Quiz 7

Name: SOLUTIONS

- 1. Let $T: V \longrightarrow W$ be a homomorphism.
- (a) Define the range space and rank of T.

 varye space: {weW | T(v) = w for some VEV? = T(V) = image

 varie = dim (varye space)
- (b) Define the null space and nullity of T.

 null space: TVEV | T(V) = 0 } = kernel of T = N(T)

 nullity = dim (null space)
- (c) State the Rank–Nullity Theorem.

2. Consider the specific homomorphism $T: \mathcal{M}_{2\times 2} \longrightarrow \mathbb{R}^2$ defined by

$$T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = a \begin{bmatrix} a \\ d \end{bmatrix}$$
 .

(a) Determine the range space and rank of T.

The arbitrary vector $(y) \in \mathbb{R}^2$ is the image of , say, (x, y) in $M_{2\times 2}$; in other words, every element of \mathbb{R}^2 is in the range space. $P(T) = \mathbb{R}^2$, so rank(T) = 2.

(b) Determine the null space and nullity of T_*

if
$$T(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
, $a = 0$ 2 $m d = 0$, thus, $N(T) = \begin{cases} 1 & 1 \\ 1 & 1 \end{cases} = s_1 ran \begin{cases} 1 & 1 \\ 1 & 1 \end{cases}$