

Universidade do Minho Escola de Engenharia

BIOLOGIA DE SISTEMAS

GRUPO 1

Adriano Miguel Pereira da Silva PG43176

Carina Filipa Araújo Gonçalves PG45466

Mariana Martins Gonçalves PG45472

Ruben André Pacheco Silva PG44580

Sérgio Luís Fernandes Mendes PG42486

Tomás Carreiró Carvalho Silva e Sá PG45477

PARTE I

IMPLEMENTATION OF FBA PROBLEM

LACTATE

Wild-type production of lactate

Valores de fluxo de produção nativos do L-lactato e D-lactato. Os valores foram obtidos através da simulação FBA recorrendo ao Mewpy package.

```
L-Lactate wild type flux: 0.0
----***----
D-Lactate wild type flux: 0.0
```

Maximun compound production capabilities

Valores máximos e mínimos de fluxo FVA para o L-Lactato e D-Lactato. Valores obtidos utilizando o Mewpy package.

Evaluate if single gene deletions enhance the production of the compound

- Duas funções objetivo, WYIELD e BPCY
- 20 processamentos
- Obtidas 0 deleções singulares de um gene

```
from cobra.io import read_sbml_model
model = read_sbml_model('iML1515.xml')
envcond = {'EX_glc__D_e': (-15.0, 100000.0),
           'EX_o2_e':(0,1000)}
model.solver="qurobi"
#from mewpy.simulation import get_simulator
#simul = get_simulator(model, envcond=envcond)
PRODUCT ID = 'EX lac L e'
BIOMASS_ID = 'BIOMASS_Ec_iML1515_core_75p37M'
from mewpy.optimization.evaluation import BPCY, WYIELD
evaluator_1 = BPCY(BIOMASS_ID, PRODUCT_ID, method='pFBA')
evaluator 2 = WYIELD(BIOMASS ID, PRODUCT ID)
from mewpy.problems import GKOProblem
problem = GOUProblem(model, fevaluation = [evaluator_1, evaluator_2], envcond=envcond, candidate_max_size=1)
from mewpy.optimization import EA
ea = EA(problem, max_generations= 20, algorithm='NSGAIII')
final_pop = ea.run()
print(final_pop)
gene_list = open('del_gene_list', 'w')
for i in final_pop:
   gene_list.write(str(i) + '\n')
gene_list.close()
```

Código para a análise do impacto de uma deleção de um gene na produção do Dlactato

Determine the best strategy, up to five modifications, to improve the compound production

Dois problemas de otimização foram formulados e implementados:

- Gene Knockout (GKO)
- Reaction Knockout (RKO)

Função objetivo WYIELD:

- RKO
- Deleção dos genes GLUDy, ACALD e ACt2rpp

Função objetivo BPCY:

- RKO
- Deleção dos genes ATPM, ACALD e ACt2rpp

From the metabolic viewpoint, would be feasible to implement the strategies proposed by our optimization in the lab?

Do ponto de vista laboratorial, a otimização mais viável é aquela que mais facilmente é reproduzida in vitro.

Mais fácil implementar deleções de genes do que de reações no laboratório.

Estratégia de otimização mais viável para a produção de lactato (WYIELD) :

deleção dos genes b3733, b2415 e b2284

Estratégia de otimização mais viável para a produção de biomassa no nosso modelo (BPCY):

deleção dos genes b4154 e b3737

PARTE II

DRUG TARGETING WITH OPTFLUX

Mycobacterium tuberculosis

H37Rv

Study the organism and discuss the diseases it can cause and known drugs and virulence factors

- A evidência de DNA indica que *M. tuberculosis* co-evoluiu com o *Homo sapiens* como espécie.
- Em humanos reside principalmente dentro e entre células do sistema imunológico que podem conter ou erradicar a maioria das outras bactérias.
- As micobactérias entram no hospedeiro por via aérea e, uma vez nos pulmões, são fagocitadas pelos macrófagos.
- Isto pode levar à eliminação rápida do bacilo ou ao desencadeamento de uma infeção tuberculosa ativa.
- Os humanos servem como o único hospedeiro natural conhecido e reservatório de M. tuberculosis, que adaptou a sua fisiologia para servir a funções fisiológicas e patogénicas de células interdependentes.
- Alguns fatores que contribuem para a progressão da doença incluem coinfecção por HIV, desnutrição e variações genéticas predisponentes.
- Está cada vez mais associado à resistência aos medicamentos mediada por mutações e rearranjos no seu cromossoma circular.

