Dependent Randomization in Parallel Binary

Decision Fusion

July 2, 2020

Weigiang Dong and Moshe Kam

Department of Electrical and Computer Engineering

New Jersey Institute of Technology

Newark, New Jersey 07102

Email: wd35@njit.edu, kam@njit.edu

Supplement file, Part B

Numerical examples for loss of synchronization between the DFC and the group of LDs (Section IV-B)

In this file, the index of each Table/Figure/Equation has a prefix "B-"; the index of each Table/Figure/Equation that appears in the main paper has a prefix "P-".

SUPPLEMENT FILE, PART B

Numerical examples for loss of synchronization between the DFC and the group of LDs (Section IV-B)

Part B provides the numerical examples (2-LD and 3-LD systems) when the DFC loses synchronization with the LDs group. This part supplements Section IV-B of the paper.

A. 2-LD system

The design input and output of the 2-LD system (Section III-A of the paper) employing dependent randomization with $\alpha=0.2009$, was shown in Table P-II of the paper. When the DFC loses synchronization with the LDs group, the 2-LD system performance before and after a corrective action is taken is shown in Table B-I (P-V) and Figure B-1 (P-8).

In Figure B-1a (P-8a), the black curve is the ROC curve of the 2-LD example in Section III-A when using dependent randomization. It comprises (from left to right) a segment that corresponds to the AND fusion rule at the DFC (left of point A); a straight line segment AB which is a common tangent of the ROC curves for the AND and OR fusion rules at the DFC; and a segment (to the right of point B) that corresponds to the OR fusion rule at the DFC. When $\alpha=0.2009$, the operating point of the system is $C=(P_f^C,P_d^C)=(0.2009,0.8261)$, shown by the black circle. Point C is generated by operating at $A=(P_f^A,P_d^A)=(0.1581,0.7870)$ with probability p=0.5 and at $B=(P_f^B,P_d^B)=(0.2437,0.8652)$ with probability 1-p=0.5 (p was calculated using (P-11) in the paper). According to Section III-A of the paper, the system operates at A when both LDs operate at $(P_{f1}^A,P_{d1}^A)=(P_{f2}^A,P_{d2}^A)=(0.3976,0.8871)$ and the DFC uses the AND fusion rule. The system operates at B when both LDs operate at $(P_{f1}^B,P_{d1}^B)=(P_{f2}^B,P_{d2}^B)=(0.1304,0.6328)$ and the DFC uses the OR fusion rule. When the synchronization between the LDs group and the DFC is lost, the system may also operates (see Figure B-1 (P-8)) at $M1=(P_f^{M1},P_d^{M1})=(0.6371.9873)$ and $M2=(P_f^{M2},P_d^{M2})=(0.0170,0.4004)$. The operating point of the non-synchronized system

July 2, 2020 Journal paper 008 3

Output of the non-synchronized 2-LD system before the corrective action is taken ($\alpha = 0.2009$)

- 1. Four possible operating points when the DFC lost synchronization with the LDs groups, A = (0.1581, 0.7870), B = (0.2437, 0.8652), M1 = (0.6371.9873), and <math>M2 = (0.0170, 0.4004).
- 2. The operating point of the non-synchronized system, $W^* = (0.2640, 0.7600)$, calculated by (P-17) and (P-18).
- 3. The fact that the probability of the false alarm of the non-synchronized system exceeds the constraint α , $P_f^{W^*}=0.2640>0.2009=\alpha$

Output of the non-synchronized 2-LD system after the corrective action is taken ($\alpha = 0.2009$)

- 1. The new probability for the DFC selecting γ_0^A , q = 0.6787, calculated by (P-25)
- 2. The fulfillment of the prerequisite of the correction action, 0 < q < 1
- 3. The operating point of the non-synchronized system after the corrective action is taken, $C^* = (0.2009, 0.7005)$, calculated by (P-19) and (P-20).

