

AMENDMENTS TO THE CLAIMS

The following **Listing of Claims** will replace all prior versions, and listings of claims in the application.

1. **(CURRENTLY AMENDED)** A pharmaceutical composition comprising:
a pharmaceutically acceptable carrier, adjuvant or vehicle; and
a therapeutically effective amount of a compound having the structure:

(I)

or pharmaceutically acceptable salt thereof;

wherein **R₁** and **R₂** are each independently hydrogen, halogen, CN, S(O)₁₋₂R^{1A}, NO₂, COR^{1A}, CO₂R^{1A}, NR^{1A}C(=O)R^{1B}, NR^{1A}C(=O)OR^{1B}, CONR^{1A}R^{1B}, or lower alkyl; an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or WR^{1A}; wherein W is independently O, S or NR^{1C}, wherein each occurrence of R^{1A}, R^{1B} and R^{1C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R₁ and R₂, taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R₃ is hydrogen, an aliphatic or lower alkyl; heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or a prodrug moiety or an oxygen protecting group;

R₄ is hydrogen, halogen, -OR^{4A}, oxo, -OC(=O)R^{4A}, or -NR^{4A}R^{4B}; wherein R^{4A} and R^{4B} are independently hydrogen, an aliphatic lower alkyl or lower alkoxy; heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B}, taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety;

R_5 is hydrogen, an aliphatic, or lower alkyl; heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_6 is hydrogen, halogen, CN, $S(O)_{1-2}R^{6A}$, NO_2 , COR^{6A} , CO_2R^{6A} , $NR^{6A}C(=O)R^{6B}$, $NR^{6A}C(=O)OR^{6B}$, $CONR^{6A}R^{6B}$, an aliphatic, or lower alkyl; heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or WR^{6A} ; wherein W is independently O, S or NR^{6C} , wherein each occurrence of R^{6A} , R^{6B} and R^{6C} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_6 and R_5 taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_a and each occurrence of R_b and R_c are independently hydrogen, halogen, CN, $S(O)_{1-2}R^{a1}$, NO_2 , COR^{a1} , CO_2R^{a1} , $NR^{a1}C(=O)R^{a2}$, $NR^{a1}C(=O)OR^{a2}$, $CONR^{a1}R^{a2}$, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or WR^{a1} ; wherein W is independently O, S or NR^{a3} , wherein each occurrence of R^{a1} , R^{a2} and R^{a3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b , taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

R_e is hydrogen, halogen, CN, $S(O)_{1-2}R^{e1}$, NO_2 , COR^{e1} , CO_2R^{e1} , $NR^{e1}C(=O)R^{e2}$, $NR^{e1}C(=O)OR^{e2}$, $CONR^{e1}R^{e2}$, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or WR^{e1} ; wherein W is independently O, S or NR^{e3} , wherein each occurrence of R^{e1} , R^{e2} and R^{e3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or R_e and R_6 , taken together with the carbon atoms to which they are attached, form an alicyclic, heteroalicyclic, aryl or heteroaryl moiety;

n is 3 an integer from 1 to 5;

X_1 is O, S, NR^{X1} or $CR^{X1}R^{X2}$; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or a nitrogen protecting group;

Q is hydrogen, lower alkyl,

~~or $-\text{CH}(\text{CH}_3)\text{C}(\text{O})\text{CH}_3$; halogen, -CN , $\text{S(O)}_{1-2}\text{R}^{Q_1}$, NO_2 , COR^{Q_1} , $\text{CO}_2\text{R}^{Q_1}$, $\text{NR}^{Q_1}\text{C}(-\text{O})\text{R}^{Q_2}$, $\text{NR}^{Q_1}\text{C}(-\text{O})\text{OR}^{Q_2}$, $\text{CONR}^{Q_1}\text{R}^{Q_2}$, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or $-\text{WR}^{Q_1}$; wherein W is independently $-\text{O}-$, $-\text{S}-$ or $-\text{NR}^{Q_3}-$, wherein each occurrence of R^{Q_1} , R^{Q_2} and R^{Q_3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; and~~

Y_1 and Y_2 are independently hydrogen, lower alkyl, or CF_3 ; an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or $-\text{WR}^{Y_1}$; wherein W is independently $-\text{O}-$, $-\text{S}-$ or $-\text{NR}^{Y_2}-$, wherein each occurrence of R^{Y_1} and R^{Y_2} is independently hydrogen, or lower alkyl; or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; or Y_1 and Y_2 together with the carbon atom to which they are attached form

whereby the composition is formulated for administration to a subject at a dosage between about 0.1 mg/kg to about 50 mg/kg of body weight.

