PREDICTING & OPTIMIZING WAVE ENERGY CONVERSION

Oskar Larsson, Claire Nampeera, Arushi Sinha, Marlon Trifunovic

01	DE	OBL	EM Q	TAT	EM	EMI	
UI		IUDL		LI ALL	611		

- O2 MATHEMATICAL PLAN
- **03** [Linear] **MULTIVARIATE REGRESSION**
- **04** [Non-linear] **NEURAL NETWORK**
- 05 RESULTS
- 06 CONCLUSION

Wave energy converters (WECs) can form an array of submerged buoys, tethered to the sea floor, which extract energy from surrounding waves

Positions of 16 WECs

$$\mathcal{D} = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^{N}$$

$$\mathbf{X}_{i} = \begin{bmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ \vdots \\ x_{i16} \end{bmatrix} \qquad \mathbf{y}_{i} = \begin{bmatrix} y_{i1} \\ y_{i2} \\ \vdots \\ \vdots \\ y_{i16} \end{bmatrix}$$

Individual & Cumulative Power Output

$$\{(P_{i1}, P_{i2}, \dots, P_{i16}, P_{itotal})\}_{i=1}^{N}$$

Want to penalize $\sum_{i=1}^{16} P_i \neq P_{total}$

Want to compare **MAPE** b/w linear and non-linear models

$$\tilde{P} = X\beta + \varepsilon$$

$$\left[\widetilde{P}_{i,1} \ \widetilde{P}_{i,2} \ \ldots \ \widetilde{P}_{i,16} \ \widetilde{P}_{i,total} \ \right] =$$

$$\begin{bmatrix} x_{i,1} & x_{i,2} & \cdots & x_{i,16} & y_{i,1} & y_{i,2} & \cdots & y_{i,16} \end{bmatrix} \begin{bmatrix} \beta_{1,1} & \cdots & \beta_{1,16} & \beta_{1,total} \\ \beta_{2,2} & \cdots & \beta_{2,16} & \beta_{2,total} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{32,2} & \cdots & \beta_{32,16} \end{bmatrix} + \begin{bmatrix} \varepsilon_{i,1} & \varepsilon_{i,2} & \cdots & \varepsilon_{i,16} \\ \varepsilon_{i,total} & \vdots & \vdots & \vdots \\ \varepsilon_{i,total} & \vdots$$

Visualizing $\beta \rightarrow$ sanity check

IMPLEMENTATION

Many different choices:

layer sizes, drop out probability, activation, batch training size, penalization hyperparameter

SOLUTION?

I specified all the possible options I think could make a good model then trained a ton of models using a simple genetic algorithm


```
{'act': 'relu',
'batch': 2000,
'drop_amt': 0.1,
'first_lay': 1024,
'hyper': 0,
'second_lay': 2048,
'third_lay': 1024}
```

DROP OUT

0.1

ACTIVATION

ReLu

HYPERPARAMETER

Disabled

SIZE OF LAYERS

As big as I can get!

Model: "sequential 1" Layer (type) Output Shape Param # dense 1 (Dense) (None, 1024) 33792 dropout 1 (Dropout) (None, 1024) 0 dense 2 (Dense) (None, 2048) 2099200 dense 3 (Dense) (None, 1024) 2098176 dense 4 (Dense) (None, 17) 17425 Total params: 4,248,593

Total params: 4,248,593 Trainable params: 4,248,593 Non-trainable params: 0

TRAINING

With this final model architecture, I trained 4 different models, one for each location.

I trained until there was no improvement in loss. This training was overnight on GPU

Issue: Overfitting

Solution: Retrain network and save model when **val_loss is at minimum**

SAVE THE MODEL WHEN BEST VAL_LOSS IS ACHIEVED

```
def train model(file,patience=100,verbose=0):
 model = models.Sequential()
 model.add(layers.Dense(1024, input dim=32, activation = "relu"))
 model.add(layers.Dropout(0.1))
 model.add(layers.Dense(2048, activation = "relu"))
 model.add(layers.Dense(1024, activation = "relu"))
 model.add(layers.Dense(17, activation = 'linear'))
 earlyStopping = EarlyStopping(monitor='val loss', patience=patience, verbose=0, mode='min')
 mcp save = ModelCheckpoint('tmp.h5', save best only=True, monitor='val loss', mode='min')
 reduce lr loss = ReduceLROnPlateau(monitor='val loss', factor=0.2, patience=70,
                                     verbose=1, min delta=le-5, mode='min')
 logger = TgdmCallback(verbose=verbose)
 model.compile("adam",loss="mean absolute percentage error")
 loss hist = model.fit(xs trains[file], ys trains[file], epochs = 15000, shuffle=True,
                        verbose=0, validation data = (xs tests[file], ys tests[file]),
                        batch size=2048, callbacks=[earlyStopping, mcp save, reduce lr loss,logger])
 model.load weights('tmp.h5')
 os.remove('tmp.h5')
 return model, loss hist
```

TRAINING MODELS TOOK A FRACTION OF THE TIME

	1	
_		

MAPE	LINEAR	NON-LINEAR OLD	NON-LINEAR NEW
SYDNEY	3.20%	I.30%	I.33%
TASMANIA	6.56%	5.40%	5.18%
PERTH	6.82%	5.17%	5.07%
ADELAIDE	6.79%	4.97%	4.92%

GRAPHING THE ERROR

Linear Regression clearly is not picking up on some structure

Tested On Trained On	SYDNEY	TASMANIA	PERTH	ADELAIDE	
SYDNEY	I.33%	I2.4I%	II.49%	II.00%	
TASMANIA	I5.54%	5.18%	6.57%	6.78%	
PERTH	I4.64%	6.41%	5.07%	6.36%	
ADELAIDE	I4.68%	6.75%	6.35%	4.92%	

<u>MULTIVARIATE REGRESSION</u> was better than expected!

- ightarrow it could easily identify how a WEC's power output is correlated with its own coordinates
- \rightarrow but it's linear so P_{total} was basically guesswork (*frequency driven*) and structure (*constructive / destructive interference*) was not being captured
- \rightarrow almost always fails when **power output is high**, possibly since it was too simple to pick up on **constructive interference**

NEURAL NETWORK made it better, especially in the case of predicting Ptotal

- \rightarrow but with many, MANY testing iterations $_{16}$
- \rightarrow turns out we didn't actually have to penalize $\sum_{i=1}^{\infty} P_i \neq P_{total}$