

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) 1-4
C12N 15/81, 15/62	A 1	(11) International Publication Number: WO 95/02059
C1211 15/61, 15/02	A1	(43) International Publication Date: 19 January 1995 (19.01.95)
(21) International Application Number: PCT/DKS (22) International Filing Date: 8 July 1994 (0		PL, RU, SK, UA, US, European patent (AT, BE, CH, DE,
(30) Priority Data: 0828/93 8 July 1993 (08.07.93)	D	Published With international search report.
(71) Applicant (for all designated States except US): NORDISK A/S [DK/DK]; Novo Allé, DK-2880 B (DK).	NOV lagsvæ	o d
(72) Inventors; and (75) Inventors/Applicants (for US only): CHRISTIANSE [DK/DK]; Tjørnevænget 15, DK-2800 Lyngby (D TERSEN, Jens, G., Litske [DK/DK]; Kirkevænget 2500 Valby (DK).	K). Pl	5 <u>.</u> [
(74) Common Representative: NOVO NORDISK A/S; No DK-2880 Bagsvaerd (DK).	vo All	٤,
(54) Title: A DNA CONSTRUCT ENCODING THE YAP	3 SIG	NAL PEPTIDE

(57) Abstract

A DNA construct comprising the following sequence: 5'-P-SP-(LP)_n-PS-HP-3' wherein P is a promoter sequence, SP is a DNA sequence encoding the yeast aspartic protease 3 (YAP3) signal peptide, LP is a DNA sequence encoding a leader peptide, n is 0 or 1, PS is a DNA sequence encoding a peptide defining a yeast processing site, and HP is a DNA sequence encoding a polypeptide which is heterologous to a selected host organism. The YAP3 signal peptide provides efficient secretion of heterologous proteins in yeast.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MIR	Macritania
ΑÜ	Australia	GE	Georgia		
BB	Barbados	GN	Guinea	MW	Malawi
BE	Belgium	GR	Greece	NE	Niger
BF	Burkina Feso	HU		NL	Netherlands
BG	Bulgaria	-	Hungary	NO	Norway
BJ	Benin	IR	Ireland	NZ	New Zealand
BR		IT	Italy	PL.	Poland
	Brazil	<u>JP</u>	Japan	PT	Portugal
BY	Belarus	KR	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Pederation
CT?	Contral African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
a	Côte d'Ivoire .	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	Ц	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
CS	Czechoslovakia	LU	Luxembourg	TG	Togo
CZ	Czech Republic	LV	Latvia	ŢĴ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain .	MG	Madagascar	US	United States of America
FI	Pinland	ML	Mali	U Z	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		~	A14	A MY METT

1

A DNA CONSTRUCT ENCODING THE YAP3 SIGNAL PEPTIDE

FIELD OF INVENTION

The present invention relates to a DNA construct comprising the YAP3 signal peptide for secretion of a heterologous 5 polypeptide, a yeast cell containing the DNA construct and a method of producing heterologous polypeptides in yeast from the DNA construct.

BACKGROUND OF THE INVENTION

Yeast organisms produce a number of proteins which are 10 synthesized intracellularly, but which have a function outside the cell. Such extracellular proteins are referred to as secreted proteins. These secreted proteins are expressed initially inside the cell in a precursor or a pre-protein form containing a presequence ensuring effective direction of the 15 expressed product across the membrane of the endoplasmic reticulum (ER). The presequence, normally named a signal peptide, is cleaved off from the rest of the protein during translocation. Once entered in the secretory pathway, the protein is transported to the Golgi apparatus. From the Golgi 20 the protein can follow different routes that lead to compartments such as the cell vacuole or the cell membrane, or it can be routed out of the cell to be secreted to the external medium (Pfeffer, S.R. and Rothman, J.E. Ann.Rev.Biochem. 56 (1987), 829-852).

25 Several approaches have been suggested for the expression and secretion in yeast of proteins heterologous to yeast. European published patent application No. 88 632 describes a process by which proteins heterologous to yeast are expressed, processed and secreted by transforming a yeast organism with an expression vehicle harbouring DNA encoding the desired protein and a signal peptide, preparing a culture of the transformed organism, growing the culture and recovering the protein from

2

the culture medium. The signal peptide may be the signal peptide of the desired protein itself, a heterologous signal peptide or a hybrid of native and heterologous signal peptide.

A problem encountered with the use of signal peptides hetero-5 logous to yeast might be that the heterologous signal peptide does not ensure efficient translocation and/or cleavage after the signal peptide.

The <u>S. cerevisiae</u> MFαl (α-factor) is synthesized as a prepro form of 165 amino acids comprising signal-or prepeptide of 19 10 amino acids followed by a "leader" or propeptide of 64 amino aicds, encompassing three N-linked glycosylation sites followed by (LysArg(Asp/Glu, Ala)₂₋₃α-factor)₄ (Kurjan, J. and Herskowitz, I. <u>Cell 30</u> (1982), 933-943). The signal-leader part of the preproMFαl has been widely employed to obtain synthesis and 15 secretion of heterologous proteins in <u>S. cerivisiae</u>.

Use of signal/leader peptides homologous to yeast is known from i.a. US patent specification No. 4,546,082, European published patent applications Nos. 116 201, 123 294, 123 544, 163 529, and 123 289 and DK patent application No. 3614/83.

- 20 In EP 123 289 utilization of the <u>S. cerevisiae</u> a-factor precursor is described whereas WO 84/01153 indicates utilization of the <u>Saccharomyces cerevisiae</u> invertase signal peptide and DK 3614/83 utilization of the <u>Saccharomyces cerevisiae</u> PHO5 signal peptide for secretion of foreign proteins.
- 25 US patent specification No. 4,546,082, EP 16 201, 123 294, 123 544, and 163 529 describe processes by which the α-factor signal-leader from Saccharomyces cerevisiae (MFα1 or MFα2) is utilized in the secretion process of expressed heterologous proteins in yeast. By fusing a DNA sequence encoding the S. 30 cerevisiae MFα1 signal/leader sequence at the 5' end of the gene for the desired protein secretion and processing of the

desired protein was demonstrated.

A number of secreted proteins are routed so as to be exposed to a proteolytic processing system which can cleave the peptide bond at the carboxy end of two consecutive basic amino acids. This enzymatic activity is in <u>S. cerevisiae</u> encoded by the KEX 5 2 gene (Julius, D.A. et al., <u>Cell 37</u> (1984b), 1075). Processing of the product by the KEX 2 gene product is needed for the secretion of active <u>S. cerevisiae</u> mating factor α (MFα or α-factor) but is not involved in the secretion of active <u>S. cerevisiae</u> mating factor a.

10 The use of the mouse salivary amylase signal peptide (or a mutant thereof) to provide secretion of heterologous proteins expressed in yeast has been described in WO 89/02463 and WO 90/10075. It is the object of the present invention to provide a more efficient expression and/or secretion in yeast of 15 heterologous proteins.

SUMMARY OF THE INVENTION

It has surprisingly been found that the signal peptide of the yeast aspartic protease 3 is capable of providing improved secretion of proteins expressed in yeast compared to the mouse 20 salivary amylase signal peptide.

Accordingly, the present invention relates to a DNA construct comprising the following sequence

wherein

25 P is a promoter sequence,

SP is a DNA sequence encoding the yeast aspartic protease 3 (YAP3) signal peptide,

LP is a DNA sequence encoding a leader peptide, n is 0 or 1,

4

PS is a DNA sequence encoding a peptide defining a yeast processing site, and

HP is a DNA sequence encoding a polypeptide which is heterologous to a selected host organism.

5 The term "signal peptide" is understood to mean a presequence which is predominantly hydrophobic in nature and present as an N-terminal sequence of the precursor form of an extracellular protein expressed in yeast. The function of the signal peptide is to allow the heterologous protein to be secreted to enter 10 the endoplasmic reticulum. The signal peptide is cleaved off in the course of this process. The YAP3 signal sequence has been reported previously, fused to its native gene (cf. M. Egel-Mitani et al., Yeast 6, 1990, pp. 127-137. A DNA construct wherein the YAP3 signal sequence is fused to a DNA sequence 15 encoding a heterologous polypeptide is believed to be novel. The YAP3 signal peptide has not previously been reported to provide efficient secretion of heterologous polypeptides in yeast.

In the present context, the expression "leader peptide" is 20 understood to indicate a peptide whose function is to allow the heterologous polypeptide to be directed from the endoplasmic reticulum to the Golgi apparatus and further to a secretory vesicle for secretion into the medium, (i.e. export of the expressed polypeptide across the cell wall or at least through 25 the cellular membrane into the periplasmic space of the cell).

The expression "heterologous polypeptide" is intended to indicate a polypeptide which is not produced by the host yeast organism in nature.

In another aspect, the present invention relates to a 30 recombinant expression vector comprising the DNA construct of the invention.

5

In a further aspect, the present invention relates to a cell transformed with the recombinant expression vector of the invention.

In a still further aspect, the present invention relates to a 5 method of producing a heterologous polypeptide, the method comprising culturing a cell which is capable of expressing a heterologous polypeptide and which is transformed with a DNA construct of the invention in a suitable medium to obtain expression and secretion of the heterologous polypeptide, after 10 which the heterologous polypeptide is recovered from the medium.

DETAILED DESCRIPTION OF THE INVENTION

In a specific embodiment, the YAP3 signal peptide is encoded by the following DNA sequence

15 ATG AAA CTG AAA ACT GTA AGA TCT GCG GTC CTT TCG TCA CTC TTT GCA TCT CAG GTC CTT GGC (SEQ ID No:1)

or a suitable modification thereof encoding a peptide with a high degree of homology (at least 60%, more preferably at least 70%, sequence identity) to the YAP3 signal peptide. Examples of 20 suitable modifications" are nucleotide substitutions which do not give rise to another amino acid sequence of the peptide, but which may correspond to the codon usage of the yeast organism into which the DNA sequence is introduced, or nucleotide substitutions which do give rise to a different 25 amino acid sequence of the peptide (although the amino acid sequence should not modified to the extent that it is no longer able to function as a signal peptide). Other examples of possible modifications are insertion of three or multiples of three nucleotides at either end of or within the sequence, or 30 deletion of three or multiples of three nucleotides at either end of or within the sequence.

