#### Лекция 16 Поверхности второго порядка

#### 31.1 Понятие цилиндрической поверхности

**Г31.1.1 Определение.** Поверхность S называется *цилиндрической поверхностью* с образующей, параллельной прямой L, если она обладает следующим свойством: для любой точки  $M \in S$  прямая, проходящая через эту точку параллельно прямой L, полностью лежит на поверхности S. Любая прямая, полностью лежащая на цилиндрической поверхности или параллельная ей, называется ее *образующей*.

**Г31.1.2** *Замечание1*. В частности, плоскость, пара параллельных плоскостей или пара пересекающихся плоскостей являются цилиндрическими поверхностями.

**Г31.1.3** Замечание 2. Наглядно цилиндрическую поверхность можно представить следующим образом: рассмотрим некоторую плоскую линию и из каждой ее точки проведем параллельные прямые. Полученная поверхность будет цилиндрической.

### 31.2 Цилиндрические поверхности в декартовой системе координат

## Г31.2.1 Теорема (об уравнении цилиндрической поверхности)

- 1) Любое уравнение вида F (, y  $\neq$  0, т.е. уравнение, не содержащее переменной z , если задает какую-либо поверхность, то эта поверхность цилиндрическая с образующей, параллельной координатной оси Oz .
- 2) Любое уравнение вида F (x, z) = 0 если задает какую-либо поверхность, то эта поверхность цилиндрическая с образующей, параллельной координатной оси Oy.
- 3) Любое уравнение вида  $F \oint z = 0$  если задает какую-либо поверхность, то эта поверхность цилиндрическая с образующей, параллельной координатной оси Ox.
- 4) Любая цилиндрическая поверхность в некоторой системе координат может быть задана уравнением F (,  $y \neq 0$

Доказательство: 1) Пусть  $M_0 \blacktriangleleft_0, y_0, z_0 \not \in S$ . Поскольку уравнение  $F \blacktriangleleft_0, y \not = 0$  не зависит от z, ему будут удовлетворять координаты любой точки  $M \blacktriangleleft_0, y_0, z$ , т.е. при одних и тех же координатах  $x_0, y_0$  третья координата может быть любой. Значит, координаты всех точек прямой, параллельной оси Oz и проходящей через точку  $M_0 \blacktriangleleft_0, y_0, z_0 \not \in S$  будут удовлетворять уравнению поверхности S.

- 2),3) Доказываются аналогично.
- 4) Направив ось Oz параллельно образующей цилиндра, получим поверхность, соответствующую первой части теоремы. *Теорема доказана*.

Замечание: Система уравнений  $\begin{cases} F \blacktriangleleft , y = 0 \\ z = 0 \end{cases}$  определяет линию, получающуюся пересечением цилиндрической поверхности  $F \blacktriangleleft , y \neq 0$  и координатной плоскости xOy. Значит, для построения цилиндрической поверхности, заданной уравнением  $F \blacktriangleleft , y \neq 0$  достаточно построить в плоскости xOy линию, заданную тем же уравнением и провести через все ее точки прямые, параллельные оси аппликат.

### 31.3 Цилиндрические поверхности второго порядка

**Г31.3.1 Определение.** Поскольку уравнение  $\frac{(-x_0)}{a^2} + \frac{(-y_0)}{b^2} = 1$ , рассматриваемое как уравнение линии, задает на плоскости эллипс, то задаваемые им, а также уравнениями

$$\frac{(-x_0)}{a^2} + \frac{(-z_0)}{c^2} = 1$$
 и  $\frac{(-y_0)}{b^2} + \frac{(-z_0)}{c^2} = 1$  поверхности, называются эллиптическими

**Г31.3.2 Определение.** Аналогично, поверхности, задаваемые уравнениями 
$$\frac{(-x_0)}{a^2} - \frac{(-y_0)}{b^2} = \pm 1, \quad \frac{(-x_0)}{a^2} - \frac{(-z_0)}{c^2} = \pm 1 \quad \text{и} \quad \frac{(-y_0)}{b^2} - \frac{(-z_0)}{c^2} = \pm 1, \text{ называются}$$

гиперболическими цилиндрами.   
Г31.3.3 Определение. Поверхности, задаваемые уравнениями 
$$(y-y_0)^2 = \pm 2p(x-x_0)$$
,  $(y-y_0)^2 = \pm 2p(x-x_0)$ ,  $(y-z_0)^2 = \pm 2p(x-x_0)$ ,  $(y-z_0)^2 = \pm 2p(x-x_0)$ ,  $(y-z_0)^2 = \pm 2p(x-x_0)$ , называются параболическими цилиндрами.

$$(x-x_0)^2 = \pm 2p$$
 (у - y<sub>0</sub>) и  $(x-x_0)^2 = \pm 2p$  ( $(x-z_0)^2$ ), называются параболическими цилиндрами.

