Intégration et probabilités

Introduction

Références:

- Billingsley, Probability and measure
- Kolmogorov & Fomin, tome 2

Motivations:

- Définir la longueur d'une partie de \mathbb{R}
- Définir l'aire d'une partie de \mathbb{R}^2
- Définir $\int f dx$ pour $f: \mathbb{R}^d \to \mathbb{R}$
- Définir, préciser la notion mathématique décrivant une suite infinie de jets de dés

Par exemple:

- Si $f: \mathbb{R} \to \mathbb{R}$, on peut définir $\int f$ comme l'aire algébrique définie par le graphe de f. Ainsi, définir une aire permet de définir une intégrale
- De même, $\lambda(A) = \mathbb{1}_A$ avec $\mathbb{1}_A(x) = 1$ ssi $x \in A$. Donc définir une intégrale revient à définir une mesure.
- Tirer un nombre au hasard dans [0,1], cela revient à tirer au hasard la suite de ses décimales au D10, car on mesure une partie de $\{0, 1, \dots 9\}^{\mathbb{N}}$

On se demande alors comment définir la surface d'une partie du plan.

Méthode 1 : à la Riemann. On approxime avec un quadrillage. On compte le nombre de carrés qui intersectent l'ensemble considéré, puis on conclut en passant à la limite quand le côté du quadrillage tend vers 0.

Méthode 2 : on pose $\lambda(A) := \inf_{(R_i)} \sum_{i=1}^{\infty} \lambda(R_i)$ où R_i est une suite de rectangles recouvrant A.

À noter : les deux méthodes ont des cas pathologiques différents.

Ensembles dénombrables

Définition: Un ensemble est dénombrable ssi il est en bijection avec \mathbb{N}

Propriété: Toute partie d'un ensemble dénombrable est au plus dénombrable

Démonstration: On pose $x : \mathbb{N} \to X, Y \subset X$. Si Y n'est pas fini :

$$i_1 = \min\{i \in \mathbb{N}, x_i \in Y\}$$

$$\dots$$

$$i_n = \min\{i \in \mathbb{N}, x_i \in Y \setminus \{x_1, \dots, x_{n-1}\}\}$$

Ainsi, $k \mapsto x_{n_k}$ est une bijection de \mathbb{N} vers Y.

Propriété: L'image d'une suite est au plus dénombrable.

Démonstration: On note $x: \mathbb{N} \to X$ une suite. On crée de manière analogue une sous-suite injective de x de même image que x (sauf si $f(x(\mathbb{N}))$ est fini).

Propriété : $\mathbb{N} \times \mathbb{N}$ est dénombrable.

Démonstration: $(n_1, n_2) \mapsto 2^{n_1}(2n_2 + 1) - 1$ est une bijection $\mathbb{N}^2 \to \mathbb{N}$.

1

Propriété : Une réunion au plus dénombrables d'ensembles au plus dénombrable est au plus dénombrable.

Démonstration: On traite le cas "union dénombrable d'ensembles dénombrables". Soit A_i des parties dénombrables d'un ensemble X. Pour tout i, il existe $b_i : \mathbb{N} \to A_i$ bijection. $(i,j) \mapsto b_i(j)$

(nb : ceci requiert en fait l'axiome du choix dénombrable) Alors $\mathbb{N}^2 \to \bigcup_i A_i$ est surjective.

Donc $\bigcup A_i$ est au plus dénombrable.

Or
$$\bigcup_{i}^{i} A_{i}^{i} \supset A_{i}$$
.

Donc $\bigcup_{i} A_i$ est dénombrable.

Propriété : Si X est dénombrable, $\mathcal{P}(X)$ ne l'est pas.

Plus généralement, quel que soit X, X et $\mathcal{P}(X)$ ne sont jamais en bijection (théorème de Cantor).

Démonstration: Supposons qu'il existe $x: X \to \mathcal{P}(X)$ une bijection.

Considérons $B := \{x, x \notin A_x\}$. Comme x est une bijection, il existe $y \in X$ tel que $B = A_y$. Question : a-t-on $y \in B$. On arrive à un paradoxe type Russel.

Exercice:

- $\{0,1\}^{\mathbb{N}}$ est non dénombrable.
- \mathbb{R} est non dénombrable.

lim sup et lim inf

Définition :

Soit $(x_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ (plus généralement $\in \bar{\mathbb{R}}^{\mathbb{N}}$). Alors $s_n:=\sup_{k\geq n}x_k$.

 s_n est décroissante (donc a une limite dans \mathbb{R}).

Alors $\lim s_n =: \lim \sup x_n = \inf s_n$.

De même pour $\liminf x_n$.

Propriété: $\lim x_n$ existe ssi $\lim \inf x_n = \lim \sup x_n$. Dans ce cas, $\lim x_n = \lim \sup x_n = \lim \inf x_n$.

Démonstration: $\Leftarrow: i_n \leq x_n \leq s_n$. On conclut par théorème d'encadrement. $\Rightarrow: \text{Si } x_n \to l \text{ alors}: \forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall n \geq N, l - \varepsilon \leq i_n \leq l \leq s_n \leq l + \varepsilon$. Donc $s_n \to l$ et $i_n \to l$.

Propriété : Si y_n est une sous-suite de x_n , alors $\liminf x_n \leq \liminf y_n \leq \limsup y_n \leq \limsup x_n$

Ainsi, si l est valeur d'adhérence de x_n , alors $\liminf x_n \leq l \leq \limsup x_n$.

Propriété: $\limsup x_n = -\liminf(-x_n)$

Propriété : Il existe une sous-suite de x_n qui converge vers $\limsup x_n$. Idem pour $\liminf x_n$.

Démonstration: On choisit $k_n \geq n$ tel que $s_n - \frac{1}{n} \leq x_{k_n} \leq s_n$. $n \mapsto x_{k_n}$ converge vers $\limsup x_n$.

Familles sommables

On pose $(a_i)_{i \in I}$ famille de nombres positifs. **Définition**: $\sum_{i \in I} a_i := \sup_{F \subset I \text{fini}} \sum_{i \in F} a_i$

Propriété: Si $\sum_{i \in I} a_i$ est fini, alors $\{i \in I, a_i \neq 0\}$ est au plus dénombrable.

Démonstration: $\{i \in I, a_i \in \mathbb{R} \setminus \{0\}\} \subset \bigcup_{k \in \mathbb{N}} \{i \in I, a_i \geq \frac{1}{k}\}$

À partir de maintenant, on considérera I dénombrable.

Propriété: Si $\sigma: \mathbb{N} \to I$ est une bijection, alors $\sum_{i \in I} a_i = \lim_{n \to +\infty} \sum_{k=1}^n a_{\sigma(k)} =:$ $\sum_{k=1}^{+\infty} a_{\sigma(k)}$

 $\begin{array}{l} \textbf{D\'{e}monstration} \ : \forall F \subset I \ \text{fini}, \ \sigma^{-1}(F) \ \text{est fini donc major\'e par un entier } N. \\ \sum_{i \in F} a_i = \sum_{k \in \sigma^{-1}(F)} a_{\sigma(k)} \leq \sum_{k=1}^N a_{\sigma(k)} \leq \sum_{k=1}^{+\infty} a_{\sigma(k)} \\ \text{Donc par passage au sup} : \sum_{i \in I} a_i \leq \sum_{k=1}^{+\infty} a_{\sigma(k)}. \\ \text{R\'{e}ciproquement}, \ \sum_{k=1}^N a_{\sigma(k)} = \sum_{i \in \sigma(\llbracket 1, N \rrbracket)} a_i \leq \sum_{i \in I} a_i. \ \text{On conclut par passage \`{a} la limite}. \end{array}$

Corollaire: Si $(a_k) \in \mathbb{R}_+^{\mathbb{N}}, \sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} a_{\sigma(k)}$ et ce quel que soit $\sigma : \mathbb{N} \to \mathbb{N}$ bijection.

