 0.33}$	$91.38_{\pm 0.59}$	59.51 _{±1.75}	$92.99_{\pm 0.26}$	90.04 _{±0.06}	$77.91_{\pm 1.58}$	$91.07_{\pm 0.19}$	85.50
	00.00_10.10	0.000	0 TO 0 TO 33	Rank = 8	021001020	0010-10.00	11.00	0 2101 <u>L</u> 0.19	
LoRA	86.82+0.18	94.01+0.30	91.48 + 0.73	$62.08_{\pm 1.37}$	$92.39_{\pm 0.39}$	90.42+0.02	$74.51_{\pm 0.41}$	$90.48_{\pm0.24}$	85.27
DyLoRA (Frozen)	86.10 _{±0.04}	$93.69_{\pm 0.41}$	$91.19_{\pm 0.79}$	58.52±0.95	$92.47_{\pm 0.18}$	88.82±0.06	$73.29_{\pm 2.49}$	$90.68_{\pm 0.14}$	84.35
DyLoRA	86.76±0.04	$94.36_{\pm 0.38}$	$91.38_{\pm 0.83}$	59.51 _{±1.84}	$93.00_{\pm 0.32}$	89.91 _{±0.08}	77.55 ± 0.59	$91.05_{\pm 0.19}$	85.44
Dynomia	OU.10±0.13	0 1.00 ±0.38	01.00±0.83	Best (Rank)		00101 ±0.08	71100±0.39	01.00±0.19	0211
LoRA	87.03(8)	94.50(6)	92.25(7)	66.05(7)	92.81(8)	90.45(8)	77.98(6)	90.87(8)	86.49
DyLoRA (Frozen)	86.18(7)	94.50(2)	92.93(3)	61.57(5)	92.70(6)	88.88(8)	75.81(7)	90.89(6)	85.43
DyLoRA (Frozen)	87.17(6)	94.72(7)	92.79(8)	63.32(3)	93.56(8)	90.17(6)	80.14(4)	91.36(7)	86.60
Dynamic	07.27(0)	7-172(1)	7a./7(0)	Full Rank	JULUO(0)	70.17(0)	55.14(4)	71.50(7)	00.00
Fine Tune*	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
rine rune	0/.0	24.0	90.2	0.00	72.8	91.9	18.7	71.2	00.4

Tran Trong Khiem Cross-Modal Fine-Tuning 33 / 56

- 1 Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- 5 LORA+
- **6** QLORA
- **7** LOW-RANK ADAPTATION
- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 34 / 56

Introduction

Problem:

- Adapter matrices *A* and *B* in LoRA are updated with the same learning rate.
- The same learning rate for A and B does not allow efficient feature learning.

LoRA+:

- Different learning rates for the LoRA adapter matrices A and B.
- Improves performance 1% 2%
- Finetuning speed (up to \sim 2X SpeedUp)

Tran Trong Khiem Cross-Modal Fine-Tuning 35 / 56

cess LORA DyLoRA LORA+ QLORA LOW-RANK ADAPTATION Apendix Referenses

LORA+

Figure 10: LORA+

LORA:

- Weight matrix $W^* \in \mathbb{R}^{n_1 \times n_2}$ in the **pretrained model**.
- Fine-tuning process with a low-rank decomposition:

$$W = W^* + \Delta W = W^* + \frac{\alpha}{r}BA$$

• $B \in \mathbb{R}^{n_1 \times r}$, $A \in \mathbb{R}^{r \times n_2}$ are trainable, $r \ll \min(n_1, n_2)$ and $\alpha \in \mathbb{R}$ are tunable constants

An Intuitive Analysis of LoRA

LoRA with a Toy Model

- Linear model : $f(x) = (W^* + ba^\top)x$
 - $x \in \mathbb{R}^n$, $n_1 = 1$, $n_2 = n$, r = 1
 - Loss function : $L(\theta) = \frac{1}{2}(f(x) y)^2$ with $\theta = (a, b)$.
 - (x, y) is an input-output datapoint.

