```
In [1]: import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   import seaborn as sns

from warnings import filterwarnings
   filterwarnings(action='ignore')
```

In [5]: wine = pd.read_csv("winequality-red.csv")
 print("Successfully Imported Data!")
 wine.head()

Successfully Imported Data!

Out[5]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25	67	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15	54	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17	60	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11	34	0.9978	3.51	0.56	9.4	5

In [6]: print(wine.shape)

(1599, 12)

In [7]: wine.describe(include='all')

Out[7]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.875547	46.468418	(
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460434	32.895920	(
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.000000	(
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.000000	(
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.000000	(
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.000000	(
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.000000	1

In [8]: print(wine.isna().sum())

fixed acidity

volatile acidity 0 citric acid 0 residual sugar 0 chlorides 0 free sulfur dioxide 0 total sulfur dioxide 0 density 0 рΗ 0 0 sulphates alcohol 0 quality 0 dtype: int64

0

In [9]: wine.corr()

Out[9]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	р
fixed acidity	1.000000	-0.256131	0.671703	0.114777	0.093705	-0.153791	-0.113198	0.668047	-0.68297
volatile acidity	-0.256131	1.000000	-0.552496	0.001918	0.061298	-0.010487	0.076479	0.022026	0.23493
citric acid	0.671703	-0.552496	1.000000	0.143577	0.203823	-0.060885	0.035506	0.364947	-0.54190
residual sugar	0.114777	0.001918	0.143577	1.000000	0.055610	0.187310	0.203048	0.355283	-0.08565
chlorides	0.093705	0.061298	0.203823	0.055610	1.000000	0.005627	0.047402	0.200632	-0.26502
free sulfur dioxide	-0.153791	-0.010487	-0.060885	0.187310	0.005627	1.000000	0.668025	-0.021981	0.07028
total sulfur dioxide	-0.113198	0.076479	0.035506	0.203048	0.047402	0.668025	1.000000	0.071256	-0.06650
density	0.668047	0.022026	0.364947	0.355283	0.200632	-0.021981	0.071256	1.000000	-0.34169
рН	-0.682978	0.234937	-0.541904	-0.085652	-0.265026	0.070288	-0.066507	-0.341699	1.00000
sulphates	0.183006	-0.260987	0.312770	0.005527	0.371260	0.051606	0.042923	0.148506	-0.19664
alcohol	-0.061668	-0.202288	0.109903	0.042075	-0.221141	-0.069346	-0.205667	-0.496180	0.20563
quality	0.124052	-0.390558	0.226373	0.013732	-0.128907	-0.050554	-0.185112	-0.174919	-0.05773

```
In [10]: wine.groupby('quality').mean()
```

Out[10]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sul
quality										
3	8.360000	0.884500	0.171000	2.635000	0.122500	11.000000	24.900000	0.997464	3.398000	0.
4	7.779245	0.693962	0.174151	2.694340	0.090679	12.264151	36.245283	0.996542	3.381509	0.
5	8.167254	0.577041	0.243686	2.528855	0.092736	16.983847	56.515419	0.997104	3.304949	0.
6	8.347179	0.497484	0.273824	2.477194	0.084956	15.711599	40.869906	0.996615	3.318072	0.
7	8.872362	0.403920	0.375176	2.720603	0.076588	14.050251	35.020101	0.996104	3.290754	0.
8	8.566667	0.423333	0.391111	2.577778	0.068444	13.277778	33.444444	0.995212	3.267222	0.

In [13]: sns.countplot(wine['quality'])
plt.show()


```
In [12]: sns.countplot(wine['pH'])
  plt.show()
```


In [14]: sns.countplot(wine['alcohol'])
plt.show()


```
In [15]: sns.countplot(wine['fixed acidity'])
plt.show()
```


In [16]: sns.countplot(wine['volatile acidity'])
plt.show()


```
In [17]: sns.countplot(wine['citric acid'])
   plt.show()
```


In [18]: sns.countplot(wine['density'])
plt.show()


```
In [19]: sns.kdeplot(wine.query('quality > 2').quality)
```

Out[19]: <Axes: xlabel='quality', ylabel='Density'>


```
In [20]: sns.distplot(wine['alcohol'])
```

