Systemanalyse

Wintersemester 2019/2020 Prof. Dr. Andreas Häuslein

- Hinführung zum Vorlesungsthema
- Grundbegriffe der Systemanalyse
 - Gegenstand und Zielsetzung
 - Methodische Grundlagen und Begrifflichkeiten
- Systemaufnahme
 - Informationsgewinnung
 - Inhaltliche Untersuchungsbereiche
- Systemmodellierung
 - Ereignisgesteuerte Prozessketten (EPK)
 - Business Process Model and Notation (BPMN)
 - Objektorientierte Analyse
 - Strukturierte Analyse/ Essenzielle Modellierung

Materialien zur Vorlesung

- Vorlesungsfolien auf dem Handout-Server (PowerPoint-/PDF-Dateien)
- Quellen:
 - Krallmann, H.; Bobrik, A.; Levina, O.:
 Systemanalyse im Unternehmen Prozessorientierte Methoden der Wirtschaftsinformatik, Oldenbourg, 2013
 - Rupp, Chr.: Systemanalyse kompakt, Springer Verlag, 2013
 - Häuslein, A.: Systemanalyse. vde-Verlag, 2004
 - Krüger, J.; Uhlig, Ch.:
 Praxis der Geschäftsprozessmodellierung. VDE Verlag, 2009
 - Scheer, A.-W.: Architektur integrierter Informationssysteme. Springer-Verlag, Berlin, 1991
 - Object Management Group OMG:
 Business Process Model and Notation (BPMN), Version 2.0, URL:
 http://www.omg.org/spec/BPMN/2.0, 2011

Materialien zur Vorlesung

Weitere Quellen:

- Gadatsch, Andreas:
 Grundkurs Geschäftsprozess-Management: Analyse,
 Modellierung, Optimierung und Controlling von Prozessen. 8.
 Aufl., Springer Vieweg, 2017
- Allweyer, Thomas:
 BPMN 2.0 Business Process Model and Notation: Einführung in den Standard für die Geschäftsprozessmodellierung. Books on Demand, 2015
- Freund, Jakob; Rücker, Bernd:
 Praxishandbuch BPMN: Mit Einführung in CMMN und DMN, 5.
 Auflage, Carl Hanser Verlag, 2016
- Fuehrer, Joshua; Butchko, Joseph:
 Learning BPMN 2.0: A Practical Guide for Today's Adult
 Learners. Indie Books International. 2018

Materialien zur Vorlesung

Weitere Quellen:

- Balzert, Heide:
 Lehrbuch der Objektmodellierung Analyse und Entwurf mit der
 UML 2. Spektrum Akademischer Verlag, 2011
- Object Management Group OMG: Unified Modeling Language,
 Version 2.5.1, https://www.omg.org/spec/UML/About-UML/, 2017
- Kecher, Chr., Salvanos, A., Hoffmann-Elbern, R.: UML 2.5: Das umfassende Handbuch. Rheinwerk Computing, 6. Aufl., 2017

- In Unternehmen sind, neben den Aktivitäten im Kerngeschäft, viele Maßnahmen auf Verbesserungen der Abläufe ausgerichtet:
 - Organisatorische Abläufe sollen verbessert werden,
 - Produktionsprozesse sollen effizienter werden,
 - Die Lagerhaltung soll Lieferengpässe vermeiden,
 - Die Informationen sollen schneller vorliegen,
 - IT-Unterstützung soll durch neue Software verbessert werden
 - USW.
- Die Maßnahmen betreffen in Unternehmen meist komplexe Zusammenhänge und Wechselwirkungen von vielen Menschen, Maschinen, Funktionen, Daten, Einflussfaktoren, Rollen, Zielen, Restriktionen...

...sie betreffen **Systeme**

 Der Erfolg der Maßnahmen hängt von einem umfassenden Verständnis der betroffenen Systeme ab:

Ohne exakte Kenntnis der Wirkungsbeziehungen in einem System kommt es bei Maßnahmen häufig zu **überraschenden und unerwünschten Effekten**

- Um das notwendige Verständnis zu erlangen, müssen...
 - die Systeme untersucht werden
 - die relevanten Merkmale der Systeme identifiziert werden
 - das System bezogen auf seine relevanten Eigenschaften klar, eindeutig und abstrakt beschrieben werden

Das Problem:

Ausgehend von der äußeren Erscheinungsform der Systeme ist eine solche Beschreibung schwierig zu erstellen

0 Hinführung zum Vorlesungsthema

So sehen die zu untersuchenden Systeme in Unternehmen zunächst aus:

0 Hinführung zum Vorlesungsthema

Oder so:

Systemanalyse

9

• Die Aufgabe, vor der wir bei einer Systemanalyse stehen:

Aus so:

Mach so:

Reales, konkretes System

Abstraktes Modell (als Abbildung des Systems)

1.1 Gegenstand und Ziele der Systemanalyse

- Systemanalyse...
 - ...ist eine universelle Vorgehensweise, die zur Untersuchung von Systemen
 - •...in verschiedenen Anwendungsbereichen...
 - ...mit unterschiedlichen Zielen eingesetzt werden kann
 - ...ermöglicht ein umfassendes Verständnis für komplexe Systeme
 - ...schafft die Voraussetzung für eine gezielte (Um-)Gestaltung von Systemen

1.1 Gegenstand und Ziele der Systemanalyse

Im Fokus hier:

Informationssysteme in Unternehmen

- Definition "Informationssystem":
 System, in dem die Aktivitäten der Systembestandteile in der Aufnahme, Verarbeitung und Weitergabe von Informationen bestehen
- In Unternehmen grobe Unterscheidung in:
 - Dispositive Informationssysteme:
 Versorgen die Unternehmensleitung und das h\u00f6here Management mit Informationen
 - Operative Informationssysteme:
 Liefern Informationen für strukturierte, determinierte Prozesse auf der operativen Ebene (Routineaufgaben)
- Häufiger Anlass für Systemanalysen in Unternehmen:
 Vorbereitung der Neu- oder Weiterentwicklung eines
 Informationssystems, Ermittlung der fachlichen Anforderungen

