

绪 论

数学大纲解读

综合能力考试中数学部分主要考查考生的这四个能力:运算能力、逻辑推理能力、空间想象能力和数据处理能力,通过问题求解和条件充分性判断这两种形式来测试.

科目	总分值	每题分值	题量	用时上限
数学	75	3 分	25 道	55 分钟
逻辑	60	2 分	30 道	55 分钟
写作	65	30+35	600 字+700 字	60 分钟

题型分类:问题求解(第 $1\sim15$ 题,共 15 题);条件充分性判断(第 $16\sim25$ 题,共 10 题)

考查方式:全部为单项选择题(五选一)

考试范围:小学、初中、高中的部分数学知识,不涉及微积分等高等数学知识.

数学考试范围

考试大纲中将考试内容分为四大板块,分别是算术板块、代数板块、几何板块和数据分析板块.各板块详细内容如下表所示.需要注意的是,现实场景中的数学问题(主要为应用题)并不在大纲明确规定的考查范围内,但每年这类题目数量大约在5题左右(2024年为4题),因此《MBA大师零基础抱佛脚》数学课程将此类题目作为一章进行讲授.

算术板块

整数	整数及其运算		
	h *1.	整除、公倍数、公约数	
	金级	奇数、偶数	
算术		质数、合数	
	分数、小数、百分数		
	比与比例		
	数轴与绝对值		

代数板块

		整式及其运算	
	整式	整式的因式与因式分解	
		· ·	
	分式及其运算		
		集合	
	函数	一元二次函数及其图像	
		幂函数、指数函数、对数函数	
	代数方程	一元一次方程	
代数		一元二次方程	
		二元一次方程组	
	不等式	不等式的性质	
		均值不等式	
		不等式求解(一元一次不等式(组)、一元二次不等式、简单绝对值不等	
		式、简单分式不等式)	
	数列	等差数列	
		等比数列	

几何板块

		三角形
	平面图形	四边形(矩形、平行四边形、梯形)
		圆与扇形
		长方体
几何	空间几何	柱体
76 JHJ		锥体
		球体
		平面直角坐标系
	平面解析几何	直线与圆的方程
		两点间距离公式与点到直线的距离

数据分析板块

		加法原理、乘法原理
	计数原理	排列与排列数
		组合与组合数
		事件及其简单运算
		加法公式
数据分析	概率	乘法公式
		古典概型
		伯努利概型
		平均值
	数据描述	方差与标准差
		数据的图表表示

题型分析

一、问题求解:

第 1~15 小颗,每小颗 3 分,共 45 分.

下列每题给出的 A、B、C、D、E 五个选项中,只有一个选项符合试题要求. 请在答题卡上将所选项的字母涂黑.

问题求解即我们熟悉的单项选择题,备选项有五个,有且仅有一个正确选项.

二、条件充分性判断:

第 16~25 小题,每小题 3 分,共 30 分.

解题说明:本大题要求判断所给出的条件能否充分支持题干中陈述的结论.阅读条件(1)和(2)后选择:

- A:条件(1)充分,但条件(2)不充分.
- B:条件(2)充分,但条件(1)不充分.
- C:条件(1)和(2)单独都不充分,但条件(1)和条件(2)联合起来充分.
- D:条件(1)充分,条件(2)也充分.
- E:条件(1)和(2)单独都不充分,条件(1)和条件(2)联合起来也不充分.

如果 A 成立,则 B 必然成立,则 A 就叫作 B 的充分条件.条件充分性判断就是判断条件是否为结论的充分条件.即条件成立的情况下,能否推出结论一定成立.

题目结构	举例
大前提.则【结论】.	$\triangle ABC$ 是三角形,则 $\triangle ABC$ 是直角三角形。
(1)条件 1	$(1) \angle A = 30^{\circ}.$
(2)条件 2	$(2) \angle B = 60^{\circ}.$

条件充分性判断核心是判断题,需要进行以下三个判断,判断结果的不同组合对应 $A \sim E$ 的不同选项.

【判断 1】:在条件(1)单独成立的情况下,题干中陈述的【结论】是否必然成立?

【判断 2】:在条件(2)单独成立的情况下,题干中陈述的【结论】是否必然成立?

