Differential Geometry

François Labourie, L^AT_EX by Kewei Li, Université Côte d'Azur

June 26, 2025

Contents

1	2 Manifold			
2				
3				
	3.1	Projection Space	9	
	3.2	Grassmannian manifold	11	
		3.2.1 Affine viewpoint	11	
		3.2.2 Matrix viewpoint	11	
4	Partition of unity 1			
5	Cotangent space 1		15	
6	Differential forms			
	6.1	1-form	19	
	6.2	Review of linear algebra	20	
	6.3	Differential forms on manifolds	21	
7	De Rham Cohomology			
	7.1	Poincaré lemma	25	
	7.2	Cohomology group	28	
	7.3	Cohomology of Spheres	30	
8	Orio	entation and Manifold with boundary	35	
	8.1	Orientation	35	
	8.2	Manifold with boundary	37	
	8.3	More on differential forms	38	

9	Inte	gration of Differential Forms on Oriented Manifold	39
	9.1	On \mathbb{R}^n	39
	9.2	On Manifold	36
	9.3	Stokes Formula	40
10	Vec	tor Fields and Flows	44
	10.1	Differential equations	44
	10.2	Lie brackets	45
	10.3	Linear Differential Fields	48
	10.4	Frobenius Theorem	52
11	Vec	tor Bundle	54
	11.1	Definitions	54
	11.2	Moser Theorem and Flow-Box	57
12	Con	nection	5 9
	12.1	Connection and Parallel Transport	59
	12.2	Connection and curvature	63
13	Gro	up action	68
	13.1	Properly discontinuous action without fixed points	68
	13.2	Action of group of diffeomorphisms	69

1 Submanifold

Definition 1.1. ϕ is a C^r map from $U \in \mathcal{E}$ to $V \in \mathcal{F}$, U, V are open sets.

- 1. ϕ is a diffeomorphism if ϕ is a bijection from U to $\phi(U)$, ϕ is of class C^r and ϕ^{-1} is also of class C^r .
 - 2. If $x \in U$, ϕ is an **immersion** at x, if $D_x \phi$ is injective (\leq).
 - 3. If $x \in U$, ϕ is a **submersion** at x, if $D_x \phi$ is surjective (\geq) .

Theorem 1.1 (Inversion theorem). If ϕ is a C^r map from $U \in \mathcal{E}$ to $V \in \mathcal{F}$, U, V are open sets. If $x \in U$ and $D_x \phi$ is a bijection, then ϕ is a diffeomorphism in a neighborhood of x.

Definition 1.2. Let \mathscr{E} be an affine space, (U,X) is a **chart**, when U is an open set in \mathscr{E} , X is a map into some open set in \mathbb{R}^n and X is diffeomorphism from U to X(U). $X = (x_1, \dots, x_n)$ the coordinate of the chart, U the domain of the chart.

Theorem 1.2 (Immersion theorem). Let $\phi : \mathcal{O} \hookrightarrow \mathcal{F}$ such that ϕ is an immersion at x, there is a neighborhood $U \ni x$ and a chart (V, X) at $\phi(x)$ with $\phi(U) \subset V$, such that $X \circ \phi$ is a restriction of an affine injective map from U to \mathbb{R}^n .

Proof. Set $f = X \circ \phi$ and treat f from \mathbb{R}^p to \mathbb{R}^n , $f = (f_1, \dots, f_n)$. Then we define $\tilde{y} = (y_1, \dots, y_p, y_{p+1}, \dots, y_n)$, $y = (y_1, \dots, y_p)$ and $F(\tilde{y}) = (f_1(y), \dots, f_p(y), f_{p+1}(y) + y_{p+1}, \dots, f_n(y) + y_n)$.

$$\det \frac{DF}{D\tilde{y}}(x_1, \cdots, x_p, 0, \cdots, 0) = \det \frac{Df}{Dy}(x) \neq 0.$$

Then by inverse theorem, there is a neighborhood \tilde{U} of $\tilde{x}=(x_1,\cdots,x_p,0,\cdots,0)$ such that $G:F(\tilde{U})\to \tilde{U}$ is the inverse of F. Note that $F(y_1,\cdots,y_p,0,\cdots,0)=f(y_1,\cdots,y_p)$, hence $(y_1,\cdots,y_p,0,\cdots,0)=G\circ f(y_1,\cdots,y_p)$ for $(y_1,\cdots,y_p,0,\cdots,0)\in U$ which equivalent to $(y_1,\cdots,y_p)\in \tilde{U}\cap\mathbb{R}^p=:U$, which suggests f is injective.

Corollary 1.1. For smooth map $\phi: M \to N$, where M and N are manifolds, if ϕ is an immersion at $x \in M$, there is a neighborhood $U \ni x$ and a chart (V, X) at $\phi(x)$ with $\phi(U) \subset V$, such that the image of $(X \circ \phi)|_U$ is an open subset in $\mathbb{R}^p \subset \mathbb{R}^n$, where $p = \dim M$, $n = \dim N$.

Theorem 1.3 (Submersion theorem). Let $\phi : \mathscr{O} \hookrightarrow \mathscr{F}$ such that ϕ is an submersion at x, there is a chart (U,Y) at x such that $\phi \circ Y^{-1}$ is a restriction of an affine surjective map.

Proof. Similarly, consider
$$F(y_1, \dots, y_n) = (f_1(y), \dots, f_p(y), y_{p+1}, \dots, y_n).$$

Theorem 1.4 (Constant rank theorem). Let $\phi : \mathcal{O} \hookrightarrow \mathcal{F}$, \mathcal{O} open set in \mathcal{E} , assume that $D_y \phi$ has a constant rank for y in a neighborhood of x. There is a chart on a neighborhood (U, X) of $\phi(x)$ and (V, Y) of x, such that $X \circ \phi \circ Y^{-1}$ is (a restriction of) an affine map.

Definition 1.3. Submanifolds of affine spaces.

 $M \subset \mathscr{E}$ is a **submanifold** if $\forall x \in M$, there exist a chart (U, X) at x such that $X(M \cap U)$ is an open set of a vector sub-space in \mathbb{R}^n .

The dimension of M is defined to be the dimension of $X(M \cap U)$

$$\dim(M) := \dim(X(M \cap U)).$$

Theorem 1.5.

- 1. Let M be a submanifold in \mathscr{E} , if $\phi: \mathscr{O} \to \mathscr{F}$ is a diffeomorphism, $\phi(M \cap \mathscr{O})$ is a submanifold.
- 2. Let ϕ be a submersion along $\phi^{-1}(y)$, where $\phi: \mathscr{O} \to \mathscr{F} \ni y$. Then $\phi^{-1}(y)$ is a submanifold.

$$\dim \phi^{-1}(y) = \dim \mathscr{E} - \dim \mathscr{F}.$$

3. Let ϕ be an immersion form $\mathscr{O} \subset \mathscr{E}$ to \mathscr{F} at x, then there exists an open set $U \ni x$ such that $\phi(U)$ is a submanifold.

$$\dim \phi(U) = \dim \mathscr{E}.$$

Remark 1.1. If ϕ is diffeomorphism from U to V, if (W,X) is chart with $W \subset V$, then $(\phi^{-1}(W), X \circ \phi)$ is a chart.

Definition 1.4. Tangent space of a submanifold.

Let curve $c \in C^{\infty} :]a, b[\to \mathscr{E},$

$$\dot{c}(t_0) := \lim_{t \to t_0} \left(\frac{c(t) - c(t_0)}{t - t_0} \right) \in E.$$

Let M be a submanifold in \mathcal{E} , then

 $T_xM = \{\dot{c}(0) \text{ for curves } c : [a,b] \ni 0 \text{ in } \mathscr{E} \text{ such that } \forall t,c(t) \in M, c(0) = x\}.$

Theorem 1.6.

1. Let ϕ be a diffeomorphism, and M a submanifold

$$T_{\phi(x)}\phi(M) = D_x\phi(T_xM).$$

- 2. If M is an open set in an affine subspace of \mathcal{E} , then T_xM is the underlying vector space of M.
 - 3. If ϕ is a submersion along $\phi^{-1}(y)$,

$$T_x \phi^{-1}(y) = \ker(D_x \phi), \qquad \phi(x) = y.$$

4. If ϕ is an immersion at x,

$$T_{\phi(x)}\phi(U) = \operatorname{Im} D_x \phi.$$

2 Manifold

Definition 2.1. All topological spaces X considered are

- 1. Hausdorff (séparé en français).
- 2. σ -compact: Countable union of compact sets.

Definition 2.2. Let M be a topological space, a **chart** on M is a part (U, X) where

- 1. U is an open set in M (called the domain).
- 2. $X = (x_1, \dots, x_n)$ is a homeomorphism from U to an open set in \mathbb{R}^n .

Definition 2.3. Two charts (U, X) and (V, Y) are C^k compatible if $Y \circ X^{-1} : X(U \cap V) \to Y(U \cap V)$ is a C^k diffeomorphism.

Definition 2.4. $f: U \to \mathbb{R}$ is a C^k function w.r.t. X if $f \circ X^{-1}$ is C^k .

Proposition 2.1. If (U,X) and (V,Y) are C^k compatible, f defined on $U \cap V$. Then f is C^k w.r.t. $(U \cap V,X) \iff f$ being C^k w.r.t. $(U \cap V,Y)$.

Proof.

$$f\circ X^{-1}=(f\circ Y^{-1})\circ (Y\circ X^{-1}).$$

Definition 2.5. If M is a topological space. An **atlas** on M is a collection of charts $\mathscr{U} = \{(U_i, X_i)\}_{i \in I}$ such that (i) $\bigcup U_i = M$ and (ii) all charts are pairwise C^k compatible.

Definition 2.6. The atlases \mathscr{U} and \mathscr{V} are C^k compatible if any chart of \mathscr{U} is C^k compatible with any chart of \mathscr{V} . (Equivalently, $\mathscr{U} \cup \mathscr{V}$ is still an atlas.)

Definition 2.7. A C^k manifold is a topological space M (Hausdorff and σ -compact) equipped with an equivalence class (w.r.t. C^k compatibility) of atlas.

Definition 2.8. A C^k chart (U, X) on a manifold is a chart which is compatible with any atlas defining the manifold structure.

Proposition 2.2. If M is a manifold, an open set U in M is also a manifold.

Proposition 2.3. If M and N are manifolds, then $M \times N$ is a manifold.

Definition 2.9. A function on $\Sigma \subset M$ is C^k if for every $x \in \Sigma$, there exits a C^k chart on M, (U,X) with $x \in U$, $f \circ X^{-1}$ is C^k at X(x).

Example 2.1. If (U, X) is a chart, $X = (x_1, \dots, x_n)$. x_1, \dots, x_n are the coordinates functions on U, then x_i are smooth functions on U.

Definition 2.10. Let $M \xrightarrow{\phi} N$ be a map between two (smooth) manifolds. The ϕ is smooth at $x \in M$ if for every smooth function f defined on a neighborhood of $\phi(x)$, then $f \circ \phi$ is smooth at x.

Proposition 2.4. We have two notions of smooth map $\varphi: U \subset \mathbb{R}^n \to V \subset \mathbb{R}^n$:

- (i). φ smooth as map between manifolds.
- (ii). φ is smooth as a classical notion.

We will prove these two notions coincide.

Proof. \Leftarrow : Let f be a smooth function at $\varphi(x)$, then $f \circ \varphi$ is smooth (composition of smooth function).

 \Rightarrow : Assume $\varphi: U \to V$ is smooth, we can find $\varphi = (\varphi_1, \dots, \varphi_p)$, where $\varphi_i = x_i \circ \varphi$ is the coordinate functions on V. Thus φ_i is smooth, then φ is smooth.

Lemma 2.1. If f_1, \dots, f_n are smooth functions $M \to \mathbb{R}$, g is a smooth function $\mathbb{R}^n \to \mathbb{R}$, then $g(f_1, \dots, f_n)$ is a smooth function on M.

Proposition 2.5. ϕ is smooth at x, is equivalent to, there exits a chart (U, X) where U a neighborhood of $\phi(x)$, $X = (x_1, \dots, x_n)$ and $x_i \circ \phi$ is smooth on $\phi^{-1}(U)$.

Proof. \Rightarrow is by definition.

$$f \circ \phi = (f \circ X^{-1}) \circ (X \circ \phi) = (f \circ X^{-1})(x_1 \circ \phi, \cdots, x_n \circ \phi).$$

Proposition 2.6. $M \xrightarrow{\phi} N \xrightarrow{\psi} W$. If ϕ is smooth at x, ψ is smooth at $\phi(x)$, then $\psi \circ \phi$ is smooth at x.

Proof. Let f be a smooth function on a neighborhood of $\psi \circ \phi(x)$, then $g = f \circ \psi$ is smooth, then $g \circ \phi$ is smooth.

Proposition 2.7. $\phi: M \to N$ is smooth at x, is equivalent to, there exists (U, X) a chart at x and (U, Y) at $y = \phi(x)$, such that $Y \circ \phi \circ X^{-1}$ is a smooth map.

Proof. \Leftarrow : Let f be a function smooth at $\phi(x)$, we shall show that $f \circ \phi$ is smooth at x.

$$f\circ\phi\circ X^{-1}=(f\circ Y^{-1})\circ (Y\circ\phi\circ X^{-1})$$

is smooth, hence $f \circ \varphi$ is smooth.

 \Rightarrow : Let g be a function smooth at $\phi(x) \in Y$.

$$g \circ (Y \circ \phi \circ X^{-1}) = (g \circ Y) \circ \phi \circ X^{-1},$$

is smooth at X(x).

Exercise 2.1. $\phi: M \to N$ is smooth at x, is equivalent to, for any (U, X) a chart at x and (U, Y) at $y = \phi(x)$, we have $Y \circ \phi \circ X^{-1}$ is a smooth map.

Proof. Just by changing of charts. \Box

Exercise 2.2. N is a submanifold of \mathbb{R}^n , prove that $i: N \hookrightarrow \mathbb{R}^n$ is a smooth map.

Proof. Since N is a submanifold of \mathbb{R}^n , for any $x \in N$, there is a chart (U, X) such that $X(U \cap N) = \mathbb{R}^p \subset \mathbb{R}^n$. Note that $(U \cap N, X|_N)$ is a chart on N as a manifold.

Thus,
$$i = X^{-1} \circ X|_N$$
 around x is smooth.

Exercise 2.3. $M \times N \xrightarrow{p} M$ is a smooth map.

Proof. For any point $(x, y) \in M \times N$, there is a chart $(U \times V, X)$ around (x, y) and a chart (V, Y) around $x \in M$, where Y(m) = X(m, 0) for any $m \in M$.

Hence $Y \circ p \circ X^{-1} : \mathbb{R}^{m+n} \to \mathbb{R}^m$ is a projection, $(x^1, \dots, x^{m+n}) \mapsto (x^1, \dots, x^m)$, which is smooth. Then p is smooth.

Exercise 2.4. If (U, X) is a chart, then X and X^{-1} are both smooth.

Proof. For any smooth function f around $X(x) \in \mathbb{R}^n$, we need to show that $f \circ X$ is smooth around $x \in U$. We consider the chart (U, X), and we have $(f \circ X) \circ X^{-1} = f$ is smooth on X(U).

For any smooth function g around $x \in U$, we need to show that $g \circ X^{-1}$ is smooth around $X(x) \in X(U)$. Since g is smooth around x, there is a chart (V,Y) around x such that $g \circ Y^{-1}$ is smooth around Y(x). Now $g \circ X^{-1} = (g \circ Y^{-1}) \circ (Y \circ X^{-1})$ is a composition of smooth maps, hence smooth.

Definition 2.11. $\varphi: U \subset M \to V \subset N$, φ is a **diffeomorphism** if and only if φ is bijective, φ is smooth and φ^{-1} as well.

X is a diffeomorphism if (U, X) is a chart.

Definition 2.12. φ is a **immersion** at x, is equivalent to, there exist (U, X) and (V, Y) charts at x and $\varphi(x)$ such that $Y \circ \varphi \circ X^{-1}$ is an immersion.

It is also equivalent to, for any (U,X) and (V,Y) charts at x and $\varphi(x)$, we have $Y \circ \varphi \circ X^{-1}$ is an immersion.

Definition 2.13. Same definition for the submersion.

Remark 2.1. ξ is an immersion from $U \subset \mathbb{R}^n$ to $V \subset \mathbb{R}^n$, then $\phi_0 \circ \xi \circ \phi_1$ is also an immersion if ϕ_0 and ϕ_1 are diffeomorphisms.

Example 2.2. $M \times N \xrightarrow{p} M$ is a submersion. $M \to M \times x \subset M \times N$ is an immersion.

Definition 2.14. V a submanifold of a manifold M if $\forall x \in V$, there is a chart (U, X) at $x \in M$ such that $X(V \cap U)$ is a submanifold.

Definition 2.15. $\varphi: M \to N$ is an **embedding** if

- (i) φ is an injective immersion.
- (ii) φ is an homeomorphism onto its image.

Example 2.3. Topologist's sine curve.

 $\varphi:(-\infty,0]\to\mathbb{R}^2$ is injective and immersion but not an embedding.

Exercise 2.5. If M is compact and φ is an injective immersion, then φ is an embedding.

Proof. φ brings a closed set onto a closed set in $\varphi(M)$.

Definition 2.16. We say φ is **proper** if $\varphi^{-1}(K)$ is compact for any compact set K.

Example 2.4. $x \mapsto \arctan x$ is not proper.

Proposition 2.8. φ is an injective immersion and φ is proper, then φ is an embedding.

Proof. We will show that $\varphi: M \to N$ brings closed set to closed set.

First there is a collection of compact sets $\{K_n\}$ of N with $K_n \subset K_{n+1}$, such that $\cup K_n = N$. Then since φ is proper, $\varphi^{-1}(K_n)$ are compact and $M = \varphi^{-1}(N) = \varphi^{-1}(\cup K_n) = \cup \varphi^{-1}(K_n)$.

For any closed set C in M, there is a positive integer m such that $C \subset \varphi^{-1}(K_m)$, hence $\varphi(C) \subset K_m$. We show that $\overline{\varphi(C)} = \varphi(C)$.

For any $y \in \overline{\varphi(C)}$, there is a sequence $\{x_n\} \subset C$ such that $y = \lim \varphi(x_n)$. Since C is compact, there is a subsequence $\{x_{k_n}\}$ such that they converge to $x_0 \in C$. By the continuity of φ , we have

$$\varphi(x_0) = \lim \varphi(x_{k_n}) = y,$$

hence $y \in \varphi(C)$, which shows that $\overline{\varphi(C)} \subset \varphi(C)$.

Exercise 2.6. If φ is an embedding then $\varphi(M)$ is a submanifold, and φ is a diffeomorphism $M \to \varphi(M)$.

Proof. By the immersion theorem, there exists $W \subset M$, $W \in V(y)$ with $\varphi(y) = x$ such that $\varphi(W)$ is a submanifold.

We can always assume by taking W smaller that $\varphi(W) \subset U$. Then we know that $\varphi(W) = \varphi(M) \cap \mathcal{O}$, where \mathcal{O} open in N. Then we have $\varphi(W) = \varphi(M) \cap \mathcal{O} \cap U$.

3 Examples

3.1 Projection Space

Definition 3.1. Let V be a vector space with $\dim V < \infty$. A line L is a vector space in V with $\dim L = 1$. V is a vector space over any filed \mathbb{K} (here \mathbb{K} is \mathbb{R} or \mathbb{C}). We define the **Projective Space**

$$\mathbb{P}(V) = \{L : L \text{ lines in } V\}.$$

1. Show that $\mathbb{P}(V)$ is in bijection with $V \setminus \{0\}/\mathbb{K}^*$.

Proof. Consider $\varphi: V \setminus \{0\}/\mathbb{K}^* \to \mathbb{P}(V)$, $[v] \mapsto \mathbb{K}v$. Then it suffices to show φ is bijection, which is obvious.

2. Define a topology on $\mathbb{P}(V)$.

Definition. U is open in
$$\mathbb{P}(V)$$
 iff $\pi^{-1}(U)$ is open, here $\pi: V \setminus \{0\} \to \mathbb{P}(V)$.

2.1
$$\mathbb{P}(V)$$
 is Hausdorff?

Proof. For any two different points $L, M \in \mathbb{P}(V)$, we intersect L, M with $\mathbb{S}(V)$ to get x_1, x_2, y_1, y_2 . Then we can find r > 0 such that $B_r(x_1), B_r(x_2), B_r(y_1), B_r(y_2)$ do not intersects each other. Hence we consider the cones generated by $B_r(x_1), B_r(x_2)$ and by $B_r(y_1), B_r(y_2)$, with origin being vertex, calling C_x and C_y . Then $C_x \setminus \{0\}$ and $C_y \setminus \{0\}$ are open in $V \setminus \{0\}$ and they don't intersect. Thus, we find two separate open sets $\pi(C_x \setminus \{0\})$ and $\pi(C_y \setminus \{0\})$ in $\mathbb{P}(V)$ which contains L and M respectively.

2.2 $\mathbb{P}(V)$ is compact.

Proof. We know $\mathbb{S}(V)$ is compact. For any open covering $\mathscr{U} = \{U_i\}_{i \in I}$ of $\mathbb{P}(V)$, we have $\pi^{-1}(\mathscr{U}) = \{\pi^{-1}(U_i)\}_{i \in I}$ is an open covering of $V \setminus \{0\}$. Moreover, $\pi^{-1}(\mathscr{U}) \cap \mathbb{S}(V) = \{\pi^{-1}(U_i) \cap \mathbb{S}(V)\}_{i \in I}$ is an open covering of $\mathbb{S}(V)$. Since $\mathbb{S}(V)$ is compact, we have a finite subset $J \subset I$ with $\{\pi^{-1}(U_i) \cap \mathbb{S}(V)\}_{i \in J}$ being an open sub-covering of $\mathbb{S}(V)$, hence $\{U_i\}_{i \in J}$ is an open sub-covering of $\mathbb{P}(V)$.

However, this just the proof of continuous map maps a compact set to a compact set. $\hfill\Box$

3. Projective chart.

Definition. Let H be a hyperplane in V, let

$$U_H = \{ L \in \mathbb{P}(V) : L \oplus H = V \}.$$

$$\pi^{-1}(U_H) = V \setminus H \text{ is open, hence } U_H \text{ is open.}$$

$$U_i = \{ [x_1, \cdots, x_n] : x_i \neq 0 \}, \ \phi_i : [x_1, \cdots, x_n] \mapsto \left(\frac{x_1}{x_i}, \cdots, \frac{x_n}{x_i} \right) \in \mathbb{R}^{n-1}.$$
Transition map of $U_1 \to U_2$ maps (v_1, \cdots, v_{n-1}) to $(\frac{1}{v_1}, \frac{v_2}{v_1}, \cdots, \frac{v_{n-1}}{v_1}).$

Exercise 3.1. Prove that $U_i \to \mathbb{K}^{n-1}$ is a homeomorphism.

Given a hyperplane H in V, $H = \ker \omega$, let

$$U_H = \{L : \omega|_L \neq 0\} = \{L : L \oplus H = V\}.$$

We fix $D \in U_H$, and define $\phi_H : U_H \to H$ as follows. For any $L \in U_H$, let u_L be such that $\omega(U_L) = 1$, then we define $\Phi_{H,D}(L) = u_L - u_D$.

Now we calculate $\Psi = \Phi_{H_1,D_1} \circ \Phi_{H_0,D_0}^{-1}$.

$$v \mapsto l = u_0 + v \mapsto \frac{u_0 + v}{\omega_1(u_0 + b)} - u_1.$$

We have an one-one correspondence φ :

$$\mathbb{P}(V) \to \{\text{sym projector of tr 1}\}.$$

Now we want to understand $T_L \varphi$. If φ is an injective immersion, and since $\mathbb{P}(V)$ is compact, we say φ is an embedding.

We choose a hyperplane H and the unit normal vector u_0 , then we consider these as a chart.

$$H \xrightarrow{\Phi^{-1}} \mathbb{P}(V) \xrightarrow{\varphi} \{\text{sym projector of tr 1}\}.$$

$$w \mapsto L' \mapsto p_w$$
.

The first formula is

$$\Phi^{-1}(w) = w + u_0$$

and the second formula is, by Pythagoras theorem,

$$P_{L'}(a) = \frac{\langle a, v \rangle}{\langle v, v \rangle} v.$$

where v is a vector in L'. Then we have the formula for $\psi = \varphi \circ \Phi^{-1}$,

$$\psi(w)(a) = \frac{\langle a, u_0 + w \rangle}{\langle u_0 + w, u_0 + w \rangle} (u_0 + w).$$

Set w = th, for $h \in H$, we can prove that

$$D_0\psi(h)(a) = \langle a, h \rangle u_0 + \langle a, u_0 \rangle h.$$

Then we have

$$D_0\psi(h)(u_0) = h \neq 0,$$

for $h \neq 0$, which shows that $D_0 \psi$ is an injection, hence ψ is an immersion at 0. Hence φ is an immersion at L', with the arbitrariness of L', φ is an immersion.

3.2 Grassmannian manifold

Definition 3.2. Grassmannian manifold

$$Gr_k(V) = \{P \subset V : P \text{ vector space with } \dim P = k\}.$$

3.2.1 Affine viewpoint

We fix Q as an n-k dimension subspace, and set $U_Q = \{P : P \oplus Q = V\}$. We fix $P' \in W_Q$ and for any $P \in U_Q$, we can find a linear function $f : P \to Q$ such that the graph of f is P', i.e. by setting F(x) = x + f(x), $x \in P$, we have Im F = P'.

Remark 3.1. If we want a canonical function f, we can choose P' as the perpendicular direct complement of Q.

