

Python数据分析——第6周

DATAGURU专业数据分析社区

法律声明

【声明】本视频和幻灯片为炼数成金网络课程的教学资料,所有资料只能在课程内使用,不得在课程以外范围散播,违者将可能被追究法律和经济责任。

课程详情访问炼数成金培训网站

http://edu.dataguru.cn

关注炼数成金企业微信

■ 提供全面的数据价值资讯,涵盖商业智能与数据分析、大数据、企业信息化、数字化技术等, 各种高性价比课程信息,赶紧掏出您的手机关注吧!

本周内容

◆ 数据整理与预处理

- 数据清洗
- 合并数据集
- 数据转换
- 重塑和轴向旋转
- 字符串操作
- 示例

数据清洗

◆ 缺失值处理

- 删除记录
- 数据插补——<u>拉格朗日插值法、牛顿插值法</u>
- 不处理

插补方法	方 法 描 述
均值/中位数/众数插补	根据属性值的类型,用该属性取值的平均数/中位数/众数进行插补
使用固定值	将缺失的属性值用一个常量替换。如广州一个工厂普通外来务工人员的"基本工资"属性的空缺值可以用 2015 年广州市普通外来务工人员工资标准 1895 元 / 月,该方法就是使用固定值
最近临插补	在记录中找到与缺失样本最接近的样本的该属性值插补
回归方法	对带有缺失值的变量,根据已有数据和与其有关的其他变量(因变量)的数据建立 拟合模型来预测缺失的属性值
插值法	插值法是利用已知点建立合适的插值函数 $f(x)$,未知值由对应点 x ,求出的函数值 $f(x)$,近似代替

◆ 异常值处理

数据插补

◆ 拉格朗日插值法

根据数学知识可知,对于平面上已知的n个点(无两点在一条直线上)可以找到一个n-1次 多项式 $y=a_0+a_1x+a_2x^2+\ldots+a_{n-1}x^{n-1}$,使此多项式曲线过这n个点。

1) 求已知的过n个点的n-1次多项式:

$$y = a_0 + a_1 x + a_2 x^2 + ... + a_{n-1} x^{n-1}$$
 (4-1)

将n个点的坐标 (x_1, y_1) , (x_2, y_2) ... (x_n, y_n) 代入多项式函数 , 得

$$y_1 = a_0 + a_1 x_1 + a_2 x_1^2 + \dots + a_{n-1} x_1^{n-1}$$

$$y_2 = a_0 + a_1 x_1 + a_2 x_2^2 + \dots + a_{n-1} x_2^{n-1}$$

$$\dots$$

$$y_n = a_0 + a_1 x_n + a_2 x_n^2 + \dots + a_{n-1} x_n^{n-1}$$

解出拉格朗日插值多项式为:

$$L(x) = y_1 \frac{(x-x_2)(x-x_3)\cdots(x-x_n)}{(x_1-x_2)(x_1-x_3)\cdots(x_1-x_n)} + y_2 \frac{(x-x_1)(x-x_3)\cdots(x-x_n)}{(x_2-x_1)(x_2-x_3)\cdots(x_2-x_n)} + \cdots + y_n \frac{(x-x_1)(x-x_2)\cdots(x-x_{n-1})}{(x_n-x_1)(x_n-x_2)\cdots(x_n-x_{n-1})}$$
(4-2)

$$= \sum_{i=0}^{n} y_{i} \prod_{j=0, j \neq i}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

2)将缺失的函数值对应的点x代入插值多项式得到缺失值的近似值L(x)。

数据插补

◆ 牛顿插值法

1) 求已知的n个点对 (x_1, y_1) , (x_2, y_2) ... (x_n, y_n) 的所有阶差商公式

$$f[x_1, x] = \frac{f[x] - f[x_1]}{x - x_1} = \frac{f(x) - f(x_1)}{x - x_1}$$
 (4-3)

$$f[x_2, x_1, x] = \frac{f[x_1, x] - f[x_2, x_1]}{x - x_2}$$
 (4-4)

$$f[x_3, x_2, x_1, x] = \frac{f[x_2, x_1, x] - f[x_3, x_2, x_1]}{x - x_3}$$
 (4-5)

.

$$f[x_{n}, x_{n-1}, \cdots, x_{1}, x] = \frac{f[x_{n-1}, \cdots, x_{1}, x] - f[x_{n}, x_{n-1}, \cdots, x_{1}]}{x - x_{n}}$$
 (4-6)

