

EFM32 Tiny Gecko Family EFM32TG Data Sheet

The EFM32 Tiny Gecko MCUs are the world's most energy-friendly microcontrollers.

The EFM32TG offers unmatched performance and ultra low power consumption in both active and sleep modes. EFM32TG devices consume as little as 0.6 μ A in Stop mode and 150 μ A/MHz in Run mode. It also features autonomous peripherals, high overall chip and analog integration, and the performance of the industry standard 32-bit ARM Cortex-M3 processor, making it perfect for battery-powered systems and systems with high-performance, low-energy requirements.

EFM32TG applications include the following:

- · Smart metering
- · Water metering
- · Gas metering

- · Industrial and home automation
- · Alarm and security systems
- · Health and fitness applications

KEY FEATURES

- · ARM Cortex-M3 at 32 MHz
- · Ultra low power operation
 - 0.6 µA current in Stop (EM3), with brown-out detection and RAM retention
 - 51 µA/MHz in EM1
 - 150 μA/MHz in Run mode (EM0)
- Fast wake-up time of 2 μs
- · Hardware cryptography (AES)
- · Up to 32 kB of Flash and 4 kB of RAM

1. Feature List

- · ARM Cortex-M3 CPU platform
 - High Performance 32-bit processor @ up to 32 MHz
 - · Wake-up Interrupt Controller
- · Flexible Energy Management System
 - 20 nA @ 3 V Shutoff Mode
 - 0.6 μA @ 3 V Stop Mode, including Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 1.0 μA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz oscillator, Power-on Reset, Brown-out Detector, RAM and CPU retention
 - 51 μA/MHz @ 3 V Sleep Mode
 - 150 μA/MHz @ 3 V Run Mode, with code executed from flash
- · 32/16/8 KB Flash
- 4/2 KB RAM
- · Up to 56 General Purpose I/O pins
 - · Configurable push-pull, open-drain, pull-up/down, input filter, drive strength
 - · Configurable peripheral I/O locations
 - · 16 asynchronous external interrupts
 - · Output state retention and wake-up from Shutoff Mode
- · 8 Channel DMA Controller
- · 8 Channel Peripheral Reflex System (PRS) for autonomous inter- peripheral signaling
- · Hardware AES with 128/256-bit keys in 54/75 cycles
- · Timers/Counters
 - · 2× 16-bit Timer/Counter
 - 2×3 Compare/Capture/PWM channels
 - · 16-bit Low Energy Timer
 - · 1× 24-bit Real-Time Counter
 - · 1× 16-bit Pulse Counter
 - · Watchdog Timer with dedicated RC oscillator @ 50 nA
- Integrated LCD Controller for up to 8×20 segments
 - · Voltage boost, adjustable contrast and autonomous animation
- · Communication interfaces
 - Up to 2× Universal Synchronous/Asynchronous Receiver/ Transmitter
 - UART/SPI/SmartCard (ISO 7816)/IrDA/I2S
 - Low Energy UART
 - · Autonomous operation with DMA in Deep Sleep Mode
 - I²C Interface with SMBus support
 - · Address recognition in Stop Mode
- · Ultra low power precision analog peripherals
 - · 12-bit 1 Msamples/s Analog to Digital Converter
 - · 8 single ended channels/4 differential channels
 - · On-chip temperature sensor
 - 12-bit 500 ksamples/s Digital to Analog Converter
 - · Up to 2× Analog Comparator
 - · Capacitive sensing with up to 8 inputs
 - 3× Operational Amplifier
 - · 6.1 MHz GBW, Rail-to-rail, Programmable Gain
 - · Supply Voltage Comparator
- Low Energy Sensor Interface (LESENSE)
 - · Autonomous sensor monitoring in Deep Sleep Mode
 - Wide range of sensors supported, including LC sensors and capacitive buttons
- Ultra efficient Power-on Reset and Brown-Out Detector
- · 2-pin Serial Wire Debug interface

- 1-pin Serial Wire Viewer
- Pre-Programmed UART Bootloader
- Temperature range -40 to 85 °C
- Single power supply 1.98 to 3.8 V
- · Packages:
 - BGA48
 - QFN24
 - QFN32
 - QFN64
 - TQFP48
 - TQFP64

2. Ordering Information

The following table shows the available EFM32TG devices.

Table 2.1. Ordering Information

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Voltage (V)	Temperature (°C)	Package
EFM32TG108F4-QFN24	4	2	32	1.98 - 3.8	-40 - 85	QFN24
EFM32TG108F8-QFN24	8	2	32	1.98 - 3.8	-40 - 85	QFN24
EFM32TG108F16-QFN24	16	4	32	1.98 - 3.8	-40 - 85	QFN24
EFM32TG108F32-QFN24	32	4	32	1.98 - 3.8	-40 - 85	QFN24
EFM32TG110F4-QFN24	4	2	32	1.98 - 3.8	-40 - 85	QFN24
EFM32TG110F8-QFN24	8	2	32	1.98 - 3.8	-40 - 85	QFN24
EFM32TG110F16-QFN24	16	4	32	1.98 - 3.8	-40 - 85	QFN24
EFM32TG110F32-QFN24	32	4	32	1.98 - 3.8	-40 - 85	QFN24
EFM32TG210F8-QFN32	8	2	32	1.98 - 3.8	-40 - 85	QFN32
EFM32TG210F16-QFN32	16	4	32	1.98 - 3.8	-40 - 85	QFN32
EFM32TG210F32-QFN32	32	4	32	1.98 - 3.8	-40 - 85	QFN32
EFM32TG222F8-QFP48	8	2	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32TG222F16-QFP48	16	4	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32TG222F32-QFP48	32	4	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32TG225F8-BGA48	8	2	32	1.98 - 3.8	-40 - 85	BGA48
EFM32TG225F16-BGA48	16	4	32	1.98 - 3.8	-40 - 85	BGA48
EFM32TG225F32-BGA48	32	4	32	1.98 - 3.8	-40 - 85	BGA48
EFM32TG230F8-QFN64	8	2	32	1.98 - 3.8	-40 - 85	QFN64
EFM32TG230F16-QFN64	16	4	32	1.98 - 3.8	-40 - 85	QFN64
EFM32TG230F32-QFN64	32	4	32	1.98 - 3.8	-40 - 85	QFN64
EFM32TG232F8-QFP64	8	2	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32TG232F16-QFP64	16	4	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32TG232F32-QFP64	32	4	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32TG822F8-QFP48	8	2	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32TG822F16-QFP48	16	4	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32TG822F32-QFP48	32	4	32	1.98 - 3.8	-40 - 85	TQFP48
EFM32TG825F8-BGA48	8	2	32	1.98 - 3.8	-40 - 85	BGA48
EFM32TG825F16-BGA48	16	4	32	1.98 - 3.8	-40 - 85	BGA48
EFM32TG825F32-BGA48	32	4	32	1.98 - 3.8	-40 - 85	BGA48
EFM32TG840F8-QFN64	8	2	32	1.98 - 3.8	-40 - 85	QFN64
EFM32TG840F16-QFN64	16	4	32	1.98 - 3.8	-40 - 85	QFN64
EFM32TG840F32-QFN64	32	4	32	1.98 - 3.8	-40 - 85	QFN64

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Voltage (V)	Temperature (°C)	Package
EFM32TG842F8-QFP64	8	2	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32TG842F16-QFP64	16	4	32	1.98 - 3.8	-40 - 85	TQFP64
EFM32TG842F32-QFP64	32	4	32	1.98 - 3.8	-40 - 85	TQFP64

Figure 2.1. Ordering Code Decoder

Adding the suffix 'T' to the part number (e.g. EFM32TG842F32-QFP64T) denotes tray.

Visit http://www.silabs.com for information on global distributors and representatives.

Table of Contents

1.	Feature List	. 2
2.	Ordering Information	. 4
3.	System Summary	11
	3.1 System Introduction	.11
	3.1.1 ARM Cortex-M3 Core	.11
	3.1.2 Debug Interface (DBG)	.11
	3.1.3 Memory System Controller (MSC)	.11
	3.1.4 Direct Memory Access Controller (DMA)	
	3.1.5 Reset Management Unit (RMU)	
	3.1.6 Energy Management Unit (EMU)	
	3.1.7 Clock Management Unit (CMU)	
	3.1.8 Watchdog (WDOG)	
	3.1.9 Peripheral Reflex System (PRS)	
	3.1.10 Inter-Integrated Circuit Interface (I2C)	
	3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)	
	3.1.12 Pre-Programmed UART Bootloader	
	3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)	
	3.1.14 Timer/Counter (TIMER)	
	3.1.15 Real Time Counter (RTC)	
	3.1.16 Low Energy Timer (LETIMER)	
	3.1.17 Pulse Counter (PCNT)	
	3.1.18 Analog Comparator (ACMP)	
	3.1.19 Voltage Comparator (VCMP)	
	3.1.20 Analog to Digital Converter (ADC)	
	3.1.21 Digital to Analog Converter (DAC)	
	3.1.22 Operational Amplifier (OPAMP)	
	3.1.23 Low Energy Sensor Interface (LESENSE)	
	3.1.24 Advanced Encryption Standard Accelerator (AES)	
	3.1.25 General Purpose Input/Output (GPIO)	
	3.1.26 Liquid Crystal Display Driver (LCD)	
	3.2 Configuration Summary	
	3.2.1 EFM32TG108	
	3.2.2 EFM32TG110	
	3.2.3 EFM32TG210	
	3.2.4 EFM32TG222	
	3.2.5 EFM32TG225	
	3.2.6 EFM32TG230	
	3.2.7 EFM32TG232	
	3.2.8 EFM32TG822	
		.23
	3.2.10 EFM32TG840	
	3.2.11 EFM32TG842	.25
	3.3 Memory Map	.26
4	Electrical Characteristics	28

	4.1 Test Conditions												
	4.1.1 Typical Values 4.1.2 Minimum and Maximum Values												
	4.2 Absolute Maximum Ratings												
	4.3 General Operating Conditions												
	4.4 Current Consumption												
	4.4.1 EM2 Current Consumption												
	4.4.2 EM3 Current Consumption .												
	4.4.3 EM4 Current Consumption .												.31
	4.5 Transition between Energy Modes .												.31
	4.6 Power Management												.32
	4.7 Flash				-								.32
	4.8 General Purpose Input Output												.33
	4.9 Oscillators												.40
	4.9.1 LFXO												
	4.9.2 HFXO												
	4.9.3 LFRCO												
	4.9.5 AUXHFRCO												
	4.9.6 ULFRCO												
	4.10 Analog Digital Converter (ADC) .												.48
	4.10.1 Typical Performance												.54
	4.11 Digital Analog Converter (DAC) .				-								.58
	4.12 Operational Amplifier (OPAMP) .												.60
	4.13 Analog Comparator (ACMP)												.65
	4.14 Voltage Comparator (VCMP)												.67
	4.15 LCD												.68
	4.16 I2C				-								.69
	4.17 Digital Peripherals				-								.70
5.	Pin Definitions												71
	5.1 EFM32TG108 (QFN24)												.72
	5.1.1 Pinout				-								.72
	5.1.2 Alternate Functionality Pinout												
	5.1.3 GPIO Pinout Overview		•		•	•		•					.77
	5.2 EFM32TG110 (QFN24)												
	5.2.1 Pinout												
	5.2.3 GPIO Pinout Overview												
	5.2.4 Opamp Pinout Overview												
	5.3 EFM32TG210 (QFN32)												.85
	5.3.1 Pinout												
	5.3.2 Alternate Functionality Pinout												.88

5.3.3 GPIO Pinout C)verview	 	 	 91
5.3.4 Opamp Pinout	Overview	 	 	 91
5.4 EFM32TG222 (TQFI	P48)	 	 	 92
5.4.1 Pinout		 	 	 92
5.4.2 Alternate Fund	tionality Pinout	 	 	 96
5.4.3 GPIO Pinout C)verview	 	 	 99
5.4.4 Opamp Pinout	Overview	 	 	 99
5.5 EFM32TG225 (BGA	48)	 	 	 100
,	· · · · · · ·			
5.5.2 Alternate Fund				
5.5.3 GPIO Pinout C	verview	 	 	 107
5.5.4 Opamp Pinout	Overview	 	 	 107
5.6 EFM32TG230 (QFN	64)	 	 	 108
•				
5.6.2 Alternate Fund	tionality Pinout	 	 	 113
5.6.3 GPIO Pinout C)verview	 	 	 117
5.6.4 Opamp Pinout	Overview	 	 	 117
5.7 EFM32TG232 (TQFI	P64)	 	 	 118
•				
5.7.2 Alternate Fund	tionality Pinout	 	 	 123
5.7.3 GPIO Pinout C)verview	 	 	 127
5.7.4 Opamp Pinout	Overview	 	 	 127
5.8 EFM32TG822 (TQFI	P48)	 	 	 128
5.8.1 Pinout		 	 	 128
5.8.2 Alternate Fund	tionality Pinout	 	 	 132
5.8.3 GPIO Pinout C)verview	 	 	 136
5.8.4 Opamp Pinout	Overview	 	 	 136
5.9 EFM32TG825 (BGA	48)	 	 	 137
5.9.1 Pinout		 	 	 137
5.9.2 Alternate Fund	tionality Pinout	 	 	 141
5.9.3 GPIO Pinout C)verview	 	 	 145
5.9.4 Opamp Pinout	Overview	 	 	 145
5.10 EFM32TG840 (QFI	N64)	 	 	 146
5.10.1 Pinout		 	 	 146
5.10.2 Alternate Fun	ctionality Pinout	 	 	 151
5.10.3 GPIO Pinout				
5.10.4 Opamp Pinou	ut Overview	 	 	 156
5.11 EFM32TG842 (TQI	-P64)	 	 	 157
5.11.1 Pinout		 	 	 157
5.11.2 Alternate Fun	•			
5.11.3 GPIO Pinout	Overview	 	 	 166
5.11.4 Opamp Pinou	ıt Overview	 	 	 166
BGA48 Package Specif	ications .	 	 	 167
6.1 BGA48 Package Din	nensions	 	 	 167
6.2 BGA48 PCB Layout				

6.

	6.3 BGA48 Package Marking
7.	QFN24 Package Specifications
	7.1 QFN24 Package Dimensions
	7.2 QFN24 PCB Layout
	7.3 QFN24 Package Marking
8.	QFN32 Package Specifications
	8.1 QFN32 Package Dimensions
	8.2 QFN32 PCB Layout
	8.3 QFN32 Package Marking
9.	QFN64 Package Specifications
	9.1 QFN64 Package Dimensions
	9.2 QFN64 PCB Layout
	9.3 QFN64 Package Marking
10	. TQFP48 Package Specifications........................184
	10.1 TQFP48 Package Dimensions
	10.2 TQFP48 PCB Layout
	10.3 TQFP48 Package Marking
11	. TQFP64 Package Specifications........................189
	11.1 TQFP64 Package Dimensions
	11.2 TQFP64 PCB Layout
	11.3 TQFP64 Package Marking
12	. Chip Revision, Solder Information, Errata
	12.1 Chip Revision
	12.2 Soldering Information
	12.3 Errata
13	. Revision History.195
	13.1 Revision 2.00
	13.2 Revision 1.40
	13.3 Revision 1.30
	13.4 Revision 1.21
	13.5 Revision 1.20
	13.6 Revision 1.10
	13.7 Revision 1.00
	13.8 Revision 0.96
	13.9 Revision 0.95
	13.10 Revision 0.92

13.11	Revision 0.91															.201
13.12	Revision 0.90															.201
13.13	Revision 0.70					-					-					.202
13.14	Revision 0.60					-					-					.202
13.15	Revision 0.50					-					-					.202
13.16	Revision 0.40															.202

3. System Summary

3.1 System Introduction

The EFM32 MCUs are the world's most energy friendly microcontrollers. With a unique combination of the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from energy saving modes, and a wide selection of peripherals, the EFM32TG microcontroller is well suited for any battery operated application as well as other systems requiring high performance and low-energy consumption. This section gives a short introduction to each of the modules in general terms and also shows a summary of the configuration for the EFM32TG devices. For a complete feature set and in-depth information on the modules, the reader is referred to the EFM32TG Reference Manual.

A block diagram of the EFM32TG is shown in the following figure.

Figure 3.1. Block Diagram

3.1.1 ARM Cortex-M3 Core

The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone MIPS/MHz. A wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32TG Reference Manual.

3.1.2 Debug Interface (DBG)

This device includes hardware debug support through a 2-pin serial-wire debug interface. In addition there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace and software-generated messages.

3.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32TG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

3.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA controller licensed from ARM.

3.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32TG.

3.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32TG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

3.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32TG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

3.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

3.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

3.1.10 Inter-Integrated Circuit Interface (I2C)

The I^2C module provides an interface between the MCU and a serial I^2C -bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fastmode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I^2C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

3.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (USART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 Smart-Cards, IrDA and I2S devices.

3.1.12 Pre-Programmed UART Bootloader

The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Autobaud and destructive write are supported. The autobaud feature, interface and commands are described further in the application note.

3.1.13 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/ s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

3.1.14 Timer/Counter (TIMER)

The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse- Width Modulation (PWM) output.

3.1.15 Real Time Counter (RTC)

The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

3.1.16 Low Energy Timer (LETIMER)

The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2 in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most of the device is powered down, allowing simple tasks to be performed while the power consumption of the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be configured to start counting on compare matches from the RTC.

3.1.17 Pulse Counter (PCNT)

The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature encoded inputs. It runs off either the internal LFACLK or the PCNTn S0IN pin as external clock source. The module may operate in energy mode EM0 - EM3.

3.1.18 Analog Comparator (ACMP)

The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. Inputs can either be one of the selectable internal references or from external pins. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.19 Voltage Comparator (VCMP)

The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can be generated when the supply falls below or rises above a programmable threshold. Response time and thereby also the current consumption can be configured by altering the current supply to the comparator.

3.1.20 Analog to Digital Converter (ADC)

The ADC is a Successive Approximation Register (SAR) architecture, with a resolution of up to 12 bits at up to one million samples per second. The integrated input mux can select inputs from 8 external pins and 6 internal signals.

3.1.21 Digital to Analog Converter (DAC)

The Digital to Analog Converter (DAC) can convert a digital value to an analog output voltage. The DAC is fully differential rail-to-rail, with 12-bit resolution. It has two single-ended output buffers which can be combined into one differential output. The DAC may be used for a number of different applications such as sensor interfaces or sound output.

3.1.22 Operational Amplifier (OPAMP)

The EFM32TG features up to 3 Operational Amplifiers. The Operational Amplifier is a versatile general purpose amplifier with rail-to-rail differential input and rail-to-rail single-ended output. The input can be set to pin, DAC or OPAMP, whereas the output can be pin, OPAMP or ADC. The current is programmable and the OPAMP has various internal configurations such as unity gain, programmable gain using internal resistors etc.

3.1.23 Low Energy Sensor Interface (LESENSE)

The Low Energy Sensor Interface (LESENSETM), is a highly configurable sensor interface with support for up to 8 individually configurable sensors. By controlling the analog comparators and DAC, LESENSE is capable of supporting a wide range of sensors and measurement schemes, and can for instance measure LC sensors, resistive sensors and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addition to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.

3.1.24 Advanced Encryption Standard Accelerator (AES)

The AES accelerator performs AES encryption and decryption with 128-bit or 256-bit keys. Encrypting or decrypting one 128-bit data block takes 52 HFCORECLK cycles with 128-bit keys and 75 HFCORECLK cycles with 256-bit keys. The AES module is an AHB slave which enables efficient access to the data and key registers. All write accesses to the AES module must be 32-bit operations, i.e. 8- or 16-bit operations are not supported.

3.1.25 General Purpose Input/Output (GPIO)

In the EFM32TG, there are up to 56 General Purpose Input/Output (GPIO) pins, which are divided into ports with up to 16 pins each. These pins can individually be configured as either an output or input. More advanced configurations like open-drain, filtering and drive strength can also be configured individually for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM outputs or USART communication, which can be routed to several locations on the device. The GPIO supports up to 16 asynchronous external pin interrupts, which enables interrupts from any pin on the device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other peripherals.

3.1.26 Liquid Crystal Display Driver (LCD)

The LCD driver is capable of driving a segmented LCD display with up to 8x20 segments. A voltage boost function enables it to provide the LCD display with higher voltage than the supply voltage for the device. In addition, an animation feature can run custom animations on the LCD display without any CPU intervention. The LCD driver can also remain active even in Energy Mode 2 and provides a Frame Counter interrupt that can wake-up the device on a regular basis for updating data.

3.2 Configuration Summary

3.2.1 EFM32TG108

The features of the EFM32TG108 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.1. EFM32TG108 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[1:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[1:0], ACMP1_O
VCMP	Full configuration	NA
GPIO	17 pins	Available pins are shown in 5.1.3 GPIO Pinout Overview

3.2.2 EFM32TG110

The features of the EFM32TG110 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.2. EFM32TG110 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[1:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[1:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:6]
DAC0	Full configuration	DAC0_OUT[0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT, Inputs: OPAMP_P1, OPAMP_N1
AES	Full configuration	NA
GPIO	17 pins	Available pins are shown in 5.2.3 GPIO Pinout Overview

3.2.3 EFM32TG210

The features of the EFM32TG210 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.3. EFM32TG210 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[1:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:5], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs: OPAMP_P1, OPAMP_N1, OPAMP_P2
AES	Full configuration	NA
GPIO	24 pins	Available pins are shown in 5.3.3 GPIO Pinout Overview

3.2.4 EFM32TG222

The features of the EFM32TG222 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.4. EFM32TG222 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[4:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[1], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs: OPAMP_P0, OPAMP_P1, OPAMP_N1, OPAMP_P2
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in 5.4.3 GPIO Pinout Overview

3.2.5 EFM32TG225

The features of the EFM32TG225 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.5. EFM32TG225 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[3:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs: OPAMP_P0, OPAMP_P1, OPAMP_N1, OPAMP_P2
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in 5.5.3 GPIO Pinout Overview

3.2.6 EFM32TG230

The features of the EFM32TG230 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.6. EFM32TG230 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[1:0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx
AES	Full configuration	NA
GPIO	56 pins	Available pins are shown in 5.6.3 GPIO Pinout Overview

3.2.7 EFM32TG232

The features of the EFM32TG232 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.7. EFM32TG232 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx
AES	Full configuration	NA
GPIO	53 pins	Available pins are shown in 5.7.3 GPIO Pinout Overview

3.2.8 EFM32TG822

The features of the EFM32TG822 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.8. EFM32TG822 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[4], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:5], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUT0, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs: OPAMP_P0, OPAMP_P1, OPAMP_N1, OPAMP_P2
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in 5.8.3 GPIO Pinout Overview
LCD	Full configuration	LCD_SEG[10:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

3.2.9 EFM32TG825

The features of the EFM32TG825 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.9. EFM32TG825 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
CMU	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[4], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:5], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:4]
DAC0	Full configuration	DAC0_OUT[0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUT0, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs: OPAMP_P0, OPAMP_P1, OPAMP_N1, OPAMP_P2
AES	Full configuration	NA
GPIO	37 pins	Available pins are shown in 5.9.3 GPIO Pinout Overview
LCD	Full configuration	LCD_SEG[10:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

3.2.10 EFM32TG840

The features of the EFM32TG840 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.10. EFM32TG840 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:4], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:4], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs: OPAMP_Px, OPAMP_Nx
AES	Full configuration	NA
GPIO	56 pins	Available pins are shown in 5.10.3 GPIO Pinout Overview
LCD	Full configuration	LCD_SEG[19:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

3.2.11 EFM32TG842

The features of the EFM32TG842 is a subset of the feature set described in the EFM32TG Reference Manual. The following table describes device specific implementation of the features.

