Optimization

Màster de Fonaments de Ciència de Dades

Lecture V. Constrained optimization

Gerard Gómez

Assume given a set $\mathcal{C} \subset \mathbb{R}^n$, and the real-valued functions

$$\begin{array}{cccc} f:\mathcal{C} & \longrightarrow & \mathbb{R}, \\ g_i:\mathcal{C} & \longrightarrow & \mathbb{R}, & i=1,...p \\ h_j:\mathcal{C} & \longrightarrow & \mathbb{R}, & j=1,...,m \end{array}$$

The **general constrained optimization problem** is defined by

min
$$f(x)$$

subject to: $g_i(x) \ge 0$, $i = 1, ..., p$
 $h_j(x) = 0$, $j = 1, ..., m$ with $m < n$

The Lagrangian associated with the problem is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i=1}^{p} \lambda_{i} g_{i}(\mathbf{x}) - \sum_{j=1}^{m} \mu_{j} h_{j}(\mathbf{x})$$

The **feasible set** X is defined as the set of point fulfilling the constraints

$$X = \{x \in C \mid g_i(x) \ge 0, i = 1, ..., p \text{ and } h_j(x) = 0, j = 1, ..., m\}$$

The equality constrained optimization problem is defined by

min
$$f(x)$$

subject to $h_j(x) = 0$, $j = 1, ..., m$ with $m < n$

The Lagrangian associated with the problem is defined as

$$L(x, \lambda) = f(x) - \sum_{i=1}^{m} \lambda_i h_i(x)$$

The **feasible set** X is defined as the set of point fulfilling the constraints

$$X = \{x \in C \mid h_j(x) = 0, j = 1, ..., m\}$$

Goal:

Stablish the necessary and sufficient conditions to characterize the local extrema (maximum or minimum) of f

Theorem (Necessary conditions for the equality constrained problem)

Let f, $h_1,...,h_m$ be real continuously differentiable functions on an open set C containing X

If:

- 1. $\mathbf{x}^* \in X \subset \mathbb{R}^n$ is a solution of the equality constrained problem
- 2. at $x = x^*$, the Jacobian matrix

$$\begin{pmatrix}
\frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\
\vdots & \ddots & \vdots \\
\frac{\partial h_m}{\partial x_1} & \cdots & \frac{\partial h_m}{\partial x_n}
\end{pmatrix}$$

has rank m, this is: the constraint gradients $\nabla h_1(\mathbf{x}^*),...,\nabla h_m(\mathbf{x}^*)$ are linearly independent

Then:

there exists a vector of multipliers $\boldsymbol{\lambda}^* = (\lambda_1^*,...,\lambda_m^*)^T$ such that

$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

 $((x^*, \lambda^*)$ is a stationary vector of the Lagrangian $L(x, \lambda)$

Theorem (Necessary conditions for the general constrained problem)

Let f, $h_1,...,h_m$ and $g_1,...,g_p$ be real continuously differentiable functions on an open set C containing the feasible set X

If:

1. $\mathbf{x}^* \in X \subset \mathbb{R}^n$ is a solution of the constrained problem

2.

$$(Z^1(x^*))' = (S(X, x^*))'$$

Then:

there exist $\lambda^*=(\lambda_1^*,...,\lambda_p^*)^T$ and $\mu^*=(\mu_1^*,...,\mu_m^*)^T$ such that

$$abla f(\mathbf{x}^*) - \sum_{i=1}^p \lambda_i^*
abla g_i(\mathbf{x}^*) - \sum_{j=1}^m \mu_j^*
abla h_j(\mathbf{x}^*) = 0$$
 $\lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p$
 $\lambda^* \geq 0.$

(Karush–Kuhn–Tucker conditions)

Theorem (Sufficient conditions for the equality constrained problem)

Let f, $h_1,...,h_m$ be twice continuously differentiable real-valued functions in \mathbb{R}^n

If:

- ▶ there exist $\mathbf{x}^* \in X \subset \mathbb{R}^n$, $\boldsymbol{\lambda}^* \in \mathbb{R}^m$ such that
 - 1. The vector $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ is a stationary point of the Lagrangian

$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

2. For every $\mathbf{z} \in \mathbb{R}^n$, $\mathbf{z} \neq 0$ satisfying

$$(\nabla h_i(\mathbf{x}^*))^T \mathbf{z} = \mathbf{z}^T \nabla h_i(\mathbf{x}^*) = 0, \quad i = 1, ..., m$$

it follows that

$$\mathbf{z}^T \nabla^2_{\mathbf{x}\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*) \mathbf{z} > 0$$

Then:

 x^* is a strict local minimum of the equality constrained optimization problem

Theorem (Sufficient conditionsfor the general constrained problem)

Let f, $g_1,...,g_p$, $h_1,...,h_m$ be twice continuously differentiable real-valued functions in \mathbb{R}^n , and x^* be a feasible point of the general constrained optimization problem

If there exist $\mathbf{x}^* \in X \subset \mathbb{R}^n$, $\mathbf{\lambda}^* \in \mathbb{R}^p$, $\mathbf{\mu}^* \in \mathbb{R}^m$ such that

1. They satisfy the Karush–Kuhn–Tucker conditions:

$$\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \nabla f(\mathbf{x}^*) - \sum_{i=1}^{p} \lambda_i^* \nabla g_i(\mathbf{x}^*) - \sum_{j=1}^{m} \mu_j^* \nabla h_j(\mathbf{x}^*) = 0$$

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p$$

$$\boldsymbol{\lambda}^* \geq 0$$

2. For every $z \neq 0$, such that $z \in \overline{Z}^1(x^*)$ it follows that

$$\mathbf{z}^{T}\left[\nabla^{2}f(\mathbf{x}^{*})-\sum_{i=1}^{p}\lambda_{i}^{*}\nabla^{2}g_{i}(\mathbf{x}^{*})-\sum_{j=1}^{m}\mu_{j}^{*}\nabla^{2}h_{j}(\mathbf{x}^{*})\right]\mathbf{z}=\mathbf{z}^{T}\nabla_{\mathbf{x}\mathbf{x}}^{2}L(\mathbf{x}^{*},\boldsymbol{\lambda}^{*},\boldsymbol{\mu}^{*})\mathbf{z}>0$$

Then, x^* is a strict local minimum of the general constrained optimization problem

Exercises

Exercise 7. To be delivered before 9-XI-2021 as: Ex07-YourSurname.pdf Solve the two-dimensional problem

minimize
$$(x - a)^2 + (y - b)^2 + xy$$

subject to
$$0 \le x \le 1$$
, $0 \le y \le 1$

for all possible values of the scalars a and b

Exercise 8. To be delivered before 9-XI-2021 as: Ex08-YourSurname.pdf Given a vector y, consider the problem

maximize
$$y^T x$$

subject to:
$$x^T Qx \leq 1$$

where Q is a positive definite symmetric matrix. Show that the optimal value is $\sqrt{\mathbf{y}^T Q^{-1} \mathbf{y}}$, and use this fact to establish the inequality

$$(\boldsymbol{x}^{\mathsf{T}}\boldsymbol{y})^2 \leq (\boldsymbol{x}^{\mathsf{T}} Q \, \boldsymbol{x}) (\boldsymbol{y}^{\mathsf{T}} Q^{-1} \boldsymbol{y})$$

Equality constrained extrema

Equality constrained extrema

Consider the problem of finding the minimum (or maximum) of a real-valued function f with domain of definition $\mathcal{C} \subset \mathbb{R}^n$

$$f: \mathcal{C} \longrightarrow \mathbb{R}$$
,

subject to the equality constraints

$$h_i(x) = 0, \quad i = 1, ..., m, \quad m < n$$
 (1)

where each of the h_i is a real-valued function defined on C. This is, the problem is to find an extremum of f in the set of feasible points X determined by equations (1)

As we have already seen, Lagrange's method consists of transforming an equality constrained extremum problem into a problem of finding a stationary point (x^*, λ^*) of the Lagrangian function

$$L(x,\lambda) = f(x) - \sum_{i=1}^{m} \lambda_i h_i(x)$$

Lagrange's method

Example

Find the area of the largest rectangle that can be inscribed in the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

This is, find the maximum of

$$f(x, y) = 4xy$$

subject to the constraint

$$h(x,y) = \frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$$

In this example

$$L(x, y, \lambda) = 4xy - \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1\right)$$

Lagrange's method

Theorem (Necessary conditions)

Suppose that

$$f:\mathcal{C} \ \longrightarrow \ \mathbb{R}, \qquad \text{and} \qquad h_i:\mathcal{C} \ \longrightarrow \ \mathbb{R}, \quad i=1,...,m$$

are real-valued functions that satisfy:

- ▶ They are all continuosly differentiable on a neighborhood around x^* of radius ϵ : $N_{\epsilon}(x^*) \subset \mathcal{C}$
- $ightharpoonup x^*$ is a local minimum (or maximum) of f in $N_{\epsilon}(x^*)$
- ▶ If $x \in N_{\epsilon}(x^*)$, then all the constraints are satisfied

$$h_i(x) = 0, \quad i = 1, ..., m$$

► The Jacobian matrix

$$\begin{pmatrix} \frac{\partial h_1}{\partial x_1} & \cdots & \frac{\partial h_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial h_m}{\partial x_1} & \cdots & \frac{\partial h_m}{\partial x_n} \end{pmatrix}$$

has rank m, this is: the constraint gradients $\nabla h_1(x^*),...,\nabla h_m(x^*)$ are linearly independent

Then, there exists a vector of multipliers $\lambda^* = (\lambda_1^*, ..., \lambda_m^*)^T$ such that (x^*, λ^*) is a stationary vector of the Lagrangian

$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

Lagrange's method. First order feasible variations

Definition

The subspace of first order feasible variations at x^* is defined by

$$V(x^*) = \{ \Delta x \mid \nabla h_i(x^*)^T \Delta x = \Delta x^T \nabla h_i(x^*) = 0, \ i = 1, ..., m \}$$