Table B-I (P-V): The output of the 2-LD system employing dependent randomization when the DFC lost synchronization with the LDs group before and after a corrective action is taken.

is $W^*=(P_f^{W^*},P_d^{W^*})=(0.2640,0.7600)$, which can be calculated by equations (P-17) and (P-18) in the paper. The probability of false alarm of the non-synchronized system $P_f^{W^*}=0.2640$ exceeds the $\alpha=0.2009$ constraint. When the DFC realizes that synchronization was lost, the DFC can change the probability of randomization from p to q to satisfy the constraint on α . In this situation the system is moved to $C^*=(0.2009,0.7005)$, calculated by (P-19) and (P-20) in the paper. The corresponding q=0.6787 is calculated by (P-25) in the paper. The DFC needs to run a random selection (with probability q=0.6787) between the two global fusion rules (AND and OR) and the LDs run a random selection (with probability p=0.5) between two set of local decision rules, independently of the DFC. Due to the loss of synchronization the probability of detection under the constraint $P_f \leq \alpha = 0.2009$ has been reduced from 0.8261 to 0.7005.

B. 3-LD system

The design input and output of the 3-LD system (Section III-B of the paper) employing dependent randomization with $\alpha=0.1708$ was shown in Table P-III. When the DFC lost synchronization with the LDs group in the 3-LD system (which employed dependent randomization), the performance

(a) ROC curve of the 2-LD system employing dependent randomization

(b) Zooming in on the ROC curve of the 2-LD system employing dependent randomization

Figure B-1 (P-8): A, B, M1 and M2, shown by green circles, are the possible operating points of the 2-LD system (Section III-A) when the synchronization between the LDs and the DFC is lost. The black circle, C, shows the operating point of the synchronized system. The magenta circle, W^* , shows the equivalent operating point of the system when it lost synchronization. C^* is the equivalent operating point after the corrective action is taken.

of the system (before and after a corrective action is taken) is shown in Table B-II (P-VI) and Figure B-2 (P-9).

In Figure B-2 (P-9), the black curve is the ROC curve of the 3-LD example in Section III-B when using dependent randomization (this is the curve developed in Figure P-7 of the paper and Figure A-5 of the supplemental file part A). Since $\alpha = 0.1708$, we are looking at the segment corresponding

Output of the non-synchronized 3-LD system before the corrective action is taken ($\alpha = 0.1708$)

- 1. Four possible operating points when the DFC lost synchronization with the LDs groups, A = (0.1040, 0.7840), B = (0.2710, 0.9360), M1 = (0.4880, 0.9730), and <math>M2 = (0.0280, 0.6480).
- 2. The operating point of the non-synchronized system, $W^* = (0.2046, 0.8210)$, calculated by (P-17) and (P-18).
- 3. The fact that the probability of the false alarm of the non-synchronized system exceeds the constraint α , $P_f^{W^*}=0.2046>0.1708=\alpha$

Output of the non-synchronized 3-LD system after the corrective action is taken ($\alpha=0.1708$)

- 1. The new probability for the DFC selecting γ_0^A , q = 0.7033, calculated by (P-25)
- 2. The fulfillment of the prerequisite of the correction action, 0 < q < 1
- 3. The operating point of the non-synchronized system after the corrective action is taken, $C^* = (0.1708, 0.7974)$, calculated by (P-19) and (P-20).

Table B-II (P-VI): The output of the 3-LD system employing dependent randomization when the DFC lost synchronization with the LDs group before and after a corrective action is taken.

Figure B-2 (P-9): A, B, M1 and M2, shown by green circles, are the possible operating points of the 3-LD system (Section III-B) when the synchronization between the LDs and the DFC is lost. The black circle, C, shows the operating point of the synchronized system. The cyan circle, W^* , shows the equivalent operating point of the system when it lost synchronization. C^* is the equivalent operating point after the corrective action is taken.

