Aritmetika pohyblivej rádovej čiarky (FPU – Float Point Unit) (FPA -Floating Point Arithmetics)

Presnosť

Rozsah

Opakovanie:

- Počítač je stroj na spracovanie čísiel číslic
- Poznáme:
 - Prirodzené čísla: 1,2,3,4, ...
 - Celé čísla: -3,-2-1,0,1,2,3,4, ...
 - Racionálne čísla (cč/cč, okrem cč/0) môžeme zapísať v tvare:
 Konečných, resp. nekonečných periodický desatinných zlomkov
 - Iracionálne čísla: zapísané v tvare nekonečných neperiodických desatinných zlomkov
- Čo môžeme zobraziť do N bitov?
 - Celé číslo bez znamienka:

0 až 2^N – 1

Celé číslo so znamienkom (Two's Complement)

 $-2^{(N-1)}$ až $2^{(N-1)} - 1$

A čo iné čísla?

```
    Veľmi veľké čísla (sekundy v storočí)
        3,155,760,000<sub>10</sub> (3.15576<sub>10</sub> * 10<sup>9</sup>)
    Veľmi malé čísla (priemer atómu)
        0.0000000110 (1.010 * 10<sup>-8</sup>)
    Racionálne (periodické) 2/3 (0.666666666...)
    Iracionálne čísla 2<sup>1/2</sup> (1.414213562373...)
        e (2.718...), π (3.141...)
```

Vedecké zobrazenie čísiel (dekadické)

- Normalizovaný tvar zápisu: bez vodiacich núl
 (naľavo od desatinnej bodky je len jedna nenulová platná číslica)
- Iný spôsob zápisu: 1/1 000 000 000
 - Normalizovaný:
 1.0 * 10⁻⁹
 - Nenormalizovaný: 0.1 * 10⁻⁸

10.0 * 10-10

Vedecké zobrazenie čísiel (binárné)

Potrebujeme zapísať:

- "znamienko" mantisy
- "znamienko" exponentu

Počítače podporujú prácu s číslami typu float:

Forma zápisu znamienka ???

- priamy kód
- jednotkový doplnok
- dvojkový doplnok

Jednoduchá presnosť čísiel FP (Single Precision – SP, C: float)

- Počet bitov: 32 bits

Mantisa: (priamy kód)

S - Sign znamienko mantisy

- Exponent = B-Exp Bias, Bias = 127, B-Exp = <1, 254>
- Čísla z rozsahu: $2^{-126}(1.0) \sim 2^{+127}(2-2^{-23})$ t.i. 1.18 *10⁻³⁸ ~ 3.40 *10³⁸

Zobrazenie FP čísiel

- Čo sa stane ak je výsledok veľmi veľký?
 - $(> 3.403*10^{38})$ Overflow!
 - Overflow ⇒ Exponent väčší ako sa dá zobraziť do 8 bitov
- Čo sa stane ak je výsledok veľmi malý?
 - $(>0, <1.17*10^{-38})$ Underflow!
 - Underflow ⇒ Záporný exponent "väčší" ako sa dá zobraziť do 8-bitov
 - Ako zabránime: pretečeniu overflow, podtečeniu – underflow?

Dvojnásobná presnosť čísla FP (Double Precision – DP C-ko: double 2 * 32 = 64 bitov)

Dvojnásobná presnosť

127 Bias:

1023

Čísla z rozsahu:

$$2^{-126}(1.0) \sim 2^{+127}(2-2^{-23})$$

$$2.0 * 10^{-308} \sim 2.0 * 10^{308}$$

Väčšou výhodou je vyššia presnosť

Norma IEEE 754, Zdôvodnenie (1/4)

- Jednoduchá presnosť, Dvojnásobná presnosť
- Znamienkový bit S: 1 záporné číslo
 - 0 kladné číslo

- Mantisa:
 - Vodiaca jednotka sa nepíše v normovanom čísle
 - \Rightarrow 1 + 23 bitov SP,
 - ⇒ 1 + 52 bitov DP
 - Interval:
 - <1, 2) a
 - <0, 1) bez "vodiacej jednotky"</p>
- Poznámka: 0 číslo nula. Nemá vodiacu skrytú jednotku,
 - ⇒ Špeciálny zápis pre vyjadrenie čísla nula, rezervovaný špeciálny exponent

