Classification Algorithms System V0.1

Generated by Doxygen 1.8.13

Contents

1	Hier	archica	l Index												1
	1.1	Class I	Hierarchy						 	 	 	 	 		1
2	Clas	s Index													3
	2.1	Class I	List						 	 	 	 	 		3
3	File	Index													5
	3.1	File Lis	st						 	 	 	 	 		5
4	Clas	s Docu	mentation	1											7
	4.1	Classif	ier Class F	Reference					 	 	 	 	 		7
		4.1.1	Member	Function Do	cumenta	ation			 	 	 	 	 		9
			4.1.1.1	evaluate()					 	 	 	 	 		9
			4.1.1.2	getSteps()					 	 	 	 	 		9
			4.1.1.3	getUpdate	s()				 	 	 	 	 		10
			4.1.1.4	setSample	s()				 	 	 	 	 		10
			4.1.1.5	train()					 	 	 	 	 		10
	4.2	Data C	lass Refer	ence					 	 	 	 	 		10
		4.2.1	Detailed	Description					 	 	 	 	 		12
		4.2.2	Construc	tor & Destru	ctor Doc	cumen	itation	١	 	 	 	 	 		12
			4.2.2.1	Data() [1/	2]				 	 	 	 	 		12
			4.2.2.2	Data() [2/	2]				 	 	 	 	 		13
		4.2.3	Member	Function Do	cumenta	ation			 	 	 	 	 		13
			4.2.3.1	changeXV	ector() .				 	 	 	 	 		13
			4.2.3.2	copy() .							 				13

ii CONTENTS

	4.2.3.3	copyZero()	14
	4.2.3.4	getDim()	14
	4.2.3.5	getFeaturesNames()	14
	4.2.3.6	getIndex()	14
	4.2.3.7	getNumberNegativePoints()	15
	4.2.3.8	getNumberPositivePoints()	15
	4.2.3.9	getPoint()	15
	4.2.3.10	getPoints()	15
	4.2.3.11	getSize()	16
	4.2.3.12	getStatistics()	16
	4.2.3.13	insertFeatures()	16
	4.2.3.14	insertPoint() [1/2]	16
	4.2.3.15	insertPoint() [2/2]	17
	4.2.3.16	isEmpty()	17
	4.2.3.17	isNormalized()	17
	4.2.3.18	join()	18
	4.2.3.19	load()	18
	4.2.3.20	normalize() [1/2]	18
	4.2.3.21	normalize() [2/2]	19
	4.2.3.22	removeFeatures()	19
	4.2.3.23	removePoint()	19
	4.2.3.24	removePoints()	20
	4.2.3.25	setClasses()	20
	4.2.3.26	setDim()	20
	4.2.3.27	setFeaturesNames()	20
	4.2.3.28	setPoint()	21
	4.2.3.29	write()	21
4.3	DualClassifier Cl	ass Reference	22
	4.3.1 Member	Function Documentation	23
	4.3.1.1	getSolution()	23

CONTENTS

		4.3.1.2	setKernel()	. 23
4.4	Featur	eSelection	Class Reference	. 23
4.5	Gnuplo	ot Class Re	eference	. 24
	4.5.1	Member	Function Documentation	. 26
		4.5.1.1	is_valid()	. 26
		4.5.1.2	operator<<()	. 26
		4.5.1.3	plot_equation()	. 27
		4.5.1.4	plot_equation3d()	. 27
		4.5.1.5	plot_image()	. 27
		4.5.1.6	plot_x()	. 28
		4.5.1.7	plot_xy()	. 28
		4.5.1.8	plot_xy_err()	. 28
		4.5.1.9	plotfile_x()	. 28
		4.5.1.10	plotfile_xy()	. 28
		4.5.1.11	plotfile_xy_err()	. 29
		4.5.1.12	plotfile_xyz()	. 29
		4.5.1.13	replot()	. 29
		4.5.1.14	set_contour()	. 29
		4.5.1.15	set_GNUPlotPath()	. 29
		4.5.1.16	set_hidden3d()	. 30
		4.5.1.17	set_legend()	. 30
		4.5.1.18	set_multiplot()	. 30
		4.5.1.19	set_smooth()	. 31
		4.5.1.20	set_style()	. 31
		4.5.1.21	set_surface()	. 31
		4.5.1.22	set_terminal_std()	. 31
		4.5.1.23	set_title()	. 32
		4.5.1.24	set_xautoscale()	. 32
		4.5.1.25	set_yautoscale()	. 32
		4.5.1.26	set_zautoscale()	. 33

iv CONTENTS

		4.5.1.27 unset	_contour()		 	 	33
		4.5.1.28 unset	_hidden3d()		 	 	33
		4.5.1.29 unset	_legend()		 	 	34
		4.5.1.30 unset	_multiplot()		 	 	34
		4.5.1.31 unset	_smooth()		 	 	34
		4.5.1.32 unset	_surface()		 	 	35
		4.5.1.33 unset	_title()		 	 	35
		4.5.1.34 unset	_xlogscale()		 	 	35
		4.5.1.35 unset	_ylogscale()		 	 	36
		4.5.1.36 unset	_zlogscale()		 	 	36
4.6	Gnuplo	tException Class	Reference		 	 	36
	4.6.1	Detailed Descri	otion		 	 	37
4.7	Kernel	Class Reference			 	 	38
	4.7.1	Detailed Descri	otion		 	 	38
	4.7.2	Constructor & E	estructor Documer	ntation	 	 	38
		4.7.2.1 Kerne	el()		 	 	38
	4.7.3	Member Function	on Documentation		 	 	39
		4.7.3.1 comp	ute()		 	 	39
		4.7.3.2 functi	on()		 	 	39
		4.7.3.3 getKe	ernelMatrix()		 	 	39
		4.7.3.4 norm	()		 	 	40
		4.7.3.5 setKe	ernelMatrix()		 	 	40
		4.7.3.6 setPa	ram()		 	 	40
		4.7.3.7 setTy	pe()		 	 	41
4.8	Percep	tronDual Class F	Reference		 	 	41
	4.8.1	Detailed Descri	otion		 	 	42
	4.8.2	Member Function	on Documentation		 	 	42
		4.8.2.1 evalu	ate()		 	 	43
		4.8.2.2 train()		 	 	43
4.9	Percep	tronFixedMargin	Dual Class Referen	ice	 	 	43

CONTENTS

	4.9.1	Detailed Description	45
	4.9.2	Member Function Documentation	45
		4.9.2.1 evaluate()	45
		4.9.2.2 train()	45
4.10	Percep	tronFixedMarginPrimal Class Reference	46
	4.10.1	Detailed Description	47
	4.10.2	Member Function Documentation	47
		4.10.2.1 evaluate()	48
		4.10.2.2 train()	48
4.11	Percep	tronPrimal Class Reference	48
	4.11.1	Detailed Description	50
	4.11.2	Member Function Documentation	50
		4.11.2.1 evaluate()	50
		4.11.2.2 train()	50
4.12	Point C	lass Reference	51
	4.12.1	Detailed Description	51
	4.12.2	Member Function Documentation	51
		4.12.2.1 dot()	51
		4.12.2.2 norm()	52
4.13	Primal	Classifier Class Reference	52
	4.13.1	Member Function Documentation	53
		4.13.1.1 getSolution()	54
		4.13.1.2 setNorm()	54
4.14	Solutio	n Class Reference	54
4.15	Statistic	cs Class Reference	55
	4.15.1	Detailed Description	56
	4.15.2	Member Function Documentation	56
		4.15.2.1 getDistCenters()	56
		4.15.2.2 getDistCentersWithoutFeats()	57
		4.15.2.3 getFeatureMean()	57

vi CONTENTS

			4.15.2.4	getFeatureStdev()	57
			4.15.2.5	getRadius()	58
			4.15.2.6	mean()	58
			4.15.2.7	stdev()	59
			4.15.2.8	variance() [1/2]	59
			4.15.2.9	variance() [2/2]	59
	4.16	Validat	ion Class I	Reference	60
		4.16.1	Detailed	Description	60
		4.16.2	Member	Function Documentation	60
			4.16.2.1	partTrainTest()	60
	4.17	Validat	ionSolution	n Class Reference	61
		4.17.1	Detailed	Description	62
	4.18	Visuali	sation Clas	ss Reference	62
		4.18.1	Detailed	Description	62
				Function Documentation	62
			4.18.2.1	plot2D()	62
			4.18.2.2	plot2DwithHyperplane()	63
			4.18.2.3	plot3D()	63
			4.18.2.4	plot3DwithHyperplane()	64
			4.18.2.5	setSample()	64
			4.18.2.6	setStyle()	64
			4.18.2.7		
5	File I		entation		67
	5.1	include		File Reference	67
		5.1.1	Detailed	Description	68
		5.1.2	Function	Documentation	68
			5.1.2.1	dtoa()	68
			5.1.2.2	is_number()	69
			5.1.2.3	itos()	69
			5.1.2.4	maxAbsElement()	69
			5.1.2.5	stodn()	71
			5.1.2.6	stoin()	71
	5.2	src/Dat	ta.cpp File	Reference	71
		5.2.1	Detailed	Description	72
	5.3	src/Poi	nt.cpp File	Reference	72
		5.3.1	Detailed	Description	73
	5.4	src/Util	s.cpp File	Reference	73
		5.4.1	Detailed	Description	74
		5.4.2	Function	Documentation	75
			5.4.2.1	-lt ()	75
			5.4.2.1	dtoa()	, 0
			5.4.2.2	itos()	75
Inc	dex		_		

