On Out-of-distribution Detection with Energy-based Models

Sven Elflein, Bertrand Charpentier, Daniel Zügner, Stephan Günnemann

Project page: https://www.daml.in.tum.de/ood-ebm/

TL;DR

- EBMs do **not** strictly outperform Normalizing Flows across multiple training methods.
- Semantic features induced by supervision improves OOD detection in recent discriminative EBMs [2].
- Architectural modifications can also be used to improve OOD detection with EBMs.

WHAT IS AN ENERGY-BASED MODEL?

EBM defines a probability distribution over the data $\mathbf{x} \in \mathbb{R}^D$ through the energy function E_{θ}

$$p_{\theta}(\mathbf{x}) = \frac{\exp(-E_{\theta}(\mathbf{x}))}{Z(\theta)} \tag{1}$$

where $Z(\theta) = \int \exp(-E_{\theta}(\mathbf{x})) d\mathbf{x}$ is the normalizing constant.

Properties:

- ✓ Flexible transformations
- X Exact density evaluation
- Dimensionality reduction
- X No direct maximum likelihood training

WHY STUDY EBMS FOR OOD DETECTION?

- Recent research on density estimation focuses on exact likelihood methods.
- Findings of superior OOD detection performance of EBMs without analysis in JEMs [2].
- \rightarrow Hypotheses for better OOD detection vs. Normalizing Flows:

	Normalizing Flows	EBM
Dimensionality reduction	Operate in \mathbb{R}^D	$E_{\theta}: \mathbb{R}^D \mapsto \mathbb{R}$
Supervision	Not considered	Used in JEM [2]

HOW TO TRAIN AN EBM?

Since maximum likelihood training is not possible, we consider three different approaches: Sliced score matching (SSM) [4]. Efficient update formula based on random projection

$$\mathbb{E}_{p_v} \mathbb{E}_{p(x)} \left[v^T \nabla_x s_\theta(x) v + \frac{1}{2} \|s_\theta(x)\|_2^2 \right]$$

where $s_{\theta}(x) = \nabla_x p_{\theta}(x)$ and $v \sim p_v$ is a simple distribution of random vectors.

Contrastive divergence (CD) [3]. Approximation of the gradient of the maximum likelihood objective by

$$\nabla_{\theta} p_{\theta}(x) = \mathbb{E}_{p_{\theta}(x')} \left[\nabla_{\theta} E_{\theta}(x') \right] - \nabla_{\theta} E_{\theta}(x)$$

VERA [1]. Learn the parameters ϕ of a auxiliary distribution q_{ϕ} as the optimum of

$$\log Z(\theta) = \max_{q_{\phi}} \mathbb{E}_{q_{\phi}(x)} \left[f_{\theta}(x) \right] + H(q_{\phi})$$

which can be plugged into 1 to obtain an alternative method for training EBMs with a variational approximation to estimate the entropy term $H(q_{\phi})$.

EXPERIMENTS & RESULTS

Differentiation of natural and non-natural dataset.

Natural OOD: Requires learning semantic features to differentiate, e.g., images of classes not in training set.

Non-natural OOD: Requires detection farther from the training data manifold, e.g., noise, OODomain

Are EBMs better than Normalizing Flows?

EBMs do not consistently outperform Normalizing Flows across different training methods (Improvements: CD 11.9%, VERA 4.3%, SSM - 4.3%)

→ Dimensionality reduction is not significant

Does supervision improve OOD detection?

Use Joint Energy model (JEM) which incorporates supervision through cross-entropy objective.

Model	ID dataset	Natural	Non-natural
CD	CIFAR-10	-10.82	-9.11
	FMNIST	47.17	3.24
	Segment	1.85	0.89
	Sensorless	29.72	-0.02
SSM	CIFAR-10	7.33	-27.94
	FMNIST	50.61	-20.26
	Segment	25.89	-21.94
	Sensorless	22.13	-40.73
VERA	CIFAR-10	-1.16	-3.00
	FMNIST	33.66	-15.53
	Segment	4.98	-0.57
	Sensorless	97.93	0.07

% improvement in AUC-PR

- Supervision improves some results significantly on *natural* OOD datasets, but degrade on non-natural datasets.
- Investigation shows: Weighting parameter of cross-entropy loss γ affects the density estimates far from training data
- → *Non-natural* data becomes harder to detect

Sidestepping tuning of γ

Intoduce supervision indirectly by training on embeddings obtained from classification model.

Model	ID dataset	Natural	Non-natural
CD	CIFAR-10	48.60	3.37
	FMNIST	95.79	-13.52
SSM	CIFAR-10	53.84	-2.31
	FMNIST	58.40	59.59
VERA	CIFAR-10	50.16	16.97
	FMNIST	15.12	1.80

% improvement in AUC-PR

- OOD detection significantly improves on *natural* and in cases on non-natural datasets
- Shows that vanilla EBMs struggle to extract high-level, semantic features

Can we encourage semantic features?

Introduce bottlenecks through 1×1 convolutions into the architecture.

Model	ID dataset	Natural	Non-natural
CD	CIFAR-10	20.18	20.38
	FMNIST	67.95	10.88
SSM	CIFAR-10	14.76	33.34
	FMNIST	1.75	-5.92
VERA	CIFAR-10	19.66	33.22
	FMNIST	26.84	32.94

% improvement in AUC-PR

- OOD detection improves consistently upon the baseline EBMs by learning higher-level features
- The difference in density assigned for low-level features to images increases significantly

No Bottleneck.

With Bottleneck.

REFERENCES

- [1] W. Grathwohl, J. Kelly, M. Hashemi, M. Norouzi, K. Swersky, and D. Duvenaud. No MCMC for me: Amortized sampling for fast and stable training of energy-based models. arXiv:2010.04230 [cs], Oct. 2020.
- [2] W. Grathwohl, K.-C. Wang, J.-H. Jacobsen, D. Duvenaud, M. Norouzi, and K. Swersky. Your Classifier is Secretly an Energy Based Model and You Should Treat it Like One. arXiv:1912.03263 [cs, stat], Sept. 2020.
- [3] G. E. Hinton. Training Products of Experts by Minimizing Contrastive Divergence. *Neural Computation*, 14(8):1771–1800, Aug. 2002.
- [4] Y. Song, S. Garg, J. Shi, and S. Ermon. Sliced Score Matching: A Scalable Approach to Density and Score Estimation. arXiv:1905.07088 [cs, stat], June 2019.