

Introduzione

Anno accademico 2022/2023 Ingegneria del Software

Tullio Vardanega@unipd.it

Cosa facciamo qui (what) – 1/2

- □ Apprendiamo <u>metodi e pratiche di lavoro</u> alla base della professione informatica
 - Gestire il tempo
 - Disponibilità, scadenze, conflitti, priorità
 - Collaborare
 - Fissare obiettivi, dividersi compiti, verificare progressi, riportare difficoltà
 - Assumersi responsabilità
 - Fare quanto pattuito, agire al meglio delle proprie capacità, auto-valutarsi prima di valutare
 - Auto-apprendere
 - "Imparare a imparare", essenziale <u>competenza trasversale</u>
- □ Integriamo progressivamente la teoria con la pratica

Common soft skills

- · Strong work ethic
- Positive attitude
- Good communication skills
- · Time management abilities
- Problem-solving skills
- Acting as a team player
- Self-confidence
- Ability to accept and learn from chicism
- Flexibility/adaptability
- Working well under pressure

Perché lo facciamo (why)

- Per avvicinarci a modo di lavorare (way of working) professionale
- □ Cioè: «operante allo stato dell'arte»
 - Per conoscenze tecnologiche e metodologiche
- □ Lo stato dell'arte nel dominio informatico avanza continuamente
 - Per questo dobbiamo imparare a «colmare i buchi» con l'auto-apprendimento

Come vogliamo imparare (why)

- La conoscenza passa dalla comprensione profonda, sperimentata, dei significati
 - Non ricordare, ma riconoscere (so chi sei ...)
- □ Vogliamo fissare tali conoscenze in un glossario
 - Raccolta di termini/concetti centrali al dominio SWE
 - Registrati in modo da facilitarne la localizzazione
 - Corredati dalla nostra personale specifica del loro significato e ogni altra informazione utile a riconoscerli
- Vogliamo raffinarne costantemente la comprensione
 - Legando la teoria (quanto ascoltato) con la pratica (quanto riscontrato)

Come lo facciamo (how) – 1/2

- □ Tramite un progetto didattico collaborativo
 - Promosso da un proponente esterno
 - Con esigenze e obiettivi funzionali innovativi
 - Complesso, impegnativo, visionario
 - Tecnologicamente avanzato

«Assai spesso avviene che i gruppi tendano a svolgano le attività di progetto in modalità sottomarino, rischiando di prendere direzioni errate ...»

□ Confermando le conoscenze acquisite tramite una prova scritta

Glossario

□ Progetto

Fonte: Harold Kerzner (1940-), uno dei maggiori esperti mondiali di *project management*

Insieme di attività che

- Devono raggiungere determinati obiettivi a partire da determinate specifiche
- Hanno una data d'inizio e una data di fine fissate
- Dispongono di risorse limitate (persone, tempo, denaro, strumenti)
- Consumano tali risorse nel loro svolgersi

L'uscita di un progetto è un prodotto composito

SW sorgente/eseguibile, librerie, documenti, manuali

Introduzione

I costituenti di un progetto – 1/2

- Pianificazione
 - Gestire risorse (persone, tempo, denaro, strumenti) in modo responsabile, in funzione degli obiettivi
- □ Analisi dei requisiti
 - Definire <u>cosa</u> bisogna fare
- □ Progettazione (→ design)
 - Definire <u>come</u> farlo
- □ Realizzazione (→implementation)
 - Farlo, perseguendo qualità
 - Accertando l'assenza di errori od omissioni
 - Accertando che i risultati soddisfino le attese

Cosa <u>non</u> è un progetto – 1/2

- One is blinded to the fundamental uselessness of their products, by the sense of achievement one feels in getting them to work at all
- □ In other words, their fundamental design flaws are completely hidden by their superficial design flaws

Fonte: Douglas Adams, "The Hitchhikers Guide to the Galaxy", 1979

Cosa <u>non</u> è un progetto – 2/2

- Nella filosofia greca, arte (μίμησις) significa copia / riproduzione, bella e significativa, della natura
 - Tangibile o spirituale
- □ In Latino, ars significa «abilità professionale»
 - Significato rimasto in vigore fino all'Illuminismo
- Con il Romanticismo, arte è divenuta «espressione di contenuto emozionante»
- Quando qui diciamo «stato dell'arte» intendiamo il significato latino
- □ Un progetto <u>non</u> è arte romantica, ma «professionale»

I costituenti di un progetto – 1/2

Introduzione

Glossario

□ Teamwork

- Lavoro collaborativo che punta a raggiungere un obiettivo comune in modo efficace ed efficiente
- I membri del team sono inter-dipendenti
- La gestione di questa inter-dipendenza richiede il rispetto di regole e di buone pratiche
 - Comunicazioni aperte e trasparenti: risoluzione dei conflitti
 - Costruzione e preservazione delle fiducia reciproca: condivisione e collaborazione
 - Assunzione di responsabilità: coordinamento
 - Condivisione dei rischi
- La sua base è un solido way of working

