Application No.: 10/076005

Case No.: 57321US002

Amendments to the Specification

The following paragraphs will replace all prior versions:

At page 10, lines 20 - 26:

FIG. 7 illustrates useful structures that can form the object 65 to be ablated. Specifically, FIG. 7 illustrates an object 65 to be ablated that includes a web of polymer film 66 with a material 67 formed on the back side, i.e. a side opposite the side incident to the laser in system 60. Again, material 67 may be formed over the entire polymeric film, or alternatively formed only in the local area of the film being ablated. Material 67 provides an etch stop for the ablation process which can avoid air entrapment under the web of polymer film 66. For example, material 67 may comprise a metal such as copper.

At page 15, lines 3 - 18:

Still another way to control sag is to stretch the aperture mask. In that case, a stretching mechanism can be implemented to stretch the aperture mask by an amount sufficient to reduce, climinate, or otherwise control sag. As the mask is stretched tightly, sag is reduced. In that case, the aperture mask may need to have an acceptable coefficient of clasticity. As described in greater detail below, stretching in a cross-web direction, a down-web direction, or both can be used to reduce sag and to align the aperture mask. In order to allow ease of alignment using stretching, the aperture mask can allow elastic stretching without damage. The amount of stretching in one or more directions may be greater than 0.1 percent, or even greater than 1 percent. Additionally, if the deposition substrate is a web of material, it too can be stretched for sag reduction and/or alignment purposes. Also, the aperture mask web, the deposition substrate web, or both may include distortion minimizing features, such as perforations, reduced thickness area areas, slits, or similar features, which facilitate more uniform stretching. The slits can be added near the edges of the patterned regions of the webs and may provide better control of alignment and more uniform stretching when the webs are stretched. The slits may be formed to extend in directions parallel to the directions that the webs are stretched.