Note that $V(x^*)$ is the subspace of variations Δx for which the point $x^* + \Delta x$ satisfies the constraint

$$h(x)=0$$

up to the first order:

$$h(x^* + \Delta x) \approx h(x^*) + \nabla h(x^*)^T \Delta x = \nabla h(x^*)^T \Delta x = 0$$

Lagrange's method. First order feasible variations

There are two ways to interpret the necessary condition given by the equation

$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \nabla f(\mathbf{x}^*) - \sum_{i=1}^m \lambda_i^* \nabla h_i(\mathbf{x}^*) = 0$$

1. The gradient of the cost function $\nabla f(x^*)$ belongs to the subspace spanned by the gradients of the constraints $\nabla h_i(x^*)$ at x^*

$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0 \quad \Leftrightarrow \quad \nabla f(\mathbf{x}^*) = \sum_{i=1}^m \lambda_i^* \nabla h_i(\mathbf{x}^*)$$

2. $\nabla f(x^*)$ is orthogonal to the subspace of first order feasible variations at $x^* (\nabla h_i(x^*)^T \Delta x = 0)$, this is

If
$$\Delta x \in V(x^*)$$
 then $\nabla f(x^*)^T \Delta x = \sum_{i=1}^m \lambda_i \nabla h_i(x^*)^T \Delta x = 0$

Lagrange necessary conditions

Example

minimize
$$f(x,y) = x + y$$

subject to $h(x,y) = 2 - x^2 - y^2 = 0$

At the local minimum $\mathbf{x}^* = (-1, -1)^T$, the first order feasible variations $\Delta \mathbf{x}$ that must satisfy

$$\nabla h_i(\mathbf{x}^*)^T \Delta \mathbf{x} = \Delta \mathbf{x}^T \nabla h_i(\mathbf{x}^*) = 0$$

are the displacements Δx tangent to the constraint circle at x^* , and are also perpendicular to the gradient of the cost function $\nabla f(x^*) = (1,1)^T$

In this example, the gradient of the cost function $\nabla f(\mathbf{x}^*) = (1,1)^T$ is also collinear with the gradient of the constraint $\nabla h(\mathbf{x}^*) = (-2,-2)^T$

$$(1,1)^T = \nabla f(\mathbf{x}^*) = \lambda \nabla h(\mathbf{x}^*) = (1/2)(-2,-2)^T$$

Feasible variations

Definition

A point x for which $h_1(x) = 0,...,h_m(x) = 0$ (feasible point) and such that the gradients $\nabla h_1(x),...,\nabla h_m(x)$ are linearly independent is called regular

Remark: For a local minimum that is not regular there may not exist Lagrange multipliers

Example. Consider the problem of minimizing

$$f(x) = x + y$$

subject to

$$h_1(x) = (x-1)^2 + y^2 - 1 = 0$$
, $h_2(x) = (x-2)^2 + y^2 - 4 = 0$

Note that in this example we have m=n instead of m < n, but this is not relevant for what follows

Example (cont.)

At the local minimum of f = x + y, $x^* = (0,0)^T$ (the only feasible point), the cost gradient $\nabla f(x^*) = (1,1)^T$ cannot be expressed as a linear combination of $\nabla h_1(x^*) = (-2,0)^T$ and $\nabla h_2(x^*) = (-4,0)^T$

Thus, the Lagrange multiplier condition

$$\nabla f(\mathbf{x}^*) - \lambda_1^* \nabla h_1(\mathbf{x}^*) - \lambda_2^* \nabla h_2(\mathbf{x}^*) = 0,$$

cannot hold for any λ_1^* and λ_2^*

► The difficulty here is that the subspace of first order feasible variations

$$V(x^*) = \{ \Delta x \mid \nabla h_1(x^*)^T \Delta x = 0, \ \nabla h_2(x^*)^T \Delta x = 0 \} = \{ \Delta x = (0, y)^T \}$$

has dimension 1, that is larger than the one of the true set of feasible variations $\{\Delta x = (0,0)^T\}$

Lagrange's method

Theorem (Sufficient conditions).

Let f, $h_1,...,h_m$ be twice continuously differentiable real-valued functions in \mathbb{R}^n . If there exist vectors $\mathbf{x}^* \in \mathbb{R}^n$, $\lambda^* \in \mathbb{R}^m$ such that

1. The vector $(\mathbf{x}^*, \boldsymbol{\lambda}^*)$ is a stationary point of the Lagrangian

$$\nabla L(\mathbf{x}^*, \boldsymbol{\lambda}^*) = 0$$

2. For every $z \in \mathbb{R}^n$, $z \neq 0$ satisfying

$$(\nabla h_i(x^*))^T z = z^T \nabla h_i(x^*) = 0, \quad i = 1, ..., m$$

(z is a feasible first order variation) it follows that

$$z^T \nabla^2_{xx} L(x^*, \lambda^*) z > 0$$

Then, f has a strict local minimum at x^* subject to $h_i(x) = 0$, i = 1, ..., m (similar for a maximum if $\mathbf{z}^T \nabla^2_{\mathbf{x} \mathbf{x}} L(\mathbf{x}^*, \lambda^*) \mathbf{z} < 0$)

We will see the proof of both theorems (necessary and sufficient conditions) later, when we also consider inequality constraints

Sufficient conditions

Example

Consider the problem

minimize
$$f(x) = -(x_1x_2 + x_2x_3 + x_1x_3)$$

subject to $h(x) = x_1 + x_2 + x_3 = 3$

this is, minimize the surface area of a rectangular parallelepiped P subject to the sum of the edge lengths of P being equal to 3

Since

$$L(\textbf{x},\lambda) = -(x_1x_2 + x_2x_3 + x_1x_3) - \lambda(x_1 + x_2 + x_3 - 3)$$
 the necessary conditions $(\nabla L(\textbf{x}^*,\lambda^*) = 0)$ are
$$-x_2^* - x_3^* - \lambda^* = 0$$

$$-x_1^* - x_3^* - \lambda^* = 0$$

$$-x_1^* - x_2^* - \lambda^* = 0$$

$$x_1^* + x_2^* + x_2^* - 3 = 0$$

which have the unique solution $x_1^* = x_2^* = x_3^* = 1$, $\lambda_1^* = -2$

Sufficient conditions. Example (cont.)

The subspace of first order feasible variations V is

$$V = \{ \mathbf{z} \mid \mathbf{z}^T \nabla h(\mathbf{x}^*) = 0 \} = \left\{ \mathbf{z} \mid (z_1, z_2, z_3) \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 0 \right\} = \{ \mathbf{z} \mid z_1 + z_2 + z_3 = 0 \}$$

The Hessian of the Lagrangian

$$L(\mathbf{x}, \lambda) = -(x_1x_2 + x_2x_3 + x_1x_3) - \lambda(x_1 + x_2 + x_3 - 3)$$
 is

$$\nabla_{xx}^{2} L(x^{*}, \lambda^{*}) = \nabla_{xx}^{2} L((1, 1, 1)^{T}, -2) = \begin{pmatrix} 0 & -1 & -1 \\ -1 & 0 & -1 \\ -1 & -1 & 0 \end{pmatrix}$$

We have for all $z \in V$ with $z \neq 0$, that

$$\mathbf{z}^{T}\nabla_{\mathbf{x}\mathbf{x}}^{2}L(\mathbf{x}^{*},\lambda^{*})\mathbf{z} = -z_{1}(z_{2}+z_{3}) - z_{2}(z_{1}+z_{3}) - z_{3}(z_{1}+z_{2}) = z_{1}^{2} + z_{2}^{2} + z_{3}^{2} > 0$$

hence, the sufficient conditions for a strict local minimum

$$z^T \nabla^2_{xx} L(x^*, \lambda^*) z > 0$$

are satisfied

Inequality constrained extrema

First-order necessary conditions for inequality constrained extrema

We begin with the **first-order** (involving only first derivatives) necessary conditions

Consider the general problem (P) defined by

min
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \geq 0$, $i = 1, ..., p$
 $h_j(\mathbf{x}) = 0$, $j = 1, ..., m$ (2)

The functions f, g_i , h_j are assumed to be defined and continuously differentiable on some open set $D \subset \mathbb{R}^n$

Let X ⊂ D denote the feasible set for problem (P) this is, the set of all points in D satisfying the constraints defined by (2)

$$X = \{x \in D \mid g_i(x) \ge 0, i = 1, ..., p; h_j(x) = 0, j = 1, ..., m\}$$

If $x \in X$, we say that x is a feasible point

First-order necessary conditions for inequality constrained extrema

A point $x^* \in X$ is said to be a local minimum of problem (P), if there exist $\delta > 0$ such that

$$f(x) \ge f(x^*), \quad \forall x \in X \cap N_{\delta}(x^*)$$

where $N_{\delta}(\mathbf{x}^*)$ is the neighbourhood of radius δ centred at \mathbf{x}^*

▶ If this condition holds for all $x \in X$

$$f(x) \geq f(x^*), \quad \forall x \in X$$

then x^* is said to be a global minimum of problem (P)

Note that every point $x \in N_{\delta}(x^*)$ can be written as $x^* + z$, where $z \neq 0$ if and only if $x \neq x^*$

Feasible directions

Definition

A vector $\mathbf{z} \neq 0$ is called a **feasible direction** from \mathbf{x}^* if there exist $\delta > 0$ such that

$$\mathbf{x}^* + \theta \mathbf{z} \in X \cap N_{\delta}(\mathbf{x}^*)$$
 for all $0 \le \theta < \delta/\|\mathbf{z}\|$

We are interested in feasible directions since

If x^* is a local minimum of problem (P), and if z is a feasible direction for x^* , then $f(x^* + \theta z) \ge f(x^*)$, if $\theta > 0$ is small enough

Feasible directions characterization

Recall that one set of constraints is given by $g_i(x) \ge 0$, for i = 1, ..., p

Define the set of index $I(x^*)$ as:

$$I(x^*) = \{i \mid g_i(x^*) = 0\}$$

Lemma

If z is a feasible direction, then

$$\mathbf{z}^T \nabla g_i(\mathbf{x}^*) \geq 0$$
 for all $i \in I(\mathbf{x}^*)$

(the angle between z and $\nabla g_i(x^*)$ is in $[-90^\circ, 90^\circ]$)

Proof: Assume that for a certain $k \in I(x^*)$ and a for a certain feasible direction z from x^* that:

$$\mathbf{z}^T \nabla g_k(\mathbf{x}^*) < 0$$

Then, since $k \in I(x^*)$, we can write

$$g_k(\mathbf{x}^* + \theta \mathbf{z}) = g_k(\mathbf{x}^*) + \theta \mathbf{z}^T \nabla g_k(\mathbf{x}^*) + \theta \epsilon_k(\theta) = \theta \mathbf{z}^T \nabla g_k(\mathbf{x}^*) + \theta \epsilon_k(\theta)$$

with $\theta > 0$, and where $\epsilon_k(\theta)$ tends to zero as $\theta \to 0$

If θ is small enough, and since we have assumed that $z^T \nabla g_k(x^*) + \epsilon_k(\theta) < 0$, it follows that $g_k(x^* + \theta z) < 0$ for all $\theta > 0$ small enough, contradicting the fact that z is a feasible direction vector from x^* ($x^* + \theta z \in X \cap N_{\delta_1}(x^*)$). So the claim is true

Feasible directions characterization

For the equality constraints defined by $h_j(x) = 0$, for j = 1, ..., m, the following lemma holds.

