ENSEMBLES DE NOMBRES

5

La théorie des ensembles, fondée par Georg Cantor au 19e siècle, étudie les propriétés des ensembles, regroupements d'objets mathématiques. Elle a transformé les bases des mathématiques, explorant notions d'appartenance, d'union et d'intersection, influençant divers domaines des mathématiques et de la logique.

1 Quelques ensembles de nombres

1.1 Nombres entiers naturels

Définition | Entier naturel

On appelle **nombre entier naturel** un nombre entier positif. L'ensemble des nombres entiers naturels est noté

$$\mathbf{N} = \{0; 1; 2; 3; 4; \dots\}.$$

Exemples 4 et 287 sont des entiers naturels alors que -1 et 0,5 ne sont pas des entiers naturels.

Définition | Entier naturel non nul

On définit et on note \mathbf{N}^* l'ensemble des **nombres entiers naturels non nuls**. Il s'agit donc de l'ensemble des nombres entiers naturels **strictement** positifs et

$$\mathbf{N}^* = \{1; 2; 3; 4; \dots\}.$$

Remarque Pour noter que a est un entier naturel, on écrira $a \in \mathbb{N}$ et s'il est non nul, $a \in \mathbb{N}^*$.

1.2 Nombres entiers relatifs

Définition | Entier relatif

On appelle **nombre entier relatif** un nombre entier positif ou négatif. L'ensemble des nombres entiers relatifs est noté

$$Z = {...; -4; -3; -2; -1; 0; 1; 2; 3; 4; ...}.$$

Exemples 4, 287, 0 et -1 sont des entiers relatifs alors que 0,5 n'en est pas un.

Remarques \blacktriangleright Pour noter que a est un entier relatif, on écrira $a \in \mathbb{Z}$.

▶ Les nombres entiers naturels sont des nombres entiers relatifs.

1.3 Nombres rationnels

Définition | Rationnel

On appelle **nombre rationnel** un nombre qui peut s'écrire sous la forme d'un quotient $\frac{a}{b}$ où $a \in \mathbf{Z}$ et $b \in \mathbf{N}^*$.

L'ensemble des nombres rationnels est noté Q.

Exemples $\frac{1}{3}$, $\frac{14}{-21} = -\frac{2}{3}$ et $\frac{2,5}{0,7} = \frac{25}{7}$ sont rationnels.

Remarque Les nombres entiers relatifs sont des nombres rationnels.

1.4 Nombres décimaux

Définition | Décimal

Un **nombre décimal** est un nombre qui peut s'écrire sous la forme $\frac{a}{10^n}$ avec $a \in \mathbb{Z}$ et $n \in \mathbb{N}$.

L'ensemble des nombres décimaux est noté D.

Exemples ightharpoonup 0,5 est un nombre décimal car 0,5 = $\frac{1}{2} = \frac{5}{10}$.

 $ightharpoonup -\frac{3}{25}$ est décimal car $-\frac{3}{25} = \frac{-12}{100} = \frac{-12}{10^2}$.

Remarque Les nombres entiers relatifs sont des décimaux. En effet, si $a \in \mathbb{Z}$, alors $a = \frac{a}{10^0}$ qui est bien de la forme demandée.

Théorème | Q ≠ D

 $\frac{1}{3}$ n'est pas un nombre décimal.

Démonstration. Supposons par l'absurde que $\frac{1}{3}$ est décimal.

Dans ce cas, $\frac{1}{3}$ s'écrirait sous la forme $\frac{1}{3} = \frac{a}{10^n}$ où $a \in \mathbb{Z}$ et $n \in \mathbb{N}$.

Ainsi, on aurait $3a = 10^n$, c'est à dire que 10^n est un multiple de 3, ce qui est absurde car 3 ne divise aucune puissance de 10. En effet, il existe un critère de divisibilité par 3 qui dit qu'un nombre entier est divisible par 3 si, et seulement si, la somme de ses chiffres est divisible par 3. Finalement, notre hypothèse était fausse et nous venons de prouver que $\frac{1}{3}$ n'est pas un nombre décimal.

