Predicate Logic

OUTLINE

- Introduction
- Basic Terms and Concepts
 - Open propositions
 - Quantifiers
- Syntax & Semantics
- Translating of English Statements
- Inference Rules / Laws of Equivalence
- Methods of Proof
 - Chain of Reasoning
 - Proof of Resolution

Slide 1

Rules of Inference

for Quantified Statements

Universal Instantiation (UI)

(∀x)P(x)

∴ P(a)

where *a* is an arbitrary individual object in the universe of discourse

Example:

All birds have feathers.

A penguin is a bird.

Therefore a penguin has feathers.

Slide 2

Rules of Inference

for Quantified Statements

Universal Generalization (UG)

P(a)

.: (∀x)P(x)

provided we know P(a) is true for each object in the universe of discourse

Example:

A shark has gills. (A shark is a fish.) Therefore all fish have gills.

Slide 3

Rules of Inference

for Quantified Statements

Existential Instantiation (EI)

(∃x)P(x)

∴ P(a)

where *a* is an individual object satisfying P and has no previous occurence.

Example:

Some dogs bite.

Therefore Fluffy bites. (Assuming Fluffy is a dog.)

Slide 4

Rules of Inference

for Quantified Statements

Existential Generalization (EG)

P(a)

.: (∃x)P(x)

Example:

Roger is a Swiss who plays tennis. (Therefore) Some Swiss play tennis.

Laws of Equivalence

for Quantified Statements

First four laws...

1. $(\forall x)P(x) \lor R \leftrightarrow (\forall x)[P(x) \lor R]$

2. $(\exists x)P(x) \lor R \leftrightarrow (\exists x)[P(x) \lor R]$

3. $(\forall x)P(x) \land R \leftrightarrow (\forall x)[P(x) \land R]$

4. $(\exists x)P(x) \land R \leftrightarrow (\exists x)[P(x) \land R]$

Rules of Negation

5. \sim (\forall x)P(x) \leftrightarrow (\exists x) \sim P(x)

6. \sim (\exists x)P(x) \leftrightarrow (\forall x) \sim P(x)

Examples:

Not all people can read.

 \leftrightarrow Some people can *not* read.

• It is not true that there is a person that has homs.

 \leftrightarrow All people do *not* have homs.

Slide 6

Laws of Equivalence for Quantified Statements

Distributive Laws

- (∀x)P(x) ∧ (∀x)Q(x) ↔ (∀x)[P(x) ∧ Q(x)]
 Ex: All things are beautiful and all things are free.
 ↔ All things are both beautiful and free.
- (∃x)P(x) ∨ (∃x)Q(x) ↔ (∃x)[P(x) ∨ Q(x)]
 Ex: Some things are good or some things do not last.
 ⇔ Some things are either good or do not last.

Slide 7

Laws of Equivalence for Quantified Statements

Distributive Laws

- 3. $(\forall x)P(x) \lor (\forall x)Q(x) \leftrightarrow (\forall x)P(x) \lor (\forall y)Q(y) \leftrightarrow (\forall x)(\forall y)[P(x) \lor Q(y)]$
- 4. $(\exists x)P(x) \land (\exists x)Q(x) \leftrightarrow (\exists x)P(x) \land (\exists y)Q(y) \leftrightarrow (\exists x)(\exists y)[P(x)\land Q(y)]$

Examples:

- Some integers are even and some integers are odd.
 - ≠ Some integers are both even and odd.
- Everything is good or everything are perfect.
 - ≠ Everything is (either) good or perfect.

Slide 8

Predicate Logic

OUTLINE

- Introduction
- Basic Terms and Concepts
 - Open propositions
 - Quantifiers
- Syntax & Semantics
- Translating of English Statements
- Inference Rules / Laws of Equivalence
- Methods of Proof
 - Chain of Reasoning
 - Proof of Resolution

Slide 9

Methods of Proof

CHAIN of REASONING

- Same procedure as in propositional logic:
 - Obtain a sequence of statements
 - Use Rules of Inference and Laws of Equivalence in propositional logic
 - Apply Quantificational Rules of Inference to drop/add quantifiers.
 - Apply Laws of Equivalence for Quantified Statements to replace open propositions involving quantifiers.
 - Arrive at the given conclusion.

