Dual 4-input NAND buffer

74F40

TYPE	TYPICAL PROPAGATION DELAY	TYPICAL SUPPLY CURRENT (TOTAL)
74F40	3.5ns	6mA

ORDERING INFORMATION

DESCRIPTION	COMMERCIAL RANGE V_{CC} = 5V $\pm 10\%$, T_{amb} = 0°C to +70°C
14-pin plastic DIP	N74F40N
14-pin plastic SO	N74F40D

PIN CONFIGURATION

INPUT AND OUTPUT LOADING AND FAN OUT TABLE

PINS	DESCRIPTION	74F (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
Dna, Dnb, Dnc, Dnd	Data inputs	1.0/2.0	20μA/1.2mA
<u>Q</u> 0, <u>Q</u> 1	Data outputs	750/106.7	15mA/64mA

NOTE: One (1.0) FAST unit load is defined as: 20μA in the High state and 0.6mA in the Low state.

LOGIC DIAGRAM

FUNCTION TABLE

	OUTPUT			
Dna	Dnb	Dnc	Dnd	Qn
L	Х	Х	Х	Н
X	L	Х	Х	Н
X	Х	L	Х	Н
X	Х	Х	Х	Н
Н	Н	Н	Н	L

NOTES:

- 1. H = High voltage level
- 2. L = Low voltage level
- 3. X = Don't care

LOGIC SYMBOL

IEC/IEEE SYMBOL

Dual 4-input NAND buffer

74F40

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limits set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	Supply voltage	-0.5 to +7.0	V
V _{IN}	Input voltage	-0.5 to +7.0	V
I _{IN}	Input current	−30 to +5	mA
V _{OUT}	Voltage applied to output in High output state	−0.5 to V _{CC}	V
I _{OUT}	Current applied to output in Low output state	128	mA
T _{amb}	Operating free-air temperature range	0 to +70	°C
T _{stg}	Storage temperature range	-65 to +150	°C

RECOMMENDED OPERATING CONDITIONS

SYMBOL	DADAMETED				
	PARAMETER	MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
V_{IL}	Low-level input voltage			0.8	V
I _{IK}	Input clamp current			-18	mA
I _{OH}	High-level output current			-15	mA
I _{OL}	Low-level output current			64	mA
T _{amb}	Operating free-air temperature range	0		+70	°C

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

CYMDOL	PARAMETER		TEST CONDITIONS ¹			LIMITS			LINUT
SYMBOL						MIN	TYP ²	MAX	UNIT
	High-level output voltage		1 4 2 2 4	1 1mA	±10%V _{CC}	2.5			V
.			$V_{CC} = MIN,$	I _{OH} = -1mA	±5%V _{CC}	2.7	3.4		V
V _{OH}			$V_{IL} = MAX,$ $V_{IH} = MIN$	1 15mA	±10%V _{CC}	2.0			
				$I_{OH} = -15 \text{mA}$	±5%V _{CC}	2.0			V
V	Lave laved autout value	$V_{CC} = MIN,$		I _{OL} = MAX	±10%V _{CC}			0.55	V
V _{OL}	Low-level output voltage		$V_{IL} = MAX,$ $V_{IH} = MIN$		±5%V _{CC}		0.42	0.55	
V _{IK}	Input clamp voltage V _{CC} = MIN			I, I _I = I _{IK}			-0.73	-1.2	V
I _I	Input current at maximum input vo	ltage	$V_{CC} = MAX, V_I = 7.0V$				100	μΑ	
I _{IH}	High-level input current $V_{CC} = MAX, V$			= 2.7V				20	μΑ
I _{IL}	Low-level input current		$V_{CC} = MAX, V_I = 0.5V$					-0.6	mA
Ios	Short-circuit output current ³		V _{CC} = MAX			-100		-225	mA
	Supply ourrent (total)	I _{CCH}	\/ _ MA\		V _{IN} = GND		1.75	4.0	
Icc	Supply current (total) I _{CCL}		$V_{CC} = MAX$ $V_{IN} = 4.$		V _{IN} = 4.5V		11	17	mA

NOTES:

- 1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
- 2. All typical values are at V_{CC} = 5V, T_{amb} = 25°C.
- 3. Not more than one output should be shorted at a time. For testing I_{OS}, the use of high-speed test apparatus and/or sample-and-hold techniques are preferable in order to minimize internal heating and more accurately reflect operational values. Otherwise, prolonged shorting of a High output may raise the chip temperature well above normal and thereby cause invalid readings in other parameter tests. In any sequence of parameter tests, I_{OS} tests should be performed last.

April 11, 1989

Dual 4-input NAND buffer

74F40

AC ELECTRICAL CHARACTERISTICS

	PARAMETER	TEST CONDITION	LIMITS					
SYMBOL			V_{CC} = +5.0V T_{amb} = +25°C C_L = 50pF, R_L = 500 Ω		V_{CC} = +5.0V ± 10% T_{amb} = 0°C to +70°C C_L = 50pF, R_L = 500 Ω		UNIT	
			MIN	TYP	MAX	MIN	MAX	
t _{PLH} t _{PHL}	Propagation delay Dna, Dnb, Dnc, Dnd to Qn	Waveform 1	2.0 1.5	4.0 3.0	6.0 5.0	1.5 1.0	7.0 5.5	ns

AC WAVEFORMS

Waveform 1. Propagation Delay for Inverting Outputs

NOTE:

For all waveforms, $V_M = 1.5V$.

TEST CIRCUIT AND WAVEFORMS

April 11, 1989

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.