

Lecture 8. Clustering High-Dimensional Data

- Challenges of Clustering High-Dimensional Data
- Methods for Clustering High-Dimensional Data
- Subspace Clustering Methods
 - Subspace Clustering I: Subspace Search Methods
 - Subspace Clustering II: Correlation-Based Methods
 - Subspace Clustering III: Bi-Clustering Methods
 - □ δ-Bi-Clustering
 - \square δ -pClustering
- Dimensionality Reduction Methods

Clustering High-Dimensional Data

- Why cluster high-dimensional data?
 - How high is high-dimension in clustering?
 - Many clustering algorithms deal with 1-3 dimensions
 - □ These methods may not work well when the number of dimensions grows to 20
 - Many applications, such as text documents or DNA micro-array data, may need to handles tens of thousands of dimensions
- Major challenges of high-dimensional data clustering
 - Many irrelevant dimensions may mask clusters
 - □ Distance measure becomes meaningless—due to equidistance
 - Clusters may exist only in some subspaces

The Curse of Dimensionality

- Data in only one dimension is relatively packed
- □ Adding a dimension stretches the points across that dimension, making them further apart
- □ Adding more dimensions will make the points further apart—high dimensional data is extremely sparse
- Distance measure becomes meaningless—due to equidistance
- Traditional distance measure could be dominated by noises in many dimensions

Ack. Graphs adapted from Parsons et al., Subspace clustering for high dimensional data: A review. SIGKDD Explorations 2004)

Curse of Dimensionality: Five Different Aspects

- □ **Optimization**: The difficulty of global optimization increases exponentially with an increase in the number of dimensions
- □ **Distance concentration effect** of L_p-norms
 - Distance concentration: Far and close neighbors have similar distances
 - \Box The relative contrast of L_p distances diminishes as dimensionality increases
- □ Irrelevant attributes can interfere with the performance of clustering for that object
 - ☐ The relevance of certain attributes may differ for different groups of objects
- □ **Correlated attributes**: Strong correlation among a subset of attributes can be used to reduce dimensionality
 - □ The *intrinsic dimensionality* of a dataset can be considerably lower than *embedded dimensionality* (i.e., the number of features of the dataset)
- □ **Data sparsity**: Data volume in high-dimensional space is extremely sparse

Methods for Clustering High-Dimensional Data

- Methods can be grouped in two categories
 - □ **Subspace-clustering**: Search for clusters existing in subspaces of the given high dimensional data space
 - CLIQUE, ProClus, and bi-clustering approaches
 - Dimensionality reduction approaches: Construct a much lower dimensional space and search for clusters there (may construct new dimensions by combining some dimensions in the original data)
 - Spectral clustering and various dimensionality reduction methods
- □ Clustering should not only consider dimensions but also attributes (features)
 - Feature selection: Useful to find a subspace where the data have nice clusters
 - □ Feature transformation: Effective if most dimensions are relevant
 - □ PCA (Principal Component Analysis) and SVD (Singular Value Decomposition) are useful when features are highly correlated or redundant

Why Subspace Clustering?

- Clusters may exist only in some subspaces
- □ Subspace-clustering: Find clusters in all the subspaces

Subspace Clustering Methods

- Axis-parallel vs. arbitrarily oriented subspaces
 - Axis-parallel: Subspaces are in parallel with some axes
 - Arbitrarily oriented subspaces
- □ Subspace search methods: Search in axis-parallel subspaces to find clusters
 - Bottom-up approaches
 - Top-down approaches
- Search and clustering in arbitrarily oriented subspaces
 - Correlation-based clustering methods
 - E.g., PCA-based approaches
- **□** Bi-clustering methods
 - Optimization-based methods
 - Enumeration methods

Subspace Clustering: Subspace Search Methods

- Search various subspaces to find clusters
- **□** Bottom-up approaches
 - Start from low-D subspaces and search higher-D subspaces only when there may be clusters in such subspaces
 - Various pruning techniques to reduce the number of higher-D subspaces to be searched
 - Ex. CLIQUE (Agrawal et al. 1998)
- □ Top-down approaches
 - Start from full space and search smaller subspaces recursively
 - Effective only if the *locality assumption* holds: Restricts that the subspace of a cluster can be determined by the local neighborhood
 - Ex. PROCLUS (Aggarwal et al. 1999): A k-medoid-like method

Example of CLIQUE: Density and Grid-Based Subspace Clustering

- Start at 1-D space and discretize numerical intervals in each axis into grid
- ☐ Find dense regions in each subspace and generate their minimal descriptions (clusters)
- Use the dense regions to find promising candidates in 2-D space (using Apriori principle)
- CLIQUE automatically identifies subspaces of a high dimensional data space and terminates when no more clusters or cluster candidates can be found

