(12) МЕЖДУНАРОДНАЯ ЗАЯВКА, ОПУБЛИКОВАННАЯ В СООТВЕТСТВИИ С договором о патентной кооперации (РСТ)

(19) ВСЕМИРНАЯ ОРГАНИЗАЦИЯ интеллектуальной собственности Международное бюро

(43) Дата международной публикации: 15 июля 2004 (15.07.2004)

(10) Номер международной публикации: WO 2004/059372 A1

- (51) Международная патентная классификация 7: G02F 1/01, G02B 26/06, C08L 83/04
- (21) Номер международной заявки: PCT/RU2003/000535
- (22) Дата международной подачи: 3 декабря 2003 (03.12.2003)

(25) Язык подачи:

русский

(26) Язык публикации:

русский

- (30) Данные о приоритете: RU 27 декабря 2002 (27.12.2002) 2002135350
- (71) Заявитель и
- (72) Изобретатель: ГУЩО Юрий Петрович [RU/RU]; 117574 Москва, Новоясеневский пр., 14, к. 2, кв. 442 (RU) [GUSCHO, Yury Petrovich, Moscow (RU)].
- (74) Агент: СТОЯЧЕНКО Игорь Леонидович, 117342 Москва, ул. Миклухо-Маклая, д. 65, корп. 4, кв. 34 (RU) [STOYACHENKO, Igor Leonidovich, Moscow (RU)].
- (81) Указанные государства (национально): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH,

CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Указанные государства (регионально): ARIPO па-TEHT (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), евразийский патент (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), европейский патент (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), патент OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Декларация в соответствии с правилом 4.17: Об авторстве изобретения (правило 4.17 (iv)) только для US

Опубликована

С отчётом о международном поиске.

В отношении двухбуквенных кодов, кодов языков и других сокращений см. «Пояснения к кодам и сокращениям», публикуемые в начале каждого очередного выпуска Бюллетеня РСТ.

- (54) Title: ELECTRO-OPTICAL TRANSDUCER AND JELLY LAYER THEREFOR, METHOD FOR PRODUCING A JELLY LAYER AND A COMPOUND FOR CARRYING OUT SAID METHOD
- ЭЛЕКТРООПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ, ГЕЛЕОБРАЗНЫЙ СЛОЙ ДЛЯ ЭЛЕКТРООПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ, СПОСОБ ПРИГОТОВЛЕНИЯ ГЕЛЕОБРАЗНОГО СЛОЯ И КОМПОЗИЦИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА
- (57) Abstract: The inventive electro-optical transducer comprises at least one light, at least one transparent substrate in the form of at least one flat-parallel plate or a total internal reflection prism, at least one line modulator, a visualizer, a sensing unit and at least one control unit. Said line modulator comprises a transparent electro-conductive layer which is applied to the substrate and coated with a jelly layer, and a system of parallel strip electrodes for controlling and earthing which are spaced above the jelly layer and connected to the control unit. The repetition frequency of a light source is equal to an image horizontal repetition rate. The controlling and earthing electrodes are connected to a periodic structure of controlling and earthing teeth, respectively. Said teeth together with the electrodes are embodied in the form of two insulated conductive terminals whose fingers are arranged in a parallel direction with respect to the light source. The array period for the controlling and earthing teeth is selected according to the light source wavelength and the divergence thereof in a direction perpendicular to the teeth. A jelly layer, methods for the production thereof and a compound for producing said jelly layer are also disclosed.

(57) Реферат: Электрооптический преобразователь содержит хотя бы один осветитель, хотя бы одну прозрачную подложку в виде хотя бы одной плоскопараллельной пластины или призмы полного внутреннего отражения, хотя бы один строчный модулятор, визуализатор. устройство восприятия и хотя бы одно устройство управления. Строчный модулятор содержит нанесенный на подложку прозрачный электропроводящий слой, покрытый прозрачным гелеобразным слоем, и систему параллельных ленточных электролов управления и заземления, размещенных с зазором над гелеобразным слоем и соединенных с устройством управления. Частота повторения импульсов источника света равна частоте строк изображения. Электроды управления и заземления соединены с периодической структурой, соответственно, зубьев управления и заземления. Для каждого строчного пикселя зубья вместе с электродами имеют вид двух изолированных проводящих гребенок. Зубья гребенок расположены параллельно источнику света. Период расстановки пар зубьев управления и заземления выбирается в зависимости от длины волны источника света и его расходимости в направлении, перпендикулярном зубьям. Предложены так же гелеобразный слой, способы его приготовления и композиция для изготовления гелеобразного слоя.

ЭЛЕКТРООПТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ, ГЕЛЕОБРАЗНЫЙ СЛОЙ ДЛЯ ЭЛЕКТРООПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ, СПОСОБ ПРИГОТОВЛЕНИЯ ГЕЛЕОБРАЗНОГО СЛОЯ И КОМПОЗИЦИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА.

Область техники.

5

10

15

20

25

30

Изобретение относится к модуляции света методами управления интенсивностью и фазовыми характеристиками светового потока с созданием и использованием новых рельефографических деформируемых слоев и может найти применение в оптико-механической промышленности, телевидении, печати, средствах связи, световолоконных коммутирующих и фильтрующих устройствах, быстродействующих строчных и матричных принтерах и других областях техники.

Уровень техники.

Известен электрооптический преобразователь, содержащий промежуточный носитель рельефной записи строки, состоящий из прозрачной подложки в виде плоскопараллельной пластины или призмы полного внутреннего отражения последовательно нанесенными на нее прозрачным электропроводящим слоем или прозрачным гелеобразным слоем и системы параллельных ленточных электродов управления и заземления, нанесенных на вторую прозрачную подложку и размещенных с зазором над гелеобразным слоем, блок источников напряжений сигналов, соединенных с электродами управления, оптическую систему визуализации рельефной информации, работающую на просвет и состоящую из конденсора и цилиндрического объектива - анаморфота, визуализирующую диафрагму, средство сканирования строки по вертикали и экран (Авторское свидетельство СССР №678519 кл. G11B 7/00, 1979. Гущо Ю.П. Физика рельефографии. М.: Наука 1999, с.526). [1].

Недостатком известного устройства является необходимость использования оптики, работающей на просвет, имеющей очень низкую чувствительность рельефа к электрическим сигналам, низкий контраст, что не позволяет получить изображение достаточно высокого качества. В известном устройстве отсутствует также и синхронизация средства сканирования строки по вертикали с источниками напряжений сигналов, что приводит к нестабильности изображения на экране, то есть ухудшает его качество. Качество изображения

2

ухудшается также вследствие фазовых шумов от электродов, которые должны быть выполнены прозрачными.

Известен электрооптический преобразователь, содержащий промежуточный носитель рельефной строки, состоящий из прозрачной подложки в виде плоскопараллельной пластины или призмы полного внутреннего отражения с последовательно нанесенными на нее прозрачным электропроводящим слоем и прозрачным гелеобразным слоем и системы параллельных ленточных электродов управления и заземления, нанесенных на вторую подложку и размещенных с зазором над гелеобразным слоем, блок источников напряжений сигналов, соединенных с электродами управления, светофильтр, оптическую систему визуализации рельефной информации, визуализирующую диафрагму, средство сканирования строки по вертикали, синхронизированное с источниками напряжений сигналов, и экран (Патент RU(11)2031624 (13) C1) [2].

5

10

15

20

25

30

Недостатком известного устройства является необходимость использования ленточных электродов заземления и управления, что ограничивает разрешающую способность устройства и, как следствие, не позволяет получить изображение достаточно высокого качества и высокий контраст. Кроме того, недостатком является низкое качество отображения полутоновой информации вследствие трудностей преобразования распределения потенциала на ленточных электродах в распределение освещенности на экране.

Наиболее близким к настоящему изобретению является электрооптический преобразователь, содержащий три промежуточных носителя рельефной записи строки, каждый из которых состоит из прозрачной подложки в виде плоскопараллельной пластины или призмы полного внутреннего отражения с последовательно нанесенными на нее прозрачным электропроводящим слоем и прозрачным гелеобразным слоем и системы параплельных ленточных электродов управления и заземления, нанесенных на вторую подложку и размещенных с зазором над гелеобразным слоем, блок источников напряжений сигналов, соединенных с электродами управления всех трех промежуточных носителей рельефной записи строки, три оптических системы визуализации рельефной информации, каждая из которых состоит из источника света, осветительного составного объектива, состоящего из цилиндрического и сферического объективов, призмы полного внутреннего отражения и проекционного составного

15

20

25

30

3

объектива, состоящего из цилиндрического и сферического объективов, два дихроичных зеркала, визуализирующую диафрагму, средство сканирования строки по вертикали, состоящее из зеркального барабана, насаженного на осъ электродвигателя, экран, фотодатчик и устройство синхронизации, выход которого подключен к блоку источников напряжений сигналов, а вход - к фотодатчику (Патент RU(11)2080641 (13) C1 [3]; Заявка РСТ WO 01/48531 A3; 05.07.2001, inventor: Guscho Yury [4]).

Недостатком данного устройства является необходимость использования ленточных электродов заземления и управления, что ограничивает разрешающую способность устройства и, как следствие, не позволяет получить изображение достаточно высокого качества. Кроме того, недостатком является низкое качество отображения информации из-за отсутствия ориентации электродов заземления и управления по отношению к источнику света. Кроме того, отсутствие объектива после стоп диафрагмы снижает эксплуатационные возможности и качество изображения электрооптического преобразователя.

Кроме того, существующие гелеобразные слои, способы их получения, а также способы изготовления и конструкции строчных модуляторов не удовлетворяют современным требованиям.

Известна гелеобразующая композиция, близкая по составу к заявляемой, включающая основу-полимер органовинилполисилоксан — 100 массовых частей, в качестве сшивающего агента-метилгидридполисилоксан-0,5 массовых частей, в качестве компонента, увеличивающего адгезию- силановый компаунд — 0,5 массовых частей, а также платиновый катализатор- 0,03 массовых частей (Патент США №5,432,280; 11.07.1995; Hurogasu Harc, Masayuki Sheno) [5].

Известная гелеобразующая композиция изготавливается смешением компонентов в температурном диапазоне от комнатной до 60°С. Однако эта композиция характеризуется низким пределом структурной прочности, вследствие чего она не может быть применена для получения высококачественной и долговечной гелеобразной светомодулирующей среды.

Наиболее близким аналогом композиции по настоящему изобретению является композиция для получения светомодулирующей среды, включающая основу-полимер а, а- дигидроксиполидиметилсилоксан- 100 массовых частей, сшивающий агент тетраэтоксисилан- 7 массовых частей, пластификатор-

полидиметилсилоксановую жидкость — 600 массовых частей и катализатордиэтилдикаприлат олова — 4 массовых части. [5]

Однако известная композиция не позволяет получать гелеобразную светомодулирующую среду, обладающую достаточной долговечностью без гермегизации объема, в котором она находится.

5

10

15

20

25

30

Для получения гелеобразной светомодулирующей среды из композициипрототипа применяется способ получения гелеобразных слоев, в котором вначале приготавливают 10-30% раствор а, о- дигидроксиполидиметилсилоксана с молекулярной массой (1-2)104 г/моль в полидиметилсилоксановой жидкости с молекулярной массой (0,6-1)10³ г/моль. Затем добавляют в этот раствор теграэтоксисилан в качестве сшивающего агента в соотношении с о одигидроксиполидиметилсилоксан от 0,8:1 до 1,5:1. Затем эту смесь механически перемешивают в течение 20-40 мин. Сразу после добавления катализатора и сшивающего агента в смеси начинается процесс гелеобразования, который согласно известному изобретению протекает 1-3 суток. Полив гелеобразной среды на подложку осуществляют следующим способом: на прозрачную подложку, покрытую прозрачным электропроводящим слоем, поливают раствор вещества, увеличивающего адгезию гелеобразного слоя к подложке. Затем на эту прозрачную подложку поливают гелеобразную композицию и покрывают ее стеклянной пластиной. В известном способе дополнительной дополнительную стеклянную пластину предварительно покрывают слоем вещества, уменьшающего адгезию гелеобразного слоя. В качестве такого покрытия предлагается использовать металл, например, хром, алюминий или никель. Присутствие слоя, уменьшающего адгезию гелеобразного слоя к дополнительной стеклянной пластине, позволяет увеличить число слоев, отделившихся от дополнительной стеклянной пластины при отрыве ее от слоя [4].

В известном способе предлагается для осуществления постоянной скорости сшивания полимера проводить химическую реакцию структурирования и выдержку слоя после отделения дополнительной стеклянной пластины в помещении с постоянной температурой с точностью около ± 1,5°C в диапазоне от 10°C до 70°C. И, наконец, для окончательного образования сетки из молекул полимера необходим доступ влаги к поверхности гелеобразного слоя, для чего

необходимо выдержать гель в течение 3- 5 сугок в воздушной среде с влажностью не менее 20%.

Недостатком известного способа является использование в качестве антиадгезионного покрытия металла, который после двух или трехразового использования, ввиду своей мягкости, царапается и не позволяет в дальнейшем получать качественный слой. Постоянное его обновление является технологически трудоемким и дорогим процессом.

Кроме того, необходимость строгого соблюдения температурного режима реакции сшивания и наличия определенной влажности в помещении усложняет процесс приготовления гелеобразной среды и соответственно получения воспроизводимых по своим характеристикам гелеобразных слоев.

Задачей настоящего изобретения является расширение сферы применения и повышение качества изображения на устройстве восприятия оптического сигнала, а также создание стабильной при длительной эксплуатации гелеобразной деформируемой среды, модифицированных способов ее получения и формирования оптического гелеобразного слоя в строчном модуляторе.

Сущность изобретения.

10

15

20

25

30

Эти задачи решаются созданием настоящего изобретения.

Электрооптический преобразователь, согласно изобретению, содержит последовательно расположенные на оптической оси: хотя бы один осветитель, одну прозрачную подложку или М прозрачных подложек, каждая из которых выполнена в виде хотя бы одной плоскопараллельной пластины или хотя бы одной призмы полного внутреннего отражения, хотя бы один строчный модулятор, хотя бы один визуализатор, устройство восприятия, а также хотя бы одно устройство управления, причем каждый строчный модулятор содержит нанесенный на прозрачную подложку прозрачный электропроводящий слой, покрытый прозрачным гелеобразным слоем и систему из і штук параллельных ленточных электродов управления и заземления, расположенных на соответствующей каждому строчному модулятору второй подложке в одной плоскости размещенных с зазором над прозрачным гелеобразным слоем и соединенных электрически с соответствующим устройством управления, при этом каждая прозрачная подложка с соответствующим хотя бы одним модулятором составляет строчный элемент, причем осветитель состоит из последовательно

15

20

25

30

расположенных на оптической оси протяженного источника света И осветительного объектива, визуализатор включает в себя последовательно расположенные на оптической оси фурье-объектив и визуализирующую диафрагму, причем источник света является импульсным или непрерывным, а частота повторения импульсов света равна частоте строк изображения, при этом ленточные электроды управления электрически соединены с периодической структурой зубьев управления, а электроды заземления электрически соединены с периодической структурой зубьев заземления, причем для каждого строчного пикселя зубья вместе с соответствующими электродами имеют вид двух изолированных друг от друга проводящих гребенок, при этом зубья гребенок расположены параллельно протяженному источнику света, а период расстановки пар зубьев управления и заземления $\lambda_{\text{зуб}}$, выбирается из условия: $\lambda_{\text{зуб}} \leq \sqrt{2} \; \lambda_{\text{света}}$ / $\alpha_{\text{ расх,}}$ где $\lambda_{\text{ света}}$ -длина волны протяженного источника света и $\alpha_{\text{ расх}}$ (в радианах) расходимость излучения источника света в направлении, перпендикулярном зубьям гребенок, а гелеобразный слой выполнен на основе поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ с молекулярной массой 10000-16000 вязкостью 800-1000 CcT. олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст.

При этом в осветительный объектив может быть введен по крайней мере один цилиндрический объектив, образующая которого параллельна зубьям гребенок.

Визуализатор может содержать по крайней мере один цилиндрический объектив, образующая которого параллельна зубьям гребенок.

Устройство восприятия может содержать проекционный объектив, систему зеркал, средство сканирования строки по вертикали, экран, фотодатчик сканера, причем в проекционный объектив введен тороидально-пилиндрический объектив.

Устройство управления может состоять из устройства синхронизации, выход которого подключен к блоку источников напряжений сигналов, а его вход - к фотодатчику сканера, источника опорных напряжений, включенного между прозрачным электропроводящим слоем и электродами заземления, блока источников напряжений сигналов, соединенных с і входами электродов управления строчного модулятора, источника напряжения смещения,

подключенного одним выводом через электрический коррекций источник временного фронта образования рельефа к одноименным выводам блока источников напряжений сигналов, а другим выводом - к электродам заземления, при этом устройство синхронизации имеет два дополнительных выхода, один из которых подключен к источнику света, а другой - к средству сканирования строки, а также имеет дополнительный вход от блока источников напряжений сигналов, при этом последовательно с источником напряжения смещения введен электрический источник коррекций временного фронта образования рельефа, соединенный с устройством синхронизации, который в момент включения импульса сигнала подает дополнительное импульсное напряжение коррекции заданной во времени формы, а к блоку источников напряжений сигналов подключен коммутатор, переключающий полярность сигнала на электродах управления и заземления по заданному пространственно-временному закону и соединенный с устройством синхронизации.

