

Rapport Python

Amalyse comparative de Corpus

<u>AUTEURS</u> <u>RESPONSABLE</u>

♣ SALIOU NDAO

♣ ASSOUMANI CHISSI HAZMA

Mr. VELCIN

Année académique : 2020-2021

Table des matières

INT	RODUC	ΓΙΟΝ	. 3
1.	Contex	te général	. 3
2.	Object	ifs	. 3
2	2.1. Ob	ojectif global	. 4
1	.1. 2.2	2. Objectifs spécifiques	. 4
Conc	eption d	u logiciel	. 4
1.	Étude j	préliminaire	. 4
1	.2. Re	cueil des besoins fonctionnels	. 4
1	.3. Re	cueil des besoins non fonctionnels	. 4
1	.4. Ch	oix techniques	. 5
1	.5. Ide	entification des messages émis et reçus par le système	. 5
2.	Analys	e et conception	. 6
3.	Récupé	ération et exploration du corpus	. 7
4.	Nettoya	age et normalisation des données	.9
5.	Filtrag	e temporelle des informations	13
6.	Mots c	ommuns – mots spécifique entre reddit et arxiv.	13
7.	TF-IDI	F	13
Prése	entation	de l'outil	15
1.	Design	de l'application	15
2.	Prise e	n main de l'interface	16
Bilan	du proj	et	21
1.	Résulta	ats attendus	21
1	.1. Co	onditions minimales de satisfaction nécessaire	21
1	.2. Mé	éthodes pour mesurer et confirmer l'atteinte de chaque bénéfice	21
1	.3. Év	rènements possibles qui amèneront à envisager l'arrêt du projet	21
2.	Livrabl	es	22
CON	CLUSIO	ON	22
Biblio	ographie	:	24

INTRODUCTION

Dans le domaine actuel des services Internet et en ligne, les données sont générées à une vitesse et à une quantité incroyable. En règle générale, les analystes de données, les ingénieurs et les scientifiques gèrent des données relationnelles ou tabulaires. Ces colonnes de données tabulaires contiennent des données numériques ou catégorielles. Les données générées ont une variété de structures telles que le texte, l'image, l'audio et la vidéo. Les activités en ligne telles que les articles, le texte du site Web, les articles de blog, les publications sur les réseaux sociaux génèrent des données textuelles non structurées. Les entreprises doivent analyser les données textuelles pour comprendre les activités, les opinions et les commentaires des clients afin de réussir leur activité.

L'analyse de texte a de nombreuses applications aujourd'hui. En analysant les tweets sur Twitter, nous pouvons trouver des nouvelles tendances et la réaction des gens sur un événement particulier. Amazon peut comprendre les commentaires des utilisateurs ou les avis sur le produit spécifique. Netflix peut découvrir l'opinion des gens sur le film. YouTube peut également analyser et comprendre les points de vue des gens sur une vidéo.

Dans ce projet, nous allons faire une analyse comparative de données provenant de deux sources externes à savoir reddit et arxiv.

1. Contexte général

Ce projet s'inscrit dans le cadre de notre formation de Master 1 en système d'information réparti à l'université Lumière Lyon 2 – Institut de la communication. Ceci pour allier les connaissances théoriques et pratiques vu en cours d'une part et d'autre part d'avoir une vision professionnelle de la gestion des projets de développement d'application informatiques en python.

2. Objectifs

Le cœur de ce travail est **l'analyse comparative de corpus.** Il s'agit de créer un outil capable d'explorer de l'information à partir des sources externes.

2.1. Objectif global

Aujourd'hui les documents contiennent énormément d'informations pertinentes pour les chercheurs en SHS (sociologue, linguiste, etc.). Cependant la quantité de données en question rend compliqué leur exploration. Ainsi pour leur faciliter la tâche, nous leur proposons sous forme d'une application, un outil permettant de simplifier l'exploration de document documents provenant des sources **Reddit** et **Arxiv** tout en adoptant une approche comparative.