Subspace Clustering: Correlation-Based Methods

- Subspace search method
 - Similarity measure is based on distance or density
- □ Correlation-based method: Based on advanced correlation models
 - Ex. PCA (Principal Component Analysis)-based approach
 - ☐ Find a projection that captures the largest amount of variation in data
 - Apply PCA to derive a set of new, uncorrelated dimensions (dimensionality reduction)
 - ☐ Then find clusters in the new space or its subspaces
 - Other space transformation methods
 - Hough transform
 - Fractal dimensions

 \mathbf{X}_1

Simple Illustration of Principal Component Analysis

- □ Given N data vectors (numeric data only) from n-dimensions, find $k \le n$ orthogonal vectors (*principal components*) that can be best used to represent data
- □ Normalize input data: Each attribute falls within the same range
- Compute k orthogonal (i.e. linearly uncorrelated) (unit) vectors, i.e., principal components
- □ Each input vector is a linear combination of the *k* principal component vectors
- ☐ The principal components are sorted in order of decreasing "significance" or strength
- ☐ Eliminate the *weak components* (i.e., those with low variance)
 - That is, using the strongest principal components, it is possible to reconstruct a good approximation of the original data

Subspace Clustering (III): Bi-Clustering Methods

- □ Bi-clustering: Cluster both objects and attributes simultaneously (treating objects and attributes in a symmetric way)
- ☐ Four requirements:
 - 1. Only a small set of objects participate in a cluster
 - 2. A cluster only involves a small number of attributes
 - 3. An object may participate in multiple clusters or does not participate in any cluster at all
 - 4. An attribute may be involved in multiple clusters or is not involved in any cluster at all
- □ Ex 1. Gene expression or microarray data
 - A gene-sample/condition matrix: Each element in the matrix, a real number, records the expression level of a gene under a specific condition
- Ex. 2. Clustering customers and products

r			
w_{11}	w_{12}		w_{1m}
w_{21}	w_{22}		w_{2m}
• • •		• • •	• • •
w_{n1}	w_{n2}	• • •	w_{nm}

customers

Types of Bi-Clusters

- Let $A = \{a_1, ..., a_n\}$ be a set of genes, $B = \{b_1, ..., b_m\}$ a set of conditions
- □ A bi-cluster: A submatrix where genes and conditions follow some consistent patterns
- 4 types of bi-clusters (ideal cases)
 - Bi-clusters with constant values:
 - \Box for any *i* in *I* and *j* in *J*, $e_{ii} = c$
 - Bi-clusters with constant values in rows:
 - $\Box e_{ij} = c + \alpha_i$
 - ☐ Also, it can be constant values in columns
 - □ Bi-clusters with *coherent values* (i.e., *pattern-based clusters*)
 - $\Box e_{ij} = c + \alpha_i + \beta_j$
 - Bi-clusters with *coherent* evolutions in rows

 - □ i.e., only interested in the up- or down- regulated changes across genes or conditions without constraining on the exact values

10

20

10

20

50

10

20

50

10

- 0 40 20 60 10

20

Bi-Clustering Methods

- □ Real-world data is noisy: Try to find approximate bi-clusters
- ☐ Methods: Optimization-based methods vs. enumeration methods
- Optimization-based methods
 - ☐ Try to find submatrices one at a time to achieve the best significance as a bi-cluster
 - Due to the cost in computation, greedy search is employed to find local optimal biclusters
 - \square Ex. δ -bicluster Algorithm (Cheng and Church, ISMB'2000)
- Enumeration methods
 - Use a tolerance threshold to specify the degree of noise allowed in the bi-clusters to be mined
 - ☐ Then try to enumerate all submatrices as bi-clusters that satisfy the requirements
 - \square Ex. δ -pCluster Algorithm (H. Wang et al. SIGMOD'2002, MaPle: Pei et al., ICDM'2003)

Bi-Clustering for Micro-Array Data Analysis

- □ Figure (a): Micro-array "raw" data shows three objects (e.g., tissues) and their gene values in a multi-dimensional space: Difficult to find their patterns
- ☐ Figures (b) and (c): Some subsets of dimensions form nice shift and scaling patterns
- □ No globally defined similarity/distance measure
- Clusters may not be exclusive
 - A gene can appear in multiple clusters