10

15

20

25

30

Система параллельных ленточных электродов управления и заземления может быть нанесена на вторую подложку и покрыта равномерным по толщине тонким слоем диэлектрика, на который нанесены перпендикулярно ленточным электродам управления и заземления зубья управления и заземления гребенок, параллельные протяженному источнику света, причем зубья управления электрически соединены с помощью контактов с соответствующими ленточными электродами управления, а зубья заземления электрически соединены с помощью контактов с соответствующими ленточными электродами заземления, при этом торцы зубьев одного пикселя расположены с зазором напротив торцов зубьев другого пикселя, причем зубья покрыты тонким защитным диэлектрическим слоем с регулируемыми электрическими свойствами.

Система из параллельных ленточных электродов управления и заземления может быть также нанесена на вторую подложку и покрыта равномерным по толщине тонким слоем диэлектрика, на котором расположены зубья заземления гребенок, соединенные электрически с помощью контактов с соответствующими ленточными электродами заземления и покрытые вторым равномерным по толщине тонким слоем диэлектрика, на который нанесены зубья управления гребенок, соединенные электрически с помощью контактов с соответствующими

15

20

25

30

ленточными электродами управления, при этом в каждом пикселе торцы зубьев расположены напротив промежутков между торцами зубьев соседнего пикселя.

Устройство восприятия может содержать проекционный объектив, систему зеркал, средство сканирования строки по вертикали, устройство содержит красный, зеленый и синий осветители, а также три устройства управления, соответстующие красному, зеленому и синему осветителям и, соединенные выходами с введенным цветовым коммутатором, подключенным одним своим выходом к каждому строчному модулятору, тремя выходами – к трем включаемым им последовательно осветителям, а пятым выходом - к средству сканирования, прозрачная подложка выполнена в виде хотя бы одной треугольной призмы полного внутреннего отражения, каждый строчный элемент содержит три включаемых одновременно строчных модулятора, при этом каждый из модуляторов имеет период расстановки пар зубьев управления и заземления $\lambda_{3\sqrt{6}}$, соответствующий одному из трех цветов, три осветителя расположены параллельно друг другу, а световое излучение соответствующего цвета падает перпендикулярно на соответствующий строчный модулятор, при этом световое излучение с большей длиной волны направляется на строчный модулятор, отстоящий на большем расстоянии от фурье-объектива, при этом непрозрачная визуализирующая диафрагма перекрывает или пропускает излучение нулевого порядка всех трех цветов.

Заявленное устройство может содержать красный, зеленый и синий осветители, а также три устройства управления соответствующие красному, зеленому и синему осветителям и, электрически соединенные выходами с введенным цветовым коммутатором, подключенным одним своим выходом к каждому из строчных модуляторов, тремя выходами - к трем включаемым им последовательно осветителям, а пятым выходом - к средству сканирования, причем каждый строчный элемент содержит три строчных модулятора с тремя различными пространственными периодами расстановки пар зубьев управления и заземления λ_R , λ_G , λ_B , соответствующими длинам волн красного, зеленого и синего осветителей, причем три строчных модулятора, включаемые последовательно во времени, расположены на оптической оси так, что строчный модулятор, соответствующий большей длине волны, расположен дальше по ходу луча света от фурье-объектива.

10

15

20

25

30

В заявленном устройстве каждая прозрачная подложка может быть выполнена в виде N треугольных призм с основанием в виде прямоугольного треугольника последовательно сопряженных оптически равными катетными боковыми гранями, причем на все или некоторые гипотенузные боковые грани нанесены строчные модуляторы, при этом одна катетная боковая грань первой призмы имеет свободную поверхность, обращенную к хотя бы одному осветителю, и одна категная боковая грань последней призмы имеет свободную поверхность, обращенную к хотя бы одному визуализатору, причем эти грани расположены перцендикулярно оптической оси, при этом свет от осветителя падает на все гипотенузные грани под углом большим, чем угол полного внутреннего отражения, а строчные модуляторы имеют равные или разные пространственные частоты зубьев гребенок.

При этом устройство может также содержать М строчных элементов, которые размещены в виде линейной матрипы и прозрачная подложка каждого из которых содержит четное количество призм, причем размещенные в параллельных плоскостях или в одной плоскости первые и последние свободные катетные боковые грани строчных элементов обращены соответственно к матрице из М одноцветных, трехцветных или многоцветных осветителей и к матрице М одноцветных, трехцветных или многоцветных визуализаторов соответственно.

При этом устройство восприятия может быть выполнено в виде прозрачного или матового, или светочувствительного, или теплочувствительного материала, и помещено после матрицы визуализаторов на оптической оси.

Протяженный источник света может быть выполнен в виде световолокна или их матрицы, с одной стороны подключенной к монохромному или полихромному лазерному световому источнику информации, а с другой стороны оптически сопряженной с первой по ходу светового луча призмой, при этом каждое световолокно оптически сопряжено с одним или несколькими пикселями каждого строчного модулятора, а последняя по ходу светового луча призма сопряжена с одним или матрицей визуализаторов, причем непрозрачная визуализирующая диафрагма содержит одно или матрицу отверстий с размером, пропускающим нулевой порядок дифракции света, при этом на оптической оси на расстоянии меньше фокусного после этого отверстия или матрицы отверстий

10

5

10

15

20

25

30

расположен объектив, фокусирующий свет на выходное световолокно. подсоединенное с другой стороны к устройству восприятия световой информации, причем на все строчные модуляторы подается сигнальное напряжение синхронно или в трехфазном, или многофазном временном режиме, достаточное для создания оптимальной глубины фазовой модуляции, равной 4,82 радиан, при этом устройство восприятия электрически сопряжено с осветителем.

Протяженный источник света может быть также выполнен в виде световолокна или их матрицы, с одной стороны подключенной к монохромному или полихромному лазерному световому источнику информации, а с другой стороны оптически сопряженной с первой по ходу светового луча призмой, при этом каждое световолокно оптически контактирует с одним или несколькими пикселями каждого строчного модулятора, а последняя по ходу светового луча призма сопряжена с одним или матрицей визуализаторов, причем непрозрачная визуализирующая диафрагма содержит одно или матрицу отверстий с размером, пропускающим излучение первого или иного высшего порядка дифракции света, управляемого электродами пикселей, при этом визуализатор для каждого строчного модулятора выполнен так, что против отверстия или матрицы отверстий расположен объектив, фокусирующий свет на выходное световолокно, подсоединенное с другой стороны к устройству восприятия информации, причем на все строчные модуляторы подается сигнальное напряжение синхронно или в трехфазном, или многофазном временном режиме, достаточное для создания оптимальной глубины фазовой модуляции, равной 4,82 радиан, при этом устройство восприятия электрически сопряжено с осветителем.

Осветитель может быть расположен под углом меньшим 90 градусов, а устройство восприятия расположено под углом 90 градусов к цервой по ходу светового луча боковой грани призмы строчного элемента, а часть визуализирующей диафрагмы, перекрывающая свет нулевого порядка дифракции, покрыта зеркалом и расположена параллельно последней по ходу светового луча боковой грани призмы строчного элемента, при этом со стороны визуализирующей диафрагмы, не покрытой зеркалом, расположено второе устройство восприятия или светопоглощающее устройство.

В одном или нескольких строчных модуляторах в строчном элементе зубья гребенок могут быть закрыты сплошным тонким диэлектрическим зеркалом,

10

15

20

25

30

отражающим свет соответствующей длины волны, а одна или все свободные от строчных модуляторов гипотенузные грани призм покрыты зеркалом.

При этом последняя свободная категная грань призмы строчного модулятора может бытыпокрыта зеркалом.

В другом варианте выполнения электрооптический преобразователь содержит красный, зеленый и синий осветители, прозрачную подложку в виле хотя бы одной плоскопараллельной пластины или хотя бы одной призмы полного внутреннего отражения, один строчный модулятор, хотя бы один визуализатор, устройство восприятия, а также три устройства управления, соответствующих красному, зеленому и синему осветителям, электрически соединенные выходами с введенным цветовым коммутатором, подключенным одним своим выходом к строчному модулятору, тремя выходами - K трем включаемым последовательно осветителям, а пятым выходом - к средству сканирования, причем строчный модулятор содержит нанесенный на прозрачную подложку прозрачный электропроводящий слой, покрытый прозрачным гелеобразным слоем и систему из і штук параллельных ленточных электродов управления и заземления, расположенных на второй подложке в одной плоскости размещенных с зазором над прозрачным гелеобразным слоем, при этом строчный модулятор вместе с прозрачной подложкой составляет строчный элемент, а каждый осветитель состоит из последовательно расположенных на оптической оси протяженного источника света и осветительного объектива, при этом источник света является импульсным или непрерывным, а частота повторения импульсов света равна частоте строк изображения, визуализатор включает в себя расположенные на оптической оси последовательно фурье-объектив визуализирующую диафрагму, при этом коллинеарный поток излучения всех трех цветов падает перпендикулярно и последовательно во времени на строчный элемент, ленточные электроды управления электрически соединены с структурой зубьев управления, периодической a электроды заземления электрически соединены с периодической структурой зубьев заземления, причем для каждого строчного пикселя зубья вместе с электродами имеют вид двух изолированных друг от друга проводящих гребенок, при этом зубья гребенок расположены параллельно протяженным источникам света, а период расстановки пар зубьев управления и заземления λ_{3y6} , определяется по формуле $\lambda_{3y6} \le \sqrt{2} \lambda_{\text{света}}$

5

10

15

20

25

30

12

 $_{\min}$ / α $_{pacx\ max}$, где α $_{pacx\ max}$ — наибольшая расходимость излучения среди излучений красного, зеленого и синего цветов, $\lambda_{\text{света min}}$ - наименьшая длины волны света, при этом размер непрозрачной визуализирующей диафрагмы определяется из условия перекрытия нулевых порядков всех трех цветов, а напряжение на электродах управления строчного модулятора формирует необходимую глубину рельефа для каждого цвета, и гелеобразный слой выполнен на основе поливинилсилоксана формулы (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ с молекулярной массой 10000-16000 и **ВЯЗКОСТЬЮ** 800-1000 Cct. олигогидридсилоксана формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст.

В следующем варианте выполнения электрооптический преобразователь котя бы один осветитель, одну прозрачную подложку или М содержит прозрачных подложек, каждая из которых выполнена в виде хотя бы одной плоскопараллельной пластины, хотя бы один строчный модулятор, хотя бы один визуализатор, устройство восприятия, а также хотя бы одно устройство управления, причем каждый строчный модулятор содержит нанесенный на соответствующую прозрачную подложку прозрачный электропроводящий слой, покрытый прозрачным гелеобразным слоем и систему из і штук параллельных ленточных электродов управления и заземления, расположенных на соответствующей каждому строчному модулятору второй подложке в одной плоскости, размещенных с зазором над прозрачным гелеобразным слоем соединенных электрически с устройством управления, при этом каждая прозрачная подложка с соответствующим хотя бы одним модулятором составляет строчный элемент, причем осветитель состоит из последовательно расположенных на оптической оси протяженного источника света и осветительного объектива, визуализатор включает в себя последовательно расположенные на оптической оси фурье-объектив и визуализирующую диафрагму, причем источник света является импульсным или непрерывным, а частота повторения импульсов света равна частоте строк изображения, осветитель расположен так, что излучение от него направлено под углом меньшим 90 градусов к плоскопараллельной пластине, прозрачному электропроводящему слою, прозрачному гелеобразному слою, воздушному зазору, , причем ленточные

10

15

20

25

30

электроды управления электрически соединены с периодической структурой зубьев управления, а электроды заземления электрически соединены с периодической структурой зубьев заземления, причем для каждого строчного пикселя зубья вместе с электродами имеют вид двух изолированных друг от друга проводящих гребенок, при этом зубья гребенок расположены параллельно протяженному источнику света и закрыты сплошным тонким диэлектрическим зеркалом, отражающим свет соответствующей длины волны, при этом период расстановки пар зубьев управления и заземления λ_{3y6} выбирается из условия λ_{3y6} $\leq 2 \, \lambda_{\, {\rm cseta}} / \, \alpha_{\, {\rm pacx}}$, где $\lambda_{\, {\rm cseta}}$ - длина волны протяженного источника света; $\alpha_{\, {\rm pacx}}$ (в радианах) - расходимость излучения источника света в направлении, перпендикулярном зубьям гребенок, и гелеобразный слой выполнен на основе поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной 10000-16000 массой вязкостью 800-1000 CCT. олигогидридсилоксана формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ C содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст.

Поставленная задача может быть также решена гелеобразным слоем для электрооптического преобразователя

Гелеобразный слой для электрооптического преобразователя, согласно изобретению, представляет собой продукт взаимодействия компонентов гелеобразной композиции. включающей поливинилсилоксан формулы (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ с молекулярной массой 10000-16000 и вязкостью . 800-1000 Cct. олигогидридсилоксан формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ как сшивающий агент, с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст, полиметилсилоксановую жидкость формулы (CH₃)₃SiO[(CH₃)₂SiO]Si(CH₃)₃ как пластификатор с вязкостью 5-20 Сст, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом как катализатор отверждения, при следующем соотношении компонентов (мас. ч): поливинилсилоксан - 100, олигогидридсилоксан – 15-25, полиметилсилоксановая жидкость - 150-300, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом -0.3-2.

Поставленная задача может быть также решена способом приготовления гелеобразного слоя для электрооптического преобразователя

10

15

20

25

30

Способ приготовления гелеобразного слоя для электрооптического преобразователя, согласно изобретению, включает смешение 100 мас. ч поливинилсилоксана формулы (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ с молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0,3-2мас. 0,1% раствора платинохпорсероводородной кислоты в органическом растворителе или ее комплекса тетравинилсиланом, при этом полученную перемешивают и наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания.

При этом композицию предпочтительно наносят на электропроводящий прозрачный слой через 1-20 мин. после окончания перемешивания.

Полученную композицию можно наносить наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, сшивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля после сшивания и охлаждения каждого предыдущего слоя.

В другом варианте выполнения способ приготовления гелеобразного слоя для электрооптического преобразователя включает смещение 100 мас. поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0,3-2mac. 0,1% раствора платинохлорсероводородной кислоты в органическом растворителе или ее комплекса тетравинилсиланом, при ЭТОМ полученную композицию перемешивают и наносят равномерным по толщине слоем на электропроводящий

· 5

10

15

20

25

30

прозрачный слой после окончания перемешивания, затем покрывают дополнительной пластиной с оптически плоской поверхностью, а толщину гелеобразного слоя выравнивают с помощью главных спейсеров, помещенных между прозрачным электропроводящим слоем и дополнительной пластиной, затем полученную конструкцию помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 2-4 часов, затем отделяют дополнительную пластину, а гелеобразный слой покрывают второй подложкой с нанесенными на нее электродами управления и заземления и закрытых тонким защитным диэлектрическим слоем, причем зазор выставляют дополнительными спейсерами, большими, чем главные спейсеры.

При этом полученную композицию можно наносить равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, спивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля, после сшивания и охлаждения каждого предыдущего слоя.

При этом дополнительную пластину можно покрывать антиадгезионным слоем, в качестве антиадгезионного слоя использовать поверхностно активное вещество, например, сульфанол- π .

Дополнительную пластину предпочтительно обрабатывают плазменным или иным очищающим облучением.

В следующем варианте выполнения способ приготовления гелеобразного слоя для электрооптического преобразователя включает смешение 100 мас. ч поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы (CH) $_3$ SiO[(CH $_3$) $_2$ SiO]CH $_3$ SiO(H)]Si(CH $_3$) $_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после перементивания 0,3-2 мас. 0,1% раствора платинохлорсероводородной кислоты в органическом растворителе или ее комплекса тетравинилсиланом, при этом полученную композицию перемешивают и наносят равномерным по толщине слоем на прозрачный

15

20

25

30

электропроводящий слой после окончания перемешивания, затем покрывают дополнительной пластиной с оптически плоской поверхностью, а толщину гелеобразного слоя выравнивают с помощью главных помещенных между прозрачным электропроводящим слоем и дополнительной пластиной, затем полученную конструкцию помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 1-2 часов, затем охлаждают до комнатной температуры, после чего отделяют дополнительную пластину, затем гелеобразный слой, расположенный на прозрачном электропроводящем слое, снова помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия до полного сшивания геля в течение приблизительно 1-3 часов.

Полученную композицию можно наносить равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, сшивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля, после сшивания и охлаждения каждого предыдущего слоя.

Дополнительную пластину можно покрывать антиадгезионным слоем.

В качестве антиадгезионного слоя можно использовать поверхностно активное вещество, например, сульфанол- π .

Дополнительную пластину можно обрабатывать плазменным или иным очищающим облучением.

