东北大学考试试卷 (B 闭卷)

2020-2021 学年 春 季学期 课程名称:线性代数

总分	_	_	四	五	六	七	八	九

一. (每题 6分, 共 18 分)

1. 设
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
, 且 $|A| = 2$,求 $\begin{vmatrix} 2a_{11} + 3a_{21} & a_{11} & 3a_{31} \\ 2a_{12} + 3a_{22} & a_{12} & 3a_{32} \\ 2a_{13} + 3a_{23} & a_{13} & 3a_{33} \end{vmatrix}$ 的值。

2. 设矩阵
$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} x_1 & x_2 \\ x_3 & x_4 \end{bmatrix}$, 且 $x_1 + x_4 = 2$, $x_2 + x_3 = 1$, 如果 $AB = BA$, 求矩阵 B 。

3. 已知矩阵
$$A = \begin{bmatrix} 1 & \lambda & -1 & 2 \\ 2 & -1 & \lambda & 5 \\ 1 & 10 & -6 & 1 \end{bmatrix}$$
, 求 λ 的值,使矩阵 A 的秩最小。

二. (每题 6 分, 共 18 分)

1. 已知
$$A = \begin{bmatrix} a & -\frac{3}{7} & \frac{2}{7} \\ b & \frac{6}{7} & c \\ -\frac{3}{7} & \frac{2}{7} & d \end{bmatrix}$$
为正交矩阵,求 a,b,c,d 的值。

- 2. 设 A 是 3 阶实对称矩阵,且满足 $A^2 + 2A = 0$, R(A) = 2,若 A + kE 是正 定矩阵, 求k的范围。
- 3. 已知 $A \in n$ 阶可逆矩阵, $\alpha_1, \alpha_2, \dots, \alpha_s \in n$ 维线性无关的列向量,判断 $A\alpha_1, A\alpha_2, \cdots, A\alpha_s$ 是否线性相关,并说明理由。

三. (每题 6分, 共 18 分)

- 1. 线性空间 $V = R[x]_a$,判断V 的子集 $V_1 = \{ax^3 + bx^2 + cx \mid a,b,c \in R\}$ 是 否是V的子空间。
- 2. 设 $B=\{\varepsilon_1,\varepsilon_2\}$ 是线性空间 V 的基, f 是 V 中的线性变换。如果已知 $f(\varepsilon_1 - 2\varepsilon_2) = 3\varepsilon_1 + 2\varepsilon_2$, $f(3\varepsilon_1 - \varepsilon_2) = -\varepsilon_1 + \varepsilon_2$, $\Re f(2\varepsilon_1 - 3\varepsilon_2) \triangleq B$ 下的坐标向量。
- 3. 在线性空间 $R^{2\times 2}$ 中,对于任意 $X \in R^{2\times 2}$,定义线性变换 $T(X) = A_0 X$,

其 中
$$A_0 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 。 求 T 在 基 $E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, $E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$,
$$E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$
 , $E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ 下的矩阵。

四. (8分)

确定常数
$$a$$
 ,使向量组 $\alpha_1=\begin{bmatrix}1\\1\\a\end{bmatrix}$, $\alpha_2=\begin{bmatrix}1\\a\\1\end{bmatrix}$, $\alpha_3=\begin{bmatrix}a\\1\\1\end{bmatrix}$,可由向量组

$$eta_1 = \begin{bmatrix} 1 \\ 1 \\ a \end{bmatrix}$$
, $eta_2 = \begin{bmatrix} -2 \\ a \\ 4 \end{bmatrix}$, $eta_3 = \begin{bmatrix} -2 \\ a \\ a \end{bmatrix}$ 线性表示,但向量组 eta_1, eta_2, eta_3 不能由

向量组 $\alpha_1,\alpha_2,\alpha_3$ 线性表示。

五. (8分)

已知 5 阶行列式
$$D=\begin{vmatrix}1&2&3&4&5\\2&2&2&1&1\\3&1&2&4&5\\1&1&1&2&2\\4&3&1&5&0\end{vmatrix}=27$$
,求 $A_{41}+A_{42}+A_{43}$,其中

 A_{4j} (j=1,2,3)为D中第 4 行第 j列元素的代数余子式。

六. (8分)

A,B和C三家电信公司为某国国内 2 亿客户服务,它们分别有客户 9 千万,4 千万和 7 千万。由于广告竞争及其他原因,这三家公司每年均吸引来一些新客户,同时也失去一些老客户。每年末统计如下: A 失去 20% 老客户,但吸引 10%的 B 客户和 10%的 C 客户加入该公司; B 失去 30% 老客户,但吸引 10%的 A 客户和 20%的 C 客户; C 失去 30% 老客户,但吸引 10%的 A 客户和 20%的 B 客户。假设该国国内客户总数不变,且这种新老客户的变化率也不变,求三年后,三家公司分别拥有多少客户(单位:千万)?

七. (8分)

已知非齐次线性方程组 $\begin{cases} x_1+x_2+x_3+x_4=-1\\ 4x_1+3x_2+5x_3-x_4=-1 \text{ f 3 个线性无关的解, 求}\\ ax_1+x_2+3x_3+bx_4=1 \end{cases}$

a,b的值。

八. (8分)

已知
$$\lambda = 0$$
是 $A = \begin{bmatrix} 3 & 2 & -2 \\ -k & 1 & k \\ 4 & k & -3 \end{bmatrix}$ 的特征值,判断 A 能否对角化。

九. (6分)

设 $A \neq m \times n$ 矩阵,且R(A) = n,证明: $A^{T}Ax = 0$ 只有零解。