

شبكههاي عصبي مصنوعي

جلسه چهاردهم: ماشین بردار پشتیبان (۲) (Support Vector Machine = SVM)

$$\begin{aligned} \mathbf{w}^T \mathbf{x}_i + b &\geq 1 \quad \text{for} \quad d_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b &\leq -1 \quad \text{for} \quad d_i = -1 \end{aligned}$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$\begin{aligned} \mathbf{w}^T \mathbf{x}_i + b &\geq 1 \quad \text{for} \quad d_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b &\leq -1 \quad \text{for} \quad d_i = -1 \end{aligned}$$

- این دو شرط را می توان در قالب یک شرط به این فرم نوشت:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$
 for $i = 1,...,N$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$\begin{aligned} \mathbf{w}^T \mathbf{x}_i + b &\geq 1 \quad \text{for} \quad d_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b &\leq -1 \quad \text{for} \quad d_i = -1 \end{aligned}$$

- این دو شرط را می توان در قالب یک شرط به این فرم نوشت:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$
 for $i = 1,...,N$

- در نتیجه:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \ge 0 \quad \text{for } i = 1, ..., N$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$\begin{aligned} \mathbf{w}^T \mathbf{x}_i + b &\geq 1 \quad \text{for} \quad d_i = +1 \\ \mathbf{w}^T \mathbf{x}_i + b &\leq -1 \quad \text{for} \quad d_i = -1 \end{aligned}$$

- این دو شرط را می توان در قالب یک شرط به این فرم نوشت:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$
 for $i = 1,...,N$

- در نتیجه:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \ge 0 \quad \text{for } i = 1, ..., N$$

- برای دادههایی که برروی حاشیه جداسازی قرارمی گیرند

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 = 0$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

را درنظربگیرید.

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

به خاطر بیاورید که مساله بهینهسازی عبارت بود از کلاسهبندی الگوها بهطوری که حاشیه x_2 جداسازی بیشینه شود.

دو الگوی \mathbf{x}_i^+ و \mathbf{x}_i^- که برروی حاشیه جداسازی قراردارند، را درنظربگیرید.

 $(\mathbf{x}_i^+ - \mathbf{x}_i^-)$ این دو بردار برابر است با -

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

- $(\mathbf{x}_i^+ \mathbf{x}_i^-)$ تفاضل این دو بردار برابر است با -
- چنانچه این تفاضل را در بردار نرمال شده w ضرب داخلی کنیم، عرض این حاشیه جداسازی بهدست می آید:

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

- $(\mathbf{x}_i^+ \mathbf{x}_i^-)$ تفاضل این دو بردار برابر است با -
- چنانچه این تفاضل را در بردار نرمال شده w ضرب داخلی کنیم، عرض این حاشیه جداسازی بهدست می آید:

$$\mathbf{x}_i^+ - \mathbf{x}_i^-)^T \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

- $(\mathbf{x}_i^+ \mathbf{x}_i^-)$ تفاضل این دو بردار برابر است با -
- چنانچه این تفاضل را در بردار نرمال شده w ضرب داخلی کنیم، عرض این حاشیه جداسازی بهدست می آید:

width =
$$(\mathbf{x}_i^+ - \mathbf{x}_i^-)^T \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

width = $\frac{2}{\|\mathbf{w}\|}$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

به خاطر بیاورید که مساله بهینهسازی عبارت بود از کلاسهبندی الگوها بهطوری که حاشیه x_2

- $(\mathbf{x}_i^+ \mathbf{x}_i^-)$ تفاضل این دو بردار برابر است با -
- چنانچه این تفاضل را در بردار نرمال شده w ضرب داخلی کنیم، عرض این حاشیه جداسازی بهدست می آید:

width =
$$(\mathbf{x}_i^+ - \mathbf{x}_i^-)^T \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

width = $\frac{2}{\|\mathbf{w}\|}$

$$\min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

به خاطر بیاورید که مساله بهینهسازی عبارت بود از کلاسهبندی الگوها بهطوری که حاشیه x_2

- $(\mathbf{x}_i^+ \mathbf{x}_i^-)$ تفاضل این دو بردار برابر است با -
- چنانچه این تفاضل را در بردار نرمال شده w ضرب داخلی کنیم، عرض این حاشیه جداسازی بهدست می آید:

width =
$$(\mathbf{x}_i^+ - \mathbf{x}_i^-)^T \frac{\mathbf{w}}{\|\mathbf{w}\|}$$

width
$$=\frac{2}{\|\mathbf{w}\|}$$

بیشینه کردن حاشیه جداسازی بین الگوهای مثبت و منفی معادل است با کمینه سازی اندازه بردار w.

