In [11]:

```
import pandas as pd
import matplotlib.pyplot as plt
```

In [12]:

```
file1 = r'./subway_raw.csv'
sub = pd.read_csv(file1)
sub.head()
```

Out[12]:

	사용일자	요 일	노선명	역명	승차총승객 수	하차총승객 수	승하차총승 객수	연월	월일	등록일자
0	2019-03- 01	목	4호선	서울역	62588.0	64794.0	127382.0	2019- 03	03- 01	20190304
1	2019-03- 01	목	1호선	신설동	1335.0	1375.0	2710.0	2019- 03	03- 01	20190304
2	2019-03- 01	목	6호선	보문	1208.0	1271.0	2479.0	2019- 03	03- 01	20190304
3	2019-03- 01	목	4호선	성신여대 입구	3231.0	3650.0	6881.0	2019- 03	03- 01	20190304
4	2019-03- 01	목	우이신설경 전철	정릉	3620.0	2869.0	6489.0	2019- 03	03- 01	20190304

1. 2019.01~06 중에 언제 지하철을 가장 많이 이용했을까?(기준: 승하차총승객수)

In [13]:

```
submonth = sub.groupby('연월')[['승하차총승객수']].sum()
submonth
```

Out[13]:

승하차총승객수

연월	
2019-01	442746389.0
2019-02	379836010.0
2019-03	466692826.0
2019-04	470934348.0
2019-05	485718557.0
2019-06	442210635.0

In [48]:

```
import numpy as np
x = np.arange(len(submonth.index))
plt.rcParams['font.family'] = 'AppleGothic'
plt.figure(figsize=(7, 3))
plt.bar(x,submonth['승하차총승객수'].sort_values(ascending=False))
plt.xticks(x, submonth['승하차총승객수'].sort_values(ascending=False).index)
plt.title("<연월 지하철 승하차총승객수>")
plt.show()
```


연월로 그룹핑하여, 승하차총승객수의 합을 구했다. 그래프를 봤을때 승하차총승객수가 최대가 되는 연월은 **'2019-05'**이다.

2. 가설)1월~6월 중에 5월에 지하철 승객수가 많다?(기준: 승하차총 승객수

```
In [15]:
```

```
submonth = sub.groupby('연월')[['승하차총승객수']].sum()
submonth[submonth['승하차총승객수']==submonth['승하차총승객수'].max()]
```

Out[15]:

승하차총승객수

연월

2019-05 485718557.0

'연월'로 그룹핑하여, 승하차총승객수의 합을 구했다.

이때 승하차총승객수가 최대가 되는 연월은 '2019-05'이다. 따라서 가설은 옳다.

사실 1,2번 같은거 같긴한데.. 다르게 구해봤어여..

3. 가설) 요일 중에서 목요일에 지하철 승객수가 많다?(기준: 승하차 총승객수)

In [16]:

```
subday = sub.groupby('요일')[['승하차총승객수']].sum() subday
```

Out[16]:

승하차총승객수

요일

- 금 341950018.0
- 목 445310717.0
- 수 428684383.0
- 월 411979965.0
- 일 391555551.0
- 토 247523995.0
- 화 421134136.0

In [17]:

```
x = [0, 1, 2, 3, 4, 5, 6]plt.rcParams['font.family'] = 'AppleGothic'plt.bar(x, subday['승하차총승객수'].sort_values(ascending=False))plt.xticks(x, subday['승하차총승객수'].sort_values(ascending=False).index)plt.title('요일별 승하차총승객수')plt.show()
```


'요일'로 그룹핑하여, 승하차총승객수의 합을 구했다. 이때 승하차총승객수가 최대가 되는 요일은 **'목'**이다. 따라서 가설은 옳다.

4. 연월 각각에 대해 일자별(월일별) 승하차총승객수 그래프 그려볼까요?(pointplot)

In [18]:

```
import seaborn as sns
```

In [19]:

```
submonth1=sub[sub['연월']=='2019-01']
plt.figure(figsize=(25, 4))
plt.rcParams['font.family'] = 'AppleGothic'
plt.title("2019-01 월일별 승하차총승객수", fontsize=18)
sns.pointplot(x='월일', y='승하차총승객수', data=submonth1)
```

Out[19]:

<AxesSubplot: title={'center': '2019-01 월일별 승하차총승객수'}, xlabel='월 일', ylabel='승하차총승객수'>

