データベース(第三回)

情報工学科 木村昌臣

今日やること

- データベースの操作の種類
 - 問い合わせ
 - 更新
- リレーショナル代数(「問い合わせ」の言語)
 - 集合演算がベース
 - 和集合演算
 - 差集合演算
 - 共通集合演算
 - 直積集合演算
 - リレーショナル代数固有の演算
 - 射影演算
 - 選択演算
 - 結合演算
 - 商演算

データベースへの操作(1/3)

本来、データベースはデータを貯めたり自分が知りたいデータを調べるもの。

データを貯める・修正する

データベースへの操作(2/3)

- 問い合わせ(Query) =タップルの検索
- 更新 = タップルの追加・変更・削除

データを貯める・修正する データを検索する 問い合わせ 結果を返す

データベースへの操作(3/3)

- 問い合わせ(Query)
- 更新

リレーショナル データ操作言語 (DML)

データを貯める・修正する

「問い合わせ」とは(1/3)

リレーション「社員」から 「給与が50万円以上の社員名と所属を求めよ」

社員

計員番号	計員名	給与	所属	
E01 01	井上陽水	61 万円	研究開発部	
E3015	宇多田ヒカル	22万円	営業部	
E0201	桑田 佳祐	57万円	営業部	
E4119	島谷ひとみ	18万円	人事部	
E0304	子門正人	51 万円	総務部	

給与が50万円以上のタップル

「問い合わせ」とは(2/3)

リレーション「社員」から 「給与が50万円以上の社員名と所属を求めよ」

社員名	給与	所属
井上陽水	61 万円	研究開発部
宇多田ヒカル	22万円	営業部
桑田 佳祐	57万円	営業部
島谷ひとみ	18万円	│ 人事部 │
子門正人	51 万円	総務部
	井上陽水 宇多田ヒカル 桑田 佳祐 島谷ひとみ	井上陽水 61 万円 宇多田ヒカル 22 万円 桑田 佳祐 57 万円 島谷ひとみ 18 万円

給与が50万円以上のタップル

リレーション「社員」から 「給与が50万円以上の社員名と所属を求めよ」

社員			
社員番号	社員名	給与	所属
E01 01	井上陽水	61 万円 🤇	研究開発部
E3015	于沙田巴刀山	22万円	'呂'茉哥
E0201	桑田 佳祐	57万円 🤇	営業部
E4119	島谷びとみ	18万円	人事部
E0304	子門正人	51 万円 🕻	総務部

結果もリレーションの形 をしている!

社員名	所属
井上陽水	研究開発部
桑田 佳祐	営業部
子門正人	総務部

「問い合わせ」の流れ(まとめ)

				社員	
Ц	所属	給与	計員名	計員番号	
П	研究開発部	61 万円	井上陽水	E01 01	
	営業部	22万円	宇多田ヒカル	E3015	
Π	営業部	57万円	桑田 佳祐	E0201	
	人事部	18万円	島谷ひとみ	E4119	
J	総務部	51 万円	子門正人	E0304	
_	営業部 人事部	57万円 18万円	桑田 佳祐	E0201 E4119	

給与が50万円以上のタップル

リレーショナル代数

- ■「問い合わせ」の方法を記述する「言語」
- 集合演算がベース
 - 和集合演算
 - 差集合演算
 - 共通集合演算
 - 直積集合演算
- リレーショナル代数固有の演算
 - 射影演算
 - 選択演算
 - 結合演算
 - 商演算

集合演算の復習 (1/5)

集合Rと集合Sがあるとする

集合演算の復習 (2/5)

RとSの和集合R∪S

 $x \in R \cup S \Leftrightarrow x \in R \lor x \in S$

R S

集合演算の復習 (3/5)

RとSの差集合 R-S

 $x \in R-S \Leftrightarrow x \in R \land \neg (x \in S)$

一•••否定

集合演算の復習 (4/5)

RとSの共通集合 R∩S

 $x \in R \cap S \Leftrightarrow x \in R \land x \in S$

集合演算の復習 (5/5)

RとSの直積集合 R×S

 $x \ge y$ の組 $(x,y) \in R \times S \Leftrightarrow x \in R \land y \in S$

R S y

リレーショナル代数

和演算

リレーションR

ſĺ			?,	, —	•	·C
٠,	Į					3

リレーションR∪S

$R \cup S = \{t \mid t \in R \lor t \in S\}$

ただし、 列の数(次数)が同じこと RとSの各列が同じドメインにいること が必要

リレーショナル代数

差演算

リレーションR

リレーションS

リレーションR-S

$R-S=\{t|t\in R \land \neg(t\in S)\}$

ただし、 列の数(次数)が同じこと RとSの各列が同じドメインにいること が必要

リレーショナル代数 共通集合演算

リレーションR

リレーションS

リレーションR ハS

$R \cap S = \{t \mid t \in R \land t \in S\}$

ただし、 列の数(次数)が同じこと RとSの各列が同じドメインにいること が必要

リレーショナル代数

直積演算

 $R \times S = \{(t,s) | t \in R \land s \in S\}$

ただし、タップルの数はRのタップルの数とSのタップルの数の積になる

リレーショナル代数

直積演算 (例)

リレーションR

ſ	Ιſ	1	 2	. —	•	·C
٠,	/ L					' S

学部	学科
工学部	情報
工学部	建築
システム工学部	電子情報

<u>キャンバス</u>
芝浦
大宮

リレーションR×S

学部	学科	キャンバス
工学部	情報	芝浦
工学部	情報	大宮
工学部	建築	芝浦
工学部	建築	大宮
システム工学部	電子情報	芝浦
システム工学部	電子情報	大宮