En particulier dans le cas $I = \mathbb{N}^2$, $(a_{i,j})_{(i,j)\in I} \in \mathbb{R}^I_+$:

Propriété: $\sum_{(i,j)\in I} a_{i,j} = \sum_{i=1}^{+\infty} \left(\sum_{j=1}^{+\infty} a_{i,j}\right) = \sum_{j=1}^{+\infty} \left(\sum_{i=1}^{+\infty} a_{i,j}\right)$

Démonstration: $F \subset I$ fini. Il existe $N \in \mathbb{N}$ tel que $F \subset [1, N]^2$. Donc $\sum_{(i,j) \in F} a_{i,j} \leq 1$ $\begin{array}{l} \sum_{i=1}^{N}\sum_{j=1}^{N}a_{i,j} \leq \sum_{i=1}^{N}\sum_{j=1}^{+\infty}a_{i,j} \leq \sum_{i=1}^{+\infty}\sum_{j=1}^{+\infty}a_{i,j}.\\ \text{R\'{e}ciproquement}, \ \forall N \in \mathbb{N}, \forall M \in \mathbb{N}, \sum_{i=1}^{N}\sum_{j=1}^{M}a_{i,j} \leq \sum_{(i,j) \in \mathbb{N}^2}a_{i,j}. \end{array}$

Donc $(M \to +\infty)$, $\sum_{i=1}^{N} \sum_{j=1}^{+\infty} a_{i,j} \le \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$. Donc $(N \to +\infty)$, $\sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} a_{i,j} \le \sum_{(i,j) \in \mathbb{N}^2} a_{i,j}$.

Séries absolument convergentes

Soit $(a_i)_{i\in I}$ une famille de réels tels que $\sum_{i\in I} |a_i|$ soit finie.

On définit $a_i^+ := \max(a_i, 0), a_i^- := \max(-a_i, 0).$

Donc $a_i^+ - a_i^- = a_i$ et $a_i^+ + a_i^- = |a_i|$.

Propriété: $\sum_{i \in I} a_i^+ - \sum_{i \in I} a_i^- = \sum_{k=1}^{+\infty} a_{\sigma(k)}$ et ce quel que soit $\sigma : \mathbb{N} \to I$ bijection.

Démonstration: $\sum_{i \in I} a_i^+ \leq \sum_{i \in I} |a_i|$ donc la somme est finie. Idem pour $\sum_{i \in I} a_i^-$. $\sum_{k=1}^n a_{\sigma(k)} = \sum_{k=1}^n a_{\sigma(k)}^+ - \sum_{k=1}^n a_{\sigma(k)}^- = \sum_{k=1}^n a_{\sigma(k)}^+ - \sum_{k=1}^{+\infty} a_{\sigma(k)}^+ = \sum_{k=1}^{+\infty} a_{\sigma(k)}^+$

Corollaire : Sous réserve de convergence absolue, on a :

$$\sum_{k=1}^{+\infty} a_k = \sum_{k=1}^{+\infty} a_{\sigma(k)}$$

$$\sum_{i=1}^{+\infty}\sum_{j=1}^{+\infty}a_{i,j}=\sum_{j=1}^{+\infty}\sum_{i=1}^{+\infty}a_{i,j}$$

Vocabulaire

Définition : Soit X un ensemble. On dit que $A \subset \mathcal{P}(X)$ est :

- une algèbre (d'ensembles) si elle est stable par union finie, intersection finie et passage au complémentaire, contient \emptyset et X.
- une tribu (ou σ -algèbre) si c'est une algèbre stable par réunion/intersection dénombrable.

Exemple:

- $\mathcal{P}(X)$ est une tribu.
- $\{\emptyset, X\}$ est une tribu.

Si on se donne une partition finie de $X: X = X_1 \sqcup X_2 \cdots \sqcup X_k$, alors l'ensemble des $A \subset X$ de la forme $A = \bigcup_{n \in I \subset [\![1,k]\!]} X_n$ est une tribu finie.

Lemme : Toute algèbre finie est associée à une partition finie.

Démonstration : Soit \mathcal{A} une algèbre finie.

$$\forall x \in X, A(x) := \bigcap_{\substack{A \in \mathcal{A} \\ x \in A}} A.$$

Pour x et y donnés, soit A(x) = A(y), soit $A(x) \cap A(y) = \emptyset$.

Fixons $x \in X, B \in \mathcal{A}$.

- Soit $x \in B$ et alors $A(x) \subset B$.
- Soit $x \in B^{\complement}$ et alors $A(x) \subset B^{\complement}$ i.e. $A(x) \cap B = \emptyset$

On conclut avec B = A(y).

Définition : Si \mathcal{A} est une algèbre de X et $m: \mathcal{A} \to [0, +\infty]$ une fonction.

On dit que m est une mesure additive si :

- $--m(\emptyset) = 0$
- $--m(A \sqcup B) = m(A) + m(B) \qquad (A \cap B = \emptyset)$

Définition: Si $\mathcal{T} \subset \mathcal{P}(X)$ est une tribu, $m: \mathcal{T} \to [0, +\infty]$ est une mesure si :

- $--m(\emptyset) = 0$
- $m(\bigsqcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$ pour $(A_i)_{i \in I}$ famille dénombrable disjointe.

Remarque: Toute mesure est une mesure additive.

Remarque: On appelle parfois les mesures "mesures σ -additives".

Remarque : Lorsque $m: A \to [0, +\infty]$ est une mesure additive sur une algèbre, les propriétés suivantes sont équivalentes :

- 1. Si $A_i \in \mathcal{A}$ sont disjoints, (A_i) dénombrable, $\bigsqcup_{i \in I} A_i \in \mathcal{A}$, alors $m(\bigsqcup_{i \in I} A_i) = \sum_{i \in I} m(A_i)$
- 2. Si $A, A_i \in \mathcal{A}, A \subset \bigcup_{i \in I} A_i$, alors $m(A) \leq \sum_{i \in I} m(A_i)$.

Dans ce cas, on dit que m est σ -additive.

Démonstration : $(1) \Rightarrow (2)$:

Soit
$$A_i \in \mathcal{A}$$
. On définit \tilde{A}_i par : $\tilde{A}_1 = A_1, \dots \tilde{A}_n = A_n \setminus \tilde{A}_{n-1} \quad \forall n \geq 1$

Alors $\bigcup A_i = \bigcup A_i$.

Si $A \subset \bigcup A_i$, $\overline{\text{alors }} A \subset \bigcup \tilde{A}_i$. Alors $A = \bigcup (A \cap \tilde{A}_i)$.

Donc $m(A) = m(\bigsqcup(\tilde{A}_i \cap A)) \leq \sum m(A_i)$.

- $(2) \Rightarrow (1)$:
- Si $A = \bigsqcup A_i \stackrel{(2)}{\Rightarrow} m(A) \le \sum m(A_i)$.
- $A \supset \bigsqcup_{i=1}^{n} A_i$ quel que soit n.

Donc $m(A) \ge \sum_{i=1}^{n} m(A_i)$. Donc $(n \to +\infty)$, $m(A) \ge \sum_{i=1}^{+\infty} m(A_i)$.

