Analyse de données Données unidimensionnelles

Jamal Atif

jamal.atif@dauphine.fr

Université Paris-Dauphine, Licence MIDO

2014-2015

Analyse de variables qualitatives

Dans ce tableau, on cherche à étudier la variable « Etude ».

Salaire	Etude	Age
2600	Bac+4	31
2200	IUT	27
5000	Ecoles	53
:	•	:

On effectue un « tri à plat »

	Effectifs	Pourcentage	Pourcentage cumulé
Valide ≤ Bac	12	12,0	12,0
IUT	35	35,0	47,0
Bac+4	26	26,0	73,0
Ecoles	16	16,0	89,0
Doctorat	11	11,0	100,0
Total	100	100,0	

Analyse de variables qualitatives

Visualisation

Diagramme circulaire

Analyse de variables quantitatives

Idéalement, on souhaiterait avoir la distribution exacte d'une variable quantitative :

Pour représenter cette distribution à partir des données, on peut construire un *histogramme*

Analyse de variables quantitatives

On peut aussi chercher les caractéristiques de cette distribution :

- ▶ Indicateurs de tendance centrale (moyenne, médiane,...)
- Indicateurs de dispersion (étendue, variance, écart type, coefficient de variation, interquartile...)
- Indicateurs de distribution (premier/dernier quartile, coefficients d'asymétrie,...)
- Outils de visualisation : fonction de répartition, boîte a moustache

Centre de gravité, moyenne, · · ·

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$
4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moyenne de $\{4, 4.5, 4.6, 4.9, 5.2, 5.4, 5.6, 6.6, 6.8, 7.6, 7.8\} = 5.72$

AD 6/25**Jamal Atif**

- ▶ 25 personnes gagnent 100 K€
- ≥ 20 personnes gagnent 80 K€
- ▶ 10 personnes gagnent 60 K€

moyenne =
$$(25 \times 100 + 20 \times 80 + 10 \times 60)/55 = 85.45455$$
K€

 \rightarrow Si on enlève 5 personnes du dernier groupe

moyenne =
$$(25 \times 100 + 20 \times 80 + 5 \times 60)/45 = 97.77778$$
K€

- Le salaire moyen a-t-il augmenté?
- Un employé a-t-il vu son salaire augmenter?

Question:

On vous propose d'intégrer une entreprise A dont le salaire moyen des employés est de 3.54545€ de l'heure ou une entreprise B dont le salaire moyen est de 11.27273€.

Laquelle choisir?

Salaires de l'entreprise $1 : \{0, 0, 0, 1, 1, 1, 3, 3, 5, 10, 15\}$ Movenne=3.545455

Salaires de l'entreprise 2 : {0, 0, 0, 1, 1, 1, 3, 3, 5, 10, 100} Movenne=11.27273

Questions:

- 1. Est-ce vraiment plus intéressant de travailler pour l'entreprise 2?
- 2. La moyenne est-elle systématiquement un bon indicateur?

La médiane

Définition

La médiane est une valeur *m* permettant de diviser un échantillon en deux populations de taille égale.

Dans la première population tous les individus ont une valeur inférieur à m. Dans la deuxième population tous les individus ont une valeur supérieure à *m*.

Soit:

$$P(X \le m) = P(X \ge m)$$

La médiane

Médiane de $\{4, 4.5, 4.6, 4.9, 5.2, 5.4, 5.6, 6.6, 6.8, 7.6, 7.8\} = 5.4$ Moyenne=5.72

50% des individus ont moins de 5.4 et 50% ont plus de 5.4

La médiane est parfois utilisée pour être « moins sensible » aux données aberrantes :

Médiane de

 $\{4, 4.5, 4.6, 4.9, 5.2, 5.4, 5.6, 6.6, 6.8, 7.6, 1000000000\} = 5.4$

La médiane

- ▶ 25 personnes gagnent 100 K€
- ▶ 20 personnes gagnent 80 K€
- ▶ 10 personnes gagnent 60 K€

moyenne = 85.45455K€ médiane = 80K€

ightarrow Si on enlève 4 personnes du dernier groupe

moyenne = 87.45K€ médiane = 80K€

- Le salaire médian a-t-il augmenté?
- Un employé a-t-il vu son salaire augmenter?

```
Salaires de l'entreprise 1: \{0,0,0,1,1,1,3,3,5,10,15\}
Moyenne = 3.545455
Médiane = ?
```

```
Salaires de l'entreprise 2 : \{0, 0, 0, 1, 1, 1, 3, 3, 5, 10, 100\}

Moyenne = 11.27273

Médiane = ?
```

Questions:

- 1. Est-ce vraiment plus intéressant de travailler pour l'entreprise 2?
- 2. La moyenne est-elle systématiquement un bon indicateur?