Glossario

- □ *Stakeholder* (portatore di interesse)
 - Tutti coloro che a vario titolo hanno influenza sul prodotto e sul progetto
 - La comunità degli utenti (che usa il prodotto)
 - Il committente (che compra il prodotto)
 - Il fornitore (che sostiene i costi di realizzazione)
 - Eventuali regolatori (che verificano la qualità del lavoro)
- □ Way of working
 - Come organizzare al meglio le attività di progetto
 - Cioè: in modo professionale

Ingredienti

 □ Per svolgere un progetto potendo confidare nel suo successo serve ingegneria

Engineering: application of scientific and mathematical principles to practical ends Fonte: American Heritage Dictionary

- Applicazione (non creazione!) di principi noti e autorevoli: best practice
- <u>Practical ends</u> spesso civili e sociali, associati a responsabilità etiche e professionali

Glossario

□ Software engineering [SWE]

- Disciplina per la realizzazione di prodotti SW così impegnativi da richiedere il dispiego di attività collaborative
- O Capacità di produrre "in grande" e "in piccolo"
- Garantendo qualità: efficacia
- O Contenendo il consumo di risorse: efficienza
- Lungo l'intero periodo di sviluppo e di uso del prodotto: ciclo di vita

Introduzione

Glossario

□ Efficacia

Misura della capacità di raggiungere l'obiettivo prefissato

□ Efficienza

 Misura dell'abilità di raggiungere l'obiettivo impiegando le risorse minime indispensabili

Glossario

□ Ciclo di vita

 ○ Gli stati che il prodotto SW richiesto assume dal suo concepimento (bisogni → needs) all'uso e poi eventualmente al ritiro

□ Best practice

 Modo di fare (way of working) noto, che abbia mostrato di garantire i migliori risultati in circostanze note e specifiche

SWE rispetto a se stessa

- □ Un sistema SW è tanto più utile quanto più è usato
 - Metrica: integrale della sua intensità d'uso nel tempo
- □ Più lunga la vita d'uso di un prodotto, maggiore il suo costo di manutenzione
 - Manutenzione: insieme di attività necessarie a garantire l'uso continuativo del prodotto
 - Reattivamente (per correzione dopo malfunzionamento) o preventivamente
- □ Il costo di manutenzione ha varie componenti
 - Mancato guadagno, perdita di reputazione, recupero o reclutamento esperti, sottrazione di risorse ad altre attività
- □ I principi SWE puntano ad abbassare tali costi
 - Sviluppando SW più facilmente manutenibile

Cos'è l'ingegneria del *software* – 1/2

- □ Nasce nel 1968
 - Conferenza NATO (⊗) 7-11/10/1968 @ Garmisch, D
- Raccogliere, organizzare, consolidare la conoscenza (body of knowledge) necessaria a realizzare progetti SW con efficacia ed efficienza
 - Collezione e manutenzione migliorativa di best practice
- Applicare principi ingegneristici calati nella produzione del SW

Cos'è l'ingegneria del *software* – 2/2

L'approccio sistematico, disciplinato e quantificabile allo sviluppo, l'uso, la manutenzione e il ritiro del SW

Fonte: Glossario IEEE

- □ Sistematico
 - Modo di lavorare metodico e rigoroso
 - O Che conosce, usa ed evolve le *best practice* di dominio
- Disciplinato
 - Che segue le regole che si è dato
- Quantificabile
 - Che permette di misurare l'efficienza e l'efficacia del suo agire

Descrivere il «cruscotto di valutazione della qualità» come Telemetria

Figure professionali – 1/2

- □ Software engineer ≠ programmatore
- **□ Il programmatore**
 - Figura professionale dominante nei primi decenni dell'informatica
 - Scrive programmi da solo, sotto la propria responsabilità tecnica
 - Svolge un'attività creativa fortemente personalizzata (arte in senso romantico)

Figure professionali – 2/2

□ Il *software engineer*

- Realizza parte di un sistema complesso con la consapevolezza che potrà essere usato, completato e modificato da altri
- Comprende il contesto in cui si colloca il sistema cui contribuisce
 - La dimensione "sistema" include ma non si limita al SW
- Attua compromessi intelligenti e lungimiranti tra visioni e spinte contrapposte
 - Costi qualità
 - Risorse disponibilità
 - Esperienza utente facilità di realizzazione

Cosa facciamo qui (what) – 2/2

- □ Studiamo tutte le <u>attività di progetto</u>
- □ Proviamo a metterle in pratica
 - Nel progetto didattico
- □ Verifichiamo il grado di apprendimento
 - In itinere: tramite revisioni di avanzamento
 - In fine: tramite una prova scritta

Perché lo facciamo così (why) – 1/2

- Student acquisition of [methodical] skills advances in response to challenges
- Pedagogical approaches can be described as instructional trajectories connecting a skill/challenge starting point (A) with a destination point (B)

Fonte: *D.C.* Webb, A. Repenning, K.H. Koh, "Toward an emergent theory of broadening participation in computer science education", Proc. 43rd ACM Computer Science Education symposium, 173-178 (SIGCSE '12)

