10.6 Exercícios

- 1. O Teorema 9.14 mostra que toda matriz simétrica é congruente a uma matriz diagonal. Dada a equivalência entre os Teoremas 9.11 e 9.14, podemos concluir que a Lei da Inércia é uma afirmação sobre matrizes simétricas. Ela garante que, no Teorema 9.14, o número de termos positivos, negativos e nulos na matriz diagonal D independe da mudança de variável utilizada. Por outro lado, sabemos que, se D for a diagonalização da matriz A, então os elementos diagonais de D são os autovalores de A. Mas sabemos que os autovalores de A independem da base na qual a matriz é representada. Isso não implica a Lei da Inércia?
- 2. Considere a matriz simétrica

$$A = \left(\begin{array}{ccc} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{array}\right).$$

Ache uma matriz ortogonal (isto é, $P^{t} = P^{-1}$) e uma matriz diagonal D tais que

 $P^{-1}AP=D.$

- 3. Sejam E um espaço euclidiano e $T:E\to E$ uma isometria. Se λ for um autovalor de T, mostre que $|\lambda|=1$.
- 4. Sejam E um espaço euclidiano complexo e λ um autovalor do operador normal T : E → E. Mostre que todo autovetor de T é autovetor de T* correspondente ao autovalor λ̄. Conclua então que autovetores associados a autovalores distintos de um operador normal são sempre ortogonais.
- Seja E um espaço euclidiano complexo. Sejam $S,T:E\to E$ operadores lineares, com ST=TS. Mostre que ST tem um autovetor em comum.
- 6. Sejam $N: E \to E$ um operador normal no espaço euclidiano complexo E. Mostre que, se x for um autovetor de N, então $W = \langle x \rangle^{\perp}$ é invariante por N e N^*
- Mostre, por indução, que todo operador normal $N: E \to E$ definido em um espaço euclidiano complexo E possui uma base ortonormal formada por autovetores.

§10.6

- Sejam $R, S, T : E \to E$ operadores auto-adjuntos definidos no espaço euclidiano E. Suponha que RT = TR, ST = TS e que em cada autoespaço de T, tanto R quanto S tenham um único autovalor. Mostre que Rpossui uma base ortonormal formada por elementos que são autovetores das três aplicações.
 - 9. Seja T:E o F uma aplicação linear entre espaços euclidianos. Qual a relação entre os autovalores de T^*T e os de TT^* ?
- (10) Seja $T: E \to E$ um operador linear definido no espaço real E. Mostre que existe uma base ortonormal $\mathcal B$ na qual $T_{\mathcal B}$ é diagonal se, e somente se, T for auto-adjunto.
- $f_{(11)}$ Seja $T:E \to F$ uma aplicação linear entre os espaços euclidianos E e F. Mostre:
 - (a) se T for injetora, então T^*T possui inversa;
 - (b) $\operatorname{im} T^* = \operatorname{im} (T^*T) e \operatorname{im} T = \operatorname{im} (TT^*);$
 - (c) se T for sobrejetora, então TT^* possui inversa.
- 12) Mostre que um operador T é positivo definido se, e somente se, $T \geq 0$ e Tfor invertivel.
- 13.) Mostre que são equivalentes as seguintes condições sobre um operador P: $E \to E$ definido num espaço euclidiano E.
 - (a) $P = T^2$ para algum operador auto-adjunto T;
 - (b) $P = S^*S$ para algum operador S;
 - (c) P é positivo semidefinido.
- 14. Com a notação do Teorema 10.10 mostre, utilizando o cálculo funcional, que $P = \sqrt{H}$ é positiva semidefinida.
- 15. Verifique que a matriz

$$A = \begin{pmatrix} 2 & i \\ i & 2 \end{pmatrix}$$

é normal. Encontre uma matriz unitária U tal que U^*AU seja diagonal.

