Software Packages for Deep Learning

Chensong Zhang

with Zheng Li and Ronghong Fan

DL Seminar — April 27, 2017

Outline

Introduction

Comparison

Python

TensorFlow

MXNet

Torch

Caffe

§1. Introduction

Machine Learning

Why ML now?

- Unlike traditional numerical simulation, "ML gives computers the ability to learn without being explicitly programmed" [Samuel 1959]
- As a research field, ML explores the study and construction of algorithms that can learn from and make predictions on data
- Fourth paradigm, big data, artificial intelligence, Internet of things, ...

General Tasks of ML:

- Classification: Inputs are divided into two or more classes, and the learner must produce a model that assigns unseen inputs to one or more (multi-label classification) of these classes
- Clustering: Inputs are divided into groups. Unlike in classification, the groups are not known beforehand, making this typically an unsupervised task
- Regression: Similar to classification, but the outputs are continuous
- Density estimation, dimensionality reduction, ...

Software Packages for Machine Learning

What is the purpose?

- Solving problems from practical applications (user interface)
- Developing algorithms and optimizing implementation (development)
- Theoretical analysis for machine learning

What do we want for a ML package?

- Easy for new tasks and new network structures (less steep learning curve)
- Easy for debugging (with good support and large community)
- Performance and scalability

Deep Learning

Deep Learning has been introduced with the objective of moving ML closer to one of its original goals—AI. The main motivations includes:

- Insufficient depth can hurt
- The brain has a deep architecture
- Cognitive processes seem deep

Pros:

- conceptually simple
- nonlinear
- highly flexible and configurable
- learned features can be extracted
- can be fine-tuned with more data
- efficient for multi-class problems
- world-class at pattern recognition

Cons:

- hard to interpret
- theory not well understood
- slow to train and score
- overfits, needs regularization
- more parameters
- inefficient for categorical variables
- data hungry, learns slowly

DL Engines: Basic Information

Viewpoint	Torch	Caffe	TensorFlow	MXNet	
Released	2002	2013	2015	2015	
Main Developers	Facebook, Twitter, Google,	BAIR BVLC	Google	DMLC C++	
Core Languages	C/Lua	C++	C++ Python		
Supported	Lua	C++/Python	C++/Python/R	C++/Python/R	
Interface	Lua	Matlab	Java/Go	Matlab/Julia/	
License	BSD	BSD	Apache	Apache	

- Other worth-noting's: CNTK/DMTK (Microsoft), Neon (Nervana & Intel), PyTorch (beta)
- BAIR, Berkeley Artificial Intelligence Research Lab
- BVLC, Berkeley Vision and Learning Center
- DMLC, Distributed (Deep) Machine Learning Community, supported by Amazon, Intel, Microsoft, nVidia, Baidu, ...

DL Engines: Performance

Viewpoint	Torch	Caffe	TensorFlow	MXNet
Pretrained Models	Yes	Yes No		Yes
High-level Support	Good	Good	Good	Good
Low-level Operators	Good	Good	Fairly good	Increasing fast
Speed One-GPU	Great	Great	Not so good	Excellent
Memory Management	Great	Great	Not so good	Excellent
Parallel Support	Multi-GPU	Multi-GPU	Multi-GPU	Distributed
Coding Style	Imperative	Imperative	Declarative	Declarative Imperative
GitHub Watching	649/268	1856	4939	887

§2. Comparison

Hardware Platforms 6 Neural Networks and Data Sets 8 CPU Scalability: FCN Synthetic CPU Scalability: FCN Real CPU Scalability: CNN Synthetic CPU Scalability: CNN Real CPU Scalability: RNN LSTM GPU Scalability: FCN Synthetic GPU Scalability: FCN Real 14 GPU Scalability: CNN Synthetic GPU Scalability: CNN Real 16 GPU Scalability: RNN LSTM

Hardware Platforms

- Use one quad-core desktop CPU (i.e., Intel i7-3820 CPU @ 3.60GHz) and two 8-core server-grade CPUs (i.e., Intel Xeon CPU E5-2630 v3 @ 2.40GHz)
- Use two generations of GPU cards, GTX 1080 @ 1607MHz with Pascal architecture, and Telsa K80 @ 562MHz with Kepler architecture

