

## validacion cruzada IBM





Gracias por subir el archivo validaci-n-cruzada-ibm-machine-l.ipynb. Voy a proceder a analizarlo celda por celda, explicando cada bloque de código de forma detallada, con fundamentos teóricos y matemáticos cuando corresponda.

Comenzaré ahora con la **primera celda de código**. Dame un momento mientras leo su contenido y empiezo con la explicación.

Vamos a comenzar con la explicación detallada de las **primeras tres celdas de código** del notebook validaci-n-cruzada-ibm-machine-l.ipynb.

### Celda 1: Instalación y carga de librerías

```
python
# Surpress warnings:
def warn(*args, **kwargs):
    pass
import warnings
warnings.warn = warn
!pip install numpy
!pip install pandas
!pip install matplotlib
!pip install scikit-learn
import numpy as np
import pickle
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, PolynomialFeatures
from sklearn.model_selection import KFold, cross_val_predict
from sklearn.linear_model import LinearRegression, Lasso, Ridge
from sklearn.metrics import r2_score
from sklearn.pipeline import Pipeline
```

## Explicación:

#### 1. Supresión de advertencias:

```
python

def warn(*args, **kwargs): pass
warnings.warn = warn
```

Esto evita que se muestren mensajes de advertencia, lo cual puede ser útil para mantener limpio el output del notebook, aunque en desarrollo no siempre es recomendable ocultarlos.

#### 2. Instalación de paquetes:

```
python
!pip install ...
```

Se asegura de que las librerías necesarias estén disponibles. Esta sintaxis con ! es típica de entornos Jupyter para ejecutar comandos de terminal.

#### 3. Importaciones:

- numpy, pandas y matplotlib.pyplot son librerías fundamentales para análisis numérico, manejo de datos y visualización.
- pickle se usa para cargar datos serializados (guardados en binario).
- De scikit-learn, se importan:
  - Preprocesamiento: StandardScaler, PolynomialFeatures.
  - Modelos: LinearRegression, Lasso, Ridge.
  - Evaluación: KFold, cross\_val\_predict, r2\_score.
  - **Pipeline**: estructura para encadenar pasos del flujo de datos (escalado, modelo, etc.).

### Celda 2: Carga del dataset

```
# Note we are loading a slightly different ("cleaned") pickle file
!wget https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/IBM-ML240EN-
SkillsNetwork/labs/data/boston_housing_clean.pickle
# boston = pickle.load(open('data/boston_housing_clean.pickle', "rb" ))
boston = pickle.load(open('boston_housing_clean.pickle', "rb" ))
```

### Explicación:

#### 1. Descarga del dataset:

Usa wget para obtener un archivo .pickle (ya procesado) del dataset de viviendas en Boston, una base de datos clásica para regresión en Machine Learning.

#### 2. Lectura con pickle:

**boston = pickle.load(...)** carga el archivo como un objeto de Python, probablemente un diccionario que contiene los datos ya limpios y listos para el análisis.

### Celda 3: Exploración del objeto cargado

```
python
boston.keys()
```



### Explicación:

Se listan las claves del diccionario **boston**, lo que nos permite entender qué estructuras contiene. Por ejemplo:

- 'data' → los datos como un DataFrame.
- 'target' → la variable objetivo (precio de viviendas).
- 'feature\_names' → nombres de las columnas.

## **M** CONCLUSIÓN PARCIAL

Estas primeras celdas cumplen la función de:

- 1. Preparar el entorno de trabajo (librerías, advertencias, dependencias).
- 2. Descargar y cargar el dataset de entrenamiento.
- 3. Explorar la estructura general de los datos para su posterior análisis.

Este bloque es **fundamental como etapa de inicialización** para cualquier notebook de Machine Learning. La elección del dataset de Boston también es clásica porque se presta bien a tareas de regresión y validación de modelos.

### INFORMACIÓN ADICIONAL

#### Dataset de Boston Housing

- Contiene información socioeconómica y ambiental de distintas zonas en Boston.
- La variable objetivo es el valor medio de las casas.
- Fue retirado de **scikit-learn** por considerarse obsoleto y sesgado, pero aún se utiliza para fines educativos.

#### Métodos de regresión importados:

- LinearRegression: regresión lineal estándar.
- Ridge: regresión con regularización L2.
- Lasso: regresión con regularización L1.

#### Pipeline de sklearn

Permite encadenar pasos (por ejemplo, escalado + modelo), lo cual mejora la organización del código y evita fugas de datos en validación cruzada.

### cross\_val\_predict

Genera predicciones en cada fold del modelo, útil para evaluar con métricas como r2\_score.

¿Deseás que continúe con la siguiente celda del notebook?



#### continuar

Vamos ahora con la explicación detallada de las siguientes tres celdas del notebook.

### Celda 4: Versión de Python

```
python
!python --version
```

### Explicación:

Este comando de sistema imprime la versión actual de Python que se está utilizando en el entorno. Esto es útil para:

- Verificar compatibilidad con bibliotecas (por ejemplo, ciertas versiones de **scikit-learn** requieren Python 3.7 o superior).
- Documentar el entorno para reproducibilidad.
  - ☑ Buenas prácticas de ciencia de datos: **registrar versiones** de herramientas y paquetes utilizados.

