

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
27 September 2001 (27.09.2001)

PCT

(10) International Publication Number
WO 01/70245 A1

- (51) International Patent Classification⁷: **A61K 35/28** (74) Agents: **PARENT, Annette, S. et al.**; Townsend and Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111-3834 (US).
- (21) International Application Number: **PCT/US01/09616**
- (22) International Filing Date: 22 March 2001 (22.03.2001) (83) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (25) Filing Language: English
- (26) Publication Language: English
- (30) Priority Data:
- | | | |
|------------|------------------------------|----|
| 60/191,274 | 22 March 2000 (22.03.2000) | US |
| 60/204,249 | 15 May 2000 (15.05.2000) | US |
| 60/264,003 | 23 January 2001 (23.01.2001) | US |
- (71) Applicant (for all designated States except US): **CORIXA CORPORATION** [US/US]; 1124 Columbia Street, Suite 200, Seattle, WA 98104 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): **CARTER, Darrick** [US/US]; 321 Summit Avenue East, Seattle, WA 98102 (US). **ZHU, Shirley** [US/US]; 152 Oxford Lane, Apt. 1, San Bruno, CA 94066 (US). **ARIMILLI, Subhashini** [US/US]; 4789 Ridgewood Drive, Fremont, CA 94555 (US). **WANG, Aijun** [CN/US]; 3106 213th Place SE, Issaquah, WA 98029 (US).

Published:

- with international search report
— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 01/70245 A1

(54) Title: IMMUNE MEDIATORS AND RELATED METHODS

(57) Abstract: The present invention relates to nucleic acids encoding single chain MHC class II molecules that form multimers via inter-chain multimerization domains, and methods of treating autoimmune disease using the same.

Docket: COUL-012/01US
USSN: 09/875,494
Ref. No. F1

IMMUNE MEDIATORS AND RELATED METHODS

CROSS-REFERENCES TO RELATED APPLICATIONS

This application is related to U.S. Serial No. 60/191,274, filed March 22,

- 5 2000; U.S. Serial No. 60/204,249, filed May 15, 2000; and U.S. Serial No. 60/264,003,
filed January 23, 2001. Each of the aforementioned applications are herein incorporated
by reference in their entirety.

This application is also related to U.S. Serial No. 09/261,811, filed March
3, 1999; which is a continuation of U.S. Serial No. 08/657,581, filed June 7, 1996, now
10 abandoned; which is a continuation in part of U.S. Serial No. 08/480,002, filed June 7,
1995, now abandoned; U.S. Serial No 09/184,692, filed November 2, 1998, now
abandoned; U.S. Serial No. 08/483,241, filed June 7, 1995; U.S. Serial No. 08/482,133,
filed June 7, 1995; and U.S. Provisional Application No. 60/005,964, filed October 27,
1995.

15

BACKGROUND OF THE INVENTION

T cells, unlike B cells, do not directly recognize antigens. Instead, an
accessory cell must first process an antigen and present it in association with an MHC
molecule in order to elicit a T cell-mediated immunological response. The major function
20 of MHC glycoproteins appears to be the binding and presentation of processed antigen in
the form of short antigenic peptides.

In addition to binding foreign or "non-self" antigenic peptides," MHC
molecules can also bind "self" peptides. If T lymphocytes then respond to cells
presenting "self" or autoantigenic peptides, a condition of autoimmunity results. Over 30
25 autoimmune diseases are presently known, including myasthenia gravis (MG), multiple
sclerosis (MS), systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), insulin-
dependent diabetes mellitus (IDDM) , etc. Characteristic of these diseases is an attack by
the immune system on the tissues of the host. In non-diseased individuals, such attack
does not occur because the immune system recognizes these tissues as "self."
30 Autoimmunity occurs when a specific adaptive immune response is mounted against self
tissue antigens.

There is therefore currently a great interest in developing pharmaceuticals
based on the growing understanding of the structure and function of the major

histocompatibility complex (MHC) antigens. Identification of synthetic autoantigenic peptides, and demonstration that these peptides bind selectively to MHC molecules associated with disease and that stimulates T cells would help to implicate a particular peptide or peptide:MHC complex in susceptibility to an autoimmune disease. In particular, the development of single chain MHC class II complexes would be particularly useful in treatment of a number of diseases associated with antigen presentation by MHC molecules. Furthermore, the development of single chain, multimeric complexes would be of interest (see, e.g., WO 93/10220, WO 98/05684, WO 97/35991, WO 98/03552, WO 99/13095, WO 98/06749, WO 99/09064, and U.S. Patent 5,869,270).

10

SUMMARY OF THE INVENTION

The present invention provides recombinant nucleic acid constructs that encode single chain, recombinant MHC class II molecules comprising a β 1 domain and an α 1 domain that may or may not be further linked to an antigenic peptide. In one embodiment, the single chain polypeptide is a β 1 domain and an α 1 domain. In another embodiment, the single chain polypeptide is a β 1 domain- β 2 domain (a β chain) and an α 1 domain- α 2 domain (an α chain). The single chain constructs of the invention can be further dimerized or multimerized by inter-chain fusion. The fusion sequence (also referred to as a dimerization or multimerization sequence) can be any sequence that allows for covalent or non-covalent linkages between the molecules of the invention. As shown below, a preferred means for carrying this out is through use of segments from immunoglobulin family proteins (e.g., antibodies, MHC molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds (e.g., constant regions from Ig light chains, e.g. C κ or C λ , or constant regions from Ig heavy chains, e.g., CH1, hinge, CH2, or CH3). In another embodiment, a leucine zipper domain forms a non-covalent linkage. One of skill will recognize that any of a number of polypeptide sequences can be used for this purpose. The single chain molecules of the invention thus can be multimers wherein each single chain molecule is from a different MHC class II allele. In addition, each single chain molecule in the multimer can be bound to a different antigen.

In one embodiment, monomeric and dimeric forms of recombinant single chain mouse I-AS-peptide complexes, fused to an antigenic MBP 90-101 peptide with

3

flexible linkers were constructed. The recombinant single chain I-AS proteins share structural similarity to that of crystallized native human MHC class II protein as determined by protein modeling. The recombinant single chain proteins were expressed in *E. coli* and in an insect expression system and purified by affinity chromatography and 5 FPLC. The purified single chain recombinant I-AS proteins showed *in vitro* biological activity as assayed using an antigen-specific mouse T cell clone. The *in vivo* activity of the recombinant single chain I-AS fusion proteins in the EAE model using susceptible SJL mice shows that treatment with the recombinant single chain I-AS proteins prevents mortality and significantly reduces paralysis induced by myelin homogenate.

10 Histological examination of sections from animal spinal cord reveals that these treatments also reduce the inflammatory lesions. These results demonstrate that the single chain MHC class II molecules have therapeutic benefit as antigen-specific drugs for the treatment of autoimmune diseases.

In another embodiment, novel linkers are provided for forming single 15 chain MHC class II molecules. These linkers can be used with the multimer constructs described above. In another embodiment, the constructs of the invention are optimized for prokaryotic expression, using codons adjusted for *E. coli* codon bias.

The present invention also provides MHC class II heterodimers, wherein a 20 recombinant β chain and a recombinant α chain are covalently linked using polypeptide fusion segments, e.g., from immunoglobulin family proteins (e.g., antibodies, MHC molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds (e.g., constant regions from Ig light chains, e.g. C κ or C λ , or constant regions from Ig heavy chains, e.g., CH1, hinge, CH2, or CH3). Such a heterodimer can also be "dimerized" or "multimerized" by the use of additional fusion 25 domains, such as leucine zipper domains or immunoglobulin domains (see Figure 10).

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1. Schematic structure of the recombinant single chain I-AS.MBP. β 1 α 1 (monomer) and I-AS.MBP. β 1 β 2 α 1 α 2.CK (dimer) proteins.

30 Figure 2. *In vitro* biological activities of the recombinant I-AS proteins compared with APC+ antigenic peptide in the mouse T cell clone, HS-1.
A. I-AS.MBP. β 1 α 1, monomer, B. I-AS.MBP.C κ , dimer, and C. APC+ antigenic

peptide. The positive (anti-CD3) and the negative (HS-1 cell alone) controls are also shown in each panel.

Figure 3. Diagram of the EAE model and standard for EAE scoring.

Figure 4. The EAE model studies. The recombinant I-AS proteins were administered to SJL mice on day 1, 4, 7, and II by i.v. injection after inducing the disease with myelin emulsified in CFA. The animals were evaluated for neurological dysfunction. Panel A: Untreated, injected with same amount of PBS solution. Panel B. Treated with the recombinant I-AS.MBP.Ck protein, a dimer form. Panel C: Treated with the recombinant I-AS. β 1 α 1. This recombinant molecule does not carry the antigenic peptide. Panel D: Treated with the recombinant I-AS.MBP. β 1 α 1, a monomer form.

Figure 5 shows a schematic representation of a β 1- α 1 single chain MHC class II peptide complex that is a dimer with two peptide specificities.

Figure 6 shows a schematic representation of a β 1 β 2- α 1 α 2 single chain MHC class II peptide complex that is a dimer with two peptide specificities.

Figure 7 shows a schematic representation of a β 1 β 2- α 1 α 2 single chain MHC class II peptide complex that is a tetramer with four peptide specificities.

Figure 8 shows a schematic representation of a β 1 β 2- α 1 α 2 single chain MHC class II peptide complex that is a tetramer with two peptide specificities and two different MHC class II alleles.

Figure 9 shows the effect of different recombinant MHC class II molecules on the development of EAD (day 60+).

Figure 10. Diagram of β 1- α 1 single chain MHC class II peptide complex; diagram of recombinant β 1 β 2 chains fused to recombinant α 1 α 2 chains via a fusion domain from an immunoglobulin; and diagram of multimerized MHC class II molecules.

Figure 11. Sequence comparison of mouse CO608 single chain molecules.

Figure 12. Sequence comparison of mouse CO561 single chain molecules.

DETAILED DESCRIPTION OF THE INVENTION

Introduction

The present invention provides recombinant DNA constructs that encode single chain MHC class II molecules that may or may not be further linked to an antigenic peptide. Typically, the constructs comprise a first DNA segment encoding a β 1 domain

of a selected MHC class II molecule; a second DNA segment encoding a $\alpha 1$ domain of the selected MHC class II molecule; and a first linker DNA segment connecting in-frame the first and second DNA segments; wherein linkage of the first DNA segment to the second DNA segment by the first linker DNA segment results in a fused first DNA-first linker-second DNA polysegment. The constructs of the invention may also comprise a third DNA segment encoding an antigenic peptide capable of associating with a peptide binding groove of the selected MHC class II molecule and a second linker DNA segment connecting in-frame the third DNA segment to the fused first DNA-first linker-second DNA polysegment.

In another embodiment, the present invention also provides recombinant components of an MHC class II heterodimer, which comprise a fusion domain. One recombinant component comprises a $\beta 1$ domain, or optionally a $\beta 1$ domain- $\beta 2$ domain (i.e., a β chain). One recombinant component comprises an $\alpha 1$ domain, or optionally an $\alpha 1$ domain- $\alpha 2$ domain (i.e., an α chain). The two recombinant chains are linked, either covalently, e.g., via a disulfide bond, or non covalently, using the fusion domain. Such molecules can also be made into multimers using additional fusion or multimerization domains. In one embodiment, the invention provides the following recombinant components of an MHC class II heterodimer: pCB220, which is an IAS.MBP.alpha chain fused to an IgG2a CH1 and truncated hinge region; pCB223, which is an IAS.MBP.alpha chain fused to an IgG2a CH1.H.CH2.CH3; and pCB229, which is an IAS.MBP.beta chain fused to a mouse C κ domain. These recombinant components can be fused via the fusion domain to form a MHC class II heterodimer molecule that is covalently linked via a disulfide bond at the fusion domain.

The present invention provides single chain MHC class II molecules that comprise an additional polypeptide sequence that allows for inter-chain dimerization of the single chain molecules of the invention. The additional polypeptide allows multimerization of the single chain MHC class II molecules, to produce, e.g., dimers and tetramers. The sequence can be any sequence that allows for covalent or non-covalent linkages between the molecules of the invention. In one embodiment, the single chain molecules are covalently linked using chemical methods known to those of skill in the art, e.g., photoaffinity methods or homo-bifunctional protein cross-linkers (see, e.g., Hermanson *et al.*, *Bioconjugate Techniques*, (1996)). In one embodiment, the molecules

6

are covalently linked using heterobifunctional protein cross-linkers. As shown below, one means for carrying this out is through use of segments from immunoglobulin family proteins (e.g., antibodies, MHC molecules, T cell receptors and the like) that have cysteine residues capable of forming interchain disulfide bonds. An example shown 5 below is the use of the constant region of the kappa chain of an antibody (C_k), from either a heavy or a light chain. Other dimerization sequences include a leucine zipper, a STAT protein N-terminal domain, or the FK506 binding protein (see, e.g., O'Shea, *Science* 254: 539 (1991), Barahmand-Pour *et al.*, *Curr. Top. Microbiol. Immunol.* 211:121-128 (1996); Klemm *et al.*, *Annu. Rev. Immunol.* 16:569-592 (1998); Ho *et al.*, *Nature* 382:822-826 10 (1996)). One of skill will recognize that any of a number of polypeptide sequences can be used for this purpose.

In addition, the multimeric, single chain class II molecules of the invention comprise at least two different MHC class II alleles that are associated with an autoimmune disease state, and/or at least two different autoantigenic peptides that are 15 associated with a particular autoimmune disease state. In one example, the multimeric, single chain class II molecules have chains from different DR2 alleles, e.g., DRB5*0101 and DRB1*1501. In another embodiment, the autoantigenic peptides are peptides associated with multiple sclerosis, e.g., MBP (e.g., amino acid residues 83-102Y83), PLP (e.g., amino acid residues 40-60, 89-106, 95-117, and 185-206); and MOG. In addition, 20 other antigens associated with autoimmune disease, such as acetylcholine receptor and type II collagen, can be linked to the single chain molecules of the invention..

In a further embodiment, the single chain class II molecules of the invention have novel linkers, as described herein. The mammalian MHC class II single chain constructs of the invention may also be constructed to use preferred prokaryotic 25 codons, for expression, e.g., in *E. coli*, using codon preference tables and methods known to those of skill in the art.

Definitions

Prior to setting forth the invention, it may be helpful to an understanding 30 thereof to provide definitions of certain terms to be used hereinafter:

Single chain MHC class II molecule: As used herein this term refers to a fusion protein such as the recombinant single chain MHC class II complex of the

invention, which optionally also is fused to a peptide to form a single chain MHC class:peptide complex. The fusion proteins of the invention can also be multimers, having two, four or more single chain molecules linked covalently or non-covalently through multimerization domains in the single chain molecule. A single chain molecule 5 of the invention typically comprises at least an MHC class II β 1 domain and an MHC class II α 1 domain, optionally β 1 β 2 α 1 α 2 domains or any combination thereof in any order. Such molecules are also known as "fused heterodimers." Optionally, the single chain molecules are soluble, that is, they lack the naturally occurring cytoplasmic and transmembrane MHC class II domains.

10 A domain of a selected MHC molecule: A portion of an MHC domain which is sufficient to form, either alone, or in combination with another portion of an MHC domain, a peptide binding site which is capable of presenting an antigenic peptide in such a fashion that it is recognized by a T cell receptor. Such MHC domains would include the extracellular portion of the two polypeptide chains of Class II MHC. This 15 would include the α chain (α 1 and α 2 domains) and β chain (β 1 and β 2 domains) of Class II MHC. This would include β 1 and α 1, β 1, β 2 and α 1, α 2, α 1 or α 2 independent of the other, or α 1 and α 2 in tandem (α 1 α 2). It would also include β 1 or β 2 independent of the other, or β 1 and β 2 in tandem (β 1 β 2). This would also include any suitable combination 20 of the α 1, α 2, β 1, and β 2 domains. The domains can be directly linked, or can be linked via an amino acid linker.

Linker DNA segment: A segment of DNA encoding from about 1 to about 50, preferably from about 5 to about 25 amino acids, which forms a flexible link between two DNA segments. This flexible link allows the two DNA segments to attain a proper configuration, such as an MHC peptide binding groove, or allows a peptide to properly 25 bind into such a groove.

Antigenic peptide: The immunological properties of MHC histocompatibility proteins are largely defined by the antigenic peptide that is bound to them. An antigenic peptide is one which contains an epitope (an amino acid sequence) recognized by immune cells, e.g., T cells, and is capable of stimulating an MHC-mediated 30 immune response.. Antigenic peptides for a number of autoimmune diseases are known. For example, in experimentally induced autoimmune diseases, antigens involved in pathogenesis have been characterized: in arthritis in rat and mouse, native type II collagen

is identified in collagen-induced arthritis, and mycobacterial heat shock protein in adjuvant arthritis (Stuart *et al.*, *Ann. Rev. Immunol.* 2:199-218, 1984; and van Eden *et al.*, *Nature* 331:171-173, 1988); thyroglobulin has been identified in experimental allergic thyroiditis (EAT) in mice (Marion *et al.*, *J. Exp. Med.* 152:1115-1120, 1988); acetyl-choline receptor (AChR) in experimental allergic myasthenia gravis (EAMG) (Lindstrom *et al.*, *Adv. Immunol.* 42:233-284, 1988); and myelin basic protein (MBP) and proteolipid protein (PLP) in experimental allergic encephalomyelitis (EAE) in mouse and rat (Acha-Orbea *et al.*, *Ann. Rev. Imm.* 7:377-405, 1989). In addition, target antigens have been identified in humans: type II collagen in human rheumatoid arthritis (Holoshitz *et al.*, *Lancet* ii:305-309, 1986), acetylcholine receptor in myasthenia gravis (Lindstrom *et al.*, *Adv. Immunol.* 42.:233-284, 1988), and MBP, PLP, and MOG in multiple sclerosis in humans.

MHC: The major histocompatibility complex (MHC) is a family of highly polymorphic proteins, divided into two classes, Class I and Class II, which are membrane-associated and present antigen to T lymphocytes (T cells). MHC Class I and Class II molecules are distinguished by the types of cells on which they are expressed, and by the subsets of T cells which recognize them. Class I MHC molecules (e.g., HLA-A, -B and -C molecules in the human system) are expressed on almost all nucleated cells and are recognized by cytotoxic T lymphocytes (CTL), which then destroy the antigen-bearing cells. Class II MHC molecules (HLA-DP, -DQ and -DR, for example, in humans) are expressed primarily on the surface of antigen-presenting cells, such as B lymphocytes, dendritic cells, macrophages, and the like. Class II MHC is recognized by CD4⁺ T helper lymphocytes (T_H). T_H cells induce proliferation of both B and T lymphocytes, thus amplifying the immune response to the particular antigenic peptide that is displayed (Takahashi, *Microbiol. Immunol.*, 37:1-9, 1993).

Two distinct antigen processing pathways are associated with the two MHC classes. Intracellular antigens, synthesized inside of the cell, such as from viral or newly synthesized cellular proteins, for example, are processed and presented by Class I MHC. Exogenous antigens, taken up by the antigen-presenting cell (APC) from outside of the cell through endocytosis, are processed and presented by Class II MHC. After the antigenic material is proteolytically processed by the MHC-bearing cell, the resulting antigenic peptide forms a complex with the antigen binding groove of the MHC molecule

through various noncovalent associations. The MHC-peptide complex on the cell surface is recognized by a specific T cell receptor on a cytotoxic or helper T cell.

The MHC of humans (also referred to as human leukocyte antigens (HLA)) on chromosome 6 has three loci, HLA-A, HLA-B and HLA-C, the first two of which have a large number of alleles encoding alloantigens. An adjacent region, known as **HLA-D**, is subdivided into **HLA-DR**, **HLA-DQ** and **HLA-DP**. The **HLA** region is now known as the human MHC region, and is equivalent to the H-2 region in mice. HLA-A, -B and -C resemble mouse H-2K, -D, and -L and are the Class I MHC molecules. HLA-DP, -DQ and -DR resemble mouse I-A and I-E and are the Class II molecules. MHC glycoproteins of both classes have been isolated and characterized (*see Fundamental Immunology*, 2d Ed., Paul (ed.), (1989); and Roitt *et al.*, *Immunology*, 2d Ed., (1989) , which are both incorporated herein by reference).

Human MHC Class I molecules consist of a polymorphic type I integral membrane glycoprotein heavy chain of about 46 kD, noncovalently associated with a 12 kD soluble subunit, β_2 -microglobulin. The heavy chain consists of two distinct extracellular regions, the membrane distal, peptide binding region formed by the α_1 and α_2 domains, and the membrane proximal, CD8-binding region derived from the α_3 domain. β_2 - microglobulin is a single, compact immunoglobulin-like domain that lacks a membrane anchor, and exists either associated with the class I heavy chain or free in plasma (Germain and Margulies, *Annu. Rev. Immunol.* 11:403-50, 1993).

Human MHC Class II is a heterodimeric integral membrane protein. Each dimer consists of one α and one β chain in noncovalent association. The two chains are similar to each other, with the α chain having a molecular weight of 32-34 kD and the β chain having a molecular weight of 29-32 kD. Both polypeptide chains contain N-linked oligosaccharide groups and have extracellular amino termini and intracellular carboxy termini.

The extracellular portions of the α and β chain that comprise the class II molecule have been subdivided into two domains of about 90 amino acids each, called α_1 , α_2 , and β_1 , β_2 , respectively. The α_2 and β_2 domains each contain a disulfide-linked loop. The peptide-binding region of the class II molecule is formed by the interaction of the α_1 and β_1 domains. This interaction results in an open-ended, antigenic peptide-binding groove made up of two α helices, and an eight-stranded β -pleated sheet platform.

10

The α and β chains of Class II molecules are encoded by different MHC genes and are polymorphic (see Addas *et al.*, *Cellular and Molecular Immunology*, 2d Ed. (1994), which is incorporated by reference in its entirety). Within the present invention, a preferred α chain is DRA*0101 and a preferred β chain is DR β 1*1501.

5

MHC Class II alleles

The single chain MHC class II:peptide complexes of the present invention can incorporate cDNA from any allele that predisposes or increases the likelihood of susceptibility to a specific autoimmune disease. Specific autoimmune diseases are correlated with specific MHC types. Specific haplotypes have been associated with many of the autoimmune diseases. For example, HLA-DR2 $^+$ and HLA-DR3 $^+$ individuals are at a higher risk than the general population to develop systemic lupus erythematosus (SLE) (Reinertsen *et al.*, *N. Engl. J. Med.* 299:515-18, 1970). Myasthenia gravis has been linked to HLA-D (Safwenberg *et al.*, *Tissue Antigens* 12:136-42, 1978. Susceptibility to rheumatoid arthritis is associated with HLA-D/DR in humans. Methods for identifying which alleles, and subsequently which MHC-encoded polypeptides, are associated with an autoimmune disease are known in the art. Exemplary alleles for IDDM include DR4, DQ8, DR3, DQ3.2.

20 **Uses of single chain MHC class II molecules**

Single chain MHC class II molecules and/or single chain MHC class II:peptide complexes of the present invention can be used as antagonists to therapeutically block the binding of particular T cells and antigen-presenting cells. In addition, the molecules can induce anergy, or proliferative nonresponsiveness, and possibly apoptosis, in targeted T cells, both *in vivo* and *in vitro*. A single chain MHC class II:peptide molecule directed toward a desired autoimmune disease contains the antigenic peptide implicated for that autoimmune disease properly positioned in the binding groove of the MHC molecule, without need for solubilization of MHC or exogenous loading of an independently manufactured peptide.

30 Previous methods for producing desirable MHC Class II histocompatibility proteins have provided material that contains a mixture of antigenic peptides (Buus *et al.*, *Science* 242:1045-1047, 1988; and Rudensky *et al.*, *Nature* 353:622-627, 1991), which

can be only partially loaded with a defined antigenic peptide (Watts and McConnel, *Pro. Natl. Acad. Sci. USA* 83:9660-64, 1986; and Cappellini *et al.*, *Nature* 339:392-94, 1989). Various methods have been developed to produce heterodimers that do not present endogenous antigens (Stern and Wiley, *Cell* 68:465-77, 1992; Ljunggren *et al.*, *Nature* 346:476-80, 1990; and Schumacher *et al.*, *Cell* 62:563-67, 1990) that can be loaded with a peptide of choice. WO 95/23814 and Kozono *et al.* have described production of soluble murine Class II molecules, I-E^{dk} and I-A^d, each with a peptide attached by a linker to the N terminus of the β chain. Ignatowicz *et al.* (*J. Immunol.* 154:38-62, 1995) have expressed membrane-bound I-A^d with peptide attached. These methods incorporate the use of both membrane-bound heterodimer and soluble heterodimer.

The current invention offers the advantage of a recombinant single chain MHC class II molecule made up of two or more MHC domains joined together via a flexible linkage, and onto which is tethered (via an additional flexible linkage) an antigenic peptide which is able to bind to the peptide binding groove presented by the single chain MHC class II molecule. Such a complex provides an MHC molecule which is soluble and, because the MHC class II components and corresponding antigenic peptide are permanently linked into a single chain configuration, there is no need for complex heterodimer truncation or formation. These complexes eliminate inefficient and nonspecific peptide loading. Producing the claimed MHC:peptide complexes by recombinant methodology results in specific, high yield protein production, where the final product contains only the properly configured MHC:peptide complex of choice.

As used herein, a soluble MHC class II molecules is one that does not contain the naturally occurring membrane-associated MHC class II sequences. The soluble MHC molecules of the present invention has never been membrane-associated. Further, the soluble MHC class II molecules do not contain an amino acid sequence that acts as a transmembrane domain or as a cytoplasmic domain.

The present invention therefore provides a single chain MHC class II molecule which optionally includes an antigenic peptide covalently attached to the amino terminal portion of an α or β chain of MHC through a peptide linkage, and the C terminal of the linked α or β chain may be attached to the N terminal portion of another α or β chain, thereby creating a two, three, or four domain MHC molecule. The invention further provides a multimerization domain to provide a multimeric single chain MHC

12

class II molecules. The invention further provides novel linkers, and multimeric MHC class II molecules that are bound to different antigenic peptides.

The amino acid sequence of each of a number of Class I and Class II proteins are known, and the genes or cDNAs have been cloned. Thus, these nucleic acids 5 can be used to express MHC polypeptides. If a desired MHC gene or cDNA is not available, cloning methods known to those skilled in the art may be used to isolate the genes. One such method that can be used is to purify the desired MHC polypeptide, obtain a partial amino acid sequence, synthesize a nucleotide probe based on the amino acid sequence, and use the probe to identify clones that harbor the desired gene from a 10 cDNA or genomic library.

Linkers

Linkers of the current invention may be from about 1 to about 50 amino acids in length, depending on the molecular model of the MHC or MHC:peptide complex.

15 In one embodiment, flexible linkers are made of repeating Gly residues separated by one or more Ser residues to permit a random, flexible motion. In the case of Class II MHC complexes this flexibility accommodates positioning of the α and β segments to properly configure the binding groove, and also allows for maximum positioning of the peptide in the groove. In another embodiment, the linker comprises a CD4 binding site, as 20 described below in the Example section (see also Table 1). In another embodiment, longer linkers between the chains contain flexible residues (e.g. alanine or glycine) and polar residues (e.g. serine and threonine). To inhibit the continuation of secondary structure across the linker, prolines can be added to bracket the linkers. These prolines are known to inhibit the formation of alpha helices and beta sheets. In another 25 embodiment, flexible regions present in the human MHC and in the murine MHC could be used to make a linker by extending the region of interest and ligating the ends together. Finally, a combination of these types of linkers could also be used.

Linker position and length can be modeled based on the crystal structure of MHC Class II molecules (Brown *et al.*, *Nature* 364:33-39, 1993), where $\alpha 1$ and $\beta 1$ are 30 assembled to form the peptide binding groove. Linkers joining segments of the α and β chains together are based on the geometry of the region in the hypothetical binding site and the distance between the C terminus and the N terminus of the relevant segments.

Molecular modeling based on the X-ray crystal structure of Class II MHC (Stern *et al.*, *Nature* 368:215-221, 1994) dictates the length of linkers joining antigenic peptide, α chain segments and β chain segments. The recombinant portions of the molecules of the invention can also be directly linked, without additional amino acids linkers.

5

Identification of autoantigens

The invention also provides methods for preparing responder T-cell clones that proliferate when combined with a selected antigenic peptide presented by a stimulator cell. Such clones can be used to identify and map antigenic peptides associated with autoimmune disease. These peptides can then be incorporated into the single chain MHC class II molecule:peptide complexes of the invention. The method provides isolation and enrichment of non-adherent, CD56⁻, CD8⁺ T cells that are reactive with a selected antigenic peptide. These cells are herein referred to as responder cells.

10 Suitable responder cells can be isolated, for example, from peripheral blood mononuclear cells (PBMNC) obtained from patients prior to or after onset of an autoimmune disease of interest. For example, PBMNCs can be obtained from prediabetic and new onset diabetic patients. These patients can be pre-screened for specific HLA markers, such as DR3-DR4 or DQ3.2, which have the highest association with susceptibility to IDDM. From 15 the collected PBMNCs, a portion is kept to serve as stimulator cells. From the remainder, the desired autoreactive responder cells are purified and isolated by two rounds of plating, to remove adherent cells from the population, followed by removal of monocytes and B cells with nylon wool. Enrichment for non-adherent CD4⁺ T cells is completed by sequential plating of the cells onto plates coated with anti-CD8 and anti-CD6 antibodies.

25

The stimulator cells are pulsed or primed with whole GAD or an appropriate antigenic peptide. For example, stimulator cells from the PBMNCs of IDDM patients can be stimulated with antigenic GAD peptides then combined with PBMNCs or responder cells. After seven or 14 days, responder cell (T cell) clones are generated through limiting dilution and tested for antigen reactivity.

30

These responder cell (T cell) clones can then be used, for example, to map epitopes which bind to MHC and are recognized by a particular T cell. One such method uses overlapping peptide fragments of the autoantigen which are generated by tryptic

digestion, or more preferably, overlapping peptides are synthesized using known peptide synthesis techniques. The peptide fragments are then tested for their ability to stimulate the responder T cell clones or lines (for example, Ota *et al.*, *Nature* 346:183-187, 1990).

Once such a peptide fragment has been identified, synthetic antigenic peptides can be specifically designed, for example, to enhance the binding affinity for MHC and to out-compete any naturally processed peptides. Such synthetic peptides, when combined into a single chain MHC class II molecule:peptide complex, would allow manipulation of the immune system *in vivo*, in order to tolerize or anergize disease-associated activated T cells, thereby ameliorating the autoimmune disease.

Dissecting the functional role of individual peptides and peptide clusters in the interaction of a peptide ligand with an MHC molecule, and also in subsequent T cell recognition and reactivity, is a difficult undertaking due to the degeneracy of peptide binding to the MHC. Changes in T cell recognition or in the ability of an altered peptide to associate with MHC can be used to establish that a particular amino acid or group of amino acids comprises part of an MHC or T cell determinant. The interactions of altered peptides can be further assessed by competition with the parental peptide for presentation to a T cell, or through development of direct peptide-MHC binding assays. Changes to a peptide that do not involve MHC binding could well affect T cell recognition. For example, in a peptide, specific MHC contact points might only occur within a central core of a few consecutive or individual amino acids, whereas those amino acids involved in T cell recognition may include a completely different subset of residues.

In a preferred method, residues that alter T cell recognition are determined by substituting amino acids for each position in the peptide in question, and by assessing whether such change in residues alters the peptide's ability to associate with MHC (Allen *et al.*, *Nature* 327:713-15, 1987; Sette *et al.*, *Nature* 328:395-99, 1987; O'Sullivan *et al.*, *J. Immunol.* 147:2663-69, 1991; Evavold *et al.*, *J. Immunol.* 148:347-53, 1992; Jorgensen *et al.*, *Annu. Rev. Immunol.* 10:835-73, 1992; Hammer *et al.*, *Cell* 74:197-203, 1993; Evavold *et al.*, *Immunol. Today* 14:602-9, 1993; Hammer *et al.*, *Proc. Natl. Acad. Sci. USA* 91:4456-60, 1994; and Reich *et al.*, *J. Immunol.* 154:2279-88, 1994). One method would involve generating a panel of altered peptides wherein individual or groups of amino acid residues are substituted with conservative, semi-conservative or non-conservative residues. A preferred variant of this method is an alanine scan (Ala scan)

where a series of synthetic peptides are synthesized wherein each individual amino acid is substituted with L-alanine (L-Ala scan). Alanine is the amino acid of choice because it is found in all positions (buried and exposed), in secondary structure, it does not impose steric hindrances, or add additional hydrogen bonds or hydrophobic side chains. Alanine substitutions can be done independently or in clusters depending on the information desired. Where the information pertains to specific residues involved in binding, each residue in the peptide under investigation can be converted to alanine and the binding affinity compared to the unsubstituted peptide. Additional structural and conformational information regarding each residue and the peptide as a whole can be gained, for example, by synthesizing a series of analogs wherein each residue is substituted with a D-amino acid such as D-alanine (D-Ala scan) (Galantino *et al.*, in Smith, J. and Rivier, J. (eds.), *Peptides Chemistry and Biology (Proceedings of the Twelfth American Peptide Symposium)*, ESCOM, Leiden, 1992, pp. 404-05). Essential residues can be identified, and nonessential residues targeted for modification, deletion or replacement by other residues that may enhance a desired quality (Cunningham and Wells, *Science* 244:1081-1085, 1989; Cunningham and Wells, *Natl. Acad. Sci. USA*, 88:3407-3411, 1991; Ehrlich *et al.*, *J. Biol. Chem.* 267:11606-11, 1992; Zhang *et al.*, *Proc. Natl. Acad. Sci. USA* 90:4446-50, 1993; see also "Molecular Design and Modeling: Concepts and Applications Part A Proteins, Peptides, and Enzymes," *Methods in Enzymology*, Vol. 202, Langone (ed.), Academic Press, San Diego, CA, 1991).

Truncated peptides can be generated from the altered or unaltered peptides by synthesizing peptides wherein amino acid residues are truncated from the N- or C-terminus to determine the shortest active peptide, or between the N- and C-terminus to determine the shortest active sequence. Such peptides could be specifically developed to stimulate a response when joined to a particular MHC to form a peptide ligand to induce anergy in appropriate T cells *in vivo* or *in vitro*.

Analysis of single chain MHC class II molecule:peptide complexes

The physical and biological properties of the single chain MHC class II molecule:peptide complexes may be assessed in a number of ways. Mass spectral analysis methods such as electrospray and Matrix-Assisted Laser Desorption/Ionization Time Of Flight mass spectrometry (MALDI TOF) analysis are routinely used in the art to

provide such information as molecular weight and confirm disulfide bond formation. FACS analysis can be used to determine proper folding of the single chain complex.

An ELISA (Enzyme-linked Immunosorbent Assay) can be used to measure concentration and confirm correct folding of the single chain MHC class II molecule:peptide complexes. This assay can be used with either whole cells; solubilized MHC, removed from the cell surface; or free single chain MHC class II molecule:peptide complexes of the current invention. In an exemplary ELISA, an antibody that detects the recombinant MHC haplotype is coated onto wells of a microtiter plate. In a preferred embodiment, the antibody is L243, a monoclonal antibody that recognizes only correctly folded HLA-DR MHC dimers. One of skill in the art will recognize that other MHC Class II-specific antibodies are known and available. Alternatively, there are numerous routine techniques and methodologies in the field for producing antibodies (for example, Hurrell, (ed.), *Monoclonal Hybridoma Antibodies: Techniques and Applications*, CRC Press Inc., Boca Raton, FL, 1982), if an appropriate antibody for a particular haplotype does not exist. Anti-MHC Class II antibodies can also be used to purify Class II molecules through techniques such as affinity chromatography, or as a marker reagent to detect the presence of Class II molecules on cells or in solution. Such antibodies are also useful for Western analysis or immunoblotting, particularly of purified cell-secreted material. Polyclonal, affinity purified polyclonal, monoclonal and single chain antibodies are suitable for use in this regard. In addition, proteolytic and recombinant fragments and epitope binding domains can be used herein. Chimeric, humanized, veneered, CDR-replaced, reshaped or other recombinant whole or partial antibodies are also suitable.

In the ELISA format, bound MHC molecules can be detected using an antibody or other binding moiety capable of binding MHC molecules. This binding moiety or antibody may be tagged with a detectable label, or may be detected using a detectably labeled secondary antibody or binding reagent. Detectable labels or tags are known in the art, and include fluorescent, colorimetric and radiolabels, for instance.

