10/567763

21864wo.ST25.txt PFRec'd PCT/PTO 10 FEB 2006 SEQUENCE LISTING

<110> DSM IP Assets B.V.	DSM IP Assets B.V.						
<120> Microbial production of L-ascor	bic acid						
<130> 21864 WO	O> 21864 WO						
<150> EP 03017677.0 <151> 2003-08-14							
<160> 31							
<170> PatentIn version 3.2							
<210> 1 <211> 2367 <212> DNA <213> Gluconobacter oxydans N44-1							
<400> 1 atgaacagcg gccccgcac gctctccatg atcat	cggga ttctgggcgc cctcatggcc 60						
gccttcctga tcatcgaagg cctccacctc atcat	cctcg gcggctcgtg gttctacacc 120						
ctcgccggca tcgcgctggc ggccagcagc gtcta	acatga tccgtcgcaa catcctctcg 180						
acatggatcg ccctgggcct gcttgtggca acagc	cctgt ggtcgctcgc cgaagtcggc 240						
accagcttct ggcccagctt ctcccgcctg atcgt	gttcc tgtgcgtcgc cctgatcgcg 300						
actctcatgg cgccctggct cagcggcccc ggccg	ggcgct acttcacccg ccccgtcaca 360						
ggcgccacat ccggcgccct cggcgcgatc atcgt	ggctt tcctcgccgg catgttccgg 420						
gtccacccga ccatcgcccc gcaggacacc accca	acccgc aggaaaccgc gtccaccgcc 480						
gactccgacc agccaggcca tgactggccc gccta	atggcc gcacggcttc cggcacgcgc 540						
tacgccagct tcacgcagat caaccgcgac aatgt	cagca agctccgcgt cgcctggacc 600						
taccgcaccg gcgacatggc gctgaacggc gccga	agttcc agggcacccc catcaagatc 660						
ggcgacacgg tctatatctg ctcaccgcac aacat	ccgtct cggcccttga cccggacacc 720						
ggcacggaaa agtggaagtt cgaccccac gccca	ngacga aagtctggca gcgctgccgc 780						
ggcgtcggct actggcatga cagcacggcc acgga	acgcca acgcgccctg cgcctcgcgc 840						
atcgtcctca ccacgatcga cgcccgcctc atcac	ccatcg acgcccgtac cggccaggcc 900						
tgcacggatt tcggaacgaa cggcaacgtc aatct	cctga ccggcctcgg cccgacagct 960						
cccggctcgt actacccgac cgccgccccc ctcgt	ggcgg gtgacatcgt ggtcgtcggc 1020						
ggccgcatcg ccgataacga gcgcaccggc gagcc	ctccg gcgtcgtccg cggctatgat 1080						
gtccgcaccg gcgcacaggt ctgggcctgg gacgc	ccacca acccgcatcg cggcaccaca 1140						
cctctggccg aaggcgagat ctaccccgcc gaaac	cccca acatgtgggg caccgccagc 1200						
tacgacccga aactcaacct cgtcttcttc ccgct	cggca accagacccc cgatttctgg 1260						

			21864wo.ST	r75 +v+		
ggcggcgacc	gcagcaaggc	ctcagacgaa			cgtggacgcc	1320
aagaccggcg	acgaacgctg	gcacttccgc	accgccaacc	acgacctcgt	ggactacgat	1380
gccacggccc	agcccatcct	ctatgacatt	ccggacggcc	atggcggcac	ccgcccggcg	1440
atcatcgcca	tgaccaagcg	cggccagatc	ttcgtgctcg	accgccgcga	cggcaccccg	1500
atcgtccctg	tggaaatgcg	caaagtcccg	caggacggcg	caccggaaca	ccagtacctc	1560
gcccccgaac	agccctattc	cgccctctcc	atcggaacag	agcgcctgaa	acccagcgac	1620
atgtggggtg	gtacgatctt	cgaccagctc	ctgtgccgca	tccagttcgc	ctcctaccgc	1680
tatgaaggcg	agttcacccc	cgtcaacgag	aaacaggcca	ccatcatcta	tccgggctat	1740
tacggcggca	tcaactgggg	cggcggcgcc	gtggatgaaa	gcaccggaac	gctgctggtc	1800
aacgacatcc	gcatggccca	gtggggcaag	ttcatgaagc	aggaagaagc	ccgtcgcagc	1860
ggcttcaaac	ccagctcgga	aggcgaatat	tccgaacaga	aaggcacccc	ctggggcgtc	1920
gtccgctcga	tgttcttctc	ccccgccggt	ctccctgcg	tgaaaccgcc	ctatggcacg	1980
atgaacgcca	tcgacctgcg	cagcggcaag	gtcaaatgga	gcatgccgct	tggcacgatc	2040
caggacatgc	cggtccacgg	catggtccca	ggcctcgcca	tcccgctcgg	aatgccgacc	2100
atgagcggcc	cgctggccac	ccataccggc	ctggtgttct	tctccggcac	gctcgacaac	2160
tatgtccgcg	cgctcaacac	cgacaccggc	gaagtcgtct	ggaaagcccg	tctcccgtc	2220
gcctcacagg	ccgctccgat	gagctacatg	tccgacaaga	ccggcaaaca	gtacatcgtc	2280
gtcaccgcag	gcggcctgac	ccgctccggc	gtcgacaaaa	accgcggcga	ctacgtcatc	2340
gcctacgccc	tgccctccga	agaataa				2367

<210> 2 <211> 788

<212> PRT

<213> Gluconobacter oxydans N44-1

<400> 2

Met Asn Ser Gly Pro Arg Thr Leu Ser Met Ile Ile Gly Ile Leu Gly $1 \hspace{1cm} 10 \hspace{1cm} 15$

Ala Leu Met Ala Ala Phe Leu Ile Ile Glu Gly Leu His Leu Ile Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Leu Gly Gly Ser Trp Phe Tyr Thr Leu Ala Gly Ile Ala Leu Ala Ala 35 40 45