- 16. Sejam E um espaço euclidiano complexo e $N:E\to E$ um operador normal. Verifique que o procedimento utilizado na demonstração alternativa dos Teoremas 10.2 e 10.4, na página 204, também prova que N é diagonalizável.
- Mostre que, se todos os autovalores de uma aplicação $T: E \to E$ tiverem valor absoluto igual a 1, então T é unitária.
 - 18. Seja $N: E \to E$ um operador normal no espaço euclidiano E. Mostre que existe uma matriz unitária (ortogonal) U tal que $N^* = UN$, e deduza daí que im $N^* = \operatorname{im} N$.
 - 19. Seja N um operador normal no espaço euclidiano E. Mostre que existe um operador auto-adjunto A positivo semidefinido e um operador unitário (ortogonal) U tal que

$$N = UA = AU$$
.

- Se N for invertível, U e A são únicos. (É usual denotar A=|N|. Compare com o Exercício 18.)
- 20. Seja $N:E\to E$ um operador no espaço euclidiano E. Usando o cálculo funcional, mostre que N^* é um polinômio em N se, e somente se, N for normal. (Compare com o Exercício 42 do Capítulo 8.)
- 21. Dê exemplos de operadores M, N : E → E definidos no espaço euclidiano complexo E, com N normal, tais que os auto-espaços de M sejam invariantes por N e NM ≠ MN.
- 22. Mostre que, na decomposição polar T=PU do operador $T:E\to E$, temos PU=UP se, e somente se, T for normal. (Esse enunciado merece interpretação, uma vez que em geral não há unicidade de U. Se T for normal, então P comuta com toda matriz unitária tal que T=PU. Reciprocamente, se P comuta com algum U tal que T=PU, então T é normal.)
- 23. Seja A uma matriz (real) anti-simétrica. Mostre que A² é uma matriz simétrica negativa semidefinida. Conclua daí que os autovalores não-nulos de uma matriz anti-simétrica são imaginários puros.
- 24. Sejam $M, N : E \to E$ operadores no espaço euclidiano E, sendo N normal. Mostre que NM = MN implica $N^*M = MN^*$.

- Sejam $M, N : E \to E$ operadores normais no espaço euclidiano E. Se MN = NM, mostre que $M^*N = NM^*$ e $MN^* = N^*M$. Em particular, NM é normal.
- Sejam $M, N: E \to E$ operadores normais definidos no espaço cuclidiano complexo E e $S: E \to E$ um operador arbitrário. Mostre que, se NS = SM, então $N^*S = SM^*$.
- Sejam $M, N : E \to E$ operadores normais definidos no espaço euclidiano E. Suponha que MN seja normal. Mostre que N comuta com M^*M .
- 28. Sejam $M,N:E\to E$ operadores normais definidos no espaço euclidiano E. Suponha que MN seja normal. Mostre que NM é normal.
- 29. Sejam $S,T:E\to E$ dois operadores auto-adjuntos no espaço euclidiano E. Mostre que ST=TS se, e somente se, existe um operador auto-adjunto $R:E\to E$ tal que S=p(R) e T=q(R).
- 30. Mostre que uma matriz

$$\left(\begin{array}{cc}
\cos\theta & \sin\theta \\
-\sin\theta & \cos\theta
\end{array}\right)$$

preserva sua forma ou é transformada na matriz

$$\begin{pmatrix} \cos(-\theta) & \sin(-\theta) \\ -\sin(-\theta) & \cos(-\theta) \end{pmatrix}$$

quando submetida a uma matriz mudança de base ortogonal.

- 31. Dê um exemplo mostrando que não há unicidade de U na decomposição polar de $T:E\to E$, se esse operador não for invertível.
- Sejam E, F espaços euclidianos. Dois operadores lineares $T: E \to E$ e $S: F \to F$ são unitariamente equivalentes se existir uma aplicação linear unitária $U: E \to F$ tal que $U^*SU = T$. Mostre que S, T são unitariamente equivalentes se, e somente se, existirem bases ortonormais \mathcal{B} de E e \mathcal{C} de F equivalentes se, e somente se, existirem bases ortonormais. Mostre tais $T_{\mathcal{B}} = S_{\mathcal{C}}$.
- Com a notação do Exercício 32, sejam S e T operadores normais. Mostre que os operadores S e T são unitariamente equivalentes se, e somente se, tiverem o mesmo polinômio mínimo. Conclua que dois operadores normais semelhantes são sempre unitariamente equivalentes.

