Knowledge graph embeddings a neuro-symbolic perspective

antonio vergari (he/him)

13th Mar 2024 - Advanced Probabilistic Modeling - University of Trento

How to Turn Your Knowledge Graph Embeddings into Generative Models via Probabilistic Circuits

Lorenzo Loconte

University of Edinburgh, UK 1.loconte@sms.ed.ac.uk

Robert Peharz TU Graz, Austria robert.peharz@tugraz.at Nicola Di Mauro

University of Bari, Italy nicola.dimauro@uniba.it

Antonio Vergari

University of Edinburgh, UK avergari@ed.ac.uk

oral presentation at NeurIPS (top 0.6% papers)!

Knowledge graphs

Guo et al., "A Survey on Knowledge Graph-Based Recommender Systems", IEEE Transactions on Knowledge and Data Engineering, 2020

Pan et al., "Unifying Large Language Models and Knowledge Graphs: A Roadmap", <u>ArXiv</u>, 2023 Gogleva et al., "Knowledge Graph-based Recommendation Framework Identifies [...] Resistance in [...] Cell Lung Cancer", bioRxiv, 2021

Knowledge Graphs

- Symptoms
- Proteins Functions

Drugs

```
⟨loxoprofen, treats, pain⟩
⟨ibuprofen, treats, pain⟩
⋮
⟨COX2, regulates, P-prostacyclin⟩
⟨ibuprofen, interacts, COX2⟩
```

Q: \(\lambda\): \(\text{loxoprofen, interacts, ?}\)

Knowledge Graphs


```
⟨loxoprofen, treats, pain⟩
⟨ibuprofen, treats, pain⟩
:
⟨COX2, regulates, P-prostacyclin⟩
⟨ibuprofen, interacts, COX2⟩
```

Q: (loxoprofen, interacts, ?)

KGE Models

SOTA **knowledge graph embeddings** (**KGE**) models

CP, RESCAL, TuckER, ComplEx

define a **score function** $\phi(s,r,o)\in\mathbb{R}$

E.g., for ComplEx:

$$\phi_{\text{ComplEx}}(s, r, o) = \Re(\langle \mathbf{e}_s, \mathbf{w}_r, \overline{\mathbf{e}_o} \rangle)$$

issues?

How to measure confidence of predictions? and compare scores across models

Scores...

they are hard to *interpret and compare* instead!

Scores...

```
\phi(\text{loxprofen, interacts, phosp-acid}) = 2.3
\phi(\text{loxoprofen, interacts, COX2}) = 1.3
\cdots
\phi(\text{paracetamol, treats, fever}) = 42.1
\phi(\text{paracetamol, treats, cancer}) = -0.3
```

but we want calibrated probabilities instead!

issues?

- How to measure confidence of predictions? and compare scores across models
- How to guarantee satisfaction of constraints? and other background knowledge

e.g., ComplEx

Drugs

- Symptoms
- Proteins
- Functions

 $oldsymbol{K}$: only drugs and proteins interact

 \mathcal{A} : $\langle \mathsf{loxoprofen}, \mathsf{interacts}, \mathsf{phosp-acid} \rangle$

A: $\langle loxoprofen, interacts, COX2 \rangle$

e.g., ComplEx

Drugs

- Symptoms
- Proteins
- Functions

 $oldsymbol{K}$: only drugs and proteins interact

 \mathcal{A} : $\langle \mathsf{loxoprofen}, \mathsf{interacts}, \mathsf{phosp-acid} \rangle$

 \mathcal{A} : $\langle \text{loxoprofen, interacts, COX2} \rangle$

issues?

- How to measure confidence of predictions? and compare scores across models
- How to guarantee satisfaction of constraints? and other background knowledge
- How to scale to KGs with millions of entities? by consuming less memory

solution!

- Generative models for KGs (GeKCs) calibrated probabilistic predictions, sampling of new triples
- How to guarantee satisfaction of constraints? and other background knowledge
- How to scale to KGs with millions of entities? by consuming less memory

From KGE Models ...

to probabilistic circuits (PCs)

A grammar for tractable computational graphs

...why PCs?

