UNIVERSIDADE FEDERAL DE UBERLÂNDIA SISTEMAS DE INFORMAÇÃO

CARLOS DANIEL
ELTON LUNARDI
NICK ISHIDA
PABLO SOAREZ

TRABALHO PRÁTICO DE REGRAS DE ASSOCIAÇÃO

SUMARIO

1.	INTRODUÇAO	3
2.	EXECUÇÃO DAS TAREFAS	3
	2.1. Eliminação das instâncias que não atendem aos valores	.;3
	2.2. Eliminar os atributos de 1 a 23	5
	2.3. Eliminação dos atributos que não possuam suporte superior	
	ou igual a 10%	7
	2.4. Execução do Método à Priori	7
	2.5. Ordenação por Lift	8
3.	ANALISE DOS RESULTADOS	8
	3.1. Apresentação das regras encontradas	8
	3.2. Analise dos resultados	9

1. Introdução do Problema

Nos foi apresentado o dataset com 1540 instancias e 758 atributos no total com nome de "Mercado.arff" relacionado à um banco de dados de um mercado, contendo informações de todos os produtos vendidos neste mercado, e, a quantidade de suas respectivas vendas.

No entanto, visando o trabalho com as regras de associação, é necessário, primeiramente, uma limpeza desses dados, não só para articulação do programa utilizado para geração das regras o "Weka" na versão 3.8.6, e também para melhor resolução das atividades.

Dessa forma, o dataset possuindo os valores indesejados para nossos objetivos e parâmetros que serão aplicados, fá-lo-emos a analise e definição das regras somente após a apuração e préprocessamento dessas instancias.

2. Execução das Tarefas

Primeiramente, realizamos o pré-processamento no qual foi requisitado.

• Eliminação das instâncias que não atendem aos valores: city_belo_horizonte = 1; city_recife = 1; city_goiania = 1;

Posteriormente, utilizamos um dos filtros já pré-existentes no Weka para a remoção de instancias que compreendem valores nulos, o "RemoveWithValues".

Imagem 1: Filtro utilizado selecionado e sua localização nas pastas da aplicação.

Com este filtro, é possível realizar a limpeza de cada uma das instâncias, adaptando as configurações do filtro para nosso objetivo, como pode ser visto na Imagem 2.

Imagem 2: Exemplo de configuração para eliminação.

As imagens 3.1, 3.2 e 3.3 representam o resultado das exclusões.

Name: Ci issing: 0	ity_Belo_Horizonte (0%)	Distinct: 2		Type: Nominal Unique: 0 (0%)
No.	Label		Count	Weight
1 0)	381		381
2 1	l	206		206

Imagem 3.1: Atributo City_Belo_Horizonte após a exclusão das instâncias.

Name: City_Go issing: 0 (0%)		Type: Nominal Distinct: 2 Unique: 0 (0%)	
No.	Label	Count	Weight
1 0		406	406
2 1		181	181

Imagem 3.2: Atributo City_Goiania após a exclusão das instâncias.

lame: City_Rec ssing: 0 (0%)	ife Distinct: 2	Type: Nominal Distinct: 2 Unique: 0 (0%)		
No.	Label	Count	Weight	
1 0	387		387	
2 1	200		200	

Imagem 3.3: Atributo City_Recife após a exclusão das instâncias.

• Eliminar os atributos de 1 a 23;

Dessa vez, utilizando o filtro "Remove" do Weka, selecionamos todas os atributos (1 a 23) como está representado na imagem 4.1 e o seu resultado na 4.2.

Imagem 4.1: Seleção dos atributos a serem retirados.

1 acai_berry
2 acai_berry_pulp
3 ajinomoto_sauce
4 alphabet_pasta
5 amazon_papaya
6 anchovy
7 anjou_pear
8 annatto
9 argentinian_apple
10 arrowroot_powder
11 asparagus
12 assorted_candies
13 atlantic_seabob_shrimp
14 aubergine
15 avocado
16 baby_potato
17 Dacon
18 bahia_beans
19 Danana
20 banana_other_kind
21 basella
22 basil
23 battered_beef
24 Dattered_chicken_breast
25 battered_chicken_drumstick

Imagem 4.2: Representação parcial dos atributos após a exclusão.

