Telecommunication Systems (GSM)

Mobile Communications (Ch. 4) John Schiller, Addison-Wesley

Wireless Communication Systems

- Infrastructure-based communication
 - ➤ Wide Area Networks (**GSM**, LTE)
 - ➤ Metropolitan Area Networks (WiMAX)
 - Wireless LANs (WiFi)
 - Infrastructure-less communication
 - Ad hoc, sensor, vehicular networks
 - Hybrid networks
 - > Combination of the above two

GSM (Global System for Mobile comm.)

- Primary goal: phone + roaming in Europe
- Different GSM systems
 - ➤ GSM 900 890-915 MHz uplink, 935-960 MHz downlink
 - ➤ GSM 1800 (DCS: Digital Cellular System) 1710-1785 MHz uplink, 1805-1880 MHz downlink
 - ➤ GSM 1900 (Personal Comm Service) ← US, Canada 1850-1910 MHz uplink, 1930-1990 MHz downlink
- Learn two architectures
 - Functional and Protocol

Interfaces

- A-interface (BSC ←→ MSC)
 - circuit switched, 2.048 Mbits/s
 - carrying up to 30 64 Kbits/s connections
- O-interface (OMC ←→ Others)
 - SS7 signaling, management data
- Abis-interface (BSC ←→ BTS)
 - 16 or 64 Kbits/s connections

- BSS: GSM net → several BSS, 1 BSC/BSS
- BTS: radio equipment. Forms a radio cell.
- BSC
 - Reserves frequencies (frequency/ch. assignment)
 - Handles handovers
 - Performs paging of MS
 - Multiplexes radio channels onto fixed net connections.

- MS: User equipment and software for comm.
 - SIM (Subscriber Identity Module): IMSI, LAI...
 - GSM 900: transmit power up to 2 w
 - GSM 1800: transmit power 1 w
 - Two parts: TE for comm with network + Services

MSC

- Manages several BSCs
- (Gateway)MSC → other fixed network
- Interworking Function (IWF) → data nets
- Connection setup, release and handover
- Supplementary services (forwarding, conf.)

- HLR (Home Location Register)
 - Most important database with all user relevant info.
 - Static Info.:
 - MSISDN number and IMSI number
 - Subscribed services (call forwarding, roaming, GPRS)
 - Dynamic Info.:
 - Current location area (LA) of the MS
 - Current MSC and VLR
 - Accounting information
 - Specialized databases to meet real-time reqs.
 - · Handle millions of users.

- VLR (Visitor Location Register)
 - One VLR is associated with one MSC (1:1 mapping)
 - Info about <u>all users</u> in the LA associated to the MSC
 - Info per user (copied from HLR): IMSI, MSISDN, HLR address
 - Need: To avoid frequent communication with HLR
 - Large, real-time database

- Operation and Maintenance Centre (OMC)
 - Monitor: traffic, status of all network entities
 - Accounting and billing
- Authentication Center (AuC)
 - Contains algorithms for authentication and keys for encryption
 - Can be a part of the HLR.
- Equipment Identity Register (EIR)
 - Blacklist of stolen/locked MS

Radio Interface

- FDD is used to separate downlink & uplink.
- Media access combines TDMA and FDMA.
- GSM 900: 124 carriers, each 200 KHz wide, FDMA
 - 90 carriers to support customers
 - 32 reserved
 - 2 not used (1 and 124)

FDMA in GSM 900

TDMA in GSM 900

Simple MS

 TDMA frame on the uplink is shifted by three slots from frame on the downlink.

- If BTS sends data at t₀ in slot #1 on the downlink, the MS accesses slot #1 on the uplink at time t₀ + 3*577 micro sec.
 - → MS does not need a full-duplex Tx

Logical channel and frame hierarchy

- Physical channel: a slot repeated every 4.615 ms.
 (114 bits in 4.615 ms → Rate = 24.7 Kbps)
- Reality: Out of every 26 consecutive slots of a phy. ch.
 - 12 data slots + 1 signaling slot + 12 data slots + 1 unused
 - Rate of a physical channel = (24/26)*24.7 = 22.8 Kbps
- Logical channel: A physical channel may be split into several (logical) channels:
 - Logical channel C1: every 4th slot
 - Logical channel C2: every other slot
 - C1 and C2 could use the <u>same physical channel</u> with the pattern C1C2xC2C1C2xC2C1

Logical channels ...

- Two basic groups of logical channels
 - Traffic channels (TCH)
 - Control channels (CCH)

TCH

- Carries user data (voice, fax)
- Full-rate TCH/F: 22.8 kbits/sec
- Half-rate TCH/H: 11.4 kbits/sec ← capacity x 2
- Other (data)rates: TCH/F4.8, TCH/F9.6, TCH/F14.4

(They differ in their voice coding schemes.)

Logical channels (CCH)

- CCH: access control, ch alloc., mobility
 - Broadcast CCH (BCCH):
 - Slot #0 of C₀ (On the down link)
 - BTS → MS: Used by BTS to send info to all MS
 Cell ID, options available (f. hop), freq available
- Common CCH (CCCH): for conn. Setup
 - RACH: MS → BTS. MS wants to make a call. Accessed by all MS in a cell. (random access, coll.)
 - Slot #0 of C₀ (On the up link)
 - AGCH: BTS → MS. BTS tells MS to use a TCH or an SDCCH.
 - Paging CH: BTS → MS for paging an MS

Logical channels

- Dedicated control channel (DCCH):
 bidirectional
 - Stand-alone DCCH (SDCCH) is used while an MS has not established a TCH with a BTS. Time slot #1 of C₀
 - SDCCH (782 bits/sec): authentication, registration, etc.
 needed for setting up a TCH.
 - Slow associated dedicated control ch (SACCH):
 Associated with each TCH. For small amount of system info: ch quality, signal power level. Time slot #1 of C₀
 - Fast associated dedicated control ch (FACCH): Uses time slots from the TCH. Handover info.

Typical use of TCH and SACCH

- T = user traffic in TCH/F, S = signalling
- x = unused slot
- Normal burst carries 114 bits of user data and is repeated every 4.615 ms (24.7 kbit/sec data rate)
- TCH uses 24/26 slots→rate = 22.8 kbit/s
- SACCH: 950 bit/sec

Structuring of time using frames

Protocol Stacks in GSM Network

Radio

- Creation of bursts, multiplexing, sync with BTS, detection of idle channel, measurement of quality of downlink, encryption/decryption
- Channel coding/error detection using FEC
 - (Alternative is retransmission. Expensive. Good for upper layers.)
- GSM tries to correct errors, but does not deliver erroneous data.

- LAPDm (Link Access Protocol Dchannel)
 - Light weight LAPD (no sync, no checksum)
 - Flow control: Receiver controls transmissions.
 - Segmentation + reassembly
- RR (radio resource management)
 - Setup, maintenance, release of radio channels
- BTSM (BTS Management)

- MM (Mobility Management)
 - Registration, authentication, location updating, temporary mobile subscriber identity (TMSI)
 - TMSI replaces IMSI to hide the real identity of MS
 - TMSI is valid only in current location area of a VLR

- CM (Call Management)
 - Call Control (CC)
 - Point-to-point connection between terminals
 - Short Message Service (SMS)
 - Uses SDCCH + SACCH

Feature of GSM

- Automatic, worldwide localization of users
- Performs periodic location update. Location is the area in all the cells under one MSC.

Roaming

- Changing VLRs with uninterrupted availability
 - » Within the network of one provider
 - » Between two providers in one country
 - » Between different providers in different countries

- To locate/address an MS, several #s needed
 - International Mobile Equipment Identity (IMEI)
 - » Uniquely identifies an MS (device)
 - - » Mobile Station International Subscriber Directory Number
 - (Telephone number to the SIM card)
 - » Country code + national destn code + subscriber num
 - » You dial this number
 - International Mobile Subscriber Identity (IMSI): 64 bits
 - » Mobile country code + mobile net code + MSIN (Mob. Sub. Identification Number: assigned by network op.)
 - » Uniquely identifies a user

28

• Note: An MS can only be operated if a SIM with a

- To locate/address an MS, several #s needed
 - Mobile Station Roaming Number (MSRN)
 - » (MSRN) is a temporarily telephone number assigned to a mobile station which roams into another numbering area.
 - » Same structure as MSISDN
 - » Hides the ID and location of a subscriber
 - » Helps HLR to find a subscriber for an incoming call
 - Temporary Mobile Subscriber Identity (TMSI)
 - » Hides IMSI. Assigned by VLR. Not known to HLR.

