Tema 6. E. Riccati şi E.D.E.

§1. Ecuații Riccati

Ecuația

$$x' = a(t)x + b(t)x^2 + c(t)$$
 (Ec. Riccati)

cu $b \not\equiv 0$ și $c \not\equiv 0$, poate fi rezolvată prin cuadraturi dacă se cunoaște o soluție particulară $x = \varphi(t)$, caz în care substituția

$$x = \varphi(t) + \frac{1}{z}$$

o transformă într-o ecuație liniară în funcția necunoscută z=z(t). Într-adevăr, avem

$$x' = \varphi'(t) - \frac{z'}{z^2},$$

iar ecuația devine

$$\varphi'(t) - \frac{z'}{z^2} = a(t)\left(\varphi(t) + \frac{1}{z}\right) + b(t)\left(\varphi^2(t) + 2\varphi(t)\frac{1}{z} + \frac{1}{z^2}\right) + c(t)$$

de unde, ținând cont că $\varphi'(t)=a(t)\varphi(t)+b(t)\varphi^2(t)+c(t)$, deoarece $x=\varphi(t)$ este soluție, obținem mai departe ecuația

$$-\frac{z'}{z^2} = a(t)\frac{1}{z} + 2b(t)\varphi(t)\frac{1}{z} + b(t)\frac{1}{z^2},$$

echivalentă cu ecuația liniară

$$\Leftrightarrow z' = -\left(a(t) + 2b(t)\varphi(t)\right)z - b(t).$$

Exercițiul 1.1. Integrați următoarele ecuații Riccati, ținând cont că acestea admit o soluție particulară $x = \varphi(t)$ de forma indicată.

a)
$$x' = x^2 + \frac{1}{t}x - 9t^2$$
, $\varphi(t) = 3t$ Soluție: $x = 3t + \frac{6t}{Ce^{-3t^2} - 1}$;

b)
$$x' = x^2 + x \operatorname{ctg} t - \sin^2 t$$
, $\varphi(t) = \sin t$ $x = \sin t + \frac{\sin t}{Ce^{2\cos t} - 1/2}$;

c)
$$t^2x' + t^2x^2 + tx - 4 = 0$$
, $\varphi(t) = \frac{2}{t}$ $x = \frac{2}{t} + \frac{4}{Ct^5 - t}$;

d)
$$tx' = x^2 - (2t+1)x + t^2 + 2t$$
, $\varphi(t) = at + b$ $x = t + \frac{1}{Ct+1}$?

e)
$$x' = -x^2 + t^2 + 1$$
, $\varphi(t) = at + b$
$$x = t + \frac{e^{-t^2}}{C + \int_0^t e^{-s^2} ds};$$

f)
$$t^2(x'+x^2) - 2(tx-1) = 0$$
, $\varphi(t) = \frac{a}{t}$ $x = \frac{2}{t} + \frac{1}{z}$, $x = \frac{2t+C}{t(t+C)}$;

§2. Ecuații cu diferențială exactă

O ecuație diferențială scrisă sub forma simetrică

$$g(t,x)dt + h(t,x)dx = 0 (*)$$

este cu diferențială exactă dacă există F astfel încât dF = g(t,x)dt + h(t,x)dx, ceea ce însemnă că

$$\begin{cases} \frac{\partial F}{\partial t} = g(t, x) \\ \frac{\partial F}{\partial x} = h(t, x), \end{cases}$$
 (**)

caz în care soluția generală a ecuației este dată de relația

$$F(t,x) = c,$$

cu c o constantă oarecare.

Dacă funcțiile implicate sunt elementare, indefinit derivabile pe domenii simple conexe, are loc echivalența

$$\exists F \text{ a. î. } dF = g(t, x)dt + h(t, x)dx \Leftrightarrow \frac{\partial g}{\partial x} = \frac{\partial h}{\partial t}$$
 (***)

și avem astfel un criteriu de a decide dacă ecuația (*) este sau nu cu diferențială exactă.

Exercițiul 2.1. Integrați ecuația

$$(t^2 + x^2 + 2t)dt + 2txdx = 0.$$

Rezolvare. Verificăm dacă este îndeplinită condiția (***). Derivatele parțiale

$$\frac{\partial}{\partial x}(t^2 + x^2 + 2t) = 2x$$
 și $\frac{\partial}{\partial t}(2tx) = 2x$

sunt egale, deci ecuația este cu diferențială exactă.

