

planetmath.org

Math for the people, by the people.

ordering relation

Canonical name OrderingRelation
Date of creation 2013-03-22 11:52:04
Last modified on 2013-03-22 11:52:04

Owner djao (24)Last modified by djao (24)

Numerical id 9

djao (24) Author Entry type Definition Classification ${\rm msc}\ 03\text{-}00$ Classification msc 81-00Classification ${\rm msc}\ 18\text{-}00$ Classification msc 17B37Classification msc 18D10 Classification ${\rm msc}\ 18{\rm D}35$ Classification msc 16W30Related topic TotalOrder Related topic PartialOrder Related topic Relation

Defines opposite ordering

Let S be a set. An ordering relation is a relation \leq on S such that, for every $a,b,c\in S$:

- Either $a \leq b$, or $b \leq a$,
- If $a \le b$ and $b \le c$, then $a \le c$,
- If $a \leq b$ and $b \leq a$, then a = b.

Equivalently, an ordering relation is a relation \leq on S which makes the pair (S, \leq) into a totally ordered set. **Warning:** In some cases, an author may use the term "ordering relation" to mean a partial order instead of a total order.

Given an ordering relation \leq , one can define a relation < by: a < b if $a \leq b$ and $a \neq b$. The *opposite ordering* is the relation \geq given by: $a \geq b$ if $b \leq a$, and the relation > is defined analogously.