МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ЭКОНОМИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Г.В. ПЛЕХАНОВА»

Высшая школа кибертехнологий, математики и статистики (факультет) Кафедра информатики

Выпускная квалификационная работа

Направление 38.03.05 «Бизнес-информатика» профиль «Цифровая трансформация бизнеса»

тема:

Разработка и внедрение системы предиктивной аналитики в условиях импортозамещения

Выполнил обучающийся Крабу Кира Сергеевна Группа 15.11Д-БИЦТ09/21б

Научный руководитель выпускной квалификационной работы Батищев А.В., к.э.н, доцент, доцент кафедры информатики

Актуальность, цель и задачи работы

Актуальность:

- 1. Недоступность западных систем
- 2. Недостаточная функциональность и доступность отечественных решений
- 3. Повышенный интерес к автоматизации аналитики

Объект: ООО «ПИКС Роботикс» (PIX Robotics)

Предмет: процесс предсказательного анализа фондового рынка

Цель:

Разработка системы прогнозирования котировок обыкновенных акций российских компаний (Сбер и ВТБ) на горизонте 20 рабочих дней с учетом тональности новостей и формированием торгового сигнала

Задачи:

- 1. Анализ существующих решений
- 2. Проектирование БД
- 3. Автоматизация сбора данных
- 4. Построение модели прогнозирования

- 5. Визуализация результатов в BI
- 6. Оценка экономической эффективности

Компания PIX Robotics

Российский разработчик RPA, BI и BPM-систем

PIX Robotics

Цели

Выход на рынок инвестиционной аналитики

Увеличение прибыли и снижение убытков

Интеграция платформы аналитики в экосистему компании

Puc.1 – Оргструктура PIX Robotics

Используемые продукты: PIX RPA, PIX BI

Процесс «как есть»

Узкие места:

- 1. Ручной сбор новостей и технических индикаторов
- 2. Субъективный анализ новостей
- 3. Формирование таблиц и отчетов вручную

Рис.2 – Процесс «как есть»

Постановка задачи:

Разработать систему прогнозирования цен акций Сбера и ВТБ на 20 дней вперед, которая:

Автоматически собирает и анализирует данные

Формирует торговые сигналы (BUY/SELL/HOLD)

Визуализирует результаты на ВІ-дашборде

Процесс «как должно быть»

Puc.3 – Процесс «как должно быть»

После автоматизации:

 1
 Автоматизированный сбор данных

 2
 Анализ тональности новостей

 3
 Формирование прогноза и торгового сигнала

 4
 Визуализация в ВІ

Техническое задание

Функциональные требования

- 1. Автоматический сбор биржевых данных и новостей по российским компаниям ПАО «Сбербанк» и ПАО «ВТБ» с помощью RPA в базу данных PostgreSQL
- 2. Анализ тональности новостных текстов с использованием предобученной нейросетевой модели RuBERT
- 3. Формирование прогноза стоимости закрытия акции на горизонте 20 рабочих дней вперед
- 4. Генерация торговых сигналов «BUY / HOLD / SELL»
- 5. Отображение результатов анализа в виде дашборда с прогнозами, метриками и показателями портфеля в системе PIX BI

Нефункциональные требования

- 1. Время формирования прогноза по одной компании не более 60 секунд; сбор данных не более 240 секунд
- 2. R² (коэффициент детерминации) должен быть не ниже 0,96 на валидационной выборке
- 3. Система должна позволять расширение на новые компании без доработки архитектуры
- 4. Доступ к данным и прогнозам осуществляется через защищенное соединение (авторизация по логину и паролю)

Календарно-ресурсный план проекта

Рис.4 – Календарно-ресурсный план

Проект занимает 82 дня

Роль в проекте – аналитик и RPA-инженер

ИМЕНИ Г.В. ПЛЕХАНОВА

Архитектура решения

ПАО «Сбер»

ПАО «ВТБ»

Биржи

ПАО «Сбер»

ПАО «ВТБ»

PIX BI

Все компоненты связаны и работают автоматически

Работа с данными

PIX RPA

- 1. Дата
- 2. Цены открытия/закрытия
- 3. Минимальная/максимальная цены
- 4. Объем торгов
- 5. Среднее скользящее за 5, 10, 20 дней
- 6. Текст новости

Робот проходит по следующим сайтам:

Коммерсантъ

LENTA.RU

Investing

Видео работы RPA (часть сбора данных Сбера, ускоренно в 4 раза)

PostgreSQL

Puc.5 – ERD БД

8 таблиц для хранения информации о компаниях, котировках их акций, новостях и сформированных прогнозах

Созданы «**триггеры**» для автоматизации запуска модуля аналитики

Модель машинного обучения: тональность новостей

Задача МО:

построить модель регрессии для предсказания цены закрытия акции на горизонте 20 рабочих дней на основе признаков: исторических котировок, скользящих средних, финансовых показателей компании и тональности новостей.

