第四章 随机变量的数字特征

- 1. 数学期望
- 2. 随机变量的方差
- 3. 协方差、相关系数和矩
- 4. 多维正态随机变量

引 例 1

$$D(X+Y)=D(X)+D(Y)+2E\{[X-E(X)][Y-E(Y)]\}$$

$$D(X-Y)=D(X)+D(Y)-2E\{[X-E(X)][Y-E(Y)]\}$$

$$X$$
、Y相互独立 $\Rightarrow E\{[X-E(X)][Y-E(Y)]\}=0$

反过来,

$$E\{[X-E(X)][Y-E(Y)]\} \neq 0 \Rightarrow X$$
、Y不相互独立

从而
$$E\{[X-E(X)][Y-E(Y)]\}$$
 可在一定程度上反映X、Y之间的关系

一.协方差定义

定义

若 $E\{[X - E(X)][Y - E(Y)]\}$ 存在,称 $cov(X,Y) = E\{[X - E(X)][Y - E(Y)]\}$ 为随机变量X,Y的协力 X.

$$D(X) = cov(X,X)$$

$$D(X \pm Y) = D(X) + D(Y) \pm 2cov(X,Y)$$

常用计算公式:

cov(X,Y) = E(XY) - E(X)E(Y)

一.协方差的性质

$$cov(X,Y) = cov(Y,X)$$

$$cov(aX + c, bY + d) = ab cov(X, Y)$$

$$cov(X_1 + X_2, Y) = cov(X_1, Y) + cov(X_2, Y)$$

樣 3: 已知(X,Y)的联合概率密度为:

$$f(x,y) = \begin{cases} 1/\pi & x^2 + y^2 \le 1 \\ 0 & \text{#} \\ \end{cases}$$

则
$$cov(X,Y) = 0$$

一.协方差矩阵

$\mathcal{L}_{\mathbf{X}}$, 设n维随机变量 (X_1, X_2, \dots, X_n) 的协方差

$$C_{ij} = cov(X_i, X_j)$$

均存在,则称矩阵

$$C = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1n} \\ c_{21} & c_{22} & \dots & c_{2n} \\ & & & & \\ c_{n1} & c_{n2} & \dots & c_{nn} \end{bmatrix}$$

为 (X_1, X_2, \cdots, X_n) 的协方差矩阵.

一.协方差矩阵的性质

1)
$$c_{ii} = D(X_i)$$
 $i = 1, 2, ..., n$

2)
$$c_{ij} = c_{ji}$$
 $i, j = 1, 2, ..., n$

3)
$$c_{ii}^2 \le c_{ii} * c_{ji}$$
 $i, j = 1, 2, ..., n$

4) C非负定。

一.协方差的缺点

用协方差来衡量变量间关系存在的缺点:

受量纲影响很大

例如X表示身高, Y表示体重

X单位取米, Y单位取公斤计算出的协方差与X单位取毫米, Y单位取克计算出的协方差在数量级上相差了10⁶!

思考:如何消除量纲的影响?

第4章3节 协方差、相关系数和矩二.相关系数

随机变量经过标准 化后可以消除量纲的影响:

$$X^* = \frac{X - E(X)}{\sqrt{D(X)}}, \quad Y^* = \frac{Y - E(Y)}{\sqrt{D(Y)}}$$

$$cov(X^*, Y^*) = cov\left(\frac{X - E(X)}{\sqrt{D(X)}}, \frac{Y - E(Y)}{\sqrt{D(Y)}}\right)$$
$$= \frac{cov(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

二.相关系数

定义

设二维随机变量X,Y的D(X) > 0,D(Y) > 0 $\rho_{XY} = \frac{cov(X,Y)}{D(Y)}$

为随机变量X与Y的相关系数.

注:

 ρ_{XY} 是一无量纲的量.

$$\rho_{XY} = E[X^*Y^*] = cov(X^*, Y^*) = \rho_{X^*Y^*}$$

二.相关系数

$$\rho_{XY} = \frac{\text{cov}(X,Y)}{\sqrt{D(X)D(Y)}} = \frac{E\{[X - E(X)][Y - E(Y)]\}}{\sqrt{D(X)}\sqrt{D(Y)}}$$

$$=E\left[\frac{X-E(X)}{\sqrt{D(X)}}\frac{Y-E(Y)}{\sqrt{D(Y)}}\right] = E\left[X^*Y^*\right]$$

$$= \operatorname{cov}(X^*, Y^*) = \rho_{X^*Y^*}$$

$$\therefore D(X^*) = D(Y^*) = 1$$

二.相关系数性质

设随机变量X,Y的相关系数 ρ 存在,则

1) $|\rho| \leq 1$

证明

3) 若
$$\xi = a_1 X + b_1, \eta = a_2 Y + b_2$$
 则
$$\rho_{\xi\eta} = \frac{a_1 a_2}{|a_1 a_2|} \rho_{XY}$$
 证 明

二.相关系数

相关系数是衡量两个随机变量之间<u>该性相</u> 关程度的 数字特征.

定义:设随机变量X,Y的相关系数存在,

- 1) $\rho_{XY}=1$ 称 X,Y 正相矣;
- 2) $\rho_{XY} = -1$ 称 X, Y 负相 矣;
- 3) $\rho_{XY}=0$ 称 X,Y 和 4.

注: $\rho_{XY} = 0$ 仅说明X,Y 之间没有线性关系,但可以有其他非线性关系。参见书上 例4.4.4

二.相关系数

定理: 若随机变量X与Y相互独立,则X与Y不相关,即 $\rho_{XY}=0$

注:

1) 此定理的逆定理不一定成立,即由 ρ_{XY} = 0 不一定能得到X与Y相互独立.

不相关但也不独立的例子

2) $(X,Y) \sim N(\mu_1, \sigma_1^2; \mu_2, \sigma_2^2; \rho)$ 则 X,Y相互独立 $\Leftrightarrow \rho = 0$ 见书 例4.4.6

例4.3.2

例4.3.3

二.相关系数

练习:将一枚硬币重复抛掷n次,X,Y分别表

示正面朝上和反面朝上的次数,

则
$$\rho_{XY} = -1$$

注意到: Y = n - X, 则

$$\rho_{X,n-X}=-\rho_{XX}=-1$$

三.矩

定义: 设X为随机变量,若 $E(|X|^k) < +\infty$,则称

 $\gamma_k = E(X^k)$ $k = 1, 2, 3, \cdots$ 为X的k价点点堆.

三.矩

定义: ∂X 为随机变量,若 $E[|X-E(X)|^k]<+\infty$,

则称 $\mu_k = E\{[X - E(X)]^k\}$ $k = 1, 2, 3, \cdots$ 为X的k价中心程.

γ_k 与 μ_k 的关系:

$$\mu_1 = 0$$
 $\mu_2 = D(X)$
 $\gamma_1 = E(X)$ $\gamma_2 = \gamma_1^2 + \mu_2$