

## **Injury Prediction**

Shashank Guda Rithika Gurram Vishnu Charugundla Varshin Bhaskaran







### Agenda

- 1. Introduction
- 2. Data Overview
- 3. Exploratory Data Analysis (EDA)
- 4. Statistical Significance
- 5. Injury Risk Model
- 6. Risk Assessment
- 7. Key Takeaways & Recommendations





### Introduction

- Analyze injury risk in basketball players based on key performance metrics.
- Identify and assess risk factors contributing to injuries (e.g., muscle imbalances, performance metrics).
- Provide actionable insights for injury prevention strategies.





### **Data Overview**

- Dataset: 2604 records, 14 unique players.
- Date Range: January 1, 2023 December 30, 2023.
- Key Features:
  - O Performance metrics (e.g., distance, speed, jump load, heart rate).
  - Muscle imbalances (e.g., hamstring-to-quad ratio, calf imbalance).
  - Injury information (e.g., injury type, body part, recovery time).
- Missing Data: High percentage of missing values in injury-related columns.





### **Exploratory Data Analysis (EDA)**

- Injury Rate: 226 injuries (8.68% injury rate).
- Hamstring-to-Quad Ratio and Muscle Imbalances are significant predictors of injuries.
- Position Analysis: Guards appear to have higher injury risk based on risk scores.
- Injury Type: Muscle strains and tendonitis are most common injuries.





### **Injury Distribution by Position**



- The bar chart shows the distribution of injuries across different player positions: Guard, Center, and Forward.
- Guard positions have the highest number of injuries, followed by Center, and Forward with the least.







## **Top 10 Most Common Injury Types**



- The bar chart shows the top 10 most common injury types
- The most common injuries are Tendonitis and Strain, followed by Concussion, Sprain, and others.



# Key metrics distribution for injured vs non-injured players



**Distance\_mi:** The distribution of distance covered by injured and non-injured players appears to have some overlap, but non-injured players tend to have a wider range of values.

Speed\_max\_mph: There is a clear separation between injured and non-injured players, with non-injured players generally achieving higher speeds.

Heart\_Rate\_max\_bpm: The distribution of maximum heart rate shows a broader range for non-injured players, whereas injured players seem to have a more concentrated range.



# Key metrics distribution for injured vs non-injured players



TRIMP (Training Impulse): Noninjured players show a higher variance in TRIMP values compared to injured players, indicating a higher intensity or variation in their training sessions.

Accumulated\_Acceleration\_Load:
Injured players tend to have a
higher accumulated acceleration
load, which could be related to the
physical strain they experience
during play.

Jump\_Load\_J: Injured players have a more concentrated distribution of jump load, possibly suggesting they are more prone to injury due to higher exertion in jumps.



# Key metrics distribution for injured vs non-injured players



Hamstring\_To\_Quad\_Ratio: The distribution shows that the hamstring-to-quad ratio is generally higher for non-injured players, which could suggest a more balanced muscle strength ratio that may protect them from injury.





## **Injuries Over Time**





### **Correlation Analysis**



### **Strong Positive Correlations:**

The muscle imbalance percentages (Quad\_Imbalance\_Percent, HamstringImbalance\_Percent, Calf\_Imbalance\_Percent, Groin\_Imbalance\_Percent) are highly positively correlated with each other, showing a strong relationship (close to 1.0). This suggests that players with higher imbalances in one muscle group tend to have higher imbalances in others.

### **Injury-Related Insights:**

had\_injury shows a moderate negative correlation with performance metrics such as Speed\_max\_mph and Heart\_Rate\_max\_bpm, suggesting that injured players may exhibit lower performance in these areas. There is a weak correlation between had\_injury and the other performance-related metrics like Distance\_mi, TRIMP, and Jump\_Load\_J, suggesting that these metrics do not strongly predict injury status.

#### **Imbalance-Performance Relationship:**

The imbalance metrics (Quad\_Imbalance\_Percent, HamstringImbalance\_Percent, etc.) show some moderate correlations with performance metrics like Distance\_mi and Speed\_max\_mph, which could indicate that muscle imbalances may affect overall performance.



