Séries à termes positifs

- Dans ce chapitre, $u_n \ge 0$, pour tout n, et on étudie $\sum u_n$.
- On a $S_n S_{n-1} = u_n \ge 0$: (S_n) est croissante!

1. Généralités.

Proposition. Soit $(u_n)_{n\geq 0}$ une suite de réels positifs.

 $\sum u_n$ converge ssi les sommes partielles sont majorées i.e il existe $K \geq 0$ tel que

$$\forall n \ge 0, \quad S_n = \sum_{k=0}^n u_k = u_0 + \dots + u_n \le K$$

• Si $u_n \ge 0$ et $\sum u_n$ diverge on a $S_n \to +\infty$: on écrit parfois $\sum_{n\ge 0} u_n = +\infty$.

Théorème (Comparaison). Soient $\sum u_n$ et $\sum v_n$ deux séries à termes positifs telles que, pour tout $n \geq 0$, $0 \leq u_n \leq v_n$.

- 1. $Si \sum v_n \ cv, \ alors \sum u_n \ cv \ et \ 0 \le \sum_{n\ge 0} u_n \le \sum_{n\ge 0} v_n$.
- 2. $Si \sum u_n \ dv, \ alors \sum v_n \ dv.$

Remarque. Il suffit d'avoir l'inégalité $0 \le u_n \le v_n$ vérifiée pour tout $n \ge n_0$, pour obtenir la conclusion du théorème.

Démonstration. On a $S_n = \sum_{0 \le k \le n} u_k \le T_n = \sum_{0 \le k \le n} v_k$

- $\bullet\,$ Si (T_n) est majorée, il en va de même de (S_n)
- Si (S_n) n'est pas majorée, (T_n) ne l'est pas non plus

2012/2013 : fin du cours 3

Remarque. Retour sur ACV implique CV

- Cas u_n réel. Notons $v_n = |u_n| u_n$. D'après l'inégalité triangulaire, $v_n = |v_n| \le 2|u_n|$. $\sum v_n$ cv. Comme $u_n = |u_n| v_n$, $\sum u_n$ est convergente.
- Cas $u_n \in \mathbb{C}$: $u_n = a_n + \imath b_n$. On a $|a_n| \le |u_n|$ et $|b_n| \le |u_n|$. $\sum a_n$ et $\sum b_n$ sont ACV. Pas fait

Corollaire. Soient (u_n) à termes positifs et (v_n) à termes strictement positifs.

- 1. Si $\lim \frac{u_n}{v_n} = l > 0$ alors $\sum u_n$ et $\sum v_n$ ont même nature.
- 2. $Si \lim \frac{u_n}{v_n} = 0$ et $\sum v_n$ cv alors $\sum u_n$ cv.

Démonstration. 1. Il existe n_0 tq, pour $n \ge n_0$, $\left| \frac{u_n}{v_n} - l \right| \le \frac{l}{2}$ soit $u_n \frac{l}{2} \le v_n \le u_n \frac{3l}{2}$.

- 2. Il exite n_0 tq, pour $n \ge n_0$, $u_n \le v_n$.
- Bien penser aux équivalents pour les séries à termes positifs!

Exemple. 1. $u_n = \frac{1}{n^2}$, $v_n = \frac{1}{n(n+1)}$. $\lim \frac{u_n}{v_n} = 1$: $\sum v_n$ cv donc $\sum u_n$ cv.

- 2. $u_n = \frac{1}{n}$, $v_n = \ln\left(1 + \frac{1}{n}\right)$: $\sum v_n$ dv donc $\sum u_n$ dv
- 3. $u_n = \frac{1}{n^3}$, $v_n = \frac{1}{n^2}$. On vient de voir que $\sum v_n$ cv; par suite, $\sum u_n$ cv

2. Comparaison à une série géométrique.

Théorème (Règle de d'Alembert). Soit $\sum u_n$ une série à termes strictement positifs. On suppose que $\lim \frac{u_{n+1}}{u_n} = l$.

