

Human Activity Recognition HAPT & HAR

Team 18

Presented by: Yitian Shi

Jonas Vogt

HAPT – Data Handling

HAPT – Data Handling

Prioritization of transitional Classes

HAPT – Class Distribution

HAPT – Results

wandb results:

window-size: 300

threshold: 0.9

shift-ratio: 0.4

Best RNN

- 13 LSTM units
- 40% dropout rate

Best Stacked RNN

- Two Layers of 11 units each
- · 10 % dropout rate

HAPT – Results

The best results we've achieved are as follows:

Architecture	Window size	Dropout rate	Balanced test accuracy
LSTM 13 LSTM 10 GRU 10 Stacked LSTM (11,11) Stacked GRU (11,11) Stacked LSTM (15,12)	250 300 300 250 300 250	0.4 0.2 0.2 0.1 0.1 0.3	86.92% 88.90% 84.44% 91.40% 77.91% 88.50%
Stacked LSTM (8,11) Transformer encoder Soft-Voting	250 300 250	0.5	84.50% 82.28% 91.64%

HAPT – Transformer encoder

Besides traditional RNN and LSTM architectures, we've also applied the Transformer encoder structure as the backbone with a normal classification head. We have the following configurations compared to the model structure from the encoder part of the base Transformer model proposed by Vaswani et al.[1]:

Model	layers	d_model	d_feed_forward	num_head	d_key/value
Base model	6	512	2048	8	64
Our model	1	32	128	4	8

^[1] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

HAR (realworld2016) - Data Preprocessing

Difficulties

- Wrong alignment
- Different start/end point and data length

HAR (realworld2016) - Results

Sensor position	Architecture	Balanced test accuracy	
upperarm	stacked LSTM (10,10)	83.42%	
chest	LSTM 10	82.76%	
shin	stacked LSTM (10,10)	81.84%	
waist	stacked LSTM (10,10)	75.44%	
forearm	stacked LSTM (10,10)	73.03%	
head	stacked LSTM (10,10)	67.32%	

HAR (realworld2016) - Results

Position	Architecture	Validation	Test	accuracy difference
upperarm	stacked LSTM (10,10)	49.40%	83.42%	-34.02%
waist	stacked LSTM (10,10)	52.99%	75.44%	-22.45%
thigh	LSTM 11	76.69%	56.32%	20.37%

• Different distribution between validation/test set

HAPT - Android application

Thank you for your attention!

And see you in the poster session