Table 3.11. EFM32TG842 Configuration Summary

Module	Configuration	Pin Connections
Cortex-M3	Full configuration	NA
DBG	Full configuration	DBG_SWCLK, DBG_SWDIO, DBG_SWO
MSC	Full configuration	NA
DMA	Full configuration	NA
RMU	Full configuration	NA
EMU	Full configuration	NA
СМИ	Full configuration	CMU_OUT0, CMU_OUT1
WDOG	Full configuration	NA
PRS	Full configuration	NA
I2C0	Full configuration	I2C0_SDA, I2C0_SCL
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS
LEUART0	Full configuration	LEU0_TX, LEU0_RX
TIMER0	Full configuration	TIM0_CC[2:0]
TIMER1	Full configuration	TIM1_CC[2:0]
RTC	Full configuration	NA
LETIMER0	Full configuration	LET0_O[1:0]
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]
ACMP0	Full configuration	ACMP0_CH[7:4], ACMP0_O
ACMP1	Full configuration	ACMP1_CH[7:4], ACMP1_O
VCMP	Full configuration	NA
ADC0	Full configuration	ADC0_CH[7:0]
DAC0	Full configuration	DAC0_OUT[0], DAC0_OUTxALT
OPAMP	Full configuration	Outputs: OPAMP_OUT0, OPAMP_OUT0ALT, OPAMP_OUT1ALT, OPAMP_OUT2, Inputs: OPAMP_Px, OPAMP_Nx
AES	Full configuration	NA
GPIO	53 pins	Available pins are shown in 5.11.3 GPIO Pinout Overview
LCD	Full configuration	LCD_SEG[17:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT

3.3 Memory Map

The EFM32TG memory map is shown in the following figure, with RAM and Flash sizes for the largest memory configuration.

Figure 3.2. System Address Space with Core and Code Space Listing

Figure 3.3. System Address Space with Peripheral Listing

4. Electrical Characteristics

4.1 Test Conditions

4.1.1 Typical Values

The typical data are based on T_{AMB}=25°C and V_{DD}=3.0 V, as defined in 4.3 General Operating Conditions, unless otherwise specified.

4.1.2 Minimum and Maximum Values

The minimum and maximum values represent the worst conditions of ambient temperature, supply voltage and frequencies, as defined in 4.3 General Operating Conditions, unless otherwise specified.

4.2 Absolute Maximum Ratings

The absolute maximum ratings are stress ratings, and functional operation under such conditions are not guaranteed. Stress beyond the limits specified in the following table may affect the device reliability or cause permanent damage to the device. Functional operating conditions are given in 4.3 General Operating Conditions.

Table 4.1. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Storage temperature range	T _{STG}		-40	_	150 ¹	°C
Maximum soldering temperature	T _S	Latest IPC/JEDEC J- STD-020 Standard	_	_	260	°C
External main supply voltage	V _{DDMAX}		0	_	3.8	V
Voltage on any I/O pin	V _{IOPIN}		-0.3	_	V _{DD} +0.3	V

Note:

4.3 General Operating Conditions

Table 4.2. General Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Ambient temperature range	T _{AMB}	-40	_	85	°C
Operating supply voltage	V _{DDOP}	1.98	_	3.8	V
Internal APB clock frequency	f _{APB}	_	_	32	MHz
Internal AHB clock frequency	f _{AHB}	_	_	32	MHz

^{1.} Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed calibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data retention for different temperatures.

4.4 Current Consumption

Table 4.3. Current Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		32 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	157	_	μA/MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	150	170	μΑ/MHz
EMO current No proceeding		21 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V	_	153	172	μΑ/MHz
EM0 current. No prescaling. Running prime number calculation code from Flash. (Production test condition = 14 MHz) EM1 current (Production test condition = 14 MHz)	I _{EM0}	14 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	155	175	μΑ/MHz
		11 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V	_	157	178	μΑ/MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	162	183	μΑ/MHz
		1.2 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	200	240	μΑ/MHz
	I _{EM1}	32 MHz HFXO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	53	_	μΑ/MHz
		28 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	51	57	μΑ/MHz
		21 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	55	59	μΑ/MHz
		14 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V	_	56	61	μΑ/MHz
		11 MHz HFRCO, all peripheral clocks disabled, V _{DD} = 3.0 V	_	58	63	μΑ/MHz
		6.6 MHz HFRCO, all peripheral clocks disabled, V_{DD} = 3.0 V	_	63	68	μΑ/MHz
		1.2 MHz HFRCO. all peripheral clocks disabled, V_{DD} = 3.0 V	_	100	122	μΑ/MHz
		EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =25°C	_	1.0	1.2	μА
EM2 current	I _{EM2}	EM2 current with RTC prescaled to 1 Hz, 32.768 kHz LFRCO, V _{DD} = 3.0 V, T _{AMB} =85°C	_	2.4	5.0	μА
EMO summer		V _{DD} = 3.0 V, T _{AMB} =25°C	_	0.59	1.0	μA
EM3 current	I _{EM3}	V _{DD} = 3.0 V, T _{AMB} =85°C	_	2.0	4.5	μA
EM4 current	leser	V _{DD} = 3.0 V, T _{AMB} =25°C	_	0.02	0.055	μA
EM4 current	I _{EM4}	V _{DD} = 3.0 V, T _{AMB} =85°C	_	0.25	0.70	μΑ

4.4.1 EM2 Current Consumption

Figure 4.1. EM2 Current Consumption, RTC prescaled to 1 kHz, 32.768 kHz LFRCO

4.4.2 EM3 Current Consumption

Figure 4.2. EM3 Current Consumption

4.4.3 EM4 Current Consumption

Figure 4.3. EM4 Current Consumption

4.5 Transition between Energy Modes

The transition times are measured from the trigger to the first clock edge in the CPU.

Table 4.4. Energy Modes Transitions

Parameter	Symbol	Min	Тур	Max	Unit
Transition time from EM1 to EM0	t _{EM10}	_	0	_	HFCORECLK cycles
Transition time from EM2 to EM0	t _{EM20}	_	2	_	μs
Transition time from EM3 to EM0	t _{EM30}	_	2	_	μs
Transition time from EM4 to EM0	t _{EM40}	_	163	_	μs

4.6 Power Management

The EFM32TG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with optional filter) at the PCB level. For practical schematic recommendations, please see the application note, *AN0002 EFM32 Hardware Design Considerations*.

Table 4.5. Power Management

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
BOD threshold on falling external supply voltage	V _{BODextthr} -		1.74	_	1.96	V
BOD threshold on rising exter- nal supply voltage	V _{BODextthr+}		_	1.85	1.98	V
Power-on Reset (POR) threshold on rising external supply voltage	V _{PORthr+}		_	_	1.98	V
Delay from reset is released until program execution starts	t _{RESET}	Applies to Power-on Reset, Brown-out Reset and pin reset.	_	163	_	μs
Voltage regulator decoupling capacitor.	C _{DECOUPLE}	X5R capacitor recommended. Apply between DECOUPLE pin and GROUND	_	1	_	μF

4.7 Flash

Table 4.6. Flash

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Flash erase cycles before failure	EC _{FLASH}		20000	_	_	cycles
		T _{AMB} <150°C	10000	_	_	h
Flash data retention	RET _{FLASH}	T _{AMB} <85°C	10	_	_	years
		T _{AMB} <70°C	20	_	_	years
Word (32-bit) programming time	t _{W_PROG}		20	_	_	μs
Page erase time	t _{P_ERASE}		20	20.4	20.8	ms
Device erase time	t _{D_ERASE}		40	40.8	41.6	ms
Erase current	I _{ERASE}		_	_	7 ¹	mA
Write current	I _{WRITE}		_	_	7 ¹	mA
Supply voltage during flash erase and write	V _{FLASH}		1.98	_	3.8	V
Mata.	1	1	1			

Note:

1. Measured at 25°C

4.8 General Purpose Input Output

Table 4.7. GPIO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input low voltage	V _{IOIL}		_	_	0.30×V _{DD}	V
Input high voltage	V _{IOIH}		0.70×V _{DD}	_	_	V
Output high voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD)	Vіоон	Sourcing 0.1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW- EST	_	0.80×V _{DD}	_	V
		Sourcing 0.1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW- EST	_	0.90×V _{DD}	_	V
		Sourcing 1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW	_	0.85×V _{DD}	_	V
		Sourcing 1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW	_	0.90×V _{DD}	_	V
		Sourcing 6 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.75×V _{DD}	_	_	V
		Sourcing 6 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	0.85×V _{DD}	_	_	V
		Sourcing 20 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH	0.60×V _{DD}	_	_	V
		Sourcing 20 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH	0.80×V _{DD}	_	_	V
Output low voltage (Production test condition = 3.0V, DRIVEMODE = STANDARD)	V _{IOOL}	Sinking 0.1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW- EST	_	0.20×V _{DD}	_	V
		Sinking 0.1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW- EST	_	0.10×V _{DD}	_	V
		Sinking 1 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = LOW	_	0.10×V _{DD}	_	V
		Sinking 1 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = LOW	_	0.05×V _{DD}	_	V
		Sinking 6 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	_	_	0.30×V _{DD}	V
		Sinking 6 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = STANDARD	_	_	0.20×V _{DD}	V
		Sinking 20 mA, V _{DD} =1.98 V, GPIO_Px_CTRL DRIVEMODE = HIGH	_	_	0.35×V _{DD}	V
		Sinking 20 mA, V _{DD} =3.0 V, GPIO_Px_CTRL DRIVEMODE = HIGH	_	_	0.20×V _{DD}	V

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input leakage current	I _{IOLEAK}	High Impedance IO connected to GROUND or V _{DD}	_	±0.1	±100	nA
I/O pin pull-up resistor	R _{PU}		_	40	_	kΩ
I/O pin pull-down resistor	R _{PD}		_	40	_	kΩ
Internal ESD series resistor	R _{IOESD}		_	200	_	Ω
Pulse width of pulses to be removed by the glitch suppression filter	t _{IO-} GLITCH		10	_	50	ns
Output fall time	t _{IOOF}	GPIO_Px_CTRL DRIVEMODE = LOW- EST and load capacitance C_L =12.5-25pF.	20+0.1×C _L	_	250	ns
		GPIO_Px_CTRL DRIVEMODE = LOW and load capacitance C _L =350-600pF	20+0.1×C _L	_	250	ns
I/O pin hysteresis (V _{IOTHR+} - V _{IOTHR-})	V _{IOHYST}	V _{DD} = 1.98 - 3.8 V	0.1×V _{DD}	_	_	V

Figure 4.4. Typical Low-Level Output Current, 2V Supply Voltage

Figure 4.5. Typical High-Level Output Current, 2 V Supply Voltage

Figure 4.6. Typical Low-Level Output Current, 3 V Supply Voltage

Figure 4.7. Typical High-Level Output Current, 3 V Supply Voltage

Figure 4.8. Typical Low-Level Output Current, 3.8 V Supply Voltage

Figure 4.9. Typical High-Level Output Current, 3.8 V Supply Voltage

4.9 Oscillators

4.9.1 LFXO

Table 4.8. LFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supported nominal crystal frequency	f _{LFXO}		_	32.768	_	kHz
Supported crystal equivalent series resistance (ESR)	ESR _{LFXO}		_	30	120	kΩ
Supported crystal external load range	C _{LFXOL}		X ¹	_	25	pF
Current consumption for core and buffer after startup.	I _{LFXO}	ESR=30 kOhm, C _L =10 pF, LFXO- BOOST in CMU_CTRL is 1	_	190	_	nA
Start- up time.	t _{LFXO}	ESR=30 kOhm, C _L =10 pF, 40% - 60% duty cycle has been reached, LFXO-BOOST in CMU_CTRL is 1	_	400	_	ms

Note:

For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note *AN0016 EFM32 Oscillator Design Consideration*.

4.9.2 HFXO

Table 4.9. HFXO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Supported nominal crystal Frequency	f _{HFXO}		4	_	32	MHz
Supported crystal equivalent series resistance (ESR)	ESR _{HFXO}	Crystal frequency 32 MHz	_	30	60	Ω
		Crystal frequency 4 MHz	_	400	1500	Ω
The transconductance of the HFXO input transistor at crystal startup	g _{mHFXO}	HFXOBOOST in CMU_CTRL equals 0b11	20	_	_	mS
Supported crystal external load range	C _{HFXOL}		5	_	25	pF
Current consumption for HFXO after startup	G	4 MHz: ESR=400 Ohm, C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	85	_	μА
	9 _m HFXO	32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	165	_	μА
Startup time	tHFXO	32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11	_	400	_	μs

^{1.} See Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup in Configurator in Simplicity Studio.

4.9.3 LFRCO

Table 4.10. LFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency, V _{DD} = 3.0 V, T _{AMB} =25°C	f _{LFRCO}		31.29	32.768	34.24	kHz
Startup time not including software calibration	t _{LFRCO}		_	150	_	μs
Current consumption	I _{LFRCO}		_	210	380	nA
Frequency step for LSB change in TUNING value	TUNESTEP _{LFRCO}		_	1.5	_	%

Figure 4.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage

4.9.4 HFRCO

Table 4.11. HFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency, V _{DD} =		28 MHz frequency band	27.16	28.0	28.84	MHz
		21 MHz frequency band	20.37	21.0	21.63	MHz
	£	14 MHz frequency band	13.58	14.0	14.42	MHz
3.0 V, T _{AMB} =25°C	f _{HFRCO}	11 MHz frequency band	10.67	11.0	11.33	MHz
		7 MHz frequency band	6.40 ¹	6.60 ¹	6.80 ¹	MHz
		1 MHz frequency band	1.16 ²	1.20 ²	1.24 ²	MHz
Settling time after start-up	t _{HFRCO_settling}	f _{HFRCO} = 14 MHz	_	0.6		Cycles
		f _{HFRCO} = 28 MHz	_	160	190	μA
		f _{HFRCO} = 21 MHz	_	125	155	μA
Current consumption (Pro-		f _{HFRCO} = 14 MHz	_	104	120	μA
duction test condition = 14 MHz)	HFRCO	f _{HFRCO} = 11 MHz	_	94	110	μA
		f _{HFRCO} = 6.6 MHz	_	63	90	μA
		f _{HFRCO} = 1.2 MHz	_	22	32	μA
Frequency step for LSB change in TUNING value	TUNESTEPHERCO		_	0.3 ³	_	%

Note:

- 1. For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.
- 2. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.
- 3. The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Figure 4.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature

Figure 4.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature

4.9.5 AUXHFRCO

Table 4.12. AUXHFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency, V _{DD} = 3.0 V, T _{AMB} =25°C		28 MHz frequency band	27.16	28.0	28.84	MHz
		21 MHz frequency band	20.37	21.0	21.63	MHz
	fauxhfrco	14 MHz frequency band	13.58	14.0	14.42	MHz
		11 MHz frequency band	10.67	11.0	11.33	MHz
		7 MHz frequency band	6.40 ¹	6.60 ¹	6.80 ¹	MHz
		1 MHz frequency band	1.16 ²	1.20 ²	1.24 ²	MHz
Settling time after start-up	t _{AUXHFRCO_settling}	f _{AUXHFRCO} = 14 MHz	_	0.6	_	Cycles
Frequency step for LSB change in TUNING value	TUNE- STEP _{AUXHFRCO}		_	0.3 ³	_	%

Note:

- 1. For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable
- 2. For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.
- 3. The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

4.9.6 ULFRCO

Table 4.13. ULFRCO

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Oscillation frequency	fuLFRCO	25°C, 3V	0.7	_	1.75	kHz
Temperature coefficient	TC _{ULFRCO}		_	0.05	_	%/°C
Supply voltage coefficient	VC _{ULFRCO}		_	-18.2	_	%/V

4.10 Analog Digital Converter (ADC)

Table 4.14. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
legativelte de vene	V	Single ended	0	_	V _{REF}	V
Input voltage range	V _{ADCIN}	Differential	-V _{REF} /2	_	V _{REF} /2	V
Input range of external reference voltage, single ended and differential	V _{ADCREFIN}		1.25	_	V _{DD}	V
Input range of external negative reference voltage on channel 7	V _{ADCREFIN_CH7}	See V _{ADCREFIN}	0	_	V _{DD} -1.1	V
Input range of external positive reference voltage on channel 6	V _{ADCREFIN_CH6}	See V _{ADCREFIN}	0.625	_	V _{DD}	V
Common mode input range	V _{ADCCMIN}		0	_	V _{DD}	V
Input current	I _{ADCIN}	2pF sampling capacitors	_	<100	_	nA
Analog input common mode rejection ratio	CMRR _{ADC}		_	65	_	dB
		1 MSamples/s, 12 bit, external reference	_	377	_	μΑ
	I _{ADC}	10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b00	_	67	_	μΑ
Average active current		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b01	_	68	_	μΑ
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b10	_	71	_	μΑ
		10 kSamples/s 12 bit, internal 1.25 V reference, WARMUP- MODE in ADCn_CTRL set to 0b11	_	244	_	μΑ
Current consumption of internal voltage reference	I _{ADCREF}	Internal voltage reference	_	65	_	μΑ
Input capacitance	C _{ADCIN}		_	2	_	pF
Input ON resistance	R _{ADCIN}		1	_	_	ΜΩ
Input RC filter resistance	R _{ADCFILT}		_	10	_	kΩ
Input RC filter/decoupling ca- pacitance	C _{ADCFILT}		_	250	_	fF
ADC Clock Frequency	f _{ADCCLK}		_	_	13	MHz

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		6 bit	7	_	_	ADCCLK Cycles
Conversion time	tADCCONV	8 bit	11	_	_	ADCCLK Cycles
		12 bit	13	_	_	ADCCLK Cycles
Acquisition time	tadcacq	Programmable	1	_	256	ADCCLK Cycles
Required acquisition time for VDD/3 reference	t _{ADCACQVDD3}		2	_	_	μs
Startup time of reference generator and ADC core in NORMAL	t _{ADCSTART}		_	5	_	μs
modeStartup time of reference generator and ADC core in KEEPADCWARM mode			_	1	_	μs
		1 MSamples/s, 12 bit, single ended, internal 1.25V reference	_	59	_	dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference	_	63	_	dB
		1 MSamples/s, 12 bit, single ended, V _{DD} reference	_	65	_	dB
		1 MSamples/s, 12 bit, differential, internal 1.25V reference	_	60	_	dB
		1 MSamples/s, 12 bit, differential, internal 2.5V reference	_	65	_	dB
		1 MSamples/s, 12 bit, differential, 5V reference	_	54	_	dB
		1 MSamples/s, 12 bit, differential, V _{DD} reference	_	67	_	dB
		1 MSamples/s, 12 bit, differential, 2xV _{DD} reference	_	69	_	dB
Signal to Noise Ratio (SNR)	SNR _{ADC}	200 kSamples/s, 12 bit, single ended, internal 1.25V reference	_	62	_	dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference	_	63	_	dB
		200 kSamples/s, 12 bit, single ended, V _{DD} reference	63	67	_	dB
		200 kSamples/s, 12 bit, differential, internal 1.25V reference	_	63	_	dB
		200 kSamples/s, 12 bit, differential, internal 2.5V reference	_	66	_	dB
		200 kSamples/s, 12 bit, differential, 5V reference	_	66	_	dB
		200 kSamples/s, 12 bit, differential, V _{DD} reference	_	69	_	dB
		200 kSamples/s, 12 bit, differential, 2xV _{DD} reference	_	70	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		1 MSamples/s, 12 bit, single ended, internal 1.25V reference	_	58	_	dB
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference	_	62	_	dB
		1 MSamples/s, 12 bit, single ended, V _{DD} reference	_	64	_	dB
		1 MSamples/s, 12 bit, differential, internal 1.25V reference	_	60	_	dB
		1 MSamples/s, 12 bit, differential, internal 2.5V reference	_	64	_	dB
		1 MSamples/s, 12 bit, differential, 5V reference	_	54	_	dB
		1 MSamples/s, 12 bit, differential, V _{DD} reference	_	66	_	dB
SIgnal-to-Noise And Distortion-	SINAD _{ADC}	1 MSamples/s, 12 bit, differential, 2xV _{DD} reference	_	68	_	dB
ratio (SINAD)	SINADADC	200 kSamples/s, 12 bit, single ended, internal 1.25V reference	_	61	_	dB
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference	_	65	_	dB
		200 kSamples/s, 12 bit, single ended, V _{DD} reference	_	66	_	dB
		200 kSamples/s, 12 bit, differential, internal 1.25V reference	_	63	_	dB
		200 kSamples/s, 12 bit, differential, internal 2.5V reference	_	66	_	dB
		200 kSamples/s, 12 bit, differential, 5V reference	_	66	_	dB
		200 kSamples/s, 12 bit, differential, V _{DD} reference	62	68	_	dB
		200 kSamples/s, 12 bit, differential, 2xV _{DD} reference	_	69	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		1 MSamples/s, 12 bit, single ended, internal 1.25V reference	_	64	_	dBc
		1 MSamples/s, 12 bit, single ended, internal 2.5V reference	_	76	_	dBc
		1 MSamples/s, 12 bit, single ended, V _{DD} reference	_	73	_	dBc
		1 MSamples/s, 12 bit, differential, internal 1.25V reference	_	66	_	dBc
		1 MSamples/s, 12 bit, differential, internal 2.5V reference	_	77	_	dBc
		1 MSamples/s, 12 bit, differential, V _{DD} reference	_	76	_	dBc
		1 MSamples/s, 12 bit, differential, 2xV _{DD} reference	_	75	_	dBc
Spurious-Free Dynamic Range	SEND	1 MSamples/s, 12 bit, differential, 5V reference	_	69	_	dBc
(SFDR)	SFDR _{ADC}	200 kSamples/s, 12 bit, single ended, internal 1.25V reference	_	75	_	dBc
		200 kSamples/s, 12 bit, single ended, internal 2.5V reference	_	75		dBc
		200 kSamples/s, 12 bit, single ended, V _{DD} reference	68	76	_	dBc
		200 kSamples/s, 12 bit, differential, internal 1.25V reference	_	79	_	dBc
		200 kSamples/s, 12 bit, differential, internal 2.5V reference	_	79	_	dBc
		200 kSamples/s, 12 bit, differential, 5V reference	_	78	_	dBc
		200 kSamples/s, 12 bit, differential, V _{DD} reference	_	79	_	dBc
		200 kSamples/s, 12 bit, differential, 2xV _{DD} reference	_	79	_	dBc
Official violations	V	After calibration, single ended	-4	0.3	4	mV
Offset voltage	V _{ADCOFFSET}	After calibration, differential	_	0.3	_	mV
			_	-1.92	_	mV/°C
Thermometer output gradient	TGRAD _{ADCTH}		_	-6.3	_	ADC Co- des/°C
Differential non-linearity (DNL)	DNL _{ADC}	V _{DD} = 3.0 V, external 2.5V reference	-1	±0.7	4	LSB
Integral non-linearity (INL), End point method	INL _{ADC}	V _{DD} = 3.0 V, external 2.5V reference	_	±1.2	±3	LSB
No missing codes	MC _{ADC}		11.999 ¹	12	_	bits
Gain error drift	GAIN _{ED}	1.25V reference	_	0.012	0.033 ³	%/°C
		2.5V reference		0.01 ²	0.03 ³	%/°C

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset error drift	OFFSET _{ED}	1.25V reference	_	0.2 ²	0.7 ³	LSB/°C
Oliset error drift		2.5V reference	_	0.2 ²	0.62 ³	LSB/°C

Note:

- 1. On the average every ADC will have one missing code, most likely to appear around 2048 ± n*512 where n can be a value in the set {-3, -2, -1, 1, 2, 3}. There will be no missing code around 2048, and in spite of the missing code the ADC will be monotonic at all times so that a response to a slowly increasing input will always be a slowly increasing output. Around the one code that is missing, the neighbour codes will look wider in the DNL plot. The spectra will show spurs on the level of -78dBc for a full scale input for chips that have the missing code issue.
- 2. Typical numbers given by abs(Mean) / (85 25).
- 3. Max number given by (abs(Mean) + 3x stddev) / (85 25).

The integral non-linearity (INL) and differential non-linearity parameters are explained in the following two figures.

