Attachward to
Paper No. 373

NIPPON KOKAN KK 17.01.86-JP-006572 Treatment of by/produ	A88 H09 M24 (23.07.87) B01d-53/04 C10k-0 (25.07.87) B01d-53/04 C10k-0 (25.07.87) B01d-53/04 C10k-0 (26.07.87) B01d-53/04 C10k-0 (27.07.87) B01d-53/04 C	*J6 2167-390-A 01/20 C10k-01/32 de and di:oxide -	A(12-W11A) H(9-D) M(24-A)	
passes through two-which selectively sepa The gas is then passed C?. In an example a pregases include those from Fe mills. The method with a relatively low efficiency. Gas-perme fluorine-contg. olef polysiloxane, and viny	a by-prod. qas contg. CO2 as a multi-stage gas-permeatrates CO2 and CO, in order a through a gas adsorbing towers, gas contained 72% of CO2 and coke ovens, blast furnaces, and employs two or more stage CO2/CO selectivity to avoid able membranes include dirin-siloxane copolymer, al chloride-liq. crystal C fluority. The treatment gives high-cal	continuous		

© 1987 DERWENT PUBLICATIONS LTD.

128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc. Suite 500, 6845 Elm St. McLean, VA 22101
Unauthorised copying of this abstract not permitted.

1-/1

USE/ADVANTAGE - The treatment gives high-calorific-value gas

PAST 320, 273

at low costs. (4-p Dwg.No.0/1)

87-245996/35 A88 H09 M24 NIKN 17.01.86
NIPPON KOKAN KK
17.01.86.JP-006572 (23.07.87) B01d-53/04 C10k_01/20 C10k_01/32
Treatment of by/product gas contg. carbon mon oxide and diroxide-by passing through two or multistage membrane to remove carbon diroxide to leave high calorific value gas
C87-104027

In a new treatment of a by-prod. qas contg. CO2 and C0, the gas passes through two- or a multi-stage gas-permeable membrane which selectively separates CO2 and C0, in order to remove CO2. The gas is then passed through a gas adsorbing tower to enrich the CO.

In an example a prepd. gas contained 72% of CO. The by-prod. gases include those from coke ovens, blast furnaces, and converters in Fe mills. The method employs two or more stages of membrane with a relatively low CO2/CO selectivity to avoid poor treating efficiency. Gas-permeable membranes include dimethyl silicone, fluorine-contg. olefin-siloxane copolymer, polycarbonate-polysiloxane, and vinyl chloride-liq. crystal C fluoride.

© 1987 DERWENT PUBLICATIONS LTD.

128, Theobalds Road, London WC1X 8RP, England
US Office: Derwent Inc. Suite 500, 6845 Elm St. McLean, VA 22101

Unauthorised copying of this abstract not permitted.

⑲ 日本国特許庁(JP)

10 特許出額公開

⑫ 公 開 特 許 公 報 (A)

昭62-167390

@Int_Cl_4

c.J. e

識別記号

庁内整理番号

母公開 昭和62年(1987)7月23日

C 10 K 1/20 53/04 B 01 D

6683-4H Z-8516-4D

53/22 C 10 K 1/32 A -8314-4D 6683-4H

審査請求 未請求 発明の数 1 (全4頁)

劉発明の名称

副生ガスの処理方法

20特 類 昭61-6572

昭61(1986)1月17日

砂発 明 者

朗 史 井

福山市春日町6丁目105

⑪出、顋 人

日本细管株式会社

東京都千代田区丸の内1丁目1番2号

73代 理 人

弁理士 吉原 省三

外2名

/ 発明の名称

ユ 特許請求の範囲

CO。及び CO を含む配生ガスの処理方法 において、刷生ガスを、 COg/CO 選択分離 性を有する複数段階のガス透過膜を通過せ しめることによりその CO。成分を分離除去 し、しかる後がス吸着塔を通過せしめ、最 避された CO を得ることを特徴とする副生 ガスの処理方法。

3. 発明の詳細な説明

〔産巣上の利用分野〕

本発明は呉鉄所等において発生する副生 ガスの処理方法、詳細には副生ガスのカロ リーアップを図ることができる方法に関す

〔従来の技術及びその問題点〕

製鉄所ではコークス炉ガス、高炉ガス、 転炉等、性々の副生ガスが発生する。この 植の剛生ガスは、コークス炉ガスを除き力

ロリーが比較的低く、特に高炉ガスについて は、Na.COa成分が非常に多く、燃料等とし ての利用価値が極めて低いという難点がある。 このような高炉ガス中の Na 、COa は、所謂コ ソーブ法等の退式法により除去することがで きるが、歴式法はコストが高く採算ペースに 乗らないという間鑑がある。一方、乾式の方 法として知られる所謂圧力変動式ガス吸着法 (以下、P8Aと称す)を用いることもでき るが、この P 8 A は CO と CO₂ を同時に分離 する能力が十分でなく、結局、2段階のPSA 設備を設け、 CO』をまず分離した後 CO を最 細するという方法か、選式との組み合せで処 理するという方法を採らざるを得ない。

本発明はこのような従来の問題に豊み、高 伊ガス等の出生ガス中の Ng 。 COg 分を低コス トで鐐去し、괿生ガスのカロリーアップを図 ることができる方法を提供せんとするもので ある.

