Coding Dojo

Coding Dojo - Regras

- Ponto de participação, poderá perdido se:
 - Indisciplina
 - Aluno atrasado
 - Recusar participação como piloto/copiloto
 - Ou não querer sair do computador, quando solicitado :-)
 - Demorar para sair quando solicitado
 - Parar de participar por:
 - Uso de outro computador
 - Uso de celular
 - Usar a internet
 - Conversa

d=0.9

d=0.9

	Inicialização	#1 iteração	#1 iteração normalizada
А	0,1	0,278	0,29
В	0,1	0,225	0,21
С	0,1	0,225	0,21
D	0,1	0,278	0,29
Soma		0,7	

1 - inicialização

$$rac{orall a \in V:}{\mathbf{PR}[a] = lpha}$$
 Ex: $lpha = 1 - d$

2 – Calculo do PageRank

4 – Cálculo da convergência

5 – Atualização do PageRank♥

$$s>eta>$$
 Ex: $eta=0.1$

Inicialização

Considerando uma iteração qualquer (não inicial):

d=0.9

PageRank:

Α	В	С	D
0.15	0.15	0.15	0.15

1 - inicialização

$$rac{orall a \in V:}{\mathbf{PR}[a] = lpha}$$
 Ex: $lpha = 1 - d$

2 – Calculo do PageRank

3-Normalização

5 – Atualização do PageRank

$$s>eta>$$
 Ex: $eta=0.1$

Considerando uma iteração qualquer (não inicial):

* por isso os valores PageRank não são iguais a 0.10

$$d = 0.9$$

$$PR(A) = (1-d) + d \times \sum_{\forall V | V \rightarrow A} \frac{PR(V)}{outdegree(V)}$$

PageRank:

А	В	С	D
0.5	0.1	0.1	0.3

Α	В	С	D

Considerando uma iteração qualquer (não inicial):

$$d = 0.9$$

$$PR(A) = (1-d) + d \times \sum_{\forall V | V \rightarrow A} \frac{PR(V)}{outdegree(V)}$$

PageRank:

A B C D

0.5 0.1 0.1 0.3

PageRank Atual:

A B C D

0.28

Considerando uma iteração qualquer (não inicial):

$$d = 0.9$$

$$PR(A) = (1 - d) + d \times \sum_{\forall V | V \to A} \frac{PR(V)}{outdegree(V)}$$

$$PR(A) = (1 - 0.9) + 0.9 \times (\frac{PR(D)}{outdegree(D)} + \frac{PR(B)}{outdegree(B)} =$$

$$PR(A) = (1 - 0.9) + 0.9 \times (\frac{0.3}{2} + \frac{0.1}{2}) = 0.28$$

PageRank:

Α	В	С	D
0.5	0.1	0.1	0.3

Α	В	С	D
0.28			

Considerando uma iteração qualquer (não inicial):

d=0.9

$$PR(A) = (1-d) + d \times \sum_{\forall V | V \rightarrow A} \frac{PR(V)}{outdegree(V)}$$

$$PR(A) = (1 - 0.9) + 0.9 \times \left(\frac{PR(D)}{outdegree(D)} + \frac{PR(B)}{outdegree(B)}\right) = 0.9 \times \left(\frac{PR(D)}{outdegree(D)} + \frac{PR(B)}{outdegree(B)}\right)$$

$$PR(A) = (1 - 0.9) + 0.9 \times (\frac{0.3}{2} + \frac{0.1}{2}) = 0.28$$

PageRank:

Α	В	С	D
0.5	0.1	0.1	0.3

Α	В	С	D
0.28			

Considerando uma iteração qualquer (não inicial):

$$PR(B) = (1 - d) + d \times \sum_{\forall V | V \to B} \frac{PR(V)}{outdegree(V)}$$

d = 0.9

PageRank:

Α	В	С	D
0.5	0.1	0.1	0.3

A	В	С	D
0.28			

Considerando uma iteração qualquer (não inicial):

$$PR(B) = (1 - d) + d \times \sum_{\forall V | V \to B} \frac{PR(V)}{outdegree(V)}$$

$$PR(B) = (1 - 0.9) + 0.9 \times \frac{PR(D)}{outdegree(D)}$$

$$PR(B) = (1 - 0.9) + 0.9 \times \frac{0.3}{2} = 0.235$$

PageRank:

Α	В	С	D
0.5	0.1	0.1	0.3

Α	В	С	D
0.28	0.235		

Considerando uma iteração qualquer (não inicial):

$$PR(C) = (1 - d) + d \times \sum_{\forall V | V \to C} \frac{PR(V)}{outdegree(V)}$$

d = 0.9

PageRank:

A B C D

0.5 0.1 0.1 0.3

A	В	С	D
0.28	0.235		

Considerando uma iteração qualquer (não inicial):

$$PR(C) = (1 - d) + d \times \sum_{\forall V | V \to C} \frac{PR(V)}{outdegree(V)}$$

$$PR(C) = (1 - 0.9) + 0.9 \times \frac{PR(B)}{outdegree(B)}$$

$$PR(C) = (1 - 0.9) + 0.9 \times \frac{0.1}{2} = 0.145$$

PageRank:

Α	В	С	D
0.5	0.1	0.1	0.3

Α	В	С	D
0.28	0.235	0.145	

Considerando uma iteração qualquer (não inicial):

$$PR(D) = (1-d) + d \times \sum_{\forall V | V \to D} \frac{PR(V)}{outdegree(V)}$$

d = 0.9

PageRank:

A B C D

0.5 0.1 0.1 0.3

PageRank Atual:

A B C D

0.28 0.235 0.145

Considerando uma iteração qualquer (não inicial):

$$PR(D) = (1-d) + d \times \sum_{\forall V | V \to D} \frac{PR(V)}{outdegree(V)}$$

d = 0.9

$$PR(D) = (1 - 0.9) + 0.9 \times \frac{PR(D)}{outdegree(D)}$$

$$PR(D) = (1 - 0.9) + 0.9 \times \frac{0.5}{1} = 0.55$$

PageRank:

A B C D

0.5 0.1 0.1 0.3

Α	В	С	D	
0.28	0.235	0.145	0.55	

1 - inicialização

$$orall a \in V:$$
 $\mathbf{PR}[a] = lpha$ $\mathbf{PR}[a] = 1 - d$

2 – Calculo do PageRank

 $\forall a \in V:$

$$\mathbf{PR_atual}[a] = (1 - d) + d \times \sum_{\forall v \in V | v \to a} \frac{\mathbf{PR}[v]}{\mathbf{outdegree}[v]}$$

3 - Normalização

$$norma = \sum_{\forall v \in V} \mathbf{PR_atual}[v]$$

$$\forall a \in V:$$

$$\mathbf{PR_atual}[a] = \frac{\mathbf{PR_atual}[a]}{norma}$$

4 – Cálculo da convergência

$$s>eta>$$
 Ex: $eta=0.1$

Calculo do Page Rank Normalização do vetor PageRank Atual

Considerando uma iteração qualquer (não inicial):

PageRank Atual:

Α	В	С	D	
0.28	0.235	0.145	0.55	

Uma possibilidade: somatório 0.28 + 0.235 + 0.145 + 0.55 = 1.21

Α	В	С	D
0.28 / 1.21	0.235 / 1.21	0.145 / 1.21	0.55 / 1.21

PageRank Atual (normalizado):

Α	В	С	D	
0.23	0.19	0.12	0.46	

1 - inicialização

$$\forall a \in V :$$
 $\mathbf{PR}[a] = \alpha$

Ex:
$$\alpha=1-d$$

2 – Calculo do PageRank

$$\forall a \in V:$$

$$\mathbf{PR_atual}[a] = (1-d) + d \times \sum_{\forall v \in V | v \to a} \frac{\mathbf{PR}[v]}{\mathbf{outdegree}[v]}$$

3 – Normalização

$$norma = \sum_{\forall v \in V} \mathbf{PR_atual}[v]$$

$$\forall a \in V :$$

$$\mathbf{PR_atual}[a] = \frac{\mathbf{PR_atual}[a]}{norma}$$

4 - Cálculo da convergência

$$s = \sum_{\forall v \in V} |\mathbf{PR_atual}[v] - \mathbf{PR}[v]|$$

5 – Atualização do PageRank

$$orall a \in V:$$
 $\mathbf{PR_atual}[a] = \mathbf{PR}[a]$

$$(s>eta)$$
 Ex: $eta=0.1$

Calculo do Page Rank Convergiu?

Considerando uma iteração qualquer (não inicial):

	Α	В	С	D
PageRank:	0.5	0.1	0.1	0.3
		-1		
	Α	В	С	D
PageRank Atual	0.23	0.19	0.12	0.46
(normalizado):				
D.(Α	В	С	D
Diferença (valor absoluto/modulo):	0.27	0.09	0.02	0.16

somatório da diferença: 0,54

O critério para verificar se convergiu é um parâmetro do algoritmo. Caso essa soma tivesse que ser, por exemplo, menor < que 0.01, então o PageRank não normalizou e será necessário outra iteração.

Calculo do Page Rank - Teste

d=0.85

	Ini.	#1	#1 norm	#2	#2 norm	#3	#3 norm.
Α	0,15	0,214	0,193	0,281	0,194	0,309	0,213
В	0,15	0,405	0,365	0,477	0,329	0,479	0,330
С	0,15	0,341	0,307	0,542	0,374	0,512	0,353
D	0,15	0,15	0,135	0,15	0,103	0,15	0,103