ECON 6511: Econometrics

Midterm Exam

Points: 60, Time: 210 minutes

Instructions

- Use 3 or more decimal places unless otherwise stated
- No notes or cellphones

Section A: Multiple-choice (15 points)

- 1. The model: $y_t = \beta_0 + \beta_1 c_t + u_t$, t = 1, 2, ..., n, is an example of a(n):
 - (a) autoregressive conditional heteroskedasticity model.
 - (b) static model.
 - (c) finite distributed lag model.
 - (d) infinite distributed lag model.
- 2. Which of the following is an assumption on which time series regression is based?
 - (a) A time series process follows a model that is nonlinear in parameters.
 - (b) In a time series process, no independent variable is a perfect linear combination of the others.
 - (c) In a time series process, at least one independent variable is a constant.
 - (d) For each time period, the expected value of the error u_t , given the explanatory variables for all time periods, is positive.
- 3. If an explanatory variable is strictly exogenous it implies that:
 - (a) changes in the lag of the variable does not affect future values of the dependent variable.
 - (b) the variable is correlated with the error term in all future time periods.
 - (c) the variable cannot react to what has happened to the dependent variable in the past.
 - (d) the conditional mean of the error term given the variable is zero.
- 4. A study which observes whether a particular occurrence (e.g. a new policy) influences some outcome is referred to as a(n):
 - (a) event study.
 - (b) exponential study.

- (c) laboratory study.
- (d) comparative study.
- 5. A covariance stationary time series is weakly dependent if:
 - (a) the correlation between the independent variable at time t and the dependent variable at time t + h goes to ∞ as $h \to 0$.
 - (b) the correlation between the independent variable at time t and the dependent variable at time t+h goes to 0 as $h\to\infty$.
 - (c) the correlation between the independent variable at time t and the independent variable at time t+h goes to ∞ as $h\to 0$.
 - (d) the correlation between the independent variable at time t and the independent variable at time t + h goes to 0 as $h \to \infty$.
- 6. The model $y_t = e_t + \beta_1 e_{t-1} + \beta_2 e_{t-2}$, t = 1, 2, ..., where e_t is an i.i.d. sequence with zero mean and variance σ_e^2 represents a(n):
 - (a) static model.
 - (b) moving average process of order one.
 - (c) moving average process of order two.
 - (d) autoregressive process of order two.
- 7. The model $y_t = y_{t-1} + e_t, t = 1, 2, ...$ represents a:
 - (a) AR(2) process.
 - (b) MA(1) process.
 - (c) random walk process.
 - (d) random walk with a drift process.
- 8. If a process is said to be integrated of order one, or I(1), then:
 - (a) it is covariance stationary
 - (b) averages of such processes already satisfy the standard limit theorems
 - (c) the first difference of the process is weakly dependent
 - (d) it does not have a unit root
- 9. In the presence of serial correlation:
 - (a) estimated standard errors remain valid.

- (b) estimated test statistics remain valid.
- (c) estimated OLS values are not BLUE.
- (d) estimated variance does not differ from the case of no serial correlation.
- 10. Which of the following identifies an advantage of first differencing a time-series?
 - (a) First differencing eliminates most of the serial correlation.
 - (b) First differencing eliminates most of the heteroskedastcicty.
 - (c) First differencing eliminates most of the multicollinearity.
 - (d) First differencing eliminates the possibility of spurious regression.
- 11. A regression model exhibits unobserved heterogeneity if
 - (a) there are unobserved factors affecting the dependent variable that change over time
 - (b) there are unobserved factors affecting the dependent variable that do not change over time
 - (c) there are unobserved factors which are correlated with the observed independent variables
 - (d) there are no unobserved factors affecting the dependent variable
- 12. Ordinary least squares estimation is subject to (heterogeneity) bias if
 - (a) the regression model exhibits heteroskedasticty
 - (b) the unobserved effect is correlated with the observed explanatory variables
 - (c) the regression model includes a lagged dependent variable
 - (d) the explanatory variables do not change over time
- 13. What should be the degrees of freedom (df) for fixed effects estimation if the data set includes N cross sectional units over T time periods and the regression model has k independent variables?
 - (a) N kT
 - (b) NT k
 - (c) NT N k
 - (d) N-T-k
- 14. The general approach to obtaining fully robust standard errors and test statistics in the context of panel data is known as

- (a) confounding
- (b) differencing
- (c) clustering
- (d) attenuating
- 15. Which of the following assumptions is needed for the usual standard errors to be valid when differencing with more than two time periods?
 - (a) The regression model exhibits heteroskedasticty.
 - (b) The differenced idiosyncratic error or Δu_{it} is uncorrelated over time.
 - (c) The unobserved factors affecting the dependent variable are time-constant.
 - (d) The regression model includes a lagged independent variable.

