

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

		тика и системы управлені побработки информации в	
РАСЧЕТН	коп-оғ	СНИТЕЛЬНАЯ	ЗАПИСКА
К НАУЧН	Ю-ИССЛ	ЕДОВАТЕЛЬСКО	ОЙ РАБОТЕ
Предс	- сказание н	НА ТЕМУ: паличия сердечны. певаний	
СтудентИУ5-63б_			Бахрамов Н.А
(Группа) (И.О.Фамилия)		(Подпись, дата)	
Руководитель			Гапанюк Ю.Е
		(Подпись, дата)	(И.О.Фамилия)
Консультант			Гапанюк Ю.Е
		(Подпись, дата)	(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

		УТВЕРЖ,	ДАЮ
	Заведу	лощий каф	едройИУ5
			 (Индекс) В.М.Черненький
		1	 (И.О.Фамилия)
	« <u> </u>	»	20 г
ЗАДАНИ	[E		
на выполнение научно-исслед	ователн	ьской ра	боты
по теме предсказание наличия сердечных заболева	аний		
Студент группы ИУ5-63б			
Миронова Александра Романовна(Фамилия, имя, отчес	тво)		
Направленность НИР (учебная, исследовательская, праисследовательская		_	ственная, др.)
Источник тематики (кафедра, предприятие, НИР)			
График выполнения НИР: 25% к нед., 50% к	_ нед., 75%	о́ к нед.,	100% к нед.
Техническое задание <u>разработать и обучить мод</u> <u>сердечных заболеваний у пациентов</u>	ель предск	<u>сазывающу</u>	<u>ю наличие</u>
Оформление научно-исследовательской работы:			
Расчетно-пояснительная записка на листах форм Перечень графического (иллюстративного) материала		плакаты, с	слайды и т.п.)
Дата выдачи задания « 20 » _февраля 2022_ г.			
Руководитель НИР]	Гапанюк Ю.Е.
(1	Іодпись, дата))	(И.О.Фамилия)
Студент	Іодпись, дата)		ахрамов Н.А (И.О.Фамилия)

Содержание

Схема типового исследования	3
Описание колонок датасета	5
Построение графиков для понимания структуры данных	8
Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей	.16
Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения	.23
Выбор метрик для последующей оценки качества моделей	.25
В качестве метрик для решения задачи классификации будем использовать:	.25
Сохранение и визуализация метрик	.26
Выбор наиболее подходящих моделей для решения задачи классификации или регрессии	.27
Формирование обучающей и тестовой выборок на основе исходного набора данных	.27
Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки оценка качества моделей на основе тестовой выборки	
Решение задачи классификации	.28
Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, ил использовать другие методы	и
Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей	.34
Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров качество молелей и т.л	на .35

Схема типового исследования

Схема типового исследования, проводимого студентом в рамках курсовой работы, содержит выполнение следующих шагов:

- 1. Поиск и выбор набора данных для построения моделей машинного обучения. На основе выбранного набора данных студент должен построить модели машинного обучения для решения или задачи классификации, или задачи регрессии.
- 2. Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.
- 3. Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.
- 4. Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения. В зависимости от набора данных, порядок выполнения пунктов 2, 3, 4 может быть изменен.
- 5. Выбор метрик для последующей оценки качества моделей. Необходимо выбрать не менее трех метрик и обосновать выбор.
- 6. Выбор наиболее подходящих моделей для решения задачи классификации или регрессии. Необходимо использовать не менее пяти моделей, две из которых должны быть ансамблевыми.
- 7. Формирование обучающей и тестовой выборок на основе исходного набора данных.
- 8. Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.
- 9. Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.
- 10. Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.
- 11. Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д.

