Ring Homomorphisms

Definition: Ring Homomorphism

Let R and S be rings. A *ring homomorphism* from R to S is a function $\phi:R\to S$ such that $\forall\,x,y\in R$:

$$\phi(x+y) = \phi(x) + \phi(y)$$

$$\phi(xy) = \phi(x)\phi(y)$$

In other words, ϕ is a group homomorphism that preserves multiplication.

Definition: Kernel

Let $\phi: R \to S$ be homomorphism of rings. The *kernel* of ϕ , denoted $\ker(\phi)$, is given by:

$$\ker(\phi) = \{ r \in R \mid \phi(r) = 0_S \}$$

Theorem

Let $\phi: R \to S$ be homomorphism of rings:

$$\ker(R) \leq R$$

Proof

By group theory we know $\phi(0_R) = 0_S$ Thus, $0 \in \ker(R)$ and $\ker(R) \neq \emptyset$

Assume $x, y \in \ker(R)$

$$\phi(x-y) = \phi(x) - \phi(y) = 0 - 0 = 0$$
$$x - y \in \ker(R)$$

$$\phi(xy) = \phi(x)\phi(y) = 0 \cdot 0 = 0$$
$$xy \in \ker(R)$$

Therefore, by the subring test, $ker(R) \le R$.

Definition: Kernel

Let $\phi: R \to S$ be homomorphism of rings. The *image* of ϕ , denoted $\operatorname{im}(\phi)$ or $\phi[R]$, is given by:

$$\operatorname{im}(\phi) = \{\phi(r) \mid r \in R\}$$

Theorem

Let $\phi: R \to S$ be homomorphism of rings:

$$im(R) \le S$$

Proof

By group theory we know $\phi(0_R)=0_S$ Thus, $0_S\in \operatorname{im}(R)$ and $\operatorname{im}(R)\neq\emptyset$

Assume $u,v\in \mathrm{im}(R)\ \exists\ x,y\in R$ such that $\phi(x)=u$ and $\phi(y)=v$

$$u-v=\phi(x)-\phi(y)=\phi(x-y)\in S$$

But by closure, $x - y \in R$

$$\therefore u - v \in \operatorname{im}(R)$$

$$uv = \phi(x)\phi(y) = \phi(xy) \in S$$

But by closure, $xy \in R$

$$\therefore uv \in im(R)$$

Therefore, by the subring test, $im(R) \leq S$.