$\textit{ES}_{\textit{U}}$ -замкнутые классы мультифункций ранга 2

Мультифункции ранга 2

Пусть $E_2 = \{0,1\}$, 2^{E_2} — множество всех подмножеств E_2 M_2 — множество всех мультифункций ранга 2:

$$O_{2,n}^* = \{ f \mid f : E_2^n \to E_2 \cup \{\emptyset\} \}, \ O_2^* = \bigcup_n O_{2,n}^*$$

$$H_{2,n} = \{ f \mid f : E_2^n \to 2^{E_2} \setminus \{\emptyset\} \}, \ H_2 = \bigcup_n H_{2,n}$$

$$M_{2,n} = \{ f \mid f : E_2^n \to 2^{E_2} \}, \ M_2 = \bigcup_n M_{2,n}$$

Пусть $f(x_1, \dots, x_n)$, $f_1(x_1, \dots, x_m)$, ..., $f_n(x_1, \dots, x_m)$ — мультифункции.

Суперпозиция мультифункций

 $f(f_1(x_1,\ldots,x_m),\ldots,f_n(x_1,\ldots,x_m))$ определяет $g(x_1,\ldots,x_m)$: если набор $(\alpha_1,\ldots,\alpha_m)\in E_2^m$, то

$$g(\alpha_1,\ldots,\alpha_m):=\bigcup_{\beta_i\in f_i(\alpha_1,\ldots,\alpha_m)}f(\beta_1,\ldots,\beta_n).$$

2 / 18

Пример суперпозиции мультифункций ранга 2

$$2^{E_2} = \big\{\{\varnothing\}, \{0\}, \{1\}, \{0,1\}\big\} \to \big\{*,0,1,-\big\}$$
 Пусть $f(x_1,x_2) = (001-), \ f_1(x) = (10), \ f_2(x) = (*-).$ Рассмотрим $g(x_1,x_2) = f(f_1(x_1), f_2(x_2)).$

x_1	<i>x</i> ₂	$f(x_1,x_2)$	$f_1(x_1)$	$f_2(x_2)$	$g(x_1,x_2)$
0	0	0	1	*	*
0	1	0	1	_	_
1	0	1	0	*	*
1	1	_	0	_	0

Замыкание с разветвлением по предикату равенства

Пусть $f_1(x_1,\ldots,x_n), f_2(x_1,\ldots,x_n)$ — мультифункции. Мультифункция $g(x_1,\ldots,x_n)$ получается из мультифункций f_1,f_2 с помощью операции разветвления по предикату равенства (E-оператор), если для некоторых $i,j\in\{1,\ldots,n\}$ выполняется соотношение

$$g(x_1,\ldots,x_n) = egin{cases} f_1(x_1,\ldots,x_n), & \text{если } x_i = x_j, \ f_2(x_1,\ldots,x_n), & \text{в противном случае.} \end{cases}$$

ES_U -замыкание

Определим ES_U -замыкание множества $Q \subset R$ как множество всех функций из R, которые можно получить из множества Q:

- введением фиктивных переменных;
- отождествлением переменных;
- ES_U-суперпозицией;
- разветвлением по предикату равенства.

Известные свойства оператора E-замыкания

- Марченков С.С., 2003. Получены все 8 Е-замкнутых классов для O₂.
- Марченков С.С., 2008. Получены все 5 E-предполных классов для O_2^* , субмаксимальные классы.
- Матвеев С.А., 2013. Получены все E-замкнутые классы для O_2^* , всего 100 классов.
- Марченков С.С., 2013. Получены все 15 E-предполных классов для O_3^* .
- Пантелеев В.И., Рябец Л.В., 2017, 2018. Получены два семейства предполных классов для H_k .
- Пантелеев В.И., Рябец Л.В., 2019. Получены все 11 E-предполных классов для M_2 .
- Пантелеев В.И., Рябец Л.В., 2020. Получены все E-замкнутые классы для H_2 , всего 78 классов.
- Зинченко А.С., Ильин Б.П., Пантелеев В.И., Рябец Л.В., 2021. Описаны 2 множества E-замкнутые классы для M_2 .

