Time Series Analysis 3 DS351

- Like exponential smoothing but with **trend** element.
- Use when there is no seasonallity.
- ▶ If there is seasonallity, use Holt-Winters instead (next model)

Holt's method

Forecast equation
$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \text{Level equation} &\qquad \ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} + b_{t-1}) \\ \text{Trend equation} &\qquad b_t &= \beta(\ell_t - \ell_{t-1}) + (1-\beta)b_{t-1}, \end{split}$$

There are **4** parameters here: α , β , ℓ_0 and b_0 .

Holt's method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + h b_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1}, \end{split}$$

- I_t is the level (estimate of y_t).
- $ightharpoonup b_t$ is the slope.
- Suppose that we have l_{t-1} and b_{t-1} .

Holt's method

$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1},$$

- ▶ I_t is the "average" between y_t and $I_{t-1} + b_{t-1}$.
- ▶ Find $l_{t-1} + b_{t-1}$.

Holt's method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1}, \end{split}$$

- ▶ I_t is the "average" between y_t and $I_{t-1} + b_{t-1}$.
- ▶ Find $l_{t-1} + b_{t-1}$.
- ▶ Then find I_t .

Holt's method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t \\ \ell_t &= \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1}, \end{split}$$

- ▶ b_t is the "average" between $l_t l_{t-1}$ and b_{t-1} .
- Start the first forecast $\hat{y}_{t+1|t}$.

The forecast is a linear function of h.

Air passengers data

Year	Time	Observation	Level	Slope	Forecast
	t	Уt	ℓ_t	b_t	$y_{t t1}$
1989	0		15.57	2.102	
1990	1	17.55	17.57	2.102	17.67
1991	2	21.86	21.49	2.102	19.68
1992	3	23.89	23.84	2.102	23.59
1993	4	26.93	26.76	2.102	25.94
:	:	:	:	:	:
2016	27	72.60	72.50	2.102	72.02
	h				$\hat{y}_{t+h t}$
	1				74.60
	2				76.70
	3				78.80
	4				80.91
	5				83.01

Damped Holt's method

- Linear trend is not realistic in many situations.
- Examples: Total factory output with a fixed number of machine.

Damped Holt's method (Gardner & McKenzie, 1985)

Fix
$$0 \le \phi \le 1$$

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

Damped Holt's method

- Linear trend is not realistic in many situations.
- Examples: Total factory output with a fixed number of machine.

Damped Holt's method (Gardner & McKenzie, 1985)

Fix $0 \le \phi \le 1$

$$\hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \dots + \phi^h)b_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + \phi b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)\phi b_{t-1}.$$

- $ightharpoonup \phi = 1
 ightarrow \mathsf{Holt's}$ method
- $ightharpoonup \phi = 0
 ightharpoonup$ forecast with a constant
- ▶ In practice, $\phi \ge 0.8$.

Air passengers data

$$\phi = 0.9$$

Holt-Winters' seasonal method

Use this method when there is seasonality.

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-} \\ \ell_t &= \alpha (y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta (\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1} \\ s_t &= \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

- ▶ Basically Holt's method + seasonality.
- ▶ m is the frequency of seasonality e.g. m = 12 for monthly data.
- ▶ l_t is the "average" between **observation with seasonality** removed $y_t s_{t-m}$ and $l_{t-1} + b_{t-1}$.
- ▶ s_t is the "average" between **observation with level and** trend removed $y_t l_{t-1} b_{t-1}$ and the value of previous season s_{t-m} .

Holt-Winters' seasonal method

Holt-Winters' method

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-} \\ \ell_t &= \alpha(y_t - s_{t-m}) + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \\ b_t &= \beta(\ell_t - \ell_{t-1}) + (1 - \beta)b_{t-1} \\ s_t &= \gamma(y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma)s_{t-m}, \end{split}$$

- ▶ t- in s_{t-} is the latest time in the sample that has the same seasonal index as t+h.
- For example, if t = January, 2019 and t + h = March, 2019 then t = March, 2018.
- ► There are a lot of parameters now: α , β , γ , ℓ_0 , b_0 , s_{-m+1} , s_{-m+2}, \ldots, s_0 .

Holt-Winters' multiplicative method

We can replace

$$\text{add by } s_t \to \text{multiply by} s_t \\ \text{subtract by } s_t \to \text{divide by} s_t.$$

Holt-Winters' multiplicative method

$$\hat{y}_{t+h|t} = (\ell_t + hb_t)s_{t-1}
\ell_t = \alpha \frac{y_t}{s_{t-m}} + (1 - \alpha)(\ell_{t-1} + b_{t-1})
b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}
s_t = \gamma \frac{y_t}{(\ell_{t-1} + b_{t-1})} + (1 - \gamma)s_{t-m}.$$

International visitors nights in Australia

Forecast HW additive forecasts HW multiplicative forecasts

Forecasts using Holt-Winters' method

	t	Уt	ℓ_{t}	b_t	s _t	Уt
2004 Q1	-3				9.70	
2004 Q2	-2				-9.31	
2004 Q3	-1				-1.69	
2004 Q4	0		32.26	0.70	1.31	
2005 Q1	1	42.21	32.82	0.70	9.50	42.66
2005 Q2	2	24.65	33.66	0.70	-9.13	24.21
:	:	:	:	:	:	:
2015 Q4	44	66.06	63.22	0.70	2.35	64.22
	h					$y_{t+h t}$
2016 Q1	1					76.10
2016 Q2	2					51.60
2016 Q3	3					63.97
2016 Q4	4					68.37
2017 Q1	5					78.90
2017 Q2	6					54.41

AutoRegressive Integrated Moving Average (ARIMA)

- ▶ This is where differencing is important.
- Backshift operator B helps us with differencing.

$$By_t = y_{t-1}$$
.

