Synchronous & Asynchronous Computations

Thoai Nam

High Performance Computing Lab (HPC Lab)

Faculty of Computer Science and Technology

HCMC University of Technology

EPC

 A computation that can obviously be divided into a number of completely independent parts, each of which can be executed by a separate process(or)

Bulk Synchronous Parallel (BSP)

No communication or very little communication between processes; Each process can do its tasks without any interaction with other processes.

Data parallel computation

BSP

HPC Lab-CSE-HCMUT

Synchronous computations

In a (fully) synchronous application, all the processes synchronized at regular points.

Barrier

- A basic mechanism for synchronizing processes inserted at the point in each process where it must wait;
- All processes can continue from this point when all the processes have reached it (or, in some implementations, when a stated number of processes have reached this point).

Processes reaching barrier at different times

Message-passing

In message-passing systems, barriers provided with library routines

MPI

- MPI_Barrier()
- Barrier with a named communicator being the only parameter
- Called by each process in the group, blocking until all members of the group have reached the barrier call and only returning then.

Synchronized Computations

Can be classified as:

Fully synchronous

In fully synchronous, all processes involved in the computation must be synchronized

Locally synchronous

In locally synchronous, processes only need to synchronize with a set of logically nearby processes, not all processes involved in the computation

Fully synchronized computation examples

Data Parallel Computations

- Same operation performed on different data elements simultaneously; i.e., in parallel.
- Particularly convenient because:
 - Ease of programming (essentially only one program)
 - Can scale easily to larger problem sizes
 - Many numeric and some non-numeric problems can be cast in a data parallel form.

Example

To add the same constant to each element of an array:

The statement a[i] = a[i] + k could be executed simultaneously by multiple processors, each using a different index i (0 < i ≤ n).</p>

Forall construct

 Special "parallel" construct in parallel programming languages to specify data parallel operations:

```
forall (ί=0; ί<n; ί++)

S;
```

states that n instances of the statements of the body (S) can be executed simultaneously.

• One value of the loop variable $\hat{\iota}$ is valid in each instance of the body, the first instance has $\hat{\iota} = 0$, the next $\hat{\iota} = 1$, and so on.

Example

To add **k** to each element of an array, **a**, we can write:

```
forall (i=0; i<n; i++)
a[i] = a[i] + k;</pre>
```

Data parallel technique applied to multiprocessors and multicomputers.

■ SPMD: to add **k** to the elements of an array:

```
i = Get_Rank(); // P_i có Rank=i với 0 \le i \le n-1 a[i] = a[i] + k; // Thực thi S trong vòng lặp thứ i Barrier(group_p); // Đồng bộ rào cản cho tất cả n tiến trình
```

Prefix sum problem

```
X_0 X_1 X_2 X_3 X_4 X_5 X_6 X_7
0:
      X_{o}
1: x_0 \oplus x_1
      \chi_o \oplus \chi_1 \oplus \chi_2
2:
                                        X_0 X_1 X_2 X_3 X_4 X_5 X_6 X_7
N-1: \quad X_0 \oplus X_1 \oplus X_2 \oplus ... \oplus X_{N-1}
                                         1 3 6 10 15 21 28 36
           1. Sequential_Prefix_sums (n, x[]) {
                     for (int i = 1; i < n; i++)</pre>
          2.
                          x[i] = x[i-1] \oplus x[i];
          3.
           4. return x[];
           5. }
```

Data parallel example - prefix sum problem

O(logn)

Data parallel example - prefix sum problem

O(logn)

Synchronous Iteration (Synchronous Parallelism)

 Each iteration composed of several processes that start together at beginning of iteration. Next iteration cannot begin until all processes have finished previous iteration. Using *forall*:

```
for (j=0; j<n; j++) // Lặp n bước forall (i=0; i<p; i++) // p tiến trình thực hiện S(i); // Công việc của mỗi tiến trình P_i
```

SIMD:

```
for (j=0; j<n; j++) { // Lặp n bước i = Get_Rank(); // P_i có rank=i với 0 \le i \le n-1 S(i); // Công việc của mỗi tiến trình P_i Barrier(group_p); // Đồng bộ rào cản cho tất cả p tiến trình }
```

Heat distribution problem (Locally synchronous computation)

- An area has known temperatures along each of its edges
- Find the temperature distribution within
- Divide area into fine mesh of points $h_{i,j}$. Temperature at an inside point taken to be average of temperatures of four neighboring points. Convenient to describe edges by points.