Построение ES_U -замкнутых классов мультифункций

Теорема 1 (Пантелеев, Рябец, 2020 (идея Марченков, 2008))

Любой ES_U -замкнутый класс мультифункций из M_2 E-порождается множеством всех своих функций, зависящих не более чем от двух переменных.

$$f_1(x_1,x_3,x_4,\ldots,x_n) = f(\textbf{x_1},\textbf{x_1},x_3,x_4,\ldots,x_n),$$

$$f_2(x_1,x_2,x_4,\ldots,x_n) = f(\textbf{x_1},x_2,\textbf{x_1},x_4,\ldots,x_n),$$

$$f_3(x_1,x_2,x_4,\ldots,x_n) = f(x_1,\textbf{x_2},\textbf{x_2},x_4,\ldots,x_n).$$

$$f'(x_1,\ldots,x_n) = \begin{cases} f_2(x_1,x_2,x_4,\ldots,x_n), & \text{если } x_1 = x_3, \\ f_3(x_1,x_2,x_4,\ldots,x_n), & \text{в противном случае.} \end{cases}$$

$$f(x_1,\ldots,x_n) = \begin{cases} f_1(x_1,x_3,x_4,\ldots,x_n), & \text{если } x_1 = x_2, \\ f'(x_1,\ldots,x_n), & \text{в противном случае.} \end{cases}$$

Двухместные операторы

Обобщенный оператор разветвления по предикату

Пусть мультифункции g_1,g_2,h_1,h_2 зависят не более чем от двух переменных

Обобщенный оператор разветвления по предикату равенства:

ullet если $h_1(x_1,x_2)$ или $h_2(x_1,x_2)=*$, то

$$f(x_1,x_2)=*.$$

ullet если $h_1(x_1,x_2), h_2(x_1,x_2) \in E_2$, то

$$f(x_1,x_2) = egin{cases} g_1(x_1,x_2), & ext{ если } h_1(x_1,x_2) = h_2(x_1,x_2), \ g_2(x_1,x_2), & ext{ в противном случае;} \end{cases}$$

ullet если $h_1(x_1,x_2)$ или $h_2(x_1,x_2)=-$, то

$$f(x_1,x_2)=g_1(x_1,x_2)\cup g_2(x_1,x_2);$$

В качестве h_1, h_2 могут выступать селекторные функции

Двухместные операторы

Ограниченная суперпозиция

Операция ограниченной суперпозиции:

$$f(x_1,x_2)=g_1(h_1(x_1,x_2),h_2(x_1,x_2)).$$

В качестве мультифункций h_1, h_2 могут выступать селекторные функции

Замыкание множества Q, полученное относительно операторов обобщенного разветвления по предикату равенства и ограниченной суперпозиции, будем обозначать $[Q]_{Ex}$.

Построение ES_U -замкнутых классов мультифункций

Теорема 2 (Пантелеев, Рябец, 2020)

Для любого множества Q выполняется:

$$[Q]_{Ex} \subseteq [Q]_{ES_U}$$
.

$\textit{ES}_{\textit{U}}$ -замкнутые классы \textit{M}_{2}

$$K_1 = \{f \mid f(0,\ldots,0) \in \{0,-\}\}$$
 $K_2 = \{f \mid f(1,\ldots,1) \in \{1,-\}\}$
 $K_3 = \{f \mid f(0,\ldots,0) \in \{0,*\}\}$
 $K_4 = \{f \mid f(1,\ldots,1) \in \{1,*\}\}$
 $K_5 = O_2^* \ K_6 = H_2$
 $K_7 = \{f \mid f(\tilde{\alpha}) \in \{*,1,-\}\}$
 $K_8 = \{f \mid f(\tilde{\alpha}) \in \{*,0,-\}\}$
 $K_9 = PolR_9, \ R_9 = \begin{pmatrix} 0 & 1 & * & - \\ 1 & 0 & * & - \end{pmatrix}$
 $K_{10} = PolR_{10}, \ R_{10} = \begin{pmatrix} 0 & 1 & * & * & * & 0 & 1 & - \\ 1 & 0 & 0 & 1 & - & * & * & * & * \end{pmatrix}$
 $K_{11} = \{f \mid * \in f(0,\ldots,0) \cup f(1,\ldots,1) \text{ либо}$
 $f(0,\ldots,0) = 0 \text{ и } f(1,\ldots,1) = 1\}$

Теорема 3 (Пантелеев, Рябец, 2019)

Множества $K_1 - K_{11}$ являются ES_U -замкнутыми и предполными в M_2 .

