

CONCEITOS BÁSICOS – A ESCALA LOGARÍTMICA

O que é o dB?

O dB é uma escala usada para representar a relação entre duas potências.

$$dB = 10\log \frac{P_{medida}}{P_{referência}}$$

A unidade de referência pode ser W, mW, μV, ou até o ganho de uma antena... Daí as derivações, como o dBW, dBm, dBi...

$$dBm = 10\log \frac{P_{medida}(mW)}{1mW} \qquad 10^{\frac{P(dBm)}{10}} = P(mW)$$

LINHAS DE TRANSMISSÃO

- É uma linha com dois ou mais condutores isolados por um dielétrico que tem por finalidade fazer com que uma OEM se propague de modo guiado.
- Esta propagação deve ocorrer com a menor perda possível.

As linhas de transmissão podem ser construídas de diversas maneiras, cabos pararelos, pares trançados, microstrip, cabos coaxiais, guias de onda, etc.

Perdas nos cabos coaxiais.

 A princípio uma linha de transmissão tem a função de transportar a energia eletromagnética com o mínimo de perdas. Porém, devido às características inerentes de cada linha (no caso cabos coaxiais por exemplo) o sinal atenua ao longo do caminho que percorre dentro da L.T.

A atenuação é proporcional ao comprimento do cabo, a suas características construtivas e à freqüência.

Impedância característica de uma L.T. (Cabo Coaxial)

 A impedância característica de uma L.T.: relação entre a tensão e a corrente entre seus terminais. Depende, em geral, somente das dimensões dos condutores e da constante dielétrica do isolante.

$$V_p = \frac{C}{\sqrt{\varepsilon o}}$$

$$Zo = \frac{138,2}{\sqrt{\varepsilon_0}} \cdot \log \frac{b}{a}$$

Zo - Impedância característica

a - Diâmetro externo do condutor interno

b - Diâmetro interno da malha externa

 ε_0 – constante dielétrica do isolante

V_D- Velocidade de propagação

Perdas em 2.5 GHz de alguns Cabos Coaxiais.

MODELO	FABRICANTE	ATENUAÇÃO APROX (dB/100 m)
RGC-213	kmP	45
RG-58	KmP	78,7@3GHz
Cellflex 1/2"	KmP	11,8
Cellflex 7/8"	KmP	6,9
LMR-195	Times Microwave	57
LMR-400	Times Microwave	20,4
LMR-600	Times Microwave	13,3

Coeficiente de reflexão (г)

 <u>Coeficiente de reflexão</u>: indica a proporção da potência incidente que é refletida devido a descasamentos de impedância. Pode ser definida como:

= Coeficiente de reflexão

E, = Tensão refletida

E_i= Tensão incidente

I = Corrente refletida

I_i= Corrente incidente

P, = Potência refletida

P_i= Potência incidente

$$\Gamma = \frac{E_r}{E_i} = \frac{I_r}{I_i}$$
 $|\Gamma| = \sqrt{\frac{P_r}{P_i}}$ onde: $(1 \le \Gamma \le 0)$

Perda de Retorno Return Loss

 <u>I</u>ndica também a proporção entre a potência incidente e a refletida, porém na escala logarítmica. Pode ser definida como:

 $RL(dB) = 20.\log|\rho|$

Coeficiente de Onda Estacionária

- Coeficiente de onda estacionária: relação entre a amplitude máxima e mínima da tensão ou corrente em uma linha de transmissão, resultante da interação das ondas incidente e refletida.
- Também conhecido por VSWR, SWR, COE.

$$VSWR = \frac{E_{\textit{m\'ax}}}{E_{\textit{m\'in}}} = \frac{I_{\textit{m\'ax}}}{I_{\textit{m\'in}}}$$

$$VSWR = \frac{1+|\Gamma|}{1-|\Gamma|} - \frac{1+\sqrt{\frac{P_r}{P_i}}}{1-\sqrt{\frac{P_r}{P_i}}}$$

ρ = Coeficiente de reflexão

E, = Tensão refletida

E_i= Tensão incidente

I, = Corrente refletida

I_i= Corrente incidente

P_r = Potência refletida

P_i= Potência incidente

5 - Antenas

 A abertura física de uma LT paralela que transporta uma OEM, proporciona uma variação senoidal de potencial (Volts) e de corrente (Amperes) nos condutores, provocando o aparecimento de linhas de campo magnético e elétrico variáveis em torno do dipolo formado, dando origem a uma onda eletromagnética que se propaga.

