Vision par ordinateur : Approche traditionnelle

Le royaume de la créativité

• Hans Moravec: "it is comparatively easy to make computers exhibit adult level performance on intelligence tests or playing checkers, and difficult or impossible to give them the skills of a one-year-old when it comes to perception and mobility"

Plan

- Définir une image
- Traitements de base
- Taches de haut niveau
 - Un point clé : La représentation
 - Classification
 - Détection
 - Segmentation

Qu'est-ce que la vision?

Percevoir le monde

- Structure 3D
- Composé d'objets
- Efficacement interprété par l'être humain

Info recueillie

- Ensemble de points
- Pixels -> info sur la lumière
- Quantité et contenu spectral/couleur

Comment « voir » les objets ?

- Les objets n'existent pas sur la rétine
- Interprétation -> processus visuel

Qu'est ce qu'une image pour un ordinateur?

Fonction

I(x,y): valeur d'un pixel

dans R en monochrome

dans R³ en couleur

Espaces colorimétriques

Variations

- I(x,y) → I(x,y) + α : luminosité globale
- $I(x,y) \rightarrow \lambda I(x,y)$: changement de contraste
- I(x,y) → I(x+a,y+b) : translation
- I → A.I+b : transformation affine

Traitements de base

Filtrage et amélioration

- Changement de color space
- Thresholding
- Egalisation d'histogramme
- Flou
- Morphologie mathématique

Espaces colorimétriques

Binarisation

Detections de contours

Detections de contours

En 2D

Masques de Sobel

Dérivée selon x : l_x

$$H_1 = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

Dérivée selon y : I_v

$$H_1 = \frac{1}{8} \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \qquad H_2 = \frac{1}{8} \begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Detections de contours

Estimation du gradient

- Norme: $sqrt(I_x^2+I_y^2)$

Direction: atan2(I_y , I_x)

Détections de contours

- Définition
 - Extremas du gradient dans la direction du gradient
 - Zéros du Laplacien
- Filtrage du gradient
 - Suppression des non maxima dans la direction du gradient

Détections de contours : Méthode de Canny

- Suppression du bruit
- Calcul gradient Sobel
- Non maximum suppression
- Seuillage à hysteresis

Détections de contours : Méthode de Canny

Seuillage par hystérésis

Gradients > s₁, connectés à des gradients > s₂

Détections de contours : Méthode de Canny

David Filliat - david.filliat@ensta-paristech.fr

SAR - Vision et perception pour la robotique

Egalisation d'histogramme

Egalisation d'histogramme

$$H(x) = Card\{\mathbf{p} : I(\mathbf{p}) = x\}$$

22 **Institut Pascal**

Histogramme

Histogramme

T. Chateau

24 Institut Pascal

Histogramme

T. Chateau **Institut Pascal**

Egalisation d'histogramme

T. Chateau **Institut Pascal**

Egalisation d'histogramme

$$orall v \in [0..n], eg(v) = rac{V_{max} - V_{min}}{N} C_f(v) + V_{min}$$

27 **Institut Pascal**

Filtrage par convolution

10	5	3
4	5	1
1	1	7

Local image data

0	0	0
0	0.5	0
0	1	0.5

kernel

Modified image data

How to cope with image boundary?

Filtrage par convolution: Crop

Filtrage par convolution: PAD

Filtrage médian (Bruit poivre et sel)

- Robuste
- Non-lineaire
- Chaque pixel est modifié selon la valeur médiane de son voisinage

Filtrage par convolution : Filtre médian

MEDIAN FILTER

Binary image filtering: Mathematical morphology

What can we do with MM?

Remove noise separate shapes compare shapes

Binary image filtering: Mathematical morphology

• Main idea: probe an image with a simple, pre- defined shape, drawing conclusions on how this shape fits or misses the shapes in the image.

• This simple "probe" is called structuring element, and is itself a binary image (i.e., a subset of the space or grid).

Binary image filtering: Mathematical morphology

Basic operators: erosion

Basic operators: dilation

Basic operators: ouverture

Basic operators: fermeture

Un concept important : La représentation

- On veut raisonner sur une image
- Il nous faut trouver des descripteurs
- Pour avoir une représentation
 - -Identifiables dans plusieurs images
 - -Reconnaissables / mouvement caméra
 - -Robustes aux changements de d'éclairage
 - Robustes aux déformations liées au mouvement

Comparaison de points

Trouver le point le plus similaire

– Hypothèse de décalage en translation Comment comparer $I_1(x_1,y_1)$ et $I_2(x_2,y_2)$?

Robustesse changement luminosité / contraste ?

