# Gaussian-process-augmented projection-based model order reduction

Carlos González Hernández, Radek Tezaur, Charbel Farhat

APS DFD 2024

#### **Motivation**

- Many important engineering applications rely on many queries of high-dimensional computational models
  - Model predictive control
  - Uncertainty quantification
  - Design analysis & optimization
- Surrogate models are often required for these to be computationally tractable
  - Seek a more parsimonious description of the high-dimensional model through dimensionality reduction
- Dimensionality reduction approaches
  - External representations: linear regression, gaussian process regression, artificial neural network regression
  - Internal representations: operator-inference model, physics-informed neural networks, projection-based reduced-order models

# Projection-based model order reduction (PMOR)

- Principled, physics-based method for machine learning with model(s) and data
- Semi-discrete or discrete, parametric, linear or nonlinear computational model  $\mathbf{R}(q; \mu) = \mathbf{0}, \ q \in \mathbb{R}^N, \ \mathbf{R} \in \mathbb{R}^N, \ \mu \in \mathcal{D} \subset \mathbb{R}^{N_\mu}, \ N \text{ very large}, \ N_\mu \text{ moderately large}$
- Hypothesis: best approximation of the solution in a lower-dimensional space

$$q(\mu) \approx \overline{q}(\mu) = f(q_r(\mu)) \qquad q_r \in \mathbb{R}^n, \quad n \ll N$$
 e.g. (traditional PROM) 
$$f\big(q_r(\mu)\big) = q_{ref} + Vq_r \qquad V \in \mathbb{R}^{N \times n}$$

- Representation: reduced-order basis (ROB) V
- Data-driven learning: ROB V is learned from solutions snapshots and their compression
- Minimization of a loss function

$$q_r = \arg\min_{\mathbf{x} \in \mathbb{R}^n} ||R(f(\mathbf{x}(\boldsymbol{\mu})); \boldsymbol{\mu})||_2$$

# Challenge in PMOR – breaking the Kolmogorov n-width

PMOR based on the *affine* subspace d<sub>n</sub>(M) approximation  $\tilde{u} = u_{ref} + Vq$ , where

$$V \in \mathbb{R}^{N imes n}$$
 ,  $oldsymbol{q} \in \mathbb{R}^n$  ,  $oldsymbol{u_{ref}} \in \mathbb{R}^N$ 

- convection-dominated PDEs, convergence of a subspace approximation is limited by the slow decay of the Kolmogorov nwidth  $d_n(\mathcal{M})$
- Recent strategies for mitigating this issue share the abandonment of the traditional affine approximation in favour of a nonlinear one (nonlinear PMOR): piecewise linear approximation; autoencoder-based approximation; *nonlinear parametrization* of affine approximation; *quadratic* approximation manifold



For most linear problems,  $d_n(\mathcal{M})$  exhibits exponential decay; for convection-dominated flow problems, it exhibits a decay of  $\mathcal{O}(n^{-1/2})$ 

# Arbitrarily nonlinear approx. for mitigating Kolmogorov barrier

- Nonlinear approximation manifold generated by a ROB and an ANN:  $u(t; \mu) \approx \widetilde{u}(t; \mu) = u_{ref} + Vq(t; \mu) + \overline{V}\mathcal{N}(q(t; \mu))$ 
  - $V \in \mathbb{R}^{N \times n}$  using the first  $n \ll N$  columns of  $U_s$ , where  $S = U_s \Sigma_S Y_S^T$ .  $n \ll n_{tra}$  (PROM)
  - $\overline{V} \in \mathbb{R}^{N \times \overline{n}}$  using a subset of the next  $\overline{n} \ll N$  columns of  $U_s$
  - $\mathcal{N}: \mathbb{R}^n \to \mathbb{R}^{\bar{n}}$  is a map represented by an ANN
  - Projection of solution onto  $V, \overline{V} \rightarrow \overline{q}^l = \mathcal{N}(q^l)$ ,  $l = 1, ..., N_s$ PROM-ANN (Barnett et al. 2023, JCP)
- Objectives
  - $n \ll n_{tra}$
  - Demonstrated on inviscid Burgers' problem and double cone hypersonic flow benchmark problem
- Challenges
  - Can't derive mathematical bounds for errors (i.e. black box)



Construction of a ROB for: a traditional PROM (left); and a PROM-ANN (right)

# Application: Inviscid Burgers' problem

$$\frac{\partial u_x}{\partial t} + \frac{1}{2} \left( \frac{\partial u_x^2}{\partial x} + \frac{\partial (u_x u_y)}{\partial y} \right) = 0.02 \exp(\mu_2 x)$$

$$\frac{\partial u_y}{\partial t} + \frac{1}{2} \left( \frac{\partial (u_y u_x)}{\partial x} + \frac{\partial u_y^2}{\partial y} \right) = 0$$

$$u_x(x = 0, y, t; \mu) = \mu_1$$

$$u_x(x, y, t = 0) = u_y(x, y, t = 0) = 1$$
Godunov-type scheme on two uniform meshes:
$$M1: N = 250 \times 250, M2: N = 750 \times 750$$
Trapezoidal method and constant  $\Delta t = 0.05$ 

$$(N_t = 500 \text{ time-steps})$$

$$u_{ref} = 0 \text{ (in all cases)}$$
2-norm based relative error
$$\sum_{k=0}^{N_t} \|u_k^m(u) - \tilde{u}_k^m(u)\|_2$$