1.1 Gegenstand und Ziele der Systemanalyse

1.1 Gegenstand und Ziele der Systemanalyse

- Ergebnis der Systemanalyse ist eine System-Spezifikation
- Eine System-Spezifikation besteht aus einem Satz von Darstellungen, die das (zu entwickelnde) System so wiedergeben, dass
 - die fachlich/inhaltlichen Zusammenhänge und Anforderungen korrekt und vollständig beschrieben werden
 - die an der Entwicklung beteiligten Personen ein gemeinsames Verständnis des Systems entwickeln und darüber kommunizieren können
 - noch keine bestimmte technische Umsetzung festgeschrieben ist (Implementationsunabhängigkeit) (Vovallen um technischen Neuerungen
- Kern der System-Spezifikation ist ein Modell des betrachteten vorzubeugen Systems (Systemmodell, auch Analysemodell genannt)

1.2 Methodische Grundlagen

W

1.2.1 Systeme

- Definition "System":
 Menge von miteinander in Beziehung stehenden Elementen, die zur Erreichung von definierten Zielen in einem bestimmten Wirkungszusammenhang stehen und gegen die Umwelt abgrenzbar sind.
- Formale Definition:

System S = (E, R), E endliche nicht-leere Menge von Elementen e \in E sind die Systemelemente Relation R \subset E x E zur Repräsentation der Zusammenhänge zwischen Systemelementen

- Systemelemente sind Träger von Eigenschaften
- Ein r ∈ R beschreibt einen Wirkungszusammenhang zwischen einem Element e1 und einem Element e2, der die Eigenschaften der Elemente betrifft

1.2 Methodische Grundlagen

W

1.2.1 Systeme

- Beispiele für Systeme:
 - Unternehmensorganisation

E: Menge der Mitarbeiter

R: Weisungsbefugnisse oder Weitergabe von Informationen

oder

E: Menge der Abteilungen

R: Weitergabe von Informationen

Geschäftsprozesse

E: Aktivitäten

R: Ablauflogik/Reihenfolge der Aktivitäten

Lagerlogistik

E: Lagerstandorte

R: Transportwege/-beziehungen

1.2.1.1 Wichtige Systemmerkmale

- Systemstruktur
 - Stellung der Systemelemente zueinander, die sich durch die Relationen zwischen den Elementen ergibt (Ordnung der Elemente) Beispiele auf d. nachstern Seite
- Systemkomplexität
 - Anzahl und Variationsbreite der Beziehungen zwischen den Elementen des Systems
 - Berechnung quantitativer Komplexitätsmaße auf der Basis der Anzahl der Elemente und der Verbindungen
 - Beispiel für (einfache) Kennzahl:

Strukturelle Komplexität K:

$$K = \frac{n_R}{n_E}$$

mit n_R als Anzahl der Relationen und n_F als Anzahl der Elemente

Beispiele Systemstruktur

1. (e₁) (e₂) (e₂) (e₃) (e₃) (e₃)

3.

System - Komplexität

1. K=1

2. K= 45 = 0.8

3. K= 4 · 1,5

1.2.1.1 Wichtige Systemmerkmale

Systemgrenze

- Trennlinie zwischen dem System und seiner Umgebung
- Bei offenen Systemen bestehen Austauschbeziehungen zwischen Systemelementen und der Systemumgebung, bei geschlossenen Systemen fehlen diese
- Geschlossene Systeme in der Praxis sehr selten

Systemzustand

- Menge der Eigenschaftsausprägungen aller Systemelemente zu einem Zeitpunkt
- Evtl. Auswahl von Eigenschaften, die als Zustandsgrößen betrachtet werden

W

1.2.1.1 Wichtige Systemmerkmale

- Systemverhalten
 - Durchlaufen von Systemzuständen im Zeitverlauf
 - Wesentliche Ausprägungen:
 - Statische Systeme: Beispiel Periodensystem: Zuodnung d. Elemente ist fest kein Systemverhalten, Systemzustand unveränderlich
 - Dynamische Systeme: Lander Frage de Zeitbetrachtung (auch de Periodensystem Systemverhalten, Zustandsfolgen werden durchlaufen kann verändert werden)
 - Deterministische Systeme: feste Gesetzmäßigkeiten Systemverhalten in gleichen Situationen immer gleich
 - •Stochastische Systeme: Systemverhalten durch relative Häufigkeiten charakterisiert
 - •Stabile Systeme: Systemverhalten weitgehend unabhängig von externen Störungen
 - Instabile Systeme:
 Systemverhalten verändert sich nach externen Störungen grundlegend
 - Kybernetische Systeme: Struffur auf de nädsten Seite Systeme mit Regelkreis (Rückkopplung) in Systemstruktur: Stabilität durch Regelung, auch bei Störeinflüssen

Grundstruktur kybernetischer Systeme

Legende:

- · I Input
- · O Output
- · X Regel
- · Y Stellgröße
- · F Führungsgröße
- · S Storgroße (Einflüsse aus d. Umwelt)

Hinweis:

· Stouttur durch Rückkopplung gekennzeichnet.