На рисунках 85-88 показаны круговой цилиндр, эллиптический цилиндр, параболический цилиндр и одна из двух ветвей гиперболического цилиндра



**Г31.3.4 Пример 1**. Уравнения  $x^2 + x + 1 = 0$ ,  $y^2 + 2y + 3 = 0$ ,  $z^2 + 3z + 3 = 0$  задают на плоскости пару мнимых плоскостей, так как все три уравнения имеют отрицательный дискриминант (следует из ГЗ1.1.1 и ГЗ1.1.3).

**Г31.3.5 Пример 2**. Каждое из уравнений  $x^2 - 2x + 1 = 0$ ,  $y^2 + -6y + 9 = 0$ ,  $z^2 - 4z + 4 = 0$  задает в пространстве пару совпадающих плоскостей. Первое уравнение задает плоскость x = 1, второе - y = 3, третье - z = 2.

**Г31.3.6 Пример 3**. Каждое из уравнений  $x^2 - 5x + 6 = 0$ ,  $y^2 - 6y + 8 = 0$ ,  $z^2 - 7z + 10 = 0$  задает в пространстве пару параллельных плоскостей. Первое – плоскости x = 2 и x = 3, второе – плоскости y = 2 и y = 4, третье – плоскости z = 2 и z = 5.

**Г31.3.7 Пример 4.** Уравнение  $x^2 + 4x + 2y + 6 = 0$  может быть приведено к виду  $(4+2)^2 = -2(4+1)$ . Если это уравнение рассматривать как уравнение линии на плоскости xOy, то оно задает параболу, значит, рассматриваемое как уравнение поверхности, оно задает параболический цилиндр.

Аналогично, уравнения  $y^2 + 6y + 4z + 17 = 0$  и  $z^2 + x + 2z + 1 = 0$  также задают параболические цилиндры.

**Г31.3.8 Пример 5.** Рассмотрим уравнение  $x^2 + y - z = 0$ . Применим преобразование координат  $\begin{cases} y = Y \cos \alpha - Z \sin \alpha \\ z = Y \sin \alpha + Z \cos \alpha \end{cases} : x^2 + Y \cos \alpha + \sin \alpha + Z \cos \alpha - \sin \alpha = 0.$ 

Положим  $\cos \alpha - \sin \alpha = 0$ , тогда можно взять  $\alpha = 45^{\circ}$  и уравнение примет вид:  $x^2 + Y\sqrt{2} = 0$ , т.е. снова получаем параболический цилиндр.

### 31.5 Понятие конической поверхности

**Примеры:**  $a_{11}x^2 + 2a_{12}xy + a_{22}y^2$  - однородный многочлен второго порядка от двух переменных,  $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz$  - однородный многочлен второго порядка от трех переменных,  $Ax^3 + Bx^2y + Cxy^2 + Dy^3$  - однородный многочлен третьего порядка от двух переменных.

**Г31.5.2** *Замечание*. Однородные многочлены второго порядка от любого количества переменных – это квадратичные формы.

**Г31.5.3 Определение.** Конической поверхностью порядка n называется поверхность, которая в некоторой (вообще говоря, аффинной) системе координат может быть задана уравнением  $\Phi(x,y,z)=0$ , где  $\Phi(x,y,z)$  - однородный многочлен порядка n.

**Г31.5.4 Теорема (характеристическое свойство конических поверхностей)** Пусть в некоторой системе координат с началом O коническая поверхность S задана уравнением  $\Phi$  , y,z=0, где  $\Phi$  ,  $\phi$ 

Доказательство. Пусть M  $\P_0$ ,  $y_0, z_0 \not \in S$  и M  $\P_0$ ,  $y, z \not \in OM$ . Тогда  $\overrightarrow{OM} = \P_0$ ,  $y_0, z_0$  и  $\exists \lambda \in R$  такое, что  $\overrightarrow{OM} = \P_0$ ,  $\lambda y_0, \lambda z_0$ , поскольку векторы  $\overrightarrow{OM}$  и  $\overrightarrow{OM}$ , будучи лежащими на одной прямой, коллинеарны. Поскольку M  $\P_0$ ,  $y_0, z_0 \not \in S$ , то верно равенство  $\Phi$   $\P_0$ ,  $y_0, z_0 \not = 0$ . А поскольку  $\Phi$   $\P_0$ ,  $y, z \not = 0$  однородный многочлен порядка n, то

 $\Phi$   $(x_0, \lambda y_0, \lambda z_0) \neq \lambda^n \Phi$   $(x_0, y_0, z_0) \neq 0$ . А это доказывает, что точка  $M' = (x_0, \lambda y_0, \lambda z_0)$  лежит на поверхности S.

