Existence and Uniqueness Theorem:

The theorem concerns the existence and uniqueness of solutions for the Initial Value Problem, IVP: Consider the following IVP:

$$\frac{dy}{dt} = f(t,y) \qquad (2) \qquad y(t_0) = y_0$$

And define the seti

 $D_{good} := \{(t, y) | f(t, y) \text{ and } O_y \cdot f(t, y) \text{ cont.}\}$ $D_{bad} := complement of D_{good}$

If (to, yo) E D good then there exists a unique solution to the IVP problem y(t) for $t \in L(a,b)$ with $to \in L(a,b)$, y(t) = yo. Moreover, the solution exists as long as (t, y(t)) E interior of D good. The theorem above claims that the solution exists and is unique provided that the solution curve (t, y(t)) E interior of D good

The theorem implies that the solution curves cannot intersect each other because this will violate the uniqueness theorem.

Example #1:
$$\frac{dy}{dt} = \sqrt{1 + f^2 + y^2}, \quad So$$

$$f(+,y) := \sqrt{1 + +^2 + y^2}$$

$$Oy \cdot f(+,y) = \frac{y}{\sqrt{1 + +^2 + y^2}}$$

Since both f(t,y) and $\partial y \circ f(t,y)$ are continuous for all $(t,y) \in \mathbb{R}^2$. Therefore, if we consider the IVP, y(t,s) = yo then for any choice of (t,s,y,s) there exists a solution for some interval (a,b). As a matter of fact, in this case, $(a,b) = (-\infty,\infty)$.

Example #2: $\frac{dy}{dt} = 3y^{2/3}$, $f(y) := 3y^{2/3}$

Oy of C(y) = 2y which is not continuous y = 0Consider the initial problem y(0) = -8. We can find the general solution by Separating variables: $\frac{1}{3} \int \frac{dy}{y^{2/3}} = \int dt$ or

y'' = t - c or $y(t) = (t - c)^3$, for y(t) = -8 we find: $y(t) = (t - c)^3$ valid for $y(t) = (t - c)^3$ valid for y(t) = (t

y(2)=0 and we know the partial decivative
Dyf(y) is not continuous at y=0. If
we continued the solution for +22 there
ace infinitely many solutions.
A Thus, we observe that when the solution
curve C+, y(+)) hits the "bad" set y=0 we
Stop because if we try to cross the line
1=0 we lose migreness. A
Youtube Intorial:
When does a solution to an Initial Volue
Problem Exist? If it exists, is it unique?
== If f is continuous "near" (a, b) then a
Solution exists. (a,b)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
> If also Dy is continuous near (a,b) then the
solution is unique.
Example #3: 2 dx dy y
Example #3: $x \cdot \frac{dx}{dy} = y$, rewrite as $\frac{dy}{dx} = \frac{y}{x}$
× is continuous near any (a, b) where a 70
so a solution with y(a) = b exists when

•	\mathcal{L}	Y	\	1		Lo			
	DY	× /		X	15	a150	continuous	ncor	La,t)

when a \$0 so the solution is unique when

 $a \neq 0$

Notice:
$$y(x) = (x solves \times \frac{dy}{dx} = y for any C.$$