Définition : Soit $f: \Omega \to X$ une application. Si \mathcal{A} est une algèbre (ou une tribu) sur Ω , alors on définit l'algèbre (tribu) image par :

$$f_*\mathcal{A} = \{A \subset X, f^{-1}(A) \in \mathcal{A}\}$$

Si \mathcal{A} est une algèbre (tribu) sur X, alors

$$f^*\mathcal{A} = \{f^{-1}(A), A \in \mathcal{A}\}\$$

est une algèbre (tribu) sur Ω .

La vérification du fait que f^*A et f_*A est une algèbre (tribu) découle des propriétés des préimages :

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$
$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$
$$f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$$

Définition : Si $f:(\Omega, \mathcal{A}, m) \to X$ est une application, on définit la mesure image (ou la loi) comme la mesure :

$$(f_*m)(Y) := m(f^{-1}(Y))$$

définie sur $f_*\mathcal{A}$.

Définition : m est dite finie ssi $m(X) < +\infty$

Définition : m est dite de probabilité ssi m(X) = 1**Définition :** $f: (\Omega, \tau) \to (X, T)$ est dite mesurable si :

$$\forall Y \in \mathcal{T}, f^{-1}(Y) \in \tau$$

i.e.

$$f_*\tau \supset \mathcal{T}$$
$$f^*\mathcal{T} \subset \tau$$

Exercice: Soit Ω, X des ensembles, \mathcal{T} une tribu sur X. Soit $f: \Omega \to X$ une application, $g: \Omega \to X$ une application à valeurs dans un ensemble fini Y. Alors g est $f^*\mathcal{T}$ mesurable ssi $\exists h: (X, \mathcal{T}) \to (Y, \mathcal{P}(Y))$ mesurable telle que $g = h \circ f$. i.e. "g est f-mesurable ssi g ne dépend que de f".

Modélisation d'une expérience aléatoire finie (ex : jets de dés)

Soit Y un ensemble fini représentant les issues possibles. Il y a 2 manières de représenter un tirage aléatoire sur Y.

- 1. On se donne une mesure de probabilité sur $(Y, \mathcal{P}(Y))$. Pour ceci, il suffit de donner $p: Y \to [0,1]$ tel que $\sum_{y \in Y} p(y) = 1$. On note P la mesure de probabilité ainsi créée.
- 2. On se donne un espace de probabilité abstrait $(\Omega, \mathcal{T}, \mathbb{P})$ et une application mesurable $f: \Omega \to Y$ telle que $f_*\mathbb{P} = P$.

Pour passer de 1. à 2., il suffit de prendre $\Omega = Y$, $\mathcal{T} = \mathcal{P}(Y)$, $\mathbb{P} = P$, $f = \mathrm{id}$.

L'expérience aléatoire consistant à jeter un nombre fini k de dés de valeurs possibles Y_1, \ldots, Y_k est simplement une expérience aléatoire à valeurs dans le produit $Y = Y_1 \times Y_2 \times \cdots \times Y_k$.

La description en termes de variables aléatoires consiste donc à se donner une application mesurable $f:(\Omega, \mathcal{T}, P) \to Y$, c'est à dire k applications mesurables $f_i:(\Omega, \mathcal{T}, P) \to Y_i$, définies sur le même espace de probabilités.

Définition : La loi de f (qui est une probabilité sur Y) est dite *loi jointe*. Les lois des f_i (qui sont des probabilités sur Y_i) sont dites *lois marginales*.

Remarque: La loi jointe détermine les lois marginales, qui peuvent se décrire explicitement par $m_i(y_i) = \sum_{y_1,\dots,y_{i-1},y_{i+1},\dots,y_k} m(y_1,\dots,y_k)$.

Plus abstraitement, ce soint les mesures images $m_i = (\Pi_i)_* m_i$ où $\Pi_i : Y \to Y_i$ est la projection.

Remarque : La loi jointe est déterminée par $|Y_1| \times \cdots \times |Y_k| - 1$ nombres réels (-1 à cause de la contrainte $\sum p = 1$).

Les lois maginales sont déterminées par $|Y_1| + \cdots + |Y_k| - k$ nombres réels, ce qui est beaucoup moins.

Si on se donnes les marginales m_1, \ldots, m_k , ilm existe de nombreuses lois jointes qui engendrent ces marginales. L'une d'entre elles est particulièrement intéressante : la loi produit $m((y_1, \ldots, y_k)) = m_1(y_1) \cdot \cdots \cdot m_k(y_k)$, qui correspond (par définition) à des expériences indépendantes.

Définition:

- Les événement A, B dans un espace de probabilité (Ω, \mathcal{T}, P) sont dits indépendants si $P(A \cap B) = P(A)P(B)$.
- Si $(X_i, \mathcal{T}_i)_{1 \leq i \leq k}$ sont des espaces mesurables (c'est à dire munis de tribus \mathcal{T}_i), les variables aléatoires (applications mesurables) $f_i : (\Omega, \mathcal{T}, P) \to (X_i, \mathcal{T}_i)$ sont dites indépendantes si $\forall Z_i \in \mathcal{T}_i, P(f_1 \in Z_1, \dots, P_k \in Z_k) = P(f_1 \in Z_i) \cdot \dots \cdot P(f_k \in Z_k)$

Propriété : Les événements A et B sont indépendants ssi les variables aléatoires $\mathbbm{1}_A, \mathbbm{1}_B$: $(\Omega, \mathcal{T}, P) \to \{0, 1\}$ le sont.

Démonstration : Il suffit de montrer que A^{\complement} et B sont indépendants (le reste est évident ou vient par symétrie).

$$P(A^{\complement} \cap B) = P((\Omega \setminus A) \cap B)$$

$$= P(B \setminus A \cap B)$$

$$= P(B) - P(A \cap B)$$

$$= P(B) - P(A)P(B)$$

$$= (1 - P(A))P(B)$$

$$= P(A^{\complement})P(B)$$

Définition : Les événements A_1, \ldots, A_k sont dits indépendants si $\mathbbm{1}_{A_1} \ldots \mathbbm{1}_{A_k} : \Omega \to \{0,1\}$ le sont.

Remarque : Il ne suffit pas d'avoir l'indépendance deux à deux ou $P(A_1 \cap \cdots \cap A_k) = P(A_1) \cdot \cdots \cdot P(A_k)$.

Propriété: Il suffit d'avoir $P(A_{i_1} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdots P(A_{i_k})$, et ce $\forall \{i_1, \dots, i_k\} \subset [1, k]$.

Démonstration : Il faut montrer que

(*)
$$P(B_1 \cap \cdots \cap B_k) = P(B_1) \cdot \cdots \cdot P(B_k) \forall B_i \in \{\emptyset, A_i, A_i^{\complement}, \Omega\}$$

Il découle de l'hypothèse que c'est vrai pour $B_i \in \{\emptyset, A_i, \Omega\}$.

Il suffit donc de constater que (*) implique $P(B_1^{\complement} \cap B_2 \cap \cdots \cap B_k) = P(B_1^{\complement})P(B_2) \cdot \cdots \cdot P(B_k)$, ce qui se montre comme ce-dessus. On conclut par récurrence finie.

Exemple: Tirage non indépendant:

On tire – chiffres dans [1,6], en leur imposant d'être distincts. La loi jointe est donc : $P(y_1,\ldots,y_6) = \begin{cases} 0 & \text{si non distincts} \\ \frac{1}{6!} & \text{si distincts} \end{cases}$

Les lois marginales sont : $P_1(y_1) := \sum_{y_2,\dots,y_k} P(y_1,\dots,y_k) = \frac{5!}{6!} = \frac{1}{6}$. Les lois marginales sont donc les mêmes que pour un tirage indépendant!