На основе датасета Heart будем предсказывать наличие сердечно-сосудистых заболеваний

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.linear model import LinearRegression, LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier
from sklearn.metrics import accuracy_score, balanced_accuracy_score
from sklearn.metrics import precision score, recall score, f1 score, classificat
ion report
from sklearn.metrics import confusion matrix
from sklearn.metrics import plot_confusion_matrix
from sklearn.model selection import GridSearchCV
from sklearn.metrics import mean absolute error, mean squared error, mean square
d log error, median absolute error, r2 score
from sklearn.metrics import roc_curve, roc_auc_score
from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSV
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_g
raphviz
from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor
from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor
from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegress
from sklearn.preprocessing import LabelEncoder
from sklearn.model selection import train test split
%matplotlib inline
sns.set(style="ticks")
```

Описание колонок датасета

- age
- sex
- chest pain type (4 values)
- resting blood pressure
- serum cholestoral in mg/dl
- fasting blood sugar > 120 mg/dl
- resting electrocardiographic results (values 0,1,2)
- maximum heart rate achieved
- exercise induced angina
- oldpeak = ST depression induced by exercise relative to rest
- the slope of the peak exercise ST segment
- number of major vessels (0-3) colored by flourosopy
- thal: 0 = normal; 1 = fixed defect; 2 = reversable defect

```
# Обучающая выборка
original_train = pd.read_csv('Heart_train.csv')
# Тестовая выборка
original_test = pd.read_csv('Heart_test.csv')
# Удалим дубликаты записей, если они присутствуют
train = original_train.drop_duplicates()
test = original test.drop duplicates()
# Первые 5 строк датасета
train.head()
        sex cp trestbps chol fbs restecg thalach
                                                          exang oldpeak slope \
   age
0
    58
          1
              0
                       114
                             318
                                     0
                                              2
                                                     140
                                                               0
                                                                      4.4
                                                                                0
1
    52
          1
              2
                       172
                             199
                                     1
                                              1
                                                     162
                                                               0
                                                                      0.5
                                                                                2
2
                                                                                2
    53
              0
                             226
                                              0
                                                     111
                                                               1
                                                                      0.0
          1
                       142
                                     0
3
    68
          1
              2
                       118
                             277
                                     0
                                              1
                                                     151
                                                               0
                                                                      1.0
                                                                                2
4
          1
              2
                       130
                             231
                                              1
                                                     146
                                                               0
                                                                                1
    62
                                     0
                                                                      1.8
       thal
             target
   ca
0
                   0
    3
          1
          3
1
                   1
    0
2
    0
          3
                   1
          3
                   1
3
    1
4
    3
          3
                   1
test.head()
                 trestbps
                            chol fbs
                                       restecg
                                                 thalach
                                                          exang
                                                                  oldpeak slope \
   age
        sex
             ср
              0
                             353
                                                                      1.2
0
    55
                       132
                                     0
                                              1
                                                      132
                                                               1
                                                                                1
          1
1
    53
          0
              0
                       130
                             264
                                     0
                                              0
                                                     143
                                                               0
                                                                      0.4
                                                                                1
2
                             234
                                              0
                                                     175
                                                               0
                                                                      0.6
    45
          0
              1
                       130
                                     0
                                                                                1
                                                                                2
3
    57
          1
              1
                       154
                             232
                                              0
                                                     164
                                                               0
                                                                      0.0
                                     0
4
    59
          1
              3
                       160
                             273
                                     0
                                                     125
                                                                      0.0
                                                                                2
   ca
       thal
             target
0
          3
                   0
    1
          2
                   1
1
    0
2
          2
    0
                   1
3
    1
          2
                   0
          2
                   0
4
    0
# Размер обучающего датасета - 1895 строк, 34 колонок
train.shape, test.shape
((243, 14), (60, 14))
train.columns
Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
       'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
      dtype='object')
```

Список колонок с типами данных # убедимся что типы данных одинаковы в обучающей и тестовых выборках train.dtypes

```
int64
age
sex
              int64
              int64
ср
trestbps
             int64
chol
              int64
fbs
             int64
restecg
              int64
thalach
              int64
exang
              int64
oldpeak
          float64
slope
              int64
ca
              int64
thal
              int64
target
              int64
dtype: object
```

test.dtypes

int64 age int64 sex int64 ср trestbps int64 chol int64 fbs int64 int64 restecg thalach int64 exang int64 oldpeak float64 slope int64 ca int64 thal int64 target int64

dtype: object

Проверим наличие пустых значений

train.isnull().sum()

0 age 0 sex 0 ср trestbps 0 chol 0 fbs 0 0 restecg thalach 0 0 exang 0 oldpeak 0 slope 0 ca

