

Contents lists available at ScienceDirect

Linear Algebra and its Applications

LINEAR ALGEBRA and its Applications

www.elsevier.com/locate/laa

On maps preserving operators of local spectral radius zero

M. Elhodaibi^a, A. Jaatit^{b,*}

 ^a University Mohammed First, Faculty of Sciences, B.P: 717 60000 Oujda, Morocco
 ^b University Mohammed First, Multidisciplinary Faculty, B.P: 300 62700 Nador, Morocco

ARTICLE INFO

Article history:
Received 3 July 2016
Accepted 1 October 2016
Available online 4 October 2016
Submitted by P. Semrl

MSC:

primary 47B49 secondary 47B48, 47A10, 47A11

Keywords: Linear preserver Quasi-nilpotent part Local spectral radius

ABSTRACT

Let $\mathcal{L}(X)$ be the algebra of all bounded linear operators on a complex Banach space X. We describe surjective linear maps ϕ on $\mathcal{L}(X)$ that satisfy

$$\mathbf{r}_{\phi(T)}(x) = 0 \Longrightarrow \mathbf{r}_T(x) = 0$$

for every $x\in X$ and $T\in\mathcal{L}(X).$ We also describe surjective linear maps ϕ on $\mathcal{L}(X)$ that satisfy

$$\mathbf{r}_T(x) = 0 \Longrightarrow \mathbf{r}_{\phi(T)}(x) = 0$$

for every $x \in X$ and $T \in \mathcal{L}(X)$. Furthermore, we characterize maps ϕ (not necessarily linear nor surjective) on $\mathcal{L}(X)$ which satisfy

$$\mathbf{r}_{\phi(T)-\phi(S)}(x)=0$$
 if and only if $\mathbf{r}_{T-S}(x)=0$

for every $x \in X$ and $T, S \in \mathcal{L}(X)$. © 2016 Elsevier Inc. All rights reserved.

E-mail addresses: hodaibi2001@yahoo.fr (M. Elhodaibi), a.jaatit@hotmail.com (A. Jaatit).

^{*} Corresponding author.

1. Introduction

Let $\mathcal{L}(X)$ be the algebra of all bounded operators on a complex Banach space X. The local spectral radius of an operator $T \in \mathcal{L}(X)$ at a point $x \in X$ is defined by

$$\mathbf{r}_T(x) = \limsup_{n \to +\infty} \| T^n x \|^{\frac{1}{n}}.$$

Recall that the quasi-nilpotent part of an operator $T \in \mathcal{L}(X)$ is given by

$$\mathrm{H}_0(T) := \{ x \in X : \limsup_{n \to +\infty} \parallel T^n x \parallel^{\frac{1}{n}} = 0 \}.$$

The problem of describing linear or additive maps on $\mathcal{L}(X)$ preserving the local spectra has been initiated by A. Bourhim and T. Ransford in [5], and continued by several authors; see for instance [2–4,6–8] and the references therein.

In [8], C. Costara described surjective linear maps on $\mathcal{L}(X)$ which preserve operators of local spectral radius zero at points of X. He showed that if $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ is a linear and surjective map such that for every $x \in X$ and $T \in \mathcal{L}(X)$, we have

$$\mathbf{r}_{\phi(T)}(x) = 0$$
 if and only if $\mathbf{r}_T(x) = 0$,

then there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

This result has been extended by Bourhim and Mashreghi in [4] where it is shown that if ϕ is a surjective (not necessarily linear) map on $\mathcal{L}(X)$ that satisfies

$$\mathbf{r}_{\phi(T)-\phi(S)}(x) = 0$$
 if and only if $\mathbf{r}_{T-S}(x) = 0$,

for every $x \in X$ and $T, S \in \mathcal{L}(X)$, then there are a nonzero scalar $\mu \in \mathbb{C}$ and an operator $A \in \mathcal{L}(X)$ such that $\phi(T) = \mu T + A$ for all $T \in \mathcal{L}(X)$.