- ▶ This is where differencing is important.
- ▶ Backshift operator *B* helps us with differencing.

$$By_t = y_{t-1}$$
.

Thus the first difference can be written as

$$y_t' = y_t - y_{t-1} =$$

- ▶ This is where differencing is important.
- ▶ Backshift operator *B* helps us with differencing.

$$By_t = y_{t-1}.$$

Thus the first difference can be written as

$$y_t' = y_t - y_{t-1} =$$

The second difference is

$$y_t'' =$$

- This is where differencing is important.
- ▶ Backshift operator *B* helps us with differencing.

$$By_t = y_{t-1}$$
.

Thus the first difference can be written as

$$y_t' = y_t - y_{t-1} =$$

The second difference is

$$y_t'' =$$

In general, the d-th order difference is

Autoregressive model

An autoregressive model of order p, AR(p), is

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \dots + \phi_p y_{t-p} + \varepsilon_t,$$

which is a multiple linear regression with y_{t-p}, \dots, y_{t-1} as predictors and y_t as the responses variable.

Moving average model

A moving average model, MA(q), uses past errors to forecast.

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q}.$$

ARIMA model

AutoRegressive Integrated Moving Average (ARIMA) is a combination of both AR and MA models:

$$y'_{t} = c + \phi_{1}y'_{t-1} + \dots + \phi_{p}y'_{t-p} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t},$$
 (1)

where y_t' is the differenced series. Thus there are a total of p+q predictors. We call this an $\mathbf{ARIMA}(p,d,q)$ model.

ARIMA model

AutoRegressive Integrated Moving Average (ARIMA) is a combination of both AR and MA models:

$$y'_{t} = c + \phi_{1}y'_{t-1} + \dots + \phi_{p}y'_{t-p} + \theta_{1}\varepsilon_{t-1} + \dots + \theta_{q}\varepsilon_{t-q} + \varepsilon_{t}, (1)$$

where y_t' is the differenced series. Thus there are a total of p+q predictors. We call this an $\mathbf{ARIMA}(p,d,q)$ model.

The value of c and d have the following effects on the long-term forecast.

c = 0	d = 0	forecasts go to zero.
c = 0	d = 1	forecasts go to a non-zero constant.
c = 0	d=2	forecasts follow a straight line.
$c \neq 0$	d = 0	forecasts go to the mean of the data.
$c \neq 0$	d = 1	forecasts follow a straight line.
$c \neq 0$	d=2	forecasts follow a quadratic trend.

Example: Quarterly US consumption

Find p and q from ACF and PACF plots

ACF and PACF plots of differenced data can help us find

- \triangleright p in ARIMA(p, d, 0)
- ightharpoonup q in ARIMA(0, d, q)
- ▶ Plots do not help for ARIMA(p, d, q) when p, q > 0.

Find p and q from ACF and PACF plots

The data may follow an ARIMA(p, d, 0) model if

- the ACF is exponentially decaying or sinusoidal
- ▶ there is a significant spike at lag p in the PACF, but none beyond lag p.

Find p and q from ACF and PACF plots

The data may follow an ARIMA(0, d, q) model if

- the PACF is exponentially decaying or sinusoidal
- ▶ there is a significant spike at lag q in the ACF, but none beyond lag q.

Our "score" of ARIMA model is based on the likelihood

$$L = \mathbb{P}(\mathsf{data}|\mathsf{model})$$

For example: We assume that a coin has probability 0.2 of turning head (the model is $\mathbb{P}(X = H) = 0.2$).

Our "score" of ARIMA model is based on the likelihood

$$L = \mathbb{P}(\mathsf{data}|\mathsf{model})$$

For example: We assume that a coin has probability 0.2 of turning head (the model is $\mathbb{P}(X = H) = 0.2$).

If the results of five coin tosses are H, H, T, H, T, then the likelihood of the data given the model is

$$\mathbb{P}(H, H, T, H, T) = (0.2)^3 (0.8)^2.$$

The likelihood would be higher if we assumed $\mathbb{P}(X = H) = 0.5$.

Choose p and q, find parameters and compute L = L(data|model).

There are three "scores" that we can use

Akaikes Information Criterion (AIC)

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where k = 1 if $c \neq 0$ and k = 0 if c = 0.

Choose p and q, find parameters and compute L = L(data|model).

There are three "scores" that we can use

Akaikes Information Criterion (AIC)

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where k = 1 if $c \neq 0$ and k = 0 if c = 0.

corrected AIC

$$AICc = AIC + \frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2},$$

where T is the number of observations in the data.

Choose p and q, find parameters and compute L = L(data|model).

There are three "scores" that we can use

► Akaikes Information Criterion (AIC)

$$AIC = -2\log(L) + 2(p + q + k + 1),$$

where k = 1 if $c \neq 0$ and k = 0 if c = 0.

corrected AIC

AICc = AIC +
$$\frac{2(p+q+k+1)(p+q+k+2)}{T-p-q-k-2}$$
,

where T is the number of observations in the data.

Bayesian Information Criterion

$$BIC = AIC + [log(T) - 2](p + q + k + 1).$$

These scores follow the same concepts.

- Better model has higher likelihood.
- ▶ But model with too many parameters (high p + q) tends to overfit and should be penalized.

We prefer AICc for ARIMA. The higher the score, the better.

Also check out seasonal ARIMA (not in scope of this course).