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Classifier	7
DualClassifier	22
PerceptronDual	41
PerceptronFixedMarginDual	43
PrimalClassifier	52
PerceptronFixedMarginPrimal	46
PerceptronPrimal	48
Data	10
FeatureSelection	23
	24
	38
	51
runtime_error	
GnuplotException	
	54
ValidationSolution	61
Statistics	55
Validation	60
Visualisation	62

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Classifier	7
Data	
Wrapper for the dataset data	(
DualClassifier	22
FeatureSelection	23
Gnuplot	22
GnuplotException	
A C++ interface to gnuplot	36
Kernel	
Class for the kernel computations	38
PerceptronDual	
Wrapper for the implementation of the Perceptron dual algorithm	ŀ
PerceptronFixedMarginDual	
Wrapper for the implementation of the Perceptron dual with fixed margin algorithm 4	ĸ
PerceptronFixedMarginPrimal	
Wrapper for the implementation of the Perceptron primal with fixed margin algorithm 4	16
PerceptronPrimal	
Wrapper for the implementation of the Perceptron primal algorithm	18
Point	
Class of a Point of doubles in a space of n dimensions	51
PrimalClassifier	52
Solution	52
Statistics	
Class with methods for statistical computations	55
Validation	
Class of methods for the validation of ML algorithms	30
ValidationSolution	
Solution for the validation of a ML method	31
Visualisation	
Class for visualize data using gnuplot	32

4 Class Index

Chapter 3

File Index

3.1 File List

Here is a list of all documented files with brief descriptions:

includes/Classifier.hpp						 			 				
includes/ Data.hpp						 			 				
includes/ DualClassifier.hpp													
includes/FeatureSelection.hpp						 			 				
includes/gnuplot_i.hpp													
includes/ Kernel.hpp													
includes/MLToolkit.hpp													
includes/Perceptron.hpp													
includes/ Point.hpp													
includes/ PrimalClassifier.hpp													
includes/ Solution.hpp													
includes/ Statistics.hpp													
includes/Utils.hpp													
includes/Validation.hpp													
includes/ValidationSolution.hpp													
includes/ Visualisation.hpp													
src/Data.cpp					• •	 		•	 	•	•	• •	
Implementation of the Data class meth	ode												
•	ious					 • •	• •	•	 	•	•		
src/Point.cpp													
Implementation of the Point class meth	1005					 	٠.	•	 ٠.	٠	٠		
src/Utils.cpp			_										
Implementation of methods for genera	l use	in the	system	٠.		 			 				

6 File Index

Chapter 4

Class Documentation

4.1 Classifier Class Reference

Inheritance diagram for Classifier:

Collaboration diagram for Classifier:

Public Member Functions

• virtual bool train ()=0

Function that execute the training phase of a classification algorithm.

virtual double evaluate (Point p)=0

Returns the class of a feature point based on the trained classifier.

virtual void setSamples (Data *samples)

setSamples Set the samples used in the classifier.

- void setStartTime (double start_time)
- void setMaxTime (double max_time)
- void setEPS (double EPS)
- void setMaxIterations (int MAX_IT)
- void setMaxUpdates (int MAX_UP)
- int getSteps ()

getSteps Returns the number of steps through the data by the classifier.

• int getUpdates ()

getUpdates Returns the number of updates needed to get to the the solution.

Protected Attributes

- Data * samples
- std::vector< Point > svs

Support vectors points.

· Solution solution

Classifier solution.

• double rate = 0.5

Learning rate.

• double start_time = 0

Initial time.

```
• double max_time = 200
```

Maximum time of training.

• int steps = 0

Number of steps in the data.

• int ctot = 0

Number of updates of the weights.

```
• double EPS = 1E-9
```

Max precision.

- int **MAX_IT** = 1E9
- int MAX_UP = 1E9

4.1.1 Member Function Documentation

4.1.1.1 evaluate()

```
\begin{tabular}{ll} \begin{tabular}{ll} virtual & double & Classifier::evaluate & ( \\ & & Point & p & ) & [pure & virtual] \end{tabular}
```

Returns the class of a feature point based on the trained classifier.

Parameters

```
Point | x (???) Features point to be evaluated.
```

Returns

int

Implemented in PerceptronFixedMarginDual, PerceptronDual, PerceptronFixedMarginPrimal, and Perceptron← Primal.

4.1.1.2 getSteps()

```
int Classifier::getSteps ( )
```

getSteps Returns the number of steps through the data by the classifier.

Returns

int

4.1.1.3 getUpdates()

```
int Classifier::getUpdates ( )
```

getUpdates Returns the number of updates needed to get to the the solution.

Returns

int

4.1.1.4 setSamples()

setSamples Set the samples used in the classifier.

Parameters

```
samples Samples to be used.
```

4.1.1.5 train()

```
virtual bool Classifier::train ( ) [pure virtual]
```

Function that execute the training phase of a classification algorithm.

Returns

void

Implemented in PerceptronFixedMarginDual, PerceptronDual, PerceptronFixedMarginPrimal, and Perceptron Primal.

The documentation for this class was generated from the following files:

- includes/Classifier.hpp
- · src/Classifier.cpp

4.2 Data Class Reference

Wrapper for the dataset data.

```
#include <Data.hpp>
```

4.2 Data Class Reference 11

Public Member Functions

Data (const char *pos_class="1", const char *neg_class="-1")

Constructor for empty data.

Data (std::string dataset, const char *pos_class="1", const char *neg_class="-1")

Data constructor to load a dataset from a file.

• void write (std::string fname, std::string ext)

write Write the data to a file with the given extention.

• int getSize ()

Returns the size of the dataset.

• int getDim ()

Returns the dimension of the dataset.

void setDim (int dim)

setDim Set the dimension of the points.

Point getPoint (int index)

Returns the point with the given index.

void setPoint (int index, Point p)

setPoint Set the point in a position of the data.

std::vector< Point > getPoints ()

Returns the vector of Points of the sample.

std::vector< int > getFeaturesNames ()

Returns the features names.

void setFeaturesNames (std::vector< int > fnames)

setFeaturesNames Set the name of the features of the data.

Statistics getStatistics ()

Returns a class with the statistics info of the sample.

std::vector< int > getIndex ()

Returns the vector of indexes.

int getNumberPositivePoints ()

Return the number of positive points.

int getNumberNegativePoints ()

Return the number of negative points.

void setClasses (std::string pos, std::string neg)

setClasses Set the classes of the dataset.

bool isEmpty ()

Returns if there's a dataset loaded.

• bool isNormalized ()

Returns if the dataset is normalized.

bool load (std::string file)

Load a dataset from a file.

• void clear ()

clear Clear the data.

· Data copy ()

Returns a copy of the data.

• Data copyZero ()

Returns a copy of the data with zero points.

void join (Data data)

Merge one dataset with another.

· bool insertPoint (Data sample, int id)

Insert a point to the data from another sample.

• bool insertPoint (Point p)

Insert a point to the end of vector points.

std::vector< bool > removePoints (std::vector< int > ids)

Remove several points from the sample.

bool removePoint (int pid)

Remove a point from the data.

Data insertFeatures (std::vector< int > ins_feat)

insertFeatures Returns Data object with only features in array.

bool removeFeatures (std::vector< int > feats)

Remove several features from the sample.

void changeXVector (std::vector< int > index)

Change the x vector of a sample.

