Pente et tangente

1. Pente en pourcentages

a. <u>Activité</u>

_	 	. ~~	 	 , ~ ~

Sur la route, nous voy	rons souvent des	panneaux de ce	type. Que signifi	e-t-il ?	
En roulant 50 m sur u	ne route dont la	pente est 10 %,	de quelle altitud	e vais-je descend	lre ?
En roulant 1 m sur ce	tte même route,	de quelle altitud	e vais-je descend	re ?	
Compléter le tableau suivant, qui correspond à la descente d'une pente de 10%.					
Distance parcourue	100	1	50	67	36
Altitude descendue					

b. <u>Définition</u>:

La pente en pour centages correspond à l'altitude descendue (ou montée) par paliers de 100 m (ou 100 km ...).

 $\underline{Exemple}$: Une rampe d'accès à un bâtiment ne doit pas dépasser les 6%.

Dans une école un directeur souhaite installer une rampe pour accéder à une plateforme surélevée de 30
em. Il prévoit que sa rampe soit de pente constante et longue de 4,5 m. Respecte-elle la condition ?

c. Exercices	
Comment trouver facilement la pente à partir d'un mètre ? 100cm	ın
Mesurer facilem une pente.	ent
2. <u>Pente</u> a. <u>Activité</u>	
Objectif : Comment déterminer quelle montée est la plus pentue ? A 6 m B 25 m	
Déterminer la pente en pourcentages pour ces 2 montées.	
Déterminer l'altitude montée dans ces 2 situations si l'on avance uniquement de 1 m.	
Cette dernière information est-elle utile pour savoir quelle montée est la plus pentue ?	
Calculer l'altitude montée pour 1m avancé dans la situation suivante :	350 r

 $2\ 500\ \mathrm{m}$

b. Définition

On peut calculer une pente facilement en connaissant la hauteur et la distance horizontale. Pour l'obtenir en pourcentages, je multiplie cette valeur par 100. Hauteur

Distance horizontale

c. <u>Exercices</u>			
1 Calcular las partes de la taiture suivante	9,00 m	6,00 m	
1. Calculer les pentes de la toiture suivante : -			
	E		
	2,70 m		
	2		

2. Voici un plan du col du Galibier, monté par les cyclistes lors du Tour de France. Détermine la pente (en %) sur l'ensemble de la montée.

b. Définition

La tangente de l'angle correspond exactement au calcul précédent de la pente :

Tangente à l'angle de la pente =
$$\frac{Hauteur}{Distance horizontale}$$

La tangente correspond au dénivelé pour 1 unité à l'horizontale (en m, cm...).

Exercices

1. Sur le schéma suivant, comment déterminer à quel angle correspond une pente de 1?

2. Quelle est la tangente de l'angle dessiné? Interpréter le résultat en une phrase.

	19 m
 271 m	

3. On mesure une pente de 29% sur une toiture en ardoise. Quel est l'angle formé?

Exercices

Exercice 1 On désire réaliser la porte d'entrée schématisée ci-dessous. Les cotes sont en centimètres et le dessin n'est pas à l'échelle. La porte est constituée d'un rectangle et d'un demi-disque.

- 1) Calculer le rayon R du demi-disque.
- 2) Calculer la hauteur totale h de la porte en centimètres puis en mètres.
- 3) Tracer AC. Les triangles ADC et ABC sont-il rectangles? Pourquoi?
- 4) Calculer la longueur de la barre AC. Donner le résultat arrondi au centimètre.

5) Quelle est la mesure de l'angle CAB ? Donner le résultat au degré près.

Rappel : Théorème de Pythagore

$$\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$$

 $\underline{\operatorname{Ex}} : \operatorname{ABC}$ rectangle en B

$$AB^2 + CB^2 = AC^2$$

$$4^2 + 3^2 = AC^2$$

$$16 + 9 = AC^2$$

$$25 = AC^2$$

$$AC = \sqrt{25} = 5 \text{ cm}.$$

3 cm

В

 $4 \, \mathrm{cm}$

Compléments: relations trigonométriques

<u>Application 1</u>: Détaille un protocole permettant de mesurer la hauteur de l'arbre suivant sans grimper. Sachant que l'on mesure un angle de 31°, que l'on est éloigné de 10m de l'arbre et que nos yeux sont à 1,5m du sol, quelle est la taille de l'arbre ?

 $\underline{\text{Application 2}}$: On considère le pendule suivant, avec une bille suspendue à un fil au point O. Ce fil mesure 90 cm.

1. On écarte le fil avec un angle de 48° avec la verticale. Quelle est la distance entre le pendule et la verticale ?

2. On écarte le pendule de 52 cm avec la verticale. Détermine la mesure de l'angle formé entre le fil et la

verticale.