Response to 1st OA after RCE Page 2 of 11 December 27, 2006

Please cancel claims 4, 11, 19, 20, 21, 30, 32 and 33.

1. (Presently Amended) In a method for conducting a chemical reaction in the presence of a catalyst, the improvement comprising:

providing said catalyst on a support of electrically conductive carbonaceous material comprised of carbon fibers and carbon nanotubes; and

supplying an electric current to said support such that said support passes said electric current to said catalyst, wherein said electric resistively heats said catalyst to a temperature effective to activate the catalyst, thereby disproportionately increasing a temperature of said eatalyst with respect to said support.

- 2. (Canceled)
- 3. (Previously Presented) The method of claim 1 wherein said support is doped with a metal oxide.
- 4. (Canceled) The method of claim 3 wherein said support is carbon fiber.
- 5. (Previously Presented) The method of claim 1 wherein said catalyst is selected from the group consisting of Pt, Pd, Ru, Ni, In, P, TiO₂, V₂O₅, MoO₂, WO₃, ZnO, SnO₂, CuO, Cu₂O, FcO, Fe₂O₃, and mixtures thereof.
- 6. (Previously Presented) The method of claim 5 wherein said catalyst is present in admixture with a carrier.
- 7. (Previously Presented) The method of claim 6 wherein said carrier is selected from the group consisting of graphite powder, graphite or activated carbon powder, Al₂O₃, SiO₂, TiO₂, MgO, ZrO₂ and mixtures thereof.

Response to 1st OA after RCE Page 3 of 11 December 27, 2006

- 8. (Previously Presented) The method of claim 6 wherein said carrier is sintered and has pores from about 1 to about 100 Angstroms in diameter.
- 9. (Previously Presented) The method of claim 8 wherein said carrier has a surface area of about 1 to about 1000 m²/g.
- 10. (Canceled) The method of claim-1 wherein said catalyst on said-support is in the form of a particle and sand chemical reaction is conducted in the presence of a bed of contacting particles.
- 11. (Canceled) The method of claim 10 wherein said bed-of particles is captured between a pair of cloetrodes.
- 12. (Previously Presented) The method of claim 1 wherein said support is a conductive carbonaceous material having a pore diameter of about 0.005 to about 0.2 micrometers.
- 13. (Previously Presented) The method of claim 12 wherein said support possesses a heat conductivity of about 0.8 watt/cm-K to about 23 watt/cm-K.
- 14. (Previously Presented) The method of claim 13 wherein said support exhibits an electrical resistivity of about 1 to about 100 Ohms-cm.
- 15. (Previously Presented) The method of claim 14 wherein said support exhibits a dielectric constant of about 5 to 6 at about 10³ Hertz.
- 16. (Previously Presented) The method of claim 14 wherein said catalyst is present on said support in an amount of about 1 μg/cm³ to about 10 g/cm³.

Response to 1st OA after RCE Page 4 of 11 December 27, 2006

- 17. (Presently Amended) The method of claim 1 wherein said support is a woven or non-woven carbon fiber cloth or felt with carbon nanotubes.
- 18. (Previously Presented) The method of claim 17 wherein said carbon fiber cloth or felt is folded or rolled and said reaction is carried out by passing chemical reactants between said folds or rolls in said cloth or felt.
- 19. (Canceled) The method of claim 1 wherein said support is a polymeric adsorbent.
- 20. (Canceled) The method of claim 19 wherein said polymeric adsorbent is an ion exchange resin.
- 21. (Canceled) The method of claim 20 wherein said ion exchange resin is a bead.
- 22. (Previously Presented) The method of claim 1 wherein said catalyst includes at least one of copper, zinc and aluminum.
- 23. (Previously Presented) The method of claim 1 wherein said electric current that is passed through said catalyst increases the temperature of said catalyst about 50 to about 1200 degrees C.
- 24. (Previously Presented) The method of claim 1 wherein said chemical reaction is a methanol steam reforming reaction.
- 25. (Presently Amended) The method of claim 1 wherein said support is a non-woven carbon fiber plug with carbon nanofibers.
- 26. (Presently Amended) The method of claim 1 wherein a plurality of contacting non-woven carbon fiber plugs containing carbon nanofibers carrying said catalyst are interposed between a pair of electrodes.

Response to 1° OA after RCE Page 5 of 11 December 27, 2006

- 27. (Canceled)
- 28. (Canceled)
- 29. (Presently Amended) A method for supporting a catalyst comprising:

 providing an electrically conductive carbonaceous material comprised of carbon fibers and carbon nanotubes;

providing a catalyst;

dispersing said catalyst in or on said electrically conductive carbonaceous material; and

supplying an electric current to said electrically conductive carbonaceous material such that said electrically conductive carbonaceous material passes said electric current to said catalyst, wherein said electric current resistively heats said catalyst such that a temperature of said catalyst substantially increases with respect to said electrically conductive carbonaceous material.

- 30. (Canceled) A method for supplying energy to a catalyst comprising:

 providing an electrically conductive support, wherein said support is selected from the group consisting of conductive graphite, earbon nunotubes, activated carbon granules, and earbonaceous adsorbents;

 providing a catalyst;

 dispersing said catalyst in or no said conductive support; and supplying an electric current to said support such that said support passes said electric current-to-said entalyst, wherein said electric current resistively heats said catalyst such that a temperature of said eatalyst substantially increases with respect to said support.
- 31. (Canceled)

Response to 1st OA after RCE Page 6 of 11 December 27, 2006

