Mat. attaniz I Certecip

Контент

1	Невизначені інтеграли					
	1.1	Первісна, невизначений інтеграл				
	1.2	Заміна змінної				
	1.3	Інтегрування частинами				
	1.4	Інтегрування дробово-раціональних функцій				
	1.5	Інтегрування тригонометричних функцій				
	1.6	Інтегрування ірраціональних виразів				
	1.7	Диференціальний біном				
2	Визначені інтеграли 19					
	2.1	Прості функції				
	2.2	Визначений інтеграл від простої функції				
	2.3	Функціональні послідовності				
	2.4	Визначений інтеграл від інтегрованої функції				
	2.5	Визначений інтеграл на підмножині				
	2.6	Інтеграл із змінними верхньою межею				
	2.7	Методи обчислення визначеного інтегралу 41				
		2.7.1 Частинами				
		2.7.2 Заміна				
	2.8	Функції множин				
	2.9	Квадровані множини				
	2.10	Застосування визначених інтегралів				
		2.10.1 Площа криволінійної трапеції				
		2.10.2 Площа криволінійного сектора				
		2.10.3 Довжина кривої				
		2.10.4 Об'єм фігури обертання				
		2.10.5 Об'єм фігури через площу поперечного перерізу 59				
3	Невласні інтеграли 62					
	3.1	Основні означення				
	3.2	Еталонні інтеграли				
		Дослідження на збіжність/розбіжність 65				
		3.3.1 Дослідження для додатних функції 66				
		3.3.2 Дослідження для знакодовільних функцій 69				
	3.4	Невласний інтеграл в сенсі головного значення				
4	Ряди 74					
_	4.1	Первинний аналіз збіжності та арифметика рядів 75				
	4.2	Знакододатні ряди				
		Знакозмінні ряди				

5	Функціональні ряди				
	5.1	Основа та про збіжність	89		
	5.2	Неперервність, інтегрованість, диференційованість	92		
	5.3	Степеневі ряди	94		
	5.4	Зв'язок з Тейлором	98		
6	Диференційованість 102				
	6.1		02		
	6.2	Для векторнозначних функцій	.05		
	6.3	Властивості			
	6.4	Дотична площина, нормальна пряма	.09		
	6.5	Приблизне обчислення			
	6.6	Дотична пряма, нормаль площини кривої			
	6.7	Неявно задані функції			
	6.8	Рівняння дотичних площин для неявної функції 1			
	6.9	Диференціювання та похідні старших порядків			
	6.10	Формула Тейлора	19		
	6.11	Екстремуми			
		Умовні локальні екстремуми			
7	Інте	еграли з параметром 1	27		
	7.1	Основні означення та властивості	27		
	7.2	Невласні інтеграли з параметром			
	7.3	Інтеграл Діріхле			
	7.4	Інтеграл Ейлера-Пуассона			
	7.5	Гамма-функція			
	7.6	Бета-функція			

Коротка передмова

Дякую, що ти вижив на 1 семестрі. Це - матан в стилі Г.Б. Подколзіна

Матеріал Г.Б. підбирав спеціально для студентів КН ММСА. Тому якщо комусь це попадеться в руки із $CA/C\Pi$, май на увазі, що тут можуть бути не всі відомства або доведення деяких теорем можуть відрізнятися.

Цей конспект писав студент. Тому в разі виявлення помилки - пишіть

Авторські позначення

Definition - означення
Remark - зауваження
Theorem - теорема
Corollary - наслідок
Proposition - твердження
Lemma - лема
Example - приклад

Proof - доведення

Якщо будете бачити в шматочку доведення! *якийсь текст*!, то це доведення якогось твердження від супротивного

 C_{unif} - множина рівномірно неперервних функцій C^1, C^2, \ldots - множина неперервних та диференційованих один раз, двічі, \ldots функцій

Грубий лінал

Про скалярний добуток

Барановська давала позначення скалярного добутку через крапку: $\vec{a} \cdot \vec{b}$ Погана звичка: така нотація використовується для елементарних задач. А коли справа йде до узагальнення, то таке позначення призводить до плутанини

Віднині звикайте скалярний добуток писати в круглих дужках: (\vec{a}, \vec{b})

Про матриці

Задано матрицю $B \in Mat(n \times n)$

Definition 0.0.1 Матрицю B назвемо **симетричною**, якщо

$$B = B^T$$

Definition 0.0.2 Симетричну матрицю називають: **строго додатньо визначеною**, якщо $\forall \vec{b} \in \mathbb{R}^n : (B\vec{b}, \vec{b}) > 0$ **строго від'ємно визначеною**, якщо $\forall \vec{b} \in \mathbb{R}^n : (B\vec{b}, \vec{b}) < 0$ **нестрого**, коли знаки нерівності будуть нестрогими

А якщо $\exists \vec{b_1}, \vec{b_2} \in \mathbb{R}^n : (B\vec{b_1}, \vec{b_1}) < 0$ та $(B\vec{b_2}, \vec{b_2}) > 0$, то матриця називається **знако-невизначеною**

Definition 0.0.3 Головними кутовими мінорами матриці $B = \begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix}$

називають такі детермінанти

$$\Delta_1 = \det(b_{11}) \quad \Delta_2 = \det\begin{pmatrix} a_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \quad \Delta_n = \det\begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{n1} & \dots & b_{nn} \end{pmatrix}$$

Theorem 0.0.4 Критерій Сільвестра

Задано симетричну матрицю $B \in Mat(n \times n)$

B - строго додатньо визначена $\iff \forall k=\overline{1,n}:\Delta_k>0$

B - строго від'ємновизначена $\iff \forall k=\overline{1,n}: (-1)^k \Delta_k > 0$

Доведення вас чекає на курсі ліналу. A ні, не буде, я ледве забув, хто у вас це викладає

Example 0.0.5 Маємо матрицю
$$B = \begin{pmatrix} 3 & 2 & -1 \\ 2 & 5 & 0 \\ -1 & 0 & 7 \end{pmatrix} = B^T$$
, тобто симетрична

$$\Delta_{1} = \det 3 = 3 > 0$$

$$\Delta_{2} = \det \begin{pmatrix} 3 & 2 \\ 2 & 5 \end{pmatrix} = 11 > 0$$

$$\Delta_{3} = \det \begin{pmatrix} 3 & 2 & -1 \\ 2 & 5 & 0 \\ -1 & 0 & 7 \end{pmatrix} = 72 > 0$$

Тому за критерієм Сільвестра, B - строго додатньо визначена

Про многочлени

Многочлен - це ось такий об'єкт $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$, тут $a_0, a_1, \dots, a_n \in \mathbb{R}$ Степінню многочлена називайте найстаршу існуючу степінь x deg P(x) = n в нашому випадку

Вам достатньо знати такий факт, що дійсний многочлен можна розкласти ось так:

$$P(x)=(x-A_1)^{k_1}\dots(x-A_m)^{k_m}(x^2+P_1x+Q_1)^{l_1}\dots(x^2+P_sx+Q_s)^{l_s}$$
 Де A_1,\dots,A_m - корені кратності k_1,\dots,k_m А x^2+Px+Q - квадратні тричлени з від'ємним дискримінантом $k_1+\dots+k_m+l_1+\dots+l_s=n$

Definition 0.0.6 Простими дробами називають такі дроби

$$\frac{1}{x-a}$$
 $\frac{1}{(x-a)^k}$ $\frac{1}{x^2+px+q}$ $\frac{1}{(x^2+px+q)^k}$

Ще раз підкреслюю, що квадратні тричлени - із від'ємними дискримінантами Нафіга це? Буде для підрозділу 1.4. корисно

I ще щось

Там буде множина така

$$span\{x_1, x_2, \dots, x_n\} = \{\alpha_1 x_1 + \alpha_2 x_2 + \dots + \alpha_n x_n | \alpha_1 \cdot \alpha_2, \dots, \alpha_n \in \mathbb{R}\}$$

Це називається **лінійна оболонкоа**. І якщо деякий елемент $y \in span\{x_1, x_2, \dots, x_n\}$ то знайдуться такі коефіцієнти, після якого $y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_n x_n$

1 Невизначені інтеграли

1.1 Первісна, невизначений інтеграл

Definition 1.1.1 Первісною для функції f(x) називають функцію F(x), для якої

$$F'(x) = f(x)$$

Example 1.1.2 Для f(x) = 2x зокрема первісною буде $F(x) = x^2$, але не єдина така. Можна взяти первісну $\Phi(x) = x^2 + 2022$

Proposition 1.1.3 Якщо $F(x), \Phi(x)$ - первісні для f(x), то $\Phi(x) = F(x) + C$

Випливає з наслідків теореми Лагранжа

Definition 1.1.4 Множину всіх первісних для функції f(x) називають **невизначеним інтегралом функції** f(x)

Позначення:
$$\int f(x) dx = \{F(x) : F'(x) = f(x)\}$$

Remark 1.1.5 Але надалі можна вважати, що

$$\int f(x) \, dx = F(x) + C$$

Proposition 1.1.6 Властивості

1)
$$\int \alpha f(x) dx = \alpha \int f(x) dx$$

$$2) \int f(x) + g(x) dx = \int f(x) dx + \int g(x) dx$$

3)
$$\int f'(x) dx = f(x) + C$$

4)
$$\left(\int f(x) \, dx \right)' = f(x)$$

Proof.

Покладемо
$$\int f(x) dx = F(x) + C_1$$
 $\int g(x) dx = G(x) + C_2$. Тоді

1)
$$\int \alpha f(x) dx = \alpha F(x) + C = \alpha (F(x) + C_1) = \alpha \int f(x) dx$$

2)
$$\int f(x) + g(x) dx = F(x) + G(x) + C_{1} = F(x) + C_{1} + G(x) + C_{2} = \int f(x) dx + \int g(x) dx$$

3), 4) випливають з означення ■

Таблиця первісних

$\frac{f(x)}{1}$	F(x)
1	x
x^{α}	$\frac{x^{\alpha+1}}{\alpha+1}, \alpha \neq -1$
$\frac{1}{x}$	$\ln x $
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$\frac{1}{\cos^2 x}$	$\operatorname{tg} x$
$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\frac{1}{1+x^2}$	$\operatorname{arctg} x$
$\frac{1}{\sqrt{1+x^2}}$	$\ln(x + \sqrt{x^2 + 1})$
e^x	e^x
a^x	$\frac{a^x}{\ln a}$
$\sinh x$	$\operatorname{ch} x$
$\cosh x$	$\operatorname{sh} x$
$\frac{1}{\cosh^2 x}$	h x
$\frac{1}{\sinh^2 x}$	$-\coth x$

Example 1.1.7 Обчислити $\int (x+2)^2 + \operatorname{tg}^2 x \, dx$ Робити будемо це, використовуючи таблицю первісних та властивості $\int (x+2)^2 + \operatorname{tg}^2 x \, dx = \int x^2 + 4x + 4 + \frac{1}{\cos^2 x} - 1 \, dx =$

$$= \int x^2 dx + 4 \int x dx + 3 \int 1 dx + \int \frac{1}{\cos^2 x} dx =$$

$$= \frac{x^3}{3} + 4\frac{x^2}{2} + 3x + \lg x + C = \frac{x^3}{3} + 2x^2 + 3x + \lg x + C$$

Remark 1.1.8 До речі, не кожний інтеграл можна обчислити через елементарні функції

Наприклад $\int e^{x^2} dx$. Чому - це вже інша наука

1.2 Заміна змінної

Proposition 1.2.1
$$\int f(g(x))g'(x) dx = F(g(x)) + C$$

Proof. $\int f(g(x))g'(x) dx$ \equiv Тут заміна: $g(x) = t$
Тоді $g'(x) dx = dt$ $\equiv \int f(t) dt = F(t) + C = F(g(x)) + C$

Example 1.2.2 Обчислити
$$\int \frac{1}{x \ln x} dx$$

$$\int \frac{1}{x \ln x} dx$$
Проведемо заміну: $\ln x = t$
Тоді $\frac{1}{x} dx = dt$

$$\boxed{ } \int \frac{1}{t} dt = \ln|t| + C = \ln|\ln x| + C$$

Або можна розв'язувати так:

$$\int \frac{1}{x \ln x} dx = \int \frac{1}{\ln x} \frac{1}{x} dx \int \frac{1}{\ln x} d \ln x \stackrel{\text{табличний інтеграл}}{=} \ln |\ln x| + C$$

Example 1.2.3 Обчислити
$$\int (2021x + 2022)^{2023} dx$$

Тут вже розкривати дужки буде трошки неприємна ситуація, тому варто провести заміну:

$$2021x + 2022 = t \Rightarrow 2021 dx = dt$$

Отримаємо:

$$\int (2021x + 2022)^{2023} dx = \int t^{2023} \frac{dt}{2021} = \frac{1}{2021} \frac{t^{2024}}{2024} + C =$$
$$= \frac{1}{2021 \cdot 2024} (2021x + 2022)^{2024} + C$$

1.3 Інтегрування частинами

Все починається з правила диференціювання добутку функції:

$$(u(x)v(x))' = u'(x)v(x) + u(x)v'(x)$$

Тоді отримаємо:

$$u(x)v'(x) = (u(x)v(x))' - u'(x)v(x)$$

$$\int u(x)v'(x) dx = \int (u(x)v(x))' - u'(x)v(x) dx$$

$$\int u(x)v'(x) dx = \int (u(x)v(x))' dx - \int u'(x)v(x) dx$$
Зауважимо, що: $v'(x) dx = dv(x)$ $u'(x) dx = du(x)$, а також $\int (u(x)v(x))' dx = u(x)v(x)$

Отримаємо таку формулу:

Theorem 1.3.1
$$\int u(x) \, dv(x) = u(x)v(x) - \int v(x) \, du(x)$$

Більш зручно записувати таким чином цю формулу:

$$\int u \, dv = uv - \int v \, du$$

Example 1.3.2 Обчислити
$$\int 2xe^x dx$$

$$\int 2xe^x dx = u = 2x \Rightarrow du = 2 dx$$

$$e^x dx = dx \Rightarrow dx \Rightarrow x = e^x$$

$$e^{x} dx = dv \Rightarrow v = e^{x}$$

$$= 2xe^{x} - \int 2e^{x} dx = 2xe^{x} - 2e^{x} + C$$

Remark 1.3.3 Порада від ГБ, що брати u, а що dv:

u: arcsin x, arctg x, $\ln x$, x^n

dv: $e^x dx$, $\sin x dx$, $\cos x dx$, dx, $x^n dx$

Інтегрування дробово-раціональних функцій 1.4

Якщо вам Барановська не читала про дробово-раціональні вирази, то я просто співчуваю

Розглянемо
$$\int \frac{P(x)}{Q(x)} dx$$

де P(x), Q(x) - многочлени. $\mathfrak E$ два випадки:

I. $\deg(P(x)) \ge \deg(Q(x))$ (deg - степінь многочлена)

Тоді можемо поділити їх з остачею:

$$P(x) = S(x)Q(x) + R(x)$$

Тоді $\int \frac{P(x)}{Q(x)} dx = \int S(x) + \frac{R(x)}{Q(x)} dx$

Тепер S(x) - якийсь многочлен, який рахується через перші дві первісні з таблиці

А далі маємо тут $\deg(R(x)) < \deg(Q(x))$, зараз буде пункт, як такий інтегрувати

II. $\deg(P(x)) < \deg(Q(x))$

За наслідком основної теореми алгебри, розкладемо многочлен Q(x)таким чином:

$$Q(x) = (x - a_1)^{k_1} \dots (x - a_m)^{k_m} (x^2 + p_1 x + q_1)^{l_1} \dots (x^2 + p_s x + q_s)^{l_s}$$

Причому, дискримінанти квадратних тричленів - від'ємні

Тоді за теоремою десь із курсу ліналу, дріб $\frac{P(x)}{O(x)}$ можна представити як

суму простих дробей
$$\frac{P(x)}{Q(x)} = \frac{A_{11}}{x - a_1} + \frac{A_{12}}{(x - a_1)^2} + \dots + \frac{A_{1k_1}}{(x - a_1)^{k_1}} + \dots$$

$$+ \frac{A_{m1}}{x - a_m} + \frac{A_{m2}}{(x - a_m)^2} + \dots + \frac{A_{mk_m}}{(x - a_m)^{k_m}} + \dots$$

$$+ \frac{B_{11}x + C_{11}}{x^2 + p_1x + q_1} + \frac{B_{12}x + C_{12}}{(x^2 + p_1x + q_1)^2} + \dots + \frac{B_{1l_1}x + C_{1l_1}}{(x^2 + p_1x + q_1)^{l_1}} + \dots$$

$$+ \frac{B_{s1}x + C_{s1}}{x^2 + p_sx + q_s} + \frac{B_{s2}x + C_{s2}}{(x^2 + p_sx + q_s)^2} + \dots + \frac{B_{sl_s}x + C_{sl_s}}{(x^2 + p_sx + q_s)^{l_s}}$$
В имеет иму свействения инста

В чисельнику - якісь дійсні числя

I ось саме цю махину нам треба інтегрувати Коротше, залишається розглянути 4 вигляди інтегралу, інтеграли від простих дробів:

1)
$$\int \frac{1}{x-a} dx = \ln|x-a| + C$$

2)
$$\int \frac{1}{(x-a)^k} dx = \int (x-a)^{-k} dx = \frac{(x-a)^{-k+1}}{-k+1} + C = \frac{1}{(1-k)(x-a)^{k-1}} + C$$

3)
$$\int \frac{Bx + C}{x^2 + px + q} dx = 1$$

$$x^{2} + px + q = \left(x + \frac{p}{2}\right)^{2} + \frac{4q - p^{2}}{4}$$

Зробимо заміну: $x + \frac{p}{2} = t \Rightarrow dx = dt$

Також
$$Bx + C = Bt - B\frac{p}{2} + C$$

Вираз $\frac{4q-p^2}{4} > 0$ через від'ємний дискримінант

Перепозначення:
$$\frac{4q-p^2}{4}=a^2>0$$
 $C-B\frac{p}{2}=M$

Розв'яжімо кожний інтеграл окремо:

$$\int \frac{t}{t^2 + a^2} dt = \frac{dt^2}{2(t^2 + a^2)} = \frac{1}{2} \ln|t^2 + a^2|$$

$$\int \frac{1}{t^2 + a^2} dt = \frac{1}{a^2} \int \frac{1}{1 + \left(\frac{t}{a}\right)^2} dt = \frac{1}{a} \int \frac{d\frac{t}{a}}{1 + \left(\frac{t}{a}\right)^2} = \frac{1}{a} \arctan \frac{t}{a}$$

Отримали

$$\boxed{ } \frac{B}{2} \ln |t^2 + a^2| + \frac{M}{a} \operatorname{arctg} \frac{t}{a} + C$$

Ну а далі робимо зворотню заміну - інтеграл 3) розв'язан

4)
$$\int \frac{Bx + C}{(x^2 + px + q)^l} dx =$$

Тут робимо ті самі заміни, що в 3)

Ну і тут я ланцюг рівностей зупиню: якщо перший інтеграл - ще ок, табличний, то другий - це біль

$$\int \frac{t}{(t^2 + a^2)^l} dt = \int \frac{dt^2}{2(t^2 + a^2)^l} dt = \frac{1}{2} \frac{1}{(1 - l)(t^2 + a^2)^{l-1}}$$

$$\int \frac{1}{(t^2 + a^2)^l} dt =$$

інтегруємо частинами: $u = \frac{1}{(t^2 + a^2)^l}$ dv = dt

$$= \frac{t}{(t^2 + a^2)^l} + 2l \int \frac{t^2}{(t^2 + a^2)^{l+1}} dt = \frac{t}{(t^2 + a^2)^l} + 2l \left(\int \frac{dt}{(t^2 + a^2)^l} - a^2 \frac{dt}{(t^2 + a^2)^{l+1}} \right)$$

Позначимо за $I_l = \int \frac{t}{(t^2 + a^2)^l} dt$, де $l \ge 1$

Тоді маємо таке рівняння:

$$I_{l} = \frac{t}{(t^{2} + a^{2})^{l}} + 2l \cdot I_{l} - 2la^{2} \cdot I_{l+1}$$

Залишилось виразити I_{l+1} та розв'язати рівняння рекурсивно, причому I_1 ми вже рахували в 3). Інтеграл 4) (можна вважати) розв'язан

Відповіді до кожного інтегралу зубрити не потрібно. Ви можете це й самотужки отримати на конкретних прикладах, до вас це прийде з досвідом

Example 1.4.1 Обчислити $\int \frac{x^4}{1+x^3} dx$

Оскільки $\deg(x^4) > \deg(1+x^3)$, то ми поділимо многочлени. Отримаємо:

$$\int \frac{x^4}{1+x^3} \, dx = \int x - \frac{x}{x^3+1} \, dx = \frac{x^2}{2} - \int \frac{x}{x^3+1} \, dx$$

Эбчислимо другий інтеграл

Тут $\deg(x) < \deg(x^3 + 1)$. Треба розкласти цю дріб на суму простих дробей

$$\frac{x}{x^3+1} = \frac{x}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1} = \frac{A(x^2-2+1) + (Bx+C)(x+1)}{(x+1)(x^2-x+1)}$$

А тут ми знаходимо A, B, C методом невизначених коефіцієнтів. Дл цього прирівнюємо червоне

$$A(x^{2} - x + 1) + (Bx + C)(x + 1) = x$$

$$(A + B)x^{2} + (-A + B + C)x + (A + C) = 0$$

$$\Rightarrow \begin{cases} A+B=0\\ -A+B+C=1 \Rightarrow A=-\frac{1}{3}, B=\frac{1}{3}, C=\frac{1}{3}\\ A+C=0 \end{cases}$$

$$\Rightarrow \frac{x}{x^3 + 1} = -\frac{1}{3(x+1)} + \frac{1}{3} \frac{x+1}{x^2 - x + 1}$$

$$\Rightarrow \int \frac{x}{x^3 + 1} dx = -\frac{1}{3} \int \frac{1}{x + 1} dx + \frac{1}{3} \int \frac{x + 1}{x^2 - x + 1} dx = 0$$

Розклали. І далі повертаємось до другого інтегралу:

$$\int \frac{x+1}{x^2-x+1} dx = \int \frac{4x+4}{(2x-1)^2+3} dx = \int \frac{4x-2}{(2x-1)^2+3} dx + \int \frac{6}{(2x-1)^2+3} dx = \ln((2x-1)^2+3) + 6 \frac{1}{2x^2-x^2-1} = \ln(4x^2-4x+4) + \sqrt{3} \arctan \frac{2x-1}{2x^2-x^2-1} = \ln(4x^2-4x+4) +$$

$$\ln\left((2x-1)^2+3\right)+6\frac{1}{2\sqrt{3}}\arctan\left(\frac{2x-1}{\sqrt{3}}\right) = \ln\left(4x^2-4x+4\right)+\sqrt{3}\arctan\left(\frac{2x-1}{\sqrt{3}}\right)$$

$$=$$
 $-\frac{1}{3}\ln|x+1| + \frac{1}{3}\ln(4x^2 - 4x + 4) + \frac{1}{\sqrt{3}}\arctan\frac{2x-1}{\sqrt{3}}$

$$\int \frac{x^4}{1+x^3} dx = \frac{x^2}{2} + \frac{1}{3} \ln|x+1| - \frac{1}{3} \ln(4x^2 - 4x + 4) - \frac{1}{\sqrt{3}} \arctan \frac{2x-1}{\sqrt{3}} + C$$

Example 1.4.2 Обчислити
$$\int \frac{1}{(x^2+1)^2}$$

Перший метод - скористатися рекурентною формулою, що було виведено в 4):

$$I_1 = \frac{x}{(x^2+1)^1} + 2 \cdot 1 \cdot I_1 - 2 \cdot 1 \cdot 1^2 \cdot I_2$$

$$I_1 = \int \frac{1}{x^2+1} = \arctan x$$

$$\arctan x = \frac{x}{x^2+1} + 2 \arctan x - 2I_2$$

$$I_2 = \frac{1}{2} \arctan x + \frac{1}{2} \frac{x}{x^2+1}$$
Ліва частина, тобто $I_2 = \int \frac{1}{(x^2+1)^2}$. Отже:
$$\int \frac{1}{(x^2+1)^2} = \frac{1}{2} \arctan x + \frac{1}{2} \frac{x}{x^2+1} + C$$

А є ще другий спосіб, якщо ви не хочете пам'ятати рекурентну формулу Щоб порахувати (умовно кажучи) $\int \frac{1}{(x^2+1)^3}$, необхідно почати з $\int \frac{1}{(x^2+1)^1}$. І робимо такі пункти

- 1. З'ясовуємо, чому він дорівнює. А далі на цей інтеграл використовуємо формулу інтеграування частинами шляхом u= увесь дріб
- 2. Знаходимо такий самий інтеграл, але степінь вже вище. Матимемо вже $\int \frac{1}{(x^2+1)^2}$. Якщо степінь не та, що потрібна (а мені потрібна третя степінь), то повертаємось до першого пункту

1.5 Інтегрування тригонометричних функцій

I.
$$\int \sin^k x \cos^m x \, dx$$
 \equiv $k, m \in \mathbb{Z}$ 1) k - непарне, тобто $k = 2l + 1$ Тоді заміна: $\cos x = t$. Тоді $-\sin x \, dx = dt$ і $\sin^2 x = 1 - \cos^2 x = 1 - t^2$ $\boxed{\frac{1}{2}} \int \sin^{2l+1} x t^m \frac{dt}{-\sin x} = -\int t^m (1-t^2)^l \, dt$

2) m - непарне, тобто m=2l+1 Тоді заміна: $\sin x = t$. Тоді $\cos x \, dx = dt$ і $\cos^2 x = 1 - \sin^2 x = 1 - t^2$ $\int t^k \cos^{2l+1} x \frac{dt}{\cos x} = \int t^k (1-t^2)^l \, dt$

3) k,m - парні, тобто k=2l,m=2n

Тоді
$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
 $\cos^2 x = \frac{1 + \cos 2x}{2}$

$$\boxed{3) = \int \left(\frac{1 - \cos 2x}{2}\right)^l \left(\frac{1 + \cos 2x}{2}\right)^n dx$$

Всі отримані інтеграли можна інтегрувати як в попередніх пунктах

II.
$$\int R(\sin x, \cos x) dx$$
 \equiv де R - дробово-раціональний вираз від $\sin x, \cos x$ Заміна: $t = \operatorname{tg} \frac{x}{2} \Rightarrow x = 2 \operatorname{arctg} t \Rightarrow dx = \frac{2}{1+t^2} dt$ $\sin x = \frac{2\operatorname{tg} \frac{x}{2}}{1+\operatorname{tg}^2 \frac{x}{2}} = \frac{2t}{1+t^2}$ $\cos x = \frac{1-\operatorname{tg}^2 \frac{x}{2}}{1+\operatorname{tg}^2 \frac{x}{2}} = \frac{1-t^2}{1+t^2}$ $\equiv \int R\left(\frac{2t}{1+t^2}, \frac{1-t^2}{1+t^2}\right) \cdot \frac{2}{1+t^2} dt$

Отримуємо випадок інтегрування дробово-раціональних виразів

Example 1.5.1 Обчислити $\int \cos^3 x \, dx$

Заміна: $t = \sin x$, випадок I.2)

Тоді: $dt = \cos x \, dx$

$$\Rightarrow \int \cos^3 x \, dx = \int (1 - t^2) \, dt = t - \frac{t^3}{3} + C = \sin x - \frac{\sin^3 x}{3} + C$$

Example 1.5.2 Обчислити $\int \frac{dx}{5 - 3\cos x}$

Заміна: $t= \operatorname{tg} \frac{x}{2}$, випадок II. Тоді беремо решта замін звідси, з нашого пункту

$$\Rightarrow \int \frac{dx}{5 - 3\cos x} = \int \frac{1}{5 - 3\frac{1 - t^2}{1 + t^2}} \frac{2}{1 + t^2} dt = \int \frac{2 dt}{5 + 5t^2 - 3 + 3t^2} = \int \frac{dt}{4t^2 + 1} = \frac{1}{2} \arctan 2t + C = \frac{1}{2} \arctan \left(2 \operatorname{tg} \frac{x}{2}\right) + C$$

1.6 Інтегрування ірраціональних виразів

I.
$$\int R\left(\sqrt[k_1]{\frac{ax+b}{cx+d}}, \dots, \sqrt[k_n]{\frac{ax+b}{cx+d}}\right) dx =$$

Нехай $m = LCM(k_1, ..., k_n)$ (найменше спільне кратне)

Заміна:
$$\frac{ax+b}{cx+d}=t^m$$

Виразимо x з цього рівняння:

Виразимо
$$x$$
 з цього рівняння: $ax + b = t^m cx + t^m d \Rightarrow x = \frac{t^m d - b}{a - ct^m}$
Тоді $dx = \frac{dmt^{m-1}(a - ct^m) + (t^m d - b)cmt^{m-1}}{(a - ct^m)^2} dt = \frac{mt^{m-1}(ad - bc)}{(a - ct^m)^2} dt$

$$\equiv \int R(t^{m_1}, \dots, t^{m_n}) \frac{mt^{m-1}(ad - bc)}{(a - ct^m)^2} dt$$
де $m_1 = \frac{m}{k_1}, \dots, m_n = \frac{m}{k_n} \in \mathbb{Z}$

Отримаємо інтеграл дробово-раціонального виразу

II.1.
$$\int R(x, \sqrt{a^2 - x^2}) dx$$

$$\exists \text{amiha: } x = a \sin t \Rightarrow dx = a \cos t dt$$

$$\equiv \int R(a \sin t, a \cos t) \cdot a \cos t dt$$

Або інша заміна: $x = a \operatorname{sh} t \Rightarrow dx = a \operatorname{ch} t dt$ $\equiv \int R(a \operatorname{sh} t, a \operatorname{ch} t) \cdot a \operatorname{ch} t \, dt$

II.3.
$$\int R(x, \sqrt{x^2 - a^2}) dx$$
Заміна:
$$x = \frac{a}{\cos t} \Rightarrow dx = \frac{a}{\cos^2 t} \sin t dt$$

$$\boxed{\equiv} \int R\left(\frac{a}{\cos t}, a \operatorname{tg} t\right) \cdot \frac{a \sin t}{\cos^2 t} dt$$

Або інша заміна: $x = a \operatorname{ch} t \Rightarrow dx = a \operatorname{sh} t dt$

Усі отримані інтеграли II є інтегралами тригонометричних/гіперболічних функцій

Example 1.6.1 Обчислити
$$\int \frac{\sqrt{x+1}+2}{(x+1)^2-\sqrt{x+1}} dx$$

Заміна: $t^2 = x + 1$, випадок $\tilde{\mathbf{I}}$.

Тоді $x = t^2 - 1 \Rightarrow dx = 2t dt$

$$\Rightarrow \int \frac{\sqrt{x+1}+2}{(x+1)^2 - \sqrt{x+1}} \, dx = \int \frac{t+2}{t^4 - t} \cdot 2t \, dt = 2 \int \frac{t+2}{t^3 - 1} \, dt =$$

обчислення цього інтегралу проводиться як в підрозділі 4, тому я пропускаю цей момент

$$= -\ln(t^2 + t + 1) - \frac{2}{\sqrt{3}} \arctan \frac{2t+1}{\sqrt{3}} + 2\ln|t-1| + C =$$

$$= -\ln(x+2+\sqrt{x+1}) - \frac{2}{\sqrt{3}} \arctan \frac{2\sqrt{x+1}+1}{\sqrt{3}} + 2\ln|\sqrt{x+1}-1| + C$$

Example 1.6.2 Обчислити $\int \sqrt{4-x^2} dx$

Заміна: $x = 2\sin t$, випадок ІІ.1.

Tоді $dx = 2\cos t \, dt$

$$\Rightarrow \int \sqrt{4 - x^2} \, dx = \int 2\cos t \, dt = \int 2(1 + \cos 2t) \, dt = 2t + \sin 2t + C$$

$$= 2t + 2\sin t \cos t + C = 0$$

Зворотня заміна: $x = 2\sin t \Rightarrow t = \arcsin \frac{x}{2}$

$$= 2 \arcsin \frac{x}{2} + 2 \frac{x}{2} \sqrt{1 - \frac{x^2}{4}} + C = 2 \arcsin \frac{x}{2} + \frac{x\sqrt{4 - x^2}}{2} + C$$

1.7 Диференціальний біном

$$\int x^m (ax^n + b)^p dx = m, n, p \in \mathbb{Q}$$

Розглянемо три можливі випадки

1) $p \in \mathbb{Z}$, тоді маємо:

$$m = \frac{p_1}{q_1}; n = \frac{p_2}{q_2}$$

 $\operatorname{Hexaй}^{q_1} q = \operatorname{LCM}(q_1, q_2)$

Заміна: $x = t^q$

2) $p \notin \mathbb{Z}$, але $\frac{m+1}{n} \in \mathbb{Z}$, тоді маємо:

Заміна: $ax^n + b = t^l$

де l - знаменник числа p

3)
$$p \not\in \mathbb{Z}, \, \frac{m+1}{n} \not\in \mathbb{Z},$$
 але $p+\frac{m+1}{n} \in \mathbb{Z},$ тоді маємо:

Заміна: $a + bx^{-n} = t^l$ де l - знаменник числа p

Заміни в 1), 2), 3) називають **підстановками Чебишова**, що призводять до інтегралу дробово-раціональних виразів

Якщо жодна з пунктів не спрацьовує, то інтеграл не може бути обчисленим через елементарні функції

2 Визначені інтеграли

Надалі буде використано таке позначення:

$$\langle a, b \rangle = \begin{bmatrix} (\alpha, \beta) \\ (\alpha, \beta) \\ [\alpha, \beta) \\ [\alpha, \beta] \end{bmatrix}$$

2.1 Прості функції

Definition 2.1.1 Функцію $p:[a,b] \to \mathbb{R}$, таку, що:

$$p(x) = \begin{cases} c_1, x \in A_1 \\ c_2, x \in A_2 \\ \vdots \\ c_m, x \in A_m \end{cases}, \text{де } c_1, c_2, \dots, c_m \in \mathbb{R}$$
$$\forall j \neq s : A_j \cap A_s = \emptyset$$
$$\bigcup_{j=1}^m A_j = [a, b]$$

називають простою

Приклад функції
$$p:[1,4.5] \to \mathbb{R}$$
, така, що $p(x)=$
$$\begin{cases} 1,x\in[1,2)=A_1\\ 2,x\in[2,2.5)=A_2\\ -1,x\in[2.5,4)=A_3\\ 1,x\in[4,4.5]=A_4 \end{cases}$$
 Як бачимо, дійсно, $\forall j=\overline{1,4}\neq s=\overline{1,4}:A_j\cap A_s=\emptyset$, а також $A_1\cup A_2\cup A_3\cup A_4=[1,4.5]$

Проте існує невеличка проблема для простої функції: її незручно постійно

записувати в такому вигляді. Тому додамо нове означення, після якого життя стане простіше

Definition 2.1.2 Індикатором (або характеристичною функцією) деякої множини A називають таку функцію $\mathbb{1}_A : \mathbb{R} \to \{0, 1\}$, що

$$\mathbb{1}_A(x) = \begin{cases} 1, x \in A \\ 0, x \notin A \end{cases}$$

А тепер повернімось до нашої функції $p(x) = \begin{cases} c_1, x \in A_1 \\ c_2, x \in A_2 \\ \vdots \end{cases}$

Зафіксуємо довільну точку $x_0 \in [a,b]$, тоді вона належить лише одній із наборів множин A_1, \ldots, A_m , тобто

$$\exists! j_0 = \overline{1, m} : x_0 \in A_{j_0}$$

За визначенням простої функції, $p(x_0) = c_i$

А тепер обчислимо індикатори від кожної множини:

$$\mathbb{1}_{A_{j_0}}(x_0) = 1 \qquad \forall i = \overline{1, m} \neq j_0 : \mathbb{1}_{A_i}(x_0) = 0$$

Звідси випливає, що:
$$c_{j_0} \mathbb{1}_{A_{j_0}}(x_0) = c_{j_0} \quad \forall i = \overline{1,m} \neq j_0 : c_i \mathbb{1}_{A_i}(x_0) = 0$$
 Всі ці рівності ми просумуємо від 1 до m :

$$\sum_{j=1}^{m} c_{j} \mathbb{1}_{A_{j}}(x_{0}) = c_{1} \mathbb{1}_{A_{1}}(x_{0}) + c_{2} \mathbb{1}_{A_{2}}(x_{0}) + \dots + \mathbb{1}_{A_{j_{0}}}(x_{0}) + \dots + \mathbb{1}_{A_{m}}(x_{0}) =$$

$$= 0 + 0 + \dots + c_{j_0} + \dots + 0 = c_{j_0} = p(x_0)$$

Оскільки це виконується для задовільно обраного $x \in [a, b]$, то ми отримали інший вигляд простої функції:

$$p(x) = \sum_{j=1}^{m} c_j \mathbb{1}_{A_j}(x)$$

Тепер так буде простіше, напевно. Перед доведенням властивостей простих функцій наведу корисну лему

Lemma 2.1.3 Властивості індикаторів

- 1. Якщо $A_1 \cap A_2 = \emptyset$, то тоді $\mathbb{1}_{A_1}(x) + \mathbb{1}_{A_2}(x) = \mathbb{1}_{A_1 \cup A_2}(x)$
- 2. Для довільних множин D_1, D_2 маємо $\mathbb{1}_{D_1}(x)\mathbb{1}_{D_2}(x) = \mathbb{1}_{D_1 \cap D_2}(x)$

Proof.

- 1. Зафіксуємо $x \in \mathbb{R}$. Тут є три випадки:
- $x \in A_1$, тоді $x \notin A_2 \Rightarrow x \in A_1 \cup A_2$

$$\Rightarrow \mathbb{1}_{A_1}(x) + \mathbb{1}_{A_2}(x) = 1 + 0 = 1 = \mathbb{1}_{A_1 \cup A_2}(x)$$
- $x \in A_2$, тоді $x \notin A_1 \Rightarrow x \in A_1 \cup A_2$

$$\Rightarrow \mathbb{1}_{A_1}(x) + \mathbb{1}_{A_2}(x) = 0 + 1 = 1 = \mathbb{1}_{A_1 \cup A_2}(x)$$
- $x \notin A_1 \cup A_2$, тоді $x \notin A_1$ та $x \notin A_2$

$$\Rightarrow \mathbb{1}_{A_1}(x) + \mathbb{1}_{A_2}(x) = 0 + 0 = 0 = \mathbb{1}_{A_1 \cup A_2}(x)$$
Отже, рівність $\mathbb{1}_{A_1}(x) + \mathbb{1}_{A_2}(x) = \mathbb{1}_{A_1 \cup A_2}(x)$ для всіх випадків виконується

- 2. Зафіксуємо $x \in \mathbb{R}$. Тут є два випадки:
- $x \in D_1 \cap D_2$, тоді $x \in D_1$ та $x \in D_2$

$$\Rightarrow \mathbb{1}_{D_1}(x)\mathbb{1}_{D_2}(x) = 1 \cdot 1 = \mathbb{1}_{D_1 \cap D_2}(x)$$

- $x \notin D_1 \cap D_2$, тоді:
- - або $x \in D_1$ та $x \not\in D_2 \Rightarrow \mathbb{1}_{D_1}(x)\mathbb{1}_{D_2}(x) = 1 \cdot 0 = 0 = \mathbb{1}_{D_1 \cap D_2}(x)$
- - або $x \in D_2$ та $x \notin D_1 \Rightarrow \mathbb{1}_{D_1}(x)\mathbb{1}_{D_2}(x) = 0 \cdot 1 = 0 = \mathbb{1}_{D_1 \cap D_2}(x)$
- - або $x \notin D_2$ та $x \notin D_1 \Rightarrow \mathbb{1}_{D_1}(x)\mathbb{1}_{D_2}(x) = 0 \cdot 0 = 0 = \mathbb{1}_{D_1 \cap D_2}(x)$

Отже, рівність $\Rightarrow \mathbb{1}_{D_1}(x)\mathbb{1}_{D_2}(x) = \mathbb{1}_{D_1\cap D_2}(x)$ для всіх випадків виконується

Proposition 2.1.4 Властивості

Задані p(x), q(x) - прості функції на [a,b]. Тоді на [a,b]:

- 1. $\forall \alpha \in \mathbb{R} : \alpha p(x)$ проста
- 2. p(x) + q(x) проста
- 3. $p(x) \cdot q(x)$ проста
- 4. |p(x)| проста

Proof.

