## 1. (20%)

- (1) (8%) Find the transfer function  $T(s) = V_o/V_i$  of the circuit in Fig. 1.
- (2) (8%) Given that Q = 10,  $R = 100 \text{ k}\Omega$  and C = 1 nF, find the voltage gain of a sinusoidal signal at  $\omega = 10000 \text{ rad}$ .
- (3) (4%) Use the device parameters in (2) to find the output voltage  $V_o$  for a dc input of 1 V.



- 2. (20%) Fig. 2 shows a Tow-Thomas biquad circuit.
  - (1) (8%) Please derive the transfer functions  $V_A/V_{in}$  and  $V_B/V_{in}$ . If a low-pass response is designed, which node should be taken as the output node?
  - (2) (8%) The circuit is designed as a low-pass filter (LPF) having a bandwidth  $\omega_n = 2\pi \times 10 \text{MHz}$  and a Q of 1. If  $R_3 = 1 \text{k}\Omega$ ,  $R_2 = R_4$ , and  $C_1 = C_2$ , determine the values of  $R_2$  and  $C_1$ .
  - (3) (4%) In this LPF, what is the amount of gain peaking in the magnitude response (in terms of dB).



Fig. 2

- 3. (20%) In Fig. 3, we want to study quadrature oscillator design,
  - (1) (5%) What  $R_f$  can make this oscillator start?
  - (2) (5%) Under such  $R_f$ , what is the oscillation frequency?
  - (3) (5%) Derive the peak-to-peak value of  $V_{\text{out1}}$  if  $R_3 = 2R_4$  and diode turn-on voltage is  $V_D$ .
  - (4) (5%) What is the amplitude ratio between  $V_{\text{out1}}$  and  $V_{\text{out2}}$ ?



Fig. 3

- 4. (20%) Design a 100kHz, 50% duty-cycle oscillator. You have the following components to use: one 555 timer, resistors, capacitors, inductors, and diodes. (All passive devices are ideal.)
  - (1) (14%) Explain your design with circuits and mathematical expressions, and
  - (2) (6%) determine the values of the passive devices.
- 5. (20%) For the circuit shown in Fig. 5,
  - (1) (5%) Show that the output voltage of the circuit in Fig. 5(a) is given by

$$v_O = -nV_T \ln\left(\frac{v_I}{I_S R}\right), \quad v_I > 0$$

where  $I_S$  and n are the diode parameters and  $V_T$  is the thermal voltage.

- (2) (7%) Verify that the circuit in Fig. 5(b) implements the transfer characteristic  $v_0 = -v_1v_2$  for  $v_1$ ,  $v_2 > 0$ . Assume all diodes to be identical.
- (3) (8%) Check the circuit's performance (Fig. 5(b)) for  $v_1 = 2V$  and  $v_2 = 3V$ . Assume all diodes to be identical, with 700-mV drop at 1mA current and n = 2.





Fig. 5(b)