Lemma

If z is a certain feasible direction, then

$$\mathbf{z}^T \nabla h_j(\mathbf{x}^*) = 0$$
 for $j = 1, ..., m$

The proof is similar to the one of the previous lemma

Feasible directions characterization

Define

$$Z^{1}(x^{*}) = \left\{ z \mid z^{T} \nabla g_{i}(x^{*}) \geq 0, i \in I(x^{*}) ; \ z^{T} \nabla h_{j}(x^{*}) = 0, j = 1, ..., m \right\}$$

According to what it has been said, if z is a feasible direction for x^* , then $z \in Z^1(x^*)$, but it may happen that $z \in Z^1(x^*)$ without being a feasible direction

- ▶ Note that $0 \in Z^1(x^*)$, so $Z^1(x^*) \neq \emptyset$
- ▶ A set $K \subset \mathbb{R}^n$ is called a **cone** if $x \in K \Rightarrow \alpha x \in K$ for all $\alpha \geq 0$
- ► The set $Z^1(x^*)$ is clearly a cone, and is also called the **linearizing cone of** the feasible set X at x^* , since it is generated by linearizing the constraint functions at x^*
- Define

$$Z^{2}(\boldsymbol{x}^{*}) = \left\{\boldsymbol{z} \mid \boldsymbol{z}^{T} \nabla f(\boldsymbol{x}^{*}) < 0\right\}$$

If $z \in Z^2(x^*)$ it can be easily shown, using Taylor's formula, that there exist a point $x = x^* + \theta z$, sufficiently close to x^* , such that $f(x^*) > f(x)$, this is, $Z^2(x^*)$ is formed by the directions along which the function f decreases

Constrained optimization. Summary of definitions

▶ The first order feasible variations at x^* , Δx are defined as

$$V(\mathbf{x}^*) = \{ \Delta \mathbf{x} \mid \nabla h_i(\mathbf{x}^*)^T \Delta \mathbf{x} = \Delta \mathbf{x}^T \nabla h_i(\mathbf{x}^*) = 0, \ i = 1, ..., m \}$$
 and satisfy the constraint in the linear approximation: $h(\mathbf{x}^* + \Delta \mathbf{x}) \approx 0$

▶ The necessary condition for equality constrained problems implies that the gradient of the cost function $\nabla f(x^*)$ is orthogonal to $V(x^*)$, since

$$\nabla f(\mathbf{x}^*) = \sum_{i=1}^m \lambda_i^* \nabla h_i(\mathbf{x}^*) \quad \Rightarrow \quad \nabla f(\mathbf{x}^*)^T \Delta \mathbf{x} = \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*)^T \Delta \mathbf{x} = 0$$

Constrained optimization. Summary of definitions

Feasible directions characterization

▶ Given x^* (not necessarily the solution of problem (P)), define the following sets

$$I(x^*) = \{i \mid g_i(x^*) = 0\}$$

$$Z^{1}(x^*) = \{z \mid z^{T} \nabla g_i(x^*) \geq 0, i \in I(x^*); \ z^{T} \nabla h_j(x^*) = 0, j = 1, ..., m\} \neq \emptyset$$

$$Z^{2}(x^*) = \{z \mid z^{T} \nabla f(x^*) < 0\}$$

▶ lif z is a certain feasible direction, we have

$$\mathbf{z}^T \nabla g_i(\mathbf{x}^*) \geq 0, \quad i \in I(\mathbf{x}^*) \quad \text{and} \quad \mathbf{z}^T \nabla h_j(\mathbf{x}^*) = 0, \quad j = 1,...m$$

- ▶ If z is a feasible direction for x^* , then $z \in Z^1(x^*)$, but it may happen that $z \in Z^1(x^*)$ without being a feasible direction
- ▶ If $z \in Z^2(x^*)$ it can be shown that there exist a point $x = x^* + \theta z$, sufficiently close to x^* , such that $f(x^*) > f(x)$, this is, $Z^2(x^*)$ is formed by the directions along which the function f decreases

Necessary conditions "candidates"

Definition

The Lagrangian associated with problem (P) is defined as

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i=1}^{p} \lambda_{i} g_{i}(\mathbf{x}) - \sum_{j=1}^{m} \mu_{j} h_{j}(\mathbf{x})$$

The following Theorem gives candidate conditions to become the necessary conditions for x^0 to be the solution of problem (P)

Necessary conditions "candidates"

Theorem

Given $x^0 \in X$, then $Z^1(x^0) \cap Z^2(x^0) = \emptyset$ if and only if there exist vectors λ^0 , μ^0 such that

$$\nabla_{\mathbf{x}} L(\mathbf{x}^0, \boldsymbol{\lambda}^0, \boldsymbol{\mu}^0) = \nabla f(\mathbf{x}^0) - \sum_{i=1}^{p} \lambda_i^0 \nabla g_i(\mathbf{x}^0) - \sum_{j=1}^{m} \mu_j^0 \nabla h_j(\mathbf{x}^0) = 0 \quad (3)$$

$$\lambda_i^0 g_i(\mathbf{x}^0) = 0, \quad i = 1, ..., p$$
 (4)

$$\lambda_i^0 \geq 0, \quad i = 1, ..., p \tag{5}$$

((3), (4) and (5) are called Lagrange conditions)

Remarks:

- ▶ Recall that if z is a feasible direction for x^0 then $z \in Z^1(x^0)$
- ▶ Recall that if $z \in Z^2(x^0)$ then the function f decreases along z
- From the above two remarks it follows that the condition $Z^1(x^0) \cap Z^2(x^0) = \emptyset$ implies that there are no feasible directions at x^0 along which f decreases

Necessary conditions "candidates" *

Proof: The $Z^1(x^0)$ is never empty, since $\mathbf{0} \in Z^1(x^0)$. The condition $Z^1(x^0) \cap Z^2(x^0) = \emptyset$ holds if and only if for every z satisfying

$$\mathbf{z}^T \nabla g_i(\mathbf{x}^0) \geq 0, i \in I(\mathbf{x}^0)$$
 (6)

$$\mathbf{z}^T \nabla h_j(\mathbf{x}^0) = 0, \ j = 1, ..., m$$
 (7)

we have

$$\mathbf{z}^T \nabla f(\mathbf{x}^0) \ge 0 \tag{8}$$

this is, if $z \in Z^1(x^0)$, then $z \notin Z^2(x^0)$

We can write (7) as

$$\mathbf{z}^T \nabla h_j(\mathbf{x}^0) \geq 0, \quad j = 1, ..., m \tag{9}$$

$$\mathbf{z}^{T}[-\nabla h_{j}(\mathbf{x}^{0})] \geq 0, \ j=1,...,m$$
 (10)

From Farkas Lemma (see later), it follows that (8) holds for all vectors \mathbf{z} satisfying (6), (9) and (10) if and only if there exist vectors $\mathbf{\lambda}^0 \geq 0$, $\mathbf{\mu}^1 \geq 0$, $\mathbf{\mu}^2 \geq 0$ such that

$$\nabla f(\boldsymbol{x}^0) = \sum_{i \in I(\boldsymbol{x}^0)} \lambda_i^0 \nabla g_i(\boldsymbol{x}^0) + \sum_{j=1}^m (\mu_j^1 - \mu_j^2) \nabla h_j(\boldsymbol{x}^0)$$

Letting $\lambda_i^0 = 0$ for $i \notin I(\mathbf{x}^0)$, $\mu_j^0 = \mu_j^1 - \mu_j^2$, we conclude that $Z^1(\mathbf{x}^0) \cap Z^2(\mathbf{x}^0) = \emptyset$ if and only if (3), (4) and (5) hold

Some remarks

- ► The Lagrange conditions of the above Theorem are the **natural** candidates to become the necessary conditions for x^0 to be the solution x^* of problem (P)
- According to them, we must guarantee that $Z^1(x^*) \cap Z^2(x^*) = \emptyset$ when x^* is a solution of (P). This condition (that will be characterized later) ensures that f can not decrease along any feasible direction
- ► For most problems $Z^1(x^*) \cap Z^2(x^*) = \emptyset$, and then the Lagrange conditions (3), (4) and (5) hold at x^*
- ▶ Unfortunately, we can not state that if x^0 is a solution of problem (P) and $Z^1(x^0) \cap Z^2(x^0) = \emptyset$, then the Lagrange conditions are satisfied, as we will see in the next example

Example

Example: Consider $\mathbf{x} = (x_1, x_2)^T \in \mathbb{R}^2$, $f(\mathbf{x}) = -x_1$ with the following constraints:

$$g_1(x) = (1-x_1)^3 - x_2 \ge 0$$

 $g_2(x) = x_1 \ge 0$
 $g_3(x) = x_2 \ge 0$

that define the feasible set X. The feasible point $\mathbf{x}^0 = (1,0)^T$ is the solution of the problem

$$\max_{X} x_1 = \min_{X} (-x_1)$$

Let's see that $Z^1(x^*) \cap Z^2(x^*) \neq \emptyset$

Example (cont.)

