Se consideran a, b $\in \mathbb{R}$ con b $\neq 0$.

hi[1]-

a	b	b	b	b	b	b	b	b	1	
b	a	b	b	b	b	b	b	b	11	
b	b	a	b	b	b	b	b	b	11	
b	b	b	a	b	b	b	b	b	11	
b	b	b	b	a	b	b	b	b	11	-
b	b	b	b	b	a	b	b	b	11	
b	b	b	b	b	b	a	b	b	11	
b	b	b	b	b	b	b	a	b	11	
b	b	b	b	b	b	b	b	a	1)	

10(4)=

Dimensions [%1]

Out[4]

{9, 9}

In[2]

Det[%1 - t * IdentityMatrix[9]]

Out[2]=

 $a^{9} - 36 a^{7} b^{2} + 168 a^{6} b^{3} - 378 a^{5} b^{4} + 504 a^{4} b^{5} - 420 a^{3} b^{6} + 216 a^{2} b^{7} - 63 a b^{8} + 8 b^{9} - 9 a^{8} t + 252 a^{6} b^{2} t - 1008 a^{5} b^{3} t + 1890 a^{4} b^{4} t - 2016 a^{3} b^{5} t + 1260 a^{2} b^{6} t - 432 a b^{7} t + 63 b^{8} t + 36 a^{7} t^{2} - 756 a^{5} b^{2} t^{2} + 2520 a^{4} b^{3} t^{2} - 3780 a^{3} b^{4} t^{2} + 3024 a^{2} b^{5} t^{2} - 1260 a b^{6} t^{2} + 216 b^{7} t^{2} - 84 a^{6} t^{3} + 1260 a^{4} b^{2} t^{3} - 3360 a^{3} b^{3} t^{3} + 3780 a^{2} b^{4} t^{3} - 2016 a b^{5} t^{3} + 420 b^{6} t^{3} + 126 a^{5} t^{4} - 1260 a^{3} b^{2} t^{4} + 2520 a^{2} b^{3} t^{4} - 1890 a b^{4} t^{4} + 504 b^{5} t^{4} - 126 a^{4} t^{5} + 756 a^{2} b^{2} t^{5} - 1008 a b^{3} t^{5} + 378 b^{4} t^{5} + 84 a^{3} t^{6} - 252 a b^{2} t^{6} + 168 b^{3} t^{6} - 36 a^{2} t^{7} + 36 b^{2} t^{7} + 9 a t^{8} - t^{9}$

In[3]:

Factor[%]

Out[3]

$$(a-b-t)^8 (a+8b-t)$$

In[5]:

MatrixForm[%1 - (a - b) * IdentityMatrix[9]]

Out[5]//MatrixForm

In(6).

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & -3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & -4 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & -5 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & -6 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & -7 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -8 & 0 & 0 \end{pmatrix}$$

In[7]:

MatrixForm[%1 - (a + 8 b) * IdentityMatrix[9]]

Ont[7]//MatrixForm

In[8]-

NullSpace[%1 - (a + 8 b) * IdentityMatrix[9]]

Out[8]

 $\{\{1, 1, 1, 1, 1, 1, 1, 1, 1, 1\}\}$

In(10):-

```
\{\{1, -1, 0, 0, 0, 0, 0, 0, 0\}, \{1, 1, -2, 0, 0, 0, 0, 0, 0\},\
 \{1, 1, 1, -3, 0, 0, 0, 0, 0\}, \{1, 1, 1, 1, -4, 0, 0, 0, 0\},
 \{1, 1, 1, 1, 1, -5, 0, 0, 0\}, \{1, 1, 1, 1, 1, 1, -6, 0, 0\},
 \{1, 1, 1, 1, 1, 1, 1, -7, 0\}, \{1, 1, 1, 1, 1, 1, 1, 1, -8\},
 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}};
```

10[11]

MatrixForm[8]

On[11]/MatrixForm

```
0
                          0
             0
         1 -4 0
                          0
                          0
                   0
1 1 1 1 1 1 -6
1 1 1 1 1 1 1
                          0
                1 -6
                          0
                    1
                       1
                           -8
                           1
```

In[12];-

Det[8]

Ont[12]-

362880

In[13]:=

9!

Out[13]-

362880

In[14]:-

<< LinearAlgebra `Orthogonalization`;

In[15]:-

MatrixForm[GramSchmidt[%11]]

Out[15]//MatrixForm=

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & -\frac{\sqrt{3}}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{5}} & \frac{1}{2\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 & 0 & 0 & 0 \\ \frac{1}{2\sqrt{5}} & \frac{1}{2\sqrt{5}} & \frac{1}{2\sqrt{5}} & \frac{1}{2\sqrt{5}} & -\frac{2}{\sqrt{5}} & 0 & 0 & 0 & 0 \\ \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{30}} & \frac{1}{\sqrt{30}} & -\sqrt{\frac{5}{6}} & 0 & 0 & 0 \\ \frac{1}{\sqrt{42}} & \frac{1}{\sqrt{42}} & \frac{1}{\sqrt{42}} & \frac{1}{\sqrt{42}} & \frac{1}{\sqrt{42}} & \frac{1}{\sqrt{42}} & -\sqrt{\frac{6}{7}} & 0 & 0 \\ \frac{1}{2\sqrt{14}} & -\frac{\sqrt{\frac{7}{2}}}{2} & 0 \\ \frac{1}{6\sqrt{2}} & -\frac{2\sqrt{2}}{3} \\ \frac{1}{3} & \frac{1}{3} \\ \end{pmatrix}$$

In[16]:-

MatrixForm[Simplify[%.Transpose[%]]]

Out[16]//MatrixForm

In(17]-

MatrixForm[Simplify[%15.%1.Transpose[%15]]]

Out[17]/MatrixForm=

/ a - b	0	0	0	0	0	0	0	0 /
0	a – b	0	0	0	0	0	0	0
0	0	a - b	О	0	0	0	0	0
0	0	0	a - b	0	0	0	0	0
0	0	0	O	a – b	0	0	0	0
0	0	0	0	0	a - b	0	0	0
0	0	0	0	0	0	a – b	0	0
0	0	0	0	0	0	0	a - b	0
0	0	0	0	0	0	0	0	a + 8 b

In[1]

$$M = \left(\begin{array}{c|c} a & b \\ \hline c & d \end{array}\right);$$

In(2):-

$$\mathbf{E}_{1,1} = \left(\begin{array}{c|c} 1 & 0 \\ \hline 0 & 0 \end{array} \right);$$

In(4)

$$\mathbf{E}_{1,2} = \left(\begin{array}{c|c} 0 & 1 \\ \hline 0 & 0 \end{array} \right);$$

In[5]=

$$\mathbf{E}_{2,1} = \left(\begin{array}{c|c} 0 & 0 \\ \hline 1 & 0 \end{array}\right);$$

In[6]::

$$\mathbf{E}_{2,2} = \left(\begin{array}{c|c} 0 & 0 \\ \hline 0 & 1 \end{array} \right);$$

