9. Übungsblatt

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Wintersemester 2020/21

22. Januar 2021

Auf diesem Übungsblatt wird der Vorlesungsstoff bis Seite 92 des Vorlesungsskripts behandelt.

Aufgabe 33:

(i) Zeigen Sie, dass die im folgenden definierten Funktionen $f: \mathbb{R} \to \mathbb{R}$ differenzierbar sind, und berechnen Sie für jedes $x \in \mathbb{R}$ die Ableitung f'(x):

(a)
$$f(x) := (x^4 + 1)e^{x^3}$$
,

(b)
$$f(x) := |x^2 - 4|^3$$
.

(ii) Bestimmen Sie alle lokalen Extremstellen der Funktion $f: [-1, 9] \to \mathbb{R}$,

$$f(x) := \begin{cases} x^5, & x \in [-1, 1), \\ 2 - (x - 2)^2, & x \in [1, 3), \\ 3x - 8, & x \in [3, 4], \\ \frac{12}{x}, & x \in (4, 9]. \end{cases}$$

Lösungsvorschlag zu Aufgabe 33:

(i) (a) <u>Behauptung:</u> Die Funktion f ist auf \mathbb{R} differenzierbar mit Ableitung $f'(x) = x^2(3+4x+3x^4)e^{x^3}$ für alle $x \in \mathbb{R}$.

<u>Beweis:</u> Die Funktion ist als Verkettung differenzierbarer Funktionen differenzierbar. Mit der Produkt- und Kettenregel ergibt sich für alle $x \in \mathbb{R}$:

$$f'(x) = 4x^3 e^{x^3} + (x^4 + 1)e^{x^3} 3x^2 = x^2(3 + 4x + 3x^4)e^{x^3}.$$

(b) Behauptung: Die Funktion ist auf \mathbb{R} differenzierbar mit Ableitung

$$f'(x) = \begin{cases} 6x(x^2 - 4)^2, & x \in \mathbb{R} \setminus [-2, 2], \\ -6x(x^2 - 4)^2, & x \in [-2, 2]. \end{cases}$$

<u>Beweis:</u> Definiere die Funktion $g: \mathbb{R} \to \mathbb{R}$, $g(x) := |x|^3$. Laut Übung ist g differenzierbar und für die Ableitung gilt g'(x) = 3x |x| ($x \in \mathbb{R}$). Somit ist f als Verkettung differenzierbarer Funktionen differenzierbar. Mit der Kettenregel folgt für alle $x \in \mathbb{R}$:

$$f'(x) = 3(x^2 - 4) |x^2 - 4| \cdot 2x = 6x(x^2 - 4) |x^2 - 4|$$

Für $x \in [-2,2]$ ergibt sich $f'(x) = -6x(x^2-4)^2$, für $x \in \mathbb{R} \setminus [-2,2]$ erhält man hingegen $f'(x) = 6x(x^2-4)^2$.

(ii) <u>Behauptung:</u> f besitzt für $x_0 \in \{-1, 3, 9\}$ ein lokales Minimum und für $x_0 \in \{2, 4\}$ ein lokales <u>Maximum</u>, und keine weiteren lokalen Extrema.

<u>Beweis:</u> Es gilt f(-1) = -1 und $f'(x) = 5x^4$ für $x \in (-1,1)$. Daher gilt f'(x) > 0 für $x \in (-1,1) \setminus \{0\}$ sowie f'(0) = 0 und folglich ist f auf $[-1,1) \setminus \{0\}$ streng monoton wachsend. Also ist f(-1) < f(x) für $x \in (-1,1)$ und damit hat f in $x_0 = -1$ ein lokales Minimum.

Es gilt f(2) = 2 und f'(x) = 4 - 2x auf (1,3). Daher gilt f'(x) > 0 für alle $x \in (1,2)$ und f'(x) < 0 für $x \in (2,3)$. Also ist f auf (1,2) streng monoton wachsend und auf (2,3) streng monoton fallend. Somit gilt $f(x) \le f(2)$ für $x \in (1,3)$ und folglich hat f in 2 ein lokales Maximum.

Es gilt f(3) = 1 und $f(x) = 3x - 8 \ge 1$ für $x \in [3,4)$. Außerdem gilt f(x) > 1 auf (1,3), denn für $x \in (1,3)$ ist $(x-2)^2 < 1$. Also hat f in $x_0 = 3$ ein lokales Minimum. Ferner gilt f'(x) = 3 für $x \in (3,4)$ und daher ist f dort streng monoton wachsend.