We can prove that F is a bijection. First F is linear, hence it suffices to show that F is injective. If there exists $x \in P$ s.t. $F(x) = 0 \in P' \subset V$, i.t., x + f(x) = 0. We have $f(x) = -x \in P$, hence in $P \cap Q = \{0\}$, i.e. x = 0.

We can show that $\{F \text{ linear}: F^{-1}: P' \to P, \text{ rank } F = k\}$ is one-to-one with U_Q .

We define $G_P = f_P \circ F_P^{-1} : P' \to Q$, choose a basis $\{e_1, \dots, e_k\}$ of P' and we say that $(G_P(e_1), \dots, G_P(e_k))$ gives the coordinate of the P w.r.t. F_P .

3.2.2 Matrix viewpoint

We fix a metric on V, p is projector if $p^2 = p$, then $V = \ker p \oplus \operatorname{Im} p$ and $\dim(\operatorname{Im} p) = \operatorname{tr} p$, $(\operatorname{Im} p)^{\perp} = \ker p$. We say p is symmetric if $\langle p(x), y \rangle = \langle x, p(y) \rangle$, of course a projector is symmetric.

$$Gr_k(V) \longleftrightarrow G_k = \{\text{symmetric endomorphism } (i)p^2 = p, (ii) \text{ tr } p = k.\}.$$

We first prove that this is a one-one correspondence. The only thing we need to show is that the map is an injection. For p and p' having the same ker with $p, p' \in G_k$, then there is an invertible matrix Q such that $p' = Q^{-1}pQ$ and ker p is invariant under Q.

Then for $x \in \ker p$, then $Qx \in \ker p$, hence $p'x = Q^{-1}pQx = 0$, which shows that $x \in \ker p'$. For $x \in \operatorname{Im} p$, we have $Qx \in \operatorname{Im} p$, hence $p'x = Q^{-1}pQx = Q^{-1}Qx = x$. Thus p' = p.

Let W be the space of symmetric endomorphism of V, then $\dim W$ is $\frac{n(n+1)}{2}$, define $G_k = \{p : p^2 = p, \operatorname{tr} p = k\}$. G_k is defined by equation $W \xrightarrow{\Phi} W \times \mathbb{R}$, $f \mapsto (f^2 - f, \operatorname{tr} f - k)$, $G_k = \Phi^{-1}(0)$.

Question: understand rank Φ closed to $p_0 = I_k$.

We have the basis of W as $E_{ij} = \frac{1}{2}(\delta_{ij} + \delta_{ji})$, $1 \le i \le j \le n$. Consider the direction derivative respect to E_{ij} at $p_0 = I_k$:

$$\frac{\partial \Phi}{\partial E_{ij}} = \left(\lim \frac{(I_k + tE_{ij})^2 - (I_k + tE_{ij}) - I_k^2 + I_k}{t}, \lim \frac{\operatorname{tr}(I_k + tE_{ij}) - \operatorname{tr}I_k}{t}\right)$$
$$= (I_k E_{ij} + E_{ij} I_k - E_{ij}, \operatorname{tr}E_{ij}).$$

Thus there are five cases for i, j:

- (1) $1 \leq i < j \leq k$, in which situation, $\frac{\partial \Phi}{\partial E_{ij}} = (E_{ij}, 0)$. (2) $1 \leq i = j \leq k$, in which situation, $\frac{\partial \Phi}{\partial E_{ij}} = (E_{ij}, 1) = (E_{ii}, 1)$.
- (3) $1 \le i \le k < j \le n$, in which situation, $\frac{\partial \Phi}{\partial E_{ij}} = (O, 0)$.
- (4) $k < i < j \le n$, in which situation, $\frac{\partial \Phi}{\partial E_{ij}} = (-E_{ij}, 0)$. (5) $k < i = j \le n$, in which situation, $\frac{\partial \Phi}{\partial E_{ij}} = (-E_{ij}, 1) = (-E_{ii}, 1)$. Only the third case doesn't contribute to the rank $D_{I_k}\Phi$. Thus $\operatorname{rank}(D_{I_k}\Phi) = \frac{n(n+1)}{2} k(n-k)$, hence $\dim \operatorname{Ker}(\Phi) = k(n-k).$

4 Partition of unity

Definition 4.1. Let X be a topological space, f continuous on X

$$\operatorname{Supp}(f) := \{x : f(x) \neq 0\} = \bigcap_{f=0 \text{ on } X \setminus F, F \text{ closed}} F$$

Example 4.1. There is a function $f : \mathbb{R} \to \mathbb{R}$ smooth and

- (i) $\operatorname{Supp}(f) \subset]-1,1[,$
- (ii) $f \equiv 1$ on a neighborhood of 0,
- (iii) f is even,
- (iv) $0 \le f \le 1$.

Lemma 4.1. Let X be a manifold, K a compact set, U open set, then there exists an open set $V \subset U$ with $K \subset V \subset U$ and there is a function φ smooth on X s.t.

- (i) $\operatorname{Supp}(\varphi) \subset U$,
- (ii) $\varphi \equiv 1$ on V,
- (iii) $0 < \varphi < 1$.

Proof. First case $K = \{x\}$. We can find a chart (\mathcal{O}, φ) such that $\mathcal{O} \subset U$ and $\varphi(\mathcal{O}) \supset \overline{B(0,1)}$ and $\varphi(x) = 0$. We define X_x on X by

$$X_x(y) = \begin{cases} 0, & \text{if } y \notin \mathcal{O}; \\ \xi(\|\varphi(y)\|^2), & \text{if } y \in \mathcal{O}. \end{cases}$$

We prove that X_x is smooth: $X_x|_{\mathcal{O}}$ is smooth by definition; if $y \notin \mathcal{O}$, we know that $\exists V$ around y such that $V \cap \varphi^{-1}(\overline{B(0,1)}) = \emptyset$, then $X_x = 0$ on V.

By conclusion $X_x \equiv 1$ on V(x) (on a neighborhood of x) with $\mathrm{Supp}(X_x) \subset \mathcal{O} \subset U$.

Let K be a compact set, $K \subset U$. For any $x \in K$, we choose $V_x \in V(x)$ and X_x such that $\operatorname{Supp}(X_x) \subset V_x \subset U$, $X_x \equiv 1$ on $W_x \in V(x)$. Now $\{W_x\}_{x \in K}$ is an open covering of K, hence we have a finite covering W_{x_1}, \dots, W_{x_n} .

Define $\psi_0 = \sum X_{x_i}$, then

$$\operatorname{Supp}(\psi_0) \subset V := \bigcup_{i=1}^n V_{x_i} \subset U.$$

Moreover, $\psi_0 \ge 1$ on $\bigcup_{i=1}^n W_{x_i} \supset K$.

Now we need to cut off ψ_0 , define $\psi = f \circ \psi_0$, where $f : [0, \infty[\to [0, 1]]]$ smooth such that

$$f(x) \begin{cases} \equiv 0, & \text{on } [0, \frac{1}{2}] \\ \equiv 1, & \text{on } [1, \infty[\end{cases}.$$

Definition 4.2. Let X be a topology space, let $\{W_{\alpha}\}_{{\alpha}\in A}$ be a covering of X. A partition of unity is a collection of function $\{X_{\alpha}\}_{{\alpha}\in A}$ such that

- (i) Supp $(X_{\alpha}) \subset W_{\alpha}, X_{\alpha}(X) \subset [0,1].$
- (ii) Given x in X, only finitely many α are such that $X_{\alpha}(x) \neq 0$.
- (iii) $\sum_{\alpha \in A} X_{\alpha} = 1$.

Definition 4.3. A covering $\{U_i\}_{i\in I}$ is locally finite, iff for all $x\in X$, $\exists V\in V(x)$ such that $\{i:U_i\cap V\neq\varnothing\}$ is finite.

Definition 4.4. Let $\{U_i\}_{i\in I}$ be a covering, a covering $\{W_j\}_{j\in J}$ is a subcovering if for any $j\in J$, there is $i\in I$ such that $W_j\subset U_i$.

Proposition 4.1. Let X be a topological space such that X is locally compact and σ -compact, then for any $\{U_i\}$ covering, there is a locally finite subcovering.

Theorem 4.1 (Partition of unity). Let X be a manifold and $\{W_{\alpha}\}_{{\alpha}\in A}$ be a locally finite covering, then there is a partition of unity for W_{α} .

Theorem 4.2 (Whitney). Let M be a manifold (compact), then there exists N and an embedding of M into \mathbb{R}^N .

Proof. Let $(U_i, \varphi_i)_{i=1,\dots,p}$ be a finite atlas for M. Assume dim M = n, here we will set N = pn + p.

We extend $\varphi_i: U_i \to \mathbb{R}^n$, 0 outside U_i . Now this is not continuous.

Let $V_i \subset \overline{V_i} \subset U_i$ be open sets with $\cup V_i = M$. For example, set $K_i = M \setminus \bigcup_{j \neq i} U_i$ and V_i a neighborhood of K_i .

Let ξ_i be a smooth function with Supp $\xi_i \subset U_i$ and $\xi_i \equiv 1$ on V_i . Define

$$\Phi = (\xi_1 \varphi_1, \cdots, \xi_p \varphi_p, \xi_1, \cdots, \xi_p)$$

a smooth function.

Let prove Φ is injective, assume that $\Phi(x) = \Phi(y)$. There exists i_0 such that $\xi_{i_0}(x) \neq 0$ (because $x \in V_{i_0}$, hence $\xi_{i_0}(y) \neq 0$, hence $y \in U_{i_0}$. Therefore

$$\xi_{i_0}(x)\varphi_{i_0}(x) = \xi_{i_0}(y)\varphi_{i_0}(y),$$

hence $\varphi_{i_0}(x) = \varphi_{i_0}(y)$, hence x = y.

Let's prove that Φ is an immersion. Let $x \in X$, there is $i_0, x \in V_{i_0}$, then $\Phi|_{V_{i_0}} = (\cdots, \varphi_{i_0}, \cdots)$ is an immersion.

Remark 4.1.

Whitney: every compact manifold of dimension n can be embedded in \mathbb{R}^{2n+1} , immersed in \mathbb{R}^{2n} .

Source: Milnor, Topology from the differential viewpoint.

Cohen: immersed in $\mathbb{R}^{2n-a(n)}$, where $a(n) = \#\{1 \text{ in the binary system decomposition of } n\}$: 4 = 100...

5 Cotangent space

Definition 5.1. Differential of a function.

Let $f: M \to \mathbb{R}$ smooth function at x. We say " $d_x f = 0$ " if the following equivalent statement are true

- (i) $\exists (U, X) \text{ at } x \text{ such that } d_{X(x)}(f \circ X^{-1}) = 0.$
- (ii) $\forall (V, Y) \ at \ x, \ d_{Y(x)}(f \circ Y^{-1}) = 0.$

Proof.

$$f \circ Y^{-1} = (f \circ X^{-1}) \circ (X \circ Y^{-1}).$$

$$d_{Y(x)}f \circ Y^{-1} = (d_{X(x)}(f \circ X^{-1})) \circ D_{Y(x)}\psi.$$

Proposition 5.1. If f = g on a neighborhood of x, then $d_x(f - g) = 0$.

Exercise 5.1. $f: U \subset \mathbb{R}^n \to \mathbb{R}, \ d_x f = 0 \iff f = f(x) + \sum_{i=1}^k \varepsilon_i \cdot f_i^2, \ where \ f_i(x) = 0, \varepsilon_i = \pm 1.$

Proof. This reminds me the famous Morse Lemma: If x is a non-degenerate critical point for f, then there is a local coordinate system (y^1, \dots, y^n) in a neighborhood U of x with $y^i(x) = 0$ such that

$$f = f(x) - (y^1)^2 - \dots - (y^{\lambda})^2 + (y^{\lambda+1})^2 + \dots + (y^n)^2$$

where λ is the index of f at x.

However, here x is a critical point of f but not necessarily non-degenerate. Thus we may need to make some minor modification of the proof of Morse lemma.

Without loss of generality, we set x=0 and f(x)=0. Here we introduce a lemma:

Lemma 5.1. Let f be a smooth function in a convex neighborhood V of 0 in \mathbb{R}^n , with f(0) = 0. Then

$$f(x_1,\dots,x_n) = \sum_{i=1}^n x_i g_i(x_1,\dots,x_n),$$

for some suitable smooth function g_i defined in V, with $g_i(0) = \frac{\partial f(0)}{\partial x_i}$.

Proof.

$$f(x_1, \dots, x_n) = \int_0^1 \frac{df(tx_1, \dots, tx_n)}{dt} dt = \sum_{i=1}^n x_i \int_0^1 \frac{\partial f}{\partial x_i} dt.$$

With this lemma, we could find g_i with $g_i(0) = \frac{\partial f}{\partial x_i} = 0$. Applying again this lemma to the g_i , then we have h_{ij} s.t.

$$g_i(x_1, \dots, x_n) = \sum_{j=1}^n x_j h_{ij}(x_1, \dots, x_n).$$

Hence it follows that

$$f(x_1, \dots, x_n) = \sum_{i,j} x_i x_j h_{ij}(x_1, \dots, x_n) = \sum_{i,j} \left(\frac{x_i + x_j h_{ij}}{2} \right)^2 - \left(\frac{x_i - x_j h_{ij}}{2} \right)^2.$$

Exercise 5.2. $f: U \subset \mathbb{R}^n \to \mathbb{R}, \ d_x f = 0 \iff f = f(x) + \sum_{i=1}^k \varepsilon_i \cdot f_i \cdot g_i, \ where \ f_i(x) = 0, g_i(x) = 0, \varepsilon_i = \pm 1.$

Let U be a neighborhood of x, let

$$\mathscr{E}(U) = \{ f : \text{ smooth on } U \}.$$

$$\mathscr{F}(U) = \{f : \text{ smooth on } U \text{ and "} d_x f = 0"\}.$$

Let's consider the vector space $\mathcal{E}(U)/\mathcal{F}(U)$.

Proposition 5.2. $\mathcal{E}(U)/\mathcal{F}(U)$ does not depend on U.

Let $V \subset U$ and $\mathscr{E}(U) \to \mathscr{E}(V)$ is the restriction. We claim that

Proposition 5.3. $\Phi: \mathscr{E}(U)/\mathscr{F}(U) \to \mathscr{E}(V)/\mathscr{F}(V)$ is an isomorphism as a vector space.

Proof.

- (i) This is a linear map.
- (ii) Φ is injective.
- (iii) Let f be a function on V, let h be a smooth function defined on M with $h \equiv 1$ on a neighborhood of x and Supp $h \subset V$. We define $\tilde{f} = hf$ on V, $\tilde{f} = 0$ outside V. Then $\tilde{f} = f$ on a neighborhood of x, then " $d(\tilde{f} f) = 0$ ", $\tilde{f} = f$ in $\mathcal{E}(V)/\mathscr{F}(V)$. Now \tilde{f} is the restriction of a function defined on U, thus $\Phi(\tilde{f}) = f$, which shows that Φ is surjective. \square

Definition 5.2. Cotangent space $T_x^*M = \mathcal{E}(U)/\mathcal{F}(U)$.

Definition 5.3. Given f defined on $U \in V(x)$, $d_x f \in T_x^* M$ is the projection of f in $\mathscr{E}(U)/\mathscr{F}(U)$.

Remark 5.1. Check that " $d_x f = 0$ " $\Leftrightarrow d_x f = 0$.

Proposition 5.4.

- (i) $d_x: f \to d_x f$ is a linear map.
- (ii) $d_x(fg) = f(x)d_xg + d_xfg(x)$.

Proof. Set h = fg - f(x)g - g(x)f, we just want to prove that $d_x h = 0$.

Let us find a chart (U, X), $\tilde{f} = f \circ X^{-1}$, $\tilde{g} = g \circ X^{-1}$ and $\tilde{h} = h \circ X^{-1}$. Let $x_0 = X(x)$, then

$$\tilde{h} = \tilde{f}\tilde{g} - \tilde{f}(x_0)\tilde{g} - \tilde{g}(x_0)\tilde{f},$$

then by the Leibnitz rule, $d_{x_0}\tilde{h} = 0$.

Proposition 5.5. If (U, X) is a chart at $x, X = (x_1, \dots, x_n)$, then $(d_x x_1, \dots, d_x x_n)$ is a basis of T_x^*M .

Moreover, if $f = F(x_1, \dots, x_n)$, then

$$d_x f = \sum_i \frac{\partial F}{\partial x_i} d_x x_i.$$

Proof. Setting $y_0 = X(x)$, $\lambda_i = \frac{\partial F}{\partial x_i}$, let us consider

$$f - \sum_{i} \lambda_i x_i = h,$$

Claim 1, $d_x h = 0$.

Let $\tilde{h} = h \circ X^{-1}$, $\tilde{f} = f \circ X^{-1} = F$ and $\tilde{x}_i = x_i \circ X$. Then

$$\tilde{h} = F - \frac{\partial F}{\partial x_i} \tilde{x_i},$$

by differential calculus $d_{x_0}\tilde{h} = 0$.

Then $d_x f = \sum_i \lambda_i d_x x_i$, hence $f \in \text{Span}(d_x x_1, \dots d_x x_n)$

Claim 2, $d_x x_k$ are independent.

Assume that $\sum_{i} \lambda_{i} d_{x} x_{i} = 0$, iff $d_{x}(\sum_{i} \lambda_{i} d_{x} x_{i}) = 0$, iff $d_{x}(\sum_{i} \lambda_{i} d_{x} \tilde{x}_{i}) = 0$, iff $d_{x}(\sum_{i} \lambda_{i} d_$

Definition 5.4. Partial derivatives.

If f is smooth around x, (U, X) is a chart,

$$d_x f = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} d_x x_i,$$

we just says $\frac{\partial f}{\partial x_i} = \frac{\partial F}{\partial x_i}$.

Exercise 5.3. $d_x \lambda = 0$ if λ is constant on V(x).

Definition 5.5. Tangent space.

 T_xM is the dual of T_x^*M , elements of T_xM are called tangent vectors.

If (X, x_1, \dots, x_n) , we have a basis $\left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n}\right)$ of T_xM given as the dual basis of $(d_x x_1, \dots, d_x x_n)$.

Remark 5.2. Note that $\frac{\partial}{\partial x_i}$ does not only depend on x_i , but also on the whole choice of basis.

Example 5.1. Let c be smooth curve at x in M,

$$c:]-1, 1[\to M, \quad c(0) = x.$$

the tangent vector to c at x is defined by

$$\langle \omega \mid \dot{c}(0) \rangle = \omega \left(\dot{c}(0) \right) = \frac{d}{dt} \Big|_{t=0} (f \circ c),$$

for any ω in T_x^*M and for any f such that $d_x f = \omega$.

Exercise 5.4. If $d_x f = d_x g$, then $\frac{d}{dt}\Big|_{t=0} (f \circ c) = \frac{d}{dt}\Big|_{t=0} (g \circ c)$.

Proposition 5.6. Let $X=(x_1,\cdots,x_n)$ be coordinates at x, let $X\circ c=(c_1,\cdots,c_n)$, then

$$\dot{c}(0) = \sum_{i}^{n} \dot{c}_{i}(0) \frac{\partial}{\partial x_{i}}.$$

Definition 5.6. Let γ_0, γ_1 be two curves through x, we define γ_0 and γ_1 are tangent at x iff $\dot{\gamma_0}(0) = \dot{\gamma_1}(0)$.

Proposition 5.7. Let $\phi: M \to N$ be smooth, if γ_0 and γ_1 are tangent at x, then $\phi \circ \gamma_0$ and $\phi \circ \gamma_1$ are tangent at $\phi(x)$.

Proof. Let X be coordinates around x,

$$\dot{\gamma_0}(0) = \dot{\gamma_1}(0) \iff (X \circ \gamma_0)(0) = (X \circ \gamma_1)(0).$$

Let Y be coordinates around $y = \phi(x)$, we need to show

$$(\phi \circ \gamma_0)(0) = (\phi \circ \gamma_1)(0),$$

which is equivalent to

$$(Y \circ \dot{\phi} \circ \gamma_0)(0) = (Y \circ \dot{\phi} \circ \gamma_0)(0),$$

$$\iff (Y \circ \phi \circ X^{-1} \circ X \circ \gamma_0)(0) = (Y \circ \phi \circ X^{-1} \circ X \circ \gamma_0)(0).$$

We write ψ for $Y \circ \phi \circ X^{-1}$ and $c_i = X \circ \gamma_i$.

There $(\psi \circ c_i)(0) = D_{X(x)}\psi(\dot{c_i}(0))$, but since $\dot{\gamma_0}(0) = \dot{\gamma_1}(0)$, then $\dot{c_0}(0) = \dot{c_1}(0)$, then

$$D_{X(x)}\psi(\dot{c_0}(0)) = D_{X(x)}\psi(\dot{c_1}(0)).$$

Definition 5.7. Let ϕ be smooth from M to N. Then $T_x\phi$ is the unique linear map $T_xM \to T_{\phi(x)}N$ such that $T_x\phi(\dot{c}(0)) = (\phi \circ c)(0)$.

Sometimes $T_x \phi$ is written as $D_x \phi$.

Proposition 5.8.

- (i) $d_x(f \circ \phi) = d_{\phi(x)} f \circ T_x \phi$.
- (ii) $T_x(\phi \circ \psi) = T_{\phi(x)}\phi \circ T_x\psi$.
- (iii) If (x_1, \dots, x_p) are coordinates at x, (y_1, \dots, y_n) are coordinates at $\phi(x)$, then the matrix of $T_x \phi$, in $\frac{\partial}{\partial x_i}$, $\frac{\partial}{\partial y_j}$ is of a coefficients $\frac{\partial \phi_j}{\partial x_i}$, where $Y \circ \phi = (\phi_1, \dots, \phi_n)$.

Theorem 5.1.

- (i) ϕ is a diffeomorphism on V(x) iff $T_x \phi$ is invertible (just by local immersion theorem).
 - (ii) ϕ is an immersion iff $T_x \phi$ is injective.
 - $(iii)\phi$ is an submersion iff $T_x\phi$ is surjective.

6 Differential forms

6.1 1-form.

Let $T^*M = \bigsqcup_{x \in M} T_m^*M$.

Definition 6.1. A differential form of degree 1 is $\omega : M \to T^*M$ such that $\omega(m) \in T_m^*M$.

Example 6.1.

- (i) If f is function, $df(m) = d_m f$ is a differential form. Such a form is called **exact**.
- (ii) The space of differential 1-forms is a vector space.
- (iii) If α is a 1-form, f a function on M, then $f \circ \alpha : m \mapsto f(m) \cdot \alpha_m$ is a 1-form.
- (iv) If (x_1, \dots, x_n) are coordinates in M on V(x), then

$$\omega = \sum_{i=1}^{n} \omega_i dx_i,$$

on a neighborhood of x, where ω_i are functions.

Definition 6.2. ω is a **smooth** 1-form if in every x in M we can find (x_1, \dots, x_n) on a neighborhood of x, such that $\omega = \sum_{i=1}^n \omega_i dx_i$ with ω_i smooth functions.

Remark 6.1.

(i)If f is smooth, then

$$df = \sum_{i} \frac{\partial f}{\partial x_i} dx_i,$$

with $\frac{\partial f}{\partial x_i}$ are smooth, hence df is a smooth 1-form.

(ii) If $\omega = \sum_{i} \omega_{i} dx_{i}$ with ω_{i} smooth, then for any coordinates (y_{1}, \dots, y_{n}) , we have

$$\omega = \sum_{i} \eta_i dy_i,$$

with η_i smooth. Since $\eta_i = \sum_i \omega_j \frac{\partial x_j}{\partial y_i}$.

Proposition 6.1. The space $\Omega^1(M)$ of smooth differential forms on M is a vector space, and it is also a modules over $C^{\infty}(M)$.

Integration of 1-forms

Let $\omega \in \Omega^1(M)$, let c be a curve $[a,b] \to M$, we define

$$\int_{C} \omega := \int_{a}^{b} \omega \left(\dot{c}(t) \right) dt.$$

If ϕ is an increasing diffeomorphism $[a, b] \to [a, b]$, then

$$\int_{c \circ \phi} \omega = \int_c \omega.$$

If ϕ is decreasing, $\int_{c \circ \phi} \omega = -\int_c \omega$.

When is a form exact? (at least locally).

$$\omega = \sum \omega_i dx_i$$
 and $\omega = df$, then $\frac{\partial \omega_i}{\partial x_j} = \frac{\partial \omega_j}{\partial x_i}$.

We will introduce $\Omega^2(M)$ forms of degree 2.

$$d: \Omega^1(M) \to \Omega^2(M),$$

such that $d \circ d(f) = 0$.

6.2 Review of linear algebra

Let E be a vector space of finite dimension m, an **exterior form** of degree p is α , such that $\alpha: E^p \to \mathbb{K}$,

- (i) α is multilinear.
- (ii) $\alpha(u_{\sigma(1)}, \dots, u_{\sigma(p)}) = (-1)^{\varepsilon(\sigma)} \alpha(u_1, \dots, u_p), \sigma \in \mathfrak{S}_p.$

Antisymmetric 2-forms, $\alpha(u, v) = -\alpha(v, u)$.

It is enough to check (ii) when σ is a transposition.

Facts: we denote by $\bigwedge^p(E^*) = \{\text{the space of exterior } p \text{ forms}\}, \bigwedge^p(E^*) \text{ is a vector space. } \bigwedge^*(E^*) = \bigoplus_{p=0}^{\infty} \bigwedge^p(E^*). \text{ By convention } \bigwedge^0(E^*) = \mathbb{R}.$

Remark 6.2. Map $E \to F$ is a subset of $E \times F$, $\varnothing \to F$, subset of $\varnothing \times F$. Note that the empty set have the subset, itself!