Section B: Written Answer (45 points)

1. (20 points) Consider the following model that relates wages to productivity:

$$\log(hrwage_t) = \beta_0 + \beta_1 \log(outphr_t) + u_t,$$

where the variable hrwage is average hourly wage in the U.S. economy, and the variable outphr is output per hour. The data are annual data between 1947 and 1987 with n=41. The output from this regression and many other specifications are included below.

- (a) Interpret (with one perfect sentence) what the estimate of β_1 in the above model means.
- (b) **Formally** test the hypothesis that $\beta_1 = 1$ against a two-sided alternative, i.e. test whether productivity growth is fully passed onto workers in the form of higher wages.
- (c) Included in the attached output are regressions of both $\log(hrwage)$ and $\log(output)$ regressed on a simple linear time trend, t. What do these regressions suggest about the likely bias in the estimate of β_1 above? Explain.
- (d) Consider a second specification that includes a time trend:

$$\log(hrwage_t) = \beta_0 + \beta_1\log(outphr_t) + \beta_2t + u_t$$

Interpret the coefficients on $\log(outphr_t)$ and t. Are they both statistically significant?

- (e) Explain how you would linearly de-trend the variable log(hrwage), i.e. remove its time trend?
- (f) After removing time-trends, suppose the first order autocorrelations of $\log(hrwage)$ and $\log(outphr)$ are $\hat{\rho} = 0.967$ and $\hat{\rho} = 0.945$ respectively. What do these findings imply? What is an appropriate remedy?
- (g) Consider a model in first differences:

$$\Delta \log(hrwage_t) = \beta_0 + \beta_1 \Delta \log(outphr_t) + \Delta u_t$$

where $ghrwage = \Delta \log(hrwage_t)$ and $goutphr = \Delta \log(outphr_t)$ in the Stata output. Interpret the coefficient on $\Delta \log(outphr_t)$. Formally test the hypothesis that $\beta_1 = 1$ against a two-sided alternative.

(h) Consider a final model:

$$ghrwage_t = \beta_0 + \beta_1 goutphr_t + \beta_2 goutphr_{t-1} + u_t$$

that includes one lag of output growth. Is the lagged value statistically significant?

(i) Test $\beta_1 + \beta_2 = 1$ against a two-sided alternative.

$$ghrwage_t = \beta_0 + \theta goutphr_t + \beta_2(goutphr_{t-1} - goutphr_t) + u_t$$

(j) Does $goutphr_{t-2}$ need to be in the model? Explain.

. reg lhrwage loutphr

Source	SS	df	MS		Number of obs		41
Model Residual	.956010689 .119521723	1 39	.956010689 .00306466		F(1, 39) Prob > F R-squared Adj R-squared	= 0.8	95 000 889 860
Total	1.07553241	40	.02688831		Root MSE		536
lhrwage	Coef.	Std.	Err. t	P> t	[95% Conf.	Interv	al]
loutphr _cons	.6891012 -1.534398	.039			.6101839 -1.88162	.7680 -1.187	

. reg loutphr t

Source	SS	df		MS		Number of obs		41
Model Residual	1.91976939 .09347595	1 39		.976939 396819		F(1, 39) Prob > F R-squared	= =	800.97 0.0000 0.9536 0.9524
Total	2.01324534	40	.050	331133		Adj R-squared Root MSE	=	.04896
loutphr	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
t _cons	.0182881 4.010183	.0006 .0155		28.30 257.46	0.000 0.000	.0169811 3.978678		0195951 .041688

. reg lhrwage t

Source	SS	df	MS		Number of obs	
Model Residual	.79327836 .282254052		79327836 07237283		F(1, 39) Prob > F R-squared	= 0.0000 = 0.7376
Total	1.07553241	40 .	02688831		Adj R-squared Root MSE	= 0.7308 = .08507
lhrwage	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
t _cons	.0117559 1.246799	.0011229 .0270657	10.47 46.07	0.000 0.000	.0094847 1.192053	.0140272 1.301544

