

Sommario

1.	Traccia e Obiettivi	2
	Indicatori di Compromissione (IoC) Identificati	
	2.1Scansione di porte TCP (Port Scanning)	
	2.2 Conclusioni parziali	
3.	Ipotesi dei vettori di attacco	
	Azioni di Mitigazione e Prevenzione	
	Conclusione	

Soliotora Gifus

1. Traccia e Obiettivi

L'obiettivo dell'analisi è esaminare una cattura di rete tramite **Wireshark** per individuare possibili segni di compromissione. Le attività richieste comprendono:

- Analizzare la cattura di rete e identificare eventuali Indicatori di Compromissione (IoC).
- Formulare ipotesi sui potenziali vettori di attacco, sulla base degli IoC identificati.
- Proporre azioni correttive e preventive per:
 - Ridurre l'impatto dell'attacco osservato.
 - Prevenire attacchi simili in futuro.

2. Indicatori di Compromissione (IoC) Identificati

2.1 Scansione di porte TCP (Port Scanning)

L'analisi preliminare del traffico ha evidenziato un'anomalia significativa: un'elevata quantità di pacchetti TCP con flag RST (Reset) e ACK, inviati dalla macchina **192.168.200.150** verso **192.168.200.100**.

Utilizzando il filtro *tcp.flags.reset* == 1 è possibile evidenziare questi pacchetti, che indicano il rifiuto delle connessioni da parte del sistema target. Questo comportamento è tipico in risposta a tentativi di connessione indesiderati, come quelli effettuati durante una scansione.

Solvetore Gifus

Per identificare i tentativi di connessione avviati, è stato usato il filtro tcp.flags.syn == 1 && tcp.flags.ack == 0.

∏ tcp	■ tcp.flags.syn == 1 && tcp.flags.ack == 0						
No.	▼ Time	Source	Destination	Protocol	Length Info		
	50 36.776496366	192.168.200.100	192.168.200.150	TCP	74 33206 → 143 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535440 TSecr=0 WS=128		
	51 36.776512221	192.168.200.100	192.168.200.150	TCP	74 60632 → 25 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535440 TSecr=0 WS=128		
	52 36.776568606	192.168.200.100	192.168.200.150	TCP	74 49654 → 110 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535440 TSecr=0 WS=128		
	53 36.776671271	192.168.200.100	192.168.200.150	TCP	74 37282 → 53 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535440 TSecr=0 WS=128		
	54 36.776720715	192.168.200.100	192.168.200.150	TCP	74 54898 → 500 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535440 TSecr=0 WS=128		
	56 36.776843423	192.168.200.100	192.168.200.150	TCP	74 51534 → 487 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535440 TSecr=0 WS=128		
	70 36.777143014	192.168.200.100	192.168.200.150	TCP	74 56990 → 707 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535440 TSecr=0 WS=128		
	71 36.777186821	192.168.200.100	192.168.200.150	TCP	74 35638 → 436 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535440 TSecr=0 WS=128		
	72 36.777302991	192.168.200.100	192.168.200.150	TCP	74 34120 → 98 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535441 TSecr=0 WS=128		
	73 36.777337934	192.168.200.100	192.168.200.150	TCP	74 49780 - 78 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535441 TSecr=0 WS=128		
	76 36.777473018	192.168.200.100	192.168.200.150	TCP	74 36138 → 580 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535441 TSecr=0 WS=128		
	77 36.777522494	192.168.200.100	192.168.200.150	TCP	74 52428 → 962 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535441 TSecr=0 WS=128		
	80 36.777645027	192.168.200.100	192.168.200.150	TCP	74 41874 → 764 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535441 TSecr=0 WS=128		
	81 36.777680898	192.168.200.100	192.168.200.150	TCP	74 51506 → 435 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535441 TSecr=0 WS=128		
	90 36.778179978	192.168.200.100	192.168.200.150	TCP	74 51450 → 148 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535441 TSecr=0 WS=128		
	91 36.778200161	192.168.200.100	192.168.200.150	TCP	74 48448 → 806 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535441 TSecr=0 WS=128		
	92 36.778307830	192.168.200.100	192.168.200.150	TCP	74 54566 → 221 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535442 TSecr=0 WS=128		
	96 36.778482791	192.168.200.100	192.168.200.150	TCP	74 42420 → 1007 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535442 TSecr=0 WS=128		
	97 36.778591226	192.168.200.100	192.168.200.150	TCP	74 34646 → 206 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535442 TSecr=0 WS=128		
	98 36.778614095	192.168.200.100	192.168.200.150	TCP	74 54202 → 131 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535442 TSecr=0 WS=128		
	101 36.778759636	192.168.200.100	192.168.200.150	TCP	74 40318 → 392 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=810535442 TSecr=0 WS=128		
	102 36.778781327	192.168.200.100	192.168.200.150	TCP	74 51276 - 677 SYN Seq=0 Win=64240 Len=0 MSS=1460 SACK PERM TSval=810535442 TSecr=0 WS=128		

Questi pacchetti SYN, inviati da 192.168.200.100 verso porte differenti su 192.168.200.150, suggeriscono una scansione TCP full connect, tipica degli strumenti come Nmap.

