Theonem =

Griven a set S,

an equivalence nelation ~ (=> a pantition of 3

$$v_a n \sim_b = \begin{cases} \phi & ibf a \neq b \\ N_a = N_b & ibf a \sim b \end{cases}$$

i) $f: S \to T$. Define a nelation on S as follows

and iff
$$f(a) = f(b)$$

$$a \sim b$$
 iff $f(a) = f(b)$
 $\sim_a := \{b \in S > + f(b) = f(a)\} = f^{-1}(f(a))$

$$S/= f(s)$$

Subjective

$$\phi$$
 $S_{\kappa} \longrightarrow f(S)$

$$\sim 1 \rightarrow f(a)$$

ø is bijection

$$S \xrightarrow{f} f(s)$$

$$X \xrightarrow{f} S_{N}$$

$$\pi: S \longrightarrow S_{\sim}$$

$$S \qquad f: S \longrightarrow T$$

$$\phi \circ \pi = f$$

$$|ii\rangle Z - \{0\} = Z^*$$

$$(Z \times Z^*) \sim$$

$$(a,b) \sim (c,d) \text{ if } ad = bc$$

. ~ is an equivalence nelation

Griven an
$$(a,b)$$
, find $\sim (a,b)$
 $\sim (a,b)$:= $\{(na,nb): n \in \mathbb{Z}^{\times}\}$

$$\mathbb{Z} \times \mathbb{Z}^* = \left\{ \begin{array}{l} \mathcal{Z} \times \mathbb{Z}^* \\ \mathcal{Z} \times \mathbb{Z}^* \end{array} \right.$$

$$\sim (a,b) = \frac{a}{b}$$
 $\frac{1}{2} \in \mathbb{Q}$
 $\frac{1}{2} = \frac{2}{4}$
 $\frac{1}{2} = \frac{2}{4}$

Homomphism

Example 3:-
$$5 + f(s)$$

$$7 + f(s)$$

i)
$$G_{N}$$
 has to be a group;

$$a,b \in G$$

$$\sim_{a} \sim_{b} = \sim_{ab}$$

\$ 07 = f

$$N_{a} = N_{e} = \int f(a) = f(e) \int f(ab)$$

 $N_{b} = N_{d} = \int f(b) = f(d) \int f(ed)$

identity \sim_1 Is \propto a homomorphism $\sim_2(a)$. $\sim_3(b) = \sim_4(a)$ $\sim_4(a)$ $\sim_5(a)$ $\sim_5(a)$

Theorem & Let S be a set/group. Let f be a function / q-homomorphism on S, then \exists a bijection / isomorphism $\phi: S_{//} \longrightarrow f(s)$, in other words, the following diagram commutes

$$S = f(s)$$

$$\phi = \pi = f$$