Other assay strategies can incorporate specific T-cell receptors to screen for their corresponding MHC-peptide complexes, which can be done either *in vitro* or *in vivo*. For example, an *in vitro* anergy assay determines if non-responsiveness has been induced in the T cells being tested. Briefly, an MHC molecule containing antigenic peptide in the peptide binding groove can be mixed with responder cells, preferably

5 peripheral blood mononuclear cells (PBMN) (a heterogeneous population including B and T lymphocytes, monocytes and dendritic cells), PBMNC lymphocytes, freshly isolated T lymphocytes, *in vivo* primed splenocytes, cultured T cells, or established T cell lines or clones. Responder cells from mammals immunized with, or having a demonstrable cellular immune response to, the antigenic peptide are particularly preferred.

Subsequently, these responder cells are combined with stimulator cells (antigen presenting cells; APCs) that have been pulsed or primed with the same antigenic peptide. In a preferred embodiment, the stimulator cells are antigenic peptide-presenting cells, such as PBMNCs, PBMNCs that have been depleted of lymphocytes, appropriate 10 antigenic peptide-presenting cell lines or clones (such as EBV-transformed B cells), EBV transformed autologous and non-autologous PMNCs, genetically engineered antigen presenting cells, such as mouse L cells or bare lymphocyte cells BLS-1, in particular, DRB1*0401, DRB1*0404 and DRB1*0301 (Kovats *et al.*, *J. Exp. Med.* 179:2017-22, 1994), or *in vivo* or *in vitro* primed or pulsed splenocytes. Stimulator cells from 15 mammals immunized with, or having a demonstrable cellular immune response to, the antigenic peptide are particularly preferred. For certain assay formats, it is preferred to inhibit the proliferation of stimulator cells prior to mixing with responder cells. This inhibition may be achieved by exposure to gamma irradiation or to an anti-mitotic agent, such as mitomycin C, for instance. Appropriate negative controls are also included 20 (nothing; syngeneic APC; experimental peptide; APC + Peptide; MHC:peptide complex; control peptide +/- APC). Further, to assure that non-responsiveness represents anergy, the proliferation assay may be set up in duplicate, +/- recombinant IL-2 since it has been demonstrated that IL-2, can rescue anergized cells.

After an approximately 72 hour incubation, the activation of responder 25 cells in response to the stimulator cells is measured. In a preferred embodiment, responder cell activation is determined by measuring proliferation using ^3H -thymidine uptake (Crowley *et al.*, *J. Immunol. Meth.* 133:55-66, 1990). Alternatively, responder cell activation can be measured by the production of cytokines, such as IL-2, or by determining the presence of responder cell-specific, and particularly T cell-specific, 30 activation markers. Cytokine production can be assayed by testing the ability of the stimulator + responder cell culture supernatant to stimulate growth of cytokine-dependent

cells. Responder cell- or T cell-specific activation markers may be detected using antibodies specific for such markers.

Preferably, the single chain MHC class II molecule:peptide complex induces non-responsiveness (for example, anergy) in the antigenic peptide-reactive responder cells. In addition to single chain MHC class II molecule:peptide complex recognition, responder cell activation requires the involvement of co-receptors on the stimulator cell (the APC) that have been stimulated with co-stimulatory molecules. By blocking or eliminating stimulation of such co-receptors (for instance, by exposing responder cells to purified single chain MHC class II molecule:peptide complex, by 10 blocking with anti-receptor or anti-ligand antibodies, or by "knocking out" the gene(s) encoding such receptors), responder cells can be rendered non-responsive to antigen or to single chain MHC class II molecule:peptide complex.

In a preferred embodiment, responder cells are obtained from a source manifesting an autoimmune disease or syndrome. Alternatively, autoantigen-reactive T 15 cell clones or lines are preferred responder cells. In another preferred embodiment, stimulator cells are obtained from a source manifesting an autoimmune disease or syndrome. Alternatively, APC cell lines or clones that are able to appropriately process and/or present autoantigen to responder cells are preferred stimulator cells. In a particularly preferred embodiment, responder and stimulator cells are obtained from a 20 source with diabetes or multiple sclerosis.

At this point, the responder T cells can be selectively amplified and/or stimulated, thereby producing a subset of T cells that are specific for the antigenic peptide. For instance, antigenic peptide-reactive responder cells may be selected by flow cytometry, and particularly by fluorescence activated cell sorting. This subset of 25 responder cells can be maintained by repetitive stimulation with APCs presenting the same antigenic peptide. Alternatively, responder cell clones or lines can be established from this responder cell subset. Further, this subset of responder cells can be used to map epitopes of the antigenic peptide and the protein from which it is derived.

Other methods to assess the biological activity of the single chain MHC 30 class II molecule:peptide complexes are known in the art and can be used herein, such as using a microphysiometer, to measure production of acidic metabolites in T cells following interaction with antigenic peptide. Other assay methods include competition

assays, comparing single chain MHC class II molecule:complex response with that to the normal antigen. Also measurement production of such indicators as cytokines or γ interferon can provide an indication of complex response.

5 **Animal models of autoimmune disease**

Similar assays and methods can be developed for and used in animal models. For instance, the therapeutic effect of a pharmaceutical composition of the single chain molecule or multimer or a polynucleotide encoding the single chain molecule or multimer can be tested *in vivo* in a number of animal models of HLA-DR-associated 10 autoimmune disease. These diseases include, but are not limited to, insulin-dependent diabetes mellitus, multiple sclerosis, myasthenia gravis, pernicious anemia, rheumatoid arthritis, and systemic lupus erythematosus.

For example, NOD mice are a spontaneous model of IDDM. Treatment with the pharmaceutical compositions prior to or after onset of disease can be monitored 15 by assay of urine glucose levels in the NOD mouse, as well as by *in vitro* T cell proliferation assays to assess reactivity to known autoantigens (*see, e.g., Kaufman et al., Nature* 366:69-72 (1993)) for example). Alternatively, induced models of autoimmune disease, such as EAE, can be treated with pharmaceutical composition. Treatment in a preventive or intervention mode can be followed by monitoring the clinical symptoms of 20 EAE.

Following is a description of several other animal models of HLA-DR-associated autoimmune disease which can be used to assay *in vivo* effects of the peptide. It will be obvious to one of skill in the art that other suitable animal models for autoimmune diseases can be utilized in a similar manner.

25

Systemic Lupus Erythematosus (SLE)

F₁ hybrids of autoimmune New Zealand black (NZB) mice and the phenotypically normal New Zealand White (NZW) mouse strain develop severe systemic autoimmune disease, more fulminant than that found in the parental NZB strain. These 30 mice manifest several immune abnormalities, including antibodies to nuclear antigens and subsequent development of a fatal, immune complex-mediated glomerulonephritis with

20

female predominance, remarkably similar to SLE in humans (Knight *et al.*, *J. Exp. Med.* 147:1653 (1978)), which is incorporated hereby by reference.

In both the human and murine forms of the disease, a strong association with MHC gene products has been reported. HLA-DR2 and HLA-DR3 individuals are at 5 a higher risk than the general population to develop SLE (Reinertsen *et al.*, *N. Engl. J. Med.* 299:515 (1970)), while in NZB/W F₁ mice (H-2^{d/u}), a gene linked to the h-2^u haplotype derived from the NZW parent contributes to the development of the lupus-like nephritis.

The effect of the invention can be measured by survival rates and by the 10 progress of development of the symptoms, such as proteinuria and appearance of anti-DNA antibodies.

Proteinuria can be measured by any method known to those of skill in the art, e.g. colorimetrically by the use of Uristix (Miles Laboratories, Inc., Elkhart, IN), giving an approximation of proteinuria as follows: trace, 10 mg/dl; 1+, 30 mg/dl; 100 mg/dl; 3+, 300 mg/dl; and 4+, 1000 mg/dl.

The presence of anti-DNA specific antibodies in NZB/W F₁ mice can be determined by using a modification of a linked immunosorbent assay (ELISA) described by Zouali *et al.*, *J. Immunol. Methods* 90:105 (1986) which is incorporated herein by reference.

20

Myasthenia Gravis (MG)

Myasthenia gravis is one of several human autoimmune diseases linked to HLA-D (Safenberg, *et al.*, *Tissue Antigens* 12:136 (1978); McDevitt *et al.*, *Arth. Rheum.* 20:59 (1977)) which are incorporated herein by reference. In MG antibodies to the acetyl 25 choline receptors (AcChoR) impair neuromuscular transmission by mediating loss of AcChoR in the postsynaptic membrane.

SJL/J female mice are a model system for human MG. In these animals, experimental autoimmune myasthenia gravis (EAMG) can be induced by immunizing the mice with soluble AcChoR protein from another species. Susceptibility to EAMG is 30 linked in part to the MHC and has been mapped to the region within H-2 (Christadoss *et al.*, *J. Immunol.* 123:2540 (1979)).

AcChoR protein can purified from *Torpedo californica* and assayed according to the method of Waldor *et al.*, *Proc. Natl. Acad. Sci. USA* 80:2713 (1983), incorporated by reference. For example, emulsified AcChoR, 15 µg in complete Freund adjuvant, is injected intradermally among six sites on the back, the hind foot pads, and the 5 base of the tail. Animals are reimmunized with this same regimen 4 weeks later.

Evaluation can be made by measurement of anti-AcChoR antibodies by any method known to those of skill in the art, e.g., a microtiter ELISA assay as described in Waldor *et al.*, *supra*. In an exemplary assay, the standard reagent volume is 50 µl per well. Reagents are usually incubated in the wells for 2 hr at RT. Five µg of AcChoR 10 diluted in bicarbonate buffer, pH 9.6, is added to each well. After incubation with AcChoR, the plates are rinsed four times with a wash solution consisting of phosphate-buffer saline containing 0.05% Tween and 0.05% NaN₃. Mouse sera are diluted in 0.01M PBS (pH 7.2), 1.5 mM MgCl₂, 2.0 mM 2-mercaptoethanol, 0.05% Tween-80, 0.05% NaN₃ (p-Tween buffer) and incubated on the plate. After the plate is washed, beta- 15 galactosidase-conjugated sheep anti-mouse antibody diluted in P-Tween buffer is added to each well. After a final washing, the enzyme substrate, p-nitrophenylgalctopyranoside is added to the plate, and the degree of substrate catalysis is determined from the absorbance at 405 nm after 1 hr.

Anti-AcChoR antibodies are expected to be present in the mice immunized 20 with AcChoR as compared to nonimmunized mice. Treatment with complex is expected to significantly reduce the titer of anti-AcChoR antibodies in the immunized mice.

The effect of treatment with the invention on clinical EAMG can also be assessed by any method known to those of skill in the art. Myasthenia symptoms include a characteristic hunched posture with drooping of the head and neck, exaggerated arching 25 of the back, splayed limbs, abnormal walking, and difficulty in righting. Mild symptoms are present after a standard stress test, and should be ameliorated by administration of complex.

Rheumatoid Arthritis (RA)

In humans, susceptibility to rheumatoid arthritis is associated with HLA D/DR. The immune response in mice to native type II collagen has been used to establish 30 an experimental model for arthritis with a number of histological and pathological

features resembling human RA. Susceptibility to collagen-induced arthritis (CIA) in mice has been mapped to the H-2 I region, particularly the I-A subregion (Huse *et al.*, *Fed. Proc.* 43:1820 (1984)).

Mice from a susceptible strain, DEA-1 can be caused to have CIA by
5 treatment of the mice with native type II collagen, using the technique described in
Wooley et al., *J. Immunol.* 134:2366 (1985), incorporated herein by reference.

In another model adjuvant arthritis in rats is an experimental model for
human arthritis, and a prototype of autoimmune arthritis triggered by bacterial antigens
(Holoschitz *et al.*, *Prospects of Immunology* (1986); Pearson, *Arthritis Rheum.* 7:80
10 (1964)). The disease is the result of a cell-mediated immune response, as evidenced by its
transmissibility by a clone of T cells which were reactive against the adjuvant (MT); the
target self-antigen in the disease, based upon studies with the same cloned cells, appears
to be part(s) of a proteoglycan molecule of cartilage.

Adjuvant disease in rats is produced as described by Pearson *supra*, i.e., by
15 a single injection of Freund's adjuvant (killed tubercle bacilli or chemical fractions of it,
mineral oil, and an emulsifying agent) given into several depot sites, preferably
intracutaneously or into a paw or the base of the tail. The adjuvant is given in the absence
of other antigens.

The effect of the invention treatment on manifestations of the disease can
20 be monitored by any method known to those of skill in the art. These manifestations are
histopathological, and include an acute and subacute synovitis with proliferation of
synovial lining cells, predominantly a mononuclear infiltration of the articular and
particular tissues, the invasion of bone and articular cartilage by connective tissue pannus,
and periosteal new bone formation, especially adjacent to affected joints. In severe or
25 chronic cases, destructive changes occur, as do fibrous or bony ankylosis. These
histopathological symptoms are expected to appear in control animals at about 12 days
after sensitization to the Freund's adjuvant.

Insulin Dependent Diabetes Mellitus (IDDM)

30 IDDM is observed as a consequence of the selective destruction of insulin-secreting cells within the Islets of Langerhans of the pancreas. Involvement of the
immune system in this disease is suggested by morphologic evidence of early infiltration

of the Islets by mononuclear cells, by the detection of anti-islet cell antibodies, by the high frequency of HLA-DR3 and -DR4 alleles in IDDM populations, and by clinical associations between IDDM and various autoimmune diseases. An animal model for spontaneous IDDM and thyroiditis has been developed in the BB rat. As in humans, the 5 rat disease is controlled in part by the genes encoding the MHC antigens, is characterized by islet infiltration, and is associated with the presence of anti-islet antibodies. The I-E equivalent class II MHC antigens appear to be involved in manifestation of the autoimmune diseases in the BB rat. Biotard *et al.*, *Proc. Natl. Acad. Sci. USA* 82:6627 (1985).

10 In morphologic evaluation, insulitis is characterized by the presence of mononuclear inflammatory cells within the islets. Thyroiditis is characterized by focal interstitial lymphocytic infiltrate within the thyroid gland, as a minimum criterion. Most severe cases show diffuse extensive lymphocytic infiltrates, disruption of acini, fibrosis, and focal Hurthle cell change. See Biotard *et al. supra*.

15 Treatment of the BB rats with the invention is expected to ameliorate or prevent the manifestation of the clinical and morphological symptoms associated with IDDM and thyroiditis.

In another model, the NOD mouse strain ($H-2K^d D^b$) is a murine model for autoimmune IDDM. The disease in these animals is characterized by anti-islet cell 20 antibodies, severe insulitis, and evidence for autoimmune destruction of the beta-cells (Kanazawa, *et al.*, *Diabetologia* 27:113 (1984)). The disease can be passively transferred with lymphocytes and prevented by treatment with cyclosporin-A (Ikehara *et al.*, *Proc. Natl. Acad. Sci. USA* 82:7743 (1985)); Mori *et al.*, *Diabetologia* 29:244 (1986).

Untreated animals develop profound glucose intolerance and ketosis and succumb within 25 weeks of the onset of the disease. Seventy to ninety percent of female and 20-30% of male animals develop diabetes within the first six months of life. Breeding studies have defined at least two genetic loci responsible for disease susceptibility, one of which maps to the MHC. Characterization of NOD Class II antigens at both the serologic and molecular level suggest that the susceptibility to autoimmune disease is linked to I-A_B 30 (Acha-Orbea and McDevitt, *Proc. Natl. Acad. Sci. USA* 84:235 (1987)).

Treatment of Female NOD mice with complex is expected to lengthen the time before the onset of diabetes and/or to ameliorate or prevent the disease.

Experimental Allergic Encephalomyelitis (EAE)

Experimental allergic encephalomyelitis (EAE) is an induced autoimmune disease of the central nervous system which is a model for multiple sclerosis (MS). The 5 disease can be induced in many species, including mice and rats.

The disease is characterized by the acute onset of paralysis. Perivascular infiltration by mononuclear cells in the CNS is observed in both mice and rats. Methods of inducing the disease, as well as symptomology, are reviewed in Aranson, *The Autoimmune Diseases* (Rose and Mackay, eds., 1985), and in Acha-Orbea *et al.*, *Ann. Rev. Imm.* 7:377-405 (1989).

One of the genes mediating susceptibility is localized in the MHC class II region (Moore *et al.*, *J. Immunol.* 124:1815-1820 (1980)). The best analyzed 15 encephalitogenic protein is myelin basic protein (MBP), but other encephalitogenic antigens are found in the brain. The immunogenic epitopes have been mapped (*see*, Acha-Orbea *et al.*, *supra*). In the PL mouse strains (H-2^u) two encephalitogenic peptides in MBP have been characterized: MBP peptide p35-47 (MBP 35-47), and acetylated NSF p1-9 (MBP 1-9).

The effect of the invention on ameliorating disease symptoms in individuals in which EAE has been induced can be measured by survival rates, and by the 20 progress of the development of symptoms.

Methods of making the complexes of the invention

Expression systems suitable for production of appropriate recombinant single chain MHC class II molecule:peptide complexes are available and known in the art. Various prokaryotic, fungal, and eukaryotic host cells are suitable for expression of recombinant, single chain MHC class II molecule:peptide complexes, as well as for individual recombinant alpha and beta MHC class II chains.

Prokaryotes that are useful as host cells, according to the present invention, most frequently are represented by various strains of *Escherichia coli*. 30 However, other microbial strains can also be used, such as bacilli, for example *Bacillus subtilis*, various species of *Pseudomonas*, or other bacterial strains.

According to the invention, the single chain MHC class II molecule:peptide complexes are expressed from recombinantly engineered nucleotide sequences that encode the single chain MHC class II molecule:peptide polypeptides by operably linking the engineered nucleic acid coding sequence to signals that direct gene expression in prokaryotes. A nucleic acid is "operably linked" when it is placed into a functional relationship with another nucleic acid sequence. For instance, a promoter or enhancer is operably linked to a coding sequence if it effects the transcription of the sequence. Generally, operably linked means that the nucleic acid sequences being linked are contiguous and, where necessary to join two protein coding regions, contiguous and in reading frame.

The genes encoding the single chain MHC class II molecule:peptide complexes may be inserted into an "expression vector," "cloning vector," or "vector," terms which are used interchangeably herein and usually refer to plasmids or other nucleic acid molecules that are able to replicate in a chosen host cell. Expression vectors 15 may replicate autonomously, or they can replicate by being inserted into the genome of the host cell, by methods well known in the art. Vectors that replicate autonomously will have an origin of replication or autonomous replicating sequence (ARS) that is functional in the chosen host cell(s).

Plasmid vectors that contain replication sites and control sequences 20 derived from a species compatible with the chosen host are used. For example, *E. coli* is typically transformed using derivatives of pBR322, a plasmid derived from *E. coli* species by Bolivar *et al.*, *Gene* 2:95-113, 1977. Often, it is desirable for a vector to be usable in more than one host cell, e.g., in *E. coli* for cloning and construction, and in a *Bacillus* cell for expression.

25 The expression vectors typically contain a transcription unit or expression cassette that contains all the elements required for the expression of the DNA encoding the MHC molecule in the host cells. A typical expression cassette contains a promoter operably linked to the DNA sequence encoding a single chain MHC class II molecule:peptide complex and a ribosome binding site. The promoter is preferably positioned about the same distance from the heterologous transcription start site as it is from the transcription start site in its natural setting. As is known in the art, however, some variation in this distance can be accommodated without loss of promoter function.

In addition to a promoter sequence, the expression cassette can also contain a transcription termination region downstream of the structural gene to provide for efficient termination. The termination region may be obtained from the same gene as the promoter sequence or may be obtained from a different gene.

Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding site sequences, include such commonly used promoters as the beta-lactamase (penicillinase) and lactose (lac) promoter systems (Change *et al.*, *Nature* 198:1056, 1977) and the tryptophan (trp) promoter system (Goeddel *et al.*, *Nucleic Acids Res.* 8:4057-74, 1980) and the lambda-derived P_L promoter and N-gene ribosome binding site (Shimatake *et al.*, *Nature* 292:128-32, 1981). Any available promoter system that functions in prokaryotes can be used.

Either constitutive or regulated promoters can be used in the present invention. Regulated promoters can be advantageous because the host cells can be grown to high densities before expression of the single chain MHC class II molecule:peptide complexes is induced. High level expression of heterologous proteins slows cell growth in some situations. Regulated promoters especially suitable for use in *E. coli* include the bacteriophage lambda P_L promoter, the hybrid trp-lac promoter (Amann *et al.*, *Gene* 25:167-78 1983; and the bacteriophage T7 promoter.

For expression of single chain MHC class II molecule:peptide complexes in prokaryotic cells other than *E. coli*, a promoter that functions in the particular prokaryotic species is required. Such promoters can be obtained from genes that have been cloned from the species, or heterologous promoters can be used. For example, the hybrid trp-lac promoter functions in *Bacillus* in addition to *E. coli*.

A ribosome binding site (RBS) is also necessary for expression of single chain MHC class II molecule:peptide complexes in prokaryotes. An RBS in *E. coli*, for example, consists of a nucleotide sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon (Shine and Dalgarno, *Nature*, 254:34-40, 1975; Steitz, *In Biological regulation and development: Gene expression* (ed., Goldberger), vol. 1, p. 349, 1979).

Translational coupling may be used to enhance expression. The strategy uses a short upstream open reading frame derived from a highly expressed gene native to

the translational system, which is placed downstream of the promoter, and a ribosome binding site followed after a few amino acid codons by a termination codon. Just prior to the termination codon is a second ribosome binding site, and following the termination codon is a start codon for the initiation of translation. The system dissolves secondary 5 structure in the RNA, allowing for the efficient initiation of translation. See Squires, et. al., *J. Biol. Chem.* 263:16297-16302, 1988.

The single chain MHC class II molecule:peptide complexes can be expressed intracellularly, or can be secreted from the cell. Intracellular expression often results in high yields. However, some of the protein may be in the form of insoluble 10 inclusion bodies. Although some of the intracellularly produced MHC polypeptides of the present invention may be active upon being harvested following cell lysis, the amount of soluble, active MHC polypeptide may be increased by performing refolding procedures using methods known to those of skill in the art (see, e.g., Sambrook et al., *Molecular Cloning: A Laboratory Manual Second Edition*, Cold Spring Harbor, NY, 1989.; Marston 15 et al., *Bio/Technology* 2:800-804, 1985; Schoner et al., *Bio/Technology* 3:151-54, 1985). In one embodiment, for purification and refolding the cell pellet is lysed and refolded in urea-borate-DTT buffer followed by urea-borate buffer and reverse phase HPLC purification using either silica gel based Vydac (Hewlett Packard, Wilmington, DE) or polymer based Poros-R2 (PerSeptive Biosystems) resins, with bead size varying based on 20 the scale of the culture and is described in further detail below. In one embodiment, e.g., for large scale refolding, the sample can be ultrafiltered into a urea-borate buffer to which is then added 0.2 μ M to 1 mM copper sulfate, preferably 0.2 to 20 μ M, after which folding occurs immediately.

More than one MHC:peptide complex may be expressed in a single 25 prokaryotic cell by placing multiple transcriptional cassettes in a single expression vector, or by utilizing different selectable markers for each of the expression vectors which are employed in the cloning strategy.

A second approach for expressing the MHC:peptide complexes of the invention is to cause the polypeptides to be secreted from the cell, either into the 30 periplasm or into the extracellular medium. The DNA sequence encoding the MHC polypeptide is linked to a cleavable signal peptide sequence. The signal sequence directs translocation of the MHC:peptide complex through the cell membrane. An example of a

suitable vector for use in *E. coli* that contains a promoter-signal sequence unit is pTA1S29, which has the *E. coli* phoA promoter and signal sequence *see*, e.g., Sambrook *et al.*, *supra*; Oka *et al.*, *Proc. Natl. Acad. Sci. USA* 82:7212-16, 1985; Talmadge *et al.*, *Proc. Natl. Acad. Sci. USA* 77:39892, 1980; Takahara *et al.*, *J. Biol. Chem.* 260: 2670-74, 1985). Once again, multiple polypeptides can be expressed in a single cell for periplasmic association. Eukaryotic signal sequences are also well known to those of skill in the art, and cause the MHC:peptide complexes of the invention to be secreted into the extracellular medium.

The MHC:peptide complexes of the invention can also be produced as fusion proteins. This approach often results in high yields, because normal prokaryotic control sequences direct transcription and translation. In *E. coli*, lacZ fusions are often used to express heterologous proteins. Suitable vectors are readily available, such as the pUR, pEX, and pMR100 series (*see*, e.g., Sambrook *et al.*, *supra*). For certain applications, it may be desirable to cleave the non-MHC amino acids from the fusion protein after purification. This can be accomplished by any of several methods known in the art, including cleavage by cyanogen bromide, a protease, or by Factor X, (*see*, e.g., Sambrook *et al.*, *supra*; Goeddel *et al.*, *Proc. Natl. Acad. Sci. USA* 76:106-10, 1979; Nagai *et al.*, *Nature* 309:810-12, 1984; Sung *et al.*, *Proc. Natl. Acad. Sci. USA* 83:561-65, 1986). Cleavage sites can be engineered into the gene for the fusion protein at the desired point of cleavage.

Foreign genes, such as single chain MHC class II molecule:peptide complexes, can be expressed in *E. coli* as fusions with binding partners, such as glutathione-S-transferase (GST), maltose binding protein, or thioredoxin. These binding partners are highly translated and can be used to overcome inefficient initiation of translation of eukaryotic messages in *E. coli*. Fusion to such binding partner can result in high-level expression, and the binding partner is easily purified and then excised from the protein of interest. Such expression systems are available from numerous sources, such as Invitrogen Inc. (San Diego, CA) and Pharmacia LKB Biotechnology Inc. (Piscataway, NJ).

A method for obtaining recombinant proteins from *E. coli* which maintains the integrity of their N-termini has been described by Miller *et al.* *Biotechnology* 7:698-704 (1989). In this system, the gene of interest is produced as a C-terminal fusion to the

first 76 residues of the yeast ubiquitin gene containing a peptidase cleavage site.

Cleavage at the junction of the two moieties results in production of a protein having an intact authentic N-terminal residue.

The vectors containing the nucleic acids that code for the single chain

- 5 MHC class II molecule:peptide complexes are transformed into prokaryotic host cells for expression. "Transformation" refers to the introduction of vectors containing the nucleic acids of interest directly into host cells by well known methods. The particular procedure used to introduce the genetic material into the host cell for expression of the single chain MHC class II molecule:peptide complex is not particularly critical. Any of the well
10 known procedures for introducing foreign nucleotide sequences into host cells may be used. It is only necessary that the, particular host cell utilized be capable of expressing the gene.

Transformation methods, which vary depending on the type of the prokaryotic host cell, include electroporation; transfection employing calcium chloride, rubidium chloride calcium phosphate, or other substances; microprojectile bombardment; infection (where the vector is an infectious agent); and other methods. See, generally, Sambrook *et al., supra*, and Ausubel *et al.*, (eds.) *Current Protocols in Molecular Biology*, John Wiley and Sons, Inc., NY, 1987. Reference to cells into which the nucleic acids described above have been introduced is meant to also include the progeny of such cells.

- 20 Transformed prokaryotic cells that contain expression vectors for single chain MHC class II molecule:peptide complexes are also included in the invention.

After standard transfection or transformation methods are used to produce prokaryotic cell lines that express large quantities of the single chain MHC class II molecule:peptide complex polypeptide, the polypeptide is then purified using standard techniques. See, e.g., Colley *et al.*, *J. Chem.* 64:17619-22, 1989; and *Methods in Enzymology*, "Guide to Protein Purification", Deutscher, ed., Vol. 182 (1990). The recombinant cells are grown and the single chain MHC class II molecule:peptide complex is expressed. The purification protocol will depend upon whether single chain MHC class II molecule:peptide complex is expressed intracellularly, into the periplasm, or secreted
25 from the cell. For intracellular expression, the cells are harvested, lysed, and the polypeptide is recovered from the cell lysate (Sambrook *et al., supra*). Periplasmic MHC polypeptide is released from the periplasm by standard techniques (Sambrook *et al.*,

supra). If the MHC polypeptide is secreted from the cells, the culture medium is harvested for purification of the secreted protein. The medium is typically clarified by centrifugation or filtration to remove cells and cell debris.

The MHC polypeptides can be concentrated by adsorption to any suitable resin (such as, for example, CDP-Sepharose, Asialoprothrombin-Sepharose 4B, or Q Sepharose), or by use of ammonium sulfate fractionation, polyethylene glycol precipitation, or by ultrafiltration. Other means known in the art may be equally suitable.

Further purification of the MHC polypeptides can be accomplished by standard techniques, for example, affinity chromatography, ion exchange chromatography, sizing chromatography, reverse phase HPLC, or other protein purification techniques used to obtain homogeneity. The purified proteins are then used to produce pharmaceutical compositions.

For secretion of a polypeptide or protein of interest, recombinant nucleic acid constructs of the invention may include sequences that encode signal sequences or other sequences that direct secretion. Secretory signal sequences, also called leader sequences, prepro sequences and/or pre sequences, are amino acid sequences that play a role in secretion of mature polypeptides or proteins from a cell. Such sequences are characterized by a core of hydrophobic amino acids and are typically (but not exclusively) found at the amino termini of newly synthesized proteins. The secretory signal sequence may be that of the protein of interest, or may be derived from another secreted protein (e.g., t-PA, a preferred mammalian secretory leader) or synthesized de novo. The secretory signal sequence is joined to the DNA sequence encoding a protein of the present invention in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the polypeptide of interest, although certain signal sequences may be positioned elsewhere in the DNA sequence of interest (see, e.g., Welch *et al.*, U.S. Patent No. 5,037,743; Holland *et al.*, U.S. Patent No. 5,143,830). Very often the secretory peptide is cleaved from the mature protein during secretion. Such secretory peptides contain processing sites that allow cleavage of the secretory peptide from the mature protein as it passes through the secretory pathway. An example of such a processing site is a dibasic cleavage site, such as that recognized by the *Saccharomyces cerevisiae* KEX2 gene or a Lys-Arg processing site. Processing sites

may be encoded within the secretory peptide or may be added to the peptide by, for example, *in vitro* mutagenesis.

Secretory signals include the α factor signal sequence (prepro sequence: Kurjan & Herskowitz, *Cell* 3:933-943, 1982; Kurjan *et al.*, U.S. Patent No. 4,546,082; 5 Brake, EP 116, 201), the *PHO5* signal sequence (Beck *et al.*, WO 86/00637), the *BAR1* secretory signal sequence (MacKay *et al.*, U.S. Patent No. 4,613,572; MacKay, WO 87/002670), the *SUC2* signal sequence (Carlsen *et al.*, *Molecular and Cellular Biology* 3: 439-447, 1983), the α -1-antitrypsin signal sequence (Kurachi *et al.*, *Proc. Natl. Acad. Sci. USA* 78: 6826-6830, 1981), the α -2 plasmin inhibitor signal sequence (Tone *et al.*, *J. Biochem. (Tokyo)* 102: 1033-1042, 1987) and the tissue plasminogen activator signal sequence (Pennica *et al.*, *Nature* 301: 214-221, 1983). Alternately, a secretory signal sequence may be synthesized according to the rules established, for example, by von Heinje (*European Journal of Biochemistry* 133: 17-21, 1983; *Journal of Molecular Biology* 184: 99-105, 1985; *Nucleic Acids Research* 14: 4683-4690; 1986). Another 10 signal sequence is the synthetic signal LaC212 spx (1-47). ERLE described in WO 90/10075.

Secretory signal sequences may be used singly or may be combined. For example, a first secretory signal sequence may be used in combination with a sequence encoding the third domain of barrier (described in U.S. Patent No. 5,037,243, which is 20 incorporated by reference herein in its entirety). The third domain of barrier may be positioned in proper reading frame 3' of the DNA segment of interest or 5' to the DNA segment and in proper reading frame with both the secretory signal sequence and a DNA segment of interest.

The choice of suitable promoters, terminators and secretory signals for all 25 expression systems, is well within the level of ordinary skill in the art. Methods for expressing cloned genes in *Saccharomyces cerevisiae* are generally known in the art (see, "Gene Expression Technology," *Methods in Enzymology*, Vol. 185, Goeddel (ed.), Academic Press, San Diego, CA, 1990 and "Guide to Yeast Genetics and Molecular Biology," *Methods in Enzymology*, Guthrie and Fink (eds.), Academic Press, San Diego, 30 CA, 1991; which are incorporated herein by reference). Proteins of the present invention can also be expressed in filamentous fungi, for example, strains of the fungi *Aspergillus* (McKnight *et al.*, U.S. Patent No. 4,935,349, which is incorporated herein by reference).

Expression of cloned genes in cultured mammalian cells and in *E. coli*, for example, is discussed in detail in Sambrook *et al.* (*Molecular Cloning: A Laboratory Manual. Second Edition*, Cold Spring Harbor, NY, 1989; which is incorporated herein by reference). As would be evident to one skilled in the art, one could express the proteins 5 of the instant invention in other host cells such as avian, insect and plant cells using regulatory sequences, vectors and methods well established in the literature.

In yeast, suitable yeast vectors for use in the present invention include YRp7 (Struhl *et al.*, *Proc. Natl. Acad. Sci. USA* 76:1035-1039, 1978), YEpl3 (Broach *et al.*, *Gene* 8: 121-133, 1979), POT vectors (Kawasaki *et al.*, U.S. Patent No. 4,931,373, 10 which is incorporated by reference herein), pJDB249 and pJDB219 (Beggs, *Nature* 275:104-108, 1978) and derivatives thereof. Preferred promoters for use in yeast include promoters from yeast glycolytic genes (Hitzeman *et al.*, *J. Biol. Chem.* 255: 12073-12080, 1980; Alber and Kawasaki, *J. Mol. Appl. Genet.* 1: 419-434, 1982; Kawasaki, U.S. Patent 15 No. 4,599,311) or alcohol dehydrogenase genes (Young *et al.*, in *Genetic Engineering of Microorganisms for Chemicals*, Hollaender *et al.*, (eds.), p. 355, 1982; Ammerer, *Meth. Enzymol.* 101: 192-201, 1983). Other promoters are the TPI1 promoter (Kawasaki, U.S. Patent No. 4,599,311, 1986) and the ADH2-4^c promoter (Russell *et al.*, *Nature* 304: 652-654, 1983; Irani and Kilgore, U.S. Patent Application Serial No. 07/784,653, CA 1,304,020 and EP 284 044, which are incorporated herein by reference). The expression 20 units may also include a transcriptional terminator such as the TPI1 terminator (Alber and Kawasaki, *ibid.*).

Yeast cells, particularly cells of the genus *Pichia* or *Saccharomyces*, are a preferred host for use in producing compound of the current invention. Methods for transforming yeast cells with exogenous DNA and producing recombinant proteins 25 therefrom are disclosed by, for example, Kawasaki, U.S. Patent No. 4,599,311; Kawasaki *et al.*, U.S. Patent No. 4,931,373; Brake, U.S. Patent No. 4,870,008; Welch *et al.*, U.S. Patent No. 5,037,743; and Murray *et al.*, U.S. Patent No. 4,845,075, which are incorporated herein by reference. Transformed cells are selected by phenotype determined by a selectable marker, commonly drug resistance or the ability to grow in the 30 absence of a particular nutrient (e.g., leucine). A preferred vector system for use in yeast is the POT1 vector system disclosed by Kawasaki *et al.* (U.S. Patent No. 4,931,373), which allows transformed cells to be selected by growth in glucose-containing media. A

preferred secretory signal sequence for use in yeast is that of the *S. cerevisiae* MF α 1 gene (Brake, *ibid.*; Kurjan *et al.*, U.S. Patent No. 4,546,082). Suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (*see, e.g.*, Kawasaki, U.S. Patent No. 4,599,311; Kingsman *et al.*, U.S. Patent No. 4,615,974; and Bitter, U.S. Patent No. 4,977,092, which are incorporated herein by reference) and alcohol dehydrogenase genes. See also U.S. Patent Nos. 4,990,446; 5,063,154; 5,139,936 and 4,661,454, which are incorporated herein by reference. Transformation systems for other yeasts, including *Hansenula polymorpha*, *Schizosaccharomyces pombe*, *Kluyveromyces lactis*, *Kluyveromyces fragilis*, *Ustilago maydis*, *Pichia pastoris*, *Pichia methanolica*, *Pichia guillermondii* and *Candida maltosa* are known in the art. See, for example, Gleeson *et al.*, *J. Gen. Microbiol.* 132:3459-65, 1986; Cregg, U.S. Patent No. 4,882,279; and Stroman *et al.*, U.S. Patent No. 4,879,231.

