Aufgabe 1

Betrachtet wird eine Familie verallgemeinerter Kreise in $\mathbb{P}_1(\mathbb{C}) = \mathbb{C} \cup \{\infty\}$ mit besonderer Lage in \mathbb{C} und eine Möbiustransformation $\mathbb{P}(A), A \in Sl_2(\mathbb{C})$. Die Bildfamilie in \mathbb{C} unter $\mathbb{P}(A)$ sieht wie folgt aus, wenn die Familie in \mathbb{C} ...

1. ... aus parallelen Geraden besteht und...

(a)
$$\mathbb{P}(A)(\infty) = \infty$$
.

Der unendlich ferne Punkt wird auf sich selbst abgebildet. Folglich schneiden sich parallele Geraden nach der Möbiustransformation wieder im unendlich fernen Punkt und sich in $\mathbb C$ parallel.

(b)
$$\mathbb{P}(A)(\infty) \neq \infty$$
.

Die parallelen Geraden schneiden sich im unendlich fernen Punkt. Dieser wird nun nicht auf sich selbst abgebildet. Die vK schneiden sich somit in genau einem Punkt in \mathbb{C} .

2. ... aus allen Geraden durch z_0 besteht und $\mathbb{P}(A)(z_0) = \infty$

Die Geraden schneiden sich in z_0 . Dieser wird auf den unendlich fernen Punkt abgebildet. Folglich schneiden sich die Bilder der Geraden nur im unendlich Fernen Punkt und sind demnach parallel.

3. ... aus allen Kreisen durch $z_1 \neq z_z$ besteht und $\mathbb{C}(A)(z_1) = \infty$

Alle Kreise schneiden sich in zwei Punkten, von denen einer auf den unendlich fernen Punkt abgebildet wird. Folglich schneiden sich die Bilder in genau einem Punkt in \mathbb{C} .

4. ... aus allen Kreisen besteht, die sich nur in Z_1 schneiden und $\mathbb{P}(A)(z_1)=\infty$

Geometrie P.Gepperth, S.Jung Blatt 12 Gruppe 4

Die Kreise schneiden sich in genau einem Punkt, welcher auf den unendlich fernen Punkt abgebildet wird. Folglich schneiden sich die Bilder im unendlich fernen Punkt und besitzen in $\mathbb C$ keine weiteren Schnittpunkte. Folglich sind die Bilder parallele Geraden in $\mathbb C$.