- 1. Si l < 1, la série $\sum u_n$ converge;
- 2. si l > 1, la série $\sum u_n$ est GDV
- Si l = 1 on ne peut rien dire!

$$\star u_n = 1/n : \sum u_n \, \mathrm{dv}$$

$$\star u_n = 1/n^2 : \sum u_n \text{ cv}$$

Démonstration. On écrit, pour $n \ge n_0$,

$$u_n = \frac{u_n}{u_{n-1}} \times \frac{u_{n-1}}{u_{n-2}} \times \ldots \times \frac{u_{n_0+1}}{u_{n_0}} \times u_{n_0}.$$

• Dans le premier cas, il existe n_0 et k < 1 tels que, pour tout $n \ge n_0$,

$$\frac{u_{n+1}}{u_n} \le k, \quad \text{ et } \quad u_n \le k^{n-n_0} u_{n_0}.$$

• Dans le second cas, il existe n_0 et k>1 tels que, pour $n\geq n_0,\ u_{n+1}/u_n\geq k$ et

$$\frac{u_{n+1}}{u_n} \le k$$
, et $u_n \ge k^{n-n_0} u_{n_0} \ge u_{n-0} > 0$.

Exemple. Étude de la série de t.g. $u_n = n^2 x^n$.

- Si x = 0, $u_n = 0$! Rien à faire!
- Pour $x \neq 0$, Il ne s'agit pas nécessairement d'une série à termes positifs. On regarde l'ACV : on a lim $\frac{|u_{n+1}|}{|u_n|} = |x|$; d'après la règle de d'Alembert

- \star Si |x| < 1, la série $\sum u_n$ est ACV
- * Si |x| > 1, $\sum |u_n|$ est GDV donc $\sum u_n$ est aussi GDV
- * Si |x|=1, on ne peut pas conclure. Mais $|u_n|=n^2\to\infty$ donc $\sum u_n$ est GDV

Théorème (Règle de Cauchy). Soit $\sum u_n$ une série à termes positifs ou nuls. On suppose que $\lim \sqrt[n]{u_n} = l$.

- 1. Si l < 1, $\sum u_n$ est convergente
- 2. Si l > 1, $\sum u_n$ est GDV
- Rappel, si $u_n > 0$, $\sqrt[n]{u_n} = u_n^{1/n} = e^{\ln(u_n)/n}$.

Démonstration. 1. Il existe n_0 et k < 1 t.q. pour $n \ge n_0$, $\sqrt[n]{u_n} \le k$ soit $u_n \le k^n$.

- 2. Il existe n_0 et k > 1 t.q. pour $n \ge n_0$, $\sqrt[n]{u_n} \ge k$ soit $u_n \ge k^n \longrightarrow +\infty$.
- \bullet On utilise cette règle quand u_n comporte des puissances n-ièmes.

Exemple. Étude de la série de t.g. $u_n = x^n/n^n$. Ce n'est pas une série à termes positifs, on étudie d'abord l'ACV. On a $\sqrt[n]{u_n} = |x|/n \longrightarrow 0$. D'après le critère de Cauchy, la série $\sum u_n$ est ACV.

3. Comparaison à une série de Riemann.

Définition. Soit α un réel. La série de terme général $\frac{1}{n^{\alpha}}$ s'appelle la série de Riemann.

Théorème. La série de t $g \frac{1}{n^{\alpha}}$ est convergente ssi $\alpha > 1$.

 $D\acute{e}monstration.$ • Si $\alpha \leq 0,\,\frac{1}{n^{\alpha}}$ ne tend pas vers 0 : la série est GDV

• Si $0 < \alpha \le 1$. Pour tout $n \ge 1$,

$$n = n^{\alpha} \times n^{1-\alpha} \ge n^{\alpha}, \qquad \frac{1}{n} \le \frac{1}{n^{\alpha}}.$$

Nous avons vu que $\sum \frac{1}{n}$ dv il en va de même de $\sum \frac{1}{n^{\alpha}}$