In the sequence 5'-P-SP-(LP)_n-PS-HP-3', n is preferably 1. In other words, although the YAP3 signal peptide may, in some instances, in itself provide secretion and/or processing of the heterologous polypeptide, a leader or pro-peptide sequence is 5 preferably present. The leader may be a yeast MFαl leader peptide or a synthetic leader peptide, e.g. one of the leader peptides disclosed in WO 89/02463 or WO 92/11378 or a derivative thereof capable of effecting secretion of a heterologous polypeptide in yeast. The term "synthetic" is 10 intended to indicate that the leader peptides in question are not found in nature. Synthetic yeast leader peptides may, for instance be constructed according to the procedures described in WO 89/02463 or WO 92/11378.

The yeast processing site encoded by the DNA sequence PS may 15 suitably be any paired combination of Lys and Arg, such as Lys-Arg, Arg-Lys, Lys-Lys or Arg-Arg, which permits processing of the heterologous polypeptide by the KEX2 protease of Saccharomyces cerevisiae or the equivalent protease in other yeast species (D.A. Julius et al., Cell 37, 1984, 1075 ff.). If 20 KEX2 processing is not convenient, e.g. if it would lead to cleavage of the polypeptide product, a processing site for another protease may be selected instead comprising an amino acid combination which is not found in the polypeptide product, e.g. the processing site for FXa, Ile-Glu-Gly-Arg (cf. Sambrook, 25 Fritsch and Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989).

The heterologous protein produced by the method of the invention may be any protein which may advantageously be produced in yeast. Examples of such proteins are aprotinin, tissue factor 30 pathway inhibitor or other protease inhibitors, insulin or insulin precursors, human bovine or growth interleukin, glucagon, tissue plasminogen activator, transforming growth factor α or β , platelet-derived growth factor, enzymes, or a functional analogue thereof. In the 35 present context, the term "functional analogue" is meant to

indicate a polypeptide with a similar function as the native protein (this is intended to be understood as relating to the nature rather than the level of biological activity of the native protein). The polypeptide may be structurally similar to 5 the native protein and may be derived from the native protein by addition of one or more amino acids to either or both the Cand N-terminal end of the native protein, substitution of one or more amino acids at one or a number of different sites in the native amino acid sequence, deletion of one or more amino 10 acids at either or both ends of the native protein or at one or several sites in the amino acid sequence, or insertion of one or more amino acids at one or more sites in the native amino acid sequence. Such modifications are well known for several of the proteins mentioned above.

construct DNA invention of the may be prepared synthetically by established standard methods, phosphoamidite method described by S.L. Beaucage and M.H. Caruthers, Tetrahedron Letters 22, 1981, pp. 1859-1869, or the method described by Matthes et al., EMBO Journal 3, 1984, pp. 20 801-805. According to the phosphoamidite method, oligonucleotides are synthesized, e.g. in an automatic DNA synthesizer, purified, annealed, ligated and cloned into the yeast expression vector. It should be noted that the sequence 5'-P-SP-(LP),-PS-HP-3' need not be prepared in a single 25 operation, but may assembled be from two more oligonucleotides prepared synthetically in this fashion.

One or more parts of the DNA sequence 5'-P-SP-(LP)_n-PS-HP-3' may also be of genomic or cDNA origin, for instance obtained by preparing a genomic or cDNA library and screening for DNA 30 sequences coding for said parts (typically HP) by hybridization using synthetic oligonucleotide probes in accordance with standard techniques (cf. Sambrook, Fritsch and Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York, 1989). In this case, a genomic or cDNA sequence encoding 35 a signal peptide may be joined to a genomic or cDNA sequence

encoding the heterologous protein, after which the DNA sequence may be modified by the insertion of synthetic oligonucleotides encoding the sequence 5'-P-SP-(LP)_n-PS-HP-3' in accordance with well-known procedures.

- 5 Finally, the DNA sequence 5'-P-SP-(LP)_n-PS-HP-3' may be of mixed synthetic and genomic, mixed synthetic and cDNA or mixed genomic and cDNA origin prepared by annealing fragments of synthetic, genomic or cDNA origin (as appropriate), the fragments corresponding to various parts of the entire DNA sequence, in accordance with standard techniques. Thus, it may be envisaged that the DNA sequence encoding the signal peptide or the heterologous polypeptide may be of genomic or cDNA origin, while the sequence 5'-P-SP-(LP)_n-PS may be prepared synthetically.
- 15 The recombinant expression vector carrying the sequence 5'-P-SP-(LP)_n-PS-HP-3' may be any vector which is capable of replicating in yeast organisms. In the vector, the promoter sequence (P) may be any DNA sequence which shows transcriptional activity in yeast and may be derived from genes 20 encoding proteins either homologous or heterologous to yeast. The promoter is preferably derived from a gene encoding a protein homologous to yeast. Examples of suitable promoters are the Saccharomyces cerevisiae MFal, TPI, ADH I, ADH II or PGK promoters, or corresponding promoters from other yeast species, 25 e.g. Schizosaccharomyces pombe. Examples of suitable promoters are described by, for instance, Russell and Hall, J. Biol. Chem. 258, 1983, pp. 143-149; Russell, Nature 301, 1983, pp. 167-169; Ammerer, Meth. Enzymol. 101, 1983, pp. 192-201; Russell et al., <u>J. Biol. Chem.</u> 258, 1983, pp. 2674-2682; 30 Hitzeman et al, <u>J. Biol. Chem.</u> 225, 1980, pp. 12073-12080; Kawasaki and Fraenkel, Biochem. Biophys. Res. Comm. 108, 1982, and T. Alber and G. Kawasaki, J. Mol. Appl. Genet. 1, 1982, pp.

419-434.

The sequences indicated above should also be operably connected to a suitable terminator, e.g. the TPI terminator (cf. T. Alber and G. Kawasaki, <u>J. Mol. Appl. Genet. 1</u>, 1982, pp. 419-434), or the yeast CYC1 terminator.

5 The recombinant expression vector of the invention further comprises a DNA sequence enabling the vector to replicate in yeast. Examples of such sequences are the yeast plasmid 2µ replication genes REP 1-3 and origin of replication. The vector may also comprise a selectable marker, e.g. the Schizomay also comprise a selectable marker, e.g. the Schizomay accharomyces pombe TPI gene as described by P.R. Russell, Gene 40, 1985, pp. 125-130, or the yeast URA3 gene.

The procedures used to insert the sequence 5'-P-SP-(LP)_n-PS-HP-3' into a suitable yeast vector containing the information necessary for yeast replication, are well known to persons skilled in the art (cf., for instance, Sambrook, Fritsch and Maniatis, op.cit.). It will be understood that the vector may be constructed either by first preparing a DNA construct containing the entire sequence and subsequently inserting this fragment into a suitable expression vector, or by sequentially inserting DNA fragments containing genetic information for the individual elements (such as the promoter sequence, the signal sequence, the leader sequence, or DNA coding for the heterologous polypeptide) followed by ligation.

The yeast organism transformed with the vector of the invention 25 may be any suitable yeast organism which, on cultivation, produces large amounts of the heterologous polypeptide in question. Examples of suitable yeast organisms may be strains of <u>Saccharomyces</u>, such as <u>Saccharomyces cerevisiae</u>, <u>Sac-</u> charomyces kluyveri, Saccharomyces or uvarum, 30 Schizosaccharomyces, such Schizosaccharomyces pombe, as Kluyveromyces, such as Kluyveromyces lactis, Yarrowia, such as Yarrowia lipolytica, or Hansenula, such as <u>Hansenula</u> polymorpha. The transformation of the yeast cells may for

10

instance be effected by protoplast formation followed by transformation in a manner known per se.

The medium used to cultivate the cells may be any conventional medium suitable for growing yeast organisms. The secreted 5 heterologous protein, a significant proportion of which will be present in the medium in correctly processed form, may be recovered from the medium by conventional procedures including separating the yeast cells from the medium by centrifugation or filtration, precipitating the proteinaceous components of the 10 supernatant or filtrate by means of a salt, e.g. ammonium sulphate, followed by purification by a variety of chromatographic procedures, e.g. ion exchange chromatography, affinity chromatography, or the like.

BRIEF DESCRIPTION OF THE DRAWINGS

- 15 The invention is further described in the following examples with reference to the appended drawings wherein Fig. 1A and 1B schematically show the construction of plasmid pLaC257;
- Fig. 2 shows the DNA sequence and derived amino acid sequence 20 of the EcoRI-XbaI insert in pLaC257 (SEQ ID No:2);
 - Fig. 3A and 3B schematically show the construction of plasmid pLaC242Apr;
- Fig. 4 shows the DNA sequence and derived amino acid sequence of the EcoRI-XbaI fragment of pAPRSc1, wherein the protein 25 sequence shown in italics is derived from the random expression cloned DNA fragment (SEQ ID No:4);
 - Fig. 5 schematically shows the construction of plasmid pLaC263;
 - Fig. 6 shows the DNA sequence and derived amino acid sequence of the EcoRI-XbaI fragment of pLaC263 (SEQ ID No:6);

11

Fig. 7A and 7B show the DNA sequence and derived amino acid sequence of human tissue factor pathway inhibitor (TFPI) including its native signal peptide (SEQ ID No:8)

Fig. 8A shows the DNA sequence and derived amino acid sequence 5 of the spx3 signal peptide and 212 leader peptide (shown in WO 89/02463) N-terminally fused to the TFPI sequence in plasmid pYES-212 TFPI161-117Q (SEQ ID No:10);

Fig. 8B shows the DNA sequence and derived amino acid sequence of the YAP3 signal peptide and 212 leader peptide N-terminally 10 fused to the TFPI sequence in plasmid pYES-yk TFPI161-117Q (SEQ ID No:12); and

Fig. 9 shows restriction maps of plasmids pYES21, pP-212TFPI161-117Q; pYES-212TFPI161-117Q and pYES-ykTFPI161-117Q.

