Assignment #2

UW-Madison MATH 421

YOUR NAME HERE February 2, 2021

Exercise #1: Prove the following theorem by cases. **Theorem.** If x is an integer, then $x^2 + 3x - 9$ is odd. *Proof.* Add your proof here! Exercise #2: Prove the following theorem in two ways: by contrapositive and by contradiction. **Theorem.** Suppose x is an integer. If x^2 is even, then x is even. Proof by contrapositive. Add your proof here! Proof by contradiction. Add your proof here! Exercise #3: Prove the following theorem. **Theorem.** If the name of a month has 5 or more characters, then a 4-letter word can be formed using those characters. *Proof.* Add your proof here! (Hint cases might work) Exercise #4: Prove the following theorem. **Theorem.** For all numbers x and y, $(x + y)^2 = x^2 + y^2$ if and only if x = 0 or y = 0. Proof. (\Rightarrow) : (\Leftarrow) : Exercise #5: Using only properties P1-P12 and noting every time you use one, prove the following theorem. **Theorem.** Suppose a and b are numbers. If ab = 1, then $b = a^{-1}$. *Proof.* Add your proof here! Exercise #6: Using only properties P1-P12 and noting every time you use one, prove the following theorem. **Theorem.** Suppose a and b are numbers. If $a \neq 0$ and $b \neq 0$, then $(ab)^{-1} = a^{-1}b^{-1}$. Proof. Add your proof here! Exercise #7: Using only properties P1-P12 and noting every time you use one, prove the following theorem. **Theorem.** Suppose a, b, and c are numbers. If a < b and 0 < c, then ac < bc.

Proof. Add your proof here!

Exercise #8: Prove the following: if x and y are numbers, then

- 1. |xy| = |x| |y|,
- 2. $|x y| \le |x| + |y|$,
- 3. $|x| |y| \le |x y|$.

Hint: you can give a short proof of (2) and (3) by reducing to the triangle inequality. You do not have to reference properties P1-P12.

Proof of (1). Add your proof here!

Proof of (2). Add your proof here!

Proof of (3). Add your proof here!