1.2.1.1 Wichtige Systemmerkmale

- Charakteristika von Informationssystemen in Unternehmen:
 - Umfangreich (große Zahl an Systemelementen)
 - Komplex (vielfältige Beziehungen zwischen Systemelementen)
 - Dynamisch
 - Instabil (störanfällig)
 - Stochastisch (Verhalten variiert zufällig)
- Diese Charakteristika erschweren die Systemanalyse
- Abgrenzung von Subsystemen als Mittel zur Bewältigung zu hoher Komplexität/zu großen Umfangs

1.2.1.2 Subsystembildung

- Subsysteme: Ausschnitte eines Systems, die auf h\u00f6herer Aggregationsebene als Elemente betrachtet werden k\u00f6nnen
- Ausbildung einer Systemhierarchie mit übergeordneten und untergeordneten Systemen
- Identifizierung/Festlegung der Schnittstellen zwischen Subsystemen notwendig
- Jedes Subsystem als Untersuchungsgegenstand einer (separaten)
 Systemanalyse

1.2.1.2 Subsystembildung

Beispiel Subsystembildung (Top-Down): (Verbindungen exemplarisch)

1.2 Methodische Grundlagen

(M)

1.2.2 Modelle

- Modelle...
 - ...bilden Systeme ab (homomorphe Abbildung) und beschreiben die Systeme mit ihren relevanten Eigenschaften
 - ...bilden Systeme in Abhängigkeit vom Modellzweck auf unterschiedliche Weise ab
 - ...dienen der Reduzierung von Komplexität durch Anwendung der Prinzipien der Abstraktion, Idealisierung, Aggregation
 - ...sind wesentliche Arbeitsergebnisse der Systemanalyse
 - ...treten bei der Bearbeitung von Systemen an deren Stelle
 - ... entstehen durch den Vorgang der Modellierung (vgl. Abschn. 1.2.3.2)

Die Rolle von Modeller in d. Systemanalyse

1.2 Methodische Grundlagen

1.2.3 Grundsätzliche Vorgehensweise der Systemanalyse

- Die Vorgehensweise ist heuristisch und in weiten Teilen nicht formalisierbar
- Verschiedene methodische Ansätze helfen, eine angemessene Vorgehensweise zu wählen
- Genereller Nutzen der systemanalytischen Methoden: Heuristische Herangeheusw.
 - Leitlinien für eine angemessene Vorgehensweise bei der Analyse
 - Hilfsmittel zur Bewältigung der Komplexität bei der Untersuchung von Systemen
 - Sicherstellung eines qualitativ hochwertigen Analyseergebnisses
- Zwei generelle Vorgehensstrategien bei allen methodischen Ansätzen der Systemanalyse:
 - Zerlegung: Identifizierung/Abgrenzung der wesentlichen Bestandteile des Systems (Systemelemente)
 - Modellierung:
 Erzeugung einer vereinfachten Abbildung des Systems

1.2.3.1 Zerlegung

- Ziel: Identifikation/Abgrenzung der Systemelemente
- Typische Zerlegungsstrategien der Systemanalyse bei der Untersuchung von Informationssystemen:
 - Funktionsorientierte Zerlegung:
 Welche Funktionen stellt das System bereit und aus welche Teilfunktionen sind diese aufgebaut?
 - Datenorientierte Zerlegung:
 Welche Daten werden verarbeitet oder gespeichert und aus welchen Teil-Strukturen sind diese zusammengesetzt?
 - Ereignisorientierte Zerlegung: Auf welche Ereignisse muss ein System (geplant) reagieren?
 - Objektorientierte Zerlegung:
 Welche Objekte existieren und wie sind die Beziehungen untereinander (Klassenbildung, Vererbung, Botschaften)
- Eingesetzte Zerlegungsstrategie ist vom methodischen Ansatz abhängig, der bei der Analyse zur Anwendung kommt

(K)

1.2.3.2 Modellierung

- Modellierung erzeugt eine zielorientierte Abbildung/Beschreibung der Systeme
- Wesentliche Merkmale der Modellierung
 - Trennung zwischen relevanten und irrelevanten Systemmerkmalen, Vernachlässigung aller irrelevanter Systemeigenschaften
 - Abstraktion von konkreter Erscheinungsform, Konzentration auf den logisch/fachlichen Kern
 - Repräsentation des Modells in geeigneter Form
 - •Zu Zwecken der Dokumentation und Kommunikation
 - Zu Zwecken der Manipulation des Modells/Systems
- Vorteile der Existenz von Modellen:
 - Sequenzialisierung der mentalen Erfassung
 - Gezielte Vereinfachung der Systemzusammenhänge
 - (Verbesserte) Möglichkeiten der Beobachtung u. Veränderung

(K)

1.2.3.3 Arbeitsphasen

- Durchführung einer Voruntersuchung
 - Grobe Abgrenzung des Systems, Abschätzung des Systemumfangs und seiner Komplexität, grobe Aufwandsschätzung
 - Ergebnis: Entscheidung für/gegen Durchführung einer aufwendigen Systemanalyse
- Entwicklung eines Vorgehensplans
 - Definition des Untersuchungsauftrages
 - •Entscheidung über Umfang der Untersuchung:
 - -Totalanalyse vs. Partialanalyse
 - Entscheidung über Detaillierungsgrad der Untersuchung:
 - -Grob-, Fein-, Detailanalysen
 - Erste Auswahl der einzusetzenden Methoden/Techniken
 - Zeitliche/personelle/finanzielle Planung der Aktivitäten
- Durchführung der Systemanalyse im engeren Sinne
 - Systemaufnahme
 - Systemmodellierung

1.2.3.3 Arbeitsphasen

2 Systemaufnahme

2.1 Techniken der Informationsgewinnung

- Ziel der Informationsgewinnung:
 Eine Informationsbasis schaffen, die eine angemessene Modellierung des Systems erlaubt
- Zwei wesentliche Informationsquellen
 - Personen, die Kenntnisse über das System besitzen
 - Dokumente, in denen Eigenschaften des Systems beschrieben sind
- Zusätzlich von Bedeutung: Abfragen/Auswerten von Daten in IT-Systemen, insbes. in CRM- und ERP-Systemen
 - Großer Informationsbestand, aber (für externe Analytiker) meist schwierig zugänglich
 - Massive Unterstützung durch Mitarbeiter im analysierten Unternehmen erforderlich

2.1 Techniken der Informationsgewinnung

W

2.1.1 Personenbezogene Techniken

- Erstes Problem:
 Identifizieren von Personen mit relevanten Kenntnissen ("Informanten")
- Ziel der personenbezogenen Informationsgewinnung:

