# VAPOR PRESSURE AND EVAPORATION RATE OF CERTAIN HEAT-RESISTANT COMPOUNDS IN A VACUUM AT HIGH TEMPERATURES

A. S. Bolgar, T. S. Verkhoglyadova, G. V. Samsonov

(MASA-TH-77807) VAFOE PERSUFE AND

BVAPORATION RATE C CERTAIN FRAT-BESISTANT

COMPOUNDS IN A VACUUM AT EIGH TEMPERATURES
(National Aeronautics and Space

Administration) 11 p EC A02/HF A01 CSCL C7D G3/25

17758

Translation of "Davleniye para i skorost' ispareniya nekotorykh tugoplavkikh soyedineniy v vakuume pri vysokikh temperaturakh," Izvestiya Akademii Nauk SSSR, Otdeleniye Tekhnicheskikh Nauk, Metallurgiya i Toplivo, no. 1, 1961, p. 142-145.



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546 FEBRUARY 1985

### STANDARD TITLE PAGE

| 1. Report No.<br>NASA TM-77807                     | 2. Government Acc | ession No. 3               | 3. Recipient's Catalog No.                       |                                                             |  |  |  |  |  |  |
|----------------------------------------------------|-------------------|----------------------------|--------------------------------------------------|-------------------------------------------------------------|--|--|--|--|--|--|
| 4. Title and Subtitle                              | 5                 | 5. Recort Date             |                                                  |                                                             |  |  |  |  |  |  |
| Vapor Pressure and Evap                            | of Certain        | February 1985              |                                                  |                                                             |  |  |  |  |  |  |
| Heat-Resistant Compound                            | 1 4               | . Performing Organiz       | etien Cede                                       |                                                             |  |  |  |  |  |  |
| High Temperatures                                  |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
| 7. Author(s)                                       |                   | . Performing Organiz       | ation Report No.                                 |                                                             |  |  |  |  |  |  |
| A.S. Bolgar, T.S. Verkhoglyadova and               |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
| G.V. Samsonov                                      |                   | 10. Work Unit No.          |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   | 11. Contract or Grant No.  |                                                  |                                                             |  |  |  |  |  |  |
| 9. Performing Organization Name and                | Address           | <u> </u>                   | NASW-4006  13. Type of Report and Period Covered |                                                             |  |  |  |  |  |  |
| The Corporate Word                                 |                   | 113                        | i. Type of Report and                            | Period Covered                                              |  |  |  |  |  |  |
| 1102 Arrott Building Pittsburgh, PA 15222          |                   |                            | Manual ation                                     |                                                             |  |  |  |  |  |  |
| 12. Spansoring Agency Name and Addre               | 33                |                            | Translation                                      |                                                             |  |  |  |  |  |  |
| National Aeronautics an<br>Washington, D.C. 20546  | nistration 14     | 14. Sponsoring Agency Code |                                                  |                                                             |  |  |  |  |  |  |
| 15. Supplementary Notes                            |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
| Myanolation of Manageria                           | ua nava i -l      |                            | ing makaka                                       | -h                                                          |  |  |  |  |  |  |
| Translation of "Davleni<br>tugoplavkikh soyediyeni |                   | •                          | _                                                |                                                             |  |  |  |  |  |  |
| Izvestiya Akademii Nauk                            |                   | _                          | _                                                |                                                             |  |  |  |  |  |  |
| -                                                  |                   | -                          | SKIKII NAUK,                                     |                                                             |  |  |  |  |  |  |
| Metallurgiya i Toplivo,                            | no. 1, 1981,      | pp. 142-145.               |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
| 16. Abstract                                       |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
| The vapor pressure and                             | evaporation r     | ate of boride              | of titanium                                      |                                                             |  |  |  |  |  |  |
| zirconium, and chrome,                             | _                 |                            |                                                  | -                                                           |  |  |  |  |  |  |
| titanium, zirconium, an                            |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
| titanium, niobium, and                             |                   | _                          |                                                  |                                                             |  |  |  |  |  |  |
| •                                                  |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
| that all subject compou                            |                   |                            | structures e                                     | kcept                                                       |  |  |  |  |  |  |
| AIB <sub>12</sub> , which dissociate               | s, losing the     | aluminum.                  |                                                  | AlB <sub>12</sub> , which dissociates, losing the aluminum. |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
|                                                    |                   |                            |                                                  |                                                             |  |  |  |  |  |  |
| 17. Key Words (Selected by Author(s)               | •                 | 18. Distribution State     | ment                                             |                                                             |  |  |  |  |  |  |
| Heat-resistant compound                            | •                 | 18. Distribution State     | ment                                             |                                                             |  |  |  |  |  |  |
|                                                    | •                 |                            |                                                  |                                                             |  |  |  |  |  |  |
| Heat-resistant compound                            | •                 |                            | nited                                            |                                                             |  |  |  |  |  |  |
| Heat-resistant compound                            | •                 |                            |                                                  | •                                                           |  |  |  |  |  |  |
| Heat-resistant compound                            | •                 | Unlin                      |                                                  | 22. Price                                                   |  |  |  |  |  |  |
| Heat-resistant compound carbides                   | s, borides,       | Unlin                      | nited                                            | 22. Price                                                   |  |  |  |  |  |  |

