Quantum Circuit Compilation for Trapped-Ion Processors with the Drive-Through Architecture

Cheming Chang, Jiehong roland Jiang, Dahwei Chiou, Ting Hsu, Guindar Lin

Taipei, Taiwan

March 26, 2025

Introduction: Quantum Computing and Trapped-Ion Processors

- Quantum computing exploits superposition and entanglement.
- Trapped-ion systems are one of the leading hardware platforms.
- Ions are confined in traps and manipulated with lasers.
- High-fidelity gates and long coherence times.

Introduction: Scalability Challenges

- Single ion chains slow down as they grow.
- Modular approach: QCCD architecture shuttles ions between traps.
- Ion shuttling introduces latency, heat, and error.

Motivation: Drive-Through Architecture

- Static qubits in traps, mobile communication qubits circulate on a racetrack.
- Reduces motional heating and re-cooling time.

Figure: The "drive-through" architecture with static qubits in traps and communication qubits on the racetrack. Some qubits may be information-free (colored in white)

Limitations and Challenges

- Communication ions only connect to trap boundaries.
- Information must be swapped in and out.

Figure: Methods for transporting the information of a static qubit to another trap.

Architecture graph

Figure: The drive-through architecture. Note that the communication edges in the drive-through architecture are available in specific orders.

Methods: Compiler Overview

- Circuit \rightarrow DAG \rightarrow Gate partitioning \rightarrow Qubit placement.
- Layer-wise processing with look-ahead.
- Optimize placement for fidelity and transport cost.

Gate Partitioning

- Cluster qubits per layer using min-cut.
- Look-ahead mechanism for future gates. Adaptive window depth.

Figure: An illustration of circuit DAG generation and the gate partitioning at $\ell=1$

Dynamic Qubit Placement

- Simulated annealing to minimize placement cost.
- Cost = Gate distance + 3*Swap penalty + Pull force.

Figure: An illustration of layer-wise placement

Distance function

 The gate distance measures how far apart the qubits involved in two-qubit gates are within a trap.

$$\operatorname{gd}(\pi_{\ell,j}) = \sum_{q_m,q_n \in P_{\ell,j}, (q_m,q_n) \in V_{G_\ell}} |\pi_{\ell,j}(q_m) - \pi_{\ell,j}(q_n)|$$

• The swap distance measures the number of swaps needed to transform the initial configuration $\pi_{\ell,j,0}$ to the optimized configuration $\pi_{\ell,j}$.

$$\mathsf{sd}(\pi_{\ell,j},\pi_{\ell,j,0}) = \frac{1}{2} \sum_{i} |\pi_{\ell,j,0}(i) - \pi_{\ell,j}(i)|$$

• The boundary leaving cost.

Benchmark Circuits

- Evaluated on QNN, QAOA, QFT, Quantum Volume, Random circuits.
- Compared against SABRE and $t|ket\rangle$.

Reduced Inter-Trap Communication

• Example: Random circuit

• SABRE-ext: 10118 moves \rightarrow 5979 moves.

• 40% reduction.

Circuit	#Qubit	#Gate	Depth	#Trap	#Inter- SABRE-ext	trap transpor tlket\-ext	t Ours
QNN	51	392	140	2	44	18	6
KNN	67	264	168	3	70	46	21
Adder 64	64	455	180	3	118	78	26
QFT 63	63	3400	245	3	558	286	100
Multiplier	75	6510	3555	3	1254	1578	406
QV	40	6000	300	2	1110	856	614
Supremacy	80	8500	421	3	1352	1912	1037
QAOA	80	7900	277	3	906	630	397
Random M	100	3000	189	4	2988	2790	1735
Random L	100	10000	319	4	10118	9492	5979

Fidelity Improvements

- Drive-through-aware compiler improves fidelity.
- Fewer ion swaps, reduced gate distance.

Circuit	SABRE-ext		t ket}-ext		Ours	
Circuit	TD(GD,SD)	Fidelity	TD(GD,SD)	Fidelity	TD(GD,SD)	Fidelity
QNN	5537 (4100, 479)	0.9648	3400 (3066, 167)	0.9678	3233 (2795, 146)	0.9681
KNN	4142 (2678, 488)	0.9630	4050 (3004, 523)	0.9673	2450 (1787, 221)	0.9677
Adder 64	7022 (4442, 860)	0.9411	6662 (4942, 860)	0.9459	4712 (3068, 548)	0.9488
QFT 63	66347 (43334, 7671)	0.6633	51136 (42400, 4368)	0.6813	49541 (43031, 2170)	0.6871
Multiplier	101682 (63864, 12606)	0.3755	97295 (66909, 15193)	0.3619	74999 (55922, 6359)	0.4057
QV	129669 (69285, 20128)	0.6377	106472 (68586, 18943)	0.6480	84353 (50720, 11211)	0.6508
Supremacy	130018 (83038, 15660)	0.2629	128331 (71809, 28261)	0.2421	71928 (56079, 5283)	0.2781
QAOA	77124 (73620, 1168)	0.3090	47039 (35627, 5706)	0.3331	17317 (15940, 459)	0.3515
Random M	175641 (33933, 47236)	0.3491	137226 (36996, 50115)	0.3607	105203 (32123, 24360)	0.4168
Random L	599695 (112540, 162385)	0.0300	463461 (123489, 169986)	0.0322	367787 (107621, 86722)	0.0504
Avg. Ratio	1.4379 (2.2872, 1.7464)	0.9019	1.3345 (2.4926, 1.4190)	0.9125	1.0000 (1.0000, 1.0000)	1.0000

Scalability and Efficiency

- Handles 100+ qubit circuits with thousands of gates.
- Quadratic scaling with circuit size.

Conclusion

- Drive-through architecture enables low-overhead communication.
- Compiler maps circuits with higher fidelity and lower transport cost.