Conception d'un objet connecté

Louis Escamilla Benjamin Aupest Pierre-Manuel Lheureux Rémy Decourcelle - Emil Toulouse An-Vinh Lala - Valentin Chassignol Garice Morin - Thibault Tan Matthieu Baronnet - Ahmad Harkous Lise Pedemonte

Sommaire

- Présentation du sujet
- Conception et Fabrication
- Partie Software
- Partie Administrative

Sujet

Conception d'une porte connectée

La porte s'ouvre grâce à un badge ou une carte (RFID)

Partie Conception/Fabrication

Notre démarche de fabrication et de conception

- 1 Proposer des idées et sélectionner la solution que l'on veut mettre en place
- 2 Commander le matériel nécessaire
- 3 Concevoir les pièces que l'on peut fabriquer nous-mêmes
- 4 Fabriquer les pièces
- 5 Assembler les pièces
- 6 Ecrire les scripts pour gérer les signaux reçus
- 7 Tester le bon fonctionnement du système

Boitier interieur

Objectifs:

Ce boitier sert à **contrôler l'électro aimant**, il est situé à l'**intérieur** de la pièce sécurisée. Il est alimenté par **POE**. Après l'appui sur le **bouton** ou réception d'un ID de **carte/badge valide**, il déverrouille la porte. Il est connecté au boîtier extérieur par le **BLE**.

Composants Internes:

- Raspberry Pi 3 Model B
- POE splitter
- Module relai
- Convertisseur de tension (12V -> 5V)
- Connectique femelle alimentation 12V
- Connectique Femelle JACK 3.5 (bouton externe)
- Connectique Femelle alimentation 12V (electro aimant)

Composants Externes:

- Electro aimant
- Switch POE
- Bouton d'ouverture intérieur

Schéma d'architecture

Boitier exterieur

Objectif:

Lire des badges/cartes RFID à l'extérieur de la pièce sécurisée et envoyer les informations au boitier intérieur en utilisant le BLE. Ce système fonctionne sur batterie.

Composants

- Module RFID
- ESP32
- Batteries 18650 3000mAh x2

Fonctionnement:

L'ESP est alimenté en 7.2V par les deux cellules 18650. Le code qui tourne dans l'ESP est un serveur bluetooth qui publie l'ID du badge/carte RFID scanné.

Autonomie du système : 7 mois de service.

Boitier:

Impression 3D FDM en PLA 0.2 mm 15% de remplissage.

Schéma d'architecture

Présentation (vidéo)

Améliorations

Boîtier intérieur:

- Cable management
- Utilisation d'un ESP32 pour gagner de la place

Boîtier extérieur:

- Ajout d'un bouton reset
- Ajout d'une led pour visualiser si le badge est valide ou non
- Ajout d'un buzzer pour les mêmes raisons
- Ajouter un détrompeur à l'emplacement du module RFID.

Autres:

- Fabriquer un boitier pour le bouton intérieur
- Gainer le câble du bouton intérieur

Partie Software Serveur

Buts de notre software

 Ajouter/Supprimer des utilisateurs à nos groupes

 Accéder aux logs quand une porte s'ouvre, quand on ajoute/supprime un utilisateur/porte dans un groupe

Backend

Composants:

- Une base de données Supabase

Backend en C# dont:

- 3 controllers pour les endpoints
- 4 dto afin de retourner le bon objet au Front
- 7 modèles pour chaque table dans Supabase
- Plusieurs services qui gèrent les exceptions et le getClient()

Connexion à Supabase via launchSettings dans le programme

API C#

Open

POST /open/door

3 API: API Login pour la gestion de l'ouverture des portes, API Logs et API Users pour la gestion des utilisateurs/portes/groupes.

8 tables:

V 🗎

- 4 tables gestion des portes/users
- 3 tables de jointure
- 1 table logs

Endpoints: CRUD pour les 4 tables, getALL/suppAll pour les logs et Post/Delete pour les affectations aux groupes

Supabase et architecture

Frontend

- Google Material Design3.0
- Angular V18

(Démo)

Améliorations

- -Renforcer le login avec un keycloak pour l'authentification
- -Effectuer l'étape de déploiement
- -Améliorer le système d'ouverture actuel sur le backend et faire le lien avec le RFID de la serrure
- -Ajouter le système de lockdown
- -Ajout d'un QR code d'ouverture temporaire, uniquement via le réseau interne.

Partie Administrative

Processus et industrialisation

Création d'une fiche processus, matériel et coût.

Analyse et optimisation des coûts pour une seconde version.

Service après vente

Création d'une fiche de réparabilité et calcul de l'indice de réparabilité.

Création d'une fiche produit (qualité, information générale ...)

Merci pour votre écoute

Nous serons heureux de répondre à vos questions