**Г31.5.5** Замечание 2. Наглядно коническую поверхность можно представить следующим образом: рассмотрим некоторую плоскую линию L и точку O, не лежащую в плоскости этой линии. Соединим точку O с каждой точкой данной плоской линии лучом и продолжим эти лучи в обе стороны (до получения прямых линий). Полученная поверхность будет конической.

 $\Gamma$ 31.5.6 Определение. Линия L при этом называется направляющей линией конуса, а проведенные прямые — образующими конуса.

### 31.8 Конусы второго порядка

**Г31.8.1 Определение.** Уравнение  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$  называют *каноническим уравнением конуса* 

второго порядка. Наряду с ним еще два уравнения носят такое же название:  $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$  и

 $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 0$ . В первом случае осью симметрии конуса является ось Oz, во втором – ось Ox, в третьем – ось Oy.

**Г31.8.2 Пример 1.** Убедиться, что уравнение  $3x^2 + 3y^2 - 3z^2 - 6x + 4y + 4z + 3 = 0$  задает конус, найти координаты вершины этого конуса и сечения конуса координатными плоскостями.

$$(x^2 - 2x + 1) - 1 + (y^2 + \frac{4}{3}y + \frac{4}{9}) - \frac{4}{9} - (z^2 - \frac{4}{3}z + \frac{4}{9}) + \frac{4}{9} + 1 = 0;$$

 $(z-1)^2 + (y+\frac{2}{3})^2 - (z-\frac{2}{3})^2 = 0$ . Получили уравнение параллельно смещенного конуса с вершиной в точке  $(1; -\frac{2}{3}; \frac{2}{3})$ .

В сечении конуса координатной плоскостью z = 0 получим  $(x-1)^2 + \left(y + \frac{2}{3}\right)^2 - \left(0 - \frac{2}{3}\right)^2 = 0$ ;

$$(-1)^2 + (y + \frac{2}{3})^2 = \frac{4}{9}$$
 - окружность радиуса  $\frac{2}{3}$ .

В сечении конуса координатной плоскостью y = 0 получим  $(-1)^2 + \left(0 + \frac{2}{3}\right)^2 - \left(z - \frac{2}{3}\right)^2 = 0$ ;

$$(z-1)^2 - (z-\frac{2}{3})^2 = -\frac{4}{9}$$
 - гипербола.

В сечении конуса координатной плоскостью x = 0 снова получим гиперболу:

### 32. 1 Уравнение поверхности вращения

**Г32.1.1 Уравнение поверхности вращения** Рассмотрим уравнение поверхности S вида  $F(x^2+y^2,z)=0$  и пусть точка  $M_0(x_0,y_0,z_0)$  лежит на поверхности S . В плоскости  $z=z_0$ 

рассмотрим окружность C с центром в точке N  $(0; z_0)$ , проходящую через точку  $M_0$  ( ,  $y_0, z_0$  . Радиус этой окружности равен  $r = \sqrt{x_0^2 + y_0^2}$  , е ее уравнение -окружности C выполняется равенство  $x^2 + y^2 = r^2$ , то все точки окружности лежат на поверхности  $x^2 + y^2 = r^2$ ,  $z = z_0$ .

**Г32.1.2 Теорема.** Если уравнение F (, z) = 0 задает на плоскости xOz некоторую линию L, то поверхность, полученная вращением этой линии вокруг оси Oz будет задаваться уравнением  $F\left(\sqrt{x^2+y^2},z=0\right).$ 

Доказательство. Следует из Г32.1.1.

**Г32.1.3** Замечание. Если уравнение F (, y ) задает на плоскости xOy некоторую линию L, то поверхность, полученная вращением этой линии вокруг оси Ox будет задаваться уравнением  $F(x,\pm\sqrt{y^2+z^2})=0.$ 

#### 32. 3 Эллипсоиды и гиперболоиды вращения

**Г32.3.1** Эллипсоид вращения. При вращении эллипса  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$  вокруг оси абсцисс получим поверхность, заданную уравнением  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{b^2} = 1$ и называемую эллипсоид вращения.

