Wiktor Kuchta

5/7a

Załóżmy, że L jest skończonym rozszerzeniem ciała $\mathbb Q$ stopnia nieparzystego. Jest to rozszerzenie rozdzielcze, zatem z twierdzenia o elemencie pierwotnym $L=\mathbb Q(a)$ dla pewnego a.

Wielomian minimalny $P \in \mathbb{Q}[X]$ elementu a nad \mathbb{Q} jest stopnia nieparzystego, więc ma pierwiastek rzeczywisty b. Zauważmy, że b ma ten sam wielomian minimalny P, bo P jest nierozkładalny.

Wiemy, że funkcje ewaluacji $\varphi_a \colon \mathbb{Q}[X] \to \mathbb{Q}(a)$ i $\varphi_b \colon \mathbb{Q}[X] \to \mathbb{Q}(b)$ są homomorfizmami surjektywnymi. Ich jądro to (P), więc z zasadniczego tw. o homomorfizmie

$$L = \mathbb{Q}(a) \cong \mathbb{Q}[X]/(P) \cong \mathbb{Q}(b) \subseteq \mathbb{R}.$$

6/2aD

Niech $\zeta = e^{i\frac{2}{3}\pi} = \frac{1}{2}(-1 + \sqrt{3}i),$

$$W(X) = X^3 - 3 = (X - \sqrt[3]{3})(X - \zeta\sqrt[3]{3})(X - \zeta^2\sqrt[3]{3}).$$

 $\mathbb{Q}(\zeta, \sqrt[3]{3})$ jest ciałem rozkładu W nad \mathbb{Q} . Niech $a=(2\zeta+1)/\sqrt[3]{3}=i3^{1/6}$. Wtedy $-a^2=\sqrt[3]{3}$ i $\frac{1}{2}(-1-a^3)=\zeta$, więc $\mathbb{Q}(a)=\mathbb{Q}(\zeta,\sqrt[3]{3})$.

6/3D

Jeśli $a \in F_p(X,Y)$, to $a^p \in F_p(X^p,Y^p)$, więc $[F_p(X^p,Y^p)(a):F_p(X^p,Y^p)] \leq p$.

Wielomian $(T-X)^p = T^p - X^p \in F_p(Y^p)[X^p][T]$ jest nierozkładalny z kryterium Eisensteina dla ideału (X^p) . Z lematu Gaussa jest też nierozkładalny w pierścieniu $F_p(Y^p)(X^p)[T] = F_p(X^p,Y^p)[T]$, zatem $[F_p(X,Y^p):F_p(X^p,Y^p)] = p$.

Analogicznie, wielomian $(T-Y)^p = T^p - Y^p \in F_p(X)[Y^p][T]$ jest nierozkładalny z kryterium Eisensteina dla ideału (Y^p) , zatem $[F_p(X,Y):F_p(X,Y^p)]=p$.

Z multiplikatywności stopni otrzymujemy

$$[F_p(X,Y):F_p(X^p,Y^p)] = [F_p(X,Y):F_p(X,Y^p)][F_p(X,Y^p):F_p(X^p,Y^p)] = p^2,$$

więc nie możemy rozszerzyć $F_p(X^p,Y^p)$ o jeden element i otrzymać $F_p(X,Y)$.

6/4aD

Niech $K = \mathbb{C}(X^4), L = \mathbb{C}(X)$.

L = K(X) jest ciałem rozkładu nad K wielomianu

$$W(T) = T^4 - X^4 = (T - X)(T + X)(T - iX)(T + iX),$$

zatem rozszerzenie $K \subset L$ jest Galois i stopnia co najwyżej 4.

Wiemy, że ewaluacja wielomianu w punkcie jest homomorfizmem. Ewaluacje w X, -X, 1/X i -1/X są inwolucjami, więc rozszerzają się do automorfizmów $\mathbb{C}(X)$.

Powyższe automorfizmy ze składaniem tworzą grupę czwórkową Kleina i stanowią całość G(L/K), bo $|G(L/K)| \le 4$.

6/5a

Wiemy, że $[\mathbb{Q}(\sqrt{5}, \sqrt{7}) : \mathbb{Q}] = 4$. Ponadto jest to rozszerzenie rozkładu wielomianu $(X^2 - 5)(X^2 - 7)$, więc jest Galois i $|G(\mathbb{Q}(\sqrt{5}, \sqrt{7})/\mathbb{Q})| = 4$.

Możemy wskazać 5 ciał pośrednich:

$$\mathbb{Q}$$
, $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{7})$, $\mathbb{Q}(\sqrt{35})$, $\mathbb{Q}(\sqrt{5},\sqrt{7})$.

Z zasadniczego twierdzenia teorii Galois te ciała są w bijekcji z podgrupami grupy $G(\mathbb{Q}(\sqrt{5},\sqrt{7})/\mathbb{Q})$. Skoro jest ich co najmniej pięć, to ta grupa jest grupą czwórkową Kleina i znaleźliśmy jej wszystkie podgrupy. Zatem wskazaliśmy wszystkie szukane ciała pośrednie.