Mobile Security

Network Security - Lecture 7

Ruxandra F. Olimid

Faculty of Mathematics and Computer Science, University of Bucharest

*slides adapted from the course TTM4137 thought at NTNU

Outline

- LTE (Security) Architecture
- Security Requirements / Principles
- Vulnerabilities and Attacks

LTE - Architecture

UE: User Equipment
ME: Mobile Equipment

USIM: Universal SIM

EUTRAN: Evolved UTRAN

eNodeB: Evolved NodeB

EPC: Evolved Packet Core

MME: Mobility Management Entity

S-GW: Serving Gateway

P-GW: PDN (Packet Data Network) Gateway

HSS: Home Subscriber Server

LTE - Arhitecture

- UE (User Equipment):
 - Same as in UMTS: consists of the Mobile Equipment (ME) and the Universal Subscriber's Identity Module (USIM)
- EUTRAN (Evolved UTRAN):
 - Consists in several eNodeBs
 - A difference from UMTS is that the eNodeBs can communicate directly between themselves
- EPC (Evolved Packet Core):
 - UE is authenticated by the MME is responsible for selecting the SGSN at 2G/3G handovers, authentication and resources allocation to UEs. It manages the mobility of UEs in the network when eNodeBs cannot
 - S-GW is an interconnection point between EUTRAN and EPC, is responsible for packet routing and forwarding, buffering download packets, being a mobility anchor for inter-3GPP mobility
 - P-GW is a routing point to provide connectivity to the external PDN

Terminology

- LTE (Long Term Evolution):
 - The new radio technology
- SAE/LTE (System Architecture Evolution / LTE):
 - Stands for the entire system: LTE technology with access to previous technologies such as GSM and 3G
 - LTE includes the EUTRAN, while SAE includes the EPC
- EPS (Evolved Packet System):
 - The technical term for SAE/LTE, but the brand name of the new system has been chosen to be LTE

EPS Security Architecture

- GSM and UMTS security mechanisms are used as a basis, but adapted to the EPS architecture
- Protection is performed in both planes:
 - Signalling plane
 - User plane

- There exists both confidentiality and integrity protection mechanisms:
 - Confidentiality: both signalling and user planes
 - Integrity: just signalling plane

EPS Security Architecture

NAS: Non-Access Stratum

AS: Access Stratum UP: User Plane

EPS Security Architecture

- MME fetches authentication data from the HSS
- MME triggers the authentication and key agreement protocol with the UE, resulting a key
 K_{ASME}
- 2 derived keys are used for confidentiality (K_{NASenc}) and integrity (K_{NASint}) protection of the signalling data between the MME and the UE - NAS protection
- One key is transported to the eNodeB (K_{eNB}), from which 3 other keys are derived:
 - 2 derived keys are used for confidentiality (K_{RRCenc}) and integrity (K_{RRCint}) protection of the signalling data between the eNodeB and the UE - AS protection
 - 1 derived key (K_{UPenc}) is used for confidentiality protection of the user plane data between the eNodeB and the UE

Key Hierarchy

Key Hierarchy

Key	Length	Info
К	128 bits	Key shared between the subscriber and the network operator, stored in the USIM and AuC; permanent key of the subscriber
CK, IK	128 bits	Ciphering key CK and integrity key IK are for UMTS interconnection
K _{ASME}	256 bits	A local master key of the subscriber from which all other keys will be derived; Shared between the UE and the MME
K _{NASenc} , K _{NASint}	128 / 256 bits	Ciphering key K _{NASenc} and integrity key K _{NASint} for NAS protection
K _{eNB} / NH	256 bits	Intermediate key stored in the eNodeB NH (Next Hop) is used in handover
K _{RRCenc} , K _{RRCint}	128 / 256 bits	Ciphering key K _{RRCenc} and integrity key K _{RRCint} for AS protection
K _{UPenc}	128 / 256 bits	Ciphering key K _{UPenc} for user data

EPS Signalling Plane Protection

NAS: Non-Access Stratum RRC: Radio Resource Control

PDCP: Packet Data Convergence Protocol

IP: Internet Protocol

EPS Signalling Plane Protection

- NAS (Non-Access Stratum): network layer communication between the UE and the core network
- RRC (Radio Resource Control): layer 3 protocol in the AS (Access Stratum) protocol stack that provides communication between the UE and the eNodeB (the AS level signalling protocol)
- PDCP (Packet Data Convergence Protocol): both RRC signalling and user data are carried by the PDCP, and here is where security is implemented
- S1-AP: signalling service between the E-UTRAN and the EPC

EPS User Plane Protection

PDCP: Packet Data Convergence Protocol

GTP: GPRS Tunneling Protocol

EPS User Plane Protection

- PDCP (Packet Data Convergence Protocol): if for signalling data both confidentiality and integrity are supported, user plane protection does not consider integrity
- GTP-U: is used for carrying data from the access network to the core network

Confidentiality is optional for both signalling and user plane!

EPS Security Requirements

- High level and service-related security requirements:
 - EPS should provide authenticity of information between the terminal and the network
 - EPS shall ensure that unauthorized users cannot establish communication through the system
 - EPS shall allow the network to hide its internal structure from the terminal
 - Security policies should be under home operator control
 - EPS shall provide support for lawful interception
 - EPS shall support emergency calls
 - Rel-99 or newer USIM is required for authentication

EPS Security Requirements

- Privacy related security requirements:
 - EPS shall provide several appropriate levels of user privacy for communication, location and identity
 - Communication content, origin and destination shall be protected against disclosure to unauthorized parties
 - EPS shall be able to hide user identities from unauthorized parties
 - EPS shall be able to hide user location from unauthorized parties

EPS Security Features

- Features that are carried over from GSM and UMTS:
 - Subscriber authentication, usage of USIM (IMEI stored in the ME and IMSI stored in the UICC)
 - Mutual authentication (from UMTS)
 - Encryption on the radio interface (for confidentiality), which remains optional to the network operator
 - Usage of temporary identities (for privacy of subscribers)
 - Visibility and configurability of security at the UE (e.g. ciphering indicator) is optional
 - Lawful interception

EPS Security Features

- New features in EPS to overcome the shortcomings in GSM/UMTS:
 - The endpoint for encryption in the network side remains the eNodeB, but physical security requirements are introduced for eNodeB (in UMTS is the RNC, but in GSM is the BTS)
 - No integrity mechanism for the user data (reason: risk to tamper the user data is considered too low to introduce significant overhead by integrity protection, especially for voice)
 - New key hierarchy, more elaborated
 - Improvements on crypto algorithms and protocols

EPS Security Standards

- TS 33.401: 3GPP System Architecture Evolution (SAE); Security architecture / ETSI 133 401
 - EPS security architecture
 - EPS security features, procedures, mechanisms
 - Main reference
- TS 33.402: Security aspects of non-3GPP accesses / ETSI 133.402
- TS 33.320: Security of Home evolved Node B (HeNB) / ETSI 133.320
- TS 36.331: Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification / ETSI 136 331
- TS 24.301: Non-Access-Stratum (NAS) protocol for Evolved Packet System (EPS) / ETSI 124 301

•

3GPP: The 3rd Generation Partnership Project ETSI: European Telecommunications Standards Institute

To remember!

- 1. LTE (security) architecture
- 2. Security mechanisms on both the signalling and the user plane
- 3. Security features (build on previous generations' features)