## VAPOR PRESSURE AND EVAPORATION RATE OF CERTAIN HEAT-RESISTANT COMPOUNDS IN A VACUUM AT HIGH TEMPERATURES

### A. S. Bolgar, T. S. Verkhoglyadova, G. V. Samsonov

The development of high-temperature technology requires /142\* that we find materials which can be used in a vacuum at high temperatures, whose chemical composition does not significantly change under these conditions, and which have the lowest vapor pressures and evaporation rates.

The most promising materials of this type are heat-resistant compounds: borides, carbides, nitrides, and silicides of metals in the IV-VI groups in the periodic system (titanium, zirconium, hafnium, vanadium, tantalum, chrome, molybdenum, tungsten, as well as certain non-metallic heat-resistant compounds, such as carbides and nitrides of boron and silicon, and boron-silicon and boron-aluminum alloys. However, the behavior of these materials in a vacuum at high temperatures has not been adequately studied and this creates considerable problems in selecting them for practical uses.

Old data on this problem, obtained for nitrides of heatresistant transient metals, is referenced in monographs [1, 2].

Reference [3] determines rhenium silicide dissociation pressure by effusion method, reference [4] tantalum silicide dissociation. Data has been obtained on silicon[5] and boron[6] nitride dissociation pressure, as well as on the pressure of saturated vapors of boron itself[7]. The results of this research, presented in table 1, show that there is virtually no data on the most interesting and important classes of heat-resistant compounds — carbides and borides, which have the highest melting points[8], chemical stability[9], and mechanical strength at high \*Numbers in the margin indicate pagination of the original.

temperatures[10]. In particular, Campbell feels that borides of transient metals should be considered the most promising materials for use as refractories in a vacuum at temperatures above 2500°.

This article reviews vapor pressure and evaporation rate of borides of titanium, zirconium, and chrome, as well as of strontium and carbides of titanium, zirconium, and chrome; molybdenum silicide, and nitrides of titanium, niobium, and tantalum in a vacuum. Evaporation rate was calculated using Langmore's method[1], based on measuring the decrease in weight of the subject material over a unit of time from a unit of surface. Vapor pressure was calculated with the formula,

$$\rho_{1}$$
 mm Hg = (17.14 m/aAT) ( $\sqrt{T/M}$ )

where  $_{\mathbf{w}}$  is the change in weight,  $\mathbf{g}$ ;  $\mathbf{q}$  is the accommodation factor, about 1; A is the sample's surface,  $\mathbf{cm}^2$ ;  $\tau$  - holding time, sec, at temperature T°, K; M is molecular weight taking into account that the molecular weights of the vapor and compound are equal, i.e. it is assumed that there is no dissociation. This data was then used to calculate evaporation heat.