If (e_1, \dots, e_m) is a basis of E, and (e^1, \dots, e^m) the dual basis of E^* . If $I = (i_1, \cdot, i_p)$ with $i_1 < \dots < i_p$ then ω_I defined by

$$\begin{cases} \omega_I(e_{i_1}, \dots, e_{i_p}) = 1, \\ \omega_I(e_{j_1}, \dots, e_{j_p}) = 0, \text{ otherwise.} \end{cases}$$

defines a basis of $\bigwedge^p(E^*)$.

$$\dim \bigwedge^p(E^*) = 0 \text{ if } p > m, \dim \bigwedge^p(E^*) = \dim \bigwedge^{m-p}(E^*).$$

Exterior product

Facts: there is bilinear form $\bigwedge^p(E^*) \times \bigwedge^q(E^*) \to \bigwedge^{p+q}(E^*)$, $\alpha, \beta \to \alpha \wedge \beta$, which enjoys the following properties

- (i) associativity, $(\alpha \wedge \beta) \wedge \gamma = \alpha \wedge (\beta \wedge \gamma)$.
- (ii) $\alpha \wedge \beta = (-1)^{\deg \alpha \cdot \deg \beta} \beta \wedge \alpha$.
- (iii) normalisation $\omega_I = e_{i_1} \wedge \cdots \wedge e_{i_p}$.

Formula:

$$\alpha \wedge \beta(u_1, \dots, u_{p+q}) = \sum_{\sigma \in \mathfrak{S}_{p+q}} (-1)^{\varepsilon(\sigma)} \alpha(u_{\sigma(1)}, \dots, u_{\sigma(p)}) \beta(u_{\sigma(p+1)}, \dots, \sigma(p+q)),$$

for
$$p = q = 1$$
, $(\alpha \wedge \beta)(u, v) = \alpha(u)\beta(v) - \alpha(v)\beta(u)$.

Interior product

Bilinear form $E \times \bigwedge^p(E^*) \to \bigwedge^{p-1}(E^*), u, \omega \mapsto i_u \omega,$

$$i_u\omega(v_1,\cdots,v_{n-1})=\omega(u,v_1,\cdots,v_{n-1}).$$

Exercise 6.1.

$$i_u(\alpha \wedge \beta) = i_u \alpha \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge i_u \beta.$$

Proof. We can prove this just for orthonormal basis.

Induction

 $A: E \to F \text{ linear}, A^*: \bigwedge^p(F^*) \to \bigwedge^p(E^*),$

$$(A^*\omega)(u_1,\cdots,u_p):=\omega(A_{u_1},\cdots,A_{u_p}).$$

Proposition 6.2.

- (i) $A^*(\alpha \wedge \beta) = (A^*\alpha) \wedge (A^*\beta)$.
- (ii) $A^* \circ B^* = (B \circ A)^*$.
- (iii) $A^*(i_{A(u)}\alpha) = i_u(A^*\alpha)$.

6.3 Differential forms on manifolds

Motivation: if (X, U) is a chart, ω is a 1-form on U, $\omega = \sum_{i=1}^{m} \omega_i dx_i$.

$$d^X \omega := \sum_{i < j} \left(\frac{\partial \omega_j}{\partial x_i} - \frac{\partial \omega_i}{\partial x_j} \right) dx_i \wedge dx_j,$$

a 2-form on U. If $\omega = df$, then $d^X \omega = 0$.

If (X, U), (Y, V) are two charts, then

$$d^X\omega = d^Y\omega$$
, on $U \cap V$,

so we can well-define $d\omega$.

Converse is almost true: if $d\omega = 0$, then there is f such that $\omega = df$ (depends on the shape of manifold).

 $\bigwedge^p(M) := \bigsqcup_m \bigwedge^p(T_m^*M),$ a differential form $\omega : M \to \bigwedge^p(M)$ such that for all $m \in M$, $\omega_m \in \bigwedge^p(T_m^*M)$.

How to define smooth differential forms?

Observe that if (U, X) is a chart

$$d_m x_I := d_m x_{i_1} \wedge \cdots d_m x_{i_n}$$
, where $I = (i_1, \cdots, i_p)$ with $i_1 < \cdots < i_p$

is a basis of $\bigwedge^p(T_m^*M)$. Every form satisfies

$$\omega = \sum_{I} \omega_{I}^{X} dx_{I},$$

on the chart.

Definition 6.3. ω is smooth on M iff for every $x \in M$, there is a chart (U, X) at x such that $\forall I, \omega_I^X$ is smooth.

Exercise 6.2. If ω is smooth, then for every chart (V, X), ω_I^X is smooth.

Then we define $\alpha \wedge \beta$ by

$$(\alpha \wedge \beta)_m := \alpha_m \wedge \beta_m, \quad m \in M.$$

$$(\alpha + \beta)_m = \alpha_m + \beta_m$$
. $k \wedge \alpha := k\alpha$, for $k \in \mathbb{R}$ and $\alpha \in \bigwedge^p(E^*)$.

Proposition 6.3. *If* α *and* β *is smooth, then* $\alpha \wedge \beta$ *is smooth.*

Convention: $\bigwedge^0(M) = \coprod_m \left(\bigwedge^0(T_m M^*) \right) = \coprod_m (\mathbb{R})$, hence a 0-form is a function.

Notation:

$$\Omega^p(M) = \{ \text{vector space of } C^{\infty}p \text{-form on } M \}.$$

hence $\Omega^0(M) = C^{\infty}(M)$, and the wedge product

$$\Omega^p(M) \times \Omega^q(M) \to \Omega^{p+q}(M).$$

Exterior differential

Definition 6.4. A linear map $\Omega^p(M) \xrightarrow{d} \Omega^{p+1}(M)$, $\forall p, is an exterior differential if$

- (i) if $\alpha = 0$ on V(x), then $d\alpha = 0$ on V(x).
- (ii) $d(fd\alpha) = df \wedge d\alpha$.
- (iii) df is the usual differential of a function.

Theorem 6.1. On every manifold, there exist a unique exterior differential.

Proof.

Uniqueness part:

Proposition 6.4. If d is an exterior differential, then

$$d(fdg_1 \wedge \cdots \wedge dg_p) = df \wedge dg_1 \wedge \cdots \wedge dg_p$$

where f, g_1, \dots, g_p are functions.

Let us prove the proposition by induction on p. For p = 1, it is just definition (ii). Assume this is true for p - 1, then

$$dg_1 \wedge \cdots \wedge dg_p = d(g_1 dg_2 \wedge \cdots \wedge dg_p).$$

Then

$$d(fdg_1 \wedge \cdots \wedge dg_n) = d(fd(g_1dg_2 \wedge \cdots \wedge dg_n)) = df \wedge dg_1 \wedge \cdots \wedge dg_n.$$

Proof is complete.

Corollary 6.1. Uniqueness of an exterior differential.

If $\alpha = \sum_{I} f_{I} dx_{i_{1}} \wedge \cdots \wedge dx_{i_{p}}$, then $d\alpha = \sum_{I} df_{I} \wedge dx_{i_{1}} \wedge \cdots \wedge dx_{i_{p}}$, which indicates $d\alpha$ is uniquely determined.

Existence part:

Let (U,X) be a chart. Let us define d^X on $\Omega^*(U) = \bigoplus_{p=0}^{\dim M} \Omega^p(U)$ by

$$d^X(\sum_I \omega_I dx_I) := \sum_I d\omega_I \wedge dx_I.$$

We now prove that d^X is an exterior differential. (i) and (iii) are obvious. For (ii), we need to prove $d^X(fd\omega) = df \wedge d^X\omega$.

Let
$$\omega = \sum_{I} \omega_{I} dx_{I}$$
,

$$d^{X}(fd^{X}\omega) = \sum_{I} d^{X} (fd\omega_{I} \wedge dx_{I})$$

$$= \sum_{I} \sum_{j} d^{X} \left(f \frac{\partial \omega_{I}}{\partial x_{j}} dx_{j} \wedge dx_{I} \right)$$

$$= \sum_{I} \sum_{j} d(f \frac{\partial \omega_{I}}{\partial x_{j}}) \wedge dx_{j} \wedge dx_{I}$$

$$= \sum_{I} \sum_{j} \frac{\partial \omega_{I}}{\partial x_{j}} df \wedge dx_{j} \wedge dx_{I} + \sum_{I} \sum_{j} \sum_{i} f \frac{\partial^{2} \omega_{I}}{\partial x_{i} \partial x_{j}} dx_{i} \wedge dx_{j} \wedge dx_{I}$$

$$= \sum_{I} df \wedge d\omega_{I} \wedge dx_{I} + 0$$

$$= df \wedge d^{X}\omega.$$

Assume that (U, X) and (V, Y) are charts then if f is defined on $U \cap V$, then $d^X(f|_{U \cap V}) = d^Y(f|_{U \cap V})$.

The existence follows, let ω be a p-form, we define $d\omega$ in the following way. Let (U, X) be a chart around V(x),

$$d\omega|_U := d^X(\omega|_U),$$

this way we have defined coherently $d\omega$.

Proposition 6.5. $d^2\alpha = 0$.

Proof. Let $f \equiv 1$, then

$$d^2\alpha = d(fd\alpha) = df \wedge d\alpha = 0.$$

Assume smooth map $F: M \to N$, in particular, $T_m F: T_m M \to T_{F(m)} N$, we define $F^*: \Omega(N) \to \Omega(M)$:

$$F^*\omega(u_1,\cdots,u_n) := \omega\left(TF(u_1),\cdots,TF(u_n)\right),\,$$

where $(F^*\omega)_m = (T_m F)^*\omega_{F(m)}$ and $u_1, \dots, u_p \in T_m M$.

23

Remark 6.3. $(T_m F)^*$ is a pull-back between two tangent spaces. The * is different from the * on F^* .

Proposition 6.6.

- (i) $d(d\alpha) = 0$,
- (ii) $F^*(\alpha \wedge \beta) = F^*\alpha \wedge F^*\beta$,
- (iii) $d(F^*\alpha) = F^*d\alpha$,
- (iv) $d(\alpha \wedge \beta) = d\alpha \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge d\beta$.

Proof. We prove (iii). Note that this formula is linear in α , it is enough to prove it for $\alpha = f_1 df_2 \wedge \cdots \wedge df_k$, where f_1, \cdots, f_k are functions on N. Indeed, locally every α is a linear combination of forms of this type.

For f a function,

$$(F^*(df))_m(u) = df_{F(m)}(T_mF(u)) = (d_{F(m)}f \circ T_mF)(u) = (d(f \circ F))_m(u),$$

which indicates $F^*df = d(F^*f)$.

Generally, for $\alpha = f_1 df_2 \wedge \cdots \wedge df_k$,

$$F^*\alpha = F^* (f_1 df_2 \wedge \dots \wedge df_k)$$
$$= (F^* f_1)(F^* df_2) \wedge \dots \wedge (F^* df_k).$$

The second equality is induced from (ii). Hence

$$dF^*\alpha = d(F^*f_1) \wedge (F^*df_2) \wedge \cdots \wedge (F^*df_k) = F^*(d\alpha).$$

Now let us prove (iv). Again by linearity it is enough to prove it for $\alpha = f_1 df_2 \wedge \cdots \wedge df_k$, $\beta = g_1 dg_2 \wedge \cdots \wedge dg_m$.

$$\alpha \wedge \beta = f_1 g_1 df_2 \wedge \cdots \wedge f_k \wedge dg_2 \wedge \cdots \wedge dg_m$$
.

$$d(\alpha \wedge \beta) = d(f_1g_1)df_2 \wedge \cdots \wedge dg_m$$

$$= (g_1df_1 + f_1dg_1) df_2 \wedge \cdots \wedge dg_m$$

$$= g_1df_1 \wedge \cdots \wedge df_k \wedge dg_2 \wedge \cdots \wedge dg_m + f_1dg_1 \wedge df_2 \wedge \cdots \wedge df_k \wedge dg_2 \wedge \cdots \wedge dg_m$$

$$= g_1(df_1 \wedge \cdots \wedge df_k) \wedge dg_2 \wedge \cdots \wedge dg_m + (-1)^{k-1}f_1df_2 \wedge \cdots \wedge df_k \wedge (dg_1 \wedge dg_2 \wedge \cdots \wedge dg_m)$$

$$= d\alpha \wedge \beta + (-1)^{\deg \alpha} \alpha \wedge d\beta.$$

7 De Rham Cohomology

Given M a manifold, $TM = \coprod_{m} T_{m}M$.

7.1 Poincaré lemma

A smooth vector filed is, locally in a chart, $\xi = \sum_{i=1}^{N} \xi_i \frac{\partial}{\partial x_i}$, where $\{\frac{\partial}{\partial x_i}\}$ is the dual of $\{dx_i\}$. We denote by $\chi^{\infty}(M)$ the smooth vector fields on M.

An interior product or a vector field with a form

$$\chi^{\infty}(M) \times \Omega^{k}(M) \to \Omega^{k-1}(M)$$

 $(\xi, \omega) \mapsto i_{\xi}\omega,$

where $(i_{\xi}\omega)_m := i_{\xi_m}\omega_m$.

Example 7.1. Let $N = M \times \mathbb{R}$. On $M \times \mathbb{R}$ there is a natural vector ∂_t ,

$$\partial_t(m,s) = \frac{d}{dt}\Big|_{t=s} c(t),$$

where c(t) = (m, t).

What is the $i_{\partial_t}\alpha$? α is a form on N, locally we can find a chart (U,X) on M, and hence $(U \times \mathbb{R}, (X,t))$ on N, where $t: (m,s) \mapsto s$. In $U \times \mathbb{R}$,

$$\alpha = \sum_{I} f_{I} dx_{I} + dt \wedge \left(\sum_{I} g_{J} dx_{J} \right).$$

In general we can write $\alpha = \alpha_0 + dt \wedge \alpha_1$. We will prove $i_{\partial_t} \alpha_0 = 0$ and $i_{\partial_t} \alpha = \alpha_1$.

$$dt(\partial_t) = \frac{d}{dt}\Big|_{t=s} t(m,s) = \frac{d}{dt}\Big|_{t=s} s = 1.$$

$$dx_i(\partial_t) = \frac{d}{dt}\Big|_{t=s} x_i(m,s) = \frac{d}{dt}\Big|_{t=s} x_i(m) = 0.$$

$$i_{\partial_t}\alpha(u_2, \cdots, u_k) = \alpha(\partial_t, u_2, \cdots, u_k)$$

$$= \alpha_0(\partial_t, u_2, \cdots, u_k) + (dt \wedge \alpha_1)(\partial_t, u_2, \cdots, u_k)$$

$$= 0 + i_{\partial_t}(dt \wedge \alpha_1)$$

$$= (i_{\partial_t}dt) \wedge \alpha_1(u_2, \cdots, u_k) + (-1)dt \wedge i_{\partial_t}\alpha_1(u_2, \cdots, u_k)$$

$$= \alpha_1(u_2, \cdots, u_k).$$

Remark 7.1. $(e_{i_1} \wedge \cdots \wedge e_{i_p})(e^{j_1}, \cdots, e^{j_p}) = \det\{e_{i_s}e^{j_t}\}_{s,t}$.

Hence if I and J are of increasing order, it is 1 only if I = J, otherwise it is 0.

Definition 7.1. We say α is **closed** if $d\alpha = 0$ and α is **exact** if there exists β such that $\alpha = d\beta$.

We say α and β are **cohomologuous** if $\alpha - \beta$ is exact, for α and β closed.

Definition 7.2. Let $F_0: M \to N$ and $F_1: M \to N$ be two smooth maps. We say F_0 is **homotopic to** F_1 if there exists $F: M \times [0,1] \to N$ such that F is smooth, $F(m,0) = F_0(m)$ and $F(m,1) = F_1(m)$.

Remark 7.2. Working definition $G: M \times [0,1] \to N$ is smooth if there exists a smooth map $G_0: M \times \mathbb{R} \to N$ such that $G_0|_{M \times [0,1]} = G$.

Definition 7.3. We say a manifold M is **contractible**, if the identity $M \to M$ is homotopic to a constant map $K_{m_o}: M \to \{m_0\} \subset M$.

Example 7.2. An open ball B in \mathbb{R}^n , F(x,t) = tx for $x \in B, t \in [0,1]$.

Proposition 7.1. Every compact manifold is not contractible.

Proof. We will prove it later, or not.

My thought: For orientable compact manifold, the top Betti number is 1. For non-orientable case, we can choose the orientable double cover. \Box

Theorem 7.1 (Poincaré Lemma). If M is contractible, then every closed form is exact.

Theorem 7.2 (Homotopy Lemma). If $\alpha \in \Omega^k(N)$ is closed on N. If F_0 and F_1 are homotopic maps $M \to N$, then $F_0^*\alpha$ and $F_1^*\alpha$ are cohomologuous.

Proof. We use the Homotopy Lemma to prove the Poincaré Lemma.

Set $F_0 = \text{id}$ and F_1 is a constant map. Since M is contractible, F_0 is homotopic to F_1 . $F_0^* \alpha = \alpha$ and $F_1^* \alpha = 0$. Hence α is cohomologuous to 0, which means α is exact.

Now we prove the Homotopy Lemma. On $M \times [0, 1]$, if α is a k-form, $\alpha = \alpha_0 + dt \wedge \alpha_1$, where $\alpha_1 = i_{\partial_t} \alpha$ and $\alpha_0 = \alpha - dt \wedge i_{\partial_t} \alpha$.

$$J_s: M \to M \times [0,1]$$
 such that $J_s(m) = (m,s)$. Hence $\partial_t(m,s) = \frac{d}{du}\Big|_{u=s} J_u(m)$.

Lemma 7.1 (Special case of Lie-Cartan formula).

$$\frac{d}{du}\Big|_{u=s} (J_u^*\alpha) = J_s^*(i_{\partial_t}d\alpha) + J_s^*d(i_{\partial_t}\alpha),$$

where $\alpha \in \Omega^k(M \times [0,1])$ and

$$J^*\alpha(m): u \in [0,1] \mapsto (J_u^*\alpha)_m \in \bigwedge^k(T_mM).$$

$$\left(\frac{d}{du}\Big|_{u=s}J_U^*\alpha\right)_x := \frac{d}{du}\Big|_{u=s}[(J_u^*\alpha)_x].$$

Proof of Lemma. a) This is a local formula, hence we can prove it on $U \times [0,1]$ where U is the domain of a chart.

b) This is a linear formula.

Then it is enough to prove for

$$\alpha_0 = f(x,t)dt \wedge dx_1 \wedge \cdots \wedge dx_{q-1},$$

$$\alpha_1 = f(x,t)dx_1 \wedge \cdots \wedge dx_q$$

where (x_1, \dots, x_n) are the coordinates in U.

First we consider α_1 . $i_{\partial_t}\alpha_1 = 0$ and

$$d\alpha = \frac{\partial f}{\partial t} dt \wedge dx_1 \wedge \dots \wedge dx_q + \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i \wedge dx_1 \wedge \dots \wedge dx_q.$$

Thus, $i_{\partial_t} d\alpha = \frac{\partial f}{\partial t} dx_1 \wedge \cdots \wedge dx_n$. $J_s^*(i_{\partial_t} d\alpha) = \frac{\partial f}{\partial t} (m, s) dx_1 \wedge \cdots \wedge dx_q$.

$$J_u^* \alpha_1 = f(m, u) J_u^* dx_1 \wedge \dots \wedge J_u^* dx_q = f(m, u) dx_1 \wedge \dots \wedge dx_q.$$

Then $\frac{d}{du}\Big|_{u=s}J_u^*\alpha_1=\frac{\partial f}{\partial t}$ $(m,s)dx_1\wedge\cdots\wedge dx_q$. Now the formula is proved for $\alpha=\alpha_1$.

For $\alpha = \alpha_0$, $i_{\partial_t} \alpha_0 = f dx_1 \wedge \cdots \wedge dx_{q-1}$, then

$$d(i_{\partial_t}\alpha_0) = \frac{\partial f}{\partial t} dt \wedge dx_1 \wedge \dots \wedge dx_{q-1} + \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i \wedge dx_1 \wedge \dots \wedge dx_{q-1}.$$

$$i_{\partial_t} d\alpha_0 = i_{\partial_t} \left(\frac{\partial f}{\partial t} dt \wedge dt \wedge dx_1 \wedge \dots \wedge dx_{q-1} + \sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i \wedge dt \wedge dx_1 \wedge \dots \wedge dx_{q-1} \right)$$

$$= i_{\partial_t} \left(\sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i \wedge dt \wedge dx_1 \wedge \dots \wedge dx_{q-1} \right)$$

$$= -\sum_{i=1}^n \frac{\partial f}{\partial x_i} dx_i \wedge dx_1 \wedge \dots \wedge dx_{q-1}$$

Then

$$d(i_{\partial_t}\alpha_0) + i_{\partial_t}d\alpha_0 = \frac{\partial f}{\partial t} dt \wedge dx_1 \wedge \dots \wedge dx_{q-1}.$$

$$J_s^* (d(i_{\partial_t}\alpha_0) + i_{\partial_t}d\alpha_0) = \frac{\partial f}{\partial t} (m, s) dx_1 \wedge \dots \wedge dx_{q-1=0},$$

since $J_u^* dt = d(t \circ J_u) = 0$.

$$J_u^*\alpha_0=0$$
. Thus the formula is also prove for the case $\alpha=\alpha_1$.

Set β a closed form on N and $F: M \times [0,1] \to N$ is the homotopy map of F_0 and F_1 . Set $\alpha = F^*\beta$.

$$J_1^* \alpha = J_1^* F^* \beta = (F \circ J_1)^* \beta = F_1^* \beta.$$

$$J_0^* \alpha = J_0^* F^* \beta = (F \circ J_0)^* \beta = F_0^* \beta.$$

Then it suffices to show $J_1^*\alpha - J_0^*\alpha$ is exact.

Note that $d\alpha = dF^*\beta = F^*d\beta = 0$, and

$$J_1^*\alpha - J_0^*\alpha = \int_0^1 \left(\frac{d}{du}\Big|_{u=s} J_s^*\alpha\right) ds$$

$$= \int_0^1 \left(J_s^*(i_{\partial_t}d\alpha) + J_s^*d(i_{\partial_t}\alpha)\right) ds$$

$$= \int_0^1 \left(J_s^*d(i_{\partial_t}\alpha)\right) ds$$

$$= d\int_0^1 \left(J_s^*(i_{\partial_t}\alpha)\right) ds$$

is exact. \Box

Remark 7.3. From $d(\alpha + \beta) = d\alpha + d\beta$, we have $d \int = \int d$.

Remark 7.4. Lie-Cartan formula.

$$L_{\xi} = d \circ i_{\xi} + i_{\xi} \circ d.$$

7.2 Cohomology group

A family of vector spaces associated to manifold

Definition 7.4. Given $k \in \mathbb{N} > 0$, we define the k^{th} de Rham cohomology space

$$H^k(M) := \{ \omega \in \Omega^k(M) : d\omega = 0 \} / \{ \omega : \exists \alpha \ s.t. \ d\alpha = \omega \}.$$

We denote

$$\Omega_c^k(M) = \{ \text{closed forms of degree } k \},$$

$$\Omega_e^k(M) = \{ \text{exact forms of degree } k \}.$$

Then $\Omega_e^k(M) \subset \Omega_c^k(M)$ and $H^k(M) = \Omega_c(M)/\Omega_e(M)$.

Theorem 7.3 (De Rham). If M is compact, then $\dim(H^k(M)) < \infty$.

Remark 7.5. By M-V argument, we can prove the finiteness for a manifold with finite good cover, see the book by Bott and Tu.

Definition 7.5. The k^{th} Betti number of M is

$$b^k(M) := \dim(H^k(M)).$$

Goal of this section is to show that $b^i(\mathbb{S}^n) = \begin{cases} 1, & \text{if } i = n, 0 \\ 0, & \text{otherwise} \end{cases}$.

Note that $b^k(M) = 0$ is equivalent to every closed k-form is exact.

For $\omega \in \Omega^k(M)$, if ω is closed, then it is in Ω_c^k , and we use $[\omega]$ to denote the cohomology class in $H^k(M)$ respect to ω .

Proposition 7.2. Show that if smooth $F: M \to N$ and $[\alpha] = [\beta]$ for $\alpha, \beta \in \Omega^k(N)$, then $[F^*\alpha] = [F^*\beta]$.

Proof. By definition, there is $\omega \in \Omega^{k-1}(N)$ such that $\alpha = \beta + d\omega$, then

$$F^*\alpha = F^*(\beta + d\omega)$$
$$= F^*\beta + F^*d\omega$$
$$= F^*\beta + dF^*\omega,$$

hence $[F^*\alpha] = [F^*\beta]$.

Proposition 7.3. If $F: M \to N$ and $G: M \to N$ are homotopic. For any closed form $\alpha \in \Omega_c^k(N)$, we have $[F^*\alpha] = [G^*\alpha]$.

Proof. This is just the Homotopy Lemma 7.2.

Definition 7.6. If $F: M \to N$, we define

$$F^*: H^k(N) \to H^k(M),$$

 $\omega \mapsto F^*\omega = [F^*\alpha], \text{ if } [\alpha] = \omega.$

It is well-defined due to Proposition 7.2.

Theorem 7.4 (Homotopy Lemma). If F and G are homotopic $M \to N$, then $F^* = G^*$: $H^k(N) \to H^k(M)$.

Definition 7.7. We say $F: M \to N$ is a homotopy equivalence, if there is $G: N \to M$ such that $F \circ G \sim \operatorname{id}_N$ and $G \circ F \sim \operatorname{id}_M$.

Proposition 7.4. If F is a homotopy equivalence between M and N, then $b^k(M) = b^k(N)$.

Proof. If $F \circ G \sim \text{id}$, by homotopy lemma $\text{id} = (\text{id})^* = (F \circ G)^* = G^* \circ F^*$. Similarly, we have $F^* \circ G^* = \text{id}$. Hence F^* is a bijection between $H^k(N)$ and $H^k(M)$, with the inverse G^* , which indicates

$$b^k(M) = b^k(N).$$

Proposition 7.5. Show that $M \times \mathbb{R}$ is homotopy equivalent to M.

