

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY

20 YEARS | 8 1998-2018 |

CSC COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY Problem statement

Consider a system with state-space dynamics

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \text{ where } A \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}}, B \in \mathbb{R}^{\mathbf{n} \times \mathbf{m}}.$$

Infinite-horizon linear quadratic regulator (LQR) problem

For every initial condition $x_0 \in \mathbb{R}^n$, find an input u(t) (from admissible input space) that minimizes the functional

$$J\left(x_0,u(t)\right):=\int_0^\infty \begin{bmatrix} x(t)\\ u(t) \end{bmatrix}^T \begin{bmatrix} Q & S\\ S^T & R \end{bmatrix} \begin{bmatrix} x(t)\\ u(t) \end{bmatrix} dt, \text{ where } \begin{bmatrix} Q & S\\ S^T & R \end{bmatrix} \geqslant 0.$$

$$\mathfrak{C}_{\mathrm{imp}}^{\mathrm{m}} := \{f = f_{\mathrm{reg}} + f_{\mathrm{imp}} \, | \, f_{\mathrm{reg}} \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathrm{m}})|_{\mathbb{R}_{+}}, f_{\mathrm{imp}} = \sum_{i=0}^{k} a_{i} \delta^{(i)}(t), a_{i} \in \mathbb{R}^{\mathrm{m}}, k \in \mathbb{N}\}.$$

CSC COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY Problem statement

Consider a system with state-space dynamics

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t)$$
, where $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$.

Infinite-horizon linear quadratic regulator (LQR) problem

For every initial condition $x_0 \in \mathbb{R}^n$, find an input u(t) (from admissible input space) that minimizes the functional

$$J\left(x_{0},u(t)\right):=\int_{0}^{\infty}\begin{bmatrix}x(t)\\u(t)\end{bmatrix}^{T}\begin{bmatrix}Q&S\\S^{T}&R\end{bmatrix}\begin{bmatrix}x(t)\\u(t)\end{bmatrix}dt, \text{ where }\begin{bmatrix}Q&S\\S^{T}&R\end{bmatrix}\geqslant0.$$

For R > 0 (Regular case)

$$A^TK + KA + Q - (KB + S)R^{-1}(B^TK + S^T) = 0 \qquad u(t) = -R^{-1}(B^TK_{\max} + S^T)x(t)$$

CSC COMPUTATIONAL METHODS IN Problem statement

Consider a system with state-space dynamics

$$\frac{d}{dt}x(t) = Ax(t) + Bu(t), \text{ where } A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}.$$

Infinite-horizon linear quadratic regulator (LQR) problem

For every initial condition $x_0 \in \mathbb{R}^n$, find an input u(t) (from admissible input space) that minimizes the functional

$$J\left(x_{0},u(t)\right):=\int_{0}^{\infty}\begin{bmatrix}x(t)\\u(t)\end{bmatrix}^{T}\begin{bmatrix}Q&S\\S^{T}&R\end{bmatrix}\begin{bmatrix}x(t)\\u(t)\end{bmatrix}dt, \text{ where }\begin{bmatrix}Q&S\\S^{T}&R\end{bmatrix}\geqslant0.$$

For $R \geqslant 0$, det(R) = 0 (Singular/degenerate case)

$$A^TK + KA + Q - (KB + S)R^{-1}(B^TK + S^T) = 0 \qquad u(t) = -R^{-1}(B^TK_{\max} + S^T)x(t)$$

The LQR LMI

Find the maximal rank-minimizing solution of the LQR LMI:

$$\begin{bmatrix} A^T K + KA + Q & KB + S \\ B^T K + S^T & R \end{bmatrix} \geqslant 0.$$

• For regular case: Schur-complement with respect to R gives the Algebraic Riccati Inequality (ARI)

$$A^{T}K + KA + Q - (KB + S)R^{-1}(B^{T}K + S^{T}) \ge 0.$$

 Solutions of the Algebraic Riccati Equation (ARE) are rank-miniziming solutions of the LQR LMI.

- Define $E:=\left[\begin{smallmatrix} I_{\mathbf{n}} & 0 & 0 \\ 0 & I_{\mathbf{n}} & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right]$, $H:=\left[\begin{smallmatrix} A & 0 & b \\ -Q & -A^T & 0 \\ 0 & b^T & 0 \end{smallmatrix} \right]$. (Hamiltonian pencil)
- Assume $\sigma(E,H) \cap j\mathbb{R} = \emptyset$.
- Define $n_s := degdet(sE H)/2$ and $n_f := n n_s$.

- $\blacksquare \text{ Define } E := \begin{bmatrix} I_{\mathbf{n}} & 0 & 0 \\ 0 & I_{\mathbf{n}} & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{, } H := \begin{bmatrix} A & 0 & b \\ -Q & -A^T & 0 \\ 0 & b^T & 0 \end{bmatrix}.$
- Assume $\sigma(E,H) \cap j\mathbb{R} = \emptyset$.
- Define $n_s := degdet(sE H)/2$ and $n_f := n n_s$.
- Find eigenbasis of (E,H) corresponding to $\sigma(E,H) \cap \mathbb{C}_-$.

