JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B. Tech I Year I Semester Examinations, December - 2018 MATHEMATICS-I

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, MMT, AE, MIE, PTM)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

- 1.a) If A is Hermitian matrix and B is a Skew- Hermitian matrix , prove that (B+iA) is Skew-Hermitian matrix. [2]
 - b) Let A be a square matix of order 3 with Eigenvalues 2, 2 and 3 and A is diagonalizable then find rank of (A-2I). [2]
 - c) State Cauchy's root test. [2]
 - d) Find the value of $\Gamma\left(-\frac{1}{2}\right)$ [2]
 - e) Verify Euler's theorem for the function xy + yz + zx [2]
 - f) Prove that the transpose of a unitary matrix is unitary. [3]
 - g) Find the Eigen values of the matrix $A = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2 \end{pmatrix}$ [3]
 - h) Test for convergence $\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^2 + 1}$. [3]
 - i) Discuss the applicability of Rolle's Theorem to the function $f(x) = 2 + (x-1)^{\frac{2}{3}}$ in the interval [0, 2].
 - j) If $u = \sin^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\frac{y}{x}$ show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$.

PART - B

(50 Marks)

2.a) Reduce the given matrix into normal form and hence find the rank

$$\begin{pmatrix} 2 & 3 & -2 & 5 & 1 \\ 3 & -1 & 2 & 0 & 4 \\ 4 & -5 & 6 & -5 & 7 \end{pmatrix}$$

b) Solve the equations x + y + z = 6; 3x + 3y + 4z = 20; 2x + y + 3z = 13 using Gauss elimination method. [5+5]

3.a) Find the rank of the matrix
$$\begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$
 by reducing it to Normal form.

- Solve the system of equations by Gauss-Seidel method 20x + y 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25. [5+5]
- and $A^{-1} = \alpha A^2 + \beta A + \gamma I$, $\alpha, \beta, \gamma \in R$, then find $\alpha + \beta + \gamma$. 4.a)
 - Find the nature of the quadratic form $10x^2 + 2y^2 + 5z^2 4xy 10xz + 6yz$. b) [5+5]
- Let A be a 3×3 matric over R such that det (A) =6 and tr (A)=0. If det(A+I)=0, where I 5.a) is the identity matrix of order 3, then find the Eigen values of A.
 - Reduce the quadratic form $5x^2 + 26y^2 + 10z^2 + 4yz + 14zx + 6xy$ to canonical form. b) [5+5]
- Test the convergence of the series $1 + \frac{x}{2} + \frac{2!}{3^2}x^2 + \frac{3!}{4^3}x^3 + \dots$ 6.a
 - Examine the following series for convergence $\sum \frac{(-1)^{n-1} \sin nx}{n^3}$.

 OR

 Test for convergence of the series $\sum \frac{x^n}{(2n)!}$. b) [5+5]

- 7.a)
 - Examine for absolute convergence the series $x \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^4}{4}$ b) [5+5]
- Show that $\frac{\tan x}{x} > \frac{x}{\sin x}$, $o < x < \frac{\pi}{2}$. 8.a)
 - Find the surface area of the solid generated by revolving the loop of the curve b) $9y^2 = x(x-3)^2$. [5+5]

OR

- Show that $|\cos b \cos a| \le |b a|$. 9.a)
 - Show that $\int_{0}^{\infty} x^{m-1} (a-x)^{n-1} dx = a^{m+n-1} \beta(m,n)$. b)
- 10.a) If u = f(y-z, z-x, x-y) show that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
 - b) If x = uv, $y = \frac{u+v}{u-v}$ determine $\frac{\partial(u,v)}{\partial(x,y)}$. [5+5]

- 11.a) If U = x + y z, V = x y + z, $W = x^2 + y^2 + z^2 2yz$, show that the functions are functionally dependent.
 - The temperature T at any point (x, y, z) in space is $T = 400xyz^2$. Find the highest temperature on the surface of the unit sphere $x^2 + y^2 + z^2 = 1$. [5+5]