

# Nomenclature

Symbol:

Definition:

grid indices

growth rate

reduced frequency

i, j, k

 $\boldsymbol{J}$ 

 $\mathbf{k}_r$ 

 $\mathbf{k}_{g}$ 

flux Jacobians **A**, **B**, **C** speed of sound a part of viscous term in energy equation; also, compression parameter in bminmod flux limiter constant  $\boldsymbol{C}$ modeling variable in turbulence model equations  $C_{\mu}$ diffusion term in turbulence model equations Ddamping terms in Baldwin-Barth turbulence model  $D_1, D_2$ distance to nearest wall; also, directed distance to the wall d total energy  $\boldsymbol{E}$ total energy per unit volume efunction damping function; also, frequency **F**, **G**, **H** inviscid fluxes viscous fluxes  $\mathbf{F}_{v}, \mathbf{G}_{v}, \mathbf{H}_{v}$ modeling variable (similar to  $-C_{\mu}$  term) in turbulence model equations  $G_1$ total enthalpy Н restriction operator identity matrix I

transformation Jacobian,  $J = \partial(\xi, \eta, \zeta)/\partial(x, y, z)$ 

Definition: Symbol: kinetic energy in turbulence model equations k characteristic length  $\tilde{L}$  $L_{ref}$ length in grid corresponding to  $\tilde{L}$ reference length used by code  $\tilde{L}_R = \tilde{L}/L_{ref}$  $\tilde{L}_R$ reference length; also, length scale in Baldwin-Lomax turbulence model l Mach number,  $M = |\tilde{\mathbf{V}}|/\tilde{a}$ M transformation matrix from conserved variables to primitive variables, M  $\partial Q/\partial q$ sub-iteration counter mspatially-factored implicit matrix term N direction normal to the wall n current iteration production term in turbulence model equations P Prandtl number Prstatic pressure p conserved variables O primitive variables q heat flux terms ġ residual vector R turbulent Reynolds number term in Baldwin-Barth turbulence model; also, R residual term Reynolds number,  $Re_{\tilde{L}} = \tilde{\rho}_{\infty} |\tilde{\mathbf{V}}|_{\infty} \tilde{L} / \tilde{\mu}_{\infty}$  $Re_{\tilde{L}}$ mean rate-of-strain tensor S production source term in turbulence model equations  $S_{\mathbf{p}}$ destruction source term in turbulence model equations  $S_{D}$ entropy; also, parameter used in smooth flux limiter matrix of eigenvectors  $\mathbf{T}$ 

time; also, parameter used in smooth flux limiter

contravariant velocities

U, V, W

| Symbol:        | Definition:                                                                                                    |
|----------------|----------------------------------------------------------------------------------------------------------------|
| u, v, w        | Cartesian velocities in $x$ , $y$ , $z$ directions                                                             |
| $u^{+}$        | law-of-the-wall variable, $u^+ = \tilde{u} \sqrt{\tilde{\rho}/\tilde{\tau}_w}$                                 |
| V              | corrections on coarser meshes, used to update finer mesh in the multigrid algorithm                            |
| $\mathbf{V}$   | velocity vector, $(u, v, w)$                                                                                   |
| $ \mathbf{V} $ | total velocity                                                                                                 |
| W              | mean vorticity tensor                                                                                          |
| X              | represents either $k,\omega,$ or $\epsilon$ in general turbulence model equations                              |
| x, y, z        | Cartesian coordinates                                                                                          |
| $y^{+}$        | law-of-the-wall variable, $y^+ = \sqrt{\tilde{\rho}\tilde{\tau}_w}\tilde{y}/\tilde{\mu}$                       |
| α              | angle of attack; also, used as constant in turbulence model equations                                          |
| β              | side-slip angle; also, used as constant in turbulence model equations                                          |
| γ              | ratio of specific heats, $\gamma=1.4$ ; also, variable in turbulence model equations                           |
| $\Delta$       | incremental quantity; also, forward difference operator                                                        |
| δ              | difference operator                                                                                            |
| ε              | dissipation term in turbulence model equations; also, small constant used in flux limiters                     |
| κ              | spatial differencing parameter; also, von Karman constant used in turbulence model equations                   |
| Λ              | matrix of eigenvalues                                                                                          |
| λ              | bulk viscosity coefficient                                                                                     |
| μ              | molecular viscosity coefficient                                                                                |
| ν              | kinematic viscosity                                                                                            |
| ŷ              | field equation variable in Spalart-Allmaras turbulence model                                                   |
| ξ, η, ζ        | general curvilinear coordinates; also, $\eta$ and $\zeta$ used as variables in EASM turbulence model equations |
| ρ              | density                                                                                                        |
| τ              | shear stress tensor; also, relative truncation error                                                           |
| ф              | parameter governing the temporal order of accuracy of the scheme                                               |
| Ω              | magnitude of vorticity                                                                                         |

Symbol: Definition:

o rotational velocity; also, variable in turbulence model equations,

 $\omega = \varepsilon/k$ 

 $\nabla$  gradient operator  $\nabla X = \partial X / \partial x_i$ 

## **Subscripts**

Definition: Symbol: denotes estimated value denote grid indices; also, summation convention where specified i, j, kinv denotes inviscid part k denotes k turbulence model quantity denotes left-hand state; also, denotes laminar quantity where specified Ldenotes summation convention 1 denotes right-hand state R Т denotes turbulent quantity denotes total quantity; e.g.  $p_t \Rightarrow$  total pressure; also, denotes differentiat tion with respect to time denotes viscous term v denotes wall condition W denote differentiation with respect to x, y, z; x also denotes tensor nota*x*, *y*, *z* tion where specified denotes ε turbulence model quantity denotes ω turbulence model quantity ω denotes reference conditions, typically free-stream conditions  $\infty$ +, denotes forward or backward difference operator denotes reference to a particular coordinate direction ξ, η, ζ

#### **Superscripts**

| Symbol: | Dennition:              |
|---------|-------------------------|
| b       | denotes biased gradient |
| c       | denotes correction term |

# **Superscripts**

Symbol: Definition:

r denotes residual smoothing term

denotes quantities in generalized coordinates

~ denotes dimensional value; also, denotes Roe-averaged variable where

specified

denotes partial derivative with respect to **q** and intermediate values in the

time advancement scheme

→ denotes a vector quantity

+, – denotes forward or backward difference operator

### Abbreviations

CFD Computational Fluid Dynamics

CFL Courant number

CFL3D Computational Fluids Laboratory 3-Dimensional (flow solver)

CPU Central Processing Unit

EASM Explicit Algebraic Stress Model FAST Flow Analysis Software Toolkit<sup>44</sup>

LRR Launder-Reese-Rodi GRIDGEN GRID GENeration<sup>36</sup>

MaGGiE MultiGeometry Grid Embedder<sup>11</sup>

NACA National Advisory Committee for Aeronautics

PLOT3D PLOT 3-Dimensional<sup>43</sup>

RAE Royal Aircraft Establishment

SSG Speziale-Sarkar-Gatski SST Shear Stress Transport

TLNS3D Thin-Layer Navier-Stokes 3-Dimensional (flow solver)<sup>42</sup>

| Nomenclature |  |  |
|--------------|--|--|
| Nomenciature |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |
|              |  |  |