〔 間題を解決するための手段〕

特開昭62-167390(2)

このため本発明は、 CO₂ / CO のガス選択分離性を有するガス透過膜の存在に着目し、かかるガス透過膜による CO₂ 分離とガス吸着塔による CO 微縮との組み合せにより、高カロリーガスを効率的に得られる方法を開発したものである。

すなわち本発明は、副生ガスを、COg/CO 通択分離性を有する複数段階のガス透過膜を 透過せしめることによりその COg 成分を分離 除去し、しかる後ガス吸着塔を通過せしめ、 機細された CO を得るようにしたことをその 基本的特徴とする。

第1図は本発明法を行う設備の基本構成を 示すものである。

伝炉ガス、高炉ガス等の倒生ガスは、フィルタ(1)でダストが除去された後、 CO₂ / CO 選択分離特性を有するガス透過膜(2)を過され、その CO₂ 成分が分離除去される。このガス透過腺は、ガス分子の拡散が膜を通して行われることにより、特定のガス成分が選択的に透

膜の分離特性は次の通りである。

co, / co

(#	ス成分)	/	(/ス成分)	遇択分離係数
----	------	---	---	------	---	--------

O₁ / N₁ 2
CO₂ / H₂ 4.9

以上のようにして CO₂ 成分の大部分が除去された副生ガスは P S A 法等によるガス吸着 塔(3) を通され、これにより CO 成分以外のガス 成分、特に N₂ が通過して CO が吸着過 し、高 CO 愛度のガスが得られる。このが 過過して CO が吸着 利は できる。これに使用される吸着利は できる。これできる。これできる。これできる。これできる。これできる。 CO 過常 合成ゼオライトが用いる。第 2 図はこの種の吸着剤の CO。N₂ 分離 特性 (CO 過択性=(CO の動的吸着量)) を示すものである。

なお、第 1 図において、ガス透過膜(2a)(2b) を備えた CO₂ 分重装置(4)の入側にはブロワ(5) が、また出側には真空ポンプ(6)(7)が設けられ、 退せしめられるもので、その分離特性は2つのガス成分間での透過量の比たる選択分離係数(何えば、CO=/CO=4)で表わされる。この種のガス透過膜では、その分離特性があった。大きくなるという問題があり、この状況があるという問題があり、この分別では、地数のガスを設めたい。 関生がスとと、現を複数のガスをは、地域を変数が、関生がスとと、現るのガス透過膜のなり、関生がスといる。 第1 図のガス透過膜(2a)(2b)が設めている。 第1 図のガス透過膜(2a)(2b)が設けられてこの。成分を除去される。

ガス透過膜(2) としては、例えばジメテル・シリコン膜、含フツソ・オレフイン・シロキサン共重合体膜、ポリカーポネート/ポリシロキサン膜、塩化ビニール・液晶フツ化炭素膜等が用いられる。これジメチル・シリコン

またガス吸着塔(3)の入傷にはコンプレツサ(8) が設けられている。

〔吳 难 例〕

A. 転炉ガス

第1表は転炉ガスを第3図に示す股値で処理した瞬の図中各位置(②。①~③)でのガス組成及びガス量を示すものである。なお、第3図の設備では2段階のガス透過膜(2a)(2b)にジメチル・シリコン膜を用いている。また、(9)は触媒燃焼器である。

第 1 费

		② (=気炉ガス)	0	2	3)	3
	CO	70	7 1.3	8 0.4	3 8.6	99
ガ	CO.	1 2	1 0.1	_	2 5	-
ス成分(6)	0,	0.2	0.6	0.3	0.4	-
	н,	2	24	_	4.2	-
	N,	1 5.8	156	1 9.3	3 1.8 ,	1
# (N≡	ス 量 シH)	10000	11900	7500	4800	5200

特開昭62-167390(3)

男 2 表は高炉ガスを第 3 図に示す設備で処 4 図面の簡単な説明 理した際の図中各位量でのガス組成及びガ ス量を示すものである。なお、この場合も ガス透過膜(2a)(2b)としてジメチル・シリ コン膜を用いている。

第 2 表

		② (=高炉ガス)	0	2	3)	3
1	co	20	2 1.2	2 6.5	1 1.4	7 2
#	co,	23	1 8.9	-	2 6.6	-
ス成分 (4)	0.	0.1	0.1	0.1	0.1	_
	н.	4	6.1	-	4.6	-
1 (24)	N.	5 2.9	5 8.7	7 3.4	427	28
ガ (Nm	ス 量 シH)	10000	12400	6500	8600	1400

〔発明の効果〕

以上述べたように本発明によれば、所謂乾 式法により COs 等のガス成分を適切に分離除 去し高カロリーのガスを低コストで得ること ができる効果がある。

第1図は本発明法を行う設備の基本構成 を示す説明図である。第2図は本発明で利 用されるガス吸着剤の CO , Na 分離特性を 示すものである。第3回は実施例に供され た処理股債を示す説明図である。

図において、(2a)(2b)はガス透過膜、(3) はガス吸着塔である。

特的	人政出	B	本質管	株式	会 社
発	明 者	*	#	史	翺
代理	人 弁理士	吉	厭	*	Ξ
(B)	国	髙	-		. 前
同	弁護士	音	腻	弘	子

特開昭62-167390(4)