Perché lo facciamo così (why) – 2/2

□ The project-first just-intime-principles approach lies in the Zone of Proximal Flow (ZPF)

The ideal condition for learning
 The ZPF orchestrates students' take in best practices with assistance and tool use

Con quale quantità di impegno

- □ 12 crediti → 300 ore di lavoro complessivo
- 96 ore in lezioni di teoria, pratica, monitoraggio attività, esercitazioni
- 150 ore nel progetto didattico
 - ~95 in attività rendicontate
 - ~ 55 per auto-formazione su strumenti e metodi di lavoro utili al progetto
- □ ~50 ore per studio personale in preparazione alla prova scritta e revisioni di avanzamento

Introduzione

Regole e vincoli – 1/3

- □ Svolgere attività collaborative
 - \circ ~7 persone / gruppo \rightarrow condividere, ripartire, coordinare, verificare
- □ Cercare soluzioni sostenibili a problemi complessi
 - O Tipologia utenti, dominio d'uso, risorse disponibili, prospettive
 - Auto-apprendimento di tecnologie e metodi di lavoro
- □ Adottare un approccio sistematico, disciplinato, quantificabile
 - Lavorare in modo disciplinato, sistematico, quantificabile
 - [85..105] ore di impegno individuale → <u>costo esterno</u> rendicontato per attività obbligatorie
 - \circ \approx 45 ore di esplorazione tecnologica \Rightarrow costo interno per attività integrative (da condividere, ripartire e contenere)
- □ Ore produttive, non tempo trascorso

Regole e vincoli – 2/3

- □ Partecipano <u>solo</u> coloro che soddisfano le propedeuticità
 - O Basi di Dati
 - Programmazione a oggetti
- □ Chi ha altri "arretrati", li sani <u>prima</u> di cimentarsi con il progetto

- □ I gruppi sono formati in sessione pubblica
 - Gli aventi diritto si registrano in tabellone condiviso pubblicato sulla pagina IS @ Moodle STEM

Regole e vincoli – 3/3

- L'impegno necessario per raggiungere gli obiettivi di progetto ha <u>limite superiore stretto</u>
 - Per essere compatibile con gli altri propri obblighi personali
 - Ma richiede impegno «solido», che <u>sconsiglia</u> la partecipazione con "arretrati"
- □ Gli obiettivi di progetto vanno fissati in modo elastico
 - Per essere fattibili entro i limiti di impegno dati
 - Tra MVP e un massimo ambizioso, concordati dinamicamente con i due interlocutori del progetto didattico
 - Docente-committente
 - Proponente-cliente-mentore

Gli argomenti che tratteremo

- Processi, ciclo di vita e modelli di sviluppo del SW
- Gestione di progetto
- Amministrazione IT
- Analisi dei requisiti
- Progettazione
- Documentazione
- Qualità
- □ Verifica e validazione

- UML: diagrammi dei casi d'uso
- UML: diagrammi delle classi e dei package
- UML: diagrammi di sequenza e di attività
- Design pattern: creazionali, comportamentali, architetturali
- □ Stili architetturali
- Principi SOLID

Come lo facciamo – 2/2

- □ Tramite tre diversi tipi di attività d'aula
 - T: Teoria (Vardanega)
 - P: Pratica (Cardin)
 - PD: Monitoraggio del progetto didattico (entrambi)
 - E: Esercitazioni (entrambi)
- □ Stile di lavoro
 - Alle lezioni T si viene avendo studiato l'argomento
 - Nelle lezioni PD si dialoga, approfondendo temi, questioni e criticità

Come si studia SWE

- Costruendo incrementalmente il proprio glossario (mentale, cartaceo, digitale)
 - Basandolo inizialmente sulla teoria
 - Consolidandolo con la pratica
 - Confrontandolo con i colleghi
 - Unendo conoscenze parziali, correggendosi reciprocamente
- □ Il glossario serve a cogliere, fissare, ritrovare concetti chiave della materia
 - Per evitare di «scivolarci sopra» con superficialità

Fonti e risorse – 1/3

- □ Faremo riferimento a
 - Software Engineering, 10th ed., 2014, di Ian Sommerville, edito da Addison Wesley (Pearson Education)
 - Guide to the Software Engineering Body of Knowledge (SWEBOK v3)
 IEEE Computer Society
 Software Engineering Coordinating Committee

https://www.computer.org/education/bodies-of-knowledge/software-engineering

- Che ci aiutano a familiarizzarci con le aree di conoscenza della disciplina SWE
 - Insieme a materiali di approfondimento associati agli argomenti di lezione («Per approfondire»)

Fonti e risorse – 2/3

Fonti e risorse – 3/3

- □ Come altri testi di consultazione useremo
 - E. Gamma, R. Helm, R. Johnson, J. Vlissides *Design Patterns*, 2002 Addison-Wesley (Pearson Education Italia)
 - C. Larman
 Applicare UML e i pattern
 Pearson Italia (5° edizione, 2020)
- Insieme alle moltissime risorse digitali disponibili in rete su quei temi