[G-20 MATHS]

COMPLEX ANALYSIS CSE ERROR FREE PYQs

All these questions are discussed /solved in Topicwise G-20 Modules

2020

1 (1d)

Evaluate the integral $\int_C (z^2 + 3z)dz$ counterclockwise from (2, 0) to (0, 2) along the curve C, where C is the circle |z|=2.

2 (2c)

Using contour integration, evaluate the integral $\int_{0}^{2\pi} \frac{1}{3 + 2\sin\theta} d\theta.$ 20

If
$$v(r, \theta) = \left(r - \frac{1}{r}\right) \sin \theta$$
, $r \neq 0$,
then find an analytic function $f(z) = u(r, \theta) + iv(r, \theta)$

4 (1d)

Suppose f(z) is analytic function on a domain D in \mathbb{C} and satisfies the equation $Im f(z) = (Re f(z))^2$, $Z \in D$. Show that f(z) is constant in D.

5 (2d)

Show that an isolated singular point z_0 of a function f(z) is a pole of order m if and only if f(z) can be written in the form $f(z) = \frac{\phi(z)}{(z-z_0)^m}$ where $\phi(z)$ is analytic and non zero at z_0 .

Moreover Res
$$z = z_0$$
 $f(z) = \frac{\phi^{(m-1)}(z_0)}{(m-1)!}$ if $m \ge 1$.

15

6 (3c)

Evaluate the integral $\int_c Re(z^2)dz$ from 0 to 2 + 4*i* along the curve C where C is a parabola $y = x^2$.

7 (4b)

Obtain the first three terms of the Laurent series expansion of the function $f(z) = \frac{1}{(e^z - 1)}$ about the point z = 0 valid in the region $0 < |z| < 2\pi$.

8 (1c)

Prove that the function: $u(x, y) = (x - 1)^3 - 3xy^2 + 3y^2$ is harmonic and find its harmonic conjugate and the corresponding analytic function f(z) in terms of z. 10

9 (3b)

Show by applying the residue theorem that $\int_{0}^{\infty} \frac{dx}{(x^2 + a^2)^2} = \frac{\pi}{4a^3}, \ a > 0.$

10 (4b)

Find the Laurent's series which represent the function $\frac{1}{(1+z^2)(z+2)}$ when

- (i) |z| < 1
- (ii) 1 < |z| < 2
- (iii) |z| > 2

11 (1d)

Determine all entire functions f(z) such that 0 is a removable singularity of $f\left(\frac{1}{z}\right)$.

12 (2b)

Using contour integral method, prove that

$$\int_0^\infty \frac{x \sin mx}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma}.$$
 15

13 (3b)

Let f = u + iv be an analytic function on the unit disc $D = \{z \in \mathbb{C} : |z| < 1\}$. Show that

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{y}^2} = 0 = \frac{\partial^2 \mathbf{v}}{\partial \mathbf{x}^2} + \frac{\partial^2 \mathbf{v}}{\partial \mathbf{y}^2}$$

at all points of D.

14 (4a)

For a function $f: \mathbb{C} \to \mathbb{C}$ and $n \ge 1$, let $f^{(n)}$ denote the n^{th} derivative of f and $f^{(0)} = f$. Let f be an entire function such that for some $n \ge 1$, $f^{(n)}\left(\frac{1}{k}\right) = 0$ for all k = 1, 2, 3, Show that f is a polynomial.

15

15 (1d)

Is $v(x, y) = x^3 - 3xy^2 + 2y$ a harmonic function? Prove your claim. If yes, find its conjugate harmonic function u(x, y) and hence obtain the analytic function whose real and imaginary parts are u and v respectively.

16 (3c)

Let

 $\gamma: [0, 1] \to \mathbb{C}$ be the curve $\gamma(t) = e^{2\pi i t}, \ 0 \le t \le 1.$

Find, giving justifications, the value of the contour integral

 $\int_{\gamma} \frac{\mathrm{d}z}{4z^2 - 1}$

17 (4c)

Prove that every power series represents an analytic function inside its circle of convergence.

10

15

18 (1d)

Show that the function $v(x, y) = \ln(x^2 + y^2) + x + y$ is harmonic. Find its conjugate harmonic function u(x, y). Also, find the corresponding analytic function f(z) = u + iv in terms of z.

19 (2c)

Find all possible Taylor's and Laurent's series expansions of the function $f(z) = \frac{2z-3}{z^2-3z+2}$ about the point z=0.