The invention is further illustrated in the following examples 15 which are not in any way intended to limit the scope of the invention as claimed.

EXAMPLES

Plasmids and DNA materials

All expression plasmids contain 2µ DNA sequences for 20 replication in yeast and use either the S. cerevisiae URA3 gene or the <u>Schizosaccharomyces</u> <u>pombe</u> triose phosphate isomerase gene (POT) as selectable markers in yeast. POT plasmids are described in EP patent application No. 171 142. A plasmid containing the POT-gene is available from a deposited E. coli 25 strain (ATCC 39685). The POT plasmids furthermore contain the cerevisiae triose phosphate isomerase promoter and terminator (P_{TP1} and T_{TP1}). They are identical to pMT742 (M. Egel-Mitani et al., Gene 73, 1988, pp. 113-120) (see fig. 1) except for the region defined by the Sph-XbaI restriction sites 30 encompassing the P_{TPI} and the coding region for

signal/leader/product. The URA3 plasmide use P_{TPI} and the iso-I-cytochrome C terminator (T_{cyc1}) .

The P_{TPI} has been modified with respect to the sequence found in pMT742, only in order to facilitate construction work. An 5 internal SphI restriction site has been eliminated by SphI cleavage, removel of single stranded tails and religation. Furthermore, DNA sequences, upstream to and without any impact on the promoter, have been removed by Bal31 exonuclease treatment followed by addition of an SphI restriction site 10 linker. This promoter construction present on a 373 bp SphI-EcoRI fragment is designated $P_{TPI\delta}$ and when used in plasmids already described this promoter modification is indicated by the addition of a δ to the plasmid name.

Finally a number of synthetic DNA fragments have been employed 15 all of which were synthesized on an automatic DNA synthesizer (Applied Biosystems model 380A) using phosphoramidite chemistry and commercially available reagents (S.L. Beaucage and M.H. Caruthers (1981) Tetrahedron Letters 22, 1859-1869). The oligonucleotides purified were by polyacrylamide gel 20 electrophoresis under denaturing conditions. Prior to annealing complementary pairs of such DNA single strands these were kinased by T4 polynucleotide kinase and ATP.

All other methods and materials used are common state of the art knowledge (J. Sambrook et al., Molecular Cloning, A 25 Laboratory Manual, Cold Spring Harbor Laboratory Press) Cold Spring Harbor, N.Y. 1989).

Example 1

The modified mouse salivary amylase signal peptide (MSA3_{SP}) (described in WO 89/02463) of the expression cassette of 30 plasmid pLSC6315D3 (described in Example 3 of WO 92/11378) which contains a DNA sequence coding for the insulin precursor

MI3 (B(1-29)-Ala-Ala-Lys-A(1-21)), was replaced with the YAP3 signal peptide in the following steps:

A construct for easy exchange of signal peptides was made. Through site-directed mutagenesis an Asp718 site was introduced 5 just prior to the signal initiation codon in pLaC196δ (cf. WO 89/02463, fig. 5), by the double primer method applying a mutagenic primer NOR494:

3'-ATTTGCTGCCATGGTACTTTCAGAAGG (SEQ ID No:14)

where bold letters indicate mutations and the underlined 10 sequence indicates the initiation codon.

The resulting plasmid was termed pLaC196 δ -Asp718 (see Fig. 1).

The nucleotide sequence of the region covering the junction between signal peptide and leader peptide of the expression cassette in pLSC6315D3 was modified, by replacing the Apal-15 HgiAI restriction fragment with a synthetic DNA stretch, NOR 2521/2522:

NOR2521: 5'-CAA CCA ATA GAC ACG CGT AAA GAA GGC CTA
CAG CAT GAT TAC GAT ACA GAG ATC TTG GAG (SEQ
ID No:15)

NOR2522: 5'-C CAA GAT CTC TGT ATC GTA ATC ATG CTG TAG
GCC TTC TTT ACG CGT GTC TAT TGG TTG GGC C (SEQ
ID No:16)

The resulting plasmid was termed pLSC6315D3R (see Fig. 1).

The SphI-Asp718 fragment of pLaC1968-Asp718 was ligated with 25 Sph1-Mlu1 cut pLSC6315D3R plasmid and a synthetic stretch of DNA encoding the YAP3 signal peptide:

YAP-spl: 5'-GT ACC AAA ATA ATG AAA CTG AAA ACT GTA AGA

TCT GCG GTC CTT TCG TCA CTC TTT GCA TCT CAG GTC CTT GGC CAA CCA ATA GAC A (SEQ ID No:17)

YAP-sp2: 5'-CG CGT GTC TAT TGG TTG GCC AAG GAC CTG AGA TGC

AAA GAG TGA CGA AAG GAC CGC AGA TCT TAC

AGT TTT CAG TTT CTA TAT TTT G (SEQ ID No:18)

The resulting plasmid pLaC257 essentially consists of pLSC6315D3, in which the MSA3 signal peptide has been replaced by the YAP3 signal peptide (see Fig. 2).

Yeast transformation: S. cerevisiae strain MT663 (E2-7B XE11-36 10 a/α, Δtpi/Δtpi, pep 4-3/pep 4-3) (the yeast strain MT663 was deposited in the Deutsche Sammlung von Mikroorganismen und Zellkulturen in connection with filing WO 92/11378 and was given the deposit number DSM 6278) was grown on YPGaL (1% Bacto yeast extract, 2% Bacto peptone, 2% galactose, 1% lactate) to 15 an O.D. at 600 nm of O.6.

100 ml of culture was harvested by centrifugation, washed with 10 ml of water, recentrifugated and resuspended in 10 ml of a solution containing 1.2 M sorbitol, 25 mM Na₂EDTA pH = 8.0 and 6.7 mg/ml dithiotreitol. The suspension was incubated at 30°C 20 for 15 minutes, centrifuged and the cells resuspended in 10 ml of a solution containing 1.2 M sorbitol, 10 mM Na, EDTA, 0.1 M sodium citrate, pH 0 5.8, and 2 mg Novozym®234. The suspension was incubated at 30°C for 30 minutes, the cells collected by centrifugation, washed in 10 ml of 1.2 M sorbitol and 10 ml of 25 CAS (1.2 M sorbitol, 10 mM CaCl2, 10 mM Tris HCl (Tris = Tris(hydroxymethyl)aminomethane) pH = 7.5) and resuspended in 2 ml of CAS. For transformation, 1 ml of CAS-suspended cells was mixed with approx. 0.1 μg of plasmid pLaC257 and left at room temperature for 15 minutes. 1 ml of (20% polyethylene 30 glycol 4000, 20 mM CaCl₂, 10 mM CaCl₂, 10 mM Tris HCl, pH = 7.5) was added and the mixture left for a further 30 minutes at room temperature. The mixture was centrifuged and the pellet resuspended in 0.1 ml of SOS (1.2 M sorbitol, 33% v/v YPD, 6.7

15

mM CaCl₂, 14 μg/ml leucine) and incubated at 30°C for 2 hours. The suspension was then centrifuged and the pellet resuspended in 0.5 ml of 1.2 M sorbitol. Then, 6 ml of top agar (the SC medium of Sherman et al., Methods in Yeast Genetics, Cold 5 Spring Harbor Laboratory (1982)) containing 1.2 M sorbitol plus 2.5%agar) at 52°C was added and the suspension poured on top of plates containing the same agar-solidified, sorbitol containing medium.

Transformant colonies were picked after 3 days at 30°C, 10 reisolated and used to start liquid cultures. One transformant was selected for further characterization.

Fermentation: Yeast strain MT663 transformed with plasmid pLaC257 was grown on YPD medium (1% yeast extract, 2% peptone (from Difco Laboratories), and 3% glucose). A 1 liter culture 15 of the strain was shaken at 30°C to an optical density at 650 nm of 24. After centrifugation the supernatant was isolated.

MT663 cells transformed with plasmid pLSC6315D3 and cultured as described above were used for a comparison of yields of MI3 insulin precursor. Yields of MI3 were determined directly on 20 culture supernatants by the method of Snel, Damgaard and Mollerup, Chromatographia 24, 1987, pp. 329-332. The results are shown below.

	plasmid	MI3 yield
	pSLC63.15D3 (Msa3 _{sp})	100%
25	pLaC257 (YAP3)	120%

Example 2

Plasmid pLSC6315D3 was modified in two steps. First, the MSA3 signal peptide was replaced by the spx3 signal peptide by exchanging the Sph1-Apal fragment with the analogous fragment

16

from pLaC212spx3 (cf. WO 89/02463). From the resulting plasmid pSLC63.15spx3, a 302bp EcoR1-Ddel fragment was isolated and fused to the 204 bp Ncol-Xbal fragment of pKFN1003 (WO 90/10075) containing the DNA sequence encoding aprotinin via a 5 synthetic linker DNA, NOR2101/2100 (see Fig. 3)

NOR2101: 5'-T AAC GTC GC (SEQ ID No:19)

NOR2100: 5'-CAT GGC GAC G (SEQ ID No:20)

The resulting plasmid, pLaC242-Apr (see Fig. 3), was cleaved with Cla1, dephosphorylated and applied in cloning of random 10 5'-CG-overhang fragments of DNA isolated from S. cerevisiae strain MT663, according to the description in WO 92/11378. Transformation and fermentation of yeast strain MT663 was carried out as described in Example 1.