Г32.3.2 Однополостный гиперболоид вращения.

Аналогично при вращении гиперболы  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ вокруг оси абсцисс получим поверхность, заданную уравнением  $-\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{b^2} = 1$  и называемую однополостный гиперболоид вращения. Поверхности, заданные уравнениями  $\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{b^2} = 1$  $\frac{x^2}{z^2} + \frac{y^2}{b^2} - \frac{z^2}{b^2} = 1$  также являются однополостными

гиперболоидами иначе ориентированными в пространстве.



Рис. 95 Эллипсоид вращения

**Г32.3.3** Двуполостный гиперболоид вращения. При вращении гиперболы  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  вокруг оси абсцисс получим поверхность, заданную уравнением  $\frac{x^2}{a^2} - \frac{y^2}{b^2} - \frac{z^2}{b^2} = 1$  и называемую двуполостный гиперболоид вращения. Поверхности, заданные уравнениями  $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{b^2} = 1$  и  $-\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{b^2} = 1$  также являются однополостными гиперболоидами вращения, лишь иначе ориентированными в пространстве.



## 32. 4 Параболоид вращения и конус



Рис. 98 Параболоид вращения

 Г32.4.1
 Параболоид
 вращения.
 Рассмотрим

 вращение
 параболы
  $y^2 = 2px$  вокруг оси абсцисс.

 Получим
 уравнение
  $x = \frac{y^2}{2p} + \frac{z^2}{2p}$ ,
 задающее

параболоид вращения. Уравнения  $x = -\frac{y^2}{2p} - \frac{z^2}{2p}$ ,

$$y = \frac{x^2}{2p} + \frac{z^2}{2p}$$
,  $y = -\frac{x^2}{2p} - \frac{z^2}{2p}$ ,  $z = \frac{x^2}{2p} + \frac{y^2}{2p}$ ,

 $z = -\frac{x^2}{2p} - \frac{y^2}{2p}$  также задают параболоиды вращения,

по-другому ориентированные в пространстве.

**Г32.4.2 Круговой конус.** Если будем вращать прямую y = ax вокруг оси абсцисс, то получим  $\pm \sqrt{y^2 + z^2} = ax$ ,  $y^2 + z^2 = a^2x^2$ ,

 $\frac{y^2}{a^2} + \frac{z^2}{a^2} - \frac{x^2}{1} = 0$  - уравнение кругового конуса, частный случай конуса второго порядка, рассмотренного в предыдущей теме.

### 32.5 Распадающиеся поверхности

**Г32.5.1 Уравнение пары плоскостей.** Пусть задано уравнение второго порядка от трех переменных  $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{1}x + 2a_{2}y + 2a_{3}z + a = 0$ . Если можно представить это уравнение в виде произведения  $\mathbf{q}_1x + B_1y + C_1z + D_1$   $\mathbf{q}_2x + B_2y + C_2z + D_2 = 0$ , где  $A_i, B_i, C_i, D_i$  i = 1, 2 - действительные числа, то очевидно, что данное уравнение второго порядка задает две действительные плоскости (пересекающиеся, параллельные или совпадающие).

Г32.5.2 Пара пересекающихся плоскостей. Пусть уравнение второго порядка задает пару пересекающихся плоскостей и L - их общая прямая. Направим ось Oz по прямой L, а оси Ox,Oy направим перпендикулярно оси Oz в плоскостях, биссекторных для рассматриваемой пары пересекающихся плоскостей. Тем самым получим прямоугольную систему координат. Тогда пару пересекающихся плоскостей можно рассматривать по определению как цилиндрическую поверхность с образующей, параллельной оси Oz. Направляющей линией этой цилиндрической поверхности будет пара пересекающихся прямых, проходящих через начало координат по биссектрисам координатных квадрантов. Значит, эта пара прямых и пара пересекающихся плоскостей задаются уравнением  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$ .

