Capstone Engagement

Assessment, Analysis, and Hardening of a Vulnerable System

Table of Contents

This document contains the following sections:

Network Topology

Red Team: Security Assessment

Blue Team: Log Analysis and Attack Characterization

Hardening: Proposed Alarms and Mitigation Strategies

Network Topology

Network

Address Range: 192.168.1.1 - 254

Netmask: 255.255.255.0

Gateway: 10.0.0.1

Machines

IPv4: 192.168.1.90 OS: Kali Linux Hostname: Kali

IPv4: 192.168.1.100

OS: Ubuntu Hostname: ELK

IPv4:192.168.1.105

OS: Ubuntu

Hostname: Capstone

IPv4: 192.168.1.1 OS: Windows Hostname:

ML-RefVm-684427

Red Team Security Assessment

Recon: Describing the Target

Nmap identified the following hosts on the network:

Hostname	IP Address	Role on Network
Kali Linux Virtual Machine	192.168.1.90	Attacker machine
ELK Ubuntu Virtual Machine	192.168.1.100	ELK monitoring
Capstone Ubuntu Virtual Machine	192.168.1.105	Victim machine
Windows 10 Virtual Machine	192.168.1.1	Host machine. Used to access virtual network which includes Kali, ELK and Capstone virtual machines.

Vulnerability Assessment

The assessment uncovered the following critical vulnerabilities in the target:

Vulnerability	Description	Impact
Weak Password Protocol Brute force attack	Used Hydra to brute force URL. Information found allowed us to guess the username and password. Brute forced using a wordlist	The brute force allowed access to non-public files on the server.
Insecure Hashing Technique MD5 Function Hash John the Ripper	Used john to crack the hash found after brute forcing the URL.	The cracked hash allowed access to the remote file sharing server.
Weak Authentication & Information Accessibility Payload Injection	Created msfvenom payload to execute on the webdav server to enable access via meterpreter shell.	Meterpreter shell allowed escalation of privileges to exploit the entire machine.

Exploitation: Weak Password Protocol

01

02

03

Tools & Processes

Nmap Dirb Hydra

Achievements

Used nmap to find the vulnerable web server. Once found, we used dirb to search the website for information and obtained knowledge for potential usernames to use in a brute-force attack. Used Hydra and a wordlist (rockyou.txt) to brute force the login credentials

```
[80][http-get] host: 192.168.1.105 login: ashton password: leopoldo [STATUS] attack finished for 192.168.1.105 (valid pair found) of 1 target successfully completed, 1 valid password found sydra (https://github.com/vanhauser-thc/thc-hydra) finished at 2021-10-13 15:58:01
```

Exploitation: Insecure Hashing Technique

01

02

Tools & Processes

John the Ripper

Achievements

Used john.exe to crack the hash found after brute forcing

the backend.

Exploitation: Weak Authentication & Information Accessibility

01

Tools & Processes

Msfvenom Metasploit meterpreter 02

Achievements

Created msfvenom payload to execute on the webdav server to enable access via meterpreter shell.

Blue Team Log Analysis and Attack Characterization

Analysis: Identifying the Port Scan

The port scan occurred on October 13, 2021 at 20:55

User_Agent.Original field was labeled as Mozilla nmap, indicating this was a port scan

Analysis: Finding the Request for the Hidden Directory

 The requests occurred on October 13, 2021 between 8pm and 11pm and 15,740 requests were made.

Files requested were webdav and the Company Secret Folder, which contained instructions for how to access the webdav server