1.1. 2.2. Objectifs spécifiques

Comme objectif spécifique, il s'agira de développer les modules suivants :

- Back End (Fonctionnalités)
 - Récupération du corpus
 - Nettoyage et Normalisation des données
 - Filtrage temporelle
 - Mots communs et mots spécifique
 - TF-IDF
- Front End (Interface graphique)
 - Interface graphique avec Tkinter pour la visualisation

Conception du logiciel

1. Étude préliminaire

1.2. Recueil des besoins fonctionnels

Pour mener à bien notre projet, nous allons exploitées des données provenant de deux sources d'informations distinctes : Reddit et Arxiv.

1.3. Recueil des besoins non fonctionnels

Il s'agit des fonctionnalités qui n'affectent pas le bon fonctionnement du système ou de l'application. L'ergonomie de l'application doit pouvoir permettre une manipulation aisée de l'application. C'est dans cet optique que nous allons développer une interface avec **Tkinter** afin de visualiser nos résultats.

1.4. Choix techniques

- ✓ Praw, acronyme de « Python Reddit API Wrapper», est un package python qui permet un accès simple à l'API de reddit. PRAW vise à être aussi facile à utiliser que possible et est conçu pour suivre toutes les règles de l'API de reddit. Vous devez donner un user agent qui suit les règles, tout le reste est géré par PRAW afin que vous n'ayez pas à vous soucier de les violer.
- ✓ **Nltk** est un package Python puissant qui fournit un ensemble d'algorithmes de langages naturels divers. C'est gratuit, open source, facile à utiliser, large communauté et bien documenté.
- ✓ **Numpy** est une extension du langage de programmation Python, destinée à manipuler les matrices ou tableaux multidimensionnels ainsi que des fonctions mathématiques opérant sur ces tableaux
- ✓ **Pandas** est une bibliothèque écrite en Python et qui facilite la manipulation des données ainsi que leurs visualisations
- ✓ **Tkinter :** Framework pour la création de l'interface

1.5. Identification des messages émis et reçus par le système

Nous allons détailler les différents messages échangés entre le système et l'extérieur.

<u>Définition</u>: un *message* représente la spécification d'une communication unidirectionnelle ou bidirectionnelle entre les objets qui transportent des informations avec pour but de déclencher une activité chez le récepteur.

Le système émet les messages suivants :

- Permettre le chargement des données (Reddit, Arxiv, les deux source confondue)
- Permettre le prétraitement et normalisation
 - Supprime les mots peu informatifs(stopword)
 - Permettre le stemming
 - Permettre la lemmatisation
- Filtrage temporel
 - Sortir le ou les top mots les plus utilisés par jour, mois, années.
- Permettre de voir les mots spécifiques, et commun entre Reddit et Arxiv.

 Permettre de sortir la concordance d'un motif (contexte gauche, motif, contexte droit)

2. Analyse et conception

Nous avons pris départ à partir des corrigés de nos séances de travaux pratiques (classes, getter, setter, méthodes, etc.). Nous allons l'adapté par rapport à nos besoins pour ne pas réinventer la roue.

Figure 1 : diagramme des classes

- → **Un auteur** peut publier un ou plusieurs documents
- → Un document ne peut être publié que par un et un seul auteur
- → **Un document** peut provenir de reddit ou Arxiv
- → Ici **corpus** représente notre **Controller**, autrement dit la classe qui renferme l'ensemble de nos fonctions. Elle va interagir aussi avec notre interface par rapport aux actions de l'utilisateur.

3. Récupération et exploration du corpus

La première phase du traitement de nos données est de récupérer le texte d'abord puis de le nettoyer afin de pouvoir l'utiliser ultérieurement dans nos algorithmes. Mais avant cela nous allons faire une petite visualisation de l'état de nos données afin de mieux les comprendre.