In[7]-

$$b_1[X_, Y_] := Tr[X.M.Y];$$

In[8]:-

b ₁ [E _{1.1} , E _{1.1}]	b ₁ [E _{1,1} , E _{1,2}]	b ₁ [E _{1,1} , E _{2,1}]	b ₁ [E _{1,1} , E _{2,2}]
b ₁ [E _{1,2} , E _{1,1}]	b ₁ [E _{1,2} , E _{1,2}]	b ₁ [E _{1,2} , E _{2,1}]	b ₁ [E _{1,2} , E _{2,2}]
b ₁ [E _{2,1} , E _{1,1}]	b ₁ [E _{2,1} , E _{1,2}]	b ₁ [E _{2,1} , E _{2,1}]	b ₁ [E _{2,1} , E _{2,2}]
b ₁ [E _{2,2} , E _{1,1}]	b ₁ [E _{2,2} , E _{1,2}]	b ₁ [E _{2,2} , E _{2,1}]	b ₁ [E _{2,2} , E _{2,2}]

In[9]:=

MatrixForm[%]

Out[9]/MatrixForm=

.ln[]0];=

$b_1[E_{1,1}, E_{1,1}]$	b ₁ [E _{1,1} , E _{2,1}]	b ₁ [E _{1,1} , E _{1,2}]	b ₁ [E _{1,1} , E _{2,2}]
	b ₁ [E _{2,1} , E _{2,1}]		
$b_1[E_{1,2}, E_{1,1}]$	$b_1[E_{1,2}, E_{2,1}]$	b ₁ [E _{1,2} , E _{1,2}]	b ₁ [E _{1,2} , E _{2,2}]
$b_1[E_{2,2}, E_{1,1}]$	$b_1[E_{2,2}, E_{2,1}]$	b ₁ [E _{2,2} , E _{1,2}]	b ₁ [E _{2,2} , E _{2,2}]

In[11]:-

MatrixForm [%]

Oug 111/MatrixForm

In(12):-

 $b_2[X_, Y_] := Tr[X.M.Transpose[Y]];$

In[13].-

$b_2[E_{1,1}, E_{1,1}]$	b ₂ [E _{1,1} , E _{1,2}]	b ₂ [E _{1,1} , E _{2,1}]	b ₂ [E _{1,1} , E _{2,2}]
$b_2[E_{1,2}, E_{1,1}]$	$b_2[E_{1,2}, E_{1,2}]$	$b_2[E_{1,2}, E_{2,1}]$	$b_2[E_{1,2}, E_{2,2}]$
$b_2[E_{2,1}, E_{1,1}]$	b ₂ [E _{2,1} , E _{1,2}]	b ₂ [E _{2,1} , E _{2,1}]	b ₂ [E _{2,1} , E _{2,2}]
b ₂ [E _{2,2} , E _{1,1}]	b ₂ [E _{2,2} , E _{1,2}]	$b_2[E_{2,2}, E_{2,1}]$	b ₂ [E _{2,2} , E _{2,2}]

In[14]:=

MatrixForm[%]

Out[14]//MatrixForm=

In[15]-

$b_2[E_{1,1}, E_{1,1}]$	$b_2[E_{1,1}, E_{2,1}]$	b ₂ [E _{1,1} , E _{1,2}]	$b_2[E_{1,1}, E_{2,2}]$
		b ₂ [E _{2,1} , E _{1,2}]	
$b_2[E_{1,2}, E_{1,1}]$	b ₂ [E _{1,2} , E _{2,1}]	b ₂ [E _{1,2} , E _{1,2}]	b ₂ [E _{1,2} , E _{2,2}]
$b_2[E_{2,2}, E_{1,1}]$	b ₂ [E _{2,2} , E _{2,1}]	b ₂ [E _{2,2} , E _{1,2}]	b ₂ [E _{2,2} , E _{2,2}]

In[16]-

MatrixForm[%]

Out[16]/MacrixFount

$$\begin{pmatrix}
a & 0 & b & 0 \\
0 & a & 0 & b \\
c & 0 & d & 0 \\
0 & c & 0 & d
\end{pmatrix}$$

In[17]:-

b₃[X_, Y_] := Tr[Transpose[X].M.Y];

In[18]-

b ₃ [E _{1,1} , E _{1,1}]	b ₃ [E _{1,1} , E _{1,2}]	b ₃ [E _{1,1} , E _{2,1}]	b ₃ [E _{1,1} , E _{2,2}]
		b ₃ [E _{1,2} , E _{2,1}]	
		b ₃ [E _{2,1} , E _{2,1}]	
		b ₃ [E _{2,2} , E _{2,1}]	

In[19]:-

MatrixForm[%]

Out[19]//MatrixForm=

In(20):=

b ₃ [E _{1,1} , E _{1,1}]	b ₃ [E _{1,1} , E _{2,1}]	b ₃ [E _{1,1} , E _{1,2}]	$b_3[E_{1,1}, E_{2,2}]$
b ₃ [E _{2,1} , E _{1,1}]	$b_3[E_{2,1}, E_{2,1}]$	b ₃ [E _{2,1} , E _{1,2}]	b ₃ [E _{2,1} , E _{2,2}]
b ₃ [E _{1,2} , E _{1,1}]	$b_3[E_{1,2}, E_{2,1}]$	b ₃ [E _{1,2} , E _{1,2}]	b ₃ [E _{1,2} , E _{2,2}]
b ₃ [E _{2,2} , E _{1,1}]	b ₃ [E _{2,2} , E _{2,1}]	b ₃ [E _{2,2} , E _{1,2}]	b ₃ [E _{2,2} , E _{2,2}]

In[21]:-

MatrixForm[%]

Out[21]//MatrixForm=

(n[22]:=

b4[X_, Y_] := Tr[Transpose[X].M.Transpose[Y]];

In[23] -

$b_4[E_{1,1}, E_{1,1}]$	$b_4[E_{1,1}, E_{1,2}]$	b4[E1,1, E2,1]	b ₄ [E _{1,1} , E _{2,2}]
$b_4[E_{1,2}, E_{1,1}]$	b ₄ [E _{1,2} , E _{1,2}]	b ₄ [E _{1,2} , E _{2,1}]	b ₄ [E _{1,2} , E _{2,2}]
		b ₄ [E _{2,1} , E _{2,1}]	
		b ₄ [E _{2,2} , E _{2,1}]	

in(24):

MatrixForm[%]

Out[24]/MatrixForm=

In[25]:-

$b_4[E_{1,1}, E_{1,1}]$	b ₄ [E _{1,1} , E _{2,1}]	b ₄ [E _{1,1} , E _{1,2}]	b ₄ [E _{1,1} , E _{2,2}]
	b ₄ [E _{2,1} , E _{2,1}]		
b ₄ [E _{1,2} , E _{1,1}]	b ₄ [E _{1,2} , E _{2,1}]	b ₄ [E _{1,2} , E _{1,2}]	b ₄ [E _{1,2} , E _{2,2}]
b ₄ [E _{2,2} , E _{1,1}]	b ₄ [E _{2,2} , E _{2,1}]	b ₄ [E _{2,2} , E _{1,2}]	b ₄ [E _{2,2} , E _{2,2}]

