

Problema 3. Digueu raonadament si els enunciats següents són certs o falsos:

i) La paraula abababb pertany al llenguatge associat a l'expressió regular $(a + ab)^*$. Fals.

Un llenguatge regular són aquells que són acceptats per autòmats finits.

Ja que la + es la concatenació de conjunts, es pot acceptar la ab o a però la concatenació mai acceptarà una paraula formada per 2 b juntes.

ii) Si L és un llenguatge sobre un alfabet \sum aleshores $L^+L^+=\ L^+.$

Fals.

$$L^*L^* = L^* \text{ però } L^+L^+ = L^2L^*.$$

iii) El llenguatge $L=\{\ 0^n1^n\in\ (0+1)^n\ |\ n\in\ \mathbb{N}\ \}$ és regular.

Un llenguatge regular són aquells que són acceptats per autòmats finits i aquests no poden comptar el número de paraules que li han passat.

No és pot fer un autòmat que contengui el mateix numero de a's i b's.

iv) En el procés del minimització de l'autòmat finit determinista $M = (Q, \{0,1\}, \delta, D, F)$:

les classes d'equivalència \equiv_2 que obtenim són: $\{A,G\},\{D,E\},\{B,C\}$.

Fals.

Per demostrar-ho, minimitzarem aquest autòmat.

 \equiv_0

	Estats no finals	Estats finals
	{A,D,E,G}	{B,C}
1	{A,E,E,E}	{C,C}
0	{B,A,G,C}	{C,C}

 \equiv_1

	Estats no finals	Estats finals
	{D,E} {A,G}	{B,C}
1	{E,E} {A,E}	{C,C}
0	{A,G} {B,C}	{C,C}

 \equiv_2

	Estats no finals	Estats finals
	{D,E} {A} {G}	{B,C}
1	{E,E} {A} {E}	{C,C}
0	{A,G} {B} {C}	{C,C}

Per a la realització d'aquest apartat me he basat en el següent vídeo de youtube que explica la minimització amb taules: https://www.youtube.com/watch?v=Dq2ZvXD8U8w