We can easily verify that

$$I(\mathbf{x}^0) = I((1,0)^T) = \{1,3\}, \quad \nabla g_1(\mathbf{x}^0) = (0,-1)^T, \quad \nabla g_3(\mathbf{x}^0)) = (0,1)^T$$

$$Z^{1}(x^{0}) = \left\{ z \in \mathbb{R}^{2} \mid z^{T} \nabla g_{i}(x^{0}) \geq 0, i \in I(x^{0}) \right\} = \left\{ z = (z_{1}, z_{2})^{T} \mid z_{2} = 0 \right\}$$

But at x0

$$Z^2(\boldsymbol{x}^0) = \left\{\boldsymbol{z} \in \mathbb{R}^2 \mid \boldsymbol{z}^T \nabla f(\boldsymbol{x}^0) < 0\right\} = \left\{\boldsymbol{z} = (z_1, z_2)^T \mid z_1 > 0\right\}$$

and

$$Z^{1}(x^{*}) \cap Z^{2}(x^{*}) = \left\{ z \in \mathbb{R}^{2} \mid z_{1} > 0, z_{2} = 0 \right\} \neq \emptyset$$

hence, due to the above Theorem, there exist no λ^0 satisfying Lagrange conditions (3), (4) and (5)

Two technical results Farkas Lemma and the Theorem of the Alternative

Farkas Lemma

Lemma

Let A be a given $m \times n$ real matrix and $\mathbf{b} \in \mathbb{R}^n$ a given vector. The inequality $\mathbf{b}^\mathsf{T} \mathbf{y} \geq 0$ holds for all vectors $\mathbf{y} \in \mathbb{R}^n$ satisfying $A\mathbf{y} \geq \mathbf{0}$ if and only if there exists a vector $\boldsymbol{\rho} \in \mathbb{R}^m$, $\boldsymbol{\rho} \geq 0$, such that $A^\mathsf{T} \boldsymbol{\rho} = \mathbf{b}$

$$(b_1 \cdots b_n) \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \ge 0, \ \forall y \in \mathbb{R}^n \text{ s.t. } Ay \ge 0 \Leftrightarrow$$

$$\Leftrightarrow \exists \rho \in \mathbb{R}^m, \ \rho \ge 0, \text{ s.t. } \begin{pmatrix} a_{11} & \cdots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_m \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

Farkas Lemma. Geometric interpretation

$$(b_1 \cdots b_n) \left(\begin{array}{c} y_1 \\ \vdots \\ y_n \end{array} \right) \geq 0, \ \forall y \in \mathbb{R}^n \text{ s.t. } A\mathbf{y} \geq 0 \Leftrightarrow \exists \boldsymbol{\rho} \in \mathbb{R}^m, \ \boldsymbol{\rho} \geq 0, \ \text{s.t.} \left(\begin{array}{ccc} a_{11} & \cdots & a_{m1} \\ \vdots & & \vdots \\ a_{1n} & \cdots & a_{mn} \end{array} \right) \left(\begin{array}{c} \rho_1 \\ \vdots \\ \rho_m \end{array} \right) = \left(\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array} \right)$$

Let A be a 3×2 matrix and A_1 , A_2 , $A_3 \in \mathbb{R}^2$ the rows of A

The set $Y=\{y\,|\, Ay\geq 0\}$ consists of all the vectors $y\in\mathbb{R}^2$ that make an acute angle with every row of A

The Lemma states that b makes an acute angle with every $y \in Y$ if and only if b can be expressed as a nonnegative linear combibation of the rows of A

In the figure, b satisfies these conditions and c does not

Theorem of the Alternative

Theorem

Let A be an $m \times n$ real matrix. Then, either there exists an $\mathbf{x} \in \mathbb{R}^n$ such that

or there exists a nonzero vector $\mathbf{u} \in \mathbb{R}^m$, $\mathbf{u} \neq 0$ such that

$$\boldsymbol{u}^T A = 0, \quad \boldsymbol{u} \geq 0$$

but never both

Proof: Assume that there exist x and u such that both

$$Ax < 0$$
, and $u^T A = 0$, $u \ge 0$

are satisfied. Then we have ${\pmb u}^T A {\pmb x} < 0$, and ${\pmb u}^T A {\pmb x} = 0$ simultaneously, which is a contradiction

Assume now that there exist no x satisfying the first condition (Ax < 0), and let us see that we can find u that satisfies the second condition of the Theorem. The assumption means that we cannot find a negative number w < 0 satisfying

$$(Ax)_i = A_i x = \sum_{j=1}^n a_{ij} x_j \le w, \quad i = 1, ..., m$$

for every $x \in \mathbb{R}^n$, where A_i is the ith-row of A. This is, if for i = 1, ..., m, and $\forall x \in \mathbb{R}^n$

$$A_i \mathbf{x} \le w \quad \Leftrightarrow \quad w - A_i \mathbf{x} \ge 0, \qquad \text{then } w \ge 0$$

Take
$$\mathbf{y} = (w, \mathbf{x})^T$$
, $\mathbf{b} = (1, 0, ..., 0)^T \in \mathbb{R}^{n+1}$, $\mathbf{e} = (1, ..., 1)^T \in \mathbb{R}^m$, and $\tilde{A} = (\mathbf{e} \mid -A)$

Theorem of the Alternative. Proof (cont.)

Using this notation, what we have stablished is that: if for any $\mathbf{y} = (w, \mathbf{x})^T$ the following inequality is fulfilled

$$w - A_i \mathbf{x} = (\tilde{A}\mathbf{y})_i \ge 0, \quad i = 1, ..., m, \quad \Leftrightarrow \quad \tilde{A}\mathbf{y} \ge 0$$

then

$$w = \boldsymbol{b}^T \boldsymbol{y} \ge 0$$

According to Farkas lemma, there exists a *m*-vector $\mathbf{u} \geq 0$, such that

$$\tilde{A}^T \boldsymbol{u} = \begin{pmatrix} 1 & \dots & 1 \\ & -A^T & \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} = \boldsymbol{b} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

so

$$\sum_{i=1}^{m} u_i = 1, \quad \sum_{i=1}^{m} u_i a_{ij} = 0, \ j = 1, ..., n$$

hence, we have found ${\it u}$ that satisfies the second condition of the Theorem of the Alternative

It is possible to derive weak necessary conditions for optimality without requiring the set $Z^1(x^*) \cap Z^2(x^*)$ to be empty at the solution

Let the weak Lagrangian \tilde{L} be defined by

$$\tilde{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = \lambda_0 f(\mathbf{x}) - \sum_{i=1}^p \lambda_i g_i(\mathbf{x}) - \sum_{j=1}^m \mu_j h_j(\mathbf{x})$$

where λ_0 is an additional parameter

We consider problem (P) when there are no equality constraints $h_i(x) = 0$, i = 1, ..., m, this is:

Remark: The equality constraints become inequality constraints according to:

$$h_j(\mathbf{x}) = g_{p+j}(\mathbf{x}) \ge 0, \quad j = 1, ..., m$$

 $-h_j(\mathbf{x}) = g_{p+m+j}(\mathbf{x}) \ge 0, \quad j = 1, ..., m$

Theorem

Let f, $g_1,...,g_m$ be real continuously differentiable functions on an open set containing X. If x^* is a solution of problem (P), then there exist $\lambda^* = (\lambda_0^*, \lambda_1^*, ..., \lambda_p^*)^T$ such that

$$\nabla_{\mathbf{x}}\tilde{\mathcal{L}}(\mathbf{x}^*, \boldsymbol{\lambda}^*) = \boldsymbol{\lambda}_0^* \nabla f(\mathbf{x}^*) - \sum_{i=1}^p \lambda_i^* \nabla g_i(\mathbf{x}^*) = 0$$
 (11)

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p$$
 (12)

$$\lambda^* \neq 0, \quad \lambda^* \geq 0 \tag{13}$$

Proof

Proof: We must proof that the necessary conditions for x^* to be the solution of problem (P), is the existence of a vector λ^* satisfying (11), (12) and (13)

If $g_i(x^*)>0$ for all i (the point x^* is in the interior of the feasible set X), then $I(x^*)=\{i\mid g_i(x^*)=0\}=\emptyset$. Choose $\lambda_0^*=1,\ \lambda_1^*=\lambda_2^*=...=\lambda_p^*=0$ and the conditions (11), (12) and (13) hold since $\nabla f(x^*)=0$

Suppose now that $I(x^*) \neq \emptyset$. Then, for every z satisfying

$$\mathbf{z}^{\mathsf{T}} \nabla g_i(\mathbf{x}^*) > 0, \quad i \in I(\mathbf{x}^*) \tag{14}$$

we cannot have

$$\mathbf{z}^T \nabla f(\mathbf{x}^*) < 0 \tag{15}$$

This follows from the following: According to Taylor's formula, we can see that if there exists z satisfying (14), then we can find a sufficiently small δ such that if $0 < \theta < \delta$, then $x = x^* + \theta z$ satisfies

$$g_i(\mathbf{x}) = g_i(\mathbf{x}^*) + \theta \mathbf{z}^T \nabla g_i(\mathbf{x}^*) + O_2$$

and, since $g_i(\mathbf{x}^*) = 0$ we get

$$g_i(\mathbf{x}) > 0$$
, if $i \in I(\mathbf{x}^*)$

for all $0 < \theta < \delta$, that is, x is a feasible point

Now, if (15) also holds, then

$$f(\mathbf{x}) = f(\mathbf{x}^*) + \theta \mathbf{z}^T \nabla f(\mathbf{x}^*) + O_2 < f(\mathbf{x}^*),$$

contradicting that x^* is a minimum

Thus, the system of inequalities (14) and (15), that can also be written as

$$\mathbf{z}^T \nabla f(\mathbf{x}^*) < 0$$

 $\mathbf{z}^T [-\nabla g_i(\mathbf{x}^*)] < 0, i \in I(\mathbf{x}^*)$

has no solution. Using the matrix A with rows equal to $\nabla f(x^*)$ and $-\nabla g_i(x^*)$:

$$A = \left(egin{array}{cc}
abla f(\mathbf{x}^*) \\
-
abla g_{i_1}(\mathbf{x}^*) \\
& \cdots \\
-
abla g_{i_r}(\mathbf{x}^*)
\end{array}
ight)$$

the above system of inequalities, which has no solution, can be written as Az < 0 According to the Theorem of the Alternative, we get that there exists a nonzero vector $\lambda^* \geq 0$, such that

$$(\boldsymbol{\lambda}^*)^T A = A^T \boldsymbol{\lambda}^* = \lambda_0^* \nabla f(\boldsymbol{x}^*) + \sum_{i \in I(\boldsymbol{x}^*)} \lambda_i^* [-\nabla g_i(\boldsymbol{x}^*)] = 0$$

Proof (cont.)*

Letting $\lambda_i^* = 0$ for $i \notin I(x^*)$, we can write this last equation as

$$\lambda_0^* \nabla f(\mathbf{x}^*) - \sum_{i=1}^p \lambda_i^* \nabla g_i(\mathbf{x}^*) = 0$$

and clearly

$$\lambda_{i}^{*}g_{i}(x^{*})=0, i=1,...,p$$

If we dont want to transform the equality constraints into inequalities, the following theorem also holds.