Pour la récupération du corpus, nous avons créé une méthode qui se charge de se connecter aux sources reddit et arxiv au démarrage de l'application pour récupérer les données. Cette méthode utilise l'API **praw** pour Reddit et url**ib** pour Arxiv.

Afin de visualiser nos données à l'état brut, nous avons mis le texte de chaque source en minuscule puis les séparé par mots (tokens) pour pouvoir les stocker dans un tableau de mot et les exploiter. Pour cela nous avons utilisé RegexpTokenizer de nltk spécifiée dans la section choix des outils. Ce dernier sépare les mots tout en traitant la ponctuation d'une bonne manière. Ainsi une fois nos données séparées par mots, nous avons calculer les fréquences d'apparition des mots (avec doublons et unique). Ainsi visualisons, les histogrammes ci-dessous pour une première impression de nos données.

Figure 2 : Comptage des mots de reddit avant prétraitement

Figure 3 : Fréquence mots en double et unique de reddit et arxiv avant prétraitement

• Regardons de plus la fréquence des mots par auteurs entre reddit et arxiv

Figure 3 : Fréquence d'apparition des mots (double et unique) utilisés par chaque auteur de Arxiv sur l'ensemble de ces publications avant prétraitements

Figure 4 : Fréquence d'apparition des mots (double et unique) utilisés par chaque auteur de Arxiv sur l'ensemble de ces publications avant prétraitements

Au regard des histogrammes de fréquence de mots par auteur, nous pouvons dire que les documents issus de la source arxiv sont plus volumineux que ceux de reddit. Néanmoins, afin de juger par rapport à la variété de leur champ lexical, nous allons procéder à un nettoyage et normalisation des données de chaque source.

4. Nettoyage et normalisation des données

Le pré-traitement de nos données comprend les étapes suivantes :

Convertir le texte en minuscule :

La conversion en minuscules est une étape de prétraitement très obligatoire. En effet, pendant le processus de tokenisation du texte, chaque phrase est divisée en mots et chaque mot est considéré comme un jeton. Cependant les langages de programmation considèrent les données textuelles comme sensibles, ce qui signifie que The est différent the. Nous, les humains, savons que tous les deux appartiennent au même jeton, mais en raison du caractère codant, ils sont considérés comme des jetons différents.

> Supprimer les ponctuations et les apostrophes :

Ils représentent des symboles inutiles qui se trouvent dans nos documents de corpus. Cependant nous devons être peu prudents lorsque nous les supprimons, car il pourrait y avoir des problèmes avec certains therme comme Etats-Unis. Donc le trait d'union devrait être traité avec un peu de soin.

> Supprimer les caractères individuels :

Les caractères uniques ne sont pas très utiles pour connaître l'importance du document et quelques caractères uniques finaux peuvent être des symboles non pertinents, il est donc toujours bon de supprimer les caractères uniques. Nous avons juste besoin d'itérer sur tous les mots et de ne pas ajouter le mot si la longueur n'est pas supérieure à 1.

> Convertir les chiffres :

Pour les humains la requête 100 cas est identique à cent cas, mais pour l'ordinateur ces deux termes de recherche ne sont pas les mêmes. Donc pour permettre à l'ordinateur de les considérer comme étant identique nous devons convertir 100 en cent. Ce qu'on peut facilement faire avec la bibliothèque num2word.

> Supprimer les stopwords :

Ce sont les mots très courants dans la langue étudié (the, a, your, ...en anglais) qui n'apportent pas de valeur informative pour la compréhension du sens d'un document du corpus. Ils sont très fréquents et ralentisse notre travail. Il est d'une importance capitale de les supprimer afin de valoriser notre texte et de simplifier nos calculs. Nltk nous fournit une liste de stopwords par défaut dans plusieurs langues, en particulier en anglais. Nous l'utilisons ainsi pour se débarrasser des mots peu informatifs de notre corpus.

