\equiv

Μοριοδότηση 2023

Ενδεικτικές απαντήσεις και από γραπτά μαθητών

Θέμα Α

A1- β

A2- δ

A3-B

A4 - α

A5:
$$\Lambda - \Sigma - \Sigma - \Lambda - \Lambda$$

Θέμα Β

B1-
$$(i)-2-6$$

$$v_\delta = rac{arDelta x}{arDelta t} \Rightarrow v_\delta = 2rac{m}{s}$$

$$arphi = 2\pi(rac{t}{T} - rac{x}{\lambda})$$

$$t_1=2s, \quad x=0, \quad arphi=4\pi rad: \quad 4\pi=2\pi(rac{2.1}{T}-rac{0}{\lambda})\Rightarrow T=1s$$

α)τρόπος

$$t_1=2s,\quad x=4m,\quad arphi=0:\quad 0=2\pi(rac{2.1}{1}-rac{4}{\lambda})\Rightarrow \lambda=2m$$

β)τρόπος

$$f=rac{1}{T}\Rightarrow f=1Hz$$
 $v_{\delta}=\lambda\cdot f\Rightarrow \lambda=2m$

Υπολογισμός του αριθμού των σημείων της χορδής που βρίσκονται σε ακραία θέση της τροχιάς τους.

α)τρόπος

$$t_2=2.5s: \quad x_2=v_\delta\cdot t_2\Rightarrow x_2=5m$$

$$y = A \cdot \eta \mu 2\pi (rac{t}{T} - rac{x}{\lambda}) \Rightarrow y = A \cdot \eta \mu (5\pi - \pi x) \quad (S.I.) \quad 0 \leq x \leq 5m$$

β)τρόπος

$$t_2=2.5s=2\cdot T+rac{T}{2}: \quad x_2=v_\delta\cdot t_2\Rightarrow x_2=5m=2\cdot \lambda+rac{\lambda}{2}$$

Τα σημεία της χορδής που βρίσκονται σε ακραία θέση της τροχιάς τους είναι τα K, \varLambda, M, N, P

άρα σωστό το \emph{i}

B2 -
$$(ii) - 2 - 6$$

Φωτοηλεκτρική εξίσωση του Einstein: $K_{max} = h \cdot f - \phi$

συχνότητα κατωφλίου $f_1: \quad 0 = h \cdot f_1 - \phi \Rightarrow h \cdot f_1 = \phi \quad (1)$

$$f_2=3f_1: \quad K_{max}=h\cdot 3f_1-\phi \ \stackrel{(1)}{\Longrightarrow} \ K_{max}=3h\cdot f_1-h\cdot f_1=2h\cdot f_1(2)$$

$$egin{aligned} arOmega.\,M.\,K.\,E.\quad \Delta K &= arSigma W \Rightarrow K_{ auarepsilon\lambda} - K_{lpha
ho\chi} &= W_{F_{\eta\lambda}} \ K_{ auarepsilon\lambda} &= 0, \quad V_{lpha
ho\chi} - V_{ auarepsilon\lambda} &= V_0 \end{aligned}$$

$$0-K_{max}=(-e)\cdot V_0 \stackrel{(2)}{\Longrightarrow} -2h\cdot f_1=-e\cdot V_0 \Rightarrow V_0=rac{2h\cdot f_1}{e}$$

άρα σωστό το ii

B3 -
$$\alpha(ii)$$
, $\beta(i)-3-6$

α) επιλογέας ταχυτήτων, Ευθύγραμμη ομαλή κίνηση, $lpha=0\Rightarrow {\it \Sigma} F=0$

$$F_{\eta\lambda} = F_{\mulpha\gamma
u} \Rightarrow q\cdot E = B_1\cdot v\cdot q \Rightarrow v = rac{E}{B_1}$$

άρα σωστό το (ii)

β) Ομαλή κυκλική κίνηση σε μαγνητικό πεδίο B_2 .

$$R_1 = rac{m_1 \cdot v}{B_2 \cdot q}, \quad R_2 = rac{m_2 \cdot v}{B_2 \cdot q}$$

$$egin{align} d = 2R_2 - 2R_1 \Rightarrow d = rac{2v}{B_2 \cdot q}(m_2 - m1) \Rightarrow d = rac{2E}{B_1 \cdot B_2 \cdot q} \Delta m \ \ \Delta m = rac{d \cdot B_1 \cdot B_2 \cdot q}{2E} \ \end{align}$$

άρα σωστό το (i)

Θέμα Γ

Γ1-(7)

$$i=2\cdot t,\quad (S.I.),\quad t=0, i=0,\quad t=2s, i=4A$$
 $rac{\varDelta i}{\varDelta t}=rac{4-0}{2-0}\Rightarrowrac{\varDelta i}{\varDelta t}=2rac{A}{s}$ $lpha) au
ho \dot{\sigma}\pi oarsigma$

$$0
ightarrow 2s: q = [E\muetalpha\delta\delta] = rac{eta\cdot u}{2} \Rightarrow q = 4C$$

$$eta = \int_0^2 i dt = \int_0^2 2t dt = \left[t^2
ight]_0^2 = 4 - 0 = 4C$$
 $\gamma)$ τρόπος