Theorem

Let f, $h_1,...,h_m$ and $g_1,...,g_p$ be real continuously differentiable functions on an open set containing X

If \mathbf{x}^* is a solution of problem (P), then there exist $\lambda^* = (\lambda_0^*, \lambda_1^*, ..., \lambda_p^*)^T$ and $\boldsymbol{\mu}^* = (\mu_1^*, ..., \mu_m^*)^T$ such that:

$$\nabla_{\mathbf{x}} \tilde{\mathcal{L}}(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \lambda_0^* \nabla f(\mathbf{x}^*) - \sum_{i=1}^p \lambda_i^* \nabla g_i(\mathbf{x}^*) - \sum_{j=1}^m \mu_j^* \nabla h_j(\mathbf{x}^*) = 0$$

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p$$

$$(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) \neq 0, \quad \lambda^* \geq 0$$

More definitions: the cone and the closed cone of tangents

Let $x \in A \subset \mathbb{R}^n$, where A is a nonempty set

Define the **cone of tangents** of the set A at $x \in A$, $\tilde{S}(A, x)$, as the intersection of all closed cones containing the set $\{a - x \mid a \in A\}$, this is

$$\tilde{S}(A, \mathbf{x}) = \{ \alpha(\mathbf{a} - \mathbf{x}) \mid \alpha \ge 0, \mathbf{a} \in A \}$$

The cone and the closed cone of tangents

Define the closed cone of tangents of the set A at $x \in A$, S(A, x) as

$$S(A,x) = \bigcap_{k=1}^{\infty} \tilde{S}(A \cap N_{1/k}(x), x)$$

where $N_{1/k}(x)$ is a spherical neighborhood of x with radius 1/k, $k \in \mathbb{N}$

The following lemma characterizes S(A, x)

The closed cone of tangents. Characterization

Lemma

A vector \mathbf{z} belongs to $S(A,\mathbf{x})$ if and only if there exists a sequence of vectors $\{\mathbf{x}^k\} \subset A$ converging to \mathbf{x} , and a sequence of nonnegative numbers $\{\alpha^k\}$ such that the sequence $\{\alpha^k(\mathbf{x}^k-\mathbf{x})\}$ converges to \mathbf{z}

$$\mathbf{z} \in S(A, \mathbf{x}) \Leftrightarrow \exists \{\mathbf{x}^k\} \text{ and } \{\alpha^k \geq 0\} \text{ such that } \{\mathbf{x}^k\} \to \mathbf{x}, \ \{\alpha^k(\mathbf{x}^k - \mathbf{x})\} \to \mathbf{z}$$

Proof: Assume that $z \in S(A, x)$. Then $z \in \tilde{S}(A \cap N_{1/k}(x), x)$ for k = 1, 2, ..., and, by definition:

$$\tilde{S}(A \cap N_{1/k}(x), x) = \text{cl}\{\alpha(y - x) \mid \alpha \ge 0, y \in A \cap N_{1/k}(x)\}, \quad k = 1, 2, ...$$
 (16)

where cl denotes the closure operation of sets in \mathbb{R}^n

Choose any sequence of positive numbers $\{\epsilon^k\} \to 0$, and consider the vectors $\mathbf{z}(\epsilon^k) \in \{\alpha(\mathbf{y} - \mathbf{x}) \mid \alpha \geq 0, \mathbf{y} \in A \cap N_{1/k}(\mathbf{x})\}$ such that

$$\|\mathbf{z}(\epsilon^k) - \mathbf{z}\| \le \epsilon^k \tag{17}$$

Due to the condition (16), the points $z(\epsilon^k)$ can be written as

$$z(\epsilon^k) = \alpha(\epsilon^k)(y(\epsilon^k) - x), \quad \alpha(\epsilon^k) \ge 0, \quad y(\epsilon^k) \in A \cap N_{1/k}(x)$$
 (18)

The closed cone of tangents. Characterization (cont.)

Letting k=1,2... we generate a sequence of vectors $\mathbf{y}(\epsilon^1),\ \mathbf{y}(\epsilon^2),...$ that is contained in A and converges to \mathbf{x} , and a sequence of nonnegative numbers $\alpha(\epsilon^1),\ \alpha(\epsilon^2),...$ such that, according to (17) and (18), the sequence $\{\alpha(\epsilon^k)(\mathbf{y}(\epsilon^k)-\mathbf{x})\}$ converges to \mathbf{z}

Conversely, suppose that there exist a sequence of vectors $\{x^k\} \subset A$ converging to x and a sequence of nonnegative numbers $\{\alpha^k\}$ such that $\{\alpha^k(x^k-x)\}$ converges to z. Let p be any natural number. Then, there exists a natural number K such that $k \geq K$ implies $x^k \in A \cap N_{1/p}(x)$, so

$$\alpha^{k}(\mathbf{x}^{k}-\mathbf{x})\in \tilde{S}(A\cap N_{1/p}(\mathbf{x})), \quad k\geq K$$

and, since \tilde{S} is closed

$$z \in \tilde{S}(A \cap N_{1/p}(x))$$

Since this last expression holds for any natural number p, it follows that

$$z \in \bigcap_{n \ge 1} \tilde{S}(A \cap N_{1/p}(x)) = S(A, x)$$

The closed cone of tangents (alternative description)

With the aid of this lemma, it is possible to give alternative descriptions of S(A, x)

- First observe that the vector $\mathbf{w} = 0$ is always in $S(A, \mathbf{x})$ for every A and \mathbf{x}
- Let w be a unit vector, and suppose that there exists a sequence of points $\{x^k\} \subset A$ such that: $x^k \to x$, $x^k \ne x$ and

$$\lim_{k\to\infty}\frac{x^k-x}{\|x^k-x\|}=\mathbf{w}$$

This is, a sequence of vectors $\{x^k\}$ converging to x in the direction of \mathbf{w}

► The cone of tangents of the set A at x contains all the vectors that are nonnegative multiples of the w obtained by this method

The closed cone of tangents (alternative description)

- ► Translate the set A to the origin by substracting x from each of its elements
- Let $\{x^k\}$ be a sequence of the translated set, $x^k \neq 0$, converging to the origin
- \triangleright Construct a sequence of half-lines from the origin and passing through x^k
- ▶ These half-lines tend to a half-line that will be a member of S(A, x)
- ► The union of all the half-lines formed by taking all such sequences will then be the cone of tangents of *A* at *x*

The closed cone of tangents. Example

Example: Consider the closed ball A with center at (4,2) and radius 1:

$$A = \{(x_1, x_2) | (x_1 - 4)^2 + (x_2 - 2)^2 \le 1\}$$

Let us find the cone of tangents of A at the boundary point

$$x = (4 - \sqrt{3}/2, 3/2)^T$$

First we translate A to the origin, obtaining the ball

$$A^{1} = \{(x_{1}, x_{2}) \mid (x_{1} - \sqrt{3}/2)^{2} + (x_{2} - 1/2)^{2} \le 1\}$$

Taking sequences of points $\{x^k\}$ on the boundary of A^1 converging to the origin we generate sequences of half-lines converging to a line, that is actually the tangent line to the circle A^1 at the origin

The closed cone of tangents. Example

The tangent line to the circle at the origin satisfies

$$\sqrt{3}x_1+x_2=0$$

Repeating this process for all sequences in the interior of A^1 converging to the origin, we get the cone of tangents of A^1 at 0 as

$$S(A^1, \mathbf{x}) = \{(x_1, x_2) | \sqrt{3}x_1 + x_2 \ge 0\}$$

Positively normal cones

The next notion is the **positively normal cone** to a set $A \subset \mathbb{R}^n$, that will be denoted by A', and is defined by

$$A' = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x}^T \boldsymbol{y} \ge 0, \ \forall \boldsymbol{y} \in A \}$$

This is, A' consists of all vectors $x \in \mathbb{R}^n$ that make an angle less or equal to 90° with all $y \in A$

An important property of normal cones is the following: given two sets $A_1 \subset \mathbb{R}^n$, $A_2 \subset \mathbb{R}^n$, then

$$A_1 \subset A_2 \implies A_2' \subset A_1'$$

Cones of tangents and positively normal cones

Cones of tangents and positively normal cones play a central role in stablishing strong optimality conditions

We have defined the positively normal cone to a set $A \subset \mathbb{R}^n$ as

$$A' = \{ \boldsymbol{x} \in \mathbb{R}^n \mid \boldsymbol{x}^T \boldsymbol{y} \ge 0, \ \forall \boldsymbol{y} \in A \}$$

so, the positively normal cone of $Z^1(x^0)$ is

$$(Z^{1}(x^{0}))' = \{x \in \mathbb{R}^{n} \mid z^{T}x \geq 0, \ \forall z \in Z^{1}(x^{0})\}$$

