Continuity

Let $f: D \subseteq C \longrightarrow C$. Let $z \in D$.

We say that f is continuous at 20 if

For every E>O, there exists a 5 >0 such that

 $|z-z_0| \leq \delta$ implies that $|f(z)-f(z_0)| \leq \epsilon$.

Examples: f(z) = Z is continuous in C f(z)= Z is continuous in (f(z)= |z| is continuous in C f(z) = a + a z + a z + ... + a z is continuous is C.

Continuity: Equivalent definitions.

- f is continuous at z iff $\lim_{Z \to Z_0} f(z) = f(z_0)$
- fib continuous at Z_0 iff for every sequence $\{Z_n\} \to Z_0$, the sequence $\{f(z_n)\} \to f(z_0)$.

Continuous on the set D. f is continuous on the set D if f is continuous at each point of D.

Examples of Discontinuous functions:

$$f(z) = \int \frac{Re(z)}{|z|} \quad \text{for } z \neq 0$$

$$0 \quad \text{for } z = 0$$

discontinuous at Z=0

$$g(z) = \begin{cases} \frac{Re(z)}{|z|} & \text{for } z \neq 0 \\ 1 & \text{for } z = 0 \end{cases}$$

lim g(z) = 0 = 70 = 70 = 70dis continuous at z = 0 and = 70

Results:

- O fet $f:D\subseteq \mathbb{C}\to\mathbb{C}$ and let $z\in\mathbb{D}$. fix continuous at z_0 iff $u(x,y)=\operatorname{Re}(f(z))$ and $U(x,y)=\operatorname{Im}(f(z))$ are continuous at z_0 .
- ② Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$ and let $z_0 \in \mathbb{C}$.

 If f is continuous at z_0 then $\overline{f(z)}$ and $\overline{f(z)}$ ore continuous at z_0 .
- (i) f + g (ii) f g (ii) kf (k=constant) (iv) f g are continuous at zo.

(U) £ is continuous at 70, provided g(20) \$0.

Composition of two continuous functions Suppose f is continuous at Z_0 and g is continuous at $f(Z_0)$. Then the function h(Z) = g(f(Z)) is continuous at Z_0 .

Result: Continuous image of connected let is connected.

That is, Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$.

D is a connected set in \mathbb{C} fix continuous on \mathbb{D} Set in \mathbb{C}

Result: Continuous image of compact set is compact.

That is,

Let f: D \(\subseteq \subseteq \)

D is a compact set in C

f is continuous on D

If attains its maximum and minimum value on the compact set D

Differentiation

Recall from MAIOI:

Let $f: D \subseteq R \rightarrow R$. Did on open set in R. Let $x_0 \in D$. We say that f is differentiable at $x_0 = x_0$ if $x_0 = x_0 = x_0$ exists.

In the SAME WAY, we generalize it to [

Let $f: D \subseteq \mathbb{C} \longrightarrow \mathbb{C}$. Let D be an open set in \mathbb{C} and let $z_0 \in \mathbb{D}$.

We say that f is differentiable at Zo if $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} e^{x_1 + y_2}$

The value of this limit is denoted by $f^{l}(Z_{0})$

Set $\triangle Z = Z - Z_0$ $\Rightarrow Z = Z + \Delta Z_1$

Can be rewritten as
$$f'(z_0) = \lim_{\Delta z \to 0} f(z_0 + \Delta z) - f(z_0)$$

Example: Let f(z) = Z for $Z \in \mathbb{C}$. Let Zo be an arbitrary point in \mathbb{C} . Check whether f is differentiable at Z_0 .

$$\lim_{Z \to Z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{Z \to Z_0} \frac{Z - Z_0}{z - z_0} = \lim_{Z \to Z_0} 1 = 1$$

$$f'(z_0) = 1. \quad \text{fix differentiable at } z_0.$$

That is, the function f(z)=Z differentiable at each point Z in \mathbb{C} and the derivative is given by $f^{l}(z)=1 \quad \text{for all } Z\in\mathbb{C}$

Example: Let $f(z) = \overline{Z}$ for $Z \in \mathbb{C}$. Let Z_0 be an arbitrary point in \mathbb{C} . Check whether $f(z) = \overline{Z}$ is differentiable at Z_0 ?

$$\lim_{\Delta Z \to 0} \frac{f(Z_0 + \Delta Z) - f(Z_0)}{\Delta Z} = \lim_{\Delta Z \to 0} \frac{Z_0 + \delta Z}{\Delta Z} - \frac{Z_0}{Z_0}$$

$$= \lim_{\Delta Z \to 0} \frac{\overline{\Delta Z}}{\Delta Z}$$

Path I: $\Delta Z \rightarrow 0$ along the heal axis. $\Delta y = 0$ and $\Delta x \rightarrow 0$. $\lim_{\Delta y = 0} \frac{\Delta Z}{\Delta Z} = \lim_{\Delta y = 0} \frac{\Delta x}{\Delta x} = 1$

Path II: DZ -> along the imaginary axis. DX = 0 and sy > 0.

$$\lim_{\Delta x = 0} \frac{\Delta z}{\Delta z} = \lim_{\Delta x = 0} \frac{-\lambda \Delta y}{\lambda \Delta y} = -1$$

Since f(Zo+AZ) - fczo) approaches two different values as DZ ->0 along two different values, we conclude that $\lim_{\Delta Z \to 0} \frac{f(Z_0 + \Delta Z) - f(Z_0)}{\Delta Z}$ does not exist, and hence $f^1(Z_0)$ does not exis. Therefore, f is <u>NOT</u> differentiable at Zo.

Additional Information to think:

Consider the same function f(z) = Z as f: Ra Ra チ(ス,か=(ス,一分 参(ス,か)とのなる

vector valued function of vector Variable.

Find out whether f(x,y) = (x, -y) is differentiable in \mathbb{R}^2 or not?

Exercise (for tommorow's days)

Examine the differentiability of the following function in C.

①
$$f(z) = |z|$$
 ② $f(z) = |z|^2$ ③ $f(z) = z^2$