### Celda 5: Extracción de datos desde el objeto cargado

```
python

boston_data = boston['dataframe']
boston_description = boston['description']
```

## Explicación:

El objeto boston cargado desde el archivo .pickle contiene al menos dos claves:

- 1. 'dataframe': una tabla (tipo pandas.DataFrame) con todas las variables predictoras y la variable objetivo (MEDV, valor medio de vivienda).
- 2. 'description': texto descriptivo o metadatos sobre el dataset, útil para entender qué mide cada variable.

Esta celda simplemente **extrae y almacena esas dos partes** por separado para su uso posterior.

### Celda 6: Vista preliminar del dataset

boston\_data.head()

### Explicación:

- El método .head() de un DataFrame de Pandas muestra las primeras 5 filas del conjunto de datos.
- Sirve como exploración inicial para:
  - Verificar que los datos se cargaron correctamente.
  - Observar nombres de columnas y tipos de datos.
  - Identificar si hay columnas categóricas, numéricas o faltantes.

Es común en análisis de datos empezar con un .head() antes de hacer estadística descriptiva.

## **☑** CONCLUSIÓN PARCIAL

Estas tres celdas cumplen funciones importantes para:

- 1. Registrar la versión de Python usada.
- 2. Extraer y organizar los datos reales del objeto boston.
- 3. Realizar una primera inspección visual del dataset.

Es una fase previa al preprocesamiento y modelado, fundamental en cualquier flujo de trabajo de Machine Learning.

## 🚛 INFORMACIÓN ADICIONAL

### ¿Qué variables contiene boston\_data?

Algunas de las variables típicas del dataset de Boston Housing son:

| Columna | Significado                                                      |
|---------|------------------------------------------------------------------|
| CRIM    | Tasa de criminalidad per cápita por ciudad                       |
| ZN      | Proporción de terrenos residenciales para lotes grandes          |
| INDUS   | Proporción de acres comerciales no minoristas                    |
| CHAS    | Variable ficticia: 1 si colinda con el río Charles, 0 si no      |
| NOX     | Concentración de óxidos de nitrógeno                             |
| RM      | Promedio de habitaciones por vivienda                            |
| AGE     | Proporción de unidades ocupadas construidas antes de 1940        |
| DIS     | Distancia a centros de empleo                                    |
| TAX     | Tasa de impuesto a la propiedad                                  |
| LSTAT   | Porcentaje de población con menor estatus socioeconómico         |
| MEDV    | Valor medio de la vivienda (en miles de USD) ← variable objetivo |

¿Querés que siga con las próximas celdas del notebook?



#### continua

Vamos ahora con la explicación detallada de las siguientes tres celdas del notebook.

### Celda 7: Separación de variables predictoras y objetivo

```
python

X = boston_data.drop('MEDV', axis=1)
y = boston_data.MEDV
```

### Explicación:

- X contiene las variables independientes (predictoras) que se usarán para entrenar el modelo.
- y contiene la **variable dependiente** o **target**, en este caso **MEDV**, que representa el valor medio de la vivienda.

Se utiliza drop('MEDV', axis=1) para eliminar esa columna de X, asegurando que el modelo no tenga acceso directo al valor a predecir.

**Nota:** Esto es una práctica esencial en cualquier problema de aprendizaje supervisado.

### Celda 8: Definición del objeto de validación cruzada

```
python

kf = KFold(shuffle=True, random_state=72018, n_splits=3)
```

## Explicación:

Se crea un objeto de tipo **KFold** de **scikit-learn** para dividir el conjunto de datos en **k = 3 partes** (folds) con estas características:

- **shuffle=True**: las filas se barajan antes de hacer las divisiones. Esto previene que los folds tengan sesgo si el dataset está ordenado.
- random\_state=72018: semilla para asegurar reproducibilidad del barajado.
- n\_splits=3: se dividirá el dataset en 3 folds → en cada iteración, se usan 2 para entrenar y 1 para validar.

Este método es una **forma de validación cruzada (cross-validation)**, que permite evaluar la estabilidad y generalización del modelo al no depender de un solo conjunto de entrenamiento/prueba.

### Celda 9: Exploración de los índices generados por KFold

```
for train_index, test_index in kf.split(X):
    print("Train index:", train_index[:10], len(train_index))
    print("Test index:", test_index[:10], len(test_index))
    print('')
```

### Explicación:

- Se itera sobre los splits generados por kf.split(X), que devuelve pares de índices: uno para entrenamiento y otro para prueba.
- Se imprimen:
  - Los primeros 10 índices de cada conjunto (entrenamiento y prueba).
  - El tamaño total de cada conjunto en cada fold.

Esta celda es **exploratoria** y ayuda a verificar visualmente cómo está funcionando la división de los datos.

## **M** CONCLUSIÓN PARCIAL

Estas celdas constituyen una **etapa crítica en la validación del modelo**, estableciendo el flujo de trabajo de cross-validation:

- 1. Separamos claramente los datos (X, y).
- 2. Configuramos un esquema robusto de validación cruzada (KFold).
- 3. Verificamos que la división de los datos sea correcta y balanceada.

Esto asegura que las métricas de desempeño del modelo no estén sobreajustadas a una sola partición.

## 🚛 INFORMACIÓN ADICIONAL

- Validación cruzada (Cross-validation)
  - Técnica estadística para evaluar la capacidad de generalización de un modelo.
  - Divide el dataset en K bloques (folds), entrenando con K–1 y validando con 1 diferente en cada iteración.
  - Al final, se promedian las métricas obtenidas en cada fold.

