```
In [347...
          import pandas as pd
          import os
          import numpy as np
          filename1 = 'Customer Attrition Status.csv'
          filename2 = 'Customer Demographics.csv'
          filename3 = 'Customer Investment Snapshot.csv'
          filename4 = 'Customer Portfolio Snapshot.csv'
          df1 = pd.read csv(filename1)
          df2 = pd.read csv(filename2)
          df3 = pd.read csv(filename3)
          df4 = pd.read csv(filename4)
In [354...
          df1 = df1.sort values(by='RowNumber')
          df2 = df2.sort values(by='RowNumber')
          df3 = df3.sort values(by='RowNumber')
          df4 = df4.sort_values(by='RowNumber')
          result1 = pd.merge(df4,df3,left_on=['RowNumber','CustomerId'],right_on=['RowNumber','CustomerId'],how='left')
          result2 = pd.merge(result1,df2,left on=['RowNumber','CustomerId'],right on=['RowNumber','CustomerId'],how='left')
          result = pd.merge(result2,df1,left on=['RowNumber','CustomerId'],right on=['RowNumber','CustomerId'],how='left')
          #print(result)
          result = result.reindex(['RowNumber','CustomerId','Surname','CreditScore','Geography','Gender','Age','Tenure','Balance','NumOfProducts
          result = result.dropna(subset=['CustomerId'])
          result = result.drop duplicates()
          result corr = result.corr()
          result corr
Out[354
```

54		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasChckng	IsActiveMember	EstimatedSalary	Exited
	RowNumber	1.000000	0.009853	0.006332	-0.000440	-0.008020	-0.004741	0.007246	0.000599	0.012044	-0.005988	-0.016571
	CustomerId	0.009853	1.000000	0.005658	0.008627	-0.015261	-0.008690	0.016972	-0.014025	0.001665	0.015271	-0.006248
	CreditScore	0.006332	0.005658	1.000000	-0.004118	-0.001960	-0.003884	0.011966	-0.006044	0.025737	-0.002197	-0.027794
	Age	-0.000440	0.008627	-0.004118	1.000000	-0.009025	-0.012822	-0.028665	-0.013279	0.082351	-0.009181	0.280904
	Tenure	-0.008020	-0.015261	-0.001960	-0.009025	1.000000	0.005572	0.017197	0.023078	-0.029180	0.008055	-0.012178
	Balance	-0.004741	-0.008690	-0.003884	-0.012822	0.005572	1.000000	-0.001027	0.006721	-0.020418	-0.001856	0.017208
1	NumOfProducts	0.007246	0.016972	0.011966	-0.028665	0.017197	-0.001027	1.000000	0.003183	0.009612	0.014204	-0.047820
	HasChckng	0.000599	-0.014025	-0.006044	-0.013279	0.023078	0.006721	0.003183	1.000000	-0.011866	-0.009933	-0.007138
ı	sActiveMember	0.012044	0.001665	0.025737	0.082351	-0.029180	-0.020418	0.009612	-0.011866	1.000000	-0.011421	-0.156128

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasChckng	IsActiveMember	EstimatedSalary	Exited
EstimatedSalary	-0.005988	0.015271	-0.002197	-0.009181	0.008055	-0.001856	0.014204	-0.009933	-0.011421	1.000000	0.012097
Exited	-0.016571	-0.006248	-0.027794	0.280904	-0.012178	0.017208	-0.047820	-0.007138	-0.156128	0.012097	1.000000

```
import seaborn as sns
missing_column = ['Balance', 'EstimatedSalary', 'CreditScore', 'Age', 'Tenure', 'NumOfProducts']
for i in missing_column:
    result.loc[result.loc[:,i].isnull(),i]=result.loc[:,i].median()
result = result.ffill()
sns.countplot(x="Geography",data=result,hue="Exited")
```

Out[349... <AxesSubplot:xlabel='Geography', ylabel='count'>


```
In [350... sns.countplot(x="Gender",data=result,hue="Exited")
```

Out[350... <AxesSubplot:xlabel='Gender', ylabel='count'>


```
In [351... sns.countplot(x="NumOfProducts",data=result,hue="Exited")
```

Out[351... <AxesSubplot:xlabel='NumOfProducts', ylabel='count'>


```
In [352... sns.countplot(x="HasChckng",data=result,hue="Exited")
```

Out[352... <AxesSubplot:xlabel='HasChckng', ylabel='count'>

In [353... sns.countplot(x="IsActiveMember",data=result,hue="Exited")

Out[353... <AxesSubplot:xlabel='IsActiveMember', ylabel='count'>

