

Cost effective monolithically integrated IGBT with Diode

Features:

TRENCHSTOP[™] Reverse Conducting (RC) technology for 600V applications offering

- Very tight parameter distribution
- Operating range up to 20kHz
- Maximum junction temperature 175°C
- Short circuit capability of 3µs
- Humidity robust design
- · Pb-free lead plating; RoHS compliant
- Complete product spectrum and PSpice Models:

http://www.infineon.com/rc-d2

Potential Applications:

- Major Home Appliances
 - Air Conditioning
 - Refrigerators
- Drives
 - GPD (General Purpose Drives)

G E

Product Validation:

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Key Performance and Package Parameters

Туре	V CE	<i>I</i> c	V _{CEsat} , T _{vj} =25°C	T _{vjmax}	Marking	Package
IKD10N60RC2	600V	10A	2V	175°C	K10DRC2	PG-TO252-3

IKD10N60RC2

TRENCHSTOP[™] RC-Series for hard switching applications

Table of Contents

Description	1
able of Contents	2
Maximum Ratings	3
Thermal Resistance	3
Electrical Characteristics	4
Electrical Characteristics Diagrams	6
Package Drawing	3
esting Conditions	4
Revision History	5
Disclaimer	6

2

Maximum Ratings

For optimum lifetime and reliability, Infineon recommends operating conditions that do not exceed 80% of the maximum ratings stated in this datasheet.

Parameter	Symbol	Value	Unit
Collector-emitter voltage, <i>T</i> _{vj} ≥ 25°C	V _{CE}	600	V
DC collector current, limited by T_{vjmax} $T_{\text{c}} = 25^{\circ}\text{C}$ $T_{\text{c}} = 100^{\circ}\text{C}$	I _C	18.8 12.6	А
Pulsed collector current, t_p limited by T_{vjmax}	I Cpuls	30.0	Α
Turn off safe operating area $V_{\text{CE}} \leq 600\text{V}, \ T_{\text{vj}} \leq 175^{\circ}\text{C}, \ t_{\text{p}} = 1\mu\text{s}$	-	30.0	А
Diode forward current, limited by T_{vjmax} $T_{\text{c}} = 25^{\circ}\text{C}$ $T_{\text{c}} = 100^{\circ}\text{C}$	I _F	8.9 4.6	А
Diode pulsed current, t_p limited by T_{vjmax}	I _{Fpuls}	30.0	Α
Gate-emitter voltage Transient Gate-emitter voltage ($t_p \le 10 \mu s$, $D < 0.010$)	V _{GE}	±20 ±25	V
Short circuit withstand time V_{GE} = 15.0V, $V_{\text{CC}} \le 400\text{V}$ Allowed number of short circuits < 1000 Time between short circuits: $\ge 1.0\text{s}$ T_{vj} = 150°C	t _{SC}	3	μs
Power dissipation $T_c = 25^{\circ}\text{C}$ Power dissipation $T_c = 100^{\circ}\text{C}$	P _{tot}	79.0 39.5	W
Operating junction temperature	T _{vj}	-40+175	°C
Storage temperature	T _{stg}	-55+150	°C
Soldering temperature, reflow soldering (MSL1 according to JEDEC J-STA-020)		260	°C

Thermal Resistance

Datasheet

Damamatan	Symbol Conditions	Value				
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
R _{th} Characteristics				•	•	•
IGBT thermal resistance,1) junction - case	R _{th(j-c)}		-	_	1.90	K/W
Diode thermal resistance, ²⁾ junction - case	R _{th(j-c)}		-	-	6.10	K/W
Thermal resistance, min. footprint junction - ambient	R _{th(j-a)}		-	-	75	K/W
Thermal resistance, 6cm² Cu on PCB junction - ambient	R _{th(j-a)}		-	-	50	K/W

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Development	Comphal	Canditions	Value			11:4
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Static Characteristic	•					•
Collector-emitter saturation voltage	V _{CEsat}	V_{GE} = 15.0V, I_{C} = 10.0A T_{Vj} = 25°C T_{Vj} = 175°C		2.00 2.40	2.30	V
Diode forward voltage	V _F	$V_{GE} = 0V, I_{F} = 10.0A$ $T_{vj} = 25^{\circ}C$ $T_{vj} = 175^{\circ}C$		1.90 1.95	2.20	V
Gate-emitter threshold voltage	V _{GE(th)}	$I_{\rm C}$ = 0.11mA, $V_{\rm CE}$ = $V_{\rm GE}$	4.3	5.0	5.7	V
Zero gate voltage collector current	I _{CES}	$V_{\text{CE}} = 600\text{V}, V_{\text{GE}} = 0\text{V}$ $T_{\text{vj}} = 25^{\circ}\text{C}$ $T_{\text{vj}} = 175^{\circ}\text{C}$			25 2500	μA
Gate-emitter leakage current	I _{GES}	$V_{CE} = 0V, V_{GE} = 20V$	-	-	100	nA
Transconductance	g fs	$V_{CE} = 20V, I_{C} = 10.0A$	-	4.5	-	S
Integrated gate resistor	r _G			none		Ω

