Direct Manipulation and Virtual Environments

Designing the User Interface:
Strategies for Effective Human-Computer
Interaction

Principles of Direct Manipulation

- Continuous representations of the objects and actions of interest with meaningful visual metaphors.
- 2. Physical actions or presses of labeled buttons, instead of complex syntax.
- 3. Rapid, incremental, reversible actions whose effects on the objects of interest are visible immediately.

Examples of Direct-Manipulation Systems

- Word processors
- Integration
- Desktop publication software
- Slide-presentation software
- Hypermedia environments
- The VisiCalc spreadsheet and its descendants
- In some cases, spatial representations provide a better model of reality
 - Successful spatial data-management systems depend on choosing appropriate:
 - Icons
 - Graphical representations
 - Natural and comprehensible data layouts

Examples of Direct-Manipulation Systems (cont.)

Video games

- Nintendo Wii, Sony PlayStation, and Microsoft Xbox
- Field of action is visual and compelling
- Commands are physical actions whose results are immediately shown on the screen
- No syntax to remember
- Most games continuously display a score
- Direct manipulation in SimSity
- Second Life virtual world

Examples of Direct-Manipulation Systems (cont.)

Computer-aided design

- Computer-aided design (CAD) use direct manipulation
- Manipulate the object of interest
- Generate alternatives easily
- Explain the impact
- Problem solving by analogy to the real-world

Office automation

- Xerox Star was a pioneer with sophisticated formatting
- Apple Lisa System
- Rapid and continuous graphical interaction
- Microsoft Windows is a descendant

Examples of Direct-Manipulation Systems: WYSIWYG word processing

Examples of Direct-Manipulation Systems (cont.): spreadsheet

Examples of Direct-Manipulation Systems (cont.)

spatial data management

Examples of Direct-Manipulation Systems (cont.)

Guitar Hero video game

Discussion of Direct Manipulation

Problems with direct manipulation

- Spatial or visual representations can be too spread out
- High-level flowcharts and database-schema can become confusing
- Designs may force valuable information off of the screen
- Users must learn the graphical representations
- The visual representation may be misleading
- Typing commands with the keyboard may be faster

Interface-Building Tools

Visual Thinking and Icons

- The visual nature of computers can challenge the first generation of hackers
- An icon is an image, picture, or symbol representing a concept
- Icon-specific guidelines
 - Represent the object or action in a familiar manner
 - Limit the number of different icons
 - Make icons stand out from the background
 - Consider three-dimensional icons
 - Ensure a selected icon is visible from unselected icons
 - Design the movement animation
 - Add detailed information
 - Explore combinations of icons to create new objects or actions

3D Interfaces

- "Pure" 3D interfaces have strong utility in some contexts, e.g., medical, product design.
- In other situations, more constrained interaction may actually be preferable to simplify interactions, e.g. combination actions
- "Enhanced" interfaces, better than reality, can help reduce the limitations of the real-world, e.g., providing simultaneous views.
- Avatars in multiplayer 3-D worlds

3D Interfaces (cont.)

3D Interfaces (cont.)

Features for effective 3D

- Use 3D techniques such as occlusion, shadows, perspective, and others carefully.
- Minimize the number of navigation steps for users to accomplish their tasks.
- Keep text readable.
- Avoid unnecessary visual clutter, distraction, contrast shifts, and reflections.
- Simplify user movement.
- Prevent errors.
- Simplify object movement
- Organize groups of items in aligned structures to allow rapid visual search.
- Enable users to construct visual groups to support spatial recall.

Teleoperation

- Physical operation is remote
- Complicating factors in the architecture of remote environments:
 - Time delays
 - transmission delays
 - operation delays
 - Incomplete feedback
 - Feedback from multiple sources
 - Unanticipated interferences

Virtual and Augmented Reality

- Virtual reality breaks the physical limitations of space and allow users to act as though they were somewhere else
- Augmented reality shows the real world with an overlay of additional overlay
 - Enables users to see the real world with an overlay of additional interaction.

Menu Selection, Form Fill-In, and Dialog Boxes

Menus

- Use appropriate menu
 - Single Menus
 - Binary Menus
 - Multiple-item Menus
 - Multiple-selection menus or check boxes
 - Pull-down, pop-up, and toolbar menus
 - Menus for long lists
 - Embedded menus and hotlinks

Single Menus (cont.)

Combination of multiple menus

- Linear menu sequences and simultaneous menus
 - Linear
 - Guide the user through complex decision-making process.
 - E.g. cue cards or "Wizards"
 - Effective for novice users performing simple tasks
 - Simultaneous
 - Present multiple active menus at the same time and allows users to enter choices in any order

Combination of multiple menus (cont.)

Tree-structured menus

- Designers can form categories of similar items to create a tree structure
 - E.g., fonts, size style, spacing
- Fast retrieved if natural and comprehensive
- Use terminology from the task domain
- Expanding menus maintain the full context of each choice
 - E.g., Windows Explorer

Combination of multiple menus (cont.)

Menu Maps

- Menu maps can help users stay oriented in a large menu tree
- Effective for providing overviews to minimize user disorientation.

Content Organization

- Task-related grouping in tree organization
 - Create groups of logically similar items
 - Form groups that cover all possibilities
 - Make sure that items are no overlapping
 - Use familiar terminology, but ensure that items are distinct from one another

Content Organization (cont.)

- Item Presentation Sequence
 - The order of items in the menu is important, and should take natural sequence into account when possible:
 - Time
 - Numeric ordering
 - Physical properties
 - When cases have no task-related orderings, the designer must choose from such possibilities as:
 - Alphabetic sequence of terms
 - Grouping of related items
 - Most frequently used items first
 - Most important items first.

Content Organization (cont.)

- Menu layout guidelines
 - Establish consistency guidelines for components
 - Titles
 - Graphic layout and design
 - Techniques / Format
 - Keyboard shortcuts

Form Fill-in

- Appropriate when many fields of data must be entered:
 - Full complement of information is visible to user.
 - Display resembles familiar paper forms.
 - Few instructions are required for many types of entries.
- Users must be familiar with:
 - Keyboards
 - Use of TAB key or mouse to move the cursor
 - Error correction methods
 - Field-label meanings
 - Permissible field contents
 - Use of the ENTER and/or RETURN key.

- Format-specific field
 - Coded fields
 - Telephone numbers
 - Social-security numbers
 - Times
 - Dates
 - Dollar amounts (or other currency)

Dialog Boxes

- Combination of menu and form fill-in techniques.
- Internal layout guidelines:
 - Meaningful title, consistent style
 - Top-left to bottom-right sequencing
 - Clustering and emphasis
 - Consistent layouts (margins, grid, white space, lines, boxes)
 - Consistent terminology, fonts, capitalization, justification
 - Standard buttons (OK, Cancel)
 - Error prevention by direct manipulation
 - Apply validity checks and provide clear feedback on errors

- Dialog Boxes (cont.)
 - External Relationship
 - Smooth appearance and disappearance
 - Distinguishable but small boundary
 - Size small enough to reduce overlap problems
 - Display close to appropriate items
 - No overlap of required items
 - Easy to make disappear
 - Clear how to complete/cancel

Audio Menus and Menus for Small Displays

- Menu systems in small displays and situations where hands and eyes are busy are a challenge.
 - Audio menus
 - Verbal prompts and option descriptions
 - Menu for small displays
 - Learnability is a key issue
 - Hardware buttons
 - Tap interface
 - Use GPS and radio frequency identification to provide some automatic input