Coincidências $\gamma \gamma - PET$

Laboratório de Física Experimental Avançada II

Licenciatura em Engenharia Física Tecnológica

Alexandre Santana (100122), Guilherme Coimbra (102522), Maria Fernandes (103020), Samuel Tavares (103634)

Instituto Superior Técnico

Outubro de 2023

1/16

□ > <
 □ >
 □ >
 □ >
 □ >
 □ >

Table of Contents

- Introdução Teórica
- Montagem Experimental
- Janela Mínima de Aquisição
- Coincidências Fortuitas
- Variação das fontes em yy
- 6 Estudo das Eficiências
- **7** Correlação angular para $\theta = 0^{\circ}$
- Variação da fonte em xx
- ① Variação de ϕ com R constante
- Área de Deteção
- Sinograma e Reconstrução Tomográfica
- Tomografia 3D
- Variação da fonte em zz
- Conclusões

Introdução Teórica

Espetro do $^{22}\mathrm{Na}$

Decaimento do $^{22}\mathrm{Na}$

$$^{22}_{11} \text{Na} \rightarrow ^{22}_{10} \text{Ne} + \beta^+ + \nu_e$$
 (1)

$$\beta^+ + e^- \to \gamma \gamma \tag{2}$$

- $E_{\gamma} = 511 \text{ keV}$.
- ullet Coincidência deteção de dois γ do mesmo processo de aniquilação.
- Fortuita γ_s de processos diferentes.

3/16

Montagem Experimental

- \bullet 2 fontes ²²Na: 10 e 5 μ Ci
- Osciloscópio digital multicanal
- MCA e Pulser para auxílio na calibração
- Settings da 1ª sessão nas restantes ⇒ Medição de controlo no início de cada sessão

Erros e propagação:

$$\sigma_{cnts} = \sqrt{cnts} \qquad \sigma_{f(x_1, x_2, \dots, x_i)}^2 = \left(\frac{\partial f}{\partial x_1}\right)^2 \sigma_{x_1}^2 + \dots + \left(\frac{\partial f}{\partial x_i}\right)^2 \sigma_{x_i}^2 \tag{3}$$

4/16

06/2023

Janela Mínima de Aquisição

Comportamento semelhante a sigmoide

$$\mathsf{R}_{c}(au) = rac{\mathsf{a}}{1 + \mathsf{e}^{(b(au - c))}} + \mathsf{d}$$

- Variação de 1% a 99%: $\Delta \tau \approx 22.98$ ns
- Definimos $\tau_{\text{aquisic}\tilde{\text{ao}}} = 50 \text{ ns}$

Coincidências em função da janela de aquisição

$a [s^{-1}]$	Ь	c [ns]	$d\left[s^{-1}\right]$	χ^2/\textit{Ndf}
99.56 ± 2.88	-0.40 ± 0.06	131.71 ± 0.42	0.79 ± 2.28	1.15/9

Coincidências Fortuitas

•
$$\theta = 90^{\circ}$$

•
$$R_f$$
 teo = $2R_AR_B\tau \Rightarrow R_f = m_{teo}\tau + b_{teo}$

•
$$R_f \exp = R_c \Rightarrow R_f = m_{exp}\tau + b_{exp}$$

- Jitter da janela $\Rightarrow b_{exp} \neq 0$
- $R_f \exp (\tau = 50 \text{ ns}) = 0.17 \pm 0.04 \text{ [s}^{-1}\text{]}$

$m_{teo} \cdot 10^{-4} [s^{-2}]$	$b_{teo} \cdot 10^{-4} [s^{-1}]$	R^2	$m_{exp} \cdot 10^{-4} [s^{-2}]$	$b_{\rm exp} \cdot 10^{-4} [{ m s}^{-1}]$	R^2
2.08 ± 0.04	15.43 ± 27.57	0.99	2.61 ± 30	1557.61 ± 447.02	0.93

$$R_c^{corrigido} = R_c - 0.17 \quad [s^{-1}] \quad \sigma_{R_{corrigido}} = \sqrt{\sigma_{R_c}^2 + 0.04^2} \quad [s^{-1}]$$

6/16

Variação das fontes em yy

 R_A e R_B em função da posição das fontes em yy

 R_c em função da posição das fontes em yy

•
$$R \propto \Omega \Rightarrow R_A = \frac{A}{(d_A - y)^2} \ [s^{-1}], R_B = \frac{B}{(d_B + y)^2} \ [s^{-1}] \ e \ R_c = \frac{C}{(d_c - |y|)^2} \ [s^{-1}]$$

$A (\times 10^4) [1/s]$	d _A [cm]	χ^2/Ndf	B (×10 ⁴) [1/s]	d _B [cm]	χ^2/Ndf	$C (\times 10^4) [1/s]$	d _c [cm]	χ^2/Ndf
9.53 ± 0.31	17.04 ± 0.26	12.76/4	9.76 ± 0.19	17.61 ± 0.16	4.03/4	6.62 ± 1.18	24.65 ± 2.42	5.97/4

