"Machine Learning and Computational Statistics"

2nd Homework

Exercise 1 (python code + text):

- (a) **Use** the attached python code to read the data from the file "regression.mat". These data correspond to a data set X of 101 points of the form $X=\{(y_i,x_i), i=1,...,101\}$, where the x_i coordinates of all points (instances of the independent variable) are stored to the vector X and the associated y_i coordinates (instances of the dependent variable) are stored to the vector Y.
- (b) **Plot** the data and observe that these are modeled by a third degree curve.
- (c) **Propose** a model that explains the relationship between x_i 's and y_i 's.
- (d) Based on the above model, **define** a suitable transformation $\varphi(.)$ that maps all x_i 's from R to a higher order space, where the problem becomes linear. Denoting by x_i ' the image of x_i in the transformed space, we form a new data set $X'=\{(y_ix_i'), i=1,...,101\}$
- (e) **Adopting** the linear model assumption in the transformed space and the SSE criterion, estimate the parameters of the model (do not use functions from python libraries to compute the LS solution).

Exercise 2:

Consider the following nonlinear model:

$$y = 3x_1^2 + 4x_2^2 + 2x_1x_2 + 7x_1 + 5x_2 + \eta$$

Define a suitable function φ that transforms the problem to a space where the problem of estimating the model becomes linear. What is the dimension of the original and the transformed space?

Exercise 3:

Consider the following two-class nonlinear classification task:

$$\mathbf{x} = [x_1, x_2, x_3]^T : x_1^2 + 3x_2^2 + 6x_3^2 + x_1x_2 + x_2x_3 > (<)3 \rightarrow \mathbf{x} \in \omega_1(\omega_2)$$

Define a suitable function φ that transforms the problem to a space where the problem of estimating the border of the two classes becomes linear. What is the dimension of the original and the transformed space?

Exercise 4:

Verify the sum, the product and the Bayes rule for the discrete-valued case, using the relative frequency definition of the probability.

Exercise 5:

Consider the matrix
$$A = \begin{bmatrix} 100 & 10 & 40 & 30 \\ 200 & 20 & 30 & 10 \\ 300 & 30 & 20 & 40 \\ 400 & 40 & 10 & 20 \end{bmatrix}$$
, where the rows correspond to feature

vectors (representing entities) and the columns correspond to the features x_1 , x_2 , x_3 , x_4 . Defining $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4]^T$, compute the **covariance matrix** ($\text{cov}(\mathbf{x}) = \text{E}[(\mathbf{x} - \text{E}[\mathbf{x}]) (\mathbf{x} - \text{E}[\mathbf{x}])^T]$), the **correlation matrix** ($R_x = \text{E}[\mathbf{x}\mathbf{x}^T]$) and the **correlation coefficient matrix** (whose (i,j) element equals to $\frac{\text{cov}(\mathbf{x}_i, \mathbf{x}_j)}{\sqrt{\text{var}(\mathbf{x}_i)}\sqrt{\text{var}(\mathbf{x}_j)}}$). Draw your conclusions on the way the features are

related to each other.