Other fungal cells are also suitable as host cells. For example, *Aspergillus* cells may be utilized according to the methods of McKnight *et al.*, U.S. Patent No. 4,935,349, which is incorporated herein by reference. Methods for transforming *Acremonium chrysogenum* are disclosed by Sumino *et al.*, U.S. Patent No. 5,162,228, which is incorporated herein by reference. Methods for transforming *Neurospora* are disclosed by Lambowitz, U.S. Patent No. 4,486,533, which is incorporated herein by reference.

Host cells containing DNA constructs of the present invention are then cultured to produce the heterologous proteins. The cells are cultured according to standard methods in a culture medium containing nutrients required for growth of the particular host cells. A variety of suitable media are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins, minerals and growth factors. The growth medium will generally select for cells containing the DNA construct by, for example, drug selection or deficiency in an essential nutrient which is complemented by a selectable marker on the DNA construct or co-transfected with the DNA construct.

Yeast cells, for example, are preferably cultured in a chemically defined medium, comprising a non-amino acid nitrogen source, inorganic salts, vitamins and essential amino acid supplements. The pH of the medium is preferably maintained at a pH greater than 2 and less than 8, preferably at pH 6.5. Methods for maintaining a stable

pH include buffering and constant pH control, preferably through the addition of sodium hydroxide. Preferred buffering agents include succinic acid and Bis-Tris (Sigma Chemical Co., St. Louis, MO). Yeast cells having a defect in a gene required for asparagine-linked glycosylation are preferably grown in a medium containing an osmotic stabilizer. A preferred osmotic stabilizer is sorbitol supplemented into the medium at a concentration between 0.1 M and 1.5 M, preferably at 0.5 M or 1.0 M. Cultured mammalian cells are generally cultured in commercially available serum-containing or serum-free media. Selection of a medium appropriate for the particular host cell used is within the level of ordinary skill in the art.

Methods for introducing exogenous DNA into mammalian host cells include calcium phosphate-mediated transfection (Wigler *et al.*, *Cell* 14:725, 1978; Corsaro and Pearson, *Somatic Cell Genetics* 7:603, 1981; Graham and Van der Eb, *Virology* 52:456, 1973), electroporation (Neumann *et al.*, *EMBO J.* 1:841-45, 1982) and DEAE-dextran mediated 'transfection' (Ausubel *et al.*, (eds), *Current Protocols in Molecular Biology*, John Wiley and Sons, Inc., NY, 1987), which are incorporated herein by reference. Cationic lipid transfection using commercially available reagents, including the Boehringer Mannheim TRANSFECTION-REAGENT (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethyl ammoniummethylsulfate; Boehringer Mannheim, Indianapolis, IN) or LIPOFECTIN reagent (N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride and dioleoyl phosphatidylethanolamine; GIBCO-BRL, Gaithersburg, MD) using the manufacturer-supplied directions, may also be used. A preferred mammalian expression plasmid is Zem229R (deposited under the terms of the Budapest Treaty with American Type Culture Collection, 12301 Parklawn Drive, Rockville, MD on September 28, 1993 as an *E. coli* HB101 transformant and assigned Accession Number 69447). The production of recombinant proteins in cultured mammalian cells is disclosed, for example, by Levinson *et al.*, U.S. Patent No. 4,713,339; Hagen *et al.*, U.S. Patent No. 4,784,950; Palmiter *et al.*, U.S. Patent No. 4,579,821; and Ringold, U.S. Patent No. 4,656,134, which are incorporated herein by reference. Preferred cultured mammalian cells include the COS-1 (ATCC No. CRL 1650), COS-7 (ATCC No. CRL 1651), BHK (ATCC No. CRL 1632), BHK 570 (ATCC No. CRL 10314), DG44, and 293 (ATCC No. CRL 1573; Graham *et al.*, *J. Gen. Virol.* 36:59-72, 1977) cell lines. Additional suitable cell lines are known in the art and available from

public depositories such as the American Type Culture Collection, Rockville, Maryland. In general, strong transcription promoters are preferred, such as promoters from SV-40 or cytomegalovirus. See, e.g., U.S. Patent No. 4,956,288. Other suitable promoters include those from metallothionein genes (U.S. Patents Nos. 4,579,821 and 4,601,978, which are 5 incorporated herein by reference) and the adenovirus major late promoter.

Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been inserted. Such cells are commonly referred to as "transfectants." Cells that have been cultured in the presence of the selective agent and are able to pass the gene of interest to their progeny are referred to as "stable 10 transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. Selection is carried out in the presence of a neomycin-type drug, such as G-418 or the like. Selection systems may also be used to increase the expression level of the gene of interest, a process referred to as "amplification." Amplification is carried out by culturing transfecants in the presence of a low level of the selective agent 15 and then increasing the amount of selective agent to select for cells that produce high levels of the products of the introduced genes. A preferred amplifiable selectable marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes (e.g. hygromycin resistance, multi-drug resistance, puromycin acetyltransferase) can also be used.

20 The soluble, fused MHC:peptide complexes of the present invention can be purified by first isolating the polypeptides from the cells followed by conventional purification methods, such as by ion-exchange and partition chromatography as described by, for example, Coy *et al.* (*Peptides Structure and Function*, Pierce Chemical Company, Rockford, IL, pp 369-72, 1983) or by reverse-phase chromatography as described, for 25 example, by Andreu and Merrifield (*Eur. J. Biochem.* 164: 585-90, 1987), or by HPLC as described, for example, by Kofod *et al.* (*Int. J. Peptide and Protein Res.* 32.: 436-40, 1988). Additional purification can be achieved by additional conventional purification means, such as liquid chromatography, gradient centrifugation, and gel electrophoresis, among others. Methods of protein purification are known in the art (see generally, 30 Scopes, R., *Protein Purification*, Springer-Verlag, NY, 1982, which is incorporated by reference herein) and can be applied to the purification of the recombinant polypeptides described herein. Single chain MHC class II molecule:peptide complexes of at least

about 50% purity are preferred, at least about 70-80% purity more preferred, and about 95-99% or more purity most preferred, particularly for pharmaceutical uses. Once purified, either partially or to homogeneity, as desired, the single chain MHC class II molecule:peptide complexes may then be used diagnostically or therapeutically, as further described below.

Methods of using single chain MHC class II molecule:peptide complexes

The single chain MHC class II molecule:peptide complexes of the present invention may be used within methods for down-regulating parts of the immune system that are reactive in autoimmune diseases. The single chain MHC class II molecule:peptide complexes of the present invention are contemplated to be advantageous for use as immunotherapeutics to induce immunological tolerance or nonresponsiveness (anergy) in patients predisposed to mount or already mounting an immune response those particular autoantigens. A patient having or predisposed to a particular autoimmune disease is identified and MHC type is determined by methods known in the art. The patient's T cells can be examined *in vitro* to determine autoantigenic peptide(s) recognized by the patient's autoreactive T cells using complexes and methods described herein. The patient can then be treated with complexes of the invention. Such methods will generally include administering single chain MHC class II molecule:peptide complex in an amount sufficient to lengthen the time period before onset of the autoimmune disease and/or to ameliorate or prevent that disease. Single chain MHC class II molecule:peptide complexes of the present invention are therefore contemplated to be advantageous for use in both therapeutic and diagnostic applications related to auto immune diseases.

Kits can also be supplied for therapeutic or diagnostic uses. Thus, the subject composition of the present invention may be provided, usually in a lyophilized form, in a container. The single chain MHC class II molecule:peptide complex is included in the kits with instructions for use, and optionally with buffers, stabilizers, biocides, and inert proteins. Generally, these optional materials will be present at less than about 5% by weight, based on the amount of single chain MHC class II molecule:peptide complex, and will usually be present in a total amount of at least about 0.001% by weight, based on the single chain MHC class II molecule:peptide complex

concentration. It may be desirable to include an inert extender or excipient to dilute the active ingredients, where the excipient may be present in from about 1 to 99% weight of the total composition.

Within one aspect of the present invention, single chain MHC class II molecule:peptide complexes are utilized to prepare antibodies for diagnostic or therapeutic uses. As used herein, the term "antibodies" includes polyclonal antibodies, monoclonal antibodies, antigen-binding fragments thereof such as F(ab')₂ and Fab fragments, as well as recombinantly produced binding partners. These binding partners incorporate the variable or CDR regions from a gene which encodes a specifically binding antibody. The affinity of a monoclonal antibody or binding partner may be readily determined by one of ordinary skill in the art (see, Scatchard, *Ann. NY Acad. Sci.* 51: 660-72, 1949)

Methods for preparing polyclonal and monoclonal antibodies have been well described in the literature (see, for example, Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual, Second Edition*, Cold Spring Harbor, NY, 1989; and Hurrell, J. G. R., Ed., *Monoclonal Hybridoma Antibodies: Techniques and Applications*, CRC Press, Ind., Boca Raton, FL, 1982, which is incorporated herein by reference). As would be evident to one of ordinary skill in the art, polyclonal antibodies may be generated from a variety of warm-blooded animals, such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, or rats, for example. The immunogenicity of the single chain MHC class II molecule:peptide complexes may be increased through the use of an adjuvant, such as Freund's complete or incomplete adjuvant. A variety of assays known to those skilled in the art may be utilized to detect antibodies which specifically bind to a single chain MHC class II molecule:peptide complex. Exemplary assays are described in detail in *Antibodies: A Laboratory Manual*, Harlow and Lane (Eds.), Cold Spring Harbor Laboratory Press, 1988. Representative examples of such assays include: concurrent immunoelectrophoresis, radio-immunoassays, radio-immunoprecipitations, enzyme-linked immuno-sorbent assays, dot blot assays, inhibition or competition assays, and sandwich assays.

Additional techniques for the preparation of monoclonal antibodies may be utilized to construct and express recombinant monoclonal antibodies. Briefly, mRNA is isolated from a B cell population and used to create heavy and light chain

immunoglobulin cDNA expression libraries in a suitable vector such as the λIMMUNOZAP(H) and λIMMUNOZAP(L) vectors, which may be obtained from Stratagene Cloning Systems (La Jolla, CA). These vectors are then screened individually or are co-expressed to form Fab fragments or antibodies (Huse *et al.*, *Science* 246 1275-5 81, 1989; Sastry *et al.*, *Proc. Natl. Acad. Sci. USA* 86: 5728-32, 1989). Positive plaques are subsequently converted to a non-lytic plasmid which allows high level expression of monoclonal antibody fragments in *E. coli*.

Antibodies of the present invention may be produced by immunizing an animal selected from a wide variety of warm-blooded animals, such as horses, cows, 10 goats, sheep, dogs, chickens, rabbits, mice, and rats, with a recombinant single chain MHC class II molecule:peptide complex. Serum from such animals are a source of polyclonal antibodies. Alternatively antibody producing cells obtained from the immunized animals are immortalized and screened. As the generation of human 15 monoclonal antibodies to a human antigen, such as a single chain MHC class II molecule:peptide complex, may be difficult with conventional immortalization techniques, it may be desirable to first make non-human antibodies. Using recombinant DNA techniques, the antigen binding regions of the non-human antibody is transferred to the corresponding site of a human antibody coding region to produce a substantially human antibody molecules. Such methods are generally known in the art and are 20 described in, for example, U.S. Patent No. 4,816,397, and EP publications 173,494 and 239,400, which are incorporated herein by reference.

In another aspect of the invention, the single chain MHC class II molecule:peptide complexes can be used to clone T cells which have specific receptors for the single chain MHC class II molecule:peptide complex. Once the single chain MHC 25 class II molecule:peptide complex-specific T cells are isolated and cloned using techniques generally available to the skilled artisan, the T cells or membrane preparations thereof can be used to immunize animals to produce antibodies to the single chain MHC class II molecule:peptide complex receptors on T cells. The antibodies can be polyclonal or monoclonal. If polyclonal, the antibodies can be murine, lagomorph, equine, ovine, or 30 from a variety of other mammals. Monoclonal antibodies will typically be murine in origin, produced according to known techniques, or human, as described above, or combinations thereof, as in chimeric or humanized antibodies. The anti-single chain

MHC class II molecule:peptide complex receptor antibodies thus obtained can then be administered to patients to reduce or eliminate T cell subpopulations that display such receptor. This T-cell population recognizes and participates in the immunological destruction of cells bearing the autoantigenic peptide in an individual predisposed to or 5 already suffering from a disease, such as an autoimmune disease related to the autoantigenic peptide.

The coupling of antibodies to solid supports and their use in purification of proteins is well known in the literature (*see, for example, Methods in Molecular Biology. Vol. 1*, Walker (Ed.), Humana Press, New Jersey, 1984, which is incorporated by 10 reference herein in its entirety). Antibodies of the present invention may be used as a marker reagent to detect the presence of MHC heterodimer:peptide complexes on cells or in solution. Such antibodies are also useful for Western analysis or immunoblotting, particularly of purified cell-secreted material. Polyclonal, affinity purified polyclonal, monoclonal and single chain antibodies are suitable for use in this regard. In addition, 15 proteolytic and recombinant fragments and epitope binding domains can be used herein. Chimeric, humanized, veneered, CDR-replaced, reshaped or other recombinant whole or partial antibodies are also suitable.

Pharmaceutical compositions

20 Pharmaceutically acceptable carriers are determined in part by the particular composition being administered (*e.g., nucleic acid, protein*) as by the particular method used to administer the composition. Accordingly, there are a wide variety of suitable formulations of pharmaceutical compositions of the present invention (*see, e.g., Remington's Pharmaceutical Sciences* (17th ed., 1989)). Administration can be in any 25 convenient manner, *e.g.*, by injection, oral administration, inhalation, or transdermal application.

Formulations suitable for oral administration can consist of (a) liquid solutions, such as an effective amount of the packaged nucleic acid or polypeptide suspended in diluents, such as water, saline or PEG 400; (b) capsules, sachets or tablets, 30 each containing a predetermined amount of the active ingredient, as liquids, solids, granules or gelatin; (c) suspensions in an appropriate liquid; and (d) suitable emulsions. Tablet forms can include one or more of lactose, sucrose, mannitol, sorbitol, calcium

phosphates, corn starch, potato starch, microcrystalline cellulose, gelatin, colloidal silicon dioxide, talc, magnesium stearate, stearic acid, and other excipients, colorants, fillers, binders, diluents, buffering agents, moistening agents, preservatives, flavoring agents, dyes, disintegrating agents, and pharmaceutically compatible carriers. Lozenge forms can 5 comprise the active ingredient in a flavor, e.g., sucrose, as well as pastilles comprising the active ingredient in an inert base, such as gelatin and glycerin or sucrose and acacia emulsions, gels, and the like containing, in addition to the active ingredient, carriers known in the art.

The compound of choice, alone or in combination with other suitable 10 components, can be made into aerosol formulations (*i.e.*, they can be "nebulized") to be administered via inhalation. Aerosol formulations can be placed into pressurized acceptable propellants, such as dichlorodifluoromethane, propane, nitrogen, and the like.

Formulations suitable for parenteral administration, such as, for example, by intraarticular (in the joints), intravenous, intramuscular, intradermal, intraperitoneal, 15 and subcutaneous routes, include aqueous and non-aqueous, isotonic sterile injection solutions, which can contain antioxidants, buffers, bacteriostats, and solutes that render the formulation isotonic with the blood of the intended recipient, and aqueous and non-aqueous sterile suspensions that can include suspending agents, solubilizers, thickening agents, stabilizers, and preservatives. In the practice of this invention, compositions can 20 be administered, for example, by intravenous infusion, orally, topically, intraperitoneally, intravesically or intrathecally. Parenteral administration and intravenous administration are the preferred methods of administration. The formulations of compounds can be presented in unit-dose or multi-dose sealed containers, such as ampules and vials.

Injection solutions and suspensions can be prepared from sterile powders, 25 granules, and tablets of the kind previously described. Cells transduced by nucleic acids for *ex vivo* therapy can also be administered intravenously or parenterally as described above.

The polypeptides of the invention are administered prophylactically or to an individual already suffering from the disease. The compositions are administered to a 30 patient in an amount sufficient to elicit an effective immune response. An amount adequate to accomplish this is defined as "therapeutically effective dose" or "immunogenically effective dose." Amounts effective for this use will depend on, e.g.,

the peptide composition, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician, but generally range for the initial immunization dose (that is for therapeutic or prophylactic administration) from about 0.01 mg to about 5 50 mg per 70 kilogram patient, more commonly from about 0.5-1 mg to about 10-15 mg per 70 kg of body weight. Boosting dosages are typically from about 0.01 mg to about 50 mg of peptide, more commonly about 0.5-1 mg to about 10-15 mg, using a boosting regimen over weeks to months depending upon the patient's response and condition. A suitable protocol would include injection at time 0, 2, 6, 8, 10 and 14 weeks, followed by 10 booster injections at 24 and 28 weeks. Booster injections can be from one, two, three, four, five or more. Initial and booster injection amounts and timing are determined based on the judgment of the physician and the antigen being administered. In one embodiment, the initial and booster dose is 1.3 mg, 4 mg, or 13 mg, administered via intramuscular injection, with at least one and up to 3 booster injections at 8 week 15 intervals, or at least one and up to 4 booster injections at 6 week intervals.

The therapeutic methods of the present invention may involve oral tolerance (Weiner *et al.*, *Nature* 376: 177-80, 1995), or intravenous tolerance, for example. Tolerance can be induced in mammals, although conditions for inducing such tolerance will vary according to a variety of factors. To induce immunological tolerance 20 in an adult susceptible to or already suffering from an autoantigen-related disease such as IDDM, the precise amounts and frequency of administration will also vary. For instance for adults about 20-80 µg/kg can be administered by a variety of routes, such as parenterally, orally, by aerosols, intradermal injection, and the like. For neonates, tolerance can be induced by parenteral injection or more conveniently by oral 25 administration in an appropriate formulation. The precise amount administrated, and the mode and frequency of dosages, will vary.

The single chain MHC class II molecule:peptide complexes will typically be more tolerogenic when administered in a soluble form, rather than in an aggregated or particulate form. Persistence of a single chain MHC class II molecule:peptide complex of 30 the invention is generally needed to maintain tolerance in an adult, and thus may require more frequent administration of the complex, or its administration in a form which

extends the half-life of the complex. See for example, Sun *et al.*, *Proc. Natl. Acad. Sci. USA* 91: 10795-99, 1994.

Within another aspect of the invention, a pharmaceutical composition is provided which comprises a single chain MHC class II molecule:peptide complex of the present invention contained in a pharmaceutically acceptable carrier or vehicle for parenteral, topical, oral, or local administration, such as by aerosol or transdermally, for prophylactic and/or therapeutic treatment, according to conventional methods. The composition may typically be in a form suited for systemic injection or infusion and may, as such, be formulated with sterile water or an isotonic saline or glucose solution.

Formulations may further include one or more diluents, fillers, emulsifiers, preservatives, buffers, excipients, and the like, and may be provided in such forms as liquids, powders, emulsions, suppositories, liposomes, transdermal patches and tablets, for example.

Pharmaceutical compositions of the present invention are administered at daily to weekly intervals. An "effective amount" of such a pharmaceutical composition is an amount that provides a clinically significant decrease in a deleterious T cell-mediated immune response to an autoantigen, for example, those associated with IDDM, or provides other pharmacologically beneficial effects. Such amounts will depend, in part, on the particular condition to be treated, age, weight, and general health of the patient, and other factors evident to those skilled in the art. Preferably the amount of the single chain MHC class II molecule:peptide complex administered will be within the range of 20-80 µg/kg. Compounds having significantly enhanced half-lives may be administered at lower doses or less frequently.

Adjuvants

An immunostimulant refers to essentially any substance that enhances or potentiates an immune response (antibody and/or cell-mediated) to an exogenous antigen. One preferred type of immunostimulant comprises an adjuvant. Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, *Bordetella pertussis* or *Mycobacterium tuberculosis* derived proteins. Certain adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company,

- Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; 5 monophosphoryl lipid A and quil A. Cytokines, such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.

The compositions may also include a *Mycobacterium* species CWS adjuvant, as described above. The effectiveness of an adjuvant may be determined by measuring the amount of antibodies directed against the immunogenic peptide.

- 10 Certain adjuvants for eliciting a predominantly Th1-type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O-acylated monophosphoryl lipid A, together with an aluminum salt. MPL® adjuvants are available from Corixa Corporation (Seattle, WA; see, for example, US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094). CpG-containing oligonucleotides (in which the 15 CpG dinucleotide is unmethylated) also induce a predominantly Th1 response. Such oligonucleotides are well known and are described, for example, in WO 96/02555, WO 99/33488 and U.S. Patent Nos. 6,008,200 and 5,856,462. Immunostimulatory DNA sequences are also described, for example, by Sato *et al.*, *Science* 273:352, 1996. Another preferred adjuvant comprises a saponin, such as Quil A, or derivatives thereof, 20 including QS21 and QS7 (Aquila Biopharmaceuticals Inc., Framingham, MA); Escin; Digitomin; or *Gypsophila* or *Chenopodium quinoa* saponins. Other preferred formulations include more than one saponin in the adjuvant combinations of the present invention, for example combinations of at least two of the following group comprising QS21, QS7, Quil A, β-escin, or digitonin.

- 25 Alternatively the saponin formulations may be combined with vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and poly(lactide-co-glycolide) particles, poly-N-acetyl glucosamine-based polymer matrix, particles composed of polysaccharides or chemically modified polysaccharides, liposomes and lipid-based particles, particles composed of glycerol monoesters, etc. The 30 saponins may also be formulated in the presence of cholesterol to form particulate structures such as liposomes or ISCOMs. Furthermore, the saponins may be formulated together with a polyoxyethylene ether or ester, in either a non-particulate solution or

suspension, or in a particulate structure such as a paucilamellar liposome or ISCOM. The saponins may also be formulated with excipients such as Carbopol^R to increase viscosity, or may be formulated in a dry powder form with a powder excipient such as lactose.

In one embodiment, the adjuvant system includes the combination of a monophosphoryl lipid A and a saponin derivative, such as the combination of QS21 and 3D-MPL[®] adjuvant, as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739. Other formulations comprise an oil-in-water emulsion and tocopherol. Another adjuvant formulation employs QS21, 3D-MPL[®] adjuvant and tocopherol in an oil-in-water emulsion is described in WO 95/17210.

Another enhanced adjuvant system involves the combination of a CpG-containing oligonucleotide and a saponin derivative particularly the combination of CpG and QS21 as disclosed in WO 00/09159. Preferably the formulation additionally comprises an oil in water emulsion and tocopherol.

Additional illustrative adjuvants for use in the pharmaceutical compositions of the invention include Montanide ISA 720 (Seppic, France), SAF (Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Enhanzym[®]) (Corixa, Hamilton, MT), RC-529 (Corixa, Hamilton, MT) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. Patent Application Serial Nos. 08/853,826 and 09/074,720, the disclosures of which are incorporated herein by reference in their entireties, and polyoxyethylene ether adjuvants such as those described in WO 99/52549A1.

Other preferred adjuvants include adjuvant molecules of the general formula (I): HO(CH₂CH₂O)_n-A-R,
wherein, n is 1-50, A is a bond or -C(O)-, R is C₁₋₅₀ alkyl or Phenyl C₁₋₅₀ alkyl.

One embodiment of the present invention consists of a vaccine formulation comprising a polyoxyethylene ether of general formula (I), wherein n is between 1 and 50, preferably 4-24, most preferably 9; the R component is C₁₋₅₀, preferably C₄-C₂₀ alkyl and most preferably C₁₂ alkyl, and A is a bond. The concentration of the polyoxyethylene ethers should be in the range 0.1-20%, preferably from 0.1-10%, and most preferably in the range 0.1-1%. Preferred polyoxyethylene ethers are selected from the following

group: polyoxyethylene-9-lauryl ether, polyoxyethylene-9-stearyl ether, polyoxyethylene-8-stearyl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35-lauryl ether, and polyoxyethylene-23-lauryl ether. Polyoxyethylene ethers such as polyoxyethylene lauryl ether are described in the Merck index (12th edition: entry 7717). These adjuvant molecules are described in WO 99/52549.

The polyoxyethylene ether according to the general formula (I) above may, if desired, be combined with another adjuvant. For example, a preferred adjuvant combination is preferably with CpG as described in the pending UK patent application GB 9820956.2.

10

Liposome-, Nanocapsule-, and Microparticle-Mediated Delivery

In certain embodiments, the inventors contemplate the use of liposomes, nanocapsules, microparticles, microspheres, lipid particles, vesicles, and the like, for the introduction of the compositions of the present invention into the subjects. In particular, the compositions of the present invention may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like.

Such formulations may be preferred for the introduction of pharmaceutically-acceptable formulations of the compositions disclosed herein. The formation and use of liposomes is generally known to those of skill in the art (see, for example, Couvreur *et al.*, 1977; Couvreur, 1988; Lasic, 1998; which describes the use of liposomes and nanocapsules in the targeted antibiotic therapy for intracellular bacterial infections and diseases). Recently, liposomes were developed with improved serum stability and circulation half-times (Gabizon & Papahadjopoulos, 1988; Allen and Choun, 1987; U. S. Patent 5,741,516, specifically incorporated herein by reference in its entirety). Further, various methods of liposome and liposome-like preparations as potential drug carriers have been reviewed (Takakura, 1998; Chandran *et al.*, 1997; Margalit, 1995; U. S. Patent 5,567,434; U. S. Patent 5,552,157; U. S. Patent 5,565,213; U. S. Patent 5,738,868 and U. S. Patent 5,795,587, each specifically incorporated herein by reference in its entirety).

Liposomes have been used effectively to introduce genes, drugs (Heath & Martin, 1986; Heath *et al.*, 1986; Balazsorovits *et al.*, 1989; Fresta & Puglisi, 1996),

radiotherapeutic agents (Pikul *et al.*, 1987), enzymes (Imaizumi *et al.*, 1990a; Imaizumi *et al.*, 1990b), viruses (Faller & Baltimore, 1984), transcription factors and allosteric effectors (Nicolau & Gersonde, 1979) into a variety of cultured cell lines and animals. In addition, several successful clinical trials examining the effectiveness of liposome-mediated drug delivery have been completed (Lopez-Berestein *et al.*, 1985a; 1985b; Courne, 1988; Sculier *et al.*, 1988). Furthermore, several studies suggest that the use of liposomes is not associated with autoimmune responses, toxicity or gonadal localization after systemic delivery (Mori & Fukatsu, 1992).

Liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs). MLVs generally have diameters of from 25 nm to 4 μm . Sonication of MLVs results in the formation of small unilamellar vesicles (SUVs) with diameters in the range of 200 to 500 Å, containing an aqueous solution in the core.

Liposomes bear resemblance to cellular membranes and are contemplated for use in connection with the present invention as carriers for the compositions. They are widely suitable as both water- and lipid-soluble substances can be entrapped, *i.e.*, in the aqueous spaces and within the bilayer itself, respectively. It is possible that the drug-bearing liposomes may even be employed for site-specific delivery of active agents by selectively modifying the liposomal formulation.

In addition to the teachings of Couvreur *et al.* (1977, 1988), the following information may be utilized in generating liposomal formulations. Phospholipids can form a variety of structures other than liposomes when dispersed in water, depending on the molar ratio of lipid to water. At low ratios the liposome is the preferred structure. The physical characteristics of liposomes depend on pH, ionic strength and the presence of divalent cations. Liposomes can show low permeability to ionic and polar substances, but at elevated temperatures undergo a phase transition which markedly alters their permeability. The phase transition involves a change from a closely packed, ordered structure, known as the gel state, to a loosely packed, less-ordered structure, known as the fluid state. This occurs at a characteristic phase-transition temperature and results in an increase in permeability to ions, sugars and drugs.

In addition to temperature, exposure to proteins can alter the permeability of liposomes. Certain soluble proteins, such as cytochrome c, bind, deform and penetrate

the bilayer, thereby causing changes in permeability. Cholesterol inhibits this penetration of proteins, apparently by packing the phospholipids more tightly. It is contemplated that the most useful liposome formations for antibiotic and inhibitor delivery will contain cholesterol.

5 The ability to trap solutes varies between different types of liposomes. For example, MLVs are moderately efficient at trapping solutes, but SUVs are extremely inefficient. SUVs offer the advantage of homogeneity and reproducibility in size distribution. However, a compromise between size and trapping efficiency is offered by large unilamellar vesicles (LUVs). These are prepared by ether evaporation and are three
10 to four times more efficient at solute entrapment than MLVs.

In addition to liposome characteristics, an important determinant in entrapping compounds is the physicochemical properties of the compound itself. Polar compounds are trapped in the aqueous spaces and nonpolar compounds bind to the lipid bilayer of the vesicle. Polar compounds are released through permeation or when the
15 bilayer is broken, but nonpolar compounds remain affiliated with the bilayer unless it is disrupted by temperature or exposure to lipoproteins. Both types show maximum efflux rates at the phase transition temperature.

Liposomes interact with cells *via* four different mechanisms: endocytosis by phagocytic cells of the reticuloendothelial system such as macrophages and
20 neutrophils; adsorption to the cell surface, either by nonspecific weak hydrophobic or electrostatic forces, or by specific interactions with cell-surface components; fusion with the plasma cell membrane by insertion of the lipid bilayer of the liposome into the plasma membrane, with simultaneous release of liposomal contents into the cytoplasm; and by transfer of liposomal lipids to cellular or subcellular membranes, or vice versa, without
25 any association of the liposome contents. It often is difficult to determine which mechanism is operative and more than one may operate at the same time.

The fate and disposition of intravenously injected liposomes depend on their physical properties, such as size, fluidity, and surface charge. They may persist in tissues for hours or days, depending on their composition, and half lives in the blood
30 range from minutes to several hours. Larger liposomes, such as MLVs and LUVs, are taken up rapidly by phagocytic cells of the reticuloendothelial system, but physiology of the circulatory system restrains the exit of such large species at most sites. They can exit

only in places where large openings or pores exist in the capillary endothelium, such as the sinusoids of the liver or spleen. Thus, these organs are the predominant site of uptake. On the other hand, SUVs show a broader tissue distribution but still are sequestered highly in the liver and spleen. In general, this *in vivo* behavior limits the potential targeting of liposomes to only those organs and tissues accessible to their large size. These include the blood, liver, spleen, bone marrow, and lymphoid organs.

Targeting is generally not a limitation in terms of the present invention. However, should specific targeting be desired, methods are available for this to be accomplished. Antibodies may be used to bind to the liposome surface and to direct the antibody and its drug contents to specific receptors located on a particular cell-type surface. Carbohydrate determinants (glycoprotein or glycolipid cell-surface components that play a role in cell-cell recognition, interaction and adhesion) may also be used as recognition sites as they have potential in directing liposomes to particular cell types. Mostly, it is contemplated that intravenous injection of liposomal preparations would be used, but other routes of administration are also conceivable.

Alternatively, the invention provides for pharmaceutically-acceptable nanocapsule formulations of the compositions of the present invention. Nanocapsules can generally entrap compounds in a stable and reproducible way (Henry-Michelland *et al.*, 1987; Quintanar-Guerrero *et al.*, 1998; Douglas *et al.*, 1987). To avoid side effects due to intracellular polymeric overloading, such ultrafine particles (sized around 0.1 μm) should be designed using polymers able to be degraded *in vivo*. Biodegradable polyalkyl-cyanoacrylate nanoparticles that meet these requirements are contemplated for use in the present invention. Such particles may be easily made, as described (Couvreur *et al.*, 1980; 1988; zur Muhlen *et al.*, 1998; Zambaux *et al.* 1998; Pinto-Alphandry *et al.*, 1995 and U. S. Patent 5,145,684, specifically incorporated herein by reference in its entirety).

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that

certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

The following example is provided by way of illustration only and not by way of limitation. Those of skill in the art will readily recognize a variety of noncritical parameters that could be changed or modified to yield essentially similar results.

EXAMPLES

Example 1: Construction of DNA sequences encoding human single chain MHC class II peptide complexes, HLA-DR4 molecules(CO563 and CO564).

DNA constructs encoding gp39 $\beta 1/\alpha 1$ human molecules were prepared from a cDNA encoding the gp39 peptide fused to the $\beta 1/\alpha 1$ domains of HLA-DR4 according to standard techniques. For the production of "empty" $\beta 1/\alpha 1$ DR4 molecules, a cDNA encoding the fused $\beta 1/\alpha 1$ domains of HLA-DR4 was prepared using cloned α and β chains from DR4.

Amino acid sequence of the gp39- $\beta 1/\alpha 1$ HLA-DR4 human single chain molecule (linkers are shown in bold)

MGDTGRSFTLASSETGVGASGGGGSGGGDTRPRFLEQVKHECH
FFNGTERVRFLDRYFYHQEEYVRFSDVGEYRAVTELGRPDAEYWNSQKDLLEQ
KRAAVDTYCRHNYGVGESFTVQRRGGIKEEHVIIQAEFYLNPDQSGEFMFDGD
DEIFHVVDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPIT
N*

aa1 - aa4: leader sequence

aa5 - aa18: gp39 peptide

aa19 - aa28: linker

aa29 - aa122: HLA-DR4 $\beta 1$ domain

aa123 - aa124: linker

aa125 - aa 208: HLA-DR4 $\alpha 1$ domain

Amino acid sequence of the "empty" $\beta 1/\alpha 1$ HLA-DR4 human single chain molecule (linkers in bold):

MGDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFSDVGEYRAVTEL
GRPDAEYWNSQRDLLEQKRAAVDTYCRHNYGVGESFTVQRRGGIKEEHVIIQAE

50

FYLNPDQSGEFMFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAV
DKANLEIMTKRSNYTPITN*

aa 1 – aa95: HLA-DR4 β 1 domain

aa96- aa97: linker

5 aa98- aa181: HLA-DR4 α 1 domain

For the production of recombinant proteins, the bacteria (pLysS) were grown in LB (containing ampicillin (50 μ g / ml) and chloramphenicol (5 μ g / ml)) at 37°C until OD 600 = 0.5. IPTG was added at the final concentration of 0.5 mM final and the bacteria were further incubated for 3 hours at 37°C with shaking. The bacteria were 10 centrifuged at 4°C, 4000xg for 20 min and the pellet was frozen at -80°C. The following day, the pellet was resuspended in 40 ml of lysis buffer (50 mM Tris-HCl pH 8, 50 mM NaCl, 2 mM EDTA, 1 protease inhibitor cocktail tablet, 1% Triton X100 and 1% deoxycholate), and incubated for 1 hour at 4°C under continuous agitation with a magnetic stirrer. The sample was then homogenized using a French Press with a 16,000 15 psi setting, and centrifuged at 4°C, 9000g for 20 min. The pellet was then resuspended in 30 ml of lysis buffer without Triton and deoxycholate and centrifuged at 4°C, 9000 g for 20 min. The new pellet was resuspended in 10 ml of 20 mM ethanolamine/6 M urea pH 10, and eventually frozen at -80°C. The recombinant protein was then purified by FPLC 20 ion-exchange chromatography using Source 30Q anion-exchange media in an XK26/20 column using a step gradient going from 1 mM to 1 M NaCl in 20 mM ethanolamine/6M urea pH 10. Fractions were analyzed by SDS/PAGE and those corresponding to the proteins of interest are pooled and dialyzed against PBS 1X.

Example 2: Production of additional single chain constructs

25 Additional constructs with different composition and length of the 2nd linker (between β 1 and α 1) were engineered by using standard techniques using CO567 as the template. Specifically, PCR primers were designed to replace the old sequence in CO567 with the new sequence. For example, to make CO581, the primers were designed with the following sequences (note these primers were phosphorylated at 5').

30 Primer 1:

5' pCACCAAGGAGGAGAGCCGCCACGCCGGTCTCGCTGG

Primer 2:

51

5' pGACCACCTGGATCTGGGGACACCCGACCACGTTTC

PCR reaction (100 µl) was made of the following components: 2 µl CO567 (80 ng) as template, 2 µl each of primer 1 and primer 2 (10 µM), 2 µl of dNTP mix (20 mM each), 10 µl of 10X pfu buffer, and 80 µl of sterile water. After all the components were mixed, 2 µl of Turbo pfu (5U total) was added, mixed and put on PCR machine. The PCR cycles has a pre-denaturation at 95°C for 30 sec, then 10 cycles of 95°C for 30°C, 60°C for 1 min, and 72°C for 7 min. Then another 22 cycles of 95°C for 30°C, 65°C for 1 min and 72°C for 7 min, followed by a final 10 min at 72°C.

The PCR mixture was digested with 2 µl of DpnI (10U) for 2h at 37°C. Then the PCR product at ~6 kb was purified from agarose gel after electrophoresis. The purified PCR product was ligated by T4 DNA ligase for 1 h at room temperature then used to transform into NovaBlue (Novagen)competent cells by standard protocol. Cells were plated on LB (+Carb) and grow overnight at 37°C.

