

IECA

Embedded Computer Architecture

Lesson 13: Timers in Normal Mode

The 3 timers of Mega32

The Mega32 timers

- Timer 0:
 8 bit (MAX = 255).
 Normal, CTC and PWM modes.
- Timer 1:
 16 bit (MAX = 65535).
 Normal, CTC, many PWM modes.
 Input Capture.
- Timer 2:
 8 bit (MAX = 255).
 Normal, CTC and PWM modes.
 Asynchronous mode (Real Time Clock).

Timer in "normal mode"

TIMER 0

Timer 0 (8 bit)

Timer 0: Counting register

- TCNT0 is the counting registeret for timer 0.
- Automatically upcounted by the timer 0 clock signal.
- Notice that the register both can be read and written (from the program).

Prescaler for timer 0

Timer 0: Clock selection

Bit	7	6	5	4	3	2	1	0	
	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	C S 00	TCCR0
Read/Write	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

CS02	CS01	CS00	Description
0)0	0	No clock source (Timer/Counter stopped).
0	0	1	Clk _{I/O} /(No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	Clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T0 pin. Clock on falling edge.
1	1	1	External clock source on T0 pin. Clock on rising edge.

Timer 0: External clock (the pin T0)

Timer 0: Mode selection

Mode	WGM01 (CTC0)	WGM00 (PWM0)	Timer/Counter Mode of Operation	ТОР	Update of OCR0	TOV0 Flag Set-on
0	0	0	Normal	0xFF	Immediate	MAX
1	0	1	PWM, Phase Correct	0xFF	TOP	воттом
2	1	0	CTC	OCR0	Immediate	MAX
3	1	1	Fast PWM	0xFF	TOP	MAX

Timer 0 overflow flag (register TIFR)

- Bit 0 in the register TIFR will be set to 1, each time Timer 0 overflows.
- Can be <u>cleared</u> again, if we <u>write a 1</u> to it (unless we use interrupts).
- C code:

```
TIFR = 0b00000001;
or:
```

(Timer 0: Overflow interrupt)

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$000(1)	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match
5	\$008	TIMER2 OVF	Timer/Counter2 Overflow
6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event
7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A
8	\$00E	TIMER1 COMPB	Timer/Counter1 Compare Match B
9	\$010	TIMER1 OVF	Timer/Counter1 Overflow
10	\$012	TIMER0 OVF	Timer/Counter0 Overflow
11	\$014	SPI, STC	Serial Transfer Complete
12	\$016	USART, RXC	USART, Rx Complete
13	\$018	USART, UDRE	USART Data Register Empty
14	\$01A	USART, TXC	USART, Tx Complete
15	\$01C	ADC	ADC Conversion Complete
16	\$01E	EE_RDY	EEPROM Ready
17	\$020	ANA_COMP	Analog Comparator
18	\$022	TWI	Two-wire Serial Interface
19	\$024	INT2	External Interrupt Request 2
20	\$026	TIMER0 COMP	Timer/Counter0 Compare Match
21	\$028	SPM_RDY	Store Program Memory Ready

Timer 0 overflow interrupt

(Timer 0: Overflow interrupt enable)

- Bit TOIE0:
 - 0 => Disable overflow interrupt.
 - 1 => Enable overflow interrupt.

Test ("socrative.com": Room = MSYS)

 Assume we are using a CPU clock frequency of 3,6864 MHz, and Timer 0 is initialized to Normal Mode.

The Timer 0 clock prescaler is set to 64. How often will Timer 0 overflow?

- A: 225 times per second.
- B: 256 times per second.
- C: 57600 times per second.
- D: 64 times per second.

TIMER 1

Timer 1 (16 bit)

Timer 1: Counting register (16 bit)

- TCNT1 is the counting registeret for timer 1.
- Automatically upcounted by the timer 1 clock signal.
- Notice that the register both can be read and written (from the program).

Timer 1: Counting register (16 bit)

- Sequence by <u>writing</u>: TCNT1H, then TCNT1L.
- Sequence by <u>reading</u>: TCNT1L, then TCNT1H.

```
AVR GCC:
#include <avr/io.h>

// Hereafter 16 bit access is possible:
TCNT1 = 12345;
```

Prescaler for timer 1

Timer 1: Clock selection

Bit	7	6	5	4	3	2	1	D	_
	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	TCCR1B
Read/Write	R/W	R/W	R	R/W	R/W	₩	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

CS12	CS11	CS10	Description
0	0	0	No clock source (Timer/Counter stopped).
0	0	1	clk _{I/O} /1 (No prescaling)
0	1	0	clk _{I/O} /8 (From prescaler)
0	1	1	clk _{I/O} /64 (From prescaler)
1	0	0	clk _{I/O} /256 (From prescaler)
1	0	1	clk _{I/O} /1024 (From prescaler)
1	1	0	External clock source on T1 pin. Clock on falling edge.
1	1	1	External clock source on T1 pin. Clock on rising edge.

Timer 1: External clock (the pin T1)

Timer 1: Mode selection

See next slide!