В следующем варианте выполнения способ приготовления гелеобразного слоя для электрооптического преобразователя включает смешение 100 мас. ч поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0.3 - 2мас 0,1% раствора платинохлорсероводородной кислоты в органическом растворителе или ее тетравинилсиланом, при этом полученную перемешивают и наносят равномерным по толщине слоем на электропроводящий

17

прозрачный слой после окончания перемешивания, затем покрывают дополнительной пластиной с оптически плоской поверхностью, а толщину гелеобразного слоя выравнивают с помощью главных спейсеров, помещенных между прозрачным электропроводящим слоем и дополнительной пластиной, затем полученную конструкцию помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 2-4 часов, затем отделяют дополнительную пластину, а гелеобразный слой покрывают второй подложкой с нанесенными на нее электродами управления и заземления и закрытых тонким защитным диэлектрическим слоем, причем зазор выставляют главными спейсерами после полного спивания, усадки и охлаждения геля до комнатной температуры.

10

15

20

25

30

В этом варианте выполнения полученную композицию можно наносить равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, сшивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля, после сшивания и охлаждения каждого предыдущего слоя.

При этом дополнительную пластину можно покрывать антиадгезионным слоем, в качестве антиадгезионного слоя использовать поверхностно активное вещество, например, сульфанол- π .

Дополнительную пластину можно обрабатывать плазменным или иным очищающим облучением.

В следующем варианте выполнения способ приготовления гелеобразного слоя для электрооптического преобразователя включает смешение 100 мас. ч поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после 0,3-2 повторного перемешивания 0,1% мас. раствора платинохлорсероводородной кислоты в органическом растворителе или ее тетравинилсиланом, комплекса С при этом полученную композицию

10

15

20

25

30

перемешивают и наносят равномерным по толщине слоем на прозрачный электропроводящий слой после окончания перемешивания, затем покрывают дополнительной пластиной с оптически плоской поверхностью, а толщину гелеобразного слоя выравнивают с помощью главных спейсеров, помещенных между прозрачным электропроводящим слоем и дополнительной пластиной, затем полученную конструкцию помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 1-2 часов, затем охлаждают до комнатной температуры, после чего отделяют дополнительную шластину, затем гелеобразный слой, расположенный на прозрачном электропроводящем слое, снова помещают в термопкаф и выдерживают при температуре 70-90 градусов Цельсия до полного стивания геля в течение приблизительно 1-3 часов, а зазор выставляют главными спейсерами после полного сшивания, усадки и охлаждения геля до комнатной температуры.

При этом полученную композицию можно наносить равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, сщивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля после сшивания и охлаждения каждого предыдущего слоя.

При этом дополнительную пластину можно покрывать антиадгезионным слоем. В качестве антиадгезионного слоя можно использовать поверхностно активное вещество, например, сульфанол- π .

Дополнительную пластину можно обрабатывать плазменным или иным очищающим облучением.

Поставленная задача решается также композицией для осуществления способа изготовления гелеобразного слоя

Композиция для осуществления способа изготовления гелеобразного слоя для электрооптических преобразователей, согласно изобретению, включает поливинилсилоксан формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной массой 10000-16000 и вязкостью 800-1000 CcT, олигогидридсилоксан формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ как сшивающий агент, с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст, полиметилсилоксановую жидкость формулы (CH₃)₃SiO[(CH₃)₂SiO]Si(CH₃)₃

как пластификатор с вязкостью 5-20 Сст, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом как катализатор отверждения, при следующем соотношении компонентов (мас. ч): поливинилсилоксан — 100, олигогидридсилоксан — 15-25, полиметилсилоксановая жидкость - 150-300, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом — 0,3-2.

Перечень фигур чертежей.

15

20

25

30

На Фиг.1. показана детальная схема одного канала электрооптическогопреобразователя.

На Фиг.2. показана двухслойная конструкция зубьев и электродов управления и заземления в двух проекциях.

На Фиг.3. показана трехслойная конструкция зубьев и электродов управления и заземления в двух проекциях.

На Фиг. 4а и 4b показан пример двух вариантов фрагментов матрицы из М строчных элементов, каждый из которых состоит из двух призм, у которых две свободные катетные грани расположены в параллельных плоскостях. В первом фрагменте на Фиг. 4а осветитель имеет линзовый растр, фокусирующий свет на визуализирующую заслонку. Во втором фрагменте на Фиг. 4b линзовый растр введен в визуализатор, а осветитель излучает параллельный световой поток, падающий на первые свободные катетные боковые грани.

На Фиг. 5а и 5b показан пример двух фрагментов матрицы из М строчных элементов, каждый из которых состоит из четырех призм, у которых две свободные катетные грани расположены в одной плоскости. В первом фрагменте на Фиг. 5а осветитель и визуализатор имеют линзовые растры, совместно фокусирующие свет на визуализирующую заслонку. Во втором фрагменте на Фиг. 5b линзовый растр осветителя фокусирует свет на визуализирующую диафрагму.

На Фиг. 6а-6f показаны шесть примеров оптических схем и электрических связей между осветителем, модулятором, устройством восприятия и устройством управления. На Фиг. 6а показана оптическая схема с модулятором, имеющим диэлектрическое зеркало. На Фиг. 6b показана оптическая схема, содержащая одну призму, на Фиг. 6c и 6d - две призмы, на Фиг. 6e - четыре призмы. На Фиг.

10

15

20

25

30

6f показан пример выполнения оптической схемы с зеркалом, нанесенным на последнюю свободную катетную грань призмы строчного модулятора.

На Фиг. 7а-7с показаны три варианта осуществления строчного элемента. На фиг. 7а строчный элемент имеет свободные грани в одной плоскости. На фиг. 7b и 7c первые и последние свободные грани взаимно перпендикулярны, причем каждый строчный элемент имеет по три строчных модулятора, расположенных на гипотенузных гранях.

На Фиг. 8а-8d показаны четыре примера цветных проекторов со строчной разверткой. На Фиг. 8а и 8b реализовано последовательное сложение цветов с помощью одного и трех строчных модуляторов соответственно, на Фиг. 8с показана известная оптическая схема сложения цветов на экране с использованием дихроичных зеркал, на Фиг. 8d показан один из вариантов осуществления настоящего изобретения с параллельным сложением цветов без использования дихроичных зеркал.

На Фиг. 9 показана принципиальная конструкция световолоконного выключателя с тремя строчными модуляторами.

На Фиг. 10a и 10b показаны две характерные осциллограммы образования и стирания рельефа A(t) при воздействии электрического импульса U_i. На фиг. 10a длительность электрического импульса равна 1 мксек, на фиг. 10b - 2 мксек.

На Фиг. 11 показана оптическая схема для расчета одноцветного строчного элемента с двумя призмами.

На Фиг.12 показана расчетная схема для трехцветного строчного элемента с четырьмя призмами и последовательным сложением цветов.

На Фиг. 13 показан способ формирования гелеобразного слоя с помощью главных спейсеров.

На Фиг. 14 показан способ сборки строчного модулятора с помощью дополнительных спейсеров.

На Фиг. 15 показан способ сборки строчного модулятора с помощью главных спейсеров благодаря усадке гелеобразного слоя после его сшивания.

Сведения, подтверждающие возможность осуществления изобретения.

Электрооптический преобразователь (Фиг.1-15) содержит последовательно расположенные на оптической оси: хотя бы один осветитель 1, прозрачную

10

15

20

25

30

подложку 2 в виде хотя бы одной плоскопараллельной пластины или призмы полного внутреннего отражения, хотя бы один строчный модулятор 3, хотя бы один визуализатор 4, устройство восприятия 5, а также хотя бы одно устройство управления 6, причем строчный модулятор 3 содержит нанесенный на прозрачную подложку 2 прозрачный электропроводящий слой 7, прозрачным гелеобразным слоем 8 и систему из і штук параллельных ленточных электродов управления 9 и заземления 10, нанесенных на вторую подложку 11 и размещенных с зазором 12 над прозрачным гелеобразным слоем 8 и соединенных электрически с устройством управления 6, при этом хотя бы один строчный модулятор 3 вместе с прозрачной подложкой 2 составляет строчный элемент 13, причем осветитель 1 состоит из последовательно расположенных на оптической оси протяженного источника света 14 и осветительного составного объектива 15, визуализатор 4 включает в себя последовательно расположенные на оптической оси фурье-объектив 16 и визуализирующую диафрагму 17, причем источник света 14 является импульсным или непрерывным, а частота повторения импульсов света при этом ленточные электроды 9 и 10 равна частоте строк изображения, размещены на второй подложке 11 в одной плоскости и подключены к блоку источников напряжений сигналов, при этом для каждого строчного пикселя 18 ленточные электроды управления 9 электрически соединены с периодической структурой зубьев управления 19, а электроды заземления 10 электрически соединены с периодической структурой зубьев заземления 20, причем зубья 19 и 20 вместе с электродами 9 и 10 имеют вид двух изолированных друг от друга гребенок, при этом зубья 19 и 20 расположены параллельно проводящих протяженному источнику света 14, причем для каждой длины волны протяженного источника света λ _{света} и его расходимости α _{расх} (в радианах) в направлении перпендикулярном зубьям гребенок, период расстановки пар зубьев управления и заземления $\lambda_{\text{зуб}}$ выбирается из условия: $\lambda_{\text{зуб}} \leq \sqrt{2} \lambda_{\text{света}} / \alpha_{\text{расх}}$.

В настоящее время появились протяженные источники света, например, полупроводниковые лазеры, в частности, во всем видимом диапазоне света, обладающие телом свечения в 1 мкм, причем их мощность достигает десятков ватт. Имея «плохую» расходимость света вдоль нити свечения, благодаря «точечности» продольного тела свечения можно сформировать световое излучение осветительным объективом с очень малым углом расходимости в

10

15

20

25

30

плоскости, перпендикулярной протяженному источнику. При этом можно достичь очень узкого пучка освещаемого пространства. Использование в ленточных электродов, ориентированных перпендикулярно протяженному источнику света, приводит к большим потерям света, кроме того, требует в полтора раза большей такое расположение электродов пространственной частоты. Если же линейные пиксели, то есть ленточные электроды расположить параллельно протяженному источнику на гипотенузной это приведет к искажению информации, вследствие грани призмы, то растягивания одной стороны линейки сигналов и сжатия другой. Эти искажения будут увеличиваться с увеличением количества пикселей в строке. Введение гребенчатых электродов увеличивает чувствительность записи и позволяет уменьшить ширину световой площадки параллельной протяженному источнику, а также уменьшить нелинейные искажения изображения на экране. Например, при 80 лин на мм в гребенчатой структуре пикселя достаточно использовать два десять зубьев гребенки, при этом ширина световой площадки будет равна 25-125 мкм соответственно.

В другом варианте осуществления (Фиг. 1) в осветительный составной объектив 15 введен по крайней мере один цилиндрический объектив 21, образующая которого параллельна зубьям 19, 20 гребенок.

В другом варианте осуществления (Фиг.1) визуализатор 4 содержит по крайне мере один цилиндрический объектив, образующая которого параллельна зубьям гребенок

В другом варианте осуществления (Фиг.1) устройство восприятия 5 содержит проекционный объектив 22, систему зеркал 23, средство сканирования строки по вертикали 24, экран 25, фотодатчик 26 сканера, а ось средства сканирования перпендикулярна ленточным электродам, причем в проекционный объектив введен тороидально-цилиндрический объектив, при этом цилиндрический объектив имеет образующую, параллельную зубьям гребенок.

В другом варианте осуществления изобретения (Фиг.1) устройство управления состоит из устройства синхронизации 27, выход которого подключен к блоку 28 источников напряжений сигналов, а его вход - к фотодатчику 26 сканера, источника опорных напряжений 29, включенного между прозрачным электропроводящим слоем 7 и электродами заземления 10, блока 28 источников

15

20

25

30

напряжений сигналов, соединенных с і входами электродов управления строчного модулятора 3, источника напряжения смещения 30, подключенного одним выводом через электрический источник коррекций временного фронта образования рельефа 31 к одноименным выводам блока источников напряжений сигналов, а другим выводом - к электродам заземления 10, при этом устройство синхронизации 27 имеет два дополнительных выхода, один из которых подключен к источнику света 14, а другой - к средству сканирования 24 строки, а также имеет дополнительный вход от блока 28 источников напряжений сигналов, при последовательно с источником напряжения смещения 30 введен электрический источник коррекций временного фронта образования рельефа 31, соединенный с устройством синхронизации 27, который в момент включения импульса сигнала подает дополнительное импульсное напряжение коррекции заданной во времени формы, а к блоку 28 источников напряжений сигналов подключен коммутатор 32, переключающий полярность сигнала на электродах управления и заземления по заданному пространственно-временному закону и соединенный с устройством синхронизации 27. Электрический источник коррекций 31 временного фронта образования рельефа позволяет повысить быстродействие устройства, если на время действия фронта подключить дополнительный электрический импульс. Термин OID заданному пространственно-временному закону» следует понимать таким образом, что, в зависимости от конкретного применения изобретения, в одних случаях требуется изменить напряжение от одного электрода к другому, в других же случаях напряжение изменяют на одном электроде.

Кроме того, в устройстве, известном из уровня техники, прозрачная подложка представляет собой одиночную призму, в основании которой лежит прямоугольный треугольник. Это ограничивает конструктивные и эксплуатационные возможности устройства, а также ограничивает возможность расширения функций управления рельефной записью.

Поэтому в одном из вариантов осуществления настоящего изобретения прозрачная подложка выполнена в виде N треугольных призм 33 (Фиг.4-7) с основанием в виде прямоугольного треугольника последовательно сопряженных оптически равными категными боковыми гранями, причем на все или некоторые гипотенузные боковые грани нанесены строчные модуляторы 3, при этом одна

24

катетная боковая грань первой призмы имеет свободную поверхность, обращенную к хотя бы одному осветителю 1, и одна катетная боковая грань последней призмы имеет свободную поверхность, обращенную к хотя бы одному визуализатору 4, причем эти грани расположены перпендикулярно оптической оси, при этом свет от осветителя 1 падает на все гипотенузные грани под углом большим, чем угол полного внутреннего отражения, а строчные модуляторы 3 имеют равные или разные пространственные частоты зубьев гребенок.

Такая конструкция прозрачной подложки позволяет приспособить оптический преобразователь к техническим решениям, подобным прямоточным оптическим схемам, однако имеющим чувствительность к электрическому сигналу примерно в три раза большую, чем электрооптические преобразователи, работающие на просвет.

10

15

20

25

30

Еще в одном варианте осуществления изобретения (Фиг.2) система параллельных ленточных электродов управления 9 и заземления 10 нанесена на вторую подложку 11 и покрыта равномерным по толщине тонким слоем 34 диэлектрика, на который нанесены перпендикулярно ленточным электродам управления 9 и заземления 10 зубья 19 и 20 гребенок, параллельные протяженному источнику света 14, причем зубья управления 19 электрически соединены с помощью контактов 35 с ленточным электродом управления 9, а зубья заземления 20 электрически соединены с помощью контактов 36 с ленточным электродом заземления 10, при этом торцы зубьев одного пикселя 18 расположены с зазором напротив торцов зубьев другого пикселя, причем зубья покрыты тонким защитным диэлектрическим слоем 37 с регулируемыми электрическими свойствами, например, электрической проводимостью или диэлектрической проницаемостью.

Термин «тонкий слой» является общеупотребительным в области техники, к которой относится настоящее изобретение, и обозначает слой, имеющий толщину много меньше его длины или ширины.

Такой вариант конструкции гребенчатых электродов существенно увеличивает рабочую площадь рельефной записи и тем самым увеличивает светоотдачу оптического преобразователя, а чередование заземленных и сигнальных гребенок между соседними пикселями снижает взаимное влияние пикселей друг на друга и также увеличивает рабочую площадь. Защитный

10

15

20

25

30

диэлектрический слой с регулируемыми электрическими свойствами позволяет увеличить напряжение источника опорных напряжений 29 с одновременным уменьшением напряжения сигнала, так как снижает неравномерность электрического поля в зазоре 12 при отсутствии напряжения сигнала.

В другом варианте осуществления изобретения (Фиг.3) система из параллельных ленточных электродов управления 9 и заземления 10 нанесена на вторую подложку и покрыта равномерным по толщине тонким слоем 34 диэлектрика, на котором расположены зубья заземления 20 гребенок, соединенные электрически с помощью контактов 36 с ленточным электродом заземления 10 и покрытые вторым равномерным по толщине тонким слоем 38 диэлектрика, на который нанесены зубья управления 19 гребенок, соединенные электрически с помощью контакта 35 с ленточным электродом управления 9, при этом в каждом пикселе 18 торцы зубьев расположены напротив промежутков между торцами зубьев соседнего пикселя.

Введение второго диэлектрического слоя 38 увеличивает пространственное разрешение строчного модулятора 3. Предельная разрешающая способность, то есть максимальное число электродов управления на единицу длины, определяется в прототипе минимально возможными значениями ширины электродов управления и заземления и расстояния между нами. Эти величины ограничены технологическими возможностями и приблизительно равны друг другу (при уменьшении в прототипе расстояния между электродами меньше некоторого значения края электродов "слипаются" на отдельных участках, что означает неработоспособность устройства). Введение второго диэлектрического слоя 38 позволяет уменьшить приблизительно в два-три раза минимальное расстояние между зубьями гребенок. Если толщина второго диэлектрического слоя 38 намного (в 5 - 10 раз и более) меньше ширины электрода, то это не скажется на чувствительности записи. Повышение предельной разрешающей способности изложенным выше способом улучшает качество изображения на устройстве восприятия 5.