Proof. We will construct $F: M \times \mathbb{R} \to M$ which is a homotopy equivalence. Define

$$F: M \times \mathbb{R} \to M,$$

$$(m,t) \mapsto m.$$

$$G: M \to M \times \mathbb{R},$$

 $m \mapsto (m,0).$

Then

$$F \circ G = \mathrm{id}$$
, and $G \circ F : (m, t) \mapsto (m, 0)$.

We can have

$$H: M \times \mathbb{R} \times [0,1] \to M \times \mathbb{R},$$

 $((m,t),s) \mapsto (m,st).$

Note that H is smooth, $H((m,t),0) = (m,0) = G \circ F(m,t)$ and $H((m,t),1) = (m,t) = id_{M\times\mathbb{R}}$. Hence $G \circ F \sim id_{M\times\mathbb{R}}$.

Corollary 7.1. $b^k(M \times \mathbb{R}) = b^k(M)$.

Corollary 7.2. $b^k(\mathbb{R}^2 \setminus \{0\}) = b^k(\mathbb{S}^1)$.

7.3 Cohomology of Spheres

Remark 7.6. Set M is a manifold with $\dim M = m$. Then $\Omega^{k+1}(M) = 0$ and hence $H^{k+1}(M) = 0$ for $k \ge m$.

 $H^0(M) = \{\omega \in \Omega^0_c(M)\}/\{exact\ forms\} = \{f: df=0\}/\{0\},\ i.e.,\ H^0(M)\ is\ the\ set$ of locally constant functions, hence $b^0(M)$ is the number of connected components of M. Thus $b^0(M) = 1$ if M is connected.

Exercise 7.1 (Mayer Vietoris). $u = (1, 0, \dots, 0) \in \mathbb{S}^n$ and $v = (-1, 0, \dots, 0) \in \mathbb{S}^n$. Define two open sets $U = \mathbb{S}^n \setminus \{u\}$ and $V = \mathbb{S}^n \setminus \{v\}$. Show that

- (i) U and V are contractible.
- (ii) $U \cap V$ is homotopic equivalent to \mathbb{S}^{n-1}

Proof.

(i) Define $K_v: U \to \{v\}$ by $K_v(x) = v$. We define

$$\begin{split} H: U \times [0,1] &\to \mathbb{S}^n, \\ (x,t) &\mapsto \frac{(1-t)v + tx}{\|(1-t)v + tx\|}. \end{split}$$

In fact, H(x, 1) = x = id(x) and $H(x, 0) = v = K_v(x)$. Obvious H is smooth, we only have to verify that H is well-defined, that is, $||(1 - t)v + tx|| \neq 0$.

For $x \neq v$, since $x \neq u = -v$, x and v are independent, if (1 - t)v + tx = 0, we have (1 - t) = t = 0, which is impossible. For x = v, ||(1 - t)v + tx|| = ||v|| = 1.

(ii) We treat \mathbb{S}^{n-1} as a submanifold of \mathbb{S}^n and the inclusion map is

$$i: \mathbb{S}^{n-1} \to \mathbb{S}^n$$
, $i(x_1, \dots, x_n) = (0, x_1, \dots, x_n)$.

Now we define

$$r: \mathbb{S}^n \to \mathbb{S}^{n-1}, \quad r(x_0, x_1, \cdots, x_n) = \frac{(x_1, \cdots, x_n)}{x_1^2 + \cdots + x_n^2}$$

Then

$$i \circ r(x_0, \dots, x_n) = \left(0, \frac{x_1}{x_1^2 + \dots + x_n^2}, \dots, \frac{x_n}{x_1^2 + \dots + x_n^2}\right)$$

 $r \circ i(x_1, \dots, x_n) = (x_1, \dots, x_n) = \mathrm{id}_{\mathbb{S}^{n-1}}(x_1, \dots, x_n).$

Thus we only need to show that $i \circ r \sim \mathrm{id}_{\mathbb{S}^n}$.

$$H:U\cap V\to \mathbb{S}^n$$
 by $H\big((x_0,x_1,\cdots,x_n),t\big)=\frac{(tx_0,x_1,\cdots,x_n)}{\|(tx_0,x_1,\cdots,x_n)\|}$. Then

$$H((x_0, x_1, \dots, x_n), 0) = \frac{(0, x_1, \dots, x_n)}{\|(0, x_1, \dots, x_n)\|} = \left(0, \frac{x_1}{x_1^2 + \dots + x_n^2}, \dots, \frac{x_n}{x_1^2 + \dots + x_n^2}\right) = i \circ r(x_0, \dots, x_n).$$

$$H((x_0, x_1, \dots, x_n), 1) = (x_0, \dots, x_n) = i d_{\mathbb{S}^n}(x_0, \dots, x_n).$$

Lemma 7.2. There is a unique (linear) map

$$J: H^k(\mathbb{S}^n) \to H^{k-1}(U \cap V),$$

 $[\omega] \mapsto [\alpha - \beta],$

where $\alpha \in \Omega^{k-1}(U)$ with $d\alpha = \omega|_U$ and $\beta \in \Omega^{k-1}(V)$ with $d\beta = \omega|_V$..

Proof. First we explain the existence of α and β . Since $\omega|_U \in \Omega^k(U)$ and $d\omega|_U = (d\omega)|_U = 0$, and U is contractible, then we have $\alpha \in \Omega^{k-1}(U)$ such that $d\alpha = \omega|_U$. Ditto for β .

Then we prove that J is well-defined. First we prove it doesn't depend on the choice of α and β , then we prove it doesn't depend on the choice of the representation of $[\omega]$.

If α and α' are in $\Omega^{k-1}(U)$ and $d\alpha = d\alpha' = \omega|_U$, then $d(\alpha - \alpha') = 0$. Since U is contractible, there is a form $\gamma \in \Omega^{k-2}(U)$ such that $\alpha = \alpha' + d\gamma$. Similarly, if β and β' are in $\Omega^{k-1}(V)$ and $d\beta = d\beta' = \omega|_V$, then there is a form $\eta \in \Omega^{k-2}(V)$ such that $\beta = \beta' + d\eta$. Now we have

$$\alpha - \beta = \alpha' - \beta' + d(\gamma - \eta),$$

which indicates $[\alpha - \beta] = [\alpha' - \beta'] \in H^{k-1}(U \cap V)$.

Second, if $[\omega] = [\omega'] \in H^k(\mathbb{S}^n)$, i.e. there is a form $\theta \in \Omega^{k-1}(\mathbb{S}^n)$ such that $\omega = \omega' + d\theta$. Taking $\alpha' = \alpha - \theta|_U$ and $\beta' = \beta - \theta|_V$, then we have

$$d\alpha' = d\alpha - d\theta|_U = \omega|_U - d\theta|_U = \omega'|_U,$$

$$d\beta' = d\beta - d\theta|_V = \omega|_V - d\theta|_V = \omega'|_V,$$

$$(\alpha' - \beta')|_{U \cap V} = \alpha|_{U \cap V} - \theta|_{U \cap V} - \beta|_{U \cap V} + \theta|_{U \cap V} = \alpha|_{U \cap V} - \beta|_{U \cap V} = (\alpha - \beta)|_{U \cap V}.$$

Theorem 7.5. $J: H^k(\mathbb{S}^n) \to H^{k-1}(U \cap V)$ is bijective when k-1 > 0 and $b^k(\mathbb{S}^n) = b^{k-1}(U \cap V) = b^{k-1}(\mathbb{S}^{n-1})$.

For example, $b^2(\mathbb{S}^3) = b^1(\mathbb{S}^2)$.

Idea: we use a function ψ on \mathbb{S}^n such that

$$\begin{cases} \psi = 1 \text{ on a neighborhood of } u, \\ \psi = 0 \text{ on a neighborhood of } v. \end{cases}$$

If α is a form defined on $U = \mathbb{S}^n \setminus \{v\}$, then

$$\psi \cdot \alpha = \begin{cases} \psi \cdot \alpha \text{ on } U, \\ 0 \text{ on a neighborhood of } v. \end{cases}$$

is a global smooth form on \mathbb{S}^n .

Likewise, if β is a form defined on V, then $(1-\psi)\beta$ is defined on \mathbb{S}^n .

Proof. First we show that J is injective, that is, if $J[\omega] = 0$, then $[\omega] = 0$. Now we have $\alpha \in \Omega^{k-1}(U)$, $\beta \in \Omega^{k-1}(V)$, $d\alpha = \omega|_U$ and $d\beta = \omega|_V$.

$$0 = J[\omega] = [\alpha - \beta],$$

indicates that there is a form $\gamma \in \Omega^{k-2}(U \cap V)$ such that $\alpha = \beta + d\gamma$. Then we will construct $\eta \in \Omega^{k-1}(\mathbb{S}^n)$ such that $\omega = d\eta$.

Note that γ is defined on $U \cap V$, now we will use ψ to construct forms on U and V. $\psi \gamma$ is well-defined on V (there is a gap in U) and $(1 - \psi)\gamma$ is well-defined on U. Then we define

$$\tilde{\alpha} = \alpha - d((1 - \psi)\gamma,$$

$$\tilde{\beta} = \beta + d(\psi\gamma).$$

Then on $U \cap V$,

$$\tilde{\alpha} - \tilde{\beta} = \alpha - \beta - d((1 - \psi)\gamma + \psi\gamma) = \alpha - \beta - d\gamma = 0,$$

which means $\tilde{\alpha} = \tilde{\beta}$ on $U \cap V$. Now we define

$$\eta = \begin{cases} \tilde{\alpha}, & \text{on } U \\ \tilde{\beta}, & \text{on } V. \end{cases}$$

Since $\tilde{\alpha} = \tilde{\beta}$, η is well-defined on \mathbb{S}^n .

Note that on U, we have

$$\omega|_{U} = d\alpha = d\tilde{\alpha} = d(\eta|_{U}),$$

and on V we have

$$\omega | V = d\beta = d\tilde{\beta} = d(\eta |_V),$$

that is $\omega = d\eta$, i.e. $[\omega] = 0 \in H^k(\mathbb{S}^n)$.

It remains to prove that J is surjective. For any form in $H^{k-1}(U \cap V)$, we choose $\gamma \in \Omega_c^{k-1}(U \cap V)$ to represent it. Now we need to find $\omega \in \Omega_c^k(\mathbb{S}^n)$, $\alpha \in H^{k-1}(U)$ and $\beta \in H^{k-1}(V)$ such that

$$d\alpha = \omega|_U, \quad d\beta = \omega|_V, \quad [\alpha - \beta] = [\gamma].$$

Since $d\psi = 0$ on V(u) and V(v), $d\psi \wedge \gamma$ is well-defined on $U \cup V = \mathbb{S}^n$. Let show that $J[-d\psi \wedge \gamma] = [\gamma]$. Define

$$\alpha := (1 - \psi)\gamma, \quad d\alpha = -d\psi \wedge \gamma, \text{ on } U.$$

$$\beta := \alpha - \gamma = -\psi \gamma$$
, $d\beta = -d\psi \wedge \gamma$, on V.

Proposition 7.6.
$$b^{1}(\mathbb{S}^{n}) = \begin{cases} 0, & \text{if } n > 1, \\ 1, & \text{if } n = 1. \end{cases}$$

Proof. If α is a closed 1-form on \mathbb{S}^n , then there are functions f and g defined on U and V such that $df = \alpha|_U$ and $dg = \alpha|_V$. Then d(f - g) = 0 on $U \cap V$.

If n > 1, $U \cap V$ is connected, hence f - g is a constant on $U \cap V$, denoted by $\lambda \in \mathbb{R}$. Then we define

$$h := \begin{cases} f, & \text{on } U \\ g + \lambda, & \text{on } V. \end{cases}$$

Then $\alpha = dh$.

If n = 1, note that $U \cap V = O_1 \sqcup O_2$. Then $f - g = \lambda_1$ on O_1 and $f - g = \lambda_2$ on O_2 . Now we define

$$J: H^1(\mathbb{S}^1) \to H^0(\mathbb{S}^0) = \mathbb{R}, \quad [\alpha] \mapsto \lambda_1 - \lambda_2$$

is a bijection. (This proof is similar to the proof of the last theorem).

First we say that J is well-defined. For $[\alpha'] = [\alpha]$, there is a 0-form l such that $\alpha' = \alpha + dl$, then we define f' = f + l, and g' = g + l, then

$$df' = df + dl = \alpha|_{U} + dl = \alpha'|_{U},$$

$$dg' = dg + dl = \alpha|_V + dl = \alpha'|_V.$$

And f' - g' = f - g. So λ_1 and λ_2 keep invariant and hence so does $\lambda_1 - \lambda_2$.

It's not difficult to show that J is injective. If $\lambda_1 - \lambda_2 = 0$, then similar to the case for n > 1, we can construct a global function h such that $\alpha = dh$.

Now we will prove that J is surjective. For any $c \in \mathbb{R}$, we construct a function g such that g is 0 around u^- and g is c around u^+ .

We assume O_1 contains a neighborhood of u^- and O_2 contains a neighborhood of u^+ . Now we define

$$f := \begin{cases} g + c, & \text{on } O_1, \\ g, & \text{on } O_2. \end{cases}$$

Then we have f - g = c on O_1 and f - g = 0 on O_2 , that is, $\gamma_1 = c$ and $\gamma_2 = 0$. We need to verify f is well-defined, that is, f is smooth at point u. Since f = g + c = c around u^- and f = g = c round u^+ , we say f is continuous at point u. Moreover, g is constant around u^- or u^+ , then f is smooth at point u.

Remark 7.7. For calculating $H^1(\mathbb{S}^1)$, we can also define

$$\int: H^1(\mathbb{S}^1) \to \mathbb{R}, \quad \omega \mapsto \int_{\mathbb{S}^1} \omega.$$

We will show that \int is a bijection.

If $\int_{\mathbb{S}^1} \omega = 0$, then

$$\int_{u^{-}}^{u^{+}} \omega = \int_{\mathbb{S}^{1} \setminus \{u\}} \omega = 0.$$

Since on $\mathbb{S}^1\setminus\{u\}$, there is a function f such that $\omega=df$, then

$$0 = \int_{u^{-}}^{u^{+}} df = f(u^{+}) - f(u^{-}).$$

Now we define $f(u) = f(u^+) = f(u^-)$. then we have a global function on \mathbb{S}^1 . But we need to show f is smooth. However, the smoothness is due to $df = \omega$ on $\mathbb{S}^1 \setminus \{u\}$ and the smoothness of ω .

It suffices to prove \int is surjective. For any $c \in \mathbb{R}$, $\omega = \frac{c}{2\pi}d\theta$ is just what we need.

Corollary 7.3.
$$b^i(\mathbb{S}^n) = \begin{cases} 1, & \text{if } i = n, 0 \\ 0, & \text{otherwise} \end{cases}$$
.

8 Orientation and Manifold with boundary

8.1 Orientation

Definition 8.1. On a manifold of dimension n, a **volume form** is a form ω of degree n, such that $\omega_x \neq 0$ for every x in M.

Remark 8.1. Recall $\bigwedge^n(E^*)=1$, where dim E=n a vector space. Then a basis of $\bigwedge^n(E^*)$ is given by $e_1 \wedge \cdots \wedge e_n$ where (e^1, \cdots, e^n) is a basis of E with dim $(\bigwedge(E^*))=1$.

Example 8.1. $\omega = dx_1 \wedge \cdots \wedge dx_n$ is a volume form on \mathbb{R}^n .

 $\varphi: \mathbb{R}^n \to \mathbb{R}^n$ a smooth map, then

$$\varphi^*(\omega) = \operatorname{Jac}(\varphi)\omega,$$

where $Jac(\varphi)$ is the function defined on \mathbb{R}^n by

$$\operatorname{Jac}(\varphi)(x) = \det(D_x \varphi) = \det\left(\frac{\partial \varphi_i}{\partial x_i}\right).$$

$$\varphi^*(\omega)_x(u_1,\cdots,u_n) = \omega_{\varphi(x)}(D_x\varphi(u_1),\cdots,D_x\varphi(u_n)) = \det(D_x\varphi)\omega_x(u_1,\cdots,u_n).$$

Definition 8.2. A manifold M is **orientable** if there exists a volume form on M.

Exercise 8.1. We will prove $\mathbb{S}^n/\{-\operatorname{id}\}=\mathbb{RP}^n$ is orientable iff n is odd ("impair").

Remark 8.2. Assume now that M is connected, then if we choose a volume form ω_0 on M, then every form of degree $n = \dim M$, then every ω in $\Omega^n(M)$ is of the form $\omega = f\omega_0$, where $f \in C^{\infty}(M)$.

In particular, if ω is a volume form, f never vanishes (nowhere 0). Thus if M is connected, either f > 0, nor f < 0.

Definition 8.3. We have the following equivalence relation, two volume form ω_1 and ω_2 on M, defines the same orientation if and only if

$$\omega_1 = f\omega_2,$$

with f > 0.

Exercise 8.2. Show that this indeed is an equivalence relation.

Definition 8.4. An orientation on M is the choice of a class in the above equivalence relation, that is a choice of a volume form, up to multiplication by a positive function.

If M is connected and orientable, M has two orientation, one given by ω_0 and another by $-\omega_0$.

M is **oriented** if it is orientable and an orientation has been chosen.

Definition 8.5. $\varphi: M \to N$ is a diffeomorphism, M is oriented by ω_1 , N is oriented by ω_1 . We say φ **preserves the orientation** if $\varphi^*\omega_1$ defines the same orientation as ω_0 .

Example: $M, N = \mathbb{R}^n$, φ preserves the orientation, iff $Jac(\varphi) > 0$.

Remark 8.3. If φ does not preserves the orientation for M, N connected, then φ reverses the orientation, $\varphi^*\omega_1 \sim \varphi_0$.

Theorem 8.1. M is orientable, iff there exists an atlas (V_i, φ_i) on M that that $\det \left(\operatorname{Jac}(\varphi_i \circ \varphi_i^{-1}) \right) > 0$ on $U_i \cap U_j$.

Proof. We can always assume for simplicity that M is connected.

Assume M is oriented by ω_0 . Let $(U_i, \tilde{\varphi}_i)$ be an atlas on M, where U_i is connected.

If $\tilde{\varphi}_i: U_i \subset M \to \mathscr{O}_i \subset \mathbb{R}^n$ preserves the orientation. Then we take $\varphi_i = \tilde{\varphi}_i$.

If $\tilde{\varphi}_i : U_i \subset M \to \mathscr{O}_i \subset \mathbb{R}^n$ reverses the orientation. Then we take $\varphi_i = A \circ \tilde{\varphi}_i$, where A is a linear map with det A = -1.

Then φ_i preserves the orientation,

$$(\varphi_i \circ \varphi_j^{-1})^* \omega = (\varphi_j^{-1})^* (\varphi_i^* \omega)$$

$$= (\varphi_j^{-1})^* (f_i \omega_0)$$

$$= (f_i \circ \varphi_j^{-1}) ((\varphi_j^{-1})^* \omega_0)$$

$$= (f_i \circ \varphi_j^{-1}) g_j \omega,$$

where f and g are positive function and ω is the volume form $dx_1 \wedge \cdots \wedge dx_n$ in \mathbb{R}^n . Hence $\det \left(\operatorname{Jac}(\varphi_i \circ \varphi_i^{-1}) \right) > 0$.

Assume that det $\left(\operatorname{Jac}(\varphi_i\circ\varphi_j^{-1})\right)>0$. Let ω_i on U_i with $\omega_i=\varphi_i^*\omega$.

On $U_i \cap U_j$, $\omega_i = g_{ij}\omega_j$, where g_{ij} is a function on $U_i \cap U_j$. The hypothesis gives that $g_{ij} > 0$, indeed,

$$\omega = (\varphi_i^{01})^* (g_{ij} \varphi_j^* (\omega))$$

$$= (g_{ij} \circ \varphi_i^{-1}) ((\varphi_j \circ \varphi_i^{-1})^* \omega)$$

$$= (g_{ij} \circ \varphi_i^{-1}) \det (\operatorname{Jac}(\varphi_j \circ \varphi_i^{-1})) \omega.$$

Let ψ_i be a partition of unity associated to U_i (we also assume $\{U_i\}$ is locally finite). Then $\operatorname{Supp}(\psi_i) \subset U_i$, $\sum \psi_i = 1$ and $\psi_i \geq 0$. We take $\omega_0 = \sum_i \psi_i \omega_i$. Let us finally prove $(\omega_0)_x \neq 0$ for any $x \in M$.

Let i_0 such that $\psi_{i_0}(x) > 0$. $\omega_0(x) = \sum_{i:x \in U_i} \psi_i(x)\omega_i(x)$, where the summation is finite.

$$\omega_0(x) = \psi_{i_0}(x)\omega_{i_0}(x) + \sum_{i \neq i_0: x \in U_i} \psi_i(x)g_{ii_0}(x)\omega_0(x)$$
$$= \left(\psi_{i_0}(x) + \sum_{i \neq i_0: x \in U_i} \psi_i(x)g_{ii_0}(x)\right)\omega_{i_0}(x),$$

where $\psi_i(x)g_{ii_0}(x) \ge 0$ and $\psi_{i_0}(x) > 0$.

Given an oriented manifold $M < \text{we can define } \int_M \omega$, where $\omega \in \Omega^n(M)$, $n = \dim M$.

8.2 Manifold with boundary

Model:

- (i) Half space $\mathbb{H}^n = \{(x_1, \dots, x_n) : x_1 \leq 0\}.$
- (ii)Boundary $\partial \mathbb{H}^n = \{(x_1, \dots, x_n) : x_1 = 0\}.$

Remark 8.4. The boundary of U in topology language is $\overline{U} \setminus U$.

- (iii)For U an open set in \mathbb{H}^n , the boundary of U is $\partial U = U \cap \partial \mathbb{H}^n$.
- (iv) A function (or mapping) continuous $f: U \to \mathbb{R}$ or \mathbb{R}^n is smooth if there exists a smooth g defined on $\mathscr{O} \supset U$ open set of \mathbb{R}^n such that $g|_U = f$.
- (v) $f:U\subset\mathbb{H}^n\to V\subset\mathbb{H}^n$ is a diffeomorphism, if F is smooth, bijective and the inverse f^{-1} is smooth.

Proposition 8.1. If f is a diffeomorphism from $U \subset \mathbb{H}^n$ to $V \subset \mathbb{H}^n$, then $f(\partial U) = \partial V$.

Manifold with boundary. M a nice topological space.

Define chart (U, X) where X bijection from U to an open set in \mathbb{H}^n . (U, X) and (V, Y) are C^{∞} compatible if $X \circ Y^{-1}$ and $Y \circ X^{-1}$ are smooth.

Alas on M gives the definition of manifold with boundary. $x \in M$ belongs to the boundary of M, if there exists a chart (U, φ) , $x \in U$, $\varphi(x) \in \partial(\varphi(U))$. (The definition is not depend on the choice of the chart, due to the last proposition.)

Proposition 8.2. If φ is a diffeomorphism from M to N, then $\varphi(\partial M) = \partial N$. ∂M is a submanifold of M, dim $\partial M = \dim M - 1$.

Exercise 8.3. $M \setminus \partial M$ is a usual manifold.

The question is how to define the vector space of a boundary point $m \in \partial M$. $T_m^* \mathbb{H}^n = \{\text{functions on } \mathbb{H}^n\}/\{d_m f = 0\} = \{\text{functions on } \mathbb{R}^n\}/\{d_m f = 0\} = T_m^* \mathbb{R}^n$.

Definition 8.6. Let $v \in T_mM$, $m \in \partial M$. We say v is **tangent to the boundary** if $v \in T_m\partial M$. We say v is **outward normal** if v is not tangent to the boundary and there exists $c: [0,1] \to M$ such that $\dot{c} = v$.

Proposition 8.3. Assume v, w are outward normal at m, then $v = \lambda w + u$, where $\lambda > 0$ and $u \in T_m \partial M$.

Proof. It is enough to prove it in a chart that is for $M = \mathbb{H}^n$.

Proposition 8.4. Given M there exists a vector field ξ along ∂M , such that for any $x \in \partial M$, $\xi(x)$ is outward normal.

Proof. It is true on \mathbb{H}^n , $\xi = \frac{\partial}{\partial x_1}$.

Take an atlas (U_i, φ_i) on M, locally finite. On $U_i \cap \partial M$, define $\xi_i = (\varphi_i^{-1})_x(\frac{\partial}{\partial x_1})$. Take ψ_i a partition of unity, then we define $\xi = \sum \psi_i \cdot \xi_i$. **Definition 8.7.** Assume M is oriented, then the **canonical orientation** of ∂M is given by the form $\omega_1 = i_{\xi}\omega$, where ξ is an outward normal.

The orientation on $\partial \mathbb{H}^n$ is given by $dx_2 \wedge \cdots \wedge dx_n$.

Remark 8.5. U open set in \mathbb{R}^n , then \overline{U} is a manifold with boundary and $\partial \overline{U} = \operatorname{Fr}(U) := \overline{U} \setminus U$.

8.3 More on differential forms

Exercise 8.4. For $X = \sum f_i \frac{\partial}{\partial x_i}$ and $\omega = dx_1 \wedge \cdots \wedge dx_n$, what is $di_X \omega$?

Proof.

$$i_X \omega = \sum (-1)^{i-1} f_i dx_1 \wedge \dots \wedge d\hat{x}_i \wedge \dots \wedge dx_n.$$

$$di_X \omega = \sum \frac{\partial f_i}{\partial x_i} \omega.$$

Exercise 8.5. Find a volume form of \mathbb{S}^n to make it orientable.