在两条件单独均不充分的情况下,则进行【判断3】:条件(1)与条件(2)同时成立的情 况下(此即"两条件联合"),题干中陈述的【结论】是否必然成立?

(1)充分	(2)充分	(1)(2)联合充分	选择
\checkmark	×	不需要考虑	A
×	√	不需要考虑	В
×	×	√	С
\checkmark	√	不需要考虑	D
×	×	×	Е

三个判断的不同结果联合对应不同的选项

注意:仅在两条件单独均不充分时才考虑联合.

【举例 1】 $\triangle ABC$ 是三角形.则 $\triangle ABC$ 是直角三角形.()

- $(1)\angle A = 30^{\circ}$.
- $(2)/B = 60^{\circ}$.

【举例 2】 $\triangle ABC$ 是三角形.则 $\triangle ABC$ 是直角三角形.(

- $(1)/C = 90^{\circ}$.
- $(2)/A = /B = 45^{\circ}$.

破题标志词课程亮点

- 1. 把全程系统学习的精华浓缩到超短期的直播课程中
- 2. 以真题为基石,把握命题趋势,只讲高频、核心考点
- 3. 不纠结定理和概念的细节,只讲应用和解题,只讲拿分技巧
- 4. 秒杀技巧归纳,问题求解与条件题蒙猜玄学倾囊相授.

我们今天学习数学、考数学,重要的是把实际问题变成数学问题,然后知道如何利用 各工具来解决,而不是花很多时间学一大堆无法举一反三的技巧.

第一章

算 术

1.1

整 数

【完全平方数】如果一个整数 a 是某一个整数 b 的平方,那么这个整数 a 叫作完全平方数.零也是完全平方数.

$1^2 = 1$	$2^2 = 4$	$3^2 = 9$	$4^2 = 16$	$5^2 = 25$
$6^2 = 36$	$7^2 = 49$	$8^2 = 64$	$9^2 = 81$	$10^2 = 100$
$11^2 = 121$	$12^2 = 144$	$13^2 = 169$	$14^2 = 196$	$15^2 = 225$
$16^2 = 256$	$17^2 = 289$	$18^2 = 324$	$19^2 = 361$	$20^2 = 400$

整数的除法

整除

【整除】如果一个整数 a 能表示为整数 b 与另一个整数相乘的形式,此时我们称 b 能够整除 a ,或者 a 能够被 b 整除. 此时 b 称为 a 的因数 ,a 称为 b 的倍数.

举例

代数表达	解读 1	解读 2
$42 = 6 \times 7$	42 可以被 6 整除,商是 7	42 可以被7整除,商是6
42-0 \(\)	6是42的因数,42是6的倍数	7是42的因数,42是7的倍数
$42 = 3 \times 14$	42 可以被 3 整除, 商是 14	42 可以被 14 整除,商是 3
	3是42的因数,42是3的倍数	14 是 42 的因数,42 是 14 的倍数

破题标志词

判断一个分数形式的数值是否可能是整数⇒①分子是否是分母的倍数,或 ②分母是否是分子的因数

- ▶ 1 【2008.10.23】(条件充分性判断) ⁿ/₁₄是一个整数.(
 - (1)*n* 是一个整数,且 $\frac{3n}{14}$ 也是一个整数.
 - (2)n 是一个整数,且 $\frac{n}{7}$ 也是一个整数.

【带余除法】当整数 a 不能被整数 b 整除时,余下的部分就叫作余数,一般用 r 表示. 举例

文字描述	代数表达
53 除以 5 的商是 10,余数为 3	$53 = 5 \times 10 + 3$
12 除以3的商是4,余数为0	$12 = 3 \times 4 + 0$
4 除以8的商是0,余数为4	$4 = 8 \times 0 + 4$
13 除以2的商是6,余数为1	$13 = 2 \times 6 + 1$

【联考中余数的常用性质】

若一个数能拆成两数之和,如a+b,若其中a能被c整除,则a+b除以c的余数等于 b除以c的余数.

例如:177 可以写作 170+7,其中 170 能被 5 整除,而 7 除以 5 余数为 2,所以 177 除 以5的余数等干7除以5的余数2.