 Primärer Ansatz der personenbezogenen Informationsgewinnung: Stellen von Fragen (insbes. "W-Fragen")

2.1.1 Personenbezogene Techniken

W

2.1.1.1 Interview-Technik

- Direkte mündliche Befragung eines Aufgaben-/ Kompetenzträgers durch den Analytiker
- Unterscheidung von standardisierten, teil-standardisierten und freien Interviews
- Spezielle Ausprägungen
 - Gruppeninterview:
 Gleichzeitige Befragung mehrerer Personen
 - Konferenz:
 Zahlreiche Teilnehmer, die vorbereitete Fragestellungen diskutieren, i.d.R. mit Moderation
- Gute Vorbereitung der Interviews erforderlich (siehe "Leitlinien zur Durchführung von Interviews")

2.1.1 Personenbezogene Techniken

2.1.1.1 Interview-Technik

Vorteile

- Qualitative/bewertende Faktoren können gut erfasst werden
- Missverständnisse hinsichtlich der Fragestellung werden vermieden
- Hohe Effektivität der Informationsgewinnung
- Eindruck einer Einbeziehung in Entwicklung beim Befragten

Nachteile

- Hoher Aufwand für Analytiker und Befragten
- Subjektivität und psychologische Rahmenbedingungen
- Beschränkung auf mental präsente Informationen, umfangreiche Faktendaten schlecht zu erfassen
- Schwierige Dokumentation der Ergebnisse

2.1.1 Personenbezogene Techniken 2.1.1.2 Fragebogen-Technik

- Beantwortung von Fragen in schriftlicher Form, ohne persönlichen Kontakt zwischen Befragtem und Analytiker
- Aufgrund der Parallelität der Beantwortung Informationsgewinnung auf breiter Basis möglich
- Fragen müssen äußerst präzise sein, um Fehlinterpretationen zu vermeiden
- Tendenziell mehr geschlossene Fragen als bei Interviews
- Standardfragebögen oder spezifische Fragebögen, abhängig von der Personengruppe, evtl. kombiniert
- Fragebögen sowohl auf Papier als auch als Web-Formulare zu realisieren
- Erprobung von Fragebögen im kleineren Kreis sinnvoll
- Geplante Auswertung muss Art der Fragen prägen

2.1.1.2 Fragebogen-Technik

- Kombination mit Interviews sinnvoll (vgl. Abschn. 2.1.3)
 - Interviews vorab zur Entwicklung von Fragen
 - Interviews nachschaltet zur Vertiefung der Erkenntnisse
- Spezifische Ausprägungen:
 - Delphi-Technik
 - Für abgegrenzte Problem-/Personenkreise
 - Informationsgewinnung zu schwierigen Abschätzungen/Bewertungen
 - Berichtstechnik
 - Ausführliche Beschreibung von thematisch eingegrenzten Sachverhalten
 - Weitergehende Formfreiheit
 - •Begrenzung auf höhere Hierarchieebenen

2.1.1.2 Fragebogen-Technik

Vorteile

- Parallelisierung der Informationsgewinnung
- Für Analytiker weniger zeitintensiv als Interviews, großer Kreis von Befragten möglich
- Keine zusätzliche Dokumentation erforderlich
- (Evtl.) Auswertung mit statistischen Verfahren möglich

Nachteile

- Häufig später/geringer Rücklauf (Effektivität eingeschränkt)
- Missverständnisse nicht korrigierbar
- Evtl. Probleme der Interpretation der Angaben

2.1.1.3 Beobachtung

- Aufnehmen von Sachverhalten und Prozessen durch sinnliche Wahrnehmung
- Weitgehender Verzicht auf Kommunikation mit den beobachteten Personen
- Zwei Realisierungsformen
 - Dauerbeobachtung über einen längeren, aber sinnvoll abgegrenzten Zeitraum
 - Multimomentverfahren, Beobachtung nur zu einzelnen (zufälligen) Zeitpunkten
- Im administrativen Bereich nur in ausgewählten Situationen sinnvoll, häufiger im Produktionsbereich eingesetzt
- Selbstbeobachtung/Selbstaufschreibung als Sonderform
- Messungen (z.B. Bearbeitungszeiten) während der Beobachtung als Grundlage für quantitative Aussagen

2.1.1.3 Beobachtung

Vorteile

- Keine (verfälschende) Kommunikation erforderlich
- Hohe Effektivität der Informationsgewinnung
- Zeitliche/quantitative Aspekte gut zu erfassen
- Keine Störung des Arbeitsablaufes

Nachteile

- Hoher zeitlicher Aufwand für den Analytiker
- Relativ kleines Spektrum an beobachtbaren Sachverhalten
- Beobachtungssituation für Beobachteten unangenehm

2.1 Techniken der Informationsgewinnung

2.1.2 Dokumentbezogene Techniken

- "Dokument" hier im weitesten Sinne zu verstehen: Abgrenzbare Einheit von abgelegten (gespeicherten) Informationen
 - Abgrenzung häufig thematisch geprägt
 - Unabhängig vom Medium des Dokuments
 - Papierbasierte Dokumente
 - Elektronische Dokumente
- Evtl. maschinelle Auswertung möglich
- Auch "inoffizielle" Dokumente von Relevanz (häufig aktueller als offizielle Dokumente)

2.1.2 Dokumentbezogene Techniken

2.1.2.1 Inventurtechnik

- Ableitung von Informationen aus Dokumenten mit direktem Bezug zum untersuchten System
- Identifikation von relevanten Dokumenten bzw. Dokumentbeständen als primäres (großes) Problem
- Zugriff auf Dokumente als weiteres Problem (Vertraulichkeit, Geheimhaltung, Zugriffsrechte auf IT-Systeme)
- Vorlauf mit personenbezogenen Techniken erforderlich
- Beispiele für relevante Dokumenttypen:
 - Organisations- und Aufgabenpläne
 - Arbeits-/Verfahrensanweisungen
 - Formulare
 - Berichte, Statistiken
 - System-/Programmdokumentation
 - Unternehmens-Wiki
 - Dokumentenmanagementsysteme
 - Auch inoffizielle Dokumente (z.B. Notizen von Mitarbeitern)