Initialization:

- Gaussian initialization of the weights as follows: $a_i \sim \mathcal{N}(0, \sigma_a^2)$, $b \sim \mathcal{N}(0, \sigma_b^2)$
- Two possible schemes:
 - Init[1]: $\sigma_b^2 = 0$, $\sigma_a^2 = \Theta(n^{-1})$
 - Init[2]: $\sigma_b^2 = \Theta(1), \, \sigma_a^2 = 0$

Tran Trong Khiem Cross-Modal Fine-Tuning 37 / 56

An Intuitive Analysis of LoRA

Learning rate:

• The gradients are given by:

$$\frac{\partial \mathcal{L}}{\partial b} = a^T x (f(x) - y)$$

$$\frac{\partial \mathcal{L}}{\partial a} = b(f(x) - y)x$$

• Let $U_t = (f_t(x) - y)$. At step t with learning rate $\eta > 0$, we have :

$$b_{t} = b_{t-1} - \eta a_{t-1}^{T} x U_{t-1}$$
$$a_{t} = a_{t-1} - \eta b_{t-1} U_{t-1} x$$

- Then, we have : $\Delta f_t = f_t(x) f_{t-1}(x) = \delta_t^1 + \delta_t^2 + \delta_t^3$
 - $\delta_t^1 = -\eta b_{t-1}^2 U_{t-1} ||x||^2$
 - $\delta_t^2 = -\eta (a_{t-1}^\top x)^2 U_{t-1}$ and $\delta_t^3 = \eta^2 U_{t-1}^2 b_{t-1} (a_{t-1}^\top x) ||x||^2$

Tran Trong Khiem Cross-Modal Fine-Tuning 38 / 56

An Intuitive Analysis of LoRA

Learning rate:

- **Goal**: As *n* grows, a desirable property is that $\Delta f_t = \Theta(1)$.
- **Proposition 1**: Assume that LoRA weights are initialized with Init[1] or Init[2] with learning rate $\eta = \Theta(n^c)$ for some $c \in \mathbb{R}$.
 - It is impossible to have $\delta_t^i = \Theta(1)$ for $i \in \{1, 2\}$ for any t > 0.
 - Fine-tuning with LoRA in this setup is inefficient.
- **Proposition 2**: With learning rate $\eta_a = \Theta(n^{-1})$ and $\eta_b = \Theta(1)$
 - we have for all t > 1, $i \in \{1, 2, 3\}$, $\delta_{ti} = \Theta(1)$.
 - Fine-tuning with LoRA in this setup is efficient.

Tran Trong Khiem Cross-Modal Fine-Tuning 39 / 56

Stability and Feature Learning with LoRA in the Infinite Width Limit

Notation:

• Z denotes the input to LORA layer and \bar{Z} the output.

$$\bar{Z} = W^*Z + \frac{\alpha}{r}BAZ$$

• Define LoRA features (Z_A, Z_B) as $Z_A = AZ$ and $Z_B = BZ_A$.

Definition 3(Stability): LoRA finetuning is **stable** if for all LoRA layers.

• For all training steps t, we have Z, Z_A , $Z_B = \mathcal{O}(1)$ as $n \to \infty$.

Definition 4 (Stable Feature Learning with LoRA): LoRA finetuning induces stable feature learning.

- It is stable.
- For all LoRA layers and finetuning step t, we have :

$$\Delta Z_B^t = Z_B^t - Z_B^{t-1} = \Theta(1)$$

Tran Trong Khiem Cross-Modal Fine-Tuning 40 / 56

Stability and Feature Learning with LoRA in the Infinite Width Limit

After step t, Z_B is updated as follows :

$$\Delta Z_B^t = B_{t-1} \Delta Z_A^t + \Delta B_t Z_A^{t-1} + \Delta B_t \Delta Z_A^t$$
$$= \delta_t^1 + \delta_t^2 + \delta_t^3$$

Definition 5 (Efficient Learning): LoRA fine- tuning is efficient.

- it is stable.
- for all LoRA layers in the model, all steps t > 1, and $i \in \{1, 2\}$, we have $\delta_t^i = \Theta(1)$.

