Multivariable Calculus and Linear Algebra

Sarang Mohaniraj

Contents

Ι	Mult	tivariable Calculus	1	
11	Parametric Equations and Polar Coordinates			
	11.1	Curves Defined by Parametric Equations	2	
	11.2	Calculus with Parametric Curves	2	
	11.3	Polar Coordinates	2	
	11.4	Areas and Lengths in Polar Coordinates	2	
	11.5	Conic Sections	2	
	11.6	Conic Sections in Polar Coordinates	2	
12	Infinit	te Sequences and Series	3	
	12.1	Sequences	4	
	12.2	Series	4	
	12.3	The Integral Test and Estimates of Sums	4	
	12.4	The Comparison Tests	4	
	12.5	Alternating Series	4	
	12.6	Absolute Convergence and the Ratio and Root Tests	4	
	12.7	Strategy for Testing Series	4	
	12.8	Power Series	4	
	12.9	Representation of Functions as Power Series	4	
	12.10	Taylor and Maclaurin Series	4	
	12.11	The Binomial Series	4	
	12.12	Applications of Taylor Polynomials	4	
13	Vector	rs and the Geometry of Space	5	
	13.1	Three-Dimensional Coordinate Systems	5	
	13.2	Vectors	5	
	13.3	The Dot Product	5	
	13.4	The Cross Product	5	
	13.5	Equations of Lines and Planes	5	
	13.6	Cylinders and Quadric Surfaces	5	
	13.7	Cylindrical and Spherical Coordinates	5	
14	Vector	r Functions	6	
	14.1	Vector Functions and Space Curves	6	
	14.2	Derivatives and Integrals of Vector Functions	6	

CONTENTS	ii
----------	----

II	Line	ear Algebra	11
	18.4	Series Solutions	10
	18.3	Applications of Second-Order Differential Equations	10
	18.2	Nonhomogenous Linear Equations	10
		Second-Order Linear Equations	10
18	Second	d-Order Differential Equations	10
	11.10	Dummary	Э
	17.10	Summary	
	17.9	The Divergence Theorem	
	17.7	Stokes' Theorem	
	17.7	Surface Integrals	
	17.6	Parametric Surfaces and Their Areas	
	17.4	Curl and Divergence	9
	17.4	Green's Theorem	9
	17.2	Line Integrals	9
	17.1		9
Ι (17.1	Vector Fields	9
17	Voctor	Calculus	9
	16.9	Change of Variables in Multiple Integrals	8
	16.8	Triple Integrals in Cylindrical and Spherical Coordinates	
	16.7	Triple Integrals	
	16.6	Surface Area	
	16.5	Applications of Double Integrals	
	16.4	Double Integrals in Polar Coordinates	8
	16.3	Double Integrals over General Regions	
	16.2	Iterated Integrals	
	16.1	Double Integrals over Rectangles	8
16	Multip	ole Integrals	8
	10.0	Lagrange mumphers	'
	15.7	Lagrange Multipliers	
	$15.6 \\ 15.7$	Directional Derivatives and the Gradient Vector	7 7
	15.5	The Chain Rule	
	15.4	Tangent Planes and Linear Approximations	
	15.3	Partial Derivatives	
	15.2	Limits and Continuity	
	15.1	Functions of Several Variables	7
15		l Derivatives	7
	_		
	14.4	Motion in Space: Velocity and Acceleration	6
	14.3	Arc Length and Curvature	6

CONTENTS	iii
----------	-----

	1.1 1.2 1.3 1.4	The Geometry and Algebra of Vectors Length and Angle: The Dot Product Lines and Planes	12 12 12 12
2	System 2.1 2.2 2.3 2.4 2.5	ns of Linear Equations Introduction to Systems of Linear Equations	13 13 13 13 13
3	Matrie 3.1 3.2 3.3 3.4 3.5 3.6 3.7	$\begin{array}{c} \text{Ces} \\ \text{Matrix Operations} & . & . \\ \text{Matrix Algebra} & . & . \\ \text{The Inverse of a Matrix} & . & . \\ \text{The } LU \text{ Factorization} & . & . \\ \text{Subspaces, Basis, Dimension, and Rank} & . & . \\ \text{Introduction to Linear Transformations} & . & . \\ \text{Applications} & . & . & . \\ \end{array}$	14 14 14 14 14 14 14
4	4.1 4.2 4.3 4.4 4.5 4.6	values and Eigenvectors Introduction to Eigenvalues and Eigenvectors Determinants Eigenvalues and Eigenvectors of $n \times n$ Matrices Similarity and Diagonalization Iterative Methods for Computing Eigenvalues Applications and the Perron-Frobenius Theorem	15 15 15 15 15 15 15
5	Ortho 5.1 5.2 5.3 5.4 5.5	gonality Orthogonality in \mathbb{R}^n Orthogonal Complements and Orthogonal Projections The Gram-Schmidt Process and the QR Factorization Orthogonal Diagonalization of Symmetric Matrices Applications	16 16 16 16 16
6	Vector 6.1 6.2 6.3 6.4 6.5 6.6 6.7	Vector Spaces and Subspaces	17 17 17 17 17 17 17
7	Distar	nce and Approximation	18