Computational Unit	Cores	Memory	OS	CUDA
Intel CPU i7-3820	4	64 GB	Ubuntu 14.04	-
Intel CPU E5-2630x2	16	128 GB	CentOS 7.2	-
GTX 980	2048	4 GB	Ubuntu 14.04	8.0
GTX 1080	2560	8 GB	Ubuntu 14.04	8.0
Telsa K80 GK210	2496	12 GB	CentOS 7.2	8.0

Figure: The experimental hardware settings for numerical tests

Neural Networks and Data Sets

- A large fully-connected neural network (FCN-S) with around 55 million parameters is used to evaluate the performance of FCN
- The classical AlexNet (AlexNet-S) is used as an representative of CNN
- A smaller FCN (FCN-R) is constructed for MNIST data set
- An AlexNet (AlexNet-R) architecture is used for Cifar10 data set
- For RNNs, considering that the main computation complexity is related to the length of input sequence, 2 LSTM layers are selected for testing, with input length of 32.

Networks		Input	Output	Layers	Parameters	
FCN	FCN-S	26752	26752	5	~55 millions	
FCN	FCN-R	784	10	5	~31 millions	
CNN	AlexNet-S	150528	1000	4	~61 millions	
CNN	AlexNet-R	3072	10	4	~81 thousands	
RNN	LSTM	10000	10000	2	~13 millions	

Figure: The experimental setup of neural networks for synthetic data and real data

CPU Scalability: FCN Synthetic

(a) Results on i7-3820.

(b) Results on E5-2630.

Figure: FCN-S performance comparison on CPU platform with a mini-batch size of 64 (The lower the better)

CPU Scalability: FCN Real

(a) Results on i7-3820.

(b) Results on E5-2630.

Figure: The FCN-R performance comparison on CPU platform with a mini-batch size of 1024 (The lower the better)

CPU Scalability: CNN Synthetic

(a) Results on i7-3820.

(b) Results on E5-2630.

Figure: AlexNet-S performance comparison on CPU platform with a mini-batch size of 16 (The lower the better)

CPU Scalability: CNN Real

(a) Results on i7-3820.

(b) Results on E5-2630.

Figure: AlexNet-R performance comparison on CPU platform with a mini-batch size of 1024 (The lower the better)

CPU Scalability: RNN LSTM

(a) Results on i7-3820.

(b) Results on E5-2630.

Figure: LSTM performance comparison on CPU platform with a mini-batch size of 256 (The lower the better)

GPU Scalability: FCN Synthetic

(a) Results on Tesla K80.

Figure: The performance comparison of FCN-S on GPU platforms

GPU Scalability: FCN Real

(a) Results on Tesla K80.

Figure: The performance comparison of FCN-R on GPU platforms

GPU Scalability: CNN Synthetic

(a) Results on Tesla K80.

Figure: The performance comparison of AlexNet-S on GPU platforms

GPU Scalability: CNN Real

(a) Results on Tesla K80.

Figure: The performance comparison of AlexNet-R on GPU platforms

GPU Scalability: RNN LSTM

Figure: The performance comparison of LSTM on GPU platforms

§3. Python

- 18 Python: A general-purpose programming language
- 19 Python for Scientific Computing
- 20 Built-in Data Structures
- 21 Control Flow
- 22 Modules
- 23 Additional Comments

Python: A general-purpose programming language

- Created by Guido van Rossum in 1989 and first released in 1991
- Named after "the Monty Python" (British comedy group)
- An interpreted language—simple, clear, and readable
- Python has many excellent packages for machine learning
- The language of choice in introductory programming courses

Feb	Change \$	Programming language	\$	Share \$	Trends \$
1		Java		22.6 %	-1.3 %
2		Python		14.7 %	+2.8 %
3		PHP		9.4 %	-1.2 %
4		C#		8.3 %	-0.3 %
5	↑ ↑	Javascript		7.7 %	+0.4 %
6		С		7.0 %	-0.2 %
7	↓↓	C++		6.9 %	-0.6 %
8		Objective-C		4.2 %	-0.6 %
9	1	R		3.4 %	+0.4 %
10	1	Swift		2.9 %	+0.1 %

Python for Scientific Computing

Why Python for scientific computing?

