GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIO

NOMBRE DE LA ASIGNATURA Electrónica Digital II

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Séptimo Semestre	20703	119

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Fomentar en el alumno el diseño de sistemas digitales usando dispositivos lógicos programables. Adquirir las bases teóricas, metodológicas y técnicas del diseño basado en dispositivos lógicos programables.

TEMAS Y SUBTEMAS

1. Introducción a los circuitos digitales programables

- 1.1. Circuitos digitales configurables.
- 1.2. Clasificación de los circuitos digitales configurables.
- 1.3. Dispositivos lógicos programables.
- 1.4. Arreglos de compuertas programables.

2. Arquitecturas y metodología de diseño con dispositivos lógicos programables simples (SPLD's)

- 2.1. Dispositivos programables simples (SPLD's).
- 2.2. Clasificación y características de los SPLD's.
- 2.3. Arquitecturas comerciales representativas de las familias más populares de SPLD's.
- 2.4. Metodología de diseño.

3. Arquitecturas de dispositivos lógicos programables Complejos (CPLD's)

- 3.1. Dispositivos programables complejos (CPLD's).
- 3.2. Clasificación y características de los CPLD's.
- 3.3. Arquitecturas comerciales representativas de las familias más populares de CPLD's.

4. Arquitecturas de Arreglos de Compuertas programables en el Campo (FPGA's)

- 4.1. Arreglo de compuertas programable (FPGA).
- 4.2. Clasificación y características de los FPGA's.
- 4.3. Arquitecturas comerciales representativas de las familias más populares de FPGA's.

5. Lenguajes de descripción de hardware (HDL).

- 5.1. Introducción al diseño con un HDL.
- 5.2. Fundamentos de un HDL.
- 5.3. Elementos de un HDL.
- 5.4. Declaraciones básicas.
- 5.5. HDL concurrente y secuencial.
- 5.6. Aspectos avanzados del lenguaje.
- 5.7. Paquetes y librerías.

6. Metodología de diseño con CPLD's y FPGA's utilizando un HDL

- 6.1. Herramientas de desarrollo.
- 6.2. Metodología de diseño utilizando esquemático.
- 6.3. Metodología de diseño utilizando un HDL.
- 6.4. Metodología de diseño combinada.

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor tanto en el aula como en el laboratorio. Validación de la teoría a través del desarrollo de prácticas, con un uso continuo de componentes y equipo electrónico. Las sesiones se desarrollarán utilizando medios de apoyo didáctico, como son los retroproyectores de acetatos y programas de cómputo que permitan la simulación de circuitos antes de su montaje físico. Desarrollo de aplicaciones que busquen dar solución a problemas reales, lo que conlleva a un fuerte trabajo extraclase, buscando un enfoque analítico por parte de los estudiantes.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender al menos tres evaluaciones parciales y un examen final.

Para las evaluaciones parciales deberá considerarse un examen oral o escrito, así como el desarrollo de prácticas, tareas y participación en clase. Para las prácticas debe tomarse en cuenta su realización exitosa y la documentación de la solución.

La evaluación final deberá incluir un examen oral o escrito, así como el desarrollo de un proyecto final en el que se busque aplicar los diferentes conocimientos revisados en el curso, proponiendo una solución a un problema real. La suma de todos los criterios y procedimientos de evaluación y acreditación deberán integrar el 100% de la calificación.

BIBLIOGRAFÍA

Bibliografía básica:

- Digital Systems Design and Prototyping: Using Field Programmable Logic and Hardware Description Languages, Salcic, Zoran; Smilagic, Asim; Kluwer Academic Publishers, 2000.
- Dispositivos Lógicos Programables y sus aplicaciones, Mandado E., Alvarez L. J., Thomson, 2002.
- Diseño de Sistemas Digitales con VHDL, Pérez Serafín A., Soto E., Thomson, 2002.
- Digital Design with Programmable Logic Devices, Carter, W., Prentice Hall, 1997.

Bibliografía de consulta:

- Sistemas Digitales con VHDL, Troncoso R., Legaria Ediciones, Impresión bajo demanda.
- Sistemas Digitales: Principios y Aplicaciones, Tocci, Ronald J.; Widmer Neal S., Mexico. Pearson Educacion, 2003 (Traducido de: Digital Systems: Principles And Applications, 8a. Ed.
- Fundamentos de lógica Digital con diseño VHDL, Ed. 2, Stephen Brown, Zvonko Vranesic 2006, Mc. Graw Hill.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero en Electrónica, Maestría o Doctorado en Electrónica, especialidad en Sistemas Digitales

