

时序数据库: 从量化金融到万物互联

时序数据库的主要应用场景

量化金融

- 公募/私募基金:数据仓库,策略研发,因子计算
- 证券公司: 行情服务, 实时风控, 实时报表
- 银行/保险公司:数据分析、实时风控、实时报表

物联网

- 工业物联网设备监控:实时查询、历史统计
- 反向控制: 实时查询与计算

量化金融

• 金融数据示例:

stockID	BidPrice	AskPrice	Time
Apple	1.0	1.1	2022.02.23T10:52

• 实时查询:

```
select * from table where stockID = 'Apple' and Time >
2022.02.23T10:50 and Time < 2022.02.23T10:51</pre>
```

• 数据分析:

```
select mavg(bidPrice, 10s) from table where stockID =
'Apple' and date(Time) = 2022.02.23
```

量化金融

• 策略回测:将策略应用在历史数据上,能够获得多少利润?

• 实时计算: 根据市场上的信息, 决定是否进行交易

物联网

• 物联网数据示例:

deviceID	Temperature	Pressure	Time
123	37.0	100.0	2022.02.08T10:52

• 设备监控:

```
select * from table where deviceID = '123' and Time >
2022.02.23T10:50 and Time < 2022.02.23T10:51</pre>
```

• 历史统计:

```
select avg(Temperature), avg(Pressure) from table group by
deviceID and Time > 2021.02.23T00:00 and Time <
2022.02.23T00:00</pre>
```

物联网

- 反向控制:
 - 一简单的控制逻辑: 若某设备监控到的温度持续高于阈值,则自动采取对应的措施
 - 复杂的控制逻辑: 若根据某些复杂的算法(如机器学习)计算得出某片区域的现状不合常理,则自动采取对应的措施

那么,需要提供什么样的时序数据库呢

• 如果不支持事务,会怎么样?

• 例子: 股票交易

股票快照数据(3秒一批)

Network delayed / Queuing

Node1
insert
insert
AAPL

insert

DolphinDB支持事务

- 使用两阶段提交协议(2-phase-commit)
- MVCC 多版本并发控制保证读写不冲突

强大的分析能力

- 时序数据库, 存下数据之后, 最终的目的是挖掘出数据中的价值
- 这就需要数据库提供强大的分析能力
- DolphinDB提供了一门编程语言,可以方便的进行自定义计算

```
def func(price, volume) {
    return price * volume
}

results = select func(price, volume) from table where stockID = "apple"

for (res in results) {
    ...
}
```

DolphinDB还提供了1000多个内置的分析函数供使用

高效的存储引擎

- 基于LSMT,提供高效的点查询 能力
 - 千万级设备, 10ms以内
- 高效的历史数据分析能力
 - PB级数据, 秒级计算响应
- 自动去重

流数据处理架构

批流一体

ema(10 * sum_diff(ema(LastPrice, 20), ema(LastPrice, 40)),10) - ema(10 * sum_diff(ema(LastPrice, 20), ema(LastPrice, 40)), 20)

rank(Ts_ArgMax(SignedPower((returns<0?stddev(returns,20):close), 2), 5))-0.5

内置流计算引擎

DB-Engines Top10

□ in	☐ include secondary database models		39 systems in ranking, February 2022		
	Rank	(Score
Feb 2022	Jan 2022	Feb 2021	DBMS	Database Model	Feb Jan Feb 2022 2022 2021
1.	1.	1.	InfluxDB 🔠	Time Series, Multi-model 🚺	29.34 -0.74 +3.09
2.	2.	2.	Kdb+ ↔	Time Series, Multi-model 🔃	9.11 +0.34 +1.33
3.	3.	3.	Prometheus	Time Series	6.39 +0.12 +0.63
4.	4.	4.	Graphite	Time Series	5.58 +0.00 +0.96
5.	5.	1 6.	TimescaleDB 😷	Time Series, Multi-model 👔	4.37 +0.15 +1.51
6.	6.	↑ 7.	Apache Druid	Multi-model 🔃	3.40 -0.04 +0.74
7.	7.	4 5.	RRDtool	Time Series	2.40 +0.32 -0.60
8.	8.	8.	OpenTSDB	Time Series	1.83 -0.03 -0.20
9.	9.	1 0.	GridDB []	Time Series, Multi-model 👔	1.44 +0.07 +0.62
10.	1 11.	1 11.	DolphinDB	Time Series	1.32 +0.09 +0.51
11.	4 10.	4 9.	Fauna	Multi-model 👔	1.32 -0.04 -0.58
12.	12.	1 8.	QuestDB 🛅	Time Series, Multi-model 🚺	1.19 +0.05 +0.79
13.	13.	1 4.	Amazon Timestream	Time Series	1.10 -0.01 +0.50
14.	1 6.	4 13.	eXtremeDB 🚹	Multi-model 👔	0.71 +0.05 +0.03
15.	4 14.		TDengine 😷	Time Series, Multi-model 🔃	0.71 +0.01
16.	4 15.	4 12.	KairosDB	Time Series	0.68 0.00 -0.06
17.	1 8.	1 25.	VictoriaMetrics 😷	Time Series	0.66 +0.10 +0.52
18.	4 17.	4 15.	Raima Database Manager 😷	Multi-model 👔	0.61 -0.02 +0.10
19.	19.	4 17.	IBM Db2 Event Store	Multi-model 🛐	0.53 +0.02 +0.12
20.	20.	1 26.	Apache IoTDB	Time Series	0.42 +0.00 +0.28
21.	21.	4 16.	Alibaba Cloud TSDB	Time Series	0.30 -0.01 -0.17
22.	22.	4 21.	Axibase	Time Series	0.30 +0.01 -0.01

代表客户

