Институт по математика и информатика-БАН Съюз на математиците в България Фондация Георги Чиликов

Седмица на олимпийската математика на ИМИ София, 2 – 7 януари 2024 г.

Контролно по комбинаторика, 03.01.2024

Задача 1. В компания всеки има поне двама приятели сред останалите. Известно е, че които и да е членове на компанията да изберем и както и да ги подредим около кръгла маса, ако всеки двама съседи са приятели, то не съществуват двама души около масата, които не са съседи и са приятели. Да се докаже, че в тази компания има двама души, които имат по точно двама приятели, поне единия от които е общ.

Задача 2. Една редица $a_1, a_2, \ldots, a_{1000}$ от естествени числа ще наричаме $m \sigma \partial p a$, ако:

- $a_i \in \{1, 2, 3, 4\}$ за всяко $i = 1, 2 \dots, 1000$;

За всяка мъдра редица на дъската е записано числото 3^X , където X е общият брой на двойките и тройките в редицата. Колко е сборът на всички записани числа?

Задача 3. Да се намерят всички естествени числа $n \geq 3$, за които съществуват n точки в равнината, никои три от които не лежат на една права, които могат да бъдат номерирани с числата от 1 до n по два различни начина така, че да е изпълнено следното условие: за всяка тройка $\{i,j,k\}, 1 \leq i < j < k \leq n$, триъгълникът ijk в едната номерация има същата ориентация като триъгълника ijk в другата ориентация, освен за $\{i,j,k\} = \{1,2,3\}$, където ориентациите на двата триъгълника са противоположни.