• void normalize (double p=2)

normalize Normalize the dataset using a Lp-norm.

void operator= (const Data &)

Static Public Member Functions

static void normalize (std::vector< double > &p, double q)
 normalize Normalize a vector using a Lp-norm.

Friends

std::ostream & operator<< (std::ostream &output, const Data &data)

4.2.1 Detailed Description

Wrapper for the dataset data.

4.2.2 Constructor & Destructor Documentation

Constructor for empty data.

Parameters

pos_class	String representing the positive class on the dataset.
neg_class	String representing the negative class on the dataset.

4.2 Data Class Reference

4.2.2.2 Data() [2/2]

Data constructor to load a dataset from a file.

Parameters

dataset	(???) Path to the dataset to be loaded.
pos_class	String representing the positive class on the dataset.
neg_class	String representing the negative class on the dataset.

4.2.3 Member Function Documentation

4.2.3.1 changeXVector()

```
void Data::changeXVector (
          std::vector< int > index )
```

Change the x vector of a sample.

Parameters

index	(???) Indexes of the change to be made.
-------	---

Returns

void

4.2.3.2 copy()

```
Data Data::copy ( )
```

Returns a copy of the data.

Returns

Data

```
4.2.3.3 copyZero()
Data Data::copyZero ( )
Returns a copy of the data with zero points.
Returns
     Data
4.2.3.4 getDim()
int Data::getDim ( )
Returns the dimension of the dataset.
Returns
     int
4.2.3.5 getFeaturesNames()
vector< int > Data::getFeaturesNames ( )
Returns the features names.
Returns
     std::vector<int>
4.2.3.6 getIndex()
vector< int > Data::getIndex ( )
Returns the vector of indexes.
Returns
     std::vector<int>
```

4.2 Data Class Reference

4.2.3.7 getNumberNegativePoints()

```
int Data::getNumberNegativePoints ( )
```

Return the number of negative points.

Returns

int

4.2.3.8 getNumberPositivePoints()

```
int Data::getNumberPositivePoints ( )
```

Return the number of positive points.

Returns

int

4.2.3.9 getPoint()

```
Point Data::getPoint (
          int index )
```

Returns the point with the given index.

Parameters

index	Position of a point in the points array.

Returns

std::vector<Points>

4.2.3.10 getPoints()

```
vector< Point > Data::getPoints ( )
```

Returns the vector of Points of the sample.

Returns

std::vector<Points>

4.2.3.11 getSize()

```
int Data::getSize ( )
```

Returns the size of the dataset.

Returns

int

4.2.3.12 getStatistics()

```
Statistics Data::getStatistics ( )
```

Returns a class with the statistics info of the sample.

Returns

Statistics

4.2.3.13 insertFeatures()

insertFeatures Returns Data object with only features in array.

Parameters

```
ins_feat (???) Array with features that will be in the Data object.
```

Returns

Data If the object is empty something wrong happened.

Insert a point to the data from another sample.

int id)

4.2 Data Class Reference

Parameters

sample	(???) Sample with the point to be added.
id	(???) Index of the point to be added.

Returns

bool

```
4.2.3.15 insertPoint() [2/2]
```

Insert a point to the end of vector points.

Parameters

```
p (???) Point to be inserted.
```

Returns

bool

4.2.3.16 isEmpty()

```
bool Data::isEmpty ( )
```

Returns if there's a dataset loaded.

Returns

bool

4.2.3.17 isNormalized()

```
bool Data::isNormalized ( )
```

Returns if the dataset is normalized.

Returns

bool

```
4.2.3.18 join()
```

Merge one dataset with another.

Parameters

```
data (???) Dataset to be joined.
```

Returns

bool

4.2.3.19 load()

```
bool Data::load (
          std::string file )
```

Load a dataset from a file.

Parameters

```
file (???) Path to dataset file.
```

Returns

bool

```
4.2.3.20 normalize() [1/2]
```

```
void Data::normalize (
double p = 2 )
```

normalize Normalize the dataset using a Lp-norm.

Parameters

p Norm to be utilized.

4.2 Data Class Reference

4.2.3.21 normalize() [2/2]

```
static void Data::normalize (  \mbox{std::vector} < \mbox{ double } > \& \ p \mbox{,}   \mbox{ double } q \mbox{ ) [static]}
```

normalize Normalize a vector using a Lp-norm.

Parameters

q	Norm to be utilized.	
р	Vector to be normalized.	

4.2.3.22 removeFeatures()

Remove several features from the sample.

Parameters

feats (???) Names of the features to be removed (must be sorted).

Returns

boolean informing if all features were succesfully removed.

4.2.3.23 removePoint()

Remove a point from the data.

Parameters

pid (???) Index of the point to be removed.

Returns

bool

4.2.3.24 removePoints()

```
vector< bool > Data::removePoints ( {\tt std::vector} < {\tt int} \ > {\it ids} \ )
```

Remove several points from the sample.

Parameters

```
ids (???) Ids of the points to be removed (must be sorted).
```

Returns

booleans informing which points were removed succesfully.

4.2.3.25 setClasses()

setClasses Set the classes of the dataset.

Parameters

pos	Positive class.
neg	Negative class.

4.2.3.26 setDim()

```
void Data::setDim (
    int dim )
```

setDim Set the dimension of the points.

Parameters

```
dim (???) Dimension to be set.
```

4.2.3.27 setFeaturesNames()

4.2 Data Class Reference 21

setFeaturesNames Set the name of the features of the data.

Parameters

fnames	(???) Name of the features.
--------	-----------------------------

4.2.3.28 setPoint()

```
void Data::setPoint (
          int index,
          Point p )
```

setPoint Set the point in a position of the data.

Parameters

index	(???) Index of the point that will be set.
р	(???) Point to be set.

4.2.3.29 write()

write Write the data to a file with the given extention.

Parameters

fname	Name of the file.
ext	Extention of the file.

The documentation for this class was generated from the following files:

- · includes/Data.hpp
- src/Data.cpp

4.3 DualClassifier Class Reference

Inheritance diagram for DualClassifier:

Collaboration diagram for DualClassifier:

Public Member Functions

• void setKernel (Kernel K)

setKernel Set the kernel used by the dual classifier.

Solution getSolution ()

getSolution Returns the solution of the primal classifier.

Protected Attributes

std::vector< double > alpha

Alphas vector.

· Kernel kernel

Object for kernel computations.

4.3.1 Member Function Documentation

4.3.1.1 getSolution()

```
Solution DualClassifier::getSolution ( )
```

getSolution Returns the solution of the primal classifier.

Returns

Solution

4.3.1.2 setKernel()

setKernel Set the kernel used by the dual classifier.

Parameters

q Norm that will be used by the classifier.

The documentation for this class was generated from the following files:

- · includes/DualClassifier.hpp
- · src/DualClassifier.cpp

4.4 FeatureSelection Class Reference

The documentation for this class was generated from the following file:

includes/FeatureSelection.hpp

4.5 Gnuplot Class Reference

Public Member Functions

Gnuplot (const std::string &style="points")

set a style during construction

• Gnuplot (const std::vector< double > &x, const std::string &title="", const std::string &style="points", const std::string &labely="y")

plot a single std::vector at one go

• Gnuplot (const std::vector< double > &x, const std::vector< double > &y, const std::string &title="", const std::string &title="", const std::string &labely="y")

plot pairs std::vector at one go

• Gnuplot (const std::vector< double > &x, const std::vector< double > &y, const std::vector< double > &z, const std::string &title="", const std::string &style="points", const std::string &labelx="x", const std::string &labelz="z")

plot triples std::vector at one go

∼Gnuplot ()

destructor: needed to delete temporary files

Gnuplot & cmd (const std::string &cmdstr)

send a command to gnuplot

Gnuplot & operator<< (const std::string &cmdstr)

Sends a command to an active gnuplot session, identical to cmd() send a command to gnuplot using the << operator.