1. A grammar for tractable models

One formalism to represent many models. #HMMs #Trees #XGBoost, ...

2. Expressiveness

Competitive with intractable models, VAEs, Flow...#hierachical #mixtures #polynomials

From KGE Models ...

$$p(S,R,O) = \underbrace{\frac{1}{Z}}_{\text{Normalisation constant}} \cdot \exp \underbrace{\phi(S,R,O)}_{\text{Negated energy}}$$

$$Z = \sum_{s \in \mathcal{E}, r \in \mathcal{R}, o \in \mathcal{E}} \exp \phi(s, r, o)$$

Computing Z quickly becomes infeasible

bordes2013transe, bordes2013transe, bordes2013transe, bordes2013transe minervini2016efficient, minervini2016efficient, minervini2016efficient, minervini2016efficient

From KGE Models ...

$$p(S,R,O) = \underbrace{\frac{1}{Z}}_{\text{Normalisation constant}} \cdot \exp \underbrace{\phi(S,R,O)}_{\text{Negated energy}}$$

$$Z = \sum_{s \in \mathcal{E}, r \in \mathcal{R}, o \in \mathcal{E}} \exp \phi(s, r, o)$$

Computing Z quickly becomes infeasible

bordes2013transe, bordes2013transe, bordes2013transe, bordes2013transe minervini2016efficient, minervini2016efficient, minervini2016efficient, minervini2016efficient

From EBM Models ...

$$p(S, R, O) = \frac{1}{Z} \cdot \exp \phi(S, R, O)$$

solution remove \exp and ensure $\phi(S, R, O) \ge 0$

From EBM Models ...

$$p(S, R, O) = \frac{1}{Z} \cdot \exp \phi(S, R, O)$$

solution remove \exp and ensure $\phi(S, R, O) \ge 0$

... to probabilistic models

... to Probabilistic Circuits

in two ways

$$p(S, R, O) = \frac{1}{Z} \cdot \phi^{+}(S, R, O)$$

1) Non-negative restriction of computational units,

enforce embeddings to be non-negative

 CP^+

RESCAL⁺ TuckER⁺ ComplEx⁺

... to Probabilistic Circuits

in two ways

$$p(S, R, O) = \frac{1}{Z} \cdot \phi^{2}(S, R, O)$$

II) Squaring the computational graph output

more expressive, no constraining parameters

CP² RESCAL² TuckER² ComplEx²

solution!

...why PCs?

1. A grammar for tractable models

One formalism to represent many models. #HMMs #Trees #XGBoost, ...

2. Expressiveness

Competitive with intractable models, VAEs, Flow...#hierachical #mixtures #polynomials

...why PCs?

1. A grammar for tractable models

One formalism to represent many models. #HMMs #Trees #XGBoost, ...

2. Expressiveness

Competitive with intractable models, VAEs, Flow...#hierachical #mixtures #polynomials

3. Tractability == Structural Properties!!!

Exact computations of reasoning tasks are certified by guaranteeing certain structural properties. #marginals #expectations #MAP, #product ...

Structural properties

smoothness

decomposability

determinism

compatibility

Structural properties

property A

property B

property C

property D

Structural properties

property A

property B

property C

property D

tractable computation of arbitrary integrals

$$p(\mathbf{y}) = \int_{\mathsf{val}(\mathbf{Z})} p(\mathbf{z}, \mathbf{y}) \ d\mathbf{Z}, \quad \forall \mathbf{Y} \subseteq \mathbf{X}, \quad \mathbf{Z} = \mathbf{X} \setminus \mathbf{Y}$$

⇒ **sufficient** and **necessary** conditions for a single feedforward evaluation

⇒ tractable partition function

$$\phi_{ ext{CP}}(s,r,o)\!=\!\sum
olimits_{i=1}^d\mathbf{e}_{si}\mathbf{w}_{ri}\mathbf{e}_{oi}$$

CP⁺ score function

$$\sum_{s \in \mathcal{E}, \ r \in \mathcal{R}, \ o \in \mathcal{E}} \sum
olimits_{i=1}^d \mathbf{e}_{si} \mathbf{w}_{ri} \mathbf{e}_{oi}$$

Summations over triples ...

$$\sum\nolimits_{i = 1}^d {\left({\sum\limits_{s \in \mathcal{E}} {{\mathbf{e}_{si}}} } \right)\left({\sum\limits_{r \in \mathcal{R}} {{\mathbf{w}_{ri}}} } \right)\left({\sum\limits_{o \in \mathcal{E}} {{\mathbf{e}_{oi}}} } \right)}$$

... can be broke down ...