In this paper, we start by studying surjective linear maps ϕ on $\mathcal{L}(X)$ such that either

$$H_0(\phi(T)) \subset H_0(T)$$

for all $T \in \mathcal{L}(X)$, or

$$H_0(T) \subset H_0(\phi(T))$$

for all $T \in \mathcal{L}(X)$. This will give characterizations of surjective linear maps ϕ on $\mathcal{L}(X)$, that preserve operators of local spectral radius zero in one direction; i.e.

$$\mathbf{r}_{\phi(T)}(x) = 0 \Longrightarrow \mathbf{r}_T(x) = 0$$

for every $x \in X$ and $T \in \mathcal{L}(X)$, or

$$\mathbf{r}_T(x) = 0 \Longrightarrow \mathbf{r}_{\phi(T)}(x) = 0$$

for every $x \in X$ and $T \in \mathcal{L}(X)$.

We shall also give a similar result to the one in [4], without assuming that ϕ is surjective. That is, we shall characterize maps $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ that satisfy

$$H_0(\phi(T) - \phi(S)) = H_0(T - S)$$
 for all $T, S \in \mathcal{L}(X)$.

2. Preliminaries

For $T \in \mathcal{L}(X)$, we will denote by $N(T), R(T), \sigma(T)$ and $\sigma_p(T)$ the kernel, the range, the spectrum and the point spectrum of T respectively.

Let x be a nonzero vector in X and f be a nonzero functional in the topological dual X^* of X. We denote, as usual, by $x \otimes f$ the rank one operator given by $(x \otimes f)z = f(z)x$ for $z \in X$. Note that $x \otimes f$ is a projection if and only if f(x) = 1, and it is nilpotent if and only if f(x) = 0. We denote by span $\{x\}$ and N(f), respectively, the subspace spanned by x and the kernel of f. We write $\mathcal{F}_1(X)$ for the set of all rank one operators on X.

We give some properties of quasi-nilpotent part of an operator in $\mathcal{L}(X)$; see [1,9].

Lemma 2.1. Let $T \in \mathcal{L}(X)$. The following statements hold.

- (i) $N(T) \subset H_0(T)$.
- (ii) $x \in H_0(T)$ if and only if $Tx \in H_0(T)$.
- (iii) $N(T \lambda) \cap H_0(T) = \{0\}$ for every complex scalar $\lambda \neq 0$.
- (iv) T is quasi-nilpotent if and only if $H_0(T) = X$.
- (v) If T is bounded below then $H_0(T) = \{0\}$.
- (vi) If $H_0(T) = \{0\}$ then T is injective.

The following lemma is a useful elementary result about perturbations by rank one operators.

Lemma 2.2. ([10]) Let $T \in \mathcal{L}(X)$ be an invertible operator, let x be a nonzero vector in X and f be a nonzero functional in X^* . Then $T - x \otimes f$ is not invertible if and only if $f(T^{-1}x) = 1$.

Note that the quasinilpotent part of a rank one operator has an extensive use in the sequel. Obviously, we have

$$f(x) = 0 \iff H_0(x \otimes f) = X$$
, and $f(x) \neq 0 \iff H_0(x \otimes f) = N(f)$.

Also, it is easy to see that

$$f(x) = 1 \iff H_0(I - x \otimes f) = \operatorname{span}\{x\}, \text{ and}$$

 $f(x) \neq 1 \iff H_0(I - x \otimes f) = \{0\}.$

3. Linear maps preserving, in one direction, operators of local spectral radius zero at non-fixed vectors

The following lemma characterizes the rank one operators in terms of the spectrum and the point spectrum, which is due to A.R. Sourour [10].

Lemma 3.1. For $F \in \mathcal{L}(X)$, the following assertions are equivalent.

