

KeyCARE: A Framework for biomedical **Key**word extraction, **Ca**tegorization, and semantic **Re**lation.

Development and Use-Cases.

Sergi Marsol, BIA4NLP, Barcelona Supercomputing Center, Spain Luis Gascó, BIA4NLP, Barcelona Supercomputing Center, Spain Martin Krallinger, BIA4NLP, Barcelona Supercomputing Center, Spain

Sergi Marsol - sergi.marsol@bsc.es

Index

- 1 Introduction
- 2 Library

- 1. Keyword Extractor
- 2. Term Categorizer
- 3. Relations Extractor
- 3 Use Cases
- 1. NER candidates
- 2. Terminology enrichment
- 3. Cross-ontology mapping
- 4 Future steps

Introduction - NLP basic concepts

- Entity/mention sequence of words referring to a specific concept
- **Token** smallest semantic unit of text in a mention
- Keyword significant term or mention reflecting a document's content
- Named Entity Recognition (NER) system for identifying named entities like people or places in a text
- Corpus collection of documents for train-test datasets

...presenta gastroenteritis vírica...

mention: gastroenteritis vírica

tokens: gastro - enter - itis - vírica

s días previos.

resado en Neumología por infección respiratoria, presentando un

no servicio con la sospecha de fiebre de origen respiratorio, se exti

Introduction

Keyword Extraction: unsupervised extraction of the important terms from a text

Term Categorization: classification of terms in semantic categories

Relations Extraction: extraction of the type of relations between terms

Introduction

Keyword Extraction: unsupervised extraction of the important terms from a text

Term Categorization: classification of terms in semantic categories

Relations Extraction: extraction of the type of relations between terms

Introduction - State of the Art

→ Named Entity Recognition (NER)

- Supervised systems → need for training resources [1]
- Spanish: biomedical annotated datasets by NLP4BIA

- **Difficult scalability**, especially in low resource languages and multilingual scenarios [2]

→ Terminology Enrichment

- body of terms in a particular field of study → standard lexis and structure
- Knowledge graphs based on structured terminologies
- Scarce terminologies in different languages [3] → need for semiautomatic terminology enrichment tools [4]

Introduction

Keyword Extraction + Term **Ca**tegorization + **Re**lations Extraction

Many applications in studying term prevalence and co-occurrence, entity linking, terminology enrichment, among others.

*Soon available in Github

Library - General structure

Information flow -

Training data

List of mentions & Terminology concepts

Information flow -

Training data

List of mentions & Terminology concepts

Acude al Servicio de Urgencias por cefalea frontoparietal derecha.

Mediante biopsia se diagnostica adenocarcinoma de próstata Gleason 4+4=8 con metástasis óseas múltiples.

Se trata con Ácido Zoledrónico 4 mg iv/4 semanas.

Acude al Servicio de Urgencias por cefalea frontoparietal derecha.

Mediante biopsia se diagnostica adenocarcinoma de próstata Gleason 4+4=8 con metástasis óseas múltiples.

Se trata con **Ácido Zoledrónico 4** mg **iv/4 semanas**.

Unsupervised keyword extraction

YAKE

Extractor based on statistical descriptors regarding word frequency and its relationship with the context

- Language-independent
- Scalable
- Single documents

[5]

RAKE

Extractor based on the generation of a **graph of related terms** based on their **co-occurrence** to assess term importance

- Language-independent
- Domain-independent
- Single documents

[6]

TextRank

Graph-based keyword extractor based on PageRank that uses the **co-occurrence** of terms

- Language-independent
- Scalable
- Single documents

[7]

KeyBERT

Key Bidirectional
Encoder Representation
from Transformers
based on the semantic
similarity of words
through vector
representation

- Part of Speech tags
- Spanish SapBERT as base model

[8]

Unsupervised keyword extraction

of tokens in mentions

or their **PoS tags**

YAKE

Extractor based on statistical descriptors regarding word frequency and its relationship with the context

- Language-independent
- Scalable
- Single documents

RAKE

Extractor based on the generation of a graph of related terms based on their co-occu

Language-ir

assess term i

- Domain-inde
- Single documents

[6]

TextRank

Graph-based keyword extractor based on PageRank that uses the ce of terms Control of the **number**

ndependent

- Single documents

[7]

KeyBERT

Key Bidirectional Encoder Representation from Transformers based on the semantic **similarity** of words through vector representation

- Part of Speech tags
- Spanish SapBERT as base model [8]

NER Gold Standard Corpus	N	/ledProcNE	R [9]		DisTEMIST	[10]
	precision	recall	f1-score	precision	recall	f1-score
RAKE	11.93%	89.00%	21.05%	8.44%	86.41%	15.38%
YAKE	10.20%	44.72%	16.61%	9.60%	57.81%	16.47%
TextRank	13.00%	90.26%	22.73%	9.25%	88.17%	16.75%
KeyBERT	21.23%	55.18%	30.66%	15.31%	55.75%	24.02%
KeyBERT + PoS	20.22%	32.95%	25.06%	21.91%	47.87%	30.06%

^{*}Shown scores are computed with **any degree of overlap** among terms.