Ser Ser Val Tyr Met Ile Arg Arg Asn Ile Leu Ser Thr Trp Ile Ala 50 60

Leu Gly Leu Leu Val Ala Thr Ala Leu Trp Ser Leu Ala Glu Val Gly Page 2 65

Thr Ser Phe Trp Pro Ser Phe Ser Arg Leu Ile Val Phe Leu Cys Val 85 90 95 Ala Leu Ile Ala Thr Leu Met Ala Pro Trp Leu Ser Gly Pro Gly Arg 100 105 110 Arg Tyr Phe Thr Arg Pro Val Thr Gly Ala Thr Ser Gly Ala Leu Gly 115 120 125 Ala Ile Ile Val Ala Phe Leu Ala Gly Met Phe Arg Val His Pro Thr 130 135 140 Ile Ala Pro Gln Asp Thr Thr His Pro Gln Glu Thr Ala Ser Thr Ala 145 150 155 160 Asp Ser Asp Gln Pro Gly His Asp Trp Pro Ala Tyr Gly Arg Thr Ala 165 170 175 Ser Gly Thr Arg Tyr Ala Ser Phe Thr Gln Ile Asn Arg Asp Asn Val 180 185 190 Ser Lys Leu Arg Val Ala Trp Thr Tyr Arg Thr Gly Asp Met Ala Leu 195 200 205 Asn Gly Ala Glu Phe Gln Gly Thr Pro Ile Lys Ile Gly Asp Thr Val 210 215 220 Tyr Ile Cys Ser Pro His Asn Ile Val Ser Ala Leu Asp Pro Asp Thr 225 230 235 240 Gly Thr Glu Lys Trp Lys Phe Asp Pro His Ala Gln Thr Lys Val Trp 245 250 255 Gln Arg Cys Arg Gly Val Gly Tyr Trp His Asp Ser Thr Ala Thr Asp 260 265 270 Ala Asn Ala Pro Cys Ala Ser Arg Ile Val Leu Thr Thr Ile Asp Ala 275 280 285 Leu Ile Thr Ile Asp Ala Arg Thr Gly Gln Ala Cys Thr Asp Phe 290 295 300 Gly Thr Asn Gly Asn Val Asn Leu Leu Thr Gly Leu Gly Pro Thr Ala 305 310 315 320

21864wo.ST25.txt Pro Gly Ser Tyr Tyr Pro Thr Ala Ala Pro Leu Val Ala Gly Asp Ile 325 330 335 Val Val Gly Gly Arg Ile Ala Asp Asn Glu Arg Thr Gly Glu Pro 340 345 350 Ser Gly Val Val Arg Gly Tyr Asp Val Arg Thr Gly Ala Gln Val Trp 355 360 365 Ala Trp Asp Ala Thr Asn Pro His Arg Gly Thr Thr Pro Leu Ala Glu 370 380 Gly Glu Ile Tyr Pro Ala Glu Thr Pro Asn Met Trp Gly Thr Ala Ser 385 390 395 400 Tyr Asp Pro Lys Leu Asn Leu Val Phe Phe Pro Leu Gly Asn Gln Thr 405 410 415Pro Asp Phe Trp Gly Gly Asp Arg Ser Lys Ala Ser Asp Glu Tyr Asn 420 425 430 Asp Ala Phe Val Ala Val Asp Ala Lys Thr Gly Asp Glu Arg Trp His 435 440 445 Arg Thr Ala Asn His Asp Leu Val Asp Tyr Asp Ala Thr Ala Gln 450 460 Pro Ile Leu Tyr Asp Ile Pro Asp Gly His Gly Gly Thr Arg Pro Ala 465 470 475 480 Ile Ile Ala Met Thr Lys Arg Gly Gln Ile Phe Val Leu Asp Arg Arg 485 490 495 Asp Gly Thr Pro Ile Val Pro Val Glu Met Arg Lys Val Pro Gln Asp 500 510 Gly Ala Pro Glu His Gln Tyr Leu Ala Pro Glu Gln Pro Tyr Ser Ala 515 520 525 Leu Ser Ile Gly Thr Glu Arg Leu Lys Pro Ser Asp Met Trp Gly Gly 530 540 Thr Ile Phe Asp Gln Leu Leu Cys Arg Ile Gln Phe Ala Ser Tyr Arg 545 550 555 560 Tyr Glu Gly Glu Phe Thr Pro Val Asn Glu Lys Gln Ala Thr Ile Ile 565 570 575

