Worksheet 11- Solutions will be posted by 04/14 - 10 points for participation

 A memory consists of 4-page frames, currently holding pages 0 - 3. A 6-bit aging register is associated with each frame. The table shows which pages were referenced during each of 8 consecutive periods d.

Period d	0	1	2	3	4	5	6	7
Pages	3	1	0	0	0	2	2	1
referenced		2		3				

Determine which page will be replaced if a page fault occurs at the end of last d period.

Hint: See section aging registers Page 3 will be replaced Since there's only

2. Physical memory consists of 4-page frames, initially all empty. The following reference string is processed:

01402301023423

- a) Show which pages are resident under the second chance page replacement algorithm. Indicate when page faults occur.
- b) Assume that references to page 1 are write references (modifying page 1) and all others are read references. Show which pages are resident under the third chance page replacement algorithm. Indicate when page faults occur.

Hint: See sections and animation for second chance & third chance algorithms

- 3. A system uses demand paging to implement virtual memory.
 - Access to physical memory is m = 100 ns. (Access to a page table is assumed to be negligible due to the
 use of caches and a TLB.)
 - To process a page fault takes
 - \circ S = 5 ms if a free page frame is available
 - \circ S = 15 ms if no free frame is available and thus a resident page needs to be replaced
 - On average, a free frame is available only 20% of the time.

Hint: See section page fault overhead

4. Write your experience on self-learning, do you prefer self-learning (using class time for reading and ask questions if stuck) or flipped class model (to read sections before class and use class for solving exercises)?

I prefer in class lectures followed by working on worksheets.

Time - RS Frame	0	1 w 0/00 1/01 2/00 3/00	2 4 1/01 1/01 3/00 3/00	3 0 1/0 (2/00 3 (00	4 2 1/01 1/01 2/10 3/00	5 0/10 1/01 2/10 3/10	6 0 0/20 1/01 2/10 3/10	7 0/20 1/02 2/10 3/10	8 0 0/36 1/02 2/10 3/10	9 2 0/30 1/02 2/20 3/10	10 3 0/30 1/02 2/20 3/20	1/02 2/20 3/20 X	2 2 9/10 1/02 2/30 3/20	13 3 4/10 1/02 2/30 3/30	