```
0
thal
target
dtype: int64
test.isnull().sum()
            0
age
            0
sex
            0
ср
trestbps
            0
chol
            0
fbs
            0
            0
restecg
thalach
            0
exang
oldpeak
            0
slope
            0
ca
thal
target
dtype: int64
```

Вывод. Представленный набор данных не содержит пропусков ни в обучающей, ни в тестовой выборках.

Построение графиков для понимания структуры данных

```
# Убедимся, что целевой признак
# для задачи бинарной классификации содержит только 0 и 1
train['target'].unique()
array([0, 1])
# Оценим дисбаланс классов для Target
fig, ax = plt.subplots(figsize=(2,2))
plt.hist(train['target'])
plt.show()
```



```
# Оценим дисбаланс классов для Target
fig, ax = plt.subplots(figsize=(2,2))
plt.hist(test['target'])
plt.show()
```

```
30 -
20 -
10 -
0.0 0.5 1.0
```

```
train['target'].value_counts()
1
     133
     110
Name: target, dtype: int64
test['target'].value_counts()
1
     32
     28
0
Name: target, dtype: int64
# посчитаем дисбаланс классов
total = train.shape[0]
class_0, class_1 = train['target'].value_counts()
print('Класс 1 составляет {}%, а класс 0 составляет {}%.'
      .format(round(class_0 / total, 4)*100, round(class_1 / total, 4)*100))
Класс 1 составляет 54.730000000000004%, а класс 0 составляет 45.26999999999996%
Вывод: Дисбаланс классов практически отсутствует
train.columns
Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
       'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
      dtype='object')
# Скрипичные диаграммы для числовых колонок
for col in ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
       'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target']:
    sns.violinplot(x=train[col])
    plt.show()
```


Выбор признаков, подходящих для построения моделей. Кодирование категориальных признаков. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.

train.dtypes

int64
int64
int64
int64

```
chol
              int64
fbs
              int64
restecg
              int64
thalach
              int64
exang
              int64
oldpeak
            float64
slope
              int64
ca
              int64
thal
              int64
target
              int64
dtype: object
```

Для построения моделей будем использовать все признаки.

Категориальные признаки отсутствуют, их кодирования не требуется.

Вспомогательные признаки для улучшения качества моделей в данном примере мы строить не будем.

Выполним масштабирование данных. Для этого необходимо объединить обучающую и тестовые выборки.

```
# Создадим вспомогательные колонки,
# чтобы наборы данных можно было разделить.
train['dataset'] = 'TRAIN'
test['dataset'] = 'TEST'
# Колонки для объединения
join_cols = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach'
       'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target', 'dataset']
data_all = pd.concat([train[join_cols], test[join_cols]])
# Проверим корректность объединения
assert data_all.shape[0] == train.shape[0]+test.shape[0]
data_all.head()
        sex cp trestbps chol fbs restecg thalach exang oldpeak slope \
   age
0
    58
              0
                      114
                            318
                                   0
                                            2
                                                   140
                                                            0
                                                                    4.4
                                                                             0
          1
1
    52
          1
              2
                      172
                            199
                                   1
                                            1
                                                   162
                                                            0
                                                                    0.5
                                                                             2
2
                                                                             2
    53
          1
              0
                      142
                            226
                                   0
                                            0
                                                   111
                                                            1
                                                                    0.0
                                                                             2
              2
                                            1
                                                   151
    68
          1
                      118
                            277
                                   0
                                                            0
                                                                    1.0
4
    62
          1
              2
                      130
                            231
                                            1
                                                   146
                                                            0
                                                                    1.8
                                                                             1
                                   0
       thal target dataset
   ca
0
          1
                      TRAIN
          3
1
    0
                  1
                      TRAIN
2
    0
          3
                  1
                      TRAIN
3
    1
          3
                  1
                      TRAIN
4
          3
    3
                  1
                      TRAIN
```

