Álgebra Lineal I

Usando Beamer (nunca ppt)

William Carlos Echegaray Castillo

Universidad Nacional de Ingeniería Facultad de Ciencias Escuela Profesional de Matemática

25 de noviembre de 2020

Transformaciones Lineales

Sean V,W espacios vectoriales, $T:V\longrightarrow W$ una transformación lineal, y una aplicación de paso cociente $\pi:V\longrightarrow \frac{V}{\mathcal{N}(T)}$, entonces existe una transformación lineal $\widehat{T}:\frac{V}{\mathcal{N}(T)}\longrightarrow W$ definida por

$$\widehat{T}(v + \mathcal{N}(T)) = T(v),$$

tal que

$$T = \hat{T} \circ \pi$$

Con las notaciones anteriores tenemos

- 1. $T = \hat{T} \circ \pi$.
- 2. $\widehat{T}: \frac{V}{\mathcal{N}(T)} \longrightarrow Im(T) + W$ es biyectiva (es decir, un isomorfismo).

Prueba:

Veamos que $\widehat{\mathcal{T}}$ esté bien definida:

Sean $u, v \in V$ tales que $\{u\} + \mathcal{N}(T) = \{v\} + \mathcal{N}(T)$, entonces $u - v \in \mathcal{N}(T)$, por tanto $T(u - v) = \{\mathbf{0}\}$, de donde T(u) = T(v). Entonces

$$\widehat{T}(\lbrace u \rbrace + \mathcal{N}(T)) = T(u) = T(v) = \widehat{T}(\lbrace v \rbrace + \mathcal{N}(T)).$$

Luego \widehat{T} está bien definida.

1. De la definición de \widehat{T} y π tenemos:

(para cada
$$v \in V$$
) $\Big(T(v) = \widehat{T}(v + \mathcal{N}(T) = \widehat{T}(\pi(v)) = \widehat{T} \circ \pi(v)\Big)$
por tanto $T = \widehat{T} \circ \pi$.

2. Sea $w \in Im(T)$, entonces

Sea
$$w \in Im(T)$$
, entonces $(\exists v \in V) \left(w = T(v) = \widehat{T}(v + \mathcal{N}(T)) \right)$.
luego $w \in \widehat{T}(\frac{V}{\mathcal{N}(T)}) = Im(\widehat{T})$, por tanto $Im(T) \subset Im(\widehat{T})$, entonces $Im(\widehat{T}) = Im(T)$.
Veamos que $\mathcal{N}(\widehat{T}) = \{\mathbf{0}\}$:
sea $v \in \mathcal{N}(\widehat{T})$, entonces $\widehat{T}(v) = \mathbf{0}$, pero $T(v) = \widehat{T}(v + \mathcal{N}(T)) = \widehat{T}(\mathcal{N}(T)) = \widehat{T}(\mathbf{0} + \mathcal{N}(T)) = \mathbf{0} = T(\mathbf{0})$, Así $\mathcal{N}(\widehat{T}) = \{\mathbf{0}\}$.

Entonces \hat{T} es un isomorfismo.

Ésta proposición es llamada el teorema de factorización.

Nota

Sean V y W espacios vectoriales, si existe un isomorfismo entre ellos, entonces lo denotaremos $V \approx W$.

Proposición

Sean V un espacio vectorial y S, $U \subset V$ subespacios. Entonces

$$\frac{U}{U\cap S}\approx\frac{U+S}{S}$$

Prueba:

Definamos la aplicación $T:U\longrightarrow \frac{U+S}{S}$ mediante T(u)=u+S.

Note que T es lineal. En efecto:

Sean $u, v \in U$, $\lambda \in \mathbb{K}$, entonces

$$T(u + \lambda v) = (u + \lambda v) + S = (u + S) + \lambda(v + S) = T(u) + \lambda T(v)$$
, por tanto T es lineal.

Además se tiene que $(\forall v \in S)((u+v)+S=u+S)$.

En efecto:

Sea
$$w \in (u+v)+S$$
, entonces $(\exists s \in S)(w=(u+v)+s=u+(v+s)\in u+S)$, luego $w \in u+S$, similar se tiene que $(\forall v \in S)(u+S \subset (u+v)+S)$. Luego

$$T(u) = u + S = (u + v) + S = T(u + v),$$

entonces T es sobreyectiva (es decir, T es un epimorfismo). Además

$$\mathcal{N}(T) = \{u \in U/u + S = S\} = \{u \in U/u \in S\} = U \cap S$$

En el teorema de factoriazación hacemos
$$V=U,~W=\dfrac{U+S}{S}$$
 y $\dfrac{V}{\mathcal{N}(T)}=\dfrac{U}{U\cap S}$, de dónde se tiene

$$\widehat{T}: \frac{U}{U\cap S} \longrightarrow \frac{U+S}{S}$$

es un isomorfismo.

