MATH 644

Chapter 5

SECTION 5.3: REMOVABLE SINGULARITIES

Contents

Riemann's Removable Singularity Theorem	2
Painlevé's Removability Theorem	5
Formula For the Inverse	5

Created by: Pierre-Olivier Parisé Spring 2023 Theorem 1. Suppose f is analytic in $\Omega = \{z : 0 < |z - a| < \delta\}$ and suppose

$$\lim_{z \to a} (z - a) f(z) = 0.$$

Then f extends to be analytic in $\{z : |z - a| < \delta\}$.

Proof.

Note:

Let
$$0 \le \epsilon \le |z-a| < r < \delta$$
. They, by (auxly)s in legral framula:

$$f(z) = \frac{1}{2\pi i} \int_{Cr} \frac{f(3)}{3-z} d3 - \frac{1}{2\pi i} \int_{C\epsilon} \frac{f(3)}{3-z} d3$$

Where $Cr d C_{\epsilon}$ are circles of radii $r d \epsilon$ and unfered at a.

We have,

$$\left| \int_{C\epsilon} \frac{f(3)}{3-z} d3 \right| \le \sup_{3 \in C\epsilon} |f(3)| \int_{C\epsilon} \frac{|d3|}{|z-a|-\epsilon}$$

$$= \sup_{3 \in C\epsilon} |f(3)| \frac{2\pi \epsilon}{|z-a|-\epsilon}$$

For $3 \in C\epsilon$, $\lim_{\epsilon \to \infty} |f(3)| \epsilon = \lim_{\epsilon \to \infty} |f(3)| (3-a)| = 0$ and since z is fixed
$$\lim_{\epsilon \to \infty} |f(3)| = 0$$

• Important case: If f is bounded and analytic in a punctured neighborhood of a, then f extends to be analytic in a neighborhood of a.

So,
$$f(z) = \frac{1}{2\pi i} \int_{Cr} \frac{f(3)}{3-z} d3$$
 (*)

The right-hand side is analytic by Lemma 2 in section 4.4 (in $\frac{1}{2}$: $\frac{1}{2}$ -al $\leq r$). Extend f at a to be $f(a) = \frac{1}{2\pi i} \int_{C_{-}} \frac{f(3)}{3-a} d3$.

This extension is analytic by (*). I

Painlevé's Removability Theorem

Definition 2. A compact set $E \subset \mathbb{C}$ has one-dimensional Hausdorff measure equal to 0 if for every $\varepsilon > 0$ there are finitely many disks D_j with radius r_j so that

$$E \subset \cup_j D_j$$
 and $\sum_j r_j < \varepsilon$.

THEOREM 3. Suppose $E \subset \mathbb{C}$ is a compact set with one-dimensional Hausdorff measure 0. If f is bounded and analytic on $U \setminus E$, where U is open and $E \subset U$, then f extends to be analytic

Proof. Fix UZE open & fanalytic on U/E. Repeat the construction in Runge's Theorem to find a cycle y = U/E

- 1) y is a finite union of poly. curves Vij & the boundary of closed squares 1 Sir.
- 2) n(y, a) = 0 or $1 \forall a \notin y$.
- 3) n(y,b) =1, Yb & USj/y 2 E.
- 4) n(y,b) =0, tb € US;

From 4), we have n(y,b)=0, $\forall b \in \mathbb{C} \setminus U$

Take fruitely many disks Dk puch that E = UDk & Trk < E (given E>0).

Assume further that DKNE # d.

Take & small enough so that DR & USj\y. V:= {Z: n(y, z)=1} Define 0 := 0 (UDk) I := V/UDk Then, $\partial \Omega = \sigma + \gamma$ parametrized so that 22 has positive orientation. Thurfue, rine U/Uk Dk 15 a région confaining r 2 Dr has pos. orientation $\Rightarrow n(32a) = 0 \quad \forall \alpha \notin (\overline{U/U_kD_k})$ Thurfore, 22 ~ 0 in U/Uk Dk By Cauchy's integral finala: $f(z) = \frac{1}{2\pi i} \int_{V} \frac{f(3)}{3-z} d3 - \frac{1}{2\pi i} \int_{0}^{\infty} \frac{f(3)}{3-z} d3.$ However, & is bounded on o = U/E $\Rightarrow \left| \int_{\sigma} \frac{f(3)}{3-2} d3 \right| \leq C(2) \sup_{3 \in \sigma} |f(3)| \sum_{j} 2\pi r_{j}$ < ((z) sup f(3) 2π ε 3€0

therefore, as
$$\varepsilon \to 0$$
,
$$\int_{\overline{\sigma}} \frac{f(\overline{s})}{\overline{s}-\overline{z}} d\overline{s} = 0$$
So,
$$f(\overline{z}) = \frac{1}{2\pi i} \int_{y} \frac{f(\overline{s})}{\overline{s}-\overline{z}} d\overline{s}$$
analytic on C/y (lem. 4) sect. 4.4)

Extend f on E with the RHS .

FORMULA FOR THE INVERSE