Mathe 1 LA Matritzen - Übungen

Christian Henkel

January 14, 2019

1 Matrixmultiplikation

Berechnen Sie die Multiplikation der folgenden Matritzen

a)
$$\begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix} \cdot \begin{bmatrix} -4 & 6 \\ -1 & 0 \end{bmatrix}$$

b)
$$\begin{bmatrix} 4 & 3 \\ 1 & -5 \end{bmatrix} \cdot \begin{bmatrix} -1 & 1 \\ -2 & 1 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & 1 \\ -5 & 6 \end{bmatrix} \cdot \begin{bmatrix} 1 & 4 \\ 1 & 5 \end{bmatrix}$$

d)
$$\begin{bmatrix} -5 & -4 \\ -3 & -4 \end{bmatrix} \cdot \begin{bmatrix} -2 & 5 \\ 0 & -4 \end{bmatrix}$$

e)
$$\begin{bmatrix} 4 & -1 & -5 \end{bmatrix} \cdot \begin{bmatrix} 4 \\ -2 \\ 3 \end{bmatrix}$$

f)
$$\begin{bmatrix} -1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 5 \\ -2 \\ -1 \end{bmatrix}$$

g)
$$\begin{bmatrix} 6 & -2 & 2 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 4 \\ 2 \end{bmatrix}$$

h)
$$\begin{bmatrix} 4 & -2 & -2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 5 \\ 3 \end{bmatrix}$$

$$i) \quad \begin{bmatrix} -5 & -5 & -2 \\ 1 & -3 & 0 \\ 1 & 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 2 & 2 \\ 1 & -1 \\ -3 & 2 \end{bmatrix}$$

j)
$$\begin{bmatrix} -3 & -3 & -2 \\ -2 & 3 & -4 \\ 2 & -3 & 2 \end{bmatrix} \cdot \begin{bmatrix} -4 & 0 \\ 3 & -2 \\ 5 & -2 \end{bmatrix}$$

k)
$$\begin{bmatrix} -3 & 1 & -4 \\ -2 & -1 & -1 \\ -4 & 0 & -5 \end{bmatrix} \cdot \begin{bmatrix} 5 & -1 \\ 1 & -4 \\ -2 & 2 \end{bmatrix}$$

1)
$$\begin{bmatrix} 1 & -2 & 3 \\ 4 & -5 & 3 \\ 4 & -4 & 0 \end{bmatrix} \cdot \begin{bmatrix} -2 & -2 \\ -4 & -3 \\ -3 & 1 \end{bmatrix}$$

$$\mathbf{m}) \quad \begin{bmatrix} 2 & 1 \\ -3 & -1 \end{bmatrix} \cdot \begin{bmatrix} -1 & -1 & -2 \\ -3 & -3 & -2 \end{bmatrix}$$

n)
$$\begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix} \cdot \begin{bmatrix} -1 & 5 & 1 \\ 1 & -2 & 0 \end{bmatrix}$$

o)
$$\begin{bmatrix} -1 & 5 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & -5 \\ 0 & -2 & 0 \end{bmatrix}$$

$$p) \quad \begin{bmatrix} -3 & 4 \\ 2 & -3 \end{bmatrix} \cdot \begin{bmatrix} 4 & -1 & 5 \\ 1 & -3 & 3 \end{bmatrix}$$

q)
$$\begin{bmatrix} 0 & 2 & 4 \\ 5 & -1 & -4 \end{bmatrix} \cdot \begin{bmatrix} 3 & 5 \\ 4 & 1 \\ 6 & 3 \\ 4 & -4 \end{bmatrix}$$

r)
$$\begin{bmatrix} 5 & 1 & -2 \\ -1 & -4 & 3 \end{bmatrix}$$
 $\cdot \begin{bmatrix} 1 & 4 \\ 1 & 4 \\ -4 & 5 \\ 4 & -4 \end{bmatrix}$

s)
$$\begin{bmatrix} 5 & 4 \\ 5 & 2 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$$

t)
$$\begin{bmatrix} 5 & 6 \\ 2 & -1 \end{bmatrix} \cdot \begin{bmatrix} 2 & -2 & 1 \\ -1 & 0 & -1 \end{bmatrix}$$