20 (3a)

State Cauchy's residue theorem. Using it, evaluate the integral

$$\int_C \frac{e^z + 1}{z(z+1)(z-i)^2} dz; \quad C: |z| = 2$$

21 (1c)

Prove that the function f(z) = u + iv, where

$$f(z) = \frac{x^3 (1+i) - y^3 (1-i)}{x^2 + y^2}, \ z \neq 0; \ f(0) = 0$$

satisfies Cauchy-Riemann equations at the origin, but the derivative of f at z = 0 does not exist.

22 (1d)

Expand in Laurent series the function $f(z) = \frac{1}{z^2(z-1)}$ about z = 0 and z = 1.

23 (3c)

Evaluate the integral
$$\int_0^{\pi} \frac{d\theta}{\left(1 + \frac{1}{2}\cos\theta\right)^2}$$
 using residues.

24 (1d)

Prove that if $b e^{a+1} < 1$ where a and b are positive and real, then the function $z^n e^{-a} - b e^z$ has n zeroes in the unit circle.

25 (4b)

Using Cauchy's residue theorem, evaluate the integral

$$\mathbf{I} = \int_{0}^{\pi} \sin^4 \theta \, d\theta$$

15

10

2012

26 (1c)

(c) Show that the function defined by

$$f(z) = \begin{cases} \frac{x^3 y^5 (x + iy)}{x^6 + y^{10}}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

is not analytic at the origin though it satisfies Cauchy-Riemann equations at the origin. 12

27 (2c)

(c) Use Cauchy integral formula to evaluate

$$\int_{c}^{\infty} \frac{e^{3z}}{(z+1)^4} dz$$
, where c is the circle $|z| = 2$.

15

28 (3c)

(c) Expand the function $f(z) = \frac{1}{(z+1)(z+3)}$ in Laurent series valid for

(i)
$$1 < |z| < 3$$
 (ii) $|z| > 3$ (iii) $0 < |z+1| < 2$ (iv) $|z| < 1$

29 (3d)

(d) Evaluate by contour integration

$$I = \int_{0}^{2\pi} \frac{d\theta}{1 - 2a\cos\theta + a^2}, \ a^2 < 1$$
 15

30 (1c)

If f(z) = u + iv is an analytic function of z = x + iy and $u - v = \frac{e^y - \cos x + \sin x}{\cos hy - \cos x}$, find f(z) subject to the condition, $f\left(\frac{\pi}{2}\right) = \frac{3-i}{2}$.

31 (2c)

If the function f(z) is analytic and one valued in |z - a| < R, prove that for 0 < r < R, $f'(a) = \frac{1}{\pi r} \int_{0}^{2\pi} P(\theta) e^{-i\theta} d\theta$, where $P(\theta)$ is the real part of $f(a + re^{i\theta})$.

32 (3c)

Evaluate by Contour integration,

$$\int_{0}^{1} \frac{dx}{(x^2 - x^3)^{1/3}}$$

33 (3d)

Find the Laurent series for the function

$$f(z) = \frac{1}{1 - z^2}$$
 with centre $z = 1$.

34 (1e)

Show that

 $u(x, y) = 2x - x^3 + 3xy^2$ is a harmonic function.

Find a harmonic conjugate of u(x, y). Hence find the analytic function f for which u(x, y) is the real part.

35 (4a)

- (i) Evaluate the line integral $\int_{c} f(z) dz$ where $f(z) = z^{2}$, c is the boundary of the triangle with vertices A(0, 0), B(1, 0), C(1, 2) in that order.
- (ii) Find the image of the finite vertical strip R: x = 5 to $x = 9, -\pi \le y \le \pi$ of z-plane under exponential function.

36 (4b)

Find the Laurent series of the function

$$f(z) = \exp\left[\frac{\lambda}{2}\left(z - \frac{1}{z}\right)\right] \text{ as } \sum_{n = -\infty}^{\infty} C_n z^n$$
 for $0 < |z| < \infty$

where
$$C_n = \frac{1}{\pi} \int_0^{\pi} \cos(n\phi - \lambda \sin \phi) d\phi$$
,
 $n = 0, \pm 1, \pm 2, \dots$

with λ a given complex number and taking the unit circle C given by $z = e^{i\phi}(-\pi \le \phi \le \pi)$ as contour in this region.

G-20 MATHS

Notes: