Homework 5

Alexander Brylev

The label "Problem" is used for required problems. "Exercise" is for suggested exercises.

Problem 1 (Golan 307). Let V be a vector space over a field F and let W be a subspace of V. For each $v \in V$, let $v + W = \{v + w \mid w \in W\}$. Let $V/W = \{v + W \mid v \in V\}$ be the collection of all sets of the form v + W, and define operations of addition and scalar multiplication on V/W by setting (v + W) + (v' + W) = (v + v') + W and c(v + W) = (cv) + W for all $v, v' \in V$ and $c \in F$. Show that

- 1. v + W = v' + W if and only if $v v' \in W$;
- 2. V/W, with the given operations, is a vector space over F;
- 3. The function $v \mapsto v + W$ is an epimorphism from V to V/W, the kernel of which equals W;
- 4. Every complement of W in V is isomorphic to V/W;
- 5. If $(v+W) \cap (v'+W) \neq \emptyset$, then v+W=v'+W.

The space V/W is called the factor space of V by W.

- **Solution.** 1. Let v + W = v' + W for some $v, v' \in V$. Then $v = v + 0_W = v' + w$ for some $w \in W$, so that $v v' = w \in W$. Now let $v v' \in W$. Then v v' = w' for some $w' \in W$, so that for any $w \in W$ we have $v + w = (v' + w') + w = v' + (w' + w) \in v' + W$, which shows $v + W \in v' + W$. Due to symmetry, we must also have $v' + W \in v + W$. Hence v + W = v' + W.
- 2. First, let's check that the given operations are well-defined, i.e. if u+W=v+W for some $u, v \in W$ and u' + W = v' + W for some $u', v' \in W$, then (u + u') + W = (v + v') + Wand cu + W = cv + W for all $c \in F$. If u + W = v + W and u' + W = v' + W for some $u, v, u', v' \in W$, then, by 1), u - v = w and u' - v' = w' for some $w, w' \in W$. So $(u+u')-(v+v')=w+w' \in W$, and, using 1), we get (u+u')+W=(v+v')+W. Also, cu-v'=(v+v')+W. $cv = c(u-v) = cw \in W$, so that cu+W = cv+W, by 1) as well. Thus, the given operations are indeed well-defined. To show V/W, with the given operations, is a vector space, we first need to prove V/W is an abelian group. Let $u+W, u_1+W, u_2+W, u_3+W \in V/W$. Then $((u_1+W)+(u_2+W))+(u_3+W)=((u_1+u_2)+W)+(u_3+W)=((u_1+u_2)+u_3)+W=$ $(u_1 + (u_2 + u_3)) + W = (u_1 + W) + ((u_2 + u_3) + W) = (u_1 + W) + ((u_2 + W) + (u_3 + W)),$ so the sum operation in V/W is associative. Also, (0+W)+(u+W)=(0+u)+W=u + W = (u + 0) + W = (u + W) + (0 + W), so 0 + W is an identity element in (V/W, +). Finally, (-u+W)+(u+W)=(-u+u)+W=0+W, which shows -u+W is an inverse for u + W. Hence V/W, with the given addition operation, is a group. Since $(u_1+W)+(u_2+W)=(u_1+u_2)+W=(u_2+u_1)+W=(u_2+W)+(u_1+W)$, then it is abelian.

Problem 2 (Golan 325). Let $\alpha \in \operatorname{Aut}(\mathbb{R}^2)$ be defined by $\alpha : \begin{bmatrix} a \\ b \end{bmatrix} \mapsto \begin{bmatrix} -b \\ a \end{bmatrix}$. Show that $\mathbb{R}\{\alpha, \sigma_1\}$ is a unital subalgebra of $\operatorname{End}(\mathbb{R}^2)$. Show that it is proper by giving an example of an endomorphism of \mathbb{R}^2 not in this subalgebra.

Problem 3 (Golan 326). Let V be the space of all real-valued functions on the interval [-1,1] which are infinitely differentiable, and let δ be the endomorphism of V which assigns to each function f its derivative. Find the kernel and image of δ .

Solution. We have $Ker\delta = \{v \in V : \delta(v) = 0\} = \{f \in C^{\infty}[-1,1] : f' = 0\} = \{f \in C^{\infty}[-1,1] : f(x) = c \text{ for some } c \in R\}$, i.e., a set of all constant functions defined on [-1,1]. We have $Im\delta = \{v \in V : \delta(u) = v \text{ for some } u \in V\} = \{f \in C^{\infty}[-1,1] : g' = f \text{ for some } g \in C^{\infty}[-1,1]\} = \{f \in C^{\infty}[-1,1] : f \text{ is integrable on } [-1,1]\}$, i.e., a set of all integrable functions from $C^{\infty}[-1,1]$.

