«МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА»

ФИЗИЧЕСКИЙ ФАКУЛЬТЕТ

Теоретико-возможностные методы анализа и интерпретации данных измерений

Выполнил студент 435 группы: Голев Александр Сергеевич Преподаватель: к.ф.-м.н. Фаломкина Олеся Владимировна

Содержание

1	Постановка задачи	2
2	Минимаксное и рандомизированное минимаксное правила решения	2
3	Маргинальное решение	4
4	Байесовское правило решения	6
5	Байесово действие	7

1 Постановка задачи

Рассмотрим задачу принятия решения на примере управления автомобилем. Предположим, что нам известны возможные состояния светофора на перекрестке. $\theta = \{\theta_1, \theta_2, \theta_3\}$

- 1. Горит зеленый свет светофора.
- 2. Мигает желтый свет светофора.
- 3. Горит красный свет светофора.

Также, определены возможные действия. $D = \{d_1, d_2, d_3, d_4, d_5, d_6\}$

- 1. Проехать перекресток, не сбрасывая скорость.
- 2. Сбросить скорость до 50 км\ч.
- 3. Сбросить скорость до 40 км\ч.
- 4. Сбросить скорость до 20 км\ч.
- 5. Остановиться, чтобы уступить дорогу, и продолжить движение.
- 6. Полностью остановиться.

Задана матрица, которая оценивает возможные потери $l(\theta_i, d_j)$ при принятии определенного решения при конкретном состоянии светофора.

	d_1	d_2	d_3	d_4	d_5	d_6
θ_1	1	3	4	6	7	9
0	1			4	2	Λ

Рис. 1: Матрица потерь

2 Минимаксное и рандомизированное минимаксное правила решения

Мы предполагаем, что не знаем точно, в каком состоянии находился светофор в момент принятия решения. Однако, поскольку мы знаем множество возможных его состояний θ , мы можем определить оптимальное правило как решение задачи минимизирующее максимальный риск, отвечающий наиболее неблагоприятному состоянию светофора.

$$c^* = \min_{d \in D} \max_{\theta \in \Theta} l(\theta, d)$$

Если минимум $l(\theta, d)$ достигается на нескольких действиях $d \in D$, то можем выполнить любое.

```
import numpy as np

matrix = np.array([[1,3,4,6,7,9],[4,5,5,4,2,9],[7,6,2,5,3,9]]).T
min_max_risk = matrix.max(axis=1).min() # min_max_risk = 5
action_index = np.where(matrix == min_max_risk)[0][0] # action_index = 0

print(min_max_risk,action_index+1,points[action_index]) # 5 for action d2. [3 5 6]
```

Итак наше минимаксный риск $c^* = 5$ для действия d_2 .

Также можем воспользоваться **рандомизированным правилом** - рассмотрим экспериментом с m случайными исходами $\alpha_1,...,\alpha_m$, $\sum_i^m p(\alpha_i) = 1$.

Прежде чем принять решение о действии в состоянии светофора θ , можно разыграть случайный эксперимент и принять решение о действии d_{i_p} , если исходом эксперимента окажется α_p .

$$c_r^* = \min{\{\max\{l_1(p), ..., l_k(p)\}\}}, p \in \mathcal{P}$$

Для нахождения рандомизированного риска я решил выбрать графический подход, однако из-за трехмерности задачи, пришлось решать задачу программно.

Если мы решаем задачу графически, то нам нужно построить график и нарисовать на нём все точки. Затем построить выпуклую оболочку.

Одним из способов является проведение биссектрисы, вторым - расширение кубической области. Первая точка пересечения с выпуклой областью будет нашим оптимальным рандомизированным риском.

```
def find_random_square(points, ax,min_max_risk):
 vertices = np.hstack((np.ones((len(points),1)), points))
 h1 = Polyhedron(Matrix(vertices, number_type="fraction")).get_inequalities()
 steps = np.linspace(min_max_risk,0.1,5000)
 for index, step in enumarate(steps):
   cube = [(step, 0, 0), (step, step, 0), (step, step, step), (step, 0, step), (0, step, 0)
                                             ,(0, step, step),(0, 0, step), (step, 0, step
   vertices = np.hstack((np.ones((len(cube),1)), cube))
   h2= Polyhedron(Matrix(vertices, number_type="fraction")).get_inequalities()
   hintersection = np.vstack((h1, h2))
   mat = Matrix(hintersection, number_type='fraction')
   mat.rep_type = RepType.INEQUALITY
   polyintersection = pcdd.Polyhedron(mat)
    vintersection = polyintersection.get_generators()
    if vintersection.row_size == 0 : break
 random_risk = steps[index-1]
```


