Solve for integral solutions of $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}$.

Created by Mr. Francis Hung on 29 August, 2012.

Find also the sum of all possible $0 < a \le 100$.

Clearly a, b and c are non-zero.

Multiply both sides by $a^2b^2c^2$.

$$(bc)^2 + (ac)^2 = (ab)^2$$

Let x = bc, y = ac, z = ab, then $x^2 + y^2 = z^2$, where x, y and z are non-zero integers.

 \therefore (x, y, z) is a Pythagoreans' triple.

... The solutions are x = bc = 2kpq (1), $y = ac = k(p^2 - q^2)$ (2), $z = ab = k(p^2 + q^2)$... (3) where k is an integer, p > q, p and q are relatively prime positive integers.

$$\frac{(1)\times(2)}{(3)}: c^2 = \frac{2pq(p^2-q^2)k}{p^2+q^2} \Rightarrow c = \pm \sqrt{\frac{2pq(p^2-q^2)k}{p^2+q^2}}$$

$$\frac{(1)\times(3)}{(2)}: b^2 = \frac{2pq(p^2+q^2)k}{p^2-q^2} \Rightarrow b = \pm \sqrt{\frac{2pq(p^2+q^2)k}{p^2-q^2}}$$

$$\frac{(2)\times(3)}{(1)}: a^2 = \frac{(p^2-q^2)(p^2+q^2)k}{2pq} \Rightarrow a = \pm \sqrt{\frac{(p^2-q^2)(p^2+q^2)k}{2pq}}$$

Let
$$t = \sqrt{\frac{k}{2pq(p^2 - q^2)(p^2 + q^2)}}$$
, then $a = \pm (p^2 - q^2)(p^2 + q^2)t$, $b = \pm 2pq(p^2 + q^2)t$, $c = \pm 2pq(p^2 - q^2)t$

t	p	q	а	b	С
1	2	1	15	20	12
2	2	1	30	40	24
3	2	1	45	60	36
<mark>4</mark>	2	<u>1</u>	<mark>60</mark>	<mark>80</mark>	<mark>48</mark>
5	2	1	75	100	60
6	2	1	90	120	72
1	3	1	80	<mark>60</mark>	<mark>48</mark>
1	3	2	65	156	60

The highlight triples are repeated. So one of them is rejected.

There is no other triples for which a is less than or equal to 100.

Note that a and b can be interchanged and '60' appeared twice.

Sum of all possible a = 15 + 30 + 45 + 60 + 75 + 90 + 65 + 20 + 40 + 80 + 100 = 620