Problem 4 (Golan 338). Let V be a vector space over a field F which is not finitely generated, and let $\sigma_0 \neq \alpha \in \text{End}(V)$. Set $A = \{\beta \in \text{End}(V) \mid \alpha\beta = \sigma_1\}$. Show that if A has more than one element then it is infinite.

Solution. Suppose A has two elements, β_1 and β_2 . Then there exists a basis vector v of V such that $\beta_1(v) \neq \beta_2(v)$. For $n \geq 3$, define $\beta_n \in \operatorname{End}(V)$ via $\beta_n(v) = (n-1)\beta_1(v) - (n-2)\beta_2(v)$ and $\beta_n(u) = \beta_1(u)$, where u is a basis vector of V such that $u \neq v$. Then $\alpha \beta_n(v) = (n-1)\alpha \beta_1(v) - (n-2)\alpha \beta_2(v) = (n-1)v - (n-2)v = v$ and $\alpha \beta_n(u) = \alpha \beta_1(u) = u$ for a basis vector u of V such that $u \neq v$. Thus, $\beta_n \in A$ for all n. For $n \neq k$, $\beta_n(v) - \beta_k(v) = (n-k)(\beta_1(v) - \beta_2(v)) \neq 0$, which shows $\beta_n \neq \beta_k$ for $n \neq k$. Hence A contains infinitely many elements.

Problem 5 (Golan 340). Let V be a vector space over a field F satisfying the condition that $\alpha\beta = \beta\alpha$ for all $\alpha, \beta \in \text{End}(V)$. Show that $\dim(V) = 1$.

Solution. Suppose $\dim(V) > 1$. Then there exist two linearly independent vectors e_1 and e_2 in V. Define $\alpha \in \operatorname{End}(V)$ via $\alpha(e_1) = e_2$ and $\alpha(v) = 0$ if $v \notin \operatorname{span}(e_1)$. Define $\beta \in \operatorname{End}(V)$ via $\beta(e_2) = e_1$ and $\beta(v) = 0$ if $v \notin \operatorname{span}(e_2)$. Then $\alpha\beta(e_1) = \alpha(0) = 0$, which does not equal $\beta\alpha(e_1) = \beta(e_2) = e_1$, a contradiction.

Problem 6 (Golan 354). Let V be a vector space over a field F and let $\alpha \in \operatorname{Aut}(V)$. Let W_1, \ldots, W_k be subspaces of V satisfying $V = \bigoplus_{i=1}^k W_i$. For each $1 \le i \le k$, let $Y_i = \{\alpha(w) \mid w \in W_i\}$. Is $V = \bigoplus_{i=1}^k Y_i$?

Solution. Let $y \in V$. Since $\alpha \in Aut(V)$, then α is surjective and hence there exists $x \in V$ such that $\alpha(x) = y$. Since $x \in V$ and $V = \bigoplus_{i=1}^k W_i$, then $x = w_1 + w_2 + ... w_k$ for some

 $w_i \in W_i, 1 \le i \le k$. Then $y = \alpha(x) = \alpha(w_1 + w_2 + ... + w_k) = \alpha(w_1) + \alpha(w_2) + ... + \alpha(w_k) \in Y_1 + Y_2 + ... + Y_k$.

Let $v \in Y_i \cap Y_j$ for some $i \neq j$. Then $v = \alpha(w_i) = \alpha(w_j)$ for some $w_i \in W_i$ and $w_j \in W_j$. Since $\alpha \in Aut(V)$, then α is injective, and so $w_i = w_j \in W_i \cap W_j$. From $V = \bigoplus_{i=1}^k W_i$, it follows that $W_i \cap W_j = \{0\}$, and hence $w_i = w_j = 0$. So $v = \alpha(w_i) = \alpha(0) = 0$.

Exercise (Golan 415). Let V be the subspace of $\mathbb{R}[X]$ consisting of all polynomials of degree less than 3 and choose the basis $B = \{1, X, X^2\}$ for V. Let $\alpha \in \text{End}(V)$ satisfy

$$\Phi_{BB}(\alpha) = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{bmatrix}.$$

Let D be the basis $\{1, X+1, 2X^2+4X+3\}$ for V. What is $\Phi_{DD}(\alpha)$?

Exercise (Golan 467). Let n be a positive integer and let F be a field. Let $A, B \in \mathcal{M}_{n \times n}(F)$ satisfy A + B = I. Show that $AB = \mathbf{0}$ if and only if A and B are idempotent.

Exercise (Golan 530). Let n be a positive integer and let F be a field. If $A \in \mathcal{M}_{n \times n}(F)$ is nonsingular, is the same necessarily true of $A + A^T$?