《高等微积分1》第十一次习题课材料

1 对非负整数 n, 考虑积分 $\int_{-A}^A x^n e^{-x^2} dx$, 人们可以证明当 $A\to +\infty$ 时, 极限 $\lim_{A\to +\infty} \left(\int_{-A}^A x^n e^{-x^2} dx\right)$ 存在, 记作

$$J_n = \lim_{A \to +\infty} \left(\int_{-A}^{A} x^n e^{-x^2} dx \right).$$

证明:

- (1) 当 n 是奇数时, $J_n = 0$.
- (2) 对每个非负整数 n, 都有

$$J_{n+2} = \frac{n+1}{2}J_n.$$

2 给定 0 < a < b. 设连续函数 $f:[a,b] \rightarrow [-1,1]$ 满足 $\int_a^b f(x) dx = 0$. 证明:

$$\int_{a}^{b} \frac{f(x)}{x} dx \le \ln \frac{(a+b)^2}{4ab}.$$

3 (1) 设 $f:[0,+\infty)\to \mathbf{R}$ 是连续映射, 且极限 $\lim_{x\to +\infty}f(x)=L$ 存在. 求极限

$$\lim_{n\to\infty}\int_0^1 f(nx)dx.$$

(2) 设 $g,h: \mathbf{R} \to \mathbf{R}$ 都是连续映射, 且 h 是周期为 T > 0 的周期函数, 即对任何 $x \in \mathbf{R}$ 都有 h(x+T) = h(x). 证明:

$$\lim_{n\to\infty} \int_0^T g(x)h(nx)dx = \frac{1}{T} \left(\int_0^T g(x)dx \right) \cdot \left(\int_0^T h(x)dx \right).$$

解. (1) 令 $F(x) = \int_0^x f(t)dt$ 是 f 的变上限积分,由于 f 连续,对任何 $x \geq 0$ 有 F'(x) = f(x). 利用定积分的换元公式,以及 $\frac{?}{\infty}$ 型洛必达法则,可得

$$\lim_{n \to \infty} \int_0^1 f(nx) dx = \lim_{n \to \infty} \int_0^n f(t) \frac{dt}{n} = \lim_{n \to \infty} \frac{F(n)}{n}$$

$$= \lim_{x \to +\infty} \frac{F(x)}{x} = \lim_{x \to +\infty} \frac{F'(x)}{1}$$

$$= \lim_{x \to +\infty} f(x) = L.$$

(2) 定义 $A_n = \int_0^T g(x)h(nx)dx$, 则

$$A_{n} = \sum_{i=1}^{n} \int_{\frac{(i-1)T}{n}}^{\frac{iT}{n}} g(x)h(nx)dx$$

$$= \sum_{i=1}^{n} \int_{(i-1)T}^{iT} g(\frac{t}{n})h(t)\frac{dt}{n}$$

$$= \frac{1}{n} \sum_{i=1}^{n} \int_{(i-1)T}^{iT} g(\frac{t}{n})h(t)dt.$$

定义

$$B_n = \frac{1}{n} \sum_{i=1}^{n} \int_{(i-1)T}^{iT} g(\frac{iT}{n}) h(t) dt,$$

我们先来证明 $\lim_{n\to\infty}A_n=\lim_{n\to\infty}B_n$. 由于 $g\in C([0,T])$, 则 g 在 [0,T] 上一致连续,即对任何 $\epsilon>0$,存在 $\delta>0$,使得对任何 $x_1,x_2\in[0,T]$,只要 $|x_1-x_2|<\delta$,则有 $|g(x_1)-g(x_2)|<\epsilon$. 这样,对任何 $n>\frac{T}{\delta}$,有

$$|g(\frac{t}{n}) - g(\frac{iT}{n})| < \epsilon, \quad \forall t \in [(i-1)T, iT],$$

由此可得

$$|A_n - B_n| = \left| \frac{1}{n} \sum_{i=1}^n \int_{(i-1)T}^{iT} \left(g(\frac{t}{n}) - g(\frac{iT}{n}) \right) h(t) dt \right|$$

$$\leq \frac{1}{n} \sum_{i=1}^n \int_{(i-1)T}^{iT} |g(\frac{t}{n}) - g(\frac{iT}{n})| \cdot |h(t)| dt < \frac{1}{n} \sum_{i=1}^n \int_{(i-1)T}^{iT} \epsilon \cdot |h(t)| dt$$

$$= \frac{\epsilon}{n} \sum_{i=1}^n \int_{(i-1)T}^{iT} |h(t)| dt = \frac{\epsilon}{n} \sum_{i=1}^n \int_0^T |h(t)| dt = \left(\int_0^T |h(t)| dt \right) \cdot \epsilon,$$

这就证明了 $\lim_{n\to\infty} A_n = \lim_{n\to\infty} B_n$.

