<u>Help</u>

shengtatng ~

Next >

☆ Course / Final Exam (8 hour time limit) / Final Exam (8 hour time limit)

Discussion

<u>Calendar</u>

Notes

(

You are taking "Final Exam (8 hour time limit)" as a timed exam. Show more

<u>Dates</u>

<u>Progress</u>

<u>Course</u>

07:36:56

□ Bookmark this page

< Previous

Final due Dec 14, 2022 07:30 +08

Follow the next steps of the simulation to answer the remaining questions.

Step 4: Assume MAXRABBITPOP = 1000, CURRENTRABBITPOP = 500, CURRENTFOXPOP = 30, numSteps = 200. Plot two curves, one for the rabbit population and one for the fox population. You won't be submitting the plots. They are for your own understanding.

Step 5: Use polyfit to find the coefficients of a 2nd degree polynomial for the rabbit curve and the same for the fox curve. Then use polyval to evaluation the 2nd degree polynomial and plot it, e.g.

```
coeff = polyfit(range(len(rabbitPopulationOverTime)), rabbitPopulationOverTime, 2)
plot(polyval(coeff, range(len(rabbitPopulationOverTime))))
```

Of course your variables and plotting commands may not look identical to the above code; the above code is shown just to give you an idea of what we mean.

Once you have finished Steps 4 and 5, continue on to answer the following questions.

Problem 8-2

1/1 point (graded)

At some point in time, there are more foxes than rabbits.
True
○ False
Submit You have used 1 of 1 attempt
✓ Correct (1/1 point)
Problem 8-3
0/1 point (graded) The polyfit curve for the rabbit population is:
A straight line
A concave up curve (looks like a U shape)
○ A concave down curve (looks like a ∩ shape)
An exponentially decreasing curve

An exponentially increasing curve

None of the above

Submit

You have used 1 of 1 attempt

© All Rights Reserved

edX

About
Affiliates
edX for Business

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2022 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>