• Gnuplot & showonscreen ()

sets terminal type to terminal_std

Gnuplot & savetops (const std::string &filename="gnuplot_output")

saves a gnuplot session to a postscript file, filename without extension

- Gnuplot & set_style (const std::string &stylestr="points")
- Gnuplot & set_smooth (const std::string &stylestr="csplines")
- Gnuplot & unset smooth ()

unset smooth attention: smooth is not set by default

Gnuplot & set_pointsize (const double pointsize=1.0)

scales the size of the points used in plots

· Gnuplot & set grid ()

turns grid on/off

Gnuplot & unset_grid ()

grid is not set by default

- Gnuplot & set multiplot ()
- Gnuplot & unset_multiplot ()
- Gnuplot & set_samples (const int samples=100)

set sampling rate of functions, or for interpolating data

• Gnuplot & set_isosamples (const int isolines=10)

set isoline density (grid) for plotting functions as surfaces (for 3d plots)

- Gnuplot & set_hidden3d ()
- Gnuplot & unset_hidden3d ()
- Gnuplot & set_contour (const std::string &position="base")
- Gnuplot & unset_contour ()
- Gnuplot & set_surface ()
- Gnuplot & unset_surface ()

```
    Gnuplot & set_legend (const std::string &position="default")

    Gnuplot & unset_legend ()

      Switches legend off attention:legend is set by default.
• Gnuplot & set_title (const std::string &title="")
      sets and clears the title of a gnuplot session
• Gnuplot & unset_title ()
      Clears the title of a gnuplot session The title is not set by default.

    Gnuplot & set_ylabel (const std::string &label="x")

      set x axis label
• Gnuplot & set_xlabel (const std::string &label="y")
      set y axis label

    Gnuplot & set_zlabel (const std::string &label="z")

      set z axis label
• Gnuplot & set xrange (const double iFrom, const double iTo)
      set axis - ranges

    Gnuplot & set_yrange (const double iFrom, const double iTo)

      set y-axis - ranges

    Gnuplot & set_zrange (const double iFrom, const double iTo)

      set z-axis - ranges

    Gnuplot & set_xautoscale ()

· Gnuplot & set_yautoscale ()
· Gnuplot & set_zautoscale ()

    Gnuplot & set xlogscale (const double base=10)

      turns on/off log scaling for the specified xaxis (logscale is not set by default)

    Gnuplot & set_ylogscale (const double base=10)

      turns on/off log scaling for the specified yaxis (logscale is not set by default)

    Gnuplot & set zlogscale (const double base=10)

      turns on/off log scaling for the specified zaxis (logscale is not set by default)

    Gnuplot & unset xlogscale ()

    Gnuplot & unset_ylogscale ()

    Gnuplot & unset zlogscale ()

    Gnuplot & set_cbrange (const double iFrom, const double iTo)

      set palette range (autoscale by default)

    Gnuplot & plotfile x (const std::string &filename, const unsigned int column=1, const std::string &title="")

    template<typename X >

  Gnuplot & plot x (const X &x, const std::string &title="")
      from std::vector
• Gnuplot & plotfile xy (const std::string &filename, const unsigned int column x=1, const unsigned int
  column y=2, const std::string &title="")

    template<typename X , typename Y >

  Gnuplot & plot_xy (const X &x, const Y &y, const std::string &title="")
     from data
• Gnuplot & plotfile xy err (const std::string &filename, const unsigned int column x=1, const unsigned int
  column y=2, const unsigned int column dy=3, const std::string &title="")

    template<typename X , typename Y , typename E >

  Gnuplot & plot_xy_err (const X &x, const Y &y, const E &dy, const std::string &title="")
      from data
· Gnuplot & plotfile_xyz (const std::string &filename, const unsigned int column_x=1, const unsigned int
```

column_y=2, const unsigned int column_z=3, const std::string &title="")

Gnuplot & plot_xyz (const X &x, const Y &y, const Z &z, const std::string &title="")

template<typename X , typename Y , typename Z >

Generated by Doxygen

from std::vector

- Gnuplot & plot_slope (const double a, const double b, const std::string &title="")
 plot an equation of the form: y = ax + b, you supply a and b
- Gnuplot & plot_equation (const std::string &equation, const std::string &title="")
- Gnuplot & plot_equation3d (const std::string &equation, const std::string &title="")
- Gnuplot & plot_image (const unsigned char *ucPicBuf, const unsigned int iWidth, const unsigned int iHeight, const std::string &title="")

plot image

· Gnuplot & replot (void)

replot repeats the last plot or splot command. this can be useful for viewing a plot with different set options, or when generating the same plot for several devices (showonscreen, savetops)

Gnuplot & reset plot ()

resets a gnuplot session (next plot will erase previous ones)

· Gnuplot & reset all ()

resets a gnuplot session and sets all variables to default

void remove_tmpfiles ()

deletes temporary files

bool is_valid ()

Is the gnuplot session valid ??

Static Public Member Functions

- static bool set_GNUPlotPath (const std::string &path)
 optional function: set Gnuplot path manual attention: for windows: path with slash '/' not backslash '\'
- static void set terminal std (const std::string &type)

4.5.1 Member Function Documentation

4.5.1.1 is_valid() bool Gnuplot::is_valid () [inline] Is the gnuplot session valid ?? Parameters Returns true if valid, false if not 4.5.1.2 operator<<<()

Gnuplot& Gnuplot::operator<< (</pre>

const std::string & cmdstr) [inline]

Sends a command to an active gnuplot session, identical to cmd() send a command to gnuplot using the << operator.

Parameters

```
cmdstr -> the command string
```

Returns

<- a reference to the gnuplot object

4.5.1.3 plot_equation()

plot an equation supplied as a std::string y=f(x), write only the function f(x) not y= the independent variable has to be x binary operators: ** exponentiation, * multiply, / divide, + add, - substract, % modulo unary operators: - minus, ! factorial elementary functions: rand(x), abs(x), sgn(x), ceil(x), floor(x), int(x), imag(x), real(x), arg(x), sqrt(x), exp(x), log(x), log10(x), sin(x), cos(x), tan(x), acos(x), atan(x), atan2(y,x), sinh(x), cosh(x), tanh(x), acosh(x), atanh(x) special functions: erf(x), erfc(x), inverf(x), gamma(x), igamma(a,x), lgamma(x), ibeta(p,q,x), besj0(x), besy1(x), besy1(x), lambertw(x) statistical fuctions: norm(x), invnorm(x)

4.5.1.4 plot_equation3d()

plot an equation supplied as a std::string z=f(x,y), write only the function f(x,y) not z= the independent variables have to be x and y

4.5.1.5 plot_image()

plot image

• note that this function is not valid for versions of GNUPlot below 4.2

```
4.5.1.6 plot_x()
template<typename X >
Gnuplot & Gnuplot::plot_x (
              const X \& x,
              const std::string & title = "" )
from std::vector
Plots a 2d graph from a list of doubles: x.
4.5.1.7 plot_xy()
template<typename {\tt X} , typename {\tt Y} >
Gnuplot & Gnuplot::plot_xy (
              const X & x,
              const Y & y,
              const std::string & title = """)
from data
Plots a 2d graph from a list of doubles: x y.
4.5.1.8 plot_xy_err()
template<typename {\tt X} , typename {\tt Y} , typename {\tt E} >
Gnuplot & Gnuplot::plot_xy_err (
              const X & x,
              const Y & y,
              const E & dy,
              const std::string & title = "" )
from data
plot x,y pairs with dy errorbars
4.5.1.9 plotfile_x()
Gnuplot & Gnuplot::plotfile_x (
              const std::string & filename,
              const unsigned int column = 1,
              const std::string & title = "" )
plot a single std::vector: x from file
4.5.1.10 plotfile_xy()
Gnuplot & Gnuplot::plotfile_xy (
              const std::string & filename,
              const unsigned int column_x = 1,
              const unsigned int column_y = 2,
              const std::string & title = "" )
```

plot x,y pairs: x y from file

4.5.1.11 plotfile_xy_err()

plot x,y pairs with dy errorbars: x y dy from file

4.5.1.12 plotfile_xyz()

plot x,y,z triples: x y z from file

4.5.1.13 replot()

replot repeats the last plot or splot command. this can be useful for viewing a plot with different set options, or when generating the same plot for several devices (showonscreen, savetops)

Parameters

_

Returns

4.5.1.14 set_contour()

enables/disables contour drawing for surfaces (for 3d plot) base, surface, both

4.5.1.15 set_GNUPlotPath()

optional function: set Gnuplot path manual attention: for windows: path with slash '/' not backslash '\'

D -		 -4	١.	
	ıra			re

path	-> the gnuplot path
------	---------------------

Returns

true on success, false otherwise

4.5.1.16 set_hidden3d()

```
Gnuplot& Gnuplot::set_hidden3d ( ) [inline]
```

enables/disables hidden line removal for surface plotting (for 3d plot)

