On polynomial coloring for (claw, co - diamond)-free graphs

Dallas J. Fraser¹ Angèle M. Hamel'¹ Chính T. Hoàng¹
October 8, 2014

¹, Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario, Canada

Abstract

The coloring of (claw, co-diamond)-free graph is in polynomial. Keywords: Graph coloring, claw, 2K2

1 Introduction

Theorem 1.1 Let G be a connected claw-free graph with $\alpha(G) \geq 3$. If G contains an odd anti-hole then it contains an odd antihole then it contains a C_5

Theorem 1.2 There is a polytime algorithm for coloring a G with $\alpha(G) = 2$.

2 Oberservations

In this section, we conclude some observations used to prove that there is a polytime algorithm for (claw, co - diamond)-free graphs.

Lemma 2.1 G cannot contain an induced C_{ℓ} , $\ell \geq 7$.

Proof. Let G be a C_{ℓ} , $\ell \geq 7$ with vertices 1, 2, ..., ℓ_{-1} , ℓ . This forms a co-diamond with (1,2) and 4, ℓ but G is (claw, co-diamond)-free. \square

For the following observations let $N_{i,i+1}$ be the set of 2-vertex on a C_5 , $N_{i,i+1,i+2}$ be the set of 3-vertex on a C_5 , $N_{i,i+1,i+2,i+3}$ be the set of 4-vertex on a C_5 in which G contains an C_5 . Let N_i be the set of all i-vertex.

Lemma 2.2 $|N_{i,i+1}| \leq 1$

Proof. Let x be a vertex from $N_{i,i+1}$ and y be a vertex from $N_{i,i+1}$ such that $x \neq y$. If $xy \notin E$ then there is a $claw(i_{+1}i_{+2}, i_{+1}x, i_{+1}y)$. If $xy \in E$ then there is a $co-diamond(xy, i_{-1}, i_{+2})$.

Lemma 2.3 N_2 forms a clique K_n , $n = |N_2|$

Proof. Let x be a vertex from $N_{i,i+1}$ and y be a vertex from $N_{j,j+1}$. Without loss of generality suppose $xy \notin E$ if j = i + 1 then there is a co - diamond (y, xi, i_{+3}) , but if j = i + 2 then there is a co - diamond (y, xi, j + 1) so therefore $xy \in E$.

Lemma 2.4 The set $N_{i,i+1,i+2}$ forms a clique K_n , $n = |N_{i,i+1,i+2}|$

Proof. Let x be a vertex from $N_{i,i+1,i+2}$ and y be a vertex from $N_{i,i+1,i+2}$ such that $x \neq y$. If $x \notin E$ there is a $claw(xi, yi, ii_{-1})$.

Lemma 2.5 The set $N_{i,i+1,i+2,i+3}$ forms a clque K_n , $n = |N_{i,i+1,i+2,i+3}|$

Proof. Let x be a vertex from $N_{i,i+1,i+2,i+3}$ and y be a vertex from $N_{i,i+1,i+2,i+3}$ such that $x \neq y$. If $x \notin E$ there is a $claw(xi, yi, ii_{-1})$.

Lemma 2.6 $\alpha(N_5) \leq 2$

Proof. Let x, y, z be vertices from N_5 such that $x \neq y, x \neq z, y \neq z$ and $xy \notin E, xz \notin E, yz \notin E$. There is a claw (xi, yi, zi). Therefore $\alpha(N_5) \leq 2$.

Lemma 2.7 $\alpha(N_4) \leq 2$

Proof. Let x, y, z be vertices from N_4 such that $x \neq y, x \neq z, y \neq z$ and $xy \notin E, xz \notin E, yz \notin E$. There is a claw (xi, yi, zi). Therefore $\alpha(N_4) \leq 2$.

Lemma 2.8 $\alpha(N_3) \leq 2$

Proof. Let x, y, z be vertices from N_3 such that $x \neq y, x \neq z, y \neq z$ and $xy \notin E, xz \notin E, yz \notin E$. If $x \in N_{i,i+1}, y \in N_{i,i+1}, and z \in N_{i,i+1}$, then by Lemma ?? forms a clique otherwise there exists a vertex i such that $xi \in E$ but $yi \notin E$ and $zi \notin E$ which means there is co-diamond(xi, y, z). Therefore $\alpha(N_3) \leq 2$.

Acknowledgement

This work was done by authors Laurier University. The authors A.M.H. and C.T.H. were each supported by individual NSERC Discovery Grants. D.J.F was supported by an NSERC Undergraduate Student Research Award.

References