

uai.fme.vutbr.cz

Topic 9: Branched control circuits

Course : Control Theory I (VA1-A 18/19Z)

Teacher: Ing. Roman Parák (Roman.Parak@vutbr.cz), A1/0642

Location: A1/0636

Control transfer function:

$$G_{w}(s) = \frac{Y(s)}{W(s)} = \frac{G_{RH}(s) \frac{G_{S1}(s) G_{RP}(s)}{1 + G_{S1}(s) G_{RP}(s)} G_{S2}(s)}{1 + G_{RH}(s) \frac{G_{S1}(s) G_{RP}(s)}{1 + G_{S1}(s) G_{RP}(s)} G_{S2}(s)} =$$

$$= \frac{G_{RH}(s)G_{RP}(s)G_{S}(s)}{1 + G_{S1}(s)G_{RP}(s) + G_{RH}(s)G_{RP}(s)G_{S}(s)}$$

Characteristic equation:

$$1 + G_{S1}(s)G_{RP}(s) + G_{RH}(s)G_{S1}(s)G_{S2}(s) = 0$$

W(s): desired setpoint/ command variable

Y(s): controlled variable

E(s): error value

U(s): manipulated variable V(s): disturbance variable

Disturbance transfer function:

$$G_v(s) = \frac{Y(s)}{W(s)} = \frac{\left[1 - \frac{G_{S1}(s)G_{RP}(s)}{1 + G_{S1}(s)G_{RP}(s)}\right]G_{S1}(s)G_{S2}(s)}{1 + G_{S2}(s)G_{RH}(s)\frac{G_{S1}(s)G_{RP}(s)}{1 + G_{S1}(s)G_{RP}(s)}} =$$

$$= \frac{G_{S1}(s)G_{S2}(s)}{1 + G_{S1}(s)G_{RP}(s) + G_{RH}(s)G_{S1}(s)G_{S2}(s)}$$

Dynamics inversion design

System		Controller: A	Analog (T=0	, Digital (T>0)				
	Туре	r_0		T_i	T_D			
		$T_d = 0$	$T_d > 0$					
$\frac{k_1}{s}$. e^{-T_d}	Р	$\frac{2}{k_1(2.T_w)}$	$\frac{a}{k_1}$	-	-			
$\frac{k_1}{(T_1s+1)} \cdot e^{-T_d}$	PI(PS)	$\frac{2.T_i}{k_1(2.T_w)}$	$\frac{a.T_i}{k_1}$	T_1	-			
$\frac{k_1}{s(T_1s+1)} \cdot e^{-T_d}$	PD	$\frac{2}{k_1(2.T_w)}$	$\frac{a}{k_1}$	-	T_1			
$\frac{k_1}{(T_1s+1)(T_2s+1)} \cdot e^{-T_d}$ $T_1 \ge T_2$	PID(PSD)	$\frac{2.T_i}{k_1(2.T_w)}$	$\frac{a.T_i}{k_1}$	$T_1 + T_2$	$\frac{T_1.T_2}{T_1+T_2}$			

k	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40
β	2.718	1.944	1.720	1.561	1.437	1.337	1.248	1.172	1.104

$$a = \frac{1}{\beta T_d}$$

1. Simple control circuit:

System transfer function:

$$G_S(s) = \frac{4}{(2s+1)(0.5s+1)}e^{-4s}$$

$$k_1 = 4, T_1 = 2, T_2 = 0.5, T_D = 4$$

Calculation (PID -> G_{RH}):

$$T_i = T_1 + T_2 = 2.5$$

$$T_d = \frac{T_1 \cdot T_2}{T_1 + T_2} = 0.4$$

$$a = \frac{1}{\beta T_D} = \frac{1}{2.718 \cdot 4} = 0.0919$$

$$r_0 = \frac{aT_i}{k_i} = \frac{0.0919 \cdot 2.5}{4} = 0.0574$$

2. Control circuit with auxiliary controlled variable:

System transfer function:

$$G_{S1}(s) = \frac{4}{(0.5s+1)}$$
 $k_1 = 4, T_i = T_1 = 0.5$

$$G_{S2}(s) = \frac{1}{(2s+1)}e^{-4s}$$

Calculation (PI -> G_{RP} , PID -> G_{RH}):

