Journal of Heilongjiang Hydraulic Engineering College

Vol. 30, No. 4 Dec., 2003

文章编号:1000-9833(2003)04-0051-01

一种求 $\sum (P_i - \overline{P})$ 值的简便算法

王 君,苑红洁,于汪洋

(哈尔滨水文局,黑龙江 哈尔滨 150010)

摘 要: $在流量资料整编过程中,需计算<math>\Sigma(P_i-P)$ 值,现使用的方法繁素、工作量大,为此推导一种快速计算 $\Sigma(P_i-P)$ 值的方法。 关键词: 资料整编; 偏离数值检验; 方法

中图分类号:P337

文献标识码:A

A simple method about the evaluation to $\sum (P_i - \overline{P})$

WANG Jun, YUAN Hong-jie, YU Wang-yang

(Harbin Hydrology Bureau of Heilongjiang Prov., Harbin 150010, China)

Abstract: During the process of flux materials compilation, the value of $\sum (P_i - \overline{P})$ is needed to be calculated. The errent method is complex and heavy load and a rapid calculated method is drivated in this paper. Key words: materials compilation; departure value test; method

水文站每年都要进行资料整编。在整编过程中,依据文献[1],要对测点在 10 个以上,水位流量关系呈单一曲线、较长稳定时段的临时曲线及经单值化处理的关系进行 3 种检验计算,即适线检验、符号检验、偏离数值检验。在偏离数值检验中,要计算 $\Sigma(P_i-\overline{P})$ 的值(其中 P_i 为测点与关系曲线的相对偏离值; \overline{P} 为平均相对偏离值),习惯的方法为逐项计算后进行累加(表 1)。笔者在实际工作中,采用一种较为简便的计算方法,解决了实测流量点子较多时的计算问题。

1 计算公式的推导

因 $P = \sum P_i/n$,变化后为 $\sum P_i = n \overline{P}$,其中 n为测点总数。

$$\begin{split} \sum (P_i - \overline{P})^2 &= \sum (P_i^2 - 2 \, \overline{P} P_i + \overline{P}^2) \\ &= \sum P_i^2 - 2 \, \overline{P} \sum P_i + \sum \overline{P}^2 \\ &= \sum P_i^2 - 2 \, \overline{P} \cdot n \, \overline{P} + n \, \overline{P}^2 \\ &= \sum P_i^2 - n \, \overline{P}^2 \end{split}$$

2 实例验算

哈尔滨水文站 2002 年流量检验成果见表 1,用

参考文献:

[1] SL 247-99,水文资料整编规范[S].

收稿日期:2003-08-19

作者简介:王 君(1975-),男,黑龙江勃利人,助理工程师。

上述推导公式验算如下: $\sum (P_i - \overline{P})^2 = \sum P_i^2 - n \overline{P}^2$ = 54.97 - 18 × 0.03² = 54.95。

结果与表1计算成果一致。

表 1 哈尔滨水文站 2002 年流量整编 $\sum (P_i - \overline{P})^2$ 计算表

流量测次编号	P_i	$P_i - \overline{P}$	P_i^2	$(P_i - \overline{P})^2$
1	-0.56	-0.59	0.3136	0.3481
2	0.25	0.22	0.0625	0.0484
3	3.86	3.83	14.8996	14.6689
4	0	-0.03	0	0.0009
5	~1.59	-1.62	2.582 1	2.6244
6	-2.00	-2.03	4.00	4.1209
7	-0.14	-0.17	0.0196	0.0289
8	3.68	3.65	13.5424	13.3225
9	1.42	1.39	2.0164	1.932 1
10	~3.42	-3.45	11.6964	11.902 5
11	0	-0.03	0	0.0009
12	0	-0.03	0	0.0009
13	-0.66	-0.69	0.4356	0.476 1
14	-0.59	-0.62	0.3481	0.3844
15	1.63	1.60	2.6569	2.56
16	0.50	0.47	0.25	0.2209
17	-1.41	-1.44	1.988 1	2.073.6
18	-0.46	-0.49	0.2116	0.2401
Σ	0.51		0.2116	54.95

3 结 语

采用本文推导的公式,使得计算工作简化了许 多,提高了工作效率,有推广应用价值。