Mobile Terminated Call

Message flow for MTC

HLR

- Checks whether the number exists and whether the user has subscribed to the service.
- Asks for an MSRN from the VLR.

MSC

- Gets the current status of MS from VLR (8/9).
- If the MS is available, start paging.
- _ :
- Ask VLR to perform security check (14).

Mobile Originated Call

Message flow for MTC and MOC

Handover

- Diminished quality of radio link
- Load balancing

Types of handover in GSM

Handover decision based on received signal

Intra-MSC handover

Security in GSM

Security services offered by GSM

Access control and authentication

- ➤ Authentication of a valid user for the SIM: The user needs a secret PIN to access the SIM
- ➤ The next step is subscriber authentication (Fig. 4.10 in book. See message flow for MTC and MOC. Shown before.) This is based on a Challenge/Response explained on the following slide (Fig. 4.14)

Confidentiality

All user data is encrypted. Shown in Fig. 4.15, on a following slide.

Anonymity

- ➤ All data is encrypted before transmission.
- User identifiers are not used over air. Rather, a TMSI is transmitted. A VLR generates a new TMSI after a location update.
- TMSI is sent to MS after authentication and encryption processes have taken place.

Fig. 4.14: Subscriber authentication

Fig. 4.15: Data encryption A5: a key generation algorithm; A8: a symmetric-key encryption algorithm

Dynamic Channel (carrier) Assignment in Cellular Systems

Sources: Section 2.8 (Schiller) and
A. Baiocchi, F. D. Priscoli, F. Grilli and F.
Sestini, **The geometric dynamic channel allocation as a practical strategy in mobile networks**, IEEE TVT, Vol 44, No 1, Feb.
1995, pp. 14-23

Topics

- Cellular systems
- Carrier Assignment Problem
 - Static
 - Dynamic
- DCA Algorithm

Cellular Systems

- A geographic area is divided into smaller, circular areas called cells.
- A base station (transceiver) is installed at the cell's center. Cell = radio coverage area.
- Cell radius
 - 10s of meters in buildings
 - 100s of meters in cities
 - 10s of KM in countryside

Cellular Systems

- Advantages of smaller cells
 - Higher capacity (frequency reuse) ← users
 - Less transmission power for MS (no BS problem)
 - Robust against failures of single components
- Disadvantages of smaller cells
 - Larger infrastructure (antennas, switches, ...)
 - Frequent handover
 - Better planning: frequency assignment, etc.

Carrier Assignment Problem

- Facts about GSM 900
 - FDM: 90 frequencies (up/down)
 - TDM: 8 slots/frequency
 - → Max number of active users = 90*8
- Low capacity

 need for reusing carriers
 - Space division multiplexing: reuse carriers far apart
 - » To reduce interference
 - » To increase capacity (# of users)

Carrier Assignment Problem

- Problem: Given a set of carriers and a cellular system
 - How to assign carriers to cells?
 - Maximum reuse → maximum capacity
 - Lower failure rate
 - » Blocking rate
 - » Dropping rate

Cellular model

Carrier Assignment Algorithms

- Fixed assignment of carriers to cells
 - Use these carriers until further notice.
 - Simple to implement. No signaling load.
 - Good (bad) for low (high) traffic.
- Dynamic assignment of carriers to cells
 - All carriers are "available" in all cells.
 - Improved performance.
 - High signaling load.

- (m, n): cell at row m and column n
- (x, y): center of a cell
- (x,y): center of cell (m, n) is computed as

•
$$(x,y) = (n, m)$$
 Sqrt(3)*R 0
Sqrt(3)*R/2 3*R/2

R = cell radius

- Reuse condition: Two carriers can be simultaneously used in two cells only if their separation > D_{min}.
- Assume $D_{min} = (3*\sqrt{3})*R$
- Interference neighborhood of a cell c
 - $IN(c) = \{c' | dist(c,c') < D_{min}, c <> c'\}$
 - 30 cells
- If cell c uses a frequency, no cell in IN(c) can reuse it.

