On the smallest constant for a Gagliardo-Nirenberg functional inequality

Nguyen Quan Ba Hong

January 2, 2019

Abstract

The main objective of this paper is to present a relationship between the best constant for a classical interpolation inequality due to Nirenberg and Gagliardo, and the ground state solution of the equation

$$\frac{\sigma N}{2}\Delta\psi - \left(1 + \frac{\sigma}{2}\left(2 - N\right)\right)\psi + \psi^{2\sigma + 1} = 0.$$

Contents

1	Solu	ution of a Variational Problem	1
	1.1	Strauss's Estimate	2
	1 2	Proof of Theorem 1.1	1

1 Solution of a Variational Problem

We begin by studying

$$J^{\sigma,N}(f) := \frac{\|\nabla f\|_2^{\sigma N} \|f\|_2^{2+\sigma(2-N)}}{\|f\|_{2\sigma+2}^{2\sigma+2}},$$
(1.1)

the nonlinear functional naturally associated with the interpolation estimate

$$||f||_{2\sigma+2}^{2\sigma+2} \le C_{\sigma,N}^{2\sigma+2} ||\nabla f||_2^{\sigma N} ||f||_2^{2+\sigma(2-N)}, \text{ if } 0 < \sigma < \frac{2}{N-2}, N \ge 2.$$
 (1.2)

By estimate (1.2), $J^{\sigma,N}$ is defined on $H^1\left(\mathbb{R}^N\right)$ for $0<\sigma<\frac{2}{N-2}$.

Theorem 1.1. For $0 < \sigma < \frac{2}{N-2}$,

$$\alpha:=\inf_{u\in H^{1}\left(\mathbb{R}^{N}\right)}J^{\sigma,N}\left(u\right)$$

is attained at a function ψ with the following properties:

1. ψ is positive and a function of |x| alone.

2.
$$\psi \in H^1(\mathbb{R}^N) \cap C^{\infty}(\mathbb{R}^N)$$
.

3. ψ is a solution of the following equation

$$\frac{\sigma N}{2} \Delta \psi - \left(1 + \frac{\sigma}{2} \left(2 - N\right)\right) \psi + \psi^{2\sigma + 1} = 0,\tag{1.3}$$

of minimal L^2 norm (the ground state).

In addition,

$$\alpha = \frac{\|\psi\|_2^{2\sigma}}{\sigma + 1}.$$

In the proof of Theorem 1.1, we follow Strauss [5] in using a compactness property of functions in $H^1_{\text{radial}}(\mathbb{R}^N)$.

1.1 Strauss's Estimate

Proposition 1.1 (Proposition 1.7.1, [2], p. 20). Let $(u_n)_{n\geq 0} \subset H^1(\mathbb{R}^N)$ be a bounded sequence of spherically symmetric functions. If $N\geq 2$ or if $u_n(x)$ is a nonincreasing function of |x| for every $n\geq 0$, then there exist a subsequence $(u_{n_k})_{k\geq 0}$ and $u\in H^1(\mathbb{R}^N)$ such that $u_{n_k}\to u$ as $k\to\infty$ in $L^p(\mathbb{R}^N)$ for every $2< p<\frac{2N}{N-2}$ $(2< p\leq \infty \text{ if } N=1)$.

Proposition 1.1 is an immediate consequence of the Lemma 1.1 and 1.2.

Proof. If $N \geq 2$, we apply the first estimate (1.4) in Lemma 1.2 to each spherically symmetric functions $u_n \in H^1(\mathbb{R}^N)$ to obtain

$$|u_n(x)| \le \frac{C \|u_n\|_{L^2}^{\frac{1}{2}} \|\nabla u_n\|_{L^2}^{\frac{1}{2}}}{|x|^{\frac{N-1}{2}}} \le \frac{C \|u_n\|_{H^1}}{|x|^{\frac{N-1}{2}}} \le \frac{C}{|x|^{\frac{N-1}{2}}}, \quad \forall x \in \mathbb{R}^N, \ \forall n \ge 0.$$

where the last inequality is deduced from the boundedness of u_n 's.