... thus can be done linearly in the number of KG entities !

Learning ...

...by discriminative objectives unified as a weighted pseudo-loglikelihood

$$\mathcal{L}_{\text{PLL}} := \sum\nolimits_{(s,r,o) \in \mathcal{D}} w_s \log p(s \mid r,o) + w_r \log p(r \mid s,o) + w_o \log p(o \mid s,r)$$

...by generative objectives as maximum likelihood

$$\mathcal{L}_{\text{MLE}} := \sum_{(s,r,o) \in \mathcal{D}} \log p(S = s, R = r, O = o)$$

Ruffinelli, Broscheit, and Gemulla, "You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings", , 2020

Learning ...

...by discriminative objectives unified as a weighted pseudo-loglikelihood

$$\mathcal{L}_{\text{PLL}} := \sum\nolimits_{(s,r,o) \in \mathcal{D}} w_s \log p(s \mid r,o) + w_r \log p(r \mid s,o) + w_o \log p(o \mid s,r)$$

...by generative objectives as maximum likelihood

$$\mathcal{L}_{\mathsf{MLE}} := \sum_{(s,r,o) \in \mathcal{D}} \log p(S = s, R = r, O = o)$$

Ruffinelli, Broscheit, and Gemulla, "You CAN Teach an Old Dog New Tricks! On Training Knowledge Graph Embeddings", , 2020

Ok but ... how do they perform ?!

Model	FB15k-237		WN18RR		ogbl-biokg	
	PLL	MLE	PLL	MLE	PLL	MLE
СР	0.310	_	0.105	_	0.831	_
CP^+	0.237	0.230	0.027	0.026	0.496	0.501
CP ²	0.315	0.282	0.104	0.091	0.848	0.829
ComplEx	0.342	_	0.471	_	0.829	_
$ComplEx^{\scriptscriptstyle +}$	0.214	0.205	0.030	0.029	0.503	0.516
ComplEx ²	0.334	0.300	0.420	0.391	0.858	0.840

Sampling Triples $(s, r, o) \sim p(S, R, O)$

A kernel triple distance to measure their quality

Model	FB15	FB15k-237		WN18RR		ogbl-biokg	
Uniform	0.5	0.589		0.766		1.822	
	PLL	MLE	PLL	MLE	PLL	MLE	
ComplEx ⁺	0.336	0.323	0.456	0.478	0.175	0.097	
ComplEx ²	0.326	0.102	0.338	0.278	0.104	0.034	

solution!

- Generative models for KGs (GeKCs) calibrated probabilistic predictions, sampling of new triples
- How to guarantee satisfaction of constraints? and other background knowledge
- How to scale to KGs with millions of entities? by consuming less memory

solution!

- Generative models for KGs (GeKCs) calibrated probabilistic predictions, sampling of new triples
- Provably reliable integration of constraints e.g., domain constraints for relations
- How to scale to KGs with millions of entities? by consuming less memory

Guaranteed satisfaction of constraints

Guaranteed satisfaction of constraints

Guaranteed satisfaction of constraints

Tractable products

exactly compute \mathbf{Z} in time $O(|\mathbf{q}||\mathbf{c}|)$

solution!

- Generative models for KGs (GeKCs) calibrated probabilistic predictions, sampling of new triples
- Provably reliable integration of constraints e.g., domain constraints for relations
- How to scale to KGs with millions of entities? by consuming less memory

solution!

- Generative models for KGs (GeKCs)
 calibrated probabilistic predictions, sampling of new triples
- Provably reliable integration of constraints e.g., domain constraints for relations
- Scaling to very large batch sizes greatly speed-up training

Scaling training

on KGs with millions of entities