Library - Term Categorizer

Information flow -

Training data

List of mentions & Terminology concepts

Library - Term Categorizer

Acude al Servicio de Urgencias por cefalea frontoparietal derecha.

Mediante biopsia se diagnostica adenocarcinoma de próstata Gleason 4+4=8 con metástasis óseas múltiples.

Se trata con **Ácido Zoledrónico 4** mg **iv/4 semanas**.

Servicio de Urgencias → DEPARTMENT

cefalea frontoparietal derecha → SYMPTOM

Mediante → NO_CATEGORY

biopsia → PROCEDURE

adenocarcinoma de próstata → DISEASE

Gleason 4 → NEOPLASIA

MORPHOLOGY

metástasis óseas múltiples → DISEASE

Ácido Zoledrónico 4 → DRUG

iv/4 semanas → PROCEDURE

Library - Term Categorizer

Unsupervised term clustering

Supervised term classification

K-Means Clustering

Generates **clusters based on the distance** of the vectorial representations of terms

Transformers classifier

SetFit classifier

Using Spanish SapBERT as a base model

Trained with NER Gold Standard Corpus

Using Spanish SapBERT as a base model

[11]

© BSC-NLP4BIA/SapBERT-from-roberta-base-biomedical-clinical-es □ private

☐ Feature Extraction ② Transformers ② PyTorch ③ Spanish roberta bert biomedical lexical semantics bior

☐ License: apache-2.0

SapBERT - Self-Alignment Pre-training for Biomedical Entity Representations

- Pretrained LM for Biomedical Entity Linking
- Using UMLS relations & contrastive learning
- SapBERT → english / multilingual / spanish

Transformers classifier

Transformers **AutoModel For Sequence Classification**

- Not for Few-Shot Learning
- Fine-Tuning flexibility
- Multilingual support with base model in specified language

SetFit classifier

Few-Shot Fine-Tunning of Sentence Transformers models for sequence classification

- Fast to train
- Multilingual support with base model in specified language

Trained with NER Gold Standard Corpus

73,863 mentions

[13]

Includes 21 classes such as PROCEDURE, DISEASE, SYMPTOM, DRUG, DEPARTMENT, NO_CATEGORY, etc.

[12]

^[12] https://hugqinaface.co/docs/transformers/model_doc/auto#transformers.AutoModelForSequenceClassification

^[13] https://huggingface.co/docs/setfit/index

^[14] https://temu.bsc.es/symptemist/

SetFit classifier

SetFit - Sentence Transformers Fine-Tuning

Embedding Fine-tuning Phase

Contrastive Learning with sentence pairs

Ability to generate many unique pairs from a few examples → Few-Shot

Classifier Training Phase

Classification head for the classification of the embeddings (Logistic Regression)

[15]

NER Gold Standard Corpus	Transf	ransformers classifier		SetFit classifier		
	precision	recall	f1-score	precision	recall	f1-score
PROCEDURE	96%	97%	97%	96%	97%	97%
DISEASE	84%	79%	72%	82%	82%	82%
SYMPTOM	90%	89%	89%	88%	88%	90%
Micro avg	93%	93%	93%	93%	93%	93%

Information flow —

Training data

List of mentions & Terminology concepts

Extracted mentions (source)

metástasis óseas múltiples → DISEASE

cefalea frontoparietal derecha → SYMPTOM

biopsia → PROCEDURE

adenocarcinoma de próstata → DISEASE

Terminology concepts (target)

neoplasias malignas

secundarias de hueso múltiples

DISEASE

dolor de cabeza → SYMPTOM

biopsia de próstata transrectal → PROCEDURE

adenocarcinoma de colon → DISEASE

metástasis óseas múltiples

neoplasias malignas secundarias ightarrow

EXACT
Target & source
are equal

de hueso múltiples

cefalea frontoparietal derecha

NARROW

dolor de cabeza

→ Target contains source

biopsia

BROAD

biopsia de próstata transrectal

→ Source contains target

adenocarcinoma de próstata

NO_REL

adenocarcinoma de colon

No is_a relation

Centro Nacional de Supercomputación

Trained

sequence

pair

classifier

Transformers AutoModel for Sequence Pairs Classification

blastoma pleuropulmonar (trastorno)

blastoma pulmonar (trastorno)

90%

UMLS Test Dataset

precision	recall	f1-score
85%	91%	88%
92%	93%	92%
96%	97%	97%
86%	78%	82%

90%

90%

Manually annotated Dataset

External dataset with is a relations

precision	recall	f1-score
49%	80%	61%
30%	94%	45%
49%	66%	56%
98%	63%	77%
83%	68%	71%

