federico ardila

homework four . due thursday mar 17

Note. You are encouraged to work together on the homework, but please state who you worked with **in each problem**. Write your solutions independently and in your own words. (I recommend putting away the notes from your discussions with others, and reproducing the solutions by yourself.)

- 1. (The defining and standard representations of S_n and the fixed points of permutations.) Let V_{def} , V_{std} , and V_{triv} be the defining, standard, and trivial representations of the symmetric group S_n . Recall that $V_{def} \cong V_{std} \oplus V_{triv}$.
 - (a) Prove that the standard representation $V_{std} = \{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 + \dots + x_n = 0\}$ has no non-trivial S_n -invariant subspaces. Conclude that V_{std} is irreducible.
 - (b) Prove that the characters of V_{std} and V_{def} are given by

$$\chi_{def}(\pi) = f(\pi), \qquad \chi_{std}(\pi) = f(\pi) - 1$$

where $f(\pi)$ is the number of fixed points of π .¹

(c) Compute

$$\sum_{\pi \in S_n} f(\pi) \qquad \text{ and } \sum_{\pi \in S_n} f(\pi)^2.$$

- (d) BONUS. Give combinatorial proofs for these formulas you obtained in part (c).
- 2. (Constructions of representations.) In class we discussed how, given finite-dimensional representations V and W of a finite group G, we can construct the following representations:
 - (a) The dual V^* .
 - (b) The direct sum $V \oplus W$.
 - (c) The vector space Hom(V, W) of linear maps from V to W.
 - (d) The tensor product $V \otimes W$.
 - (e) The quotient V/W (iIf W is a subrepresentation of V).

For each one of these, prove that it is indeed a representation of G, and prove the formulas for its dimension and its character.

3. (The character table of the symmetric group S_5 .) Compute it.

BONUS. (The character table of the dihedral group D_n .) Compute it.

¹A fixed point of π is an element i such that $\pi(i) = i$.

- 4. (Restriction and induction are transitive)
 - (a) If H is a subgroup of G and χ is a character of G, we define the restriction of the character χ to H to be

$$\chi \downarrow_H^G(h) = \chi(h)$$

for all $h \in H$. Prove that restriction is transitive; that is, if $K \leq H \leq G$ we have

$$\chi\downarrow_K^G = (\chi\downarrow_H^G)\downarrow_K^H$$
.

(b) If H is a subgroup of G and χ is a character of H, we define the character of G induced by χ to be

$$\chi \uparrow_H^G (g) = \frac{1}{|H|} \sum_{\substack{x \in G \\ x^{-1}gx \in H}} \chi(x^{-1}gx)$$

for all $g \in G$. Prove that induction is transitive; that is, if $K \leq H \leq G$ we have

$$\chi \uparrow_K^G = (\chi \uparrow_K^H) \uparrow_H^G$$
.

- 5. (The number of irreducible representations.) Let G be a group. Let \mathcal{F} be the vector space of functions $f: G \to \mathbb{C}$, and let \mathcal{C} be the subspace of functions f which are constant on conjugacy classes.²
 - (a) Prove that $f \in \mathcal{C}$ if and only if for any complex representation V, the linear map $\phi_{f,V}: V \to V$ given by

$$\phi_{f,V}(v) = \sum_{g \in G} f(g)g \cdot v$$

is a homomorphism of representations.

- (b) Show that the trace of $\phi_{f,V}$ is $\langle f, \chi_{V^*} \rangle$ for all $f \in \mathcal{C}$ and all representations V.
- (c) Show that if $\langle f, \chi_{V^*} \rangle = 0$ for some irreducible representation V, then $\phi_{f,V} = 0$.
- (d) Show that if $f \in \mathcal{C}$ is non-zero then $\phi_{f,R}$ is non-zero for the regular representation R.
- (e) Conclude that the characters of the irreducible representations span \mathcal{C} .
- (f) Conclude that the number of irreducible representations of G equals the number of conjugacy classes of G.

²Such functions are called *class functions*.