Figure 4.17. Integral Non-Linearity (INL)

Figure 4.18. Differential Non-Linearity (DNL)

4.10.1 Typical Performance

Figure 4.19. ADC Frequency Spectrum, VDD = 3 V, Temp = 25 °C

Figure 4.20. ADC Integral Linearity Error vs Code, VDD = 3 V, Temp = 25 °C

Figure 4.21. ADC Differential Linearity Error vs Code, VDD = 3 V, Temp = 25 °C

Figure 4.22. ADC Absolute Offset, Common Mode = VDD/2

Figure 4.23. ADC Dynamic Performance vs Temperature for all ADC References, VDD = 3 V

4.11 Digital Analog Converter (DAC)

Table 4.15. DAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output voltage range	V _{DACOUT}	VDD voltage reference, single ended	0	_	V _{DD}	V
		VDD voltage reference, differential	-V _{DD}	_	V_{DD}	V
Output common mode voltage range	V _{DACCM}		0	_	V _{DD}	V
		500 kSamples/s, 12bit	_	400	650	μА
Active current including references for 2 channels	I _{DAC}	100 kSamples/s, 12 bit	_	200	250	μA
		1 kSamples/s 12 bit NORMAL	_	17	25	μA
Sample rate	SR _{DAC}		_	_	500	ksamples/
		Continuous Mode	_	_	1000	kHz
DAC clock frequency	f _{DAC}	Sample/Hold Mode	_	_	250	kHz
		Sample/Off Mode	_	_	250	kHz
Clock cycles per conversion	CYC _{DAC} -		_	2	_	cycles
Conversion time	t _{DACCONV}		2	_	_	μs
Settling time	t _{DACSET} -		_	5	_	μs
		500 kSamples/s, 12 bit, single ended, internal 1.25V reference	_	58	_	dB
		500 kSamples/s, 12 bit, single ended, internal 2.5V reference	_	59	_	dB
Signal to Noise Ratio (SNR)	SNR _{DAC}	500 kSamples/s, 12 bit, differential, internal 1.25V reference	_	58	_	dB
		500 kSamples/s, 12 bit, differential, internal 2.5V reference	_	58	_	dB
		500 kSamples/s, 12 bit, differential, V _{DD} reference	_	59	_	dB
		500 kSamples/s, 12 bit, single ended, internal 1.25V reference	_	57	_	dB
		500 kSamples/s, 12 bit, single ended, internal 2.5V reference	_	54	_	dB
Signal to Noise-pulse Distortion Ratio (SNDR)	SNDR _{DAC}	500 kSamples/s, 12 bit, differential, internal 1.25V reference	_	56	_	dB
		500 kSamples/s, 12 bit, differential, internal 2.5V reference	_	53	_	dB
		500 kSamples/s, 12 bit, differential, V _{DD} reference	_	55	_	dB

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		500 kSamples/s, 12 bit, single ended, internal 1.25V reference	_	62	_	dBc
		500 kSamples/s, 12 bit, single ended, internal 2.5V reference	_	56	_	dBc
Spurious-Free Dynamic Range(SFDR)	SFDR _{DAC}	500 kSamples/s, 12 bit, differential, internal 1.25V reference	_	61	_	dBc
		500 kSamples/s, 12 bit, differential, internal 2.5V reference	_	55	_	dBc
		500 kSamples/s, 12 bit, differential, V _{DD} reference	_	60	_	dBc
Offset voltage	V _{DACOFF} -	After calibration, single ended	_	2	_	mV
	SET	After calibration, differential	_	2	_	mV
Differential non-linearity	DNL _{DAC}	V _{DD} = 3.0 V, V _{DD} reference	_	±1	_	LSB
Integral non-linearity	INL _{DAC}	V _{DD} = 3.0 V, V _{DD} reference	_	±5	_	LSB
No missing codes	MC _{DAC}		_	12	_	bits

4.12 Operational Amplifier (OPAMP)

The electrical characteristics for the Operational Amplifiers are based on simulations.

Table 4.16. OPAMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
		(OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, Unity Gain	_	350	405	μA
Active Current	I _{OPAMP}	(OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, Unity Gain	_	95	115	μA
		(OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1, Unity Gain	_	13	17	μA
		(OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0	_	101	_	dB
Open Loop Gain	G _{OL}	(OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1	_	98	_	dB
		(OPA2)BIASPROG=0x0, (OPA2)HALFBIAS=0x1	_	91	_	dB
		OPA0/OPA1 BIASPROG=0xF, HALFBIAS=0x0	_	16.36	_	MHz
	GBW _{OPAMP}	OPA0/OPA1 BIASPROG=0x7, HALFBIAS=0x1	_	0.81	_	MHz
Gain Bandwidth Product		OPA0/OPA1 BIASPROG=0x0, HALFBIAS=0x1	_	0.11	_	MHz
		OPA2 BIASPROG=0xF, HALF- BIAS=0x0	_	2.11	_	MHz
		OPA2 BIASPROG=0x7, HALF- BIAS=0x1	_	0.72	_	MHz
		OPA2 BIASPROG=0x0, HALF- BIAS=0x1	_	0.09	_	MHz
		BIASPROG=0xF, HALFBIAS=0x0, CL=75 pF	_	64	_	0
Phase Margin	PM _{OPAMP}	BIASPROG=0x7, HALFBIAS=0x1, C _L =75 pF	_	58	_	0
		BIASPROG=0x0, HALFBIAS=0x1, C _L =75 pF	_	58	_	0
Input Resistance	R _{INPUT}		_	100	_	ΜΩ
Load Desistance	В	OPA0/OPA1	200	_	_	Ω
Load Resistance	R _{LOAD}	OPA2	2000	_	_	Ω
Load Current	l. 0.40. = 5	OPA0/OPA1	_	_	11	mA
Load Currell	ILOAD_DC	OPA2	_	_	1.5	mA
Input Voltage	V	OPAxHCMDIS=0	V _{SS}	_	V _{DD}	V
Input Voltage	V _{INPUT}	OPAxHCMDIS=1	V _{SS}	_	V _{DD} -1.2	V
Output Voltage	V _{OUTPUT}		V _{SS}	_	V _{DD}	V

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Offset Voltage	V	Unity Gain, V _{SS} <v<sub>in<v<sub>DD, OPAxHCMDIS=0</v<sub></v<sub>	_	6	_	mV
Input Offset Voltage	Voffset	Unity Gain, V _{SS} <v<sub>in<v<sub>DD-1.2, OPAxHCMDIS=1</v<sub></v<sub>	_	1	_	mV
Input Offset Voltage Drift	V _{OFFSET_DRIFT}		_	_	0.02	mV/°C
		OPA0/OPA1 BIASPROG=0xF, HALFBIAS=0x0	_	46.11	_	V/µs
		OPA0/OPA1 BIASPROG=0x7, HALFBIAS=0x1	_	1.21	_	V/µs
Clay Data	SD	OPA0/OPA1 BIASPROG=0x0, HALFBIAS=0x1	_	0.16	_	V/µs
Slew Rate	SR _{OPAMP}	OPA2 BIASPROG=0xF, HALF- BIAS=0x0	_	4.43	_	V/µs
		OPA2 BIASPROG=0x7, HALF- BIAS=0x1	_	1.30	_	V/µs
		OPA2 BIASPROG=0x0, HALF- BIAS=0x1	_	0.16	_	V/µs
	PU _{OPAMP}	OPA0/OPA1 BIASPROG=0xF, HALFBIAS=0x0	_	0.09	_	μs
		OPA0/OPA1 BIASPROG=0x7, HALFBIAS=0x1	_	1.52	_	μs
Device of Time		OPA0/OPA1 BIASPROG=0x0, HALFBIAS=0x1	_	12.74	_	μs
Power-up Time		OPA2 BIASPROG=0xF, HALF- BIAS=0x0	_	0.09	_	μs
		OPA2 BIASPROG=0x7, HALF- BIAS=0x1	_	0.13	_	μs
		OPA2 BIASPROG=0x0, HALF- BIAS=0x1	_	0.17	_	μs
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<10 kHz, OPAxHCMDIS=0</f<10 	_	101	_	μV _{RMS}
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<10 khz,="" opaxhcmdis="1</td"><td>_</td><td>141</td><td>_</td><td>μV_{RMS}</td></f<10>	_	141	_	μV _{RMS}
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 MHz, OPAxHCMDIS=0</f<1 	_	196	_	μV _{RMS}
Voltage Noise	N	V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 MHz, OPAxHCMDIS=1</f<1 	_	229	_	μV _{RMS}
	N _{OPAMP}	RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=0</f<10>	_	1230	_	μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=1</f<10>	_	2130	_	μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=0</f<1>	_	1630	_	μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=1</f<1>	_	2590	_	μV _{RMS}

Figure 4.24. OPAMP Common Mode Rejection Ratio

Figure 4.25. OPAMP Positive Power Supply Rejection Ratio

Figure 4.26. OPAMP Negative Power Supply Rejection Ratio

Figure 4.27. OPAMP Voltage Noise Spectral Density (Unity Gain) V_{out}=1V

Figure 4.28. OPAMP Voltage Noise Spectral Density (Non-Unity Gain)

4.13 Analog Comparator (ACMP)

Table 4.17. ACMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{ACMPIN}		0	_	V _{DD}	V
ACMP Common Mode voltage range	Vасмрсм		0	_	V _{DD}	V
		BIASPROG=0b0000, FULL- BIAS=0 and HALFBIAS=1 in ACMPn_CTRL register	_	0.1	0.6	μΑ
Active current	I _{ACMP}	BIASPROG=0b1111, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register	_	2.87	12	μА
		BIASPROG=0b1111, FULL- BIAS=1 and HALFBIAS=0 in ACMPn_CTRL register	_	195	520	μΑ
Current consumption of internal voltage reference	IACMPREF	Internal voltage reference off. Using external voltage reference	_	0.0	0.5	μА
		Internal voltage reference	_	2.15	3.00	μA
Offset voltage	VACMPOFFSET	BIASPROG= 0b1010, FULL- BIAS=0 and HALFBIAS=0 in ACMPn_CTRL register	-12	0	12	mV
ACMP hysteresis	V _{ACMPHYST}	Programmable	_	17	_	mV
		CSRESSEL=0b00 in ACMPn_INPUTSEL	_	39	_	kΩ
Capacitive Sense Internal Re-	D	CSRESSEL=0b01 in ACMPn_INPUTSEL	_	71	_	kΩ
sistance	R _{CSRES}	CSRESSEL=0b10 in ACMPn_INPUTSEL	_	104	_	kΩ
		CSRESSEL=0b11 in ACMPn_INPUTSEL	_	136	_	kΩ
Startup time	t _{ACMPSTART}		_	_	10	μs

The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference as given in in the following equation. I_{ACMPREF} is zero if an external voltage reference is used.

I_{ACMPTOTAL} = I_{ACMP} + I_{ACMPREF}

HYSTSEL=0 HYSTSEL=2 HYSTSEL=4 HYSTSEL=6

12

14

Figure 4.29. ACMP Characteristics, Vdd = 3 V, Temp = 25 °C, FULLBIAS = 0, HALFBIAS = 1

4.14 Voltage Comparator (VCMP)

Table 4.18. VCMP

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input voltage range	V _{VCMPIN}		_	V_{DD}	_	V
VCMP Common Mode voltage range	Vvcmpcm		_	V _{DD}	_	V
Active current	I _{VCMP}	BIASPROG=0b0000 and HALF-BIAS=1 in VCMPn_CTRL register	_	0.3	0.6	μА
		BIASPROG=0b1111 and HALF-BIAS=0 in VCMPn_CTRL register. LPREF=0.	_	22	30	μА
Startup time reference generator	t _{VCMPREF}	NORMAL	_	10	_	μs
Offset voltage	V _{VCMPOFFSET}	Single ended	_	10	_	mV
		Differential	_	10	_	mV
VCMP hysteresis	V _{VCMPHYST}		_	17	_	mV
Startup time	t _{VCMPSTART}		_	_	10	μs

The V_{DD} trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:

 $V_{
m DD\ Trigger\ Level}$ = 1.667V + 0.034 × TRIGLEVEL

4.15 LCD

Table 4.19. LCD

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Frame rate	f _{LCDFR}		30	_	200	Hz
Number of segments supported	NUM _{SEG}		_	20×8	_	seg
LCD supply voltage range	V _{LCD}	Internal boost circuit enabled	2.0	_	3.8	V
		Display disconnected, static mode, framerate 32 Hz, all segments on.	_	250	_	nA
Steady state current consumption.	ILCD	Display disconnected, quadruplex mode, framerate 32 Hz, all segments on, bias mode to ONETHIRD in LCD_DISPCTRL register.	_	550	_	nA
Steady state Current contribution		Internal voltage boost off	_	0	_	μA
of internal boost.	I _{LCDBOOST}	Internal voltage boost on, boosting from 2.2 V to 3.0 V.	_	8.4	_	μА
		VBLEV of LCD_DISPCTRL register to LEVEL0	_	3.0	_	V
		VBLEV of LCD_DISPCTRL register to LEVEL1	_	3.08	_	V
		VBLEV of LCD_DISPCTRL register to LEVEL2	_	3.17	_	V
Depart Valteria	V	VBLEV of LCD_DISPCTRL register to LEVEL3	_	3.26	_	V
Boost Voltage	V _{BOOST}	VBLEV of LCD_DISPCTRL register to LEVEL4	_	3.34	_	V
		VBLEV of LCD_DISPCTRL register to LEVEL5	_	3.43	_	V
		VBLEV of LCD_DISPCTRL register to LEVEL6	_	3.52	_	V
		VBLEV of LCD_DISPCTRL register to LEVEL7	_	3.6	_	V

The total LCD current is given by the following equation. $I_{LCDBOOST}$ is zero if internal boost is off.

 $I_{LCDTOTAL} = I_{LCD} + I_{LCDBOOST}$

Table 4.20. I2C Standard-mode (Sm)

Parameter	Symbol	Min	Тур	Max	Unit
SCL clock frequency	f _{SCL}	0	_	100 ¹	kHz
SCL clock low time	t _{LOW}	4.7	_	_	μs
SCL clock high time	t _{HIGH}	4.0	_	_	μs
SDA set-up time	t _{SU,DAT}	250	_	_	ns
SDA hold time	t _{HD,DAT}	8	_	3450 ^{2,3}	ns
Repeated START condition set-up time	t _{SU,STA}	4.7	_	_	μs
(Repeated) START condition hold time	t _{HD,STA}	4.0	_	_	μs
STOP condition set-up time	t _{SU,STO}	4.0	_	_	μs
Bus free time between a STOP and a START condition	t _{BUF}	4.7	_	_	μs

Note:

- 1. For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32TG Reference Manual.
- 2. The maximum SDA hold time (t_{HD.DAT}) needs to be met only when the device does not stretch the low time of SCL (t_{LOW}).
- 3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10⁻⁹ [s] * f_{HFPERCLK} [Hz]) 4).

Table 4.21. I2C Fast-mode (Fm)

Parameter	Symbol	Min	Тур	Max	Unit
SCL clock frequency	f _{SCL}	0	_	400 ¹	kHz
SCL clock low time	t _{LOW}	1.3	_	_	μs
SCL clock high time	t _{HIGH}	0.6	_	_	μs
SDA set-up time	t _{SU,DAT}	100	_	_	ns
SDA hold time	t _{HD,DAT}	8	_	900 ^{2,3}	ns
Repeated START condition set-up time	t _{SU,STA}	0.6	_	_	μs
(Repeated) START condition hold time	t _{HD,STA}	0.6	_	_	μs
STOP condition set-up time	t _{SU,STO}	0.6	_	_	μs
Bus free time between a STOP and a START condition	t _{BUF}	1.3	_	_	μs

Note:

- 1. For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32TG Reference Manual.
- 2. The maximum SDA hold time $(t_{HD,DAT})$ needs to be met only when the device does not stretch the low time of SCL (t_{LOW}) .
- 3. When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ($(900*10^{-9} [s] * f_{HFPERCLK} [Hz]) 4)$.

Table 4.22. I2C Fast-mode Plus (Fm+)

Parameter	Symbol	Min	Тур	Max	Unit
SCL clock frequency	f _{SCL}	0	_	1000 ¹	kHz
SCL clock low time	t _{LOW}	0.5	_	_	μs
SCL clock high time	t _{HIGH}	0.26	_	_	μs
SDA set-up time	t _{SU,DAT}	50	_	_	ns
SDA hold time	t _{HD,DAT}	8	_	_	ns
Repeated START condition set-up time	t _{SU,STA}	0.26	_	_	μs
(Repeated) START condition hold time	t _{HD,STA}	0.26	_	_	μs
STOP condition set-up time	t _{SU,STO}	0.26	_	_	μs
Bus free time between a STOP and a START condition	t _{BUF}	0.5	_	_	μs
		-		1	

Note:

4.17 Digital Peripherals

Table 4.23. Digital Peripherals

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
USART current	I _{USART}	USART idle current, clock enabled	_	7.5	_	μA/MHz
LEUART current	I _{LEUART}	LEUART idle current, clock enabled	_	150	_	nA
I2C current	I _{I2C}	I2C idle current, clock enabled	_	6.25	_	μΑ/MHz
TIMER current	I _{TIMER}	TIMER_0 idle current, clock enabled	_	8.75	_	μA/MHz
LETIMER current	I _{LETIMER}	LETIMER idle current, clock enabled	LETIMER idle current, clock enabled —		_	nA
PCNT current	I _{PCNT}	PCNT idle current, clock enabled	_	60	_	nA
RTC current	I _{RTC}	RTC idle current, clock enabled	_	40	_	nA
LCD current	I _{LCD}	LCD idle current, clock enabled	_	50	_	nA
AES current	I _{AES}	AES idle current, clock enabled	_	2.5	_	μΑ/MHz
GPIO current	I _{GPIO}	GPIO idle current, clock enabled	_	5.31	_	μA/MHz
PRS current	I _{PRS}	PRS idle current	_	2.81	_	μΑ/MHz
DMA current	I _{DMA}	Clock enable	_	8.12	_	μA/MHz

^{1.} For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32TG Reference Manual.

5. Pin Definitions

Note: Please refer to the application note *AN0002 EFM32 Hardware Design Considerations* for guidelines on designing Printed Circuit Boards (PCBs) for the EFM32TG.

5.1 EFM32TG108 (QFN24)

5.1.1 Pinout

The EFM32TG108 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.1. EFM32TG108 Pinout (top view, not to scale)

Table 5.1. Device Pinout

QFN24 Pin# and Name		Pin Alternate Functionality / Description				
Pin#	Pin Name	Analog	Analog Timers Communication		Other	
0	VSS	Ground.				
1	PA0		TIM0 CC0 #0/1/4	LEU0_RX #4	PRS_CH0 #0	
'	PAU		11WO_CCO #0/1/4	I2C0_SDA #0	GPIO_EM4WU0	
2	IOVDD_0	Digital IO power supply 0				

QFN2	24 Pin# and Name		Pin Alternate Functi	onality / Description			
Pin #	Pin Name	Analog	Timers	Communication	Other		
	D00	A CAMPO OLIO	TIM0_CC1 #4	US1_TX #0	LES_CH0 #0		
3	PC0	ACMP0_CH0	PCNT0_S0IN #2	I2C0_SDA #4	PRS_CH2 #0		
	504	A CAMPO CILIA	TIM0_CC2 #4	US1_RX #0	LES_CH1 #0		
4	PC1	ACMP0_CH1	PCNT0_S1IN #2	I2C0_SCL #4	PRS_CH3 #0		
5	PB7	LFXTAL_P	TIM1_CC0 #3	US1_CLK #0			
6	PB8	LFXTAL_N	TIM1_CC1 #3	US1_CS #0			
7	RESETn		o apply an external reset s he internal pull-up ensure		ired to only drive this pin		
8	PB11		TIM1_CC2 #3				
0	PDII		LETIM0_OUT0 #1				
9	AVDD_2	Analog power supply 2.					
10	PB13	HFXTAL_P		LEU0_TX #1			
11	PB14	HFXTAL_N		LEU0_RX #1			
12	AVDD_0	Analog power supply 0.					
			TIM1_CC0 #4	US1_RX #2	LES_ALTEX0 #0		
13	PD6		LETIM0_OUT0 #0	I2C0_SDA #1	ACMP0_O #2		
			PCNT0_S0IN #3	1200_3DA #1	ACIVII 0_O #2		
			TIM1_CC1 #4	US1_TX #2	CMU_CLK0 #2		
14	PD7		LETIM0_OUT1 #0	I2C0_SCL #1	LES_ALTEX1 #0		
			PCNT0_S1IN #3	1200_001#1	ACMP1_O #2		
15	VDD_DREG	Power supply for on-chip	voltage regulator.				
16	DECOUPLE	Decouple output for on-chat this pin.	nip voltage regulator. An ex	kternal capacitance of size	C _{DECOUPLE} is required		
17	PC14	ACMP1_CH6	TIM1_CC1 #0		LES_CH14 #0		
17	1014	AOMI 1_ONO	PCNT0_S1IN #0		LLO_01114 #0		
18	PC15	ACMP1_CH7	TIM1_CC2 #0		LES_CH15 #0		
10	1 010	AOMI 1_OTI	11W1_002 #0		DBG_SWO #1		
			TIM0_CC0 #5	US1_CLK #2	DBG_SWCLK #0/1		
19	PF0		LETIMO_OUT0 #2	LEU0_TX #3	BOOT_TX		
			EETHVIO_0010 #2	I2C0_SDA #5	B001_1X		
			TIM0_CC1 #5	US1_CS #2	DBG_SWDIO #0/1		
20	PF1		LETIM0_OUT1 #2	LEU0_RX #3	GPIO_EM4WU3		
				12C0_SCL #5	BOOT_RX		
					ACMP1_O #0		
21	PF2		TIM0_CC2 #5	LEU0_TX #4	DBG_SWO #0		
					GPIO_EM4WU4		

QFN2	24 Pin# and Name		Pin Alternate Functi	onality / Description			
Pin#	Pin Name	Analog	Timers	Communication	Other		
22	IOVDD_5	Digital IO power supply 5.					
22	DE12		TIMA 000 #4	1300 804 #6	CMU_CLK1 #2		
23	23 PE12		TIM1_CC2 #1	I2C0_SDA #6	LES_ALTEX6 #0		
					LES_ALTEX7 #0		
24 PE13				I2C0_SCL #6	ACMP0_O #0		
					GPIO_EM4WU5		

5.1.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.2. Alternate functionality overview

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
BOOT_RX	PF1							Bootloader RX.
BOOT_TX	PF0							Bootloader TX.
CMU_CLK0			PD7					Clock Management Unit, clock output number 0.
CMU_CLK1			PE12					Clock Management Unit, clock output number 1.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL		PD7			PC1	PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			PC0	PF0	PE12	I2C0 Serial Data input / output.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.

Alternate	Alternate LOCATION										
Functionality	0	1	2	3	4	5	6	Description			
LES_ALTEX7	PE13							LESENSE alternate exite output 7.			
LES_CH0	PC0							LESENSE channel 0.			
LES_CH1	PC1							LESENSE channel 1.			
LES_CH14	PC14							LESENSE channel 14.			
LES_CH15	PC15							LESENSE channel 15.			
LETIMO_OUT0	PD6	PB11	PF0					Low Energy Timer LETIM0, output channel 0.			
LETIM0_OUT1	PD7		PF1					Low Energy Timer LETIM0, output channel 1.			
LEU0_RX		PB14		PF1	PA0			LEUART0 Receive input.			
LEU0_TX		PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.			
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.			
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.			
PCNT0_S0IN			PC0	PD6				Pulse Counter PCNT0 input number 0.			
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.			
PRS_CH0	PA0							Peripheral Reflex System PRS, channel 0.			
PRS_CH2	PC0							Peripheral Reflex System PRS, channel 2.			
PRS_CH3	PC1							Peripheral Reflex System PRS, channel 3.			
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.			
TIM0_CC1					PC0	PF1		Timer 0 Capture Compare input / output channel 1.			
TIM0_CC2					PC1	PF2		Timer 0 Capture Compare input / output channel 2.			
TIM1_CC0				PB7	PD6			Timer 1 Capture Compare input / output channel 0.			
TIM1_CC1	PC14			PB8	PD7			Timer 1 Capture Compare input / output channel 1.			
TIM1_CC2	PC15	PE12		PB11				Timer 1 Capture Compare input / output channel 2.			
US1_CLK	PB7		PF0					USART1 clock input / output.			
US1_CS	PB8		PF1					USART1 chip select input / output.			
								USART1 Asynchronous Receive.			
US1_RX	PC1		PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).			
US1_TX	PC0		PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.			
								USART1 Synchronous mode Master Output / Slave Input (MOSI).			