If $u_n(x)$ is a nonincreasing function of |x| for every $n \ge 0$, we applying the second estimate (1.5) in Lemma 1.2 to u_n to obtain

$$|u_n(x)| \le \frac{C||u_n||_{L^2}}{|x|^{\frac{N}{2}}} \le \frac{C}{|x|^{\frac{N}{2}}}, \ \forall x \in \mathbb{R}^N, \ \forall n \ge 0.$$

In both cases, these estimates imply that $u_n(x) \to 0$ as $|x| \to \infty$, uniformly in $n \ge 0$. Now, we can apply Lemma 1.1 to obtain the desired result.

Lemma 1.1 (Lemma 1.7.2, [2], p. 20). Let $(u_n)_{n\geq 0}$ be a bounded sequence in $H^1(\mathbb{R}^N)$. Suppose $u_n(x) \to 0$ as $|x| \to \infty$, uniformly in $n \geq 0$. It follows that there exist a subsequence $u_{n_k} \to u$ as $k \to \infty$ in $L^p(\mathbb{R}^N)$ for every 2 <math>(2 .

Remark 1.1 (Remark 1.3.1(iii), [2], p. 7). Assume $m \ge 1$ and $1 . If <math>(u_n)_{n \in \mathbb{N}}$ is a bounded sequence of $W^{m,p}(\Omega)$, then there exist $u \in W^{m,p}(\Omega)$ and a subsequence $(u_{n_k})_{k \in \mathbb{N}}$ such that $u_{n_k} \to u$ a.e. as $k \to \infty$, and

$$||u||_{W^{m,p}} \le \liminf_{n \to \infty} ||u_n||_{W^{m,p}}.$$

If $p < \infty$, then also $u_{n_k} \rightharpoonup u$ in $W^{m,p}$. If $p < \infty$ and $(u_n)_{n \in \mathbb{N}} \subset W_0^{m,p}(\Omega)$, then $u \in W_0^{m,p}(\Omega)$.

Applying this remark for a bounded sequence in $H^1(\mathbb{R}^N)$, there exist $u \in H^1(\mathbb{R}^N)$ and a subsequence $(u_{n_k})_{k \in \mathbb{N}}$ such that $u_{n_k} \to u$ a.e. as $k \to \infty$, $||u||_{H^1(\mathbb{R}^N)} \le \liminf ||u_n||_{H^1(\mathbb{R}^N)}$ and $u_{n_k} \rightharpoonup u$ in $H^1(\mathbb{R}^N)$.

Proof of Lemma 1.1. Since $(u_n)_{n\geq 0}$ is a bounded sequence in $H^1\left(\mathbb{R}^N\right)$, applying Remark 1.1 yields that there exist $u\in H^1\left(\mathbb{R}^N\right)$ and a subsequence $(u_{n_k})_{k\geq 0}$ such that $u_{n_k}\rightharpoonup u$ as $k\to\infty$ in $H^1\left(\mathbb{R}^N\right)$. Fix $\varepsilon>0$ and let R>0 to be chosen later. Given $p\in\left(2,\frac{2N}{N-2}\right)$ $(2< p\leq\infty)$ if N=1, we have

$$\begin{aligned} \|u_{n_k} - u\|_{L^p(\mathbb{R}^N)} &= \|u_{n_k} - u\|_{L^p(B_R)} + \|u_{n_k} - u\|_{L^p(\{|x| \ge R\})} \\ &\leq \|u_{n_k} - u\|_{L^p(B_R)} + \|u_{n_k} - u\|_{L^\infty(\{|x| \ge R\})}^{\frac{p-2}{p}} \|u_{n_k} - u\|_{L^2(\mathbb{R}^N)}^{\frac{2}{p}}. \end{aligned}$$

