1

WE CLAIM:

Sub	A	2
		9

1. A device comprising:

- a lower electrode;
- a substrate formed on the lower electrode;
- a triangle mesa structure formed on the substrate for lateral confinement of light;
- a triangle optical cavity formed in the mesa structure;
- an upper electrode formed on the mesa structure; and
- 8 a plurality of contact spots formed on the upper electrode
- 9 corresponding to maxima of optical field intensity for at least one optical
- 10 mode on a lateral plane in the optical cavity.
 - 1 2. The device of claim 1 wherein the triangle mesa structure is 2 truncated.
 - The device of claim 1 wherein the device is one selected from the group consisting of a light emitting diode (LED), a semiconductor laser diode, a resonance cavity LED, a unipolar semiconductor laser diode, a light output device, a semiconductor laser gyroscope and a semiconductor device generating light.
 - 1 4. The device of claim 1 wherein the triangle optical cavity is 2 truncated.
 - 5. The device of claim 1 further comprising:
 - an additional plurality of triangle mesa structures formed on the
 - 3 substrate wherein each of the additional triangle mesa structures includes a
 - 4 structure generally the same as the triangle mesa structure;

5	an additional plurality of upper electrodes respectively formed
6	on and respectively corresponding to the additional triangle mesa structures;
7	and
8	a plurality of trenches providing optical connection among the
9	triangle mesa structure and the additional triangle mesa structures.

- The device of claim 5 wherein the triangle mesa structure and the additional triangle mesa structures are formed on the substrate in a topology selected from the group consisting of an array, cascade, lattice, super lattice, matrix, hollow matrix, hexagon and polygon.
- 7. The device of claim 5 wherein the triangle mesa structure and the additional triangle mesa structures are truncated.
- 1 8. The device of claim 5 further comprising a light output structure 2 formed on the substrate for controlling light output direction.
- 9. The device of claim 8 wherein the light output structure is one selected from the group consisting of a triangle, ridge, plane waveguides and an optical fiber.
- 1 10. The device of claim 1 wherein the substrate is one selected 2 from the group consisting of n-GaAs, n-InP, n-SiC and sapphire.
- 1 11. The device of claim 1 wherein the triangle optical cavity further 2 comprises:
- 3 an upper waveguide mirror;
- 4 a lower waveguide mirror; and;

- a waveguide layer disposed between the upper mirror and the lower mirror for vertical confinement of the light.
- 1 12. The device of claim 1 wherein the triangle mesa structure 2 further includes an AlGaAs waveguide layer comprising:
- an upper mirror selected from the group consisting of a p-type

 4 AlGaAs cladding layer and p-type AlGaAs superlattice;
- a lower mirror selected from the group consisting of an n-type AlGaAs cladding layer and n-type AlGaAs superlattice; and
- an upper contact layer made of p-type AlGaAs.
- 1 13. The device of claim 12 wherein the contact spots are shaped by 2 a process selected from the group consisting of non-uniform metal deposition, metal deposition over a dielectric mask, non-uniform doping of the upper contact layer, and ion-implantation treatment of the upper contact layer.
- 1 14. The device of claim 1 wherein the contact spots are shaped by 2 a process selected from the group consisting of non-uniform metal 3 deposition, metal deposition over a dielectric mask, non-uniform doping, and 4 ion-implantation.
- 1 15. The device of claim 1 further comprising a buffer layer made of 2 BAIGaInN.
- 1 16. The device of claim 1 wherein the triangle mesa structure 2 further includes an InGaAsP waveguide layer comprising:
- an upper mirror selected from the group consisting of a p-type
 InP cladding layer p-type InGaAsP superlattice;

4

5

tunneling structure.

5	a lower mirror selected from the group consisting of an n-type	
6	InP cladding layer, n-type InGaAsP superlattice and n-type AllnGaAs	
7	superlattice; and	
8	an upper contact layer made of p-type InP.	
1	17. The device of claim 1 wherein the triangle mesa structure	
2	further includes an InGaN waveguide layer comprising	
3	an upper mirror selected from the group consisting of a p-type	
4	AlGaN cladding layer and p-type AlGaN superlattice;	
5	a lower mirror selected from the group consisting of an n-type	
6	AlGaN cladding layer and n-type AlGaN superlattice; and	
7	an upper contact layer made of p-type AlGaN.	
1	18. The device of claim 1 wherein the triangle mesa structure	
2	further includes an InGaAs waveguide layer comprising:	
3	an upper mirror selected from the group consisting of a p-type	
4	AlGaAs cladding layer p-type AlGaAs superlattice;	
5	a lower mirror selected from the group consisting of an n-type	
6	AlGaAs cladding layer and n-type AlGaAs superlattice; and	
7	an upper contact layer made of p-type AlGaAs.	
1	19. The device of glaim 1 wherein the triangle mesa structure	
2	further comprises an active layer selected from the group consisting of	
3	InGaAs/GaAlAs double heterostructure, InGaAs/GaAlAs single quantum well,	

20. The device of claim 1 wherein the triangle mesa structure further comprises an active layer selected from the group consisting of

InGaAs/GaAlAs multiple guantum wells, and current asymmetric resonance

- 3 InGaAsP/GaAlAsP double heterostructure, InGaAsP/GaAlAsP single quantum
- 4 well, InGaAsP/GaAlAsP multiple quantum wells, and current asymmetric
- 5 resonance tunneling structure.