5.1.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG108 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.3. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	-	-	-	-	-	-	-	-	-	-	-	-	PC1	PC0
Port D	-	-	-	-	-	-	-	-	PD7	PD6	-	-	-	-	-	-
Port E	-	-	PE13	PE12	-	-	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	-	PF2	PF1	PF0

5.2 EFM32TG110 (QFN24)

5.2.1 Pinout

The EFM32TG110 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.2. EFM32TG110 Pinout (top view, not to scale)

Table 5.4. Device Pinout

QFN2	24 Pin# and Name		Pin Alternate Functi	ionality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0		TIMO CCO #0/4/4	LEU0_RX #4	PRS_CH0 #0
'	PAU		TIM0_CC0 #0/1/4	I2C0_SDA #0	GPIO_EM4WU0
2	IOVDD_0	Digital IO power supply 0			

QFN24	Pin# and Name	Pin Alternate Functionality / Description											
Pin #	Pin Name	Analog	Timers	Communication	Other								
		ACMP0_CH0	TIM0_CC1 #4	US0_TX #5	LES_CH0 #0								
3	PC0	DAC0_OUT0ALT #0/	_	US1_TX #0	_								
		OPAMP_OUT0ALT	PCNT0_S0IN #2	I2C0_SDA #4	PRS_CH2 #0								
		ACMP0_CH1	TIMO 000 #4	US0_RX #5	1.50 0114 #0								
4	PC1	DAC0_OUT0ALT #1/	TIM0_CC2 #4	US1_RX #0	LES_CH1 #0								
		OPAMP_OUT0ALT	PCNT0_S1IN #2	I2C0_SCL #4	PRS_CH3 #0								
_	DD7	LEVIAL D	TIM4 CC0 #2	US0_TX #4									
5	PB7	LFXTAL_P	TIM1_CC0 #3	US1_CLK #0									
	DDO	LEVTAL N	TIMA 004 #0	US0_RX #4									
6	PB8	LFXTAL_N	TIM1_CC1 #3	US1_CS #0									
7	RESETn		o apply an external reset s he internal pull-up ensure t	ource to this pin, it is requithat reset is released.	red to only drive this pin								
8	PB11	DAC0_OUT0 /	TIM1_CC2 #3										
0	PBII	OPAMP_OUT0	LETIM0_OUT0 #1										
9	AVDD_2	Analog power supply 2.											
10	PB13	HFXTAL P		US0_CLK #4/5									
10	1 013	III XIAL_I		LEU0_TX #1									
11	PB14	HFXTAL_N		US0_CS #4/5									
''	FB14	TIFXTAL_N		LEU0_RX #1									
12	AVDD_0	Analog power supply 0.											
		ADC0_CH6	TIM1_CC0 #4	US1_RX #2	LES_ALTEX0 #0								
13	PD6	DAC0_P1/	LETIMO_OUT0 #0	I2C0_SDA #1	ACMP0 O#2								
		OPAMP_P1	PCNT0_S0IN #3	1200_3DA #1	AGIVII 0_0 #2								
		ADC0_CH7	TIM1_CC1 #4	US1_TX #2	CMU_CLK0 #2								
14	PD7	DAC0_N1/	LETIM0_OUT1 #0	I2C0 SCL #1	LES_ALTEX1 #0								
		OPAMP_N1	PCNT0_S1IN #3	1200_30L#1	ACMP1_O #2								
15	VDD_DREG	Power supply for on-chip	voltage regulator.										
16	DECOUPLE	Decouple output for on-chat this pin.	nip voltage regulator. An ex	kternal capacitance of size	C _{DECOUPLE} is required								
		ACMP1_CH6	TIM1 CC1 #0										
17	PC14	DAC0_OUT1ALT #2/	TIM1_CC1 #0	US0_CS #3	LES_CH14 #0								
		OPAMP_OUT1ALT	PCNT0_S1IN #0										
		ACMP1_CH7			150 0145 "2								
18	PC15	DAC0_OUT1ALT #3/	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0								
		OPAMP_OUT1ALT			DBG_SWO #1								

QFN2	24 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
19	PF0		TIM0_CC0 #5 LETIM0_OUT0 #2	US1_CLK #2 LEU0_TX #3 I2C0_SDA #5	DBG_SWCLK #0/1 BOOT_TX
20	PF1		TIM0_CC1 #5 LETIM0_OUT1 #2	US1_CS #2 LEU0_RX #3 I2C0_SCL #5	DBG_SWDIO #0/1 GPIO_EM4WU3 BOOT_RX
21	PF2		TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4
22	IOVDD_5	Digital IO power supply 5.			
23	PE12		TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0
24	PE13			US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5

5.2.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.5. Alternate functionality overview

Alternate				LOCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PF1							Bootloader RX.
BOOT_TX	PF0							Bootloader TX.
CMU_CLK0			PD7					Clock Management Unit, clock output number 0.
CMU_CLK1			PE12					Clock Management Unit, clock output number 1.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT0AL T/ OPAMP_OUT0 ALT	PC0	PC1						Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT			PC14	PC15				Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL		PD7			PC1	PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			PC0	PF0	PE12	I2C0 Serial Data input / output.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH0	PC0							LESENSE channel 0.
LES_CH1	PC1							LESENSE channel 1.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIM0_OUT0	PD6	PB11	PF0					Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1					Low Energy Timer LETIM0, output channel 1.
LEU0_RX		PB14		PF1	PA0			LEUART0 Receive input.
LEU0_TX		PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN			PC0	PD6				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0							Peripheral Reflex System PRS, channel 0.
PRS_CH2	PC0							Peripheral Reflex System PRS, channel 2.
PRS_CH3	PC1							Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1					PC0	PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2					PC1	PF2		Timer 0 Capture Compare input / output channel 2.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
TIM1_CC0				PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14			PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11				Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12			PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13			PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX				PE12	PB8	PC1		USART0 Synchronous mode Master Input / Slave Output (MISO).
US0_TX				PE13	PB7	PC0		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7		PF0					USART1 clock input / output.
US1_CS	PB8		PF1					USART1 chip select input / output.
US1_RX	PC1		PD6					USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0		PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.2.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG110 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.6. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	-	-	-	-	-	-	-	-	-	-	-	-	PC1	PC0
Port D	-	-	-	-	-	-	-	-	PD7	PD6	-	-	-	-	-	-
Port E	-	-	PE13	PE12	-	-	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	-	PF2	PF1	PF0

5.2.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG110 is shown in the following figure.

Figure 5.3. Opamp Pinout

5.3 EFM32TG210 (QFN32)

5.3.1 Pinout

The EFM32TG210 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.4. EFM32TG210 Pinout (top view, not to scale)

Table 5.7. Device Pinout

QFN	32 Pin# and Name	Pin Alternate Functionality / Description							
Pin#	Pin Name	Analog	Timers	Communication	Other				
0	VSS	Ground.							
1	PA0		TIMO CCO #0/4/4	LEU0_RX #4	PRS_CH0 #0				
'	PAU		TIM0_CC0 #0/1/4	I2C0_SDA #0	GPIO_EM4WU0				
2	PA1		TIM0 CC1 #0/1	I2C0 SCL #0	CMU_CLK1 #0				
	Z		TIMO_CCT#0/T	1200_30L #0	PRS_CH1 #0				

QFN3	32 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0
4	IOVDD_0	Digital IO power supply 0.			
5	PC0	ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT	TIM0_CC1 #4 PCNT0_S0IN #2	US0_TX #5 US1_TX #0 I2C0_SDA #4	LES_CH0 #0 PRS_CH2 #0
6	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0
7	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4 US1_CLK #0	
8	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4 US1_CS #0	
9	RESETn	Reset input, active low. To low during reset, and let the		ource to this pin, it is requithat reset is released.	red to only drive this pin
10	PB11	DAC0_OUT0/ OPAMP_OUT0	TIM1_CC2 #3 LETIM0_OUT0 #1		
11	AVDD_2	Analog power supply 2.			
12	PB13	HFXTAL_P		US0_CLK #4/5 LEU0_TX #1	
13	PB14	HFXTAL_N		US0_CS #4/5 LEU0_RX #1	
14	IOVDD_3	Digital IO power supply 3.			
15	AVDD_0	Analog power supply 0.			
16	PD4	ADC0_CH4 OPAMP_P2		LEU0_TX #0	
17	PD5	ADC0_CH5 OPAMP_OUT2#0		LEU0_RX #0	
18	PD6	ADC0_CH6 DAC0_P1/ OPAMP_P1	TIM1_CC0 #4 LETIM0_OUT0 #0 PCNT0_S0IN #3	US1_RX #2 I2C0_SDA #1	LES_ALTEX0 #0 ACMP0_O #2
19	PD7	ADC0_CH7 DAC0_N1/ OPAMP_N1	TIM1_CC1 #4 LETIM0_OUT1 #0 PCNT0_S1IN #3	US1_TX #2 I2C0_SCL #1	CMU_CLK0 #2 LES_ALTEX1 #0 ACMP1_O #2
20	VDD_DREG	Power supply for on-chip	voltage regulator.		
21	DECOUPLE	Decouple output for on-ch at this pin.	ip voltage regulator. An ex	xternal capacitance of size	C _{DECOUPLE} is required

QFN:	32 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
22	PC13	ACMP1_CH5 DAC0_OUT1ALT #1/ OPAMP_OUT1ALT	TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0		LES_CH13 #0
23	PC14	ACMP1_CH6 DAC0_OUT1ALT #2/ OPAMP_OUT1ALT	TIM1_CC1 #0 PCNT0_S1IN #0	US0_CS #3	LES_CH14 #0
24	PC15	ACMP1_CH7 DAC0_OUT1ALT #3/ OPAMP_OUT1ALT	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0 DBG_SWO #1
25	PF0		TIM0_CC0 #5 LETIM0_OUT0 #2	US1_CLK #2 LEU0_TX #3 I2C0_SDA #5	DBG_SWCLK #0/1
26	PF1		TIM0_CC1 #5 LETIM0_OUT1 #2	US1_CS #2 LEU0_RX #3 I2C0_SCL #5	DBG_SWDIO #0/1 GPIO_EM4WU3
27	PF2		TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4
28	IOVDD_5	Digital IO power supply 5.			
29	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX
30	PE11		TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX
31	PE12		TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0
32	PE13			US0_TX #3 US0_CS #0 I2C0_SCL #6	LES_ALTEX7 #0 ACMP0_O #0 GPIO_EM4WU5

5.3.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.8. Alternate functionality overview

Alternate				LOCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2		PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1		PE12					Clock Management Unit, clock output number 1.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT0AL T/ OPAMP_OUT0 ALT	PC0	PC1						Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT		PC13	PC14	PC15				Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5							Operational Amplifier 2 output.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7			PC1	PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			PC0	PF0	PE12	I2C0 Serial Data input / output.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH0	PC0							LESENSE channel 0.
LES_CH1	PC1							LESENSE channel 1.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIMO_OUT0	PD6	PB11	PF0					Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1					Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14		PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0	PD6				Pulse Counter PCNT0 input number 0.

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0							Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1							Peripheral Reflex System PRS, channel 1.
PRS_CH2	PC0							Peripheral Reflex System PRS, channel 2.
PRS_CH3	PC1							Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			PC0	PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			PC1	PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12			PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13			PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11			PE12	PB8	PC1		USART0 Synchronous mode Master Input / Slave Output (MISO).
LICO TV	DE40			DE42	DDZ	DCO		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10			PE13	PB7	PC0		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7		PF0					USART1 clock input / output.
US1_CS	PB8		PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX	PC1		PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).
LIC4 TV	DCO		DD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0		PD7					USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.3.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG210 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.9. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	-	-	-	-	-	-	-	-	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	-	-	-	-	-	-	-	-	-	-	-	PC1	PC0
Port D	-	-	-	-	-	-	-	-	PD7	PD6	PD5	PD4	-	-	-	-
Port E	-	-	PE13	PE12	PE11	PE10	-	-	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	-	-	-	PF2	PF1	PF0

5.3.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG210 is shown in the following figure.

Figure 5.5. Opamp Pinout

5.4 EFM32TG222 (TQFP48)

5.4.1 Pinout

The EFM32TG222 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.6. EFM32TG222 Pinout (top view, not to scale)

Table 5.10. Device Pinout

QFP4	48 Pin# and Name	Pin Alternate Functionality / Description						
Pin#	Pin Name	Analog	Timers	Communication	Other			
1	PA0		TIM0 CC0 #0/1/4	LEU0_RX #4	PRS_CH0 #0			
'	PAU		11WO_CCO #0/1/4	I2C0_SDA #0	GPIO_EM4WU0			
2	DA4		TIMO CC4 #0/4	1200 001 #0	CMU_CLK1 #0			
2	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	PRS_CH1 #0			
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0			

QFP4	18 Pin# and Name		Pin Alternate Functi	ionality / Description			
Pin#	Pin Name	Analog	Timers	Communication	Other		
4	IOVDD_0	Digital IO power supply 0.					
5	VSS	Ground.					
6	PC0	ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT	TIM0_CC1 #4 PCNT0_S0IN #2	US0_TX #5 US1_TX #0 I2C0_SDA #4	LES_CH0 #0 PRS_CH2 #0		
7	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0		
8	PC2	ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT			LES_CH2 #0		
9	PC3	ACMP0_CH3 DAC0_OUT0ALT #3/ OPAMP_OUT0ALT			LES_CH3 #0		
10	PC4	ACMP0_CH4 DAC0_P0 / OPAMP_P0	LETIM0_OUT0 #3		LES_CH4 #0		
11	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4 US1_CLK #0			
12	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4 US1_CS #0			
13	PA8						
14	PA9						
15	PA10						
16	RESETn	Reset input, active low. To low during reset, and let the		source to this pin, it is requite that reset is released.	red to only drive this pin		
17	PB11	DAC0_OUT0/ OPAMP_OUT0	TIM1_CC2 #3 LETIM0_OUT0 #1				
18	VSS		Gro	ound.			
19	AVDD_1	Analog power supply 1.					
20	PB13	HFXTAL_P		US0_CLK #4/5 LEU0_TX #1			
21	PB14	HFXTAL_N		US0_CS #4/5 LEU0_RX #1			
22	IOVDD_3	Digital IO power supply 3.					
23	AVDD_0	Analog power supply 0.					

QFP4	18 Pin# and Name		Pin Alternate Functionality / Description						
Pin #	Pin Name	Analog	Timers	Communication	Other				
0.4	DD4	ADC0_CH4		1 EUO TV #0					
24	PD4	OPAMP_P2		LEU0_TX #0					
25	PD5	ADC0_CH5		1 EUO DV #0					
25	PDS	OPAMP_OUT2 #0		LEU0_RX #0					
		ADC0_CH6	TIM1_CC0 #4	US1_RX #2	LES_ALTEX0 #0				
26	PD6	DAC0_P1/	LETIMO_OUT0 #0	I2C0_SDA #1	ACMP0_O #2				
		OPAMP_P1	PCNT0_S0IN #3	12C0_3DA #1	ACIVIFU_O #2				
		ADC0_CH7	TIM1_CC1 #4	US1_TX #2	CMU_CLK0 #2				
27	PD7	DAC0_N1/	LETIM0_OUT1 #0	_	LES_ALTEX1 #0				
		OPAMP_N1	PCNT0_S1IN #3	I2C0_SCL #1	ACMP1_O #2				
28	VDD_DREG	Power supply for on-chip	voltage regulator.						
29	DECOUPLE	Decouple output for on-chat this pin.	nip voltage regulator. An ex	xternal capacitance of size	C _{DECOUPLE} is required				
30	PC8	ACMP1_CH0		US0_CS #2	LES_CH8 #0				
31	PC9	ACMP1_CH1		US0_CLK #2	LES_CH9 #0				
31	FC9	ACMIF I_CITI		030_CLN #2	GPIO_EM4WU2				
32	PC10	ACMP1_CH2		US0_RX #2	LES_CH10 #0				
33	PC11	ACMP1_CH3		US0_TX #2	LES_CH11 #0				
		ACMP1_CH5	TIM1_CC0 #0						
34	PC13	DAC0_OUT1ALT #1/	TIM1_CC2 #4		LES_CH13 #0				
		OPAMP_OUT1ALT	PCNT0_S0IN #0						
		ACMP1_CH6	TIM1_CC1 #0						
35	PC14	DAC0_OUT1ALT #2/	PCNT0_S1IN #0	US0_CS #3	LES_CH14 #0				
		OPAMP_OUT1ALT	1 61110_31111 #0						
		ACMP1_CH7			LES_CH15#0				
36	PC15	DAC0_OUT1ALT #3/	TIM1_CC2 #0	US0_CLK #3	DBG_SWO #1				
		OPAMP_OUT1ALT			DBG_3WO#1				
			TIM0_CC0 #5	US1_CLK #2					
37	PF0		LETIM0_OUT0 #2	LEU0_TX #3	DBG_SWCLK #0/1				
			EETHVIO_0010 #2	I2C0_SDA #5					
			TIM0_CC1 #5	US1_CS #2	DBG_SWDIO #0/1				
38	PF1		LETIMO_OUT1 #2	LEU0_RX #3	GPIO_EM4WU3				
			LETIMO_OOTT#2	I2C0_SCL #5	GFIO_EINI4W03				
					ACMP1_O #0				
39	PF2		TIM0_CC2 #5	LEU0_TX #4	DBG_SWO #0				
					GPIO_EM4WU4				

QFP4	48 Pin# and Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	Timers	Communication	Other				
40	PF3				PRS_CH0 #1				
41	PF4				PRS_CH1 #1				
42	PF5				PRS_CH2 #1				
43	IOVDD_5	Digital IO power supply 5.							
44	VSS	Ground.							
45	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX				
46	PE11		TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0				
46	PEII		TIWII_CCT#1	USU_RX #0	BOOT_RX				
				US0_RX #3	CMIL CLK4 #2				
47	PE12		TIM1_CC2 #1	US0_CLK #0	CMU_CLK1 #2				
				I2C0_SDA #6	LES_ALTEX6 #0				
				US0_TX #3	LES_ALTEX7 #0				
48	PE13			US0_CS #0	ACMP0_O #0				
				I2C0_SCL #6	GPIO_EM4WU5				

5.4.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.11. Alternate functionality overview

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2							Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3							Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8							Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9							Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10							Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11							Analog comparator ACMP1, channel 3.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2		PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1		PE12					Clock Management Unit, clock output number 1.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
DAC0_OUT0AL T/ OPAMP_OUT0 ALT	PC0	PC1	PC2	PC3				Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT		PC13	PC14	PC15				Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5							Operational Amplifier 2 output.
DAC0_P0/ OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7			PC1	PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			PC0	PF0	PE12	I2C0 Serial Data input / output.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH0	PC0							LESENSE channel 0.
LES_CH1	PC1							LESENSE channel 1.
LES_CH2	PC2							LESENSE channel 2.

Alternate				LOCATIO	DN			
Functionality	0	1	2	3	4	5	6	Description
LES_CH3	PC3							LESENSE channel 3.
LES_CH4	PC4							LESENSE channel 4.
LES_CH8	PC8							LESENSE channel 8.
LES_CH9	PC9							LESENSE channel 9.
LES_CH10	PC10							LESENSE channel 10.
LES_CH11	PC11							LESENSE channel 11.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIMO_OUTO	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1					Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14		PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0	PD6				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.
PRS_CH2	PC0	PF5						Peripheral Reflex System PRS, channel 2.
PRS_CH3	PC1							Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			PC0	PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			PC1	PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12		PC9	PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13		PC8	PC14	PB14	PB14		USART0 chip select input / output.
US0_RX	PE11		PC10	PE12	PB8	PC1		USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO).

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
US0_TX	PE10		PC11	PE13	PB7	PC0		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7		PF0					USART1 clock input / output.
US1_CS	PB8		PF1					USART1 chip select input / output.
US1_RX	PC1		PD6					USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0		PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.4.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG222 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port Pin Pin Pin Pin Pin Pin 15 13 10 14 12 11 Port A PA10 PA9 PA2 PA1 PA0 PA8 PB14 PB13 PB11 PB8 PB7 Port B _ PC10 Port C PC15 PC14 PC13 PC11 PC9 PC8 PC4 PC3 PC2 PC1 PC0 -PD7 PD6 PD5 PD4 Port D _ PE11 Port E PE13 PE12 PE10 PF5 PF4 PF2 PF1 Port F PF3 PF0 _ _ _

Table 5.12. GPIO Pinout

5.4.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG222 is shown in the following figure.

Figure 5.7. Opamp Pinout

5.5 EFM32TG225 (BGA48)

5.5.1 Pinout

The EFM32TG225 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.8. EFM32TG225 Pinout (top view, not to scale)

Table 5.13. Device Pinout

BGA	48 Pin# and Name	Pin Alternate Functionality / Description							
Pin#	Pin Name	Analog	Timers	Communication	Other				
				US0_TX #3	LES_ALTEX7 #0				
A1	PE13			US0_CS #0	ACMP0_O #0				
				I2C0_SCL #6	GPIO_EM4WU5				

BGA	48 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
A2	PE12		TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0
A3	PE11		TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX
A4	PF5				PRS_CH2 #1
A5	PF3				PRS_CH0 #1
A6	PC14	ACMP1_CH6 DAC0_OUT1ALT #2/ OPAMP_OUT1ALT	TIM1_CC1 #0 PCNT0_S1IN #0	US0_CS #3	LES_CH14 #0
A7	PC15	ACMP1_CH7 DAC0_OUT1ALT #3/ OPAMP_OUT1ALT	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0 DBG_SWO #1
B1	PA1		TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0
B2	PA0		TIM0_CC0 #0/1/4	LEU0_RX #4 I2C0_SDA #0	PRS_CH0 #0 GPIO_EM4WU0
B3	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX
B4	PF4			_	PRS_CH1 #1
B5	PF2		TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4
В6	PC11	ACMP1_CH3		US0_TX #2	LES_CH11 #0
В7	PC13	ACMP1_CH5 DAC0_OUT1ALT #1/ OPAMP_OUT1ALT	TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0		LES_CH13 #0
C1	PC0	ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT	TIM0_CC1 #4 PCNT0_S0IN #2	US0_TX #5 US1_TX #0 I2C0_SDA #4	LES_CH0 #0 PRS_CH2 #0
C2	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0
C3	VSS	Ground.			
C4	IOVDD_5	Digital IO power supply 5.			
C5	PF1		TIM0_CC1 #5 LETIM0_OUT1 #2	US1_CS #2 LEU0_RX #3 I2C0_SCL #5	DBG_SWDIO #0/1 GPIO_EM4WU3

BGA4	18 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
C6	PC9	ACMP1_CH1		US0_CLK #2	LES_CH9 #0 GPIO_EM4WU2
C7	PC10	ACMP1_CH2		US0_RX #2	LES_CH10 #0
		ACMP0_CH1	TIMO 000 #4	US0_RX #5	150 014 #0
D1	PC1	DAC0_OUT0ALT #1/	TIM0_CC2 #4	US1_RX #0	LES_CH1 #0
		OPAMP_OUT0ALT	PCNT0_S1IN #2	I2C0_SCL #4	PRS_CH3 #0
		ACMP0_CH3			
D2	PC3	DAC0_OUT0ALT #3/			LES_CH3 #0
		OPAMP_OUT0ALT			
D3	IOVDD_0	Digital IO power supply 0.			
			TIM0_CC0 #5	US1_CLK #2	
D5	PF0		LETIMO OUTO #2	LEU0_TX #3	DBG_SWCLK #0/1
			LETIMO_OOTO#2	I2C0_SDA #5	
D6	PC8	ACMP1_CH0		US0_CS #2	LES_CH8 #0
D7	DECOUPLE	Decouple output for on-chat this pin.	ip voltage regulator. An ex	xternal capacitance of size	C _{DECOUPLE} is required
		ACMP0_CH2			
E1	PC2	DAC0_OUT0ALT #2/			LES_CH2 #0
		OPAMP_OUT0ALT			
		ACMP0_CH4			
E2	PC4	DAC0_P0/	LETIM0_OUT0 #3		LES_CH4 #0
		OPAMP_P0			
E3	PA8				
E4	VDD_DREG	Power supply for on-chip	voltage regulator.		
E5	AVSS_0	Analog ground 0.			
		ADC0_CH7	TIM1_CC1 #4	US1_TX #2	CMU_CLK0 #2
E6	PD7	DAC0_N1/	LETIM0_OUT1 #0	I2C0_SCL #1	LES_ALTEX1 #0
		OPAMP_N1	PCNT0_S1IN #3	1200_30L#1	ACMP1_O #2
		ADC0_CH6	TIM1_CC0 #4	US1 RX #2	LES_ALTEX0 #0
E7	PD6	DAC0_P1/	LETIMO_OUT0 #0	I2C0_SDA #1	ACMP0_O #2
		OPAMP_P1	PCNT0_S0IN #3	1200_3DA #1	AGIVIFU_U #2
F1	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4	
	101	LI XIAL_F		US1_CLK #0	
F2	PA9				
F3	RESETn	Reset input, active low. To low during reset, and let the		cource to this pin, it is requite that reset is released.	red to only drive this pin

BGA	48 Pin# and Name		Pin Alternate Functi	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
F4	IOVDD_3	Digital IO power supply 3.			
F5	AVDD_1	Analog power supply 1.			
F6	AVDD_0	Analog power supply 0.			
F-7	DDF	ADC0_CH5		1 E110 DV #0	
F7	PD5	OPAMP_OUT2 #0		LEU0_RX #0	
0.4	DDG	LEVTAL N	TIM4 004 #0	US0_RX #4	
GT	G1 PB8	LFXTAL_N	TIM1_CC1 #3	US1_CS #0	
G2	PA10				
00	DD44	DAC0_OUT0/	TIM1_CC2 #3		
G3	PB11	OPAMP_OUT0	LETIM0_OUT0 #1		
G4	AVSS_1	Analog ground 1.			
05	DD40	LIEVTAL D		US0_CLK #4/5	
G5	PB13	HFXTAL_P		LEU0_TX #1	
00	DD4.4	LIEVTAL N		US0_CS #4/5	
G6	PB14	HFXTAL_N		LEU0_RX #1	
07	DD.4	ADC0_CH4		1 5110 TV #0	
G7	PD4	OPAMP_P2		LEU0_TX #0	

5.5.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.14. Alternate functionality overview

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2							Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3							Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8							Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9							Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10							Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11							Analog comparator ACMP1, channel 3.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2		PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1		PE12					Clock Management Unit, clock output number 1.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
DAC0_OUT0AL T/ OPAMP_OUT0 ALT	PC0	PC1	PC2	PC3				Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT		PC13	PC14	PC15				Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5							Operational Amplifier 2 output.
DAC0_P0/ OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7			PC1	PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6			PC0	PF0	PE12	I2C0 Serial Data input / output.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH0	PC0							LESENSE channel 0.
LES_CH1	PC1							LESENSE channel 1.
LES_CH2	PC2							LESENSE channel 2.

