Full name: Thi Ngoc Anh, Tran

Student ID: 9102520232

Assignment 1 Report

- a) Make a k-NN (starting with k=5) and its training/validation/evaluation code to perform multiclass classification over all digits.
 - Please go to this Link

b) What are the hyperparameters you can tune?

- The number of neighbors (k) is considered when voting to make a prediction. I tested the k value from 5 to 20 in my code.

- The type of distance metric (p) is used to compute the distances between two data points. In my assignment, I used 2 common types of distance metrics. There are Manhattan distance (p = 1), and Euclidean distance (p = 2).

c, Report the performance for each option.

-	With the I	Euclidean	distance $(p = 2)$, -	With the I	Manhattan	distance (p = 1),
	p: 2	k: 5	val_acc: 0.9727	p: 1	k: 5	val_acc: 0.9647
	p: 2	k: 6	val_acc: 0.9727	p: 1	k: 6	val_acc: 0.9643
	p: 2	k: 7	val_acc: 0.9723	p: 1	k: 7	val_acc: 0.9660
	p: 2	k: 8	val_acc: 0.9720	p: 1	k: 8	val_acc: 0.9642
	p: 2	k: 9	val_acc: 0.9712	p: 1	k: 9	val_acc: 0.9637
	p: 2	k: 10	val_acc: 0.9700	p: 1	k: 10	val_acc: 0.9625
	p: 2	k: 11	val_acc: 0.9702	p: 1	k: 11	val_acc: 0.9630
	p: 2	k: 12	val_acc: 0.9690	p: 1	k: 12	val_acc: 0.9612
	p: 2	k: 13	val_acc: 0.9687	p: 1	k: 13	val_acc: 0.9617
	p: 2	k: 14	val_acc: 0.9685	p: 1	k: 14	val_acc: 0.9605
	p: 2	k: 15	val_acc: 0.9683	p: 1	k: 15	val_acc: 0.9612
	p: 2	k: 16	val_acc: 0.9687	p: 1	k: 16	val_acc: 0.9613
	p: 2	k: 17	val_acc: 0.9673	p: 1	k: 17	val_acc: 0.9607
	p: 2	k: 18	val_acc: 0.9663	p: 1	k: 18	val_acc: 0.9602
	p: 2	k: 19	val_acc: 0.9658	p: 1	k: 19	val_acc: 0.9585
	p: 2 p: 2	k: 17 k: 18	val_acc: 0.9673 val_acc: 0.9663	p: 1 p: 1	k: 17 k: 18	val_acc: 0.9607 val_acc: 0.9602

d, What is the final test accuracy?

- The test accuracy is 0.9666 with the k = 5.