Higher direct images of (log) structure sheaves

Charlie Godfrey

University of Washington

October 27th, 2020

Overview

Origin story

Generalizations to pairs

The situation in arbitrary characteristic

Pairs in positive characteristic

Questions

Origin story

Problem (Grothendieck 1960, Problem B)

Let $f: X \to Y$ be a proper birational morphism of non-singular varieties over a field k. Is $R^p f_* O_X = 0$ for all q > 0?

Equivalently, are all of the natural maps $f^*: H^q(Y, O_Y) \to H^q(X, O_X)$ isomorphisms?

Consequences of an affirmative answer:

• The Hodge numbers

$$h^{0,q}(X)=\dim H^q(X,O_X)$$
 and via Serre duality also $h^{n,n-q}(X)=\dim H^{n-q}(X,\omega_X)$ (1.1)

are invariant under proper birational morphisms.

Rational singularities I

Definition

Let X be a variety over k. X has **rational singularities** if and only if for every resolution of singularities $\pi : \tilde{X} \to X$,

$$\pi_* O_{\tilde{X}} = O_X$$
 and $R^i \pi_* O_{\tilde{X}} = 0$ for $i > 0$
and $\pi_* \omega_{\tilde{X}} = \omega_X$ and $R^i \pi_* \omega_{\tilde{X}} = 0$ for $i > 0$ (1.2)

Klt singularities are rational

Definition

Let (X, Δ) be a pair (so X is a normal variety, Δ is a \mathbb{Q} -Weil divisor on X, $\mathcal{K}_X + \Delta$ is \mathbb{Q} -Cartier). Then, (X, Δ) has klt singularities if and only if ...:)

Why we care:

- Minimal Model Program,
- moduli of varieties

Related to rational singularities via:

Theorem (Elkik 1981, Kawamata, Matsuda, and Matsuki 1987) If X is a variety over k, char k = 0 with klt singularities, then X has rational singularities.

Idea (Kollár, Sándor): there should be a version of Elkik's theorem for pairs.

Rational resolutions of pairs I

Definition (Kollár 2013)

Let (X, Δ) be a pair over k, char k = 0, let $\pi : \tilde{X} \to X$ be a log resolution, and let $\tilde{\Delta} = \pi_*^{-1} \Delta$ (strict transform). Say π is a **rational resolution** if and only if

1.
$$\pi_* O_{\tilde{X}}(-\tilde{\Delta})$$
 and $R^i \pi_* O_{\tilde{X}}(-\tilde{\Delta}) = 0$ for $i > 0$

2.
$$R^i \pi_* \omega_{\tilde{X}}(\tilde{\Delta}) = 0$$
 for $i > 0$

Issues: pairs that "should be rational" have non-rational resolutions.

Cautionary tales I

Example

Take $(X, \Delta) = (\mathbb{A}^2_{xy}, V(xy))$ and $\tilde{X} := \mathsf{Bl}_0 \, \mathbb{A}^2$. Then $R^1 \pi_* O_{\tilde{X}}(-\tilde{\Delta})$ corresponds to the module

$$H^{1}(\mathbb{P}^{1}_{xy}, \bigoplus_{d=0}^{\infty} O_{\mathbb{P}^{1}}(d-2)) = H^{1}(\mathbb{P}^{1}_{xy}, O_{\mathbb{P}^{1}}(-2)) = k \neq 0$$

Cautionary tales II

Example

Take $X = C(\mathbb{P}^1 \times \mathbb{P}^1)$, $\Delta = D_0 \cup D_\infty$, where $D_0 = C(\mathbb{P}^1 \times \{0\})$, $D_\infty = C(\mathbb{P}^1 \times \{\infty\})$ and $\tilde{X} = \operatorname{Bl}_{D_0} X$. Here $R^1 \pi_* O_{\tilde{X}}(-\tilde{\Delta})$ corresponds to the module

$$H^1(\mathbb{P}^1,\bigoplus_{d>0}\operatorname{pr}_{1_*}O_{\mathbb{P}^1\times\mathbb{P}^1}(d,d-2))=H^1(\mathbb{P}^1,\bigoplus_{d>0}O_{\mathbb{P}^1}(d)\otimes_k k[x,y]_{d-2})=0$$

Thriftiness

Definition (Kollár 2013; Kollár and Xu 2016)

Let (S, Δ_S) be a pair and let $f: X \to S$ be a proper birational morphism. The map f is **thrifty** if and only if

- 1. f is an isomorphism *over* the generic point of every stratum of $\operatorname{snc}(\mathcal{S}, \Delta_{\mathcal{S}})$ and
- 2. f is an isomorphism at the generic point of every stratum of $\operatorname{snc}(X, \Delta_X)$.