Sean V un espacio vectorial, $U, S \subset V$ subespacios tales que $S \subset U$, entonces

$$\frac{V/S}{U/S} \approx \frac{V}{U}$$

Prueba:Ejercicio (Como $S \subset U \subset V$, entonces $U \cap S = S$, basta definir la aplicación $T: \frac{V}{S} \longrightarrow \frac{V}{II}$ mediante T(v+S) = v+U, pruebe que está bien definida y además es un epimorfismo, halle $\mathcal{N}(T)$, por tanto $\widehat{T}: \frac{V/S}{U/S} \longrightarrow \frac{V}{U}$ es un isomorfismo).

Sean U, V, W espacios vectoriales, consideremos el conjunto

$$\mathscr{L}(V,W) = \{T : V \longrightarrow W/T \text{ es una tranformación lineal}\}$$

con las operaciones para todo $T_1, T_2 \in \mathscr{L}(V, W)$, y todo $\lambda \in \mathbb{K}$

$$\begin{array}{ccc} (T_1+T_2)(v) &= T_1(v)+T_2(v) \\ (\lambda T_1)(v) &= \lambda T_1(v) \end{array} \right\} \forall v \in V$$

es un espacio vectorial sobre \mathbb{K} , el cual es llamado **espacio vectorial** de transformaciones lineales.

- Cuando $W=\mathbb{K}$, luego $V^*=\mathscr{L}(V,\mathbb{K})$ se llama **espacio dual** de V.
- Si W = V, entonces denotamos $\mathscr{L}(V) = \mathscr{L}(V, V)$.

Sea V un espacio vectorial, entonces $\mathscr{L}(\mathbb{K},V)\approx V$.

Prueba:

Basta definir la aplicación $\Lambda : \mathcal{L}(\mathbb{K}, V) \longrightarrow V$ mediante $\Lambda(T) = T(1)$, se observa que Λ es lineal.

Ejercicio. que Λ es un isomorfismo.

Sea V un espacio vectorial con $dim(V) < \infty$, entonces V y V^* son isomorfos.

Prueba:

Como $dim(V)=n<\infty$, entonces sea $\{v^1,v^2,\cdots,v^n\}$ una base de V. Luego definamos las transformaciones $T_j:V\longrightarrow \mathbb{K}$ mediante

$$T_j(v^k) = \begin{cases} 1, & j = k \\ 0, & j \neq k \end{cases}$$

donde $j + 1, 2, \cdots, n$.

Estas transformaciones constituyen una base.

En efecto:

1. Sean $\lambda_1, \dots, \lambda_n \in \mathbb{K}$ tales que

$$\sum_{j=1}^n \lambda_j T_j = 0,$$

entonces $\lambda_k = \sum_{j=1}^n \lambda_j T_j(v^k) = 0$ para cada $k = 1, \dots, n$.

Entonces $\{T_1, \dots, T_n\}$ son linealmente independientes.

2. Si $T \in V^*$, entonces existen escalares $\alpha_1, \dots, \alpha_n$ tales que

$$T = \sum_{i=1}^{n} \alpha_i T_i,$$

notar que $\alpha_k = T(v^k) = \sum_{j=1}^n \alpha_j T_j(v^k)$.

Verifique que T_1, \dots, T_n es una base de V^* .

Además verifique que la transformación lineal $\Phi:V\longrightarrow V^*$ definida por

$$\Phi(v^k) = T_k$$
, para $k = 1, \dots, n$

es un isomorfismo.

Note que $dim(V^*) = dim(V)$

Sean V y W espacios vectoriales de dimensión finita, entonces

$$dim(\mathscr{L}(V,W)) = dim(V)dim(W)$$

Prueba:

Sean $\{v^1, \cdots, v^n\}$, $\{w^1, \cdots, w^m\}$ bases de V y W respectivamente. Para cada (i,j), $i=1,\cdots,n$, $j=1,\cdots,m$ definamos la trasformación $T_{ij}:V\longrightarrow W$ mediante

$$T_{ij}(v^k) = \left\{ \begin{array}{cc} w^j & i = k \\ \mathbf{0} & i \neq k \end{array} \right.$$

Pruebe que los T_{ij} son lineales y $\{T_{ij}\}_{1 \leq i \leq n, 1 \leq j \leq m}$ es una base de $\mathcal{L}(V, W)$.

Definición

Sean U, V espacios vectoriales, $V \xrightarrow{L} U \xrightarrow{T} V \xrightarrow{L} U$ son transformaciones lineales, entonces tenemos

- Si $L \circ T = I$ (identidad en U), L es una inversa a la izquierda de T
- Si $T \circ L = I$ (identidad en V), L es una inversa a la derecha de T.
- Si $T \circ L = I$ y $L \circ T = I$, L es la inversa de T y la denotamos por $L = T^{-1}$. En este caso, decimos que T es inversible.

Ejemplo

Consideremos las transformaciones $\mathbb{K}^3 \xrightarrow{L} \mathbb{K}^2 \xrightarrow{T} \mathbb{K}^3 \xrightarrow{L} \mathbb{K}^2$ definidas por

$$T(x_1, x_2) = (x_1 - x_2, x_1 + x_2, x_2), L(y_1, y_2, y_3) = (y_2 - y_3, y_3).$$

Encuentre las inversas correspondientes, sí existen.

