Definición: Autovalor y autovector.

Sea ${\pmb A} \in K^{n imes n}$ y ${\pmb v} \in K^n$. ${\pmb v}$ es un **autovector** de ${\pmb A}$ si

$$Av = \lambda v$$

donde λ es un escalar en K, denominado **autovalor** asociado con ${m v}$.

1

Definición: Autovalor y autovector.

Sea ${m A} \in K^{n imes n}$ y ${m v} \in K^n$. ${m v}$ es un **autovector** de ${m A}$ si

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

donde λ es un escalar en K, denominado **autovalor** asociado con \boldsymbol{v} .

En forma equivalente:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0} \tag{1}$$

Este sistema tiene solución $oldsymbol{v}
eq oldsymbol{0}$ si y solo si:

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

denominado **polinomio característico**, $p_A(\lambda)$, y por el teorema fundamental del álgebra: $\mapsto n$ raíces.

Definición: Autovalor y autovector.

Sea ${m A} \in K^{n \times n}$ y ${m v} \in K^n$. ${m v}$ es un **autovector** de ${m A}$ si

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

donde λ es un escalar en K, denominado **autovalor** asociado con \boldsymbol{v} .

En forma equivalente:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{v} = \mathbf{0} \tag{1}$$

Este sistema tiene solución v
eq 0 si y solo si:

$$\det(\boldsymbol{A} - \lambda \boldsymbol{I}) = 0$$

denominado **polinomio característico**, $p_A(\lambda)$, y por el teorema fundamental del álgebra: $\mapsto n$ raíces.

Ejemplo:

$$\mathbf{A} = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix}$$

$$p_A(\lambda) = \det(\mathbf{A} - \lambda \mathbf{I}) = \begin{vmatrix} 3 - \lambda & -1 & 0 \\ -1 & 2 - \lambda & -1 \\ 0 & -1 & 3 - \lambda \end{vmatrix}$$
$$= -\lambda^3 + 8\lambda^2 - 19\lambda + 12 = 0$$

Solución: $\lambda_1=1, \lambda_2=3, \lambda_3=4$. Reemplazando cada autovalor en (1):

$$oldsymbol{v}_1 = aegin{bmatrix}1\2\1\end{bmatrix}, oldsymbol{v}_2 = begin{bmatrix}1\0\-1\end{bmatrix}, oldsymbol{v}_3 = cegin{bmatrix}1\-1\1\end{bmatrix}$$

1

Métodos:

- Analítico: n < 5.
- ▶ Parciales: computan solo autovalores extremos (módulo máximo o mínimo). Método de las potencias.
- Globales: aproximan a todo el **espectro** de A, $\sigma(A)$. Método QR.

LECTURAS RECOMENDADAS I

- ▶ R.L. Burden, D.J. Faires y A.M. Burden. *Análisis numérico*. 10.ª ed. Mexico: Cengage Learning, 2017. Capítulo 7.
- ▶ Carlos Moreno González. *Introducción al cálculo numérico*. Madrid, España: Universidad Nacional de Educación a Distancia, 2014. Capítulo 2.
- ▶ B. Bradie. *A Friendly Introduction to Numerical Analysis*. New Jersey, United States: Pearson Education Inc., 2006. Sección 3.3.
- A. Quarteroni, R. Sacco y F. Saleri. *Numerical Mathematics*. New York, United States: Springer-Verlag, 2000. Capítulo 1.