Cautăm o funcție F astfel încât

$$\begin{cases} \frac{\partial F}{\partial t} = t^2 + x^2 + 2t \\ \frac{\partial F}{\partial x} = 2tx. \end{cases}$$

Din prima relație obținem forma funcției F

$$F(t,x) = \int (t^2 + x^2 + 2t)dt = \frac{t^3}{3} + tx^2 + t^2 + c(x),$$

pe care o verificăm în a doua relație

$$\frac{\partial}{\partial x} \left(\frac{t^3}{3} + tx^2 + t^2 + c(x) \right) = 2tx \Leftrightarrow 2tx + c'(x) = 2tx \Leftrightarrow c'(x) = 0 \Leftrightarrow c(x) = c_0.$$

Alegem $c_0 = 0$ și obținem $F(t, x) = \frac{t^3}{3} + tx^2 + t^2$, deci soluția generală a ecuației diferențiale considerate este

$$\frac{t^3}{3} + tx^2 + t^2 = c.$$

Verificare. Soluția generală poate fi explicitată sub forma x = x(t), cu

$$x(t) = \pm \sqrt{\frac{c}{t} - t - \frac{t^2}{3}},$$

deci vom scrie ecuația dată tot pentru x ca funcție de t

$$\frac{dx}{dt} = -\frac{t^2 + x^2 + 2t}{2tx}.$$

Alegem, de exemplu, varianta cu semnul +, calculăm membrul stâng

$$x'(t) = \left(\left(\frac{c}{t} - t - \frac{t^2}{3} \right)^{\frac{1}{2}} \right)' = \frac{1}{2} \left(\frac{c}{t} - t - \frac{t^2}{3} \right)^{-\frac{1}{2}} \left(-\frac{c}{t^2} - 1 - \frac{2t}{3} \right)$$

şi membrul drept

$$-\frac{t^2 + x^2 + 2t}{2tx} = -\frac{1}{2} \left(t + \frac{1}{t} x^2 + 2 \right) x^{-1} =$$

$$= -\frac{1}{2} \left(t + \frac{c}{t^2} - 1 - \frac{t}{3} + 2 \right) \left(\frac{c}{t} - t - \frac{t^2}{3} \right)^{-\frac{1}{2}} =$$

$$= -\frac{1}{2} \left(\frac{c}{t^2} + 1 + \frac{2t}{3} \right) \left(\frac{c}{t} - t - \frac{t^2}{3} \right)^{-\frac{1}{2}},$$

şi obţinem acelaşi rezultat.

Exercițiul 2.2. Integrați următoarele ecuații.

a)
$$(t^3 + tx^2)dt + (t^2x + x^3)dx = 0$$
, Soluție: $t^4 + 2t^2x^2 + x^4 = C$;

b)
$$\frac{t}{x^2}dt + \frac{x^2 - t^2}{x^3}dx = 0,$$
 $\frac{t^2}{2x^2} + \ln x = C;$

c)
$$3t^2(1+\ln x)dt + (\frac{t^3}{x}-2x)dx = 0,$$
 $t^3+t^3\ln x - x^2 = C;$

d)
$$(3t^2 + 6tx^2)dt + (6t^2x + 4x^3)dx = 0,$$
 $t^3 + 3t^2x^2 + x^4 = C;$

e)
$$(t^3 - 3tx^2 + 2)dt - (3t^2x - x^2)dx = 0,$$
 $\frac{t^4}{4} - \frac{3}{2}t^2x^2 + 2t + \frac{x^3}{3} = C;$

f)
$$\frac{3t^2+x^2}{x^2}dt - \frac{2t^3+5x}{x^3}dx = 0,$$
 $\frac{t^3}{x^2} + t - \frac{5}{x} = C;$

g)
$$\left(\frac{t}{\sqrt{t^2+x^2}} + \frac{1}{t} + \frac{1}{x}\right)dt + \left(\frac{x}{\sqrt{t^2+x^2}} + \frac{1}{x} - \frac{t}{x^2}\right)dx = 0, \ \sqrt{t^2+x^2} + \ln(tx) + \frac{t}{x} = C;$$

Exercițiul 2.3. Rezolvați următoarele probleme Cauchy.

a)
$$\frac{t+2x}{(x+t)^2}dt + \frac{x}{(x+t)^2}dx = 0$$
, $x(1) = 0$, Soluție: $\ln(x+t) = \frac{x}{x+t}$;

b)
$$(t + e^{\frac{t}{x}})dt + (1 - \frac{t}{x})e^{\frac{t}{x}}dx = 0, \ x(0) = 2,$$
 $\frac{t^2}{2} + xe^{\frac{t}{x}} = 2;$

Observație. În exercițiul precedent, dacă amplificăm ecuația de la punctul a) cu factorul $(x+t)^2$ obținem ecuația

$$(t+2x)dt + xdx = 0,$$

care nu mai este cu diferențială exactă. Reciproc, dacă o amplificăm pe aceasta cu $\rho(t,x) = \frac{1}{(x+t)^2}$, obținem o ecuație cu diferențială exactă.