Отже, дано:

$$p(x) = \sum_{j=1}^{m} c_{j} \mathbb{1}_{A_{j}}(x)$$
, де $A_{i} \cap A_{s} = \emptyset$, $\bigcup_{j=1}^{m} A_{j} = [a, b]$ $q(x) = \sum_{k=1}^{n} b_{k} \mathbb{1}_{B_{k}}(x)$, де $B_{i} \cap B_{s} = \emptyset$, $\bigcup_{k=1}^{m} B_{k} = [a, b]$

1.
$$\alpha p(x) = \alpha \sum_{j=1}^{m} c_j \mathbb{1}_{A_j}(x) = \sum_{j=1}^{m} (\alpha c_j) \mathbb{1}_{A_j}(x)$$

Отже, $\alpha p(x)$ - проста

2. Визначимо множини $E_{jk} = A_j \cap B_k$. Перевіримо, що всі множини E_{jk} не перетинаються та в об'єднанні дають [a,b]

$$\forall (j_1, k_1) \neq (j_2, k_2) : E_{j_1 k_1} \cap E_{j_2 k_2} = (A_{j_1} \cap B_{k_1}) \cap (A_{j_2} \cap B_{k_2}) = (A_{j_1} \cap A_{j_2}) \cap (B_{k_1} \cap B_{k_2}) = \emptyset$$

Отже, не перетинаються

$$\bigcup_{j=1}^{m} \bigcup_{k=1}^{n} E_{jk} = \bigcup_{j=1}^{m} \bigcup_{k=1}^{n} (A_j \cap B_k) = \bigcup_{j=1}^{m} \left(A_j \cap \bigcup_{k=1}^{n} B_k \right) = \bigcup_{j=1}^{m} (A_j \cap [a, b]) = \bigcup_{j=1}^{m} (A_j$$

$$= \bigcup_{j=1}^{m} A_j = [a, b]$$

Отже, в об'єднанні дають [a, b]

Тоді майже остаточно:

$$p(x) + q(x) = \sum_{j=1}^{m} c_j \mathbb{1}_{A_j}(x) + \sum_{k=1}^{n} b_k \mathbb{1}_{B_k}(x) =$$

Зауважимо, що
$$A_j = \bigcup_{k=1}^n E_{jk}$$
 $B_k = \bigcup_{j=1}^m E_{jk}$

А тому за попередньою лемою, ми отримаємо:

$$\mathbb{1}_{A_j} = \mathbb{1}_{\bigcup_{k=1}^n E_{jk}} = \sum_{k=1}^n \mathbb{1}_{E_{jk}} \quad \mathbb{1}_{B_k} = \mathbb{1}_{\bigcup_{j=1}^m E_{jk}} = \sum_{j=1}^m \mathbb{1}_{E_{jk}}$$

Повернімось до рівності

В другому доданку знаки сумування ми можемо змінити місцями (розпишіть та побачите). А далі все під одну суму

$$= \sum_{j=1}^{m} \sum_{k=1}^{n} (c_j + b_k) \mathbb{1}_{E_{jk}}(x)$$

Отже, p+q - проста

Червона - p(x); Синя - q(x). А праворуч - p(x)+q(x). Візуальна відповідь на запитання, чому ми брали $E_{jk}=A_j\cap B_k$

3.
$$p(x) \cdot q(x) = \sum_{j=1}^{m} c_j \mathbb{1}_{A_j}(x) \cdot \sum_{k=1}^{n} b_k \mathbb{1}_{B_k}(x) = \sum_{j=1}^{m} \sum_{k=1}^{n} c_j \mathbb{1}_{A_j}(x) b_k \mathbb{1}_{A_j}(x) b$$

Як і в властивості 2, ми встановимо $E_{jk} = A_j \cap B_k$

За попередньою лемою, ми маємо, що $\mathbb{1}_{A_j}(x) \cdot \mathbb{1}_{B_k}(x) = \mathbb{1}_{A_j \cap B_k}(x) = \mathbb{1}_{E_{jk}}(x)$

Отже, $p \cdot q$ - проста

4. Спробуйте самостійно

2.2 Визначений інтеграл від простої функції

 ${f Definition}$ 2.2.1 Задана $p(x)=\sum_{j=1}^m c_j \mathbbm{1}_{A_j}(x)$ - проста функція на [a,b]

Визначеним інтегралом від простої функції p(x) на відрізку [a,b] називають таке число

$$\int_{[a,b]} p(x) dx = \sum_{j=1}^{m} c_j \cdot L(A_j)$$

Де $L(A_j)$ - довжина відрізка (або інтервалу, або півінтервалу)

Повернімось до прикладу простої функції, який я навів, аби зрозуміти сенс визначеного інтегралу від неї

Маємо
$$p(x) = \begin{cases} 1, x \in [1,2) \\ 2, x \in [2,2.5) \\ -1, x \in [2.5,4) \\ 1, x \in [4,4.5] \end{cases}$$
 . Обчислимо визначений інтеграл

$$\int_{[2,4]} p(x) dx = 1 \cdot L([1,2)) + 2 \cdot L([2,2.5)) + (-1) \cdot L([2.5,4)) + 1 \cdot L([4,4.5]) = (-1) \cdot L([2.5,4]) + (-1) \cdot L([2.5,4]) + (-1) \cdot L([4,4.5]) = (-1) \cdot L([4,4.5$$

$$= (2-1) + 2 \cdot (2.5-2) - (4-2.5) + (4.5-4) = 1$$

Кожний доданок відповідає сірому прямокутнику, що виділені на малюнку

Proposition 2.2.2 Властивості

1. Задані p(x), q(x) - прості функції на [a, b]. Тоді

1)
$$\forall \alpha \in \mathbb{R} : \int_{[a,b]} \alpha p(x) dx = \alpha \int_{[a,b]} p(x) dx$$

2)
$$\int_{[a,b]} p(x) + q(x) dx = \int_{[a,b]} p(x) dx + \int_{[a,b]} q(x) dx$$

Proof.

1) Оскільки p - проста, то й $\forall \alpha \in \mathbb{R} : \alpha p$ - проста. А отже,

$$\int_{[a,b]} \alpha p(x) \, dx = \sum_{j=1}^{m} (\alpha c_j) L(A_j) = \alpha \sum_{j=1}^{m} c_j L(A_j) = \alpha \int_{[a,b]} p(x) \, dx$$

2) Оскільки p,q - прості, то й p+q - проста. Ми пам'єтаємо, що

$$p(x) + q(x) = \sum_{j=1}^{m} \sum_{k=1}^{n} (c_j + b_k) \mathbb{1}_{E_{jk}}(x)$$

Де $E_{jk} = A_j \cap \overset{j-1}{B_k}$. Тоді

$$\int_{[a,b]} p(x) + q(x) dx = \sum_{j=1}^{m} \sum_{k=1}^{n} (c_j + b_k) L(E_{jk}) = \sum_{j=1}^{m} \sum_{k=1}^{n} c_j L(E_{jk}) + \sum_{j=1}^{m} \sum_{k=1}^{n} b_k L(E_{jk}) =$$

В другому доданку знаки суми я зміню місцями. А далі c_j, b_k винесу з-під другої суми

$$\sum_{j=1}^{m} c_j \sum_{k=1}^{n} L(E_{jk}) + \sum_{k=1}^{n} b_k \sum_{j=1}^{m} L(E_{jk}) =$$

Оскільки
$$A_j = \bigcup_{k=1}^n E_{jk}$$
 $B_k = \bigcup_{j=1}^m E_{jk}$, то

$$L(A_j) = \sum_{k=1}^{n} L(E_{jk})$$
 $L(B_k) = \sum_{j=1}^{m} L(E_{jk})$

Продовжимо рівність

2. Задано p(x) - така проста на [a,b], що $\forall x \in [a,b] : p(x) \ge 0$

Тоді
$$\int_{[a,b]} p(x) \, dx \ge 0$$

Proof.

Оскільки $p(x) \ge 0$, то $\forall j = \overline{1,m} : c_j \ge 0$ Також $L(A_j) \ge 0$

Отже,
$$\int_{[a,b]} p(x) dx = \sum_{j=1}^{m} c_j L(A_j) \ge 0 \blacksquare$$

3. Задані p(x), q(x) - такі прості функції на [a,b], що $\forall x \in [a,b]: p(x) \geq q(x)$

Тоді
$$\int_{[a,b]} p(x) dx \ge \int_{[a,b]} q(x) dx$$

Proof.

Розглянемо функцію r(x) = p(x) - q(x) - теж проста функція (пункт 1 та 2). Причому $\forall x \in [a,b]: r(x) \geq 0$. Тому за попередньою властивістю

$$\int_{[a,b]} r(x) \, dx = \int_{[a,b]} p(x) - q(x) \, dx = \int_{[a,b]} p(x) \, dx - \int_{[a,b]} q(x) \, dx \ge 0$$
Отже,
$$\int_{[a,b]} p(x) \, dx \ge \int_{[a,b]} q(x) \, dx \blacksquare$$

4. Задано p(x) - проста функція на [a,b]

Тоді
$$\left| \int\limits_{[a,b]} p(x) \, dx \right| \leq \int\limits_{[a,b]} |p(x)| \, dx$$

Proof.

Справедлива така оцінка $\forall x \in [a,b]: -|p(x)| \leq p(x) \leq |p(x)|$ Причому, зауважу, що |p(x)| - проста функція. Тоді за попередньою властивістю, отримаємо нерівність

$$-\int_{[a,b]} |p(x)| dx \le \int_{[a,b]} p(x) dx \le \int_{[a,b]} |p(x)| dx \implies \left| \int_{[a,b]} p(x) dx \right| \le \int_{[a,b]} |p(x)| dx$$

2.3 Функціональні послідовності

Маленький відступ, скажімо так

Definition 2.3.1 Функціональною послідовністю назвемо послідовність $\{f_n(x), n \geq 1\}$, всі функції задані на одній множині A

Definition 2.3.2 Функція f(x), що задана теж на множині A, називається **точковою границею** функціональної послідовності $\{f_n(x), n \geq 1\}$, якщо

$$\forall x \in A: \lim_{n \to \infty} f_n(x) = f(x)$$

В цьому означенні ми маємо діло з поточковою збіжністю

Example 2.3.3 Розгляньмо послідовність $\left\{ f_n(x) = \frac{nx}{1+n+x}, n \geq 1 \right\}$ на відрізку [0,5] $\forall x \in [0,5]: f_n(x) = \frac{nx}{1+n+x} = \frac{x}{\frac{1}{n}+1+\frac{x}{n}} \xrightarrow{n \to \infty} x$

Чорним маємо сім'ю функцій $f_n(x)=\frac{nx}{1+n+x}$. Вони прямують до червоної функції. Всі функції визначені на [0,5]

Remark 2.3.4

- 1. Якщо всі функції парні/непарні, то точкова границя теж парна/непарна Думаю, зрозуміло
- 2. Якщо всі функції монотонні, то точкова границя буде також монотонною Випливає з нерівностей границь

Definition 2.3.5 Функція f(x) називається рівномірною границею функціональної послідовності $\{f_n(x), n \geq 1\}$ на множині A, якщо

$$\sup_{x \in A} |f_n(x) - f(x)| \to 0, n \to \infty$$

Позначення: $f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty$

Це означення можна записати по-іншому. За означенням ліміта:

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \sup_{x \in A} |f_n(x) - f(x)| < \varepsilon$$

 $\forall \varepsilon>0:\exists N:\forall n\geq N:\sup_{x\in A}|f_n(x)-f(x)|<\varepsilon$ Оскільки супремум - 'щось найбільше', то червоне еквівалентно цьому $\forall x \in A : |f_n(x) - f(x)| < \varepsilon$

Proposition 2.3.6 Задано $\{f_n(x), n \ge 1\}$ - послідовність

Якщо $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на множині A, то

 $\forall x \in A: f_n(x) \to f(x), n \to \infty$

Proof.

За умовою, $\sup_{x\in A} |f_n(x) - f(x)| \to 0, n \to \infty$, тобто

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \forall x \in A : |f_n(x) - f(x)| < \varepsilon$$

Запис $\forall x \in A$ можна винести в самий початок $\Rightarrow \forall x \in A: \lim_{n \to \infty} f_n(x) = f(x)$

Example 2.3.7 Повернімось до $\left\{ f_n(x) = \frac{nx}{1+n+x}, n \geq 1 \right\}$ на [0,5]

$$f(x) = x$$

$$\sup_{x \in [0,5]} |f_n(x) - f(x)| = \dots = \sup_{x \in [0,5]} \frac{x + x^2}{1 + n + x} \equiv$$

Щоб знайти супремум, треба знайти верхню межу через похідні та критичні точки

Маємо функцію $h(x) = \frac{x + x^2}{1 + n + x}, x \in [0, 5]$

$$h'(x) = \frac{(1+2x)(1+n+x) - x - x^2}{(1+n+x)^2} = \frac{1+n+2x+2nx+x^2}{(1+n+x)^2}$$

Зрозуміло, що $h'(x) > 0, \forall x \in [0,5]$, тоді h - зростає монотонно. Тоді верхня межа досягається при x=5 $= \frac{5+25}{1+n+5} \stackrel{n\to\infty}{\longrightarrow} 0$

$$= \frac{5+25}{1+n+5} \stackrel{n\to\infty}{\longrightarrow} 0$$

Таким чином, $f_n(x) \to x, n \to \infty$

Позначення: Fun(A) - множина всіх функції, що задані на A

Definition 2.3.8 Нормою функції f(x) назвемо число

$$||f|| = \sup_{x \in A} |f(x)|$$

Proposition 2.3.9 Властивості

 $\forall f, g \in Fun(A) :$

- 1) $||f|| \ge 0$
- 2) $||f|| = 0 \iff f(x) = 0, \forall x \in A$
- 3) $||\lambda f|| = |\lambda| \cdot ||f||, \forall \lambda \in \mathbb{R}$
- 4) $||f + g|| \le ||f|| + ||g||$

Наслідок) $| ||f|| - ||g|| | \le ||f - g||$

Proof.

- 1), 3) зрозуміло
- 2) $||f|| = 0 \Rightarrow \sup_{x \in A} |f(x)| = 0 \Rightarrow \forall x \in A : 0 \le |f(x)| \le 0 \Rightarrow f(x) \equiv 0$

4)
$$||f + g|| = \sup_{x \in A} |f(x) + g(x)| \le \sup_{x \in A} (|f(x)| + |g(x)|) \le \le \sup_{x \in A} |f(x)| + \sup_{x \in A} |g(x)| = ||f|| + ||g||$$

Наслідок) Вказівка: ||f|| = ||f - g + g|| та ||g|| = ||g - f + f|| \blacksquare Надалі рівномірна збіжність позначається так

$$||f_n - f|| = \sup_{x \in A} |f_n(x) - f(x)| \to 0, n \to \infty$$

Theorem 2.3.10 Задана $\{f_n(x), n \geq 1\}$ - послідовність та $f_n(x) \xrightarrow{\sim} f(x)$, $n \to \infty$ на A

Відомо, що $\forall n \geq 1 : f_n(x) \in C(A)$. Тоді $f(x) \in C(A)$

Proof.

Зафіксуємо т. $x_0 \in A$

За умовою, $||f_n - f|| \to 0, n \to \infty$

$$\Rightarrow \forall \varepsilon > 0 : \exists N : \forall n \geq N : \forall x \in A : |f_n(x) - f(x)| < \frac{\varepsilon}{3}$$

Також за умовою, $f_n(x) \in C(A)$

$$\Rightarrow$$
 для тих самих $\varepsilon:\exists \delta(\varepsilon)>0: \forall x_1: |x_1-x_0|<\delta \Rightarrow |f_n(x_1)-f(x_0)|<rac{\varepsilon}{3}$

$$\Rightarrow |f(x_1) - f(x_0)| = |(f(x_1) - f_n(x_1)) + (f_n(x_1) - f_n(x_0)) + (f_n(x_0) - f(x_0))| \le |f(x_1) - f_n(x_1)| + |f_n(x_1) - f_n(x_0)| + |f_n(x_0) - f(x_0)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

$$\Rightarrow f(x)$$
 - неперервна в т. x_0 , яка є довільною із A

Отже, $f(x) \in C(A)$

Theorem 2.3.11 Критерій Коші

 $f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty$ на $A \iff \forall \varepsilon > 0 : \exists N : \forall n, m \ge N : ||f_n - f_m|| < \varepsilon$ **Proof.**

$$\Longrightarrow$$
 Дано: $f_n(x) \xrightarrow{\rightarrow} f(x)$, $n \to \infty$ на A

Тоді
$$||f_n - f|| \to 0, n \to \infty \Rightarrow \forall \varepsilon > 0 : \exists N : \forall n, m \ge N : \frac{||f_n - f|| < \frac{\varepsilon}{2}}{||f_m - f|| < \frac{\varepsilon}{2}}$$

$$\Rightarrow ||f_n - f_m|| = ||f_n - f + f - f_m|| \le ||f_n - f|| + ||f_m - f|| < \varepsilon$$

 \sqsubseteq Дано: $\forall \varepsilon > 0 : \exists N : \forall n, m \geq N : ||f_n - f_m|| < \varepsilon$

 $\Rightarrow \forall x \in A : |f_n(x) - f_m(x)| < \varepsilon$

Якщо зафіксувати точку $x_0 \in A$, то отримаємо фундаментальну послідовність $\{f_n(x_0), n \ge 1\} \Rightarrow \exists \lim_{n \to \infty} f_n(x_0) = f(x_0)$

Якщо $m \to \infty$, то маємо, що $|f_n(x_0) - f(x_0)| < \varepsilon$

Оскільки це може бути $\forall x_0 \in A$, то тоді $||f_n - f|| < \varepsilon \Rightarrow f_n(x) \xrightarrow{\sim} f(x)$, $n \to \infty$ на $A \blacksquare$

2.4 Визначений інтеграл від інтегрованої функції

Definition 2.4.1 Функція f(x) на [a,b] називається **інтегрованою**, якщо

 $\exists \{p_n(x), n \geq 1\}$ - послідовність простих функцій : $||f - p_n|| \stackrel{n \to \infty}{\to} 0$

Функція f(x) дуже схожа на просту функцію $p_n(x)$ при дуже великих n. Якщо ще сильніше збільшити n, то вже можна й не побачити різниці

Definition 2.4.2 Інтегралом від інтегрованих функцій f(x) на множині [a,b] називають границею від інтегралу простої функції

$$\int_{[a,b]} f(x) dx = \lim_{n \to \infty} \int_{[a,b]} p_n(x) dx$$

Theorem 2.4.3 Коректність означення

Інтеграл від інтегрованої функції не залежить від вибору послідовності простих функцій

Математично кажучи, нехай є дві послідовності $\{p_n(x), n \geq 1\}$ $\{q_n(x), n \geq 1\}$ такі що: $||f - p_n|| \stackrel{n \to \infty}{\longrightarrow} 0 \quad ||f - q_n|| \stackrel{n \to \infty}{\longrightarrow} 0$ Тоді $\exists \lim_{n \to \infty} \int p_n(x) \, dx \quad \exists \lim_{n \to \infty} \int q_n(x) \, dx$ та вони рівні [a,b]

Proof.

I. Доведімо, що
$$\left\{\int\limits_{[a,b]}p_n(x)\,dx,n\geq 1\right\}$$
 - фундаментальна послідовність

Відомо, що $||f-p_n|| \stackrel{n\to\infty}{\longrightarrow} 0$, отже $\forall \varepsilon > 0: \exists N: \forall n \geq N: ||f-p_n|| < \frac{\varepsilon}{2}$

Тоді маємо, що $\forall n, m \geq N$:

$$\left| \int_{[a,b]} p_n(x) \, dx - \int_{[a,b]} p_m(x) \, dx \right| = \left| \int_{[a,b]} p_n(x) - p_m(x) \, dx \right| \le \int_{[a,b]} |p_n(x) - p_m(x)| \, dx \le \int_{[a,b]} \sup_{x \in [a,b]} |p_n(x) - p_m(x)| \, dx \le \int_{[a,b]} \sup_{x \in [a,b]} |p_n(x) - f(x)| + \int_{[a,b]} \sup_{x \in [a,b]} |p_n(x) - f(x)| + \int_{[a,b]} |f(x) - p_m(x)| \, dx \le \int_{[a,b]} \sup_{x \in [a,b]} |p_n(x) - f(x)| + \sup_{x \in [a,b]} |f(x) - p_m(x)| \, dx = \int_{[a,b]} ||p_n - f|| + ||p_m - f|| \, dx < \int_{[a,b]} \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \, dx = \varepsilon \cdot L([a,b]) = \varepsilon(b-a)$$

Отже, $\left\{\int\limits_{[a,b]}p_n(x)\,dx,n\geq 1\right\}$ - фундаментальна послідовність, а тому

вона є збіжною, тобто $\exists \lim_{n \to \infty} \int_{[a,b]} p_n(x) dx$

Абсолютно аналогічні міркування для послідовності $\left\{\int\limits_{[a,b]}q_n(x)\,dx,n\geq 1\right\}$ - фундаментальна, тоді збіжна, а тоді $\exists\lim_{n\to\infty}\int\limits_{[a,b]}q_n(x)\,dx$

II. Залишилось довести, що
$$\lim_{n\to\infty}\int\limits_{[a,b]}p_n(x)\,dx=\lim_{n\to\infty}\int\limits_{[a,b]}q_n(x)\,dx$$

Для цього ми розглянемо послідовність $\{r_k(x), k \geq 1\}$, таку, що

$$r_k(x) = \begin{cases} p_k(x), & k = 2n + 1 \\ q_k(x), & k = 2n \end{cases}$$

Тобто $\{r_1 = p_1, r_2 = q_1, r_3 = p_2, r_4 = q_2, \dots\}$

Із умови теореми маємо, що $\forall \varepsilon > 0$:

 $\exists N_1 : \forall n \geq N_1 : ||f - p_n|| < \varepsilon$

 $\exists N_2 : \forall n \geq N_2 : ||f - q_n|| < \varepsilon$

А отже, $\exists N = \max\{N_1, N_2\} : \exists K = 2N : \forall k \geq K : ||f - r_k|| < \varepsilon$

А потім аналогічно доводиться, що $\left\{\int\limits_{[a,b]} r_k(x)\,dx,k\geq 1\right\}$ - фундаментальна

послідовність, а тому - збіжна

Таким чином,
$$\exists \lim_{k \to \infty} \int r_m(x) dx = \begin{cases} \lim_{n \to \infty} \int p_n(x) dx \\ \lim_{n \to \infty} \int q_n(x) dx \end{cases}$$
 Отже, $\lim_{n \to \infty} \int p_n(x) dx = \lim_{n \to \infty} \int q_n(x) dx$ \bullet

Отже,
$$\lim_{n\to\infty} \int_{[a,b]} p_n(x) dx = \lim_{n\to\infty} \int_{[a,b]} q_n(x) dx$$

Множину інтегрованих функцій на [a, b] позначатимемо за D([a, b])

Proposition 2.4.4 Властивості

1. Задані $f, g \in D([a, b])$. Тоді $\alpha f + \beta g \in D([a, b]), \alpha, \beta \in \mathbb{R}$ Proof.

Зафіксуймо $f,g\in D([a,b]),$ тобто $\exists \{p_n,n\geq 1\}$ та $\{q_n,n\geq 1\}$:

 $||f-p_n|| \stackrel{n\to\infty}{\longrightarrow} 0$ та $||g-q_n|| \stackrel{n\to\infty}{\longrightarrow} 0$

Тоді $0 \le ||(\alpha f + \beta g) - (\alpha p_n + \beta q_n)|| = ||\alpha (f - p_n) + \beta (g - q_n)|| \le ||\alpha (f - p_n)|| + ||\beta (g - q_n)|| = \alpha ||f - p_n|| + \beta ||g - q_n||$

Якщо $n \to \infty$, то права частина нерівності прямує до нуля, а тому за теоремою про двох поліцаїв, $||(\alpha f + \beta g) - (\alpha p_n + \beta q_n)|| \to 0$

Отже, $\alpha f + \beta g \in D([a,b])$

2. Задана $f \in D([a,b])$. Тоді $|f| \in D([a,b])$

Proof.

Зафіксуймо $f \in D([a, b])$, тобто $\exists \{p_n, n \ge 1\}$:

$$||f-p_n|| \stackrel{n\to\infty}{\longrightarrow} 0$$

Тоді $0 \le |||p_n|-|f||| \le ||p_n-f|| \stackrel{n\to\infty}{\longrightarrow} 0$
Отже, $|f| \in D([a,b])$

3. Задана $f \in D([a,b])$. Тоді f - обмежена

Proof.

Зафіксуймо $f \in D([a, b])$, тобто $\exists \{p_n, n \ge 1\}$:

$$||f - p_n|| \stackrel{n \to \infty}{\longrightarrow} 0$$

Тобто
$$\forall \varepsilon > 0 : \exists N : \forall n \geq N : \forall x \in [a,b] : |f(x) - p_n(x)| < \varepsilon$$

Мене не цікавить купа нерівностей, тому візьму ту нерівність лише для n=N

$$\forall x \in [a, b] : |f(x) - p_N(x)| < \varepsilon \iff -\varepsilon < f(x) - p_N(x) < \varepsilon$$
$$p_N(x) - \varepsilon < f(x) < p_N(x) + \varepsilon$$

Оскільки p_N - проста, то вона приймає скінченну кількість значень, а тому - обмежена, тобто

$$\exists C > 0 : \forall x \in [a, b] : |p_N(x)| < C$$

$$\Rightarrow C - \varepsilon < p_N(x) - \varepsilon < f(x) < p_N(x) + \varepsilon < C + \varepsilon$$

$$\Rightarrow -(C+\varepsilon) < f(x) < C+\varepsilon \Rightarrow |f(x)| < |C+\varepsilon|$$

Оскільки нерівність виконується $\forall x \in [a,b]$, то тоді f - обмежена

4. Задана послідовність $\{f_n(x) \in D([a,b]), n \geq 1\}$ Відомо, що $f_n(x) \xrightarrow{\rightarrow} f(x), n \to \infty$. Тоді $f \in D([a,b])$

Proof

$$f_n(x) \xrightarrow{\gamma} f(x), n \to \infty$$
, тобто $||f_n - f|| \xrightarrow{n \to \infty} 0$, тобто $\forall \varepsilon > 0$, зокрема для $\varepsilon = \frac{1}{k} : \exists N_k : \forall n \ge N_k : ||f - f_n|| < \frac{1}{k}$

Знову ж таки, цікавлять не всі нерівності, тому візьму лише для $n=N_k$, отже:

$$||f - f_{N_k}|| < \frac{1}{k}$$

A оскільки $f_{N_k}^{\kappa} \in D([a,b])$, то для неї

$$\exists \{p_m^{(k)}(x), m \geq 1\} : ||f_{N_k} - p_m^{(k)}|| \stackrel{m \to \infty}{\longrightarrow} 0, \text{ тобто}$$

для тих самих
$$\varepsilon = \frac{1}{k} : \exists M_k : \forall m \geq M_k : ||f_{N_k} - p_m^{(k)}|| < \frac{1}{k}$$

Тут також візьму лише нерівність при $m=M_k$. І тоді отримаємо бажану оцінку:

$$||f - p_{M_k}^{(k)}|| = ||f - f_{N_k} + f_{N_k} - p_{M_k}^{(k)}|| \le ||f - f_{N_k}|| + ||f_{N_k} - p_{M_k}^{(k)}|| < \frac{2}{k}$$

Спрямовуємо
$$k \to \infty$$
, тоді $||f - p_{M_k}^{(k)}|| < \frac{2}{k} \to 0$

Остаточно, ми знайшли послідовність $\{p_{M_k}^{(k)}, k \geq 1\}: ||f - p_{M_k}^{(k)}|| \to 0$, а тому $f \in D([a,b])$

5. Задані
$$f,g \in D([a,b])$$
. Тоді $f \cdot g \in D([a,b])$

Proof.

$$f,g\in D([a.b]),$$
 тобто $\exists \{p_n,n\geq 1\}$ та $\{q_n,n\geq 1\}$: $||f-p_n||\overset{n\to\infty}{\longrightarrow} 0$ та $||g-q_n||\overset{n\to\infty}{\longrightarrow} 0$ $\Rightarrow ||fg-p_nq_n||=||fg-fq_n+fq_n-p_nq_n||\leq ||fg-fq_n||+||fq_n-p_nq_n||==||f(g-q_n)||+||q_n(f-p_n)||\leq ||f||\cdot ||g-q_n||+||q_n||\cdot ||f-p_n|||\leq ||f||=\sup_{x\in [a,b]}|f(x)|=C^*$ - якась константа, бо $f\in D\Rightarrow f$ - обмежена $f(a,b)=\sup_{x\in [a,b]}|f(x)|=f(a,b)=f$ - обмежена відерова образова образо

Таким чином, $\sup_{x \in [a,b]} |q_n(x)| < C^{**}$ $|C^*||q - q_n|| + C^{**}||f - p_n|| \xrightarrow{n \to \infty} 0$

$$\leq C^*||g-q_n|| + C^{**}||f-p_n|| \stackrel{n\to\infty}{\longrightarrow} 0$$
 Таким чином, $f\cdot g\in D([a,b])$

6. Задана $f \in C([a, b])$. Тоді $f \in D([a, b])$

Proof.

$$f \in C([a,b]) \Longrightarrow f \in C_{unif}([a,b]) \Longleftrightarrow$$
 $\forall \varepsilon > 0: \exists \delta: \forall x_1, x_2 \in [a,b]: |x_1-x_2| < \delta \Rightarrow |f(x_1)-f(x_2)| < \varepsilon$ А тепер нехай $\exists n: \frac{b-a}{n} < \delta \Rightarrow \forall x_1, x_2 \in [a,b]: |x_1-x_2| < \frac{b-a}{n} \Rightarrow |f(x_1)-f(x_2)| < \varepsilon$

Розіб'ємо [a,b] на відрізки довжини $\frac{b-a}{n}$ $[a,b] = [x_0,x_1) \cup [x_1,x_2) \cup \cdots \cup [x_n,x_{n+1}]$ = b

Тоді $\forall j = \overline{1, n+1} : f \in C([x_{j-1}, x_j])$. А отже, за Вейєрштрассом, можна взяти т. $x_{j-1}^* \in [x_{j-1}, x_j] : f(x_{j-1}^*) = \sup_{x \in [x_{j-1}, x_j]} f(x)$

Побудуємо послідовність простих функцій $p_n:[a,b] \to \mathbb{R}$ таким чином:

$$p_n(x) = \begin{cases} f(x_0^*), x \in [a, x_1) \\ f(x_1^*), x \in [x_1, x_2) \\ \vdots \\ f(x_n^*), x \in [x_n, b] \end{cases}$$

Перевірмо умову інтегрованості функції f:

Перевірмо умову інтегрованості функції
$$f$$
:
$$\sup_{x \in [a,b]} |f(x) - p_n(x)| = \max \sup_{x \in [x_{j-1},x_j)} |f(x) - f(x_{j-1}^*)| \le$$
$$= \max \sup_{x \in [x_{j-1},x_j)} |f(x) - f(x_{j-1}^*)| \le$$

Оскільки $x \in [x_{j-1}, x_j)$, то тоді $|x - x_{j-1}^*| < \frac{b-a}{n} < \delta$, а отже, $|f(x) - f(x_{i-1}^*)| < \varepsilon$

 $|<|\max \varepsilon = \varepsilon|$

Підсумовуючи: $\sup_{x\in[a,b]}|f(x)-p_n(x)|\stackrel{n\to\infty}{\longrightarrow}0$, що теж саме, що $f\in D([a,b])$

7. Задана $f \in C([a,b])$, але цього разу кусково неперервна, тобто $\exists c_1, \dots, c_m \in [a,b]: a = c_0 < c_1 < \dots < c_m < c_{m+1} = b$ такі точки, що $f \in C([c_{j-1}, c_j])$, але водночас т. c_1, \ldots, c_m - точки "стрибок" Тоді $f \in D([a,b])$

Proof.

Оскільки $f\in C([c_{j-1},c_j]),$ то там же $f\in D([c_{j-1},c_j]),$ тобто $\exists \{p_n^{(j)},n\geq 1\}:||p_n^{(j)}-f||\to 0$

Створімо послідовність простих функцій $p_n(x) = \sum_{i=1}^m p_n^{(j)}(x) \mathbb{1}_{[c_{j-1},c_j]}(x)$

Тоді
$$||f-p_n||=\sup_{x\in[a,b]}|f(x)-p_n(x)|=\max\sup_{x\in[c_{j-1},c_j]}|f(x)-p_n^{(j)}(x)|\to 0$$

Таким чином, $f\in D([a,b])$

Proposition 2.4.5 Властивості інтегралу

1.
$$\int_{[a,b]} (\alpha f(x) + \beta g(x)) dx = \alpha \int_{[a,b]} f(x) dx + \beta \int_{[a,b]} g(x) dx$$
2. Якщо $\forall x \in [a,b] : f(x) \ge 0$, то $\int_{[a,b]} f(x) dx \ge 0$

2. Якщо
$$\forall x \in [a,b] : f(x) \ge 0$$
, то $\int_{[a,b]} f(x) \, dx \ge 0$

3. Якщо
$$\forall x \in [a.b]: f(x) \ge g(x), \text{ то } \int_{[a.b]} f(x) \, dx \ge \int_{[a.b]} g(x) \, dx$$

$$4. \left| \int_{[a,b]} f(x) \, dx \right| \le \int_{[a,b]} |f(x)| \, dx$$

Proof.

Розглянемо функції $f,g\in D([a,b]),$ тоді $\exists \{p_n(x),n\geq 1\}, \{q_n(x),n\geq 1\}:$ $||f-p_n|| \to 0, ||g-q_n|| \to 0, n \to \infty$

Тоді
$$\int_{[a,b]} f(x) dx = \lim_{n \to \infty} \int_{[a,b]} p_n(x) dx$$
, $\int_{[a,b]} g(x) dx = \lim_{n \to \infty} \int_{[a,b]} q_n(x) dx$

Otime
$$1. \int_{[a,b]} (\alpha f(x) + \beta g(x)) dx = \lim_{n \to \infty} \int_{[a,b]} (\alpha p_n(x) + \beta q_n(x)) dx =$$

$$= \lim_{n \to \infty} \alpha \int_{[a,b]} p_n(x) dx + \lim_{n \to \infty} \beta \int_{[a,b]} q_n(x) dx = \alpha \int_{[a,b]} f(x) dx + \beta \int_{[a,b]} g(x) dx$$

2. Коли
$$\forall x \in [a, b] : f(x) \ge 0$$
, то
$$\int_{[a,b]} f(x) dx = \int_{[a,b]} |f(x)| dx = \lim_{n \to \infty} \int_{[a,b]} |p_n(x)| dx \ge 0$$

- 3. Вказівка: розглянути функцію $h(x) = f(x) g(x) \ge 0$ та властивість
- 2. Доводиться аналогічно як з інтегралом простої функції
- 4. Вказівка: $-f(x) \le |f(x)| \le f(x)$ та властивість 3

Theorem 2.4.6 Теорема про середн ϵ Варіант I

Задана функція
$$f \in C([a,b])$$

Тоді $\exists c \in [a,b]: \int\limits_{[a,b]} f(x) \, dx = f(c)(b-a)$

Варіант II

Задані функції $f \in C([a,b])$ та $g \in D([a,b])$, така, що $\forall x \in [a, b] : g(x) \ge 0$ Тоді $\exists c \in [a,b] : \int f(x)g(x) \, dx = f(c) \int g(x) \, dx$

Тоді
$$\exists c \in [a,b] : \int_{[a,b]} f(x)g(x) dx = f(c) \int_{[a,b]} g(x) dx$$

Proof.

Для обох варіантів початок однаковий $f \in C([a,b])$, а тому за двома теоремами Вейєрштрасса,

f - обмежена

$$\exists x_*, x^* \in [a, b] : f(x_*) = \inf_{x \in [a, b]} f(x) \quad f(x^*) = \sup_{x \in [a, b]} f(x)$$

Відповідно $\forall x \in [a, b] : f(x_*) \le f(x) \le f(x^*)$

А тепер розглянемо кожний варіант окремо

I. Маємо $\forall x \in [a,b]: f(x_*) \leq f(x) \leq f(x^*)$. Тоді за властивостями інтегралу

$$\int_{[a,b]} f(x_*) \, dx \le \int_{[a,b]} f(x) \, dx \le \int_{[a,b]} f(x^*) \, dx$$

 $\int_{0}^{a} f(x_{*}) dx = f(x_{*})(b-a)$, тому що $f(x_{*})$ - константа, яку винесли

 $\int f(x^*) dx = f(x^*)(b-a)$, тому що $f(x^*)$ - константа, яку винесли

Отже,
$$f(x_*) \le \frac{1}{b-a} \int_{[a,b]} f(x) \, dx \le f(x^*)$$

Оскільки $f \in C([a,b])$, то за теоремою Коші про проміжкове значення,

$$\exists c \in [a, b] : f(c) = \frac{1}{b - a} \int_{[a, b]} f(x) \, dx$$

II. Маємо $\forall x \in [a,b]: f(x_*) \leq f(x) \leq f(x^*)$. Тоді оскільки $g(x) \geq 0$, то $f(x_*)g(x) \le f(x)g(x) \le f(x^*)g(x)$ За властивостями інтегралу,

$$\int_{[a,b]} f(x_*)g(x) \, dx \le \int_{[a,b]} f(x)g(x) \, dx \le \int_{[a,b]} f(x^*)g(x) \, dx$$

[a,b] [a,b] [a,b] [a,b] Оскільки $f(x_*), f(x^*)$ - константи, то ми їх винесемо з-під інтегралів. Далі, оскільки $g(x) \geq 0$, то $\int\limits_{[a,b]} g(x)\,dx \geq 0$. Тому поділимо обидві частини

нерівності на цей інтеграл. В результаті,

$$f(x_*) \le \frac{\int_{[a,b]} f(x)g(x) dx}{\int_{[a,b]} g(x) dx} \le f(x^*)$$

Оскільки $f \in C$, то за теоремою Коші про проміжкове значення,

$$\exists c \in [a, b] : f(c) = \frac{\int_{[a, b]} f(x)g(x) dx}{\int_{[a, b]} g(x) dx} \blacksquare$$

2.5 Визначений інтеграл на підмножині

Definition 2.5.1 Задана функція $f \in D([a,b])$ та деяка підмножина $<\alpha,\beta>\subset [a,b]$

Інтегралом від функції f на $<\alpha,\beta>$ називають

$$\int_{\langle \alpha, \beta \rangle} f(x) dx = \int_{[a,b]} f(x) \mathbb{1}_{\langle \alpha, \beta \rangle}(x) dx$$

Theorem 2.5.2 Коректність означення

Якщо
$$f \in D([a,b])$$
, то $f \in D([\alpha,\beta])$

$$\int\limits_{<\alpha,\beta>} f(x)\,dx = \int\limits_{[a,b]} f(x)\mathbbm{1}_{[\alpha,\beta]}(x)\,dx, \text{ або можна рахувати стандартним}$$

чином, тобто
$$\int_{[\alpha,\beta]}^{[\alpha,\beta]} f(x) \, dx = \lim_{n\to\infty} \int_{[\alpha,\beta]} p_n(x) \, dx$$
, тобто їхні значення співпадають,

обидва означення працюють

Proof.

Маємо
$$f \in D([a,b], \text{ тож } \exists \{p_n(x), n \geq 1\} : \sup_{x \in [a,b]} |f - p_n| \stackrel{n \to \infty}{\longrightarrow} 0$$

Зафіксуємо послідовність
$$\{\tilde{p}_n(x) = p_n(x) \cdot \mathbb{1}_{[\alpha,\beta]}(x), n \geq 1\}$$
 Тоді
$$\sup_{x \in [\alpha,\beta]} |f(x) - \tilde{p}_n(x)| = \sup_{x \in [\alpha,\beta]} |f(x) - p_n(x) \cdot \mathbb{1}_{[\alpha,\beta]}(x)| \leq \sup_{x \in [\alpha,b]} |f(x) - p_n(x)| \xrightarrow{n \to \infty} 0 \Rightarrow f \in D([\alpha,\beta])$$

А тепер оскільки
$$f \in D([\alpha, \beta])$$
, то тоді маємо, що
$$\int\limits_{[\alpha,\beta]} f(x) \, dx = \lim_{n \to \infty} \int\limits_{[\alpha,\beta]} \tilde{p}_n(x) \, dx$$
Якщо $x \in [a,b] \setminus [\alpha,\beta]$, то $\tilde{p}_n(x) = \tilde{p}_n(x) \mathbb{1}_{[\alpha,\beta]}(x) = 0$

$$\equiv \lim_{n \to \infty} \int\limits_{[a,b]} p_n(x) \mathbb{1}_{[\alpha,\beta]}(x) \, dx = \int\limits_{[\alpha,\beta]} f(x) \, dx \blacksquare$$

Remark 2.5.3 Всі властивості інтеграла зберігаються

Theorem 2.5.4 Адитивність

Нехай
$$[a,b]=A_1\cup A_2$$
, причому $A_1\cap A_2=\emptyset$, задана $f\in D([a,b])$ Тоді $\int\limits_{A_1\cup A_2}f(x)\,dx=\int\limits_{A_1}f(x)\,dx+\int\limits_{A_2}f(x)\,dx$

Proof.