We first fix R large enough so that (by uniform convergence)

$$||u_{n_k} - u||_{L^{\infty}(\{|x| \ge R\})}^{\frac{p-2}{p}} ||u_{n_k} - u||_{L^{2}(\mathbb{R}^N)}^{\frac{2}{p}} \le \frac{\varepsilon}{2}.$$

Next, since $\left(u_{n_k}|_{B_R}\right)_{k\geq 0}$ is bounded in $H^1\left(B_R\right)$, it follows from Rellich's compactness theorem that $u_{n_k}|_{B_R} \to u|_{B_R}$ in $L^p\left(B_R\right)$. Therefore for k large enough we have

$$||u_{n_k} - u||_{L^p(B_R)} \le \frac{\varepsilon}{2},$$

and so $||u_{n_k} - u||_{L^p(\mathbb{R}^N)} \le \varepsilon$. This proves the result.

Lemma 1.2 (Lemma 1.7.3, [2], p. 21). If $u \in H^1(\mathbb{R}^N)$ is a radially symmetric function, then

$$\sup_{x \in \mathbb{R}^{N}} |x|^{\frac{N-1}{2}} |u(x)| \le C \|u\|_{L^{2}}^{\frac{1}{2}} \|\nabla u\|_{L^{2}}^{\frac{1}{2}}. \tag{1.4}$$

If, in addition, u(x) is a nonincreasing function of |x|, then

$$\sup_{x \in \mathbb{R}^{N}} |x|^{\frac{N}{2}} |u(x)| \le C||u||_{L^{2}}.$$
(1.5)

$$\begin{aligned} \|u_{n_k} - u\|_{L^p(\{|x| \ge R\})} &= \left(\int_{\{|x| \ge R\}} |u_{n_k} - u|^p\right)^{\frac{1}{p}} \le \left(\|u_{n_k} - u\|_{L^{\infty}(\{|x| \ge R\})}^{p-2} \int_{\{|x| \ge R\}} |u_{n_k} - u|^2\right)^{\frac{1}{p}} \\ &\le \|u_{n_k} - u\|_{L^{\infty}(\{|x| \ge R\})}^{\frac{p-2}{p}} \|u_{n_k} - u\|_{L^{2}(\{|x| \ge R\})}^{\frac{2}{p}} \le \|u_{n_k} - u\|_{L^{\infty}(\{|x| \ge R\})}^{\frac{p-2}{p}} \|u_{n_k} - u\|_{L^{2}(\mathbb{R}^N)}^{\frac{2}{p}}. \end{aligned}$$

¹Here we use

Proof. Suppose first $u \in C_c^{\infty}(\mathbb{R}^N)$. Since u is radially symmetric, there exists a function \widetilde{u} : $\mathbb{R}^+ \to \mathbb{R}$ such that $u(x) = \widetilde{u}(|x|)$ for all $x \in \mathbb{R}^N$. Simple computation gives us $|\nabla u(x)| = |\widetilde{u}'(r)|$ where r = |x|. We have

$$\begin{aligned} \|u\|_{L^{2}(\mathbb{R}^{N})}^{2} &= \left(\int_{\mathbb{R}^{N}} |u\left(x\right)|^{2} dx\right) = \int_{\partial B_{1}(0)} \left(\int_{0}^{\infty} |u\left(ry\right)|^{2} r^{N-1} dr\right) dS\left(y\right) \\ &= \int_{\partial B_{1}(0)} \left(\int_{0}^{\infty} \widetilde{u}(r)^{2} r^{N-1} dr\right) dS\left(y\right) = N\alpha_{N} \int_{0}^{\infty} \widetilde{u}(r)^{2} r^{N-1} dr, \\ \|\nabla u\|_{L^{2}(\mathbb{R}^{N})}^{2} &= \left(\int_{\mathbb{R}^{N}} |\nabla u\left(x\right)|^{2} dx\right) = \int_{\partial B_{1}(0)} \left(\int_{0}^{\infty} |\nabla u\left(ry\right)|^{2} r^{N-1} dr\right) dS\left(y\right) \\ &= \int_{\partial B_{1}(0)} \left(\int_{0}^{\infty} \widetilde{u}'(r)^{2} r^{N-1} dr\right) dS\left(y\right) = N\alpha_{N} \int_{0}^{\infty} \widetilde{u}'(r)^{2} r^{N-1} dr, \end{aligned}$$