- (i) F is of rank at most 1.
- (ii) For every $T \in \mathcal{L}(X)$, there exists a compact subset K_T of the complex plane, such that

$$\sigma(T + \alpha F) \cap \sigma(T + \beta F) \subset K_T$$

for all scalars $\alpha \neq \beta$.

(iii) For every $T \in \mathcal{L}(X)$, there exists a compact subset K_T of the complex plane, such that

$$\sigma_p(T + \alpha F) \cap \sigma_p(T + \beta F) \subset K_T$$

for all scalars $\alpha \neq \beta$.

Lemma 3.2. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map. If ϕ satisfies one of the following assertions:

- (i) $H_0(\phi(T)) \subset H_0(T)$ for all $T \in \mathcal{L}(X)$, or
- (ii) $H_0(T) \subset H_0(\phi(T))$ for all $T \in \mathcal{L}(X)$,

then there exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(I) = \mu I$, where I stands for the identity operator on X.

Proof. (i) Suppose that there is a nonzero vector $x \in X$ such that x and $\phi(I)x$ are linearly independent. Let $f \in X^*$ such that f(x) = 1 and $f(\phi(I)x) = 0$. So $\phi(I)x \otimes f$ is nilpotent and by Lemma 2.1 (iv), $H_0(\phi(I)x \otimes f) = X$. Since ϕ is surjective, there is $T \in \mathcal{L}(X)$ such that $\phi(I)x \otimes f = \phi(T)$. We have so

$$X = H_0(\phi(I)x \otimes f) = H_0(\phi(T)) \subset H_0(T).$$

This implies, by Lemma 2.1 (iv), that T is quasi-nilpotent, hence I - T is invertible and it follows by Lemma 2.1 (v), that $H_0(I - T) = \{0\}$. On the other hand, we have

$$x \in \mathcal{N}(\phi(I) - \phi(I)x \otimes f) \subset \mathcal{H}_0(\phi(I) - \phi(I)x \otimes f) = \mathcal{H}_0(\phi(I) - \phi(T))$$

$$= \mathcal{H}_0(\phi(I - T))$$

$$\subset \mathcal{H}_0(I - T)$$

$$= \{0\},$$

a contradiction. Thus $\phi(I) = \mu I$ for some nonzero scalar $\mu \in \mathbb{C}$. The fact that μ is nonzero comes from (i).

(ii) Since ϕ is surjective, there is $S \in \mathcal{L}(X)$ such that $I = \phi(S)$. Suppose that there is a nonzero vector $x \in X$ such that x and Sx are linearly independent. Let $f \in X^*$ such that f(x) = 1 and f(Sx) = 0. We have

$$X = H_0(Sx \otimes f) \subset H_0(\phi(Sx \otimes f)).$$

Then $\phi(Sx \otimes f)$ is quasi-nilpotent, hence $I - \phi(Sx \otimes f)$ is invertible and so $H_0(I - \phi(Sx \otimes f)) = \{0\}$. On the other hand, we have

$$x \in \mathcal{N}(S - Sx \otimes f) \subset \mathcal{H}_0(S - Sx \otimes f) \subset \mathcal{H}_0(\phi(S) - \phi(Sx \otimes f))$$
$$= \mathcal{H}_0(I - \phi(Sx \otimes f))$$
$$= \{0\},$$

a contradiction. Therefore x and Sx are linearly dependent for every $x \in X$. Hence there exists a scalar $\mu' \in \mathbb{C}$ such that $S = \mu'I$. Since $S \neq 0$, then $\mu' \neq 0$. Thus $\phi(I) = \phi(\frac{1}{\mu'}S) = \frac{1}{\mu'}\phi(S) = \frac{1}{\mu'}I$. As desired. \square

Lemma 3.3. Let $A, B \in \mathcal{L}(X)$ such that A is injective and B is invertible. If $H_0(A+F) \subset H_0(B+F)$ for all $F \in \mathcal{F}_1(X)$ then A=B.