Lemmatisation racinisation :

La lemmatisation est un moyen de réduire le mot à la racine synonyme d'un mot. Contrairement au Stemming, la Lemmatisation s'assure que le mot réduit est à nouveau un mot du dictionnaire (mot présent dans la même langue). Nous avons utilisé WordNetLemmatizer pour lemmatiser les mots de notre corpus.

Word	Lemmatization	Stemming
was	be	wa
studies	study	studi
studying	study	study

En résumé, nous avons appliqué ces différentes étapes de nettoyage classique à notre corpus afin de nettoyer nos données en profondeur et d'alléger nos algorithmes.

Voyons maintenant les résultats de nos prétraitements à travers les histogrammes ci-dessous.

■ Reddit – Arxiv

Figure 5 : Fréquence d'apparition des mots (double et unique) après prétraitement entre Reddit et Arxiv

Documents de la source Reddit

Figure 6 : Fréquence d'apparition des mots (double et unique) utilisés par chaque auteur de Reddit sur l'ensemble de ces publications après prétraitements

Documents de la source Arxiv

Figure 7 : Fréquence d'apparition des mots (double et unique) utilisés par chaque auteur de Arxiv sur l'ensemble de ces publications après prétraitements

Au regard de ces histogrammes, nous constatons que les traitements effectués ont considérablement diminués le volume de nos données.

5. Filtrage temporelle des informations

Cette section consiste à observer l'évolution temporelle d'un mot ou d'un groupe de mots données. Le principe consiste à découper la frise temporelle en périodes (jour, mois, année). Selon les critères de recherche de l'utilisateur, une liste des n mots les plus fréquents lui seront présentés. Ainsi pour une date précise on peut savoir quel est le mot qui a été le plus utilisé dans Reddit ou Arxiv.

6. Mots communs – mots spécifique entre reddit et arxiv.

Nous avons voulu à travers cette partie sortir les mots communs et spécifiques à chaque source de données. Pour cela on a développé une fonction qui se charge d'explorer les sources pour nous renvoyer d'un seul coup les mots spécifiques à Reddit, ceux spécifique à Arxiv et les mots communs aux deux sources.

7. TF-IDF

TF-IDF signifie **«Term Frequency - Inverse Document Frequency ».** C'est une technique pour quantifier un mot dans les documents. Le principe consiste à attribuer un poids à chaque mot du document. Ce poids représente l'importance du mot dans le document et dans le corpus. C'est une technique largement utilisée dans la recherche d'informations et l'exploration de texte.

L'idée est de permettre à l'ordinateur de comprendre les phrases que lui sont présenté par l'utilisateur. En effet un humain est capable de comprendre les phrases qu'il rencontre car ce dernier connait la sémantique des mots et de la phrase. Ce qui va à l'encontre des ordinateurs qui ne peuvent comprendre que des valeurs numériques Ainsi nous vectorisons tout le texte du corpus pour lui permettre de comprendre le texte.

La vectorisation des documents nous permet par la suite de pouvoir effectuer plusieurs taches telles que la recherche des documents le classement, la recherche de document pertinent, le regroupement etc. C'est le même principe qui est utilisés dans les navigateurs pour faciliter la recherche de page web (représente les documents dans notre cas). Ainsi pour une requête donnée, les k principaux documents renvoyés à l'utilisateur dépend de la pertinence de la

requête ou de son ordre de pertinence. Tout ce processus est effectué en utilisant la forme vectorisée de requête et de documents

A présent évaluons l'importance relative des mots de nos corpus en utilisant TF-IDF.

