

Contents

1.	域论、线性空间	:
	1.1. 定义和例子	3
	1.2. 域的同态	8
	1.3. 域的特征 (characteristic)	
	1.4. 域的扩张	
2.	环论、模论	. 18
	群论、群作用	
	Galois 理论	

Chapter 1 域论、线性空间

1.1 定义和例子

Definition 1.1.1 域.

假设集合 F 有如下元素和定义在 F 上的运算:

- 零元: $0 := 0_F$
- 单位元: $1 := 1_F \neq 0_F$
- 加法: $+: F \times F \to F, (x, y) \mapsto x + y$
- $\mathfrak{F} : F \times F \to F, (x, y) \mapsto x \cdot y$

并且, F 上的加法和乘法满足:

- 1. 加法结合律: (x+y) + z = x + (y+z)
- 2. 加法交換律: x + y = y + x
- 3. 加法单位元: x + 0 = 0 + x = x
- 4. 加法逆元: $\forall x \in F, \exists y \in F, x + y = y + x = 0$, 记作 -x
- 5. 乘法结合律: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
- 6. 乘法交换律: $x \cdot y = y \cdot x$
- 7. 乘法单位元: $x \cdot 1 = 1 \cdot x = x$
- 8. 乘法逆元: $\forall x \in F^*, \exists y \in F, x \cdot y = y \cdot x = 1$, 记作 x^{-1}
- 9. 分配律:
 - 1. $x \cdot (y+z) = x \cdot y + x \cdot z$
 - $2. (x+y) \cdot z = x \cdot z + y \cdot z$

则称 F 是一个域.

Lemma 1.1.1 关于零元.

- $0 \cdot 0 = 0$
- $\forall x \in F, x \cdot 0 = 0$

Proof.

• 考虑如下事实:

$$a = 0 \cdot (0+1) = 0 \cdot 1 = 0$$
$$= 0 \cdot 0 + 0 \cdot 1 = 0 \cdot 0 + 0 = 0 \cdot 0$$

$$y + x \cdot 0 = y + x \cdot 0 + x \cdot 0 \Leftrightarrow 0 = x \cdot 0$$

注意到在定义中,我们要求 $0_F \neq 1_F$,若 0 = 1,则 $\forall x \in F, x = x \cdot 1 = x \cdot 0 = 0$,于是 $F = \{0\}$,太平凡了,于是我们排除这种情况.

又注意到,在乘法逆元定义中我们要求 $x \neq 0$,这是因为假设 x = 0 有乘法逆 y,则 $x \cdot y = y \cdot x = 1 \Rightarrow 0 \cdot y = y \cdot 0 = 1 \Rightarrow 1 = 0$,则与上一条矛盾.

Remark 1.1.1 非零元记号.

为了方便讨论, 我们将域中的非零元记作 $F^* = F \setminus \{0\}$

Remark 1.1.2 逆元是唯一的.

• 加法逆元是唯一的. 假设 对于 x 存在两个加法意义下的逆元 y_1,y_2 , 则

$$y_1 = y_1 + 0 = y_1 + x + y_2 = 0 + y_2 = y_2$$

因此, $y_1 = y_2$.

• 乘法逆元是唯一的. 证明类似, 此处略.

Example 1.1.1 一些域的例子.

- 1. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- 2. $F = \mathbb{Q}(\sqrt{2}) = \{x + \sqrt{2}y \mid x, y \in \mathbb{Q}\}$ 可以验证,每个元素确实存在加法逆元和乘法逆元(分母有理化)
- 3. $F = \mathbb{Q}(\sqrt[3]{2})$

Proof $F=\mathbb{Q}\left(\sqrt[3]{2}\right)$. 记 $\alpha=\sqrt[3]{2}$, $F=\{x+y\alpha+z\alpha^2\mid x,y,z\in\mathbb{Q}\}$, 我们主要考虑乘法逆

$$\begin{split} \frac{1}{x+y\alpha+z\alpha^2} &= \frac{y-z\alpha}{(x+y\alpha+z\alpha^2)(y-z\alpha)} = \frac{*}{x(y-z\alpha)+\alpha(y^2-z^2\alpha^2)} \\ &= A \cdot \frac{1}{s+t\alpha} = \frac{s^2-st\alpha+t^2\alpha^2}{(s+t\alpha)(s^2-st\alpha+t^2\alpha^2)} \\ &= \frac{*}{s^3-t^3\alpha^3} = \frac{*}{s^3-2t^3} \in F \end{split}$$

Remark 1.1.3 F[x] = F(x).

注意区分 F[x] 和 F(x),前者是 $\left\{\sum_{i\geq 0}a_ix^i\,\Big|\,a_i\in F\right\}$,后者是在域 F 中添加 x 生成的新的域.

Proposition $1.1.1 \mathbb{Q}(\alpha)$ 是域.

设 $\alpha \in \mathbb{C}$ 是 f(x) 的根, 其中 f 是 \mathbb{Q} 上的首一不可约多项式, $\deg f = n$, 则有:

$$F=\mathbb{Q}(\alpha)=\{x_1+x_2\alpha+\cdots+x_n\alpha^{n-1}\mid x_i\in\mathbb{Q}\}$$

F 是一个域.

