Cancer Prediction

Dataset

- Using the <u>Wisconsin Breast Cancer dataset</u>
 - Data retrieved from <u>Kaggle</u>
- Data computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.
 - Each row represents one image
 - Each column is one feature of a cell nuclei

Features

- a. radius (mean of distances from center to points on the perimeter)
- b. texture (standard deviation of gray-scale values)
- c. perimeter
- d. area
- e. smoothness (local variation in radius lengths)
- f. compactness (perimeter^2 / area 1.0)
- g. concavity (severity of concave portions of the contour)
- h. concave points (number of concave portions of the contour)
- i. symmetry
- j. fractal dimension ("coastline approximation" 1)

For each feature, there are three statistics:

- mean
- se (standard error)
- worst (largest)

The remaining columns are the id and the diagnosis

• Diagnosis is either '1' (malignant) or '0' (benign)

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean
0	842302	1	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710
1	842517	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790
3	84348301	1	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520
4	84358402	1	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430

Separating Features and Labels

- Need to separate data into features and labels
- Model will use features to predict labels
- Features (listed previously):
 - o [radius, texture, perimeter, area, smoothness, compactness, concavity, concave points, symmetry, fractal dimension]
 - Also includes their three different versions (mean, standard error, largest)
- Label: Diagnosis
 - Diagnosis is either '1' (malignant) or '0' (benign)
- Store features and labels into separate dataframes (X and y respectively)

Label Features

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	compactness_mean	concavity_mean	concave points_mean
0	842302	1	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710
1	842517	1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017
2	84300903	1	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790
3	84348301	1	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520
4	84358402	1	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430

Splitting into Training and Testing Sets

- Because we lack a test dataset, have to split current dataframe into a training and test dataset
 - Training dataframe is 75% of original dataframe
 - Test dataframe is 25% of original dataframe
- Splits current 2 dataframes (X, y) into 4:
 - Training
 - X_train (training features)
 - Y_train (training labels)
 - Test
 - X_test (test features)
 - y_test (test labels)

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
#Where:
#X_train are the training features
#X_test are the test features
#y_train are the training labels
#y_test are the test labels

Use test dataframe accuracy to evaluate model

Min-Max Scaling

- For some algorithms, it's important that features all on same scale
 - Otherwise some features will be treated as less important by model
- Use min-max scaling to convert features to same scale
 - Makes all feature data on scale of 0-1 relative to their respective min and max values
 - There are other options to make similar scales

```
#Applying min-max scaling
scaler = MinMaxScaler()#Initializing scaler
scaler.fit(X_train)#Fitting scaler
scaler.transform(X_train)#Applying scale to training features
scaler.transform(X_test)#Applying scale to test features
```

Picking a Model

Regression vs Classification

- Regression models predict numerical, continuous values
- Classification models predict categorical values

Picking models

- Our labels are categorical → classification problem
 - Specifically binary classification
- There's many classification models → choose the one that gets highest test dataset accuracy
- We'll try 2 different classifier models:
 - k-nearest neighbor
 - logistic regression

K-Nearest Neighbors

- Looks for 'k' amount of closest data points (in the image, 3) to the datapoint it's trying to predict
 - o We'll be using 1 for our model
- Assigns most common class of the neighbor data points to the unknown datapoint
- Accuracy: 0.94

In this example, the unknown point would be classified as the blue class since that's the most common class of the 3 neighbors

Logistic Regression

- Produces an s-curve with max 0 and min 1
- Assigns coefficients (weights) to each feature (radius, etc.)
- Adds resulting numbers plus a bias (b-hat)
- Inputs resulting number (y-hat) into logistic regression equation
- If resulting number f(x) is above 0.5, assigned class of 1 (malignant)
- If below 0.5, assigned class of 0 (benign)
- Accuracy: 0.96

Combine features and weights (w=weight, x=feature value)

Conclusion

- Since the logistic regression model had a higher accuracy, it is better
 - Albeit only slightly better; could be due to luck. Essentially splitting hairs

General process of making a model

- Find dataset
- Split dataset into labels and features
- 3. Split further into training and test datasets
- Pick a model
- 5. Train model
- 6. Evaluate via test dataset