 Define $V_1, V_2 \in \mathbb{R}^{n \times n_s}$ and $V_3 \in \mathbb{R}^{1 \times n_s}$ such that

$$H \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = E \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} \Gamma, \text{ where } \sigma(\Gamma) = \sigma(E, H) \cap \mathbb{C}_-.$$

- $\blacksquare \ \textit{Define} \ E := \left[\begin{smallmatrix} I_{\mathbf{n}} & 0 & 0 \\ 0 & I_{\mathbf{n}} & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right], \ H := \left[\begin{smallmatrix} A & 0 & b \\ -Q & -A^T & 0 \\ 0 & b^T & 0 \end{smallmatrix} \right].$
- Assume $\sigma(E,H) \cap j\mathbb{R} = \emptyset$.
- Define $n_s := degdet(sE H)/2$ and $n_f := n n_s$.
- Find eigenbasis of (E,H) corresponding to $\sigma(E,H) \cap \mathbb{C}_-$. Define $V_1, V_2 \in \mathbb{R}^{\mathbf{n} \times \mathbf{n_s}}$ and $V_3 \in \mathbb{R}^{\mathbf{1} \times \mathbf{n_s}}$ such that $H \begin{bmatrix} V_1 \\ V_2 \\ V_4 \end{bmatrix} = E \begin{bmatrix} V_1 \\ V_2 \\ V_4 \end{bmatrix} \Gamma$, where $\sigma(\Gamma) = \sigma(E,H) \cap \mathbb{C}_-$.

- $\blacksquare \ \textit{Define} \ E := \left[\begin{smallmatrix} I_{\mathbf{n}} & 0 & 0 \\ 0 & I_{\mathbf{n}} & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right], \ H := \left[\begin{smallmatrix} A & 0 & b \\ -Q & -A^T & 0 \\ 0 & b^T & 0 \end{smallmatrix} \right].$
- Assume $\sigma(E,H) \cap j\mathbb{R} = \emptyset$.
- Define $n_s := degdet(sE H)/2$ and $n_f := n n_s$.
- Find eigenbasis of (E, H) corresponding to $\sigma(E, H) \cap \mathbb{C}_-$.

 Define $V_1, V_2 \in \mathbb{R}^{n \times n_s}$ and $V_3 \in \mathbb{R}^{1 \times n_s}$ such that $H \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} = E \begin{bmatrix} V_1 \\ V_2 \end{bmatrix} \Gamma$ where $\sigma(\Gamma) = \sigma(E, H) \cap \mathbb{C}$

$$H \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} = E \begin{bmatrix} V_1 \\ V_2 \\ V_3 \end{bmatrix} \Gamma$$
, where $\sigma(\Gamma) = \sigma(E, H) \cap \mathbb{C}_-$.

$$lacksquare X := egin{bmatrix} V & W \end{bmatrix} = egin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$
, where $V := egin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ and $X_1, X_2 \in \mathbb{R}^{n imes n}$.

Theorem (Finding maximal rank-minimizing solution of an LQR LMI)

- $\blacksquare \ \textit{Define} \ E := \left[\begin{smallmatrix} I_{\mathbf{n}} & 0 & 0 \\ 0 & I_{\mathbf{n}} & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right], \ H := \left[\begin{smallmatrix} A & 0 & b \\ -Q & -A^T & 0 \\ 0 & b^T & 0 \end{smallmatrix} \right].$
- Assume $\sigma(E,H) \cap j\mathbb{R} = \emptyset$.
- Define $n_s := degdet(sE H)/2$ and $n_f := n n_s$.
- Find eigenbasis of (E,H) corresponding to $\sigma(E,H) \cap \mathbb{C}_-$. Define $V_1, V_2 \in \mathbb{R}^{n \times n_s}$ and $V_3 \in \mathbb{R}^{1 \times n_s}$ such that $H \begin{bmatrix} V_1 \\ V_2 \\ V_4 \end{bmatrix} = E \begin{bmatrix} V_1 \\ V_2 \\ V_4 \end{bmatrix} \Gamma$, where $\sigma(\Gamma) = \sigma(E,H) \cap \mathbb{C}_-$.
- $\blacksquare \ W = \left[\begin{smallmatrix} \widehat{b} & \widehat{A}\widehat{b} & \cdots & \widehat{A}^{\mathbf{n_f}-1}\widehat{b} \end{smallmatrix} \right] \in \mathbb{R}^{\mathbf{n} \times \mathbf{n_f}} \text{, where } \widehat{A} := \left[\begin{smallmatrix} A & 0 \\ -Q & -A^T \end{smallmatrix} \right], \widehat{b} := \left[\begin{smallmatrix} b \\ 0 \end{smallmatrix} \right].$
- $lackbox{$\blacksquare$} X := egin{bmatrix} V & W \end{bmatrix} = egin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, where $V := egin{bmatrix} V_1 \\ V_2 \end{bmatrix}$ and $X_1, X_2 \in \mathbb{R}^{n \times n}$.

 $X_2X_1^{-1}$ is the maximal rank-minimizing solution of the LQR LMI.