Electrical Characteristic, at T_{vj} = 25°C, unless otherwise specified

Paramatan	Ols all	O an disting a	Value			11
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Dynamic Characteristic				•	'	
Input capacitance	Cies		-	400	-	
Output capacitance	Coes	$V_{\text{CE}} = 25\text{V}, V_{\text{GE}} = 0\text{V}$ f = 1000kHz	-	20	-	pF
Reverse transfer capacitance	Cres	- 1000M IZ	-	15	-	
Gate charge	Q _G	$V_{\rm CC}$ = 480V, $I_{\rm C}$ = 10.0A, $V_{\rm GE}$ = 15V	-	48.0	-	nC

Switching Characteristic, Inductive Load

Davamatan	Cumbal	Canditions	Value			11:4
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic, at $T_{vj} = 25^{\circ}$	C					•
Turn-on delay time	$t_{\sf d(on)}$	$T_{\rm vi} = 25^{\circ}{\rm C},$	-	14	-	ns
Rise time	t _r	$V_{\text{CC}} = 400\text{V}, I_{\text{C}} = 10.0\text{A}, \ V_{\text{GE}} = 0.0/15.0\text{V}, \ R_{\text{G(on)}} = 49.0\Omega, R_{\text{G(off)}} = 49.0\Omega,$	-	13	-	ns
Turn-off delay time	$t_{\sf d(off)}$		-	250	-	ns
Fall time	t _f	$L\sigma$ = 30nH, $C\sigma$ = 32pF	-	21	-	ns
Turn-on energy	Eon	Lσ, Cσ from Fig. E Energy losses include "tail" and diode reverse recovery.	-	0.32	-	mJ
Turn-off energy	E _{off}		-	0.17	-	mJ
Total switching energy	E _{ts}		-	0.49	-	mJ

IKD10N60RC2

TRENCHSTOP[™] RC-Series for hard switching applications

Diode Characteristic, at T_{vj} = 25°C

Diode reverse recovery time	t _{rr}	$T_{\rm vj} = 25^{\circ}{\rm C},$	-	104	-	ns
Diode reverse recovery charge	Qrr	$V_{\rm R} = 400 {\rm V},$ $I_{\rm F} = 10.0 {\rm A},$	-	337.00	-	nC
Diode peak reverse recovery current	I _{rrm}	d _{iF} /dt = 758A/µs	-	9.5	-	Α
Diode peak rate of fall of reverse recovery current during <i>t</i> _b	di _{rr} /dt		-	-190	-	A/µs

Switching Characteristic, Inductive Load

Davamatar	Syrach of	Conditions	Value			11:4
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
IGBT Characteristic, at $T_{vj} = c$	175°C					
Turn-on delay time	$t_{\sf d(on)}$	$T_{\rm vi} = 175^{\circ}{\rm C},$	-	9	-	ns
Rise time	t _r	$V_{CC} = 400V$, $I_{C} = 10.0A$, $V_{GE} = 0.0/15.0V$, $R_{G(on)} = 49.0\Omega$, $R_{G(off)} = 49.0\Omega$,	-	17	-	ns
Turn-off delay time	$t_{\sf d(off)}$		-	270	-	ns
Fall time	t _f	$L\sigma = 30$ nH, $C\sigma = 32$ pF	-	16	-	ns
Turn-on energy	E on	Lσ, Cσ from Fig. E Energy losses include "tail" and diode reverse recovery.	-	0.42	-	mJ
Turn-off energy	E _{off}		-	0.20	-	mJ
Total switching energy	Ets		-	0.62	-	mJ

Diode Characteristic, at $T_{vj} = 175$ °C

Diode reverse recovery time	t _{rr}	$T_{\rm vj} = 175^{\circ}{\rm C},$	-	157	-	ns
Diode reverse recovery charge	Qrr	$V_{\rm R} = 400 {\rm V},$ $I_{\rm F} = 10.0 {\rm A},$	-	631.00	-	nC
Diode peak reverse recovery current	I rrm	d _{iF} /dt = 673A/µs	-	11.5	-	Α
Diode peak rate of fall of reverse recovery current during $t_{\rm b}$	di _{rr} /dt		-	-109	-	A/µs

TRENCHSTOP™ RC-Series for hard switching applications

Figure 1. Power dissipation as a function of case temperature (*T*_v≤175°C)

Figure 2. Collector current as a function of case temperature $(V_{GE} \ge 15V, T_v \le 175^{\circ}C)$

Figure 3. **Typical output characteristic** $(T_{vj}=25^{\circ}C)$

Figure 4. **Typical output characteristic** $(T_{vj}=175^{\circ}C)$

TRENCHSTOP[™] RC-Series for hard switching applications

Figure 5. **Typical transfer characteristic** $(V_{CE}=20V)$

Figure 6. Typical collector-emitter saturation voltage as a function of junction temperature $(V_{\text{GE}}=15\text{V})$

