EEE104 – Digital Electronics (I) Lecture 19

Dr. Ming Xu

Dept of Electrical & Electronic Engineering

XJTLU

In This Session

- Shift Registers
 - Bidirectional Shift Registers
 - Shift Register Counters

- A HIGH on R/L will enable G₁ to G₄.
- The output of a stage is fed to the D input of the next stage.

- A LOW on R/L will enable G₅ to G₈.
- The output of a stage is fed to the D input of the preceding stage.

4

74HC194: A 4-bit universal shift register Mode selection

S_1	S_0	Mode
0	0	Inhibit
0	1	Shift right
1	0	Shift left
1	1	Load

SR SER: Shift-right serial data in

SL SER: Shift-left serial data in

CLR: asynchronous clear

Shift Register Counters

- A shift register counter is a shift register with the serial output connected back to the serial input.
- It will produce a specified sequence of state **periodically**. Hence the name "counter".
- Two most common types are the Johnson counter and the ring counter.

The **Johnson counter** – The **complemented**output of the

last stage is

connected back.

The counter will fill up with 1s first and then with 0s.

Clock Pulse	Q ₀	Q_1	Q ₂	Q 3
0	0,	0	0	0
1	1	.0	0	0
2	1	1	0	0
3	1	.1	1	0
· 4 ,	1	1	1	1
5	0	1	1	1
6	0	0	1	1
7	0	0	0	1

What will happen if the initial state are not one of the 8 states?

The counter will loop through the other 8 states.

Clock Pulse	Q_0	Q_1 .	Q ₂	Q ₃
0	,0	0	1	0
1	1	.0	0	1
2	0	1	0	0
:3	1	0	1	0
4	1	1	0	1
5	0	1	1	0
6	1	0	1	1
7	0	1	0	1

A 4-bit Johnson counter has 8 states.

Clock Pulse	Q_0	Q_1	Q2 ·	Q 3	Q ₄
0	0	0	0	0	0
1	1	0	0	. 0	0
2	.1 .	1	0	0	0
3 .	1	1	1	0	0
4	1	1	1	1	0
5	1	1	1	1	1
6	0	1	·1	1	1
7	0	0	1	1	1
8	0	0	0	1	1
9	0	0	0	0	1

A 5-bit Johnson counter has 10 states.

A 5-bit Johnson counter has 10 states. So an n-stage Johnson counter will have 2n states.

The Ring Counter

Clock Pulse	Q_0	Q_1	Q_2	Q 3	Q ₄	Q 5	Q_6	Q 7	Q 8	Qg
. 0	1	0	0	0	0	0.	0	0	0	
1	0	_1	0	0	0	0	0	0	0	O:
2	0	0	1	0	0	0	0	0	0	0
3	0	0	0	1	0	Ô	0	0	0	n
- 4	0	0	0	0	1	0	0	0	0	0
5	0	0	0	0	0	1	0	0	0	O:
6	0	0	0	0	0	0	1	0 .	0	n
7	0	0	0	0	0	0	0	1	0	n
8	0	0	0	0	0	0	0	0	<u> </u>	Ô
9	0	0	0	0	0	0	0	· 0	0	1

The output of the last stage is connected back.

The Ring Counter

Shift Register Counters

- The disadvantage is that the maximum available states are not fully utilized.
- Beware that both the Ring and the Johnson counter must initially be forced into a valid state in the count sequence, because they operate on a subset of the available number of states. Otherwise, the ideal sequence will not be followed.
- The advantage over a binary counter is that no extra decoding circuit is needed.