- Dynamic data types and automatic memory management
- Full modularity, supporting hierarchical packages
- Strong introspection capabilities¹
- Exception-based error handling

Why consider such a slow language for simulation?

- Good for proof-of-concept prototyping
- Implementation time versus execution time
- Code readability and maintenance short code, fewer bugs
- Well-written Python code is "fast enough" for most computational tasks
- Time critical parts executed through compiled language or available packages

¹Code introspection is the ability to examine classes, functions and keywords to know what they are, what they do and what they know. Python provides several functions and utilities for code introspection, like dir(), help(), type().

Built-in Data Structures

Numeric types: int, float, complex

```
1 b=1L # long int c=0xf # int (hex format)
3 d=010 # int (octal format)
4 e=1.0 # float f=1+2j # complex
```

Sequence types: list, tuple, str, dict

```
t = (3.14, True, 'Yes', [1], (0xf,)) # tuple example
t = [3.14, True, 'Yes', [1], (1L, 0xf)] + [None]*3 # list example
s = "Hello' + ", " + 'world!' # str example 1
s = ("Hello, " "world!") # str example 2
d = [1: 'int', 'pi': 3.14] # dict example
s = "Python"; s.find('thon') # find substring
```

Formatted output

```
print('%(lang)s has %(num)02d quote types.' %{"lang":"Python", "num":3})
```

User defined functions²³

```
1 def square(x):
    return x*x
```

²Function overhead is high. Not to call a function repeatedly; Using aggregation instead.

³Python always passes (the value of) the reference to the object to the function.

Control Flow

If-then-else

For loop

```
# loop from 0 to 9
for i in range(10):
    print i

# loop over the list named by oldlist
newlist = [s.upper() for s in oldlist]

a = range(5) # create a new list a
b = a # b points to the list a
c = [item for item in a] # copy list a to a new list
```

While loop

Modules

This way will only introduce the name 'math' into the name space in which the
import command was issued. The names within the math module will not
appear in the enclosing namespace: they must be accessed through the name
math.

```
import math math. sin (3.14)
```

• This way does not introduce the name math into the current namespace. It does introduce all public names of the math module into the current namespace.

```
from math import * sin(3.14)
```

• This will only import the sin function from math module and introduce the name sin into the current namespace, but it will not introduce the name math into the current namespace, directly use

```
from math import sin sin (3.14)
```

 Make it as local as possible to avoid import overhead; But avoid calling it repeatedly; If possible, avoid it!

Additional Comments

• In Python, everything (including functions, modules, and files) are objects. A variable is created through assignment:

```
x = y = z = 0.1
```

help() is a function which gives information about the object. For example,

```
help('modules') # generate a list of all modules that can be imported help('modules time') # generate a list of modules with 'time' in description
```

Use a profiler to find optimization possibilities

```
import profile # cProfile is now recommended
profile.run('main()')
```

- Some useful and important packages
 - NumPy: for scientific computing
 - Matplotlib/Pylab: for visualising data
 - SciPy: providing lots of numerical algorithms
 - SymPy: for symbolic mathematics

§4. TensorFlow

- 24 Programming Interface
- 25 Computational Graph
- 26 Visualization: TensorBoard
- 27 Visualization: TensorBoard
- 28 Visualization: TensorBoard
- 29 Visualization: TensorBoard
- 30 Visualization: TensorBoard
- 31 Example: SoftMax in TF
- 32 Example: SoftMax in TF (Cont)

Programming Interface

- Graph: In TensorFlow, machine learning algorithms are represented as computational graph. A computational or data flow graph is a form of directed graph where vertices or nodes describe operations, while edges represent data flowing between these operations.
- Operation: An operation may represent a mathematical equation, a variable or constant, a control flow directive, a file I/O operation or even a network communication port.
- Tensor: A tensor is a multi-dimensional collection of homogeneous values with a fixed, static type.
- Variable: Variables can be described as persistent, mutable handles to in-memory buffers storing tensors.
- Session: In TensorFlow the execution of operations and evaluation of tensors may only be preformed in a special environment called session.