Norma IEEE 754 (2/4)

- Niekedy by sme chceli použiť "float" aj v takom prípade, keď nemáme FP hardware; napr., triediť pomocou celočíselného porovnávania záznamy
- V takomto prípade "rozbijeme" FP číslo na tri časti
 - Porovnáme znamienka,
 - Porovnáme exponenty,
 - Potom porovnáme normované mantisy
- Dá sa predpokladať, že porovnávanie po skupinách bude rýchlejšie, a zvlášť vtedy, keď porovnávané čísla budú len celé kladné
- Porovnávanie vykonáme v poradí:
 - 1. Znamienkový bit: záporné < kladné
 - 2. Exponent: väčšie číslo má väčší exponent
 - 3. Normovaná mantisa: väčšie číslo má väčšíu mantisu Porovnávanie "zastavíme" pri prvej nezhode

Norma IEEE 754 (3/4)

- Záporný Exponent ?!?!
 - 2's comp? 1.0 * 2⁻¹ ?<= >? 1.0 *2⁺¹ (1/2 ?<= >? 2)
- 1/2
 0
 1111
 1111
 000
 0000
 0000
 0000
 0000
 0000
 0000

 2
 0
 0000
 0001
 000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 - . "Celočíselné porovnávanie" týchto čísiel
 - Porovnanie: 1/2 ?<= >? 2 dá 1/2 > 2!
 - Celé kladné číslo 0000 0001 je zápornejšie ako, cele kladné číslo 1111 1111 ⇒ ľahko sa porovnávajú
 - 1.0 * 2⁻¹ ?<= >? 1.0 *2⁺¹ (1/2 ?<= >? 2)

Norma IEEE 754 (4/4)

- Takéto riešenie sa volá: zápis exponentu s <u>posunutou</u> <u>nulou</u>,
- Ak odpočítame od posunutého exponentu posunutie, dostaneme skutočný exponent
 - IEEE 754: posunutie pre: SP: B = 127
 - DP: B = 1023
 - Jednoduchá presnosť:

 $-(-1)^{s} * (1 + N-Mantisa) * 2^{(B-Exp - 127)}$

Zápis pre DP je rovnaký, len posunutie je 1023 a počet bitov je dvojnásobný

N-Mantisa (1/2)

- Spôsob 1. (Zlomky):
 - Dekadické číslo: $0.340_{10} \Rightarrow 340_{10}/1000_{10}$ $\Rightarrow 34_{10}/100_{10}$
 - Binárne číslo: $0.110_2 \Rightarrow 110_2/1000_2 = 6_{10}/8_{10}$ $\Rightarrow 11_2/100_2 = 3_{10}/4_{10}$

N-Mantisa (2/2)

Spôsob 2. (Hodnota pozície):

```
    Dekadicky: 1.6732 = (1*10°) + (6*10°-1) + (7*10°-2) + (3*10°-3) + (2*10°-4)
    Binárne: 1.1001 = (1*2°) + (1*2°-1) + (0*2°-2) + (0*2°-3) + (1*2°-4)
```

$M = 1.xxx...x_2$

xxx...x: bity normovanej mantisy za "binárnou bodkou"

Minimum: 000...0 (M = 1.0)

Maximum: 111...1 ($M = 2.0 - \varepsilon$)

ε- strojová nula

Pr.: Prevod binárneho FP čísla na dekadické

0 0110 1000 101 0101 0100 0011 0100 0010

- Znamienko: 0 ⇒ kladné
- Exponent:
 - \bullet 0110 1000₂ = 104₁₀ B-Exp
 - "Vyposúvanie" exponentu: 104 127 = -23
- Mantisa:
 - $1 + 1^*2^{-1} + 0^*2^{-2} + 1^*2^{-3} + 0^*2^{-4} + 1^*2^{-5} + \dots =$ $= 1 + 2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} + 2^{-14} + 2^{-15} + 2^{-17} + 2^{-22} =$ $= 1.0_{10} + 0.666115_{10}$
- Predstavuje číslo: 1.666115₁₀*2⁻²³ ~ 1.986*10⁻⁷
 (približne 2/10 000 000)

