CMSC 320 Introduction to Data Science

AKILESH PRAVEEN

Prof. John Dickerson \bullet Fall 2020 \bullet University of Maryland https://cmsc320.github.io

Last Revision: May 17, 2020

Table of Contents

1	Notes & Preface	4
2	Introduction (L1)	4
	What is Data Science?	4
	Topics	4
	Tools	4
	Conda	5
3	Python, Jupyter, Literate Programming (L2)	5
	Literate Programming	5
	Jupyter Notebook + Alternatives	5
	List Comprehensions in Python	5
	Using Python3	6
	Python vs. R for Data Scientists	6
	The Classic Statistical View of Data	7
	Nominal Data	7
	Ordinal Data	7
	Interval and Ratio Data	8
	Data Science at a Glance	9
	Data Science at a Giance	9
4	•·····································	10
	Acquiring Data	10
	RESTful APIs	10
	Oauth	10
	GET Requests	11
	More on Data Storage Formats	11
	SAX	11
	Parsing HTML	11

5	NumPy, Best Practices, Ethics (L4)	12
	Available Technologies	12
	NumPy Stack	12
	Misc About NumPy	12
	Linear Algebra with NumPy	13
		13
	SciPy	
	The Idea of Reproducibility	13
	Best Practices	13
	The Idea of Open Data	13
	General Process	13
	Project Organization	14
	A Little on Bias, Ethics, Responsibility	15
6	Tables, Relational DB, and Pandas $(L5 + L6)$	15
	Tables	15
	Selecting / Slicing	16
	Aggregating / Reducing	16
	Map	
	Group By	
	Group By + Aggregate \dots	
	Union, Intersection, Difference	
	Merge or Join	
	Summary	18
	Pandas	18
	Dataframes	18
	Series	19
	Creating a Dataframe	19
	Tidy Data	19
	SQL and Relational Databases	20
	Indexing	20
	Relationships	$\frac{1}{21}$
	SQL and SQLite	
	Joining Data	
	Types of Joins	
	Syntax in PANDAS	
	Visual Example	26
7	Version Control Software (L7)	27
"		
	Centralized VCS	27
	Distributed VCS	28
	Branching	28
	When Should I Branch?	28
	Git Basics	28
	Online Hosting	29
8	Missing Data and Imputation (L8)	29
	Missing Data	29
	Just Deleting It	30
	Types of Missing Data	30
	Missing Completely At Random	30
	Missing At Random	30
	Missing Not At Random	31
	Line of Rest Fit	31

	Imputation	32
	Types Of Imputation	
	Single vs. Multiple Imputation	32
9	Data Wrangling, Integration, Cleaning (L9)	33
	Data Wrangling	33
	Key Steps of Data Wrangling	33
	Data Integration	33
	Data Cleaning	34
	Types of Data Quality Issues	35
	Outlier Detection	35
	Entity Resolution	35
10	Statistics Review (L10)	36
	Exploratory Data Analysis	36
	Summary Statistics - Overview	36
	Measures of Location	36
	Measures of Dispersion	37
	Correlation	38
	Standardization	38
11	Networks and Graphs (L11)	39
	Review on Graphs	39
	NetworkX	41
	Graph Databases	41
	Centrality Analysis	42
	Network Topology	42
		4.0
12	L14 + 15	43
	Background	43
	Natural Language Processing Terminology	44
	Spoken Dialogue System (Example)	45
	General Industry	45
	Supervised Learning	46
	NLP In Python	48
13	Footnotes	48

1 Notes & Preface

Course notes for CMSC320, under Prof. John Dickerson. Notes collected from previous and current lectures.

2 Introduction (L1)

What is Data Science?

Data Science is the application of computation and statistical techniques to address or gain insight. It's the intersection of statistics and Computer Science. Based on what I've learned thus far, learning to do data science is like learning how to use a TI-84 in statistics class. You're simply learning how to leverage programming tools in order to perform advanced, complex, and meaningful data-related operations.

It's the use of statistics and computer science in order to find real-world insights.

Common sense (real world substantive experience)

Topics

Here are the general topics that this class will cover.

- Processing data
- Visualizing data
- Understanding data
- Communicating data
- Extracting value from data

Tools

Here are some tools commonly employed by data scientists. We'll try to cover how to use most of them here.

- Python
- Scikit-Learn

- Docker
- PANDAS
- Spark
- TensorFlow

Conda

Conda is a package and environment manager for python that we can use with the command line. We can create multiple environments for us and install separate packages in each of them. This will be highly useful to us, as we sometimes want to consolidate the tools we use into separate environments.

3 Python, Jupyter, Literate Programming (L2)

Definition:

Data Collection \rightarrow The process of measuring and gathering information on targeted variables.

Literate Programming

The idea of **literate programming** is that you have the source code, an explanation of the source code, and the end result of running the code all in one file. Usually, this file is identified as a *notebook*. In other words, the syntax is no different from regular code, you just get a more organized way to show off tables, plots, and other outputs generated from your code.

Jupyter Notebook + Alternatives

Jupyter Notebook is a service that started off as iPython, but it's basically a web-based platform that we use for literate programming. Specifically, it supports Python-based literate programming. Most data scientists prefer it, and it can also apparently leverage big data tools, such as Apache Spark.

It saves files in .ipynb format, which most platforms (i.e. GitHub) have built in viewers for. Options to export in other readable formats are available. Basically, it's just Python with a bunch of bells and whistles on top to make the output of your code look pretty.

Apache Zeppelin is an alternative data analysis tool, but we will stick to Jupyter for our purposes. This is because Jupyter seems to be preferred in industry.

RStudio is the equivalent, for people who prefer to use the R programming language for data science.

This course will be centered around Jupyter Notebook.

List Comprehensions in Python

To make lists in Python, you can use loops or the map() function, but a *pythonic* way of doing this would be to use a list comprehension. Below is a simple example.

```
Example: Make a list of all the squares of {0,1,2,3,4,5,6,7,8,9}
List Comprehension:
squares = [i * i for i in range(10)]
```

A good way of thinking about this is that it allows you to build sets like a mathematician. This is a common theme in data science, where we can find the intersection between a lot of math stuff and computer science stuff. It's good to know how lists are generated in a mathematical sense in Python for that reason. Here's an example where we translate mathematical notation into a Python list comprehension.

```
Example: Make a list of all odd natural numbers from 0 to 999

Math Notation:
E = \{x \mid x \text{ in } \mathbb{N} \land x \text{ is odd } \land x < 1000 \}

List Comprehension:
E = [x \text{ for } x \text{ in range}(1000) \text{ if } x \% 2 != 0]
```

Using Python3

We will use Python3. Since I used Python2 during my internship, I'm going to note some big changes to keep track of.

- Python3 is backwards incompatible. (Don't write in Python2!)
- Print has changed from a command to a function, so make sure to use proper function notation when invoking it.
- Division has changed. 1/2 no longer equals 0. 1/2 == 0.5 and floored division is now taken care of this way: 1//2 == 0

Python vs. R for Data Scientists

Some arguments for both sides in terms of what to use.

- Python is a 'full' programming language. Also, if you've got prior experience with Python paradigms or just programming in general, that's a big plus in terms of learning curve.
- R has more mature 'pure statistics' libraries, but Python is apparently catching up.
- In terms of **processing speed**, R is certainly faster. It was designed and optimized for statistics processing.
- Python is preferable for machine learning operations, which is pretty big right now.

My personal choice will be to use Python as much as I can when I'm studying this course. Since it's more prominent in the tech industry, I should be using it more anyway.

The Classic Statistical View of Data

There are four main types of data: Nominal, Ordinal, Interval, and Ratio data. They can each be classified under two main subgroups, Categorical and Numerical data. Here's a visualization.