2.1.2 Dokumentbezogene Techniken

2.1.2.1 Inventurtechnik

Vorteile

- Wenig Störung des Arbeitsablaufes
- Reduzierung des Erfassungsaufwandes, Vermeidung von Mehrfacherfassung
- Gute Erfassung von Zahlendaten u. statischen Strukturen

Nachteile

- Qualität, insbes. Aktualität der Dokumente für Externe schwer zu beurteilen
- Prozesse/Abläufe häufig schlecht nachvollziehbar (Ausnahme: Geschäftsprozessmodelle)

2.1.2 Dokumentbezogene Techniken

2.1.2.2 Quellenauswertung

- Nutzung von Informationen aus Dokumenten, die außerhalb des Unternehmens vorliegen
- Auswertung von Fachpublikationen zum Thema Gestaltung von Informationssystemen
- Vorteile
 - Einbeziehung von Erfahrungen aus anderen Systementwicklungen
 - Vermeidung von Betriebsblindheit
- Nachteile
 - Qualität, Hintergrund und praktische Relevanz der Aussagen schwer zu beurteilen
 - Anwendbarkeit der Aussagen auf die spezifische Situation nicht immer gegeben (muss gesondert geprüft werden)

2.1 Techniken der Informationsgewinnung

2.1.3 Vorgehensweise

- Entwicklung einer Vorgehensstrategie bei der Informationsgewinnung
- Hauptfrage: Wann soll welche Technik mit welchem Ziel sinnvollerweise eingesetzt werden?
- Identifizieren wesentlicher Informationsquellen als wichtige Vorbereitung
- Begleitend zur Gewinnung der Fachinformationen Erstellung einer Meta-Dokumentation zum Gesamtbestand an erhobenen Informationen

2.1 Techniken der Informationsgewinnung

(A)

2.1.3 Vorgehensweise

- Realisierung eines Phasenkonzeptes
 - Ziel: Informationen aus frühen Phasen zur Verbesserung der Informationsgewinnung in späten Phasen nutzen
 - Zumindest 3 Phasen sinnvoll

Initialisierungsphase: Ermittlung zentraler Problemstellungen und der

nutzbaren Informationsquellen

• Hauptphase: Aufbau eines umfangreichen fachbezogenen

Informationsbestands

•Kontrollphase: Schließen von Lücken, Beseitigen von Unklarheiten

Initialisierungsphase		Hauptphase	Kontrollphase			
	Teilphase 1	Teilphase 2	Teilphase 3			
Freie Interviews		Standardisierte		Interviewtechnik		
Berichtstechnik	Inventur-	Interviews	Fragebogen- technik	Beobachtung		
	technik	Konferenztechnik	LECTITIK	Delphi-Technik		
Quellenauswertung		Delphi-Technik				
Zeitlicher Verlauf der Informationsgewinnung						

2 Systemaufnahme

(A)

2.2 Untersuchungsbereiche

2 Systemaufnahme

2.2 Untersuchungsbereiche

• Zielrichtung der Systemaufnahme in den Untersuchungsbereichen:

Untersuchungsbereich	Wesentliche Erkenntnisziele
Organisation	Zuständigkeiten, Verantwortlichkeiten
Benutzer	Informationsbedarf, -nutzung, Anforderungen
Prozesse	Vorhandene/gewünschte Abläufe, Aufgaben und Verrichtungen sowie deren Zusammenhang
Daten	Vorhandene/verarbeitete (Daten-) Objekte und ihre Attribute
Kommunikation	Übertragung von Daten und Informationen (Art/Kommunikationspartner)

2.2.1 Organisationsanalysen

- Ziel: Identifikation der strukturellen Elemente des Unternehmens als abgrenzbare organisatorische Einheiten
- Meist Einschränkung auf Analyse der *Aufbau*organisation (daher auch als Strukturanalyse bezeichnet)
- Zergliederung des Unternehmens(-bereichs) evtl. bis zu den einzelnen Stellen
- Zu einzelnen Einheiten sind vor allem zu ermitteln:
 - Verantwortlichkeiten
 - Weisungsbefugnisse
 - Zuständigkeiten
 - Berichtspflichten

(A)

2.2.1 Organisationsanalysen

- Organisationsanalyse meist/weitgehend mit Hilfe der Inventurtechnik
- Ergebnisdokumentation in Form von Organigrammen und textuellen Beschreibungen
- Ergebnisse der Organisationsanalyse wichtige Grundlage für die weitere Analyse (insbesondere für deren Strukturierung)

(M)

2.2.2 Benutzeranalysen

- Erkenntnisziel: Vollständiges Bild der bestehenden/gewünschten Informationsversorgung der Benutzer eines Informationssystems einschließlich qualitativer Aspekte (Benutzererwartung)
- Informationsversorgung wird geprägt durch das Verhältnis von Informationsangebot und Informationsbedarf
- Weitere Unterscheidung des Informationsbedarfs:
 - Objektiver Informationsbedarf (notwendige Informationsgrundlage ausgehend von Aufgabenstellung)
 - Subjektiver Informationsbedarf (Informationsnachfrage der Benutzer)

 Probleme der Informationsversorgung durch Diskrepanzen zwischen Informationsangebot und objektivem/subjektivem Informationsbedarf verursacht

2.2.2 Benutzeranalysen

- Benutzer hier primär als Konsumenten von Information betrachtet
- Identifikation von Benutzern bzw. Benutzergruppen als wichtiges Teilziel der Analyse
- Unterscheidung von aktiven Benutzern und passiven Benutzern
 - Kennzeichen aktiver Benutzer: Informationssuche
 - Kennzeichen passiver Benutzer: Informationslieferung