- y = 0.18 cm ponto médio entre os detetores
- d_A e d_B : distâncias médias de (0,0) ao ponto onde são detetadas as partículas em cada detetor
- Assumimos $\sigma_y = \pm 0.18$ cm

マロトマ部トマミトマミト ヨーの

Estudo das Eficiências

1 Eficiência geométrica, ϵ_g

 Fonte pontual e isotrópica; Interseção da superfície esférica de raio d (distância das fontes aos detetores) com o detetor como sendo plana

$$\epsilon_{\rm g} \approx \frac{\pi r_{\rm detetor}^2}{4\pi d^2} \qquad \qquad \bullet d = (15.80 \pm 0.18) \ {\rm cm} \Rightarrow \epsilon_{\rm g} = (79.92 \pm 2.15) \times 10^{-2} \ \%$$

$$\bullet d_{\rm A} = (17.04 \pm 0.26) \ {\rm cm} \Rightarrow \epsilon_{\rm g_A} = (68.68 \pm 2.28) \times 10^{-2} \ \%$$

$$\bullet d_{\rm B} = (17.61 \pm 0.16) \ {\rm cm} \Rightarrow \epsilon_{\rm g_B} = (64.33 \pm 1.47) \times 10^{-2} \ \%$$

2 Eficiência do fotopico, ϵ_{fp}

$$\epsilon_{fp_j} = \frac{R_c}{R_j}$$
, , j = A ou B $\epsilon_{fp_A} = (30.76 \pm 0.79)$ % $\epsilon_{fp_B} = (31.66 \pm 0.82)$ %

3 Eficiência intrínseca, ϵ_i

$$au_{1/2} = (2.6018 \pm 0.0022)$$
anos, $\Delta t = (7.00 \pm 0.08)$ anos, $A = A_0 \cdot 0.5^{rac{\Delta t}{T_{1/2}}}$

$$R_{j}$$
 recebido = $A_{\mathrm{fontes}} \cdot \epsilon_{\mathrm{g}}$ $\qquad \qquad \bullet \ \epsilon_{\mathrm{g}_{B}} \Rightarrow \epsilon_{i_{B}} = (63.24 \pm 2.02) \ \%$

8/16

Correlação angular para $\theta=0^\circ$

•
$$R_c(\theta) = Ae^{-\frac{1}{2}\frac{(\theta-\theta_0)^2}{\sigma^2}}$$

100 Ajuste gaussiano Pontos experimentais

80 Pontos experimentais

40 Pontos experimentais

60 Pontos experimentais

60 Pontos experimentais

 R_c em função de θ

 R_c em função de θ (dados de outro grupo)

A [1/s]	<i>A</i> ₀ [°]	σ [°]	v^2/Ndf
	00[]	0[]	χ / πιατ
95.00 ± 2.74	-1.19 ± 0.14	5.85 ± 0.10	2 65/24
30.00 ± 2.14	1.10 ± 0.14	0.00 ± 0.10	2.00/24

<ロト <部ト < 注 ト < 注 ト

• Os detetores estão alinhados para $\theta=0.52^\circ$ (no nosso caso) \Rightarrow assumimos $\sigma_{\theta}=\pm0.52^\circ$

9/16

Variação da fonte em xx

• Ajustes
$$R_c(\theta) = A \cdot e^{-\frac{(\theta - \theta_0)^2}{2\sigma^2}}$$

Correlação angular para diferentes posições em xx

	A [1/s]	θ ₀ [°]	σ [°]	χ^2/Ndf
-1.5	107.08 ± 5.06	-25.56 ± 0.23	5.88 ± 0.16	4.96/9
-1.0	104.93 ± 3.52	-17.42 ± 0.15	5.84 ± 0.10	1.96/7
-0.5	106.23 ± 3.94	-9.27 ± 0.18	5.73 ± 0.12	2.13/7
0.5	103.98 ± 5.03	6.63 ± 0.24	5.88 ± 0.16	5.06/7
1.0	105.54 ± 4.23	14.42 ± 0.19	5.77 ± 0.13	2.30/7
1.5	112.56 ± 3.35	22.38 ± 0.14	5.77 ± 0.10	6.04/9

$$\bullet \ \theta_0(x) = mx + b$$

Relação de θ_0 com a posição em xx

•
$$m = 15.93 \pm 0.05$$

 $b = -1.47 \pm 0.05$
 $R^2 \approx 1.00$

• Boa resolução em x:

$$\Delta x_{fontes} \geq \frac{2.35\bar{\sigma}}{m}$$

06/2023

Variação de ϕ com R constante

•
$$R_C(\phi) = H + A_1 e^{\frac{-(\phi + \phi_1)^2}{2\sigma_1^2}} + A_2 e^{\frac{-(\phi + \phi_2)^2}{2\sigma_2^2}}$$