In [20]:

```
submonth2=sub[sub['연월']=='2019-02']
plt.figure(figsize=(25, 4))
plt.rcParams['font.family'] = 'AppleGothic'
plt.title("2019-02 월일별 승하차총승객수", fontsize=18)
sns.pointplot(x='월일', y='승하차총승객수', data=submonth2)
```

Out[20]:

<AxesSubplot: title={'center': '2019-02 월일별 승하차총승객수'}, xlabel='월일', ylabel='승하차총승객수'>

In [21]:

```
submonth3=sub[sub['연월']=='2019-03']
plt.figure(figsize=(25, 4))
plt.rcParams['font.family'] = 'AppleGothic'
plt.title("2019-03 월일별 승하차총승객수", fontsize=18)
sns.pointplot(x='월일', y='승하차총승객수', data=submonth3)
```

Out[21]:

<AxesSubplot: title={'center': '2019-03 월일별 승하차총승객수'}, xlabel='월 일', ylabel='승하차총승객수'>

In [22]:

```
submonth4=sub[sub['연월']=='2019-04']
plt.figure(figsize=(25, 4))
plt.rcParams['font.family'] = 'AppleGothic'
plt.title("2019-04 월일별 승하자총승객수", fontsize=18)
sns.pointplot(x='월일', y='승하자총승객수', data=submonth4)
```

Out[22]:

<AxesSubplot: title={'center': '2019-04 월일별 승하차총승객수'}, xlabel='월 일', ylabel='승하차총승객수'>

In [23]:

```
submonth5=sub[sub['연월']=='2019-05']
plt.figure(figsize=(25, 4))
plt.rcParams['font.family'] = 'AppleGothic'
plt.title("2019-05 월일별 승하차총승객수", fontsize=18)
sns.pointplot(x='월일', y='승하차총승객수', data=submonth5)
```

Out[23]:

<AxesSubplot: title={'center': '2019-05 월일별 승하차총승객수'}, xlabel='월 일', ylabel='승하차총승객수'>

In [24]:

```
submonth6=sub[sub['연월']=='2019-06']
plt.figure(figsize=(25, 4))
plt.rcParams['font.family'] = 'AppleGothic'
plt.title("2019-06 월일별 승하차총승객수", fontsize=18)
sns.pointplot(x='월일', y='승하차총승객수', data=submonth6)
```

Out[24]:

<AxesSubplot: title={'center': '2019-06 월일별 승하차총승객수'}, xlabel='월일', ylabel='승하차총승객수'>

5. 가장 승객이 많이 타는 승차역은?

In [25]:

```
substa = sub.groupby('역명')[['승차총승객수']].sum()
substa=substa.sort_values(by='승차총승객수',ascending=True)
plt.figure(figsize=(10,100))
plt.rcParams['font.family'] = 'AppleGothic'
plt.title("역별 승차총승객수",fontsize=20)
substa.unstack(0).plot.barh()
```

Out[25]:

```
<AxesSubplot: title={'center': '역별 승차총승객수'}, ylabel='None,역명'>
```

'역명'으로 그룹핑하여, 승차총승객수의 합을 구했다. 그리고 승차총승객수를 기준으로 내림차순 정렬을 해줬다이때 승차총승객수가 최대가 되는 역은 **'잠실'**이다.

6. 노선별로 역별/요일별 승차승객수를 비교해볼 수 있을까?(1~9호 선, 역별/요일별 heatmap)

In [26]:

```
subl=sub[sub['노선명']=='1호선']
df1 = subl.groupby(['역명', '요일'])[['승차총승객수']].sum()
df1 = pd.pivot_table(data=df1, index='역명', columns='요일', values='승차총승객수', aggfusns.heatmap(df1, cmap='Blues')
plt.title('1호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


In [27]:

```
sub2 = sub[sub['노선명']=='2호선']
df2 = sub2.groupby(['역명', '요일'])[['승차총승객수']].sum()
df2 = pd.pivot_table(data=df2, index='역명', columns='요일', values='승차총승객수', aggfurax=sns.heatmap(df2, cmap='Greens')
plt.title('2호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


In [28]:

```
sub3 = sub[sub['노선명']=='3호선']
df3 = sub3.groupby(['역명', '요일'])[['승차총승객수']].sum()
df3 = pd.pivot_table(data=df3, index='역명', columns='요일', values='승차총승객수', aggfurax=sns.heatmap(df3, cmap='Oranges')
plt.title('3호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


In [29]:

```
sub4 = sub[sub['노선명']=='4호선']
df4 = sub4.groupby(['역명', '요일'])[['승차총승객수']].sum()
df4 = pd.pivot_table(data=df4, index='역명', columns='요일', values='승차총승객수', aggfurax=sns.heatmap(df4, cmap='GnBu')
plt.title('4호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


In [30]:

```
sub5 = sub[sub['노선명']=='5호선']
df5 = sub5.groupby(['역명', '요일'])[['승차총승객수']].sum()
df5 = pd.pivot_table(data=df5, index='역명', columns='요일', values='승차총승객수', aggfuax=sns.heatmap(df5, cmap='Purples')
plt.title('5호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


In [31]:

```
sub6 = sub[sub['노선명']=='6호선']
df6 = sub6.groupby(['역명', '요일'])[['승차총승객수']].sum()
df6 = pd.pivot_table(data=df6, index='역명', columns='요일', values='승차총승객수', aggfuax=sns.heatmap(df6, cmap='YlOrBr')
plt.title('6호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


In [32]:

```
sub7 = sub[sub['노선명']=='7호선']
df7 = sub7.groupby(['역명', '요일'])[['승차총승객수']].sum()
df7 = pd.pivot_table(data=df7, index='역명', columns='요일', values='승차총승객수', aggfurax=sns.heatmap(df7, cmap='YlGn')
plt.title('7호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


In [33]:

```
sub8 = sub[sub['노선명']=='8호선']
df8 = sub8.groupby(['역명', '요일'])[['승차총승객수']].sum()
df8 = pd.pivot_table(data=df8, index='역명', columns='요일', values='승차총승객수', aggfuax=sns.heatmap(df8, cmap='RdPu')
plt.title('8호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


In [34]:

```
sub9 = sub[sub['노선명']=='9호선']
df9 = sub9.groupby(['역명', '요일'])[['승차총승객수']].sum()
df9 = pd.pivot_table(data=df9, index='역명', columns='요일', values='승차총승객수', aggfurax=sns.heatmap(df9, cmap='OrRd')
plt.title('9호선 역별/요일별 승차승객수', fontsize=20)
plt.show()
```


7. 1호선에서 가장 하차를 많이 하는 역은?(groupby)

In [50]:

```
sub1 = sub[sub['노선명']=='1호선']
sub1_hacha = sub1.groupby('역명')[['하차총승객수']].sum()
sub1_hacha = sub1_hacha.sort_values(by='하차총승객수',ascending=True)
plt.figure(figsize=(10,20))
plt.rcParams['font.family'] = 'AppleGothic'
plt.title("1호선 역별 하차총승객수",fontsize=20)
sub1_hacha.unstack(0).plot.barh()
```

Out[50]:

```
<AxesSubplot: title={'center': '1호선 역별 하차총승객수'}, ylabel='None,역
명'>
```

1호선 역별 하차총승객수

'노선명'이 '1호선'인 행을 추출하여 sub1에 넣어줬다. sub1에서 '역명'으로 그룹핑하여, 하차총승객수의 합을 구했다. 그리고 내림차순으로 정렬해서 그래프로 나타내었다. 이때 하차총승객수가 최대가 되는 역은 **'가산디지털단지'**이다.

8. 2호선에서 어느 역에서 승차가 가장 많이 발생할까?(Folium역 표시)

In [36]:

import folium
from folium import plugins
from folium.plugins import HeatMap

In [37]:

Out[37]:

In [38]:

```
locations2 = locations[locations['호선']=='2호선']
locations2 = locations2.reset_index(drop=False)
locations2
```

Out[38]:

	index	역이름	역지역	위도	경도	호선
0	0	낙성대	수도권	37.477090	126.963506	2호선
1	2	서울대입구	수도권	37.481285	126.952695	2호선
2	7	강변	수도권	37.535118	127.094723	2호선
3	8	영등포구청	수도권	37.525831	126.896668	2호선
4	10	잠실새내	수도권	37.511608	127.086301	2호선
118	898	용산역 대구2호	대구	35.849060	128.528804	2호선
119	899	이곡	대구	35.850595	128.515794	2호선
120	900	임당	대구	35.834118	128.740837	2호선
121	901	정평	대구	35.834041	128.728662	2호선
122	902	죽전	대구	35.850717	128.538798	2호선

123 rows × 6 columns

In [39]:

In [41]:

Out[41]:

In []: