In [1]:	<pre># import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings('ignore')</pre>
In [2]•	Gradient Discent (in general) It is an optimization algorithm to find the minimum of a function. We start with a random point on the function and move in the negative direction of the gradient of the function to reach the local/global minima. Lets say the function is $y=(x-5)^2$
In [2]:	<pre>X = np.arange(-5,20) y = (X-5)**2 print(X) print(y) [-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] [100 81 64 49 36 25 16 9 4 1 0 1 4 9 16 25 36 49 64 81 100 121 144 169 196]</pre>
In [3]:	<pre># lets visualize the function plt.plot(X,y) plt.ylabel('f(x) = (x+5) 2') plt.xlabel('X') plt.show()</pre>
	125 - (S) 100 - (S) 75 - (S) 7
	Gradient discent formula $\theta^t = \theta^{t-1} - \eta \frac{\partial J}{\partial \theta^{t-1}}$
	where $\theta^t $
In [4]:	J -> function which we have to minimise $\frac{\partial J}{\partial \theta^{t-1}} \text{ -> partial derivative of that function or called Gradient}$ # lets find the minimum of that function $y = (X-5)**2$ # lets start from $x = 15$
	<pre>X = 15 # starting point lr = 0.1 # learning rate for i in range(100): # lets take 100 iteration grad = 2*(X-5) # darivative of that function or gradient X=X-lr*grad # applying formula print(X) 5.000000002037036</pre>
In [5]:	 conclusion So approximately 5 is our global minima for the function y = (X-5)**2. That means at the value of X = 5 our function in minimum.
	<pre>for i in range(100): grad = 2*(X-5) X=X-lr*grad y = (X-5)**2 plt.scatter(X,y) print(X)</pre> 5.000000002037036
	60 - 50 - 40 - 30 -
	Gradient Discent in Linear Regression
<pre>In [6]: Out[6]:</pre>	<pre># lets take a dataset called housing.csv housing = pd.read_csv(r'E:\linkdin post project\Gradient Discent\housing.csv') housing.head()</pre> <pre>price area bedrooms bathrooms stories mainroad guestroom basement hotwaterheating airconditioning parking prefarea full 1 12250000 8960 4 4 4 1 0 0 0 0 1 3 0</pre> <pre> 1 12250000 8960 4 4 4 1 0 0 0 0 1 3 0</pre>
In [7]:	<pre>2 12250000 9960</pre>
<pre>In [8]: Out[8]:</pre>	housing.drop(['furnishingstatus'],axis=1,inplace=True)
	0 4.562174 1.045766 1.402131 1.420507 1.376952 0.405251 -0.464888 -0.733865 -0.219063 1.471267 1.516299 1.8032 1 4.000809 1.755397 1.402131 5.400847 2.529700 0.405251 -0.464888 -0.733865 -0.219063 1.471267 2.676950 -0.5535 2 4.000809 2.216196 0.047235 1.420507 0.224204 0.405251 -0.464888 1.360148 -0.219063 -0.678439 1.516299 1.8032 3 3.982096 1.082630 1.402131 1.420507 0.224204 0.405251 -0.464888 1.360148 -0.219063 1.471267 2.676950 1.8032 4 3.551716 1.045766 1.402131 -0.569663 0.224204 0.405251 2.147110 1.360148 -0.219063 1.471267 1.516299 -0.5538
In [9]:	# Assign feature variable or independent variable X X = housing['area'] # Assign response variable or dependent variable to y
In [10]:	<pre>y = housing['price'] # lets visualize relationship between the features and the response using scatterplots sns.scatterplot(X,y) plt.show()</pre>
	For linear regression we use a cost function known as the mean squared error or MSE.
	Formula $MSE = rac{1}{n} \sum_{i=1}^n \left(y^{(i)} - \hat{y} ight)^2$
	$MSE = rac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - h_{ heta} x^{(i)} ight)^2 \ MSE = rac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - \left(m x^{(i)} + c ight) ight)^2$
	where ${\bf n}={\rm number\ of\ items}$ ${\bf y}^{(i)}={\rm actual\ point}$ $\hat{y}=h_{\theta}x^{(i)}=mx^{(i)}+c={\rm predicted\ point}$ ${\bf m}={\rm slope}$
	So our goal is to find the best m and c value where our MSE should be minimum. As per Gradient Discent Formula we have to differentiate our cost function
	first and then put that in to the formula . Partial Darivation of MSE w.r.t slope(m) and intercept(c) $\frac{\partial MSE}{\partial m} = -\frac{2}{n} \sum_{i=1}^n \left(y^{(i)} - mx^{(i)} - c\right) \left(x^{(i)}\right)$
	$rac{\partial m}{\partial c} = -rac{2}{n} \sum_{i=1}^n \left(y^{(i)} - m x^{(i)} - c ight)$
In [11]: In [12]:	<pre># now for applying gradient discent we need out x,y variables as numby array X = np.array(X) y = np.array(y) # lets implement the gradient descent function # lets initialised current m and c to 0</pre>
	<pre>def gradient_discent_simple(X,y): m = 0 c = 0 n = float(len(y)) iters = 1000 # take 1000 iteration learning_rate = 0.01 df = pd.DataFrame(columns = ['m', 'c', 'cost']) # make a dataframe to keep track how the costs are minimisin for i in range(iters): y_pred = m*X+c # prediction values cost = sum([i**2 for i in (y-y_pred)])/n d m = (2.75) taum(X**(y, y, pred)) # darminusting to y, pred = m*X + c # prediction values</pre>
	<pre>d_m = (-2/n)*sum(X*(y-y_pred)) #darivative w.r.t m d_c = (-2/n)*sum(y-y_pred) #darivative w.r.t c # we are doing the derivation for minimising the cost # after darivation we have to update the m and c m = m - (learning_rate*d_m) c = c - (learning_rate*d_c) df.loc[i] = [m,c,cost] # keep track of each cost in each iteration df.reset_index().plot.line(x='index', y=['cost']) return f'final slope and intercept after 1000 iteration is {round(m,3),round(c,3)}'</pre>
In [13]: Out[13]:	gradient_discent_simple(X,y) 'final slope and intercept after 1000 iteration is (0.536, 0.0)' 100 - cost 0.95 - cost
	0.80 - 0.80 - 0.75 - 0.70 - 0 200 400 600 800 1000
In [14]:	• We can clearly see that after 200 iterations the cost was not decreasing much which means we get our global minima. # lets visualize how the line was fitted y_pred = 0.536*X+0.0 plt.scatter(X, y) plt.plot(X, y_pred, color = 'red')
	<pre>plt.xlabel('area') plt.ylabel('price') plt.show()</pre>
	Note • learning rate is the speed at which we want to move towards negetive of the gradient . • it's always a good practice to choose a small value of learning rate and slowly move towards the nagative of the gradient . Multiple Linear Regression
In [15]:	Applying Gradient Descent for Multiple (>1) Features # Assigning feature variable X # lets now take 2 features area and bedrooms X = housing[['area', 'bedrooms']] # Assigning response variable y y = housing['price']
	Note • when we have more then one features the model now fit a hyperplane instade of line .
	• The cost function here is slightly different from MSE we just dividing the MSE by half (1/2) to get a nice interpretation . ### $J(\theta_0,\theta_1)=\frac{1}{2n}\sum_{i=1}^n\left(y^{(i)}-h_\theta\big(x^{(i)}\big)\right)^2$ ###
	$J(\theta_0,\theta_1,\dots,\theta_i) = \frac{1}{2n} \sum_{i=1}^n \left(y^{(i)} - \left(\theta_0 + \theta_1 x_1 + \theta_2 x_2 \dots + \theta_i x_i\right)\right)^2$ ### we have to first differentiate w.r.t. all thetas and then update each thetas . ### $\frac{\partial J(\theta_0,\theta_1,\dots,\theta_i)}{\partial \theta_0} = \frac{1}{n} \sum_{i=1}^n \left(y^{(i)} - h_\theta(x^{(i)})\right) \left(x_0^{(i)}\right)$