 $d_i = +1$

$$\min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$\phi(\mathbf{w}) = \min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 = 0 \quad \text{ for } \quad i = 1,...,N$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$\phi(\mathbf{w}) = \min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 = 0$$
 for $i = 1,...,N$

- مساله بهینهسازی مقید با استفاده از روش لاگرانژ حل می شود:

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$\phi(\mathbf{w}) = \min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 = 0 \quad \text{ for } \quad i = 1,...,N$$

- مساله بهینهسازی مقید با استفاده از روش لاگرانژ حل میشود:

- تابع لاگرانژ

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \left[\left. d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \right] \right.$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$\varphi(\mathbf{w}) = \min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 = 0 \quad \text{ for } \quad i = 1,...,N$$

- مساله بهینهسازی مقید با استفاده از روش لاگرانژ حل میشود:
 - تابع لاگرانژ

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \right]$$

- توجه شود که جمله اول تابع لاگرانژ باید کمینه شود. ولی جمله دوم باید بیشینه شود (بیشینه کردن حاشیه جداسازی یا همان عرض خیابان).

$$\varphi(\mathbf{w}) = \min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 = 0 \quad \text{ for } \quad i = 1,...,N$$

- مساله بهینهسازی مقید با استفاده از روش لاگرانژ حل میشود:
 - تابع لاگرانژ

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \right]$$

- توجه شود که جمله اول تابع لاگرانژ باید کمینه شود. ولی جمله دوم باید بیشینه شود (بیشینه کردن حاشیه جداسازی یا همان عرض خیابان).
 - . یعنی تابع هزینه باید نسبت به ${f w}$ و ${f w}$ کمینه شود ولی نسبت به آلفا بیشینه شود.

$$\varphi(\mathbf{w}) = \min \frac{1}{2} \mathbf{w}^T \mathbf{w}$$

$$d_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 = 0 \quad \text{ for } \quad i = 1,...,N$$

- مساله بهینهسازی مقید با استفاده از روش لاگرانژ حل میشود:
 - تابع لاگرانژ

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \right]$$

- توجه شود که جمله اول تابع لاگرانژ باید کمینه شود. ولی جمله دوم باید بیشینه شود (بیشینه کردن حاشیه جداسازی یا همان عرض خیابان).
 - . یعنی تابع هزینه باید نسبت به ${f w}$ و ${f w}$ کمینه شود ولی نسبت به آلفا بیشینه شود.
 - این مساله باعث بهوجود آمدن نقطه زینی (Saddle Point) می شود.

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \right]$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \Big[d_i(\mathbf{w}^T\mathbf{x}_i+b) - 1\Big]$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \Big[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \Big]$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = 0 \implies \mathbf{w}_o = \sum_{i=1}^{N} \alpha_i d_i \mathbf{x}_i$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \Big[d_i(\mathbf{w}^T\mathbf{x}_i+b) - 1\Big]$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = 0 \implies \mathbf{w}_o = \sum_{i=1}^N \alpha_i d_i \mathbf{x}_i$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial b} = 0 \implies \sum_{i=1}^{N} \alpha_i d_i = 0$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \Big[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \Big]$$

– فعلا از تابع لاگرانژ نسبت به ${f w}$ و ${f w}$ مشتق گرفته و برابر صفر قرار می دهیم:

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = 0 \implies \mathbf{w}_o = \sum_{i=1}^N \alpha_i d_i \mathbf{x}_i$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial b} = 0 \implies \sum_{i=1}^{N} \alpha_i d_i = 0$$

- اگرچه جواب بردار w یکتا است (برطبق محدببودن لاگرانژ) ولی در مورد آلفا نمی توان چنین مطلبی را گفت.

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \right]$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = 0 \implies \mathbf{w}_o = \sum_{i=1}^N \alpha_i d_i \mathbf{x}_i$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial b} = 0 \implies \sum_{i=1}^{N} \alpha_i d_i = 0$$

- اگرچه جواب بردار w یکتا است (برطبق محدببودن لاگرانژ) ولی در مورد آلفا نمی توان چنین مطلبی را گفت.
- بنابراین، برای شروطی که تساوی آنها برآورده نمیشود، باید آلفای نظیر را برابر صفر قرارداد.

