		For which of the following tasks might K-means clustering be a suitable algorithm? Select all that apply.
		Given a database of information about your users, automatically group them into different market segments.
		Given sales data from a large number of products in a supermarket, figure out which products tend to form coherent groups (say are frequently purchased together) and thus should be put on the same shelf.
		Given historical weather records, predict the amount of rainfall tomorrow (this would be a real-valued output)
		Given sales data from a large number of products in a supermarket, estimate future sales for each of these products.
1 point	2.	Suppose we have three cluster centroids $\mu_1=\begin{bmatrix}1\\2\end{bmatrix}$, $\mu_2=\begin{bmatrix}-3\\0\end{bmatrix}$ and $\mu_3=\begin{bmatrix}4\\2\end{bmatrix}$. Furthermore, we have a training example $x^{(i)}=\begin{bmatrix}-1\\2\end{bmatrix}$. After a cluster assignment
		step, what will $c^{(i)}$ be?
		\bigcirc $c^{(i)}$ is not assigned
		$\bigcirc c^{(i)}=2$
		$\bigcirc \hspace{0.5cm} c^{(i)} = 1$
		$\bigcirc c^{(i)}=3$
1 point	3.	K-means is an iterative algorithm, and two of the following steps are repeatedly carried out in its inner-loop. Which two?
		Feature scaling, to ensure each feature is on a comparable scale to the others.
		Using the elbow method to choose K.
		$lacksquare$ The cluster assignment step, where the parameters $c^{(i)}$ are updated.
		$lacksquare$ Move the cluster centroids, where the centroids μ_k are updated.
1 point	4.	Suppose you have an unlabeled dataset $\{x^{(1)},\dots,x^{(m)}\}$. You run K-means with 50 different random initializations, and obtain 50 different clusterings of the
		data. What is the recommended way for choosing which one of
		these 50 clusterings to use?
		The answer is ambiguous, and there is no good way of choosing.
		The only way to do so is if we also have labels $y^{(i)}$ for our data.
		For each of the clusterings, compute $\frac{1}{m}\sum_{i=1}^m x^{(i)}-\mu_{c^{(i)}} ^2$, and pick the one that minimizes this.
1	5.	one that minimizes this. Always pick the final (50th) clustering found, since by that time it is more
1 point	5.	one that minimizes this. Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution.
proceed and a	5.	one that minimizes this. Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution. Which of the following statements are true? Select all that apply. The standard way of initializing K-means is setting $\mu_1 = \cdots = \mu_k$ to be
DROWN AND ST	5.	 One that minimizes this. Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution. Which of the following statements are true? Select all that apply. The standard way of initializing K-means is setting μ₁ = ··· = μ_k to be equal to a vector of zeros. Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is
DROWN AND ST	5.	 One that minimizes this. Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution. Which of the following statements are true? Select all that apply. The standard way of initializing K-means is setting μ₁ = ··· = μ_k to be equal to a vector of zeros. Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible. For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at
Entiendo desactivado	que en ción de	 Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution. Which of the following statements are true? Select all that apply. The standard way of initializing K-means is setting μ1 = ··· = μk to be equal to a vector of zeros. Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible. For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide. If we are worried about K-means getting stuck in bad local optima, one way to ameliorate (reduce) this problem is if we try using multiple random
Entiendo desactivado Obtén má	que en ción de as infor	 one that minimizes this. Always pick the final (50th) clustering found, since by that time it is more likely to have converged to a good solution. Which of the following statements are true? Select all that apply. The standard way of initializing K-means is setting μ1 = ··· = μk to be equal to a vector of zeros. Since K-Means is an unsupervised learning algorithm, it cannot overfit the data, and thus it is always better to have as large a number of clusters as is computationally feasible. For some datasets, the "right" or "correct" value of K (the number of clusters) can be ambiguous, and hard even for a human expert looking carefully at the data to decide. If we are worried about K-means getting stuck in bad local optima, one way to ameliorate (reduce) this problem is if we try using multiple random initializations.

