SUJET A

1°) (a) X suit la loi binomiale de paramètres n = 4 et p = 0,2.

(b)
$$p(X = 2) = {4 \choose 2} \times 0,2^2 \times 0,8^2$$

 $\approx 0,154$
(c) $p(X \ge 2) = p(X = 2) + p(X = 3) + p(X = 4)$
 $\approx 0,154 + 0,026 + 0,002$
 $\approx 0,182$

(d) $E(X) = np = 4 \times 0.2 = 0.8$.

Sur un très grand nombre de groupes de 4 personnes, en moyenne, 0,8 personnes seront embauchées dans chaque groupe.

2°) Cette fois-ci, Y suit la loi binomiale de paramètres n = 10 et p = 0,2.

(a)
$$p(Y = 4) = {10 \choose 4} \times 0.2^4 \times 0.8^6$$

 ≈ 0.088
(b) $p(Y \le 2) = p(X = 0) + p(X = 1) + p(X = 2)$
 $\approx 0.107 + 0.268 + 0.302$
 ≈ 0.677
(c) $p(Y \ge 3) = 1 - p(Y \le 2)$
 ≈ 0.323

Sur un très grand nombre de groupes de 10 personnes, en moyenne, 2 personnes seront embauchées dans chaque groupe.

SUJET B

1°) (a) X suit la loi binomiale de paramètres n = 5 et p = 0,3.

(b)
$$p(X = 3) = {5 \choose 3} \times 0.3^3 \times 0.7^2$$

 ≈ 0.132
(c) $p(X \ge 3) = p(X = 3) + p(X = 4) + p(X = 5)$
 $\approx 0.132 + 0.028 + 0.002$
 ≈ 0.162

(d) $E(X) = np = 5 \times 0.3 = 1.5.$

(d) $E(Y) = np = 10 \times 0.2 = 2$.

Sur un très grand nombre de groupes de 5 personnes, en moyenne, 1,5 personnes seront embauchées dans chaque groupe.

2°) Cette fois-ci, Y suit la loi binomiale de paramètres n = 9 et p = 0,3.

(a)
$$p(Y = 5) = {9 \choose 5} \times 0.3^5 \times 0.7^4$$

 ≈ 0.074
(b) $p(Y \le 2) = p(Y = 0) + p(Y = 1) + p(Y = 2)$
 $\approx 0.040 + 0.156 + 0.267$
 ≈ 0.463
(c) $p(Y \ge 3) = 1 - p(Y \le 2)$
 ≈ 0.537

(d) $E(Y) = np = 9 \times 0.3 = 2.7$.

Sur un très grand nombre de groupes de 9 personnes, en moyenne, 2,7 personnes seront embauchées dans chaque groupe.