Définition : On dit que f_i , $i \in I$ sont indépendantes si f_i , $i \in F$ le sont pour tout $F \subset I$ fini.

Modélisation d'une suite infinie de jets dés indépendants

Donnons-nous une suite infinie d'espaces de probabilités finis (Y_i, P_i) (la tribu est $\mathcal{P}(Y_i)$).

Pour chaque n, on a vu que l'on peut trouver des variables aléatoires indépendantes f_i : $(\Omega_n, \mathcal{T}_n, P_n) \to Y_i$ de loi P_i .

Question : peut-on prendre $(\Omega_n, \mathcal{T}_n, P_n)$ indépendant de n?

Théorème 1

Il existe un espace de probabilité (Ω, \mathcal{T}, P) et une suite de variables aléatoires $f_i : \Omega \to Y_i$ qui sont indépendantes et de loi P_i .

Remarque : Les variables aléatoires $f_i, i \in \mathbb{N}$ sont indépendantes ssi f_1, \ldots, f_n le sont pour tout n.

L'hypothèse d'indépendance consiste donc à dire que, pour tout n et pour tout $(y_1, \ldots, y_n) \in$ $Y_1 \times \cdots \times Y_n$, l'événement $\{f_1 = y_1, \dots, f_n = y_n\}$ est mesurable $(f_1 = y_1, \dots, f_n = y_n)$ $y_1, \ldots f_n = y_n) = P_1(y_1) \cdot \cdots \cdot P_n(y_n).$

En termes de loi, ceci implique que $\{y_1\} \times \dots \{y_n\} \times Y_{n+1} \times \dots$ est mesurable sur $X := \prod Y_i$ et que sa mesure est $m(\{y_1\} \times \dots \times Y_{n+1}) = P_1(y_1) \cdot \dots \cdot P_n(y_n)$.

Introduction de l'algèbre A_{∞} engendrée par les cylindres finis

Sur le produit $X = \prod Y_i$, pour n fixé, les ensembles de la forme $\{y_1\} \times \cdots \times \{y_n\} \times Y_{n+1} \times \cdots$ forment une partition finie (ce sont les cylindres finis), qui engendre une algèbre finie A_n (qui est donc aussi une tribu).

C'est l'algèbre engendrée par les n premières coordonnées. En effet si $\Pi: X \to Y_1 \times \cdots \times Y_n$ est la projection, alors $\mathcal{A}_n = \Pi^*(\mathcal{P}(Y_1 \times \cdots \times Y_n)).$

Cette algèbre décrit les parties de X qui peuvent être décrites en termes des n premières coordonnées.

On a
$$\mathcal{A}_n \subset \mathcal{A}_{n+1}$$
. On note $\mathcal{A}_{\infty} = \bigcup_{n>1} \mathcal{A}_n$.

On a $\mathcal{A}_n \subset \mathcal{A}_{n+1}$. On note $\mathcal{A}_\infty = \bigcup_{n \geq 1} \mathcal{A}_n$. \mathcal{A}_∞ est donc l'algèbre des parties de X qui dépendent d'un nombre fini de coordonnées. C'est l'algèbre engendrée par les cylindres finis.

Contrairement aux A_n , A_{∞} est infinie et ce n'est pas une tribu!

L'hypothèse d'indépendance des f_i implique que la loi m doit être définie sur \mathcal{A}_{∞} , et qu'elle y est déterminée par la relation

$$(*) \quad m(\{y_1\} \times \dots \times \{y_n\} \times Y_{n+1} \times \dots) = P_1(y_1) \cdot \dots \cdot P(y_n)$$

Théorème 2

Il existe sur $X = \prod Y_i$ une tribu τ , qui contient \mathcal{A}_{∞} , et une mesure m sur \mathcal{T} qui vérifie (*).

On vient en fait de voir que le théorème 1. implique le théorème 2. Réciproquement, il suffit de prendre $\Omega = X, \mathcal{T} = \tau, P = m, f = \text{projection}.$

Pour démontrer l'utilité du théorème 2., donnons des exemples d'ensembles qu'il est naturel de considérer et qui sont dans τ mais pas dans \mathcal{A}_{∞} . On suppose $Y_i \subset \mathbb{R}$

Exemple: L'ensemble $\{(y_i) \in X, \frac{y_1 + \dots y_n}{n} \to l\}$ est mesurable. En effet, il s'écrit : $\bigcap_{k \ge 1} \bigcup_{n \in \mathbb{N}} \bigcap_{m \ge n} \{\left| \frac{y_1 + \dots y_n}{n} - l \right| \le n \}$

 $\{1, 1\}$, i.e. $\forall k \geq 1, \exists n \in \mathbb{N}, \forall m \geq n, \dots$ Chacun des ensembles est dans \mathcal{A}_{∞} donc l'ensemble considéré est dans τ .

Quelques résultats d'extension des mesures

Si A_n est une suite d'ensembles, on note :

$$\liminf A_n = \bigcup_n \bigcap_{m \ge n} A_m = \{A_i \text{ APCR}\}\$$

$$\limsup A_n = \bigcap_n \bigcup_{m \geq n} A_m = \{A_i \text{ infinitely often (i.o.)}\}\$$

Si τ est une tribu, que les $A_n \in \tau$, alors $\limsup A_n \in \tau$ et $\liminf A_n \in \tau$.

Propriété:

- $\begin{array}{cc} & \lim\inf A_n \subset \lim\sup A_n \\ & \lim\inf A_n^{\complement} = (\lim\sup A_n)^{\complement} \end{array}$

Démonstration: $\forall m, M, \bigcap_{n \geq m} A_n \subset A_n$. Donc $\bigcap_{n \geq m} A_n \subset \limsup A_n$, donc $\liminf A_n \subset A_n$ $limsupA_n$

Exercice: $\limsup \mathbb{1}_{A_n} = \mathbb{1}_{\limsup A_n}$

Exemple: On considère un tirage aléatoire indépendant $f_n \in -1, 1^{\mathbb{N}}$, ce que l'on voit comme un jeu de hasard (le joueur gagne ou perd 1 à chaque étape). Étant donnée la richesse initiale r_0 et un objectif R, on considère l'événement {le joueur atteint la richesse R avant de se ruiner}.

Il s'écrit
$$\bigcup_{n \ge 1} \{ y_1 + \dots y_n \ge -r_0 \quad \forall k < n \text{ et } y_1 + \dots + y_k = R - r_0 \}.$$

C'est une réunion dénombrable d'éléments de \mathcal{A}_{∞}

Le théorème 2 sera déductible du théorème suivant :

Théorème 3 Hahn-Kolmogorov

Soit A une algèbre d'ensembles sur X. Soit \underline{m} une mesure de probabilité additive sur A, qui vérifie la propriété de σ -additivité.

Alors il existe une tribu τ contenant \mathcal{A} , et une mesure de proba m sur τ qui prolonge \underline{m} . De plus, on peut prendre : $m(B) = \inf_{B \subset \bigcup A_i} \sum_{i \in \mathbb{N}} \underline{m}(A_i)$, où le inf est pris sur les recouvrements dénombrables de B par des éléments de A.

