Code No: 151AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year I Semester Examinations, July - 2021 MATHEMATICS-I

(Common to EEE, CSE, IT, CSIT, ITE, CE(SE), CSE(CS), CSE(DS), CSE(Networks))
Time: 3 Hours

Max. Marks: 75

Answer any five questions All questions carry equal marks

[−1 −3 3 −

- 1.a) Find the inverse of the matrix $A = \begin{vmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{vmatrix}$ using Gauss-Jordan method.
 - b) Find whether the following equations are consistent if so solve them $x-y+2z=9, \ 2x+y+z=6, \ x+2y+z=3$ [7+8]
- 2. Find the Eigen values and Eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$ [15]
- 3. Find the matrix P which transforms $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into diagonal form. Hence calculate A^4 .
- 4.a) Examine the convergence of the series $\sum \frac{(n+1)(n+2)}{n^2 \sqrt{n}}$
 - b) Test for the convergence of the series $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \dots + \frac{2^n + 2}{2^n + 1}x^{n-1} + \dots (x > 0)$
- 5.a) Discuss the nature of the series $\sum \frac{(n+1)^n x^n}{x^{n+1}}$
 - b) Verify whether the series $\frac{x}{1+x} \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} \frac{x^4}{1+x^4} + ... \infty (0 < x < 1)$ is absolutely convergent or conditionally convergent. [7+8]
- 6.a) Expand e^{sinx} by Maclaurin's series
 - b) Prove that $\beta(m+1,n) + \beta(m,n+1) = \beta(m,n)$. [7+8]

7.a) If
$$u = x^2 - 2y$$
, $v = x + y + z$. $w = x - 2y + 3z$ then find $\frac{\Box^{(uy;w)}}{\Box^{(xy;z)}}$.

b) If
$$f(x,y) = \ln x^2 + y^2 + \tan^{-1} \frac{y}{x}$$
 then prove that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$. [7+8]

- 8.a) A rectangular box open at the top is to have volume of 32 cubic ft. Find the dimensions of the box requiring least material for its construction.
- b) If $u = \frac{x+y}{1-xy}$ and $\theta = \tan^{-1} x + \tan^{-1} y$, then find $\frac{\partial u \cdot \theta}{\partial x \cdot y}$. Hence prove that u and θ are functionally dependent. Also find the relation between them. [7+8]

---00O00--