Disentangled Graph Convolutional Networks

Jianxin Ma, Peng Cui, Kun Kuang, Xin Wang, Wenwu Zhu

Team : Tsinghua University

Conference: ICML'19

CAU Junseo, Yu

DMAIS Lab Meeting 10.04.2024

Contents

- **01** Introduction
 - Problem & Motivation
 - Background
 - Research Objective
- O2 Proposed Method
 - Overview
 - The DisenConv Layer
 - Network Architecture
 - Theoretical Analysis

- **03** Experimental Results
 - Setup
 - Experiment

- **04** Conclusion
 - Contribution & Limitation
 - Further Directions

DisenGCN

1. Introduction

- Problem & Motivation
- Background
- Research Objective

Problem & Motivation

- ☐ Representation Learning for a node
 - ☐ Describe node's neighborhood information
 - ☐ Matrix Factorization, Random walk, GNNs

Problem & Motivation

- ☐ Problem of GNNs
 - Generally, take a holistic(Integrated) approach
 - → The nuances between the different parts of the neighborhood are ignored
 - However, the real-world graph are complex and heterogeneous

Problem & Motivation

- Scenario
 - ☐ Jack in a social network
 - ☐ Mac, Harry, and Annie are high school friends
 - ☐ Doug and Howard are co-workers
 - ☐ Connects with others for various reasons

Needs to be performed separately for each component

Background

- ☐ Disentangled representation learning
 - In Computer Vision field, this method has gained attentions
 - Able to bring enhanced generalization ability, robustness, and interpretability

Scenario

- ☐ Try to detect object shape
- □ Orange floor color and blue wall color and round shape
- □ Rainbow floor color and blue wall color and round shape
- □ Does not need all combination patterns in train data

Background

- ☐ Disentangled representation learning in Graph
 - Remained largely unexplored due to the characteristics of graphs
 - The complex formation and the limited information available make hard to infer the latent factor

Background

- ☐ Existing methods
 - Graph Convolutional Networks
 - Cannot learn disentangled node representations
 - May produce overly smoothed representations (over-smoothing)
 - Attention Mechanism
 - Try to prune the irrelevant elements.
 - However, remains a holistic approach

Research Objective

- ❖ Goal
 - ☐ Identify the subset of neighbors that are connected due to factor k
- Conditions
 - ☐ Differentiable to support end-to-end training
 - ☐ Conduct inductive learning for OOD generalization
 - ☐ Propose neighborhood routing (Not only one-hop distance)
 - ☐ Theoretically analyze the convergence properties

Inductive Link Prediction Training Inference

DisenGCN

2. Proposed Method

- Overview
- The DisenConv Layer
- Network Architecture
- Theoretical Analysis

Overview

- ☐ Layer input
- □ Neighborhood Routing
- ☐ Extract features specific
- ☐ Layer output

Make convolution process more special!

$$\mathbf{y}_u = f\left(\mathbf{x}_u, \{\mathbf{x}_v : (u, v) \in G\}\right).$$

- GCN(Graph Convolutional Network) Layer
 - \triangleright y_u is the representation of node u, learned by the layer
 - > The neighborhood of a node provides a rich information for the y_u
- Goal of the DisenGCN layer
 - □ Aim to derive a layer f(•) such that the output y_u is a disentangled representation into K independent components

$$\mathbf{y}_u = [\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_K], \text{ where } \mathbf{c}_k \in \mathbb{R}^{\frac{d_{out}}{K}} \ (1 \leq k \leq K),$$

- How to identify disentangled subsets?
 - ☐ Assume that the K channels can extract different features

$$\mathbf{z}_{i,k} = \frac{\sigma(\mathbf{W}_k^{\top} \mathbf{x}_i + \mathbf{b}_k)}{\|\sigma(\mathbf{W}_k^{\top} \mathbf{x}_i + \mathbf{b}_k)\|_2},$$

- → Separately learn parameters in terms of k
- ☐ Is it sufficient to represent the latent factors?
 - → No! We need to require neighborhood information
 - \rightarrow Therefore, we are going to construct \mathbf{c}_{K}

- Hypothesis1 : Second-order proximity
 - ☐ If the subset of its neighbors is large and they are similar w.r.t. aspect k
 - → Factor k is likely to the reason why node u connects with them.
 - ☐ E.g., If most people in u's neighborhood cluster like gaming,
 - they're likely connected to **u** through gaming.
 - ☐ Need to search for the largest cluster in each of the K subspaces projected from the original space

- Hypothesis2 : First-order proximity
 - ☐ If u and v are similar in terms of factor k, then the factor k is likely to be the reason why they are connected
 - ☐ E.g., If u and v like gaming, they're likely connected through gaming
 - ☐ However, How can we know u and v have similar in terms of aspect k?
 - → Apply hypothesis 1, then use hypothesis 2 like an assistance

- Method
 - \Box In the neighborhood routing mechanism, Combine $z_{u, k}$ and $z_{v, k}$ by using $p_{v, k}$ that is the prob that factor k is the reason why u and v are connected.

