Module 7 Notes (MATH-211)

Lillie Donato

22 July 2024

General Notes (and Definitions)

• Working with Integrals

A function f(x) is **even** if f(-x) = f(x).

A function f(x) is **odd** if f(-x) = -f(x).

Let $a \in \mathbb{R}$ such that a > 0 and let f be an integrable function on the interval [-a, a].

If f is even,
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

If
$$f$$
 is odd,
$$\int_{-a}^{a} f(x) dx = 0$$

The average value of an integrable function f on the interval [a, b] is

$$\overline{f} = \frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

Let f be continuous on the interval [a, b]. There exists a point c in (a, b) such that (Mean Value Theorem)

$$f(c) = \overline{f} = \frac{1}{b-a} \int_a^b f(t) dx$$

Examples

1. Use symmetry to evaluate integrals

$$\int_{-200}^{200} 2x^5 \, dx = 0$$

$$\int_{-2}^{2} (x^2 + x^3) dx = \int_{-2}^{2} x^2 dx + \int_{-2}^{2} x^3 dx$$
 (1)

$$= 2\int_0^2 x^2 \, dx + 0 \tag{2}$$

$$= 2\frac{x^3}{3} \tag{3}$$

$$= \frac{16}{3} \tag{4}$$

2. A derivative calculation

$$s(t) = -16t^2 + 64t$$
$$t = 4$$
$$[0, 4]$$

$$v(t) = s'(t) \tag{1}$$

$$\overline{v} = \frac{1}{4} \int_0^4 v(t) \, dx \tag{2}$$

$$= \frac{1}{4} \int_0^4 s'(t) \, dx \tag{3}$$

$$= \frac{1}{4}s(t) \tag{4}$$

$$= \frac{1}{4}(s(4) - s(0))$$

$$= 0$$
(5)

$$= 0 (6)$$

3. Applying MVT for integrals

$$f(x) = e^x$$
$$[0, 2]$$

$$\overline{f} = \frac{1}{2} \left(\int_0^2 e^x \, dx \right) \tag{1}$$

$$= \frac{e^x}{2} \tag{2}$$

$$= \frac{e^2}{2} - \frac{e^0}{2} \tag{3}$$

$$= \frac{e^2 - 1}{2} \tag{4}$$

$$e^x = \frac{e^2 - 1}{2} \tag{5}$$

$$= \frac{e^x}{2} \tag{2}$$

$$= \frac{e^2}{2} - \frac{e^0}{2} \tag{3}$$

$$= \frac{e^2 - 1}{2} \tag{4}$$

$$e^x = \frac{e^2 - 1}{2} \tag{5}$$

$$\ln e^x = \ln \frac{e^2 - 1}{2} \tag{6}$$

Related Exercises

1. (Section 5.4, Exercise 15)

$$\int_{-2}^{2} (x^2 + x^3) dx = \int_{-2}^{2} x^2 dx + \int_{-2}^{2} x^3 dx$$
 (1)

$$= 2 \int_{0}^{2} x^{2} dx + 0$$

$$= 2 \frac{x^{3}}{3}$$
(3)

$$= 2\frac{x^3}{3} \tag{3}$$

$$= 2\frac{2^{3}}{3} - 2\frac{0^{3}}{3}$$

$$= 2\frac{8}{3}$$

$$= \frac{16}{3}$$
(4)
(5)

$$= 2\frac{8}{3} \tag{5}$$

$$= \frac{16}{3} \tag{6}$$

2. (Section 5.4, Exercise 16)

$$\int_{-\pi}^{\pi} t^2 \sin t \, dx = 0$$

3. (Section 5.4, Exercise 26)

$$f(x) = x^2 + 1$$
$$[-2, 2]$$

$$\overline{f} = \frac{1}{2 - (-2)} \int_{-2}^{2} x^2 + 1 \, dx \tag{1}$$

$$= \frac{1}{4} \left(\int_{-2}^{2} x^{2} dx + 1 \int_{-2}^{2} x^{0} dx \right) \tag{2}$$

$$= \frac{1}{4} \left(\frac{x^3}{3} + x \right) \tag{3}$$

$$= \frac{1}{4} \left(\int_{-2}^{2} x^{2} dx + \int_{-2}^{2} 1 dx \right) \tag{4}$$

$$= \frac{1}{4} \left(\frac{2^3}{3} - \frac{(-2)^3}{3} + 2 - (-2) \right) \tag{5}$$

$$= \frac{1}{4} \left(\frac{8}{3} - \frac{-8}{3} + 4 \right) \tag{6}$$

$$= \frac{1}{4} \left(\frac{16}{3} + 4 \right) \tag{7}$$

$$= \frac{1}{4} \left(\frac{28}{3} \right) \tag{8}$$

$$= \frac{7}{3} \tag{9}$$

4. (Section 5.4, Exercise 34)