Analysis: Uncovering the Brute Force Attack

- 286,908 requests were made in the attack.
- 286,907 were made before the attacker


```
Oct 14, 2021 @ 05:23:22.520
                                user_agent.original: Mozilla/4.0 (Hydra) @timestamp: Oct 14, 2021 @ 05:23:22.520 query: GET
                                /company_folders/secret_folder network.type: ipv4 network.transport: tcp network.protocol: http
                                network.direction: outbound network.community_id: 1:atAhJDr/B+u6s6bzFaMdDCNF33A= network.bytes: 163B
                                destination.ip: 192.168.1.105 destination.port: 80 status: Error server.ip: 192.168.1.105 server.port: 80
                                host.name: Kali method: get http.request.headers.content-length: 0 http.request.method: get http.request.bytes: 163B
> Oct 14, 2021 @ 05:23:22.520
                                user_agent.original: Mozilla/4.0 (Hydra) @timestamp: Oct 14, 2021 @ 05:23:22.520 error.message: Unmatched request
                                host.name: Kali url.scheme: http url.domain: 192.168.1.105 url.path: /company_folders/secret_folder
                                url.full: http://192.168.1.105/company_folders/secret_folder client.ip: 192.168.1.90 client.port: 51954
                                client.bytes: 163B type: http network.transport: tcp network.protocol: http network.direction: outbound
                                network.community_id: 1:FPqM5+f3LnNWJkIUoTvAYDzaP+o= network.bytes: 163B network.type: ipv4 agent.version: 7.8.0
> Oct 14, 2021 @ 05:23:22.520
                                user_agent.original: Mozilla/4.0 (Hydra) @timestamp: Oct 14, 2021 @ 05:23:22.520 query: GET
                                /company_folders/secret_folder status: Error url.domain: 192.168.1.105 url.path: /company_folders/secret_folder
                                url.full: http://192.168.1.105/company_folders/secret_folder url.scheme: http server.port: 80 server.ip: 192.168.1.105
                                http.request.method: get http.request.bytes: 163B http.request.headers.content-length: 0 http.version: 1.1
                                destination.ip: 192.168.1.105 destination.port: 80 client.ip: 192.168.1.90 client.port: 51960 client.bytes: 163B
```

Analysis: Finding the WebDAV Connection

• 105,487 requests were made to this directory.

 Some of the files requested were passwd.dav server-status, shell.php

Blue TeamProposed Alarms and Mitigation Strategies

Mitigation: Blocking the Port Scan

Alarm

What kind of alarm can be set to detect future port scans?

Set a threshold for number of requests to automatically block IP addresses that exceed the threshold.

What threshold would you set to activate this alarm?

More than 100 requests within 1 minute.

System Hardening

What configurations can be set on the host to mitigate port scans?

Block incoming and outgoing ports except 80 and 443. Block IP addresses after exceeding the threshold for requests. (This is also the solution).

Mitigation: Finding the Request for the Hidden Directory

Alarm

What kind of alarm can be set to detect future unauthorized access?

Set parameters to alert for influx of requests and status response phrases such as "Unauthorized".

What threshold would you set to activate this alarm?

Any number greater than the total number of users who have access to the hidden directory.

System Hardening

What configuration can be set on the host to block unwanted access?

Remove the folder from public domain and set two-factor authentication

Describe the solution. If possible, provide required command lines.

Two-factor authentication. Deny certain IP addresses, as needed.

Mitigation: Preventing Brute Force Attacks

Alarm

What kind of alarm can be set to detect future brute force attacks?

Send an email to system administrators whenever there is an influx of HTTP requests or error codes from one or more IP addresses.

What threshold would you set to activate this alarm?

Any number of requests that exceeds average daily amount of HTTP traffic for the network.

System Hardening

What configuration can be set on the host to block brute force attacks?

Password complexity and the use of CAPTCHA to block automated brute-force attempts.

Describe the solution. If possible, provide the required command line(s).

Password complexity, two-factor authentication, and CAPTCHA.

Mitigation: Detecting the WebDAV Connection

Alarm

What kind of alarm can be set to detect future access to this directory?

Send an email to system administrators for any large number of HTTP requests sent to this directory. A number greater than the amount of users who have access to the webDAV directory.

What threshold would you set to activate this alarm?

A number higher than the amount of users who have access to this directory.

System Hardening

What configuration can be set on the host to control access?

Whitelist IP addresses

Describe the solution. If possible, provide the required command line(s).

Whitelist only authorized IP addresses and block all other IPs.

Mitigation: Identifying Reverse Shell Uploads

Alarm

What kind of alarm can be set to detect future file uploads?

Set up PUT request alerts to web server folders that will then email system administrators whenever files are uploaded. Setup files to be read for malicious code such as exe and php files.

What threshold would you set to activate this alarm?

Any files from unauthorized IP addresses or any new php or exe files.

System Hardening

What configuration can be set on the host to block file uploads?

Use IDS or anti-malware systems to detect and potentially block uploads. Verify file type before upload.