From the resulting library yeast transformants harbouring the 15 plasmid pAPR-Sc1 (prepared by the method described in WO 92/11378) containing a leader the sequence of which is given in Fig. 4, was selected by screening. The spx3 signal peptide of pAPR-Sc1 was replaced by the YAP3 signal peptide by fusing the Sph1-Sty1 fragment from pLaC257 with the 300 bp Nhe1-Xba1 20 fragment of pAPR-Sc1 via the synthetic linker DNA MH1338/1339 (see Fig. 5):

MH 1338: 5'-CTT GGC CAA CCA TCG AAA TTG AAA CCA G (SEQ ID No:21)

MH 1339: 5'-CT AGC TGG TTT CAA TTT CGA TGG TTG GC (SEQ ID No:22)

The resulting plasmid was termed pLaC263 (see Fig. 5). The DNA sequence and derived amino acid sequence of the EcoRI-XbaI fragment of pLaC263 appears from Fig. 6.

WO 95/02059

17

plasmid

aprotinin yield

pAPR-Sc1 (Spx3_{SP})

100%

pLaC263

136%

Example 3

5 A synthetic gene coding for human TFPI, the DNA sequence of which was derived from the published sequence of a cDNA coding for human tissue factor pathway inhibitor (TFPI) (Wun et al., J. Biol. Chem. 263 (1988) 6001-6004), was prepared by step-wise cloning of synthetic restriction fragments into plasmid pBS(+).

- 10 The resulting gene was contained on a 928 base pair (bp) Sall restriction fragment. The gene had 26 silent nucleotide substitutions in degenerate codons as compared to the cDNA resulting in fourteen unique restriction endonuclease sites. The DNA sequence of the 928 bp Sall fragment and the 15 corresponding amino acid sequence of human maps.
- 15 corresponding amino acid sequence of human TFPI (pre-form) is shown in Fig. 7 (SEQ ID No:8).

This DNA sequence was subsequently truncated to code for a TFPI variant composed of the first 161 amino acids. A non-glycosylated variant, TFPI₁₋₁₆₁-117Gln in which the AAT-codon for 20 Asnl17 was replaced by CAA coding for Gln was constructed by site-directed mutagenesis in a manner known per se using synthetic oligonucleotides. The DNA sequence encoding TFPI₁₋₁₆₁-117Gln was preceded by the synthetic signal-leader sequence 212spx3 (cf. WO 89/02463), see Fig. 8A. This construction was inserted into the plasmid pP-212TFPI161-117Q (based on a vector of the POT-type (G. Kawasaki and L. Bell, US patent 4,931,373), cf. Fig. 8).

A 1.1 kb SphI-XbaI fragment containing the coding region for 212spx3-TFPI₁₋₁₆₁-117Gln was isolated and cloned into the plasmid 30 pYES21 derived from the commercially available (Stratagene) vector pYES2.0 (cf. Fig. 8). This plasmid contains 2μ sequence

18

for replication in yeast, the yeast URA3 gene for plasmid selection in <u>ura3</u> strains, the β-lactamase gene for selection in <u>E. coli</u>, the ColE1 origin of replication for replication in <u>E. coli</u>, the f1 origin for recovery of single-stranded DNA plasmid from superinfected <u>E. coli</u> strains, and the yeast CYC1 transcriptional terminator. The SphI-XbaI fragment was cloned into pYES 2.0 in front of the CYC1 terminator. The resulting plasmid pYES-212TFPI161-117Q (cf. Fig. 9) was cleaved with PflMI and EcoRI to remove the coding region for the mouse salivary amylase signal peptide which was replaced by a double-stranded synthetic oligonucleotide sequence coding for the YAP3 signal peptide:

MHJ 1131 5'AAT TCA AAC TAA AAA ATG AAG CTT AAA ACT GTA AGA TCT GCG GTC CTT TCG TCA CTC TTT GCA TCG CAG GTC CTA GGT CAA CCA 15 GTC A (SEQ ID No:23)

MHJ 1132 5'CTG GTT GAC CTA GGA CCT GCG ATG CAA AGA GTG ACG AAA GGA CCG CAG ATC TTA CAG TTT TAA GCT TCA TTT TTT AGT TTG (SEQ ID No: 24)

resulting in plasmid pYES-ykTFPI161-117Q (cf. Fig. 8B and Fig. 20 9).

Plasmids pYES-212TFPI161-117Q and pYES-ykTFPI161-117Q were transformed into the haploid yeast strain YNG318 (MATα ura3-52 leu2-Δ2 pep4-Δ1 his4-539 [cir+]. Plasmid selection was for Ura+cells. Reisolated transformants were grown in 50 ml of 25 synthetic complete medium lacking uracil (SC-ura) for 3 days at 30°C. After measuring cell density (OD₆₀₀), the cultures were centrifuged and the resulting supernatants were analysed for the level of secreted FXa/TF/FVIIa-dependent chromogenic TFPI-activity (P.M. Sandset et al., Thromb.Res. 47, 1987, pp. 389-30 400). The mean activity measured for supernatants from strains containing plasmid pYES-212TFPI161-117Q (i.e. the plasmid

WO 95/02059

PCT/DK94/00281

19

containing the mouse salivary amylase signal sequence) was 0.65 U/ml·OD. The mean activity measured for supernatants from strains containing plasmid pYES-ykTFPI161-117Q was 1.00 U/ml·OD.

İ

•

SEQUENCE LISTING

	(1) GENI	ERAL INFORMATION:	
10	;	APPLICANT: (A) NAME: Novo Nordisk A/S (B) STREET: Novo Alle (C) CITY: Bagsvaerd (E) COUNTRY: Dermark (F) POSTAL CODE (ZIP): 2880 (G) TELEPHONE: +45 4444 8888 (H) TELEFAX: +45 4449 3256	
	(ii)	TITLE OF INVENTION: A DNA Construct Encoding the YAP3 Signal Peptide	
	(iii)	NUMBER OF SEQUENCES: 24	
15	(iv)	COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IEM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)	•
20	(2) INFO	RMATION FOR SEQ ID NO: 1:	
25	(i)	SEQUENCE CHARACTERISTICS: (A) LENGIH: 63 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii)	MOLEÇULE TYPE: CDNA	
	(iii)	HYPOIHEITICAL: NO	
	(iii)	ANTI-SENSE: NO	
30	(vi)	ORIGINAL SOURCE: (A) ORGANISM: Saccharomyces cerevisiae	
	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	ATGAAACIY	GA AAACIGIAAG ATCIGOGGIC CITTOGICAC TCITTGCATC TCAGGICCIT	60
	GGC		63
	(2) INFO	RMATION FOR SEQ ID NO: 2:	
35	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 476 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	

VO 95/02059	DCT /DK9//00281
0 75/02037	PCT/DK94/00281

			((D) Î	OPOI	OGY:	lir	ear									
		(ii) MC	LEC	LE I	YPE:	DINA										
		(iii) HY	POIL	ETTC	AL:	NO									•	
		(iii) AN	TI- S	ENSE	: NO	•										
5		(vi				OURC ISM:		thet	ic								
		(ix	(AME/	KEY: ION:											
10		(ix	(AME/	KEY: ION:					-						
15		. (ix)	(ATUR A) N B) L	AME/	KEY: ION:	mat 294	_pep 45	tide 2								
		(xi) SE	QUEN	CE D	ESCR	IPII	on:	SEQ :	ID N	0: 2	:					
	GAA'	ITCA:	PTC.	aaga	ATAG	II C	AAAC	AAGA	A GA	ITAC	AAAC	TAT	CAAT	ITC .	ATAC	ACAATA	60
20	TAA	ACGA	cec (TACC	AAAA	M		ys L				al A			OG G la V		110
	CIT Leu	TCG Ser -60	TCA Ser	CIC Leu	TTT Phe	GCA Ala	TCT Ser - 55	CAG Gln	GIC Val	CIT Leu	GGC Gly	CAA Gln - 50	CCA Pro	ATA Ile	GAC Asp	ACG Thr	158
25	OGT Arg –45	ÀAA Lys	GAA Glu	GGC Gly	CTA Leu	CAG Gln -40	CAT His	GAT Asp	TAC Tyr	GAT Asp	ACA Thr -35	GAG Glu	ATC Ile	TIG Leu	GAG Glu	CAC His -30	206
	ATT Ile	GGA Gly	AGC Ser	GAT Asp	GAG Glu -25	TTA Leu	ATT Ile	TTG Leu	aat Asn	GAA Glu -20	GAG Glu	TAT Tyr	GIT Val	ATT Ile	GAA Glu -15	AGA Arg	254
30	ACT Thr	TIG Leu	CAA Gln	GCC Ala -10	ATC Ile	GAT Asp	AAC Asn	ACC Thr	ACT Thr -5	TIG Leu	GCT Ala	AAG Lys	AGA Arg	TTC Phe 1	GIT Val	AAC Asn	302
35 _	CAA Gln	CAC His 5	TIG Leu	TGC Cys	GT Gly	TCC Ser	CAC His 10	TTG Leu	GTT Val	GAA Glu	GCT Ala	TTG Leu 15	TAC Tyr	TTG Leu	GTT Val	TGC Cys	350
	GGT Gly 20	GAA . Glu .	AGA Arg	GCT Gly	TTC Phe	TTC Phe 25	TAC Tyr	ACT Thr	CCT Pro	aag Lys	GCT Ala 30	GCT Ala	AAG Lys	ggt Gly	ATT Ile	GTC Val 35	398

WO	05	100	
WU	73	/UZ	יכע

PCT/DK94/00281

22

GAA CAA TGC TGT ACC TCC ATC TGC TCC TTG TAC CAA TTG GAA AAC TAC Glu Glu Cys Cys Thr Ser Ile Cys Ser Leu Tyr Glu Leu Glu Asn Tyr 40 45 50