Pour démontrer le théorème 2, on va appliquer le théorème 3 avec $\mathcal{A} = \mathcal{A}_{\infty}$, et \underline{m} la mesure additive déterminée par $\underline{m}(\{y_1\} \times \cdots \times \{y_n\} \times Y_{n+1} \times \cdots) = P_1(y_1) \dots P_n(y_n)$.

Il nous suffit donc de vérifier que cette mesure additive a la propriété de σ -additivité.

Propriété: Toute mesure additive sur A_{∞} est σ -additive.

Démonstration: Soient $A \in \mathcal{A}_{\infty}$ et $A_i \in \mathcal{A}_i$ nfty tel que $A \subset \bigcup A_i$, alors $\exists n, A \subset \bigcup_{i=1}^n A_i$.

- méthode savante : c'est la compacité de A dans X muni de la topologie produit (les A_i sont ouverts et compacts)
- à la main : On pose $B_n = A \setminus \bigcup_{i=1}^n A_i$. On veut montrer que $\exists n, B_n = \emptyset$, sachant que

On suppose que $B_n \neq \emptyset, \forall n$. On note $B_n(y_1) := \Pi_1^{-1}(y_1) \cup B_n$, ce sont les éléments de B_n qi commencent par y_1 .

Pour chaque $y_1, n \mapsto B_n(y_1)$ est décroissante. Comme $B_n = \bigcup_{y_1 \in Y_1} B_n(y_1)$ (union finie) (et

 $B_n \neq \emptyset$), il existe y_1 tel que les $B_n(y_1)$ sont tous non vides.

On fixe maintenant un tel y_1 et on reprend le même raisonnement sur y_2 , puis... On obtient de la sorte une suite y.

Ainsi, il existe une suite $(y_1, \dots) \in B_n \forall n \text{ car } \forall n, \exists k_n, B_n \in \mathcal{A}_{k_n}$.

Ainsi, $\forall n, B_n \ni y \text{ donc } \bigcap B_n \neq \emptyset$. Absurde.

Propriété: Dans le contexte du théorème d'Hahn-Kolmogorov, $m^*: \mathcal{P}(X) \to [0, \infty]$ est une mesure extérieure, c'est à dire que $m^*(\emptyset) = 0$, m^* est croissante, et $m^*\left(\bigcup_{i \in \mathbb{N}} Z_i\right) \le$ $\sum_{i\in\mathbb{N}} m^*(Z_i), \forall Z_i.$

Démonstration: Démontrons la dernière propriété. Fixons $\varepsilon > 0$. Pour tout i, il existe un recouvrement $A_{i,j}, j \in \mathbb{N}$ de Z_i tel que $\sum_j \underline{m}(A_{i,j}) \geq m^*(Z_i) \geq \sum_j \underline{m}(A_{i,j}) - \varepsilon 2^{-i}$, alors $A_{i,j}, i \in \mathbb{N}$, $j \in \mathbb{N}$ est un recouvrement de $\bigcup Z_i$, et $m^*(\bigcup Z_i) \leq \sum_{i,j} \underline{m}(A_{i,j}) \leq \sum_{i\geq 1} (m^*(Z_i) + \varepsilon 2^{-1}) \leq \varepsilon + \varepsilon 2^{-i}$ $\sum_{i\geq 1} m^*(Z_i).$

Démonstration Démonstration du théorème d'Hahn-Kolmogorov : Deux étapes :

- 1. $m^*|_{\mathcal{A}} = \underline{m}$ Si $A \subset \bigcup A_i$, alors $\underline{m}(A) \leq \sum \underline{m}(A_i)$ par σ -additivité de \underline{m} . En prenant l'inf, on obtient $\underline{m}(A) \leq m^*(A)$. L'inégalité réciproque s'obtient en considérant le recouvrement trivial $A_1 = A, A_2 = A_3 = \cdots = \emptyset$.
- 2. On dit que $Y \subset X$ est mesurable si, pour tout $\varepsilon > 0, \exists A \in \mathcal{A}$ tel que $m^*(Y\Delta A) \leq \varepsilon$. Alors l'ensembre \mathcal{T} des parties mesurables est une algèbre.

- si $m^*(Y\Delta A) \leq \varepsilon$, alors $m^*(Y^{\complement} \cap A^{\complement}) \leq \varepsilon$, donc \mathcal{T} est stable par complément.
- Soient Y, Z mesurables et A, B tels que $m^*(Y \Delta A) \leq \varepsilon, m^*(Z \Delta B) \leq \varepsilon$ alors $m^*((Y \cup A)) \leq \varepsilon$ $Z(\Delta(A \cup B)) \le 2\varepsilon \operatorname{car}(Y \cup Z)\Delta(A \cup B) \subset (Y\Delta A) \cup (Z\Delta B).$
- 3. m^* est une mesure additive sur \mathcal{T} .

Démonstration: Y, Z disjoints, A, B comme ci-dessus.

$$(A \cap B) = (Y \cup (A \setminus Y)) \cap (Z \cup (B \setminus Z)) \subset Y \cap Z \cup (B \setminus Z) \cup (A \setminus Y)$$

donc $\underline{m}(A \cap B) \leq 2\varepsilon$

$$A \cup B = (Y \cup (A \setminus Y)) \cup (Z \cup (B \setminus Z)) \subset Y \cup Z \cup (A \setminus Y) \cup (B \setminus Z)$$

 $\underline{m}(A \cup B) \le m^*(Y \cup Z) + 2\varepsilon$

$$\text{et } \underline{m}(A \cup B) = \underline{m}(A) + \underline{m}(B) - \underline{m}(A \cap B) \geq \underline{m}(A) + \underline{m}(B) - 2\varepsilon \geq m^*(Y) - \varepsilon + m^*(Z) - \varepsilon - 2\varepsilon.$$

Finalement, $m^*(Y) + m^*(Z) \le m^*(Y \cup Z) + 6\varepsilon$

Comme m^* est une mesure extérieure et une mesure additive sur l'algèbre \mathcal{T} , elle a la propriété de σ -additivité.

4. \mathcal{T} est une tribu.

Démonstration: $Y_i \in \mathcal{T}$. On veut montrer que $Y_{\infty} := \bigcup Y_i \in \mathcal{T}$. On peut supposer que les

$$Y_i$$
 sont disjoints. Alors $\forall n, m^*(\bigsqcup_{i=1}^n Y_i) = \sum_{i=1}^n m^*(Y_i) \le m^*(X) = 1$. Donc la série $\sum m^*(Y_i)$

converge, donc
$$\forall \varepsilon, \exists n, \sum_{i=n+1}^{+\infty} m^*(Y_i) \leq \varepsilon$$
.

Alors en posant $Z = \bigcup_{i=1}^n Y_i$, on a $m^*(Y_\infty \setminus Z) \le \varepsilon$, $Z \subset Y_\infty$. Ensuite, on prend $A \in \mathcal{A}$ tel que $m^*(A \setminus Z) \le \varepsilon$, $m^*(Z \setminus A) \le \varepsilon$. On obtient $A \setminus Y_\infty \subset A \setminus Z$, $Y_\infty \setminus A \subset (Z \setminus A) \cup (Y_\infty \setminus Z)$.

$$m^*(A \setminus Z) \leq \varepsilon, m^*(Z \setminus A) \leq \varepsilon$$
. On obtient $A \setminus Y_\infty \subset A \setminus Z, Y_\infty \setminus A \subset (Z \setminus A) \cup (Y_\infty \setminus Z)$.

