Bits y Bytes

¿Qué es un bit?

Un bit (binary digit) es la unidad más pequeña de información que una computadora puede manejar.

Un bit sólo puede tener 2 valores: 0 y 1.

De ahí el sistema binario.

Cuando juntamos varios bits podemos representar más información. La cantidad de combinaciones posibles se calcula con la fórmula:

 $Combinaciones = 2^n$

Donde n es la cantidad de bits

Bits	Combinaciones posibles	Ejemplo (rango de valores)
1	2	0 – 1
2	4	0-3
3	8	0-7
4	16	0 – 15
8	256	0 – 255 (muy importante)

¿Qué es un byte?

Un **byte** es un grupo de **8 bits.** Es muy importante porque:

- 1 byte= 256 combinaciones posibles.
- La mayoría de los caracteres en el código ASCII caben en 1 byte.

Medida de información	Equivalencia
1 bit	1 dígito binario
1 byte	8 bits
1 kilobyte (KB)	1,024 bytes
1 megabyte (MB)	1,024 kilobytes
1 gigabyte (GB)	1,024 megabytes

¿Por qué en informática 1 kilobyte= 1024 bites?

Porque las computadoras trabajan en binario (base 2), no en decimal (base 10). Y 1024 es una potencia de 2 muy cercana a 1000.

Para evitar confusiones se propuso una forma más precisa con nuevos nombres:

Nombre binario	Símbolo	Equivale a
Kibibyte	KiB	1024 bytes
Mebibyte	MiB	1048576 bytes
Gibibyte	GiB	1073741824 bytes

Pero en la vida real, la mayoría de la gente y muchos sistemas todavía usan "KB, MB, GB" para referirse a potencias de 2, aunque eso sea técnicamente incorrecto según el sistema métrico.