Temperature of each point by iterating the equation:

$$h_{i,j} = \frac{h_{i-1,j} + h_{i+1,j} + h_{i,j-1} + h_{i,j+1}}{4}$$

(0 < i < n, 0 < j < n) for a fixed number of iterations or until the difference between iterations less than some very small amount.

Sequential algorithms

```
1. Seq heat distribution ver1 () {
     do {
       for (k=0; k<Max loop; k++) { // Lặp đến Max loop
   // Tính toán giá trị nhiệt mới tại bước k, không tính ở biên
         for (i=1; i<n; i++)</pre>
4.
          for (j=1; j<n; j++)
             g[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +
                               h[i][j-1] + h[i][j+1]);
  // Cập nhật giá trị nhiệt mới tại bước k và h[i][j]
         for (i=1; i<n; i++)
           for (j=1; j<n; j++)
             h[i][j] = g[i][j];
   // Kiểm tra điều kiên kết thúc
         continue = false;
10.
         for (i=1; i<n; i++)
11.
12.
         for (j=1; j<n; j++)
             if !converged(i, j) {
13.
               continue = true;
14.
15.
               break:
16.
  // Dừng khi đạt điều kiện kết thúc hoặc lặp đủ Max loop bước
      } while ((continue == true) && (k < (Max loop-1)))</pre>
17.
18. }
```

```
1. Seg heat distribution ver2 () {
     do {
       for (k=0; k<Max loop; k++) { // Lặp đến Max loop
   // Tính toán giá tri nhiệt mới tại bước k, không tính ở biên
         for (i=1; i<n; i++)</pre>
4.
           for (j=1; j<n; j++)
             h[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +
                                h[i][j-1] + h[i][j+1]);
   // Kiếm tra điều kiên kết thúc
         continue = false;
7.
         for (i=1; i<n; i++)</pre>
           for (j=1; j<n; j++)
             if !converged(i, j) {
10.
               continue = true;
11.
               break;
12.
13.
   // Dừng khi đạt điều kiện kết thúc hoặc lặp đủ Max loop bước
      } while ((continue == true) && (k < (Max loop-1)))</pre>
14.
15. }
```

Parallel algorithm

```
// Lặp đến Max loop
    for (k=0; k<Max loop; k++) {
      h = 0.25 * (1 + r + d + u);
2.
  // Send() ở chế độ
  // không bị chặn (non-blocking)
3.
       Send(&h, P_{i-1,i});
      Send(&h, P_{i+1,i});
5.
      Send(&h, P_{i,i-1});
6.
      Send(&h, P_{i,i+1});
  // Recv() ở chế độ hay đồng bộ
      (synchronous) bị chặn (blocking)
7.
      Recv(&1, P_{i-1,i});
8.
      Recv(&r, P_{i+1,i});
9.
      Recv(&d, P_{i,i-1});
10.
      Recv(&u, P_{i,i+1});
11. }
```


Local barrier

```
1. Parrallel_heat_distribution () {
     do {
2.
3.
       for (k=0; k<Max loop; k++) { // Lặp đến Max loop
   // Tính toán giá trị nhiệt mới tại bước k, không tính ở biên
4.
         forall (i=1; i<n; i++)
           forall (j=1; j<n; j++)
5.
6.
             h[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +
                                h[i][j-1] + h[i][j+1]);
   // Kiểm tra điều kiên kết thúc
7.
         continue = false;
         for (i=1; i<n; i++)</pre>
8.
9.
          for (j=1; j<n; j++)
             if !converged(i, j) {
10.
               continue = true;
11.
               break;
12.
13.
   // Dừng khi đạt điều kiện kết thúc hoặc lặp đủ Max loop bước
      } while ((continue == true) && (k < (Max loop-1)))
14.
15. }
```

Message-passing

Important to use **send()**s that do not block while waiting for the **recv()**s; otherwise the processes would deadlock, each waiting for a **recv()** before moving on - **recv()**s must be synchronous and wait for the **send()**s.

