Problemas para Experimentação dos Interpretadores Haskell

Este documento apresenta a lista de problemas que servirão de base à avaliação dos interpretadores Haskell desenvolvidos como projeto da disciplina Linguagem de Programação: Conceitos e Paradigmas. Para cada problema, crie um programa escrito na linguagem implementada em seu projeto. Esses programas serão executados sobre um conjunto de testes durante a avaliação. As soluções propostas devem ser adaptadas às características de cada linguagem implementada, mas sempre observando as funcionalidades exigidas.

Problema 1:

Crie um programa que, dados três valores numéricos x, y e c, onde x e y são números racionais e c é um número inteiro, previamente armazenados no código-fonte, avalia a expressão $x^2 - y + c$ e imprime seu resultado na tela.

Problema 2:

Uma competição é organizada em três fases, e a participação na terceira fase depende da pontuação nas duas primeiras. A entrada contém um único conjunto de testes, que deve ser lido do teclado. A primeira linha da entrada contém dois números inteiros n e p, representando respectivamente o número de competidores $(1 \le n \le 1000)$ e o número mínimo de pontos para ser convidado $(1 \le p \le 1000)$. Cada uma das n linhas seguintes contém dois números inteiros x e y indicando a pontuação de um competidor nas duas primeiras fases $(0 \le x \le 400)$ e $(0 \le y \le 400)$. Crie um programa que, para cada conjunto de testes, imprime na saída padrão uma única linha contendo um único inteiro, indicando o número de competidores que poderão participar da terceira fase. Veja os exemplos abaixo.

Entrada	Saída
3 100	
50 50	
100 0	
49 50	2

Entrada	Saída
4 235	
100 134	
0.0	
200 200	
150 150	2

Problema 3:

Crie um programa que leia duas matrizes numéricas e, quando possível, imprima a soma e o produto dessas matrizes. Caso uma operação não possa ser realizada para as matrizes lidas, imprima uma mensagem informando da impossibilidade.

Problema 4:

Crie um subprograma chamado mdc, com três argumentos n, m (passados por valor) e r (passado por referência), nesta ordem. O subprograma mdc deve calcular o maior divisor comum entre dois números naturais estritamente positivos n e m, de acordo com o seguinte algoritmo recursivo:

- Se n for um divisor de m, n é o maior divisor comum de n e m.
- Se m for um divisor de n, m é o maior divisor comum de n e m.
- Se n não for um divisor de m, e se m for maior que n, então o maior divisor comum de m e n é também o maior divisor comum de n e do resto da divisão de m por n.

O subprograma deve retornar seu resultado por meio de parâmetro r, que deve ser posteriormente impresso na tela pelo programa principal.

Problema 5:

Defina o tipo $rational_t$ para representar números racionais. O tipo $rational_t$ deve ser representado como um registro com campos inteiros numerador e denominador. Em seguida, escreva os seguintes subprogramas:

- A) Subprograma que, dados dois parâmetros inteiros a e b, onde $b \neq 0$, retorna um valor desse tipo para representar a fração a/b.
- B) Subprograma que, dados dois parâmetros do tipo $rational_t$, retorna true se eles representam o mesmo número racional ou false, em caso contrário.
- C) Subprogramas que retornem um valor rational_t correspondente a soma, negação, subtração, multiplicação, inverso e divisão entre valores rational_t, passados como parâmetros (um subprograma por operação).

No programa principal, invoque cada um dos subprogramas e imprima os resultados produzidos, no formato $rational_t$, indicando numerador e denominador.