CCIE Service Provider v3.0 Sample Lab Part 2/7

Vincent Jun Ling Zhou

CCIE Service Provider – Product Manager

Cisco Systems

SP Sample Lab – Main Topology

SP Sample Lab – Addressing Scheme

- Backbone Carrier SP network Prefix: 2.2.0.0/24, 2002:2:2::/64
- Backbone Carrier SP router Loopback0: 2.2.0.Z/32, 2002:2:2::Z/128
- Customer Carrier SP/VPN network Prefix: 172.2.0.0/24, 2002:172:2::/64
- Customer Carrier SP/VPN router Loopback0: 172.2.0.Z/32, 2002:172:2::Z/128
- End Customer VPN network Prefix: 192.2.0.0/24
- End Customer VPN router Loopback0: 192.2.0.Z/32
- L2 VPN Customer network Prefix: 172.2.0.0/24
- L2 VPN Customer router Loopback0: 172.2.0.Z/32

"Z" is router number, for example "Z" value for R12 is "12"

SP Sample Lab – Setup

Hardware

Two XR-12404 with two GigabitEthernet interfaces or equivalent

Thirteen Cisco 7200 series routers with Ethernet interfaces or equivalent

Three Cisco 3560G series or equivalent

Software Operating System

XR12000-iosxr-k9-3.9.1.tar

c7200-spservices-mz.122-33.SRE2.bin

c3560-advipservicesk9-mz.122-46.SE.bin

SP Sample Lab Questions

	Question, Configuration and Verification
1	IS-IS IPv4/IPv6
2	OSPF IPv4/IPv6
3	BGP unicast IPv4/IPv6
4	MPLS LDP
5	MPLS TE
6	MPLS TE FRR
7	MP-BGP Intra-AS VPNv4
8	MP-BGP Inter-AS VPNv4
9	CSC
10	MP-BGP VPNv6 - 6VPE
11	Multicast VPN
12	AToM
13	VPLS
14	L2TPv3

MPLS Overview

- Based on the label-swapping and forwarding paradigm
- As a packet enters an MPLS network, it is assigned a label based on its Forwarding Equivalence Class (FEC) as determined at the edge of the MPLS network
- FECs are groups of packets forwarded over the same Label Switched Path (LSP)
- Need a mechanism that will create and distribute labels to establish LSP paths
- Separated into two planes:
 - Control Plane—responsible for maintaining correct label tables among Label Switching Routers
 - Forwarding Plane—uses label carried by packet and label table maintained by LSR to forward the packet

Label Distribution Protocol

- LDP is a superset of the Cisco-specific Tag Distribution Protocol
- Assigns, distributes, and installs (in forwarding) labels for prefixes advertised by unicast routing protocols
 OSPF, IS-IS, EIGRP, etc.
- Also used for Pseudowire/PW (VC) signaling
 Used for L2VPN control plane signaling
- Uses UDP (port 646) for session discovery and TCP (port 646) for exchange of LDP messages
- LDP operations

LDP Peer Discovery

LDP Session Establishment

MPLS Label Allocation, Distribution, and Updating MPLS forwarding

Mapping to Lab Exam Blueprint

 This question of the sample lab maps to following sections/sub-sections in the Lab Exam Blueprint document below;

https://learningnetwork.cisco.com/docs/DOC-9991

- 1.0 Implement, Optimize and Troubleshoot Core IP Technologies
 - 1.4 Implement, Optimize and Troubleshoot MPLS and LDP
- For more details, please review the Lab Exam Checklist document below;

https://learningnetwork.cisco.com/docs/DOC-10145

MPLS LDP – Sub Topology and Question

- Enable MPLS LDP on above routers, use loopback 0 IP address as router-id
- IS-IS is acting as unicast routing protocol

MPLS LDP Configuration

R2 (IOS) configuration

```
mpls label protocol ldp
mpls ldp router-id Loopback0
interface LoopbackO
ip address 2.2.0.2 255.255.255.255
mpls ip
interface Ethernet0/0
ip address 2.2.29.2 255.255.255.0
mpls ip
interface Ethernet0/1
ip address 2.2.28.2 255.255.255.0
mpls ip
```

```
interface Ethernet0/2
ip address 2.2.27.2 255.255.255.0
mpls ip
!
```

MPLS LDP Configuration (Cont.)