Proof. Set $\omega = dx_0 \wedge \cdots \wedge dx_n$. For any point $x = (x_0, \cdots, x_n) \in \mathbb{S}^n$ and then $X = \sum x_i \frac{\partial}{\partial x_i}$ is the normal vector at x, hence we take

$$i_X\omega = \sum_{i=0}^n (-1)^i x_i dx_0 \wedge \cdots \wedge d\hat{x}_i \wedge \cdots \wedge dx_n.$$

Exercise 8.6. $\psi: \mathbb{S}^n \to \mathbb{S}^n$ takes u to -u, prove that ψ preserves the orientation if n is odd, and reverses the orientation if n is even.

Proof. Just prove that $\psi^*(i_X\omega) = (-1)^{n+1}i_X\omega$.

Exercise 8.7. $\mathbb{S}^n \xrightarrow{p} \mathbb{RP}^n \approx \mathbb{S}^n/\{\pm \mathrm{id}\}$. So $p \circ \psi = p$.

Show that if n is even, then \mathbb{RP}^n is not oriented.

Show that if n is odd, then \mathbb{RP}^n is oriented.

Proof. Argue by contradiction for n even. Suppose \mathbb{RP}^n is orientable, then there is a volume form ω_0 on \mathbb{RP}^n . Hence $p^*\omega_0$ is a volume form on \mathbb{S}^n since p is a local diffeomorphism.

Note that $p \circ \psi = p$ indicates $p^* = \psi^* p^*$, hence $p^* \omega_0 = \psi^* (p^* \omega_0)$, which shows that ψ preserves the orientation. That's a contradiction due to the last exercise.

For n odd. By local diffeomorphism of p, we can push forward the volume form on \mathbb{S}^n . Notice that we should prove that the definition of volume form on \mathbb{RP}^n does not depend on the choice of quotient map p or $p \circ \psi$.

9 Integration of Differential Forms on Oriented Manifold

Goal: $\omega \in \Omega^n(M)$ with compact support and M has dimension n with M is oriented. We want to define $\int_M \omega$.

Remark 9.1. Some people says $\int_M \omega = 0$ if ω is not of degree equals to the dimension of M.

9.1 On \mathbb{R}^n

Now $\omega = f dx_1 \wedge \cdots \wedge dx_n$. We define

$$\int_{\mathbb{R}^n} \omega := \int_{\mathbb{R}^n} f dx_1 \cdots dx_n,$$

here $dx_1 \cdots dx_n$ is the Lebesgue measure on \mathbb{R}^n .

Change of variable formula, set φ a diffeomorphism from \mathbb{R}^n to \mathbb{R}^n , then

$$\int_{U} (f \circ \varphi) |\det J(\varphi)| dx_{1} \cdots dx_{n} = \int_{\varphi(U)} f dx_{1} \cdots dx_{n}.$$

Assume ω is supported in an open set $U \subset \mathbb{R}^n$, assume that φ preserves the orientation, φ a diffeomorphism from U to $\varphi(U)$,

$$\int_{\varphi(U)} \omega = \int_{U} \varphi^* \omega.$$

9.2 On Manifold

Suppose ω has compact support in a domain U of a chart $U \subset M$ and the coordinates map is φ .

Proposition 9.1. If ω has compact support in (U, φ) and (V, ψ) where φ and ψ preserve the orientation, then

$$\int_{\varphi(U)} (\varphi^{-1})^* \omega = \int_{\psi(U)} (\psi^{-1})^* \omega.$$

Definition 9.1. Let (U_i, φ_i) be an atlas of M, where φ_i preserves the orientation. Let ψ_i be a partition of unity subordinated to U_i .

$$\int_{M}^{(U_i,\varphi_i,\psi_i)} \omega = \sum_{i \in I} \int_{\varphi_i(U_i)} [(\varphi_i^{-1})^*(\psi_i \omega)].$$

Proposition 9.2. $\int_{M}^{(U_i,\varphi_i,\psi_i)} \omega$ does not depend on the choice of (U_i,φ_i,ψ_i) and then we define

$$\int_{M} \varphi := \int_{M}^{(U_{i}, \varphi_{i}, \psi_{i})} \omega.$$

Proof.

$$\int_{M}^{(\overline{U}_{j},\overline{\varphi}_{j},\overline{\psi}_{j})} \omega = \sum_{j} \int_{\overline{\varphi}_{j}(\overline{U}_{j})} \left(\overline{\varphi}_{j}^{-1}\right)^{*} (\overline{\psi}_{j}\omega)$$

$$= \sum_{i,j} \int_{\overline{\varphi}_{j}(\overline{U}_{j})} \left(\overline{\varphi}_{j}^{-1}\right)^{*} (\overline{\psi}_{j}\psi_{i}\omega)$$

$$= \sum_{i,j} \int_{\overline{\varphi}_{j}(\overline{U}_{j}\cap U_{i})} \left(\overline{\varphi}_{j}^{-1}\right)^{*} (\overline{\psi}_{j}\psi_{i}\omega)$$

$$= \sum_{i,j} \int_{\varphi_{i}(\overline{U}_{j}\cap U_{i})} \left(\varphi_{i}^{-1}\right)^{*} (\overline{\psi}_{j}\psi_{i}\omega)$$

$$= \sum_{i} \int_{\varphi_{i}(\overline{U}_{j}\cap U_{i})} \left(\varphi_{i}^{-1}\right)^{*} (\psi_{i}\omega)$$

$$= \int_{M}^{(U_{i},\varphi_{i},\psi_{i})} \omega.$$

(Partition twice.) \Box

Proposition 9.3. \overline{M} is M with the opposite orientation,

$$\int_{M} \omega = -\int_{\overline{M}} \omega.$$

Proposition 9.4. If $\varphi: M \to N$ is diffeomorphism preserving the orientation, then

$$\int_{\varphi(M)} \omega = \int_M \varphi^* \omega.$$

9.3 Stokes Formula

Let M be an oriented manifold with boundary ∂M . ∂M is an oriented manifold with orientation $i_{\xi}\omega$ where ξ is an outward vector field and ω defining the orientation on M.

Theorem 9.1. For $\alpha \in \Omega^n(M)$ with compact support and dim M = n,

$$\int_{M} d\alpha = \int_{\partial M} \alpha.$$

Exercise 9.1. Show that

$$\int_{[a,b]} df = \int_b f + \int_{\overline{a}} f = \int_{\partial[a,b]} f.$$

Proof. $\omega = dx_1$. $i_{dx_1}\omega = 1$ at b, and $i_{-dx_1}\omega = -1$.

Proof. This formula is linear in α , then it is enough to prove it for α with support in a chart. By \mathbb{H}^n we mean $\{(x_1 \leq 0, x_2, \cdots, x_n)\}$

$$\int_{P} \alpha = \int_{\mathbb{H}^n} d\alpha.$$

$$\alpha = f dx_2 \wedge \cdots \wedge dx_n + dx_1 \wedge \sum_{i=2}^n g_i dx_2 \wedge \cdots \wedge dx_i \wedge \cdots \wedge dx_n.$$

Since $x_1 \equiv 0$ on P, then all the terms containing dx_1 vanishes. Then

$$\int_{P} = \int_{\mathbb{R}^{n-1}} f(0, x_2, \cdots, x_n) dx_2 \wedge \cdots \wedge dx_n.$$

Now $d\alpha = \frac{\partial f}{\partial x_1} dx_1 \wedge \cdots \wedge dx_n + \sum_{i=2}^n (-1)^i \frac{\partial g_i}{\partial x_i} dx_1 \wedge \cdots \wedge dx_n$, then

$$\int_{\mathbb{R}^{n-1}} \left(\int_{x_1 < 0} \left(\frac{\partial f}{\partial x_1} \, dx_1 \right) \right) dx_2 \cdots dx_m = \int_{\mathbb{R}^{n-1}} \left(f(0, x_2, \cdots, x_n) \right) dx_2 \cdots dx_m.$$

$$\int_{\mathbb{R}^{n-1}} \left(\int_{x_i \in \mathbb{R}} \frac{\partial g_i}{\partial x_i} \, dx_i \right) dx_1 \cdots d\hat{x}_i \cdots dx_n = 0.$$

Here we used the fact ω is compactly supported.

Corollary 9.1. If M has no boundary, then

$$\int_{M} d\omega = 0.$$

Theorem 9.2 (Brouwer fixed point theorem). Let $\varphi : B^n \to B^n$ smooth (continuous), there is $x \in B$ such that $\varphi(x) = x$.

Definition 9.2. A retraction is a smooth map

$$F: B^n \to \mathbb{S}^{n-1} = \partial B_n$$

such that $F|_{\mathbb{S}^{n-1}} = id$.

Proposition 9.5. There is no retraction from B^n to \mathbb{S}^{n-1} .

Proof. Let F be a retraction from B^n to \mathbb{S}^{n-1} . Let ω be the volume form on \mathbb{S}^{n-1} , then

$$0 \neq \int_{\mathbb{S}^{n-1}} \omega = \int_{\mathbb{S}^{n-1}} F^* \omega = \int_{B^n} dF^* \omega = \int_{B^n} F^* (d\omega) = 0.$$

Proof of Brower fixed point theorem. For $x \in B^n$ and $\varphi(x) \neq x \in B^n$, consider the directed line $\varphi(x)x$ intersecting \mathbb{S}^{n-1} at F(x), hence F is the retraction.

Proposition 9.6. If $\omega = f\omega_0$, where ω_0 is the orientation. If $f \geq 0$ and there is $m \in M$ such that f(m) > 0, then $\int \omega > 0$.

We will prove it for M oriented and closed (no boundary and compact), the following map is an isometry

$$H^n(M) \to \mathbb{R}$$

$$\omega \mapsto \int_M \omega$$

Exercise 9.2. Let ω be an element of $\Omega^n(\mathbb{R}^n)$ with compact support, and $\int_{\mathbb{R}^n} \omega = 0$, we'll prove that there is α with compact support such that $\omega = d\alpha$.

1. Prove that

$$H^n(\mathbb{S}^n) \to \mathbb{R}$$

$$\omega \mapsto \int_{\mathbb{S}^n} \omega$$

is a bijection.

Since $\int_{\mathbb{S}^n} \operatorname{vol}_{\mathbb{S}^n} \neq 0$, we say the map is not 0, hence bijective, then we have the following statement.

Let $\omega \in \Omega^n(\mathbb{S}^n)$, assume that $\int_{\mathbb{S}^n} \omega = 0$ then $\omega = d\beta$.

2. Let $x_0 \in \mathbb{S}^n$, then $\mathbb{S}^n \setminus \{x_0\}$ is diffeomorphism to \mathbb{R}^n . Just stereographic ψ .

Let $\omega \in \Omega^n(\mathbb{R}^n)$ with compact support and $\int_{\mathbb{R}^n} \omega = 0$.

 $\psi^*\omega$ is defined on $\mathbb{S}^n\setminus\{x_0\}$ and is 0 on a neighborhood of x_0 .

Let $\omega_0 = 0$ on a neighborhood of x_0 and $\omega_0 = \psi^* \omega$,

$$\int_{\mathbb{S}^n} \omega_0 = \int_{\mathbb{S}^n \setminus \{x_0\}} \psi^* \omega = \int_{\mathbb{R}^n} \omega = 0.$$

Then there is an (n-1)-form β on \mathbb{S}^n such that $d\beta = \omega_0$.

Note that $d\beta = 0$ around x_0 , then by Poincaré lemma, there is γ such that $\beta = d\gamma$ around x_0 . We use a cut-off function to extend γ to a global form $\tilde{\gamma}$ on \mathbb{S}^n . Then define $\alpha_0 = \beta - d\tilde{\gamma}$, then α_0 is 0 around x_0 and $d\alpha_0 = d\beta = \omega_0$. Hence $\alpha = (\psi^{-1})^*\alpha$ is the α with $d\alpha = \omega$.

Exercise 9.3. If $\omega \in \Omega^n(M)$ with dim $M = n \ge 2$. M is connected, oriented and closed. If $\int_M \omega = 0$, then ω is exact.

Proof. $M = \bigcup_{i=1}^{N} U_i$ where U_i are diffeomorphism to balls. Let ψ_i be a partition of unity subordinated to U_i , $\sum \psi_i = 1$, $\psi_i \geq 0$ and Supp $\psi_i \subset U_i$.

Let $m_i \in U_i$ and let \mathscr{O}_i open set such that $m_i \in \mathscr{O}_i \subset U_i$. We want to show that $\forall \mathscr{O}_i$, there is a from $\omega_i \in \Omega^n(M)$ with $\operatorname{Supp} \omega_i \subset \mathscr{O}_i$ and $[\omega] = [\sum \omega_i]$.

First we try $\tilde{\omega}_i = \psi_i \omega$, then $\omega = \sum \tilde{\omega}_i$. But Supp $\tilde{\omega}_i$ is not necessarily contained in \mathscr{O}_i . Hence we want to find α_i with Supp $\alpha_i \subset \mathscr{O}_i$ and $[\alpha_i] = [\tilde{\omega}_i]$.

There exists β_i with $\operatorname{Supp}(\beta_i) \subset \mathscr{O}_i$ and $\int_M \beta_i \neq 0$. We define $\alpha_i = \frac{\int \tilde{\omega}_i}{\int \beta_i} \beta_i$. Then $\int \alpha_i = \int \tilde{\omega}_i$ on U_i , hence $\alpha_i - \tilde{\omega}_i = d\gamma_i$ with support in U_i .

Let $\tilde{\gamma}_i = \gamma_i$ on U_i , 0 outside. $\omega_i = \alpha_i$ on U_i and 0 outside. Then $\omega_i - \tilde{\omega}_i = d\gamma_i$. Then $[\omega] = \sum_i [\omega_i]$.

Now we want to move these ω_i into one chart!

Let U be an open set in M which is diffeomorphisms to \mathbb{R}^n . Let q_1, \dots, q_p in U distinct points. Then by the Theorem 13.3, there exists a diffeomorphism F such that $F(q_i) = m_i$. Choose \mathscr{O}_i such that $F^{-1}(\mathscr{O}_i) \subset U$. Then we have

$$[F^*\omega] = \sum [F^*\omega_i],$$

by our construction Supp $(\sum F^*\omega_i) \subset U$.

Let $\beta = \sum F^*\omega_i$ then $\operatorname{Supp}(\beta) \subset U$, then

$$\int_{M} \beta = \sum_{M} \int F^* \omega_i = \sum_{M} \int \omega_i = 0.$$

Thus $\beta = d\alpha$ with $\operatorname{Supp}(\alpha) \subset U$ hence β is closed.

Now we conclude what we've proved: if M is a closed, oriented and connected, then $\int_M \omega = 0 \iff \omega = d\alpha$, which indicates $b^n(M) = 1$.

We will see that if M is closed but not oriented, then $H^n(M)=0$.

10 Vector Fields and Flows

10.1 Differential equations

Definition 10.1. A vector field on \mathbb{R}^n , defined on $\mathcal{O} \subset \mathbb{R}^n$ is $X : \mathcal{O} \to \mathbb{R}^n$.

The associated differential equation is

$$\frac{dx_i}{dt} = X_i(x_1, \cdots, x_n).$$

An orbit of the differential equation is a solution $c(t) = (x_1(t), \dots, x_n(t))$ of the last equation, i.e. $\frac{dc}{dt}(t) = X(c(t))$.

Definition 10.2. A smooth vector filed ξ is a map $M \xrightarrow{\xi} TM = \bigcup_x T_xM$ such that

- (i) $\xi(m) \in T_m M$;
- (ii) for every m, there exists a chart $\varphi = (x_1, \dots, x_n)$ locally $\xi = \sum_{i=1}^m \xi_i \frac{\partial}{\partial x_i}$, where ξ_i are smooth function.

Definition 10.3. An **orbit** of ξ is a curve $c:]a,b[\to M$, such that $\dot{c}(t) = \xi(c(t))$.

Definition 10.4. A flow of a vector field ξ on M is a map $\phi : \mathscr{O} \to M$, where \mathscr{O} is an open subset in $M \times \mathbb{R}$ containing $M \times \{0\}$. We use I_m to denote $\mathscr{O} \cap \{m\} \times \mathbb{R}$, ϕ satisfies

- (i) $\phi(m,0) = m$.
- (ii) the map $\phi|_{I_m}:(m,t)\mapsto \phi_t(m):=\phi(m,t)$ is an orbit of the vector field ξ , i.e.

$$\frac{d}{dt}\Big|_{t=s}\phi_t(m) = \xi(\phi_s(m)).$$

Definition 10.5. We say ϕ is **maximal**, if for any flow (ϕ', \mathcal{O}') then $\mathcal{O}' \subset \mathcal{O}$ and $\phi|_{\mathcal{O}'} = \phi'$.

Theorem 10.1. Let ξ be a smooth vector field on M, then ξ admits a unique maximal flow ϕ .

Remark 10.1. In \mathbb{R}^n : existence and uniqueness of solution of ODE.

Definition 10.6. A flow is complete if $\mathcal{O} = M \times \mathbb{R}$.

Theorem 10.2. If ξ has compact support; then its maximal flow is complete.

Definition 10.7. A vector field is **complete** whenever its maximal flow is complete.

Remark 10.2. Convention. Assume that for simplicity the flow ϕ , $\{\phi_t\}_{t\in\mathbb{R}}$ is complete. Then

$$\phi_t \circ \phi_s = \phi_{t+s}$$
: $\phi_t(\phi_s(x)) = \phi_{t+s}(x)$.

$$\left(\frac{d}{dt}\phi_t\right)\Big|_{t=u}(\phi_s(x)) = \xi(\phi_u(\phi_s(x))).$$

$$\frac{d}{dt}\Big|_{t=u}(\phi_{t+s}(x)) = \frac{d}{dw}\Big|_{w=u+s}\phi_w(x) = \xi(\phi_{s+u}(x)).$$

Let $c_1: t \mapsto \phi_t(\phi_s(x))$ thus it is a solution of

$$\begin{cases} \dot{c}_1(t) = \xi(c_1(t)), \\ c_1(0) = \phi_s(x). \end{cases}$$

Let $c_2: t \mapsto \phi_{t+s}(x)$ and it also a solution of the last equations. By the uniqueness, $c_1(t) = c_2(t)$ for any $t \in \mathbb{R}$.

Definition 10.8. A vector field depending on time is a family of vector field $\{\xi_t\}_{t\in\mathbb{R}}$ such that (locally) $\xi_t = \sum_{i=1}^n f_i(t, x_1, \dots, x_n) \frac{\partial}{\partial x_i}$, where the f_i are smooth.

The integral curve of ξ_t is a differentiable curve $\gamma: J_0 \to M$, where J_0 is an interval contained in the domain of t, such that

$$\gamma'(t) = \xi_t(\gamma(t)).$$

The flow of a vector field depending on time is $\phi : \mathcal{O} \to M$, where \mathcal{O} is an (good) open subset in $M \times \mathbb{R} \times \mathbb{R}$ containing $M \times \{(s,s) \in \mathbb{R}^2\}$, denoting $\phi_s^u(x) = \phi(x,s,u)$, we ask

$$\begin{cases} \phi_s^s(x) = x, \\ \frac{\partial}{\partial s} \phi_s^u(x) \Big|_{s=t} = \xi_t(\phi_t^u(x)). \end{cases}$$

In other words, $c: t \mapsto \phi_t^u(x)$,

(i) is a solution of

$$\dot{c}(t) = \xi_t(c_t(x)),$$

(ii) c(u) = x.

Especially we have $\frac{\partial}{\partial s}\phi^u_s(x)\big|_{s=u}=\xi_u(\phi^u_u(x))=\xi_u(x)$.

Exercise 10.1. $\phi_v^u \circ \phi_u^s = \phi_v^s$. (Similar to prove $\phi_t \circ \phi_s = \phi_{t+s}$.)

Remark 10.3. A (usual) flow is a flow depending on time $\xi_t = \xi$, then $\phi_t^s = \phi_{t-s}$.

We will prove the existence and uniqueness of flows depending on time.

A vector filed depending on time, is a vector field on $M \times \mathbb{R}$, $\xi(m,t) = \xi_t(m)$.

10.2 Lie brackets

Definition 10.9. A derivation at a point $m \in M$ is a linear map $\partial : C^{\infty}(M) \to \mathbb{R}$ such that

- (i) $\partial(fg) = f(m)\partial(g) + g(m)\partial(f)$,
- (ii) $\partial f = 0$ if $f \equiv 0$ on V(m).

A derivation on M is a linear map $\partial: C^{\infty}(M) \to C^{\infty}(M)$.

(ii) indicates that if f = g on V(m), then $\partial f = \partial g$.

If a function f is just defined on $U \in V(m)$, then we can define uniquely

$$\partial f := \partial(\psi f),$$

where Supp $\psi \subset U$ and $\psi \equiv 1$ on V(m). (It does not depend on the choice of ψ .)

Theorem 10.3. (a) Every vector X in T_mM defines a derivation

$$\partial_X f := df(X).$$

(b) Conversely every derivation is uniquely of this form.

Proof.

(a) Let X be a vector in T_mM , there exists a curve c(t) such that c(0) = m and $\dot{c}(0) = X$, we have

$$df(X) = \frac{d}{dt}\Big|_{t=0} (f \circ c(t)),$$

then (a) follows from derivation of products.

(b) If f is defined on $U \in V(m)$, let X be coordinates on U with X(m) = 0. By Taylor's formula,

$$f = f(m) + \sum_{i=1}^{n} a_i x_i + \sum_{i=1}^{n} h_i x_i,$$

where a_i are constant and h_i are smooth function with $h_i(m) = 0$.

Let ∂ be a derivative, then

$$\partial f(m) = 0,$$

$$\partial(a_i x_i) = a_i \partial x_i + x_i(m) \partial a_i = a_i \partial x_i$$

$$\partial(h_i x_i) = h_i(m)\partial x_i + x_i(m)\partial h_i = 0.$$

Hence $\partial f = \sum_{i=1}^{n} a_i \partial x_i$, where $a_i = \frac{\partial f}{\partial x_i}(m)$ and ∂x_i are constant. Then we define the vector field $Y = \sum_{i=1}^{n} (\partial x_i) \frac{\partial}{\partial x_i}$, then

$$df(Y) = \sum_{i=1}^{n} a_i dx_i \left(\sum_{j=1}^{n} (\partial x_j) \frac{\partial}{\partial x_j}\right) = \sum_{i=1}^{n} a_i \partial x_i = \partial f.$$

Definition 10.10. A derivation on a manifold is a linear map $\partial: C^{\infty}(M) \to C^{\infty}(M)$ with two properties

(i) If $f \equiv 0$ on V(m), then $\partial f \equiv 0$ on V(m).

(ii)
$$\partial(fg) = f\partial g + g\partial f$$
.

Theorem 10.4. (a) Every vector filed X on M defines a derivative on M by $\partial_X f := df(X)$.

(b) Every derivative on M is obtained by a unique vector field.

Proposition 10.1. If ∂_1 and ∂_2 are two derivations, then

$$[\partial_1, \partial_2]: f \mapsto \partial_1(\partial_2(f)) - \partial_2(\partial_1(f))$$

is also a derivation.

Then we have the Jacobi identity,

$$[\partial_1, [\partial_2, \partial_3]] + [\partial_2, [\partial_3, \partial_1]] + [\partial_3, [\partial_1, \partial_2]] = 0.$$

Definition 10.11. Given two vectors fields X, Y, the Lie bracket [X, Y] is the vector field such that

$$\partial_{[X,Y]} = [\partial_X, \partial_Y].$$

Remark 10.4. The following notations stand for the same thing:

$$df(X)$$
, $\partial_X f$, $L_X f$, $X \cdot f$.

For example,

$$[X,Y] \cdot f = X \cdot (Y \cdot f) - Y \cdot (X \cdot f),$$

$$L_{[X,Y]}f = L_X(L_Y f) - L_Y(L_X f).$$

Proposition 10.2.

(i) [X, Y] = -[Y, X],

(ii)
$$[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0.$$

(iii)
$$[fX, Y] = f[X, Y] - (Y \cdot f)X$$
.

Proof.

$$\begin{split} [fX,Y] \cdot g &= (fX) \cdot (Y \cdot g) - Y \cdot (fX \cdot g) \\ &= fX \cdot (Y \cdot g) - (Y \cdot f)(X \cdot g) - fY \cdot (X \cdot g) \\ &= \big(f[X,Y] - (Y \cdot f)X\big)g. \end{split}$$

Exercise 10.2. $X = \sum_{i=1}^{n} f_i \frac{\partial}{\partial x_i}$, and $Y = \sum_{i=1}^{n} g_i \frac{\partial}{\partial x_i}$, then

$$[X,Y] = \sum_{i=1}^{n} \left(f_j \frac{\partial g_i}{\partial x_j} - g_j \frac{\partial f_i}{\partial x_j} \right) \frac{\partial}{\partial x_i}.$$

Proof.

$$\begin{split} [X,Y] &= \sum_{i,j} [f_i \frac{\partial}{\partial x_i}, g_j \frac{\partial}{\partial x_j}] \\ &= \sum_{i,j} f_i [\frac{\partial}{\partial x_i}, g_j \frac{\partial}{\partial x_j}] - g_j \frac{\partial f_i}{\partial x_j} \frac{\partial}{\partial x_i} \\ &= \sum_{i,j} f_i (g_j [\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}] + \frac{\partial g_j}{\partial x_i} \frac{\partial}{\partial x_j}) - g_j \frac{\partial f_i}{\partial x_j} \frac{\partial}{\partial x_i} \\ &= \sum_{i,j} f_i \frac{\partial g_j}{\partial x_i} \frac{\partial}{\partial x_j} - g_j \frac{\partial f_i}{\partial x_j} \frac{\partial}{\partial x_i} \\ &= \sum_{i=1}^n \left(f_j \frac{\partial g_i}{\partial x_j} - g_j \frac{\partial f_i}{\partial x_j} \right) \frac{\partial}{\partial x_i} \end{split}$$

Exercise 10.3. $\left[\frac{\partial}{\partial x}, \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}\right] = \frac{\partial}{\partial z}$.