. reg lhrwage loutphr t

Source	SS	df	MS		Number of obs =	
Model Residual Total	1.04458064 .030951776 1.07553241	2 38 40	.522290318 .00081452 .02688831		F(2, 38) = Prob > F = R-squared = Adj R-squared = Root MSE =	0.0000 0.9712 0.9697
lhrwage	Coef.	Std.	Err. t	P> t	[95% Conf. I	interval]
loutphr t _cons	1.639639 01823 -5.328454	.0933 .0017 .3744	482 -10.43	0.000 0.000 0.000	021769 -	1.828611 .0146909 4.570421

. reg ghrwage goutphr

Source	SS	df	MS		Number of obs	-
Model Residual	.006255013 .01091799	1 38	.006255013 .000287316		F(1, 38) Prob > F R-squared Adj R-squared	= 0.0000 = 0.3642
Total	.017173003	39	.000440333		Root MSE	= .01695
ghrwage	Coef.	Std. I	Err. t	P> t	[95% Conf.	Interval]
goutphr _cons	.809316 0036621	.1734			.4581773 0122051	1.160455 .0048808

. reg ghrwage goutphr goutph_1

Source	SS	df		MS		Number of obs		39
Model Residual Total	.008456778 .008692555 .017149333	2 36 38	.000	228389 324146 451298		F(2, 36) Prob > F R-squared Adj R-squared Root MSE	= 0.000 = 0.493	90 31 50
ghrwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	Interval	_ []
goutphr goutph_1 _cons	.7283641 .4576351 010425	.1672 .1656 .0045	126	4.36 2.76 -2.29	0.000 0.009 0.028	.3892217 .1217571 0196404	1.06750 .79351 001209	13

. gen new_var = goutph_1 - goutphr (2 missing values generated)

. reg ghrwage goutphr new_var

Source	SS	df	MS		Number of obs	= 39
Model Residual Total	.008456778 .008692555 .017149333	36	004228389 .00024146 000451298		F(2, 36) Prob > F R-squared Adj R-squared Root MSE	= 0.0000 = 0.4931
ghrwage	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
goutphr new_var _cons	1.185999 .4576351 010425	.203141 .165612 .004543	6 2.76	0.000 0.009 0.028	.7740089 .1217571 0196404	1.59799 .793513 0012096

. reg ghrwage goutphr goutph_1 goutph_2

Source	SS	df		MS		Number of obs		38
Model Residual	.008048615 .007575626	3 34		2682872 2222813		F(3, 34) Prob > F R-squared	= =	12.04 0.0000 0.5151
Total	.015624241	37	. 000	1422277		Adj R-squared Root MSE	=	0.4724 .01493
ghrwage	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
goutphr goutph_1 goutph_2 _cons	.7464273 .3740461 .0653486 0112838	.1615 .1665 .1597	312 7067	4.62 2.25 0.41 -2.33	0.000 0.031 0.685 0.026	.4182123 .0356139 2592144 0211217	:	.074642 7124783 3899116 0014458

2. (15 points) Consider the following model that relates traffic deaths per 100 million miles to two policies that attempt to reduce drunk driving. The two laws are open container laws—which make it illegal for travel with an open alcoholic drink and administrative per se laws—which enable courts to suspend driver licenses immediately after an arrest. Consider a cross-sectional model relating the death rate (dthrte) in a state to dummy variables indicating whether the state has any of these laws (open and admin):

$$dthrte_i = \beta_0 + \beta_1 open_i + \beta_2 admin_i + u_i$$
.

This equation is estimated separately for 1985 where *open*85 and *admin*85 are the dummy variables for 1985. Results are provided below.

- (a) How do you interpret the coefficients on *open*85 and *admn*85? Do the signs of the coefficients make sense? Explain.
- (b) Are the estimates likely to be unbiased? Explain.
- (c) Consider an alternative unobserved effects model using panel data with T=2 periods:

$$dthrte_{it} = \beta_0 + \beta_1 d2_t + \beta_2 open_{it} + \beta_3 admin_{it} + a_i + u_{it}.$$

where $d2_t$ is a dummy variable equal to 1 in the second period. List two factors that might be included in a_i .

- (d) Explain how we can obtain unbiased or at least consistent estimates of β_1 and β_2 assuming we have data from states before and after these laws were passed.
- (e) Write down the Stata code that you would use to generate the change in *dthrte* between two periods assuming the data was organized so that you had one observation per state and period.
- (f) Results from the following model:

$$\Delta dthrte_i = \beta_0 + \beta_1 \Delta open_i + \beta_2 \Delta admin_i + \Delta u_i.$$

using two years of data (1985 and 1990) are included below. In 1985, 19 states had open container laws, while 22 states had such laws in 1990. In 1985, 21 states had per se laws; the number had grown to 29 by 1990. Interpret the estimated coefficient on *copen*, which is equivalent to $\Delta open_i$ in the above model. Interpret the estimate of β_0 .