### • Fórmulas asociadas

• Para cada fold i, se obtiene un error  $e_i$ , y luego el error final es:

$$ext{Error promedio} = rac{1}{K} \sum_{i=1}^{K} e_i$$



- Reduce la varianza de la estimación del error comparado con una sola partición entrenamiento/test.
- Tipos de modelos a usar luego (adelanto)
  - LinearRegression, Ridge, Lasso → son modelos de regresión con y sin regularización que se probarán bajo este esquema de validación cruzada.

¿Continuamos con las siguientes celdas?



#### continua

Vamos ahora con la explicación detallada de las **celdas 10 a 12** del notebook, donde se comienza a entrenar y validar el modelo de regresión lineal usando K-Fold y se evalúa el impacto de la estandarización.

### Celda 10: Regresión lineal sin escalar los datos

### Explicación paso a paso:

#### 1. Inicialización:

```
python

scores = []
lr = LinearRegression()
```

Se crea una lista para almacenar los puntajes  $\mathbf{R}^2$  de cada fold y se instancia un modelo de regresión lineal.

#### 2. Validación cruzada:

Se itera sobre los 3 splits generados por KFold.

### 3. Separación entrenamiento/prueba:

```
python

X.iloc[train_index, :]
```

Se usan los índices generados por **KFold** para extraer subconjuntos de entrenamiento y prueba de las variables.

#### 4. Entrenamiento del modelo:

```
python
lr.fit(X_train, y_train)
```

#### 5. Predicción:

```
python

y_pred = lr.predict(X_test)
```

#### 6. Evaluación con R2:

```
python
score = r2_score(y_test.values, y_pred)
```

R<sup>2</sup> mide la proporción de varianza explicada por el modelo:

$$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - ar{y})^2}$$

#### 7. Almacenamiento del score.

Aquí no se aplicó escalado ni ningún preprocesamiento.

### Celda 11: Regresión lineal con escalado (StandardScaler)

```
X_test_s = s.transform(X_test)
y_pred = lr.predict(X_test_s)
score = r2_score(y_test.values, y_pred)
scores.append(score)
```

### Explicación:

• StandardScaler transforma cada variable a media 0 y desviación estándar 1:

$$z = \frac{x - \mu}{\sigma}$$

Esto es fundamental si se usan modelos sensibles a la escala (aunque la regresión lineal clásica no lo es tanto, sí lo son modelos con regularización como **Ridge** o **Lasso**).

• Importante: se ajusta (fit\_transform) el Scaler solo con los datos de entrenamiento y luego se transforma el conjunto de prueba. Esto evita data leakage.

### Celda 12: Visualización de resultados

```
python
scores
```

Esta celda imprime la lista de puntajes R<sup>2</sup> obtenidos en cada fold. Es común evaluar luego el **promedio y** desviación estándar:

```
python
print(np.mean(scores), np.std(scores))
```

## **W** CONCLUSIÓN PARCIAL

Estas celdas implementan correctamente un flujo de evaluación de un modelo lineal utilizando validación cruzada y permiten comparar:

- El rendimiento sin escalado vs. con escalado.
- La estabilidad del modelo (medida por la variación entre folds).

Se destaca el uso correcto de **KFold**, **StandardScaler**, **r2\_score**, y la separación clara entre entrenamiento y prueba.

## 📠 INFORMACIÓN ADICIONAL

- ¿Por qué escalar las variables?
  - Variables con diferentes magnitudes pueden causar que unas dominen el ajuste.



- Modelos con regularización (como Ridge o Lasso) son muy sensibles a la escala.
- También afecta algoritmos como SVM, KNN, PCA, etc.

#### Métrica R<sup>2</sup>:

- Valores cercanos a 1 indican buen ajuste.
- Puede ser negativo si el modelo es peor que predecir la media.

#### Alternativas:

• También puede evaluarse con mean\_squared\_error, MAE, etc.

¿Seguimos con las próximas celdas?



#### continuar

Vamos ahora con la explicación detallada de las **celdas 13 a 15** del notebook. Estas celdas marcan la transición hacia el uso de un **pipeline**, que es una estructura fundamental en **scikit-learn** para organizar el flujo de trabajo de un modelo.

### Celda 13: Definición de los objetos del pipeline

```
python

s = StandardScaler()
lr = LinearRegression()
```

### Explicación:

- Se instancian los dos componentes que se van a encadenar en un pipeline:
  - s: un StandardScaler, que normaliza las variables (media 0, desviación estándar 1).
  - 1r: un modelo de LinearRegression.

Esto prepara ambos pasos para ser integrados de forma automática en un flujo completo de procesamiento  $\rightarrow$  entrenamiento  $\rightarrow$  predicción.

## Celda 14: Creación del pipeline

```
python

estimator = Pipeline([
    ("scaler", s),
    ("regression", lr)
])
```

### Explicación:

Se construye un Pipeline, que es un objeto de scikit-learn que encadena pasos secuenciales donde:

- Cada paso (menos el último) debe tener un método .fit() y .transform().
- El último paso (en este caso "regression") debe tener .fit() y .predict().

#### En este caso:

- "scaler" → aplica StandardScaler sobre los datos.
- "regression" → entrena el modelo de regresión lineal sobre los datos ya escalados.
- 🔄 Esto permite que cuando se llama estimator.fit(X\_train, y\_train), automáticamente se ejecuten:
  - 1. StandardScaler().fit\_transform(X\_train)
- 2. LinearRegression().fit(...) con los datos escalados.