Timer 1: Mode selection

Mode	WGM13	WGM12 (CTC1)	WGM11 (PWM11)	WGM10 (PWM10)	Timer/Counter Mode of Operation	ТОР	Update of OCR1X	TOV1 Flag Set on
0	0	0	0	0	Normal	0xFFFF	Immediate	MAX
1	0	0	0	1	PWM, Phase Correct, 8-bit	0x00FF	TOP	воттом
2	0	0	1	0	PWM, Phase Correct, 9-bit	0x01FF	TOP	воттом
3	0	0	1	1	PWM, Phase Correct, 10-bit	0x03FF	TOP	воттом
4	0	1	0	0	стс	OCR1A	Immediate	MAX
5	0	1	0	1	Fast PWM, 8-bit	0x00FF	TOP	TOP
6	0	1	1	0	Fast PWM, 9-bit	0x01FF	TOP	TOP
7	0	1	1	1	Fast PWM, 10-bit	0x03FF	TOP	TOP
8	1	0	0	0	PWM, Phase and Frequency Correct	ICR1	воттом	воттом
9	1	0	0	1	PWM, Phase and Frequency Correct	OCR1A	воттом	воттом
10	1	0	1	0	PWM, Phase Correct	ICR1	TOP	воттом
11	1	0	1	1	PWM, Phase Correct	OCR1A	TOP	воттом
12	1	1	0	0	стс	ICR1	Immediate	MAX
13	1	1	0	1	Reserved	-	-	_
14	1	1	1	0	Fast PWM	ICR1	TOP	TOP
15	1	1	1	1	Fast PWM	OCR1A	TOP	TOP

Timer 1 overflow flag (register TIFR)

- Bit 2 in the register TIFR will be set to 1, each time Timer 1 overflows.
- Can be <u>cleared</u> again, if we <u>write a 1</u> to it (unless we use interrupts).
- · C code:

```
TIFR = 0b00000100;
```

or:

$$TIFR = 1 << 2;$$

or:

(Timer 1: Overflow interrupt)

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$000(1)	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match
5	\$008	TIMER2 OVF	Timer/Counter2 Overflow
6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event
7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A
8	\$00E	TIMER1 COMPB	Timer/Counter1 Compare Match B
9	\$010	TIMER1 OVF	Timer/Counter1 Overflow
10	\$012	TIMER0 OVF	Timer/Counter0 Overflow
11	\$014	SPI, STC	Serial Transfer Complete
12	\$016	USART, RXC	USART, Rx Complete
13	\$018	USART, UDRE	USART Data Register Empty
14	\$01A	USART, TXC	USART, Tx Complete
15	\$01C	ADC	ADC Conversion Complete
16	\$01E	EE_RDY	EEPROM Ready
17	\$020	ANA_COMP	Analog Comparator
18	\$022	TWI	Two-wire Serial Interface
19	\$024	INT2	External Interrupt Request 2
20	\$026	TIMER0 COMP	Timer/Counter0 Compare Match
21	\$028	SPM RDY	Store Program Memory Ready

Timer 1 overflow interrupt

(Timer 1: Overflow interrupt enable)

- Bit TOIE1:
 - 0 => Disable overflow interrupt.
 - 1 => Enable overflow interrupt.

Test ("socrative.com": Room = MSYS)

 Timer 1 is in Normal Mode and the CPU clock frequency is 16 MHz.
 What is the longest time we can have between each Timer 1 overflow?

- A: About 244 seconds.
- B: 15625 seconds.
- C: About 240 ms.
- D: About 4,2 seconds.

TIMER 2

Timer 2 (8 bit)

Timer 2: Counting register

- TCNT2 is the counting registeret for timer 2.
- Automatically upcounted by the timer 2 clock signal.
- Notice that the register both can be read and written (from the program).

Prescaler for timer 2

Timer 2: Clock selection

Bit	7	6	5	4	3	2	1	0	
	FOC2	WGM20	COM21	COM20	WGM21	C\$22	CS21	C\$20	TCCR2
Read/Write	W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial ∀alue	0	0	0	0	0	0	0	0	
CS22	CS21	CS2	De	scription					
0	0	0	No	clock sou	ırce (Time	er/Counte	r stopped).	
0	0	1	clk	_{T2S} /(No p	rescaling)			
0	1	0	clk	T _{2S} /8 (Fro	m presca	aler)			
0	1	1	clk	_{T2S} /32 (Fi	rom preso	caler)			
1	0	0	clk	T2S/64 (F	rom preso	caler)			
1	0	1	clk	clk _{T2S} /128 (From prescaler)					
1	1	0	clk	_{T2s} /256 (F	rom pres	caler)			
1	1	1	clk	_{T2s} /1024 ((From pre	scaler)			