- (g) Does the sign on *cadmin* make sense? Is it statistically significant?
- (h) What do we need to assume for the estimates in part (f) to be "correct?"

. reg dthrte85 open85 admn85

Source	SS	df	MS		Number of obs	
Model Residual Total	1.17595166 17.0240489 18.2000005	_	.58797583 354667685 .36400001		F(2, 48) Prob > F R-squared Adj R-squared Root MSE	= 0.2013 = 0.0646
dthrte85	Coef.	Std. Er	r. t	P> t	[95% Conf.	Interval]
open85 admn85 _cons	2131043 .229711 2.684805	.172500 .169461 .125788	7 1.36	0.182	5599395 1110146 2.431889	.1337309 .5704366 2.93772

. reg cdthrte copen cadmn

Source	SS	df	MS		Number of obs = 51
Model Residual Total	.762579785 5.66369475 6.42627453	48 .11	31289893 17993641 28525491		F(2, 48) = 3.23 Prob > F = 0.0482 R-squared = 0.1187 Adj R-squared = 0.0819 Root MSE = .3435
cdthrte	Coef.	Std. Err.	t	P> t	[95% Conf. Interval]
copen cadmn _cons	4196787 1506024 4967872	.2055948 .1168223 .0524256	-2.04 -1.29 -9.48	0.047 0.204 0.000	83305470063028 3854894 .0842846 60219593913784

3. (15 points) Consider the following model of rental prices in one of 64 college towns for the years 1980 and 1990. The idea is to see whether a stronger presence of students affects rental rates. The unobserved effects model is:

$$\log(rent_{it}) = \beta_0 + \delta_0 y + \beta_1 \log(pop_{it}) + \beta_2 \log(avginc_{it}) + \beta_3 pctstu_{it} + a_i + u_{it},$$

where *pop* is city population, *avginc* is average income, and *pctstu* is student population as a percentage (0 to 100) of city population (during the school year). Results by pooled OLS, random effects, and fixed effects are given below.

- (a) Using pooled OLS, what is the interpretation of the 1990 dummy variable? What does the estimate of β_3 imply?
- (b) Are the standard errors for the pooled OLS estimates likely to be valid? Explain.
- (c) What does the estimate of β_3 using fixed effects imply? Why is it so different to the pooled OLS estimate?
- (d) List one factor that might be contained in a_i and explain how it might be correlated with pctstu.
- (e) What does the estimate of β_3 under random effects imply about the likely magnitude of $\hat{\theta}$ (the quasi demeaning parameter)?
- (f) Which model do you prefer and why?
- (g) Suppose you estimated the model using OLS but included dummy variables for each city as opposed to time demeaning or quasi demeaning the data. What would you expect to get for your estimate of β_3 ?

	Pooled OLS	Fixed Effects	Random Effects
$\log(pop)$	0.041	0.072	0.056
	(0.023)	(0.088)	(0.029)
$\log(avginc)$	0.571**	0.310**	0.447**
	(0.053)	(0.066)	(0.052)
pctstu	0.005**	0.011**	0.005**
	(0.001)	(0.004)	(0.001)
y90	0.262**	0.386**	0.323**
	(0.035)	(0.037)	(0.029)
Constant	-0.569	1.409	0.445
	(0.535)	(1.167)	(0.566)
Observations	128	128	128
R^2	0.861	0.977	