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \right]$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = 0 \implies \mathbf{w}_o = \sum_{i=1}^N \alpha_i d_i \mathbf{x}_i$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial b} = 0 \implies \sum_{i=1}^{N} \alpha_i d_i = 0$$

- اگرچه جواب بردار w یکتا است (برطبق محدببودن لاگرانژ) ولی در مورد آلفا نمی توان چنین مطلبی را گفت.
- بنابراین، برای شروطی که تساوی آنها برآورده نمیشود، باید آلفای نظیر را برابر صفر قرارداد.
- به عبارت دیگر، فقط ضرایبی که دقیقا شرط $lpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) 1
 ight] = 0$ را بر آورده می کنند، می توانند مقدار غیر صفر داشته باشند.

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$J(\mathbf{w},b,\alpha) = \frac{1}{2}\mathbf{w}^T\mathbf{w} - \sum\nolimits_{i=1}^N \alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 \right]$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial \mathbf{w}} = 0 \implies \mathbf{w}_o = \sum_{i=1}^N \alpha_i d_i \mathbf{x}_i$$

$$\frac{\partial J(\mathbf{w}, b, \alpha)}{\partial b} = 0 \implies \sum_{i=1}^{N} \alpha_i d_i = 0$$

- اگرچه جواب بردار w یکتا است (برطبق محدببودن لاگرانژ) ولی در مورد آلفا نمی توان چنین مطلبی را گفت.
- بنابراین، برای شروطی که تساوی آنها برآورده نمیشود، باید آلفای نظیر را برابر صفر قرارداد.
- به عبارت دیگر، فقط ضرایبی که دقیقا شرط $\alpha_i \left[d_i(\mathbf{w}^T\mathbf{x}_i + b) 1 \right] = 0$ را بر آورده می کنند، می توانند مقدار غیر صفر داشته باشند.
 - این شروط را شروط کاروش-کان-تاکر (Karush-Kahn-Tucker = KKT) مینامند.

$$J(\mathbf{w}, b, \alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

$$J(\mathbf{w},b,\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- نکته بسیار مهم: تابع لاگرانژ بهینه شده تابعی است از ضرب داخلی بردارهای ورودی.

$$J(\mathbf{w},b,\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- نکته بسیار مهم: تابع لاگرانژ بهینه شده تابعی است از ضرب داخلی بردارهای ورودی.
 - در مورد ابر صفحه بهینه نیز می توان همین امر را مشاهده کرد:

$$J(\mathbf{w},b,\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- نکته بسیار مهم: تابع لاگرانژ بهینه شده تابعی است از ضرب داخلی بردارهای ورودی.
 - در مورد ابر صفحه بهینه نیز می توان همین امر را مشاهده کرد:

$$\mathbf{w}_o^T \mathbf{x} + b_o = 0$$

$$\mathbf{w}_o = \sum_{i=1}^{N} \alpha_i d_i \mathbf{x}_i$$

$$J(\mathbf{w},b,\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- نکته بسیار مهم: تابع لاگرانژ بهینه شده تابعی است از ضرب داخلی بردارهای ورودی.
 - در مورد ابر صفحه بهینه نیز می توان همین امر را مشاهده کرد:

$$\mathbf{w}_{o}^{T}\mathbf{x} + b_{o} = 0$$

$$\mathbf{w}_{o} = \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i}$$

$$\Rightarrow \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b \geq 0 \quad \text{for} \quad d_{i} = +1$$

$$\sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b < 0 \quad \text{for} \quad d_{i} = -1$$

$$J(\mathbf{w},b,\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- نکته بسیار مهم: تابع لاگرانژ بهینه شده تابعی است از ضرب داخلی بردارهای ورودی.
 - در مورد ابر صفحه بهینه نیز می توان همین امر را مشاهده کرد:

$$\mathbf{w}_{o}^{T}\mathbf{x} + b_{o} = 0$$

$$\mathbf{w}_{o} = \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i}$$

$$\Rightarrow \sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b \geq 0 \quad \text{for} \quad d_{i} = +1$$

$$\sum_{i=1}^{N} \alpha_{i} d_{i} \mathbf{x}_{i}^{T} \mathbf{x} + b < 0 \quad \text{for} \quad d_{i} = -1$$

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- برای بهینهسازی نسبت به ضرایب لاگرانژ از «مساله دوگان» (Dual Problem» استفاده می شود.

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- برای بهینهسازی نسبت به ضرایب لاگرانژ از «مساله دوگان» (Dual Problem» استفاده میشود.
 - مساله دوگان همان جواب بهینه مساله اولیه را دارد ولی در آن جواب ضرایب لاگرانژ نیز بهینه است.

