

hls4ml tutorial FPL2020

Introduction

- hls4ml is a package for translating neural networks to FPGA firmware for inference with extremely low latency on FPGAs
 - https://github.com/hls-fpga-machine-learning/hls4ml
 - https://fastmachinelearning.org/hls4ml/
 - pip install hls4ml
- In this session you will get hands on experience with the his4ml package
- We'll learn how to:
- Translate models into synthesizable FPGA code
- Explore the different handles provided by the tool to optimize the inference
 - Latency, throughput, resource usage
- Make our inference more computationally efficient with pruning and quantization
- Download these slides for offline viewing from https://cernbox.cern.ch/index.php/s/AgTYlumugLRnHa0

Introduction

Thea Arrestad (CERN)

Adrian Alan Pol (CERN)

Hamza Javed (CERN)

Hampus Linander (Zenuity)

Vladimir Loncar (CERN)

Jennifer Ngadiuba (Caltech)

Maurizio Pierini (CERN)

Christoffer Petersson (Zenuity)

Sioni Summers (CERN)

hls4ml origins: triggering at (HL-)LHC

Extreme collision frequency of 40 MHz → extreme data rates O(100 TB/s)

Most collision "events" don't produce interesting physics

"Triggering" = filter events to reduce data rates to manageable levels

LHC Experiment Data Flow

AO INITA LA TRIO DE LA TRIO DELLA TRIO DE LA TRIO DE LA

DATA FLOW

- L1 trigger:
- 40 MHz in / 100 KHz out
- Process 100s TB/s
- Trigger decision to be made in ≈ 10 µs
- Coarse local reconstruction
- FPGAs / Hardware implemented

LHC Experiment Data Flow

Deploy ML algorithms very early in the game Challenge: strict latency constraints!

The challenge: triggering at (HL-)LHC

The trigger discards events *forever*, so selection must be very precise ML can improve sensitivity to rare physics

Needs to be *fast!*

Enter: hls4ml (high level synthesis for machine learning)

hls4ml: progression

- Previous slides showed the original motivation for hls4ml
 - Extreme low latency, high throughput domain
- Since then, we have been expanding!
 - Longer latency domains, larger models, resource constrained
 - Different FPGA vendors
 - New applications, new architectures
- While maintaining core characteristics:
 - "Layer-unrolled" HLS library → not another DPU
 - Extremely configurable: precision, resource vs latency/throughput tradeoff
 - · Research project, application- and user-driven
 - Accessible, easy to use

Recent Developments

hls4ml community is very active!

- Binary & Ternary neural networks:
 [2020 Mach. Learn.: Sci. Technol]
 - Compressing network weights for low resource inference
- Boosted Decision Trees: [JINST 15 P05026 (2020)]
 - Low latency inference of Decision Tree ensembles
- GarNet / GravNet: [arXiv: 2008.03601]
 - Distance weighted graph neural networks suitable for sparse and irregular point-cloud data, such as from LHC detectors
 - Implemented with low latency for FPGAs in hls4ml
- Quantization aware training QKeras + support in hls4ml: [arXiv: 2006.10159]

Coming Soon

- A few exciting new things should become available soon (this year):
 - Intel Quartus HLS & Mentor Catapult HLS 'Backends'
 - Convolutional Neural Networks
 - Much larger models than we've supported before
 - Recurrent Neural Networks
 - More integrated 'end-to-end'
 - flow with bitfile generation
 - and host bindings for
 - platforms like Alveo, PYNQ

high level synthesis for machine learning

Neural network inference

Neural network inference

Efficient NN design for FPGAs

FPGAs provide huge flexibility

Performance depends on how well you take advantage of this

Constraints: Input bandwidth FPGA resources Latency

Today you will learn how to optimize your project through:

 compression: reduce number of synapses or neurons

 parallelization: tune how much to parallelize to make the inference faster/slower versus FPGA resources

Today's his4ml hands on

• Part 1:

- Get started with hls4ml: train a basic model and run the conversion, simulation & c-synthesis steps

• Part 2:

 Learn how to tune inference performance with quantization & ReuseFactor

• Part 3:

Perform model compression and observe its effect on the FPGA resources/latency

• Part 4:

 Train using QKeras "quantization aware training" and study impact on FPGA metrics

hls4ml tutorial Part 1: Model Conversion

Physics case: jet tagging

Study a <u>multi-classification task to be implemented on FPGA</u>: discrimination between highly energetic (boosted) **q, g, W, Z, t** initiated jets

Jet = collimated 'spray' of particles

Reconstructed as one massive jet with substructure

Physics case: jet tagging

Input variables: several observables known to have high discrimination power from offline data analyses and published studies [*]

[*] D. Guest at al. https://physrevb.94.112002, G. Kasieczka et al. https://physrevLett.100.242001, etc..

 $m_{
m mMDT}$ $N_2^{eta=1,2}$ $M_2^{eta=1,2}$ $C_1^{eta=0,1,2}$ $C_2^{eta=1,2}$ $D_2^{eta=1,2}$ $D_2^{(lpha,eta)=(1,1),(1,2)}$ $\sum z \log z$ Multiplicity

Physics case: jet tagging

- We'll train the five class multi-classifier on a sample of $\sim 1M$ events with two boosted WW/ZZ/tt/qq/gg anti-k $_{\text{T}}$ jets
 - Dataset DOI: 10.5281/zenodo.3602254
 - OpenML: https://www.openml.org/d/42468

- Fully connected neural network with 16 expert-level inputs:
 - Relu activation function for intermediate layers
 - <u>Softmax activation function</u> for output layer

AUC = area under ROC curve (100% is perfect, 20% is random)

Hands On - Setup

- The interactive part is served with Python notebooks
- Open http://cern.ch/ssummers/fpl2020 in your browser
- Authenticate with your Github account (login if necessary)
- Open and start running through "part1_getting_started" !
 - If you're new to Jupyter notebooks, select a cell and hit "shift + enter" to execute the code

hls4ml Tutorial

Part 2: Advanced Configuration

Efficient NN design: quantization

- ap_fixed<width bits, integer bits> In the FPGA we use fixed point representation
 - Operations are integer ops, but we can represent fractional values
 - But we have to make sure we've used the correct data types!