R8 (IOS-XR) configuration

```
interface Loopback0
ipv4 address 2.2.0.8 255.255.255.255
!
interface GigabitEthernet0/2/0/2.28
ipv4 address 2.2.28.8 255.255.255.0
dot1q vlan 28
!
interface GigabitEthernet0/2/0/2.78
ipv4 address 2.2.78.8 255.255.255.0
dot1q vlan 78
```

```
mpls ldp
router-id 2.2.0.8
!
interface GigabitEthernet0/2/0/2.28
!
interface GigabitEthernet0/2/0/2.78
!
```

MPLS LDP Configuration (Cont.)

R7 (IOS) configuration

```
mpls label protocol ldp
mpls ldp router-id Loopback0
!
interface Loopback0
ip address 2.2.0.7 255.255.255.255
mpls ip
!
interface Ethernet0/0
ip address 2.2.78.7 255.255.255.0
mpls ip
!
interface Ethernet0/1
ip address 2.2.79.7 255.255.255.0
mpls ip
```

```
interface Ethernet0/2
ip address 2.2.27.7 255.255.255.0
mpls ip
!
```

MPLS LDP Configuration (Cont.)

R9 (IOS-XR) configuration

```
interface Loopback0
ipv4 address 2.2.0.9 255.255.255.255
!
interface GigabitEthernet0/2/0/1.29
ipv4 address 2.2.29.9 255.255.255.0
dot1q vlan 29
!
interface GigabitEthernet0/2/0/1.79
ipv4 address 2.2.79.9 255.255.255.0
dot1q vlan 79
!
```

```
mpls ldp
router-id 2.2.0.9
!
interface GigabitEthernet0/2/0/1.29
!
interface GigabitEthernet0/2/0/1.79
!
```

MPLS LDP Adjacency

```
R2#show mpls ldp neighbor
  Peer LDP Ident: 2.2.0.7:0; Local LDP Ident 2.2.0.2:0
    TCP connection: 2.2.0.7.56629 - 2.2.0.2.646
    State: Oper; Msgs sent/rcvd: 258/248; Downstream
    Up time: 03:19:04
    LDP discovery sources:
     Ethernet0/2, Src IP addr: 2.2.27.7
     Targeted Hello 2.2.0.2 -> 2.2.0.7, active, passive
    Addresses bound to peer LDP Ident:
                             2.2.78.7
     2.2.0.7
                2.2.27.7
                                         2.2.79.7
  Peer LDP Ident: 2.2.0.9:0; Local LDP Ident 2.2.0.2:0
    TCP connection: 2.2.0.9.16960 - 2.2.0.2.646
    State: Oper; Msgs sent/rcvd: 247/249; Downstream
    Up time: 03:18:59
    LDP discovery sources:
     Ethernet0/0, Src IP addr: 2.2.29.9
    Addresses bound to peer LDP Ident:
                2.2.29.9 2.2.79.9
     2.2.0.9
  Peer LDP Ident: 2.2.0.8:0; Local LDP Ident 2.2.0.2:0
    TCP connection: 2.2.0.8.36575 - 2.2.0.2.646
    State: Oper; Msgs sent/rcvd: 248/243; Downstream
    Up time: 03:18:59
    LDP discovery sources:
     Ethernet0/1, Src IP addr: 2.2.28.8
    Addresses bound to peer LDP Ident:
     2.2.0.8
                2.2.28.8
                             2.2.78.8
```

MPLS LDP Adjacency (Cont.)