 $2^{o\varsigma}$ κανόνας του Kirchhoff στο κύκλωμα $HZA\Gamma H$

$$E_{arepsilon\pi} - i \cdot R - E_{lpha v au} = 0 \Rightarrow i = rac{E_{arepsilon\pi}}{R} - rac{E_{lpha v au}}{R} \quad (1)$$
 $E_{arepsilon\pi} = rac{\Delta \Phi}{\Delta t} = rac{B \cdot \Delta S}{\Delta t} = rac{B \cdot L \cdot \Delta x}{\Delta t} \quad (2)$
 $E_{lpha v au} = L \cdot rac{\Delta i}{\Delta t} \quad (3)$

Αντικαθιστούμε την (2) και την (3) στην εξίσωση (1)

$$i = rac{B \cdot L \cdot \Delta x}{R \cdot \Delta t} - rac{L}{R} \cdot rac{\Delta i}{\Delta t} \Rightarrow i \cdot \Delta t = rac{B \cdot L \cdot \Delta x}{R} - rac{L}{R} \cdot \Delta i$$
 (4)
$$\Delta q = i \cdot \Delta t \quad (5)$$

$$\Delta x = v_0 \cdot \Delta t + rac{1}{2} \cdot \alpha \cdot \Delta t^2 \Rightarrow \Delta x = 6m \quad (6)$$

$$\Delta i = i_{t=2} - i_{t=0} \Rightarrow \Delta i = 4A \quad (7)$$

Αντικαθιστούμε την (5), την (6) και την (7) στην εξίσωση (4)

$$q = 6 - 2 = 4C$$

Η μεταλλική ράβδος ZH κινείται προς τα πάνω, οπότε αναπτύσεται $E_{\varepsilon\pi}$ με πολικότητα όπως στο σχήμα. Το επαγωγικό ρεύμα έχει τέτοια φορά ώστε να αντιτίθεται στο αίτιο που το προκαλεί (κανόνας Lenz).

Η ένταση του επαγωγικού ρεύματος αυξάνεται οπότε στο πηνίο αναπτύσεται $E_{\alpha v au}$ με πολικότητα όπως στο σχήμα, για τον ίδιο λόγο (κανόνας Lenz).

$$|E_{lpha
u au}| = |-L \cdot rac{arDelta i}{arDelta t}| \Rightarrow |E_{lpha
u au}| = 1V$$

 $\Gamma 3-(6)$

 $2^{oarsigma}$ κανόνας του Kirchhoff στο κύκλωμα $HZA\Gamma H$

$$E_{arepsilon\pi} - i \cdot R - E_{lpha v au} = 0 \Rightarrow B \cdot v \cdot l = E_{lpha v au} + i \cdot R \Rightarrow v = 1 + 2t \quad (S.I.)$$

Ευθύγραμμη ομαλά επιταχυνόμενη κίνηση $v=v_0+lpha t, \quad v_0=1rac{m}{s}, \quad lpha=2rac{m}{s^2}$

Г4-(8)

$$t_1 = 2s$$

$$\Sigma F=m\cdot lpha\Rightarrow F-F_L-m\cdot g=m\cdot lpha\Rightarrow F=10N$$
 $v_1=1+2\cdot 2\Rightarrow v_1=5rac{m}{lpha}$

$$rac{dW_F}{dt} = F \cdot rac{dx}{dt} \cdot \sigma v
u arphi = F \cdot v \Rightarrow rac{dW_F}{dt} = 50 rac{J}{s}$$

$$i_1=2\cdot 2\Rightarrow i_1=4A$$

$$rac{dU_L}{dt} = |E_{lpha
u au}| \cdot i_1 \Rightarrow rac{dU_L}{dt} = 4rac{J}{s}$$
 $eta au
ho \dot{\sigma} au o arsigma arsigma arsigma$

Λόγω διατήρησης της ενέργειας θα πρέπει να ισχύει

$$P_F = P_W + P_{F_L} + rac{dK}{dt}$$
 $P_W = rac{dW}{dt} = rac{m \cdot g \cdot dx}{dt} = m \cdot g \cdot v_1 = 25 rac{J}{s}$ $P_{F_L} = E_{arepsilon\pi} \cdot i_1 = B \cdot v_1 \cdot L \cdot i_1 = 20 rac{J}{s}$ $rac{dK}{dt} = \Sigma F \cdot v_1 = (F - F_L - W) \cdot v_1 = (F - B \cdot i_1 \cdot L - m \cdot g) \cdot v_1 = 5 rac{J}{s}$

και αντικαθιστώντας στην αρχική εξίσωση $P_F=50rac{J}{s}$.

$$P_{F_L} = rac{dQ}{dt} + rac{dU_L}{dt} \Rightarrow rac{dU_L}{dt} = P_{F_L} - i_1^2 \cdot R \Rightarrow rac{dU_L}{dt} = 4rac{J}{s}$$

