Tutorial 8

Let G be a group of order $n = p^e p_1^{e_1} \dots p_k^{e_k}$, where $p < p_1 < \dots < p_k$ are primes. Suppose G has a subgroup H of index p.

Problem 1. Let G act on the p cosets of H by left multiplication [see Tutorial 3 Q3.], namely

$$g.g'H = (gg')H.$$

In other words, for each $g \in G$, we can define the map

$$f_g: G/H \to G/H, g'H \mapsto (gg')H.$$

- a) Show that f_q is a permutation.
- b) Consider the map

$$\Phi: G \to S_p, g \mapsto f_g.$$

Show that Φ is a homomorphism.

Remark. Φ is the *permutation representation* of the action by G. We will talk more about this soon.

Solution

- a) For injectivity, note that for $g', g'' \in G$, $f_g(g'H) = f_g(g''H)$ tells us gg'H = gg''H which implies $g''^{-1}g^{-1}gg' = g''^{-1}g' \in H$. This is only true if g'H = g''H, so f_g is injectivity. Surjectivity follows from the fact that f_g is an injective self-map on a finite set.
- b) We have

$$\Phi(gg')(g''H)=f_{gg'}(g''H)=gg'g''H=f_g(f_{g'}(g''H))=(\Phi(g)\circ\Phi(g'))(g''H).$$

Problem 2. Continuing with the notation of the previous problem, with the homomorphism $\Phi: G \to S_p$. Let $K = \ker \Phi$.

- a) Show that $K \subseteq H$. [*Hint*: Tutorial 7 Q3.]
- b) Use the first isomorphism theorem to show that $o(G/K)\mid o(S_{\mathfrak{p}}).$
- c) Let r = [H : K]. Show that r = 1. Conclude that $H \subseteq G$.

 That is, if G is a finite group and $H \subseteq G$ is of the smallest possible prime index, then $H \subseteq G$.

Solution

a) K contains the $g \in G$ such that $f_g = id$. Now $f_g = id$ exactly when g'H = gg'H for all $g' \in G$, or equivalently, $g'^{-1}gg' \in H$ for all $g' \in G$.

This is true if and only if $g \in g'Hg'^{-1}$ for all $g' \in G$, and so $f_g = id$ is equivalent to

$$g \in \bigcap_{g' \in G} g' H g'^{-1}$$
.

Now since one of the components of the intersection is $eHe^{-1} = H$, this intersection sits inside H.

Tutorial 7 Question 3 tells us $K \subseteq H$ and $K \subseteq G$. [You can also show the last one using the normality of the kernel.]

- b) Since Φ is a homomorphism, first isomorphism theorem tells us that $G/K \cong \Phi(G)$. Thus, $o(G/K) = o(\Phi(G))$. We also know that $\Phi(G) \leq S_p$ and Lagrange theorem gives us $o(G/K) = o(\Phi(G)) \mid o(S_p) = p!$.
- c) We have from a) that $K \leq H$. Tower law of indices gives us

$$o(G/K) = [G : K] = [G : H][H : K] = p \cdot [H : K] = pr.$$

We note that $[H : K] \mid o(H) \mid o(G)$. Thus all prime factors of r = [H : K] are $\geq p$.

However, b) gives us $pr \mid p!$ which forces $r \mid (p-1)!$. If r > 1 then it must have a prime factor, say q, and $q \mid (p-1)!$. Since q is a prime it must divide one of 1, 2, 3, ..., p-1. This cannot happen as $q \ge p$.

Thus, r = 1 and so H = K. Thus $H \subseteq G$.

Remark. This is a generalization of Exercise 100.