Зауважимо, що

$$f(x)=f(x)\mathbb{1}_{A_1\cup A_2}(x)=f(x)(\mathbb{1}_{A_1}(x)+\mathbb{1}_{A_2}(x))=f(x)\mathbb{1}_{A_1}(x)+f(x)\mathbb{1}_{A_2}(x)$$
 Тоді маємо, що:

$$\int_{A_1 \cup A_2} f(x) \, dx = \int_{A_1 \cup A_2} f(x) \mathbb{1}_{A_1 \cup A_2}(x) \, dx = \int_{A_1 \cup A_2} (f(x) \mathbb{1}_{A_1}(x) + f(x) \mathbb{1}_{A_2}(x)) \, dx = \int_{A_1 \cup A_2} f(x) \mathbb{1}_{A_1}(x) \, dx + \int_{A_1 \cup A_2} f(x) \mathbb{1}_{A_2}(x) \, dx = \int_{A_1} f(x) \, dx + \int_{A_2} f(x) \, dx = \int_{A_1} f(x) \, dx + \int_{A_2} f(x) \, dx = \int_{A_1} f(x) \, dx = \int_{A_2} f(x) \, dx = \int_{A_1} f(x) \, dx = \int_{A_2} f(x) \, dx = \int_{A_1} f(x) \, dx = \int_{A_2} f(x) \, dx = \int_{A_1} f(x) \, dx = \int_{A_2} f(x) \, dx = \int_{A_1} f(x) \, dx = \int_{A_2} f$$

Нове позначення:
$$\int_{[a,b]} f(x) dx = \int_a^b f(x) dx$$

Remark 2.5.5
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

Із новим позначенням перепишемо властивість адитивності

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx, \text{ при цьому } a < c < b$$

Remark 2.5.6
$$\int_{[a,b)} f(x) dx = \int_{[a,b]} f(x) dx$$

Proof.

$$\int_{[a,b)}^{1} f(x) \, dx = \int_{[a,b]} f(x) \, \mathbb{1}_{[a,b)}(x) \, dx = 0$$

Довжина точки $L(\{b\})={\color{blue}0}$

2.6Інтеграл із змінними верхньою межею

Задано $f \in D([a,b])$. В цьому підрозділі ми розглядаємо функцію, що залежить від верхньої межі визначеного інтегралу

$$g(x) = \int_{a}^{x} f(t) dt$$

Ця функція має безліч корисних фактів

Theorem 2.6.1 Задано $f \in D([a, b])$. Тоді $g \in C([a, b])$ Proof.

Доведімо, що $g \in C([a,b])$, але рівномірно, тобто

 $\forall \varepsilon > 0 : \exists \delta : \forall x_1, x_2 \in [a, b] : |x_1 - x_2| < \delta \Rightarrow |g(x_1) - g(x_2)| < \varepsilon$

$$|g(x_1) - g(x_2)| = \left| \int_a^{x_1} f(t) dt - \int_a^{x_2} f(t) dt \right| = \left| \int_{x_1}^{x_2} f(t) dt \right| \le \left| \int_{x_1}^{x_2} |f(t)| dt$$

По-перше, відповідь на питання, чому я не прибрав зовнішній модуль.

Бо я не знаю, хто із змін x_1, x_2 більший

По-друге, оскільки $f \in D([a,b])$, то f - обмежена, тобто

 $\exists M > 0 : \forall t \in [a, b] : |f(t)| \le M$

$$\forall \varepsilon > 0 : \exists \delta \stackrel{\text{встановимо}}{=} \frac{\varepsilon}{M}$$

$$\equiv M|x_2-x_1| < M\frac{\varepsilon}{M} = \varepsilon$$

Отже, дійсно, $g \in C_{unif}([a,b])$. Тому за Th. Кантора, $g \in C([a,b])$

Theorem 2.6.2 Теорема Барроу

Задано $f \in D([a,b])$, а також $f \in C([a,b])$. Тоді g - диференційована та g'(x) = f(x)

Proof.

Доведімо, що
$$\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = f(x)$$
, тобто $\forall \varepsilon > 0 : \exists \delta : \forall \Delta x : |\Delta x| < \delta \Rightarrow \left| \frac{g(x + \Delta x) - g(x)}{\Delta x} - f(x) \right| < \varepsilon$

Маємо:

$$\frac{g(x + \Delta x) - g(x)}{\Delta x} = \frac{1}{\Delta x} \left(\int_{a}^{x + \Delta x} f(t) dt - \int_{a}^{x} f(t) dt \right) = \frac{1}{\Delta x} \int_{x}^{x + \Delta x} f(t) dt$$
$$f(x) = \frac{f(x)}{\Delta x} \Delta x = \frac{f(x)}{\Delta x} \int_{x}^{x + \Delta x} dt = \frac{1}{\Delta x} \int_{x}^{x + \Delta x} f(x) dt$$

Отже, тоді:

$$\left| \frac{g(x + \Delta x) - g(x)}{\Delta x} - f(x) \right| = \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} f(t) dt - \int_{x}^{x + \Delta x} f(x) dt = \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} f(t) - f(x) dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t) - f(x)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x} |f(t)| dt \le \frac{1}{|\Delta x|} \int_{x}^{x + \Delta x}$$

По-перше, аналогічні міркування як попереднього разу, чому залишився зовнішній модуль

По-друге, ми маємо, що $f \in C([a,b])$, тому $f \in C_{unif}([a,b])$, отже,

 $\forall \varepsilon > 0 : \exists \delta : \forall x_1, x_2 : |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$

Зафіксую такі δ , щоб $|\Delta x| < \delta$

Тоді $\forall t \in [x,x+\Delta x]$ або $[x+\Delta,x]:|t-x|<|\Delta x|<\delta \Rightarrow |f(t)-f(x)|<\varepsilon$

$$\leq \frac{1}{|\Delta x|} \int_{x}^{x+\Delta x} \varepsilon \, dt = \frac{|x+\Delta x-x|}{|\Delta x|} \varepsilon = \varepsilon$$

Таким чином, $\lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} = g'(x) = f(x)$

Corollary 2.6.3 Функція $g(x) = F(x) = \int\limits_a^x f(t)\,dt$, тобто вона є первісною функції f(x)

Corollary 2.6.4 Теорема Ньютона-Лейбніца

Задана функція $f \in C([a,b])$. Нехай Φ - інша первісна для функції f.

Тоді
$$\int_a^b f(x) dx = \Phi(b) - \Phi(a) = \Phi(x) \Big|_a^b$$

Proof.

Відомо, що
$$F(x) = \int\limits_{-b}^{b} f(t)\,dt$$
 - первісна f

Також Φ - первісна f. Отже, за наслідком теореми Лагранжа,

$$F(x) = \Phi(x) + C \Rightarrow \Phi(x) = F(x) - C$$

$$\Phi(a) = F(a) - C = -C$$

$$\Phi(b) = F(b) - C$$

$$\Rightarrow \Phi(b) - \Phi(a) = F(b) = \int_{a}^{b} f(x) \, dx \blacksquare$$

Методи обчислення визначеного інтегралу 2.7

2.7.1Частинами

Ми вже з'ясували, що справедлива така формула:

$$\int u(x)v'(x)\,dx=u(x)v(x)-\int u'(x)v(x)\,dx$$
 Тобто первісна для функції $\varphi(x)=u(x)v'(x)$ - це є

$$\Phi(x) = u(x)v(x) - \int u'(x)v(x) dx$$

А тепер спробуємо знайти, чому дорівнює $\int u(x)v'(x)\,dx$

За формулою Ньютона-Лейбніца отримаємо:

$$\int_{a}^{b} u(x)v'(x) dx = \int_{a}^{b} \varphi(x) dx = \Phi(x)|_{a}^{b} = \Phi(b) - \Phi(a) =$$

$$= u(b)v(b) - \int u'(x)v(x) dx|_{x=b} - \left(u(a)v(a) - \int u'(x)v(x) dx|_{x=a}\right) =$$

$$= u(x)v(x)|_{a}^{b} - \int_{a}^{b} u'(x)v(x) dx$$

Скорочена версія формули:

$$\int_{a}^{b} u \, dv = uv|_{a}^{b} - \int_{a}^{b} v \, du$$

2.7.2 Заміна

$$\int_a^b f(x) \, dx =$$

Заміна: x=g(t), причому функція g(t) - монотонна!

Тоді dx = g'(t) dt

Також t = h(x) - зворотня функція

Границі інтегрування зміняться:

Ось тепер пішли приклади

Example 2.7.1 Обчислити інтеграли нижче

1.
$$\int_{1/\sqrt{3}}^{\sqrt{3}} \frac{dx}{1+x^2} = \arctan \left| \frac{1}{1/\sqrt{3}} \right| = \frac{\pi}{3} - \frac{\pi}{6} = \frac{\pi}{6}$$

2.
$$\int_{1/e}^{e} |\ln x| \, dx = \int_{1/e}^{1} -\ln x \, dx + \int_{1}^{e} \ln x \, dx = 0$$

В двох випадках інтегруємо частинами, якщо $u=\ln x$ та dv=dx

3.
$$\int_{0}^{3} x \sqrt[3]{1 - x^3} \, dx =$$
3amina: $x = \sin t$

$$\begin{array}{c|c} x & t \\ \hline 0 & 0 \\ 3 & ?! \end{array}$$

Насправді, така заміна не спрацює через невизначеність $\sin t = x = 3$. Тому або ми шукаємо ішні заміни, або плачемо та чекаємо на інші методи Тут спрацює заміна: $1 - x^3 = t^3$ (див. підстановки Чебишова) $t = \sqrt[3]{1 - x^3}$

$$\begin{array}{c|cc}
x & t \\
\hline
0 & 1 \\
3 & -\sqrt[3]{26}
\end{array}$$

Ну а далі, думаю, порахуєте. Вам не раджу, бо числа тут божевільні. Це був просто приклад, як робити заміни

Example 2.7.2 Маємо функцію
$$f(x) = \int\limits_{x^2}^{x^3} \frac{dt}{\sqrt{1+t^4}}$$
. Знайти похідну цієї

функції

За формулою Ньютона-Лейбніца, отримаємо:

$$f(x) = \int_{x^2}^{x^3} \frac{dt}{\sqrt{1+t^4}} dt = F(t) \Big|_{x^2}^{x^3} = F(x^3) - F(x^2)$$

$$f'(x) = F'(x^3)3x^2 - F(x^2)2x = \frac{3x^2}{\sqrt{1+x^{12}}} - \frac{2x}{\sqrt{1+x^8}}$$

2.8 Функції множин

Definition 2.8.1 Задано множину A (в нашому випадку) та сім'ю всіх підмножин $\mathfrak{A}(A)$

Функцією множин називають відображення $\mathrm{I}:\mathfrak{A}(A)\to\mathbb{R},$ для якого виконуються властивості

$$\forall B_1, B_2 \in \mathfrak{A}(A) : B_1 \cap B_2 = \emptyset : I(B_1 \cup B_2) = I(B_1) + I(B_2)$$

 $I(\emptyset) = 0$

Example 2.8.2 Розглянемо такі функції множин

 $\mathrm{I}(A)=L(A)$ - в залежності від множини отримуємо довжину

$$\mathrm{I}(A) = \int\limits_A f(x)\,dx$$
 - в залежності від множини отримуємо значення інтегралу

Властивості адитивності та $I(\emptyset) = 0$ перевірити самостійно

Remark 2.8.3 Множини із сім'ї $\mathfrak{A}(A)$ мають такі властивості:

 $\forall B_1, B_2 \in \mathfrak{A}(A) :$

- $-B_1 \cup B_2 \in \mathfrak{A}(A)$
- $-B_1 \cap B_2 \in \mathfrak{A}(A)$
- $-B_1 \setminus B_2 \in \mathfrak{A}(A)$
- $-A \setminus B_2 \in \mathfrak{A}(A)$
- $\emptyset \in \mathfrak{A}(A)$

Theorem 2.8.4 Теорема Радона-Никодима

Задана функція множин $I:\mathfrak{A}(A)\to\mathbb{R}$. Відомо, що існує така $f\in D(A)$, ЩО

$$orall B\in \mathfrak{A}(A): \inf_{x\in B}f(x)\cdot L(B)\leq \mathrm{I}(B)\leq \sup_{x\in B}f(x)\cdot L(B)$$
 Тоді $\mathrm{I}(A)=\int\limits_Af(x)\,dx$

Proof.

Оскільки $f \in D(A)$, то $\exists \{p_n(x), n \geq 1\} : ||f - p_n|| \stackrel{n \to \infty}{\longrightarrow} 0$

Отримуємо, що $\forall \varepsilon > 0 : \exists N : \forall n \geq N : ||f - p_n|| < \varepsilon$

Тобто $\forall x \in A : |f(x) - p_n(x)| < \varepsilon$

Така нерівність цікавить лише для n = N, тоді

$$\forall \varepsilon > 0 : \forall x \in A : -\varepsilon + p_N(x) < f(x) < \varepsilon + p_N(x)$$

Оскільки
$$p_N$$
 - проста, то $p_N(x)=\sum_{j=1}^m c_{N,j}\mathbb{1}_{E_{N,j}}(x)$, причому $\bigcup_{j=1}^m E_{N,j}=A$

Звідси маємо, що $\forall E_{N,j} : \forall x \in E_{N,j} : -\varepsilon + c_{N,j} < f(x) < \varepsilon + c_{N,j}$

Повернімось до нерівності з умови теореми. Маємо:

$$(-\varepsilon + c_{N,j}) \cdot L(E_{N,j}) \le \inf_{x \in E_{N,j}} f(x) \cdot L(E_{N,j}) \le I(E_{N,j}) =$$

$$= I(E_{N,j}) \le \sup_{x \in E_{N,j}} f(x) \cdot L(E_{N,j}) \le (\varepsilon + c_{N,j}) \cdot L(E_{N,j})$$

$$\Rightarrow (-\varepsilon + c_{N,j}) \cdot L(E_{N,j}) \leq I(E_{N,j}) \leq (\varepsilon + c_{N,j}) \cdot L(E_{N,j})$$
 Просумуємо ці рівності по $j = 1, 2, \ldots, m$, отримаємо:

$$\sum_{j=1}^{m} (-\varepsilon + c_{N,j}) \cdot L(E_{N,j}) \le \sum_{j=1}^{m} I(E_{N,j}) \le \sum_{j=1}^{m} (-\varepsilon + c_{N,j}) \cdot L(E_{N,j})$$

Розгляньмо кожну частину:

$$\sum_{j=1}^{m} (-\varepsilon + c_{N,j}) \cdot L(E_{N,j}) = -\varepsilon \sum_{j=1}^{m} L(E_{N,j}) + \sum_{j=1}^{m} c_{N,j} L(E_{N,j}) =$$

$$= -\varepsilon L(A) + \int_{A} p_N(x) \, dx$$

$$\sum_{j=1}^{m} I(E_{N,j}) = I\left(\bigcup_{j=1}^{m} E_{N,j}\right) = I(A)$$

$$\sum_{j=1}^{m} (\varepsilon + c_{N,j}) \cdot L(E_{N,j}) = \varepsilon \sum_{j=1}^{m} L(E_{N,j}) + \sum_{j=1}^{m} c_{N,j} L(E_{N,j}) =$$

$$= \varepsilon L(A) + \int_{\Gamma} p_N(x) \, dx$$

Отримаємо таку нерівність:

$$-\varepsilon L(A) + \int_{A} p_{N}(x) dx \le I(A) \le \varepsilon L(A) + \int_{A} p_{N}(x) dx$$

Водночас в нас була нерівність:

$$-\varepsilon + f(x) < p_N(x) < \varepsilon + f(x)$$

Використаємо її:

$$\int_{A} p_{N}(x) dx > \int_{A} (-\varepsilon + f(x)) dx = -\varepsilon L(A) + \int_{A} f(x) dx$$

$$\int_{A} p_{N}(x) dx < \int_{A} (\varepsilon + f(x)) dx = \varepsilon L(A) + \int_{A} f(x) dx$$

Враховуючи щойно отримані нерівності, отримаємо:

$$-2\varepsilon L(A) + \int_{A} f(x) dx < I(A) < 2\varepsilon L(A) + \int_{A} f(x) dx$$

$$\Rightarrow \left| \mathrm{I}(A) - \int\limits_A f(x) \, dx \right| < 2 \varepsilon L(A)$$
. I це виконується $\forall \varepsilon > 0$

Таким чином, отримаємо, що
$$I(A) = \int_A f(x) dx$$

2.9 Квадровані множини

Маємо якісь фігури A, B

Спочатку би з'ясувати, що таке **площа**. Це - міра, позначаємо літерою S. І ми будемо ґрунтуватись на таких властивостях:

- $-S(A) \ge 0$
- S(A+B)=S(A)+S(B), якщо $A\cap B=\emptyset$
- S(I) = 1, де I квадрат одиничної довжини

Залишу ще одну річ, що виводиться із цих властивостей

-
$$S(A) \leq S(B)$$
, якщо $A \subset B$

ГБ такого не давав, проте краще підкреслю для кращого розуміння, що тут відбувається

Тепер задамо $X=[a,b]\times [a,b]\in \mathbb{R}^2$ - квадрат на площині. Зафіксуємо деяку множину $A\subset X$

Definition 2.9.1 Зовіншьною площею множини A називають таке

число

$$S^*(A) = \inf_{\substack{A_k - \text{прямокутники в } X \\ \cup A_k \supset A}} S\left(\bigcup_{k=1}^n A_k\right)$$

Definition 2.9.2 Внутрішньою площею множини A називають таке число

$$S_*(A) = \sup_{\substack{B_j - \text{прямокутники в } X \ \cup B_j \subset A}} S\left(\bigcup_{j=1}^m B_j\right)$$

Ліворуч - зовнішня площа. Праворуч - внутрішня площа Не обов'язково розбивати саме на квадрати, це для простоти

Remark 2.9.3 Трохи поясню сенс цих формул

Внутрішня площа $S_*(A)$ дорівнює супремуму всіх можливих варіантів знаходження внутрішніх площ. Ми можемо мати один величезний прямокутник, що охоплює внутрішню частину площі фігури A (що дає неякісний результат), а можемо розбити на багато прямокутників та просумувати їх (вже хороший результат)

Так само й для зовнішньої площі, але вже інфімумом

Definition 2.9.4 Множина A називається **квадрованою**, якщо

$$S^*(A) = S_*(A) = S(A)$$

де S(A) - площа квадрованої множини A

Definition 2.9.5 Задамо площу границі множини A таким чином

$$\partial A = S^*(A) - S_*(A)$$

Theorem 2.9.6 Критерій квадрованості

Множина A - квадрована $\iff \partial A = 0$

Proposition 2.9.7 Властивості

Задані A, B - квадровані множини. Тоді: - $X, \emptyset, A \cup B, A \cap B, A \setminus B$ - квадровані

Proof.

Про X

Із самого початку ми задавали це як квадрат. Зрозуміло, що квадрат - квадрована множина, бо ми можемо площу обчислити

Про
$$\emptyset$$
 $S(\emptyset)=S(\emptyset\cup\emptyset)=S(\emptyset)+S(\emptyset)\Rightarrow S(\emptyset)=0$ Отже, \emptyset - квадрована, бо обчислена площа

Для решти випадків намалюйте зараз дві різні фігури A, B на папірі, щоб вони перетинались, щоб зробити три зауваження

Про
$$A \cup B$$

Зауважимо, що
$$\partial(A\cup B)\leq \partial A+\partial B=0+0=0$$

Тоді $0\leq \partial(A\cup B)\leq 0\Rightarrow \partial(A\cup B)=0$
Тоді $A\cup B$ - квадрована

Про
$$A\cap B$$

Зауважимо, що $\partial(A\cap B)\leq \partial A+\partial B=0+0=0$
Тоді $0\leq \partial(A\cap B)\leq 0\Rightarrow \partial(A\setminus B)=0$
Тоді $A\cap B$ - квадрована

Про
$$A\setminus B$$

Зауважимо, що $\partial(A\setminus B)\leq \partial A+\partial B=0+0=0$
Тоді $0\leq \partial(A\setminus B)\leq 0\Rightarrow \partial(A\setminus B)=0$
Тоді $A\setminus B$ - квадрована

2.10 Застосування визначених інтегралів

2.10.1 Площа криволінійної трапеції

Надалі в нас задана функція $f \in C([a,b])$ та $\forall x \in [a,b]: f(x) \geq 0$

Definition 2.10.1 Криволінійною трапецією називають множину на

площині

$$Tr(f, [a, b]) = \{(x, y) : x \in [a, b], 0 \le y \le f(x)\}$$

Покажімо, що криволінійна трапеція - квадрована

Розіб'ємо [a,b] так, щоб $a=c_0 < c_1 < c_2 < \cdots < c_{n-1} < c_n = b$ та довжина кожного відрізку була рівна $\frac{b-a}{n}$

Маємо, що $f \in C([a,b])$, тоді $\forall j = \overline{1,n} : f \in C([c_{j-1},c_j])$ Отже, за Th. Вейєрштрасса, $\forall j = \overline{1,n} : \exists x_{j*}, x_j^* \in [c_{j-1},c_j] : f(x_{j*}) = \inf_{x \in [c_{j-1},c_j]} f(x)$ $f(x_j^*) = \sup_{x \in [c_{j-1},c_j]} f(x)$

$$f(x_{j*}) = \inf_{x \in [c_{j-1}, c_j]} f(x) \qquad f(x_j^*) = \sup_{x \in [c_{j-1}, c_j]} f(x)$$

Створімо дві послідовності простих функцій:

$$p_n(x) = \sum_{j=1}^n f(x_{j*}) \mathbb{1}_{[c_{j-1}, c_j]}(x) \qquad q_n(x) = \sum_{j=1}^n f(x_j^*) \mathbb{1}_{[c_{j-1}, c_j]}(x)$$

На малюнку маємо криволінійні трапеції $Tr(p_n, [a, b]), Tr(q_n, [a, b])$. Вони є квадрованими, оскільки можемо знайти площу як суму прямокутників. Зауважимо також, що

 $Tr(p_n, [a, b]) \subset Tr(f, [a, b]) \subset Tr(q_n, [a, b])$

Для p_n, q_n справедливі нерівності:

$$S(Tr(p_n, [a, b])) \le S_*(Tr(f, [a, b]))$$
(*)

$$S(Tr(q_n, [a, b])) \ge S^*(Tr(f, [a, b]))$$

Повернімось до умови, що $f \in C([a,b])$, тоді $f \in C_{unif}([a,b])$, тобто

$$\forall \varepsilon > 0 : \exists \delta : \forall x_1, x_2 \in [a, b] : |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \frac{\varepsilon}{b - a}$$

Ми можемо завжди знайти такий номер N, щоб $\frac{b-a}{N} < \delta$, а отже

$$\exists N : \forall n \geq N : \frac{b-a}{n} < \delta \Rightarrow$$
 для $x_1 = x_{j*}, x_2 = x_j^*, x_1, x_2 \in [c_{j-1}, c_j] :$
 $|x_j^* - x_{j*}| < \frac{b-a}{n} \Rightarrow |f(x_j^*) - f(x_{j*})| < \frac{\varepsilon}{b-a}$

А тому маємо:

$$|S(Tr(q_{n}, [a, b])) - S(Tr(p_{n}, [a, b]))| = \left| \sum_{j=1}^{n} f(x_{j}^{*}) L([c_{j-1}, c_{j}]) - \sum_{j=1}^{n} f(x_{j*}) L([c_{j-1}, c_{j}]) \right|$$

$$= \left| \sum_{j=1}^{n} (f(x_{j}^{*}) - f(x_{j*}))(c_{j-1} - c_{j}) \right| \leq \left| \sum_{j=1}^{n} (f(x_{j}^{*}) - f(x_{j*})) \frac{b - a}{n} \right| =$$

$$= \frac{b - a}{n} \left| \sum_{j=1}^{n} f(x_{j}^{*}) - f(x_{j*}) \right| \leq \frac{b - a}{n} \sum_{j=1}^{n} |f(x_{j}^{*}) - f(x_{j*})| < \frac{b - a}{n} \sum_{j=1}^{n} \frac{\varepsilon}{b - a} =$$

$$= \frac{b - a}{n} \cdot n \frac{\varepsilon}{b - a} = \varepsilon$$

Це свідчить про те, що $S(Tr(q_n,[a,b])) - S(Tr(p_n,[a,b])) \to 0, n \to \infty$ Використовуючи нерівності (*) та граничну теорему про двох поліцаїв, отримаємо:

$$0 \leq |S^*(Tr(f,[a,b])) - S_*(Tr(f,[a,b]))| \leq$$
 $\leq |S(Tr(q_n,[a,b])) - S(Tr(p_n,[a,b]))| \to 0, n \to \infty$ Таким чином, $S^*(Tr(f,[a,b])) = S_*(Tr(f,[a,b])) = S(Tr(f,[a,b]))$ А це означає, що $Tr(f,[a,b])$) - квадрована множина

Залишається знайти площу цієї криволінійної трапеції

Оскільки $f \in C([a,b])$, то $f \in D([a,b])$, а тепер доведімо, що послідовності $\{p_n, n \ge 1\}, \{q_n, n \ge 1\}$ нас влаштують в якості існування, тобто доводимо $||f-p_n|| \to 0, ||f-q_n|| \to 0, n \to \infty$

Маємо,
$$\forall \varepsilon > 0 : \exists \delta : \forall x \in [a, b] \Rightarrow \forall x \in [c_{j-1}, c_j] : \begin{cases} |x - x_{*j}| < \delta \\ |x - x_j^*| < \delta \end{cases} \Rightarrow \begin{cases} |f(x) - f(x_{j*})| < \frac{\varepsilon}{b - a} \\ |f(x) - f(x^*)| < \frac{\varepsilon}{b - a} \end{cases} \Rightarrow \begin{cases} \sup_{x \in [a, b]} |f(x) - p_n(x)| < \frac{\varepsilon}{b - a} \\ \sup_{x \in [a, b]} |f(x) - q_n(x)| < \frac{\varepsilon}{b - a} \end{cases}$$

Таким чином, дійсно, $||f - p_n|| \to 0, ||f - q_n|| \to 0$

Більш того, під час доведення квадрованості, отримали

$$\lim_{n\to\infty} S(Tr(p_n,[a,b])) = \lim_{n\to\infty} S(Tr(q_n,[a,b])) = S(Tr(f,[a,b])).$$
 Тоді остаточно:

$$S(Tr(f, [a, b])) = \lim_{n \to \infty} S(Tr(q_n, [a, b])) = \lim_{n \to \infty} \sum_{j=1}^{n} f(x_j^*) L([c_{j-1} - c_j]) =$$

$$= \lim_{n \to \infty} \int_{[a,b]} q_n(x) dx = \int_{[a,b]} f(x) dx$$

Підсумуємо

Theorem 2.10.2 Криволінійна трапеція Tr(f, [a, b]) є квадрованою, а її плоша

$$S(Tr(f, [a, b])) = \int_{a}^{b} f(x) dx$$

А тепер спробуємо узагальнити випадок. Нехай $f,g \in C([a,b])$ - не обов'язково додатні. Задамо **криволінійну трапецію між двома функціями**

$$Tr(f, g, [a, b]) = \{(x, y) : x \in [a, b] : g(x) \le y \le f(x)\}$$

Оскільки $f,g\in C([a,b])$, то за Th. Вейєрштрасса, $\exists c: \forall x\in [a,b]: c\leq g(x)\leq f(x)\Rightarrow f(x)-c\geq g(x)-c\geq 0$ Із природніх міркувань властивостей площі випливає, що S(Tr(f,g,[a,b]))=S(Tr(f-c,g-c,[a,b]))

Водночас $Tr(f - c, g - c, [a, b]) = Tr(f - c, [a, b]) \setminus Tr(g - c, [a, b])$

Тоді
$$S(Tr(f-c,g-c,[a,b])) = S(Tr(f-c,[a,b])) - S(Tr(g-c,[a,b])) = \int_a^b (f(x)-c)\,dx - \int_a^b (g(x)-c)\,dx = \int_a^b f(x)-g(x)\,dx$$

Підсумуємо ще раз

Theorem 2.10.3 Криволінійна трапеція Tr(f, g, [a, b]) є квадрованою, а її площа

$$S(Tr(f, g, [a, b])) = \int_{a}^{b} f(x) - g(x) dx$$

Example 2.10.4 Знайти площу фігури, що замкнена між $y=0,\,x=\frac{\pi}{3}$ та $y=\sin x$

Маємо таку криволінійну трапецію

Обчислимо її площу

$$S = \int_0^{\pi/3} \sin x \, dx = -\cos x \Big|_0^{\pi/3} = -\cos \frac{\pi}{3} + \cos 0 = \frac{1}{2}$$

2.10.2 Площа криволінійного сектора

Надалі в нас задана полярна система координа і функція $\rho = \rho(\varphi) \in C([\alpha,\beta])$

Definition 2.10.5 Криволінійним сектором називають множину на площині

$$Sec(\rho, [\alpha, \beta]) = \{ (\varphi, \rho) : \varphi \in [\alpha, \beta], 0 \le \rho \le \rho(\varphi) \}$$

Показувати не будемо, що криволінійний сектор - квадрована Але тут квадрованість доводиться наближенням вписаних та описаних трикутників

Обчислюймо площу сектору

Розіб'ємо кутовий проміжок $\alpha=\varphi_0<\varphi_1<\varphi_2<\dots<\varphi_{n-1}<\varphi_n=\beta$ Впишемо та опишемо кругові сектори на кожному проміжку $[\varphi_{j-1},\varphi_j],$ $j=\overline{1,n}.$ Нагадаю площу сектора

$$S_{sec} = \frac{1}{2}R^2\tau$$

Оскільки $\rho \in C([\alpha, \beta], \text{ то } \rho \in C([\varphi_{j-1}, \varphi_j]), \text{ тоді за Th. Вейєрштрасса,}$ маємо:

$$\rho(\varphi_j^*) = \sup_{\varphi \in [\varphi_{j-1}, \varphi_j]} \rho(\varphi) \qquad \qquad \rho(\varphi_{j*}) = \inf_{\varphi \in [\varphi_{j-1}, \varphi_j]} \rho(\varphi)$$

Сектори $Sec(\rho(\varphi_{j*}), [\varphi_{j-1}, \varphi_j]), Sec(\rho(\varphi_j^*), [\varphi_{j-1}, \varphi_j])$ мають таке співвідношення $Sec(\rho(\varphi_{j*}), [\varphi_{j-1}, \varphi_j]) \subset Sec(\rho, [\varphi_{j-1}, \varphi_j]) \subset Sec(\rho(\varphi_j^*), [\varphi_{j-1}, \varphi_j])$

Тоді

$$S(Sec(\rho(\varphi_{j*}), [\varphi_{j-1}, \varphi_j])) \le S(Sec(\rho, [\varphi_{j-1}, \varphi_j])) \le (Sec(\rho(\varphi_j^*), [\varphi_{j-1}, \varphi_j]))$$
 Причому

$$S(Sec(\rho(\varphi_{j*}), [\varphi_{j-1}, \varphi_{j}])) = \frac{1}{2}\rho^{2}(\varphi_{j*})(\varphi_{j} - \varphi_{j-1}) =$$

$$= \frac{1}{2} \sup_{\varphi \in [\varphi_{j-1}, \varphi_{j}]} \rho^{2}(\varphi)(\varphi_{j} - \varphi_{j-1})$$

$$S(Sec(\rho(\varphi_{j}^{*}), [\varphi_{j-1}, \varphi_{j}])) = \frac{1}{2}\rho^{2}(\varphi_{j}^{*})(\varphi_{j} - \varphi_{j-1}) =$$

$$S(Sec(\rho(\varphi_j), [\varphi_{j-1}, \varphi_j])) = \frac{1}{2}\rho^2(\varphi_j)(\varphi_j - \varphi_{j-1})$$

$$= \frac{1}{2} \inf_{\varphi \in [\varphi_{j-1}, \varphi_j]} \rho^2(\varphi)(\varphi_j - \varphi_{j-1})$$
Тоді

$$\frac{1}{2} \inf_{\varphi \in [\varphi_{j-1}, \varphi_j]} \rho^2(\varphi)(\varphi_j - \varphi_{j-1}) \le S(Sec(\rho, [\varphi_j, \varphi_{j-1}])) \le
\le \frac{1}{2} \sup_{\varphi \in [\varphi_{j-1}, \varphi_j]} \rho^2(\varphi)(\varphi_j - \varphi_{j-1})$$

Площа сектору - адитивна. Тоді за Th. Радона-Никодима, маємо:

$$S(Sec(\rho, [a, b])) = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\varphi) d\varphi$$

Підсумуємо

Theorem 2.10.6 Криволінійний сектор $Sec(\rho, [a, b])$ є квадрованою (залишаємо це фактом), а її площа

$$S(Sec(\rho, [a, b])) = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\varphi) d\varphi$$

Example 2.10.7 Знайдемо площу фігури, що задається таким рівнянням:

$$(x^2 + y^2)^2 = 2xy$$

Варто перейти до полярок, тому $x = \rho \cos \varphi$, $y = \rho \sin \varphi$

$$\Rightarrow \rho^4 = 2\rho^2 \cos\varphi \sin\varphi$$

$$\Rightarrow \rho = \sqrt{\sin 2\varphi}$$

I чверть намальована кутами $\varphi \in \left[0, \frac{\pi}{2}\right]$, IV чверть - кутами $\varphi \in \left[\pi, \frac{3\pi}{2}\right]$

Оскільки ці два шмата симетричні, то я порахую площу однієї і помножу на два

$$S_I = rac{1}{2} \int_0^{\pi/2} (\sqrt{\sin 2\varphi})^2 \, d\varphi = rac{1}{2} \int_0^{\pi/2} \sin 2\varphi \, d\varphi = -rac{1}{4} \cos 2\varphi \Big|_0^{\pi/2} = rac{1}{4}$$
 Отже, $S = 2S_I = rac{1}{2}$

Example 2.10.8 Знайти площу еліпса, що задана канонічним рівнянням $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$a^{2}$$
 b^{2} Полярочка: $x = \rho \cos \varphi$, $y = \rho \sin \varphi$ $\frac{\rho^{2} \cos^{2} \varphi}{a^{2}} + \frac{\rho^{2} \sin^{2} \varphi}{b^{2}} = 1$ $\rho^{2} = \frac{a^{2}b^{2}}{b^{2} \cos^{2} \varphi + a^{2} \sin^{2} \varphi}$ Тоді площа еліпса

$$\rho^2 = \frac{a^2b^2}{b^2\cos^2\varphi + a^2\sin^2\varphi}$$

$$S = \frac{1}{2} \int_0^{2\pi} \frac{a^2 b^2}{b^2 \cos^2 \varphi + a^2 \sin^2 \varphi} \, d\varphi = \frac{\text{спробуйте самі } (0)}{\sin^2 \varphi} = \pi ab$$

Довжина кривої 2.10.3

Задамо криву γ - можна одним із способів:

В просторі \mathbb{R}^2

- 1) $\gamma:\{(x,y):x\in [a,b],y=f(x)\}$ явна крива
- 2) $\gamma : \{(x,y) : F(x,y) = 0\}$ неявна крива
- 3) $\gamma: \{(x,y): x=x(t), y=y(t), t\in [a,b]\}$ параметрична крива
- 4) $\gamma:\{(\varphi,\rho):\varphi\in[\alpha,\beta],\rho=\rho(\varphi)\}$ крива в полярних координатах 5) $\gamma:\{(x,y,z):x=x(t),y=y(t),z=z(t),t\in[a,b]\}$ параметрична

Представимо, що маємо криву γ . По-перше зробимо розбиття відрізка [a,b]

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} = x_n = b$$

По-друге, з'єднаємо точки кривої γ послідовно **ламаною**, які будуть вписаними в криву γ

Definition 2.10.9 Криву γ будемо називати **спрямованою**, якщо множина довжин вписаних в неї ламаних буде обмеженою. А **довжиною** спрямованої кривої називають точну верхню межу довжин вписаних в неї ламаних

Розглянемо функцію $y = f(x), x \in [a, b]$ та f - диференційована Знайдемо довжину кривої на [a, b]. Розглянемо ламану на $[x_1, x_2]$

За Тh. Лагражна,
$$\exists c_{1,2} \in (x_1, x_2) : f'(c_{1,2}) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Рівняння частини ламаної має вигляд:

$$y = \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1) + f(x_1)$$

Довжина відрізку:

$$l_{(x_1,x_2)} = \sqrt{(x_2 - x_1)^2 + (f(x_2) - f(x_1))^2} = (x_2 - x_1)\sqrt{1 + \left(\frac{f(x_2) - f(x_1)}{x_2 - x_1}\right)^2} =$$

$$= (x_2 - x_1)\sqrt{1 + (f'(c_{1,2}))^2}$$

Тоді сумарна довжина дорівнює

$$l_{[a,b]} = \sum_{j=1}^{n} \sqrt{1 + (f'(c_{j-1,j}))^2} (x_j - x_{j-1})$$

Оскільки f - диференційована, $f \in C([a,b])$, тоді f - обмежена, тобто $\exists M: \sqrt{1+(f'(x))^2} \leq M$

Отже,
$$l \leq \sum_{j=1}^n M(x_j - x_{j-1}) = M(b-a)$$
 - свідчить про спрямованість кривої

Перед тим як знаходити довжину кривої γ , що задана y=f(x), спробуємо виконати це для параметрично заданої функції

$$\gamma: \begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}$$

Довжина кривої $l_{[\alpha,\beta]}, [\alpha,\beta] \subset [a,b]$ - це довжина шляху за час $\beta-\alpha$.