with the proviso that the compound does not have the following structure:

2. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 50 mg/kg of body weight.
3. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 40 mg/kg of body weight.
4. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 40 mg/kg of body weight.
5. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 30 mg/kg of body weight.
6. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 5 mg/kg to about 30 mg/kg of body weight.
7. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 30 mg/kg of body weight.
8. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 0.1 mg/kg to about 20 mg/kg of body weight.
9. **(ORIGINAL)** The composition of claim 1, wherein the dosage is between about 1 mg/kg to about 20 mg/kg of body weight.
10. **(ORIGINAL)** The composition of claim 1, wherein the dosage is 10 mg/kg or greater of body weight.
11. **(CURRENTLY AMENDED)** The composition of claim 1, wherein:
~~R₁ and R₂ are each independently hydrogen or substituted or unsubstituted lower alkyl; or R₁ and R₂, taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;~~

R_3 is hydrogen, or substituted or unsubstituted lower alkyl or aryl; a prodrug moiety or an oxygen protecting group;

R_4 is hydrogen, halogen, $-OR^{4A}$, $-OC(=O)R^{4A}$ oxo, $-OC(=O)R^{4A}$, $NR^{4A}R^{4B}$; wherein R^{4A} and R^{4B} are independently hydrogen, or substituted or unsubstituted lower alkyl or lower alkoxy; a prodrug moiety, a nitrogen protecting group or an oxygen protecting group; or R^{4A} and R^{4B} , taken together with the nitrogen atom to which they are attached, form a heterocyclic or heteroaryl moiety; or R_4 , taken together with the carbon atom to which it is attached forms a moiety having the structure:

R_5 and R_6 are each independently hydrogen or substituted or unsubstituted lower alkyl; or R_5 and R_6 , taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R_a and each occurrence of R_b and R_c are independently hydrogen, halogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or WR^{a1} ; wherein W is independently O , S or NR^{a3} , wherein each occurrence of R^{a1} and R^{a3} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or R_a and the adjacent occurrence of R_b , taken together, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

R_e is hydrogen, halogen, alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety, or WR^{e4} ; wherein W is independently O , S or NR^{e3} , wherein each occurrence of R^{e4} and R^{e3} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or R_e and R_6 , taken together with the carbon atoms to which they are attached, form an epoxide, an aziridine or a substituted or unsubstituted cyclopropyl moiety;

n is 3 an integer from 1 to 5;

X_1 is O, S, NR^{X1} or CR^{X1}R^{X2}; wherein R^{X1} and R^{X2} are independently hydrogen, halogen, substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl, or a nitrogen protecting group;

Q is hydrogen, lower alkyl,

or -CH(CH₃)C(O)CH₃; halogen, CN, S(O)₁₋₂R^{Q1}, NO₂, COR^{Q1}, CO₂R^{Q1}, NR^{Q1}C(=O)R^{Q2}, NR^{Q1}C(=O)OR^{Q2}, CONR^{Q1}R^{Q2}, an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety, or WR^{Q1}; wherein W is independently O, S or NR^{Q3}, wherein each occurrence of R^{Q1}, R^{Q2} and R^{Q3} is independently hydrogen, or an aliphatic, heteroaliphatic, alicyclic, heteroalicyclic, aryl or heteroaryl moiety; and

Y₁ and Y₂ are independently hydrogen, lower alkyl, or CF₃; an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or -WR^{Y1}; wherein W is independently -O-, -S- or -NR^{Y2}-; wherein each occurrence of R^{Y1} and R^{Y2} is independently hydrogen, or an alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, aryl or heteroaryl moiety; or Y₁ and Y₂ together with the carbon atom to which they are attached form a moiety having the

12. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, and the compound has one of the following structures:

wherein R₁-R₆, Y₂, X₁, n and Q are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, ~~alicyclic, heteroalicyclic, aryl or heteroaryl moiety~~.

13. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, Q is a carbonyl-containing moiety and the compound has one of the following structures:

wherein R₁-R₆, Y₂, X₁, and n are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, ~~alicyclic, heteroalicyclic, aryl or heteroaryl moiety~~; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, ~~aryl or heteroaryl moiety~~; and Alk is a substituted or unsubstituted C₀₋₆-~~alkylenalkenyl~~ or C₀₋₆~~alkenylidene alkenyl~~ chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, -CO₂, -COCO, -CONR^{Z1}, -OCONR^{Z1}, -NR^{Z1}NR^{Z2}, -NR^{Z1}NR^{Z2}CO, -NR^{Z1}CO, -NR^{Z1}CO₂, -NR^{Z1}CONR^{Z2}, -SO, -SO₂, -NR^{Z1}SO₂, -SO₂NR^{Z1}, -NR^{Z1}SO₂NR^{Z2}, -O, -S, or -NR^{Z1}, wherein each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, ~~or~~ alkyl, ~~heteroalkyl, aryl, heteroaryl or aeyl~~.

14. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, n is 3 and the compound has one of the following structures:

wherein R₁-R₆, Y₂, Q and X₁ are as defined in claim 1; W is O or NH; and R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, ~~alicyclic, heterocyclic, aryl or heteroaryl moiety~~.

15. (CURRENTLY AMENDED) The composition of claim 1, wherein R_a, R_b and R_c are each hydrogen, n is 3, Q is a carbonyl-containing moiety, and the compound has one of the following structures:

wherein R₁-R₆, X₁ and Y₂ are as defined in claim 1; W is O or NH; R^{Y1} is hydrogen, or an aliphatic, heteroaliphatic, ~~alicyclic, heterocyclic, aryl or heteroaryl moiety~~; R₇ is a substituted or unsubstituted lower alkyl or heteroalkyl moiety; R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, ~~aryl or heteroaryl moiety~~; and Alk is a substituted or unsubstituted C₀₋₆alkylenedialkenyl or C₀₋₆alkenylidene alkenyl chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; ~~wherein each occurrence of R^{Z1} and R^{Z2}~~ is independently hydrogen, or alkyl, ~~heteroalkyl, aryl, heteroaryl~~

or acyl; and R₈ is a substituted or unsubstituted alkyl, heteroalkyl, cycloalkyl, heterocycloalkyl, **aryl or heteroaryl moiety.**

16. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein R₁ and R₂ are each hydrogen.

17. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein R₅ and R₆ are each methyl.

18. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein R₃ is lower alkyl.

19. **(ORIGINAL)** The composition of claim 18, wherein R₃ is methyl.

20. **(PREVIOUSLY PRESENTED)** The composition of claim 1, wherein R₄ is OH, NH₂ or halogen.

21. **(ORIGINAL)** The composition of claim 13 or 15, wherein R₇ is lower alkyl.

22. **(ORIGINAL)** The composition of claim 21, wherein R₇ is methyl.

23. **(CURRENTLY AMENDED)** The composition of claim 1, wherein Q has the structure:

wherein R₇ is a substituted or unsubstituted, **linear or branched, cyclic or acyclic** lower alkyl **moiety**; R₈ is a substituted or unsubstituted carbocyclic, **or** heterocyclic, **aryl or heteroaryl moiety**; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) **or** CH(Hal); or a substituted or unsubstituted C₀₋₆ **alkylidenealkylenyl** or C₀₋₆ **alkenylidene alkenylenyl** wherein up to two non-adjacent methylene units are independently optionally replaced by CO, -CO₂, -COCO, -CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂,

~~NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen or, alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety; and pharmaceutically acceptable derivatives thereof.~~

24. (CURRENTLY AMENDED) The composition of claim 23, wherein Q has the structure:

wherein R₇ is a substituted or unsubstituted, ~~linear or branched, cyclic or acyclic~~ lower alkyl moiety; R₈ is a substituted or unsubstituted carbocyclic, ~~or heterocyclic, aryl or heteroaryl moiety~~; and R^Y is hydrogen, halogen, -OR^{Y1} or -NR^{Y1}NR^{Y2}; wherein R^{Y1} and R^{Y2} are independently ~~is~~ hydrogen, alkyl, ~~or~~ heteroalkyl, ~~aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.~~

25. (CURRENTLY AMENDED) The composition of claim 13, wherein R₈ is one of:

wherein p is an integer from 0 to 5; q is 1 or 2, r is an integer from 1 to 6; each occurrence of R^{8A} is independently hydrogen, ~~alkyl, heteroalkyl, aryl, heteroaryl, (alkyl)aryl or (alkyl)heteroaryl, OR^{8C}, SR^{8C}, N(R^{8C})₂, SO₂N(R^{8C})₂, (C=O)N(R^{8C})₂, halogen, CN, NO₂, (C=O)OR^{8C}, N(R^{8C})(C=O)R^{8D}, wherein each occurrence of R^{8C} and R^{8D} is independently hydrogen, lower alkyl, lower heteroalkyl, aryl, heteroaryl, (alkyl)aryl or (alkyl)heteroaryl;~~ and each occurrence of R^{8B} is independently hydrogen or lower alkyl.

