

AA 279 A – Space Mechanics Lecture 14: Notes

Simone D'Amico, PhD Assist. Prof., Aeronautics and Astronautics (AA) Director, Space Rendezvous Laboratory (SLAB) Satellite Advisor, Stanford Space Student Initiative (SSI)

Table of Contents

- Orbit perturbations
- Earth's oblateness modeling and effects
- Spherical harmonic gravity model
- Atmospheric drag

Dominant Orbit Perturbations (1)

- Earth's oblateness (J₂)
 - Equatorial bulge pulls the satellite tending to align orbit with equatorial plane
 - The orbit behaves like a gyroscope with precession about North pole
- Atmospheric drag
 - → Caused by air molecules's impingement
 - Force opposes velocity and reduces mechanical energy
- Third body (Moon and Sun)
 - Caused by difference between force exerted on Earth and satellite
 - Gyroscopic precession is about normal to Moon's orbital plane or ecliptic plane
- → Solar radiation pressure
 - Caused by photons' impingement
 - Force affects eccentricity vector mainly

Dominant Orbit Perturbations (2)

Contribution	LEO (1 rev)	LEO (1 day)	GEO (1 day)	
Earth gravity; terms >J _{2,0}	600 m	5000 m	670 m	
Earth gravity; terms >J _{2,2}	220 m	3000 m	2 m	
Earth gravity; terms >J _{4,4}	150 m	1900 m	0 m	
Earth gravity; terms >J _{10,10}	23 m	460 m	0 m	
Third body solar gravity	3 m	34 m	3100 m	
Third body lunar gravity	6 m	66 m	5100 m	
Solar radiation pressure	1 m	14 m	415 m	
Atmospheric drag	1 m	100 m	0 m	

Oblate Earth Gravity Model (1)

> Earth is not a homogeneous sphere and its gravity field is not exactly

$$U(r) = \frac{\mu}{r} \Rightarrow \vec{\nabla}U = -\frac{\mu}{r^3}\vec{r}$$

A more accurate model is an oblate spheroid with equatorial radius $R_{\rm F}$

$$U(r,\phi) = \frac{\mu}{r} \left[1 - J_2 \left(\frac{R_E}{r} \right)^2 \left(\frac{3\sin^2 \phi - 1}{2} \right) \right]$$

Perturbation from first term in spherical harmonic series expansion

≯J₂ ≈ 1.0826·10⁻³

 \neg Using $\sin \phi = z/r$, the perturbing $\vec{f} = \vec{\nabla} U_{\text{Perturbing}} = -\frac{\mu J_2 R_E^2}{2} \left| 6 \left(\frac{z}{r^5} \right) \vec{K} + \left(\frac{3}{r^4} - 15 \left(\frac{z^2}{r^6} \right) \right) \vec{R} \right|$ force is derived as

Oblate Earth Gravity Model (2)

- In order to use the Gauss Variational Equations we need *f* expressed in RTN
- Using the approach to convert from IJK to PQW coordinates we can show

$$\vec{K} = \sin i \sin u \vec{R} + \sin i \cos u \vec{T} + \cos i \vec{N}$$
 $z = \vec{K} \cdot \vec{r}$

Substitution in f gives the desired result

$$f_R = -\frac{3\mu J_2 R_E^2}{2r^4} (1 - 3\sin^2 i \sin^2 u)$$

$$f_T = -\frac{3\mu J_2 R_E^2}{2r^4} (\sin^2 i \sin u \cos u)$$

$$f_N = -\frac{3\mu J_2 R_E^2}{2r^4} (\sin i \cos i \sin u)$$

These expressions for oblate gravity are ready to be fed into the GVE...

Mean Earth's Oblateness Effects (1)

The derivative of the RAAN can be expressed from GVE as follows

$$\frac{d\Omega}{dv} = \frac{\frac{d\Omega}{dt}}{\frac{dv}{dt}} = \frac{\frac{r\sin(\omega + v)}{na^2\sqrt{1 - e^2}\sin i}f_N}{\frac{na^2\sqrt{1 - e^2}\sin i}f_R - \frac{\sqrt{1 - e^2}}{nae}\frac{2 + e\cos v}{1 + e\cos v}f_T} \approx O(n)$$

$$O(J_2) \cdot O(n) << O(n)$$

neglecting small terms and after substitution of the oblate gravity

$$\approx -3J_2 \left(\frac{R_E}{a(1-e^2)}\right)^2 \cos i \sin^2(u) (1 + e \cos v)$$

