dollar value of the stock shares need to be

produced to rebolance a deta hedge

Problemz

1 For central FD

$$= \frac{x-7.95}{0.1}$$

$$\frac{\partial^2 C}{\partial k^2} = \frac{C(k+ok,T) - 2C(k,T) + CCk-ok,T)}{(ok)^2}$$

$$= \frac{2.33 - 2.2.55 + 2.79}{(0.5)^{2}} = 0.08$$

$$= \frac{2.23 - 2.79}{2.0.5} = -0.46$$

$$\frac{91}{90} = \frac{1}{7} k_{1} e_{1} \frac{9k_{1}}{9c} - k_{1} \frac{9k}{9c}$$

b)
$$e^{-rT} p(S_{11}=15) = \frac{\partial^2 C}{\partial k^2}$$

$$= \frac{C(k+ok,T)-2CC(k,T)+C(k-ok,T)}{(ok)^2}$$

$$= \frac{2.35 - 2.55.2 + 2.79}{(0.5)^2} = 1.08$$

Problem 4:

a) at N=1, when R=5/6

57 6 74,25 , exercise immediately.

www R=1/2/3/4

1,2,3,4 < 4,75 move to n=2

at 122. when R= 4/5/6

4,5,673,5 exercise immediately.

www R=1/2/3

1,2,3.63.5 move to n=3

at not. When R=1/2/3/4/5/6

exercise immediately.

PC mot exercising at n=1) = $\frac{4}{6}$ = $\frac{2}{3}$

PC mot exercising at n=2) = $\frac{3}{b} = \frac{1}{2}$

: Plexercising-time = 3) = Pl not exercising at n=1) x

PC not exercising at n=2)

 $=\frac{2}{3}\times\frac{1}{2}=\frac{1}{3}$

	n=1	N=V	Nンり	N=4	
R=6	9,5	9.5	9,5	b	
R=C	8.5	8,5	8.5	2	
Reu	7.75	7.5	7.5	4	
Rib	7.75	7	<i>b.</i> ;	3	
Rzz	7.75	7	۶.۲	2	
R21	7.75	7	4,5	1	
	experted payo		7.5+1.5+5.5+45	÷7	
N=ン	6+3.5=9.5	7]			
	5+3.5=8.5 77				
4+315 = 7.5 7 7					
3+35 = bis <7					
2+35=5.5 <7					
	H35 = 45	; < 7			

:. time-0 optimized expertation =
$$\frac{7.75 \times 4 + 8.5 + 9.5}{6} = \frac{49}{6}$$

$$\approx 8.167$$

Problem 5.

ImpVol(T)

σ(t)

C(T)

t in (0,T₁]

0.340

0.340

7.419

t in $(T_1,T_2]$

0,240

$$T = T_2 = 0.4$$

0.718

8.01

t in $(T_2,T_3]$

0.260

0.300

9.750

implied volatility of = \= \frac{1}{7} 62t1 dt

for
$$T_1=0.3$$
 $6_{0.5}=\sqrt{\frac{1}{0.5}}\int_0^{0.5}\frac{G^2}{G(t)}dt$

According to the bs-care-firmula function (shown in orde file)

CUTI) = 7.419

According to the implied volatility function (shown in code five)

1150 = (T) 1000MI

$$0.518 = \sqrt{\frac{1}{0.4}} \left[\int_{0.3}^{0.3} 6(t) dt + \int_{0.3}^{0.4} 6(t) dt \right]$$

$$0.300 = \int_{0.6}^{0.5} \int_{0}^{0.5} 6ct dt + \int_{0.5}^{0.4} 6ct dt + \int_{0.4}^{0.6} 6ct dt$$

According to the bs-call-firmula function (shown in code file)