EE/CS120A-Logic Design

Homework 3 Solution

Problem 1: What is the simplest SoP expression for function Z(A, B, C) implemented by the two 2-to-1 MUXes in Figure 1?

Answer:

$$Z = B'(A'1 + AC) + BC' = B'(A' + C) + BC' = B'A' + B'C + BC'$$

Problem 2: For the truth table in Table 1, design the circuit using one 2-to-1 MUX where W_1 is the control/selection signal; in other words, please finish the circuit design in Figure 2.

Figure 2

Answer:

Table 1

 $w_1 \, w_2 \, w_3$ f 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1 1 1 б 1

Problem 3: Using KMaps, find the simplest SOP and POS expressions of $F = \sum_{W,X,Y,Z} (0, 1, 6, 7, 8, 9, 14, 15)$.

Answer:

$$\mathsf{F} = \mathsf{X}' \cdot \mathsf{Y}' + \mathsf{X} \cdot \mathsf{Y}$$

F = (X' + Y)(X + Y')

Problem 4: Using KMaps, find the simplest SOP expression of the following functions:

1)
$$F = \Sigma_{X,Y,Z}(1, 3, 5, 6, 7);$$

2)
$$F = \Pi_{W,X,Y}(1, 4, 5, 6, 7)$$

Answer:

Problem 5: Using KMaps, find the simplest POS expression of $F = \prod_{W,X,Y} (1, 4, 5, 6, 7)$

Answer:

Problem 6: For the function $f(w_3, w_2, w_1) = m_1 + m_3 + m_4 + m_6$, show how the function f can be implemented using a 3-to-8 binary decoder and what is the truth table of your decoder?

Answer:

As
$$f(w_3, w_2, w_1) = m_1 + m_3 + m_4 + m_6$$
, $f = 1$ if $m_1 = 1$ or $m_3 = 1$ or $m_4 = 1$ or $m_6 = 1$.
If $w_3 = 0$, $w_2 = 0$, $w_1 = 1$, then $m_1 = 1$, thus $f = m_1 + m_3 + m_4 + m_6 = 1 + 0 + 0 + 0 = 1$.
If $w_3 = 0$, $w_2 = 1$, $w_1 = 1$, then $m_3 = 1$, thus $f = m_1 + m_3 + m_4 + m_6 = 0 + 1 + 0 + 0 = 1$.
If $w_3 = 1$, $w_2 = 0$, $w_1 = 0$, then $m_4 = 1$, thus $f = m_1 + m_3 + m_4 + m_6 = 0 + 0 + 1 + 0 = 1$.
If $w_3 = 1$, $w_2 = 1$, $w_1 = 0$, then $m_6 = 1$, thus $f = m_1 + m_3 + m_4 + m_6 = 0 + 0 + 0 + 1 = 1$.

This means that if w_3 , w_2 , w_1 are the three inputs of a 3-to-8 binary decoder where the Enable signal is always 1, f can be implemented using a 3-to-8 decoder and the truth table as well as the circuit design can be found below.

	Inp	uts		Outputs							
En	W_3	w_2	W_1	y_0	y_1	y_2	<i>y</i> ₃	y_4	<i>y</i> ₅	y_6	<i>y</i> ₇
1	0	0	0	1	0	0	0	0	0	0	0
1	0	0	1	0	1	0	0	0	0	0	0
1	0	1	0	0	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1	0	0	0	0
1	1	0	0	0	0	0	0	1	0	0	0
1	1	0	1	0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	1	1
0	Х	Х	Х	0	0	0	0	0	0	0	0

