2. Orientierungen

Computer Animation
Wintersemester 11/12

2 Orientierungen

- Aufgabe: Darstellung von Drehungen (Kamera, Objekt)
- Rigid-Body-Transformationen:
 - Translation + Rotation
 - $x_{new} = Rx_{old} + t$ $R \in \mathbb{R}^{3x3}$: 3x3-Matrix, die die Rotation beschreibt R ist eine *orthogonale Matrix*, d.h. ($R^t R = Id$) <u>und</u> det(R) = 1 $t \in \mathbb{R}^3$: Translationsvektor

- mehrere Rigid-Body-Transformationen bilden wieder Rigid-Body: $x = R_2 (R_1 x + t_1) + t_2 = R_2 R_1 x + (R_2 t_1 + t_2)$

wie sieht Rotationsmatrix aus?

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \rightarrow x_1 \cdot \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} + x_2 \cdot \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} + x_3 \cdot \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} + \begin{bmatrix} t_1 \\ t_2 \\ t_3 \end{bmatrix}$$

• a,b,c spannen neues Koordinatensystem auf

- wann ist die Matrix eine Rotationsmatrix?
 - \rightarrow wenn a,b,c orthonormales Koordinatensystem
- Zahl der Freiheitsgrade:
 - a: beliebiger Einheitsvektor
 - = Punkt auf Einheitskugel
 - = 2 Freiheitsgrade
 - b: muss senkrecht auf a stehen
 - = kann in Ebene senkrecht auf a rotieren
 - = 1 Freiheitsgrad
 - c: muss senkrecht auf a und b stehen
 - = kein Freiheitsgrad
 - gesamt: 3 Freiheitsgrade
- $det(\mathbf{R}) = 1$ oder $det(\mathbf{R}) = -1$ (je nach Orientierung) Drehung bzw. Spiegelung

- Interpolation von Rotationsmatrizen R_1, R_2 : $(1-\alpha) R_1 + \alpha R_2$
- ist i.A. keine Rotationsmatrix mehr!
- Interpolation von R₁ und R₂ entspricht Interpolation der Basisvektoren
- interpolierte Einheitsvektoren bleiben keine Einheitsvektoren! auch Orthogonalität bleibt nicht erhalten

Beispiel:

$$\begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 0 & 1 & 0 \\ 0 & 1 & 0 & + \frac{1}{2} & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

- Möglichkeit: Re-Orthonormalisierung
- Interpoliere R_1 und $R_2 \rightarrow R' = (a', b', c')$
- forme (a', b', c') in orthonormales System (a, b, c) um:
 - normalisiere a :
 a = normalize(a :)
 - setze b auf Vektor senkrecht zu a und c und normalisiere: $b = \text{normalize}(a \times c)$
 - setze c auf Vektor senkrecht zu a und b: $c = a \times b$

• Probleme:

- nicht immer möglich (z.B. wenn $a' = (0 \ 0 \ 0)$)
- nicht-uniforme Drehgeschwindigkeit

2.2 Fixed-Angles-Darstellung

 beschreibe allgemeine Rotation durch Rotation um drei Achsen, z.B.
 R_z(γ) R_v(β) R_x(α)

Achtung: Matrizen werden von rechts nach links ausgeführt, d.h. oben erst R_x, dann R_v, dann R_z

- Rotation beschrieben durch Tripel (α,β,γ)
- Die Rotationsachsen k\u00f6nnen fast beliebig sein:
 - z.B. xyz (Bsp. oben), zxy, ...
 - sogar xyx, zxz , in Technik meist zxz
 - aber nicht: xxy!

2.2 Fixed-Angles-Darstellung

- Bsp.:
 - Achsenreihenfolge xyz
 - Winkel (10°,45°,90°)

- bei fixed angles:
 Rotation immer um die globalen Achsen
- Euler-Winkel: Rotation um die lokalen Achsen, d.h. man betrachtet ein mitrotierendes Koordinatensystem

Global coordinate system

Local coordinate system attached to object

Rotationsachsen Fixed-Angles

Rotationsachsen Euler

- typisches Beispiel: Flugzeug
 - Yaw α:2D-Flugrichtung (Nord, SSW, ...)
 - Pitch β:Steigung
 - Roll γ:
 Rotation um Flugrichtung

- Matrixdarstellung?
- zuerst Yaw: $R_v(\alpha)$
- dann Pitch im lokalen System
 - zuerst Yaw rückgängig machen, um x drehen, wieder Yaw anwenden:

$$R_{y}(\alpha) R_{x}(\beta) R_{y}(-\alpha)$$

- kombinieren: $\mathbf{R}_{\mathbf{v}}(\alpha) \mathbf{R}_{\mathbf{x}}(\beta) \mathbf{R}_{\mathbf{v}}(-\alpha) \mathbf{R}_{\mathbf{v}}(\alpha) = \mathbf{R}_{\mathbf{v}}(\alpha) \mathbf{R}_{\mathbf{x}}(\beta)$

