PHY2084: Electromagnetism and Optics

Lecture 4: Electric field lines

How do electric fields distribute in space?

- A fundamental aspect in electromagnetism is to understand the *geometry* of the problem (general to any field theory).
- A useful technique is to draw field lines.

ELECTROSTATIC FIELDS:

- field lines never cross
- always a start and a finish (no loops)
- always pointing from a positive to a negative charge
- the more packed the lines, the stronger the field

How do potentials distribute in space?

- Remember that $\vec{E} = -\nabla \Phi$

POTENTIAL

- field lines never cross
- always in loops
- always perpendicular to the electric field lines
- the more packed the lines, the stronger the potential
- The potential lines are, rather, surfaces (imagine the picture above in 3D).
- These are called *equipotential surfaces*

Examples

Examples

Examples

Field lines from materials

CONDUCTOR: a material that allows for current and heat flow. Availability of electrons in the conduction band

Fig 31

- electric fields NOT allowed inside it
- free charges always distribute on the surface
- Field lines always perpendicular to the surface

Mirror charges

A useful trick if we want to draw field lines between a charge and a conductor is to imagine there is a virtual charge that is the mirror image of the real charge

Field lines from materials

DIELECTRIC: poor (ideally none) conduction of currents and heat. Empty conduction band

- Electric fields allowed inside it
- Generally, change in direction (will see more on this, later)
- Continuous field lines but with kinks (i.e., discontinuous in first derivative)

Dr. Gianluca Sarri

Field lines from a hollow material

Conducting sphere

Field inside is 0 (gauss surface)

A conductor is capable of completely screening an external electric field

Placing a charge inside it induces charge being accumulated on the inner surface and an equal amount on the outer surface. Seen from afar, equivalent to the field generated by a point-like source

Example: a capacitor

Total Charge inside the Gauss' surface: $Q = \sigma S$ Gauss' law: flux of $E = ES = Q/\epsilon_0$

Combining the two:

$$E = \sigma/\epsilon_0$$
 (constant!)

