Dummy Variables for Dummies

Evgenia Olimpieva

02/25/2020

➤ So far we have only seen models with continuous independent variables.

- ➤ So far we have only seen models with continuous independent variables.
- Continuous (and discrete) variables are easiest to interpret

- So far we have only seen models with continuous independent variables.
- Continuous (and discrete) variables are easiest to interpret
- ► Monthly Household Expense = $\beta_0 + \beta_1 *$ Num of Kids+...+ ϵ

- So far we have only seen models with continuous independent variables.
- Continuous (and discrete) variables are easiest to interpret
- ► Monthly Household Expense = $\beta_0 + \beta_1 *$ Num of Kids+...+ ϵ
- ► We iterpret them in terms of the slope (change in run corresponding to a change in the rise)

► However, not all variables are interpreted in terms of the slope.

- However, not all variables are interpreted in terms of the slope.
- ► We interpret the coefficient of a dummy variable in the regression in terms of a difference between groups.

- However, not all variables are interpreted in terms of the slope.
- ► We interpret the coefficient of a dummy variable in the regression in terms of a difference between groups.
- Before we unpack that, let's review what dummy variables are!

- However, not all variables are interpreted in terms of the slope.
- ► We interpret the coefficient of a dummy variable in the regression in terms of a difference between groups.
- ▶ Before we unpack that, let's review what dummy variables are!
- Examples?

Indicator Variables

► Dummy variable = Indicator variable

Indicator Variables

- ► Dummy variable = Indicator variable
- ► Takes values 0 or 1.

Indicator Variables

- ► Dummy variable = Indicator variable
- ► Takes values 0 or 1.
- ► It indicates presence (1) or absence (0) of a certain quality.

Indicator variables

$$D = \begin{cases} 1 & \text{Property Present} \\ 0 & \text{Property Absent} \end{cases}$$

Indicator variables

$$D = \left\{ \begin{array}{ll} 1 & \text{Female} \\ 0 & \text{Male} \end{array} \right.$$

► Let's create an indicator variable!

- ► Let's create an indicator variable!
- ► We will use variable "English" and create a dummy variable "High Percent English Learners" or HiEL.

- ► Let's create an indicator variable!
- ► We will use variable "English" and create a dummy variable "High Percent English Learners" or HiEL.
- ► HiEL will take a value of 1 when there is a high percent of English learners in a school and 0 when it is low.

Formally:

$$HiEL = \begin{cases} 1 & enlglish \ge 10 \\ 0 & enlglish < 10 \end{cases}$$

We know how to do that in R!

```
#create a dummy variable from variable `english`
CASchools$HiEL <- ifelse(CASchools$english >= 10, 1, 0)
#check your work
table(CASchools$HiEL)
##
```

```
## 0 1
## 228 192
```

Model with an Indicator Variable Only

$$\hat{\text{Score}} = \hat{\beta_0} + \hat{\beta_1} \quad \text{HiEL} \quad +\epsilon$$

Model with an Indicator Variable Only

Interpreting Models with an Indicator Variable Only

Score =
$$\hat{\beta}_0 + \hat{\beta}_1 \text{HiEL} + \epsilon$$

- For dummy-only model, it is not useful to think of $\hat{\beta}_1$ in terms of a slope
- $ightharpoonup E(Y|HiEL=0) = \hat{\beta_0}$
- $ightharpoonup E(Y|HiEL=1) = \hat{\beta_0} + \hat{\beta_1}$
- ▶ Thus, β_1 is the difference in *group specific expectations*

Interpreting Models with an Indicator Variable Only

Table 1: Comparing Group Average Test Scores

	Dependent variable:	
	score	
HIEL	-20.400***	
	(1.580)	
Constant	663.482***	
	(1.068)	
Observations	420	
\mathbb{R}^2	0.285	
Adjusted R ²	0.283	
Residual Std. Error	16.129 (df = 418)	
F Statistic	166.746*** (df = 1; 418)	
Note:	*p<0.1; **p<0.05; ***p<0.01	

Interpreting Models with an Indicator Variable Only

Indicator and Continuous Variable Model

➤ What if we added to our dummy-only regression a continous variable?

Indicator and Continuous Variable Model

What if we added to our dummy-only regression a continous variable?

Indicator and Continuous Variable Model

What if we added to our dummy-only regression a continous variable?

We will get something that is called a parallel slopes model, which you have seen on DataCamp. Model with and Indicator variable

Let's add to our previous model a continous STR variable:

$$\begin{array}{ccc} & & & & & & & \\ \text{Dummy} & & & & & \\ \text{Score} = \hat{\beta_0} + \hat{\beta_1} * & & & & \\ \text{HiEL} & + \hat{\beta_2} * & & & \\ \end{array}$$

Model with and Indicator variable

Let's add to our previous model a continous STR variable:

What happens when HiEL= 0? What happens when HiEL=1?