Computational Graph


```
import tensorflow as tf
3
    graph = tf.Graph()
 4
 5
    with graph. as default():
6
         # Define two constants
7
         a = tf.constant(1.0)
8
         b = tf.constant(2.0)
9
10
         # Define an operation node: c = a * b
11
         c = tf.multiply(a, b)
12
         # Add scalar summary to operation node
13
         tf.summary.scalar('c', c)
14
15
         # Merge all the summaries and write to ./board
16
         merged = tf.summary.merge_all()
17
         writer = tf.summary.FileWriter('./board', graph)
18
19
     with tf. Session (graph=graph):
20
         # Write data to / board
21
         writer.add summary(merged.eval())
```


Computation graphs are powerful but complicated

- thousands of nodes or more
- network is deep
- graph visualization tool TensorBoard is helpful

☑ 0 .

TOGGLE ALL RUNS

Runs

Write a regex to filter runs

Example: SoftMax in TF

2

4

5

6 7

8

10 11

12

13 14 15

16

17

18 19

20 21

22

23 24

25 26

27


```
import tensorflow as tf
# Import training and test data
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input data.read data sets("MNIST data/", one hot=True)
# Create a new TensorFlow graph
graph = tf.Graph()
with graph.as default():
    # Nodes or entire subgraphs can be grouped into one visual block for tensorboard
    with tf.name_scope('input_features'):
        # Placeholder for input variables (None = variable dimension)
        x = tf.placeholder(tf.float32, shape=[None, 784], name='input x')
    with tf.name scope('input labels'):
        # Placeholder for labels
        y_ = tf.placeholder(tf.float32, shape=[None, 10], name='labels')
    with tf.name scope('variables'):
       W = tf. Variable(tf.zeros([784, 10]), name='weights')
        # Track tensor distributions over time for tensorboard
        tf.summary.histogram('WEIGHTS', W)
        b = tf. Variable(tf.zeros([10]), name='biases')
        tf.summary.histogram('BIASES', b)
    with tf.name scope('use softmax'):
        # Apply softmax regression model to the input data and get prediction v
        y = tf.nn.softmax(tf.matmul(x, W) + b)
```

Example: SoftMax in TF (Cont)

29

30

31 32

33

34 35

36

37

38

39 40 41

42

43 44 45

46 47

48 49

50

51

52

53

54

55

56

57

58

59


```
with tf.name scope('train'):
       # Compute the cross entropy of real label y and prediction labe y
        cross entropy = -tf.reduce.sum(y *tf.log(y))
       # Create a gradient—descent optimizer with learning rate = 0.01
        train step = tf.train.GradientDescentOptimizer(0.01), minimize(cross entropy)
    with tf.name scope('test'):
        correct\_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_1))
        accuracy = tf.reduce mean(tf.cast(correct prediction, "float"))
        # Track tensor values over time for tensorboard
        tf.summary.scalar('Accuracy', accuracy)
   # Merge all the summaries and write to ./board
   merged = tf.summarv.merge all()
    writer = tf.summary.FileWriter('./board', graph)
with tf. Session (graph=graph) as sess:
   # Initialize all variables
    tf.global variables initializer().run()
    for step in range (1000):
        if (step \%10) == 0:
           # Feed test data to compute accuarcy
            feed = {x: mnist.test.images, v: mnist.test.labels}
           _, acc = sess.run([merged, accuracy], feed_dict=feed)
            print ('Accuracy at %s step: %s' %(step, acc))
        else.
           # Feed training data to train the model
            batch x, batch y = mnist.train.next batch (100)
            sess.run(train step, feed dict={x: batch x, y : batch y})
            writer.add_summary(merged.eval(feed_dict={x:batch_x, y_:batch}),
                               global step=step)
```