and

$$r^{N-1}\widetilde{u}(r)^{2} = -\int_{r}^{\infty} \frac{d}{ds} \left(s^{N-1}\widetilde{u}(s)^{2} \right) ds = -\int_{r}^{\infty} \left(\underbrace{(N-1) s^{N-2}\widetilde{u}(s)^{2}}_{\geq 0} + 2s^{N-1}\widetilde{u}(s) \widetilde{u}'(s) \right) ds$$

$$\leq -2\int_{r}^{\infty} s^{N-1}\widetilde{u}(s) \widetilde{u}'(s) ds \leq 2 \left(\int_{r}^{\infty} s^{N-1}\widetilde{u}(s)^{2} ds \right)^{\frac{1}{2}} \left(\int_{r}^{\infty} s^{N-1} u'(s)^{2} ds \right)^{\frac{1}{2}}$$

$$\leq 2 \left(\int_{0}^{\infty} s^{N-1}\widetilde{u}(s)^{2} ds \right)^{\frac{1}{2}} \left(\int_{0}^{\infty} s^{N-1} u'(s)^{2} ds \right)^{\frac{1}{2}}$$

$$\leq 2 \frac{\|u\|_{L^{2}(\mathbb{R}^{N})}}{\sqrt{N\alpha_{N}}} \frac{\|\nabla u\|_{L^{2}(\mathbb{R}^{N})}}{\sqrt{N\alpha_{N}}} = \frac{2}{N\alpha_{N}} \|u\|_{L^{2}(\mathbb{R}^{N})} \|\nabla u\|_{L^{2}(\mathbb{R}^{N})}.$$

where and α_N is the volume of the unit ball in \mathbb{R}^N , which is given by $\alpha_N := \frac{2\pi^{\frac{N}{2}}}{N\Gamma(\frac{N}{2})}$. That means (1.4) holds for all $u \in C_c^{\infty}(\mathbb{R}^N)$.

If u(x) is a nonincreasing function of |x|, then for all $r \geq 0$,

$$||u||_{L^{2}}^{2} = \left(\int_{\mathbb{R}^{N}} |u(x)|^{2} dx\right) \ge \left(\int_{\{|x| \le r\}} |u(x)|^{2} dx\right) \ge |\{|x| \le r\}| |\widetilde{u}(r)|^{2} = \alpha_{N} \mathbb{R}^{N} |\widetilde{u}(r)|^{2},$$

i.e., (1.5) holds for all $u \in C_c^{\infty}(\mathbb{R}^N)$.

The general case then follows by a density argument.

1.2 Proof of Theorem 1.1

Proof of Theorem 1.1. First note that if we set $u^{\lambda,\mu}(x) := \mu u(\lambda x)$, then $\nabla u^{\lambda,\mu}(x) = \mu \lambda \nabla u(\lambda x)$, and

$$\left\|u^{\lambda,\mu}\right\|_{2}^{2}=\int_{\mathbb{R}^{N}}\left|u^{\lambda,\mu}\left(x\right)\right|^{2}\!dx=\int_{\mathbb{R}^{N}}\left|\mu u\left(\lambda x\right)\right|^{2}\!dx=\frac{\mu^{2}}{\lambda^{N}}\int_{\mathbb{R}^{N}}\left|u\left(x\right)\right|^{2}\!dx=\frac{\mu^{2}}{\lambda^{N}}\left\|u\right\|_{2}^{2},$$