> Fréquence du terme (TF)

Le nombre de fois qu'un mot apparaît dans un document divisé par le nombre total de mots dans le document. Chaque document a sa propre fréquence de mandats.

$$tf_{i,j} = \frac{n_{i,j}}{\sum_k n_{i,j}}$$

> Fréquence des données inverses (IDF)

Le logarithme du nombre de documents divisé par le nombre de documents contenant le mot w. La fréquence inverse des données détermine le poids des mots rares dans tous les documents du corpus.

$$idf(w) = \log(\frac{N}{dft})$$

> TF-IDF

Enfin, le TF-IDF est simplement le TF multiplié par l'IDF.

$$w_{i,j} = t f_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

Ainsi après application sur notre corpus on se retrouve avec le poids affecté à chaque mot de notre corpus.

corp	corpus_global.caluculTF_IDF()														
	abbott	academic	access	account	accuse	act	active	adapt	add	addition	additional	administer	advantage	affect	afric
0	0.0	0.00000	0.000000	0.0	0.0	0.0	0.00000	0.0	0.00000	0.000000	0.135728	0.0	0.0	0.0	0
1	0.0	0.09543	0.047715	0.0	0.0	0.0	0.09543	0.0	0.09543	0.047715	0.000000	0.0	0.0	0.0	0
2	0.0	0.00000	0.000000	0.0	0.0	0.0	0.00000	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0
3	0.0	0.00000	0.000000	0.0	0.0	0.0	0.00000	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0
4	0.0	0.00000	0.000000	0.0	0.0	0.0	0.00000	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0
95	0.0	0.00000	0.000000	0.0	0.0	0.0	0.00000	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0
96	0.0	0.00000	0.000000	0.0	0.0	0.0	0.00000	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0
97	0.0	0.00000	0.000000	0.0	0.0	0.0	0.00000	0.0	0.00000	0.000000	0.000000	0.0	0.0	0.0	0

Cependant, on n'a pas pu intégrer la partie TF-IDF sur notre interface graphique par manque de temps.

Présentation de l'outil

1. Design de l'application

Afin de simplifier l'interaction de notre outil avec l'utilisateur, nous avons mis en place une interface graphique permettant la manipulation et la visualisation des résultats. Parmi les nombreuses Framework permettant de développer des interfaces graphiques sous Python, nous avons fait le choix de **Tkinter** qui est généralement fourni avec Python.

L'un des avantages de choisir Tkinter est que, comme il vient par défaut, il existe une abondance de ressources, à la fois des codes et des livres de référence. De plus, la communauté étant ancienne et active, de nombreux utilisateurs peuvent vous aider en cas de doute.

La figure suivante fait référence au design de notre interface

Figure 8 : design Interface

2. Prise en main de l'interface

Plusieurs éléments constituent notre interface, comme le cadre résultat, paramétrage de la recherche, un champ de recherche par mot clé, choix de corpus, des filtrages temporelles, un champ limite pour la sortie des résultats et éventuellement des boutons d'actions comme la réinitialisation de l'interface, un bouton recherche sur les contenues des corpus ou un mot-clé, les actions spécifiques sur le filtrage temporelle et d'autres actions sur la manipulation des corpus. Dans ce qui suit, nous détaillons ces différents composants.

a. Cadre résultat :

Il est la sortie (output) de nos résultats.

b. Cadre recherche:

Ce cadre offre à l'utilisateur un champ de recherche par mot clé qui lui est associé par un bouton d'action **recherche**.

recherche	
Mot clé	recherche

Figure 9: Cadre recherche

Le résultat attendu est le contexte gauche et droit selon le motif donné. Dans le cas où le motif n'existe pas, un message d'alerte apparaitra.

La figure suivante, illustre un exemple avec le motif covid.

Figure 10: Concordance motif covid

c. Fenêtre paramétrage de la recherche :

Comme le nom l'indique, ce cadre permet de paramétrer la demande de l'utilisateur. Il permet entre autres de choisir le corpus (*Reddit, Arxiv ou les deux*) à interroger pour certaines actions, d'effectuer de filtrage temporel pour les actions qui sont définies sur **Filtrage temporelle (time actions)**, de limiter le nombre de résultat selon votre demande.

Figure 11 : cadre paramétrage de la recherche

L'action **recherche** associé permet de retourner les top publications par nombre des mots sur le corpus choisi. La figure suivante montre un exemple de résultat.

