

Why?

Social media is essential to any marketing or analytics team

People spend an average of <u>147 minutes per day</u> on social media

Key insights into consumer trends, sentiment, behavior

Data

Kaggle dataset

• 732 social media posts from Facebook, Instagram, and Twitter

Text, Hashtag, Timestamp, Platform, Likes, Shares, Country, Username,

Method

Multiclass classification problem

 Sentiment analysis from two different models NLTK VADER and Text Blob

Data Wrangling

- Index columns (2)
- Duplicate values (26 posts, 1 category twitter)
- Remove excess whitespace, punctuation, numbers, emojis
- Tokenization, Lemmatization, Removing Stop words
- Text blob and NLTK Vader to assign numeric scores to text data which will be used to train models
- -1 to 1

EDA

Modeling

80/20 train-test split

- Logistic Regression
- Support Vector Machines
- Random Forest
- Naive Bayes
- Gradient Boosting

Performance

- Naive Bayes
- Vader

1	features	Predicted label Predicted label							cted label		
2											
3	dataframe shape										
4	models	Logistic Regression	Logistic Regression	SVM	SVM	Random Forest	Random Forest	Naive Bayes	Naive Bayes	Gradient Boosting	Gradient Boosting
5		VADER	TextBlob	VADER	TextBlob	VADER	TextBlob	VADER	TextBlob	VADER	TextBlob
6	hyperparameters										
7	random_state	123	123	123	123	123	123	123	123	123	123
8	training sample size	80%	80%	80%	80%	80%	80%	80%	80%	80%	80%
9	solver / kernel / criterion	liblinear	liblinear	n/a	n/a	n/a	n/a	n/a	n/a	mlogloss	mlogloss
10	C	10	100	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
11	penalty	12	11	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
12	max_depth	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	5	3
13	learning_rate	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	0.1	0.1
14	n_estimators	n/a	n/a	n/a	n/a	200	200	n/a	n/a	200	200
15	performance										
16	accuracy	0.844	0.740	0.844	0.657	0.748	0.690	0.850	0.645	0.803	0.669
17	F1	0.831	0.728	0.833	0.645	0.706	0.659	0.834	0.637	0.781	0.651

Future Work

- Could apply analysis to a particular company, brand, or product
- Day of week
- Country
- Tracking world events, product launches etc.

