Algebra I Blatt 6

Thorben Kastenholz Jendrik Stelzner

25. Mai 2014

Aufgabe 1 und Aufgabe 4

Im Folgenden sei k ein (nicht notwendigerweise unendlicher) Körper und V ein endlichdimensionaler k-Vektorraum. Für Teilmengen $X\subseteq V$ wollen wir untersuchen, in welchen Teilmengen von V X Zariski-dicht liegt, und wie sich Zariski-Dichtheit charakterisieren lässt.

Hierfür bemerken wir, dass die Teilmengen von V, in denen X Zariski-dicht liegt, unter Vereinigung abgeschlossen sind: Ist $(U_i)_{i\in I}$ eine nichtleere Kollektion von Mengen mit $X\subseteq U_i\subseteq V$ für alle $i\in I$, so dass X für alle $i\in I$ Zariski-dicht in U_i liegt, so liegt X auch Zariski-dicht in

$$U := \bigcup_{i \in I} U_i.$$

Denn es ist $I \neq \emptyset$ und deshalb $X \subseteq U \subseteq V$, und für $f \in \mathcal{P}(V)$ mit $f_{|X} = 0$ ist $f_{|U_i} = 0$ für alle $i \in I$, also auch $f_{|U} = 0$.

Diese Beobachtung motiviert die folgende Definition:

Definition 1. $F\ddot{u}r X \subseteq V$ ist

$$Z(X) := \bigcup \left\{ Y \mid X \subseteq Y \subseteq V \text{ und } X \text{ liegt Zariski-dicht in } Y \right\}$$

 $\textit{der Zariski-Abschluss von } X.\ X\ \textit{heißt Zariski-abgeschlossen, wenn } Z(X) = X.$

Mithilfe des Zariski-Abschlusses können wir nun den Begriff der Zariski-Dichtheit charakterisieren.

Lemma 1. Sei $X \subseteq V$.

- a) X liegt genau dann Zariski-dicht in $Y \subseteq V$, wenn $X \subseteq Y \subseteq Z(X)$. Inbesondere ist Z(X) die größte Teilmenge von V, in der X Zariski-dicht liegt.
- b) X ist genau dann Zariski-abgeschlossen, wenn X in keiner echt größeren Teilmenge von V Zariski-dicht liegt.
- c) Z(X) ist die kleinste Zariski-abgeschlossene Menge, die X enthält.
- Beweis. a) Liegt X Zariski-dicht in $Y \subseteq V$, so ist ist $X \subseteq Y$, und nach der Definition von Z(X) auch $Y \subseteq Z(X)$. Da die Mengen, in denen X Zariski-dicht liegt, unter Vereinigung abgeschlossen sind, ist X Zariski-dicht in Z(X), und damit ist auch in jeder Teilmenge $Y \subseteq Z(X)$ mit $X \subseteq Y$.

b) Ist X Zariski-abgeschlossen, so gilt für jede Teilmenge $Y\subseteq V$, in der X Zariski-dicht liegt, dass $Y\subseteq Z(X)=X$. Liegt andererseits X in keiner echt größeren Teilmenge von V Zariski-dicht, so ist

$$\{Y \mid X \subseteq Y \subseteq V \text{ und } X \text{ liegt Zariski-dicht in } Y\} = \{X\}$$

und somit Z(X) = X.

c) Z(X) ist Zariski-abgeschlossen, denn X liegt Zariski-dicht in Z(X). Für jede Teilmenge $Y \subseteq V$, in der Z(X) Zariski-dicht liegt, liegt deshalb auch X Zarisk-dicht, weshalb $Y \subseteq Z(X)$.

Für eine Zariski-abgeschlossene Teilmenge $Y\subseteq V$ mit $X\subseteq Y\subseteq Z(X)$ ist, da X Zariski-dicht in Z(X) liegt, auch Y Zariski-dicht in Z(X). Da Y Zariski-abgeschlossen ist, also in keiner echt größeren Teilmenge von V Zariski-dicht liegt, ist Z(X)=Y.

Für Teilmengen $X\subseteq Y\subseteq V$ ist X genau dann Zariski-dicht in Y, wenn für jede Funktion $f\in \mathcal{P}(V)$ die Einschränkung $f_{|Y}$ bereits eindeutig durch $f_{|X}$ bestimmt ist. Dies legt die Vermutung nahe, dass sich der Zariski-Abschluss und die Zariski-Abgeschlossenheit von $X\subseteq V$ mithilfe von Polynomfunktionen formulieren lassen.

Lemma 2. Sei $X \subseteq V$. Dann ist

$$Z(X) = \mathcal{V}(\mathcal{I}(X)),$$

und X ist genau dann Zariski-abgeschlossen, wenn

$$X = \mathcal{V}(\mathfrak{a}).$$

für eine Teilmenge $\mathfrak{a} \subseteq \mathcal{P}(V)$.