Alternate			ı	LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
LES_CH3	PC3							LESENSE channel 3.
LES_CH4	PC4							LESENSE channel 4.
LES_CH8	PC8							LESENSE channel 8.
LES_CH9	PC9							LESENSE channel 9.
LES_CH10	PC10							LESENSE channel 10.
LES_CH11	PC11							LESENSE channel 11.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIMO_OUT0	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1					Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14		PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0	PD6				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.
PRS_CH2	PC0	PF5						Peripheral Reflex System PRS, channel 2.
PRS_CH3	PC1							Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1			PC0	PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2			PC1	PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12		PC9	PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13		PC8	PC14	PB14	PB14		USART0 chip select input / output.
US0_RX	PE11		PC10	PE12	PB8	PC1		USART0 Asynchronous Receive. USART0 Synchronous mode Master Input / Slave Output (MISO).

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
US0_TX	PE10		PC11	PE13	PB7	PC0		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication. USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7		PF0					USART1 clock input / output.
US1_CS	PB8		PF1					USART1 chip select input / output.
US1_RX	PC1		PD6					USART1 Asynchronous Receive. USART1 Synchronous mode Master Input / Slave Output (MISO).
US1_TX	PC0		PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication. USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.5.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG225 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Pin 9 Pin 8 Pin 7 Pin 6 Pin 5 Pin 4 Pin 3 Pin 2 Pin 1 Pin 0 Port Pin Pin Pin Pin Pin Pin 15 13 10 14 12 11 Port A PA10 PA9 PA2 PA1 PA0 PA8 PB14 PB13 PB11 PB8 PB7 Port B _ PC10 Port C PC15 PC14 PC13 PC11 PC9 PC8 PC4 PC3 PC2 PC1 PC0 -Port D PD7 PD6 PD5 PD4 _ PE11 Port E PE13 PE12 PE10 PF5 PF4 PF2 PF1 Port F PF3 PF0 _ _ _

Table 5.15. GPIO Pinout

5.5.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG225 is shown in the following figure.

Figure 5.9. Opamp Pinout

5.6 EFM32TG230 (QFN64)

5.6.1 Pinout

The EFM32TG230 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.10. EFM32TG230 Pinout (top view, not to scale)

Table 5.16. Device Pinout

QFN	64 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	1 PA0		TIMO CCO #0/1/4	LEU0_RX #4	PRS_CH0 #0
'	PAU		TIM0_CC0 #0/1/4	I2C0_SDA #0	GPIO_EM4WU0
2	PA1		TIMO CC1 #0/1	1200 801 #0	CMU_CLK1 #0
	FAI		TIM0_CC1 #0/1	I2C0_SCL #0	PRS_CH1 #0

QFN6	64 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0
4	PA3				LES_ALTEX2 #0
5	PA4				LES_ALTEX3 #0
6	PA5				LES_ALTEX4 #0
7	PA6				GPIO_EM4WU1
8	IOVDD_0	Digital IO power supply 0.			
9	PC0	ACMP0_CH0 DAC0_OUT0ALT #0/ OPAMP_OUT0ALT	TIM0_CC1 #4 PCNT0_S0IN #2	US0_TX #5 US1_TX #0 I2C0_SDA #4	LES_CH0 #0 PRS_CH2 #0
10	PC1	ACMP0_CH1 DAC0_OUT0ALT #1/ OPAMP_OUT0ALT	TIM0_CC2 #4 PCNT0_S1IN #2	US0_RX #5 US1_RX #0 I2C0_SCL #4	LES_CH1 #0 PRS_CH3 #0
11	PC2	ACMP0_CH2 DAC0_OUT0ALT #2/ OPAMP_OUT0ALT			LES_CH2 #0
12	PC3	ACMP0_CH3 DAC0_OUT0ALT #3/ OPAMP_OUT0ALT			LES_CH3 #0
13	PC4	ACMP0_CH4 DAC0_P0/ OPAMP_P0	LETIM0_OUT0 #3		LES_CH4 #0
14	PC5	ACMP0_CH5 DAC0_N0/ OPAMP_N0	LETIM0_OUT1 #3		LES_CH5 #0
15	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4 US1_CLK #0	
16	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4 US1_CS #0	
17	PA8				
18	PA9				
19	PA10				
20	RESETn		o apply an external reset s he internal pull-up ensure t	ource to this pin, it is requithat reset is released.	red to only drive this pin
21	PB11	DAC0_OUT0/ OPAMP_OUT0	TIM1_CC2 #3 LETIM0_OUT0 #1		

QFN6	64 Pin# and Name		Pin Alternate Functi	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
22	PB12	DAC0_OUT1/	LETIMO OUT1#1		
22	PBIZ	OPAMP_OUT1	LETIM0_OUT1 #1		
23	AVDD_1	Analog power supply 1.			
24	PB13	HFXTAL_P		US0_CLK #4/5	
27	1 510	111 X17.E_1		LEU0_TX #1	
25	PB14	HFXTAL_N		US0_CS #4/5	
		, <u>-</u>		LEU0_RX #1	
26	IOVDD_3	Digital IO power supply 3.			
27	AVDD_0	Analog power supply 0.			
		ADC0_CH0			
28	PD0	DAC0_OUT0ALT #4/		US1_TX #1	
	;	OPAMP_OUT0ALT			
		OPAMP_OUT2 #1			
		ADC0_CH1			
29	PD1	DAC0_OUT1ALT #4/	TIM0_CC0 #3	US1_RX #1	
		OPAMP_OUT1ALT			
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1	
31	PD3	ADC0_CH3	TIM0_CC2 #3	US1_CS #1	
		OPAMP_N2		551_55	
32	PD4	ADC0_CH4		LEU0 TX#0	
		OPAMP_P2		_	
33	PD5	ADC0_CH5		LEU0_RX #0	
		OPAMP_OUT2 #0		_	
		ADC0_CH6	TIM1_CC0 #4	US1_RX #2	LES_ALTEX0 #0
34	PD6	DAC0_P1/	LETIMO_OUT0 #0	- I2C0_SDA #1	_ ACMP0_O #2
		OPAMP_P1	PCNT0_S0IN #3	_	_
		ADC0_CH7	TIM1_CC1 #4	US1_TX #2	CMU_CLK0 #2
35	PD7	DAC0_N1/	LETIM0_OUT1 #0	- I2C0_SCL #1	LES_ALTEX1 #0
		OPAMP_N1	PCNT0_S1IN #3	_	ACMP1_O #2
36	PD8				CMU_CLK1 #1
37	PC6	ACMP0_CH6		I2C0_SDA #2	LES_CH6 #0
38	PC7	ACMP0_CH7		I2C0_SCL #2	LES_CH7 #0
39	VDD_DREG	Power supply for on-chip			
40	DECOUPLE	Decouple output for on-chat this pin.	nip voltage regulator. An ex	xternal capacitance of size	C _{DECOUPLE} is required
41	PC8	ACMP1_CH0		US0_CS #2	LES_CH8 #0

QFN6	64 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
42	PC9	ACMP1_CH1		US0_CLK #2	LES_CH9 #0
72	1 09	AOMI 1_OTT		000_CLN #2	GPIO_EM4WU2
43	PC10	ACMP1_CH2		US0_RX #2	LES_CH10 #0
44	PC11	ACMP1_CH3		US0_TX #2	LES_CH11 #0
		ACMP1_CH4			CMU_CLK0 #1
45	PC12	DAC0_OUT1ALT #0/			LES_CH12 #0
		OPAMP_OUT1ALT			LL3_01112 #0
		ACMP1_CH5	TIM1_CC0 #0		
46	PC13	DAC0_OUT1ALT #1/	TIM1_CC2 #4		LES_CH13 #0
		OPAMP_OUT1ALT	PCNT0_S0IN #0		
		ACMP1_CH6	TIM1 CC1#0		
47	PC14	DAC0_OUT1ALT #2/	PCNT0_S1IN #0	US0_CS #3	LES_CH14 #0
		OPAMP_OUT1ALT	PCN10_31IN#0		
		ACMP1_CH7			LES CH15 #0
48	PC15	DAC0_OUT1ALT #3/	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0
		OPAMP_OUT1ALT			DBG_SWO #1
			TIM0_CC0 #5	US1_CLK #2	
49	PF0		LETIMO_OUT0 #2	LEU0_TX #3	DBG_SWCLK #0/1
			LL111010_0010 #2	I2C0_SDA #5	
			TIM0_CC1 #5	US1_CS #2	DBG_SWDIO #0/1
50	PF1		LETIMO_OUT1 #2	LEU0_RX #3	GPIO_EM4WU3
			LETIMO_OOTT#2	I2C0_SCL #5	GFIO_EIVI4VV03
					ACMP1_O #0
51	PF2		TIM0_CC2 #5	LEU0_TX #4	DBG_SWO #0
					GPIO_EM4WU4
52	PF3				PRS_CH0 #1
53	PF4				PRS_CH1 #1
54	PF5				PRS_CH2 #1
55	IOVDD_5	Digital IO power supply 5.			
56	PE8				PRS_CH3 #1
57	PE9				
58	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX
59	PE11		TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0
			11111_001 #1	000_10(#0	BOOT_RX

QFN	64 Pin# and Name	Pin Alternate Functionality / Description									
Pin #	Pin Name	Analog	Timers	Communication	Other						
				US0_RX #3	CMU CLK1 #2						
60	PE12		TIM1_CC2 #1	US0_CLK #0	_						
				I2C0_SDA #6	LES_ALTEX6 #0						
				US0_TX #3	LES_ALTEX7 #0						
61	PE13			US0_CS #0	ACMP0_O #0						
				I2C0_SCL #6	GPIO_EM4WU5						
62	PE14			LEU0_TX #2							
63	PE15			LEU0_RX #2							
64	PA15										

5.6.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.17. Alternate functionality overview

Alternate			L	OCATIO	DN			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2							Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3							Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6							Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7							Analog comparator ACMP0, channel 7.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8							Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9							Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10							Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11							Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12							Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH0	PD0							Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1							Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2							Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3							Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2	PC12	PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8	PE12					Clock Management Unit, clock output number 1.
DAC0_N0/ OPAMP_N0	PC5							Operational Amplifier 0 external negative input.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
OPAMP_N2	PD3							Operational Amplifier 2 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT0AL T/ OPAMP_OUT0 ALT	PC0	PC1	PC2	PC3	PD0			Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1/ OPAMP_OUT1	PB12							Digital to Analog Converter DAC0_OUT1 /OPAMP output channel number 1.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT	PC12	PC13	PC14	PC15	PD1			Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5	PD0						Operational Amplifier 2 output.
DAC0_P0/ OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		PC1	PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6		PC0	PF0	PE12	I2C0 Serial Data input / output.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX2	PA3							LESENSE alternate exite output 2.
LES_ALTEX3	PA4							LESENSE alternate exite output 3.
LES_ALTEX4	PA5							LESENSE alternate exite output 4.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH0	PC0							LESENSE channel 0.
LES_CH1	PC1							LESENSE channel 1.
LES_CH2	PC2							LESENSE channel 2.
LES_CH3	PC3							LESENSE channel 3.
LES_CH4	PC4							LESENSE channel 4.
LES_CH5	PC5							LESENSE channel 5.
LES_CH6	PC6							LESENSE channel 6.
LES_CH7	PC7							LESENSE channel 7.
LES_CH8	PC8							LESENSE channel 8.
LES_CH9	PC9							LESENSE channel 9.
LES_CH10	PC10							LESENSE channel 10.
LES_CH11	PC11							LESENSE channel 11.
LES_CH12	PC12							LESENSE channel 12.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIMO_OUTO	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7	PB12	PF1	PC5				Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15	PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14	PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0	PD6				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.
PRS_CH2	PC0	PF5						Peripheral Reflex System PRS, channel 2.
PRS_CH3	PC1	PE8						Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0		PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	PC0	PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	PC1	PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12		PC9	PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13		PC8	PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11		PC10	PE12	PB8	PC1		USART0 Synchronous mode Master Input / Slave Output (MISO).
LIGO TV	DE40		B044	DE 40	557	B00		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10		PC11	PE13	PB7	PC0		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX	PC1	PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).
LIC1 TV	PC0	DDO	PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PCU	PD0	רט/					USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.6.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG230 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.18. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	-	-	-	-	PA10	PA9	PA8	-	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	PB12	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.6.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG230 is shown in the following figure.

Figure 5.11. Opamp Pinout

5.7 EFM32TG232 (TQFP64)

5.7.1 Pinout

The EFM32TG232 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.12. EFM32TG232 Pinout (top view, not to scale)

Table 5.19. Device Pinout

QFP	64 Pin# and Name	Pin Alternate Functionality / Description								
Pin#	Pin Name	Analog	Timers	Communication	Other					
1	PA0		TIM0 CC0 #0/1/4	LEU0_RX #4	PRS_CH0 #0					
'	PAU		11WO_CCO #0/1/4	I2C0_SDA #0	GPIO_EM4WU0					
2	PA1		TIMO CC1 #0/1	1200 801 #0	CMU_CLK1 #0					
2	PAI		TIM0_CC1 #0/1	I2C0_SCL #0	PRS_CH1 #0					
3	PA2		TIM0_CC2 #0/1		CMU_CLK0 #0					

QFP6	64 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
4	PA3				LES_ALTEX2 #0
5	PA4				LES_ALTEX3 #0
6	PA5				LES_ALTEX4 #0
7	IOVDD_0	Digital IO power supply 0			
8	VSS	Ground.			
		ACMP0_CH0	TIM0_CC1 #4	US0_TX #5	LES_CH0 #0
9	PC0	DAC0_OUT0ALT #0/	_	US1_TX #0	
		OPAMP_OUT0ALT	PCNT0_S0IN #2	I2C0_SDA #4	PRS_CH2 #0
		ACMP0_CH1	TIM0_CC2 #4	US0_RX #5	LES CH1#0
10	PC1	DAC0_OUT0ALT #1/	_	US1_RX #0	LES_CH1 #0
		OPAMP_OUT0ALT	PCNT0_S1IN #2	I2C0_SCL #4	PRS_CH3 #0
		ACMP0_CH2			
11	PC2	DAC0_OUT0ALT #2/			LES_CH2 #0
		OPAMP_OUT0ALT			
		ACMP0_CH3			
12	PC3	DAC0_OUT0ALT #3/			LES_CH3 #0
		OPAMP_OUT0ALT			
		ACMP0_CH4			
13	PC4	DAC0_P0/	LETIM0_OUT0 #3		LES_CH4 #0
		OPAMP_P0			
		ACMP0_CH5			
14	PC5	DAC0_N0/	LETIM0_OUT1 #3		LES_CH5 #0
		OPAMP_N0			
15	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4	
10	1 57	LI XIAL_I	111011_000 #3	US1_CLK #0	
16	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4	
10	1 50	LIXIAL_IV	111011_001#0	US1_CS #0	
17	PA8				
18	PA9				
19	PA10				
20	RESETn		o apply an external reset s he internal pull-up ensure	ource to this pin, it is requithat reset is released.	red to only drive this pin
21	PB11	DAC0_OUT0/	TIM1_CC2 #3		
	1511	OPAMP_OUT0	LETIM0_OUT0 #1		
22	VSS	Ground.			
23	AVDD_1	Analog power supply 1.			

QFP6	64 Pin# and Name		Pin Alternate Functionality / Description									
Pin #	Pin Name	Analog	Timers	Communication	Other							
	55.46			US0_CLK #4/5								
24	PB13	HFXTAL_P		LEU0_TX #1								
				US0_CS #4/5								
25	PB14	HFXTAL_N		LEU0_RX #1								
26	IOVDD_3	Digital IO power supply 3.										
27	AVDD_0	Analog power supply 0.										
		ADC0_CH0										
00	DD0	DAC0_OUT0ALT #4/		1104 TV #4								
28	PD0	OPAMP_OUT0ALT		US1_TX #1								
		OPAMP_OUT2 #1										
		ADC0_CH1										
29	PD1	DAC0_OUT1ALT #4/	TIM0_CC0 #3	US1_RX #1								
		OPAMP_OUT1ALT										
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1								
0.4	DDO	ADC0_CH3	TIMO 000 #0	1104 00 #4								
31	PD3	OPAMP_N2	TIM0_CC2 #3	US1_CS #1								
00	55.4	ADC0_CH4		1 E110 EV #0								
32	PD4	OPAMP_P2		LEU0_TX #0								
20	DDE	ADC0_CH5		1 EUO DV #0								
33	PD5	OPAMP_OUT2 #0		LEU0_RX #0								
		ADC0_CH6	TIM1_CC0 #4	US1_RX #2	LES ALTEX0 #0							
34	PD6	DAC0_P1/	LETIM0_OUT0 #0	I2C0_SDA #1	ACMP0_O #2							
		OPAMP_P1	PCNT0_S0IN #3	12C0_SDA #1	ACMPU_U#2							
		ADC0_CH7	TIM1_CC1 #4	LIC1 TV #2	CMU_CLK0 #2							
35	PD7	DAC0_N1/	LETIM0_OUT1 #0	US1_TX #2	LES_ALTEX1 #0							
		OPAMP_N1	PCNT0_S1IN #3	I2C0_SCL #1	ACMP1_O #2							
36	PD8				CMU_CLK1 #1							
37	PC6	ACMP0_CH6		I2C0_SDA #2	LES_CH6 #0							
38	PC7	ACMP0_CH7		I2C0_SCL #2	LES_CH7 #0							
39	VDD_DREG	Power supply for on-chip	voltage regulator.									
40	DECOUPLE	Decouple output for on-chat this pin.	ip voltage regulator. An ex	xternal capacitance of size	C _{DECOUPLE} is required							
41	PC8	ACMP1_CH0		US0_CS #2	LES_CH8 #0							
42	PC9	ACMP1_CH1		US0_CLK #2	LES_CH9 #0							
42	F G9	ACIVIF I_CHI		030_CLN #2	GPIO_EM4WU2							
43	PC10	ACMP1_CH2		US0_RX #2	LES_CH10 #0							

QFP6	64 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
44	PC11	ACMP1_CH3		US0_TX #2	LES_CH11 #0
		ACMP1_CH4			CMIL CLKO#1
45	PC12	DAC0_OUT1ALT #0/			CMU_CLK0 #1
		OPAMP_OUT1ALT			LES_CH12 #0
		ACMP1_CH5	TIM1_CC0 #0		
46	PC13	DAC0_OUT1ALT #1/	TIM1_CC2 #4		LES_CH13 #0
		OPAMP_OUT1ALT	PCNT0_S0IN #0		
		ACMP1_CH6	TIM1_CC1 #0		
47	PC14	DAC0_OUT1ALT #2/	_	US0_CS #3	LES_CH14 #0
		OPAMP_OUT1ALT	PCNT0_S1IN #0		
		ACMP1_CH7			LES 0U15 #0
48	PC15	DAC0_OUT1ALT #3/	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0
		OPAMP_OUT1ALT			DBG_SWO #1
			TIM0_CC0 #5	US1_CLK #2	
49	PF0		LETIMO_OUT0 #2	LEU0_TX #3	DBG_SWCLK #0/1
			LETIMO_0010 #2	I2C0_SDA #5	
			TIM0_CC1 #5	US1_CS #2	DBG_SWDIO #0/1
50	PF1		LETIMO_OUT1 #2	LEU0_RX #3	GPIO_EM4WU3
			LETIMO_0011#2	I2C0_SCL #5	GFIO_EIM4W03
					ACMP1_O #0
51	PF2		TIM0_CC2 #5	LEU0_TX #4	DBG_SWO #0
					GPIO_EM4WU4
52	PF3				PRS_CH0 #1
53	PF4				PRS_CH1 #1
54	PF5				PRS_CH2 #1
55	IOVDD_5	Digital IO power supply 5.			
56	VSS	Ground.			
57	PE8				PRS_CH3 #1
58	PE9				
59	PE10		TIM1_CC0 #1	US0_TX #0	BOOT_TX
60	PE11		TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0
			1_007#1	230_101/10	BOOT_RX
				US0_RX #3	CMU_CLK1 #2
61	PE12		TIM1_CC2 #1	US0_CLK #0	LES_ALTEX6 #0
				I2C0_SDA #6	

QFP6	64 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
				US0_TX #3	LES_ALTEX7 #0
62	PE13			US0_CS #0	ACMP0_O #0
				I2C0_SCL #6	GPIO_EM4WU5
63	PE14			LEU0_TX #2	
64	PE15			LEU0_RX #2	

5.7.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.20. Alternate functionality overview

Alternate			L	OCATIO	DN			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH0	PC0							Analog comparator ACMP0, channel 0.
ACMP0_CH1	PC1							Analog comparator ACMP0, channel 1.
ACMP0_CH2	PC2							Analog comparator ACMP0, channel 2.
ACMP0_CH3	PC3							Analog comparator ACMP0, channel 3.
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6							Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7							Analog comparator ACMP0, channel 7.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH0	PC8							Analog comparator ACMP1, channel 0.
ACMP1_CH1	PC9							Analog comparator ACMP1, channel 1.
ACMP1_CH2	PC10							Analog comparator ACMP1, channel 2.
ACMP1_CH3	PC11							Analog comparator ACMP1, channel 3.
ACMP1_CH4	PC12							Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH0	PD0							Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1							Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2							Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3							Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2	PC12	PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8	PE12					Clock Management Unit, clock output number 1.
DAC0_N0/ OPAMP_N0	PC5							Operational Amplifier 0 external negative input.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
OPAMP_N2	PD3							Operational Amplifier 2 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT0AL T/ OPAMP_OUT0 ALT	PC0	PC1	PC2	PC3	PD0			Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT	PC12	PC13	PC14	PC15	PD1			Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5	PD0						Operational Amplifier 2 output.
DAC0_P0/ OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU2	PC9							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.