Comparaison de points

Sum of Squared Differences

$$SSD(I_1, x_1, y_1, I_2, x_2, y_2) = \sum_{i=-n}^{n} \sum_{j=-p}^{p} (I_1(x_1+i, y_1+j) - I_2(x_2+i, y_2+j))^2$$

Cross corrélation

Invariance / luminosité et contraste

$$NCC(I_1, x_1, y_1, I_2, x_2, y_2) =$$

$$\sum_{i,j} (I_1(x_1+i,y_1+j) - \overline{I_1(x_1,y_1)}) (I_2(x_2+i,y_2+j) - \overline{I_2(x_2,y_2)})$$

$$\sqrt{\sum_{i,j} (I_1(x_1+i,y_1+j) - \overline{I_1(x_1,y_1)})^2 \sum_{i,j} (I_2(x_2+i,y_2+j) - \overline{I_2(x_2,y_2)})^2}$$

Application : stéréo-vision

Gauche Droite Disparité Validité? GAR - Vision et perception pour la robotique $d = x^l - x^r$

Comparaison de points

Trouver le point le plus similaire

– Translation -> SSD

Comment reconnaître un point après rotation?

Descripteurs SIFT [Lowe99]

Histogramme d'orientation du gradient

- Orientation de référence

Histogramme des orientations

Descripteurs SIFT [Lowe99]

Histogramme d'orientation du gradient

- 4x4 fenêtres
- Histogrammes sur 8 directions
- Pondération gaussienne autour du centre
- Dimension 128

Invariance au changement d'échelle

Trouver des point similaires quelque soit l'échelle

- Translation -> SSD
- Rotation -> orientation de référence
 Comment comparer des points à des échelles différentes ?

Détection d'échelle de référence

Analyse par fonction de signature

SAR - Vision et perception pour la robotique

Détection de « blobs »

Détection d'échelle avec fonction en « cloche »

Recherche de points au centre de « blobs »

Détection par différence de gaussiennes

Implémentation optimisée

Exemples de correspondances

Brown, ICCV 2003

Hough Transform

- Origin: Detection of straight lines in clutter
 - Basic idea: each candidate point votes for all lines that it is consistent with.
 - > Votes are accumulated in quantized array
 - Local maxima correspond to candidate lines

- Representation of a line
 - > Usual form y = a x + b has a singularity around 90°.
 - **Better parameterization:** $x \cos(\theta) + y \sin(\theta) = \rho$

Hough Transform: Noisy Line

- Possible problem: Finding the true maximum
 - > Mean-shift, Gaussian convolution...

Mean-Shift Recherche de max local itératif

RANSAC (RANdom SAmple Consensus)

[Fischler81]

- Randomly choose a minimal subset of data points necessary to fit a model (a sample)
- Points within some distance threshold t of model are a consensus set. Size of consensus set is model's support.
- Repeat for N samples; model with biggest support is most robust fit
 - Points within distance t of best model are inliers
 - Fit final model to all inliers

Slide credit: David Lowe

RANSAC: How many samples? How many samples are needed?

- - > Suppose w is fraction of inliers (points from line).
 - > n points needed to define hypothesis (2 for lines)
 - > k samples chosen.
- Prob. that a single sample of *n* points is correct: w^n
- $(1-w^n)^k$ Prob. that all samples fail is:
- \Rightarrow Choose k high enough to keep this below desired failure rate.

RANSAC: Computed k (p=0.99)

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

- After RANSAC
 RANSAC divides data into inliers and outliers and yields estimate computed from minimal set of inliers
- Improve this initial estimate with estimation over all inliers (e.g. with standard least-squares minimization)
- But this may change inliers, so alternate fitting with reclassification as inlier/outlier

Comparison

Gen. Hough Transform

- Advantages
 - Very effective for recognizing arbitrary shapes or objects
 - Can handle high percentage of outliers (>95%)
 - Extracts groupings from clutter in linear time
- Disadvantages
 - Quantization issues
 - Only practical for small number of dimensions (up to 4)
- Improvements available
 - Probabilistic Extensions

Continuous Voting Space

[Leibe08]

RANSAC

- Advantages
 - General method suited to large range of problems
 - > Easy to implement
 - Independent of number of dimensions
- Disadvantages
 - Only handles moderate number of outliers (<50%)</p>
- Many variants available, e.g.
 - PROSAC: Progressive RANSAC [Chum05]
 - Preemptive RANSAC [Nister05]

Segmentation et detection d'objets

- Ligne de partage des eaux
- Cascade de Haar (Viola Jones detor

En pratique

- Non trivial de faire des opérations basiques de vision
- Problème de robustesse
- Avantage de la compréhension
- Bienvenue dans l'ère du Deep learning (2012)

Quelle heure est t'il?

Et maintenant! TP A vous de jouer?

