Cats and Dogs Image Classification Using Deep Learning with Python

Python Implementation of CNN Model using Keras and TensorFlow is available on GitHub

1. CNN Neural Network Model Accuracy Results on Training and Validation Data

```
Epoch 193/200
60/60 [===========] - 48s 792ms/step - loss: 0.2547 - accuracy: 0.8878 - val_loss: 0.2662 - val_accuracy: 0.8994
Epoch 194/200
60/60 [============] - 48s 793ms/step - loss: 0.2669 - accuracy: 0.8873 - val_loss: 0.2147 - val_accuracy: 0.9111
Epoch 195/200
60/60 [===========] - 48s 791ms/step - loss: 0.2715 - accuracy: 0.8787 - val_loss: 0.2302 - val_accuracy: 0.9083
Epoch 196/200
Epoch 197/200
60/60 [=========== - - 48s 791ms/step - loss: 0.2619 - accuracy: 0.8907 - val loss: 0.2140 - val accuracy: 0.9128
Enoch 198/200
60/60 [============ - - 48s 792ms/step - loss: 0.2657 - accuracy: 0.8875 - val loss: 0.2238 - val accuracy: 0.9078
Epoch 199/200
Epoch 200/200
60/60 [============= - - 48s 790ms/step - loss: 0.2524 - accuracy: 0.8928 - val_loss: 0.2109 - val_accuracy: 0.9178
```

Results:

60/60 - 41s 681ms/step - loss: 0.2243 - accuracy: 0.9040

Training Accuracy: 90.40%

18/18 - 5s 273ms/step - loss: 0.2109 - accuracy: 0.9178

Validation Accuracy: 91.78%

- We can observe that the model accuracy of the Training data is 90.40% and the validation data is 91.78% (≈92%) after 200 epochs.
- The validation accuracy is slightly greater than the training accuracy in almost every training. That means that our model doesn't overfit the training set.
- Hence, we can say that our Convolutional Neural Network (CNN) model is more generalized and prevented overfitting.

2. CNN Model Architecture Summary

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 148, 148, 128)	3584
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 74, 74, 128)	0
conv2d_1 (Conv2D)	(None, 72, 72, 64)	73792
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 36, 36, 64)	0
conv2d_2 (Conv2D)	(None, 34, 34, 128)	73856
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 17, 17, 128)	0
conv2d_3 (Conv2D)	(None, 15, 15, 128)	147584
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 7, 7, 128)	0
dropout (Dropout)	(None, 7, 7, 128)	0
flatten (Flatten)	(None, 6272)	0
dense (Dense)	(None, 512)	3211776
dense_1 (Dense)	(None, 2)	1026
		========

Total params: 3,511,618 Trainable params: 3,511,618 Non-trainable params: 0

3. CNN Model Loss on Train and Validation Data

4. CNN Model Accuracy on Train and Validation Data

