Assignment 4

Due: Tuesday, December 5 at 4:00pm

1. Let X and Y be registers and let $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ be a state of the pair (X,Y). With respect to ρ , one defines the *entanglement of formation* between X and Y as

$$E_{F}(X:Y) = \inf \left\{ \sum_{a \in \Sigma} p(a) H(\operatorname{Tr}_{\mathcal{Y}}(u_{a}u_{a}^{*})) : \sum_{a \in \Sigma} p(a) u_{a}u_{a}^{*} = \rho \right\},$$

where the infimum is over all choices of an alphabet Σ , a probability vector $p \in \mathcal{P}(\Sigma)$, and a collection of unit vectors $\{u_a : a \in \Sigma\} \subset \mathcal{X} \otimes \mathcal{Y}$ for which it holds that

$$\sum_{a\in\Sigma}p(a)u_au_a^*=\rho.$$

Now suppose that Z and W are registers and $\Phi \in C(\mathcal{X} \otimes \mathcal{Y}, \mathcal{Z} \otimes \mathcal{W})$ is a channel that can be expressed as

$$\Phi(X) = \sum_{b \in \Gamma} (A_b \otimes B_b) X (A_b \otimes B_b)^*$$

for all $X \in L(\mathcal{X} \otimes \mathcal{Y})$, for some collection of isometries $\{A_b : b \in \Gamma\} \subset U(\mathcal{X}, \mathcal{Z})$ and a collection of operators $\{B_b : b \in \Gamma\} \subset L(\mathcal{Y}, \mathcal{W})$ satisfying

$$\sum_{b\in\Gamma}B_b^*B_b=\mathbb{1}_{\mathcal{Y}}.$$

(Thus, $\Phi \in LOCC(\mathcal{X}, \mathcal{Z} : \mathcal{Y}, \mathcal{W})$ is a one-way left LOCC channel.) Prove that

$$E_F(Z:W)_{\Phi(\rho)} \le E_F(X:Y)_{\rho}$$

where $E_F(X:Y)_\rho$ and $E_F(Z:W)_{\Phi(\rho)}$ denote the entanglement of formation of the pairs (X,Y) and (Z,W) with respect to the states ρ and $\Phi(\rho)$, respectively.

Once the above inequality has been established, it is not difficult to conclude that it holds not only for channels Φ of the form described above, but for all LOCC channels Φ . You do not need to prove this as a part of your solution.

(Challenge problem.) Prove the stronger claim that the inequality

$$E_{\scriptscriptstyle F}({\sf Z}\,{:}\,{\sf W})_{\Phi(
ho)} \leq E_{\scriptscriptstyle F}({\sf X}\,{:}\,{\sf Y})_{
ho}$$

holds for all separable channels $\Phi \in SepC(\mathcal{X}, \mathcal{Z} : \mathcal{Y}, \mathcal{W})$.

2. Let Σ be an alphabet, let $n=|\Sigma|$, and assume $n\geq 2$. Also let $\mathcal{X}=\mathbb{C}^{\Sigma}$ and $\mathcal{Y}=\mathbb{C}^{\Sigma}$, and recall that the *swap operator* $W\in L(\mathcal{X}\otimes\mathcal{Y})$, which satisfies $W(x\otimes y)=y\otimes x$ for all $x,y\in\mathbb{C}^{\Sigma}$, may alternatively be defined as

$$W = \sum_{a,b \in \Sigma} E_{a,b} \otimes E_{b,a}.$$

Define projections Π_0 , $\Pi_1 \in \text{Proj}(\mathcal{X} \otimes \mathcal{Y})$ and states σ_0 , $\sigma_1 \in D(\mathcal{X} \otimes \mathcal{Y})$ as follows:

$$\Pi_0 = \frac{1}{2} \mathbb{1} \otimes \mathbb{1} + \frac{1}{2} W, \qquad \Pi_1 = \frac{1}{2} \mathbb{1} \otimes \mathbb{1} - \frac{1}{2} W, \qquad \sigma_0 = \frac{1}{\binom{n+1}{2}} \Pi_0, \qquad \sigma_1 = \frac{1}{\binom{n}{2}} \Pi_1.$$

Prove that if $\mu : \{0,1\} \to \text{Pos}(\mathcal{X} \otimes \mathcal{Y})$ is a PPT measurement, meaning that μ is a measurement and $\mu(0), \mu(1) \in \text{PPT}(\mathcal{X} : \mathcal{Y})$, then

$$\frac{1}{2}\langle \mu(0), \sigma_0 \rangle + \frac{1}{2}\langle \mu(1), \sigma_1 \rangle \leq \frac{1}{2} + \frac{1}{n+1}.$$

(Thus, PPT measurements are not very good at discriminating between σ_0 and σ_1 , even though they are orthogonal.)

3. Let $\Phi \in T(\mathcal{X}, \mathcal{Y})$ be a map, for complex Euclidean spaces \mathcal{X} and \mathcal{Y} . Prove that

$$||\!|\!| \Phi |\!|\!|\!|_1 = \max_{\rho_0, \rho_1 \in \mathrm{D}(\mathcal{X})} \left\| \left(\mathbb{1}_{\mathcal{Y}} \otimes \sqrt{\rho_0} \right) J(\Phi) \left(\mathbb{1}_{\mathcal{Y}} \otimes \sqrt{\rho_1} \right) \right\|_1.$$

- 4. Let \mathcal{X} be a complex Euclidean space, let $n = \dim(\mathcal{X})$, and let μ denote the uniform spherical measure on $\mathcal{S}(\mathcal{X})$.
 - (a) Define a mapping $\Phi \in CP(\mathcal{X})$ as

$$\Phi(X) = n \int \langle uu^*, X \rangle uu^* d\mu(u)$$

for all $X \in L(\mathcal{X})$. Give a simpler expression for Φ . Your expression should describe Φ as a convex combination of channels that we have already encountered many times in this course.

(b) Define a channel $\Xi \in C(\mathcal{X}, \mathcal{X} \otimes \mathcal{X})$ as

$$\Xi(X) = n \int \langle uu^*, X \rangle uu^* \otimes uu^* d\mu(u)$$

for all $X \in L(\mathcal{X})$. This channel might seem like it is good for cloning pure states. Calculate the value

$$\inf_{v \in \mathcal{S}(\mathcal{X})} \langle vv^* \otimes vv^*, \Xi(vv^*) \rangle,$$

which quantifies how good Ξ is as a pure state cloner.

(It so happens that Ξ is a sub-optimal cloning channel, in the sense of Theorem 7.28, aside from the trivial case in which $\dim(\mathcal{X}) = 1$.)