【带余除法的代数表达】

破题标志词

整数 a 除以整数 b,余数为 r \Rightarrow 有等式 a=bk+r(k) 为整数,0 \leq r \leq b). 注意:①余数一定小于除数:②余数=0时,即为整除

▶ 2 【2022.08】某公司有甲、乙、丙三个部门,若从甲部门调26人去丙部门,则丙部门是 甲部门人数的 6 倍; 若从乙部门调 5 人去丙部门,则丙部门的人数与乙部门人数相 等.则甲、乙两部门人数之差除以5的余数是().

- A. 0
- B. 1
- C. 2
- D. 3
- E. 4

- ▶ **3** 【2024.17】(条件充分性判断)已知 *n* 是正整数.则*n*²除以 3 余 1. (
 - (1)n 除以3 余1.
 - (2)n 除以3余2.

在整数的除法中,当除数为2时,任何整数除以2的余数只有两种可能,即余数为0 或余数为1,据此可以把所有的整数分为两类,也就是我们常说的偶数和奇数,

【偶数】能被2整除的数,代数中常表示为2k

【奇数】不能被 2 整除的数,代数中常表示为 2k+1

【奇偶四则运算】

奇+奇=偶

偶+偶=偶

偶+奇=奇

奇×奇=奇

偶×奇=偶

偶×偶=偶

奇数个奇数之和是奇数,偶数个奇数之和是偶数,任意个偶数之和为偶数,

若 a,b 为任意整数,则 a+b 与 a-b 同奇同偶.

联考中不定方程是指解的范围为整数、正整数等的方程或方程组,一般来说,其未知数 的个数多于独立方程的个数,如3x+2y=10.不定方程主要利用奇偶性、整除特性等求解.

不定方程常用整理方法:将已知奇偶性,或具有相同倍数特性的项移项至等号右侧, 未知奇偶性的项移项至等号左侧.

【举例 1】已知 x, y 为正整数, 3x+2y=10, 求 x, y 的值.

【分析 2γ 是偶数,已知奇偶性. 移项整理得 $3x=10-2\gamma$. 根据奇偶四则运算法则「偶 士偶=偶]可得, 3x 也一定为偶数,即 x 的可能取值为 2、4、6 等. 当 x=4 时, 3x=1210,故 x 一定为小于 4 的偶数,即 x=2.代入 3x+2y=10 得 y=2.

【举例 2】已知 x, v 为正整数,7x+2v=35,求 x, v 的可能取值.

【分析17x+2v=35 中 7x 和 35 均 为 7 的倍数,则 2v=35-7x=7(5-x) 也一定 为 7 的 倍数,即 y 的可能取值为 7、14···. 当 y=7 时,由 7x+2y=35 得 x=3;当 y=14 时, x=1.

破题标志词

「多个未知量]and「一个等式]⇒

- ①限定未知量为质数⇒结合质数奇偶性求解
- ②限定未知量为整数/正整数→利用奇偶性/因数倍数特性进行不定方程 求解
 - ③限定未知量为有理数⇒有理部分与无理部分分别对应相等
- ▶ 4 【2016.18】(条件充分性判断)利用长度为a和b的两种管材能连接成长度为37的 管道(单位:米).(
 - (1)a=3,b=5.
 - (2)a=4,b=6.

质数与合数

【因数与倍数】在整数除法中, Ξb 能整除 α , 或 α 能被 b 整除, 此时我们把 b 叫作 α 的 因数,把a叫作b的倍数,也可以说,若整数a可以表示为另外两个整数乘积的形式a= bq,那么b和q都是a的因数,a为b和q的倍数.

正整数
$$a$$
 $=$ 1 ,它只有一个正因数 1 $=$ 1

【质因数】能整除某个整数的质数.

- ◈质数/合数均为正整数,且有无穷多个;
- ※1 既不是质数也不是合数;
- ◈最小的质数是2,也是所有质数中唯一的偶数;
- ※除2以外,所有的质数都是奇数;
- ※30 以内常用质数:2,3,5,7,11,13,17,19,23,29
- ◈若两个正整数除了1以外没有其它公因数,则称它们互质.