to $0.1040 = P_f^A \le P_f \le P_f^B = 0.2710$. When the probability of false alarm $P_f = \alpha = 0.1708$, the operating point of the system is $C = (P_f^C, P_d^C) = (0.1708, 0.8448)$, shown as the black circle. C is generated by operating at $A = (P_f^A, P_d^A) = (0.1040, 0.7840)$ with probability p = 0.6 and at $B = (P_f^B, P_d^B) = (0.2710, 0.9360)$ with probability 1 - p = 0.4, respectively (p was calculated)

using (P-11) in the paper. A is achieved when all 3 LDs operate at (0.2, 0.7) and the DFC uses a "2 out of 3 rule". B is achieved when all 3 LDs operate at (0.1, 0.6) and the DFC uses a "1 out of 3 rule". When the synchronization between the LDs group and the DFC is lost, the system may also operate at $M1 = (P_f^{M1}, P_d^{M1}) = (0.4880, 0.9730)$ (all 3 LDs operate at (0.2, 0.7) and the DFC uses "1 out of 3 rule") and $M2=(P_f^{M2},P_d^{M2})=(0.0280,0.6480)$ (all 3 LDs operate at (0.1,0.6)and the DFC uses "2 out of 3 rule"). The equivalent operating point of the non-synchronized system is $W^* = (P_f^{W^*}, P_d^{W^*}) = (0.2046, 0.8210)$, which can be calculated by (P-17) and (P-18) in the paper. The probability of false alarm constraint $P_f \leq \alpha = 0.1708$ is no longer satisfied. When the DFC realizes that synchronization was lost, the DFC can change the probability of randomization from p to q to satisfy the constraint on α . In this situation $C*=(P_f^{C*},P_d^{C*})=(0.1708,0.7974),$ calculated by (P-19) and (P-20) in the paper. The corresponding probability of randomization at the DFC q = 0.7033 can be calculated by (P-25) in the paper. The DFC needs to run a random selection (with probability q = 0.7033) between two global fusion rules and the LDs run a random selection (with probability p = 0.6) between two set of local decision rules independently. Due to the loss of synchronization, the probability of detection under the constraint $P_f \le \alpha = 0.1708$ has been reduced from 0.8448 to 0.7974.

REFERENCES

- [1] I. Y. Hoballah and P. K. Varshney, "Distributed Bayesian signal detection," *IEEE Transactions on Information Theory*, vol. 35, no. 5, pp. 995–1000, 1989.
- [2] S. Thomopoulos, R. Viswanathan, and D. Bougoulias, "Optimal distributed decision fusion," *IEEE Transactions on Aerospace and Alectronic Aystems*, vol. 25, no. 5, pp. 761–765, 1989.
- [3] Y. I. Han, "Randomized fusion rules can be optimal in distributed Neyman-Pearson detectors," *IEEE Transactions on Information Theory*, vol. 43, no. 4, pp. 1281–1288, 1997.
- [4] J. N. Tsitsiklis *et al.*, "Decentralized detection," *Advances in Statistical Signal Processing*, vol. 2, no. 2, pp. 297–344, 1993.
- [5] A. T. Zijlstra, Calculating the 8th Dedekind Number. PhD thesis, University of Groningen, 2013.
- [6] M. Kam, W. Chang, and Q. Zhu, "Hardware complexity of binary distributed detection systems with isolated local Bayesian detectors," *IEEE Transactions on Systems, Man and Cybernetics*, vol. 21, no. 3, pp. 565–571, 1991.
- [7] S. Acharya, J. Wang, and M. Kam, "Distributed decision fusion using the Neyman-Pearson criterion," in 17th International Conference on Information Fusion (FUSION), pp. 1–7, IEEE, 2014.
- [8] P. Willett and D. Warren, "The suboptimality of randomized tests in distributed and quantized detection systems," *IEEE Transactions on Information Theory*, vol. 38, no. 2, pp. 355–361, 1992.
- [9] W. Dong and M. Kam, "Detection performance vs. complexity in parallel decentralized bayesian decision fusion," in 51st Annual Conference on Information Sciences and Systems, CISS 2017, Baltimore, MD, USA, March 22-24, 2017, pp. 1–6, 2017.
- [10] J. D. Papastavrou and M. Athans, "The team roc curve in a binary hypothesis testing

environment," *IEEE transactions on aerospace and electronic systems*, vol. 31, no. 1, pp. 96–105, 1995.

[11] Q. Yan and R. S. Blum, "On some unresolved issues in finding optimum distributed detection schemes," *IEEE Transactions on signal processing*, vol. 48, no. 12, pp. 3280–3288, 2000.