- Trapezoidal method and constant  $\Delta t = 0.05$
- $u_{ref} = 0$  (in all cases)
- 2-norm based relative error

$$\mathbb{RE} = \frac{\sum_{m=0}^{N_t} ||u^m(\mu) - \tilde{u}^m(\mu)||_2}{\sum_{m=0}^{N_t} ||u^m(\mu)||_2}$$

- Computational domain:  $(x, y) \in [0,100] \times [0,100]$
- Time interval:  $t \in [0,25]$
- Parameter domain:  $\mu = (\mu_1, \mu_2) \in \mathcal{D} = [4.25, 5.50] \times [0.015, 0.03]$ , uniform sampling by a 3 x 3 grid  $\rightarrow$  9 training parameter points characterized by  $\Delta \mu_1 = 0.625$  and  $\Delta \mu_2 = 0.0075$
- Computing system: 1 node with 24 cores, CPU: 2.3GHz, RAM (shared): 192 GB
- 4,501 solutions snapshots

# Application: Inviscid Burgers' problem

$$\frac{\partial u_x}{\partial t} + \frac{1}{2} \left( \frac{\partial u_x^2}{\partial x} + \frac{\partial (u_x u_y)}{\partial y} \right) = 0.02 \exp(\mu_2 x)$$

$$\frac{\partial u_y}{\partial t} + \frac{1}{2} \left( \frac{\partial (u_y u_x)}{\partial x} + \frac{\partial u_y^2}{\partial y} \right) = 0$$

$$u_x(x = 0, y, t; \mu) = \mu_1$$

$$u_x(x, y, t = 0) = u_y(x, y, t = 0) = 1$$



# Alternative approach for building the map in the latent space: gaussian process

- Original ANN: 4 layers (Barnett et al. 2023, JCP)
- Test with 1 layer: relative errors of 1.5% vs 0.8%
- Deep learning is therefore \*not needed\* → replace ANN by GP regression which is analyzable
- A GP is a collection of random variables, any finite number of which have Gaussian distributions
- A GP is fully specified by a mean function m(x) and covariance function  $k(x_i, x_j)$
- The stochasticity might be used for uncertainty quantification; beyond scope of this talk
- Our problem:  $\overline{q}^l = GP(q^l)$ ,  $l = 1, ..., N_s$
- scikit-learn for constructing the map  $\overline{q}^l = GP(q^l)$  and its gradient  $\partial GP/\partial q$
- All tests are performed on out-of-sample  $\mu$  values, reported only most unfavorable case

# M1, $\mu_3 = (5.19, 0.026)$







Numerical predictions performed using the LSPG- and ECSW-based HPROM-ANN with  $(n, \overline{n}) = (10,140)$ 

RE= 3.44%





Numerical predictions performed using the LSPG- and ECSW-based HPROM-GP with  $(n,\bar{n})=(10,140)$ 

# M2, $\mu_3 = (5.19, 0.026)$





Numerical predictions performed using the LSPG- and ECSW-based HPROM-ANN with  $(n, \overline{n}) = (10,140)$ 

RE=4.68%





Numerical predictions performed using the LSPG- and ECSW-based HPROM-GP with  $(n,\bar{n})=(10,140)$ 

# Offline performance (wall clock time)

|      | Computational<br>Model (offline) | n<br>(N for HDM) | $n_e$ ( $N_e$ for HDM) | Time<br>(minutes) |
|------|----------------------------------|------------------|------------------------|-------------------|
|      | HDM                              | 125,000          | 62,500                 | 106.92            |
| Mesh | PROM                             | 95               | 4,390                  | 85.16             |
| M1   | PROM-ANN                         | 10               | 1,496                  | 22.24             |
|      | PROM-GP                          | 10               | 1,496                  | 17.53             |
|      |                                  |                  |                        |                   |
|      | HDM                              | 1,125,000        | 562,500                | 404.88            |
| Mesh | PROM                             | 95               | 63,106                 | 45.25*            |
| M2   | PROM-ANN                         | 10               | 3,496                  | 24.54             |
|      | PROM-GP                          | 10               | 3,496                  | 24.25             |