Рис. 2: Общий вид выпуклой оболочки, биссектрисы, точек пересечения и итогового рандомизированного риска $c_r^* = 3.86$

3 Маргинальное решение

Допустим, появляются наблюдения за перекрестком: $x = \{x_1, \dots, x_q\}$. Они содержат информацию о состоянии светофора $\theta_j, j = 1, \dots, k$.

Эта информация выражается в виде заданных условных вероятностей $P(x|\theta)$, $x \in X, \ \theta \in \Theta$.

Нам необходимо найти такую стратегию $s(\cdot): X \to D$ — правило решения. Таких отображений может быть всего N^q штук. Каждому правилу s ставим в соответствие разбиение множества $X = D_1 + ... + D_N$, $D_j = \{x \in X : s(x) = d_j\}$, j = 1, ..., N. Выражение для ожидаемого маргинального риска имеет вид:

$$L_i(s) = \sum_{t=1}^{N} l(\theta_i, d_t) * p_s(d_t | \theta_i)$$

В нашем условии задачи не даны вероятности $p_s(d_t|\theta_i)$, однако их можно вычислить:

$$p_s(d|\theta) = \sum_{x: s(x)=d} p(x|\theta).$$

Нам нужно сократить количество возможных действий, чтобы избежать долгого вычисления большого количества стратегий. В результате мы оставляем только определенные действия, которые могут быть выполнены.

- 1. Проехать перекресток, не сбрасывая скорость.
- 2. Остановиться, чтобы уступить дорогу, и продолжить движение.
- 3. Полностью остановиться.

Матрица потерь в таком случае примет вид:

Рис. 3: Матрица потерь

	x_1	x_2	x_3
θ_1	1	7	9
θ_2	4	2	9
θ_3	7	3	9

Добавим информацию о вероятности наблюдений при различных состояниях:

Рис. 4: Наблюдения

	x_1	x_2	x_3
θ_1	0.45	0.35	0.2
θ_2	0.25	0.5	0.25
θ_3	0.15	0.15	0.7

Найдем вероятности для разных стратегий.

