1

(\Rightarrow): We prove the contrapositive. Let f(x) be a quintic polynomial in $\mathbb{F}_p[x]$ with a zero in \mathbb{F}_{p^2} . If this zero is also in \mathbb{F}_p , then f(x) is reducible in $\mathbb{F}_p[x]$, so suppose that f(x) has no roots in \mathbb{F}_p . Then it has a root $\alpha \in \mathbb{F}_{p^2} \setminus \mathbb{F}_p$. We know that α is the root of an irreducible quadratic $g(x) \in \mathbb{F}_p[x]$, and that $\mathbb{F}_{p^2} \cong \mathbb{F}_p[x]/\langle g(x) \rangle$. This means that $g(x) \mid f(x)$, and so f(x) is reducible in $\mathbb{F}_p[x]$. Thus we can conclude that if f(x) is irreducible in $\mathbb{F}_p[x]$, then it has no roots in \mathbb{F}_{p^2} .

(\Leftarrow): Again, we prove the contrapositive. Let f(x) be a reducible quintic polynomial in $\mathbb{F}_p[x]$. If it has a root in \mathbb{F}_p , then it would also have a root in \mathbb{F}_{p^2} , so suppose it does not have any such roots. Then f(x) = g(x)h(x) where WLOG g(x) and h(x) have degrees 3 and 2, respectively. This means $\mathbb{F}_p[x]/\langle h(x)\rangle \cong \mathbb{F}_{p^2}$, so h(x) (and in turn f(x)) has a root in \mathbb{F}_{p^2} . Thus we can conclude that if f(x) has no roots in \mathbb{F}_{p^2} , then it is irreducible in $\mathbb{F}_p[x]$.

2

2.a

 $f(x) = x^6 + 2x^4 + x + 2$, and $f'(x) = 2x^3 + 1$. The gcd calculation is fairly straightforward, and in fact $f'(x) \mid f(x)$. In characteristic 3, $f'(x) = 2x^3 + 1 = (2x)^3 + 1^3 = (2x+1)^3$, so $(2x+1)^3 \mid f(x)$, and f(x) is thus not separable.

2.b

As we saw, f'(x) | f(x), and $\frac{f(x)}{f'(x)} = 2x^3 + x + 2 = x^3 + 2 + 1$. Thus $f(x) = f'(x)(x^3 + 2x + 1) = (2x + 1)^3(x^3 + 2x + 1)$, and so we need only find a field in which $x^3 + 2x + 1$ splits.

It is straightforward to check that $x^3 + 2x + 1$ has no roots in \mathbb{F}_9 , so we skip straight to \mathbb{F}_{27} .

Note that $x^3 + 2x + 1$ has no roots in \mathbb{F}_3 , so since its degree is 3, it is irreducible, and so $\mathbb{F}_3[x]/\langle x^3 + 2x + 1 \rangle$ is a field of order 3^3 . Let $\alpha^3 + 2\alpha + 1 = 0$, and consider $\mathbb{F}_3(\alpha)$:

In $\mathbb{F}_3(\alpha)[x]$, $x^3 + 2x + 1$ has a root at $x = \alpha$, so $x - a \mid x^3 + 2x + 1$,

and $\frac{x^3+2x+1}{x-a}=x^2+\alpha x+2+\alpha^2$. We see that $x^2+\alpha x+2+\alpha^2$ further factors over $\mathbb{F}_3(\alpha)$ into $(x+2\alpha+2)(x+2\alpha+1)$, so in the end, we have that in $\mathbb{F}_3(\alpha)[x]$, $f(x)=(2x+1)^3(x+2\alpha)(x+2\alpha+2)(x+2\alpha+1)$, so f splits in $\mathbb{F}_3(\alpha)$.

3

Note that $g(x) = \frac{x^p-1}{x-1}$. We know that the number of irreducible factors of $x^n - 1$ in $\mathbb{F}_2[x]$ is the number of orbits of the doubling map in $\mathbb{Z}/n\mathbb{Z}$.

 (\Rightarrow) : We prove the contrapositive. Suppose 2 is not a primitive root mod p. Then its orbit in the doubling map has size less than p-1. The orbit of 0 always has size 1, and so there must be a third orbit. This means that x^p-1 has at least three irreducible factors. We know that x-1 is irreducible, and that $x^p-1=g(x)(x-1)$, so it must be the case that g(x) is reducible. Thus we can conclude that if 2 is a primitive root mod p that g(x) is irreducible.

(\Leftarrow): 2 is a primitive root mod p, so its orbit has size p-1, with 0 generating the $\{0\}$ orbit. Thus x^p-1 has two irreducible factors. $x^p-1=g(x)(x-1)$, and x-1 is irreducible, so g(x) is irreducible.