Raio [in]	φ ₁ [°]	$\sigma_1[^{\circ}]$	$\phi_2[^\circ]$	$\sigma_2[^{\circ}]$	χ^2/Ndf
0.5	84.15 ± 1.24	36.93 ± 2.30	278.00 ± 1.10	33.91 ± 1.94	551.80/29
1.0	87.46 ± 0.30	24.91 ± 0.36	273.47 ± 0.29	24.71 ± 0.35	170.61/29
1.5	87.27 ± 0.26	15.97 ± 0.28	271.19 ± 0.26	16.58 ± 0.28	476.68/29

Área de Deteção

- Intervalos dos ângulos de deteção: $[\mu_i$ - $3\sigma_i$, μ_i + $3\sigma_i$]
- Distância mínima entre fontes: $3\sigma = (1.093 \pm 0.005)$ in

Área de deteção das coincidências γ - γ no plano x-y

R [in]	Range 1° pico $[^{\circ}]$	Range 2º pico [°]
0.5	[0, 360]	[0, 360]
1.0	[13, 161]	[199, 348]
1.5	[38, 163]	[222, 320]

Ângulos de deteção

- Largura do detetor dada pela curva:
 - 0 verde: (1.88 \pm 0.06) in
 - 2 azul: (2.11 ± 0.10) in
- O valor da largura não corresponde ao medido $((2.22 \pm 0.01)in)$

12 / 16

Sinograma e Reconstrução Tomográfica

- Coordenadas fonte 10μ Ci: (0;-1)in
- \bullet Coordenadas fonte 5μ Ci: (1.2;0)in
- Distância entre fontes: 1.56 in
- Ângulo de 90º entre as duas fontes
- $\phi \in [0^{\circ},360^{\circ}]$ com passos de 15°
- $\theta \in [-30^{\circ}, 30^{\circ}]$ com passos de 5°
- Com o software disponibilizado, Tomographic Reconstructor, obteve-se:

Sinograma

Reconstrução tomográfica

13 / 16

Tomografia 3D

Output do programa em coordenadas $(\theta_0, \theta_{90}) \Rightarrow$ conversão para (x,y)

$$\mathbf{x} = -d \cdot \frac{\sin(\theta_0)[1 + \cos(\theta_{90}) + \sin(\theta_{90})]}{\sin(\theta_0) \cdot \sin(\theta_{90}) + (1 + \cos(\theta_{90})) \cdot (1 + \cos(\theta_0))}$$

$$y = -d \cdot \frac{\sin(\theta_{90})[1 + \cos(\theta_0) + \sin(\theta_0)]}{\sin(\theta_0) \cdot \sin(\theta_{90}) + (1 + \cos(\theta_{90})) \cdot (1 + \cos(\theta_0))}$$

Reconstrução Tomográfica 3D

$$(0.06 \pm 0.02; -0.97 \pm 0.01)$$
 in $\rightarrow 10 \mu$ Ci $(1.17 \pm 0.02; 0.01 \pm 0.01)$ in $\rightarrow 5 \mu$ Ci $\rightarrow 6$ $\rightarrow 6$ $\rightarrow 6$

Variação da fonte em zz

- Será indiferente a disposição das fontes?
- Ajuste $R_c(z) = Ce^{-\frac{1}{2}\frac{(z-z_0)^2}{\sigma^2}}$

	C [1/s]	z ₀ [mm]	σ [mm]	χ^2/Ndf
$10\mu \text{Ci}$ em cima	100.51 ± 1.62	0.49 ± 0.53	9.14 ± 0.31	4.27/4
$5\mu Ci$ em cima	98.10 ± 1.58	1.15 ± 0.57	9.21 ± 0.36	5.88/4

ullet Verificamos que ter a fonte de $10\mu\mathrm{C}i$ em cima é diferente de a ter em baixo

Ao não ser controlado ⇒ Contribui para os erros experimentais

15 / 16

Conclusões

- Na primeira parte deste trabalho, estudamos a dependência dos resultados em função dos diversos parâmetros do sistema e possíveis limitações.
- Na segunda parte, obtivemos um sinograma que permitiu obter uma reconstrução tomográfica de acordo com o previsto.
- Tivemos influência de diferentes erros sistemáticos relacionados com o equipamento, por exemplo o alinhamento dos detetores.
- Sugestões:
 - Melhores equipamentos, por exemplo, na medição do tamanho de janela de aquisição ou um porta-alvos fixo com um melhor método de medição dos ângulos de rotação.
 - Mais tempo para aquisição de dados permitiria obter melhor sinograma com melhor resolução

16 / 16