Рис. 5: Стратегии и вероятность попадания наблюдения в определенное разбиение

Стратегии	P_{11}	P_{21}	P_{31}	P_{12}	P_{22}	P_{32}	P_{13}	P_{23}	P_{33}
$x^{(1)} = \{x_1, x_2, x_3\} \cup \{\emptyset\} \cup \{\emptyset\}$	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0
$x^{(2)} = \{x_1, x_2\} \cup \{x_3\} \cup \{\emptyset\}$	0.8	0.2	0.0	0.75	0.25	0.0	0.3	0.7	0.0
$x^{(3)} = \{x_1, x_2\} \cup \{\emptyset\} \cup \{x_3\}$	0.8	0.0	0.2	0.75	0.0	0.25	0.3	0.0	0.7
$x^{(4)} = \{x_1, x_3\} \cup \{x_2\} \cup \{\emptyset\}$	0.65	0.35	0.0	0.5	0.5	0.0	0.85	0.15	0.0
$x^{(5)} = \{x_1\} \cup \{x_2, x_3\} \cup \{\emptyset\}$	0.45	0.55	0.0	0.25	0.75	0.0	0.15	0.85	0.0
$x^{(6)} = \{x_1\} \cup \{x_2\} \cup \{x_3\}$	0.45	0.35	0.2	0.25	0.5	0.25	0.15	0.15	0.7
$x^{(7)} = \{x_1, x_3\} \cup \{\emptyset\} \cup \{x_2\}$	0.65	0.0	0.35	0.5	0.0	0.5	0.85	0.0	0.15
$x^{(8)} = \{x_1\} \cup \{x_3\} \cup \{x_2\}$	0.45	0.2	0.35	0.25	0.25	0.5	0.15	0.7	0.15
$x^{(9)} = \{x_1\} \cup \{\emptyset\} \cup \{x_2, x_3\}$	0.45	0.0	0.55	0.25	0.0	0.75	0.15	0.0	0.85
$x^{(10)} = \{x_2, x_3\} \cup \{x_1\} \cup \{\emptyset\}$	0.55	0.45	0.0	0.75	0.25	0.0	0.85	0.15	0.0
$x^{(11)} = \{x_2\} \cup \{x_1, x_3\} \cup \{\emptyset\}$	0.35	0.65	0.0	0.5	0.5	0.0	0.15	0.85	0.0
$x^{(12)} = \{x_2\} \cup \{x_1\} \cup \{x_3\}$	0.35	0.45	0.2	0.5	0.25	0.25	0.15	0.15	0.7
$x^{(13)} = \{x_3\} \cup \{x_1, x_2\} \cup \{\emptyset\}$	0.2	0.8	0.0	0.25	0.75	0.0	0.7	0.3	0.0
$x^{(14)} = \{\emptyset\} \cup \{x_1, x_2, x_3\} \cup \{\emptyset\}$	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0	0.0
$x^{(15)} = \{\emptyset\} \cup \{x_1, x_2\} \cup \{x_3\}$	0.0	0.8	0.2	0.0	0.75	0.25	0.0	0.3	0.7
$x^{(16)} = \{x_3\} \cup \{x_1\} \cup \{x_2\}$	0.2	0.45	0.35	0.25	0.25	0.5	0.7	0.15	0.15
$x^{(17)} = \{\emptyset\} \cup \{x_1, x_3\} \cup \{x_2\}$	0.0	0.65	0.35	0.0	0.5	0.5	0.0	0.85	0.15
$x^{(18)} = \{\emptyset\} \cup \{x_1\} \cup \{x_2, x_3\}$	0.0	0.45	0.55	0.0	0.25	0.75	0.0	0.15	0.85
$x^{(19)} = \{x_2, x_3\} \cup \{\emptyset\} \cup \{x_1\}$	0.55	0.0	0.45	0.75	0.0	0.25	0.85	0.0	0.15
$x^{(20)} = \{x_2\} \cup \{x_3\} \cup \{x_1\}$	0.35	0.2	0.45	0.5	0.25	0.25	0.15	0.7	0.15
$x^{(21)} = \{x_2\} \cup \{\emptyset\} \cup \{x_1, x_3\}$	0.35	0.0	0.65	0.5	0.0	0.5	0.15	0.0	0.85
$x^{(22)} = \{x_3\} \cup \{x_2\} \cup \{x_1\}$	0.2	0.35	0.45	0.25	0.5	0.25	0.7	0.15	0.15
$x^{(23)} = \{\emptyset\} \cup \{x_2, x_3\} \cup \{x_1\}$	0.0	0.55	0.45	0.0	0.75	0.25	0.0	0.85	0.15
$x^{(24)} = \{\emptyset\} \cup \{x_2\} \cup \{x_1, x_3\}$	0.0	0.35	0.65	0.0	0.5	0.5	0.0	0.15	0.85
$x^{(25)} = \{x_3\} \cup \{\emptyset\} \cup \{x_1, x_2\}$	0.2	0.0	0.8	0.25	0.0	0.75	0.7	0.0	0.3
$x^{(26)} = \{\emptyset\} \cup \{x_3\} \cup \{x_1, x_2\}$	0.0	0.2	0.8	0.0	0.25	0.75	0.0	0.7	0.3
$x^{(27)} = \{\emptyset\} \cup \{\emptyset\} \cup \{x_1, x_2, x_3\}$	0.0	0.0	1.0	0.0	0.0	1.0	0.0	0.0	1.0

Найдем маргинальные риски $L_i(s)$.

```
def get_mar(i, s, Risks, ps):
    sum = 0
    for t in range(3):
        sum += Risks[i, t]*ps[s, i, t]
    return sum

L_mar = np.zeros((3, 27))
    for i in range(3):
        for s in range(27):
        L_mar[i, s] = get_mar(i, s, risks, ps)

temp = []
    for s in range(27):
        temp.append(np.amax(L_mar[:, s]))
    min_max_marj = np.min(temp)
```


Рис. 6: Маргинальные риски, минмакс риск, выпуклая оболочка биссектриса, точки пересечения и итоговый рандомизированный риск

Рандомизированный маргинальный риск найдем похожим образом: построим выпуклую оболочку и найдем первую точку пересечения биссектрисы.

