Multivariate Data Analysis (MVDA) & Visualization

Mpho Mafata

09 October 2024

The winemaking process

Univariate to multivariate analysis

observation	Var 1	Var 2
1	Rep 1	Rep 1
1	Rep 2	Rep 2
1	Rep 3	Rep 3
2	Rep 2	Rep 2

Design of experiment (DoE)

- Biological repeats
- Methodological repeats
- > Single phenomenon

Multiple measurements

- Precision methodology repeats not needed
- > Multiple phenomena

Univariate to multivariate analysis

observation	Var 1	Var 2
1	Rep 1	Rep 1
1	Rep 2	Rep 2
1	Rep 3	Rep 3
2	Rep 2	Rep 2

Observation	Var 1	Var 2	Var 3
1			
2			
3			
4			

1.9763	2	10.4	10.3
1.576	1	12	11.8
1.7067	2	10.1	10.8
1.7401	2	11.1	11.2
0.9642	2	10.6	10.8
2.0098	2	8.9	9.1
1.2985	1	9.1	9.2
1.4708	1	11.5	11.1
1.3306	1	11.2	11.1
1.3314	1	16.55	15.78
1.6034	2	15.11	15.13
2 7886	2	15.5	18 45

- > Aggregation method: sum, counts, etc.
- Treating NaNs empty vs zeros (consequences?)
- > Grouping

Grouping observations

The variance across observational groups of **samples** is greater than between each sample

Wrangling libraries and techniques:

R - tidyverse

Python – pandas, numpy

SQL - count

Grouping variables

The variance across observational groups of **measurements** is greater than between each measurements

- > Aggregation method: sum, counts, etc.
- Treating NaNs, NULLs: empty vs zeros (consequences?)
- > Grouping

Combined effects

Wrangling libraries and techniques: R - tidyverse Python – pandas, numpy SQL - count

Automate data wrangling and analysis

- Captured format is different from analysis format
- pandas
- Capture data in the simplest format
- Try to change data in the processing stage instead of in

spreadsheets (for reproducibility)

Base libraries:

"readxl"
"writexl"

R For Data Science Cheat Sheet Tidyverse for Beginners

Learn More R for Data Science Interactively at www.datacamp.com

Tidvverse

The tidyverse is a powerful collection of R packages that are actually data tools for transforming and visualizing data. All packages of the tidyverse share an underlying philosophy and common APIs.

The core packages are:

• ggplot2, which implements the grammar of graphics. You can use it to visualize your data.

tidyr helps you to create tidy data or data where each variable is in a column, each observation is a row end each value is a cell.

· readr is a fast and friendly way to read rectangular data.

 purrr enhances R's functional programming (FP) toolkit by providing a complete and consistent set of tools for working with functions and vectors.

tibble is a modern re-imaginging of the data frame.

 stringr provides a cohesive set of functions designed to make working with strings as easy as posssible

 forcats provide a suite of useful tools that solve common problems with factors.

You can install the complete tidyverse with: > install.packages ("tidyverse")

Then, load the core tidyverse and make it available in your current R session by running:

> library(tidyverse)

Note: there are many other tidyverse packages with more specialised usage. They are not loaded automatically with library(tidyverse), so you'll need to load each one with its own call to library().

Useful Functions

> tidyverse_conflicts()

> tidyverse_deps()

> tidyverse_logo()

> tidyverse_logo()

> tidyverse_packages()

> tidyverse_packages()

> tidyverse_packages()

> tidyverse_update()

Update tidyverse packages

Loading in the data

> library(datasets) Load the datasets > library(gapminder) Load the gapmind > attach(iris) Attach iris data to

Load the datasets package Load the gapminder package Attach iris data to the R search path

dplyr

Filter

filter () allows you to select a subset of rows in a data frame.

```
> iris %>% Select filter(Species=="virginica") "Virginica") Select filter(Species=="virginica", Select "virginica", Sepal.Length > 6) greate
```

Select iris data of species "virginica" Select iris data of species "virginica" and sepal length greater than 6.