$$p_{v,k}^{(t)} = \frac{\exp(\mathbf{z}_{v,k}^{\mathsf{T}} \mathbf{c}_k^{(t)} / \tau)}{\sum_{k'=1}^{K} \exp(\mathbf{z}_{v,k'}^{\mathsf{T}} \mathbf{c}_{k'}^{(t)} / \tau)},$$

$$\mathbf{c}_{k}^{(t)} = \frac{\mathbf{z}_{u,k} + \sum_{v:(u,v)\in G} p_{v,k}^{(t-1)} \mathbf{z}_{v,k}}{\|\mathbf{z}_{u,k} + \sum_{v:(u,v)\in G} p_{v,k}^{(t-1)} \mathbf{z}_{v,k}\|_{2}},$$

- \Box p_{v, k} reflect hypo2
- □ T means controls the hardness of the assignments (due to index of softmax)
- □ c_k reflect hypo1

- Method
 - ☐ Searches for the largest cluster in each subspace
 - \Box Can view c_k as the center of each subspace cluster k
 - ☐ All process are differentiable operations

$$\mathbf{c}_{k}^{(t)} = \frac{\mathbf{z}_{u,k} + \sum_{v:(u,v)\in G} p_{v,k}^{(t-1)} \mathbf{z}_{v,k}}{\|\mathbf{z}_{u,k} + \sum_{v:(u,v)\in G} p_{v,k}^{(t-1)} \mathbf{z}_{v,k}\|_{2}},$$

Algorithm 1 The proposed DisenConv layer, with K channels. It performs T iterations of routing. Typically $T \approx 5$.

```
Input: \mathbf{x}_u \in \mathbb{R}^{d_{in}} (the feature vector of node u), and \{\mathbf{x}_v \in \mathbb{R}^{d_{in}} : (u,v) \in G\} (its neighbors' features). Output: \mathbf{y}_u \in \mathbb{R}^{d_{out}} (the representation of node u). Param: \mathbf{W}_k \in \mathbb{R}^{d_{in} \times \frac{d_{out}}{K}}, \mathbf{b}_k \in \mathbb{R}^{\frac{d_{out}}{K}}, k = 1, \ldots, K. for i \in \{u\} \cup \{v : (u,v) \in G\} do for k = 1, 2, \ldots, K do \mathbf{z}_{i,k} \leftarrow \sigma(\mathbf{W}_k^{\top} \mathbf{x}_i + \mathbf{b}_k). \mathbf{z}_{i,k} \leftarrow \mathbf{z}_{i,k}/\|\mathbf{z}_{i,k}\|_2. // The k^{\text{th}} aspect of node i. end for end for \mathbf{c}_k \leftarrow \mathbf{z}_{u,k}, \forall k = 1, 2, \ldots, K. // Initialize K channels.
```

```
for routing iteration t=1,2,\ldots,T do

for v that satisfies (u,v)\in G do

p_{v,k}\leftarrow \mathbf{z}_{v,k}^{\top}\mathbf{c}_k/\tau, \forall k=1,2,\ldots,K.
[p_{v,1}\ldots p_{v,K}]\leftarrow \mathrm{softmax}([p_{v,1}\ldots p_{v,K}]).
end for

for channel k=1,2,\ldots,K do

\mathbf{c}_k\leftarrow \mathbf{z}_{u,k}+\sum_{v:(u,v)\in G}p_{v,k}\,\mathbf{z}_{v,k}. // Update.
\mathbf{c}_k\leftarrow \mathbf{c}_k/\|\mathbf{c}_k\|_2.
end for
end for
\mathbf{y}_u\leftarrow the concatenation of \mathbf{c}_1,\mathbf{c}_2,\ldots,\mathbf{c}_K.
```

Network Architecture

- The number of layers
 - ☐ May be desirable to stack multiple DisenConv layers
 - 1. Allows us to access data beyond one-hop nodes
 - 2. Can potentially learn hierarchical representations, by gradually decreasing the number of channels
 - $\rightarrow K^{(1)} \ge K^{(2)} \ge ... \ge K^{(L)}$
 - → Is it real general benefit?
- The final layer is FC

Theoretical Analysis

- ❖ Need to answer about neighborhood routing mechanism
 - ☐ Whether it converges after enough iterations
 - ☐ To what solution it converges if it does

- vMF distribution
 - ☐ Probability distribution about direction
 - ☐ Used for analyzing embedding vectors
- vMF mixture model
 - ☐ Mixture of several vMF distribution
 - ☐ Each vMF distribution represents a latent feactures

A von Mises-Fisher(vMF) mixture model

Theoretical Analysis

- How to prove?
 - ☐ Whether it converges after enough iterations
 - Convert the mechanism into an expectation-maximization (EM) algorithm for the mixture model that is known as convergence in specific condition
 - Show the mechanism satisfy that condition
 - → Compact parameter set & Continuous likelihood function
 - ☐ To what solution it converges if it does
 - Each distribution represents K latent factors under three conditions

DisenGCN

3. Experimental Results

- Setup
- Experiment

Setup

Baselines

- GCN and GAT(state-of-the-art)
- Additionally add DeepWalk, LINE, and node2vec for multi-label tasks