Definition 10.12. We define $L_XY := [X, Y]$.

Then $[X, fY] = (X \cdot f)Y + f[X, Y]$ can be written into

$$L_X(fY) = (L_X f)Y + fL_X Y.$$

10.3 Linear Differential Fields

Let $A \in M_n(\mathbb{R}^n)$, define $X_A(x) = A \cdot x$, such a vector field is called linear.

Exercise 10.4. $[X_A, X_B] = X_{-[A,B]}$, where [A, B] = AB - BA.

Proof. Set
$$A = \{a_i^j\}$$
 and $B = \{b_i^j\}$. Then $X_A = \sum_{i,j} a_i^j x_j \frac{\partial}{\partial x_i}$, and $X_B = \sum_{i,j} b_i^j x_j \frac{\partial}{\partial x_i}$.

$$[A, B]_i^j = \sum_k a_i^k b_k^j - b_i^k a_k^j. \ X_{[A,B]} = \sum_{i,j,k} (a_i^k b_k^j - b_i^k a_k^j) x_j \frac{\partial}{\partial x_i}.$$

$$[X_A,X_B] = [\sum_{i,j} a_i^j x_j \frac{\partial}{\partial x_i}, \sum_{k,l} b_k^l x_l \frac{\partial}{\partial x_k}] = \sum_{i,j,k,l} a_i^j x_j b_k^l \delta_l^i \frac{\partial}{\partial x_k} - b_k^l x_l \delta_j^k a_i^j \frac{\partial}{\partial x_i} = \sum_{i,j,k} (a_k^j b_i^k - b_k^j a_i^k) x_j \frac{\partial}{\partial x_i}.$$

Let X_A be a linear vector field associated to A, what is the flow of X_A is

$$\phi_t(x) = e^{tA} \cdot x.$$

Exercise 10.5. Let ψ be a diffeomorphism from M to N. Let X be a vector filed on M with flow ϕ_t . Let $\tilde{\phi}_t = \psi \circ \phi_t \circ \psi^{-1}$. Show that $\tilde{\phi}_t$ is the flow of some vector field $Y(y) = (T_{\psi^{-1}(y)}\psi)X(\psi^{-1}(y))$.

Proof. Set $\phi: M \times \mathbb{R} \to M$, then $\tilde{\phi}: N \times \mathbb{R}N$. For any $n \in N$, set $m = \psi^{-1}(n)$.

(i)
$$\tilde{\phi}(n,0) = \psi \circ \phi_0 \circ \psi^{-1}(n) = \psi \circ \phi_0(m) = \psi(m) = n.$$

(ii)

$$\frac{d}{dt}\big|_{t=0}\tilde{\phi}(n,t) = \frac{d}{dt}\big|_{t=0}(\psi \circ \phi_t \circ \psi^{-1}(n)) = \frac{d}{dt}\big|_{t=0}(\psi \circ \phi_t(m)) = (T_m \psi)X(m) = (T_{\psi^{-1}(y)}\psi)X(\psi^{-1}(y)).$$

Proposition 10.3. Let X, Y be vector field on M, X has flow ϕ_t and let $Y_t = \phi_{t,*}(Y)$, then

$$\frac{d}{dt}\Big|_{t=0}Y_t = -[X,Y].$$

Remark 10.5. Convention: $\psi^* = (\psi^{-1})_*$.

Hence by defining $Z_t = \phi_t^*(Y)$, we have

$$\frac{d}{dt}\Big|_{t=0} Z_t = [X, Y].$$

Note that $\phi_{-t}: \phi_t(U) \to U$ will push $Y_{\phi_t(u)}$ into T_uM .

Let $f: M \to \mathbb{R}$, then

$$L_X f = df(X) = \frac{\mathrm{d}}{\mathrm{d}t} (f \circ \phi_t) = \frac{\mathrm{d}}{\mathrm{d}t} (\phi_t^*(f)).$$

Labourie's Proof. Let $Z = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} (\phi_s^*(Y))$. Let $f: M \to \mathbb{R}$.

$$(L_Z f)_m = (df)_m \left(\frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} (\phi_s^*(Y))_m \right)$$

$$= (df)_m \left(\frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} (T_{\phi_s(m)} \phi_{-s})(Y_{\phi_s(m)}) \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \left((df)_m (T_{\phi_s(m)} \phi_{-s})(Y_{\phi_s(m)}) \right)$$

$$= \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} \left(d_{\phi_s(m)} (f \circ \phi_{-s})(Y_{\phi_s(m)}) \right),$$

where the third equality holds since $(df)_m$ is just a linear transformation on T_mM , independent of s, and the fourth equality is the derivative of component function.

Let define $g_s: M \to \mathbb{R}$. $g_s(m) = [d_m(f \circ \phi_{-s})](Y(m)) = L_Y(f \circ \phi_{-s})(m)$. Then

$$(L_Z f)_m = \frac{\mathrm{d}}{\mathrm{d}u}\Big|_{u=0} g_u \circ \phi_u(m) = \frac{\partial}{\partial s}\Big|_{s=0,t=0} (g_s \circ \phi_t)(m) + \frac{\partial}{\partial t}\Big|_{s=0,t=0} (g_s \circ \phi_t)(m).$$

Note that

$$\frac{\partial}{\partial t}\Big|_{t=0,s=0} (g_s \circ \phi_t)(m) = L_X(g_s(m))\Big|_{s=0} = L_X(df(Y)) = L_X L_Y f.$$

$$\frac{\partial}{\partial s}\Big|_{t=0,s=0}(g_s \circ \phi_t)(m) = \frac{\partial}{\partial s}\Big|_{s=0} L_Y\left(f \circ \phi_{-s})(m) = L_Y\left(\frac{\partial}{\partial s}\Big|_{s=0} f \circ \phi_{-s}\right)(m) = -L_Y L_X f(m).$$

My Proof. We prove directly that

$$\frac{d}{dt}\Big|_{t=0}\phi_{-t,*}(Y) = [X,Y].$$

We denote the Jacobi matrix of ϕ_t as A_t , and the Jacobi matrix of ϕ_{-t} as A_t^{-1} , note that $A_t^{-1}(\phi_t(u))A_t(u) = A_t(u)A_t^{-1}(\phi_t(u)) = \mathrm{id}: T_uM \to T_uM$. Note that $A_t(u) = \frac{\partial \phi_t^i}{\partial x^j}(u)$. Derivate $A_t^{-1}(\phi_t(u))A_t(u) = \mathrm{id}$ by t, we have

$$\frac{\partial}{\partial t} A_t^{-1}(\phi_t(u)) = -A_t^{-1}(\phi_t(u)) \left(\frac{d}{dt} A_t(u)\right) A_t^{-1}(\phi_t(u)).$$

Let $X = a^i \partial_i$, $Y = b^i \partial_i$, and we use $\{a^i\}$, $\{b^i\}$ to denote these volume matrix, which is a matrix function around u.

$$\phi_{-t,*}(Y) = A_t^{-1}(\phi_t(u))\{b^i(\phi_t(u))\}.$$

Derivate by t, in matrix form, we have

$$\begin{split} L_XY &= \frac{d}{dt}\Big|_{t=0} \phi_{-t,*}(Y) = \left(\frac{d}{dt}\Big|_{t=0} A_t^{-1}(\phi_t(u))\right) \{b^i(\phi_0(u))\} + A_0^{-1}(\phi_0(u)) \left(\frac{d}{dt}\Big|_{t=0} \{b^i(\phi_t(u))\}\right) \\ &= -\left(A_t^{-1}(\phi_t(u)) \left(\frac{d}{dt}A_t(u)\right) A_t^{-1}(\phi_t(u))\right) \Big|_{t=0} \{b^i(u)\} + \frac{d}{dt}\Big|_{t=0} \{b^i(\phi_t(u))\} \\ &= -\left(\frac{d}{dt}\Big|_{t=0} A_t(u)\right) \{b^i(u)\} + \frac{d}{dt}\Big|_{t=0} \{b^i(\phi_t(u))\} \\ &= -\left(\frac{d}{dt}\Big|_{t=0} \{\frac{\partial \phi_t^i}{\partial x^j}(u)\}\right) \{b^i(u)\} + \{\frac{\partial b^i}{\partial x^j}(u)\} \{\frac{d\phi_t^j(u)}{dt}\Big|_{t=0}\} \\ &= -\left(\frac{\partial \frac{d}{dt}\Big|_{t=0} \{\phi_t^i\}}{\partial x^j}(u)\}\right) \{b^i(u)\} + \{\frac{\partial b^i}{\partial x^j}(u)\} \{a^j(u)\} \\ &= -\{\frac{\partial a^i}{\partial x^j}(u)\} \{b^i(u)\} + \{\frac{\partial b^i}{\partial x^j}(u)\} \{a^j(u)\} \\ &= -\frac{\partial a^i}{\partial x^j}(u)b^j(u)\partial_i + \frac{\partial b^i}{\partial x^j}(u)a^j(u)\partial_i \\ &= -YX + XY = [X, Y]. \end{split}$$

Proposition 10.4. $L_X(fY) = (L_X f)Y + fL_X Y$.

Example 10.1. When $X = X_A$ and $Y = X_B$,

$$Y_t(u) = \phi_{t,*}Y(u) = (T_{\phi_{-t}(u)}\phi_t)(Y(\phi_{-t}(u))) = e^{tA}Be^{-tA}u.$$

$$\frac{d}{dt}\Big|_{t=0}Y_t(u) = (AB - BA)u = [X_A, X_B]u = -X_{[A,B]}u.$$

Example 10.2. Let $\{\phi_t\}$ be the flow of X, and $\{\psi_t\}$ the flow of Y. Assume that $\phi_t \circ \psi_s = \psi_s \circ \phi_t$ for any s, t, then [X, Y] = 0.

What is the flow of Y_s ?

$$\tilde{\psi}_t = \phi_s \circ \psi_t \circ \phi_{-s} = \psi_t.$$

In this case, the flow of Y_s is the flow of Y, hence $Y_s = Y$. Then $\frac{d}{ds}Y_s = 0$.

Example 10.3. Assume [X,Y] = 0, then $\phi_t \circ \psi_s = \psi_s \circ \phi_t$ for any s,t.

$$0 = \frac{d}{ds} [\phi_{t,*}(Y_s)](y) = \frac{d}{ds} (T_{\phi_{-t}(y)} \phi_t) (Y_s(\phi_{-t}(y))) = (T_{\phi_{-t}(y)} \phi_t) \left(\frac{d}{ds} Y_s(\phi_{-t}(y)) \right),$$

hence $\frac{d}{ds}\Big|_{s=t}Y_s=0$, hence $Y_s=Y$ for any s. Then their flows coincide

$$\phi_s \circ \psi_t \circ \phi_{-s} = \psi_t$$

that is what we need to prove.

Geometric interpretation.

Assume that [X,Y]=0, then we have $\phi_s \circ \psi_t = \psi_t \circ \phi_s$. Given $m_0 \in M$, it allows us to define $F: \mathbb{R}^2 \to M$, such that

$$F(s,t) := (\phi_s \circ \psi_t)(m_0).$$

Then we have $\frac{\partial F}{\partial s}(s_0, t_0) = X(F(s_0, t_0))$ and $\frac{\partial F}{\partial t}(s_0, t_0) = Y(F(s_0, t_0))$.

Definition 10.13. Let ω be a k-form on M, we define the Lie derivative of forms as

$$L_X\omega := \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} (\phi_s^*\omega).$$

This is coherent when $\deg \omega = 0$.

Proposition 10.5.

- (a). $L_X: \Omega^k(M) \to \Omega^k(M)$ is linear;
- (b). $L_X(\alpha \wedge \beta) = L_X \alpha \wedge \beta + \alpha \wedge L_X \beta$;
- (c). $L_X(d\omega) = d(L_X\omega)$.
- (d). $L_{[X,Y]}\omega = L_X L_Y \omega L_Y L_X \omega$;
- (e). Lie-Cartan formula

$$L_X\omega = d(i_X\omega) + i_Xd\omega.$$

Proof. (a) is trivial. (b) is from the fact $\phi_t^*(\alpha \wedge \beta) = \phi_t^*\alpha \wedge \phi_t^*\beta$. (c) is shown in the following calculation,

$$L_X(d\omega) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} (\phi_s^* d\omega) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} (d\phi_s^* \omega) = d\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} (\phi_s^* \omega) = dL_X\omega.$$

The proof of (d) is by induction on the degree of ω . For deg $\omega = 0$, it is the definition of [X, Y]. Assume that it is true for deg $\eta = p - 1$,

$$L_{[X,Y]}\eta = L_X L_Y - L_Y L_X \eta.$$

Any form of degree p can be written into the following form

$$\omega = \sum_{i \in I} f_i d\alpha_i,$$

where α_i are p-1 forms. Now

$$\begin{split} L_{[X,Y]}\omega &= L_{[X,Y]} \left(\sum_{i \in I} f_i d\alpha_i \right) \\ &= \sum_{i \in I} (L_{[X,Y]} f_i) d\alpha_i + f_i (L_{[X,Y]} d\alpha_i) \\ &= \sum_{i \in I} (L_{[X,Y]} f_i) d\alpha_i + f_i d(L_{[X,Y]} \alpha_i) \\ &= \sum_{i \in I} \left((L_X L_Y - L_Y L_X) f_i \right) d\alpha_i + f_i d(L_X L_Y - L_Y L_X) \alpha_i \\ &= \sum_{i \in I} \left((L_X L_Y - L_Y L_X) f_i \right) d\alpha_i + f_i (L_X L_Y - L_Y L_X) d\alpha_i \\ &= \sum_{i \in I} (L_X L_Y - L_Y L_X) (f_i d\alpha_i) \\ &= (L_X L_Y - L_Y L_X) \left(\sum_{i \in I} f_i d\alpha_i \right) \\ &= (L_X L_Y - L_Y L_X) \omega. \end{split}$$

Exercise 10.6. Any form of degree p can be written into the following form

$$\omega = \sum_{i \in I} f_i d\alpha_i,$$

where α_i are p-1 forms.

The First Proof of Lie-Cartan formula. For deg $\omega = 0$, set $\omega = f$, then

$$i_X df + di_X f = i_X df = df(X) = L_X f.$$

Or we can also prove for deg $\omega = 1$.

Now we assume the formula is true for deg(p-1).

First case is $\omega = f d\alpha$, where deg $\alpha = p - 1$, then

$$L_X \omega = L_X (f d\alpha)$$

$$= (L_X f) d\alpha + f dL_X \alpha$$

$$= (L_X f) d\alpha + f d(i_X d\alpha + di_X \alpha)$$

$$= (L_X f) d\alpha + f di_X d\alpha.$$

$$i_X d\omega + di_X \omega = i_X d(f d\alpha) + di_X (f d\alpha)$$

$$= i_X (df \wedge d\alpha) + i_X (f dd\alpha) + d(f i_X d\alpha)$$

$$= (i_X df) d\alpha - df \wedge i_X (d\alpha) + df \wedge i_X (d\alpha) + f di_X d\alpha$$

$$= (L_X f) d\alpha + f di_X d\alpha$$

Then this formula is true for $\omega = f d\alpha$. We deduce Lie-Cartan is true for all ω of degree p, using the linearity of L_X , $d \circ i_X$ and $i_X \circ d$.

Now we check the Special case of Lie-Cartan formula 7.1.

 $J_s(m)=(m,s)$ and $\phi_s:(m,t)\mapsto(m,t+s)$ is the flow of $\partial_t.$ $J_s=\phi_s\circ J_0$ and $(J_s)^*=J_0^*\phi_s^*.$

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0}(\phi_s^*\alpha) = L_{\partial_s}\alpha = i_{\partial_s}d\alpha + di_{\partial_s}\alpha$$

We pull them back through J_0^* , getting

$$J_0^* \left(\frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} (\phi_s^* \alpha) \right) = \left(\frac{\mathrm{d}}{\mathrm{d}s} (J_0^* \circ \phi^*) \Big|_{s=0} \right) (\alpha) = \frac{\mathrm{d}}{\mathrm{d}s} \Big|_{s=0} (J_s^* \alpha).$$

10.4 Frobenius Theorem

Definition 10.14. M is a manifold, $TM = \bigsqcup_{x \in M} T_x M$. A **sub-distribution** (or a distribution) of rank p, is a family $\{\mathcal{P}_x\}_{x \in M}$ such that for any x, P_x is a vector subspace of dimension p pf $T_x M$.

A distribution \mathcal{F} of rank p is **smooth** if for every m, there exists smooth vector fields X_1, \dots, X_p on a neighborhood of x, such that $X_1(n), \dots, X_p(n)$ is a basis of \mathcal{F}_n .

For example, (i) a vector field X such that $X(m) \neq 0$ on M, then $\mathcal{P}_m = \mathbb{R}X(m)$.

- (ii) Let U be an open set in $\mathbb{R}^n \times \mathbb{R}^k$, $\mathcal{P}_{(m,n)} = \{0\} \times \mathbb{R}^k \subset T_{(m,n)} \mathbb{R}^n \times \mathbb{R}^k$.
- (iii) If U is an open set in $M \times N$. $\mathcal{P}_{(m,n)} = T_n N \times \{0\} \subset T_{(m,n)} M \times N$.

Definition 10.15. A distribution is called **integrable** if for any $x \in M$, there is a chart (U, X) at x such that $X_*(\mathcal{F})$ is of type (ii).

Or equivalently, a distribution is called **integrable** if for any $m \in M$, there is a submanifold $N_m \ni m$, such that $\forall x \in N$, $T_x N_m = \mathcal{F}_x$.

Exercise 10.7. If we can find X_1, \dots, X_p as above that that $[X_i, X_j] = 0$, then \mathcal{F} is integrable.

Proposition 10.6 (Pre Frobenius). Assume that on a neighborhood of m (any $m \in M$), there exist k-vector fields defined on U.

- (i) $X_1(n), \dots, X_k(n)$ is a basis of $\mathcal{F}_n, \forall n \in U$,
- (ii) $[X_i, X_j] = 0$ for any i, j.

Then \mathcal{F} is integrable.

Proof. Let $m \in M$, let ϕ_t^i is the flow of X_i . We know that $\phi_t^i \circ \phi_s^j = \phi_s^j \circ \phi_t^i$ (condition (ii)). Define

$$\psi:]-\varepsilon,\varepsilon[^k\to M$$

$$(t_1,\cdots,t_k)\mapsto (\phi^1_{t_1}\circ\cdots\circ\phi^k_{t_k})(m).$$

Then

$$T_{(t_1,\dots,t_k)}\psi\left(\frac{\partial}{\partial t_1}\right) = \frac{\partial}{\partial t_1}\Big|_{s=t_1}\phi_s^1 \circ \phi_{t_2}^2 \circ \dots \circ \phi_{t_k}^k(m) = X_1(\phi_{t_1}^1 \circ \dots \circ \phi_{t_k}^k(m)).$$

Similarly, due to ϕ_s^i and ϕ_t^j commutes, $T\psi(\frac{\partial}{\partial t_j}) = X_j(\phi_{t_1}^1 \circ \cdots \circ \phi_{t_k}^k(m))$. Then

$$T_{\psi(T)}(\psi(]-\varepsilon,\varepsilon[^k)) = \operatorname{Im}(T_T\psi) = \operatorname{Span}(X_1,\cdots,X_k) = \mathcal{F}_{\psi(T)},$$

where T standing for (t_1, \dots, t_k) .

Theorem 10.5 (Frobenius Theorem). \mathcal{F} is integrable, if an only if $\forall X, Y$ such that $X(m) \in \mathcal{F}_m$ and $Y(m) \in \mathcal{F}_m$ then $[X,Y](m) \in \mathcal{F}_m$.

Remark 10.6. If X is a vector field, for any m, $X(m) \neq 0$. Define $\mathcal{L}_x = \mathbb{R}X \subset TM$, then the 1-dimension distribution is integrable (\iff existence of solution ODE).

Hence every 1-dimension distribution is integrable.

Non-Example. On \mathbb{R}^3 , $X = \frac{\partial}{\partial x}$, $Y = \frac{\partial}{\partial y} + x \frac{\partial}{\partial z}$. Then $\mathcal{F}_{(x,y,z)} = \langle X, Y \rangle$ is not integrable. Note that (X,Y,[X,Y]) is always a basis of \mathbb{R}^3 .

Proof of Frobenius Theorem. \Rightarrow is note difficult due to the definition of integral.

For \Leftarrow , we will prove that there exists X_1, \dots, X_k a basis of \mathscr{F} , with $[X_i, X_j] = 0$.

11 Vector Bundle

11.1 Definitions

 $TM = \sqcup_x T_x M$, $\mathcal{F} = \sqcup_x \mathcal{F}_x$, $\wedge^k (T^*M) = \sqcup_x T_x^*M$ denoting family of vector spaces.

Definition 11.1. A vector bundle of rank k is a triple (π, \mathcal{E}, X) where \mathcal{E}, X are topological spaces (which are nice: Hausdorff and σ -compact), and $\pi : \mathcal{E} \to X$ is continuous.

We call π as projection, \mathcal{E} the total space and X is the base space.

- (i) The fiber at x, $\mathcal{E}_x = \pi^{-1}(x)$ is a vector space of dimension k.
- (ii) Local trivialization property: given $x \in X$, there exists a neighborhood U of x (trivializing neighborhood), and a continuous map ϕ (called trivializing),

$$\pi^{-1}(U) =: \mathcal{E}|_{U} \xrightarrow{\phi} E \times U,$$

where E is a vector space, such that

- (i) $\phi(\mathcal{E}_x) = E \times \{x\},$
- (ii) $\phi|_{\mathcal{E}_x}$ is a linear isomorphism with $E \times \{x\}$.

Example 11.1. Trivial bundle over X, for E any vector space, $\mathcal{E} = E \times X$ with $\pi(e, x) = x$.

Example 11.2. Tautological bundle.

 $G_k(E) = \{P \ vector \ space \ in \ E \ of \ dimension \ k\}.$

$$E \times G_k(E) \supset \tau_k = \{(u, P) \in E \times G_k(E) : u \in P\}.$$

$$\pi: \tau_k \to G_k(E), (u, P) \mapsto P.$$

The fiber $\pi^{-1}(P) = \{(u, P) : u \in P\} \approx \{u \in P\}$ a vector space of dimension k. Let $P \in G_k(E)$ and Q a vector space such that $P \oplus Q = E$. We defined

$$U_{P,Q} = \{ P' \in G_k(E) : P' \oplus Q = E \}.$$

For every $P' \in U_{P,Q}$, let $\lambda_{P'} : P' \to P$ such that $x - \lambda_{P'}(x)$ is parallel to Q.

$$\phi: \tau_k|_{U_{P,Q}} \to P \times U$$
$$(v, P') \mapsto (\lambda_{P'}(v), P).$$

Now $\phi|_{\pi^{-1}(P')} = \lambda_{P'}$ and $\lambda_{P'}$ is an isomorphism.

Define $\hat{\phi}: E \times U_{P,Q} \to P \times U_{P,Q}$, $(u, P') \mapsto (\lambda(u), P')$, where λ is the projection from E to P such that E(x) - x parallel to Q. Note that $\lambda_{P'} = \lambda|_{P'}$ and $\phi = \hat{\phi}|_{\tau_k|_{U_{P,Q}}}$.

Exercise 11.1. Accept the fact that the total space of the tautological bundle of \mathbb{RP}^1 is the Möbius band.

Definition 11.2. A continuous section of $\pi : \mathcal{E} \to X$ is a continuous map $\sigma : X \to \mathcal{E}$ such that $\sigma(x) \in \mathcal{E}_x$.

For example, Zero section $\sigma_0: x \to 0_x$ the zero of \mathcal{E}_x .

Space of section is denoted by $\Gamma(\mathcal{E})$, it forms a vector space.

Morphism is

with $\phi(\mathcal{E}_x) = \mathcal{F}_x$ and $\phi|_{\mathcal{E}_x}$ is linear.

Definition 11.3. Let \mathcal{E} be a vector bundle, a **sub-bundle** is a closed subset $\mathcal{F} \subset \mathcal{E}$. such that $\mathcal{F} \cap \mathcal{E}_x$ is a vector subspace of \mathcal{E}_x .

Proposition 11.1. Every sub-bundle is a vector bundle such that the injection is a morphism.

Example 11.3. Let \mathcal{F} be a smooth distribution, then \mathcal{F} is a sub-bundle of TM (whether \mathcal{F} integral or not).

Theorem 11.1. Every bundle over X (compact) is (isomorphic to) a sub-bundle of the trivial bundle over X.

Definition 11.4. $\mathcal{E} \to X$ is a vector bundle, and $\varphi: Y \to X$ continues,

$$\varphi^*(\mathcal{E}) \xrightarrow{\Phi} \mathcal{E} \\ \downarrow \qquad \qquad \downarrow \\ Y \xrightarrow{\varphi} X$$

Here

$$\varphi^*(\mathcal{E}) := (u, y) \in \mathcal{E} \times Y : u \in \mathcal{E}_{\varphi(y)}$$

$$\pi: \varphi^*(\mathcal{E}) \to Y, \ (u,y) \mapsto y. \ \pi^{-1}(y) \approx \mathcal{E}_{\varphi(y)}.$$

Proposition 11.2. $\varphi^*(\mathcal{E})$ has the structure of a vector bundle, moreover, there is Φ : $\varphi^*(\mathcal{E}) \to \mathcal{E}$, and $\Phi: (\varphi^*\mathcal{E})_y \to \mathcal{E}_{\varphi(y)}$ is isomorphism.

 $\varphi^*(\mathcal{E})$ is called the **induced vector bundle** by φ .