§5. MXNet

33 Programming Interface

34 Example: SVM in MXNet

35 Example: SVM in MXNet (Cont)

36 Example: SVM in MXNet (Cont)

Programming Interface

- Support many scope applications (e.g. computer vision, natural language processing, speech recognition, unsupervised machine learning, support embedded APIs, visualization)
- Mixed programming style: imperative and declarative
 - Data parallelism with multi-devices: Better scalability than TensorFlow, reportedly
 - Support many different front-end, including JavaScript (so it be run on web browsers as well)
 - Provide intermediate-level and high-level interface modules
 - Provide abundant IO functions
- Second Fully compatible with Torch: modules and operators
- Support building neural network graphs
 - Call mx.viz.plot_network()
- Not well documented

Example: SVM in MXNet


```
from future import print function
    import mxnet as mx
    import numpy as np
    from sklearn, datasets import fetch mldata
    from sklearn, decomposition import PCA
    # import matplotlib.pyplot as plt
    import logging
8
9
    logger = logging.getLogger()
10
    logger.setLevel(logging.DEBUG)
11
12
    # Network declaration as symbols. The following pattern was based
13
    # on the article, but feel free to play with the number of nodes
    # and with the activation function
14
15
    data = mx. symbol. Variable ('data')
16
    fc1 = mx. symbol. FullyConnected(data = data, name='fc1', num hidden=512)
    act1 = mx, symbol, Activation (data = fc1, name='relu1', act type="relu")
17
18
    fc2 = mx, symbol, Fully Connected (data = act1, name = 'fc2', num hidden = 512)
19
    act2 = mx. symbol. Activation (data = fc2, name='relu2', act type="relu")
20
    fc3 = mx.symbol.FullyConnected(data = act2, name='fc3', num hidden=10)
21
22
    # Here we add the ultimate layer based on L2-SVM objective
23
    mlp = mx.symbol.SVMOutput(data=fc3, name='svm')
24
25
    # To use L1-SVM objective, comment the line above and uncomment the line below
26
    # mlp = mx.symbol.SVMOutput(data=fc3, name='sym', use linear=True)
27
28
    # Now we fetch MNIST dataset, add some noise, as the article suggests,
29
    # permutate and assign the examples to be used on our network
30
    mnist = fetch mldata('MNIST original')
```

Example: SVM in MXNet (Cont)


```
31
     mnist pca = PCA(n components = 70), fit transform (mnist, data)
32
     noise = np.random.normal(size=mnist pca.shape)
33
     mnist pca += noise
34
35
     # set seed for deterministic ordering
36
     np.random.seed(1234)
37
     p = np.random.permutation(mnist pca.shape[0])
    X = mnist pca[p]
38
39
    Y = mnist.target[p]
     X show = mnist.data[p]
40
41
42
     # This is just to normalize the input to a value inside [0,1],
43
     # and separate train set and test set
    X = X, astype (np. float32)/255
44
     X \text{ train} = X[:60000]
45
46
     X \text{ test} = X[60000:]
47
     X \text{ show} = X \text{ show} [60000:]
48
     Y \text{ train} = Y[:60000]
49
     Y \text{ test} = Y[60000:1]
50
51
     # Article's suggestion on batch size
52
     batch size = 200
53
     train iter = mx.io.NDArrayIter(X train, Y train, batch size=batch size)
54
     test iter = mx.io.NDArrayIter(X test, Y test, batch size=batch size)
55
56
     # A quick work around to prevent mxnet complaining the lack of a softmax label
57
     train iter, label = mx, io, init data (Y train, allow empty=True, default name='sym label')
58
     test iter label = mx.io. init data(Y test allow empty=True default name='sym label')
```

Example: SVM in MXNet (Cont)

60 61

62

63 64

65

66

67 68

73

74

75

76

77

78

79 80 81

82

83

84 85 86


```
# Here we instatiate and fit the model for our data
# The article actually suggests using 400 epochs,
# But I reduced to 10, for convinience
model = mx model FeedForward(
    ctx = mx.cpu(0), # Run on CPU 0
    symbol = mlp\,, \hspace{1cm} \text{\# Use the network we just defined}
    num epoch = 10. # Train for 10 epochs
    learning_rate = 0.1, # Learning rate
    momentum = 0.9, # Momentum for SGD with momentum
    wd = 0.00001, # Weight decay for regularization
model.fit(
    # Training data set
   X=train iter.
    # Testing data set. MXNet computes scores on test set every epoch
    eval data=test iter.
    # Logging module to print out progress
    batch end callback = mx. callback. Speedometer (batch size, 200)
# Uncomment to view an example
# plt.imshow((X show[0].reshape((28,28))*255).astype(np.uint8), cmap='Greys r')
# plt.show()
# print 'Result:', model.predict(X test[0:1])[0].argmax()
# Now it prints how good did the network did for this configuration
print('Accuracy:', model.score(test_iter)*100, '%')
```