Proof. 我们主要考虑乘法逆. 设 $f(\alpha)=\alpha^n+b_1\alpha^{n-1}+\cdots+b_{n-1}\alpha+b_n=0$,对于形式更高阶 的,可以通过带余除法,最终化成次数最高不超过 n-1 的形式,因此我们考虑如下的乘法 逆:

$$\frac{1}{g(\alpha)} = \frac{1}{x_1 + x_2\alpha + \dots + x_n\alpha^{n-1}}$$

首先我们有 (f,g)=1,于是 $\exists u,v \in \mathbb{Q}[\alpha], ug+vf=1$,回到上面的式子

$$\frac{1}{g(\alpha)} = \frac{u}{ug + vf}(\alpha) = u(\alpha) \in \mathcal{P}_{n-1}(\alpha) = F$$

Example 1.1.2 在有理数域中加入两个无理数. 4.考虑 $F = \mathbb{Q}\left(\sqrt{2}, \sqrt{3}\right) = \{x_1 + x_2\sqrt{2} + x_3\sqrt{3} + x_4\sqrt{6} \mid x_i \in \mathbb{Q}\},$ 也是域.

Proof. 首先,加法和乘法的封闭性容易验证.我们考虑乘法逆.

$$\frac{1}{x_1 + x_2\sqrt{2} + x_3\sqrt{3} + x_4\sqrt{6}} = \frac{y_1 + y_2\sqrt{2} + y_3\sqrt{3} + y_4\sqrt{6}}{\left(x_1 + x_2\sqrt{2} + x_3\sqrt{3} + x_4\sqrt{6}\right)\left(y_1 + y_2\sqrt{2} + y_3\sqrt{3} + y_4\sqrt{6}\right)}$$

因此,现在的核心任务就是考虑如何取 y_i 的值,能够使得分母是一个有理数. 我们将分母展开 之后,进行待定系数,求解线性方程组即可.我们只需要无理数项的系数为0,因此只有三个 方程, 而有四个未知数, 因此一定有非零解.

加了两个无理数,也确实构成一个域.但是其实,加了这两个无理数和加一个无理数的效 果是一样的.

我们来看看 $F' = \mathbb{Q}(\sqrt{2} + \sqrt{3})$. 按照 Proposition 1.1.1 的思路, 考虑能否找到一个多项 式使得 $\alpha = \sqrt{2} + \sqrt{3}$ 是他的根. 通过平方,移项,平方,不难得到 $f(\alpha) = \alpha^4 - 10\alpha^2 + 1 =$ 0,利用 Eisenstein 判别法可以得到 f 是一个不可约多项式,因此我们断言:

$$F'=\{x_1+x_2\alpha+x_3\alpha^2+x_4\alpha^3\ |\ x_i\in\mathbb{Q}\}$$

接下来,要说明: F = F'. 手玩得到:

$$\begin{cases} \alpha^3 = 11\sqrt{2} + 9\sqrt{3} \\ \alpha = \sqrt{2} + \sqrt{3} \end{cases}$$

因此, $\sqrt{2}$, $\sqrt{3}$ 都可以用 α 的多项式表示出来, 而他们又可以生成整个 F, 因此整个 F 都可 以用 F' 表示出来. 或者可以这样考虑 $F=\mathrm{span}\big(1,\sqrt{2},\sqrt{3},\sqrt{6}\big), F'=\mathrm{span}(1,\alpha,\alpha^2,\alpha^3,\alpha^4)$, 而线性方程组又给出了这两组基之间的基变换,并且可以验证是双射,因此这两组基可以互相 线性表出,从而他们张成的空间实际上是同一个空间.

我们把这种只加一个元的域扩张叫做单扩张,加若干元的扩张叫有限扩张.在一定条件下, 有限域扩张就是单扩张.

Example 1.1.3 有限域的例子.

 $5. \ \mathbb{F}_2 = \{\overline{0}, \overline{1}\}$

 $6. \ \mathbb{F}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$

Proof. 通过列加法表、乘法表,不难验证他们都构成域.

Example 1.1.4 模素数剩余系构成的有限域.

7. 设 $p \in \mathbb{N} \cap \mathbb{P}$, 则整数集的模 p 剩余系: $\mathbb{F}_p = \{\overline{0}, \overline{1}, ..., \overline{p-1}\}$ 是一个域.

Proof. 考虑乘法逆. 对于 $\bar{k} \in \mathbb{F}_p^*$,由于 $p \in \mathbb{P}$,那么 $k \perp p$,根据 Bezout 定理,有: $\exists u, v \in \mathbb{Z}, uk + vp = 1$ 两侧取模可得 \bar{u} 就是 \bar{k} 的乘法逆.

另解. 构造一个映射 $T: \mathbb{F}_p \to \mathbb{F}_p, y \mapsto ky$,接下来,我们证明: $\ker T = \{0\}$. 如果 $T(y) = 0 \Leftrightarrow ky \equiv 0 \Leftrightarrow ky = pm \Leftrightarrow p \mid y \Leftrightarrow y = \overline{0}$,因此, 我们可以把映射限制到 \mathbb{F}_p^* 上,为了证明每个元素 都存在逆元,我们只需要证明 T 是双射. 由于 T 是有限集合上的映射,因此只需要证明 T 是单射即可.考虑 $T(y_1) = T(y_2)$,即 $ky_1 = ky_2 \Leftrightarrow k(y_1 - y_2) \equiv 0 \Leftrightarrow y_1 \equiv y_2$,因此 T 是单射. 从而,1 在 T 的原像是唯一且存在的.

