

EG3112芯片数据手册

大功率MOS管、IGBT管栅极驱动芯片

版本变更记录

版本号	日期	描述
V1.0	2016年10月22日	EG3112 数据手册初稿
V1.1	2016年10月25日	输出电流能力修改

目录

1.	特点		4
2.	描述		4
3.	应用领	〔域	4
4.	引脚		5
	4.1.	引脚定义	5
	4.2.	引脚描述	5
5.	结构框	图	6
6.	典型应	ī用电路	6
7.	电气特	·性	7
	7.1	极限参数	7
	7.2	典型参数	8
	7.3	开关时间特性及死区时间波形图	<u>c</u>
8.	应用设	tit	10
	8. 1	Vcc 端电源电压	10
	8.2	输入逻辑信号要求和输出驱动器特性	10
	8.3	自举电路	11
9.	封装尺	<u> </u>	12
	9.1	SOP8 封装尺寸	12

EG3112 芯片数据手册 V1.0

1.特点

- 高端悬浮自举电源设计,耐压可达 600V
- 适应 5V、3.3V 输入电压
- 最高频率支持 500KHZ
- 低端 VCC 电压范围 2.8V-20V
- 输出电流能力 IO+/- 2A/2.5A
- 内建死区控制电路
- 自带闭锁功能,彻底杜绝上、下管输出同时导通
- HIN 输入通道高电平有效,控制高端 HO 输出
- LIN 输入通道高电平有效,控制低端 LO 输出
- 外围器件少
- 静态电流小于 5uA,非常适合电池场合
- 封装形式: SOP-8

2. 描述

EG3112 是一款高性价比的大功率 MOS 管、IGBT 管栅极驱动专用芯片,内部集成了逻辑信号输入处理电路、死区时控制电路、闭锁电路、电平位移电路、脉冲滤波电路及输出驱动电路,专用于无刷电机控制器中的驱动电路。

EG3112 高端的工作电压可达 600V, 低端 Vcc 的电源电压范围宽 2.8V~20V, 静态功耗小于 5uA。该芯片具有闭锁功能防止输出功率管同时导通,输入通道 HIN 和 LIN 内建了一个 200K 下拉电阻,在输入悬空时使上、下功率 MOS 管处于关闭状态,输出电流能力 IO+/- 2/2.5A,采用 SOP8 封装。

3.应用领域

- 移动电源高压快充开关电源
- 变频水泵控制器
- 600V 降压型开关电源

- 电动车控制器
- 无刷电机驱动器
- 高压 Class-D 类功放

4. 引脚

4.1. 引脚定义

图 4-1. EG3112 管脚定义

4.2. 引脚描述

引脚序号	引脚名称	I/O	描述		
1	Vcc	Power	芯片工作电源输入端, 电压范围 2.8V-20V, 外接一个高频 0.1uF 旁		
			路电容能降低芯片输入端的高频噪声		
	HIN	ı	逻辑输入控制信号高电平有效,控制高端功率 MOS 管的导通与截		
2			止		
2			"0"是关闭功率 MOS 管		
			"1"是开启功率 MOS 管		
	LIN	ı	逻辑输入控制信号高电平有效,控制低端功率 MOS 管的导通与截		
2			止		
3			"0"是关闭功率 MOS 管		
			"1"是开启功率 MOS 管		
4	GND	GND	芯片的地端。		
5	LO	0	输出控制低端 MOS 功率管的导通与截止		
6	VS	0	高端悬浮地端		
7	НО	0	输出控制高端 MOS 功率管的导通与截止		
8	VB	Power	高端悬浮电源		

5. 结构框图

图 5-1. EG3112 结构框图

6. 典型应用电路

图 6-1. EG3112 典型应用电路图

7. 电气特性

7.1 极限参数

无另外说明,在TA=25℃条件下

符号	参数名称	测试条件	最小	最大	单位
自举高端 VB 电源	VB	_	-0.3	600	V
高端悬浮地端	VS	_	VB-20	VB+0.3	V
高端输出	НО	_	VS-0.3	VB+0.3	V
低端输出	LO	_	-0.3	VCC+0.3	V
电源	VCC	_	-0.3	20	V
高通道逻辑信号 输入电平	HIN	_	-0.3	VCC+0.3	V
低通道逻辑信号 输入电平	LIN	-	-0.3	VCC+0.3	V
TA	环境温度	_	-45	125	${}^{\mathbf{c}}$
Tstr	储存温度	_	-55	150	${\mathfrak C}$
TL	焊接温度	T=10S	-	300	${\mathfrak C}$

