

The 34th IEEE International

Advancing Technology Symposium on Industrial Electronics for Humanity Symposium on Industrial Electronics Society

Industrial lectronics
Society

June 20-23, 2025

Toronto, Canada

Autoregressive DRL for Multi-Robot Scheduling in Semiconductor Cluster Tools

Soo-Hwan Cho, Jean Seong Bjorn Choe, Jong-Kook Kim

Korea University

SEMICONDUCTOR FABRICATION AT A GLANCE

Semiconductor manufacturing involves multi-step processes

e.g., photolithography, etching, cleaning, deposition

Photolithography

Etch

Clean

Robot

Draw circuits on the wafer

Radial-type Cluster tool

Track-type Cluster Tool

SCHEDULING IN ENV A & ENV B

Problem Statement

- Two distinct cluster tool environments with different layouts and robot configurations
- Goal: Learn a scheduling policy that adapts to each environment to maximize throughput

CORE IDEAS OF OUR APPROACH

1. Autoregressive Action Selection

Select robot actions one by one, not jointly.

- Reduces per-step action space
- Enables scaling to many robots

2. Action Masking

Dynamically mask out invalid actions at each step.

- Improves learning stability
- Helps focus on feasible decisions only

3. Reward Shaping

Combine sparse and dense rewards to guide behavior.

- Penalize idle moves and unproductive actions
- Encourage parallel processing and better throughput

	Joint	AR (Ours)
Decision Complexity	$\mathcal{O}\left(\prod_{i}\left \mathcal{A}_{r_{i}}\right ight)$	$\mathcal{O}\left(\sum_{i}\left \mathcal{A}_{r_{i}}\right \right)$
Env A Action Count	216	35
Env B Action Count	4.4×10^{13}	302

REWARD DESIGN FOR SCHEDULING OPTIMIZATION

Objective

- Maximize UPEH (Units Per Equipment Hour)
- Provide both sparse but precise and dense but guiding rewards

1. Completion Reward

- $r_t = k_1 \cdot r_t^{\text{completion}} + k_2 \cdot r_t^{\text{progress}} k_3 \cdot r_t^{\text{idle}}$
- +1 when a wafer finishes all processes and returns to the load port
- Sparse but directly aligns with the optimization goal (UPEH)

REWARD DESIGN FOR SCHEDULING OPTIMIZATION

2. Wafer Progress Reward

- $r_t = k_1 \cdot r_t^{\text{completion}} + k_2 \cdot r_t^{\text{progress}} k_3 \cdot r_t^{\text{idle}}$
- A dense reward that quantifies how far each wafer has progressed through its processing path.

$$P_t = \sum_{m \in \mathcal{M}} (w_m + \tau_m)$$
$$r_t^{\text{progress}} = P_t - P_{t-1}$$

W_m is the ideal time to reach module **m** without any delays based on physical layout, process time, robot speed, travel distance

Pt is Cumulative wafer progress at time t

Example of Per-Step Wafer Progress Reward $w_{
m m}$

REWARD DESIGN FOR SCHEDULING OPTIMIZATION

3. Idle Move Penalty

- $r_t = k_1 \cdot r_t^{\text{completion}} + k_2 \cdot r_t^{\text{progress}} k_3 \cdot r_t^{\text{idle}}$
- Negative reward for movement actions that do not result in pick/place
 - → Discourages unnecessary robot movements

Case1: Idle Move

Case 2: Penalty for unaligned move and action

🛑 : Idle move penalty triggered

ADAPTIVE LEARNING RESULTS IN ENV A AND B

Learning Convergence

- Stable training curves in Env A & B
- Adaptive policy learned from scratch

Throughput Comparison

Higher UPEH than heuristic baseline in both environments

Environment	Ours	Rule-Based
Env A	96 ± 5	58
Env B	304 ± 1	276

UPEH comparison: Ours vs. rule-based

Gantt chart visualizations of wafer processing: early vs. late training (DRL) and rule-based

ADAPTIVE LEARNING RESULTS IN ENV A AND B

Ablation Study – Reward Composition

- Completion reward alone is sparse and insufficient
- Progress reward accelerates learning but lacks final alignment
- Combined rewards yield the best UPEH in both Env A and B

UPEH(Unit per Equipment Hour)

Environment	Completion Only		Both Combined
Env A	81 ± 3	91 ± 6	96 ± 5
Env B	52 ± 5	301 ± 2	304 ± 1

Combined use of sparse (completion) and dense (progress) rewards leads to optimal throughput

Idle Move Penalty Effect

- Penalizing idle movement reduces total travel distance
- Proper penalty values reduce inefficiency without hurting UPEH

Thank you

UPEH(Unit per Equipment Hour)

Project code & details:

https://github.com/splendidz/ar_drl_cluster_tool

soohwancho@korea.ac.kr