Theorem (Kollár 2013 (char k = 0))

If (X, Δ) has a thrifty rational resolution, then every thrifty resolution is rational, and if (X, Δ) is dlt and $\pi : \tilde{X} \to X$ is a log resolution,

 π is thrifty $\iff \pi$ is rational.

Higher direct images in arbitrary characteristic I

Challenges:

- Resolutions aren't known to exist (yet ...);
- Vanishing theorems are known to fail.

A weak replacement for resolution of singularities:

Theorem (Kawasaki 2000, Cesnavicius 2018)

Let X be a quasi-excellent noetherian scheme. Then there is a proper birational morphism $\tilde{X} \to X$ such that \tilde{X} is Cohen-Macaulay.

Higher direct images in arbitrary characteristic II

Theorem (Chatzistamatiou and Rülling 2011; Chatzistamatiou and Rülling 2015; Kovács 2019)

Let S be a scheme and let X, Y be S-schemes which are noetherian, excellent, regular and properly birational over S:

$$X \stackrel{p}{\smile} X \stackrel{q}{\smile} Y$$
 (with p, q proper and birational). (3.1)

Then, there is a quasi-isomorphism $Rf_*O_X \simeq Rg_*O_Y$. Moreover if Z is Cohen-Macaulay then $Rp_*O_Z = O_X$ and $Rq_*O_Z = O_Y$.

Note that this applies even in mixed characteristic.

Setup: thrifty proper birational equivalences

Question: What about pairs in characteristic p > 0? From now on: k is a perfect field, (X, Δ_X) , (Y, Δ_Y) are simple normal crossing pairs over k, and we have a **thrifty proper birational equivalence** over a base scheme S of finite type over k:

with p,q proper, birational and thrifty, and with $p_*^{-1}(\Delta_X) = q_*^{-1}(\Delta_Y)$.

Theorem (G. 2020)

There is a quasi-isomorphism $Rf_*O_X(-\Delta_X) \simeq Rg_*O_Y(-\Delta_Y)$.

A resolution of $O(-\Delta)$

Write
$$\Delta_X = \bigcup_{i=1}^N D_i$$
. For each $I = \{i_1, \dots, i_c\} \subseteq \{1, \dots, N\}$,

$$X_I := \bigcap_{i \in I} D_i \subseteq X$$
 is smooth of codimension $|I|$

Define $X_c := \bigcup_{|I|=c} X_I$ (still smooth of codimension c) and set $X_0 = X - X_{\bullet}$ is a **(semi-) simplicial scheme**. Set

$$\check{C}(X,\Delta_X): O_X = O_{X_0} \xrightarrow{d^0} O_{X_1} \xrightarrow{d^1} O_{X_2} \longrightarrow \cdots$$

Theorem (Friedman 1983)

The augmented complex $O_X(-\Delta_X) \to \check{C}(X, \Delta_X)$ is exact. In particular, there is a quasi-isomorphism $O_X(-\Delta_X) \simeq \check{C}(X, \Delta_X)$ in $D^b_{\mathrm{coh}}(X)$.

Thriftiness I

Recall: $Z \xrightarrow{\rho} X$ is an isomorphism over all generic points of all of the X_c (similarly for Y).

Lemma

There is an augemented semi-simplicial scheme $Z_{\bullet} \xrightarrow{\iota_{\bullet}} Z$, together with morphisms $X_{\bullet} \xleftarrow{\rho_{\bullet}} Z_{\bullet} \xrightarrow{q_{\bullet}} Y_{\bullet}$ over S, satisfying:

- 1. Z_c is Cohen-Macaulay for all c, and
- 2. the morphisms $X_c \stackrel{\rho_{\bullet}}{\leftarrow} Z_c \stackrel{q_{\bullet}}{\longrightarrow} Y_c$ are projective and birational for all c.