$$r_0 = \frac{2T_i}{2kT_{w}} = \frac{2 \cdot 0.5}{2 \cdot 4 \cdot 0.5} = 0.25$$

$$G_R(s) = r_0 \left(1 + \frac{1}{T_i s} \right) = 0.25 \left(1 + \frac{1}{0.5s} \right) = \frac{(0.125s + 0.25)}{0.5s}$$

$$G_{S1}^{*}(s) = \frac{G_{RP}(s)G_{S1}(s)}{1 + G_{RP}(s)G_{S1}(s)} = \frac{\frac{(0.125s + 0.25)}{0.5s} \frac{4}{(0.5s + 1)}}{1 + \frac{(0.125s + 0.25)}{0.5s} \frac{4}{(0.5s + 1)}} =$$

$$= \frac{0.5s + 1}{0.25(s^2 + 4s + 4)} = \frac{1}{0.5s + 1}$$

$$G_S^*(s) = \frac{1}{(0.5s+1)(2s+1)}e^{-4s}$$
 $k_1 = 1, T_1 = 2, T_2 = 0.5, T_D = 4$

Control transfer function:

$$G_{W}(s) = \frac{Y(s)}{W(s)} = \frac{\left(G_{RH}(s)G_{S1}(s) + G_{RP}(s)\right)G_{S2}(s)}{1 + \left(G_{RH}(s)G_{S1}(s) + G_{RP}(s)\right)G_{S2}(s)} =$$

$$= \frac{G_{RH}(s)G_{S}(s) + G_{RP}(s)G_{S2}(s)}{1 + G_{RH}(s)G_{S}(s) + G_{RP}(s)G_{S2}(s)}$$

W(s): desired setpoint/ command variable

Y(s): controlled variable

E(s): error value

U(s): manipulated variable V(s): disturbance variable

Disturbance transfer function:

$$G_{v}(s) = \frac{Y(s)}{V(s)} = \frac{G_{S2}(s)}{1 + G_{S2}(s)(G_{RH}(s)G_{S1}(s) + G_{RP}(s))} =$$

$$= \frac{G_{S2}(s)}{1 + G_{RH}(s)G_{S}(s) + G_{RP}(s)G_{S2}(s)}$$

Characteristic equation:

$$1 + G_{RH}(s)G_S(s) + G_{RP}(s)G_{S2}(s) = 0$$

Dynamics inversion design

System		Controller: A	Analog (T=0	, Digital (T>0)				
	Туре	r_0		T_i	T_D			
		$T_d = 0$	$T_d > 0$					
$\frac{k_1}{s}$. e^{-T_d}	Р	$\frac{2}{k_1(2.T_w)}$	$\frac{a}{k_1}$	-	-			
$\frac{k_1}{(T_1s+1)} \cdot e^{-T_d}$	PI(PS)	$\frac{2.T_i}{k_1(2.T_w)}$	$\frac{a.T_i}{k_1}$	T_1	-			
$\frac{k_1}{s(T_1s+1)} \cdot e^{-T_d}$	PD	$\frac{2}{k_1(2.T_w)}$	$\frac{a}{k_1}$	-	T_1			
$\frac{k_1}{(T_1s+1)(T_2s+1)} \cdot e^{-T_d}$ $T_1 \ge T_2$	PID(PSD)	$\frac{2.T_i}{k_1(2.T_w)}$	$\frac{a.T_i}{k_1}$	$T_1 + T_2$	$\frac{T_1.T_2}{T_1+T_2}$			

k	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40
β	2.718	1.944	1.720	1.561	1.437	1.337	1.248	1.172	1.104

$$a = \frac{1}{\beta T_d}$$

1. Simple control circuit:

System transfer function:

$$G_S(s) = \frac{4}{(4s+1)(0.5s+1)}e^{-2s}$$

$$k_1 = 4, T_1 = 4, T_2 = 0.5, T_D = 2.$$

Calculation (PID -> G_{RH}):

$$T_i = T_1 + T_2 =$$

$$T_d = \frac{T_1 \cdot T_2}{T_1 + T_2} =$$

$$a = \frac{1}{\beta T_D} =$$

$$r_0 = \frac{aT_i}{k_1} =$$

2. Control circuit with auxiliary controlled variable:

System transfer function:

$$G_{S1}(s) = \frac{2}{(4s+1)}e^{-2s}$$

$$G_{S2}(s) = \frac{2}{(0.5s+1)}$$
 $k_1 = 2$, $T_i = T_1 = 0.5$

Calculation (PI $\rightarrow G_{RP}$):

$$T_i = T_1$$

$$a = \frac{1}{\beta T_D} = \frac{1}{\beta T_D}$$

$$r_0 = \frac{aT_i}{k_1} =$$

Circuit with auxiliary measurement of disturbance variable

W(s): desired setpoint/ command variable

Y(s): controlled variable

E(s): error value

U(s): manipulated variable V(s): disturbance variable

Control transfer function:

$$G_w(s) = \frac{Y(s)}{W(s)} = \frac{G_{RH}(s)G_S(s)}{1 + G_{RH}(s)G_S(s)}$$

Disturbance transfer function:

$$G_{v}(s) = \frac{Y(s)}{V(s)} = \frac{[1 - G_{RP}(s)G_{S1}(s)]G_{S2}(s)}{1 + G_{RH}(s)G_{S1}(s)G_{S2}(s)} = \frac{G_{S2}(s) - G_{RP}(s)G_{S}(s)}{1 + G_{RH}(s)G_{S}(s)}$$

Compensator transfer function (ideally setting of the compensator to achieve full invariance to the disturbance variable):

$$G_{\nu}(s) = 0,$$
 $G_{S2}(s) - G_{RP}(s)G_{S}(s) = 0$
$$G_{RP}(s) = \frac{G_{S2}(s)}{G_{S}(s)} = \frac{G_{S2}(s)}{G_{S1}(s)G_{S2}(s)} = \frac{1}{G_{S1}(s)}$$

Dynamics inversion design

System		Controller: A	Analog (T=0	, Digital (T>0)				
	Туре	r_0		T_i	T_D			
		$T_d = 0$	$T_d > 0$					
$\frac{k_1}{s}$. e^{-T_d}	Р	$\frac{2}{k_1(2.T_w)}$	$\frac{a}{k_1}$	-	-			
$\frac{k_1}{(T_1s+1)} \cdot e^{-T_d}$	PI(PS)	$\frac{2.T_i}{k_1(2.T_w)}$	$\frac{a.T_i}{k_1}$	T_1	-			
$\frac{k_1}{s(T_1s+1)} \cdot e^{-T_d}$	PD	$\frac{2}{k_1(2.T_w)}$	$\frac{a}{k_1}$	-	T_1			
$\frac{k_1}{(T_1s+1)(T_2s+1)} \cdot e^{-T_d}$ $T_1 \ge T_2$	PID(PSD)	$\frac{2.T_i}{k_1(2.T_w)}$	$\frac{a.T_i}{k_1}$	$T_1 + T_2$	$\frac{T_1.T_2}{T_1+T_2}$			

k	0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40
β	2.718	1.944	1.720	1.561	1.437	1.337	1.248	1.172	1.104

$$a = \frac{1}{\beta T_d}$$

1. Simple control circuit:

System transfer function:

$$G_S(s) = \frac{4}{(8s+1)(0.2s+1)}e^{-6s}$$

$$k_1 = 4, T_1 = 8, T_2 = 0.2, T_D = 6$$

Calculation (PID -> G_{RH}):

$$T_i = T_1 + T_2 =$$

$$T_d = \frac{T_1 \cdot T_2}{T_1 + T_2} =$$

$$a = \frac{1}{\beta T_D} =$$

$$r_0 = \frac{aT_i}{k_1} =$$

2. Control circuit with auxiliary controlled variable:

System transfer function:

$$G_{S1}(s) = \frac{2}{(0.2s+1)}$$

$$G_{S2}(s) = \frac{2}{(8s+1)}e^{-6s}$$

Calculation (G_{RP}):

$$G_{\nu}(s)=0,$$

$$G_{S2}(s) - G_{RP}(s)G_{S}(s) = 0$$

$$G_{RP}(s) = \frac{G_{S2}(s)}{G_S(s)} = \frac{G_{S2}(s)}{G_{S1}(s)G_{S2}(s)} = \frac{1}{G_{S1}(s)}$$

uai.fme.vutbr.cz