v)
$$\begin{bmatrix} 1 & -3 & 0 \\ 3 & 5 & 2 \\ 5 & -4 & -4 \end{bmatrix} \cdot \begin{bmatrix} -1 & 6 \\ -4 & -1 \\ -5 & 1 \\ 5 & -4 \end{bmatrix}$$

$$\mathbf{w}) \quad \begin{bmatrix} 1 & 1 \\ -3 & -1 \\ -1 & -3 \end{bmatrix} \cdot \begin{bmatrix} -1 & -3 & -1 \\ -2 & 0 & -3 \end{bmatrix}$$

$$x) \quad \begin{bmatrix} -2 & -1 & 3 \\ -2 & 2 & 6 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 & 6 \\ 3 & 2 & -4 \\ 1 & 0 & 5 \end{bmatrix}$$

2 Determinante

Berechnen Sie die Determinante der folgenden Matritzen

- a) $\begin{bmatrix} 5 & 2 \\ 6 & 0 \end{bmatrix}$
- b) $\begin{bmatrix} -1 & 2 \\ 1 & 4 \end{bmatrix}$
- c) $\begin{bmatrix} -1 & -4 \\ -2 & -1 \end{bmatrix}$
- d) $\begin{bmatrix} 1 & -2 \\ 3 & 5 \end{bmatrix}$
- e) $\begin{bmatrix} 2 & 0 & -3 \\ -5 & 3 & 3 \\ 3 & -2 & -1 \end{bmatrix}$
- $f) \quad \begin{bmatrix} 6 & 1 & 6 \\ -3 & 4 & 6 \\ -1 & 3 & 4 \end{bmatrix}$
- $g) \quad \begin{bmatrix} 0 & 4 & 2 \\ 1 & 0 & -2 \\ 3 & 0 & 3 \end{bmatrix}$
- $\text{h)} \quad \begin{bmatrix} 4 & 0 & 1 \\ 2 & 4 & 4 \\ 0 & -5 & 4 \end{bmatrix}$
- i) $\begin{bmatrix} -4 & -4 & 5 \\ 5 & 5 & 1 \\ 0 & 1 & -1 \end{bmatrix}$
- $\begin{array}{ccccc}
 j) & \begin{bmatrix} 1 & 1 & -1 \\ 1 & 5 & -2 \\ -4 & -1 & 6 \end{bmatrix}
 \end{array}$
- $\mathbf{k}) \quad \begin{bmatrix} 6 & 0 & 0 \\ 3 & 6 & 6 \\ 6 & 1 & -4 \end{bmatrix}$
- $\begin{array}{cccc}
 & 1 & -3 & 2 & 4 \\
 & 6 & 0 & 0 \\
 & 0 & -1 & 6
 \end{array}$
- $m) \begin{bmatrix}
 2 & -3 & 2 & -3 \\
 -2 & 1 & -2 & 4 \\
 4 & -3 & 2 & -3 \\
 3 & 0 & 5 & -2
 \end{bmatrix}$

- $\text{n)} \quad
 \begin{bmatrix}
 0 & -2 & 1 & 2 \\
 5 & 4 & -3 & 0 \\
 0 & 6 & 4 & 0 \\
 1 & 3 & -5 & -3
 \end{bmatrix}$
- o) $\begin{bmatrix} 2 & 0 & 5 & 2 \\ 1 & -2 & -3 & 3 \\ 1 & 3 & 2 & 6 \\ 4 & -1 & -3 & 2 \end{bmatrix}$
- $p) \quad \begin{bmatrix} -5 & 0 & 6 & -1 \\ -4 & 4 & 0 & 3 \\ 2 & 4 & 3 & -2 \\ 2 & 0 & 3 & 0 \end{bmatrix}$
- q) $\begin{bmatrix} -5 & -3 & -4 & 0 & 3 \\ 2 & 4 & -1 & 0 & 2 \\ -2 & 5 & 3 & -3 & 6 \\ -3 & -4 & 5 & -5 & 0 \\ 5 & -3 & -1 & -1 & -4 \end{bmatrix}$
- $\mathbf{r}) \quad
 \begin{bmatrix}
 3 & 3 & -2 & 0 & -4 \\
 1 & 0 & -5 & 5 & 6 \\
 4 & -3 & 4 & 5 & 4 \\
 -5 & -3 & -4 & 5 & 3 \\
 -1 & -3 & -1 & 2 & -5
 \end{bmatrix}$