```
# Числовые колонки для масштабирования
scale_cols = ['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach
 ,
       'exang', 'oldpeak', 'slope', 'ca', 'thal']
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data_all[scale_cols])
# Добавим масштабированные данные в набор данных
for i in range(len(scale cols)):
    col = scale_cols[i]
    new col name = col + ' scaled'
    data_all[new_col_name] = sc1_data[:,i]
data_all.head()
   age
        sex
             ср
                 trestbps chol
                                  fbs
                                       restecg
                                                thalach
                                                          exang
                                                                 oldpeak
0
    58
              0
                       114
                             318
                                    0
                                                     140
                                                                      4.4
          1
                                             2
                                                              0
1
    52
              2
                       172
                             199
                                    1
                                             1
                                                     162
                                                              0
                                                                      0.5
          1
2
    53
          1
              0
                       142
                             226
                                    0
                                             0
                                                     111
                                                              1
                                                                      0.0
                                                                           . . .
3
    68
          1
              2
                       118
                             277
                                    0
                                             1
                                                     151
                                                              0
                                                                      1.0
                                                                          . . .
4
    62
          1
              2
                       130
                             231
                                    0
                                             1
                                                     146
                                                              0
                                                                      1.8
                                                                           . . .
   trestbps_scaled chol_scaled fbs_scaled restecg_scaled thalach_scaled \
0
          0.188679
                        0.438356
                                                          1.0
                                                                     0.526718
                                         0.0
1
          0.735849
                        0.166667
                                         1.0
                                                          0.5
                                                                     0.694656
2
          0.452830
                        0.228311
                                         0.0
                                                          0.0
                                                                     0.305344
3
          0.226415
                        0.344749
                                         0.0
                                                          0.5
                                                                     0.610687
4
          0.339623
                        0.239726
                                                          0.5
                                                                     0.572519
                                         0.0
                                  slope scaled ca scaled
   exang_scaled
                 oldpeak_scaled
                                                           thal_scaled
0
            0.0
                        0.709677
                                            0.0
                                                      0.75
                                                               0.333333
1
            0.0
                        0.080645
                                            1.0
                                                      0.00
                                                               1.000000
2
            1.0
                                            1.0
                                                      0.00
                        0.000000
                                                               1.000000
                        0.161290
3
            0.0
                                            1.0
                                                      0.25
                                                               1.000000
4
            0.0
                       0.290323
                                            0.5
                                                      0.75
                                                               1.000000
[5 rows x 28 columns]
# Проверим, что масштабирование не повлияло на распределение данных
for col in scale cols:
    col_scaled = col + '_scaled'
    fig, ax = plt.subplots(1, 2, figsize=(8,3))
    ax[0].hist(data_all[col], 50)
    ax[1].hist(data_all[col_scaled], 50)
    ax[0].title.set_text(col)
    ax[1].title.set text(col scaled)
    plt.show()
```


Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.

```
# Воспользуемся наличием тестовых выборок,
# включив их в корреляционную матрицу
corr_cols_1 = scale_cols + ['target']
corr_cols_1
['age',
 'sex',
 'cp',
 'trestbps',
 'chol',
 'fbs',
 'restecg',
 'thalach',
 'exang',
 'oldpeak',
 'slope',
 'ca',
 'thal',
 'target']
scale_cols_postfix = [x+'_scaled' for x in scale_cols]
corr_cols_2 = scale_cols_postfix + ['target']
corr_cols_2
['age_scaled',
 'sex_scaled',
 'cp_scaled',
 'trestbps_scaled',
 'chol_scaled',
 'fbs_scaled',
 'restecg scaled',
 'thalach scaled',
 'exang_scaled',
 'oldpeak_scaled',
```

