Лабораторная работа 1.5 Изучение колебаний струны

Зотов Алексей 496 гр.

23 мая 2016 г.

Цель работы: изучение поперечных стоячих волн в струне: определение собственных частот колебания струны в зависимости от натяжения струны и определение скорости распространения поперечных волн в струне.

Ограниченная, закрепленная на концах струна, может совершать собственные колебания, представляющие собой стоячие волны вида:

$$y(x,t) = A\sin(2\pi ft)\sin\left(\frac{2\pi}{\lambda}x\right) \tag{1}$$

где A- амплитуда колебаний в пучностях, f- частота, $\lambda-$ длина волны, x- координата вдоль струны. В концевых точках должны располагаться узлы стоячей волны (амплитуда колебаний равна нулю), откуда следует, что на струне длиной L должно укладываться целое число полуволн:

$$L = n\frac{\lambda_n}{2}, \quad n = 1, 2, 3 \dots \tag{2}$$

Скорость распространения поперечных волн u зависит от силы натяжения струны F и массы струны на единицу длины ρ_l погонной плотности струны $\rho_l = \rho S$):

$$u = \sqrt{\frac{F}{\rho_l}} \tag{3}$$

Возможные частоты собственных колебаний струны (обертоны):

$$f_n = \frac{u}{\lambda_n} = \frac{n}{2L} \sqrt{\frac{F}{\rho_l}} \tag{4}$$

Если частота внешней поперечной синусоидальной силы совпадает с какой либо собственной частотой колебания струны, то возникает явление резонанса и образуется синусоидальная стоячая волна.

В работе используются: звуковои генератор, двухканальный осциллограф, частотомер, набор грузов, станина, с закрепленной на ней струной (L=50 cm) (Puc.1).

Рис. 1: Экспериментальная установка.

Ход работы:

Будем нагружать струну различными массами, и измерять частоты нескольких гармоник стоячих волн. Так как ожидаемая зависимость частоты f(n) линейная, то построим аппроксимирующие по методу наименьших квадратов прямые вида f = kn + b для каждой из нагрузок струны. Произведем оценку ошибки:

$$\sigma_k \approx \frac{1}{\sqrt{n}} \sqrt{\frac{\langle y^2 \rangle - \langle y \rangle^2}{\langle x^2 \rangle - \langle x \rangle^2} - k^2}$$
 (5)

$$\sigma_b = \sigma_k \sqrt{\langle x^2 \rangle - \langle x \rangle^2} \tag{6}$$

• m = 1042.3

ſ	n	0	1	2	3	4	5	6	7
ſ	ν_n [Гц]	0	127.3	255.7	383.7	512.3	644.2	775.3	904.7

 $k \approx 129.4$, $b \approx -2.3$, $\sigma_k \approx 0.3$, $\sigma_b \approx 0.6$

• m = 548.0

n	0	1	2	3	4	5
ν_n [Гц]	0	101.1	203.1	303.5	400.0	493.6

 $k \approx 99.0$, $b \approx 2.7$, $\sigma_k \approx 0.7$, $\sigma_b \approx 1.1$

• m = 1544.1

n	0	1	2	3	4
ν_n [Гц	0	166.0	331.9	498.0	668.1

 $k\approx 166.8$, $b\approx -0.8$, $\sigma_k\approx 0.4$, $\sigma_b\approx 0.5$

 $\bullet \ m=2009.0$

n	0	1	2	3	4
ν_n [Гц]	0	170.5	341.4	516.9	687.0

 $k\approx 172.0$, $b\approx -0.9$, $\sigma_k\approx 0.4$, $\sigma_b\approx 0.5$

 $\bullet \ m=2514.5$

n	0	1	2	3	4
ν_n [Гц]	0	208.7	418.3	629.0	837.1

 $k\approx 209.5$, $b\approx -0.3$, $\sigma_k\approx 0.2$, $\sigma_b\approx 0.2$