Complément : on aurait pu donner une autre preuve du théorème 3 basée sur un résultat général sur les mesures extérieures. Lorsque m^* est une mesure extérieure, on dit que $Y \subset X$ est m^* -mesurable si

$$\forall Z\subset X, m^*(Z)=m^*(Z\cap Y)+m^*(Z\cap Y^{\complement}).$$

Théorème 4 Carathéodory

Si m^* est une mesure extérieure, l'ensemble $\mathcal T$ des parties m^* -mesurables est une tribu, et $m^*|_{\mathcal{T}}$ est une mesure.

Remarque : Dans le cas du théorème de Hahn, la tribu $\mathcal T$ est la même que celle introduite dans la démonstration précédente.

Démonstration Carathéodory ⇒ Hahn-Kolmogorov :

Il suffit de montrer que les éléments de A sont m^* -mesurables, et que $m^*|_{A} = \underline{m}$.

- $--m^*(A) \le \underline{m}(A) \forall A \in \mathcal{A}$
- $m^*(A) \ge \underline{m}(A) \forall A \in \mathcal{A}$. En effet, si $A \subset \bigcup A_i$, on peut supposer les A_i disjoints. Alors par σ-additivité de \underline{m} sur \mathcal{A} : $\underline{m}(A) = \sum_{i} \underline{m}(A_i) \geq m^*(A)$.
- Soit $A \in \mathcal{A}$ et $Zin\mathcal{P}(X)$. On considère un recouvrement A_i de Z. $\sum_i \underline{m}(A_i) = \sum_i \underline{m}(A_i \cap A) + \underline{m}(A_i \cap A^{\complement}) \ge m^*(Z \cap A) + m^*(Z \cap A^{\complement}).$

On prend l'inf : $m^*(Z) \geq m^*(Z \cap A) + m^*(Z \cap A^{\complement})$. L'autre inégalité découle de la sousadditivité.

П

Démonstration Carathéodory:

1. \mathcal{T} est une algèbre.

Démonstration: On a $\emptyset \in \mathcal{T}, X \in \mathcal{T}$, et stabilité par complément de manière triviale. $A, B \in \mathcal{T} \Rightarrow \forall Y, m^*(Y) = m^*(Y \cap A) + m^*(Y \cap A^{\complement}) = m^*(Y \cap A \cap B) + m^*(Y \cap A \cap B^{\complement}) + m^*(Y \cap A \cap B) + m^*(Y \cap B)$ $m^*(Y \cap A^{\complement} \cap B^{\complement}) + m^*(Y \cap A^{\complement} \cap B).$

Remarque: $(A \cap B)^{\complement} = (B^{\complement} \cap A) \cup (B \cap A^{\complement}) \cup (A^{\complement} \cap B^{\complement})$ Donc $m^*(Y) \geq m^*(Y \cap (B \cup A))$ (A)) + $m^*(Y \cap (B \cap A)^{\complement})$

2. m^* est additive sur \mathcal{T}

Démonstration : $A, B \in \mathcal{T}, A \cap B = \emptyset$. $m^*(A \cup B) = m^*((A \cup B) \cap A) + m^*((A \cup B) \cap A^{\complement}) = m^*(A) + m^*(B)$

3. \mathcal{T} est une tribu.

Démonstration: soit A_n une suite d'éléments deux à deux disjoints de \mathcal{T} . Posons $B_n =$ $\bigcup_{k=1}^n A_n \text{ et } B_{\infty} = \bigcup_{k=1}^{\infty} A_n.$

 $\forall Y \subset X, m^*(Y \cap B_n) = m^*(Y \cap B_n \cap A_n) + m^*(Y \cap B_n \cap A_n^{\complement}) = m^*(Y \cap A_n) + m^*(Y \cap B_{n-1}).$ Donc $m^*(Y \cap B_n) = \sum_{k=1}^n m^*(Y \cap A_k)$.

Alors $m^*(Y) = m^*(Y) = m^*(Y \cap B_n) + m^*(Y \cap B_n^{\complement}) \ge \sum_{k=1}^n m^*(Y \cap A_k) + m^*(Y \cap B_{infty}^{\complement}).$

À la limite : $m^*(Y) \ge \sum_{n=1}^{\infty} m^*(Y \cap A_n) + m^*(Y \cap B_{\infty}^{\complement})$

On peut cependant se poser la question de l'unicité de m^* dans Hahn-Kolmogorov.

Théorème 5

Si $\mu: B \to [0,1]$ est une mesure sur une tribu $B \subset \mathcal{A}, \, \mu|_{\mathcal{A}} = \underline{m}, \, \text{alors } \mu = m^* \, \text{sur } \mathcal{T} \cap B.$

Remarque : Il existe une plus petite tribu contenant \mathcal{A} ($\bigcap_{\mathcal{T} \subset \mathcal{A}, \ \mathcal{T} \text{ tribu}} \mathcal{T}$). Sur cette tribu, il existe une unique mesure prolongeant \underline{m} .

Démonstration:

- 1. Si $B \subset \bigcup_i A_i, A_i \in \mathcal{A}_i, B \in \mathcal{B}$, alors $\mu(B) \leq \sum_i \mu(A_i) = \sum_i \underline{m}(A_i)$. En prenant l'inf sur les familles A_i , on conclut $\mu \leq m^*|_{\mathcal{B}}$
- 2. Comme $\mu(B) \leq 1 \mu(B^{\complement})$, si $B \in \mathcal{T}$, on a $A m^*(B^{\complement}) = m^*(B)$ donc $\mu(b) \geq m^*(B)$ et donc $\mu(B) = m^*(B)siB \in \mathcal{T}$

Loi des grands nombres

On se donne $Y \subset \mathbb{R}$ fini, une mesure de probabilité p sur Y, et une suite finie $f_{i,i\in\mathbb{N}}: \Omega \to Y$ de variables aléatoires iid suivant la loi p. L'existence d'une telle suite découle des théorèmes de la section précédente.

Définition : Si $f:\Omega\to\mathbb{R}$ est une variable aléatoire prenant un nombre fini de valeurs, on note E(f) = $\sum yP(f=y)$ l'espérance de f.

Dans notre contexte on note e:=E(f). On définit $S_n=\frac{f_1+\dots+f_n}{n}:\Omega\to\mathbb{R}$. Chacune des variables aléatoires S_n prend un nombre fini de valeurs, mais les variables S_n ne sont pas indépendantes.

On veut montrer les trois énoncés suivants :

Théorème 6 Loi faible des grands nombres

$$P\left(\left|\frac{S_n}{n} - e\right| \ge \varepsilon\right) \to 0$$

Théorème 7 Loi forte des grands nombres

$$P\left(\frac{S_n}{n} \to e\right) = 1$$

Théorème 8

$$\forall \alpha > \frac{1}{2}, \quad P\left(\frac{S_n - ne}{n^{\alpha}} \to 0\right) = 1$$

Quelques outils de théorie de la probabilité

Pour démontrer ces résultats, on va avoir besoin d'un certain nombre d'autres outils.

Théorème 9 Inégalité de Markov

Si f est une variable aléatoire positive,

$$\forall a \in \mathbb{R}_*^+, \quad P(f > a) \le \frac{E(f)}{a}$$

Démonstration: On écrit la définition de E(f), on coupe la somme en deux selon y > a ou $y \le a$, on majore brutalement et on conclut.

Théorème 10 Inégalité de Bienaymé-Tchebychev

$$\forall a \in \mathbb{R}_*^+, \quad P(|f - E(f))| > a) \le \frac{Var(f)}{a^2}$$

Démonstration : On élève l'événement au carré, on conclut par Markov.