Bi-Clustering (I): δ-Bi-Cluster

- ☐ For a submatrix *I x J*

For a submatrix
$$I \times J$$

The mean of the i -th row: $e_{iJ} = \frac{1}{|J|} \sum_{j \in J} e_{ij}$

The mean of the j -th column: $e_{IJ} = \frac{1}{|I|} \sum_{i \in I} e_{ij}$

The mean of all elements in the submatrix: $e_{IJ} = \frac{1}{|I||J|} \sum_{i \in I, j \in J} e_{ij} = \frac{1}{|I|} \sum_{i \in I} e_{iJ} = \frac{1}{|J|} \sum_{j \in J} e_{Ij}$

☐ The quality of the submatrix as a bi-cluster can be measured by the mean squared

residue value
$$H(I\times J) = \frac{1}{|I||J|}\sum_{i\in I,j\in J}(e_{ij}-e_{iJ}-e_{Ij}+e_{IJ})^2$$

- \square A submatrix $I \times J$ is δ -bi-cluster if $H(I \times J) \le \delta$ where $\delta \ge 0$ is a threshold
 - When $\delta = 0$, $I \times J$ is a perfect bi-cluster with coherent values
 - \square By setting $\delta > 0$, a user can specify the tolerance of average noise per element against a perfect bi-cluster
 - \square residue(e_{ii}) = $e_{ii} e_{ij} e_{li} + e_{lj}$

Bi-Clustering (I): The δ -Bi-Cluster Algorithm

■ Maximal δ-bi-cluster

- \square A δ -bi-cluster $I \times J$ s.t. no other δ -bi-cluster $I' \times J'$ which contains $I \times J$
- □ Computing is costly: Use heuristic greedy search to obtain local optimal clusters
- ☐ Two phase computation: *Deletion phase* and *addition phase*

Deletion phase:

- \square Start from the whole matrix, iteratively remove rows and columns while the mean squared residue of the matrix is over δ
- ☐ At each iteration, for each row/column
 - □ Compute the *mean squared residue*:

$$d(i) = \frac{1}{|J|} \sum_{j \in J} (e_{ij} - e_{iJ} - e_{Ij} + e_{IJ})^2 \qquad d(j) = \frac{1}{|I|} \sum_{i \in I} (e_{ij} - e_{iJ} - e_{Ij} + e_{IJ})^2$$

□ Remove the row or column of the largest mean squared residue

Bi-Clustering (I): The δ -Bi-Cluster Algorithm (Cont.)

- ☐ Two phase computation: *Deletion phase* and *addition phase* (continued)
 - Addition phase:
 - \square Expand iteratively the δ -bi-cluster $I \times J$ obtained in the deletion phase as long as the δ -bi-cluster requirement is maintained
 - □ Consider all the rows/columns not involved in the current bi-cluster I x J by calculating their mean squared residues
 - $lue{}$ A row/column of the smallest mean squared residue is added into the current δ -bi-cluster
- \square It finds only one δ -bi-cluster, thus needs to run multiple times
 - By replacing the elements in the output bi-cluster by random numbers
- ☐ A quite costly search process

Bi-Clustering (II): δ -pCluster: Clustering by Pattern Similarity

- \square Clustering by pattern similarity (δ -pClusters) [H. Wang, et al., SIGMOD'02]
- □ A submatrix $I \times J$ is a bi-cluster with (perfect) coherent values if and only if $e_{i1j1} e_{i2j1} = e_{i1j2} e_{i2j2}$
 - For any 2 x 2 submatrix of I x J, p-score $\begin{pmatrix} e_{i_1j_1} & e_{i_1j_2} \\ e_{i_2j_1} & e_{i_2j_2} \end{pmatrix} = |(e_{i_1j_1} e_{i_2j_1}) (e_{i_1j_2} e_{i_2j_2})|$
- □ A submatrix $I \times J$ is a **δ-pCluster** (pattern-based cluster) if the p-score of every 2 \times 2 submatrix of $I \times J$ is at most δ , where $\delta \geq 0$ is a threshold specifying a user's tolerance of noise against a perfect bi-cluster
- ☐ The *p*-score controls the noise on every element in a bi-cluster, while the mean squared residue captures the average noise
- □ Monotonicity: If $I \times J$ is a δ-pCluster, every $X \times Y$ ($X, Y \ge 2$) submatrix of $I \times J$ is also a δ-pCluster
- \square A δ -pCluster is **maximal** if no more rows or columns can be added to still make it retain as a δ -pCluster—We only need to compute all maximal δ -pClusters

More on δ -pClustering and Efficiency Improvement (MaPle)