В известных технических решениях, включая прототип, не известны конструкции, позволяющие создать дисплеи прямого видения с очень малым энергопотреблением. Использование одиночной призмы или нечетного количества оптически сопряженных призм не позволяет создавать такого сорта

26

дисплеи. Такая залача решена в следующем варианте осуществления изобретения (Фиг.4), где М строчных элементов 13, прозрачная подложка каждого из которых содержит четное количество призм 33, которые размещены в виде линейной матрицы, причем размещенные в параллельных плоскостях или в одной плоскости первые и последние свободные катетные боковые грани строчных элементов 13 обращены к матрицам из М одноцветных, трехиветных или многоцветных осветителей 1 и М одноцветных, трехцветных или многоцветных визуализаторов 4 соответственно. В этом варианте осуществления изобретения, представляющего собой цветной дисплей прямого видения, полностью используется мощность всех трех источников света, работающих одновременно. Если устройство восприятия содержит на оптической оси последовательно расположенные проекционный объектив с апертурой большей, чем площадь линейной матрицы, и экран, что позволяет реализовать цветной телепроектор с одним визуализатором для всех трех цветов, то при этом матричный строчный элемент конструктивно выглядит как просветный модулятор, однако его чувствительность примерно в три раза выше.

5

10

15

20

25

30

Еще в одном варианте осуществления изобретения (не показано на чертежах) устройство восприятия выполнено в виде прозрачного или матового, или светочувствительного, или теплочувствительного материала, и помещено после матрицы визуализаторов на оптической оси. Кроме дисплеев прямого видения в случае использования прозрачного или матового материала применения этого изобретения могут быть расширены на случаи записи информации на светочувствительный или теплочувствительный носители. При этом в этой конструкции не требуются сканирующие устройства. Этот вариант осуществления может быть модернизирован таким образом, что будет представлять собой проектор, если устройство восприятия содержит на оптической оси последовательно расположенные проекционный объектив с апертурой большей, чем площадь линейной матрицы, и экран.

Еще в одном варианте осуществления изобретения (Фиг.8а) устройство содержит последовательно расположенные на оптической оси: красный (R), зеленый (G) и синий (B) осветители 1, прозрачную подложку 2 в виде хотя бы одной плоскопараллельной пластины или призмы полного внутреннего отражения, один строчный модулятор 3, хотя бы один визуализатор 4, устройство

10

15

20

25

30

восприятия 5, а также три устройства управления 6, каждым из осветителей 1, соединенные выходами С цветовым коммутатором полключенным одним своим выходом к строчному модулятору 3, тремя выходами - к трем включаемым им последовательно осветителям 1, а пятым выходом - к средству сканирования 24, причем строчный модулятор 3 содержит нанесенный на прозрачную подложку 2 прозрачный электропроводящий слой 7. покрытый прозрачным гелеобразным слоем 8 и систему из і штук параплельных ленточных электродов управления 9 и заземления 10, нанесенных на вторую подложку 11 и размещенных с зазором 12 над прозрачным гелеобразным слоем 8 и соединенных электрически с устройством управления 6, при этом хотя бы один строчный модулятор 3 вместе с прозрачной подложкой 2 составляет строчный элемент 13, причем осветитель 1 состоит из последовательно расположенных на оптической оси протяженного источника света 14 и осветительного составного объектива 15, визуализатор 4 включает в себя последовательно расположенные на оптической оси фурье-объектив 16 и визуализирующую диафрагму 17, причем источник света 14 является импульсным или непрерывным, а частота повторения импульсов света равна частоте строк изображения, при этом на оптической оси последовательно расположены красный осветитель (R), первое дихроичное 23, пропускающее красный свет и отражающее зеленый свет, расположенное под углом 45 градусов к оптической оси и зеленому осветителю (G), второе дихроичное зеркало 23, пропускающее красный и зеленый свет и отражающее синий свет, расположенное под углом 45 градусов к оптической оси и синему осветителю (В), при этом коллинеарный поток излучения всех трех цветов падает перпендикулярно и последовательно во времени на строчный элемент 13, причем ленточные электроды 9 и 10 размещены на второй подложке 11 в одной плоскости и подключены к блоку источников напряжений сигналов 28. для каждого строчного пикселя 18 ленточные электроды управления 9 электрически соединены с периодической структурой зубьев управления 19, а электроды заземления 10 электрически соединены с периодической структурой зубьев заземления 20, причем зубья 19 и 20 вместе с электродами 9 и 10 имеют вид двух изолированных друг от друга проводящих гребенок, при этом зубья 19 и 20 гребенок расположены параплельно протяженному источнику света 14, причем строчный модулятор 3 имеет период расстановки пар зубьев управления и

28

заземления λ_{3y6} , определяемый для наименьшей длины волны света по формуле $\lambda_{3y6} \leq \sqrt{2} \lambda_{\text{света min}}/\alpha_{\text{pacx max}}$

где а расх mах наибольшая расходимость излучения среди красного, зеленого и синего цветов, при этом размер непрозрачной визуализирующей диафрагмы 17 определяется из условия перекрытия нулевых порядков всех трех цветов, а напряжение на электродах управления 9 строчного модулятора 3 формирует необходимую глубину рельефа для каждого цвета.

5

10

15

20

25

30

Это позволяет сделать компактный цветной электрооптический преобразователь с последовательным сложением цветов, а также существенно снижает стоимость и габариты преобразователя.

Еще в одном варианте осуществления изобретения (Фиг. 8b) три строчных модулятора 3 последовательно обрабатывают три цвета. Этот вариант позволяет использовать практически однотипный модулятор для всех трех цветов, благодаря тому, что эти модуляторы расположены на оптической оси на разных расстояниях от фурье-объектива 16. Он сконструирован так, что каждый строчный элемент 13 содержит соединенные электрически с цветовым коммутатором 39 три строчных модулятора 3 с тремя различными пространственными периодами λ_R , λ_G , λ_B расстановки пар зубьев управления и заземления, соответствующими красному, зеленому и синему осветителям, причем три строчных модулятора 3, включаемые последовательно во времени, расположены на оптической оси так, что строчные модуляторы с большей длиной волны расположены дальше по ходу луча света от фурье-объектива. На фиг.8с показана известная оптическая схема сложения цветов на экране с использованием дихроичных зеркал.

На фиг. 8d показан еще один вариант осуществления изобретения, в котором прозрачная подложка 2 выполнена в виде хотя бы одной треугольной призмы 33 полного внутреннего отражения, каждый строчный элемент 13 содержит три включаемых одновременно строчных модулятора 3, нанесенных в виде трех цветовых секций на одну или несколько гипотенузных граней, при этом каждый из модуляторов 3 имеет для каждого цвета соответствующий период расстановки пар зубьев управления и заземления λ_{3y6} , при этом три осветителя 1 расположены параллельно друг другу, а световое излучение соответствующего цвета падает перпендикулярно на соответствующую цветовую секцию строчного

10

15

20

25

30

модулятора 3, при этом световое излучение с большей длиной волны направляется в секцию, отстоящую на большем расстоянии от фурье-объектива 16, непрозрачная визуализирующая диафрагма 17 перекрывает или пропускает излучение нулевого порядка всех трех цветов, а три устройства управления 6 соединены электрически со средством сканирования строки 24, с тремя осветителями 1 красного, зеленого и синего цветов и с соответствующими цветовыми секциями строчного модулятора 3. Такая конструкция позволяет полностью использовать мощность источников света, при этом сохраняется возможность использовать только один визуализатор 4 и проекционный объектив 22. В варианте, где каждая секция строчных модуляторов 3, соответствующая своему цвету, нанесена на отдельные гипотенузные грани прозрачной подложки. состоящей из трех или более призм 33, сопряженных оптически, можно использовать строчные модуляторы 3 с равными или очень близкими друг к другу пространственными частотами. Унификация строчных модуляторов для каждого цвета не только позволяет снизить стоимость устройства, но и расширить функциональные возможности управления рельефом модуляторов, так как возможно использовать оптимальный химический состав носителя записи, а также оптимизировать геометрические, электрические, механические и оптические показатели строчного модулятора.

В еще одном варианте осуществления изобретения (фиг. 6а) устройство содержит последовательно расположенные на оптической оси: хотя бы один осветитель1, прозрачную подложку 2 в виде хотя бы одной плоскопараллельной пластины, хотя бы один строчный модулятор 3, хотя бы один визуализатор 4, устройство восприятия 5, а также хотя бы одно устройство управления 6, причем строчный модулятор 3 содержит нанесенный на прозрачную подложку 2 прозрачный электропроводящий слой 7, покрытый прозрачным гелеобразным слоем 8 и систему из і штук параллельных ленточных электродов управления 9 и заземления 10, нанесенных на вторую подложку 11 и размещенных с зазором 12 над прозрачным гелеобразным слоем 8 и соединенных электрически с устройством управления 6, при этом хотя бы один строчный модулятор 3 вместе с прозрачной подложкой 2 составляет строчный элемент 13, причем осветитель 1 состоит из последовательно расположенных на оптической оси протяженного источника света 14 и осветительного составного объектива 15, визуализатор 4

последовательно расположенные на включает в себя оптической оси фурье-объектив 16 и визуализирующую диафрагму 17, причем источник света 14 является импульсным или непрерывным, а частота повторения импульсов света равна частоте строк изображения, осветитель 1 расположен так, что излучение от него направлено под углом меньшим 90 градусов к плоскопараллельной пластине 41, прозрачному электропроводящему слою 7, прозрачному гелеобразному слою 8, воздушному зазору 12, при этом ленточные электроды 9 и 10 размещены на второй подложке 11 в одной плоскости и подключены к блоку источников напряжений сигналов 28, причем для каждого строчного пикселя 18 ленточные электроды управления 9 электрически соединены с периодической структурой зубьев управления 19, а электроды заземления 10 электрически соединены с периодической структурой зубьев заземления 20, причем электродами имеют вид двух изолированных друг от друга проводящих гребенок, при этом зубья гребенок расположены параллельно протяженному источнику света 14, причем зубья гребенок закрыты сплошным тонким диэлектрическим зеркалом 40, отражающим свет соответствующей длины волны в строчном модуляторе 3, при этом период расстановки пар зубьев управления и заземления λ_{3y6} выбирается из условия $\lambda_{3y6} \leq 2 \lambda_{\text{света}} / \alpha_{\text{расх}}$ для каждой длины волны протяженного источника света λ света и его расходимости α расх (в радианах) в направлении перпендикулярном зубьям гребенок.

10

15

20

25

30

В этом случае устранен наклон рельефного изображения к оптической оси и не требуется применение средства сканирования строки 24. При этом использование протяженного источника света с очень малым телом свечения позволит создать эффективную проекционную оптику с высоким коэффициентом полезного действия.

В следующем варианте осуществления изобретения (Фиг. 9) используется матричный световолоконный выключатель с очень высоким контрастом. Этот контраст обеспечивается использованием нескольких строчных модуляторов 3, включенных последовательно на пути прохождения света, при этом доля мощности в нулевом порядке после прохождения, например, трех решеток будет уменьшена на три порядка, после четырех — на четыре порядка. Другим преимуществом этого варианта осуществления изобретения является возможность многофазного способа включения и выключения решеток. В этом случае

статическая флуктуация рельефа за счет движения заряда в межэлектродном пространстве или в гелеобразном деформируемом слое будет уменьшена до благодаря динамическому режиму работы строчного модулятора, поскольку частота переключения модулятора может достигать 500 кГц (фиг.10). Для решения этих задач протяженный источник света 14 выполнен в виде световолокна 42 или их матрицы, с одной стороны подключенной к монохромному или полихромному лазерному световому источнику информации 43, с другой стороны оптически соединенной с коллиматором 44, оптически сопряжен с первой по ходу светового луча призмой 33, при этом каждое световолокно 42 оптически контактирует с одним или несколькими пикселями 18 строчного модулятора 3, а последняя по ходу светового луча призма 33 сопряжена с одним или матрицей визуализаторов 4, причем непрозрачная визуализирующая диафрагма 17 содержит одно или матрицу отверстий 45 размером, пропускающим нулевой порядок дифракции света, управляемого электродами пикселей 18, при этом на оптической оси на расстоянии меньше фокусного после этого отверстия или матрицы отверстий расположен объектив 46 фокусирующий свет на выходное световолокно 47, подсоединенное с другой стороны к устройству восприятия 48 световой информации, причем на строчные модуляторы 3 подается сигнальное напряжение синхронно или в трехфазном, или многофазном временном режиме, достаточное для создания оптимальной глубины фазовой модуляции, равной 4,82 радиан, при этом устройство восприятия 48 световой информации электрически сопряжено с осветителем 1. Каждая рельефная решетка управляется так, что набег фазы света достигает значения 4.82 радиан, при котором, как известно для синусоидального рельефа, в фазовой плоскости фурье-объектива из нулевого порядка уходит 100% светового излучения. Небольшая остаточная засветка будет подавляться повторной модуляцией на следующих решетках и, таким образом, остаточная засветка всегда может быть отрегулирована до необходимого минимума.

10

15

20

25

30

В еще одном варианте осуществления изобретения реализуется идея создания оптического фильтра. Поскольку высшие порядки дифракции для каждой длины волны света располагаются в разных точках пространства фазовой плоскости, предложенная модификация может быть использована как для фильтрации света, так и в качестве оптического коммутатора с быстродействием

32

до 500 кГц. В этом варианте осуществления (Фиг.9), в отличие от предыдущего, непрозрачная визуализирующая диафрагма 17 имеет матрицу отверстий 45, пропускающих излучение плюс-минус первого и/или иного высшего порядка дифракции, при этом визуализатор 4 для каждого строчного модулятора 3 выполнен так, что против каждого отверстия расположен объектив 46, фокусирующий свет на выходное световолокно 47.

В следующем варианте осуществления изобретения (Фиг. 6d) можно использовать в качестве осветителя 1 специально оборудованную или естественную, например солнечную, внешнюю засветку. Это достигается тем, что осветитель 1 расположен под углом меньшим 90 градусов, а устройство восприятия 5 расположено под углом 90 градусов к первой по ходу светового луча боковой грани призмы 33 строчного элемента 13, а часть визуализирующей диафрагмы 17, перекрывающая свет нулевого порядка дифракции, покрыта зеркалом (на фигурах непоказанным) и расположена параллельно последней походу светового луча боковой грани призмы 33 строчного элемента, при этом со стороны визуализирующей диафрагмы 17, непокрытой зеркалом, расположено второе устройство восприятия 5 или светопоглощающее устройство 49. образом, в случае отсутствия рельефа весь свет отражается от зеркальной диафрагмы, и все пиксели экрана остаются светлыми. При записи рельефа свет попадает в отверстие диафрагмы и поглощается светопоглощающем устройством 49. В этом случае пиксели 18 экрана 25 станут темными.

10

15

20

25

30

В одном или нескольких строчных модуляторах 3 в строчном элементе 13 зубья 19, 20 гребенок закрыты сплошным тонким диэлектрическим зеркалом 40, отражающим свет соответствующей длины волны, а одна или все свободные от строчных модуляторов гипотенузные грани призм могут быть покрыты зеркалом. Использование зеркал в строчных модуляторах и на свободных гипотенузных гранях призм, составляющих строчный элемент, позволяет использовать свет, который падает на грани призм под углом меньшим угла полного внутреннего отражения. В этом случае контраст и эффективность строчного элемента возрастает.

Кроме того, последняя свободная категная грань призмы 33 строчного модулятора может быть покрыта зеркалом 50. Использование зеркала 50, покрывающего последнюю катетную грань призмы, позволяет удвоить

10

15

20

25

30

чувствительность и контраст строчного элемента 13 благодаря тому, что свет проходит дважды через рельеф каждого строчного модулятора 3.

Предложенное устройство работает следующим образом. На электроды управления 9 и электроды заземления 10 от блока 28 источников напряжений сигналов подаются электрические сигналы в виде, например, прямоугольных импульсов напряжения U_i (Фиг. 1, i — номер электрода управления) амплитуда которых соответствует записываемой информации. В результате этого на границе раздела прозрачного гелеобразного слоя 8 и воздушного зазора 12 вследствие различия их диэлектрических проницаемостей возникают пондеромоторные силы, вызывающие деформацию свободной поверхности прозрачного гелеобразного слоя 8 соответственно сигналам на электродах управления 9 в виде полос, параплельных зубьям 19, 20 гребенок В отличие от прототипа, где один пиксель 18 представлен только двумя ленточными электродами 9 и 10, в настоящем изобретении каждый пиксель представляет собой решетку с большим количеством зубьев 19 и 20 гребенки. Другими словами, каждый пиксель представлен дифракционной решеткой, что существенно повышает качество записи и снижает взаимное влияние пикселей друг на друга. Кроме того, в сравнении с прототипом поворот гребенки пикселя на 90 градусов увеличивает пространственную частоту гребенки в 1,4 раза при считывании оптическим излучением.

Более того, при этом положении гребенки пикселя в изобретении предложено сдвинуть на половину периода дифракционную решетку каждого соседнего пикселя, что дополнительно снижает взаимное влияние соседних пикселей.