Es gilt f(4)=4 und f(x)<4 für $x\in(3,4)$. Außerdem gilt f(x)<3 und somit insbesondere f(x)<4 für alle $x\in(4,9)$. Also hat f in 4 ein lokales Maximum. Ferner ist $f'(x)=-\frac{12}{x^2}<0$ für $x\in(4,9)$ und damit ist f dort streng monoton fallend.

Es gilt $f(9) = \frac{4}{3}$ und $f(x) > \frac{4}{3}$ für $x \in (4,9)$. Somit hat f in 9 ein lokales Minimum.

Wir müssen nun noch ausschließen, dass f weitere lokale Extrema besitzt: auf den Intervallen (-1,0),(0,1),(1,2),(2,3),(3,4) und (4,9) ist, wie wir oben gesehen haben, f jeweils entweder nur streng monoton fallend oder nur streng monoton wachsend. Dort kann also kein lokales Extremum von f existieren. Es sei $\delta \in (0,1)$. Dann gilt für alle x < 0 mit $|x| < \delta$, dass $f(x) = x^5 < 0$ und für alle x > 0 mit $|x| < \delta$, dass $f(x) = x^5 > 0$. Also hat f in 0 kein lokales Extremum. Für alle x mit $|x-1| < \delta$ und x < 1 gilt $f(x) = x^5 < 1$ und für alle x mit $|x-1| < \delta$ und x > 1 gilt $f(x) = x^5 < 1$ und für alle x mit $|x-1| < \delta$ und x > 1 gilt x0 mit hat x1 ebenfalls kein lokales Extremum.

Aufgabe 34 (K):

(i) Bestimmen Sie alle $x \in \mathbb{R}$, in denen die folgenden Funktionen $f: \mathbb{R} \to \mathbb{R}$ differenzierbar sind und berechnen Sie dort deren Ableitung.

berechnen Sie dort deren Ableitung.

(a)
$$f(x) := \begin{cases} e^{\cos(x)}, & x \in (-\infty, 0], \\ \frac{1}{x}, & x \in (0, \infty), \end{cases}$$
(b)
$$f(x) := \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0, \end{cases}$$
(c)
$$f(x) := (1 + x^2)^x.$$

(ii) Zeigen Sie, dass für alle y > x > 0 die folgende Ungleichung gilt:

$$y\log y - x\log x \le (y-x)(1+\log y).$$

Lösungsvorschlag zu Aufgabe 34:

(i) (a) Behauptung: f ist differenzierbar auf $\mathbb{R} \setminus \{0\}$ mit

$$f'(x) = \begin{cases} -e^{\cos(x)}\sin(x), & x \in (-\infty, 0), \\ -\frac{1}{x^2}, & x \in (0, \infty), \end{cases}$$

in 0 ist f nicht differenzierbar.

<u>Beweis:</u> Auf den offenen Mengen $(-\infty,0)$ und $(0,\infty)$ ist f als Verkettung differenzierbarer Funktionen differenzierbar. Mit der Kettenregel erhält man für $x \in (-\infty,0)$

$$f'(x) = e^{\cos(x)} \cdot (-\sin(x)) = -e^{\cos(x)}\sin(x).$$

Auf $(0,\infty)$ gilt $f'(x)=-\frac{1}{x^2}$. Weiter gilt für x>0

$$f(x) = \frac{1}{x} \to \infty \quad (x \to 0),$$

somit ist f in x = 0 nicht stetig und daher auch nicht differenzierbar.

(b) Behauptung: f ist differenzierbar mit Ableitung

$$f'(x) = \begin{cases} 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right), & x \neq 0, \\ 0, & x = 0. \end{cases}$$

<u>Beweis:</u> Für alle $x \neq 0$ ist f als Verkettung differenzierbarer Funktionen differenzierbar und es gilt

$$f'(x) = 2x \sin\left(\frac{1}{x}\right) + x^2 \cos\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) = 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right).$$

Weiter gilt für $x \neq 0$

$$\frac{f(x) - f(0)}{x - 0} = x \sin\left(\frac{1}{x}\right)$$

und damit folgt

$$\left| \frac{f(x) - f(0)}{x - 0} \right| \le |x| \left| \sin \left(\frac{1}{x} \right) \right| \le |x| \xrightarrow{x \to 0} 0,$$

d.h. f ist differenzierbar in 0 und es gilt f'(0) = 0.

