COMP 4220

Aaron Collins

110011732

User Stories and Test Design

- 1. 10 User Stories
 - a. As a user, I want to be able to enter some numbers to perform a calculation
 - b. As a user, I want to be able to add two numbers to find out the answer
 - c. As a user, I want to be able to multiply two numbers to find out the answer
 - d. As a user, I want to be able to subtract two numbers to find out the answer
 - e. As a user, I want to be able to divide two numbers to find out the answer
 - f. As a user, I want to be able to undo an input to correct my mistakes
 - g. As a user, I want to be able to use floating point numbers to have precise calculations
 - h. As a user, I want to be able to square a number to find out the answer
 - i. As a user, I want to be able to square root a number to find out the answer
 - j. As a user, I want to be able to cube a number to find out the answer
- 2. Specify test cases for multiplication of numbers (test case c)
 - a. (In)Valid I/O
 - i. Valid input: (4, 8.2), (50, 100), (-25, -25), (8, 0), (1, 3.4028235E38), (1.844674352395373E19, 1.844674352395373E19)
 - ii. Invalid input: (a, 1), (a, a), (a, #), (3.4028235E38, 3.4028235E38)
 - iii. Valid output: 10, 2500, 0, 3.4028235E38, 1.844674352395373E19
 - iv. Invalid output: Error, Infinity, -Infinity
 - b. Equivalence classes:
 - i. Preconditions: Inputs must be a float, or converted to a float
 - ii. Valid equivalence classes:
 - 1. [-3.4028235E38, -1.844674352395373e¹⁹, 0, 1.844674352395373e¹⁹ (square root of the max float value), 3.4028235E38]
 - iii. Invalid equivalence classes: String values [a-zA-Z@ ./#&\$)]
 - c. Testing in/out using boundary value analysis
 - i. Valid input boundaries: [-3.4028235E38,
 - -1.844674352395373e¹⁹, -1, 0, 1, 1.844674352395373e¹⁹, 3.4028235E38]
 - d. Test Cases Steps
 - i. TC1
 - 1. Run the calculator
 - 2. Enter 0 for the first input
 - 3. Enter 0 for the second input
 - 4. Press on the multiplication button
 - 5. Check if the result is 0
 - ii. TC2
 - 1. Run the calculator
 - 2. Enter 0 for the first input

- 3. Enter 1 for the second input
- 4. Press on the multiplication button
- 5. Check if the result is 0

iii. TC3

- 1. Run the calculator
- 2. Enter 1 for the first input
- 3. Enter 1 for the second input
- 4. Press on the multiplication button
- 5. Check if the result is 1

iv. TC4

- 1. Run the calculator
- 2. Enter 1 for the first input
- 3. Enter -1.844674352395373e¹⁹ for the second input
- 4. Press on the multiplication button
- 5. Check if the result is -1.844674352395373e¹⁹

v. TC5

- 1. Run the calculator
- 2. Enter -1.844674352395373e¹⁹ for the first input
- 3. Enter -1.844674352395373e¹⁹ for the second input
- 4. Press on the multiplication button
- 5. Check if the result is 3.4028235E38

vi. TC6

- 1. Run the calculator
- 2. Enter 1.844674352395373e¹⁹ for the first input
- 3. Enter 1.844674352395373e¹⁹ for the second input
- 4. Press on the multiplication button
- 5. Check if the result is 3.4028235E38

vii. TC7

- 1. Run the calculator
- 2. Enter 1 for the first input
- 3. Enter 3.4028235E38 for the second input
- 4. Press on the multiplication button
- 5. Check if the result is 3.4028235E38

viii. TC8

- 1. Run the calculator
- 2. Enter 3.4028235E38 for the first input
- 3. Enter 3.4028235E38 for the second input
- 4. Press on the multiplication button
- 5. Check if the result is Infinity

ix. TC9

- 1. Run the calculator
- 2. Enter 3.4028235E38 for the first input
- 3. Enter -3.4028235E38 for the second input
- 4. Press on the multiplication button

5. Check if the result is -Infinity

x. TC10

- 1. Run the calculator
- 2. Enter 1 for the first input
- 3. Enter a for the second input
- 4. Press on the multiplication button
- 5. Check if the output is "Error"

xi. TC11

- 1. Run the calculator
- 2. Enter a for the first input
- 3. Enter 1 for the second input
- 4. Press on the multiplication button
- 5. Check if the output is "Error"

xii. TC12

- 1. Run the calculator
- 2. Enter a for the first input
- 3. Enter a for the second input
- 4. Press on the multiplication button
- 5. Check if the output is "Error"