

BALANCE HIDRICO INTEGRADO Y DINAMICO EN EL SALVADOR

PROCEDIMIENTO Y AVANCES

SERVICIO HIDROLOGICO NACIONAL DE EL SALVADOR
Ing. ADRIANA MARIA ERAZO

MARZO 2005

CICLO HIDROLOGICO

BALANCE HIDRICO

ENTRADAS - SALIDAS = CAMBIO DE ALMACENAMIENTO

PP - Precipitación

Im - Importaciones

Superficiales

Re - Retornos de la Demanda

Te - Trasvase subterráneo desde otra cuenca

EVR - Evapotranspiración Real

Ev - Evaporación de cuerpos de agua

Eau - Evaporación en áreas urbanas

ES - Escurrimiento Superficial

Dem Int - Demanda Interna

Dem Ext - Demanda externa

Ts - Trasvase subterráneo hacia otra cuenca

R acuíferos - Recarga de acuíferos

 $(PP + Im + Re + Te) - (EVR + Ev + Eau + ES + Dem Int + Dem Ext + Ts) = \Delta V$

BALANCE HIDRICO

PP: PRECIPITACION EVR: EVAPOTRANSPIRACION Dsup: DEMANDA DE REAL **AGUA SUPERFICIAL Dsub: DEMANDA DE** Dem Ext: Ev: EVAPORACION **AGUA SUBTERRANEA EXPORTACIONES CUERPOS DE AGUA** Re: RETORNOS **Eau: EVAPORACION** EN AREAS URBANAS **Im: IMPORTACIONES** HUMEDAD DEL SUELO **ES: ESCURRIMIENT SUPERFICIAL** R acuíferos: RECARGA **DE ACUIFEROS** Te: TRASVASE DESDE OTRA CUENCA Ts: TRASVASE HACIA

OTRA CUENCA

PRECIPITACION

PRECIPITACION

Confiabilidad de Información

Grupo 1 • 100 EJE - X EJE - Y 80 MEDIA M15 M15 M2 M6 N11 M2 M6 N11 U20 Z2 Z6 U20 Z2 Z6 20 60 80 100 imir

NOTA: Una estación puede pertenecer simultaneamente a más de un grupo

Grupos de estaciones homogéneas

ico

Estación Años totales Completos Media CS M2 31 0.141 0.187 1414.6 M6 1479.2 0.196 1.065 M15 31 1543.1 0.151 -0.456N11 31 1639.5 0.153 0.686 31 0.376 31 1539.0

Resultados del Completado de Datos

Año Inicial: 1971

Año Final: 2001

<< Volver atrás

Completado. Variable meteorológica completada. Valores mensuales.

Copiar al portapapeles

XUTM	YUTM	Indic.	Tipo	Año	Oct	Nov	Dic	Ene	Feb	•
589686	261853	M2	СОМ	1971/72	145.0	265.0	105.0	321.0	326.0	
589686	261853	M2	COM	1972/73	251.0	168.0	156.0	142.0	183.0	
589686	261853	M2	COM	1973/74	63.0	298.0	144.0	318.0	296.0	
589686	261853	M2	COM	1974/75	148.0	255.0	94.0	231.0	320.0	
589686	261853	M2	COM	1975/76	169.0	106.0	162.0	321.0	431.0	
589686	261853	M2	COM	1976/77	198.0	505.0	92.0	182.0	282.0	
589686	261853	M2	COM	1977/78	113.0	248.0	20.0	215.0	230.0	
589686	261853	M2	COM	1978/79	92.0	148.0	262.0	258.0	264.0	
589686	261853	M2	COM	1979/80	52.0	295.0	155.0	464.0	299.0	
589686	261853	M2	COM	1980/81	300.0	325.0	239.0	274.0	325.0	
589686	261853	M2	COM	1981/82	184.0	426.0	248.0	192.0	439.0	
589686	261853	M2	COM	1982/83	282.0	184.0	148.0	86.0	378.0	
589686	261853	M2	COM	1983/84	16.0	231.0	158.0	240.0	265.0	
589686	261853	M2	COM	1984/85	233.2	303.2	156.8	293.8	322.8	
589686	261853	M2	COM	1985/86	112.2	177.8	85.8	277.3	299.7	
589686	261853	M2	COM	1986/87	176.4	318.0	71.1	374.9	317.0	
589686	261853	M2	COM	1987/88	17.0	185.2	169.4	202.3	295.9	-1
*			1)	5