Nominal Data

A type of categorical data, nominal data value have names and describe the state of things. For example, your marriage status is nominal data because you can either be *single*, *married*, or *separated*. Another example is the type of drink you're going to have. Will it be *Milk*, *Beer*, or *Juice*?

The key here is that there can be no quantitative values assigned to each of these categories, as that would allow us to do math with them and would defeat the purpose of these labels. These values **cannot** be easily compared, so they have no material value. *E.g.* being single is not quantitatively better than being married (objectively), and vice versa.

Example: What is your marital status?

- Married
- Divorced (separated)
- Single

Ordinal Data

Ordinal data represents values that have names that describe the state of things, but in this case, there is an ordering of those values. This is what sets it apart from nominal data.

Example: What did you think of the movie?

- Strongly liked
- Liked
- Indifferent
- Disliked
- Strongly Disliked

Given how subjective some of these things can be, the distinction between nominal and ordinal can be blurry at times. For example, going back to our nominal example, some people may think that being single is quantitatively better than being married.

Interval and Ratio Data

Interval and Ratio data are pretty similar, and both can be used to measure things that can be represented by either integers or real numbers.

Interval data scales with fixed but arbitrary values. That might sound silly, but a good example is **dates**. Below is an example of two data comparisons of interval data that seem arbitrary, but indeed hold integer value.

Example: The following two operations are equal.

10/1/2019 - 9/1/2019 10/1/2018 - 9/1/2018

The measures don't look like integer values at first, but we can quantify them by marking them with days.

Here's what sets Interval data apart, however. You have no method of computing ratios or scales with it. For example, never mind that you can try computing $(9/1/2019 \times 8/25/2015)$, the unit of the answer would be totally useless to us, and neither would the actual number, even if you went ahead with the operation.

Ratio data is, in essence, the same as interval data in that it is numerical, but the scale itself has a true zero. While dates don't necessarily have a true zero, we can say that money counts as ratio data. For example, having zero money means that you're at the absolute zero of that scale, whereas the absolute zero for dates is disputable. Are we saying we're starting at O A.D.? The Big Bang? Even earlier?

Differentiating between the two is usually a case-by-case basis thing, which is what I'm thinking is the best way to handle any conflicts I end up running into between ratio and interval data.

Example: Interval data

Temperature on the scale of Celsius or Fahrenheit is interval-type data because 0° is set to an arbitrarily fixed point. Also, we can't scale it properly- $30^{\circ}F$ isn't twice as hot as $15^{\circ}F$.

Example: Ratio data

Temperature on the Kelvin scale is ratio data. 0K is set at legitimate absolute zero, and 50K is truly twice as cold as 100K.

Data Science at a Glance

Data science is basically manipulating and computing using data. As such, we need to shift our thinking from writing **imperative** code to manipulate **data structures** to creating **sequences and pipelines** to conduct operations on **data**. That stuff is covered more in 420 and 424, for reference.

More often than not, we have to take the data that we've found and make it easily understandable for humans. This is called Data Representation.

Definition:

Data Representation \rightarrow The natural way to think about data, in a human way.

Here are some ways that we think about data in this class:

- One Dimensional Arrays \rightarrow E.g. <'red', 'blue', 'green'> or <0,3,4>. We can use functions like map, fold and filter to manipulate these.
- N-Dimensional Arrays \rightarrow Also known as tensors.
 - For example, a Tensor of dimensions [6,4] is just a 6×4 matrix.
 - Similarly, a Tensor of dimensions [4,4,2] is a 3D array.
 - Here, we can start to make use of **Linear Algebra** for further data manipulation. Some example operations that we can use to mess with tensors:
 - * Matrix/Tensor Multiplications
 - * Transpose
 - * Vector Multiplication
 - * Matrix Factorization (we will explore this later)
- Sets of objects, or Key/Value Pairs
- Tables/Relations → This goes into relational databases, which is the basis of SQL. We'll go into this later.
- **Hierarchies/Trees/Graphs** → This sort of spills over into data structures, but they've got some additional nuances included with them.
 - They tend to make use of 'path' queries
 - Graph and Tree Algorithms will be useful here, efficiency is key
 - Example: networks are represented this way, we'll cover that later in this class

4 Getting Data to Work With (L3)

Acquiring Data

Here are some examples of how we can grab data from places. Pretty obvious, common sense stuff. We're going to explore all of these as we move forward.

- Direct download from online or loading it from local storage
- Generate the data locally via a simulation or equivalent program
- Query data from a database
- Query data from an API
- Scrape data from a website

When you pull from APIs, you're going to want to be using HTTP Requests.

RESTful APIs

This stands for REpresentational State Transfer APIs, and it's basically a standard that enforces that APIs do a few things. It says that they should support these basic operations:

- $GET \rightarrow Query a data entry$
- $POST \rightarrow Create \ a \ new \ data \ entry$
- PUT → Update an existing data entry
- \bullet DELETE \to Delete an existing data entry

RESTful APIs are also supposed to be stateless. That is, with every API request, you send a token of who you are, and you get a current capture of the data at that time/edit the data.

A good example of a REST API is Github, where you can use REST API calls on your repositories.

There are other guiding principles and miscellaneous guidelines for RESTful APIs, which can all be found at https:/restfulapi.net

Aside: GRAPHQL

GraphQL \rightarrow REST has been adopted by many developers and is widely regarded as the traditional way to send data over HTTP. GraphQL, on the other hand, is a revolutionary new player that's presented as a way to *replace* legacy REST APIs (back4apps)

Oauth

If you want to grant an app access to your identity without actually giving it your username and password, is there a way to do that? The answer is **yes**, because this is a common software engineering problem.

OAuth is the standard for *access delegation* used for internet users to grant websites access to their information on other sites. A pretty good example of this is Google's sign in page on other websites. How do you think other websites conduct sign in without knowing your password for your Google account?

GET Requests

Assume we used Python's requests module to query a server with a GET request.

First, we'd get either a CSV, JSON, or HTML/XML/XHTML file back, in response. This is the data that we have to sift through. *Note:* You might also get a domain-specific file, like an **rvt** file. You're always welcome to make your own filetype for storing data, but make sure it's actually documented somewhere.

Aside: Parsing CSVs and JSON

Never write your own CSV or JSON parsers. This is another example of reinventing the wheel. We'll use Python Libraries to do this more easily. E.g. PANDAS

More on Data Storage Formats

Definition:

Serialization \rightarrow The process of converting objects into strings.

Descriping of Secretary Description \rightarrow The process of converting strings back into objects.

JSON is a pretty common format for serializing objects. Plus, serializing objects makes it easier for humans to read and perform sanity-checks on. In Python, JSON is built with Strings, Lists, Dictionaries, and sometimes mixes of a few of those together.

Definition:

Document Object Model \rightarrow A tree-based data storage method. For example, HTML is structured this way.

SAX

SAX is a lightweight way to process XML. It generates a stream of events as it parses an XML file. IT helps us pay attention to individual parts of an XML file without having to process through the rest of it.

Parsing HTML

Parsing HTML is the hardest to do in this case, as I've seen many times before in hackathon projects. Although HTML's specifications are pure, the real world examples of it are pretty nightmarish, thanks to how it interacts with JavaScript and loads dynamic content. All in all, it's fairly unreliable in terms of parsing it manually.

In this case, we're best off using the Python library BeautifulSoup. We can also make use of Python's Regex, which is similar enough to Ruby regex that we worked with in 330. A website like Rubular-https://pythex.org will be useful in this case.

By combining BeautifulSoup, Regular expressions, and GET requests, we can make the process fairly streamlined. This is usually what we'll be using to scrape websites. In order to scrape more dynamic websites, we'd probably have to make use of Selenium. Check my 320 folder to find an example of a simple webscraper with BeautifulSoup.