Классификация тональности текста новостей реализуется с помощью модели RuBERT. Дополнительно считаются показатели сформированного инвестиционного портфеля.

Таблицы «news» и «general_news» (новости по компаниям и новости по бирже)

Puc.6 – Пример данных в таблице «news»

Подключение предобученной модели **RuBERT**

Тональность текста

эмоциональное отношение автора высказывания к некоторому объекту, выраженное в тексте

Ансамбль моделей МО

Рис.7 – Пример сформированной оценки

Интервал оценки: [-1;1]

Оценка < -0,33: отрицательная Оценка > 0,33: положительная Между: нейтральная

Модель машинного обучения: ансамбль моделей МО

На вход:

720 строк

Целевой признак
– «close_price»

	company_id integer	date date	open_price double precision	close_price double precision	volume double precision	sma_10 double precision	net_income bigint	pe_ratio double precision	company_sentiment double precision	market_sentiment double precision
1	1	2025-03-03	309.8	305.5	69.49	311.28	1560000000000	3.99	0.2690725735448397	0.06295125336580067
2	2	2025-03-03	9	90.77	111.8	91.96	609970000000	0.8	-0.0022893364173228073	0.06295125336580067
3	1	2025-03-04	306.9	316.4	88.13	311.41	1560000000000	3.99	0.07181773682694055	-0.16889173051611583

Рис.8 – Пример входных данных

Ансамбль моделей МО

- 1. Линейная регрессия
- 2. Деревья решений
- 3. Случайные леса
- 4. Метод k-ближайших соседей
- 5. Алгоритм градиентного бустинга
- 6. Алгоритм ансамблевого обучения «XGBoost»

Метрики качества:

Коэффициент детерминации: 0,997

Среднеквадратичная ошибка (MSE): 35,6

Средняя абсолютная ошибка (МАЕ): 4,05

Средняя абсолютная ошибка в процентах (МАРЕ): 2,06%

метод объединения

Стекинг: градиентный бустинг

На выходе:

40 строк (20 для Сбера, 20 для ВТБ)

для таблицы «predictions»

Сигнал формируется с помощью метода Монте-Карло

Puc.9 – Пример сформированных данных в таблице «predictions»

1 строка

	id [PK] integer	date /	daily_return double precision	daily_risk double precision	sharpe_ratio double precision	var_90 double precision	expected_return_with_risk double precision
1	1	2025-05-12	0.0009	0.0214	0.03	2.74	-2.05

BI-визуализация

PIX BI

Видео работы системы

ИМЕНИ Г.В. ПЛЕХАНОВА

Экономическая эффективность

Статья затрат	Сумма, руб.					
Капитальные затраты						
Фонд оплаты труда Настройка инфраструктуры	707 384,60 115 374					
(сервер/ПО/доступ) Внедрение, тестирование, отладка системы	46 437					
Итого:	869 195,60					
Операционные затраты						
Поддержка, мониторинг, отчетность	22 000					
Технические корректировки	7 500					
Итого в год:	29 500					
Всего:	898 695,60					

Прямая экономия

Снижение трудозатрат аналитика

экономия 95%

Снижение стоимостных

364 800 ₽ ежегодно

затрат

Ставка дисконтирования при всех расчетах – 25%

Срок окупаемости

$$DPP = min \left\{ t: \sum_{k=1}^{t} \frac{364\,800}{(1+0.25)^k} \ge 898\,695, 60 \right\}$$

4 года и 4 месяца

NPV
$$NPV = \sum_{t=1}^{5} \frac{364800 - 29500}{(1+0.25)^t} - 898695,60$$
 3 019,9

$$ROI = \frac{3019,984}{898695,60} * 100\% \approx 0,3$$

0,3%

	До внедрения	После внедрения
Затраченное время	40 ч/мес (480 ч/год)	2 ч/мес (24 ч/год)
Оплата труда (только по данной задаче аналитика)	32 000 руб./мес (384 000 руб./год)	1 600 руб./мес (19 200 руб./год)

Результаты и перспективы

1 Все поставленные задачи выполнены

4 Интеграция с продуктами компании PIX Robotics

Разработана и протестирована рабочая система прогнозирования котировок

Потенциал масштабирования на другие компании без изменения архитектуры

3 Точность модели соответствует требованиям

6 Потенциал масштабирования на другие источники данных

тема:

Разработка и внедрение системы предиктивной аналитики в условиях импортозамещения

Спасибо за внимание!

Выполнила обучающаяся Крабу Кира Сергеевна Группа 15.11Д-БИЦТ09/21б

Научный руководитель выпускной квалификационной работы Батищев А.В., к.э.н, доцент, доцент кафедры информатики