注:超出所列的极限参数可能导致芯片内部永久性损坏,在极限的条件长时间运行会影响芯片的可靠性。

7.2 典型参数

无另外说明,在TA=25℃, Vcc=12V,负载电容CL=10nF条件下

参数名称	符号	测试条件	最小	典型	最大	单位
电源	Vcc	-	2.8	12	20	V
静态电流	Icc	输入悬空, Vcc=12V	-	-	5	uA
输入逻辑信号高 电位	Vin(H)	所有输入控制信号	2.5	-	-	V
输入逻辑信号低 电位	Vin(L)	所有输入控制信号	-0.3	0	1.0	V
输入逻辑信号高 电平的电流	Iin(H)	Vin=5V	-	-	20	uA
输入逻辑信号低 电平的电流	Iin(L)	Vin=OV	-20	-	-	uA
低端输出 LO 开关	付间特性					
开延时	Ton	见图 7-1	-	280	400	nS
关延时	Toff	见图 7-1	-	125	300	nS
上升时间	Tr	见图 7-1	-	120	200	nS
下降时间	Tf	见图 7-1	-	80	100	nS
高端输出 HO 开关时间特性						
开延时	Ton	见图 7-2	-	250	400	nS
关延时	Toff	见图 7-2	-	180	400	nS
上升时间	Tr	见图 7-2	-	120	200	nS
下降时间	Tf	见图 7-2	-	80	100	nS
死区时间特性						
死区时间	DT	见图 7-3 , 无负载电容 CL=0	50	100	300	nS
IO 输出最大驱动能力						
IO 输出拉电流	I0+	Vo=0V,VIN=VIH PW≤10uS	1.8	2	-	А
IO 输出灌电流	I0-	Vo=12V,VIN=VIL PW≤10uS	2	2.5	-	Α

7.3 开关时间特性及死区时间波形图

图 7-1. 低端输出 LO 开关时间波形图

图 7-2. 高端输出 HO 开关时间波形图

8.应用设计

8.1 Vcc 端电源电压

针对不同的 MOS 管,选择不同的驱动电压,高压开启 MOS 管推荐电源 Vcc 工作电压典型值为 10V-15V; 低压开启 MOS 管推荐电源 VCC 工作电压 2.8V-10V。

8.2 输入逻辑信号要求和输出驱动器特性

EG3112 主要功能有逻辑信号输入处理、死区时间控制、电平转换功能、悬浮自举电源结构和上下桥图腾柱式输出。逻辑信号输入端高电平阀值为 2.5V 以上,低电平阀值为 1.0V 以下,要求逻辑信号的输出电流小,可以使 MCU 输出逻辑信号直接连接到 EG3112 的输入通道上。

高端上桥臂和低端下桥臂输出驱动器的最大灌入可达 2. 5A 和最大输出电流可达 2A, 高端上桥臂通道可以承受 600V 的电压,输入逻辑信号与输出控制信号之间的传导延时小,低端输出开通传导延时为 280nS、关断传导延时为 125nS,高端输出开通传导延时为 250nS、关断传导延时为 180nS。低端输出开通的上升时间为 110nS、关断的下降时间为 50nS。高端输出开通的上升时间为 110nS、关断的下降时间为 50nS。

输入信号和输出信号逻辑功能图如图 8-2:

图 8-2. 输入信号和输出信号逻辑功能图

输入信号和输出信号逻辑真值表:

输)		输出			
输入、输出逻辑					
HIN (引脚 4)	LIN (引脚 3)	HO (引脚 7)	LO (引脚 5)		
0	0	0	0		
0	1	0	1		
1	0	1	0		
1	1	0	0		

从真值表可知,当输入逻辑信号 HIN 为"1"和 LIN 为"0"时,驱动器控制输出 HO 为"1"上管打开,LO 为"0"下管关断;当输入逻辑信号 HIN 为"0"和 LIN 为"1"时,驱动器控制输出 HO 为"0"上管关断,LO 为"1"下管打开;在输入逻辑信号 HIN 和 LIN 同时为"0"或同时为"1"情况下,驱动器控制输出 HO、LO 为"0"将上、下功率管同时关断;内部逻辑处理器杜绝控制器输出上、下功率管同时导通,具有相互闭锁功能。

8.3 自举电路

EG3112 采用自举悬浮驱动电源结构大大简化了驱动电源设计,只用一路电源电压 VCC 即可完成高端 N沟道 MOS 管和低端 N沟道 MOS 管两个功率开关器件的驱动,给实际应用带来极大的方便。EG3112 可以使用外接一个自举二极管如图 8-3 和一个自举电容自动完成自举升压功能,假定在下管开通、上管关断期间 C自举电容已充到足够的电压(Vc=VCC),当 HO 输出高电平时上管开通、下管关断时,VC 自举电容上的电压将等效一个电压源作为内部驱动器 VB 和 VS 的电源,完成高端 N沟道 MOS 管的驱动。

图 8-3. EG3112 自举电路结构

9. 封装尺寸

9.1 SOP8 封装尺寸

