

A04407A 30V P-Channel MOSFET

General Description

The AO4407A uses advanced trench technology to provide excellent $R_{DS(ON)}$, and ultra-low low gate charge with a 25V gate rating. This device is suitable for use as a load switch or in PWM applications.

* RoHS and Halogen-Free Complaint

Product Summary

$$\begin{split} &V_{DS} = -30V \\ &I_{D} = -12A \qquad (V_{GS} = -20V) \\ &R_{DS(ON)} < 11 m\Omega \ (V_{GS} = -20V) \\ &R_{DS(ON)} < 13 m\Omega \ (V_{GS} = -10V) \\ &R_{DS(ON)} < 17 m\Omega \ (V_{GS} = -6V) \end{split}$$

100% UIS Tested 100% Rg Tested

Absolute Maximum Ratings T	T _A =25℃ unless otherwise noted
----------------------------	--

/ iboolate maximum reamige T _A =200 amose emer mos notes						
Parameter		Symbol	Maximum	Units		
Drain-Source Voltage Gate-Source Voltage		V_{DS}	-30	V		
		V_{GS}	±25	V		
Continuous Drain	T _A =25℃		-12			
Current ^A	T _A =70℃	I _D	-10	۸		
Pulsed Drain Current ^B		I _{DM}	-60	A		
Avalanche Current ^G		I _{AR}	-26			
Repetitive avalanche	e energy L=0.3mH ^G	E _{AR}	101	mJ		
Power Dissipation ^A	T _A =25℃	$-P_{D}$	3.1	W		
	T _A =70℃	T D	2.0	VV		
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	C		

Thermal Characteristics					
Parameter		Symbol	Тур	Max	Units
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{ heta JA}$	32	40	°C/W
Maximum Junction-to-Ambient A	Steady State	$\kappa_{ heta JA}$	60	75	°C/W
Maximum Junction-to-Lead ^C	Steady State	$R_{ heta JL}$	17	24	℃/W

Rev.11.0 June 2013 www.aosmd.com

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC F	PARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = -250 \mu A, V_{GS} = 0 V$	-30			V
I _{DSS} Zero Gate Voltage Drain Current	$V_{DS} = -30V, V_{GS} = 0V$			-1		
DSS	Zelo Gate Voltage Dialii Current	T _J = 55℃			-5	μΑ
I _{GSS}	Gate-Body leakage current	$V_{DS} = 0V$, $V_{GS} = \pm 25V$			±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS} I_D = -250 \mu A$	-1.7	-2.3	-3	V
$I_{D(ON)}$	On state drain current	$V_{GS} = -10V, V_{DS} = -5V$	-60			Α
R _{DS(ON)} Static Drain-Source On-Resistance		$V_{GS} = -20V, I_D = -12A$		8.5	11	
	T _J =125℃		11.5	15	mΩ	
	$V_{GS} = -10V, I_D = -12A$		10	13	11122	
		$V_{GS} = -6V, I_D = -10A$		12.7	17	
g _{FS}	Forward Transconductance	$V_{DS} = -5V, I_{D} = -10A$		21		S
V_{SD}	Diode Forward Voltage	$I_S = -1A, V_{GS} = 0V$		-0.7	-1	V
Is	Maximum Body-Diode Continuous Current				-3	Α
DYNAMIC	PARAMETERS					
C_{iss}	Input Capacitance			2060	2600	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz		370		pF
C _{rss}	Reverse Transfer Capacitance			295		pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz		2.4	3.6	Ω
SWITCHI	NG PARAMETERS					
Q_g	Total Gate Charge			30	39	nC
Q_{gs}	Gate Source Charge	V_{GS} =-10V, V_{DS} =-15V, I_{D} =-12A		4.6		nC
Q_{gd}	Gate Drain Charge			10		nC
t _{D(on)}	Turn-On DelayTime			11		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =1.25 Ω ,		9.4		ns
t _{D(off)}	Turn-Off DelayTime	$R_{GEN}=3\Omega$		24		ns
t _f	Turn-Off Fall Time]		12		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-12A, dI/dt=100A/μs	_	30	40	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-12A, dI/dt=100A/μs		22		nC

A: The value of R $_{\theta,JA}$ is measured with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T $_A$ = 25 $^\circ$ C. The value in any given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating. B: Repetitive rating, pulse width limited by junction temperature.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev.11.0 June 2013 www.aosmd.com

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using < 300 μ s pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A=25 $^{\circ}$ C. The SOA curve provides a single pulse rating.

F. The current rating is based on the $t \leqslant 10\text{s}$ thermal resistance rating.

G. E_{AR} and I_{AR} ratings are based on low frequency and duty cycles to keep T_i=25C.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

-V_{DS} (Volts) Figure 1: On-Region Characteristics

-V_{GS}(Volts)
Figure 2: Transfer Characteristics

-I_D (A) Figure 3: On-Resistance vs. Drain Current and Gate Voltage

Figure 4: On-Resistance vs. Junction Temperature

-V_{GS} (Volts) Figure 5: On-Resistance vs. Gate-Source Voltage

-V_{SD} (Volts) Figure 6: Body-Diode Characteristics

Rev.11.0 June 2013 www.aosmd.com

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Rev.11.0 June 2013 www.aosmd.com

Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

Rev.11.0 June 2013 www.aosmd.com