Propriété : E(XY) := E(X)E(Y) + Cov(X, Y), Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

Démonstration : Il suffit de l'écrire.

Lemme : Si X et Y sont deux variables aléatoires indépendantes, Cov(X,Y)=0.

Démonstration: Trivial.

Propriété Convergence monotone : Soit (Ω, \mathcal{T}, m) un espace mesuré. Si (A_n) est une suite décroissante et que $m(A_1)$ est fini, alors $m(\bigcap_{n \in \mathbb{N}} A_n) = \lim m(A_n)$. Si (A_n) est une suite croissante, alors $m(\bigcup_{n \in \mathbb{N}} A_n) = \lim m(A_n)$.

Démonstration : On pose $B_n = A_n \setminus A_{n-1}$, et par double passage à la limite, la propriété sur les suites croissantes est immédiate. Le résultat sur les suites décroissantes vient du passage au complémentaire.

 \Box

Lemme Fatou ensembliste:

- $-m(\liminf A_n) \le \liminf m(A_n)$
- Si m est finie, $m(\limsup A_n) \ge \limsup m(A_n)$
- Si m est finie et $\limsup A_n = \liminf A_n = A$, alors $m(A_n) \to A$

Démonstration: On pose $B_n = \bigcap_{m \geq n} A_m$. C'est une suite croissante.

$$m(B_n) \to m(\bigcup B_n) = m(\liminf A_n)$$

$$m(B_n) \le m(A_n) \Longrightarrow \liminf m(A_n) \le m(\liminf A_n)$$

Lemme Premier lemme de Borel-Cantelli : Si $\sum_{n\geq 0} m(A_n)$ est finie, alors $m(\limsup A_n)=0$.

Démonstration: $B_n := A \atop m \ge n_m$. $m(B_n) \le \sum_{m \ge n}^{\infty} m(A_n) \to 0$ (reste de série convergente) Or, $\lim m(B_n) = m(\limsup A_n) = 0$.

Théorème 11 Inégalité de Kolmogorov

P(
$$\max_{A \le k \ len} |\tilde{S}_k| \ge a$$
) $\le \frac{nVar(f)}{a^2}$

Démonstration: $T(\omega) :=$ le premier temps pour lequel $|\tilde{S}_n \geq a$. $T(\omega) \in \mathbb{N} \cup \{+\infty\}$ $(T = k) = \{|\tilde{S}_1| < a\} \cap \cdots \cap \{|\tilde{S}_{n-1}| < a\} \cap \{|\tilde{S}_n| \geq a\} \in \mathcal{A}_k$. T est ainsi un $temps\ d'arrêt$.

$$Var\tilde{S}_{n} = E(\tilde{S}_{n}^{2}) \geq \sum_{k=1}^{n} E(S_{n}^{2} \mathbb{1}_{\{T=k\}})$$

$$= \sum_{k=1}^{n} E((\tilde{S}_{n} + \tilde{S}_{k} - \tilde{S}_{k}) \mathbb{1}_{\{T=k\}})$$

$$= \sum_{k=1}^{n} E(\tilde{S}_{k}^{2} \mathbb{1}_{\{T=k\}}) + \sum_{k=1}^{n} E((\tilde{S}_{n} - \tilde{S}_{k}) \tilde{S}_{k} \mathbb{1}_{\{T=k\}})$$
 et $(*) : \tilde{S}_{n} - \tilde{S}_{k} = \tilde{f}_{k+1} + \dots + \tilde{f}_{n}$. Or
$$\geq \sum_{k=1}^{n} a^{2} P(T=k) + 0 + 0(*)$$

$$\geq a^{2} P(M_{n} \geq a)$$

 $\hat{S}_k \mathbb{1}_{\{T=k\}}$ ne dépend que des k premières valeurs (indépendance).

Remarque : Illustration de la notion de temps d'arrêt :

On considère un jeu de hasard : une suite f_i de v.a. i.i.d. à valeurs dans $\{-1,1\}$, avec P(1)=p. Supposons que le joueur choisit un temps $T(\omega)$ pour miser. Peut-il optimiser sa probabilité de gain $P(f_{T(\omega)}(\omega)=1)$?

On peut choisir $T(\omega)$ le premier temps tel que $f_{T(\omega)} = 1$, mais cela nécessite de connaître tous les tirages.

En réalité, on ne dispose pas de l'almanach des sports, on n'a que l'information des k-1 premiers tirages, i.e. $\{T=k\} \in \mathcal{A}_{k-1}$, c'est un temps d'arrêt.

Propriété: Si T vérifie cette condition, $P(f_{T(\omega)}(\omega) = 1) = p$.

Démonstration: $P(f_{T(\omega)}(\omega) = 1) = \sum_{k=1}^{\infty} P((T = k) \cap (f_k = 1))$. On conclut par indépendance.

Théorème 12 Inégalité de Hoeffding

$$P\left(\left|\tilde{S}_n\right| \ge a\right) \le 2\exp\left(-\frac{2a^2}{Cn}\right), \qquad C = (\max f - \min f)^2$$

Lemme : Pour \tilde{f} une v.a. centrée prenant un nombre fini de valeurs, on a :

$$E\left(e^{\theta \tilde{f}}\right) \le e^{C\theta^2/8}, \qquad C = (\max \tilde{f} - \min \tilde{f})^2$$

Démonstration lemme : On pose $g(\theta) := \ln(E(e^{\theta \tilde{f}}))$. g est \mathcal{C}^{∞} .

On a : g(0) = 0, $g'(\theta) = \frac{E(\tilde{f}e^{\theta\tilde{f}})}{E(e^{\theta\tilde{f}})}$ donc $g'(0) = E(\tilde{f}) = 0$.

Au voisinage de $\theta = 0$, il existe une constance c telle que $g(\theta) \leq c\theta^2$.

$$g''(\theta) = \frac{E(\tilde{f}^2 e^{\theta \tilde{f}}) E(e^{\theta \tilde{f}}) - E(\tilde{f} e^{\theta \tilde{f}})^2}{E(\theta e^{\theta \tilde{f}})^2}$$

Ceci est la variance de la loi de proba sur \tilde{Y} donnée par $P_{\theta}(\tilde{y}) = \frac{P(\tilde{y})e^{\theta \tilde{f}}}{E(e^{\theta \tilde{f}})}$.

En effet,
$$g''(\theta) = E\left(\frac{\tilde{f}^2 e^{\theta \tilde{f}}}{E(e^{\theta \tilde{f}})}\right) - E\left(\tilde{f}\frac{e^{\theta \tilde{f}}}{E(e^{\theta \tilde{f}})}\right)^2$$
.

Si g est une v.a. prenant un nombre fini de valeurs, alors $Var(g) \leq (\max g - \min g)^2/4$. On remarque que la variance est invariante à translation de g près, donc on peut supposer $\max g =$

 $-\min g. \text{ Or, } Var(g) = E(g^2) - E(g)^2 \leq E(g^2) \leq (\max g)^2 \leq (\max g - \min g)^2/4.$ Ainsi, par l'inégalité des accroissements finis, comme $g''(\theta) \leq \frac{C}{4}$, on a $g(\theta) \leq \frac{C}{8}\theta^2$

Donc
$$E(e^{\theta \tilde{f}}) \le \exp\left(\frac{C\theta^2}{8}\right)$$

Démonstration Hoeffding: $P(\tilde{S}_n \geq a) = P(e^{theta\tilde{S}_n} \geq e^{\theta a}) \leq e^{-a\theta}E(e^{\theta \tilde{S}_n})$ par Markov. $E(e^{\theta \tilde{S}_n}) = E(\prod e^{\theta \tilde{f}_i}) = \prod E(e^{\theta \tilde{f}_i}) = E(e^{\theta \tilde{f}_i})^n.$

$$P(\tilde{S}_n \ge a) \le e^{-a\theta} E(e^{\theta \tilde{f}})^n \le \exp\left(\frac{nC\theta^2}{8} - \theta a\right).$$

On optimise par rapport à θ ($\theta = \frac{4a}{nC}$), et on conclut.