 \neg We calculate the average over one orbit to remove short-periodic J_2 effects

$$\left(\frac{d\Omega}{d\nu}\right)_{\text{AVG}} = \frac{1}{2\pi} \int_0^{2\pi} \frac{d\Omega}{d\nu} d\nu = \frac{-3J_2}{2\pi} \left(\frac{R_E}{a(1-e^2)}\right)^2 \cos i \int_0^{2\pi} \sin^2(u) (1 + e\cos v) d\nu$$

Mean Earth's Oblateness Effects (2)

Using the following integrals we can orbital elements

Using the following integrals we can derive the secular effect of
$$J_2$$
 on the orbital elements
$$\int_0^{2\pi} \sin^2(u) dv = \pi \; ; \; \int_0^{2\pi} \sin^2(u) \cos v dv = 0$$

"Nodal rotation"

"Apsidal rotation"

$$\left(\frac{d\Omega}{dt}\right)_{\text{AVG}} = \left(\frac{d\Omega}{d\nu}\right)_{\text{AVG}} n = -\frac{3}{2}nJ_2 \left(\frac{R_E}{a(1-e^2)}\right)^2 \cos i$$

$$\left(\frac{d\omega}{dt}\right)_{\text{AVG}} = \frac{3}{4}nJ_2 \left(\frac{R_E}{a(1-e^2)}\right)^2 \left(5\cos^2 i - 1\right)$$

$$\left(\frac{d\omega}{dt}\right)_{AVG} = \frac{3}{4}nJ_2\left(\frac{R_E}{a(1-e^2)}\right)^2 \left(5\cos^2 i - 1\right)$$

$$\left(\frac{di}{dt}\right)_{AVG} = \left(\frac{de}{dt}\right)_{AVG} = \left(\frac{da}{dt}\right)_{AVG} = 0$$

Selection of a, e, and i determines secular drifts !!

Nodal Rotation

$$\left(\frac{d\Omega}{dt}\right)_{AVG} = \left(\frac{d\Omega}{d\nu}\right)_{AVG} n = -\frac{3}{2}nJ_2 \left(\frac{R_E}{a(1-e^2)}\right)^2 \cos i$$

- \neg Orbits with 0° < *i* < 90° will have decreasing Ω: line of nodes rotates westward ("regresses") for an oblate central body
- In order to achieve repeat orbits (see TerraSAR-X) we need to adjust Ω through out-of-plane maneuvers (Δv_N) or alternatively adjust orbital period (a) through along-track maneuvers (Δv_T)

Sun-Synchronous Orbits

$$\left(\frac{d\Omega}{dt}\right)_{AVG} = \frac{360^{\circ}}{365.25 \text{ d}} = \frac{3}{2}nJ_2 \left(\frac{R_E}{a(1-e^2)}\right)^2 \cos i$$

- Nodal regression or advance can be used to maintain a constant orientation of the orbital plane w.r.t. sun
- This allows observing locations on Earth at the same local time each orbit
- \neg Note that this requires retrograde orbits (90° > i > 180°)

Apsidal Rotation

$$\left(\frac{d\omega}{dt}\right)_{AVG} = \frac{3}{4}nJ_2\left(\frac{R_E}{a(1-e^2)}\right)^2 \left(5\cos^2 i - 1\right)$$

- Orbits with e ≠ 0 will have rotation of line of apsides: changing ω or rotating eccentricity vector e (non-frozen orbit)
- The direction of the rotation depends on the inclination:

 $7 i = 63.43^{\circ} \text{ or } 116.6^{\circ}$

Critical inclination at which J_2 effect is zeroed

 $70^{\circ} < i < 63.43^{\circ}$

Line of apsides advances (move east)

 $763.43^{\circ} < i < 116.6^{\circ}$

Line of apsides regresses (move west)

Gravity stronger than $1/r^2$ near perigee

Molniya Orbits

$$\left(\frac{d\omega}{dt}\right)_{AVG} = 0^{\circ}/d = \frac{3}{4}nJ_2\left(\frac{R_E}{a(1-e^2)}\right)^2 \left(5\cos^2 i - 1\right)$$

- Russia's high latitude makes geostationary satellites hard to see at their low elevation. Orbits are created which spend most of the time over Russia.
- This is done through proper choice of inclination and eccentricity vector. Critical inclination freezes the eccentricity vector which can be picked to keep perigee and apogee at desired spots.
- Communication and spy satellites can be placed in Molniya orbits with 12 hours periods so to have two apogees per day (e.g., over Russia and US)