5 NumPy, Best Practices, Ethics (L4)

Available Technologies

Python has a bunch of 3rd party packages for scientific and numerical computation. Some examples are..

- ullet Numpy and Scipy o Numerical and scientific function libraries.
- NUMBA → A Python compiler supporting 'Just in Time' compilation. That is, it supports compilation
 of code while code is running.
- ALGLIB \rightarrow A cross-platform numerical analysis library
- PANDAS → An extensive data analysis tool with some neat built-in data structures
- PyGSL \rightarrow GNU Scientific Library in Python
- Scientific Python \rightarrow A collection of scientific computing modules for Python

These are a bunch of examples of what's available to developers right now, but we won't focus on all of it. Particular emphasis will be placed on Numpy and PANDAS.

NumPy Stack

The NumPy stack is the most commonly used out of all of these packages. It includes the following:

- Numpy Works sort of like MatLab, just lets us handle a lot of number manipulation and mathematical operations
- Matplotlib This is a plotting and graphing library
- PANDAS This gives us a bunch of data structures and data analysis tools to play with/keep track of our data. (Usually, you'll want to import your data into a PANDAS dataframe or something.)
- SciPy
- SymPy
- Jupyter This will be our medium for literate programming.

To see more about this stuff, search Google for the NumPy Stack and you'll find everything you need.

Misc About NumPy

Here are a few more notable things about Numpy:

- It contains the **n-dimensional array** object
- It contains 'sophisticated' functions that we can use
- It provides us with excellent tools to integrate C++, C, and even FORTRAN
- It has math capabilities that are highly useful to us (e.g. Linear Algebra, Fourier Transform, etc)
- Numpy also comes with a bunch of new DataTypes for us to use.

Aside: Numpy Arrays

Arrays in Numpy are different from regular lists in Python, so make sure your syntax is correct and you know the difference when you decide to use either one in practice.

Linear Algebra with NumPy

One of NumPy's most common uses lies within its **Linear Algebra** module. It allows us to do regular LA stuff, like .transpose() and .inverse() to matrices stored as n-dim arrays. Here's an example.

SciPy

SciPy includes various tools and functions for solving common problems in **scientific computing**.

We won't use it much for now, but it's supposed to be good to know. Often you'll be able to find higher-level Scipy functions that will work around the need to call lower-level Scipy functions. It's got a lot of functionality built in, so make sure not to overlook it.

The Idea of Reproducibility

Starting from the same dataset, can we reproduce your analysis and get the same results? This is the goal that we're trying to fulfill with our analysis- we want our stuff to be reproducible! (Otherwise, what exactly does it even mean?)

Best Practices

Honestly, most of this stuff should be common sense.

- Use version control to keep track of code. (e.g. git)
- Use unit testing. (e.g. unittest module in python)
- Use libraries when you can. (don't reinvent the wheel!)

The Idea of Open Data

Some data should be widely available for everyone to use as they want, without restrictions from copyright, etc.

This is probably where all of our free data comes from, so this idea is super helpful to us as data scientists.

General Process

Here's the general process for data science- just so we have an idea of what's going on.

After we do that, we still technically have some programming left. In this new era of literate programming, there's one more step of processing we have to do with our results in order to make them publicly presentable and meaningful.

Communication of Results

Use the principles of **literate programming** to provide results, plots, and publication regarding your data science experiment. This gives you the ability to explain your choices and clearly interpret your results.

It's emphasized a lot here to think like an **algorithm developer**, as you're going to need efficiency in the data analysis that you perform. However, you also need to think like an experiment-conducting **data scientist**. We don't usually get enough training as the latter, so hopefully this course should be an introduction to that sort of stuff.

Project Organization

Make sure to organize your project in folders appropriately. Specifically, even if you have a lot of components, group with with a focus on experimental procedure.

You should certainly be isolating things like **data**, **tools**, and **experiments** into their own folders. Data could include your raw input data, along with data that you've done some processing on. Tools could include Python environment you're using, and experiments could include the meat of what your data science work will be-pipeline scripts, results, figures, plots, analysis scripts, etc.

A Little on Bias, Ethics, Responsibility

Aside: Fairness Through Blindness

The concept of not letting an algorithm look at protected attributes in order to keep it from forming potentially harmful biases.

A great example of fairness through blindness could be software that determines the outcome for a loan application. We want the results to be **independent** of an applicant's race, but they can be **dependent** on non-protected attributes, such as credit history and income.

Aside: FATML

FATML stands for Fairness, Accountability, and Transparency in Machine Learning.

Overall, here are some guiding principles for data ethics:

- Start with clear user need, with a focus on public benefit. (Can't go wrong with this!)
- Use data and tools that emphasize **minimum** intrusion/invasion of privacy. (Sometimes, we have no choice but to handle sensitive data)
- Create robust data science models that minimize bias and focus on objective accuracy.
- Be alert to public perceptions.
- Be open and accountable for your actions.
- Security is key- especially if working with sensitive data.

6 Tables, Relational DB, and Pandas (L5 + L6)

Tables

Here's the idea- we can abstract data into our own little data structures just like computer scientists do, and a lot of the time, in data science, tables are the optimal way to do that. (This is why software like PANDAS and Numpy have excellent support for these structures.)

Known as the Index (ID) column. Usually, there are no duplicates of these allowed, and they're often ordered like this.

Here's an example table. I've highlighted and color coded the important aspects of it. Remember, don't think of this as the data structure itself- this is just an abstraction to help us keep track of our vast amounts of data. However, most table implementations do a pretty good job of representing the stuff I've color coded.

Selecting / Slicing

Selecting one or more of the rows or columns in particular to analyze. Examples:

- Select only columns ID + Age
- Select all rows with weight > 41
- We can also apply a combination of the above 2. (You can combine select rules!)

Aggregating / Reducing

Combining values across a column into a single value. (We don't do this across rows, because that obviously wouldn't make any sense. Think about it!). Examples:

- Find the sum of all row's columns
- Find the max of the weight column

Note: It's usually never useful to aggregate/reduce the ID column, so for most cases, we ignore it when we perform such operations.

\mathbf{Map}

Apply a function to every row, possibly creating fewer or more columns. This one's a little weird to think about without a clear example, so I'm including one below.

Notice how applying map to either table is valid in this case- sometimes we want to break down columns into more specific values, and sometimes we want to combine them into singular columns. Each of these operations is totally valid, and has its uses. (This is evident in the projects for this class).

Again, this is mostly about what you need. There's no necessary better or worse in this case (more columns does not always equal better data).

Group By

Group By is an operation that allows you to group tuples together based on the values in columns/dimensions. Let's say we had the following table of house addresses like earlier. This time, we'll add the number of people in each house as a column as well.

id	city	state	zip	people
1	College Park	MD	20742	3
2	Washington	D.C.	2000	4
3	Cupertino	CA	95014	3
4	College Park	MD	20742	2

Let's say we only wanted to see the data from a single city. In this case, let's pick College Park.

id	city	state	zip	people	
1	College Park	MD	20742	3	
2	Washington Cupertino	D.C. CA	2000 95014	4 3	
4	College Park	MD	20742	2	

This is what a 'Group By' operation would be perfect for. It'll basically just get us the rows that are from the city that we want.

Group By + Aggregate

We can combined Group By and Aggregate in pretty cool ways to get results that we want. For example, let's say we wanted to leverage the above table and get the sum total of all people who live in College Park, D.C., and Cupertino, respectively. By using a combo of Group By and Aggregate, we can totally do that. (*Group By* City, then perform summing *aggregation* operation.)

Union, Intersection, Difference

These are your usual set operations from statistics. However, this only works if the tables have identical attributes (columns). If they have identical columns, they are called **compatible tables**.

