Vertiefung Analysis Hausaufgabenblatt Nr. 5

Jun Wei Tan* and Lucas Wollmann

Julius-Maximilians-Universität Würzburg

(Dated: November 22, 2023)

Problem 1. Sei (X, \mathcal{A}, μ) ein Maßraum und $f: X \to \mathbb{R}$ nicht-negativ und messbar. Es existiere eine Menge $A \in \mathcal{A}$ mit $\mu(A) > 0$ und f(x) > 0 für alle $x \in A$. Zeigen Sie, dass ein $\epsilon > 0$ und eine Menge $B \in A$ mit $\mu(B) > 0$ existieren, sodass $f(x) > \epsilon$ für alle $x \in B$ gibt.

Proof. Wir beweisen es per Widerspruch. Wir nehmen an, dass die Behauptung falsch ist. Dann für jedes $\epsilon > 0$ ist $\{f > \epsilon\}$ eine Nullmenge. (Wir wissen, dass die Menge messbar ist, weil f bessbar ist.)

Insbesondere gilt es für alle $\mathbb{Q} \ni \epsilon > 0$. Wir bezeichnen $\mathbb{Q}^+ := \{x | x \in \mathbb{Q}, x > 0\}$. Es gilt

$$A \subseteq \{f > 0\} = \bigcup_{x \in \mathbb{Q}^+} \{f > x\},\,$$

also

$$\mu(A) \le \mu(\{f > 0\})$$

$$\le \sum_{x \in \mathbb{Q}^+} \{f > x\}$$

$$= \sum_{x \in \mathbb{Q}^+} 0$$

$$= 0$$

also A ist eine Nullmenge, ein Widerspruch zu die Annahme, dass $\mu(A) > 0$.

Problem 2. Sei (X, \mathcal{A}, μ) ein vollständiger Maßraum und $f_n : X \to \mathbb{R}$ messbar für alle $n \in \mathbb{N}$. Außerdem sei (f_n) punktweise μ -fast überall konvergent, d.h. es existiert ein μ -Nullmenge $N \in \mathcal{A}$ und eine Funktion $f : X \to \mathbb{R}$, sodass $\lim_{n \to \infty} f_n(x) = f(x)$ für alle $x \in X \setminus N$ gilt. Zeigen Sie, dass f messbar ist.

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

Proof. Wir wissen, dass sowohl

$$f_s = \limsup_{n \to \infty} f_n$$
 als auch $f_l = \liminf_{n \to \infty} f_n$

messbar sind. Es gilt auch $f_s(x) = f_l(x)$, $\forall x \in X \backslash N$. Sei jetzt $U \subseteq \mathbb{R}$ messbar. Es gilt $f^{-1}(U) = [f^{-1}(U) \cap N^c] \cup [f^{-1}(U) \cap N]$.

Es ist $f^{-1}(U) \cap N \in \mathcal{A}$, weil $f^{-1}(U) \cap N \subset N$, N ist eine Nullmenge und (X, \mathcal{A}, μ) ist vollständig. Es gilt auch

$$f^{-1}(U) \cap N^c = f_{l/s}^{-1}(U) \cap N^c,$$

wobei $f_{l/s}$ bedeutet, dass entweder f_l oder f_s funktionert (hier möchten wir betonen, dass die beide Funktionen auf $X \setminus N$ gleich sind). Aber weil $f_{l/s}$ messbar sind, ist

$$f^{-1}(U) \cap N^c = \underbrace{f_{l/s}^{-1}(U)}_{\in \mathcal{A}} \cap \underbrace{N^c}_{\in \mathcal{A}} \in \mathcal{A}.$$

Es ist dann

$$f^{-1}(U) \in \mathcal{A} \ \forall U \subseteq \mathbb{R} \text{ messbar},$$

also f ist messbar.

Problem 3. Sei $A \subsetneq \mathbb{R}$ nichtleer. Bestimmen Sie alle Funktionen $f : \mathbb{R} \to \mathbb{R}$, welche bezüglich der σ -Algebra $\mathcal{A} := \{\emptyset, A, A^c, \mathbb{R}\}$ messbar sind.

Proof. Es gilt immer $f^{-1}(\emptyset) = \emptyset$. Außerdem wissen wir aus der Mengentheorie, dass $f^{-1}(A) \cap f^{-1}(A^c) = \emptyset$, und das Bild von einer nichtleeren Menge ist immer nichtleer. Die unterschiedliche Funktionen sind

$$f(A) = A$$
 $f(A^c) = A^c$ $f(\mathbb{R}) = \mathbb{R},$ $f(A) = A^c$ $f(A^c) = A$ $f(\mathbb{R}) = \mathbb{R}.$

Problem 4. Der Beweis von Lemma 1.83 funktionert anstelle von [0,1] auch analog für jede beliebige Lebesgue-messbare Menge in \mathbb{R} , die keine Nullmenge ist. Das heißt für jede solche Menge existiert eine Teilmenge, die nicht Lebesgue-messbar ist. Sei nun f die Cantor-Funktion aus Präsenzübung 3 und definiere $g:[0,1] \to [0,2], x \to x + f(x)$.

Wir definieren die Funktionenfolge (f_n) durch $f_1:[0,1]\to\mathbb{R},\ x\to x$ und

$$f_{n+1}: [0,1] \to \mathbb{R}, \qquad x \to \begin{cases} \frac{1}{2} f_n(3x) & 0 \le x \le \frac{1}{3}, \\ \frac{1}{2}, \frac{1}{3} < x < \frac{2}{3}, & \vdots \\ \frac{1}{2} + \frac{1}{2} f_n(3x - 2) & \frac{2}{3} \le x \le 1. \end{cases}$$

Dann konvergiert f_n gleichmäßig gegen eine Grenzfunktion f.

- (a) Zeigen Sie, dass g bijektiv und die Umkehrfunktion g^{-1} messbar ist.
- (b) Zeigen Sie nun, dass der Maßraum $(\mathbb{R}, \mathcal{B}^1, \lambda_1|_{\mathcal{B}^1})$ nicht vollständig ist.

Hinweis: Nutzen Sie eine geeignete nicht Lebesgue-messbare Menge.

Proof. (a) Wir wissen, dass f stetig und monoton wachsend ist. Daraus folgt, das s x + f(x) stetig und streng monoton wachsend ist. Es gilt auch g(0) = 0 und g(1) = 2.

Das g surjektiv ist folgt aus dem Zwischenwertsatz. g ist auch injektiv. Sei x>y. Dann gilt g(x)>g(y), insbesondere $g(x)\neq g(y)$.

Es gilt $(g^{-1})^{-1} = g$, also wir betrachten eine messbare Teilmenge von [0,1].