Тоді з фізичних міркувань (привіт, Калита)

$$|\vec{v}|_{\min}(\beta - \alpha) \le l_{[\alpha,\beta]} \le |\vec{v}|_{\max}(\beta - \alpha)$$

А швидкість $\vec{v} = (x'(t), y'(t), z'(t))$, тоді $|\vec{v}(t)| = \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2}$

Тоді маємо:
$$\inf_{t\in [\alpha,\beta]} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} (\beta-\alpha) \le l_{[\alpha,\beta]} \le$$

$$\leq \sup_{t \in [\alpha,\beta]} \sqrt{(x'(t))^2 + (y'(t))^2 + (z'(t))^2} (\beta - \alpha)$$

А оскільки довжина - адитивна величина, то за Th. Радона-Никодима:

$$l_{\gamma} = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2} + (z'(t))^{2}} dt$$

Для
$$\gamma: \begin{cases} x=x(t) \\ y=y(t) \end{cases}$$
 таке саме рівняння

$$l_{\gamma} = \int_{a}^{b} \sqrt{(x'(t))^{2} + (y'(t))^{2}} dt$$

Повернімось до $\gamma: y = f(x)$

Такий тип еквівалентний параметричному рівнянню

$$egin{cases} x=t \ y=f(t) \end{cases}, t\in[a,b]$$
 Тоді $egin{cases} x'=1 \ y'=f'(t) \end{cases}$, а отже, $l_j=\int\limits_a^b \sqrt{1+(f'(t))^2}\,dt$

Залишилось розглянути випадок $\rho = \rho(\varphi), \varphi \in [\varphi_1, \varphi_2]$

Зв'язок між поляркою та декарткою задається такою системою

$$\begin{cases} x = \rho \cos \varphi \\ y = \rho \sin \varphi \end{cases}$$

Таким чином, ми маємо криву
$$\gamma$$
 :
$$\begin{cases} x(\varphi) = \rho \cos \varphi \\ y(\varphi) = \rho \sin \varphi \end{cases}$$

$$x'(\varphi) = \rho' \cos \varphi - \rho \sin \varphi$$

$$y'(\varphi) = \rho' \sin \varphi + \rho \cos \varphi$$

$$\Rightarrow (x')^2 + (y')^2 + \dots = \rho^2 + (\rho')^2$$

Отже, отримали таку формулу:

$$l_{\gamma} = \int_{\varphi_1}^{\varphi_2} \sqrt{(\rho(\varphi))^2 + (\rho'(\varphi))^2} \, d\varphi$$

Example 2.10.10 Знайти довжину кривої, що задана функцією

$$y = \sqrt{2x - x^2} - 1$$
 на проміжку $\left[\frac{1}{4}, 1\right]$

Знайдемо спочатку похідну цієї функції

$$y' = \frac{1}{2\sqrt{2x - x^2}} \cdot (2 - 2x) \Rightarrow (y')^2 = \frac{(1 - x)^2}{2x - x^2}$$

Тепер можна шукати довжину

$$l = \int_{1/4}^{1} \sqrt{1 + \frac{(1-x)^2}{2x - x^2}} \, dx = \int_{1/4}^{1} \frac{dx}{\sqrt{2x - x^2}} = \int_{1/4}^{1} \frac{dx}{\sqrt{1 - (x-1)^2}} = \arcsin(x-1) \Big|_{1/4}^{1} = \arcsin\frac{3}{4}$$

2.10.4 Об'єм фігури обертання

Зафіксуємо деяку множину $A\subset\mathbb{R}^3$

Definition 2.10.11 Зовіншім об'ємом множини A називають таке число

$$V^*(A) = \inf V$$
 (об'єднання описаних паралелепіпедів)

Definition 2.10.12 Внутрішньою площею множини A називають таке число

$$V_*(A) = \sup V(\text{об'єднання вписаних паралелепіпедів})$$

Definition 2.10.13 Множина A називається **кубованою**, якщо

$$V^*(A) = V_*(A) = V(A)$$

де V(A) - об'єм кубованої множини V

Theorem 2.10.14 Критерій кубованості

Множина
$$A$$
 - кубована $\iff V(\partial A) = 0$

Де
$$\partial A = V^*(A) - V_*(A)$$
 - границя множини A

Усі доведення є аналогічні з квадрованими множинами

А тепер задамо функцію $y = f(x), x \in [a, b]$ та $f \in C^1([a, b])$ Функція f(x) та вісь OX обмежують деяку фігуру

Обернімо цю фігуру навколо осі OX - отримаємо **тіло обертання**, яке є кубованим

Доведення аналогічне з доведенням квадрованості криволінійної трапеції

Час знайти, як обчислити об'єм

 $\forall [\alpha,\beta] \subset [a,b]$: об'єм частини тіла обертання $V_{[\alpha,\beta]}$ задовільняє нерівності Нагадую, що $V_{\text{циліндр}}=\pi R^2 H$

$$V_{[\alpha,\beta]} \leq V_{\text{описаного циліндра}} = \pi \sup_{x \in [\alpha,\beta]} f^2(x) (\beta - \alpha)$$
 висота радіус квадрат

$$V_{[\alpha,\beta]} \geq V_{\text{вписаного циліндра}} = \pi \inf_{\substack{x \in [\alpha,\beta] \\ \text{радіус квадрат}}} f^2(x)(\beta - \alpha)$$

Ліворуч маємо частину тіла обертання. А тепер спробуйте візуалізувати циліндр, який охоплює це тіло, та цілиндр, який всередині тіла

Отже, за Th. Радона-Нікодима, отримаємо:

$$V_{[a,b]} = \pi \int_a^b f^2(x) dx$$

Можна також мати функцію $x=g(y),y\in [a,b].$ Така функція та вісь OY обмежує деяку фігуру

Якщо будемо фігуру обертати навколо OY, то отримаємо аналогічну формулу

$$V_{[a,b]} = \pi \int_a^b g^2(y) \, dy$$

Example 2.10.15 Обчислити об'єм тіла, що було отримано в результаті обертання $f(x) = \sin x, x \in [0, \pi]$ навколо OX

$$V = \pi \int_0^{\pi} \sin^2 x \, dx = \frac{\pi}{2} \int_0^{\pi} 1 - \cos 2x \, dx = \frac{\pi}{2} \left(x - \frac{1}{2} \sin 2x \right) \Big|_0^{\pi} = \frac{\pi^2}{2}$$

2.10.5 Об'єм фігури через площу поперечного перерізу

Задано A - кубована множина, для якої відомо, що $A\ni (x,y,z),\ z_1\le z\le z_2,\ A$ - обмежена $\forall z_0\in [z_1,z_2]:$ відома площа перетину множини A та площини $z=z_0,$ що дорівнює $S(z_0)$

 $\forall [z_3,z_4] \subset [z_1,z_2]:$

Проведемо площини z_3, z_4 - отримаємо площі $S(z_3), S(z_4)$ та деякий об'єм

$$V_{[z_3,z_4]}$$
, об'єм між цими площинами, що має таку оцінку: $V_{[z_3,z_4]} \leq V_{\text{циліндра 3 max площею перерізу}} = \sup_{\substack{z \in [z_3,z_4] \\ \text{площа основи}}} S(z) \cdot (z_4 - z_3)$ висота $V_{[z_3,z_4]} \geq V_{\text{циліндра 3 min площею перерізу}} = \inf_{\substack{z \in [z_3,z_4] \\ \text{площа основи}}} S(z) \cdot (z_4 - z_3)$ висота площа основи

Отже, за Th. Радона-Нікодима, отримаємо:

$$V_{[z_1, z_2]} = \int_{z_1}^{z_2} S(z) \, dz$$

Example 2.10.16 Знайти об'єм еліпсоїда, що задана канонічним рівнянням: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

Ми скоро знайдемо площу штрихованого еліпса, який можемо переміщати вздовж OZ

Якщо перетинати цей еліпсоїд площиною $z=z_0$, як це було в попередньому малюну, то всередині буде утворюватись еліпс, від якої ми можемо знайти площу

Перед цим необхідно знайти сам еліпс. Зробимо це таким чином

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 - \frac{z^2}{c^2}$$

$$\frac{x^2}{a^2 \left(1 - \frac{z^2}{c^2}\right)} + \frac{y^2}{b^2 \left(1 - \frac{z^2}{c^2}\right)} = 1$$

Отримали канонічне рівняння еліпса, який залежить від z

Сторони еліпса:
$$a_1(z) = a\sqrt{1 - \frac{z^2}{c^2}}, b_1(z) = b\sqrt{1 - \frac{z^2}{c^2}}$$

Площа еліпса:
$$S(z)=\pi a_1(z)b_1(z)=\pi ab\left(1-\frac{z^2}{c^2}\right)$$
 А тепер можемо й об'єм знайти
$$V=\int_{-c}^c\pi ab\left(1=\frac{z^2}{c^2}\right)\,dz=\pi ab\left(z-\frac{1}{c^2}\frac{z^3}{3}\right)\Big|_{-c}^c=\frac{4}{3}abc$$

3 Невласні інтеграли

3.1 Основні означення

Розглянемо три випадки:

I. Задана така функція $f:[a,+\infty)\to\mathbb{R}$, що $\forall b\in[a,+\infty):f\in D([a,b])$

Definition 3.1.1 Невласним інтегралом І роду називають такий вираз (якщо границя існує)

$$\int_{a}^{\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$$

Remark 3.1.2 Аналогічно визначається для $f:(-\infty,b]\to\mathbb{R}$

II. Задана така функція $f:[a,b) \to \mathbb{R},$ що $\forall \varepsilon>0: f \in D([a,b-\varepsilon])$

Definition 3.1.3 Невласним інтегралом II роду називають такий вираз (якщо границя існує)

$$\int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x) dx$$

Remark 3.1.4 Аналогічно визначається для $f:(a,b] \to \mathbb{R}$

Definition 3.1.5 Якщо границя існує, то невласний інтеграл називається **збіжним**. Інакше - **розбіжним**

III. Задана
$$f:[a,\omega) \to \mathbb{R}$$
, де
$$\begin{bmatrix} \omega = +\infty \\ \omega = b \end{bmatrix}$$

Але цього разу на $[a,\omega)$ виникають особливі точки для функції f $a < c_1 < c_2 < \cdots < c_k < \omega$

Дізнаймось, як тоді визначити $\int_{a}^{\omega} f(x) dx$

Ми розглянемо інші точки

$$a < t_1 < c_1 < t_2 < c_2 < \dots < t_k < c_k < t_{k+1} < \omega$$

Це робиться, оскільки ми вже навчились інтегрувати ІІ рід, а останній доданок може бути й І рід. Рахується інтеграл в цьому випадку таким чином

$$\int_{a}^{\omega} f(x) dx = \int_{a}^{t_{1}} f(x) dx + \int_{t_{1}}^{c_{1}} f(x) dx + \int_{c_{1}}^{t_{2}} f(x) dx + \dots + \int_{a}^{t_{2}} f(x) dx + \dots + \int_{a}^{t$$

$$+ \int_{c_k}^{t_{k+1}} f(x) \, dx + \int_{t_{k+1}}^{\omega} f(x) \, dx$$

Доведімо швиденько адитивність невласних інтегралів

$$f\in D([a,A]), \forall A\in [a,\omega)$$
 та $\int\limits_{-\infty}^{\infty}f(x)\,dx$ - збіжний

Зафіксуємо довільну т. $t \in [a, \omega)$, тоді:

$$\int_{a}^{\omega} f(x) dx = \lim_{A \to \omega^{-}} \int_{a}^{A} f(x) dx = \lim_{A \to \omega^{-}} \left(\int_{a}^{t} f(x) dx + \int_{t}^{A} f(x) dx \right) =$$

$$= \int_{a}^{t} f(x) dx + \int_{t}^{\omega} f(x) dx$$

А тепер треба пересвідчитись, що працює незалежність від вибору $t_1, t_2, \ldots, t_{k+1}$ Розглянемо $t, t' \in (a, \omega)$ та t < t'

$$\int_{a}^{\omega} f(x) dx = \int_{a}^{t'} d(x) dx + \int_{t'}^{\omega} f(x) dx = \int_{a}^{t} f(x) dx + \int_{t}^{t'} f(x) dx + \int_{t'}^{\omega} f(x) dx = \int_{a}^{t} f(x) dx + \int_{t}^{\omega} f(x) dx + \int_{t'}^{\omega} f(x) dx = \int_{a}^{t} f(x) dx + \int_{t}^{\omega} f(x) dx + \int_{t'}^{\omega} f(x) dx = \int_{a}^{t} f(x) dx + \int_{t}^{\omega} f(x) dx = \int_{a}^{t} f(x) dx + \int_{t'}^{\omega} f(x) dx = \int_{t'}^{t'} f(x) dx + \int_{t'}^{\omega} f(x) dx = \int_{t'}^{t'} f(x) dx + \int_{t'}^{t'} f(x) dx = \int_{t'}^{t'} f(x) dx + \int_{t'}^{t'} f(x) dx = \int_{t'}^{t'} f(x) dx + \int_{t'}^{t'} f(x) dx + \int_{t'}^{t'} f(x) dx = \int_{t'}^{t'} f(x) dx + \int_{t'}^{t'} f(x) dx = \int_{t'}^{t'} f(x) dx + \int_{t'}^{t'} f(x)$$

Тобто визначення невласного інтегралу не залежить від вибору точок $t_1, t_2, \ldots, t_{k+1}$

Proposition 3.1.6 Властивості

1. Якщо $f \in D([a,b])$, то невласний інтеграл дорівнює визначеному інтегралу

Proof.

$$\int_{a}^{b} f(x) dx = \lim_{A \to b^{-}} \int_{a}^{A} f(x) dx =$$

Оскільки $f \in D([a,b])$, то маємо первісну $F \in C([a,b]) : F(t) = \int_a^t f(x) \, dx$

$$= \lim_{A \to b^{-}} (F(A) - f(a)) = F(b) - F(a) = \int_{a}^{b} f(x) \, dx \, \blacksquare$$

2. Всі властивості визначеного інтегралу копіюються на невласні інтеграли за умовою, що задані невласні інтеграли є збіжними!

Example 3.1.7 Трошки покалькулюємо деякі інтеграли

$$\int_{0}^{1} \ln x \, dx = \lim_{\varepsilon \to 0} \int_{0+\varepsilon}^{1} \ln x \, dx$$
Інтегруємо частинами: $u = \ln x$, $dv = dx$

$$\equiv \lim_{\varepsilon \to 0} \left(x \ln x \Big|_{0+\varepsilon}^{1} - x \Big|_{0+\varepsilon}^{1} \right) = \lim_{\varepsilon \to 0} \left(-\varepsilon \ln \varepsilon - 1 + \varepsilon \right) =$$

$$=\lim_{\varepsilon\to 0}\frac{\ln\varepsilon}{-\frac{1}{\varepsilon}}+\lim_{\varepsilon\to 0}(\varepsilon-1)\stackrel{\text{перший Допіталем}}{=}\lim_{\varepsilon\to 0}\frac{\frac{1}{\varepsilon}}{\frac{1}{\varepsilon^2}}-1=-1$$

Інтеграл - збіжний та, ба більше, приймає приємне значення

$$\int_0^\infty x\,dx=\lim_{b\to\infty}\int_0^b x\,dx=\lim_{b\to\infty}\frac{x^2}{2}\Big|_0^b=\lim_{b\to\infty}\frac{b^2}{2}=\infty$$
 Інтеграл - розбіжний, ну ок

Проте не всі невласні інтеграли визначаються на збіжність шляхом стандратного обчислення. Тому люди вигадали інші підрозділи

3.2 Еталонні інтеграли

Вони вам дуже допоможуть, коли будете використовувати теореми на визначення збіжності, що будуть надані знизу

$$1. \int_{1}^{+\infty} \frac{dx}{x^{\alpha}} = \lim_{A \to +\infty} \int_{1}^{A} x^{-\alpha} \, dx =$$
 при $\alpha = 1$ маємо: $= \lim_{A \to +\infty} \ln x \Big|_{1}^{A} = \lim_{A \to +\infty} \ln A = +\infty$ при $\alpha \neq 1$ маємо: $= \lim_{A \to +\infty} \frac{x^{-\alpha+1}}{-\alpha+1} \Big|_{1}^{A} =$ при $\alpha < 1$: $= \lim_{A \to +\infty} \frac{1}{1-\alpha} (A^{1-\alpha}-1) = +\infty$ при $\alpha > 1$: $= \lim_{A \to +\infty} \frac{1}{1-\alpha} (\frac{1}{A^{\alpha-1}}-1) = \frac{1}{\alpha-1}$

$$2. \int_{0}^{1} \frac{dx}{x^{\alpha}} = \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{1} x^{-\alpha} \, dx =$$
 при $\alpha = 1$ маємо: $= \lim_{\varepsilon \to 0^{+}} \ln x \Big|_{\varepsilon}^{1} = \lim_{\varepsilon \to 0^{+}} (-\ln \varepsilon) = +\infty$ при $\alpha \neq 1$ маємо: $= \lim_{\varepsilon \to 0^{+}} \frac{x^{-\alpha+1}}{-\alpha+1} \Big|_{\varepsilon}^{1} =$ при $\alpha > 1$: $= \lim_{\varepsilon \to 0^{+}} \frac{1}{1-\alpha} (1-\frac{1}{\varepsilon^{\alpha-1}}) = +\infty$

при
$$\alpha < 1$$
: $= \lim_{\varepsilon \to 0^+} \frac{1}{1-\alpha} (1-\varepsilon^{1-\alpha}) = \frac{1}{1-\alpha}$

$$3. \int_{1}^{+\infty} a^x \, dx = \frac{a^x}{\ln a} \Big|_{1}^{+\infty} =$$
 при $a \ge 1$ маємо: $= +\infty$ при $0 < a < 1$ маємо: $= \frac{1}{-\ln a}$

ОТЖЕ,
$$\int_{1}^{+\infty} \frac{dx}{x^{\alpha}} - \begin{bmatrix} \text{збіжний, якщо } \alpha > 1 \\ \text{розбіжний, якщо } \alpha \leq 1 \end{bmatrix}$$

$$\int_{0}^{1} \frac{dx}{x^{\alpha}} - \begin{bmatrix} \text{збіжний, якщо } \alpha < 1 \\ \text{розбіжний, якщо } \alpha \geq 1 \end{bmatrix}$$

$$\int_{1}^{+\infty} a^{x} dx - \begin{bmatrix} \text{збіжний, якщо } 0 < a < 1 \\ \text{розбіжний, якщо } 0 < a < 1 \end{bmatrix}$$
 Користуйтесь)

3.3 Дослідження на збіжність/розбіжність

Theorem 3.3.1 Критерій Коші

Задана функція
$$f \in D([a,A]), \forall A \in [a,\omega)$$
. Тут $\omega = \begin{bmatrix} b \\ +\infty \end{bmatrix}$ $\int_a^\omega f(x) \, dx$ - збіжний $\iff \forall \varepsilon > 0 : \exists \begin{bmatrix} \delta, \text{якщо } \omega = b \\ \Delta, \text{якщо } \omega = +\infty \end{bmatrix} :$ $\forall \begin{bmatrix} A_1, A_2 \in (b-\delta, b), \text{якщо } \omega = b \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{vmatrix} \int_a^{A_2} f(x) \, dx \end{vmatrix} < \varepsilon$

Proof.

Позначимо
$$\int_{a}^{t} f(x) dx = F(t)$$

$$\int\limits_{a}^{\omega}f(x)\,dx=\lim_{A\to\omega}F(A)$$
 - Збіжний критерій Коші для ліміта

$$\forall \varepsilon > 0 : \exists \begin{bmatrix} \delta, \text{якщо } \omega = b \\ \Delta, \text{якщо } \omega = +\infty \end{bmatrix} : \forall \begin{bmatrix} A_1, A_2 \in (b - \delta, b), \text{якщо } \omega = b \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow$$

$$|F(A_1) - F(A_2)| = \left| \int_{A_1}^{A_2} f(x) \, dx \right| < \varepsilon \blacksquare$$

3.3.1 Дослідження для додатних функції

Тобто в цьому підпідрозділі розглядаються функції $f(x), g(x), \dots \ge 0$ на всьому області визначення

Theorem 3.3.2 Ознака порівняння в нерівностях

Задані функції $f,g\in D([a,A]): \forall A\in [a,\omega)$ - додатні. Відомо, що $\exists c\in [a,\omega): \forall x\geq c: f(x)\leq g(x)$. Тоді

1) Якщо
$$\int\limits_a^\omega g(x)\,dx$$
 - збіжний, то $\int\limits_a^\omega f(x)\,dx$ - збіжний

2) Якщо
$$\int\limits_a^\omega f(x)\,dx$$
 - розбіжний, то $\int\limits_a^\omega g(x)\,dx$ - розбіжний

Proof.

Маємо функції
$$F(t) = \int_{a}^{t} f(x) \, dx, \, G(t) = \int_{a}^{t} g(x) \, dx$$

$$f(x),g(x)$$
 - додатні, то $\forall x\in [a,\omega): f(x),g(x)\geq 0,$ тоді $\forall t\in [a,\omega): F(t),G(t)\geq 0$

Зафіксуймо t_1, t_2 , що $a < t_1 < t_2 < \omega$. Тоді

$$F(t_2) = \int_a^{t_2} f(x) dx = \int_a^{t_1} f(x) dx + \int_{t_1}^{t_2} f(x) dx \ge \int_a^{t_1} f(x) dx = F(t_1)$$

Таким чином, F - неспадна функція. Аналогічно G - неспадна функція

1) А тепер нехай відомо, що $\int\limits_a^{\infty}g(x)\,dx$ - збіжний, отже

$$\int\limits_{a}^{\omega}g(x)\,dx=\lim_{A\to\omega^{-}}G(A)\stackrel{G\text{ - неспадна}}{=}\sup_{t\in[a,\omega)}G(t)$$

Оскільки $\exists c \in [a,\omega): \forall x \geq c: f(x) \leq g(x),$ то тоді $F(t) \leq G(t), \forall t \geq c$ А отже, $F(t) \leq \sup_{t \in [a,\omega)} G(t)$

Через те, що F(t) - обмежена та неспадна, то $\exists \lim_{A \to \omega^-} F(A) = \int\limits_a^\omega f(x) \, dx$

- збіжний

2) А тепер нехай відомо, що
$$\int\limits_a^\omega f(x)\,dx$$
 - розбіжний

!Якщо припустити, що інтеграл $\int_{a}^{\omega} g(x) \, dx$ - збіжний, то за п. 1), інтеграл

з
$$\int_{a}^{\omega} f(x) dx$$
 - збіжний, що суперечить!

Таким чином,
$$\int_{a}^{\omega} g(x) dx$$
 - розбіжний \blacksquare

Example 3.3.3 Дослідити на збіжність $\int_0^1 \frac{\cos^2 x}{\sqrt{x}} dx$

Маємо
$$f(x) = \frac{\cos^2 x}{\sqrt{x}}$$

Відомо, що $\cos^2 x \le 1$. Встановимо функцію $g(x) = \frac{1}{\sqrt{x}}$

Тоді
$$\forall x \in (0,1]: f(x) \leq g(x)$$

$$\int_0^1 \frac{1}{\sqrt{x}} \, dx - з біжний (еталон)$$

Отже, за ознакою порівняння, п. 1), $\int_0^1 \frac{\cos^2 x}{\sqrt{x}} \, dx$ - збіжний

Theorem 3.3.4 Ознака порівняння в границях

Задані функції $f,g\in D([a,A]): \forall A\in [a,\omega)$ - строго додатні. Відомо, що $\exists\lim_{x\to\omega^-} \frac{f(x)}{g(x)}=L.$ Тоді

1) Якщо
$$L \neq 0, \neq \infty$$
, то обидва $\int\limits_a^\omega f(x)\,dx, \int\limits_a^\omega g(x)\,dx$ - збіжні або розбіжні

2) Ящо
$$L=0$$
, то зі збіжності $\int\limits_a^\omega g(x)\,dx$ випливає збіжність $\int\limits_a^\omega f(x)\,dx$

Proof.

1) Розглянемо $L \neq 0,$ але оскільки f,g>0, то L>0

$$\exists \lim_{x \to \omega^{-}} \frac{f(x)}{g(x)} = L \iff$$

$$orall arepsilon>0:\exists c\in[a,\omega): orall x\geq c: \left|rac{f(x)}{g(x)}-L
ight| Розглянемо $arepsilon=rac{L}{2},$ тоді $rac{L}{2}<rac{f(x)}{g(x)}<rac{3L}{2}\Rightarrowrac{L}{2}g(x)< f(x)<rac{3L}{2}g(x)$ Якщо $\int\limits_a^\omega g(x)\,dx$ - збіжний, то $\int\limits_a^\omega rac{3L}{2}g(x)\,dx$ - збіжний, то $\int\limits_a^\omega f(x)\,dx$ - збіжний $\int\limits_a^\omega f(x)\,dx$$$

Це все за арифметичними властивостями збіжності та попередньою ознакою порівняння, п.1)

Тож
$$\int_{a}^{\omega} f(x) dx$$
, $\int_{a}^{\omega} g(x) dx$ - одночасно збіжні

Аналогічно можна довести однакову розбіжність, якщо починати нерівність зліва

2) Розглянемо
$$L=0$$
, то $\exists \lim_{x\to\omega^-} \frac{f(x)}{g(x)}=0 \iff$ $\forall \varepsilon>0: \exists c\in [a,\omega): \forall x\geq c: \left|\frac{f(x)}{g(x)}\right|<\varepsilon$ Розглянемо $\varepsilon=1$, то тоді $f(x)< g(x), \forall x\geq c$, а це вже посилання на попередню теорему \blacksquare

Example 3.3.5 Дослідити на збіжність
$$\int_0^{+\infty} \frac{\arctan x}{x^{\frac{1}{5}}}$$
 Маємо функцію $f(x) = \frac{\arctan x}{x^{\frac{1}{5}}}$ Візьміть функцію $g(x) = \frac{1}{x^{-\frac{4}{5}}}$ Тоді $\lim_{x\to 0} \frac{\frac{\arctan x}{x^{\frac{1}{5}}}}{\frac{1}{x^{-\frac{4}{5}}}} = \lim_{x\to 0} \frac{\arctan x}{x} \stackrel{\text{насл. I чудової}}{=} 1$

А тепер оскільки
$$\int_0^{+\infty} \frac{1}{x^{-\frac{4}{5}}}$$
 - розбіжний (еталон), то за ознакою порівняння в лімітах, п. 1), $\int_0^{+\infty} \frac{\arctan x}{x^{\frac{1}{5}}}$ - розбіжний

3.3.2 Дослідження для знакодовільних функцій

Definition 3.3.6 Задана функція $f \in D([a;A]), \forall A \in [a,\omega)$

$$\int\limits_a^\omega f(x)\,dx$$
 називається **абсолютно збіжним**, якщо $\int\limits_a^\omega |f(x)|\,dx$ - збіжний $\int\limits_a^\omega f(x)\,dx$ називається **умовно збіжним**, якщо $\int\limits_a^\omega |f(x)|\,dx$ - розбіжний, але при цьому $\int\limits_a^\omega f(x)\,dx$ - збіжний

Remark 3.3.7 Якщо $f \in D$, то $|f| \in D$. Тому з означенням все ок

Proposition 3.3.8 Задана функція $f \in D([a;A]), \forall A \in [a,\omega)$

Відомо, що
$$\int\limits_a^\omega |f(x)|\,dx$$
 - збіжний. Тоді $\int\limits_a^\omega f(x)\,dx$ - збіжний

Proof.

$$\int |f(x)| \, dx$$
 - збіжний. За критерієм Коші,

$$\forall \varepsilon > 0: \exists \begin{bmatrix} \delta, \text{якщо } \omega = b \\ \Delta, \text{якщо } \omega = +\infty \end{bmatrix}: \forall \begin{bmatrix} A_1, A_2 \in (b - \delta, b), \text{якщо } \omega = b \\ A_1, A_2 \in (\Delta, +\infty), \text{якщо } \omega = +\infty \end{bmatrix} \Rightarrow \begin{bmatrix} \int_{A_1}^{A_2} |f(x)| \, dx | < \varepsilon \end{bmatrix}$$

Тоді за критерієм Коші, $\int\limits_a^\omega f(x)\,dx$ - збіжний \blacksquare

Theorem 3.3.9 Ознаки Абеля-Діріхле

Задані функції $f,g\in D([a,A]), \forall A\in [a,\omega)$

Відомо, що обидва функції задовільняють одній з парі умов

$$\int\limits_{a}^{\omega}f(x)\,dx$$
 - збіжний
$$g(x)$$
 - монотонна та обмежена ознаки Абеля
$$\exists M>0:\forall A\in[a,\omega):\left|\int\limits_{a}^{A}f(x)\,dx\right|< M$$

Тоді
$$\int\limits_a^\omega f(x)g(x)\,dx$$
 - збіжний

Proof.

Доводимо блок Абеля. Додатково вимагаємо, що $g \in C^1$ (лише для спрощення доведеня). Маємо

$$\int_{a}^{A} f(x)g(x) dx \equiv$$

$$u = g(x) \Rightarrow u' = g'(x) dx$$

$$dv = f(x) dx \Rightarrow v = \int_{a}^{x} f(t) dt$$

$$\equiv \left(g(x) \int_{a}^{x} f(t) dt\right) \Big|_{a}^{A} - \int_{a}^{A} \left(\int_{a}^{x} f(t) dt\right) g'(x) dx \equiv$$

$$\Box \text{Dodung regions}$$

Перший доданок:

$$\left(g(x)\int_{a}^{x} f(t) dt\right)\Big|_{a}^{A} = g(A)\int_{a}^{A} f(t) dt$$

Другий доданок:

Маємо
$$\int_{a}^{x} f(t) dt \in C([a, A])$$

Також оскільки g - монотонна, то тоді g' - знакостала

Застосуємо Th. про середнє II - тобто $\exists c \in [a, A]$:

$$\int_{a}^{A} \left(\int_{a}^{x} f(t) dt \right) g'(x) dx = \int_{a}^{c} f(t) dt \int_{a}^{A} g'(x) dx = \int_{a}^{c} f(t) dt (g(A) - g(a))$$

$$\boxed{\exists g(A) \int_{a}^{A} f(t) dt - (g(A) - g(a)) \int_{a}^{c} f(t) dt}$$

Що буде тепер, якщо $A \to \omega$

$$\int\limits_a^A f(t)\,dt o \int\limits_a^\omega f(t)\,dt$$
 - збіжний за умовою. Також $g(A)$ - якесь число, бо g - обмежена та монотонна

Тоді
$$g(A)\int\limits_{a}f(t)\,dt$$
 - перший доданок - збіжний

$$\int_{a}^{c} f(t) dt$$
 - другий доданок - визначений інтеграл, тобто скінченне значення

Остаточно,
$$\exists \lim_{A \to \omega} \int\limits_a^A f(x)g(x)\,dx$$
, а тому збіжний

Блок Діріхле доводиться аналогічно

Example 3.3.10 Важливий

Дослідимо на збіжність
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$
 - інтеграл Діріхле

Маємо
$$f(x) = \sin x$$
, $g(x) = \frac{1}{x}$

До речі, $\lim_{x\to 0} \frac{\sin x}{x} = 1$, тож x=0 - усувна точка, тобто вона не ϵ особливою точкою

Tomy
$$\forall A \in [0, +\infty) : \frac{\sin x}{x} \in D([0, A])$$

Перевіримо умови Діріхле
$$\left|\int_0^A f(x)\,dx\right| = \left|\int_0^A \sin x\,dx\right| = |-\cos A + \cos 0| \le 2, \text{ виконано } \forall A \ge 0 \text{ -}$$
 встановимо $M=2$

Перша умова виконана
$$g(x) = \frac{1}{x}$$
- монотонна, $\lim_{x \to \infty} \frac{1}{x} = 0$ Друга умова виконана

Таким чином, за ознакою Діріхле,
$$\int_0^{+\infty} \frac{\sin x}{x} \, dx$$
 - збіжний

Дослідимо тепер на абсолютну збіжність

!Припустимо, що це, дійсно, абсолютно збіжний інтеграл, тобто

$$\int_0^{+\infty} \left| \frac{\sin x}{x} \right| dx = \int_0^{+\infty} \frac{|\sin x|}{x} dx$$
 - збіжний

Зауважимо, що $|\sin x| \ge \sin^2 x$

Тоді за ознакою порівняння в нерівностях, $\int_{0}^{+\infty} \frac{\sin^2 x}{x} dx$ - збіжний

Тому збіжними будуть два інтеграли
$$\int_{0}^{+\infty} \frac{\sin^{2} x}{x} dx = \int_{0}^{1} \frac{\sin^{2} x}{x} dx + \int_{1}^{+\infty} \frac{\sin^{2} x}{x} dx =$$

$$= \int_{0}^{1} \frac{\sin^{2} x}{x} dx + \int_{1}^{+\infty} \frac{1 - \cos^{2} x}{x} dx = \int_{0}^{1} \frac{\sin^{2} x}{x} dx + \int_{1}^{+\infty} \frac{1}{x} - \frac{1 + \cos 2x}{2x} dx =$$

$$= \int_0^1 \frac{\sin^2 x}{x} \, dx + \int_1^{+\infty} \frac{1}{2x} - \frac{\cos 2x}{2x} \, dx$$
 Звідси $\int_1^{+\infty} \frac{1}{2x} \, dx$ та $\int_1^{+\infty} \frac{1}{2x} - \frac{\cos 2x}{2x} \, dx$ - збіжні Проте за еталоном, $\int_1^{+\infty} \frac{1}{2x} \, dx$ НЕ є збіжним. Суперечність! Отже, $\int_0^{+\infty} \frac{\sin x}{x} \, dx$ - не збіжний абсолютно Висновок: $\int_0^{+\infty} \frac{\sin x}{x} \, dx$ - умовно збіжний

3.4 Невласний інтеграл в сенсі головного значення

І. Розглянемо такий інтеграл

$$\int_{-\infty}^{+\infty} f(x) \, dx$$

У неї з обох сторін проблеми. В стандартному невласному інтегралі це можна записати так. Тут $t \in \mathbb{R}$

$$\int_{-\infty}^{+\infty} f(x) \, dx = \int_{-\infty}^{t} f(x) \, dx + \int_{t}^{+\infty} f(x) \, dx = \lim_{B \to -\infty} \int_{B}^{t} f(x) \, dx + \lim_{A \to +\infty} \int_{t}^{A} f(x) \, dx = \lim_{B \to -\infty} \int_{B}^{t} f(x) \, dx$$

$$= \lim_{\substack{A \to +\infty \\ B \to -\infty}} \int_{B}^{A} f(x) \, dx$$

I це - незручно

Тому розглядають люди такий же інтеграл, але в сенсі головного значення

$$v.p. \int_{-\infty}^{+\infty} f(x) dx = \lim_{A \to \infty} \int_{-A}^{A} f(x) dx$$

II. Розглянемо такий інтеграл

$$\int_{a}^{b} f(x) dx, \text{ особлива т. } c \in (a, b)$$

У неї з обох сторін проблеми. В стандартному невласному інтегралі це можна записати так

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \lim_{\varepsilon_{1} \to 0^{+}} \int_{a}^{c-\varepsilon_{1}} f(x) dx + \lim_{\varepsilon_{2} \to 0^{-}} \int_{c+\varepsilon_{2}}^{b} f(x) dx = \lim_{\varepsilon_{1} \to 0^{+}} \left(\int_{a}^{c-\varepsilon_{1}} f(x) dx + \int_{c+\varepsilon_{2}}^{b} f(x) dx \right)$$

Ну якось теж незручно

Тому розглядають люди такий же інтеграл, але в сенсі головного значення

$$v.p. \int_{a}^{b} f(x) dx = \lim_{\varepsilon \to 0} \left(\int_{a}^{c-\varepsilon} f(x) dx + \int_{c+\varepsilon}^{b} f(x) dx \right)$$

Remark 3.4.1 Якщо один із двох інтегралів збігається, то тоді й v.p. інтеграл теж буде збігатись. В зворотньому - невірно

Example 3.4.2 Контрприклади

Маємо
$$\int_{-1}^1 \frac{dx}{x}$$
 - розбіжний (там виникне еталон) Але $v.p.$ $\int_{-1}^1 \frac{dx}{x} = \lim_{\varepsilon \to 0} \left(\int_{-1}^\varepsilon \frac{dx}{x} + \int_\varepsilon^1 \frac{dx}{x} \right) = \lim_{\varepsilon \to 0} (\ln \varepsilon - \ln 1 + \ln 1 - \ln \varepsilon) = 0$ - збіжний

Маємо
$$\int_{-\infty}^{+\infty}x\,dx$$
 - розбіжний Але $v.p.\int_{-\infty}^{+\infty}x\,dx=\lim_{A o\infty}\int_{-A}^{A}x\,dx=\lim_{A o\infty}\left(\frac{A^2}{2}-\frac{A^2}{2}\right)=0$ - збіжний

4 Ряди

Definition 4.0.1 Рядами називають формальну нескінченну суму нескінченної послідовності чисел $\{a_n, n \ge 1\}$

$$a_1 + a_2 + \dots + a_n + \dots + \sum_{n=1}^{\infty} a_n$$

Частковою сумою даного ряда називають суму перших k членів

$$S_k = \sum_{n=1}^k a_n = a_1 + a_2 + \dots + a_k$$

У такому випадку в нас виникає послідовність часткових сум $\{S_k, k \geq 1\}$ Якщо така послідовність часткових сум є збіжною, то ряд $\sum a_n$ називають

збіжним та значення цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} S_k = S$$

Інакше - розбіжним

Example 4.0.2 Знайдемо суму: $1 + q + q^2 + \dots$

Розглянемо послідовність часткови сум $\{S_k, k \geq 1\}$, де

$$S_k = 1 + q + \dots + q^k = \frac{1 - q^k}{1 - q}$$
 - сума геом. прогресії

$$\lim_{k \to \infty} S_k = \lim_{k \to \infty} \frac{1 - q^k}{1 - q} = \begin{bmatrix} \frac{1}{1 - q}, |q| < 1\\ \infty, |q| > 1 \end{bmatrix}$$

При q = 1 маємо: $1 + 1 + 1 + \dots$

$$S_k = k \Rightarrow \lim_{k \to \infty} S_k = \infty$$

Підсумуємо:

- сума є збіжною при
$$|q|<1$$
 та дорівнює $1+q+q^2+\cdots=rac{1}{1-q}$

- сума є розбіжною при $|q| \ge 1$

Не завжди можна порахувати ряд для визначення збіжності. Тому...

4.1 Первинний аналіз збіжності та арифметика рядів

Proposition 4.1.1 Задано
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний. Тоді $\lim_{n \to \infty} a_n = 0$

Proof.

Зафіксуємо часткові суми:

$$S_{k+1} = \sum_{n=1}^{k+1} a_n$$
 $S_k = \sum_{n=1}^k a_n$

Оскільки ряд є збіжним, то
$$\lim_{k\to\infty} S_{k+1} = \lim_{k\to\infty} S_k = S$$
 Тоді $\lim_{k\to\infty} a_{k+1} = \lim_{k\to\infty} (S_{k+1} - S_k) = S - S = 0$

Remark 4.1.2 Якщо виникне, що $\lim_{n\to\infty}a_n\neq 0$, або її взагалі не існує, то

$$\sum_{n=1}^{\infty} a_n$$
 - розбіжний

Remark 4.1.3 Це лише - необхідна ознака, в жодному випадку не достатня. Якщо границя буде нулевою, то це не означає, що ряд збігається, потрібні інші дослідження

Example 4.1.4 Розглянемо ряд
$$\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - 1 + \dots$$

Оскільки $\exists \lim_{n\to\infty} (-1)^n$, то за $\mathbf{Rm.}^{n-1} \mathbf{4.1.2}$. маємо, що ряд - розбіжний

Theorem 4.1.5 Критерій Коші

Задано
$$\sum_{n=1}^{\infty} a_n$$

Ряд - збіжний
$$\iff \forall \varepsilon>0: \exists K: \forall k\geq K: \forall p\geq 1: \left|\sum_{n=k+1}^{k+p} a_n\right|<\varepsilon$$

Proof.

$$\sum_{n=1}^{\infty} a_n$$
 - збіжний $\iff \exists \lim_{k \to \infty} S_k$ - збіжна границя \iff критерій Коші ліміту

$$\iff \forall \varepsilon > 0 : \exists K : \forall k \ge K : \forall p \ge 1 : |S_{k+p} - S_k| = \left| \sum_{n=k+1}^{k+p} a_n \right| < \varepsilon \blacksquare$$

Proposition 4.1.6 Задані $\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$ - збіжні. Тоді збіжними будуть й такі ряди

1)
$$\forall \alpha \in \mathbb{R} : \sum_{n=1}^{\infty} \alpha a_n = \alpha \sum_{n=1}^{\infty} a_n$$

2)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

Proof.

Доведу друге. Зафіксуємо часткові суми

2)
$$S_k(a) = \sum_{n=1}^k a_n$$
 , $S_k(b) = \sum_{n=1}^k b_n$
Тоді $S_k(a) + S_k(b) = \sum_{n=1}^k (a_n + b_n) = \sum_{n=1}^k a_n + \sum_{n=1}^k b_n$
Оскільки $\sum_{n=1}^\infty a_n \sum_{n=1}^\infty b_n$ - збіжні, то $\lim_{k \to \infty} S_k(a) = S(a)$, $\lim_{k \to \infty} S_k(b) = S(b)$
 $\sum_{n=1}^\infty (a_n + b_n) = \lim_{k \to \infty} (S_k(a) + S_k(b)) = S(a) + S(b) = \sum_{n=1}^\infty a_n + \sum_{n=1}^\infty b_n$

 $\prod_{i=1}^{n=1}$ Перший пункт аналогічно \blacksquare

Definition 4.1.7 Хвостом ряда $\sum_{n=1}^{\infty} a_n$ називають ряд $\sum_{n=m}^{\infty} a_n$, де $m \in \mathbb{N}$ Тобто ми відкидуємо перші m-1 доданків та сумуємо, починаючи з m

Proposition 4.1.8
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний $\iff \sum_{n=m}^{\infty} a_n$ - збіжний, $m \in \mathbb{N}$

Proof.

$$\sum_{n=1}^{\infty} a_n - збіжний \stackrel{\text{критерій Коші}}{\Longleftrightarrow} \forall \varepsilon > 0 : \exists K : \forall k \ge K : \forall p \ge 1 :$$

$$\left| \sum_{k=1}^{k+p} a_n \right| < \varepsilon \iff \exists K' = \max\{K, m\} : \forall k \ge K' : \forall p \ge 1 :$$

$$\left|\sum_{n=k+1}^{k+p}a_n
ight| - збіжний $lacksquare$$$

4.2 Знакододатні ряди

Тобто розглядаємо зараз лише ряди $\sum_{n=1}^{\infty} a_n$, такі, що $\forall n \geq 1: a_n \geq 0$

Proposition 4.2.1 $\{S_k, k \geq 1\}$ - мононтонно неспадна послідовність Proof.

$$\forall k \ge 1 : S_{k-1} - S_k = a_{k+1} \ge 0 \Rightarrow S_k \le S_{k+1} \blacksquare$$

Proposition 4.2.2 Якщо $\{S_k, k \geq 1\}$ - обмежена, то тоді $\sum_{k=0}^{\infty} a_k$ - збіжний

Proof.

Щойно дізнались що послідовність часткових сум монотонна. До того ж, вона є обмеженою за умовою. Отже, за Вейєрштрассом, $\exists \lim_{k \to \infty} S_k = S$,

тобто
$$\sum_{n=1}^{\infty} a_n$$
 - збіжний \blacksquare

Theorem 4.2.3 Ознака порівняння в нерівностях

Задані $\sum_{i} a_n \sum_{j} b_n$ таким чином, що $\exists N: \forall n \geq N: a_n \leq b_n$. Тоді:

1) якщо
$$\sum_{n=1}^{\infty} b_n$$
 - збіжний, то $\sum_{n=1}^{\infty} a_n$ - збіжний теж

2) якщо
$$\sum_{n=1}^{\infty} a_n$$
 - розбіжний, то $\sum_{n=1}^{\infty} b_n$ - розбіжний теж

Proof.

