Congratulations! You passed!	Next Item
1 / 1 point	
1.	
For which of the following problems would anomaly detection be a suitable algo	rithm?
From a large set of primary care patient records, identify individuals who health conditions.	o might have unusual
Correct	
Since you are just looking for unusual conditions instead of a particular diseas application of anomaly detection.	se, this is a good
From a large set of hospital patient records, predict which patients have the flu).	a particular disease (say,
Un-selected is correct	
In a computer chip fabrication plant, identify microchips that might be d	efective.
Correct The defective chips are the anomalies you are looking for by modeling the prodefective chips.	pperties of non-
Given data from credit card transactions, classify each transaction accor (for example: food, transportation, clothing).	ding to type of purchase
Un-selected is correct	

1/1 point

Suppose you have trained an anomaly detection system for fraud detection, and your system that flags Anomalye Date G(10) less than ε , and you find on the cross-validation set that it is missing many 4/5 points (80.00%) Quiz, Fractions (i.e., failing to flag them as anomalies). What should you do?

Increase arepsilon

Correct

By increasing ε , you will flag more anomalies, as desired.

Decrease ε

1/1 point

Suppose you are developing an anomaly detection system to catch manufacturing defects in airplane engines. You model uses

$$p(x) = \prod_{j=1}^n p(x_j; \mu_j, \sigma_j^2).$$

You have two features x_1 = vibration intensity, and x_2 = heat generated. Both x_1 and x_2 take on values between 0 and 1 (and are strictly greater than 0), and for most "normal" engines you expect that $x_1 \approx x_2$. One of the suspected anomalies is that a flawed engine may vibrate very intensely even without generating much heat (large x_1 , small x_2), even though the particular values of x_1 and x_2 may not fall outside their typical ranges of values. What additional feature x_3 should you create to capture these types of anomalies:

$$x_3=x_1 imes x_2^2$$

$$x_3 = \frac{x_1}{x_2}$$

This is correct, as it will take on large values for anomalous examples and smaller values for normal examples.

$$x_3 = (x_1 + x_2)^2$$

$$igg(x_3 = x_1^2 imes x_2^2 igg)$$

1/1 point

Which of the following are true? Check all that apply.

If you have a large labeled training set with many positive examples and many negative Anomalyelanbee, tip a nomaly detection algorithm will likely perform just as well as a supervised Quiz, 5 question earning algorithm such as an SVM.
Un-selected is correct
If you do not have any labeled data (or if all your data has label $y=0$), then is is still possible to learn $p(x)$, but it may be harder to evaluate the system or choose a good value of ϵ .
Correct Only negative examples are used in training, but it is good to have some labeled data of both types for cross-validation.
If you are developing an anomaly detection system, there is no way to make use of labeled data to improve your system.
Un-selected is correct
When choosing features for an anomaly detection system, it is a good idea to look for features that take on unusually large or small values for (mainly the) anomalous examples.
Correct These are good features, as they will lie outside the learned model, so you will have small values for $p(x)$ with these examples.
0/1

point

5.

Quiz, 5 questions

Suppose you fit the gaussian distribution parameters μ_1 and σ_1^2 to this dataset. Which of the following values for μ_1 and σ_1^2 might you get?

$$igcap \mu_1=-3, \sigma_1^2=4$$

$$\bigcirc \quad \mu_1=-6, \sigma_1^2=4$$

$$\bigcap \quad \mu_1=-3, \sigma_1^2=2$$

This should not be selected

This is the correct value for μ_1 , but most of the data are in [-5, -1], so σ_1^2 is 4, not 2.

$$\mu_1=-6,\sigma_1^2=2$$