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- برای بهینهسازی نسبت به ضرایب لاگرانژ از «مساله دوگان» (Dual Problem» استفاده میشود.
 - مساله دوگان همان جواب بهینه مساله اولیه را دارد ولی در آن جواب ضرایب لاگرانژ نیز بهینه است.
 - قضیه دوگانگی (Duality Theorem) به شکل زیر بیان میشود:

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- برای بهینهسازی نسبت به ضرایب لاگرانژ از «مساله دوگان» (Dual Problem» استفاده میشود.
 - مساله دوگان همان جواب بهینه مساله اولیه را دارد ولی در آن جواب ضرایب لاگرانژ نیز بهینه است.
 - قضیه دوگانگی (Duality Theorem) به شکل زیر بیان میشود:
 - آ-اگر مساله اولیه دارای جواب بهینه باشد، مساله دوگان نیز جواب بهینه دارد و مقادیر بهینه نظیر برابراند.

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- برای بهینهسازی نسبت به ضرایب لاگرانژ از «مساله دوگان» (Dual Problem» استفاده میشود.
 - مساله دوگان همان جواب بهینه مساله اولیه را دارد ولی در آن جواب ضرایب لاگرانژ نیز بهینه است.
 - قضیه دوگانگی (Duality Theorem) به شکل زیر بیان می شود:
 - آ اگر مساله اولیه دارای جواب بهینه باشد، مساله دوگان نیز جواب بهینه دارد و مقادیر بهینه نظیر برابراند.
 - ب- به منظور این که \mathbf{w}_o جواب بهینه اولیه باشد و $\mathbf{\alpha}_i$ جواب بهینه دوگان، لازم و کافی است که \mathbf{w}_o برای مساله اولیه شدنی (feasible) باشد و

$$\phi(\mathbf{w}_o) = J(\mathbf{w}_o, b_o, \alpha_o) = \min_{\mathbf{w}}(\mathbf{w}, b, \alpha)$$

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

برای یافتن $lpha_i$ های بهینه، تابع هزینه بهینهشده برحسب $oldsymbol{w}$ و کرا درنظر بگیرید –

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- برای یافتن α_i های بهینه، تابع هزینه بهینهشده برحسب \mathbf{w} و \mathbf{d} را درنظر بگیرید -

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- مساله دوگان:

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- برای یافتن $lpha_i$ های بهینه، تابع هزینه بهینهشده برحسب $oldsymbol{w}$ و کرا درنظر بگیرید –

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- مساله دوگان:

با توجه به دادههای $\{lpha_i\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ $\{lpha_i\}_{i=1}^N$ به طوری که تابع هزینه بالا را بیشینه کند، با توجه به قیود زیر:

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$\alpha_i \ge 0 \qquad i = 1, \dots, N$$

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- برای یافتن $lpha_i$ های بهینه، تابع هزینه بهینهشده برحسب $oldsymbol{w}$ و کرا درنظر بگیرید –

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

- مساله دوگان:

با توجه به دادههای $\{lpha_i\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ $\{lpha_i\}_{i=1}^N$ به طوری که تابع هزینه بالا را بیشینه کند، با توجه به قیود زیر:

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$\alpha_i \ge 0 \qquad i = 1, \dots, N$$

- توجه کنید که برخلاف مساله بهینهسازی اولیه که بر مبنای تابع لاگرانژ بود، مساله دوگان کاملا برحسب دادههای آموزش است.

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

برای یافتن $lpha_i$ های بهینه، تابع هزینه بهینهشده برحسب f w و b را درنظر بگیرید –

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

– مساله دوگان:

با توجه به دادههای $\{lpha_i\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ $\{lpha_i\}_{i=1}^N$ به طوری که تابع هزینه بالا را بیشینه کند، با توجه به قیود زیر:

$$\begin{split} \sum_{i=1}^{N} & \alpha_i d_i = 0 \\ & \alpha_i \geq 0 \qquad i = 1, \dots, N \end{split}$$

- توجه کنید که برخلاف مساله بهینه سازی اولیه که بر مبنای تابع لاگرانژ بود، مساله دوگان کاملا برحسب داده های آموزش است.
- علاوه بر آن، تابع هزینه که باید بیشینه شود، فقط وابسته به ضرب داخلی الگوهای ورودی است

$$\{\mathbf{x}_i^T\mathbf{x}_j\}_{i,j=1}^N$$

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
 - نکته مهم:

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- نکته مهم: $\mathbf{x}^{(s)}$ زیرمجموعه ای از دادههای آموزش هستند.