Estadísticas

Aceptar

Relleno de datos

MAPAS DE PRECIPITACIÓN PROMEDIO MENSUAL 1971 / 2001

Precipitación Promedio Anual Período: 1971-2001

EVAPOTRANSPIRACION DE REFERENCIA

EVAPOTRANSPIRACION DE REFERENCIA

40 El Salvador

RELACION ALTITUD – EVAPOTRANSPIRACION ANUAL Y MENSUAI

3 Guatemala

FOTAL 43 estaciones

OBJETIVO: DETERMINAR ESTACIONES FICTICIAS PARA MEJORAR LA RED DE ESTACIONES

57 El Salvador

3 Guatemala

TOTAL 60 estaciones

MAPAS DE EVAPOTRANSPIRACIÓN DE REFERENCIA MENSUALES PERIODO 71/2001

EVAPOTRANSPIRACION DE REFERENCIA

EVAPOTRANSPIRACION DE CULTIVO

EVAPOTRANSPIRACION REAL

EVAPOTRANSPIRACION DE CULTIVO

COEFICIENTES DE CULTIVO

- CARACTERISTICAS DEL CULTIVO
- DURACION DEL PERIODO VEGETATIVO
- CONDICIONES CLIMATICAS : VIENTO Y HUMEDAD RELATIVA

EVAPOTRANSPIRACION DE CULTIVO

Magnitudes de la ET (cultivo) en comparación con la ET (gramíneas)

EVAPOTRANSPIRACION DE CULTIVO

COEFICIENTES DE CULTIVO

VEGETACION	Ke Inicio	Kc Desarrollo de Cultivo	Kc Mediados del periodo	Ke final
ARROZ	1.1	1.1 – 1.3	1.3	1.3 – 1
CAÑA DE AZUCAR	0.6	0.6 – 1.15	1.15	1.15 – 0.85
CAFE	1.05	1.05 - 1.1	1.1	1.1
MAIZ	0.35	0.35 - 1.05	1.05	1.05 - 0.6
MAIZ DULCE	0.35	035 – 1.05	1.05	1.05 - 0.95
TOMATE	0.6	0.6 - 1.05	1.05	1.05 - 0.6
BROCOLI	0.7	0.7 - 0.95	0.95	0.95 - 0.80
PAPAYO			0.8	
AGUACATE	0.25	0.2 - 0.75	0.75	0.6 – 0.30
MANGO			0.7	
CITRICOS			0.60	
ÁRBOLES LATIFOLIARES			0.60	
PIÑA	0.3	0.3 - 0.5	0.5	0.5

Fuente: Necesidades de agua de los cultivos FAO

EVAPOTRANSPIRACION DE CULTIVO USO DEL SUELO

EVAPOTRANSPIRACION DE CULTIVO COEFICIENTES DE CULTIVO Ke

OCCUP_SUEL	ENERO	FEBRERO	MARZO	ABRIL	MAYO	JUND	JULIO	AGOSTO	SEPTIEMBRE	OCTUBRE	NOMEMBRE	DICIEMBRE
Arboles Frutales	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Bosque Caducifolio	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Bosque mixto	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Caña de Azucar	0.6	0.8	0.9	0.9	1	1	1	1	1.05	1.15	1.15	0.85
Café	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
Cultivo de Piña	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Granos Basicos	1	1	1	1	0.35	1	1.05	1.05	0.6	1	1	1
Hortalizas	1	1	1	1	0.7	1	1.05	1.05	0.95	1	1	1
Pastos naturales	1	1	1	1	1	1	1	1	1.1	1.1	1.1	1
Vegetacion acuatica	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05	1.05

Kc adaptados según FAO

De acuerdo a mapa: 71 Usos de Suelo

EVAPOTRANSPIRACION REAL TIPO DE SUELO

EVAPOTRANSPIRACION REAL

CAPACIDAD DE RETENCION DE AGUA

SUELO	Textura Asociada	Capacidad de Retencion (mm)
Alfisoles, algunos Molisoles	franco arcilloso	96.52
Aluviales	franco	81.28
Andosoles	franco limoso	88.9
Entisoles, Vertisoles	franco arcilloso	96.52
Inceptisoles, Alfisoles, Molisoles	franco arcilloso	96.52
Inceptisoles, Ultisoles, Alfisoles	franco arcilloso	96.52
Litosoles	arcillas	101.6
Ustands Orthents	franco	96.52
Ustands Orthents Usteps	franco arcillosos	96.52
Ustolls	franco arcilloso	96.52
Vertisoles, Alfisoles, Inceptisole	arcillas	101.6