Table: Model parameters and offline performance results for both meshes

<sup>\*</sup>Domain decomposition was used for M2

# Online performance (wall clock time)

|            | Computational  | n           | $n_e$           | $\mathbb{RE}_{max}$ | Time      | Speedup |
|------------|----------------|-------------|-----------------|---------------------|-----------|---------|
|            | Model (online) | (N for HDM) | $(N_e$ for HDM) |                     | (minutes) | factor  |
| Mesh<br>M1 | HDM            | 125,000     | 62,500          | _                   | 106.92    |         |
|            | PROM           | 95          | 4,390           | 1.43%               | 1.11      | 96.3    |
|            | PROM-ANN       | 10          | 1,496           | 1.51%               | 0.30      | 356.4   |
|            | PROM-GP        | 10          | 1,496           | 3.44%               | 0.72      | 148.5   |
|            |                |             |                 |                     |           |         |
|            | HDM            | 1,125,000   | 562,500         |                     | 404.88    |         |
| Mesh<br>M2 | PROM           | 95          | 63,106          | 7.98%               | 35.79     | 11.31   |
|            | PROM-ANN       | 10          | 3,496           | 3.45%               | 0.70      | 578.4   |
|            | PROM-GP        | 10          | 3,496           | 4.68%               | 1.72      | 235.4   |

Table: Model parameters and online performance results for both meshes

#### Conclusion & Future work

- Proposed concept of a PROM-GP approach based on the arbitrarily nonlinear approximation  $\widetilde{\boldsymbol{u}}(t;\mu) = \boldsymbol{u}_{ref} + \boldsymbol{V}\boldsymbol{q}(t;\mu) + \overline{\boldsymbol{V}}GP(\boldsymbol{q}(t;\mu)), \boldsymbol{V} \in \mathbb{R}^{N\times n}, \, \overline{\boldsymbol{V}} \in \mathbb{R}^{N\times \overline{n}}, \, GP \colon \mathbb{R}^n \to \mathbb{R}^{\overline{n}}, \, n \ll \overline{n} \ll N$
- GP's training is performed in the latent space and thus does not involve data whose dimension scales with N
- PROM-GP is hyperreducible using any well-established hyperreduction method
- For a parametric, 2D, inviscid Burgers' problem, PROM-GP delivers the same desired level of accuracy as the traditional PROM
- The online phase of PROM-GP gives a similar level of accuracy as PROM-ANN, in a time ranging from same to double, although it is implementation-specific
- Main objective: deriving mathematical error bounds; future: showcase on CFD benchmark

# Back-up slides

# Hyperreduction using ECSW

- ECSW training:
  - at only one of the sample parameter points namely, (4.25, 0.0225)
  - at every 10-th solution snapshot



Reduced mesh M1:  $n_e = 1496$  elements (2.4% of  $N_e = 62500$  elements)



Reduced mesh M2:  $n_e = 3496$  elements (5.6% of  $N_e = 62500$  elements)

Stanford University

# M1, $\mu_1 = (4.56, 0.019)$



Numerical predictions performed using the LSPG- and ECSW-based HPROM-ANN with  $(n, \overline{n}) = (10,140)$ 

Numerical predictions performed using the LSPG- and ECSW-based HPROM-GP with  $(n, \overline{n}) = (10,140)$ 

# M1, $\mu_2 = (4.75, 0.02)$



# M2, $\mu_1 = (4.56, 0.019)$



Numerical predictions performed using the LSPG- and ECSW-based HPROM-ANN with  $(n, \overline{n}) = (10,140)$ 



Numerical predictions performed using the LSPG- and ECSW-based HPROM-GP with  $(n, \overline{n}) = (10,140)$ 

y

60

40

20

 $= x)^x n$ 

#### **Stanford University**

80

100

# M2, $\mu_2 = (4.75, 0.02)$

RE=3.28%



Numerical predictions performed using the LSPG- and ECSW-based HPROM-ANN with  $(n, \overline{n}) = (10,140)$ 

RE=4.47%



Numerical predictions performed using the LSPG- and ECSW-based HPROM-GP with  $(n, \overline{n}) = (10,140)$ 

# Alternative approach: gaussian processes

Original ANN: 6 layers (4 hidden layers)

Barnett et al. 2023, JCP

Test with 1 hidden layer and various sizes

$$(q,512) \longrightarrow (512,1024) \longrightarrow (1024,\overline{q})$$
ELU ELU

- We propose to replace ANN by a GP
- A GP is a collection of random variables, any finite number of which have Gaussian distributions
- A GP is fully specified by a mean function m(x) and covariance function  $k(x_i, x_i)$
- Our problem:  $\overline{q}^l = GP(q^l)$ ,  $l = 1, ..., N_s$
- Matérn kernel:

$$k(x_i, x_j) = \left(1 + \frac{\sqrt{3}}{l}d(x_i, x_j)\right) \exp\left(-\frac{\sqrt{3}}{l}d(x_i, x_j)\right)$$

| ANN Type       | Elapsed<br>Time (s) | RE                 |
|----------------|---------------------|--------------------|
| 4HL, original  | <mark>16.01</mark>  | <mark>0.79%</mark> |
| 1HL,(32,64)    | 15.63               | 8.38%              |
| 1HL,(256,256)  | 19.65               | 2.19%              |
| 1HL,(512,512)  | 20.19               | 1.55%              |
| 1HL,(512,1024) | 22.80               | 1.74%              |

- scikit-learn for constructing the  $GP(q^l)$  and its gradient  $\partial GP/\partial q$ 
  - All tests are performed on out-of-sample