Tyr Pro Gly Tyr Tyr Gly Gly Ile Asn Trp Gly Gly Gly Ala Val Asp 580 585 590

Glu Ser Thr Gly Thr Leu Leu Val Asn Asp Ile Arg Met Ala Gln Trp 595 600 605

Gly Lys Phe Met Lys Gln Glu Glu Ala Arg Arg Ser Gly Phe Lys Pro 610 620

Ser Ser Glu Gly Glu Tyr Ser Glu Gln Lys Gly Thr Pro Trp Gly Val 625 635 640

Val Arg Ser Met Phe Phe Ser Pro Ala Gly Leu Pro Cys Val Lys Pro 645 650 655

Pro Tyr Gly Thr Met Asn Ala Ile Asp Leu Arg Ser Gly Lys Val Lys 660 665 670

Trp Ser Met Pro Leu Gly Thr Ile Gln Asp Met Pro Val His Gly Met 675 680 685

Val Pro Gly Leu Ala Ile Pro Leu Gly Met Pro Thr Met Ser Gly Pro 690 695 700

Leu Ala Thr His Thr Gly Leu Val Phe Phe Ser Gly Thr Leu Asp Asn 705 710 720

Tyr Val Arg Ala Leu Asn Thr Asp Thr Gly Glu Val Val Trp Lys Ala 725 730 735

Arg Leu Pro Val Ala Ser Gln Ala Ala Pro Met Ser Tyr Met Ser Asp 740 745 750

Lys Thr Gly Lys Gln Tyr Ile Val Val Thr Ala Gly Gly Leu Thr Arg 755 760 765

Ser Gly Val Asp Lys Asn Arg Gly Asp Tyr Val Ile Ala Tyr Ala Leu 770 780

Pro Ser Glu Glu 785

<210> 3

<211> 20 <212> DNA

<213> Artificial

<220>

```
<223> Primer
<400> 3
                                                                       20
cgccttctat gaaaggttgg
<210>
<211>
       20
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 4
                                                                        20
agcggatgga gatcgggcgg
<210>
<211> 30
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 5
                                                                        30
atgaacagcg gccccgcac gctctccatg
<210>
      30
<211>
<212> DNA
<213> Artificial
<220>
<223> Primer
                                                                        30
ccggaacatg ccggcgagga aagccacgat
<210>
<211>
      30
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 7
                                                                        30
tgactggccc gcctatggcc gcacggcttc
<210>
       8
      30
<211>
<212> DNA
<213> Artificial
<220>
<223> Primer
<400> 8
```

ttcttc	ggag	ggcagggcgt	aggcgatgac	21864wo.s	Γ25.txt		30
<210> <211> <212> <213>	9 30 DNA Art	ificial					
<220> <223>	Prin	mer					
<400> cgggact	9 tttg	cgcatttcca	cagggacgat			·	30
<210> <211> <212> <213>	10 30 DNA Art	ificial					
<220> <223>	Prin	mer					
<400> agcccat	10 tcct	ctatgacatt	ccggacggcc				30
<210> <211> <212> <213>	11 771 DNA Gluc	conobacter (oxydans IFO	3292			
<400>	11 agca	atcatcgcca	tgaccaagcg	cggccagatc	ttcqtqctcq	accgccgcga	60
		atcgtccccg					120
		gcccccgaac					180
		atgtggggcg					240
		tatgaaggcg					300
tccggg	ctat	tacggcggca	tcaactgggg	cggcggcgcc	gtggatgaaa	gcaccggaac	360
		aacgacatcc					420
ccgccg	cagc	ggcttcaaac	ccagctcgga	aggcgaatat	tccgaacaga	aaggcacccc	480
ctgggg	gtc	gtccgctcga	tgttcttctc	ccccgccggt	ctccctgcg	tgaaaccgcc	540
ctatgg	cacg	atgaacgcca	tcgacctgcg	cagcggcaag	gtcaaatgga	gcatgccgct	600
tggcac	gatc	caggacatgc	cggtccacgg	catggtcccc	ggcctcgcca	tcccgctcgg	660
aatgccg	gacc	atgagcggcc	cgctggccac	ccataccggc	ctggtcttct	tctccggcac	720
gctcgad	caac	tatgtccgcg	cgctcaacac	cgacaccggc	gaagtcgtct	g	771
<210>	12 256	,					

<210> 12 <211> 256 <212> PRT

<213> Gluconobacter oxydans IFO 3292

<400> 12

Asp Arg Arg Asp Gly Thr Pro Ile Val Pro Val Glu Met Arg Lys Val 20 25 30

Pro Gln Asp Gly Ala Pro Glu His Gln Tyr Leu Ala Pro Glu Gln Pro 35 40 45

Tyr Ser Ala Leu Ser Ile Gly Thr Glu Arg Leu Lys Pro Ser Asp Met 50 55 60

Trp Gly Gly Thr Ile Phe Asp Gln Leu Leu Cys Arg Ile Gln Phe Ala 65 70 75 80

Ser Tyr Arg Tyr Glu Gly Glu Phe Thr Pro Val Asn Glu Lys Gln Ala 85 90 95

Thr Ile Ile Tyr Pro Gly Tyr Tyr Gly Gly Ile Asn Trp Gly Gly 100 105 110

Ala Val Asp Glu Ser Thr Gly Thr Leu Leu Val Asn Asp Ile Arg Met 115 120 125

Ala Gln Trp Gly Lys Phe Met Lys Gln Glu Glu Ala Arg Arg Ser Gly 130 135 140

Phe Lys Pro Ser Ser Glu Gly Glu Tyr Ser Glu Gln Lys Gly Thr Pro 145 150 155 160

Trp Gly Val Val Arg Ser Met Phe Phe Ser Pro Ala Gly Leu Pro Cys 165 170 175

Val Lys Pro Pro Tyr Gly Thr Met Asn Ala Ile Asp Leu Arg Ser Gly
180 185 190

Lys Val Lys Trp Ser Met Pro Leu Gly Thr Ile Gln Asp Met Pro Val 200 205

His Gly Met Val Pro Gly Leu Ala Ile Pro Leu Gly Met Pro Thr Met 210 215 220

Ser Gly Pro Leu Ala Thr His Thr Gly Leu Val Phe Phe Ser Gly Thr 225 230 235 240

Leu Asp Asn Tyr Val Arg Ala Leu Asn Thr Asp Thr Gly Glu Val Val 245 250 255

<210> 13

<211> 350

<212> DNA <213> Gluconobacter oxydans IFO 3287

<220>

<221> misc_feature

<222> (123)..(123)

<223> n is a or c or g or t

<400> 13

atcatcggga ttctgggcgc cctcatggcc gccttcctga tcatcgaagg cctccacctc 60
atcatcctcg gcggctcatg gttttacacc ctcgccggca tcgcgctggc agccagcagc 120
gtntacatga tccgtcgcaa catcctctcg acatggatcg ccctcggcct gcttgtggca 180
acagccctgt ggtcgctcgc cgaagtcggc accagcttct ggcccagctt ctcccgcctg 240
atcgtatttc tgtgcgtcgc cctgatcgcg accctcatgg cgccctggct cagcggcccc 300
ggccggcgct acttcacccg ccccgtcaca ggcgccacct ccggcgccct 350