	#### $rac{\partial J(heta_0, heta_1,\ldots, heta_i)}{\partial heta_1}=rac{1}{n}\sum_{i=1}^n\left(y^{(i)}-h_ hetaig(x^{(i)}ig)ig)ig(x_1^{(i)}ig) ight.$ \dots
	$\frac{\partial J(\theta_0,\theta_1,\dots,\theta_i)}{\partial \theta_i} = \frac{1}{n} \sum_{i=1}^n \left(y^{(i)} - h_\theta\big(x^{(i)}\big)\right) \big(x_i^{(i)}\big)$ • We need to minimise the cost function J(θ) One way to do this is to use the batch gradient decent algorithm. In batch gradient decent, the values are updated in each iteration: #### $\theta_0 = \theta_0 - \alpha \frac{1}{n} \sum_{i=1}^n \left(y^{(i)} - h_\theta\big(x^{(i)}\big)\right) \big(x_0^{(i)}\big)$
	#### $ heta_1 = heta_1 - lpha rac{1}{n} \sum_{i=1}^n ig(y^{(i)} - h_ hetaig(x^{(i)}ig)ig)ig(x_1^{(i)}ig)$ ####
	$ heta_2= heta_2-lpharac{1}{n}\sum_{i=1}^nig(y^{(i)}-h_ hetaig(x^{(i)}ig)ig)ig(x_2^{(i)}ig) \ \ldots \ heta_n= heta_n-lpharac{1}{n}\sum_{i=1}^nig(y^{(i)}-h_ hetaig(x^{(i)}ig)ig)ig(x_n^{(i)}ig)$
In [16]:	• Now here we are taking the help of matrix multiplication because we are deal with more than one features. # Add a columns of 1s as an intercept to X. # The intercept column is needed for convenient matrix representation of cost function X['intercept'] = 1 X = X.reindex(['intercept', 'area', 'bedrooms'], axis=1) X.head()
Out[16]:	intercept area bedrooms 0 1 1.045766 1.402131 1 1 1.755397 1.402131 2 1 2.216196 0.047235 3 1 1.082630 1.402131
In [17]:	<pre># Convert X and y to arrays import numpy as np X = np.array(X) y = np.array(y)</pre>
In [18]: In [19]:	theta = np.matrix(np.array([0,0,0])) alpha = 0.01 iterations = 1000
In [20]:	<pre>def compute_cost(X, y, theta): return np.sum(np.square(np.matmul(X, theta) - y)) / (2 * len(y)) # gradient descent # takes in current X, y, learning rate alpha, num_iters # returns cost (notice it uses the cost function defined above) def gradient_descent_multi(X, y, theta, alpha, iterations):</pre>
	<pre>theta = np.zeros(X.shape[1]) n = len(X) df = pd.DataFrame(columns = ['coefficients', 'cost']) for i in range(iterations): cost = compute_cost(X, y, theta) derivative = (1/n) * np.matmul(X.T, np.matmul(X, theta) - y) # we are doing derivative for minimizing theta = theta - alpha * derivative # here we have to update our theta means we are going to next step df.loc[i] = [theta,cost]</pre>
In [21]: Out[21]:	gradient_descent_multi(X, y, theta, alpha, iterations)
	997 [3.337635977993293e-16, 0.4916563172711537, 0 0.314176 998 [3.3429324548080186e-16, 0.4916565358164564, 0 0.314176 999 [3.3447658506285006e-16, 0.49165675237880896, 0.314176, 'final coefficients are [3.34476585e-16 4.91656752e-01 2.91844700e-01] ') 0.500
	0.400 - 0.375 - 0.350 - 0.325 - 0.325 - 0.000 0.000
In [22]:	• We can clearly see that after 200 iterations the cost was not decreasing much which means we get our global minima. EXAMPLE 2 # lets take a dataset called advartising.csv
Out[22]:	<pre>advartising = pd.read_csv(r'E:\\advertising (1).csv') advartising.head()</pre>
In [23]:	TV Radio Newspaper Sales 0 230.1 37.8 69.2 22.1 1 44.5 39.3 45.1 10.4 2 17.2 45.9 69.3 9.3
	0 230.1 37.8 69.2 22.1
Out[23]:	0 230.1 37.8 69.2 22.1 1 44.5 39.3 45.1 10.4 2 17.2 45.9 69.3 9.3 3 151.5 41.3 58.5 18.5 4 180.8 10.8 58.4 12.9 # Normalisisng the data advartising = (advartising - advartising.head() TV Radio Newspaper Sales 0 0.967425 0.979066 1.774493 1.548168 1 -1.194379 1.080097 0.667903 -0.694304 2 -1.512360 1.524637 1.779084 -0.905135 3 0.051919 1.214806 1.283185 0.858177