Next day, about a dozen single colony from the transformation were randomly picked for overnight culture in 5 ml LB (+Carb) at 37°C. Plasmids from these culture were purified with Wizard Miniprep kit, and analyzed by Xho I digestion. A few plasmids that passed the Xho I digestion were further confirmed by DNA sequencing.

To express the recombinant proteins, a clone with confirmed DNA sequence was used to transform BL21(DE3)CodonPlus-RIL (Stratagene) by standard transformation protocol and plated on LB (Carb+Cam) plates overnight at 37°C. Next morning, a single colony was picked to inoculate 100 ml LB (+Carb+Cam) and the culture was grown till OD reach between 0.8-1.0, and stored overnight at 4°C. Next day, the culture was pellet down and used to inoculate into 2xYT (+Carb+Cam) at ratio of 25 ml culture per liter new media. These large cultures were grown at 37°C till OD=0.5-0.6, and IPTG was added to induce recombinant protein at 37°C for 3 h. The induced cultures were pellet and stored at -80°C till purification.

Table 1 provides a listing of various constructs made according to the invention.

52
TABLE I

Construct	peptide	upstream linker	downstream linker
C0523	yes	GGGG	GG
C0543	none	none	GG
C0563	yes	ASGGGSGGG	GG
C0567	yes	ASGGGSGGG	TSGGGGSGGGGSSS
C0580	yes	ASGGGSGGG	GSPGGGSGGGPGS
C0581	yes	ASGGGSGGG	GSPPGGPPGS
C0582	yes	ASGGGSGGG	GSPGGGGPGS
C0583	yes	ASGGGSGGG	TSGGGGS
C0584	yes	ASGGGSGGG	SGGSGGS
C0585	yes	ASGGGSGGG	FDAPSPLP
C0586	none	none	TSGGGGSGGGGSSS
C0587	none	none	GSPGGGGSGGGPGS
C0588	none	none	GSPPGGPPGS
C0589	none	none	GSPGGGGPGS
C0590	none	none	TSGGGGS
C0591	none	none	SGGSGGS
C0592	none	none	FDAPSPLP
C0593	yes	ASGGGSGGG	VYPEVTV
C0594	none	none	VYPEVTV
C0595	yes	ASGGGSGGG	GGGG
C0596	yes	ASGGGSGGG	GGGGS
C0597	yes	ASGGGSGGG	GGGSGG

Example 3: Four classes of novel linkers for MHC class II single chain molecules

Inspection of circular dichroism spectra of purified, refolded single chain constructs indicated that novel linkers could be used for the constructs. The atomic structures of the various murine and human MHC class II molecules, as determined by X-ray crystallography, indicated that these molecules have a high degree of structural similarity. The circular dichroism results were consistent with two folded molecules of clearly different secondary structure. Careful inspection of the structures reveals that the human MHC has a longer distance between chains than the equivalent murine molecule. This results led to proposing longer linkers between the chains which would contain flexible residues (e.g. alanine or glycine) and polar residues (e.g. serine and threonine). These constructs make up the first class of linkers. To inhibit the continuation of secondary structure across the linker, prolines were added to bracket the linkers. These prolines are known to inhibit the formation of alpha helices and beta sheets. These linkers make up the second class of linkers disclosed here.

Next, flexible regions present in the human MHC and in the murine MHC could be used to make a linker by extending the region of interest and ligating the ends together. These are the third class of linkers. Finally, a combination of these types of linkers could also be used. These are the fourth class of linkers.

Example 4: Human MHC class II single chain molecule with murine linkers

Another linker has been suggested based on a combination of murine and human MHC class II single chain molecules. This fusion would incorporate linker residues from the functional murine single chain MHC class II molecule and the alpha and beta chains of the human molecule. The protein sequence of the single chain molecule is provided below (the linker residues from the mouse construct are in bold):
MGDTGRSFTLASSETGVGASGGGGSGGGDTRPRFLEQVKHECHFFNGTERVRF
LDRYFYHQEEYVRFSDDVGEYRAVTELGRPDAEYWNSQKDLLEQKRAAVDTYC
RHNYGVGESFTVLRRLLGGEDDEADHHVIIQAEFYLNPDQSGEFMFDFDGDEIFH
VDMAKKETVWRLEEGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITN*

Further MHC class II hybrid single chain molecules may be designed by fusing other portions of the alpha chain and the beta chain together using linkers as described elsewhere. A properly folded molecule may be obtained by putting appropriate

54

linkers between portions of the human MHC class II which are proximal to each other as determined by visual inspection of the atomic coordinates of residues of the native MHC available in the publicly accessible protein structure database. These structures would predict possible fusion proteins which covalently attach any part of the beta chain
5 between residues 82 to 123 or between residues 148 to 164 to portions of the alpha chain such as the N-terminal residues, residues 79 to 84, or 92 to 106. The numbering system of residues in this example corresponds to those found in the coordinates of the structure described in: DESSEN, *et al.* *Immunity* 7:473 (1997). Other, homologous residues could be used to create equivalent constructs for genotypic and allelic variants of these
10 molecules e.g. equivalent residues in DR2 or such. DNAs for such hybrids would be prepared and expressed in a recombinant expression system by someone skilled in the art and could be assayed for structure and function in appropriate assays.

Example 5: Use of CD4 binding site(s) of MHC class II molecules as linkers for the
15 production of bioactive recombinant MHC class II:peptide complexes

HLA class II molecules present antigenic peptides to the T cell receptor of the CD4+ T lymphocytes and interact with CD4 during the antigen recognition process. Native MHC class II-peptide complexes have been shown to bind to MHC class II restricted and antigen specific TCRs on a particular T cell and induce T cell
20 nonresponsiveness. It is proposed that the CD4 binding site is important in the docking of MHC class II-peptide complex with the TCR and induce nonresponsiveness. Since the binding of CD4 to MHC class II-peptide is important in antigen presentation and/or induction of T cell nonresponsiveness, it is proposed that recombinant MHC class II-peptide molecules (truncated or whole) containing CD4 binding site will be biologically
25 active. Furthermore, a polypeptide fragment from MHC class II which binds the CD4, when used as a linker in preparation of MHC class II-peptide truncated molecules, provides resulting recombinant molecules that will be biologically active.

The following describes the concept of different linkers. Peptide is attached to a linker 1 (L1) which is attached to N-terminus of β 1 domain that is linked to
30 L2. L2 is linked to L3, which in turn is linked to N-terminus of α 1 chain of MHC class II. Here L2 represents the human CD4 binding sequences. It should be noted that L2 could also be directly linked to N-terminus of α 1 domain by completely deleting L3.

Specific examples of L1 and L3 are given in a examples. The sequences of L2 are given below. These sequences are applicable to most of the DR-Peptide molecules.

RNGQEEKAGVVSTGLI, RNGQETKAGVVSTGLI, YNQQEEKAGGVSTGLI,
FRNGQEEKAGVVSTGLI, FRNGQETKAGVVSTGLI, FYNQQEEKAGGVSTGLI,

5 and LNGQEEKAGMVSTGLI.

Example 6: I-As MBP. β 1 β 2 α 1 α 2.C κ construct and activity

The “full anergix” single chain molecule, mouse I-As MBP. β 1 β 2 α 1 α 2.C κ , was generated by overlap PCR using standard methodology. The molecules was expressed in 293T cells and baculoviral cells according to standard methodology, and purified according to standard methodology using affinity chromatography using goat-anti mouse antibodies. The structure of I-As MBP. β 1 β 2 α 1 α 2.C κ is shown in Figure 1.

The amino acid sequence of the I-As MBP. β 1 β 2 α 1 α 2.C κ shown in Figure 1 is as follows:

15 METDTLLLWVLLLWVPGSTGDFKNIVTPRTPPPASGGGGSGGGDSERHFVFQF
KGECYFTNGTQRIRSVDRYTINREEYLRFSDVGLEYRAVTELGRPDPEYYNKQY
LEQTRAELDTVCRHNYEGVETHSLRRLEQPNVVISLSRTEALNHHTLVCSVTD
FYPAKIKVRWFRNGQEETVGVSSTQLIRNGDWTFQVLVMLEMPRRGEVYTCH
VEHPSLKSPITVEWTSGGGGGGGGGGGGGSSSEDDIEADHVGVYGTIV
20 YQSPGDIGQYTHEFDGDEWFYVDLDKKETIWMLPEFGQLTSFDPQGGLQNIATG
KYTLGILTKRSNSTPATNEAPQATVFPKSPVLLGQPNTLICFVDNIFPPVINITWLR
NSKSVTDGVYETSLVNRDHSHFKLSYLTFLPSDDDIYDCKVEHWGLEEPVLKHW
ASGGGGSGGGADAAPTVSIFPPSSEQLTSGGASVVCFLNNFYPKDINVWKIDG
SERQNGVLNSWTDQDSKDSTYSMSSTLTKEYERHNSYTCEATHKTSTSPIVK
25 SFNRNEC

The *in vitro* activity of recombinant I-As MBP. β 1 β 2 α 1 α 2.C κ was tested using MBP90-101 specific IAs restricted mouse T cell clone HS1. This clone was prepared by the immunization of SJL mice with the MBP90-101 peptide, followed by cloning out CD4+ T cells by limited dilution techniques. These cells were maintained by stimulation every 10 days with irradiated SJF splenocytes and PBP90-101 peptide. The T cells are activated by a combination of soluble recombinant I-As MBP. β 1 β 2 α 1 α 2.C κ and plate bound anti-CD28 antibody. T cell activation was assayed by 3 H-thymidine

incorporation according to standard methodology. Figure 2 shows the results of this assay.

MS is a T cell dependent autoimmune disease caused by localized demyelination in the central nervous system. Experimental autoimmune encephalomyelitis is a accepted animal model of MS. The following results demonstrate that administration of I-As MBP. β 1 β 2 α 1 α 2.Ck reduces the incidence and severity of EAE. EAE was induced according to standard methodology according to the myelin model. Ten μ g of recombinant I-As MBP. β 1 β 2 α 1 α 2.Ck was given intravenously in 100 μ l of PBS at days 1, 4, 7, and 11 after disease induction. 12 days after immunization, animals are observed daily for the onset of neurological dysfunction. Disease is graded by trained technicians according to standard methods (see Figure 3). Mice are followed for up to 60-70 days. The data shown in Figure 4 demonstrate that administration of the recombinant I-As MBP. β 1 β 2 α 1 α 2.Ck significantly reduced the incidence of myelin-induced EAE in SJL mice. In one experiment, 11 out of 20 mice developed EAE in the untreated group (55%), whereas only 2 out of 21 animal showed sign of the disease in the treated group (16.6%). Similarly, in another experiment, 12 out of 16 mice developed EAE in the untreated group (75%), while only 2 out of 16 developed EAE in the treated group (12.5%).

Histological examination from SJL mice in the EAE model studies: spinal cords were removed, fixed in formalin solution and embedded in paraffin. Sections were cut, stained with hematoxylin, eosin and graded for inflammatory lesions. A. Section of spinal cord from untreated mouse, score = 2.5; B. Section of spinal cord from mouse treated with the recombinant I-AS.MBP.Ck, score = 0; C. Section of spinal cord from mouse treated with the recombinant I-AS. β 1 α 1 without antigenic peptide fusion, score = 2.0; D. Section of spinal cord from mouse treated with the recombinant I-AS.MBP. β 1 α 1, score = 0.5. The histology score for each section is marked.

Example 7: Functional human anergix molecules optimized for *E. coli* expression with *E. coli* codons

Two human single chain MHC class II molecules (CO528-AC and CO608-AC) have been optimized for *E. coli* expression using "artificial codons," e.g.,

preferred *E. coli* codons encoding the mammalian protein. CO528-AC and CO608-AC were made according to standard PCR overlap technology.

Example 7: Recombinant MHC class II IAs-MBP-Ig multimeric complexes

5 Recombinant MHC class II (IAs)-peptide-Ig fusion complexes were constructed by fusing the mIgG leader, MBP 90-101, or MBP1-14 (as a control) to IAs single chain (b1b2a1a2), and mIgG.Ck, mIgG.CH1.H, mIgG.CH1.H.CH2, or mIgG.CH1.H.CH2.CH3 with flexible linkers, according to standard methodology. The recombinant IAs fusion proteins were expressed in both mammalian and insect cells and
10 detected by western analysis and ELISA. The overexpressed and secreted recombinant IAs fusion proteins from both human 293 cell cultures or from insect culture medium were purified by affinity chromatography. The purified dimeric and tetrameric recombinant IAs proteins have *in vitro* biological activity as assayed using an antigen-specific mouse T cell clone. The *in vivo* activity of the recombinant IAs fusion proteins
15 were studied with the experimental autoimmune encephalomyelitis (EAE) model using susceptible SJL mice. In these EAE studies, recombinant IAs fusion protein was delivered on days 1, 4, 7, and 11 by I.V. injections after induction of the disease with myelin. The animals were then examined for neurological dysfunction. The results indicate that treatment with the recombinant IAs fusion proteins prevents mortality and
20 significantly reduces paralysis induced by myelin homogenate in CFA. In conclusion, these studies suggest that the recombinant MHC class II fusion protein has therapeutic benefit as antigen-specific drugs for the treatment of autoimmune diseases.

Example 8: Synthesis of mouse model equivalent of CO608

25 Four forms of the murine MHC Class II IAs $\beta 1\alpha 1$ with MBP peptide linkers analogous to CO608 human were made. These constructs can be used, e.g., as murine clinical control for human 608. mCO608 (mouse CO608, lacking the first five amino acids, GDSER, as compared to native beta 1 domain), MCO608-A (same as m608 except lacking four amino acids, GSER, after the methionine as compared to m608), B.
30 megaterium-mCO608-A (expressed in *Bacillus megaterium*), and mCO608-B (same as m608 except lacking first four amino acids, GSER, after the methionine as compared to m608; also lacking second amino acid, D, as compared to native beta 1 domain).

To make mCO608, the upstream linker of mouse CO521 (GGGS) was replaced with the human CO608 linker (ASGGGGSGGG) and the downstream linker of mouse CO521 (GG) was replaced with the downstream linker of CO608 (TSGGGGS), using PCR according to standard methodology. mCO608-A and m6O8-B were made
5 from mCO608 using PCR according to standard methodology.

All publications and patent applications cited in this specification are herein incorporated by reference as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference.

10 Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.

SEQUENCE LISTING

5 <210> C0602
 <211> 558
 <212> DNA
 <213> Homo sapiens

10 atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtgcgggtt cctggacaga tacttttatac accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccgggcgt gtgacggagc tggggcggcc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 agacacaact acgggggttgg tgagagcttc acagtgtgc ggcgactcgg aggtgaagat 300
 gacgaggcag atcaccatgt gatcatccag gcccgggttct atctgaatcc tgaccaatca 360
 15 ggcgagttta tggttgactt tgatgggtgat gagattttcc atgtggatat ggcaaagaag 420
 gagacggtct ggccggcttga agaatttggaa cgatttgcca gctttgagggc tcaaggtgca 480
 ttggccaaca tagctgtgga caaagccaaac ctggaaatca tgacaaaagcg ctccaaactat 540
 actccgatca ccaattaa 558

20 <210> C0601
 <211> 558
 <212> DNA
 <213> Homo sapiens

25 atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtgcgggtt cctggacaga tacttttatac accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccgggcgt gtgacggagc tggggcggcc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 agacacaact acgggggttgg tgagagcttc acagtgcagc ggcgaggagg tggaaagcggc 300
 30 ggaatcaaag aagaacatgt gatcatccag gcccgggttct atctgaatcc tgaccaatca 360
 ggcgagttta tggttgactt tgatgggtgat gagattttcc atgtggatat ggcaaagaag 420
 gagacggtct ggccggcttga agaatttggaa cgatttgcca gctttgagggc tcaaggtgca 480
 ttggccaaca tagctgtgga caaagccaaac ctggaaatca tgacaaaagcg ctccaaactat 540
 actccgatca ccaattaa 558

35 <210> C0600
 <211> 555
 <212> DNA
 <213> Homo sapiens

40 atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtgcgggtt cctggacaga tacttttatac accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccgggcgt gtgacggagc tggggcggcc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 45 agacacaact acgggggttgg tgagagcttc acagtgcagc ggcgaggagg tggaggcagc 300
 atcaaagaag aacatgtgat catccaggcc gagtttatac tgaatcctga ccaatcagggc 360
 gagtttatgt ttgactttga tgggtgatgag attttccatg tggatatggc aaagaaggag 420
 acggctggc ggcttgaaga atttggacga tttgcacgt ttgaggctca aggtgcattg 480
 gccaacatacg ctgtggacaa agccaaacctg gaaatcatga caaagcgcctc caactatact 540
 50 ccgatcacca attaa 555

<210> C0599
 <211> 552
 <212> DNA
 55 <213> Homo sapiens

atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60

60

gggacggagc ggggtgcgggtt cctggacaga tactttatc accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccgggccc gtgacggagc tggggcgccc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 agacacaact acgggggttgg tgagagcttc acagtgcagc ggccgaggagg tggaggcattc 300
 5 aaagaagaac atgtgatcat ccaggccgag ttctatctga atcctgacca atcaggcgag 360
 tttatgtttg actttgatgg tgatgagatt ttccatgtgg atatggcaaa gaaggagacg 420
 gtctggcgcc ttgaagaatt tgacgattt gccagctttg aggctcaagg tgcattggcc 480
 aacatagctg tggacaaagc caacctggaa atcatgacaa agegtccaa ctatactccg 540
 atcaccaatt aa 552

10 <210> C0594
 <211> 561
 <212> DNA
 <213> Homo sapiens

15 atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtgcgggtt cctggacaga tactttatc accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccgggccc gtgacggagc tggggcgccc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 20 agacacaact acgggggttgg tgagagcttc acagtgcagc ggccgaggatc ccctgaggta 300
 actgtcatca aagaagaaca tttgtatcatc caggccgagt tctatctgaa tcctgaccaa 360
 tcagggcagt ttatgtttga ctttgtatggt gatgagattt tccatgtgga tatggcaaaag 420
 aaggagacgg tctggcggtt tgaagaattt ggacgattt gccagctttg ggctcaagg 480
 gcattggcca acatagctgt ggacaaagcc aacctggaaa tcatgacaaa ggcgtccaaac 540
 25 tatactccga tcaccaatta a 561

<210> C0592
 <211> 564
 <212> DNA
 <213> Homo sapiens

30 atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtgcgggtt cctggacaga tactttatc accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccgggccc gtgacggagc tggggcgccc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 35 agacacaact acgggggttgg tgagagcttc acagtgcagc ggccgatttca cgccacccatgc 300
 ccactccccaa tcaaaaaga acaatgtgatc atccaggccg agtttatctt gaatccatgac 360
 caatcaggcg agtttatgtt tgactttgtt ggtgtatgaga tttccatgtt ggatatggca 420
 aagaaggaga cggctctggcg gcttgaagaa tttggacgat ttgccagctt tgaggctcaa 480
 40 ggtgcatttg ccaacatagc tttggacaaa gccaacctgg aaatcatgac aaagcgctcc 540
 aactatactc cgatcaccaaa tttaa 564

<210> C0591
 <211> 561
 <212> DNA
 <213> Homo sapiens

45 atgggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtgcgggtt cctggacaga tactttatc accaagagga gtacgtgcgc 120
 50 ttcgacagcg acgtggggga gtaccgggccc gtgacggagc tggggcgccc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 agacacaact acgggggttgg tgagagcttc acagtgcagc ggccgaggatg ccgtatgtggc 300
 ggttagtatca aagaagaaca tttgtatcatc caggccgagt tctatctgaa tcctgaccaa 360
 tcagggcagt ttatgtttga ctttgtatggt gatgagattt tccatgtgga tatggcaaaag 420
 55 aaggagacgg tctggcggtt tgaagaattt ggacgattt gccagctttg ggctcaagg 480
 gcattggcca acatagctgt ggacaaagcc aacctggaaa tcatgacaaa ggcgtccaaac 540
 tatactccga tcaccaatta a 561

<210> C0590

<211> 561

<212> DNA

<213> Homo sapiens

5 atgggggaca cccgaccacg tttcttggag caggtaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccggcg gtgacggagc tggggcgccc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgaacttag tggtggcggt 300
 10 ggcagcatca aagaagaaca tgtgatcatc caggccgagt tctatctgaa tcctgaccaa 360
 tcagggcgagt ttatgttga ctttgatggt gatgagattt tccatgtgaa tatggcaaag 420
 aaggagacgg tctggcgct tgaagaattt ggacgatttg ccagcttga ggctcaaggt 480
 gcattggcca acatagctgt ggacaaagcc aacctggaaa tcatgacaaa ggcgtccaac 540
 tatactccga tcaccaatta a 561

15 <210> CO589

<211> 570

<212> DNA

<213> Homo sapiens

20 atgggggaca cccgaccacg tttcttggag caggtaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccggcg gtgacggagc tggggcgccc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 25 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgagggtc tcctggaggt 300
 ggaggtcctg gatctatcaa agaagaacat gtgatcatcc aggccgagtt ctatctgaat 360
 cctgaccaat caggcgagtt tatgtttgac tttgatggtg atgagattt ccatgtggat 420
 atggcaaaga aggagacggt ctggcggtt gaagaattt gacgatttg cagctttgag 480
 gctcaaggtg cattggccaa catagctgtg gacaaagcca acctggaaat catgacaaaag 540
 30 cgctccaact atactccgat caccaattaa 570

<210> CO588

<211> 570

<212> DNA

35 <213> Homo sapiens

atgggggaca cccgaccacg tttcttggag caggtaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccggcg gtgacggagc tggggcgccc tgatgccgag 180
 40 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgagggtc tcctcctgg 300
 ggaccacctg gatctatcaa agaagaacat gtgatcatcc aggccgagtt ctatctgaat 360
 cctgaccaat caggcgagtt tatgtttgac tttgatggtg atgagattt ccatgtggat 420
 atggcaaaga aggagacggt ctggcggtt gaagaattt gacgatttg cagctttgag 480
 45 gctcaaggtg cattggccaa catagctgtg gacaaagcca acctggaaat catgacaaaag 540
 cgctccaact atactccgat caccaattaa 570

<210> CO587

<211> 582

<212> DNA

<213> Homo sapiens

atgggggaca cccgaccacg tttcttggag caggtaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtcggtt cctggacaga tacttctatc accaagagga gtacgtgcgc 120
 55 ttcgacagcg acgtggggga gtaccggcg gtgacggagc tggggcgccc tgatgccgag 180
 tactggaaaca gccagaagga cctcctggag cagaagcggg ccgcgggtgga cacctactgc 240
 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgagggtg tccaggcggt 300
 ggcgggagcg ggcgggttcc tgggagtatc aaagaagaac atgtgatcat ccaggccgag 360
 ttctatctga atcctgacca atcaggcgag tttatgtttg actttgatgg tgatgagatt 420

62

ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 480
 gccagcttg aggctcaagg tgattggcc aacatacgctg tggacaaagc caacctggaa 540
 atcatgacaa agcgctccaa ctatactccg atcaccaatt aa 582

5 <210> C0586

<211> 582

<212> DNA

<213> Homo sapiens

10 atggggaca cccgaccacg tttcttggag caggttaaac atgagtgtca tttcttcaac 60
 gggacggagc ggggtgcgggtt cctggacaga tacttctatac accaagagaga gtacgtgcgc 120
 ttcgacagcg acgtggggga gtaccggcgc gtgacggagc tggggcggcc tgatgccgag 180
 tactggAACa gccagaagga cctcctggag cagaagcggg cccgcgggtgaa cacctactgc 240
 agacacaact acggggttgg tgagagcttc acagtgcagc ggcgaactag tggtggcggt 300
 15 ggcacggcg gtgggtggttc ctcgagtatac aaagaagaac atgtgatcat ccagcccgag 360
 ttctatctga atcctgacca atcaggcgag tttatgtttg actttgatgg tgatgagatt 420
 ttccatgtgg atatggcaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 480
 gccagcttg aggctcaagg tgattggcc aacatacgctg tggacaaagc caacctggaa 540
 atcatgacaa agcgctccaa ctatactccg atcaccaatt aa 582

20 <210> C0602

<211> 186

<212> PRT

<213> Homo sapiens

25

Met	Gly	Asp	Thr	Arg	Pro	Arg	Phe	Leu	Glu	Gln	Val	Lys	His	Glu	Cys
5															15

His	Phe	Phe	Asn	Gly	Thr	Glu	Arg	Val	Arg	Phe	Leu	Asp	Arg	Tyr	Phe
30	20							25						30	

Tyr	His	Gln	Glu	Glu	Tyr	Val	Arg	Phe	Asp	Ser	Asp	Val	Gly	Glu	Tyr
35								40					45		

35	Arg	Ala	Val	Thr	Glu	Leu	Gly	Arg	Pro	Asp	Ala	Glu	Tyr	Trp	Asn	Ser
50								55				60				

Gln	Lys	Asp	Leu	Leu	Glu	Gln	Lys	Arg	Ala	Ala	Val	Asp	Thr	Tyr	Cys
65								70				75			80

40	Arg	His	Asn	Tyr	Gly	Val	Gly	Glu	Ser	Phe	Thr	Val	Leu	Arg	Arg	Leu
								85			90		95			

45	Gly	Gly	Glu	Asp	Asp	Glu	Ala	Asp	His	His	Val	Ile	Ile	Gln	Ala	Glu
								100			105		110			

Phe	Tyr	Leu	Asn	Pro	Asp	Gln	Ser	Gly	Glu	Phe	Met	Phe	Asp	Phe	Asp
								115			120		125		

50	Gly	Asp	Glu	Ile	Phe	His	Val	Asp	Met	Ala	Lys	Lys	Glu	Thr	Val	Trp
								130			135		140			

Arg	Leu	Glu	Glu	Phe	Gly	Arg	Phe	Ala	Ser	Phe	Glu	Ala	Gln	Gly	Ala
145								150			155		160		

55	Leu	Ala	Asn	Ile	Ala	Val	Asp	Lys	Ala	Asn	Leu	Glu	Ile	Met	Thr	Lys
								165			170		175			

Arg	Ser	Asn	Tyr	Thr	Pro	Ile	Thr	Asn							
-----	-----	-----	-----	-----	-----	-----	-----	-----	--	--	--	--	--	--	--

	180	185	63
5	<210> CO601 <211> 186 <212> PRT <213> Homo sapiens		
10	Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys 5 10 15		
	His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 20 25 30		
15	Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr 35 40 45		
20	Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser 50 55 60		
	Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys 65 70 75 80		
25	Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly 85 90 95		
	Gly Gly Ser Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu 100 105 110		
30	Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp 115 120 125		
	Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp 130 135 140		
35	Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala 145 150 155 160		
40	Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys 165 170 175		
	Arg Ser Asn Tyr Thr Pro Ile Thr Asn 180 185		
45	<210> CO600 <211> 185 <212> PRT <213> Homo sapiens		
50	Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys 5 10 15		
55	His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 20 25 30		
	Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr 35 40 45		

64

	Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser			
50	55	60		
5	Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys			
	65	70	75	80
	Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly			
	85	90	95	
10	Gly Gly Gly Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe			
	100	105	110	
	Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly			
	115	120	125	
15	Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg			
	130	135	140	
20	Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu			
	145	150	155	160
	Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg			
	165	170	175	
25	Ser Asn Tyr Thr Pro Ile Thr Asn			
	180			
	<210> CO599			
30	<211> 184			
	<212> PRT			
	<213> Homo sapiens			
35	Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys			
	5	10	15	
	His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe			
	20	25	30	
40	Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr			
	35	40	45	
	Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser			
	50	55	60	
45	Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys			
	65	70	75	80
50	Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly			
	85	90	95	
	Gly Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr			
	100	105	110	
55	Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp			
	115	120	125	
	Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu			
	130	135	140	

65

Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala
 145 150 155 160

5 Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser
 165 170 175

Asn Tyr Thr Pro Ile Thr Asn
 180

10

<210> CO594

<211> 187

<212> PRT

15 <213> Homo sapiens

Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys
 5 10 15

20 His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe
 20 25 30

Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr
 35 40 45

25 Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser
 50 55 60

30 Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys
 65 70 75 80

Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val
 85 90 95

35 Tyr Pro Glu Val Thr Val Ile Lys Glu Glu His Val Ile Ile Gln Ala
 100 105 110

Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe
 115 120 125

40 Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val
 130 135 140

Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly
 145 150 155 160

Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr
 165 170 175

50 Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn
 180 185

55 <210> CO592

<211> 188

<212> PRT

<213> Homo sapiens

Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys

	5	10	15
		66	
		20	25
5			30
	Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr		
	35	40	45
10	Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser		
	50	55	60
	Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys		
	65	70	75
			80
15	Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Phe		
	85	90	95
	Asp Ala Pro Ser Pro Leu Pro Ile Lys Glu Glu His Val Ile Ile Gln		
	100	105	110
20	Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp		
	115	120	125
25	Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr		
	130	135	140
	Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln		
	145	150	155
			160
30	Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met		
	165	170	175
	Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn		
	180	185	
35	<210> CO591		
	<211> 187		
	<212> PRT		
40	<213> Homo sapiens		
	Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys		
	5	10	15
45	His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe		
	20	25	30
	Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr		
	35	40	45
50	Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser		
	50	55	60
	Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys		
55	65	70	75
			80
	Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Ser		
	85	90	95

67

Gly Gly Ser Gly Gly Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala
 100 105 110

5 Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe
 115 120 125

Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val
 130 135 140

10 Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly
 145 150 155 160

Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr
 165 170 175

15 Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn
 180 185

20 <210> CO590
 <211> 187
 <212> PRT
 <213> Homo sapiens

25 Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys
 5 10 15

His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe
 20 25 30

30 Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr
 35 40 45

Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser
 35 50 55 60

Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys
 65 70 75 80

40 Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Thr
 85 90 95

Ser Gly Gly Gly Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala
 100 105 110

45 Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe
 115 120 125

Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val
 50 130 135 140

Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly
 145 150 155 160

55 Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr
 165 170 175

Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn
 180 185

<210> CO589

<211> 190

5 <212> PRT

<213> Homo sapiens

Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys
5 10 15

10 His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe
20 25 30

15 Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr
35 40 45

Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser
50 55 60

20 Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys
65 70 75 80

Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly
85 90 95

25 Ser Pro Gly Gly Gly Pro Gly Ser Ile Lys Glu Glu His Val Ile
100 105 110

30 Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met
115 120 125

Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys
130 135 140

35 Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu
145 150 155 160

Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu
165 170 175

40 Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn
180 185

45 <210> CO588

<211> 190

<212> PRT

<213> Homo sapiens

50 Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys
5 10 15

His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe
20 25 30

55 Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr
35 40 45

Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser

	50	55	60
	Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys 65 70 75 80		
5	Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly 85 90 95		
	Ser Pro Pro Gly Gly Pro Pro Gly Ser Ile Lys Glu Glu His Val Ile 10 100 105 110		
	Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met 115 120 125		
15	Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys 130 135 140		
	Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu 145 150 155 160		
20	Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu 165 170 175		
	Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn 25 180 185		
	<210> CO587		
	<211> 194		
30	<212> PRT		
	<213> Homo sapiens		
	Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys 5 10 15		
35	His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe 20 25 30		
	Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr 40 35 40 45		
	Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser 50 55 60		
45	Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys 65 70 75 80		
	Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly 85 90 95		
50	Ser Pro Gly Gly Gly Ser Gly Gly Pro Gly Ser Ile Lys Glu 100 105 110		
	Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser 55 115 120 125		
	Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp 130 135 140		

70

Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe
 145 150 155 160

5 Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys
 165 170 175

Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr
 180 185 190

10 Asn

<210> CO586

15 <211> 194

<212> PRT

<213> Homo sapiens

20 Met Gly Asp Thr Arg Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys
 5 10 15

His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe
 20 25 30

25 Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr
 35 40 45

Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser
 50 55 60

30 Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys
 65 70 75 80

35 Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg Arg Thr
 85 90 95

Ser GLy Gly Gly Ser Gly Gly Ser Ser Ser Ile Lys Glu
 100 105 110

40 Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser
 115 120 125

Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp
 130 135 140

45 Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe
 145 150 155 160

50 Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys
 165 170 175

Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr
 180 185 190

55 Asn

<210> CO598

<211> 639

<212> DNA

<213> Homo sapiens

5 atgggggaca ccggtcgcag ctccaccctg gcctccagcg agaccggcgt gggcgctagc 60
 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttsga gcaggttaaa 120
 catgagtgtc atttcttcaa cgggacggag cgggtgcgt tcctggacag atacttctat 180
 caccaggagg agtacgtgcg ctccgacagc gacgtggggg agtaccggc ggtgacggag 240
 ctggggcggc ctgatgccga gtactggAAC agccagaagg acctcctsga gcagaagcgg 300
 10 gcccgggtgg acacctaactg cagacacaac tacggggttg gtgagagctt cacagtgtc 360
 cggcgactcg gaggtgaaga tgacgaggca gatcaccatg tgatcatcca ggccgagttc 420
 tatctgaatc ctgaccaatc aggcgagttt atgtttgact ttgatggta tgagattttc 480
 catgtggata tggcaaaagaa ggagacggc tggcggttg aagaattttg acgatttgcc 540
 15 agcttgagg ctcaagggtgc attggccaac atagctgtgg acaaagccaa cctggaaatc 600
 atgacaaaagc gctccaacta tactccgatc accaattaa 639

<210> C0597

<211> 639

<212> DNA

<213> Homo sapiens

atgggggaca ccggtcgcag ctccaccctg gcctccagcg agaccggcgt gggcgctagc 60
 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttsga gcaggttaaa 120
 catgagtgtc atttcttcaa cgggacggag cgggtgcgt tcctggacag atacttctat 180
 25 caccaggagg agtacgtgcg ctccgacagc gacgtggggg agtaccggc ggtgacggag 240
 ctggggcggc ctgatgccga gtactggAAC agccagaagg acctcctsga gcagaagcgg 300
 gcccgggtgg acacctaactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360
 cggcgaggag gtggaaaggcg cggaatcaaa gaagaacatg tgatcatcca ggccgagttc 420
 tatctgaatc ctgaccaatc aggcgagttt atgtttgact ttgatggta tgagattttc 480
 30 catgtggata tggcaaaagaa ggagacggc tggcggttg aagaattttg acgatttgcc 540
 agcttgagg ctcaagggtgc attggccaac atagctgtgg acaaagccaa cctggaaatc 600
 atgacaaaagc gctccaacta tactccgatc accaattaa 639

<210> C0596

<211> 636

<212> DNA

<213> Homo sapiens

40 atgggggaca ccggtcgcag ctccaccctg gcctccagcg agaccggcgt gggcgctagc 60
 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttsga gcaggttaaa 120
 catgagtgtc atttcttcaa cgggacggag cgggtgcgt tcctggacag atacttctat 180
 caccaggagg agtacgtgcg ctccgacagc gacgtggggg agtaccggc ggtgacggag 240
 ctggggcggc ctgatgccga gtactggAAC agccagaagg acctcctsga gcagaagcgg 300
 gcccgggtgg acacctaactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360
 45 cggcgaggag gtggaggcag catcaaagaa gaacatgtga tcatccagc cgagttctat 420
 ctgaatcctg accaatcagg cgagtttatg tttgactttt atggatgtga gattttccat 480
 gtggatatgg caaagaagga gacggcttg cggcttgaag aatttggacg atttgccagc 540
 tttgaggctc aaggtgcatt ggccaacata gctgtggaca aagccaacct ggaaatcatg 600
 acaaagcgct ccaactatac tccgatcacc aattaa 636

<210> C0595

<211> 633

<212> DNA

<213> Homo sapiens

55 atgggggaca ccggtcgcag ctccaccctg gcctccagcg agaccggcgt gggcgctagc 60
 ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttsga gcaggttaaa 120
 catgagtgtc atttcttcaa cgggacggag cgggtgcgt tcctggacag atacttctat 180
 caccaggagg agtacgtgcg ctccgacagc gacgtggggg agtaccggc ggtgacggag 240

72

ctggggcggc ctgatgccga gtactggAAC agccagaagg acctcctggA gcagaAGCGG 300
 gcccgggtgg acacctaCTG cagacacaAC tacggggTTG gtgagAGCtt cacagtgcAG 360
 cggcgaggAG gtggaggcat caaAGAAAGAA catgtatca tccaggCCGA gtttatCTG 420
 aatcctgacc aatcaggcga gtttatgtt gactttgatg gtgatgagat ttccatgtg 480
 5 gatatggcaa agaaggAGAC ggtctggcGG cttgaAGAAAT ttggacGATT tgccAGCTT 540
 gagggctcaag gtgcattggc caacataGCT gtggacAAAG ccaacctggA aatcatgaca 600
 aaggcgtccaa actataCTCC gatcacCAAT taa 633