CONTEN	TS	iv
7.1	Inner Product Spaces	18
7.2	Norms and Distance Function	18
7.3	Least Squares Approximation	18
7.4	The Singular Value Decomposition	18
7.5	Applications	18

Part I Multivariable Calculus

Parametric Equations and Polar Coordinates

- 11.1 Curves Defined by Parametric Equations
- 11.2 Calculus with Parametric Curves
- 11.3 Polar Coordinates
- 11.4 Areas and Lengths in Polar Coordinates
- 11.5 Conic Sections
- 11.6 Conic Sections in Polar Coordinates

Infinite Sequences and Series

- 12.1 Sequences
- 12.2 Series
- 12.3 The Integral Test and Estimates of Sums
- 12.4 The Comparison Tests
- 12.5 Alternating Series
- 12.6 Absolute Convergence and the Ratio and Root Tests
- 12.7 Strategy for Testing Series
- 12.8 Power Series
- 12.9 Representation of Functions as Power Series
- 12.10 Taylor and Maclaurin Series
- 12.11 The Binomial Series
- 12.12 Applications of Taylor Polynomials

Vectors and the Geometry of Space

- 13.1 Three-Dimensional Coordinate Systems
- 13.2 Vectors
- 13.3 The Dot Product
- 13.4 The Cross Product
- 13.5 Equations of Lines and Planes
- 13.6 Cylinders and Quadric Surfaces
- 13.7 Cylindrical and Spherical Coordinates

Vector Functions

- 14.1 Vector Functions and Space Curves
- 14.2 Derivatives and Integrals of Vector Functions
- 14.3 Arc Length and Curvature
- 14.4 Motion in Space: Velocity and Acceleration

Partial Derivatives

- 15.1 Functions of Several Variables
- 15.2 Limits and Continuity
- 15.3 Partial Derivatives
- 15.4 Tangent Planes and Linear Approximations
- 15.5 The Chain Rule
- 15.6 Directional Derivatives and the Gradient Vector
- 15.7 Maximum and Minimum Values
- 15.8 Lagrange Multipliers

Multiple Integrals

16.1	Double Integrals over Rectangles
16.2	Iterated Integrals
16.3	Double Integrals over General Regions
16.4	Double Integrals in Polar Coordinates
16.5	Applications of Double Integrals
16.6	Surface Area
16.7	Triple Integrals
16.8	Triple Integrals in Cylindrical and Spherical Coordinates
16.9	Change of Variables in Multiple Integrals

Vector Calculus

- 17.1 Vector Fields
- 17.2 Line Integrals
- 17.3 THe Fundamental Theorem for Line Integrals
- 17.4 Green's Theorem
- 17.5 Curl and Divergence
- 17.6 Parametric Surfaces and Their Areas
- 17.7 Surface Integrals
- 17.8 Stokes' Theorem
- 17.9 The Divergence Theorem
- 17.10 Summary

Second-Order Differential Equations

- 18.1 Second-Order Linear Equations
- 18.2 Nonhomogenous Linear Equations
- 18.3 Applications of Second-Order Differential Equations
- 18.4 Series Solutions

Part II Linear Algebra

Vectors

- 1.1 The Geometry and Algebra of Vectors
- 1.2 Length and Angle: The Dot Product
- 1.3 Lines and Planes
- 1.4 Code Vectors and Modular Systems

Systems of Linear Equations

- 2.1 Introduction to Systems of Linear Equations
- 2.2 Direct Methods for Solving Linear Systems
- 2.3 Spanning Sets and Linear Independence
- 2.4 Applications
- 2.5 Iterative Method for Solving Linear Systems

Matrices

- 3.1 Matrix Operations
- 3.2 Matrix Algebra
- 3.3 The Inverse of a Matrix
- 3.4 The LU Factorization
- 3.5 Subspaces, Basis, Dimension, and Rank
- 3.6 Introduction to Linear Transformations
- 3.7 Applications

Eigenvalues and Eigenvectors

- 4.1 Introduction to Eigenvalues and Eigenvectors
- 4.2 Determinants
- 4.3 Eigenvalues and Eigenvectors of $n \times n$ Matrices
- 4.4 Similarity and Diagonalization
- 4.5 Iterative Methods for Computing Eigenvalues
- 4.6 Applications and the Perron-Frobenius Theorem

Orthogonality

- 5.1 Orthogonality in \mathbb{R}^n
- 5.2 Orthogonal Complements and Orthogonal Projections
- 5.3 The Gram-Schmidt Process and the QR Factorization
- 5.4 Orthogonal Diagonalization of Symmetric Matrices
- 5.5 Applications

Vector Spaces

- 6.1 Vector Spaces and Subspaces
- 6.2 Linear Independence, Basis, and Dimension
- 6.3 Change of Basis
- 6.4 Linear Transformation
- 6.5 The Kernel and Range of a Linear Transformation
- 6.6 The Matrix of a Linear Transformation
- 6.7 Applications

Distance and Approximation

- 7.1 Inner Product Spaces
- 7.2 Norms and Distance Function
- 7.3 Least Squares Approximation
- 7.4 The Singular Value Decomposition
- 7.5 Applications