1) Маємо
$$\sum_{n=1}^{\infty} b_n$$
 - збіжний

Розглянемо ряди $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$, тобто ряд, починаючи з якого виконується

$$a_n \le b_n$$

Другий ряд є збіжним як хвіст

$$ilde{S}_k(a) = \sum_{n=N}^k a_n$$
 - часткова сума ряду $\sum_{n=N}^\infty a_n$

$$ilde{S}_k(b) = \sum_{n=N}^k b_n$$
 - часткова сума ряду $\sum_{n=N}^\infty b_n$

Оскільки $a_n \leq b_n$, то звідси $\tilde{S}_k(a) \leq \tilde{S}_k(b)$

Послідовність $\{\tilde{S}_k(b), k \geq N\}$ - монотонна та збіжна, тоді $\exists \lim_{k \to \infty} \tilde{S}_k(b) = \sup_{k \geq N} \tilde{S}_k(b) < \infty$ Отже, $\forall k \geq N : \tilde{S}_k(b) \leq \sup_{k \geq N} \tilde{S}_k(b)$

$$\exists \lim_{k \to \infty} \tilde{S}_k(b) = \sup_{k > N} \tilde{S}_k(b) < \infty$$

Отже,
$$\forall k \geq N : \tilde{S}_k(b) \leq \sup_{k \geq N} \tilde{S}_k(b)$$

Звідси
$$\forall k \geq N : \tilde{S}_k(a) \leq \sup_{k \geq N} \tilde{S}_k(b)$$

Маємо тоді, що послідовність $\{\tilde{S}_k(a), k \geq N\}$ - обмежена зверху. Також вона є неспадною. Отже, $\exists \lim_{k \to \infty} \tilde{S}_k(a)$

A значить
$$\displaystyle \sum_{n=N}^{\infty}$$
 - збіжний, тому $\displaystyle \sum_{n=1}^{\infty}$ - збіжний

2) !Припустимо, що $\sum_{n=1}^{\infty} b_n$ - збіжний, а не розбіжний. Тоді за щойно доведеним п. 1), $\sum_{n=1}^{\infty} a_n$ - збіжний, але він є розбіжним за умовою. Суперечність!

Theorem 4.2.4 Ознака порівняння в границях

Задані
$$\sum_{n=1}^{\infty} a_n \sum_{n=1}^{\infty} b_n$$
, тут члени строго додатні
Нехай $\exists \lim_{n\to\infty} \frac{a_n}{b_n} = l$. Тоді

- 1) Якщо $l \neq 0$ та $l \neq \infty$, то $\sum_{n=1}^{\infty} a_n, \sum_{n=1}^{\infty} b_n$ збіжні або розбіжні одночасно
- 2) Якщо l=0, то із збіжності $\sum_{n=1}^{\infty}b_n$ випливає збіжність $\sum_{n=1}^{\infty}a_n$

Remark 4.2.5 До речі, $l \ge 0$, оскільки всі члени - додатні

Proof.
1)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l \neq 0$$
, тобто

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \left| \frac{a_n}{b_n} - l \right| < \varepsilon$$

Оберемо $\varepsilon = \frac{l}{2}$, тоді

$$\frac{l}{2} < \frac{a_n}{b_n} < \frac{3l}{2} \Rightarrow \frac{l}{2}b_n < a_n < \frac{3l}{2}b_n, \forall n \ge N$$

Припустимо, що $\sum_{n=1}^{\infty} b_n$ - збіжний, тоді збіжним буде $\sum_{n=1}^{\infty} \frac{3l}{2} b_n$, а отже, за

попередньою теоремою, $\sum_{n=1}^{\infty} a_n$ - збіжний

А якщо $\sum_{n=1}^{\infty} a_n$ - збіжний, то $\sum_{n=1}^{\infty} \frac{l}{2} b_n$ - збіжний, а отже, $\sum_{n=1}^{\infty} b_n$ - збіжний Тому два ряди збіжні або розбіжні одночасно

2)
$$\exists \lim_{n \to \infty} \frac{a_n}{b_n} = l = 0$$
, тобто

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \left| \frac{a_n}{b_n} \right| < \varepsilon$$

Оберемо $\varepsilon=1$, тоді

 $\forall n \ge N : a_n < b_n$

Тоді виконується попередня теорема, один з двох пунктів ■

Example 4.2.6 Розглянемо $\sum_{n=1}^{\infty} \frac{1}{n}$ - гармонічний ряд

Доведемо, що даний ряд - розбіжний, використовуючи критерій Коші, тобто

$$\exists \varepsilon > 0 : \forall K : \exists k_1, k_2 \geq K : \left| \sum_{n=k_1}^{k_2} \frac{1}{n} \right| \geq \varepsilon$$
 (заперечення критерія Коші)

Дійсно, якщо $\varepsilon = 0.5, k_1 = K, k_2 = 2K$, то отримаємо:

$$\left| \sum_{n=K}^{2K} \frac{1}{n} \right| = \frac{1}{K} + \frac{1}{K+1} + \dots + \frac{1}{2K} > K \frac{1}{2K} = 0.5$$

Отже, критерій Коші - порушений, а тому цей ряд - розбіжний

Example 4.2.7 Розглянемо далі $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ - ряд Діріхле

Нехай $\alpha < 1$, тоді $\forall n \geq 1 : \frac{1}{n} < \frac{1}{n^{\alpha}}$

За ознакою порівняння, оскільки $\sum_{n=1}^{\infty} \frac{1}{n}$ - розбіжний, то $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ - розбіжний

Нехай $\alpha > 1$, тоді розглянемо часткову суму

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} = 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{5^{\alpha}} + \frac{1}{6^{\alpha}} + \frac{1}{7^{\alpha}}\right) + \dots \le$$

$$\le 1 + \left(\frac{1}{2^{\alpha}} + \frac{1}{2^{\alpha}}\right) + \left(\frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}} + \frac{1}{4^{\alpha}}\right) + \dots =$$

$$= 1 + \frac{1}{2^{\alpha-1}} + \frac{1}{4^{\alpha-1}} + \frac{1}{8^{\alpha-1}} + \dots = 1 + \frac{1}{2^{\alpha-1}} + \left(\frac{1}{2^{\alpha-1}}\right)^{2} + \dots = \frac{1}{1 - \frac{1}{2^{\alpha-1}}}$$

Наш ряд - обмежений, а послідовність часткових сум - монотонна. Тоді - збіжний

Підсумуємо:

$$\sum_{n=1}^{\infty} rac{1}{n^{lpha}}$$
 - $\left[egin{matrix} ext{розбіжний,} & lpha \leq 1 \ ext{збіжний,} & lpha > 1 \end{matrix}
ight.$

Ось ці два ряди - еталонні. Рекомендую їх використовувати для дослідження збіжностей

Example 4.2.8 Дослідимо на збіжність
$$\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$$

Маємо
$$a_n = \frac{\arctan n}{1+n^2}$$
. Встановимо $b_n = \frac{1}{n^2}$

Обчислимо таку границю
$$\lim_{n\to\infty}\frac{a_n}{b_n}=\lim_{n\to\infty}\frac{n^2\arctan n}{1+n^2}=\lim_{n\to\infty}\frac{\arctan n}{1+\frac{1}{n^2}}=\frac{\pi}{2}$$

Тому, оскільки додатково $\sum_{n=1}^{\infty} \frac{1}{n^2}$ - збіжний (еталон), то $\sum_{n=1}^{\infty} \frac{\arctan n}{1+n^2}$ збіжний

Theorem 4.2.9 Ознака Даламбера

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - строго додатний ряд. Нехай $\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q$. Тоді:

- 1) Якщо q < 1, то ряд збіжний
- 2) Якщо q > 1, то ряд розбіжний
- 3) Якщо q = 1, то відповіді нема

Proof.
1)
$$\exists \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q < 1$$
, тобто

$$\forall \varepsilon > 0 : \exists N : \forall n \ge N : \left| \frac{a_{n+1}}{a_n} - q \right| < \varepsilon$$

Встановимо
$$\varepsilon = \frac{1-q}{2}$$
, тоді

$$\frac{a_{n+1}}{a_n} < q + \varepsilon = \frac{1 + q}{2}$$

$$\forall n \ge N : a_{n+1} < \frac{1+q}{2} a_n$$

$$\Rightarrow a_{N+1} < \frac{1+q}{2} a_N$$

$$\Rightarrow a_{N+2} < \frac{1+q}{2} a_{N+1} < \left(\frac{1+q}{2}\right)^2 a_N$$

$$\Rightarrow \forall k \ge 1 : a_{N+k} < \left(\frac{1+q}{2}\right)^k a_N$$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{1+q}{2}\right)^k$$

Вираз під сумою буде менше за 1, цей ряд - геом. прогресія - тож збіжний

Тоді
$$\sum_{k=1}^{\infty}a_{N+k}=\sum_{n=N+1}^{\infty}a_n$$
 - збіжний, отже, $\sum_{n=1}^{\infty}a_n$ - збіжний

2) Якщо встановити
$$\varepsilon = \frac{q-1}{2},$$
 то отримаємо, що

$$\frac{a_{n+1}}{a_n} > q - \varepsilon = \frac{q+1}{2}$$

$$\forall n \ge N : a_{n+1} > \frac{q+1}{2} a_n$$

Аналогічними міркуваннями отримаємо

$$\forall k \ge 1 : a_{N+k} > \left(\frac{q+1}{2}\right)^k a_N$$

Розглянемо ряд
$$\sum_{k=1}^{\infty} \left(\frac{q+1}{2}\right)^k a_N = a_N \sum_{k=1}^{\infty} \left(\frac{q+1}{2}\right)^k$$

А тут геом. прогресія при виразі, що більше одиниці - розбіжний

Тоді
$$\sum_{k=1}^{\infty}a_{N+k}=\sum_{n=N+1}^{\infty}a_n$$
 - розбіжний, отже, $\sum_{n=1}^{\infty}a_n$ - розбіжний

3) А тепер в чому полягає проблема при q=1

Розглянемо обидва ряди:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
, $\sum_{n=1}^{\infty} \frac{1}{n^2}$

Використаємо для обох ознаку Даламбера:

$$\lim_{n \to \infty} \frac{1}{n+1} \cdot n = 1 \qquad \lim_{n \to \infty} \frac{1}{(n+1)^2} \cdot n^2 = 1$$

Результат - однаковий, проте один ряд - розбіжний, а інший - збіжний (еталони). Тож q=1 не дає відповіді, шукаємо інші методи \blacksquare

Example 4.2.10 Дослідимо на збіжність
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$$

Маємо $a_n = \frac{1}{(2n+1)!}$. Обчислимо границю за Даламбером

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(2n+1)!}{(2n+3)!} = \lim_{n \to \infty} \frac{1}{(2n+2)(2n+3)} = 0$$

Отже,
$$\sum_{n=1}^{\infty} \frac{1}{(2n+1)!}$$
 - збіжний

Theorem 4.2.11 Радикальна ознака Коші

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - знакододатний ряд. Нехай $\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q$. Тоді:

- 1) Якщо q < 1, то ряд збіжний
- 2) Якщо q > 1, то ряд розбіжний
- 3) Якщо q = 1, то відповіді нема

Proof.

1)
$$\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q < 1$$
, тобто

1)
$$\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q < 1$$
, тобто $\forall \varepsilon > 0: \exists N: \forall n \geq N: \sqrt[n]{a_n} < q + \varepsilon$

$$\Rightarrow a_n < (q + \varepsilon)^n$$

 $\Rightarrow a_n < (q+\varepsilon)^n$ Оберемо $\varepsilon = \frac{1-q}{2}$. Тоді маємо:

$$a_n < \left(\frac{1+q}{2}\right)^n$$

Розглянемо ряд $\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$ - геом. прогресія, вираз в сумі менше за

одиниці - збіжний

Отже,
$$\sum_{n=1}^{\infty} \left(\frac{1+q}{2}\right)^n$$
 - збіжний, а тому $\sum_{n=1}^{\infty} a_n$ - збіжний

2)
$$\exists \overline{\lim}_{n \to \infty} \sqrt[n]{a_n} = q > 1$$
, тобто

 $\exists \{ \sqrt[n-p]{a_{n(p)}}, p \geq 1 \} : \lim_{p \to \infty} \sqrt[n(p)]{a_{n(p)}} = q$ - така підпослідовність, що містить цю границю

$$\Rightarrow \forall \varepsilon > 0 : \exists P : \forall p \geq P : \left| \frac{n(p)}{a_{n(p)}} - q \right| < \varepsilon$$

Оберемо
$$\varepsilon = \frac{q-1}{2}$$
, тоді

$$a_{n(p)} > \left(\frac{q+1}{2}\right)^{\frac{2}{n(p)}}$$

Тоді
$$\lim_{p \to \infty} a_{n(p)} \ge \lim_{p \to \infty} \left(\frac{q+1}{2}\right)^{n(p)} = \infty$$

Отже, $\lim_{n\to\infty} a_n \neq 0$. Це означає, що необхідна умова збіжності не виконується - розбіжний

3) Щоб з'ясувати трабли з q=1, розгляньте такі самі ряди як при доведенні ознаки Даламбера

Example 4.2.12 Дослідимо на збіжність $\sum_{n=0}^{\infty} \frac{\left(\frac{n+1}{n}\right)^n}{3^n}$

Маємо
$$a_n = \frac{\left(\frac{n+1}{n}\right)^{n^2}}{3^n} \Rightarrow \sqrt[n]{a_n} = \frac{\left(\frac{n+1}{n}\right)^n}{3} = \frac{\left(1 + \frac{1}{n}\right)^n}{3}$$

Обчислимо границю як в радикальному Коші

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^n}{3} = \frac{e}{3} < 1$$
 Отже, наш ряд - збіжний

Remark 4.2.13 Тепер питання, чому саме верхня границя

Якщо, насправді, порахувати просто границю, то автоматично існує й верхня границя

Просто виникають такі ряди, де стандартно границю не порахуєш. Тому треба розбивати на підпослідовності та шукати верхню границю, що й дасть відповідь на збіжність

Remark 4.2.14 Ознака Коші сильніша за ознаку Даламбера - залишемо як факт

В якості прикладу розглянемо ряд $\sum_{n=0}^{\infty} a_n$, де

$$a_n=2^{-n}$$
, якщо n - парне

$$a_n = 2^{-n-1}$$
, якщо n - непарне

Якщо використати ознаку Даламбера, то границя буде приймати два значення: $1, \frac{1}{4}$. Таким чином, границі не існує

Проте якщо порахувати границю Коші, то буде результат $\frac{1}{2}$, що свідчить про збіжність та силу Коші в порівнянні з Даламбером

Theorem 4.2.15 Інтегральна ознака Коші

Задано $\sum a_n$ - знакододатний, такий, що:

1)
$$\exists f: [1, +\infty) \to \mathbb{R}: \forall n \ge 1: a_n = f(n)$$

2) $f(x)$ спадає на $[1, +\infty)$

Тоді
$$\sum_{n=1}^{\infty} a_n$$
 та $\int_1^{+\infty} f(x) \, dx$ - збіжні або розбіжні одночасно

Proof.

Оскільки f(x) спадає, то $\forall k \geq 1 : \forall x \in [k, k+1] :$

$$a_k \ge f(x) \ge a_{k+1}$$

$$a_k \ge f(x) \ge a_{k+1}$$

$$a_k = \int_k^{k+1} a_k \, dx \ge \int_k^{k+1} f(x) \, dx \ge \int_k^{k+1} a_{k+1} \, dx = a_{k+1}$$

Просумуємо червоні нерівності від k = 1 до k = M, отримаємо:

$$\sum_{k=1}^{M} a_k \ge \int_{1}^{M} f(x) \, dx \ge \sum_{k=1}^{M} a_{k+1}$$

Якщо $M \to \infty$, то за теоремою про поліцаїв отримаємо:

$$\lim_{M \to \infty} \sum_{k=1}^{M} a_k = \sum_{k=1}^{\infty} a_k \text{ Ta } \lim_{M \to \infty} \int_1^M f(x) \, dx = \int_1^{\infty} f(x) \, dx$$

Із збіжності ряду випливає збіжність інтегралу і навпаки

Example 4.2.16 Дослідити на збіжність $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$

Створімо функцію $f:[1,+\infty)$, щоб $f(n)=a_n$. Це буде $f(x)=\frac{1}{x\ln x}$ Така функція спадає, дійсно

Така функція спадає, дійсно
$$f(x) = \frac{1}{x \ln x} \Rightarrow f'(x) = -\frac{\ln x + 1}{(x \ln x)^2}$$

Якщо
$$x \ge 1$$
, то тоді $f'(x) = -\frac{\ln x + 1}{(x \ln x)^2} \le \frac{1}{(x \ln x)^2} \le 0$

A тепер розглянемо інтеграл $\int_1^{+\infty} \frac{1}{x \ln x} dx = \int_1^{+\infty} \frac{d \ln x}{\ln x} = \ln |\ln x| \Big|_1^{+\infty} =$

 $=\infty$ - розбіжний

Таким чином, за інтегральною ознакою Коші, $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ - розбіжний

4.3 Знакозмінні ряди

Definition 4.3.1 Ряд $\sum_{n=1}^{\infty} a_n$ називається **абсолютно збіжним**, якщо

збігається ряд $\sum_{n=1}^{\infty} |a_n|$

Definition 4.3.2 Ряд $\sum_{n=1}^{\infty} a_n$ називається **умовно збіжним**, якщо $\sum_{n=1}^{\infty} a_n$

- збіжний, але $\sum_{n=1}^{\infty} |a_n|$ - не збіжний

 $oxed{ ext{Proposition 4.3.3}} \sum_{n=1}^{\infty} a_n$ - абсолютно збіжний $\implies \sum_{n=1}^{\infty} a_n$ - збіжний

Proof.

$$\sum_{n=1}^{\infty} a_n$$
 - абсолютно збіжний $\implies \sum_{n=1}^{\infty} |a_n|$ - збіжний \implies

$$\iff \forall \varepsilon > 0: \exists K: \forall k \geq K: \forall p \geq 1: \left| \sum_{n=k}^{k+p} |a_n| \right| < \varepsilon \iff$$

$$\implies \left| \sum_{n=k}^{k+p} a_n \right| \leq \left| \sum_{n=k}^{k+p} |a_n| \right| < \varepsilon \implies \sum_{n=1}^{\infty} a_n - \text{збіжний} \blacksquare$$

Theorem 4.3.4 Ознака Лейбніца

Задано $\sum_{n=0}^{\infty} (-1)^{n+1} a_n$ - знакопочередний ряд. Відомо, що

- 1) $\forall n \ge 1 : a_n \ge 0$
- 2) $\{a_n, n \geq 1\}$ монотонно спадає
- $3) \lim_{n \to \infty} a_n = 0$

Тоді заданий ряд - збіжний

Proof.

Розглянемо послідовність часткових сум $\{S_{2k}, k \geq 1\}$. Отримаємо наступне:

$$S_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k}) \ge 0$$

$$\geq 0 \qquad \qquad \geq 0$$

$$S_{2k} = a_1 - (a_2 - a_3) - (a_4 - a_5) - \dots - (a_{2k-2} - a_{2k-1}) - a_{2k} \le a_1$$

$$\geq 0 \qquad \qquad \geq 0$$

$$\geq 0 \qquad \qquad \geq 0$$

$$\geq 0 \qquad \qquad \geq 0$$

Тобто $0 \le S_{2k} \le a_1$ - обмежена послідовність

Також
$$S_{2(k+1)} = S_{2k} + (a_{2k+1} - a_{2k+2}) \ge S_{2k}$$
 - монотонна Таким чином, $\exists \lim_{k \to \infty} S_{2k} = S$

Розглянемо ще одну послідовність часткових сум $\{S_{2k+1}, k \geq 1\}$. Зрозуміло,

$$S_{2k+1}=S_{2k}+a_{2k+1}$$
 $\Rightarrow \lim_{k\to\infty}S_{2k+1}=\lim_{k\to\infty}S_{2k}+\lim_{k\to\infty}a_{2k+1}=S+0=S$ Остаточно, маємо, що послідовність $\{S_m,m\geq 1\}$ - збіжна, тоді

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$
 - збіжний $lacksquare$

Corollary 4.3.5 $\forall k \geq 1 : |S - S_k| \leq a_{k+1}$ Proof.

Розглянемо хвіст ряду $S - S_k = \sum_{n=k+1}^{\infty} (-1)^{n+1} a_n$

А також
$$\tilde{S_m} = \sum_{n=k+1}^m (-1)^{n+1} a_n$$
. Тоді $\tilde{S_m} = S_m - S_k = (-1)^{k+1} \left(a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \cdots - \left[(a_{m-1} - a_m), k \not 2 \right]$ a_m, k :2

$$\Rightarrow |\tilde{S_m}| = \begin{vmatrix} a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - \begin{bmatrix} (a_{m-1} - a_m), k \not 2 \\ a_m, k & 2 \end{vmatrix} =$$

$$= a_{k+1} - (a_{k+2} - a_{k+3}) - (a_{k+1} - a_{k+5}) - \dots - \begin{bmatrix} (a_{m-1} - a_m), k \not 2 \\ a_m, k & 2 \end{bmatrix} \leq a_{k+1}$$

$$\Rightarrow |S - S_k| = \lim_{m \to \infty} |\tilde{S_m}| \leq a_{k+1} \blacksquare$$

Example 4.3.6 Дослідити на збіжність $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n-1}$

Маємо
$$a_n = \frac{1}{2n-1} \ge 0, \forall n \ge 1$$

Послідовність
$$\{a_n, n \geq 1\}$$
 - спадає монотонно. Дійсно $a_{n+1}-a_n=\frac{1}{2n+1}-\frac{1}{2n-1}<0\Rightarrow a_{n+1}< a_n$

$$\lim_{n \to \infty} \frac{1}{2n - 1} = 0$$

Отже, за ознакою Лейбніца, цей ряд - збіжний. Але чи абсолютно?

Розглянемо
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{2n-1} \right| = \sum_{n=1}^{\infty} \frac{1}{2n-1}$$

Маємо оцінку
$$\frac{1}{2n} < \frac{1}{2n-1}, \forall n \geq 1$$

Оскільки $\sum_{n=1}^{\infty} \frac{1}{2n}$ - розбіжний (еталон), то за ознакою порівняння в нерівностях,

$$\sum_{n=1}^{\infty} \frac{1}{2n-1}$$
, а тобто $\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{2n-1} \right|$ - розбіжний

Отже, не є абсолютно збіжним

Висновок:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{2n-1}$$
 - збіжний умовно

Remark 4.3.7 Якщо Лейбніца не виконується, то це НЕ означає, що знакопочередний ряд - розбіжний!

$$\sum_{n=1}^{\infty} (-1)^n \frac{\cos^2 n}{n^2}$$
 - чудовий приклад підтвердження: тут $a_n = \frac{\cos^2 n}{n^2}$ - НЕ

спадає, але ряд сам збіжний навіть абсолютно

Example 4.3.8 Обчислити суму $\sum_{n=0}^{\infty} \frac{(-1)^n}{n!}$ із точністю до $\varepsilon = 10^{-5}$

Для початку перевірте на збіжність за ознакою Лейбніца!!!

А вже ТОДІ ми можемо використовувати **Crl. 4.3.5.**, тобто $|S - S_k| \le a_{k+1}$

Треба знайти таке
$$k$$
, для якого $a_{k+1} < \varepsilon \Rightarrow \frac{1}{(k+1)!} < \frac{1}{10^5}$

$$\Rightarrow (k+1)! > 100000$$

А далі підбираємо. Підходить k=8, тому що дійсно $9!>10^5$. Можна й більше k взяти, але навіщо?:)

Тепер знайдемо
$$S_k=S_8$$
 - це й буде відповідь
$$S_8=-1+\frac{1}{2}-\frac{1}{6}+\frac{1}{24}-\frac{1}{120}+\frac{1}{720}-\frac{1}{5040}+\frac{1}{40320}=\cdots=\frac{-3641}{5760}$$

Theorem 4.3.9 Ознака Абеля-Діріхле

Задано $\sum_{i} a_n b_n$. Нехай виконано один з двох блок умов:

Тоді
$$\sum_{n=1}^{\infty} a_n b_n$$
 - збіжний

Без доведення, ГБ нам не давав. Але кому цікаво: там треба розглядати тотожність Абеля - а це як інтеграл частинами, але у версії рядів.

Example 4.3.10 Дослідимо на збіжність
$$\sum_{n=1}^{\infty} \frac{\sin\left(\frac{2\pi n}{3}\right)}{\sqrt{n+1}}$$

Використаємо ознаку Діріхле
$$a_n = \sin\left(\frac{2\pi n}{3}\right) \qquad b_n = \frac{1}{\sqrt{n+1}}$$

$$\left|\sum_{n=1}^k \sin\left(\frac{2\pi n}{3}\right)\right| = \left|\sin\left(\frac{2\pi}{3}\right) + \sin\left(\frac{4\pi}{3}\right) + \sin\left(\frac{6\pi}{3}\right) + \dots + \sin\left(\frac{2\pi k}{3}\right)\right| = \left|\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} + 0 + \frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} + 0 + \dots + \sin\left(\frac{2\pi k}{3}\right)\right| \le \frac{\sqrt{3}}{2}$$

$$\frac{1}{\sqrt{n+1}} - \text{спадна та прямує до нуля - думаю, зрозуміло}$$

Отже, початковий ряд - збіжний

Theorem 4.3.11 Теорема Рімана

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - умовно збіжний

Тоді для довільного M буде існувати перестановка членів ряду, після якої новий ряд із переставленими членами буде збіжним до числа M Без доведення. Це вже факультатив

Example 4.3.12 Маємо $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ - можна довести, що він умовно збігається майже аналогічним чином, як **Ex. 4.3.6.**

Так ось, розглянемо сумування різними перестановками. Я не буду доводити, чому так. Але для справжніх ґіков: тут використовується збіжність до константи Ейлера-Маскероні

$$-\frac{1}{1} + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} = \dots = -\ln 2$$

$$-\frac{1}{1} - \frac{1}{3} + \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{4} - \frac{1}{9} - \frac{1}{11} + \frac{1}{6} + \dots = -\frac{3}{2}\ln 2$$

Theorem 4.3.13 Теорема Діріхле

Задано
$$\sum_{n=1}^{\infty} a_n$$
 - абсолютно збіжний

Тоді будь-яка перестановка членів ряду не змінить суму *Без доведення*.

5 Функціональні ряди

Згадайте функціональні послідовності із підрозділу 2.3., а потім повертайтесь :)

5.1 Основа та про збіжність

Definition 5.1.1 Функціональним рядом називають суму членів функціональної послідовності $\{a_n(x), n \ge 1\}$

$$a_1(x) + a_2(x) + \dots + a_n(x) + \dots = \sum_{n=1}^{\infty} a_n(x)$$

Частковою сумою даного ряда називають суму перших k функцій

$$S_k(x) = \sum_{n=1}^k a_n(x) = a_1(x) + a_2(x) + \dots + a_k(x)$$

У такому випадку в нас виникає функціональна послідовність часткових сум $\{S_k(x), k \geq 1\}$

Якщо така послідовність збігається в т. x_0 , то ряд є **збіжним** в т. x_0 та значення цього ряду дорівнює

$$\sum_{n=1}^{\infty} a_n(x_0) = \lim_{k \to \infty} S_k(x_0) = S(x_0)$$

Якщо ряд збігається $\forall x \in B$, то B називають **областю збіжності**

Якщо ряд абсолютно збігається $\forall x \in B$, то B називають **областю** абсолютної збіжності

Якщо ряд умовно збігається $\forall x \in B$, то B називають **областю умовної** збіжності

Example 5.1.2 Розглянемо функціональний ряд $\sum_{n=1}^{\infty} \frac{n}{x^n}$

Дослідимо на збіжність

Використаємо ознаку Даламбера

$$\lim_{n\to\infty}\frac{(n+1)x^n}{x^{n+1}n}=\lim_{n\to\infty}\frac{n+1}{nx}=\frac{1}{x}$$
 Якщо $\frac{1}{x}<1\iff x\in(-\infty;0)\cup(1;+\infty)$, то ряд - збіжний

Якщо
$$\frac{1}{x}>1\iff x\in(0;1)$$
, то ряд - розбіжний Якщо $\frac{1}{x}=1\iff x=1$, то треба додатково дослідити При $x=1$ маємо ряд $\sum_{n=1}^{\infty}n$ - зрозуміло, що розбіжний

А далі дослідимо на абсолютну та умовну збіжності

Розглянемо функціональний ряд $\sum_{n=1}^{\infty} \left| \frac{n}{x^n} \right|$

I знову беремо ознаку Даламбера

$$\lim_{n\to\infty}\left|\frac{(n+1)x^n}{x^{n+1}n}\right|=\frac{1}{|x|}$$
 Якщо $\frac{1}{|x|}<1\iff x\in(-\infty;-1)\cup(1;+\infty),$ то ряд - збіжний Якщо $\frac{1}{|x|}>1\iff x\in(-1;0)\cup(0;1),$ то ряд - розбіжний При $x=\pm 1$ отримаємо $\sum_{n=1}^\infty n$ - розбіжний

Зробимо обережний висновок. Як і де так збігається $\sum_{n=1}^{\infty} \frac{n}{x^n}$ В області $B_{abs}=(-\infty;-1)\cup(1;+\infty)$ - збіжний абсолютно В області $B_{cond}=(-1;0)$ - збіжний умовно

Definition 5.1.3 Якщо послідовність часткових сум $\{S_k(x), k \geq 1\}$ збігається рівномірно на множині A, то ряд $\sum_{n=1}^{\infty} a_n(x)$ називають **рівномірно збіжним** на A

Theorem 5.1.4 Критерій Коші, муахаха

$$\sum_{n=1}^{\infty} a_n(x)$$
 - рівномірно збіжний на множині $A \iff$

$$\iff \forall \varepsilon > 0 : \exists N : \forall k, m \ge M : ||S_k - S_m|| < \varepsilon \text{ also } \sup_{x \in A} \left| \sum_{n=k+1}^m a_n(x) \right| < \varepsilon$$

Випливае з критерію Коші рівновірної збіжності функціональних послідовностей

Theorem 5.1.5 Мажорантна ознака Вейєрштрасса

Задано $\sum_{n=0}^{\infty} a_n(x)$ - ряд на множині A. Відомо, що

1) $\exists \{c_n, n \geq 1\} : \forall n \geq 1 : \forall x \in A : |a_n(x)| \leq c_n$

2) $\sum_{n=1}^{\infty} c_n$ - збіжний (це числовий ряд). Його ще називають **мажорантним** рядом

Тоді $\sum_{i} a_n(x)$ збігається рівномірно та абсолютно на множині A

Proof.

За критерієм Коші, $\sum_{n=1}^{\infty} c_n$ - збіжний $\iff \forall \varepsilon > 0 : \exists N : \forall k, m \geq M :$

$$\left| \sum_{n=k+1}^{m} c_n \right| < \varepsilon. \text{ Тоді}$$

$$\left| \left| \sum_{n=k+1}^{m} a_n(x) \right| \right| = \sup_{x \in A} \left| \sum_{n=k+1}^{m} a_n(x) \right| \le \left| \sup_{x \in A} \left| \sum_{n=k+1}^{m} a_n(x) \right| \right| \le \sum_{n=k+1}^{m} \sup_{x \in A} |a_n(x)| \le \sum_{n=k+1}^{m} c_n < \varepsilon$$

Тому за критерієм Коші, $\sum_{n=1}^{\infty} a_n(x)$ - рівномірно та абсолютно збіжний на множині A

Example 5.1.6 Дослідити на рівномірну збіжність $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ на множині

$$A = [-1, 1]$$

Зрозуміло, що $x^n \le 1, \forall n \ge 1$ $\Rightarrow \left|\frac{x^n}{n^2}\right| \le \frac{1}{n^2}$

$$\Rightarrow \left| \frac{x^n}{n^2} \right| \le \frac{1}{n^2}$$

Отже, маємо послідовність $\{c_n = \frac{1}{n^2}, n \ge 1\}$

Розглянемо мажорантний ряд $\sum_{n=0}^{\infty} \frac{1}{n^2}$ - збіжний (еталон)

Отже, за мажорантною Вейєрштрасса, $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$ - збіжний рівномірно на A = [-1, 1]

Theorem 5.1.7 Ознака Абеля-Діріхле

Задано
$$\sum_{n=1}^{\infty} a_n(x)b_n(x)$$
 - ряд на множині A

Нехай виконано один з двох блок умов:

$$\sum_{n=1}^{\infty} a_n(x)$$
 - збіжний рівномірно на A $\exists M>0: \forall k\geq 1: \left\|\sum_{n=1}^k a_n(x)\right\|\leq M$ $\{b_n(x), n\geq 1\}$ - рівномірно обмежена та монотонна ознаки Абеля ознаки Діріхле

Тоді $\sum a_n(x)b_n(x)$ - збіжний рівномірно на множині AБез доведення.

5.2 Неперервність, інтегрованість, диференційованість

Theorem 5.2.1 Задано $S(x) = \sum_{n=0}^{\infty} a_n(x)$ - рівномірно збіжний на AВідомо, що $\forall n \geq 1 : a_n(x) \in C(A)$. Тоді $S(x) \in C(A)$ Proof.

Із умови теореми випливає, що $\forall k \geq 1: S_k(x) = \sum_{i=1}^k a_n(x) \in C(A)$ як

сума неперервних функцій

Оскільки ряд - рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ - рівномірно збіжна. Тоді за **Th. 2.3.10.**, $S(x) \in C(A)$

Theorem 5.2.2 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$ - рівномірно збіжний на [a,b] Відомо, що $\forall n \geq 1: a_n(x) \in D([a,b])$. Тоді $S(x) \in D([a,b])$, а також

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_n(x) \right) dx = \sum_{n=1}^{\infty} \left(\int_{a}^{b} a_n(x) dx \right)$$

Proof.

Із умови теореми випливає, що $\forall k \geq 1: S_k(x) = \sum_{i=1}^k a_n(x) \in D([a,b])$ як

сума інтегрованих функцій

Оскільки ряд - рівномірно збіжний, то тоді $\{S_k(x), k \geq 1\}$ - рівномірно збіжна. Тоді за **Prp. 2.4.4.**, властивість 4), $S(x) \in D([a,b])$ Доведемо тепер тотожність:

$$\int_{a}^{b} \left(\sum_{n=1}^{\infty} a_n(x) \right) dx = \int_{a}^{b} \left(\lim_{k \to \infty} \sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \int_{a}^{b} \left(\sum_{n=1}^{k} a_n(x) \right) dx = \lim_{k \to \infty} \sum_{n=1}^{k} \left(\int_{a}^{b} a_n(x) dx \right) = \sum_{n=1}^{\infty} \left(\int_{a}^{b} a_n(x) dx \right) \blacksquare$$

Theorem 5.2.3 Задано $S(x) = \sum_{n=1}^{\infty} a_n(x)$. Відомо, що:

$$1)$$
 $\exists x_0 \in [a,b]: \sum_{1}^{\infty} a_n(x_0)$ - збіжний

2)
$$\forall n \ge 1 : a_n(x) \in C^1([a, b])$$

$$3) \sum_{n=1}^{\infty} a'_n(x)$$
 - рівномірно збіжний на $[a,b]$

Тоді S(x) - збіжний рівномірно та $S(x) \in C^1([a,b])$, а також

$$\left(\sum_{n=1}^{\infty} a_n(x)\right)' = \sum_{n=1}^{\infty} a'_n(x)$$

Proof.

Розглянемо ряд $\tilde{S}(x) = \sum_{n=1}^{\infty} a'_n(x)$

За попередньою теоремою, можемо отримати, що

$$\forall x \in [a, b] : \int_{x_0}^x \left(\sum_{n=1}^\infty a'_n(t)\right) dt = \sum_{n=1}^\infty \left(\int_{x_0}^x a'_n(t) dt\right) = \sum_{n=1}^\infty \left(a_n(x) - a_n(x_0)\right)$$

- збіжний рівномірно ряд

$$\Rightarrow \sum_{n=1}^{\infty} a_n(x) = \sum_{n=1}^{\infty} (a_n(x) - a_n(x_0) + a_n(x_0)) =$$

$$=\sum_{n=1}^{\infty}(a_n(x)-a_n(x_0))+\sum_{n=1}^{\infty}a_n(x_0)$$
 - рівномірно збіжний

Доведемо тотожність

$$\left(\sum_{n=1}^{\infty} a_n(x)\right)' = \left(\sum_{n=1}^{\infty} (a_n(x) - a_n(x_0))\right)' + \left(\sum_{n=1}^{\infty} a_n(x_0)\right)' = \sum_{n=1}^{\infty} a'_n(x) \blacksquare$$

5.3 Степеневі ряди

Definition 5.3.1 Степеневим рядом називаємо ми такий ряд

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n$$

де $\{a_n, n \geq 1\}$ - числова послідовність

Theorem 5.3.2 Теорема Коші-Адамара

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд
 Нехай $\frac{1}{\varlimsup \frac{1}{\lim_{n\to\infty} \sqrt[n]{|a_n|}}}=R$ - **радіус збіжності**. Тоді ряд:

при $|x-x_0| < R$ - збіжний абсолютно

при $|x-x_0| > R$ - розбіжний

при $|x - x_0| = R$ - відповіді нема

Proof.

Скористаємось радикальною ознакою Коші для нашого ряду:

Скористаємось радикальною ознакою Коші д
$$\lim_{n\to\infty} \sqrt[n]{|a_n(x-x_0)|^n} = |x-x_0| \lim_{n\to\infty} \sqrt[n]{|a_n|} = q$$
 Тоді:

При
$$q<1$$
, тобто $|x-x_0|<\frac{1}{\varlimsup\limits_{n\to\infty}\sqrt[n]{|a_n|}}=R$ - збіжний абсолютно

Аналогічно для решти

Corollary 5.3.3 Наслідок із ознаки Даламбера

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд

Нехай
$$\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$$
 - радіус збіжності. Тоді ряд:

при
$$|x-x_0| < R$$
 - збіжний абсолютно

при
$$|x - x_0| > R$$
 - розбіжний

при
$$|x-x_0|=R$$
 - відповіді нема

Proof.

Скористаємось ознакою Даламбера для нашого ряду:

$$\lim_{\substack{n \to \infty \\ \text{Толі:}}} \left| \frac{a_{n+1}(x - x_0)^{n+1}}{a_n(x - x_0)^n} \right| = |x - x_0| \lim_{\substack{n \to \infty \\ \text{Толі:}}} \left| \frac{a_{n+1}}{a_n} \right| = q$$

При
$$q<1$$
, тобто $|x-x_0|<\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ - збіжний абсолютно

Аналогічно для решти

Example 5.3.4 Знайдемо радіус збіжності ряду $\sum_{n=1}^{\infty} 10^n x^n$

Скористаємось теоремою Коші-Адамара

$$R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|10^n|}} = \frac{1}{10}$$

Ще деякі висновки:

при $|x| < \frac{1}{10}$ - збіжний

при $|x| > \frac{1}{10}$ - розбіжний

при $|x| = \frac{1}{10}$ - окрема пісня, але якщо підставити $x = \pm \frac{1}{10}$ в початковий ряд, то він буде розбіжним

Example 5.3.5 Дослідити на збіжність $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n!}} x^n$

Використаємо наслідок

$$R = \lim_{n \to \infty} \frac{n^2 \sqrt{(n+1)!}}{\sqrt{n!}(n+1)^2} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^2 \sqrt{n+1} = +\infty$$

I такий радіус буває ;)

Тоді $|x|<\infty$, або інакше $\forall x\in\mathbb{R}$: ряд - збіжний

Theorem 5.3.6 Теорема Абеля

Задано
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 - степеневий ряд

Тоді ряд - рівномірно збіжний на будь-якому відрізку із області збіжності $\mathbf{Proof.}$

Зафіксуємо довільний відрізок [a,b]

1.
$$[a, b] \subset (x_0 - R, x_0 + R)$$

Зафіксуємо число $M = \max\{|x_0 - a|, |x_0 - b|\}$

Звідси $\forall x \in [a, b] : |x - x_0| < M < R$, а тому

$$|a_n(x-x_0)^n| < |a_n|M^n$$

Розглянемо ряд $\sum_{n=0}^{\infty} a_n M^n$

$$\lim_{n \to \infty} \sqrt[n]{|a_n| M^n} = M \lim_{n \to \infty} \sqrt[n]{|a_n|} < R \lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$$

Отже, цей ряд - збіжний

Тоді за ознакою Вейерштраса, степеневий ряд - збіжний рівномірно на $\left[a,b\right]$

2.
$$[a,b] \subset [x_0,x_0+R]$$

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} a_n R^n \left(\frac{x - x_0}{R} \right)^n$$

Розглянемо випадок, коли ряд $\sum_{n=0}^{\infty} a_n R^n$ - збіжний

Тоді дослідимо ряд $\sum_{n=0}^{\infty} a_n R^n (x-x_0)^n$ за ознакою Абеля:

$$f_n(x) = a_n R^n$$

$$g_n(x) = \left(\frac{x - x_0}{R}\right)^n$$

Домовились, що $\sum_{n=0}^{\infty} f_n(x)$ - збіжний, причому рівномірно, оскільки не

залежить від x

Послідовність $\left\{g_n(x) = \left(\frac{x-x_0}{R}\right)^n, n \ge 1\right\}$ - рівномірно обмежена, оскільки

$$\forall x \in [a, b] \subset [x_0, x_0 + R] : |x - x_0| \le R \Rightarrow \forall n \ge 1 : \left| \frac{x - x_0}{R} \right|^n \le 1$$

А також послідовність є монотонною, тому що $\frac{x-x_0}{R} < 1$

Отже, за Абелем-Діріхле, ряд - рівномірно збіжний на [a,b]

Аналогічно, коли
$$[a,b]\subset [x_0-R,x_0]$$
 та $\sum_{n=0}^\infty a_n(-R)^n$ - збіжний \blacksquare

Theorem 5.3.7 Степеневий ряд
$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$\in C([x_0 - R, x_0 + R])$$

Proof.