Message passing for heat distribution problem (1)

Message passing for

for heat distribution problem (2)

Master/Slave

```
h_{i,j} \leftrightarrow h
h_{i-l,j} \leftrightarrow l
h_{i+l,j} \leftrightarrow r
h_{i,j-l} \leftrightarrow d
h_{i,j+l} \leftrightarrow u
```

```
k=0; // Bước lặp thứ k
   do {
     k++;
3.
    h = 0.25 * (1 + r + d + u);
  // Send() ở chế độ không bị chặn (non-blocking)
5.
    Send(\&h, P_{i-1,i});
    Send(&h, P_{i+1,j});
    Send(&h, P_{i,j-1});
    Send(&h, P_{i,i+1});
  // Recv() ở chế độ hay đồng bộ(synchronous) bị chặn (blocking)
     Recv(&1, P_{i-1,i});
9.
    Recv(&r, P_{i+1,j});
      Recv(&d, P_{i,i-1});
11.
      Recv(&u, P_{i,i+1});
12.
13. } while (!converged(i, j) && (k < Max_{loop}));
14. Send(&h, &i, &j, &k, P<sub>master</sub>);
```

Asynchronous Computations

Asynchronous computations

Computations in which individual processes operate without needing to synchronize with other processes.

- Asynchronous computations important because synchronizing processes is an expensive operation which very significantly slows the computation - A major cause for reduced performance of parallel programs is due to the use of synchronization
- Global synchronization is done with barrier routines. Barriers cause processor to wait sometimes needlessly.

Heat distribution problem (Locally synchronous computation)

- An area has known temperatures along each of its edges
- Find the temperature distribution within
- Divide area into fine mesh of points $h_{i,j}$. Temperature at an inside point taken to be average of temperatures of four neighboring points. Convenient to describe edges by points.

Temperature of each point by iterating the equation:

$$h_{i,j} = \frac{h_{i-1,j} + h_{i+1,j} + h_{i,j-1} + h_{i,j+1}}{4}$$

(0 < i < n, 0 < j < n) for a fixed number of iterations or until the difference between iterations less than some very small amount.

Sequential algorithms

```
1. Seq heat distribution ver1 () {
     do {
       for (k=0; k<Max loop; k++) { // Lặp đến Max loop
   // Tính toán qiá tri nhiệt mới tai bước k, không tính ở biên
         for (i=1; i<n; i++)</pre>
4.
          for (j=1; j<n; j++)
             g[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +
                               h[i][j-1] + h[i][j+1]);
  // Cập nhật giá trị nhiệt mới tại bước k và h[i][j]
         for (i=1; i<n; i++)
           for (j=1; j<n; j++)
             h[i][j] = g[i][j];
   // Kiểm tra điều kiên kết thúc
         continue = false;
10.
         for (i=1; i<n; i++)
11.
12.
         for (j=1; j<n; j++)
             if !converged(i, j) {
13.
               continue = true;
14.
15.
               break:
16.
  // Dừng khi đạt điều kiện kết thúc hoặc lặp đủ Max loop bước
      } while ((continue == true) && (k < (Max loop-1)))</pre>
17.
18. }
```

```
1. Seg heat distribution ver2 () {
     do {
       for (k=0; k<Max loop; k++) { // Lặp đến Max loop
   // Tính toán giá tri nhiệt mới tại bước k, không tính ở biên
         for (i=1; i<n; i++)</pre>
4.
           for (j=1; j<n; j++)
             h[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +
                                h[i][j-1] + h[i][j+1]);
   // Kiếm tra điều kiên kết thúc
         continue = false;
7.
         for (i=1; i<n; i++)</pre>
           for (j=1; j<n; j++)
             if !converged(i, j) {
10.
               continue = true;
11.
               break;
12.
13.
   // Dừng khi đạt điều kiện kết thúc hoặc lặp đủ Max loop bước
      } while ((continue == true) && (k < (Max loop-1)))</pre>
14.
15. }
```