2) 联立以上差商公式建立如下插值多项式f(x)

$$f(x) = f(x_1) + (x - x_1)f[x_2, x_1] + (x - x_1)(x - x_2)f[x_3, x_2, x_1] + (x - x_1)(x - x_2)(x - x_3)f[x_4, x_3, x_2, x_1] + \dots + (x - x_1)(x - x_2) \dots (x - x_{n-1})f[x_n, x_{n-1}, \dots x_2, x_1] +$$

$$(4-7)$$

 $(x-x_1)(x-x_2)\cdots(x-x_n)f[x_n,x_{n-1},\cdots x_1,x]$

$$= P(x) + R(x)$$

$$P(x) = f(x_1) + (x - x_1) f[x_2, x_1] + (x - x_1) (x - x_2) f[x_3, x_2, x_1] + (x - x_1) (x - x_2) (x - x_3) f[x_4, x_3, x_2, x_1] + \dots +$$
(4-8)

$$R(x) = (x - x_1)(x - x_2) \cdots (x - x_n) f[x_n, x_{n-1}, \cdots x_1, x]$$
(4-9)

P(x)是牛顿插值逼近函数, R(x)是误差函数。

3)将缺失的函数值对应的点x代入插值多项式得到缺失值的近似值f(x)。

 $(x-x_1)(x-x_2)\cdots(x-x_{n-1})f[x_n,x_{n-1},\cdots,x_2,x_1]$

合并数据

◆ Pandas对象

– Merge方法:根据一个或多个键将不同dataframe中的行合并

- Concat方法:沿一条轴将对多个对象堆叠起来

◆ 数据库风格的DataFrame合并

Merge

- Merge参数

参数	说明	
left	参与合并的左侧DataFrame	
right	参与合并的右侧DataFrame	
how	"inner"、"outer"、"left"、"right"其中之一。默认为":"	
参数	说明	
on	用于连接的列名。必须存在于左右两个DataFrame对象中。如果未指 定,且其他连接键也未指定,则以left和right列名的交集作为连接键	
left_on	左侧DataFrame中用作连接键的列	
right_on	右侧DataFrame中用作连接键的列	
left_index	将左侧的行索引用作其连接键	
right_index	类似于left_index	
sort	根据连接键对合并后的数据进行排序,默认为True。有时在处理大数据集时,禁用该选项可获得更好的性能	
suffixes	字符串值元组,用于追加到重叠列名的末尾,默认为('_x', '_y')。例如,如果左右两个DataFrame对象都有"data",则结果中就会出现"data_x"和"data_y"	
сору	设置为False,可以在某些特殊情况下避免将数据复制到结果数据结构中。默认总是复制	

合并数据

◆ 索引上的合并

◆ 轴向连接

- Numpy数组——concatenation
- Pandas对象——concat
- Concat的参数

参数	说明
objs	参与连接的pandas对象的列表或字典。唯一必需的参数
axis	指明连接的轴向,默认为0
join	"inner"、"outer"其中之一,默认为"outer"。指明其他轴向上的索引是按交集(inner)还是并集(outer)进行合并
join_axes	指明用于其他n-1条轴的索引,不执行并集/交集运算
keys	与连接对象有关的值,用于形成连接轴向上的层次化索引。可以是任意值的列表或数组、元组数组、数组列表(如果将levels设置成多级数组的话)
levels	指定用作层次化索引各级别上的索引,如果设置了keys的话 ^{译注3}
names	用于创建分层级别的名称,如果设置了keys和(或)levels的话
verify_integrity	检查结果对象新轴上的重复情况,如果发现则引发异常。默认(False)允许重复
ignore_index	不保留连接轴上的索引,产生一组新索引range(total_length)

合并数据

◆ 合并重叠数据

- Numpy——where
- Series—combine_first
- DataFrame_combin_first

重塑和轴向旋转

◆ 重塑层次化索引

- Stack:将数据的列"旋转"为行

- Unstack:将数据的行"旋转"为列

◆ 长格式与宽格式数据的转换

- 长格式数据
- 宽格式数据

数据转换

- ◆ 移除重复数据
- ◆ 利用函数或映射进行数据转换
- ◆ 替换值
- ◆ 重命名轴索引
- ◆ 离散化和面元划分
- ◆ 检测和过滤异常值
- ◆ 排列和随机采样
- ◆ 计算指标与哑变量