Записанный геометрический рельеф поверхности гелеобразного слоя 8 в виде дифракционной решетки параллельной протяженному источнику света 14 воспроизводят на экране 25 в виде строки изображения следующим образом (Фиг.1). Каждый источник света 14 вместе с соответствующим осветительным составным объектом 15 освещает поверхность гелеобразного слоя 8 соответствующего промежуточного носителя рельефной записи строки в виде узкой полосы, перпендикулярной ленточным электродам, но параллельной "бугоркам" рельефа, которые вытянуты вдоль зубьев 19 и 20 (см. Фиг. 1). Коэффициенты преломления призмы полного внутреннего отражения (подложки

5

10

15

20

25

30

2) и гелеобразного слоя 8 подбираются приближенно равными друг другу. Поэтому световое излучение отражается под углом полного внутреннего отражения (около 45°) от рельефной поверхности гелеобразного слоя 8 и направляется на фурье-объектив 16, в составе которого имеется хотя бы один цилиндрический объектив. Фурье-объектив 16 при отсутствии деформаций свободной поверхности прозрачного гелеобразного слоя 8 проектирует весь световой поток на непрозрачную визуализирующую диафрагму 17, а при наличии деформаций проектирует поверхность гелеобразного слоя 8 на экран 25. Световая строка на экране 25 будет модулирована по интенсивности в соответствии с амплитудой рельефа прозрачного гелеобразного слоя 8. Цилиндрический объектив 21, входящий в состав осветительного составного объектива 15, и фурье-объектив 16 формируют световой поток в строку в плоскости экрана 25. Осветительный составной объектив 15 формирует узкую полосу света на поверхности гелеобразного слоя 8. Составной проекционный объектив 22 может быть расположен до или после сканера 24 и выполнен в виде, например, тороидально-цилиндрического составного объектива, который дополнительно задает ширину световой строки и позволяет сканировать строку в апертуре объектива 22 с минимальной потерей качества изображения. Сканер 24 или барабан, осуществляющий кадровую развертку строки на экране 25, управляется устройством синхронизации 27 и фотодатчиком 26, контролирующим положение первой строки.

В другом варианте осуществления изобретения в осветительный составной объектив 15 введен по крайней мере один цилиндрический объектив 21, образующая которого параллельна зубьям 19 и 20 гребенок. Излучение от протяженного источника света 14 с помощью цилиндрического объектива 21 попадает в виде узкой полосы на рельеф, образованный при подаче сигнального напряжения Ui на зубья 19 и 20 гребенки. Периодическая структура рельефа также параллельна зубьям гребенок, поэтому излучение дифрагирует на рельефе перпендикулярно зубьям гребенок. Именно в этом направлении расходимость протяженного источника света 14 небольшая и поэтому качество изображения будет намного выше, чем в прототипе.

В другом варианте осуществления изобретения визуализатор 4 содержит по крайней мере один цилиндрический объектив, образующая которого параллельна зубьям 19 и 20 гребенок. Поэтому дифрагируемое на рельефе

15

25

излучение от протяженного источника света, благодаря цилиндрическому объективу, попадает в фазовую плоскость в виде линейного распределения в пространстве нулевого, первых, вторых и т.д. порядков дифракции. Визуализация фазового набега света в амплитудные градации яркости на экране происходит благодаря перекрытию нулевого порядка визуализирующей диафрагмой (фиг.11).

В другом варианте осуществления изобретения в проекционный объектив 22 введен тороидально-цилиндрический объектив. Цилиндрический объектив имеет образующую, параллельную зубьям 19 и 20 гребенок, поэтому дополнительно задает ширину световой строки. Кроме того, тороидально-цилиндрический объектив позволяет менять расстояние от проектора до экрана 25 без изменения фокусного расстояния фурье-объектива 16.

В другом варианте осуществления изобретения устройство управления работает следующим образом. От блока 28 источников напряжений сигналов к устройству синхронизации 27 поступают тактовые сигналы в начале каждого кадра и строки изображения. Кроме того, от фотодатчика 26 к устройству синхронизации 27 поступают импульсы в моменты смены граней зеркального барабана или иного средства сканирования 24. Устройство синхронизации 27 сравнивает по этим сигналам частоту сканирования зеркала с частотой кадров изображения и подает сигнал на привод средства сканирования 24 так, чтобы частота сканирования зеркала непрерывно подстраивалась к частоте смены кадров. Кроме того, получив от фотодатчика 26 очередной сигнал в момент смены граней зеркала средства сканирования, устройство синхронизации 27 посылает команду в блок 28 источников напряжений сигналов, по которой на электроды управления 9 строчного модулятора 3 подаются последовательно все строки очередного кадра изображения. В это время в блоке 28 источников напряжений сигналов запоминается следующий кадр и так далее. Кроме того, с устройства синхронизации 27 подаются импульсы управления на электрический источник коррекций 31 и коммутатор 32. Источник коррекций 31 в момент включения импульса сигнала подает дополнительное импульсное напряжение заданной . формы во времени, которое позволяет сократить время образования рельефа и тем самым улучшить эффективность устройства и качество изображения. Коммутатор 32 предназначен для переключения полярностей сигнала на электродах управления 9 и заземления 10 по заданному пространственно-временному закону.

36

Это время стирания рельефа тем позволяет сократить самым улучшить качество изображения и снизить оптические шумы. Как источник коррекций 31, так и коммутатор 32 сокращают время образования рельефа, т.е. позволяют увеличить тактовую частоту сигналов. Кроме того, может быть организована «бегущая» или «стоячая» волны, позволяющая в динамике стабилизировать процесс образования и стирания рельефа на геле. Система зеркал 23 для одноцветного или черно-белого вариантов проектора используется как непринципиальный конструктивный элемент. В случае цветного изображения при сложении цветов в систему зеркал 23 включают два дихроичных зеркала (Фиг. 8а, 8b, 8c), одно из которых пропускает красный и отражает зеленый цвета, а другое пропускает красный и зеленый и отражает синий цвета. Известны оптические схемы [3], В которых использование дихроичных необязательно.

5

10

15

20

25

30

В другом варианте осуществления изобретения на прозрачную подложку 2, состоящую из нескольких треугольных призм 33 (Фиг.4-7), нанесены несколько строчных модуляторов 3, улучпающих контраст изображения. Свет от осветителя 1 (см., например, Фиг.бе) попадает на первый строчный модулятор 3, на зубья 19 и 20 гребенок которого подано сигнальное напряжение. Благодаря дифракции на рельефе прозрачного гелеобразного слоя 8, основная часть отклоненного света попадает на второй строчный модулятор 3 и, дифрагируя вторично, уходит за пределы непрозрачной визуализирующей диафрагмы 17, перекрывающей свет нулевого порядка (фиг.11f). Остаточный свет нулевого порядка, прошедший первый строчный модулятор 3, дифрагирует на втором строчном модуляторе 3 и уходит за пределы диафрагмы 17. Таким образом, доля мощности нулевого порядка, пройдя два модулятора 3, уменьшится пропорционально квадрату, а пройдя три модулятора 3, уменьшится пропорционально кубу по сравнению с мощностью нулевого порядка, прошедшей один модулятор. Например, если мощность света нулевого порядка, прошедшего один модулятор, равна 5%, то мощность света, прошедшего два модулятора, составит 0, 25%, а три модулятора - 0,0125%. Таким образом, контраст на экране может быть увеличен до уровня, заданного техническим заданием.

Кроме улучшения контраста и повышения надежности этот вариант осуществления позволяет снизить управляющее напряжение всех трех

37

модуляторов, при этом выходная мощность дифрагированного света будет близка к максимальной. Например, если при полном размахе рельефа набег фазы одного модулятора равен 4,82 радиан, то выходная мощность света первых трех порядков составит 99%.

5

10

15

20

25

30

Если же набег фазы равен 3,86 радиан (80% от оптимального, равного 4,82), то мощность первых трех порядков дифракции от одного модулятора равна 92.2%. Если включить два или три модулятора 3, то мощность нулевого порядка снизится до 0,46% или до 0,031% соответственно. Таким образом, два или три модулятора не только позволяют создать необходимый контраст, но и в случае снижения сигнального напряжения выровнять выходную мощность дифрагированного света.

В другом варианте осуществления изобретения благодаря применению слоя 34 диэлектрика, электроды 9 и 10 помещены ниже уровня зубьев 19 и 20 гребенок (Фиг.2). Это позволяет увеличить площадь полезного рельефа.

На Фиг.3 показана конструкция гребенчатой структуры, где к гелеобразному слою 8 обращены только зубья 19, соединенные с электродом 9, и сдвинутые для каждого пикселя 18 на полпериода для исключения взаимного влияния. Это достигается тем, что в устройство введены два слоя 34 и 38 диэлектрика. Для механической защиты и стабилизации электрических параметров гребенчатой структуры пикселя 18 может быть применен тонкий защитный диэлектрический слой 37. Конструкция гребенчатой структуры, показанная на Фиг.3, дополнительно позволяет увеличить разрешение этой структуры в два раза, а минимальное расстояние между соседними электродами уменьшается в три раза. Расположение земляных зубьев 20 и управляющих зубьев 19 в пространстве в «шахматном» порядке дополнительно устраняет взаимное влияние пикселей друг на друга.

Устройство по еще одному варианту осуществления (Фиг.4,5) работает, реализуя матричный дисплей прямого видения или устройство кадровой записи. Если использовать проекционный объектив 22 и экран 25, то устройство может работать как телепроектор. М строчных элементов 13 каждый из которых состоит из четного количества призм 33, расположены в одной плоскости в виде линейной матрицы, причем размещенные в параллельных плоскостях или в одной плоскости первые и последние свободные катетные боковые грани строчных элементов 13

38

5

10

15

20

25

30

обращены матрицам М одноцветных, ИЗ трехцветных MIIN многоцветных осветителей 1 и М одноцветных, трехцветных или многоцветных визуализаторов 4 соответственно. При этом матрица работает как просветный оптический модулятор. Однако его чувствительность благодаря призматическим элементам повышается примерно в несколько раз. Это позволяет соответственно в несколько раз снизить напряжение. М строчных элементов 13 образуют матрицу, в которой строку представляют і пикселей 18 строчного модулятора 3, а столбцы - М строчных элементов 13. В этом случае изображение визуализируется благодаря использованию, например, в фурье-плоскости матового стекла. Наблюдатель видит пиксель 18 в виде яркого пятна света, образованного высшими порядками дифракции, если подано напряжение на электроды управления 9. Пиксели 18 можно включать одновременно или построчно известными способами с накоплением информации на промежуточном носителе или передавать в реальном масштабе времени. Кроме использования этого варианта осуществления изобретения в качестве дисплея прямого видения, можно визуализировать изображение на экране, используя известную проекционную оптику, направленные или рассеивающие, просветные или отражающие экраны.

В другом варианте осуществления изобретения устройство восприятия 5 выполнено в виде, например, прозрачного или матового, или светочувствительного, или теплочувствительного материала, и помещено после матрицы визуализаторов 4 на оптической оси. Свет после визуализаторов 4 попадает, например, на светочувствительный материал. Световая энергия преобразуется таким образом в градации почернения фотобумаги или другую форму представления световой энергии в изображение на носителе записи.

Устройство с одним строчным модулятором 3, но с тремя разноцветными осветителями 1 согласно еще одному варианту осуществления изобретения работает следующим образом. В этом случае (Фиг. 1 и 8а) три устройства управления 6 с помощью цветового коммутатора 39 включают единственный строчный модулятор 3, один осветитель 1 и средство сканирования (сканер) 24. После выбора цвета все электронные устройства в соответствующем данному цвету устройстве управления 6 и оптические устройства работают как описано выше для основного варианта осуществления изобретения.

В устройстве (Фиг.1 и 8b) с тремя строчными модуляторами 3 и с тремя разноцветными осветителями 1, согласно варианту осуществления изобретения, запись изображения на экран производится последовательно каждым цветовым каналом. В этом варианте осуществления регулированием расстояния каждого модулятора до фурье-объектива 16 можно добиться равенства пространственной частоты для всех трех строчных модуляторов 3 или, по крайней мере, очень близких значений параметров.

5

10

15

20

25

30

В устройстве (Фиг.1 и 8d) с тремя строчными модуляторами 3, нанесенными на одну или разные грани треугольной призмы 33, и с тремя разноцветными осветителями 1 запись изображения на экран производится одновременно каждым цветовым каналом. В этом варианте осуществления, как и в предыдущем, можно добиться равенства пространственной частоты для всех трех строчных модуляторов 3 или, по крайней мере, очень близких значений параметров регулированием расстояния каждого модулятора до фурье-объектива 16. При этом каждый строчный модулятор 3 занимает одну треть гипотенузной грани призмы 33. С целью увеличения контраста и снижения напряжения на управляющих электродах 9 возможно применение двух или трех одинаковых для каждого цвета строчных модуляторов 3, включаемых синхронно.

В другом варианте осуществления (Фиг. 1 и ба), в котором зубья 19 и 20 гребенок покрыты сплошным диэлектрическим зеркалом 40, устройство работает следующим образом. Излучение от осветителя 1 направляют под углом меньшим 90 градусов к строчному модулятору 3, расположенному на прозрачной плоскопараллельной пластине 41.. Излучение от осветителя 1 проходит прозрачный электропроводящий слой 7, гелеобразный слой 8, воздушный зазор 12, затем отражается от диэлектрического зеркала 37 и снова проходит гелеобразный слой 8, прозрачный электропроводящий слой 7 и прозрачную плоскопараллельную пластину 41. Если рельеф на гелеобразном слое 8 отсутствует, то свет в визуализаторе 4 перекрывается визуализирующей диафрагмой 17. Если подано напряжение на зубьях 19 и 20 гребенок, то на поверхности гелеобразного слоя 8 образуется дифракционная решетка в виде фазового (геометрического) рельефа, и дифрагированный визуализирующую диафрагму 17, попадает в устройство восприятия 5, работа которого описана ранее. Чувствительность устройства по данному варианту

осуществления в 2 раза выше, чем известный просветный вариант прототипа, благодаря двукратному прохождению света через гелеобразный слой 8. В строчном и матричном вариантах изобретения этой модификации пиксели 18 могут быть включены одновременно или последовательно известными способами.

5

10

15

25

30

В другом варианте осуществления изобретения (Фиг. 9) устройство работает следующим образом. Учитывая, что строчные модуляторы 3 с прозрачным гелеобразным слоем 8 могут работать с частотой переключения сигнала до 500 кГц, а использование двух и более строчных модуляторов 3 позволяет получить контраст 1:1000, устройство целесообразно использовать как световолоконный выключатель. Лазерное монохромное или полихромное излучение от монохромного или полихромного лазерного светового источника информации 43 поступает во входное световолокно 42 и затем коллимируется коллиматором 44 Далее параплельный пучок излучения, отражаясь от всех гипотенузных граней призм 33, поступает на цилиндрический фурье-объектив 16, который фокусирует свет в одно отверстие или матрицу отверстий 45 визуализирующей диафрагмы 17. Поскольку объектив 46 расположен ближе, чем фокусное расстояние, от отверстия 45, то свет, проходя через этот объектив, попадает на выходное световолокно 47 и регистрируется устройство регистрации 48 информации, которое подает сигнал на источник информации 43 в случае отклонения сигнала от номинальной величины. Если устройство управления 6 подает напряжение на электроды управления 9 строчных модуляторов 3, то дифрагированный световой поток перекрывается визуализирующей диафрагмой 17, свет не поступает в выходное световолокно 47. Известно, что синусоидальная фазовая решетка при фазовом набеге равном 4,82 радиан выводит 100% света из нулевого порядка. Неизбежные шумы, возникающие после прохождения света первого строчного модулятора 3, выводятся из нупевого порядка вторым и третьим модуляторами 3 так, как описано ранее, чем и достигается высокий контраст оптического выключателя. Очевидно, что это устройство работать как аттенюатор светового потока, если регулировать напряжение, поступающее на электроды 9.

В другом варианте осуществления изобретения (Фиг.9) устройство работает следующим образом. В случае, если в предыдущем варианте осуществления непрозрачная визуализирующая диафрагма 17 имеет матрипу

10

15

20

25

30

отверстий 45 пропускающих излучение плюс-минус первого и/или иного высшего порядка дифракции, при этом визуализатор 4 для каждого строчного модулятора 3 выполнен так, что против каждого отверстия 45 расположен объектив 46 фокусирующий свет на выходное световолокно 47, то такое устройство выполняет функцию фильтра световых частот. Это объясняется тем, что для разных световых частот положение высших порядков дифракции на визуализирующей диафрагме 17 будет различным. Установленные напротив каждого отверстия 45 устройства восприятия 5 будут регистрировать различные световые частоты.

В другом варианте осуществления изобретения (Фиг. 6d) устройство работает следующим образом. Из осветителя 1 свет под углом, меньшим 90 градусов проходит одну или несколько граней призм 33 строчного элемента 13. В отсутствие рельефа на строчных модуляторах 3 излучение попадает на фурьеобъектив 16 и фокусируется на визуализирующей диафрагме 17, перекрывающей свет нулевого порядка дифракции. Визуализирующую диафрагму 17, покрытую располагают параллельно свободной грани призмы 33 строчного зеркалом модулятора 3, и свет со смещением от первоначальной оптической оси попадает в конечном итоге после нескольких отражений перпендикулярно к первой свободной боковой катетной грани призмы 33 строчного элемента 13 и затем в устройство восприятия 5. Если один или несколько модуляторов 3 включены, то часть или весь свет из нулевого порядка перекачивается в высшие порядки на фазовой плоскости, расположенной в плоскости визуализирующей диафрагмы 17 и попадает на светопоглощающее устройство 49 или на второе устройство восприятия 5. При этом первое устройство восприятия 5 не будет освещено. Таким образом, записи рельефа в строчном модуляторе 3 соответствует темное поле в первом устройстве восприятия 5 и светлое поле во втором устройстве восприятия 5. Если же строчные модуляторы 3 отключены, то первое устройство восприятия освещено, а второе не освещено. Это устройство может работать при ярком солнечном свете как двустороннее табло или дисплей прямого видения, а также в случае использования протяженного осветителя 1, описанного ранее.