• Soit $\alpha > 1$. Considérons la fonction $f(x) = -\frac{1}{x^{\alpha-1}}$ définie sur $]0, +\infty[$. L'égalité des AF donne, pour tout $n \geq 2$, l'existence d'un c tel que n-1 < c < n et

$$f(n) - f(n-1) = \frac{1}{(n-1)^{\alpha-1}} - \frac{1}{(n)^{\alpha-1}} = (n - (n-1))f'(c) = \frac{\alpha - 1}{c^{\alpha}} \ge \frac{\alpha - 1}{n^{\alpha}}$$

- * Puisque $\alpha-1>0$, $\lim \frac{1}{n^{\alpha-1}}=0$, la série télescopique de t.g. $\frac{1}{(n-1)^{\alpha-1}}-\frac{1}{n^{\alpha-1}}$ converge.
- \star Il en va de même de la série de t.g. $\frac{\alpha-1}{n^{\alpha}}$
- * Par conséquent la série $\sum \frac{1}{n^{\alpha}}$ est cv si $\alpha > 1$.

• Il faut connaître le résultat sur les séries de Riemann par cœur!!

Critère de Riemann. Soit $\sum u_n$ une série à termes positifs ou nuls et soit $\alpha \geq 0$.

- 1. Si $\lim n^{\alpha}u_n = l > 0$, $\sum u_n$ cv ssi $\alpha > 1$.
- 2. Si $\alpha > 1$ et $\lim n^{\alpha} u_n = 0$, $\sum u_n$ cv.
- 3. Si $\lim nu_n = +\infty$, $\sum u_n$ est divergente.

2012/2013 : fin du cours 4 _____

Démonstration. • Csq du théorème de comparaison!

- \star Cas $1: \sum u_n$ et $\sum n^{-\alpha}$ ont même nature
- \star Cas 2 : pour $n \ge n_0$, $u_n \le n^{-\alpha}$.
- * Cas 3: pour $n \ge n_0$, $u_n \ge n^{-1}$.

Exemple. 1. Étude de la série de t.g. $u_n = \frac{1}{(\ln n)^{\ln n}}$

- $n^2 u_n = \frac{e^{2 \ln n}}{e^{\ln n \ln(\ln n)}} = e^{\ln n(2 \ln(\ln n))} \longrightarrow 0$;
- $\sum u_n$ est convergente puisque 2 > 1
- 2. Série harmonique alternée On étudie la série de terme général $u_n = \frac{(-1)^n}{n}$. On a, pour tout $n \ge 1$,

$$S_{2n} = -\frac{1}{1} + \frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \dots - \frac{1}{2n-1} + \frac{1}{2n} = \sum_{k=1}^{n} \left(-\frac{1}{2k-1} + \frac{1}{2k} \right) = \sum_{k=1}^{n} -\frac{1}{2k(2k-1)}.$$

Puisque $\frac{n^2}{2n(2n-1)} \longrightarrow \frac{1}{4}$, le critère de Riemann montre que S_{2n} converge vers $l \in \mathbf{R}$. D'autre part, nous avons, pour $n \geq 1$,

$$S_{2n+1} = S_{2n} - \frac{1}{2n+1} \longrightarrow l$$

Comme (S_{2n}) et (S_{2n+1}) converge vers l, $\lim S_n = l$. La série $\sum \frac{(-1)^n}{n}$ est convergente. Comme d'autre part, $\sum \left|\frac{(-1)^n}{n}\right| = \sum \frac{1}{n}$ est divergente, la série harmonique alternée est une série semi-convergente. On verra que la valeur de la somme est $-\ln(2)$.

