RESILIENCE REALIZED

North America 2021

North America 2021

RESILIENCE REALIZED

Implementation challenges: From HPC to Containers in the Academy Viktória Spišaková & Lukáš Hejtmánek, Masaryk University

Who we are

- North America 2021

Lukáš Hejtmánek Masaryk University

IT architect

Viktória Spišaková Masaryk University IT specialist

Overview

- · Czech NREN e-Infra CZ operates HPC environment
- ~20k CPU cores, 200 GPUs, 60PB storage
- · Computational resources accessible mostly through PBSPro
- Storage accessible through Kerberized NFSv4
 - Minority usage through S3, CEPH RBD
- ~1000 active users

HPC: Resources

- Compute resources
 - · Users create shell scrips and run them via PBSPro
 - · ssh experience required, no GUI
 - Open OnDemand attempt to provide GUI
- Storage resources
 - Directly available on worker nodes, many storage locations!
 - Accessible from user's computer

HPC: Troubles

- No straightforward way to monitor running computations
- Heritage of old unsupported scripts not working on updated/ upgraded nodes
- Average UNIX skills required
- Access to storage is time limited
- · Setting up a NFS client is a hard task

HPC: Containers

- Common existing containers
 - NGC containers
 - Biocontainers
- How to use them?
 - Docker mostly prohibited
 - Singularity tool
 - Podman
- Why not to use native container infrastructure?

Containers: Infrastructure

- Building shared container infrastructure
 - · No need for users to deploy and maintain own infrastructure
 - Users focus on research and their work
- Alternate approach run your own container infrastructure
 - OpenStack Magnum

Containers: e-Infra CZ

- Operating several Kubernetes clusters
 - Rancher + RKE 2
- User perspective
 - Native K8s access
 - Pre-deployed applications and frameworks
 - · Rancher GUI

User Perspective

Native K8s access

- Own/shared project
- Namespace
- Persistent storage
 - NFS
 - CEPH RBD
 - · S3
- GPU
- InfiniBand

Pre-deployed applications

- Jupyter Hub + Binder
- Galaxy
- Kubeflow
- 3D accelerated desktop

Frameworks

- GA4GH TES/WES
- Nextflow
- Snakemake

Containers: Benefits for Users

— North America 2021

- No required knowledge of
 - Shell scripts, ssh, and CLI tools
 - Kerberos and NFS
 - NREN topology
 - Software modules and their dependencies
 - Way to run HPC containers

Containers: Challenges

• K8s — HPC integration

Queueing and fairness

Scheduling

• User trust

Challenges: K8s — HPC Integration (Kabelon)

• How to integrate existing HPC infrastructure with K8s?

AAI

Compute Nodes

Storage

Challenges: K8s — HPC Integration

AAI can be shared

Worker nodes are easily shared between PBSPro and K8s

• PBSPro K8s connector as an option

Storage — real challenge

HPC Storage

- HPC usually utilises NFS, AFS
- How to access HPC storage from K8s?
- User authentication
 - Access tokens do not understand namespace
 - How to renew the token?
 - UID only most containers run as user 1000
 - UID remapping

HPC Storage

- NFS UID remap ★
 - Fast
 - Many CSI drivers
- sshfs UID remap

 ✓
 - Slow
 - CSI driver must not restart
- CIFS UID remap

 ✓
 - Acceptable performance
 - Not widely supported in HPC

- Currently not present in vanilla K8s
- Do we need queuing system?
- We need fairness
 - Force fair use policy
- Resource quotas, priorities, is it all we need?

Challenges: Scheduling

- PBSPro contains complex scheduler
- K8s contains rather simple scheduler
- Should avoid pod starvation
- Pod eviction is a problem for HPC
- K8s resources without time limit

Challenges: User Trust

- Users are afraid of changes
 - Will it work?
 - Is it stable?
 - Will it survive next year?
- Build better portals

Future Plans

- Continue transition from PBSPro to K8s
- Experimental setup
 - Worker nodes with large SSD
 - Build fast shared storage
 - Provide reasonable data redundancy

Conclusion

· Providing unified container infrastructure in e-Infra CZ

Multi-tenancy

Suitable for web services and HPC

Already running HPC workloads

Thank you for your attention