Datasets

Dataset	Type	Nodes	Edges	Classes	Features	Multi-label
Citeseer	Citation network	3,327	4,732	6	3,703	No
Cora	Citation network	2,708	5,429	7	1,433	No
Pubmed	Citation network	19,717	44,338	3	500	No
Blogcatalog	Social network	10,312	333,983	39	-	Yes
PPI	Biological network	3,890	76,584	50	-	Yes
POS	Word co-occurrence	4,777	184,812	40	-	Yes

- The latter three do not have node-features
 - → use only their adjacency matrices
- Hyper parameters
 - Set T = 7 and $\tau = 1$. The others use 'hyperopt'

- Semi-Supervised Node Classification
 - ☐ Each dataset contains only 20 labeled instance for each class
 - ☐ The optimal number of layers for DisenGCN is 5, while GCN and GAT is 2
 - → Robust for over-smoothing by taking a disentangled approach

Table 2. Semi-supervised classification accuracies (%).

	Datasets			
Method	Cora	Citeseer	Pubmed	
MLP	55.1	46.5	71.4	
ManiReg (Belkin et al., 2006)	59.5	60.1	70.7	
SemiEmb (Weston et al., 2012)	59.0	59.6	71.1	
LP (Zhu et al., 2003)	68.0	45.3	63.0	
DeepWalk (Perozzi et al., 2014)	67.2	43.2	65.3	
ICA (Lu & Getoor, 2003)	75.1	69.1	73.9	
Planetoid (Yang et al., 2016)	75.7	64.7	77.2	
ChebNet (Defferrard et al., 2016)	81.2	69.8	74.4	
GCN (Kipf & Welling, 2017)	81.5	70.3	79.0	
MoNet (Monti et al., 2017)	81.7	-	78.8	
GAT (Veličković et al., 2018)	83.0	72.5	79.0	
DisenGCN (this work)	83.7	73.4	80.5	

- Multilabel Node Classification
 - □ Vary the number of nodes labeled for training from 10%|V| to 90%|V|
 - □ GCN : Relatively high Macro-F1 but low Micro-F1 → Class imbalance
 - ☐ GAT : Performance is much lower in train-set

(a) Macro-F1(%), BlogCatalog.

(b) Micro-F1(%), BlogCatalog.

(c) Macro-F1(%), PPI.

(d) Micro-F1(%), PPI.

(e) Macro-F1(%), POS.

(f) Micro-F1(%), POS.

- Disentangling Synthetic Graphs
 - ☐ Generate K Erdos-Renyi random graphs
 - ☐ Each has 1,000 nodes and 16 communities (Randomly allocate)
 - ☐ Sum the adjacency matrices (I guess max value is 1)
 - → Generate the graph with K latent factors
 - E.g, K₁ graph means hobby and K₂ graphs means local information

 \leftarrow In this K₁ graph, the edges are connected due to K₁

In this K_2 graph, the edges \rightarrow are connected due to K_2

Disentangling Synthetic Graphs

Table 3. Micro-F1 scores on synthetic graphs generated with different numbers of latent factors.

		Number of latent factors						
Method	4	6	8	10	12	14	16	
GCN	78.78 ± 1.52	65.73 ± 1.94	46.55 ± 1.55	37.37 ± 1.52	24.49 ± 1.03	18.14 ± 1.50	16.43 ± 0.92	
GAT	83.77 ± 2.32	60.89 ± 3.75	45.88 ± 3.79	36.72 ± 3.58	24.77 ± 3.47	20.89 ± 3.57	19.53 ± 3.97	
DisenGCN (this work)	$\textbf{93.84} \pm 1.12$	$\textbf{74.68} \pm 1.92$	54.57 ± 1.79	$\textbf{43.96} \pm 1.45$	$\textbf{28.17} \pm 1.22$	$\textbf{23.57} \pm 1.28$	$\textbf{21.99} \pm 1.34$	
Relative improvement	+12.02%	+13.62%	+17.23%	+17.63%	+13.73%	+12.83%	+12.6%	

☐ When K is very large i.e., K > 12, the performance starts to fall

□ Visualize the absolute values of the correlations between the 64-dimensional node representation

■ 8 Channels leads eight clear diagonal blocks

- (b) DisenGCN (this work).
- → DisenGCN are likely Capture mutually exclusive information

- Hyperparameter Sensitivity
 - ☐ Crucial hyperparameters
 - The number of channels, C
 - The number of routing iterations, T
 - ☐ The best when...
 - The number of channels is around the actual number of latent factors
 - More iterations generally leads to better performance before saturation
 T ≈ 5

DisenGCN

4. Conclusion

- Contribution & Limitation
- Further Directions

Contribution & Limitation

- Contributions
 - ☐ First try to disentangle the latent factors in the graph structure
- Limitations
 - ☐ ER random graph method are quite not good
 - ☐ One edge is only can represented as one relationship (But in the real world?)
 - → I though this idea at first time, but I think it is a subtle. However...
 - □ How can we know k latent factors are really fundamental ones?
 (Are they just ad-hoc ones?)

Further Directions

- What if we had humans manually label the latent factors identified by the model, and then used that information for further analysis?
- Are there really no more sophisticated methods?