(c) Behauptung: Die Funktion f ist auf $\mathbb R$ differenzierbar mit Ableitung

$$f'(x) = \left(\log(1+x^2) + \frac{2x^2}{1+x^2}\right)(1+x^2)^x.$$

Beweis: Es gilt

$$f(x) = e^{\log((1+x^2)^x)} = e^{x \log(1+x^2)}$$

für alle $x \in \mathbb{R}$. Somit ist f als Verkettung differenzierbarer Funktionen differenzierbar und es gilt

$$f'(x) = e^{x \log(1+x^2)} \left(\log(1+x^2) + x \cdot \frac{2x}{1+x^2} \right).$$

(ii) Behauptung: Für alle y>x>0 gilt die Ungleichung

$$y\log y - x\log x \le (y-x)(1+\log y).$$

<u>Beweis:</u> Definiere $f:(0,\infty)\to\mathbb{R}$ durch $f(t):=t\log t$. Mit der Produktregel erhält man, dass f differenzierbar mit $f'(t)=\log t+1$ ist. Nach dem Mittelwertsatz gibt es ein $\xi\in(x,y)$ mit

$$f(y) - f(x) = (y - x) \cdot f'(\xi).$$

Da f' monoton wächst, gilt $f'(\xi) \leq f'(y)$ für alle $\xi \in (x,y)$. Zusammen mit y-x>0 folgt

$$y \log y - x \log x = f(y) - f(x) \le (y - x) \cdot f'(y) = (y - x)(1 + \log y).$$

Aufgabe 35:

(i) Es sei $\alpha \in \mathbb{R}$. Bestimmen Sie die Ableitung der Funktion $f: \mathbb{R} \to \mathbb{R}$,

$$f(x) := \begin{cases} x^{\alpha} e^{-\frac{1}{x^2}}, & \text{falls } x > 0, \\ 0, & \text{falls } x \le 0, \end{cases}$$

in allen Punkten $x \in \mathbb{R}$, in denen diese existiert.

(ii) Zeigen Sie, dass die Funktion $f: [-1,1] \to \mathbb{R}, f(x) := (1+x^2)\arctan(x)$ Lipschitz-stetig ist mit Lipschitz-Konstante $L = \pi + 1$.

Lösungsvorschlag zu Aufgabe 35:

(i) Voraussetzung: Für $\alpha \in \mathbb{R}$ sei die Funktion $f \colon \mathbb{R} \to \mathbb{R}$ gegeben durch

$$f(x) := \begin{cases} x^{\alpha} e^{-\frac{1}{x^2}}, & \text{falls } x > 0, \\ 0, & \text{falls } x \le 0. \end{cases}$$

Behauptung: Die Funktion f ist auf \mathbb{R} differenzierbar mit Ableitung

$$f'(x) = \begin{cases} e^{-\frac{1}{x^2}} x^{\alpha} \left(\frac{\alpha}{x} + \frac{2}{x^3}\right), & x > 0, \\ 0, & x \le 0. \end{cases}$$

Beweis: Für $x \neq 0$ ist f differenzierbar, da f auf $(-\infty,0)$ identisch 0 ist und auf $(0,\infty)$ eine Verkettung differenzierbarer Funktionen ist. Es gilt also f'(x) = 0 für x < 0 und für x > 0 erhält man

$$f'(x) = \alpha x^{\alpha - 1} e^{-\frac{1}{x^2}} + x^{\alpha} e^{-\frac{1}{x^2}} \left(\frac{2}{x^3}\right) = e^{-\frac{1}{x^2}} x^{\alpha} \left(\frac{\alpha}{x} + \frac{2}{x^3}\right).$$

Damit f in 0 differenzierbar ist, muss der Grenzwert $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ existieren. Es gilt $\lim_{x\to 0-} \frac{f(x)-f(0)}{x-0} = 0$ 0. Weiter gilt

$$\lim_{x \to 0+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0+} \frac{f(x)}{x} = \lim_{x \to 0+} x^{\alpha - 1} e^{-\frac{1}{x^2}}.$$

Wir machen nun eine Fallunterscheidung:

Fall $\alpha > 1$: $\lim_{x \to 0+} x^{\alpha - 1} e^{-\frac{1}{x^2}} = \lim_{x \to 0+} x^{\alpha - 1} \cdot \lim_{x \to 0+} e^{-\frac{1}{x^2}} = 0 \cdot 0 = 0.$ Fall $\alpha = 1$: $\lim_{x \to 0+} x^0 e^{-\frac{1}{x^2}} = \lim_{x \to 0+} e^{-\frac{1}{x^2}} = 0.$ Fall $\alpha < 1$: Substituiere $t = \frac{1}{x^2}$, also $x = \frac{1}{\sqrt{t}}$. Dann gilt

$$\lim_{x \to 0+} x^{\alpha - 1} e^{-\frac{1}{x^2}} = \lim_{t \to \infty} t^{-\frac{1}{2}(\alpha - 1)} e^{-t} = \lim_{t \to \infty} t^{\frac{1}{2}(1 - \alpha)} e^{-t} = 0,$$

wobei die letzte Gleichheit eine Folgerung aus dem Grenzwert $\lim_{x\to\infty}\frac{\mathrm{e}^x}{x^p}=\infty\ (p\in\mathbb{N}_0)$ und $\frac{1}{2}(1-\alpha)>$ 0. Also existiert der Grenzwert $\lim_{x\to 0+} \frac{f(x)}{x}$ und ist 0, d.h. f'(0)=0

(ii) Voraussetzung: Es sei die Funktion $f: [-1,1] \to \mathbb{R}$ gegeben durch $f(x) := (1+x^2)\arctan(x)$. Behauptung: Die Funktion f ist Lipschitz-stetig mit Lipschitz-Konstante $L = \pi + 1$.

<u>Beweis:</u> Als Produkt stetiger Funktionen ist f stetig. Weiter ist f als Verkettung differenzierbarer Funktionen differenzierbar auf (-1,1). Es seien $x,y \in [-1,1]$, o.B.d.A. gilt x < y. Nach dem Mittelwertsatz (Satz 9.7) existiert ein $\xi \in (x, y)$ mit

$$f(y) - f(x) = f'(\xi)(y - x).$$

Weiter berechnen wir

$$f'(x) = 2x \arctan(x) + (1+x^2) \cdot \frac{1}{1+x^2} = 2x \arctan(x) + 1,$$

somit gilt $|f'(x)| \le 2 \cdot 1 \cdot \frac{\pi}{2} + 1 = \pi + 1$ für alle $x \in [-1, 1]$. Damit erhalten wir

$$|f(x) - f(y)| \le (\pi + 1)|x - y|$$
.

Aufgabe 36 (K):

(i) Bestimmen Sie die folgenden Grenzwerte, falls sie existieren:

(a)
$$\lim_{x \to 0} \frac{\sin(\sin(x))}{x},$$

(b)
$$\lim_{x \to 1} \frac{x^x - x}{1 - x + \log(x)}$$
,

(b)
$$\lim_{x \to 1} \frac{x^x - x}{1 - x + \log(x)}$$
, (c) $\lim_{x \to \infty} \frac{x^2 + x \log(x)}{x^3 + 1}$

(ii) Es sei $f:[0,\infty)\to[0,\infty)$ definiert durch $f(x):=(x^{\frac{1}{3}}+x)\sqrt{x}$. Zeigen Sie, dass f bijektiv ist und berechnen Sie die Ableitung der Umkehrfunktion in 544, d.h. $(f^{-1})'(544)$. Hinweis: Verwenden Sie, dass f(64) = 544.

Lösungsvorschlag zu Aufgabe 36:

(i) (a) <u>Behauptung:</u> Es gilt $\lim_{x \to 0} \frac{\sin(\sin(x))}{x} = 1$.

<u>Beweis:</u> Wir setzen $f(x) := \sin(\sin(x))$ und g(x) := x für $x \in \mathbb{R}$. Dann sind f und g differenzierbar. Ferner existiert $\lim_{x\to 0} \frac{f'(x)}{g'(x)}$ (siehe unten) und es gilt

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = 0.$$

Damit erhalten wir nach den Regeln von de l'Hospital:

$$\lim_{x \to 0} \frac{\sin(\sin(x))}{x} = \lim_{x \to 0} \frac{\cos(\sin(x)) \cdot \cos(x)}{1} = \frac{1}{1} = 1.$$

(b) <u>Behauptung:</u> Es gilt $\lim_{x\to 1} \frac{x^x - x}{1 - x + \log(x)} = -2$.

