Set operations

A= {1,2,3} 19 9 1 E A 4 ¢ A ØE { Ø4) 21913

$$A \subseteq B$$
 $\{1, 2, 3\} \not\in \{1, 2\}$
 $\{1, 2, 3\} \subseteq \{1, 2, 3\}$
 $\{a, b, c\} \supseteq \{a, c\}$
 $\{1, 2, 3\} \not\subseteq \{a, c\}$

The union of two sets

Definition The union of two sets *A* and *B* is the set

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$$

Figure 2: Venn diagram of $A \cup B$.

Suppose

and

$$A = \{4,7,8\}$$

$$B = \{4,9,10\}$$

$$A \cup B = \{4,7,8,9,10\}.$$

Detour: Set union in Python

```
def union (A, B):
    result = set()
    for x in A:
         result.add(x)
    for x in B:
         result.add(x)
    return result
Testing the method:
print union(m, n)
But then there is a built-in operation:
print m.union(n)
```

Union of sets represented by bit vectors

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

Compute $A \cup B$. $X_{A} = \begin{bmatrix} 1,0,1,0,1 \\ 0,0,1,1,0 \end{bmatrix}$ $X_{A} = \begin{bmatrix} 0,0,1,1,0 \end{bmatrix}$

■ Compute the union of the set C, represented by [1,0,0,0,1], and the set D, represented by [1,1,0,0,1].

Union of sets represented by bit vectors

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

■ Compute $A \cup B$.

■ Compute the union of the set C, represented by [1,0,0,0,1], and the set D, represented by [1,1,0,0,1].

$$S = \langle a, b, c, (x, y, 7)$$

$$\chi_{A} = [0, 1, 1, 0, 1, 1] \quad A = \{b, c, y, z\}$$

$$\chi_{S} = [1, 0, 1, 0, 1, 0] \quad B = \{a, c, y\}$$

XA-10- [1,1,1,0,1,1]

$$A = 1 - 3$$

$$A =$$

The intersection of two sets

Definition The intersection of two sets A and B is the set

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}.$$

Figure 3: Venn diagram of $A \cap B$.

Suppose

and

Detour: Set intersection in Python

```
def intersection (A, B):
    result = set()
    for x in A:
         if x in B:
             result.add(x)
    return result
Testing the method:
print intersection(m, n)
print intersection (n, \{1\})
```

But then there is a built-in operation:

print n.intersection $(\{1\})$

Intersection of sets represented by bit vectors

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

Compute
$$A \cap B$$
.
 $X_A = \{1,0,1,0,1\}$
 $X_A = \{0,0,1,0,0\}$
 $X_A \cap S = \{0,0,1,0,0\}$

■ Compute the intersection of the set C, represented by [1,0,0,0,1], and the set D, represented by [1,1,0,0,1].

The relative complement

Definition The relative complement of a set *B* relative to a set *A* is the set

$$A - B = \{x \mid x \in A \text{ and } x \notin B\}.$$

Figure 4: Venn diagram of A - B.

Suppose

and

$$A = \{4, 7, 8\}$$

$$B = \{4, 9, 10\}.$$

$$A - B = \{7, 8\}$$

$$\{1, 2\} - \{1, 2, 3\} = \emptyset$$

 $\{1, 2\} - \emptyset = \{1, 2\}$

Detour: Set complement in Python

```
def complement(A, B):
     result = set()
    for x in A:
         if \times not in B:
              result.add(x)
    return result
Testing the method:
print complement(m, {'a'})
But then there is a built-in operation:
print m—{'a'}
```

Relative complement and bit vectors

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

■ Compute the relative complement of the set C, represented by [1,0,0,0,1], related to the set D, represented by [1,1,0,0,1].

The complement

When we are dealing with subsets of some large set U, then we call U the universal set for the problem in question.

Definition The complement of a set A is the set

$$\sim A = \{x \mid x \notin A\} = U - A.$$

Figure 5: Venn diagram of $\sim A$. (The rectangle is U)

Complement and bit vectors

Let
$$S = \langle 1, 2, 3, 4, 5 \rangle$$
, $A = \{1, 3, 5\}$ and $B = \{3, 4\}$.

■ Compute $\sim A$. XA = [1,0,1,0,1] 76~A=[0,1,0,1,0] ■ Compute $\sim B$. YB= {0,0,1,1,0} Y-B= {1,1,0,0,1}

■ Compute the complement of the set
$$C$$
, represented by $[1,0,0,0,1]$.

The symmetric difference

Definition The symmetric difference of two sets A and B is the set

$$A\Delta B = \{x \mid (x \in A \text{ and } x \notin B) \text{ or } (x \notin A \text{ and } x \in B)\}.$$

Figure 6: Venn diagram of $A\Delta B$.

Suppose

$$A = \{4, 7, 8\}$$

and

$$B = \{4, 9, 10\}.$$

$$A\Delta B = \{7, 8, 9, 10\}$$