$$\begin{split} \left\| u^{\lambda,\mu} \right\|_{2\sigma+2}^{2\sigma+2} &= \int_{\mathbb{R}^N} \left| u^{\lambda,\mu} \left(x \right) \right|^{2\sigma+2} dx = \int_{\mathbb{R}^N} \left| \mu u \left(\lambda x \right) \right|^{2\sigma+2} dx = \frac{\mu^{2\sigma+2}}{\lambda^N} \left\| u \right\|_{2\sigma+2}^{2\sigma+2}, \\ \left\| \nabla u^{\lambda,\mu} \right\|_2^2 &= \int_{\mathbb{R}^N} \left| \nabla u^{\lambda,\mu} \left(x \right) \right|^2 dx = \int_{\mathbb{R}^N} \left| \mu \lambda \nabla u \left(\lambda x \right) \right|^2 dx = \frac{\mu^2}{\lambda^{N-2}} \left\| \nabla u \right\|_2^2, \\ J^{\sigma,N} \left(u^{\lambda,\mu} \right) &= \frac{\left\| \nabla u^{\lambda,\mu} \right\|_2^{\sigma N} \left\| u^{\lambda,\mu} \right\|_{2\sigma+2}^{2\sigma+2-\sigma N}}{\left\| u^{\lambda,\mu} \right\|_{2\sigma+2}^{2\sigma+2}} = \frac{\left(\frac{\mu^2}{\lambda^{N-2}} \right)^{\frac{\sigma N}{2}} \left\| \nabla u \right\|_2^{\sigma N} \left(\frac{\mu^2}{\lambda^N} \right)^{\frac{2\sigma+2-\sigma N}{2}} \left\| u \right\|_2^{2\sigma+2-\sigma N}}{\left\| u \right\|_{2\sigma+2}^{2\sigma+2}} \\ &= \frac{\left\| \nabla u \right\|_2^{\sigma N} \left\| u \right\|_{2\sigma+2}^{2\sigma+2}}{\left\| u \right\|_{2\sigma+2}^{2\sigma+2}} = J^{\sigma,N} \left(u \right). \end{split}$$

Since $J^{\sigma,N}\left(u\right) \geq 0$, there exists a minimizing sequence $u_v \in H^1\left(\mathbb{R}^N\right) \cap L^{2\sigma+2}\left(\mathbb{R}^N\right)$, i.e., $a := \inf_{u \in H^1\left(\mathbb{R}^N\right)} J^{\sigma,N}\left(u\right) = \lim_{v \uparrow \infty} J^{\sigma,N}\left(u_v\right) < \infty$. We can assume $u_v > 0$ (since $J^{\sigma,N}\left(u\right) = J^{\sigma,N}\left(-u\right)$), and by symmetrization we can take $u_v = u_v(|x|)^2$.

Choosing $\lambda_v = \frac{\|u_v\|_2}{\|\nabla u_v\|_2}$, $\mu_v = \frac{\|u_v\|_2^{\frac{N}{2}-1}}{\|\nabla u_v\|_2^{\frac{N}{2}}}$, we obtain a sequence $\psi_v(x) := u^{\lambda_v, \mu_v}(x)$ with the following properties:

- (a) $\psi_v(x) \ge 0, \ \psi_v = \psi_v(|x|),$
- (b) $\psi_n \in H^1(\mathbb{R}^N)$,
- (c) $\|\psi_v\|_2 = 1$, and $\|\nabla \psi_v\|_2 = 1$,
- (d) $J^{\sigma,N}(\psi_v) \downarrow \alpha \text{ as } v \to \infty$.