<210> 14

<211> 116

<212> PRT

<213> Gluconobacter oxydans IFO 3287

<400> 14

Ile Ile Gly Ile Leu Gly Ala Leu Met Ala Ala Phe Leu Ile Ile Glu 10 15

Gly Leu His Leu Ile Ile Leu Gly Gly Ser Trp Phe Tyr Thr Leu Ala 20 25 30

Gly Ile Ala Leu Ala Ala Ser Ser Val Tyr Met Ile Arg Arg Asn Ile 35 40 45

Leu Ser Thr Trp Ile Ala Leu Gly Leu Leu Val Ala Thr Ala Leu Trp 50 60

Ser Leu Ala Glu Val Gly Thr Ser Phe Trp Pro Ser Phe Ser Arg Leu 65 70 75 80

Ile Val Phe Leu Cys Val Ala Leu Ile Ala Thr Leu Met Ala Pro Trp 85 90 95

Leu Ser Gly Pro Gly Arg Arg Tyr Phe Thr Arg Pro Val Thr Gly Ala 100 105 110 Page 9

Thr Ser Gly Ala 115

<212>	308 DNA Gluc	onobacter o	oxydans IFO	3287			
	L5 ccg	cgtcgcctgg	acctaccgca	ctggcgacat	ggcgctgaac	ggggccgagt	60
tccaggg	cac	ccccatcaag	atcggcgaca	cggtctatat	ctgctcgccg	cacaacatcg	120
tctcggc	cct	cgaccccgat	accggcacgg	aaaagtggaa	gttcgacccc	cacgcccaga	180
cgaaagto	ctg	gcagcgctgc	cgcggcgtcg	gctactggca	tgacagcacg	gccacggacg	240
ccaacgc	gcc	ctgcgcctcg	cgcatcgtcc	tcaccacgat	cgacgcccgc	ctcatcacca	300
tcgacgc	ccg	caccggccag	gcctgcacgg	atttcggaac	gaacggcaac	gtcaatctcc	360
tgaccgg	cct	cggcccgaca	gccccggtt	cctactaccc	gaccgccgcc	ccctcgtgg	420
ccggtgad	cat	cgtggtcgtc	ggcggccgca	tcgccgataa	cgagcgcacc	ggcgaaccct	480
ccggcgt	cgt	ccgcggctat	gacgtccgca	ccggcgcgca	ggtctgggcc	tgggacgcca	540
ccaaccc	gcā	tcgcggcacc	acaccgctgg	ccgaaggcga	gatctatccc	gccgaaaccc	600
ccaacat	gtg	gggcaccgcc	agctacgacc	cgaagctcaa	cctcgtcttc	ttcccgctcg	660
gcaacca	gac	ccccgatttc	tggggcggcg	accgcagcaa	ggcttctgat	gaatacaacg	720
acgcctto	cgt	cgccgtggac	gccaagaccg	gcgacgaacg	ctggcacttc	cgcaccgcca	780
accacga	cct	cgtggactac	gatgccac				808

<210> 16 <211> 268

<211> 268 <212> PRT

<213> Gluconobacter oxydans IFO 3287

<400> 16

Lys Leu Arg Val Ala Trp Thr Tyr Arg Thr Gly Asp Met Ala Leu Asn 10 15

Gly Ala Glu Phe Gln Gly Thr Pro Ile Lys Ile Gly Asp Thr Val Tyr $20 \hspace{1cm} 25 \hspace{1cm} 30$

Ile Cys Ser Pro His Asn Ile Val Ser Ala Leu Asp Pro Asp Thr Gly 35 40 45

Thr Glu Lys Trp Lys Phe Asp Pro Ḥis Ala Gln Thr Lys Val Trp Gln 50 60

Arg 65	Cys	Arg	Gly	val	G]y 70	Tyr	Тгр	His	Asp	ser 75	Thr	Ala	Thr	Asp	Ala 80
Asn	Ala	Pro	Cys	Ala 85	Ser	Arg	Ile	val	Leu 90	Thr	Thr	Ile	Asp	Ala 95	Arg
Leu	Ile	Thr	11e 100	Asp	Ala	Arg	Thr	Gly 105	Gln	Ala	Cys	Thr	Asp 110	Phe	Gly
Thr	Asn	Gly 115	Asn	val	Asn	Leu	Leu 120	Thr	Gly	Leu	Gly	Pro 125	Thr	Ala	Pro
Gly	Ser 130	Tyr	Tyr	Pro	Thr	Ala 135	Ala	Pro	Leu	∨al	Ala 140	Gly	Asp	Ile	Val
Val 145	٧al	Gly	Gly	Arg	Ile 150	Ala	Asp	Asn	Glu	Arg 155	Thr	Gly	Glu	Pro	Ser 160
Gly	Val	Val.	Arg	Gly 165	Tyr	Asp	val	Arg	Thr 170	Gly	Ala	Gln	val	Trp 175	Ala
Тгр	Asp	Ala	Thr 180	Asn	Pro	His	Arg	Gly 185	Thr	Thr	Pro	Leu	Ala 190	Glu	Gly
Glu	Ile	Туг 195	Pro	Ala	Glu	Thr	Pro 200	Asn	Met	Тгр	Gly	Thr 205	Ala	Ser	Tyr
Asp	Pro 210	Lys	Leu	Asn	Leu	Val 215	Phe	Phe	Pro	Leu	G]y 220	Asn	Gln	Thr	Pro
Asp 225	Phe	Тгр	Gly	Gly	Asp 230	Arg	Ser	Lys	Ala	Ser 235	Asp	Glu	Tyr	Asn	Asp 240
Ala	Phe	∨al	Ala	Val 245	Asp	Ala	Lys	Thr	G]y 250	Asp	Glu	Arg	Тгр	His 255	Phe
Arg	Thr	Ala	Asn 260	His	Asp	Leu	val	Asp 265	Tyr	Asp	Ala				
<211 <212	<210> 17 <211> 800 <212> DNA <213> Gluconobacter oxydans IFO 3287														
	<400> 17 tcttcgtgct cgaccgccgc gacggcaccc cgatcgtccc cgtggaaatg cgcaaagtcc														