Prepočet desatinného čísla na FP číslo (1/3)

- Jednoduché: Ak je menovateľ mocninou 2, t.j. ak
 (2, 4, 8, 16, atď.), potom je to ľahké.
- Napr.: -0.75

$$-0.75 = -3/4$$

$$-11_2/100_2 = -0.11_2$$

- Normovanie: -1.1₂ * 2⁻¹
- $-(-1)^{S} * (1 + N-Mantisa) * 2^{(B-Exp 127)}$
- (-1)¹* (1 + .100 0000 ... 0000) * 2⁽¹²⁶⁾ ¹²⁷⁾

Prepočet desatinného čísla na FP číslo(2/3)

- Zložitejší prípad: Ak menovateľ nie je mocninou 2.
 - Potom dané číslo nezobrazíme presne.
 - Aby bolo zobrazenie čo najpresnejšie, použijeme "veľa" bitov mantisy.
 - Keď máme mantisu, správne číslo pre exp. už získame ľahko.
 - ???? Mantisa ??????

Prepočet desatinného čísla na FP číslo (3/3)

- Je zrejmé, že ... Racionálne čísla (x₁₀) majú veľa platných číslic.
- Podobne to platí aj pre ich binárny ekvivalent
- Prepočet racionálneho čísla:

Ak nevieme zobraziť číslo v tvare x/ 2^k výsledok prevodu vyzerá nasledovne:

Des. hodnota	Dvojkové číslo		
	(niekoľko bitov sa zopakuje)		
1/3	0.0101 0101 01[01] ₂		
1/5	0.0011 0011 0011 [0011]2		
1/10	0.0001 1001 1001 1[0011] ₂		

Príklad:

Čo je dekadický ekvivalent FP čísla?

- 1: -1.75
- 2: -3.5
- 3: -3.75
- 4: -7
- 5: -7.5
- 6: -15
- 7: -7 * 2^129
- 8: -129 * 2^7

Odpoveď:

Dekadický ekvivalent FP čísla:

```
1000 0001 111 0000 0000 0000 0000 0000
                               N-Mantisa
    B-Exp
(-1)^{s} * (1 + N-Mantisa) * 2^{(B-Exp-127)}
(-1)^1 * (1 + .111) * 2^{(129-127)}
-1 * (1.111) * 2<sup>(2)</sup>
-111.1
                                             1: -1.75
-7.5
```

2: -3.5 3: -3.75 4: -7 5: -7.5 6: -15 7: -7 * 2^129 8: -129 * 2^7

"Na záver"

- Floating Point čísla sú len náhradou tých čísiel, ktoré sme chceli použiť
- IEEE 754 Floating Point Standard je v praxi najrozšírenejší spôsob zápisu takýchto čísiel
- Od roku ~ 1997 túto normu používa prakticky každý počítač

Viac o FP číslach:

Doteraz sme uvažovali B-Exp v rozsahu: <1 až 254>

Na čo je použitá "0" a "255"?

Znázornenie ±∞

- V FP aritmetike, delenie 0 dá ± ∞, nie pretečenie.
- Prečo?
 - Ak existuje v FP aritmetike ∞ potom výraz X/0 > Y je platné porovnanie
 - IEEE 754 vie zobraziť ± ∞
 - Najkladnejší exponent B-Exp = 255 je rezervovaný pre ∞
 - N-Mantisa je nulová
 - Kladné ∞

$$+ \infty = +1.0*2^{128}$$

000000

Záporné ∞

$$-\infty = -1.0*2^{128}$$

00000

Zobrazenie "0"

- Posunutý exponent, samé nuly: B-Exp = 0
- rovnako normovaná mantisa samé nuly
- A čo znamienko?

- Prečo dve nuly?
 - Výhodné pri limitných porovnávaniach

Špeciálne čísla

Čo ešte môžeme dodefinovať v (Single Precision)?

B-Exp	N-Mantisa	Výsledok (číslo)
0	0	0
0	nenulová (!= 0)	???
1-254	nenulová	+/- normované FP čísla
255	0	+/- ∞
255	nenulová (!= 0)	???