Proof. Let $A, B \in \mathcal{L}(X)$ such that A is injective and B is invertible. Let $x \in X$ and $f \in X^*$ such that f(x) = 1.

Suppose that $H_0(A+F) \subset H_0(B+F)$ for all $F \in \mathcal{F}_1(X)$. For $F = -Ax \otimes f$, we have

$$\operatorname{span} \{x\} = \operatorname{N}(I - x \otimes f) = \operatorname{N}(A(I - x \otimes f)) = \operatorname{N}(A - Ax \otimes f)$$

$$\subset \operatorname{H}_0(A - Ax \otimes f)$$

$$\subset \operatorname{H}_0(B - Ax \otimes f).$$

Then $H_0(B - Ax \otimes f) \neq \{0\}$ and so by Lemma 2.1 (v), $B - Ax \otimes f$ is not invertible. Lemma 2.2 gives that

$$f(B^{-1}Ax) = 1 = f(x).$$

Consequently, $B^{-1}Ax = x$. Since this holds for each x, then A = B. \square

Theorem 3.4. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map. Then the following assertions are equivalent.

- (i) $H_0(\phi(T)) \subset H_0(T)$ for all $T \in \mathcal{L}(X)$.
- (ii) $H_0(T) \subset H_0(\phi(T))$ for all $T \in \mathcal{L}(X)$.
- (iii) There exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

Proof. (i) \Rightarrow (iii) By Lemma 3.2, we have $\phi(I) = \mu I$ for some nonzero scalar $\mu \in \mathbb{C}$. Let us consider the map ψ defined by

$$\psi(T) = \frac{1}{\mu}\phi(T)$$
 for all $T \in \mathcal{L}(X)$.

The map ψ satisfies (i). By Lemma 2.1 (v), (vi), we have

$$T$$
 is invertible $\Longrightarrow H_0(T) = \{0\}$
 $\Longrightarrow H_0(\psi(T)) = \{0\}$
 $\Longrightarrow \psi(T)$ is injective,

for every $T \in \mathcal{L}(X)$. It follows, since $\psi(I) = I$, that

$$\sigma_p(\psi(T)) \subset \sigma(T)$$

for all $T \in \mathcal{L}(X)$. Let $F \in \mathcal{L}(X)$ be an operator of rank one. We have so

$$\sigma_p(\psi(T) + \alpha \psi(F)) \cap \sigma_p(\psi(T) + \beta \psi(F)) \subset \sigma(T + \alpha F) \cap \sigma(T + \beta F)$$

for every $T \in \mathcal{L}(X)$ and all scalars $\alpha \neq \beta$. Using Lemma 3.1, we get that for every $T \in \mathcal{L}(X)$, there exists a compact subset $K_T \subset \mathbb{C}$ such that

$$\sigma_p(\psi(T) + \alpha \psi(F)) \cap \sigma_p(\psi(T) + \beta \psi(F)) \subset K_T$$

for all scalars $\alpha \neq \beta$. Since ψ is surjective, we conclude by Lemma 3.1, that $\psi(F)$ is of rank at most one.

Let $x \in X$ and $f \in X^*$ such that $f(x) \neq 0$. There exist $y \in X$ and $g \in X^*$ such that

$$\psi(x\otimes f)=y\otimes g.$$

Since

$$H_0(y \otimes g) = H_0(\psi(x \otimes f)) \subset H_0(x \otimes f) = N(f),$$

it follows that $H_0(y \otimes g) \neq X$, so by Lemma 2.1 (iv), $y \otimes g$ is not quasi-nilpotent, and then $g(y) \neq 0$. This gives that $N(g) \subset N(f)$, and so f and g are linearly dependent; i.e.

$$q = af$$

for some nonzero scalar $a \in \mathbb{C}$. We have

$$\{0\} \neq \operatorname{span} \{y\} = \operatorname{H}_0(I - \frac{1}{g(y)}y \otimes g) = \operatorname{H}_0(\psi(I) - \frac{1}{g(y)}\psi(x \otimes f))$$
$$= \operatorname{H}_0(\psi(I - \frac{1}{g(y)}x \otimes f))$$
$$\subset \operatorname{H}_0(I - \frac{1}{g(y)}x \otimes f).$$