Luego, al llamar estimator.predict(X\_test), se hace:

```
1. StandardScaler().transform(X_test)
```

2. LinearRegression().predict(...)

### Celda 15: Visualización del objeto kf

```
python
```

kf

## Explicación:

Esta celda simplemente imprime el objeto **KFold** ya creado anteriormente. Al ejecutarla, se muestra su configuración:

```
scss
KFold(n_splits=3, random_state=72018, shuffle=True)
```

Esto confirma cómo se está estructurando la validación cruzada del modelo.

## CONCLUSIÓN PARCIAL

Estas tres celdas preparan una **implementación profesional y limpia** del modelo utilizando la clase **Pipeline**. Esto:

- Asegura que todo el preprocesamiento se realice correctamente en cada fold.
- Reduce errores y fugas de datos.
- Mejora la reproducibilidad y legibilidad del código.

Además, se reutiliza el objeto **kf** para continuar con la validación cruzada, pero esta vez usando el pipeline.

### 📠 INFORMACIÓN ADICIONAL

- ¿Por qué usar Pipeline?
- 1. Evita fugas de datos (data leakage).
- 2. Encapsula la lógica en un solo objeto reutilizable.
- 3. Compatible con funciones de scikit-learn como:
  - cross\_val\_score
  - cross\_val\_predict
  - GridSearchCV
- Alternativa más compacta:

```
python

from sklearn.pipeline import make_pipeline
estimator = make_pipeline(StandardScaler(), LinearRegression())
```

¿Querés que continúe con las siguientes celdas del notebook?



#### continua

Vamos ahora con la explicación de las **celdas 16 a 18** del notebook. Aquí se utiliza el **Pipeline** construido anteriormente para aplicar validación cruzada con predicción y se evalúa el rendimiento del modelo.

## Celda 16: Validación cruzada con predicción

```
python
predictions = cross_val_predict(estimator, X, y, cv=kf)
```

## Explicación:

- cross\_val\_predict es una función de scikit-learn que:
  - Entrena el estimator en cada fold (usando kf como esquema de validación).
  - Devuelve las predicciones para cada ejemplo, como si fueran de test.
  - Es decir, cada fila se predice usando un modelo que no la vio en entrenamiento.



#### En este caso:

- Se utiliza el Pipeline (estimator) que incluye escalado + regresión lineal.
- El resultado **predictions** contiene una lista de valores predichos para todas las muestras del conjunto original.

Esto permite calcular métricas de evaluación globales con confianza, ya que las predicciones son "fuera de muestra".

### • Celda 17: Evaluación del rendimiento global (R²)

```
python
r2_score(y, predictions)
```

### Explicación:

• Se calcula el **coeficiente de determinación**  $R^2$  entre las predicciones generadas por validación cruzada (**cross\_val\_predict**) y los valores reales y.

Este valor representa qué tan bien el modelo generaliza a nuevas muestras:

- ullet  $R^2pprox 1$  ightarrow ajuste casi perfecto.
- $R^2=0$  ightarrow el modelo no es mejor que predecir la media.
- ullet  $R^2 < 0 
  ightarrow$  peor que un predictor constante.

### Celda 18: Promedio de los R<sup>2</sup> anteriores

```
python
np.mean(scores) # almost identical!
```

## Explicación:

Esta celda se refiere a la lista **scores** creada anteriormente (cuando se evaluó **LinearRegression** en cada fold manualmente, con escalado). Se toma el promedio de esos 3 valores de R<sup>2</sup>.

El comentario "almost identical!" indica que:

- El R<sup>2</sup> obtenido con cross\_val\_predict es prácticamente igual al promedio de R<sup>2</sup> obtenidos en la validación cruzada manual.
- Esto valida la consistencia del uso del pipeline y del proceso de evaluación.

## CONCLUSIÓN PARCIAL

Estas celdas realizan un paso clave en cualquier proyecto de Machine Learning: **evaluar la capacidad de generalización del modelo** usando validación cruzada con predicciones reales.

El uso de **cross\_val\_predict** y el cálculo de R<sup>2</sup> son herramientas robustas para medir el rendimiento sin necesidad de un conjunto de test explícito.

## 🚛 INFORMACIÓN ADICIONAL

Diferencias: cross\_val\_predict VS cross\_val\_score

| Función           | Devuelve                               | Uso principal                                   |
|-------------------|----------------------------------------|-------------------------------------------------|
| cross_val_score   | Puntajes de evaluación (R², MSE, etc.) | Métrica agregada por fold                       |
| cross_val_predict | Predicciones                           | Comparar predicción vs verdad para cada muestra |

#### Ventaja de usar cross\_val\_predict

• Te permite construir gráficos como:

```
python

plt.scatter(y, predictions)
plt.plot([min(y), max(y)], [min(y), max(y)], 'k--')
```

Para visualizar el ajuste real del modelo.

¿Seguimos con las siguientes celdas del notebook?



continuar

Pasamos ahora a las **celdas 19 a 21**, donde se comienza a aplicar **regularización** usando el modelo **Lasso**. Esta técnica busca mejorar la generalización del modelo penalizando la complejidad.

