天宇文件系统概述

天宇文件系统(TYFS)由天宇磁盘分区表(TianyuPartitionTable)和天宇分区格式

(TianyuPartitionFormat) 两部分组成。TYFS的主要目的是解决磁盘分区的动态扩充问题,并解决文件结构安全的问题,既保证磁盘数据的**逻辑安全**,又能提供**空间扩充**的能力。

为了提供逻辑数据安全和空间扩充能力,因此对于每一个TYPF都将使用**2%-5%**的空间用于保存**安全性数据。**

下面将对整个TYFS进行具体的说明。

TYPT

天宇文件系统中,为了提供磁盘分区自动扩展的能力,因此单独为磁盘设计了新的分区表: TYPT。 TYPT与GPT类似,使用GUID对磁盘和磁盘分区进行标识,并提供备份。下面将针对具体的结构进行说明。

TYPT结构	TYPT结构									
项目	ID	说明								
保护 MBR	LBA0	MBR分区表,寻址0Byte大小磁盘,用于保护当前磁盘								
主 TYPT	LBA1	TYFS的主要TYPT分区表,用于提供128组磁盘分区信息项目,每个信息项目采用GUID标识,同时标识当前磁盘分区格式(当前只可标识TYPF)和联合磁盘的状态;(针对联合磁盘核心盘[第一个盘])还提供了附加的联合分区信息								
DATA 段	IBA2 TYFS的所有数据段									
备份 TYPT	LBA3	TYFS的备份TYPT分区表,与 主TYPT分区表 相同								

TYPT详细结构

保护MBR

保护MBR用于保护当前磁盘TYFS文件系统的安全,防止不支持的程序修改TYFS文件系统引发系统错误。同时为了提高访问效率,保护MBR将占用4KB大小。保护MBR段的4KB不仅包含MBR分区表,还包含**TYPT分区表的分区信息描述头**。以下为MBR区的512字节扇区。

0000000040	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000050	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000060	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000070	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000080	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000090	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000000A0	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000000000000	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000000C0		. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000000D0	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000000E0	00	. 00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000000F0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000100	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000110	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000120	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000130			00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000140	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000150		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000160	00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000170		00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000180	00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0000000190	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000001A0	00		00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000001B0	00	00	00	00	00	00	54	00	59	00	50	00	54	00	00	00	
T.Y.P.1	00	00	0B	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000001D0			00	00	00	00	00	00	00	00	00	00	00	00	00	00	
00000001E0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

在TYFS驱动程序上,通过读取0x00000001B6开始的8字节,并与T.Y.P.T.进行比对,成功则该磁盘为TYFS分区系统磁盘。

±TYPT

TYPT部分包含**TYPT信息表**与**TYPT分区表**。TYPT信息表用于标识当前磁盘的基本信息、容量等信息,如下表为对应**字段、大小**与**说明**。

字段	大小	说明
TYPT头	8字节	值为T.Y.P.T., 用于表示当前分区表为TYPT分区表
版本 4字节 ————————————————————————————————————		当前值为{0x01,0x00,0x00,0x00},后期可用于升级后的版本区分
		用于标识当前磁盘
扇区开始扇区 号	8字节	用于标识当前磁盘可用部分的开始扇区号
扇区结束扇区 号	8字节	用于标识当前磁盘可用部分的结束扇区号
扇区总数	8字节	用于标识当前磁盘可用部分的总扇区数

当前TYPT信息区部分只使用52Bytes的块,之后的部分自动填充0x00。

TYPT信息表之后就是TYPT分区表,分区表总共包含128个项,当前可用于128个TYPF分区(在之后的更新中将支持更多的常用分区类型),如下表为对应**字段、大小**与**说明**。

字段	大小	说明
分区类型	16字 节	该项目为空时分区不可用,建立分区后与 分区GUID 相同值,联合分区时使用联合分区特有ID
分区 GUID	16字 节	当前分区的唯一标识符
开始扇	8字 节	当前分区的开始扇区号
结束扇 区号	8字 节	当前分区的结束扇区号
分区属 性	8字 节	当前分区的附加属性(包含隐藏状态、簇大小、联合状态等)
 分区名 称	72字 节	用于标识当前分区的名称

当前TYPT分区表使用128Bytes用于标识一项,总共使用128项,共16KB大小。

DATA段

TYPT的数据段当前只能从第32KB偏移量处开始,并在-32KB处结束(磁盘最后32KB为备份 TYPT,包含完整的TYPT分区表以及MBR块)。

备份TYPT

备份TYPT包含LBA0与LBA1的全部信息,占据相同的32KB大小。

• TYPF

TYPF是天宇文件系统中实现分区动态可拓展性和逻辑安全性的实现部分,TYPF借鉴NTFS的文件记录方式,提供以MFR(Main Files Record)为文件系统框架的文件系统。分区采用48bit寻址大小,分为高16字节和低32字节。高16字节用于标识分区,低32字节用于标识分区内的块号。