Moyenne et médiane

- La médiane est plus robuste que la moyenne aux valeurs extrêmes
- ▶ Et donc··· la médiane est un indicateur moins sensible que la moyenne. ex : une augmentation du salaire des 30% plus riche ne change pas la médiane
- ► Calcul de la moyenne plus robuste par trimage : éliminer k (%) des observations aux 2 extrémités de la distribution (k=1%, 2.5%, 5%)
- La différence entre moyenne et médiane peut donner une idée de la dissymétrie de la distribution :

Indicateur de dispersion : l'écart-type

- L'évasement de la courbe correspond à l'écart-type.
- Selon ce que l'on mesure l'évasement peut être différent

FIGURE: Différentes lois normales.

- Les mesures près de la moyenne sont plus probables que les mesures éloignées
- ► La distance parcourue par un véhicule avec un litre d'essence varie sur plusieurs essais (changement des conditions expérimentales, le hasard,···)

FIGURE: Consommation d'essence.

- L'écart-type exprime la dispersion des mesures
- ▶ Plus elle est élevée, plus les mesures sont dispersées et plus la courbe s'aplatit.
- La figure ci-dessous illustre trois courbes ayant la même moyenne et des écarts types différents

FIGURE : Loi normale selon différents écart-types σ .

Formule de calcul:

$$\sigma(x) = \sqrt{Var(x)} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{n}}$$

Rque : on divise souvent par n-1 au lien de n

Salaires de l'entreprise 1 : $\{0,0,0,1,1,1,3,3,5,10,15\}$ Moyenne = 3.545455

$$\sigma = \sqrt{\frac{(0-3.5)^2 + \dots + (15-3.5)^2}{11}}$$
$$= \sqrt{21.15702} = 4.599676$$

Salaires de l'entreprise 2 : {0, 0, 0, 1, 1, 1, 3, 3, 5, 10, 100} Movenne = 11.27273

$$\sigma = \sqrt{\frac{(0 - 11.27273)^2 + \dots + (100 - 11.27273)^2}{11}}$$
$$= \sqrt{855} = 29.24$$

Analyse

Dans l'entreprise 2, les salaires sont beaucoup plus dispersés autour de la moyenne que dans l'entreprise 1. On suppose donc que dans l'entreprise 2 il y a des écarts plus importants entre les salaires que dans la première entreprise.

19/25Iamal Atif AD

Autres indicateurs

- Quartiles, Déciles
- Mesures de dispersion
 Coefficient de variation, interquartile, min,max
- Mesure d'assymétrie

$$skewness = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mu}{\sigma} \right)^3$$

Visualisation :
 Tracé de la fonction de répartition boîte à moustache

Exemple concret : analyse de salaires

Salaires net annuel par région(source insee)

3		Repartition des effectifs	Salaires nets annuels							
4		2006	2 001	2 006						
5		%	Ensemble	Ensemble	Cadres *	Professions in termed jaires	Employés	Ouvriers		
6	Alsace	3,1	19 748	21 996	41 669	23 458	16 209	17 780		
7	Aquitaine.	4,5	18 528	20 645	40 650	22 700	15 964	16 507		
8	Auvergne	1,8	18 020	20 276	42 917	22 848	15 892	16 573		
26 27	Provence-Alpe≯ Bhône-Alpes	6,7 10,2	19 578 20 131	21 975 22 445	41 903 42 970	23 480 23 446	16 064 16 268	17 061 17 311		
				200000000000000000000000000000000000000			////			
28	Métropole	98,1	20 873	23 306	23 446	23 566	16 325	17 083		
29	Guadeloupe	0,5	18 859	21 257	46 576	24 511	16 626	16 063		
30	Guyane	0,1	22 253	22 912	46 540	26 644	17 465	16 427		
31	Martinique	0,5	19 377	21 198	47 903	24 351	16 244	16 000		
32	Réunion	0,8	17 873	20 194	45 846	24 076	16 140	15 911		
33	France	100.0	20 841	23 261	46 221	23 582	16 327			