Beweis. Sei $\mathfrak{a} \subseteq \mathcal{P}(V)$. Sei $Y \subseteq V$, so dass $\mathcal{V}(\mathfrak{a})$ Zariski-dicht in Y liegt. Für alle $f \in \mathfrak{a}$ ist $f_{|\mathcal{V}(\mathfrak{a})} = 0$, also auch $f_{|Y} = 0$. Daher ist $Y \subseteq \mathcal{V}(\mathfrak{a})$. Da $\mathcal{V}(\mathfrak{a})$ in keiner echt größeren Teilmenge von V Zariski-dicht liegt, ist $\mathcal{V}(\mathfrak{a})$ nach Lemma 1 Zariski-abgeschlossen.

X ist Zariski-dicht in $\mathcal{V}(\mathcal{I}(X))$, da $X\subseteq\mathcal{V}(\mathcal{I}(X))$ und für alle $f\in\mathcal{P}(V)$

$$f_{|X} = 0 \Rightarrow f \in \mathcal{I}(X) \Rightarrow f_{|\mathcal{V}(\mathcal{I}(X))} = 0.$$

Deshalb ist

$$X \subseteq \mathcal{V}(\mathcal{I}(X)) \subseteq Z(X)$$
.

Da $\mathcal{V}(\mathcal{I}(X))$ Zariski-abgeschlossen ist, ist auch $\mathcal{V}(\mathcal{I}(X)) \supseteq Z(X)$. Also ist

$$Z(X) = \mathcal{V}(\mathcal{I}(X)).$$

Insbesondere ist X genau dann Zariski-abgeschlossen, wenn

$$X = \mathcal{V}(\mathcal{I}(X)).$$

Wie der Begriff der Zariski-Abgeschlossenheit bereits nahelegt, lassen sich die bisherigen Beobachtungen auch topologisch formulieren.

Lemma 3. Die Zariski-abgeschlossenen Teilmengen von V definieren eine Topologie auf V, in der die abgeschlossenen Mengen genau die Zariski-abgeschlossenen Mengen sind.

Beweis. $\emptyset=\mathcal{V}(\{1\})$ und $V=\mathcal{V}(\{0\})$ sind Zariski-abgeschlossen. Für eine Familien $(A_i)_{i\in I}$ von Zariski-abgeschlossenen Mengen ist nach Lemma 2 auch $\bigcap_{i\in I}A_i$ Zariski-abgeschlossen, da

$$\bigcap_{i \in I} A_i = \bigcap_{i \in I} \mathcal{V}(\mathcal{I}(A_i)) = \mathcal{V}\left(\bigcup_{i \in I} \mathcal{I}(A_i)\right).$$

Sind $A,B\subseteq V$ Zariski-abgeschlossen, so ist auch $A\cup B$ Zariski-abgeschlossen: Ist $A\cup B=V$ so ist nichts zu zeigen. Ansonsten sei $y\in V\smallsetminus (A\cup B)$ beliebig aber fest. Da A Zariski-abgeschlossen ist, ist A nicht Zariski-dicht in $A\cup \{y\}$. Es gibt deshalb ein $f\in \mathcal{P}(V)$ mit

$$f_{|A} = 0$$
 und $f(y) \neq 0$

Analog gibt es $g \in \mathcal{P}(V)$ mit

$$g_{|B} = 0 \quad \text{und} \quad g(y) \neq 0$$

Für $fg \in \mathcal{P}(V)$ ist deshalb

$$(fg)_{|A\cup B}=0\quad \text{und}\quad (fg)(y)\neq 0$$

Also ist $A \cup B$ nicht Zariski-dicht in $A \cup B \cup \{y\}$. Wegen der Beliebigkeit von $y \in V \setminus (A \cup B)$ zeigt dies, dass $A \cup B$ in keiner echt größeren Teilmenge von V Zariski-dicht liegt, weshalb $A \cup B$ Zariski-abgeschlossen ist.

Daraus ergibt sich induktiv, dass $A_1 \cup \ldots \cup A_n$ für alle Zariski-abgeschlossenen Mengen $A_1, \ldots, A_n \subseteq V$ ebenfalls Zariski-abgeschlossen ist.

Aufgabe 2

Für alle

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(k)$$

ist

$$A^2 = \begin{pmatrix} a^2 + bc & ab + bd \\ ac + cd & bc + d^2 \end{pmatrix},$$

also

$$tr(A) = a + d \text{ und } tr_2(A) = a^2 + d^2.$$

Für $I, J \subseteq M_2(k)$ mit

$$I := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 und $J := \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$

ist also

$$tr(I) = tr(J) = tr_2(I) = tr_2(J) = 0.$$

Deshalb ist f(I) = f(J) für alle $f \in k[\text{tr}, \text{tr}_2]$. Für $\det \in \mathcal{P}(M_2(k))^{\text{GL}_2(k)}$ ist jedoch

$$\det(I) = 1 \neq 0 = \det(J).$$

Das zeigt, dass det $\notin k[\text{tr},\text{tr}_2]$. Also wird $\mathcal{P}(M_2(k))^{\text{GL}_2(k)}$ nicht von tr, tr₂ erzeugt.