Figure 7. Typical switching times as a function of collector current (inductive load, $T_{\rm vj}$ =175°C, $V_{\rm CE}$ =400V, $V_{\rm GE}$ =15/0V, $R_{\rm G}$ =49 Ω , Dynamic test circuit in

Figure 8. **Typical switching times as a function of gate resistor**(inductive load, T_{vj} =175°C, V_{CE} =400V, V_{CE} =15/0V, I_{C} =10A. Dynamic test circuit in

V 2.1 2020-09-28

 V_{GE} =15/0V, I_{C} =10Å, Dynamic test circuit in Figure E)

Datasheet

Figure E)

TRENCHSTOP[™] RC-Series for hard switching applications

Figure 9. Typical switching times as a function of junction temperature (inductive load, $V_{\rm CE}$ =400V, $V_{\rm GE}$ =15/0V, $I_{\rm C}$ =10A, $R_{\rm G}$ =49 Ω , Dynamic test circuit in Figure E)

Figure 11. Typical switching energy losses as a function of collector current (inductive load, T_{vj} =175°C, V_{CE} =400V, V_{GE} =15/0V, R_{G} =49 Ω , Dynamic test circuit in Figure E)

Figure 12. Typical switching energy losses as a function of gate resistor (inductive load, $T_{\rm vj}$ =175°C, $V_{\rm CE}$ =400V, $V_{\rm GE}$ =15/0V, $I_{\rm C}$ =10A, Dynamic test circuit in Figure E)

8

Figure 13. Typical switching energy losses as a function of junction temperature (inductive load, V_{CE} =400V, V_{GE} =15/0V, I_{C} =10A, R_{G} =49 Ω , Dynamic test circuit in Figure E)

Figure 15. **Typical gate charge** $(I_C=10A)$

Figure 14. Typical switching energy losses as a function of collector emitter voltage (inductive load, $T_{\rm vj}$ =175°C, $V_{\rm GE}$ =15/0V, $I_{\rm C}$ =10A, $R_{\rm G}$ =49 Ω , Dynamic test circuit in Figure E)

Figure 16. Typical capacitance as a function of collector-emitter voltage $(V_{GE}=0V, f=1MHz)$

TRENCHSTOP[™] RC-Series for hard switching applications

Figure 17. Typical short circuit collector current as a function of gate-emitter voltage ($V_{\text{CE}} \leq 400\text{V}$, $T_{\text{vj}} \leq 150^{\circ}\text{C}$)

Figure 18. **IGBT transient thermal resistance** $(D=t_p/T)$

Figure 19. Diode transient thermal impedance as a function of pulse width $(D=t_p/T)$

Figure 20. Typical reverse recovery time as a function of diode current slope $(V_R=400V)$

Figure 21. Typical reverse recovery charge as a function of diode current slope $(V_R$ =400V)

Figure 22. Typical reverse recovery current as a function of diode current slope $(V_R$ =400V)

Figure 23. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope $(V_R=400V)$

Figure 24. Typical diode forward current as a function of forward voltage

Figure 25. Typical diode forward voltage as a function of junction temperature

Package Drawing PG-TO252-3

DIM	MILLIN	IETERS
DIN	MIN	MAX
Α	2.16	2.41
A1	0.00	0.15
b	0.64	0.89
b2	0.65	1.15
b3	4,95	5.50
С	0.46	0.61
c2	0.40	0.98
D	5.97	6.22
D1	5.02	5.84
E	6.35	6.73
E1	4.32	5.21
е	2	.29 (BSC)
e1	4	.57 (BSC)
N		3
Н	9.40	10.48
L	1.18	1.78
L3	0.89	1.27
L4	0.51	1.02

NOTES:

1. ALL DIMENSIONS REFER TO JEDEC STANDARD TO-252 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

	DOCUMENT NO.					
Z8B000	03328					
SCALE 0 2.5	2.5 - 5 _{mm}					
EUROPEAN PR	ROJECTION					
						
ISSUE D 05-02-2						
REVISI 06	ION					

Testing Conditions

Figure A. Definition of switching times

Figure B. Definition of switching losses

Figure C. **Definition of diode switching** characteristics

Figure D. Thermal equivalent circuit

Figure E. Dynamic test circuit Parasitic inductance L_{σ} , parasitic capacitor C_{σ} , relief capacitor C_{r} , (only for ZVT switching)

IKD10N60RC2

TRENCHSTOP[™] RC-Series for hard switching applications

Revision History

IKD10N60RC2

Revision: 2020-09-28, Rev. 2.1

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0		
Previous Revision		
Revision	Date	Subjects (major changes since last revision)
2.1	2020-09-28	Final data sheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2020. All Rights Reserved.

Important Notice

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is <u>not</u> qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IKD10N60RC2ATMA1