9.4 Exercícios

- 1. Seja X um espaço vetorial. Mostre que o espaço das formas $\mathcal{S}(X)$ é um espaço vetorial com as definições usuais de soma de funções e multiplicação de função por escalar.
- 2. Seja B uma forma no espaço vetorial X. Mostre que vale a identidade

$$q_B(x+y) + q_B(x-y) = 2(q_B(x) + q_B(y)),$$

que generaliza a identidade do paralelogramo.

3. Sejam X um espaço vetorial real e $B \in \mathcal{S}(X)$. Verifique a igualdade

$$B(x,y) + B(y,x) = \frac{1}{2} [q_B(x+y) - q_B(x-y)]. \tag{9.8}$$

(Essa identidade nos mostra que, se a forma $B: X \times X \to \mathbb{R}$ for *simétrica*, então o lado esquerdo da equação nos fornece uma expressão para B em termos de q.)

4. Seja $B: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ definida por

$$B(x,y) = 3x_1y_1 - 2x_1y_2 + 5x_2y_1 + 7x_2y_2,$$

em que
$$x = (x_1, x_2)$$
 e $y = (y_1, y_2)$.

- (a) Mostre que B é uma forma bilinear que não é simétrica. Obtenha a forma quadrática associada a B;
- (b) Defina¹

$$\bar{B}(x,y) = \frac{1}{4} [q_B(x+y) - q_B(x-y)].$$

Mostre que \bar{B} é uma forma bilinear simétrica, que não coincide com B, mas à qual também está associada a forma quadrática q_B .

5. Dê exemplo de uma forma bilinear à qual está associada uma forma quadrática identicamente nula.

¹Compare com o Exercício 3.

6. Seja X um espaço vetorial complexo e $B \in \mathcal{S}(X)$. Mostre a identidade de polarização:

$$B(x,y) = \frac{1}{4}[q(x+y) - q(x-y)] + \frac{i}{4}[q(x+iy) - q(x-iy)].$$

Se X for real e B for simétrica, então vale:

$$B(x,y) = \frac{1}{4}[q(x+y) - q(x-y)].$$

(Note que as identidades de polarização dadas pelo Lema 8.9 são casos particulares das identidades anteriores.)

Assim, dada uma forma quadrática q, definida num espaço complexo X, sempre conseguimos recuperar a forma $B \in \mathcal{S}(X)$ que a define. Se X for um espaço real, esse resultado só é válido se soubermos que B é uma forma simétrica. (Compare com o Exercício 4.)

- 7. Seja E um espaço euclidiano complexo. Mostre que uma forma sesquilinear $B \in \mathcal{S}(E)$ é hermitiana se, e somente se, a forma quadrática q(x) = B(x,x)for real para todo $x \in E$.
- 8. Sejam X um espaço vetorial e $B: X \times X \to \mathbb{K}$ uma forma positiva semidefinida. Mostre que $q_B(y)=0$ se, e somente se, B(x,y)=0 para todo $x \in X$.
- 9. Sejam X um espaço vetorial e B uma forma positiva semidefinida. Mostre a desigualdade

$$|B(x,y)| \le \sqrt{q_B(x)} \sqrt{q_B(y)},$$

que é uma generalização da desigualdade de Cauchy-Schwarz.