Remark 1.1.4.

若 $p \notin \mathbb{P}, m \in \mathbb{N}, m \geq 2, \mathbb{Z}_m = \{\overline{0}, \overline{1}, \cdots, \overline{m-1}\}$,则乘法逆不一定存在. 比如 $m = 4, 2 \cdot 2 = 0$,而 $\overline{2} \neq \overline{0}$,此时称 2 为零因子.

Example 1.1.5 函数域.

8. 设 F 是一个域. $F(x) = \left\{\frac{p(x)}{q(x)} \mid p(x), q(x) \in F[x], q(x) \neq 0\right\}$

9. $K = \mathbb{C}\left(x, \sqrt{x^3+2}\right) = \mathbb{C}(x)(y) \sim \mathbb{Q}\left(\sqrt{2}\right) = \left\{R_1(x) + R_2(x)y \,\middle|\, R_1, R_2 \in \mathbb{C}[x], y = \sqrt{x^3+2}\right\}$,此处类比向 \mathbb{Q} 中加入 $\sqrt{2}$. 这个 K 是一条代数曲线上的亚纯函数.

Definition 1.1.2 线性空间.

设 F 是一个域, 集合 V 和上面定义两个运算:

• 加法: $+: V \times V \rightarrow V$

• 数乘: $\cdot: F \times V \to V$

如果 $0_V \in N$,且满足:

- 1. $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma)$
- 2. $\alpha + \beta = \beta + \alpha$
- 3. $\alpha + 0_V = 0_V + \alpha = \alpha$
- 4. $\forall \alpha \in V, \exists 1\beta \in V \text{ s.t. } \alpha + \beta = \beta + \alpha = 0_V, \exists 1 -\alpha \triangleq \beta$
- 5. $(xy)\alpha = x(y\alpha)$
- 6. $1_F \cdot \alpha = \alpha$
- 7. $(x+y)\alpha = x\alpha + y\alpha$
- 8. $x(\alpha + \beta) = x\alpha + x\beta$

则称集合 V 连同它上面的两个运算为 域 F 上的**线性空间** V.

Example 1.1.6 线性空间的例子.

- 1. $\mathbb{Q}(\sqrt{2})$ 是 \mathbb{Q} 上的 2 维线性空间.
- 2. $\mathbb{Q}(\sqrt[3]{2})$ 是 \mathbb{Q} 上的 3 维空间.
- 3. $\mathbb{Q}(\sqrt{2},\sqrt{3})$ 是 \mathbb{Q} 上的 4 维空间.
- 4. F(x) 是无穷维的线性空间.
- 5. $K \in \mathbb{C}(x)$ 上的 2 维线性空间.
- 6. ℝ 是 ℚ 上的无穷维空间.
- 7. C 是 ℝ 上的 2 维空间.

通过类比 Proposition 1.1.1, 我们来看一些更复杂的例子.

Theorem 1.1.1.

 $p \in \mathbb{P}, d \in \mathbb{Z}_+$,记 $q = p^d$,则存在一个 q 元有限域 \mathbb{F}_q .

Proof. 取 \mathbb{F}_p 上的一个 d 次不可约多项式 f(x),构造商环 $K=\mathbb{F}_p[x]/\langle f(x)\rangle$ 可以看成是 $f(\alpha)=0$,从而得到一个域 \mathbb{F}_p 上的 d 维线性空间,一组基为 $1,x,x^2,\cdots,x^{d-1}$. 因此 K 一共有 p^d 个元素. 接下来考虑乘法逆是否存在. $\forall g(x)\in K,\deg g< d$ 且 f 是不可约多项式,因此 (f,g)=1,从而由 Bezout 定理, $\exists u,v\in K$ s.t. uf+vg=1,模掉 f,得到 g 的逆元为 v. 因此 K 就是所要求的 \mathbb{F}_q .

Example 1.1.7 四元数.

10. 考虑四元数 $\mathbb{F}_4 = \{x + y\alpha \mid x, y \in \mathbb{F}_2\} = \mathbb{F}_2(\alpha)$ 的结构.

Solution. $\mathbb{F}_2 = \{\overline{0}, \overline{1}\}$,为了方便研究,我们画出 \mathbb{F}_2 的加法表和乘法表:

考虑 $\mathbb{F}_2[x]: f(x) = x^2 + px + q$ 中的不可约多项式, 其中 $p, q \in \mathbb{F}_2$.

首先, $f(x) \in \{x^2, x^2 + x, x^2 + 1, x^2 + x + 1\}$,其中的不可约多项式实际上只有 $x^2 + x + 1$. 因此若 $\mathbb{F}_4 = \mathbb{F}_2(\alpha)$,则 α 满足 $\alpha^2 + \alpha + 1 = 0 \Leftrightarrow \alpha^2 = 1 + \alpha$. 此时, $\mathbb{F}_4 = \{0, 1, \alpha, 1 + \alpha = \alpha^2\}$. 接下来我们可以验证这样的 \mathbb{F}_4 是否是域. 利用加法表和乘法表:

0	1	α	α^2		0	1	α	
0	1	α	α^2	0	0	0	0	
	0			1	0	1	α	
	α^2			α	0	α	α^2	
ı	α			α^2	0	α^2	1	

发现乘法逆其实是 $\alpha^{-1} = \alpha^2$. 因此这确实是一个域.