Remarque: Intérêt de ces inégalités en statistiques

Bienaymé-Tchebychev : $P(|\tilde{S}_n| \geq a) \leq \frac{nVar(f)}{a^2}$

Hoeffding: $P(|\tilde{S}_n| \ge a) \le 2 \exp(-\frac{2a^2}{nC})$

Dans les deux cas, on note une décroissance en $\frac{n}{a^2}$.

Exemple d'application : sondage. La population peut avoir deux avis : $Y = \{0,1\}$. On cherche à estimer par un sondage quelle est la proportion p de la population qui a l'avis 1 (p = P(1)).

On interprète un sondage comme étant une suite finie de variable aléatoires iid f_1, \ldots, f_n tirées suivant la loi ci-dessus.

On s'attend à ce que $\frac{S_n}{n} \approx p$. Les inégalités rappelées ci-dessus nous donnent des majorations de $P(\left|\frac{S_n}{n}-p\right|\geq\varepsilon)$. Dans ce contexte, Hoeffding donne de meilleures estimations.

Exemple de valeurs humeriques:		
n	ε	Résultat
1000	5%	p = 1,3%
1000	1%	$n\varepsilon^2 = 1$, on ne peut rien conclure

La première ligne indique que la probabilité d'être à plus de 5% d'erreur est d'au plus 1,3%.

Intervalle de confiance :

Ici, on fixe p la probabilité d'erreur, et on cherche ε , c'est à dire, par Hoeffding, $\varepsilon \leq \sqrt{\frac{1}{2n} \ln \left(\frac{2}{p}\right)}$.

Par exemple, pour n = 1000, p = 5%, on obtient $\varepsilon = 4$, "\%.

En général, avec ces données, on donne $\varepsilon = 3\%$. Cette disparité vient de la non-optimalité de l'inégalité de Hoeffding, et par le fait qu'il existe des modèles plus précis (approcher cette binomiale par une gaussienne grâce au théorème central limite par exemple).

Démonstrations des lois des grands nombres

Démonstration Loi faible des grands nombres :
$$P(\left|\frac{S_n}{n} - e\right| \geq \alpha) = P(|S_n - E(S_n)| \geq n\alpha) \leq \frac{Var(S_n)}{n^2\alpha^2} = \frac{nVar(f)}{n^2\alpha^2} = \frac{Varf}{n\alpha^2}$$

Démonstration Loi forte des grands nombres : $\sum_n P(A_{n^2}(\varepsilon))$ converge.

Donc $m(\limsup(A_{n^2}(\varepsilon))) = 0$ d'après Borel-Cantelli. Donc $\frac{S_{n^2}}{n^2} \to E(f)$ p.p.

Montrons alors que si $\frac{S_{n^2}}{n^2} \to E(f)$ alors $\frac{S_n}{n} \to E(f)$. On note $M = \max |f|$. Soit k(n) tel que $k(n)^2 \le n < (k(n) + 1)^2$.

$$\left| \frac{S_n - nE(f)}{n} \right| \le \frac{|S_{k(n)^2} - k(n)^2 E(f)| + (n - k(n)^2)(M + E(f))}{k(n)^2}$$

$$\le \left| \frac{S_{k(n)^2} - k(n)^2 E(f)}{k(n)^2} \right| + \frac{(k(n)^2 + 1) - k(n)^2}{k(n)^2} (M + E(f))$$

Chacun des termes tend vers 0, ce qui achève la preuve.

Démonstration Inégalité de Kolmogorov \Rightarrow théorème 3 : $P(\frac{M_n}{n^{\alpha}} \geq \varepsilon) \leq \frac{Var(f)}{n^{2\alpha-1}\varepsilon^2}$ où $M_n = \max_{1 \leq k \leq n} |\tilde{S}_k|$ On fixe $R \in \mathbb{N}$ tel que $(2\alpha-1)r > 1$.

$$P(\frac{M_n}{n^{\alpha}} \ge \varepsilon) \le \frac{Var(f)}{n^{2\alpha-1}\varepsilon^2}$$
 où $M_n = \max_{1 \le k \le n} |\tilde{S}_k|$

$$P(\frac{M_{n^r}}{n^{r\alpha}} \ge \varepsilon) \le \frac{Var(f)}{\varepsilon^2 n^{(2\alpha-1)r}}$$

C'est le terme général d'une série convergente, donc par le premier lemme de Borel-Cantelli, on en déduit que $P(\frac{M_n r}{n^{r\alpha}} \geq \varepsilon \text{ i.o.}) = 0$, et donc que p.p., $\frac{M_n r}{n^{r\alpha}} \to 0$.

Mais $\frac{M_{n^r r}}{n^{r\alpha}} \to 0 \Rightarrow \frac{\tilde{S}_n}{n^{\alpha}} \to 0$. En effet, soit k(n) tel que $(k(n)-1)^r \le n < k(n)^r$. Alors,

$$\frac{\tilde{S}_n}{n^{\alpha}} \le \frac{M_{k(n)^r}}{n^{\alpha}}
= \frac{M_{k(n)^r}}{k(n)^{\alpha r}} \cdot \frac{k(n)^{\alpha r}}{n^{\alpha}}
\le \frac{M_{k(n)^r}}{k(n)^{\alpha r}} \cdot \frac{k(n)^{\alpha r}}{(k(n) - 1)^{\alpha r}}$$

Le premier terme tend vers 0, le second vers 1, ce qui conclut la preuve.

 $\textbf{D\'{e}monstration In\'{e}galit\'{e} de Hoeffding} \Rightarrow \textbf{th\'{e}or\`{e}me 3}: \ P(|\tilde{S}_n| \geq \varepsilon n^{\alpha}) \leq 2\exp\left(\frac{-2\varepsilon^2 n^{2\alpha-1}}{C}\right)$ C'est le terme général d'une série convergente, donc d'après le 1er lemme de Borel-Cantelli : $P(|\tilde{S}_n| \ge \varepsilon n^{\alpha} \text{ i.o.}) \text{ ie } \frac{\tilde{S}_n}{n^{\alpha}} \to 0 \text{ p.p.}.$

Estimations inférieures

On suppose que les variables aléatoires prennent au moins deux valeurs avec probabilité non nulle.

Théorème 13

$$P((S_n) \text{ born\'ee}) = 0$$

Théorème 14

$$P(\limsup \frac{\tilde{S}_n}{\sqrt{n}} = +\infty) = 1$$

Théorème 15 Loi du logarithme itéré

Presque partout, on a:

$$\limsup \frac{\tilde{S}_n}{\sqrt{2(Var(f))n\ln\ln n}} = 1$$

Démonstration Théorème 13 : On se donne $a \neq 0, P(a) > 0$. **Affirmation :** Pour tout $k \in \mathbb{N}$, il existe une infinité de $n \in \mathbb{N}$ tels que $f_n = a, \dots, f_{n+k} = a$. **Démonstration :** D'après le premier lemme de Borel-Cantelli ...