Definition 11.5. The cocycle point of view.

Let $\pi: \mathcal{E} \to X$ a vector bundle. Let $\{U_i\}_{i \in I}$ be a covering of X by trivializing neighborhood.

 $\psi^{ij}(x,u) = (x,\psi^{ij}(x)(u)), \text{ where } \psi^{ij}: U_i \cap U_j \to GL(E).$

For any $x \in U_i \cap U_j \cap U_k$, we have the **cocycle condition**

$$\psi_x^{ki} \circ \psi_x^{ij} = \psi_x^{kj}.$$

Given a vector bundle and trivializing covering, we get the cocycle $\psi^{ij}: U_i \cap U_j \to GL(E)$.

Theorem 11.2. Assume we have a covering $\{U_i\}$ of X and a cocycle $\psi^{ij}: U_i \cap U_j \to GL(E)$, then there is a vector bundle $\mathcal{E} \to X$ whose cocycle is ψ^{ij} .

Sketch of the proof. Define

$$V = \sqcup_{i \in I} (U_i \times E) = \{ (i, x, v) : i \in I, x \in U_i, v \in E \}.$$

We need to glue back fibers over $U_i \cap U_j$.

Let we introduce an equivalence relation on V,

$$(i, x, u) \sim (j, x, v) \iff v = \psi^{ji}(x)u.$$

The cocycle condition tells us this is an equivalence relation. Define $\mathcal{E} = V/\sim$.

We need to show that V is a topological space, and the topology on \mathcal{E} is the quotient topology. $\pi: [(i, x, u)] \mapsto x$ is a projection.

 $\mathcal{E}, \mathcal{F} \to X$ two vector bundles, let $\{U_i\}$ be trivializing covering of \mathcal{E} and $\mathcal{F}, \psi_{\mathcal{E}}^{ij}$: $U_i \cap U_j \to GL(E)$ and $\psi_{\mathcal{F}}^{ij}: U_i \cap U_j \to GL(E)$.

$$GL(E \oplus F) \supset GL(E) \times GL(F),$$

$$\tilde{\psi}^{ij} = \begin{pmatrix} \psi_{\mathcal{E}}^{ij} & \\ & \psi_{\mathcal{F}}^{ij} \end{pmatrix},$$

satisfies the cocycle condition. The associated vector bundle is $\mathcal{E} \oplus \mathcal{F}$ and the fiber $(\mathcal{E} \oplus \mathcal{F})_x = \mathcal{E} \oplus \mathcal{F}_x$.

Exercise 11.2. $\mathcal{E} \otimes \mathcal{F} = \mathcal{E}_x \otimes \mathcal{F}_x$, prove it with cocycles.

Let M be a manifold with atlas $(U_i, X_i), X_i : U_i \to \mathcal{O} \subset \mathbb{R}^n$.

$$U_i \cap U_j \to GL(\mathbb{R}^n)$$

 $x \mapsto \varphi_{(x)}^{ji} = (T_x X^j)(T_x X^i)^{-1} \in GL(\mathbb{R}^n).$

An atlas gives \hookrightarrow cocycle \hookrightarrow a vector bundle structure on TM.

$$TM|_{U_i} \xrightarrow{\phi_i} U_i \times \mathbb{R}^n.$$

$$\phi_i(u) = \{x\} \times (a_1, \dots, a_n), u = \sum_{i=1}^n a_i \frac{\partial}{\partial x_i}.$$

Definition 11.6 (Smooth Vector Bundles over Manifolds). $\pi : \mathcal{E} \to X$ smooth, \mathcal{E}, X are manifolds. We also need the trivializing maps are smooth.

The cocycle point of view, $\psi^{ij}: U_i \cap U_j \to GL(E)$ are smooth.

TM, $\wedge^k(TM)$, T^*M are smooth bundles. If \mathcal{E}, \mathcal{F} , then $\mathcal{E} \oplus \mathcal{F}$... are smooth.

11.2 Moser Theorem and Flow-Box

Let M be a compact oriented manifold of dimension n, $\partial M = \emptyset$.

Let $\omega \in \Omega^n(M)$, then

$$\int_{M} \omega = 0 \iff \omega \text{ is exact.}$$

Theorem 11.3 (Moser). Let ω_0 and ω_1 be two volume forms on M. Assume that $\int_M \omega_0 = \int_M \omega_1$, then there exists φ preserving the orientation, such that

$$\varphi^*\omega_0=\omega_1.$$

Hint: use flows, find a vector field depending on time.

Exercise 11.3. Let ω be volume form on E a vector space of dimension n.

$$E \xrightarrow{\Psi} \wedge^{n-1}(E^*), \quad u \mapsto i_u \omega.$$

Prove that Ψ is an isomorphism.

Proposition 11.3. If ψ_t is 1-parameter of diffeomorphism then

$$\frac{\mathrm{d}}{\mathrm{d}t}(\psi_t^*\alpha)\Big|_{t=0} = L_X\alpha,$$

where $X(m) = \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0} (\psi(t)(m))$.

Proof of Moser theorem. Since $\int_M \omega_1 - \omega_0 = 0$, then there exists β such that $d\beta = \omega_0 - \omega_1$. Set $\omega_t = t\omega_1 + (1-t)\omega_0$, $t \in [0,1]$. Note that ω_t is a volume form. By Exercise 12.3, there is X_t a vector filed depending on time such that $i_{X_t}\omega_t = \beta$. Hence

$$\omega_0 - \omega_1 = d\beta = di_{X_t}\omega_t = L_{X_t}\omega_t.$$

Let $\phi_s^u: M \to M$ is the flow with respect to X_t . Note first

$$\phi_u^s \circ \phi_t^u = \phi_t^s$$
.

With the proposition 12.1,

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=t} \left((\phi_t^s)^* \omega_t \right) = L_{X_t} \omega_t = \omega_0 - \omega_1,$$

since $\frac{\mathrm{d}}{\mathrm{d}s}\big|_{s=t}\phi_t^s(m)=X_t(m)$.

We now show that $\frac{d}{ds}|_{s=t}((\phi_t^s)^*\omega_s)=0.$

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=t} \left((\phi_t^s)^* \omega_s \right) = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=t} (\phi_t^s)^* \omega_t + (\phi_t^t)^* \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=t} \omega_s$$

$$= L_{X_t} \omega_t + (\omega_0 - \omega_1)$$

$$= (\omega_0 - \omega_1) + (\omega_1 - \omega_0)$$

$$= 0.$$

Finally, because $(\phi_t^s)^* = (\phi_t^0)^* \circ (\phi_0^s)^*$,

$$0 = \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=t} ((\phi_t^s)^* \omega_s) = (\phi_t^0)^* \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=t} ((\phi_0^s)^* \omega_s),$$

hence $\frac{d}{ds}\Big|_{s=t}((\phi_0^s)^*\omega_s)=0$ since ϕ_t^0 is a diffeomorphism. Now

$$\omega_0 = (\phi_0^0)^* \omega_0 = (\phi_0^1)^* \omega_1.$$

Theorem 11.4 (Existence of a flow-box). Let X be a vector field, let m such that $X(m) \neq 0$, then there is a chart (U, φ) at m such that $\varphi_*(\frac{\partial}{\partial t}) = X$, where $\varphi : U \to \mathscr{O} \subset \mathbb{R} \times E$.

Proof. 1. Given X and m, there is a submanifold N of dimension n-1 $(n = \dim M)$, such that for any $x \in N$, $X(x) \notin T_xN$.

2. Produce Ψ a local diffeomorphism from $N \times] - \varepsilon, \varepsilon [\to M \text{ such that } \Psi_*(\partial_t) = X.$

Let (ϕ_t) be the flow of X, then we define $\Psi(x,t) = \phi_t(x)$. We need to prove that Ψ is a local diffeomorphism.

 $T_{(m,0)}\psi = T_{(m,0)}N \oplus \mathbb{R}$. Let $u \in T_{(m,0)}N$, we have $(T_{(m,0)}\Psi)(u,0) = u$. $T_{(m,0)}\Psi(0,1) = \frac{d}{ds}\big|_{s=0}\Psi(m,s) = X(m)$. Hence $T_{(m,0)}\Psi$ is invertible, by local immersion theorem, it is a local diffeomorphism.

Proposition 11.4. \mathcal{F} is a sub-bundle of \mathcal{E} , that is, \mathcal{F} is a closed subset of \mathcal{E} and $\mathcal{F} \cap \mathcal{E}_x$ is a vector space. Then \mathcal{F} is a vector bundle over X.

Proof. It is enough to prove this property whenever $\mathcal{E} = E \times X$ a trivial vector bundle.

- 1. Show that $\dim(\mathcal{F} \cap \mathcal{E}_x)$ is constant. (\mathcal{F} is closed subset).
- 2. You want to find $U \subset X$ such that \mathcal{F}_U can be trivialized.

Let $x_0 \in X$, and \mathcal{P}_0 a subspace in E, such that $\mathcal{P}_0 \oplus \mathcal{F}_{x_0} = E$.

Claim: there exists a neighborhood U of x_0 such that for any $x \in U$, $\mathcal{P}_0 \oplus \mathcal{F}_x = E$.

Let g be a euclidean metric on E. Assume there is $(x_i) \to x_0$, by contradiction such that $\mathcal{P}_0 \cap F_{x_i} \neq \{0\}$. Let $u_i \in \mathcal{P}_0 \cap \mathcal{F}_{x_i}$ and $|u_i| = 1$. Extracting a converging subsequence to u_0 , then $u_0 \in \mathcal{P}_0$ and $u_0 \in \mathcal{F}_{x_0}$ (since \mathcal{F} is closed), then we get a contradiction.

Then there is a trivialization of $\mathcal{F}|_U$,

$$\mathcal{F}|_U \xrightarrow{\psi} \mathcal{F}_{x_0} \times U, \quad v \in \mathcal{F}_x \mapsto (\pi_x(v), x),$$

where π_x is the projection from \mathcal{F}_x to \mathcal{F}_{x_0} parallel to \mathcal{P}_0 .

 ψ is continuous, being the restriction of a continuous map π to a closed subset. π : $\mathcal{E} = E \times U \to \mathcal{F}_{x_0} \times U$.

12 Connection

From now no, we speak about smooth real vector bundle, over smooth manifolds.

Space of sections of $\mathcal{E} \to M$ is denoted by $\Gamma(\mathcal{E})$. Special notation, $\Gamma(TM) = \chi(M)$, $\Gamma(\wedge^k(T^*M)) = \Omega^k(M)$.

Important construction: $\mathcal{F} = \wedge^k(T^*M) \otimes \mathcal{E} \to M$, the fiber of \mathcal{F} at m is

$$\mathcal{F}_m = \wedge^k(T_m^*M) \otimes \mathcal{E}_m = \{k - \text{forms on } T_M \text{ with values in } \mathcal{E}_m\}.$$

Denoted by $\Omega^k(M; \mathcal{E}) := \Gamma(\wedge^k(T^*M) \otimes \mathcal{E}).$

Goal: for any two points $x, y \in M$, using an extra structure (Connection) and a curve c from x to y, getting a linear isometry from \mathcal{E}_x to \mathcal{E}_y (Parallel Transport).

12.1 Connection and Parallel Transport

Definition 12.1. a (Koszul-) connection $\mathcal{E} \to M$ is a linear map $\Gamma(TM) \times \Gamma(\mathcal{E}) \to \Gamma(\mathcal{E})$, $(X, \sigma) \mapsto \nabla_X \sigma$, satisfying for any $f \in C^{\infty}(M)$,

(i)
$$\nabla_{fX}s = f\nabla_{X}s$$
.

(ii)
$$\nabla_X(fs) = f\nabla_X s + df(X)s$$
.

Example 12.1. $\mathcal{E} = E \times M$ the trivial bundle, then $\Gamma(\mathcal{E}) = C^{\infty}(M, E)$. The trivial connection on $E \times M$ is $D_X \sigma := (D\sigma)(X)$. For any $f \in C^{\infty}(M)$, $D_{fX} \sigma = (D\sigma)(fX) = fD\sigma(X)$. $D_X(f\sigma) = (Df\sigma)(X) = df(X)\sigma + fD_X\sigma$.

Let ψ_1, \dots, ψ_n be functions on M and $\sum \psi_1 = 1$. Let $\nabla^1, \dots, \nabla^n$ be connection on M, then $\nabla := \sum \psi_i \nabla^i$ is also a connection: $\nabla_X \sigma = \sum \psi_i \nabla^i_X \sigma$.

Proposition 12.1. If ∇ is a connection, $(\nabla_X \sigma)_m$ only depends on X, σ on a V(m).

Proof. Let $X_1 = X_2$ on a V(m) and $\sigma_1 = \sigma_2$ on a V(m). Let $\psi \equiv 1$ on V(m) and Supp $\psi \subset U$, then $\psi X_1 = \psi X_2$ and $\psi \sigma_1 = \psi \sigma_2$.

$$\nabla_{X_1}\sigma_1 = \nabla_{\psi X_1}\psi\sigma_1 = \nabla_{\psi X_2}\psi\sigma_2 = \nabla_{X_2}\sigma_2.$$

Proposition 12.2. Every vector bundle admits a connection.

Proof. Let $\{U_i\}_{i\in I}$ be a trivializing cover on M, i.e. $|_{\mathcal{U}_i} \approx \mathcal{E} \times \mathcal{U}_i$. Let $\{\psi_i\}_{i\in I}$ a partition of unity associated to U_i .

Finally let D^i be the trivial connection on $\mathcal{E}|_{U_i}$, then we define if $X \in \chi(M)$, $\sigma \in \Gamma(\mathcal{E})$,

$$\nabla_X \sigma = \sum_{i=1}^n \psi_i(D_X^i \sigma).$$

This is well-defined since Supp $\psi_i \subset U_i$, and ∇ is a connection on \mathcal{E} .

Definition 12.2. Difference between two connection.

Let ∇_1 and ∇_2 be two connections on $\mathcal{E} \to M$, then there exists $A \in \Omega^1(M, \operatorname{End}(\mathcal{E}))$ such that

$$\nabla_X^1 \sigma - \nabla_X^2 \sigma = A(X)\sigma.$$

Proof. Let define $B:TM\times\mathcal{E}\to\mathcal{E},\,B(X,\sigma)=\nabla^1_X\sigma-\nabla^2_X\sigma.$ Then $B(fX,\sigma)=fB(X,\sigma)$ and

$$B(X, f\sigma) = \nabla_X^1(f\sigma) - \nabla_X^2(f\sigma) = fB(X, \sigma) + df(X)\sigma - df(X)\sigma = fB(X, \sigma).$$

Then B is a tensor. By the lemma below, there exists a section A of the bundle

$$TM^* \otimes \mathcal{E}^* \otimes \mathcal{E} = TM^* \otimes \operatorname{End}(\mathcal{E}) = \Omega^1(M, \operatorname{End}(\mathcal{E})).$$

Lemma 12.1. Let $\mathcal{E}_1, \dots, \mathcal{E}_k, \mathcal{F}$ be vector bundles over M. Let ψ be a k-multilinear map

$$\psi: \Gamma(\mathcal{E}_1) \times \cdots \times \Gamma(\mathcal{E}_k) \to \Gamma(\mathcal{F}),$$

such that for any i, any $f \in C^{\infty}(M)$,

$$\psi(\sigma_1, \cdots, f\sigma_i, \cdots, \sigma_k) = f\psi(\sigma_1, \cdots, \sigma_k).$$

Then there exists C, a section of

$$\mathcal{E}_1^* \otimes \cdots \otimes \mathcal{E}_k^* \otimes \mathcal{F} = \mathcal{G},$$

such that

$$\psi(\sigma_1,\cdots,\sigma_k)_m = C_m((\sigma_1)_m,\cdots(\sigma_k)_m).$$

We say ψ is a **tensor**.

Proof. If $\sigma_i = \sigma'_i$ on V(m), then $\psi(\sigma_1, \dots, \sigma_k) = \psi(\sigma'_1, \dots, \sigma'_k)$ on V(m). (Repeat the proof about $\nabla_X \sigma$.)

It is enough to prove the result on V(m), that is when $\mathcal{E}_i = E_i \times U$ and $\mathcal{F}_i = F \times U$. Let $(a_j^i)_{j \in I_i}$ be a basis of E_i , $\sigma_i = \sum_j f_i^j a_j^i$, then

$$\psi(\sigma_1, \dots, \sigma_k)_m = \sum_{l=1}^{k} f_k^{j_l}(m) \psi(a_{j_1}^1, \dots, a_{j_k}^k).$$

Then we define $C: M \to \mathcal{E}_1^* \otimes \cdots \otimes \mathcal{E}_k^* \otimes \mathcal{F}$ as

$$C_m = \sum a_{j_1}^{1,*} \otimes \cdots \otimes a_{j_k}^{k,*} \otimes \psi(a_{j_1}^1, \cdots, a_{j_k}^k).$$

Proposition 12.3. If ∇ is a connection and $A \in \Omega^1(M, \operatorname{End}(TM))$, then

$$\nabla + A : (X, \sigma) \mapsto \nabla_X \sigma + A(X) \sigma$$

is also a connection. Then the space of connection is an affine space.

Proposition 12.4. Let X be a vector field, σ a section of \mathcal{E} , let $m \in E$ and c a curve in M with $\dot{c}(0) = X_m$, then $(\nabla_X \sigma)_m$ only depends on X_m and the restriction of σ along c.

Proof. Locally, $\nabla = D + A$, where D is the trivial connection on U and $A \in \Omega^1(U, \operatorname{End}(\mathcal{E}))$.

$$(\nabla_X \sigma)_m = (D_X \sigma)_m + (A(X)\sigma)_m,$$

the latter one only depends on X_m and σ_m since it is a tensor. And $(D_X\sigma)_m = (D_m\sigma)(X) = \frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}(\sigma \circ c(t))$.

Theorem 12.1 (Existence of Parallel Transport). Let $c(t) : [a, b] \to M$ be a curve on M, let $u \in \mathcal{E}_{c(0)}$, then there exists a unique u(t) section of \mathcal{E} along c, such that

$$\nabla_{\dot{c}(t)} u(t) = 0.$$

Moreover, (i) if $k \in \mathbb{R}$, then (ku)(tz) = k(u(t)), (ii) if u and v are two vectors in $\mathcal{E}_{c(0)}$ then (u+v)(t) = u(t) + v(t) (i.e. linear map from $\mathcal{E}_{c(0)}$ to $\Gamma(c^*\mathcal{E})$).

u(t) is called the **parallel transport** of u along c(t).

Proof. Let U be a neighborhood of $c(t_0)$ on which \mathcal{E} is trivial $\mathcal{E} = E \times U$.

$$\nabla_{\dot{c}(t)} u(t) \big|_{t=t_0} = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=t_0} (u \circ c(t)) + A(\dot{c}(t_0)) u(t_0),$$

where $\nabla = D + A$. Check that this does not depend on the choice of trivialization.

To prove the existence and uniqueness of u(t), it is enough to work locally solution of

$$\frac{\mathrm{d}}{\mathrm{d}t}u(t) + A(\dot{c}(t))u(t) = 0,$$

with the initial condition u(0) = u. This is a consequence of the existence and uniqueness of solution of ODE on [a, b]. This is a linear equation hence (i) and (ii) holds.

Remark: The well-definition of A on c comes from the independent of the choice of trivialization.

Definition 12.3. We define the **Holonomy** linear map $\operatorname{Hol}_c : \mathcal{E}_{c(0)} \to \mathcal{E}_{c(1)}, \ u \mapsto u(1)$ where u(t) is the parallel transport of u along c(t).

If α and β are two curves and $\alpha(1) = \beta(0)$, then

$$\operatorname{Hol}_{\beta} \circ \operatorname{Hol}_{\alpha} = \operatorname{Hol}_{\beta * \alpha}$$
.

Theorem 12.2. Hol_c is a linear isomorphism, for $c:[0,1]\to M$

Proof. Let $\tilde{c}:[0,1]\to M$, $\tilde{c}(t)=c(1-t)$. Let u(t) be parallel section along c, then $\tilde{u}(t)=u(1-t)$ is a parallel section along \tilde{c} . In particular,

$$(\operatorname{Hol}_c)^{-1} = \operatorname{Hol}_{\tilde{c}}.$$

Recall the pull-back of vector bundle. Define $\psi: X \to Y$, let $\pi: \mathcal{E} \to Y$, we defined the vector bundle $\psi^* \mathcal{E} \to X$ as

$$\psi^* \mathcal{E} = \{ (u, x) \in \mathcal{E} \times X : u \in \mathcal{E}_{\psi(x)} \}.$$

If $(U_i)_{i\in I}$ is a trivializing cover of $\mathcal{E}|_{U_i} = E \times U_i$ with cocycle $U_i \cap U_j \xrightarrow{\varphi^{ij}} GL(E)$. Then $(\psi^{-1}(U_i))_{i\in I}$ is a trivializing cover of X for $\psi^*\mathcal{E}$.

$$\psi^{-1}(U_i) \cap \psi^{-1}(U_j) \xrightarrow{\psi} U_i \cap U_j \xrightarrow{\varphi^{ij}} GL(E).$$

 $\psi^* \varphi^{ij}$ are the transition functions. These satisfy the cocycle condition hence $\psi^* \mathcal{E}$ is a bundle.

What happens in a trivialization? In general if \mathcal{O}_i is trivialization of $\mathcal{E} \to Z$, i.e. $\mathcal{E}|_{\mathcal{O}_i} \approx E \times \mathcal{O}_i$. A section $\sigma|_{\mathcal{O}_i}$ is a section of $\mathcal{E}|_{\mathcal{O}_i}$, $\mathcal{O}_i \to E$ with the compatibility condition on $\mathcal{O}_i \cap \mathcal{O}_j$, $\sigma_j(x) = \psi^{ji}(x)\sigma_i(x)$.

Induced section $\psi^* : \Gamma(\mathcal{E}) \to \Gamma(\psi^*\mathcal{E})$, $\sigma \mapsto \psi^*\sigma$, we can $\sigma_i^* = \sigma_i \circ \psi$. Then σ_i^* satisfies the compatibility condition with respect to $\psi^*\varphi^{ij}$.

Remark 12.1. Not all sections of ψ^*E is induced sections. For example $X \to Y = \{0\}$.

Definition 12.4. Induced connection.

Let $\mathcal{E} \to Y$ be a vector bundle over Y, ∇ be a connection on \mathcal{E} , and $\psi : X \to Y$. There exists a unique connection $\psi^*\nabla$ on $\psi^*\mathcal{E}$ such that if $u \in T_mX$, σ is a section of \mathcal{E} defined on $V(\psi(m))$, then

$$[(\psi^*\nabla)_u(\psi^*\sigma)]_m = \psi^*[\nabla_{T\psi(u)}\sigma]_{\psi(m)}.$$

$$(\psi^* \nabla)_u (\psi^* \sigma) = \psi^* (\nabla_{\psi_* u} \sigma).$$

Proof. Let ∇^1 and ∇^2 be two connection satisfying $\nabla^1_u(\psi^*\sigma) = \nabla^2_u(\psi^*\sigma) = \psi^*(\nabla_{\psi_*u}\sigma)$. Let write $\nabla^1 - \nabla^2 = A \in \Omega^1(X, \operatorname{End}(\psi^*\mathcal{E}))$. Thus A satisfies A(u) = 0 for every $u \in TX$, thus A = 0, hence $\nabla^1 = \nabla^2$.

Existence part: First case assume that $\mathcal{E} \to Y$ is trivial, $\mathcal{E} = E \times Y$. Any connection on E is D+B, where $B \in \Omega^1(Y, \operatorname{End}(E))$. Now $\psi^*\mathcal{E} = E \times X$. Let us define ∇^1 on $E \times X$, $\nabla^1 = D + \psi^*B$, where $\psi^*B(u) = B(T\psi(u))$.

Let us check that

$$\nabla_u^1(\psi^*\sigma) = D_x(\sigma \circ \psi)(u) + (\psi^*B)(u)(\sigma(\psi(x))) = (\nabla_{T\psi(u)}\sigma)_{\psi(x)}.$$

For the general case, take a trivializing cover of $Y = \{U_i\}$, then on $\psi^{-1}(U_i) \subset X$, we define $\nabla^i = \psi^*(\nabla|_{U_i})$. Then by uniqueness, $\nabla^i = \nabla^j$ on $\psi^*(\nabla|_{U_i}) \cap \psi^*(\nabla|_{U_j})$. We define $\psi^*\nabla = \nabla_i$ on U_i .

Now a section along $c:[a,b]\to M$ is a section of the bundle $c^*\mathcal{E}\to [a,b], u(t)=c^*u(t)$. We make it more clear,

$$\nabla_{\dot{c}(t)}u(t) = 0 \iff (c^*\nabla)_{\partial_t}c^*u = 0.$$

Theorem 12.3. Let $\mathcal{E} \to [a,b]$ be a vector bundle with a connection ∇ , then given any $u \in \mathcal{E}_a$, there exists a unique section u(t) such that

$$u(a) = u, \quad \nabla_{\partial_t} u(t) = 0.$$

Proof. It is enough to prove this result on $[t_0 - \varepsilon, t_0 + \varepsilon]$. Given $u \in \mathcal{E}_{t_0}$, there exists u(t) such that $u(t_0) = u$ and $\nabla_{\partial_t} u = 0$ for any $t \in [t_0 - \varepsilon, t_0 + \varepsilon]$.

Choose ε such that $\mathcal{E}|_{[t_0-\varepsilon,t_0+\varepsilon]}$ is trivial: $E\times[t_0-\varepsilon,t_0+\varepsilon]$. Set $\nabla=D+B$ and

$$\nabla_{\partial_t} u = 0 \iff \frac{\mathrm{d}}{\mathrm{d}t} u(t) + B_t(\partial_t) u(t) = 0.$$

In other words, the curve $u(t) \in E$ satisfies

$$\dot{u}(t) + C(t) \cdot u(t) = 0,$$

where
$$C(t) = B_t(\partial_t) : [t_0 - \varepsilon, t_0 + \varepsilon] \to \text{End}(E)$$
.