# Statistical Significance

- p-values show significant differences in Hamstring-to-Quad Ratio for injured vs. noninjured players.
- Other features like Speed, Distance, Heart Rate show no significant differences between injured and non-injured players.
- Key Insight: Muscle imbalance ratios are highly significant in injury prediction.



### **Injury Risk Model**

**Model**: Random Forest Classifier trained to predict injury risks.





### **Key Features:**

- Hamstring-to-Quad Ratio
- Quad and Calf Imbalances
- Position and Performance
   Metrics (e.g., speed, heart rate).



### **Injury Risk Model**

**Model**: Random Forest Classifier trained to predict injury risks.

| Model Perform | nance Metrio                                         | s:         |          |          |  |  |  |  |  |  |  |  |  |
|---------------|------------------------------------------------------|------------|----------|----------|--|--|--|--|--|--|--|--|--|
| Classificatio |                                                      |            |          |          |  |  |  |  |  |  |  |  |  |
|               | precision                                            | recall     | f1-score | support  |  |  |  |  |  |  |  |  |  |
|               |                                                      |            |          |          |  |  |  |  |  |  |  |  |  |
| 0             | 0.98                                                 |            |          |          |  |  |  |  |  |  |  |  |  |
| 1             | 0.31                                                 | 0.84       | 0.45     | 45       |  |  |  |  |  |  |  |  |  |
|               |                                                      |            | 0.00     | F24      |  |  |  |  |  |  |  |  |  |
| accuracy      |                                                      | 0.55       | 0.82     |          |  |  |  |  |  |  |  |  |  |
| _             | 0.64                                                 |            |          | 521      |  |  |  |  |  |  |  |  |  |
| weighted avg  | 0.92                                                 | 0.82       | 0.86     | 521      |  |  |  |  |  |  |  |  |  |
|               |                                                      |            |          |          |  |  |  |  |  |  |  |  |  |
| Adiustad Clas | Adjusted Classification Report (with threshold 0.3): |            |          |          |  |  |  |  |  |  |  |  |  |
| Aujusteu cias |                                                      | recall     |          |          |  |  |  |  |  |  |  |  |  |
|               | pi ecision                                           | recarr     | 11-30016 | зиррог с |  |  |  |  |  |  |  |  |  |
| Ø             | 1.00                                                 | 0.37       | 0.54     | 476      |  |  |  |  |  |  |  |  |  |
| 1             | 0.13                                                 | 1.00       | 0.23     | 45       |  |  |  |  |  |  |  |  |  |
|               |                                                      |            |          |          |  |  |  |  |  |  |  |  |  |
| accuracy      |                                                      |            | 0.42     | 521      |  |  |  |  |  |  |  |  |  |
| macro avg     | 0.57                                                 | 0.68       | 0.38     | 521      |  |  |  |  |  |  |  |  |  |
| weighted avg  | 0.92                                                 | 0.42       | 0.51     | 521      |  |  |  |  |  |  |  |  |  |
|               |                                                      |            |          |          |  |  |  |  |  |  |  |  |  |
|               |                                                      |            |          |          |  |  |  |  |  |  |  |  |  |
| ROC AUC Score | : 0.8979458                                          | 3450046685 |          |          |  |  |  |  |  |  |  |  |  |
|               |                                                      |            |          |          |  |  |  |  |  |  |  |  |  |



### **Metrics:**

- Precision for injured players: 0.32
- Recall for injured players: 0.98
- ROC AUC Score: 0.9







## Risk Assessment

Risk Assessment for Players



### **Risk Scores**

- Risk Scores assigned based on model predictions.
- Risk Levels: Very Low, Low, Moderate, High
- Example of High-Risk Players:
  - 1. Malik Robinson (Guard): Risk Score 0.76
  - 2. Brandon Mitchell (Guard): Risk Score 0.75
  - 3. Anthony Lopez (Center): Risk Score 0.72
- Risk Level Distribution: Mostly High and Moderate risks.





