

Attention Is All You Need 论文 导读 &

Transformer详解

Why Transformer?

Seq2Seq 任务示例——NMT (Neural Machine Translation)

Seq2Seq模型示例——RNN (Recurrent Neural Network)

Encoder-Decoder 框架(编码器+解码

Neural Machine Translation

étudiant

Why Transformer?

Seq2Seq model with Attention

SEQUENCE TO SEQUENCE MODEL WITH ATTENTION Encoding Stage Attention Decoding Stage

RNN及其变体模型无法并行计算,模型效率低下!

Attention Is All You Need

Ashish Vaswani*

Google Brain avaswani@google.com

Noam Shazeer*

Google Brain noam@google.com

Niki Parmar*

Google Research nikip@google.com

Jakob Uszkoreit*

Google Research usz@google.com

Llion Jones*

Google Research llion@google.com

Aidan N. Gomez* †

University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*

Google Brain

lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

Ashish Vaswani, Noam Shazeer, Niki Parmar, et al. 2017. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 6000-6010.4

Transformer 架构

Transformer 架构

编码器

- 由N个block堆叠而成;
- 每个block有两层:
 - Multi-Head Attention (Self-Attention)
 - + Add (Residual Connection)
 - + Norm (LayerNorm);
 - Feed Forward
 - + Add (Residual Connection)
 - + Norm (LayerNorm);
- Block₁~Block_{N-1}的输出:输入到下个 Block;
- Block_N的输出:输入到解码器的各层中。

解码器

- 由N个block堆叠而成;
- 每个block有三层:
 - Masked Multi-Head Attention (Self-Attention)
 - + Add (Residual Connection)
 - + Norm (LayerNorm);
 - Multi-Head Attention (Co-Attention)
 - + Add (Residual Connection)
 - + Norm (LayerNorm);
 - Feed Forward
 - + Add (Residual Connection)
 - + Norm (LayerNorm);
- Block₁∼Block_{N-1}的输出:输入到下个Block;
- Block、的输出:输入到后续的Linear层中。

Word

Embedding

位置编码(Positional Encoding)

位置编码(Positional Encoding)

$$egin{aligned} &\operatorname{PE}(\mathrm{pos}, 2\mathrm{i}) = \sin(\mathrm{pos}/10000^{2\mathrm{i}/\mathrm{d_{model}}}) \ &\operatorname{PE}(\mathrm{pos}, 2\mathrm{i} + 1) = \cos(\mathrm{pos}/10000^{2\mathrm{i}/\mathrm{d_{model}}}) \end{aligned}$$
 pos \in [0, max_sequence_length)

$$l \in [0, \frac{d_{model}}{2})$$

编码过程

编码过程 —— Self-Attention (宏

观)

The animal didn't cross the street because it was too tired.

12

编码过程 —— Self-Attention (微

观) 第一步:生成 Q、K、V,辅助计算注意力机制

 X_1 与WQ权重矩阵相乘得到 q_1 ,就是与这个单词相关的查询向量。通过这种方式,为输入序列的每个单词都创建一个查询向量Q、一个键向量K和一个值向量V

编码过程 —— Self-Attention (微

观)

核心公式: Attention(Q, K, V)

$$= softmax \left(\frac{QK^T}{\sqrt{d_k}} \right) V$$

第二步: 计算当前单词的Q与候选单词的K的点积:

第三步: 将上一步结果除以维度的平方根:

第四步:将上一步结果通过softmax函数转换:

第五步:将候选单词的每个值向量乘以softmax分数:

第六步:对加权后的值向量求和,

Input

Keys

Values

Score

Χ Value

Sum

即得到自注意力层在该位置的输出:

编码过程 —— Self-Attention (微

观)

编码过程 —— Self-Attention (微

观)通过矩阵运算实现自注意力机制

编码过程 —— Multi-Head

Attention

编码过程 —— Multi-Head

Attention

1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

X

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

编码过程 —— Multi-Head

Attention

1) This is our input sentence*

Thinking Machines

编码过程 —— Multi-Head

Attention

One-Head

Two-Heads

All-Heads

Padding 操作

X: Thinking Machines

X 的维度: [sequence_length, embedding_dimension]

X: Thinking Machines (seq_len: 2)

A Tale of Two Cities (seq_len: 5)

Science and Art (seq_len: 3)

the Art of Motorcycle Maintenance (seq_len: 5)

max sequence length

X 的维度: [batch size, max sequence length, embedding dimension]

Scaled dot-product attention

Softmax函数:
$$\sigma(z_i) = \frac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$
 $e^0 = 1$ $e^{-\infty} \to 0$

