HW1 Solutions

1) a)
$$(100111, 10111)_2 = 2^5 + 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-3} + 2^{-4} + 2^{-5} = (39,71875)_{10}$$
 $(100111, 10111)_2 = 2^5 + 2^2 + 2^1 + 2^0 + 2^{-1} + 2^{-4} + 2^{-5} = (39,71875)_{10}$
 $(100111, 10111)_2 = (47, 56)_8$
 $(100111, 10111)_2 = (47, 56)_8$
 $(100111, 10111)_2 = (27,88)_{16}$

(100111, 10111)_2 = (27,88)_{16}

(100111, 10111)_2 = (34,6)_16 = 7.8 + 2.8 + 6.8 = (58,75)_{10}

(100111, 10111)_2 = (34,6)_16 = 7.8 + 2.8 + 6.8 = (58,75)_{10}

c) (C3, A05) $_{16} = (1000011, 101011010101)_{2} = (303, 5325)_{8} = 12.14 + 3.16 + 10.16 + 1816 + 5.16^{3})_{10} = (195, 677001953125)_{10}$

2) a) $\overline{x_{1}x_{2}+x_{2}x_{3}+x_{3}x_{4}} = (\overline{x}_{1}+\overline{x}_{2})(\overline{x}_{2}+\overline{x}_{3})(\overline{x}_{3}+\overline{x}_{4})$ $= \overline{x_{1}}\overline{x_{2}}\overline{x_{3}} + \overline{x_{1}}\overline{x_{2}}\overline{x_{4}} + \overline{x_{1}}\overline{x_{3}}\overline{x_{3}} + \overline{x_{1}}\overline{x_{3}}\overline{x_{4}} + \overline{x_{2}}\overline{x_{2}}\overline{x_{5}} + \overline{x_{2}}\overline{x_{2}}\overline{x_{4}} + \overline{x_{2}}\overline{x_{3}}\overline{x_{4}}$ $= \overline{x_{1}}\overline{x_{2}}\overline{x_{3}} + \overline{x_{2}}\overline{x_{2}}x_{4} + \overline{x_{1}}\overline{x_{3}} + \overline{x_{2}}\overline{x_{3}}x_{4} + \overline{x_{2}}\overline{x_{3}} + \overline{x_{2}}\overline{x_{4}} + \overline{x_{2}}\overline{x_{3}}x_{4} + \overline{x_{2}}\overline{x_{3}} + \overline{x_{2}}\overline{x_{4}} + \overline{x_{2}}\overline{x_{3}} + \overline{x_{2}}\overline{x_{4}} + \overline{x_{2}}\overline{x_{3}}x_{4} + \overline{x_{2}}\overline{x_{3}} + \overline{x_{2}}\overline{x_{4}} + \overline{x_{2}}\overline{x_{3}}x_{4} + \overline{x_{2}}\overline{x_{$

 $C) \overline{x_{1}} \overline{x_{2}} + \overline{x_{1}} \overline{x_{3}} + \overline{x_{1}} \overline{x_{4}} + \overline{x_{2}} \overline{x_{3}} \overline{x_{6}} = (\overline{x_{1}} + x_{2} + \overline{x_{3}}) (\overline{x_{1}} + x_{6}). (\overline{x_{2}} + \overline{x_{3}} + x_{1} \overline{x_{4}} + x_{2} + x_{2} \overline{x_{4}} \overline{x_{5}} + x_{1} \overline{x_{4}} + x_{2} \overline{x_{4}} \overline{x_{5}} + x_{2} \overline{x_{4}} \overline{x_{5}} + x_{2} \overline{x_{1}} \overline{x_{5}} + x_{2} \overline{x_{1}} \overline{x_{5}} + x_{2} \overline{x_{4}} \overline{x_{5}} + x_{2} \overline{x_{4}} \overline{x_{5}} + x_{3} \overline{x_{4}} + x_$

$$2-d) \overline{x_{1}x_{2}\overline{x_{3}}+x_{1}\overline{x_{2}}x_{3}+\overline{x_{1}}x_{2}x_{3}+\overline{x_{1}}\overline{x_{2}}\overline{x_{3}}} = \overline{x_{1}}(\underline{x_{2}}\overline{x_{3}}+\overline{x_{2}}\underline{x_{3}})+\overline{x_{1}}(\underline{x_{2}}\underline{x_{3}}+\overline{x_{2}}\overline{x_{3}})$$