Arrange

arrange() sorts the observations in a dataset in ascending or descending order based on one of its variables.

```
> iris %>%
arrange(Sepal.Length)
> iris %>%
arrange(desc(Sepal.Length))
```

Sort in ascending order of sepal length Sort in descending order of sepal length

Combine multiple dplyr verbs in a row with the pipe operator %>%:

filter (Species=="virginica") %>% then arrange in descending arrange (desc (Sepal.Length)) order of sepal length	filter(Species=="virginica") %>%	
--	----------------------------------	--

Mutate

mutate() allows you to update or create new columns of a data frame.

iris %>% mutate(Sepal.Length=Sepal.Length*10)	Change Sepal.l in millimeters
iris %>%	Create a new co
mutate(SLMm=Sepal.Length*10)	called SLMm

Combine the verbs filter(), arrange(), and mutate():

```
iris %>%
  filter(Species=="Virginica") %>%
  mutate(SLMm=Sepal.Length*10) %>%
  arrange(desc(SLMm))
```

Summarize

summarize () allows you to turn many observations into a single data point.

	J
> iris %>% summarize(medianSL=median(Sepal.Length)) > iris %>% filter(Species=="virginica") %>% summarize(medianSL=median(Sepal.Length))	Filter for virginica the summarize the media

You can also summarize multiple variables at once:

```
> iris %>%
    filter(Species=="virginica") %>%
    summarize(medianSizemedian(Sepal.Length),
    maxSl=max(Sepal.Length))
```

group_by () allows you to summarize within groups instead of summarizing the entire dataset:

	> iris %>%
ш	group_by(Species) %>%
	summarize (medianSL=median(Sepal.Length)
	maxSL=max(Sepal.Length))
	> iris %>%
	filter(Sepal.Length>6) %>%
	group by (Species) %>%
	summarize (medianPL=median (Petal.Length)
	maxPL=max(Petal,Length))

Find median and max sepal length of each species

Find median and max petal length of each species with sepal length > 6

ggplot2

Scatter plot

Scatter plots allow you to compare two variables within your data. To do this with ggplot2, you use <code>geom point()</code>

```
> iris small <- iris %>%
filter(Sepal.Length > 5)
> ggplot(iris_small, aes(x=Petal.Length, y=Petal.Width)) +
geom point()

Gompare petal width and length
```

Additional Aesthetics

Color

Size

Faceting

Line Plots

Bar Plots

> by species <- iris %>%
 filter(Sepal.Length>6) %>%
 group_by(Species) %>%
 summarize(medianPL=median (Petal.Length))
> ggplot(by_species, aes(x=Species,
 geom col()

Histograms

Box Plots

DataCamp

MDS

Dimension reduction

Some come with a common visualization, some do not. Ultimately, they are just **mathematical calculations**, applied according to the type of data (e.g., Categorical, continuous, discreet, nominal, sparse). You get to represent the results in a communicative way that elucidates insight.

(1)

Orthogonal decomposition

MCA

Dimension reduction

Some come with a common visualization, some do not. Ultimately, they are just **mathematical calculations**, applied according to the type of data (e.g., Categorical, continuous, discreet, nominal, sparse). You get to represent the results in a communicative way that elucidates insight.

1

Orthogonal decomposition

Dimension reduction

760 Old

Some come with a common visualization, some do not. Ultimately, they are just **mathematical calculations**, applied according to the type of data (e.g., Categorical, continuous, discreet, nominal, sparse). You get to represent the results in a communicative way that elucidates insight.

(1)

Orthogonal decomposition

Ü	Sample ID	Class	Vine age (yrs)	3991.9861	3987.8664	3983.74670	3979.6270	3975.5073	3
4	751	Young	30	-0.000378	-0.000475	-0.000567	-0.000628	-0.000635	-
	752	Young		-0.000876	-0.00099	-0.001077	-0.001102	-0.001063	_
	753	Young	5	-0.001342	-0.00143	-0.001513	-0.001569	-0.00158	_
	754	Young	30	-0.002598	-0.002718	-0.002826	-0.002887	-0.002888	_
	755	Young	30	-0.003074	-0.003125	-0.00318	-0.003223	-0.003229	_
	756	Young	20	-0.003272	-0.003334	-0.003394	-0.003429	-0.003418	_
	757	Young	30	-0.003459	-0.00354	-0.003611	-0.00366	-0.003683	_
	758	Old	35	-0.003599	-0.003673	-0.00375	-0.003806	-0.003816	_
	759	Young	29	-0.000259	-0.000324	-0.000393	-0.000443	-0.00046	_