Parallel algorithm

```
// Lặp đến Max loop
    for (k=0; k<Max loop; k++) {
      h = 0.25 * (1 + r + d + u);
2.
  // Send() ở chế đô
  // không bị chặn (non-blocking)
3.
       Send(&h, P_{i-1,i});
       Send(&h, P_{i+1,i});
5.
      Send(&h, P_{i,i-1});
6.
       Send(&h, P_{i,i+1});
  // Recv() ở chế độ hay đồng bộ
      (synchronous) bị chặn (blocking)
7.
      Recv(&1, P_{i-1,i});
                                               Local
8.
      Recv(&r, P_{i+1,i});
                                               barrier
9.
      Recv(&d, P_{i,i-1});
      Recv(&u, P<sub>i,i+1</sub>);
10.
11. }
              Overhead
                                          Barrier
```

```
1. Parrallel_heat_distribution () {
2.
     do {
3.
       for (k=0; k<Max loop; k++) { // Lặp đến Max loop
   // Tính toán giá trị nhiệt mới tại bước k, không tính ở biên
4.
         forall (i=1; i<n; i++)
           forall (j=1; j<n; j++)
5.
6.
             h[i][j] = 0.25 * (h[i-1][j] + h[i+1][j] +
                                h[i][j-1] + h[i][j+1]);
   // Kiểm tra điều kiên kết thúc
         continue = false;
         for (i=1; i<n; i++)</pre>
8.
           for (j=1; j<n; j++)
9.
             if !converged(i, j) {
               continue = true;
12.
               break;
13.
   // Dừng khi đạt điều kiện kết thúc hoặc lặp đủ Max loop bước
      } while ((continue == true) && (k < (Max loop-1)))
14.
15. }
```


The waiting can be reduced by not forcing synchronization at each iteration

Asynchronous computations

- First section of code computing the next iteration values based on the immediate previous iteration values is traditional Jacobi iteration method
- Suppose however, processes are to continue with the next iteration before other processes have completed
- Then, the processes moving forward would use values computed from not only the previous iteration but maybe from earlier iterations

Method then becomes an asynchronous iterative method.

Asynchronous iterative method - Convergence

- Mathematical conditions for convergence may be more strict
- Each process may not be allowed to use any previous iteration values if the method is to converge.

Chaotic Relaxation

A form of asynchronous iterative method introduced by Chazan and Miranker (1969) in which the conditions are stated as "there must be a fixed positive integer s such that, in carrying out the evaluation of the iterate, a process cannot make use of any value of the components of the jth iterate if s s (Baudet, 1978).

Overall parallel code

- Each process allowed to perform s iterations before being synchronized and also to update the array as it goes. At s iterations, maximum divergence recorded. Convergence is checked then.
- The actual iteration corresponding to the elements of the array being used at any time may be from an earlier iteration but only up to s iterations previously. There may be a mixture of values of different iterations as the array is updated without synchronizing with other processes truly a chaotic situation.

Parameter Server

Parameter Server (PS)

- Model parameters are stored on PS machines and accessed via key-value interface (distributed shared memory)
- Extensions
 - Multiple keys (for a matrix);
 multiple "channels" (for multiple sparse vectors, multiple clients for same servers, ...)
 - Push/pull interface to send/receive most recent copy of (subset of) parameters, blocking is optional
 - O Can block until push/pulls with clock $< (t \tau)$ complete

[Smola et al 2010, Ho et al 2013, Li et al 2014]

Machine Learning (ML)

