

Software Architecture

Matteo Marchesini A.A. 2018/2019

INTRODUCTION

- A container is a technology for the deployment of distributed systems, a sort of virtualized server within an operating system
- Container orchestration is a process that allows to distribute a multiplicity of containers in order to implement an application

KUBERNETES

- An open source system for managing containerized applications between multiple hosts
- Microsoft, IBM and Google offer Container as a Service (CaaS) platforms based on Kubernetes
- Initially developed by Google in 2015 and currently supported by Cloud Native Computing Foundation (CNCF)

KUBERNETES FEATURES

- **Deployment:** it can be performed in a variety of environments with different patterns
- **Scaling:** allows to resize the application according to your needs, replicating the *pods*.
- Management: provides an interface for managing cluster and containerized applications. e.g. Google
 Container Engine (GKE)

SYSTEM CONTEXT

STAKEHOLDERS

- Cloud Native Computing Foundation members are distributed in in Platinum, Gold, Silver, End-User, Academic and Non-profit membership levels.
- There are 3 high-level divisions in CNCF:
 - Governing Board (Platinum CNCF members)
 - Technical Oversight Committee (TOC)
 - End User Technical Advisory Board (TAB)
- Suppliers (Github, Slack, and StackOverflow)
- · Special Interest Group (SIG) for Kubernetes' development.

POWER/INTEREST GRID

Interest

DEVELOPMENT

Kubernetes Module Organization

kubetcl

O

depends

Libraries and tools

Cluster federation

Dashboard

Interface layer

Ecosystem

Automation

Policy Enforcement

Governance layer

DeploymentSet - Scheduler

Network Service
Scheduling

Application layer

Service API

ExecutionMaster - worker

Nucleus

PLATFORMS

- Minikube is a local-machine solution
- AppsCode, Google Kubernetes Engine, Amazon EKS,
 Azure AKS are hosted solutions
- Agile Stacks, Google Compute Engine (GCE), Giant Swarm, IBM Cloud for Cloud IaaS
- Custom solutions, VMs, Bare Metal

Scalability

- Horizontal auto-scaling
- It automatically scales the number of pods in controlled replicas based on the CPU usage
- Stateless applications scaling (e.g. NoSQL and RDBMS)

High Availability

- Workloads require availability at both the infrastructure and application levels.
- ReplicaSet guarantees that a specified number of pod replicas are running at any time
- Replication Controller is the same as ReplicaSet, but only supports the equality selector, while ReplicaSet supports the set-based selector.

Portability

- Kubernetes is designed to offer freedom of choice over the choice of operating system to use, container execution, processor architecture, cloud platforms and PaaS.
- Federation vI is an API that have Hybrid cloud capabilities: includes clusters running in different cloud providers

Security

- Threats
 - External attacks
 - Compromised containers
 - Compromised credentials
 - Misuse of legitimate privileges

Security

Authentication and authorization architecture

Service Oriented Architecture

- A pod is a collection of one or more containers that serves as the main unit of Kubernetes for workload management
- Labels are key-value pairs associated with any object, including a node or pod, to identify and group objects that share a common attribute or property.
- A selector is a type of criterio used to query Kubernetes objects that correspond to a label value. This powerful technique allows to have a low coupling between objects
- ReplicaSets relies on labels and selectors to determine which pods will be scaled

How Services in a Cluster Map to Functions in Pods

Kubernetes Architecture

Source: Janakiram MSV

THENEWSTACK

Kubernetes Node

Source: Janakiram MSV THENEWSTACK

DEPLOYMENT PATTERNS

Features	Self Hosted, Custom deployment	Kubernetes	Container as a Service (CaaS)	Platform as a Service (PaaS)
Ability to customize	XXX High	XX Medium/High	Medium/Low	Low
Overall costs (SW e Infrastructure)	High	∏€ Medium	I€II€I High	∐€©∐€ © High
Staffing and support costs	L€CL€C High	∏€ Medium	Low	LOW
Admin skills	High	Medium	Low	Low
Portability around cloud	Low	XXX High	Medium (varies by providers)	Medium (varies by providers)
Container image registry	X Not included	XV Varies by provider	✓ Included	✓ Included
Security and monitoring services	X Not included	Included	Included	Included
High-availability features	X Not included	X Not included	Included	Included
Built-in infrastructure auto-scaling	X Not included	X Not included	Included	Included
Complete app lifecycle management	X Not included	X Not included	X Not included	Included

CODE QUALITY

- **Code duplication:** The developer used the same lines of code in several functions. This means that they have to change all code in corresponding functions whenever they need to change logic.
- Total complexity: The high number of complexity indicates that the code contains too much logic and should probably be broken down into smaller elements

```
Too many function arguments kubelet.Kubelet.AttachContainer
                                                                                               U Mute ▲ Report 11 He
critical 8 arguments
pkg/kubelet/kubelet_pods.go
1653 func (kl *Kubelet) AttachContainer(podFullName string, podUID types.UID, containerName string, stdin
          streamingRuntime, ok := kl.containerRuntime.(kubecontainer.DirectStreamingRuntime)
1654
1655
         if !ok {
              return fmt.Errorf("streaming methods not supported by runtime")
1656
1657
1658
          container, err := kl.findContainer(podFullName, podUID, containerName)
1659
1660
         if err != nil {
              return err
1661
1662
1663
         if container == nil {
              return fmt.Errorf("container not found (%q)", containerName)
1664
1665
          return streamingRuntime.AttachContainer(container.ID, stdin, stdout, stderr, tty, resize)
1666
1667 }
```

UTILITYTREE

KUBERNETES VS DOCKER SWARM

Scalability	Supporta cluster con un massimo di 100 nodi. Il 99% di tutte le chiamate API viene restituito in meno di 1 secondo Il 99% dei pod e i relativi container hanno un tempo d'avvio entro 5 secondi	Testato per supportare 1000 nodi e 30.000 container senza alcuna differenza evidente tra il tempo di avvio del 1° o 30.000°.
Availability	Altamente disponibile. I nodi guasti vengono rilevati e gestiti in automatico	Altamente disponibile. Lo Swarm Manager gestisce le risorse su larga scala.
Load-balancing	Bilanciamento del carico definendo pod come servizi	Bilanciamento del carico interno, ed esterno solo per servizi visibili
Auto-scaling	Eccellente.	Non supporta auto-scaling
Performance	L'architettura complessa ne rallenta le prestazioni	È 5x più veloce in termini di start di un cluster e scalabilità.
Easy to use	Difficile da configurare ed utilizzare	Indicato per implementazioni rapide e

semplici

BIBLIOGRAPHY

- Alex Williams, The State of the Kubernetes Ecosystem, The New Stack, 2017.
- Alex Williams, Kubernetes Deployment e Security Patterns, The New Stack, 2018.
- Alex Williams, Benjamin Ball, Gabriel Hoang Dinh, Lawrence Hecht, Use Cases for Kubernetes, TheNewStack, pp 7-13.
- Enreina Annisa Rizkiasri, Francisco Morales, Haris Suwignyo, Mohammad Riftadi, Kubernetes Container Orchestration, Delft Students on Software Architecture, 2018
- Arsh Modak, Chaudhary, Paygude, Idate, Techniques to Secure Data on Cloud: Docker Swarm or Kubernetes?, 2018 2nd International Conference, IEEE.
- Kate Matsudaira, Scalable Web Architecture and Distributed Systems, The architecture of Open Source Applications, vol 2.