- \square Additional advantages of δ -pClusters:
 - $lue{}$ Containing no outliers: Due to the averaging effect, δ -bi-cluster may contain outliers but still within δ -threshold
 - □ For scaling patterns, taking logarithmic on $\frac{d_{xa}/d_{ya}}{d_{xb}/d_{yb}} < \delta$ will lead to the same *p*-score form
- ☐ Further improving mining efficiency (MaPle: Pei et al. ICDM'03)
- ☐ Framework: A pattern-growth approach in frequent pattern mining (Algorithm is similar to mining frequent closed itemsets)
- \square For each condition combination J, find the maximal subsets of genes I such that I x J is a δ -pClusters
 - \Box If I x J is not a submatrix of another δ -pClusters
 - \Box then I x J is a maximal δ -pCluster

Dimensionality Reduction

- Dimensionality reduction
 - □ In some situations, it is more effective to construct a new space instead of using some subspaces of the original data
 - □ Ex. To cluster the points in the figure, any subspace of the original one, X and Y, cannot help since all the three clusters projected to X and Y axes will overlap
 - □ Upon constructing a new dimension such as the dashed one, the three clusters become apparent as the points are projected into the new dimension

Dimensionality-Reduction Methods

- ☐ Feature selection and extraction may not focus on clustering structure finding
- □ Dimensionality reduction: Reduce dimensionality by mathematical transformation
 - Nonnegative matrix factorization (NMF)
 Will briefly outline the idea in the next slide
 - One high-dimensional sparse nonnegative matrix factorizes approximately into two low-rank matrices
 - Spectral clustering

To be covered in Lecture 10

- □ Uses the *spectrum* of the similarity matrix of the data to perform dimensionality reduction for clustering in fewer dimensions
- Combining feature extraction and clustering
- Typical spectral clustering methods
 - Normalized Cuts (Shi and Malik, CVPR'97 or PAMI'2000)
 - ☐ The Ng-Jordan-Weiss algorithm (NIPS'01)

Clustering by Nonnegative Matrix Factorization (NMF)

- Nonnegative matrix factorization (NMF)
 - A nonnegative matrix $A_{n\times d}$ (e.g., word frequencies in documents) can be approximately factorized into two nonnegative lower rank matrices $U_{n\times k}$ and $V_{k\times d}$ (k << d, n):
 - $\square A_{n\times d} \approx U_{n\times k} V_{k\times d}$ (or, $A \approx U V$)
 - \square Residue matrix R represents the noise in the underlying data: R = A UV
- □ Constrained optimization: Determine *U* and *V* so that the sum of the square of the residuals in *R* is minimized
- □ *U* and *V* simultaneously provide the clusters on the rows (docs) and columns (words): Another kind of co-clustering
 - \cup $U_{n\times k}$: the components of each of n objects mapped into each of k newly created dimensions
 - $\bigcup V_{k \times d}$: Each of k newly created dimensions in terms of the original d dimensions
- □ Advantage: Interpretability of NMF—A data point can be expressed as a nonnegative linear combination of the concepts in the underlying data

Summary: Clustering High-Dimensional Data

- Challenges of Clustering High-Dimensional Data
- Methods for Clustering High-Dimensional Data
- Subspace Clustering Methods
 - Subspace Clustering I: Subspace Search Methods
 - Subspace Clustering II: Correlation-Based Methods
 - Subspace Clustering III: Bi-Clustering Methods
 - □ δ-Bi-Clustering
 - \square δ -pClustering
- Dimensionality Reduction Methods

Recommended Readings

- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. *SIGMOD'98*
- C. C. Aggarwal, C. Procopiuc, J. Wolf, P. S. Yu, and J.-S. Park. Fast Algorithms for Projected Clustering. SIGMOD'99
- Y. Cheng and G. Church. Biclustering of Expression Data. *ISMB'00*
- H.-P. Kriegel, P. Kroeger, and A. Zimek. Clustering High Dimensional Data: A Survey on Subspace Clustering, Pattern-Based Clustering, and Correlation Clustering. *TKDD'*09
- S. C. Madeira and A. L. Oliveira. Bi-clustering Algorithms for Biological Data Analysis: A Survey. *IEEE/ACM Trans. Comput. Biol. Bioinformatics*, 1, 2004
- L. Parsons, E. Haque, and H. Liu. Subspace Clustering for High Dimensional Data: A Review. *ACM SIGKDD Explorations*, 6(1):90–105, 2004.
- J. Pei, X. Zhang, M. Cho, H. Wang, and P. S. Yu. Maple: A Fast Algorithm for Maximal Pattern-Based Clustering. *ICDM'03*
- H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by Pattern Similarity in Large Data Sets. *SIGMOD'02*
- A. Zimek. Clustering High-Dimensional Data (Chapter 9), in C. Aggarwal and C. K. Reddy (eds.), Data Clustering: Algorithms and Applications. CRC Press, 2014