类似的, 我们还可以找到一些比较简单的可以手玩的例子.

Example 1.1.8.

- 11. $\mathbb{F}_9 = \mathbb{F}_3(\alpha)$, $\not\equiv \alpha^2 = 2 \not\equiv \alpha^2 + 1 = 0$.
- 12. $\mathbb{F}_8 = \mathbb{F}_2(\alpha)$,其中 $\alpha^3 = 1 + \alpha$.

1.2 域的同态

Definition 1.2.1 线性空间的同态.

设 V_1, V_2 是域 F 上的线性空间, 若映射 $\varphi: V_1 \to V_2$ 满足:

- 1. $\varphi(\alpha + \beta) = \varphi(\alpha) + \varphi(\beta)$
- 2. $\varphi(k\alpha) = k\varphi(\alpha)$

则称 φ 是同态.

其实, 同态就是保运算的映射.

Definition 1.2.2 域的同态.

设 F_1, F_2 是两个域. 若 $\varphi: F_1 \to F_2$ 满足:

- 1. $\varphi(0_{F_1}) = 0_{F_2}$
- 2. $\varphi(1_{F_1}) = 1_{F_2}$
- 3. $\varphi(x+y) = \varphi(x) + \varphi(y)$
- 4. $\varphi(xy) = \varphi(x)\varphi(y)$

则称 φ 是同态.

若 φ 是同态, 有以下事实:

- 1. $\varphi(-x) = -\varphi(x)$
- 2. $\varphi(x^{-1}) = \varphi(x)^{-1}$

Theorem 1.2.1 域同态是单射.

若 $\varphi: F_1 \to F_2$ 是域同态,则 φ 是单射.

Proof. 假设 $\varphi(x_1) = \varphi(x_2), x = x_2 - x_1$,则

$$\varphi(x) = \varphi(x_1) - \varphi(x_2) = 0$$

若 $x \neq 0$,则存在 x^{-1} ,于是

LHS
$$\Rightarrow \varphi(x) \cdot \varphi(x^{-1}) = 1$$

RHS
$$\Rightarrow 0 \cdot \varphi(x^{-1}) = 0$$

而 $0 \neq 1$,因此 $\forall x_1 \neq x_2, \varphi(x_1) \neq \varphi(x_2)$.

Definition 1.2.3 子域、域扩张.

若 F 是域, E 是 F 的子集, 若满足:

- 1. $0_F \in E$
- $1_F \in E$
- $3. \ \forall x,y \in E, x+y \in E, xy \in E$
- $4. \ \forall x \in E, -x \in E$
- 5. $\forall x \in E \setminus \{0\}, x^{-1} \in E$

则称 E 为 F 的子域, F 为 E 的一个扩域. 记作 F/E.

Remark 1.2.1.

若存在同态 $\varphi: F_1 \to F_2$, 则 F_1 可以称为 F_2 的子域.

同态一定是单射.

Definition 1.2.4 域的同构.

若 $\varphi: F_1 \to F_2$ 是域的同态,若 φ 是满射,则称 φ 是**同构**. 特别的,如果 $F_1 = F_2$,则称 φ 是 F 的**自同构**.

Example 1.2.1 子域的例子.

- 1. \mathbb{R}/\mathbb{Q}
- $2. \mathbb{C}/\mathbb{R}$
- 3. $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$
- 4. $\mathbb{Q}(\sqrt{2},\sqrt{3})/\mathbb{Q}(\sqrt{2})$
- 5. $\mathbb{Q}(\sqrt{2},\sqrt{3}) \cong \mathbb{Q}(\sqrt{2}+\sqrt{3})$
- 6. $\mathbb{F}_4/\mathbb{F}_2$

Definition 1.2.5 不动域.

设 $\sigma: F \to F$ 是 F 的自同构,则 $E = \{x \in F \mid \sigma(x) = x\}$ 是一个子域,叫做 σ 的不动 域.

Example 1.2.2 自同构的例子.

设 $-: \mathbb{C} \to \mathbb{C}, x + yi \mapsto x - yi,$ 可以验证满足:

- 1. $\bar{0} = 0$
- 2. $\bar{1} = 1$
- $3. \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- $4. \ \overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$

则 $\overline{}$ 的不动域为 $z=\overline{z} \to \mathbb{R}$.

Example 1.2.3 另一个例子.

定义 $\sigma: \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2}), x + \sqrt{2}y \mapsto x - \sqrt{2}$ 也是自同构.

Proof. 设 $z_1=x_1+\sqrt{2}y_1, z_2=x_2+\sqrt{2}y_2$,容易验证他满足域同构的所有要求. 考虑他的不动域: $z=\sigma(z)\Rightarrow x+\sqrt{2}y=x-\sqrt{2}y\Rightarrow z\in\mathbb{Q}$.

Problem 1.2.1 二次域之间的关系.

 $\mathbb{Q}(\sqrt{2})$ 和 $\mathbb{Q}(\sqrt{3})$ 有什么关系?

