Un-weighted least-squares fitting in HFRPtoolbox

Sung Yong Kim

Scripps Institution of Oceanography 9500 Gilman Dr., La Jolla, CA 92093

Revised on May. 11th 2007

1 Method

This is the part of this manuscript (([Kim et al.(2007)Kim, Terrill, and Cornuelle])). The weighted least-squares fitting (WLS, [Wunch(1996)]) method to estimate the vector current (\mathbf{u} , 2×1 elements) at a vector grid point (x_k, y_k) assumes that each radial velocity is a linear combination of the vector current components. The radial velocities (\mathbf{r} , $L \times 1$ elements) within the search radius (d_0) of the vector grid point and the projection matrix ($\mathbf{G_a}$, $L \times 2$ elements) are:

$$\mathbf{r} = \mathbf{G_a} \mathbf{u} + \mathbf{n_a} \,, \tag{1.1}$$

where

$$\mathbf{G_{a}} = \begin{bmatrix} \mathbf{g}_{1}^{\mathrm{T}} \\ \mathbf{g}_{2}^{\mathrm{T}} \\ \vdots \\ \mathbf{g}_{L}^{\mathrm{T}} \end{bmatrix} = \begin{bmatrix} \cos \theta_{1} & \sin \theta_{1} \\ \cos \theta_{2} & \sin \theta_{2} \\ \vdots & \vdots \\ \cos \theta_{L} & \sin \theta_{L} \end{bmatrix}, \mathbf{r} = \begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{L} \end{bmatrix}, \tag{1.2}$$

 $\mathbf{g}_i = [\cos \theta_i \sin \theta_i]^{\mathrm{T}}$, θ_i denotes the bearing angle at the *i*th radar grid point (x_i, y_i) measured counter-clockwise from East, and \mathbf{n}_a is the residual when the radial velocities are fit by a single vector current (^T denotes the matrix transpose). The least-squares estimate for the vector current is

$$\hat{\mathbf{u}} = \left(\mathbf{G}_{\mathbf{a}}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{G}_{\mathbf{a}} + \mathbf{P}^{-1}\right)^{-1} \mathbf{G}_{\mathbf{a}}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{r}. \tag{1.3}$$

The model covariance matrix, $\mathbf{P} \equiv \langle \mathbf{u}\mathbf{u}^T \rangle$, is the expected covariance of the unknown velocity, where $\langle \cdot \rangle$ denotes the expected value. The measurement uncertainty covariance matrix is $\mathbf{R} \equiv \langle \mathbf{n_a} \mathbf{n_a}^T \rangle$. In simple least-squares fitting, both \mathbf{P} and \mathbf{R} are assumed to be a scaled identity matrix:

$$\mathbf{P} = \sigma_s^2 \mathbf{I} \,, \ \mathbf{R} = \sigma_r^2 \mathbf{I}. \tag{1.4}$$

With the assumption of infinite signal variance ($\sigma_s^2 = \infty$) and unit error variance ($\sigma_r^2 = 1$), the WLS method matches the un-weighted least-squares fitting (UWLS) method, which is the standard method in the estimate of vector currents ([Lipa and Barrick(1983)], [Gurgel(1994)], [Graber et al.(1997)Graber, Haus, Chapman, and Shay]). The UWLS method also assumes constant vector currents within the search radius (d_0) of the vector grid point, and the estimate is

$$\hat{\mathbf{u}} = \left(\mathbf{G}_{\mathbf{a}}^{\mathrm{T}} \mathbf{G}_{\mathbf{a}}\right)^{-1} \mathbf{G}_{\mathbf{a}}^{\mathrm{T}} \mathbf{r} , \qquad (1.5)$$

where $\mathbf{G}_{\mathbf{a}}^{\mathrm{T}}\mathbf{G}_{\mathbf{a}}$ is called the geometric covariance matrix (2×2 elements), of which inverse matrix is geometric dilution of precision (GDOP).

The a posterior uncertainty matrices in the WLS and UWLS methods are

$$\hat{\mathbf{P}} = \left(\mathbf{G}_{\mathbf{a}}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{G}_{\mathbf{a}} + \mathbf{P}^{-1}\right)^{-1}, \qquad (1.6)$$

$$\hat{\mathbf{P}} = \left(\mathbf{G}_{\mathbf{a}}^{\mathrm{T}}\mathbf{G}_{\mathbf{a}}\right)^{-1}, \tag{1.7}$$

respectively.

The normalized uncertainty matrix (φ) is introduced in order to compare the uncertainty in the estimate between the UWLS and WLS methods. The corresponding normalized uncertainty matrix in the OI method is the *a posteriori* uncertainty matrix (Equation 1.6) divided by the observational error variance (σ_x^2) :

$$\varphi = \left(\mathbf{G}_{\mathbf{a}}^{\mathrm{T}}\mathbf{G}_{\mathbf{a}} + \mathbf{P}^{-1}\sigma_{r}^{2}\right)^{-1}, \tag{1.8}$$

recall that $\mathbf{R} = \sigma_r^2 \mathbf{I}$. On the other hand, the uncertainty matrix in the UWLS method is already scaled with the observational error variance to the implied error variance 1 cm²s⁻²:

$$\varphi = \left(\mathbf{G}_{\mathbf{a}}^{\mathrm{T}}\mathbf{G}_{\mathbf{a}}\right)^{-1}.\tag{1.9}$$

References

- [Graber et al.(1997) Graber, Haus, Chapman, and Shay] Graber, H. C., B. K. Haus, R. D. Chapman, and L. K. Shay (1997), HF radar comparisons with moored estimates of current speed and direction: Expected differences and implications, J. Geophys. Res., 102(C8), 18,749–18,766.
- [Gurgel(1994)] Gurgel, K.-W. (1994), Shipborne measurements of surface current fields by HF radar, L'Onde Electrique, 74(5).
- [Kim et al.(2007)Kim, Terrill, and Cornuelle] Kim, S. Y., E. Terrill, and B. Cornuelle (2007), Mapping surface currents from hf radar radial velocity measurements using optimal interpolation, J. Geophys. Res., submitted.
- [Lipa and Barrick(1983)] Lipa, B. J., and D. E. Barrick (1983), Least-squares methods for the extraction of surface currents from CODAR crossed-loop data: Application at ARSLOE, IEEE J. Oceanic Eng., 13(2), 507–513.
- [Wunch(1996)] Wunch, C. (1996), The ocean circulation inverse problem, Cambridge University Press.

Figure 1: An example of the radial velocity.

Figure 2: An example of the surface current vector and a posteriori uncertainty normalized by the observational error variance (a) UWLS (b) WLS (c) UWLS (φ) (d) WLS (φ)