By Lemma 2.1 (v) and Lemma 2.2, we obtain that $f(\frac{1}{g(y)}x) = 1$, and therefore span $\{y\} \subset \text{span } \{x\}$. Then x and y are linearly dependent; i.e.

$$y = bx$$

for some nonzero scalar $b \in \mathbb{C}$. Since f(x) = g(y) = af(bx) = abf(x), then ab = 1. Hence

$$\psi(x \otimes f) = ax \otimes (bf) = abx \otimes f = x \otimes f.$$

Thus

$$\psi(F) = F$$

for all non-nilpotent rank one operator $F \in \mathcal{L}(X)$.

As ϕ is linear, and every nilpotent rank one operator is a sum of two non-nilpotent rank one operator, we deduce that $\psi(F) = F$ for all rank one operator $F \in \mathcal{L}(X)$.

Let $T \in \mathcal{L}(X)$ and $\lambda \notin \sigma(T) \cup \sigma(\psi(T))$. We have

$$H_0(\psi(T) - \lambda I + F) = H_0(\psi(T - \lambda I + F)) \subset H_0(T - \lambda I + F)$$

for all $F \in \mathcal{F}_1(X)$.

Lemma 3.3 gives that $\psi(T) = T$, as desired.

(ii) \Rightarrow (iii) By Lemma 3.2, we have $\phi(I) = \mu I$ for some nonzero scalar $\mu \in \mathbb{C}$. Let the map ψ given by

$$\psi(T) = \frac{1}{\mu}\phi(T)$$
 for all $T \in \mathcal{L}(X)$.

The map ψ satisfies (ii). By Lemma 2.1 (v), (vi), we have

$$\psi(T)$$
 is invertible $\Longrightarrow \mathrm{H}_0(\psi(T)) = \{0\}$
 $\Longrightarrow \mathrm{H}_0(T) = \{0\}$
 $\Longrightarrow T$ is injective

for every $T \in \mathcal{L}(X)$. It follows, since $\psi(I) = I$, that

$$\sigma_p(T) \subset \sigma(\psi(T))$$

for all $T \in \mathcal{L}(X)$. Let $F \in \mathcal{L}(X)$ such that $\psi(F)$ is of rank one. We have

$$\sigma_p(T + \alpha F) \cap \sigma_p(T + \beta F) \subset \sigma(\psi(T) + \alpha \psi(F)) \cap \sigma(\psi(T) + \beta \psi(F))$$

for every $T \in \mathcal{L}(X)$ and all scalars $\alpha \neq \beta$. Using Lemma 3.1, and the fact that ψ is surjective, we get that for every $T \in \mathcal{L}(X)$, there exists a compact subset $K_T \subset \mathbb{C}$ such that

$$\sigma_p(T + \alpha F) \cap \sigma_p(T + \beta F) \subset K_T$$

for all scalars $\alpha \neq \beta$. Thus we conclude by Lemma 3.1, that F is of rank one.

Let $y \in X$ and $g \in X^*$ such that $g(y) \neq 0$. Then there exist $x \in X$ and $f \in X^*$ such that $\psi(x \otimes f) = y \otimes g$. Since

$$H_0(x \otimes f) \subset H_0(\psi(x \otimes f)) = H_0(y \otimes g) = N(g) \neq X,$$

the operator $x \otimes f$ is non-nilpotent, so $f(x) \neq 0$. Therefore $N(f) \subset N(g)$ and then f and g are linearly dependent. We have

$$\begin{aligned} \{0\} \neq \operatorname{span} \{x\} &= \operatorname{H}_0(I - \frac{1}{f(x)} x \otimes f) \subset \operatorname{H}_0(\psi(I - \frac{1}{f(x)} x \otimes f)) \\ &= \operatorname{H}_0(\psi(I) - \frac{1}{f(x)} \psi(x \otimes f)) \\ &= \operatorname{H}_0(I - \frac{1}{f(x)} y \otimes g). \end{aligned}$$

This gives that $g(\frac{1}{f(x)}y) = 1$ and so span $\{x\} \subset \text{span } \{y\}$. Hence x and y are linearly dependent. As above, we get that

$$\psi(F) = F$$

for all rank one operator $F \in \mathcal{L}(X)$.