A descent spectral sequence argument I

Let $\iota^Z_{\bullet}: Z_{\bullet} \to Z$ be the augmentation (similarly for X, Y). There is a *complex* $\mathcal{K}^{\bullet} := R\iota_{\bullet *}O_{Z \bullet}$ in D(Z), and $p_{\bullet}: Z_{\bullet} \to X_{\bullet}$ induces

$$\tau_p \colon O_X(-\Delta_X) \simeq R\iota_{\bullet *}^X O_{X \bullet} \to Rp_* R\iota_{\bullet *}^Z O_{Z_{\bullet}} = Rp_* \mathcal{K}^{\bullet} \text{ in } D(X)$$

Theorem (G. 2020)

The maps τ_p and τ_q are quasi-isomorphism. Hence pushing forward along f , g we obtain

$$Rf_*O_X(-\Delta_X) \xrightarrow{Rf_*\tau_p} Rf_*Rp_*\mathcal{K}^{\bullet}$$

$$Rg_*Rq_*\mathcal{K}^{\bullet} \xleftarrow{Rg_*\tau_q} Rg_*O_Y(-\Delta_Y)$$
(4.2)

Key ingredient: there is a "descent" spectral sequence

$$E_1^{ij} := R^j p_{i*} O_{Z_i} \implies R^{i+j} R p_* \mathcal{K}^{\bullet}$$
 and by Kovács 2019, $R p_{i*} O_{Z_i} = O_{X_i}$

Open questions

- Relaxing the hypothesis that $(X, \Delta_X), (Y, \Delta_Y)$ are snc?
- What can we say about " (X, Δ_X) klt $\implies (X, \Delta_X)$ is rational" in positive characteristic? Best hope: true for large p for fixed dim X.
- Consequences for counting points over \mathbb{F}_q ? (Ekedahl 1983 proved that if X, Y are smooth, proper and birationally equivalent over \mathbb{F}_q then $|X(\mathbb{F}_q)| \equiv |Y(\mathbb{F}_q)| \mod q$).

 $Rf_*O_X(-\Delta_X)$

Thanks!

Thanks!

References I

- Cesnavicius, Kestutis (Oct. 10, 2018). *Macaulayfication of Noetherian Schemes*. arXiv: 1810.04493 [math]. URL: http://arxiv.org/abs/1810.04493 (visited on 02/04/2020).
- Chatzistamatiou, Andre and Kay Rülling (Dec. 31, 2011). "Higher Direct Images of the Structure Sheaf in Positive Characteristic". In: *Algebra & Number Theory* 5.6, pp. 693–775. ISSN: 1944-7833, 1937-0652.
- (Nov. 2015). "Vanishing of the Higher Direct Images of the Structure Sheaf". In: Compositio Mathematica 151.11, pp. 2131–2144. ISSN: 0010-437X, 1570-5846.
- Ekedahl, Torsten (1983). "Sur Le Groupe Fondamental d'une Variété Unirationnelle". In: *Comptes Rendus de l'Académie des Sciences* 297.12, pp. 627–629. ISSN: 0249-6291.
- Elkik, Renée (1981). "Rationalité Des Singularités Canoniques". In: *Inventiones Mathematicae* 64.1, pp. 1–6. ISSN: 0020-9910.

References II

- Friedman, Robert (July 1983). "Global Smoothings of Varieties with Normal Crossings". In: *The Annals of Mathematics* 118.1, p. 75. ISSN: 0003486X. JSTOR: 2006955.
- Grothendieck, Alexander (1960). "The Cohomology Theory of Abstract Algebraic Varieties". In: *Proc. Internat. Congress Math. (Edinburgh, 1958)*. Cambridge Univ. Press, New York, pp. 103–118.
- Hironaka, Heisuke (1964). "Resolution of Singularities of an Algebraic Variety over a Field of Characteristic Zero. I, II". In: *Ann. of Math. (2)* **79** (1964), 109–203; ibid. (2) 79, pp. 205–326. ISSN: 0003-486X.
- Kawamata, Yujiro, Katsumi Matsuda, and Kenji Matsuki (1987). "Introduction to the Minimal Model Problem". In: *Algebraic Geometry, Sendai, 1985*. Vol. 10. Adv. Stud. Pure Math. North-Holland, Amsterdam, pp. 283–360.
- Kawasaki, Takesi (2000). "On Macaulayfication of Noetherian Schemes". In: *Transactions of the American Mathematical Society* 352.6, pp. 2517–2552. ISSN: 0002-9947.

References III

- Kollár, János (2013). *Singularities of the Minimal Model Program.* Vol. 200. Cambridge Tracts in Mathematics. [object Object]: [object Object], pp. х+370. ISBN: [object Object].
- Kollár, János and Chenyang Xu (Sept. 2016). "The Dual Complex of Calabi–Yau Pairs". In: *Inventiones mathematicae* 205.3, pp. 527–557. ISSN: 0020-9910, 1432-1297. arXiv: 1503.08320.
- Kovács, Sándor J. (Dec. 10, 2019). *Rational Singularities*. arXiv: 1703.02269 [math]. uRL: http://arxiv.org/abs/1703.02269 (visited on 04/22/2020).