Alternate			L	.OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7		PC1	PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6		PC0	PF0	PE12	I2C0 Serial Data input / output.
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX2	PA3							LESENSE alternate exite output 2.
LES_ALTEX3	PA4							LESENSE alternate exite output 3.
LES_ALTEX4	PA5							LESENSE alternate exite output 4.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH0	PC0							LESENSE channel 0.
LES_CH1	PC1							LESENSE channel 1.
LES_CH2	PC2							LESENSE channel 2.
LES_CH3	PC3							LESENSE channel 3.
LES_CH4	PC4							LESENSE channel 4.
LES_CH5	PC5							LESENSE channel 5.
LES_CH6	PC6							LESENSE channel 6.
LES_CH7	PC7							LESENSE channel 7.
LES_CH8	PC8							LESENSE channel 8.
LES_CH9	PC9							LESENSE channel 9.
LES_CH10	PC10							LESENSE channel 10.
LES_CH11	PC11							LESENSE channel 11.
LES_CH12	PC12							LESENSE channel 12.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIMO_OUT0	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1	PC5				Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15	PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14	PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13		PC0	PD6				Pulse Counter PCNT0 input number 0.

Alternate			ı	LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
PCNT0_S1IN	PC14		PC1	PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.
PRS_CH2	PC0	PF5						Peripheral Reflex System PRS, channel 2.
PRS_CH3	PC1	PE8						Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0		PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2	PC0	PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3	PC1	PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12		PC9	PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13		PC8	PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11		PC10	PE12	PB8	PC1		USART0 Synchronous mode Master Input / Slave Output (MISO).
LICO TV	DE40		DC14	DE42	DD7	DCO		USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10		PC11	PE13	PB7	PC0		USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX	PC1	PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).
LIC1 TV	DC0	PD0	DD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX	PC0	FDU	PD7					USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.7.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG232 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.21. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	-	-	-	-	PA10	PA9	PA8	-	-	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	-	-	-	-	-	-	-
Port C	PC15	PC14	PC13	PC12	PC11	PC10	PC9	PC8	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	-	-	-	-	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.7.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG232 is shown in the following figure.

Figure 5.13. Opamp Pinout

5.8 EFM32TG822 (TQFP48)

5.8.1 Pinout

The EFM32TG822 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.14. EFM32TG822 Pinout (top view, not to scale)

Table 5.22. Device Pinout

QFP4	48 Pin# and Name	Pin Alternate Functionality / Description							
Pin#	Pin Name	Analog	Timers	Communication	Other				
1	PA0	LCD SEC13	TIMO CC0 #0/1/4	LEU0_RX #4	PRS_CH0 #0				
'	PA0 LCD_SEG13		TIM0_CC0 #0/1/4	I2C0_SDA #0	GPIO_EM4WU0				
2	DA4	LCD SEC14	TIMO CC1 #0/1	1200 001 #0	CMU_CLK1 #0				
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	PRS_CH1 #0				
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0				

QFP4	18 Pin# and Name		Pin Alternate Funct	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
4	IOVDD_0	Digital IO power supply 0.			
5	VSS	Ground.			
6	PB3	LCD_SEG20/			
6	PB3	LCD_COM4			
7	PB4	LCD_SEG21/			
'	FD4	LCD_COM5			
8	PB5	LCD_SEG22/			
	FB3	LCD_COM6			
9	PB6	LCD_SEG23/			
9	FB0	LCD_COM7			
		ACMP0_CH4			
10	PC4	DAC0_P0/	LETIMO_OUT0 #3		LES_CH4 #0
		OPAMP_P0			
11	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4	
	107	LI XIAL_I	11W1_000#0	US1_CLK #0	
12	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4	
'-	1 50	EI XIXE_II	111111_001 110	US1_CS #0	
13	PA12	LCD_BCAP_P			
14	PA13	LCD_BCAP_N			
15	PA14	LCD_BEXT			
16	RESETn	Reset input, active low. To low during reset, and let the		source to this pin, it is requite that reset is released.	ired to only drive this pin
17	PB11	DAC0_OUT0/	TIM1_CC2 #3		
.,		OPAMP_OUT0	LETIM0_OUT0 #1		
18	VSS	Ground.			
19	AVDD_1	Analog power supply 1.			
20	PB13	HFXTAL_P		US0_CLK #4/5	
	. 5.0	/\		LEU0_TX #1	
21	PB14	HFXTAL_N		US0_CS #4/5	
	, _ , .	,		LEU0_RX #1	
22	IOVDD_3	Digital IO power supply 3.			
23	AVDD_0	Analog power supply 0.			
24	PD4	ADC0_CH4		LEU0_TX #0	
		OPAMP_P2			
25	PD5	ADC0_CH5		LEU0_RX #0	
		OPAMP_OUT2 #0			

QFP4	18 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
		ADC0_CH6	TIM1_CC0 #4	LIC1 DV #2	LES ALTEX0 #0
26	PD6	DAC0_P1/	LETIM0_OUT0 #0	US1_RX #2	_
		OPAMP_P1	PCNT0_S0IN #3	I2C0_SDA #1	ACMP0_O #2
		ADC0_CH7	TIM1_CC1 #4	LIC4 TV #2	CMU_CLK0 #2
27	PD7	DAC0_N1/	LETIM0_OUT1 #0	US1_TX #2	LES_ALTEX1 #0
		OPAMP_N1	PCNT0_S1IN #3	I2C0_SCL #1	ACMP1_O #2
28	VDD_DREG	Power supply for on-chip	voltage regulator.		
29	DECOUPLE	Decouple output for on-chat this pin.	nip voltage regulator. An ex	kternal capacitance of size	C _{DECOUPLE} is required
30	PE4	LCD_COM0		US0_CS #1	
31	PE5	LCD_COM1		US0_CLK #1	
32	PE6	LCD_COM2		US0_RX #1	
33	PE7	LCD_COM3		US0_TX #1	
		ACMP1_CH5	TIM1_CC0 #0		
34	PC13	DAC0_OUT1ALT #1/	TIM1_CC2 #4		LES_CH13 #0
		OPAMP_OUT1ALT	PCNT0_S0IN #0		
		ACMP1_CH6	TIM1_CC1 #0		
35	PC14	DAC0_OUT1ALT #2/	PCNT0_S1IN #0	US0_CS #3	LES_CH14 #0
		OPAMP_OUT1ALT	1 CN10_311N #0		
		ACMP1_CH7			LES_CH15 #0
36	PC15	DAC0_OUT1ALT #3/	TIM1_CC2 #0	US0_CLK #3	DBG_SWO #1
		OPAMP_OUT1ALT			DB0_6W0#1
			TIM0_CC0 #5	US1_CLK #2	
37	PF0		LETIMO_OUT0 #2	LEU0_TX #3	DBG_SWCLK #0/1
				I2C0_SDA #5	
			TIM0_CC1 #5	US1_CS #2	DBG SWDIO #0/1
38	PF1		LETIM0_OUT1 #2	LEU0_RX #3	GPIO_EM4WU3
				I2C0_SCL #5	0
					ACMP1_O #0
39	PF2	LCD_SEG0	TIM0_CC2 #5	LEU0_TX #4	DBG_SWO #0
					GPIO_EM4WU4
40	PF3	LCD_SEG1			PRS_CH0 #1
41	PF4	LCD_SEG2			PRS_CH1 #1
42	PF5	LCD_SEG3			PRS_CH2 #1
43	IOVDD_5	Digital IO power supply 5.			
44	VSS	Ground.			

QFP4	8 Pin# and Name	Pin Alternate Functionality / Description							
Pin #	Pin Name	Analog	Timers	Communication	Other				
45	PE10	LCD_SEG6	TIM1_CC0 #1	US0_TX #0	BOOT_TX				
46	PE11	LCD SEC7	TIM1 CC1 #1	US0 RX#0	LES_ALTEX5 #0				
40	PEII	LCD_SEG7	TIM1_CC1 #1	U30_RX #0	BOOT_RX				
				US0_RX #3	CM11 CLV4 #2				
47	PE12	LCD_SEG8	TIM1_CC2 #1	US0_CLK #0	CMU_CLK1 #2				
				I2C0_SDA #6	LES_ALTEX6 #0				
				US0_TX #3	LES_ALTEX7 #0				
48	PE13	LCD_SEG9		US0_CS #0	ACMP0_O #0				
				I2C0_SCL #6	GPIO_EM4WU5				

5.8.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.23. Alternate functionality overview

Alternate				LOCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2		PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1		PE12					Clock Management Unit, clock output number 1.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT		PC13	PC14	PC15				Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5							Operational Amplifier 2 output.
DAC0_P0/ OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset and has a built-in pull down.

Alternate			L	.OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7				PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6				PF0	PE12	I2C0 Serial Data input / output.
LCD_BCAP_N	PA13							LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12							LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
								LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.
LCD_BEXT	PA14							An external LCD voltage may also be applied to this pin if the booster is not enabled.
								If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4							LCD driver common line number 0.
LCD_COM1	PE5							LCD driver common line number 1.
LCD_COM2	PE6							LCD driver common line number 2.
LCD_COM3	PE7							LCD driver common line number 3.
LCD_SEG0	PF2							LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG1	PF3							LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG2	PF4							LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG3	PF5							LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.

Alternate				_OCATIO	DN			
Functionality	0	1	2	3	4	5	6	Description
LCD_SEG6	PE10							LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11							LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12							LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13							LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG13	PA0							LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG14	PA1							LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4
LCD_SEG21/ LCD_COM5	PB4							LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5
LCD_SEG22/ LCD_COM6	PB5							LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6
LCD_SEG23/ LCD_COM7	PB6							LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH4	PC4							LESENSE channel 4.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIMO_OUTO	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1					Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14		PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13			PD6				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14			PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.
PRS_CH2		PF5						Peripheral Reflex System PRS, channel 2.
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1				PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2				PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5		PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13	PE4		PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11	PE6		PE12	PB8			USART0 Synchronous mode Master Input / Slave Output (MISO).
LICO TV	PE10	PE7		PE13	PB7			USART0 Asynchronous Transmit. Also used as receive input in half duplex communication.
US0_TX	FEIU	PE/		FEIS	FD/			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7		PF0					USART1 clock input / output.
US1_CS	PB8		PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX			PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).
LIC1 TV			DD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX			PD7					USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.8.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG822 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.24. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	PA14	PA13	PA12	-	-	-	-	-	-	-	-	-	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	PB6	PB5	PB4	PB3	-	-	-
Port C	PC15	PC14	PC13	-	-	-	-	-	-	-	-	PC4	-	-	-	-
Port D	-	-	-	-	-	-	-	-	PD7	PD6	PD5	PD4	-	-	-	-
Port E	-	-	PE13	PE12	PE11	PE10	-	-	PE7	PE6	PE5	PE4	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.8.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG822 is shown in the following figure.

Figure 5.15. Opamp Pinout

5.9 EFM32TG825 (BGA48)

5.9.1 Pinout

The EFM32TG825 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.16. EFM32TG825 Pinout (top view, not to scale)

Table 5.25. Device Pinout

BGA	48 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
				US0_TX #3	LES_ALTEX7 #0
A1	PE13	LCD_SEG9		US0_CS #0	ACMP0_O #0
				I2C0_SCL #6	GPIO_EM4WU5

BGA	48 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
A2	PE12	LCD_SEG8	TIM1_CC2 #1	US0_RX #3 US0_CLK #0 I2C0_SDA #6	CMU_CLK1 #2 LES_ALTEX6 #0
A3	PE11	LCD_SEG7	TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0 BOOT_RX
A4	PF5	LCD_SEG3			PRS_CH2 #1
A5	PF3	LCD_SEG1			PRS_CH0 #1
A6	PC14	ACMP1_CH6 DAC0_OUT1ALT #2/ OPAMP_OUT1ALT	TIM1_CC1 #0 PCNT0_S1IN #0	US0_CS #3	LES_CH14 #0
A7	PC15	ACMP1_CH7 DAC0_OUT1ALT #3/ OPAMP_OUT1ALT	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0 DBG_SWO #1
B1	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0
B2	PA0	LCD_SEG13	TIM0_CC0 #0/1/4	LEU0_RX #4 I2C0_SDA #0	PRS_CH0 #0 GPIO_EM4WU0
B3	PE10	LCD_SEG6	TIM1_CC0 #1	US0_TX #0	BOOT_TX
B4	PF4	LCD_SEG2		_	PRS CH1#1
B5	PF2	LCD_SEG0	TIM0_CC2 #5	LEU0_TX #4	ACMP1_O #0 DBG_SWO #0 GPIO_EM4WU4
B6	PE7	LCD_COM3		US0_TX #1	
B7	PC13	ACMP1_CH5 DAC0_OUT1ALT #1/ OPAMP_OUT1ALT LCD_SEG20/ LCD_COM4	TIM1_CC0 #0 TIM1_CC2 #4 PCNT0_S0IN #0		LES_CH13 #0
C2	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0
C3	VSS	Ground.			_
C4	IOVDD_5	Digital IO power supply 5.			
C5	PF1		TIM0_CC1 #5 LETIM0_OUT1 #2	US1_CS #2 LEU0_RX #3 I2C0_SCL #5	DBG_SWDIO #0/1 GPIO_EM4WU3
C6	PE5	LCD_COM1		US0_CLK #1	
C7	PE6	LCD_COM2		US0_RX #1	

BGA	48 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
D.4	DD 4	LCD_SEG21/			
D1	PB4	LCD_COM5			
D0	DDO	LCD_SEG23/			
D2	PB6	LCD_COM7			
D3	IOVDD_0	Digital IO power supply 0.			
			TIMO CCO #5	US1_CLK #2	
D5	PF0		TIM0_CC0 #5	LEU0_TX #3	DBG_SWCLK #0/1
			LETIM0_OUT0 #2	I2C0_SDA #5	
D6	PE4	LCD_COM0		US0_CS #1	
D7	DECOUPLE	Decouple output for on-chat this pin.	nip voltage regulator. An ex	kternal capacitance of size	C _{DECOUPLE} is required
	55.5	LCD_SEG22/			
E1	PB5	LCD_COM6			
		ACMP0_CH4			
E2	PC4	DAC0_P0/	LETIM0_OUT0 #3		LES_CH4 #0
		OPAMP_P0			
E3	PA12	LCD_BCAP_P			
E4	VDD_DREG	Power supply for on-chip	voltage regulator.		
E5	AVSS_0	Analog ground 0.			
		ADC0_CH7	TIM1_CC1 #4	LIC4 TV #2	CMU_CLK0 #2
E6	PD7	DAC0_N1/	LETIM0_OUT1 #0	US1_TX #2	LES_ALTEX1#0
		OPAMP_N1	PCNT0_S1IN #3	I2C0_SCL #1	ACMP1_O #2
		ADC0_CH6	TIM1_CC0 #4	US1_RX #2	LES_ALTEX0 #0
E7	PD6	DAC0_P1/	LETIMO_OUT0 #0	I2C0_SDA #1	ACMP0_O #2
		OPAMP_P1	PCNT0_S0IN #3	12C0_3DA #1	ACMFU_O #2
F1	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4	
	101	LI XIAL_I	11W1_000#0	US1_CLK #0	
F2	PA13	LCD_BCAP_N			
F3	RESETn		o apply an external reset s he internal pull-up ensure	ource to this pin, it is requi that reset is released.	red to only drive this pin
F4	IOVDD_3	Digital IO power supply 3.			
F5	AVDD_1	Analog power supply 1.			
F6	AVDD_0	Analog power supply 0.			
F7	PD5	ADC0_CH5		LEU0_RX #0	
	1 55	OPAMP_OUT2 #0		LL00_IXX #0	
G1	PB8	LFXTAL_N	LFXTAL_N TIM1_CC1 #3		
	1 50	LI XIAL_I	111011_001#0	US1_CS #0	

BGA	48 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin#	Pin Name	Analog	Timers	Communication	Other
G2	PA14	LCD_BEXT			
G3	PB11	DAC0_OUT0/	TIM1_CC2 #3		
G3	PDII	OPAMP_OUT0	LETIM0_OUT0 #1		
G4	AVSS_1	Analog ground 1.			
G5	PB13	HFXTAL P		US0_CLK #4/5	
GS	PBIS	HEXTAL_F		LEU0_TX #1	
G6	PB14	HFXTAL N		US0_CS #4/5	
Go	FD14	HEATAL_N		LEU0_RX #1	
C7	G7 PD4	ADC0_CH4		LEUO TV #0	
G/		OPAMP_P2		LEU0_TX #0	

5.9.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Table 5.26. Alternate functionality overview

Alternate				LOCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2		PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1		PE12					Clock Management Unit, clock output number 1.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT		PC13	PC14	PC15				Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5							Operational Amplifier 2 output.
DAC0_P0/ OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of rese and has a built-in pull down.

Alternate			L	.OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7				PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6				PF0	PE12	I2C0 Serial Data input / output.
LCD_BCAP_N	PA13							LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12							LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
								LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.
LCD_BEXT	PA14							An external LCD voltage may also be applied to this pin if the booster is not enabled.
								If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4							LCD driver common line number 0.
LCD_COM1	PE5							LCD driver common line number 1.
LCD_COM2	PE6							LCD driver common line number 2.
LCD_COM3	PE7							LCD driver common line number 3.
LCD_SEG0	PF2							LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG1	PF3							LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG2	PF4							LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG3	PF5							LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.

Alternate				_OCATIO	DN			
Functionality	0	1	2	3	4	5	6	Description
LCD_SEG6	PE10							LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11							LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12							LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13							LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG13	PA0							LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG14	PA1							LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4
LCD_SEG21/ LCD_COM5	PB4							LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5
LCD_SEG22/ LCD_COM6	PB5							LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6
LCD_SEG23/ LCD_COM7	PB6							LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH4	PC4							LESENSE channel 4.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIMO_OUTO	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1					Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14		PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13		PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13			PD6				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14			PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.
PRS_CH2		PF5						Peripheral Reflex System PRS, channel 2.
TIM0_CC0	PA0	PA0			PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1				PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2				PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5		PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13	PE4		PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11	PE6		PE12	PB8			USART0 Synchronous mode Master Input / Slave Output (MISO).
LICO TV	PE10	PE7		PE13	PB7			USART0 Asynchronous Transmit. Also used as receive input in half duplex communication.
US0_TX	FEIU	PE1		FEIS	FD/			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7		PF0					USART1 clock input / output.
US1_CS	PB8		PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX			PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).
LIC1 TV			DD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX			PD7					USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.9.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG825 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.27. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	PA14	PA13	PA12	-	-	-	-	-	-	-	-	-	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	PB6	PB5	PB4	PB3	-	-	-
Port C	PC15	PC14	PC13	-	-	-	-	-	-	-	-	PC4	-	-	-	-
Port D	-	-	-	-	-	-	-	-	PD7	PD6	PD5	PD4	-	-	-	-
Port E	-	-	PE13	PE12	PE11	PE10	-	-	PE7	PE6	PE5	PE4	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.9.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG825 is shown in the following figure.

Figure 5.17. Opamp Pinout

5.10 EFM32TG840 (QFN64)

5.10.1 Pinout

The EFM32TG840 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.18. EFM32TG840 Pinout (top view, not to scale)

Table 5.28. Device Pinout

QFN	64 Pin# and Name	Pin Alternate Functionality / Description										
Pin#	Pin Name	Analog	Timers	Communication	Other							
1	PA0	LCD SEC12	TIMO CCO #0/1/4	LEU0_RX #4	PRS_CH0 #0							
'	I PAU	LCD_SEG13	TIM0_CC0 #0/1/4	I2C0_SDA #0	GPIO_EM4WU0							
2	PA1	LCD SEC14	TIMO CC1 #0/1	1200 001 #0	CMU_CLK1 #0							
2	PAI	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	PRS_CH1 #0							
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0							

QFN6	64 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
4	PA3	LCD_SEG16			LES_ALTEX2 #0
5	PA4	LCD_SEG17			LES_ALTEX3 #0
6	PA5	LCD_SEG18			LES_ALTEX4 #0
7	PA6	LCD_SEG19			GPIO_EM4WU1
8	IOVDD_0	Digital IO power supply 0.			
9	PB3	LCD_SEG20/			
9	FB3	LCD_COM4			
10	PB4	LCD_SEG21/			
10	F D4	LCD_COM5			
11	PB5	LCD_SEG22/			
''	FB3	LCD_COM6			
12	PB6	LCD_SEG23/			
12	PBO	LCD_COM7			
		ACMP0_CH4			
13	PC4	DAC0_P0/	LETIM0_OUT0 #3		LES_CH4 #0
		OPAMP_P0			
		ACMP0_CH5			
14	PC5	DAC0_N0/	LETIM0_OUT1 #3		LES_CH5 #0
		OPAMP_N0			
15	PB7	LFXTAL_P	TIM1_CC0 #3	US0_TX #4	
15	FB/	LFXTAL_F	111011_000 #3	US1_CLK #0	
16	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4	
10	FBO	LFXTAL_N	111011_001#3	US1_CS #0	
17	PA12	LCD_BCAP_P			
18	PA13	LCD_BCAP_N			
19	PA14	LCD_BEXT			
20	RESETn		o apply an external reset s he internal pull-up ensure	ource to this pin, it is requithat reset is released.	red to only drive this pin
21	PB11	DAC0_OUT0/	TIM1_CC2 #3		
	1511	OPAMP_OUT0	LETIM0_OUT0 #1		
22	PB12	DAC0_OUT1/	LETIMO_OUT1 #1		
	1 512	OPAMP_OUT1			
23	AVDD_1	Analog power supply 1.			
24	PB13	HFXTAL_P		US0_CLK #4/5	
	, 510			LEU0_TX #1	

QFN6	64 Pin# and Name		Pin Alternate Functi	onality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
25	PB14	LIEVTAL N		US0_CS #4/5	
25	PB14	HFXTAL_N		LEU0_RX #1	
26	IOVDD_3	Digital IO power supply 3.			
27	AVDD_0	Analog power supply 0.			
		ADC0_CH0			
20	PD0	DAC0_OUT0ALT #4/		1104 TV #4	
28	PD0	OPAMP_OUT0ALT		US1_TX #1	
		OPAMP_OUT2 #1			
		ADC0_CH1			
29	PD1	DAC0_OUT1ALT #4/	TIM0_CC0 #3	US1_RX #1	
		OPAMP_OUT1ALT			
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1	
24	DD2	ADC0_CH3	TIMO CC2 #2	1104 00 #4	
31	PD3	OPAMP_N2	TIM0_CC2 #3	US1_CS #1	
32	PD4	ADC0_CH4		1.5110. TV #0	
32	PD4	OPAMP_P2		LEU0_TX #0	
22	PD5	ADC0_CH5		1 EUO DV #0	
33	PD5	OPAMP_OUT2 #0		LEU0_RX #0	
		ADC0_CH6	TIM1_CC0 #4	US1_RX #2	LES_ALTEX0 #0
34	PD6	DAC0_P1/	LETIM0_OUT0 #0	I2C0_SDA #1	ACMP0_O #2
		OPAMP_P1	PCNT0_S0IN #3	12C0_3DA #1	ACIVIPO_O #2
		ADC0_CH7	TIM1_CC1 #4	US1_TX #2	CMU_CLK0 #2
35	PD7	DAC0_P1/	LETIM0_OUT1 #0		LES_ALTEX1 #0
		OPAMP_N1	PCNT0_S1IN #3	I2C0_SCL #1	ACMP1_O #2
36	PD8				CMU_CLK1 #1
37	PC6	ACMP0_CH6		I2C0_SDA #2	LES_CH6 #0
38	PC7	ACMP0_CH7		I2C0_SCL #2	LES_CH7 #0
39	VDD_DREG	Power supply for on-chip	voltage regulator.		
40	DECOUPLE	Decouple output for on-chat this pin.	nip voltage regulator. An ex	xternal capacitance of size	C _{DECOUPLE} is required
41	PE4	LCD_COM0		US0_CS #1	
42	PE5	LCD_COM1		US0_CLK #1	
43	PE6	LCD_COM2		US0_RX #1	
44	PE7	LCD_COM3		US0_TX #1	