Exemple concret : préparation des données

On vérifie:

- ▶ Qu'il ne manque pas d'information (cases vides) \rightarrow *ok*
- Les données sont elles adaptées aux outils d'analyse ? $\rightarrow \overline{ok}$ attention à ne pas faire des moyennes de pourcentages
- Lignes ou colonnes « polluantes » $\rightarrow \overline{ok}$ problème lignes 28 et 30

3		Repartition des effectifs	Salaires nets annuels						
4		2006		2 006					
5		%	Ensemble	Ensemble	Cadres *	Professions in termed jaires	Employés	Ouvriers	
6	Alsace	3,1	19 748	21 996	41 669	23 458	16 209	17 780	
26	Provence-Alpe	6,7	19 578	21 975	41 903	23 480	16 064	17 061	
27	Rhône-Alpes	10.2	20 131	22 445	42 970	23 446	16 268	17 311	
-48	Métropole	98,1	20 873	23 306	23 446	23 566	16 325	17 083	
29	Guadeloupe	0,5	18 859	21 257	46 5/6	24 511	16 626	16 063	
30	Guyane	0,1	22 253	22 912	46 540	26 644	17 465	16 427	
31	Martinique	0,5	19 377	21 198	47 903	24 351	16 244	16 000	
32	Réunion	0.8	17 873	20.104	AE QAG	24.076	16 140	15 911	
33	I Day	100.0	20 841	23 261	46 221	23 582	16 327	17.064	

Exemple concret : traitement des données

On calcule : moyenne, médiane et écart type pour chaque catégorie

	somme2001	somme2008	Cadres	ProfInter	Employes	Ouvriers
Min.	17577	19686	39742	22072	15589	15911
Median	18500	20618	41181	23040	15955	16540
Mean	18982	21160	42386	23289	16101	16748
Max.	26745	29940	51840	26644	17465	183
ecart	1867.9264	1975.7701	2956.3217	1041.3297	445.9654	636.6783

FIGURE: Traitement des variables

	MoyMin08	MoyMax08	EcartT min	EcartT max	min evol	max evol
Région	Poit char	IDF	Bretagne	IDF	Guyane	IDF

FIGURE: Traitement des individus

Et tout ce que vous voulez extraire...

Exemple concret : interprétation des résultats

Voici quelques exemples d'une analyse (objective) des variables :

- ► En 2008, 50% des Français gagnent plus de 20618 k€, et 50% moins
- ► En 2008, le salaire moyen est de 21160 k€
- ▶ En moyenne, le salaire le plus élevé en 2008 est celui des cadres
- Entre 2001 et 2008 l'écart entre les plus faibles salaires et les plus gros a augmenté
- En 2008 ce sont les employés qui sont la catégorie avec le moins de disparité de salaire
- Les professions intermédiaires et cadres gagnent plus que la moyenne des français
- Le plus bas des salaires moyens (des régions) en 2008 est supérieur de 2109 k€ plus bas des salaires moyens (des régions) en 2009

Faites attention à ne pas faire dire aux chiffres plus de choses qu'ils ne le peuvent!

Exemple concret : interprétation des résultats

Voici quelques exemples d'une analyse (objective) des individus :

- ► En moyenne, c'est en Poitou-Charentes que l'on gagne le moins bien sa vie en 2008 (resp en IDF pour le meilleur salaire)
- C'est en Bretagne que les salaires sont les moins dispersés autour de la moyenne
- C'est en Ile de France que l'écart à la moyenne entre les salaires est le plus élevé
- En moyenne, c'est en Guyane que les salaires ont le moins augmenté (resp IDF pour le plus)

Analyser des données est un travail différent de celui consistant à trouver des explications à cette analyse