3×2=6タップル

リレーショナル代数 射影演算

射影演算=列の切り出し(縦)

4.1	_
XT	=
	歹

社員番号	社員名	給与	所属
E01 01	井上陽水	61 万円	研究開発部
E3015	宇多田ヒカル	22万円	営業部
E0201	桑田 佳祐	57万円	営業部
E4119	島谷ひとみ	18万円	人事部
E0304	子門正人	51 万円	総務部

R[社員名,所属]={u| u∈dom(社員名)×dom(所属)∧ (∃t∈社員) ∧ t[社員名]=u[社員名] ∧ t[所属]=u[所属] }

リレーショナル代数 選択演算(1/5)

ある条件をつけて、タップルを選択する

社員

計員番号	計員名	給与	所属	
E01 01	井上陽水	61 万円	研究開発部	
E3015	宇多田ヒカル	22万円	営業部	
E0201	桑田 佳祐	57万円	営業部	
E4119	よ公ひ谷島	18万円	人事部	
E0304	子門正人	51 万円	総務部	

給与が50万円以上のタップル

選択演算を行うための条件 (2/5)

- θ-比較可能であること
 - R(A₁,A₂,...,A_n)をリレーションとするときA_i,A_jが次の条件を満たしているときθ-比較可能であるという
 - $\bullet dom(A_i) = dom(A_j)$
 - 任意のタップルtに対して、t[A_i]θt[A_j]の真偽が常に定まること
 - **■** θの例: = <>≠≦≧

θ-選択演算(3/5)

- R(A₁,A₂,...,A_n)をリレーションとする
- Rの属性AiとAj 上のθ-選択をR[Ai θ Aj]と書く:

 $R[Ai \theta Aj] = \{t \mid t \in R \land (t[Ai] \theta t[Aj]) \}$

商品

商品番号	商品名	原価	売価
G110	刺身	400	300
G1 20	豆腐	90	75
G130	Ŋρ	95	100
G1 40	コーヒー	500	700
G150	砂糖	200	300

R=商品 Ai=原価 Aj=売価 Θ=">"

商品[原価>売価]

商品番号	商品名	原価	売価
G110	刺身	400	300
G1 20	豆腐	90	75

θ-選択演算(定数と比較)(5/5)

商品[原価>300]

=(商品×CONST)[商品.原価>CONST.C][商品.商品番号,商品.商品名,商品.原価,商品.原価]

商品×CONST 元のリレーション「商品」の列への射影

商品番号	商品名	原価	売価	b l
G110	刺身	400	300	300
G1 20	豆腐	90	75	300
G130	DD P	95	100	300
G140	コーヒー	500	700	300
G150	砂糖	200	300	300

商品.原価>CONST.C

リレーショナル代数 結合演算(1/4)

- リレーショナルデータベースでは、リレーションの間の関係は「陰」に定義されている。
 - ネットワークデータモデルでは、データ間の関係はポインタを 使って「陽」に定義されている。
 - リレーショナルデータモデルでは、二つ以上のリレーションを 共通の属性(属性値)で結びつけることでそれらの関係を定 義している。

リレーショナル代数 結合演算(2/4)

リレーションRの列AとリレーションSの列Bがθ-比較可能とする。

R[A θ B]S={ (t,u) | t \in R \land u \in S \land t[A] θ u[B] } R[A θ B]S

	R.A	S.B		
				t[A]θu[B] を満たす
				「を満たす

リレーショナル代数 結合演算(例)(3/4)

社員

社員番号	社員名	給与	所属コード
E3059	城島 茂	22万円	100
E3015	宇多田 ヒカル	22万円	200
E0201	桑田 圭祐	57万円	200
E4119	島谷 ひとみ	18万円	100
E0304	子門 正人	51 万円	300

社員.所属と部門.部門コード はθ-比較可能

社員[社員.所属コード=部門.部門コード]部門

社員番号	社員名	給与	所属コード	部門コード	部門名
E3059	城島 茂	22万円	100	100	人事部
E3015	宇多田 ヒカル	22万円	200	200	営業部
E0201	桑田 圭祐	57万円	200	200	営業部
E4119	島谷 ひとみ	18万円	100	100	人事部
E0304	子門 正人	51 万円	300	300	経理部

リレーショナル代数 結合演算ー自然結合演算 (4/4)

社員

社員番号	社員名	給与	所属コード
E3059	城島 茂	22万円	100
E3015	宇多田 ヒカル	22万円	200
E0201	桑田 圭祐	57万円	200
E4119	島谷 ひとみ	18万円	100
E0304	子門 正人	51 万円	300

θ= "="の場合

社員*部門

社員と部門の自然結合

社員番号	社員名	給与	所属コード	部門名
E3059	城島 茂	22万円	100	人事部
E3015	宇多田 ヒカル	22万円	200	営業部
E0201	桑田 圭祐	57万円	200	営業部
E4119	島谷 ひとみ	18万円	100	人事部
E0304	子門 正人	51 万円	300	経理部

共通部分は 片方だけ残す

リレーショナル代数 商演算

部品供給

部品工場	部品
大宮	ナット
大宮	ボルト
芝浦 芝浦	ボルト
芝浦	釒
豊洲	ナット
豊洲	ボルト
豊洲	釒

部品供給÷必要部品 ={ t | t∈部品供給[部品工場] ∧(∀u∈必要部品)((t,u)∈部品供給)}