ANDERSSON et al Appl. No. 09/829,001 July 14, 2004

AMENDMENTS TO THE SPECIFICATION:

Please amend the paragraph beginning at page 1, line 3 line 10, as follows:

Please amend the paragraph beginning at page 6, line 25 through page 7, line 4, as follows:

As mentioned above, a DHO is allocated in the SRNC. Fig. 1 shows such a SRNC 326₁ connected to a core network and controlling radio base stations RBS 328₁₋₁ through RBS₂₋₁RBS 328₂₋₁. The SRNC 326₁ has a DHO 327₁, as well as an extension terminal ET 325₁ through which SRNC 326₁ interfaces with Inter-RNC link 329. Fig. 1 further shows a DRNC 326₂, having an extension terminal ET 325₂ for interfacing with the Inter-RNC link, and controlling radio base stations RBS 328₂₋₁ through RBS₂₋₂RBS 328₂₋₂. Fig. 1 shows a situation having a call involving user equipment unit (UE) 330 routed over DRNC 326₂, with a DHO 327₂ also being allocated at the DRNC 326₂ just in case SRNC relocation should occur (e.g., pending SRNC relocation). But this allocation of an extra DHO exacts network resources, and can introduce an undesired delay.

Please amend the paragraph beginning at page 15, line 30 through page 16, line 12, as follows:

To be specific, in the illustration of Fig. 4A the third segment 490_2400_3 between ET device 25₂ in drift radio network controller (DRNC) 26₂ and device 27₁ in serving

ANDERSSON et al Appl. No. 09/829,001 July 14, 2004

radio network controller (RNC) 26₁ is established or set up with AAL2 signaling; the second segment 400₂ between ET device 25₂₋₁ and ET device 25₂ is established or set up using switching in drift radio network controller (DRNC) 26₂; and the first segment 400₁ between a device in base station 28₂₋₁ and ET device 25₂₋₁ is established or set up with AAL2 signaling. But the originating node (serving radio network controller (SRNC) 26₁) does not receive an establish confirmation signaling message until the entire user plane path has been setup between the originating node and the terminating node (e.g., the device in base station 28₂₋₁). This means that any other establish confirmation signaling sent with respect to any other connection segment (e.g., connection segment 400₁) must be properly coordinated or sequenced. In particularly, establish confirmation signaling must be sent beginning in closest order of proximity of the corresponding connection segment to the terminating node.

Please amend the paragraph beginning at page 17, line 3, and continuing to page 17, line 11, as follows:

As mentioned above, in the illustrated embodiment extension terminals (ETs) serve as specific examples of first device 25₂₋₁ and the second device 25₂. Various aspects of extension terminals (sometimes referred to as "exchange terminals") are generally described, e.g., in one or more of the following (all of which are incorporated herein by reference): United States Patent 6,128,295; U.S. Patent Application Serial Number 09/249,785, entitled "ESTABLISHING INTERNAL CONTROL PATHS IN ATM NODE", filed February 16, 1999; United States Patent 6,128,295; United States Patent 6,088,359; United States Patent 5,963,553; United States Patent 6,154,459; and United States Patent 6,034,958.

P. 05

ANDERSSON et al Appl. No. 09/829,001 July 14, 2004

Please amend the paragraph beginning at page 19, line 15, and continuing to page 19, line 29, as follows:

In the two connection segment mode, each one of the plural distinct connection segments are segments of a radio link. As in the three connection segment mode, each such radio link segment is established using an end-to-end protocol, such as AAL2 signaling, for example. To be specific, the second segment 500₂ between ET device 25₂ and DHO 27₁ is established or set up with AAL2 signaling; and the first segment 500₁ between the device in base station 28₂₋₁ and ET device 25₂ is established or set up with AAL2 signaling. In like manner as the three connection segment mode, establish confirmation signaling must be sent beginning in closest order of proximity of the corresponding connection segment to the terminating node (e.g., base station 28₂₋₁), sot that the originating node (e.g., serving radio network controller (SRNC) 26₁ at which DHO 27₁ is situated) receives establish confirmation signaling only after the entire user plane path has been setup. It is again mentioned that this differs from prior practice, since in prior practice usage of an end-to-end signaling protocol would mean set up or establishment of a radio link between end points of the device 27₁ and a device in base station 28₂₋₁.