Parameters

Returns

<- reference to the gnuplot object

4.5.1.17 set_legend()

```
Gnuplot & Gnuplot::set_legend (
                      const std::string & position = "default" )
```

switches legend on/off position: inside/outside, left/center/right, top/center/bottom, nobox/box

4.5.1.18 set_multiplot()

```
Gnuplot& Gnuplot::set_multiplot ( ) [inline]
```

set the mulitplot mode

Parameters

Returns

<- reference to the gnuplot object

4.5.1.19 set_smooth()

interpolation and approximation of data, arguments: csplines, bezier, acsplines (for data values > 0), sbezier, unique, frequency (works only with plot_x, plot_xy, plotfile_x, plotfile_xy (if smooth is set, set_style has no effekt on data plotting)

4.5.1.20 set_style()

set line style (some of these styles require additional information): lines, points, linespoints, impulses, dots, steps, fsteps, bisteps, boxes, histograms, filledcurves

4.5.1.21 set_surface()

```
Gnuplot& Gnuplot::set_surface ( ) [inline]
```

enables/disables the display of surfaces (for 3d plot)

Parameters

Returns

<- reference to the gnuplot object

4.5.1.22 set_terminal_std()

optional: set standart terminal, used by showonscreen defaults: Windows - win, Linux - x11, Mac - aqua

Parameters

type | -> the terminal type

Returns

_

```
4.5.1.23 set_title()
Gnuplot& Gnuplot::set_title (
              const std::string & title = "" ) [inline]
sets and clears the title of a gnuplot session
Parameters
 title | -> the title of the plot [optional, default == ""]
Returns
     <- reference to the gnuplot object
4.5.1.24 set_xautoscale()
Gnuplot& Gnuplot::set_xautoscale ( ) [inline]
autoscale axis (set by default) of xaxis
Parameters
Returns
     <- reference to the gnuplot object
4.5.1.25 set_yautoscale()
Gnuplot& Gnuplot::set_yautoscale ( ) [inline]
autoscale axis (set by default) of yaxis
Parameters
```

Returns

<- reference to the gnuplot object

4.5.1.26 set_zautoscale()
<pre>Gnuplot& Gnuplot::set_zautoscale () [inline]</pre>
autoscale axis (set by default) of zaxis
Parameters —
Returns <- reference to the gnuplot object
4.5.1.27 unset_contour()
<pre>Gnuplot& Gnuplot::unset_contour () [inline]</pre>
contour is not set by default, it disables contour drawing for surfaces
Parameters
Returns <- reference to the gnuplot object
4.5.1.28 unset_hidden3d()
<pre>Gnuplot& Gnuplot::unset_hidden3d () [inline]</pre>
hidden3d is not set by default
Parameters
Returns
<- reference to the gnuplot object

4.5.1.29 unset_legend()
<pre>Gnuplot& Gnuplot::unset_legend () [inline]</pre>
Switches legend off attention:legend is set by default.
Parameters
Returns <- reference to the gnuplot object
4.5.1.30 unset_multiplot()
<pre>Gnuplot& Gnuplot::unset_multiplot () [inline]</pre>
unsets the mulitplot mode
Parameters —
Returns <- reference to the gnuplot object
4.5.1.31 unset_smooth()
<pre>Gnuplot& Gnuplot::unset_smooth () [inline]</pre>
unset smooth attention: smooth is not set by default
Parameters
Returns
<- a reference to a gnuplot object

4.5.1.35 unset_ylogscale()
<pre>Gnuplot& Gnuplot::unset_ylogscale () [inline]</pre>
turns off log scaling for the y axis
Parameters
Returns <- reference to the gnuplot object
4.5.1.36 unset_zlogscale()
<pre>Gnuplot& Gnuplot::unset_zlogscale () [inline]</pre>
turns off log scaling for the z axis
Parameters
Returns <- reference to the gnuplot object
The documentation for this class was generated from the following files:
includes/gnuplot_i.hppsrc/gnuplot_i.cpp
4.6 GnuplotException Class Reference
A C++ interface to gnuplot.

#include <gnuplot_i.hpp>

Inheritance diagram for GnuplotException:

Collaboration diagram for GnuplotException:

Public Member Functions

• GnuplotException (const std::string &msg)

4.6.1 Detailed Description

A C++ interface to gnuplot.

The interface uses pipes and so won't run on a system that doesn't have POSIX pipe support Tested on Windows (MinGW and Visual C++) and Linux (GCC)

Version history: 0. C interface by N. Devillard (27/01/03)

- 1. C++ interface: direct translation from the C interface by Rajarshi Guha (07/03/03)
- 2. corrections for Win32 compatibility by V. Chyzhdzenka (20/05/03)
- 3. some member functions added, corrections for Win32 and Linux compatibility by M. Burgis (10/03/08)
- 4. Move function definition into gnuplot_i.cpp by X. BROQUERE (25/10/11)

Requirements:

- gnuplot has to be installed (http://www.gnuplot.info/download.html)
- for Windows: set Path-Variable for Gnuplot path (e.g. C:/program files/gnuplot/bin) or set Gnuplot path with: Gnuplot::set_GNUPlotPath(const std::string &path);

The documentation for this class was generated from the following file:

· includes/gnuplot i.hpp

4.7 Kernel Class Reference

Class for the kernel computations.

```
#include <Kernel.hpp>
```

Public Member Functions

Kernel ()

Class constructor.

Kernel (dMatrix K)

Class constructor.

void setType (int type)

setType Set the kernel type used in the kernel computations.

void setParam (int param)

setParam Set the kernel parameter used in the kernel computations.

void setKernelMatrix (dMatrix K)

setKernelMatrix Set a pre computed kernel matrix.

• dMatrix getKernelMatrix ()

getKernelMatrix Get the kernel matrix.

void compute (Data samples)

compute Compute the kernel matrix with the given type and parameter.

• double function (Point one, Point two, int dim)

function Compute the kernel function between two points.

• double norm (Data data)

norm Computes norm in dual variables.

4.7.1 Detailed Description

Class for the kernel computations.

4.7.2 Constructor & Destructor Documentation

4.7.2.1 Kernel()

```
\label{eq:Kernel} \mbox{Kernel::Kernel (} \mbox{ $d$Matrix $K$ )}
```

Class constructor.

Parameters

Kernel matrix to be set in initialization.

4.7.3 Member Function Documentation

4.7.3.1 compute()

compute Compute the kernel matrix with the given type and parameter.

Parameters

samples Data used to compute the kernel matrix.

4.7.3.2 function()

function Compute the kernel function between two points.

Parameters

one	first point.
two	second point.
dim	Dimension of the points.

Returns

double

4.7.3.3 getKernelMatrix()

```
dMatrix Kernel::getKernelMatrix ( )
```

getKernelMatrix Get the kernel matrix.

Returns

```
std::vector<std::vector<double>>
```

4.7.3.4 norm()

norm Computes norm in dual variables.

Parameters

data	Dataset to compute norm.
------	--------------------------

Returns

double

4.7.3.5 setKernelMatrix()

```
void Kernel::setKernelMatrix ( {\tt dMatrix}\ K\ )
```

setKernelMatrix Set a pre computed kernel matrix.

Parameters

K Kernel matrix to be set.

4.7.3.6 setParam()

setParam Set the kernel parameter used in the kernel computations.

Parameters

param	parameter to be set.

4.7.3.7 setType()

setType Set the kernel type used in the kernel computations.

Parameters

```
type Kernel type.
```

The documentation for this class was generated from the following files:

- includes/Kernel.hpp
- src/Kernel.cpp

4.8 PerceptronDual Class Reference

Wrapper for the implementation of the Perceptron dual algorithm.

```
#include <Perceptron.hpp>
```

Inheritance diagram for PerceptronDual:

Collaboration diagram for PerceptronDual:

Public Member Functions

- PerceptronDual (Data *samples=NULL, double rate=0.5, Kernel *K=NULL, Solution *initial_solution=NU ← LL)
- bool train ()

Function that execute the training phase of a classification algorithm.

• double evaluate (Point p)

Returns the class of a feature point based on the trained classifier.

Additional Inherited Members

4.8.1 Detailed Description

Wrapper for the implementation of the Perceptron dual algorithm.

4.8.2 Member Function Documentation

4.8.2.1 evaluate()

Returns the class of a feature point based on the trained classifier.

Parameters

Point x (???) Features point to be evaluated.

Returns

int

Implements Classifier.

4.8.2.2 train()

```
bool PerceptronDual::train ( ) [virtual]
```

Function that execute the training phase of a classification algorithm.