Since the sequence ψ_v is bounded in $H^1(\mathbb{R}^N)$, some subsequence has a weak H^1 limit ψ^* . Since ψ_v are radial and uniformly bounded in $H^1(\mathbb{R}^N)$, it follows from the compactness lemma that we can take ψ_v strongly convergent to ψ^* in $L^{2\sigma+2}(\mathbb{R}^N)$ for $0 < \sigma < \frac{2}{N-2}$. By weak convergence, $\|\psi^*\|_2 \le 1$ and $\|\nabla \psi^*\|_2 \le 1$. Hence,

$$\alpha \leq J^{\sigma,N}\left(\psi^*\right) \leq \frac{1}{\int |\psi^*|^{2\sigma+2} dx} = \lim_{v \uparrow \infty} J\left(\psi_v\right) = \alpha.$$

It follows that $\|\nabla \psi^*\|_2^{\sigma N} \|\psi^*\|_2^{2+\sigma(2-N)} = 1$ and therefore $\|\psi^*\|_2 = \|\nabla \psi^*\|_2 = 1$, so $\psi_v \to \psi^*$ strongly in $H^{1/4}$. This proves part (1) and (2) of Theorem (1.1).

Part (3) follows from the fact that ψ^* , the minimizing function, is in $H^1(\mathbb{R}^N)$ and satisfies the Euler-Lagrange equation:

$$\frac{d}{d\varepsilon}\Big|_{\varepsilon=0} J^{\sigma,N}\left(\psi^* + \varepsilon\eta\right) = 0, \ \forall \eta \in C_0^{\infty}\left(\mathbb{R}^N\right).$$
(1.6)

Indeed, since for any $u \in H^1(\mathbb{R}^N) \cap L^{2\sigma+2}(\mathbb{R}^N)$, its symmetric-decreasing rearrangement u^* satisfies $\|u^*\|_{2\sigma+2} = \|u\|_{2\sigma+2}, \ \|u^*\|_2 = \|u\|_2, \ \|\nabla u^*\|_2 \leq \|\nabla u\|_2, \ \text{and thus } J^{\sigma,N}\left(u^*\right) \leq J^{\sigma,N}\left(u\right). \ \text{Hence, it suffices to consider only radially symmetric functions to minimize } J^{\sigma,N}.$

³Solve $\|u_v^{\lambda,\mu}\|_2 = \|\nabla_x u_v^{\lambda,\mu}\|_2 = 1$ to obtain λ_v and μ_v .

⁴If $x_n \to x$ in a Hilbert space H, and $\|x_n\|_H \to \|x\|_H$, then x_n converges to x strongly.

Taking into account that $\|\psi^*\|_2 = 1$ and $\|\nabla\psi^*\|_2 = 1$, we have

$$\frac{\sigma N}{2} \Delta \psi^* - \left(1 + \frac{\sigma}{2} (2 - N)\right) \psi^* + \alpha (\sigma + 1) (\psi^*)^{2\sigma + 1} = 0 \text{ in } \mathcal{D}'.$$
 (1.7)

Let $\psi = [\alpha (\sigma + 1)]^{\frac{1}{2\sigma}} \psi^*$, then

- i) ψ is positive and radially symmetric.
- ii) $\psi \in H^1(\mathbb{R}^N)$.
- iii) ψ satisfies

$$\frac{\sigma N}{2} \Delta \psi - \left(1 + \frac{\sigma}{2} \left(2 - N\right)\right) \psi + \psi^{2\sigma + 1} = 0 \text{ in } \mathcal{D}'. \tag{1.8}$$

Now we regularize ψ by a bootstrap argument:

 $\star \, Step \, 1 \colon \text{Since} \, \psi \in H^1_{\text{radial}} \left(\mathbb{R}^N \right) \text{, the Compactness Lemma implies that} \, \psi \in L^{2\sigma+2} \left(\mathbb{R}^N \right) \text{, and thus} \, \psi^{2\sigma+1} \in L^{\frac{2\sigma+2}{2\sigma+1}} \left(\mathbb{R}^N \right) . \, \text{Since} \, 1 < \frac{2\sigma+2}{2\sigma+1} < 2 \text{, we have implies that} \, L^2 \left(\mathbb{R}^N \right) \hookrightarrow L^{\frac{2\sigma+1}{2\sigma+2}}_{\text{loc}} \left(\mathbb{R}^N \right) \text{,}$ and consequently $\psi \in L^{\frac{2\sigma+1}{2\sigma+2}}_{\text{loc}} \left(\mathbb{R}^N \right) . \, \text{Then (1.8) implies that} \, \Delta \psi \in L^{\frac{2\sigma+2}{2\sigma+1}}_{\text{loc}} \left(\mathbb{R}^N \right) . \, \text{Using elliptic regularity, it follows that} \, \psi \in W^{2,\frac{2\sigma+2}{2\sigma+1}}_{loc} \left(\mathbb{R}^N \right) .$

Similarly, we can prove that⁵

Statement 1: If $\psi \in L^q_{loc}(\mathbb{R}^N)$, then $\psi \in W^{2,\frac{q}{2\sigma+1}}_{loc}(\mathbb{R}^N)$

Put $q_0 := 2\sigma + 2$, we currently have $\psi \in W^{2,\frac{q_0}{2\sigma+1}}_{loc}(\mathbb{R}^N)$. We consider the following cases depending on σ and N:

- Case $\frac{2\sigma+1}{q_0} < \frac{2}{N}$: Applying the general Sobolev embedding theorem to $(k, N, p) = \left(2, N, \frac{q_0}{2\sigma+1}\right)$ implies $\psi \in C^{0,\alpha}_{loc}\left(\mathbb{R}^N\right)$ for some $\alpha \in (0,1)$.
- $Case \frac{2\sigma+1}{q_0} = \frac{2}{N}$: Applying the general Sobolev embedding theorem to $(k, N, p) = \left(2, N, \frac{q_0}{2\sigma+1}\right)$ implies $\psi \in L^r_{loc}\left(\mathbb{R}^N\right)$ for all $r \in \left[\frac{N}{2}, +\infty\right)$. In particular, choosing $r = (\sigma+1)N > \frac{N}{2}$, we have $\psi \in L^{(\sigma+1)N}_{loc}\left(\mathbb{R}^N\right)$. Statement 1 then implies $\psi \in W^{2,\frac{(\sigma+1)N}{2\sigma+1}}_{loc}\left(\mathbb{R}^N\right)$. Since $\frac{2\sigma+1}{(\sigma+1)N} < \frac{2}{N}$, applying the general Sobolev embedding theorem ii) yields $\psi \in C^{0,\alpha}_{loc}\left(\mathbb{R}^N\right)$ for some $\alpha \in (0,1)$.
- Case $\frac{2\sigma+1}{q_0} > \frac{2}{N}$: We define $q_1 > 0$ by

$$\frac{1}{q_1} = \frac{2\sigma + 1}{q_0} - \frac{2}{N},$$

and then applying the general Sobolev embedding theorem yields $\psi \in L^{q_1}_{loc}(\mathbb{R}^N)$. Statement 1 then implies $\psi \in W^{2,\frac{q_1}{2\sigma+1}}_{loc}(\mathbb{R}^N)$.

We continue this treatment for q_1 . There are two possibilities: either $\psi \in C^{0,\alpha}_{loc}(\mathbb{R}^N)$ for some $\alpha \in (0,1)$ or $\psi \in W^{2,\frac{q_2}{2\sigma+1}}_{loc}(\mathbb{R}^N)$ with $\frac{1}{q_2} = \frac{2\sigma+1}{q_1} - \frac{2}{N}$.

We claim that there exists $n^* \in \mathbb{N}$ such that $\frac{2\sigma+1}{q_{n^*}} \leq \frac{2}{N}$. Indeed, suppose for the contrary that the sequence $(q_n)_n$ defined by

$$\begin{cases} q_0 = 2\sigma + 2, \\ \frac{1}{q_n} = \frac{2\sigma + 1}{q_{n-1}} - \frac{2}{N}, \ \forall n \in \mathbb{N}, \end{cases}$$

consists of all positive real terms.

