Estimating Equations

Example: Consider the $oldsymbol{Z} = (Z_1, \dots, Z_5)^ op$ with edf

$$F(oldsymbol{z};lpha)=\expigg\{-igg(z_1^{-rac{1}{lpha}}+z_2^{-rac{1}{lpha}}+z_3^{-rac{1}{lpha}}+z_4^{-rac{1}{lpha}}+z_5^{-rac{1}{lpha}}igg)^lphaigg\},\quad oldsymbol{z}\geq oldsymbol{0},lpha\in(0,1].$$

Comments:

1. F is max-stable.

2. Z_1, \ldots, Z_5 are exchangeable.

Let's consider the likelihood.

Let's try it.

```
library(evd)
# simulate data with alpha = 0.5
alpha <- 0.5
z < -rmvevd(500, dep = alpha, d = 5, mar = c(1, 1, 1))
## bivariate density
d bivar <- function(z, alpha){</pre>
    #here "z" is a single observation (ordered pair)
    inside \langle z[1]^(-1/alpha) + z[2]^(-1/alpha)
    one <- exp(-inside^alpha)</pre>
    two <- (z[1]*z[2])^(-1 / alpha - 1)
    three <- (1 / alpha - 1)*inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)</pre>
    one*two*(three + four)
}
d bivar(c(4, 5), alpha = alpha)
## [1] 0.003650963
dmvevd(c(4,5), dep = alpha, d = 2, mar = c(1,1,1))
## [1] 0.003650963
## estimate alpha
```

```
log pair lhood <- function(alpha, z) {</pre>
    #here "z" is bivariate matrix of observations
    inside <-z[, 1]^(-1 / alpha) + z[, 2]^(-1 / alpha)
    log one <- -inside^alpha</pre>
    \log two <- (-1 / alpha - 1) * (log(z[, 1]) + log(z[, 2]))
    three \leftarrow (1 / alpha - 1) * inside^(alpha - 2)
    four <- inside^(2 * alpha - 2)</pre>
    contrib <- log_one + log_two + log(three + four)</pre>
    return(sum(contrib))
}
all pairs lhood <- function(alpha, z) {
```

[1] 0.4954979 0.5182678

```
## checking coverage
B <- 200
coverage <- numeric(B)
for(k in seq_len(B)) {
    z_k <- rmvevd(500, dep = .5, d = 5, mar = c(1, 1, 1))
    alpha_mple_k <- optim(.2, lower = .01, upper = .99,
        all_pairs_lhood, z = z_k, method = "Brent", hessian = TRUE,
        control = list(fnscale = -1))
    ci <- alpha_mple_k$par + c(-1.96, 1.96)*sqrt(-1 /
        alpha_mple_k$hessian[1, 1])
    coverage[k] <- as.numeric(ci[1] < alpha & ci[2] > alpha)
}
mean(coverage)
```

[1] 0.745

So, it looks like the point estimate from the pairwise likelihood is ok, but we need to be able to get an appropriate measure of uncertainty.
The proper adjustment is

1 Introduction

M-estimators are solutions of the vector equation

$$\sum_{i=1}^n oldsymbol{\psi}(oldsymbol{Y}_i,oldsymbol{ heta}) = oldsymbol{0}.$$

In the likelihood setting, what is $\boldsymbol{\psi}$?

8 1 Introduction

Example: Let Y_1, \ldots, Y_n be independent, univariate random variables. Is $\theta = \overline{Y} = \frac{1}{n} \sum_{i=1}^n Y_i$ an M-estimator?

Example: Consider the mean deviation from the sample mean,

$$\hat{ heta}_1 = rac{1}{n} \sum_{i=1}^n |Y_i - \overline{Y}|.$$

Is this an M-estimator?