

Redes Neurais Artificiais

Professora: Anita Maria da Rocha Fernandes Mestrando: Luiz Henrique A. Salazar

Agenda

- Treinamento da RNA
 - Função de Perda (loss)
 - Otimização
 - **■** Fluxo de Treinamento
 - Descida do Gradiente (Gradient Descent)
 - Taxa de Aprendizado
 - Hiperparâmetros de Treinamento
 - Iteração
 - Batch
 - Época

https://youtu.be/rulM9AQOxDE

Aprendizado de uma rede como "tentativa e erro"?

"Tentativa guiada"

Definição de uma medida numérica da qualidade :

- Objetivo de minimizar ou maximizar
- Patrick quer minimizar a distância entre a mão dele e a tampa.
 - Minimizar a distância entre um ponto e outro.

É também chamada de:

- Função objetivo
- Função de **perda**
- Critério
- Loss
- entre outros.

"A função de custo **reduz** todos os aspectos bons e ruins de um sistema complexo a um **único número**, um valor **escalar**, o que permite **rankear** e **comparar** as soluções candidatas."

- Função de perda = único número
 - "Minimizar a distância e a força que o Patrick bate no pote"
 - Devemos "compactar" todas as métricas em um único valor escalar.

^{*} Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks

"Se fizermos uma **escolha ruim** da função de custo e os **resultados** obtidos **não** forem **satisfatórios**, é nossa culpa por não especificar bem nosso objetivo"

- RNA não converge de jeito nenhum!
 - Faltou treinamento?
 - Escolha da rede não é a ideal?
 - Pode ser necessário melhorar a função de perda!
 - Está relacionada diretamente com o problema.

Ao treinar o modelo, o objetivo é fazê-lo **convergir** para uma solução aproximadamente ótima.

A função de perda é utilizada para acompanhar essa convergência.

As funções de perda são divididas em funções de *loss* de **regressão** e de **classificação**.

- Regressão:
 - Erro Médio Quadrático (Mean Square Error MSE)
 - Computa a média quadrática da diferença entre o valor real e o valor predito.
 - Erro Médio Absoluto (Mean Absolute Error MAE)
 - Utiliza o módulo de cada erro e mede apenas a distância do valor real, independente de ser acima ou abaixo.

As funções de perda são divididas em funções de *loss* de **regressão** e de **classificação**.

- Classificação (Binária):
 - Entropia Cruzada (Cross-Entropy Loss Log Loss)
 - Retorna um valores entre 0 e 1
 - Mais próximo de **zero (0)**:
 - maior a probabilidade da classificação ser a correta.
 - Mais próximo de um (1):
 - maior a probabilidade de que o modelo está errando

http://cs231n.stanford.edu/slides/2016/winter1516_lecture3.pdf

http://cs231n.stanford.edu/slides/2016/winter1516_lecture3.pdf

Objetivo é **minimizar** a função de perda.

 Altera-se os pesos do modelo iterativamente e verifica-se o impacto de cada alteração na função de perda.

Objetivo é **minimizar** a função de perda

- Um "passo" é uma alteração de **pesos**
- A "altura" é a função de **perda** em relação aos pesos.
- A montanha é a superfície de **erro**

https://www.infinitycodex.in/data-science-ss-106gradient-descent-and

Para calcular se descemos ou subimos a montanha após um passo, calculamos a **derivada** dessa função.

- Derivada entre dois pontos que indicará numa reta a direção que foi seguida após alterar os pesos.
 - o Indica **quanto** e
 - o em qual **direção** o menino caminhou.

Para múltiplas dimensões, o vetor de derivadas parciais é chamado de **gradiente.**

Logo, o **gradiente** é o indicador se um **passo** (alteração nos pesos da rede) dado na montanha, **melhorou** ou piorou o **modelo**, com base em uma **medida de qualidade** (função de perda).

A **otimização** orienta a escolha dos próximos passos com base no valor obtido no **gradiente**.

Representa o uso da informação para **escolher** a próxima **alteração de pesos** da RNA, que talvez leve ao **ponto mínimo** da superfície de erro ("vale da montanha")

- 1. Entrada da rede
- 2. Cálculo da função de perda
- 3. Cálculo do gradiente
- 4. Atualização dos pesos
- 5. Volta para o passo 1

- 1. Entrada da rede
- 2. Cálculo da função de perda
- 3. Cálculo do gradiente
- 4. Atualização dos pesos
- 5. Volta para o passo 1

- 1. Entrada da rede
- 2. Cálculo da função de perda
- 3. Cálculo do gradiente (∇)
- 4. Atualização dos pesos
- 5. Volta para o passo 1

- 1. Entrada da rede
- 2. Cálculo da função de perda
- 3. Cálculo do gradiente
- 4. Atualização dos pesos
- 5. Volta para o passo 1

Descida do Gradiente (Gradient Descent)

Descida do Gradiente é o algoritmo clássico de otimização.

Consiste em subtrair o valor do gradiente (▽f) dos pesos
(W) da rede.

$$\left(W_{i} = W_{i} - \alpha * \nabla f \right)$$

• O tamanho do passo de otimização é controlado pelo multiplicador α -> Taxa de Aprendizado

Taxa de Aprendizado

Qual o efeito de aumentar ou diminuir a taxa de aprendizado?

Taxa de Aprendizado

Qual o efeito de aumentar ou diminuir a taxa de aprendizado?

Aula 3 - Redes Neurais - Loss e Otimização

Hiperparâmetros de Treinamento

3 etapas importantes no processo de treinamento de uma RNA:

Organizam o treinamento da rede

Iteração

Batch

Época

Iteração

- 1. Entrada da rede
- 2. Cálculo da função de perda
- 3. Cálculo do gradiente
- 4. Atualização dos pesos
- 5. Volta para o passo 1

Iteração

Uma iteração consiste em um passo de otimização:

Forward + Backpropagation

Iteração

100 **iterações**

É a **quantidade de amostras** vistas numa iteração, ou seja, em um passo de treinamento (uma iteração).

"Aumento o tamanho de amostras e consigo otimizar o modelo com menos iterações?"

O tamanho do batch interfere no comportamento de convergência.

Estocástico: uma amostra por vez (mais **rápido**)

Mini-batch: subconjunto do treino

Batch: conjunto de treino completo (todas as amostras de treino) (mais **demorado**)

Se conjunto de dados é **pequeno** (< 3000), use **todos** os dados

- 2000 amostras de treino e 1000 para teste
 - Batches de tamanho 500.

Para que a rede veja todo o conjunto de treino, são necessárias 4 iterações.

Completando uma época!

Quando **todas as amostras** do conjunto de treino foram vistas pelo modelo, completo uma **época**.

Pergunta: Se ao final de uma época o modelo **já viu todas as amostras** de treino, por que precisamos de **mais uma época**?

Pergunta: Se ao final de uma época o modelo já viu todas as amostras de treino, por que precisamos de mais uma época?

- O treinamento (otimização) é um processo **iterativo** e possui pequenos ajustes a partir do modelo inicial.
- A época seguinte (n+1) tem como ponto de partida o modelo **ajustado** na época anterior (n).

Em geral, o **gráfico de convergência** é definido em termo das épocas, comparado com a *loss* obtida.

Demo Deep Learning Absenteismo