Il modello PRNR

Un modello matematico per la Rivoluzione Francese

Cristina Caprioglio, Luca Morelli

20 Dicembre 2022

Abstract:

Per questo progetto abbiamo cercato di modellizzare lo scoppio di una rivoluzione. Per farlo ci siamo serviti del modello multicompartimentale, che ci ha permesso di descrivere le possibili transizioni di stato delle persone di una popolazione...

Introduzione

L'evoluzione di vari gruppi eterogenei all'interno di una popolazione ...

1 Il sistema e il modello

Come precedentemente detto, vogliamo studiare la dinamica di una popolazione composta da vari membri, in numero elevato, che differiscono l'uno dall'altro per il loro reddito. Queste differenze, sotto determinate condizioni, possono spingere gli individui appartenenti alla categoria più povera ad insorgere. Questa insurrezione può a sua volta portare alcuni tra i più abbienti a reprimerla con l'uso della forza.

Per modellizzare una popolazione eterogenea abbiamo deciso di suddividerla in due categorie, **Poveri** e **Nobili**, per le quali si considera un reddito medio caratteristico di ciascuna categoria. Ogni membro di questa popolazione può decidere, in base a vari fattori, di far uso della violenza per far valere le esigenze della propria categoria. Abbiamo considerato che ogni individuo può trovarsi o in uno stato di normalità o in uno stato eccitato: un membro della categoria dei Poveri nello stato **Normale** (N_P) può transire allo stato di **Rivoluzionario** (R), mentre un membro della categoria dei Nobili nello stato **Normale** (N_N) può transire allo stato di **Reazionario** (\bar{R}) . All'interno della stessa categoria può avvenire anche la transizione inversa, come mostrato in figura 1.

Figure 1: Schema a compartimenti delle categorie delle persone. Con le frecce sono evidenziate le transizioni di stato che un individuo può effettuare.

Per questa modellizazione abbiamo deciso, come è consueto fare, di trascurare le possibili fluttuazioni del numero totale di individui dovuti alla morte e alla nascita di persone, inoltre abbiamo considerato che un individuo non possa transire dalla categoria di Povero a quella di Nobile. Questa scelta è

giustificata dall'osservazione che, seppur possibili, tali transizioni in genere sono estremamente rare. Tali considerazioni ci hanno quindi permesso di identificare 3 vincoli da imporre al modello:

$$\frac{N_P(t) + R(t)}{N_P(0) + R(0) + N_N(0) + \bar{R}(0)} = F_P \qquad \frac{N_N(t) + \bar{R}(t)}{N_P(0) + R(0) + N_N(0) + \bar{R}(0)} = F_N \qquad F_P + F_N = 1 \quad (1.1)$$

dove F_P e F_N sono rispettivamente le frazioni di individui Poveri e Nobili sulla popolazione totale.

Dobbiamo ora identificare quali equazioni regolino la dinamica del sistema. Per fare ciò abbiamo ragionevolmente supposto che:

- un Povero possa transire allo stato di Rivoluzionario o di sua spontanea iniziativa (nata della sua condizione disagiata) oppure incontrando un rivoluzionario che lo convinca ad insorgere,
- un Rivoluzionario, incontrando dei Reazionari, possa essere convinto a non perseguire più la sua causa ritornando allo stato Normale,
- un Nobile, incontrando un rivoluzionario, possa in risposta decidere di diventare un Reazionario,
- un Reazionario, vedendo diminuire il numero di Rivoluzionari (e quindi aumentare quello di Poveri allo stato normale), possa decidere di ritornare anch'esso allo stato normale,

