Announcement

- Programming Assignment 1B: adversarial search
 - Instructions at Blackboard -> "Programming Assignments"
 - Submission at AutoLab
 - Due: Mar 10, 11:59pm

Adversarial Search

Adversarial Search (Minimax)

- Deterministic, zero-sum games:
 - Tic-tac-toe, chess, checkers
 - Players alternate turns
 - One player maximizes result
 - The other minimizes result
- Minimax search:
 - A state-space search tree
 - Compute each node's minimax value: the best achievable utility against a rational (optimal) adversary

Minimax values: computed recursively

Terminal values: part of the game

Minimax Implementation

def value(state):

if the state is a terminal state: return the state's utility if the next agent is MAX: return max-value(state)

if the next agent is MIN: return min-value(state)

def max-value(state):

initialize $v = -\infty$

for each successor of state:

v = max(v, value(successor))

return v

$$V(s) = \max_{s' \in \text{successors}(s)} V(s')$$

def min-value(state):

initialize $v = +\infty$

for each successor of state:

v = min(v, value(successor))

return v

$$V(s') = \min_{s \in \text{successors}(s')} V(s)$$

Minimax Example

Minimax Efficiency

- How efficient is minimax?
 - Just like (exhaustive) DFS
 - Time: O(b^m)
 - Space: O(bm)
- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Resource Limits

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for non-terminal positions
- Example:
 - Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - α - β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More depth makes a BIG difference

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- A simple solution in practice: weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

• e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Evaluation Functions

Recent advances

- Monte Carlo Tree Search
 - Randomly choose moves until the end of game
 - Repeat for many many times
 - Evaluate the state based on these simulations, e.g., the winning rate
- Convolutional Neural Network (value network in AlphaGo)
 - Trained from records of game plays to predict a score of the state

Branching Factor

Chess

Branching Factor

Go

Branching Factor

- Go has a branching factor of up to 361
- Idea: limit the branching factor by considering only good moves
 - AlphaGo uses a Convolutional Neural Network (policy network)
 - Trained from records of game plays
 - Trained using reinforcement learning
 - AlphaGo Zero uses RL only

Game Tree Pruning

Minimax Pruning

Alpha-Beta Pruning

- General configuration (MIN version)
 - We're computing the MIN-VALUE at some node n
 - We're looping over n's children, so n's estimate is decreasing
 - Let a be the best value that MAX can get at any choice point along the current path from the root
 - If n becomes worse than a, then we can stop considering n's other children
 - Reason: if n is eventually chosen, then the nodes along the path shall all have the value of n, but n is worse than a and hence the path shall not be chosen at the MAX

MAX version is symmetric

Alpha-Beta Implementation

α: MAX's best option on path to root

β: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
initialize v = -\infty
for each successor of state:
    v = \max(v, value(successor, \alpha, \beta))
    if v \ge \beta return v
    \alpha = \max(\alpha, v)
return v
```

```
\begin{aligned} &\text{def min-value(state }, \alpha, \beta): \\ &\text{initialize } v = +\infty \\ &\text{for each successor of state:} \\ &v = \min(v, \text{value(successor, } \alpha, \beta)) \\ &\text{if } v \leq \alpha \text{ return } v \\ &\beta = \min(\beta, v) \\ &\text{return } v \end{aligned}
```


Alpha-Beta Pruning Properties

Good child ordering improves effectiveness of pruning

- With "perfect ordering":
 - Time complexity drops to O(b^{m/2})
 - Doubles solvable depth!

Other Game Types

Mixed Layer Types

Backgammon

Expectiminimax

- Environment is an extra "random agent" player that moves after each min/max agent
- Each node computes the appropriate combination of its children

What if the game is not zero-sum, or has multiple players?

Generalization of minimax:

- Terminals have utility tuples
- Node values are also utility tuples
- Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...

Summary

- Adversarial Games
- Adversarial Search
 - Minimax
- Resource Limits
 - Depth-limited search, limiting branching factor
- Game Tree Pruning (alpha-beta pruning)
- Uncertain Outcomes
 - Expectimax
- Other Game Types

