第二章 习题

- 有 5 个批处理作业 A E 均已到达计算中心。对于时间片轮转算法 RR, 优先级调度算法 PS, 短作业优先算法 SJF, 先来先服务算法 FCFS, 在忽略进程切换时间的前提下, 计算平均作业周转时间。
 - 时间片为 2min, 其它算法单道运行, 直到结束(非抢占式)

序号	作业名称	运行时间	到达次序	优先级
1	Α	2 min	5	1
2	В	4 min	3	2
3	С	6 min	1	3
4	D	8 min	2	4
5	E	10 min	4	5 (最高)

1 2	3 4	5 6	7 8	9 10	11 12	13 14	15 16	17 18	19 20	21 22	23 24	25 <mark>26</mark>	27 28	29 30
С	D	В	Е	Α	С	D	В	Ε	С	D	Е	D	Е	Е

$$T_{RR} = \frac{(10+16+20+26+30)}{5} = 20.4 \, min$$

序号	作业名称	运行时间	到达次序	优先级
1	Α	2 min	5	1
2	В	4 min	3	2
3	С	6 min	1	3
4	D	8 min	2	4
5	E	10 min	4	5 (最高)

(基) 內海大學 计算机与信息学院——

1 2 3 4 5 6 7 8 9 10	11 12 13 14 15 16 17 18	19 20 21 22 23 24	25 26 27 <mark>28 29 30</mark>
E	D	С	В А

$$T_{PS} = \frac{(30 + 28 + 24 + 18 + 10)}{5} = 22 \, min$$

序号	作业名称	运行时间	到达次序	优先级
1	Α	2 min	5	1
2	В	4 min	3	2
3	С	6 min	1	3
4	D	8 min	2	4
5	E	10 min	4	5 (最高)

1 2 3 4 5 6	7 8 9 10 11 12	13 14 15 16 17 18 19 <mark>20</mark>	21 22 23 24 25 26 27 28 29 30
A B	С	D	E

$$T_{SJF} = \frac{(2+6+12+20+30)}{5} = 14 \, min$$

序号	作业名称	运行时间	到达次序	优先级
1	Α	2 min	5	1
2	В	4 min	3	2
3	С	6 min	1	3
4	D	8 min	2	4
5	E	10 min	4	5 (最高)

(基) 內海大學 计算机与信息学院——

1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	(2)					E	3						-						/	4

$$T_{FCFS} = \frac{(30 + 18 + 6 + 14 + 28)}{5} = 19.2 \, min$$

序号	作业名称	运行时间	到达次序	优先级
1	Α	2 min	5	1
2	В	4 min	3	2
3	С	6 min	1	3
4	D	8 min	2	4
5	E	10 min	4	5 (最高)

- 有一个 4 道作业的操作系统,若在一段时间内先后到达 6 个作业,其提交时刻和估计运行时间如下表。系统采用剩余 SJF 调度算法,即作业被调度进入系统后中途不会退出,但作业运行时可被剩余时间更短的作业抢占。
 - 1. 给出 6 个作业的执行时间序列,即开始执行时间,作业完成时间和作业周转时间;
 - 2. 计算平均作业周转时间。

作业	提交时刻	运行时间(min)
1	8:00	60
2	8:20	35
3	8:25	20
4	8:30	25
5	8:35	5
6	8:40	10

(学) 河海大学 计算机与信息学院

某操作系统采用轮转法调度进程。分配给 A 类进程时间片长 100ms, 分配给 B 类进程时间片长 400ms, 若假定就绪队列中有 4 个 A 类进程和 1 个 B 类进程。所有作业的平均服务时间为 2s。不考虑 I/O 和系统开销, 计算 A 类进程和 B 类进程的平均周转时间是多少?

- 循环一次执行A、B 类进程需耗时: 4 * 0.1 + 0.4 = 0.8s
- •对于 A类进程而言,完成所有作业需要 2/0.1 = 20 时间片
- •对于 B类进程而言,完成所有作业需要 2/0.4 = 5 时间片
- 所以, A 类进程的平均作业周转时间为:

$$20 * 0.8 = 16s$$

• B 类进程的平均作业周转时间为:

$$5 * 0.8 = 4s$$