## Homework 6.1

Casey Bates

12 May 2020

## 1 Diffusion in the $\theta$ Step

(a)

If a bit  $a_{in}[i][j][k]$  is changed, the bits  $a_{in}[i+1][0...4][k]$  (Blue in Figure 1) and  $a_{in}[i-1][0...4][k+1]$  (Purple in Figure 1) could potentially be changed.

Therefore, if the bit in  $a_{in}[2][1][24]$  is changed, 10 bits will be affected:  $a_{in}[3][0...4][24]$ , and  $a_{in}[1][0...4][25]$ 



Figure 1: Sketch of 3D Array  $a_{in}$ 

(b)

For the second application of the  $\theta$  function, we will apply the same principal as part (a) on the newly affected bits. A change of the bits in column  $a_{in}[3][0...4][24]$  will affect the bits  $a_{in}[4][0...4][24]$  and  $a_{in}[2][0...4][25]$ . Similarly, a change of the bits in column  $a_{in}[1][0...4][25]$  will affect the bits  $a_{in}[2][0...4][25]$  and  $a_{in}[0][0...4][26]$ . Since both columns will affect  $a_{in}[2][0...4][25]$ , we need only count it once.

Therefore, 15 additional bits will be affected in the second consecutive round of  $\theta$ . After two rounds, we will have a total of 25 bits affected by the change of one bit at the start.

## 2 Find RC[2] in the $\iota$ Step

For round  $\iota_r = 2$ , with  $0 \le l \le 6$  and  $x^t$  reduced in  $F_2[x]/(x^8 + x^6 + x^5 + x^4 + 1)$ , we have:

| l                           | $  2^l - 1$ | $t = l + 7\iota_r$ | $x^t$                                      | $rc[t] = bit[0][0][2^l - 1]$ |
|-----------------------------|-------------|--------------------|--------------------------------------------|------------------------------|
| 0                           | 0           | 14                 | $x^{14} = x^7 + x^6 + x^4 + x^3$           | 0                            |
| 1                           | 1           | 15                 | $x^{15} = x^7 + x^6 + 1$                   | 1                            |
| 2                           | 3           | 16                 | $x^{16} = x^7 + x^6 + x^5 + x^4 + x + 1$   | 1                            |
| 3                           | 7           | 17                 | $x^{17} = x^7 + x^4 + x^2 + x + 1$         | 1                            |
| 4                           | 15          | 18                 | $x^{18} = x^6 + x^4 + x^3 + x^2 + 1$       | 1                            |
| 5                           | 31          | 19                 | $x^{19} = x^7 + x^5 + x^4 + x^3 + x^2 + x$ | 0                            |
| 6                           | 63          | 20                 | $x^{20} = x^3 + x^2 + x + 1$               | 1                            |
|                             | ı           | ı                  | '                                          |                              |
| PC[0] = 1 0 1 1 0 0 1 0 1 0 |             |                    |                                            |                              |

RC[2] = 0x800000000000808A