Ciclo de vida de Mycobacterium tuberculosis. (Ehrt et al., 2018)

Study the organism and discuss the diseases it can cause and known drugs and virulence factors

Tratamento

1ª fase → Isoniazida + Rifampicina + Pirazinamida + Etambutol (2 meses)

2ª fase → Isoniazida + Rifampicina (4 meses)

Fatores de virulência

- Fatores de virulência são estruturas, produtos ou estratégias que contribuem para a bactéria aumentar sua capacidade em causar uma infeção.
- Em *M. tuberculosis* estão relacionados com a sua parede lipídica complexa, catabolismo do colesterol, proteínas e lipoproteínas do invólucro celular responsáveis pela aderência bacteriana às células do hospedeiro, proteínas que inibem a resposta antimicrobiana dos macrófagos pela resistência a compostos tóxicos do hospedeiro, controlo do mecanismo de apoptose e da progressão e transformação dos fagossomas em fagolisossomas.
- Fatores que controlam e regulam a expressão genética em situações de diferente atividade do patógeno.
- *M. tuberculosis* não possui os fatores de virulência clássicos que outras bactérias patogénicas possuem, como toxinas.
- Muitas pesquisas têm tentado encontrar uma definição precisa da virulência do M. tuberculosis procurando fatores que são importantes para a progressão da doença.

Compute the specific growth rate under adequate conditions for your organism? What are the main products excreted under each of those circumstances?

- Extração o ficheiro da base de dados BIGG no formato SBML.
- Criação do modelo e simulação do mesmo o que permitiu realizar tarefas básicas, como listar metabolitos, reações, genes, compartimentos, reações de captação e reações de transporte.
- Simulação wild-type (com FBA) para determinar a taxa de crescimento específica sob as condições ambientais adequadas a este organismo (aeróbio).
- Obtenção do valor da função objetivo, com finalidade de maximizar a biomassa do organismo analisado.
- O valor obtido foi de 0.0525 mmol/gDW/h. Ao colocarmos as condições ideais, aumentamos o valor do O2 para infinito, aumentando assim a biomassa, 0.30597 mmol/gDW/h.
- Os principais metabolitos produzidos são Ferro, Citrato, Fosfato, H+, O2, Sulfato, Etanol, L-Aspargina, Glicerol.
- Os principais metabolitos consumidos são Amoníaco, Ácido Carbónico, 4-Hidro-benzyl álcool, H2O e Succinato

```
Method:SimulationMethod.FBA
     result = simul.simulate()
     result
    objective: 0.30596969829082155
     Status: OPTIMAL
     Constraints: OrderedDict([('EX_glc_D_e', (-1000.0, 1000.0)), ('EX_o2_e', (-1000, -1000))])
     Method: SimulationMethod, FBA
Uptake
                          Flux C-Number C-Flux
Metabolite
             Reaction
    fe3 e EX fe3 e 7.872E-05
                                       0 0.00%
  glc De EX glc De
                                       6 66.67%
   glyc e EX glyc e
                                       3 33.33%
    nh4e EXnh4e
                                       0 0.00%
              EX 02 e
     02 e
                                       0 0.00%
     pi e
              EX pi e 0.05824
                                       0 0.00%
            EX so4 e 0.003389
     so4 e
                                       0 0.00%
Secretion
                        Flux C-Number C-Flux
Metabolite
             Reaction
  glu Le EX glu Le -0.6565
                                     5 47.81%
              EX h2 e -1.075
     h2 e
                                     0 0.00%
  h2co3 e EX h2co3 e -0.9696
                                     1 14.12%
    h2o e EX h2o e -2.056
                                     0 0.00%
      h e
               EX h e -2.601
                                     0 0.00%
  lac L e EX lac L e -0.7639
                                     3 33.38%
   succ e EX succ e -0.0803
                                     4 4.68%
```

Simulação FBA, valor da biomassa e principais metabolitos produzidos e consumidos.

List all genes/reactions that can be potential drug targets

Potenciais drug-targets

Genes/reações essenciais para o crescimento, replicação, viabilidade e sobrevivência do microrganismo

Foi possível identificar 312 reações e 118 genes essenciais para a sobrevivência do organismo

<u>Discuss two of these genes/reactions and the corresponding drug. Select one present in the host and one absent. Include in the discussion facts regarding potential side effects of the drug on other reactions.</u>

Rv3791

gene para a enzima - decaprenylphospho-beta-D-erythro-pentofuranosid-2-ulose 2-reductase (DprE2)

- Enzima DprE2 junto com a enzima DprE1 catalisam a epimerização da decaprenylphosforryl-beta- D-arabinofuranose, dador principal de arabinosil, para a parede celular.
- Para possível fármaco temos o etambutol, que tem como principal objetivo obstruir a formação da parede celular, interrompendo a síntese do arabinogalactano ao inibir a enzima arabinosil transferase

PGMT- Phosphoglucomutase

Reação: alpha-D-glucose 1-phosphate = alpha-D-glucose 6-phosphate

- Papel importante na formação de cápsulas de polissacarídeo e virulência em vários agentes patogénicos bacterianos
- D-frutose 2,6-difosfato inibidor partilhado com o hospedeiro, por isso a enzima não representa um bom alvo para fármacos.