MACZEO Elliptic Corres Problem Sheet 2. 1 $y^2 = x^3 + 1$ P = (2,3), Q = (-1,0)P(+) Q = (0,-1) (a) Coladate Por (POQ) Sulution: Let's AR POQ, so R=(0,-1) To find POR first find PR. This line has slope -1-3 = 2 So its egn is y= 2x+c Plussing in eig. coords of P we find C=-1. So \overline{PR} is y = 2x - 1. To find PXR we intersect PR with 6 Substitute equ. of PR into y'= x3+1: get $(2x-1)^2 = 2x^3 + 1$ Roots of this cubic are x-coords of PR and PXR

Attemptively: tongent line to C of P

his slope $M = \frac{3x^2+3}{2y}$ $= \frac{3(2)^2}{2(3)} - 2$ $= \frac{3(2)^2}{2(3)} - 2$ So eqn is $y = 2x + c \rightarrow cs$ before, plug

in coords of P to find C=-1,

(c) Find P&P P: first find P*P

Know targent line at P is the line PR.

So P*P = R = (0,-1)

Hence POP = (0,1)

(d) Verify that

2PDQ = PD (PDQ)

From Put (a) P (P (Q) = (2,-3)

Let's compit 2P DQ

 $= (P \oplus P) \oplus Q$

From (1) we has POP= (0,1)

1<now Q = (-1,0)

So (PDP)Q is the line y=x+1.

Substitute into y2= xxxxx1,

get (x+1)2 = x3+1

 $(=) \quad \chi^3 - 2\chi^2 - 2\chi = 0$

(x-2)(x+1)=0

So the point (POP) *Q

his x- coordinate x = 2

5
It also lies on the line y=x+1
$P \oplus P \Rightarrow Q = (7,3)$
:. $(P \oplus P) \oplus (Q = (Z, -3))$
$= P\Theta(P\ThetaQ)$
(e) aP (D bQ (a,b & 7/2)?
 (e) CAP (+) DQ (4,5 t 1/2).
First of all: Q = (-1,0)
Q = (-1,0)
$U = \mathbb{Q} \oplus (\mathbb{O} * \mathbb{Q}) = \mathbb{Q} \oplus \mathbb{Q}$
 O*Q is additive = ZQ
[CQ is called a "2-topsian" point].
 So -Q = Q and in general for any
·
KETK, KQ = KQ K=k mod 2
We do found that
 ZP(t)Q = (2, -3) = -P
 so 3P cm (0 = 19