

Subnät

- Dela upp ett stort nät i små sk. subnät
- Ett företag med 1000 anslutna datorer behöver kopplas in på Internet och att tilldela företaget en egen A- eller B-klass (med över 16 milj resp 65000 datorer i varje nät) skulle innebära ett stort slöseri med tillgängliga adresser
- Man utnyttjar dator-id adressen som en slags nätverksadress (subnät) och kan på så sätt dela upp ett stort nät i flera små nät

Subnät forts.

- Hur anger vi vad som är nätverksadressen, subnätadressen och dator-id?
- Lösningen är subnätmasken. Subnätmasken visar vilka delar av ett IP-adress som tillhör nät, subnät och dator-id.
- De bitar som tillhör nät- och subnätdelen i IPadressen sätts en 1:a i subnätmasken och de delar som tillhör dator-id sätts till 0.
- Subnätmasken är 32-bitar lång.

Subnät forts. Klass B adressen 172.24.0.0 utan subnät Decimalt Binärt Subnätmask: 255.255.0.0 Decimalt Om vi bestämmer oss att låna 8 bitar för att skapa subnät. $2^8 = 256$ subnät Subnät Decimalt 0101100 00011000 00000000 00000000 Subnätmask: 255.255.255.0 Decimalt 11111111 11111111

Address Resolution Protocol (ARP)

- Terminaler kan bara kommunicera via fysiska adresser (MAC–adress)
- Adress Resolution, är processen som tar reda på en dators MAC-adress när man känner till IP-adressen

Routing

- »Routerns grundfunktion: Ansvara för mottagning och vidareförmedling av paket genom ett eller flera sammankopplade nät.
- »Routerns övriga uppgifter:
- Välja väg att vidarebefordra datagram.
- Skicka datagram med routinginformation till andra routrar.
 Informationen används för att bygga upp routingtabeller.

Routing

- » Vid IP-routing väljs den väg som datagrammet kommer att sändas.
- » Om flera möjliga vägar finns mellan avsändare och destination skall den "bästa" vägen väljas.
- » Routingalgoritmer kan användas för att välja hur datagram skall sändas över flera sammanhängande fysiska nätverk.

Statisk och dynamisk routing

- » Statisk routing
- Informationen skrivs in av administratören
- » Dynamisk routing
- Routrarna utbyter information med varandra genom routingprotokoll
- Beskriver
 - Hur uppdateringar skall skickas
 - Vad uppdateringarna skall innehålla
 - När uppdateringar skall skickas
 - Ex. RIP, IGRP, OSPF, BGP, IS-IS...

För och nackdelar med statisk och dynamisk routing

Statisk routing

Dynamisk routing

Fördelar

Mindre processorbelastning

Inget bandbreddsutnyttjande

Ingen anpassningsförmåga

Full kontroll på nätet

Fördelar

Anpassningsbart

(Enkelt att konfigurera)

Nackdelar

(Svårt att konfigurera)

Nackdelar Belastar routern

Bandbreddsutnyttjande

Default Route

- » Om ingen matchning kan ske mellan de nät som finns angivna i routingtabellen och datagrammets destinationsadress kommer datagrammet att kastas.
- » Lägger man till en rad med destinationsadress 0.0.0.0 (alla IP-adresser giltiga) i routingtabellen kommer den att ta hand om de datagram som "blir över".
- » Routern som tar hand om dessa datagram betecknas "Default Router."
- » På klienter får man vid IP-konfiguration ange "Default Gateway" vilket är samma sak.