Theorem 1 (Efficient LoRA (Informal)):

- it is impossible to achieve efficiency with $\eta_A = \eta_B$.
- LoRA finetuning is efficient with $\eta_A = \Theta(n^{-1})$ and $\eta_B = \Theta(1)$.

Tran Trong Khiem Cross-Modal Fine-Tuning 41 / 56

Experiments with Language Models

Roberta-base:

- Finetuning with $\alpha = r = 8$
- $\eta_B \gg \eta_A$, outperforming the standard practice where $\eta_A = \eta_B$.

Figure 11: LORA result.

Tran Trong Khiem Cross-Modal Fine-Tuning 42 / 56

- 1 Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- **5** LORA+
- **6** QLORA
- **7** LOW-RANK ADAPTATION
- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 43 / 56

Introduction

OLORA:

- Reduces the average memory requirements of finetuning without degrading performance.
- Introduces multiple innovations designed:
 - 4-bit NormalFloat: optimal quantization data type for normally distributed data.
 - **2 Double Quantization:** quantizes the quantization constants, saving an average of about 0.37 bits per parameter.
 - 3 Paged Optimizers: Avoid the gradient checkpointing memory spikes.

Tran Trong Khiem Cross-Modal Fine-Tuning 44 / 56

Background

Block-wise k-bit Quantization:

- Quantization is the process of discretizing an input from a representation that holds more information to a representation with less information.
- Quantizing a 32-bit Floating Point (FP32) tensor into a Int8 tensor:

$$X^{\text{Int8}} = \text{round}\left(\frac{127}{\text{absmax}(X^{\text{FP32}})}X^{\text{FP32}}\cdot\right) = \text{round}\left(X^{\text{FP32}}\cdot c_{\text{FP32}}\right)$$

- Problem: large magnitude values are not utilized well.
- Solution: chunk the input tensor into blocks that are independently quantized, each with their own quantization constant c.

Tran Trong Khiem Cross-Modal Fine-Tuning 45 / 56

QLORA Finetuning

4-bit NormalFloat Quantization:

 ensures each quantization bin has an equal number of values assigned from the input tensor.

Double Quantization:

 the process of quantizing the quantization constants for additional memory savings.

Paged Optimizers:

 automatic page-to-page transfers between the CPU and GPU for error-free GPU processing in the scenario where the GPU occasionally runs out-of-memory.

OLORA:

• define QLORA for a single linear layer as follows:

$$Y^{\text{BF}16} = X^{\text{BF}16} \cdot \text{doubleDequant}(c^{\text{FP}32}, c^{k\text{-bit}}, W^{\text{NF}4}) + X^{\text{BF}16} \cdot L^{\text{BF}16} \cdot L^{\text{BF}16}$$

Tran Trong Khiem Cross-Modal Fine-Tuning 46 / 56

- 1 Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- 6 LORA+
- **6** QLORA
- **7** LOW-RANK ADAPTATION
- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 47 / 56

Introduction

Problem:

- What is the minimum rank of the LoRA adapters required to adapt a pre-trained model f to match the target model f.
- How does the model architecture affect the minimal rank?

Contributions:

- Characterize the LoRA rank for Fully Connected Neural Networks (FNN) and Transformer Networks (TFN).
- Identify the necessary LoRA-rank for adapting a frozen model to exactly match a target model.

Theorem 1: Let f be a target FNN(or TFN) and f_0 be a frozen FNN(or TFN).

• Under mild conditions on ranks and network architectures. There exist low-rank adapters such that a f_0 is exactly equal to f.

Tran Trong Khiem Cross-Modal Fine-Tuning 48 / 56

Expressive Power of Linear Models with LoRA

Simplest scenario: both the target model \bar{f} and the frozen model f_0 are **linear**.