Lemma

Let $x^0 \in X$. The set $Z^1(x^0) \cap Z^2(x^0)$ is empty if and only if

$$\nabla f(\mathbf{x}^0) \in (Z^1(\mathbf{x}^0))'$$

Proof: The set $Z^1(x^0) \cap Z^2(x^0)$ is empty if and only if for all $z \in Z^1(x^0)$ we have $z^T \nabla f(x^0) \geq 0$. This means that $\nabla f(x^0)$ is contained in the positively normal cone of $Z^1(x^0)$, that is $(Z^1(x^0))'$

Cones of tangents and positively normal cones

Lemma

Assume that x^0 is a solution of problem (P). Then

$$\nabla f(\mathbf{x}^0) \in (S(X,\mathbf{x}^0))'$$

Remark: $(S(X, x^0))'$ is the positively normal cone of the closed tangent cone of the feasible set X at the point x^0

Proof: We must show that $z^T \nabla f(x^0) \ge 0$ for every $z \in S(X, x^0)$

Let $\mathbf{z} \in S(X, \mathbf{x}^0)$. According to the previous characterization Lemma of the tangent cone (see page 33), there exists a sequence $\{\mathbf{x}^k\} \subset X$ converging to \mathbf{x}^0 and a sequence of nonnegative numbers $\{\alpha^k\}$ such that $\{\alpha^k(\mathbf{x}^k-\mathbf{x}^0)\}$ converges to \mathbf{z}

Since f is differentiable at x^0 , we can write

$$f(x^{k}) = f(x^{0}) + (x^{k} - x^{0})^{T} \nabla f(x^{0}) + \epsilon ||x^{k} - x^{0}||$$

where ϵ tends to zero as $k \to \infty$. Hence

$$\alpha^{k}(f(\mathbf{x}^{k}) - f(\mathbf{x}^{0})) = (\alpha^{k}(\mathbf{x}^{k} - \mathbf{x}^{0}))^{T} \nabla f(\mathbf{x}^{0}) + \epsilon \|\alpha^{k}(\mathbf{x}^{k} - \mathbf{x}^{0})\|$$

Cones of tangents and positively normal cones (cont.)*

Since $x^k \in X$, and x^0 is a local minimum $(f(x^k) - f(x^0) \ge 0$ if k is large enough), it follows that, by letting $k \to \infty$, the term $\epsilon \|\alpha^k (x^k - x^0)\|$ in the above equation

$$\alpha^{k}(f(\mathbf{x}^{k}) - f(\mathbf{x}^{0})) = (\alpha^{k}(\mathbf{x}^{k} - \mathbf{x}^{0}))^{T} \nabla f(\mathbf{x}^{0}) + \epsilon \|\alpha^{k}(\mathbf{x}^{k} - \mathbf{x}^{0})\|$$

goes to 0, and $\alpha^k(f(x^k) - f(x^0))$ converges to a non-negative limit. Thus

$$\lim_{k\to\infty} (\alpha^k (\mathbf{x}^k - \mathbf{x}^0))^T \nabla f(\mathbf{x}^0) = \mathbf{z}^T \nabla f(\mathbf{x}^0) \geq 0$$

That is

$$\nabla f(\mathbf{x}^0) \in (S(X, \mathbf{x}^0))'$$

The Karush-Kuhn-Tucker necessary optimality conditions

The (generalized) Karush-Kuhn-Tucker necessary conditions for optimality are given by the following theorem.

Theorem

Let x^* be a solution of problem (P) and suppose that

$$(Z^{1}(x^{*}))' = (S(X, x^{*}))'$$
(19)

Then, there exist $\lambda^* = (\lambda_1^*, ..., \lambda_n^*)^T$ and $\mu^* = (\mu_1^*, ..., \mu_m^*)^T$ such that

$$\nabla f(\mathbf{x}^*) - \sum_{i=1}^{p} \lambda_i^* \nabla g_i(\mathbf{x}^*) - \sum_{j=1}^{m} \mu_j^* \nabla h_j(\mathbf{x}^*) = 0$$
 (20)

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p$$
 (21)
 $\mathbf{\lambda}^* \geq 0.$ (22)

$$\lambda^* \geq 0.$$
 (22)

(Karush-Kuhn-Tucker conditions)

Proof: Suppose that x^* is a solution of (P). According to a previous Lemma, $\nabla f(x^*) \in (S(X, x^*))'$. If $(Z^1(x^*))' = (S(X, x^*))'$, then $\nabla f(x^*) \in (Z^1(x^*))'$, and we have already seen that then $Z^1(x^*) \cap Z^2(x^*)$ is empty (see page 48). According to the characterization theorem of the condition

$$Z^{1}(x^{*}) \cap Z^{2}(x^{*}) = \emptyset$$
 (see page 26), conditions (20), (21) and (22) hold

The Karush-Kuhn-Tucker necessary optimality conditions

Essentially, what the above theorem says is that the condition

$$(Z^{1}(x^{*}))' = (S(X, x^{*}))'$$

is a sufficient condition for the existence of the multipliers λ^* and μ^* satisfying conditions (20), (21) and (22).

Notice that if

$$Z^1(x^*) = S(X, x^*)$$

at a solution point x^* of problem (P) implies the hypotheses of the last theorem

The Karush-Kuhn-Tucker necessary optimality conditions

Example: Consider the following problem

$$\min f(\mathbf{x}) = x_1$$

subject to

$$g_1(\mathbf{x}) = 16 - (x_1 - 4)^2 - x_2^2 \ge 0, \quad h_1(\mathbf{x}) = (x_1 - 3)^2 + (x_2 - 2)^2 - 13 = 0$$

From the figure it follows that f has local minima at $x^{*1} = (0,0)$ and $x^{*2} = (32/5, 16/5)$. At both points, $I(x^{*1}) = I(x^{*2}) = \{1\}$. At the first point $\nabla g_1(x^{*1}) = (8,0)^T$, $\nabla h_1(x^{*1}) = (-6,-4)^T$, so $Z^1(x^{*1}) = \{z \mid z^T \nabla g_1(x^{*1}) > 0, \ z^T \nabla h_1(x^{*1}) = 0\}$

$$= \{(z_1, z_2) \mid z_1 \geq 0, z_2 = -(3/2)z_1\}$$

The Karush-Kuhn-Tucker necessary optimality conditions (cont.)

It can be verified that the set $Z^1(x^{*1})$ is also $S(X,x^{*1})$ Now

$$Z^{2}(\mathbf{x}^{*1}) = \{\mathbf{z} \mid \mathbf{z}^{T} \nabla f(\mathbf{x}^{*1}) < 0\} = \{(z_{1}, z_{2}) \mid z_{1} < 0\}$$

hence $Z^1(x^{*1}) \cap Z^2(x^{*1}) = \emptyset$. The Karush–Kuhn–Tucker conditions (20), (21) and (22) are satisfied for $\lambda_1^* = 1/8$ and $\mu_1^* = 0$

At the second point

$$Z^1(x^{*2}) = \{(z_1,z_2) \mid z_1 \geq 0, z_2 = -(17/6)z_1\}$$

$$Z^2(x^{*2}) = \{(z_1,z_2) \mid z_1 < 0\}$$
 and again $Z^1(x^{*2}) \cap Z^2(x^{*2}) = \emptyset$. At this point $\lambda_1^* = 3/40$ i $\mu_1^* = 1/5$

It turns out that at $x^{*3}=(3+\sqrt{13},2)$ the Karush–Kuhn–Tucker necessary conditions also hold. At this point $Z^1(x^{*3})\cap Z^2(x^{*3})=\emptyset$ and the corresponding multipliers are $\lambda_1^*=0$ and $\mu_1^*=\sqrt{13}/26$

From the above figure is clear that x^{*3} is not a solution of our problem but is a solution of

$$\max f(\mathbf{x}) = x_1$$

with the same constraints

Second-order optimality conditions

Let us see optimality conditions for problem (P) that involve second derivatives

We begin with the second-order necessary conditions that complement the above Karush–Kuhn–Tucker conditions; later we will give the sufficient contions for optimality

In what follows all the functions f, $g_1,...,g_p$, $h_1,...,h_m$ will be twice continuously differentiable

Let $x \in X$, we define the following modification of the set $Z^1(x)$:

$$\hat{Z}^{1}(\mathbf{x}) = \{ \mathbf{z} \mid \mathbf{z}^{T} \nabla g_{i}(\mathbf{x}) = 0, i \in I(\mathbf{x}), \ \mathbf{z}^{T} \nabla h_{j}(\mathbf{x}) = 0, j = 1, ..., m \}$$

Recall that $Z^1(x)$ is

$$Z^{1}(\mathbf{x}) = \{ \mathbf{z} \mid \mathbf{z}^{T} \nabla g_{i}(\mathbf{x}) \geq 0, i \in I(\mathbf{x}), \mathbf{z}^{T} \nabla h_{j}(\mathbf{x}) = 0, j = 1, ..., m \}$$

Second-order optimality conditions

Definition: The second-order constraint qualification is said to hold at $x^0 \in X$ if for each $z \in \hat{Z}^1(x^0)$ there is a twice differentiable function

$$\alpha: [0, \epsilon] \subset \mathbb{R} \longrightarrow \mathbb{R}^n$$

such that

$$\alpha(0) = x^{0},
g_{i}(\alpha(t)) = 0, i \in I(x^{0})
h_{j}(\alpha(t)) = 0, j = 1, ..., m$$

for $0 < t < \epsilon \ (\alpha(t) \in X)$ and

$$\frac{d\alpha(0)}{dt} = \lambda z$$

for some positive $\lambda > 0$

Since $\hat{Z}^1(x^*)$ is a cone, we can always assume that $\lambda=1$

The above conditions mean that every $z \in \hat{Z}^1(x^0)$, $z \neq 0$, is tangent to a twice differentiable arc, α , contained in the boundary of X

It can be shown that if $\nabla g_i(\mathbf{x})$, $i \in I(\mathbf{x})$, $\nabla h_i(\mathbf{x})$, i = 1, ..., p, are linearly independent, then the second-order constraint qualification hold at $x \in X$

Second-order optimality conditions theorem

Theorem

Let x^* be feasible for problem (P) that holds the second-order constraint qualification.