其次, 利用 g 在 [0,T] 上 Riemann 积分的定义, 有

$$\lim_{n \to \infty} \sum_{i=1}^{n} g(\frac{iT}{n}) \cdot \frac{T}{n} = \int_{0}^{T} g(x) dx,$$

由此可得

$$\lim_{n \to \infty} B_n = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n g(\frac{iT}{n}) \int_{(i-1)T}^{iT} h(t)dt$$

$$= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n g(\frac{iT}{n}) \int_0^T h(t)dt$$

$$= \lim_{n \to \infty} \left(\frac{1}{n} \sum_{i=1}^n g(\frac{iT}{n})\right) \cdot \left(\int_0^T h(t)dt\right)$$

$$= \frac{1}{T} \left(\int_0^T g(x)dx\right) \cdot \left(\int_0^T h(t)dt\right).$$

结合这两部分的结论,即有

$$\lim_{n\to\infty} \int_0^T g(x)h(nx)dx = \frac{1}{T} \left(\int_0^T g(x)dx \right) \cdot \left(\int_0^T h(x)dx \right).$$

4 判断下列广义积分的收敛发散性.

$$(1) \int_{e}^{+\infty} \frac{1}{x(\ln x)^p} dx.$$

(2)
$$\int_{1}^{+\infty} \frac{(\ln x)^p}{1+x^2} dx$$
, 其中常数 $p > 0$.

$$(3) \int_{1}^{+\infty} \frac{\cos^2 x}{x} dx.$$

(4)
$$\int_0^1 x^{p-1} (1-x)^{q-1} dx$$
.

(5)
$$\int_0^1 \frac{\sin\frac{1}{x}}{x^p} dx$$
, 其中常数 $p > 0$.

(6)
$$\int_0^{+\infty} \frac{x^a \sin x}{1 + x^b} dx$$
, 其中常数 $b \ge 0$.

5 给定数列 $\{a_n\}_{n=1}^{\infty}$ 与 $\{b_n\}_{n=1}^{\infty}$. 设 $\{b_n\}_{n=1}^{\infty}$ 的部分和序列为

$$B_n = b_1 + \dots + b_n, \quad \forall n \in \mathbf{Z}_+.$$

(1) 证明: Abel 恒等式

$$\sum_{i=1}^{n} a_i b_i = a_n B_n + \sum_{i=1}^{n-1} (a_i - a_{i+1}) B_i.$$

(2) 设 $\{a_n\}_{n=1}^{\infty}$ 是单调数列, 数列 $\{b_n\}_{n=1}^{\infty}$ 的部分和满足

$$|B_i| \leq M, \quad \forall i \geq 1.$$

证明:

$$\left|\sum_{i=1}^{n} a_i b_i\right| \le (|a_n| + |a_1 - a_n|)M.$$

(3)(Dirichlet 判别法) 设数列 $\{a_n\}_{n=1}^{\infty}$ 是单调数列, 且 $\lim_{n\to\infty}a_n=0$. 设数列 $\{b_n\}_{n=1}^{\infty}$ 的部分和序列有界, 即存在常数 M>0 使得

$$|\sum_{i=1}^{n} b_i| \le M, \quad \forall n \ge 1.$$

证明: 级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

- (4)(Abel 判别法) 设数列 $\{a_n\}_{n=1}^{\infty}$ 是单调且有界的数列, 级数 $\sum_{n=1}^{\infty} b_n$ 收敛. 证明: 级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.
- 6 判断级数的收敛发散性.

(1)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+\mu)}}$$
, 其中常数 $\mu > 0$.

(2)
$$\sum_{n=1}^{\infty} \frac{1}{1+a^n}$$
, 其中常数 $a \neq -1$.

(3)
$$\sum_{n=1}^{\infty} \frac{n!a^n}{n^n}$$
, 其中 $a > 0$.

- $(4)\sum_{n=2}^{+\infty}\frac{1}{\ln(n!)}.$
- (5) $\sum_{n=1}^{+\infty} \frac{(\ln n)^p}{1+n^2}$, 其中常数 p > 0.
- $(6) \sum_{n=1}^{\infty} \frac{n!}{n^n}.$
- (7) $\sum_{n=1}^{\infty} \frac{(\ln n)^p}{n^q}$, 其中常数 p, q > 0.
- (8) $\sum_{n=1}^{\infty} \frac{\sin n}{n^{\alpha}}$, 其中常数 $\alpha > 0$.
- 7 (Kummer 判別法) 设 $\{a_n\}_{n=1}^{\infty}$ 和 $\{c_n\}_{n=1}^{\infty}$ 是两列正数, 且级数 $\sum_{n=1}^{\infty} \frac{1}{c_n}$ 发散. 定义数列:

$$k_n = c_n \frac{a_n}{a_{n+1}} - c_{n+1}.$$

- (1) 如果存在 $\delta > 0$ 和 $N \in \mathbb{Z}_+$, 使得对任何 $n \geq N$ 都有 $k_n \geq \delta$. 证明:
- $(1.a) \ \forall n \ge N, \ \hat{\mathbf{f}} \ c_n a_n c_{n+1} a_{n+1} \ge \delta a_{n+1}.$
- $(1.b) \lim_{n \to \infty} c_n a_n$ 存在.
- (1.c) 级数 $\sum_{n=1}^{\infty} a_n$ 收敛.
- (2) 如果存在 $N \in \mathbb{Z}_+$,使得对任何 $n \ge N$ 都有 $k_n \le 0$. 证明: 级数 $\sum_{n=1}^{\infty} a_n$ 发散.

注: 在 Kummer 判别法中取数列 $\{c_n = 1\}, \{c_n = n\}, \{c_n = n \ln n\},$ 所得到的判别法分别被称为 d'Alembert, Raabe, Bertrand 判别法.