- dann Roll im lokalen System
 - Yaw und Pitch rückgängig, Roll, Yaw und Pitch anwenden:
 - $R_{y}(\alpha) R_{x}(\beta) R_{z}(\gamma) R_{x}(-\beta) R_{y}(-\alpha)$
 - kombinieren: $R_y(\alpha) R_x(\beta) R_z(\gamma) R_x(-\beta) R_y(-\alpha) R_y(\alpha) R_x(\beta) = R_y(\alpha) R_x(\beta) R_z(\gamma)$
- d.h.:
 für lokale Achsen einfach die Reihenfolge umdrehen!

- keine Einigkeit in der Notation
- manche bezeichnen als Euler-Winkel: $R_y(\alpha) R_x(\beta) R_z(\gamma) R_x(-\beta) R_y(-\alpha)$
- auch (α, β, γ) beschreiben eindeutig eine Rotation
- entspricht mehr der folgenden Darstellung aus Achse und Winkel

- Interpolation:
 - interpoliere Winkel (geht auch für fixed angles)
 - Probleme: springende Winkel und gimbal lock!
- Bsp.: Flugzeug macht Salto
 - sobald Flugzeug senkrecht nach oben fliegt:
 - Winkel springen um 180°
- Bsp. Gimbal Lock: Analogon Polarkoordinaten
 - wir drehen um x,y,z
 - Konstellation: 0°,90°,0° → lokale x-Achse = globale z-Achse
 - nun probieren wir $(0^{\circ} \pm \varepsilon, 90^{\circ} \pm \varepsilon, 0^{\circ} \pm \varepsilon)$
 - Rotation um z Rotation um y
 - keine Rotation um globale x-Achse mehr möglich!

- Satz von Euler:
 Jede Rotation kann beschrieben werden als eine Rotation um eine einzelne Achse
- Achse beliebig, also nicht nur x, y oder z
- OpenGL:
 - glRotatef(angle,x,y,z)

 nützlich, wenn die Rotation eines Objektes beschrieben ist durch Richtung+Drehwinkel (A,θ)
 z.B.:

• Interpolation zwischen zwei Lagen (A_1, θ_1) und (A_2, θ_2)

- rotiere A₁ auf A₂ durch Rotation um B=A₁×A₂
- interpoliere θ_1 und θ_2

- rotiere A_1 auf A_2 durch Rotation um $B=A_1 \times A_2$
- interpoliere θ_1 und θ_2

$$B = A_1 \times A_2$$

$$\phi = \cos^{-1} \left(\frac{A_1 \cdot A_2}{|A_1| |A_2|} \right)$$

$$A_k = R_B(k \cdot \phi) A_1$$

$$\theta_k = (1 - k) \cdot \theta_1 + k \cdot \theta_2$$

 allgemeines Konzept zur Beschreibung von Rotationen durch Quadrupel q ∈ R⁴:

$$q = (s, x, y, z)$$
 oder $q = (s, v)$ mit $v \in \mathbb{R}^3$

- ähnlich wie komplexe Zahlen, aber 3-dim. Imaginärteil
- Polardarstellungen:
 - $-z \in \mathbb{C}, z = |z|(\cos \phi + i \sin \phi)$
 - $-q \in \mathbb{H}, q = |q|(\cos\phi, \sin\phi v/|v|)$

- 3D-Vektoren und 3D-Rotationen k\u00f6nnen als Quaternion ausgedr\u00fcckt werden:
 - Rotation um Achse [x,y,z] mit Winkel θ : $q = Rot_{\theta,(x,y,z)} = (cos(\theta/2), sin(\theta/2)[x,y,z])$
 - Punkt an der Stelle [a,b,c]: q = (0,[a,b,c])
- Umrechnung → axis,angle
 - $(s,v) \rightarrow Achse = v$, Winkel = 2 arccos s
- Quaternionen erlauben einfache Interpolation (s.u.)