**Г32.5.3 Пара параллельных плоскостей.** Пусть уравнение второго порядка задает пару параллельных плоскостей. Рассмотрим плоскость  $\pi$ , параллельную этой паре плоскостей и расположенную на одинаковом расстоянии a от них (то есть – строго посередине между ними). Выберем в плоскости  $\pi$  произвольную точку O, которую будем считать началом координат, проведем через эту точку взаимно перпендикулярные оси Ox,Oy, а ось Oz, проходящую через начало координат, направим перпендикулярно плоскости  $\pi$ . Тогда уравнение одной из плоскостей будет z = a, второй - z = -a. Уравнение пары параллельных плоскостей имеет вид  $z^2 - a^2 = 0$ .

**Г32.5.4 Пара совпадающих плоскостей.** Пусть уравнение второго порядка задает пару совпадающих плоскостей. Тогда эту пару (по существу – одну плоскость) будем считать координатной плоскостью xOy, в которой взаимно перпендикулярные оси Ox,Oy направим произвольно, а ось Oz направим перпендикулярно этой паре совпадающих плоскостей. Уравнение пары совпадающих плоскостей примет вид z=0.

**Г32.5.5 Пара мнимых плоскостей.** Если уравнение второго порядка от трех переменных  $a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{1}x + 2a_{2}y + 2a_{3}z + a = 0$  можно представить в виде произведения  $a_1x + a_1y + a_2x + a_2x$ 

Г32.5.6 Замечание 1. Очевидно, что если можно представить уравнение второго порядка в виде произведения  $A_1x + B_1y + C_1z + D_1$   $A_2x + B_2y + C_2z + D_2 = 0$ , где  $A_i, B_i, C_i, D_i$  i = 1, 2 действительные числа, то можно его представить и в виде произведения  $A_1x + iB_1y + iC_1z + iD_1$   $A_2x - iB_2y - iC_2z - iD_2 = 0$ . Г32.5.7 Замечание 2. В соответствии с Г32.5.2 и Г32.5.3 естественно считать, что уравнение

**Г32.5.7** Замечание 2. В соответствии с Г32.5.2 и Г32.5.3 естественно считать, что уравнение  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$  задает пару пересекающихся мнимых плоскостей, а уравнение  $z^2 + a^2 = 0$  - пару параллельных мнимых плоскостей.

**Г32.5.8 Примеры.** 1) Уравнение  $x^2 + y^2 + z^2 + 2xy + 2xz + 2yz = 0$  задает пару совпадающих плоскостей, так как  $x^2 + y^2 + z^2 + 2xy + 2xz + 2yz = (+y+z);$  2) Уравнение  $x^2 + y^2 - z^2 + 2xy - 2z - 1 = 0$  задает пару пересекающихся плоскостей, так как  $x^2 + y^2 - z^2 + 2xy - 2z - 1 = (+y) - (+1) = (+y+z+1) + y - z - 1;$  3) Уравнение  $x^2 + 2xy + y^2 + z^2 = 0$  очевидно нельзя разложить на множители с действительными коэффициентами, так как  $x^2 + 2xy + y^2 + z^2 = (+y) + z^2$ , но  $(+y) + z^2 = (+y) - (-2) = (+y-iz) + y + iz$ , значит, уравнение  $x^2 + 2xy + y^2 + z^2 = 0$  задает пару мнимых плоскостей.

#### 32.8 Эллипсоиды

**Г32.8.1 Определение.** Эллипсоидом называется поверхность, которая в некоторой системе координат может быть задана уравнением  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ .

**Г32.8.2** Замечание 1. Если ровно два из трех параметров a,b,c равны между собой, то уравнение задает эллипсоид вращения (Г19.3.1). Если же a=b=c, то получим уравнение сферы радиуса  $a: x^2+y^2+z^2=a^2$ .

**Г32.8.3** Замечание 2. Из уравнения  $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$  следует, что  $-a \le x \le a$ ,  $-b \le y \le b$ ,  $-c \le z \le c$ . Значит, эллипсоид – ограниченная поверхность и любое ее сечение плоскостью будет ограниченной кривой второго порядка. Поэтому все сечения эллипсоида плоскостями, не

### 32.9 Гиперболоиды

вырождающиеся в точку – это эллипсы.

**Г32.9.1 Определение.** *Однополостным гиперболоидом* называется поверхность, которая в некоторой системе координат может быть задана уравнением  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$ .

**Г32.9.2 Определение.** Двуполостным гиперболоидом называется поверхность, которая в некоторой системе координат может быть задана уравнением  $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ .

**Г32.9.3** Замечание 1. Если хотя бы два из трех параметров a,b,c равны между собой, то уравнение  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$   $\left( -\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1 \right)$  задает однополостный (двуполостный) гиперболоид вращения (Г32.3.2, Г32.3.3).

