Solutions to the book: $Robin\ Hartshorne,\ Algebraic\ Geometry$

Meng-Gen Tsai plover@gmail.com

July 18, 2021

Contents

Chapter I: Varieties														2
Problem I.1.6														2

Chapter I: Varieties

Problem I.1.6.

Any nonempty open subset of an irreducible topological space is dense and irreducible. If Y is a subset of a topological space X, which is irreducible in its induced topology, then the closure \overline{Y} is also irreducible.

Proof.

(1) Show that any nonempty open subset of an irreducible topological space is dense. It suffices to show that $U_1 \cap U_2 \neq \emptyset$ for any nonempty open subsets of an irreducible topological space.

 \forall nonempty open sets U_1 and $U_2, U_1 \cap U_2 \neq \emptyset$

 \iff \forall nonempty open sets U_1 and $U_2, X - (U_1 \cap U_2) \neq X$

 $\iff \forall \text{ nonempty open sets } U_1 \text{ and } U_2, (X-U_1) \cup (X-U_2) \neq X$

 $\iff \forall$ proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 \neq X$

 \iff $\not\equiv$ proper closed sets Y_1 and $Y_2, Y_1 \cup Y_2 = X$.

(2) Show that any nonempty open subset of an irreducible topological space is irreducible. Given any open subset U of an irreducible topological space X. Write $U \subseteq Y_1 \cup Y_2$ where Y_1 and Y_2 are closed in X.

$$\begin{array}{c} U\subseteq Y_1\cup Y_2\Longrightarrow \overline{U}\subseteq \overline{Y_1\cup Y_2}\\ \Longrightarrow X\subseteq Y_1\cup Y_2 & (U\text{ is dense, }Y_1\cup Y_2\text{ is closed})\\ \Longrightarrow Y_1=X\supseteq U\text{ or }Y_2=X\supseteq U\\ \Longrightarrow U\text{ is irreducible}. \end{array}$$

(3) Show that if Y is a subset of a topological space X, which is irreducible (in its induced topology), then the closure \overline{Y} is also irreducible. (Reductio ad absurdum) If \overline{Y} were reducible, there are two closed sets Y_1 and Y_2 such that

$$\overline{Y} \subseteq Y_1 \cup Y_2, \overline{Y} \not\subseteq Y_i (i=1,2).$$

(a) $Y \subseteq \overline{Y} \subseteq Y_1 \cup Y_2$.

(b) $\underline{Y} \not\subseteq \underline{Y_i} (i = 1, 2)$. If not, $\underline{Y} \subseteq \underline{Y_i}$ for some i. Take closure to get $\overline{Y} \subseteq \overline{Y_i} = Y_i$ (since Y_i is closed), contrary to the assumption.

By (a)(b), Y is reducible, which is absurd.