The unit for calculating evaporation rate is designed on the basis of a retort-type laboratory vacuum furnace[11] and is depicted in figure 1. Heater 3, made of molybdenum or tungsten wire wound into a 25-mm-diameter coil, is fastened between two live, water-cooled contacts, 2 and 6. The heater is protected by two small double screens 4 and one large screen 1 made of molybdenum plate. The sample, in the form of a pressed pellet, is placed into a molybdenum cup 5, attached to a substrate at the bottom of live contact 6. This unit could be used for /143 experiments at temperatures from 1100 to 1900°. A vacuum was provided by a VH-461 initial vacuum pump and a V-15 mercury diffusion pump. Temperature was measured with an optical pyrometer, taking into account appropriate measuring errors.



Figure 1. Unit for measuring evaporation rate of heat-resistant compounds:

1 - large screen; 2 - upper
electrode; 3 - molybdenum coil;
4 - small screens; 5 - cup with
sample; 6 - lower electrode;

8 - live contact; 9 trap cooled by liquid nitrogen.

7 - water-cooled plate;



rigure 2. Vapor pressure of heat-resistant compounds as a function temperature (two outer curves represent NbC and HfC respectively.

The results are given in table 2 and shown in figure 2. Table 3 presents comparative data on the change in chemical composition of the samples before and after heating in a vacuum at 1700°.

It follows from this data (given the limited accuracy of chemical analysis) that none of the compounds except AlB<sub>12</sub> undergoes dissociation at the temperatures studied, i.e. evaporation takes place in molecular structures. However, since mass-spectrometry did not reveal the existence of, for example, TiC in a gas phase[11], we can hypothesize that, during heating, dissociation takes place in a gas phase on the edge of the sample's surface. In other words, the samples' surfaces disintegrate with gradual detachment and elimination of molecular structures.

Data in table 2 for hafnium and niobium carbides, as well as for strontium hexaboride, was used to set up equations for vapor pressures:

$$\begin{array}{ll} \text{lg P}_{\mbox{HfC}}(\mbox{mm Hg}) = 8.6 - (30 555/T)(1900-2000^{\circ}\text{C}) \\ \text{lg P}_{\mbox{NbC}}(\mbox{mm Hg}) = 10.6 - (36 666 /T)(1800-2000^{\circ}\text{C}) \\ \text{lg P}_{\mbox{SrB}}(\mbox{mm Hg}) = 6.36 - (21 428/T)(1500-2000^{\circ}\text{C}) \\ & 6 \end{array}$$

Table 1. Equations for Dissociation Pressure for Certain Heat-Resistant Compounds

| Dissociation Equation                                                                                     | pressure equa-<br>tion, p, <b>mm</b> Hg                                                                                                                                                                                                                                                                                                                                                                                                                                          | Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Re_{5}Si_{(78)} = 3Re_{(78)} + Si_{r_{44}}$                                                              | lg p=5.953-24040                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\sqrt{2ReSi}_{(TB)} = 1/2Re_3Si_{(TB)} + Si_{(T)}$                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           | lg p=7.518—25610                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [3]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $Ta_{q-s}Si_{(rn)} = 4.5Ta_{(rn)} + Si_{(r)}$                                                             | le n=9 5 28600                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{9}{s}$ Ta <sub>2</sub> Si <sub>(TB)</sub> = $\frac{39}{s}$ TaSi <sub>(TB)</sub> + Si <sub>sr</sub> | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                            | [4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           | lg p=9.1—/<br>25550                                                                                                                                                                                                                                                                                                                                                                                                                                                              | [*]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [•]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $B_{(TB)} - B_{(F)}$                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                           | $Re_{3}Si_{(TB)} = 3Re_{(TB)} + Si_{Tak}$ $\frac{1}{2}Re_{3}Si_{(TB)} = \frac{1}{2}Re_{3}Si_{(TB)} + Si_{(T)}$ $ReSi_{2(TB)} = ReSi_{(TB)} + Si_{(T)}$ $Ta_{0.8}Si_{(TB)} = 4.5Ta_{(TB)} + Si_{(T)}$ $\frac{9}{5}Ta_{2}Si_{(TB)} = \frac{10}{5}TaSi_{(TB)} + Si_{(T)}$ $10TaSi_{0.6}(TB) = \frac{5}{2}TaSi_{0.6}(TB) + Si_{(T)}$ $\frac{9}{7}TaSi_{2(TB)} = \frac{9}{7}TaSi_{0.6}(TB) + Si_{(T)}$ $Si_{3}Ni_{(TB)} = 3Si_{(TB)} + 2N_{2(T)}$ $2BN_{(TB)} = 2B_{(TB)} + N_{2(T)}$ | $Re_{S}S_{i_{(TB)}} = 3Re_{(TB)} + Si_{T_{SE}}$ $Y_{2}Re_{S}S_{i_{(TB)}} = 1/2Re_{S}S_{i_{(TB)}} + Si_{(T)}$ $Re_{S}S_{i_{(TB)}} = Re_{S}S_{i_{(TB)}} + Si_{(T)}$ $Ta_{0.5}S_{i_{(TB)}} = 4.5Ta_{(TB)} + Si_{(T)}$ $9/3Ta_{2}S_{i_{(TB)}} = 9/3Ta_{S}S_{i_{(TB)}} + Si_{(T)}$ $10Ta_{0.6}S_{i_{(TB)}} = 5Ta_{2}S_{i_{(TB)}} + Si_{(T)}$ $10Ta_{0.6}S_{i_{(TB)}} = 5Ta_{2}S_{i_{(TB)}} + Si_{(T)}$ $10Ta_{0.6}S_{i_{(TB)}} = 5Ta_{2}S_{i_{(TB)}} + Si_{(T)}$ $10Ta_{0.6}S_{i_{(TB)}} = 5Ta_{0.6}S_{i_{(TB)}} + Si_{0.6}S_{i_{(TB)}} + Si_{0.6}S_{i_{(TB)}} + Si_{0$ |

