

Benha university Faculty of science Chemistry Department

عملى

Physical chemistry

(CHE125)

المستوى الأول ـ شعبة رياضيات باللغة الإنجليزية

Notebook

1) Qualtitative analysis:

- The identification of constituents of compounds in its simple or complicated form. << What matter is?>>

(2) Quantitative analysis:

- The determination of the actual amount of constituents.

- (conc, volume, and weight)

$$ACID + BASE \rightarrow SALT + H_2O$$

EX:
$$HC1 + NaOH \rightarrow NaC1 + H_2O$$

- SALT such as NaCl divided into two branches
- 1) Basic radical (cation e.g., Na⁺) and Acidic radical (anion e.g., Cl⁻)
 - The physical properties of any salt:
- 1) Shape; powder, fine crystal, crystal, or sheet.
- 2) Color; colorless, white, yellow...... etc.
- 3) Odor; odor less, pungent odor, has characteristic odor.
- 4) Solubility, soluble or insoluble in water.
 - all anions can be classified into 3 groups according to the reagent
- 1) Dilute HCl
- 2) Concentrated H₂so₄
- 3) Reaction in solution (precipitation)

Dilute hydrochloric acid group (1 gp)

Carbonate (CO₃ ²-), Bi carbonate (HCO₃ ⁻), Sulphides (S ²-), Sulphites (SO₃ ²-), Thio sulphates (s₂O₃ ²-), and Nitrites (NO₂ ⁻)

• All carbonates are insoluble in water except these of the alkali metals and of

ammonia

• All bio carbonates are soluble in water

• Dry test reaction

In dry test tube we put small amount
 Of salt and some drops of dil HCl and
 Show the observation.

EXP	OBS	RES
Solid salt + dil HCl	Efference and evolution of CO_2 gas which turbid lime water due to formation of insoluble $CaCO_3$ $Na_2CO_3 + 2HCl \rightarrow 2 \ NaCl + H2O + CO_2 \uparrow$ $NaHCO_3 + HCl \rightarrow NaCl + H_2O + CO_2 \uparrow$ $Ca(OH)_2 + CO_2 \rightarrow CaCO_3 \downarrow + H_2O$	A.R may be carbonate or bicarbonate
Solid salt + dil HCl	Evolution of H_2S gas characterized by its rotten odor, blacking of filter paper moistened with lead acetate solution $Na_2S + 2HCl \rightarrow 2NaCl + H_2S \uparrow \\ H_2S + Pb(CH3COO)_2 \rightarrow 2CH_3COOH + PbS \downarrow$	A.R may be sulphides
Solid salt + dil HCl	Evolution of SO ₂ gas characterized by its suffocating odor, which turns acidic paper moisten with $K_2Cr_2O_7$ into green $Na_2SO_3 + 2HCl \rightarrow 2NaCl + H_2O + SO_2 \uparrow$ $3SO_2 + H_2SO_4 + K_2Cr_2O_7 \rightarrow K_2SO_4 + Cr_2(so_4)_3 + H_2O$	A.R may be sulphites
Solid salt + dil HCl	Evolution of SO ₂ gas and yellow p.p.t is formed due to separation of sulpher $Na_2S_2O_3 + 2HC1 \rightarrow 2NaC1 + H_2O + SO_2\uparrow + S\downarrow$	A.R may be thiosulphate
Solid salt + dil HCl	Evolution of colorless gas (nitrous acid) which combines with oxygen of air and giving brown gas (nitrogen di oxide) at the mouth of test tube $NaNO_2 + HCl \rightarrow NaCl + HNO_2 \uparrow$ $3HNO_2 \rightarrow H_2O + HNO_3 + 2NO$ $2NO + O_2 \rightarrow 2NO_2$	A.R may be Nitrites
Solid salt + dil HCl	-ve	1 gp is absent

Sure solution

• Put a suitable amount of salt in a test tube, Add small amount of water and shake well If it does not soluble in cold, heat it