RP/0/0/CPU0:R8#show mpls ldp neighbor

Peer LDP Identifier: 2.2.0.7:0

TCP connection: 2.2.0.7:646 - 2.2.0.8:48153

Graceful Restart: No

Session Holdtime: 180 sec

State: Oper; Msgs sent/rcvd: 244/245

Up time: 03:15:48

LDP Discovery Sources:

Targeted Hello (2.2.0.8 -> 2.2.0.7, active/passive)

GigabitEthernet0/2/0/2.78
Addresses bound to this peer:

2.2.0.7 2.2.79.7 2.2.27.7 2.2.78.7

Peer LDP Identifier: 2.2.0.2:0

TCP connection: 2.2.0.2:646 - 2.2.0.8:36575

Graceful Restart: No

Session Holdtime: 180 sec

State: Oper; Msgs sent/rcvd: 239/244

Up time: 03:15:47

LDP Discovery Sources:

GigabitEthernet0/2/0/2.28 Addresses bound to this peer:

2.2.0.2 2.2.29.2 2.2.27.2 2.2.28.2

MPLS forwarding table

R2#show mpls forwarding-table

Loca	l Outgoing	Prefix	Bytes Lab	el Outg	oing Next Hop	
Label Label or VC or Tunnel Id Switched interface						
17	Pop Label	2.2.0.9/32	362367	Et0/0	2.2.29.9	
18	Pop Label	2.2.0.8/32	104294	7 EtO/	1 2.2.28.8	
19	Pop Label	2.2.0.7/32	455	Et0/2	2.2.27.7	
21	Pop Label	2.2.79.0/24	0	Et0/2	2.2.27.7	
	Pop Label	2.2.79.0/24	0	Et0/0	2.2.29.9	
23	Pop Label	2.2.78.0/24	0	Et0/2	2.2.27.7	
	Pop Label	2.2.78.0/24	0	Et0/1	2.2.28.8	

RP/0/0/CPU0:R8#show mpls forwarding

Local Outgoin	ng Prefix	Outgoing	Next Hop	Bytes
Label Label	or ID	Interface	Switch	ned
16002 Pop	2.2.0.2/32	Gi0/2/0/2	2.28 2.2.28.2	173494
16003 17	2.2.0.9/32	Gi0/2/0/2	2.28 2.2.28.2	300861
21	2.2.0.9/32	Gi0/2/0/2	.78 2.2.78.7	330246
16004 Pop	2.2.27.0/24	Gi0/2/0/	2.28 2.2.28.2	0
Рор	2.2.27.0/24	Gi0/2/0/2	78 2.2.78.7	0
16006 Pop	2.2.79.0/24	Gi0/2/0/	2.78 2.2.78.7	0
16007 Pop	2.2.29.0/24	Gi0/2/0/	2.28 2.2.28.2	0
16014 Pop	2.2.0.7/32	Gi0/2/0/2	2.78 2.2.78.7	72967

MPLS Traffic Engineering Overview

- Introduces explicit routing
- Supports constraintbased routing
- Supports admission control
- Provides protection capabilities
- Uses RSVP-TE to establish LSPs
- Uses ISIS/OSPF extensions to advertise link attributes

Mapping to Lab Exam Blueprint

 This question of the sample lab maps to following sections/sub-sections in the Lab Exam Blueprint document below;

https://learningnetwork.cisco.com/docs/DOC-9991

- 1.0 Implement, Optimize and Troubleshoot Core IP Technologies
 - 1.5 Implement, Optimize and Troubleshoot MPLS Traffic Engineering
- For more details, please review the Lab Exam Checklist document below;

https://learningnetwork.cisco.com/docs/DOC-10145

MPLS TE - Sub Topology and Question

- Configure MPLS TE tunnel 89 on R8, the tunnel path follows through R7 and R2 to reach R9
- Configure auto-route to follow traffic along tunnel 89
- Configure Tunnel bandwidth of 2Mbps
- Ensure traffic from R8 to R9 loopback0 follow the tunnel 89

MPLS TE Configuration

R2 (IOS) configuration

```
mpls traffic-eng tunnels
interface Ethernet0/0
ip address 2.2.29.2 255.255.255.0
ip router isis
mpls traffic-eng tunnels
mpls ip
ip rsvp bandwidth 25000
interface Ethernet0/1
ip address 2.2.28.2 255.255.255.0
ip router isis
mpls traffic-eng tunnels
mpls ip
ip rsvp bandwidth 25000
```

```
interface Ethernet0/2
ip address 2.2.27.2 255.255.255.0
ip router isis
mpls traffic-eng tunnels
mpls ip
ip rsvp bandwidth 25000
!
router isis
net 47.0002.0000.0000.0002.00
is-type level-1
metric-style wide
mpls traffic-eng router-id Loopback0
mpls traffic-eng level-1
!
```

MPLS TE Configuration (Cont.)