<210> CO593
 10 <211> 642
 <212> DNA
 <213> Homo sapiens

atgggggaca ccggtcgcag cttcacccTG gcctccAGCG agaccggcgt gggcgctAGC 60
 15 ggagggggcg gaagcggcgg agggggggAC acccgaccAC gtttcttggA gcaggTTAAA 120
 catgagtgtc atttcttcaa cgggacggag cgggtgcggT tcctggacAG atacttctat 180
 cacaagagg agtacgtgcg cttcgacAGC gacgtggggg agtaccggGC ggtgacggag 240
 ctggggcggc ctgatGCCGA gtactggAAC agccagaagg acctcctggA gcagaAGCGG 300
 gcccgggtgg acacctaCTG cagacacaAC tacggggTTG gtgagAGCtt cacagtgcAG 360
 20 cggcgagtct accctgaggt aactgtcatc aaagaAGAAAC atgtatcat tcaggCCGAG 420
 ttctatctGA atcctgacca atcaggcgaG tttatgttG actttgatgg tgatgagatt 480
 ttcatgtgg atatggAAA gaaggAGAC gtctggcGG ttaAGAAATT tggacgattt 540
 gccagctttg aggctcaagg tgcatGGCC aacataGCT tggacAAAGC caacctggaa 600
 atcatgacAA agcgctccaa ctataCTCC atcaccaatt AA 642

25 <210> CO585
 <211> 645
 <212> DNA
 <213> Homo sapiens

atgggggaca ccggtcgcag cttcacccTG gcctccAGCG agaccggcgt gggcgctAGC 60
 30 ggagggggcg gaagcggcgg agggggggAC acccgaccAC gtttcttggA gcaggTTAAA 120
 catgagtgtc atttcttcaa cgggacggag cgggtgcggT tcctggacAG atacttctat 180
 cacaagagg agtacgtgcg cttcgacAGC gacgtggggg agtaccggGC ggtgacggag 240
 ctggggcggc ctgatGCCGA gtactggAAC agccagaagg acctcctggA gcagaAGCGG 300
 gcccgggtgg acacctaCTG cagacacaAC tacggggTTG gtgagAGCtt cacagtgcAG 360
 35 cggcgattcg acgcacCTAG cccactcccA atcaaAGAAAG aacatgtat catccaggCC 420
 gagttctatc tgaatctGA ccaatcaggc gagtttatgt ttgactttGA tggatgatgAG 480
 atttccatG tggatatGGC aaagaAGGAG acggctcGGC ggcttgaAGA atttggacGA 540
 40 tttgcccAGt ttgaggctca agtgcatGG accaACatAG ctgtggacAA agccaACtG 600
 gaaatcatGA caaAGCGCTC caactataCT ccgatCACCA attAA 645

<210> CO584
 <211> 642
 45 <212> DNA
 <213> Homo sapiens

atgggggaca ccggtcgcag cttcacccTG gcctccAGCG agaccggcgt gggcgctAGC 60
 50 ggagggggcg gaagcggcgg agggggggAC acccgaccAC gtttcttggA gcaggTTAAA 120
 catgagtgtc atttcttcaa cgggacggag cgggtgcggT tcctggacAG atacttctat 180
 cacaagagg agtacgtgcg cttcgacAGC gacgtggggg agtaccggGC ggtgacggag 240
 ctggggcggc ctgatGCCGA gtactggAAC agccagaagg acctcctggA gcagaAGCGG 300
 gcccgggtgg acacctaCTG cagacacaAC tacggggTTG gtgagAGCtt cacagtgcAG 360
 55 cggcgaaGt gcggtagtgg cgtagtatac aaagaAGAAAC atgtatcat tcaggCCGAG 420
 ttctatctGA atcctgacca atcaggcgaG tttatgttG actttgatgg tgatgagatt 480
 ttcatgtgg atatggAAA gaaggAGAC gtctggcGG ttaAGAAATT tggacgattt 540
 gccagctttg aggctcaagg tgcatGGCC aacataGCT tggacAAAGC caacctggaa 600
 atcatgacAA agcgctccaa ctataCTCC atcaccaatt AA 642

<210> C0583
 <211> 642
 <212> DNA
 5 <213> Homo sapiens

```

atgggggaca ccggtcgcag cttcacccctg gcctccagcg agaccggcgt gggcgctagc 60
ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttsga gcaggttaaa 120
catgagtgtc atttcttcaa cgggacggag cgggtgcggc tcctggacag atacttctat 180
10 caccaggagg agtacgtgcg cttcgacacgc gacgtggggg agtaccggc ggtgacggag 240
ctggggcggc ctgatgccga gtactggAAC agccagaagg acctcctsga gcagaaggcgg 300
gccgcgggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360
cggcgaacta gtggtggcgg tggcagcatt aaagaagaac atgtgatcat ccaggccgag 420
ttctatctga atccctgacca atcaggcggag ttatgtttg actttgatgg tgatgagatt 480
15 ttccatgtgg atatggaaa gaaggagacg gtctggcggc ttgaagaatt tggacgattt 540
gccagtttgg aggctcaagg tgcattggcc aacatagctg tggacaaagc caacctggaa 600
atcatgacaa agcgctccaa ctatactccg atcaccaatt aa 642
  
```

<210> C0582
 20 <211> 651
 <212> DNA
 <213> Homo sapiens

```

atgggggaca ccggtcgcag cttcacccctg gcctccagcg agaccggcgt gggcgctagc 60
ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttsga gcaggttaaa 120
catgagtgtc atttcttcaa cgggacggag cgggtgcggc tcctggacag atacttctat 180
caccaggagg agtacgtgcg cttcgacacgc gacgtggggg agtaccggc ggtgacggag 240
ctggggcggc ctgatgccga gtactggAAC agccagaagg acctcctsga gcagaaggcgg 300
gccgcgggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360
30 cggcggaggct cttccctggagg tggaggtcct ggatctatca aagaagaaca tgtgatcatc 420
caggccgagt tctatctgaa tcctgaccaa tcaggcgagt ttatgtttga ctttgatggt 480
gatgagattt tccatgtggaa tatggcaaag aaggagacgg tctggcggct tgaagaattt 540
ggacgatttgg ccagcttga ggctcaagggt gcattggcca acatagctgt ggacaaagcc 600
aacctggaaa tcatgacaaa gcgctccaa ctatactccg atcaccaattttaa 651
  
```

35 <210> C0581
 <211> 651
 <212> DNA
 40 <213> Homo sapiens

```

atgggggaca ccggtcgcag cttcacccctg gcctccagcg agaccggcgt gggcgctagc 60
ggagggggcg gaagcggcgg agggggggac acccgaccac gtttcttsga gcaggttaaa 120
catgagtgtc atttcttcaa cgggacggag cgggtgcggc tcctggacag atacttctat 180
45 caccaggagg agtacgtgcg cttcgacacgc gacgtggggg agtaccggc ggtgacggag 240
ctggggcggc ctgatgccga gtactggAAC agccagaagg acctcctsga gcagaaggcgg 300
gccgcgggtgg acacctactg cagacacaac tacggggttg gtgagagctt cacagtgcag 360
cggcggaggct cttccctgggg tggaccacct ggatctatca aagaagaaca tgtgatcatc 420
caggccgagt tctatctgaa tcctgaccaa tcaggcgagt ttatgtttga ctttgatggt 480
50 gatgagattt tccatgtggaa tatggcaaag aaggagacgg tctggcggct tgaagaattt 540
ggacgatttgg ccagcttga ggctcaagggt gcattggcca acatagctgt ggacaaagcc 600
aacctggaaa tcatgacaaa gcgctccaa ctatactccg atcaccaattttaa 651
  
```

55 <210> C0580
 <211> 663
 <212> DNA
 <213> Homo sapiens

74

	atgggggaca	ccggtcgcag	cttcaccctg	gcctccagcg	agaccggcgt	gggcgcctagc	60
	ggagggggcg	gaagcgccgg	agggggggac	acccgaccac	gtttcttga	gcaggttaaa	120
	catgagtgtc	atttcttcaa	cgggacggag	cgggtgcggt	tcctggacag	atacttctat	180
	caccaagagg	agtacgtgcg	cttcgacacgc	gacgtqgggg	agtaccggc	ggtgacggag	240
5	ctggggcggc	ctgatgccga	gtactggAAC	agccagaagg	acctccgtga	gcagaagcgg	300
	gcccgcgtgg	acacctactg	cagacacaaac	tacggggttg	gtgagagctt	cacagtgcag	360
	cggcgaggga	gtcccaggcgg	tggcgggagc	ggcggtggtc	ctggggagtat	caaagaagaa	420
	catgtgtatca	tccaggccga	gttctatctg	aatcctgacc	aatcaggcga	gtttatgttt	480
	gactttgatg	gtgatgagat	tttccatgtg	gatatggcaa	agaaggagac	ggtctggcgg	540
10	cttgaagaat	ttggacgatt	tgccagctt	gaggctcaag	gtgcattggc	caacatagct	600
	gtggacaaaag	ccaaccttga	aatcatgaca	aaggcgttca	actatactcc	gatcaccat	660
	taa						663

15 <210> CO567
<211> 663
<212> DNA
<213> Homo sapiens

20	atgggggaca	ccggtcgcag	cttcaccctg	gcctccagcg	agaccggcgt	gggcgctagc	60
	ggagggggcg	gaagcggcgg	agggggggac	acccgaccac	gtttcttga	gcaggttaaa	120
	catgagtgtc	atttcttcaa	cgggacggag	cgggtgcggt	tcctggacag	atacttctat	180
	caccaagagg	agtaacgtgcg	cttcgacacgc	gacgtggggg	agtaccgggc	ggtgacggag	240
	ctggggcggc	ctgatgccga	gtactggAAC	agccagaagg	acctcccttga	gcagaagcgg	300
25	gcccgcgtgg	acacctaactg	cagacacaaac	tacggggttg	gtgagagctt	cacagtgcag	360
	cggcgaacta	gtgggtggcgg	tggcagcggc	ggtgtgtggtt	cctcgagtat	caaagaagaa	420
	catgtgtatca	tccaggccga	gttctatctg	aatcctgacc	aatcaggcga	gtttatgttt	480
	gactttgatg	gtgatgagat	tttccatgtg	gatatggcaa	agaaggagac	ggtctggcgg	540
	cttgaagaat	ttggacgatt	tgccagctt	gaggctcaag	gtgcattggc	caacatagct	600
30	gtggacaaag	ccaaccttga	aatcatgaca	aaggcgttcca	actatactcc	gatcaccaat	660
	taa						663

35 <210> C0598
<211> 213
<212> PRT
<213> *Homo sapiens*

40 Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
5 10 15

Val Gly Ala Ser Gly Gly Gly Ser Gly Gly Gly Asp Thr Arg
20 25 30

45 Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly
35 40 45

Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu
50 55 60

Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu
65 70 75 80

55 Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu
85 90 95

Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly
100 105 110

75

Val Gly Glu Ser Phe Thr Val Leu Arg Arg Leu Gly Gly Glu Asp Asp
 115 120 125

5 Glu Ala Asp His His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro
 130 135 140

Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe
 145 150 155 160

10 His. Val. Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe
 165 170 175

Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala
 180 185 190

15 Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr
 195 200 205

20 Pro Ile Thr Asn
 210

<210> CO597

<211> 213

25 <212> PRT

<213> Homo sapiens

Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
 5 10 15

30 Val Gly Ala Ser Gly Gly Ser Gly Gly Gly Asp Thr Arg
 20 25 30

Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly
 35 40 45

Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu
 50 55 60

40 Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu
 65 70 75 80

Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu
 85 90 95

45 Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly
 100 105 110

50 Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Gly Ser Gly Gly
 115 120 125

Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro
 130 135 140

55 Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe
 145 150 155 160

His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg. Leu Glu Glu Phe
 165 170 175

Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala
 180 185 190

 5 Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr
 195 200 205

 Pro Ile Thr Asn
 210
 10

 <210> C0596
 <211> 212
 <212> PRT
 15 <213> Homo sapiens

 Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
 5 10 15

 20 Val Gly Ala Ser Gly Gly Ser Gly Gly Gly Asp Thr Arg
 20 25 30

 Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly
 35 40 45
 25 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu
 50 55 60

 Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu
 65 70 75 80

 Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu
 85 90 95

 35 Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly
 100 105 110

 Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Gly Ser Ile
 115 120 125
 40 Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn Pro Asp
 130 135 140

 45 Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile Phe His
 145 150 155 160

 Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu Phe Gly
 165 170 175

 50 Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile Ala Val
 180 185 190

 Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr Thr Pro
 195 200 205
 55 Ile Thr Asn
 210

77

<210> CO595

<211> 211

<212> PRT

<213> Homo sapiens

5

Met	Gly	Asp	Thr	Gly	Arg	Ser	Phe	Thr	Leu	Ala	Ser	Ser	Glu	Thr	Gly
							5				10				15

Val	Gly	Ala	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Asp	Thr	Arg
							20		25			30		

Pro	Arg	Phe	Leu	Glu	Gln	Val	Lys	His	Glu	Cys	His	Phe	Phe	Asn	Gly
							35		40			45			

15	Thr	Glu	Arg	Val	Arg	Phe	Leu	Asp	Arg	Tyr	Phe	Tyr	His	Gln	Glu
							50		55			60			

Tyr	Val	Arg	Phe	Asp	Ser	Asp	Val	Gly	Glu	Tyr	Arg	Ala	Val	Thr	Glu
							65		70			75			80

20	Leu	Gly	Arg	Pro	Asp	Ala	Glu	Tyr	Trp	Asn	Ser	Gln	Lys	Asp	Leu
							85			90			95		

25	Glu	Gln	Lys	Arg	Ala	Ala	Val	Asp	Thr	Tyr	Cys	Arg	His	Asn	Tyr	Gly
							100		105			110				

Val	Gly	Glu	Ser	Phe	Thr	Val	Gln	Arg	Arg	Gly	Gly	Gly	Ile	Lys
							115		120			125		

30	Glu	Glu	His	Val	Ile	Ile	Gln	Ala	Glu	Phe	Tyr	Leu	Asn	Pro	Asp	Gln
							130		135			140				

Ser	Gly	Glu	Phe	Met	Phe	Asp	Phe	Gly	Asp	Glu	Ile	Phe	His	Val	
				145		150			155			160			

35	Asp	Met	Ala	Lys	Lys	Glu	Thr	Val	Trp	Arg	Leu	Glu	Glu	Phe	Gly	Arg
							165		170			175				

40	Phe	Ala	Ser	Phe	Glu	Ala	Gln	Gly	Ala	Leu	Ala	Asn	Ile	Ala	Val	Asp
							180		185			190				

Lys	Ala	Asn	Leu	Glu	Ile	Met	Thr	Lys	Arg	Ser	Asn	Tyr	Thr	Pro	Ile
							195		200			205			

45	Thr	Asn
		210

<210> CO593

<211> 214

<212> PRT

<213> Homo sapiens

50	Met	Gly	Asp	Thr	Gly	Arg	Ser	Phe	Thr	Leu	Ala	Ser	Ser	Glu	Thr	Gly
								5			10			15		

55	Val	Gly	Ala	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Asp	Thr	Arg
								20		25			30		

78

	Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly			
	35	40	45	
5	Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu			
	50	55	60	
	Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu			
	65	70	75	80
10	Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu			
	85	90	95	
	Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly			
	100	105	110	
15	Val Gly Glu Ser Phe Thr Val Gln Arg Arg Val Tyr Pro Glu Val Thr			
	115	120	125	
20	Val Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn			
	130	135	140	
	Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile			
	145	150	155	160
25	Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu			
	165	170	175	
	Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile			
	180	185	190	
30	Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr			
	195	200	205	
	Thr Pro Ile Thr Asn			
35	210			
	<210> CG585			
40	<211> 215			
	<212> PRT			
	<213> Homo sapiens			
	Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly			
	5	10	15	
45	Val Gly Ala Ser Gly Gly Ser Gly Gly Gly Asp Thr Arg			
	20	25	30	
50	Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly			
	35	40	45	
	Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu			
	50	55	60	
55	Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu			
	65	70	75	80
	Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu			
	85	90	95	

Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly
 100 105 110

5 Val Gly Glu Ser Phe Thr Val Gln Arg Arg Phe Asp Ala Pro Ser Pro
 115 120 125

Leu Pro Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu
 130 135 140

10 Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu
 145 150 155 160

15 Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu
 165 170 175

Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn
 180 185 190

20 Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn
 195 200 205

Tyr Thr Pro Ile Thr Asn
 210

25

<210> CO584
 <211> 214
 <212> PRT
 30 <213> Homo sapiens

Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
 5 10 15

35 Val Gly Ala Ser Gly Gly Ser Gly Gly Gly Asp Thr Arg
 20 25 30

Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly
 35 40 45

40 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu
 50 55 60

45 Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu
 65 70 75 80

Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu
 85 90 95

50 Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly
 100 105 110

Val Gly Glu Ser Phe Thr Val Gln Arg Arg Ser Gly Gly Ser Gly Gly
 115 120 125

55 Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn
 130 135 140

Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile

		80	
	145	150	155
	Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu		
	165	170	175
5	Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile		
	180	185	190
	Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr		
10	195	200	205
	Thr Pro Ile Thr Asn		
	210		
15	<210> CO583		
	<211> 214		
	<212> PRT		
	<213> Homo sapiens		
20	Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly		
	5	10	15
	Val Gly Ala Ser Gly Gly Ser Gly Gly Gly Asp Thr Arg		
25	20	25	30
	Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly		
	35	40	45
30	Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu		
	50	55	60
	Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu		
	65	70	75
	80		
35	Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu		
	85	90	95
	Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly		
40	100	105	110
	Val Gly Glu Ser Phe Thr Val Gln Arg Arg Thr Ser Gly Gly Gly		
	115	120	125
45	Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn		
	130	135	140
	Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile		
50	145	150	155
	160		
	Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu		
	165	170	175
	Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile		
55	180	185	190
	Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr		
	195	200	205

81

Thr Pro Ile Thr Asn
210

5 <210> CO582
 <211> 217.
 <212> PRT
 <213> Homo sapiens
 0 Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
 . 5 . 10 . 15
 Val Gly Ala Ser Gly Gly Gly Ser Gly Gly Gly Asp Thr Arg
 . 20 . 25 . 30
 5 Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly
 . 35 . 40 . 45
 0 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu
 . 50 . 55 . 60
 5 Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu
 . 65 . 70 . 75 . 80
 0 Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu
 . 85 . 90 . 95
 5 Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly
 . 100 . 105 . 110
 0 Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Ser Pro Gly Gly Gly
 . 115 . 120 . 125
 5 Gly Pro Gly Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe
 . 130 . 135 . 140
 0 Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly
 . 145 . 150 . 155 . 160
 5 Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg
 . 165 . 170 . 175
 0 Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu
 . 180 . 185 . 190
 5 Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg
 . 195 . 200 . 205
 0 Ser Asn Tyr Thr Pro Ile Thr Asn
 . 210 . 215
 5
 <210> CO581
 <211> 217
 <212> PRT
 <213> Homo sapiens
 0 Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
 . 5 . 10 . 15

Val Gly Ala Ser Gly Gly Gly Ser Gly Gly Gly Asp Thr Arg
 20 25 30

5 Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly
 35 40 45

Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu
 50 55 60

10 Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu
 65 70 75 80

Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu
 15 85 90 95

Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly
 100 105 110

20 Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Ser Pro Pro Gly Gly
 115 120 125

Pro Pro Gly Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe
 130 135 140

25 Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly
 145 150 155 160

30 Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg
 165 170 175

Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu
 180 185 190

35 Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg
 195 200 205

Ser Asn Tyr Thr Pro Ile Thr Asn
 210 215

40 <210> CO580
 <211> 221
 <212> PRT
 45 <213> Homo sapiens

Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
 5 10 15

50 Val Gly Ala Ser Gly Gly Ser Gly Gly Gly Asp Thr Arg
 20 25 30

Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly
 35 40 45

55 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu
 50 55 60

Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu

		83		
	65	70	75	80
	Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu			
	85		90	95
5	Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly			
	100		105	110
10	Val Gly Glu Ser Phe Thr Val Gln Arg Arg Gly Ser Pro Gly Gly Gly			
	115	120		125
	Gly Ser Gly Gly Pro Gly Ser Ile Lys Glu Glu His Val Ile Ile			
	130	135		140
15	Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe			
	145	150	155	160
	Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu			
	165		170	175
20	Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala			
	180		185	190
25	Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile			
	195	200		205
	Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn			
	210	215		220
30	<210> CO567			
	<211> 221			
	<212> PRT			
	<213> Homo sapiens			
35	Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly			
	5		10	15
40	Val Gly Ala Ser Gly Gly Gly Ser Gly Gly Gly Asp Thr Arg			
	20	25		30
	Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly			
	35	40		45
45	Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu			
	50	55		60
	Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu			
	65	70	75	80
50	Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu			
	85		90	95
	Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly			
55	100	105		110
	Val Gly Glu Ser Phe Thr Val Gln Arg Arg Thr Ser Gly Gly Gly			
	115	120		125

84

Ser Gly Gly Gly Ser Ser Ser Ile Lys Glu Glu His Val Ile Ile
 130 135 140

5 Gln Ala Glu Phe Tyr Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe
 145 150 155 160

Asp Phe Asp Gly Asp Glu Ile Phe His Val Asp Met Ala Lys Lys Glu
 165 170 175

10 Thr Val Trp Arg Leu Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala
 180 185 190

Gln Gly Ala Leu Ala Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile
 195 200 205

15 Met Thr Lys Arg Ser Asn Tyr Thr Pro Ile Thr Asn
 210 215 220

I-As MBP. β 1 β 2 α 1 α 2.C_K nucleotide sequence

20 gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
 ggttccactg gtgacttcaa gaacattgtg acacacctgaa caccacactcc agctagcgga 120
 gggggcggaa gcggcggagg gggagactcc gaaaggcatt tcgtgttcca gttcaagggc 180
 gagtgctact tcaccaaacgg gacgcagcgc atacgatctg tggacagata catctacaac 240
 25 cgggaggagt acctgcccgtt cgacagcgc acgtggcgagt accgcgcggt gaccgagctg 300
 gggcggccag acccccgagta ctacaataag ctagtacctgg agccaaacgcg ggccgagctg 360
 gacacggtgt gcagacacaa ctacgagggg gtggagacccc acacacctcc gccggcggctt 420
 gaacagccca atgtcgcat ctccctgtcc aggacagagg ccctcaacca ccacaacact 480
 ctggtctgtc cagtgacacaga ttcttaccca gccaagatca aagtgcgcgtg gttccggaat 540
 30 ggcaggagg agacgggtggg ggtctcatcc acacagctt aatggatgg ggactggacc 600
 ttccaggtcc tggtcatgtc ggagatgacc cctcggcggg gagaggtcta cacctgccac 660
 gtggagcatc cgagcctgaa gagccccatc actgtggagt ggacttagtgg tggcgggtggc 720
 agccggcgtg gtggttccgg tggcggcggt tctggcggtg gcgggttccctc gagtgaagac 780
 gacattgagg ccgaccacgt aggccgtctat ggtacaactg tatatcagtc tcctggagac 840
 35 attggccagt acacacatga atttgcgtt gatgagtggt tctatgtgga cttggataag 900
 aaggagacta tctggatgtc tcctgagttt ggcatttga caagcttga cccccaaggt 960
 ggactgcaaaa acatagctac agaaaaatac accttgggaa tcttgactaa gaggtcaaat 1020
 tccaccccaag ctaccaatga ggctcccaa ggcactgtgt tccccaagtc ccctgtgtc 1080
 40 ctgggtcagc ccaacacccct catctgcttt gtggacaaca tcttccctcc tgtatcaac 1140
 atcacatggc tcagaatag taagtccgtc acagacggcg tttatgagac cagcttccctt 1200
 gtcaaccgtg accattccctt ccacaagctg tcttatctca ctttcatccc ttctgacgt 1260
 gatattttagt actgcaaggt ggagcactgg ggcctggagg agccgggttct gaaacactgg 1320
 gctagcggag gggggcgaag cggcggagg ggagctgtg ctgcaccaac tgtatccatc 1380
 ttcccaccat ccagtgagca gtaacatct ggaggtgcct cagtcgtgtg cttcttgaac 1440
 45 aacttctacc ccaaagacat caatgtcaag tggaaaggattg atggcagtga acgacaaaaat 1500
 ggcgtcctga acagttggac tgatcaggac agcaaagaca gcacacctacag catgagcagc 1560
 accctcacgt tgaccaagga cgagttgaa cgacataaca gctataccctg tgaggccact 1620
 cacaagacat caacttcacc cattgtcaag agcttcaaca ggaatgagtg ttagggtacc 1680

50 I-As MBP. β 1 β 2 α 1 α 2.C_K amino acid sequence

Met Glu Thr Asp Thr Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 5 10 15

55 Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro
 20 25 30

Pro Ala Ser Gly Gly Gly Ser Gly Gly Gly Asp Ser Glu Arg
 35 40 45

5 His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr
 50 55 60

Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr
 65 70 75 80

10 Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu
 85 90 95

Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr
 15 100 105 110

Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu
 115 120 125

20 Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser
 130 135 140

Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser
 25 145 150 155 160

Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn
 165 170 175

30 Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn
 180 185 190

Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg
 195 200 205

35 Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser
 210 215 220

Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Ser Gly Gly Gly Gly
 40 225 230 235 240

Gly Ser Gly Gly Ser Gly Gly Ser Ser Ser Glu Asp
 245 250 255

Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln
 45 260 265 270

Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu
 275 280 285

50 Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro
 290 295 300

Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn
 55 305 310 315 320

Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn
 325 330 335

Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys

	86			
	340	345	350	
	Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp			
	355	360	365	
5	Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys			
	370	375	380	
10	Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp			
	385	390	395	400
	His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp			
	405	410	415	
15	Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val			
	420	425	430	
	Leu Lys His Trp Ala Ser Gly Gly Gly Ser Gly Gly Gly Ala			
	435	440	445	
20	Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu			
	450	455	460	
	Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe Tyr Pro			
25	465	470	475	480
	Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn			
	485	490	495	
30	Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr			
	500	505	510	
	Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu Arg His			
	515	520	525	
35	Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser Pro Ile			
	530	535	540	
	Val Lys Ser Phe Asn Arg Asn Glu Cys			
40	545	550		

<210> CO528-AC

<211> 600

45 <212> DNA

<213> Homo sapiens

	atgggggaca ccggtcgcag cttcacccctg gcctccagcg agaccggcgt gggtggtggc 60
	ggtcgcgtc cacgttctt ggaacagggt aaacatgagt gtcattttt caatggacg 120
50	gaacgcgtgc gtttctgga tcgttacttt tataccaaag aggaataacgt acgcttcgac 180
	agcgatgtgg gccaatatcg tgcggtcacg gaactgggtc gtcctgatgc cgaataactgg 240
	aacagtccaga aggacttact ggagcagaaa cgtcagcgg tggataccata ttgccgcccac 300
	aattacggcg ttggtaaaag cttcacagtc cagcgtcgcg gtggcatcaa agaagagcat 360
55	gtgattatcc aggccgaaatt ctatctgaat ccggatcaat cggcgaatt catgtttgac 420
	ttcgatggtg atgagattt ccatgttgat atggcaaaga aagaaacggt ctggcgctta 480
	gagaaatttg gcccgtttgc ctcgttcgaa gctcaaggcg cattggccaa cattgctgtg 540
	gataaagcga acctggaaat catgacaaaaa cgctccaaact atactccgat taccaattaa 600

<210> CO608-AC
 <211> 642
 <212> DNA
 5 <213> Homo sapiens

```

atgggggaca ccgtcgac cttcacccctg gcctccagcg agaccggcgt gggtgcttct 60
ggcgaaaaacgg gttcggcggt tgggggtgac acccgccac gtttcttggaa acaggtaaa 120
catgagtgtc atttttcaa tggacggaa cgcgtcggtt ttctggatcg ttacttttat 180
10 caccaagagg aataacgtacg cttcgacacgc gatgtggcgt aatatcgatc ggtcacggaa 240
ctgggtcggtc ctgatgccga atactggaaac agtcagaagg acttactggaa gcagaaaacgt 300
gcagcggtgg atacctattt ccgcacacaat tacggcggtt gtgaaagcgtt cacagtccag 360
cgtcgcacta gtggtggcgt tgctctatc aaagaagagc atgtgattat ccaggcggaa 420
ttctatctga atccggatca atcgggcaaa ttcatgtttt acttcgatgg tgatgagatt 480
15 ttccatgttg atatggaaa gaaagaaaacg gtctggcgct tagaggaatt tggccgctt 540
gcctcggtcg aagctcaagg cgattggcc aacattgctg tggataaaacg gaacctggaa 600
atcatgacaa aacgctccaa ctatactccg attaccaatt aa 642
  
```

20 <210> CO528
 <211> 600
 <212> DNA
 <213> Homo sapiens

```

atgggggaca ccggaagatc gttcacactc gcatcatcag agacaggagt aggaggagga 60
ggatcgac cacgttctt ggagcagggtt aaacatgagt gtcatttctt caacggacg 120
gagcggtgc ggttccttggaa cagatacttc tatcaccatcg aggagtagt ggcgttcgac 180
agcgacgtgg gggagtaccg ggcgttgcacg gagctgggc ggcctgtatgc cgagtagtgg 240
aacagccaga gggacccctt ggagcagaag cggccgcgg tggacaccta ctgcagacac 300
25 aactacgggg ttggtgagag cttcacatgtc cagcggcgcgag gaggtatcaa agaagaacat 360
gtgatcatcc aggccgagggtt ctatctgaat cctgaccaat caggcgagggtt tatgtttgac 420
tttgcgttg atgagatttt ccatgtggat atggcaaaaga aggagacggtt ctggcggctt 480
gaagaatttgc gacgatttgc cagctttgag gctcaagggtt cattggccaa catagctgtg 540
gacaaagcca acctggaaat catgacaaag cgctccaact atactccgat caccatcaa 600
  
```

35 <210> CO608
 <211> 630
 <212> DNA
 40 <213> Homo sapiens

```

ATGGGGGACACCCGCAGCTTCACCCCTGGCCTCCAGCGAGACCGGCGTGGGCCTAGCGGAGGGGGCGGAAGC
GGCGGAGGGGGGCCACGTTCTTGGAGCAGGTTAACATGAGTGTCAATTCTCAACGGGACGGAGCGGGTG
CGGTTCTGGACAGATACTTCTATCACCAAGAGGAGTACGTGCGCTTCGACAGCGACGTGGGGAGTACCGG
45 GCGGTGACGGAGCTGGGGCGCTGATGCCGAGTACTGGAACAGCCAGAAGGACCTCCTGGAGCAGAACCGG
GCCGGTGGACACCTACTGCAGACACAACACTACGGGTTGGTGAGAGCTTCACAGTGCAGCGGCAGACTAGT
GGTGGCGGTGGCAGCATCAAAGAAGAACATGTGATCATCCAGGCCAGTTCTATCTGAATCCTGACCAATCA
GGCGAGTTTATGTTGACTTGTGGTGTGAGATTTCCATGTGGATATGGAAAGAAGGAGACGGTCTGG
50 CGGCTTGAAGAAATTGGACATTGCCAGCTTGAGGCTCAAGGTGCAATTGGCAACATAGCTGTGGACAAA
GCCAACCTGGAAATCATGACAAAGCGCTCCAACATACCTCCGATCACCAATTAA
  
```

<210> CO 608 variation
 <211> 642
 55 <212> DNA--CO608
 <213> Homo sapiens

```

ATGGGGGACACCGGTCGAGCTTCACCCCTGGCCTCCAGCGAGACCGGCGTGGGCCTAGCGGAGGGGGCGGA
AGCGGGAGGGGGACACCCGACCGTGGAGCAGGTTAACATGAGTGTCAATTCTCAACGGG
  
```

88

ACGGAGCGGGTGCCTGGACAGATACTCTATCACCAGAGGAGTACGTGCGCTTCGACAGCGACGTG
GGGGAGTACCGGGCGGTGACGGAGCTGGGCGGCTGTGCGAGTACTGGAACAGCCAGAAGGACCTCTG
GAGCAGAACGCGGCCGCGTGGACACCTACTGCAGACACAACATACGGGTTGGTGAGAGCTTCACAGTCAG
CGGCGAACTAGTGGTGGCGGTGGCAGCATCAAAGAAGAACATGTGATCATCCAGGGCGAGTCTATCTGAAT
CCTGACCAATCAGGGAGTTATGTTGACTTGATGGTGAGATTTCATGTGGATATGGCAAAGAAG
GAGACGGCTGGCGCTGAAAGATTGGACGATTGCCAGTTGAGGCTCAAGGTGATTGGCCAACATA
GCTGTGGACAAAGCCAACCTGGAAATCATGACAAGCGCTCAACTATACTCCGATCACCAATTAA

10 <210> CO528-AC
<211> Zaa
<212> PRT
<213> Homo sapiens

15 Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
5 10 15

Val Gly Gly Gly Ser Arg Pro Arg Phe Leu Glu Gln Val Lys His
20 25 30

20 Glu Cys His Phe Phe Asn Gly Thr Glu Arg Val Arg Phe Leu Asp Arg
35 40 45

Tyr Phe Tyr His Gln Glu Glu Tyr Val Arg Phe Asp Ser Asp Val Gly
 50 55 60

Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Ala Glu Tyr Trp
65 70 75 80

30 Asn Ser Gln Lys Asp Leu Leu Glu Gln Lys Arg Ala Ala Val Asp Thr
85 90 95

Tyr Cys Arg His Asn Tyr Gly Val Gly Glu Ser Phe Thr Val Gln Arg
 100 105 110

35 Arg Gly Gly Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr
115 120 125

Leu Asn Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp
130 135 140

Glu Ile Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu
145 150 155 160

45 Glu Glu Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala
..... 165 170 175

Asn Ile Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser
 180 185 190

Asn Tyr Thr Pro Ile Thr Asn

195

55 <210> CO608-AC
<211> 214
<212> PRT
<213> Homo sapiens

89

Met Gly Asp Thr Gly Arg Ser Phe Thr Leu Ala Ser Ser Glu Thr Gly
 5 10 15

Val Gly Ala Ser Gly Gly Ser Gly Gly Gly Asp Thr Arg
 5 20 25 30

Pro Arg Phe Leu Glu Gln Val Lys His Glu Cys His Phe Phe Asn Gly
 35 40 45

10 Thr Glu Arg Val Arg Phe Leu Asp Arg Tyr Phe Tyr His Gln Glu Glu
 50 55 60

Tyr Val Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu
 65 70 75 80

15 Leu Gly Arg Pro Asp Ala Glu Tyr Trp Asn Ser Gln Lys Asp Leu Leu
 85 90 95

20 Glu Gln Lys Arg Ala Ala Val Asp Thr Tyr Cys Arg His Asn Tyr Gly
 100 105 110

Val Gly Glu Ser Phe Thr Val Gln Arg Arg Thr Ser Gly Gly Gly
 115 120 125

25 Ser Ile Lys Glu Glu His Val Ile Ile Gln Ala Glu Phe Tyr Leu Asn
 130 135 140

Pro Asp Gln Ser Gly Glu Phe Met Phe Asp Phe Asp Gly Asp Glu Ile
 145 150 155 160

30 Phe His Val Asp Met Ala Lys Lys Glu Thr Val Trp Arg Leu Glu Glu
 165 170 175

Phe Gly Arg Phe Ala Ser Phe Glu Ala Gln Gly Ala Leu Ala Asn Ile
 35 180 185 190

Ala Val Asp Lys Ala Asn Leu Glu Ile Met Thr Lys Arg Ser Asn Tyr
 195 200 205

40 Thr Pro Ile Thr Asn
 210

45 <210> CO608

<211> 209

<212> PRT

<213> Homo sapiens

50 MGDTRSFTLASSETGVGASGGGGGGGGPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDVGEYR
 AVTELGRPDAEYWNSQKDLLEQKRAAVDTYCRHNYVGESFTVQRRTSGGGGSIKEEHVIIQAEFYLNPDQS
 GEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIAVDKANLEIMTKRSNYTPITN

55 <210> CO608-variation

<211> 211

<212> PRT

<213> Homo sapiens

90

MGDTGRSFTLASSETGVGASGGGGGGGGDTRPRFLEQVKHECHFFNGTERVRFLDRYFYHQEEYVRFDSDV
 GEYRAVTELGRPDAEYWNSQKDLLEQKRAAVDTYCRHNYGVGESFTVQRRTSGGGSIKEEHVIIQAEFYLN
 PDQSGEFMFDFDGDEIFHVDMAKKETVWRLEEFGRFASFEAQGALANIADKANLEIMTKRSNYTPIT

5

<210> C0528

<211> 200

<212> PRT

<213> Homo sapiens

10

Met	Gly	Asp	Thr	Gly	Arg	Ser	Phe	Thr	Leu	Ala	Ser	Ser	Glu	Thr	Gly
5														15	