This proof should work as long as 2 is a primitive root mod n, since the proof relies on 2's orbit in the doubling map being full, and has nothing to do with n's primality.

4

4.a

The Nth cyclotomic polynomial is $\Phi_N(x) = (x - \zeta_1) \cdots (x - \zeta_{\varphi(N)})$. Evaluated at 0, this is simply the product of the primitive roots of unity: $\Phi_N(0) = (-\zeta_1) \cdots (-\zeta_{\varphi(N)})$. If ζ_k is a primitive root of unity, then so is $\frac{1}{\zeta_k}$, so since $\varphi(N)$ is even whenever N > 3, we can simply pair off the primitive roots of unity in our product to get $\Phi_N(0) = (-\zeta_1)(\frac{1}{-\zeta_1}) \cdots (-\zeta_{\varphi(N)})(\frac{1}{-\zeta_{\varphi(N)}}) = 1$. Otherwise we see $\Phi_2(0) = (0) + 1$ and $\Phi_3(0) = (0)^2 + (0) + 1$, and so $\Phi_N(0) = 1$ for any $N \geq 2$.

4.b

We know that $x^N - 1 = \prod_{d|N} \Phi_d(x)$, so

$$\begin{split} x^{pq} - 1 &= \prod_{d|pq} \Phi_d(x) \\ &= \Phi_{pq}(x) \Phi_p(x) \Phi_q(x) \Phi_1(x) \\ &= \Phi_{pq}(x) \Phi_p(x) \Phi_q(x) (x-1). \end{split}$$

Dividing by x-1, we get

$$x^{pq-1} + \dots + 1 = \Phi_{pq}(x)\Phi_p(x)\Phi_q(x).$$

We also know that for p a prime, $\Phi_p(x) = 1 + \cdots + x^{p-1}$, so we get

$$\Phi_{pq}(x) = \frac{x^{pq-1} + \dots + 1}{(1 + \dots + x^{p-1})(1 + \dots + x^{q-1})}.$$

Finally, plugging in x=1, we get $\Phi_{pq}(1) = \frac{1^{pq-1}+\dots+1}{(1+\dots+1^{p-1})(1+\dots+1^{q-1})} \frac{pq}{(p)(q)} = 1$, as desired.

5

The generating function has the form $G(x) = \frac{1}{1-2x+x^3}$, so the characteristic polynomial of its coefficient sequence is x^3-2x+1 . This means the sequence is $s_{n+3}=2s_{n+2}-s_n$. Now we simply need to find the initial conditions s_0 , s_1 , and s_2 . Rewriting G(x) as a formal power series, we get $\sum_{n=0}^{\infty} s_n x^n = \frac{1}{1-2x+x^3}$, and rearranging, we get $(\sum_{n=0}^{\infty} s_n x^n)(1-2x+x^3)=1$. Now we can simply match coefficients to obtain

$$s_0 x^0 = 1$$
$$-2s_0 x + s_1 x = 0$$
$$-2s_1 x^2 + s_2 x^2 = 0$$

Plugging x = -1 into the last two equations, we get $s_1 = 2$ and $s_2 = 4$. In the end, we end up with the recurrence $s_{n+3} = 2s_{n+2} - s_n$ with initial conditions $s_0 = 1$, $s_1 = 2$, and $s_2 = 4$.

6

6.a

 \mathbb{F}_p^{\times} is cyclic of order p-1, so for any $x\in\mathbb{F}_p^{\times}$, $x^{p-1}=1$. If x is square – that is, $x=y^2$ for some y – then since $y^{p-1}=1$, $(y^2)^{\frac{p-1}{2}}=x^{\frac{p-1}{2}}=1$. If $x^{\frac{p-1}{2}}\neq 1$, then $(x^{\frac{1}{2}})^{p-1}\neq 1$, so $x^{\frac{1}{2}}\notin\mathbb{F}_p^{\times}$, so x is not square. So if x is not square, then $x^{\frac{p-1}{2}}\neq 1$, but we know that $x^{p-1}=1$, so $x^{\frac{p-1}{2}}$ must be -1. Thus we take f(x) to be $x^{\frac{p-1}{2}}$, and the condition is satisfied.

6.b

We construct the Vandermonde matrix:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 3 & 1 \\ 1 & 3 & 4 & 2 & 1 \\ 1 & 4 & 1 & 4 & 1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 2 \\ 0 \end{pmatrix}$$

After row reduction, we get:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 3 & 2 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \\ c_4 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \\ 4 \\ 4 \end{pmatrix}$$

Finally, substituting back in, we get $c_4 = 4$, $c_3 = 0$, $c_2 = 4$, $c_1 = 1$, and $c_0 = 1$, giving us $f(x) = 4x^4 + x^2 + x + 1$.

7

7.a

$$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0 \\ 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{bmatrix}$$

7.b

$$\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$$