Exascale computational fluid dynamics for compressible multiphase and multiphysics flows

Benjamin Wilfong, Anand Radhakrishnan, Henry Le Berre, Steve Abbot, Reuben Budiardja, Spencer Bryngelson, and many others

Computational Physics Group, School of Computational Science and Engineering

March 6th, 2025

What do we do?

Multiphase flows

- Shock droplet interactions
- Bubbly flows
- Compressible jets

Multiphysics flows

- Fluid structure interaction
- Computational combustion
- Phase change

Supersonic jets

Fluid structure interaction

How do we do it - Hardware

GPUs/APUs power the world's faster supercomputers

- AMD MI250X 48 TFLOPs
- AMD MI300A 61 TFLOPs
- NVIDIA GH200 67 TFLOPs

How do we do it - Software

- Code is (mostly) basic FORTRAN
- MPI for distributed memory parallelism
- Easy to parallelize explicit numerical methods

```
#:for WENO_DIR, XYZ in [(1, 'x'), (2, 'y')]
if (weno dir == ${WENO DIR}$) then
  !$acc parallel loop collapse(2) default(present)
 do k = dir2%end, dir2%end
    do j = dir1%beg, dir1%end
      !$acc loop seq
      do i = 1, num_eq
        dvd(0) = v_rs_ws_{XYZ}_{j + 1, k, i) &
               - v_rs_ws_${XYZ}$(j, k, i)
        dvd(-1) = v_rs_ws_{XYZ}_{(j, k, i)} &
                - v_rs_ws_${XYZ}$(j - 1, k, i)
        end do
    end do
  end do
end if
```


How do we do it - OpenACC

GPU collapsed loops

Sufficient GPU work

- Directive-based
 GPU offloading
- Let the compiler write optimized kernels

```
#:for WENO_DIR, XYZ in [(1, 'x'), (2, 'y')]
if (weno dir == ${WENO DIR}$) then
!$acc parallel loop collapse(2) default(present)
  do k = dir2%end, dir2%end
    do j = dir1%beg, dir1%end
   !$acc loop seq
      do i = 1, num_eq
        dvd(0) = v_rs_ws_{XYZ}_{j + 1, k, i) &
               - v_rs_ws_${XYZ}$(j, k, i)
        dvd(-1) = v_rs_ws_{XYZ}_{j, k, i) &
                - v_rs_ws_{XYZ} (j - 1, k, i)
        end do
    end do
  end do
end if
```


How do we do it - FYPP

Python!

- Python preprocessor is used for:
 - Manual inlining
 - Hardware/compiler specific directives
 - Performance optimization via compile time parameters

```
#:for WENO_DIR, XYZ in [(1, 'x'), (2, 'y')]
if (weno dir == ${WENO DIR}$) then
  !$acc parallel loop collapse(2) default(present)
 do k = dir2%end, dir2%end
    do j = dir1%beg, dir1%end
      !$acc loop seq
      do i = 1, num_eq
        dvd(0) = v_rs_ws_{XYZ}_{j + 1, k, i) &
               - v_rs_ws_${XYZ}$(j, k, i)
        dvd(-1) = v_rs_ws_{XYZ}_{(j, k, i)} &
                - v_rs_ws_{XYZ} (j - 1, k, i)
        end do
    end do
  end do
end if
```


Is this really exascale?

Ideal scaling to
100% of the
world's biggest
and fastest
supercomputers

What's in our future?

- Improved use of unified memory on APU architectures
- Lagrangian particle models
- Load balancing at exascale
- Lots of improvements related to maintenance and code quality
 - Improvements to code readability through abstraction
 - Automatic checking for repeated code and poorly conditioned floating point operations
 - Improvements to robustness of modular precision
 - Improvements to test suite coverage and continuous benchmarking
 - etc...

Questions?

mflowcode.github.io

