

## 12. Frequent Subgraph Mining with GNNs

김나현, 이은빈



# 목차

#01 Fast Neural Subgraph Matching & Counting

#02 Neural Subgraph Matching

**#03 Finding Frequent Subgraphs** 





Fast Neural Subgraph Matching & Counting





### Subgraph

#### # Subgraph

- the building blocks of networks (네트워크의 구성 요소)
- 네트워크를 characterize하고 discriminate 할 수 있다.
- Ex) Lego 조각 하나가 subgraph Lego 결과물이 network





## Subgraph and motifs

```
# Given grph G = (V, E):

Def 1. Node-induced subgraph (= induced subgraph)

node를 중심으로 subset 구성

ex) chemistry
```

Def 2. Edge-induced subgraph (= non-induced subgraph / subgraph)
edge를 중심으로 subset 구성
ex) knowledge graph



### Graph Isomorphism

#### # Graph isomorphism problem

두 graph가 identical인지 확인하는 것은 중요한 문제이다

- $G_1 = (V_1, E_1)$  and  $G_2 = (V_2, E_2)$  are isomorphic if there exists a bijection  $f \colon V_1 \to V_2$  such that  $(u, v) \in E_1$  iff  $(f(a), f(b)) \in E_2$ 
  - f is called the isomorphism:

\* bijection : 일대일 대응



graph 크기 같더라도 edge의 방향/수에 따라 다양한 non-isomorphic graph 존재



### Graph Isomorphism

#### # Graph isomorphism problem

'They are the same graph, they're just drawn in the different way' same edges, same direction을 가지고 있음



그래프의 구성이 본질적으로 다른 경우, non-isomorphic



### Case examples of Subgraphs

All non-isomorphic, connected, undirected graphs of size 4



All non-isomorphic, connected, directed graphs of size 3





#### Network motifs

#### # Network motifs

recurring, significant patterns of interconnections

#### # How define a network motif:

- 1/ Pattern: Small (node-induced) subgraph
- 2/ Recurring: Pattern이 전체 graph에서 나타나는 빈도
- 3/ Significant: More frequent than expected in randomly generated graph?



#### Network motifs

#### # Network motifs

- graph가 어떻게 작동하는지 이해할 수 있다
- graph의 presence에 따라 prediction을 할 수 있다
- Examples: Feed-forward loops, Parallel loops, single-input modules





### Subgraph Frequency

#### # Subgraph Frequency

- $G_T$ : Target graph dataset,  $G_Q$ : small graph
- Frequency of  $G_O$  in  $G_T$ :

Large graph  $G_T$ 의 subgraph에 포함되는 small graph  $G_Q$ 의 개수







### Subgraph Frequency

#### # Subgraph Frequency

What if the dataset contains multiple graphs?

-개별 graph에 해당하는 분리된 구성요소가 있는 Large graph dataset  $G_T$  으로 간주하여 frequency 계산





#### # Key Idea

Random하게 생성된 Network의 motif frequency보다 Real network의 motif frequency가 더 많을 것이라고 가정



Milo et. al., Science 2002

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, cs224w.stanford.edu



#### # Random Graph Generation (1/3)

1/ Erdos-Renyi Random Graph

 $G_{n,p}$ 는 n개의 node에서 확률 p에 의해 edge를 random하게 생성하는 undirected graph

Generated graph is a result of a random process:



Three random graphs drawn from  $G_{5,0.6}$ 



#### # Random Graph Generation (2/3)

2/ Configuration model

같은 Degree sequence를 가진  $G^{real}$ 과 비교

각 node는 degree만큼 random하게 edge 연결하여 graph 생성



We ignore double edges and self-loops when creating the final graph



# Random Graph Generation (3/3)

3/ Switching

Edge 쌍을 무작위로 선택하여 endpoint를 바꿔 새로운 graph 생성

비교 대상 graph와 node degree가 같다는 특징



### Z-score for Statistical Significance

#### # Z-score

통계학의 Z-score 개념 차용하여 network motif에서 중요 subgraph 선택 일반적으로 10,000개~100,000 개의 random subgraph 생성

ullet  $Z_i$  captures statistical significance of motif i:

$$Z_i = (N_i^{\rm real} - \overline{N}_i^{\rm rand})/{\rm std}(N_i^{\rm rand})$$
•  $N_i^{\rm real}$  is #(motif  $i$ ) in graph  $G^{\rm real}$ 

- $\overline{N}_i^{\text{rand}}$  is average #(motifs i) in random graph instances



### Neural Subgraph Matching





## Subgraph Matching

: query 그래프가 target 그래프의 subgraph isomorphism인지 확인하는 task



(노드 간 올바른 맵핑을 위해 노드별로 색을 달리 함.)



### Neural Architecture for Subgraphs



node anchor를 활용하여 query의 노드 v와 target의 노드 u의 임베딩이 동일한지 확인



### Neural Architecture for Subgraphs



Query의 anchor node가 n-hop을 가질 때 n-hop 내에 있는 이웃노드들의 임베딩 비교.



### Subgraph Order Embedding Space



(노드 간 올바른 맵핑을 위해 노드별로 색을 달리 함.)



## Order Embedding Space



**Transitivity:** 데이 G2의 subgraph이고 G2가 G3의 subgraph라면 G1은 G3의 subgraph이다.

**Anti-symmetry:** *G*1이 *G*2의 subgraph이고 *G*2가 *G*1의 subgraph라면 두 그래프는 isomorphic하다.

**Closure under intersection:** 노드가 하나인 그래프는 모든 그래프의 subgraph이다. 음수를 가지는 임베딩은 없으며  $a \le b$ ,  $a \le c$ 라면 a = c는 유효한 값을 가진다.



#### Order Constraint

: GNN 사용 시, 어떤 Loss function을 사용해야 할까?

$$E(G_q, G_t) = \sum_{i=1}^{D} (\max(0, z_q[i] - z_t[i]))^2$$

Order constraint는 이상적인 embedding



According to the order embedding,  $G_q$  is a subgraph of  $G_t$ !



According to the order embedding,  $G_a$  is **not** a subgraph of  $G_t$ !

E(Gq,Gt)=0 이면 Gq는 Gt의 Subgraph가 이고 E(Gq,Gt)0 이면 Gq는 Gt의 Subgraph가 아니다.

(E는 'order constraint violation의 양'을 나타낸다. 이를 margin 이라고도 부른다.)



### Training

- 학습 데이터셋  $(G_q,G_t)$ 는  $G_t$ 의 subgraph인  $G_q$ 가 반, 그렇지 않은 것이 반이 되도록 구성해야 한다.
- Positive sample에 대해서는  $E(G_q,G_t)$ 를 최소화하도록 negative smaple에 대해서는  $\max(0,\alpha-E(G_q,G_t))$ 를 최소화하도록 학습하는데 이는 모델이 임베딩을 너무 멀리 이동시키는 것을 방지하기 위함이다.
- ullet 데이터셋 G로부터 학습을 위한  $G_T$ 와  $G_Q$ 를 H플링하는 과정이 필요하다.
- $G_T$ 는 무작위로 anchor 노드 v를 뽑은 뒤 거리가 K인 모든 노드를 포함시켜 만든다.
- Positive example  $G_Q$ 는 BFS 샘플링을 거친다.





#### Finding Frequent Subgraphs





## Finding Frequent Subgraphs

- 1) Enumerating all size-k connected subgraphs
- 2) Counting #(occurrences of each subgraph type)



위 방법들 : 모든 패턴들을 조합함으로써 Combinatorial explosion을 가져오기 때문에 높은 computation 비용을 수반한다.

#### **Solution with Representation Learning**

- ☑ big target graph를 embed
- ☑ small query graph의 빈도수를 예측 (직접 세기보다는, 빈도수 예측)
- ☑ all size scale에서의 빈도수 예측보다는, small subgraph에서 시작해서 큰 size에 이르기까지 노드 단위로 grow



#### SPMiner



Search Procedure: find frequent subgraphs by growing patterns



*←GT*그래프 & Subgraph *GQ*를 모두 비교하며 Subgraph 빈도 수 구하기

Same as neural subgraph matching



'super-graph' region 안의 노란 점들은 *GQ*를 포함하는 모든 *GT*의 neighborhoods가 된다.



#### SPMiner

#### Walk in Embedding Space



Step 3 Step 4 Step 5 ...

Step 12 Step 11 Step 10 ...

Identified frequent motif of size 12:
It has the largest number of blue points in super-graph region.

points in super-graph region, among all embeddings of possible subgraphs of size 12

Frequent Subgraph Mining by Walking in Order Embedding Space

- 11시작 노드 u를 무작위로 선택
- ② node by node로 이웃노드를 덧붙여 motif를 키운다. (빈도수 높은 motif ★ k 스텝 후에 붉은 영역에 속하는 neighborhoods의 수를 최대화하는 것이 목적
- 3원했던 motif size에 도달하면 멈추고 *S*로부터 subgraph를 도출



# THANK YOU