<u>Beweis:</u> Wir setzen $f(x) := x^x - x$ und $g(x) := 1 - x + \log(x)$ für x > 0. Es gilt f(x) = x $\overline{e^{\log(x^x)}} = e^{x \log(x)}$. Also sind f und g zweimal differenzierbar mit

$$f'(x) = x^{x} \cdot \left(\log(x) + x \cdot \frac{1}{x}\right) - 1 = x^{x}(\log(x) + 1) - 1, \quad g'(x) = -1 + \frac{1}{x},$$
$$f''(x) = x^{x}(\log(x) + 1)^{2} + x^{x} \cdot \frac{1}{x}, \qquad g''(x) = -\frac{1}{x^{2}}.$$

Ferner existiert $\lim_{x\to 1} \frac{f''(x)}{g''(x)}$ (siehe unten) und es gilt

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} g(x) = \lim_{x \to 1} f'(x) = \lim_{x \to 1} g'(x) = 0.$$

Damit erhalten wir durch zweifaches Anwenden der Regeln von de l'Hospital:

$$\lim_{x \to 1} \frac{x^x - x}{1 - x + \log(x)} = \lim_{x \to 1} \frac{x^x (\log(x) + 1) - 1}{-1 + \frac{1}{x}}$$

$$= \lim_{x \to 1} \frac{x^x (\log(x) + 1)^2 + x^x \cdot \frac{1}{x}}{-\frac{1}{x^2}} = \frac{1 + 1}{-1} = -2.$$

(c) <u>Behauptung:</u> Es gilt $\lim_{x \to \infty} \frac{x^2 + x \log(x)}{x^3 + 1} = 0$.

<u>Beweis:</u> Wir setzen $f(x) := x^2 + x \log(x)$ und $g(x) := x^3 + 1$ für x > 0. Dann sind f und gzweimal differenzierbar mit

$$f'(x) = 2x + \log(x) + x \cdot \frac{1}{x} = 2x + \log(x) + 1, g'(x) = 3x^{2},$$

$$f''(x) = 2 + \frac{1}{x},$$

$$g''(x) = 6x.$$

https://www.math.kit.edu/iana2/lehre/hm1info2020w/

Ferner existiert $\lim_{x\to\infty} \frac{f''(x)}{g''(x)}$ (siehe unten) und es gilt

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \lim_{x \to \infty} f'(x) = \lim_{x \to \infty} g'(x) = \infty.$$

Damit erhalten wir durch zweifaches Anwenden der Regeln von de l'Hospital

$$\lim_{x \to \infty} \frac{x^2 + x \log(x)}{x^3 + 1} = \lim_{x \to \infty} \frac{2x + \log(x) + 1}{3x^2} = \lim_{x \to \infty} \frac{2 + \frac{1}{x}}{6x} = \lim_{x \to \infty} \left(\frac{1}{3x} + \frac{1}{6x}\right) = 0.$$

(ii) <u>Voraussetzung:</u> Es sei $f: [0, \infty) \to [0, \infty)$ definiert durch $f(x) := (x^{\frac{1}{3}} + x)\sqrt{x}$. <u>Behauptung:</u> Die Funktion f ist bijektiv und $(f^{-1})'(544) = \frac{12}{149}$.

<u>Beweis:</u> Als Verkettung differenzierbarer Funktionen ist f auf $(0, \infty)$ differenzierbar und es gilt für $x \in (0, \infty)$

$$f'(x) = \left(\frac{1}{3}x^{-\frac{2}{3}} + 1\right)\sqrt{x} + \left(x^{\frac{1}{3}} + x\right)\frac{1}{2\sqrt{x}}.$$

Also gilt f'>0 auf $(0,\infty)$ und somit ist f auf $(0,\infty)$ streng monoton wachsend nach Satz 9.10. Da f auf $[0,\infty)$ stetig ist, ist f damit auf $[0,\infty)$ injektiv. Es gilt f(0)=0 und $f(x)\to\infty$ $(x\to\infty)$. Mit dem Zwischenwertsatz folgt $f([0,\infty))=[0,\infty)$, d.h. f ist surjektiv. Insgesamt ist f also bijektiv.

Da $f(64) = \left(64^{\frac{1}{3}} + 64\right)\sqrt{64} = (4+64)8 = 544$ liefert der Satz 9.3 über die Differenzierbarkeit der Umkehrfunktion

$$(f^{-1})'(544) = \frac{1}{f'(64)} = \frac{1}{\left(\frac{1}{3} \cdot 64^{-\frac{2}{3}} + 1\right)\sqrt{64} + \left(64^{\frac{1}{3}} + 64\right)\frac{1}{2\sqrt{64}}}$$
$$= \frac{1}{\left(\frac{1}{3} \cdot \frac{1}{16} + 1\right)8 + (4 + 64) \cdot \frac{1}{2 \cdot 8}} = \frac{1}{\frac{1}{6} + 8 + \frac{1}{4} + 4} = \frac{1}{\frac{2+3+144}{12}} = \frac{12}{149}.$$