- 10. Seja B uma forma no espaço X e $\{x_1,\ldots,x_n\}$ uma base de X. Mostre que B está caracterizada pela matriz (a_{ij}) , em que $a_{ij} = B(x_i, x_j)$. Expresse B(x,y) em termos dessa matriz.
- 11. Seja B uma forma no espaço euclidiano E e $\mathcal B$ uma base de E. Se A for a matriz que representa B (nessa base), definimos o posto de B como sendo o posto de A.
 - (a) Mostre que o posto de uma forma está bem definido.

- (b) Seja B uma forma de posto 1 no espaço euclidiano real E. Mostre que existem funcionais lineares $f:E\to\mathbb{R}$ e $g:E\to\mathbb{R}$ tais que B(x,y)=f(x)g(y).
- 12. Se a matriz que representa uma forma $B: E \times E \to \mathbb{K}$ (com relação a uma base ortonormal) for invertível, mostre que, para todo $x_0 \in E$, existe $y_0 \in E$ tal que $B(x_0, y_0) \neq 0$.
- 13. Mostre o Teorema de Lagrange 9.13 para o caso de formas quadráticas hermitianas, adaptando a demonstração apresentada para o caso de formas quadráticas simétricas.
- 14. Enuncie o Teorema de Lagrange (Teoremas 9.11 e 9.13) como um resultado sobre a diagonalização de uma forma sesquilinear auto-adjunta.
- 15. Dada a forma quadrática $ax^2 + bxy + cy^2$, encontre a matriz simétrica que a representa.
- 16. Considere a forma quadrática $q: \mathbb{R}^4 \to \mathbb{R}$ definida por

$$q(x_1, x_2, x_3, x_4) = x_1^2 + 6x_1x_2 + 5x_2^2 - 4x_1x_3 - 12x_2x_3 + 4x_3^2 - 4x_2x_4 - x_3x_4 - x_4^2.$$

Coloque q na forma diagonal.

Definição 9.18 Duas matrizes A e B em $\mathbb{M}_{n \times n}(\mathbb{K})$ são congruentes se existir uma matriz invertível $M \in \mathbb{M}_{n \times n}(\mathbb{K})$ tal que $A = M^*BM$.

- 17. Mostre que a congruência de matrizes é uma relação de equivalência em $\mathbb{M}_{n\times n}(\mathbb{K})$.
- 18. Sejam $A, B \in \mathbb{M}_{n \times n}(\mathbb{K})$ matrizes congruentes. Mostre que $\det A > 0$ se, e somente se, $\det B > 0$.
- 19. Mostre que toda matriz simétrica (hermitiana) é congruente a uma matriz diagonal cujas entradas assumem apenas os valores -1, 0 e 1.
- 20. Mostre que uma forma quadrática simétrica (hermitiana) $q(x) = \langle x, Ax \rangle$ é positiva definida no espaço euclidiano E se, e somente se, a matriz A_B que representa A numa base ortonormal B for positiva definida, tal qual definido no Exercício 19 do Capítulo 8. Verifique o mesmo resultado para uma forma negativa definida, positiva semidefinida e etc.

- 21. Mostre que uma forma quadrática hermitiana (simétrica) $q(x) = \langle x, Ax \rangle$ é positiva definida se, e somente se, A for congruente a I.
- 22. Faça um diagrama para a relação $M^*AM=D$ em termos de mudanças de bases.

Definição 9.19 Seja $A \in \mathbb{M}_{n \times n}(\mathbb{K})$. Para cada $r \leq n$, a submatriz (a_{ij}) , $1 \le i, j \le r \le n$ é a submatriz principal de A de ordem r, denotada por A_r . O determinante de A_r é o menor principal de ordem r.