Spherical Harmonic Earth Gravity Model (1)

- → We have used a simple oblate earth gravity model so far
- Tearth geoid is not symmetric about equator or about rotation axis
- → A more general representation of the geopotential is

$$U_{earth}(r,\lambda,q_g) = \frac{M}{r} \left[1 - \sum_{k=2}^{\infty} {\binom{R_{\oplus}}{r}}^k J_k P_k(\sin q_g) \right] \\ + \sum_{k=2}^{\infty} \sum_{j=1}^{k} {\binom{R_{\oplus}}{r}}^k P_k^j (\sin q_g) \left\{ C_k^j \cos j\lambda + S_k^j \sin j\lambda \right\} \right] \\ \stackrel{\text{deffects of terms die off}}{\underset{\text{quickly as } k \to \infty}{\text{quickly as } k \to \infty}, r \to \infty}$$

$$J_k, C_k^j, S_k^j \text{ are coefficients}$$
on the terms

Spherical Harmonic Earth Gravity Model (2)

Associated Legendre functions
P of degree k and order j

Magnitude and phase of spherical harmonics

- There are three different types of spherical harmonic:
 - → Zonal (J)
 Order = zero, Degree = #zero crossings btw poles
 - ✓ Sectoral (C and S)Order = Degree = #cycles in longitude
 - Tesseral (C and S)
 Order = #cycles in longitude, Degree-Order = #zero crossings btw poles

Spherical Harmonic Earth Gravity Model (3)

Spherical Harmonic Earth Gravity Model (4)

Spherical Harmonic Earth Gravity Model (5)

Dominant Orbit Perturbations (3)

	Gravity			3rd	Body	Atm	n Drag	Rad	l Press
	Zonal		Sect/Tess						
\overline{a}	P		P	P		P	S	P	
e	P		P	P		P	S	P	
i	P		P	P		P	S	P	
Ω	P	S	P	P	S	P		P	S
ω	P	S	P	P	S	P		P	S
M_0	P	S	P	P	S	P		P	S

Atmospheric Drag

Orbit determination estimates force model parameters such as ballistic coefficient *B*

Density model required

Molecules in atmosphere hitting object 'S' cause an aerodynamic force

$$\vec{f}_{\text{Drag}} = -\frac{1}{2}B\rho v_{rel}^2 \frac{\vec{v}_{rel}}{v_{rel}} \; ; \; B = \frac{C_D A}{M} \; ; \; \rho = \rho_0 e^{-(\frac{h-h_0}{H})}$$

- $\neg \rho$ = Atmospheric density (height, location, time, sun activity)
- \neg C_D = Drag coefficient (2.2 for flat plate, 2.0 for sphere)
- \neg \mathbf{v}_{rel} = Velocity relative to atmosphere (moving w.r.t. Earth)
- \neg A = Cross-section area (size, attitude)
- $\neg M = \text{Mass of object 'S'}$

Uncertainty

Atmospheric Drag Effects

Effect on elliptical high orbit from GVE

$$\frac{de}{dt} = \frac{\sqrt{1 - e^2}\sin\nu}{na} f_R + \frac{\sqrt{1 - e^2}}{na^2 e} \left(\frac{a^2(1 - e^2)}{r} - r\right) f_T$$

$$\frac{d\omega}{dt} = -\frac{\sqrt{1 - e^2}\cos\nu}{nae} f_R + \frac{\sqrt{1 - e^2}}{nae} \frac{2 + e\cos\nu}{1 + e\cos\nu} \sin\nu f_T$$

 \neg At perigee $r=r_p=a(1-e)$, v=0, $f_R=0$ thus

$$\frac{de}{dt} = \frac{2\sqrt{1 - e^2}}{na} f_{\text{Drag}} < 0$$

$$\frac{d\omega}{dt} = 0$$

$$e \to 0$$

$$\omega = \text{const}$$

Decreasing eccentricity → Circular

Effect on circular low orbit from GVE

$$\frac{d\mathcal{E}}{dt} = \vec{f} \cdot \vec{v} < 0 \qquad \qquad \mathcal{E} = -\frac{\mu}{2a}$$

$$\downarrow \qquad \qquad \qquad \mathsf{DRAG PARADOX}$$

$$\frac{da}{dt} = \frac{2}{n} f_T < 0 \qquad \qquad v = \sqrt{\frac{\mu}{a}}$$

Spiral Decay → Splash!

