Course 11

Structure of compiler

Generate object code

= translate intermediary code statements into statements of object code (machine language)

- Depend on "machine": architecture and OS

2 aspects:

 Register allocation – way in which variable are stored and manipulated;

• Instruction selection – way and order in which the intermediary code statements are mapped to machine instructions

2 computational models

Computer with accumulator (stack machine)

Computer with registers

Computer with accumulator (stack machine)

- Accumulator to execute operation
- Stack to store subexpressions and results
- 2 types of statements:
 - move and copy values in and from head of stack to memory
 - Operations on stack head, functioning as follows: operands are popped from stack, execute operation in accumulator and then put the result in stack

Example: 4 * (5+1)

Code	acc	stack
acc ← 4	4	<>
push acc	4	<4>
acc ← 5	5	<4>
push acc	5	<5,4>
acc ← 1	1	<5,4>
acc ← acc + head	6	<5,4>
рор	6	<4>
acc ← acc * head	24	<4>
рор	24	<>

Computer with registers

- Registers
- Memory

• Instructions:

- LOAD v,R load value v in register R
- STORE R,v put value v from register R in memory
- Operations ex: ADD R1,R2 add to the value from register **R1**, value from register **R2** and store the result in **R1** (initial value is lost!)

Remarks:

A register can be available or occupied =>
 VAR(R) = set of variables whose values are stored in register R

2. For every variable, the place (register, stack or memory) in which the current value of the value exists=>

MEM(x)= set of locations in which the value of variable x exists (will be stored in Symbol Table)

Intermediary code	Object code	VAR	MEM
		VAR(R0) = {} VAR(R1) = {}	
(1) T1 = A * B			
(2) $T2 = C + B$			
(3) T3 = T2 * T1			
(4) F:= T1 – T3			

Intermediary code	Object code	VAR	MEM
		VAR(R0) = {} VAR(R1) = {}	
(1) T1 = A * B	LOAD A, RO MUL RO, B	$VAR(R0) = \{T1\}$	$MEM(T1) = \{R0\}$
(2) $T2 = C + B$			
(3) T3 = T2 * T1			
(4) F:= T1 – T3			

Intermediary code	Object code	VAR	MEM
		VAR(R0) = {} VAR(R1) = {}	
(1) T1 = A * B	LOAD A, RO MUL RO, B	$VAR(R0) = \{T1\}$	$MEM(T1) = \{R0\}$
(2) T2 = C + B	LOAD C, R1 ADD R1, B	VAR(R1) = {T2}	MEM(T2) = {R1}
(3) T3 = T2 * T1			
(4) F:= T1 – T3			

Intermediary code	Object code	VAR	MEM
		VAR(R0) = {} VAR(R1) = {}	
(1) T1 = A * B	LOAD A, RO MUL RO, B	$VAR(R0) = \{T1\}$	$MEM(T1) = \{R0\}$
(2) T2 = C + B	LOAD C, R1 ADD R1, B	$VAR(R1) = \{T2\}$	MEM(T2) = {R1}
(3) T3 = T2 * T1	MUL R1,R0	$VAR(R1) = \{T3\}$	MEM(T2) = {} MEM(T3) = {R1}
(4) F:= T1 – T3			

Intermediary code	Object code	VAR	MEM
		VAR(R0) = {} VAR(R1) = {}	
(1) T1 = A * B	LOAD A, RO MUL RO, B	$VAR(R0) = \{T1\}$	$MEM(T1) = \{R0\}$
(2) $T2 = C + B$	LOAD C, R1 ADD R1, B	VAR(R1) = {T2}	MEM(T2) = {R1}
(3) T3 = T2 * T1	MUL R1,R0	$VAR(R1) = \{T3\}$	MEM(T2) = {} MEM(T3) = {R1}
(4) F:= T1 – T3	SUB RO,R1 STORE RO, F	VAR(R0) = {F} VAR(R1) = {}	MEM(T1) = {} MEM(F) = {R0, F}

Push-Down Automata (PDA)

Intuitive Model

Definition

- A push-down automaton (PDA) is a 7-tuple M = $(Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ where:
 - Q − finite set of states ✓
 - Σ alphabet (finite set of input symbols) \checkmark
 - **Γ** − stack alphabet (finite set of stack symbols)
 - δ : Q x (Σ U { ε }) x $\Gamma \rightarrow \mathcal{P}(Qx \Gamma^*)$ –transition function
 - $q_0 \in Q$ initial state \checkmark
 - $Z_0 \in \Gamma$ initial stack symbol
 - F ⊆Q set of final states

Push-down automaton

Transition is determined by:

- Current state
- Current input symbol
- Head of stack

Reading head -> input band:

- Read symbol
- No action

Stack:

- Zero symbols => pop
- One symbol => push
- Several symbols => repeated push

Configurations and transition / moves

• Configuration:

$$(q, x, \alpha) \in Q \times \Sigma^* \times \Gamma^*$$

where:

- PDA is in state q
- Input band contains x
- Head of stack is α
- Initial configuration (q_0, w, Z_0)

Configurations and moves(cont.)