Se consideriamo un tempo Δt possiamo esprimere le variazioni del numero di ogni compartimento, tenendo conto delle precedenti considerazioni, con:

$$R(t + \Delta t) - R(t) = \Gamma N_P(t) \frac{R(t)}{N_{tot}} \Delta t + \gamma N_P(t) \Delta t - \bar{\Gamma} R(t) \frac{\bar{R}(t)}{N_{tot}} \Delta t$$

$$\bar{R}(t + \Delta t) - \bar{R}(t) = \alpha N_N(t) \frac{R(t)}{N_{tot}} \Delta t - \beta \bar{R}(t) \frac{N_P(t)}{N_{tot}} \Delta t$$

$$N_P(t + \Delta t) - N_P(t) = -(R(t + \Delta t) - R(t))$$

$$N_N(t + \Delta t) - N_N(t) = -(\bar{R}(t + \Delta t) - \bar{R}(t))$$
(1.2)

dove Γ é un parametro che stima la probabilità che un povero diventi rivoluzionario incontrando altri rivoluzionari, mentre invece $\bar{\Gamma}$ stima la probabilità che un rivoluzionario, per via della presenza di reazionari, ritorni allo stato Normale. Diversamente dai precedenti parametri γ stima la probabilità che un povero diventi rivoluzionario per volontà propria, senza influenze esterne. Infine α e β sono i due parametri relativi alla variazione dei reazionari: il primo riguarda la probabilità che un nobile diventi reazionario mentre il secondo che un reazionario torni allo stato Normale.

Ogni parametro è quindi moltiplicato per la probabilità che il singolo individuo ne incontri un secondo che possa indurlo a transire, per esempio un povero incontri un rivoluzionario, questa probabilità è stimata dalla frazione dei secondi sulla popolazione totale. Per ottenere il numero di individui che transiscono è quindi necessario moltiplicare questa per il numero di persone che potenzialmente possono effettuare la transizione. Infine è opportuno osservare che queste probabilità sono stimate per unità di tempo, così che ogni addendo va moltiplicato per Δt così da ottenere le variazioni di popolazione di ogni compartimento nel tempo Δt .

Si osservi che, essendo lineare il sistema che abbiamo appena descritto, riscalando di un fattore λ tutta la poplazione le equazioni 1.2 non mutano forma, questo ci ha permesso di riscalare le variabili dividendole per N_{tot} , che indica la popolazione totale, in questo modo otteniamo un sistema di equazioni differenziali che esprime come variano le frazioni di ogni categoria di persone sulla popolazione totale:

$$R'(t + \Delta t) - R'(t) = \Gamma N'_{P}(t)' R'(t) \Delta t + \gamma N'_{P}(t) \Delta t - \bar{\Gamma} R'(t) \bar{R}'(t) \Delta t$$

$$\bar{R}'(t + \Delta t) - \bar{R}'(t) = \alpha N'_{N}(t) R'(t) \Delta t - \beta \bar{R}'(t) N'_{P}(t) \Delta t$$

$$N'_{P}(t + \Delta t) - N'_{P}(t) = -(R'(t + \Delta t) - R'(t))$$

$$N'_{N}(t + \Delta t) - N'_{N}(t) = -(\bar{R}'(t + \Delta t) - \bar{R}'(t))$$
(1.3)

con

$$N_P'(t) = \frac{N_P(t)}{N_{tot}} \qquad N_N'(t) = \frac{N_N(t)}{N_{tot}} \qquad R'(t) = \frac{R(t)}{N_{tot}} \qquad \bar{R}'(t) = \frac{\bar{R}(t)}{N_{tot}}$$

Per alleggerire la notazione, dato che da questo momento in poi useremo spesso le variabili riscalate, quest'ultime perderanno il simbolo "'" e verranno scritte normalmente, indicheremo quindi in che modo vadano intese le notazioni.

