```
import pandas as pd
import numpy as np
{\tt import\ matplotlib.pyplot\ as\ plt}
import seaborn as sns
df = pd.read_csv("/content/titanic.csv")
df.head()
\overrightarrow{\exists}
        PassengerId Survived Pclass
                                                                                 SibSp
                                                                                                      Ticket
                                                                                                                Fare Cabin Embarked
                                                               Name
                                                                       Sex
                                                                            Age
                                                                                       Parch
      0
                            0
                                    3
                                                                                                    A/5 21171
                                               Braund, Mr. Owen Harris
                                                                      male
                                                                            22.0
                                                                                            0
                                                                                                               7.2500
                                                                                                                        NaN
                                                                                                                                    S
                                            Cumings, Mrs. John Bradley
      1
                  2
                            1
                                    1
                                                                     female
                                                                            38.0
                                                                                            0
                                                                                                    PC 17599 71.2833
                                                                                                                        C85
                                                                                                                                    С
                                                 (Florence Briggs Th...
                                                                                                    STON/O2.
      2
                  3
                            1
                                    3
                                                 Heikkinen, Miss. Laina female 26.0
                                                                                     0
                                                                                            0
                                                                                                               7 9250
                                                                                                                                    S
                                                                                                                       NaN
                                                                                                     3101282
                                        Futrelle, Mrs. Jacques Heath (Lily
                                                                     female 35.0
                                                                                                      113803 53.1000
                                                                                                                      C123
                                                                                                                                    S
                                                           May Peel)
df.columns
dtype='object')
df.drop(['PassengerId','Name','Ticket'],axis=1,inplace=True) # Unwanted Columns.
df.shape
→ (891, 9)
df.duplicated().sum() # Total Duplicates
→ 107
df.drop_duplicates(inplace=True) # Droping Duplicates
df.duplicated().sum() # No More Duplicates
<del>→</del> 0
df.isnull().sum() #null values in every columns
→ Survived
                  0
     Pclass
                   0
     Sex
                   0
     Age
                 106
     SibSp
                  0
     Parch
                  0
     Fare
                  0
     Cabin
                 581
     Embarked
     dtype: int64
df["Age"] = df["Age"].fillna(df["Age"].mean())
df["Cabin"].fillna(df["Cabin"].mode()[0], inplace=True)
                                                          # Handling Missing Values using mean , median , mode
df.dropna(inplace=True)
df.isnull().sum() # All Missing Values are handled
→ Survived
                0
     Pclass
                0
     Sex
                0
                 0
     Age
     SibSp
                 0
     Parch
                0
     Fare
                0
     Cabin
                0
     Embarked
                0
     dtype: int64
df.info()
```

```
<<class 'pandas.core.frame.DataFrame'>
    Index: 782 entries, 0 to 890
    Data columns (total 9 columns):
     # Column
                   Non-Null Count Dtype
                   -----
        Survived 782 non-null
Pclass 782 non-null
     0
                                   int64
     1
                                   int64
         Sex
                   782 non-null
                                   object
         Age
                   782 non-null
                                   float64
         SibSp
                 782 non-null
                                  int64
         Parch
                   782 non-null
                                   int64
        Fare
                   782 non-null
                                   float64
         Cabin
                   782 non-null
                                   object
     8 Embarked 782 non-null
                                   object
    dtypes: float64(2), int64(4), object(3)
memory usage: 61.1+ KB
```

df['Embarked'].unique()

array(['S', 'C', 'Q'], dtype=object)

df["Sex"].unique()

array(['male', 'female'], dtype=object)

df["Sex"] = pd.get_dummies(df["Sex"],drop_first=True).astype(int)
df.head() # Male -> 1 and Female -> 2

→		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
	0	0	3	1	22.0	1	0	7.2500	B96 B98	S
	1	1	1	0	38.0	1	0	71.2833	C85	С
	2	1	3	0	26.0	0	0	7.9250	B96 B98	S
	3	1	1	0	35.0	1	0	53.1000	C123	S
	4	0	3	1	35.0	0	0	8.0500	B96 B98	S

from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df["Embarked"] = le.fit_transform(df['Embarked'])
df.head() # Encoded the Embarked column