QFN	64 Pin# and Name	Pin Alternate Functionality / Description											
Pin #	Pin Name	Analog	Timers	Communication	Other								
		ACMP1_CH4			CMIL CLKO #1								
45	PC12	DAC0_OUT1ALT #0/			CMU_CLK0 #1								
		OPAMP_OUT1ALT			LES_CH12 #0								
		ACMP1_CH5	TIM1_CC0 #0										
46	PC13	DAC0_OUT1ALT #1/	TIM1_CC2 #4		LES_CH13 #0								
		OPAMP_OUT1ALT	PCNT0_S0IN #0										
		ACMP1_CH6	=11.1.										
47	PC14	DAC0_OUT1ALT #2/	TIM1_CC1 #0	US0_CS #3	LES_CH14 #0								
		OPAMP_OUT1ALT	PCNT0_S1IN #0										
		ACMP1_CH7											
48	PC15	DAC0_OUT1ALT #3/	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0								
		OPAMP_OUT1ALT			DBG_SWO #1								
				US1_CLK #2									
49	PF0		TIM0_CC0 #5	LEU0_TX #3	DBG_SWCLK #0/1								
			LETIM0_OUT0 #2	I2C0_SDA #5									
				US1_CS #2									
50	PF1		TIM0_CC1 #5	LEU0_RX #3	DBG_SWDIO #0/1								
			LETIM0_OUT1 #2	I2C0_SCL #5	GPIO_EM4WU3								
				-	ACMP1_O #0								
51	PF2	LCD_SEG0	TIM0_CC2 #5	LEU0_TX #4	DBG_SWO #0								
					GPIO_EM4WU4								
52	PF3	LCD_SEG1			PRS_CH0 #1								
53	PF4	LCD_SEG2			PRS_CH1 #1								
54	PF5	LCD_SEG3			PRS_CH2 #1								
55	IOVDD_5	Digital IO power supply 5.											
56	PE8	LCD_SEG4			PRS_CH3 #1								
57	PE9	LCD_SEG5											
58	PE10	LCD_SEG6	TIM1_CC0 #1	US0_TX #0	BOOT_TX								
					LES_ALTEX5 #0								
59	PE11	LCD_SEG7	TIM1_CC1 #1	US0_RX #0	BOOT_RX								
				US0_RX #3	0.111. 0.111								
60	PE12	LCD_SEG8	TIM1_CC2 #1	US0_CLK #0	CMU_CLK1 #2								
				I2C0_SDA #6	LES_ALTEX6 #0								
				US0_TX #3	LES_ALTEX7 #0								
61	PE13	LCD_SEG9		US0_CS #0	ACMP0_O #0								
	61 PE13			I2C0_SCL #6	GPIO_EM4WU5								
				-	_								

QFN6	64 Pin# and Name	Pin Alternate Functionality / Description										
Pin#	Pin Name	Analog	Timers	Communication	Other							
62	PE14	LCD_SEG10		LEU0_TX #2								
63	PE15	LCD_SEG11		LEU0_RX #2								
64	PA15	LCD_SEG12										

5.10.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.29. Alternate functionality overview

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6							Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7							Analog comparator ACMP0, channel 7.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12							Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH0	PD0							Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1							Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2							Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3							Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2	PC12	PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8	PE12					Clock Management Unit, clock output number 1.
DAC0_N0/ OPAMP_N0	PC5							Operational Amplifier 0 external negative input.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
OPAMP_N2	PD3							Operational Amplifier 2 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT0AL T/ OPAMP_OUT0 ALT					PD0			Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1/ OPAMP_OUT1	PB12							Digital to Analog Converter DAC0_OUT1 /OPAMP output channel number 1.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT	PC12	PC13	PC14	PC15	PD1			Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5	PD0						Operational Amplifier 2 output.
DAC0_P0/ OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7			PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6			PF0	PE12	I2C0 Serial Data input / output.
LCD_BCAP_N	PA13							LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
LCD_BCAP_P	PA12							LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
								LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.
LCD_BEXT	PA14							An external LCD voltage may also be applied to this pin if the booster is not enabled.
								If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4							LCD driver common line number 0.
LCD_COM1	PE5							LCD driver common line number 1.
LCD_COM2	PE6							LCD driver common line number 2.
LCD_COM3	PE7							LCD driver common line number 3.
LCD_SEG0	PF2							LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG1	PF3							LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG2	PF4							LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG3	PF5							LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG4	PE8							LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9							LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10							LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11							LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12							LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13							LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14							LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15							LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG12	PA15							LCD segment line 12. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG13	PA0							LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG14	PA1							LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.

Alternate LOCATION										
Functionality	0	1	2	3	4	5	6	Description		
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.		
LCD_SEG16	PA3							LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4.		
LCD_SEG17	PA4							LCD segment line 17. Segments 16, 17, 18 and 19 are controlled by SEGEN4.		
LCD_SEG18	PA5							LCD segment line 18. Segments 16, 17, 18 and 19 are controlled by SEGEN4.		
LCD_SEG19	PA6							LCD segment line 19. Segments 16, 17, 18 and 19 are controlled by SEGEN4.		
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4		
LCD_SEG21/ LCD_COM5	PB4							LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5		
LCD_SEG22/ LCD_COM6	PB5							LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6		
LCD_SEG23/ LCD_COM7	PB6							LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7		
LES_ALTEX0	PD6							LESENSE alternate exite output 0.		
LES_ALTEX1	PD7							LESENSE alternate exite output 1.		
LES_ALTEX2	PA3							LESENSE alternate exite output 2.		
LES_ALTEX3	PA4							LESENSE alternate exite output 3.		
LES_ALTEX4	PA5							LESENSE alternate exite output 4.		
LES_ALTEX5	PE11							LESENSE alternate exite output 5.		
LES_ALTEX6	PE12							LESENSE alternate exite output 6.		
LES_ALTEX7	PE13							LESENSE alternate exite output 7.		
LES_CH4	PC4							LESENSE channel 4.		
LES_CH5	PC5							LESENSE channel 5.		
LES_CH6	PC6							LESENSE channel 6.		
LES_CH7	PC7							LESENSE channel 7.		
LES_CH12	PC12							LESENSE channel 12.		
LES_CH13	PC13							LESENSE channel 13.		
LES_CH14	PC14							LESENSE channel 14.		
LES_CH15	PC15							LESENSE channel 15.		
LETIMO_OUT0	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.		
LETIM0_OUT1	PD7	PB12	PF1	PC5				Low Energy Timer LETIM0, output channel 1.		
LEU0_RX	PD5	PB14	PE15	PF1	PA0			LEUART0 Receive input.		

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
LEU0_TX	PD4	PB13	PE14	PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13			PD6				Pulse Counter PCNT0 input number 0.
PCNT0_S1IN	PC14			PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.
PRS_CH2		PF5						Peripheral Reflex System PRS, channel 2.
PRS_CH3		PE8						Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0		PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2		PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3		PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5		PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13	PE4		PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11	PE6		PE12	PB8			USART0 Synchronous mode Master Input / Slave Output (MISO).
LICO TV	DE 40	DE7		DE 40	557			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10	PE7		PE13	PB7			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX		PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).
LICA TV		DDC	DD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX		PD0	PD7					USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.10.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG840 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.30. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	PA15	PA14	PA13	PA12	-	-	-	-	-	PA6	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	PB12	PB11	-	-	PB8	PB7	PB6	PB5	PB4	PB3	-	-	-
Port C	PC15	PC14	PC13	PC12	-	-	-	-	PC7	PC6	PC5	PC4	-	-	-	-
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.10.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG840 is shown in the following figure.

Figure 5.19. Opamp Pinout

5.11 EFM32TG842 (TQFP64)

5.11.1 Pinout

The EFM32TG842 pinout is shown in the following figure and table. Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 5.20. EFM32TG842 Pinout (top view, not to scale)

Table 5.31. Device Pinout

QFP	64 Pin# and Name	Pin Alternate Functionality / Description								
Pin#	Pin Name	Analog	Timers Communication		Other					
1	PA0	LCD SEG13	TIMO CC0 #0/1/4	LEU0_RX #4	PRS_CH0 #0					
'	T PAU	LCD_SEG 13	TIM0_CC0 #0/1/4	I2C0_SDA #0	GPIO_EM4WU0					
2	DA4	LCD SEC14	TIMO CC1 #0/1	1200 801 #0	CMU_CLK1 #0					
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	PRS_CH1 #0					
3	PA2	LCD_SEG15	TIM0_CC2 #0/1		CMU_CLK0 #0					

QFP6	64 Pin# and Name		Pin Alternate Funct	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
4	PA3	LCD_SEG16			LES_ALTEX2 #0
5	PA4	LCD_SEG17			LES_ALTEX3 #0
6	PA5	LCD_SEG18			LES_ALTEX4 #0
7	IOVDD_0	Digital IO power supply 0.			
8	VSS	Ground.			
9	PB3	LCD_SEG20/			
9	PB3	LCD_COM4			
10	DD4	LCD_SEG21/			
10	PB4	LCD_COM5			
11	DDE	LCD_SEG22/			
11	PB5	LCD_COM6			
10	DDC	LCD_SEG23/			
12	PB6	LCD_COM7			
		ACMP0_CH4			
13	PC4	DAC0_P0/	LETIM0_OUT0 #3		LES_CH4 #0
		OPAMP_P0			
		ACMP0_CH5			
14	PC5	DAC0_N1/	LETIM0_OUT1 #3		LES_CH5 #0
		OPAMP_N0			
15	PB7	LFXTAL P	TIM1_CC0 #3	US0_TX #4	
15	FB/	LFXTAL_F	111011_000#3	US1_CLK #0	
16	PB8	LFXTAL_N	TIM1_CC1 #3	US0_RX #4	
10	FBO	LFXTAL_N	11W1_CC1#3	US1_CS #0	
17	PA12	LCD_BCAP_P			
18	PA13	LCD_BCAP_N			
19	PA14	LCD_BEXT			
20	RESETn		o apply an external reset s he internal pull-up ensure	source to this pin, it is requite that reset is released.	ired to only drive this pin
21	PB11	DAC0_OUT0/	TIM1_CC2 #3		
21	FBII	OPAMP_OUT0	LETIM0_OUT0 #1		
22	VSS	Ground.			
23	AVDD_1	Analog power supply 1.			
24	PB13	HFXTAL_P		US0_CLK #4/5	
	1 010	III AIAL_I		LEU0_TX #1	
25	PB14	HFXTAL_N		US0_CS #4/5	
	, 514	TH XIAL_I		LEU0_RX #1	

QFP6	64 Pin# and Name		Pin Alternate Funct	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
26	IOVDD_3	Digital IO power supply 3.			
27	AVDD_0	Analog power supply 0.			
		ADC0_CH0			
20	PD0	DAC0_OUT0ALT #4/		1104 TV #4	
28	PD0	OPAMP_OUT0ALT		US1_TX #1	
		OPAMP_OUT2 #1			
		ADC0_CH1			
29	PD1	DAC0_OUT1ALT #4/	TIM0_CC0 #3	US1_RX #1	
		OPAMP_OUT1ALT			
30	PD2	ADC0_CH2	TIM0_CC1 #3	US1_CLK #1	
21	DD3	ADC0_CH3	TIM0 CC2#3	1104 00 #4	
31	PD3	OPAMP_N2	11010_CC2 #3	US1_CS #1	
32	PD4	ADC0_CH4		1.5110. TV #0	
32	PD4	OPAMP_P2		LEU0_TX #0	
33	PD5	ADC0_CH5		LEU0_RX #0	
33	FD3	OPAMP_OUT2 #0		LEOU_KX #0	
		ADC0_CH6	TIM1_CC0 #4	US1_RX #2	LES_ALTEX0 #0
34	PD6	DAC0_P1/	LETIMO_OUT0 #0	12C0_SDA #1	ACMP0_O #2
		OPAMP_P1	PCNT0_S0IN #3	1200_3DA #1	ACIVII 0_0 #2
		ADC0_CH7	TIM1_CC1 #4	US1_TX #2	CMU_CLK0 #2
35	PD7	DAC0_N1/	LETIM0_OUT1 #0	12C0_SCL #1	LES_ALTEX1 #0
		OPAMP_N1	PCNT0_S1IN #3	1200_002#1	ACMP1_O #2
36	PD8				CMU_CLK1 #1
37	PC6	ACMP0_CH6		I2C0_SDA #2	LES_CH6 #0
38	PC7	ACMP0_CH7		I2C0_SCL #2	LES_CH7 #0
39	VDD_DREG	Power supply for on-chip	voltage regulator.		
40	DECOUPLE	Decouple output for on-ch at this pin.	ip voltage regulator. An e	xternal capacitance of size	C _{DECOUPLE} is required
41	PE4	LCD_COM0		US0_CS #1	
42	PE5	LCD_COM1		US0_CLK #1	
43	PE6	LCD_COM2		US0_RX #1	
44	PE7	LCD_COM3		US0_TX #1	
		ACMP1_CH4			CMU_CLK0 #1
45	PC12	DAC0_OUT1ALT #0/			LES_CH12 #0
		OPAMP_OUT1ALT			

QFP6	64 Pin# and Name		Pin Alternate Functi	ionality / Description	
Pin #	Pin Name	Analog	Timers	Communication	Other
		ACMP1_CH5	TIM1_CC0 #0		
46	PC13	DAC0_OUT1ALT #1/	TIM1_CC2 #4		LES_CH13 #0
		OPAMP_OUT1ALT	PCNT0_S0IN #0		
		ACMP1_CH6	TIM1 CC1 #0		
47	PC14	DAC0_OUT1ALT #2/	TIM1_CC1 #0	US0_CS #3	LES_CH14 #0
		OPAMP_OUT1ALT	PCNT0_S1IN #0		
		ACMP1_CH7			LES CH15 #0
48	PC15	DAC0_OUT1ALT #3/	TIM1_CC2 #0	US0_CLK #3	LES_CH15 #0
		OPAMP_OUT1ALT			DBG_SWO #1
			TIM0_CC0 #5	US1_CLK #2	
49	PF0		_	LEU0_TX #3	DBG_SWCLK #0/1
			LETIM0_OUT0 #2	I2C0_SDA #5	
			TIM0_CC1 #5	US1_CS #2	DBC SWDIO #0/1
50	PF1		_	LEU0_RX #3	DBG_SWDIO #0/1
			LETIM0_OUT1 #2	I2C0_SCL #5	GPIO_EM4WU3
					ACMP1_O #0
51	PF2	LCD_SEG0	TIM0_CC2 #5	LEU0_TX #4	DBG_SWO #0
					GPIO_EM4WU4
52	PF3	LCD_SEG1			PRS_CH0 #1
53	PF4	LCD_SEG2			PRS_CH1 #1
54	PF5	LCD_SEG3			PRS_CH2 #1
55	IOVDD_5	Digital IO power supply 5.			
56	VSS	Ground.			
57	PE8	LCD_SEG4			PRS_CH3 #1
58	PE9	LCD_SEG5			
59	PE10	LCD_SEG6	TIM1_CC0 #1	US0_TX #0	BOOT_TX
60	PE11	LCD_SEG7	TIM1_CC1 #1	US0_RX #0	LES_ALTEX5 #0
	1 211	200_0201	11W11_001#1	000_100#0	BOOT_RX
				US0_RX #3	CMU_CLK1 #2
61	PE12	LCD_SEG8	TIM1_CC2 #1	US0_CLK #0	LES_ALTEX6 #0
				I2C0_SDA #6	
				US0_TX #3	LES_ALTEX7 #0
62	PE13	LCD_SEG9		US0_CS #0	ACMP0_O #0
				I2C0_SCL #6	GPIO_EM4WU5
63	PE14	LCD_SEG10		LEU0_TX #2	
64	PE15	LCD_SEG11		LEU0_RX #2	

5.11.2 Alternate Functionality Pinout

A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in the following table. The table shows the name of the alternate functionality in the first column, followed by columns showing the possible LOCATION bitfield settings.

Note: Some functionality, such as analog interfaces, do not have alternate settings or a LOCATION bitfield. In these cases, the pinout is shown in the column corresponding to LOCATION 0.

Table 5.32. Alternate functionality overview

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
ACMP0_CH4	PC4							Analog comparator ACMP0, channel 4.
ACMP0_CH5	PC5							Analog comparator ACMP0, channel 5.
ACMP0_CH6	PC6							Analog comparator ACMP0, channel 6.
ACMP0_CH7	PC7							Analog comparator ACMP0, channel 7.
ACMP0_O	PE13		PD6					Analog comparator ACMP0, digital output.
ACMP1_CH4	PC12							Analog comparator ACMP1, channel 4.
ACMP1_CH5	PC13							Analog comparator ACMP1, channel 5.
ACMP1_CH6	PC14							Analog comparator ACMP1, channel 6.
ACMP1_CH7	PC15							Analog comparator ACMP1, channel 7.
ACMP1_O	PF2		PD7					Analog comparator ACMP1, digital output.
ADC0_CH0	PD0							Analog to digital converter ADC0, input channel number 0.
ADC0_CH1	PD1							Analog to digital converter ADC0, input channel number 1.
ADC0_CH2	PD2							Analog to digital converter ADC0, input channel number 2.
ADC0_CH3	PD3							Analog to digital converter ADC0, input channel number 3.
ADC0_CH4	PD4							Analog to digital converter ADC0, input channel number 4.
ADC0_CH5	PD5							Analog to digital converter ADC0, input channel number 5.
ADC0_CH6	PD6							Analog to digital converter ADC0, input channel number 6.
ADC0_CH7	PD7							Analog to digital converter ADC0, input channel number 7.
BOOT_RX	PE11							Bootloader RX.
BOOT_TX	PE10							Bootloader TX.
CMU_CLK0	PA2	PC12	PD7					Clock Management Unit, clock output number 0.
CMU_CLK1	PA1	PD8	PE12					Clock Management Unit, clock output number 1.
DAC0_N0/ OPAMP_N0	PC5							Operational Amplifier 0 external negative input.
DAC0_N1/ OPAMP_N1	PD7							Operational Amplifier 1 external negative input.

Alternate			L	.OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
OPAMP_N2	PD3							Operational Amplifier 2 external negative input.
DAC0_OUT0/ OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 /OPAMP output channel number 0.
DAC0_OUT0AL T/ OPAMP_OUT0 ALT					PD0			Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1AL T/ OPAMP_OUT1 ALT	PC12	PC13	PC14	PC15	PD1			Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5	PD0						Operational Amplifier 2 output.
DAC0_P0/ OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
DAC0_P1/ OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0						Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1						Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2	PC15						Note that this function is not enabled after reset, and must be enabled by software to be used.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as external optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7			PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6			PF0	PE12	I2C0 Serial Data input / output.
LCD_BCAP_N	PA13							LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12							LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF capacitor between LCD_BCAP_N and LCD_BCAP_P.

Alternate			L	OCATIO	N			
Functionality	0	1	2	3	4	5	6	Description
								LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.
LCD_BEXT	PA14							An external LCD voltage may also be applied to this pin if the booster is not enabled.
								If AVDD is used directly as the LCD supply voltage, this pin may be left unconnected or used as a GPIO.
LCD_COM0	PE4							LCD driver common line number 0.
LCD_COM1	PE5							LCD driver common line number 1.
LCD_COM2	PE6							LCD driver common line number 2.
LCD_COM3	PE7							LCD driver common line number 3.
LCD_SEG0	PF2							LCD segment line 0. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG1	PF3							LCD segment line 1. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG2	PF4							LCD segment line 2. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG3	PF5							LCD segment line 3. Segments 0, 1, 2 and 3 are controlled by SEGEN0.
LCD_SEG4	PE8							LCD segment line 4. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG5	PE9							LCD segment line 5. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG6	PE10							LCD segment line 6. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG7	PE11							LCD segment line 7. Segments 4, 5, 6 and 7 are controlled by SEGEN1.
LCD_SEG8	PE12							LCD segment line 8. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG9	PE13							LCD segment line 9. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG10	PE14							LCD segment line 10. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG11	PE15							LCD segment line 11. Segments 8, 9, 10 and 11 are controlled by SEGEN2.
LCD_SEG13	PA0							LCD segment line 13. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG14	PA1							LCD segment line 14. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG15	PA2							LCD segment line 15. Segments 12, 13, 14 and 15 are controlled by SEGEN3.
LCD_SEG16	PA3							LCD segment line 16. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG17	PA4							LCD segment line 17. Segments 16, 17, 18 and 19 are controlled by SEGEN4.

Alternate				_OCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
LCD_SEG18	PA5							LCD segment line 18. Segments 16, 17, 18 and 19 are controlled by SEGEN4.
LCD_SEG20/ LCD_COM4	PB3							LCD segment line 20. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 4
LCD_SEG21/ LCD_COM5	PB4							LCD segment line 21. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 5
LCD_SEG22/ LCD_COM6	PB5							LCD segment line 22. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 6
LCD_SEG23/ LCD_COM7	PB6							LCD segment line 23. Segments 20, 21, 22 and 23 are controlled by SEGEN5. This pin may also be used as LCD COM line 7
LES_ALTEX0	PD6							LESENSE alternate exite output 0.
LES_ALTEX1	PD7							LESENSE alternate exite output 1.
LES_ALTEX2	PA3							LESENSE alternate exite output 2.
LES_ALTEX3	PA4							LESENSE alternate exite output 3.
LES_ALTEX4	PA5							LESENSE alternate exite output 4.
LES_ALTEX5	PE11							LESENSE alternate exite output 5.
LES_ALTEX6	PE12							LESENSE alternate exite output 6.
LES_ALTEX7	PE13							LESENSE alternate exite output 7.
LES_CH4	PC4							LESENSE channel 4.
LES_CH5	PC5							LESENSE channel 5.
LES_CH6	PC6							LESENSE channel 6.
LES_CH7	PC7							LESENSE channel 7.
LES_CH12	PC12							LESENSE channel 12.
LES_CH13	PC13							LESENSE channel 13.
LES_CH14	PC14							LESENSE channel 14.
LES_CH15	PC15							LESENSE channel 15.
LETIMO_OUTO	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.
LETIM0_OUT1	PD7		PF1	PC5				Low Energy Timer LETIM0, output channel 1.
LEU0_RX	PD5	PB14	PE15	PF1	PA0			LEUART0 Receive input.
LEU0_TX	PD4	PB13	PE14	PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.
PCNT0_S0IN	PC13			PD6				Pulse Counter PCNT0 input number 0.

Alternate				LOCATIO	ON			
Functionality	0	1	2	3	4	5	6	Description
PCNT0_S1IN	PC14			PD7				Pulse Counter PCNT0 input number 1.
PRS_CH0	PA0	PF3						Peripheral Reflex System PRS, channel 0.
PRS_CH1	PA1	PF4						Peripheral Reflex System PRS, channel 1.
PRS_CH2		PF5						Peripheral Reflex System PRS, channel 2.
PRS_CH3		PE8						Peripheral Reflex System PRS, channel 3.
TIM0_CC0	PA0	PA0		PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.
TIM0_CC1	PA1	PA1		PD2		PF1		Timer 0 Capture Compare input / output channel 1.
TIM0_CC2	PA2	PA2		PD3		PF2		Timer 0 Capture Compare input / output channel 2.
TIM1_CC0	PC13	PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.
TIM1_CC1	PC14	PE11		PB8	PD7			Timer 1 Capture Compare input / output channel 1.
TIM1_CC2	PC15	PE12		PB11	PC13			Timer 1 Capture Compare input / output channel 2.
US0_CLK	PE12	PE5		PC15	PB13	PB13		USART0 clock input / output.
US0_CS	PE13	PE4		PC14	PB14	PB14		USART0 chip select input / output.
								USART0 Asynchronous Receive.
US0_RX	PE11	PE6		PE12	PB8			USART0 Synchronous mode Master Input / Slave Output (MISO).
LICO TV	DE40	DE7		DE42	PB7			USART0 Asynchronous Transmit.Also used as receive input in half duplex communication.
US0_TX	PE10	PE7		PE13	РВЛ			USART0 Synchronous mode Master Output / Slave Input (MOSI).
US1_CLK	PB7	PD2	PF0					USART1 clock input / output.
US1_CS	PB8	PD3	PF1					USART1 chip select input / output.
								USART1 Asynchronous Receive.
US1_RX		PD1	PD6					USART1 Synchronous mode Master Input / Slave Output (MISO).
LIC1 TV		PD0	PD7					USART1 Asynchronous Transmit.Also used as receive input in half duplex communication.
US1_TX		רטט	רטו					USART1 Synchronous mode Master Output / Slave Input (MOSI).