Візьмемо якусь точку x_* з області збіжності

Нехай відрізок $[a,b]\ni x_*$. Якщо $x_*\neq x_0-R, x_*\neq x_0+R,$ то беремо відрізок $(a,b)\ni x_*$

На відрізку [a,b] ряд - збіжний рівномірно за теоремою Абеля, члени ряду - неперервні функції. Отже, за **Th. 5.2.1.**, $S(x) \in C([a,b]) \Rightarrow S(x) \in C(\{x_*\})$

Оскільки т. x_* була довільною, то одразу $S(x) \in C([x_0 - R, x_0 + R])$

Theorem 5.3.8 Степеневий ряд
$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 $\in R([x_0 - R, x_0 + R])$

$$\int_{a}^{b} \sum_{n=0}^{\infty} a_n (x - x_0)^n dx = \sum_{n=0}^{\infty} \int_{a}^{b} a_n (x - x_0)^n dx$$

Proof.

За теоремою Абеля, на [a,b] із області збіжності ряд - рівномірно збіжний, а тоді за **Th. 5.2.2.**, $S(x) \in D([a,b])$

$$\int_{a}^{b} \sum_{n=0}^{\infty} a_n (x - x_0)^n dx = \sum_{n=0}^{\infty} \int_{a}^{b} a_n (x - x_0)^n dx \blacksquare$$

Theorem 5.3.9 Степеневий ряд
$$S(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

диференційований на $[x_0 - R, x_0 + R]$

$$\left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right)' = \sum_{n=1}^{\infty} a_n \cdot n(x - x_0)^{n-1}$$

Proof.

Розглянемо ряд
$$\sum_{n=1}^{\infty} a_n \cdot n(x-x_0)^{n-1}$$

Радіус збіжності збігається, оскільки

$$\frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{n|a_n|}} = \frac{1}{\overline{\lim_{n \to \infty}} \sqrt[n]{|a_n|}} = R$$

Візьмемо якусь точку x_* з області збіжності

Нехай відрізок $[a,b] \ni x_*$

На відрізку [a, b] ряд - збіжний рівномірно за теоремою Абеля. Використаємо далі **Th. 5.2.3.**

- 1) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ збіжний принаймні в одній точці
- 2) Всі члени ряду неперервно-диференційовані функції
- $a_n \cdot n(x-x_0)^{n-1}$ рівномірно збіжний на [a,b]

Отже, S(x) - диференційований на [a,b], зокрема і в т. x_*

Оскільки т. x_* була довільною, то одразу S(x) - диференційований в $[x_0-R,x_0+R]$

Тому дійсно,
$$S'(x) = \sum_{n=1}^{\infty} n(x-x_0)^{n-1} \blacksquare$$

5.4 Зв'язок з Тейлором

Theorem 5.4.1 Теорема Тейлора

Задана функція f, така, що:

1)
$$f(x) \in C^{(\infty)}((x_0 - R, x_0 + R)), x_0 \in \mathbb{R}$$

2)
$$\exists M \in \mathbb{R} : \forall n \geq 1 : \forall x \in (x_0 - R, x_0 + R) : |f^{(n)}(x)| \leq M^n$$

Тоді $\forall x \in (x_0 - R, x_0 + R)$ функція розкладується в ряд Тейлора

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Якщо
$$\begin{bmatrix} R < \infty \\ R = \infty \end{bmatrix}$$
 то ряд рівномірно збігається на $\begin{bmatrix} (x_0 - R, x_0 + R) \\ [x_0 - R_0, x_0 + R_0] \end{bmatrix}$, причому $\forall R_0 \in \mathbb{R}$

Proof.

Розкладемо функцію в ряд Тейлора за остачею Лагранжа:

$$f(x) = \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1}$$

Тоді маємо, що:

$$\left| f(x) - \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| = \left| \frac{f^{(k+1)}(c)}{(k+1)!} (x - x_0)^{k+1} \right| \le \frac{M^{k+1}}{(k+1)!} r^{k+1}$$

Розглянемо тепер ряд
$$\sum_{k=0}^{\infty} \frac{M^{k+1}}{(k+1)!} r^{k+1}$$

За ознакою Даламбера,
$$\lim_{k\to\infty}\frac{a_{k+1}}{a_k}=\lim_{k\to\infty}\frac{Mr}{k+2}=0<1$$

Цей ряд є збіжним. Отже,
$$\lim_{k\to\infty} a_k = \lim_{k\to\infty} \frac{M^{k+1}}{(k+1)!} r^{k+1} = 0$$

Звідси випливає, що

$$\sup_{x \in (x_0 - R, x_0 + R)} \left| f(x) - \sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \right| \le \frac{M^{k+1}}{(k+1)!} r^{k+1} \to 0, \ k \to \infty$$

Отримали:
$$\sum_{n=0}^{k} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \to^{\rightarrow} f, \ k \to \infty$$

Таким чином,
$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
 - збіжний ріномірно на $(x_0 - R, x_0 + R)$

Theorem 5.4.2 Степеневий ряд задається єдиним чином Proof.

Інакше кажучи, доведемо, що якщо
$$\sum_{n=0}^{\infty} a_n (x-x_0)^n, \sum_{n=0}^{\infty} b_n (x-x_0)^n$$
 мають

одне значення на
$$(x_0 - \varepsilon, x_0 + \varepsilon)$$
, то $\forall n \geq 0 : a_n = b_n$ $S(x_0) = a_0 = b_0$ $S'(x_0) = \sum_{n=1}^{\infty} a_n \cdot n(x - x_0)^{n-1} = \sum_{n=1}^{\infty} b_n \cdot n(x - x_0)^{n-1}$ $\Rightarrow S'(x_0) = a_1 = b_1$ $S''(x_0) = \sum_{n=2}^{\infty} a_n \cdot n(n-1)(x - x_0)^{n-2} = \sum_{n=2}^{\infty} b_n \cdot n(n-1)(x - x_0)^{n-2}$ $\Rightarrow S''(x_0) = a_2 = b_2$

Таким чином, $\forall n \geq 0 : a_n = b_n$

Corollary 5.4.3 Ряд Тейлора для суми степеневого ряду співпадають с самим степеневим рядом на області збіжності

Основні розклади рядів

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, x \in \mathbb{R}$$

$$\sin x = \sum_{m=0}^{\infty} (-1)^{m} \frac{x^{2m+1}}{(2m+1)!}, x \in \mathbb{R}$$

$$\cos x = \sum_{m=0}^{\infty} (-1)^{m} \frac{x^{2m}}{(2m)!}, x \in \mathbb{R}$$

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{n}, |x| < 1$$

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{\infty} \frac{\alpha(\alpha-1)\dots(\alpha-(n-1))}{n!}, |x| < 1$$

Зазвичай коли нам видають якусь функцію, яку треба розкласти в Тейлора, ми керуємось вже цими готовими формулами

Доведу лише розклад Тейлора для першого Функція $f(x) = e^x \in C^{(\infty)}(\mathbb{R})$, встановимо $x_0 = 0$ та зафіксуємо RЗнайдемо таке M, щоб $\forall x \in (-R,R): |f^{(n)}(x)| = |e^x| = e^x \le M^n$ $e^x \le e^R \le M^n \Rightarrow M \ge \sqrt[n]{e^R}$

Якщо $M=e^{\frac{R}{n}}$, то тоді теорема Тейлора виконується А оскільки це для фіксованого R, то тоді й $\forall R < \infty$

Example 5.4.4 Розкласти в ряд Тейлора функцію $f(x) = \frac{1}{x^2 - x - 2}$ за степенями х

Якщо тут за степенями x, то тоді $x_0 = 0$

А далі розпишемо цю функцію інакше

$$f(x) = \frac{1}{x^2 - x - 2} = \frac{1}{(x+1)(x-2)} = \frac{1}{3} \frac{1}{x-2} - \frac{1}{3} \frac{1}{x+1}$$

Розберімося з кожним дрібом окремо

$$\frac{1}{x-2} = -\frac{1}{2} \frac{1}{1-\frac{x}{2}} \stackrel{\frac{x}{2}=t}{=} -\frac{1}{2} \frac{1}{1-t} = -\frac{1}{2} \sum_{n=0}^{\infty} t^n = -\frac{1}{2} \sum_{n=0}^{\infty} \frac{x^n}{2^n} = -\sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}} = -\sum_{n=0}^{\infty} \frac{x^n}{2^n} = -\sum_{n$$

Збігається лише при $|t| < 1 \Rightarrow \left| \frac{x}{2} \right| < 1 \Rightarrow |x| < 2 \frac{1}{x+1} = \frac{1}{1-(-x)} =$

$$\sum_{n=0}^{\infty} (-x)^n = \sum_{n=0}^{\infty} (-1)^n x^n$$

Збігається лише при $|-x| < 1 \Rightarrow |x| < 1$

Причешимо це все в одну купу:

$$f(x) = -\frac{1}{3} \sum_{n=0}^{\infty} \frac{x^n}{2^{n+1}} - \frac{1}{3} \sum_{n=0}^{\infty} (-1)^n x^n = -\frac{1}{3} \sum_{n=0}^{\infty} \left(\frac{1}{2^{n+1}} + (-1)^n \right) x^n$$

Розклад отримали

Збігається лише при
$$\begin{cases} |x| < 2 \\ |x| < 1 \end{cases} \Rightarrow |x| < 1$$

А ви думали, що це все було дуже складно? Ви думали, що це - все?

6 Диференційованість

Для функції із багатьма змінними 6.1

Надалі множина $A \subset \mathbb{R}^m$

Definition 6.1.1 Задана функція $f: A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - гранична точка Функція f називається **диференційованою в т.** \vec{x}^0 , якщо

$$\exists L_1, \dots, L_m \in \mathbb{R} : f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\vec{x}||)$$

Proposition 6.1.2 Задана функція $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - гранична точка

Функція f - диференційована в т. \vec{x}^0 . Тоді вона неперервна в т. \vec{x}^0

$$f$$
 - диференційована в т. \vec{x}^0 , тобто $f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\vec{x}||)$

Або можна це записати інакше:

Або можна це записати інакше:
$$f(\vec{x}) - f(\vec{x}^0) = L_1(x_1 - x_1^0) + \dots + L_m(x_m - x_m^0) + o(||\vec{x} - \vec{x}^0||)$$

$$\Rightarrow \lim_{\vec{x} \to \vec{x}^0} (f(\vec{x}) - f(\vec{x}^0)) \equiv$$

Всі дужки прямують покоординатно до нуля, о-маленьке також, в силу H.M.

$$\equiv 0 \Rightarrow f$$
 - неперервна в т. \vec{x}^0

Definition 6.1.3 Задана функція $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка Частковою похідною функції f в т. x_i називають величину

$$\frac{\partial f}{\partial x_{j}}(x_{1}^{0},\ldots,x_{j}^{0},\ldots,x_{m}^{0}) = \lim_{\Delta x_{j}\to 0} \frac{f(x_{1}^{0},\ldots,x_{j}^{0}+\Delta x_{j},\ldots,x_{m}^{0}) - f(x_{1}^{0},\ldots,x_{j}^{0},\ldots,x_{m}^{0})}{\Delta x_{j}}$$

$$\frac{\partial f}{\partial x_{i}}(x_{1}^{0},\ldots,x_{j}^{0},\ldots,x_{m}^{0}) = L_{j}, j = 1,\ldots,m$$

Definition 6.1.4 Задана функція $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - гранична точка **Градієнтом функції** f в т. \vec{x}^0 називається вектор

$$\nabla f(\vec{x}^0) \stackrel{\text{afo}}{=} \operatorname{grad} f(\vec{x}^0) = \begin{pmatrix} L_1 \\ \vdots \\ L_m \end{pmatrix} = \overrightarrow{L}$$

Похідною функції f в т. \vec{x}^0 називається ковектор

$$\overleftarrow{f}'(\vec{x}^0) = \begin{pmatrix} L_1 & \dots & L_m \end{pmatrix} = \overleftarrow{L}$$

У випадку функції від трьох змін f(x, y, z), градієнт можна розписати таким чином:

$$\operatorname{grad} f(x, y, z) = \frac{\partial f}{\partial x} \vec{i} + \frac{\partial f}{\partial y} \vec{j} + \frac{\partial f}{\partial z} \vec{k}$$

Перепишемо умову диференційованості трохи інакше:

$$f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = \hat{L}_1 \Delta x_1 + \dots + \hat{L}_m \Delta x_m + o(||\vec{x}||) =$$

$$f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\vec{x}||) \equiv$$
Можна згадати лінал: $L_1 \Delta x_1 + \dots + L_m \Delta x_m = \left(\overrightarrow{L} \overrightarrow{\Delta x}\right) = \left(\operatorname{grad} f(\vec{x}^0), \overrightarrow{\Delta x}\right)$

Або так:
$$L_1 \Delta x_1 + \dots + L_m \Delta x_m = \begin{pmatrix} L_1 & \dots & L_m \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \vdots \\ \Delta x_m \end{pmatrix} = \overleftarrow{f}'(\vec{x}^0) \overrightarrow{\Delta x}$$

Продовжимо рівність

Definition 6.1.5 Задана функція $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - гранична точка Диференціалом функції f(x) в т. \vec{x}^0 називається вираз

$$df(\vec{x}^0) = \frac{\partial f(\vec{x}^0)}{\partial x_1} dx_1 + \dots + \frac{\partial f(\vec{x}^0)}{\partial x_m} dx_m$$

За умовою, що $||\overrightarrow{\Delta x}|| \to 0$

Definition 6.1.6 Задана функція $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка \vec{l} також задано вектор \vec{l} , такий, що $||\vec{l}||=1$ - напрямок

Похідною функції f за напрямком \vec{l} в т. \vec{x}^0 називають величину

$$\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t}$$

 ${f Remark}$ 6.1.7 Якщо всі координати вектора $ec{l}$ будуть нулевими, окрім єдиної координати $l_j = 1$, то $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \frac{\partial f}{\partial x_i}(\vec{x}^0)$

Proposition 6.1.8 Задана функція $f:A \to \mathbb{R}, \ \vec{l}$ - напрямок та $\vec{x}^0 \in A$ гранична точка

гранична точка
$$f$$
 - диференційована в т. \vec{x}^0 . Тоді $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \overleftarrow{f}'(\vec{x}^0)\vec{l} = \left(\operatorname{grad} f(\vec{x}^0), \vec{l}\right)$

Proof.

f - диференційована в т. \vec{x}^0 . Тоді

$$f(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = L_1 \Delta x_1 + \dots + L_m \Delta x_m + o(||\vec{x}||)$$
Підставимо $\Delta \vec{x} = t\vec{l}$. Тоді
$$f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0) = \frac{\partial f}{\partial x_1}(\vec{x}^0)tl_1 + \dots + \frac{\partial f}{\partial x_m}(\vec{x}^0)tl_m + o(t||\vec{l}||)$$

$$\Rightarrow \frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \lim_{t \to 0} \frac{f(\vec{x}^0 + t\vec{l}) - f(\vec{x}^0)}{t} = \lim_{t \to 0} \frac{\sum_{j=1}^m \frac{\partial f}{\partial x_j}(\vec{x}^0)tl_j + o(t||\vec{l}||)}{t} =$$

$$= L_1 l_1 + \dots + L_m l_m = \overleftarrow{f}'(\vec{x}^0)\vec{l} = \left(\operatorname{grad} f(\vec{x}^0), \vec{l}\right) \blacksquare$$

Theorem 6.1.9 $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0)$ приймає за модулем:

- тах, якщо $\vec{l} \parallel \operatorname{grad} \vec{f}(\vec{x}^0)$

- min, якщо $\vec{l} \perp \operatorname{grad} \vec{f}(\vec{x}^0)$

Proof.

Згадаємо нерівність Коші-Буняковського: $|(\vec{a}, \vec{b})| \leq ||\vec{a}|| \cdot ||\vec{b}||$

Із попереднього твердження, $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0) = \left(\operatorname{grad} f(\vec{x}^0), \vec{l}\right)$. Тоді

$$\left| \left(\operatorname{grad} f(\vec{x}^0), \vec{l} \right) \right| \le \left| \left| \operatorname{grad} f(\vec{x}^0) \right| \right| \cdot \left| \left| \vec{l} \right| \right|$$

Якщо $\vec{l} \parallel \operatorname{grad} \vec{f}(\vec{x}^0)$, то тоді $\exists \lambda \in \mathbb{R} : \operatorname{grad} f(\vec{x}^0) = \lambda \vec{l}$

$$\Rightarrow \left| (\vec{l}, \lambda \vec{l}) \right| = \lambda ||\vec{l}||^2 \le \lambda ||\vec{l}||^2$$

Отже, $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0)$ приймає тах значення

Якщо $\vec{l}\perp \operatorname{grad} \vec{f}(\vec{x}^0)$, то тоді $\left(\operatorname{grad} f(\vec{x}^0),\vec{l}\right)=0$ - найменше значення за модулем

Отже, $\frac{\partial f}{\partial \vec{l}}(\vec{x}^0)$ приймає min значення

Example 6.1.10 Маємо функцію $f(x,y) = x^3y - x^2y^5$. Знайдемо його диференціал

Диференціал для функції від двох змінних визначається так:

$$df(x,y) = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

Знайдемо всі часткові похідні

$$\frac{\partial f}{\partial x} = 3x^2y - 2xy^5 \qquad \frac{\partial f}{\partial y} = x^3 - 5x^2y^4$$

Отже, $df(x,y) = (3x^2y - 2xy^5) dx + (x^3 - 5x^2y^4) dy$

6.2 Для векторнозначних функцій

Definition 6.2.1 Задана функція $\vec{f}: A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - гранична точка Функція \vec{f} називається **диференційованою в т.** \vec{x}^0 , якщо

$$\exists M \in Mat(m \times k) : \vec{f}(\vec{x}^0 + \Delta \vec{x}) - f(\vec{x}^0) = M\Delta \vec{x} + \vec{o}(||\vec{x}||)$$

Дізнаємось, що це за матриця
$$M = \begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{k1} & \dots & M_{km} \end{pmatrix}$$

$$\begin{pmatrix} f_1(\vec{x}^0 + \Delta \vec{x}) \\ \vdots \\ f_k(\vec{x}^0 + \Delta \vec{x}) \end{pmatrix} - \begin{pmatrix} f_1(\vec{x}^0) \\ \vdots \\ f_k(\vec{x}^0) \end{pmatrix} = \begin{pmatrix} M_{11} & \dots & M_{1m} \\ \vdots & \ddots & \vdots \\ M_{k1} & \dots & M_{km} \end{pmatrix} \begin{pmatrix} \Delta x_1 \\ \vdots \\ \Delta x_m \end{pmatrix} + \begin{pmatrix} o(||\Delta \vec{x}||) \\ \vdots \\ o(||\Delta \vec{x}||) \end{pmatrix}$$
 Із цієї рівності випливає, що $\forall j = 1, \dots, k$:
$$f_j(\vec{x}^0 + \Delta \vec{x}) - f_j(\vec{x}^0) = M_{j1}\Delta x_1 + \dots + M_{jm}\Delta x_m + o(||\vec{x}||)$$

Тоді звідси випливає, що:

$$M_{j1} = \frac{\partial f_j}{\partial x_1}(\vec{x}^0), \dots, M_{jm} = \frac{\partial f_j}{\partial x_m}(\vec{x}^0)$$

В результаті отримаємо ось такий вигляд матриці:

$$M=egin{pmatrix} \dfrac{\partial f_1}{\partial x_1} & \cdots & \dfrac{\partial f_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \dfrac{\partial f_k}{\partial x_1} & \cdots & \dfrac{\partial f_k}{\partial x_m} \end{pmatrix}(\vec{x}^0)=J(x)=\vec{f'}(\vec{x}^0)$$
 - матриця Якобі

Proposition 6.2.2 Задана функція $\vec{f}:A \to \mathbb{R}^k$ та $\vec{x}^0 \in A$ - гранична точка

Функція \vec{f} - диференційована в т. \vec{x}^0 . Тоді вона неперервна в т. \vec{x}^0 **Proof.**

$$\lim_{\vec{x} \to \vec{x}^0} \left(M(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||) \right) = 0 \blacksquare$$

6.3 Властивості

Надалі множина $A \subset \mathbb{R}^m$

Theorem 6.3.1 Достатня умова диференційованості

Задана функція $f:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - гранична точка

Відомо, що $\exists \varepsilon > 0: \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): \forall j=1,\ldots,m: \exists \frac{\partial f}{\partial x_j}(\vec{x}^0)$ - неперервна в т. \vec{x}^0 . Тоді функція f - диференційована в т. \vec{x}^0

Proof.

Ми будемо доводити, коли m=2. Для більших аргументів - аналогічно, але більш технічна справа

Отже, дано
$$f(x,y)$$
 та в околі т. (x_0,y_0) існують часткові похідні $\frac{\partial f}{\partial x}(x_0,y_0)$

та
$$\frac{\partial f}{\partial y}(x_0,y_0)$$
 - ще й неперервні

$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0) =$$

$$= f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) + f(x_0 + \Delta x, y_0) - f(x_0, y_0) =$$

Позначу $h(t) = f(x_0 + \Delta x, y_0 + t), t \in [0, \Delta y]$

Тоді
$$f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0 + \Delta x, y_0) = h(\Delta y) - h(0)$$

 $h \in C([0, \Delta y])$, а також диференційована на $(0, \Delta y)$. Тоді за Лагранжом $h(\Delta y) - h(0) = h'(c_1)\Delta y, c_1 \in (0, y)$

$$h'(t) = f'_t(x_0 + \Delta x, y_0 + t) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + t)$$

$$\Rightarrow h(\Delta y) - h(0) = \frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y$$

Аналогічно $g(s) = f(x_0 + s, y_0), s \in [0, \Delta x]$

Тоді
$$f(x_0 + \Delta x, y_0) - f(x_0, y_0) = g(\Delta x) - g(0) \stackrel{\text{Лагранжа}}{=} g'(c_2) \Delta x = \frac{\partial f}{\partial x} (x_0 + c_2, y_0) \Delta x, c_2 \in (0, \Delta x)$$

Повертаємось до нашої рівності

Лишилось довести, що

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) =$$

$$o(||(\Delta x, \Delta y)||) \atop \Delta x \to 0 \quad \Delta y \to 0$$

Маємо:

$$(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) =$$

$$= \left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1)\Delta y + \frac{\partial f}{\partial x}(x_0 + c_2, y_0)\Delta x\right) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right)$$

$$= \left(\frac{\partial f}{\partial x}(x_0 + c_2, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)\right) \Delta x + \left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1) - \frac{\partial f}{\partial y}(x_0, y_0)\right) \Delta y$$

Якщо $\Delta x \to 0, \Delta y \to 0$, то звідси $c_1 \to 0, c_2 \to 0$ та за умовою того, що

часткові похідні є неперервними, маємо:

$$\left(\frac{\partial f}{\partial x}(x_0 + c_2, y_0) - \frac{\partial f}{\partial x}(x_0, y_0)\right) \stackrel{\text{позн}}{=} \alpha \to 0$$

$$\left(\frac{\partial f}{\partial y}(x_0 + \Delta x, y_0 + c_1) - \frac{\partial f}{\partial y}(x_0, y_0)\right) \stackrel{\text{\tiny{IIO3H}}}{=} \beta \to 0$$

 $|\alpha\Delta x+\beta\Delta y|\stackrel{\text{Коші-Бун.}}{\leq}||(\alpha,\beta)||\cdot||(\Delta x,\Delta y)||=o(||(\Delta x,\Delta y)||)$ - можна перевірити за лімітом $\Rightarrow \alpha\Delta x+\beta\Delta y=o(||(\Delta x,\Delta y)||)$

Остаточно отримуємо:

$$\left(f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)\right) - \left(\frac{\partial f}{\partial x}(x_0, y_0)\Delta x + \frac{\partial f}{\partial y}(x_0, y_0)\Delta y\right) = o\left(\left|\left(\Delta x, \Delta y\right)\right|\right) \blacksquare \\
\Delta x \to 0 \quad \Delta y \to 0$$

Example 6.3.2 Приклад функції, що має часткові похідні, але не диференційована

Задано функцію $f(x,y) = \sqrt[3]{xy}$ та точку $(x_0,y_0) = (0,0)$

Знайдемо часткові похідні

$$\frac{\partial f}{\partial x} = \frac{\sqrt[3]{y}}{3\sqrt[3]{x^2}} \qquad \qquad \frac{\partial f}{\partial y} = \frac{\sqrt[3]{x}}{3\sqrt[3]{y^2}}$$

Проблема в них - це те, що в т. (0,0) вони НЕ є неперервними, бо границь не існує

Проте ми можемо знайти часткові похідні в т. (0,0)

$$\frac{\partial f}{\partial x}(0,0) = \lim_{\Delta x \to 0} \frac{\sqrt[3]{(0 + \Delta x)0} - \sqrt[3]{0 \cdot 0}}{\frac{\Delta x}{\Delta y}} = 0$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{\Delta y \to 0} \frac{\sqrt[3]{0(0 + \Delta y)} - \sqrt[3]{0 \cdot 0}}{\Delta y} = 0$$

Перевіримо тоді на диференційованість, тобто треба виконання рівності

$$f(0 + \Delta x, 0 + \Delta y) - f(0, 0) = \frac{\partial f}{\partial x}(0, 0)\Delta x + \frac{\partial f}{\partial y}(0, 0)\Delta y + o(||(\Delta x, \Delta y)||)$$

Тобто це буде

$$\sqrt[3]{\Delta x \Delta y} = o(\sqrt{\Delta x^2 + \Delta y^2})$$

Звідси випливає, що
$$\lim_{\Delta x, \Delta y \to 0} \frac{\sqrt[3]{\Delta x \Delta y}}{\sqrt{\Delta x^2 + \Delta y^2}} = 0$$

Але це неправда, тому що з іншого боку

Але це неправда, тому що з іншого боку
$$\lim_{\Delta x, \Delta y \to 0} \frac{\sqrt[3]{\Delta x \Delta y}}{\sqrt{\Delta x^2 + \Delta y^2}} \equiv$$
 Заміна: $\Delta x = \rho \cos \varphi$ $\Delta y = \rho \sin \varphi$, тоді $\rho \to 0$
$$\equiv \lim_{\rho \to 0} \frac{\sqrt[3]{\rho^2} \sqrt[3]{\cos \varphi \sin \varphi}}{\rho} = \lim_{\rho \to 0} \frac{\sqrt[3]{\cos \varphi \sin \varphi}}{\rho} \neq 0$$

Тому не можна казати за диференційованість

Proposition 6.3.3 Задані функції $f,g:A \to \mathbb{R}$ та $\vec{x}^0 \in A$ - гранична

точка

f, g - диференційовані в т. \vec{x}^0 . Тоді:

- 1) αf диференційована в т. \vec{x}^0 , $\forall \alpha \in \mathbb{R}$, похідна $(\alpha f)'(\vec{x}^0) = \alpha f'(\vec{x}^0)$
- 2) f+g диференційована в т. \vec{x}^0 , похідна $(f+g)'(\vec{x}^0) = f'(\vec{x}^0) + g'(\vec{x}^0)$ 3) fg диференційована в т. \vec{x}^0 , похідна $(fg)'(\vec{x}^0) = f'(\vec{x}^0)g(\vec{x}^0) + f(\vec{x}^0)g'(\vec{x}^0)$

Proof.

2)
$$f(\vec{x}) + g(\vec{x}) - [f(\vec{x}^0) + g(\vec{x}^0)] = [f(\vec{x}) - f(\vec{x}^0)] + [g(\vec{x}) - g(\vec{x}^0)] = f'(\vec{x}^0)(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||) + g'(\vec{x}^0)(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||) = (f'(\vec{x}^0) + g'(\vec{x}^0))(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||) = (f'(\vec{x}^0) + g'(\vec{x}^0))(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||)$$

3)
$$f(\vec{x})g(\vec{x}) - f(\vec{x}^0)g(\vec{x}^0) = f(\vec{x})g(\vec{x}) - f(\vec{x}^0)g(\vec{x}) + f(\vec{x}^0)g(\vec{x}) - f(\vec{x}^0)g(\vec{x}^0) = [f(\vec{x}) - f(\vec{x}^0)]g(\vec{x}) + [g(\vec{x}) - g(\vec{x}^0)]f(\vec{x}^0) = [f'(\vec{x}^0)(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||)]g(\vec{x}) + [g'(\vec{x}^0)(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||)]f(\vec{x}^0) =$$
Коли $\vec{x} \to \vec{x}^0$, то звідси $g(\vec{x}) \to g(\vec{x}^0)$. Тоді функція g є обмеженою $= [f'(\vec{x}^0)(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||)]g(\vec{x}^0) + [g'(\vec{x}^0)(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||)]f(\vec{x}^0) = [f'(\vec{x}^0)g(\vec{x}^0) - g'(\vec{x}^0)f(\vec{x}^0)[\vec{x} - \vec{x}^0] + o(||\vec{x} - \vec{x}^0||)$

1) Зрозуміло

Proposition 6.3.4 Задані функції $\vec{g}: A \to B$ та $f: B \to \mathbb{R}$, де $A \subset \mathbb{R}^k, B \subset \mathbb{R}^n$

 $ec{g}$ - диференційована в т. $ec{x}^0$ та f - диференційована в т. $ec{g}(ec{x}^0) = ec{y}^0$ Тоді фунцкія $h:A \to \mathbb{R}$ - диференційована в т. \vec{x}^0 , а також

$$\frac{\overleftarrow{h'}(\vec{x}^0) = \overleftarrow{f'}(\vec{y}^0)g'(\vec{x}^0)}{\frac{\partial h}{\partial x_j}(\vec{x}^0) = \frac{\partial f}{\partial y_1}(\vec{y}^0)\frac{\partial g_1}{\partial x_j}(\vec{x}^0) + \dots + \frac{\partial f}{\partial y_n}(\vec{y}^0)\frac{\partial g_n}{\partial x_j}(\vec{x}^0), j = 1, \dots, k$$
Proof.

За означенням диференційованості, маємо

$$h(\vec{x}) - h(\vec{x}^0) = f(\vec{g}(\vec{x})) - f(\vec{g}(\vec{x}^0)) =$$

Тимчасово позначу $\vec{y} = \vec{g}(\vec{x})$

$$= f(\vec{y}) - f(\vec{y}^0) = \overleftarrow{f'}(\vec{y}^0)(\vec{y} - \vec{y}^0) + o(||\vec{y} - \vec{y}^0||) \equiv$$
Маємо $\vec{y} - \vec{y}^0 = \vec{g}(\vec{x}) - \vec{g}(\vec{x}^0) = g'(\vec{x}^0)(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||)$

Тобто
$$\overleftarrow{h'}(\vec{x}^0) = \overleftarrow{f'}(\vec{y}^0)g'(\vec{x}^0)$$

А тепер розпишемо це більш детально

$$\frac{\overleftarrow{h'}(\vec{x}^0) = \overleftarrow{f'}(\vec{y}^0)g'(\vec{x}^0) = \left(\frac{\partial f}{\partial y_1}(\vec{y}^0) \dots \frac{\partial f}{\partial y_n}(\vec{y}^0)\right) \begin{pmatrix} \frac{\partial g_1}{\partial x_1}(\vec{x}^0) \dots \frac{\partial g_1}{\partial x_k}(\vec{x}^0) \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n}{\partial x_1}(\vec{x}^0) \dots & \frac{\partial g_n}{\partial x_k}(\vec{x}^0) \end{pmatrix} = \begin{pmatrix} \frac{\partial f}{\partial y_1}(\vec{y}^0)\frac{\partial g_1}{\partial x_1}(\vec{x}^0) + \dots + \frac{\partial f}{\partial y_n}(\vec{y}^0)\frac{\partial g_n}{\partial x_1}(\vec{x}^0) \\ \vdots & \vdots \\ \frac{\partial f}{\partial y_1}(\vec{y}^0)\frac{\partial g_1}{\partial x_k}(\vec{x}^0) + \dots + \frac{\partial f}{\partial y_n}(\vec{y}^0)\frac{\partial g_n}{\partial x_k}(\vec{x}^0) \end{pmatrix}^T = \begin{pmatrix} \frac{\partial h}{\partial x_1}(\vec{x}^0) \\ \vdots \\ \frac{\partial h}{\partial x_k}(\vec{x}^0) \end{pmatrix}^T$$

Якщо порівняти кожну координату цієї рівності, то отримаємо бажане

Example 6.3.5 Знайти часткові похідні складеної функції h(x,y) = f(x+y,xy)

Позначу
$$\xi = x + y$$
 та $\eta = xy$ Тут $\vec{g}(x,y) = \begin{pmatrix} x+y \\ xy \end{pmatrix} = \begin{pmatrix} \xi \\ \eta \end{pmatrix}$ За

попередньою теоремою, маємо

$$\frac{\partial h}{\partial x} = \frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial x} = \frac{\partial f}{\partial \xi} + y \frac{\partial f}{\partial \eta}$$

$$\frac{\partial h}{\partial y} = \frac{\partial f}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial f}{\partial \eta} \frac{\partial \eta}{\partial y} = \frac{\partial f}{\partial \xi} + x \frac{\partial f}{\partial \eta}$$

Готово. Тобто $\frac{\partial f}{\partial \mathcal{E}}$, $\frac{\partial f}{\partial n}$ так й залишаються, тому що ми не маємо явної функції f

6.4 Дотична площина, нормальна пряма

В підрозділі 6.4 та 6.6 ми задамо функцію $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ гранична точка, стосується для всіх означень та теорем Також задамо таку поверхню

$$\Pi = {\vec{x}, z} : z = f(\vec{x})$$

Площина в \mathbb{R}^{n+1} , що проходить через т. $(\vec{x}^0, z^0 = f(\vec{x}^0))$, задається таким меннянаід

$$z = z^0 + K_1(x_1 - x_1^0) + \dots + K_n(x_n - x_n^0) \qquad K_1, \dots, K_n \in \mathbb{R}$$

Definition 6.4.1 Дотичною площиною до поверхні Π в т. \vec{x}^0 називається площина в \mathbb{R}^{n+1} , що проходить через т. $(\vec{x}^0, z^0 = f(\vec{x}^0))$, для якої виконана рівність

$$z - f(\vec{x}) = o(||\vec{x} - \vec{x}^0||), \vec{x} \to \vec{x}^0$$

Theorem 6.4.2 Поверхня П має дотичну площину в т. $\vec{x}^0 \iff f$ - диференційована в т. \vec{x}^0 , а також

$$K_j = \frac{\partial f}{\partial x_j}(\vec{x}^0), j = \overline{1, n}$$

Вправа: довести

Тоді дотична площина задається таким рівнянням:

$$z - f(\vec{x}^0) = \frac{\partial f}{\partial x_1}(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(x_n - x_n^0)$$

Definition 6.4.3 Нормальною прямою до поверхні Π в т. \vec{x}^0 називається пряма в \mathbb{R}^{n+1} , що проходить через т. $(\vec{x}^0, z^0 = f(\vec{x}^0))$ та перпендикулярна до дотичної площини

Вектор нормалі дотичної площини $\vec{N} = \left(\frac{\partial f}{\partial x_1}(\vec{x}^0), \dots, \frac{\partial f}{\partial x_n}(\vec{x}^0), -1\right)$. Тоді це буде напрямним вектором для нормалі прямої. Тоді нормальна пряма задається таким рівнянням:

$$\frac{x_1 - x_1^0}{\frac{\partial f}{\partial x_1}(\vec{x}^0)} = \dots = \frac{x_n - x_n^0}{\frac{\partial f}{\partial x_n}(\vec{x}^0)} = \frac{z - z^0}{-1}$$

Випадок \mathbb{R}^3

Маємо функцію $f:A\to\mathbb{R}$ та граничну точку $(x_0,y_0)\in A$ z=f(x,y) Дотична площина

$$z - f(x_0, y_0) = \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Нормальна пряма

$$\frac{x - x_0}{\frac{\partial f}{\partial x}(x_0, y_0)} = \frac{y - y_0}{\frac{\partial f}{\partial y}(x_0, y_0)} = \frac{z - f(x_0, y_0)}{-1}$$

Червона - дотична, а паличка - нормаль

Example 6.4.4 Знайдемо дотичну площину та нормальну пряму до поверхні $z = \sqrt{x^2 + y^2} - xy$ в т. (3,4)

Маємо:

$$z(3,4) = -7$$

$$\frac{\partial z}{\partial x}(3,4) = \frac{x}{\sqrt{x^2 + y^2}} - y\Big|_{(3,4)} = \frac{-17}{5}$$

$$\frac{\partial z}{\partial y}(3,4) = \frac{y}{\sqrt{x^2 + y^2}} - x\Big|_{(3,4)} = \frac{-11}{5}$$

Отримаємо тоді рівняння дотичної

$$17(x-3) + 11(y-4) + 5(z+7) = 0$$

$$\frac{x-3}{17} = \frac{y-4}{11} = \frac{z+7}{5}$$

та нормальної прямої $\frac{x-3}{17} = \frac{y-4}{11} = \frac{z+7}{5}$ Якщо хочете малюнків, рекомендую набити функцію, дотичну площину та нормаль пряму в Geogebra3D

Приблизне обчислення 6.5

$$z-f(\vec{x})=o(||\vec{x}-\vec{x}^0||)$$
 Якщо \vec{x}_0 близлький до \vec{x} , тобто $||\vec{x}-\vec{x}^0||<<1$, то тоді $f(\vec{x})-z\approx 0$

$$\Rightarrow f(\vec{x}) \approx z^0 + \frac{\partial f}{\partial x_1}(\vec{x}^0)(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)(x_n - x_n^0)$$

Example 6.5.1 Приблизно обчислити $\sqrt{(2.03)^2 + 5e^{0.02}}$

Розглянемо функцію $z = \sqrt{x^2 + 5e^y}$

В нашому випадку, $(x_0, y_0) = (2, 0)$ та (x, y) = (2.03, 0.02)

Оскільки $||(x-x_0,y-y_0)|| = ||(0.03,0.02)|| << 1$, то можна користуватися формулою

$$z \approx z_0 + \frac{\partial f}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0)(y - y_0)$$

Спочатку
$$z_0 = \sqrt{2^2 + 5e^0} = 3$$

$$\frac{\partial z}{\partial x}(2,0) = \frac{x}{\sqrt{x^2 + 5e^y}}\Big|_{(0,2)} = \frac{2}{3}$$

Спочатку
$$z_0 = \sqrt{2^2 + 5e^0} = 3$$

$$\frac{\partial z}{\partial x}(2,0) = \frac{x}{\sqrt{x^2 + 5e^y}}\Big|_{(0,2)} = \frac{2}{3}$$

$$\frac{\partial z}{\partial y}(2,0) = \frac{5e^y}{2\sqrt{x^2 + 5e^y}}\Big|_{(0,2)} = \frac{5}{6}$$

$$z = \sqrt{(2.03)^2 + 5e^{0.02}} \approx 3 + \frac{2}{3}0.03 + \frac{5}{6}0.02 = \frac{101}{30}$$

Дотична пряма, нормаль площини кривої 6.6

Definition 6.6.1 Кривою в просторі \mathbb{R}^n задається таким рівнянням

$$\vec{x} = \vec{x}(t), t \in (a, b)$$

Прямою в просторі \mathbb{R}^n задається таким рівнянням

$$\vec{x} = s\vec{l} + \vec{x}^0, s \in \mathbb{R}$$

Definition 6.6.2 Дотичною до кривої $\vec{x} = \vec{x}(t)$ називається пряма

$$\vec{x}(t) - \vec{x}^0 = (t - t_0)\vec{l} + o(t - t_0), t \to t_0$$

Theorem 6.6.3 Пряма $\vec{x} = s\vec{l} + \vec{x}^0$ - дотична до кривої $\vec{x} = \vec{x}(t) \iff \vec{x}(t)$ - диференційована в т. t_0 , а також $\vec{l} = \vec{x}'(t_0)$ Вправа: довести

Тоді дотична пряма задається рівнянням:

$$\vec{x} = s \cdot \vec{x}'(t_0) + \vec{x}^0, s \in \mathbb{R}$$

Напрямний вектор прямої $\vec{l} = (x_1'(t_0), \dots, x_n'(t_0))$

Тоді це буде нормальним вектором для нормалі плоищини

Тоді нормальна площина задається таким рівнянням:

$$x'_1(t_0)(x_1-x_1^0)+\cdots+x'_n(t_0)(x_n-x_n^0)=0$$

Випадок \mathbb{R}^3

Маємо криву
$$\begin{cases} x = x(t) \\ y = y(t) \\ z = z(t) \end{cases}, t \in (a,b)$$

Дотична пряма

$$\begin{cases} x = sx'(t_0) + x_0 \\ y = sy'(t_0) + y_0 \\ z = sz'(t_0) + z_0 \end{cases}, s \in \mathbb{R}$$

Нормальна площина

$$x'(t_0)(x - x_0) + y'(t_0)(y - y_0) + z'(t_0)(z - z_0) = 0$$

6.7 Неявно задані функції

Remark 6.7.1 Приклад для розуміння

Задано рівняння кола на площині \mathbb{R}^2

$$x^2 + y^2 - 1 = 0$$

Ми хочемо знайти дотичні в якійсь т. x_0 . Тут виникає неявність, якщо виразити $y=\pm\sqrt{1-x^2}$. А бувають приклади й набагато гірше, де y виразити явно зовсім неможна

$$\sin(xy) + 2x - y = 0$$

Але намалювати її я можу, тому я хочу дотичну. Що робити

Саме тому розглядають рівняння F(x,y)=0, де F - **неявна функція**

Theorem 6.7.2 Задана неявна функція $F: U(x_0, y_0) \to \mathbb{R}$, де U - окіл т. (x_0, y_0) . Відомо, що виконуються такі умови

- 1) $F(x_0, y_0) = 0$
- $2) \frac{\partial F}{\partial y}(x_0, y_0) \neq 0$
- 3) $F \in C^{(m)}(U(x_0, y_0))$

Тоді справедливо наступне:

- I) $\exists \delta_1, \delta_2 > 0 : (x_0 \delta_1, x_0 + \delta_1) \times (y_0 \delta_2, y_0 + \delta_2) \subset U(x_0, y_0)$
- II) $\exists f: (x_0 \delta_1, x_0 + \delta_1) \to (y_0 \delta_2, y_0 + \delta_2)$, така, що $f \in C^{(m)}((x_0 \delta_1, x_0 + \delta_1))$ та

$$(x,y) \in (x_0 - \delta_1, x_0 + \delta_1) \times (y_0 - \delta_2, y_0 + \delta_2) \iff \begin{cases} x \in (x_0 - \delta_1, x_0 + \delta_1) \\ y \in (y_0 - \delta_2, y_0 + \delta_2) \end{cases}$$

III)
$$F(x,y) = 0 \iff y = f(x)$$
IV) $f'(x) = -\frac{\frac{\partial F}{\partial x}(x,y)\Big|_{(x,f(x))}}{\frac{\partial F}{\partial y}(x,y)\Big|_{(x,f(x))}}$ Без доведення.

