The Peeling Decoder: Theory and some Applications

Krishna R. Narayanan Thanks to Henry Pfister, Avinash Vem, Nagaraj Thenkarai Janakiraman, Kannan Ramchandran, Jean-Francois Chamberland

> Department of Electrical and Computer Engineering Texas A&M University

Pattern Matching

- Database/String: $\underline{x} = [x[0], x[1], \cdots, x[N]]$ (length N)
- Query/Substring: $y=[y[0],x[1],\cdots,x[M]]$ (length $M=N^{\mu}$)
- Determine all the L locations $\underline{\tau} = [\tau_1, \tau_2, \cdots \tau_L]$ with high probability where
 - **1** Exact Matching: \underline{y} appears exactly in \underline{x}
 - $-y := \underline{x}[\tau : \tau + M 1]$
 - 2 Approximate Matching: y is a noisy substring of \underline{x}
 - $\underline{y} := \underline{x}[\tau : \tau + M 1] \odot \underline{b}$
 - \underline{b} is a noise sequence with $d_H(\underline{y},\underline{x}[\tau:\tau+M-1]) \leq K$

2/

Main Result

Theorem 1

Assume that a sketch of \underline{x} of size $O(max(M,N/M)\log N)$ can be precomputed and stored. Then for the exact pattern matching and approximate pattern matching (with $K=\eta M,\ 0\leq \eta\leq 1/6$) problems, with the number of matches L scaling as $O(N^{\lambda})$, our algorithm has

- a sketching function for \underline{y} that computes $O(\max(M, \frac{N}{M}) \log N) = O(N^{\max(\mu, 1 \mu)} \log N)$ samples
- · a computational complexity of
 - $O(\max(N^{1-\mu}\log^2 N, N^{\mu+\lambda}\log N))$ for $\mu < 0.5$
 - $O(\max(N^{\mu} \log^2 N, N^{1-\mu+\lambda} \log N))$ for $\mu > 0.5$
- a decoder that recovers all the L matching positions with a failure probability that approaches zero asymptotically

Note: Particularly when L=O(1) or $L<\frac{N}{M}$ (i.e. $\lambda<1-\mu$) our algorithm has a sub-linear time complexity.

Some Prior Work

Exact Matching

- **boyer1977fast**: First occurrence of the match (only τ_1)
 - Average complexity $O(N^{1-\mu} \log N)$ (sublinear)
 - Worst case complexity $O(N \log N)$

Approximate Matching

- chang1994approximate: Generalization of boyer1977fast
 - Average complexity $O(NK/M\log N)$ (sub-linear only when $K\ll M$)
- andoni2013shift: $O(N/M^{0.359})$ (sub-linear even when K = O(M))
 - Combinatorial in nature

Sparse Fourier Transform Approach

- hassanieh2012faster: Faster GPS receiver
 - Exploited sparsity in Correlation function R_{XY}
- pawar2014robust: Robust Sparse Fourier Transform
 - Sparse Graph code Approach
 - Computational complexity : $O(N \log N)$

Motivation

• Cross-correlation (\underline{r}) :

$$r[m] = (\underline{x} * \underline{y})[m] \triangleq \sum_{i=0}^{M-1} x[m+i]y[i], \quad 0 \le m \le N-1$$

- Naive implementation: $O(MN) = O(N^{1+\mu})$ (super-linear complexity)
- Fourier Transform Approach: $O(N \log N)$ complexity

Key Observation

 \bullet <u>r</u> is Sparse with some noise.

$$r[m] = \begin{cases} & M, & \text{if } m \in \mathcal{T} \\ & n_m, & m \in [N] - \mathcal{T} \end{cases}$$

Sparse Fourier Transform Approach

$$\boxed{ \underline{r} = \mathcal{F}_N^{-1} \ \{ \mathcal{F}_N \{ \underline{x} \} \odot \ \mathcal{F}_N \{ \underline{y}' \} \} }_{\mathbf{1}}$$

- 1. Sketch of \underline{x} : Assume $\underline{X}[l] = \mathcal{F}\{\underline{x}\}$ is precomputed at positions $l \in \mathcal{S}$.
- **2**. *Sketch of y*:
 - Compute $\underline{Y}'[l] = \mathcal{F}\{y'\}$ for $l \in \mathcal{S}$.
 - Only M non-zero values in y' Efficient computation (folding and adding)
- 3. Sparse \mathcal{F}^{-1} :
 - Robust Sparse Inverse Fourier Transform (RSIDFT)
 - Efficient Implementation- sublinear time and sampling complexity

Questions?

Thank you!