§6. Torch

- 37 Programming Interface
- 38 Example: Two-Layer Network
- 39 Example: Two-Layer Network (Cont)
- 40 Example: Linear Regression in Lua
- 41 Example: Linear Regression in Lua (Cont)
- 42 Example: Linear Regression in Lua (Cont)

Programming Interface

- Wide range of applications
 - Speech, image and video applications
 - Large-scale machine-learning applications
- Fastest scripting language Lua is used
- Portable to any platform
 - Torch can run on iPhone with no modification to scripts
 - Embeddable, with ports to iOS, Android and FPGA backends
- Easy extensibility
 - Easy to integrate any library into Torch

Example: Two-Layer Network

3 4

5

6

7 8

9

10

11 12

13

14 15

16 17

18

19 20

21 22

23

24

25

26

27

28


```
import torch
from torch.autograd import Variable
# N is batch size: D in is input dimension:
# H is hidden dimension: D out is output dimension.
N, D in, H, D out = 64, 1000, 100, 10
# Create random Tensors to hold inputs and outputs, and wrap them in Variables.
x = Variable(torch.randn(N, D in))
y = Variable (torch.randn(N, D out), requires grad=False)
# Use the nn package to define our model as a sequence of layers.
model = torch.nn.Sequential(torch.nn.Linear(Din, H),
                              torch.nn.ReLU().
                              torch.nn.Linear(H. D out) )
# The nn package also contains definitions of popular loss functions:
loss fn = torch.nn.MSELoss(size average=False)
learning rate = 1e-4
for t in range (500):
    # Forward pass: compute predicted y by passing x to the model.
    v \text{ pred} = \text{model}(x)
    # Compute and print loss.
    loss = loss fn(y pred, y)
    print(t. loss.data[0])
    # Zero the gradients before running the backward pass
    model.zero grad()
```

Example: Two-Layer Network (Cont)


```
# Backward pass: compute gradient of the loss
loss.backward()

# Update the weights using gradient descent
for param in model.parameters():
    param.data = learning_rate * param.grad.data
end
end
```

Example: Linear Regression in Lua


```
require 'torch'
     require 'optim'
     require 'nn'
4
5
    # write the loss to a text file and read from there to plot it as training proceeds
    logger = optim.Logger('loss log.txt')
    # input data
    data = torch. Tensor \{\{40, 6, 4\}, \{44, 10, 4\}, \{46, 12, 5\},
    \{48, 14, 7\}, \{52, 16, 9\}, \{58, 18, 12\}, \{60, 22, 14\},
10
    {68, 24, 20}, {74, 26, 21}, {80, 32, 24}}
11
12
13
    # define the container
    model = nn. Sequential()
14
     ninputs = 2: noutputs = 1
15
16
17
    # define the only module
18
    model: add(nn. Linear(ninputs. noutputs))
19
20
    # Define a loss function
     criterion = nn. MSECriterion()
21
22
23
    # retrieve its trainable parameters
    x. dl dx = model: getParameters()
24
25
26
    # compute loss function and its gradient
27
     feval = function(x new)
28
       # set x to x_new, if differnt
29
        if x \sim = x new then
30
           x:copv(x new)
31
        end
```


