A. Kapanowski

Fizyka - ćwiczenia nr 4

18 marca 2024

Zadanie 1.

Kula żelazna o ciężarze Q została zawieszona na dwóch linkach przyczepionych do haków. Każda z linek tworzy kąt α z kierunkiem pionowym (patrz rysunek). Znaleźć siły naprężeń linek.

Jak zmienia się rozwiązanie zadania dla linek, które tworzą różne kąty $(\alpha_1 \ i \ \alpha_2)$ z kierunkiem pionowym?

Zadanie 2.

Ciało porusza się bez tarcia po torze kołowym ustawionym pionowo. Jaka musi być minimalna prędkość ciała, aby nie odpadło od toru w jego najwyższym położeniu (patrz rysunek)? Załóżmy, że po minięciu fragmentu kołowego tor wznosi się do góry. Na jaką minimalną wysokość wyjedzie ciało?

Zadanie 3.

Obliczyć pracę wykonaną przez człowieka przy podnoszeniu kilograma cukru z podłogi na wysokość 2 m.

Zadanie 4.

Oblicz energię kinetyczną:

- a) piłkarza o wadze 100 kg biegnącego z prędkością 8 $\frac{m}{s}$,
- b) pocisku o masie 4,2 g lecącego z prędkością $950\frac{m}{s}$,
- c) samochodu o masie 1,5 tjadącego z prędkością 90 $\frac{km}{h}.$

Zadanie 5.

Piłkarz kopnął piłkę do piłki nożnej w kierunku nieruchomej piłki do gry w siatkówkę z prędkością $v_1=100km/h$ (rekord to 222km/h). Oblicz prędkości i kierunki ruchu piłek po zderzeniu sprężystym. Przyjmujemy, że piłka do gry w piłkę nożną waży $m_1=390g$, a piłka do gry w siatkówkę waży $m_2=260g$.

Zadanie 6.

Pocisk o masie $m_1=9.5\ g$ wystrzelono poziomo w kierunku drewnianego kloca o masie $m_2=5.4\ kg$, zawieszonego na linach. Pocisk zatrzymał się wewnątrz kloca, a cały układ (pocisk oraz kloc) odchylił się od pionu (patrz rysunek). Środek masy wzniósł się przy tym w pionie na maksymalną wysokość $h=6.3\ cm$. Ile wynosiła prędkość pocisku tuż przed zderzeniem z klocem?