Returns

void

Implements Classifier.

The documentation for this class was generated from the following files:

- includes/Perceptron.hpp
- src/Perceptron.cpp

4.9 PerceptronFixedMarginDual Class Reference

Wrapper for the implementation of the Perceptron dual with fixed margin algorithm.

```
#include <Perceptron.hpp>
```

Inheritance diagram for PerceptronFixedMarginDual:

 $Collaboration\ diagram\ for\ Perceptron Fixed Margin Dual:$

Public Member Functions

- PerceptronFixedMarginDual (Data *samples=NULL, double gamma=1.0, double rate=0.5, Kernel *K=N ← ULL, Solution *initial_solution=NULL)
- bool train ()

Function that execute the training phase of a classification algorithm.

• double evaluate (Point p)

Returns the class of a feature point based on the trained classifier.

Additional Inherited Members

4.9.1 Detailed Description

Wrapper for the implementation of the Perceptron dual with fixed margin algorithm.

4.9.2 Member Function Documentation

4.9.2.1 evaluate()

```
\label{lem:double PerceptronFixedMarginDual::evaluate (} $$ Point $p$ ) [virtual]
```

Returns the class of a feature point based on the trained classifier.

Parameters

```
Point x (???) Features point to be evaluated.
```

Returns

int

Implements Classifier.

4.9.2.2 train()

```
bool PerceptronFixedMarginDual::train ( ) [virtual]
```

Function that execute the training phase of a classification algorithm.

Returns

void

Implements Classifier.

The documentation for this class was generated from the following files:

- includes/Perceptron.hpp
- · src/Perceptron.cpp

4.10 PerceptronFixedMarginPrimal Class Reference

Wrapper for the implementation of the Perceptron primal with fixed margin algorithm.

```
#include <Perceptron.hpp>
```

Inheritance diagram for PerceptronFixedMarginPrimal:

Collaboration diagram for PerceptronFixedMarginPrimal:

Public Member Functions

- PerceptronFixedMarginPrimal (Data *samples=NULL, double gamma=1.0, double q=2, double rate=0.5, Solution *initial_solution=NULL)
- bool train ()

Function that execute the training phase of a classification algorithm.

• double evaluate (Point p)

Returns the class of a feature point based on the trained classifier.

Additional Inherited Members

4.10.1 Detailed Description

Wrapper for the implementation of the Perceptron primal with fixed margin algorithm.

4.10.2 Member Function Documentation

4.10.2.1 evaluate()

```
\label{lem:double PerceptronFixedMarginPrimal::evaluate (} $$ Point $p$ ) [virtual]
```

Returns the class of a feature point based on the trained classifier.

Parameters

```
Point | x (???) Features point to be evaluated.
```

Returns

int

Implements Classifier.

4.10.2.2 train()

```
bool PerceptronFixedMarginPrimal::train ( ) [virtual]
```

Function that execute the training phase of a classification algorithm.

Returns

void

Implements Classifier.

The documentation for this class was generated from the following files:

- includes/Perceptron.hpp
- src/Perceptron.cpp

4.11 PerceptronPrimal Class Reference

Wrapper for the implementation of the Perceptron primal algorithm.

```
#include <Perceptron.hpp>
```

Inheritance diagram for PerceptronPrimal:

Collaboration diagram for PerceptronPrimal:

Public Member Functions

• PerceptronPrimal (Data *samples=NULL, double q=2, double rate=0.5, Solution *initial_solution=NULL)

· bool train ()

Function that execute the training phase of a classification algorithm.

double evaluate (Point p)

Returns the class of a feature point based on the trained classifier.

Additional Inherited Members

4.11.1 Detailed Description

Wrapper for the implementation of the Perceptron primal algorithm.

4.11.2 Member Function Documentation

4.11.2.1 evaluate()

Returns the class of a feature point based on the trained classifier.

Parameters

```
Point x (???) Features point to be evaluated.
```

Returns

int

Implements Classifier.

4.11.2.2 train()

```
bool PerceptronPrimal::train ( ) [virtual]
```

Function that execute the training phase of a classification algorithm.

Returns

void

Implements Classifier.

The documentation for this class was generated from the following files:

- includes/Perceptron.hpp
- src/Perceptron.cpp

4.12 Point Class Reference 51

4.12 Point Class Reference

Class of a Point of doubles in a space of n dimensions.

```
#include <Point.hpp>
```

Public Member Functions

- **Point** (int dim, int val=0)
- double dot (std::vector< double > p)

Computes the dot product with a vector.

• double norm (int p=2)

Returns the p-norm of the point.

Public Attributes

```
std::vector< double > x
```

Features values.

• double y = 0

Point classification.

- double alpha = 0.0
- int id = 0

Point identification.

Friends

• std::ostream & operator << (std::ostream &output, const Point &p)

4.12.1 Detailed Description

Class of a Point of doubles in a space of n dimensions.

4.12.2 Member Function Documentation

```
4.12.2.1 dot() double Point::dot ( std::vector < double > p )
```

Computes the dot product with a vector.

Parameters

p (???)

Returns

double

4.12.2.2 norm()

```
double Point::norm ( int p = 2)
```

Returns the p-norm of the point.

Parameters

 $p \mid (???)$ p of the norm (euclidean norm is the default).

Returns

double

The documentation for this class was generated from the following files:

- includes/Point.hpp
- src/Point.cpp

4.13 PrimalClassifier Class Reference

Inheritance diagram for PrimalClassifier:

Collaboration diagram for PrimalClassifier:

Public Member Functions

- void setNorm (double q)
 - setNorm Set the norm used by the classifier. (Euclidean norm is the default)
- Solution getSolution ()

getSolution Returns the solution of the primal classifier.

Protected Attributes

- std::vector < double > w
 - Weights vector.
- double q = 2

Norm used in the classification. (Euclidean Norm is the default)

• double flexible = 0.0

Flexibilidade.

4.13.1 Member Function Documentation

4.13.1.1 getSolution()

```
Solution PrimalClassifier::getSolution ( )
```

getSolution Returns the solution of the primal classifier.

Returns

Solution

4.13.1.2 setNorm()

```
void PrimalClassifier::setNorm ( double q )
```

setNorm Set the norm used by the classifier. (Euclidean norm is the default)

Parameters

q Norm that will be used by the classifier.

The documentation for this class was generated from the following files:

- includes/PrimalClassifier.hpp
- src/PrimalClassifier.cpp

4.14 Solution Class Reference

Inheritance diagram for Solution:

Collaboration diagram for Solution:

Public Attributes

- std::vector< double > w
 Weights vector.
- · Kernel K

Kernel for Dual methods.

- $\bullet \quad \text{std::vector} < \text{double} > \underset{}{\text{alpha}}$
 - Alpha Vector for Dual methods.
- double bias = 0

Bias of the solution.

• std::vector< int > fnames

Features names of the resulting solution.

• double margin = 0

Margin generated from the classifier that generated the solution.

• double norm = 0

Norm of the solution.

The documentation for this class was generated from the following file:

• includes/Solution.hpp

4.15 Statistics Class Reference

Class with methods for statistical computations.

#include <Statistics.hpp>

Static Public Member Functions

- static double mean (std::vector< double > p)

Compute the mean (average) of a vector.

static double getFeatureMean (Data data, int index)

Computes the mean of a feature in the sample.

static double variance (std::vector< double > p)

Compute the variance of a vector.

• static double variance (Data data, int index)

Compute the variance of a sample.

static double stdev (std::vector< double > p)

Compute the standard deviation of a vector.

static double getFeatureStdev (Data data, int index)

Computes the standard deviation of a feature.

• static double getRadius (Data data, int index, double q)

Returns radius of the ball that circ. the data.

static double getDistCenters (Data data, int index)

Returns distance of centers of the classes.

static double getDistCentersWithoutFeats (Data data, std::vector< int > feats, int index)

Returns distance of centers of the classes without given features.

Friends

· class Data

4.15.1 Detailed Description

Class with methods for statistical computations.

4.15.2 Member Function Documentation

4.15.2.1 getDistCenters()

Returns distance of centers of the classes.

Parameters

data	Dataset to compute the distance.
index	Feature to be ignored (-1 uses all features).

Returns

double

4.15.2.2 getDistCentersWithoutFeats()

Returns distance of centers of the classes without given features.

Parameters

data	Dataset to compute the distance.
feats	Features to be excluded from the computation.
index	Feature to be ignored (-1 uses all features).