EXP	carbonate	Bicarbonate
Salt soln + MgSO ₄ or BaCl ₂	Give dense white p.p.t. on cold $Na_{2}CO3 + MgSO_{4} \rightarrow Na_{2}SO_{4} + MgCO_{3}\downarrow$ $Na_{2}CO_{3} + BaCl_{2} \rightarrow 2NaCl + BaCO_{3}\downarrow$	Give dense white p.p.t after heating $2NaHCO_3 + MgSO_4 \rightarrow Na_2SO_4 + Mg(HCO_3)_2$ $Mg(HCO_3)_2 \rightarrow H_2O + CO_2\uparrow + MgCO_3\downarrow$ $2NaHCO_3 + BaCl_2 \rightarrow 2NaCl + BaCO_3\downarrow + H_2O + CO_2$
Salt soln + HgCl ₂	Give reddish brown p.p.t. on cold Na ₂ CO3 + HgCl ₂ → 2NaCl + HgCO ₃ ↓	Give reddish brown p.p.t after heating $2NaHCO_3 + HgCl_2 \rightarrow 2NaCl + \\ Hg(HCO_3)_2 \downarrow$ $Hg(HCO_3)_2 \rightarrow HgCO_3 \downarrow + CO_2 + H_2O$
Salt soln +AgNO ₃	Give dense white p.p.t. on cold $Na_2CO_3 + 2AgNO_3 \rightarrow 2NaNO_3 + Ag_2CO_3\downarrow$	Give dense white p.p.t after heating $NaHCO_3 + AgNO_3 \rightarrow NaNO_3 + AgHCO_3$ $2AgHCO_3 \rightarrow H_2O + CO_2 \uparrow + Ag_2CO_3$

EXP	SULPHIDES	
Salt soln + Pb(CH ₃ COO) ₂	Give black p.p.t	
	$Na_2S + Pb(CH_3COO)_2 \rightarrow 2CH_3COONa + PbS\downarrow$	
Salt soln + AgNO ₃	Give black p.p.t	
	$Na_2S + 2AgNO_3 \rightarrow 2NaNO_3 + Ag_2S \downarrow$	

Salt soln + Na ₂ Fe(CN) ₅ NO	(CN) ₅ NO Give violet color	
	$Na_2S + Na_2Fe(CN)_5NO \rightarrow Na_4Fe(CN)_5NOS \downarrow$	
EXP	SULPHITES	
Salt soln + Pb(CH ₃ COO) ₂	Give white p.p.t Na ₂ SO ₃ + Pb(CH ₃ COO) ₂ → 2CH ₃ COONa + PbSO ₃ ↓	
Salt soln + AgNO ₃	Give white p.p.t change to black $Na_2SO_3 + 2AgNO_3 \rightarrow 2NaNO_3 + Ag_2SO_3 \downarrow$	
Salt soln + iodine solution	Color of iodine disappears as iodine is reduced to iodine ion $Na_2SO_3 + I_2 + H_2O \rightarrow Na_2SO_4 + 2HI$	
Salt soln + acifided K ₂ Cr ₂ O ₇	Give green color owing to the formation of chromic sulphate $k_2Cr_2O_7 + 3K_2SO_3 + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + H_2O$	
EXP	THIOSULPHATE	
Salt soln + Pb(CH ₃ COO) ₂	Give white p.p.t change into black by boiling $Na_2S_2O_3 + Pb(CH_3COO)_2 \rightarrow 2CH_3COON_4 + PbS_2O_3$ $2PbS_2O_3 \rightarrow 2SO_2 + 2PbS\downarrow$	
Salt soln + AgNO ₃	Give white p.p.t the color changes through yellow and brown to black $Na_2S_2O_3 + 2AgNO_3 \rightarrow 2NaNO_3 + Ag_2S_2O_3 \\ Ag_2S_2O_3 + H_2O \rightarrow Ag_2S \downarrow + H_2SO_4$	
Salt soln + iodine solution	Color of iodine disappears as iodine is reduced to iodine ion $2Na_2SO_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$	
Salt soln + FeCl ₃	Give violet color disappear by increase FeCl3 $2\text{Na}_2\text{S}_2\text{O}_3 + 2\text{FeCl}_3 \rightarrow 4\text{NaCl} + 2\text{Fe}(\text{S}_2\text{O}_3)\text{Cl}$	
EXP	NITRITE	
Salt soln + KI + dil H ₂ SO ₄	Give brown color of iodine as oxidation which give blue color of starch	
	$2KNO_2 + 2KI + 2H_2SO_4 \rightarrow 2K_2SO_4 + 2NO + I_2 + 2H_2O$	