TGC AAC TAGACGCAGC CCGCAGGCTC TAGA 476
5 Cys Asn

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 124 amino acids

10

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Lys Leu Lys Thr Val Arg Ser Ala Val Leu Ser Ser Leu Phe Ala 15 -71 -70 -65 -60

Ser Gln Val Leu Gly Gln Pro Ile Asp Thr Arg Lys Glu Gly Leu Gln
-55 -45 -40

His Asp Tyr Asp Thr Glu Ile Leu Glu His Ile Gly Ser Asp Glu Leu
-35 -30 -25

20 Ile Leu Asn Glu Glu Tyr Val Ile Glu Arg Thr Leu Gln Ala Ile Asp -20 -15 -10

Asn Thr Thr Leu Ala Lys Arg Phe Val Asn Gln His Leu Cys Gly Ser -5 1 5

His Leu Val Glu Ala Leu Tyr Leu Val Cys Gly Glu Arg Gly Phe Phe 25 10 20 25

Tyr Thr Pro Lys Ala Ala Lys Gly Ile Val Glu Gln Cys Cys Thr Ser 30 35 40

Ile Cys Ser Leu Tyr Gln Leu Glu Asn Tyr Cys Asn
45
50

- 30 (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 450 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

35 (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: DNA
- (iii) HYPOTHETICAL: NO

WO	95	/020	150

(iii) ANTI-SENSE: NO

PCT/DK94/00281

		(v:				SOUR(NISM:		nthe	tic									
5	;	(1)	(VAME/	/KEY:			L									
		ىذ)	•	EATUR (A) 1 (B) I	VAME/	KEY:	sic 76.	_per 267	otide 7	2								
10) ,	(i)	(ATUF (A) N (B) I	IAME/	KEY:	mat 268	_per	otide 11	:								
		(xi	.) Se	QUEN	ICE D	ESCR	IPII	ON:	SEQ	ID N	io: 4	: : .						
	GAA	TICA	TTC	AAGA	ATAG	TT C	AAAC	AAGA	A GA	TTAC	AAAC	TAT	CAAI	TIC	ATAC	ACAAI	'A	60
15	TAA	AOGA	ATL	AAAG	A AT Me -6	t Ly	G GC S Al	TGI a Va	T TI 1 Ph -6	e Le	G GI U Va	T TI 1 Le	G TC u Se	c TI r Le -5	u Il	C GGA e Gly	•	111
20	TTC	TGC Cys	Trp -50	Ala	CAA Gln	CCA Pro	TOG	AAA Lys -45	Leu	AAA Lys	CCA Pro	GCT Ala	AGC Ser -40	Asp	ATA Ile	CAA Gln		159
	ATT Ile	CIT Leu -35	Tyr	GAC Asp	CAT His	Gly	GIG Val -30	Arg	GAG Glu	TTC	GGG	GAA Glu -25	AAC Asn	TAT Tyr	GIT Val	CAA Gln		207
25	GAG Glu -20	TTG Leu	ATC	GAT Asp	AAC Asn	ACC Thr -15	ACT Thr	TTG	GCT Ala	AAC Asn	GTC Val -10	Ala	ATG Met	GCT Ala	GAG Glu	AGA Arg -5		255
	TTG Leu	GAG Glu	AAG Lys	AGA Arg	AGG Arg 1	OCT Pro	gat Asp	TTC Phe	TGT Cys 5	TIG Leu	GAA Glu	CCT Pro	CCA Pro	TAC Tyr 10	ACT Thr	ggr Gly		303
30	CCA Pro	TGI Cys	AAA Lys 15	GCT Ala	AGA Arg	ATC Ile	ATC Ile	AGA Arg 20	TAC Tyr	TTC Phe	TAC Tyr	AAC Asn	GCC Ala 25	AAG Lys	GCT Ala	gly Gly		351
35	TTG Leu	TGI Cys 30	CAA Gln	ACT Thr	TTC Phe	GIT Val	TAC Tyr 35	GCT Gly	Gly	TGC Cys	AGA Arg	GCT Ala 40	AAG Lys	AGA Arg	AAC Asn	AAC Asn		399
	TTC Phe 45	AAG Lys	TCI Ser	GCT Ala	GAA Glu	GAC Asp 50	TGC Cys	ATG Met	AGA Arg	ACT Thr	TGT Cys 55	ccr Gly	GT Gly	GCC Ala				441
ı	TAAT	CIAG	:A															450

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 122 amino acids
 - (B) TYPE: amino acid
- 5 (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Met Lys Ala Val Phe Leu Val Leu Ser Leu Ile Gly Phe Cys Trp Ala
-64 -55 -50

10 Gln Pro Ser Lys Leu Lys Pro Ala Ser Asp Ile Gln Ile Leu Tyr Asp -45 -40 -35

His Gly Val Arg Glu Phe Gly Glu Asn Tyr Val Gln Glu Leu Ile Asp
-30 -25 -20

Asn Thr Thr Leu Ala Asn Val Ala Met Ala Glu Arg Leu Glu Lys Arg
15 -15 -5

Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr Gly Pro Cys Lys Ala 1 5 10

Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala Gly Leu Cys Gln Thr 20 25 30

20 Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn Asn Phe Lys Ser Ala
35 40 45

Glu Asp Cys Met Arg Thr Cys Gly Gly Ala

- (2) INFORMATION FOR SEQ ID NO: 6:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 470 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: DNA
 - (iii) HYPOTHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: synthetic
- 35 (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 81..461

(ix) FEATURE:

25

			((A) N (B) I	(AME)	KEY:	sig 81.	_pep	tide	:								
5	;	(ix	· (EATUR (A) N (B) I	AME/	KEY: ION:	mat 288	_pep	tide 1	:								
		(xi	.) Se	QUEN	CE D	ESCR	IPII	ON:	SEQ	ID N	Ö: 6	:						
	GAA	TTCA	TTC	AAGA	ATAG	TT C	AAAC	AAGA	A GA	TTAC	AAAC	TAT	CAAT	TTC	ATAC	ACAA'	TA	60
10	TAA	ACGA	.CCC	TACC	AAAA					ys T		TA A			la V			110
	CIT	TCG Ser	TCA Ser	CIC Leu	TITI Phe -55	GCA Ala	TCT	CAG Gln	GIC Val	CIT Leu -50	GCC	CAA Gln	CCA Pro	TCG Ser	AAA Lys -45	TTG Leu		158
15	AAA Lys	CCA Pro	GCT Ala	AGC Ser -40	Asp	ATA Ile	CAA Gln	ATT	CTT Leu -35	Tyr	GAC Asp	CAT His	GIY	GIG Val -30	Arg	GAG Glu		206
20	TTC Phe	GGG Gly	GAA Glu -25	Asn	TAT	GIT Val	CAA Gln	GAG Glu -20	TIG Leu	ATC Ile	GAT Asp	AAC Asn	ACC Thr -15	Thr	TTG Leu	GCT Ala		254
	AAC Asn	GIC Val -10	Ala	ATG Met	GCT Ala	GAG Glu	AGA Arg -5	TIG Leu	GAG Glu	AAG Lys	AGA Arg	AGG Arg 1	CCT Pro	GAT Asp	TTC Phe	TCT Cys 5		302
25	TTG Leu	GAA Glu	CCT Pro	CCA Pro	TAC Tyr 10	ACT Thr	GCT Gly	CCA Pro	TGT Cys	AAA Lys 15	GCT Ala	AGA Arg	ATC Ile	ATC Ile	AGA Arg 20	TAC Tyr		350
	TIC Phe	TAC Tyr	AAC Asn	GCC Ala 25	AAG Lys	GCT Ala	Gly	TTG Leu	TGT Cys 30	CAA Gln	ACT Thr	TTC Phe	GIT Val	TAC Tyr 35	GIY	GGC Gly		398
30	TGC Cys	AGA Arg	GCT Ala 40	AAG Lys	AGA Arg	AAC Asn	AAC Asn	TTC Phe 45	AAG Lys	TCT Ser	GCT Ala	GAA Glu	GAC Asp 50	TGC Cys	ATG Met	AGA Arg		446
35	_			Gly		TAAT	CTAC	: A										470
	(2)	TNEY	YDMAN	TTOM.	ELOD.	CEO.	TD 31	m										

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 127 amino acids

(B) TYPE: amino acid
(D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

Met Lys Leu Lys Thr Val Arg Ser Ala Val Leu Ser Ser Leu Phe Ala
-69 -65 -60 -55

5 Ser Gln Val Leu Gly Gln Pro Ser Lys Leu Lys Pro Ala Ser Asp Ile -50 -45 -40

Gln Ile Leu Tyr Asp His Gly Val Arg Glu Phe Gly Glu Asn Tyr Val -35 -25

Gln Glu Leu Ile Asp Asn Thr Thr Leu Ala Asn Val Ala Met Ala Glu
10 -20 -15 -10

Arg Leu Glu Lys Arg Arg Pro Asp Phe Cys Leu Glu Pro Pro Tyr Thr -5 1 5 10

Gly Pro Cys Lys Ala Arg Ile Ile Arg Tyr Phe Tyr Asn Ala Lys Ala 15 20 25

15 Gly Leu Cys Gln Thr Phe Val Tyr Gly Gly Cys Arg Ala Lys Arg Asn 30 35 40

Asn Phe Lys Ser Ala Glu Asp Cys Met Arg Thr Cys Gly Gly Ala 45 50 55

- (2) INFORMATION FOR SEQ ID NO: 8:
- 20 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 928 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 25 (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOIHETICAL: NO
 - (iii) ANTI-SENSE: NO
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- 30 (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 8..919
 - (ix) FEATURE:
 - (A) NAME/KEY: sig_peptide
- 35 (B) LOCATION: 8..91
 - (ix) FEATURE:
 - (A) NAME/KEY: mat_peptide
 - (B) LOCATION: 92..919