Per poter studiare il nostro modello abbiamo diviso ogni espressione per Δt e, considerando intervalli di tempo abbastanza piccoli, abbiamo ottenuto un sistema di equazioni differenziali tramite il passaggio al continuo:

$$\frac{dR}{dt} = \Gamma N_P(t)R(t) + \gamma N_P(t) - \bar{\Gamma}R(t)\bar{R}(t)$$

$$\frac{d\bar{R}}{dt} = \alpha N_N(t)R(t) - \beta \bar{R}(t)N_P(t)$$

$$\frac{dN_P}{dt} = -\frac{dR}{dt}$$

$$\frac{dN_R}{dt} = -\frac{d\bar{R}}{dt}$$
(1.4)

Punti di Equilibrio - Esistono e come li calcoliamo

2 Simulazione

Per verificare la validità del modello matematico appena descritto abbiamo deciso di effettuare una simulazione al calcolatore di una dinamica di popolazione. Le equazioni (1.2), per la loro natura discreta, si adattano molto bene al modello dell'automa cellulare: una popolazione è rappresentata in questo modello da una griglia di celle, ognuna corrispondente ad un individuo che può trovarsi in un determinato stato.

La simulazione che abbiamo realizzato fa variare lo stato di ogni cella secondo le equazioni (1.2) ad intervalli di tempo discreto Δt : ogni cella interagisce con quelle adiacenti¹ simulando l'incontro con altri individui, così facendo per ogni individuo, tra queste, che può indurre un transizione di stato viene probabilisticamente determinato se questa debba aver luogo o meno e si modifica quindi lo stato della cella. Il carattere probabilistico è determinato di parametri Γ , $\bar{\Gamma}$, γ , α e β , è stato però necessario tener conto delle limitazioni della simulazione, infatti una cella può realmente interagire solamente con le otto adiacenti e non con tutta la popolazione, per questo le probabilità di transizione nelle equazioni (1.2) sono state riscalate di un fattore $\frac{1}{8}$ quando utilizzate nella simulazione.

Abbiamo eseguito diversi test con i seguenti parametri:

(INSERISCI GRAFICI E RAGIONE DEL PERCHÈ PROPRIO QUEI PARAMETRI)

3 Integrazione

Le equazioni (1.4) che abbiamo descritto nella sezione *label* non sono facilmente risolvibili, per questo motivo può essere opportuno integrarle numericamente. Il metodo utilizzato per l'integrazione é quello di Runge-Kutta al quarto ordine, il quale permette di approssimare una funzione conoscendone la derivata prima rispetto al tempo e le condizioni iniziali².

 $^{^1\}mathrm{Nel}$ nostro caso ogni cella ha8 celle adiacenti che vengono considerate.

²Per una spiegazione dettagliata si veda l'appendice A

Considerando come unità di tempo i giorni e utilizzando un passo di integrazione di h=0.01 giorni siamo riusciti ad ottenere l'andamento di N_P, N_N, R e \bar{R} nel tempo secondo le equazioni (1.4) per diversi valori iniziali e paramenti di simulazione. I risultati che abbiamo così ottenuto possono essere paragonati a quelli ottenuti tramite l'automa, questo confronto è esemplificato nei grafici label nei quali sono riportati sia i risultati della simulazione che quelli dell'integrazione per lo stesso set di parametri.

Come si può vedere i risultati sono in accordo tra di loro il che ci consente di affermare che il modello matematico che abbiamo descritto costituisce una buona descrizione di una dinamica di interazione sociale.

4 Modulazione dei parametri

Al fine di rendere il modello più realistico abbiamo deciso di rendere variabili i parametri relativi alla variazione dei rivoluzionari. Per prima cosa abbiamo definito una funzione che stima la differenza media di ricchezza posseduta tra un nobile e un povero ΔPil , questa ha una dipendenza temporale che può quindi influenzare lo stato della popolazione simulando vari scenari come periodi di carestie o interventi sociali da parte dello stato.