$$= \overline{x_{1}\cdot a+\overline{x_{1}\cdot a}} = (\overline{x_{1}+a})(x_{1}+a) = \overline{x}+\overline{x_{1}}+\overline{x_{1}}a+ax_{1}+\overline{a}a$$

$$= \overline{x_{1}}(x_{2}\overline{x_{3}}+\overline{x_{2}}x_{3})+\overline{x_{1}}(x_{2}x_{3}+\overline{x_{2}}\overline{x_{3}})$$

$$= \overline{x_{1}}(x_{2}\overline{x_{3}}+\overline{x_{1}}\overline{x_{2}}x_{3})+\overline{x_{1}}(x_{2}x_{3}+\overline{x_{2}}\overline{x_{3}})$$

$$= \overline{x_{1}}(x_{2}\overline{x_{3}}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3})$$

$$= \overline{x_{1}}(x_{2}\overline{x_{3}}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_{1}}\overline{x_{2}}x_{3}+\overline{x_$$

-)	X, X2	X3 X4	01+	ossigned orbitrarily (2)
	0 0	0 0	03/	305550
	0 0	0 1	1 4	
	00	1 0	14/	
	00	1 1	04/	Each arrow corresponds to a
	0 1	00	13	transition in just one of the inputs.
	01	0 1	104)	
	01	10	00	
	0 1	1 1	14/	
	, 0	0 0	12	
	(0	01	04)	
	10	(0)	03/	
	10	11	14/	
	1 1	00	08	
	1.1	0 1	14)	
	1 1	10	18	
	11	11	OK	

(4-) SOP FORM:

$$Cout = \overline{A}BCin + \overline{A}BCin + \overline{A}BCin + \overline{A}BCin$$

$$Cout = Cin (\overline{A}B + \overline{A}B) + \overline{A}B (\overline{Cin} + \overline{Cin})$$

$$Cout = Cin (\overline{A}B + \overline{A}B) + \overline{A}B$$

$$Cout = Cin (\overline{A}B + \overline{A}B) + \overline{A}B$$

$$S = \overline{AB} \operatorname{Cin} + \overline{AB} \operatorname{Cin} + \overline{AB} \operatorname{Cin} + \overline{AB} \operatorname{Cin}$$

$$S = \operatorname{Cin} \cdot (\overline{AB} + \overline{AB}) + \overline{\operatorname{Cin}} (\overline{AB} + \overline{AB})$$

$$Let's \quad Sey; \quad \overline{AB} + \overline{AB} = D = A \oplus B$$

$$\overline{AB} + \overline{AB} = \overline{D}$$

$$S = Cin \overline{D} + \overline{Cin} D = Cin \oplus D$$

$$S = Cin \oplus (A \oplus R)$$

$$\frac{Pos}{Cout} = \frac{(A+B+Cin) \cdot (A+B+Cin) \cdot (A+B+Cin) \cdot (A+B+Cin)}{(A+B+Cin) \cdot (A+B+Cin)} \cdot \frac{(A+B+Cin) \cdot (A+B+Cin)}{(A+B) \cdot (A+B)} \cdot \frac{(A+B+Cin) \cdot (A+B+Cin)}{(A+B) \cdot (A+B)}$$

$$Cout = \frac{(A+B) \cdot (Cin+A+B)}{(Cin+A+B)} \cdot \frac{(Cin+A+B)}{(Cin+A+B)}$$

$$S = (A + B + C_{IN}) \cdot (A + \overline{B} + \overline{C_{IN}}) \cdot (\overline{A} + B + \overline{C_{IN}}) + (\overline{A} + \overline{B} + C_{IN})$$

$$S = [C_{IN} + (A + B) \cdot (\overline{A} + B)] \cdot [\overline{C_{IN}} + (A + \overline{B}) \cdot (\overline{A} + B)]$$

$$A \oplus B$$

$$A \oplus B$$

$$A \oplus B$$

$$S = (C_{IN} + A \oplus B) \cdot (\overline{C_{IN}} + \overline{A} \oplus B)$$

$$S = (C_{IN} + A \oplus B) \cdot (\overline{C_{IN}} + \overline{A} \oplus B)$$