- Aktiver Benutzer stellt Anfrage an Informationssystem, er recherchiert
- Effektivität der Informationssuche eines Benutzers in Informationssystemen wird durch zwei Kriterien bestimmt:
 - Relevanz von Informationen
 - Nachweis von Informationen
- Relevanz ...
 - ... von Informationen für eine Frage-/Problemstellung beruht auf subjektiver Einschätzung des Benutzers
- Nachweis ...
 - ... beschreibt die Lieferung einer Information aus dem Informationssystem aufgrund einer Anfrage des Benutzers

2.2.2.1 Informations suche

- Kennzahlen für Erfolg von Benutzeranfragen in Informationssystemen
 - **Recall** (Ausbeute): Anteil der gelieferten relevanten Informationen an der Gesamtzahl der gespeicherten relevanten Informationen
 - Precision (Genauigkeit): Anteil der gelieferten relevanten Informationen an der Gesamtzahl der gelieferten Informationen
 - Silence:

Anteil relevanter Informationen, die durch eine Anfrage *nicht* gefunden werden, an der Gesamtzahl gespeicherter relevanter Informationen

Noise (Ballast): Informationen, die verwaltet werden, aber weder von Bedeutung sind noch gefunden werden

W

2.2.2.1 Informations suche

 Errechnung der Kennzahlen mit Hilfe der Kriterien "Nachweis" und "Relevanz"

		Relevanz				
		ja nein				
Weis	ja	а	b			
Nachweis	nein	С	d			

a, b, c, d: Anzahl der Informationseinheiten

Gesamtbestand an Informationen (z.B. Anzahl Dokumente):

$$D = a + b + c + d$$

Recall:
$$R = \frac{a}{a+c}$$

Precision:
$$P = \frac{a}{a+b}$$

Silence:
$$S = \frac{c}{a + c}$$

Noise:
$$N = D - (a + b + c) = d$$

2.2.2.2 Informationslieferung

- Automatische Bereitstellung von Informationen für den Benutzer
- Auswahl der zu liefernden Informationen
 - durch Benutzer selbst
 - durch Vorgesetzte/Systemadministratoren
- Wählbare Merkmale der Informationslieferung
 - Gegenstand der Informationen
 - Medium/Darstellung der Informationen
 - Zeitpunkt/Periodizität der Lieferung
 - Evtl. nur Lieferung von Meta-Informationen (z.B. über Verfügbarkeit, Zugriffsmöglichkeiten, Aktualisierung von Informationen)
- Informationslieferung als vordefinierte Informationsnachfrage aufzufassen

2.2.2.3 Benutzererwartung

- Bewusste oder unbewusste Vorstellungen des Benutzers über die qualitative Leistungsfähigkeit des Informationssystems
- Vorstellungen meist durch Aufgaben des Benutzers geprägt
- Vorstellungen erfassbar als Qualitätskriterien mit Gewichtung durch den Benutzer
- Beispiele für Qualitätskriterien:
 - Aktualität der Daten
 - Sicherheit der Daten
 - Verfügbarkeit des Systems
 - Einfache Bedienung
 - Umfangreiche/brauchbare Dokumentation

-

2.2.3 Prozessanalysen

- Ziel: Umfassendes Bild über die Prozesse und ihre Eigenschaften im betrachteten Unternehmen gewinnen
- Prozesse...
 - ...sind eine Folge von logisch zusammenhängenden Aktivitäten zur Erledigung einer Aufgabe (hier im Kontext der Informationsverarbeitung)
 - ...wandeln einen Input nach Transformations- und Ablaufregeln in einen Output um
 - ...brauchen Zeit und andere Ressourcen
 - …leisten einen Beitrag zum System-/ Unternehmensziel
 - ...strukturieren die Abläufe eines Unternehmens in Einheiten, sind Elemente der Ablauforganisation
 - ...sind unabhängig von Abteilungs- und Funktionsgrenzen

W

2.2.3 Prozessanalysen

- Prozesse sind Bestandteile einer größeren (Ablauf-)Struktur:
 - Prozesse sind mit anderen Prozessen verknüpft
 - •Input wird von anderen vorgelagerten Prozessen geliefert
 - Output dient als Input für weitere Prozesse
 - Prozesse bilden eine Hierarchie
 - Prozesse können Teilprozesse beinhalten
 - •Oberste Ebene in Unternehmen: Geschäftsprozesse

2.2.3 Prozessanalysen

- Typisierung von Prozessen nach zahlreichen Kriterien
- Besonders wichtige Unterscheidung im Rahmen der Systemaufnahme:
 - Kontinuierliche, repetitive Prozesse
 - Diskontinuierliche, innovative Prozesse
- Bei der Systemanalyse Konzentration auf kontinuierliche, repetitive Prozesse

ität	Einmalige Fälle für Spezialisten	Regelfälle für Spezialisten
Komplexität Komplexität	Einmalige einfach zu bearbeitende Fälle	Routinefall mit starker Systemunterstützung
	gering	hoch

Häufigkeit und Strukturierung

2.2.3 Prozessanalysen

- Zu erfassende Merkmale von Prozessen:
 - Identifikation, Abgrenzung der einzelnen Prozesse, Prozessziel
 - Ermittlung des Input/Output von Prozessen, bearbeitete "Objekte"
 - Ermitteln der grundsätzlichen Verarbeitungslogik in jedem Prozess (insbes. Reihenfolge u. Auswahl der Aktivitäten/ Verarbeitungsschritte)
 - Beteiligte/verantwortliche Stellen/Mitarbeiter (Process Owner, Process Worker)
 - Ermitteln der eingesetzten Ressourcen (Sachmittel, Formulare, Prozessoren)
 - Ermittlung von Mengen, Kapazitäten, Zeiten im Prozessablauf
 - Bewertung des Prozesses (Wertschöpfung, Häufigkeit, Effektivität, Effizienz etc.)
 - Ermittlung des Zusammenhangs zwischen Prozessen

