Clase 18 Introducción a Modelos Lineales Mixtos Curso Introducción al Análisis de datos con R para la acuicultura.

Dr. José A. Gallardo y Dra. María Angélica Rueda. jose.gallardo@pucv.cl | Pontificia Universidad Católica de Valparaíso

13 November 2021

PLAN DE LA CLASE

1.- Introducción

- Modelos lineales mixtos (MLM).
- Efectos fijos y efectos aleatorios.
- Ecuación del modelo lineal mixto (MLM).
- Interpretación de MLM con R.

2.- Práctica con R y Rstudio cloud

- Ajustar modelos lineales mixtos.
- Realizar gráficas avanzadas con ggplot2.
- Elaborar un reporte dinámico en formato pdf.

MODELOS LINEALES MIXTOS

Los modelos lineales mixtos (MLM) son una generalización del modelo lineal de regresión clásico, contemplando la posible existencia de observaciones correlacionadas (ej. Medidas repetidas en el mismo individuo) o con variabilidad heterogénea, vinculadas a la presencia de factores aleatorios.

$$Y = X\beta + Zu + \epsilon$$

Efectos fijos $(X\beta)$

Efectos aleatorios $(Zu + \epsilon)$

Los modelos lineales mixtos surgen cuando no se cumplen los siguientes supuestos:

- Que hayan observaciones correlacionadas.
- Que NO haya homogeneidad de varianzas.

¿QUÉ SON EFECTOS FIJOS?

- Los efectos fijos se asumen que son determinados a propósito por el analista de los datos, eso dependerá de las variables a las que se les desea estimar efectos promedios.
- Los efectos fijos solo estiman medias de las variables predictoras.
- En un modelo lineal mixto las variables cuantitativas continuas (e.g., Peso) o factores (e.g., Dieta) pueden ser usadas como efectos fijos.

¿QUÉ SON EFECTOS ALEATORIOS?

- Los efectos aleatorios están asociados a grupos de observaciones. Los efectos aleatorios estiman varianzas.
- Para considerar una variable predictora cualitativa como un efecto aleatorio del modelo lineal mixto, dicha variable debe tener al menos 5 niveles (7 Familias).
- Una variable predictora categórica con dos niveles (binaria) NO puede ser un efecto aleatorio.
- Una variable aleatoria continua NO puede ser un efecto aleatorio.

ALGUNOS EJEMPLOS DE EFECTOS ALEATORIOS

- i) Medidas repetidas sobre un mismo individuo (hay repeticiones).
- ii) Respuestas observadas en grupos de unidades experimentales homogéneas (bloques), pueden ser piscinas o estanques.
- iii) Mediciones de los animales (individuos) de una misma familia.

¿CÓMO SE PODRÍA DECIDIR SI ES EFECTO FIJO O ALEATORIO?

- 1). ¿Cuál es el número de niveles?
 - ▶ Pequeño (Fijo) (e.g., **Dieta** con tres niveles **D1**, **D2** y **D3**).
 - ► Grande o infinito (Posiblemente aleatorio) (*e.g.*, **Familia** con 10 niveles **F1**, **F2**... **F10**).
- 2). ¿Son los niveles repetibles?
 - Sí (Fijo) (e.g., Dieta podrías aplicarlas en diferentes lugares).
 - No (Aleatorio) (e.g., Familia no podrías repetir las familias).
- **3).** ¿Se necesitan realizar inferencias para niveles no incluidos en el muestreo?
 - No (Posiblemente fijo) (e.g., Dieta D4 y D5).
 - ► Sí (Posiblemente aleatorio) (e.g., Familias F11, F12).

ESTUDIO DE CASO: ANALISIS DE PRODUCCIÓN Y CALIDAD

En este estudio de caso trabajaremos con un set de datos de producción y calidad de salmón Chinook (n=204) publicado en la revista aquaculture.

Las variables de estudio se describen a continuación:

Variable	Descripción
ID	Identificación del individuo
Family	Identificación familiar
Weight	Peso en la cosecha (g)
Fat_Meter	Concentración de lípidos medido con sensor
Dry_Lipid	Concentración de lípidos medido por gravimetría

BASE DE DATOS

ID	Family	Weight	Fat_Meter	Dry_Lipid
1	369512	2164	8.9	33.35
2	91524	1838	8	25.51
3	40	1739	7.4	21.89
4	CH13	1670	9	28.73
5	101829	1883	10.4	27.57
6	55	1354	8.7	19.66
7	44	803	3	11.93
8	51	1890	11.3	29.25
9	369512	1485	6.7	13.48
10	95776	1877	9.4	17.74

DISTRIBUCIÓN DE LA VARIABLE RESPUESTA (WEIGHT)

MODELO LINEAL

	Weight			
Predictors	Estimates	std. Error	CI	p
(Intercept)	595.99	63.25	471.26 – 720.71	<0.001
Dry Lipid	10.71	2.75	5.28 - 16.14	<0.001
Fat Meter	81.00	8.14	64.95 - 97.05	<0.001
Observations	204			
R^2 / R^2 adjusted	0.504 / 0.	499		
AIC	2890.477			

Independencia

```
##
## Durbin-Watson test
##
## data: Weight ~ Dry_Lipid + Fat_Meter
## DW = 1.502, p-value = 0.0003308
## alternative hypothesis: true autocorrelation is not 0
```

Homogeneidad de varianzas

```
##
## studentized Breusch-Pagan test
##
## data: lm.quality
## BP = 15.685, df = 2, p-value = 0.0003926
```

Normalidad

```
##
## Shapiro-Wilk normality test
##
## data: lm_residuals
## W = 0.99393, p-value = 0.5743
```

Multicolinealidad

GRÁFICO DE DISPERSIÓN POR FAMILIA

Concentración de lipidos por gravimetría (%)

MODELOS LINEALES MIXTOS

library(lme4)

Función Imer

Cantidad de Familias 58

Familia se puede considerar como efecto aleatorio.

MODELO LINEAL MIXTO

	Weight				
Predictors	Estimates std. Error		CI	р	
(Intercept)	539.49	65.84	409.55 - 669.43	<0.001	
Dry Lipid	11.24	2.71	5.89 - 16.58	< 0.001	
Fat Meter	84.85	8.10	68.88 - 100.82	< 0.001	
Random Effects					
σ^2	71637.80)			
τ ₀₀ Family	8374.14				
ICC	0.10				
N_{Family}	58				
Observations	204				
$Marginal\ R^2\ /\ Conditional\ R^2$	0.529 / 0	.578			
AIC	2867.282	2			

R^2 Marginal **y** R^2 Condicional

- ► R²_{Marginal}: proporción de la varianza explicada solo por los efectos fijos.
- ► R²_{Condicional}: proporción de la varianza explicada por todo el modelo.

```
r2_nakagawa(MLM)
```

```
## # R2 for Mixed Models
##
## Conditional R2: 0.578
## Marginal R2: 0.529
```

SELECCIÓN DE MODELOS (AIC)

Criterios de selección de modelos AIC

AIC %>% kable()

	AIC
Modelo lineal	2890.477
Modelo lineal mixto	2867.282

RESUMEN DE LA CLASE

- 1). Modelos lineales mixtos.
- 2). Construir y ajustar modelos lineales mixtos.