Lec 2 Handout: Propositions & Symbolic Logic

Proposition: statement about the world that

Which of the following are propositions? For those that are propositions, what is their truth value?

- Paris is the capital of Michigan
- 2+3=5
- 5+7=10 **√**

- Everyone in this room likes/Bubble Tea

Emily's house is painted blue (unknown to med) It's paradoxical or not well

Negation Practice

The **negation** of a proposition p is a statement that has the <u>opposite</u> truth value of p.

Original Proposition

- 1. Paris is the capital of Michigan
- $2. \quad 2 + 3 = 5$
- 3. 7 + 10 < 12
- 4. Everyone in this room likes Bubble Tea
- 5. Someone in this room likes Bubble Tea
- No one in this room likes Bubble Tea
- Someone in this room does not like Bubble Tea

Negation of the Proposition

Pans 16 not ~ 2+3 75 7+10 3/2 At least one perown doesn't No one ~ likes There is at least one person ~ Everyone likes

Truth Tables

p	$\neg p$ not p
Т	F
F	7

p	q	$p \wedge q$ p and q
Т	Т	T
Т	F	F
F	Т	F
F	F	F

p	q	$p \lor q$ p or q
Т	Т	T
Т	F	T
F	Т	T
F	F	F

The ONLY time that "if p, then q" is **false** is:

p	q	$p \rightarrow q$ if p then q
Т	Т	T
Т	F	F
F	Т	TPX
F	F	

p	q	$p \leftrightarrow q$ p if and only if q		
Т	Т	T		
Т	F	F		
F	Т	F		
F	F			

Exercises

Complete the truth tables.

q $\neg (p \land q)$ F $\neg q \land \neg (p \lor \neg q)$

Logic Symbols

Symbol	"Main" Words	Some alternate words you might see (incomplete list)	
¬p	"not p"		
p∧q	"p and q"	"p but q"	
p∨q	"p or q"		
p→q	"if p, then q"	"p implies q" "p only if q" "q if p" "p is sufficient for q" "q is necessary for p"	
$p \leftrightarrow q$ $p \equiv q$	"p if and only if q"	"p is equivalent to q" "p iff q" "p is necessary and sufficient for q"	

Translating English to Logic

```
r = "it rains" p = "I'll eat popcorn"
w = "I'll watch a movie" c = "I'll eat chocolate"
```

Symbol	Words
¬p	"not p"
p∧q	"p and q"
p∨q	"p or q (or both)"
p→q	"if p then q"

English

- If I don't eat popcorn, I'll eat chocolate.
- If it rains, I'll watch a movie and eat popcorn.
- I'll eat chocolate if it doesn't rain.

Logic

7 P - C (M / D)

Translating Logic to English

F: the fox can catch the hare

L: the lynx can catch the hare

A: the hare is alert

Q: the hare is quick

Which of these is:

"Neither the fox nor the lynx can catch the hare if the hare is alert and quick"?

Translate:

(A)
$$\neg (F \lor L) \rightarrow (A \land Q)$$

$$(B) (A \land Q) \rightarrow (\neg F \land \neg L)$$

(C)
$$\neg F \land \neg L \land A \land Q$$

$$(D) (\neg A \lor \neg Q) \to (F \lor L)$$

Everyone is either always tells the truth (TT) or always lies (L). Who is which?

Logic Puzzle #2

Q1: "Anand, are you a liar?"

Anand: "????"

Q2: "Blanca, did Anand say he's a liar?"

Blanca: "Yes."

Q3: "Is Blanca a liar?"

Carol: "Yes."

Q4: "Is Anand a liar?"

Carol: "Yes."

Anand	Blanca	Carol	Q1 (Anand)	Q2 (Blanca)	Q3 (Carol 1)	Q4 (Carol 2)
TT	TT	TT	0V1	No		
TT	TT	L	,	Nρ		
TT	L	TT		Yes	Yes-	No
TT	L	L		Yes	No	/ * *
L	TT	TT		NO		
L	TT	L		No		
L	L	TT		Syer	Yes	Yes
L	L	L	V	er	15	140