Scan integer bits

Fractional bits fixed to 8

Scan fractional bits

Integer bits fixed to 6

Efficient NN design: parallelization

- Trade-off between latency and FPGA resource usage determined by the parallelization of the calculations in each layer
- Configure the "reuse factor" = number of times a multiplier is used to do a computation

Reuse factor: how much to parallelize operations in a hidden layer

Parallelization: DSP usage

Parallelization: Timing

Latency of layer m

$$L_m = L_{\text{mult}} + (R - 1) \times II_{\text{mult}} + L_{\text{activ}}$$

Part 2: Large MLP

- 'Strategy: Resource' for larger networks and higher reuse factor
- Uses a slightly different HLS implementation of the dense layer to compile faster and better for large layers
- Here, we use a different partitioning on the first layer for the best partitioning of arrays

```
IOType: io_parallel # options: io_serial/io_parallel HLSConfig:
    Model:
        Precision: ap_fixed<16,6>
        ReuseFactor: 128
        Strategy: Resource
        LayerName:
        dense1:
        ReuseFactor: 112
```

This config is for a model trained on the MNIST digits classification dataset Architecture (fully connected): $784 \rightarrow 128 \rightarrow 128 \rightarrow 128 \rightarrow 10$ Model accuracy: ~97%

We can work out how many DSPs this should use...

Part 2: Large MLP

- It takes a while to synthesise, so here's one I made earlier...
- The DSPs should be: (784 x 128) / 112 + (2 x 128 x 128 + 128 x 10) / 128 = 1162

```
+ Timing (ns):
 * Summary:
 +----+
  | Clock | Target| Estimated| Uncertainty|
 +----+
 |ap clk | 5.00| 4.375|
 +----+
+ Latency (clock cycles):
 * Summary:
 +----+
 | Latency | Interval | Pipeline |
 | min | max | min | max | Type
 +----+
  518| 522| 128| 128| dataflow |
 +----+
```


II determined by the largest reuse factor

hls4ml Tutorial

Part 3: Compression

NN compression methods

- Network compression is a widespread technique to reduce the size, energy consumption, and overtraining of deep neural networks
- Several approaches have been studied:
 - parameter pruning: selective removal of weights based on a particular ranking
 [arxiv.1510.00149, arxiv.1712.01312]
 - low-rank factorization: using matrix/tensor decomposition to estimate informative parameters [arxiv.1405.3866]
 - transferred/compact convolutional filters: special structural convolutional filters to save parameters [arxiv.1602.07576]
 - **knowledge distillation:** training a compact network with distilled knowledge of a large network [doi:10.1145/1150402.1150464]
- Today we'll use the tensorflow model sparsity toolkit
 - https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html
- But you can use other methods!

TF Sparsity

 Iteratively remove low magnitude weights, starting with 0 sparsity, smoothly increasing up to the set target as training proceeds

Efficient NN design: compression

70% compression ~ 70% fewer DSPs

- DSPs (used for multiplication) are often limiting resource
 - maximum use when fully parallelized
 - DSPs have a max size for input (e.g. 27x18 bits), so number of DSPs per multiplication changes with precision

hls4ml Tutorial

Part 4: Quantization

Efficient NN design: quantization

- hls4ml allows you to use different data types everywhere, we will learn how to use that
- We will also try quantization-aware training with QKeras (part 4)
- With quantization-aware we can even go down to just 1 or 2 bits
 - See our recent work: https://arxiv.org/abs/2003.06308

QKeras

- QKeras is a library to train models with quantization in the training
 - Maintained by Google
- Easy to use, drop-in replacements for Keras layers
 - e.g. Dense → QDense
 - e.g. Conv2D → QConv2D
 - Use 'quantizers' to specify how many bits to use where
 - Same kind of granularity as hls4ml
- Can achieve good performance with very few bits
- We've recently added support for QKeras-trained models to hls4ml
 - The number of bits used in training is also used in inference
 - The intermediate model is adjusted to capture all optimizations possible with QKeras

Summary

- After this session you've gained some hands on experience with hls4ml
 - Translated neural networks to FPGA firmware, run simulation and synthesis
- Tuned network inference performance with precision and ReuseFactor
 - Used profiling and trace tools to guide tuning
- Seen how to simply prune a neural network and the impact on resources
- Trained a model with small number of bits using Qkeras, and use the same spec in inference easily with **hls4ml**
- You can find these tutorial notebooks to run yourself: https://github.com/hls-fpga-machine-learning/hls4ml-tutorial
 - They will be updated with what you saw today in the comings days
- You can run the tutorial Docker image yourself like:
 - docker run -p 8888:8888 gitlab-registry.cern.ch/ssummers/hls4ml-tutorial:9
 - No FPGA tools on this one!
- Use hls4ml in your own environment: pip install hls4ml[profiling]