Examples: (Table A) \cup (Table B) results in (Table C) where all three tables have the same attributes. Likewise, (Table A) \cap (Table B) results in (Table D) where all three also have the same attributes.

Merge or Join

This is how you combine rows across tables, based on some distinguishing element (i.e. ID column). For example, you'd basically take the row with ID 1 in your first table and add all those elements to the row with ID 1 in your second table.

There isn't a graphical example here just because we'll be talking about this a lot more in depth in later lectures. For now, just remember it as a way to combine tables.

Summary

Overall, **Tables** are a simple and common abstraction. They're how we mainly keep track of data when we do most of these data science things, so it's worth learning how to employ them, and what basic operations we can use when manipulating them.

These **operations**, at a glance:

- Select
- Map
- Aggregate/Reduce
- Join/Merge
- Union/Concat
- Group By

Keep in mind that tables are an *abstraction*, after all, so these operations may be named different things in the languages you use to manipulate them. That's why its important to not just memorize the names of these operations, but what they actually do. This will prepare you for work with any data table manipulation program.

Pandas

PANDAS is a data manipulation library for Python that's highly optimized for performance. It contains two key constructs, **Dataframes** and **Series**.

Dataframes

This is PANDAS's way of representing the table abstraction we were looking at. Geeksforgeeks even calls this one a tabular data structure.

There are a lot of PANDAS-specific commands that you'll have to learn to be proficient with these, but Geeksforgeeks is a great reference for them. (You'll find it's pretty easy to conduct all the basic table operations)

Series

Think of a series as a subclass of Numpy's ndarray.

Geeksforgeeks calls this a 'one dimensional labeled array capable of holding any data type'. Think of it as a column in an Excel spreadsheet. In fact, their most common use is when you pull a single column out of a dataframe and want to analyze it individually.

The object itself supports integer and label based indexing (like letters), and allows us to perform a bunch of operations involving the index.

To create one of these we can grab a column from a dataframe, or we can create one out of a regular Python list or a Numpy ndarray.

For this sort of stuff, you can probably look at **GeeksforGeeks** for more information. They have excellent documentation on PANDAS functionality.

Creating a Dataframe

To create a dataframe, you have a variety of options.

- Get data directly from a Python dictionary, a bunch of series, or other data structures
- ullet Pandas.read_csv() o take in data from a .csv file
- ullet Pandas.read_excel() o take in data from an excel spreadsheet
- Pandas.read_html() \rightarrow take in data from a (static) website (e.g. a website with a big table of data on it)
- From a database by using SQL to make queries
- From clipboard, URL, many more options.

Tidy Data

There are 3 components of tidy data: Labels, Variables (values), and Observations.

Here's some elaboration.

- Variables \rightarrow A measure or attribute, e.g. age, weight, height, sex.
- Value \rightarrow Measurement of a *singular* attribute, e.g. 12.2 lbs or 5.9 inches.
- Observation → All measurements for an object; a *row* in the table. E.g. a single observation in the above table would be [12.2, 42.3, 145.1].

Tidying and melting data basically just means that you mix data around until it's nice and usable. Usually, you are tidying in pursuit of a specific use-case, so less columns or more columns are never the 'better' option. This is one of those things that takes practice and application.

TL;DR Clean up and organize your data before you mess with it!

SQL and Relational Databases

Big Question: What is a relation?

Answer: In a databases context, they usually mean, "a tabular set of data either permanently stored in the database (a table) or derived from tables according to a mathematical description (a view or a query result)." (*Larry Lustig, Stackoverflow*)

Definition:

Relation \rightarrow A relation is a data structure which consists of a heading and an unordered set of tuples which share the same type.

Relation Schema \rightarrow A list of all attribute names and their domains. E.g. 'The Schema for a Table'.

Indexing

Definition:

 $\mathbf{Index} \to \mathbf{An}$ auxiliary data structure of a relation database designed to speed up the retrieval of rows.

How can we leverage **indexes** to improve search times for our relational databases? Take a look at the example below. Let's say we wanted to find all people from Canada (with a nat_id of 2).

ID	age	wgt_kg	hgt_cm	nat_id
1	12.2	42.3	145.1	1
2	11.0	40.8	143.8	1
3	15.6	65.3	165.3	2
4	35.1	84.2	185.8	1
5	18.1	62.2	176.2	3
6	19.6	82.1	180.1	1

Unfortunately, the time it takes for us to build this list every time we want to leverage the result of this search is **O(n)**. This is not so great for us. However, if we decide to build an **index** on the 'nat' id'

attribute, things change.

loc	ID	age	wgt_kg	hgt_cm	nat_id
0	1	12.2	42.3	145.1	1
128	2	11.0	40.8	143.8	2
256	3	15.6	65.3	165.3	2
384	4	35.1	84.2	185.8	1
512	5	18.1	62.2	176.2	3
640	6	19.6	82.1	180.1	1

nat_id	locs
1	0, 384, 640
2	128, 256
3	512

Now, after establishing this index, which acts like a hidden sorted map of references to a specific attribute in a table, we are allowed **O(log n)** lookup with the parameter nat id.

You can choose to build an index on a certain attribute to improve search times for it, but they aren't free. They're expensive- establish an index with caution. Not only do they take time to initially build, but now, whenever you add to the table or update it, you also need to update the index. In that sense, establishing too many indexes could lead to other operations, such as changing table values, taking a very long time. It's a delicate balance.

Aside: Indexes

Indexes are actually implemented with data structures like **B-trees**, which is why we are able to perform data access in O(log n) time. The worst case height of a B-tree is O(log n), and since a search is dependent on height, B-tree lookups run in O(log n) on average.

Relationships

Primary keys and foreign keys determine interactions between different tables. These are formally known as relationships. First, let's establish definitions for primary and foreign keys.

Definition:

Primary Keys \rightarrow Columns whose data can be used to uniquely identify each row in the table. Highlighted in red below. (E.g. the ID column)

Foreign $\mathbf{Keys} \to \mathbf{Columns}$ that refer to the primary key in another table. Highlighted in blue below.

There are four main types of relationships between keys. Here they are with some examples.

- One-to-many / Many-to-one: A person can have one nationality, but a nationality can have many people associated with it.
- One-to-one: People each have one unique SSN- no conflicts.
- One-to-one-or-none: People can either have 1 car, or no car.
- Many-to-many: Cats and colors. Red can be on many cats, and many colors can be on a single cat.

Even though this system can sort of be replicated in PANDAS, PANDAS is not strictly a relational data system. Notably, it doesn't have notions of primary or foreign keys built in.

Do heavy, rough lifting at the **relational database** level, (e.g. when you're deciding what sort of SQL queries to make) and then do the fine-grained slicing and dicing and visualization with **PANDAS**.

SQL and SQLite

Definition:

 $\mathbf{SQL} \to \mathbf{Stands}$ for 'Structured Query Language', and is the ANSI-standardized way for us to communicate with relational databases. Standard SQL commands like "Select", "Insert", "Update", "Delete", "Create", and "Drop" can be used to accomplish almost everything that one needs to do with a database.

We use **SQLite**, an on-disk relational database management system, in order to interact with our databases. Most **RDMS**s connect to a server, which provides support for better concurrency, that sort of stuff takes longer to setup.

On the other hand, SQLite is pretty simple to install via conda, so we're going to go ahead and use it.

SQLite provides us with two main ways to communicate with the SQL database that it maintains. First of all, it gives us a cool GUI-based environment where we can deal with manipulating data manually, but it also allows us to write SQL statements to interact with it, whether that be from the command line or from within Python.

Here's an example of how a relational database fits into our workflow.

To work with SQLite in Python3, simply install and import the SQLite3 package, and use that.