\*\* r = Gas

\*\*\*Evaporation.

/144

Table 2. Temperature Relationship between Vapor Pressures and Evaporation Rates of the Compounds Studied\*

| Com-                           | Temperature, °C |       |                |       |        |                |                |                  |         |            |                            |     |
|--------------------------------|-----------------|-------|----------------|-------|--------|----------------|----------------|------------------|---------|------------|----------------------------|-----|
| ound                           | 1100            | 1200  | 13/0           | 1400  | 1500   | 1400           | 1709           | 1840             | 1904    | 1960       | 2000                       |     |
|                                |                 |       |                |       |        |                |                |                  |         | i          |                            |     |
| TiC                            | -               | 0.832 | _              | 5.869 | -      | 6.172          | 7.078          | 7.680            | 31.130  |            | _                          |     |
|                                | -               | 0.741 | _              | 5.625 | 0.005  |                | 7.399          |                  | 32.100  | 1 1        | _                          |     |
| ZrC                            | 1-1             | _     | _              |       | 0.065  | 0.302          | 0.280<br>0.211 | 0.362            | =       | _          | _                          |     |
| HiC                            |                 |       |                | _     | 0.140  | -              | -              | 0. 220           | 0.317   | 0.795      | 1.764                      |     |
| HC                             |                 | _     | _              | _     | _      | _              | _              | <b> </b>         | 0.184   | 0.467      | 1.037                      |     |
| NEC                            | _               | _     | _              | _     | _      | _              | <b> </b>       | 0.023            | 0.594   | 0.634      | _                          |     |
|                                | -               | _     | _              |       | _      |                |                | 0.023            | 4 0.4L5 | 0.502      | -                          |     |
| Cr <sub>2</sub> C <sub>2</sub> | -               | 0.200 | 0.303          | 0.423 | 0.965  | 2.169          | 3.865          | 4.166            |         | -          | 2                          |     |
|                                | -               |       |                | 0.217 | 0.517  | 1.197          | 2.195          | 2.468            |         | _          | 188,900                    |     |
| SrB <sub>4</sub>               | I -             | -     | _              | _     | 0.336  | 2,128<br>1,266 | 1.980          | 17.250<br>10.790 |         | =          | 125.900                    |     |
| TiB <sub>2</sub>               | =               | _     | 0.427          | 1.080 | 0.63   | 1 330          | 2.185          | 2.165            |         | _          | _                          |     |
| 1103                           | =               | _     | 0.350          | 0.890 | 0.545  |                | 1.985          |                  |         | <b> </b>   | _                          |     |
| ZrB <sub>2</sub>               | \ <u> </u>      | _     | -              | 0.150 | 1.248  | 11.030         | 1.969          |                  |         | 1 -        | <b> </b>                   |     |
|                                | _               |       | <b> </b>       | 0.100 | 0.834  | 0.720          | 1.417          | 3.22             |         | -          | ·-                         |     |
| CrB <sub>2</sub>               | -               | 2.890 | 4.520<br>3.560 | 4.760 | 1.450  | 7.680          |                | 4.98             |         | _          | -                          |     |
|                                | 1               | 1.710 |                | 3.820 | 1.200  | 6.640          | -              | 4.62             |         | -          | 1 =                        |     |
| AlB <sub>13</sub>              | 0.194           | 0.697 | -              | 0.690 |        | 4.680          | =              | 48.30            |         | 1=         | I <u> </u>                 |     |