2.2.3.1 Input-Prozess-Output - Analysen

- Ziel: Identifikation von Prozessen, Überblick über existierende Prozesse und ihre Verknüpfung gewinnen
- Vorgehensweise:
 - Strukturierung der Analyse anhand der EVA-Grundstruktur
 - Aussagekräftige Benennung der Prozesse (Prozessziel muss deutlich werden)
 - Beschreibung der Eingabedaten in Form von Datenobjekten (und ihren Attributen)
 - Beschreibung der Ausgabedaten in Form von Datenobjekten (und ihren Attributen)
 - Keine Betrachtung der Prozessinterna, Prozesse als Black Box betrachten
 - Vorbereitung und Bildung von Prozessketten

2.2.3.2 Analyse der Geschäftslogik/ADAM

- Ziel: Stellen- und verrichtungsbezogene Erfassung/Analyse der prozessbezogenen Bearbeitungs-/Durchlaufzeiten
- Vorgehensweise
 - Auflösung der (Geschäfts-)Prozesse in Prozessschritte (Folgen von Verrichtungen)
 - Beziehung zwischen auftretenden Verrichtungen und ausführenden Stellen herstellen (Bezüge zu Ergebnissen der Organisationsanalysen)
 - Erfassung der jeweils auftretenden Bearbeitungszeiten

2.2.3.2 Analyse der Geschäftslogik/ADAM

- Activity Direction Analysis Method (ADAM):
 Darstellung des Verlaufs der Aktivitätenfolge durch das Unternehmen mit dabei auftretenden Zeiten
- Darstellung z.B. als ADAM-Chart:

	V1	V2	V3	V4	V5	V6
Stelle 1	B ₁₁					
Stelle 2		B ₂₂				
Stelle 3			B ₃₃	B ₃₄		B ₃₆
Stelle 4			_		B ₄₅	

Vn : Verrichtungen

B_{ij} : Bearbeitungszeit an Stelle i für Verrichtung j

• Beispiele ADAM-Chart:

Angebot erstellen (für kundenspezifisches Produkt)

	Anfrage auswerten	Produktions- prozess planen		Herstellungs- kosten ermitteln		Kundenbonität prüfen	Angebot erstellen
Vertrieb	2				1,5		1,5
Produktion		3,5		2			
Lager			0,5				
Buchhaltung						1	_

Angaben in Stunden

Kreditvergabe (vgl. Abschn. 3.7.2)

	Antrag erfassen	Antrag prüfen	Antrag ergänzen	Über Antrag entscheiden
Bankberater	1,5			
Sachbearbeiter		1,5	1 - 48	
Leiter Kredit- abteilung				0,5

Angaben in Stunden

2.2.3.2 Analyse der Geschäftslogik/ADAM

ADAM-Charts in der Praxis vielfältig variiert:

ADAM-Chart zur qualitativen Differenzierung der Zeitanteile an stellenbezogenen Durchlaufzeiten

Zeiten Stellen	В	L	Т	D
S1	1	0.5	1	2.5
\$2 \$3 \$4	2	1	2	5
S3	4	1	2	7
S4	2	0.5	1	3.5
Summe	9	3	6	18

B : Bearbeitungszeiten, L : Liegezeiten, T : Transportzeiten, D : Durchlaufzeiten

- Ziel:
 - Detaillierte, klare Beschreibung komplexer Entscheidungssituationen in den Prozessen
- Vorgehensweise:
 - Prinzip: Verbindung von Bedingungen mit Aktionen
 - Erfassung aller relevanten Entscheidungskriterien und möglichen Ausprägungen der Kriterien (Bedingungen)
 - Auflistung aller möglichen Aktionen und Zuordnung jeder Aktion zu Kriterienkonstellation(en)
 - Tabellarische Darstellung von Wenn-Dann-Beziehungen zu einem bestimmten Sachverhalt (normiert nach DIN 66241)

2.2.3.3 Entscheidungstabellen

• Struktureller Aufbau von Entscheidungstabellen:

	Bedingungs- beschreibung	Ents R1 R2	cheidungsregeln	Rn
Wenn	1. Bedingung		Dedingunge	
>	— Bedingungen —		Bedingungs- indikatoren	
	letzte Bedingung			
	1. Aktion			
Dann	 Aktionen		A1 ()	
	7 (Kuonen		Aktions- indikatoren	
			IIIUIKALUIGII	
	letzte Aktion		.i	

- Feldinhalt der Bedingungsindikatoren: Wahrheitswerte (J/N, 0/1 oder - als Irrelevanzanzeiger für irrelevante Indikatoren)
- Feldinhalte der Aktionsindikatoren: Markierung mit x

2.2.3.3 Entscheidungstabellen

• Beispiel: Entscheidungstabelle zur Nachbestellung von Artikeln

	R 1	2	3	4	S	8 6	R 7	8	9
Lager voll	-	0	0	0	1	1	0	1	0
Unter Mindestbestand	0	1	0	0	0	0	1	0	1
Nachfrage besonders hoch	0	0	1	-	1	0	1	1	1
Lieferschwierigkeiten	0	-	0	1	0	1	0	1	1
Abwarten	X				X	X			
Nachbestellen (LagerkapBest.)		X		X					Х
Nachbest. (KapBest. + 20%)							X		
Nachbestellen (30% d. Kap.)			X					X	
2. Lieferanten (20% zusätzlich)									Х