Solution. 没什么关系. 不存在同态 $\varphi: \mathbb{Q}\left(\sqrt{2}\right) \to \mathbb{Q}\left(\sqrt{3}\right)$. 若有同态 φ , 令 $a = \varphi\left(\sqrt{2}\right) = x + \sqrt{3}y$, 则 $a^2 = \varphi\left(\sqrt{2}\right)^2 = \varphi(2) = \varphi(1) + \varphi(1) = 2$, 所以有 $\left(x + \sqrt{3}y\right)^2 = 2 \Rightarrow x, y \in \emptyset$.

可见不同的二次域之间没啥关系.

Theorem 1.2.2 域与线性空间.

若 F/E, 则 F 是 E 的线性空间. 我们记 $[F:E] = \dim_E(F)$ 为 F 作为 E 的线性空间的维数, 称为 F/E 的次数.

Proof. 这很显然. ■

Proposition 1.2.1.

ℚ 没有真子域.

Proof. 设 $E \subseteq \mathbb{Q}$,且 $1 \in E$, $0 \in E$. 若 E 为子域,那么:

加法封闭: N⊆E加法有逆: Z⊆E乘法有逆: Q⊆E

因此, $E = \mathbb{Q}$.

Proposition 1.2.2.

 \mathbb{F}_q 没有真子域,其中 $p \in \mathbb{P}$.

Proof. 设 \mathbb{F}_p/E ,于是有 #E, $\#\mathbb{F}_p<\infty$,因为 \mathbb{F}_p 可以看成是 E 上的线性空间,考虑一组基和任意 $x\in\mathbb{F}_p$ 在这个基下的坐标,可以得到 $\#\mathbb{F}_p=(\#E)^d$,其中 d=[F:E]. 又 $p\in\mathbb{P}$,我们得到 d=1, $\#E=\#\mathbb{F}_p$,因此 $E=\mathbb{F}_p$.

Definition 1.2.6 有限扩张.

若 $[F:E] < \infty$,则称 F/E 是有限扩张.

Remark 1.2.2 *E*-代数.

若 F/E 是有限扩张,且 n=[F:E] ,则可以取 F 的一组基 e_1,e_2,\cdots,e_n ,不妨设 $e_1=1$,则有

$$e_i \cdot e_j = \sum_{k=1}^n c_{ij}^k e_k \quad c_{ij}^k \in E$$

因此, $\forall x = \sum_{i=1}^{n} x_i e_i, y = \sum_{j=1}^{n} y_i e_j$, 我们有

$$xy = \sum_{k=1}^{n} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij}^{k} \right) e_{k}$$

此时, 称 F 为一个 E-代数.

Example 1.2.4.

1. $\mathbb{C} = \operatorname{span}_{\mathbb{R}}(1, i)$

1.3 域的特征 (characteristic)

Definition 1.3.1 域的特征.

F 是域. 定义映射 $N: \mathbb{N} \to F, n \mapsto n_F$, 即

$$\begin{cases} N(0_{\mathbb{N}}) &= 0_F \\ N(n+1) = N(n) + 1_F \end{cases}$$

若 N 为单射,则称 F 的特征为 0,记作 char F=0.

若 N 不是单射,则存在一个最小的 $p \in \mathbb{N}^*$ s.t. N(p) = 0,此时 char F = p.

Remark 1.3.1.

对于上述的 $N: \mathbb{N} \to F$, 可以证明他满足:

- 1. N(n+m) = N(n) + N(m)
- 2. $N(n \cdot m) = N(n) \cdot N(m)$
- 3. N(n-m) = N(n) N(m)

Proof. 先考虑第 1 条性质, \mathbb{N} 上定义的加法是 $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (x,y) \to x+y$,即

$$\begin{cases} n+0 \triangleq n \\ n+(m+1) \triangleq (n+m)+1 \end{cases}$$

我们把 N(n+m) = N(n) + N(m) 看成是关于 m 的命题 P(m),利用数学归纳法:

1. P(0): N(n) = N(n) + N(0) = N(n)

$$\begin{split} 2. \ \ P(n+(m+1)): N(n+(m+1)) &= N(n+m) + N(1), \\ \text{LHS} &= N((n+m)+1) = N(n+m) + 1_F = N(n) + N(m) + 1_F \\ \text{RHS} &= N(n) + N(m) + 1_F \end{split}$$

因此对于加法是对的.

考虑 \mathbb{N} 上的乘法 $\cdot: \mathbb{N} \times \mathbb{N} \to \mathbb{N}, (x, y) \to x \cdot y$, 即

$$\begin{cases} n \cdot 0 \stackrel{\triangle}{=} 0 \\ n \cdot (m+1) \stackrel{\triangle}{=} n \cdot m + n \end{cases}$$

同理利用数学归纳, 证明略.

Proposition 1.3.1 有限域的特征为素数.

若 char $F = p \neq 0$, 则 $p \in \mathbb{P}$.

Proof. 反证法. 若 $p = q \cdot r, 1 < q, r < p$,则 $N(p) = N(q \cdot r) = N(q) \cdot N(r)$,由于 N(p) = 0,则 $N(q) = 0 \lor N(r) = 0$,与 p 是特征的定义矛盾. 因此 $p \in \mathbb{P}$.

Proposition 1.3.2.

- 1. 若 char F = 0 , 则 F/\mathbb{Q} .
- 2. 若 $\operatorname{char} F = p > 0$, 则 F/\mathbb{F}_p .

Proof. 注意: $F/E \Rightarrow$ 存在同态 $\varphi: E \to F$.