Aufgabe 3

(a)

Es sei

$$b_1 := p_2 - p_1 \neq 0$$

und $b_2 \in V$, so dass $\{b_1, b_2\}$ eine k-Basis von V ist. Ist

$$p_1 = \lambda_1 b_1 + \lambda_2 b_2,$$

so ist

$$p_2 = (\lambda_1 + 1)b_1 + \lambda_2 b_2.$$

Für die Koordinatentransformationen

$$\psi_i: V \to k, \mu_1 b_1 + \mu_2 b_2 \mapsto \mu_i$$
 für $i = 0, 1,$

so ist, wie aus der Vorlesung bekannt,

$$\mathcal{P}(V)(\{p_1\}) = (\psi_1 - \lambda_1, \psi_2 - \lambda_2)$$
 und $\mathcal{P}(V)(\{p_2\}) = (\psi_1 - \lambda_1 - 1, \psi_2 - \lambda_2)$.

Es ist klar, dass

$$\mathcal{I}(\{p_1, p_2\}) = \mathcal{I}(\{p_1\}) \cap \mathcal{I}(\{p_2\}) \supseteq \mathcal{I}(\{p_1\}) \cdot \mathcal{I}(\{p_2\}).$$

Sei $f \in \mathcal{I}(\{p_1, p_2\})$ beliebig aber fest. Da $f \in \mathcal{I}(\{p_1\})$, also

$$f \in (\psi_1 - \lambda_1, \psi_2 - \lambda_2),$$

gibt es $r_1, r_2 \in \mathcal{P}(V)$ mit

$$f = r_1(\psi_1 - \lambda_1) + r_2(\psi_2 - \lambda_2).$$

Da auch $f \in \mathcal{I}(\{p_2\})$ ist

$$0 = f(p_2) = r_1(p_2)(\lambda_1 + 1 - \lambda_1) + r_2(p_2)(\lambda_2 - \lambda_2) = r_1(p_2).$$

Daher ist $r_1 \in \mathcal{I}(\{p_2\})$. Es gibt also $s_1, s_2 \in \mathcal{P}(V)$ mit

$$r_1 = s_1(\psi_1 - \lambda_1 - 1) + s_2(\psi_2 - \lambda_2).$$

Daher ist

$$f = s_1(\psi_1 - \lambda_1)(\psi_1 - \lambda_1 - 1) + s_2(\psi_1 - \lambda_1)(\psi_2 - \lambda_2) + r_2(\psi_2 - \lambda_2)$$

= $s_1(\psi_1 - \lambda_1)(\psi_1 - \lambda_1 - 1) + (s_2(\psi_1 - \lambda_1) + r_2)(\psi_2 - \lambda_2)$

Da

$$\mathcal{I}(\{p_1\}) \cdot \mathcal{I}(\{p_2\})$$
= $(\psi_1 - \lambda_1, \psi_2 - \lambda_2) \cdot (\psi_1 - \lambda_1 - 1, \psi_2 - \lambda_2)$
= $((\psi_1 - \lambda_1)(\psi_1 - \lambda_1 - 1), (\psi_2 - \lambda_2)(\psi_1 - \lambda_1 - 1),$
 $(\psi_1 - \lambda_1)(\psi_2 - \lambda_2), (\psi_2 - \lambda_2)^2)$
= $((\psi_1 - \lambda_1)(\psi_1 - \lambda_1 - 1), (\psi_2 - \lambda_2))$

ist $f \in \mathcal{I}(\{p_1\}) \cdot \mathcal{I}(\{p_2\})$. Wegen der Beliebigkeit von $f \in \mathcal{I}(\{p_1, p_2\})$ folgt, dass

$$\mathcal{I}(\{p_1, p_2\}) = \mathcal{I}(\{p_1\}) \cdot \mathcal{I}(\{p_2\}).$$

(b)

Es sei kein beliebiger Körper, V=k und $X=Y=\{0\}.$ Dann ist

$$\mathcal{I}(X \cup Y) = \mathcal{I}(\{0\}) = (x) \subseteq \mathcal{P}(V),$$

wobe
i $x:k\to k, \lambda\mapsto \lambda.$ Daher ist

$$\mathcal{I}(X) \cdot \mathcal{I}(Y) = (x) \cdot (x) = (x \cdot x) = (x^2) \neq (x) = \mathcal{I}(X \cup Y).$$