II. Fondements théoriques des SED : THEORIE DES GRAPHES

- 1. Concepts généraux
- 2. Coloration d'un graphe
- 3. Parcours dans un graphe
- 4. Etude de la connexité d'un graphe

- La coloration des sommets d'un graphe G consiste à affecter une couleur (numéro, emplacement, fréquence, ...) à chacun des sommets du graphe de telle sorte que 2 sommets adjacents ne soient pas porteur de la même couleur.
- Une coloration de G avec k couleurs est une partition de l'ensemble des sommets de G en k sous-ensembles stables.
- On appelle nombre chromatique $\gamma(G)$ le nombre minimum de couleurs distinctes nécessaires pour effectuer une coloration des sommets de G.

On utilise le nombre chromatique avec des graphes dont les **arêtes** illustrent une situation d'incompatibilité ou de conflit.

- Il n'existe pas d'algorithme de coloration de graphes qui donne forcément le nombre chromatique.

1ère étape avant la coloration:

- Encadrement du nombre chromatique :
 - Bornes mini:

```
\gamma(G) \ge \omega(G), où \omega(G) est le cardinal de la plus grande clique de G
```

 $\gamma(G) \ge n/(n-d_{min})$, où d_{min} est le degré minimum des sommets de G

 $\gamma(G) \ge n^2/(n^2-2m)$, où m est le nombre d'arêtes de G

 $\gamma(G) \ge n/\alpha(G)$, où $\alpha(G)$ est le nombre de stabilité (cardinal du plus grand sous-ensemble stable)

- Bornes maxi:

```
\gamma(G) \leq n+1-\alpha(G)
```

 $\gamma(G) \le d_{max} + 1$, où d_{max} est le degré maximum des sommets de G_{26}

Algorithme de Welsh et Powell

Etape 0 : Initialisation

M : matrice d'adjacence du graphe dont les sommets sont rangés par ordre de degré décroissants

$$k=1$$

Etape 1

$$N = M$$

■ Etape 2

Colorer par la couleur c_k la première ligne non encore colorée de N ainsi que la colonne correspondante

 $N\!=\!$ ensemble des lignes non encore colorées ayant un zéro dans les colonnes de couleur c_k

si N ≠ Ø aller à l'étape 2 sinon aller à l'étape 3

Etape 3

Si toutes les lignes sont colorées alors STOP (on a une k-coloration) k = k + 1; (changer de couleur) aller à l'étape 1

Bornes Maxi de $\gamma(G)$:

-
$$\gamma(G) \le n+1-\alpha(G)$$

 $\gamma(G) \le 8+1-3$
- $\gamma(G) \le d_{max} + 1$
 $d_{max} = 4$
 $\gamma(G) \le 5$

$$\rightarrow \gamma(G) \leq 5$$

```
Bornes Mini de \gamma(G):
-\gamma(G) \geq \omega(G)
\omega(G) = \operatorname{card}(A,B,C) = \operatorname{card}(A,C,D) \dots = 3
      \gamma(G) \geq 3
 -\gamma(G) \geq n/(n-d_{min})
n=8; d_{min}=2
     \gamma(G) \geq 4/3
 -\gamma(G) \geq n^2/(n^2-2m)
m=12
      \gamma(G) \geq 8/5
 -\gamma(G) \ge n/\alpha(G)
\alpha(G) = \operatorname{card}(B,D,H) = \operatorname{card}(B,E,H) = 3
      \gamma(G) \geq 8/3
\rightarrow \gamma(G) \geq 3
```

Algorithme Welsch et Powell:

	Α	С	D	F	G	Н	В	Е
Α	0	1	1	0	0	1	1	0
С	1	0	1	0	1	0	1	0
D	1	1	0	1	0	0	0	1
F	0	0	1	0	1	0	0	1
G	0	1	0	1	0	1	0	0
Н	1	0	0	0	1	0	0	0
В	1	1	0	0	0	0	0	0
Ε	0	0	1	1	0	0	0	0

$$-\gamma=3$$

- C1 pour (A,F)
- C2 pour (C,H,E)
- C3 pour (D,G,B)

3. Parcours dans un graphe

Soit G=(X, U) un graphe valué : on associe à chaque arc u = (i, j) une longueur (poids) l(u) ou l_{ij} .

Le problème du plus court chemin entre i et j est de trouver un chemin c(i, j) de i à j tel que :

 $\Pi_c = \sum_{i=1}^{n} I(u_i)$ pour $u \in c$, soit minimale

3. Parcours dans un graphe

- Algorithme de Dijkstra: recherche du plus court chemin de l'origine à tous les autres sommets
 - Utilise des labels pour les sommets
 - Les labels définitifs représentent la valeur du pcc de l'origine jusqu'au sommet correspondant
 - · Les labels temporaires représentent une borne supérieure de ce pcc
 - A chaque itération un label temporaire est transformé en label définitif

3. Parcours dans un graphe

Algorithme de Dijkstra

- Init
 - D={1}, T={2, ..., n}
 - $\pi_1 = 0;$
 - π_j = I_{1j} si j ∈ Γ(1), <math>π_j =+∞ sinon
- Etape 1 (Désignation du label permanent)
 - Sélectionner $j \in T$, tq π_i =min{ $k \in T$, π_k }
 - T=T\{j} et D=D \cup {j}
 - Si T=vide alors Fin
- Etape 2 (Révision des labels temporaires)
 - − pour tout $i \in T \cap \Gamma(j)$, π_i =min{ π_i , π_i + I_{ii} }
 - Aller à l'étape 1

Algorithme de Dijkstra

PCC de A à E:

π, pre	Α	В	С	D	E	Ens. D	Ens. T
Α	0, -	3, A	1,A	+8	+∞	А	B,C,D,E
С		Min(3A; 6C)	1,A	5,C		A,C	B,D,E
В		3, A		4,B		A,C,B	D,E
D				4,B	7,D	A,C,B,D	E
E					7,D	A,B,C,D,E	-

I=7

Chemin: A-B-D-E

4. Etude de la connexité d'un graphe

· Décomposition en CFC :

- 1 CFC (Graphe F.C.)
- Plusieurs CFC

• Etude des CFC :

- Si boucle : graphe non périodique avec boucle
- Sinon: étude de la périodicité

· Etude de la périodicité :

- Si périodicité : décomposer en sous-graphes
- Sinon: graphe non périodique sans boucle

4. Etude de la connexité d'un graphe

· Décomposition en CFC : Méthode de Malgrange

- (1) Fixer un sommet i
- (2) Établir la liste des descendants de i, puis des descendants des descendants, ... (i fait partie de la liste)
- (3) Établir la liste des ascendants de i, puis des ascendants des ascendants, ... (i fait partie de la liste)
- (4) L'intersection des 2 listes forme une CFC
- (5) Supprimer les sommets de la CFC et retour en (1)

· Périodicité :

Un graphe est périodique s'il peut être décomposé en sous classes telles que :

- Aucun arc ne lie les sommets d'une même sous classe.
- Tout sommet est transitoire: $\forall x_i, d_+(x_i) \neq 0, d_-(x_i) \neq 0$
- Les sous classes sont disposées de façon cyclique.

Méthode de Malgrange

	descendants	ascendants	CFC	
а	a, f, b,d, c,e	a,c,b	a,c,b	CFC1
d	d,e,f	d,e	d,e	CFC2
f	f	f	f	CF3