Zostalo nám:

- (B-Exp = 0) & (N-Mantisa != 0)
- (B-Exp = 255) & (N-Mantisa != 0)

... "Skúsime využiť"

Čísla typu: Not a Number (NaN)

- •Čo je $\sqrt{-4}$ alebo 0/0?
 - Ak ∞ nie je "chyba", potom by nemuselo byť ani napr. 0/0 .
 - Zaužíval sa názov: Not a Number (NaN)
 - B-Exp = 255, N-Mantisa nenulová
 - Načo je to dobré?
 - Dá sa predpokladať, že NaN sa využijú pri debagovaní?
 - Napr.: op(NaN, X) = NaN

Zápis nenormovaných čísiel: (1/2)

- Problém: FP čísla zapísané v normalizovanom tvare generujú okolo nuly "diery"
 - Najmenšie zobraziteľné kladné číslo:

$$a = 1.0 \dots 0_2 * 2^{-126} = 2^{-126}$$

Druhé najmenšie zobraziteľné kladné číslo:

$$b = 1.000...1_2 * 2^{-126} = 2^{-126} + 2^{-149}$$

$$a - 0 = 2^{-126}$$

$$b - a = 2^{-149}$$

Zápis nenormovaných čísiel: s (2/2)

Riešenie:

- Zatiaľ sme nepoužili B-Exp = 0, N-Mantisa nenulová
- Nenormované čísla: bez vodiacej jednotky,
 Najmenší normovaný exponent = -126. (posúvame)
- Najmenšie zobraziteľné kl. číslo:

$$a = 2^{-149} (126 + 23 = 149)$$

Druhé najmenšie zobraziteľné kl. číslo:

$$b = 2^{-148}$$

⇒ Diery okolo nuly sú menšie

Zhrnutie

B-Exp	N-Mantisa	Výsledok (číslo)
0 0 1-254	0 nenulová (!= 0) nenulová	0 Nenormované FP Normované FP
255255	nulová nenulová (!= 0)	+/- ∞ NaN

Zaokrúhlovanie

- Výpočty s reálnymi číslami ⇒ problém ako číslo umiestniť do odpovedajúceho priestoru.
- FP hardware obsahuje 2 špeciálne bity pre presnosť (zníženie presnosti ⇒ zvýšenie rýchlosti)

```
00 - 24 bitov (SP)
```

- 10 53 bitov (DP)
- 11 64 bitov (Extended P (vnútorne FPU 80bitov))
- Zaokrúhluje sa vždy pri konvertovaní...
 - DP ⇒ SP
 - Číslo FP na integer

IEEE pozná 4 módy zaokrúhlovania:

- Zaokrúhľovanie smerom + ∞
 Vždy nahor : 2.1 ⇒ 3, -2.1 ⇒ -2
- Zaokrúhľovanie smerom ∞
 Vždy nadol : 1.9 ⇒ 1, -1.9 ⇒ -2
- Odrezanie
 Jednoducho zahoď posledné bity (zaokrúhlenie smerom k 0)
- Zaokrúhlenie na najbližšie číslo (default),
 - vykonáme pripočítaním čísla 1 s váhou o 1 menej, ako je posledný platný rád.
 - resp. párne, ak sú dve najbližšie čísla rovnako vzdialené.

Pr.: $2.5 \Rightarrow 2$; $3.5 \Rightarrow 4$

Pr.: Zaokrúhlenie na najbližšiu desatinu

 $2.2499 \approx 2.2$; $2.2501 \approx 2.3$; $2.2500 \approx 2.2$; $2.3500 \approx 2.4$;

Vlastnosti - problémy FP aritmetiky (1/3)

- Presnosť Rozsah
- Vedecké výpočty vyžadujú chybový menežment
- Nespomenuli sme: Napr.: nie je garantované:
 - $(1/r)*r \neq 1$
 - FPA aritmetika nie je asociatívna !!!!.

$$(A+B) + C \neq A + (B+C), (A*B) * C \neq A * (B*C)$$

Napr: $(1.0*10^{100} + 1.0) - 1.0*10^{100} = 0.0$, ale $(1.0*10^{100} - 1.0*10^{100}) + 1.0 = 1.0$

nie je ani vždy distributívna !!!!

