ASSIGNMENT-2

1

EE24BTECH11043 - Murra Rajesh Kumar Reddy

- 1) The shortest distance between the lines $\frac{x+7}{-6} = \frac{y-6}{7} = z$ and $\frac{7-x}{2} = y-2 = z-6$ is
 - a) $2\sqrt{29}$
 - b) 1
 - c) $\sqrt{\frac{37}{29}}$
- 2) Let $\mathbf{a} = \hat{i} \hat{j} + 2\hat{k}$ and let **b** be a vector such that $\mathbf{a} \times \mathbf{b} = 2\hat{i} \hat{k}$ and $\mathbf{a} \cdot \mathbf{b} = 3$ Then the projection of **b** on the vector $\mathbf{a} - \mathbf{b}$ is :
 - a) $\frac{2}{\sqrt{21}}$
 - b) $2\sqrt{\frac{3}{7}}$
 - c) $\frac{2}{3}\sqrt{\frac{7}{3}}$ d) $\frac{2}{3}$
- 3) If the mean deviation about median for the number 3, 5, 7, 2k, 12, 16, 21, 24 arranged in the ascending order, is 6 then the median is
 - a) 11.5
 - b) 10.5
 - c) 12
 - d) 11
- 4) $2\sin\left(\frac{\pi}{22}\right)\sin\left(\frac{3\pi}{22}\right)\sin\left(\frac{5\pi}{22}\right)\sin\left(\frac{7\pi}{22}\right)\sin\left(\frac{9\pi}{22}\right)$ is equal to :
- 5) Consider the following statements:
 - P : Ramu is intelligent.
 - O: Ramu is rich.
 - R: Ramu is not honest.

The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as:

- a) $((P \cap (\sim R)) \cap Q) ((\sim Q) \cap ((\sim P) \cup R))$
- b) $((P \cap R) \cap Q) \cup ((\sim Q) \cap ((\sim P) \cup (\sim R)))$
- c) $((P \cap R) \cap Q) \cap ((\sim Q) \cap ((\sim P) \cup (\sim R)))$
- d) $((P \cap (\sim R)) \cap Q) \cup ((\sim Q) \cap ((\sim P) \cap R))$
- 6) Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. Define $B = \{T \subset A : \text{ eitther } 1 \notin T \text{ or } 2 \in T\}$ and $C = \{T \subset A : T \text{ the sum of all the elem}\}$ the number of elements in the set $B \cup c$ is .
- 7) Let f(x) be a quadractic polynomial with leading coefficient 1 such that $f(0) = p, p \neq 0$. and $f(1) = \frac{1}{3}$. If the equation f(x) = 0 and fofofofof(x) = 0 have a common real root, then f(-3) is eqaul to.

- 8) Let $A = \begin{pmatrix} 1 & a & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}$, $a, b \in R$. If for some $n \in N$, $A^n = \begin{pmatrix} 1 & 48 & 2160 \\ 0 & 1 & 96 \\ 0 & 0 & 1 \end{pmatrix}$ then n + a + b is equal to .
- 9) The sum of the maximum and minimum values of the function $f(x) = |5x 7| + [x^2 + 2x]$ in the interval $\begin{bmatrix} 5 \\ 4 \end{bmatrix}$, where [t] is the greatest integer $\leq t$, is .
- interval $\left[\frac{5}{4}, 2\right]$, where [t] is the greatest integer $\leq t$, is .

 10) Let y = y(x) be the solution of the differential equation $\frac{dy}{dx} = \frac{4y^3 + 2yx^2}{3xy^2 + x^3}, y(1) = 1.$ If for some $n \in N, y(2) \in [n-1, n)$, then n is equal to .
- 11) let f be twice differentiable function on R.If f'(0) = 4 and $f(x) + \int_0^x (x-1) f'(t) dt = \left(e^{2x} + e^{-2x}\right) \cos 2x + \frac{2}{a}x$, the $(2a+5)^5 a^2$ is equal to .
- $(2a+5)^5 a^2$ is equal to .

 12) Let $a_n = \int_{-1}^n \left(1 + \frac{x}{2} + \frac{x^2}{3} + \dots + \frac{x^{n-1}}{n}\right) dx / /$ for every $n \in N$. Then the sum of all the elments of the set $\{n \in N : a_n \in (2,30)\}$ is .
- 13) If the circles $x^2 + y^2 + 6x + 8y + 16 = 0$ and $x^2 + y^2 + 2(3 \sqrt{x})x + 2(4 \sqrt{6})y = k + 6\sqrt{3} + 8\sqrt{6}, k \ge 0$, touch internally at the point $P(\alpha, \beta)$, then $(\alpha + \sqrt{3})^2 + (\beta + \sqrt{6})^2$ is equal to .
- 14) Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve $4x^3 3xy^2 + 6x^2 5xy 8y^2 + 9x + 14 = 0$ at the point (-2, 3) be A. Then 8A is equal to .
- 15) Let $x = \sin\left(2\tan^{-1}\alpha\right)$ and $y = \sin\left(\frac{1}{2}\tan^{-1}\frac{4}{3}\right)$. If $S = \left\{\alpha \in \mathbb{R} : y^2 = 1 x\right\}$, then $\sum_{\alpha \in S} 16\alpha^3$ is equal to .