Out[23]:	0 230.1 37.8 69.2 22.1 1 44.5 39.3 45.1 10.4 2 17.2 45.9 69.3 9.3 3 151.5 41.3 58.5 18.5 4 180.8 10.8 58.4 12.9 # Normalisising the data advartising = (advartising - advartising.mean())/advartising.std() advartising.head() TV Radio Newspaper Sales 0 0.967425 0.979066 1.774493 1.548168 1 -1.194379 1.080097 0.667903 -0.694304 2 -1.512360 1.524637 1.779084 -0.905135 3 0.051919 1.214806 1.283185 0.858177 4 0.393196 -0.839507 1.278593 -0.215143
	0 230.1 37.8 69.2 22.1 1 44.5 39.3 45.1 10.4 2 17.2 45.9 69.3 9.3 3 151.5 41.3 58.5 18.5 4 180.8 10.8 58.4 12.9 # Normalisisng the data advartising = (advartising - advartising.mean())/advartising.std() advartising.head() TV Radio Newspaper Sales 0 0.967425 0.979066 1.774493 1.548168 1 -1.194379 1.080097 0.667903 -0.694304 2 -1.512360 1.524637 1.779084 -0.905135 3 0.051919 1.214806 1.283185 0.858177 4 0.393196 -0.839507 1.278593 -0.215143 # Assigning feature variable X # lets see how attribute 'TV' affects 'Sales' X = advartising['TV'] # Assigning response variable y
In [24]:	0 2301 37.8 692 221 1 445 393 451 104 2 172 459 693 93 3 1515 413 585 185 4 1808 10.8 584 129 # Normalisisng the data advartising = (advartising - advartising.mean())/advartising.std() advartising.head() TV Radio Newspaper Sales 0 0.967425 0.979066 1.774493 1548168 1 -1.194379 1.080097 0.667903 -0.694304 2 -1.512360 1.524637 1.779084 -0.905135 3 0.051919 1.214806 1.283185 0.858177 4 0.393196 -0.839507 1.278593 -0.215143 # Assigning feature variable X # lates see how attribute 'TV' affects 'Sales' X = advartising('TV') # Assigning response variable y y = advartising('TV') # Assigning response variable y y = advartising('Sales') plt.scatter(X,y) Cmatplotlib.collections.FathCollection at 0x2715a6628e0>
In [24]:	0 230.1 37.8 69.2 22.1 1 44.5 39.3 45.1 10.4 2 17.2 45.9 69.3 9.3 3 151.5 41.3 58.5 18.5 4 180.8 10.8 58.4 12.9 # Mormalisiang the data advartising = (advartising - advartising .mean())/advartising.std() advartising (advartising - advartising - advartising - advartising .std() advartising .std() advartising 1.080097 0.667903 0.694304 2 -1.512260 1.524637 1.779084 0.905135 3 0.051919 1.214806 1.283185 0.858177 4 0.393196 -0.839507 1.278593 -0.215143 # Assigning feature variable X # lets see how attribute 'TV' affects 'Sales' X = advartising('Sales') plt.scatter(X, y) Cmatpiolib.collections.FathCollection at 0x2715a6628e0>
In [24]: Out[24]:	0 2301 378 692 221 1 445 393 451 104 2 172 459 693 93 3 1515 413 585 185 4 1808 108 584 129 **Normalising the data advantising = (advantising - advantising, mean())/advantising.std() **TV Radio Newspaper Sales 0 0967425 097966 1,774493 1.548168 1 -1194379 1.888097 0.667903 -0.694904 2 -1.512360 1524637 1,779684 -0.905135 3 0051919 1.214806 1283185 0.858177 4 0.393196 -0.839507 1,278593 -0.215143 **Assigning feature variable X** slots see how actribute 'TV' affects 'Sales' X** advantising('TV') **Assigning response variable Y** a advantising('TV') **Assigning response variable Y** y = advantising('TV') **Assigning response variable Y** a advantising
In [24]: Out[24]:	0 2001 378
In [24]: Out[24]:	0 220.1 37.8 692 221 1 445 383 451 104 2 172 459 693 93 93 3 1515 413 585 185 4 1938 108 584 129 ***Moccalitation** Use data
In [24]: Out[24]:	0 2261 378 682 221 1 443 383 451 00 2 172 453 683 93 3 1515 413 585 785 4 1828 188 84 129 * Moraticing conditions controlling mean())/advan(ising.std) advantising conditions * Moraticing conditions
In [24]: Out[24]:	0 2031 578 692 201 1 449 903 63 63 63 63 63 63 63 63 63 63 63 63 63
In [24]: Out[24]:	### 1928 ### 622 ### 1924 ### 1925 ###
In [24]: Out[24]: In [26]:	0 2003
In [24]: Out[24]: In [26]:	2011 2012 2013 2013 2014
In [24]: Out[24]: Out[25]: Out[28]:	### 2015
In [24]: Out[24]: Out[25]: In [26]:	
In [24]: In [25]: In [26]: In [28]: In [30]:	Security
In [24]: In [25]: In [26]: In [28]: In [30]:	0 301