MTH 103: PRACTICE QUESTION

1.Evaluate
$$\int \frac{2x-6}{(x+3)(x-1)} dx$$

- 2.Use first principle to differentiate $y = \sqrt{x}$
- 2. From first principle, find the derivative of $y = \cos 8x$.
- 3. From first principle, find the derivative of $y = \cos ax$.
- 4. From first principle, find the derivative of $y = \sin 5x$.
- 5. From first principle, find the derivative of $y = \sin ax$.
- 6.Use reduction formula to evaluate $\int \cos^7 x dx$
- 7. Use reduction formula to evaluate $\int \sin^8 x dx$
- 8. Find $\frac{dy}{dx}$ if in term of x and y if $\sqrt{xy} + \sin 2x \cos 3y + 8x^3 10y^2 = 8$
- 9. Use reduction formula to evaluate $\int \sin^4 x dx$

$$10. \lim_{x \to \pi} \frac{\sqrt{1 - \tan x} - \sqrt{1 + \tan x}}{\sin 2x}$$

- 11. A curve C with equation $y = \frac{\sin x}{e^{2x}}$, $0 < x < \pi$, has a stationary point at P. Find the coordinates of P.
- 12. Evaluate $\int e^x \cos x dx$

7marks

13. The line with equation y = 10 - x cuts the curve with equation $y = 2x^2 - 5x + 4$ at the points A and B, as shown in the figure below

The shaded region R is bounded by the line and the curve as shown in the figure. Find the exact area of R

14. Find the inverse of the function $y = \frac{2x+1}{x-3}$.

15. If
$$y = \ln(x + \sqrt{1 + x^2})$$
, show that $(1 + x^2)y'' + xy' = 0$.

16. Evaluate the integral
$$\int \frac{dx}{b^2 + a^2 x^2}$$
...

17. Use substitution method to evaluate the integral $\int \frac{\tan^{-1} x}{1+x^2} dx$.

18. if y = f(x) = (x-1)(x-2)(x-3). What are the stationary points of the systems. Classify the stationary points.

19. Find the derivative of the function $y = 3x^2 \cos 5x$.

20.Evaluate $\int \cot x dx$

21.Evaluate
$$\int \frac{x+1}{(x-2)(x-4)} dx$$

22. Find the derivative of $y = \ln(4x^2 - 3x + 7)$

23. Evaluate the integral $\int \frac{dx}{x^2 + 100}$.

24. If
$$y = \ln\left(\frac{2x+5}{4x+7}\right)$$
. Find $\frac{dy}{dx}$

25. Find
$$\lim_{x\to 0} \left(\frac{(11+x)^2 - 121}{2x} \right)$$

- 26. Use quotient rule to find $\frac{dy}{dx}$ if $y = \tan 10x$
- 27. Differentiate between even and odd function. Hence prove that the function $f(x) = \log\left(\frac{1-x}{1+x}\right)$ even or odd function?
- 28. Given that $y = \sin^4 x$ find $\frac{dy}{dx}$
- 29. Given that $y = \cos^4 x$ find $\frac{dy}{dx}$
- 30. Evaluate $\int (\sqrt{2x+7}) dx$
 - 1. Find the gradient of the curve with equation $y = 3\sqrt{x}$ at the point where $x = \frac{9}{16}$
 - A. 1
 - B. 2
 - C. 3
 - D. 4
 - 2. Given that $2y^2 x^3 = 0$ and y > 0. Find $\frac{dy}{dx}$
 - A. $\frac{3}{2}\sqrt{\frac{x}{2}}$
 - $B. \ \frac{3}{4}\sqrt{\frac{x}{2}}$
 - $C. \ \frac{3}{2}\sqrt{\frac{x}{3}}$
 - $D. \ \frac{3}{2}\sqrt{\frac{x}{5}}$
 - 3. Given that a is a positive constant and $\int_{a}^{3a} \left(\frac{2x+1}{x}\right) dx = \ln 12$, Find the value of a
 - A. $\frac{1}{3} \ln 3$
 - B. $\frac{1}{4} \ln 4$

C.
$$\frac{1}{5} \ln 5$$

D.
$$\frac{1}{6} \ln 6$$

4. Evaluate
$$\int (2x+3)^4 dx$$

A.
$$\frac{1}{10}(2x+3)^5$$

B.
$$\frac{1}{5}(2x+3)^5$$

C.
$$\frac{1}{15}(2x+3)^5$$

D.
$$\frac{1}{20}(2x+3)^5$$

5. Find
$$\lim_{x \to 0} \left(\frac{(6+x)^2 - 36}{x} \right)$$

6. Evaluate
$$\int x^2 \ln x dx$$

A.
$$\frac{x^3}{9} \ln x - \frac{x^3}{3} + c$$

B.
$$\frac{x^3}{9} \ln x + \frac{x^3}{3} + c$$

C.
$$\frac{x^3}{3} \ln x - \frac{x^3}{9} + c$$

D.
$$\frac{x^3}{3} \ln x + \frac{x^3}{9} + c$$

7. Find the range of the function
$$y = x^2 + 2x + 3$$

C.
$$(2, \infty)$$

D.
$$[2, \infty)$$

8. Evaluate
$$\int \cos^2 x dx$$

$$A. \ \frac{1}{2} \left(x + \frac{1}{3} \sin 2x \right) + C$$

$$B. \frac{1}{2} \left(x + \frac{1}{2} \cos 2x \right) + C$$

C.
$$\frac{1}{2}\left(x - \frac{1}{4}\sin 2x\right) + C$$

D.
$$\frac{1}{2}\left(x-\frac{1}{3}\cos 2x\right)+C$$

9. Find the equation of the normal to the curve with equation $y = 8 - 3\sqrt{x}$ at the point where

$$x = 4$$

A.
$$4y + 3x - 10 = 0$$

B.
$$3y + 4x - 10 = 0$$

C.
$$4y - 3x + 10 = 0$$

D.
$$3y - 4x + 10 = 0$$

10. Find $\frac{dy}{dx}$ given that $y = \frac{2 - 3e^{7x}}{4e^{3x}}$

A.
$$\frac{3}{2}e^{-3x} + 3e^{4x}$$

B.
$$\frac{3}{2}e^{-3x} - 3e^{4x}$$

C.
$$-\frac{3}{2}e^{-3x} - 3e^{4x}$$

D.
$$-\frac{3}{2}e^{-3x} + 3e^{4x}$$

11. Given that $y = \sqrt{5x^2 + 1}$, find $\frac{dy}{dx}$ at (4, 9)

A.
$$-\frac{20}{9}$$

B.
$$\frac{20}{9}$$

C.
$$\frac{9}{20}$$

D.
$$-\frac{9}{20}$$

12. Given that $y = \frac{x}{2x+5}$ find $\frac{dy}{dx}$

A.
$$-\frac{5}{(2x+5)^2}$$

B.
$$\frac{5}{(2x+5)^2}$$

C.
$$-\frac{2}{(2x+5)^2}$$

D.
$$\frac{2}{(2x+5)^2}$$

13. Evaluate $\int \sin^2 x dx$

A.
$$\frac{1}{2}\left(x + \frac{1}{2}\sin 2x\right) + C$$

$$B. \frac{1}{2} \left(x + \frac{1}{2} \cos 2x \right) + C$$

C.
$$\frac{1}{2} \left(x - \frac{1}{2} \sin 2x \right) + C$$

D.
$$\frac{1}{2}\left(x - \frac{1}{2}\cos 2x\right) + C$$

14.
$$\int \frac{2x-6}{(x+3)(x-1)} dx$$

A.
$$\ln \left| \frac{(x+3)^3}{x-1} \right| + c$$

B.
$$\ln \left| \frac{(x+1)^3}{x-1} \right| + \epsilon$$

C.
$$\ln \left| \frac{(x+3)^3}{2x-1} \right| + 6$$

A.
$$\ln \left| \frac{(x+3)^3}{x-1} \right| + c$$
 B. $\ln \left| \frac{(x+1)^3}{x-1} \right| + c$ C. $\ln \left| \frac{(x+3)^3}{2x-1} \right| + c$ D. $\ln \left| \frac{(2x+3)^3}{2x-1} \right| + c$