分区标识

分区标识用于记录TYPF的开始,以T.Y.P.F.为标识,占用8字节的控件。

分区信息

分区信息用于记录TYPF的文件部分位置,包含信息如下表。

字段	大小	说明
分区实 际起始 扇区号	8字 节	当前分区数据部分的开始扇区号
分区实 际结束 扇区号	8字 节	当前分区数据部分的结束扇区号
分区块 数	4字 节	用于记录当前分区中的簇数
分区位 图组数	4字 节	用于记录当前分区中位图组数,方便索引
分区位 图组块 表	4字 节 ×n	用于记录位图中的 可用块数 和 已用块数 (大小不固定,根据实际分区大小决定)
加密状态	384 字节	用于记录当前分区的数据的加密密钥摘要(本摘要不作为加密密钥)
启动项扇区号	8字 节	用于记录当前分区的启动项位置(当前为保留项)
用户表	8092 字节	用于保存分区的用户表,共256个项,每项32字节,使用摘要形式保存, 对应用户ID,每一个位与之后的安全性对应
安全性	512 字节	用于标识分区的访问性,总共包含256个项目,以表的形式存在,每一项包含 允许与阻止 两个项目,每个项目包含8个具体的 操作 ,每个操作占用1bit

分区位图

分区位图用于标识当前分区中的所有块的使用状态,分区位图采用分组策略。每一组包含32,768个块,占用4KB的大小。每个分区位图组包含一个**可用块数**和**已用块数**记录区,每个占用2字节,共4字节。分区位图采用4KB对齐,不计算在分区的实际大小中。

分区块

TYPF分区块包含MFR块、间接索引块和数据块三种,以块的前4字节为标识,如下表所示。

块类型	值	说明			
MFR块	{0x4D,0x46,0x52,0x30}	用于表明当前块是MFR块			
间接索引 块	{0x49,0x4E,0x44,0x30}	用于表明当前块用于间接寻址,当中的数据为间接 寻址数据			
数据块	{0x44,0x41,0x54,0x41}	用于表明当前的块为数据块,不进行寻址操作			

MFR (Main Files Record)

MFR (主文件记录) 借鉴于NTFS,用于记录当前分区中(联合分区中)的所有文件信息,每个项目占用约1024字节的空间(除掉4字节头和寻址链后剩余块空间的平分,实际MFR项大小会小于1024字节),MFR使用MFR块进行保存,占用分区储存空间。下表所示为MFR项目的基本结构。

字段	大 小	说明
父级 索引 号	6字 节	用于标识当前文件/文件夹的父类目录,用于建立分区结构
文件 ID	16 字 节	用于标识当前文件的ID(文件夹时为空)
创建 时间	8字 节	用于标识文件/文件夹的创建时间
修改时间	8字 节	用于标识文件/文件夹的修改时间
访问时间	8字 节	用于标识文件/文件夹的访问时间
属性	8字 节	用于标识文件的隐含属性,包括当前项目是文件还是文件夹以及当前文件的数据保存在MFR还是通过寻址
安 全 性	512 字 节	用于标识文件的访问性,总共包含256个项目,以表的形式存在,每一项包含 允许 与 阻止 两个项目,每个项目包含8个具体的 操作 ,每个操作占用1bit

字段	大 小	说明					
文件 大小	8字 节	于标识文件的实际大小					
文件 块数	4字 节	用于标识文件的占用块数					
文件名	256 字 节						
寻址空间	186 字 节	采用B+树保存,root根部拥有31个寻址指针,最多拥有3级寻址					

寻址块

寻址块用于当文件大于<u>簇大小×31</u>时使用,除头4字节为标识位外,其他空间都为寻址指针。寻址指针具体数目与簇大小关系如下表。

簇大小 (KB)	寻址块指针数		
4	682		
8	1364		
16	2730		
32	5460		
64	10922		
128	21844		
256	43690		
512	87380		
1024	174762		
2048	349524		
4096	699050		

数据块

数据块用于保存实际的数据,其中当文件小于160Bytes时,不分配多余的空间,直接使用MFR进行保存,当大于160Bytes时,将会分配数据块进行保存。数据块为了保证数据的安全,将会对每一个块保存文件基本信息,保证可以通过扫描块进行重建。下表为数据块的结构。

字段	1 1.	说明
'¬'E4	大小	10 HH
—E2	ヘリ	LTT. P.M

字段	大小	说明
标识符	4字节	用于标识块为数据块
文件ID	16字节	用于对同文件的块进行标识
文件索引	4字节	用于标识当前块在整个文件块中的位置
Data	簇大小-24Bytes	数据存放区

TYPF 簇与空间对应表

单个分区大小 (TB)	联合分区大小 (EB)	最大单个文件 (TB)	最大文件损耗 (GB)	损耗比例(‰)
16	1	36	54.132164	1.4684289279911300
32	2	584	438.7498245	0.7336757286158330
64	4	9383	3520.773926	0.3664345930827830
128	8	150260	28185.79233	0.1831837336629590
256	16	2406445	225638.6485	0.0915667063549554
512	32	33554432	1573032.018	0.0457812571639238
1024	64	67108864	1572924.003	0.0228890567477436
2048	128	134217728	1572906.002	0.0114443974013057
4096	256	268435456	1572879.003	0.0057221004787778
8192	512	536870912	1572874.506	0.0028610420592656
16384	1024	1073741824	1572867.762	0.0014305148958727