R7 (IOS) configuration

```
mpls traffic-eng tunnels
interface Ethernet0/0
ip address 2.2.78.7 255.255.255.0
ip router isis
mpls traffic-eng tunnels
mpls ip
ip rsvp bandwidth 25000
interface Ethernet0/1
ip address 2.2.79.7 255.255.255.0
ip router isis
mpls traffic-eng tunnels
mpls ip
ip rsvp bandwidth 25000
```

```
interface Ethernet0/2
ip address 2.2.27.7 255.255.255.0
ip router isis
mpls traffic-eng tunnels
mpls ip
ip rsvp bandwidth 25000
router isis
net 47.0002.0000.0000.0007.00
is-type level-1
metric-style wide
mpls traffic-eng router-id Loopback0
mpls traffic-eng level-1
```

MPLS TE Configuration (Cont.)

R8 (IOS-XR) configuration

```
explicit-path name expp_8t9
index 10 next-address strict ipv4 unicast 2.2.78.7
index 20 next-address strict ipv4 unicast 2.2.27.2
index 30 next-address strict ipv4 unicast 2.2.29.9
!
interface tunnel-te89
ipv4 unnumbered Loopback0
priority 7 7
autoroute announce
signalled-bandwidth 2000
destination 2.2.0.9
path-option 1 explicit name expp_8t9
!
```

```
router isis abc
is-type level-1
net 47.0002.0000.0000.0008.00
address-family ipv4 unicast
metric-style wide
 mpls traffic-eng level-1
 mpls traffic-eng router-id Loopback0
mpls traffic-eng
interface GigabitEthernet0/2/0/2.28
interface GigabitEthernet0/2/0/2.78
rsvp
interface GigabitEthernet0/2/0/2.28
 bandwidth 80000
interface GigabitEthernet0/2/0/2.78
 bandwidth 80000
```

MPLS TE Configuration (Cont.)

R9 (IOS-XR) configuration

```
router isis abc
is-type level-1
net 47.0002.0000.0000.0009.00
address-family ipv4 unicast
metric-style wide
mpls traffic-eng level-1
mpls traffic-eng router-id Loopback0
mpls traffic-eng
interface GigabitEthernet0/2/0/2.29
interface GigabitEthernet0/2/0/2.79
rsvp
interface GigabitEthernet0/2/0/2.29
bandwidth 80000
interface GigabitEthernet0/2/0/2.79
 bandwidth 80000
```

MPLS TE Tunnel

RP/0/0/CPU0:R8#show mpls traffic-eng tunnels 89 Name: tunnel-te89 Destination: 2.2.0.9 Status: Admin: up Oper: up Path: valid Signalling: connected path option 1, type explicit expp 8t9 (Basis for Setup, path weight 30) G-PID: 0x0800 (derived from egress interface properties) Bandwidth Requested: 2000 kbps CTO Config Parameters: Bandwidth: 2000 kbps (CTO) Priority: 7 7 Affinity: 0x0/0xffff Metric Type: TE (default) AutoRoute: enabled LockDown: disabled Policy class: not set Loadshare: 0 equal loadshares Auto-bw: disabled Direction: unidirectional Endpoint switching capability: unknown, encoding type: unassigned Transit switching capability: unknown, encoding type: unassigned Fast Reroute: Disabled, Protection Desired: None Path info (ISIS abc level-1): Hop0: 2.2.78.8 Hop1: 2.2.78.7 Hop2: 2.2.27.2 Hop3: 2.2.29.2 Hop4: 2.2.29.9 Hop5: 2.2.0.9

MPLS TE Tunnel (Cont.)

MPLS TE Tunnel (Cont.)

