

Zusammenfassung CE, DS, RS

> Schwerpunkte:

- µController: Interrupts Peripherie
- Prozessorelement: Daten- u. Steuerpfad im FPGA
- Kombination von SW-HW
- Rechnerstrukturen: RISC Caches

4 LVS + 8 Labortermine

3 CE WS12

CE-Labor-System

Laboraufgaben

FPGA

- Schieberegister
- •FSM-Timer-Konzept; Aufzugsteuerung
- •Prozessorelement; Multizyklus-DP rechnet nichtlineare Kennlinie

µController

- •UART, Interrupts und ISR
- •SW-Interface: SPI Interface zu einem EEPROM/Flash-Speicher
- •Timer und PWM 44 kHz

Integration des Audio-Laborsystems als eine Aufgabe

- Synchronisation, Handshake-FSM, PE-Ankopplung zur Entzerrung
 SW-Interface; MPR3 Decodierung, Verzerrung; entzerrte Daten über
- PWM ausgeben

5 CE WS12

Vorlesungsinhalte

FSMs

- Vergleich von synchronen Automatenstrukturen
- Entwurfsmethodik; Automatenbeschreibungen
- Entkopplung von Zustandsautomaten

Architektursynthese für RTL-Entwürfe

- ASM-Diagramme für Prozessorelemente
- Ressource Sharing für PE-Funktionseinheiten
- Datenpfad in Pipelinestruktur

Synchronisation

- Clock-Konzepte; Multiratensysteme
- Synchronisation asynchroner Eingangssignale
- Kommunikation zwischen asynchronen Clock-Bereichen

6 CE WS12

Vorlesungsinhalte

Aufbau Mikroprozessor

- Prozessorbus, Adressdekoder speziell Zeitverhalten
- Interruptverarbeitung
- DMA

Mikroprozessor-Peripherieeinheiten

- Parallele Ein- und Ausgabe
- Timer, Sytemkonfiguration, Watchdog, Serielle Schnittstelle

Programmierung Mikrocontroller

- Treiberprogrammierung
- Startup-Code
- Laufzeitumgebung, Aufteilung ROM/RAM, Sektionen, Systemtests

Externe Beschaltung

• SPI

7

CE WS12

Vorlesungsinhalte

ALU

- RISC mit Pipeline; Phasendiagramm; Daten-, Kontroll- u. Struktur-Hazards
- Implikationen von Pipelines; Performancesteigerung, HW-Bedarf
- Prozessorklassifikation; Load-Store/Register-Speicher; Harvard-v.Neuman; Pseudo-Harvard

Speicher

- Speicherhierarchie
- Aufbau und Funktion von Caches;
 Direct-Mapped, n-Wege/Teilassoziativ, Vollassoziativ
 Einfluss auf Antwortzeiten; Cache-Einsatz steuern

8 CE WS12

CE-Sequenz WS 12/13

W1 KW39	W2	W3	W4	W5 KW43	W6	W7	W8	W9	W10	W11 KW49	W12	W13 KW51	W14 KW2	W15 KW3
VD VD	VDP	VP VD	VDP	VDP	VDP	VP	VDP	VDP	VP	VDP	VDP	Übung	VR	KLV
		-	L1	L1/ L2	L2	L3	L3/ L4	L4	L5	L5/ L6	L6/ L7	L7	L8	L8

D: Digitale Systeme; P: μ Controller; R: Rechnerstrukturen; KLV: Klausurvorbereitung; L: Labortermin

CE WS12

9

Digilent Nexys2

- Xilinx XC3S1200E
 19500 LEs, 63kB RAM, 28 MUL
- USB2: board power, device config. and high-speed data transfers
- ▶ 16MB fast Micron SDRAM
- ▶ 16MB Intel Flash Flash ROM
- > Xilinx Platform Flash ROM
- ▶ 50MHz Oscillator + Socket
- ▶ 59 GPIOs
- ▶ On-board I/O includes 8 LEDs,
 - 4 7-segment display, 4 pushbuttons, 8 slide switches
- ▶ 119\$=91€
- ADC-, DAC-, Video-Decoder-, RS232-, 10Mbit Ethernet-Module CE WS12

High Speed USB2 Port (JTAG and Data)
20 Data port (Config ROM)

20 Data port (Config ROM)

32 VGA RS232

VGA RS232

VGA RS232

VGA RS232

Data Ports

Expansion Connectors

Prof. Dr.B. Schwarz

5