15

Val	Gly	Gly	Gly	Gly	Ser	Arg	Pro	Arg	Phe	Leu	Glu	Gln	Val	Lys	His
20													30		

Glu	Cys	His	Phe	Phe	Asn	Gly	Thr	Glu	Arg	Val	Arg	Phe	Leu	Asp	Arg
35												45			

20

Tyr	Phe	Tyr	His	Gln	Glu	Glu	Tyr	Val	Arg	Phe	Asp	Ser	Asp	Val	Gly
50												60			

Glu	Tyr	Arg	Ala	Val	Thr	Glu	Leu	Gly	Arg	Pro	Asp	Ala	Glu	Tyr	Trp
65												80			

25

Asn	Ser	Gln	Arg	Asp	Leu	Leu	Glu	Gln	Lys	Arg	Ala	Ala	Val	Asp	Thr
85												95			

30

Tyr	Cys	Arg	His	Asn	Tyr	Gly	Val	Gly	Glu	Ser	Phe	Thr	Val	Gln	Arg
100												110			

Arg	Gly	Gly	Ile	Lys	Glu	Glu	His	Val	Ile	Ile	Gln	Ala	Glu	Phe	Tyr
115												125			

35

Leu	Asn	Pro	Asp	Gln	Ser	Gly	Glu	Phe	Met	Phe	Asp	Phe	Asp	Gly	Asp
130												140			

Glu	Ile	Phe	His	Val	Asp	Met	Ala	Lys	Lys	Glu	Thr	Val	Trp	Arg	Leu
145												155		160	

40

Glu	Glu	Phe	Gly	Arg	Phe	Ala	Ser	Phe	Glu	Ala	Gln	Gly	Ala	Leu	Ala
165												175			

45

Asn	Ile	Ala	Val	Asp	Lys	Ala	Asn	Leu	Glu	Ile	Met	Thr	Lys	Arg	Ser
180												190			

Asn	Tyr	Thr	Pro	Ile	Thr	Asn
195						

50

<210> IAS MBP1-14 CH1.CH2.CH3

<211> 2346

<212> DNA

<213> murine

55

gcggccgcca	ccatggagac	agacacactc	ctgctatggg	tactgctgct	ctgggttcca	60
ggttccactg	gtgacatggc	gtcacagaag	agaccctccc	agaggcacgg	atccaaggct	120
agcggagggg	gcggaagcgg	cggaggggga	gactccgaaa	gcatattcg	gttccagttc	180

91

	aaggcgagt	gctacttcac	caacgggacg	cagcgcatac	gatctgtgga	cagatacac	240
	tacaaccggg	aggagtacct	gchgcttcgac	agcgcacgtgg	gchagactcc	cgccgtgacc	300
	gagctggggc	ggccagaccc	cgagttactac	aataagcagt	acctggagca	aacgcgggccc	360
5	gagctggaca	cggtgtcgag	acacaactac	gaggggggtgg	agacccacac	ctccctgcgg	420
	cggcttgaac	agcccaatgt	cgtcatctcc	ctgtccagga	cagaggccct	caaccaccac	480
	aacactctgg	tctgctcagt	gacagattt	tacccagcca	agatcaaagt	gchaggttcc	540
	cggaaatggcc	aggaggagac	ggtgggggttc	tcatccacac	agcttatttag	gaatggggac	600
	tggaccttcc	aggtcctgg	catgctggag	atgaccctc	ggcgggggaga	ggtctacacc	660
10	tgcacacgtgg	agcatccgag	cctgaagac	cccatcaactg	tggagtgac	tagtggtggc	720
	ggtgtggcagcg	gccccgttgg	ttccgggtggc	ggccgttctg	gccccgttgg	ttccctcgagt	780
	gaagacgaca	ttgaggccga	ccacgttaggc	gtctatggta	caactgtata	tcagtcct	840
	ggagacattt	gccagttacac	acatgaattt	gatgggtatg	agtggttcta	tgtggacttg	900
	gataagaagg	agactatctg	gatgcttcct	gagttggcc	aattgacaag	ctttgacccc	960
15	caaggtggac	tgcaaaaacat	agctacagga	aaatacacct	tgggaatctt	gactaagagg	1020
	tcaatttcca	ccccagctac	caatgaggct	cctcaagcga	ctgtgttccc	caagtcct	1080
	gtgtgtctgg	gtcagccaa	caccctcatt	tgctttgtgg	acaacatctt	ccctccctgt	1140
	atcaacatca	catggctcag	aaatagtaag	tcagtcacag	acggcgttta	tgagaccagc	1200
	ttccttgc	accgtgacca	ttccttccac	aagctgtctt	atctcaccctt	catcccttct	1260
20	gacgatgata	tttatgactg	caaggtggag	cactggggcc	tggaggagcc	ggttctgaaa	1320
	cactgggcta	gcccgggggg	cggaagcggc	ggagggggag	ccaaaacgac	accccccatt	1380
	gtctatccac	tggcccttgg	atctgctgcc	caaactaact	ccatgggtgac	cctgggatgc	1440
	ctggcagg	gttattttcc	tgagccagtg	acagtgcac	ggaactctgg	atccctgtcc	1500
	agcgggtgtc	acacccctcc	agctgtctg	cagtctgacc	tctacactct	gagcagctca	1560
25	gtgactgtcc	cctccagcac	ctggcccagc	gagaccgtca	cctgcaacgt	tgcacccccc	1620
	gccagcagca	ccaagggtgg	caagaaaatt	gtgcccaggg	attgtggttg	taagcettgc	1680
	atatgtacag	tcccagaat	atcatctgtc	ttcatcttcc	ccccaaagcc	caaggatgt	1740
	ctcaccatta	ctctgactcc	taaggtcag	tgtgtgtgg	tagacatcag	caaggatgt	1800
	cccgagggtcc	agttcagctg	gtttgttagat	gatgtggagg	tgcacacagc	tcagacgcaa	1860
30	ccccgggagg	agcagttcaa	cagcactttc	cgctcagtc	gtgaacttcc	catcatgcac	1920
	caggactggc	tcaatggcaa	ggagttcaaa	tgcagggtca	acagtgac	tttccctgccc	1980
	cccatcgaga	aaaccatctc	aaaaacccaa	ggcagaccga	aggctccaca	ggtgtacacc	2040
	attccaccc	ccaaggagca	gatggccaag	gataaagtca	gtctgacctt	catgataaca	2100
	gacttctcc	ctgaagacat	tactgtggag	tggcagttgg	atgggcagcc	agcggagaac	2160
35	tacaagaaca	ctcagccat	catggacaca	gatggcttt	acttcgtcta	cagcaagctc	2220
	aatgtgcaga	agagcaactg	ggaggcagga	aataacttca	cctgctctgt	gttacatgag	2280
	ggctctgcaca	accaccatac	tgagaagagc	ctctccact	ctcctggtaa	atgatctgg	2340
	acctgc						2346

40 <210> IAS MRP 1-14 CH1.H

<211> 1701

<212> DNA

<213> murine

45	gccccggcca	ccatggagac	agacacactc	ctgctatggg	tactgctgt	ctgggttcca	60
	ggttccactg	gtgacatggc	gtcacagaag	agaccctccc	agaggcacgg	atccaaggct	120
	agcggggggg	gccccggcgg	cgaggggggg	gactccgaaa	ggcatttcgt	gttccagttc	180
	aaggcgagt	gtctacttcac	caacgggac	cagcgcatac	gatctgtgg	cagatacac	240
	tacaaccggg	aggagtacct	gccccgttcc	agcgcacgtgg	gchagactcc	cgccgtgacc	300
50	gagctggggc	ggccagaccc	cgagtactac	aataagcagt	acctggagca	aacgcgggccc	360
	gagctggaca	cggtgtcgag	acacaactac	gaggggggtgg	agacccacac	ctccctgcgg	420
	cggcttgaac	agcccaatgt	cgtcatctcc	ctgtccagga	cagaggccct	caaccaccac	480
	aacactctgg	tctgctcagt	gacagattt	tacccagcca	agatcaaagt	gchaggttcc	540
	cggaatggcc	aggaggagac	ggtgggggtc	tcatccacac	agcttatttag	gaatggggac	600
55	tggaccccttcc	aggtecttgg	catgtggag	atgacccttc	ggccggggaga	gttacacc	660
	tgcacacgtgg	agcatccgag	cctgaagac	cccatcaactg	tggagtgac	tagtggtggc	720
	ggggcagcg	gccccgttgg	ttccgggtggc	ggccgttctg	gccccgttgg	ttccctcgagt	780
	gaagacgaca	ttgaggccga	ccacgttaggc	gtctatggta	caactgtata	tcagtcct	840
	ggagacattt	gccccgttgg	acatgaattt	gatgggtatg	agtggttcta	tgtggacttg	900

92

	gataagaagg	agactatctg	gatgcttcct	gagttggcc	aattgacaag	cttgacccc	960
	caaggtggac	tgcaaaaacat	agctacagga	aaatacacct	tggaatctt	gactaagagg	1020
	tcaaattcca	ccccagctac	caatgaggct	cctcaagcga	ctgtgttccc	caagteccc	1080
	gtgctgctgg	gtcagccaa	caccctcatc	tgctttgtgg	acaacatctt	ccctccctgtg	1140
5	atcaacatca	catggctcag	aaatagtaag	tcagtacag	acggcgittt	tgagaccagc	1200
	ttccttgtca	accgtgacca	ttccttccac	aagctgtctt	atctcacctt	catcccttct	1260
	gacgatgata	tttatgactg	caaggtggag	caactggggcc	tggaggagcc	ggttctgaaa	1320
	cactggctt	gcggagggggg	cgaaagcggc	ggagggggag	ccaaaacgac	accccatct	1380
10	gtctatccac	tggcccttgg	atctgctgcc	caaactaact	ccatgggtac	cctgggatgc	1440
	ctggtcaagg	gctatttccc	tgagccagtg	acagtacact	ggaactctgg	atccctgtcc	1500
	agcggtgtgc	acaccttccc	agctgtcctg	cagtcgtacc	tctacactct	gagcagctca	1560
	gtgactgtcc	cctccagcac	ctggcccagc	gagaccgtca	cctgcaacgt	tgcccacccg	1620
	gccagcagca	ccaagggtgga	caagaaaatt	gtgcccaggg	attgtggttg	taaggcttgc	1680
	atatgtacag	tctaaggta	c				1701

15

<210> IAS MBP 90-101 CH1.H.CH2
<211> 2053
<212> DNA
20 <213> murine

	gcggccgcca	ccatggagac	agacacactc	ctgctatggg	tactgctgct	ctgggttcca	60
	ggttccactg	gtgacttcaa	gaacattgtg	acacctcgaa	caccacctcc	agctagcgg	120
	ggggggcgaa	gcggcgagg	gggagactcc	gaaaggcatt	tcgtgttcca	gttcaagggc	180
25	gagtgtact	tcaccaacgg	gacgcagcgc	atacgatctg	tggacagata	catctacaac	240
	cgggaggagt	acctgcgtt	cgacagcgc	gtggggcgagt	accgcgcgtt	gaccgagctg	300
	ggggggccag	accccgagta	ctacaataag	cagtacctgg	agcaaaacgc	ggcccgagctg	360
	gacacgggt	gcagacacaa	ctacgagggg	gtggagaccc	acacctccct	gcggcggtt	420
30	gaacagccca	atgtcgatc	ctccctgtcc	aggacagagg	ccctcaacca	ccacaacact	480
	ctggctgtc	cagtgcacaga	tttcttaccca	gccaagatca	aagtgcgtg	gttccggaaat	540
	ggccaggagg	agacgggtgg	ggtctcatcc	acacagctta	ttaggaatgg	ggactggacc	600
	ttccagggtcc	ttgtcatgtc	ggagatgacc	cctcgggggg	gagagggtcta	caccccccac	660
	gtggagcatc	cgagcctgaa	gagccccatc	actgtggagt	ggactgtgg	tggcggtggc	720
35	agccgggtg	gtgggtccgg	tggcggtgg	tctgggggt	gcccgttcc	gagtgaagac	780
	gacattgggg	ccgaccacgt	aggcgcttat	ggtacaactg	tatatacg	tcctggagac	840
	attggccagt	acacacatga	atttgcgtt	gatgagttgt	tctatgtga	cttgataag	900
	aaggagacta	tctggatgtc	tcctgagttt	ggccaattga	caagcttga	cccccaaggt	960
40	ggactgaaaa	acatagtagtac	agaaaaataac	accttggaa	tcttgactaa	gaggtaaaat	1020
	tccacccca	ctaccaatga	ggtccttcaa	gcgactgtgt	tccccaagtc	ccctgtgtc	1080
	ctgggtcagc	ccaacaccct	catctgtttt	gtggacaaca	tcttccctcc	tgtgatcaac	1140
	atcacatggc	tcagaaaatag	taagtcagtc	acagacggcg	tttatgagac	cagtttccct	1200
	gtcaaccgtg	accatttccctt	ccacaagctg	tcttatctca	ccttcatccc	ttctgacgt	1260
	gatattttatg	actgcaaggt	ggagcactgg	ggcctggagg	agccggttct	gaaacactgg	1320
45	gctagcgag	ggggcgaaag	cgccggagg	ggagccaaa	caacaccccc	atcagtctat	1380
	ccactggccc	ctgggtgtgg	agatacaact	ggtcctccg	tgactctggg	atgcctggtc	1440
	aagggtact	tccctgagtc	agtgactgtg	acttggaaact	ctggctccct	gtccagcagt	1500
	gtgcacaccc	tccctgactct	cctgcagtc	ggactctaca	ctatgagcag	ctcagtgtact	1560
50	gtcccttcca	gcacctggcc	aagtcaagcc	gtcacctgca	gcgttgc	cccagccagc	1620
	agcaccacgg	tggacaaaaaa	acttggccc	agcggggccca	tttcaacaaat	caacccctgt	1680
	cctccatgca	aggagtgtca	caaataccca	gctcctaacc	tggagggtgg	accatccgtc	1740
	ttcatcttcc	ctccaaatat	caaggatgt	ctcatgatct	ccctgacacc	caaggtcag	1800
	tgtgtgtgg	tggatgtgag	cgaggatgac	ccagacgtcc	agatcagctg	gtttgtgaac	1860
	aacgtgaaag	tacacacagc	tcagacacaa	acccatagag	aggattacaa	cagtactatc	1920
55	cgggtggta	gcaccctccc	catccagcac	caggactgga	tgagtggcaa	ggagttcaaa	1980
	tgcaaggtca	acaacaaaga	cctccatca	cccacatcgaga	gaaccatctc	aaaaattaaa	2040
	taggtaccc	cga					2053

<210> IAS MBP 90-101 CH1.H

<211> 1707

<212> DNA

<213> murine

5 gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
 ggttccactg gtgacttcaa gaacattgtg acaccccgaa caccacctcc agtagcgct 120
 agcggaggggg gcggaagcg cgaggggggg gactccgaaa ggcatttcgt gttccagtcc 180
 aaggcgagt gctacttca caacgggacg cagcgcatac gatctgtgga cagatacatc 240
 tacaaccggg aggagtacct ggccttcgac agcgcacgtgg gcgagtgacc cgccgtgacc 300
 10 gagctggggc ggccagaccc cgagta actac aataagcagt acctggagca aacggggccc 360
 gagctggaca cggtgtgcag acacaactac gaggggggtgg agacccacac ctccctgcgg 420
 cggcttgaac agcccaatgt cgtcatctcc ctgtccagga cagaggccct caaccaccac 480
 aacactctgg tctgctcagt gacagattt tacccagcca agatcaaagt ggcgtggttc 540
 cggaatggcc aggaggagac ggtgggggtc tcataccacac agcttattag gaatggggac 600
 15 tggaccttcc aggtccttgg catgctggag atgaccctc ggcggggaga ggtctacacc 660
 tgccacgtgg agcatccgag cctgaagagc cccatca ctg tggagtggac tagtgggtgc 720
 ggtggcagcg gcggtgg ttccgggtgg ggcgggtctg gcggtggcgg ttccctcgagt 780
 gaagacgaca ttgaggccga ccacgttaggc gtctatggta caactgtata tcagtcct 840
 20 ggagacattt gccagta acatgaattt gatgggtgatg agtggttcta tggacttg 900
 gataagaagg agactatctg gatgcttc gagttggcc aattgacaag cttaagcttt 960
 gacc caag gtggactgca aaacatagct acagggaaat acaccttggg aatcttgact 1020
 aagaggtcaa attccaccc agctaccaat gaggctcctc aagcga ctgt gttccaa 1080
 tcccctgtgc tgctgggtca gcccaacacc ctcatctg tttggacaa catctccct 1140
 cctgtatca acatcacatg gtcagaaat agtaagtca tcacagacgg cggttatgag 1200
 25 accagcttcc ttgtcaaccc tgaccattcc ttccaca agc tgc ttatct cacccatc 1260
 ccttctgacg atgatattt tgactgca gtggagcact ggggcctgga ggagccgg 1320
 ctgaaacact gggctagcg aggggggcg agcggcg ggggagccaa aacgacaccc 1380
 ccatctgtct atccactggc cctggatct gtcgccccaa ctaactccat ggtgaccctg 1440
 30 ggatgcctgg tcaagggtca ttccctgtgg ccagtgcacag tgacctggaa ctctggatcc 1500
 ctgtccagcg gtgtgcacac ctcccagct gtcctgcagt ctgacctcta cactctgagc 1560
 agctcagtga ctgtccctc cagcacctgg cccagcgaga cctgcacctg caacgttgcc 1620
 caccggcca gcagcacca ggtggaca aaaattgtgc ccaggatgt tggttgaag 1680
 ccttgcata gtacagtcta agtacc 1707

35

<210> MBP 1-14 CK

<211> 1686

<212> DNA

<213> murine

40

gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
 ggttccactg gtgacatggc gtcacaga agacccctcc agaggc acgg atccaaaggct 120
 agcggaggggg gcggaagcg cgaggggggg gactccgaaa ggcatttcgt gttccagtcc 180
 aaggcgagt gctacttca caacgggacg cagcgcatac gatctgtgga cagatacatc 240
 tacaaccggg aggagtacct ggccttcgac agcgcacgtgg gcgagtgacc cgccgtgacc 300
 gagctggggc ggccagaccc cgagta actac aataagcagt acctggagca aacggggccc 360
 gagctggaca cggtgtgcag acacaactac gaggggggtgg agacccacac ctccctgcgg 420
 cggcttgaac agcccaatgt cgtcatctcc ctgtccagga cagaggccct caaccaccac 480
 aacactctgg tctgctcagt gacagattt tacccagcca agatcaaagt ggcgtggttc 540
 cggaatggcc aggaggagac ggtgggggtc tcataccacac agcttattag gaatggggac 600
 tggaccttcc aggtccttgg catgctggag atgaccctc ggcggggaga ggtctacacc 660
 tgccacgtgg agcatccgag cctgaagagc cccatca ctg tggagtggac tagtgggtgc 720
 ggtggcagcg gcggtgg ttccgggtgg ggcgggtctg gcggtggcgg ttccctcgagt 780
 gaagacgaca ttgaggccga ccacgttaggc gtctatggta caactgtata tcagtcct 840
 55 ggagacattt gccagta acatgaattt gatgggtgatg agtggttcta tggacttg 900
 gataagaagg agactatctg gatgcttc gagttggcc aattgacaag cttaagcccc 960
 caaggtggac tgcaaaaacat agctacagga aaatacacct tggaaatctt gactaagagg 1020
 tcaaatttca cccca gctac caatgaggct cctcaagcg ctgtgttccc caagtccct 1080
 gtgtgtctgg gtcagccaa cacccteate tgcatttgg acaacatctt ccctccgtg 1140

94

atcaacatca catggcttag aaatagtaag tcagtcacag acggcggtta tgagaccaggc 1200
 ttccttgcata accgtgacca ttccctccac aagctgtctt atctcacctt catcccttct 1260
 gacgatgata tttatgactg caaggtggag cactggggcc tggaggagcc ggttctgaaa 1320
 5 cactgggcta gcggaggggg cgaaagcggc ggagggggag ctgatgctgc accaactgta 1380
 tccatcttcc caccatccag tgagcagtta acatctggag gtgcctcagt cgtgtgttcc 1440
 ttgaacaact tctacccaa agacatcaat gtcaagtgga agattgtatgg cagtgaacga 1500
 caaaatggcg tcctgaacag ttggactgtat caggacagca aagacagcac ctacagcatg 1560
 agcagcaccc tcacgttgac caaggacgag tatgaacgac ataacagcta tacctgttag 1620
 10 gccactcaca agacatcaac ttccaccatt gtcaagagct tcaacaggaa tgagtgttag 1680
 ggtacc 1686

<210> MBP 1-14 CH1.H.CH2
 <211> 2059
 15 <212> DNA
 <213> murine

gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
 20 ggttccactg gtgacatggc gtcacagaag agaccctccc agaggcaceg atccaaggct 120
 agcgaggggg gcggaagcgg cgagggggga gactccgaaa ggcatttcgt gttccagttc 180
 aaggcgagt gctacttcac caacgggacg cagcgcatac gatctgtgga cagatacatc 240
 tacaaccggg aggagtacct ggcgttcgac agcgcacgtgg gcgagtgacc cgcggtgacc 300
 gagctggggc ggccagaccc cgagtaactac aataagcagt acctggagca aacgcggggc 360
 gagctggaca cggtgtgacg acacaactac gaggggggtgg agacccacac ctccctgccc 420
 25 cggcttgaac agcccaatgt cgtcatctcc ctgtccagga cagaggccct caaccaccac 480
 aacactctgg tctgctcagt gacagattt taccagcca agatcaaagt ggcgtggtc 540
 cggaaatggcc aggaggagac ggtgggggtc tcatccacac agcttattag gaatggggac 600
 tggaccccttcc aggtccctggc catgctggag atgacccttc ggcggggaga ggtctacacc 660
 tgcacacgtgg agcatccgag cctgaagacccc catcactg tggagtggtac tagtggtggc 720
 30 ggtggcagcg gcggtggc ttccgggtggc ggcgggttctg gcggtggcgg ttcctcgagt 780
 gaagacgaca ttgaggccga ccacgttaggc gtctatggta caactgtata tcagtcct 840
 ggagacattt gccagttacac acatgaattt gatgggtatc agtgggttcta tggacttg 900
 gataagaagg agactatctg gatgttccct gagttggcc aattgacaag ctttgacccc 960
 caaggtggac tgcaaaacat agctacagga aaatacacct tggaaatott gactaagagg 1020
 35 tcaaaatttcca cccccagttac caatgaggct cctcaagcga ctgtgttccc caagtcct 1080
 gtgtgtgtgg gtcagccaa caccctcattt tgctttgtgg acaacatctt ccctcctgtg 1140
 atcaacatca catggcttag aaatagtaag tcagtcacag acggcggtta tgagaccaggc 1200
 ttcccttgcata accgtgacca ttccctccac aagctgtctt atctcacctt catcccttct 1260
 gacgatgata tttatgactg caaggtggag cactggggcc tggaggagcc ggttctgaaa 1320
 40 cactgggcta ggggggggg cgaaagcggc ggagggggag cccaaacaaac accccctatca 1380
 gtctatccac tggcccttgg gtgtggagat acaactggtt cctccgtgac tctggatgc 1440
 ctggcaggacttcc tcagtcactg actgtgactt gaaactctgg ctccctgtcc 1500
 agcagtgtgc acaccccttcc agcttcctt cagtcgtggac ttcacactat gagcagctca 1560
 gtgactgtcc cttccacgtt cttccaggac ctggccaagt cagaccgtca cctgcagcgt tgctcaccct 1620
 45 gcccaggac ccacgggtggc caaaaaaaaactt gagcccaagcg ggcccatattc aacaatcaac 1680
 ccctgttcc catgcaagggat gtgtcacaat tggccagctc ctaacctggaa ggggtggacca 1740
 tccgtttca ttcccttcc aatatacaat gatgtactca tgatctccct gacacccaaag 1800
 gtacgtgtg tgggtggaa tggagcggag gatgaccccg acgtccagat cagctggttt 1860
 gtgaacaacg tggaaatatac acacgttcac acacaaaccc atagagagga ttacaacagt 1920
 50 actatccggg tggtcagcac cttcccccattt cagcaccagg actggatgag tggcaaggag 1980
 ttcaaatgca aggtcaacaa caaagacctc ccatcaccctt tcgagagaac catctcaaaa 2040
 attaaatagg gtaccccgaa 2059

55 <210> MBP 90-101 CH1.H.CH2.CH3
 <211> 2343
 <212> DNA--
 <213> murine

95

gcggccgcca ccatggagac agacacactc ctgctatggg tactgctgct ctgggttcca 60
 ggttccactg gtgacttcaa gaacatttg acacctcgaa caccacctcc agctagcgga 120
 gggggcggaa gcggcggagg gggagactcc gaaaggcatt tcgtgttcca gttcaagggc 180
 gagtgctact tcaccaacgg gacgcagcgc atacgatctg tggacagata catctacaac 240
 5 cgggaggagt acctgcgtt cgacagcgcgt gtggcgagt accgcgcggg gaccgagctg 300
 gggcggccag accccgagta ctacaataag cagtacctgg agcaaacgcg ggccgagctg 360
 gacacgacgt gcagacacaa ctacgagggg gtggagaccc acacccctc gcggcggctt 420
 gaacagccca atgtcgcat ctccctgtcc aggacagagg ccctaaccac ccacaacact 480
 ctggtctgct cagtacaga ttcttaccca gccaagatca aagtgcgcgt gttccggaat 540
 10 ggccaggagg agacggtggg ggtctcatcc acacagctta ttaggaatgg ggactggacc 600
 ttccagggtcc tggtcatgct ggagatgacc cttcgccggg gagaggtctt caccctgcac 660
 gtggagcattc cgagcctgaa gagccccatc actgtggagt ggactagtgg tggcggtggc 720
 agcggcgggtg gtgggtccgg tggcgccggg tctggcggtg gcgggttcctc gagtgaagac 780
 gacattgagg cgcaccacgt aggcgtctat ggtacaactg tatatcagtc tcctggagac 840
 15 attggccagt acacacatga atttgatggt gatgagtggt tctatgtgga cttggataag 900
 aaggagacta tctggatgct tcctgagttt ggccaattga caagcttga cccccaaggt 960
 ggactgcaaa acatagctac agaaaatac accttggaa tcttactaa gaggtcaaat 1020
 tccacccccc tcaacatga ggctcctcaa gcgactgtgt tccccaagtc ccctgtgctg 1080
 20 ctgggtcagc ccaacaccct catctgcctt gtggacaaca tcttccctcc tgtgatcaac 1140
 atcacatggc tcagaatatac taagtcaagtc acagacggcg tttatgagac cagttccctt 1200
 gtcaaccgtg accattccctt ccacaagctg tcttatctca cttcatccc ttctgacgat 1260
 gatattttatg actgcaaggt ggagcaactgg ggcctggagg agccgggttct gaaacactgg 1320
 gctagcggag gggcggaaag cgccggagga agcttagcca aaacgacacc cccatctgtc 1380
 tatccactgg cccctggatc tgctgcccactaacttcca tggtgaccct gggatgcctg 1440
 25 gtcaaggggct atttccctga gccagtgaca gtgacactgaa actctggatc cctgtccagc 1500
 ggtgtcaca cttcccagc tgcctgcag tctgacctct acactctgag cagtcagtg 1560
 actgtccctt ccagcacctg gcccagcgg accgtcacct gcaacgttgc ccacccggcc 1620
 agcagcacca aggtggacaa gaaaatttgtt cccaggatt gtgggtgtaa gccttgacata 1680
 tgtacagtcc cagaagtatc atctgtcttc atctttcccc caaagcccaa ggatgtgtc 1740
 30 accattactc tgactctaa ggtcacgtgt gttgtggtag acatcagcaa ggatgatccc 1800
 gaggtccagt tcagctgggtt ttagatgat gtggaggtgc acacagctca gacgcaaccc 1860
 cgggaggagc agttcaacag cactttccgc tcagtcagtg aacttcccat catgcaccag 1920
 gactggctca atggcaagga gtcaaatgc agggtaaca gtgcagctt ccctgcccc 1980
 atcgagaaaa ccacatccaa aaccaaaggc agaccaagg ctccacaggt gtacaccatt 2040
 35 ccacatccaa aggagcagat gggcaaggat aaagtcaagtc tgacctgcac gataacagac 2100
 ttcttccctg aagacattac tggaggtgg cagtgaatg ggcagccagc ggagaactac 2160
 aagaacactc agcccatcat ggacacagat ggctttaact tgcgttacag caagctcaat 2220
 gtgcagaaga gcaactggga ggcaggaaat actttcacct gctctgtgtt acatgaggc 2280
 ctgcacaacc accataactga gaagacgcctc tcccaactctc ctggtaaatg atctggtacc 2340
 40 tgc 2343

<210> IASMBP 1-14 CH1.CH2.CH3

<211> 679

<212> PRT--

<213> murine

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Trp Val Pro

5

10

15

Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His

20

25

30

Gly Ser Lys Ala Ser Gly Gly Ser Gly Gly Gly Gly Asp Ser

35

40

45

Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn

50

55

60

96

Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu
 65 70 75 80

5 Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr
 85 90 95

Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu
 100 105 110

10 Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly
 115 120 125

Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val
 130 135 140

15 Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val
 145 150 155 160

20 Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe
 165 170 175

Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile
 180 185 190

25 Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr
 195 200 205

Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu
 210 215 220

30 Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Ser Gly
 225 230 235 240

35 Gly Gly Ser Gly Gly Ser Gly Gly Ser Ser Ser Ser
 245 250 255

Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val
 260 265 270

40 Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly
 275 280 285

Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met
 290 295 300

45 Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu
 305 310 315 320

50 Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg
 325 330 335

Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe
 340 345 350

55 Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe
 355 360 365

Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn
 370 375 380

Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn
 385 390 395 400

5 Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser
 405 410 415

Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu
 420 425 430

10 Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Ser Gly Gly Gly
 435 440 445

Gly Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Cys
 15 450 455 460

Gly Asp Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly
 465 470 475 480

20 Tyr Phe Pro Glu Ser Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser
 485 490 495

Ser Ser Val His Thr Phe Pro Ala Leu Leu Gln Ser Gly Leu Tyr Thr
 500 505 510

25 Met Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Gln Thr
 515 520 525

30 Val Thr Cys Ser Val Ala His Pro Ala Ser Ser Thr Thr Val Asp Lys
 530 535 540

Lys Leu Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Cys Pro Pro
 545 550 555 560

35 Cys Lys Glu Cys His Lys Cys Pro Ala Pro Asn Leu Glu Gly Gly Pro
 565 570 575

Ser Val Phe Ile Phe Pro Pro Asn Ile Lys Asp Val Leu Met Ile Ser
 580 585 590

40 Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Val Ser Glu Asp Asp
 595 600 605

Pro Asp Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr
 610 615 620

Ala Gln Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Ile Arg Val
 625 630 635 640

50 Val Ser Thr Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys Glu
 645 650 655

Phe Lys Cys Lys Val Asn Asn Lys Asp Leu Pro Ser Pro Ile Glu Arg
 660 665 670

55 Thr Ile Ser Lys Ile Lys
 675

98

<210> IAS MBP 1-14 CH1.H

<211> 677

<212> PRT--

<213> murine

5

Met	Glu	Thr	Asp	Thr	Leu	Leu	Leu	Trp	Val	Leu	Leu	Leu	Trp	Val	Pro
					5				10					15	

Gly	Ser	Thr	Gly	Asp	Phe	Lys	Asn	Ile	Val	Thr	Pro	Arg	Thr	Pro	Pro
					20				25				30		

Pro	Ala	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Asp	Ser	Glu	Arg		
						35			40			45			

15	His	Phe	Val	Phe	Gln	Phe	Lys	Gly	Glu	Cys	Tyr	Phe	Thr	Asn	Gly	Thr
					50				55			60				

Gln	Arg	Ile	Arg	Ser	Val	Asp	Arg	Tyr	Ile	Tyr	Asn	Arg	Glu	Glu	Tyr
					65			70			75		80		

20	Leu	Arg	Phe	Asp	Ser	Asp	Val	Gly	Glu	Tyr	Arg	Ala	Val	Thr	Glu	Leu
					85				90			95				

25	Gly	Arg	Pro	Asp	Pro	Glu	Tyr	Tyr	Asn	Lys	Gln	Tyr	Leu	Glu	Gln	Thr
					100				105			110				

Arg	Ala	Glu	Leu	Asp	Thr	Val	Cys	Arg	His	Asn	Tyr	Glu	Gly	Val	Glu
					115			120			125				

30	Thr	His	Thr	Ser	Leu	Arg	Arg	Leu	Glu	Gln	Pro	Asn	Val	Val	Ile	Ser
					130			135			140					

Leu	Ser	Arg	Thr	Glu	Ala	Leu	Asn	His	His	Asn	Thr	Leu	Val	Cys	Ser
					145			150			155		160		

35	Val	Thr	Asp	Phe	Tyr	Pro	Ala	Lys	Ile	Lys	Val	Arg	Trp	Phe	Arg	Asn
					165				170			175				

40	Gly	Gln	Glu	Glu	Thr	Val	Gly	Val	Ser	Ser	Thr	Gln	Leu	Ile	Arg	Asn
					180				185			190				

Gly	Asp	Trp	Thr	Phe	Gln	Val	Leu	Val	Met	Leu	Glu	Met	Thr	Pro	Arg
					195			200			205				

45	Arg	Gly	Glu	Val	Tyr	Thr	Cys	His	Val	Glu	His	Pro	Ser	Leu	Lys	Ser
					210			215			220					

Pro	Ile	Thr	Val	Glu	Trp	Thr	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly
	225				230				235			240			

50	Gly	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ser	Ser	Ser	Glu	Asp	
					245			250			255				

Asp	Ile	Glu	Ala	Asp	His	Val	Gly	Val	Tyr	Gly	Thr	Thr	Val	Tyr	Gln
					260			265			270				

Ser	Pro	Gly	Asp	Ile	Gly	Gln	Tyr	Thr	His	Glu	Phe	Asp	Gly	Asp	Glu
					275			280			285				

99

Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro
 290 295 300

5 Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn
 305 310 315 320

Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn
 325 330 335

10 Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys
 340 345 350

Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp
 355 360 365

15 Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys
 370 375 380

20 Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp
 385 390 395 400

His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp
 405 410 415

25 Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Pro Val
 420 425 430

Leu Lys His Trp Ala Ser Gly Gly Ser Gly Gly Gly Ala
 435 440 445

30 Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Cys Gly Asp
 450 455 460

35 Thr Thr Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe
 465 470 475 480

Pro Glu Ser Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser Ser
 485 490 495

40 Val His Thr Phe Pro Ala Leu Leu Gln Ser Gly Leu Tyr Thr Met Ser
 500 505 510

Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Gln Thr Val Thr
 515 520 525

45 Cys Ser Val Ala His Pro Ala Ser Ser Thr Thr Val Asp Lys Lys Leu
 530 535 540

50 Glu Pro Ser Gly Pro Ile Ser Thr Ile Asn Pro Cys Pro Pro Cys Lys
 545 550 555 560

Glu Cys His Lys Cys Pro Ala Pro Asn Leu Glu Gly Gly Pro Ser Val
 565 570 575

55 Phe Ile Phe Pro Pro Asn Ile Lys Asp Val Leu Met Ile Ser Leu Thr
 580 585 590

Pro Lys Val Thr Cys Val Val Asp Val Ser Glu Asp Asp Pro Asp
 595 600 605

100

Val Gln Ile Ser Trp Phe Val Asn Asn Val Glu Val His Thr Ala Gln
 610 615 620

5 Thr Gln Thr His Arg Glu Asp Tyr Asn Ser Thr Ile Arg Val Val Ser
 625 630 635 640

Thr Leu Pro Ile Gln His Gln Asp Trp Met Ser Gly Lys Glu Phe Lys
 645 650 655

10 Cys Lys Val Asn Asn Lys Asp Leu Pro Ser Pro Ile Glu Arg Thr Ile
 660 665 670

15 Ser Lys Ile Lys
 675

<210> IAS MBP 90-101 CH1.H.CH2

<211> 563

20 <212> PRT--

<213> murine

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 5 10 15

25 Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro
 20 25 30

30 Pro Ala Ser Ala Ser Gly Gly Gly Ser Gly Gly Gly Asp Ser
 35 40 45

Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn
 50 55 60

35 Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu
 65 70 75 80

Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr
 85 90 95

40 Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu
 100 105 110

45 Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly
 115 120 125

Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val
 130 135 140

50 Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val
 145 150 155 160

Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe
 165 170 175

55 Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile
 180 185 190

Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr

		101	
	195	200	205
	Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu		
5	210	215	220
	Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Ser Gly		
	225	230	235
	240		
10	Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Ser Ser		
	245	250	255
	Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val		
	260	265	270
15	Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly		
	275	280	285
	Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met		
20	290	295	300
	Leu Pro Glu Phe Gly Gln Leu Thr Ser Leu Ser Phe Asp Pro Gln Gly		
	305	310	315
	320		
25	Gly Leu Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr		
	325	330	335
	Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr		
	340	345	350
30	Val Phe Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile		
	355	360	365
	Cys Phe Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu		
35	370	375	380
	Arg Asn Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu		
	385	390	395
	400		
40	Val Asn Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile		
	405	410	415
	Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu		
	420	425	430
45	Glu Glu Pro Val Leu Lys His Trp Ala Ser Gly Gly Ser Gly		
	435	440	445
	Gly Gly Gly Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro		
50	450	455	460
	Gly Ser Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val		
	465	470	475
	480		
55	Lys Gly Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser		
	485	490	495
	Leu Ser Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu		
	500	505	510