In[26];=

MatrixForm[%]

Ow[26]/MatrixForm

$$B_{1} = \left\{ E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \right.$$

$$E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$B_{2} = \left\{ E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \right.$$

$$E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

$$\mathcal{M} (b_1, B_1) = \begin{pmatrix} a & 0 & b & 0 \\ c & 0 & d & 0 \\ 0 & a & 0 & b \\ 0 & c & 0 & d \end{pmatrix} \mathcal{M} (b_1, B_2) = \begin{pmatrix} a & b & 0 & 0 \\ 0 & 0 & a & b \\ c & d & 0 & 0 \\ 0 & 0 & c & d \end{pmatrix}$$

$$M (b_2, B_1) = \begin{cases} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{cases} M (b_2, B_2) = \begin{pmatrix} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{pmatrix}$$

$$M (b_3, B_1) = \begin{cases} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{cases} M (b_3, B_2) = \begin{pmatrix} a & b & 0 & 0 \\ c & d & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & c & d \end{cases}$$

$$M (b_4, B_1) = \begin{cases} a & b & 0 & 0 \\ 0 & 0 & a & b \\ c & d & 0 & 0 \\ 0 & 0 & c & d \end{cases} M (b_4, B_2) = \begin{pmatrix} a & 0 & b & 0 \\ c & 0 & d & 0 \\ 0 & a & 0 & b \\ 0 & c & 0 & d \end{pmatrix}$$

Converted by Mathematica (March 15, 2018)

6[1]

$$p_0[x] = 1;$$

 $\ln[2] =$

$$p_1[x] = x;$$

In[3]-

$$p_2[x] = x^2;$$

In[4]:

$$p_3[x] = x^3;$$

In[5]:

$$b_1[p_, q] := \int_a^b p * q dx;$$

h(6)

$b_1[p_0[x], p_0[x]]$	b ₁ [p ₀ [x], p ₁ [x]]	$b_1[p_0[x], p_2[x]]$	$b_1[p_0[x], p_3[x]]$
b ₁ [p ₁ [x], p ₀ [x]]	b ₁ [p ₁ [x], p ₁ [x]]	$b_1[p_1[x], p_2[x]]$	$b_1[p_1[x], p_3[x]]$
b ₁ [p ₁ [x], p ₀ [x]] b ₁ [p ₂ [x], p ₀ [x]]	b ₁ [p ₂ [x], p ₁ [x]]	$b_1[p_2[x], p_2[x]]$	$b_1[p_2[x], p_3[x]]$
b ₁ [p ₃ [x], p ₀ [x]]	b ₁ [p ₃ [x], p ₁ [x]]	$b_1[p_3[x], p_2[x]]$	$b_1[p_3[x], p_3[x]]$

);

Is[7]:-

MatrixForm[%]

Out[7]//MatrixForm

$$\begin{pmatrix} -a+b & -\frac{a^2}{2} + \frac{b^2}{2} & -\frac{a^3}{3} + \frac{b^3}{3} & -\frac{a^4}{4} + \frac{b^4}{4} \\ -\frac{a^2}{2} + \frac{b^2}{2} & -\frac{a^3}{3} + \frac{b^3}{3} & -\frac{a^4}{4} + \frac{b^4}{4} & -\frac{a^5}{5} + \frac{b^5}{5} \\ -\frac{a^3}{3} + \frac{b^3}{3} & -\frac{a^4}{4} + \frac{b^4}{4} & -\frac{a^5}{5} + \frac{b^5}{5} & -\frac{a^6}{6} + \frac{b^6}{6} \\ -\frac{a^4}{4} + \frac{b^4}{4} & -\frac{a^5}{5} + \frac{b^5}{5} & -\frac{a^6}{6} + \frac{b^6}{6} & -\frac{a^7}{7} + \frac{b^7}{7} \end{pmatrix}$$

In(8):-

$$\texttt{MatrixForm}\left[\$ \ / \ . \ \{\texttt{a} \rightarrow \texttt{0} \ , \ \texttt{b} \rightarrow \texttt{1}\}\right]$$

Out[8]/MatrixForm

$$\begin{pmatrix}
1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7}
\end{pmatrix}$$

1491-

MatrixForm [%% /. $\{a \rightarrow -1, b \rightarrow 1\}$]

Out[9]/MatrixForms

$$\begin{pmatrix}
2 & 0 & \frac{2}{3} & 0 \\
0 & \frac{2}{3} & 0 & \frac{2}{5} \\
\frac{2}{3} & 0 & \frac{2}{5} & 0 \\
0 & \frac{2}{5} & 0 & \frac{2}{7}
\end{pmatrix}$$

[m][m]=

$b_1[p_3[x], p_3[x]]$	$b_1[p_3[x], p_2[x]]$	b ₁ [p ₃ [x], p ₁ [x]]	$b_1[p_3[x], p_0[x]]$
$b_1[p_2[x], p_3[x]]$	$b_1[p_2[x], p_2[x]]$	$b_1[p_2[x], p_1[x]]$	$b_1[p_2[x], p_0[x]]$
$b_1[p_1[x], p_3[x]]$	$b_1[p_1[x], p_2[x]]$	$b_1[p_1[x], p_1[x]]$	$b_1[p_1[x], p_0[x]]$
b ₁ [p ₀ [x], p ₃ [x]]	b ₁ [p ₀ [x], p ₂ [x]]	$b_1[p_0[x], p_1[x]]$	$b_1[p_0[x], p_0[x]]$

);

[[[]]-

MatrixForm [%]

Out[11]//MatrixForm-

In[12]:

 $\texttt{MatrixForm} \left[\$ \ / \ . \ \{ \texttt{a} \rightarrow \texttt{0} \, , \, \texttt{b} \rightarrow \texttt{1} \} \right]$

Out[12]//MatrixForm=

$$\begin{pmatrix}
\frac{1}{7} & \frac{1}{6} & \frac{1}{5} & \frac{1}{4} \\
\frac{1}{6} & \frac{1}{5} & \frac{1}{4} & \frac{1}{3} \\
\frac{1}{5} & \frac{1}{4} & \frac{1}{3} & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{3} & \frac{1}{2} & 1
\end{pmatrix}$$

In[13]

MatrixForm [%% /. $\{a \rightarrow -1, b \rightarrow 1\}$]

Out[13]:/MatrixForms

$$\begin{pmatrix}
\frac{2}{7} & 0 & \frac{2}{5} & 0 \\
0 & \frac{2}{5} & 0 & \frac{2}{3} \\
\frac{2}{5} & 0 & \frac{2}{3} & 0 \\
0 & \frac{2}{3} & 0 & 2
\end{pmatrix}$$

In[14]; ~

$$b_2[p_, q_] := \int_a^b p * q * x dx;$$

In[15]:=

$b_2[p_0[x], p_0[x]]$	$b_2[p_0[x], p_1[x]]$	b ₂ [p ₀ [x], p ₂ [x]] b ₂ [p ₁ [x], p ₂ [x]]	$b_2[p_0[x], p_3[x]]$
$b_2[p_1[x], p_0[x]]$	b ₂ [p ₁ [x], p ₁ [x]]	b ₂ [p ₁ [x], p ₂ [x]]	$b_2[p_1[x], p_3[x]]$
$b_2[p_2[x], p_0[x]]$	$b_2[p_2[x], p_1[x]]$	b ₂ [p ₂ [x], p ₂ [x]] b ₂ [p ₃ [x], p ₂ [x]]	$b_2[p_2[x], p_3[x]]$
$b_2[p_3[x], p_0[x]]$	$b_2[p_3[x], p_1[x]]$	$b_2[p_3[x], p_2[x]]$	$b_2[p_3[x], p_3[x]]$

);

In[16]=

MatrixForm[%]

Out[16]//MatrixForm

$$\begin{pmatrix}
-\frac{a^2}{2} + \frac{b^2}{2} & -\frac{a^3}{3} + \frac{b^3}{3} & -\frac{a^4}{4} + \frac{b^4}{4} & -\frac{a^5}{5} + \frac{b^5}{5} \\
-\frac{a^3}{3} + \frac{b^3}{3} & -\frac{a^4}{4} + \frac{b^4}{4} & -\frac{a^5}{5} + \frac{b^5}{5} & -\frac{a^6}{6} + \frac{b^6}{6} \\
-\frac{a^4}{4} + \frac{b^4}{4} & -\frac{a^5}{5} + \frac{b^5}{5} & -\frac{a^6}{6} + \frac{b^6}{6} & -\frac{a^7}{7} + \frac{b^7}{7} \\
-\frac{a^5}{5} + \frac{b^5}{5} & -\frac{a^6}{6} + \frac{b^6}{6} & -\frac{a^7}{7} + \frac{b^7}{7} & -\frac{a^8}{8} + \frac{b^8}{8}
\end{pmatrix}$$

In[17]:-

$$b_3[p_, q_] := \int_a^b p * q * x^2 dx;$$

hi[18]:

1	$b_3[p_0[x], p_0[x]]$	b ₃ [p ₀ [x], p ₁ [x]]	$b_3[p_0[x], p_2[x]]$	$b_3[p_0[x], p_3[x]]$
	$b_3[p_1[x], p_0[x]]$	$b_3[p_1[x], p_1[x]]$	$b_3[p_1[x], p_2[x]]$	$b_3[p_1[x], p_3[x]]$ $b_3[p_2[x], p_3[x]]$
	$b_3[p_2[x], p_0[x]]$	$b_3[p_2[x], p_1[x]]$	$b_3[p_2[x], p_2[x]]$	$b_3[p_2[x], p_3[x]]$
	b ₃ [p ₃ [x], p ₀ [x]]	b ₃ [p ₃ [x], p ₁ [x]]	$b_3[p_3[x], p_2[x]]$	$b_3[p_3[x], p_3[x]]$

In[19];-

MatrixForm [%]

Out[19]/MatrixForm:

In(20]:-

$$b_4[p_, q] := \int_a^b p * q * \frac{1}{x} dx;$$

In[21]:-

b ₄ [p ₀ [x], p ₀ [x]]	b ₄ [p ₀ [x], p ₁ [x]]	$b_4[p_0[x], p_2[x]]$	b ₄ [p ₀ [x], p ₃ [x]]
$b_4[p_1[x], p_0[x]]$	$b_4[p_1[x], p_1[x]]$	$b_4[p_1[x], p_2[x]]$	$b_4[p_1[x], p_3[x]]$
$b_4[p_2[x], p_0[x]]$	b ₄ [p ₂ [x], p ₁ [x]]	$b_4[p_2[x], p_2[x]]$	$b_4[p_2[x], p_3[x]]$
$b_4[p_3[x], p_0[x]]$	b ₄ [p ₂ [x], p ₁ [x]] b ₄ [p ₃ [x], p ₁ [x]]	$b_4[p_3[x], p_2[x]]$	$b_4[p_3[x], p_3[x]]$

In[22]:-

MatrixForm [%]

Out[22]//MatrixForm:

In[23]:--

$$b_5[p_, q_] := \int_a^b p * q * \frac{1}{x^2} dx;$$

to[34];;

			$b_5[p_0[x], p_2[x]]$	
П	$b_5[p_1[x], p_0[x]]$	b ₅ [p ₁ [x], p ₁ [x]]	$b_5[p_1[x], p_2[x]]$	$b_5[p_1[x], p_3[x]]$
	$b_5[p_2[x], p_0[x]]$	$b_5[p_2[x], p_1[x]]$	$b_5[p_2[x], p_2[x]]$	$b_5[p_2[x], p_3[x]]$
	$b_5[p_3[x], p_0[x]]$	$b_5[p_3[x], p_1[x]]$	$b_5[p_3[x], p_2[x]]$	$b_5[p_3[x], p_3[x]]$

In(25):-

MatrixForm[%]

In[42]-

$$b_{6}[p_{q}] := \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} p * q * Sin[x] dx;$$

lo(43)-

1	b ₆ [p ₀ [x], p ₀ [x]]	b ₆ [p ₀ [x], p ₁ [x]]	b ₆ [p ₀ [x], p ₂ [x]]	b ₆ [p ₀ [x], p ₃ [x]]
	$b_6[p_1[x], p_0[x]]$	b ₆ [p ₁ [x], p ₁ [x]]	$b_6[p_1[x], p_2[x]]$	$b_6[p_1[x], p_3[x]]$
ľ	$b_6[p_2[x], p_0[x]]$	$b_6[p_2[x], p_1[x]]$	$b_6[p_2[x], p_2[x]]$	$b_6[p_2[x], p_3[x]]$
	b ₆ [p ₃ [x], p ₀ [x]]	b ₆ [p ₃ [x], p ₁ [x]]	$b_6[p_3[x], p_2[x]]$	$b_6[p_3[x], p_3[x]]$

In[44]:

MatrixForm [%]

Out[44]//MatrixForm

$$\begin{pmatrix} 0 & 2 & 0 & -12 + \frac{3\pi^2}{2} \\ 2 & 0 & -12 + \frac{3\pi^2}{2} & 0 \\ 0 & -12 + \frac{3\pi^2}{2} & 0 & 240 - 30\pi^2 + \frac{5\pi^4}{8} \\ -12 + \frac{3\pi^2}{2} & 0 & 240 - 30\pi^2 + \frac{5\pi^4}{8} & 0 \end{pmatrix}$$

In[45]:=

$$b_7[p_, q] := \int_a^b D[p, x] * q dx;$$

(b	$_{7}[p_{0}[x], p_{0}[x]]$	b ₇ [p ₀ [x], p ₁ [x]] b ₇ [p ₁ [x], p ₁ [x]] b ₇ [p ₂ [x], p ₁ [x]]	$b_7[p_0[x], p_2[x]]$	$b_7[p_0[x], p_3[x]]$
b	$7[p_1[x], p_0[x]]$	$b_7[p_1[x], p_1[x]]$	$b_7[p_1[x], p_2[x]]$	$b_7[p_1[x], p_3[x]]$
b	$_{7}[p_{2}[x], p_{0}[x]]$	$b_7[p_2[x], p_1[x]]$	$b_7[p_2[x], p_2[x]]$	$b_7[p_2[x], p_3[x]]$
(b	$_{7}[p_{3}[x], p_{0}[x]]$	b ₇ [p ₃ [x], p ₁ [x]]	$b_7[p_3[x], p_2[x]]$	$b_7[p_3[x], p_3[x]]$

lo[47]::

MatrixForm[%]

Out[47]/MatrixForm

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ -a+b & -\frac{a^2}{2}+\frac{b^2}{2} & -\frac{a^3}{3}+\frac{b^3}{3} & -\frac{a^4}{4}+\frac{b^4}{4} \\ 2\left(-\frac{a^2}{2}+\frac{b^2}{2}\right) & 2\left(-\frac{a^3}{3}+\frac{b^3}{3}\right) & 2\left(-\frac{a^4}{4}+\frac{b^4}{4}\right) & 2\left(-\frac{a^5}{5}+\frac{b^5}{5}\right) \\ 3\left(-\frac{a^3}{3}+\frac{b^3}{3}\right) & 3\left(-\frac{a^4}{4}+\frac{b^4}{4}\right) & 3\left(-\frac{a^5}{5}+\frac{b^5}{5}\right) & 3\left(-\frac{a^6}{6}+\frac{b^6}{6}\right) \end{pmatrix}$$

In[48]-

$$b_8[p_, q] := \int_a^b D[p, x] * D[q, \{x, 2\}] dx;$$

[n[49]

$b_8[p_0[x], p_0[x]]$	$b_8[p_0[x], p_1[x]]$	$b_8[p_0[x], p_2[x]]$	$b_8[p_0[x], p_3[x]]$
b ₈ [p ₀ [x], p ₀ [x]] b ₈ [p ₁ [x], p ₀ [x]] b ₈ [p ₂ [x], p ₀ [x]] b ₈ [p ₃ [x], p ₀ [x]]	$b_{\theta}[p_{1}[x], p_{1}[x]]$	$b_8[p_1[x], p_2[x]]$	$b_8[p_1[x], p_3[x]]$
$b_{8}[p_{2}[x], p_{0}[x]]$	$b_{8}[p_{2}[x], p_{1}[x]]$	$b_{\theta}[p_{2}[x], p_{2}[x]]$	$b_8[p_2[x], p_3[x]]$
$b_8[p_3[x], p_0[x]]$	$b_{\theta}[p_{3}[x], p_{1}[x]]$	$b_{8}[p_{3}[x], p_{2}[x]]$	$b_8[p_3[x], p_3[x]]$

);

In[50];-

MatrixForm[%]

Out[50]/MstrixForm

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -2 a + 2 b & 6 \left(-\frac{a^2}{2} + \frac{b^2}{2}\right) \\ 0 & 0 & 4 \left(-\frac{a^2}{2} + \frac{b^2}{2}\right) & 12 \left(-\frac{a^3}{3} + \frac{b^3}{3}\right) \\ 0 & 0 & 6 \left(-\frac{a^3}{3} + \frac{b^3}{3}\right) & 18 \left(-\frac{a^4}{4} + \frac{b^4}{4}\right) \end{pmatrix}$$

In[52]:-

$$b_9[p_, q_] := (p/.x \rightarrow a) * (q/.x \rightarrow b);$$

In[53];

1	b ₉ [p ₀ [x], p ₀ [x]]	b ₉ [p ₀ [x], p ₁ [x]]	b ₉ [p ₀ [x], p ₂ [x]]	b ₉ [p ₀ [x], p ₃ [x]]
	$b_9[p_1[x], p_0[x]]$ $b_9[p_2[x], p_0[x]]$	$b_9[p_1[x], p_1[x]]$	$b_9[p_1[x], p_2[x]]$	$b_9[p_1[x], p_3[x]]$
1	$b_9[p_2[x], p_0[x]]$	$b_9[p_2[x], p_1[x]]$	$b_9[p_2[x], p_2[x]]$	$b_9[p_2[x], p_3[x]]$
	b ₉ [p ₃ [x], p ₀ [x]]	b ₉ [p ₃ [x], p ₁ [x]]	b ₉ [p ₃ [x], p ₂ [x]]	$b_9[p_3[x], p_3[x]]$

);

to[54]:

MatrixForm[%]

Out[54]//MatrixForm:-

$$\begin{pmatrix}
1 & b & b^2 & b^3 \\
a & ab & ab^2 & ab^3 \\
a^2 & a^2b & a^2b^2 & a^2b^3 \\
a^3 & a^3b & a^3b^2 & a^3b^3
\end{pmatrix}$$

In[55];=

$$b_{10}[p, q] := (p/.x \rightarrow a) * (D[q, x]/.x \rightarrow b);$$

In(56):-

$b_{10}[p_0[x], p_0[x]]$	b ₁₀ [p ₀ [x], p ₁ [x]]	$b_{10}[p_0[x], p_2[x]]$	b ₁₀ [p ₀ [x], p ₃ [x]]
b ₁₀ [p ₁ [x], p ₀ [x]] b ₁₀ [p ₂ [x], p ₀ [x]]	b ₁₀ [p ₁ [x], p ₁ [x]]	$b_{10}[p_1[x], p_2[x]]$	$b_{10}[p_1[x], p_3[x]]$
$b_{10}[p_2[x], p_0[x]]$	$b_{10}[p_2[x], p_1[x]]$	$b_{10}[p_2[x], p_2[x]]$	$b_{10}[p_2[x], p_3[x]]$
b ₁₀ [p ₃ [x], p ₀ [x]]	$b_{10}[p_3[x], p_1[x]]$	$b_{10}[p_3[x], p_2[x]]$	b ₁₀ [p ₃ [x], p ₃ [x]]

In[57]:=

MatrixForm[%]

Out[57]//MatrixForme

$$\begin{pmatrix} 0 & 1 & 2b & 3b^2 \\ 0 & a & 2ab & 3ab^2 \\ 0 & a^2 & 2a^2b & 3a^2b^2 \\ 0 & a^3 & 2a^3b & 3a^3b^2 \end{pmatrix}$$

Converted by Mathematica (March 22, 2018)

In[1]:-

```
\begin{pmatrix} -4 & -1 & 0 & 1 & 0 & 1 & 0 & 4 & 0 \\ -1 & -3 & 1 & -3 & 0 & -3 & -1 & 1 & -1 \\ 0 & 1 & 1 & -1 & 1 & -3 & 3 & -1 & -1 \\ 1 & -3 & -1 & -4 & 0 & 3 & -1 & -2 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & -3 & -3 & 3 & 0 & 0 & -1 & -1 & 1 \\ 0 & -1 & 3 & -1 & 0 & -1 & 0 & -2 & 0 \\ 4 & 1 & -1 & -2 & 0 & -1 & -2 & 0 & -2 \\ 0 & -1 & -1 & -1 & 0 & 1 & 0 & -2 & 0 \end{pmatrix}
```

lo[2]:=

Dimensions[%]