In risposta, si osservano pacchetti con flag SYN-ACK (filtro *tcp.flags.syn* == 1 && *tcp.flags.ack* == 1), seguiti da un pacchetto ACK da parte dell'attaccante e infine da un RST, ACK.

In ultimo, controlliamo i pacchetti con flag ACK (filtro tcp.flags.ack = 1 && tcp.flags.syn = 0 && tcp.flags.reset = 0).

Servizi Rilevati come Attivi

Porta	Servizio	Protocollo	Note
21	FTP	TCP	Trasferimento file
22	SSH	TCP	Accesso remoto sicuro
23	Telnet	TCP	Obsoleto, non cifrato
25	SMTP	TCP	Invio email
53	DNS	TCP/UDP	Risoluzione nomi
80	HTTP	TCP	Traffico web non cifrato
111	RPCbind	TCP/UDP	Servizi UNIX (es. NFS)
139	NetBIOS	TCP	Reti Windows legacy
445	SMB	TCP	Condivisione file in ambienti Windows
512	exec	TCP	Servizi r* (obsoleti)
513	login	TCP	rlogin (obsoleto)
514	shell	TCP	rsh (obsoleto)

Pattern del traffico osservato su porte aperte:

$SYN \rightarrow SYN-ACK \rightarrow ACK \rightarrow RST, ACK$

Tipo pacchetto	Origine	Destinazione	Significato
SYN	192.168.200.100	192.168.200.150	Tentativo di apertura connessione (scan)
SYN, ACK	192.168.200.150	192.168.200.100	La porta è aperta, risponde al SYN
ACK	192.168.200.100	192.168.200.150	Risposta che completa la stretta di mano
RST, ACK	192.168.200.150	192.168.200.100	Reset della connessione (rifiuto o chiusura)

Tale pattern indica chiaramente l'uso di una scansione **TCP Connect Scan/full connect**, che completa il 3-way handshake.

2.2 Conclusioni parziali

Non sono stati osservati exploit, trasferimenti di payload malevoli o connessioni prolungate. L'attività analizzata è riconducibile a una **scansione passiva**, con finalità di ricognizione e raccolta informazioni.

3. Ipotesi dei vettori di attacco

La presenza di una scansione TCP Connect Scan implica un intento di mappatura dei servizi disponibili sulla macchina target (192.168.200.150). Tale tecnica, tipica di strumenti come Nmap (con flag -sT), consente di identificare le porte aperte e i servizi attivi.

Servizi come **Telnet (23)**, **HTTP (80)** e **SMB (445)** sono associati a numerose vulnerabilità, e la loro esposizione in rete può rappresentare un rischio concreto di compromissione, specialmente in assenza di aggiornamenti o misure di sicurezza adeguate.

4. Azioni di Mitigazione e Prevenzione

Misure Immediate

- Bloccare il traffico proveniente da 192.168.200.100 tramite firewall.
- Monitorare con attenzione il traffico verso 192.168.200.150.
- Verificare i log dei servizi attivi (es. SSH, HTTP, DNS) per eventuali accessi anomali.

Misure Preventive

- Disattivare i **servizi non necessari**, soprattutto quelli obsoleti (Telnet, rsh, ecc.).
- Segmentare la rete con VLAN per isolare i sistemi critici.
- Implementare **policy firewall** più restrittive:
 - Limitare gli accessi per IP e/o MAC address autorizzati.

Rafforzamento della Sicurezza

- Sostituire i protocolli non cifrati con alternative sicure:
 - SSH al posto di Telnet
 - HTTPS al posto di HTTP
- Adottare autenticazione a più fattori (2FA) dove possibile.
- Implementare sistemi IDS/IPS (es. Snort, Suricata) per rilevare attività sospette.

5. Conclusione

L'analisi della cattura di rete ha evidenziato una scansione sistematica delle porte TCP, condotta dalla macchina 192.168.200.100 verso 192.168.200.150. L'attività rilevata si qualifica come una fase di ricognizione priva di payload o exploit, ma indicativa di una potenziale compromissione futura.

Elementi chiave:

- Tecnica usata: TCP Full Connect (3-way handshake completo)
- Servizi rilevati: numerosi, inclusi alcuni obsoleti o vulnerabili
- Obiettivo apparente: mappatura della superficie d'attacco
- Natura dell'attività: esplorativa e a bassa intensità

Sebbene non vi siano segni di compromissione diretta, è fondamentale rispondere con azioni correttive e preventive, per ridurre l'esposizione dei servizi e rafforzare la sicurezza della rete.