Final Project

- V0 & Optimization

Computing Memory Architecture Lab.

Github Repository

https://github.com/tahsd/hsd21_project

Final Term Project Notification

Term Project V0 & Optimization

- Term Project V0
 - Implement 8x8 Matrix-Matrix multiplication accelerator
- Term Project Optimized Version (Optional)
 - Optimize your work

Optimization methods

- We suggest three ways to optimize your work : DMA / Quantization / Zero Ski pping
- DMA
 - It boots data transfer speed between DRAM and BRAM.
- Quantization
 - Quantize both your activation and weights to 8-bit integer.
- Zero-Skipping
 - Avoid multiplication with zeroes to save computation time

Optimization (1) Quantization

Modify your SW/HW codes for INT8 quantization.

- Upgrade your IP
 - Switch 32b DSP with 8b integer multiply-adder
 - Recall lab3: multadd IP
 - Dataset and CNN model will be given in INT8 format
- Report the results
 - Performance gain
 - Compare computation time between fp32 and INT8 ver.
 - Utilization
 - After implementation

Optimization (2) Zero-skip

- Modify your SW/HW codes for zero-skipping.
 - Reduce zero data operations
 - Zero data transmission is redundant
 - Zero data calculation is redundant
- Report the results
 - Performance gain
 - Compare computation time between and after each project
 - Utilization
 - If you modify hardware

Optimization (3) DMA

- Try to build your system with DMA
 - Modify the SW codes and HW block design
- Report the results
 - Performance gain
 - Compare computation time between and after each project

Rules for optimization

- You can try more than one optimization, but do not apply multiple optimizations at the same time.
- If you have done quantization & DMA, for example, submit thre e verions of your work.
 - V0 (Baseline)
 - V0 + quantization
 - -V0 + DMA
 - You should include the same V0 for all the versions.

Each version of your work will be evaluated independently.

Schedule

- Important schedule
 - 5/31 : Final exam
 - 6/2 : Interim submission
 - 6/19 : Final submission

Scoring Criteria

Implementation

- Baseline
- Once you succeed any implementation of those optimizing methods, you will get additional score regardless its performance.

Inference time

- Baseline
- You will be scored on the speed gain by using each optimizing method.

Accuracy

- Baseline
- Accuracy should be robust enough to quantization and zero-skipping.

Report

Report

- Explain SW/HW System that you implemented.
- It is sufficient to include only project-specific contents.
- You must include the results and analysis of your work
 - inference time, total_image, accuracy, etc.
- If you implement any optimized version, compare the results between V0 and the optimized one and include your analysis in the report.
- Your submission should reproduce the same result as in the report.
- Either in Korean or in English
- # of pages does not matter
- PDF only!!

Final Term Project Notification

- Requirements
 - Result
 - Attach all the HW/SW project folders and the bitstream file for the V0 version.
 - If you have implemented optimized ones, attach them additionally. (Refer to Slide 7)
 - Attach a video that can show the results
 - Below is a description of the scenario in which you take a video
 - 1. Keep the camera away and make sure your host computer and ZedBoard are all visible
 - 2. Turn on your ZedBoard
 - 3. Zoom that camera into the host monitor & start minicom
 - 4. Run benchmark.sh
 - Bitstream file's name: "<Team_number>_zynq_<Version>.bit" ex) 7_zynq_V0.bit / 7_zynq_dma.bit
 - Software code folder name: "<Team_number>_SW_<Version>" ex) 7_SW_V0 / 7_SW_dma,
 - Report
 - Result + Report to one .zip file
- Upload (.zip) file on ETL
 - Submit one (.zip) file
 - [Project]name1_name2.zip
 - Due: 6/19(SAT) 23:59
 - No Late Submission