Statistical Inference I - Lecture 1

Hanchao Zhang

Definition

Sample Set

 $\Omega = {\rm Sample\ Space} = {\rm Set\ of\ all\ possible\ outcomes}$

Example

Sample Set

$$\Omega = \mathcal{R}^1$$
 or $\Omega = \mathcal{R}^2$ or $\Omega = \mathcal{R}^n$

It could be used to representing number of variables

Definition

σ -field

Let $\mathscr{F}=$ a collection of subsets of Ω

 \mathcal{F} is a σ -field **iff**

- 1. $\emptyset \in \mathscr{F}$
- 2. If $A \in \mathscr{F} \Rightarrow A^c \in \mathscr{F}$
- 3. If $A_1, A_2, A_1, \cdots, \in \mathscr{F} \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \mathscr{F}$

Definition

Measure Space

Measure Space (Ω, \mathscr{F})

Elements of ${\mathscr F}$ are called 'measurable' sets

Example

σ -field

Trivial σ -field $\mathscr{F} = \{\Omega, \emptyset\}$

Power set collection of all possible subsets of Ω . Cardinality of power set = $|P(\mathcal{A})| = 2^n$

Example

σ -field

If $A \in \Omega \Rightarrow \mathscr{F} = \{\emptyset, \Omega, A, A^c\}$ is a σ -field

Example

σ -field

If
$$\Omega = \{1, 2, 3, , n\} = \text{Natural numbers}$$

$$\mathscr{F} = \text{Power set} = \{\emptyset, \Omega, \{1\}, \{2\}, \cdots, \{n\}, \{1, 2\}, \cdots, \{n - 1, n\}\}\$$

$$|\mathscr{F}| = 2^n$$

Example

σ -field

Let
$$C = \{A_1, A_2\}, A_1, A_2 \in \Omega$$

The smallest
$$\sigma$$
-field = $\sigma(\mathcal{C}) = \{\emptyset, \Omega, \mathcal{A}_1, \mathcal{A}_2, \mathcal{A}_1 \cup \mathcal{A}_2, (\mathcal{A}_1 \cup \mathcal{A}_2)^c, \mathcal{A}_1 \cup \mathcal{A}_2^c, \mathcal{A}_1^c \cup \mathcal{A}_2, \cdots \}$

Definition

Borel σ -field

Used for most of the statistical applications

Generated by the open sets

Example

Borel σ -field

Borel σ -field on \mathbb{R}^1 contains all open and closed intervals

Definition

"Measure"

A notion of interval length or volume in a higher dimension

Let $(\Omega, \mathscr{F}$ denote a measurable space, $\nu = a$ set function on \mathscr{F} is called a measure **iff**

- 1. $0 \le \nu(A) \le \infty$
- 2. $\nu(\emptyset) = 0$
- 3. If $A_1, A_2, \dots, \in \mathscr{F}$ is disjointed $\Rightarrow \nu(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} \nu(A_i)$

Example

Lebesgue Measure

Length:

A unique measure on \mathbb{R}^1 that associates an intervals length to its measure

volume:

Lebesgue measure \sim volume in higher dimension

If $\Omega = [0, 1] \Rightarrow$ Lebesgue measure \sim probability measure