Returns

double

4.15.2.3 getFeatureMean()

Computes the mean of a feature in the sample.

Parameters

(data	(???) Sample where the feature is located.
i	index	(???) Index of the feature to compute the mean.

Returns

double

4.15.2.4 getFeatureStdev()

Computes the standard deviation of a feature.

Parameters

data	(???) Sample where the feature is located.
index	(???) Index of teh feature to compute the standard deviation.

Returns

double

4.15.2.5 getRadius()

Returns radius of the ball that circ. the data.

Parameters

data	Dataset to compute the radius.
index	Feature to be ignored (-1 uses all features).
q	Lp-Norm to be used.

Returns

double

4.15.2.6 mean()

```
double Statistics::mean ( {\tt std::vector} < {\tt double} \, > \, p \,\,) \quad [{\tt static}]
```

Compute the mean (average) of a vector.

Parameters

```
p (???) Point to compute the mean.
```

Returns

double

```
4.15.2.7 stdev() \label{eq:continuous} \mbox{double Statistics::stdev (} \\ \mbox{std::vector< double } > p \mbox{ ) [static]}
```

Compute the standard deviation of a vector.

Parameters

```
p (???) Point to compute stdev.
```

Returns

double

```
4.15.2.8 variance() [1/2] static double Statistics::variance ( std::vector < double > p ) \quad [static]
```

Compute the variance of a vector.

Parameters

```
p (???) Vector to compute the variance.
```

Returns

double

Compute the variance of a sample.

Parameters

data	(???) Sample to compute the variance.
index	(???) Index of the feature to be ignored. (-1 dont ignore any feature)

Returns

double

The documentation for this class was generated from the following files:

- · includes/Statistics.hpp
- · src/Statistics.cpp

4.16 Validation Class Reference

Class of methods for the validation of ML algorithms.

```
#include <Validation.hpp>
```

Public Member Functions

- Validation (Data *sample, Classifier *classifier=NULL)
- void partTrainTest (int fold, unsigned int seed)

Divide sample into train and test.

- double **kFold** (int fold, int seed)
- void validation (int fold, int qtde)
- Data getTestSample ()
- Data getTrainSample ()

4.16.1 Detailed Description

Class of methods for the validation of ML algorithms.

4.16.2 Member Function Documentation

4.16.2.1 partTrainTest()

Divide sample into train and test.

Parameters

fold	Number of folds.
seed	Seed to feed the pseudo random number generator.

The documentation for this class was generated from the following files:

- includes/Validation.hpp
- src/Validation.cpp

4.17 ValidationSolution Class Reference

Solution for the validation of a ML method.

#include <ValidationSolution.hpp>

Inheritance diagram for ValidationSolution:

Collaboration diagram for ValidationSolution:

Additional Inherited Members

4.17.1 Detailed Description

Solution for the validation of a ML method.

The documentation for this class was generated from the following file:

• includes/ValidationSolution.hpp

4.18 Visualisation Class Reference

Class for visualize data using gnuplot.

```
#include <Visualisation.hpp>
```

Public Member Functions

- Visualisation (Data *sample)
- void setSample (Data sample)

Set sample to be visualized.

void setTitle (std::string title)

Set plot title.

void setStyle (std::string style)

Set plot style. (points, lines, etc.)

void plot2D (int x, int y)

Plot the selected features in 2D.

• void plot3D (int x, int y, int z)

Plot the selected features in 3D.

• void plot2DwithHyperplane (int x, int y, Solution w)

Plot the data in 2D with separated by the hyperplane in the solution.

• void plot3DwithHyperplane (int x, int y, int z, Solution w)

Plot the data in 2D with separated by the hyperplane in the solution.

4.18.1 Detailed Description

Class for visualize data using gnuplot.

4.18.2 Member Function Documentation

4.18.2.1 plot2D()

Plot the selected features in 2D.

Parameters

	(???) Feature to be used in the x-axis.
у	(???) Feature to be used in the y-axis.

Returns

void

4.18.2.2 plot2DwithHyperplane()

```
void Visualisation::plot2DwithHyperplane (
    int x,
    int y,
    Solution w )
```

Plot the data in 2D with separated by the hyperplane in the solution.

Parameters

X	(???) Feature to be used in the x-axis.
У	(???) Feature to be used in the y-axis.

Returns

void

4.18.2.3 plot3D()

Plot the selected features in 3D.

Parameters

Х	(???) Feature to be used in the x-axis.
У	(???) Feature to be used in the y-axis.
Z	(???) Feature to be used in the z-axis.

Returns

void

4.18.2.4 plot3DwithHyperplane()

```
void Visualisation::plot3DwithHyperplane (
    int x,
    int y,
    int z,
    Solution w )
```

Plot the data in 2D with separated by the hyperplane in the solution.

Parameters

X	(???) Feature to be used in the x-axis.
У	(???) Feature to be used in the y-axis.
Z	(???) Feature to be used in the z-axis.

Returns

void

4.18.2.5 setSample()

Set sample to be visualized.

Parameters

```
sample (???) Data to set for visualization.
```

Returns

void

4.18.2.6 setStyle()

```
void Visualisation::setStyle (
    std::string style )
```

Set plot style. (points, lines, etc.)

Parameters

```
style (???) Style to be set.
```

Returns

void

4.18.2.7 setTitle()

```
void Visualisation::setTitle (
    std::string title )
```

Set plot title.

Parameters

```
title (???) Plot title.
```

Returns

void

The documentation for this class was generated from the following files:

- includes/Visualisation.hpp
- src/Visualisation.cpp

66 Class Documentation

Chapter 5

File Documentation

5.1 includes/Utils.hpp File Reference

#include <string>
#include <vector>
Include dependency graph for Utils.hpp:

This graph shows which files directly or indirectly include this file:

Macros

• #define INF 1E8

Typedefs

typedef std::vector< std::vector< double >> dMatrix

Enumerations

enum NormType { NORM_LINF = 0, NORM_L1 = 1, NORM_L2 = 2 }

Functions

```
• bool is_number (std::string str)
```

Verify if the string is a number.

• int stoin (std::string str)

Converts the string to an integer.

• double stodn (std::string str)

Converts the string to a double.

double maxAbsElement (std::vector< double > x)

Returns the max absolute element.

• std::string itos (int n)

itos Integer to string conversion.

• std::string dtoa (double n)

dtoa Double to string conversion.

5.1.1 Detailed Description

Utils functions

Author

Mateus Coutinho Marim

5.1.2 Function Documentation

```
5.1.2.1 dtoa()
```

```
std::string dtoa ( double n )
```

dtoa Double to string conversion.

Parameters

n Double to be converted.

Returns

string

5.1.2.2 is_number()

```
bool is_number (
          std::string str )
```

Verify if the string is a number.

Parameters

str String to be tested.

Returns

bool

5.1.2.3 itos()

```
std::string itos ( int n)
```

itos Integer to string conversion.

Parameters

```
n Integer to be converted.
```

Returns

string

5.1.2.4 maxAbsElement()

```
double maxAbsElement ( {\tt std::vector} < {\tt double} \, > \, x \,\,)
```

Returns the max absolute element.

Parameters

x The vector used to obtain the max element.

Returns

The max absolute element found.

5.1.2.5 stodn()

Converts the string to a double.

Parameters

str The string to be converted.

Returns

The double resulted from the conversion.

5.1.2.6 stoin()

Converts the string to an integer.

Parameters

str String to be converted.

Returns

The integer resulted from the conversion.

5.2 src/Data.cpp File Reference

Implementation of the Data class methods.

```
#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <sstream>
#include <iterator>
#include <fstream>
#include <ctime>
#include <cctime>
#include <cstdio>
#include "../includes/Data.hpp"
#include "../includes/Utils.hpp"
Include dependency graph for Data.cpp:
```


Functions

• ostream & operator << (ostream &output, const Data &data)

5.2.1 Detailed Description

Implementation of the Data class methods.

5.3 src/Point.cpp File Reference

Implementation of the Point class methods.

```
#include <cmath>
#include "../includes/Point.hpp"
```

Include dependency graph for Point.cpp:

Functions

ostream & operator<< (ostream &output, const Point &p)

5.3.1 Detailed Description

Implementation of the Point class methods.