R2#show mpls traffic-eng tunnels LSP Tunnel R8_t89 is signalled, connection is up

InLabel: Ethernet0/2, 34

OutLabel: Ethernet0/0, implicit-null FRR OutLabel: Tunnel279, implicit-null

RSVP Signalling Info:

Src 2.2.0.8, Dst 2.2.0.9, Tun Id 89, Tun Instance 4016

RSVP Path Info:

My Address: 2.2.29.2

Explicit Route: 2.2.29.9 2.2.0.9

Record Route: NONE

Tspec: ave rate=2000 kbits, burst=1000 bytes, peak rate=2000 kbits

RSVP Resv Info:

Record Route: 2.2.0.9(3) 2.2.29.9(3)

Fspec: ave rate=2000 kbits, burst=1000 bytes, peak rate=2000 kbits

MPLS TE Tunnel (Cont.)

```
RP/0/0/CPU0:R9#show mpls traffic-eng tunnels
LSP Tunnel 2.2.0.8 89 [4016] is signalled, connection is up
Tunnel Name: R8_t89 Tunnel Role: Tail
 InLabel: GigabitEthernet0/2/0/1.29, implicit-null
Signalling Info:
  Src 2.2.0.8 Dst 2.2.0.9, Tun ID 89, Tun Inst 4016, Ext ID 2.2.0.8
  Router-IDs: upstream 2.2.0.2
        local
                 2.2.0.9
  Path Info:
   Incoming Address: 2.2.29.9
   Incoming
             Explicit Route:
    Strict, 2.2.29.9
    Strict, 2.2.0.9
   Record Route: None
   Tspec: avg rate=2000 kbits, burst=1000 bytes, peak rate=2000 kbits
   Session Attributes: Local Prot: Set, Node Prot: Not Set, BW Prot: Not Set
  Resv Info:
   Record Route: None
   Fspec: avg rate=0 kbits, burst=0 bytes, peak rate=0 kbits
```

Routing table and MPLS table

Outgoing

Nov+ Hon

Dytoc

RP/0/0/CPU0:R8#show mpls forwarding

Local Outgoing Drofiv

Local Outgoin	g Prefix	Outgoing	мехі пор	Bytes
Label Label	or ID	Interface	Switch	ed
16002 Pop	2.2.0.2/32	Gi0/2/0/2	.28 2.2.28.2	106
16003 Pop	2.2.0.9/32	tt89	2.2.0.9	1200
16004 Pop	2.2.27.0/24	Gi0/2/0/2	.28 2.2.28.2	0
Pop	2.2.27.0/24	Gi0/2/0/2	78 2.2.78.7	0
16006 Pop	2.2.79.0/24	Gi0/2/0/2	.78 2.2.78.7	0
16007 Pop	2.2.29.0/24	Gi0/2/0/2	28 2.2.28.2	0

Connection and path verification

```
RP/0/0/CPU0:R8#ping 2.2.0.9 source 2.2.0.8

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 2.2.0.9, timeout is 2 seconds:
!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 18/19/21 ms

RP/0/0/CPU0:R8#traceroute 2.2.0.9 source 2.2.0.8

Type escape sequence to abort.

Tracing the route to 2.2.0.9

1 2.2.78.7 [MPLS: Label 19 Exp 0] 20 msec 28 msec 18 msec
2 2.2.27.2 [MPLS: Label 34 Exp 0] 20 msec 20 msec 18 msec
3 2.2.29.9 22 msec * 18 msec
```

MPLS TE Fast Re-Route (FRR)

- Subsecond recovery against node/link failures
- Scalable 1:N protection
- Greater protection granularity
- Cost-effective alternative to optical protection
- Bandwidth protection

Primary TE LSP

Backup TE LSP

Mapping to Lab Exam Blueprint

 This question of the sample lab maps to following sections/sub-sections in the Lab Exam Blueprint document below;

https://learningnetwork.cisco.com/docs/DOC-9991

- 1.0 Implement, Optimize and Troubleshoot Core IP Technologies
 - 1.8 Implement, Optimize and Troubleshoot High availability
- For more details, please review the Lab Exam Checklist document below;

https://learningnetwork.cisco.com/docs/DOC-10145

MPLS TE FRR – Sub Topology and Question

- The Primary tunnel 89 on R8 has configured in Question 5 (Refer to part 2/7)
- Configure Backup tunnel 279 on R2 to protect the Ethernet link between R2 and R9, tunnel 279 is from R2 to R9 through R7. If R2 Eth0/2 detect link problem, it switches Tunnel 89 traffic into tunnel 279