- 1. 考虑构造映射 $N: \mathbb{N} \to F, n \mapsto n_F$, 不难发现是单射, 于是 $\mathbb{N} \subseteq F \Rightarrow \mathbb{Z} \subseteq F \Rightarrow \mathbb{Q} \subseteq F \Leftrightarrow F/\mathbb{Q}$.
- 2. 考虑构造映射 $N: \mathbb{F}_p \to F, n \mapsto n_F$, 发现他是同态, 因此 F/\mathbb{F}_n .

Proposition 1.3.3.

若 $\varphi: E \to F$ 是域同态,则 char $E = \operatorname{char} F$.

Proof. 若 char E=0,则 $E/\mathbb{Q}\Rightarrow F/\mathbb{Q}\Rightarrow$ char F=0. 若 char $E=p\in\mathbb{P}$, 注意到 $\varphi(n\cdot 1_E)=n\cdot 1_F, n\in\mathbb{N}$, 不难得到 $\varphi(p_E)=\varphi(0_E)=0_F$,因此 char $F\mid p$,又因为 $p\in\mathbb{P}$ 得到 char F=p= char E.

Definition 1.3.2 Frobenius 自同构.

若 F 是域,且 char F = p > 0,则映射 $\sigma : F \to F, x \mapsto x^p$ 是一个自同构,称他为 **Frobenius 自同构**.

Proof. 首先, $p \in \mathbb{P}$, 考虑二项式定理:

$$(x+y)^p = x^p + \binom{p}{1}x^{p-1}y + \binom{p}{2}x^{p-2}y + \dots + y^p$$

事实上, $p \in \mathbb{P}$ 时, $p \mid \binom{p}{k} = p^{\underline{k}}/k!$,这是因为 $1, 2, \cdots, k < p$,从而不能整除 p ,而组合数是一个整数,因此分子上的因子 p 被留了下来. 所以 $\binom{p}{k} = 0_F$,进而得到 $(x+y)^p = x^p + y^p$,容易验证 σ 满足其余的自同构要求.

Example 1.3.1 Frobenius 自同构 的例子.

考虑 \mathbb{F}_4 , char $\mathbb{F}_4=2$ 上的 Frobenius 自同构 $\sigma:\mathbb{F}_4\to\mathbb{F}_4, x\mapsto x^2$

 σ 的不动域为 \mathbb{F}_2 .

1.4 域的扩张

Definition 1.4.1 有限扩张.

若 E/F, 且 $[E:F]<\infty$, 则称 E 为 F 的有限扩张.

Definition 1.4.2 有限生成扩张 与 无限生成扩张.

设 E/F 是一个域扩张. 对于 E 的子集 S ,定义 F(S) 为 E 中包含 $F \cup S$ 的最小子域,称为由 S 在 F 上生成的子域.

- 若 S 是有限的,且 F(S) = E,则称 E 是 F 上的有限生成扩张.
- 若对于 E 的任何有限子集 S, 都有 $F(S) \neq E$, 则称 $E \neq F$ 上的无限生成扩张.

注意:有限扩张是从维数的观点,有限生成扩张是从构造的观点.

Example 1.4.1.

- 1. $F = \mathbb{Q}(\sqrt{2}), \dim_{\mathbb{Q}} F = 2$
- 2. $F = \mathbb{Q}(\sqrt{2}, \sqrt{3}), \dim_{\mathbb{O}} F = 4$
- 3. $F = \mathbb{R}(x)$ 是实系数有理函数域,是有限生成但不是有限. $\dim_{\mathbb{R}} F = \infty$.
- 4. $E = \mathbb{Q}(\sqrt{p} \mid p \in \mathbb{P})$ 是无限生成.

Example 1.4.2.

1. $E = \mathbb{Q}\left(2^{\frac{1}{2^k}} \mid k = 1, 2, \cdots\right), F = \mathbb{Q}$ 是无限生成.

Proof. 设 $E_0=F, E_1=\mathbb{Q}\left(2^{\frac{1}{2}}\right), E_1=\mathbb{Q}\left(2^{\frac{1}{2}}, 2^{\frac{1}{4}}\right)=\mathbb{Q}\left(2^{\frac{1}{4}}\right), \cdots$ 以此类推,于是有 $F=E_0\subseteq E_1\subseteq E_2\subseteq \cdots E$,且 $E=\bigcup_{k=1}^\infty E_k$,对于 E 的任意一个有限子集 $S=\{\alpha_1,\alpha_2,\cdots,\alpha_n\}\Rightarrow\exists N$ s.t. $\alpha_1,\alpha_2,\cdots,\alpha_n\in E_N$,则 $F\cup S\subseteq E_N\Rightarrow F(S)\subseteq E_N\neq E$.

Theorem 1.4.1 有限扩张 \Rightarrow 有限生成扩张.

有限扩张一定是有限生成扩张, 但反之未必.

Proof. 设 E/F 是有限扩张, $[E:F] = n \Rightarrow E = \operatorname{span}_F(e_1, e_2, \cdots, e_n) \Rightarrow E = F(e_1, e_2, \cdots, e_n), e_1, e_2, \cdots, e_n \in E$ 是有限生成扩张.

有限生成扩张不是有限扩张的反例: $\mathbb{Q}(\pi), \mathbb{Q}(x)$. 注意: π 是超越数,即 $p(\pi) \neq 0, p \in \mathbb{Q}[x], p \neq 0$.