CSC COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY PD-controllers

Theorem (Almost all singular LQR problems solvable using PD-controllers)

Define

$$\begin{split} F_{\mathbf{p}} &:= \begin{bmatrix} V_3 & f_0 & f_1 & f_2 & \cdots & f_{\mathtt{n_f}-1} \end{bmatrix} X_1^{-1} \\ F_{\mathbf{d}} &:= \begin{bmatrix} 0_{1,\mathtt{n_s}} & 1 & -f_0 & -f_1 & \cdots & -f_{\mathtt{n_f}-2} \end{bmatrix} X_1^{-1}, \end{split}$$

such that $\det (s(I_n - bF_d) - (A + bF_p)) \neq 0$, $f_i \in \mathbb{R}$.

■ Then, the optimal input u(t) is given by:

$$u(t) = F_{p}x(t) + F_{d}\frac{d}{dt}x(t).$$

For the regular case: $F_d = 0$. Hence, $u(t) = F_p x(t)$ – as expected.

For details see: Bhawal and Pal, IEEE Control Systems Letters, 2019.

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY Primary idea

 Corresponding to certain special initial conditions compute the trajectories of the Hamiltonian system (a differential algebraic system):

$$\underbrace{\begin{bmatrix} I_{\mathbf{n}} & 0 & 0 \\ 0 & I_{\mathbf{n}} & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\frac{d}{dt} \begin{bmatrix} x(t) \\ z(t) \\ u(t) \end{bmatrix}}_{E} = \underbrace{\begin{bmatrix} A & 0 & b \\ -Q & -A^{T} & 0 \\ 0 & b^{T} & 0 \end{bmatrix}}_{H} \underbrace{\begin{bmatrix} x(t) \\ z(t) \\ u(t) \end{bmatrix}}_{L}.$$

■ Special initial conditions are: $\operatorname{img}(V) \text{ - Trajectories of the form } ce^{\lambda t} \text{ - Slow part.} \\ \operatorname{img}(W) \text{ - Trajectories contain } \delta(t) \text{ and its derivatives - Fast part.}$

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY Primary idea

 Corresponding to certain special initial conditions compute the trajectories of the Hamiltonian system (a differential algebraic system):

$$\underbrace{\begin{bmatrix} I_{\mathbf{n}} & 0 & 0 \\ 0 & I_{\mathbf{n}} & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\frac{d}{dt} \begin{bmatrix} x(t) \\ z(t) \\ u(t) \end{bmatrix}}_{E} = \underbrace{\begin{bmatrix} A & 0 & b \\ -Q & -A^{T} & 0 \\ 0 & b^{T} & 0 \end{bmatrix}}_{H} \underbrace{\begin{bmatrix} x(t) \\ z(t) \\ u(t) \end{bmatrix}}_{L}.$$

- Special initial conditions are: $\operatorname{img}(V) \text{ Trajectories of the form } ce^{\lambda t} \text{ Slow part.}$ $\operatorname{img}(W) \text{ Trajectories contain } \delta(t) \text{ and its derivatives Fast part.}$
- Project trajectories on the system $\frac{d}{dt}x = Ax + bu$ optimal ones.

COMPUTATIONAL METHODS IN SYSTEMS AND CONTROL THEORY Primary idea

 Corresponding to certain special initial conditions compute the trajectories of the Hamiltonian system (a differential algebraic system):

$$\underbrace{\begin{bmatrix} I_{\mathbf{n}} & 0 & 0 \\ 0 & I_{\mathbf{n}} & 0 \\ 0 & 0 & 0 \end{bmatrix}}_{E} \underbrace{\frac{d}{dt} \begin{bmatrix} x(t) \\ z(t) \\ u(t) \end{bmatrix}}_{E} = \underbrace{\begin{bmatrix} A & 0 & b \\ -Q & -A^{T} & 0 \\ 0 & b^{T} & 0 \end{bmatrix}}_{H} \underbrace{\begin{bmatrix} x(t) \\ z(t) \\ u(t) \end{bmatrix}}_{L}.$$

- Special initial conditions are:
 - $\operatorname{img}(V)$ Trajectories of the form $ce^{\lambda t}$ Slow part. $\operatorname{img}(W)$ Trajectories contain $\delta(t)$ and its derivatives Fast part.
- Project trajectories on the system $\frac{d}{dt}x = Ax + bu$ optimal ones.

$$V =: \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}, V_1, V_2 \in \mathbb{R}^{\mathbf{n} \times \mathbf{n_s}} \quad \underset{\mathbf{Img}(W_1)}{\operatorname{img}(W_1)} \quad \underset{\mathbf{Good slow subspace}}{\operatorname{Img}(V_1)}$$

$$W =: \begin{bmatrix} W_1 \\ W_2 \end{bmatrix}, W_1, W_2 \in \mathbb{R}^{\mathbf{n} \times \mathbf{n_s}} \quad \underset{\mathbf{Optimal cost}}{\operatorname{Optimal cost}} = 0$$

$$Good slow subspace \quad \underset{\mathbf{Optimal cost}}{\operatorname{Optimal cost}} = 0$$

Thank you