BROAD

EXACT

NARROW

NO_REL

Weighted avg

Use cases

Specific domain example - cardiology

ENFERMEDAD MORFOLOGÍA NEOPLASIA SÍNTOMA **ENFERMEDAD** Introducción: De los tumores cardíacos primarios, más del 50 por ciento son mixomas. La variabilidad sintomática del mixoma cardíaco, SÍNTOMA puede llevar a confusiones diagnósticas. ENFERMEDAD SÍNTOMA Obietivo: Presentar un caso donde se destaca la variabilidad de síntomas del mixoma cardíaco. HUMAN **ENFERMEDAD ENFERMEDAD** Caso clínico: Paciente masculino de 51 años, atendido con manifestaciones de insuficiencia cardíaca, trastornos del ritmo cardíaco, **ENFERMEDAD** SÍNTOMA SÍNTOMA **ENFERMEDAD** SÍNTOMA SÍNTOMA SÍNTOMA microembolias cerebrales, convulsiones tónico clónicas, hemoptisis, trastornos psiquiátricos, síndrome general con astenia, anorexia y FAC GEN SITUACIÓN LABORAL PROCEDIMIENTO DEPARTAMENTO pérdida de peso. Durante dos años, fue atendido en varias instituciones, con múltiples estudios y tratamientos. En el Servicio de Cardiología FAC NOM GPE NOM PROCEDIMIENTO FAC_NOM **ENFERMEDAD** TRANSPORTE de <mark>Morón</mark>, Ciego de Ávila, mediante el estudio clínico y ecocardiográfico, se diagnosticó un tumor cardíaco. Se traslada al Cardiocentro de PROCEDIMIENTO SÍNTOMA SÍNTOMA Santa Clara y allí se le extirpó el tumor. Histológicamente era un mixoma. Evolucionó muy bien, con excelente calidad de vida. MORFOLOGÍA NEOPLASIA **ENFERMEDAD** SÍNTOMA **ENFERMEDAD** SÍNTOMA SÍNTOMA Conclusiones: El mixoma cardíaco ocasiona síntomas obstructivos, embólicos y constitucionales, con cuadro clínico muy equívoco (AU).

Use cases - NER candidates

System for presenting NER candidates in a unsupervised way for low-resource languages

MedProcNER

precision	
64.32%	

RAKE with up to 5 tokens

precision	recall	f1-score
50.26%	75.97%	60.50%
17.23%	26.06%	20.75%

DisTEMIST

precision	recall	f1-score
64.32%	66.84%	65.56%
30.16%	31.35%	30.74%

Any overlap

Exact overlap

Use cases - NER candidates

precision

50.26%

System for presenting NER candidates in a unsupervised way for low-resource languages

f1-score

60.50%

MedProcNER

recall

75.97%

DisTEMIST

RAKE with up to 5 tokens

RAKE + TextRank + KeyBERT with up to 3 tokens

17.23%	26.06%	20.75%
28.61%	94.26%	43.90%
12.03%	39.63%	18.46%

precision	recall	f1-score	
64.32%	66.84%	65.56%	Any overlap
30.16%	31.35%	30.74%	Exact overlap
38.45%	86.27%	53.20%	Any overlap
19.20%	43.08%	26.56%	Exact overlap

Use cases - NER candidates

System for presenting NER candidates for low-resource languages

NER Gold Standard

Entre sus antecedentes médicos destacaba padecer una esclerosis tuberosa y haber sido sometido a un trasplante de riñón tras sufrir una nefrectomía por un angiomiolipoma renal.

Presentaba como síntomas de la enfermedad el denominado adenoma sebáceo de Pringle a nivel nasogeniano, hamartomas retinianos en el fondo de ojo y lesiones fibróticas a nivel cervical posterior.

KeyCARE

Entre sus antecedentes médicos destacaba padecer una esclerosis tuberosa y haber sido sometido a un trasplante de riñón tras sufrir una nefrectomía por un angiomiolipoma renal.

Presentaba como síntomas de la **enfermedad** el **denominado adenoma sebáceo** de Pringle a nivel nasogeniano, **hamartomas retinianos** en el fondo de ojo y **lesiones fibróticas** a nivel cervical posterior.

Use cases - Terminological enrichment

Enrichment of relations between terms & discovery of new terms

Use cases - Cross-ontology mapping

Use cases - Others

- Knowledge graph
- Analysis of term prevalence in specific domains and of term co-occurrence
- Entity Linking improvement

Future steps

The Use Cases are not yet implemented but some are already doable:

NER candidates - through evaluation in other languages

Terminology enrichment - through the development of an interface

Analysis of term prevalence in specific domains and of term co-occurrence

•••

KeyCARE

A python library for biomedical keyword extraction, term categorization, and semantic relation

Explore the docs »

Report Bug · Request Feature

Table of Contents

- 1. About the Project
- 2. Getting Started
 - 2.1. Installation
 - 2.2. Usage
- 3. Contributing
- 4. License
- 5. References

Thank you!

Sergi Marsol - sergi.marsol@bsc.es