Salt soln + KMnO ₄ + dil H ₂ SO ₄	Give purple color of permanganate disappear $5KNO_2 + 2KMnO_4 + 3H_2SO_4 \rightarrow 5KNO_3 + K_2SO_4 + 2MnSO_4 \\ + 3H_2O$	
Salt soln + FeSO ₄ + conc H ₂ SO ₄	Give black ring which disappear by shaking or heating tube $2KNO_2 + 6FeSO_4 + 4H_2SO_4 \rightarrow K_2SO_4 + 3Fe_2(SO_4)_3 + 4H_2O + 2NO$ $FeSO_4 + NO \rightarrow FeSO_4.NO$	
Salt soln + AgNO ₃	Give white p.p.t $NaNO_3 + AgNO_3 \rightarrow NaNO_3 + AgNO_2 \downarrow$	
Salt soln + Zn dust + NaOH	Evolution of ammonia gas $NaNO_2 + Zn + 2NaOH \rightarrow Na_2ZnO_2 + NH_3 \uparrow$	

Concentrated sulphoric acid group (2gp)

- Chloride (Cl⁻), Bromide (Br ⁻), Iodide (I⁻), and Nitrate (NO₃⁻)
- Dry test reaction

In dry test tube we put small amount of salt and some drops of conc H_2SO_4 and Show the observation.

EXP	OBS	RES
Solid salt + conc H ₂ SO ₄	Efference and evolution of colorless gas (HCl) which forms white clouds when exposed to a glass rod moised with ammonia (NH ₃) OR ammonium hydroxide (NH ₄ OH) $2NaCl + H_2SO_4 \rightarrow Na_2SO_4 + 2HCl \uparrow$ $HCl + NH_3 \rightarrow NH_4Cl \downarrow$	A.R may be chloride
Solid salt + conc H ₂ SO ₄	Efference and evolution of reddish orange fume solved, and solution turns to orange due to separation of bromine $2NaBr + H_2SO_4 \rightarrow Na_2SO_4 + 2HBr \uparrow$ $2HBr + H_2SO_4 \rightarrow 2H_2O + SO_2 + Br_2$	A.R may be bromide
Solid salt + conc H ₂ SO ₄	Violet fumed evolved and brown p.p.t or black p.p.t $2KI + H_2SO_4 \rightarrow K_2SO_4 + 2HI \uparrow$ $2HI + H_2SO_4 \rightarrow 2H_2O + SO_2 + I_2$	A.R may be iodide
Solid salt + conc H ₂ SO ₄	Reddish brown vapor of NO ₂ in the presence of Cu $2KNO_3 + H_2SO_4 \rightarrow K_2SO_4 + 2HNO_3$ $4HNO_3 + Cu \rightarrow Cu(HNO_3)_2 \rightarrow \rightarrow NO_2 + H_2O$	A.R may be nitrate
Solid salt + conc H ₂ SO ₄	-Ve	gp (2) is absent

EXP	CHLORIDES	
Salt soln + Pb(CH ₃ COO) ₂	Give dense white p.p.t	
	$2NaCl+ Pb(CH3COO)2 \rightarrow 2CH3COONa + PbCl2 \downarrow$	
Salt soln + AgNO ₃	Give dense white p.p.t. in soluble in dil HNO ₃	
	$NaCl + AgNO_3 \rightarrow NaNO_3 + AgCl \downarrow$	
Salt soln + Hg ₂ (NO ₃) ₂	White p.p.t	
	$Hg_2(NO_3)_2 + 2NaCl \rightarrow 2NaCl + Hg_2Cl_2\downarrow$	