▶ If there exist $\lambda^* = (\lambda_1^*, ..., \lambda_p^*)^T$ and $\mu^* = (\mu_1^*, ..., \mu_m^*)^T$ satisfying the Karush–Kuhn–Tucker conditions (20), (21) and (22):

$$\nabla f(\mathbf{x}^*) - \sum_{i=1}^p \lambda_i^* \nabla g_i(\mathbf{x}^*) - \sum_{j=1}^m \mu_j^* \nabla h_j(\mathbf{x}^*) = 0$$

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p$$

$$\lambda^* \geq 0$$

and

▶ If for every $z \neq 0$ such that $z \in \hat{Z}^1(x^*)$, it follows that

$$\mathbf{z}^{T} \left[\nabla^{2} f(\mathbf{x}^{*}) - \sum_{i=1}^{p} \lambda_{i}^{*} \nabla^{2} g_{i}(\mathbf{x}^{*}) - \sum_{j=1}^{m} \mu_{j}^{*} \nabla^{2} h_{j}(\mathbf{x}^{*}) \right] \mathbf{z} > 0$$
 (23)

then x^* is a strict local minimum of problem (P)

Second-order optimality conditions theorem*

Proof: Let $z \neq 0$ such that $z \in \hat{Z}^1(x^*)$ and $\alpha(t)$ the function that appears in the second order constraint qualification; that is

$$\alpha(0) = \mathbf{x}^*, \quad d\alpha(0)/dt = \mathbf{z}$$

Let $d^2\alpha(0)/dt^2 = \mathbf{w}$. From the second order conditions and the chain rule it follows that for $i \in I(\mathbf{x}^*)$

$$\frac{dg_{i}(\alpha(0))}{dt} = \mathbf{z}^{T} \nabla g_{i}(\mathbf{x}^{*}) \quad \Rightarrow$$

$$\frac{d^{2}g_{i}(\alpha(0))}{dt^{2}} = \mathbf{z}^{T} \nabla^{2}g_{i}(\mathbf{x}^{*})\mathbf{z} + \mathbf{w}^{T} \nabla g_{i}(\mathbf{x}^{*}) = 0, \quad i \in I(\mathbf{x}^{*}) \qquad (24)$$

$$\frac{dh_{j}(\alpha(0))}{dt} = \mathbf{z}^{T} \nabla h_{j}(\mathbf{x}^{*}) \quad \Rightarrow$$

$$\frac{d^{2}h_{j}(\alpha(0))}{dt^{2}} = \mathbf{z}^{T} \nabla^{2}h_{j}(\mathbf{x}^{*})\mathbf{z} + \mathbf{w}^{T} \nabla h_{j}(\mathbf{x}^{*}) = 0, \quad j = 1, ..., p$$
(25)

From condition (20), $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = 0$, and the definition of $\hat{Z}^1(\mathbf{x}^*)$, we have

$$\frac{df(\alpha(0))}{dt} = \mathbf{z}^T \nabla f(\mathbf{x}^*) = \mathbf{z}^T \left[\sum_{i=1}^m \lambda_i^* \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* \nabla h_j(\mathbf{x}^*) \right] = 0$$

Second-order optimality conditions theorem (cont.)*

Since x^* is a local minimum, and $df(\alpha(0))/dt=0$, it follows that $d^2f(\alpha(0))/dt^2\geq 0$, this is

$$\frac{d^2 f(\alpha(0))}{dt^2} = \mathbf{z}^T \nabla^2 f(\mathbf{x}^*) \mathbf{z} + \mathbf{w}^T \nabla f(\mathbf{x}^*) \ge 0$$
 (26)

Multiplying (24) and (25) by the corresponding multipliers, substracting from (26) and using the Karush–Kuhn–Tucker conditions (20), we get de desired inequality (23)

Sufficient optimality conditions

Denote by $\bar{I}(x^*)$ the set of indices i for which $g_i(x^*)=0$ and the Karush–Kuhn–Tucker conditions (20), (21) and (22) are satisfied by $\lambda_i^*>0$

Clearly
$$\bar{I}(x^*) \subset I(x^*)$$
. Let

$$\overline{Z}^{1}(x^{*}) = \{z \mid z^{T} \nabla g_{i}(x^{*}) = 0, i \in \overline{I}(x^{*}) \\ z^{T} \nabla g_{i}(x^{*}) \geq 0, i \in I(x^{*}) \\ z^{T} \nabla h_{j}(x^{*}) = 0, j = 1, ..., m\}$$

Note that $\overline{Z}^1(x^*) \subset Z^1(x^*)$

The following theorem gives sufficient optimality conditions

Sufficient optimality conditions

Theorem

Let \mathbf{x}^* be a feasible point for problem (P). If there exist $\lambda^* = (\lambda_1^*, ..., \lambda_p^*)^T$, $\mu^* = (\mu_1^*, ..., \mu_m^*)^T$ satisfying

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*) = \nabla f(\mathbf{x}^*) - \sum_{i=1}^{p} \lambda_i^* \nabla g_i(\mathbf{x}^*) - \sum_{j=1}^{m} \mu_j^* \nabla h_j(\mathbf{x}^*) = 0 (27)$$

$$\lambda_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, ..., p$$
 (28)

$$\lambda^* \geq 0 \tag{29}$$

and for every $z \neq 0$, such that $z \in \overline{Z}^1(x^*)$ it follows that

$$\mathbf{z}^{T}\left[\nabla^{2}f(\mathbf{x}^{*})-\sum_{i=1}^{p}\lambda_{i}^{*}\nabla^{2}g_{i}(\mathbf{x}^{*})-\sum_{j=1}^{m}\mu_{j}^{*}\nabla^{2}h_{j}(\mathbf{x}^{*})\right]\mathbf{z}=\mathbf{z}^{T}\nabla_{\mathbf{x}}^{2}L(\mathbf{x}^{*},\boldsymbol{\lambda}^{*},\boldsymbol{\mu}^{*})\mathbf{z}>0$$
(30)

then, x^* is a strict local minimum of problem (P)

Sufficient optimality conditions (cont.)*

Proof: Assume that the conditions (27), (28), (29) and (30) hold, and that x^* is not a strict local minimum. Then, there exists a sequence $\{z^k\}$ of feasible points, $z^k \neq x^*$, convergent to x^* , such that for each z^k

$$f(\mathbf{x}^*) \ge f(\mathbf{z}^k) \tag{31}$$

Let $\mathbf{z}^k = \mathbf{x}^* + \theta^k \mathbf{y}^k$, with $\theta^k > 0$ and $\|\mathbf{y}^k\| = 1$. Without loss of generality, assume that the sequence $\{(\theta^k, \mathbf{y}^k)\}$ converges to $(0, \overline{\mathbf{y}})$, where $\|\overline{\mathbf{y}}\| = 1$. Since the points \mathbf{z}^k are feasible

$$g_i(\mathbf{z}^k) - g_i(\mathbf{x}^*) = \theta^k(\mathbf{y}^k)^T \nabla g_i(\mathbf{x}^* + \eta_i^k \theta^k \mathbf{y}^k) \ge 0, \quad i \in I(\mathbf{x}^*)$$
 (32)

$$h_j(\mathbf{z}^k) - h_j(\mathbf{x}^*) = \theta^k(\mathbf{y}^k)^T \nabla h_j(\mathbf{x}^* + \overline{\eta}_j^k \theta^k \mathbf{y}^k) = 0, \quad j = 1, ..., p$$
 (33)

and from (31)

$$f(\mathbf{z}^k) - f(\mathbf{x}^*) = \theta^k (\mathbf{y}^k)^T \nabla f(\mathbf{x}^* + \eta^k \theta^k \mathbf{y}^k) \le 0$$
(34)

where η^k , η_i^k and $\overline{\eta}_j^k$ are numbers between 0 and 1. Dividing (32), (33) and (34) by $\theta^k > 0$, and taking limits, we get

$$\overline{\mathbf{y}}^T \nabla g_i(\mathbf{x}^*) \geq 0, \quad i \in I(\mathbf{x}^*)$$
 (35)

$$\overline{\mathbf{y}}^T \nabla h_j(\mathbf{x}^*) = 0, \ j = 1, ..., p \tag{36}$$

$$\overline{\mathbf{y}}^T \nabla f(\mathbf{x}^*) \leq 0 \tag{37}$$

Sufficient optimality conditions (cont.)*

Assume now that (35) holds with a strict inequality for some $i \in \overline{I}(x^*)$. Then, from (27), (35) and (36) we get

$$\overline{\mathbf{y}}^T \nabla f(\mathbf{x}^*) = \sum_{i=1}^m \lambda_i^* \overline{\mathbf{y}}^T \nabla g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* \overline{\mathbf{y}}^T \nabla h_j(\mathbf{x}^*) > 0$$

contradicting (37). Therefore $\overline{y}^T \nabla g_i(x^*) = 0$ for all $i \in \overline{I}(x^*)$, and so $\overline{y} \in \overline{Z}^1(x^*)$. From Taylor's formula we obtain

$$g_{i}(\mathbf{z}^{k}) = g_{i}(\mathbf{x}^{*}) + \theta^{k}(\mathbf{y}^{k})^{T} \nabla g_{i}(\mathbf{x}^{*})$$

$$+ \frac{1}{2} (\theta^{k})^{2} (\mathbf{y}^{k})^{T} [\nabla^{2} g_{i}(\mathbf{x}^{*} + \xi_{i}^{k} \theta^{k} \mathbf{y}^{k})] \mathbf{y}^{k} \geq 0, \quad i = 1, ..., m$$

$$h_{j}(\mathbf{z}^{k}) = h_{j}(\mathbf{x}^{*}) + \theta^{k} (\mathbf{y}^{k})^{T} \nabla h_{j}(\mathbf{x}^{*})$$

$$+ \frac{1}{2} (\theta^{k})^{2} (\mathbf{y}^{k})^{T} [\nabla^{2} h_{j}(\mathbf{x}^{*} + \overline{\xi}_{j}^{k} \theta^{k} \mathbf{y}^{k})] \mathbf{y}^{k} = 0, \quad j = 1, ..., p$$

$$f(\mathbf{z}^{k}) - f(\mathbf{x}^{*}) = \theta^{k} (\mathbf{y}^{k})^{T} \nabla f(\mathbf{x}^{*})$$