| TiN                            | 0.086           | 0.314 | 0.219          | 0.380 | 0.349  | 2.720<br>0.599 | 2.480          |                  | ٦ =     |            | _                          |     |
| 1114                           | 1 =             | =     | 0.186          | =     | 0.319  | 0.565          | 2.230          |                  |         | _          | _                          |     |
| NbN                            | 0.153           | I —   | 0.418          |       | 0.223  | 1.310          | 3.410          |                  | ol      | <b>I</b> – | -                          |     |
|                                | 0.092           |       | 0.272          |       | 0.155  | 0.940          | 2.510          | 6.85             | 0       | <b>I</b> – | <b>-</b> '                 |     |
| Ta <sub>2</sub> N              | <b>I</b> –      | 0.189 |                | 1.800 | -      | 4.926          | <b>I</b> –     | 11.39            |         | 1 -        | -                          |     |
| -                              | 1 -             | 0.061 | <b> </b> -     | 0.648 | -      | 1.845          | 1              | 4.63             |         | -          | -                          |     |
| MoSi <sub>2</sub>              | -               | -     | 0.136          | 0.270 | 0.470  | 0.740          | 3.530          | 3.31             | 7 -     | _          | 1 =                        |     |
|                                | -               | -     | 0.070          | 0.150 | 10.270 | 0.419          | 2.030          | 3.30             | η –     | 1 -        |                            |     |
|                                |                 |       |                |       |        |                |                |                  |         |            |                            |     |
|                                |                 |       |                |       |        |                |                |                  |         |            |                            |     |
|                                |                 |       |                |       |        |                |                |                  |         |            | 7 3                        |     |
| The to                         | p lin           | e re  | pres           | ents  | eva    | apora          | atio           | n ra             | te,     | v 10       | 7, g/cm <sup>3</sup> .sec; | the |

These equations can be used to extrapolate approximated /145boiling points of 5400, 4500, and 5100°C for HfC, NbC, and SrB<sub>6</sub> respectively. The boiling point of NbC correlates satisfactorily with published data[12].

Table 3. Change in Chemical Composition of Samples of Heat-Resistant Compounds after Heating in a Vacuum at 1700°

|                                | Metal/Non-metal Ratio |            |       |  |  |
|--------------------------------|-----------------------|------------|-------|--|--|
|                                | Before                | After      |       |  |  |
|                                | Experiment            | Experiment |       |  |  |
| Compound                       | (A)                   | (B)        | B/A   |  |  |
| TiC                            | 4.06                  | 4.12       | 1.010 |  |  |
| ZrC                            | 7.63                  | 7.62       | 0.999 |  |  |
| HfC                            | 15.92                 | 16.42      | 1.030 |  |  |
| NЪС                            | 7.69                  | 7.97       | 1.030 |  |  |
| cr <sub>3</sub> c <sub>2</sub> | 6.50                  | 6.44       | 0.995 |  |  |
| TiB <sub>2</sub>               | 2.21                  | 2.09       | 0.995 |  |  |
| ZrB <sub>2</sub>               | 4.21                  | 4.21       | 1.000 |  |  |
| CrB <sub>2</sub>               | 2.40                  | 2.59       | 1.080 |  |  |
| A1B <sub>12</sub>              | 4.55                  | 0.176      | 0.039 |  |  |
| Tin                            | 3.42                  | 3.36       | 0.990 |  |  |
| MoSi <sub>2</sub>              | 1.72                  | 1.79       | 1.030 |  |  |

Table 4 presents the leats of evaporation of the subject heat-resistant compounds.

