Social Data Mining

Afra Alishahi March 20, 2017

Supervised Learning

Classification

- Movie/book/restaurant reviews: good vs. bad
- Emails: spam vs. not spam

Regression

- Predict height based on weight and gender
- Predict income based on education, specialization and country
- → We look for a pre-specified structure in data
 - Training data: feature sets annotated with labels or numbers

Exploratory Data Analysis

- Sometimes the structure of data is not known in advance
 - Emails: work vs. family vs. friends vs. advertisement vs. ...?
 - Shapes: square vs. circle vs. triangle vs. ...?
 - Types of questions asked in a forum

 We have a number of observation points, but no predefined set of labels attached to them.

• The Iris dataset:

• Two clusters:

• Three clusters:

• How do we group the observation points together?

What Makes a Cluster "Good"?

- Clusters should be coherent
 - Members of the same cluster must be as close/similar to each other as possible
 - Clusters must be as distant/dissimilar from each other as possible

- Needed machinery:
 - Distance between two data points
 - Distance between two clusters

Distance between Data Points

For numerical features, Euclidean distance is a good measurement.

Distance between Clusters

Distance between Clusters

- Single link: distance btw the two most similar members
- Complete link: distance btw the two least similar members

Cluster Centroids

Cluster Centroids

Cluster centroid:

$$\mu_k = \frac{1}{||k||} \sum_{x \in k} x$$

Remember KNN Classification?

Remember KNN Classification?

The same idea can be used to find coherent clusters in the data.

- Given:
 - a dataset $X = \{x_1, \dots, x_n\}$
 - a distance measure $d(x_i, x_j)$
- Randomly assign data points to K clusters
- repeat
 - calculate cluster centroids

$$\mu_k = \frac{1}{||k||} \sum_{x \in k} x$$

assign each data point to the cluster with the closest centroid

$$k = \{x | \forall k', d(x, \mu_{k'}) \le d(x, \mu_k) \}$$

• The Iris dataset:

Randomly assign points to two clusters:

• Calculate the centroids:

Re-assign the data points to the clusters:

Re-calculate the centroids:

• And again ...

• ... and again.

Objective Function

Objective function for k clusters: members of a cluster must be as close to its centroid as possible

$$J = \sum_{k=1}^{K} \sum_{x \in k} ||x - \mu_k||^2$$

- *J*: distortion measure
- *K*: number of clusters
- $x \in k$: members of cluster k
- μ_k : centroid of cluster k

Practical Questions

- When to stop?
 - There are no more changes in the cluster structure/membership
 - The objective function reaches a certain level
- How many clusters?
 - An informed guess?
 - Trying different numbers to see which one yields the best value for some objective function
- Can we speed up the algorithm?
 - Update the centroids incrementally
 - Select the initial centroids wisely (how?)

Evaluating Cluster Quality

- How do we evaluate the quality of the induced clusters?
 - There is no gold standard to compare our clusters against, therefore no precision/recall estimates
 - We can use an objective function as a measure of coherence

 If the induced clusters are used by another task, the performance in that task can be an indicator of the quality of clusters

Remember Naive Bayes?

 Supervised technique for probabilistic classification: choose the most probable class based on the observed features

$$P(\text{Lime}|x_1, x_2) = \frac{P(x_1, x_2|\text{Lime})P(\text{Lime})}{P(x_1, x_2)}$$

• Simplifying assumption: assume features are independent

$$P(x_1, x_2 | \text{Lime}) = P(x_1 | \text{Lime}) P(x_2 | \text{Lime})$$

 Prior and likelihood probabilities are estimated based on training data

Unsupervised Naive Bayes

$$y_{\text{pred}} = \arg\max_{y} P(y) \prod_{j=1}^{J} P(x_j|y)$$

The Expectation-Maximization (EM) Algorithm

- 1. Guess initial cluster labels for each data point
- 2. Iterate until convergence:
 - a. M-step: compute prior and likelihood probabilities from the labeled data
 - b. E-step: re-cluster each example using the estimated probabilities

Hard vs. Soft Clustering

Could this point also belong to the other cluster?

Soft Clustering

 We can estimate a "membership degree", or a probability that a point belongs to a cluster.

 h_{ik} : the probability that the data point x_i belongs to cluster k

- This probability can show the reliability of a prediction:
 - The flower looks kind of like an iris, but I'm only 73% sure.
- ... or it can show an actual multi-membership:
 - An email can be 65% related to work and 35% related to friends
 - A document can be 82% about politics and 18% about science

Flat vs. Hierarchical Clustering

Hierarchical Clustering

Many Cognitive Tasks are Unsupervised

- Image processing:
 - Recognizing edges, texture, shadows, ...
 - Estimating distance, overlap, spatial relations, ...
 - Identifying objects
- Formation of concepts:
 - categorizing visual entities (e.g., furniture, humans, food) based on their features (shape, color, size, movement, etc.)
 - categorizing relations (e.g., causal movement, manner of motion, change of state) based on their participants
- Processing language
 - Lexical categories, sentence structure, ...

Questions?