40 -0.000462 -0.000488 -0.000517 -0.000546 -0.00057

	Primary ID	751	752	753	754	755	756	757	758	759
	751	32	13	13	13	14	9	13	14	14
	752	13	32	11	16	11	14	16	15	15
	753	13	11	32	16	12	12	14	12	14
	754	13	16	16	32	12	16	20	13	13
	755	14	11	12	12	32	13	8	11	16
	756	9	14	12	16	13	32	19	13	-
	757	13	16	14	20	8	19	32	13	-
MDS	758	14	15	12	13	11	13	13	32	16
	759	14	15	14	13	16	7	7	16	32

Primary ID	Old	Teenager	Young	Textured	Structured	Robust	Rich	Ripe	Nutty	Wood _
751	13	1	12	3	0	1	1	3	1	0
752	11	2	17	1	1	1	1	2	0	0
753	17	2	10	5	0	1	4	5	2	0
754	19	1	11	4	0	2	3	6	2	0
755	18	1	11	5	3	1	5	5	3	0
756	17	1	11	1	1	2	5	5	3	0
757	18	2	9	2	0	2	4	2	3	0
758	11	2	16	4	0	0	5	3	3	1
759	8	3	18	3	0	0	1	4	0	0
760	24	1	5	5	2	2	8	7	4	0
761	13	4	12	2	1	1	2	5	1	1
762	20	1	10	3	3	2	4	7	1	0
763	16	4	11	4	1	0	2	1	3	0
764	22	0	8	5	2	0	5	4	3	0
765	1	4	18	0	1	0	0	1	0	0

A	В	С	D	E	F	G	Н	1	J	K	1
Typical Old Vine CB Word Association	Judge 1	Judge 2	Judge 3	Judge 4	Judge 5	Judge 6	Judge 7	Judge 8	Judge 9	Judge 10	Judg
Concentration	1		1								
Rich								1	1		:
Balanced	1		1			1					
Complexity					1	1	1				:
Long AT			1		1						:
Full bodied							1		1	1	
Minerality				1		1					
Tropical					1			1			
Structure		1				1				1	
Good mouthfeel					1					1	
Fruity	1					1					
Depth			1								
Stone fruit											
Oily		1									
Marketing											

MCA

CA

Reading biplots/cartesian covariance representations

Varies
negatively to F1
= lower

- > Aggregation method: sum, counts, etc.
- Treating NaNs empty vs zeros (consequences?)
- Grouping

Grouping observations

The variance across observational groups of **samples** is greater than between each sample

Wrangling libraries and techniques:

R - tidyverse

Python – pandas, numpy

SQL - count

Grouping variables

The variance across observational groups of **measurements** is greater than between each measurements

Reading biplots/cartesian covariance representations Varies positively to F2 = **higher**

Cluster analysis

Cluster: 9 751

Often calculated on results from dimension reduction (recommended!). e.g., Hierarchical clustering (HCA),

Thank you!

https://github.com/mpho-mafata

https://www.linkedin.com/in/mafatampho

https://orcid.org/0000-0002-6468-7193

A chemometric approach to investigating South African wine behaviour using chemical and sensory markers

Mpho Mafata

Dissertation presented for the degree of **Doctor of Philosophy (Agricultural Sciences)**

Stellenbosch University
Department of viticulture and Oenology, Faculty of AgriSciences

The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at are those of the author and are not necessarily to be attributed to the NRF.

Supervisor: Dr. Astrid Buica Co-supervisors: Dr. Jeanne Brand and Prof. Andrei V. Medvedovici

March 2021

https://doi.org/10.13140/RG.2.2.17899.00804