- Status of a carrier r in a cell c
 - **Used**: status(r, c) = UC
 - if at least one channel of *r* is currently used by some user in *c*.
 - Interfered: status(r, c) = IC
 - if status(r, c') = UC for some c' in IN(c).
 - Available: status(r, c) = AC
 - if $status(r, c) \Leftrightarrow UC AND status(r, c) \Leftrightarrow IC$.

Geometric strategy

- Divide the **cell array** into **k groups** S_0 , S_1 , ..., S_{k-1} such that distance between any pair of cells in the same group is at least D_{min} .
- The carrier set is split into k groups P₀, P₁,
 ..., P_{k-1}. Carriers in each P_i is considered to be
 ordered.
- When a cell c in S_i needs a carrier, it **checks the ordered lists** P_i, P_{i+1}, ..., P₀, ..., P_{i-1} in that order and **acquires** the first **available** carrier encountered.

For
$$D_{min} = (3*\sqrt{3})*R$$
, $k = 9$.

Performance measures

- Blocking rate (Rb): failure to assign a channel to new calls.
- Dropping rate (Rd): failure to assign a channel to a moved-in call.
- Failure rate (Rf): Rf = Rb + (1-Rb)*Rd
- How to obtain Rf?
 - Analytic
 - Simulation

Simulation parameters

- Cell grid ← how big, wrapped around
- Total available carriers (90 for GSM)
- TDM slots (8/frequency) ← invisible in algorithm
- Traffic: call arrival rate
- Mobility: handoff rate (pattern??)
- Mean service time
- Uniform/nonuniform traffic (hot/normal states)

Techniques for lowering failure rates of DCAs

- Power control
- Adaptive antenna array (also, tri-sector)
- Carrier compaction
- Prioritized release
- Lower QoS (channel sub-rating)
- Call on hold
- Synchronous BTS

GPRS: General Packet Radio Service

Wireless and Mobile Network Architectures

Yi-Bin Lin and I. Chlamtac (Wiley)

Schiller

GPRS

- GSM is fully circuit-switched.
 - Not suitable for Internet application
 - Up link: frequent Tx of small volume data
 - Down link: Infrequent Tx of small/medium volume
- Success of GPRS:
 - Packet oriented Internet
 - Different services: broadcast, multicast, unicast

Main concepts of GPRS

- For new GPRS channels, GSM system allocates 1-8 slots in a frame
- Time slots are allocated on demand
- Time slots are shared by the active users
- Allocation is based on load + op. preference

GPRS architecture

Gateway GPRS Support Node (GGSN)

- Link between GPRS and data net (IP)
- Functions
 - routing,
 - tunneling via encapsulation

Serving GPRS Support Node

- Supports MS (through BSS)
- Functions:
 - Requests user addresses from the GR (GPRS Register)
 - Keeps track of individual MSs' location

GPRS protocol stack

All data within GPRS backbone are transmitted using tunneling protocol.

Three GPRS terms

- Mobility Management context
- PDP context
- QoS profile

MM context (MM state)

- MM state
 - IDLE: MS is not attached to the GPRS mm
 - STANDBY: Attached but has not obtained loc. info.
 - READY: Loc info has been identified on cell level
- MM context stored in MS + SGSN
- GPRS attach → (MS ←→ SGSN logical link)

PDP (packet data protocol) contexts

- Stored in MS, HLR, SGSN, GGSN
- Contain mapping and routing info for packet Tx between MS ←→ GGSN
- After PDP context activation, MS is known to the GGSN
- As many PDP contexts as the number of IP addresses.
- ACTIVE and INACTIVE contexts

QoS profile

- QoS profile maintained in the PDP context
- Indicates radio and network resources required for data transmission.
- QoS attributes
 - Precedence class: three Tx priority levels (congestion → discard)
 - Delay class: four {In 128-octet transfer, expected delays are < 0.5 s, 5 s, 50s, best effort.

QoS profile (contd)

- Reliability classes (five) define error rate for data loss, out of sequence delivery, and corrupted data.
- Peak throughput classes (nine) specify expected max data rate from 8 Kbps to 2048 Kbps.
- Mean throughput classes (19) specify average data transmission rate.

