Guía de Ejercicios

- 1. Suponga $Y_t \sim \text{i.i.d N}(1,1)$ para t impar e $Y_t \sim \text{i.i.d exp}(1)$ para t par; siendo las Y's independientes entre sí para t par e impar ¿Es Y_t un proceso estrictamente estacionario?
- 2. Suponga que Y_t es generado por $Y_t = Z + \varepsilon_t$, para todo t=1,2,..., donde ε_t es una secuencia i.i.d. con media cero y varianza σ_{ε}^2 . La variable aleatoria Z no cambia en el tiempo; tiene media cero y varianza σ_Z^2 , y no está correlacionada con ε_t
 - a) Encuentre el valor esperado y la varianza de Y_t . ¿Depende su respuesta de t?
 - b) Encuentre $Cov(Y_t, Y_{t-h})$ para t y h cualesquiera. ¿Es Y_t un proceso débilmente estacionario?
 - c) Utilice las partes a) y b) para determinar $Corr(Y_t, Y_{t-h})$ para todo t y h.
 - d) ¿Es Y_t un proceso débilmente dependiente o asintóticamente no correlacionado, esto es, $\operatorname{Corr}(Y_t, Y_{t-h}) \to 0$ a medida que $h \to \infty$? Explique.
- 3. $Y_t = \delta_0 + \delta_1 t + u_t$ $u_t = \alpha u_{t-1} + \varepsilon_t$ $|\alpha| < 1, \varepsilon_t$ es ruido blanco.
 - a) Demuestre que Y_t se puede expresar como un proceso AR(1) estacionario en torno a una tendencia:

$$Y_t = \gamma_0 + \gamma_1 t + \gamma_2 Y_{t-1} + \varepsilon_t$$

- b) Indique qué es γ_i , i=0,1,2, en terminos de los parametros originales del proceso. ¿Qué ventaja tiene esta formulación para la estimación de los parametros vía MCO?
- c) ¿Que sucederia si $\alpha = 1$?
- 4. Suponga un proceso AR(1) en que Y_t está expresado en desviación con respecto a una tendencia determinística:

$$Y_t - \mu - \delta t = \phi(Y_{t-1} - \mu - \delta(t-1)) + \varepsilon$$

- a) Demuestre que para $|\phi| < 1$, Y_t se revierte a $(\mu + \delta t)$.
- b) Si $\phi = 1$, Y_t es una caminata aleatoria con deriva.
- 5. Considere el modelo AR(4) estacional o SAR(4), $Y_t = \gamma_4 Y_{t-4} + \epsilon_t$, $|\gamma_4| < 1$. Determine la función de autocorrelación simple de Y_t .
- 6. Considere dos procesos MA(2) uno con $\theta_1 = \theta_2 = \frac{1}{6}$ y otro con $\theta_1 = -1$, $\theta_2 = 6$. ¿Como se comparan las raíces de las ecuaciones características inversas?
- 7. Explique cómo obtendría un estimador consistente del parametro θ de un proceso MA(1), $Y_t = \epsilon_t \theta \epsilon_{t-1}$, a partir de la función de autocorrelación simple muestral. ¿Cuál es el rango de valores admisibles del coeficiente de autocorrelación simple, a fin de que $\theta \in \Re$? En general, existirán dos soluciones para θ . ¿Cuál escogería?