Capacidad de Retención asociada según USDA

EVAPORACION EN CUERPOS DE AGUA

EVAPORACION Y ESCURRIMIENTO EN AREAS URBANAS

CAUDALES REGISTRADOS

CAUDALES ESTIMADOS

• REGIONALIZACION DE CAUDALES MEDIOS

• RELACION ENTRE PRECIPITACION Y CAUDAL DE ESCURRIMIENTO

AGUAS SUBTERRANEAS

Investigación y el monitoreo hidrogeológico:

- Plantear modelo conceptual de acuíferos
- Definición de geometría de acuíferos con Prospección Geofísica
- Determinación de volúmenes almacenamiento variación de la recarga estacional Disponibilidad del recurso subterráneo

CALIDAD DE AGUA

- MONITOREO: Lempa, Acahuapa, Sucio, Suquiapa, Acelhuate, Paz, Sonsonate, Jiboa, Grande de San Miguel
- DIAGNOSTICO ICA

Se evaluará la información en dos líneas:

- a. Mapa de Indices de Calidad de agua y aptitud de usos del agua.
- b. Determinación de la Disponibilidad Hídrica (inicio y final de época seca) se tomará como criterio la normativa de agua vida acuática y contacto humano.

Mapa de Índices de Calidad de agua y aptitud de usos

En cada sitio de la red de muestreo se ubicará la siguiente clasificación:

El circulo central corresponde a la clasificación del ICA:

Azul: Excelente calidad

Celeste: Buena calidad

Amarillo: Regular calidad

Anaranjado: Mala calidad

Rojo: Pésima calidad

La banda externa corresponde a la aptitud de uso y puede dividirse hasta en 4 secciones o por otro lado no estar presente:

Verde: Agropecuario

Celeste: Vida acuática

Blanca: Agua cruda para potabilización

Café: contacto humano

DEMANDAS HIDRICAS

DEMANDAS INTERNAS

DEMANDAS EXTERNAS

ESCENARIOS FUTUROS

RETORNOS

USOS	% RETORNO
AGRICOLA	5 -15
AGROINDUSTRIAL	30
DOMESTICO	70 - 80
ACUICULTURA	95 - 100
SERVICIOS	70 - 80
INDUSTRIAL	50 - 60
PECUARIO	5 - 15
GENERACION DE ENERG. ELECTR.	100

Fuente: Balance Hídrico – Valle de México

INDICE DE ESCASEZ

Relación porcentual entre la demanda y la disponibilidad hídrica

INDICE DE ESCASEZ %	CATEGORIA
< 1	NO SIGNIFICATIVO
1 - 10	MINIMO
11 - 20	MEDIO
21 - 50	MEDIO ALTO
> 50	ALTO

Fuente: Estudio Nacional de Agua - Colombia

BALANCE DINAMICO

Balance Hídrico Anual

- Impactos en el recurso en Años Niño / Niña
- Impactos por eventos extremos

Escenarios posibles:

- Cambios de uso de suelo
- Cambios en la demanda hídrica
- Variabilidad y Cambio Climático

AVANCES EN BALANCE HIDRICO

AVANCES EN BALANCE HIDRICO

HIDROLOGIA SUPERFICIAL:

5 REGIONES HIDROGRAFICAS ANALIZADAS (41 CUENCAS)

5 REGIONES HIDROGRAFICAS EN PROCESO DE ANALISIS ACTUALMENTE

HIDROGEOLOGIA:

ACUIFEROS ANALIZADOS: JIQUILISCO – USULUTAN

AGULIARES - COLIMA

MONITOREO ACTUAL EN ACUIFEROS: ACAJUTLA - SONSONATE,

ZAPOTITAN – ARMENIA,

OPICO - ATIOCOYO,

CHALCHUAPA - ATIQUIZAYA - AHUACHAPAN,

CITALA - CHALATENANGO,

SAN VICENTE,

SAN MIGUEL - LA UNION.

OSTUA - METAPAN,

SINGUIL,

SANTA ANA – TEXISTEPEQUE,

CALIDAD:

MONITOREO Y ANALISIS:

RIO PAZ, GRANDE DE SAN MIGUEL, JIBOA, SONSONATE, LEMPA, ACAHUAPA, SUCIO, SUQUIAPA y ACELHUATE.