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- نکته مهم: $\mathbf{x}^{(s)}$ زیرمجموعه ای از دادههای آموزش هستند.
- بنابراین، با درنظرگرفتن قید $\alpha_i \geq 0$ ، فقط تعدادی از α_i ها غیرصفراند و بقیه صفراند. یعنی این که بردار جواب، حالت پراکنده (sparse) دارد.

- ۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی
- ا نکته مهم: $\mathbf{x}^{(s)}$ زیرمجموعه ای از دادههای آموزش هستند.
- بنابراین، با درنظرگرفتن قید $\alpha_i \geq 0$ ، فقط تعدادی از α_i ها غیرصفراند و بقیه صفراند. یعنی این که بردار جواب، حالت پراکنده (sparse) دارد.
 - با حل مساله بهینه سازی مقید، ضرایب بهینه لاگرانژ $(\alpha_{i.o})$ به دست می آید.

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

- نکته مهم:
- بردارهٔ ی پشتیبان $\mathbf{x}^{(s)}$ زیرمجموعه ای از دادههای آموزش هستند.
- بنابراین، با درنظرگرفتن قید $\alpha_i \geq 0$ ، فقط تعدادی از α_i ها غیرصفراند و بقیه صفراند. یعنی این که بردار جواب، حالت پراکنده (sparse) دارد.
 - با حل مساله بهینه سازی مقید، ضرایب بهینه لاگرانژ $(lpha_{i,o})$ به دست می آید.
 - در نتیجه، بردار وزنها برابر خواهدشد با

$$\mathbf{w}_o = \sum_{i=1}^{Ns} \alpha_{i,o} d_i \mathbf{x}_i$$

تعداد بردارهای پشتیبان (یعنی تعداد ضرایب غیرصفر لاگرانژ) Ns

۱- ابرصفحه بهینه برای الگوهای جداپذیر خطی

- نکته مهم:
- بردارهٔ پشتیبان $\mathbf{x}^{(s)}$ زیرمجموعه ای از دادههای آموزش هستند.
- بنابراین، با درنظر گرفتن قید $\alpha_i \geq 0$ ، فقط تعدادی از α_i ها غیر صفراند و بقیه صفراند. یعنی این که بردار جواب، حالت پراکنده (sparse) دارد.
 - با حل مساله بهینه سازی مقید، ضرایب بهینه لاگرانژ $(lpha_{i,o})$ به دست می آید.
 - در نتیجه، بردار وزنها برابر خواهدشد با

$$\mathbf{w}_o = \sum_{i=1}^{Ns} \alpha_{i,o} d_i \mathbf{x}_i$$

تعداد بردارهای پشتیبان (یعنی تعداد ضرایب غیرصفر Ns

ای محاسبه b_o ها: -

$$\mathbf{w}_o^T \mathbf{x}^{(s)} + b_o = \pm 1 \quad \text{for} \quad d(s) = \pm 1$$
$$b_o = 1 - \sum_{i=1}^{N_s} \alpha_{i,o} d_i \mathbf{x}_i^T \mathbf{x}^{(s)}$$

- ۲- ابرصفحه بهینه برای الگوهای جداناپذیر
- این نقض کردن به دو صورت می تواند اتفاق بیافتد:

- این نقض کردن به دو صورت می تواند اتفاق بیافتد:
- است. حاده (\mathbf{x}_i,d_i) داخل ناحیه جداسازی قرارگرفته ولی در سمت صحیح سطح تصمیم گیری است.

- این نقض کردن به دو صورت می تواند اتفاق بیافتد:
- است. ماحل ناحیه جداسازی قرارگرفته ولی در سمت صحیح سطح تصمیمگیری است. (\mathbf{x}_i,d_i) داخل ناحیه جداسازی قرارگرفته ولی در سمت صحیح سطح
 - است. علط سطح تصمیمگیری قرارگرفته است. $(\mathbf{x}_i\,,d_i)$ در سمت غلط سطح تصمیم

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- برای این حالت، متغیر غیرمنفی $\{\xi_i\}_{i=1}^N$ را به صورت زیر به سطح تصمیم گیری اضافه می کنیم:

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- برای این حالت، متغیر غیرمنفی $\{\xi_i\}_{i=1}^N$ را به صورت زیر به سطح تصمیم گیری اضافه می کنیم:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$
 $i = 1,...,N$