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

									-								
	GIC	ŒÃC	Met Met	: Ile	TAC Tyr	ACA Thr -25	Met	AAG Lys	AAA Lys	A GIA S Val	CAI His	Ala	A CTI Leu	TGG Trp	GCI Ala	AGC Ser -15	49
5	GIA Val	TGC Cys	CIG Leu	CTC Leu	CII Leu -10	Asn	Leu	GCC	Pro	GCC Ala -5	Pro	CM Leu	AAT Asn	GCI Ala	GAI Asp 1	TCT Ser	97
10	GLU	GAA Glu	GAT Asp 5	Glu	GAA Glu	CAC His	ACA Thr	ATT Ile 10	Ile	ACA Thr	GAI Asp	ACC Thr	GAG Glu 15	Leu	CCA Pro	CCA Pro	145
	CIG Leu	AAA Lys 20	Leu	ATG Met	CAT His	TCA Ser	TTT Phe 25	TGT Cys	GCA Ala	TTC Phe	AAG Lys	GCG Ala	Asp	GAT Asp	GGG Gly	Pro	193
15	TGT Cys 35	Lys	GCA Ala	ATC	ATG Met	AAA Lys 40	AGA Arg	TTT Phe	TTC	TTC Phe	AAT Asn 45	Ile	TTC Phe	ACT	CGA Arg	CAG Gln 50	241
	TGC Cys	GAA Glu	GAA Glu	TTT	ATA Ile 55	Tyr	GGG Gly	GGA Gly	TGI Cys	GAA Glu 60	GGA Gly	AAT Asn	CAG Gln	AAT Asn	OGA Arg 65	TTT Phe	289
20	GAA Glu	AGT Ser	CIG Leu	GAA Glu 70	Glu	TGC Cys	AAA Lys	aaa Lys	ATG Met 75	Cys	ACA Thr	AGA Arg	GAT Asp	AAT Asn 80	Ala	AAC Asn	337
5	AGG Arg	ATT Ile	ATA Ile 85	aag Lys	ACA Thr	ACA Thr	CIG Leu	CAG Gln 90	CAA Gln	GAA Glu	AAG Lys	CCA Pro	GAT Asp 95	TTC Phe	TGC Cys	TIT Phe	385
	TTG Leu	GAA Glu 100	GAG Glu	GAT Asp	CCT Pro	GGA Gly	ATA Ile 105	TGT Cys	CGA Arg	GGT Gly	TAT Tyr	ATT Ile 110	ACC Thr	AGG Arg	TAT Tyr	TTT Phe	433
0	TAT Tyr 115	AAC Asn	AAT Asn	CAG Gln	ACA Thr	AAA Lys 120	CAG Gln	TGT Cys	GAA Glu	AGG Arg	TTC Phe 125	AAG Lys	TAT Tyr	GGT Gly	GGA Gly	TGC Cys 130	481
	CIG Leu	GC Gly	aat Asn	ATG Met	AAC Asn 135	AAT Asn	TTT Phe	GAG Glu	ACA Thr	CTC Leu 140	GAG Glu	GAA Glu	TGC Cys	AAG Lys	AAC Asn 145	ATT Ile	529
5	TGT Cys	GAA Glu	GAT Asp	GGT Gly 150	ccc Pro	AAT Asn	GT Gly	TTC Phe	CAG Gln 155	GIG Val	CAT Asp	AAT Asn	TAT Tyr	GGT Gly 160	ACC Thr	CAG Gln	577
)	CIC Leu	Asn	GCT Ala 165	GIT Val	AAC Asn	AAC Asn	Ser :	CIG Leu 170	ACT Thr	ccc Pro	CAA Gln	TCA Ser	ACC Thr 175	AAG Lys	GIT Val	occ Pro	625

WO 95/020

PCT/DK94/00281

	AGC Ser	CTT Leu 180	TIT Phe	GAA Glu	TTC Phe	CAC His	GGT Gly 185	CCC Pro	TCA Ser	TGG Trp	TGT Cys	CTC Leu 190	ACT	CCA Pro	GCA Ala	gat Asp	673
5	AGA Arg 195	GGA Gly	TTG Leu	igi Cys	OGT Arg	GCC Ala 200	AAT Asn	GAG Glu	AAC Asn	AGA Arg	TTC Phe 205	TAC Tyr	TAC Tyr	AAT Asn	TCA Ser	GTC Val 210	721
	ATT Ile	GCG	aaa Lys	TGC Cys	OGC Arg 215	CCA Pro	TIT Phe	AAG Lys	TAC Tyr	TCC Ser 220	GCA Gly	TGT Cys	GGG	GGA Gly	AAT Asn 225	GAA Glu	769
10	AAC Asn	AAT Asn	TTT Phe	ACT Thr 230	AGT Ser	AAA Lys	CAA Gln	GAA Glu	TGT Cys 235	CIG Leu	AGG Arg	GCA Ala	TGC Cys	AAA Lys 240	AAA Lys	GCT Gly	817
15	TIC Phe	ATC Ile	CAA Gln 245	AGA Arg	ATA Ile	TCA Ser	aaa Lys	GGA Gly 250	GGC Gly	CIA Leu	ATT Ile	aaa Lys	ACC Thr 255	aaa Lys	AGA Arg	aaa Lys	865
	AGA Arg	AAG Lys 260	AAG Lys	CAG Gln	AGA Arg	GIG Val	AAA Lys 265	ATA Ile	GCA Ala	TAT Tyr	GAA Glu	GAA Glu 270	ATT Ile	TTT Phe	GIT Val	AAA Lys	913
20	AAT Asn 275	ATG Met	TGAC	TOG	IC												928
	(2)	INFO	RMAI	MOL	FOR	SEQ	ID N	ю: <u>9</u>):								
25		((A (B) IF	NGII PE:	CHAI I: 30 amir XGY:)4 an	ino id									
		(ii)	MOL	ECUI	E TY	PE:	prot	ein									
		(xi)	SEQ	UENC	E DE	SCRI	PIIC	n: s	EQ I	D NC): 9:						
30	Met -28	Ile		Thr -25	Met	Lys	Lys	Val	His - 20	Ala	Leu	Trp	Ala	Ser -15	Val	Cys	
	Leu	Leu :	Leu . -10	Asn	Leu	Ala	Pro	Ala -5	Pro	Leu	Asn	Ala	Asp 1	Ser	Glu	Glu	
	Asp 5	Glu (Glu 1	His '	Ihr	Ile 10	Ile	Ihr	Asp	Thr	Glu 15	Leu	Pro	Pro	Leu	Lys 20	
35	Leu	Met 1	His :	Ser :	Phe 25	Cys .	Ala :	Phe	Lys .	Ala 30	Asp .	Asp	Gly	Pro	Cys 35	Lys	
	Ala	Ile l	Met 1	Lys 2	Arg	Phe	Phe :	Phe .	Asn i	Ile	Phe '	Thr .	Arg	Gln	Cys	Glu	

29

Glu Phe Ile Tyr Gly Gly Cys Glu Gly Asn Gln Asn Arg Phe Glu Ser 55 60 65

Leu Glu Cys Lys Lys Met Cys Thr Arg Asp Asn Ala Asn Arg Ile 70 75 80

5 Ile Lys Thr Thr Leu Gln Gln Glu Lys Pro Asp Phe Cys Phe Leu Glu 85 90 95 100

Glu Asp Pro Gly Ile Cys Arg Gly Tyr Ile Thr Arg Tyr Phe Tyr Asn 105 110 115

Asn Gln Thr Lys Gln Cys Glu Arg Phe Lys Tyr Gly Gly Cys Leu Gly 120 125 130

Asn Met Asn Asn Phe Glu Thr Leu Glu Glu Cys Lys Asn Ile Cys Glu 135 140 145

Asp Gly Pro Asn Gly Phe Gln Val Asp Asn Tyr Gly Thr Gln Leu Asn 150 155 160

15 Ala Val Asn Asn Ser Leu Thr Pro Gln Ser Thr Lys Val Pro Ser Leu 165 170 175 180

Phe Glu Phe His Gly Pro Ser Trp Cys Leu Thr Pro Ala Asp Arg Gly 185 190 195

Leu Cys Arg Ala Asn Glu Asn Arg Phe Tyr Tyr Asn Ser Val Ile Gly
200 205 210

Lys Cys Arg Pro Phe Lys Tyr Ser Gly Cys Gly Gly Asn Glu Asn Asn 215 220 225

Phe Thr Ser Lys Gln Glu Cys Leu Arg Ala Cys Lys Lys Gly Phe Ile 230 235 240

25 Gln Arg Ile Ser Lys Gly Gly Leu Ile Lys Thr Lys Arg Lys Arg Lys 255 250 260

Lys Gln Arg Val Lys Ile Ala Tyr Glu Glu Ile Phe Val Lys Asn Met 265 270 275

(2) INFORMATION FOR SEQ ID NO: 10:

30 (i) SEQUENCE CHARACTERISTICS:

- (A) LENGIH: 234 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- 35 (ii) MOLECULE TYPE: DNA
 - (iii) HYPOIHETICAL: NO
 - (iii) ANTI-SENSE: NO