Wide array of problems and algorithms

- Classification
 - o Given labeled data points, predict label of new data point
- Regression
 - Learn a function from some (x, y) pairs
- Clustering
 - Group data points into "similar" clusters
- Segmentation
 - Partition image into meaningful segments
- Outlier detection

Abstracting ML algorithms

- Can we find commonalities among ML algorithms?
- This would allow finding
 - o Common abstractions
 - Systems solutions to efficiently implement these abstractions
- Some common aspects
 - We have a prediction model A
 - A should optimize some complex objective function L
 - ML algorithm does this by iteratively refining A

High level view

- Notation
 - o D: data
 - A: model parameters
 - L: function to optimize (e.g., minimize loss)
- Goal: Update A based on D to optimize L
- Typical approach: iterative convergence

Distributed Deep Learning Systems (DDLS)

DDLSs train deep neural network models by utilizing the distributed resources of a cluster

- The massive parallel processing power of graphics processing units (GPUs) has been largely responsible for the recent successes in training deep learning models
- Increasingly larger and more complex deep learning models are necessary
- The disruptive trend towards big data has led to an explosion in the size and availability of training datasets for machine learning tasks
 - Training such models on large datasets to convergence can easily take weeks or even months on a single GPU

- Effective remedy to this problem is to utilize multiple
 GPUs to speed up training
- Scale-up approaches rely on tight hardware integration to improve the data throughput
 - These solutions are effective, but costly
 - Furthermore, technological and economic constraints impose tight limitations on scaling up
- DDLS aim at scaling out to train large models using the combined resources of clusters of independent machines

Distributed SGD algorithm: all-reduce

- SGD (Stochastic Gradient Descend)
- $w_{t+1} = w_t \alpha_t \cdot \frac{1}{B} \sum_{b=1}^{B} \nabla f_{i_{b,t}}(w_t),$
- M machines/mini-batches: B = M.B'
- $w_{t+1} = w_t lpha_t \cdot rac{1}{M} \sum_{m=1}^{M} rac{1}{B'} \sum_{b=1}^{B'}
 abla f_{i_{m,b,t}}(w_t)$

Algorithm 1 Distributed SGD with All-Reduce

```
input: loss function examples f_1, f_2, \ldots, number of machines M, per-machine minibatch size B' input: learning rate schedule \alpha_t, initial parameters w_0, number of iterations T for m=1 to M run in parallel on machine m load w_0 from algorithm inputs for t=1 to T do select a minibatch i_{m,1,t}, i_{m,2,t}, \ldots, i_{m,B',t} of size B' compute g_{m,t} \leftarrow \frac{1}{B'} \sum_{b=1}^{B'} \nabla f_{i_{m,b,t}}(w_{t-1}) all-reduce across all workers to compute G_t = \sum_{m=1}^M g_{m,t} update model w_t \leftarrow w_{t-1} - \frac{\alpha_t}{M} \cdot G_t end for end parallel for return w_T (from any machine)
```

Parameter server (PS)

workers send gradients to parameter servers

parameter servers send new parameters to workers

Algorithm 2 Asynchronous Distributed SGD with the Parameter Server Model

```
input: loss function examples f_1, f_2, \ldots, number of worker machines M, per-machine minibatch size B'
input: learning rate \alpha, initial parameters w_0, number of iterations per worker T
for m = 1 to M run in parallel on machine m
   load w_{m,0} from the parameter server
   for t = 1 to T do
       select a minibatch i_{m,1,t}, i_{m,2,t}, \dots, i_{m,B',t} of size B' compute g_{m,t} \leftarrow \frac{1}{B'} \sum_{b=1}^{B} \nabla f_{i_{m,b,t}}(w_{m,t-1})
       push gradient g_{m,t} to the parameter server
       receive new model w_{m,t} from the parameter server
   end for
end parallel for
run in parallel on param server
   initialize model w \leftarrow w_0
   loop
       receive a gradient g from a worker
       update model w \leftarrow w - \alpha g
       send w back to the worker
   end loop
end run on param server
return w_T (from any machine)
```