UNIVERSITY OF TORONTO

Faculty of Applied Science and Engineering

Term Test II

First Year — Program 5

MAT185415 — Linear Algebra

Examiners: G M T D'Eleuterio

19 March 2015

Student Name:	Fair Copy		
	Last Name	First Names	
Student Number:		Tutorial Section:	LEC

Instructions:

- **1.** Attempt *all* questions.
- **2.** The value of each question is indicated; a summary is given in the table opposite.
- **3.** Write the final answers *only* in the boxed space provided for each question.
- 4. No aid is permitted.
- **5.** The duration of this test is 90 minutes.
- **6.** There are 6 pages and 4 questions in this test paper.

For Markers Only				
Question	Value	Mark		
A				
1	10			
В				
2	10			
С				
3	10			
D				
4	20			
Total	50			

A. Definitions and Statements

Fill in the blanks.

1(a). State the Fundamental Theorem of Linear Algebra.

Chapter 6, Theorem II.

/2

1(b). The set of vectors $\{v_1, v_2 \cdots v_n\}$ is defined as *linearly independent* if

 $\sum_i \lambda_i v_i = \mathbf{0}$ implies that all $\lambda_i = 0$. (Alternate acceptable definition: A set of vectors is linearly independent if the span of any subset is smaller than the span of the entire set.)

/2

1(c). The rank of $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ is defined as

the common dimension of its column or row space.

/2

1(d). The properties defining a *determinant function* $\Delta: {}^n\mathbb{R}^n \to \mathbb{R}$ are

I.
$$\Delta[\mathbf{E}(1;i,j)\mathbf{A}] = \Delta(\mathbf{A})$$

II.
$$\Delta[\mathbf{E}(\lambda;i)\mathbf{A}] = \lambda\Delta(\mathbf{A})$$

/2

1(e). State the Maclaurin-Cramer rule.

The solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$, where $\mathbf{A} \in {}^n\mathbb{R}^n$ is invertible and $\mathbf{b} \in {}^n\mathbb{R}$, is given by $x_i = \det \mathbf{A}_i/\det \mathbf{A}$, where x_i is the ith entry in \mathbf{x} and \mathbf{A}_i is \mathbf{A} with the ith column replaced by \mathbf{b} .

/2

B. True or False

Determine if the following statements are true or false and indicate by " \mathbf{T} " (for true) and " \mathbf{F} " (for false) in the box beside the question. The value of each question is 1 mark.

2(a). Let $E = \{e_1, e_2 \cdots e_n\}$ be a basis for a vector space \mathcal{V} and let $\mathbf{v}_1, \mathbf{v}_2 \cdots \mathbf{v}_r \in \mathcal{V}$ have coordinates $\mathbf{v}_1, \mathbf{v}_2 \cdots \mathbf{v}_r \in {}^n\mathbb{R}$ with respect to the basis E for any integers n and r. Then the dimension of span $\{e_1, e_2 \cdots e_n\}$ is equal to the dimension of span $\{\mathbf{v}_1, \mathbf{v}_2 \cdots \mathbf{v}_r\}$.

F

2(b). Let $\{v_1, v_2 \cdots v_n\} \subset \mathcal{V}$ be linearly independent. Then for a vector $v \in \mathcal{V}$, $\{v, v_1, v_2 \cdots v_n\}$ is linearly independent if $v \notin \operatorname{span}\{v_1, v_2 \cdots v_n\}$.

 \mathcal{T}

2(c). Let $\{v_1, v_2 \cdots v_n\} \subset \mathcal{V}$ be linearly independent. Then for a vector $v \in \mathcal{V}$, $v \in \text{span}\{v_1, v_2 \cdots v_n\}$ if $\{v, v_1, v_2 \cdots v_n\}$ is linearly dependent.

T

2(d). If the rows of $A \in {}^m\mathbb{R}^n$ are linearly independent then Ax = 0 implies that x = 0.

F

2(e). Let $\mathbf{U} \in {}^m\mathbb{R}^m$, $\mathbf{V} \in {}^n\mathbb{R}^n$ be invertible. Then $\{\mathbf{A}_1, \mathbf{A}_2 \cdots \mathbf{A}_r\} \subset {}^m\mathbb{R}^n$ is linearly independent if and only if $\{\mathbf{U}\mathbf{A}_1\mathbf{V}, \mathbf{U}\mathbf{A}_2\mathbf{V}\cdots \mathbf{U}\mathbf{A}_r\mathbf{V}\}$ is linearly independent.

 \mathcal{T}

2(f). Let $\mathbf{A} \in {}^m \mathbb{R}^n$ and $\mathcal{U} = \{ \mathbf{X} \in {}^n \mathbb{R}^n \, | \, \mathbf{A} \mathbf{X} = \mathbf{O} \}$. Then $\dim \mathcal{U} = n^2 - n \operatorname{rank} \mathbf{A}$.

 \mathcal{T}

2(g). For $\mathbf{A}, \mathbf{B} \in {}^{n}\mathbb{R}^{n}$, $\det \mathbf{A}\mathbf{B} = \det \mathbf{B}\mathbf{A}$.

T

2(h). The absolute value of the determinant of a 3×3 matrix can be geometrically interpreted as the volume of a parallelepiped [corrected] where the rows are interpreted as vectors in \mathbb{R}^3 representing the sides of the parallelepiped [corrected].