```
'slope scaled',
 'ca scaled',
 'thal scaled',
 'target']
fig, ax = plt.subplots(figsize=(10,5))
sns.heatmap(data_all[corr_cols_1].corr(), annot=True, fmt='.2f')
ax.set title('Исходные данные (до масштабирования)')
plt.show()
                          Исходные данные (до масштабирования)
                                                                                       -1.0
    age - 1.00 -0.10 -0.07 0.28 0.21 0.12 -0.12 -0.40 0.10 0.21 -0.17 0.28 0.07 -0.23
    sex - 0.10 1.00 -0.05 -0.06 -0.20 0.05 -0.06 -0.04 0.14 0.10 -0.03 0.12 0.21 -0.28
                                                                                        - 0.8
     co - -0.07 -0.05 1.00 0.05 -0.08 0.09 0.04 0.30 -0.39 -0.15 0.12 -0.18 -0.16 0.43
 trestbps - 0.28 -0.06 0.05 1.00 0.12 0.18 -0.11 -0.05 0.07 0.19 -0.12 0.10 0.06 -0.14
                                                                                       - 0.6
    chol - 0.21 -0.20 -0.08 0.12 1.00 0.01 -0.15 -0.01 0.07 0.05 -0.00 0.07 0.10 -0.09
     fbs - 0.12 0.05 0.09 0.18 0.01 1.00 -0.08 -0.01 0.03 0.01 -0.06 0.14 -0.03 -0.03
                                                                                       - 0.4
 restecg - -0.12 -0.06 0.04 -0.11 -0.15 -0.08 1.00 0.04 -0.07 -0.06 0.09 -0.07 -0.01 0.14
                                                                                       - 0.2
 thalach - -0.40 -0.04 0.30 -0.05 -0.01 -0.01 0.04 1.00 -0.38 -0.34 0.39 -0.21 -0.10 0.42
  exang - 0.10 0.14 -0.39 0.07 0.07 0.03 -0.07 -0.38 1.00 0.29 -0.26 0.12 0.21 -0.44
                                                                                       - 0.0
 oldpeak - 0.21 0.10 -0.15 0.19 0.05 0.01 -0.06 -0.34 0.29 1.00 -0.58 0.22 0.21 -0.43
   slope - -0.17 -0.03 0.12 -0.12 -0.00 -0.06 0.09 0.39 -0.26 -0.58 1.00 -0.08 -0.10 0.35
                                                                                        - -0.2
     ca - 0.28 0.12 -0.18 0.10 0.07 0.14 -0.07 -0.21 0.12 0.22 -0.08 1.00 0.15 -0.39
    thal - 0.07 0.21 -0.16 0.06 0.10 -0.03 -0.01 -0.10 0.21 0.21 -0.10 0.15 1.00 -0.34
                                                                                         -0.4
   target = -0.23 -0.28 0.43 -0.14 -0.09 -0.03 0.14 0.42 -0.44 -0.43 0.35 -0.39 -0.34
                                                                             arget
                                                                   8
                                                                        thal
fig, ax = plt.subplots(figsize=(10,5))
sns.heatmap(data_all[corr_cols_2].corr(), annot=True, fmt='.2f')
ax.set title('Масштабированные данные')
```

plt.show()

На основе корреляционной матрицы можно сделать следующие выводы:

Корреляционные матрицы для исходных и масштабированных данных совпадают.

Целевой признак бинарной классификации "target" наиболее сильно коррелирует с "ср" (0.43), "thalach" (0.42) и "slope" (0.35), а также 'exang' (-0.44), 'oldpeak'(-0.43), 'ca'(-0.39), 'thal'(-0.39). Эти признаки обязательно следует оставить в модели классификации.

На основании корреляционной матрицы можно сделать вывод о том, что данные позволяют построить модель машинного обучения.

Выбор метрик для последующей оценки качества моделей.

В качестве метрик для решения задачи классификации будем использовать:

Метрики, формируемые на основе матрицы ошибок:

Метрика precision:

Можно переводить как точность, но такой перевод совпадает с переводом метрики "accuracy".

precision=TPTP+FP Доля верно предсказанных классификатором положительных объектов, из всех объектов, которые классификатор верно или неверно определил как положительные.

Используется функция precision score.

Метрика recall (полнота):

recall=TPTP+FN Доля верно предсказанных классификатором положительных объектов, из всех действительно положительных объектов.

Используется функция recall_score.

Метрика F1-мера

Для того, чтобы объединить precision и recall в единую метрику используется Fβ-мера, которая вычисляется как среднее гармоническое от precision и recall:

 $F\beta=(1+\beta 2)$ -precision-recallprecision+recall где β определяет вес точности в метрике.

На практике чаще всего используют вариант F1-меры (которую часто называют F-мерой) при β =1:

F1=2·precision·recallprecision+recall Для вычисления используется функция f1_score.

Метрика ROC AUC

Основана на вычислении следующих характеристик:

TPR=TPTP+FN - True Positive Rate, откладывается по оси ординат. Совпадает с recall.

FPR=FPFP+TN - False Positive Rate, откладывается по оси абсцисс. Показывает какую долю из объектов отрицательного класса алгоритм предсказал неверно.

Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика.

Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

В качестве количественной метрики используется площадь под кривой - ROC AUC (Area Under the Receiver Operating Characteristic Curve). Чем ниже проходит кривая тем меньше ее площадь и тем хуже качество классификатора.

Для получения ROC AUC используется функция roc_auc_score.

Сохранение и визуализация метрик

Разработаем класс, который позволит сохранять метрики качества построенных моделей и реализует визуализацию метрик качества.

class MetricLogger:

```
index, inplace = True)
        # Добавление нового значения
        temp = [{'metric':metric, 'alg':alg, 'value':value}]
        self.df = self.df.append(temp, ignore index=True)
    def get data for metric(self, metric, ascending=True):
        Формирование данных с фильтром по метрике
        temp_data = self.df[self.df['metric']==metric]
        temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
        return temp_data_2['alg'].values, temp_data_2['value'].values
   def plot(self, str header, metric, ascending=True, figsize=(5, 5)):
        Вывод графика
        array_labels, array_metric = self.get_data_for_metric(metric, ascending)
        fig, ax1 = plt.subplots(figsize=figsize)
        pos = np.arange(len(array metric))
        rects = ax1.barh(pos, array_metric,
                         align='center',
                         height=0.5,
                         tick_label=array_labels)
        ax1.set_title(str header)
        for a,b in zip(pos, array metric):
            plt.text(0.5, a-0.05, str(round(b,3)), color='white')
        plt.show()
Выбор наиболее подходящих моделей для решения задачи классификации
Для задачи классификации будем использовать следующие модели:
```

или регрессии.

Логистическая регрессия

Метод ближайших соседей

Машина опорных векторов

Решающее дерево

Случайный лес

Градиентный бустинг

Формирование обучающей и тестовой выборок на основе исходного набора данных.

```
# На основе масштабированных данных выделим
# обучающую и тестовую выборки с помощью фильтра
train data all = data all[data all['dataset']=='TRAIN']
test data all = data all[data all['dataset']=='TEST']
train_data_all.shape, test_data_all.shape
```

```
((243, 28), (60, 28))
# Признаки для задачи классификации
# Выборки для задачи классификации
clas X train = train data all[task clas cols]
clas X test = test data all[task clas cols]
clas Y train = train data all['target']
clas_Y_test = test_data_all['target']
clas_X_train.shape, clas_X_test.shape, clas_Y_train.shape, clas_Y_test.shape
((243, 7), (60, 7), (243,), (60,))
Построение базового решения (baseline) для выбранных моделей без
подбора гиперпараметров. Производится обучение моделей на основе
обучающей выборки и оценка качества моделей на основе тестовой выборки.
Решение задачи классификации
# Модели
clas_models = {'LogR': LogisticRegression(),
              'KNN_10':KNeighborsClassifier(n_neighbors=10),
              'SVC':SVC(probability=True),
              'Tree':DecisionTreeClassifier(),
              'RF':RandomForestClassifier(),
              'GB':GradientBoostingClassifier()}
# Сохранение метрик
clasMetricLogger = MetricLogger()
# Отрисовка КОС-кривой
def draw_roc_curve(y_true, y_score, ax, pos_label=1, average='micro'):
    fpr, tpr, thresholds = roc_curve(y_true, y_score,
                                   pos label=pos label)
    roc auc value = roc auc score(y true, y score, average=average)
   #plt.figure()
   lw = 2
    ax.plot(fpr, tpr, color='darkorange',
            lw=lw, label='ROC curve (area = %0.2f)' % roc_auc_value)
    ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
    ax.set_xlim([0.0, 1.0])
    ax.set_xlim([0.0, 1.05])
   ax.set xlabel('False Positive Rate')
    ax.set_ylabel('True Positive Rate')
    ax.set title('Receiver operating characteristic')
    ax.legend(loc="lower right")
def clas_train_model(model_name, model, clasMetricLogger):
   model.fit(clas X train, clas Y train)
    # Предсказание значений
   Y pred = model.predict(clas X test)
```

Предсказание вероятности класса "1" для гос аис