102

Tyr Thr Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser
 515 520 525

5 Glu Thr Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val
 530 535 540

Asp Lys Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys
 545 550 555 560

10 Thr Val

<210> IAS MBP 90-101 CH1.H

15 <211> 556

<212> PRT

<213> murine

20 Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 5 10 15

Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His
 20 25 30

25 Gly Ser Lys Ala Ser Gly Gly Ser Gly Gly Gly Asp Ser
 35 40 45

Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn
 50 55 60

30 Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu
 65 70 75 80

35 Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr
 85 90 95

Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu
 100 105 110

40 Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly
 115 120 125

Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val
 130 135 140

45 Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val
 145 150 155 160

50 Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe
 165 170 175

Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile
 180 185 190

55 Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr
 195 200 205

Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu
 210 215 220

103

Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Ser Gly
 225 230 235 240

5 Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Ser Ser
 245 250 255

Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val
 260 265 270

10 Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly
 275 280 285

Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met
 15 290 295 300

Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu
 305 310 315 320

20 Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg
 325 330 335

Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe
 340 345 350

25 Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe
 355 360 365

Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn
 30 370 375 380

Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn
 385 390 395 400

35 Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser
 405 410 415

Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu
 420 425 430

40 Pro Val Leu Lys His Trp Ala Ser Gly Gly Ser Gly Gly Gly
 435 440 445

Gly Ala Asp Ala Ala Pro Thr Val Ser Ile Phe Pro Pro Ser Ser Glu
 45 450 455 460

Gln Leu Thr Ser Gly Gly Ala Ser Val Val Cys Phe Leu Asn Asn Phe
 465 470 475 480

50 Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys Ile Asp Gly Ser Glu Arg
 485 490 495

Gln Asn Gly Val Leu Asn Ser Trp Thr Asp Gln Asp Ser Lys Asp Ser
 55 500 505 510

Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu Thr Lys Asp Glu Tyr Glu
 515 520 525

Arg His Asn Ser Tyr Thr Cys Glu Ala Thr His Lys Thr Ser Thr Ser

	104		
	530	535	540
	Pro Ile Val Lys Ser Phe Asn Arg Asn Glu Cys		
5	545	550	555
	<210> IAS MBP 1-14 CK		
	<211> 775		
	<212> PRT		
10	<213> murine		
	Thr Met Glu Thr Asp Thr Leu Leu Leu Trp Val		
	5	10	15
15	Pro Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg		
	20	25	30
	His Gly Ser Lys Ala Ser Gly Gly Ser Gly Gly Gly Asp		
	35	40	45
20	Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr		
	50	55	60
25	Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg		
	65	70	80
	Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val		
	85	90	95
30	Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu		
	100	105	110
	Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu		
	115	120	125
35	Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val		
	130	135	140
40	Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu		
	145	150	160
	Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp		
	165	170	175
45	Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu		
	180	185	190
	Ile Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met		
	195	200	205
50	Thr Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser		
	210	215	220
	Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Ser		
55	225	230	240
	Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Ser		
	245	250	255

105

Ser	Glu	Asp	Asp	Ile	Glu	Ala	Asp	His	Val	Gly	Val	Tyr	Gly	Thr	Thr	
				260				265				270				
5	Val	Tyr	Gln	Ser	Pro	Gly	Asp	Ile	Gly	Gln	Tyr	Thr	His	Glu	Phe	Asp
		275					280				285					
10	Gly	Asp	Glu	Trp	Phe	Tyr	Val	Asp	Leu	Asp	Lys	Lys	Glu	Thr	Ile	Trp
		290				295					300					
15	Met	Leu	Pro	Glu	Phe	Gly	Gln	Leu	Thr	Ser	Phe	Asp	Pro	Gln	Gly	Gly
	305					310				315						320
20	Leu	Gln	Asn	Ile	Ala	Thr	Gly	Lys	Tyr	Thr	Leu	Gly	Ile	Leu	Thr	Lys
						325				330						335
25	Arg	Ser	Asn	Ser	Thr	Pro	Ala	Thr	Asn	Glu	Ala	Pro	Gln	Ala	Thr	Val
						340			345							350
30	Phe	Pro	Lys	Ser	Pro	Val	Leu	Leu	Gly	Gln	Pro	Asn	Thr	Leu	Ile	Cys
						355			360							365
35	Phe	Val	Asp	Asn	Ile	Phe	Pro	Pro	Val	Ile	Asn	Ile	Thr	Trp	Leu	Arg
						370			375							380
40	Asn	Ser	Lys	Ser	Val	Thr	Asp	Gly	Val	Tyr	Glu	Thr	Ser	Phe	Leu	Val
						385			390			395				400
45	Asn	Arg	Asp	His	Ser	Phe	His	Lys	Leu	Ser	Tyr	Leu	Thr	Phe	Ile	Pro
						405				410						415
50	Ser	Asp	Asp	Asp	Ile	Tyr	Asp	Cys	Lys	Val	Glu	His	Trp	Gly	Leu	Glu
						420			425							430
55	Glu	Pro	Val	Leu	Lys	His	Trp	Ala	Ser	Gly	Gly	Gly	Ser	Gly	Gly	
						435			440							445
60	Gly	Gly	Ala	Lys	Thr	Thr	Pro	Pro	Ser	Val	Tyr	Pro	Leu	Ala	Pro	Gly
						450			455			460				
65	Ser	Ala	Ala	Gln	Thr	Asn	Ser	Met	Val	Thr	Leu	Gly	Cys	Leu	Val	Lys
						465			470			475				480
70	Gly	Tyr	Phe	Pro	Glu	Pro	Val	Thr	Val	Thr	Trp	Asn	Ser	Gly	Ser	Leu
						485			490							495
75	Ser	Ser	Gly	Val	His	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Asp	Leu	Tyr
						500			505							510
80	Thr	Leu	Ser	Ser	Ser	Val	Thr	Val	Pro	Ser	Ser	Thr	Trp	Pro	Ser	Glu
						515			520							525
85	Thr	Val	Thr	Cys	Asn	Val	Ala	His	Pro	Ala	Ser	Ser	Thr	Lys	Val	Asp
						530			535							540
90	Lys	Lys	Ile	Val	Pro	Arg	Asp	Cys	Gly	Cys	Lys	Pro	Cys	Ile	Cys	Thr
						545			550			555				560
95	Val	Pro	Glu	Val	Ser	Ser	Val	Phe	Ile	Phe	Pro	Pro	Lys	Pro	Lys	Asp
						565			570							575

106

Val Leu Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Val Asp
 580 585 590

5 Ile Ser Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp
 595 600 605

Val Glu Val His Thr Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe Asn
 610 615 620

10 Ser Thr Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp Trp
 625 630 635 640

Leu Asn Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe Pro
 15 645 650 655

Ala Pro Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys Ala
 660 665 670

20 Pro Gln Val Tyr Thr Ile Pro Pro Pro Lys Glu Gln Met Ala Lys Asp
 675 680 685

Lys Val Ser Leu Thr Cys Met Ile Thr Asp Phe Phe Pro Glu Asp Ile
 690 695 700

25 Thr Val Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys Asn
 705 710 715 720

Thr Gln Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser Lys
 30 725 730 735

Leu Asn Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys
 740 745 750

35 Ser Val Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu
 755 760 765

Ser His Ser Pro Gly Lys
 40 770

<210> IAS MBP 1-14 CH1.H.CH2
 <211> 561
 <212> PRT
 45 <213> murine

Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro
 5 10 15

50 Gly Ser Thr Gly Asp Met Ala Ser Gln Lys Arg Pro Ser Gln Arg His
 20 25 30

Gly Ser Lys Ala Ser Gly Gly Ser Gly Gly Gly Asp Ser
 35 40 45

55 Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn
 50 55 60

Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu

	65	70	75	80
			107	
	Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr			
	85		90	95
5	Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu			
	100		105	110
10	Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His Asn Tyr Glu Gly			
	115		120	125
	Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val			
	130		135	140
15	Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val			
	145		150	160
	Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe			
20	165		170	175
	Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile			
	180		185	190
25	Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr			
	195		200	205
	Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu			
	210		215	220
30	Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Ser Gly			
	225		230	240
	Gly Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Ser Ser			
35	245		250	255
	Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val			
	260		265	270
40	Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly			
	275		280	285
	Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met			
	290		295	300
45	Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu			
	305		310	320
	Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg			
50	325		330	335
	Ser Asn Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe			
	340		345	350
55	Pro Lys Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe			
	355		360	365
	Val Asp Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn			
	370		375	380

108

Ser Lys Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn			
385	390	395	400
Arg Asp His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser			
5	405	410	415
Asp Asp Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu			
10	420	425	430
Pro Val Leu Lys His Trp Ala Ser Gly Gly Gly Ser Gly Gly Gly			
15	435	440	445
Gly Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser			
20	450	455	460
Ala Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly			
25	465	470	475
Tyr Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser			
30	485	490	495
Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr			
35	500	505	510
Leu Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr			
40	515	520	525
Val Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys			
45	530	535	540
Lys Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val			
50	545	550	555
<210> IAS MBP 90-101 CH1.H.CH2.CH3			
<211> 773			
<212> PRT			
<213> murine			
Met Glu Thr Asp Thr Leu Leu Leu Trp Val Leu Leu Leu Trp Val Pro			
55	5	10	15
Gly Ser Thr Gly Asp Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro			
60	20	25	30
Pro Ala Ser Gly Gly Gly Ser Gly Gly Gly Asp Ser Glu Arg			
65	35	40	45
His Phe Val Phe Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr			
70	50	55	60
Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr			
75	65	70	80
Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu			
80	85	90	95
Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr			
85	100	105	110

109

Arg Ala Glu Leu Asp Thr Thr Cys Arg His Asn Tyr Glu Gly Val Glu
 115 120 125
 5 Thr His Thr Ser Leu Arg Arg Leu Glu Gln Pro Asn Val Val Ile Ser
 130 135 140
 Leu Ser Arg Thr Glu Ala Leu Asn His His Asn Thr Leu Val Cys Ser
 145 150 155 160
 10 Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys Val Arg Trp Phe Arg Asn
 165 170 175
 Gly Gln Glu Glu Thr Val Gly Val Ser Ser Thr Gln Leu Ile Arg Asn
 15 180 185 190
 Gly Asp Trp Thr Phe Gln Val Leu Val Met Leu Glu Met Thr Pro Arg
 195 200 205
 20 Arg Gly Glu Val Tyr Thr Cys His Val Glu His Pro Ser Leu Lys Ser
 210 215 220
 Pro Ile Thr Val Glu Trp Thr Ser Gly Gly Gly Ser Gly Gly Gly
 225 230 235 240
 25 Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser Ser Ser Glu Asp
 245 250 255
 Asp Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln
 30 260 265 270
 Ser Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu
 275 280 285
 35 Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro
 290 295 300
 Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn
 305 310 315 320
 40 Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn
 325 330 335
 Ser Thr Pro Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys
 45 340 345 350
 Ser Pro Val Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp
 355 360 365
 50 Asn Ile Phe Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys
 370 375 380
 Ser Val Thr Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp
 385 390 395 400
 55 His Ser Phe His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp
 405 410 415
 Asp Ile Tyr Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val

		110	
	420	425	430
	Leu Lys His Trp Ala Ser Gly Gly Gly Ser Gly Gly Ser Leu		
	435	440	445
5	Ala Lys Thr Thr Pro Pro Ser Val Tyr Pro Leu Ala Pro Gly Ser Ala		
	450	455	460
	Ala Gln Thr Asn Ser Met Val Thr Leu Gly Cys Leu Val Lys Gly Tyr		
10	465	470	475
	Phe Pro Glu Pro Val Thr Val Thr Trp Asn Ser Gly Ser Leu Ser Ser		
	485	490	495
15	Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu		
	500	505	510
	Ser Ser Ser Val Thr Val Pro Ser Ser Thr Trp Pro Ser Glu Thr Val		
	515	520	525
20	Thr Cys Asn Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys		
	530	535	540
	Ile Val Pro Arg Asp Cys Gly Cys Lys Pro Cys Ile Cys Thr Val Pro		
25	545	550	555
	Glu Val Ser Ser Val Phe Ile Phe Pro Pro Lys Pro Lys Asp Val Leu		
	565	570	575
30	Thr Ile Thr Leu Thr Pro Lys Val Thr Cys Val Val Val Asp Ile Ser		
	580	585	590
	Lys Asp Asp Pro Glu Val Gln Phe Ser Trp Phe Val Asp Asp Val Glu		
	595	600	605
35	Val His Thr Ala Gln Thr Gln Pro Arg Glu Glu Gln Phe Asn Ser Thr		
	610	615	620
	Phe Arg Ser Val Ser Glu Leu Pro Ile Met His Gln Asp Trp Leu Asn		
40	625	630	635
	Gly Lys Glu Phe Lys Cys Arg Val Asn Ser Ala Ala Phe Pro Ala Pro		
	645	650	655
45	Ile Glu Lys Thr Ile Ser Lys Thr Lys Gly Arg Pro Lys Ala Pro Gln		
	660	665	670
	Val Tyr Thr Ile Pro Pro Lys Glu Gln Met Ala Lys Asp Lys Val		
	675	680	685
50	Ser Leu Thr Cys Met Ile Thr Asp Phe Pro Glu Asp Ile Thr Val		
	690	695	700
	Glu Trp Gln Trp Asn Gly Gln Pro Ala Glu Asn Tyr Lys Asn Thr Gln		
55	705	710	715
	Pro Ile Met Asp Thr Asp Gly Ser Tyr Phe Val Tyr Ser Lys Leu Asn		
	725	730	735

111

Val Gln Lys Ser Asn Trp Glu Ala Gly Asn Thr Phe Thr Cys Ser Val
 740 745 750

5 Leu His Glu Gly Leu His Asn His His Thr Glu Lys Ser Leu Ser His
 755 760 765

Ser Pro Gly Lys
 770

10 <210> pCRC203
 <211> 609
 <212> DNA
 <213> Murine

15 <400> 1
 catatgttca agaacattgt gacacctcgaa acaccacctc caggaggagg atccggagac 60
 tcgaaaaggc atttcgtgtt ccagttcaag ggcgagtgtct acttcaccaa cgggacgcag 120
 cgcatacgat ctgtggacag atacatctac aaccgggagg agtacctgcg cttcgacagc 180
 gacgtggcg gtagtccgcg ggtgaccgag ctggggcgcc cagaccccgaa gtactacaat 240
 20 aacagtacc tggagcaaaccgcggccggcccttggacacgg tttgtcgacaca caactacgag 300
 ggggtggaga cccacacctc cctgcggcggttggaggttggaaagacat tgaggccgac 360
 cacgtggcg tctatgttac aactgttat cagtcctcg gagacattgg ccagtgacaca 420
 catgaatttg atgggtatga gtgggttctat gtggacttgg ataagaagga gactatctgg 480
 atgcttcctg agtttggcca attgacaaggc ttggacccccc aaggtggact gcaaaaacata 540
 25 gctacaggaa aatacacctt gggaaatcttggactaagaggttggacccatccaccccac 600
 aatctcgag 609

<210> pCRC201
 <211> 614
 30 <212> DNA
 <213> Murine

<400> 2
 catatgttca agaacattgt gacacctcgaa acaccacctc caggaggagg atccggagac 60
 35 tcgaaaaggc atttcgtgtt ccagttcaag ggcgagtgtct acttcaccaa cgggacgcag 120
 cgcatacgat ctgtggacag atacatctac aaccgggagg agtacctgcg cttcgacagc 180
 gacgtggcg gtagtccgcg ggtgaccgag ctggggcgcc cagaccccgaa gtactacaat 240
 aacagtacc tggagcaaaccgcggccggcccttggacacgg tttgtcgacaca caactacgag 300
 ggggtggaga cccacacctc cctgcggcggttggaggttggaaagacat tgaggccgac 360
 40 cacgtggcg tctatgttac aactgttat cagtcctcg gagacattgg ccagtgacaca 420
 catgaatttg atgggtatga gtgggttctat gtggacttgg ataagaagga gactatctgg 480
 atgcttcctg agtttggcca attgacaaggc ttggacccccc aaggtggact gcaaaaacata 540
 gctacaggaa aatacacctt gggaaatcttggactaagaggttggacccatccaccccac 600
 aatctaaggccg 614

45 <210> pCRC199
 <211> 642
 <212> DNA
 <213> Murine

50 <400> 3
 catatgttca agaacattgt gacacctcgaa acaccacctc cagctagcgaggggggcgga 60
 agccggcgag gggggagactc cggaaaggcat ttcgtgttcc agtttaaagg cgagtgcgtac 120
 ttcaccaacg ggacgcagcg catacgatct gtggacagat acatctacaa cggggaggag 180
 55 tacctgcgtc tcgacagcgat cgtggcgag taccgcgcgg tgaccgcgttggcc 240
 gaccccgagt actacaataa gcagttacgttggagacc gacacccccc tgcggcggttactgtgttgg 300
 tgcagacaca actacgaggg ggtggagacc cacacccccc tgcggcggttactgtgttgg 360
 ggcgggtggca gcgaagacga cattggaggcc gaccacgttag gctgttatgg tacaactgttac 420
 tattcgttcc tcggagacat tggccagttac acacatgttac ttgtatgggttgc 480

<211> 1662

<212> DNA

<213> Murine

5 <400> 6
 gcgcccccca ccatggctct gcagatcccc agcctccccc tctcggtcgc tgggtggtg 60
 ctgtatggtgc tgagcagccc agggactgag ggcttagcg gagggggccgg aagggccgga 120
 gggggagact ccgaaaggca tttcggttc cagttcaagg gogagtgcata cttcaccaac 180
 gggacgcagc gcatacgcata tggacaga tacatctaca accggggagga gtacctgcgc 240
 10 ttcgacagcg acgtggcga gtaccgcgcg gtgaccgagc tggggccggcc agaccccgag 300
 tactacaata agcagtaccc ggagcaaaacg cggggccggagc tggacacccgt:gtgcagacac 360
 aactacgagg ggggtggagac ccacacccctcc ctgcggccggc ttgaacagcc caatgtcgtc 420
 atctccctgt ccaggacaga gcccctcaac caccacaaca ctctggtctg ctcagtgaca 480
 gatttctacc cagccaaagat caaatgtgcgc tggttccggta atggccagga ggagacggtg 540
 15 ggggtctcat ccacacagct tattaggaat ggggacttggga cttccaggt cctggtcatg 600
 ctggagatga cccctcgccg gggagaggcc tacacccgtcc acgtggagca tccgagccctg 660
 aagagccccca tcactgttggaa gtggacttagt ggtggccggg gcagccggccgg tgggtgttcc 720
 ggtggccggcg gttctggccgg tggcggttcc tggactgtaa acgacatttgc gcccggaccac 780
 gtagggcgtct atggtacaac tgatatacg tctccttggag acattggcca gtacacacat 840
 20 gaatttgatg gtgatgatgt gtcttatgtg gacttggata agaaggagac tatctggatg 900
 cttcctgagt ttggccaatt gacaagctt gaccccaag gtggactgca aaacatagct 960
 acaggaaaat acaccccttggg aatcttgact aagaggtcaa atccacccccc agctaccaat 1020
 gaggtccctc aagcgactgt gtcccccaag tcccctgtcc tggctgggtca gcccacacc 1080
 25 ctcatctgtc ttgtggacaa catcttccct cctgtatgtca acatcacatg gctcagaaat 1140
 agtaagtctcg tcacagacgg cgtttatgtg accagcttcc ttgtcaaccg tgaccattcc 1200
 ttccacaaggc tggatgtatct cacccatc ccttctgacg atgatattta tgactgcaag 1260
 gtggagcact ggggccttggaa ggagccgggtt ctgaaacact gggctagccgg agggggccgga 1320
 30 agcggccggag ggggagctga tgctgcacca actgtatcca tcttccacc atccagttag 1380
 cagtaacat ctggaggtgc ctcagtcgtg tgcttcttga acaacttcta ccccaaagac 1440
 atcaatgtca agtggaaagat tgatggcagt gaacgacaaa atggcgtct gaacagttgg 1500
 actgatcagg acagcaaaga cagcacctac agcatgagca gcacccctcac gttgaccaag 1560
 gacgagtagt aacgacataa cagctatacc tggagggccca ctcacaagac atcaacttca 1620
 cccattgtca agagcttcaa caggaatgag tggtagggta cc 1662

35 <210> pCB229
 <211> 1085
 <212> DNA
 <213> Murine

40 <400> 7
 gaatttcggta ccaccatggc tctcgagatc cccagccccc tccctctcgcc tggctgtggtg 60
 gtgcgtatgg tgctgagcag cccagggact gagggttca agaacattgt gacacccctcg 120
 acaccaccc cagctagccg agggggccgg aegccggggag ggggagactc cgaaaggccat 180
 45 ttcggttcc agttcaaggg cgagtgcata ttcaccaacg ggacgcagcc catacgatct 240
 gtggacagat acatctacaa cccggggagg tacctcgcc tggacagccg cgtggccgg 300
 taccggccgg tgaccggact gggccggccca gaccccgagt actacaataa gcaatgtaccc 360
 gagcaaaacgc gggccggact ggacacccgtg tggacacaca actacgggg ggtggagacc 420
 cacacccccc tggccggccct tggacacccca aatgtcgatc tccctctgtc caggacagag 480
 50 gcccctcaacc accacaacac tctggtctgc tcaatgtaccc atttctaccc agccaaagatc 540
 aaatgtcgatc ggttccggaa tggccaggag gagacgggtgg gggctctatc cacacaccc 600
 attaggaatg gggacttggac cttccaggatc ctggatgtatgc tggagatgac ccctcgccgg 660
 ggagagggtct acacccctca cgtggagcat ccgagccctga agagcccccactgtgtggag 720
 tggagggccac agtctgtatc tggccggccg ggttccggatc atgtcgatcc aactgtatcc 780
 55 atctccctac catccaggatc gcaatgtatc tctggaggtg cttccaggatc gtgtttcttg 840
 aacaatccatc accccaaaga catcaatgtc aagtggaaaga ttgtatggcag tggacacccaa 900
 aatggcgatcc tggacatgtt gactgtatgc gacagccaaac agcaccatc cagcatgagc 960
 agcaccctca cgttccggccaa ggacggatgtt gacacccatc acagctatacc tggatggcc 1020
 actcacaaga catcaatcc acccattgtc aagagcttca acaggaatgatc tggatggcg 1080
 gcccgc 1085

<210> pCB223
 <211> 1676
 <212> DNA
 5 <213> Murine

<400> 8
 gaattcggta ccatggctct gcagatcccc agcctcctcc tctcggtgc tgggtggtg 60
 ctgatggtc tgagcagccc agggactgag ggcgaagacg acattgaggc cgaccacgta 120
 10 ggcgtctatg gtacaactgt atatcgatct cctggagaca ttggccagta cacacatgaa 180
 tttgatggtg atgagtggtt ctatgtggac ttggataaga aggagactat ctggatgctt 240
 cctgagttt gccaattgac aagctttgac ccccaagggtg gactgcaaaa catagctaca 300
 ggaaaataca ctttggaat cttgactaag agtcaaatt ccacccagc taccaatgag 360
 gctcctcaag cgactgtgtt ccccaagtcc cctgtgctgc tgggtcagcc caacaccctc 420
 15 atctgcttg tggacaacat ctccctccct gtgatcaaca tcacatggct cagaaatagt 480
 aagtcaatc aagacggcgt ttagagacc agcttccttgc tcaaccgtga ccattccttc 540
 cacaagctgt cttatctcac ctccatccct tctgacgatg atatttatga ctgcaagggtg 600
 gagactggg gcctggagga gccgggtctg aaacactggg aacctgagat tccagccccc 660
 atgtcagaag gatctgcca aacaacagcc ccatcggtct atccactggc ccctgtgtgt 720
 20 ggagatacaa ctggctccctc ggtgactcta ggatgcctgg tcaagggtta tttccctgag 780
 ccagtgacct tgacctggaa ctctggatcc ctgtccagtg gtgtgcacac cttcccaagct 840
 gtcctgcagt ctgacctcta caccctcagc agctcaagtga ctgtAACCTC gagcacctgg 900
 cccagccagt ccatcacctg caatgtggcc caccggcaaa gcagcaccaa ggtggacaag 960
 aaaattgagc ccagaggccc cacaatcaag ccctgtcctc catgcaaatg cccagcacct 1020
 25 aaccccttgg gtggaccatc cgtcttcatc ttccctccaa agatcaaggta tgtactcatg 1080
 atctccctga gccccatagt cacatgtgtg gtgggtggatg tgagcgagga tgaccaggat 1140
 gtccagatca gctggtttgt gaacaacgtg gaagtacaca cagctcagac acaaaccat 1200
 agagaggatt acaacagtac tctccgggtg gtcagtgc ccccatcca gcaccaggac 1260
 tggatgagtg gcaaggagtt caaatgcaag gtcaacaaca aagacctccc agcggccatc 1320
 30 gagagaacca tctcaaaaacc caaagggtca gtaagagctc cacaggataa tgtcttgct 1380
 ccaccagaag aagagatgac taagaaacag gtcactctga cctgcattgt cacagacttc 1440
 atgcctgaag acatttacgt ggagtggacc aacaacggga aaacagagct aaactacaag 1500
 aacactgaac cagtcctgga ctctgtatgg tcttacttca tgtacagcaa gctgagagtg 1560
 gaaaaagaaga actgggtgga aagaaatagc tactctgtt cagtggtcga cgagggtctg 1620
 35 cacaatcacc acacgactaa gagcttctcc cggactccgg gtaaatgagc ggccgc 1676

<210> pCB212
 <211> 773
 <212> DNA
 40 <213> Murine

<400> 9
 ccattggtaa gaaacagacc gctgttgcattcgctctggc gctcctggct tttcttatga 60
 ccccccgtta cgctttcaag aacattgtga cacctcgaac accaccccca gctagcggag 120
 45 ggggggaaag cggcgagggg ggagactccg aaaggcattt cgtgttccag tttaaaggcg 180
 agtgctactt caccacccgg acgcagcgc tacatctgt gacagatatac atctacaacc 240
 gggaggagta cctgcgttgc gacagcgcacg tggcgagta cccgcgggtg accgagctgg 300
 ggcggccaga ccccgagttac tacaataagc agtacctggc gcaaacgcgg gccgagctgg 360
 acacgggtgtg cagacacaac tacgaggggg tggagaccca caccccttgc cggcggttgc 420
 50 gtggcggtgg cagcggcggt ggtggttccg gtggcgccgg ttctggcggt ggcgggttccg 480
 gtggcggtgg cagcgaagac gacattgagg ccgaccacgtt aggctgttat ggtacaactg 540
 tatatcgatc tcctggagac attggccagt acacacatga atttgatgtt gatgagtggt 600
 tctatgtgga cttggataag aaggagacta tctggatgtc tcttgatgtt ggccaattgaa 660
 55 caagcttgc ccccaagggtt ggcactgc acaatgctac agaaaaataac accttgggaa 720
 tcttacttgc gaggtaaaat tccaccccaag ctaccaatta aggtaccggc tcc 773

<210> pCB214
 <211> 702
 <212> DNA

115

<213> Murine

<400> 10

5 atgttcaaga acatttgac acctcgaaca ccacctccag ctgcggagg gggcggaaagc 60
 ggcggagggg gagactccga aaggcatttc gtgttccagt ttaaaggcga gtgtacttc 120
 accaacggga cgcagcgcat acgatctgtg gacagataca tctacaacccg ggaggagttac 180
 ctgcgttccg acagcgacgt gggcgagttac cgccgggtga ccgagctggg gcggccagac 240
 cccgagttact acaataagca gtacctggag caaacgcggg ccgagctgga cacgtgtgc 300
 agacacaact acgagggggt ggagacccac acctccctgc ggccggcttgg tggcggtggc 360
 10 agggcggtg gtggttccgg tggcgccgggt tctggcggtg gccgttccgg tggcggtggc 420
 agcgagacg acattgaggc cgaccacgtt ggcgtctatg gtacaactgt atatcgatct 480
 cctggagaca ttggccagta cacacatgaa tttgatggtg atgagtggtt ctatgtggac 540
 ttggataaga aggagactat ctggatgctt cctgagtttg gccaattgac aagcttgc 600
 15 ccccaagggtg gactgcaaaa catagctaca ggaaaataca ctttggaat cttgactaag 660
 aggtcaaatt ccaccccagc taccaattaa ggtaccggat cc 702

<210> pCB220

<211> 1013

<212> DNA

20 <213> Murine

<400> 11

25 gaattcggta ccatggctct gcagatcccc agcctccccc ttcggctgc tgggtggtg 60
 ctgtatggtgc tgagcagccc agggacttag ggcgaagacg acattgaggc cgaccacgtt 120
 ggcgtctatg gtacaactgtt atatcgatct cctggagaca ttggccagta cacacatgaa 180
 tttgatggtg atgagtggttt ctatgtggac ttggataaga aggagactat ctggatgctt 240
 cctgagtttg gccaattgac aagctttgac ccccaagggtg gactgcaaaa catacgatcaca 300
 ggaaaataca ctttggaat ttgactaag aggtcaaattt ccaccccagc taccaatgag 360
 gtcctcaag cgactgtgtt ccccaagtcc cctgtgtgc tgggtcagcc caacaccctc 420
 30 atctgtttt tggacaacat cttccctctt gtgatcaaca tcacatggct cagaaatagt 480
 aagtcaatca cagacggcgtt ttagagacc agcttcctt tcaaccgtt ccatttc 540
 cacaagctgtt ctatctcac ctteatccct tctgacgatg atatttatga ctgcaagggtg 600
 gagcaactggg gcctggagga gccgggttctg aaacactggg aacctgagat tccagcccc 660
 atgtcagaag gatccgccaa aacaacagcc ccattcggtt atccactggc ccctgtgtgt 720
 35 ggagatacaa ctggctcctc ggtgactcta ggatgcctgg tcaagggtt tttccctgag 780
 ccagtgacct tgacctggaa ctctggatct ctgtccagtg gtgtgcacac cttccctagct 840
 gtcctgcaagt ctgacctcta caccctcagc agtcagtgta ctgtAACCTC gagcacctgg 900
 cccagccagt ccattcacctg caatgtggcc caccggcaaa gcagcacccaa ggtggacaag 960
 40 aaaattgagcc ccagagggcc cacaatcaag ccctgtgtt cataggcggc cgc 1013

<210> pCRC203

<211> 207

<212> PRT

45 <213> Murine

<400> 12

Met	Phe	Lys	Asn	Ile	Val	Thr	Pro	Arg	Thr	Pro	Pro	Gly	Gly

5

10

15

50 Ser Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys
 20 25 30

Tyr	Phe	Thr	Asn	Gly	Thr	Gln	Arg	Ile	Arg	Ser	Val	Asp	Arg	Tyr	Ile

35

40

45

Tyr	Asn	Arg	Glu	Glu	Tyr	Leu	Arg	Phe	Asp	Ser	Asp	Val	Gly	Glu	Tyr

50

55

60

Arg	Ala	Val	Thr	Glu	Leu	Gly	Arg	Pro	Asp	Pro	Glu	Tyr	Tyr	Asn	Lys

	116															
	65	70	75	80												
	Gln	Tyr	Leu	Glu	Gln	Thr	Arg	Ala	Glu	Leu	Asp	Thr	Val	Cys	Arg	His
						85										95
5	Asn	Tyr	Glu	Gly	Val	Glu	Thr	His	Thr	Ser	Leu	Arg	Arg	Leu	Gly	Gly
						100										110
10	Glu	Asp	Asp	Ile	Glu	Ala	Asp	His	Val	Gly	Val	Tyr	Gly	Thr	Thr	Val
						115										125
	Tyr	Gln	Ser	Pro	Gly	Asp	Ile	Gly	Gln	Tyr	Thr	His	Glu	Phe	Asp	Gly
						130										140
15	Asp	Glu	Trp	Phe	Tyr	Val	Asp	Leu	Asp	Lys	Lys	Glu	Thr	Ile	Trp	Met
						145										160
	Leu	Pro	Glu	Phe	Gly	Gln	Leu	Thr	Ser	Phe	Asp	Pro	Gln	Gly	Gly	Leu
						165										175
20	Gln	Asn	Ile	Ala	Thr	Gly	Lys	Tyr	Thr	Leu	Gly	Ile	Leu	Thr	Lys	Arg
						180										190
25	Ser	Asn	Ser	Thr	Pro	Ala	Thr	Asn	His							
						195										205
	<210>	pCRC201														
30	<211>	201														
	<212>	PRT														
	<213>	Murine														
	<400>	13														
35	Met	Phe	Lys	Asn	Ile	Val	Thr	Pro	Arg	Thr	Pro	Pro	Pro	Gly	Gly	
						5										15
	Ser	Gly	Asp	Ser	Glu	Arg	His	Phe	Val	Phe	Gln	Phe	Lys	Gly	Glu	Cys
						20										30
40	Tyr	Phe	Thr	Asn	Gly	Thr	Gln	Arg	Ile	Arg	Ser	Val	Asp	Arg	Tyr	Ile
						35										45
	Tyr	Asn	Arg	Glu	Glu	Tyr	Leu	Arg	Phe	Asp	Ser	Asp	Val	Gly	Glu	Tyr
						50										60
45	Arg	Ala	Val	Thr	Glu	Leu	Gly	Arg	Pro	Asp	Pro	Glu	Tyr	Tyr	Asn	Lys
						65										80
50	Gln	Tyr	Leu	Glu	Gln	Thr	Arg	Ala	Glu	Leu	Asp	Thr	Val	Cys	Arg	His
						85										95
	Asn	Tyr	Glu	Gly	Val	Glu	Thr	His	Thr	Ser	Leu	Arg	Arg	Leu	Gly	Gly
						100										110
55	Glu	Asp	Asp	Ile	Glu	Ala	Asp	His	Val	Gly	Val	Tyr	Gly	Thr	Thr	Val
						115										125
	Tyr	Gln	Ser	Pro	Gly	Asp	Ile	Gly	Gln	Tyr	Thr	His	Glu	Phe	Asp	Gly
						130										140

117

Asp Glu Trp Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met
 145 150 155 160