Mobile Station (MS)

- GPRS MS = MT + TE
- MT ←→ BSS over the air.
- MT ←→ SGSN link
- TE: a computer attached to an MT
- 3 modes of MS operations
 - Class A: circuit + packet switched ← simultaneous
 - Class B: circuit OR packet switched ← one at a time, auto
 - Class C: packet ONLY

MM context info in a GPRS SIM

- IMSI → uniquely identifies an MS. Used as the key to search the databases in VLR, HLR, and GSN.
- P-TMSI (similar to TMSI in GSM)
- Address of routing area where the MS resides.

PDP context in MS

- PDP type (one of X.25, PPP, IP)
- PDP address (e.g. IP address)
- PDP state (ACTIVE/INACTIVE)
- QoS profiles

BSS (Base Station Subsystem)

- BSS = BSC + many BTS
- BSC and BTS are modified to include a new unit: PCU (packet control unit)
- BSC
 - forwards circuit-switched data to MSC and packet-switched data to SGSN (through the PCU)
 - manage GPRS-related radio resources

BSS (some solutions)

- Nortel (Although the company does not exist, the following are possible solutions)
 - GSM (BTS + BSC) + software upgrade
 - PCU functions are implemented in a PCUSN.
 - PCUSN capability: 12 BSCs/cabinet

Alcatel

- PCU in a multifunctional server (A935 MFS)
- Capability: 22 BSS
- 480 activated GPRS channels/BSC

Ericsson

One PCU/BSC. 512 BTS/PCU. 4K GPRS channels.

GPRS Support Node

- Serving GSN + Gateway GSN
- Functionalities of SGSN and GGSN can be
 - Combined in a physical node (Ericsson)
 - Distributed in separate nodes (Nortel, Cisco, Motorola, Alcatel)
- GSN: multiprocessor system
 - Hardware redundancy
 - Robust software → uninterrupted operation

SGSN

- Role is similar to MSC/VLR in GSM.
 - Inter-SGSN routing area update, statistics collection, charging
 - Establishes an MM context (mobility info)
 - Establishes a PDP context for MS ←→ GGSN comm
 - SGSN maintains MM/PDP context info

GGSN

- Traditional gateway functionality
 - Mapping addresses, routing and tunneling packets
- GGSN maintains an activated <u>PDP</u> <u>context</u> for tunneling packets from MS to SGSN.
 - IMSI, DPD type+address, QoS profile, IP of SGSN, access point name for external data network.
- Support 5-48 K simultaneous data tunnels and 25-48 K simultaneously attached users.

GPRS Interfaces

- Um: MS ←→ BTS
- Gb: BSS ←→ SGSN
- Gn, Gp: Utilize the GPRS Tunneling Protocol (GTP)
- Gs: Databases in MSC/VLR ←→ SGSN
- Gi: GGSN ←→ PDN (IP, PPP)

Um Interface

- GPRS radio tech is based on GSM radio
- GPRS introduces a <u>new logical ch</u> structure.
- Radio channel structure
 - The physical channel dedicated to packet data traffic is called a <u>packet data channel (PDCH)</u>.
 - A PDCH can be split into several <u>packet data logical</u> ch.
 - GPRS utilizes packet data traffic channel (PDTCH) for data transfer: 1-many and many-1 mappings.
 - Several packet common control channels (PCCCH)80 are introduced.

Um (Radio interface)

- PRACH (packet rand. access): MS →
 BTS
 - Used to initiate <u>uplink</u> transfer for data or signaling.

Downlink PCCCH

- Packet paging channel: pages an MS for both circuit and packet switched data.
- PAGCH (access grant): for resource assignment.
- Packet notification channel: Used to send a point-to-multipoint multicast (PTM-M) notification to a group of MSs prior to a PTM-M packet ransfer
- PBCCH (broadcast): <u>System info</u> specific for packet data

Um (Packet-dedicated control channels)

- PACCH (associated control ch):
 - Conveys signaling info: power control, resource assigment
 - MS involved in packet transfer can be paged for circuit-switched services on PACCH.

GPRS Procedures

- Attach/Detach procedures:
 - Establishes a logical link between MS ←→ SGSN
- PDP context procedures:
 - allows data transfer between MS and external world
- RA/LA update procedures
 - Tracks location of MS and reestablishes the link between MS ←→ SGSN

Attach procedure

Detach procedure

Cellular model