Theorem 6.7.3 Задана неявна функція $F:U(\vec{x}_0,z_0)\to\mathbb{R}$, де U - окіл т. (\vec{x}_0, z_0) . Відомо, що виконуються такі умови

1)
$$F(\vec{x}_0, z_0) = 0$$

$$2) \frac{\partial F}{\partial z}(\vec{x}_0, z_0) \neq 0$$

3)
$$F \in C^{(m)}(U(\vec{x}_0, z_0))$$

Тоді справедливо наступне:

I)
$$\exists \delta_1, \delta_2 > 0 : U_{\delta_1}(\vec{x}_0) \times (z_0 - \delta_2, z_0 + \delta_2) \subset U(\vec{x}_0, z_0)$$

II)
$$\exists f: U_{\delta_1}(\vec{x}_0) \to (z_0 - \delta_2, z_0 + \delta_2)$$
, така, що $f \in C^{(m)}(U_{\delta_1}(\vec{x}_0))$ та

$$(\vec{x}, z) \in U_{\delta_1}(\vec{x}_0)$$
 for $(\vec{x}, z) \in U_{\delta_1}(\vec{x}_0) \times (z_0 - \delta_2, z_0 + \delta_2) \iff \begin{cases} \vec{x} \in U_{\delta_1}(\vec{x}_0) \\ z \in (z_0 - \delta_2, z_0 + \delta_2) \end{cases}$

III)
$$F(\vec{x}, z) = 0 \iff z = f(\vec{x})$$

$$\text{IV)} \frac{\partial f}{\partial x_{j}} = -\frac{\frac{\partial F}{\partial x_{j}}(\vec{x}, z)\Big|_{(\vec{x}, f(\vec{x}))}}{\frac{\partial F}{\partial z}(\vec{x}, z)\Big|_{(\vec{x}, f(\vec{x}))}} \qquad \qquad \overleftarrow{f'}(\vec{x}) = -\frac{1}{\frac{\partial F}{\partial z}(\vec{x}, z)\Big|_{(\vec{x}, f(\vec{x}))}} \overleftarrow{F'_{\vec{x}}}(\vec{x}, z)\Big|_{(\vec{x}, f(\vec{x}))}$$

де
$$\overleftarrow{F}'_{\vec{x}}(\vec{x},z) = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}\right)$$

Без доведення.

Theorem 6.7.4 Задана неявна функція $F: U(\vec{x}_0, \vec{y}_0) \to \mathbb{R}^k$, де U - окіл т. $(\vec{x}_0, \vec{y}_0) \in \mathbb{R}^{n+k}, \ \vec{x}_0 \in \mathbb{R}^n, \ \vec{y}_0 \in \mathbb{R}^k$. Відомо, що виконуються такі умови

- 1) $F(\vec{x}_0, \vec{y}_0) = 0$
- 2) $F_{u}'(\vec{x}_{0}, \vec{y}_{0})$ оборотна матриця
- 3) $F \in C^{(m)}(U(\vec{x}_0, \vec{y}_0))$

Тоді справедливо наступне:

I)
$$\exists U_{\delta_1}(\vec{x}_0) \subset \mathbb{R}^n, \exists U_{\delta_2}(\vec{y}_0) \subset \mathbb{R}^k : U_{\delta_1}(\vec{x}_0) \times U_{\delta_2}(\vec{y}_0) \subset U_{\delta_1}(\vec{x}_0, \vec{y}_0)$$

II) $\exists f : U_{\delta_1}(\vec{x}_0) \to U_{\delta_2}(\vec{y}_0)$, така, що

$$\vec{f} \in C^{(m)}(U_{\delta_1}(\vec{x}_0))$$
 та

$$(\vec{x}, \vec{y}) \in U_{\delta_1}(\vec{x}_0) \times U_{\delta_2}(\vec{y}_0) \iff \begin{cases} \vec{x} \in U_{\delta_1}(\vec{x}_0) \\ \vec{y} \in U_{\delta_2}(\vec{x}_0) \end{cases}$$

III)
$$F(\vec{x}, \vec{y}) = 0 \iff \vec{y} = \vec{f}(\vec{x})$$

IV)
$$\vec{f}'(\vec{x}) = -(F_y'(\vec{x}, \vec{y}))^{-1} \cdot F_x'(\vec{x}, \vec{y})|_{(\vec{x}, \vec{f}(\vec{x}))}$$

Без доведення.

Що за фігня? Три теореми без доведення. ГБ сказав, що такі теореми надто громіздкі (приблизно 20 сторінок), якщо доводити класичним методом

Theorem 6.7.5 Теорема про обернену функцію

Задано множину $A \subset \mathbb{R}^n$ та т. $\vec{y}^0 \in A$. Задано вектор-функцію $\vec{x} = \vec{g}(\vec{y})$: $A \to \mathbb{R}^n$. Відомо, що

- 1) $\vec{q} \in C^1(A)$
- 2) $\det g'(\vec{y}^0) \neq 0$

- Тоді $\exists U_{\delta_1}(\vec{y}^0), U_{\delta_2}(\vec{x}^0)$: I) $\vec{g}: U_{\delta_1}(\vec{y}^0) \to U_{\delta_2}(\vec{x}^0)$ взаємно однозначне та взаємно неперервне відображення
- II) $\exists \vec{y} = \vec{f}(\vec{x}: U_{\delta_2}(\vec{x}^0) \to U_{\delta_1}(\vec{y}^0)$, така, що $\vec{f} = \vec{g}^{-1}$

III)
$$\forall \vec{x} \in U_{\delta_2}(\vec{x}^0) : f'(\vec{x}) = (g'(\vec{f}(\vec{x})))^{-1}$$

Proof.

Розглянемо функцію $F(\vec{x}, \vec{y}) = \vec{x} - \vec{q}(\vec{y}) = 0$

Вона задовільняє умові попередньої теореми, тобто

- 1) $F(\vec{x}^0, \vec{y}^0) = 0$
- $(2) F_{v}(\vec{x}^{0}, \vec{y}^{0})$ оборотна матриця, бо

$$\det F_y'(\vec{x}^0, \vec{y}^0) = \det(\vec{x} - \vec{g}(\vec{y}))_y' \Big|_{\vec{x} = \vec{x}^0, \vec{y} = \vec{y}^0} = \det(g'(\vec{y}^0)) \neq 0$$

3) $F \in C^1(U_{\delta_1}(\vec{y}^0) \times U_{\delta_2}(\vec{x}^0))$

Tomy
$$\exists \vec{y} = \vec{f}(\vec{x}) : F(\vec{x}, \vec{y}) = 0 \iff \vec{y} = \vec{f}(\vec{x})$$

$$\vec{f'}(\vec{x}) = -(F'_y(\vec{x}, \vec{y}))^{-1}F'_x(\vec{x}, \vec{y})|_{\vec{x}, \vec{f}(\vec{x})} = (g'(\vec{f}(\vec{x})))^{-1} \cdot I = (g'(\vec{f$$

 ${
m Tyr}\ I$ - одинична матриця

Рівняння дотичних площин для неявної функції 6.8

Маємо поверхню $F(\vec{x},z)=0$

Така функція задовільняє умові Тh. 6.7.3., тому ми її можемо використати Тоді існує функція $z = f(\vec{x})$ в околі т. (\vec{x}^0, z^0) , яка задає поверхню вже явно. Тоді з розділу 6.4., маємо

$$z - f(\vec{x}^0) = \frac{\partial f}{\partial x_1}(\vec{x}^0)(x_1 - x_1^0) + \dots + \frac{\partial f}{\partial x_n}(\vec{x}^0)(x_n - x_n^0)$$

Сюди тепер підставимо часткові похідні з **Th. 6.7.3.**. У них однаковий знаменник, тому множимо обидві частини рівняння на його. В результаті отримаємо

$$\frac{\partial F}{\partial x_1}(\vec{x}^0, z^0)(x_1 - x_1^0) + \dots + \frac{\partial F}{\partial x_n}(\vec{x}^0, z^0)(x_n - x_n^0) + \frac{\partial F}{\partial z}(\vec{x}^0, z^0)(z - z^0) = 0$$

Випадок \mathbb{R}^3

Маємо неявну функцію $F(x,y,z)=0 \Rightarrow z=f(x,y)$ Дотична площина

$$\frac{\partial F}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial F}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0$$

Будь ласка, зачекай, не йди далі. Зроби дуже глибокий вдих та видих, попий чай

6.9 Диференціювання та похідні старших порядків

Definition 6.9.1 Задана функція $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка. Також f - диференційована в околі т. \vec{x}^0

Частковими похідними другого роду від функції f в т. \vec{x}^0 називається

$$\frac{\partial}{\partial x_j} \left(\frac{\partial f}{\partial x_k} (\vec{x}^0) \right) = \frac{\partial^2 f}{\partial x_j \partial x_k} (\vec{x}^0)$$

Definition 6.9.2 Функція f називається **двічі диференційованою в т.** \vec{x}^0 , якщо grad f - диференційована в т. \vec{x}^0 , тобто

$$\operatorname{grad} f(\vec{x}) - \operatorname{grad} f(\vec{x}^0) = M(\vec{x} - \vec{x}^0) + o(||\vec{x} - \vec{x}^0||), \vec{x} \to \vec{x}^0$$

де M - матриця всіх часткових похідних $\operatorname{grad} f(\vec{x})$ - матриця Γ есе

$$f''(\vec{x}) = M = \begin{pmatrix} \frac{\partial^2 f}{(\partial x_1)^2} & \frac{\partial^2 f}{\partial x_2 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_1} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{(\partial x_2)^2} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{(\partial x_1 \partial x_n)} & \frac{\partial^2 f}{\partial x_2 \partial x_n} & \cdots & \frac{\partial^2 f}{(\partial x_n)^2} \end{pmatrix} (\vec{x})$$

Theorem 6.9.3 Задана функція $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка. Також f - диференційована в околі т. \vec{x}^0

Відомо, що
$$\exists \frac{\partial^2 f}{\partial x_j \partial x_k}(\vec{x}), \frac{\partial^2 f}{\partial x_k \partial x_j}(\vec{x})$$
, що є неперервними в околі т. \vec{x}^0

Тоді не залежить від порядку диференціювання

Proof.

Ми будемо доводити, коли m=2. Для більших аргументів - аналогічно, але більш технічна справа

Отже, дано f(x,y) та в околі т. (x_0,y_0) існують часткові похідні другого порядку $\exists \frac{\partial^2 f}{\partial x \partial y}(x_0,y_0), \frac{\partial^2 f}{\partial y \partial x}(x_0,y_0)$ - ще й неперервні

Розглянемо функції:

$$g(x_0, y_0) = f(x_0 + t\Delta x, y_0) - f(x_0, y_0)$$

$$h(x_0, y_0) = f(x_0, y_0 + s\Delta y) - f(x_0, y_0)$$

Для них маємо:

$$q(x_0, y_0 + s\Delta y) - q(x_0, y_0) =$$

$$= [f(x_0 + t\Delta x, y_0 + s\Delta y) - f(x_0, y_0 + s\Delta y)] - [f(x_0 + t\Delta x, y_0) - f(x_0, y_0)] =$$

$$= [f(x_0 + t\Delta x, y_0 + s\Delta y) - f(x_0 + t\Delta x, y_0)] - [f(x_0, y_0 + s\Delta y) - f(x_0, y_0)] = f(x_0 + t\Delta x, y_0) - f(x_0 + t\Delta x, y_0) = f(x_0 + t\Delta x, y_0) - f(x_0 + t\Delta x, y_0) = f(x_0 + t\Delta x, y_0) = f(x_0 + t\Delta x, y_0) - f(x_0 + t\Delta x, y_0) = f$$

$$= h(x_0 + t\Delta x, y_0) - h(x_0, y_0)$$

Розглянемо ліву частину рівності

$$g(x_0, y_0 + s\Delta y) - g(x_0, y_0) =$$

Скористаємось теоремою Лагранжа, якщо $k(s) = g(x_0, y_0 + s\Delta y)$. Тоді $k(s) - k(0) = k'(\tau) \cdot s, \tau \in (0, s)$

А далі беремо похідну

$$k'(s) = (g(x_0, y_0 + s\Delta y))'_s = \frac{\partial g}{\partial y}(x_0, y_0 + s\Delta y) \frac{d(s\Delta y)}{ds} = \frac{\partial g}{\partial y}(x_0, y_0 + s\Delta y) \Delta y$$

Розпишемо частинну похідну окремо

$$\frac{\partial g}{\partial y}(x_0, y_0 + \tau \Delta y) = \frac{\partial}{\partial y} \left(f(x_0 + t\Delta x, y_0 + \tau \Delta y) - f(x_0, y_0 + \tau \Delta y) \right) =$$

$$= \frac{\partial f}{\partial y}(x_0 + t\Delta x, y_0 + \tau \Delta y) - \frac{\partial f}{\partial y}(x_0, y_0 + \tau \Delta y) =$$

I знову теорема Лагранжа, якщо $p(t) = \frac{\partial f}{\partial y}(x_0 + t\Delta x, y_0 + \tau \Delta y)$. Тоді

$$p(t) - p(0) = p'(\theta)t, \theta \in (0, t)$$

Знову беремо похідну

$$p'(t) = \left(\frac{\partial f}{\partial y}(x_0 + t\Delta x, y_0 + \tau \Delta y)\right)_t' = \frac{\partial^2 f}{\partial x \partial y}(x_0 + t\Delta x, y_0 + \tau \Delta y)\Delta x$$

$$\equiv \frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta \Delta x, y_0 + \tau \Delta y)\Delta x \cdot t, \text{ тут } \theta \in (0, t)$$

Разом отримаємо:

$$g(x_0, y_0 + s\Delta y) - g(x_0, y_0) = \frac{\partial g}{\partial y}(x_0, y_0 + \tau \Delta y)\Delta y \cdot s =$$

$$= \frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta \Delta x, y_0 + \tau \Delta y)\Delta x\Delta y \cdot t \cdot s, \text{ де } \theta \in (0, t), \tau \in (0, s)$$

Все аналогічно робиться для правої частини рівності

$$h(x_0 + t\Delta x, y_0) - h(x_0, y_0) = \cdots =$$

$$= \frac{\partial^2 f}{\partial y \partial x}(x_0 + \gamma \Delta x, y_0 + \zeta \Delta y) \Delta y \Delta x \cdot s \cdot t, \text{ де } \gamma \in (0, t), \zeta \in (0, s)$$

Отримуємо таку рівність

$$\frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta \Delta x, y_0 + \tau \Delta y) \Delta x \Delta y \cdot t \cdot s = \frac{\partial^2 f}{\partial y \partial x}(x_0 + \gamma \Delta x, y_0 + \zeta \Delta y) \Delta y \Delta x \cdot s \cdot t$$

$$\frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta \Delta x, y_0 + \tau \Delta y) = \frac{\partial^2 f}{\partial y \partial x}(x_0 + \gamma \Delta x, y_0 + \zeta \Delta y)$$
Зробимо спрямування: $t \to 0, s \to 0 \Rightarrow \theta \to 0, \tau \to 0, \gamma \to 0, \zeta \to 0$

Через неперервність ми отримаємо:

$$\frac{\partial^2 f}{\partial x \partial y}(x_0 + \theta \Delta x, y_0 + \tau \Delta y) \to \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0)$$

$$\frac{\partial^2 f}{\partial y \partial x}(x_0 + \gamma \Delta x, y_0 + \zeta \Delta y) \to \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0)$$
Остаточно отримали:
$$\frac{\partial^2 f}{\partial x \partial y}(x_0, y_0) = \frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) \blacksquare$$

Definition 6.9.4 Задана функція $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка. Також f - диференційована в околі т. \vec{x}^0

Другим диференціалом функції f називають, насправді, вираз $d^2f(\vec{x}) = d(df(\vec{x}))$

Але ГБ давав це як формулу

$$d^{2}f(\vec{x}) = \sum_{j,k=1}^{n} \frac{\partial^{2}f(\vec{x})}{\partial x_{j}\partial x_{k}} dx_{j} dx_{k}$$

Definition 6.9.5 Задана функція $f:A\to\mathbb{R}$ та $\vec{x}^0\in A$ - гранична точка. Також f - диференційована в околі т. \vec{x}^0

Частковим похідним m+1-го порядку називають похідні

$$\frac{\partial}{\partial x_{j_{m+1}}} \left(\frac{\partial^m f}{\partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_m}} \right) (\vec{x}) = \frac{\partial^{m+1} f}{\partial x_{j_{m+1}} \partial x_{j_1} \partial x_{j_2} \dots \partial x_{j_m}} (\vec{x})$$

Похідною m-го порядку функції f називають

$$f^{(m)}(\vec{x}) = \left(\frac{\partial^m f}{\partial x_{j_1} \dots \partial x_{j_m}}\right)_{j_1,\dots,j_m=1}^n$$

Як казав Γ Б, ця річ - вже більш страший об'єкт на розглядання - називають це тензором

Якщо грубо казати про те, що таке тензор

0D-тензор - число

1D-тензор - вектор

2D-тензор - матриця

3D-тензор - кубічна матриця, напевно)

і т.д.

Remark 6.9.6 Якщо часткові похідні вищих порядків неперервні, то там також не залежить від порядку диференціювання

6.10 Формула Тейлора

Theorem 6.10.1 Теорема Тейлора

Задана функція $f:A\to \mathbb{R}$ така, що $f\in C^{(m)}(A)$ і т. $\vec x^0\in A$. Відомо, що існує окіл $U_\varepsilon(\vec x^0)\subset A$

Тоді
$$\exists \theta \in (0,1): f(\vec{x}) = f(\vec{x}^0) + \frac{\overleftarrow{f'}(\vec{x}^0)}{1!} (\vec{x} - \vec{x}^0) + \frac{f''(\vec{x}^0)}{2!} (\vec{x} - \vec{x}^0)^2 + \dots + \frac{f^{(m-1)}(\vec{x}^0)}{(m-1)!} (\vec{x} - \vec{x}^0)^{m-1} + \frac{f^{(m)}(\vec{x}^0 + \theta(\vec{x} - \vec{x}^0))}{m!} (\vec{x} - \vec{x}^0)^m$$

Remark 6.10.2 Оскільки тензори ми ніколи не проходили і не будемо, то ГБ одразу дає формулу, що під $f^{(k)}(\vec{x}^0)(\vec{x}-\vec{x}^0)^k$ можна розуміти

$$f^{(k)}(\vec{x}^0)(\vec{x} - \vec{x}^0)^k = \sum_{j_1, \dots, j_k} \frac{\partial^k f}{\partial x_{j_1} \dots \partial x_{j_k}} (\vec{x}^0) \cdot (x_{j_1} - x_{j_1}^0) \dots (x_{j_k} - x_{j_k}^0)$$

Щоб було простіше сприймати цю формулу, перейдемо в \mathbb{R}^3 Ми маємо функцію f(x,y). Тоді замість x_{j_1},\ldots,x_{j_k} ми підставляємо по черзі або x, або y

Якщо б ми шукали третю похідну з дужкою, тобто $f^{(3)}(\vec{x}^0)(\vec{x}-\vec{x}^0)^3$, то було б сумування з такою комбінацією: xxx, xxy, xyy, xyx, yxy, yxx, yyy

Proof.

Розглянемо функцію $p(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))$, тут $|t| \le 1$

Фактично ми розглядаємо функцію від однієї змінної, для якої можна застосувати формулу Тейлора ще з першого семестру

Знайдемо похідні від цієї функції

$$p'(t) = f(\vec{x}^0 + t(\vec{x} - \vec{x}^0))'_t = f'(\vec{x}^0 + t(\vec{x} - \vec{x}^0)) \cdot (\vec{x} - \vec{x}^0)$$

$$p''(t) = [f'(\vec{x}^0 + t(\vec{x} - \vec{x}^0)) \cdot (\vec{x} - \vec{x}^0)]'_t = f''(\vec{x}^0 + t(\vec{x} - \vec{x}^0))(\vec{x} - \vec{x}^0)^2$$

: Індукцією можна довести, що

$$p^{(k)}(\vec{t}) = f^{(k)}(\vec{x}^0 + t(\vec{x} - \vec{x}^0))^k$$

Тепер застосуємо цю формулу для $t_0=0$

$$p(t) = p(0) + \frac{p'(0)}{1!}t + \frac{p''(0)}{2!}t^2 + \dots + \frac{p^{(m-1)}(0)}{(m-1)!}t^{m-1} + \frac{p^{(m)}(\theta(t))}{m!}t^m$$
, де

 $\theta(t) \in (0,t)$

Ну й тоді

$$f(\vec{x}) = f(\vec{x}^0 + 1 \cdot (\vec{x} - \vec{x}^0)) = p(1) =$$

$$= p(0) + \frac{p'(0)}{1!} + \frac{p''(0)}{2!} + \dots + \frac{p^{(m-1)}(0)}{(m-1)!} + \frac{p^{(m)}(\theta)}{m!} =$$

$$= f(\vec{x}) = f(\vec{x}^0) + \frac{f'(\vec{x}^0)}{1!} (\vec{x} - \vec{x}^0) + \frac{f''(\vec{x}^0)}{2!} (\vec{x} - \vec{x}^0)^2 + \dots$$

$$+ \frac{f^{(m-1)}(\vec{x}^0)}{(m-1)!} (\vec{x} - \vec{x}^0)^{m-1} + \frac{f^{(m)}(\vec{x}^0 + \theta(\vec{x} - \vec{x}^0))}{m!} (\vec{x} - \vec{x}^0)^m$$

Причому $\theta \in (0,1)$

Можна обережно довести, що
$$\frac{f^{(m)}(\vec{x}^0+\theta(\vec{x}-\vec{x}^0))}{m!}(\vec{x}-\vec{x}^0)^m = o(||\vec{x}-\vec{x}^0||^{m-1}), \vec{x}\to \vec{x}^0$$
- отримаємо наслідок

Corollary 6.10.3 Маємо ті самі вимоги, що в теоремі Тейлора

$$f(\vec{x}) = f(\vec{x}^0) + \frac{\overleftarrow{f'}(\vec{x}^0)}{1!}(\vec{x} - \vec{x}^0) + \frac{f''(\vec{x}^0)}{2!}(\vec{x} - \vec{x}^0)^2 + \dots + \frac{f^{(m-1)}(\vec{x}^0)}{(m-1)!}(\vec{x} - \vec{x}^0)^{m-1} + o(||\vec{x} - \vec{x}^0||^{m-1}), \vec{x} \to \vec{x}^0$$

6.11Екстремуми

Definition 6.11.1 Задана функція $f:A \to \mathbb{R}$ Точка \vec{x}^0 називається

- локального максимуму, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \geq f(\vec{x})$
- локального мінімуму, якщо $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f(\vec{x}^0) \leq f(\vec{x})$ для строгих екстремумів нерівність строга та $\vec{x} \neq \vec{x}^0$

Theorem 6.11.2 Необхідна умова локального екстремуму

Задана функція $f:A\to\mathbb{R}$ така, що має всі часткові похідні в т. \vec{x}^0

Відомо, що
$$\vec{x}^0$$
 - локальний екстремум. Тоді $\frac{\partial f}{\partial x_j}(\vec{x}^0)=0, \forall j=\overline{1,n}$

Розглянемо функцію $h(x)=f(t,x_2^0,\dots,x_n^0)$ - функція від однієї змінної, така, що $t_0=x_1^0$ - локальний екстремум. Більш того, $h'(t)=\frac{\partial f}{\partial x_1}(t,x_2^0,\dots,x_n^0)$

Тоді за необхідною умовою локального екстремуму мат аналіза 1 семестру,

$$h'(t_0) = 0 \implies \frac{\partial f}{\partial x_1}(x_1^0, x_2^0, \dots, x_n^0) = 0$$

Для інших змінних аналогічно

Вам далі треба згадати щось про матриці, які є строго/нестрого додатньо/від'ємно визначеними, а також критерій Сільвестра

Lemma 6.11.3 Задана матриця
$$B(\vec{x}) = \begin{pmatrix} b_{11}(\vec{x}) & \dots & b_{1n}(\vec{x}) \\ \vdots & \ddots & \vdots \\ b_{n1}(\vec{x}) & \dots & b_{nn}(\vec{x}) \end{pmatrix} \in C(A)$$

Відомо, що $B(\vec{x}^0)$ (симетрична) - строго додатньо/від'ємно визначена. Тоді $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}): B(\vec{x})$ - строго додатньо/від'ємно визначена

Proof.

За умовою, $B(\vec{x}) \in C(A)$, тобто всі функції в матриці неперервні. Обчислюючи кутові мінори $\Delta_k, k = \overline{1, n}$, отримаємо, що $\Delta_k \in C(A)$

Розглянемо випадок строго додатньої визначенності, тоді $\Delta_k(\vec{x}^0)>0$

Оскільки \vec{x}^0 - внутрішня, то $\exists U_{\varepsilon_k}(\vec{x}^0)$, де $\forall \vec{x} \in U_{\varepsilon_k}(\vec{x}^0) : \Delta_k(\vec{x}) > 0$

Оберемо $\varepsilon = \min\{\varepsilon_1, \dots, \varepsilon_n\}$, тоді

 $\forall \vec{x} \in U_{\varepsilon}(\vec{x}^0) : \forall k = \overline{1, n} : \Delta_k(\vec{x}) > 0$

Тоді за критерієм Сільвестра, $B(\vec{x})$ - строго додатньо визначена \blacksquare

Theorem 6.11.4 Достатня умова локального екстремуму

Задана функція $f:A\to\mathbb{R}$, така, що $f\in C^{(2)}(A)$, а також \vec{x}^0 - критична точка

- 1) $f''(\vec{x}^0)$ строго додатньо визначена. Тоді \vec{x}^0 строгий локальний мінімум
- $(2) f''(\vec{x}^0)$ строго від'ємно визначена. Тоді \vec{x}^0 строгий локальний максимум
- 3) $f''(\vec{x}^0)$ знако-невизначена. Тоді \vec{x}^0 не локальний екстремум

Proof.

За умовою, \vec{x}^0 - критична точка $\Rightarrow \overleftarrow{f'}(\vec{x}^0) = \mathbf{0}$

Запишемо функцію у вигляді формули Тейлора

Запинемо функцию у вигляди формули Тейлора
$$f(\vec{x}) = f(\vec{x}^0) + \frac{f''(\vec{x}^0 + \theta(\vec{x} - \vec{x}^0))}{2!} (\vec{x} - \vec{x}^0)^2$$

$$\Rightarrow f(\vec{x}) - f(\vec{x}^0) = \frac{(f''(\vec{x}^0 + \theta(\vec{x} - \vec{x}^0))(\vec{x} - \vec{x}^0), (\vec{x} - \vec{x}^0))}{2}$$

1) $f''(\vec{x}^0)$ - строго додатньо визначена. Тоді $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f''(\vec{x})$ - строго додатньо визначена.

Тоді за означенням, $(f''(\vec{x}^0 + \theta(\vec{x} - \vec{x}^0))(\vec{x} - \vec{x}^0), (\vec{x} - \vec{x}^0)) > 0$

Звідси
$$f(\vec{x}) - f(\vec{x}^0) > 0 \implies \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0) : f(\vec{x}) > f(\vec{x}^0)$$
 $\Rightarrow \vec{x}^0$ - локальний мінімум

2) $f''(\vec{x}^0)$ - строго від'ємно визначена. Тоді $\exists U_{\varepsilon}(\vec{x}^0): \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0): f''(\vec{x})$ - строго від'ємно визначена.

Тоді за означенням, $(f''(\vec{x}^0 + \theta(\vec{x} - \vec{x}^0))(\vec{x} - \vec{x}^0), (\vec{x} - \vec{x}^0)) < 0$ Звідси $f(\vec{x}) - f(\vec{x}^0) < 0 \implies \forall \vec{x} \in U_{\varepsilon}(\vec{x}^0) : f(\vec{x}) < f(\vec{x}^0)$ $\Rightarrow \vec{x}^0$ - локальний максимум

3) $f''(\vec{x}^0)$ - знако-невизначена. Тоді $(f''(\vec{x}^0 + \theta(\vec{x}_1 - \vec{x}^0))(\vec{x}_1 - \vec{x}^0), (\vec{x}_1 - \vec{x}^0)) > 0$ та $(f''(\vec{x}^0 + \theta(\vec{x}_2 - \vec{x}^0))(\vec{x}_2 - \vec{x}^0), (\vec{x}_2 - \vec{x}^0)) < 0$ в двух різних точках $\vec{x}_1, \vec{x}_2 \in U_{\varepsilon}(\vec{x}^0)$

Тоді за попередними пунктами, $f(\vec{x}^0) < f(\vec{x}_1)$ та $f(\vec{x}^0) > f(\vec{x}_2)$, що порушують означення локального екстремуму для т. $\vec{x}^0 \blacksquare$

Example 6.11.5 Дослідимо функцію $z = x^2 - xy + y^2 - 2x + y$ на екстремуми

Знайдемо критичні точки

$$\begin{cases} \frac{\partial z}{\partial x} = 0 \\ \frac{\partial z}{\partial y} = 0 \end{cases} \Rightarrow \begin{cases} 2x - y - 2 = 0 \\ -x + 2y + 1 = 0 \end{cases} \Rightarrow \begin{cases} x = 1 \\ y = 0 \end{cases}$$

Маємо критичну точку (1,0)

Перевіримо на екстремум

$$\frac{\partial^2 z}{\partial x^2} = 2 \qquad \frac{\partial^2 z}{\partial x \partial y} = -1 \qquad \frac{\partial^2 z}{\partial y^2} = 2$$

Тоді
$$z''(1,0) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$

 $\Delta_1 = 2 > 0$ $\Delta_2 = 3 > 0$. Тож за критерієм Сільвестра, z''(1,0) - строго додатньо визначена

Отже, (1,0) - точка локального мінімуму

Підтвердити цей результат можете в Geogebra3D

6.12 Умовні локальні екстремуми

Definition 6.12.1 Задана система функцій $\phi_j: A \to \mathbb{R}$, такі, що $\forall j = \overline{1,s}: \phi_j \in C^1(A)$. Відомо, що вони також задовільняють умові

$$\operatorname{rank}\begin{pmatrix} \frac{\partial \phi_1}{\partial x_1} & \cdots & \frac{\partial \phi_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial \phi_n}{\partial x_1} & \cdots & \frac{\partial \phi_n}{\partial x_n} \end{pmatrix} (\vec{x}^0) = s$$
 - деякий максимально можливий ранг

Тоді рівняння $\phi_i(\vec{x}) = 0, j = \overline{1,s}$ називаються **умовами зв'язку**

Definition 6.12.2 Задано множину $M = \{\vec{x} : \phi_i(\vec{x}) = 0, j = \overline{1, s}\}$ Точка \vec{x}^0 називається **умовним локальним**

- максимумом, якщо $\exists U_{\varepsilon}(\vec{x}^{0}): \forall \vec{x} \in M \cap U_{\varepsilon}(\vec{x}^{0}): f(\vec{x}^{0}) \geq f(\vec{x})$ мінімумом, якщо $\exists U_{\varepsilon}(\vec{x}^{0}): \forall \vec{x} \in M \cap U_{\varepsilon}(\vec{x}^{0}): f(\vec{x}^{0}) \leq f(\vec{x})$ для строгих екстремумів нерівність строга

Одразу формулювати теорему буде складно, тому ми будемо спочатку будувати наші роздуми, як зрозуміти, що \vec{x}^0 - умовний локальний екстремум

Маємо множину $M = \{ \vec{x} : \phi_j(\vec{x}) = 0, j = \overline{1,s} \}$ та \vec{x}^0 - локальний екстремум

Розглянемо диференційовану криву $\gamma = \{\vec{x}(t), t \in (-\delta, \delta)\} \subset M \cap U_{\varepsilon}(\vec{x}^0),$ причому нехай $\vec{x}(0) = \vec{x}^0$

Функцію $f(\vec{x})$ звузимо на криву γ - отримаємо функцію $h(t) = f(\vec{x}(t))$, де має локальний екстремум в т. $t_0 = 0$. Тоді за необхідною умовою, h'(0) = 0

З іншого боку, $h'(0) = \leftarrow f'(\vec{x}(0)) \cdot \vec{x}'(0)$

Tyt
$$\leftarrow f'(\vec{x}(0)) = \left(\frac{\partial f}{\partial x_1}(\vec{x}(0)) \dots \frac{\partial f}{\partial x_n}(\vec{x}(0))\right)$$

A також $\vec{x}'(0) = (x_1'(0) \dots x_n'(0))$

Множимо два вектори скалярно

 $\implies (\operatorname{grad} f(\vec{x}^0), \vec{x}'(0)) = 0 \implies \operatorname{grad} f(\vec{x}^0) \perp \vec{x}'(0)$

Маємо зв'язок: $h'(0) = 0 \iff \operatorname{grad} f(\vec{x}^0) \perp \vec{x}'(0)$

З'ясуємо, які властивості має $\vec{x}'(0)$, якщо $\gamma = \{\vec{x}(t), t \in (-\delta, \delta)\} \subset M$

Отже, $\vec{x}(t) \subset M \iff \phi_j(\vec{x}(t)) = 0 \iff \phi'_j(\vec{x}(0)) \cdot \vec{x}'(0) = 0 \iff$ $\operatorname{grad}\phi_i(\vec{x}^0) \perp \vec{x}'(0)$

Маємо зв'язок 2: $\forall j = \overline{1,s} : \operatorname{grad} \phi_j(\vec{x}^0) \perp \vec{x}'(0) \iff \vec{x}(t) \subset M$

(*) Чому в зворотній бік працює: $\phi_i'(\vec{x}(0)) \cdot \vec{x}'(0) = 0$. Тоді $\vec{x}'(0)$ перпендикулярна всім дотичним площинам до поверхонь $\phi_j(\vec{x}(t)) = 0$, тож $\vec{x}'(0)$ - дотичний вектор кривої $\gamma \Rightarrow \gamma \subset M$

Підсумуємо:

$$\forall j = \overline{1,s} : \operatorname{grad} \phi_j(\vec{x}^0) \perp \vec{x}'(0) \iff \vec{x}(t) \subset M \iff h(t) = f(\vec{x}(t)) \text{ має екстремум в т. } \vec{x}^0 \iff h'(0) = 0 \iff \operatorname{grad} f(\vec{x}^0) \perp \vec{x}'(0)$$

Крива γ - довільно обрана, тоді $\vec{x}'(0)$ - довільний, що під умовами зв'язку Тоді наша еквівалентність каже про те, що

 $\operatorname{grad} f(\vec{x}^0) \in \operatorname{span}\{\operatorname{grad}\phi_j(\vec{x}^0): j=\overline{1,s}\}$ - ця лінійна оболонка в силу рангу є лінійно незалежною. Тому кожний елемент, який туди потрапляє, розкладається лінійною комбінацією елементів, власне

$$\exists \lambda_j, j = \overline{1, s} : \operatorname{grad} \vec{f}(\vec{x}^0) = \lambda_1 \operatorname{grad} \phi_1(\vec{x}^0) + \dots + \lambda_s \operatorname{grad} \phi_s(\vec{x}^0)$$

Отримали теорему

Theorem 6.12.3 Heoбхідна умова умовного локального екстремуму

Задана множина $M=\{\vec x:\phi_j(\vec x)=0,j=\overline{1,s}\}$ та функція $f:A\to\mathbb R$ така, що $f\in C^1(A)$

Відомо, що \vec{x}^0 - точка умовного локального екстремуму. Тоді $\exists \lambda_1, \dots, \lambda_s : \operatorname{grad} \vec{f}(\vec{x}^0) - \left(\lambda_1 \operatorname{grad} \phi_1(\vec{x}^0) + \dots + \lambda_s \operatorname{grad} \phi_s(\vec{x}^0)\right) = 0$ Довели.

До речі, останню умову можна переписати таким чином

Ми створимо лагранжіан
$$L(\vec{x}, \lambda_1, \dots, \lambda_s) = f(\vec{x}) - \sum_{j=1}^s \lambda_j \phi_k(\vec{x})$$
 Тоді в т. \vec{x}^0 - екстремум, отже, $L'_{\vec{x}}(\vec{x}^0, \lambda_1, \dots, \lambda_s) = 0$

Theorem 6.12.4 Достатня умова умовного локального екстремуму

Задана множина $M=\{\vec x:\phi_j(\vec x)=0,j=\overline{1,s}\}$ та функція $f:A\to\mathbb R$ така, що $f\in C^2(A)$

Відомо, що

- 1) \vec{x}^0 критична точка для лагранжіана
- 2) $\forall \vec{h} \in \mathbb{R}^n$, для яких $\operatorname{grad} \phi_j(\vec{x}^0) \perp \vec{h}$, визначається квадратична форма

$$L''_{\vec{x},\vec{x}}(\vec{x}^0,\lambda_1,\ldots,\lambda_s)\vec{h}^2=\sum_{j,k=1}^n \frac{\partial^2 L(\vec{x}^0,\lambda_1,\ldots,\lambda_s)}{\partial x_j\partial x_k}h_jh_k$$
. Якщо права частина виразу

- більше нуля, то \vec{x}^0 точка строго умного локального мінімуму
- менше нуля, то \vec{x}^0 точка строго умного локального мінімуму
- для знако-невизначених квадратичних форм \vec{x}^0 не умовний екстремум

Proof.