Sean V, W espacios vectoriales, $T:V\longrightarrow W$ una transformación lineal, entonces

- 1. Si T posee inversa, entonces ésta es única.
- 2. T es inyectiva si, y solo si T posee inversa a la izquierda.
- 3. T es sobreyectiva si, y solo si T posee inversas por la derecha.
- 4. T es isomorfo si, y solo si T es inversible.

Prueba:

1. Supongamos que T posee dos inversas L_1 y L_2 , entonces

$$L_1 = L_1 \circ I = L_1 \circ (T \circ L_2) = (L_1 \circ T) \circ L_2 = I \circ L_2 = L_2,$$

entonces $L_1 = L_2$, por tanto si T posee inversa, ésta es única.

2. \Longrightarrow) Supongamos que T posee inversa, y como $T(V) \subset W$ es un subespacio, entonces existe un subespacio $S \subset W$ tal que $W = T(V) \oplus S$.

Ahora, definamos la transformación $L: W \longrightarrow V$ mediante L(T(v) + w) = v.

Notamos que L es lineal (ejercicio).

Además, $L \circ T(u) = L(T(u)) = L(T(u) + \mathbf{0}) = u$, $\forall u \in V$, es decir, L es la inversa a la izquierda de T.

- \iff Supongamos que $L: W \longrightarrow V$ es la inversa a la izquierda de T, es decir, $L \circ T = I$. Sea $v \in \mathcal{N}(T)$, entonces $T(v) = \mathbf{0}$, luego $v = (L \circ T)(v) = L(T(v)) = L(\mathbf{0}) = \mathbf{0}$, entonces $\mathcal{N}(T) = \{\mathbf{0}\}$, es decir, T es inyectiva.
- 3. Ejercicio.
- 4. Ejercicio.

Sean V un espacio vectorial de dimensión finita, $T:V\longrightarrow V$ una transformaxión lineal. Si $T\circ L=L\circ T$ para toda transformación lineal $L:V\longrightarrow V$, entonces existe $\lambda\in\mathbb{K}$ tal que $T=\lambda I$.

Prueba:

Como V es dimensión finita, entonces sea $\{v^1, \dots, v^n\}$ una base de V, entonces cada $T(v^j) \in V$ se puede expresar como una combinación lineal de los elementos de la base, es decir, existen escalares $\alpha_{1j}.\alpha_{2j}, \dots, \alpha_{nj}$ tales que

$$T(v^j) = \sum_{i=1}^n \alpha_{ij} v^i, \quad j = 1, 2, \cdots, n.$$

Para cada $k=1,2,\cdots,n$ definamos la transformación lineal $L_k:V\longrightarrow V$ mediante

$$L_{k}(v^{i}) = \begin{cases} v^{k+1}, & i = k, k < n \\ \mathbf{0}, & i \neq k, k < n \\ \mathbf{0}, & i = 1, 2, \dots, n-1, k = n \\ v^{1}, & i = n, k = n \end{cases}$$

Luego

$$L_k \circ T(v^j) = L_k \left(\sum_{i=1}^n \alpha_{ij} v^i \right) = \sum_{i=1}^n \alpha_{ij} L_k(v^i) = \alpha_{kj} v^{k+1}$$

También

$$T \circ L_k(v^j) = \left\{ egin{array}{ll} \mathbf{0}, & j
eq k, \ T(v^{k+1}), & j = k, \end{array}
ight.$$
 $= \left\{ egin{array}{ll} \mathbf{0}, & j
eq k, \ \sum_{i=1}^k lpha_{i,k+1} v^i, & j = k, \end{array}
ight.$

Por hipótesis se tiene que $L_k \circ T = T \circ L_k$, entonces

$$lpha_{kj}=0, ext{ si } j
eq k$$
 $lpha_{kk} \mathbf{v}^{k'} = \sum_{i=1}^n lpha_{ik'} \mathbf{v}^i, \quad k'=k+1$

de dónde

$$\alpha_{kk} = \alpha_{k'k'}, \qquad \alpha_{ik'} = 0 \text{ para } i \neq k$$

por tanto $\alpha_{11} = \alpha_{22} = \cdots = \alpha_{nn} = \lambda$, $\alpha_{ij} = 0$ para $i \neq j$. Luego, T tiene la propiedad

$$T(v^j) = \lambda v^j$$
, para cada $j = 1, 2, \dots, n$.

Si
$$v = \sum_{j=1}^{n} c_j v^j$$
, entonces

$$T(v) = \sum_{j=1}^{n} c_j T(v^j) = \sum_{j=1}^{n} c_j \lambda v^j = \lambda v.$$

Por tanto $T = \lambda I$.

Sean V un espacio vectorial $T:V\longrightarrow V$ una trnadformación lineal tal que $T(v^j)=\alpha_jv^j$, $j=1,\cdots,n$ en cierta base $\{v^1,\cdots,v^n\}$ de base V, donde $\alpha_j\neq\alpha_i$ para $j\neq i$. Supongamos, además, que existe una transformación lineal $L:V\longrightarrow V$ que conmuta con T, es decir, $T\circ L=L\circ T$.

Entonces, L es de la forma

$$L(v^j) = \beta_j v^j$$
, para $j = 1, \dots, n$