Inoltre abbiamo introdotto un paramento σ che misura la suscettibilità dei poveri alle condizioni loro condizioni economiche nell'ambiente sociale, nella fattispecie questo tiene conto di come pochi poveri non saranno molto propensi all'insurrezione mentre se è la maggior parte della popolazione a trovarsi in condizione povertà tale evento è più facile che si verifichi. Abbiamo assunto che tale parametro sia stiamo dalla seguente funzione:

$$\sigma = \sigma_0 \left(1 - \exp\left\{ -\frac{F_P}{F_R} \right\} \right) \tag{4.1}$$

Alla luce di queste considerazioni le probabilità di transizione diventano dipendenti da σ e Δ Pil:

$$\Gamma = \Gamma_0 \cdot \tanh\left(\frac{\sigma \cdot PIL}{300}\right)$$
$$\gamma = \gamma_0 \cdot \tanh\left(\sigma \cdot PIL\right)$$
$$\bar{\Gamma} = \bar{\Gamma}_0 \cdot \tanh\left(\frac{1}{\sigma \cdot PIL}\right)$$

con questi andamenti funzionali abbiamo voluto tener conto di come la probabilità di transire in uno stato di insurrezione di un individuo sia massima quando le condizioni di povertà diventano estreme per buona parte della popolazione.

Carestie periodiche

$$\Delta \text{Pil}(t) = \Delta \text{Pil}_0 \sin(2\pi\nu t)$$
 ($\nu = \text{Frequenza carestia}$) (4.2)

Sussidi statali

$$\Delta \text{Pil}(t) = \begin{cases} \Delta \text{Pil}_0 & \text{Se } R(t) \text{ non è mai salito oltre un livello soglia } \tilde{R} \\ \Delta \text{Pil}_0 \ e^{-\frac{t}{\lambda}} & \text{Altrimenti} & (\lambda = \text{Rapidità intervento}) \end{cases}$$
(4.3)

Carestie con sussidi

$$\Delta \text{Pil}(t) = \begin{cases} \Delta \text{Pil}_0 \sin(2\pi\nu t) & \text{Se } R(t) \text{ non è mai salito oltre un livello soglia } \tilde{R} \\ \Delta \text{Pil}_0 \sin(2\pi\nu t) e^{-\frac{t}{\lambda}} & \text{Altrimenti} & (\lambda = \text{Rapidità intervento, } \nu = \text{Frequenza carestia}) \end{cases}$$
(4.4)

Appendice

A Metodo di Runge-Kutta 4

Per l'integrazione numerica abbiamo usato il metodo Runge-Kutta al quarto ordine, detto così perchè l'errore accumulato totale è dell'ordine di $\mathcal{O}(h^4)$, mentre l'errore locale di troncamento è dell'ordine di $\mathcal{O}(h^5)$. In generale, dato il seguente problema:

$$\frac{dx}{dt} = f(x,t) \qquad x(t_0) = x_0 \tag{A1}$$

dove x è la funzione che si intende approssimare, scegliendo un intervallo h > 0 e definendo:

$$x_{n+1} = x_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)h$$
 $t_{n+1} = t_n + h$ (A2)

per $0 < n < t_f/h$, dove t_f é il tempo finale. Usando:

$$k_{1} = f(t_{n}, x_{n});$$

$$k_{2} = f(t_{n} + \frac{h}{2}, x_{n} + h\frac{k_{1}}{2});$$

$$k_{3} = f(t_{n} + \frac{h}{2}, x_{n} + h\frac{k_{2}}{2});$$

$$k_{4} = f(t_{n} + h, x_{n} + hk_{3});$$
(A3)

Per ogni n, il valore successivo x_{n+1} da quello attuale x_n e dalla media pesata di quattro incrementi, i quali sono il prodotto dell'intervallo h e la pendenza data da f. In particolare:

- \bullet k_1 é la pendenza all'inizio dell'intervallo, usando solo x
- $\bullet \ k_2$ é quella a metà intervallo, usando xe k_1
- k_3 è di nuovo a metà, ma usando x e k_2
- k_4 é quella alla fine, usando x e k_3

Nella media pesata, si è dato un peso maggiore a k_2 e k_3 .