$$(A+B) * C \neq A*C + B*C$$

Implementovanie normy IEEE 754 je ťažké

Vlastnosti - problémy FP aritmetiky (2/3)

Súčet a rozdiel

Princíp: Majme čísla A=12345 a B=567.89, ktoré sa dajú zapísať v tvare: A = 1.2345*10⁴, B = 5.6789*10²

Súčet v dekadickom vyjadrení je jednoduchý

ale v FPP aritmetike je treba nanormovať exponenty (zväčšiť menší exponent)

```
1.234500*10<sup>4</sup>
+0.056789*10<sup>4</sup>
1.291289*10<sup>4</sup>
```

Pre binárne čísla je to obdobné, ak treba nanormujeme a zaokrúhlime mantisu výsledku.

Vlastnosti - problémy FP aritmetiky (3/3)

Zlé implementovanie FPP spôsobuje chyby:

- Vid "Pentium bug"!
- Raketa Patriot "vojna v zálive" systém protivzdušnej obrany bol "zapnutý" cca 100 hodín. Čas generovali ako načítavanie 0,1sek zapísané binárne do 24 b. Binárny ekvivalent 0.1sek je "nekonečné" číslo => chyba pri zaokrúhlení cca 10⁻⁷sek. Za 100hodín chyba narástla na 100 *3600*10*10⁻⁷ =0,36sek pri rýchlosti 1676m/sek je to cca 600metrov. "Raketa minula prilietavajúci iracký Scud", ktorý zasiahol tábor americkej armády.
- Ariane 5 (v roku 1996) havarovala kvôli chybe pri konverzii čísla FP (64b) na signed integer (16b) ("nezmestilo sa") Predpokladaná cena nehody: \$500 million

Pr.: Zobrazenie FP čísiel - "malých" (1/3)

- 8-bitov FP číslo
 - Znamienko bit č.7.
 - 4 bity exponent, s posunutím 7.
 - 3 bity normov. mantisa
- Niečo čo sa podobá na IEEE Formát
 - Normované a nenormované čísla
 - zobrazenie 0, NaN, nekonečna)

_7	6	3 2		
S		B-Exp	N-Mantisa	

Pr.: Zobrazenie FP čísiel - "malých" (2/3)

B-Exp B-Exp ₂		E ₁₀	2 ^E	
0	0000	-6	1/64	(nenormované)
1	0001	-6	1/64	(normované)
2	0010	-5	1/32	
3	0011	-4	1/16	
4	0100	-3	1/8	
5	0101	-2	1/4	
6	0110	-1	1/2	
7	0111	0	1	
8	1000	+1	2	
9	1001	+2	4	
10	1010	+3	8	
11	1011	+4	16	
12	1100	+5	32	
13	1101	+6	64	
14	1110	+7	128	
15	1111	+8	(∞, Na	aN).

Pr.: Zobrazenie FP čísiel - "malých" (3/3)

	S B-Exp	N-Man	E ₁₀	číslo	
Nenormaliz. čísla	0 0000 0 0000 0 0000	000 001 010	-6 -6 -6	0 1/8*1/64 = 1/512 2/8*1/64 = 2/512	← skoro nula
	0 0000 0 0000 0 0001 0 0001	110 111 000 001	-6 -6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512 8/8*1/64 = 8/512 9/8*1/64 = 9/512	← najväčš.nenorm. ← najmen. norm.
Normaliz. čísla	0 0110 0 0110 0 0111 0 0111	110 111 <i>000</i> 001	-1 -1 0 0	14/8*1/2 = 14/16 15/8*1/2 = 15/16 8/8*1 = 1 9/8*1 = 9/8	← skoro 1 (<1) ← skoro 1 (>1)
	0 0111 0 1110 0 1110 0 1111	010 110 111 000	0 7 7 8	10/8*1 = 10/8 14/8*128 = 224 15/8*128 = 240 ∞	← najväčš. norm

Literatúra:

- [1] Clements,A: The Principles of Computer Hardware, Oxford
- [2] Stalling, W.: Computer Organization and Architecture, principles ...,
- [3] Jelšina, M.: Architektúry počítačových systémov,