Out[2]-

{9, 9}

In(3):-

MatrixForm[%1 - Transpose[%1]]

Out[3]//MatrixForm

In[4]:-

Det[%1 - t * IdentityMatrix[9]]

On[4]

$$14980 t + 20785 t^{2} - 20591 t^{3} 13334 t^{4} - 2 t^{5} + 768 t^{6} + 60 t^{7} - 10 t^{8} - t^{9}$$

In(5):

CoefficientList[%, t]

Out[5]=

$$\{0, 14980, 20785, -20591, -13334, -2, 768, 60, -10, -1\}$$

$F_1 \leftrightarrow F_3$; $C_1 \leftrightarrow C_3$

In(6):=

1	0	0	1	0	0	0	0	0	0	1
	0	1	0	0	0	0	0	0	0	
	1	0	0	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	11
	0	0	0	0	1	0	0	0	0] ;
	0	0	0	0	0	1	0	0	0	11
	0.	0	0	0	0	0	1.	0	0	11
	0	0	0	0	0	0	0	1	0	11
	0	0	0	0	0	0	0	0	1	

In[7]:

MatrixForm[%.%1.Transpose[%]]

Out/J-MatrixForm=

$$\begin{pmatrix} 1 & 1 & 0 & -1 & 1 & -3 & 3 & -1 & -1 \\ 1 & -3 & -1 & -3 & 0 & -3 & -1 & 1 & -1 \\ 0 & -1 & -4 & 1 & 0 & 1 & 0 & 4 & 0 \\ -1 & -3 & 1 & -4 & 0 & 3 & -1 & -2 & -1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -3 & -3 & 1 & 3 & 0 & 0 & -1 & -1 & 1 \\ 3 & -1 & 0 & -1 & 0 & -1 & 0 & -2 & 0 \\ -1 & 1 & 4 & -2 & 0 & -1 & -2 & 0 & -2 \\ -1 & -1 & 0 & -1 & 0 & 1 & 0 & -2 & 0 \\ \end{pmatrix}$$

$$F_2 \rightarrow F_2 - F_1$$
; $C_2 \rightarrow C_2 - C_1$
 $F_4 \rightarrow F_4 + F_1$; $C_4 \rightarrow C_4 + C_1$
 $F_5 \rightarrow F_5 - F_1$; $C_5 \rightarrow C_5 - C_1$
 $F_6 \rightarrow F_6 + 3 F_1$; $C_6 \rightarrow C_6 + 3 C_1$
 $F_7 \rightarrow F_7 - 3 F_1$; $C_7 \rightarrow C_7 - 3 C_1$
 $F_8 \rightarrow F_8 + F_1$; $C_8 \rightarrow C_8 + C_1$
 $F_9 \rightarrow F_9 + F_1$; $C_9 \rightarrow C_9 + C_1$

In(8):-

1	0	0	0	0	0	0	0	0	1
-1	1	0	0	0	0	0	0	0	11
0	0	1	0	0	0	0	0	0	11
1	0	0	1	0	0	0	0	0	11
-1	0	0	0	1	0	0	0	0	11.
3	0	0	0	0	1	0	0	0	11
-3	0	Q	0	0	0.	1	0	0.	11
1	0	0	0	0	0	0	1	0	11
1	0	0	0	0	0	0	0	1	11

[a[9]:

MatrixForm[%.%7.Transpose[%]]

Ont[9]/MatrixForm

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -4 & -1 & -2 & -1 & 0 & -4 & 2 & 0 \\ 0 & -1 & -4 & 1 & 0 & 1 & 0 & 4 & 0 \\ 0 & -2 & 1 & -5 & 1 & 0 & 2 & -3 & -2 \\ 0 & -1 & 0 & 1 & -1 & 3 & -3 & 1 & 1 \\ 0 & 0 & 1 & 0 & 3 & -9 & 8 & -4 & -2 \\ 0 & -4 & 0 & 2 & -3 & 8 & -9 & 1 & 3 \\ 0 & 2 & 4 & -3 & 1 & -4 & 1 & -1 & -3 \\ 0 & 0 & 0 & -2 & 1 & -2 & 3 & -3 & -1 \\ \end{pmatrix}$$

$$F_2 \leftrightarrow F_5$$
; $C_2 \leftrightarrow C_5$

ts[10]-

1	0	0	0	0	0	0	0	0	1
	0	0	0	0	1	0	0	0	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	0	0	0	1	0
	0	0	0	1	0	0	0	0	0
	0	0	1	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0

MatrixForm[%.%9.Transpose[%]]

Out[11]/MatrixForm=

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1 & -1 & 3 & -3 & 1 & 1 \\ 0 & 0 & -4 & 1 & -1 & 1 & 0 & 4 & 0 \\ 0 & 1 & 1 & -5 & -2 & 0 & 2 & -3 & -2 \\ 0 & -1 & -1 & -2 & -4 & 0 & -4 & 2 & 0 \\ 0 & 3 & 1 & 0 & 0 & -9 & 8 & -4 & -2 \\ 0 & -3 & 0 & 2 & -4 & 8 & -9 & 1 & 3 \\ 0 & 1 & 4 & -3 & 2 & -4 & 1 & -1 & -3 \\ 0 & 1 & 0 & -2 & 0 & -2 & 3 & -3 & -1 \\ \end{pmatrix}$$

$$F_{4} \longrightarrow F_{4} + F_{2}; C_{4} \longrightarrow C_{4} + C_{2}$$

$$F_{5} \longrightarrow F_{5} - F_{2}; C_{5} \longrightarrow C_{5} - C_{2}$$

$$F_{6} \longrightarrow F_{6} + 3 F_{2}; C_{6} \longrightarrow C_{6} + 3 C_{2}$$

$$F_{7} \longrightarrow F_{7} - 3 F_{2}; C_{7} \longrightarrow C_{7} - 3 C_{2}$$

$$F_{8} \longrightarrow F_{8} + F_{2}; C_{8} \longrightarrow C_{8} + C_{2}$$

$$F_{9} \longrightarrow F_{9} + F_{2}; C_{9} \longrightarrow C_{9} + C_{2}$$

In[12]:-

1)	0	0	0	0	0	0	0	0	1
11	0	0	0	0	0	0	0	1	0
11	0	0	0	0	0	0	1	0	0
11	0	0	0	0	0	1	0	1	0
11	0	0	0	0	1	0	0	-1	0
	0	0	0	1	0	0	0	3	0
11	0	0	1	0	0	0	0	-3	0
11	0	1	0	0	0	0	0	1	0
11	1	0	0	0	0	0	0	1	0

In(13):=

MatrixForm[%.%11.Transpose[%]]