Joining Data

A **join** operations merges two or more tables into a single relation, based on their columns. There are four total types of join operations.

```
Formally, the way we format join statements is the following:

<type of join> join (<left table>, <right table>) on (<left table column>, <right table column>)

Example: Right join (cats, visits) on (id, cat_id)
```

Types of Joins

• Inner Join → Returns merged rows that share the same value in the column that they are being joined on. Let's say we had the following two tables and wanted to join them.

id	name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

cat_id	last_visit	
1	02-16-2017	
2	02-14-2017	
5	02-03-2017	
visits		

cats

In order to perform an inner join on these two tables, we need to pick a column to 'join them on'. Here, let's inner join these two tables on id and cat_id. The result would look like this:

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
5	Anderson Pooper	02-03-2017

Inner joins are the most common type of joins; they get us the results that are shared by both tables.

• Left Join → A left join gets us all the results from the left table, but only some (the corresponding matching results) from the right table. So, what happens if we Left Joined cats and visits on (id, cat_id)?

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
3	Fuzz Aldrin	NULL
4	Chairman Meow	NULL
5	Anderson Pooper	02-03-2017
6	Gigabyte	NULL

You'll notice that the fields that we couldn't fill out get populated with NULL.

• Right Join → A right join gets us all the results from the right table, but only some (the corresponding matching results) from the left table. Here's an example, with updated cats and visits tables.

id	name
1	Megabyte
2	Meowly Cyrus
3	Fuzz Aldrin
4	Chairman Meow
5	Anderson Pooper
6	Gigabyte

cat_id	last_visit
1	02-16-2017
2	02-14-2017
5	02-03-2017
7	02-19-2017
12	02-21-2017
	visits

cats

If we were to perform a right join on these two tables, here's what would happen. It's basically just a flipped version of the left join.

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
5	Anderson Pooper	02-03-2017
7	NULL	02-19-2017
12	NULL	02-21-2017

Again, this time, notice how the row entries missing from the left table are now set to NULL

• Full Outer Join → The full outer join combines the left and right join. It's analogous to a union operation. Here's an example of a full outer join of cats and visits on id and cat_id.

id	name	last_visit
1	Megabyte	02-16-2017
2	Meowly Cyrus	02-14-2017
3	Fuzz Aldrin	NULL
4	Chairman Meow	NULL
5	Anderson Pooper	02-03-2017
6	Gigabyte	NULL
7	NULL	02-19-2017
12	NULL	02-21-2017

Syntax in PANDAS

Here's how to write some basic join syntax in PANDAS. This should be easy once you learn how to phrase join statements- you're basically just translating it into code.

First, this is how you'd read from SQLite (or any other database you're hooked up to) using Pandas and generate the appropriate dataframes to work with.

```
# establish dataframes from SQL
df_cats = pd.read_sql_query("SELECT * from cats", conn)
df_visits = pd.read_sql_query("SELECT * from visits", conn)
```

Now, here's how to do the joins.

There are also ways you can perform most of these joins via SQL (save for the right join), but I would prefer doing them from Python. As such, I won't include the SQL syntax here.

Aside: Raw SQL with Pandas

If you want to use raw SQL queries to interact with PANDAS dataframes, you are free to do so when you use the PandaSQL library.

Visual Example

Here's a neat way to visualize joins using Venn Diagrams.

7 Version Control Software (L7)

This lecture focuses mainly on **version control** and **Git**. Since I know the basics of this stuff already, this will just be a smaller review of **Git** plus the stuff I didn't already know very well coming into this course.

Big Idea: Teams needed good ways to maintain central repositories for their code projects without having conflicting versions of their code, so version control software was created.

Eventually, this software carried the secondary purpose of tracking and managing bugs. These days, however, dedicated enterprise tools like **JIRA** also exist to handle bugs. It's mainly based on what your company decides to use.

Version Control Software is used to do the following:

- Search revision history and get any version of the project you're working on
- Share code changes with your collaborators
- Confidently make changes to large files

Centralized VCS

People used **Centralized VCS** to have multiple users all pushing towards a central repository. I've seen examples of this in use at HPE (SVN- Subversion), and during my classes at UMD- CVS in CMSC132.

In this case, there's a singular centralized codebase that users will all be contributing to at the same time.

Distributed VCS

Distributed VCS has no central repository, and every repository has their own commits and history. Examples of this would be **Git** and **Mercurial**.

Aside: Git's popularity

 $\mbox{\it Git}$ is currently the most widely used code management tool (VCS). The next two in line are SVN and Mercurial.

Git is also more efficient and secure than SVN, but a lot of old legacy codebases and companies still make use of SVN. For that reason, it may be good to pick up some of the basics of SVN so I'm not totally unfamiliar, but Git generally seems to be preferable.

Branching

Git also allows for branches. Merging also ties in closely with branching on git, and has a lot more sophistication in Git.

When Should I Branch?

Anything in the master branch is considered to be deployable. If you're adding a new feature, working on an experiment, or trying to implement a new fix, make a branch. You can always merge it back to master once it's considered 'deployable' again.

Git Basics

As far as git is concerned, a file has 4 states:

- Modified → File has been changed, but those changes have not been committed
- Staged \rightarrow Marked to go to next commit snapshot
- Committed → Safely stored in local database as part of a 'commit'
- ullet Untracked o News added or removed files

This idea can be complemented by a visual guide, where you can see the three main 'places' that a file can be within the git system.

Online Hosting

Github, Bitbucket, and Gitlab are all popular sources that will host your git repositories. Think of this as just another place for your git stuff to exist, except whenever you want to update the main online repository, perform a git push.

It's sort of like a hybrid of a centralized and distributed VCS. According to a website online, "GitHub and similar services bring all of the benefits of a decentralized VCS to a centralized service."

8 Missing Data and Imputation (L8)

Missing Data

Missing data is information that we want to know, but don't know. It can come in many forms. Here are some examples.

- People omitting answers on surveys
- Inaccurate measurements that we need to discard- we're mainly talking about easily detectable outliers here
- Canceled trials of an experiment

To do something about this, however, we need to figure out the following.

- What contributes to the *probability* of a data point being absent?
- Can this missing data be interpolated using the data we already have? Or not?

Just Deleting It

The easiest way to deal with this is just to delete all the tuples with any missing values, so we don't have any 'incomplete observations'. All we have to do in this case is just use df.dropna() to trop the appropriate row.

Be warned that a loss of a sample could lead to a variance greater than what's reflected by the size of our data. This could cause bias. Overall, despite this being the easiest way to get rid of 'problem' data, we should avoid doing this if we can, and intelligently account for it being missing if possible.

Obviously, if we want to remain the most accurate that we can possibly be, the goal is not to throw in the towel and just toss out missing data right off the bat.

Types of Missing Data

Let's start by classifying missing data into a variety of different types. Missing data can fall into one of three categories. They also have commonly used abbreviations, included here.

- Missing Completely at Random (MCAR)
- Missing at Random (MAR)
- Missing Not at Random (MNAR)

Missing Completely At Random

Missing completely at random means exactly what it says- the data that has gone missing has gone missing completely and entirely at random- there is no rhyme or reason behind what's gone and why it went.

Example of MCAR: Imagine you are doing an experiment on plants grown in pots, when you have a nervous breakdown and destroy some of the pots. You didn't have any bias in how you picked the pots to break, so this data is now **MCAR**.

However, this just isn't realistic. Data is usually missing for a reason. For example, if you're standing outside CSIC polling people for a survey and you suddenly ask for their grades, students who are failing may be less likely to reveal their grades than students who are doing well.

Missing At Random

For data that is missing at random, the probability of the missing data is dependent on the observed data, but not the unobserved data.

There is a **probabilistic mechanism** associated with whether the data is missing, and that mechanism takes the observed data as input.

Example: If a child does not attend an educational assessment because the child is (genuinely) ill, this might be predictable from other data we have about the child's health, but it would not be related to what we would have measured had the child not been ill.

Since we could predict the "missing-ness" of the student's score from the student's health, this is considered **Missing At Random**. (Taken from Martin Bland's textbook: An Introduction to Medical Statistics, Fourth Edition)

We can model a parameter's "missing-ness" on other properties of the data we have already.

Missing Not At Random

The "missing-ness" of a variable has something to do with the variable itself.

Example: If men failed to fill out a survey because of their level of depression, their depression affects the measurement that is being taken about their depression, making this data **Missing Not at Random**.

Line of Best Fit

In order to aid in this, let's again revisit the idea of a 'line of best fit' from statistics. Here's a quick review.

Definition:

Line of Best Fit \rightarrow When the difference between the true y-values and the line that you're using the estimate y-values is minimized.

This is accomplished by using the least squares method. Below is a visualization of the process. Given the following plotted points (light green), we're looking to create the line of best fit (blue).

Here, using the least squares method, we try to minimize the equation yielded by the following summation.

$$\sum_{i=1}^{n} (E_i)^2 = (E_1)^2 + (E_2)^2 + \dots (E_n)^2$$

Imputation

How do we handle missing data? One excellent way to do that is **imputation**.

Definition:

Imputation \rightarrow Replacing the missing data with substituted values.

Imputation is basically just a fancy way of saying that you'll replace whatever's missing with other data that you generate or collect yourself.

Types Of Imputation

- Mean Imputation → Imputing the average from observed cases for all missing values
- Hot-Deck Imputation → Imputing a value from another subject, or *donor*, that is most like the subject.
- Cold-Deck Imputation \rightarrow Bringing in other datasets
- Other Methods → Regression imputation, stochastic regression imputation, interpolation and extrapolation.

Single vs. Multiple Imputation

Single Imputation is supposedly 'old and busted', while Multiple Imputation is the 'new hotness'. Multiple imputation is basically when you impute on the original data n times, then you perform analysis on each of the resulting n datasets, then pool all those results into one, distilled result.

In this case, pooling the data is just taking an average. We can see that this 'multiple imputation' model relies on the results of each imputation being distinct.

Now, the question arises: **How big should** n **be** when we're talking about multiple imputation? This ultimately depends on the **size of your dataset** and the **amount of data missing**.

Recent research suggests, however, that a 'good' n value is generally higher. General counsel here is to choose a pretty sizable value for n.

9 Data Wrangling, Integration, Cleaning (L9)

Now that we have imputed and made some new datasets, how do we make use of them? To clarify from the previous example, we can simply perform analysis on each **individual dataset**, then pool the results of that analysis (take the average of the analyses on the imputed datasets).

Bayesian Imputation is another way to handle imputation, this time using Bayes' theorem. A google search doesn't yield much on this, but I assume it's got something to do with a Bayesian attempt at imputing data.

Data Wrangling

Definition:

 \mathbf{Data} $\mathbf{Wrangling} \rightarrow \mathbf{Getting}$ data into a structured form suitable for analysis.

A.k.a. data preparation, data mining, or the Extract \rightarrow Transfer \rightarrow Load (ETL) Process.

Supposedly, 80 to 90% of your time is spent on data wrangling.

Key Steps of Data Wrangling

- Scraping → Taking info from sources. The process of getting your data from its unusable format into Python data structures.
- Transformation → Tidying it into the right data structure. (e.g. converting strings that represent the date into datetime objects)
- Information Extraction → Extracting structured information from unstructured text and/or sources.
- Data Integration → (If applicable) combine info from multiple sources so that it all plays nice together.
- Cleaning \rightarrow Removing inconsistencies + errors.

Usually, there are a 'mishmash' of tools that are used for all these processes, but there are generally accepted tools that are used to 'pipeline' all of these operations so that they work smoothly.

For example, some popular ETL services are **Talend** and **AWS Glue**.

Data Integration

Definition:

Data Integration \rightarrow Combining data from different sources into one unified view, and allowing for structured querying and analysis on that data.

Each data has a **local schema**. We want to bring it all under one, unified, **global schema**. As it happens, there are actually two main ways that we can accomplish this.

- 1. Bring all the data into one single data structure or repository. This is known as **data warehousing**.
- 2. Keep the data where it is, in separate repositories, and send **queries** to our separate data when we need to.

Option 1 is pretty self explanatory- you're just mushing all the data together, and with a little effort, you can ensure that the format of your data is all compatible, and combine it. Option 2 is a little tougher to think about at first, so here's a diagram.

Though it is **less efficient**, this setup is preferable when the data is **dynamic**.

For example, if you needed to make a query on the sum total of the data in Sources A, B and C, and data source B was constantly updating, there's no real way you'd be able to warehouse that data.

We usually move to keeping our data separate and maintaining only a global schema when data ware-housing is unfeasible.

Data integration has key challenges associated with it. For example integration, cleaning, setting up a global schema, and limits on how many time you can access a source (e.g. API request limits)

Definition:

Schema Matching \rightarrow Constructing a global schema that allows all the data you're accessing to 'mix'. (Different sources label their data differently!)

Big Idea: Data integration is still a pretty ad-hoc and manual process as of right now, but it is a growing area of focus in this relatively new industry.

Data Cleaning

Data cleaning is the process in which we deal with data quality issues.

Types of Data Quality Issues

- Single Source Problems → These are problems you run into when you work with a single source. Databases tend to force constraints on their data, so we can trust them sometimes. There is no Quality Control for data scraped from files, spreadsheets, or webpages. As such, we're susceptible to things like ill-formatted or missing data, contradicting data, illegal entries, and the like.
- Multi Source Problems → More problems arise when you try to integrate multiple sources. Different sources are maintained by different people, so we can already see a basis for issues.
 - 1. Mapping Info
 - * Naming conflicts: The same name is used for different objects.
 - * Structural conflicts: different representations across sources.
 - 2. Entity Resolution
 - * Matching entries across sources may prove to be difficult.
 - 3. Data Quality Issues
 - * Contradicting information, mismatched information, etc.

Outlier Detection

Univariate outliers are detected by using the MAD.

Definition:

Median Absolute Deviation (MAD) \rightarrow Median distance of all the values from the median value.

If your data is **normally distributed**, we can assume that any and all data farther than **1.4826** MAD from the median are considered outliers.

Aside: Curse of Dimensionality

The "Curse of Dimensionality" states that methods to find outliers break down as the dimensionality of the data increases. We always have the option of **projecting** this data down to lower dimensions and working with that, but that's the best we can do. Usually, it isn't that straightforward.

Entity Resolution

Definition:

Entity Resolution \rightarrow Determining when references to data are equivalent. (E.g. Bob Spence, B. Spence, and Robert Spence *could* all be referencing the same person)

When it comes to working with entity resolution in practice, there are three main issues to get over. First, let's informally define a **mention** as when some object gets referenced.

Deduplication → Cluster records/mentions to the same entity and create a cluster representative.

- Record Linkage → Matching records across different databases. (e.g. finding the same person on FB and Google Plus)
- Reference Matching → Matching mentions of an entity to the actual entity being mentioned.

Actually finding similarity between two references/mentions can be done in many ways. For example, one can use 'edit distance' (string dissimilarity) functions, set similarity, vector similarity, etc. Generally, this must be optimized for each dataset.

For more advanced examples, the keyword to search the web for is **entity resolution algorithms**. The examples in the slides look to be fairly basic and straightforward.

10 Statistics Review (L10)

This lecture is a summary of the 'important stuff' from STAT400, and then some. Worth going over, it's been a long time since statistics.

Exploratory Data Analysis

Exploratory Data Analysis is fancy talk for when you're getting a feel for what's going on with the data. We can usually spot certain nuances in the data (skews, trends, interactions of variables) that will help suggest what assumptions to make and what approaches to take when performing actual analysis.

Summary Statistics - Overview

Part of **descriptive statistics**, summary statistics is basically exactly what you think it is- it's used to summarize data.

The big idea here is to convey information with extreme simplicity. This includes the following:

- Measures of Location
- Measures of Dispersion
- Correlations

Measures of Location

There exists a certain distribution of values, and we are interested in the center of said distribution. In other words, we are interested in **measures of central tendency.**

Definition:

Measure of Central Tendency \rightarrow A measure of central tendency is a single value that attempts to describe a set of data by identifying the central position within that set of data.

There are two measurements that we use for this business: **sample mean** and **sample median**. They look similar, and they measure the same thing.

We also know that these two measures differ predictably when the data aren't symmetric.

The idea of **weighted average** is when you give more power to larger contributions. For example, bombing a midterm will hurt your grade average more than bombing a homework assignment.

It's interesting to note that **extreme observations** will skew the mean, but not the median. For example:

```
The median of [1,2,4,6,8,9,17000] is 6
The mean of [1,2,4,6,8,9,17000] is 2432.8
```

Measures of Dispersion

So how do we measure **dispersion**? We know we can't use the range to do so, as shown by the below example:

Ex) These two datasets have the same range, but highly different dispersions

As such, Variance and Standard Deviation are univariate measures of dispersion in a dataset.

Variance measures how far a set of numbers is spread out from their average value. It can be calculated using the following formula:

$$\frac{1}{n}\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$$

In this case, x_i represents each data point, while \bar{x} represents the sample mean.

However, the units get messed up when we calculate variance. Thus, **standard deviation** is an **interpretable** unit of measurement for dispersion.

We calculate the standard deviation by simply finding the square root of variance. The formula is as follows:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x})^2}$$

Aside: Bessel's Correction

Bessel's Correction is the formal name for when we use (n-1) instead of n when calculating sample variance and sample standard deviation, where n is the number of observations in the sample. This method apparently corrects bias in the estimation of the population variance.

Standard deviation can also be used as a unit. For example, 68% of the distribution will be within 1 standard deviation from the mean, 95% will be within 2 standard deviations from the mean, 99.73% in 3 standard deviations, and so on. (Just like STAT400)

Correlation

Definition:

Correlation \rightarrow The idea that variables x and y vary together.

Causality vs. Correlation: Can we figure out if movement in x induces some sort of movement in y?

However, be warned. Correlation does not imply causation! Just because two things vary at similar rates does not imply that one affects the other!

Standardization

Say we find out our variables are skewed and have different ranges. We should **transform** the variables to ease data analysis and allow the use of other statistics and/or machine learning models.

This can be done with **Standardization** (3 types).

- P-Standardization (Percentiles)
- **Z-Standardization** (Z-score)
- **D-Standardization** (Dichotomization)

You should always standardize.

Example: when averaging multiple variables, like creating a 'socioeconomic status' variable out of a combination of age, income and education.

P-Standardization is sometimes called a 'percentile score'. Every observation is assigned to a number between 0 and 100, indicating the % of observations 'beneath it'.

Special examples of this: median, quartiles, quintiles.

This process is known as transforming the variable into an **ordinal variable**.

You can also group data into 'standard deviations from the mean', like we do with exam scores.

It's important to note which of your datasets uses **discrete** or **continuous** variables, because some models only work on one type of dataset or another, so we should keep that in mind.

Aside: Logarithmic Transformation

The Logarithmic transformation is especially useful when standardizing data that is skewed to the right, i.e. when we have some ridiculously high values to the right of our data. The log transform 'reels them in' to the left and helps us deal with all the data.

11 Networks and Graphs (L11)

Definition:

Network \rightarrow a system of interconnected objects, often represented by a graph.

Review on Graphs

A graph is a data structure describing a set of vertices and edges. It can either be weighted or unweighted, directed or non-directed.

You can store graphs in a few different ways.

Adjacency List

(For each vertex, store a list of the vertices it connects to)

Pros:

• Easy to add edges

Cons:

- Deleting is hard
- Checking for edges is O(|v|)

Vertex	Neighbors
A	[C]
В	[C, D]
\mathbf{C}	[A]
D	

Adjacency Dictionary

(For each vertex, store a dictionary of vertices that it connects to)

Pros:

• O(1) to add, remove and query edges

$\quad \text{Cons:} \quad$

• Memory + Caching overhead (heavy use of Python data structure)

Neighbors for $B \rightarrow \{C:1.0, D:2.0\}$

The previous two are pretty much similar, it's just that the Adjacency Dictionary takes advantage of features provided to us in Python, while the Adjacency List is the more classic way to represent a graph. However, the reason we talk specifically about the adjacency dictionary will be explored below.

Adjacency Matrix

(Store the connectivity of the graph in a matrix- almost always in a sparse matrix)

Pros:

 \bullet 0(1) time for query, add edge, remove edge

Cons:

• $O(v^2)$ space complexity, regardless of the actual number of edges

NetworkX

NetworkX is how data scientists work with graphs in **Python**. It makes use of an **Adjacency Dictionary** representation, which is essentially just a beefed up Adjacency List with better access times and more overhead (see above).

Graph Databases

Graph databases exist and are an alternative to relational databases.

To query a graph database, we need to use a language other than SQL.

Neo4J and **Titan** are popular graph DB solutions, and can be accessed and leveraged using **Bulbflow**, a Python library.

Centrality Analysis

Centrality Analysis is the idea of finding out the most important node(s) in one network- not all nodes are created equal. This is important in visualization and classification. There are four distinct types of centrality analyses.

- **Degree Centrality** → The importance of a vertex is determined by the number of vertices adjacent to it. In other words: the larger the *degree*, the more important the vertex. To find normalized degree centrality, just divide (degree of node) by (total nodes 1).
- Closeness Centrality → The importance of a vertex is measured by how close a vertex is to other vertices. For example, to determine this, we can calculate the average length of all the shortest paths from that one node to every other node in the network. If needed, we can factor in edge weight.
- Betweenness Centrality → How "in the way" is this node in terms of shortest paths between nodes?

 $\frac{\sigma_{st}v_i}{\sigma_{st}}$

To find this, we just need to divide the shortest paths passing through v_i by the total shortest paths in the graph (as shown above).

• Eigenvector Centrality → A vertex's importance should be determined by the importance of the friends of that vertex- i.e. If one has many important friends, they too, are important. A variant of eigenvector centrality is Google's PageRank algorithm's scoring system.

All of this and more are implemented in NetworkX.

Network Topology

We want to learn from the topology of a network- which is basically its broad, overarching structure.

Definition:

 $\mathbf{Bridge} \to \mathbf{An}$ edge is a bridge if its removal results in total disconnection of its terminal vertices. Bridges connecting two different communities are weak ties.

Community \rightarrow A community is a tightly knit region of a network. We can use bridges to help define how communities are separated.

The **Girvan-Newman Method** is a way to flesh out tightly-knit communities in networks. You basically remove the edges of a higher betweenness, then keep repeating this process. (This functionality is found in NetworkX).

You can also use **GraphViz** (like in CMSC330 with the regex project) to display your graphs and networks.

12 Natural Language Processing (L14 + 15)

Definition:

Natural Language Processing \rightarrow Natural language processing is a subfield of linguistics, computer science, information engineering, and artificial intelligence concerned with the interactions between computers and human languages, in particular how to program computers to process and analyze large amounts of natural language data. (Wikipedia)

It appears that this field is the intersection of **linguistics** and **computer science**. It's worth picking up further linguistics knowledge if pursuing NLP.

There are many uses for Natural Language Processing (NLP) software, but here are some good examples.