 \mathcal{T}

2(i). Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$. Then det adj $(\mu \mathbf{A}) = \mu^{n} \det \mathbf{A}$ for any $\mu \in \mathbb{R}$.

F

2(j). Let $\mathbf{A}, \mathbf{B} \in {}^{n}\mathbb{R}^{n}$ be invertible. Then $\operatorname{adj} \mathbf{A} \mathbf{B} = \operatorname{adj} \mathbf{B} \operatorname{adj} \mathbf{A}$.

T

C. Just the Answer

Provide just the answers. The value of each question is 2 marks.

3(a). Let \mathcal{F} be the set of infinite sequences $(a_1, a_2, a_3 \cdots)$, where $a_i \in \mathbb{R}$ that satisfy

$$a_{i+3} = a_i + a_{i+1} + a_{i+2}$$

This describes a finite-dimensional vector space. Determine a basis for \mathcal{F} .

 $(1,0,0\cdots)$ $(0,1,0\cdots)$ $(0,0,1\cdots)$

3(b). Let

$$\mathbf{A} = \mathbf{E}(\pi; 17, 3)\mathbf{E}(73, 3)\mathbf{E}(-2; 3)\mathbf{E}(17, 97)\mathbf{E}(13, 97)\mathbf{E}(4; 97)\mathbf{E}(3; 13, 17) \in {}^{100}\mathbb{R}^{100}$$

Determine the determinant of A.

$$\det \mathbf{A} = 8$$

3(c). Let

$$\mathbf{A} = \left[\begin{array}{rrr} \alpha & 1 & 1 \\ -6 & \alpha & 0 \\ 5 & 0 & 1 \end{array} \right]$$

Determine the values of α for which **A** is not invertible.

$$\alpha = 2, 3$$

3(d). Let

$$t_1(x) = 2 - 4\sin x + 4\cos x$$

$$t_2(x) = 1 + \sin x + 5\cos x + 3\tan x$$

$$t_3(x) = 1 - \sin x + 3\cos x + \tan x$$

$$t_4(x) = 1 + \sin x + \cos x + \tan x$$

Determine a basis for $\mathcal{T} = \text{span}\{t_1, t_2, t_3, t_4\}$ from among t_1, t_2, t_3, t_4 . (Consider using coordinates.)

$$t_1,t_2,t_4$$
 or t_1,t_3,t_4 or t_2,t_3,t_4

3(e). Let $\mathbf{p}, \mathbf{q}, \mathbf{s}, \mathbf{t}, \mathbf{z} \in \mathbb{R}^3$ and suppose

$$lpha_1 = \det \left[egin{array}{c} \mathbf{p} \\ \mathbf{s} \\ \mathbf{z} \end{array}
ight], \quad lpha_2 = \det \left[egin{array}{c} \mathbf{p} \\ \mathbf{t} \\ \mathbf{z} \end{array}
ight], \quad lpha_3 = \det \left[egin{array}{c} \mathbf{q} \\ \mathbf{s} \\ \mathbf{z} \end{array}
ight], \quad lpha_4 = \det \left[egin{array}{c} \mathbf{q} \\ \mathbf{t} \\ \mathbf{z} \end{array}
ight]$$

Determine

$$\det \left[\begin{array}{c} \lambda_1 \mathbf{p} + \lambda_2 \mathbf{q} \\ \mu_1 \mathbf{s} + \mu_2 \mathbf{t} \\ \mathbf{z} \end{array} \right]$$

in terms of the α s, λ s and μ s.

$$\alpha_1 \lambda_1 \mu_1 + \alpha_2 \lambda_1 \mu_2 + \alpha_3 \lambda_2 \mu_1 + \alpha_4 \lambda_2 \mu_2$$

D. Proving Ground

In each of the following questions, two statements A and B are given. Determine the relation between the two and indicate your answer in the box beside the question. There are four options:

If there is no relation a ... indicate by... "X" If A implies B ... indicate by... " \Rightarrow " If A is implied by B ... indicate by... " \Leftarrow " \Leftrightarrow "

The value of each question is 4 marks. For 4 marks the complete answer is required while a partially correct answer will earn 2 marks.

4(a). Let $\mathbf{A} \in {}^m\mathbb{R}^n$.

A. $\mathbf{A}\mathbf{A}^T$ in invertible

B. $\mathbf{AB} = \mathbf{1}$ for some $\mathbf{B} \in {}^{n}\mathbb{R}^{m}$

 \Leftrightarrow

4(b). Let $\mathbf{A}, \mathbf{B} \in {}^m \mathbb{R}^n$.

A. $null \mathbf{A} = null \mathbf{B}$

B. $\operatorname{col} \tilde{\mathbf{A}} = \operatorname{col} \tilde{\mathbf{B}}$

4(c). Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}$ and let $B = \{\mathbf{b}_{1}, \mathbf{b}_{2} \cdots \mathbf{b}_{n}\}$ be a basis for ${}^{n}\mathbb{R}$.

A. rank $\mathbf{A} = \operatorname{rank} [\mathbf{A} | \mathbf{b}_i]$ for all i

B. A is invertible

4(d). Let $\mathbf{A} = [a_{ij}] \in {}^n\mathbb{R}^n$.

A. $a_{ij} \ge 0$ for all i, j

B. $\det \mathbf{A} \ge 0$

4(e). Let $\mathbf{A} \in {}^{n}\mathbb{R}^{n}, n \geq 2$.

A. rank $\mathbf{A} \leq n-2$

B. $adj \mathbf{A} = \mathbf{O}$