(Slack Variables) متغیرهای شل ξ_i

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- برای این حالت، متغیر غیرمنفی $\{\xi_i\}_{i=1}^N$ را به صورت زیر به سطح تصمیم گیری اضافه می کنیم:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i$$
 $i = 1,...,N$

(Slack Variables) متغیرهای شل ξ_i

داده داخل ناحیه جداسازی ولی در سمت صحیح سطح تصمیم گیری قراردارد $0<\xi_i\leq 1$

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- برای این حالت، متغیر غیرمنفی $\{\xi_i\}_{i=1}^N$ را به صورت زیر به سطح تصمیم گیری اضافه می کنیم:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \qquad i = 1, \dots, N$$

(Slack Variables) متغیرهای شل ξ_i

داده داخل ناحیه جداسازی ولی در سمت صحیح سطح تصمیم گیری قراردارد $0<\xi_i\leq 1$ داده در سمت غلط سطح تصمیم گیری قراردارد $\xi_i>1$

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- برای این حالت، متغیر غیرمنفی $\{\xi_i\}_{i=1}^N$ را به صورت زیر به سطح تصمیم گیری اضافه می کنیم:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \qquad i = 1, \dots, N$$

(Slack Variables) متغیرهای شل ξ_i

داده داخل ناحیه جداسازی ولی در سمت صحیح سطح تصمیم گیری قراردارد $0<\xi_i\leq 1$ داده در سمت غلط سطح تصمیم گیری قراردارد $\xi_i>1$

- در این جا، بردارهای پشتیبان آنهایی هستند که نامعادله بالا را برای $\xi_i>0$ برآورده کنند.

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- برای این حالت، متغیر غیرمنفی $\{\xi_i\}_{i=1}^N$ را به صورت زیر به سطح تصمیم گیری اضافه می کنیم:

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \qquad i = 1, \dots, N$$

(Slack Variables) متغیرهای شل ξ_i

داده داخل ناحیه جداسازی ولی در سمت صحیح سطح تصمیم گیری قراردارد $0<\xi_i\leq 1$ داده در سمت غلط سطح تصمیم گیری قراردارد $\xi_i>1$

- در این جا، بردارهای پشتیبان آنهایی هستند که نامعادله بالا را برای $\xi_i>0$ برآورده کنند.
- بنابراین، بردارهای پشتیبان دقیقا به همان شکل حالت جداپذیر خطی تعریف و تعیین میشوند.

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- هدف یافتن ابرصفحه جداکنندهای است که خطای کلاسهبندی را برای دادههای آموزش کمینه کند:

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- هدف یافتن ابرصفحه جداکنندهای است که خطای کلاسهبندی را برای دادههای آموزش کمینه کند:

$$\phi(\xi) = \sum_{i=1}^{N} I(\xi_i - 1)$$

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- هدف یافتن ابرصفحه جداکنندهای است که خطای کلاسهبندی را برای دادههای آموزش کمینه کند:

$$\phi(\xi) = \sum_{i=1}^{N} I(\xi_i - 1)$$

- این بهنیهسازی با توجه به بردار وزن w، قید

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \qquad i = 1, \dots, N$$

و قید برروی $\|\mathbf{w}\|^2$ انجام میشود و

$$I(\xi) = \begin{cases} 0 & \text{if } \xi \le 0 \\ 1 & \text{if } \xi > 0 \end{cases}$$

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- هدف یافتن ابرصفحه جداکنندهای است که خطای کلاسهبندی را برای دادههای آموزش کمینهکند:

$$\phi(\xi) = \sum_{i=1}^{N} I(\xi_i - 1)$$

- این بهنیهسازی با توجه به بردار وزن w، قید

$$d_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1 - \xi_i \qquad i = 1, \dots, N$$

و قید برروی $\|\mathbf{w}\|^2$ انجام می شود و

$$I(\xi) = \begin{cases} 0 & \text{if } \xi \le 0 \\ 1 & \text{if } \xi > 0 \end{cases}$$

- متاسفانه این کمینهسازی با درنظر گرفتن \mathbf{w} ، مساله بهینهسازی نامحدب است.

