Overview

- Related Work
- Tensor Voting in 2-D
- Tensor Voting in 3-D
- Tensor Voting in N-D
- Application to Vision Problems
- Stereo
- Visual Motion

- Binary-Space-Partitioned Images
- 3-D Surface Extraction from Medical Data
- Epipolar Geometry Estimation for Non-static Scenes
- Image Repairing
- Range and 3-D Data Repairing
- Video Repairing
- Luminance Correction
- Conclusions

Visual Motion Analysis

• From motion cues only

• From real images

Monocular vs. Motion Cues

Structure inference possible from one image only...?

...or from motion only?

Computational Processes

- Matching
 - Establish token correspondences across images
 - Recover a (possibly sparse and noisy) velocity field
- Motion capture
 - Obtain a dense representation :
 - Dense velocity field
 - Boundaries
 - Regions

4-D Voting Approach

Layered 4-D representation

- Match: $(x y) \rightarrow (x+v_x y+v_y)$
- Represent each candidate match as a (x y v_x v_y) point in 4-D
- Motion layers ↔ smooth surfaces in the 4-D space

Second Order Tensors in 4-D

Elementary tensors

Feature	λ ₁	λ ₂	λ ₃	λ ₄	e ₁ e ₂ e ₃ e ₄	Tensor
Point	1	1	1	1	Any orthonormal basis	Ball
Curve	1	1	1	0	n ₁ n ₂ n ₃ t	C-Plate
Surface	1	1	0	0	n_1 n_2 t_1 t_2	S-Plate
Volume	1	0	0	0	n t ₁ t ₂ t ₃	Stick

A generic tensor

Feature	Saliency	Normals	Tangents	
Point	λ_4	none	none	
Curve	λ_3 - λ_4	e_1 e_2 e_3	$e_{\scriptscriptstyle{4}}$	
Surface	λ_2 - λ_3	$e_1 e_2$	e ₃ e ₄	
Volume	λ_1 - λ_2	e ₁	e_2 e_3 e_4	

Generating Candidate Matches

Input images:

- sparse identical point tokens
- motion cues only

• Establish a potential match with all tokens in a neighborhood

Candidate matches:

• $(x y v_x v_y)$ points in 4-D

Selection

- Wrong matches appear as outliers, receiving little or no support
- Affinity (support) is expressed by the surface saliency at each token: $\lambda_2 \lambda_3$

Sparse velocity field

Recovered v_x velocities

Expanding Disk

Input

Sparse velocity field

Non-rigid motion

3-D view of recovered v_x velocities

Rotating Square

Input

Sparse velocity field

Non-smooth curve

3-D view of recovered v_x velocities

Translating Circle

Input

Sparse velocity field

Handling both curves and surfaces

3-D view of recovered v_x velocities

Rotating Disk-Translating Background

No separation even in 4-D

Input

Sparse velocity field

3-D view of recovered v_x velocities

Scale Sensitivity

- Tested on the translating disk example
- Number of input points = 400
- Image size = 200×200

Densification

- At each pixel (x y):
 - generate discrete (v_x v_y) candidates
 - at each candidate → collect votes from the input tokens
 - use surface saliency $(\lambda_2 \lambda_3)$ as an affinity measure
 - choose most salient candidate

Dense velocity field and layer orientations

Region Grouping

- Propagate region labels
- Criterion → smoothness of both:
 - pixel velocities \leftrightarrow distance in the $(v_x \ v_y)$ space
 - layer orientations \leftrightarrow normal vectors e_1 and e_2

Regions

Boundary Extraction

- 2-D process, that extracts a "locally convex" hull
- Irregularity function of the scale factor
- At large scale → convex hull

Motion boundaries

Expanding Disk

Dense velocity field

Regions Boundaries

Rotating Disk-Translating Background

Dense velocity field

Regions Boundaries

Incorporating Intensity Information

Why not use monocular cues first?

Augment motion with monocular cues:

Approach

- The general framework:
 - 4-D layered representation
 - Token affinity communication through voting

remains the same

Issues:

- Generation of initial candidate matches
- Accurate boundary inference, in the presence of occlusion

Generating Candidate Matches

- Use an intensity-based, cross-correlation procedure
- All peaks of correlation are retained as candidates
- Repeat for multiple scale values (correlation window sizes)

Small scale → fine detail, effective next to boundaries, noisy

Large scale → smoother, more affected by occlusion, less noisy

Uncertainty at Motion Boundaries

- Correlation is inherently unreliable at motion boundaries
- Non-similarity between regions
- Wrong matches may be actually consistent with the correct ones → cannot be rejected as noise
- Formulate motion analysis as a two-component process:
 - Enforce smoothness of motion, except at its discontinuities
 - Enforce smoothness of such discontinuities, aided by monocular cues

Extraction of Motion Layers

Input

Candidate matches

Dense layers

Layer boundaries

- Layers can still be over or underextended, mainly due to occlusion
- Approach → incorporate intensity cues (edges) from original images

Boundary Saliency Map

- Define a boundary saliency map in the uncertainty zones along layer boundaries
- Encode 2-D stick tensors:
 - Orientation ← gradient orientation

$$G_x(x, y) = I(x, y) - I(x-1, y)$$

$$G_{v}(x, y) = I(x, y) - I(x, y-1)$$

Saliency ← gradient magnitude

$$sal = W \cdot \sqrt{G_x^2 + G_y^2}$$

$$W = e^{-\frac{(x-x_c)^2}{\sigma_W^2}}$$

Boundary saliency map

Detecting the Boundary

- Enforce smoothness of motion discontinuities \rightarrow 2-D voting process within zones of boundary uncertainty
- After voting, grow boundary in the uncertainty zones, according to maximal curve saliency, given by $(\lambda_1 \lambda_2)$

Refined boundaries

Fish Sequence (synthetic)

Input

Layer boundaries

Candidate matches

Boundary saliency map

Dense layers

Refined boundaries

Barrier Sequence

Input

Layer boundaries

Candidate matches

Boundary saliency map

Dense layers

Refined boundaries

Yosemite Sequence

Input x-velocities y-velocities

Motion layer (x-velocities)

Yosemite Sequence

Technique	Average error	Standard deviation	Coverage
Nicolescu and Medioni	3.74°	4.3°	100%
Anandan	15.54°	13.46°	100%
Uras et al. (unthresholded)	16.45°	21.02°	100%
Horn and Schunck	22.58°	19.73°	100%
Lucas and Kanade ($\lambda_2 \ge 5.0$)	3.55°	7.11°	8.8%
Uras et al. (<i>det</i> (<i>H</i>) ≥ 2.0)	3.75°	3.44°	6.1%
Fleet and Jepson (τ = 2.5)	4.29°	11.24°	34.1%
Fleet and Jepson (τ = 1.25)	4.95°	12.39°	30.6%
Lucas and Kanade ($\lambda_2 \ge 1.0$)	5.20°	9.45°	35.1%
Uras et al. (<i>det</i> (<i>H</i>) ≥ 1.0)	5.97°	11.74°	23.4%
Heeger	11.74°	19.0°	44.8%

Cylinders Sequence

Input

Candidate matches

Velocities

Dense layers

3-D structure