Celda 19: Generación de valores para el hiperparámetro alpha

```
python
alphas = np.geomspace(le-9, le0, num=10)
alphas
```

## Explicación:

- ullet Se genera un arreglo de 10 valores de alpha espaciados geométricamente entre  $10^{-9}$  y  $10^0=1$ .
- Esto se hace con np.geomspace(), ideal para explorar múltiples órdenes de magnitud.
- 🖈 alpha es el hiperparámetro de regularización en Lasso:



- Si alpha es cero, Lasso se comporta como regresión lineal estándar.
- Si alpha es alto, más coeficientes serán reducidos a cero → el modelo será más simple (y a veces más robusto).

#### Celda 20: Evaluación de modelos Lasso con validación cruzada

```
python

scores = []
coefs = []

for alpha in alphas:
    las = Lasso(alpha=alpha, max_iter=100000)

    estimator = Pipeline([
          ("scaler", s),
                ("lasso_regression", las)])

predictions = cross_val_predict(estimator, X, y, cv = kf)

score = r2_score(y, predictions)

scores.append(score)
```

### Explicación detallada:

#### 1. Inicialización:

- scores: para guardar el rendimiento (R²) para cada valor de alpha.
- **coefs**: fue declarado pero no usado en esta celda; probablemente será utilizado más adelante para almacenar coeficientes.

### 2. Loop sobre alpha:

- Se instancia un modelo Lasso con ese valor de alpha.
- Se crea un Pipeline con StandardScaler + Lasso.

#### 3. Evaluación con validación cruzada:

- Se generan las predicciones usando cross\_val\_predict.
- Se calcula el R<sup>2</sup> y se guarda.

\* Este ciclo permite encontrar el valor de alpha que ofrece mejor capacidad predictiva balanceando ajuste y simplicidad.

#### Celda 21: Visualización de resultados

```
python
list(zip(alphas, scores))
```

#### **Explicación:**

• Se imprime una lista de tuplas con cada par (alpha, R2).



• Esto permite ver cómo cambia el rendimiento del modelo a medida que aumenta la penalización.

Idealmente, se busca el **mayor R²** sin sobreajuste (no necesariamente el más cercano a 1, sino el más generalizable).

## **M** CONCLUSIÓN PARCIAL

Estas celdas implementan correctamente una **búsqueda manual** de hiperparámetros para el modelo **Lasso**, usando:

- Un espacio logarítmico de valores de alpha.
- Validación cruzada con predicción fuera de muestra.
- Evaluación con R<sup>2</sup>.

Esto permite identificar el mejor valor de alpha para regularizar el modelo y prevenir overfitting.

### 📠 INFORMACIÓN ADICIONAL

#### • ¿Qué es Lasso?

- Acrónimo de Least Absolute Shrinkage and Selection Operator.
- Minimiza:

$$\min_{eta} \left\{ \sum_{i=1}^n (y_i - X_i \cdot eta)^2 + lpha \sum_{j=1}^p |eta_j| 
ight\}$$

- El término  $\alpha \sum |\beta_i|$  es la penalización L1.
- Produce modelos más parsimoniosos al forzar muchos coeficientes a ser exactamente 0 → útil para selección de variables.

### Comparación con Ridge

| Modelo | Penalización | Resultado típico      |
|--------|--------------|-----------------------|
| Ridge  | $\sum eta^2$ | Coeficientes pequeños |
| Lasso  | (\sum        | \beta                 |

¿Deseás que continúe con las siguientes celdas del notebook?



#### continuar

Vamos ahora con la explicación de las **celdas 22 a 24** del notebook, donde se analizan los coeficientes de modelos Lasso entrenados con diferentes valores de  $\alpha$  y se visualiza el impacto de la regularización sobre el rendimiento.

### ullet Celda 22: Coeficientes de Lasso con $lpha=10^{-6}$

```
python
Lasso(alpha=le-6).fit(X, y).coef_
```

### Explicación:

- Se entrena un modelo Lasso con una penalización muy baja.
- Luego se imprimen los coeficientes del modelo entrenado.

 $\bigcirc$  Como  $\alpha$  es muy pequeño, la penalización es casi nula  $\rightarrow$  los coeficientes serán similares a los de una regresión lineal ordinaria (OLS).

Esto permite observar:

- Qué variables tienen coeficientes altos (mayor importancia).
- Cuáles son despreciables o cercanos a 0.

#### • Celda 23: Coeficientes de Lasso con lpha=1.0

```
python
Lasso(alpha=1.0).fit(X, y).coef_
```

### Explicación:

- Aquí se aplica una penalización fuerte.
- El modelo Lasso forzará muchos coeficientes a cero → efectúa selección de variables.

Este contraste permite ver cómo el valor de lpha afecta la complejidad del modelo:

- Menor  $\alpha$ : modelo complejo, muchos coeficientes.
- Mayor  $\alpha$ : modelo simple, menos coeficientes.

Ideal para identificar un subconjunto reducido de predictores relevantes.

## ullet Celda 24: Visualización del rendimiento $R^2$ vs. lpha

```
python

plt.figure(figsize=(10,6))
plt.semilogx(alphas, scores, '-o')
plt.xlabel('$\\alpha$')
plt.ylabel('$R^2$');
```

### Explicación:



- **semilogx** grafica **alphas** en escala logarítmica (eje x), lo cual es apropiado para valores que varían en órdenes de magnitud.
- Se visualiza cómo cambia  $\mathbb{R}^2$  con distintos valores de regularización.
- El gráfico permite identificar visualmente el valor óptimo de  $\alpha$ : el que maximiza el rendimiento sin sobreajuste.
- 📊 Este tipo de análisis es fundamental en ajuste de hiperparámetros.

