Aman Choudhaux 17920

- ① det d = IA, be input state to the transfer function.
- i) x = x + y

f(d) = d' where,

$$d' = \bot$$
, if d is \bot

$$d'(x) = [u_x + u_y, l_x + l_y], \quad \text{if} \quad d(x) = [u_x, l_x] \quad \text{and},$$

$$d'(y) = d(y) \quad d(y) = [u_y, l_y]$$

NOTE: we are assuming, $x + \infty = \infty$, if $x \neq -\infty$ and, $x - \infty = -\infty$, if $x \neq \infty$

$$\vec{i}$$
 $x = y + 1$

$$f(d) = d'$$
 where,

$$d' = \bot$$
, if d is \bot

$$d'(x) = [u_y + 1, l_y + 1], \quad \text{if} \quad d(y) = [u_y, l_y]$$

$$d'(y) = d(y)$$

iii) Let
$$d \in IA$$
, such that $d(x) = [u_x, l_x]$ and $d(y) = [u_y, l_y]$

$$Y_{I}(d) = \{(i, j) \mid i \in [u_x, l_x] \text{ and } j \in [u_y, l_y] \}$$

= 0, if d is \bot iv) Let c' be an element of the concrete lattice such that, $c' = \{(i,j) \mid i \in C_X, j \in C_Y \text{ where } C_X, C_Y \subseteq Z\}$

$$X_{I}(c') = d$$
 where,

$$d(x) = \left[\min(C_x), \max(C_x)\right], \text{ if } C_x \neq \emptyset$$

$$\left[-\infty, \infty\right], \text{ otherwise}$$

$$d(y) = \int [\min(C_Y), \max(C_Y)], \quad \text{if } C_Y \neq \emptyset$$

$$[-\infty, \infty], \quad \text{otherwise}$$

$$d = L$$
, if $c' = Q$

i)
$$X_{IC}(d) = \bigcup_{v \in Var} C_v$$
 where,

$$C_{v} = \left\{ (v, u_{v}) \right\}, \text{ if } d(v) = \left[u_{v}, l_{v} \right] \text{ and } u_{v} = l_{v} \right\}$$

$$\left\{ \left(v, u_{v} \right) \right\}, \text{ if } d(v) = \left[u_{v}, l_{v} \right] \text{ and } u_{v} < l_{v} \right\}$$

$$X_{Ic}(d) = \bot$$
, if d is \bot

$$d(v) = \int [u_v, u_v], \quad i_{\mathcal{V}}(v, u_v) \in C, \text{ and } u_v \in \mathbb{Z}$$

$$\left[[-\infty, \infty], \quad \text{otherwise} \right]$$

iii) det, us assume we have a program with two voiables of and y,

 $d \in IA$ such that, $d(x) = [2, 3], d(y) = [-\infty, \infty]$

$$X_{IC}(d) = \emptyset$$

 $Y_{CI}(X_{IC}(d)) = d'$ where $d'(x) = d'(y) = [-\infty, \infty]$

Clearly $d' \supset d$ because $d'(x) \supset d(x)$

As we can see, the program is running in an injuste loop, and the Kildall's algorithm will always encounter an unmorked point. Thus, it will never terminate.

ii) het us look at a porticular chain in the IA lattice:

 $[0,0] \leq [0,1] \leq [0,2] \leq \ldots$

This chain is an injinite sequence, and hence the height of IA lattice is not finite.

i) det, $x = y \times 0$ be an assignment statement det, $d_A = \{(y,1)\}$ and $d_B = \{(y,2)\}$ be the abstract states at points A and B, d_A , $d_B \in CP$ $d_A \sqcup d_B$ $d_A \sqcup d_B$

ii) dot, x = 0 be an assignment statement. Let, $d_A = \{(x,1)\}$ and $d_B = \{(x,2)\}$ be the abstract states at points A and B, $d_A, d_B \in CP$ $d_A \sqcup d_B = \frac{\{(x,0)\}}{\{(x,0)\}} + \frac{\{(x,0)\}}{\{(x,0$

