

PMU
- Probabilistic Models
-

```
Probabilistic Models
- MDPs
- Reinforcement Learning
```

```
DMU
    - Probabilistic Models
- MDPs
- Reinforcement Learning
- POMDPs
- Games
```

1.
$$0 \le P(X \mid Y) \le 1$$

$$\sum_{x \in X} P(x \mid Y) = 1$$

$$1. \ 0 \leq P(X \mid Y) \leq 1$$
 $\sum_{x \in X} P(x \mid Y) = 1$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

P(A) P(A,B) P(AIB)

$$1.~0 \leq P(X \mid Y) \leq 1$$
 $\sum_{x \in X} P(x \mid Y) = 1$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

0 < D(T(| T()

$$1.~0 \leq P(X \mid Y) \leq 1 \ \sum_{x \in X} P(x \mid Y) = 1$$

3 Rules

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes Rule

$$P(A \mid B) = rac{P(B \mid A)P(A)}{P(B)}$$

3 Rules

1.
$$0 \le P(X \mid Y) \le 1$$

$$\sum_{x \in X} P(x \mid Y) = 1$$

2.
$$P(X) = \sum_{y \in Y} P(X, y)$$

3.
$$P(X \mid Y) = \frac{P(X,Y)}{P(Y)}$$

Bayes Rule

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Independence

$$A \perp B \iff P(A, B) = P(A)P(B)$$

 $A \perp B \mid C \iff P(A, B \mid C) = P(A \mid C)P(B \mid C)$

Chain Rule

$$\underbrace{P(X_{1:n})} = \prod_i \underbrace{P(X_i \mid Pa(X_i))}$$

Chain Rule

$$P(X_{1:n}) = \prod_i P(X_i \mid Pa(X_i))$$

Conditional Independence

 $X \perp Y \mid \mathcal{C}$ if all paths between X and Y are d-separated by \mathcal{C}

$$(S, A, R, T, \gamma)$$

$$(S, A, R, T, \gamma)$$

Examples: $S=\{1,2,3\}$ or $S=\mathbb{R}^2$

 (S, A, R, T, γ)

s e S

Cartesian Product of two sets

$$\{-1,1\} \times \{-1,1\} = \{(-1,-1),(-1,1),(1,-1),(1,1)\}$$

Examples: $S=\{1,2,3\}$ or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$S = (x', y', x^2, y^2, b)$$
 $S = [-1, 1]^4 \times \{1, 2\}$
 $b \in \{1, 2\}$

A state is usually represented as a vector or tuple of state variables

$$s = (x', y', x^2, y^2)$$

A state space is a set of all possible

$$S = [-1, 1] \times [-1, 1] \times [-1, 1] \times [-1, 1] \times [-1, 1] = [-1, 1]^4$$

 $S = \{-10, ..., 10\}^4$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$Q^{\pi}(s,a) = E[\sum_{t=0}^{\infty} r^{t}R(s_{t},a_{t})|s=s,a_{0}=a,a_{t}=\pi(s_{t})]$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$ $s=(x,\dot{x})\in S=\mathbb{R}^2$

$$Q^{\pi}(s,a) = E[\sum_{r=0}^{\infty} r'R(s_{r,a,r}) | s=s, a_{0}=a, a_{r}=\pi(s,r)]$$

$$V^{\pi}(s) = Q^{\pi}(s,\pi(s))$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$ $s=(x,\dot{x})\in S=\mathbb{R}^2$

$$Q^{\pi}(s,a) = E[\sum_{r=0}^{\infty} r^{r}R(s_{r,a+}) | s=s, a_{0}=a, a_{r}=\pi(s_{s+})]$$

$$V^{\pi}(s) = Q^{\pi}(s,\pi(s))$$

$$V^\pi(s) = R(s,a) + \gamma E[V^\pi(s')]$$

$$V^*(s) = \max_a \left\{ R(s,a) + \gamma E[V^*(s')]
ight\}$$

$$B[V](s) = \max_a \left\{ R(s,a) + \gamma E[V(s')]
ight\}$$

$$(S, A, R, T, \gamma)$$

Examples:
$$S=\{1,2,3\}$$
 or $S=\mathbb{R}^2$

$$s=(x,\dot{x})\in S=\mathbb{R}^2$$

$$V^{\pi}(5) = Q^{\pi}(5,\pi(5))$$

$$V^\pi(s) = R(s,a) + \gamma E[V^\pi(s')]$$

Policy Evaluation

$$V^*(s) = \max_a \left\{ R(s,a) + \gamma E[V^*(s')]
ight\}$$

Bellman's Equation: Certificate of Optimality

$$B[V](s) = \max_a \left\{ R(s,a) + \gamma E[V(s')]
ight\}$$

Bellman's Operator

Policy Iteration

loop

Evaluate Policy

Improve Policy

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

loop

$$V \leftarrow B[V]$$

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

loop

$$V \leftarrow B[V]$$

Converges because policy always improves and there are a finite number of policies

Policy Iteration

Value Iteration

loop

Evaluate Policy

Improve Policy

loop

$$V \leftarrow B[V]$$

Converges because policy always improves and there are a finite number of policies

Converges because B is a contraction mapping

Monte Carlo Tree Search

Monte Carlo Tree Search

Search

Expand

Rollout

Backup

Monte Carlo Tree Search

Expand

Rollout

Backup

Monte Carlo Tree Search

Q(5,0) + C \[\log N(s) \\ N(s,0)\]

Expand Rollout

Search

Backup

Sparse Sampling

Monte Carlo Tree Search

Search Expand Rollout Backup

Sparse Sampling

Online MDP Planning

Monte Carlo Tree Search

Search Expand Rollout Backup

Sparse Sampling

Guarantees *independent* of |S|!!

LQR

$$\mathbf{s}' = \mathbf{T}_{s}\mathbf{s} + \mathbf{T}_{a}\mathbf{a} + \mathbf{w}$$

$$R(\mathbf{s},\mathbf{a}) = \mathbf{s}^{\mathsf{T}} \mathbf{R}_{s} \mathbf{s} + \mathbf{a}^{\mathsf{T}} \mathbf{R}_{a} \mathbf{a}$$

$$\pi_{h}(\mathbf{s}) = -\left(\mathbf{T}_{a}^{\top}\mathbf{V}_{h-1}\mathbf{T}_{a} + \mathbf{R}_{a}\right)^{-1}\mathbf{T}_{a}^{\top}\mathbf{V}_{h-1}\mathbf{T}_{s}\mathbf{s}$$

$$\mathbf{V}_{h+1} = \mathbf{R}_{s} + \mathbf{T}_{s}^{\top}\mathbf{V}_{h}^{\top}\mathbf{T}_{s} - \left(\mathbf{T}_{a}^{\top}\mathbf{V}_{h}\mathbf{T}_{s}\right)^{\top}\left(\mathbf{R}_{a} + \mathbf{T}_{a}^{\top}\mathbf{V}_{h}\mathbf{T}_{a}\right)^{-1}\left(\mathbf{T}_{a}^{\top}\mathbf{V}_{h}\mathbf{T}_{s}\right)$$

$$\mathbf{V}_{h} = \mathbf{R}_{s}$$

Challenges:

Challenges:

Challenges:

1. Exploration and Exploitation

Challenges:

- 1. Exploration and Exploitation
- 2. Credit Assignment

Challenges:

- 1. Exploration and Exploitation
- 2. Credit Assignment
- 3. Generalization

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

logarithmic regret

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Pseudocounts

Montezuma's Revenge!

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

- Pseudocounts
- Curiosity: extra reward for bad prediction

Bandits

- ϵ -greedy
- softmax
- UCB
- Thompson Sampling
- Optimal DP Solution (solving a POMDP!)

Montezuma's Revenge!

- Pseudocounts
- Curiosity: extra reward for bad prediction
- Random network distillation

V Off Policy

MLMBTRL (learn T,R) V Off Policy

Likelihood ratio trick

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

- Likelihood ratio trick
- Causality

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

Likelihood ratio trick

 $\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$

- Causality
- Baseline Subtraction

$$\nabla U(\theta) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\theta} \log \pi_{\theta}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

Likelihood ratio trick

 $\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$

- Causality
- Baseline Subtraction

$$\nabla U(\theta) = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\theta} \log \pi_{\theta}(a^{(k)} \mid s^{(k)}) \gamma^{k-1} \left(r_{\text{to-go}}^{(k)} - r_{\text{base}}(s^{(k)}) \right) \right]$$