## **CONCLUSIÓN PARCIAL**

Estas celdas completan el análisis del modelo Lasso:

- 1. Se inspeccionan coeficientes para observar el efecto de la regularización.
- 2. Se visualiza cómo cambia el rendimiento  $\mathbb{R}^2$  con el hiperparámetro  $\alpha$ .
- 3. Se proporciona una base para seleccionar el valor de  $\alpha$  óptimo, balanceando **ajuste** y **simplicidad del modelo**.

## 🚛 INFORMACIÓN ADICIONAL

¿Qué esperar en los coeficientes?

| lpha pequeño         | lpha grande               |
|----------------------|---------------------------|
| Coeficientes grandes | Coeficientes cercanos a 0 |
| Modelo sobreajustado | Modelo subajustado        |
| Mayor varianza       | Mayor sesgo               |

### Selección visual de hiperparámetro:

El punto máximo del gráfico  $R^2$  vs  $\alpha$  representa el mejor compromiso. También puede usarse  ${f GridSearchCV}$  para automatizar este proceso.

¿Querés que continúe con las siguientes celdas del notebook?



#### continuar

Vamos ahora con las **celdas 25 a 27**, donde se introduce un nuevo componente: **características polinómicas** (no lineales), y se ajusta un modelo **Lasso** más complejo. También se selecciona el mejor modelo final.

### Celda 25: Lasso con características polinómicas de segundo grado

### Explicación paso a paso:

- 1. Generación de características no lineales:
  - PolynomialFeatures(degree=2) expande el espacio de variables incluyendo:
    - Todos los términos lineales  $x_i$
    - Todos los cuadrados  $x_i^2$
    - Todos los productos cruzados  $x_i x_j$
  - ullet Si había n variables, ahora habrá  $rac{n(n+1)}{2}+n+1$  columnas.
- 2. Búsqueda de hiperparámetro alpha:
  - Se prueban 5 valores logarítmicamente espaciados entre 0.001 y 10.
  - En cada ciclo:
    - Se crea un pipeline:
      - 1. Se generan las variables polinómicas.
      - 2. Se escalan.
      - 3. Se entrena un modelo Lasso.
    - Se evalúa con cross\_val\_predict y r2\_score.
- ☑ Esto permite explorar cómo afecta la combinación de **no linealidad + regularización** al rendimiento del modelo.
- ullet Celda 26: Visualización del rendimiento  $R^2$

```
python
plt.semilogx(alphas, scores);
```

## Explicación:



- Se grafica el rendimiento  $R^2$  frente al valor de lpha en escala logarítmica.
- Este gráfico ayuda a elegir el valor de  $\alpha$  que:
  - Mejora el ajuste con las variables polinómicas.
  - Controla el sobreajuste mediante la penalización de Lasso.
- 🖈 Es una herramienta visual de selección de hiperparámetros.

### Celda 27: Entrenamiento final del mejor modelo

```
# Once we have found the hyperparameter (alpha~le-2=0.01)
# make the model and train it on ALL the data
# Then release it into the wild .....

best_estimator = Pipeline([
    ("make_higher_degree", PolynomialFeatures(degree=2)),
    ("scaler", s),
    ("lasso_regression", Lasso(alpha=0.01, max_iter=10000))])

best_estimator.fit(X, y)
best_estimator.score(X, y)
```

### Explicación:

#### 1. Selección del mejor alpha:

• A partir del gráfico anterior, se elige lpha=0.01 como valor óptimo.

#### 2. Entrenamiento final:

- Se entrena el modelo con TODO el conjunto de datos (x, y) ya que no se necesita dividir más (el modelo está afinado).
- Se usa Pipeline con:
  - Características polinómicas.
  - Escalado.
  - Lasso con alpha=0.01.

#### 3. Evaluación en el conjunto completo:

- ullet Se imprime el  $R^2$  del modelo final sobre los datos completos ullet para evaluar qué tanto explica la variabilidad de los precios.
- 🖈 Esto representa el modelo final que se podría "liberar al mundo".

## CONCLUSIÓN PARCIAL

Estas celdas completan el flujo profesional de ajuste de modelos con regresión regularizada:

- 1. Se introducen términos no lineales para capturar relaciones más complejas.
- 2. Se prueba Lasso con distintos alpha para evitar sobreajuste.



3. Se elige el mejor modelo y se entrena sobre todos los datos disponibles.

Este enfoque permite obtener un modelo con **alto poder predictivo y bajo riesgo de sobreajuste**, incluso con muchas variables derivadas.

## 📠 INFORMACIÓN ADICIONAL

- ¿Por qué usar PolynomialFeatures?
  - Permite a modelos lineales capturar relaciones no lineales entre variables.
  - Por ejemplo: relaciones cuadráticas o interacciones entre variables.
- Precaución con PolynomialFeatures
  - Genera muchas más variables → riesgo de sobreajuste.
  - Por eso se combina con **regularización** (Lasso en este caso) que descarta variables irrelevantes.
- Mejor práctica: Validación final en conjunto hold-out
  - Para máxima confianza, luego de la validación cruzada se suele guardar un conjunto de prueba final que **no haya sido tocado** durante todo el pipeline.

¿Querés que revise si quedan más celdas y continúe con la explicación?