Timer 2: Mode selection

Mode	WGM21 (CTC2)	WGM20 (PWM2)	Timer/Counter Mode of Operation	ТОР	Update of OCR2	TOV2 Flag Set on
0	0	0	Normal	0xFF	Immediate	MAX
1	0	1	PWM, Phase Correct	0xFF	TOP	воттом
2	1	0	стс	OCR2	Immediate	MAX
3	1	1	Fast PWM	0xFF	TOP	MAX

Timer 2 overflow flag (register TIFR)

- Bit 6 in the register TIFR will be set to 1, each time Timer 2 overflows.
- Can be <u>cleared</u> again, if we <u>write a 1</u> to it (unless we use interrupts).
- · C code:

$$TIFR = 0b01000000;$$

or:

$$TIFR = 1 << 6;$$

or:

(Timer 2: Overflow interrupt)

Vector No.	Program Address ⁽²⁾	Source	Interrupt Definition
1	\$000(1)	RESET	External Pin, Power-on Reset, Brown-out Reset, Watchdog Reset, and JTAG AVR Reset
2	\$002	INT0	External Interrupt Request 0
3	\$004	INT1	External Interrupt Request 1
4	\$006	TIMER2 COMP	Timer/Counter2 Compare Match
5	\$008	TIMER2 OVF	Timer/Counter2 Overflow
6	\$00A	TIMER1 CAPT	Timer/Counter1 Capture Event
7	\$00C	TIMER1 COMPA	Timer/Counter1 Compare Match A
8	\$00E	TIMER1 COMPB	Timer/Counter1 Compare Match B
9	\$010	TIMER1 OVF	Timer/Counter1 Overflow
10	\$012	TIMER0 OVF	Timer/Counter0 Overflow
11	\$014	SPI, STC	Serial Transfer Complete
12	\$016	USART, RXC	USART, Rx Complete
13	\$018	USART, UDRE	USART Data Register Empty
14	\$01A	USART, TXC	USART, Tx Complete
15	\$01C	ADC	ADC Conversion Complete
16	\$01E	EE_RDY	EEPROM Ready
17	\$020	ANA_COMP	Analog Comparator
18	\$022	TWI	Two-wire Serial Interface
19	\$024	INT2	External Interrupt Request 2
20	\$026	TIMER0 COMP	Timer/Counter0 Compare Match

Timer 2 overflow interrupt

Store Program Memory Ready

SPM_RDY

21

\$028

(Timer 2: Overflow interrupt enable)

- Bit TOIE2:
 - 0 => Disable overflow interrupt.
 - 1 => Enable overflow interrupt.

Test ("socrative.com": Room = MSYS)

A Mega32 CPU clock frequency is 3,6864 MHz.
How do we initialize Timer 2 to normal mode, so
that we will have a Timer 2 overflow interrupt
14400 times per second?

- A: TCCR2 = 0b00000001;
- B: TCCR2 = 0b00000110;
- C: TCCR2 = 0b00000100;
- D: TCCR2 = 0b00000000;

Example: Timer 0

Example 9-39

Write a C program to toggle all the bits of PORTB continuously with some delay. Use Timer0, Normal mode, and no prescaler options to generate the delay.

Solution:

```
#include "avr/io.h"
void TODelay ();
int main ()
     DDRB = 0xFF; //PORTB output port
     while (1)
                           //repeat forever
           PORTB = 0x55;
          TODelay ();
                          //delay size unknown
           PORTB = 0xAA;
                           //repeat forever
           TODelay ();
void TODelay ( )
     TCNTO = 0x20; //load TCNTO
     TCCR0 = 0x01; //Timer0, Normal mode, no prescaler
     while ((TIFR&Ox1) == 0); //wait for TFO to roll over
     TCCRO = 0;
                          //clear TF0
     TIFR = 0x1;
```

Example: Timer 1

Example 9-42 (C version of Example 9-32)

Write a C program to toggle only the PORTB.4 bit continuously every second. Use Timer1, Normal mode, and 1:256 prescaler to create the delay. Assume XTAL = 8 MHz.

Solution:

```
XTAL = 8 MHz \rightarrow T<sub>machine cycle</sub> = 1/8 MHz = 0.125 \mus = T<sub>clock</sub>
Prescaler = 1:256 \rightarrow T<sub>clock</sub> = 256 × 0.125 µs = 32 µs
1 s/32 \mus = 31,250 clocks = 0x7A12 clocks \rightarrow 1 + 0xFFFF - 0x7A12 = 0x85EE
#include "avr/io.h"
void TlDelay ( );
int main ( )
      DDRB = 0xFF; //PORTB output port
      while (1)
             PORTB = PORTB ^ (1<<PB4); //toggle PB4
             TlDelay ( ); //delay size unknown
void TlDelay ( )
      TCNT1H = 0x85;
                          //\text{TEMP} = 0x85
      TCNT1L = 0xEE;
      TCCR1A = 0x00; //Normal mode
      TCCR1B = 0x04; //Normal mode, 1:256 prescaler
      while ((TIFR&(Ox1<<TOV1))==0); //wait for TFO to roll over
      TCCR1B = 0;
      TIFR = 0x1<<TOV1; //clear TOV1
```

End of lesson 13