Θέμα Δ

△1-(4)

 m_1 , ισορροπία:

$$\Sigma F_x = 0 \Rightarrow T_2 - m \cdot g \cdot \eta \mu \varphi = 0 \Rightarrow T_2 = 18N$$

 $T_2 = T_2^\prime$ νήμα αβαρές μη εκτατό

ράβδος ΑΓ ισορροπία:

$$abla au_O=0\Rightarrow -T_2'\cdotrac{L}{2}\cdot\eta\muarphi+T_1\cdotrac{L}{2}=0\Rightarrow T_1=10.8N$$

 $\Delta 2$ -(4)

κύκλωμα $KNM \Lambda$ νόμος του Ohm $I = rac{E}{R} \Rightarrow I = 15 A$

αβαρές πλαίσιο ισορροπία: ${\it \Sigma F_y}=0$ οι δυνάμεις Laplace αλληλοαναιρούνται.

$$\Sigma F_x = 0 \Rightarrow T_1 - F_L = 0 \Rightarrow B \cdot I \cdot \alpha = T_1 \Rightarrow B = 0.9T$$

 $\Delta 3-(7)$

 m_2 απλή αρμονική ταλάντωση:

$$A=d=rac{9\pi}{100}m,\quad D=k=m_2\cdot\omega^2\Rightarrow\omega=10rac{rad}{s},\quad T=rac{2\pi}{\omega}=rac{\pi}{5}s$$

το m_2 στη θέση ισορροπίας της ταλάντωσής του

$$v_2=v_{max}=A\cdot\omega\Rightarrow v_2=rac{9\pi}{10}rac{m}{s},\quad extstyle\Delta t=rac{T}{4}=rac{\pi}{20}s$$

 m_1 ευθύγραμμη ομαλά επιταχυνόμενη κίνηση με επιτάχυνση

$$lpha = rac{ arSigma F}{m} = g \cdot \eta \mu arphi \Rightarrow lpha = 6 rac{m}{s^2}$$

$$v_1 = v_0 + lpha \cdot \Delta t \Rightarrow v_1 = rac{3\pi}{10} rac{m}{s}$$

 $\Sigma F_{arepsilon \xi} = 0 \Rightarrow$ μονωμένο σύστημα

$$A.\, extstyle \Delta.\, O. \quad ec p_{ auarepsilon\lambda} = ec p_{lpha
ho\chi} \Rightarrow m_2 \cdot v_2 - m_1 \cdot v_1 = (m_1 + m_2) \cdot V_k$$

και μετά τις πράξεις $V_k=0$

συσσωμάτωμα m_1+m_2 απλή αρμονική ταλάντωση

$$D=k=(m_1+m_2)\cdot \omega'^2\Rightarrow \omega'=5rac{rad}{s}$$

θέση ισορροπίας m_2

$$arSigma F_x = 0 \Rightarrow k \cdot arDelta l_2 = m_2 \cdot g \cdot \eta \mu arphi \Rightarrow arDelta l_2 = 0.06m$$

θέση ισορροπίας m_1+m_2

$$egin{split} arSigma F_x &= 0 \Rightarrow k \cdot arDelta l_1 = (m_1 + m_2) \cdot g \cdot \eta \mu arphi \Rightarrow arDelta l_1 = 0.24m \ A' &= arDelta l_1 - arDelta l_2 \Rightarrow A' = 0.18m \end{split}$$

αρχική φάση $arphi_0$: t=0: x=+A, v=0

$$egin{aligned} x &= A \cdot \eta \mu arphi (\omega t + arphi_0) \Rightarrow \eta \mu arphi_0 = +1 \Rightarrow arphi_0 = rac{\pi}{2} rad \ & \ x &= 0.18 \cdot \eta \mu (5t + rac{\pi}{2}) \quad (S.I.) \end{aligned}$$

 $\Delta 5$ -(5)

συσσωμάτωμα m_1+m_2 απλή αρμονική ταλάντωση

$$egin{aligned} F_{arepsilon\lambda} = k \cdot \Delta l \Rightarrow F_{arepsilon\lambda} = k \cdot (\Delta l_0 - x) \Rightarrow F_{arepsilon\lambda} = 24 - 100 \cdot x \quad (S.I.) \ egin{aligned} eta) au
ho \delta \pi o arepsilon \ & egin{aligned} egin{aligned} egin{aligned} eta & F_{arepsilon\lambda} & F_{$$

Μπορείτε να εκτυπώσετε τα θέματα και τις λύσεις σε μορφή pdf

	gen.	Previous	Archive	Next →	
Ų					J

ALSO ON SCIENCE TECHNOLOGY ENGINEERING MATHEMATICS

Προσομοίωση 2023	Εικόνες στο study 4	Η δύναμη του ελατηρίου	Μέι φοι
2 μήνες πριν	10 μήνες πριν	8 μήνες πριν	ένας
Φυσική Γ' Λυκείου	Φυσική Γ' Λυκείου	Φυσική Γ' Λυκείου	Φυσ