• Eliminação dos atributos que não possuam suporte superior ou igual a 10%;

Após as exclusões posteriormente citadas, reduzimos uma pequena parcela do dataset original, agora, visando uma eliminação maior das instancias, é feito, orientado ao suporte, no nosso caso, maior ou igual a 10%. Como nosso dataset possuía algo em torno de 580 instancias, quaisquer vendas com valor inferior à 58 seriam eliminados.

Já a metodologia para eliminação, foi feita manualmente, olhando cada item para decidir seu destino.

Após isso, saímos de 735 instancias para 97. Agora, já podemos prosseguir para as associações.

• Execução do Método à Priori;

A primeira das considerações do método à priori é definir valores igual a 0 como ausentes, este, que foi feito no campo "treatZeroAsMissing" setando seu valor como Verdadeiro para realização da tarefa.

A próxima consideração é o teste com valores de "loweBoundMinSupport" (Suporte mínimo) variando de 0.1 à 0.5 (10% a 50%), para análise da confiança foi necessário selecionar a opção "Confidence" no campo "metricType" que corresponde ao tipo de métrica a ser utilizada, dessa forma, o "minMetric" (Confiança mínima) seta os valores, no nosso caso, variando de 0.6 à 0.9 (60% a 90%).

A ultima das considerações é a geração e seleção de 20 regras, modificação essa também constada no campo "numRules" que define a quantidade de regras que exigimos, todas arquitetadas automaticamente pela aplicação.

• Ordenação por Lift

Já a ordenação por lift, é feito de maneira semelhante à confiança, alternando para opção "lift" dentro do "metricType" citado anteriormente.

Todos os campos modificados e alterados foram comtemplados na imagem abaixo.

Imagem 5: Campos utilizados para as operações de associação

3 Analise dos Resultados

• Apresentação das regras encontradas

Visando uma maior pureza e confiabilidade nos resultados, optamos por aqueles que resultaram em 20 regras e que obedeçam aos maiores valores citados anteriormente, dessa forma, com suporte mínimo de 0.5 e confiança de 0.6. Houveram outras formações de regras com valores de suporte ou confiança maiores, mas optamos por aqueles que resultaram o número de regras pedido. As regras geradas conferem na imagem abaixo.

```
Apriori
Minimum support: 0.5 (294 instances)
Minimum metric <confidence>: 0.6
Number of cycles performed: 1
Generated sets of large itemsets:
Size of set of large itemsets L(1): 9
Size of set of large itemsets L(2): 11
Best rules found:
1. granulated_sugar=1 349 ==> french_bread=1 309
                 <conf: (0.89) > lift: (1.04) lev: (0.02) [12] conv: (1.29)
12. garlic=1 401 ==> egg=1 300 <conf:(0.75)> lift:(1.02) lev:(0.01) [6] conv:(1.06)
17. egg=1 429 ==> vinegar=1 305 <conf:(0.71)> lift:(1.01) lev:(0) [2] conv:(1.01)
19. egg=1 429 ==> garlic=1 300 <conf:(0.7)> lift:(1.02) lev:(0.01) [61 conv:(1.05)
20. french bread=1 498 ==> garlic=1 348
              <conf:(0.7)> lift:(1.02) lev:(0.01) [7] conv:(1.05)
```

Imagem 6:Resultados do dataset com valores específicos.

• Analise dos resultados

Analisando as regras obtidas, percebe-se que o pão francês se mostra relacionado no tocante do: açúcar granulado, maionese, óleo de soja, vinagre e ovo; dessa forma, compreende-se que quando o cliente compra um dos itens anteriores citados, possui uma certa tendencia a realizar a compra do pão francês também.

Já o óleo de soja, aparece relacionado nas compras quando se fala de: alho, ovo ou pão francês, indicando que na compra dos produtos, uma possível fritura destes pode ser feita utilizando o óleo de soja.

O ovo aparece relacionado com: óleo de soja, alho, pão francês e vinagre, nos indicando que na compra destes itens a tendencia da compra do ovo também é feita, mas neste caso, em diferentes contextos de preparo do ovo.

O vinagre se mostra tendencia também na compra de: pão francês, ovo ou óleo de soja.

O último item analisado é o alho que se mostrou tendencia de compra em: óleo de soja, ovo ou pão francês.

Dessa forma, é possível compreender que alguns itens são praticamente unanimes na compra de um ou outro, como é o caso do ovo e o pão francês, e, que poderiam possivelmente entrar em de promoção juntos ou quaisquer outras medidas que a direção do mercado achar cabível para o desenvolvimento do seu negócio