EXP	BROMIDES	
Salt soln + Pb(CH ₃ COO) ₂	Give white p.p.t	
	$2NaBr + Pb(CH_3COO)_2 \rightarrow 2CH_3COONa + PbBr_2\downarrow$	
Salt soln + AgNO ₃	Give pale yellow p.p.t. soluble in dil HNO ₃	
	$NaBr + AgNO_3 \rightarrow NaNO_3 + AgBr \downarrow$	
EXP	IODIDED	
Salt soln + Pb(CH ₃ COO) ₂	Give yellow p.p.t	
	2 NaI+ Pb(CH ₃ COO) ₂ → 2 CH ₃ COONa + PbI \downarrow	
Salt soln + AgNO ₃	Give cancer yellow p.p.t	
	$NaI + AgNO_3 \rightarrow NaNO_3 + AgI \downarrow$	
Salt soln + $Hg_2(NO_3)_2$	Give reddish brown p.p.t disappear by increasing of solution	
	$2KI + HgCl_2 \rightarrow 2KCl + HgI_2 \downarrow$	
	$2KI + HgI_2 \rightarrow K_2HgI_4$	
EXP	NITRATE	
Salt soln + freshly prepared	Give brown or black ring disappear by shacking the solution	
FeSO ₄ + 2drops of conc H ₂ SO ₄	$2KNO_3 + 6FeSO_4 + 4H_2SO_4 \rightarrow K_2SO_4 + 3Fe(SO_4)_3 + 2NO + H_2O$	
	$FeSO_4 + NO \rightarrow FeSO_4.NO$	
Salt soln + Zn dust + NaOH	Give odor of ammonia	
	$NaNO_3 + 4Zn + 7NaOH \rightarrow 4Na_2ZnO_2 + 2H_2O + NH_3\uparrow$	

GROUP (3)

- Sulphate (SO₄ ²⁻), Phosphate (PO₄ ³⁻), and Borate (B₄O₇ ²⁻)
- Prepare a conc solution of salt and add BaCl₂, this gives white p.p.t and according to the solubility of this precipitate in dil HCl or excess of BaCl₂ we can predict the acidic radical as

ACIDIC RADICAL	Dil HCl	Excess BaCl ₂
Sulphate	Insoluble	In soluble
Phosphate	Soluble	In soluble
borate	soluble	Soluble

•
$$Na_2SO_4 + BaCl_2 \rightarrow 2NaCl + BaSO_4 \downarrow$$

•
$$Na_2HPO_4 + BaCl_2 \rightarrow 2NaCl + BaHPO_4 \downarrow$$

$$\bullet \quad Na_2B_4O_7 + BaCl_2 \ \rightarrow 2NaCl + Ba(BO_3)_2 \downarrow + 2H_3BO_3$$

• Conformal tests for group (3)

EXP	SULPHATE	PHOSPHATE	BORATE
Salt soln + Pb(CH ₃ COO) ₂ Salt soln +	Give white p.p.t Na ₂ SO ₄ + Pb(CH ₃ COO) ₂ → 2CH ₃ COONa + PbSO ₄ ↓ Give white p.p.t not	-ve Give yellow p.p.t	-Ve Give white p.p.t change
AgNO ₃	of ve write p.p.t not affect by heating Na ₂ SO ₄ + 2AgNO ₃ → 2NaNO ₃ + Ag ₂ SO ₄ ↓	Na ₃ PO ₄ + 3AgNO ₃ → 3NaNO ₃ + Ag ₃ PO ₄ ↓	orve winte p.p.t change into brown by heating $Na_2B_4O_7 + 2AgNO_3 +$ $3H_2O \rightarrow 2NaNO_3 +$ $2H_3BO_3 + 2AgBO_2 \downarrow$ $2AgBO_2 + 3H_2O \rightarrow$ $2H_3BO_3 + Ag_2O$
Salt soln + HgCl ₂	-Ve	-ve	Reddish brown p.p.t soluble in dil HCl $HgCl_2 + Na_2B_4O_7 \rightarrow$ $2NaCl + Hg(BO_2)_2\downarrow +$ B_2O_3