26. **(ORIGINAL)** The composition of claim 25, wherein R₈ has the structure:

wherein R^{8B} is hydrogen or lower alkyl.

27. **(PREVIOUSLY PRESENTED)** The composition of claim 1 wherein n is 3.

28. **(PREVIOUSLY PRESENTED)** The composition of claim 12 wherein Y₁ is OR^{Y₁} and Y₂ is lower alkyl; wherein R^{Y₁} is hydrogen or lower alkyl.

29. **(ORIGINAL)** The composition of claim 28, wherein Y₁ is OH and Y₂ is CF₃.

30. **(ORIGINAL)** The composition of claim 11 wherein R_a, R_b and R_c are each hydrogen, and the compound has one of the structures:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆, n and Q are as defined in claim 1; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

31. **(ORIGINAL)** The composition of claim 1 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ and Q are as defined in claim 11; and Y₂ and R^{Y1} are independently hydrogen or lower alkyl.

32. **(CURRENTLY AMENDED)** The composition of claim 11 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ and n are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, ~~linear or branched, cyclic or acyclic~~ lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, -CHOR^{Z1}, -CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or CH(Hal); or a substituted or unsubstituted C₀₋₆-~~alkylidenealkylene~~ or C₀₋₆-~~alkenylidene~~ alkenylene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; ~~wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, or alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.~~

33. (CURRENTLY AMENDED) The composition of claim 11 wherein the compound has the structure:

or pharmaceutically acceptable derivative thereof;

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, ~~linear or branched, cyclic or acyclic cyclic or acyclic~~ lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and X, Y and Z are independently a bond, -O-, -S-, -C(=O)-, -NR^{Z1}-, ~~or~~ -CHOR^{Z1}, ~~-CHNR^{Z1}R^{Z2}, C=S, C=N(R^{Y1}) or -CH(Hal)~~; or a substituted or unsubstituted C₀₋₆~~-alkylenekylenyl~~ or C₀₋₆~~-alkenylidene~~ alkenylidene alkenylidene chain wherein up to two non-adjacent methylene units are independently optionally replaced by CO, CO₂, COCO, CONR^{Z1}, OCONR^{Z1}, NR^{Z1}NR^{Z2}, NR^{Z1}NR^{Z2}CO, NR^{Z1}CO, NR^{Z1}CO₂, NR^{Z1}CONR^{Z2}, SO, SO₂, NR^{Z1}SO₂, SO₂NR^{Z1}, NR^{Z1}SO₂NR^{Z2}, O, S, or NR^{Z1}; ~~wherein Hal is a halogen selected from F, Cl, Br and I; and each occurrence of R^{Z1} and R^{Z2} is independently hydrogen, ~~or~~ alkyl, heteroalkyl, aryl, heteroaryl or acyl; or R^{Z1} and R^{Z2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.~~

34. **(CURRENTLY AMENDED)** The composition of claim 32 or 33, wherein -X-Y-Z together represents the moiety -CH₂-Y-CH₂-; wherein Y is -CHOR^{Y1}, ~~-CHNR^{Y1}R^{Y2}, or~~ C=O, C=S,

~~C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently hydrogen, or alkyl, heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.~~

35. (CURRENTLY AMENDED) The composition of claim 11 wherein the compound has the structure:

wherein R₃-R₆ and n are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, ~~linear or branched, cyclic or acyclic~~ lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, or C=O, C=S, C=N(R^{Y1}) or -CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently is hydrogen, alkyl, or heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and

~~R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.~~

36. (CURRENTLY AMENDED) The composition of claim 11 wherein the compound has the structure:

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, ~~linear or branched, cyclic or acyclic~~ lower alkyl moiety; R^{8B} is hydrogen or lower alkyl; and Y is -CHOR^{Y1}, -CHNR^{Y1}R^{Y2}, or C=O; C=S, C=N(R^{Y1}) or CH(Hal); wherein Hal is a halogen selected from F, Cl, Br and I; and R^{Y1} and R^{Y2} are independently is hydrogen, alkyl, or heteroalkyl, aryl, heteroaryl or acyl, or R^{Y1} and R^{Y2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

37. (CURRENTLY AMENDED) The composition of claim 11 wherein the compound has the structure:

wherein n, R₃ and R₄ are as defined in claim 11; R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, halogen, or -OR^{Y1} or -NR^{X1}NR^{X2}; wherein R^{Y1} and R^{X2} are independently is hydrogen, alkyl, or heteroalkyl, aryl, heteroaryl or acyl, or R^{X1} and R^{X2}, taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.