MPLS TE FRR Configuration

R2 (IOS) configuration

```
interface Tunnel279
ip unnumbered Loopback0
mpls ip
tunnel destination 2.2.0.9
tunnel mode mpls traffic-eng
tunnel mpls traffic-eng path-option 10 explicit name 2t9
interface Ethernet0/0
ip address 2.2.29.2 255.255.255.0
ip router isis
mpls traffic-eng tunnels
mpls traffic-eng backup-path Tunnel279
mpls ip
ip rsvp bandwidth 25000
ip explicit-path name 2t9 enable
next-address 2.2.27.7
next-address 2.2.79.9
```

MPLS TE FRR Configuration (Cont.)

R8 (IOS-XR) configuration

```
explicit-path name expp_8t9
index 10 next-address strict ipv4 unicast 2.2.78.7
index 20 next-address strict ipv4 unicast 2.2.27.2
index 30 next-address strict ipv4 unicast 2.2.29.9
!
interface tunnel-te89
ipv4 unnumbered Loopback0
priority 7 7
autoroute announce
signalled-bandwidth 2000
destination 2.2.0.9
fast-reroute
path-option 1 explicit name expp_8t9
!
```

MPLS TE FRR Tunnel

RP/0/0/CPU0:R8#show mpls traffic-eng tunnels 89

Name: tunnel-te89 Destination: 2.2.0.9

Status:

Admin: up Oper: up Path: valid Signalling: connected

path option 1, type explicit expp_8t9 (Basis for Setup, path weight 30)

G-PID: 0x0800 (derived from egress interface properties)

Bandwidth Requested: 2000 kbps CT0

Config Parameters:

Bandwidth: 2000 kbps (CT0) Priority: 7 7 Affinity: 0x0/0xffff

Metric Type: TE (default)

AutoRoute: enabled LockDown: disabled Policy class: not set

Loadshare: 0 equal loadshares

Auto-bw: disabled

Direction: unidirectional

Endpoint switching capability: unknown, encoding type: unassigned Transit switching capability: unknown, encoding type: unassigned

Fast Reroute: Enabled, Protection Desired: Any

MPLS TE FRR Tunnel (Cont.)

R2#show mpls traffic-eng tunnels backup R2_t279

LSP Head, Tunnel279, Admin: up, Oper: up

Src 2.2.0.2, Dest 2.2.0.9, Instance 1

Fast Reroute Backup Provided:

Protected i/fs: Et0/0

Protected lsps: 1 Active lsps: 0

Backup BW: any pool unlimited; inuse: 2000 kbps

R2#show mpls traffic-eng fast-reroute database

Headend frr information:

Protected tunnel In-label Out intf/label FRR intf/label Status

LSP midpoint frr information:

LSP identifier In-label Out intf/label FRR intf/label Status

2.2.0.8 89 [1392] 34 Et0/0:implicit-n Tu279:implicit-n ready

Verification

Shutdown R2 Ethernet0/0, FRR takes effect, R8 traffic should follow path of R8-R7-R2-R7-R9

```
RP/0/0/CPU0:R8#traceroute 2.2.0.9 source 2.2.0.8
Type escape sequence to abort.
Tracing the route to 2.2.0.9
1 2.2.78.7 [MPLS: Label 19 Exp 0] 27 msec 24 msec 18 msec
2 2.2.27.2 [MPLS: Label 34 Exp 0] 18 msec 21 msec 21 msec
3 2.2.27.7 [MPLS: Label 18 Exp 0] 18 msec 20 msec 19 msec
4 2.2.79.9 21 msec * 18 msec
R2#show mpls traffic-eng tunnels backup
R2 t279
 LSP Head, Tunnel279, Admin: up, Oper: up
 Src 2.2.0.2, Dest 2.2.0.9, Instance 1
 Fast Reroute Backup Provided:
  Protected i/fs: Et0/0
  Protected lsps: 1 Active lsps: 1
  Backup BW: any pool unlimited; inuse: 2000 kbps
```

##