# Matrix-Chain Multiplication

Version of March 5, 2019

### Matrix-chain Multiplication

The product of two matrices  $A_{p\times q}$  and  $B_{q\times r}$  (with dimensions  $p\times q$  and  $q\times r$ ) is a matrix  $C_{p\times r}$ . Generating  $C_{p\times r}$  requires pqr scalar multiplications.



Given matrices A, B with entries  $a_{i,j}$ ,  $b_{i,j}$  the entries in the product matrix C= A B are

$$c_{i,j} = \sum_{k=1}^{q} a_{i,k} b_{k,j}$$

### Matrix-chain Multiplication

The product of two matrices  $A_{p\times q}$  and  $B_{q\times r}$  (with dimensions  $p\times q$  and  $q\times r$ ) is a matrix  $C_{p\times r}$ . Generating  $C_{p\times r}$  requires pqr scalar multiplications.

For three matrices (e.g.,  $A_{10\times100}$ ,  $B_{100\times5}$ , and  $C_{5\times50}$ ) there are 2 ways to parenthesize

- $((AB)C) = D_{10\times 5} \cdot C_{5\times 50}$ 
  - AB  $\Rightarrow$  10·100·5=5,000 scalar multiplications
  - DC  $\Rightarrow$  10·5·50 = 2,500 scalar multiplications
- $(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$ 
  - BC  $\Rightarrow$  100·5·50=25,000 scalar multiplications
  - AE  $\Rightarrow$  10·100·50 = 50,000 scalar multiplications

General problem: We have a sequence or chain  $A_1$ ,  $A_2$ , ...,  $A_n$  of n matrices and want to determine the optimal way to parenthesize (i.e., the solution with the minimum number of scalar multiplications).

#### Matrix-chain Multiplication







## There are 5 different ways to multiply ABCD together

- 1. (A (B (CD)))
- 2. (A ((BC) D))
- 3. (((AB)(CD)))
- 4. ((A(BC))D)
- 5. (((AB)C)D)

#### Costs are

- 1. 5(5)2 + 5(4)2 + 4(8)2 = 154
- 2. 5(5)2 + 5(4)8 + 5(8)2 = 290
- 3. 5(5)4 + 4(8)2 + 5(4)2 = 204
- 4. 5(5)8 + 5(4)8 + 5(8)2 = 440
- 5. 5(5)4 + 5(4)8 + 5(8)2 = 340

Recall: Multiplying

p×q and q×r matrices requires

p×q×r multiplications

And yields a p×r matrix

### Matrix-chain Multiplication Problem Definition

- Input: Values  $p_0 p_1 ... p_{n-1} p_n$
- These represent sizes of n matrices  $A_1 A_2 ... A_n$ Matrix  $A_i$  has dimensions  $p_{i-1} X p_i$
- A<sub>i..j</sub>: matrix that is the product of  $A_i A_{i+1} ... A_j$ By construction  $A_{i..j}$  has dimensions  $p_{i-1} X p_i$
- Goal: To find a minimum cost way of multiplying  $A_1 A_2 ... A_n$  to get the final result  $A_{1..n}$ .

  cost = # of total scalar multiplications performed
- This is known as an optimal parenthesization of  $A_1 A_2 ... A_n$  because the parentheses denote how to perform the multiplications,
  - e.g., ( ((AB) (CD) ) ) means first calculate X=AB then calculate
     Y=CD and finally get the final result XY

### Structure of an optimal solution

- Given: Values  $p_0 p_1 ... p_{n-1} p_n$  s.t. Matrix  $A_i$  has size  $p_{i-1} X p_i$
- $A_{i..j}$ : matrix that results from the product  $A_i A_{i+1} ... A_j$
- An optimal parenthesization of  $A_1A_2...A_n$  splits the product between  $A_k$  and  $A_{k+1}$  for some integer k where  $1 \le k < n$   $A_{1...n} = (A_1A_2...A_k) \cdot (A_{k+1}A_{k+2}...A_n) = A_{1...k} \cdot A_{k+1..n}$
- First compute matrices  $A_{1...k}$  and  $A_{k+1...n}$ ; then, multiply them to get the final matrix  $A_{1...n}$
- **Observation**: If the parenthesization of the chain  $A_1A_2...A_n$  is optimal => parenthesizations of the subchains  $A_1A_2...A_k$  and  $A_{k+1}A_{k+2}...A_n$  must also be optimal (why?)
  - => The optimal solution to the problem contains within it the optimal solution to subproblems

### Recursive definition for optimal solution

- Let m[i, j] be minimum number of scalar multiplications necessary to compute  $A_{i,j}$
- Suppose the optimal parenthesization of  $A_{i..j}$  splits the product between  $A_k$  and  $A_{k+1}$  for some integer k where  $i \le k < j$ 
  - $A_{i..j} = (A_i A_{i+1}...A_k) \cdot (A_{k+1} A_{k+2}...A_j) = A_{i..k} \cdot A_{k+1..j}$
- Cost of computing A<sub>i...j</sub> =
   cost of computing A<sub>i...k</sub> + cost of computing A<sub>k+1...j</sub> + cost multiplying A<sub>i...k</sub> and A<sub>k+1...j</sub>
   ➤ Cost of multiplying A<sub>i...k</sub> and A<sub>k+1...j</sub> is p<sub>i-1</sub>p<sub>k</sub>p<sub>j</sub>
- But... optimal parenthesization occurs at one value of k among all possible  $i \le k < j$ . Check all these and select the best one

$$m[i, j] = \begin{cases} 0 & \text{if } i = j \\ min\{m[i, k] + m[k+1, j] + p_{i-1}p_k p_j\} & \text{if } i < j \\ i \le k < j & \text{otherwise} \end{cases}$$

# DP Algorithm

**Input**: Array p[0...n] containing matrix dimensions and n

**Result**: Minimum-cost table *m* and split table *s* 

**MATRIX-CHAIN-ORDER**(p[], n)

```
for i \leftarrow 1 to n
m[i, i] \leftarrow 0
for l \leftarrow 2 to n
for i \leftarrow 1 to n-l+1
j \leftarrow i+l-1
m[i, j] \leftarrow \infty
for k \leftarrow i to j-1
q \leftarrow m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]
if q < m[i, j]
m[i, j] \leftarrow q
s[i, j] \leftarrow k
```

**return** *m* and *s* 

Time:  $O(n^3)$ , Space:  $O(n^2)$ 

### Example

The initial set of dimensions are <5, 4, 6, 2, 7>. We are multiplying  $A_1(5x4) \times A_2(4x6) \times A_3(6x2) \times A_4(2x7)$ . Optimal sequence is  $(A_1(A_2A_3)) A_4$ .