Table 4. Heats of evaporation p of the heat-resistant Compounds Studied

| Compound                       | ρ, Kcal/mole | Compound          | p, Kcal/mole |
|--------------------------------|--------------|-------------------|--------------|
| TiC                            | 38.08        | ZrB <sub>2</sub>  | 56.4         |
| ZrC                            | 52.20        | CrB <sub>2</sub>  | 41.2         |
| HfC                            | 139.64       | A1B <sub>12</sub> | 45.7         |
| NbC                            | 167.00       | TiN               | 62.3         |
| cr <sub>3</sub> c <sub>2</sub> | 44.00        | Nbn               | 91.5         |
| SrB <sub>6</sub>               | 97.90        | Ta <sub>2</sub> N | 42.0         |
| TiB,                           | 45.70        | MoSi <sub>2</sub> | 57.1         |
| _                              |              | _                 |              |

Conclusions. 1. Evaporation rates and vapor pressures for several heat-resistant compounds: TiC, ZrC, HfC, NbC,  ${\rm Cr_3C_2}$ ,  ${\rm TiB_2}$ ,  ${\rm ZrB_2}$ ,  ${\rm CrB_2}$ .  ${\rm SrB_6}$ ,  ${\rm AlB_{12}}$ ,  ${\rm TiN}$ , NbN,  ${\rm Ta_2N}$ , and  ${\rm MoSi_2}$ , were calculated with Langmore's method and the evaporation heats of these compounds were determined.

2. It is shown that, at the temperatures studied, all subject compounds evaporate by molecular structures, except  ${\rm AlB}_{12}$ , which dissociates, losing the aluminum.

Institute of Metalloceramics

Submitted

and Special Alloys

August 7, 1960

Academy of Sciences UKSSR

#### REFERENCES

- 1. Deshman, S. Nauchnyye osnovy vakuumnoy tekhniki (Scientific Bases for Vacuum Technology), Izdatel'stvo inostrannoy literatury, 1950.
- Tekhnika vysokikh temperatur (High-Temperature Technology), ed. I. K. Campbell, Izdatel'stvo inostrannoy literatury, 1959.
- 3. Searcy, A., McNees, R. J., American Chemical Society, 1953, 75, 1578.
- 4. Myers, C., Searcy, A. J., American Chemical Society, 1957, 79, 527.
- 5. Samsonov, G. V., Silitsidy i ikh ispol'zovaniye v tekhnike (Silicides and Their Use in Technology), Izdatel'stvo AN UkSSR, Kiev, 1959.
- 6. Samsonov, G. V., Markovskiy, L. Ya., Zhigach, A. F., Valyashko, M. G., Bor, yego soyedineniya i splavy (Boron, Its Compounds and Alloys), Izdatel'stvo AN UkSSR, Kiev, 1960.
- 7. Priselko, Yu. A. Sapozhkov, Yu. A., Tseplyayeva, A. V., Measuring Pressure of Saturated Boron Vapor, Izvestiya AN SSSR, Otdeleniye tekhnicheskikh nauk, Metallurgiya i toplivo, 1960, No. 1, 134.
- 8. Samsonov, G. V., Umanskiy, Ya. S., Tverdyye soyedineniya tugoplavkikh metallov (Solid Compounds of Heat-Resistant Metals), Metallurgizdat, 1957.
- 9. Samsonov, G. V., Prospects for Using Heat-Resistant Compounds in the Chemical Industry, Khimicheskaya nauka i promyshlennost', 1958, No. 6, 807.
- Vereykina, L. L., Rudenko, V. N., Samsonov, G. V., Study of Strength Characteristics of Certain Heat-Resistant Compounds by High-Temperature Compression, Zavodskaya laboratoriya, 1960, No. 5, 620.
- 11. Chupka, W. Berkowitz, J., Giese, C., Inghram, M. Phys. Chem., 1958, 62, 5.
- 12. Kiffer, R., Shvartskopf, P., Tverdyye splavy (Solid Alloys), Metallurgizdat, 1957.