cgcaggacgg cgcaccggaa caccagtacc tcgcccccga acagccctat tccgccctct

60

120

			21864wo.ST	r25.txt		
ccatcggaac	agagcgcctg	aaacccagcg			ttcgaccagc	180
tcctgtgccg	catccagttc	gcctcctacc	gctatgaagg	cgagttcacc	cccgtcaacg	240
agaaacaggc	caccatcatc	tatccgggct	attacggcgg	catcaactgg	ggcggcggcg	300
ccgtggatga	aagcaccgga	acgctgctgg	tcaacgacat	ccgcatggcc	cagtggggca	360
agttcatgaa	gcaggaagaa	gcccgtcgca	gcggcttcaa	acccagctcg	gaaggcgaat	420
attccgaaca	gaaaggcacc	ccctggggcg	tcgtccgctc	gatgttcttc	tccccgccg	480
gtctcccctg	cgtaaaaccg	ccctatggca	cgatgaacgc	catcgacctg	cgcagcggca	540
aggtgaaatg	gagcatgccg	cttggcacga	tccaggacat	gccggtccac	ggcatggtcc	600
caggcctcgc	catcccgctc	ggaatgccaa	ccatgagcgg	cccgctggcc	acccataccg	660
gcttggtctt	cttctccggc	acgctcgaca	actacgtccg	cgcgctcaac	accgacaccg	720
gcgaggtcgt	ctggaaagcc	cgtctccccg	tcgcctcaca	ggccgctccg	atgagctaca	780
tgtccgacaa	gaccggcaaa					800

<210> 18

<400> 18

Phe Val Leu Asp Arg Arg Asp Gly Thr Pro Ile Val Pro Val Glu Met 1 10 15

Arg Lys Val Pro Gln Asp Gly Ala Pro Glu His Gln Tyr Leu Ala Pro 20 25 30

Glu Gln Pro Tyr Ser Ala Leu Ser Ile Gly Thr Glu Arg Leu Lys Pro 35 40 45

Ser Asp Met Trp Gly Gly Thr Ile Phe Asp Gln Leu Leu Cys Arg Ile 50 60

Gln Phe Ala Ser Tyr Arg Tyr Glu Gly Glu Phe Thr Pro Val Asn Glu 65 70 75 80

Lys Gln Ala Thr Ile Ile Tyr Pro Gly Tyr Tyr Gly Gly Ile Asn Trp 85 90 95

Gly Gly Gly Ala Val Asp Glu Ser Thr Gly Thr Leu Leu Val Asn Asp 100 105 110

Ile Arg Met Ala Gln Trp Gly Lys Phe Met Lys Gln Glu Glu Ala Arg 115 120 125

<211> 266

<212> PRT

<213> Gluconobacter oxydans IFO 3287

Arg Ser Gly Phe Lys Pro Ser Ser Glu Gly Glu Tyr Ser Glu Gln Lys 130 135 140
Gly Thr Pro Trp Gly Val Val Arg Ser Met Phe Phe Ser Pro Ala Gly 145 150 150
Leu Pro Cys Val Lys Pro Pro Tyr Gly Thr Met Asn Ala Ile Asp Leu 165 170 175
Arg Ser Gly Lys Val Lys Trp Ser Met Pro Leu Gly Thr Ile Gln Asp 180 185 190
Met Pro Val His Gly Met Val Pro Gly Leu Ala Ile Pro Leu Gly Met 195 200 205
Pro Thr Met Ser Gly Pro Leu Ala Thr His Thr Gly Leu Val Phe Phe 210 220
Ser Gly Thr Leu Asp Asn Tyr Val Arg Ala Leu Asn Thr Asp Thr Gly 235 240
Glu Val Val Trp Lys Ala Arg Leu Pro Val Ala Ser Gln Ala Ala Pro 245 250 255
Met Ser Tyr Met Ser Asp Lys Thr Gly Lys 260 265
<210> 19 <211> 360 <212> DNA <213> Acetobacter sp. ATCC 15164
<220> <221> misc_feature <222> (123)(123) <223> n is a or c or g or t
<pre><400> 19 atcatcggga ttctgggcgc cctcatggcc gccttcctga tcatcgaagg cctccacctc 60</pre>
atcatcctcg gcggctcgtg gttttacacc ctcgccggca tcgcgctggc ggccagcagc 120
gtntacatga tccgtcgcaa catcctctcg acatggatcg ccctcggcct gcttgtagca 180
acagccctgt ggtcgctcgc cgaagtcggc accagcttct ggcccagctt ctcccgcctg 240
atcgtgttcc tgtgcgtcgc cctgatcgcg actctcatgg cgccctggct cagcggcccc 300
ggccggcgct acttcacccg ccccgtcaca ggggccacct ccggcgcact cggcgccatc 360