### **Risk Level Distribution by Position**



- Guards have higher average risk scores compared to Forwards and Centers.
- Guards tend to be at higher risk due to their performance metrics and muscle imbalances.



| Player_ID | Name             | Position | Risk_Score          | High_Risk | Risk_Level | Hamstring_To_Quad_Ratio | Quad_Imbalance | Calf_Imbalance |
|-----------|------------------|----------|---------------------|-----------|------------|-------------------------|----------------|----------------|
| 103       | Malik Robinson   | Guard    | 0.7614873272794657  | TRUE      | High       | 0.755814198             | 14.82441443    | 14.50325707    |
| 115       | Brandon Mitchell | Guard    | 0.7570655050122038  | TRUE      | High       | 1.153349615             | 3.715052264    | 3.918576225    |
| 114       | Julian Simmons   | Forward  | 0.7311497148524093  | TRUE      | High       | 0.633234294             | -1.67453351    | -2.119009024   |
| 112       | Anthony Lopez    | Center   | 0.7229757837977023  | TRUE      | High       | 0.895997304             | -10.25503063   | -10.40782022   |
| 105       | Noah Bradley     | Guard    | 0.7162885142190292  | TRUE      | High       | 0.697620809             | -3.696758443   | -2.828126327   |
| 104       | Isaiah Thompson  | Forward  | 0.6559937285633534  | TRUE      | High       | 0.627009989             | 0.181450254    | 0              |
| 107       | Cameron Howard   | Center   | 0.6342858069437868  | TRUE      | High       | 0.911572089             | 6.646572473    | 7.030502167    |
| 101       | Jordan Matthews  | Forward  | 0.6308905218885021  | TRUE      | High       | 0.610768283             | 5.481294557    | 5.409497408    |
| 110       | Kyle Saunders    | Forward  | 0.5411667652832344  | TRUE      | Moderate   | 0.571715554             | 5.459875813    | 5.55300358     |
| 109       | Miles Richardson | Center   | 0.5350797975330448  | TRUE      | Moderate   | 0.725251624             | 6.624618422    | 6.412319566    |
| 108       | Xavier Foster    | Guard    | 0.40637708821135166 | TRUE      | Moderate   | 1.035582025             | -8.842791857   | -8.757703979   |



## **High Risk Players**





### **Key Takeaways**

- Muscle Imbalances (especially Quad and Calf) are the most significant contributors to injury risk.
- Forwards & Guards are at higher risk compared to Forwards and Centers.
- Injury prevention strategies should focus on improving muscle balance, particularly in the hamstring-to-quad ratio.
- The Injury Risk Model is effective for identifying high-risk players, but further calibration and threshold adjustments can improve precision.



### **Final Insights**

Based on the results from the analysis, we can conclude the following:

- **High Risk Players**: Players in the **Guard** & **Forward** position tend to have the highest **Risk Scores**. This indicates that **Guards** might be at a higher risk for injuries in the dataset, particularly given their high **Hamstring-To-Quad Ratio**, **Quad Imbalance**, and **Calf Imbalance**.
- Risk Factors: The Hamstring-To-Quad Ratio, Quad Imbalance, and Calf Imbalance are the key contributors to a player's Risk Score. High-risk players (with a risk score of 0.7 and above) typically have significantly higher values in these metrics.
- Overall Distribution: The distribution of risk levels is relatively skewed toward the High and Moderate categories, with only 2 players classified as Very Low Risk. This shows that most players in the dataset have some degree of injury risk, and muscle imbalances are a significant contributor.



### Recommendations

Focus on muscle imbalance rehabilitation:

Targeted exercises to address quad and calf imbalances.

Positionspecific training:

Customize injury prevention strategies for Guards and Forwards, who are at higher risk.

# Ongoing Monitoring:

Regular assessments to track players' injury risk levels and adjust training plans accordingly.



Detailed Analysis is present in the Jupyter Notebook File

## Thank you

Shashank Guda Rithika Gurram Vishnu Charugundla Varshin Bhaskaran