38. (CURRENTLY AMENDED) The composition of claim 11 wherein the compound has the structure:

wherein R₃ and R₄ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R^{8B} is hydrogen or lower alkyl; and R^Y is hydrogen, **halogen**, **or** -OR^{Y1} **or** **NR^{Y1}NR^{Y2}**; wherein R^{Y1} **and** R^{Y2} **are independently** **is** hydrogen, alkyl, **or** heteroalkyl, **aryl**, **heteroaryl** **or** **acyl**, **or** R^{Y1} **and** R^{Y2} **taken together with the nitrogen atom to which they are attached, for a heterocyclic or heteroaryl moiety.**

39. **(CURRENTLY AMENDED)** The composition of claim 11 wherein the compound has the structure:

wherein R₃-R₆ and n are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, ~~linear or branched, cyclic or acyclic~~ lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

40. **(CURRENTLY AMENDED)** The composition of claim 11 wherein the compound has the structure:

wherein R₃-R₆ are as defined in claim 11; Y₂ and R^{Y1} are independently hydrogen or lower alkyl; R₇ is a substituted or unsubstituted, ~~linear or branched, cyclic or acyclic~~ lower alkyl moiety; and R^{8B} is hydrogen or lower alkyl.

41. (ORIGINAL) The composition of claim 11 wherein the compound has the following structure:

or a pharmaceutically acceptable salt thereof;
wherein X₁ is CH₂, NH or O;

Y_1 and Y_2 are independently OH, $C(R^{Y_1})_3$ or Y_1 and Y_2 taken together with the carbon atom to which they are attached are $-C=O$, wherein R^{Y_1} is halo;

R_6 is H or lower alkyl;

R_5 is H or lower alkyl;

R_4 is OH; and

R_3 is alkyl.

42. **(ORIGINAL)** The composition of claim 41 wherein the compound has one of the following structures:

43. **(ORIGINAL)** The composition of claim 1, wherein the compound is present in an amount effective to inhibit metastasis of tumor cells.

44. **(ORIGINAL)** The composition of claim 1, wherein the compound is present in an amount effective to inhibit angiogenesis.

45. **(ORIGINAL)** The composition of claim 1, further comprising a cytotoxic agent.

46. **(ORIGINAL)** The composition of claim 45, wherein the cytotoxic agent is an anticancer agent.

47. **(ORIGINAL)** The composition of claim 1, further comprising a palliative agent.

48. **(ORIGINAL)** A method for treating breast tumor metastasis in a subject comprising:
administering to a subject in need thereof a therapeutically effective amount of the
composition of claim 1.
49. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 1 mg/kg to
about 50 mg/kg of body weight.
50. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 0.1 mg/kg to
about 40 mg/kg of body weight.
51. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 1 mg/kg to
about 40 mg/kg of body weight.
52. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 0.1 mg/kg to
about 30 mg/kg of body weight.
53. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 1 mg/kg to
about 30 mg/kg of body weight.
54. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 5 mg/kg to
about 30 mg/kg of body weight.
55. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 0.1 mg/kg to
about 20 mg/kg of body weight.
56. **(ORIGINAL)** The method of claim 48, wherein the dosage is between about 1 mg/kg to
about 20 mg/kg of body weight.
57. **(ORIGINAL)** The method of claim 48, wherein the dosage is 10 mg/kg or greater of body
weight.

58. **(ORIGINAL)** The method of claim 48 wherein in the composition, the compound has one of the following structures:

59. **(ORIGINAL)** The method of claim 58, wherein the composition is administered at a dosage between about 10 mg/kg to about 20 mg/kg of body weight.

60. **(ORIGINAL)** The method of claim 48, further comprising administering a cytotoxic agent.

61. **(ORIGINAL)** The method of claim 60, wherein the cytotoxic agent is an anticancer agent.

62. **(ORIGINAL)** The method of claim 48, further comprising administering a palliative agent.