5 Leu Pro Glu Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu
 165 170 175

Gln Asn Ile Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg
 180 185 190

10 Ser Asn Ser Thr Pro Ala Thr Asn
 195 200

15 <210> pCRC199
 <211> 218
 <212> PRT
 <213> Murine

20 <400> 14
 Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly
 5 10 15

25 Gly Gly Gly Ser Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe
 20 25 30

Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg
 35 40 45

30 Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp
 50 55 60

Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp
 65 70 75 80

35 Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu
 85 90 95

40 Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser
 100 105 110

Leu Arg Arg Leu Thr Ser Gly Gly Ser Glu Asp Asp Ile Glu
 115 120 125

45 Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly
 130 135 140

Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr
 145 150 155 160

50 Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly
 165 170 175

Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr
 180 185 190

Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro
 195 200 205

118

Ala Thr Asn His His His His His His
 210 215

5 <210> pCRC197
 <211> 212
 <212> PRT
 <213> Murine

10 <400> 15
 Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly
 5 10 15

15 Gly Gly Gly Ser Gly Gly Gly Asp Ser Glu Arg His Phe Val Phe
 20 25 30

Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg
 35 40 45

20 Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp
 50 55 60

Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp
 65 70 75 80

25 Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu
 85 90 95

30 Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser
 100 105 110

Leu Arg Arg Leu Thr Ser Gly Gly Gly Ser Glu Asp Asp Ile Glu
 115 120 125

35 Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly
 130 135 140

Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr
 145 150 155 160

40 Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly
 165 170 175

45 Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr
 180 185 190

Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro
 195 200 205

50 Ala Thr Asn
 210

55 <210> pCRC188
 <211> 548
 <212> PRT
 <213> Murine

<400> 16

119

Met Ala Leu Gln Ile Pro Ser Leu	Leu	Leu Ser Ala Ala Val Val Val	
5		10	15
Leu Met Val Leu Ser Ser Pro Gly	Thr	Glu Gly Ala Ser Gly Gly Gly	
20		25	30
Gly Ser Gly Gly Gly Asp Ser Glu	Arg His Phe Val Phe Gln Phe		
35	40	45	
Lys Gly Glu Cys Tyr Phe Thr Asn	Gly Thr Gln Arg Ile Arg Ser Val		
50	55	60	
Asp Arg Tyr Ile Tyr Asn Arg Glu	Glu Tyr Leu Arg Phe Asp Ser Asp		
65	70	75	80
Val Gly Glu Tyr Arg Ala Val Thr	Glu Leu Gly Arg Pro Asp Pro Glu		
85	90	95	
Tyr Tyr Asn Lys Gln Tyr Leu Glu	Gln Thr Arg Ala Glu Leu Asp Thr		
100	105	110	
Val Cys Arg His Asn Tyr Glu Gly	Val Glu Thr His Thr Ser Leu Arg		
115	120	125	
Arg Leu Glu Gln Pro Asn Val Val	Ile Ser Leu Ser Arg Thr Glu Ala		
130	135	140	
Leu Asn His His Asn Thr Leu Val	Cys Ser Val Thr Asp Phe Tyr Pro		
145	150	155	160
Ala Lys Ile Lys Val Arg Trp Phe	Arg Asn Gly Gln Glu Glu Thr Val		
165	170	175	
Gly Val Ser Ser Thr Gln Leu Ile	Arg Asn Gly Asp Trp Thr Phe Gln		
180	185	190	
Val Leu Val Met Leu Glu Met Thr	Pro Arg Arg Gly Glu Val Tyr Thr		
195	200	205	
Cys His Val Glu His Pro Ser Leu	Lys Ser Pro Ile Thr Val Glu Trp		
210	215	220	
Thr Ser Gly Gly Gly Ser Gly Gly	Gly Ser Gly Gly Gly Gly Gly Gly		
225	230	235	240
Ser Gly Gly Gly Ser Ser Ser Glu	Asp Asp Ile Glu Ala Asp His		
245	250	255	
Val Gly Val Tyr Gly Thr Thr Val	Tyr Gln Ser Pro Gly Asp Ile Gly		
260	265	270	
Gln Tyr Thr His Glu Phe Asp Gly	Asp Glu Trp Phe Tyr Val Asp Leu		
275	280	285	
Asp Lys Lys Glu Thr Ile Trp Met	Leu Pro Glu Phe Gly Gln Leu Thr		
290	295	300	
Ser Phe Asp Pro Gln Gly Gly Leu	Gln Asn Ile Ala Thr Gly Lys Tyr		
305	310	315	320

120

	Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro Ala Thr Asn		
	325	330	335
5	Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val Leu Leu Gly		
	340	345	350
	Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe Pro Pro Val		
	355	360	365
10	Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr Asp Gly Val		
	370	375	380
15	Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe His Lys Leu		
	385	390	395
	Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr Asp Cys Lys		
	405	410	415
20	Val Glu His Trp Gly Leu Glu Pro Val Leu Lys His Trp Ala Ser		
	420	425	430
	Gly Gly Gly Ser Gly Gly Gly Ala Asp Ala Ala Pro Thr Val		
	435	440	445
25	Ser Ile Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser		
	450	455	460
30	Val Val Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys		
	465	470	475
	Trp Lys Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp		
	485	490	495
35	Thr Asp Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu		
	500	505	510
	Thr Leu Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu		
	515	520	525
40	Ala Thr His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg		
	530	535	540
45	Asn Glu Cys		
	545		
	<210> pCRC187		
	<211> 253		
50	<212> PRT		
	<213> Murine		
	<400> 17		
55	Met Gly Lys Lys Gln Thr Ala Val Ala Phe Ala Leu Ala Leu Ala		
	5	10	15
	Leu Ser Met Thr Pro Ala Tyr Ala Phe Lys Asn Ile Val Thr Pro Arg		
	20	25	30

121

	Thr	Pro	Pro	Pro	Ala	Ser	Gly	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Asp	
					35						40					45	
5	Ser	Glu	Aрг	His	Phe	Val	Phe	Gln	Phe	Lys	Gly	Glu	Cys	Tyr	Phe	Thr	
		50				55				60							
	Asn	Gly	Thr	Gln	Arg	Ile	Arg	Ser	Val	Asp	Arg	Tyr	Ile	Tyr	Asn	Arg	
		65				70				75					80		
10	Glu	Glu	Tyr	Leu	Arg	Phe	Asp	Ser	Asp	Val	Gly	Glu	Tyr	Arg	Ala	Val	
					85					90					95		
	Thr	Glu	Leu	Gly	Arg	Pro	Asp	Pro	Glu	Tyr	Tyr	Asn	Lys	Gln	Tyr	Leu	
					100				105				110				
15	Glu	Gln	Thr	Arg	Ala	Glu	Leu	Asp	Thr	Val	Cys	Arg	His	Asn	Tyr	Glu	
					115			120				125					
20	Gly	Val	Glu	Thr	His	Thr	Ser	Leu	Arg	Arg	Leu	Gly	Gly	Gly	Ser		
		130				135			140								
	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Gly	Ser	Gly		
		145				150			155				160				
25	Gly	Gly	Gly	Ser	Glu	Asp	Asp	Ile	Glu	Ala	Asp	His	Val	Gly	Val	Tyr	
					165				170				175				
	Gly	Thr	Thr	Val	Tyr	Gln	Ser	Pro	Gly	Asp	Ile	Gly	Gln	Tyr	Thr	His	
					180			185				190					
30	Glu	Phe	Asp	Gly	Asp	Glu	Trp	Phe	Tyr	Val	Asp	Leu	Asp	Lys	Lys	Glu	
					195			200				205					
	Thr	Ile	Trp	Met	Leu	Pro	Glu	Phe	Gly	Gln	Leu	Thr	Ser	Phe	Asp	Pro	
					210			215			220						
35	Gln	Gly	Gly	Leu	Gln	Asn	Ile	Ala	Thr	Gly	Lys	Tyr	Thr	Leu	Gly	Ile	
					225			230			235			240			
40	Leu	Thr	Lys	Arg	Ser	Asn	Ser	Thr	Pro	Ala	Thr	Asn					
					245				250								
45	<210>	pCB229															
	<211>	354															
	<212>	PRT															
	<213>	Murine															
50	<400>	18															
	Met	Ala	Leu	Gln	Ile	Pro	Ser	Leu	Leu	Ser	Ala	Ala	Val	Val	Val		
					5				10				15				
	Leu	Met	Val	Leu	Ser	Ser	Pro	Gly	Thr	Glu	Gly	Phe	Lys	Asn	Ile	Val	
					20			25				30					
55	Thr	Pro	Arg	Thr	Pro	Pro	Pro	Ala	Ser	Gly	Gly	Gly	Ser	Gly	Gly		
					35			40			45						
	Gly	Gly	Asp	Ser	Glu	Arg	His	Phe	Val	Phe	Gln	Phe	Lys	Gly	Glu	Cys	

122

50	55	60	
Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile			
65	70	75	80
5 Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr			
85	90	95	
10 Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys			
100	105	110	
Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His			
115	120	125	
15 Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln			
130	135	140	
Pro Asn Val Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His			
145	150	155	160
20 Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys			
165	170	175	
25 Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser			
180	185	190	
Thr Gln Leu Ile Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met			
195	200	205	
30 Leu Glu Met Thr Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu			
210	215	220	
His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Arg Ala Gln Ser			
225	230	235	240
35 Glu Ser Ala Arg Ser Gly Ser Ala Asp Ala Ala Pro Thr Val Ser Ile			
245	250	255	
40 Phe Pro Pro Ser Ser Glu Gln Leu Thr Ser Gly Gly Ala Ser Val Val			
260	265	270	
Cys Phe Leu Asn Asn Phe Tyr Pro Lys Asp Ile Asn Val Lys Trp Lys			
275	280	285	
45 Ile Asp Gly Ser Glu Arg Gln Asn Gly Val Leu Asn Ser Trp Thr Asp			
290	295	300	
50 Gln Asp Ser Lys Asp Ser Thr Tyr Ser Met Ser Ser Thr Leu Thr Leu			
305	310	315	320
Thr Lys Asp Glu Tyr Glu Arg His Asn Ser Tyr Thr Cys Glu Ala Thr			
325	330	335	
55 His Lys Thr Ser Thr Ser Pro Ile Val Lys Ser Phe Asn Arg Asn Glu			
340	345	350	
Cys			

123

<210> p/cb223
 <211> 552
 <212> PRT
 5 <213> Murine

<400> 19
 Met Ala Leu Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val
 5 10 15

10 Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Glu Asp Asp Ile Glu
 20 25 30

Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly
 15 35 40 45

Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr
 50 55 60

20 Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly
 65 70 75 80

Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr
 85 90 95

25 Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro
 100 105 110

Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val
 30 115 120 125

Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe
 130 135 140

35 Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr
 145 150 155 160

Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe
 165 170 175

40 His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Asp Ile Tyr
 180 185 190

Asp Cys Lys Val Glu His Trp Gly Leu Glu Glu Pro Val Leu Lys His
 45 195 200 205

Trp Glu Pro Glu Ile Pro Ala Pro Met Ser Glu Gly Ser Ala Lys Thr
 210 215 220

50 Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr
 225 230 235 240

Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu
 245 250 255

55 Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His
 260 265 270

Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser

	124			
	275	280	285	
	Val Thr Val Thr Ser Ser	Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn		
	290	295	300	
5	Val Ala His Pro Ala Ser Ser	Thr Lys Val Asp Lys Lys Ile Glu Pro		
	305	310	320	
10	Arg Gly Pro Thr Ile Lys Pro Cys Pro	Pro Cys Lys Cys Pro Ala Pro		
	325	330	335	
	Asn Leu Leu Gly Gly Pro Ser Val Phe Ile Phe Pro Pro	Lys Ile Lys		
	340	345	350	
15	Asp Val Leu Met Ile Ser Leu Ser Pro Ile Val Thr Cys	Val Val Val		
	355	360	365	
	Asp Val Ser Glu Asp Asp Pro Asp Val Gln Ile Ser Trp Phe Val Asn			
	370	375	380	
20	Asn Val Glu Val His Thr Ala Gln Thr Gln Thr His Arg Glu Asp Tyr			
	385	390	395	400
25	Asn Ser Thr Leu Arg Val Val Ser Ala Leu Pro Ile Gln His Gln Asp			
	405	410	415	
	Trp Met Ser Gly Lys Glu Phe Lys Cys Lys Val Asn Asn Lys Asp Leu			
	420	425	430	
30	Pro Ala Pro Ile Glu Arg Thr Ile Ser Lys Pro Lys Gly Ser Val Arg			
	435	440	445	
	Ala Pro Gln Val Tyr Val Leu Pro Pro Pro Glu Glu Met Thr Lys			
	450	455	460	
35	Lys Gln Val Thr Leu Thr Cys Met Val Thr Asp Phe Met Pro Glu Asp			
	465	470	475	480
40	Ile Tyr Val Glu Trp Thr Asn Asn Gly Lys Thr Glu Leu Asn Tyr Lys			
	485	490	495	
	Asn Thr Glu Pro Val Leu Asp Ser Asp Gly Ser Tyr Phe Met Tyr Ser			
	500	505	510	
45	Lys Leu Arg Val Glu Lys Lys Asn Trp Val Glu Arg Asn Ser Tyr Ser			
	515	520	525	
	Cys Ser Val Val His Glu Gly Leu His Asn His His Thr Thr Lys Ser			
	530	535	540	
50	Phe Ser Arg Thr Pro Gly Lys			
	545	550		
55	<210> pCB212			
	<211> 331			
	<212> PRT			
	<213> Murine			

125

<400> 20
Met Ala Leu Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val
5 10 15

5 Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Glu Asp Asp Ile Glu
20 25 30

Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser Pro Gly
35 40 45

10 Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp Phe Tyr
50 55 60

15 Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu Phe Gly
65 70 75 80

Gln Leu Thr Ser Phe Asp Pro Gln Gly Gly Leu Gln Asn Ile Ala Thr
85 90 95

20 Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser Thr Pro
100 105 110

Ala Thr Asn Glu Ala Pro Gln Ala Thr Val Phe Pro Lys Ser Pro Val
115 120 125

25 Leu Leu Gly Gln Pro Asn Thr Leu Ile Cys Phe Val Asp Asn Ile Phe
130 135 140

30 Pro Pro Val Ile Asn Ile Thr Trp Leu Arg Asn Ser Lys Ser Val Thr
145 150 155 160

Asp Gly Val Tyr Glu Thr Ser Phe Leu Val Asn Arg Asp His Ser Phe
165 170 175

35 His Lys Leu Ser Tyr Leu Thr Phe Ile Pro Ser Asp Asp Ile Tyr
180 185 190

Asp Cys Lys Val Glu His Trp Gly Leu Glu Pro Val Leu Lys His
195 200 205

40 Trp Glu Pro Glu Ile Pro Ala Pro Met Ser Glu Gly Ser Ala Lys Thr
210 215 220

45 Thr Ala Pro Ser Val Tyr Pro Leu Ala Pro Val Cys Gly Asp Thr Thr
225 230 235 240

Gly Ser Ser Val Thr Leu Gly Cys Leu Val Lys Gly Tyr Phe Pro Glu
245 250 255

50 Pro Val Thr Leu Thr Trp Asn Ser Gly Ser Leu Ser Ser Gly Val His
260 265 270

Thr Phe Pro Ala Val Leu Gln Ser Asp Leu Tyr Thr Leu Ser Ser Ser
275 280 285

55 Val Thr Val Thr Ser Ser Thr Trp Pro Ser Gln Ser Ile Thr Cys Asn
290 295 300

Val Ala His Pro Ala Ser Ser Thr Lys Val Asp Lys Lys Ile Glu Pro

	126		
	305	310	315
	Arg Gly Pro Thr Ile Lys Pro Cys Ala Ala		
	325	330	
5			
	<210> pCB214		
	<211> 234		
	<212> PRT		
10	<213> Murine		
	<400> 21		
	Met Phe Lys Asn Ile Val Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly		
	5	10	15
15	Gly Gly Gly Ser Gly Gly Asp Ser Glu Arg His Phe Val Phe		
	20	25	30
	Gln Phe Lys Gly Glu Cys Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg		
20	35	40	45
	Ser Val Asp Arg Tyr Ile Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp		
	50	55	60
25	Ser Asp Val Gly Glu Tyr Arg Ala Val Thr Glu Leu Gly Arg Pro Asp		
	65	70	75
	Pro Glu Tyr Tyr Asn Lys Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu		
	85	90	95
30	Asp Thr Val Cys Arg His Asn Tyr Glu Gly Val Glu Thr His Thr Ser		
	100	105	110
	Leu Arg Arg Leu Gly Gly Ser Gly Gly Ser Gly Gly		
35	115	120	125
	Gly Gly Ser Gly Gly Ser Gly Gly Ser Glu Asp Asp		
	130	135	140
40	Ile Glu Ala Asp His Val Gly Val Tyr Gly Thr Thr Val Tyr Gln Ser		
	145	150	155
	Pro Gly Asp Ile Gly Gln Tyr Thr His Glu Phe Asp Gly Asp Glu Trp		
	165	170	175
45	Phe Tyr Val Asp Leu Asp Lys Lys Glu Thr Ile Trp Met Leu Pro Glu		
	180	185	190
	Phe Gly Gln Leu Thr Ser Phe Asp Pro Gln Gly Leu Gln Asn Ile		
50	195	200	205
	Ala Thr Gly Lys Tyr Thr Leu Gly Ile Leu Thr Lys Arg Ser Asn Ser		
	210	215	220
55	Thr Pro Ala Thr Asn Gly Thr Gly Ser		
	225		
	<210> pCB220		

127

<211> 560
 <212> PRT
 <213> Murine

5 <400> 22
 Met Ala Leu Gln Ile Pro Ser Leu Leu Leu Ser Ala Ala Val Val Val
 5 10 15

10 Leu Met Val Leu Ser Ser Pro Gly Thr Glu Gly Phe Lys Asn Ile Val
 20 25 30

15 Thr Pro Arg Thr Pro Pro Pro Ala Ser Gly Gly Gly Ser Gly Gly
 35 40 45

20 15 Gly Gly Asp Ser Glu Arg His Phe Val Phe Gln Phe Lys Gly Glu Cys
 50 55 60

25 Tyr Phe Thr Asn Gly Thr Gln Arg Ile Arg Ser Val Asp Arg Tyr Ile
 65 70 75 80

30 20 Tyr Asn Arg Glu Glu Tyr Leu Arg Phe Asp Ser Asp Val Gly Glu Tyr
 85 90 95

35 25 Arg Ala Val Thr Glu Leu Gly Arg Pro Asp Pro Glu Tyr Tyr Asn Lys
 100 105 110

40 30 Gln Tyr Leu Glu Gln Thr Arg Ala Glu Leu Asp Thr Val Cys Arg His
 115 120 125

45 35 Asn Tyr Glu Gly Val Glu Thr His Thr Ser Leu Arg Arg Leu Glu Gln
 130 135 140

50 40 Pro Asn Val Val Ile Ser Leu Ser Arg Thr Glu Ala Leu Asn His His
 145 150 155 160

55 45 Asn Thr Leu Val Cys Ser Val Thr Asp Phe Tyr Pro Ala Lys Ile Lys
 165 170 175

60 50 Val Arg Trp Phe Arg Asn Gly Gln Glu Glu Thr Val Gly Val Ser Ser
 180 185 190

65 55 Thr Gln Leu Ile Arg Asn Gly Asp Trp Thr Phe Gln Val Leu Val Met
 195 200 205

70 60 45 Leu Glu Met Thr Pro Arg Arg Gly Glu Val Tyr Thr Cys His Val Glu
 210 215 220

75 65 His Pro Ser Leu Lys Ser Pro Ile Thr Val Glu Trp Thr Ser Gly Gly
 225 230 235 240

80 70 55 Gly Gly Ser Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Gly
 245 250 255

85 75 60 Gly Ser Ser Ser Glu Asp Asp Ile Glu Ala Asp His Val Gly Val Tyr
 260 265 270

90 80 55 Gly Thr Thr Val Tyr Gln Ser Pro Gly Asp Ile Gly Gln Tyr Thr His
 275 280 285

128

	Glu	Phe	Asp	Gly	Asp	Glu	Trp	Phe	Tyr	Val	Asp	Leu	Asp	Lys	Lys	Glu
	290					295						300				
5	Thr	Ile	Trp	Met	Leu	Pro	Glu	Phe	Gly	Gln	Leu	Thr	Ser	Phe	Asp	Pro
	305				310					315				320		
	Gln	Gly	Gly	Leu	Gln	Asn	Ile	Ala	Thr	Gly	Lys	Tyr	Thr	Leu	Gly	Ile
					325					330				335		
10	Leu	Thr	Lys	Arg	Ser	Asn	Ser	Thr	Pro	Ala	Thr	Asn	Glu	Ala	Pro	Gln
						340			345				350			
	Ala	Thr	Val	Phe	Pro	Lys	Ser	Pro	Val	Leu	Leu	Gly	Gln	Pro	Asn	Thr
						355			360				365			
15	Leu	Ile	Cys	Phe	Val	Asp	Asn	Ile	Phe	Pro	Pro	Val	Ile	Asn	Ile	Thr
						370			375				380			
20	Trp	Leu	Arg	Asn	Ser	Lys	Ser	Val	Thr	Asp	Gly	Val	Tyr	Glu	Thr	Ser
						385			390				395		400	
	Phe	Leu	Val	Asn	Arg	Asp	His	Ser	Phe	His	Lys	Leu	Ser	Tyr	Leu	Thr
						405				410				415		
25	Phe	Ile	Pro	Ser	Asp	Asp	Ile	Tyr	Asp	Cys	Lys	Val	Glu	His	Trp	
						420			425				430			
	Gly	Leu	Glu	Glu	Pro	Val	Leu	Lys	His	Trp	Ala	Ser	Gly	Gly	Gly	
						435			440				445			
30	Ser	Gly	Gly	Gly	Ala	Asp	Ala	Ala	Pro	Thr	Val	Ser	Ile	Phe	Pro	
						450			455				460			
	Pro	Ser	Ser	Glu	Gln	Leu	Thr	Ser	Gly	Gly	Ala	Ser	Val	Val	Cys	Phe
35						465			470				475		480	
	Leu	Asn	Asn	Phe	Tyr	Pro	Lys	Asp	Ile	Asn	Val	Lys	Trp	Lys	Ile	Asp
						485				490				495		
40	Gly	Ser	Glu	Arg	Gln	Asn	Gly	Val	Leu	Asn	Ser	Trp	Thr	Asp	Gln	Asp
						500			505				510			
	Ser	Lys	Asp	Ser	Thr	Tyr	Ser	Met	Ser	Ser	Thr	Leu	Thr	Leu	Thr	Lys
						515			520				525			
45	Asp	Glu	Tyr	Glu	Arg	His	Asn	Ser	Tyr	Thr	Cys	Glu	Ala	Thr	His	Lys
						530			535				540			
50	Thr	Ser	Thr	Ser	Pro	Ile	Val	Lys	Ser	Phe	Asn	Arg	Asn	Glu	Cys	
						545			550				555			

WHAT IS CLAIMED IS:

- 1 1. A multimeric complex comprising a first recombinant single chain
2 MHC class II molecule and a second recombinant single chain MHC class II molecule,
3 wherein the first and the second single chain MHC class II molecule each comprise an $\alpha 1$
4 domain and a $\beta 1$ domain linked via an amino acid linker and a multimerization domain,
5 and wherein the first and the second single chain MHC class II molecule are linked via
6 the multimerization domain to form a multimeric complex.

- 1 2. The multimeric complex of claim 1, wherein the first and the
2 second single chain MHC class II molecules are each linked to an antigenic peptide via an
3 amino acid linker.

- 1 3. The multimeric complex of claim 2, wherein the peptides are the
2 same.

- 1 4. The multimeric complex of claim 2, wherein the peptides are from
2 the same antigen.

- 1 5. The multimeric complex of claim 2, wherein the peptides are from
2 different antigens.

- 1 6. The multimeric complex of claim 2, wherein the peptides are
2 selected from the group consisting of MBP83-102Y83, PLP 40-60, PLP 89-106, PLP 95-
3 117, and PLP 185-206.

- 1 7. The multimeric complex of claim 1, wherein the first and the
2 second MHC class II molecules are from the same MHC class II allele.

- 1 8. The multimeric complex of claim 1, wherein the first and the
2 second MHC class II molecules are from different MHC class II alleles.

- 1 9. The multimeric complex of claim 7 or 8, wherein the alleles are
2 selected from the group consisting of DRB1*1501 and DRB5*0101.

1 10. The multimeric complex of claim 7 or 8, wherein the first and the
2 second single chain MHC class II molecules are each linked to an antigenic peptide via an
3 amino acid linker.

1 11. The multimeric complex of claim 10, wherein the peptides are the
2 same.

1 12. The multimeric complex of claim 10, wherein the peptides are
2 from the same antigen.

1 13. The multimeric complex of claim 10, wherein the peptides are
2 from different antigens.

1 14. The multimeric complex of claim 10, wherein the peptides are
2 selected from the group consisting of MBP83-102Y83, PLP 40-60, PLP 89-106, PLP 95-
3 117, and PLP 185-206.

1 15. The multimeric complex of claim 1, wherein the first and second
2 MHC class II molecules are from a human.

1 16. The multimeric complex of claim 1, wherein the multimerization
2 domains are covalently linked.

1 17. The multimeric complex of claim 1, wherein the multimerization
2 domains are non-covalently linked.

1 18. The multimeric complex of claim 1, wherein the multimerization
2 domain is a leucine zipper domain.

1 19. The multimeric complex of claim 1, wherein the multimerization
2 domain is an immunoglobulin domain.

1 20. The multimeric complex of claim 19, wherein the immunoglobulin
2 domain is a light chain constant domain or a heavy chain constant domain.

1 21. The multimeric complex of claim 1, wherein the first or the second
2 MHC class II molecule is selected from the group consisting of I-As MBP. β 1 β 2 α 1 α 2.C κ ,
3 I-As MBP. β 1 β 2 α 1 α 2.CH1.H, I-As MBP. β 1 β 2 α 1 α 2.CH1.H.CH2, and I-As
4 MBP. β 1 β 2 α 1 α 2.CH1.H.CH2.CH3.

1 22. The multimeric complex of claim 1, further comprising a third and
2 a fourth MHC class II molecule, wherein the third and the fourth MHC class II molecule
3 each comprise an α 1 domain and a β 1 domain linked via an amino acid linker and a
4 multimerization domain, and wherein the first, second, third and fourth single chain MHC
5 class II molecules are linked via the multimerization domain to form a multimeric
6 complex.

1 23. The multimeric complex of claim 1, wherein the first and the
2 second MHC class II molecules comprise β 1 β 2 domains and α 1 α 2 domains linked via an
3 amino acid linker.

1 24. The multimeric complex of claim 1 or 2, wherein the linker is
2 selected from the group consisting of GG, GGGG, GGGGS, GGGSG, ASGGGSGGG,
3 TSGGGGSGGGSSS, GSPGGGGSGGGPGS, GSPPGGPPGS, GSPGGGGPGS,
4 TSGGGGS, SGGSGGS, FDAPSPLP, and VYPEVTV.

1 25. The multimeric complex of claim 1 or 2, wherein the linker is from
2 a CD4 molecule.

1 26. The multimeric complex of claim 25, wherein the linker is selected
2 from the group consisting of RNGQEEKAGVVSTGLI, RNGQETKAGVVSTGLI,
3 YNQQEEKAGGVSTGLI, FRNGQEEKAGVVSTGLI, FRNGQETKAGVVSTGLI,
4 FYNQQEEKAGGVSTGLI, and LNGQEEKAGMVSTGLI.

1 27. The multimeric complex of claim 1, wherein the first or the second
2 MHC class II molecule is selected from the group consisting of CO523, CO543, CO563,
3 CO567, CO580, CO581, CO582, CO583, CO584, CO585, CO586, CO587, CO588,
4 CO589, CO590, CO591, CO592, CO593, CO594, CO595, CO596, CO597, and CO608.

1 28. The multimeric complex of claim 1, wherein the first and the
2 second MHC class II molecule are independently selected from the group consisting of
3 CO523, CO543, CO563, CO567, CO580, CO581, CO582, CO583, CO584, CO585,
4 CO586, CO587, CO588, CO589, CO590, CO591, CO592, CO593, CO594, CO595,
5 CO596, CO597, and CO608.

1 29. The multimeric complex of claim 1, wherein the first MHC class II
2 or the second MHC class II molecule is encoded by a nucleic acid that codons optimized
3 for prokaryotic expression.

1 30. The multimeric complex of claim 29, wherein the prokaryote is *E.*
2 *coli*.

1 31. The multimeric complex of claim 29, wherein the nucleic acid
2 encoding the first or the second MHC class II molecule is selected from the group
3 consisting of CO528-AC and CO608-AC.

1 32. A pharmaceutical composition comprising the multimeric complex
2 of claim 2.

1 33. The pharmaceutical composition of claim 32, further comprising an
2 adjuvant.

1 34. A method of treating autoimmune disease in a subject, the method
2 comprising administering an immunogenically effective amount of a pharmaceutical
3 composition comprising the multimeric complex of claim 2.

1 35. The method of claim 34, wherein the subject is a human.

1 36. A recombinant nucleic acid encoding a single chain MHC class II
2 molecule comprising an α 1 domain and a β 1 domain linked via an amino acid linker,
3 wherein the linker is selected from the group consisting of GG, GGGG, GGGGS,
4 GGGSG, ASGGGSAGGG, TSAGGGSGGGSSS, GSPAGGGSGGGPGS,
5 GSPPGGPPGS, GSPGGGGPGS, TSAGGGGS, SGGSGGS, FDAPSPLP, and VYPEVTV.

1 37. The nucleic acid of claim 36, wherein the MHC class II molecule is
2 selected from the group consisting of CO523, CO543, CO563, CO567, CO580, CO581,
3 CO582, CO583, CO584, CO585, CO586, CO587, CO588, CO589, CO590, CO591,
4 CO592, CO593, CO594, CO595, CO596, CO597, and CO608.

1 38. A recombinant nucleic acid encoding a single chain MHC class II
2 molecule comprising an α_1 domain and a β_1 domain linked via an amino acid linker,
3 wherein the linker is from a CD4 molecule.

1 39. The nucleic acid of claim 38, wherein the linker is selected from
2 the group consisting of RNGQEEKAGVVSTGLI, RNGQETKAGVVSTGLI,
3 YNQQEEKAGGVSTGLI, FRNGQEEKAGVVSTGLI, FRNGQETKAGVVSTGLI,
4 FYNQEEKAGGVSTGLI, and LNGQEEKAGMVSTGLI.

1 40. A recombinant nucleic acid encoding a single chain MHC class II
2 molecule selected from the group consisting of CO528-AC and CO608-AC.

1 41. A recombinant nucleic acid encoding a single chain MHC class II
2 molecule selected from the group consisting I-As MBP. $\beta_1\beta_2\alpha_1\alpha_2.C\kappa$, I-As
3 MBP. $\beta_1\beta_2\alpha_1\alpha_2.CH1.H$, I-As MBP. $\beta_1\beta_2\alpha_1\alpha_2.CH1.H.CH2$, and I-As
4 MBP. $\beta_1\beta_2\alpha_1\alpha_2.CH1.H.CH2.CH3$.

1 42. A recombinant nucleic acid encoding a single chain MHC class II
2 molecule selected from the group consisting CO523, CO543, CO563, CO567, CO580,
3 CO581, CO582, CO583, CO584, CO585, CO586, CO587, CO588, CO589, CO590,
4 CO591, CO592, CO593, CO594, CO595, CO596, CO597, and CO608.

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

The segmentation of MOC peptide complex and V peptide complex is shown in Fig. 7, in which three complexes of MOC peptide complex and V peptide complex are combined with the appropriate labels of each individual peptide complex found in vivo.

Figure 8

Effect of different recombinant MHC class II molecules on the development of EAE (day +60)

EAE induction Day 0 & 7	Treatment Day 1,4, 7 & 11 10 ug/injection i.v.	Incidence of disease (%)
Myelin 2 mg/mouse in CFA s.c.	none	12/16 (75%)
Myelin 2 mg/mouse in CFA s.c.	Monomer	2/12 (16%)
Myelin 2 mg/mouse in CFA s.c.	Dimer	2/6 (33%)
Myelin 2 mg/mouse in CFA s.c.	Tetramer	3/14 (21%)
Myelin 2 mg/mouse in CFA s.c.	Monomer Pool	2/16 (12%)
Myelin 2 mg/mouse in CFA s.c.	Half Anergix	2/16 (12%)
Myelin 2 mg/mouse in CFA s.c.	I-As peptide	9/16 (56%)
Myelin 2 mg/mouse in CFA s.c.	Empty Half Anergix	10/16 (62%)

I-A^SMBP Molecules

Recombinant

Figure 10

Figure 11

Amino Acid sequence alignment of CO608 based LAS.MIBP half Appendix

Native IAS beta 1.PRO	M G S E R F K N I V T P R T P P A S G G G S G G G - G D S E R H F V P Q F K G	13
mCO608 .PRO	M G S E R F K N I V T P R T P P A S G G G S G G G - H F V P Q F K G	35
mCO608 A .pro	M G S E R F K N I V T P R T P P A S G G G S G G G - H F V P Q F K G	35
mCO608 B.pro	M G S E R F K N I V T P R T P P A S G G G S G G G - H F V P Q F K G	31
pcRC197.pro	M G S E R F K N I V T P R T P P A S G G G S G G G - S E R H F V P Q F K G	35
pcRC199.pro	M G S E R F K N I V T P R T P P A S G G G S G G G - D S E R H F V P Q F K G	36
Native IAS beta 1.PRO	E C Y F T N G T Q R I R S V D R Y I Y N R E E Y L R F D S D V G E Y R A V T E L	53
mCO608 .PRO	E C Y F T N G T Q R I R S V D R Y I Y N R E E Y L R F D S D V G E Y R A V T E L	75
mCO608 A .pro	E C Y F T N G T Q R I R S V D R Y I Y N R E E Y L R F D S D V G E Y R A V T E L	71
mCO608 B.pro	E C Y F T N G T Q R I R S V D R Y I Y N R E E Y L R F D S D V G E Y R A V T E L	75
pcRC197.pro	E C Y F T N G T Q R I R S V D R Y I Y N R E E Y L R F D S D V G E Y R A V T E L	76
pcRC199.pro	E C Y F T N G T Q R I R S V D R Y I Y N R E E Y L R F D S D V G E Y R A V T E L	76
Native IAS beta 1.PRO	G R P D P E Y Y N K Q Y L E Q T R A E L D T V C R H N Y E G V E T H T S L R R -	92
mCO608 .PRO	G R P D P E Y Y N K Q Y L E Q T R A E L D T V C R H N Y E G V E T H T S L R R L	115
mCO608 A .pro	G R P D P E Y Y N K Q Y L E Q T R A E L D T V C R H N Y E G V E T H T S L R R L	115
mCO608 B.pro	G R P D P E Y Y N K Q Y L E Q T R A E L D T V C R H N Y E G V E T H T S L R R L	111
pcRC197.pro	G R P D P E Y Y N K Q Y L E Q T R A E L D T V C R H N Y E G V E T H T S L R R L	115
pcRC199.pro	G R P D P E Y Y N K Q Y L E Q T R A E L D T V C R H N Y E G V E T H T S L R R L	116
Native IAS beta 1.PRO	T S G G G G S E D D I E A D H V G V Y G T T V Y Q S P G D I G Q Y T H H F D G D	92
mCO608 .PRO	T S G G G G S E D D I E A D H V G V Y G T T V Y Q S P G D I G Q Y T H H F D G D	155
mCO608 A .pro	T S G G G G S E D D I E A D H V G V Y G T T V Y Q S P G D I G Q Y T H H F D G D	151
mCO608 B.pro	T S G G G G S E D D I E A D H V G V Y G T T V Y Q S P G D I G Q Y T H H F D G D	155
pcRC197.pro	T S G G G G S E D D I E A D H V G V Y G T T V Y Q S P G D I G Q Y T H H F D G D	156
pcRC199.pro	T S G G G G S E D D I E A D H V G V Y G T T V Y Q S P G D I G Q Y T H H F D G D	156
Native IAS beta 1.PRO	- - - - -	92
mCO608 .PRO	E W F Y V D L D K K E T I W M L P E F G Q L T S F D P Q G G L Q N I A T G K Y T	195
mCO608 A .pro	E W F Y V D L D K K E T I W M L P E F G Q L T S F D P Q G G L Q N I A T G K Y T	191
mCO608 B.pro	E W F Y V D L D K K E T I W M L P E F G Q L T S F D P Q G G L Q N I A T G K Y T	195
pcRC197.pro	E W F Y V D L D K K E T I W M L P E F G Q L T S F D P Q G G L Q N I A T G K Y T	196
pcRC199.pro	E W F Y V D L D K K E T I W M L P E F G Q L T S F D P Q G G L Q N I A T G K Y T	196
Native IAS beta 1.PRO	- - - - -	93
mCO608 .PRO	L G I L T K R S N S T P A T N - L	211
mCO608 A .pro	L G I L T K R S N S T P A T N - L	207
mCO608 B.pro	L G I L T K R S N S T P A T N - L	211
pcRC197.pro	L G I L T K R S N S T P A T N - H H H H H .	212
pcRC199.pro	L G I L T K R S N S T P A T N - L	218

Figure 12

Amino Acid sequence alignment of C0561 based IAs.MIBP half Anergix

Inte al application No.
PCT/US01/09616

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : A61K 35/28

US CL : 514/8, 903; 530/395, 402, 403; 424/88

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 514/8, 903; 530/395, 402, 403; 424/88

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAPLUS EMBASE BIOSIS MEDLINE WEST

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 5,194,425 A (SHARMA et al.) 16 March 1993, entire patent	1-42
Y	US 5,284,935 A (CLARK et al.) 08 February 1994, entire patent	1-42
Y	US 6,015,884 A (SCHNECK et al.) 18 January 2000, entire patent	1-20

Further documents are listed in the continuation of Box C. See patent family annex.

A	Special categories of cited documents:	*T*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E	document defining the general state of the art which is not considered to be of particular relevance	*X*	document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
I	earlier document published on or after the international filing date	*Y*	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	*Z*	document member of the same patent family
P	document referring to an oral disclosure, use, exhibition or other means		
	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 16 JULY 2001	Date of mailing of the international search report 05 SEP 2001
---	---

Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230	Authorized officer AMY DECLoux Telephone No. (703) 308-0196
---	---