Moves between configurations:

```
p,q \in \mathbb{Q}, a \in \Sigma, Z \in \Gamma, w \in \Sigma^*,\alpha,\gamma \in \Gamma^*
```

```
(q,aw,Z\alpha) \vdash (p,w,\gamma Z\alpha) \text{ iff } \delta(q,a,Z) \ni (p,\gamma Z)
(q,aw,Z\alpha) \vdash (p,w,\alpha) \text{ iff } \delta(q,a,Z) \ni (p,\varepsilon)
(q,aw,Z\alpha) \vdash (p,aw,\gamma Z\alpha) \text{ iff } \delta(q,\varepsilon,Z) \ni (p,\gamma Z)
(\varepsilon\text{-move})
\bullet \not\models , \not\models , \not\models ,
```

Language accepted by PDA

Empty stack principle:

$$L_{\varepsilon}(M) = \{ w \mid w \in \Sigma^*, (q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon), q \in Q \}$$

Final state principle:

$$L_f(M) = \{w \mid w \in \Sigma^*, (q_0, w, Z_0) \vdash^* (q_f, \varepsilon_{\gamma}), q_f \in F\}$$

Representations

- Enumerate
- Table
- Graphic

Construct PDA

- L = $\{0^n1^n | n \ge 1\}$
- States, stack, moves?

1. States:

- Initial state:q₀ beginning and process symbols '0'
- When first symbol '1' is found move to new state => q_1
- Final: final state q₂

2. Stack:

- Z_0 initial symbol
- X to count symbols:
 - When reading a symbol '0' push X in stack
 - When reading a symbol '1' pop X from stack

Exemple 1 (enumerate)

$$M = (\{q_0, q_1, q_2\}, \{0, 1\}, \{Z_0, X\}, \delta, q_0, Z_0, \{q_2\})$$

$$\delta(q_0,0,Z_0) = (q_0,XZ_0)$$

$$\boldsymbol{\delta}(q_0,0,X) = (q_0,XX)$$

$$\delta(q_0,1,X) = (q_1,\varepsilon)$$

$$\delta(q_1,1,X) = (q_1,\varepsilon)$$

$$\delta(q_1,\varepsilon,Z_0) = (q_2,Z_0)$$

$$\delta(q_1, \varepsilon, Z_0) = (q_1, \varepsilon)$$

Empty stack

$$\vdash (q_1, \varepsilon, \varepsilon)$$

$$(q_0,0011,Z_0) \vdash (q_0,011,XZ_0) \vdash (q_0,11,XXZ_0) \vdash (q_1,1,XZ_0) \vdash (q_1, \varepsilon, Z_0) \vdash (q_2, \varepsilon, Z_0)$$

Final state

Exemple 1 (table)

		0	1	ε
	Z_0	q_0,XZ_0		
q_0	X	q_0,XZ_0 q_0,XX	$q_{1}, \boldsymbol{\varepsilon}$	
	Z_0			q_2,Z_0 (q_1, ε)
q_1	X		$q_{1},\boldsymbol{\varepsilon}$	
	Z_0			
q_2	X			

```
(q0,0011,Z0) \mid - (q0,011,XZ0) \mid - (q0,11,XXZ0) \mid - (q1,1,XZ0) \mid - (q1, \varepsilon,Z0) \mid - (q2, \varepsilon,Z0) \mid q2 \text{ final seq. is acc based on final state}
(q0,0011,Z0) \mid - (q0,011,XZ0) \mid - (q0,11,XXZ0) \mid - (q1,1,XZ0) \mid - (q1,\varepsilon,\varepsilon) \text{ seq is acc based on empty stack}
```

Exemple 1 (graphic)

Properties

Theorem 1: For any PDA M, there exists a PDA M' such that

$$L_{\varepsilon}(M) = L_{f}(M')$$

Theorem 2: For any PDA M, there exists a context free grammar such that

$$L_{\varepsilon}(M) = L(G)$$

Theorem 3: For any context free grammar there exists a PDA M such that

$$L(G) = L_{\varepsilon}(M)$$