Spare Capacity Allocation

22 de septiembre de 2016

Pre-procesamineto

	Datos de entrada
$\overline{N, M, K}$	Número de arcos, número de nodos, número demandas
$\mathbf{G} = (\mathbf{V}, \mathbf{E})$	Grafo que represena a la topología
W_{ij}	Costo del arco $(i, j) \in E$
s^k, d^k	Nodos origen/destino de la demanda k
C^k	Capacidad demandada por k
$\mathbf{F} = \{\mathbf{F_g}\}$	El conjunto de los cortes por escenario.
	F_g es el conjunto de arcos cortados en el escenario g.
S_{gij}	Capacidad instalada disponible en el
	$\operatorname{arco}(i,j) \in E$ en el escenario g
$\mathrm{Kp_g}$	Conjunto de demandas para las cuales existe
_	al menos un camino de s^k a d^k en el escenario g
$\mathrm{Ks_g}$	Conjunto de demandas a rutear en el escenario g
A	Conjunto de arcos en los que no es posible crecer la capacidad.

Modelo ILP

	Variables
$\overline{x_{qij}^k}$	Binaria, es 1 si el arco (i, j) conforma el camino de la demanda k en el escenario g
c_{gij}	Entera, capacidad necesaria en el arco (i, j) en el escenario g
s_{ij}	Entera, capacidad necesaria a instalar en el arco (i, j)
s	Entera, costo total de la capacidad necesaria a instalar

Minimize:

$$s$$
 (1)

Subject to:

$$\sum_{j=1}^{M} x_{gij}^{k} - \sum_{j=1}^{M} x_{gji}^{k} = \begin{cases} 1 & \text{if } i = s^{k} \\ -1 & \text{if } i = d^{k} \end{cases} \quad \forall g, \forall i, \forall k \in (\mathbf{Ks_{g}} \cap \mathbf{Kp_{s}})$$

$$0 & \text{other}$$

$$(2)$$

$$x_{gij}^k + x_{gji}^k \le 1 \qquad \forall g, \forall k, \forall (i,j) \in \mathbf{E}$$
 (3)

$$x_{gij}^k = 0 \qquad \forall g, \forall k, \forall (i,j) \in \mathbf{F_g}$$
 (4)

$$c_{gij} = \sum_{k \in (\mathbf{Kp_g} \cap \mathbf{Ks_g})} C^k(x_{gij}^k + x_{gji}^k) \qquad \forall g, \forall (i, j) \in \mathbf{E}$$
 (5)

$$s_{ij} \ge c_{gij} - S_{gij} \qquad \forall g, \forall (i,j) \in \mathbf{E}$$
 (6)

$$s_{ij} = 0 \qquad \forall (i,j) \in \mathbf{A}$$
 (7)

$$s = \sum_{(i,j)\in E} W_{ij} s_{ij} \tag{8}$$