В другом варианте осуществления изобретения устройство работает следующим образом. Для увеличения контраста и эффективности строчного модулятора 3 в строчном элементе 13 зубья 19 и 20 гребенок закрыты сплошным

диэлектрическим зеркалом 40 так, что падающий на прозрачный гелеобразный слой 8 свет в случае нарушения полного внугреннего отражения проходит прозрачный гелеобразный слой 8, отражается от сплошного диэлектрического зеркала 40, снова проходит прозрачный гелеобразный слой 8. Если на гипотенузной грани призмы 33 отсутствует модулятор 3, то гипотенузная грань покрывается обычным зеркалом. В этом случае свет, падающий на грань под углом меньшим угла полного внутреннего отражения, попадает на визуализатор 4.

5

10

15

20

25

30

В другом варианте осуществления изобретения устройство работает следующим образом (Фиг. 6f). Свет от осветителя 1 попадает, отражаясь от зеркальной визуализирующей диафрагмы 17, на фурье-объектив 16. Далее промодупированный строчными модуляторами 3 свет достигает последней свободной катетной грани призмы 33 строчного модулятора 3. Так как эта катетная грань покрыта обычным зеркалом 50, то в отсутствие рельефа свет проходит в обратном порядке до осветителя 1. Если имеется рельефная запись хотя бы на одном из строчных модуляторов, то высшие порядки дифракции попадают в щели зеркальной визуализирующей диафрагмы 17 на проекционный объектив 22. Таким образом, свет на одном строчном модуляторе Здифрагируется дважды, что повышает чувствительность и контраст строчного элемента 13. В примере, представленном на фиг. 6f свет дифрагирует четырежды, что приведет почти к идеальному контрасту изображения на экране.

Гелеобразный слой для электрооптического преобразователя изобретению настоящему представляет собой продукт взаимодействия компонентов гелеобразной композиции, включающей поливинилсилоксан формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ с молекулярной массой 10000-16000 800-1000 вязкостью CcT, олигогидридсилоксан $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ как сшивающий агент, с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст, полиметилсилоксановую жидкость формулы (CH₃)₃SiO[(CH₃)₂SiO]Si(CH₃)₃ как пластификатор с вязкостью 5-20 Сст, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом как катализатор отверждения, при следующем соотношении компонентов (мас. ч): поливинилсилоксан – 100, олигогидридсилоксан -15-25, полиметилсилоксановая жидкость -150-300, 0.1%раствор платинохлорсероводородной кислоты в органическом растворителе или ее

43

комплекс с тетравинилсиланом — 0,3-2. Этот гелеобразный слой не требует влажного помещения при гелеобразовании и не требует жесткой герметизации от влаги в процессе эксплуатации.

5

10

15

20

25

30

Способ приготовления гелеобразного слоя для электрооптического преобразователя, включает смешение 100 мас. ч поливинилсилоксана формулы (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ с молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости C 5-20 вязкостью Сст формулы (CH₃)₃SiO[(CH₃)₂SiO]Si(CH₃)₃, добавление после повторного перемешивания 0,3-2 мас. ч. 0,1% раствора платинохлорсероводородной кислоты в органическом растворителе или ее комплекса с тетравинилсиланом, при этом полученную композицию перемешивают и наносят равномерным по толщине слоем электропроводящий слой после окончания перемещивания, предпочтительно, через 1-20 мин. после окончания перемешивания.

В другом варианте осуществления способ приготовления гелеобразного слоя для электрооптического преобразователя включает смешение 100 мас. ч поливинилсилоксана формулы (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного переменнивания 0,3-20,1% мас. ч. раствора платинохлорсероводородной кислоты в органическом растворителе или ее тетравинилсиланом, при этом полученную композицию перемешивают и наносят равномерным по толщине слоем на прозрачный электропроводящий слой 7 после окончания перемешивания, затем покрывают дополнительной пластиной 51 с оптически плоской поверхностью, а толщину гелеобразного слоя 8 выравнивают с помощью главных спейсеров 52, помещенных между прозрачным электропроводящим слоем 7 и дополнительной пластиной 51 (Фиг.13, 14), затем полученную конструкцию помещают в

WO 2004/059372

5

10

15

20

25

30

термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 2-4 часов, затем отделяют дополнительную пластину 51, а гелеобразный слой покрывают второй подложкой 11 с нанесенными на нее электродами управления 9 и заземления 10 и закрытых тонким защитным диэлектрическим слоем 37, причем зазор 12 выставляют дополнительными спейсерами 53, большими, чем главные спейсеры. Дополнительная пластина 51 предпочтительно выполнена из стекла.

В другом варианте осуществления способ приготовления гелеобразного слоя для электрооптического преобразователя включает смещение 100 мас. ч поливинилсилоксана (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ формулы молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0.3-2мас. ч. 0,1% раствора платинохлорсероводородной кислоты в органическом растворителе или ее комплекса тетравинилсиланом, при этом полученную композицию перемешивают и наносят равномерным по толщине слоем на прозрачный электропроводящий слой 7 после окончания перемешивания, затем покрывают дополнительной пластиной 51 с оптически плоской поверхностью, а толщину гелеобразного слоя 8 выравнивают с помощью главных спейсеров 52. помещенных между прозрачным электропроводящим слоем 7 и дополнительной пластиной 51, затем полученную конструкцию помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 1-2 часов, затем охлаждают до комнатной температуры, после чего отделяют дополнительную пластину 51, затем гелеобразный слой 8, расположенный на прозрачном электропроводящем слое 7, снова помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия до полного стивания геля в течение приблизительно 1-3 часов (Фиг.13, 14).

В другом варианте осуществления изобретения нанесение слоя осуществляют последовательным поливом одного или нескольких

45

дополнительных слоев геля на первый или предыдущий спитый и охлажденный слой геля.

В другом варианте осуществления зазор выставляют главными спейсерами 52 после полного сшивания, усадки и охлаждения геля до комнатной температуры (Фиг.15).

В еще одном варианте осуществления изобретения дополнительную пластину 51 покрывают антиадгезионным слоем, в качестве антиадгезионного слоя предпочтительно используют поверхностно-активное вещество (ПАВ), например, сульфанол-л. Вначале готовят разбавленный раствор сульфанола-л в ацетоне или воде. Раствор дважды фильтруют для удаления плохо растворимых частиц. Нанесенный на дополнительную пластину 51 раствор, испаряясь, оставляет на ее поверхности тонкий антиадгезионный слой. Далее антиадгезионный слой нагревают в течение часа при 40°С. Использование антиадгезионного слоя позволяет довести качество получаемых слоев до 100%.

Кроме того, дополнительную пластину предпочтительно обрабатывают плазменным или иным очищающим облучением известными способами.

Композиция для осуществления способа изготовления гелеобразного слоя для электрооптических преобразователей включает поливинилсилоксан формулы (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ с молекулярной массой 10000-16000 и вязкостью 800-1000 Cct, олигогидридсилоксан формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ как сшивающий агент, с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст, полиметилсилоксановую жидкость формулы (CH₃)₃SiO[(CH₃)₂SiO]Si(CH₃)₃ как пластификатор с вязкостью 5-20 Сст, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом как катализатор отверждения, при следующем соотношении компонентов (мас. ч): поливинилсилоксан - 100, олигогидридсилоксан - 15-25, полиметилсилоксановая жидкость - 150-300, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом — 0,3-2.

5

10

15

20

46

Предварительно смешивают поливинилсилоксан (100 мас.ч.) и сшивающий агент- олигогидридсилоксан (20 мас.ч.), в полученную смесь после предварительного перемешивания вводят полиметилсилоксановую жидкость (150 мас.ч.), смесь вновь тщательно перемешивают и, наконец, вводят катализатор - 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе (изопропиловом спирте) (1 мас.ч.). Композицию тщательно перемешивают в течение 5 минут, и наносят на электропроводящий прозрачный слой через 10 минут после окончания перемешивания..

5

10

15

20

25

30

Устройство по настоящему изобретению может быть выполнено следующим образом. Призма 33 (или прозрачная плоскопараллельная пластина 41) и вторая подложка 11 могут быть выполнены из стекла, прозрачный электропроводящий слой 7 - из окиси индия, прозрачный гелеобразный слой 8 изготавливают в виде полиорганосилоксанового геля. Электроды 9 и 10, зубья 19 и 20 гребенок и контакты 35 и 36 могут быть выполнены из алюминия, хрома, молибдена. Слои 34, 37 38 диэлектрика могут быть выполнены из нитрида кремния. В качестве остальных элементов и блоков могут быть использованы стандартные элементы и блоки. Длина волны света в зависимости от применения может быть выбрана, например, в видимом диапазоне. Воздушный зазор 12 можно выбрать, например, 5 мкм, а толщину гелеобразного слоя 8, например, 30 мкм. Толщина перечисленных электродов 9 и 10, зубьев 19 и 20 может быть выбрана от десятых до сотых долей микрона. Электрические параметры, используемые в модуляторе 3, могут быть, например, выбраны следующими: напряжение смещения 50 Вольт, напряжение сигнала 15 Вольт, импульс коррекции 5 Вольт, период следования сигналов 10мксек.

На Фиг. 10а приведена типичная временная осциллограмма изменения глубины рельефа A(t) (относительные единицы) на прозрачном гелеобразном слое 8 в зависимости от воздействия электрического импульса U_i длительностью в одну микросекунду. На Фиг.10b приведена осциллограмма временного изменения глубины рельефа A(t) при длительности электрического импульса U_i в две микросекунды. В обоих случаях использован трехмикронный зазор 12 при ширине зубьев 19 и 20 в два микрона.

В качестве источника света 14 могут быть использованы, например, полупроводниковые лазеры или лазеры на парах меди, золота, стронция, а также газовые лазеры, тепловые источники света.

Оптические параметры деталей рассчитываются по известным методикам. В качестве примера ниже приведены два простейших расчета для одноцветного строчного элемента 13 с двумя призмами 33 (Пример 2) и для трехцветного строчного элемента 13 с четырьмя призмами 33 (Пример 3). При этом расположения цилиндрических объективов выбраны различными.

Пример 2.

Исходные параметры для расчета (Фиг.11) следующие. Размер ребра катетной боковой грани треугольной призмы 33 с основанием в виде прямоугольного равнобедренного треугольника равен р. Угол расходимости излучения в воздухе θ. Показатель преломления среды п. Длина волны света в воздухе λ₁. Максимальный используемый порядок дифракции N (±1, ...±N).
 Предполагаем, что d₁=d₂=d/2 (Фиг.11).

Введем общие формулы для расчета.

Размер визуализирующей диафрагмы 17 равен линейному расстоянию между соседними порядками дифракции (в частности между 0-м и 1-м),

Фокальное расстояние линзы в воздухе f= f_/n,

$$f = f_p/n = p/((2N+1) \theta)$$
(8)

Приведем конкретный пример расчета для параметров:

 $\theta = 0.05$, $\lambda_l = 0.56$ mkm, p=0.4 mm, n=1.59, N=2

Из (2) Расстояние $d=hn/\theta-p=p(n/((2N+1)\theta)-1)=2.14$ мм,

Из (1) размер визуализирующей диафрагмы h= p/(2N+1)=80 мкм,

Из (6) физический период микрорельефа на грани призмы $\Lambda_{\rm m}\approx 0.707~\lambda_{\rm l}$ (1/ θ +(2N+1)/n)= 9.16 мкм (109 мм⁻¹).

10 Пример 3.

5

15

20

25

Приведем еще один пример расчета трехцветного строчного элемента 13 с четырьмя призмами 33.

Исходные параметры для расчета следующие. Линза расположена в точке В. Входной параллельный световой поток проходит через грань L. Весь оптический путь ABCDEFL проходит в среде с показателем преломления n. Отражающие грани призм (F, E, D, C) расположены под углом 45°. Три строчных модулятора 3 с различным периодом рельефа расположены на гранях D, E, F. Длина волны света в воздухе равна λ_1 (λ_D , λ_E , λ_F соответственно). Углы расходимости для излучений разных цветов равны соответственно θ_D , θ_E , θ_F . Максимальный угол расходимости $\theta = \max\{\theta_D, \theta_E, \theta_F\}$. Приведенный период решетки (период проекции решетки на перпендикулярное сечение светового пучка) λ_m (соответственно λ_{mD} , λ_{mE} , λ_{mF} для разных длин света). Физический период микрорельефа на грани призмы $\Lambda_m = \lambda_m \sqrt{2}$ (соответственно Λ_{mD} , Λ_{mE} , Λ_{mF} для разных длин света). Расстояние от заслонки (точки фокусирования 0-го порядка) до решетки равно s_1 (соответственно s_D , s_E , s_F для разных длин света). Максимальный используемый порядок дифракции N (задан).

Размер перпендикулярных граней призм (см. Фиг.12) t=(AB)=p/3.

(9)

d=2t+w=2p/3+w.

(10)

Полный оптический путь от заслонки до входной грани (ABCDEFL)

s=5t+w=5p/3+w

5 (11)

Размер заслонки равен линейному расстоянию между соседними порядками дифракции

(в частности между 0-м и 1-м),

h=p/(2N+1)

10 (12)

Расходимость луча в среде θ/п.

Длина волны в среде λ_l / n .

Максимальный оптический путь определяется расходимостью

 $s=h/(\theta/n)=hn/\theta=pn/((2N+1)\theta)$

15 (13)

С учетом (11) 5p/3+w= pn/((2N+1) θ), т.е. максимальная величина w w=p(n/((2N+1) θ)-5/3)

(14)

Соответствующий габаритный размер пикселя из (10)

20 $d=2p/3+w=p(n/((2N+1)\theta)-1)$

(14A)

Расстояние от решетки D до заслонки (ABCD) для λ_D равно с учетом (14)

 $s_D=2t+t/2+w=5t/2+w=5p/6+w=p(n/((2N+1)\theta)-5/6)$

25 (15D)

Расстояние от решетки E до заслонки (ABCDE) для λ_E равно с учетом (14)

 $s_E=3t+t/2+w=7t/2+w=7p/6+w=p(n/((2N+1)\theta)-3/6)$

(15E)

Расстояние от решетки F до заслонки (ABCDEF) для λ_F равно с учетом (14)

30 $s_F=4t+t/2+w=9t/2+w=9p/6+w=3p/2+w=p(n/((2N+1)\theta)-1/6)$

(15F)

Угол между соседними порядками дифракции

$$\alpha = (\lambda_l / n) / \lambda_m$$

(16)

Для избежания перекрытия соседних порядков дифракции α=h/s₁

5 (17)

Из (16) и (17) приведенный период микрорельефа

$$\lambda_{\mathbf{m}} = s_1 \, \lambda_i \, / (\mathbf{n} \, \mathbf{h})$$

(18)

С учетом (12) приведенный период микрорельефа

10 $\lambda_{m} = s_{1} \lambda_{1} (2N+1)/(n p)$ (19)

С учетом (15) для разных решеток (соответственно для разных длин волн) приведенный период микрорельефа

$$\lambda_{mD} = s_D \lambda_D (2N+1)/(n p) = \lambda_D (1/\theta - (5/6)(2N+1)/n)$$

15 (19D)

$$\lambda_{mE} = s_E \lambda_E (2N+1)/(n p) = \lambda_E (1/\theta - (3/6)(2N+1)/n)$$

(19E)

$$\lambda_{mF} = s_F \lambda_F (2N+1)/(n p) = \lambda_F (1/\theta - (1/6)(2N+1)/n)$$

(19F)

20

С точки зрения уменьшения разрешения зубьев 19 и 20 гребенок следует располагать строчный модулятор 3 для максимальной длины волны света в точке D (красный), а для минимальной — в точке F (синий).