<211> <212> <213>	120 PRT Acet	obac [.]	ter:	sp. /	ATCC	1510		1004		123.					
<400>	20													٠	
Ile Il 1	e Gly	Ile	Leu 5	Gly	Ala	Leu	Met	Ala 10	Ala	Phe	Leu	Ile	Ile 15	Glu	
Gly Le	u His	Leu 20	Ile	Ile	Leu	Gly	Gly 25	Ser	Trp	Phe	туг	Thr 30	Leu	Ala	
Gly Il	e Ala 35	Leu	Ala	Ala	Ser	ser 40	val	Туг	Met	Ile	Arg 45	Arg	Asn	Ile	
Leu Se 50		Trp	Ile	Ala	Leu 55	Gly	Leu	Leu	val	Ala 60	Thr	Ala	Leu	Trp	
Ser Le 65	u Ala	Glu	Val	Gly 70	Thr	Ser	Phe	Trp	Pro 75	Ser	Phe	Ser	Arg	Leu 80	
Ile Va	1 Phe	Leu	Cys 85	٧a٦	Ala	Leu	Ile	Ala 90	Thr	Leu	Met	Ala	Pro 95	Trp	
Leu Se	r Gly	Pro 100	Gly	Arg	Arg	Tyr	Phe 105	Thr	Arg	Pro	val	Thr 110	Gly	Ala	
Thr Se	r Gly 115	Ala	Leu	Gly	Ala	Ile 120									
<210> <211> <212> <213>	21 760 DNA ACET	obacı	ter :	sp. A	ATCC	1516	54								
<400> accgcg	21 acaa ⁻	tgtca	agcaa	ag ci	ccg	cgtc	g cct	tgga	ccta	ccg	cacc	ggc	gacat	tggcgc	60
tgaacg	gcgc (cgaa	ttcca	ag gg	gcac	ccca	a tca	aaga	tcgg	cgat	tacg	gtc	tatai	tctgct	120
cacccc	acaa (catc	gtct	cg go	cct	cgac	c cc	gaca	ccgg	cac	ggaa	aag	tggaa	agttcg	180
accccc	acgc (ccaga	acgaa	aa gi	tctg	gcago	c gc1	tgcc	gcgg	cgt	ggc	tac	tggca	atgaca	240
gcacag	ccac e	ggac	gccaa	ac go	gcc	ctgc	g cct	tcgc	gcat	cgt	ctc	acc .	acgat	tcgacg	300
cccgcc	tcat (cacca	atcga	ac go	ccg	cacco	g gco	caggo	cctg	cac	ggati	ttc	ggaad	gaacg	360
gcaacg	tcaa 1	tctc	ctga	cc g	gccto	cggc	c cga	acago	ccc	cgg	ctcc	tac	tacco	gaccg	420
ccgccc	ccct	cgtg	gcgg	gt ga	acato	gtg	tc	gtcg	gcgg	ccg	catc	gcc	gataa	acgagc	480
gcacag	gcga (gccti	tccg	gc g1	cgto	ccgc	g gct	tacga	acgt	ccg	cacc	ggc	gcaca	aggtct	540
gggcct	ggga (cgcca	accaa	ac co	gcat	tcgc	g gca		cacc age		ggcc	gaa	ggcga	agatct	600

660

720

760

accccgccga aacccccaac atgtggggca ccgccagcta cgacccga	aa ctcaacctcg
tcttcttccc gctcggcaac cagacccccg atttctgggg cggcgacc	gc agcaaggcct
cggatgaata caacgacgcc ttcgtcgccg tggacgccaa	
<210> 22 <211> 252 <212> PRT <213> Acetobacter sp. ATCC 15164	
<400> 22	
Arg Asp Asn Val Ser Lys Leu Arg Val Ala Trp Thr Tyr 1 5 10	Arg Thr Gly 15
Asp Met Ala Leu Asn Gly Ala Glu Phe Gln Gly Thr Pro 20 25	Ile Lys Ile 30
Gly Asp Thr Val Tyr Ile Cys Ser Pro His Asn Ile Val 35 40 45	Ser Ala Leu
Asp Pro Asp Thr Gly Thr Glu Lys Trp Lys Phe Asp Pro 50 60	His Ala Gln
Thr Lys Val Trp Gln Arg Cys Arg Gly Val Gly Tyr Trp 65 70 75	His Asp Ser 80
Thr Ala Thr Asp Ala Asn Ala Pro Cys Ala Ser Arg Ile 85 90	Val Leu Thr 95
Thr Ile Asp Ala Arg Leu Ile Thr Ile Asp Ala Arg Thr 100 105	Gly Gln Ala 110
Cys Thr Asp Phe Gly Thr Asn Gly Asn Val Asn Leu Leu 115 120 125	Thr Gly Leu

Ala Gly Asp Ile Val Val Val Gly Gly Arg Ile Ala Asp Asn Glu Arg 145 150 155 160

Gly Pro Thr Ala Pro Gly Ser Tyr Tyr Pro Thr Ala Ala Pro Leu Val 130 135 140

Thr Gly Glu Pro Ser Gly Val Val Arg Gly Tyr Asp Val Arg Thr Gly 165 170 175

Ala Gln Val Trp Ala Trp Asp Ala Thr Asn Pro His Arg Gly Thr Thr 180 185 190

```
21864wo.ST25.txt
Pro Leu Ala Glu Gly Glu Ile Tyr Pro Ala Glu Thr Pro Asn Met Trp
                              200
Gly Thr Ala Ser Tyr Asp Pro Lys Leu Asn Leu Val Phe Phe Pro Leu
Gly Asn Gln Thr Pro Asp Phe Trp Gly Gly Asp Arg Ser Lys Ala Ser 225 230 235 240
Asp Glu Tyr Asn Asp Ala Phe Val Ala Val Asp Ala 245 250
<210>
       23
       20
<211>
<212>
       DNA
       Artificial
<213>
<220>
<223>
       Primer
<400> 23
                                                                           20
ggcgcgatca tcgtggcttt
<210>
       24
       23
<211>
<212>
       DNA
<213>
       Artificial
<220>
<223>
       Primer
<400> 24
                                                                           23
gggtcaaggg ccgagacgat gtt
<210>
       25
       20
<211>
<212>
       DNA
      Artificial
<213>
<220>
<223>
       Primer
<400> 25
                                                                           20
gcacgctcga caactatgtc
<210>
       26
<211>
       2367
<212>
       DNA
<213>
       Gluconobacter oxydans IFO 3244
<400> 26
atgaacagcg gcccccgcac gctctccatg atcatcggga ttctgggcgc cctcatggcc
                                                                           60
                                                                          120
gccttcctga tcatcgaagg cctccacctc atcatcctcg gcggctcgtg gttctacacc
                                                                          180
ctcgccggca tcgcgctggc ggccagcagc gtctacatga tccgtcgcaa catcctctcg
                                         Page 16
```