- ۲- ابرصفحه بهینه برای الگوهای جداناپذیر
- برای رفع این مشکل، تابع هزینه را بهصورت زیر درنظر می گیریم:

- ۲- ابرصفحه بهینه برای الگوهای جداناپذیر
- برای رفع این مشکل، تابع هزینه را بهصورت زیر درنظر می گیریم:

$$\phi(\xi) = \sum_{i=1}^{N} \xi_i$$

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- برای رفع این مشکل، تابع هزینه را بهصورت زیر درنظر می گیریم:

$$\phi(\xi) = \sum_{i=1}^{N} \xi_i$$

علاوه بر آن، برای بهینهسازی w

$$\phi(\mathbf{w}, \xi) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi_i$$

پارامتر متقابل تنظیم کننده C (Reciprocal Regularization Parameter)

- ۲- ابرصفحه بهینه برای الگوهای جداناپذیر
- برای رفع این مشکل، تابع هزینه را بهصورت زیر درنظر می گیریم:

$$\phi(\xi) = \sum_{i=1}^{N} \xi_i$$

علاوه بر آن، برای بهینهسازی w

$$\phi(\mathbf{w}, \xi) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi_i$$

پارامتر متقابل تنظیم کننده C (Reciprocal Regularization Parameter)

. بزرگ \equiv طراح SVM اعتماد زیادی به دادههای آموزش دارد. C

- ۲- ابرصفحه بهینه برای الگوهای جداناپذیر
- برای رفع این مشکل، تابع هزینه را بهصورت زیر درنظر می گیریم:

$$\phi(\xi) = \sum_{i=1}^{N} \xi_i$$

علاوه بر آن، برای بهینهسازی w

$$\phi(\mathbf{w}, \xi) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi_i$$

- پارامتر متقابل تنظیم کننده C (Reciprocal Regularization Parameter)
- . بزرگ \equiv طراح SVM اعتماد زیادی به دادههای آموزش دارد. C
- . کوچک \equiv داده های آموزش نویزی است و اعتماد کمی باید به آن داشت.

- ۲- ابرصفحه بهینه برای الگوهای جداناپذیر
- برای رفع این مشکل، تابع هزینه را بهصورت زیر درنظر می گیریم:

$$\phi(\xi) = \sum_{i=1}^{N} \xi_i$$

علاوه بر آن، برای بهینهسازی w

$$\phi(\mathbf{w}, \xi) = \frac{1}{2} \mathbf{w}^T \mathbf{w} + C \sum_{i=1}^N \xi_i$$

- پارامتر متقابل تنظیم کننده C (Reciprocal Regularization Parameter)
- . بزرگ \equiv طراح SVM اعتماد زیادی به دادههای آموزش دارد. C
- . کوچک \equiv داده های آموزش نویزی است و اعتماد کمی باید به آن داشت.
 - پارامتر C مصالحهای بین پیچیدگی ماشین و تعداد نقاط جداناپذیر می کند -

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- مساله اولیه برای الگوهای جداناپذیر:

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- مساله اولیه برای الگوهای جداناپذیر: بهینه \mathbf{w} و \mathbf{w} بهطوری $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ ، مطلوب است یافتن مقدار بهینه \mathbf{w} و \mathbf{w} بهطوری که قیود زیررا بر آورده کرده:

$$\begin{aligned} d_i(\mathbf{w}^T \mathbf{x}_i + b) &\geq 1 - \xi_i & i = 1, ..., N \\ \xi_i &> 0 & \forall i \end{aligned}$$

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- مساله اولیه برای الگوهای جداناپذیر:

با توجه به دادههای موجود $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ ، مطلوب است یافتن مقدار بهینه \mathbf{w} و d به طوری که قیود زیررا بر آورده کرده:

$$\begin{aligned} d_i(\mathbf{w}^T\mathbf{x}_i + b) &\geq 1 - \xi_i & i = 1, \dots, N \\ \xi_i &> 0 & \forall i \end{aligned}$$

و بهطوری که بردار w و متغیرهای شُل تابع هزینه زیر را کمینه کنند:

$$J(\mathbf{w},b,\alpha,\xi) = \frac{1}{2}\mathbf{w}^T\mathbf{w} + C\sum\nolimits_{i=1}^N \xi_i - \sum\nolimits_{i=1}^N \alpha_i \Big[\, d_i(\mathbf{w}^T\mathbf{x}_i + b) - 1 + \xi_i \, \Big]$$

که در آن C>0 توسط طراح تعیین میشود.