$$+ \frac{1}{2} (\theta^{k})^{2} (\mathbf{y}^{k})^{T} [\nabla^{2} f(\mathbf{x}^{*} + \xi^{k} \theta^{k} \mathbf{y}^{k})] \mathbf{y}^{k} \leq 0$$

$$(40)$$

where ξ^k , ξ_i^k and $\overline{\xi}_i^k$ are again numbers between 0 and 1

Sufficient optimality conditions (cont.)*

Multiplying (38) and (39) by λ_i^* and μ_j^* , respectively, and substracting from (40), we obtain

$$\theta^{k}(\mathbf{y}^{k})^{T} \left\{ \nabla f(\mathbf{x}^{*}) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla g_{i}(\mathbf{x}^{*}) - \sum_{j=1}^{p} \mu_{j}^{*} \nabla h_{j}(\mathbf{x}^{*}) \right\}$$

$$+ \frac{1}{2} (\theta^{k})^{2} (\mathbf{y}^{k})^{T} \left[\nabla^{2} f(\mathbf{x}^{*} + \xi^{k} \theta^{k} \mathbf{y}^{k}) - \sum_{i=1}^{m} \lambda_{i}^{*} \nabla^{2} g_{i}(\mathbf{x}^{*} + \xi_{i}^{k} \theta^{k} \mathbf{y}^{k}) - \sum_{j=1}^{p} \mu_{j}^{*} \nabla^{2} h_{j}(\mathbf{x}^{*} + \overline{\xi}_{j}^{k} \theta^{k} \mathbf{y}^{k}) \right] \mathbf{y}^{k} \leq 0$$

Since (27), the expression in braces (in the first line) vanishes. Dividing the remaining portion by $(\theta^k)^2/2$ and taking limits, we obtain

$$\overline{\mathbf{y}}^T \left[\nabla^2 f(\mathbf{x}^*) - \sum_{i=1}^m \lambda_i^* \nabla^2 g_i(\mathbf{x}^*) - \sum_{j=1}^p \mu_j^* \nabla^2 h_j(\mathbf{x}^*) \right] \overline{\mathbf{y}} \leq 0$$

Since $\overline{y} \neq 0$ and $\overline{y} \in \overline{Z}^1(x^*)$, it follows that this last inequality contradicts (30)

The Karush-Kuhn-Tucker necessary optimality conditions

Example: Consider again the problem min $f(x) = x_1$ of the figure

We have seen that there are (at least) three points satisfying the necessary conditions for optimality. Let us check the sufficient conditions

At x^{*1} we have that

$$\overline{Z}^1(x^{*1}) = \{0\}$$

and there are no vectors $\mathbf{z} \neq 0$ such that $\mathbf{z} \in \overline{Z}^1(\mathbf{x}^{*1})$, so the sufficient conditions of the theorem are trivially satisfied. It can be seen that these conditions also hold at \mathbf{x}^{*2}

At x^{*3} , however

$$\overline{Z}^1(\mathbf{x}^{*3}) = \{(z_1, z_2) | z_1 = 0\}$$

and the quadratic form that appears in the Theorem is $-(\sqrt{13}/13)z^Tz$, which is negative for all $z \neq 0$. Thus x^{*3} does not satisfy the sufficient conditions

Saddel points of the Lagrangian

Another type of **optimality conditions** is related to the Lagrangian and is **expressed in tems of its saddle points**.

Let Φ be a real function defined in $D \times E \subset \mathbb{R}^n \times \mathbb{R}^m$:

$$\begin{array}{cccc} \Phi: & D \times E & \longrightarrow & \mathbb{R} \\ & (x,y) & \longrightarrow & \Phi(x,y). \end{array}$$

A point $(\overline{x}, \overline{y})$ is said to be a **saddle point** of Φ if:

$$\Phi(\overline{x}, y) \leq \Phi(\overline{x}, \overline{y}) \leq \Phi(x, \overline{y}), \quad \forall (x, y) \in D \times E.$$

Analogously to the nonlinear problem, there is a **saddle point problem** that can be stated as follows:

The saddle point problem (S)

Problem (S): Find $\overline{x} \in \mathbb{R}^n$, $\overline{\lambda} \in \mathbb{R}^m$, $\overline{\lambda} \geq 0$, $\overline{\mu} \in \mathbb{R}^p$ such that $(\overline{x}, \overline{\lambda}, \overline{\mu})$ is a saddle point of the Lagragian

$$L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\mathbf{x}) - \sum_{i=1}^{m} \lambda_{i} g_{i}(\mathbf{x}) - \sum_{j=1}^{p} \mu_{j} h_{j}(\mathbf{x}).$$

That is

$$L(\overline{x}, \lambda, \mu) \leq L(\overline{x}, \overline{\lambda}, \overline{\mu} \leq L(x, \overline{\lambda}, \overline{\mu})$$

for every $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^m$, $\lambda \geq 0$, and $\mu \in \mathbb{R}^p$.

A one-sided relation between a saddle point of the Lagrangian and a solution of problem $(P)^1$ is given by the following theorem:

¹Problem (P): min $f(\mathbf{x})$ subject to $g_i(\mathbf{x}) \geq 0, \ i=1,...,m,$ and $h_j(\mathbf{x}) \equiv 0, \ j \equiv 1,...,p$.

The saddle point problem (S)

Theorem (Sufficient condition of optimality for (P).

If $(\overline{x}, \overline{\lambda}, \overline{\mu})$ is a solution of problem (S), then \overline{x} is a solution of problem (P).

Proof Suppose that $(\overline{x}, \overline{\lambda}, \overline{\mu})$ is a solution of problem (S). Then, for all $x \in \mathbb{R}^n$, $\lambda \in \mathbb{R}^m$, $\lambda \geq 0$, and $\mu \in \mathbb{R}^p$:

$$f(\overline{x}) - \sum_{i=1}^{m} \lambda_{i} g_{i}(\overline{x}) - \sum_{j=1}^{p} \mu_{j} h_{j}(\overline{x}) \leq f(\overline{x}) - \sum_{i=1}^{m} \overline{\lambda}_{i} g_{i}(\overline{x}) - \sum_{j=1}^{p} \overline{\mu}_{j} h_{j}(\overline{x}) \leq$$

$$\leq f(x) - \sum_{i=1}^{m} \overline{\lambda}_{i} g_{i}(x) - \sum_{j=1}^{p} \overline{\mu}_{j} h_{j}(x).$$

Rearranging the first inequality, we obtain

$$\sum_{i=1}^{m} (\overline{\lambda}_{i} - \lambda_{i}) g_{i}(\overline{x}) + \sum_{j=1}^{p} (\overline{\mu}_{j} - \mu_{j}) h_{j}(\overline{x}) \leq 0, \tag{41}$$

for all $\lambda \in \mathbb{R}^m$, $\lambda \geq 0$, and $\mu \in \mathbb{R}^p$.

Proof of the Theorem (cont. 1)

Suppose now that that for a certain k $(1 \le k \le p)$ $h_k(\overline{x}) > 0$. Letting

$$egin{aligned} oldsymbol{\lambda}_i &= \overline{oldsymbol{\lambda}}_i, \ i = 1,...,m, \ oldsymbol{\mu}_j &= \overline{oldsymbol{\mu}}_j, \ j = 1,...,p, \ j
eq k, \ oldsymbol{\mu}_k &= \overline{oldsymbol{\mu}}_k - 1, \end{aligned}$$

we get a contradiction to (41)

If $h_k(\overline{x}) < 0$ for some k, we can choose an appropriate μ that results in a similar contradiction. Thus $h_j(\overline{x}) = 0, j = 1, ..., p$.

Now set $\overline{\mu}=\mu$ and let $\lambda_1=\overline{\lambda}_1+1$, $\lambda_i=\overline{\lambda}_i$, i=2,...,m, then we obtain $g_1(\overline{x})\geq 0$.

If
$$\lambda_2=\overline{\lambda}_2+1$$
, $\lambda_i=\overline{\lambda}_i$, $i=1,3,...,m$, we obtain $g_2(\overline{x})\geq 0$.

Repeating this process for all i we obtain $g_i(\overline{x}) \geq 0$, i = 1, ..., m.

As a consequence, \overline{x} is a feasible point for problem (P).

Proof of the Theorem (cont. 2)

Next let $\lambda = 0$. Then, by the first inequality of (41) we have

$$0 \leq -\sum_{i=1}^{m} \overline{\lambda}_{i} g_{i}(\overline{x}).$$

But $\overline{\lambda}_i \geq 0$ and $g_i(\overline{x}) \geq 0$ for i = 1, ..., m, therefore

$$\sum_{i=1}^m \overline{\lambda}_i g_i(\overline{x}) = 0,$$

and so $\overline{\lambda}_i g_i(\overline{x}) = 0$ for all i.

Consider the second inequality of (41). From the preceding arguments we get

$$f(\overline{\mathbf{x}}) \leq f(\mathbf{x}) - \sum_{i=1}^{m} \overline{\lambda}_{i} g_{i}(\mathbf{x}) - \sum_{j=1}^{p} \overline{\mu}_{j} h_{j}(\mathbf{x}).$$

If x is feasible for (P), then $g_i(x) \ge 0$, $h_j(x) = 0$, thus

$$f(\overline{x}) \leq f(x),$$

and \overline{x} is a solution of (P).

Example

Consider the following problem:

$$\min f(x) = x$$
, such that $-(x^2) \ge 0$, $x \in \mathbb{R}$,

whose optimal solution is $x^* = 0$.

The corresponding saddle point problem of the Lagrangian is to find $\lambda^* \geq 0$ such that

$$x^* + \lambda(x^*)^2 \le x^* + \lambda^*(x^*)^2 \le x + \lambda^*x^2$$

for all $x \in \mathbb{R}$, or, equivalently

$$0 \le x + \lambda^* x^2.$$

Clearly, λ^* cannot vanish, but for any $\lambda^*>0$ we can choose $x>-1/\lambda^*$, and (41) will not hold. Thus, there exist no λ^* such that (x^*,λ^*) will be a saddel point.