Notes on Number Theory and Discrete Mathematics Print ISSN 1310-5132, Online ISSN 2367-8275

Vol. 26, 2020, No. 3, 160-162

DOI: 10.7546/nntdm.2020.26.3.160-162

An identity involving Bernoulli numbers and the Stirling numbers of the second kind

Sumit Kumar Jha

International Institute of Information Technology Hyderabad-500 032, India

e-mail: kumarjha.sumit@research.iiit.ac.in

Received: 17 November 2019 **Revised:** 16 July 2020 **Accepted:** 16 July 2020

Abstract: Let B_n denote the Bernoulli numbers, and S(n,k) denote the Stirling numbers of the second kind. We prove the following identity

$$B_{m+n} = \sum_{\substack{0 \le k \le n \\ 0 \le l \le m}} \frac{(-1)^{k+l} \, k! \, l! \, S(n,k) \, S(m,l)}{(k+l+1) \, {k+l \choose l}}.$$

To the best of our knowledge, the identity is new.

Keywords: Bernoulli numbers, Stirling numbers of the second kind, Riemann zeta function, Polylogarithm function.

2010 Mathematics Subject Classification: 11B68, 11B73.

1 Introduction

Definition 1.1. The Bernoulli numbers B_n can be defined by the following generating function:

$$\frac{t}{e^t - 1} = \sum_{n \ge 0} \frac{B_n t^n}{n!},$$

where $|t| < 2\pi$.

Definition 1.2. The *Stirling number of the second kind*, denoted by S(n, m), is the number of ways of partitioning a set of n elements into m nonempty sets.

The following formula expresses the Bernoulli numbers explicitly in terms of the Stirling numbers of the second kind [3,5]:

$$B_n = \sum_{k=0}^n \frac{(-1)^k \, k! \, S(n,k)}{k+1}.\tag{1}$$

In the following section, we prove a new identity for the Bernoulli numbers in terms of Stirling numbers of the second kind, of which the above formula is a special case.

2 Main result

Our main result is the following.

Theorem 2.1. For all non-negative integers m, n we have

$$B_{m+n} = \sum_{\substack{0 \le k \le n \\ 0 \le l \le m}} \frac{(-1)^{k+l} \, k! \, l! \, S(n,k) \, S(m,l)}{(k+l+1) \, {k+l \choose l}}.$$

Remark 2.2. Letting m = 0 in the above equation gives us equation (1).

Proof. We start with the following integral from [2]

$$(\alpha + \beta)\zeta(\alpha + \beta + 1) = \int_0^\infty \frac{\text{Li}_\alpha(-1/t) \text{Li}_\beta(-t)}{t} dt,$$
 (2)

where $\zeta(\cdot)$ is the Riemann zeta function, and $\text{Li}_{\alpha}(t)$ is the polylogarithm function.

Letting $\alpha = -m$, and $\beta = -n$ (non-negative integers) in the preceding equation, we get

$$-(m+n)\zeta(1-m-n) = \int_{0}^{\infty} \frac{\text{Li}_{-m}(-1/t) \text{Li}_{-n}(-t)}{t} dt.$$

The following representation from the note [4]

$$\operatorname{Li}_{-n}(-t) = \sum_{k=0}^{n} k! \, S(n,k) \left(\frac{1}{1+t}\right)^{k+1} (-t)^k \tag{3}$$

allows us to evaluate the integral as

$$\int_{0}^{\infty} \frac{\text{Li}_{-m}(-1/t) \text{ Li}_{-n}(-t)}{t} dt = \int_{0}^{\infty} \sum_{\substack{0 \le k \le n \\ 0 \le l \le m}} \frac{(-1)^{k+l} \, k! \, l! \, S(n,k) \, S(m,l) \, t^{k}}{(1+t)^{k+l+2}} dt$$

$$= \sum_{\substack{0 \le k \le n \\ 0 \le l \le m}} (-1)^{k+l} \, k! \, l! \, S(n,k) \, S(m,l) \int_{0}^{\infty} \frac{t^{k}}{(1+t)^{k+l+2}} dt$$

$$= \sum_{\substack{0 \le k \le n \\ 0 \le l \le m}} (-1)^{k+l} \, k! \, l! \, S(n,k) \, S(m,l) \frac{\Gamma(k+1)\Gamma(l+1)}{\Gamma(k+l+2)}.$$

Here $\Gamma(\cdot)$ is the gamma function. This completes the proof after noting the fact [1] that

$$-(m+n)\cdot\zeta(1-m-n) = B_{m+n}.$$

References

- [1] Ahlfors, L. V. (1953). Complex Analysis, McGraw-Hill, New-York.
- [2] Wolfram Research (2020). *Polylogarithm: Integration (formula 10.08.21.0027.01)*. Available at: https://functions.wolfram.com/ZetaFunctionsandPolylogarithms/PolyLog/21/02/03/0005/
- [3] Gould, H. W. (1972). Explicit formulas for Bernoulli numbers, *Amer. Math. Monthly*, 79 (1), 44–51.
- [4] Landsburg, S. E. (2009). Stirling numbers and polylogarithms, *preprint*. Available at: http://www.landsburg.com/query.pdf.
- [5] Qi, F., & Guo, B. N. (2014). Alternative proofs of a formula for Bernoulli numbers in terms of Stirling numbers, *Analysis (Berlin)*, 34 (3), 311–317.