- Review analysis is something that a lot of marketing and product companies have to do-they don't want to manually sift through every review of their product and figure out if the people like it or not, so they assign software to do it!
- Language translation is another excellent example. Language translation isn't as simple as swapping out words for one another, extra processing has to be done. This falls under the realm of NLP.
- Question and answer, like *Jeopardy*, requires a fair amount of natural language processing. When IBM's Watson appeared on *Jeopardy*, programmers mentioned that he had to distinguish between simple 'factoid questions', which could just be answered via a simple fact lookup, and 'thinking questions', which usually required the answer-er to follow some sort of narrative and do some critical thinking.

Background

Before the 1980s, Natural Language Processing was widely based on sets of hand-tuned rules.

After the 1980s, however, machine learned seeped into the realm of natural language processing.

This started with decision trees then went on to leveraging **hidden markov models**. Hidden markov models are based on augmenting **Markov Chains**.

Aside: Markov Chains

A Markov chain is a mathematical system that experiences transitions from one state to another according to certain probabilistic rules. The defining characteristic of a Markov chain is that no matter how the process arrived at its present state, the possible future states are fixed. It looks kind of like an NFA.

Excellent further information and an example found at:

https://setosa.io/ev/markov-chains/

Then, people shifted to using statistical model for language. Now, people have finally come to using mostly unsupervised or semi-supervised learning for models.

In data science, lots of data comes in the form of **unstructured text**. We're basically defining that as text that cannot be predictably processed. The following are examples of chunks of text that could carry unstructured, yet valuable data.

- Facebook posts
- Amazon reviews
- Wikileaks dumps

Understanding the English language is hard, as it's fairly hard to predict which bits of sentences mean what. Specifically, we can say that **structure can sometimes be ambigious**.

Aside: Windgrad Schema Challenge

Proposed as a complement to the turing test, the Windgrad Schema Challenge involved asking people (or computers) to pick out the antecedent of an ambiguous pronoun.

Example: The city **councilmen** refused the **demonstrators** a permit because they [feared/advocated] violence.

Here, we know that **feared** corresponds to **councilmen**, while **advocated** corresponds to the **demonstrators**. It's fairly easy for a human to deduce this, byt the guy who hosted this challenge argued that understanding this requires 'more than NLP', and that such a task required some type of common sense and **deep**, **contextual reasoning**.

NLP is a pretty broad field- we're starting this with sentiment analysis.

It can be argued that we don't need to fully understand the text to determine the general sentiment. For example, if you were to scroll through Amazon interviews, you can sort of tell which ones are glowing ones and which ones are very negative.

The main idea is to look for **signals** in the text that tell us the sentimental value of that text.

Natural Language Processing Terminology

Some key terms used in industry.

- **Documents** → Groups of free text- remember that this definition is sort of distinct from the idea of 'word documents' (common confusion)
- Corpus \rightarrow A collection of documents
- Terms → Individual words (usually delimited by whitespace or some equivalent)
- ullet Syntax o Refers to the grammatical structure of language
- **Semantics** \rightarrow The study of meaning of language
- Tokenization → Splitting sentences into tokens (similar to how compilers 'lex' stuff). There's almost certainly a library for this process.
- **Stemming** → Finding roots of words, e.g. turning *organizer* into *organiz*. Also written as: 'The crude chopping of 'affixes'.

- Lemmatization \rightarrow Reducing inflections on variant forms back to 'base form', e.g. are, am, and is become be.
- Morphological Segmentation \rightarrow A process that aims to break words into meaning-bearing morphemes. (Morphemes are the smallest meaningful units in a language.) How words are formed & relationships of different parts of the words.
- Parts of Speech (POS) tagging → Finding parts of speech of a word. This is a key process in producing parse trees for sentences.
- Parsing → Making a parse tree for a sentence, based on parts of speech. Again, just like 330s compiler project.
- Information Extraction → Turning unstructured text into 'structured sequences', or usable information.
- Named Identity Recognition → Is when you identify key entities in text, like locations, times, people, dates, etc.
- Sentiment Analysis → Deciding if opinions are good or bad. Lots of ad and marketing companies use software like this.

Spoken Dialogue System (Example)

Below is an example of a spoken dialogue system.

Notice the **complexity** and **number of components** needed for a process like this, even though the system is seemingly simple.

The issues involved in translating human language to objective data are immense, and so our systems built to tackle these tasks are fairly involved.

General Industry

These days, people in industry are working on a bunch of NLP-related interesting problems.

- Speech recognition
- Caption generation
- Natural Language Generation
- Optical Character Recognition
- Word Sense Disambiguation

Text classification is a common subset of problems in this field, for example. For example, we can take a look at an email spam classifier.

In the diagram above, general ML naming schemes are also used. More on this in ML + NLP classes (and later lectures).

Aside: Hardcoded Rules

It was, at a time, the only option to use hard-coded rules to accomplish the tasks that we allocate to modern NLP techniques. We have some pros and cons for this approach.

- ullet **Pros** \to Plenty of domain-expertise and customizability, human readable (we can easily understand the motivation behind decision making)
- **Cons** → Brittle, expensive to maintain, and extremely hard to generalize. (Most customization is very domain-specific)

Supervised Learning

Supervised learning is one such common method to escape the issues that we find in the hardcoded rules mentioned in the Aside above. Although we can get more generalized solution capability, we trade that for transparency. The algorithm that decides where an object should be classified essentially becomes a black box.

Let's say we have the following as **input**:

- A document, ω
- A set of **classes**, $y = \{y_1, y_2, y_3\}$
- A 'training' set of manually classified documents (hand-labeled), $k = \{(\omega_1, y_1), (\omega_2, y_3), (\omega_3, y_1)\}$

As output, our supervised learning setup would produce a learned classifier that was able to classify documents, $\omega \to y$

In order to figure out how to approach this problem, we need to think like a computer would need to. First and foremost, we need a way to keep track of what the document *is*. We can do this by keeping track of **features** that we produce based on what we observe about the document.

Definition:

Feature $(machine\ learning) \rightarrow A$ feature is an individual measurable property or characteristic of a phenomenon being observed. (Wikipedia)

Although we may be able to extract a lot of meaning from a clump of words, a computer cannot readily do the same. As such, we will first try and represent this **document** as **math**, loosely speaking. How can we do that?

Idea: Bag of Words

One idea is to represent each document as a **vector** of **word frequencies**. A good visual example of something like this is a word cloud, but could also be as simple as a bar graph with frequencies.

In this case, term frequency represents the number of times that a term appears in a document.

Although this isn't our whole solution, it's a part of it. We can use this as a **feature** with which we can train our classifier, $\omega \to y$.

Similarly to how we identified just one feature above, we can deduce many other features from our documents. Then, we can assign **weights** to these features to tell our algorithms just how important each feature when our classifier renders its final decision.

However, not all is as simple as it seems- there's a clear issue with the term frequency we discussed.

When we approach this problem realistically, we can see that term frequency gets **overloaded** with **common words**, like *a*, *to*, *I*, and *the*. How can we intelligently address something like this?

Solution: Inverse Document Frequency

Idea: In order to address the commonality issue, we weight individual words negatively by how frequently they appear in the corpus.

$$IDF_j = log(\frac{d_{total}}{d_j})$$

In the above example, d_{total} represents the total number of documents and d_j represents the number of documents that contain word j. Note that IDF is defined across all documents, not a specific word-document pair.

In practice, we end up combining term frequency and inverse document frequency to get a more functional result.

NLP In Python

In order to work with NLP in Python, there are two major libraries we can make use of- NLTK and SPACY.

- NLTK → Has more "stuff" implemented and is more customizable. Started as a research tool, now has found lots of use in industry as well.
- SPACY → Younger and more sparse than NLTK, but can be much faster than NLTK. Much newer, more streamlined implementation.

13 Footnotes

Taken by Akilesh Praveen.