Definition 1.4.3 代数扩张、超越扩张.

E/F, 若 $u \in E$ 满足 f(u) = 0, 其中 $f \in F[x]$, $f \neq 0$, 则称 u 在 F 上代数,称 u 为 F 上的**代数元**; 否则称 u 是**超越元**.

- $\forall u \in E$, u ide F Linh Const. 则称 E linh Const.

Example 1.4.3 代数扩张与超越扩张的例子.

- 1. $\mathbb{Q}(\sqrt{2})$ 是 \mathbb{Q} 上的代数扩张.
- 2. $\mathbb{Q}(\pi)$ 是 \mathbb{Q} 上的超越扩张.
- 3. $\mathbb{Q}(x)$ 是 \mathbb{Q} 上的超越扩张.

Lemma 1.4.1 代数元的逆.

若 α 是 F 上的代数元, 则 $-\alpha$, α^{-1} 也是 F 上的代数元.

Proof. 设 deg f = n,对于加法逆,考虑替换为 f(-x),对于乘法逆,考虑替换为 $x^n f(\frac{1}{x})$ 即可.

Lemma 1.4.2 代数元的和与积.

E/F, 若 α, β 是 F 上的代数元, 则 $\alpha + \beta, \alpha\beta$ 也是 F 上的代数元.

Proof. 设 $f(\alpha) = 0, g(\beta) = 0, f, g \in F[x], \deg f = n, \deg g = m$. 记 $R_x(A[x], B[x])$ 为多项式 A, B 关于 x 的结式,也就是 $R_x(A[x], B[x]) = 0 \Leftrightarrow A, B$ 有公共根.

定义 $h(y) = R_x(f(x), g(y-x)) \in F[y]$,我们断言 $h(\alpha + \beta) = 0$,因为 $f(x), g(\alpha + \beta - x)$ 有公共根 $x = \alpha$. 同理,定义 $g(y) = R_x(f(x), x^m g(\frac{y}{x}))$,可证 $\alpha\beta$ 为代数元.

Theorem 1.4.2 有限扩张 \Rightarrow 代数扩张.

有限扩张一定是代数扩张,但反之未必.

Proof. 设 [E:F]=n,则 $\forall u \in E$,要找 $f \in F[x], f \neq 0$ s.t. f(u)=0. 考虑 $1, u, u^2, \cdots, u^n \in E$,由于 $\dim_F E=n$,因此他们线性相关,即 $\exists a_0, a_1, \cdots, a_n \in F$ 不全为 0 s.t. $a_0+a_1u+\cdots+a_nu^n=0$,取 $f(x)=a_0+a_1x+\cdots+a_nx^n$ 即可.

反例:
$$\mathbb{Q}\left(2^{\frac{1}{2^k}} \mid k=1,2,\cdots\right)$$
.

Remark 1.4.1.

- 代数扩张 \Rightarrow 有限生成扩张. 反例: $\mathbb{Q}\left(2^{\frac{1}{2^k}} \mid k=1,2,\cdots\right)$
- 有限生成扩张 \Rightarrow 代数扩张. 反例: $\mathbb{Q}(\pi), \mathbb{Q}(x)$.

Definition 1.4.4 中间域.

设 E/F 是一个域扩张,若 E 的子域 K 满足 $F \subseteq K$,则称 K 为扩张 E/F 的一个**中间 域**.

Example 1.4.4 中间域的例子.

1. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(\sqrt{2}, \sqrt{3})$

2. $\mathbb{F}_2 \subseteq \mathbb{F}_4 \subseteq \mathbb{F}_4(x)$

Lemma 1.4.3 维度公式.

设 E/F 是域扩张, K 是一个中间域,则 $[E:F]=[E:K]\cdot [K:F]$.

Proof. $F \subseteq K \subseteq E$,首先证明: E/K, K/F 都是有限扩张.

先证明: $[E:F]<\infty$. 由于 $[E:F]<\infty$, E 可以看成是 F 上的有限维线性空间,且 $\dim_F E=n$,由于 $K\subseteq E$ 且 K 本身也是 F 上的线性空间,则 $\dim_F E\leq \dim_F E<\infty$.

接着,证明: $[E:K]<\infty$,把 E 看成是 F 上的线性空间,则取 E 的一组基 $B=\{e_1,e_2,\cdots,e_n\}$,于是 $\forall \gamma \in E$,

$$\gamma = \sum_{i=1}^{n} c_i e_i, c_i \in F \subseteq K$$

把 E 看成是 K 上的线性空间 $F\subseteq K, c_i\in K$,说明 B 也张成了 K 上的线性空间 E ,因此 $\dim_K E\le n<\infty$.

设 u_1,u_2,\cdots,u_n 是 K/F 的基, v_1,v_2,\cdots,v_m 是 E/K 的基,下面构造 E/F 的基. $\forall \beta \in E, \exists \alpha_1,\alpha_2,\cdots,\alpha_m \in K \text{ s.t.}$

$$\beta = \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_m v_m$$

 $\nabla \forall \alpha_i, \exists a_{i1}, a_{i2}, \cdots, a_{in} \in F \text{ s.t.}$

$$\alpha_i = a_{i1}u_1 + a_{i2}u_2 + \dots + a_{in}u_n$$

因此, 我们有

$$\beta = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij} u_j\right) v_i = \sum_{i=1}^m \sum_{j=1}^n a_{ij} \left(u_j v_i\right)$$

于是,我们得到 $E \subseteq \operatorname{span}_F\left(u_jv_i\mid_{j=1,2,\cdots,n}^{i=1,2,\cdots,m}\right)$,下证 u_jv_i 是线性无关的.