Figure 12: Top publication

d. Bouton reset:

Situé en bas-gauche, ce bouton permet de réinitialiser l'interface.

e. Corpus actions

Définit sur la barre des menus, ce menu ressemble plusieurs actions pouvant être réalisées sur nos différents corpus. Le choix du corpus sur le paramétrage de la recherche nous permet aussi de cibler le jeu de données.

Figure 13: menu 1 action des corpus

Chaque action a un rôle spécifique :

> Stopwords: action de stop

Lemmatisation: action de lemmatisation

> Stemming: action stemming

> Search Words: cette action renvoie les mots communs pour les deux corpus ou les mots spécifiques pour chaque corpus.

L'exemple suivant montre les communs pour le corpus Arxiv, après exécution de l'action **Search Word**.

Figure 14: Mot spécifique Corpus Arxiv

f. Filtrage temporelle

Ce menu comporte les actions spécifiques pour le filtrage temporel. Chaque action donne en sortie le(s) mots le(s) plus utilisé(s).

Figure 15 : menu 2 les actions du temps

Rôle des actions:

- ➤ **Jour/mois :** cette action permet de chercher le(s) mot(s) le(s) plus utilisés pour le jour **X** de chaque mois sur toutes les années. Par exemple X=10.
- ➤ Mois: Elle permet de donner le(s) mot(s) le(s) plus utilisés d'un mois donné sur toutes les années.
- Année : Elle permet de donner le(s) mot(s) le(s) plus utilisés d'une année donnée.

➤ Date complète : Elle permet de donner le(s) mot(s) le(s) plus utilisés d'une date donnée.

La figure suivante illustre un exemple pour la date 10/12/2020.

Figure 16 : Example action date complète

Bilan du projet

1. Résultats attendus

1.1. Conditions minimales de satisfaction nécessaire

- ✓ Le produit est totalement implémenté et testé
- ✓ A valider par le MOA

1.2. Méthodes pour mesurer et confirmer l'atteinte de chaque bénéfice

✓ Validation après test des fonctionnalités par le MOA

1.3. Évènements possibles qui amèneront à envisager l'arrêt du projet

✓ Le délai de réalisation est atteint

✓ Le produit a été conçu et testé

2. Livrables

- ✓ Rapport d'analyse de conception et d'implémentation
- ✓ Première version du produit
- ✓ Dépôt code source GitHub : https://github.com/Beuleup93/python_reddit_arxiv

CONCLUSION

Ce travail nous a permis de fonder nos connaissances de programmation en Python, en se familiarisant sur des nombreuses librairies existantes. Nous avons eu l'occasion de mettre en œuvre les connaissances acquises dans le cours et dans les travaux pratiques à savoir les notions de classes et d'héritage, polymorphisme, gestion des collections et modularisation. D'autres recherches approfondies sont également utilisées comme la création d'une interface avec tkinter, la manipulation des dataframes etc...

Hormis les connaissances acquises en programmation, mais ce travaille nous a permis nous a permis aussi de découvrir le travail en équipe qui est un aspect plus important dans notre formation éventuellement pour un future proche, et aussi d'appliquer la méthode de gestions de projet (Le Scrum).

Comme dans tous les cas, nous avons rencontrés de nombreux problèmes au niveau programmation, mais on finit toujours à trouver une solution sur les différents forums.

Bibliographie:

- https://towardsdatascience.com/tf-idf-for-document-ranking-from-scratch-in-pythonon-real-world-dataset-796d339a4089
- https://towardsdatascience.com/natural-language-processing-feature-engineeringusing-tf-idf-e8b9d00e7e76
- https://openclassrooms.com/fr/courses/4470541-analysez-vos-donneestextuelles/4470548-recuperez-et-explorez-le-corpus-de-textes
- Apprendre le langage de programmation python
- Python Lake