TEORÍA DE CONJUNTOS

Propiedades de las operaciones con conjuntos

ÁLGEBRA DE CONJUNTOS PROPIEDADES MÁS UTILIZADAS

Idempotencia	
$A \cup A = A$	$A \cap A = A$
Conmutatividad	
$A \cup B = B \cup A$	$A \cap B = B \cap A$
Asociatividad	
$(A \cup B) \cup C = A \cup (B \cup C)$	$(A \cap B) \cap C = A \cap (B \cap C)$
Distributividad	
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Elemento Neutro	
$A \cup \emptyset = A$	$A \cap U = A$
Elemento Absorbente	
$A \cup U = U$	$A \cap \varnothing = \varnothing$
Absorción	
$A \cup (A \cap B) = A$	$A \cap (A \cup B) = A$
Involución	
= $A = A$	
Leyes de De Morgan	
$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$
$A - (B \cup C) = (A - B) \cap (A - C)$	$A - (B \cap C) = (A - B) \cup (A - C)$

Propiedades de la Unión

o Teorema 1

Dado los conjuntos A, B, C, D, y \emptyset , en un conjunto universal U, se cumplen las siguientes propiedades:

a)
$$A \subset (A \cup B) \land B \subset (A \cup B)$$

b)
$$A \subset D \land B \subset D \Rightarrow (A \cup B) \subset D$$

$$A \cup A = A$$
 (Idempotencia)

d)
$$(A \cup B) \cup C = A \cup (B \cup C)$$
 (Asociativa)

e)
$$A \cup B = B \cup A$$
 (Conmutativa)

$$f$$
 $A \cup \emptyset = A$ (Elemento Neutro)

$$g)$$
 $A \subset B \Rightarrow A \cup B = B$

h)
$$A \cup U = U$$
 (Elemento Absorbente)

Asociativa

 $A \cup B$

 $(A \cup B) \cup C$

 $B \cup C$

 $A \cup (B \cup C)$

$$A \subset B$$

$$A \cup B = B$$

Propiedades de la Intersección

o Teorema 2

Dado los conjuntos A, B, C y \emptyset , en el conjunto universal U, se cumplen las siguientes propiedades:

a)
$$(A \cap B) \subset A \wedge (A \cap B) \subset B$$

b)
$$A \cap A = A$$
 (Idempotencia)

$$(A \cap B) \cap C = A \cap (B \cap C)$$
 (Asociativa)

d)
$$A \cap B = B \cap A$$
 (Conmutativa)

$$e)$$
 $A \subset B \Rightarrow A \cap B = A$

g)
$$A \cap U = A$$
 (Elemento Neutro)

Asociativa

 $A\cap B$

 $B \cap C$

Pintamos C

Pintamos A

 $(A \cap B) \cap C$

 $A\cap (B\cap C)$

PROPIEDADES DISTRIBUTIVAS

o Teorema 3

Dado los conjuntos *A,B* y *C* se cumplen las siguientes propiedades distributivas:

- a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- b) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Propiedades de la diferencia de conjuntos

o Teorema 4

Dado los conjuntos $A, B, C, y \emptyset$, se cumplen las siguientes propiedades:

- a) $A \emptyset = A$
- (b) $A A = \emptyset$
- $C) A \cap (B C) = (A \cap B) (A \cap C)$
- d) $A B = (A \cup B) B = A (A \cap B) = A \cap \overline{B}$

 \circ $A \cap (B - C)$

 $(A \cap B) - (A \cap C)$

B-C

 $A \cap B$

Pintamos A

 $A \cap C$

 $A \cap (B - C)$

 $(A \cap B) - (A \cap C)$

Propiedades del complemento

o Teorema 5.

Dado los conjuntos \emptyset , $A \subset UyB \subset U$, se cumplen las siguientes propiedades:

$$\bar{A}$$
 $\bar{\bar{A}} = A$

b)
$$A \subset B \Rightarrow \bar{B} \subset \bar{A}$$
;
 $\bar{B} \subset \bar{A} \Rightarrow A \subset B$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$e$$
 $A \cap \bar{A} = \emptyset$

$$A \cup \bar{A} = U$$

• Ley de De Morgan: El complemento de la intersección entre dos conjuntos es igual a la unión de los complementos de dichos conjuntos.

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Comenzamos por trabajar gráficamente el primer miembro de la igualdad

 $A \cap B$

Trabajamos el segundo miembro de la igualdad

