

Chung kết Cuộc thi OLYMPIC TRÍ TUỆ NHẬN TẠO - OAI HCMC 2025

(Olympiad in Artificial Intellgence at Ho Chi Minh City 2025)

TP. Hồ Chí Minh, ngày 25 tháng 04 năm 2025

MUSHROOM CLASSIFICATION

Presenter: EEIoT_newbie

EEIoT newbie

VĂN THỊNH

DUY TÂN

ANH QUÂN

MINH HUY

Outline

- **♦** 1. Introduction
- **2. Problem Statement**
- **♦** 3. Method
- **4. Experimental Results**

1. Introduction

1. Introduction

Topic: Classification of dried mushroom images.

Objective: Build a machine learning model to classify images into three categories:

- **Shiitake Mushroom** (label 0)
- Wood Ear Mushroom (label 1)
- Snow Fungus (label 2)

Dataset:

- Color images, **32x32 pixels** resolution.
- **Training set**: 1050 images.
- **Testing set**: 450 images.

2. Problem Statement

2. Problem Statement

Input:

• Training:

- 500 RGB color images, size **32x32 pixels**, equally distributed among: Snow Fungus (167), Wood Ear Mushroom (166), Shiitake Mushroom (167).
- All images have uniform dimensions, 1:1 aspect ratio, file size between **0.80 1.04 KB**.

• Inference:

- 450 unlabeled test images with the same resolution and RGB format.
- Statistical differences in **brightness** and **contrast** across classes:
 - Shiitake: brightest (114.09), lowest contrast (41.13)
 - Snow Fungus: moderate brightness (102.14), medium contrast (52.84)
 - Wood Ear: darkest (101.63), highest contrast (59.09)

Output: Predict the correct label (class) for each test image:

- **0**: Shiitake Mushroom
- 1: Wood Ear Mushroom
- **2**: Snow Fungus

Calculating Mean and Standard Deviation for Data Normalization

Why Normalize?

Helps deep learning models train faster and more stably.

Ensures all input features (pixels) are on a similar scale.

Typically transforms image pixel values so each channel (RGB) has mean = 0 and standard deviation = 1.

Prevents issues like exploding or vanishing gradients.

Calculating Mean and Standard Deviation for Data Normalization

Theoretical Formulas:

• Mean (μ) per channel:

$$\mu = \frac{1}{N} \sum_{i=1}^{N} x_i$$

• Standard Deviation (5) per channel:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$

Where x_i is a pixel value, and N is the total number of pixels across all images per channel.

- RandomHorizonntalFlip
- RandomVerticalFlip
- ResizeCrop

ColorJitter

RandomErasing (Cutout)

Elastic Transform

Overview

Deep Mutual Learning

Deep Mutual Learning

4. The total loss for model Θ_i with K networks:

$$L_{\Theta_i} = L_{C_i} + \frac{1}{K - 1} \sum_{k=1, k \neq i}^{K} D_{KL}(p_k \parallel p_i)$$

$$L_{C_i} = -\sum_{i=1}^{N} \sum_{m=1}^{M} I(y_i, m) \log(p_i^m(x_i))$$

Cross-Entropy

$$D_{KL}(p_k \parallel p_i) = \sum_{i=1}^{N} \sum_{m=1}^{M} p_k^m(x_i) \log \frac{p_k^m(x_i)}{p_i^m(x_i)}$$

Kullback-Leibler (KL) divergence

Ensemble Learning with Unweighted Averaging

$$p = \frac{1}{K} \sum_{k=1}^{K} p_k$$

K: the number of models

 p_k : the probabilities are calculated from model **k**

- Image size : 224 x 224
- Batch size : 32
- LossFunction: CrossEntropyLoss(label_smoothing=0.1)
- Optimizer : AdamW(lr=0.001, weight_decay=0.01)
- EarlyStopping: finish training when valid_acc does not improve (3 patience)
- clip_grad_norm : normalize gradient

♦ OneCycleLR

GradScaler - Mixed Precision Training

Use float16 instead float32 gradient

- Scale loss: multiplying gradient to *scale factor->* avoid vanishing gradient
- Unscale loss
- Adjust scale factor flexibly
- => Faster training
- => Optimize GPU utilization

Public Test

Method	Num_epochs	Optimizer	DML	Ensemble	Test Accuracy
Resnnet-34	30	SGD	X	×	0.76
ViT-L16	20	SGD	X	×	0.83
GoogleNet	20	Adam	X	×	0.85
MobileNet	15	Adam	X	×	0.85
EfficientNetB6-CBAM	20	SGD	X	×	0.91
EfficientNetB6	17	SGD	X	×	0.96
MobileNet + EfficientNetB6 + VGG16	50	Adam	X	\checkmark	0.95
EfficientNetB6* + EfficientNetV2 + Resnet101	15	AdamW	\checkmark	×	0.95
EfficientNetB6 + EfficientNetV2 + Resnet101	15	AdamW	✓	✓	0.98

Private Test

Method	Num_epochs	Optimizer	DML	Ensemble	Test Accuracy
EfficientNetB6 + EfficientNetV2	15	AdamW	✓	✓	0.96
+ Resnet101					

			Accuracy	F1-Score
4	OAI069	EEIoT_newbie	96.17%	96.10%

♦ Private Test (Final)

Method	Num_epochs	Optimizer	DML	Ensemble	Test Accuracy
EfficientNetB6 + EfficientNetV2	15	AdamW	✓	✓	0.96
+ Resnet101					