设

$$\sum_{i,j} c_{ij}(u_j v_i) = \sum_i \left(\sum_j c_{ij} u_j\right) v_i = 0$$

由于 $v_1,v_2,\cdots v_m$ 线性无关,得到 $\forall i,\sum_{j=1}^n c_{ij}u_j=0$. 由于 u_1,u_2,\cdots,u_n 线性无关,得到 $\forall i,j,c_{ij}=0$.

从而得到,
$$[E:F] = n \cdot m = [E:K] \cdot [K:F]$$
.

Corollary 1.4.1.

若 $[E:F] = p \in \mathbb{P}$,则 E/F 没有非平凡的中间域.

Lemma 1.4.4 单代数扩张 ⇒ 有限扩张 .

单代数扩张都是有限扩张,且扩张的次数就是单代数元作为生成元的极小多项式的次数.

Proof. 设 E = F(u), $u \in F$ 上的代数元. 下证 $[E:F] < \infty$.

设 $f(x) \in F[x], f \neq 0$ s.t. f(u) = 0 且 f 是满足该条件的次数最小的首一多项式. 我们称 f 为 u 的**极小多项式**. 有如下事实:

1. f 是唯一的.

若 f_1, f_2 ,都是极小多项式,则 $\deg f_1 = \deg f_2$,则 $f_1 - f_2$ 次数更低,且 $f(u) = 0 \Rightarrow f = 0$,矛盾.

2. f 是不可约的.

若 $f=gh,\deg f=n,$ 且 $1\leq \deg g,\deg h\leq n-1,$ 于是 $f(u)=0\Rightarrow g(u)=0 \lor h(u)=0,$ 矛盾.

若 f 是 F[x] 中的不可约多项式, 且 $\deg g = n$,则 $\operatorname{span}_F(1,u,\cdots,u^{n-1}) = F(u) = E$ 一定是 一个域,且 [E:F] = n. 证明可以参考 Proposition 1.1.1.

Theorem 1.4.3 有限扩张的塔性质.

设 E/K, K/F 是有限扩张, 则 E/F 是有限扩张.

Proof. 设 $[E:K]=m<\infty, [K:F]=n<\infty,$ 则由 Lemma 1.4.3

$$[E:F] = [E:K] \cdot [K:F] = m \cdot n < \infty$$

得证.

Theorem 1.4.4 有限生成扩张的塔性质.

设 E/K, K/F 是有限生成扩张,则 E/F 是有限生成扩张.

Proof. 设 S,T 都是有限的,且 E=K(S),K=F(T),则 $E=F(T)(S)=F(T\cup S)$,而 $T\cup S$ 也是有限的,因此 E/F 是有限生成扩张.

Theorem 1.4.5 有限生成的代数扩张 ⇔ 有限扩张.

有限生成的代数扩张一定是有限扩张. 具体来说, 以下等价:

- (1) E/F 是有限扩张
- (2) $E = F(u_1, u_2, \dots, u_n)$, 其中 u_1, u_2, \dots, u_n 都是 F 上的代数元,此时 E/F 是代数扩张.

Proof. (1)⇒(2) 比较简单. 设 $[E:F]=n, \quad u_1,u_2,\cdots,u_n\in E \not\equiv E/F$ 的基,则 $E=F(u_1,u_2,\cdots,u_n)$,因为 E/F 代数,所以 u_i 在 F 上代数.

 $(2)\Rightarrow(1)$ 设 u_1,u_2,\cdots,u_n 为代数元,证明: $E=F(u_1,u_2,\cdots,u_n)/F$ 是有限扩张. 考虑从 F 开始,每一次加入 u_i ,由于每一次都是单代数扩张,因此每一次都相当于一次有限扩张,由 Theorem 1.4.3 结果仍然是有限扩张,因此 E/F 是有限扩张.

Theorem 1.4.6 代数扩张的塔性质.

设 E/K, K/F 是代数扩张,则 E/F 是代数扩张.

Proof. 设 $\alpha \in E, \exists f \in K[x], f \neq 0$,且 $f(\alpha) = 0$. 设 $f(x) = x^n + a_1 x^{n-1} + \dots + a_n, a_i \in K$. 设 $K' = F(a_1, a_2, \dots, a_n)$,注意到 a_1, a_2, \dots, a_n 在 F 上代数,则 $[K': F] < \infty$.

注意 $K'(\alpha)/K'$ 是一个单代数扩张,则 $[K'(\alpha):K']<\infty$. 由 Theorem 1.4.3 可知 $[K'(\alpha):F]=[K'(\alpha):K']\cdot [K':F]<\infty$ (其实到这里已经足够了). 因为 $F\subseteq K'$,所以 $F(\alpha)\subseteq K'(\alpha)\Rightarrow [F(\alpha):F]<\infty$,因此 $F(\alpha)/F$ 是代数扩张,即 α 是 F 上的代数元.

Chapter 2 环论、模论

Chapter 3 群论、群作用

Chapter 4 Galois 理论

