Mateusz Nogieć

Scenariusz 4-sprawozdanie

Celem projektu było poznanie działania reguły Hebba dla sieci jednowarstwowej na przykładzie grupowania liter alfabetu.

Opis budowy wykorzystanych sieci i algorytmów uczenia.

Sieć składa się z 35 nauronów wejściowych, oraz jednego wyjściowego.

Reguła Hebba jest jedną z najpopularniejszych metod nauczania nienadzorowanego, czyli bez nauczyciela.

Jeżeli akson komórki A systematycznie bierze udział w pobudzaniu komórki B powodując jej aktywację, to wywołuje to zmianę metaboliczną w jednej lub obu komórkach prowadzącą do wzrostu skuteczności pobudzania B przez A.

Reguła przedstawiona jest wzorem:

```
\begin{aligned} \mathbf{W}_{ij}(\mathbf{k}+1) &= \mathbf{W}_{ij}(\mathbf{k}) + \boldsymbol{\eta} * \boldsymbol{\varphi}_i * \boldsymbol{\varphi}_j \\ \text{gdzie:} & & \\ \mathbf{w}_{ij} - \text{waga połączenia synaptycznego między neuronem i oraz j} \\ \boldsymbol{\eta} - \text{współczynnik uczenia} \\ \mathbf{U}_i - \text{wejście} \\ \boldsymbol{\varphi} - \text{aktywność i-tego i j-tego neuronu} \end{aligned}
```

Wadą tej reguły jest wykładniczy wzrost wag przy wielokrotnej prezentacji takiego samego wymuszenia. Efektem tego jest nasycenie neuronu. Dla uniknięcia takiej sytuacji modyfikuje tę regułę przez wprowadzenie współczynnika zapominania y.

Opis danych uczących.

W pliku z danymi uczącymi, czyli także testującymi znajduje się 20 dużych liter. Jedna litera to matryca zer i jedynek 5x7.

Uczenie oraz testowanie sieci

Testy wykonałem dla następujących współczynników uczenia: 0.1, 0.5, 0.9.

Wyniki:

	0,1	0,5	0,9
A	-0,19	-0,38	0,18
В	-0,36	-0,77	-0,85
С	0.39	-0,44	-0,62
D	0.30	-1	-0,35
Е	-0,33	-0,59	-1
F	-0,36	-0,63	-0,98
G	0,29	-0,69	-0,96
Н	0,06	-1	1
I	0,49	0,44	-1
J	1	-1	0.12
K	0,16	-0,93	0,14
L	-0,42	-0,23	-0,34
M	0,75	-1	0.26
N	0,46	-0,91	1
О	0,48	-1	0,03
P	-0,74	-0,53	-0,83
Q	0,46	-1	0,44
R	-0,76	-0,92	-0,42
S	0,62	-0,45	-0,86
T	1	-0,72	-1

	0,1	0,5	0,9
Czerwone	7	1	1
Niebieskie	3	15	10
Brak	10	4	9

Kolorem czerwonym zaznaczyłem liczby, które program zakwalifikował do jednej grupy, niebieskim, które zostały zakwalifikowane do drugiej grupy, natomiast liczby, które nie zostały przydzielonej do żadnej z nich widnieją w komórkach z białym tłem.

Dla współczynnika uczenia 0,1 większość, bo 10 liter pozostaje bez przydziału, 7 liter 'ląduje' w grupie czerwonej, zaś 3 w grupie niebieskiej. Dla 0,5 sytuacja zmienia się diametralnie- zdecydowana większość liter zostaje przydzielona do grupy niebieskiej (15). Zarówno dla współczynnika 0,5 i 0,9 do grupy czerwonej przyporządkowana została tylko jedna litera, jednak dla 0,9 liczba nieprzydzielonych liter względem współczynnika 0,5 znaczaco rośnie.

Wnioski

Z przeprowadzonych testów wynika, że współczynnik uczenia w regule uczenia Hebba ma znaczny wpływ na otrzymane wyniki. Nieodpowiednie dobranie tego parametru negatywnie wpłynie na oczekiwany wynik, który będzie poniżej zadowalającego poziomu.

Screeny z działania programu