Якщо брати т. $\vec{x} \in M$, то тоді лагранжіан $L(\vec{x}, \lambda_1, \dots, \lambda_s) = f(\vec{x})$

Для неї застосуємо формулу Тейлора

$$L(\vec{x}, \lambda_1, \dots, \lambda_s) = L(\vec{x}^0, \lambda_1, \dots, \lambda_s) + \frac{L'_{\vec{x}}(\vec{x}^0, \lambda_1, \dots, \lambda_s)}{1!} (\vec{x} - \vec{x}^0) + \frac{L''_{\vec{x}, \vec{x}}(\vec{x}^0 - \theta(\vec{x} - \vec{x}^0), \lambda_1, \dots, \lambda_s)}{2!} (\vec{x} - \vec{x}^0)^2$$

Тоді отримаємо, ш

$$f(\vec{x}) - f(\vec{x}^0) = \frac{L''_{\vec{x},\vec{x}}(\vec{x}^0 - \theta(\vec{x} - \vec{x}^0), \lambda_1, \dots, \lambda_s)}{2!} (\vec{x} - \vec{x}^0)^2$$
 Тепер все залежить від правої частині рівності

Ми розглянемо диференційовану криву

$$\gamma = \{\vec{x}(t), t \in (-\delta, \delta)\} \subset M \cap U_{\varepsilon}(\vec{x}^0)$$
, причому $\vec{x}(0) = \vec{x}^0$ Тоді $\vec{x}(t) - \vec{x}^0 = \vec{x}'(0)t + \vec{o}(t)$

Для нашої кривої також відомо факт $\operatorname{grad} \phi_j(\vec{x}^0) \perp \vec{x}'(0)$

Підставимо це все в нашу формулу
$$f(\vec{x}(t)) - f(\vec{x}^0) = \frac{L''_{\vec{x},\vec{x}}(\vec{x}^0 - \theta(\vec{x}(t) - \vec{x}^0), \lambda_1, \dots, \lambda_s)}{2!} \vec{h}^2 t^2 + \vec{o}(t^2)$$
 Оскільки $L''_{\vec{x},\vec{x}}(\vec{x}^0, \dots)$ - знаковизначена, то тоді за лемою, $\exists U_{\varepsilon}(\vec{x}^0) : \forall \vec{x} \in \mathbb{R}^n$

 $U_{arepsilon}(ec{x}^0)\cap M:L_{ec{x},ec{x}}''(ec{x},\dots)$ - так само знако визначений

Якщо визначимо квадратичну форму із п. 2), то звідси й буде випливати, що $f(\vec{x}^0) < f(\vec{x})$ - тобто умовний локальний мінімум

Аналогічно для інших випадків

Example 6.12.5 Задана функція u = f(x, y, z) = x - 2y + 2z. Знайдемо точки локального екстремуму за умовою, що $\phi_1(x, y, z) = x^2 + y^2 + z^2 - 1 = 0$

Спочатку розглянемо лагранжіан $L(x,y,z,\lambda_1)=f(x,y,z)-\lambda_1\phi_1(x,y,z)$ Знайдемо всі критичні точки, тобто $L'(x, y, z, \lambda_1) = 0$

$$\begin{cases} \frac{\partial f}{\partial x}(x,y,z) - \lambda_1 \frac{\partial \phi_1}{\partial x}(x,y,z) = 0 \\ \frac{\partial f}{\partial y}(x,y,z) - \lambda_1 \frac{\partial \phi_1}{\partial y}(x,y,z) = 0 \\ \frac{\partial f}{\partial z}(x,y,z) - \lambda_1 \frac{\partial \phi_1}{\partial z}(x,y,z) = 0 \\ \phi_1(x,y,z) = 0 \end{cases} \Rightarrow \begin{cases} 1 - \lambda_1 \cdot 2x = 0 \\ -2 - \lambda_1 \cdot 2y = 0 \\ 2 - \lambda_1 \cdot 2z = 0 \\ x^2 + y^2 + z^2 = 1 \end{cases}$$
A60 $\lambda_1 = \frac{3}{2}, x = \frac{1}{3}, y = -\frac{2}{3}, z = \frac{2}{3}$

Всі можливі критичні точкі

Тепер будуємо квадратичну форму лагранжіана

$$L(x,y,z,\lambda_1) = x - 2y + 2z - \lambda_1(x^2 + y^2 + z^2 - 1)$$
 Маємо
$$L''(x_0,y_0,z_0,\lambda_1)\vec{h}^2 = \frac{\partial^2 L}{\partial x^2}h_1^2 + \frac{\partial^2 L}{\partial y^2}h_2^2 + \frac{\partial^2 L}{\partial z^2}h_3^2 + 2\frac{\partial^2 L}{\partial x \partial y}h_1h_2 + 2\frac{\partial^2 L}{\partial y \partial z}h_2h_3 + 2\frac{\partial^2 L}{\partial x \partial z}h_1h_3 = -2\lambda_1h_1^2 - 2\lambda_1h_2^2 - 2\lambda_1h_3^2$$
 Обираємо такі $\vec{h} = \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix}$, щоб $(\operatorname{grad}\phi_1(x_0,y_0,z_0),\vec{h}) = 0$

В нашому випадку $\operatorname{grad} \phi_1 = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$, тоді

Розглянемо кожну точку
$$1)\ \lambda_1=\frac{3}{2}, x=\frac{1}{3}, y=-\frac{2}{3}, z=\frac{2}{3}$$

$$\frac{2}{3}\left(h_1-2h_2+2h_3\right)=0\Rightarrow h_1=2h_2-2h_3$$
 Оцінюємо знак квадратичної форми:
$$L''(x,y,z,\lambda_1)\vec{h}^2=-6(h_1^2+h_2^2+h_3^2)<0$$
 Отже, 1) - локальний максимум та $u=3$

2)
$$\lambda_1 = -\frac{3}{2}, x = -\frac{1}{3}, y = \frac{2}{3}, z = -\frac{2}{3}$$

$$-\frac{2}{3}(h_1 - 2h_2 + 2h_3) = 0 \Rightarrow h_1 = 2h_2 - 2h_3$$
Оцінюємо знак квадратичної форми:
$$L''(x, y, z, \lambda_1)\vec{h}^2 = 6(h_1^2 + h_2^2 + h_3^2) > 0$$
Отже, 1) - локальний мінімум та $u = -3$

7 Інтеграли з параметром

7.1 Основні означення та властивості

Definition 7.1.1 Задана функція $f:[a,b] \times [c,d] \to \mathbb{R}$, така, що $\forall y \in [c,d]: f \in D([a,b])$

Інтегралом з параметром називають таку функцію $J:[c,d] o \mathbb{R}$

$$J(y) = \int_{a}^{b} f(x, y) \, dx$$

Proposition 7.1.2 Неперервність

Задана функція $f:[a,b]\times[c,d]\to\mathbb{R},$ така, що $f\in C([a,b]\times[c,d])$ Тоді $J\in C([c,d])$

Proof.

Зафіксуємо т. $y_0 \in [c,d]$ - маємо функцію $f(x,y_0)$, тобто функцію від одного аргументу

$$f \in C([a,b]) \Rightarrow f \in D([a,b])$$

Таким чином, $J(y_0) = \int_a^b f(x,y_0) dx$ є визначеною. І так для кожного y_0

$$f(x,y) \in C([a,b] \times [c,d]) \Rightarrow f(x,y) \in C_{unif}([a,b] \times [c,d]) \Rightarrow$$
 $\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (x_1,y_1), (x_2,y_2) \in [a,b] \times [c,d] : ||(x_1,y_1) - (x_2,y_2)|| = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} < \delta \Rightarrow |f(x_1,y_1) - f(x_2,y_2)| < \frac{\varepsilon}{b-a}$ Тоді

$$|J(y_1)-J(y_2)| = \left| \int_a^b f(x,y_1) \, dx - \int_a^b f(x,y_2) \, dx \right| \le \int_a^b |f(x,y_1)-f(x,y_2)| \le 1$$
 Якщо я оберу $(x,y_1), (x,y_2)$ так, що $||(x,y_1)-(x,y_2)|| = \sqrt{(y_1-y_2)^2} = |y_1-y_2| < \delta$, то тоді $|f(x,y_1)-f(x,y_2)| < \frac{\varepsilon}{b-a}$

Збираючи пазл, отримаємо $J \in C_{unif}([c,d]) \Rightarrow J \in C([c,d])$

Proposition 7.1.3 Диференційованість

Задана функція $f:[a,b]\times [c,d]\to \mathbb{R},$ така, що:

1) $\forall y_0 \in [c, d] : f(x, y_0) \in C([a, b])$

2)
$$\forall (x,y) \in [a,b] \times [c,d] : \exists \frac{\partial f}{\partial y} \in C([a,b] \times [c,d])$$

Тоді J - диференційована в [c,d], при цьому $J'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) \, dx$

Диференційованість означає існування похідної, тобто необхідно довести її існування

$$\frac{J(y + \Delta y) - J(y)}{\Delta y} = \frac{1}{\Delta y} \int_a^b f(x, y + \Delta y) - f(x, y) dx$$

Згадаємо Ньютона-Лейбніца та властивості інтеграла та розпишемо підінтегральний вираз таким чином

$$f(x, y + \Delta y) - f(x, y) = \int_{y}^{y + \Delta y} f'_{y}(x, t) dt = \int_{y}^{y + \Delta y} \frac{\partial f}{\partial y}(x, t) dt$$

$$= \frac{1}{\Delta y} \int_{a}^{b} \left(\int_{y}^{y+\Delta y} \frac{\partial f}{\partial y}(x,t) \, dt \right) dx$$

Тепер зафіксуємо т. y_0 та розпишемо праву частину рівності, що ми доводимо

$$\int_{a}^{b} \frac{\partial f}{\partial y}(x, y_0) dx = \int_{a}^{b} \frac{1}{\Delta y} \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) dt \right) dx = \frac{1}{\Delta y} \int_{a}^{b} \left(\int_{y_0}^{y_0 + \Delta y} \frac{\partial f}{\partial y}(x, y_0) dt \right) dx$$

$$\left| \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} - \int_a^b \frac{\partial f}{\partial y}(x, y_0) \, dx \right| =$$

$$= \left| \frac{1}{\Delta y} \int_{a}^{b} \left(\int_{y_{0}}^{y_{0} + \Delta y} \frac{\partial f}{\partial y}(x, t) dt \right) dx - \frac{1}{\Delta y} \int_{a}^{b} \left(\int_{y_{0}}^{y_{0} + \Delta y} \frac{\partial f}{\partial y}(x, y_{0}) dt \right) dx \right| =$$

$$=\left|\frac{1}{\Delta y}\int_a^b\left(\int_{y_0}^{y_0+\Delta y}\frac{\partial f}{\partial y}(x,t)-\frac{\partial f}{\partial y}(x,y_0)\,dt\right)dx\right|\leq$$
За умовою твердження,

$$\frac{\partial f}{\partial y}(x,y) \in C([a,b] \times [c,d]) \Rightarrow \frac{\partial f}{\partial y}(x,y) \in C_{unif}([a,b] \times [c,d]) \Rightarrow$$

 $\forall \varepsilon > 0 : \exists \delta(\varepsilon) > 0 : \forall (x,t), (x,y_0) \in [a,b] \times [c,d] : ||(x,t) - (x,y_0)|| < \delta \Rightarrow$

$$\left| \frac{\partial f}{\partial y}(x,t) - \frac{\partial f}{\partial y}(x,y_0) \right| < \frac{\varepsilon}{b-a}$$

Знову збираємо пазл - отримуємо, що

$$\forall y_0 \in [c, d] : \exists \lim_{\Delta y \to 0} \frac{J(y_0 + \Delta y) - J(y_0)}{\Delta y} = \int_a^b \frac{\partial f}{\partial y}(x, y_0) \, dx = J'(y_0)$$

Отже, J - диференційована на [c,d]

Proposition 7.1.4 Інтегрованість

Задана функція $f:[a,b]\times[c,d]\to\mathbb{R}$, така, що $f\in C([a,b]\times[c,d])$

Тоді
$$J \in D([c,d])$$
, а також $\int_c^d \underbrace{\int_a^b f(x,y) \, dx}_{J(y)} \, dy = \int_a^b \int_c^d f(x,y) \, dy \, dx$

Розглянемо дві функції: $h(t) = \int_c^t \int_a^b f(x,y) \, dx \, dy$ $g(t) = \int_a^b \int_c^t f(x,y) \, dy \, dx$

В нашому випадку $t \in [c,d]$

Якщо t = c, то маємо, що h(c) = g(c) = 0

Необхідно знайти, чому дорівнює h'(t), g'(t)

Зробимо деякі заміни

$$h(t) = \int_{c}^{t} J(y) dy \qquad g(t) = \int_{a}^{b} F(x, t) dx$$

Маємо два інтеграли з параметром t. Другий інтеграл задовільняють умові з **Prp 7.1.4**, тоді можемо знайти похідну

Перший - це інтеграл від верхньої межі, тому автоматично h'(t) = J(t)

Другий рахується за попереднім твердженням

$$g'(t) = \int_a^b \frac{\partial F}{\partial t}(x,t) \, dt = \int_a^b f(x,t) \, dx = J(t)$$
 Таким чином, $\forall t \in [c,d]: h'(t) = g'(t) \Rightarrow h(t) = g(t) + C$ Але оскільки $h(c) = g(c) = 0$, то одразу $C = 0 \Rightarrow h(t) = g(t)$ Ну а тоді $h(d) = g(d) \Rightarrow \int_a^d \int_a^b f(x,y) \, dx \, dy = \int_a^b \int_a^d f(x,y) \, dy \, dx$

7.2 Невласні інтеграли з параметром

Definition 7.2.1 Задана функція $f:[a,\omega)\times A$, така, що $\forall y\in A: \forall c\in [a,\omega): f\in D([a,c])$

Також маємо збіжний невласний інтеграл із параметром $J(y) = \int_a^\omega f(x,y) \, dx$ Невласний інтеграл збігається рівномірно на множині A, якщо

$$\sup_{y \in A} \left| \int_{a}^{\omega} f(x, y) \, dx - \int_{a}^{c} f(x, y) \, dx \right| \stackrel{c \to \omega}{\to} 0$$

Theorem 7.2.2 Критерій Коші

$$\int_{a}^{\omega} f(x,y) \, dx$$
 - збіжний рівномірно на $A \iff$

$$\forall \varepsilon > 0 : \exists C : \forall c_1, c_2 \in [C, \omega) : \sup_{y \in A} \left| \int_{c_1}^{c_2} f(x, y) \, dx \right| < \varepsilon$$

Випливає з критерію Коші рівномірної збіжності функцій

Theorem 7.2.3 Ознака Вейєрштрасса

Задані функції $f:[a,\omega) \times A \to \mathbb{R},\, g:[a,\omega) \to \mathbb{R}$ такі, що

1)
$$\forall x \in [a, \omega) : \forall y \in A : |f(x, y)| \le g(x)$$

$$(2)$$
 $\int_{a}^{\omega} g(x) dx$ - збіжний

Тоді
$$\int_a^\omega f(x,y)\,dx$$
 - збіжний рівномірно на A

$$\sup_{y \in A} \left| \int_{c}^{\omega} f(x, y) \, dx \right| \le \left| \int_{c}^{\omega} g(x) \, dx \right| \stackrel{c \to \omega}{\to} 0 \blacksquare$$

Theorem 7.2.4 Ознака Абеля-Діріхле

Задані функції $f:[a,\omega)\times A\to\mathbb{R},\,g:[a,\omega)\times A\to\mathbb{R}$ такі, що виконана одна з двох пар умов

$$a1)\int_a^\omega f(x,y)\,dx$$
 - збіжний рівномірно на A

$$(a2)$$
 $\forall y \in A : g$ - монотонна від $x \in [a, \omega)$

$$a3)\exists D > 0: \sup_{y \in A} \sup_{c \in [a,\omega)} |g(x,y)| \le D$$

$$d1)\exists D > 0 : \sup_{y \in A} \sup_{c \in [a,\omega)} \left| \int_a^c f(x,y) \, dx \right| \le D$$

$$d2) \forall y \in A: g$$
 - монотонна від $x \in [a,\omega)$

$$d3) \sup_{y \in A} |g(x,y)| \stackrel{x \to \omega}{\to} 0$$

Тоді
$$\int_a^\omega f(x,y)g(x,y)\,dx$$
 - рівномірно збіжний на A Без доведення.

Proposition 7.2.5 Неперервність

Задана функція $f:[a,\omega)\times[c,d]\to\mathbb{R}$, така, що $f\in C([a,\omega)\times[c,d])$ Також J - рівномірно збіжний. Тоді $J \in C([c,d])$

Proof.

За означенням рівномірної збіжності, маємо, що $\sup_{y \in [c,d]} \left| \int_c^\omega f(x,y) \, dx \right| \to$

$$0, c \to \omega$$

Тобто
$$\forall \varepsilon > 0 : \exists c > a : \sup_{y \in [c,d]} \left| \int_c^\omega f(x,y) \, dx \right| < \frac{\varepsilon}{3}$$

Оцінимо J

$$|J(y_{1}) - J(y_{2})| = \left| \int_{a}^{\omega} f(x, y_{1}) dx - \int_{a}^{\omega} f(x, y_{2}) dx \right| =$$

$$= \left| \int_{a}^{c} f(x, y_{1}) dx - \int_{a}^{c} f(x, y_{2}) dx + \int_{c}^{\omega} f(x, y_{1}) dx - \int_{c}^{\omega} f(x, y_{2}) dx \right| \le$$

$$\le \left| \int_{a}^{c} f(x, y_{1}) - f(x, y_{2}) dx \right| + \left| \int_{c}^{\omega} f(x, y_{1}) dx \right| + \left| \int_{c}^{\omega} f(x, y_{2}) dx \right| \le$$

Перший модуль:
$$f \in C_{unif}([a,\omega) \times [c,d])$$
 $\Rightarrow \exists \delta: \forall y_1,y_2: |y_1-y_2| < \delta \Rightarrow |f(x,y_1)-f(x,y_2)| < \frac{\varepsilon}{c-a}$ Другий модуль: $\sup_{y \in [c,d]} \left| \int_c^\omega f(x,y) \, dx \right| < \frac{\varepsilon}{3}$ $\Rightarrow \forall y \in [c,d]: \left| \int_c^\omega f(x,y) \, dx \right| < \frac{\varepsilon}{3}$ $\leq \int_a^c \frac{\varepsilon}{c-a} \, dx + \frac{2\varepsilon}{3} = \varepsilon$ Збираємо пазл та маємо, що $J \in C_{unif}([c,d]) \Rightarrow J \in C([c,d])$

Proposition 7.2.6 Інтегрованість

Задана функція $f:[a,\omega)\times[c,d]\to\mathbb{R}$, така, що $f\in C([a,\omega)\times[c,d])$ Також J - рівномірно збіжний. Тоді $J \in D([c,d])$ та

$$\int_{c}^{d} \underbrace{\int_{a}^{\omega} f(x,y) \, dx}_{=J(y)} \, dy = \int_{a}^{\omega} \int_{c}^{d} f(x,y) \, dy \, dx$$

Proof.

Розглянемо $\int_{a}^{a} J(y) \, dy = \int_{a}^{a} \int_{a}^{b} f(x,y) \, dx \, dy + \int_{a}^{a} \int_{b}^{\omega} f(x,y) \, dx \, dy$

Перший доданок - це визначений інтеграл, тому там виконується \mathbf{Prp}

$$3.1.4.$$
, тобто $\int_a^d \int_a^b$

$$\int_{c}^{d} \int_{a}^{b} f(x,y) \, dx \, dy = \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$$

Другий доданок - цікаві

$$\left| \int_{c}^{d} \int_{b}^{\omega} f(x,y) \, dx \, dy \right| \leq \int_{c}^{d} \left| \int_{b}^{\omega} f(x,y) \, dx \right| \, dy \leq \int_{c}^{d} \sup_{y \in [c,d]} \left| \int_{b}^{\omega} f(x,y) \, dx \right| \, dy = \sup_{y \in [c,d]} \left| \int_{b}^{\omega} f(x,y) \, dx \right| (d-c) \to 0, b \to \omega$$

Якщо $b \to \omega$, то тоді отримаємо

$$\int_{c}^{d} J(y) \, dy = \int_{a}^{\omega} \int_{c}^{d} f(x, y) \, dx \, dy + 0 = \int_{a}^{\omega} \int_{c}^{d} f(x, y) \, dx \, dy \blacksquare$$

Proposition 7.2.7 Диференційованість

Задана функція $f:[a,\omega)\times[c,d]\to\mathbb{R}$, така, що:

1)
$$\frac{\partial f}{\partial y} \in C([a,\omega) \times [c,d])$$

$$(2) \exists y_0 \in [c,d] : J(y_0)$$
 - збіжний

$$3) \int_a^\omega \frac{\partial f}{\partial y}(x,y) \, dx$$
 - рівномірно збіжний

Тоді J - збіжний, диференційована в [c,d], при цьому $J'(y)=\int_{-\infty}^{\infty}\frac{\partial f}{\partial u}(x,y)\,dx$

Proof.

Розглянемо функцію $I(y)=\int_{a}^{\omega}\frac{\partial f}{\partial y}(x,y)\,dx$ - неперервна за умовною рівномірна. Часткові похідні є неперервними також за умовою. Тоді за

Prp. 7.2.6.,
$$I \in D([y, y_0])$$

$$\int_{y_0}^{y} I(t) dt = \int_{a}^{\omega} \int_{y_0}^{y} \frac{\partial f}{\partial y}(x, t) dt dx = \int_{a}^{\omega} f(x, y) - f(x, y_0) dx =$$

$$= J(y) - J(y_0)$$

$$\Rightarrow J(y) = \int_{y}^{y} I(t) dt - J(y_0) - \text{обилва збіжні. Тому сума - збіж$$

 $\Rightarrow J(y) = \int_{-\infty}^{y} I(t) \, dt - J(y_0)$ - обидва збіжні. Тому сума - збіжна

Отже, J - збіжний $\forall y \in [c,d]$

$$\Rightarrow J'(y) = I(y) - 0 = \int_a^{\omega} \frac{\partial f}{\partial y}(x, y) \, dx \blacksquare$$

Proposition 7.2.8 Невласне інтегрування невласного інтеграла

Задана функція $f:[a,+\infty)\times[c,+\infty)\to\mathbb{R}$ така, що $f\in C([a,+\infty)\times$ $[c, +\infty)$), а також виконані умови:

$$1) \forall b>a: \int_{c}^{+\infty} f(x,y)\,dy$$
 - збіжний рівномірно в $[a,b]$

$$(2)$$
 $\forall d>c:\int_a^{+\infty}f(x,y)\,dx$ - збіжний рівномірно в $[c,d]$

$$f(x,y) = \int_{0}^{+\infty} |f(x,y)| \, dy$$
, $\int_{0}^{+\infty} |f(x,y)| \, dx$ - збігаються $\forall x \geq a, \forall y \geq c$

4)
$$\int_a^{+\infty} \int_c^{+\infty} |f(x,y)| \, dy \, dx$$
 або $\int_c^{+\infty} \int_a^{+\infty} |f(x,y)| \, dx \, dy$ - збіжний

Тоді обидва інтеграли - збіжні т

$$\int_{a}^{+\infty} \int_{c}^{+\infty} |f(x,y)| \, dy \, dx = \int_{c}^{+\infty} \int_{a}^{+\infty} |f(x,y)| \, dx \, dy$$

Example 7.2.9 Обчислити
$$\int_0^{\pi/2} \frac{\arctan(\operatorname{tg} x)}{\operatorname{tg} x} dx$$
Виглядає взагалі неприємно, але вихід завжди є

Ми розглянемо функцію
$$J(y) = \int_0^{\pi/2} \frac{\arctan(y \operatorname{tg} x)}{\operatorname{tg} x} \, dx$$

Спочатку ми зведемо це в приємний вигляд, а далі знайдемо J(1) - те, що нас просять

Позначимо
$$f(x,y)=\dfrac{\arctan(y \operatorname{tg} x)}{\operatorname{tg} x}$$
. Знайдемо часткову похідну
$$\dfrac{\partial f}{\partial y}(x,y)=\dfrac{1}{\operatorname{tg} x}\dfrac{\operatorname{tg} x}{1+y^2\operatorname{tg}^2 x}=\dfrac{1}{1+y^2\operatorname{tg}^2 x}$$

$$\frac{\partial f}{\partial y}(x,y) = \frac{1}{\operatorname{tg} x} \frac{\operatorname{tg} x}{1 + y^2 \operatorname{tg}^2 x} = \frac{1}{1 + y^2 \operatorname{tg}^2 x}$$

$$1) \frac{1}{1 + y^2 \operatorname{tg}^2 x} \in C$$

$$(2) \; \exists y_0 = 0 : J(0) = \int_0^{\pi/2} 0 \, dx = 0$$
 - збіжний

3)
$$\int_0^{\pi/2} \frac{1}{1+y^2 \lg^2 x} dx$$
 - чи буде даний інтеграл рівномірно збіжним?

1)
$$\left| \frac{1}{1 + y^2 t q^2 x} \right| \le 1, \forall y$$

$$(2) \int_0^{\pi/2} 1 \, dx = \frac{\pi}{2}$$
 - збіжний

Тоді за ознакою Вейєрштрасса, збіжний рівномірно

OTЖЕ, за твердженням про диференційованість J - диференційований, а тому

$$J'(y) = \int_0^{\pi/2} \frac{1}{1 + y^2 \operatorname{tg}^2 x} dx = \boxed{\equiv}$$

Заміна:
$$t = \operatorname{tg} x \Rightarrow dt = \frac{dx}{\cos^2 x} = (1 + \operatorname{tg}^2 x) dx = (1 + t^2) dx$$

Границі $\left[0,\frac{\pi}{2}\right]$ міняємо на $\left[0,+\infty\right]$

Маємо
$$\frac{1}{(1+u^2t^2)(1+t^2)} = \frac{B_1t+C_1}{1+t^2} + \frac{B_2t+C_2}{1+u^2t^2}$$

$$\Rightarrow (1+y^2t^2)(B_1t+C_1)+(1+t^2)(B_2t+C_2)=1$$

$$t = 0: C_1 + C_2 = 1$$

$$t = 1: (1+y^2)(B_1 + C_1) + 2(B_2 + C_2) = 1$$
 (I)

$$t = -1: (1+y^2)(-B_1+C_1)+2(-B_2+C_2)=1$$
 (II)

$$t = 2: (1+4y^2)(2B_1+C_1) + 5(2B_2+C_2) = 1$$
 (III)

$$t = -2: (1 + 4y^2)(-2B_1 + C_1) + 5(-2B_2 + C_2) = 1$$
 (IV)

Із цього сміття спочатку знайдемо C_1, C_2

(I)+(II):
$$(1+y^2)2C_1 + 4C_2 = 2 \Rightarrow (1+y^2)C_1 + 2 - 2C_1 = 1$$

$$(I)+(II): (1+y^2)2C_1 + 4C_2 = 2 \Rightarrow (1+y^2)C_1 + 2 - 2C_1 = 1$$

$$\Rightarrow C_1 = \frac{1}{1-y^2} \Rightarrow C_2 = \frac{-y^2}{1-y^2}$$

А потім вже B_1, B_2 . Підставляти туда C_1, C_2 лінь, тому підемо іншим ШЛЯХОМ

(I)-(II):
$$(1+y^2)2B_1 + 4B_2 = 0$$

(III)-(IV):
$$(1+4y^2)4B_1 + 20B_2 = 0$$

 $\Rightarrow B_1 = 0 \Rightarrow B_2 = 0$
Отже, $\frac{1}{(1+y^2t^2)(1+t^2)} = \frac{1}{1-y^2} \left[\frac{1}{1+t^2} - \frac{y^2}{1+y^2t^2} \right]$

Повертаємось до інтегралу
$$\boxed{ \boxed{\equiv} \frac{1}{1-y^2} \int_0^{+\infty} \frac{1}{1+t^2} - \frac{y^2}{1+y^2t^2} \, dt = \frac{1}{1-y^2} \left(\operatorname{arctg} t - y \operatorname{arctg} yt \right) \Big|_0^{+\infty} = \frac{1}{1-y^2} \left(\frac{\pi}{2} - y \frac{\pi}{2} \right) = \frac{\pi}{2} \frac{1}{1+y}$$

Після певного часу страждань, отримали

$$J'(y) = \frac{\pi}{2} \frac{1}{1+y}$$

$$J(y) = \int \frac{\pi}{2} \frac{1}{1+y} dy = \frac{\pi}{2} \ln|1+y| + C$$

Проте оскільки J(0)=0, то звідси C=0

$$J(y) = \frac{\pi}{2} \ln|1 + y|$$

І НАРЕШТІ, отримаємо довгоочікувану відповідь:

$$J(1) = \frac{\pi}{2} \ln 2$$

Інтеграл Діріхле 7.3

Зараз доведемо таку рівність (про збіжність вже говорили)

$$\int_0^{+\infty} \frac{\sin x}{x} \, dx = \frac{\pi}{2}$$

Розглянемо функцію $F(a) = \int_0^{+\infty} \frac{\sin ax}{x} dx$

Зауважимо, що якщо зробити заміну ax = t, то отримаємо, що

$$F(a) = F(1)$$
. А також $F(-a) = -F(a)$, $F(0) = 0$

Із цих умою випливає, що F(a) - розривна, тож F(a) - не збіжна рівномірно на \mathbb{R}

Розглянемо функцію
$$J(a) = \int_0^{+\infty} \frac{\sin ax}{x} e^{-bx} dx, \ b \ge 0$$

Підінтегральна функція - неперервна, має неперервну часткову похідну $\frac{\partial f}{\partial a} = \cos ax \cdot e^{-bx}$, а також $\int_0^{+\infty} \cos ax \cdot e^{-bx} dx$ - рівномірно збіжний, бо

 $|\cos axe^{-bx}| \le |e^{-bx}|$ і за Вейєрштрассом

Тоді можна стверджувати, що

$$J'(a) = \int_0^\infty \cos ax \cdot e^{-bx} \, dx$$
 Спробуйте самостійно або див. Демидович, 1828 $\frac{b}{a^2 + b^2}$

$$J(a)=rctgrac{a}{b}+C,$$
 але $J(0)=0$ $J(a)=rctgrac{a}{b}$

$$F(a) = \int_0^{+\infty} \frac{\sin ax}{x} \, dx = \lim_{b \to 0^+} \int_0^{+\infty} \frac{\sin ax}{x} e^{-bx} \, dx = \lim_{b \to 0^+} J(a) = \frac{\pi}{2}$$

Інтеграл Ейлера-Пуассона 7.4

Зараз доведемо рівність такого інтеграла

$$\int_0^{+\infty} e^{-x^2} \, dx = \frac{\sqrt{\pi}}{2}$$

Позначимо
$$J = \int_0^{+\infty} e^{-x^2} dx$$

Зробимо заміну x = at. Тоді

$$J = \int_0^{+\infty} e^{-a^2t^2} a \, dt$$

$$J^2 = J \int_0^{+\infty} e^{-a^2} \, da = \int_0^{+\infty} \left(\int_0^{+\infty} e^{-a^2t^2} a \, dt \right) e^{-a^2} \, da = \int_0^{+\infty} \int_0^{+\infty} a e^{-a^2t^2 - a^2} \, dt \, da$$

$$= \int_0^{+\infty} \int_0^{+\infty} e^{-a^2(t^2 + 1)} a \, da \, dt =$$

$$3 \text{аміна: } s = -a^2(t^2 + 1)$$

$$= \int_0^{+\infty} \frac{1}{2(t^2 + 1)} \int_{-\infty}^0 e^s \, ds \, dt = \int_0^{+\infty} \frac{1}{2(t^2 + 1)} \, dt = \frac{\pi}{4}$$

$$\Rightarrow J = \frac{\sqrt{\pi}}{2}$$

7.5Гамма-функція

Definition 7.5.1 Гамма-функцією називають таку функцію

$$\Gamma(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} dx, \alpha > 0$$

Lemma 7.5.2 $\alpha > 0$ - область збіжності гамми-функції

$$\int_{0}^{+\infty} x^{\alpha-1}e^{-x} dx = \int_{0}^{1} x^{\alpha-1}e^{-x} dx + \int_{1}^{+\infty} x^{\alpha-1}e^{-x} dx$$
Розглянемо перший інтеграл. Особлива точка - $x = 0$

Розглянемо перший інтеграл. Особлива точка - x=0

Порівняємо з інтегралом
$$\int_0^1 x^{\alpha-1} \, dx$$
 - збіжний для $\alpha>0$

$$\lim_{x \to 0} \frac{x^{\alpha - 1} e^{-x}}{x^{\alpha - 1}} = 1$$

Отже, обидва збіжні, тому перший доданок - збіжний

Розглянемо другий інтеграл. Особлива точка - $x=\infty$

Порівняємо з інтегралом $\int_1^{+\infty} e^{-\frac{x}{2}} \, dx$ - збіжний для $\alpha > 0$

$$\lim_{x\to\infty}\frac{x^{\alpha-1}e^{-x}}{e^{-\frac{x}{2}}}=\begin{bmatrix}0\text{ за правилом Лопіталя, }\alpha\geq1\\ \lim_{x\to\infty}\frac{1}{x^{1-\alpha}e^{\frac{x}{2}}}=0,\alpha<1 \end{bmatrix}$$

Отже, обидва збіжні, тому другий доданок - збіжний Остаточно, $\Gamma(\alpha)$ - збіжний \blacksquare

Lemma 7.5.3 $\Gamma \in C^{\infty}((0,+\infty))$

Proof.

Якщо продиференціювати гамма-функцію, то отримаємо

$$\Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} (\ln x)^n dx$$

А щоб ця рівність виконувалась, треба перевірити три пункти **Prp. 7.2.7.**

Перші два пункти більш-менш зрозумілі

3) Лишилось показати рівномірну збіжність на відрізку $[\beta, \gamma] \subset (0, +\infty)$ Розіб'ємо інтеграл на два доданки

$$\int_0^{+\infty} x^{\alpha-1} e^{-x} (\ln x)^n dx = \int_0^1 x^{\alpha-1} e^{-x} (\ln x)^n dx + \int_1^{+\infty} x^{\alpha-1} e^{-x} (\ln x)^n dx$$
 Перший інтеграл:

$$\forall x \in (0,1] : \forall \alpha \in [\beta,\gamma] : x^{\alpha-1}e^{-x}(\ln x)^n < \begin{bmatrix} x^{\gamma-1}e^{-x}(\ln x)^n \\ x^{\beta-1}e^{-x}(\ln x)^n \end{bmatrix}$$
, в залежності

від знаків $\beta-1$ та $\gamma-1$

Порівняємо з $\int_0^1 x^{\beta-\varepsilon-1} dx$. Підбираємо такий ε , щоб $\beta-\varepsilon>0$ - тоді такий інтеграл збіжний

$$\lim_{x \to 0} \frac{x^{\beta - 1} e^{-x} (\ln x)^n}{x^{\beta - \varepsilon - 1}} = \lim_{x \to 0} x^{\varepsilon} e^{-x} (\ln x)^n = \lim_{x \to 0} \frac{(\ln x)^n}{x^{-\varepsilon}} \stackrel{\text{Лопіталь}}{=} 0$$

Тоді зі збіжності розглянутого інтегралу випливає збіжність $\int_0^1 x^{\beta-1} e^{-x} (\ln x)^n dx$

або
$$\int_0^1 x^{\gamma-1} e^{-x} (\ln x)^n dx$$

За ознакою Вейєрштрасса, перший інтеграл - збіжний рівномірно на $[\beta,\gamma]$

Другий інтеграл:

Початок той самий, але далі розглядаємо $\int_1^{+\infty} x^{\beta-1+\varepsilon}e^{-x}\,dx$ - збіжний

$$\lim_{x \to \infty} \frac{x^{\beta - 1} e^{-x} (\ln x)^n}{x^{\beta - 1 + \varepsilon} e^{-x}} = \dots \stackrel{\text{Лопіталь}}{=} 0$$

Тоді зі збіжності розглянутого інтегралу випливає збіжність $\int_1^{+\infty} x^{\beta-1} e^{-x} (\ln x)^n \, dx$

або
$$\int_0^{+\infty} x^{\gamma-1} e^{-x} (\ln x)^n \, dx$$

За ознакою Вейєрштрасса, другий інтеграл - збіжний рівномірно на $[eta,\gamma]$

Остаточно: Prp. 7.2.7. працює, можемо диференціювати скільки захочеться

$$\forall n \ge 1 : \Gamma^{(n)}(\alpha) = \int_0^{+\infty} x^{\alpha - 1} e^{-x} (\ln x)^n \, dx \blacksquare$$

Theorem 7.5.4 $\forall \alpha > 0 : \Gamma(\alpha + 1) = \alpha \Gamma(\alpha)$

Вказівка: ліву частину інтегруємо частинами, $u=x^{\alpha}, dv=e^{-x}\,dx$

Що буде, якщо $\alpha \in \mathbb{N}$

$$\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-1) = \dots = n(n-1)(n-2)\dots 2 \cdot 1\Gamma(1)$$

$$\Gamma(1) = \int_0^{+\infty} e^{-x} \, dx = -e^{-x} \Big|_0^{+\infty} = 1$$
 Отже.

Corollary 7.5.5 $\Gamma(n+1) = n!$

А далі перевіримо, чому дорівнює гамма-функція в т. $\alpha = \frac{1}{2}$

$$\Gamma\left(\frac{1}{2}\right) = \int_0^{+\infty} x^{-\frac{1}{2}} e^{-x} dx \stackrel{\text{3amina: } t = \sqrt{x}}{=} 2 \int_0^{+\infty} e^{-t^2} dt = 2 \frac{\sqrt{\pi}}{2} = \sqrt{\pi}$$

Далі скористаємось тотожністю $\Gamma(\alpha+1) = \Gamma(\alpha)$, щоб знайти $\Gamma\left(\frac{1}{2}+n\right)$.

Отримаємо:

Corollary 7.5.6
$$\Gamma\left(\frac{1}{2} + n\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$$

Theorem 7.5.7 Функціональне рівняння Ейлера

$$\Gamma(\alpha) \cdot \Gamma(1 - \alpha) = \frac{\pi}{\sin \pi \alpha}$$

$$\Gamma\left(\frac{1}{2} + \alpha\right) \cdot \Gamma\left(\frac{1}{2} - \alpha\right) = \frac{\pi}{\cos \pi \alpha}$$
Без доведення.

Бета-функція 7.6

Definition 7.6.1 Бета-функцією називають таку функцію

$$B(\alpha, \beta) = \int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx, \alpha, \beta > 0$$

Lemma 7.6.2 $\alpha, \beta > 0$ - область збіжності бета-функції

$$\int_0^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx = \int_0^{\frac{1}{2}} x^{\alpha - 1} (1 - x)^{\beta - 1} dx + \int_{\frac{1}{2}}^1 x^{\alpha - 1} (1 - x)^{\beta - 1} dx$$

Розглянемо перший інтеграл. Особлива точка - $\dot{x}=0$

Порівняємо з інтегралом $\int_{\hat{a}}^{\frac{\pi}{2}} x^{\alpha-1} \, dx$ - збіжний для $\alpha>0$

$$\lim_{x\to 0} \frac{x^{\alpha-1}(1-x)^{\beta-1}}{x^{\alpha-1}} = 1$$

Отже, обидва збіжні, тому перший доданок - збіжний

Розглянемо другий інтеграл. Проводимо заміну 1-x=t, тоді маємо

$$-\int_0^{\frac{1}{2}} (1-t)^{\alpha-1} t^{\beta-1} \, dt$$
 - це той самий перший доданок. І він вже буде збіжним, якщо $\beta>0$

Остаточно, $B(\alpha, \beta)$ - збіжний

Proposition 7.6.3
$$B(\alpha,\beta)=\int_0^{+\infty}\frac{y^{\alpha-1}}{(1+y)^{\alpha+\beta}}\,dy$$
 Вказівка: зробити заміну $x=\frac{y}{1+y}$

Theorem 7.6.4 Зв'язок між Γ та B $B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}$$

Proof. Розглянемо $\Gamma(\alpha+\beta)$ та проведемо заміну x=y(t+1), dx=

$$\Gamma(\alpha + \beta) = \int_0^{+\infty} x^{\alpha + \beta - 1} e^{-x} dx = (t + 1)^{\alpha + \beta} \int_0^{+\infty} y^{\alpha + \beta - 1} e^{-y(t + 1)} dy$$

Отримаємо

$$\frac{\Gamma(\alpha+\beta)}{(1+t)^{\alpha+\beta}} = \int_0^{+\infty} y^{\alpha+\beta-1} e^{-y(t+1)} dy$$

Помножимо обидві частини на
$$t^{\alpha-1}$$
 та проінтегруємо від 0 до $+\infty$
$$\int_0^{+\infty} \frac{t^{\alpha-1}}{(1+t)^{\alpha+\beta}} \Gamma(\alpha+\beta) = \int_0^{+\infty} \int_0^{+\infty} y^{\alpha+\beta-1} t^{\alpha-1} e^{-y} e^{-yt} \, dy \, dt$$

$$\Gamma(\alpha + \beta) \cdot B(\alpha, \beta) = \int_0^{+\infty} y^{\beta - 1} e^{-y} \int_0^{+\infty} y^{\alpha} t^{\alpha - 1} e^{-yt} dt dy$$

Внутрішній інтеграл при заміні yt = x стане рівним $\Gamma(\alpha)$. Його виносимо з-під зовнішнього інтегралу, а сам інтеграв вже ϵ $\Gamma(\beta)$. Тоді

з-під зовнішнього інтегралу, а сам інтеграв вже є
$$\Gamma(\beta)$$
. Тоді
$$\Gamma(\alpha+\beta)B(\alpha,\beta)=\Gamma(\alpha)\Gamma(\beta)\Rightarrow B(\alpha,\beta)=\frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$$