Физический период микрорельефа на грани призмы

$$\Lambda_{\rm m} = \lambda_{\rm m} \sqrt{2}$$

(20)

или с учетом (19) для разных длин волн

$$\Lambda_{mD} = \lambda_{mD} \sqrt{2} = \lambda_D \sqrt{2} (1/\theta - (5/6)(2N+1)/n)$$

(21D)

30
$$\Lambda_{mE} = \lambda_{mE} \sqrt{2} = \lambda_E \sqrt{2} (1/\theta - (3/6)(2N+1)/n)$$

(21E)

$$\Lambda_{\rm mF} = \lambda_{\rm mF} \sqrt{2} = \lambda_{\rm F} \sqrt{2} (1/\theta - (1/6)(2N+1)/n)$$

(21F)

10

25

30

51

Фокусное расстояние линзы в пластике, с учетом (14) $f_p = t + w = p/3 + p(n/((2N+1)\theta)-5/3) = p(n/((2N+1)\theta)-4/3)$ (22) Фокусное расстояние линзы в воздухе $f = f_p/n$, $f = f_p/n = p(1/((2N+1)\theta)-4/(3n))$ (23)

При θ = 0.05, λ_D = 0.60 мкм, λ_E = 0.45 мкм, λ_F = 0.40 мкм, p=0.4 мм, n=1.59, N=3

Из (9) прямоугольные грани призмы t=p/3=0.133 мм,

Из (14A) габаритная высота пикселя равна $d=2p/3+w=p(n/((2N+1)\theta)-1)=1.417$ мм,

Из (12) размер заслонки h=p/(2N+1)=80 мкм,

15 Из (21) физический период микрорельефа на гранях призмы

 $\Lambda_{\rm m} = \lambda_1(28.28 - [5,3,1] + 1.0377);$

 $\Lambda_{\rm mD} = \lambda_{\rm D} \sqrt{2} (1/\theta - (5/6)(2N+1)/n) = 13.85 \text{ мкм}$ (72.2 мм⁻¹) (красный),

 $\Lambda_{\rm mE} = \lambda_{\rm E} \sqrt{2} (1/\theta - (3/6)(2N+1)/n) = 11.33 \,\mathrm{MKM}$ (88.3 мм⁻¹) (зеленый),

 $\Lambda_{\rm mF} = \lambda_{\rm F} \sqrt{2} (1/\theta - (1/6)(2N+1)/n) = 10.89 \,\mathrm{mkm} \qquad (91.5 \,\mathrm{mm}^{-1}) (\mathrm{синий}).$

20 Из (22) фокусное расстояние линзы в пластике $f_p = p(n/((2N+1)\theta)-4/3) = 1.28$ мм.

Из формул (21) и из примера видно, что в данной конструкции строчного элемента период решеток определяется в основном углом расходимости и длиной волны излучения.

Таким образом, в предложенном электрооптическом преобразователе качество выходного сигнала на устройстве восприятия этого сигнала выше, чем в прототипе. При этом совокупность отличительных признаков электрооптического преобразователя позволяет при современном уровне технологии изготовить устройство отображения телевизионной информации, устройство записи на светочувствительный носитель, устройство оптической обработки информации, а также различные оптоволоконные устройства для управления световыми потоками.

WO 2004/059372

PCT/RU2003/000535

52

При этом функциональные, стоимостные эксплуатационные расходы будут ниже, чем у прототипа.

И

5

10

15

20

10

15

20

25

30

53

ФОРМУЛА ИЗОБРЕТЕНИЯ.

1. Электрооптический преобразователь, содержащий последовательно расположенные на оптической оси: хотя бы один осветитель, одну прозрачную подложку или М прозрачных подложек, каждая из которых выполнена в виде хотя бы одной плоскопараллельной пластины или хотя бы одной призмы полного внутреннего отражения, хотя бы один строчный модулятор, хотя бы один визуализатор, устройство восприятия, а также хотя бы одно устройство управления, причем каждый строчный модулятор содержит нанесенный на прозрачную подложку прозрачный электропроводящий слой, прозрачным гелеобразным слоем и систему из і штук параллельных ленточных электродов управления и заземления, расположенных на соответствующей каждому строчному модулятору второй подложке в одной плоскости размещенных с зазором над прозрачным гелеобразным слоем и соединенных электрически с соответствующим устройством управления, при этом каждая прозрачная подложка с соответствующим хотя бы одним модулятором составляет строчный элемент, причем осветитель состоит из последовательно расположенных на оптической оси протяженного источника света и осветительного объектива, визуализатор включает в себя последовательно расположенные на оптической оси фурье-объектив и визуализирующую диафрагму, причем источник света является импульсным или непрерывным, а частота повторения импульсов света равна частоте строк изображения, при этом ленточные электроды управления электрически соединены с периодической структурой зубьев управления, а электроды заземления электрически соединены с периодической структурой зубьев заземления, причем для каждого строчного пикселя зубья вместе с соответствующими электродами имеют вид двух изолированных друг от друга проводящих гребенок, при этом зубья гребенок расположены параллельно протяженному источнику света, а период расстановки пар зубьев управления и заземления λ_{3y6} , выбирается из условия: $\lambda_{3y6} \le \sqrt{2} \lambda_{cheta}$ $\alpha_{\text{расх}}$ где $\lambda_{\text{света}}$ -длина волны протяженного источника света и $\alpha_{\text{расх}}$ (в радианах) расходимость излучения источника света в направлении, перпендикулярном зубьям гребенок, а гелеобразный слой выполнен на основе поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ с молекулярной массой 10000-16000 И вязкостью 800-1000 Cct, олигогидридсилоксана формулы

15

20

25

30

 $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст.

- 2. Устройство по п.1, отличающееся тем, что в осветительный объектив введен по крайней мере один цилиндрический объектив, образующая которого параллельна зубьям гребенок.
- 3. Устройство по п.1, отличающееся тем, что визуализатор содержит по крайней мере один цилиндрический объектив, образующая которого параплельна зубьям гребенок.
- 4. Устройство по п.1, отличающееся тем, что устройство восприятия содержит проекционный объектив, систему зеркал, средство сканирования строки по вертикали, экран, фотодатчик сканера, причем в проекционный объектив введен тороидально-цилиндрический объектив.
- 5. Устройство по п.1, отличающееся тем, что устройство управления состоит из устройства синхронизации, выход которого подключен к блоку источников напряжений сигналов, а его вход - к фотодатчику сканера, источника опорных напряжений. включенного между прозрачным электропроводящим и электродами заземления, блока источников напряжений сигналов, слоем соединенных с і входами электродов управления строчного модулятора, источника напряжения смещения, подключенного одним выводом через электрический источник коррекций временного фронта образования рельефа к одноименным выводам блока источников напряжений сигналов, а другим выводом - к электродам заземления, при этом устройство синхронизации имеет два дополнительных выхода, один из которых подключен к источнику света, а другой - к средству сканирования строки, а также имеет дополнительный вход от блока источников напряжений сигналов, при этом последовательно с источником напряжения смещения введен электрический источник коррекций временного фронта образования рельефа, соединенный с устройством синхронизации, который в момент включения импульса сигнала подает дополнительное импульсное напряжение коррекции заданной во времени формы, а к блоку источников напряжений сигналов подключен коммутатор, переключающий полярность сигнала на электродах управления и заземления по заданному

55

пространственно-временному закону и соединенный с устройством синхронизации.

6. Устройство по п.1, отличающееся тем, что система параплельных ленточных электродов управления и заземления нанесена на вторую подложку и покрыта равномерным по толщине тонким слоем диэлектрика, на который нанесены перпендикулярно ленточным электродам управления и заземления зубья управления и заземления гребенок, параплельные протяженному источнику света, причем зубья управления электрически соединены с помощью контактов с соответствующими ленточными электродами управления, а зубья заземления электрически соединены с помощью контактов с соответствующими ленточными электрически соединены с помощью контактов с соответствующими ленточными электродами заземления, при этом торцы зубьев одного пикселя расположены с зазором напротив торцов зубьев другого пикселя, причем зубья покрыты тонким защитным диэлектрическим слоем с регулируемыми электрическими свойствами.

10

15

20

25

- 7. Устройство по п.1, отличающееся тем, что система из параллельных ленточных электродов управления и заземления нанесена на вторую подложку и покрыта равномерным по толщине тонким слоем диэлектрика, на котором расположены зубья заземления гребенок, соединенные электрически с помощью контактов с соответствующими ленточными электродами заземления и покрытые вторым равномерным по толщине тонким слоем диэлектрика, на который нанесены зубья управления гребенок, соединенные электрически с помощью контактов с соответствующими ленточными электродами управления, при этом в каждом пикселе торцы зубьев расположены напротив промежутков между торцами зубьев соседнего пикселя.
- 8. Устройство по п.1, отличающееся тем, что устройство восприятия содержит проекционный объектив, систему зеркал, средство сканирования строки по вертикали, устройство содержит красный, зеленый и синий осветители, а также три устройства управления, соответстующие красному, зеленому и синему осветителям и, электрически соединенные выходами с введенным цветовым коммутатором, подключенным одним своим выходом к каждому строчному модулятору, тремя выходами к трем включаемым им последовательно осветителям, а пятым выходом к средству сканирования, прозрачная подложка выполнена в виде хотя бы одной треугольной призмы полного внутреннего отражения, каждый строчный элемент содержит три включаемых одновременно

10

15

20

25

30

строчных модулятора, при этом каждый из модуляторов имеет период расстановки пар зубьев управления и заземления λ_{3y6} , соответствующий одному из трех цветов, три осветителя расположены параллельно друг другу, а световое излучение соответствующего цвета падает перпендикулярно на соответствующий строчный модулятор, при этом световое излучение с большей длиной волны направляется на строчный модулятор, отстоящий на большем расстоянии от фурье-объектива, при этом непрозрачная визуализирующая диафрагма перекрывает или пропускает излучение нулевого порядка всех трех цветов.

- 9. Устройство по п.1, отличающееся тем, что оно содержит красный, зеленый и синий осветители, а также три устройства управления соответствующие красному, зеленому и синему осветителям и, электрически соединенные выходами с введенным цветовым коммутатором, подключенным одним своим выходом к каждому из строчных модуляторов, тремя выходами - к трем включаемым им последовательно осветителям, а пятым выходом - к средству сканирования, причем каждый строчный элемент содержит три строчных модулятора с тремя различными пространственными периодами расстановки пар зубьев управления и заземления λ_R , λ_G , λ_B , соответствующими длинам волн красного, зеленого и синего осветителей, причем три строчных модулятора, включаемые последовательно во времени, расположены на оптической оси так, что строчный модулятор, соответствующий большей длине волны, расположен дальше по ходу луча света от фурье-объектива.
- 10. Устройство по п.1, отличающееся тем, что каждая прозрачная подложка выполнена в виде N треугольных призм с основанием в виде прямоугольного треугольника последовательно сопряженных оптически равными катетными боковыми гранями, причем на все или некоторые гипотенузные боковые грани нанесены строчные модуляторы, при этом одна катетная боковая грань первой призмы имеет свободную поверхность, обращенную к хотя бы одному осветителю, и одна катетная боковая грань последней призмы имеет свободную поверхность, обращенную к хотя бы одному визуализатору, причем эти грани расположены перпендикулярно оптической оси, при этом свет от осветителя падает на все гипотенузные грани под углом большим, чем угол полного внутреннего отражения, а строчные модуляторы имеют равные или разные пространственные частоты зубьев гребенок.

10

15

20

- 11. Устройство по п.10, отличающееся тем, что содержит М строчных элементов, которые размещены в виде линейной матрицы и прозрачная подложка каждого из которых содержит четное количество призм, причем размещенные в параллельных плоскостях или в одной плоскости первые и последние свободные катетные боковые грани строчных элементов обращены соответственно к матрице из М одноцветных, трехцветных или многоцветных осветителей и к матрице М одноцветных, трехцветных или многоцветных визуализаторов соответственно.
- 12. Устройство по п.11, отличающееся тем, что устройство восприятия выполнено в виде прозрачного или матового, или светочувствительного, или теплочувствительного материала, и помещено после матрицы визуализаторов на оптической оси.
- 13. Устройство по п.10, отличающееся тем, что протяженный источник света выполнен в виде световолокна или их матрицы, с одной стороны подключенной к монохромному или полихромному лазерному источнику информации, а с другой стороны оптически сопряженной с первой по ходу светового луча призмой, при этом каждое световолокно сопряжено с одним или несколькими пикселями каждого строчного модулятора, а последняя по ходу светового луча призма сопряжена с одним или матрицей визуализаторов, причем непрозрачная визуализирующая диафрагма содержит одно или матрицу отверстий с размером, пропускающим нулевой порядок дифракции света, при этом на оптической оси на расстоянии меньше фокусного после этого отверстия или матрицы отверстий расположен объектив. фокусирующий свет на выходное световолокно, подсоединенное с другой стороны к устройству восприятия световой информации, причем на все строчные модуляторы подается сигнальное напряжение синхронно или в трехфазном, или многофазном временном режиме, достаточное для создания оптимальной глубины фазовой модуляции, равной 4,82 радиан, при этом устройство восприятия электрически сопряжено с осветителем.
- 14. Устройство по п.10, отличающееся тем, что протяженный источник света выполнен в виде световолокна или их матрицы, с одной стороны подключенной к монохромному или полихромному лазерному световому источнику информации, а с другой стороны оптически сопряженной с первой по

15

20

25

30

ходу светового луча призмой, при этом каждое световолокно оптически контактирует с одним или несколькими пикселями каждого строчного модулятора, а последняя по ходу светового луча призма сопряжена с одним или матрицей визуализаторов, причем непрозрачная визуализирующая диафрагма содержит одно или матрицу отверстий с размером, пропускающим первого или иного высшего порядка дифракции света, управляемого электродами пикселей, при этом визуализатор для каждого строчного модулятора выполнен отверстия или матрицы отверстий расположен объектив, так, что против фокусирующий свет на выходное световолокно, подсоединенное с другой стороны к устройству восприятия световой информации, причем на все строчные модуляторы подается сигнальное напряжение синхронно или в трехфазном, или многофазном временном режиме, достаточное для создания оптимальной глубины фазовой модуляции, равной 4,82 радиан, при этом устройство восприятия электрически сопряжено с осветителем.

- 15. Устройство по п.10, отличающееся тем, что осветитель расположен под углом меньшим 90 градусов, а устройство восприятия расположено под углом 90 градусов к первой по ходу светового луча боковой грани призмы строчного элемента, а часть визуализирующей диафрагмы, перекрывающая свет нулевого порядка дифракции, покрыта зеркалом и расположена параллельно последней по ходу светового луча боковой грани призмы строчного элемента, при этом со стороны визуализирующей диафрагмы, не покрытой зеркалом, расположено второе устройство восприятия или светопоглощающее устройство.
- 16. Устройство по п.10, отличающееся тем, что в одном или нескольких строчных модуляторах в строчном элементе зубья гребенок закрыты сплошным тонким диэлектрическим зеркалом, отражающим свет соответствующей длины волны, а одна или все свободные от строчных модуляторов гипотенузные грани призм покрыты зеркалом.
- 17. Устройство по п.п.15 или 16, отличающееся тем, что последняя свободная катетная грань призмы строчного модулятора покрыта зеркалом.
- 18. Электрооптический преобразователь, содержащий красный, зеленый и синий осветители, прозрачную подложку в виде хотя бы одной плоскопараллельной пластины или хотя бы одной призмы полного внутреннего отражения, один строчный модулятор, хотя бы один визуализатор, устройство

восприятия, а также три устройства управления, соответствующих красному, зеленому и синему осветителям, электрически соединенные выходами с введенным цветовым коммугатором, подключенным одним своим выходом к строчному модулятору, тремя выходами - к трем включаемым им последовательно осветителям, а пятым выходом - к средству сканирования, причем строчный модулятор содержит нанесенный на прозрачную подложку прозрачный электропроводящий слой, покрытый прозрачным гелеобразным слоем и систему из і штук параллельных ленточных электродов управления и заземления, расположенных на второй подложке в одной плоскости и размещенных с зазором над прозрачным гелеобразным слоем, при этом строчный модулятор вместе с прозрачной подложкой составляет строчный элемент, а каждый осветитель состоит из последовательно расположенных на оптической оси протяженного источника света и осветительного объектива, при этом источник света является импульсным или непрерывным, а частота повторения импульсов света равна частоте строк изображения, визуализатор включает в себя последовательно расположенные на оптической оси фурье-объектив визуализирующую диафрагму, при этом коллинеарный поток излучения всех трех цветов падает перпендикулярно и последовательно во времени на строчный элемент, ленточные электроды управления электрически соединены с периодической структурой зубьев управления, а электроды заземления электрически соединены с периодической структурой зубьев заземления, причем для каждого строчного пикселя зубья вместе с электродами имеют вид двух изолированных друг от друга проводящих гребенок, при этом зубья гребенок расположены параллельно протяженным источникам света, а период расстановки пар зубьев управления и заземления $\lambda_{\text{зуб}}$, определяется по формуле $\lambda_{\text{зуб}} \leq \sqrt{2} \, \lambda_{\text{света}}$ $_{
m min}$ / lpha $_{
m pacx~max}$, где $\,lpha$ $_{
m pacx~max}$ — наибольшая расходимость излучения среди излучений красного, зеленого и синего цветов, λ _{света min} - наименьшая длины волны света, при этом размер непрозрачной визуализирующей диафрагмы определяется из условия перекрытия нулевых порядков всех трех цветов, а напряжение на электродах управления строчного модулятора формирует необходимую глубину рельефа для каждого цвета, и гелеобразный слой выполнен на основе поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной массой 10000-16000 вязкостью 800-1000 Cct,

10

15

20

25

10

15

20

25

30

олигогидридсилоксана формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ с содержани

 $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст.

