رشته باینری به طول |E| (E مجموعه یال ها است)

صفر بودن بیت i ام این رشته نشان دهنده عدم حضور یال i ام در زیر گراف و یک بودن آن نشان دهنده حضور آن است

مثال:

$$V = \{a,b,c,d\}$$

$$E = \{\{a,b\},\{a,c\},\{b,c\},\{c,d\}\}\$$

2

k تا n متشکل از اعداد بین n تا n

عدد متناظر اندیس i ام بردار نشان دهنده این است که شکل i ام در کدام ستون قرار دارد

C : اندازه (وزن) هر بسته: w_i اندازه (وزن) جعبه ها: n

به دست آوردن حداقل تعداد جعبه های مورد نیاز

$$k = \left[\left(\sum_{1}^{n} w_{i} \right) / C \right]$$

نحوه نمایش هر فرد (individual)

k برداری به طول n متشکل از اعداد بین 1 تا

عدد متناظر اندیس i ام این بردار نشان دهنده این است که بسته i ام در کدام جعبه قرار دارد

تابع fitness

تعداد جعبه های استفاده شده و مجموع وزن داخل هر کدام از آن ها را محاسبه میکنیم، اگر هر یک از مجموع وزن ها بیشتر از C شد، fitness منفی بینهایت است، در غیر این صورت fitness برابر است با تفاوت تعداد جعبه ها (k) و تعداد جعبه های استفاده شده

fitness(individual):

unique_boxes := empty vector

total_weights := vector of size k Initialized to 0

for i from 1 to n begin

box := individual [i]

total_weights $[box] += w_i$

if box is not in unique_boxes then append box to unique_boxes

end

if any of total_weights is greater than C then return (- largest weight) otherwise return (k - size of unique_boxes)

جمعیت (population)

مجموعه ای p تایی (e.g. p=1000) از افراد (در ابتدا هر فرد به صورت p تایی (e.g. p=1000)

انتخاب والدين

جمعیت را بر اساس fitness به صورت نزولی sort کرده، سپس دوتا دوتا برای تولید فرزند انتخاب میکنیم

نو ترکیبی دو والد و تولید فرزند (recombination)

از روش One-Point Crossover برای تولید دو فرزند استفاده میکنیم

جهش (mutation)

هر یک از مقادیر بردار فرزندان، با احتمال P_{m} (e.g. 1%) میگیرد

جايگذاري

جمعیت جدید کاملا از فرزندان تشکیل میشود

محاسبه عدد جادویی

ابتدا عدد جادویی هدف را محاسبه میکنیم

$$M = (n + (n^3))/2$$

نحوه نمایش هر فرد (individual)

برداری به طول n^2 متشکل از اعداد 1 تا n^2 بدون تکرار (permutation)، این بردار نشان دهنده ماتریس n^*n است

تابع fitness

برای هر سطر، ستون و مورب، جمع اعداد (S) و مقدار N بر اساس رابطه زیر محاسبه میکنیم

$$N = |M - S|$$

مقدار $N_{\rm s}$ را برابر جمع تمامی مقادیر N قرار میدهیم

حال، اگر مقدار $N_{\rm s}$ برابر 0 باشد، جواب پیدا شده و نیاز به ادامه نیست

در غیر این صورت، مقدار fitness برابر رابطه زیر است

$$f = \frac{1}{N_s}$$

هر چه N_s کمتر باشد (جمع اعداد به عدد جادویی نزدیک تر باشد)، مقدار f نیز بیشتر است

جمعیت (population)

مجموعه ای p تایی (e.g. p=1000) از افراد (در ابتدا هر فرد به صورت random مقدار گرفته)

انتخاب والدين

به هر عضو از جمعیت، بر اساس fitness، احتمال انتخاب شدن برای ساخت فرزند میدهیم (از آنجایی که مقدار fitness بین 0 تا 1 است، میتوان مستقیما از آن برای احتمال استفاده کرد)

نو ترکیبی دو والد و تولید فرزند (recombination)

از آنجا که نباید اعداد تکراری در بردار قرار گیرد از روش Cut-and-crossfill crossover استفاده میکنیم

جهش (mutation)

در این مرحله از روش Swap استفاده میکنیم تا از وقوع اعداد تکراری جلوگیری شود

جايگذاري

جمعیت جدید کاملا از فرزندان تشکیل میشود