**Г32.9.4** Замечание 2. Поскольку уравнения гиперболоидов не меняются при замене x на (x), y, на (x), y на (x), (y) на (x) двуполостного гиперболоидов. Форму этих гиперболоидов можно представить по форме гиперболоидов вращения (тема 19), сжатых или растянутых вдоль оси (y).

Плоскость y=1 пересекает гиперболоид  $(z)^2+(z)^2-z^2=1$  по линии  $(z)^2-z^2=0$ , являющейся парой пересекающихся прямых. Но точка  $M_0$  была выбрана произвольно, значит, через любую точку горловой окружности проходит пара пересекающихся прямых, лежащих на однополостном гиперболоиде  $x^2+y^2-z^2=1$ .

Преобразование сжатия (растяжения)  $x = \frac{X}{a}$ ,  $y = \frac{Y}{b}$ ,  $z = \frac{Z}{c}$ , очевидно, переводит прямую в прямую, значит, через каждую точку *горлового эллипса* гиперболоида  $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$  также проходят две пересекающиеся прямые, лежащие на гиперболоиде.

# 32.10 Параболоиды

**Г32.10.1 Определение.** Эллиптическим параболоидом называется поверхность, которая в некоторой системе координат может быть задана уравнением  $z = \frac{x^2}{2p} + \frac{y^2}{2q}$  при  $p \cdot q > 0$ .

**Г32.10.2** *Замечание 1.* Форму эллиптического параболоида можно представить, сжав по одной из осей координат параболоид вращения (Рис.99).



**Г32.10.3** *Замечание 2*. Сечения эллиптического параболоида плоскостями – это эллипсы и параболы.

**Г32.10.4 Определение.** *Гиперболическим параболоидом* называется поверхность, которая в некоторой системе координат может быть задана уравнением  $z = \frac{x^2}{2p} - \frac{y^2}{2q}$  при  $p \cdot q > 0$ .

**Г32.10.5** Замечание 3. Форма гиперболического параболоида показана на рис. 100. Сечения гиперболического параболоида плоскостями – это гиперболы и параболы.

**Г32.10.6 Прямолинейные образующие гиперболического параболоида**. Рассмотрим гиперболический параболоид  $z = \frac{x^2}{2p} - \frac{y^2}{2q}$  и преобразованием сжатия (растяжения)

 $x = \frac{x}{\sqrt{2p}}, y = \frac{y}{\sqrt{2q}}$  приведем его уравнение к виду  $z = (-1)^2 - (-1)^2$ . Рассмотрим сечения

параболоида плоскостями y = x + c, y' = -x' + c:  $\begin{cases} z = \sqrt{2} - \sqrt{2} \\ y' = x' + c \end{cases} ; \begin{cases} z = -2cx' - c^2 \\ y' = x' + c \end{cases}$ 

Получили общие уравнения прямой. Аналогично:  $\begin{cases} z = \mathbf{C} \quad \mathbf{C} \quad \mathbf{C} \quad \mathbf{C} \\ y = -x + c \end{cases}; \begin{cases} z = 2cx - c^2 \\ y = -x + c \end{cases}$  - снова общие уравнения прямой. Когда параметр c пробегает все значения  $c \in \mathbf{C} \quad \mathbf{C$ 

y = x + c, y = -x + c пройдут через все точки параболоида. Значит, через любую точку гиперболического параболоида проходит пара пересекающихся прямых.

### Контрольные вопросы.

- 1. Что называется цилиндрической поверхностью? Каким уравнением может быть задана цилиндрическая поверхность?
- 2. Что называется эллиптическим цилиндром? Что называется гиперболическим цилиндром? Что называется параболическим цилиндром?
- 3. Дать определение конической поверхности. Сформулировать характеристическое свойство конических поверхностей.
- 4. Запишите уравнение поверхности вращения заданной линии.
- 5. Запишите уравнения эллипсоида вращения, однополостного и двуполостного гиперболоидов вращения.
- 6. Запишите уравнения параболоида вращения и кругового конуса.
- 7. Дать определения: эллиптического цилиндра, мнимого эллиптического цилиндра, гиперболического цилиндра, параболического цилиндра.
- 8. Дать определения конуса и мнимого конуса.
- 9. Дать определения эллипсоида и мнимого эллипсоида.
- 10. Дать определения однополостного и двуполостного гиперболоидов.
- 11. Дать определения эллиптического и гиперболического параболоидов.