Debido a que toda la clase fue dedicada a explicarle a un solo compañero cómo se realizaba el ejercicio, me parece prudente solo adjuntar la evidencia de la realización de la participación en clase. Adicionalmente, en la tarea 3 he detallado paso por paso el mismo procedimiento a seguir para el cálculo de esta participación.

Se cuenta con la siguiente información extraída de la SCT, tarifas y destinos con origen en CDMX (655)

No	Aerolínea	Origen	Destino	Tarifas Negociadas
622	Interjet	AICM	Villahermosa	\$2,083
464	Volaris	AICM	Oaxaca	\$1,224
347	Aeroméxico	AICM	Mazatlán	\$4,570
393	Interjet	AICM	Mérida	\$3,719
294	Interjet	AICM	Hermosillo	\$2,532
267	Aeroméxico	AICM	Hermosillo	\$3,903
122	Interjet	AICM	Guadalajara	\$3,110
632	Interjet	AICM	Zihuatanejo	\$2,620
454	Interjet	AICM	Mérida	\$3,562
109	Interjet	AICM	Guadalajara	\$3,100
93	Aeroméxico	AICM	Guadalajara	\$3,599
619	Aeroméxico	AICM	Villahermosa	\$4,697

PRUEBA PILOTO

Estadísticas					
Tamaño de muestra pr	Prueba Piloto rueba piloto	25			
Tamaño de la població N	on	655			
Media Muestral	$y = \frac{\sum_{i=1}^{n} y_i}{n}$	3,020.9			
S ²	$s^{2} = \frac{\sum_{i=1}^{n} \left(y_{i} - \overline{y}\right)^{2}}{n-1}$	819,401.2			

David Montaño Castro Participación 10/03/2022 Muestreo

$$\hat{V}(\bar{y}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$$

31,525.1

Error Estándar Media

α	
$\pmb{Z}_{95\%}$	

0.05 1.96

t_{95%,24}

2.0639

Tamaño de muestra

400
$$n_0 = \frac{Z^2 S^2}{d^2}$$

$$n = \frac{n_o}{1 + \frac{n_o}{N}}$$

19.10

MUESTRA DEFINITIVA

Muestra Definitiva

Tamaño de muestra n

20

Tamaño de la población N

$$y = \frac{\sum_{i=1}^{n} y_i}{n}$$

2,994.2

S²

$$s^{2} = \frac{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}{n-1}$$

1,278,306.6

Varianza Media

$$\hat{V}(\bar{y}) = \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$$

61,963.7

Error Estándar Media

248.9

$$\hat{Y} = Ny$$

Varianza Total
$$\hat{V}(\hat{Y}) = N^2 \left(1 - \frac{n}{N}\right) \frac{s^2}{n}$$
 26,583,983,411.3

Error Estándar Total 163,046.0

Intervalos de $\hat{Y} \pm NZ_{(1-\alpha/2)} \sqrt{1-\frac{n}{N}} \frac{S^2}{n}$ LI 1,641,636.80 LS 2,280,765.20

INTERVALO DE CONFIANZA QUE SÍ CONTIENE A LA MEDIA POBLACIONAL

MUESTRAS CON LAS QUE TRABAJÉ (MUESTREO ALEATORIO SIMPLE)

Piloto	Definitiva
Tarifa Muestra	Tarifa Muestra
\$4,367	\$2,083
\$2,729	\$1,224
\$5,407	\$4,570
\$3,092	\$3,719
\$1,224	\$2,532
\$2,732	\$3,903
\$3,300	\$3,110
\$2,256	\$2,620
\$1,889	\$3,562
\$1,930	\$3,100
\$3,222	\$3,599
\$2,447	\$4,697
\$2,945	\$2,648
\$2,749	\$3,222
\$2,768	\$1,889
\$3,599	\$2,078
\$3,562	\$2,860
\$2,330	\$5,404
\$4,338	\$1,840
\$3,698	\$1,224
\$3,315	
\$2,999	
\$1,841	
\$3,222	
\$3,562	