```
Y pred proba temp = model.predict proba(clas X test)
    Y pred proba = Y pred proba temp[:,1]
    precision = precision_score(clas_Y_test.values, Y pred)
    recall = recall score(clas Y test.values, Y pred)
    f1 = f1 score(clas Y test.values, Y pred)
    roc auc = roc auc score(clas Y test.values, Y pred proba)
    clasMetricLogger.add('precision', model_name, precision)
    clasMetricLogger.add('recall', model_name, recall)
    clasMetricLogger.add('f1', model name, f1)
    clasMetricLogger.add('roc_auc', model_name, roc_auc)
    fig, ax = plt.subplots(ncols=2, figsize=(10,5))
    draw_roc_curve(clas_Y_test.values, Y_pred_proba, ax[0])
    plot confusion matrix(model, clas X test, clas Y test.values, ax=ax[1],
                      display_labels=['0','1'],
                      cmap=plt.cm.Blues, normalize='true')
    fig.suptitle(model name)
    plt.show()
for model name, model in clas models.items():
    clas train model(model name, model, clasMetricLogger)
/home/zeus/anaconda3/envs/tml env/lib/python3.9/site-packages/sklearn/linear mod
el/ logistic.py:763: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-regressio
  n iter i = check optimize result(
```


Подбор гиперпараметров для выбранных моделей. Рекомендуется использовать методы кросс-валидации. В зависимости от используемой библиотеки можно применять функцию GridSearchCV, использовать перебор параметров в цикле, или использовать другие методы.

```
clas_X_train.shape
(243, 7)
n nango list = list(nango(0 E0 3))
```

```
n_range_list = list(range(0,50,2))
n_range_list[0] = 1
```

```
n_range = np.array(n_range_list)
tuned_parameters = [{'n_neighbors': n_range}]
tuned parameters
[{'n_neighbors': array([ 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30, 32,
         34, 36, 38, 40, 42, 44, 46, 48])}]
%%time
clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5, scoring='r
oc auc')
clf_gs.fit(clas_X_train, clas_Y_train)
CPU times: user 822 ms, sys: 0 ns, total: 822 ms
Wall time: 820 ms
GridSearchCV(cv=5, estimator=KNeighborsClassifier(),
             param_grid=[{'n_neighbors': array([ 1,  2,  4,  6,  8,  10,  12,  14,
16, 18, 20, 22, 24, 26, 28, 30, 32,
       34, 36, 38, 40, 42, 44, 46, 48])}],
             scoring='roc auc')
# Лучшая модель
clf_gs.best_estimator_
KNeighborsClassifier(n_neighbors=4)
clf_gs_best_params_txt = str(clf_gs.best_params_['n_neighbors'])
clf_gs_best_params_txt
'4'
# Изменение качества на тестовой выборке в зависимости от К-соседей
plt.plot(n_range, clf_gs.cv_results_['mean_test_score'])
[<matplotlib.lines.Line2D at 0x7f8f0541ba00>]
```


Повторение пункта 8 для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.

for model_name, model in clas_models_grid.items():
 clas_train_model(model_name, model, clasMetricLogger)

Формирование выводов о качестве построенных моделей на основе выбранных метрик. Результаты сравнения качества рекомендуется отобразить в виде графиков и сделать выводы в форме текстового описания. Рекомендуется построение графиков обучения и валидации, влияния значений гиперпарметров на качество моделей и т.д. # Метрики качества модели clas_metrics = clasMetricLogger.df['metric'].unique() clas_metrics array(['precision', 'recall', 'f1', 'roc_auc'], dtype=object)

Построим графики метрик качества модели
for metric in clas_metrics:
 clasMetricLogger.plot('Метрика: ' + metric, metric, figsize=(7, 6))

Вывод: на основании трех метрик из четырех используемых, лучшей оказалась модель случайного леса