Exp.No.: 3 Map Reduce program to process a weather dataset

AIM:

To implement MapReduce program to process a weather dataset.

Procedure:

Step 1: Create Data File:

Create a file named "word_count_data.txt" and populate it with text data that you wish to analyse. Login with your hadoop user.

Download the dataset (weather data)

Output:

```
sylvia@sylvia-VirtualBox: ~
sylvia@sylvia-VirtualBox:~$ sudo nano weatherdata.csv
[sudo] password for sylvia:
sylvia@sylvia-VirtualBox:~$ sudo nano weathermapper.py
sylvia@sylvia-VirtualBox:~$ sudo nano weatherreducer.py
sylvia@sylvia-VirtualBox:~$ hadoop 3.2.3
/home/sylvia/hadoop-3.2.3//libexec/hadoop-functions.sh: line 2366: HADOOP 3.2.3
USER: invalid variable name
/home/sylvia/hadoop-3.2.3//libexec/hadoop-functions.sh: line 2461: HADOOP_3.2.3_
OPTS: invalid variable name
Error: Could not find or load main class 3.2.3
sylvia@sylvia-VirtualBox:~$ ls
279ex-2.txt Downloads
                                                         weatherreducer.py
data.json
            mapper.py
                          reducer.py weatherdata.csv
                                       weathermapper.py
sylvia@sylvia-VirtualBox:-$ cat weatherdata.csv | python3 weathermapper.py | sor
t |python3 weatherreducer.py
Los Angeles
                76.5
New York
                31.0
sylvia@sylvia-VirtualBox:~$
```

Step 2: Mapper Logic - mapper.py:

Create a file named "mapper.py" to implement the logic for the mapper. The mapper will read input data from STDIN, split lines into words, and output each word with its count.

```
nano mapper.py
# Copy and paste the mapper.py code
#!/usr/bin/env python
import sys
# input comes from STDIN (standard input)
# the mapper will get daily max temperature and group it by month. so output will be
(month,dailymax temperature)
for line in sys.stdin:
  # remove leading and trailing whitespace
  line = line.strip()
                     # split
the line into words
                   words =
line.split()
  #See the README hosted on the weather website which help us understand how each
position represents a column month = line[10:12] daily max = line[38:45]
                                                                                daily max
= daily max.strip()
  # increase counters
                        for
word in words:
     # write the results to STDOUT (standard output);
     # what we output here will be go through the shuffle proess and then
     # be the input for the Reduce step, i.e. the input for reducer.py
     # tab-delimited; month and daily max temperature as output
print ('%s\t%s' % (month ,daily_max))
```

Step 3: Reducer Logic - reducer.py:

Create a file named "reducer.py" to implement the logic for the reducer. The reducer will aggregate the occurrences of each word and generate the final output.

```
nano reducer.py
# Copy and paste the reducer.py code
```

reducer.py

#!/usr/bin/env python

from operator import itemgetter import sys

#reducer will get the input from stdid which will be a collection of key, value(Key=month, value=daily max temperature)

#reducer logic: will get all the daily max temperature for a month and find max temperature for the month

#shuffle will ensure that key are sorted(month)

```
current month = None
current max = 0 month =
None
# input comes from STDIN for
line in sys.stdin:
  # remove leading and trailing whitespace
                                             line
= line.strip()
  # parse the input we got from mapper.py
                                             month,
daily max = line.split('\t', 1)
  # convert daily max (currently a string) to float
                                                    try:
     daily max = float(daily max)
ValueError:
     # daily max was not a number, so silently
    # ignore/discard this line
continue
  # this IF-switch only works because Hadoop shuffle process sorts map output
  # by key (here: month) before it is passed to the reducer
if current month == month:
                                 if daily max > current max:
current max = daily max
                            else:
                                      if current month:
       # write result to STDOUT
       print ('%s\t%s' % (current month, current max))
current_max = daily_max
     current month = month
# output of the last month if current month == month:
print ('%s\t%s' % (current month, current max))
```

Step 4: Prepare Hadoop Environment:

Start the Hadoop daemons and create a directory in HDFS to store your data.

start-all.sh

Step 6: Make Python Files Executable:

Give executable permissions to your mapper.py and reducer.py files.

chmod 777 mapper.py reducer.py

```
sylvia@sylvia-VirtualBox:~

sylvia@sylvia-VirtualBox:~$ sudo nano weatherdata.csv

[sudo] password for sylvia:
sylvia@sylvia-VirtualBox:~$ sudo nano weathermapper.py
sylvia@sylvia-VirtualBox:~$ sudo nano weatherreducer.py
sylvia@sylvia-VirtualBox:~$ hadoop 3.2.3
```

Step 7: Run the program using Hadoop Streaming:

Download the latest hadoop-streaming jar file and place it in a location you can easily access.

Then run the program using Hadoop Streaming.

hadoop fs -mkdir -p /weatherdata

hadoop fs -copyFromLocal /home/sx/Downloads/dataset.txt /weatherdata

hdfs dfs -ls /weatherdata

hadoop jar /home/sx/hadoop-3.2.3/share/hadoop/tools/lib/hadoop-streaming-3.2.3.jar \

- -input /weatherdata/dataset.txt \
- -output /weatherdata/output \
- -file "/home/sx/Downloads/mapper.py" \
- -mapper "python3 mapper.py" \
- -file "/home/sx/Downloads/reducer.py" \
- -reducer "python3 reducer.py"

hdfs dfs -text /weatherdata/output/* > /home/sx/Downloads/outputfile.txt

Step 8: Check Output:

Check the output of the program in the specified HDFS output directory.

hdfs dfs -text /weatherdata/output/* > /home/sx/Downloads/output/ /part-00000

```
sylvia@sylvia-VirtualBox: ~
sylvia@sylvia-VirtualBox:~$ sudo nano weatherdata.csv
[sudo] password for sylvia:
sylvia@sylvia-VirtualBox:~$ sudo nano weathermapper.py
sylvia@sylvia-VirtualBox:~$ sudo nano weatherreducer.py
sylvia@sylvia-VirtualBox:~$ hadoop 3.2.3
/home/sylvia/hadoop-3.2.3//libexec/hadoop-functions.sh: line 2366: HADOOP_3.2.3_
USER: invalid variable name
/home/sylvia/hadoop-3.2.3//libexec/hadoop-functions.sh: line 2461: HADOOP_3.2.3_
OPTS: invalid variable name
Error: Could not find or load main class 3.2.3
sylvia@sylvia-VirtualBox:~$ ls
279ex-2.txt Downloads
                                                          weatherreducer.py
data.json
                           reducer.py weatherdata.csv
             mapper.py
                                       weathermapper.py
sylvia@sylvia-VirtualBox:~$ cat weatherdata.csv | python3 weathermapper.py | sor
t |python3 weatherreducer.py
Los Angeles
                76.5
New York
                31.0
sylvia@sylvia-VirtualBox:~$
```

After copy and paste the above output in your local file give the below command to remove the directory from hdfs: hadoop fs -rm -r /weatherdata/output

Result:

Thus, the program for weather dataset using Map Reduce has been executed successfully.