Padding

1		al				
J	0	O	1	1	1	0
	0	0	0	0	0	 0
	0	0	0	1	1	0
	0	0	0	0	0	0

0	0	-inf	-inf	-inf
0	0	0	0	0
0	0	0	-inf	-inf
0	0	0	0	0

X:

batch_size	

Add & Norm

编码过程

$$\begin{split} X_{hidden} &= X_{attention} + X_{hidden} \\ X_{hidden} &= LayerNorm(X_{hidden}) \end{split}$$

$$X_{hidden} = Linear(ReLU(Linear(X_{attention})))$$

$$egin{aligned} & X_{attention} = X + X_{attention} \ X_{attention} = LayerNorm(X_{attention}) \end{aligned}$$

$$\begin{split} \mathrm{Q} &= \mathrm{Linear}(\mathrm{X}) = \mathrm{X} \mathrm{W}_{\mathrm{Q}} \\ \mathrm{K} &= \mathrm{Linear}(\mathrm{X}) = \mathrm{X} \mathrm{W}_{\mathrm{K}} \\ \mathrm{V} &= \mathrm{Linear}(\mathrm{X}) = \mathrm{X} \mathrm{W}_{\mathrm{V}} \\ \mathrm{X}_{\mathrm{attention}} &= \mathrm{SelfAttention}(\mathrm{Q}, \ \mathrm{K}, \ \mathrm{V} \) \end{split}$$

X = Embedding Lookup(X) + Positional Encoding

编码过程&解码过程

解码过程 —— Masked Self-Attention

RNN模型:

解码过程 —— Masked Encoder-Decoder

Attention

Encoder Multi-Head Attention:

• Q, K, V all from Encoders

Decoder Masked Multi-Head Atte

• Q, K, V all from Decoders

Decoder Multi-Head Attention:

- Q from Decoders
- K, V from Encoders

解码过程 —— Linear & Softmax

Transformer 训练

Output Vocabulary

WORD	a	am	1	thanks	student	<eos></eos>	
WOND	ų ,	GIII	•	charits	Stadent	.003	
INDEV	0	1	2	3	4	E	
INDEX	V	1	2	3	4	3	

→ eos: end of sentence的缩写形式

输入: "je suis étudiant", 期望输出: "i am a student"

Target Model Outputs

Trained Model Outputs

Transformer 预测

解码/采样策略

Top-k (k=3): 0.8

Top-p (p=0.95) 0.1

Temperature-controlled Stochastic Sampling

Top-k Sampling

Top-p Sampling (Nucleus Sampling)

混合采样

$$P(x|x_{1:t-1}) = rac{exp(u_t/t)}{\sum_{t'} exp(u_{t'}/t)}$$
 ,其中 $t \in [0,1)$

CTRL:
$$p_i = \frac{\exp(x_i/(T\cdot I(i\in g)))}{\sum_j \exp(x_j/(T\cdot I(j\in g)))}$$
 $I(c) = \theta \text{ if } c \text{ is True else } 1$

作业

实现 Transformer 架构,通过单步调试理解数据流动过程及维度变化。

参考代码: https://github.com/wmathor/nlp-tutorial

5. Model based on Transformer

- 5-1. The Transformer Translate
 - Paper Attention Is All You Need(2017)
 - Colab Transformer_Torch.ipynb
 - bilibili https://www.bilibili.com/video/BV1mk4y1q7eK

Model	Example	
NNLM	Predict Next Word	
Word2Vec(Softmax)	Embedding Words and Show Graph	
TextCNN	Sentence Classification	
TextRNN	Predict Next Step	
TextLSTM	Autocomplete	
Bi-LSTM	Predict Next Word in Long Sentence	
Seq2Seq	Change Word	
Seq2Seq with Attention	Translate	
Bi-LSTM with Attention	Binary Sentiment Classification	
Transformer	Translate	
Greedy Decoder Transformer	Translate	
BERT	how to train	

参考资料

- Attention is All you Need (acm.org)
- <u>The Illustrated Transformer Jay Alammar Visualizing machine learning one concept at a time.</u>
 (jalammar.github.io)
- The Annotated Transformer (harvard.edu)
- wmathor.com
- Transformer详解 数学家是我理想的博客-CSDN博客
- <u>图解Transformer(完整版)_龙心尘的博客-CSDN博客</u>
- 如何优雅地编码文本中的位置信息? 三种positioanl encoding方法简述 (qq.com)
- NLP基础模型和注意力机制_开始King的博客-CSDN博客
- 文本生成自回归解码策略总结 自回归解码器 Meilinger 的博客-CSDN博客

Q&A