acatggatcg ccctcgg	cct gcttgtagca	acagccctgt	ggtcgctcgc	cgaagtcggc	240
accagcttct ggcccag	ctt ctcccgcctg	atcgtgttcc	tgtgcgtcgc	cctgatcgcg	300
actctcatgg cgccctg	gct cagcggcccc	ggccggcgct	acttcacccg	ccccgtcaca	360
ggggccacct ccggcgc	act cggcgccatc	atcgtggctt	tcctcgccgg	catgttccgg	420
gtccacccga ccatcgc	ccc gcaggacacc	acccacccgc	aggaaaccgc	gtccaccgcc	480
gactccgacc agcccgg	cca tgactggccc	gcctatggcc	gcacagcttc	cggcacgcgc	540
tacgccagct tcacaca	gat caaccgcgac	aatgtcagca	agctccgcgt	cgcctggacc	600
taccgcaccg gcgacate	ggc gctgaacggc	gccgaattcc	agggcacccc	catcaagatc	660
ggcgatacgg tctatate	ctg ctcaccccac	aacatcgtct	cggccctcga	ccccgacacc	720
ggcacggaaa agtggaa	gtt cgaccccac	gcccagacga	aagtctggca	gcgctgccgc	780
ggcgtcggct actggca	tga cagcacagco	acggacgcca	acgcgccctg	cgcctcgcgc	840
atcgtcctca ccacgate	cga cgcccgcctc	atcaccatcg	acgcccgcac	cggccaggcc	900
tgcacggatt tcggaac	gaa cggcaacgto	aatctcctga	ccggcctcgg	cccgacagcc	960
cccggctcct actaccc	gac cgccgcccc	ctcgtggcgg	gtgacatcgt	ggtcgtcggc	1020
ggccgcatcg ccgataa	cga gcgcacaggo	gagccttccg	gcgtcgtccg	cggctacgac	1080
gtccgcaccg gcgcaca	ggt ctgggcctgg	gacgccacca	acccgcatcg	cggcaccaca	1140
ccactggccg aaggcga	gat ctaccccgcc	gaaaccccca	acatgtgggg	caccgccagc	1200
tacgacccga aactcaa	cct cgtcttcttc	ccgctcggca	accagacccc	cgatttctgg	1260
ggcggcgacc gcagcaa	ggc ctcggatgaa	tacaacgacg	ccttcgtcgc	cgtggacgcc	1320
aaaaccggcg acgaacg	ctg gcacttccgc	accgccaacc	acgatctcgt	ggactacgat	1380
gccacggccc agcccat	cct ctacgacatt	ccggacggcc	atggcggcac	ccgcccggcg	1440
atcatcgcca tgaccaa	gcg cggccagato	ttcgtgctcg	accgccgcga	cggcaccccg	1500
atcgtccccg tggaaat	gcg caaagtcccc	caggacggcg	caccggaaca	ccagtacctc	1560
gcccccgaac agcccta	ttc cgccctctcc	atcggaacag	agcgcctgaa	acccagcgat	1620
atgtggggcg gcacgat	ctt cgaccagcto	ctgtgccgca	tccagttcgc	ctcctaccgc	1680
tatgaaggcg agttcac	ccc cgtcaacgag	aagcaggcca	ccatcatcta	tccgggctat	1740
tacggcggca tcaactg	ggg cggcggcgc	gtggatgaaa	gcaccggaac	gctgctggtc	1800
aacgacatcc gcatggc	cca gtggggcaag	ttcatgaagc	aagaagaagc	ccgccgcagc	1860
ggcttcaaac ccagctc	gga aggcgaatat	tccgaacaga	aaggcacccc	ctggggcgtc	1920
gtccgctcga tgttctt	ctc ccccgccggt	ctccctgcg	tgaaaccgcc	ctatggcacg	1980
atgaacgcca tcgacct	gcg cagcggcaag	gtcaaatgga	gcatgccgct	tggcacgatc	2040

21864wo.ST25.txt caqqacatqc cqgtccacqq catqqtcccc qqcctcgcca tcccqctcgg aatgccgacc atgagcggcc cgctggccac ccataccggc ctggtcttct tctccggcac gctcgacaac tatgtccgcg cgctcaacac cgacaccggc gaagtcgtct ggaaagcccg tctccccgtc gcctcacagg ccgctccgat gagctacatg tccgacaaga ccggcaaaca gtacatcgtc gtcaccgcag gcggcctgac ccgctccggc gtcgacaaaa accgcggcga ctacgtcatc gcctacgccc tgccctccga agaataa <210> 27 788 <211> <212> PRT Gluconobacter oxydans IFO 3244 <400> 27 Met Asn Ser Gly Pro Arg Thr Leu Ser Met Ile Ile Gly Ile Leu Gly $1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15$ Ala Leu Met Ala Ala Phe Leu Ile Ile Glu Gly Leu His Leu Ile Ile 20 25 30 Leu Gly Gly Ser Trp Phe Tyr Thr Leu Ala Gly Ile Ala Leu Ala Ala 35 40 45 Ser Ser Val Tyr Met Ile Arg Arg Asn Ile Leu Ser Thr Trp Ile Ala 50 60 Leu Gly Leu Leu Val Ala Thr Ala Leu Trp Ser Leu Ala Glu Val Gly 65 70 75 80 Thr Ser Phe Trp Pro Ser Phe Ser Arg Leu Ile Val Phe Leu Cys Val 85 90 95 Ala Leu Ile Ala Thr Leu Met Ala Pro Trp Leu Ser Gly Pro Gly Arg 100 105 110 Arg Tyr Phe Thr Arg Pro Val Thr Gly Ala Thr Ser Gly Ala Leu Gly 115 120 125 Ala Ile Ile Val Ala Phe Leu Ala Gly Met Phe Arg Val His Pro Thr 130 135 140