- 23. Mostre que, se todos os menores principais de uma matriz simétrica (hermitiana) $A \in \mathbb{M}_{n \times n}(\mathbb{K})$ forem positivos, então a matriz A é positiva definida.
- 24. Mostre que todos os menores principais de uma matriz simétrica (hermitiana) $A \in \mathbb{M}_{n \times n}(\mathbb{K})$ positiva definida são positivos.
- 25. Mostre que uma matriz simétrica (hermitiana) $A=(a_{ij})$ é negativa definida se, e somente se, seus menores principais tiverem sinais alternados, com $\det A_1 = a_{11} < 0.$
- 26. Seja X um espaço complexo. Além das formas sesquilineares definidas em E, são importantes as formas $B: X \times X \to \mathbb{C}$ tais que para quaisquer $\alpha \in \mathbb{C}$ e $u_1, u_2, v_1, v_2 \in E$,
 - (i) $B(\alpha u_1 + u_2, v) = \alpha B(u_1, v) + B(u_2, v);$
 - (ii) $B(u, \alpha v_1 + v_2) = \alpha B(u, v_1) + B(u, v_2)$.

Essas são as formas bilineares definidas em X. Denotaremos por $\mathcal{B}(X)$ o conjunto das formas bilineares 2 em X. Uma forma bilinear é simétrica, se B(u,v)=B(v,u), e anti-simétrica, se B(u,v)=-B(v,u) para quaisquer $u, v \in X$.

Verifique as seguintes afirmações:

(a) Seja $\mathcal{B} = \{x_1, \dots, x_n\}$ uma base de X. Então existe um isomorfismo entre o espaço $\mathcal{B}(X)$ e o espaço $\mathbb{M}_{n\times n}(\mathbb{C})$.

²Como a estrutura bilinear não está em acordo com uma estrutura de produto interno num espaço complexo, não consideramos aqui espaços euclidianos.

- (b) Seja B uma base de X e A a matriz que representa B nessa base. A forma B é simétrica se, e somente se, a matriz A for simétrica. A forma B é anti-simétrica se, e somente se, A for anti-simétrica.
- (c) O espaço $\mathcal{B}(X)$ é a soma direta dos subespaços das formas simétricas e anti-simétricas.
- (d) Sejam \mathcal{C} uma outra base de X e $P=P_{\mathcal{C}}^{\mathcal{B}}$. Se A representar a forma B na base \mathcal{B} e C representar B na base \mathcal{C} , então $C=P^{\mathsf{t}}AP$.
- (e) Está bem definido o posto de uma forma B como o posto de uma matriz que representa B. Uma forma bilinear B é $n\~ao$ -degenerada se o seu posto for igual à $\dim X$.
- (f) Se B for uma forma bilinear simétrica, definindo q(v) = B(v, v), vale

$$B(u,v) = \frac{1}{4}[q(u+v) - q(u-v)], \tag{9.9}$$

chamada identidade de polarização.

- (g) Se B for uma forma bilinear simétrica, existe uma base de X na qual B é representada por uma matriz diagonal (compare com o Exercício 14). Em particular, dada uma matriz simétrica $A \in \mathbb{M}_{n \times n}(\mathbb{C})$, existe uma matriz invertível $P \in \mathbb{M}_{n \times n}(\mathbb{C})$ tal que P^tAP é diagonal.
- (h) Seja B uma forma bilinear não-degenerada. Mostre que a cada operador $T: X \to X$ está associado um único operador T' tal que B(Tx,y) = B(x,T'y). Vale: $(T_1T_2)' = T_2'T_1'$; $(cT_1+T_2)' = cT_1'+T_2'$; (T')'=T.
- (i) Seja B uma forma bilinear anti-simétrica. Então o posto de B é par e, nesse caso, B pode ser representada por uma matriz diagonal em blocos

$$\begin{pmatrix} 0 & \mathcal{J} \\ -\mathcal{J} & 0 \end{pmatrix}$$
,

em que ${\mathcal J}$ é a matriz quadrada

$$\begin{pmatrix}
0 & \dots & 0 & 1 \\
0 & \dots & 1 & 0 \\
\vdots & \dots & \vdots & \vdots \\
1 & \dots & 0 & 0
\end{pmatrix}$$

(j) Enuncie e demonstre um resultado análogo ao do item (h) para uma forma bilinear anti-simétrica.