Inhaltlich vollständig, ohne Redundanz und Widerspruch

2.2.3.3 Entscheidungstabellen

- Wichtige Eigenschaften von Entscheidungstabellen:
 - Vollständigkeit
 - Formal
 - Zu jeder (theoretisch) möglichen Kombination von Bedingungsindikatoren gibt es eine Regel
 - -Anzahl der Regeln: 2 Anzahl der Bedingungen
 - Inhaltlich
 - -Alle praktisch relevanten Bedingungen werden berücksichtigt
 - -Andere (Fehler-)Fälle werden durch einen Else-Teil erfasst
 - Meist formale Unvollständigkeit
 - Widerspruch
 - Gleiche Regeln führen zu unterschiedlichen Aktionen
 - Redundanz
 - Mehrere Regeln führen zu derselben Aktion
 - Evtl. Zusammenfassen der Regeln zu einer Regel,
 Konsolidieren der Tabelle

2.2.3.3 Entscheidungstabellen

- Vorgehensweise zum Konsolidieren einer Entscheidungstabelle
 - Regeln mit identischer Aktion als Kandidaten für Zusammenfassung bzgl. dieser Aktion identifizieren
 - Paarweise Betrachtung der Kandidaten bzgl. ihrer Bedingungsindikatoren:
 - Unterschiedliche Indikatoren nur in 1 Zeile?
 - •Wenn ja:
 - -Regeln zu einer Regel zusammenfassen
 - -Anstelle der unterschiedlichen Indikatoren in zusammengefasster Regel Irrelevanzindikator einsetzen

2.2.3.3 Entscheidungstabellen

- Weitergehend Aspekte von Entscheidungstabellen
 - Erweiterte Entscheidungstabellen
 - Felder der Indikatoren enthalten nicht nur Markierungen, sondern Texte, die die Bedingung bzw. Aktion näher spezifizieren

- Verknüpfungsmöglichkeiten
 - •Mehrere Entscheidungstabellen können verknüpft werden, indem als Aktion die Nutzung einer weiteren Entscheidungstabelle vorgesehen ist
 - Verschiedene "Ablaufstrukturen" sind realisierbar
- Maschinelle Verarbeitung
 - •Programme zu Erstellung, Prüfung und Umsetzung in lauffähige Programm(-teile)

2.2.3.3 Entscheidungstabellen

Vorteile

- Klare, kompakte Darstellung komplizierter logischer Sachverhalte
- Leicht interpretierbar und erlernbar (Kommunikationsmittel!)
- Gute Dokumentationsmöglichkeit
- Gute Kontrollierbarkeit
- Maschinelle Verarbeitung möglich

Nachteile

- Bedingungen und Aktionen müssen inhaltlich vollständig beschrieben werden können
- Weder zwischen verschiedenen Bedingungen noch zwischen unterschiedlichen Aktionen explizite Bezüge abbildbar (z.B. Reihenfolge)
- Reines Beschreibungsverfahren, das keine Bewertung der Bedingungen/Aktionen beinhaltet

2.2.3.4 Entscheidungsbäume

Ziel:

Mehrstufige Abhängigkeiten zwischen Entscheidungen und Aktionen darstellen und evtl. bewerten

Vorgehensweise:

Entscheidungs- und Aktionsmöglichkeiten werden als baumartige

2.2.3.4 Entscheidungsbäume

- Zusätzliche Konzepte (im Vergleich zu Entscheidungstabellen):
 - Abhängigkeiten zwischen Entscheidungen durch Baumstruktur vorgegeben (Reihenfolge, wechselseitiger Ausschluss)
 - Quantifizierung von Entscheidungskonsequenzen durch Zuordnung von Quantitäten zu den Kanten (z.B. Kosten), die über einen Pfad akkumuliert oder gewichtet werden
 - Mischung von Entscheidungs- und Aktionsfolgen

2.2.3.4 Entscheidungsbäume

Beispiel (mit Abhängigkeiten zw. Entscheidungen und Quantifizierung von Entscheidungskonsequenzen): Entscheidungen über Gestaltung der IT-Infrastruktur (bezogen auf Kosten)

(A)

2.2.3.4 Entscheidungsbäume

 Entscheidungsbaum mit gemischter Folge von Entscheidungen und Aktionen:

2.2.4 Kommunikationsanalysen

- Ziel:
 - Überblick über Umfang und Qualität der Kommunikationsbeziehungen zwischen Stellen/Aufgaben gewinnen
- Vorgehensweise:
 - Erfassung von
 - Teilnehmern an Kommunikation (Personen, Abteilungen)
 - existierenden Kommunikationsbeziehungen
 - •quantitativen Merkmalen (Dauer, Häufigkeit, Datenmenge) jeder Kommunikationsbeziehung
 - •qualitativen Merkmalen (Kommunikationskanäle u. -formen, Sicherheit, Rechtzeitigkeit, Kompatibilität...) jeder Kommunikationsbeziehung
 - Dokumentation der erfassten Daten, evtl. ausschnittsweise

Darstellung der Erfassungsergebnisse häufig in Tabellenform

Sender Empf.	S ₁	S ₂	S_3	S ₄	 S _n
E ₁	K ₁₁	K ₂₁	K ₃₁	K ₄₁	K_{n1}
E ₂	K_{12}	K_{22}	K_{32}	K_{42}	K_{n2}
E ₃	K ₁₃	K ₂₂	K_{33}	K_{43}	 K_{n3}
: E _m	K _{1m}	K _{2m}	K _{3m}	K_{4m}	K_{nm}

 K_{xy} : Kommunikationskennwert zwischen Sender x und Empfänger y

Alternativ Darstellung als Kommunikationsgraph

(A)

2.2.5 Datenanalysen

- Ziel: Überblick über vorhandene/benötigte Datenbestände im System gewinnen
- Vorgehensweise:
 - Identifizierung/Abgrenzung/Benennung von relevanten Datenbeständen
 - Erfassung von relevanten Merkmalen zu jedem Datenbestand:
 - Zweck der Datenbestände
 - Zuständige Stelle ("Datenherr")
 - Umfang
 - Speichermedium und -ort
 - Datenstruktur
 - Datenqualität
 - ...
- Festlegungen zur umfassenden Datendokumentation in DIN 66232