Now we have finished the proof of the existence of parallel transport.

Corollary 12.1. Any bundle $\mathcal{E} \to \mathbb{R}$ is trivial.

Proof. Let u_1, \dots, u_k be a basis of \mathcal{E}_0 , define $\mathbb{R}^k \times \mathbb{R} \to \mathcal{E}$,

$$((a_1, \cdots, a_k), t) \mapsto \sum a_i u_i(t),$$

where $u_i(t)$ is the parallel transport of u_i .

Exercise 12.1. Every vector bundle over a contractible open set is trivial.

12.2 Connection and curvature

Another point of view on parallel transport: Horizontal distribution.

Let $\mathcal{E} \to M$ and \mathcal{E} itself is a manifold.

Definition 12.5. An horizontal distribution is a distribution $\mathcal{F}_u \subset T_u \mathcal{E}$ such that

$$T\pi: \mathcal{F}_u \to T_{\pi(u)}M,$$

is an isomorphism.

 $\operatorname{Ker}(T_u\pi) = T_u(\mathcal{E}_{\pi(u)})$ is called the **vertical distribution** V_u .

We have (i) dim $\mathcal{F}_u = \dim M$, $\mathcal{F}_u \cap \operatorname{Ker}(T\pi) = \{0\}$.

 \mathcal{F}_u is an trivialization distribution iff $\forall u \in \mathcal{E}, \mathcal{F}_u \oplus V_u = T_u \mathcal{E}$.

Proposition 12.5. A connection ∇ on \mathcal{E} defines an horizontal distribution \mathcal{F}^{∇} such that, for $u:[a,b]\to\mathcal{E}$, $\dot{u}(t)\in\mathcal{F}^{\nabla}_{u(t)}$ iff u(t) is parallel along the curve $c(t)=\pi u(t)$.

Example 12.2. $\mathcal{E} = E \times M$ and D is the trivial connection. u(t) is parallel along c(t),

iff u(t) is constant along c(t), as a map $[a,b] \to E$,

iff curve u(t) is tangent to the distribution $\{0\} \times TM$ of $T(E \times M)$,

iff u is tangent to the distribution $\mathcal{F}_{(v,m)} = \{m\} \times T_m M$.

Proof of proposition. Consider a trivialization $\mathcal{E}|_{U_i} = E \times U_i$ and $\nabla = D + A$. Let $u : [a,b] \to \mathcal{E}|_{U_i}$, u(t) = (v(t), c(t)), where $v(t) \in E$ and $c(t) \in U_i$.

$$\nabla_{\dot{c}} u(t) = \left(\frac{\mathrm{d}}{\mathrm{d}t} v(t) + A_{c(t)}(\dot{c}(t)) \cdot v(t), c(t)\right),\,$$

hence $\nabla_{\dot{c}} u(t) = 0$ iff $\dot{v}(t) + A_{c(t)}(\dot{c}(t)) \cdot v(t) = 0$.

Let

$$\mathcal{F}_{(v,x)}^{\nabla} = \{(w,\gamma) \in E \times T_x M : w + A_x(\gamma)v = 0\}.$$

$$(v(t), c(t)) \in \mathcal{E}|_{U} = E \times U$$
 is tangent to \mathcal{F}^{∇} , iff $(\dot{v}(t), \dot{c}(t)) \in \mathcal{F}^{\nabla}$, iff $\dot{v}(t) + A_{c(t)}(\dot{c}(t)) \cdot v(t) = 0$, iff $\nabla_{\dot{c}} u(t) = 0$.

 \mathcal{F}^{∇} is integrable, iff ∇ is locally trivial, iff there exists trivialization $\mathcal{E} = E \times U$ in which $\nabla = D$, iff $R^{\nabla} = 0$, $R^{\nabla} \in \Omega^2(M, \operatorname{End}(E))$.

In general, $\omega = \text{Tr}(R^{\nabla} \wedge \cdots \wedge R^{\nabla})$ is a closed 2n form on M. Its cohomology class only depends on $\mathcal{E} \to M$.

Lemma 12.2. ∇ on $\pi: \mathcal{E} \to M$ and $X \in \chi(M)$. There exist a unique vector field Y on \mathcal{E} such that (i) Y is horizontal $(Y_u \in \mathcal{F}_u^{\nabla})$, (ii) $(T_u \pi)(Y_u) = X_{\pi(u)}$.

Definition 12.6. Y is the **horizontal lift** of X.

Proof. $T_u \pi$ is an isomorphism between \mathcal{F}_u^{∇} and $T_x M$. Locally, $\mathcal{E} = E \times M$ trivial, then $Y_u = (-A_x(X)u, X)$.

Lemma 12.3. Let $X \in \chi(M)$ with flow φ_t , $Y \in \chi(\mathcal{E})$ with flow ψ_t is the horizontal lift of X. Then (i) $\pi \circ \psi_t = \varphi_t \circ \pi$, (ii) $t \mapsto u(t) = \psi_t(u)$ is parallel along the curve $c(t) = \varphi_t(x)$.

Proof. Let $u \in \mathcal{E}$ and $x = \pi(u)$. Define $\tilde{c}(t) = \pi \circ \psi_t(u)$, then

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=t}\tilde{c}(s) = (T_{\psi_t(u)}\pi)\left(\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=t}\psi_s(u)\right) = T_{\psi_t(u)}\pi(Y_{\psi_t(u)}) = X_{\tilde{c}(t)}.$$

Then $\tilde{c}(t)$ is an orbit of X, hence $\tilde{c}(t) = \varphi_t(x)$.

Definition 12.7. A connection ∇ is flat if $\nabla = D$ in a local trivialization.

Theorem 12.4. \mathcal{F}^{∇} is integrable iff ∇ is flat.

Proof. If ∇ is flat. In a trivialization $\nabla = D$ and $\mathcal{E} = E \times M$. The horizontal distribution is

$$\mathcal{F}_{(u,m)}^{\nabla} = \{(-A(x)u, X) : X \in T_m M\} = \{0\} \times T_m M.$$

In that case the horizontal distribution is integrable.

Assume \mathcal{F}^{∇} is integrable. Let $\mathscr{O} \subset M$ and $\mathscr{O} \approx]-1,1[^n \subset M.$ Let $X_i = \frac{\partial}{\partial x_i}$ the coordinate vector fields. Let Y_i be the horizontal lifts of X_i , let φ_t^i the flow of X_i and ψ_t^i the flow of Y_i .

Lemma 12.4. $[Y_i, Y_j] = 0$ (iff $\psi_t^i \circ \psi_s^j = \psi_s^j \circ \psi_t^i$).

Let $u \in \mathcal{E}$, let $N \ni u$ be the submanifold such that $\forall n \in N$, $T_n N = \mathcal{F}_n^{\nabla}$. Hence $\forall n \in N$, $T\pi$ is an isomorphism from $T_n N$ to $T_{\pi(n)} M$. We can find an open set $\mathscr{O} \ni n$ in N such that $\pi : \mathscr{O} \to \pi(\mathscr{O})$ is a diffeomorphism (local immersion theorem). From now on, redefine $N = \mathscr{O}$. Set $\tilde{Y}_i = Y_i|_N$,

$$\pi_*[\tilde{Y}_i, \tilde{Y}_j] = [\pi_*\tilde{Y}_i, \pi_*\tilde{Y}_j] = [X_i, X_j] = 0.$$

This means that $T\pi([\tilde{Y}_i, \tilde{Y}_j]) = 0$, hence that $[\tilde{Y}_i, \tilde{Y}_j] = 0$ (since $\pi|_N$ is a diffeomorphism). $[Y_i, Y_j]_u = [\tilde{Y}_i, \tilde{Y}_j]_u$ because N is a submanifold and Y_i tangent to N.

Lemma 12.5. If W a submanifold of M. If X,Y are vector fields on M, such that $X_w, Y_w \in T_wW$ for $w \in W$, then $[X,Y]_W = [X]_W, Y]_W$ (Hint: use a chart).

Proof. Since W is a submanifold of M, for $w \in W \subset M$, there is a chart (U, φ) such that $\varphi(U \cap M) \subset \mathbb{R}^k \subset \mathbb{R}^n$. Set $X = X_i \frac{\partial}{\partial x_i}$ and $Y = Y_j \frac{\partial}{\partial x_j}$. Since X(w) and Y(w) is in $T_w W$ for $w \in M$, we know that $X_{k+1}(w) = \cdots = X_n(w) = 0$ and $Y_{k+1}(w) = \cdots = Y_n(w) = 0$ for any $w \in W$.

$$[X,Y] = \left(X_i \frac{\partial Y_j}{\partial x_i} - Y_i \frac{\partial X_j}{\partial x_i}\right) \frac{\partial}{\partial x_j} = (X(Y_j) - Y(X_j)) \frac{\partial}{\partial x_j}.$$

For $j \geq k+1$, since $Y_j|_W = 0$ and $X(w) \in T_w W$ for any $w \in W$, we have $X(Y_j)(w) = 0$. Ditto for $Y(X_j)(w) = 0$, $j \geq k+1$. Hence we've proved that

$$[X,Y]_w = \sum_{1 \le j \le k} (X(Y_j) - Y(X_j)) \frac{\partial}{\partial x_j} \in T_w W,$$

 $\forall w \in W$. Note that $X|_W = \sum_{1 \le j \le k} X_i \frac{\partial}{\partial x_i}$ and $Y|_W = \sum_{1 \le j \le k} Y_i \frac{\partial}{\partial x_i}$ and $[X|_W, Y|_W] = [X, Y]|_W$.

Back to original proof. Set $\mathscr{O} = \times]-1,1[^n,$ we define the trivialization $\mathscr{E}_0 \times \mathscr{O} \xrightarrow{\Phi} \mathscr{E}|\mathscr{O}$ by $\Phi(u,t_1,\cdots,t_n)=(\psi^1_{t_1}\circ\cdots\circ\psi_{t_n})(u).$

We will prove that (i) Φ is linear, in particular, Φ^{-1} is a trivialization. (ii) Given a curve c(s) in \mathcal{O} , $u \in \mathcal{E}_0$ then $\Phi(u, c(s))$ is horizontal.

We first prove (ii).

$$c(s) = (\varphi_{t_1(s)}^1 \circ \cdots \circ \varphi_{t_n(s)}^n)(0).$$

$$u(s) := \Phi(u, c(s)) = (\psi_{t_1(s)}^1 \circ \cdots \circ \psi_{t_n(s)}^n)(u).$$

From Lemma 12.3, $\pi u(s) = c(s)$. $\frac{\mathrm{d}}{\mathrm{d}u}|_{t=s} u(t) = \sum \dot{t}_i(s) Y_i(u(s))$. Indeed, we can put $\psi^i_{t_i}$ in the first place for $\frac{\partial}{\partial t_i}$ (See Proposition 10.6).

Now we have proved that $s \mapsto \Phi(u, c(s))$ is horizontal. $u \mapsto \Phi(u, c(s_0)) = Hol_{c(s_0)}(u)$ is linear. Now $\mathcal{F}_u^{\nabla} = \{(0, X) : X \in TM\}$ hence ∇ is flat.

Definition 12.8. Given ∇ a connection on $\pi: \mathcal{E} \to M$, the curvature tensor $\chi(M) \times \chi(M) \times \Gamma(\mathcal{E}) \to \Gamma(\mathcal{E})$ by

$$R^{\nabla}(X,Y)\sigma = \nabla_X \nabla_Y \sigma - \nabla_Y \nabla_X \sigma - \nabla_{[X,Y]} \sigma.$$

Lemma 12.6. (i) $R(X, Y)\sigma = -R(Y, X)\sigma$.

(ii)
$$R(fX,Y)\sigma = fR(X,Y)\sigma$$
, for $f \in C^{\infty}M$.

(iii)
$$R(X,Y)f\sigma = fR(X,Y)\sigma$$
, for $f \in C^{\infty}M$.

Corollary 12.2. Given ∇ , there exists $R_0^{\nabla} \in \Omega^2(M, \operatorname{End}(\mathcal{E}))$ such that

$$(R^{\nabla}(X,Y)\sigma)_m = (R_0^{\nabla})_m(X_m,Y_m)\sigma_m.$$

In a trivialization, $\mathcal{E}|_U = E \times U$ and $\nabla = D + A$.

Lemma 12.7. $R^{\nabla}(X,Y)\sigma = dA(X,Y)\sigma + [A(X),A(Y)]\sigma$.

Proof.

$$R^{\nabla}(X,Y)\sigma = \nabla_X \nabla_Y \sigma - \nabla_Y \nabla_X \sigma - \nabla_{[X,Y]} \sigma.$$
$$\nabla_{[X,Y]}\sigma = L_{[X,Y]}\sigma + A([X,Y])\sigma.$$

$$\nabla_X \nabla_Y \sigma = \nabla_X (D\sigma(Y) + A(Y)\sigma)$$

$$= \nabla_X (L_Y \sigma) + (L_X A(Y))\sigma + A(Y)L_X \sigma$$

$$= L_X L_Y \sigma + A(X)L_Y \sigma + (L_X A(Y))\sigma + A(Y)L_X \sigma + A(X)A(Y)\sigma$$

Similarly,

$$\nabla_{Y}\nabla_{X}\sigma = L_{Y}L_{X}\sigma + A(Y)L_{X}\sigma + + (L_{Y}A(X))\sigma + A(X)L_{Y}\sigma + A(Y)A(X)\sigma.$$

With the fact, if $\omega \in \Omega^1(M)$, then $d\omega(X,Y) = L_X(\omega(Y)) - L_Y(\omega(X)) - \omega([X,Y])$, we've done the proof.

Theorem 12.5. ∇ is flat, iff $R^{\nabla} = 0$.

Proof. If ∇ is flat, then A=0 hence $R^{\nabla}=0$.

If $R^{\nabla} = 0$, show that \mathcal{F}^{∇} is integrable. Let $X_i = \frac{\partial}{\partial x_i}$ be coordinate vector fields on V and Y_i be the horizontal lift.

$$(Y_i)_u = (-A(X_i) \cdot u, X_i).$$

Lemma 12.8. If $R^{\nabla} = 0$, then $[Y_i, Y_j] = 0$.

Consequence \mathcal{F}^{∇} is integrable and thus ∇ flat.

$$\begin{split} [Y_i,Y_j]_u &= \left[\left(-A(X_i)\cdot u,X_i\right),\left(-A(X_j)\cdot u,X_j\right)\right] \\ &= \left(-\frac{\partial}{\partial x_i}A(X_j)u + \frac{\partial}{\partial x_j}A(X_i)u - \left[A(X_i),A(X_j)u\right],0\right) \\ &= \left(-dA(X_i,X_j)u - \left[A(X_i),A(X_j)\right]u,0\right) \\ &= \left(-R^{\nabla}(X_i,X_j)u,0\right). \end{split}$$

Here we use the fact [Au, Bu] = -[A, B]u (See Exercise 10.4).

Theorem 12.6. If ∇ is flat, if c(t) is homotopic to $\tilde{c}(t)$ with fixed endpoints, then

$$Hol_c = Hol_{\tilde{c}} : \mathcal{E}_{c(0)} \to \mathcal{E}_{c(1)}.$$

Let \mathcal{E} be a \mathbb{R} -vector bundle with a connection ∇ .

$$\hat{P}_k^{\nabla}(X_1, \cdots, X_{4k}) = \sum_{\sigma \in S_{2k}} (-1)^{\sigma} \operatorname{Tr} \left(R^{\nabla}(X_{\sigma(1)}, X_{\sigma(2)}) \cdots R^{\nabla}(X_{\sigma(4k-1)}, X_{\sigma(4k)}) \right)$$

Let \mathcal{E} be a \mathbb{C} -vector bundle, $J \in \gamma(\mathcal{E})$ such that $J^2 = -1$.

$$\hat{c}_k^{\nabla}(X_1, \cdots, X_{2k}) = \sum_{\sigma \in S_k} (-1)^{\sigma} \operatorname{Tr} \left(R^{\nabla}(X_{\sigma(1)}, X_{\sigma(2)}) \cdots R^{\nabla}(X_{\sigma(2k-1)}, X_{\sigma(2k)}) \right)$$

Theorem 12.7. The forms \hat{P}_k^{∇} and \hat{c}_k^{∇} are closed (called Pontryagin, Chern classes). Their cohomology classes $[\hat{P}_k^{\nabla}] \in H^{4k}(M)$ and $[\hat{c}_k^{\nabla}] \in H^{2k}(M)$ only depends on \mathcal{E} are called the Pontryagin class and the Chern class.

Example 12.3. $T\mathbb{S}^2$ has complex structure and $c_1(T\mathbb{S}^2) \neq 0$. Hence $T\mathbb{S}^2$ is not trivial.

13 Group action

13.1 Properly discontinuous action without fixed points

A covering is a map $p: X \to Y$, where X and Y are topological spaces, such that for any $y \in Y$, there exists $U \in V(y)$ such that $p^{-1}(U) = \bigsqcup_{z \in Z} \mathcal{O}_z$, where \mathcal{O}_z are open sets and $p: \mathcal{O}_z \to U$ is a homeomorphism.

If Γ is a group acting on X, with a **properly discontinuous action without fixed** points that

- (i) $\forall \gamma \in \Gamma, \ \gamma : x \to \gamma x$ is a diffeomorphism (homeomorphism).
- (ii) $\forall x \in X$, there exists $U \in V(x)$, such that $\gamma U \cap U \neq \emptyset$ will indicate $\gamma = \mathrm{id}$.

Remark 13.1. properly discontinuous action.

For every compact set K, $\#\{\gamma : \gamma K \cap K \neq \emptyset\} < \infty$.

Theorem 13.1. In topology category, there is a topology on $\Gamma \backslash X$, such that $p: X \to \Gamma \backslash X$ is a covering.

Proof. Recall the quotient topology on $\Gamma \setminus X$ is give by U is an open set in $\Gamma \setminus X$ if $p^{-1}(U)$ is open.

We define $U_{\gamma} := \gamma \cdot U$ which is an open set and $U_{\gamma} \cap U_{\gamma'} = \emptyset$ if $\gamma \neq \gamma'$.

We want to show p is covering: for any $y \in \Gamma \setminus X$, there exists $V \in V(y)$ such that $p^{-1}(V) = \bigsqcup_{z \in \mathbb{Z}} V_z$ and $p: V_z \to V$ is a homeomorphism.

Let $y \in \Gamma \backslash X$, let x such that p(x) = y. Let $U \in V(x)$ such that $\gamma \neq \gamma'$ in Γ , $U_{\gamma} \cap U_{\gamma'} = \emptyset$. Let V = p(U), then

$$p^{-1}(V) = p^{-1}(p(U)) = \bigsqcup_{\gamma \in \Gamma} U_{\gamma},$$

is an open set hence V is open in $\Gamma \setminus X$. Indeed, let $z \in p^{-1}(p(U)), p(z) \in V = p(U)$, then p(z) is an orbit $\{\gamma \alpha\}_{\alpha \in \Gamma}$ which intersects U with $\alpha \in U$.

Then we also need to check that $p: U_{\gamma} \to V$ is a homeomorphism. It is obvious that this map is bijective and continuous. We only need to show that $p|_{U_{\gamma}}^{-1}$ is continuous, which is similar to the proof of the openness of V.

Remark 13.2. We say U is good if U is an open set in X such that $\forall \gamma \neq id$, $\gamma U \cap U = \emptyset$.

Theorem 13.2. In differential geometry category, there is a manifold structure on $\Gamma \setminus X$, such that $p: X \to \Gamma \setminus X$ is a covering, p is smooth and a local diffeomorphism.

Proof. X is σ -compact then $\Gamma \setminus X$ is σ -compact.

We can find an atlas $\{(U_i, \phi_i)\}$ of X such that U_i are good. Because U_i is good: $U_i \to p(U_i)$ is a homeomorphism. We define charts of $\Gamma \setminus X$ by $\{(V_i = p(U_i), \phi_i \circ p_i^{-1} = p|_{U_i}^{-1}\}$. It remains to prove these charts are compatible.

For any $y \in \Gamma \setminus X$, and $y \in V_i \cap V_j$, we say $x_i = p_i^{-1}(y)$ and $x_j = p_j^{-1}(y)$. notice that x_i may not equal to x_j , but we have an element $\gamma \in \Gamma$ such that $x_j = \gamma x_i$. The transition map is

$$(\phi_j \circ p_i^{-1}) \circ (\phi_i \circ p_i^{-1})^{-1} = \phi_j \circ p_i^{-1} \circ p_i \circ \phi_i^{-1} = \phi_j \circ \gamma \circ \phi_i^{-1},$$

around y, hence differential.

Exercise 13.1. Check $\Gamma \setminus X$ is Hausdorff.

Exercise 13.2. Γ is a finite group and X is compact, show that if for any $\gamma \in \Gamma \setminus id$, and for any x, we have $\gamma x \neq x$, then Γ acts properly discontinuously on X.

Example 13.1. $\Gamma = \mathbb{Z}/2\mathbb{Z} = \{-1, 1\}$. Γ acts on $S^n = \{u \in \mathbb{R} : ||u|| = 1\}$. $\Gamma \setminus S^n$ is \mathbb{P}^n .

13.2 Action of group of diffeomorphisms

Theorem 13.3. Let M be a connected manifold. Let $\mathscr{G} = \{diffeomorphism \ of \ M\}$. For all $p \in \mathbb{N}$, \mathscr{G} acts transitively on $M^{p*} := \{(m_1, \dots, m_p) : \forall i \neq j, m_i \neq m_j\}$.

That is, given $(m_1, \dots, m_p), (q_1, \dots, q_p) \in M^{p*}$, then there is a diffeomorphism φ of M such that $\varphi(m_i) = q_i$ for any $1 \le i \le p$.

1. Show that if B is the open ball in \mathbb{R}^n . Given $x \in B$, there is a $\mathcal{O} \in V(x)$, for any $y \in \mathcal{O}$, there is φ a diffeomorphism of B such that (i) $\varphi(x) = y$ and (ii) φ is an identity on a neighborhood on ∂B^n .

For $\varphi(x) = y$ we first define the transition map $\varphi_0(z) = z + u$, where u = y - x small enough.

Let ψ be the function such that ψ is 1 on a neighborhood of x and 0 on a neighborhood of ∂B^n . We define $\varphi(z) = z + \psi(z)u$.

Since $D_z \varphi = I + u A_{\psi,z}$, for u small enough, $D_z \varphi$ is non-singular. Hence φ is local diffeomorphism.

Now we prove that for u small enough, φ is injective. If $\varphi(z_1) = \varphi(z_2)$, i.e. $z_1 + \psi(z_1)u = z_2 + \psi(z_2)u$. We know that there exists K_0 such that ψ is K_0 -Lipschitz, that is

$$|\psi(z_1) - \psi(z_2)| < K_0 ||z_1 - z_2||$$

Then we just need to choose $||u|| \leq \frac{1}{2K_0}$.

Since φ is local diffeomorphism and injective, we say it is a diffeomorphism.

We can only say that $\varphi: B \to \varphi(B)$ is a diffeomorphism. We also need to prove that φ is surjective. We can prove it by flow of diffeomorphism. xxx.

2. Let us fix $m = (m_1, \dots, m_p) \in M^{p*}$,

$$\mathscr{G}_m = \{(q_1, \cdots, q_p) \in M^{p*} : \exists \varphi \text{ diffeomorphism such that } \varphi(m_i) = q_i\}.$$

Actually \mathscr{G}_m is just an orbit of \mathscr{G} . We will prove \mathscr{G}_m is open.

For any i, let \mathcal{O}_i be a neighborhood of q_i such that

- (i) $\mathcal{O}_i \cap \mathcal{O}_j$ if $i \neq j$.
- (ii) \mathcal{O}_i is diffeomorphism to a ball.
- (iii) Let $U_i \subset \mathcal{O}_i$ with the following property. For any $z_i \in U_i$, there is a diffeomorphism φ_i such that $\varphi_i(q_i) = z_i$ and φ_i is the identity on neighborhood \mathscr{V}_i of $\partial \mathscr{O}_i$.

Let $\varphi: M \to M$ defined by $\varphi = \varphi_i$ on \mathscr{O}_i and $\varphi = \mathrm{id}$ on $M \setminus \sqcup (\mathscr{O}_i \setminus \mathscr{V}_i)$. Then φ is a diffeomorphism.

Now we've proved that for any $(q_1, \dots, q_p) \in \mathscr{O}_m$, there is a neighborhood $U_1 \times \dots \times U_p \subset M^{p*}$, for any $z_i \in U_i$ there is a diffeomorphism ψ such that $\psi(q_i) = z_i$. Since $(q_1, \dots, q_p) \in \mathscr{G}_m$, there is φ such that $\varphi(m_i) = q_i$, hence $\psi \circ \varphi(m_i) = z_i$, i.e. $(z_1, \dots, z_p) \in \mathscr{G}_m$.

3. \mathscr{G}_m is closed. Note that what we've proved is that every orbit of \mathscr{G} on M^{p*} is open. Then

$$\mathscr{G}_m = M^{p*} \setminus \bigcup_{q \notin \mathscr{G}_m} \mathscr{G}_q.$$

4. We will show that for dim $M \geq 2$, M^{p*} is connected. Hence $\mathscr{G}_m = M^{p*}$.

Example 13.2. Counter example for M not connected.

Set $M = \mathbb{S}^2 \sqcup \mathbb{R}^2$, the diffeomorphism group is not transitive. Since a diffeomorphism group sends a connected component to a connected component and a compact set to compact set. Then a point in \mathbb{S}^2 can only be mapped into \mathbb{S}^2 .