В данном случае сработал только метод куба, биссектриса оболочку не пересекает. Получим оптимальный минимаксный маргниальный риск $c^*=4.20$ для стратегии x_2 и рандомизированный маргниальный риск $c^*_r=3.76$

4 Байесовское правило решения

В этом случае, в постановке задачи добавляется априорная информация $r_i \in R$ — вероятности состояний θ_i : $r_i = p(\theta_i), \sum_i P(r_i) = 1, r_i \leq \theta$. Зададим априорные вероятности о состояних:

$$r_1 = P(\theta_1) = 0.5,$$
 $r_2 = P(\theta_2) = 0.2,$ $r_3 = P(\theta_3) = 0.3.$

Байесовский риск теперь превращается в математическое ожидание маргинального риска по априорному распределению:

$$L(s) = \sum_{i=1}^{27} L_i(s) \cdot p(\theta_i).$$

Остается только из списка значений выбрать наименьшее. Это и будет байесовское правило принятия решений.

```
L_bs = []
for i in range(27):
    sum = 0
    for j in range(3):
        sum += L_mar[j, i]*prob[j]
L_bs.append(sum)

baer_risk = L_bs[np.argmin(L_bs)]
index = np.argmin(L_bs)
print(f"Bae's c* = {baer_risk} for strategy x{index+1}")
```


Рис. 7: Оптимальное решение по Баесу

То есть по Байесу $s^* = 2$, $c^*_{Bayes} = 3.06$. Как и полагается: $c^*_{Bayes} \le c^*_r$.

5 Байесово действие

В данном случае мы рассматриваем байесовскую постановку задачи, но теперь у нас нет никаких наблюдений. Таким образом, мы должны искать байесово действие. Для этого мы вычисляем маргинальный риск следующим образом:

$$L(d_j) = \sum_{i=1}^{3} l(\theta_i, d_j) p(\theta_i)$$

Для решения необходимо:

$$L(d_j) \sim \min_{1 \le j \le N}$$

При любом распределении $p(\theta_1), p(\theta_2), p(\theta_1)$.

Решим эту задачу графически.

```
px, py = 0.5, 0.2
line = LineString([[px,py,0],[px,py,10]])
intersections = []
for i in range(len(L_mar)):
 model_x_data = np.linspace(0, 1, 51)
 model_y_data = np.linspace(0, 1, 51)
 X, Y = np.meshgrid(model_x_data, model_y_data)
  for k in range(len(Y)): # px + py <=1</pre>
    for j in range(len(Y[0])):
      if len(Y[0])-k < j : Y[k,j] = Y[k-1,j]
 Z = function(np.array([X, Y]),L_mar[i])
  x_{dots} = [2, 2, 10]
  y_{dots} = [2,8,2]
 x = X[0][x_dots]
  y = Y.T[0][y_dots]
  dots = [np.array([x,y,z]) for x,y,z in zip(x,y,function(np.array([x,y]),L_mar[i]))]
  intersect = intersect3D_SegmentPlane(line, dots)
  intersections.append(intersect[2])
  ax.plot_surface(X, Y, Z, alpha=0.3)
```

Получается при выборе $p_{\theta_1}, p_{\theta_2} = 0.5, 0.2$ Баесово действие - x_2

Рис. 8: Баесовское действие для трехмерной задачи

Наименее благоприятное распределение, при котором Баесовский риск равен рандомизированному маргинальному, найдем перебором значений вероятностей.

```
def task5(L_mar, random_risk):
    X = np.linspace(0,1,1000)
    for x in X:
    Y = np.linspace(0,1-x,1000)
    for y in Y:
        z = 1-x-y
        prob = np.array([x,y,z])
        baer_risk, _ = find_bier(prob, L_mar)
        if abs(baer_risk-random_risk)<0.00001: #epsilon
            return prob, baer_risk</pre>
```


Рис. 9: Наименее благоприятное распределение для априорных вероятностей состояния природы

Баесовский риск $c^*_{Bayes}=c^*_r=3.76$ для наименее благоприятного распределения $r_i=P(\theta_i)=\{0.22,0,0.78\}.$