#### continuar

Gracias por tu paciencia. Vamos a cerrar este análisis profesional explicando las **últimas 15 celdas de código** del notebook. Este bloque final contiene técnicas avanzadas como análisis de coeficientes, búsqueda con **GridSearchCV**, transformación **Box-Cox**, y evaluación comparativa entre Lasso y Ridge con expansión polinómica.

### Celda 28: Coeficientes del mejor modelo Lasso

```
python
best_estimator.named_steps["lasso_regression"].coef_
```

Se accede directamente a los coeficientes del modelo Lasso entrenado con el mejor alpha tras aplicar PolynomialFeatures y StandardScaler. Muestra la importancia (positiva o negativa) de cada variable transformada.

## Celda 29: Evaluación de Ridge con características polinómicas



```
pf = PolynomialFeatures(degree=2)
alphas = np.geomspace(4, 20, 20)
# ...
```

Loop que evalúa distintos valores de alpha para Ridge usando validación cruzada con polinomios de grado 2. Se calcula y grafica el  $\mathbb{R}^2$  para cada uno. Ridge penaliza con L2: tiende a **reducir coeficientes** sin forzarlos a cero, a diferencia de Lasso.

### Celda 30: Entrenamiento del mejor modelo Lasso final

```
best_estimator = Pipeline([
          ("make_higher_degree", PolynomialFeatures(degree=2, include_bias=False)),
          ("scaler", s),
          ("lasso_regression", Lasso(alpha=0.01, max_iter=10000))
])
best_estimator.fit(X, y)
best_estimator.score(X, y)
```

Es el mismo pipeline del paso anterior, pero con  $include\_bias=False$  y entrenado sobre todo el dataset. Se obtiene el  $\mathbb{R}^2$  final del modelo.

### Celda 31: DataFrame con nombres de variables y coeficientes

```
df_importances =
pd.DataFrame(zip(best_estimator.named_steps["make_higher_degree"].get_feature_names(),
best_estimator.named_steps["lasso_regression"].coef_))
```

Se crea un **DataFrame** que empareja el nombre de cada variable polinómica con su coeficiente estimado. Muy útil para interpretación del modelo.

## • Celda 32–34: Diccionario de nombres y ordenamiento de importancia

```
python

col_names_dict = dict(zip(list(range(len(X.columns.values))), X.columns.values))
df_importances.sort_values(by=1)
```

Se genera un diccionario de nombres originales y luego se ordena el **DataFrame** de coeficientes por valor → de menor a mayor importancia (negativo a positivo).

### Celda 35-37: Búsqueda de hiperparámetros con GridSearchCV

```
from sklearn.model_selection import GridSearchCV
# ...
grid = GridSearchCV(estimator, params, cv=kf)
grid.fit(X, y)
grid.best_score_, grid.best_params_
```

Se realiza búsqueda de hiperparámetros con:

- PolynomialFeatures de grados 1, 2 y 3.
- Ridge con alpha de 4 a 20.

**GridSearchCV** evalúa todas las combinaciones y encuentra la mejor. Devuelve el mejor score medio y los parámetros óptimos.

### Celda 38: Transformación Box-Cox y comparación

```
python

bc_result = boxcox(y_train)
y_train_bc = bc_result[0]
lam = bc_result[1]
# ...
y_pred_tran = inv_boxcox(y_pred_bc, lam)
r2_score(y_pred_tran, y_test)
```

- Se aplica Box-Cox a y train para hacer su distribución más normal (esto mejora la linealidad).
- Luego se entrena un modelo LinearRegression sobre los datos transformados.
- Se invierte la transformación y se evalúa el  $\mathbb{R}^2$ .
- Se compara contra el modelo sin transformación.
- 🖈 Resultado: el modelo sin Box-Cox tiene un mejor  $R^2$  (≈ 0.867 vs. 0.848).

### Celda 39-41: Uso del mejor modelo encontrado por GridSearchCV

```
python

y_predict = grid.predict(X)
r2_score(y, y_predict)
grid.best_estimator_.named_steps['ridge_regression'].coef_
```

- Se usa el mejor estimador (best\_estimator\_) hallado por GridSearchCV.
- Se predice con él y se calcula su  $\mathbb{R}^2$ .
- También se accede a sus coeficientes.

### Celda 42: Resultados detallados del grid



```
python
grid.cv_results_
```

Se accede a todos los resultados del GridSearchCV, incluyendo puntuaciones, tiempos y combinaciones evaluadas. Muy útil para visualizaciones tipo heatmap o análisis comparativo de modelos.

# 🔽 CONCLUSIÓN GENERAL DEL NOTEBOOK

Este notebook de IBM aplica un flujo completo, robusto y profesional de validación cruzada y ajuste de modelos de regresión, usando tanto Lasso como Ridge, e incluye:

- 1. Carga y exploración del dataset Boston Housing.
- 2. **Preprocesamiento** con escalado y expansión polinómica.
- 3. **Validación cruzada (KFold)** con  ${\sf cross\_val\_predict}$  y cálculo de  $R^2$ .
- 4. Comparación de regresión lineal vs. Lasso vs. Ridge con visualización de hiperparámetros.
- 5. Selección del mejor modelo con GridSearchCV.
- 6. Evaluación final del modelo y análisis de coeficientes.
- 7. Uso de transformaciones como Box-Cox para evaluar efectos de normalización en la variable objetivo.