Out[13]//Minishorm

$$F_5 \longrightarrow F_5 + F_8$$
; $C_5 \longrightarrow C_5 + C_8$

In[14] -

1	0	0	0	0	0	0	0	0	11	
0	1	0	0	0	0	0	0	0	11	
0	0	1	0	0	0	0	0	0	11	
0	0	0	1	0	0	0	0	0	11	
0	.0	0	0	1	0	0	1	0	11	,
0	0	0	0	0	1	0	0	0	11	
0	0	0	0	0	0	1	0	0	11	
0	0	0	0	0	0	0	1	0	11	
0	0	0	0	0	0	0	0	1	1)	

[n][5]

MatrixForm[%.%13.Transpose[%]]

Out[15]/MutriaFonn

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -4 & 1 & 3 & 1 & 0 & 4 & 0 \\ 0 & 0 & 1 & -4 & -5 & 3 & -1 & -2 & -1 \\ 0 & 0 & 3 & -5 & -1 & -4 & -3 & 1 & -3 \\ 0 & 0 & 1 & 3 & -4 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & -1 & -3 & -1 & 0 & -2 & 0 \\ 0 & 0 & 4 & -2 & 1 & -1 & -2 & 0 & -2 \\ 0 & 0 & 0 & -1 & -3 & 1 & 0 & -2 & 0 \\ \end{pmatrix}$$

$$F_3 \leftrightarrow F_5$$
; $C_3 \leftrightarrow C_5$

In(16]:-

1	0	0	0	0	0	0	0	0	7
0	1	0	0	0	0	0	0	0	1
0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	0	0	0	1	1

In(17]:=

MatrixForm[%.%15.Transpose[%]]

Out[17]/MatrixForm

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & -5 & 3 & -4 & -3 & 1 & -3 \\ 0 & 0 & -5 & -4 & 1 & 3 & -1 & -2 & -1 \\ 0 & 0 & 3 & 1 & -4 & 1 & 0 & 4 & 0 \\ 0 & 0 & -4 & 3 & 1 & 0 & -1 & -1 & 1 \\ 0 & 0 & -3 & -1 & 0 & -1 & 0 & -2 & 0 \\ 0 & 0 & 1 & -2 & 4 & -1 & -2 & 0 & -2 \\ 0 & 0 & -3 & -1 & 0 & 1 & 0 & -2 & 0 \\ \end{pmatrix}$$

$$F_{4} \rightarrow F_{4} - 5 F_{3}; C_{4} \rightarrow C_{4} - 5 C_{3}$$

$$F_{5} \rightarrow F_{5} + 3 F_{3}; C_{5} \rightarrow C_{5} + 3 C_{3}$$

$$F_{6} \rightarrow F_{6} - 4 F_{3}; C_{6} \rightarrow C_{6} - 4 C_{3}$$

$$F_{7} \rightarrow F_{7} - 3 F_{3}; C_{7} \rightarrow C_{7} - 3 C_{3}$$

$$F_{8} \rightarrow F_{8} + F_{3}; C_{8} \rightarrow C_{8} + C_{3}$$

$$F_{9} \rightarrow F_{9} - 3 F_{3}; C_{9} \rightarrow C_{9} - 3 C_{3}$$

In[18]::

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	- 5	1	0	0	0	0	0
0	0	3	0	1	0	0	0	0
0	0	-4	0	0	1	0	0	0
0	0	-3	0	0	0	1	0	0
0	0	1	0	0	0	0	1	0
0	0	-3	0	0	0	0	0	1

In[19]:=

MatrixForm[%.%17.Transpose[%]]

Out[19]/MatrixForm

$$F_4 \longleftrightarrow F_8$$
; $C_4 \longleftrightarrow C_8$

In(201:-

1	0	0	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	0	11
0	0	1	0	0	0	0	0	0	11
0	0	0	0	0	0	0	1	0	11
0	0	0	0	1	0	0	0	0.	11
0	0	0	0	0	1	0	0	0	11
0	0	0	0	0	0	1	0	0	11
0	0	0	1	0	0	0	0	0	
0	0	0	0	0	0	0	0	1	1)

In[21]

MatrixForm [%.%19.Transpose[%]]

Out[21]//MatrixForm

$$F_5 \rightarrow F_5 - 7 F_4$$
; $C_5 \rightarrow C_5 - 7 C_4$
 $F_6 \rightarrow F_6 + 5 F_4$; $C_6 \rightarrow C_6 + 5 C_4$
 $F_7 \rightarrow F_7 + 5 F_4$; $C_7 \rightarrow C_7 + 5 C_4$
 $F_8 \rightarrow F_8 + 7 F_4$; $C_8 \rightarrow C_8 + 7 C_4$
 $F_9 \rightarrow F_9 + 5 F_4$; $C_9 \rightarrow C_9 + 5 C_4$

In(22) =

1	0	0	0	0	0	0	0	0	1)
0	1	0	0	0	0	0	0	0	11
0	0	1	0	0	0	0	0	0	11
0	0	0	1	0	0	0	0	0	11
0	0	0	-7	1	0	0	0	0	11 ;
0	0	0	5	0	1	0	0	0	11
0	0.	.0	5	0	0	1	0.	0	11
0	0	0	7	0	0	0	1	0	11
0	0	0	5	0	0	0	0	1	1)

In[23]::

MatrixForm[%.%21.Transpose[%]]

Out[23]//MatrixForm=

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -44 & 24 & 26 & 35 & 26 \\ 0 & 0 & 0 & 0 & 24 & -9 & -14 & -12 & -12 \\ 0 & 0 & 0 & 0 & 26 & -14 & -16 & -21 & -16 \\ 0 & 0 & 0 & 0 & 35 & -12 & -21 & -28 & -21 \\ 0 & 0 & 0 & 0 & 26 & -12 & -16 & -21 & -16 \\ \end{pmatrix}$$

$$F_7 \longrightarrow F_7 - F_9$$
; $C_7 \longrightarrow C_7 - C_9$

In[24]:=

in[25]:=

MatrixForm[%.%23.Transpose[%]]

Out[25]//MatrixForm=

$$F_6 \longrightarrow F_6 - 2 F_7$$
; $C_6 \longrightarrow C_6 - 2 C_7$

In(26):-

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	-2	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1

Io[27]:

MatrixForm[%.%25.Transpose[%]]

Out[27]/MatrixForms

$$F_5 \leftrightarrow F_6$$
; $C_5 \leftrightarrow C_6$

In[28]:-

-	_					-		_		400	
	1	0	0	0	0	0	0	0	0	1)	
	0	1	0	0	0	0	0	0	0	11	
I	0	0	1	0	0	0	0	0	0	11	
Ī	0	0	0	1	0	0	0	0	0	11	
Ì	0	0	0	0	0	1	0	0	0	11	,
İ	0	0	0	0	1	0	0	0	0	11	
Ì	0	0	0	0	0	0	1	0	0	11	
Ī	0	0	0	0	0	0	0	1	0	11	
İ	0	0	0	0	0	0	0	0	1	1)	
- 1					1			1		1.0	

in[29];-

MatrixForm[%.%27.Transpose[%]]