字符串操作

◆ 字符串对象方法

- Split
- Strip

-

◆ Python内置的字符串方法

方法	说明
count	返回子串在字符串中的出现次数(非重叠)
$ends with \\ , \ starts with$	如果字符串以某个后缀结尾(以某个前缀开头),则返回True
join	将字符串用作连接其他字符串序列的分隔符
index	如果在字符串中找到子串,则返回子串第一个字符所在的位 置。如果没有找到,则引发ValueError。
find	如果在字符串中找到子串,则返回第一个发现的子串的第一个字符所在的位置。如果没有找到,则返回-1
rfind	如果在字符串中找到子串,则返回最后一个发现的子串的第一 个字符所在的位置。如果没有找到,则返回-1
replace	用另一个字符串替换指定子串
strip, rstrip, Istrip	去除空白符(包括换行符)。相当于对各个元素执行x.strip() (以及rstrip、lstrip)。 ^{译注10}
split	通过指定的分隔符将字符串拆分为一组子串
lower, upper	分别将字母字符转换为小写或大写
ljust , rjust	用空格(或其他字符)填充字符串的空白侧以返回符合最低宽 度的字符串

字符串操作

◆ 正则表达式

- Re模块
 - 模式匹配
 - 替换
 - 拆分

◆ 正则表达式方法

方法	说明
findall、finditer	返回字符串中所有的非重叠匹配模式。findall返回的是由所有模式组成的列表,而finditer则通过一个迭代器逐个返回
match	从字符串起始位置匹配模式,还可以对模式各部分进行分组。如果 匹配到模式,则返回一个匹配项对象,否则返回None
search	扫描整个字符串以匹配模式。如果找到则返回一个匹配项对象。跟 match不同,其匹配项可以位于字符串的任意位置,而不仅仅是起 始处
split	根据找到的模式将字符串拆分为数段
sub, subn	将字符串中所有的(sub)或前n个(subn)模式替换为指定表达式 ^{译注12} 。在替换字符串中可以通过\1、\2等符号表示各分组项

字符串操作

◆ Pandas中矢量化字符串方法

方法	说明
cat	实现元素级的字符串连接操作,可指定分隔符
contains	返回表示各字符串是否含有指定模式的布尔型数组
count	模式的出现次数
$ends with, \ starts with$	相当于对各个元素执行x.endswith(pattern)或x.startswith(pattern)
findall	计算各字符串的模式列表
get	获取各元素的第i个字符
join	根据指定的分隔符将Series中各元素的字符串连接起来
len	计算各字符串的长度
lower, upper	转换大小写。相当于对各个元素执行x.lower()或x.upper()
match	根据指定的正则表达式对各个元素执行re.match
pad	在字符串的左边、右边或左右两边添加空白符
center	相当于pad(side='both')
repeat	重复值。例如,s.str.repeat(3)相当于对各个字符串执行x * 3
replace	用指定字符串替换找到的模式
slice	对Series中的各个字符串进行子串截取
split	根据分隔符或正则表达式对字符串进行拆分
strip, rstrip, Istrip	去除空白符,包括换行符。相当于对各个元素执行x.strip()、
	x.rstrip() 、x.lstrip()

示例: USDA食品数据库

- ◆ 美国农业部(USDA)的一份关于食物营养信息的数据库
- ◆ 该数据的JSON版

```
"id": 21441,
  "description": "KENTUCKY FRIED CHICKEN, Fried Chicken, EXTRA CRISPY,
Wing, meat and skin with breading",
  "tags": ["KFC"],
  "manufacturer": "Kentucky Fried Chicken",
  "group": "Fast Foods",
  "portions": [
      "amount": 1,
      "unit": "wing, with skin",
      "grams": 68.0
   },
  "nutrients": [
      "value": 20.8,
      "units": "g",
      "description": "Protein",
      "group": "Composition"
   },
```

炼数成金逆向收费式网络课程

- ◆ Dataguru (炼数成金)是专业数据分析网站,提供教育,媒体,内容,社区,出版,数据分析业务等服务。我们的课程采用新兴的互联网教育形式,独创地发展了逆向收费式网络培训课程模式。既继承传统教育重学习氛围,重竞争压力的特点,同时又发挥互联网的威力打破时空限制,把天南地北志同道合的朋友组织在一起交流学习,使到原先孤立的学习个体组合成有组织的探索力量。并且把原先动辄成干上万的学习成本,直线下降至百元范围,造福大众。我们的目标是:低成本传播高价值知识,构架中国第一的网上知识流转阵地。
- ◆ 关于逆向收费式网络的详情,请看我们的培训网站 http://edu.dataguru.cn

DATAGURU专业数据分析社区

FAQ时间