WO	95	/02 0	459

PCT/DK94/00281

		(vi				OURC		thet	ic										
4	5	(ix	•		IAME/	KEY: ION:			·										
		(ix	•	ATUR (A) N (B) I	IAME/	KEY: ION:	sig 76.	_pep .222	tide	· .									
10)	(ix	(AME/	KEY: ION:				l									
		(xi) SE	QUEN	CE D	ESCR	IPIT	ON:	SEQ	ID N	ю: 1	0:							
	GAA	TTCA	TTC	AAGA	ATAG	TT C	AAAC	AAGA	A GA	TTAC	AAAC	TAI	CAAT	TTC	ATAC	AC	AATA		60
15	TAA	ACCA'	TTA	AAA G	A ATM Me -4	G AA t Ly: 9	G GC S Al	T GT a Va	T TT 1 Ph	e Le	G GT u Va	T TI l Le	G TC u Se	CTI TLe -4	u Il) 2. e (GGA Gly		111
	TTC Phe	TGC Cys	TGG Trp -35	Ala	CAA Gln	CCA Pro	Val	ACT Thr -30	GCC	GAT Asp	GAA Glu	TCA Ser	TCI Ser -25	· Val	GAG Glu	A'	rr le		159
20	Pro	GAA Glu -20	GAG Glu	TCT Ser	CIG Leu	ATC	ATC Ile -15	GCT Ala	GAA Glu	AAC Asn	ACC	ACT Thr -10	Leu	GCT Ala	AAC Asn	G. Va	IC al		207
25	GCC Ala -5	ATG Met	GCT Ala	AAG Lys	AGA Arg	GAT Asp 1	TCT Ser	GAG Glu	GAA Glu										234
	(2)	INFO	ORMA'	TION	FOR	SEQ	ID 1	NO: :	11:			•						,	
0		(() ()	A) LI B) T	engli YPE:	CHAI H: 53 amir XGY:	ami no ac	ino a cid											
		(ii)	MO	LECUI	Œ T	Æ:	prot	ein											
		(xi)	SE	QUENC	Œ DE	SCRI	PIIC	n: s	EQ 1	D K): 11	L:		-					
	Met -49	Lys	Ala	Val	Phe -45	Leu	Val	Leu	Ser	Leu -40	Ile	Gly	Phe	Cys	Trp -35	Al	.a		
5	Gln	Pro	Val	Thr -30	Gly	Asp	Glu	Ser	Ser -25	Val	Glu	Ile	Pro	Glu -20		Se	ır		
	Leu	Ile	Ile -15	Ala	Glu	Asn		Thr -10	Leu	Ala	Asn	Val	Ala -5	Met	Ala	Ly	rs		

31

Arg	Asp	Ser	Glu	Glu
	1			

5

(2) INFORMATION FOR SEQ ID NO: 12:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGIH: 190 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA

10 (iii) HYPOTHETICAL: NO

(iii) ANTI-SENSE: NO

(vi) ORIGINAL SOURCE:

(A) ORGANISM: synthetic

(ix) FEATURE:

15 (A) NAME/KEY: CDS

(B) LOCATION: 17..190

(ix) FEATURE:

(A) NAME/KEY: sig_peptide

(B) LOCATION: 17..178

20 (ix) FEATURE:

(A) NAME/KEY: mat peptide

(B) LOCATION: 179..190

(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GAATTCAAAC TAAAAA ATG AAG CTT AAA ACT GTA AGA TCT GOG GTC CTT

Met Lys Leu Lys Thr Val Arg Ser Ala Val Leu

-54

-50

-45

TOG TCA CTC TIT GCA TOG CAG GTC CTA GGT CAA CCA GTC ACT GGC GAT

Ser Ser Leu Phe Ala Ser Gln Val Leu Gly Gln Pro Val Thr Gly Asp

-40

-35

-30

30 GAA TCA TCT GTT GAG ATT COG GAA GAG TCT CTG ATC ATC GCT GAA AAC
Glu Ser Ser Val Glu Ile Pro Glu Glu Ser Leu Ile Ile Ala Glu Asn
-25 -20 -15

ACC ACT TTG GCT AAC GTC GCC ATG GCT AAG AGA GAT TCT GAG GAA

Thr Thr Leu Ala Asn Val Ala Met Ala Lys Arg Asp Ser Glu Glu

-5

190

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 58 amino acids

32

- (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:
- 5 Met Lys Leu Lys Thr Val Arg Ser Ala Val Leu Ser Ser Leu Phe Ala
 -54 -50 -45 -40

Ser Gln Val Leu Gly Gln Pro Val Thr Gly Asp Glu Ser Ser Val Glu
-35 -30 -25

Ile Pro Glu Glu Ser Leu Ile Ile Ala Glu Asn Thr Thr Leu Ala Asn 10 -20 -15 -10

Val Ala Met Ala Lys Arg Asp Ser Glu Glu
-5

- (2) INFORMATION FOR SEQ ID NO: 14:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGIH: 27 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA
- 20 (vi) ORIGINAL SOURCE:

15

25

- (A) ORGANISM: synthetic
- (X1) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

ATTIGCTGCC ATGGTACTIT CAGAAGG

(2) INFORMATION FOR SEQ ID NO: 15:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGIH: 60 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: synthetic
 - (Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:

CAACCAATAG ACACGOGTAA AGAAGGCCTA CAGCATGATT ACGATACAGA GATCTTGGAG

60

WO	95	/020	54

PCT/DK94/00281

	(2)	INF	ORMATION FOR SEQ ID NO: 16:	
4	5	(i) SEQUENCE CHARACTERISTICS: (A) LENGIH: 62 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii	MOLECULE TYPE: DNA	
		(vi)	ORIGINAL SOURCE: (A) ORGANISM: synthetic	
10)	(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
	CCA	AGAIX	TO TOTATOGTAA TOATGOTGTA GEOCTTOTTT ACGOGTGTOT ATTGGTTGGG	60
	∞			62
	(2)	INFO	PRMATION FOR SEQ ID NO: 17:	
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGIH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20		(vi)	ORIGINAL SOURCE: (A) ORGANISM: synthetic	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
	GIAC	CAAA	AT AATGAAACIG AAAACIGIAA GATCIGOGGI OCTITOGICA CICITIGCAT	60
	CICA	GGTO	CT TGGCCAACCA ATAGACA	87
25	(2)	INFO	RMATION FOR SEQ ID NO: 18:	
30		(i)	SEQUENCE CHARACTERISTICS: (A) LENGIH: 87 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
	1	(vi)	ORIGINAL SOURCE: (A) ORGANISM: synthetic	
	((xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 18:	

WO 95/02059	DOT DITO 4/0000
11 O 22102029	PCT/DK94/0028

	OGOGIGICIA TIGGITGGCC AAGGACCIGA GATGCAAAGA GIGACGAAAG GACCGCAGAT	60
	CITACAGITT TCAGITTCIA TATTITIG	87
	(2) INFORMATION FOR SEQ ID NO: 19:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
0	(vi) ORIGINAL SOURCE: (A) ORGANISM: synthetic	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	TAACGICGC	9
	(2) INFORMATION FOR SEQ ID NO: 20:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGIH: 10 base pairs (B) TYPE: nucleic acid (C) SIRANDEDNESS: single (D) TOPOLOGY: linear	
0	(ii) MOLECULE TYPE: DNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: synthetic	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
	CATGGGGAGG	10
5	(2) INFORMATION FOR SEQ ID NO: 21:	
0	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: synthetic	
	(Xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	

W	O	95	/02	059
77	v	"	uz	U.J.

PCT/DK94/00281

35

	CTT	3GCCZA	AC CATOGAAATT GAAACCAG	28
	(2)	INFO	RMATION FOR SEQ ID NO: 22:	
5		(i)	SEQUENCE CHARACTERISTICS: (A) LENGIH: 28 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
10		(vi)	ORIGINAL SOURCE: (A) ORGANISM: synthetic	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 22:	,
	CTAG	CIGG	IT TCAATITCGA TGGTTGGC	28
	(2)	INFO	RMATION FOR SEQ ID NO: 23:	•
15		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 88 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
20		(vi)	ORIGINAL SOURCE: (A) ORGANISM: synthetic	
		(xi)	SEQUENCE DESCRIPTION: SEQ ID NO: 23:	
•	TTAA	CAAA	T AAAAAATGAA GCITAAAACT GTAAGATCIG CGGTCCTTTC GTCACTCTTT	60
			EG TOCHAGGICA ACCAGICA	88
25	(2)	INFOR	EMATION FOR SEQ ID NO: 24:	
30		(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 81 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
		(ii)	MOLECULE TYPE: DNA	
	((vi)	ORIGINAL SOURCE: (A) ORGANISM: synthetic	
		(vi)	SECULENCE DESCRIPTIONS SECULED NO. 24.	

36

CIGGITGACC	TAGGACCIGC	GATGCAAAGA	GTGACGAAAG	GACCGCAGAT	CITACAGITT	60
TAAGCTTCAT	TTTTTAGTTT	G				81

•

•

•

37

CLAIMS

1. A DNA construct comprising the following sequence

wherein

5 P is a promoter sequence,

SP is a DNA sequence encoding the yeast aspartic protease 3 (YAP3) signal peptide,

LP is a DNA sequence encoding a leader peptide, n is 0 or 1,

- 10 PS is a DNA sequence encoding a peptide defining a yeast processing site, and
 - HP is a DNA sequence encoding a polypeptide which is heterologous to a selected host organism.
- 2. A DNA construct according to claim 1, wherein the promoter 15 sequence is selected from the <u>Saccharomyces cerevisiae</u> MFal, TPI, ADH, BAR1 or PGK promoter, or the <u>Schizosaccharomyces pombe</u> ADH promoter.
 - 3. A DNA construct according to claim 1, wherein the YAP3 signal peptide is encoded by the following DNA sequence
- 20 ATG AAA CTG AAA ACT GTA AGA TCT GCG GTC CTT TCG TCA CTC TTT GCA TCT CAG GTC CTT GGC (SEQ ID No:1)

or a suitable modification thereof encoding a peptide with a high degree of homology to the YAP3 signal peptide.

- 4. A DNA construct according to claim 1, wherein n is 1.
- 25 5. A DNA construct according to claim 5, wherein the leader peptide is a yeast MFαl leader peptide or a synthetic leader peptide.