Out[29]/MatrixForm

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 24 & -2 & -12 & -12 \\ 0 & 0 & 0 & 0 & 24 & -44 & 0 & 35 & 26 \\ 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -12 & 35 & 0 & -28 & -21 \\ 0 & 0 & 0 & 0 & -12 & 26 & 0 & -21 & -16 \\ \end{pmatrix}$$

$$F_6 \rightarrow F_6 + 24 F_5$$
; $C_6 \rightarrow C_6 + 24 C_5$
 $F_7 \rightarrow F_7 - 2 F_5$; $C_7 \rightarrow C_7 - 2 C_5$
 $F_8 \rightarrow F_8 - 12 F_5$; $C_8 \rightarrow C_8 - 12 C_5$
 $F_9 \rightarrow F_9 - 12 F_5$; $C_9 \rightarrow C_9 - 12 C_5$

To[30]:-

1	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	0
;	0	0	0	0	1	0	0	0	0
	0	0	0	1	24	0	0	0	0
	0	0	1	0	-2	0	0	0	0
	0	1	0	0	-12	0	0	0	0
	1	0	0	0	-12	0	0	0	0

to(31);-

MatrixForm[%.%29.Transpose[%]]

Out[31]/MatrixForm

$$F_7 \leftrightarrow \frac{1}{2} F_7 ; C_7 \leftrightarrow \frac{1}{2} C_7$$

ta[32]-

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1 2	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1

In[33]-

MatrixForm[%.%31.Transpose[%]]

Out[33]/MatrixForm

$$F_6 \leftrightarrow F_7$$
; $C_6 \leftrightarrow C_7$

In(34)

1	0	0	0	0	0	0	0	0	1
	0	0	0	0	0	0	0	1	0
	0	0	0	0	0	0	1	0	0
	0	0	0	0	0	1	0	0	0
	0	0	0	0	1	0	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	1	0.	0	0	0	0
	0	1	0	0	0	0	0	0	0
	1	0	0	0	0	0	0	0	0

In[15]:-

MatrixForm[%.%33.Transpose[%]]

Oat[35]//MatrixForms

$$F_7 \longrightarrow F_7 + 24 F_6$$
; $C_7 \longrightarrow C_7 + 24 C_6$
 $F_8 \longrightarrow F_8 - 12 F_6$; $C_8 \longrightarrow C_8 - 12 C_6$
 $F_9 \longrightarrow F_9 - 12 F_6$; $C_9 \longrightarrow C_9 - 12 C_6$

In[56]:-

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	24	1	0	0
0	0	0	0	0	-12	0	1	0
0	0	0	0	0	-12	0	0	1

In(37]:-

MatrixForm[%.%35.Transpose[%]]

Out[37]/MatrixForm=

$$F_7 \longrightarrow F_7 + F_8$$
; $C_7 \longrightarrow C_7 + C_8$

to[38] +

1	1	0	0	0	0	0	0	0	0	1)
	0	1	0	0	0	0	0	0	0	11
. 5	0	0	1	0	0	0	0	0	0	11
	0	0	0	1	0	0	0	0	0	11
	0	0	0	0	1	0	0	0	0	11.
	0	0	0	0	0	1	0	0	0	11
	0	0	0	0	0	0	1	1	0	11
	0	0	0	0	0	0	0	1	0	
	0	0	0	0	0	0	0	0	1]]

In(39)

MatrixForm[%.%37.Transpose[%]]

Ont[39]//MatrixForm=

$$F_8 \longrightarrow F_8 - F_9$$
; $C_8 \longrightarrow C_8 - C_9$

In[40]:=

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0.	0	0	0	1	0	0.
0	0	0	0	0	0	0	1	-1
0	0	0	0	0	0	0	0	1

In[41]:-

MatrixForm[%.%39.Transpose[%]]

Out[41]//ManixForm

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 2 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5 & -5 & -16 \end{pmatrix}$$

$$F_8 \longrightarrow F_8 + F_7$$
; $C_8 \longrightarrow C_8 + C_7$

In[42];=

In[43]:--

MatrixForm [%.%41.Transpose[%]]

Out[43]//MatrixForm

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & -16 \end{pmatrix}$$

$$F_9 \longrightarrow F_9 + \frac{5}{2} F_7$$
; $C_9 \longrightarrow C_9 + \frac{5}{2} C_7$

in(44):

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	5 2	0	1

In[45]:=

MatrixForm[%.%43.Transpose[%]]

Out[45]//MatrixForm

$$F_7 \leftrightarrow \frac{1}{\sqrt{2}} F_7; C_7 \leftrightarrow \frac{1}{\sqrt{2}} C_7$$

$$F_9 \leftrightarrow \frac{\sqrt{2}}{\sqrt{7}} F_9; C_9 \leftrightarrow \frac{\sqrt{2}}{\sqrt{7}} C_9$$

In(46):

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	$\frac{1}{\sqrt{2}}$	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	$\frac{\sqrt{2}}{\sqrt{7}}$

ï

lo[47]:

MatrixForm[%.%45.Transpose[%]]

Out[47]/MatrixForm

$$F_2 \leftrightarrow F_4$$
; $C_2 \leftrightarrow C_4$
 $F_3 \leftrightarrow F_6$; $C_3 \leftrightarrow C_6$
 $F_8 \leftrightarrow F_9$; $C_8 \leftrightarrow C_9$

In[48]:

1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	0	1	0	0	0
0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	.0	0	0	1.	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	0

h[49]

MatrixForm[%.%47.Transpose[%]]

Out1491/MacrixForm

In(50):-

MatrixForm[

Simplify[%48.%46.%44.%42.%40.%38.%36.%34.%32.%30. %28.%26.%24.%22.%20.%18.%16.%14.%12.%10.%8.%6]]

Out[50]//MatrixForm

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 & -18 & -1 & \frac{5}{2} & -6 & -\frac{5}{2} \\ 0 & 0 & -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 16 & 1 & -2 & 6 & 2 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & -\sqrt{2} & 0 & \frac{1}{\sqrt{2}} & -\frac{23}{\sqrt{2}} & 0 & 3\sqrt{2} & -\sqrt{2} & -3\sqrt{2} \\ \frac{5}{\sqrt{14}} & -3\sqrt{\frac{2}{7}} & 0 & \frac{5}{\sqrt{14}} & -\frac{55}{\sqrt{14}} & 0 & 9\sqrt{\frac{2}{7}} & 2\sqrt{\frac{2}{7}} & -8\sqrt{\frac{2}{7}} \\ 1 & -2 & 0 & 2 & -21 & 0 & 6 & 0 & -7 \end{pmatrix}$$

In[51];=

MatrixForm[Simplify[%50.%1.Transpose[%50]]]

Out[51]/MatrixForm

	/ 1	0	0	0	0	0	0	0	0)
	0	1	0	0	0	0	0	0	0
	0	0	1	0	0	0	0	0	0
	0	0	0	-1	0	0	0	0	0
	0	0	0	0	-1		0	0	0
ļ	0	0	0	0	0	-1	0	0	0
	0	0	0	0		0	-1	0	0
	0	0	0	0	0	0	0	-1	0
	0	0	0	0	0	0	0	0	0)

Converted by Mathematica (March 21, 2018)