Macroprudential Policy Interactions in a Sectoral DSGE Model with Staggered Interest Rates

Marc Hinterschweiger, Kunal Khairnar, Tolga Ozden, Tom Stratton

December 4, 2019

Overview

- ► Model summary
- ► Estimation highlights
- ► Macroprudential Policy (CAR, SCR, LTV & CCyB)
- ► Interest rate pass-through & Macroprudential policy

Model Overview

Estimation-I

- ▶ Quarterly data for the U.K. economy over 1998Q1-2016Q4.
- ▶ 10 observables in:
 - ► Interest rates (Official bank rate, mortgage & corporate rates)
 - Real growth rates (output, investment, consumption and wages)
 - Credit growth rates (mortgage & corporate sectors)
 - ► House price growth
- ▶ Model (partially) estimated using Bayesian likelihood methods.

Estimation-II

Figure: Example: estimated interest-rate pass through

▶ Average Bank Rate pass-through is [4.73, 5.93] months on corporate rates and [8.21, 11.1] months on mortgage rates.

Estimated shocks over 1998Q1-2016Q4.

▶ Sequence of shocks over the estimation sample.

Historical Variance Decomposition: Household Lending Growth

Historical Variance Decompositions: Output Growth

Some key unobservables estimated by the model

- Household defaults are dominant during the crisis period.
- ▶ Welfare of both household types have an upward trend before the crisis, and downward afterwards.

Macroprudential Policy

- Available tools in the model:
 - ▶ Minimum and sectoral capital requirements (Benchmark: 11 % CAR, no SCR)
 - LTV limit on businesses and households (Benchmark: 86 %)
 - CCyB (Benchmark: 0)

Macroprudential Policy

- Available tools in the model:
 - ▶ Minimum and sectoral capital requirements (Benchmark: 11 % CAR, no SCR)
 - LTV limit on businesses and households (Benchmark: 86 %)
 - CCyB (Benchmark: 0)
- Steady-state welfare analysis
- Counterfactuals
- ▶ Interest rate stickiness & Macroprudential tools interaction

Example: Sectoral Capital Requirements on Mortgage Lending and Key Variables in Steady-state

Optimal Policies

Ad-hoc mean-variance objective: $E[W_t] - \omega \sqrt{Var[W_t]}$

Optimal Policies

• Ad-hoc mean-variance objective: $E[W_t] - \omega \sqrt{Var[W_t]}$

Table: Optimal macroprudential parameters, one at a time. Results with $\omega=0.1$. Benchmark values are: 11 % for CAR, 86 % for LTV limit, no SCR.

Parameter	Optimal Value	Welfare Improvement
LTV Limit	86.6 %	0.001 %
SCR-Mortgage	17.6 % (11 % CAR, 6.6 % add-on)	4.26 %
SCR-Corporate	16.7 % (11 % CAR, 5.7 % add-on)	3.22 %
CAR	14.5 %	3.82 %

Optimal Policies

Ad-hoc mean-variance objective: $E[W_t] - \omega \sqrt{Var[W_t]}$

Table: Optimal macroprudential parameters, one at a time. Results with $\omega=0.1$. Benchmark values are: 11 % for CAR, 86 % for LTV limit, no SCR.

Parameter	Optimal Value	Welfare Improvement
LTV Limit	86.6 %	0.001 %
SCR-Mortgage	17.6 % (11 % CAR, 6.6 % add-on)	4.26 %
SCR-Corporate	16.7 % (11 % CAR, 5.7 % add-on)	3.22 %
CAR	14.5 %	3.82 %

Table: Optimal joint SCRs and LTV

Parameter	
LTV	94.06 %
SCR-Mortgage	15.88 %
SCR-Corporate %	12.5 %
Welfare Improvement	4.8 %

- Larger improvement with lower SCRs when macroprudential tools are coordinated.
- LTV limit can be relaxed if SCRs are sufficiently high.
- ► CCyB is not as effective as CAR & SCRs.

Counterfactual with optimized policies

Figure: Counterfactual I with optimized values: $\phi_H = 15.8\%, \phi_F = 12.5\%, \epsilon_H = 94\%$.

Counterfactual with CCyB