Let $T \in \mathcal{L}(X)$ and $\lambda \notin \sigma(T) \cup \sigma(\psi(T))$. We have

$$H_0(T - \lambda I + F) \subset H_0(\psi(T - \lambda I + F)) = H_0(\psi(T) - \lambda I + F)$$

for all $F \in \mathcal{F}_1(X)$. Lemma 3.3 gives that $\psi(T) = T$, as desired. \square

One may restate the result of Theorem 3.4 in the following form:

Theorem 3.5. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a surjective linear map. Then the following assertions are equivalent.

- (i) $r_{\phi(T)}(x) = 0 \Longrightarrow r_T(x) = 0$, for every $x \in X$ and $T \in \mathcal{L}(X)$.
- (ii) $\mathbf{r}_T(x) = 0 \Longrightarrow \mathbf{r}_{\phi(T)}(x) = 0$, for every $x \in X$ and $T \in \mathcal{L}(X)$.
- (iii) There exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T$ for all $T \in \mathcal{L}(X)$.

Proof. (i) \Longrightarrow (iii) Let $x \in X$ and $T \in \mathcal{L}(X)$. We have

$$x \in H_0(\phi(T)) \iff r_{\phi(T)}(x) = 0 \implies r_T(x) = 0 \iff x \in H_0(T)$$

and so

$$H_0(\phi(T)) \subset H_0(T)$$
.

Thus, Theorem 3.4 completes the proof.

 $(ii) \Longrightarrow (iii)$ It is similar to $(i) \Longrightarrow (iii)$.

Clearly, (iii) implies both (i) and (ii). \Box

4. Maps preserving operators of local spectral radius zero at non-fixed vectors

In this section, we establish a similar result to the one given by [4, Theorem 4.1]. The only difference is that the map ϕ is not assumed surjective. Note that the proof of [4, Theorem 4.1] is broke into seven steps, and the surjectivity condition on ϕ is used only in step 2. The following Lemma gives the same result as the one obtained in step 2 of the proof of [4, Theorem 4.1], without supposing ϕ to be surjective.

Lemma 4.1. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a map satisfying:

$$\mathbf{r}_{\phi(T)-\phi(S)}(x) = 0 \text{ if and only if } \mathbf{r}_{T-S}(x) = 0,$$
 (1)

for all $x \in X$ and $T, S \in \mathcal{L}(X)$. Then for every nonzero scalar $\lambda \in \mathbb{C}$, there exists a nonzero scalar $\mu_{\lambda} \in \mathbb{C}$ such that

$$\phi(\lambda I) = \mu_{\lambda} I + \phi(0).$$

Proof. It is clear that (1) is equivalent to

$$H_0(\phi(T) - \phi(S)) = H_0(T - S)$$

for all $T, S \in \mathcal{L}(X)$. Let us consider $\varphi(T) = \phi(T) - \phi(0)$ for all $T \in \mathcal{L}(X)$. The map φ satisfies (1) and in particular,

$$H_0(\varphi(T)) = H_0(T)$$
 for all $T \in \mathcal{L}(X)$. (2)

Let $x \in X$ and $f \in X^*$ such that f(x) = 1. Let $0 \neq \lambda \in \mathbb{C}$ and set $F = x \otimes f$. We have

$$H_0(\varphi(\lambda I) - \varphi(\lambda F)) = H_0(\lambda I - \lambda F) = H_0(I - F) = \operatorname{span} \{x\}.$$

