Diagonalization review

Suppose A is nxn. When there is a basis for \mathbb{R}^n of eigenvectors of A, $\overline{U_i}$,..., $\overline{V_m}$ with corresponding eigenvalues $\lambda_1, \ldots, \lambda_n$, then A is similar to a diagonal matrix: $A = PDP^{-1}$, $P = [\overline{V_i} \cdots \overline{V_m}]$ and $D = (\Lambda^{-1}, \Lambda_n)$.

 $\lambda = 5,5,-3,-3$ (with multiplicities)

$$NU(A-5I_{4})=NU(0000)=NU(02-8-8)$$

$$=NU(0000)=NU(02-8-8)$$

$$=NU(0000)=Span{[-9]{4}}{[-9]{4}}$$

$$\lambda = 3$$
 eigenspace: $\begin{bmatrix} 9000 \\ 0 & 900 \\ -1 & -200 \end{bmatrix} = M \begin{bmatrix} 1000 \\ 0100 \\ 0000 \end{bmatrix}$

So
$$A = PDP^{-1}$$
 with $P = \begin{bmatrix} -8 & -16 & 0 & 0 \\ -4 & -9 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ $D = \begin{bmatrix} 5 & 5 & -3 & -3 \\ -3 & -3 & -3 \end{bmatrix}$

(Note: to check you can calculate AP and PD, avoiding an imerse)

Note also: diagonalization is not unique: the eigenvectors in P may come in any order!

Why diagonalize? An and $e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$, which are used for studying dynamical systems, discrete and continuous.

Matrix of a transformation

Let V and W be finite dimensional vector spaces, dim V=n, dim w=m, T:V-W a linear transformation, B a basis of V and E a basis of W.

Let us organize all of this!

Question: is there a transformation A from coordinates in \mathbb{R}^n to coordinates in \mathbb{R}^m so that T(Bz) = CAz? Yes: $A = C^{-1}TB$ is $\mathbb{R}^n \longrightarrow \mathbb{R}^m$. This also gives that $T = CAB^{-1}$.

To calculate A, we may go column-by-column:

A ei = c-1 TBei

$$\begin{array}{ccc}
\underline{ex} & T: \mathbb{P}^2 \longrightarrow \mathbb{P}^2 & p(x) \longmapsto p'(x) \\
\mathbb{B} = (1 \times x^2) & \text{all for sake} \\
\mathbb{C} = (1 - x + 1 + x \times x^2) & \text{of exercise.}
\end{array}$$

$$\begin{array}{ll}
\mathcal{C}^{-1}(\mathcal{B}\vec{e_{1}}) = \mathcal{C}^{-1}T(1) = \mathcal{C}^{-1}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \\
\mathcal{C}^{-1}T(\mathcal{B}\vec{e_{2}}) = \mathcal{C}^{-1}T(x) = \mathcal{C}^{-1}(1) = \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} \\
\mathcal{C}^{-1}T(\mathcal{B}\vec{e_{3}}) = \mathcal{C}^{-1}T(x^{2}) = \mathcal{C}^{-1}(2x) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\end{array}$$

$$S_{0} = \begin{bmatrix} 0 & 1/2 & -1 \\ 0 & 1/2 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

test: $T(1+x+x^2) = (AB^{-1}(1+x+x^2) = (A[1]=C[\frac{1}{2}]$ = $\frac{-1}{2}(1+x) + \frac{3}{2}(1+x) = 1 + 2x$. Full diagram: IRn A IRM

Coordinate spaces

B V T W vector spaces.

Or, notice T(c,ti+--+cntin)= c,T(ti)+--+cnT(tin) $= (T(\vec{b_1}) \cdots T(\vec{b_n})) \vec{c}$

Writing each T(ti) as Cai, = [(] ... an)] Since 2 = B-17, = CABTT.

For linear operators T:V > V, it tends to be useful to have the same basis on either end of T IRM A, IRM Since we might would to apply T (and thus A)

To repeatedly.

Here, T = BAB-1.

