Situation

À l'issue d'une séance de TP, une solution aqueuse de sulfate de cuivre II est mélangée à une solution aqueuse de diiode. Ces deux espèces chimiques ne sont pas retraitées de la même façon. On veut donc les séparer grâce à une extraction par solvant pour qu'elles soient ensuite retraitées correctement.

Protocole extraction liquide-liquide (extraction par solvant)

- À l'aide d'un entonnoir, verser la solution contenant l'espèce chimique à extraire dans une ampoule à décanter dont le robinet est fermé.
- Ajouter le solvant extracteur. Le niveau de liquide ne doit pas dépasser les 3/4 de l'ampoule.
- Boucher l'ampoule à décanter, puis en tenant le bouchon à la main, agiter doucement en renversant l'ampoule.
- Incliner l'ampoule de manière à avoir le bouchon en bas et orienter le robinet dans une direction où il n'y a personne et ouvrir le robinet pour dégazer (éliminer les surpressions).
- En maintenant le bouchon, agiter l'ampoule circulairement doucement, tout en ouvrant de temps en temps le robinet de l'ampoule pour dégazer.
- Répéter l'opération jusqu'à ce qu'il n'y ait plus de gaz à évacuer.
- Reposer l'ampoule sur son support et enlever le bouchon.
- Attendre que les phases du liquide se séparent.
- Placer un bécher étiqueté sous l'ampoule, puis ouvrir le robinet pour recueillir la première phase en prenant soin de le refermer quand la deuxième phase arrive au niveau du robinet.
- Prendre un autre bécher étiqueté et récupérer le liquide de la deuxième phase.

Doc. 1 : Pictogrammes

Solvants	Eau	Éthanol	Cyclohexane	Huile
Pictogrammes	de la constant de la			

Doc. 2 : Solubilités

Solvants	Sulfate de cuivre (II)	Diiode	
Eau	Très grande	Faible	
Cyclohexane	Nulle	Grande	
Éthanol	Faible	Grande	
Huile	Nulle	Grande	

Doc. 3: Miscibilité

	Eau	Cyclohexane	Éthanol	Huile
Eau		Non	Oui	Non
Cyclohexane	Non		Oui	Oui
Éthanol	Oui	Oui		Oui
Huile	Non	Oui	Oui	

Doc. 4 : Densités

Solvants	Eau	Éthanol	Cyclohexane	Huile
Densités	1,00	0,78	0,79	0,92

Appropriation et réalisation

- 1. À l'aide des documents, choisir un solvant pour réaliser l'extraction du diiode de la solution aqueuse contenant le sulfate de cuivre dissous et le diiode. Justifier.
- 2. Faire un schéma légendé de ce que vous pensez obtenir au final dans l'ampoule après décantation.
- 3. Réaliser l'extraction.

Interprétation

Doc. 5 : Formules de Lewis et semi-développées de différentes molécules

Solvants	Eau	Éthanol	Cyclohexane	Triglycéride*	Diiode
Formule	Н	$_{\rm CH_2}^{\rm OH}$	$\begin{array}{c c} & \operatorname{CH_2} & & \\ H_2 & & & \\ & & & \\ H_2 & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	$\begin{array}{c c} & & & & & & \\ & & & & & & \\ H_2C - O - C - R_1 & & & & \\ & & & & & \\ & & & & & \\ H_2C - O - C - R_2 & & & \\ & & & & \\ & & & & \\ H_2C - O - C - R_3 & & \\ \end{array}$	<u>I</u> <u>I</u>

- * les triglycérides sont les constituants principaux des huiles alimentaires. Les groupes R_i sont des longues chaînes hydrocarbonés non polaires. Bien que les liaisons carbone-oxygène soient polarisées, ces liaisons représentent une partie trop infime de ces grosses molécules qui est donc globalement apolaire.
- 4. Déterminer la polarité des différentes molécules en justifiant.
- 5. Justifier la nature amphiphile de la molécule d'éthanol.
- 6. Sachant que le sulfate de cuivre (II) est un solide ionique, expliquer les différentes solubilité reportées dans le doc. 2.
- 7. Nommer le type de liaison que peut former l'éthanol avec l'eau. Illustrer par un schéma.
- 8. Expliquer les différentes miscibilités reportées dans le doc. 3.