Natural Gradient

- Likelihood ratio trick
- Causality
- Baseline Subtraction

$$\nabla_{\theta} p_{\theta}(\tau) = p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau)$$

$$\underbrace{\nabla U(\boldsymbol{\theta})} = \mathbb{E}_{\tau} \left[\sum_{k=1}^{d} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}(\boldsymbol{a}^{(k)} \mid \boldsymbol{s}^{(k)}) \gamma^{k-1} \Big(r_{\text{to-go}}^{(k)} - r_{\text{base}}(\boldsymbol{s}^{(k)}) \Big) \right]$$

• Natural Gradient

SARSA

$$Q(s,a) \leftarrow Q(s,a) + lpha(r_t + \gamma Q(s', \underline{a}') - Q(s,a))$$

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

Q-learning

$$Q(s,a) \leftarrow Q(s,a) + lpha(r_t + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

SARSA

$$Q(s,a) \leftarrow Q(s,a) + \alpha(r_t + \gamma Q(s',a') - Q(s,a))$$

Eligibility Traces

Q-learning

$$Q(s,a) \leftarrow Q(s,a) + lpha(r_t + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Double Q Learning

Neural Networks and DQN

Neural Networks and DQN

Neural Networks and DQN

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$

Neural Networks and DQN

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$
Backprop

Neural Networks and DQN

$$f_{ heta}(x) = \sigma(W_2\sigma(W_1x+b_1)+b_2)$$

Backprop

• Actor: π_{θ}

• Actor: π_{θ}

• Critic: Q_{ϕ}

• Actor: π_{θ}

• Critic: Q_{ϕ}

Soft Actor Critic

• Actor: π_{θ}

• Critic: Q_{ϕ}

Soft Actor Critic

$$J(\pi) = E\left[\sum_{t=0}^{\infty} \gamma^t \left(r_t + lpha \mathcal{H}(\pi(\cdot \mid s_t))
ight)
ight]$$

 $(S, A, T, R, O, Z, \gamma)$

 $(S, A, T, R, O, Z, \gamma)$

 $(S, A, T, R, O, Z, \gamma)$

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

 $(S, A, T, R, O, Z, \gamma)$

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

 $(S, A, T, R, O, Z, \gamma)$

• Each alpha vector corresponds to a conditional plan

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

 $(S, A, T, R, O, Z, \gamma)$

- Each alpha vector corresponds to a conditional plan
- You can prune alpha vectors by solving an LP

Belief Updates

- Discrete Bayesian Filter
- Particle Filter

Alpha Vectors

Formulation

• Certainty Equivalence

• QMDP

Formulation

- Certainty Equivalence
- QMDP

Numerical

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Online

- POMCP
- DESPOT

Formulation

- Certainty Equivalence
- QMDP

Numerical

Offline

- Point-Based Value Iteration
- SARSOP

Online

- POMCP
- DESPOT

Optimal Solutions

• Optimal Solutions No.

- Optimal Solutions
 Equilibria (e.g. Nash Equilibria)

- Optimal Solutions
- Equilibria (e.g. Nash Equilibria)

- Optimal Solutions
- Equilibria (e.g. Nash Equilibria)

 Every finite game has at least 1 Nash Equilibrium

- Optimal Solutions
- Equilibria (e.g. Nash Equilibria)

- Every finite game has at least 1 Nash Equilibrium
- Might be pure or mixed

- Optimal Solutions
- Equilibria (e.g. Nash Equilibria)

- Every finite game has at least 1 Nash Equilibrium
- Might be pure or mixed
- Algorithms like fictitious play converge in special cases

Value Function Backup

- Value Function Backup
- $\alpha\beta$ Pruning

- Value Function Backup
- $\alpha\beta$ Pruning
- Incomplete Information Extensive Form

- Value Function Backup
- $\alpha\beta$ Pruning
- Incomplete Information Extensive Form

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Partially Observable Markov Games

- Each player receives a noisy observation at each step
- Beliefs not practical to compute
- Can be reduced to simple game with policies as actions

Markov Games

- All players play simultaneously
- Transitions are stochastic
- Best response involves solving an MDP
- Can be reduced to a simple game with policies as actions

Partially Observable Markov Games

- Each player receives a noisy observation at each step
- Beliefs not practical to compute
- Can be reduced to simple game with policies as actions

Fictitious Play in Markov Games

After DMU you have basic tools to deal with 4 Big Problems:

1. Immediate and Future Rewards

- 1. Immediate and Future Rewards
- 2. Unknown Models

- 1. Immediate and Future Rewards
- 2. Unknown Models
- 3. Partial Observability

- 1. Immediate and Future Rewards
- 2. Unknown Models
- 3. Partial Observability
- 4. Other Agents

