Лабораторная работа 3.5.1

Изучение плазмы газового разряда в неоне.

6 сентября 2021 г.

Старченко Иван Александрович

Цель работы:

Изучение вольт-амперной характеристики тлеющего разряда; изучение свойств плазмы методом зондовых характеристик

В работе используются:

Стеклянная газоразрядная трубка, наполненная неоном; высоковольтный источник питания; источник питания постоянного тока; делитель напряжения; потенциометр; амперметры; вольтметры; переключатели

1. Теоретические сведения

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad} \ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D=\sqrt{\frac{kT_e}{4\pi ne^2}}$ – paduyc Дебая. Среднее число ионов в сфере такого радиуса

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma=nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем *плазменную (ленгмюровскую) частоту* колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi n e^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — $30n\partial a$ — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ – средние скорости электронов и ионов, S – площадь зонда, n – плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ – nлавающего nотенциала.

2

В равновесии ионный ток мало меняется, а электронный имеет вид

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока I_{eh} — электронный ток насыщения, а минимальное I_{ih} — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_{1} = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_{e} \rangle \exp\left(-\frac{eU_{f}}{kT_{e}}\right) \exp\left(\frac{e\Delta U_{1}}{kT_{e}}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_{1}}{kT_{e}}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1=-I_2=I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i\text{H}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i\text{H}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
 (11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha\approx\alpha$ при малых α и $A\to0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}|_{U=0}}.$$
 (12)

2. Экспериментальная установка

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и *геттерный* узел – стеклянный баллон, на внут-

реннюю повехность которого напылена газопоглощающая плёнка ($\it remmep$). Трубка наполнена изотопом неона 22 Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

3. Ход работы

- 1) Подготовим приборы к работе. плавно увеличив выходное напряжение ВИП, определим напряжение зажигания ($U_{\text{заж}}=22,8$ В)
- 2) С помощью вольтметра V_1 и амперметра A_1 снимем ВАХ $U_P(I_P)$. Данные представлены в таблице, приведенныой в конце.
- 3) Снимем ВАХ двойного зонда с помощью мультиметров A_2 и V_2 при $I_p=5,3,1.5\ mA$. Занесем в таблицу полученные данные (таблица привдена в конце).

(c) ВАХ двойного зонда, I=1.5 мА.

4. Апроксимация полученных данных

5. Вывод

6. Список используемой литературы

 \bullet Никулин М.Г. Лабораторный практикум по общей физике. Электричество и магнетизм

- Описание лабораторных работ на кафедре общей физики МФТИ
- \bullet П.В. Попов, А.А. Нозик. Обработка результатов учебного эксперимента

U_p , B	48	61	71	81	90	100	110	120	130	140	150
I_p , MA	29.56	27.49	27.33	26.64	25.90	25.00	24.52	24.27	24.32	24.36	24.46

Таблица 1: Зависимость $U_P(I_P)$ в сторону увеличения

.

		U_p , B	10	19	25	35	45			
		I_p , MA	35.12	24.48	33.90	32.98	30.72			
U_p , B	50	60	70	80	90	100	110	120	130	140
I_n , MA	28.96	27.63	27.26	26.66	26.40	25.12	24.68	24.38	24.34	24.34

Таблица 2: Зависимость $U_P(I_P)$ в сторону уменьшения

.

$I_p = 5.0 \text{ MA}$			$I_p = 3.0 \text{ mA}$			$I_p = 1.5 \text{ MA}$		
U_2 , B	I_2 , MKA		U_2 , B	I_2 , мк A		U_2 , B	I_2 , мк A	
24.97	107.06		24.96	58.46		24.96	28.01	
22.00	104.70		22.13	56.90		22.01	27.08	
19.10	102.31		19.22	55.24		19.13	26.16	
16.11	99.04		16.15	53.48		16.17	25.21	
13.04	93.46		13.18	51.18		13.09	23.96	
10.10	84.50		10.24	47.01		10.24	22.02	
8.05	75.71	Ì	8.01	41.69		8.01	19.51	
6.05	63.77		6.09	35.10		6.08	16.44	
4.08	49.95	Ì	4.06	26.26		3.94	11.85	
2.01	32.88		2.02	44.94		2.04	6.78	
0.53	18.74		0.55	5.95		0.51	2.12	
-0.50	-18.19		-0.55	-5.47		-0.51	-1.94	
-2.06	-32.18		-2.09	-15.34		-2.04	-6.63	
-4.09	-50.01		-4.03	-25.73		-4.02	-11.78	
-6.03	-64.73		-6.05	-35.44		-6.25	-16.02	
-8.09	-77.76		-8.19	-42.88		-8.05	-19.79	
-10.14	-88.44		-10.05	-48.17		-10.07	-22.63	
-13.13	-98.22		-13.15	-52.81		-13.01	-24.75	
-16.16	-105.20		-16.11	-55.71		-16.06	-26.17	
-19.00	-108.87		-19.04	-57.36		-19.20	-27.26	
-22.08	-112.12		-22.18	-59.12		-22.06	-28.19	
-25.01	-114.71		-24.96	-60.94		-24.95	-29.16	

Таблица 3: Зависимость $U_3(I_3)$.