4. Comparaison à une intégrale.

- Soit $n_0 \in \mathbf{N}$ et $f: [n_0, +\infty[\longrightarrow \mathbf{R}$ une fonction positive et décroissante.
- Pour $n \ge n_0$, on note

$$S_n = \sum_{k=n_0}^{n} f(k), \qquad F_n = \int_{n_0}^{n} f(t) dt.$$

- \star $(S_n)_{n\geq n_0}$ et $(F_n)_{n\geq n_0}$ sont croissantes et positives.
- Soit $k \geq n_0$. Puisque f est décroissante,

$$\forall t \in [k, k+1], \qquad f(k+1) < f(t) < f(k),$$

et, en intégrant,

$$f(k+1) = \int_{k}^{k+1} f(k) dt \le \int_{k}^{k+1} f(t) dt \le f(k) = \int_{k}^{k+1} f(k) dt$$

• On fait la somme de ces inégalités de $k=n_0$ à k=n-1, pour obtenir

$$f(n_0+1)+\ldots+f(n) \le \int_{n_0}^n f(t) dt \le f(n_0)+\ldots+f(n-1),$$

soit encore, puisque f est positive,

$$S_n - f(n_0) \le F_n \le S_n - f(n) \le S_n$$

• En résumé, pour tout $n \ge n_0$,

$$F_n \le S_n \le F_n + f(n_0). \tag{*}$$

Proposition. Soient n_0 un entier et $f:[n_0,+\infty[$ positive et décroissante. La série $\sum f(n)$ converge ssi la suite $(F_n)_{n\geq n_0}$ converge.

• Comme f est positive, $(F_n)_{n\geq n_0}$ est croissante

• Donc $(F_n)_{n\geq n_0}$ converge ssi elle est majorée!

 $D\acute{e}monstration. \bullet (S_n)$ et (F_n) sont croissantes

• Via (*), (S_n) est majorée ssi (F_n) l'est

Exemple. • Montrons que $\sum n^{-\alpha}$ converge pour $\alpha > 1$.

• $x \longmapsto n^{-\alpha}$ est positive et décroissante sur $[1, +\infty[$ et

$$F_n = \int_1^n t^{-\alpha} dt = \frac{1}{1 - \alpha} \left(n^{1 - \alpha} - 1 \right) = \frac{1}{\alpha - 1} \left(1 - \frac{1}{n^{\alpha - 1}} \right)$$

• Comme $\alpha > 1, F_n \longrightarrow \frac{1}{\alpha - 1}$.

Séries de Bertrand. On étudie la série de t.g. $u_n = \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ pour α et β réels.

- Si $\alpha > 1$, $\gamma = (1 + \alpha)/2 > 1$ et $n^{\gamma} u_n = \frac{1}{n^{(\alpha 1)/2} (\ln n)^{\beta}} \longrightarrow 0$: $\sum u_n$ cv d'après le critère de Riemann
- Si $\alpha < 1$, $nu_n = \frac{n^{1-\alpha}}{(\ln n)^{\beta}} \longrightarrow +\infty : \sum u_n$ dy d'après le critère de Riemann.
- Cas $\alpha = 1$

$$\star \ \beta \le 0 : u_n \ge \frac{1}{n} \text{ et } \sum u_n \text{ dv}$$

 $\star \beta > 0$: la fonction $x \longmapsto \frac{1}{x(\ln x)^{\beta}}$ est positive et décroissante sur $[2, +\infty[$. La série $\sum u_n$ a même nature que $\int_2^{+\infty} \frac{dt}{t(\ln t)^{\beta}}$. Or pour tout $x \ge 2$, $t = e^s$,

$$F(x) = \int_2^x \frac{dt}{t(\ln t)^{\beta}} = \int_{\ln 2}^{\ln x} \frac{ds}{s^{\beta}} = \begin{cases} \ln \ln x - \ln \ln 2, & \text{si } \beta = 1, \\ \frac{1}{1-\beta} \left(\frac{1}{(\ln x)^{\beta-1}} - \frac{1}{(\ln 2)^{\beta-1}} \right), & \text{si } \beta \neq 1 > 0 \end{cases}$$

 $\star \ \beta > 0 : F$ est majorée ssi $\beta > 1.$

- En conclusion,
 - 1. $\alpha > 1 : \sum \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ converge pour tout β
 - 2. $\alpha < 1 : \sum \frac{1}{n^{\alpha}(\ln n)^{\beta}}$ diverge pour tout β
 - 3. $\alpha = 1 : \sum \frac{1}{n(\ln n)^{\beta}}$ converge ssi $\beta > 1$