Addition:

$$(S_1, V_1) + (S_2, V_2) = (S_1 + S_2, V_1 + V_2)$$

Multiplikation:

$$(s_1, V_1)(s_2, V_2) = (s_1s_2 - V_1 \cdot V_2, s_2V_1 + s_1V_2 + V_1 \times V_2)$$

Achtung:

-
$$q_1q_2 \neq q_2q_1$$
, aber: $(q_1q_2)q_3 = q_1(q_2q_3)$

• Betrag: $||(s,[x,y,z])|| = sqrt(s^2+x^2+y^2+z^2)$

• Inverse: $(s, \mathbf{v})^{-1} = (1/||(s, \mathbf{v})||)^2(s, -\mathbf{v})$

- Einheitsquaternion: $qq^{-1} = (1,[0,0,0])$
- Quaternion normalisieren:
 q/||q||

- einen Punkt $\mathbf{v}=[a,b,c]$ mit Rotation q rotieren: $\mathbf{v}'=q(0,\mathbf{v}) q^{-1}$
- Hintereinanderausführung = Multiplikation $v' = q_2 (q_1 v q_1^{-1}) q_2^{-1} = (q_2 q_1) v (q_2 q_1)^{-1}$
- Skalierung von q hat keinen Einfluss auf die erzeugte Rotation!
 - insbesondere: $-(s,v) = (-s,-v) \equiv (s,v)$ (negative Rot. um neg. Achse)

Zsfg.: Quaternionen

Fields of numbers

(Zahlen-)Körper:

reelle Zahlen	komplexe Zahlen	Quaternionen
\mathbb{R}	\mathbb{C}	H
$=\mathbb{R}$	$\equiv \mathbb{R} imes \mathbb{R}$	$\equiv \mathbb{R} imes \mathbb{R}^3$
\boldsymbol{x}	z = (x, y) = x + iy	$q=(q_0,\vec{q})$
+ ·	+ .	+ .
0 1	(0,0) $(1,0)$	$(0, \vec{0}) (1, \vec{0})$
$rac{1}{x}$	$\frac{1}{z} = \frac{1}{ z ^2}(x, -y)$	$\frac{1}{q} = \frac{1}{ q ^2} (q_0, -\vec{q})$
(polar coords.)	$z = z (\cos(u), \sin(u))$	$ q (\cos(u),\sin(u)ec{n}_0)$
(frac. powers)	$z^t = z ^t (\cos(tu), \sin(tu))$	$ q ^t(\cos(tu),\sin(tu)ec{n}_0)$

Wh.: 3D Transformationen: Rotationen

- 2D : wähle eine komplexe Zahl vom Betrag 1 : w₀
 z → z·w₀
 definiert eine Rotation in 2D
- 3D: wähle eine (Einheits-)Quaternion q
 v → q⁻¹· (0,v)· q (conjugation)
 definiert eine Rotation in 3D
- Dies definiert eine 2-zu-1 Abbildung **aller** Einheits-Quaternionen auf die Menge **aller** Rotationen.

(eine Parameterisierung ohne singuläre Punkte)

2.6 Umrechnungen: (Wechsel zw. versch. Darstellungen)

Verschiedene Darstellungen von Rotationen in 3D

- Orthogonale Matrizen
 - Variante: 3-Bein
- 3 Euler-Winkel:
 - $Rot_z \rightarrow Rot_x \rightarrow Rot_z$
 - $Rot_x \rightarrow Rot_y \rightarrow Rot_z$
- Drehachse und –winkel der Rotation
- Quaternionen
- 3D-Vektor
 - Achse = Vektor,
 - Winkel = Länge des Vektor

0

 (ϕ, θ, ψ)

 (n, θ)

 $q = (q_0, \boldsymbol{q})$

m

2.6 Umrechnungen

Vektor ↔ axis & angle ↔ Quaternion

$$ec{n},\; heta\;\; (ext{with}\; ||ec{n}||=1) \qquad o \qquad ec{v} = heta \cdot ec{n}$$

$$ec{v}\;\; (ext{with}\; ||ec{v}|| \leq \pi) \qquad o \qquad ec{n} = rac{ec{v}}{||ec{v}||},\; heta = ||ec{v}||$$

$$ec{n},\; heta\;\; (ext{with}\; ||ec{n}||=1) \qquad o \qquad ext{q} = \left(\cos(rac{ heta}{2}),\sin(rac{ heta}{2}) \cdot ec{n}
ight)$$

$$ext{q} = (q_0, ec{q})\;\; (ext{with}\; || ext{q}||=1) \qquad o \qquad ec{n} = ec{q},\; heta = 2 \cdot \arccos(q_0)$$

2.6 Umrechnungen (Eulerwinkel → Matrix)

$$O = \begin{pmatrix} o_{11} & o_{12} & o_{13} \\ o_{21} & o_{22} & o_{23} \\ o_{31} & o_{32} & o_{33} \end{pmatrix} = Rot_z(\varphi)Rot_x(\theta)Rot_z(\psi) =$$

$$\begin{pmatrix} \cos(\varphi) & -\sin(\varphi) & 0 \\ \sin(\varphi) & \cos(\varphi) & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} \cos(\psi) & -\sin(\psi) & 0 \\ \sin(\psi) & \cos(\psi) & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

$$O = \begin{bmatrix} o_{11} & o_{12} & o_{13} \\ o_{21} & o_{22} & o_{23} \\ o_{31} & o_{23} & o_{33} \end{bmatrix} = Rot_z(\varphi) \circ Rot_z(\theta) \circ Rot_z(\psi) =$$

$$\begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

2.6 Umrechnungen (Matrix → Eulerwinkel)

Changing the coordinate system with Euler-rot.