Out[20]: <Axes: xlabel='alcohol', ylabel='Density'>

Out[21]: fixed acidity volatile acidity citric acid residual sugar chlorides free sulfur dioxide total sulfur dioxide density pH sulphates alcohol quality

dtype: object

```
Axes(0.125,0.712609;0.168478x0.167391)
Axes(0.327174,0.712609;0.168478x0.167391)
Axes(0.529348,0.712609;0.168478x0.167391)
Axes(0.731522,0.712609;0.168478x0.167391)
Axes(0.125,0.511739;0.168478x0.167391)
Axes(0.327174,0.511739;0.168478x0.167391)
Axes(0.731522,0.511739;0.168478x0.167391)
Axes(0.731522,0.511739;0.168478x0.167391)
Axes(0.125,0.31087;0.168478x0.167391)
Axes(0.327174,0.31087;0.168478x0.167391)
Axes(0.327174,0.31087;0.168478x0.167391)
Axes(0.731522,0.31087;0.168478x0.167391)
Axes(0.731522,0.31087;0.168478x0.167391)
```



```
In [22]: wine.plot(kind ='density', subplots = True, layout =(4,4), sharex = False)
Out[22]: array([[<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                   <Axes: ylabel='Density'>, <Axes: ylabel='Density'>],
                  [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                   <Axes: ylabel='Density'>, <Axes: ylabel='Density'>],
                  [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                   <Axes: ylabel='Density'>, <Axes: ylabel='Density'>],
                  [<Axes: ylabel='Density'>, <Axes: ylabel='Density'>,
                   <Axes: ylabel='Density'>, <Axes: ylabel='Density'>]], dtype=object)
                     fixed acidity
           Density
                                     volatile acidity
                                                             citric ac
                                                                           residual sugar
                                ă
              0.0
                                <del>70.0</del>5
               20
                                 free sulfur dioxidetotal sulfur dioxide200
            Density
                                                Dens
                                                   0.91
                                                                   Densi
                        chlorietes
                                                                                  density
                0 -
                                                   o,do
                                          sulphat<u>e</u>s
                                                                alcohel
             Density
∾
                              Density
                                                                       0.5
                                                                                  quality
                   2
                                        0
                                                 2
                                                         5
                                                              10
                                                                   15
                                                                           0
                                                                                         10
```

In [23]: wine.hist(figsize=(10,10),bins=50)
plt.show()


```
In [24]: corr = wine.corr()
sns.heatmap(corr,annot=True)
```

Out[24]: <Axes: >

In [25]: sns.pairplot(wine)

Out[25]: <seaborn.axisgrid.PairGrid at 0x1b34f1e76a0>


```
In [26]: sns.violinplot(x='quality', y='alcohol', data=wine)
```

Out[26]: <Axes: xlabel='quality', ylabel='alcohol'>


```
In [27]: # Create Classification version of target variable
   wine['goodquality'] = [1 if x >= 7 else 0 for x in wine['quality']]# Separate feature
   X = wine.drop(['quality', 'goodquality'], axis = 1)
   Y = wine['goodquality']
```

```
In [28]: # See proportion of good vs bad wines
wine['goodquality'].value_counts()
```

Out[28]: 0 1382 1 217

Name: goodquality, dtype: int64

Out[29]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol
0	7.4	0.700	0.00	1.9	0.076	11	34	0.99780	3.51	0.56	9.4
1	7.8	0.880	0.00	2.6	0.098	25	67	0.99680	3.20	0.68	9.8
2	7.8	0.760	0.04	2.3	0.092	15	54	0.99700	3.26	0.65	9.8
3	11.2	0.280	0.56	1.9	0.075	17	60	0.99800	3.16	0.58	9.8
4	7.4	0.700	0.00	1.9	0.076	11	34	0.99780	3.51	0.56	9.4
1594	6.2	0.600	80.0	2.0	0.090	32	44	0.99490	3.45	0.58	10.5
1595	5.9	0.550	0.10	2.2	0.062	39	51	0.99512	3.52	0.76	11.2
1596	6.3	0.510	0.13	2.3	0.076	29	40	0.99574	3.42	0.75	11.0
1597	5.9	0.645	0.12	2.0	0.075	32	44	0.99547	3.57	0.71	10.2
1598	6.0	0.310	0.47	3.6	0.067	18	42	0.99549	3.39	0.66	11.0