Standard errors in parentheses

^{*} p < 0.05, ** p < 0.01

Formulae

- For simple regression model: $\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i \overline{x})(y_i \overline{y})}{\sum_{i=1}^n (x_i \overline{x})^2}$
- Estimated slope parameter when regression equation passes through origin: $\frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$
- $SSR = \sum_{i=1}^{n} \hat{u}_i^2$
- $SSE = \sum_{i=1}^{n} (\hat{y}_i \overline{y})^2$
- $SST_j = \sum_{i=1}^n (x_{ij} \overline{x}_j)^2$
- $R^2 = \frac{SSE}{SST} = 1 \frac{SSR}{SST}$
- For simple regression model: $se(\hat{\beta}_1) = \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^{n}(x_i \overline{x})^2}}$
- $\widehat{Var}(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{SST_j(1-R_j^2)}$
- t statistic: $t_{\hat{\beta}_j} \equiv \frac{\hat{\beta}_j a_j}{se(\hat{\beta}_j)} \sim t_{n-k-1} = t_{df}$
- 95% confidence interval: $P(\hat{\beta}_j c_{0.05} \cdot se(\hat{\beta}_j) \le \beta_j \le \hat{\beta}_j + c_{0.05} \cdot se(\hat{\beta}_j)) = 0.95$
- $F \text{ statistic} = \frac{(SSR_r SSR_{ur})/q}{SSR_{ur}/(n-k-1)}$
- R^2 form of F statistic = $\frac{(R_{ur}^2 R_r^2)/q}{(1 R_{ur}^2)/(n k 1)}$
- $\overline{R}^2 = 1 \frac{SSR/(n-k-1)}{SST/(n-1)}$
- Chow test statistic: $F = \frac{[SSR_P (SSR_1 + SSR_2)]/(k+1)}{(SSR_1 + SSR_2)/[n-2(k+1)]}$

Cumu	lative	Areas	under	the 9	Stand	and I	Normal	Distribution	
Carring	lative	Meas	unuei	une .	otaliu	alu	NUITHA	DISHIDUHOH	

z	0	1	2	3	4	5	6	7	8	9
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148

(continued)

z	0	1	2	3	4	5	6	7	8	9
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0		0.9778								
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	0.9938						0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965								0.9973	
2.8		0.9975							0.9980	
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990

Examples: If $Z \sim Normal(0,1)$, then $P(Z \le -1.32) = .0934$ and $P(Z \le 1.84) = .9671$.

Source: This table was generated using the Stata® function normprob.

Critical Values of the t Distribution

	Significance Level									
1-Tailed: 2-Tailed:		.10 .20	.05 .10	.025 .05	.01 .02	.005 .01				
	1 2 3 4 5	3.078 1.886 1.638 1.533 1.476	6.314 2.920 2.353 2.132 2.015	12.706 4.303 3.182 2.776 2.571	31.821 6.965 4.541 3.747 3.365	63.657 9.925 5.841 4.604 4.032 3.707				
D e g r	7 8 9 10	1.415 1.397 1.383 1.372	1.895 1.860 1.833 1.812 1.796 1.782 1.771 1.761 1.753	2.365 2.306 2.262 2.228	2.998 2.896 2.821 2.764	3.499 3.355 3.250 3.169 3.106 3.055 3.012 2.977 2.947				
e e s	11 12 13 14 15	1.363 1.356 1.350 1.345 1.341		2.201 2.179 2.160 2.145 2.131	2.718 2.681 2.650 2.624 2.602					
o f F r	16 17 18 19 20	1.337 1.333 1.330 1.328 1.325	1.746 1.740 1.734 1.729 1.725	2.120 2.110 2.101 2.093 2.086	2.583 2.567 2.552 2.539 2.528	2.921 2.898 2.878 2.861 2.845				
e d o m	21 22 23 24 25	1.323 1.321 1.319 1.318 1.316	1.721 1.717 1.714 1.711 1.708	2.080 2.074 2.069 2.064 2.060	2.518 2.508 2.500 2.492 2.485	2.831 2.819 2.807 2.797 2.787				
	26 1.315 27 1.314 28 1.313 29 1.311 30 1.310		1.706 1.703 1.701 1.699 1.697	2.056 2.052 2.048 2.045 2.042	2.479 2.473 2.467 2.462 2.457	2.779 2.771 2.763 2.756 2.750				
	40 60 90 120 ∞	1.303 1.296 1.291 1.289 1.282	1.684 1.671 1.662 1.658 1.645	2.021 2.000 1.987 1.980 1.960	2.423 2.390 2.368 2.358 2.326	2.704 2.660 2.632 2.617 2.576				

Examples: The 1% critical value for a one-tailed test with 25 df is 2.485. The 5% critical value for a two-tailed test with large (> 120) df is 1.96.

Source: This table was generated using the Stata® function invttail.

					d_1				
d_2	1	2	3	4	5	6	7	8	9
1	161.4	199.5	215.7	224.6	230.2	234.0	236.8	238.9	240.5
2	18.51	19.00	19.16	19.25	19.3	19.33	19.35	19.37	19.38
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04
120	3.92	3.07	2.68	2.45	2.29	2.17	2.09	2.02	1.96
\inf	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88