Ile Ala Pro Gln Asp Thr Thr His Pro Gln Glu Thr Ala Ser Thr Ala 145 150 155 160

Asp Ser Asp Gln Pro Gly His Asp Trp Pro Ala Tyr Gly Arg Thr Ala

2100

2160

2220

2280 2340

2367

Page 18

Ser Gly Thr Arg Tyr Ala Ser Phe Thr Gln Ile Asn Arg Asp Asn Val 180 185 190 Ser Lys Leu Arg Val Ala Trp Thr Tyr Arg Thr Gly Asp Met Ala Leu 195 200 205 Asn Gly Ala Glu Phe Gln Gly Thr Pro Ile Lys Ile Gly Asp Thr Val 210 215 220 Tyr Ile Cys Ser Pro His Asn Ile Val Ser Ala Leu Asp Pro Asp Thr 225 230 235 240 Gly Thr Glu Lys Trp Lys Phe Asp Pro His Ala Gln Thr Lys Val Trp 245 250 255 Gln Arg Cys Arg Gly Val Gly Tyr Trp His Asp Ser Thr Ala Thr Asp 260 265 270 Ala Asn Ala Pro Cys Ala Ser Arg Ile Val Leu Thr Thr Ile Asp Ala 275 280 285 Arg Leu Ile Thr Ile Asp Ala Arg Thr Gly Gln Ala Cys Thr Asp Phe 290 295 300 Gly Thr Asn Gly Asn Val Asn Leu Leu Thr Gly Leu Gly Pro Thr Ala 305 310 315 Pro Gly Ser Tyr Tyr Pro Thr Ala Ala Pro Leu Val Ala Gly Asp Ile 325 330 335 Val Val Val Gly Gly Arg Ile Ala Asp Asn Glu Arg Thr Gly Glu Pro 340 345 350 Ser Gly Val Val Arg Gly Tyr Asp Val Arg Thr Gly Ala Gln Val Trp 355 360 365 Ala Trp Asp Ala Thr Asn Pro His Arg Gly Thr Thr Pro Leu Ala Glu 370 375 380Gly Glu Ile Tyr Pro Ala Glu Thr Pro Asn Met Trp Gly Thr Ala Ser 385 390 395 400 Tyr Asp Pro Lys Leu Asn Leu Val Phe Phe Pro Leu Gly Asn Gln Thr 405 410 415 Pro Asp Phe Trp Gly Gly Asp Arg Ser Lys Ala Ser Asp Glu Tyr Asn 420 425 430 Page 19

Asp Ala Phe Val Ala Val Asp Ala Lys Thr Gly Asp Glu Arg Trp His Phe Arg Thr Ala Asn His Asp Leu Val Asp Tyr Asp Ala Thr Ala Gln 450 460 Pro Ile Leu Tyr Asp Ile Pro Asp Gly His Gly Gly Thr Arg Pro Ala 465 470 475 480 465 Ile Ile Ala Met Thr Lys Arg Gly Gln Ile Phe Val Leu Asp Arg Arg Asp Gly Thr Pro Ile Val Pro Val Glu Met Arg Lys Val Pro Gln Asp Gly Ala Pro Glu His Gln Tyr Leu Ala Pro Glu Gln Pro Tyr Ser Ala 515 520 525 Ser Ile Gly Thr Glu Arg Leu Lys Pro Ser Asp Met Trp Gly Gly 530 540 Thr Ile Phe Asp Gln Leu Leu Cys Arg Ile Gln Phe Ala Ser Tyr Arg Tyr Glu Gly Glu Phe Thr Pro Val Asn Glu Lys Gln Ala Thr Ile Ile 565 570 575 Tyr Pro Gly Tyr Tyr Gly Gly Ile Asn Trp Gly Gly Gly Ala Val Asp 580 585 590 Glu Ser Thr Gly Thr Leu Leu Val Asn Asp Ile Arg Met Ala Gln Trp 595 600 605 Gly Lys Phe Met Lys Gln Glu Glu Ala Arg Arg Ser Gly Phe Lys Pro Ser Ser Glu Gly Glu Tyr Ser Glu Gln Lys Gly Thr Pro Trp Gly Val 625 630 635 640 Val Arg Ser Met Phe Phe Ser Pro Ala Gly Leu Pro Cys Val Lys Pro 645 650 655 Pro Tyr Gly Thr Met Asn Ala Ile Asp Leu Arg Ser Gly Lys Val Lys 660 665 670 Trp Ser Met Pro Leu Gly Thr Ile Gln Asp Met Pro Val His Gly Met Page 20

675

Val Pro Gly Leu Ala Ile Pro Leu Gly Met Pro Thr Met Ser Gly Pro

680

Leu Ala Thr His Thr Gly Leu Val Phe Phe Ser Gly Thr Leu Asp Asn 705 715 720

Tyr Val Arg Ala Leu Asn Thr Asp Thr Gly Glu Val Val Trp Lys Ala
725 730 735

Arg Leu Pro Val Ala Ser Gln Ala Ala Pro Met Ser Tyr Met Ser Asp 740 745 750

Lys Thr Gly Lys Gln Tyr Ile Val Val Thr Ala Gly Gly Leu Thr Arg
755 760 765

Ser Gly Val Asp Lys Asn Arg Gly Asp Tyr Val Ile Ala Tyr Ala Leu 770 780

Pro Ser Glu Glu

<210> 28

<211> 30

<212> DNA <213> Artificial

<220>

<223> Primer

<400> 28

ccgaattcag gccgaacagc agcaggtcac

30

<210> 29

<211> <212> 30

DNA <213> Artificial

<220>

<223> Primer

<400> 29

gtgcctgggt acctcggtgg aggtcatgaa

30

<210> 30

<211><212> 30

DNA

Artificial <213>

<220>

<223> Primer

<400> 30 aagtcatatg aacagcggcc cccgcacgct	30
<210> 31 <211> 30 <212> DNA <213> Artificial	
<220> <223> Primer	
<400> 31 atctcgagtt cttcggaggg cagggcgtag	30