$$f(x) = x^3 - 5x^2 + 30$$
$$[0, 4]$$

$$\overline{f} = \frac{1}{4} \left(\int_0^4 \left(x^3 - 5x^2 + 30 \right) \, dx \right) \tag{1}$$

$$= \frac{1}{4} \left(\int_0^4 x^3 - 5 \int_0^4 x^2 + 30 \int_0^4 x^0 \right) \tag{2}$$

$$= \frac{1}{4} \left(\frac{x^4}{4} - 5\frac{x^3}{3} + 30x \right) \tag{3}$$

$$= \frac{1}{4} \left(\left(\frac{4^4}{4} - \frac{0^4}{4} \right) - \left(5\frac{4^3}{3} - 5\frac{0^3}{3} \right) + (30(4) - 30(0)) \right) \tag{4}$$

$$= \frac{1}{4} \left(64 - \frac{320}{3} + 120 \right) \tag{5}$$

$$= \frac{1}{4} \left(\frac{232}{3} \right) \tag{6}$$

$$= \frac{58}{3} \tag{7}$$

5. (Section 5.4, Exercise 41)

$$f(x) = 1 - \frac{x^2}{a^2}$$
$$[0, a]$$

$$\overline{f} = \frac{1}{a} \left(\int_0^a 1 - \frac{x^2}{a^2} dx \right) \tag{1}$$

$$= \frac{1}{a} \left(\int_0^a 1 \, dx - \int_0^a \frac{x^2}{a^2} \, dx \right) \tag{2}$$

$$= \frac{1}{a} \left(x - \frac{1}{a^2} \int_0^a x^2 \, dx \right) \tag{3}$$

$$= \frac{1}{a} \left(x - \frac{1}{a^2} \frac{x^3}{3} \right) \tag{4}$$

$$= \frac{1}{a} \left(x - \frac{x^3}{3a^2} \right) \tag{5}$$

$$= \frac{1}{a} \left((a-0) - \frac{1}{a^2} \left(\frac{a^3}{3} - \frac{0^3}{3} \right) \right) \tag{6}$$

$$= \frac{1}{a} \left(a - \frac{a^3}{3a^2} \right) \tag{7}$$

$$= \frac{1}{a}\left(a - \frac{a}{3}\right) \tag{8}$$

$$= \frac{1}{a} \left(\frac{2a}{3}\right) \tag{9}$$

$$= \frac{2}{3} \tag{10}$$

$$\begin{array}{rcl}
 & a & 3 \\
 & = & \frac{2}{3} \\
1 - \frac{c^2}{a^2} & = & \frac{2}{3} \\
\frac{c^2}{a^2} & = & \frac{1}{3} \\
c^2 & = & \frac{a^2}{3}
\end{array} \tag{12}$$

$$\frac{c^2}{a^2} = \frac{1}{3} \tag{12}$$

$$c^2 = \frac{a^2}{3} \tag{13}$$

$$c = \sqrt{\frac{a^2}{3}} \tag{14}$$

$$= \frac{a}{\sqrt{3}} \tag{15}$$

6. (Section 5.4, Exercise 42)

$$f(x) = \frac{\pi}{4} \sin x$$
$$[0, \pi]$$

$$\overline{f} = \frac{1}{\pi} \int_0^{\pi} \frac{\pi}{4} \sin x \tag{1}$$

$$= \frac{1}{\pi} \frac{\pi}{4} \int_0^{\pi} \sin x \tag{2}$$

$$= \frac{1}{\pi} \frac{\pi}{4} \left(-\cos x \right) \tag{3}$$

$$= \frac{1}{\pi} \frac{\pi}{4} \left(-\cos \pi + \cos 0 \right) \tag{4}$$

$$= \frac{1}{\pi} \frac{\pi}{4} (1+1) \tag{5}$$

$$= \frac{1}{\pi} \frac{\pi}{2} \tag{6}$$

$$= \frac{1}{2} \tag{7}$$

$$\frac{\pi}{4}\sin x = \frac{1}{2} \tag{8}$$

$$\sin x = \frac{2}{\pi} \tag{9}$$

$$\pi 4 J_0
= \frac{1}{\pi} \frac{\pi}{4} (-\cos x)$$

$$= \frac{1}{\pi} \frac{\pi}{4} (-\cos \pi + \cos 0)$$

$$= \frac{1}{\pi} \frac{\pi}{4} (1+1)$$

$$= \frac{1}{\pi} \frac{\pi}{2}$$

$$= \frac{1}{2}$$

$$(5)
= \frac{1}{2}$$

$$(6)
= \frac{1}{2}$$

$$(7)
$$\frac{\pi}{4} \sin x = \frac{1}{2}$$

$$\sin x = \frac{2}{\pi}$$

$$(9)
$$\sin^{-1} \sin x = \sin^{-1} \frac{2}{\pi}$$

$$(10)
$$x = \sin^{-1} \frac{2}{\pi}$$

$$(11)$$$$$$$$

$$x = \sin^{-1}\frac{2}{\pi} \tag{11}$$