To compute T, find the coordinate vector relative to 73, mult. by A, then use the resulting coordinate to produce a lin. comb. of B to get a V vector."

We can diagonalize a linear operator by finding a bosis is with respect to which the operator's matrix is diagonal. ex an nxn matrix A is a linear operator x +> Ax, and A=PDP-1 means P is basis of IRM with respect to which A has diagonal matrix D.

(it is hard finding reasonable non-matrices: f.d.v.space = iso, to 12", after all.)

Complex numbers

Real numbers are somewhat anemic: not every polynomial has a root. This is an issue store then not every characteristic polynomial has a root. For instance, [1 o] has λ^2+1 .

What if we just introduce roots to $\lambda^2 + 1$? The quadratic formula suggests $\pm \sqrt{-1}$ one the two roots: $(\sqrt{-1})^2 + 1 = -1 + 1 = 0$. Let E=J-1 be the imaginary root Codespite the name, this number is quite real to modern mathematicions).

"Complex" as in tred together numbers (be the smallest number system which contains i. In fact, every number in C is of the form a + bi for a, belk due to the following rules: (i) (a+bi) (c+di) = ac + adi +bci +bdi2

 $= (\alpha (-bd) + (ad +bc) i$ $\frac{(ii)}{c-di} \cdot \frac{c+di}{c+di} = \frac{(ac-bd) + (ad +bc) i}{c^2 + d^2}$

The complex conjugate of a+bi is a+bi = a-bi. It replaces all instances of ¿ with -¿. Properties:

(i) (a+bi)(a-bi) = a2+b2

(2) $\overline{Z+W} = \overline{Z}+\overline{W}$ (easy to check) (3) $\overline{ZW} = \overline{Z}\overline{W}$ (easy to check, just takes time)

(4) $\overline{Z}^{-1} = \overline{Z^{-1}}$

Thm (Fundamental theorem of algebra) Every non-constant polymonial has at least one complex root.

Consequence: by long division by X-r Whenever r is a roof, every polynomial is a product of linear factors!

ex
$$x^3 - 2x^2 + 2x - 1$$
 has 1 as a roof (by hypection)

$$x^2 - x + 1$$

$$x - 1 x^3 - 2x^2 + 2x - 1$$

$$x^3 - x^2$$

$$-x^2 + 2x$$

$$-x^2 + x$$

$$= (x - 1) \left(x - \frac{1 + \sqrt{3}i}{2}\right) \left(x - \frac{1 - \sqrt{3}i}{2}\right)$$

$$= (x - 1) \left(x - \frac{1 + \sqrt{3}i}{2}\right) \left(x - \frac{1 - \sqrt{3}i}{2}\right)$$

Another consequence: adding i is enough! All polys have roots?

ex C is a real vector space. $C = \text{Span}\{1, i\}$. $\dim C = Z$ since $C = \text{Span}\{1, i\}$. $C = \text{Span}\{1, i\}$.

i: C→C defined by Z→iz is a linear transformation. $i(\alpha + bi) = -b + ai$, so in basis (1 i), matrix is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

In fact, C is the same as having a to be (a - b) det $(a - b) = a^2 + b^2$, which is zero only for the zero matrix.

Argand diagram:

Euler's formula eid = cos 0 + isin0 is convenient votation justified by Taylor series. On the Argand diagram,

Every complex number can be written as $re^{i\theta}$, for re^{iR} non-negative the distance to 0.

for z = a + bi = i a t u(b,a) or = |z| e i a v g(z) magnitule argument

atan(b, a) is like tan (b) but reaches every angle [0, 21)

 $(re^{i\theta})(se^{i\theta}) = (rs) e^{i(\theta+\theta)}$, so angles are added, magnitudes

multiplied.

In other words: multiplying C by reid scales the plane by r while notating by O CCW.

 $(re^{i\theta})^n = r^n i^0 = r^n (\cos(n\theta) + i \sin(n\theta))$ ex Solve $z^5 = 1$. For $z = re^{i\theta}$, $r^5 e^{5i\theta} = 1$, so r=1 and SO is a multiple of 2II. O=0, 2E, 2.E,