2.6 Umrechnungen (Matrix ↔ Quaternion)

Quaterionen → Matrix

```
erste Spalte: \mathbf{q}^{-1}(0,(1,0,0))\mathbf{q} = (0,(1,0,0)-2*(q_2^2+q_3^2, -q_1q_2-q_4q_3, q_4q_2-q_1q_3))
zweite & dritte Spalte ebenso.
```

- Matrix → Axis & angle (→ Quaternion)
 - Eigenwert Analyse:
 3 Eigenwerte 1, cos(φ) + i· sin(φ), cos(φ) i· sin(φ)
 axis = Eigenvektor zu 1, angle = φ;
 - $\phi = \arccos(.5^*(\text{Trace}(O)-1));$ $n = (O_{3,1}+O_{1,3}, O_{3,2}+O_{2,3}, 1+O_{3,3}-O_{1,1}-O_{2,2});$

2.6 Umrechnungen (Vektor → Matrix)

• v = (a,b,c) (Achse = v, Winkel = ||v||)

$$O = \exp(B) = \sum_{k} 1/k! \cdot B^{k}$$

wo $B: x \rightarrow v \times x$ (Kreuzprodukt)

$$B = \begin{pmatrix} 0 & -c & b \\ c & 0 & -a \\ -b & a & 0 \end{pmatrix}$$

• $\exp(B) = Id + \sin(\lambda)/\lambda \cdot B + (1-\cos(\lambda))/\lambda^2 \cdot B^2$ wobei $\lambda^2 = a^2 + b^2 + c^2$

(Beweis:
$$B^3 = -\lambda^2 B$$
, $B^{2n+1} = (-1)^n \lambda^{2n} B$
 $B^{2n+2} = (-1)^n \lambda^{2n} B^2$)

- Interpolation zwischen zwei Quaternionen
 - direkte Interpolation möglich, aber Ergebnis abhängig von Länge

- → interpoliere Einheitsquaternionen
- aber dann immer noch: uneinheitliche Geschwindigkeit

2.7 Interpolation: Sphärische lineare Interpolation

- außerdem: $q_2 \equiv -q_2$, d.h. man kann von q_1 nach q_2 interpolieren oder von q_1 nach $-q_2$ (analog von $-q_1$ nach q_2)
- der kürzere Weg ist der bessere

$$\cos \theta = (\pm q_2) \circ q_1 = \pm (s_1 s_2 + v_2 \circ v_1) > 0$$

- \rightarrow normalisiere q_1 und q_2
- $q_1 \circ q_2 > 0 \rightarrow \text{interpoliere von } q_1 \text{ nach } q_2$ sonst von q_1 nach $-q_2$
- Geschwindigkeitsproblem bleibt
 - → Interpolation auf Kugel (sphärische lineare Interpolation = slerp)

$$slerp(q_1, q_2, u) = \frac{\sin((1-u)\theta)}{\sin \theta} q_1 + \frac{\sin(u\theta)}{\sin \theta} q_2$$

dabei ist
$$\cos \theta = q_1 \circ q_2 = s_1 s_2 + \vec{v}_1 \circ \vec{v}_2$$

→ ist normalisiert!

- Herleitung der Formel
- 1. mit Gram-Schmidt eine ONS in der von q_1 und q_2 aufgespannten Ebene:

$$e_1 = q_1$$
 und $e_2 = q_2 - (e_1 \circ q_2)e_1 / //...//;$

2. $q(u) = \cos(u\theta)e_1 + \sin(u\theta)e_2$.

$$\begin{aligned} \operatorname{slerp}(q_1, q_2, u) &= \cos(u\theta) \cdot q_1 + \frac{\sin(u\theta)}{\sin\theta} \left(q_2 - \cos(\theta) q_1 \right) \\ &= \frac{1}{\sin\theta} \left((\cos(u\theta) \sin\theta - \sin(u\theta) \cos\theta) q_1 + \sin(u\theta) q_2 \right) \\ &= \frac{1}{\sin\theta} \left(\sin((1-u)\theta) q_1 + \sin(u\theta) q_2 \right) \end{aligned}$$

 Andere Darstellung und Herleitung von slerp (analog zu ℂ)

• Zunächst von 1 = (1,(0,0,0)) nach $q = (\cos(\alpha), \sin(\alpha) \cdot v)$:

$$q^t = (\cos(t\alpha), \sin(t\alpha) \cdot v)$$

Nun beliebig von p nach q

$$slerp(p,q,t) = p(p^{-1}q)^{t} = und (qp^{-1})^{t}p$$