Slide 10

Methods of Proof

CHAIN of REASONING Examples/Exercises

- 1) Every dog barks. Poochie does not bark. Therefore, Poochie is not a dog.
- 2) Every dog barks and bites. Poochie does not bark. Therefore, Poochie is not a dog.
- 3) No fish can walk. Some things that can walk have two legs. Therefore, some things that have two legs are not fish.
- 4) All geeks are thinkers. All thinkers are night owls. Therefore, anyone who is not a night owl is not a geek.

Slide 11

Methods of Proof

CHAIN of REASONING Examples/Exercises

- 5) Everyone in this class owns a cell phone. Someone in this class has not used MMS. Therefore, someone who owns a cell phone has not used MMS.
- 6) A check is void if it has not been cashed for 30 days. You cannot cash a check which is void. This check (is a check that) has not been cashed for 30 days. Therefore, we have a check that cannot be cashed.
- 7) Some good people admire all honest people. All good people do not admire cheaters. Therefore, no honest person is a cheater.

Methods of Proof

CHAIN of REASONING

- Remarks on applying Rules of Inference
 - Use El before Ul.
 - When using EI, the individual object must be one that has not been used previously in the proof.
 - Don't apply UG to an object originally derived by El.

Slide 13

Slide 15

Methods of Proof

CHAIN of REASONING

- Remarks on applying Rules of Inference
- Example:

1. $(\exists x)[B(x) \land E(x)]$ (Some bats have big ears.) 2. $(\exists x)[P(x) \land \neg S(x)]$ (Some people cannot swim.)

3. B(a) \wedge E(a) 1 EI 4. P(a) \wedge ~S(a) 2 EI

5. B(a)
6. P(a)
7. B(a) ∧ P(a)
3 Simplication
4 Simplication
5, 6 Conjunction

8. $(\exists x)[B(x) \land P(x)]$ 7 EG

Slide 14

Methods of Proof

CHAIN of REASONING

- Remarks on applying Rules of Inference
 - Example:

1. $(\exists x)[B(x) \land \sim F(x)]$ (Some birds cannot fly.)

2. B(a) $\wedge \sim F(a)$ 1 EI 3. $(\forall x)[B(x) \wedge \sim F(x)]$ 2 UG **Methods of Proof**

PROOF by RESOLUTION

- Same procedure as in propositional logic:
 - Convert argument to its conjunctive normal form.
 - Negate conclusion and convert to CNF.
 - Arrive at a contradiction using the Resolution Rule.
 - Involves unification (more later)

Slide 16

Methods of Proof

PROOF by RESOLUTION

- Conversion to Clausal Form (CNF)
 - Replace →.
 - Reduce the scope of ~.
 - Replace ~[~P(x)] with P(x)
 - Replace ~[P(x) ∧ Q(x)] with [~P(x) ∨ ~Q(x)]
 - Replace ~[P(x) ∨ Q(x)] with [~P(x) ∧ ~Q(x)]
 - Replace $\sim (\forall x)P(x)$ with $(\exists x) \sim P(x)$
 - Replace $\sim (\exists x)P(x)$ with $(\forall x) \sim P(x)$

Methods of Proof

PROOF by RESOLUTION

- Conversion to Clausal Form (CNF)
 - Remove quantifiers
 - **1) Standardize** variables so that each quantifier binds a unique variable.

Example:

change $(\forall x)P(x) \lor (\forall x)Q(x)$ to $(\forall x)P(x) \lor (\forall y)Q(y)$

2) Move all quantifiers to the left of the scope without changing their relative order.

Example:

change $(\forall x)[P(x) \lor (\forall y)Q(y)]$ to $(\forall x)(\forall y)[P(x) \lor Q(y)]$

Slide 18

Methods of Proof

PROOF by RESOLUTION

- Conversion to Clausal Form (CNF)
 - Remove quantifiers (cont'd)
 - **3)** Eliminate existential quantifiers by substituting a constant.

Example:

convert $(\exists x)P(x)$ to simply $P(s_1)$

If the existential quantifiers occurs within the scope of universal quantifiers, substitute a skolem function for each variable.