		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
	0	0	3	1	22.0	1	0	7.2500	B96 B98	2
	1	1	1	0	38.0	1	0	71.2833	C85	0
	2	1	3	0	26.0	0	0	7.9250	B96 B98	2
	3	1	1	0	35.0	1	0	53.1000	C123	2
	4	0	3	1	35.0	0	0	8.0500	B96 B98	2

df.describe()

_		Survived	Pclass	Sex	Age	SibSp	Parch	Far
	count	782.000000	782.000000	782.000000	782.000000	782.000000	782.000000	782.00000
	mean	0.410486	2.246803	0.627877	29.817866	0.524297	0.416880	34.59591
	std	0.492237	0.853828	0.483680	13.689935	0.987138	0.837728	52.17645
	min	0.000000	1.000000	0.000000	0.420000	0.000000	0.000000	0.00000
	25%	0.000000	1.000000	0.000000	22.000000	0.000000	0.000000	8.05000
	50%	0.000000	3.000000	1.000000	29.869351	0.000000	0.000000	15.87500
	75%	1.000000	3.000000	1.000000	36.000000	1.000000	1.000000	33.37500
	max •	1.000000	3.000000	1.000000	80.000000	8.000000	6.000000	512.32920 •

plt.figure(figsize=(10,7))
sns.boxplot(df)


```
numericals = df[["Survived","Pclass","Sex","Age","SibSp","Parch","Fare","Embarked"]]
q1 = numericals.quantile(0.25)
q3 = numericals.quantile(0.75)
IQR = q3-q1
lower = q1 - 1.5*(IQR)
higher = q3 + 1.5*(IQR)
cleaned_data = df[~((numericals < lower) | (numericals > higher)).any(axis=1)]
cleaned_data.head()
```

→		Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked
	0	0	3	1	22.0	1	0	7.2500	B96 B98	2
	1	1	1	0	38.0	1	0	71.2833	C85	0
	2	1	3	0	26.0	0	0	7.9250	B96 B98	2
	3	1	1	0	35.0	1	0	53.1000	C123	2
	4	0	3	1	35.0	0	0	8.0500	B96 B98	2

```
import warnings
warnings.filterwarnings('ignore')
plt.figure(figsize=(10,7))
plt.subplots(figsize=(15,9))
plt.subplot(1,2,1)
sns.boxplot(df)
plt.title("With Outliers")
plt.subplot(1,2,2)
sns.boxplot(cleaned_data)
plt.title("After Removing Outliers")

print("Shape of Original Dataframe with outliers : ",df.shape)
print("Shape after removing Outliers from dataframe: ",cleaned_data.shape)
```

Shape of Original Dataframe with outliers: (782, 9)
Shape after removing Outliers from dataframe: (602, 9)
<Figure size 1000x700 with 0 Axes>

Sex: 0-> Female, 1 -> Male.

Survived: 0-> Unsurvived, 1 -> Survived.

Here, Males Survival Rate is very Less as Compared to Females

```
df1 = numericals
df1.head()
\overline{\mathbf{T}}
         Survived Pclass Sex Age SibSp Parch
                                                        Fare Embarked
      0
                0
                              1 22.0
                                                     7.2500
                                                                      2
                                                                      0
      1
                1
                         1
                              0 38.0
                                                  0 71.2833
      2
                         3
                              0 26.0
                                                      7.9250
                                                                      2
      3
                                                                      2
                         1
                              0 35.0
                                           1
                                                  0 53.1000
                              1 35.0
                                                  0 8.0500
```

```
col = ['Age','Fare']
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df1[col] = scaler.fit_transform(df1[col]) # Feature Scaling -> Standarization

plt.figure(figsize=(10, 7))
sns.barplot(data = df1 , x='Pclass', y='Survived')
plt.title('Survival Rate by Pclass')
plt.xlabel('Pclass')
plt.ylabel('Survival Rate')
plt.show()
```


Observations:

In PClass -> Class-1 Survival Rate is High..