Fundamentele Limbajelor de Programare

Seminar & Laborator Lambda calcul

3 Februarie 2022

Lambda-calculul (sau λ -calculul) a fost dezvoltat între 1929-1932 de Alonzo Church și a fost propus ca sistem formal pentru logica matematică. În 1935, a demonstrat că orice funcție calculabilă peste numerele naturale, poate fi calculată în λ -calcul. Tot în 1935, independent de Church, Alan Turing a dezvoltat mecanismul numit astăzi mașina Turing, iar în 1936 a argumentat și el că orice funcție calculabilă peste numerele naturale poate fi calculată de o mașină Turing și, în plus, a arătat echivalența celor două modele de calcul (λ -calcul și mașini Turing), ducând la ceea e numim astăzi Teza Church-Turinq.

Sintaxa λ -calculului:

$$t = x \mid \lambda x.t \mid t \ t$$

 λ -termeni. Fie $Var = \{x, y, z, ...\}$ o mulțime infinită de variabile. Mulțimea λ -termenilor ΛT este definită inductiv, astfel:

[Variabilă] $Var \subseteq \Lambda T$ [Aplicare] dacă $t_1, t_2 \in \Lambda T$ atunci $(t_1 \ t_2) \in \Lambda T$ [Abstractizare] dacă $x \in Var$ și $t \in \Lambda T$, atunci $(\lambda x.t) \in \Lambda T$

Convenții de scriere.

- în scrierea λ -termenilor vom elimina parantezele exterioare și vom scrie, de exemplu, xy în loc de (xy), sau $\lambda x.xy$ în loc de $(\lambda x.(xy))$;
- aplicarea este asociativă la stânga: $t_1t_2t_3$ este $(t_1t_2)t_3$;
- corpul abstractizării este extins la dreapta: $\lambda x.t_1t_2$ este $\lambda x.(t_1t_2)$;
- scriem $\lambda xyz.t$, în loc de $\lambda x.\lambda y.\lambda z.t$.

1 Variabile libere și legate

Variabile libere și legate. Pentru un termen $\lambda x.t$ spunem că:

- aparițiile variabilei x în t sunt legate (bound);
- λx este legătura (binder), iar t este domeniul (scope) legării;
- o apariție a unei variabile este liberă (free) dacă apare într-o poziție în care nu este legată.

Un termen fără variabile libere se numește închis (closed).

Mulțimea variabilelor libere FV(t). Pentru un λ -termen t, mulțimea variabilelor libere este definită astfel:

[Variabilă]
$$FV(x) = \{x\}$$

[Aplicare] $FV(t_1t_2) = FV(t_1) \cup FV(t_2)$
[Abstractizare] $FV(\lambda x.t) = FV(t) - \{x\}$

Exercițiul 1 Calculați mulțimea variabilelor libere pentru următorii λ -termeni:

a.
$$\lambda x.xy$$
 c. $x(\lambda xy.xyz)(\lambda v.yv)$
b. $x\lambda x.xy$ d. $\lambda t.((\lambda xyz.yzx)t)$

2 Substituții

Fie t un λ -termen și $x \in Var$. Pentru un λ -termen u vom nota prin [u/x]t rezultatul înlocuirii tuturor aparițiilor libere ale lui x cu u în t.

[Variabilă]
$$[u/x]x = u$$

[Variabilă] $[u/x]y = y$ dacă $x \neq y$
[Aplicare] $[u/x](t_1t_2) = [u/x]t_1[u/x]t_2$
[Abstractizare] $[u/x]\lambda y.t = \lambda y.[u/x]t$ unde $x \neq y$ și $y \notin FV(u)$

Variabilele legate pot fi redenumite.

Exercițiul 2 Aplicați substituțiile indicate în următorii λ -termeni:

a.
$$[y/x]\lambda z.x$$

c.
$$[\lambda z.z/x](\lambda x.yx)$$

b.
$$[y/x]\lambda y.x$$

$$d. [\lambda z.z/x](\lambda y.yx)$$

3 α -conversie (α -echivalență)

 α -conversia $=_{\alpha}$ este relația binară care satisface următoarele proprietăți:

[Reflexivitate] $t =_{\alpha} t$

[Simetrie] $t_1 =_{\alpha} t_2$ implică $t_2 =_{\alpha} t_1$

[Tranzitivitate] $t_1 =_{\alpha} t_2$ și $t_2 =_{\alpha} t_3$ implică $t_1 =_{\alpha} t_3$

[Redenumire] $\lambda x.t =_{\alpha} \lambda y.[y/x]t \operatorname{dacă} y \notin FV(t)$

[Compatibilitate] $t_1 =_{\alpha} t_2$ implică $tt_1 =_{\alpha} tt_2$, $t_1t =_{\alpha} t_2t$ și $\lambda x.t_1 =_{\alpha} \lambda x.t_2$

Compatibilitatea cu substituția.

$$t_1 =_{\alpha} t_2$$
 și $u_1 =_{\alpha} u_2$ implică $[u_1/x]t_1 =_{\alpha} [u_2/x]t_2$

Exercițiul 3 Verificați care dintre α -conversiile următoare sunt adevărate:

a.
$$\lambda x.x =_{\alpha} \lambda y.y$$

d.
$$\lambda x.xy =_{\alpha} \lambda y.yy$$

b.
$$\lambda x.y =_{\alpha} \lambda y.x$$

e.
$$x\lambda x.xy =_{\alpha} x\lambda z.zy$$

c.
$$\lambda x.xy =_{\alpha} \lambda x.xz$$

$$f. \ x\lambda x.xy =_{\alpha} y\lambda x.xy$$

4 β -reducția

 β -reducția este o relație definită pe mulțimea α -termenilor, $\beta \subseteq \Lambda T \times \Lambda T,$ unde

[Aplicarea]
$$(\lambda x.y)u \to_{\beta} [u/x]t$$

[Compatibilitatea] $t_1 \to_{\beta} t_2$ implică $tt_1 \to_{\beta} tt_2$, $t_1t \to_{\beta} t_2t$ și $\lambda x.t_1 \to_{\beta} \lambda x.t_2$

Închiderea reflexivă și tranzitivă a acestei relații se notează $\to_{\beta}^* \subseteq \Lambda T \times \Lambda T$, iar $t_1 \to_{\beta}^* t_2$ dacă există $n \ge 0$ și $u_0, ..., u_n$ asfel încât $t_1 =_{\alpha} u_0 \to_{\beta} u_1 \to_{\beta} ... \to_{\beta} u_n =_{\alpha} t_2$.

Exercițiul 4 Să se aplice două β -reducții succesive asupra λ -termenului $(\lambda x.(\lambda y.yx)z)v$. Este o singură variantă de aplicare?

Un termen poate fi β -redus în mai multe moduri, iar proprietatea de confluență ne asigură că vom ajunge întotdeauna la același rezultat. (forma normală este unică, modulo α -echivalență)

5 Implementarea în Haskell a λ -calculului

În cadrul acestui laborator, vom implementa λ -calculul în Haskell. Pentru aceasta, vom defini următorul tip de date:

Exercițiul 5 Scrieți o instanță a clasei Show pentru tipul de date Term și testați pe cel puțin un exemplu.

```
lambdaExp :: Term
lambdaExp = App (Lam "x" (Lam "y" (App (App (V "x") (V "y")) (V "z")))) (V "y")
```

Exercițiul 6 Definiți o funcție freeVars :: Term -> [Variable], care primește un λ -termen și returnează lista variabilelor libere din termenul respectiv.

```
freeVars :: Term -> [Variable]
freeVars = undefined
```