【算术基本定理】

任一大于等于 2 的整数均能表示成有限个质数的乘积,即对于任意整数 $a \ge 2$,有:

$$a = p_1 p_2 \cdots p_n$$

其中 $p_k(k=1,2,\cdots,n)$ 为质数且 $p_1 \leq p_2 \leq \cdots \leq p_n$,且这样的分解式是唯一的.这样 的分解过程称为因数分解.

破题标志词

质数⇒①「质数」and「确定范围]⇒穷举法:

- ②包含质数的等式⇒结合奇偶性及其四则运算判断;
- ③「一个整数]=「多个整数的乘积]⇒将此数因数分解.

最小的质数是2,也是唯一的偶数质数,其余所有质数均为奇数.

若两整数之积为质数,一定有一个数字是1.

若两质数之差(和)为奇数,一定有一个2.

- ▶ 5 【2023, 22】(条件充分性判断)已知 m,n,p 是三个不同的质数.则能确定 m,n,p 的 乘积.(
 - (1)m+n+p=16.
 - (2)m+n+p=20.
- ▶ 6 【模拟题】(条件充分性判断) m 本不同的书分给 n 个人.则可以确定 m 的值为 52.

()

- (1)每人分5本则缺3本.
- (2)每人分 k 本(某个适当的 k),则多出 8 本.

破题标志词

两实数相等⇔两实数有理部分与无理部分分别相等.

若两个实数相等,那么它们的有理部分与无理部分分别相等.

如:若无理数 $2+a\sqrt{5}$ 与 $b+3\sqrt{5}$ 相等,则可以推出 $a\sqrt{5}=3\sqrt{5}$,a=3,b=2.

▶ 7 【2009, 10, 06】若 x, y 是有理数,目满足 $(1+2\sqrt{3})x+(1-\sqrt{3})y-2+5\sqrt{3}=0$,则 x,ν的值分别为().

A. 1,3 B. -1,2 C. -1,3 D. 1,2 E. 以上结论都不正确

比与比例

【比与比例定义】两个数相除,又叫作这两个数的比,a 和 b 的比($b\neq 0$),记为 a:b 或 $\frac{a}{b}$,这个比的值叫作 a 与 b 的比值,表示两个比相等的式子叫作比例. 比如 3 和 2 的比记

为 3:2 或 $\frac{3}{2}$,这个比的比值为 1.5.

【比的基本性质】比的前项和后项扩大或缩小相同的倍数,比值不变,即:

$$\frac{a}{b} = \frac{am}{bm} (m \neq 0)$$
 或 $a : b = am : bm$

注意:比的基本性质常用来将分数形式的比化为整数形式的比,如:

$$\frac{1}{2}:\frac{1}{3}=(\frac{1}{2}\times6):(\frac{1}{3}\times6)=3:2.$$

关于比的常用定理

定理	公式	解读和简要证明
更比定理	$\frac{a}{b} = \frac{c}{d}$,则 $\frac{a}{c} = \frac{b}{d}$	比例内项可相互交换位置
反比定理	若 $\frac{a}{b} = \frac{c}{d}$,则 $\frac{b}{a} = \frac{d}{c}$	
合比定理	若 $\frac{a}{b} = \frac{c}{d}$,则 $\frac{a+b}{b} = \frac{c+d}{d}$	等式左右同加1
分比定理	若 $\frac{a}{b} = \frac{c}{d}$,则 $\frac{a-b}{b} = \frac{c-d}{d}$	等式左右同减 1
合分比定理	若 $\frac{a}{b} = \frac{c}{d}$,则 $\frac{a+b}{a-b} = \frac{c+d}{c-d}$	合比定理分比定理结论相除
等比定理	$\frac{a}{b} = \frac{c}{d} = \frac{e}{f} = \frac{a+c+e}{b+d+f}$	若几个分式相等,则分子相加与分 母相加的比值仍与原比值相等.
糖水不等式	$\frac{b}{a} < \frac{b+c}{a+c} (\sharp + a > b > 0, c > 0)$	一个真分数在分母分子同时加上一 个正数时,分数将变大.

注:以上公式任意分母均不为零.

▶8 【2002.10.08】若
$$\frac{a+b-c}{c} = \frac{a-b+c}{b} = \frac{-a+b+c}{a} = k$$
,则 k 值为().

A. 1

B.1或-2 C.-1或2 D.-2 E.以上均不正确