## 值 TEORÍA Y CONCEPTOS ADICIONALES

## Regularización

- **Lasso**: Penaliza con  $\sum |\beta_i|$ , útil para selección de variables (sparse).
- **Ridge**: Penaliza con  $\sum \beta_i^2$ , útil para multicolinealidad.

## **PolynomialFeatures**

- Aumenta la capacidad del modelo para capturar relaciones no lineales.
- Rápidamente aumenta la dimensionalidad → se recomienda combinar con regularización.

#### **Box-Cox**

- Transforma la variable objetivo para aproximar la normalidad.
- Mejora linealidad y puede aumentar la performance de modelos lineales.

#### GridSearchCV

- Herramienta de búsqueda sistemática de combinaciones de hiperparámetros.
- Evalúa cada combinación con validación cruzada.
- Retorna el mejor modelo encontrado (best\_estimator\_).

## **▼** FINALIZADO: NO HAY MÁS CELDAS DE CÓDIGO PARA EXPLICAR

¿Querés que te prepare un resumen ejecutivo del proyecto, un informe en markdown o alguna visualización extra?



necesito un resumen solo de teoria aplicada de Machine Learning

Claro. A continuación, te presento un **resumen de la teoría de Machine Learning aplicada en este notebook**, enfocado en los fundamentos matemáticos, conceptuales y prácticos involucrados:

# RESUMEN TEÓRICO DE MACHINE LEARNING APLICADO

## 1. <a> Regresión Lineal Múltiple</a>

Modelo base que asume una relación lineal entre las variables predictoras X y la variable objetivo y:

$$y = X\beta + \varepsilon$$

- Se entrena minimizando el error cuadrático medio (MSE).
- No incluye ningún tipo de regularización.

## 2. 🔄 Validación Cruzada (Cross-Validation)

#### ► K-Fold Cross Validation

- Divide el dataset en *K* partes (folds).
- Entrena el modelo K veces, cada vez dejando uno de los folds como conjunto de validación.
- Evita el sobreajuste a un solo split y provee una estimación más estable del rendimiento.

Error Promedio 
$$= \frac{1}{K} \sum_{i=1}^{K} e_i$$

#### ▶ cross\_val\_predict

Genera predicciones "fuera de muestra" para cada observación, útil para calcular métricas globales como  $\mathbb{R}^2$ .

## 3. 🞪 Regularización

Agrega una penalización al modelo para evitar sobreajuste y mejorar la capacidad de generalización.

#### ► Lasso (L1)

$$\min_eta \left\{ \sum (y_i - \hat{y}_i)^2 + lpha \sum |eta_j| 
ight\}$$

- Penaliza la suma de valores absolutos de los coeficientes.
- Fuerza coeficientes a cero → útil para selección de variables.
- Controlado por hiperparámetro  $\alpha$ .

#### ► Ridge (L2)

$$\min_eta \left\{ \sum (y_i - \hat{y}_i)^2 + lpha \sum eta_j^2 
ight\}$$

- Penaliza la suma de los cuadrados de los coeficientes.
- Reduce la magnitud de los coeficientes pero no los elimina.

## 4. 🚟 Pipeline de Modelado

Permite encadenar pasos de preprocesamiento y modelado, como:

- 1. Escalado con StandardScaler
- 2. Expansión con PolynomialFeatures
- 3. Modelos (LinearRegression, Lasso, Ridge)

Evita errores como data leakage y mejora la reproducibilidad.

## 5. 🔁 Polynomial Features

Permite modelar relaciones no lineales entre las variables:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x_1 x_2 + \dots$$

- Aumenta la dimensionalidad del dataset.
- Requiere regularización para evitar sobreajuste.

## 6. Na Búsqueda de Hiperparámetros

#### ► Manual (con bucle sobre alpha)

• Se evalúan varios valores de lpha y se grafica  $R^2$ .

#### ► Automática: GridSearchCV

- Prueba todas las combinaciones de hiperparámetros especificados.
- Usa validación cruzada interna para cada combinación.
- Retorna el mejor modelo (best\_estimator\_).

## 7. 🔁 Transformación Box-Cox

Aplicada a la variable objetivo para que siga una distribución más normal:

$$y^{(\lambda)} = egin{cases} rac{y^{\lambda}-1}{\lambda} & ext{si } \lambda 
eq 0 \ \ln y & ext{si } \lambda = 0 \end{cases}$$

- Mejora la linealidad y el rendimiento en modelos que asumen distribución normal (como regresión lineal).
- Invertible con inv\_boxcox.

## 8. W Evaluación del Modelo: R² Score

Métrica principal usada:

$$R^2 = 1 - rac{\sum (y_i - \hat{y}_i)^2}{\sum (y_i - \bar{y})^2}$$

- Mide proporción de varianza explicada.
- $R^2=1$   $\rightarrow$  ajuste perfecto.
- $R^2=0$   $\rightarrow$  modelo no mejor que la media.
- $R^2 < 0$  ightarrow peor que la media.

## 🚅 Conclusión del marco teórico aplicado

Este notebook representa una implementación profesional de:

- Regresión lineal y regularizada (Lasso, Ridge)
- Expansión polinómica para no linealidades
- Validación cruzada robusta
- Selección y evaluación de hiperparámetros
- Interpretación de coeficientes
- Comparación de transformaciones para mejorar ajustes

Todo ello integrado en un pipeline reproducible y evaluado con rigor estadístico.

¿Te gustaría este mismo resumen en PDF, Markdown, o como sección para un informe?