It is deduced from the recursion that

$$\frac{1}{q_n} - \frac{1}{\sigma N} = (2\sigma + 1) \left(\frac{1}{q_{n-1}} - \frac{1}{\sigma N} \right), \ \forall n \in \mathbb{N}.$$

Thus,

$$\frac{1}{q_n} - \frac{1}{\sigma N} = (2\sigma + 1)^n \left(\frac{1}{q_0} - \frac{1}{\sigma N}\right),\,$$

or equivalently,

$$\frac{1}{q_n} = \frac{1}{\sigma N} + (2\sigma + 1)^n \left(\frac{1}{q_0} - \frac{1}{\sigma N}\right).$$

Since $\frac{1}{q_0} - \frac{1}{\sigma N} = \frac{1}{2\sigma + 2} - \frac{1}{\sigma N} = \frac{\sigma(N-2) - 2}{\sigma N(2\sigma + 2)} < 0$, the RHS of the last equality tends to $-\infty$ as $n \to +\infty$, which contradicts to the assumption $q_n > 0$ for all $n \in \mathbb{N}$.

Therefore, we must have $\psi \in C^{0,\alpha}_{\mathrm{loc}}\left(\mathbb{R}^N\right)$ for some $\alpha \in (0,1).$

Step 2: We can prove that $\psi^{2\sigma+1} \in C^{0,\alpha}_{loc}(\mathbb{R}^N)$. Then Schauder theorem implies $\psi \in C^{2,\alpha}_{loc}(\mathbb{R}^N)$. Using bootstrap argument, we can prove that $\psi \in C^{4,\alpha}_{loc}(\mathbb{R}^N)$, etc. So $\psi \in C^{2m,\alpha}_{loc}(\mathbb{R}^N)$ for all $m \in \mathbb{N}$, and thus $\psi \in C^{\infty}(\mathbb{R}^N)$.

Corollary 1.1. The best (smallest) constant for which the interpolation estimate (1.2) holds is given by the expression

$$C_{\sigma,N} := \left(\frac{\sigma+1}{\|\psi\|_2^{2\sigma}}\right)^{\frac{1}{2\sigma+2}},$$

where ψ is the ground state of equation (1.3).

Proof. The best constant $C_{\sigma,N}$ is given by

$$C_{\sigma,N} = \left(\inf_{u \in H^1(\mathbb{R}^N)} J^{\sigma,N}(u)\right)^{-\frac{1}{2\sigma+2}} = \alpha^{-\frac{1}{2\sigma+2}} = \left(\frac{\sigma+1}{\|\psi\|_2^{2\sigma}}\right)^{\frac{1}{2\sigma+2}}.$$
 (1.9)

References

- [1] Haim Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011, pp. xiv+599. ISBN: 978-0-387-70913-0.
- [2] Thierry Cazenave. Semilinear Schrödinger equations. Vol. 10. Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003, pp. xiv+323. ISBN: 0-8218-3399-5. DOI: 10.1090/cln/010. URL: https://doi.org/10.1090/cln/010.
- [3] Lawrence C. Evans. Partial differential equations. Second. Vol. 19. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2010, pp. xxii+749. ISBN: 978-0-8218-4974-3. DOI: 10.1090/gsm/019. URL: https://doi.org/10.1090/gsm/019.
- [4] Elliott H. Lieb and Michael Loss. *Analysis*. Second. Vol. 14. Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001, pp. xxii+346. ISBN: 0-8218-2783-9. DOI: 10.1090/gsm/014. URL: https://doi.org/10.1090/gsm/014.
- [5] Walter A. Strauss. "Existence of solitary waves in higher dimensions". In: Comm. Math. Phys. 55.2 (1977), pp. 149–162. ISSN: 0010-3616. URL: http://projecteuclid.org/euclid.cmp/1103900983.