19. Электрооптический преобразователь, содержащий хотя бы один осветитель, одну прозрачную подложку или М прозрачных подложек, каждая из которых выполнена в виде хотя бы одной плоскопараллельной пластины, хотя бы один строчный модулятор, хотя бы один визуализатор, устройство восприятия, а также хотя бы одно устройство управления, причем каждый строчный модулятор содержит нанесенный на соответствующую прозрачную подложку прозрачный электропроводящий слой, покрытый прозрачным гелеобразным слоем и систему из і штук параллельных ленточных электродов управления расположенных на соответствующей каждому строчному модулятору второй подложке в одной плоскости, размещенных с зазором над прозрачным гелеобразным слоем и соединенных электрически с устройством управления, при этом каждая прозрачная подложка с соответствующим хотя бы одним модулятором составляет строчный элемент, причем осветитель состоит из последовательно расположенных на оптической оси протяженного источника света И осветительного объектива, визуализатор включает в себя последовательно расположенные на оптической оси фурье-объектив визуализирующую диафрагму, причем источник света является импульсным или непрерывным, а частота повторения импульсов света равна частоте строк изображения, осветитель расположен так, что излучение от него направлено под углом меньшим 90 градусов к плоскопараллельной пластине, прозрачному электропроводящему слою, прозрачному гелеобразному слою, воздушному зазору, , причем ленточные электроды управления электрически соединены с периодической структурой зубьев управления, а электроды заземления электрически соединены с периодической структурой зубьев заземления, причем для каждого строчного пикселя зубья вместе с электродами имеют вид двух изолированных друг от друга проводящих гребенок, при этом зубья гребенок расположены параплельно протяженному источнику света и закрыты сплошным тонким диэлектрическим зеркалом, отражающим свет соответствующей длины волны, при этом период расстановки пар зубьев управления и заземления $\lambda_{\text{зуб}}$ выбирается из условия λ $_{\text{sy6}}$ \leq 2 λ $_{\text{света}}$ / α $_{\text{pacx}}$, где λ $_{\text{света}}$ - длина волны

61

протяженного источника света; $\alpha_{\text{расх}}$ (в радианах) — расходимость излучения источника света в направлении, перпендикулярном зубьям гребенок, и гелеобразный слой выполнен на основе поливинилсилоксана формулы (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ с молекулярной массой 10000-16000 и вязкостью 800-1000 Сст, опитогидридсилоксана формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст.

5

10

15

20

25

- 20. Гелеобразный слой для электрооптического преобразователя, отличающийся тем, что представляет собой продукт взаимодействия компонентов гелеобразной композиции, включающей поливинилсилоксан (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ с молекулярной массой 10000-16000 и вязкостью 800-1000 Cct, олигогидридсилоксан формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ как сшивающий агент, с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст, полиметилсилоксановую жидкость формулы (CH₃)₃SiO[(CH₃)₂SiO]Si(CH₃)₃ как пластификатор с вязкостью 5-20 Сст, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом как катализатор отверждения, при следующем соотношении компонентов (мас. ч): поливинилсилоксан – 100, олигогидридсилоксан – 15-25, полиметилсилоксановая жидкость - 150-300, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом -0,3-2.
- 21. Способ приготовления гелеобразного слоя для электрооптического преобразователя, отличающийся тем, что включает смешение 100 мас. ч поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0,3-20,1% мас. раствора платинохлорсероводородной кислоты в органическом растворителе или ее комплекса С тетравинилсиланом, при этом полученную композицию

10

15

20

25

30

перемешивают и наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания.

- 22. Способ по п.21, отличающийся тем, что композицию наносят на электропроводящий прозрачный слой через 1-20 мин. после окончания перемешивания.
- 23. Способ по п.21, отличающийся тем, что полученную композицию наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, спивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля после сшивания и охлаждения каждого предыдущего слоя.
- 24. Способ приготовления гелеобразного слоя для электрооптического преобразователя, отличающийся тем, что включает смешение 100 мас. ч поливинилсилоксана $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ формулы молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы (CH) $_3$ SiO[(CH $_3$) $_2$ SiO]CH $_3$ SiO(H)]Si(CH $_3$) $_3$ с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0.3 - 2мас. ч. 0,1% раствора платинохлорсероводородной кислоты в органическом растворителе или ее тетравинилсиланом, при ЭТОМ полученную композипию перемешивают и наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания, затем покрывают дополнительной пластиной с оптически плоской поверхностью, а толщину гелеобразного слоя выравнивают с помощью главных спейсеров, помещенных между прозрачным электропроводящим слоем и дополнительной пластиной, затем полученную конструкцию помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 2-4 часов, затем отделяют дополнительную пластину, а гелеобразный слой покрывают второй с нанесенными на нее электродами управления и заземления и закрытых тонким защитным диэлектрическим слоем, причем зазор выставляют дополнительными спейсерами, большими, чем главные спейсеры.

20

25

- 25. Способ по 24, отличающийся тем, что полученную композицию наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, сшивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля, после спивания и охлаждения каждого предыдущего слоя.
- 26. Способ по п.24, отличающийся тем, что дополнительную пластину покрывают антиадгезионным слоем.
- 27. Способ по п.26, отличающийся тем, что в качестве антиадгезионного
 слоя используют поверхностно активное вещество, например, сульфанол-π.
 - 28. Способ по п.24, отличающийся тем, что дополнительную пластину обрабатывают плазменным или иным очищающим облучением.
 - 29. Способ приготовления гелеобразного слоя для электрооптического преобразователя, отличающийся тем, что включает смешение 100 мас. поливинилсилоксана (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ формулы C. молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы (CH)₃SiO[(CH₃)₂SiO]CH₃SiO(H)]Si(CH₃)₃ содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0,3-2мас. ч. 0,1% раствора платинохлорсероводородной кислоты в органическом растворителе или ее комплекса тетравинилсиланом. при этом полученную перемешивают и наносят равномерным по толщине слоем на прозрачный электропроводящий слой после окончания перемешивания, затем покрывают дополнительной пластиной с оптически плоской поверхностью, а толщину гелеобразного слоя выравнивают с помощью главных спейсеров, помещенных между прозрачным электропроводящим слоем и дополнительной пластиной, затем полученную конструкцию помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 1-2 часов, затем охлаждают до комнатной температуры, после чего отделяют дополнительную пластину, затем гелеобразный слой, расположенный на прозрачном электропроводящем слое, снова помещают в термошкаф и выдерживают при

20

25

30

температуре 70-90 градусов Цельсия до полного сшивания геля в течение приблизительно 1-3 часов.

- 30. Способ по п.29, отличающийся тем, что полученную композицию наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, сшивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля, после сшивания и охлаждения каждого предыдущего слоя.
- 31.Способ по п.29, отличающийся тем, что дополнительную пластину покрывают антиадгезионным слоем.
 - 32. Способ по п.31, отличающийся тем, что в качестве антиадгезионного слоя используют поверхностно активное вещество, например, сульфанол- π .
 - 33. Способ по п.29, отличающийся тем, что дополнительную пластину обрабатывают плазменным или иным очищающим облучением.
 - 34. Способ приготовления гелеобразного слоя для электрооптического преобразователя, отличающийся тем, что включает смешение 100 мас. ч поливинилсилоксана формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч олигогидридсилоксана формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перементивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0,3-2мас. ч. 0,1% раствора платинохпорсероводородной кислоты в органическом растворителе или ее комплекса с тетравинилсиланом, при этом полученную композицию перемешивают и наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемептивания, затем покрывают дополнительной пластиной с оптически плоской поверхностью, а толщину гелеобразного слоя выравнивают с помощью главных спейсеров, помещенных между прозрачным электропроводящим слоем и дополнительной пластиной, затем полученную конструкцию помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия в течение приблизительно 2-4 часов, затем отделяют дополнительную пластину, а гелеобразный слой покрывают второй

65

подложкой с нанесенными на нее электродами управления и заземления и закрытых тонким защитным диэлектрическим слоем, причем зазор выставляют главными спейсерами после полного сшивания, усадки и охлаждения геля до комнатной температуры.

35. Способ по 34, отличающийся тем, что полученную композицию наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, сшивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля, после сшивания и охлаждения каждого предыдущего слоя.

5

10

15

20

25

- 36. Способ по п.34, отличающийся тем, что дополнительную пластину покрывают антиадгезионным слоем.
- 37. Способ по п.36, отличающийся тем, что в качестве антиадгезионного слоя используют поверхностно активное вещество, например, сульфанол- π .
- 38. Способ по п.34, отличающийся тем, что дополнительную пластину обрабатывают плазменным или иным очищающим облучением.
- 39. Способ приготовления гелеобразного слоя для электрооптического преобразователя, отличающийся тем, что включает смешение 100 мас. ч поливинилсилоксана формулы (CH₂=CH)₃SiO[(CH₃)₂SiO]_mSi(CH=CH₂)₃ молекулярной массой 10000-16000 и вязкостью 800-1000 Сст и 15-25 мас. ч формулы (CH) $_3$ SiO[(CH $_3$) $_2$ SiO]CH $_3$ SiO(H)]Si(CH $_3$) $_3$ с олигогидридсилоксана содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст и введение после перемешивания 150-300 мас. ч. полиметилсилоксановой жидкости с вязкостью 5-20 Сст формулы $(CH_3)_3SiO[(CH_3)_2SiO]Si(CH_3)_3$, добавление после повторного перемешивания 0,3-2мас. ч. 0,1% раствора платинохлорсероводородной кислоты в органическом растворителе или ее комплекса тетравинилсиланом, при этом полученную композицию перемешивают и наносят равномерным по толщине слоем на прозрачный электропроводящий слой после окончания перемешивания, затем покрывают дополнительной пластиной с оптически плоской поверхностью, а толщину гелеобразного слоя выравнивают с помощью главных спейсеров, помещенных между прозрачным электропроводящим слоем и дополнительной пластиной, затем полученную конструкцию помещают в термошкаф и выдерживают при

15

20

25

30

температуре 70-90 градусов Цельсия в течение приблизительно 1-2 часов, затем охлаждают до комнатной температуры, после чего отделяют дополнительную пластину, затем гелеобразный слой, расположенный на прозрачном электропроводящем слое, снова помещают в термошкаф и выдерживают при температуре 70-90 градусов Цельсия до полного сшивания геля в течение приблизительно 1-3 часов, а зазор выставляют главными спейсерами после полного сшивания, усадки и охлаждения геля до комнатной температуры.

- 40. Способ по 39, отличающийся тем, что полученную композицию наносят равномерным по толщине слоем на электропроводящий прозрачный слой после окончания перемешивания следующим образом: формируют первый слой геля, сшивают и охлаждают его, затем наносят на него последовательно один или несколько дополнительных слоев геля после сшивания и охлаждения каждого предыдущего слоя.
- 41. Способ по п.39, отличающийся тем, что дополнительную пластину покрывают антиадгезионным слоем.
 - 42. Способ по п.41, отличающийся тем, что в качестве антиадгезионного слоя используют поверхностно активное вещество, например, сульфанол- π .
- 43. Способ по п.39, отличающийся тем, что дополнительную пластину обрабатывают плазменным или иным очищающим облучением.
- 44. Композиция для осуществления способа изготовления гелеобразного слоя для электрооптических преобразователей, включающая поливинилсилоксан формулы $(CH_2=CH)_3SiO[(CH_3)_2SiO]_mSi(CH=CH_2)_3$ с молекулярной массой 10000-16000 вязкостью 800-1000 CcT, олигогидридсилоксан формулы $(CH)_3SiO[(CH_3)_2SiO]CH_3SiO(H)]Si(CH_3)_3$ как сшивающий агент, с содержанием гидридных групп от 10-15% и вязкостью 50-100 Сст, полиметилсилоксановую жидкость формулы (CH₃) $_3$ SiO[(CH₃) $_2$ SiO]Si(CH₃) $_3$ как пластификатор с вязкостью 5-20 Сст, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом как катализатор отверждения, при следующем соотношении компонентов (мас. ч): поливинилсилоксан - 100, олигогидридсилоксан - 15-25, полиметилсилоксановая жидкость - 150-300, 0,1% раствор платинохлорсероводородной кислоты в органическом растворителе или ее комплекс с тетравинилсиланом – 0,3-2.

2/14

Фиг. 2

3/14

Фиг.3

Фиг.4

5/14

Фиг.5

Фиг.7

8/14

Фиг.8

10/14

11/14

12/14

Фиг.11

13/14

Фиг.12

Фиг.13

INTERNATIONAL SEARCH REPORT

International application No. PCT/RU 2003/000535

A. CLAS	SSIFICATION OF SUBJECT MATTER		
		2F 1/01, G02B 26/06, C08L 83/04	
According to	International Patent Classification (IPC) or to b	oth national classification and TPC	•
B. FIELL	DS SEARCHED		· ·
Minimum do	cumentation searched (classification system followed	by classification symbols)	
G02B 26 5/74, C0	5/00-26/10, 27/50, 27/54, G02F 1/00, 1/01, 1/061, 8J 7/04, 7/06, C08K 5/54, C08L 83/00-83/08, C23	1/29, G03B 21/00, G11B 7/00, H04N 5/30 C 14/34	
Documentation	on searched other than minimum documentation to the	e extent that such documents are included in	the fields seasohed
			dio noids segioned
Electronic dat	a base consulted during the international search (nam	no of data have and mile	
	touton (min	to of data base and, where practicable, search	h terms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category*			
Category	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No
A	WO 2001/048531 A2 (OPTISWITCH AS et al.) 05.07.2001, the claims		1-44
A	RU 2080641 C1 (GUSCHO YU.P. et al.) 27.05.1997, the claims, fig. 2		1-19
Α	US 5822110 A (RAD HASSAN DABBAJ) 13.10.1998, the claims		1-19
A	US 5135630 A (NORTH AMERICAN PHILIPS CORPORATION) 04.08.1992, the claims		1-44
A	US 5432280 A (SHIN-ETSU CHEMICAL CO., LTD.) 11.07.1995, the claims		20-44
.		•	
Fresh and			
	ocuments are listed in the continuation of Box C.	See patent family annex.	
A" document d	egories of cited documents: efining the general state of the art which is not considered ticular relevance	"T" later document published after the inte date and not in conflict with the appli the principle or theory underlying the	
E" earlier docu document w cited to est	ment but published on or after the international filing date which may throw doubts on priority claim(s) or which is ablish the publication date of continuous	'X' document of particular relevance; the	claimed invention cannot b
O" document r	eferring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other with	claimed invention cannot be step when the document is
" document pr the priority	ublished prior to the international filing date but later than date claimed	being obvious to a person skilled in the "&" document member of the same patent	ie art
ate of the actu	al completion of the international search		
09 March 2004 (09.03.2004)		Date of mailing of the international search report 18 March 2004 (18.03.2004)	
ame and mailing address of the ISA/		Authorized officer	-,
csimile No.	·	m.t. d.	
	0 (second sheet) (July 1992)	Telephone No.	

ОТЧЕТ О МЕЖДУНАРОДНОМ ПОИСКЕ

Форма PCT/ISA/210 (второй лист)(июль 1998)

Международная заявка № PCT/RU 2003/000535

А. КЛАССИФИКАЦИЯ ПРЕДМЕТА ИЗОБРЕТЕНИЯ: G02F 1/01, G02B 26/06, C08L 83/04 Согласно международной патентной классификации (МПК-7) В. ОБЛАСТИ ПОИСКА: Проверенный минимум документации (система классификации и индексы) МПК-7: G02B 26/00-26/10, 27/50, 27/54, G02F 1/00, 1/01, 1/061, 1/29, G03B 21/00, G11B 7/00, H04N 5/30, 5/74, C08J 7/04, 7/06, C08K 5/54, C08L 83/00-83/08, C23C 14/34 Другая проверенная документация в той мере, в какой она включена в поисковые подборки: Электронная база данных, использовавшаяся при поиске (название базы и, если, возможно, поисковые термины): С. ДОКУМЕНТЫ, СЧИТАЮЩИЕСЯ РЕЛЕВАНТНЫМИ: Категория* Ссылки на документы с указанием, где это возможно, релевантных частей Относится к пункту № Α WO 2001/048531 A2 (OPTISWITCH AS и др.) 05.07.2001, формула RU 2080641 С1 (ГУЩО Ю.П. и др.) 27.05.1997, формула, фиг. 2 1-19 US 5822110 A (RAD HASSAN DABBAJ) 13.10.1998, формула 1-19 US 5135630 A (NORTH AMERICAN PHILIPS CORPORATION) 1-44 04.08.1992, формула Α US 5432280 A (SHIN-ETSU CHEMICAL CO., LTD.) 11.07.1995, 20-44 формула лоследующие документы указаны в продолжении графы С. данные о патентах-аналогах указаны в приложении Особые категории ссылочных документов: Т более поздний документ, опубликованный после даты А документ, определяющий общий уровень техники приоритета и приведенный для понимания иззобретения Е более раший документ, но опубликованный на дату Х документ, имеющий наиболее близкое отношение к предмету международной подачи или после нее поиска, порочащий новизну и изобретательский уровень О документ, относящийся к устному раскрытию, экспони-У документ, порочащий изобретательский уровень в сочерованию и т.д. тании с одним или несколькими документами той же документ, опубликованный до даты международной покатегории дачи, но после даты испрашиваемого приоритета & документ, являющийся патентом-аналогом Дата действительного завершения международного Дата отправки настоящего отчета о международном поиске: 09 марта 2004 (09.03.2004) 18 марта 2004 (18.03.2004) Наименование и адрес Международного поискового органа Уполномоченное лицо: Федеральный институт промышленной собственности Е. Андрейченко РФ,123995, Москва, Г-59, ГСП-5, Бережковская наб., 30.1 Факс: 243-3337, телетайп: 114818 ПОДАЧА

Телефон № 240-25-91