- Target Model : $\bar{f}(x) = \bar{W}x$
- Frozen Model : $f_0(x) = (\prod_{l=1}^L W_l)x$
- For a given LoRA-rank $R \in [D]$, Adapted Model:

$$f(x) = (W_L + \Delta W_L) \cdots (W_1 + \Delta W_1)x$$

• $\operatorname{rank}(\Delta W_l) \leq R \text{ for all } l \in [L].$

Tran Trong Khiem Cross-Modal Fine-Tuning 49 / 56

Expressive Power of Linear Models with LoRA

Lemma 1: Define error matrix $E := \bar{W} - \prod_{l=1}^{L} W_l$ and $R_E = \operatorname{rank}(E)$. For a given LoRA-rank $R \in [D]$, assume that all $(W_l)_{l=1}^{L}$ and $\prod_{l=1}^{L} W_l + LR_r(E)$ is non-singular for all r < R(L-1).

$$\min || \prod_{l=1}^{L} (W_l + \Delta W_l) - \bar{W} || = \sigma_{RL+1}(E)$$

Thus, when $R \ge \lfloor \frac{R_E}{L} \rfloor$, the optimal solution satisfies $\sum_{l=1}^{L} (W_l + \Delta W_l) = W$, implying $f = f_0$.

Tran Trong Khiem Cross-Modal Fine-Tuning 50 / 56

Expressive Power of FNNs with LoRA

Tran Trong Khiem Cross-Modal Fine-Tuning 51 / 56

- Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- **5** LORA+
- **6** QLORA
- **7** LOW-RANK ADAPTATION
- 8 Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 52 / 56

MMD

Define: MMD is a distance (difference) between feature means. **Denote:**

- X and $\phi(X) \in \mathcal{F}$ is the a feature map.
- Assuming \mathcal{F} satisfies the necessary conditions:
 - X, Y such that $k(X, Y) = \langle \phi(X), \phi(Y) \rangle_{\mathcal{F}}$

Feature Mean:

• Given $\mathcal{X} \sim P$ we have feature means :

$$\mu_P = \mathbb{E}_{X \sim P}[\phi(X)]$$

Maximum mean discrepancy:

$$MMD(P, Q) = \|\mathbb{E}_{X \sim P}[\phi(X)] - \mathbb{E}_{Y \sim O}[\phi(Y)]\|_{\mathcal{T}} = \|\mu_P - \mu_O\|_{\mathcal{T}}$$

Tran Trong Khiem Cross-Modal Fine-Tuning 53 / 56

Optimal transport(OP): Comparing by 'transporting'

Figure 12: Optimal transport

Optimal transport

- a method to find least-cost schemes to transport dirt and rubble from one place to another.
- $\operatorname{OT}_c(\alpha, \beta) := \min_{\pi \in \Pi(\alpha, \beta)} \int_{X \vee X} c(x, y) d\pi(x, y).$
 - $\Pi(\alpha, \beta)$ be the set of joint probability distributions on $X \times X$.
- $W_p(\alpha, \beta) = OT(\alpha, \beta)^{1/p}$ is called the *p*-Wasserstein distance.

Tran Trong Khiem Cross-Modal Fine-Tuning 54 / 56

- 1 Introduction
- 2 India buffet process
- 3 LORA
- 4 DyLoRA
- **5** LORA+
- **6** QLORA
- **7** LOW-RANK ADAPTATION
- Apendix

Tran Trong Khiem Cross-Modal Fine-Tuning 55 / 56

References

- 1 Junhong Shen, Liam Li, Lucio M. Dery, Corey Staten, Mikhail Khodak, Graham Neubig, Ameet Talwalkar; Cross-Modal Fine-Tuning: Align then Refine
- MMD.
- 3 OTDD
- Paloma García-de-Herreros, Vagrant Gautam, Philipp Slusallek, Dietrich Klakow, Marius Mosbach, What explains the success of cross-modal fine-tuning with ORCA?
- **5** Lincan Cai, Shuang Li, Wenxuan Ma, Jingxuan Kang, Binhui Xie, Zixun Sun, Chengwei Zhu, Enhancing Cross-Modal Fine-Tuning with Gradually Intermediate Modality Generation.

Tran Trong Khiem Cross-Modal Fine-Tuning 56 / 56