

Zhifei Zhang

Summary of My Work during BS, MS, PhD (first year)

Key Words

BS	Smart	Car

- **Unmanned Helicopter**
- Robotic hand

Task:

Design a car which can track a cable with alternative current (around 20KHz).

Signal generator

Smart Car

Magnetic sensor

Mother board

Smart Car

Task:

Design a visual system for UAV to track and position ground target.

Camera
INS
GPS

Visual System

Unmanned Helicopter

Calibration of fish eye camera:

Zhang algorithm + Brown model

Before

Unmanned Helicopter

Problems:

- Exhaust effect
- Unstable platform
- Oscillation (engine)

Retinex color enhancement

- Retina Cortex
- Nonlinear mapping

Color restoration:

Original

Histogram equalization

Multi-scale Retinex

Brightness enhancement:

Original

Histogram equalization

Multi-scale Retinex

Target recognition -- Moment invariants:

Training images

Moment invariants

 $P(Hu_{1}, Hu_{2}, Hu_{3}, Hu_{4}, Hist) =$ 2D color histogram $w_{1}\chi_{6}^{2}(Hu_{1}) + w_{2}\chi_{3}^{2}(Hu_{2}) + w_{3}\chi_{1}^{2}(Hu_{3}) + w_{4}\chi_{1}^{2}(Hu_{4}) + w_{5}h(Hist)$

HMAX model – Cortex:

Statistic analysis

Bag of word

Max pooling

Gabor filter

Unmanned Helicopter

S1 – Gabor filter:

$$G(x,y) = \exp\left(-\frac{(x\cos\theta + y\sin\theta)^2 + \gamma^2(y\cos\theta - x\sin\theta)^2}{2\sigma^2}\right) \times \cos\left(\frac{2\pi(x\cos\theta + y\sin\theta)}{\lambda}\right)$$

C1 – Max pooling

S2 – Bag of word

C2 – Statistic analysis

Positioning in world coordinate system:

Unmanned Helicopter

$$\begin{pmatrix} X \\ Y \end{pmatrix} = \begin{pmatrix} P_2 & 0 \\ 0 & P_1 \end{pmatrix} \begin{pmatrix} -\tan\left(\arctan\frac{T_y - C_y}{P_2} - \theta\right) \\ \tan\left(\arctan\frac{T_x - C_x}{P_1} - \phi\right) \end{pmatrix} \qquad P_1 = \frac{P_W}{2\tan\theta_{x\max}}$$

$$P_2 = \frac{P_H}{2\tan\theta_{y\max}}$$

$$P_1 = \frac{P_W}{2 \tan \theta_{x \max}}$$

$$P_2 = \frac{P_H}{2 \tan \theta_{y \max}}$$

$$\vec{d} = h\left(\frac{X}{P_2}, \frac{Y}{P_1}\right) = h\left(-\tan(\arctan\frac{T_y - C_y}{P_2} - \theta), \tan(\arctan\frac{T_x - C_x}{P_1} - \phi)\right)$$

Image coordinate system

Body coordinate system

Simulated positioning test:

Normal state

Abnormal state

Abnormal state

Filter oscillation caused by engine:

$$\begin{cases} \hat{x}_{k+1/k} = \mathbf{F}\hat{x}_{k/k} + \mathbf{Q}_k \\ y_k = \mathbf{H}x_k + \mathbf{R}_k \end{cases}$$

$$\mathbf{x}_{k} = (x, y, v_{x}, v_{y})_{k}^{T} \quad \mathbf{F} = \begin{pmatrix} 1 & 0 & dt & 0 \\ 0 & 1 & 0 & dt \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \mathbf{Q}?$$

$$\mathbf{y}_k = \left(y_x, y_y\right)_k^{\mathrm{T}} \qquad \mathbf{H} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad \mathbf{R}$$

Unscented Kalman Filter (UKF)

$$\begin{cases} \mathbf{x}_{k+1/k} = \mathbf{F} x_{k/k} + Q \cdot \mathbf{I} \\ y_k = \mathbf{H} x_k + R \cdot \mathbf{I} \end{cases}$$

UKF + DLF (Digital Low-pass Filter) = LUKF

$$\hat{x}_{k+1/k+1} = \hat{x}_{k+1/k} + K_{k+1} \left((1-L) y_{k+1} + L \cdot \mathbf{H} x_k - \hat{y}_{k+1/k} \right)$$

LUKF

Unmanned Helicopter

Video

Task:

Predict performance of robotic grasp to improve grasp quality of robotic hand.

PCA + Info-Gain / T-test / Chi-squared

0.5

Gaussian processing

2.5

Hybrid Gaussian

DARPA Robotics Challenge

Atlas with iRobot hand

Connect a fire hose to a standpipe and tighten it up