- 6. A DNA construct according to claim 1, wherein PS is a DNA sequence encoding Lys-Arg, Arg-Lys, Lys-Lys, Arg-Arg or Ile-Glu-Gly-Arg.
- 7. A DNA construct according to claim 1, wherein the 5 heterologous polypeptide is selected from the group consisting of aprotinin, tissue factor pathway inhibitor or other protease inhibitors, insulin or insulin precursors, human or bovine growth hormone, interleukin, glucagon, glucagon-like peptide 1, tissue plasminogen activator, transforming growth factor α or 10 β , platelet-derived growth factor, enzymes, or a functional analogue thereof.
 - 8. A DNA construct according to claim 1, which further comprises a transcription termination sequence.
- 9. A DNA construct according to claim 8, wherein the 15 transcription termination sequence is the TPI terminator.
 - 10. A recombinant expression vector comprising a DNA construct according to any of claims 1-9.
 - 11. A cell transformed with a vector according to claim 10.
 - 12. A cell according to claim 11, which is a fungal cell.
- 20 13. A cell according to claim 12, which is a yeast cell.
 - 14. A cell according to claim 13, which is a cell of <u>Saccharomyces</u>, <u>Schizosaccharomyces</u>, <u>Kluyveromyces</u>, <u>Hansenula</u> or <u>Yarrowia</u>.
- 15. A cell according to claim 14, which is a cell of 25 Saccharomyces cerevisiae or Schizosaccharomyces pombe.

39

16. A method of producing a heterologous polypeptide, the method comprising culturing a cell which is capable of expressing a heterologous polypeptide and which is transformed with a DNA construct according to any of claims 1-9 in a 5 suitable medium to obtain expression and secretion of the heterologous polypeptide, after which the heterologous polypeptide is recovered from the medium.

Fig. 1a

Fig. 1b

Fig. 2

Fig. 3b

Fig. 4

7/13

Fig. 6

GTCGAC	C AT(Me1 -28	CII	T TAG e Tyi	C ACA	r met	AAG Lys	AAA Lys	A GTA	A CAT His -20	Ala	A CT	T TG(1 Tr	Nh G GC O Al	eI T AGC a Ser -15	
GTA TG Val Cy	C CT(s Lei	G CTO	G CTT u Leu -10	1 W21	CTT Leu	GCC Ala	CC1 Pro	GCC Ala	Pro	CTT Let	T AAT L Asr	r GCT	T GA	T TCT p Ser l	97
GAG GA Glu Gl	A GAT u Asp	Γ GA/ D Glu	A GAA	A CAC I His	ACA Thr	ATT Ile 10	Tie	ACA Thr	GAT Asp	ACG Thr	Sac GAG Glu 15	CTO Leu	CC/ Pro	A CCA Pro	145
CTG AA/ Leu Ly: 20	, Leu	ATO Met	G CAT	TCA Ser	TTT Phe 25	Lys	GCA Ala	TTC Phe	AAG Lys	GCG Ala 30	Asp	GAT Asp	Apa GGG Gly	-	193
TGT AA/ Cys Lys 35	A GCA S Ala	ATO	ATG Met	AAA Lys 40	Arg	TTT Phe	TTC Phe	TTC Phe	AAT Asn 45	ATT Ile	TTC Phe	ACT Thr	CGA Arg	CAG Gln 50	241
TGC GAA Cys Glu	GAA Glu	TTT Phe	ATA Ile 55	iyr	GGG Gly	GGA Gly	TGT Cys	GAA Glu 60	GGA Gly	AAT Asn	CAG Gln	C1 AAT Asn	CC 8	Phe	289
GAA AGT Glu Ser	CTG Leu	GAA Glu 70	Giu	TGC Cys	AAA Lys	AAA Lys	ATG Met 75	TGT Cys	ACA Thr	AGA Arg	GAT Asp	AAT Asn 80.	GCA Ala	AAC Asn	337
AGG ATT Arg Ile	ATA Ile 85	AAG Lys	ACA Thr	ACA Thr	CTG Leu	CAG Gln 90	CAA G1n	GAA Glu	AAG Lys	CCA Pro	GAT Asp 95	TTC Phe	TGC Cys	TTT Phe	385
TG GAA eu Glu 100	GAG G1u	amHI GAT Asp	CCT	GGA Gly	ATA Ile 105	TGT Cys	CGA Arg	GGT Gly	TAT Tyr	ATT Ile 110	ACC Thr	AGG Arg	TAT Tyr	TTT Phe	433
AT AAC yr Asn 15	AAT Asn	CAG Gln	ACA Thr	AAA Lys 120	CAG Gln	TGT Cys	GAA	StuI AGG Arg	TTC	AAG Lys	TAT Tyr	GGT Gly	GGA Gly	TGC Cys 130	481
TG GGC eu Gly	AAT Asn	ATG Met	AAC Asn 135	AAŤ Asn	TTT Phe	GAG /	ACA Thr	XhoI CTC Leu 140	CAC	GAA G1u	TGC Cys	AAG Lys	AAC Asn 145	ATT Ile	529

										Knp]			
					AAT Asn					GGT	ACC		577
				AAC	AAC Asn								625
AGC Ser		TTT Phe		TTC	CAC His								673
	GGA				GCC Ala 200								721
					CCA Pro			GGA					769
				AGT Ser	AAA Lys		Leu		TGC			GGT Gly	817
			Arg			GGA				Lys		AAA Lys	865
		Lys				Ile			Ile			AAA Lys	913
	ATG Met		Sall GTCG										928

5361	ECORI GAATTCATTCAAGAATAGTTCAAACAAGAAGATT	ACAAACTATCAATTT	CATACACAAT
5420	ATAAACGATTAAAAGAATGAAGGCTGTTTTCTTG MetLysAlaValPheLeu spx	GTTTTGTCCTTGATC VaiLeuSerLeuile k3 signal peptic	GlyPheCys
5479	PfiMI GGGCCCAACCAGTCACTGGCGATGAATCATCTGT TrpAlaGinProValThrGlyAspGluSerSerVa	I G Lu I Le Pro G Lu G Lu	uSarl au I la
5438	ATCGCTGAAAACACCACTTTGGCTAACGTCGCCA IleAlaGluAsnThrThrLeuAlaAsnValAlaM	etAlaLvsAraAspSi	erGluGlu

5361	GAATTCAAACTAAAA		TTAAAACTGTA euLysThrVal	Bglll AGATCTGCGGT0 ArgSerAlaVa ignal peptic	ll AuSarsarl	TC1 .eu
5420 F	TTGCATCGCAGGTCCT heAlaSerGinValLe	AGGTCAA		CGATGAATCATO yAspGluSerSe 212 leader++		
5479	Bcli GAAGAGTCTCTGATCA GluGluSerLeuIleI ++++++++	TCGCTGA/ leAlaGlu	AAACACCACTT JAsnThrThrL	TGGCTAACGTCG euAlaAsnValA	Ncoi CCATGGCTAA laMetAlaLy:	GAG s
Ar	AGATTCTGAGGAA gAspSerGluGlu +<-TFPI					

Fig. 9

l

INTERNATIONAL SEARCH REPORT

International application No.

	PC1/UK 94/	00281
A. CLASSIFICATION OF SUBJECT MATTER		
IPC6: C12N 15/81, C12N 15/62 According to International Patent Classification (IPC) or to both	n national classification and IPC	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed	by classification symbols)	
IPC6: C12N		
Documentation searched other than minimum documentation to	the extent that such documents are included	in the fields searched
SE,DK,FI,NO classes as above		
Electronic data base consulted during the international search (na	me of data base and, where practicable, sear	ch terms used)
MEDLINE, BIOSIS, EMBASE, WPIL, US PATE	NTS FULLTEXT DATABASES	
C. DOCUMENTS CONSIDERED TO BE RELEVAN		
Category* Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
WO, A1, 8702670 (MACKAY, VIVIAI (07.05.87)	N, L), 7 May 1987	1-16
JOURNAL OF CELLULAR BIOCHEMISTS Volume 12, 1988: Suppl. O. Welch et al, "A unique stru yeast aspartyl protease din tion", page 287	Part B, Susan K. Ictural domain of a	1-16
·		
Further documents are listed in the continuation of B	ox C. X See patent family anne	x.
 Special categories of cited documents: "A" document defining the general state of the art which is not considered 	T later document published after the integrated date and not in conflict with the appli	ternational filing date or priority
to de of particular relevance	ros brincibie or meory underlying the	invention
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	"X" document of particular relevance: the considered novel or cannot be considered step when the document is taken along	ered to involve an inventive
special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance: the considered to involve an inventive ste	o when the document is
means 'P' document published prior to the international filing date but later that the priority date claimed .	combined with one or more other suc	h documents, such combination to art
Date of the actual completion of the international search	Date of mailing of the international	
	27 -10- 1994	·
24 October 1994	27 10 134	
Name and mailing address of the ISA/	Authorized officer	•
Swedish Patent Office Box 5055, S-102 42 STOCKHOLM	Complème De 2	
Facsimile No. +46 8 666 02 86	Carolina Palmcrantz Telephone No. +46 8 782 25 00	

INTERNATIONAL SEARCH REPORT

Information on patent family members

01/10/94

International application No.
PCT/DK 94/00281

	document earch report	Publication date	•	it family mber(s)	Publication date
WO-A1-	8702670	07/05/87	AT-T-	107357	15/07/94
	•		AU-A-	6543286	19/05/87
			AU-A-	7400391	18/07/91
			CA-A-	1316133	13/04/93
			DE-D-	3689918	00/00/00
			EP-A.B-	0220689	06/05/87
			SE-T3-	0220689	00, 00, 2.
			EP-A-	0243465	04/11/87
			JP-T-	63501614	23/06/88

Form PCT/ISA/210 (patent family annex) (July 1992)