Causal Inference Crash Course Part 4: Best Practices: Outliers, Class Imbalance, Feature Selection, and Bad Control

Julian Hsu

### Causal Inference Series

- 1) Foundations
- 2) Defining Some ATE/ATET Causal Models
- 3) ATE/ATET Inference, Asymptotic Theory, and Bootstrapping
- 4) Best Practices: Outliers, Class Imbalance, Feature Selection, and Bad Control
- 5) Heterogeneous Treatment Effect Models and Inference
- 6) Difference-in-Difference Models for Panel Data
- 7) Regression Discontinuity Models
- 8) Arguable Validation

#### Overview

- This presentation will outline best practices for issues around causal inference which can be applied to other ML settings.
- A. Outliers;
- B. Class Imbalance in Propensity Scores;
- C. Feature Selection; and
- D. Bad Control
- For each issue, we will discuss what the problem is, why it's a problem, and a solution outline.

## A. Outliers

### Why are outliers problems?

- Generally, treatment effects estimates are about the average.
  - Average treatment effect
  - Average treatment effect on the treated
  - Conditional average treatment effect
- This is represented in their technical implementation by the statistical conditions for estimation.
- For example, the unconfoundedness assumption can be represented as  $E[u_i|X_i,W_i]=0$

### Outliers skew the average

- Obviously, outlier values cause the average to take on extreme values
- From a <u>strictly theoretical perspective</u>, this is sometimes okay because we have already decided our metric of interest is the average. We may care about the median instead, then the average would be a bad proxy measure.
  - We'll return to the median later.
- Outliers can be a problem if the data is is meant to be representative, but we still have low sample size.

### Two types of outliers

$$Y_i = \tau W_i + g(X_i) + u_i$$

- This means that outlier values in  $Y_i$  are potentially a problem. Outlier values in  $X_i$  (without any corresponding outlier values in  $Y_i$ ) can be addressed with feature generation.
- We will discuss two types of outliers with simulations:
- 1. Outliers in  $Y_i$  due to random noise, or large values of  $u_i$ ;
- 2. Outliers in  $Y_i$  due to outlier values in  $X_i$ .

### Outlier $Y_i$ values due to large values of $u_i$

- Generally, large values of  $u_i$  are not a concern for the estimate, but can be a concern with inference. This is because  $u_i$  will be identified as random noise.
- Simulation setup:

$$Y_{i} = \tau W_{i} + g(X_{1i}, X_{2i}) + u_{i}$$

$$W_{i} = h(X_{1i}, X_{2i}, \eta_{i})$$

- Where  $u_i$  and  $\eta_i$  are random draws, and  $X_{1i}$  and  $X_{2i}$  are independent normally distributed features
- $\tau$  is the treatment effect, and the parameter of interest

### Simulation evidence

- When the true value of  $\tau$  is 50, create outlier values in  $Y_i$  with large values of  $u_i$ .
  - 10% of observations have large values of  $u_i$ .
- Compare the treatment estimate when those 10% do not have large values of  $u_i$ .

#### Simulation results on the bias



- With and without outliers, the estimate  $\hat{\tau}$  has small bias.
- However, with outliers, the confidence intervals are much larger due the additional statistical noise.

### Outlier $Y_i$ values due to large values of $X_i$

- This is a much larger concern because large values of  $Y_i$  are not driven by random noise. This means that conditioning on  $X_i$  raises theoretical concerns.
- In a simulation similar to before, outlier values of  $X_{1i}$  and  $X_{2i}$  create outlier values of  $Y_i$ . The estimated ATE is **500% larger** than the true treatment effect.
- Discuss three approaches:
  - 1. Conditioning on generated features;
  - 2. Truncation;
  - 3. Winsorization

# Condition on generated features of $X_{1i}$ and $X_{2i}$

| Indicator of whether $X_i$ is an outlier | Indicator of whether $X_i$ is an outlier interacted with $X_i$ | Natural log of $X_i + 1$ | Estimate (True<br>Value is 50) | Standard Error |
|------------------------------------------|----------------------------------------------------------------|--------------------------|--------------------------------|----------------|
| X                                        |                                                                |                          | 333.766                        | 360.346        |
| X                                        | X                                                              |                          | 288.162                        | 361.047        |
| X                                        |                                                                | X                        | 328.213                        | 358.607        |
| X                                        | X                                                              | X                        | 262.311                        | 358.995        |

- Conditioning on additional features drives the estimate to be closer to the truth, but at best the estimate is more than 400% larger
- There is also no impact on the standard error

### Truncating Values of $Y_i$

- Truncation is removing observations based on values of  $Y_i$ .
- However, it is unclear how much to truncate. The more data is truncated, the less <u>natural variation</u> in the data is removed.
- No principled way to determine the best truncation point.

# Truncation simulation evidence

- Truncated data based on the 90<sup>th</sup>, 91<sup>st</sup>, ... 99<sup>th</sup> percentile in  $Y_i$
- The less truncation, the more biased and less precise the estimate is.
- However, the idea of removing data is not palatable and will likely break down in more flexible data settings



### Winsorizing Values of $Y_i$

- Winsorizing is replacing values of  $Y_i$  with a top coded or bottom coded number
- Like truncation, it is unclear how much to winsorize.
- Simulation evidence shows that more winsorization leads to more biased estimates and more precision



### WIP – Median and Quantile Treatment Effects



# B. Class Imbalance in Propensity Scores

**WIP** 

# C. Feature Selection

WIP

### D. Bad Control

WIP

# Appendix



Source: https://eng.uber.com/causal-inference-at-uber/