5.11.3 GPIO Pinout Overview

The specific GPIO pins available in EFM32TG842 is shown in the following table. Each GPIO port is organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated by a number from 15 down to 0.

Table 5.33. GPIO Pinout

Port	Pin 15	Pin 14	Pin 13	Pin 12	Pin 11	Pin 10	Pin 9	Pin 8	Pin 7	Pin 6	Pin 5	Pin 4	Pin 3	Pin 2	Pin 1	Pin 0
Port A	-	PA14	PA13	PA12	-	-	-	-	-	-	PA5	PA4	PA3	PA2	PA1	PA0
Port B	-	PB14	PB13	-	PB11	-	-	PB8	PB7	PB6	PB5	PB4	PB3	-	-	-
Port C	PC15	PC14	PC13	PC12	-	-	-	-	PC7	PC6	PC5	PC4	-	-	-	-
Port D	-	-	-	-	-	-	-	PD8	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0
Port E	PE15	PE14	PE13	PE12	PE11	PE10	PE9	PE8	PE7	PE6	PE5	PE4	-	-	-	-
Port F	-	-	-	-	-	-	-	-	-	-	PF5	PF4	PF3	PF2	PF1	PF0

5.11.4 Opamp Pinout Overview

The specific opamp terminals available in EFM32TG842 is shown in the following figure.

Figure 5.21. Opamp Pinout

6. BGA48 Package Specifications

6.1 BGA48 Package Dimensions

Figure 6.1. BGA48

- 1. The dimensions in parenthesis are reference.
- 2. Datum 'C' and seating plane are defined by the crown of the solder balls.
- 3. All dimensions are in millimeters.

6.2 BGA48 PCB Layout

Figure 6.2. BGA48 PCB Land Pattern

Table 6.1. BGA48 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Row name and column number
а	0.25	r1	A
b	0.50	rn	G
d	3.00	c1	1
е	3.00	cn	7

Figure 6.3. BGA48 PCB Solder Mask

Table 6.2. BGA48 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.28
b	0.50
d	3.00
е	3.00

Figure 6.4. BGA48 PCB Stencil Design

Table 6.3. BGA48 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.25
b	0.50
d	3.00
е	3.00

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

6.3 BGA48 Package Marking

In the illustration below package fields and position are shown.

Figure 6.5. Example Chip Marking (Top View)

7. QFN24 Package Specifications

7.1 QFN24 Package Dimensions

Figure 7.1. QFN24

Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.

Table 7.1. QFN (Dimensions in mm)

Symbol	Α	A1	А3	b	D	E	D2	E2	е	L	L1	aaa	bbb	ссс	ddd	eee
Min	0.80	0.00		0.25			3.50	3.50		0.35	0.00					
Nom	0.85	_	0.203 REF	0.30	5.00 BSC	5.00 BSC	3.60	3.60	0.65 BSC	0.40		0.10	0.10	0.10	0.05	0.08
Max	0.90	0.05		0.35			3.70	3.70		0.45	0.10					

The QFN24 package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/guality/pages/default.aspx.

7.2 QFN24 PCB Layout

Figure 7.2. QFN24 PCB Land Pattern

Table 7.2. QFN24 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	0.80	P1	1	P8	24
b	0.30	P2	6	P9	25
С	0.65	P3	7	-	-
d	5.00	P4	12	-	-
е	5.00	P5	13	-	-
f	3.60	P6	18	-	-
g	3.60	P7	19	-	-

Figure 7.3. QFN24 PCB Solder Mask

Table 7.3. QFN24 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.92
b	0.42
С	0.65

Symbol	Dim. (mm)
d	5.00
е	5.00
f	3.72
g	3.72

Figure 7.4. QFN24 PCB Stencil Design

Table 7.4. QFN24 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.60
b	0.25
С	0.65
d	5.00
е	5.00
х	1.00
у	1.00
z	0.50

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

7.3 QFN24 Package Marking

In the illustration below package fields and position are shown.

Figure 7.5. Example Chip Marking (Top View)

8. QFN32 Package Specifications

8.1 QFN32 Package Dimensions

Figure 8.1. QFN32

Note:

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.

Table 8.1. QFN32 (Dimensions in mm)

Symbol	A	A1	A3	b	D	E	D2	E2	е	L	L1	aaa	bbb	ссс	ddd	eee
Min	0.80	0.00		0.25			4.30	4.30		0.35	0.00					
Nom	0.85	_	0.203 REF	0.30	6.00 BSC	6.00 BSC	4.40	4.40	0.65 BSC	0.40		0.10	0.10	0.10	0.05	0.08
Max	0.90	0.05		0.35			4.50	4.50		0.45	0.10					

The QFN32 package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/guality/pages/default.aspx.

8.2 QFN32 PCB Layout

Figure 8.2. QFN32 PCB Land Pattern

Table 8.2. QFN32 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	0.80	P1	1	P6	24
b	0.35	P2	8	P7	25
С	0.65	P3	9	P8	32
d	6.00	P4	16	P9	33
е	6.00	P5	17		
f	4.40				
g	4.40				

Figure 8.3. QFN32 PCB Solder Mask

Table 8.3. QFN32 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.92
b	0.47
С	0.65
d	6.00
е	6.00
f	4.52
g	4.52

Figure 8.4. QFN32 PCB Stencil Design

Table 8.4. QFN32 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	0.70
b	0.25
С	0.65
d	6.00
е	6.00
х	1.30
У	1.30
Z	0.50

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

8.3 QFN32 Package Marking

In the illustration below package fields and position are shown.

Figure 8.5. Example Chip Marking (Top View)

9. QFN64 Package Specifications

9.1 QFN64 Package Dimensions

Figure 9.1. QFN64

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional.

Table 9.1. QFN64 (Dimensions in mm)

Symbol	Min	Nom	Max				
А	0.80	0.85	0.90				
A1	0.00	_	0.05				
A3		0.203 REF					
b	0.20	0.25	0.30				
D		9.00 BSC					
E	9.00 BSC						
D2	7.10	7.20	7.30				
E2	7.10	7.20	7.30				
е		0.50 BSC					
L	0.40	0.45	0.50				
L1	0.00	0.00 — 0.					
aaa	0.10						
bbb		0.10					
ccc		0.10					
ddd		0.05					
eee		0.08					

The QFN64 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

9.2 QFN64 PCB Layout

Figure 9.2. QFN64 PCB Land Pattern

Table 9.2. QFN64 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	0.85	P1	1	P8	64
b	0.30	P2	16	P9	65
С	0.50	P3	17		
d	8.90	P4	32		
е	8.90	P5	33		
f	7.20	P6	48		
g	7.20	P7	49		

Figure 9.3. QFN64 PCB Solder Mask

Table 9.3. QFN64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
а	0.97	е	8.90
b	0.42	f	7.32
С	0.50	g	7.32

Symbol	Dim. (mm)	Symbol	Dim. (mm)
d	8.90	-	-

Figure 9.4. QFN64 PCB Stencil Design

Table 9.4. QFN64 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Dim. (mm)
а	0.75	е	8.90
b	0.22	X	2.70
С	0.50	у	2.70
d	8.90	Z	0.80

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

9.3 QFN64 Package Marking

In the illustration below package fields and position are shown.

Figure 9.5. Example Chip Marking (Top View)

10. TQFP48 Package Specifications

10.1 TQFP48 Package Dimensions

Figure 10.1. TQFP48

- 1. Dimensions and tolerance per ASME Y14.5M-1994
- 2. Control dimension: Millimeter
- 3. Datum plane AB is located at bottom of lead and is coincident with the lead where the lead exists from the plastic body at the bottom of the parting line.
- 4. Datums T, U and Z to be determined at datum plane AB.
- 5. Dimensions S and V to be determined at seating plane AC.
- 6. Dimensions A and B do not include mold protrusion. Allowable protrusion is 0.250 per side. Dimensions A and B do include mold mismatch and are determined at datum AB.
- 7. Dimension D does not include dambar protrusion. Dambar protrusion shall not cause the D dimension to exceed 0.350.
- 8. Minimum solder plate thickness shall be 0.0076.
- 9. Exact shape of each corner is optional.

Table 10.1. QFP48 (Dimensions in mm)

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
А	_	7.000 BSC	_	М	_	12DEG REF	
A1	_	3.500 BSC	_	N	0.090	_	0.160
В	_	7.000 BSC	_	Р	_	0.250 BSC	_
B1	_	3.500 BSC	_	R	0.150	_	0.250
С	1.000	_	1.200	S	_	9.000 BSC	_
D	0.170	_	0.270	S1	_	4.500 BSC	_
E	0.950	_	1.050	V	_	9.000 BSC	_
F	0.170	_	0.230	V1	_	4.500 BSC	_
G	_	0.500 BSC	_	W	_	0.200 BSC	_
Н	0.050	_	0.150	AA	_	1.000 BSC	_
J	0.090	_	0.200				
K	0.500	_	0.700				
L	0DEG	_	7DEG				

The TQFP48 package is 7 by 7 mm in size and has a 0.5 mm pin pitch.

The TQFP48 package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

10.2 TQFP48 PCB Layout

Figure 10.2. TQFP48 PCB Land Pattern

Table 10.2. TQFP48 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	1.60	P1	1	P6	36
b	0.30	P2	12	P7	37
С	0.50	P3	13	P8	48
d	8.50	P4	24		
е	8.50	P5	25		

Figure 10.3. TQFP48 PCB Solder Mask

Table 10.3. TQFP48 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.72
b	0.42
С	0.50
d	8.50
е	8.50

Figure 10.4. TQFP48 PCB Stencil Design

Table 10.4. TQFP48 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.50
b	0.20
С	0.50
d	8.50
е	8.50

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

10.3 TQFP48 Package Marking

In the illustration below package fields and position are shown.

Figure 10.5. Example Chip Marking (Top View)

11. TQFP64 Package Specifications

11.1 TQFP64 Package Dimensions

Figure 11.1. TQFP64

- 1. All dimensions & tolerancing confirm to ASME Y14.5M-1994.
- 2. The top package body size may be smaller than the bottom package body size.
- 3. Datum 'A,B', and 'B' to be determined at datum plane 'H'.
- 4. To be determined at seating place 'C'.
- 5. Dimension 'D1' and 'E1' do not include mold protrusions. Allowable protrusion is 0.25mm per side. 'D1' and 'E1' are maximum plastic body size dimension including mold mismatch. Dimension 'D1' and 'E1' shall be determined at datum plane 'H'.
- 6. Detail of Pin 1 indicatifier are option all but must be located within the zone indicated.
- 7. Dimension 'b' does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum 'b' dimension by more than 0.08 mm. Dambar can not be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07 mm.
- 8. Exact shape of each corner is optional.
- 9. These dimension apply to the flat section of the lead between 0.10 mm and 0.25 mm from the lead tip.
- 10. All dimensions are in millimeters.

Table 11.1. QFP64 (Dimensions in mm)

DIM	MIN	NOM	MAX	DIM	MIN	NOM	MAX
А	_	1.10	1.20	L1		_	
A1	0.05	_	0.15	R1	0.08	_	_
A2	0.95	1.00	1.05	R2	0.08	_	0.20
b	0.17	0.22	0.27	S	0.20	_	_
b1	0.17	0.20	0.23	θ	0°	3.5°	7°
С	0.09	_	0.20	θ1	0°	_	_
C1	0.09	_	0.16	θ2	11°	12°	13°
D	12.0 BSC			θ3	11°	12°	13°
D1		10.0 BS	С				
е	0.50 BSC						
E	12.0 BSC						
E1	10.0 BSC						
L	0.45	0.60	0.75				

The TQFP64 Package is 10 by 10 mm in size and has a 0.5 mm pin pitch.

The TQFP64 Package uses Nickel-Palladium-Gold preplated leadframe.

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx.

11.2 TQFP64 PCB Layout

Figure 11.2. TQFP64 PCB Land Pattern

Table 11.2. TQFP64 PCB Land Pattern Dimensions (Dimensions in mm)

Symbol	Dim. (mm)	Symbol	Pin Number	Symbol	Pin Number
а	1.60	P1	1	P6	48
b	0.30	P2	16	P7	49
С	0.50	P3	17	P8	64
d	11.50	P4	32		
е	11.50	P5	33		

Figure 11.3. TQFP64 PCB Solder Mask

Table 11.3. TQFP64 PCB Solder Mask Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.72
b	0.42
С	0.50
d	11.50
е	11.50

Figure 11.4. TQFP64 PCB Stencil Design

Table 11.4. TQFP64 PCB Stencil Design Dimensions (Dimensions in mm)

Symbol	Dim. (mm)
а	1.50
b	0.20
С	0.50
d	11.50
е	11.50

- 1. The drawings are not to scale.
- 2. All dimensions are in millimeters.
- 3. All drawings are subject to change without notice.
- 4. The PCB Land Pattern drawing is in compliance with IPC-7351B.
- 5. Stencil thickness 0.125 mm.
- 6. For detailed pin-positioning, see Pin Definitions.

11.3 TQFP64 Package Marking

In the illustration below package fields and position are shown.

Figure 11.5. Example Chip Marking (Top View)

12. Chip Revision, Solder Information, Errata

12.1 Chip Revision

The revision of a chip can be determined from the "Revision" field in the package marking.

12.2 Soldering Information

The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.

12.3 Errata

Please see the errata document for description and resolution of device errata. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit

13. Revision History

13.1 Revision 2.00

August, 2018

- · Consolidated all EFM32TG data sheets:
 - EFM32TG108
 - EFM32TG110
 - EFM32TG210
 - EFM32TG222
 - EFM32TG225
 - EFM32TG230
 - EFM32TG232
 - EFM32TG822
 - EFM32TG825
 - EFM32TG840
 - EFM32TG842
- · Added a Feature List section.
- 2. Ordering Information Added ordering code decoder.
- 3.3 Memory Map Separated the Memory Map into two figures one for core and code space listing and one for peripheral listing.
- · Environmental Removed this section. Environmental specifications are available in the qualification report.
- Removed MSL information (Moisture Sensitivity Level). Instead, MSL information can be found in the Qual report that is available on the Silicon Labs website.
- For QFN32 packages, corrected pin number for symbol P3.
- 6.1 BGA48 Package Dimensions Removed statements regarding materials used.
- · New formatting throughout.

13.2 Revision 1.40

March 6th, 2015

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825
- EFM32TG840
- EFM32TG842

Updated Block Diagram.

Updated Energy Modes current consumption.

Updated Power Management section.

Updated LFRCO and HFRCO sections.

Added AUXHFRCO to block diagram and Electrical Characteristics.

Corrected unit to kHz on LFRCO plots y-axis.

For devices with ADC, updated ADC section and added clarification on conditions for INLADC and DNLADC parameters.

For devices with DAC, updated ADC section and added clarification on conditions for INL_{DAC} and DNL_{DAC} parameters.

For devices with OPAMP, updated OPAMP section.

For devices with ACMP, updated ACMP section and the response time graph.

For devices with VCMP, updated VCMP section.

For QFN24 and QFN32 packages, updated Package dimensions table.

Updated Digital Peripherals section.

13.3 Revision 1.30

July 2nd, 2014

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825
- EFM32TG840
- EFM32TG842

Updated current consumption.

Updated transition between energy modes.

Updated power management data.

Updated GPIO data.

Updated LFXO, HFXO, HFRCO and ULFRCO data.

Updated LFRCO and HFRCO plots.

Updated ACMP data.

13.4 Revision 1.21

November 21st, 2013

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825EFM32TG840
- EFM32TG842

Updated figures.

Updated errata-link.

Updated chip marking.

Added link to Environmental and Quality information.

For devices with DAC, re-added missing DAC-data.

13.5 Revision 1.20

September 30th, 2013

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825
- EFM32TG840
- EFM32TG842

Added I2C characterization data.

For devices with DAC, corrected the DAC and OPAMP2 pin sharing information in the Alternate Functionality Pinout section.

Corrected GPIO operating voltage from 1.8 V to 1.85 V.

For devices with ADC, corrected the ADC gain and offset measurement reference voltage from 2.25 to 2.5V.

For devices with ADC, corrected the ADC resolution from 12, 10 and 6 bit to 12, 8 and 6 bit.

For QFP48 devices, updated the Max V_{ESDCDM} value to 750 V.

Document changed status from "Preliminary".

Updated Environmental information.

Updated trademark, disclaimer and contact information.

Other minor corrections.

13.6 Revision 1.10

June 28th, 2013

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825EFM32TG840
- EFM32TG842

For BGA packages, updated PCB Land Pattern, PCB Solder Mask and PCB Stencil Design figures.

Updated power requirements in the Power Management section.

Removed minimum load capacitance figure and table. Added reference to application note.

Other minor corrections.

13.7 Revision 1.00

September 11th, 2012

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825
- EFM32TG840
- EFM32TG842

Updated the HFRCO 1 MHz band typical value to 1.2 MHz.

Updated the HFRCO 7 MHz band typical value to 6.6 MHz.

Added GPIO_EM4WU3, GPIO_EM4WU4 and GPIO_EM4WU5 pins and removed GPIO_EM4WU1 in the Alternate functionality overview table.

Other minor corrections.

13.8 Revision 0.96

May 4th, 2012

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825
- EFM32TG840EFM32TG842

For BGA48 packages, added PCB land pattern, Stencil design and solder mask.

For BGA48 packages, corrected PCB footprint figures and tables.

13.9 Revision 0.95

February 27th, 2012

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825
- EFM32TG840
- EFM32TG842

For BGA48 packages, initial preliminary release.

For BGA48 packages, corrected operating voltage from 1.8 V to 1.85 V.

For BGA48 packages, added rising POR level and corrected Thermometer output gradient in Electrical Characteristics section.

For BGA48 packages, updated Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup.

For BGA48 packages, added Gain error drift and Offset error drift to ADC table.

For devices with OPAMP in BGA48 packages, added Opamp pinout overview.

For BGA48 packages, added reference to errata document.

13.10 Revision 0.92

July 22nd, 2011

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG222
- EFM32TG225
- EFM32TG230
- EFM32TG232
- EFM32TG822
- EFM32TG825
- EFM32TG840
- EFM32TG842

Updated current consumption numbers from latest device characterization data.

For devices with OPAMP, updated OPAMP electrical characteristics.

For devices with ADC, made ADC plots render properly in Adobe Reader.

For EFM32TG822, corrected number of DAC channels available.

For EFM32TG232, corrected number of DAC channels available.

For EFM32TG842, corrected number of DAC channels available.

For EFM32TG230, corrected number of DAC channels available.

13.11 Revision 0.91

February 4th, 2011

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG230
- EFM32TG840

Corrected max DAC sampling rate.

Increased max storage temperature.

Added data for <150°C and <70°C on Flash data retention.

Changed latch-up sensitivity test description.

Added IO leakage current.

Added Flash current consumption.

Updated HFRCO data.

Updated LFRCO data.

For devices with ADC, added graph for ADC Absolute Offset over temperature.

For devices with ADC, added graph for ADC Temperature sensor readout.

For devices with OPAMP, updated OPAMP electrical characteristics.

13.12 Revision 0.90

December 1st, 2010

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG230
- EFM32TG840

New peripherals added to pinout, including LESENSE and OpAmps.

April 14th, 2011

This revision applies the following devices:

- EFM32TG222
- EFM32TG232
- EFM32TG822

Initial preliminary release.

June 30th, 2011

This revision applies the following devices:

EFM32TG842

Initial preliminary release.

13.13 Revision 0.70

August 16th, 2010

This revision applies the following devices:

• EFM32TG110

Added pinout.

13.14 Revision 0.60

June 8th, 2010

This revision applies the following devices:

• EFM32TG230

Corrected pinout.

13.15 Revision 0.50

May 25th, 2010

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG230
- EFM32TG840

Block diagram update.

13.16 Revision 0.40

March 26th, 2010

This revision applies the following devices:

- EFM32TG108
- EFM32TG110
- EFM32TG210
- EFM32TG230
- EFM32TG840

Initial preliminary release.

loT Portfolio www.silabs.com/loT

SW/HWwww.silabs.com/simplicity

Quality www.silabs.com/quality

Support and Community community.silabs.com

Disclaimer

Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc.®, Silicon Laboratories®, Silicon Labss®, Bluegiga®, Bluegiga®, Bluegiga®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadio®, Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri, Z-Wave, and others are trademarks or registered trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Silicon Laboratories:

```
EFM32TG232F8 EFM32TG232F16 EFM32TG232F32 EFM32TG842F8 EFM32TG842F16 EFM32TG842F32
EFM32TG225F16 EFM32TG225F32 EFM32TG225F8 EFM32TG825F16 EFM32TG825F32 EFM32TG825F8
EFM32TG108F16 EFM32TG108F32 EFM32TG108F4 EFM32TG108F8 EFM32TG110F16 EFM32TG110F32
EFM32TG110F4 EFM32TG110F8 EFM32TG210F16 EFM32TG210F32 EFM32TG210F8 EFM32TG230F16
EFM32TG230F32 EFM32TG230F8 EFM32TG840F16 EFM32TG840F32 EFM32TG840F8 EFM32TG222F16
EFM32TG222F32 EFM32TG222F8 EFM32TG822F16 EFM32TG822F32 EFM32TG822F8 EFM32TG822F8-QFP48
EFM32TG232F8-QFP64 EFM32TG210F8-QFN32 EFM32TG108F16-QFN24 EFM32TG232F16-QFP64T
EFM32TG110F8-QFN24T EFM32TG110F4-QFN24 EFM32TG230F16-QFN64 EFM32TG225F8-BGA48
EFM32TG108F32-QFN24T EFM32TG822F32-QFP48 EFM32TG825F16-BGA48 EFM32TG210F16-QFN32
EFM32TG230F32-QFN64T EFM32TG842F32-QFP64 EFM32TG225F8-BGA48T EFM32TG222F32-QFP48
EFM32TG840F16-QFN64 EFM32TG108F8-QFN24 EFM32TG232F8-QFP64T EFM32TG222F32-QFP48T
EFM32TG110F16-QFN24 EFM32TG108F4-QFN24 EFM32TG842F32-QFP64T EFM32TG825F32-BGA48
EFM32TG230F8-QFN64 EFM32TG222F16-QFP48T EFM32TG110F16-QFN24T EFM32TG222F8-QFP48
EFM32TG108F8-QFN24T EFM32TG840F16-QFN64T EFM32TG110F32-QFN24 EFM32TG230F16-QFN64T
EFM32TG108F16-QFN24T EFM32TG232F32-QFP64 EFM32TG225F32-BGA48 EFM32TG840F8-QFN64T
EFM32TG110F8-QFN24 EFM32TG842F8-QFP64T EFM32TG825F16-BGA48T EFM32TG108F32-QFN24
EFM32TG842F8-QFP64 EFM32TG110F4-QFN24T EFM32TG210F8-QFN32T EFM32TG842F16-QFP64T
EFM32TG825F8-BGA48 EFM32TG222F8-QFP48T EFM32TG825F32-BGA48T EFM32TG225F16-BGA48T
EFM32TG210F16-QFN32T EFM32TG230F8-QFN64T EFM32TG840F32-QFN64T EFM32TG222F16-QFP48
EFM32TG232F16-QFP64 EFM32TG110F32-QFN24T EFM32TG230F32-QFN64 EFM32TG840F8-QFN64
EFM32TG822F16-QFP48T EFM32TG842F16-QFP64 EFM32TG822F16-QFP48 EFM32TG822F32-QFP48T
EFM32TG840F32-QFN64 EFM32TG108F4-QFN24T EFM32TG825F8-BGA48T EFM32TG210F32-QFN32
```