Example: Linear Regression in Lua (Cont)

```
32
        # select a new training sample
33
        nidx = (nidx or 0) + 1
34
        if nidx > (\#data)[1] then nidx = 1 end
35
36
        local sample = data[_nidx_]
37
        local target = sample[{ {1} }]
38
        local inputs = sample[{ {2.3} }]
39
40
        # reset gradients
41
        dl dx:zero()
42
43
        # evaluate the loss function and its derivative wrt x
44
        local loss x = criterion: forward (model: forward (inputs), target)
        model: backward(inputs, criterion: backward(model.output, target))
45
46
47
        # return loss(x) and dloss/dx
        return loss x . dl dx
48
49
    end
50
51
    # define SGD
52
    sgd_params = {
53
        learningRate = 1e-3,
54
        learningRateDecay = 1e-4,
55
        weightDecay = 0.
56
       momentum = 0
57
58
59
    # we cycle 10,000 times over our training data
     for i = 1.1e4 do
60
       #this variable is used to estimate the average loss
61
62
        current loss = 0
```


63

64 65

66 67

68

69

70 71

72

73

74 75

76 77

78

79 80

81

82 83

84

85


```
#an epoch is a full loop over our training data
   for i = 1, (\#data)[1] do
      # return new x and value of the loss functions
      .fs = optim.sgd(feval.x.sgd params)
      # update loss
      current loss = current loss + fs[1]
   end
   # report average error on epoch
   current loss = current loss / (#data)[1]
   print('current loss = ' .. current loss)
   logger:add{['training error'] = current loss}
   logger: style {['training error'] = '-'}
   logger: plot()
end
# Test the trained model
text = \{40.32, 42.92, 45.33, 48.85, 52.37, 57, 61.82, 69.78, 72.19, 79.42\}
for i = 1.(\#data)[1] do
   local myPrediction = model: forward (data[i][{{2,3}}])
   print(string.format("%2d %6.2f %6.2f", i, myPrediction[1], text[i]))
end
```

§7. Caffe

43 Programming Interface

44 Example: Image Classification

45 Example: Extend Layers

46 Example: Extend Layers (Cont)

Caffe

Deep learning framework by BAIR

Programming Interface

Mainly focus on (and well suited for) CNN and image recognition

Caffe

- Expressive architecture
 - Define models and optimization by configuration without hard-coding
 - With protocol tool to define parameters for nets and solvers . . .
- Not well documented

Example: Image Classification


```
import caffe
    import matplotlib.pyplot as plt
3
4
    # paste vour image URL here
5
    my image url = "https://wikipedia/Orang Utan/2 C Malaysia. JPG"
6
    !wget -O image.jpg $my image url
7
    # transform it and copy it into the net
    image = caffe.io.load image('image.jpg')
10
    caffe.net.blobs['data'].data[...] = transformer.preprocess('data', image)
11
12
    # perform classification
13
    caffe . net . forward ()
14
    # obtain the output probabilities
15
16
    output prob = net.blobs['prob'].data[0]
17
18
    # sort top five predictions from softmax output
19
    top inds = output prob.argsort()[:: -1][:5]
20
21
22
     plt.imshow(image)
23
24
25
     print 'probabilities and labels:'
26
     zip(output prob[top inds], labels[top inds])
```

Example: Extend Layers


```
import caffe
    import numpy as np
4
     class EuclideanLoss (caffe.layer):
5
         def setup (self, bottom, top):
6
             #check input pair
7
             if len(bottom) != 2:
                 raise Exception ("Need two inputs to compute distance")
9
10
         def reshape (self, bottom, top):
             #check input dimensions match
11
12
             if bottom [0]. count != bottom [1]. count:
13
                 raise Exception ("Inputs must have the same dimension")
             #difference in shape of inputs
14
             self.diff = np.zeros_like(bottom[0].data, dtype=np.float32)
15
             # loss output is scalar
16
17
             top[0].reshape(1)
18
19
         def forward (self, bottom, top):
20
             self.diff[...] = bottom[0].data - bottom[1].data
21
             top[0], data[...] = np.sum(self.diff**2)/bottom[0].num/2.
22
23
         def backward(self, top, propagate down, bottom):
24
             for i in range (2):
25
                 if not propagate_down[i]:
26
                     continue
27
                 if i == 0
28
                     sign = 1
29
                 else:
30
                     sign = -1
```

Example: Extend Layers (Cont)


```
31 bottom[i].diff[...] = sign.self.diff / bottom[1].num
```

Define a class in Python to extend Layer