- By virtue of including the dummy and a continous variable, we created two parallel slope models, one for each group.
- ▶ One, for HiEL = 1, in which $\hat{\beta}_1$ gets added to the intercept β_0

Scôre =
$$(\hat{\beta_0} + \hat{\beta_1}) + \hat{\beta_2} * STR$$

And another one for HiEL = 0, where $\hat{\beta}_1$ dissappears as it is multiplied by 0:

Scôre =
$$\hat{\beta_0}$$
 + $\hat{\beta_2}$ * STR

Visualizing Indicator Variables in a Regression

$$Y = \beta_0 + \beta_D * \overbrace{D}^{indicator} + \beta_X * X + \epsilon$$

- ► If there is an indicator variable, our model essentially contains two models (one for each group): one for when D = 1, and another one for when D=0
- ▶ When $D = 0 \rightarrow Y = \beta_0 + \beta_X * X + \epsilon$. The coefficient for D is essentially added to the intercept (which is what shifts the line up and down).
- ▶ When $D = 1 \rightarrow Y = (\beta_0 + \beta_D) + \beta_X * X + \epsilon$

Table 2: Regression Results

	Dependent variable:		
	score		
HIEL	-19.533***		
	(1.576)		
STR	-1.491***		
	(0.416)		
Constant	692.361***		
	(8.121)		
Observations	420		
\mathbb{R}^2	0.307		
Adjusted R ²	0.303		
Residual Std. Error	15.904 (df = 417)		
F Statistic	92.170*** (df = 2; 417)		
Note:	*p<0.1; **p<0.05; ***p<0.01		

▶ Interpreting $\hat{\beta}_1 = -19.5$: On average, we expect the students in schools with High Percent English Learners to score 19.5 points **lower** on their test scores than students in school with Low Percent English Learners

- ▶ Interpreting $\hat{\beta}_1 = -19.5$: On average, we expect the students in schools with High Percent English Learners to score 19.5 points **lower** on their test scores than students in school with Low Percent English Learners
- ► Interpreting the intercept for HiEL = 0: "On average, when student to teacher ratio is zero, we expect students in schools with low number of english learners to have a test score around 692.4"

- ▶ Interpreting $\hat{\beta}_1 = -19.5$: On average, we expect the students in schools with High Percent English Learners to score 19.5 points **lower** on their test scores than students in school with Low Percent English Learners
- ► Interpreting the intercept for HiEL = 0: "On average, when student to teacher ratio is zero, we expect students in schools with low number of english learners to have a test score around 692.4"
- ► Interpreting the intercept for HiEL = 1: "On average, when student to teacher ratio is zero, we expect students in schools with high number of english learners to have a test score around 692.361-19.533 = 672.8"

- ▶ Interpreting $\hat{\beta}_1 = -19.5$: On average, we expect the students in schools with High Percent English Learners to score 19.5 points **lower** on their test scores than students in school with Low Percent English Learners
- ► Interpreting the intercept for HiEL = 0: "On average, when student to teacher ratio is zero, we expect students in schools with low number of english learners to have a test score around 692.4"
- ► Interpreting the intercept for HiEL = 1: "On average, when student to teacher ratio is zero, we expect students in schools with high number of english learners to have a test score around 692.361-19.533 = 672.8"
- ▶ The statistical significance of β_1 coefficient for HiEL in this case means that the difference between two groups is statistically significant.

Example Continued

Now, let's create a variable, which is the inverse of HiEL and which takes 1 when the school has less than 10 percent English learners and 0 otherwise.

$$LowEL = \begin{cases} 1 & enlgish < 10 \\ 0 & english \ge 10 \end{cases}$$

```
#create a dummy variable from variable `english`
CASchools$LowEL <- ifelse(CASchools$english < 10, 1, 0)
#check your work
table(CASchools$LowEL)</pre>
```

```
## 0 1
## 192 228
```

Model with LowEL

Scôre =
$$\hat{\beta_0} + \hat{\beta_1} * LowEL + \hat{\beta_2} * STR$$

We will run the same model as before, just replacing HiEL with LOWEL.

Compare the two models

The two models below are **identical**, despite the fact that that 1) intercepts are different 2) the sign of coefficients for HiEL with LowEL is reversed. Why?

Table 3: Two Dummies Walked Into a Bar...

	Dependent variable:		
	score		
	(1)	(2)	
HIEL	-19.533*** (1.576)		
LowEL		19.533*** (1.576)	
STR	-1.491*** (0.416)	-1.491*** (0.416)	
Constant	692.361*** (8.121)	672.828*** (8.373)	
Observations	420	420	
R^2	0.307	0.307	
Adjusted R ²	0.303	0.303	
Residual Std. Error (df = 417) F Statistic (df = 2; 417)	15.904 92.170***	15.904 92.170***	
Note:	*p<0.1; **p<0.05; ***p<0.01		

► We can never include both HiEL and LowEL because the two variables are perfectly collinear!

- ▶ We can never include both HiEL and LowEL because the two variables are perfectly collinear!
- Lack of perfect collinearity is one of the key assumptions in linear models and we will go over it in more detail in our class on assumptions.

- ► We can never include both HiEL and LowEL because the two variables are perfectly collinear!
- ► Lack of perfect collinearity is one of the key assumptions in linear models and we will go over it in more detail in our class on assumptions.
- However, an intuitive way to understand perfect collinearity is that it happens when one variable does not add any new information to another variable.

► All information contained in LowEL is already included in HiEL (they are the same variable, just coded differently). So, we do not need both of them in the model.

- ► All information contained in LowEL is already included in HiEL (they are the same variable, just coded differently). So, we do not need both of them in the model.
- Adding both versions of the same dummy variables is dramatically referred to as a dummy variable trap

Dummy variable trap is not so scarry. In fact, R simply won't let you add both of the variables into the model and will automatically drop one of them:

lm(score ~ LowEL + HiEL+ STR, data = CASchools)

```
##
## Call:
## lm(formula = score ~ LowEL + HiEL + STR, data = CASchool
##
   Coefficients:
## (Intercept)
                       LowEL
                                      HiEL.
                                                     STR
       672.828
                      19.533
                                        NA
                                                  -1.491
```

Thanks, R!

##