5.4 src/Utils.cpp File Reference

Implementation of methods for general use in the system.

```
#include <cmath>
#include <cstring>
```

#include "../includes/Utils.hpp"
Include dependency graph for Utils.cpp:

Macros

- #define PRECISION 1E-9
- #define MAX_NUMBER_STRING_SIZE 32

Functions

- bool is_number (string str)
- int **stoin** (string str)
- double **stodn** (string str)
- string itos (int n)

itos Integer to string conversion.

- void reverse (char *str, int len)
- int intToStr (int x, char str[], int d)
- string dtoa (double n)

dtoa Double to string conversion.

double maxAbsElement (vector< double > x)

5.4.1 Detailed Description

Implementation of methods for general use in the system.

Utils functions

Author

Mateus Coutinho Marim

5.4.2 Function Documentation

```
5.4.2.1 dtoa() string dtoa() double n()
```

dtoa Double to string conversion.

Parameters

n Double to be converted.

Returns

string

```
5.4.2.2 itos()
```

```
string itos ( \inf \ n \ )
```

itos Integer to string conversion.

Parameters

n Integer to be converted.

Returns

string

Index

changeXVector	getSolution, 23
Data, 13	setKernel, 23
Classifier, 7	ovoluete
evaluate, 9	evaluate
getSteps, 9	Classifier, 9
getUpdates, 9	PerceptronDual, 42
setSamples, 10	PerceptronFixedMarginDual, 45
train, 10	PerceptronFixedMarginPrimal, 47
compute	PerceptronPrimal, 50
Kernel, 39	F
сору	FeatureSelection, 23
Data, 13	function
copyZero	Kernel, 39
Data, 13	
	getDim
Data, 10	Data, 14
changeXVector, 13	getDistCenters
copy, 13	Statistics, 56
copyZero, 13	getDistCentersWithoutFeats
Data, 12	Statistics, 57
getDim, 14	getFeatureMean
getFeaturesNames, 14	Statistics, 57
getIndex, 14	getFeatureStdev
getNumberNegativePoints, 14	Statistics, 57
getNumberPositivePoints, 15	getFeaturesNames
getPoint, 15	Data, 14
getPoints, 15	getIndex
getSize, 15	Data, 14
getStatistics, 16	getKernelMatrix
insertFeatures, 16	Kernel, 39
insertPoint, 16, 17	getNumberNegativePoints
isEmpty, 17	Data, 14
isNormalized, 17	getNumberPositivePoints
join, 17	Data, 15
load, 18	getPoint
normalize, 18	Data, 15
removeFeatures, 19	getPoints
removePoint, 19	Data, 15
removePoints, 19	getRadius
setClasses, 20	Statistics, 58
setDim, 20	getSize
setFeaturesNames, 20	Data, 15
setPoint, 21	getSolution
write, 21	DualClassifier, 23
dot	PrimalClassifier, 53
Point, 51	getStatistics
dtoa	Data, 16
Utils.cpp, 75	
	getSteps Classifier 9
Utils.hpp, 68	Classifier, 9
DualClassifier, 22	getUpdates

78 INDEX

Classifier, 9	Kernel, 38
Gnuplot, 24	compute, 39
is_valid, 26	function, 39
operator<<, 26	getKernelMatrix, 39
plot_equation, 27	Kernel, 38
plot_equation3d, 27	norm, 40
plot_image, 27	setKernelMatrix, 40
plot_x, 27	setParam, 40
plot_xy, 28	setType, 40
plot_xy_err, 28	land
plotfile_x, 28	load
plotfile_xy, 28	Data, 18
plotfile_xy_err, 28	maxAbsElement
plotfile_xyz, 29	Utils.hpp, 69
replot, 29	mean
set_GNUPlotPath, 29	Statistics, 58
set_contour, 29	Statistics, 30
set_hidden3d, 30	norm
set_legend, 30	Kernel, 40
set_multiplot, 30	Point, 52
set_smooth, 30	normalize
set_style, 31	Data, 18
set_surface, 31	Data, 10
set_terminal_std, 31	operator<<
set_title, 31	Gnuplot, 26
set_xautoscale, 32	2, 2, 2
set_yautoscale, 32	partTrainTest
set_zautoscale, 32	Validation, 60
unset_contour, 33	PerceptronDual, 41
unset_hidden3d, 33	evaluate, 42
unset_legend, 33 unset_multiplot, 34	train, 43
_ · ·	PerceptronFixedMarginDual, 43
unset_smooth, 34 unset_surface, 34	evaluate, 45
unset_title, 35	train, 45
unset_xlogscale, 35	PerceptronFixedMarginPrimal, 46
unset_ylogscale, 35	evaluate, 47
unset zlogscale, 36	train, 48
GnuplotException, 36	PerceptronPrimal, 48
anaplotException, 30	evaluate, 50
includes/Utils.hpp, 67	train, 50
insertFeatures	plot2DwithHyperplane
Data, 16	Visualisation, 63
insertPoint	plot2D
Data, 16, 17	Visualisation, 62
is number	plot3DwithHyperplane
Utils.hpp, 69	Visualisation, 64
is valid	plot3D
Gnuplot, 26	Visualisation, 63
isEmpty	plot_equation
Data, 17	Gnuplot, 27
isNormalized	plot_equation3d
Data, 17	Gnuplot, 27
itos	plot_image
Utils.cpp, 75	Gnuplot, 27
Utils.hpp, 69	plot_x
1:1:4	Gnuplot, 27
join	plot_xy
Data, 17	Gnuplot, 28

INDEX 79

plot_xy_err	DualClassifier, 23
Gnuplot, 28	setKernelMatrix
plotfile_x	Kernel, 40
Gnuplot, 28	setNorm
plotfile_xy	PrimalClassifier, 54
Gnuplot, 28	setParam
plotfile_xy_err	Kernel, 40
Gnuplot, 28	setPoint
plotfile_xyz	Data, 21
Gnuplot, 29	setSample
·	•
Point, 51	Visualisation, 64
dot, 51	setSamples
norm, 52	Classifier, 10
PrimalClassifier, 52	setStyle
getSolution, 53	Visualisation, 64
setNorm, 54	setTitle
	Visualisation, 65
removeFeatures	setType
Data, 19	Kernel, 40
removePoint	Solution, 54
Data, 19	src/Data.cpp, 71
removePoints	src/Point.cpp, 72
Data, 19	src/Utils.cpp, 73
replot	Statistics, 55
Gnuplot, 29	getDistCenters, 56
	getDistCentersWithoutFeats, 57
set_GNUPlotPath	getFeatureMean, 57
Gnuplot, 29	getFeatureStdev, 57
set_contour	getRadius, 58
Gnuplot, 29	mean, 58
set hidden3d	stdev, 59
Gnuplot, 30	
set legend	variance, 59
Gnuplot, 30	stdev
set_multiplot	Statistics, 59
Gnuplot, 30	stodn
set smooth	Utils.hpp, 71
Gnuplot, 30	stoin
set style	Utils.hpp, 71
Gnuplot, 31	
set surface	train
-	Classifier, 10
Gnuplot, 31	PerceptronDual, 43
set_terminal_std	PerceptronFixedMarginDual, 45
Gnuplot, 31	PerceptronFixedMarginPrimal, 48
set_title	PerceptronPrimal, 50
Gnuplot, 31	
set_xautoscale	unset_contour
Gnuplot, 32	Gnuplot, 33
set_yautoscale	unset_hidden3d
Gnuplot, 32	Gnuplot, 33
set_zautoscale	unset_legend
Gnuplot, 32	Gnuplot, 33
setClasses	unset_multiplot
Data, 20	Gnuplot, 34
setDim	unset_smooth
Data, 20	Gnuplot, 34
setFeaturesNames	unset_surface
Data, 20	Gnuplot, 34
setKernel	unset_title
JOHNOTHE	unoct_title

80 INDEX

```
Gnuplot, 35
unset_xlogscale
     Gnuplot, 35
unset_ylogscale
     Gnuplot, 35
unset_zlogscale
     Gnuplot, 36
Utils.cpp
     dtoa, 75
     itos, 75
Utils.hpp
     dtoa, 68
     is_number, 69
     itos, 69
     maxAbsElement, 69
     stodn, 71
     stoin, 71
Validation, 60
     partTrainTest, 60
ValidationSolution, 61
variance
     Statistics, 59
Visualisation, 62
     plot 2 D with Hyperplane,\, \color{red} \textbf{63}
     plot2D, 62
     plot3DwithHyperplane, 64
     plot3D, 63
     setSample, 64
     setStyle, 64
     setTitle, 65
write
     Data, 21
```