Example:

replace $(\forall x)(\exists y)$ likes(x, y) with $(\forall x)$ likes(x, s(x))

Slide 19

Methods of Proof

PROOF by RESOLUTION

- Conversion to Clausal Form (CNF)
 - Remove quantifiers (cont'd)
 - 4) Drop remaining universal quantifiers.
 - **5)** Convert the matrix into a conjunction of disjuncts.
 - Treat each term in a conjunct as a separate clause (premise).
 - Standardize apart variables in the set of clauses generated in the previous step. That is, rename the variables so that no two clauses refer to the same variable.

Slide 20

Methods of Proof

PROOF by RESOLUTION

- Unification
 - The process of finding a substitution (a set of replacements of variables by terms) for predicate parameters.
 - Rules:
 - different constants cannot match.
 Example: P(b) and P(c) are not unifiable
 - a variable may be replaced by a constant. Examples:

P(**x**) and **P**(**c**) are unifiable **P**(f(**x**)) and **P**(f(**a**)) are unifiable

Slide 21

Methods of Proof

PROOF by RESOLUTION

- Unification (cont'n)
- ◆ a variable may be replaced by another variable.
 Example: P(x) and P(y) are unifiable
- a variable may be replaced by a function as long as the function does not contain an instance of the variable.

Examples:

P(x) and P(f(x)) are *not* unifiable P(x) and P(f(a)) are unifiable

Slide 22

Methods of Proof

PROOF by RESOLUTION

Another example:

Dialogue from Monty Python and the Holy Grail (1975)

Sir Bedevere: There are ways of telling whether she is

a witch.

Peasant 1: Are there? Oh well, tell us.

Sir Bedevere: Tell me. What do you do with witches?

Peasant 1: Burn them.

Sir Bedevere: And what do you burn, apart from

witches?

Peasant 1: More witches.

Peasant 2: Wood. Slide 23

Methods of Proof

PROOF by RESOLUTION

Example 2: (cont'n)

Sir Bedevere: Good. Now, why do witches burn?

Peasant 3: Because they're made of ... wood?

Sir Bedevere: Good. So how do you tell whether she is

made of wood?

Peasant 1: Build a bridge out of her.

Sir Bedevere: But can you not also build bridges out of

stone?

Peasant 1: Oh yeah.

Sir Bedevere: Does wood sink in water?

Peasant 1: No, no, it floats! ... It floats! Throw her into

the pond! Slide 24

Methods of Proof

PROOF by RESOLUTION

Example 2: (cont'n)

Sir Bedevere: No, no. What else floats in water?

King Arthur: A duck.

Sir Bedevere: Exactly. So, logically...

Peasant 1: If she weighed the same as a duck ...

she's made of wood.

Sir Bedevere: And therefore ...

Peasant 2: A witch!

Slide 25

Methods of Proof

PROOF by RESOLUTION

Example 2: (cont'n)

Translations:

- 1) $(\forall x)$ [Burns $(x) \land Woman (x) \rightarrow wiTch(x)$]
- 2) Woman(girl)
- 3) $(\forall x) [woo \mathbf{D}(x) \rightarrow \mathbf{B}ums(x)]$
- 4) $(\forall x)$ [Floats(x) \rightarrow woo **D**(x)]
- 5) Floats(duck)
- 6) $(\forall x)(\forall y)$ [Floats(x) \land Sameweight(x,y) \rightarrow Floats(y)]
- 7) **S**ameweight(duck,girl)
- 8) *Therefore*: wi**T**ch(girl)

Slide 26

Methods of Proof

PROOF by RESOLUTION

Example 2: (cont'n)

<u>Conjunction normal form</u> (verify!!):

- 1) $\sim \mathbf{B}(x_1) \vee \sim \mathbf{W}(x_1) \vee \mathbf{T}(x_1)$
- 2) **W**(girl)
- 3) $\sim \mathbf{D}(x_2) \vee \mathbf{B}(x_2)$
- 4) $\sim F(x_3) \vee D(x_3)$
- 5) **F**(duck)
- 6) $\sim \mathbf{F}(x_4) \vee \sim \mathbf{S}(x_4,y) \vee \mathbf{F}(y)$
- 7) **S**(duck,girl)
- 8) ~**T**(girl)