Propriété | Développement décimal

Un nombre décimal admet un développement décimal avec un nombre fini de chiffres.

$$ightharpoonup \frac{1}{2} = 0.5$$

$$-\frac{3}{25} = -0.12$$

Exemples
$$\blacktriangleright \frac{1}{2} = 0.5$$
 $\blacktriangleright -\frac{3}{25} = -0.12$ $\blacktriangleright \frac{217}{125} = 1.736$

1.5 Nombres réels

Définition | Réel

Un nombre est dit **réel** s'il est l'abscisse d'un point d'une droite graduée (ou numérique).

L'ensemble des nombres réels est noté R.

On peut aussi définir R comme l'ensemble des nombres qui s'écrivent avec une partie entière et un nombre de décimal fini ou infini.

Exemples $\frac{1}{3}$, $\sqrt{2}$ et π sont des nombres réels.

Ensembles et inclusions

2.1 Notations ensemblistes

Nous avons déjà utilisé plusieurs notations depuis le début, nous allons tout préciser. Soient E et F deux ensembles de nombres. Voici une correspondance de notations :

x appartient à $E: x \in E$

x n'appartient pas à E: $x \notin E$

Ensemble E privé de 0: E^*

E est inclus dans $F: E \subset F$

L'ensemble F est composé uniquement des éléments a_1, \ldots, a_n : $F = \{a_1, \ldots, a_n\}$

2.2 Classification des nombres

Théorème | Classification

On a la *chaîne d'inclusion* suivante :

$$N \subset Z \subset D \subset Q \subset R$$
.

On peut résumer le résultat précédent à l'aide du diagramme suivant : Remarque

Exercice

Compléter le tableau suivant avec \in ou \notin .

	N	Z	D	Q	R
-2					
<u>2</u> 3					
$\sqrt{2}$					
$\frac{1}{4}$					
π					

3 Intervalles de R

3.1 Définition

Définition | Intervalle

Soient a et b deux réels ($a \le b$).

L'ensemble de tous les réels x tels que $a \le x \le b$ est appelé un **intervalle**, que l'on note [a;b].

Exemples $3 \in [1;5], 6 \notin [1;5] \text{ et } 5 \in [1;5].$

Remarque On peut définir d'autres intervalles en fonction des inégalités choisies :

 $a < x \le b$ définit l'intervalle : a : b

 $a \le x < b$ définit l'intervalle : [a; b]

a < x < b définit l'intervalle :] a; b[

Exemples Donnons la représentation graphique de plusieurs intervalles.

▶ [1;3]

▶] − 1;4[

ightharpoonup]0; + ∞ [

Remarque On notera très souvent :

- \blacktriangleright $[0; +\infty[= \mathbf{R}_+$
- \triangleright]0; + ∞ [= \mathbb{R}_+^*
- ightharpoonup $]-\infty;0]=\mathbf{R}_{-}$
- ▶ $]-\infty;0[=\mathbf{R}_{-}^{*}]$

Exercice

Compléter le tableau suivant :

Inégalité	Intervalle	Représentation graphique
$x < \pi$	$]-\infty;\pi[$	
5 ≤ <i>x</i> < 10		5 10
		-1 3
$\sqrt{2} \geqslant x$		
] −∞; +∞[

Exercice

Compléter avec ∈ ou ∉.

- **▶** -1 [-4;1]
- $\blacktriangleright \frac{1}{3}$ [-4;1]
- **▶** -4,1 [-4;1]
- ▶ $\sqrt{3}$ [-4;1]

3.2 Union et intersection d'intervalles

Définition | Union

Soient A et B deux ensembles. On appelle **union** de A et B, notée $A \cup B$, l'ensemble des éléments qui appartiennent soit à A soit à B.

Définition | Intersection

Soient A et B deux ensembles. On appelle **intersection** de A et B, notée $A \cap B$, l'ensemble des éléments qui appartiennent à A et à B.

Remarque On visualise ces différents ensembles sur le diagramme suivant :

Exercice

Donner l'union et l'intersection des intervalles I et J. Faire un diagramme pour chaque cas.

- I =]1;4[et J = [3;5[
- I =]-1;0] et J = [0;1]
- ► $I = [1; +\infty[\text{ et } J =]-\infty; 2]$
- ightharpoonup I = [-1;0] et J = [1;2]