Se poate arăta că, în cazul coeficienților de clasă \mathbb{C}^1 , pentru orice ecuație

$$g(t,x)dt + h(t,x)dx = 0$$

există un factorul integrant $\rho = \rho(t, x)$ care să o transforme, prin amplificare, într-o ecuație cu diferențială exactă, numai că acest factor inegrant poate fi aflat prin cuadraturi doar în cazuri speciale.

Pentru ecuația amplificată $\rho gdt + \rho hdx = 0$, condiția (***)

$$\frac{\partial}{\partial x}(\rho g) = \frac{\partial}{\partial t}(\rho h)$$

conduce la ecuația cu derivate parțiale de ordinul întăi

$$g\frac{\partial \rho}{\partial x} + \rho \frac{\partial g}{\partial x} = h\frac{\partial \rho}{\partial t} + \rho \frac{\partial h}{\partial t},$$

numită ecuația factorului integrant, cu funcția necunoscută $\rho = \rho(t, x)$.

Să vedem în ce condiții ecuația factorului integrant admite, de exemplu, soluții particulare de forma $\rho = \rho(t)$. În acest caz ecuația devine

$$\rho \frac{\partial g}{\partial x} = h \frac{d\rho}{dt} + \rho \frac{\partial h}{\partial t}$$

care pusă sub forma

$$\frac{1}{\rho} \frac{d\rho}{dt} = \frac{1}{h} \left(\frac{\partial g}{\partial x} - \frac{\partial h}{\partial t} \right)$$

conduce la următorul criteriu: ecuația gdt+hdx=0 admite un factor integrant de forma $\rho=\rho(t)$ dacă și numai dacă expresia

$$\frac{1}{h} \left(\frac{\partial g}{\partial x} - \frac{\partial h}{\partial t} \right)$$

depinde numai de variabila t, caz în care factorul integrant satisface o ecuație diferențială cu variabile separabile.

Analog, ecuația gdt + hdx = 0 admite un factor integrant de forma $\rho = \rho(x)$ dacă și numai dacă expresia

$$\frac{1}{q} \left(\frac{\partial g}{\partial x} - \frac{\partial h}{\partial t} \right)$$

depinde numai de variabila x.

Exercițiul 2.4. Rezolvați ecuația

$$2txdt + (x^2 - 3t^2)dx = 0$$

prin metoda factorului integrant.

Rezolvare. Avem g = 2tx, $h = x^2 - 3t^2$

$$\frac{\partial g}{\partial x} - \frac{\partial h}{\partial t} = 2t - 6t = -4t, \quad \frac{1}{g} \left(\frac{\partial g}{\partial x} - \frac{\partial h}{\partial t} \right) = \frac{-4t}{2tx} = -\frac{2}{x} = \varphi(x),$$

căutăm așadar un factor integrant de forma $\rho = \rho(x)$.

Pentru ecuația amplificată

$$2tx\rho(x)dt + (x^2 - 3t^2)\rho(x)dx = 0$$

condiția (***) devine

$$2t\rho(x) + 2tx\rho'(x) = -6t\rho(x) \iff x\rho'(x) = -4\rho(x).$$

Am găsit ecuația cu variabile separabile

$$\frac{d\rho}{dx} = -\frac{4\rho}{x} \rightarrow \int \frac{d\rho}{\rho} = -4 \int \frac{dx}{x}$$

de unde deducem că $\rho(x)=\frac{1}{x^4}$ este un factor integrant. Amplificăm și rezolvăm ecuația cu diferențială exactă

$$\frac{2t}{x^3}dt + \left(\frac{1}{x^2} - \frac{3t^2}{x^4}\right)dx = 0,$$

obţinem primitiva

$$F(t,x) = \frac{t^2}{x^3} - \frac{1}{x}$$

și soluția ecuației inițiale, sub forma implicită, $t^2 - x^2 - cx^3 = 0$.

Exercițiul 2.5. Rezolvați ecuațiile următoare știind că admit un factor integrant de forma indicată.

a)
$$(t^2+x)dt-tdx=0, \ \rho=\rho(t),$$
 Soluție: $t-\frac{x}{t}=C;$

b)
$$x(1+tx)dt - tdx = 0$$
, $\rho = \rho(x)$, $t^2 + \frac{2t}{x} = C$;

c)
$$tx^2dt + (t^2x - t)dx = 0$$
, $\rho = \rho(tx)$, $xt - \ln x = C$;

.