NOVA IMS

Information Management School

Machine Learning – Project 2

Clustering

Group 7

Stefano Sperti 20222246

Anna Kwiatkowska 20222216

Data Exploration and Understanding

Important aspects that we found:

- skewness in RidesBooked variable
- 'blank spaces' in histograms of Windspeed and Humidity

Data Preprocessing

The key processes that were done:

- converting Month and DayofWeek variables into numeric
- fixing outliers replacing them at the whiskers of the boxplots
- creating a new feature Date
- grouping the dataset by by Date, DayofWeek, HourofDay and Month

Scaling and feature selection

For scaling and feature selection we performed:

- MinMax Scaling
- Spearman correlation combined with the pairplots
- created 3 different perspectives

Perspective	Name in the code	Variables
Weather	Weather conditions1	Temperature, FeltTemperature,
	_	Humidity, WindSpeed,
		WeatherForecast 0.0,
		WeatherForecast_1.0,
		WeatherForecast 2.0,
		WeatherForecast 3.0
Weather	Weather conditions2	FeltTemperature, Humidity, WindSpeed,
	_	WeatherForecast ord
Consumer	Rides Booked	Nonregisteredusers, Registeredusers,
	_	RidesBooked
Date	Bool_date	Holiday, WorkingDay, HourofDay

Models

For modelling we utilized:

- K-means
- K-modes

Additionally, we used three different approaches to define number of clusters "k":

- "elbow" method
- dendograms
- silhouette score

At the end we visualized the results using the pararel plots and histograms.

Model assessment

To improve our models, we:

- explored the possibilities to clustering with both the categorical and numerical features
- changed the number of clusters "k"
- created 4 profiles for better understanding of the data
- deleted the Temperature variable
- merged the perspectives

Profile	Variables
Averages_weatherconditions	Humidity_avg, FeltTemperature_avg, RidesBooked_avg,
	WindSpeed avg, WeatherForecast ord med
weatherconditions_rides	Humidity, FeltTemperature, RidesBooked, WindSpeed,
	WeatherForecast ord
	WindSpeed_DayofWeek_avg,
	DayofWeek RidesBooked avg,
	DayofWeek_FeltTemperature_avg,
	DayofWeek_Humidity_avg,
	DayofWeek_AverageRideDurationPreviousDay_Min_avg,
	DayofWeek ord
Peak_Hours	RidesBooked_Hours_avg, Nonregisteredusers_Hours_avg,
_	Registeredusers Hours avg, HourofDay
Peak Hours2	RidesBooked Hours avg, Nonregisteredusers Hours avg,
	Registeredusers Hours avg,

Profiles

HourofDay histogram for profile "Peak hours2"

DayofWeek histogram for profile "averages_dayofweek"

Profiles (2)

Plot for profile "weatherconditions_rides"

"HourofDay" histogram for profile "weatherconditions_rides"

Perspective Weather_condition

Perspective Bool_date

Perspective Rides_booked

Clusters

- From 3 perspectives we obtained 12 "semi" final clusters, that later were merged.
- The final number of clusters is 4.

Results

The main results from our work are:

- 4 different associacion rules, that could explain the customer behavior
- 3 variables, that influence the customer behavior the most

In the mornings of working days with poor weather, there is a low number of rides ordered.

Regardless of the time of day, when the weather conditions are unfavorable, there is a minimal number of booked rides.

During favorable weather, particularly in the afternoons of working days, there is a high volume of rides booked.

On holidays (non-working days) with favorable weather, there is a significant increase in the number of rides booked.

Results

Thank you!

Morada: Campus de Campolide, 1070-312 Lisboa, Portugal

Tel: +351 213 828 610 | Fax: +351 213 828 611