Lemma 2.1 (ii) gives that $\varphi(\lambda I)x - \varphi(\lambda F)x \in \text{span}\{x\}$. Hence there exists a scalar $\alpha_{\lambda} \in \mathbb{C}$ such that $\varphi(\lambda I)x - \varphi(\lambda F)x = \alpha_{\lambda}x$ and so $x \in \mathcal{N}(\varphi(\lambda I) - \varphi(\lambda F) - \alpha_{\lambda})$. Assuming that $\alpha_{\lambda} \neq 0$, it follows by Lemma 2.1 (iii), that $\mathcal{N}(\varphi(\lambda I) - \varphi(\lambda F) - \alpha_{\lambda}) \cap \text{span}\{x\} = \{0\}$, a contradiction. Then $\alpha_{\lambda} = 0$ and so

$$\varphi(\lambda I)x = \varphi(\lambda F)x.$$

On the other hand, using (2), we have

$$H_0(\varphi(\lambda F)) = H_0(\lambda F) = H_0(F) = N(f).$$

Since $x \notin N(f)$, then by Lemma 2.1 (ii), we get that $\varphi(\lambda F)x \notin N(f)$ and so $\varphi(\lambda I)x \notin N(f)$ i.e., $f(\varphi(\lambda I)x) \neq 0$. Therefore $\varphi(\lambda I)x$ and x are linearly dependent and so there exists a nonzero scalar $\mu_{\lambda} \in \mathbb{C}$ such that

$$\varphi(\lambda I) = \mu_{\lambda} I.$$

According to Lemma 4.1 and steps 3 to 7 of the proof of [4, Theorem 4.1], we get the following theorem.

Theorem 4.2. Let $\phi : \mathcal{L}(X) \to \mathcal{L}(X)$ be a map. Then the following assertions are equivalent.

- (i) $r_{\phi(T)-\phi(S)}(x) = 0$ if and only if $r_{T-S}(x) = 0$, for all $x \in X$ and $T, S \in \mathcal{L}(X)$.
- (ii) There exists a nonzero scalar $\mu \in \mathbb{C}$ such that $\phi(T) = \mu T + \phi(0)$ for all $T \in \mathcal{L}(X)$.

Acknowledgements

This work was supported by the Laboratory of Analysis, Geometry and Applications (LAGA) at the Faculty of Sciences, Oujda, Morocco.

References

- P. Aiena, Fredholm and Local Spectral Theory, with Application to Multipliers, Kluwer Acad. Publishers, 2004.
- [2] A. Bourhim, Surjective linear maps preserving local spectra, Linear Algebra Appl. 432 (2010) 383–393.
- [3] A. Bourhim, J. Mashreghi, A survey on preservers of spectra and local spectra, Contemp. Math. 638 (2015) 45–98.

- [4] A. Bourhim, J. Mashreghi, Local spectral radius preservers, Integral Equations Operator Theory 76 (1) (2013) 95–104.
- [5] A. Bourhim, T. Ransford, Additive maps preserving local spectrum, Integral Equations Operator Theory 55 (2006) 377–385.
- [6] J. Bračič, V. Müller, Local spectrum and local spectral radius at a fixed vector, Studia Math. 194 (2009) 155–162.
- [7] C. Costara, Automatic continuity for linear surjective mappings decreasing the local spectral radius at some fixed vector, Arch. Math. 95 (6) (2010) 567–573.
- [8] C. Costara, Linear maps preserving operators of local spectral radius zero, Integral Equations Operator Theory 73 (1) (2012) 7–16.
- [9] K.B. Laursen, M.M. Neumann, Introduction to Local Spectral Theory, Clarendon, Oxford, 2000.
- [10] A.R. Sourour, Invertibility preserving linear maps on L(X), Trans. Amer. Math. Soc. 348 (1996) 13–30.