- ۲- ابرصفحه بهینه برای الگوهای جداناپذیر
- مساله دوگان برای الگوهای جداناپذیر:

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- مساله دوگان برای الگوهای جداناپذیر: با توجه به دادههای موجود $\{ (\mathbf{x}_i, d_i) \}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ $\{ (\mathbf{x}_i, d_i) \}_{i=1}^N$ که تابع هزینه زیر را بیشینه کند:

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- مساله دوگان برای الگوهای جداناپذیر: $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ با توجه به دادههای موجود با

 $\{lpha_i\}_{i=1}^N$ با توجه به دادههای موجود $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ که تابع هزینه زیر را بیشینه کند:

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

با درنظر گرفتن قیود

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$0 \le \alpha_i \le C$$

که در آن C > 0 توسط طراحی تعیین میشود.

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- مساله دوگان برای الگوهای جداناپذیر: $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ با توجه به دادههای موجود

 $\{lpha_i\}_{i=1}^N$ با توجه به دادههای موجود $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ که تابع هزینه زیر را بیشینه کند:

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

با درنظر گرفتن قیود

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$0 \leq \alpha_i \leq C$$

که در آن C > 0 توسط طراحی تعیین میشود.

- توجه کنید:

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- مساله دوگان برای الگوهای جداناپذیر:

 $\{\alpha_i\}_{i=1}^N$ با توجه به دادههای موجود $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ که تابع هزینه زیر را بیشینه کند:

$$\phi(\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

با درنظر گرفتن قیود

$$\sum\nolimits_{i=1}^{N}\alpha_{i}d_{i}=0$$

$$0 \leq \alpha_i \leq C$$

که در آن C > 0 توسط طراحی تعیین میشود.

- توجه کنید:

ا نه ξ_i ها در مساله دوگان ظاهرمی شوند و نه ضرایب لاگرانژ ξ_i

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

مساله دوگان برای الگوهای جداناپذیر:

 $\{\alpha_i\}_{i=1}^N$ با توجه به دادههای موجود $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ که تابع هزینه زیر را بیشینه کند:

$$\phi(\alpha) = \sum\nolimits_{i=1}^{N} \alpha_i - \frac{1}{2} \sum\nolimits_{i=1}^{N} \sum\nolimits_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

با درنظر گرفتن قیود

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$0 \leq \alpha_i \leq C$$

که در آن C>0 توسط طراحی تعیین میشود.

- توجه کنید:

ا نه ξ_i نه خرایب لاگرانژ آنها ξ_i نه خرایب لاگرانژ آنها

 $0 \leq lpha_i \leq C$ مساله دوگان برای الگوهای جداناپذیر همانند حالت جداپذیر است به غیر از-۲

۲- ابرصفحه بهینه برای الگوهای جداناپذیر

- مساله دوگان برای الگوهای جداناپذیر:

 $\{lpha_i\}_{i=1}^N$ با توجه به دادههای موجود $\{(\mathbf{x}_i,d_i)\}_{i=1}^N$ ، مطلوب است یافتن ضرایب لاگرانژ که تابع هزینه زیر را بیشینه کند:

$$\phi(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j d_i d_j \mathbf{x}_i^T \mathbf{x}_j$$

با درنظر گرفتن قیود

$$\sum_{i=1}^{N} \alpha_i d_i = 0$$

$$0 \leq \alpha_i \leq C$$

که در آن C > 0 توسط طراحی تعیین میشود.

- توجه کنید:

ا- نه ξ_i ها در مساله دوگان ظاهرمی شوند و نه ضرایب لاگرانژ آنها ξ_i

 $0 \leq lpha_i \leq C$ مساله دوگان برای الگوهای جداناپذیر همانند حالت جداپذیر است به غیر از

۳- بردارهای پشتیبان همانند حالت قبل تعیین میشوند.

- فلسفه SVM براى كلاسهبندى الگوها

- فلسفه SVM براى كلاسهبندى الگوها
 - اصول SVM

- فلسفه SVM براى كلاسهبندى الكوها
 - اصول SVM
- ۱- نگاشت غیرخطی بردار ورودی به فضای ویژگیها

- فلسفه SVM براى كلاسهبندى الكوها
 - اصول SVM
- ۱- نگاشت غیرخطی بردار ورودی به فضای ویژگیها
- ۲- تشکیل ابرصفحه بهینه برای جداسازی ویژگیها که در قسمت ۱ کشف شدند.

- فلسفه SVM براي كلاسهبندي الگوها
 - اصول SVM
- ۱- نگاشت غیرخطی بردار ورودی به فضای ویژگیها
- ۲- تشکیل ابرصفحه بهینه برای جداسازی ویژگیها که در قسمت ۱ کشف شدند.

نکته مهم: نظریه SVM، به طور تحلیلی ابعاد بهینه برای فضای پنهان پیدامی کند.