Hochschule Luzern

Technik und Architektur

RT+L

Magnetische Aufhängung Laborbericht

Authoren:

Luzian Raphael Aufdenblatten & Julian Bischof

Luzern, 5. September 2025

Inhaltsverzeichnis

1	Problemstellung				
	1.1	Aufgabe 1	1		
	1.2	Aufgabe 2	1		
2		ellierung	2		
	2.1	Aufgabe 3	2		
	2.2	Aufgabe 4	2		
	2.3	Aufgabe 5	3		
	2.4	Aufgabe 6	4		
	2.5	Aufgabe 7	4		
	2.6	Aufgabe 8	4		
		Aufgabe 9			

1 Problemstellung

1.1 Aufgabe 1

Blockschaltbild des geregelten Systems

Das Blockschaltbild des geschlossenen Regelkreises ist in Abbildung 1.1 ersichtlich. Hierbei wird die Stecke wie auch das Stellglied in P zusammengefasst. S bezeichnet dabei die Totzeit und den Fehler der durch den Laserdistanzmesser in das System eingeführt wird.

Abbildung 1.1: Geschlossener Regelkreis

1.2 Aufgabe 2

Blockschaltbild des geregelten Systems mit Vorsteuerung

Das Blockschaltbild aus Abschnitt 1.1 wird in Abbildung 1.2 um eine Vorsteuerung FF erweitert.

Abbildung 1.2: Geschlossener Regelkreis erweitert mit einer Vorsteuerung

$\mathbf{2} \mid \mathbf{Modellierung}$

2.1 Aufgabe 3

Bewegungsdifferentialgleichung

Aus der gegebenen Bewegungsdifferentialgleichung und der, mittels eines Polynoms dritten Grades approximierten, statischen Kennlinie $i_o(x) = a_i + b_i x + c_i x^2 + d_i x^3$ ergibt sich für die Bewegungsdifferentialgleichung 2.1.

$$\ddot{x} = g - g \cdot \frac{i^2}{i_0^2(x)}$$

$$\ddot{x} = g - g \cdot \frac{i^2}{(a_i + b_i x + c_i x^2 + d_i x^3)^2}$$
(2.1)

2.2 Aufgabe 4

Linearisierung

Zur Linearisierung der Bewegungsdifferentialgleichung wird folgende Struktur der linearisierten Differentialgleichung eingesetzt:

$$\Delta \ddot{x} = k_x \Delta x + k_i \Delta i + k_s \Delta F_s \tag{2.2}$$

Die Faktoren k_x , k_i und k_s werden aus Gleichung 2.1 in einem Arbeitspunkt x_o und \bar{i} bestimmt. Dazu wird Gleichung 2.1 jeweils nach δx , δi und δF_s abgeleitet. Da für den Versuch die Störkraft $F_s=0$ angenommen wird, muss k_s nocht ermittelt werden.

$$k_{x} = \frac{\delta}{\delta x} \left(g - g \frac{i^{2}}{(a_{i} + b_{i}x + c_{i}x^{2} + d_{i}x^{3})^{2}} \right) \Big|_{x_{0},\bar{i}}$$

$$= \frac{\delta}{\delta x} \frac{-gi^{2}}{(a_{i} + b_{i}x + c_{i}x^{2} + d_{i}x^{3})^{2}} \Big|_{x_{0},\bar{i}}$$

$$= \frac{2g\bar{i}^{2}(3d_{i}x_{0}^{2} + 2c_{i}x_{0} + b)}{(d_{i}x_{0}^{3} + c_{i}x_{0}^{2} + b_{i}x_{0} + a)^{3}}$$
(2.3)

$$k_{i} = \frac{\delta}{\delta i} \left(g - g \frac{i^{2}}{(a_{i} + b_{i}x + c_{i}x^{2} + d_{i}x^{3})^{2}} \right) \Big|_{x_{0},\bar{i}}$$

$$= \frac{\delta}{\delta i} \frac{-gi^{2}}{(a_{i} + b_{i}x + c_{i}x^{2} + d_{i}x^{3})^{2}} \Big|_{x_{0},\bar{i}}$$

$$= \frac{-2g\bar{i}}{(a_{i} + b_{i}x_{0} + c_{i}x_{0}^{2} + d_{i}x_{0}^{3})^{2}}$$
(2.4)

Werden nun Gleichung 2.3 und 2.4 in Gleichung 2.2 eingesetzt ergibt sich:

$$\Delta \ddot{x} = \frac{2g\bar{i}^2(3d_ix_0^2 + 2c_ix_0 + b)}{(d_ix_0^3 + c_ix_0^2 + b_ix_0 + a)^3} \cdot \Delta x + \frac{-2g\bar{i}}{(a_i + b_ix_0 + c_ix_0^2 + d_ix_0^3)^2} \cdot \Delta i$$
 (2.5)

2.3 Aufgabe 5

Übertragungsfunktion G_{Strecke}

Um die Übertragungsfunktion der Prozesstrecke G_{Strecke} zu finden, kann erneut Gleichung 2.2 bzw. Gleichung 2.5 genutzt werden.

$$\Delta \ddot{x} = k_x \Delta x + k_i \Delta i$$

$$s^2 \Delta X = k_x \Delta X + k_i \Delta I$$

$$G_{\text{Strecke}}(s) = \frac{\Delta X}{\Delta I} = \frac{k_i}{s^2 - kx}$$

$$G_{\text{Strecke}}(s) = \frac{\frac{-2g\bar{i}}{(a_i + b_i x_0 + c_i x_0^2 + d_i x_0^3)^2}}{s^2 - \frac{2g\bar{i}^2 (3d_i x_0^2 + 2c_i x_0 + b)}{(d_i x_0^3 + c_i x_0^2 + b_i x_0 + a)^3}}$$
(2.6)

2.4 Aufgabe 6

Statische Vorsteuerung

Der Einsatz einer statischen Vorsteuerung besteht darin, dass kein Regelfehler e(t) nötig ist und somit nicht auf die Rückmeldung des Sensors gewartet werden muss. Die Regelung wird schneller.

2.5 Aufgabe 7

Statische Vorsteuerung

Die statischen Vorsteuerungen $V_{\rm L}$ und $V_{\rm NL}$ ergeben sich aus $G_{\rm Strecke}^{-1}(s)$ wie folgt:

$$V_{\rm L} = G_{\rm Strecke}^{-1}(s)\Big|_{s=0} = \frac{s^2 - kx}{k_i}\Big|_{s=0}$$

$$V_{\rm L} = \frac{-kx}{k_i}$$
(2.7)

Für die non-lineare Vorsteuerung $V_{\rm NL}$ gilt kann das Polynom aus Abschnitt 2.1 genutzt werden.

2.6 Aufgabe 8

Übertragungsfunktion G_{Stell}

Mit der gegebenen Differentialgleichung des Stellglieds $u=Ri+L\frac{\mathrm{d}i}{\mathrm{d}t}$ kann die Übertragungsfunktion des Stellglieds G_{Stell} wie folgt gefunden werden:

$$u = Ri + L \frac{\mathrm{d}i}{\mathrm{d}t}$$

$$U = RI + sLI$$

$$G_{\mathrm{Stell}}(s) = \frac{I}{U} = \frac{1}{R + Ls} = \frac{1}{1 + \frac{L}{R}s}$$

$$(2.8)$$

2.7 Aufgabe 9

Nachstellzeit T_i des Stellgliedreglers