1599 rows × 11 columns

```
In [30]: print(Y)
```

Name: goodquality, Length: 1599, dtype: int64

In [31]: from sklearn.linear_model import LogisticRegression
 model = LogisticRegression()

from sklearn.ensemble import ExtraTreesClassifier
classifiern = ExtraTreesClassifier()
classifiern.fit(X,Y)

score = classifiern.feature_importances_
print(score)

[0.07661194 0.10278398 0.09552541 0.07436251 0.07255703 0.06720896 0.08029628 0.08500498 0.06626141 0.11127777 0.16810974]

```
In [34]: from sklearn.model_selection import train_test_split
         X_train, X_test, Y_train, Y_test = train_test_split(X,Y,test_size=0.3,random_state=7
In [35]: | from sklearn.linear_model import LogisticRegression
         model = LogisticRegression()
         model.fit(X_train,Y_train)
         Y pred = model.predict(X test)
         from sklearn.metrics import accuracy_score,confusion_matrix
         print("Accuracy Score:",accuracy_score(Y_test,Y_pred))
         Accuracy Score: 0.875
         confusion mat = confusion matrix(Y test,Y pred)
         print(confusion_mat)
         [[401 16]
          [ 44 19]]
In [37]: from sklearn.neighbors import KNeighborsClassifier
         model = KNeighborsClassifier(n_neighbors=3)
         model.fit(X_train,Y_train)
         y_pred = model.predict(X_test)
         from sklearn.metrics import accuracy_score
         print("Accuracy Score:",accuracy_score(Y_test,y_pred))
         Accuracy Score: 0.8729166666666667
In [38]: | from sklearn.svm import SVC
         model = SVC()
         model.fit(X_train,Y_train)
         pred_y = model.predict(X_test)
         from sklearn.metrics import accuracy_score
         print("Accuracy Score:",accuracy_score(Y_test,pred_y))
         Accuracy Score: 0.86875
In [39]: from sklearn.tree import DecisionTreeClassifier
         model = DecisionTreeClassifier(criterion='entropy',random state=7)
         model.fit(X train,Y train)
         y_pred = model.predict(X_test)
         from sklearn.metrics import accuracy score
         print("Accuracy Score:",accuracy_score(Y_test,y_pred))
```

Accuracy Score: 0.86458333333333334

```
In [40]: from sklearn.naive_bayes import GaussianNB
         model3 = GaussianNB()
         model3.fit(X_train,Y_train)
         y_pred3 = model3.predict(X_test)
         from sklearn.metrics import accuracy score
         print("Accuracy Score:",accuracy_score(Y_test,y_pred3))
         Accuracy Score: 0.8333333333333334
In [41]: | from sklearn.ensemble import RandomForestClassifier
         model2 = RandomForestClassifier(random state=1)
         model2.fit(X_train, Y_train)
         y_pred2 = model2.predict(X_test)
         from sklearn.metrics import accuracy_score
         print("Accuracy Score:",accuracy_score(Y_test,y_pred2))
         Accuracy Score: 0.89375
In [42]:
         import xgboost as xgb
         model5 = xgb.XGBClassifier(random_state=1)
         model5.fit(X_train, Y_train)
         y_pred5 = model5.predict(X_test)
         from sklearn.metrics import accuracy score
         print("Accuracy Score:",accuracy_score(Y_test,y_pred5))
         Accuracy Score: 0.89375
In [43]: results = pd.DataFrame({
              'Model': ['Logistic Regression','KNN', 'SVC','Decision Tree','GaussianNB','Rand
              'Score': [0.870,0.872,0.868,0.864,0.833,0.893,0.879]})
         result_df = results.sort_values(by='Score', ascending=False)
         result_df = result_df.set_index('Score')
         result_df
Out[43]:
                          Model
          Score
                   Random Forest
           0.893
           0.879
                        Xgboost
           0.872
                           KNN
           0.870 Logistic Regression
                           SVC
           0.868
           0.864
                    Decision Tree
```

0.833

GaussianNB

In []:			