Разделяющие множества K_7

```
D_1 = \{f \mid f(\tilde{1}) \in \{1, -\}\}; D_2 = \{f \mid f(\tilde{1}) \in \{*, -\}\};
D_3 = \{ f \mid (f(\tilde{0}), f(\tilde{1})) \in \{(*, *), (*, 1), (*, -), (1, *), (-, *)\} \};
D_{\Delta} = \{ f \mid f(\tilde{0}) \in \{-\} \} :
D_5 = \{f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(*, *), (*, -), (-, *), (-, -)\}, \tilde{\alpha} \in E_2^n\};
D_6 = \{f \mid (f(\tilde{0}), f(\tilde{1})) \in \{(-, 1), (*, *), (1, *), (-, *)\}\};
D_7 = \{f \mid f(1) \in \{-\}\};
D_8 = \{f \mid f(\tilde{0}) \in \{*\}\};
D_9 = \{f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(*, *), (1, *), (*, 1), (-, *), (*, -)\}, \tilde{\alpha} \in E_2^n\};
D_{10} = \{f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(*, *), (1, *), (*, 1), (1, 1)\}, \tilde{\alpha} \in E_2^n\};
D_{11} = \{ f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(1,1), (1,-), (-,1), (-,-)\}, \tilde{\alpha} \in E_2^n \} 
D_{12} = \{f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(1, -), (-, 1), (-, -)\}, \tilde{\alpha} \in E_2^n\};
D_{13} = \{f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(*, *), (-, -)\}, \tilde{\alpha} \in E_2^n\}.
```

Утверждение 1

Множества D_1-D_{13} являются ${\it ES}_U$ -замкнутыми классами

Пусть $f, f_1, \ldots, f_m \in D_5$ и $g(x_1, \ldots, x_n) = f(f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)) \notin D_5$ $\exists \alpha_1, \ldots, \alpha_n :$ $(g(\alpha_1, \ldots, \alpha_n), g(\overline{\alpha}_1, \ldots, \overline{\alpha}_n)) \in \{(1, -), (-, 1), (*, 1), (1, *), (1, 1)\}.$

Рассмотрим случай, когда $\left(g(\widetilde{\alpha}),g(\overline{\widetilde{\alpha}})\right)=(1,*)$. Если $g(\widetilde{\alpha})=1,\ \forall i$ $f_i(\widetilde{\alpha})\neq *$, и все доопределения f дают $1.\Rightarrow f_i(\widetilde{\alpha})=-$ и $f(\widetilde{\alpha})=1$ Тогда $f\notin D_5$. Получили противоречие.

Утверждение 1

Множества D_1-D_{13} являются ES_U -замкнутыми классами

$$g(\alpha_1,\ldots,\alpha_n)$$
 u $g(\overline{\alpha}_1,\ldots,\overline{\alpha}_n)$

- ① Если $\alpha_i = \alpha_j$, то $\overline{\alpha}_i = \overline{\alpha}_j$. Тогда $g(\tilde{\alpha}) = f_1(\tilde{\alpha})$ и $g(\overline{\tilde{\alpha}}) = f_1(\overline{\tilde{\alpha}})$.
- $oldsymbol{2}$ Если $lpha_i
 eq lpha_j$, то $\overline{lpha}_i
 eq \overline{lpha}_j$. Тогда $g(ilde{lpha}) = f_2(ilde{lpha})$ и $g(\overline{ ilde{lpha}}) = f_2(\overline{ ilde{lpha}})$.

Таким образом, значения мультифункции $g(\tilde{x})$ на противоположных наборах совпадают с соответствующими значениями мультифункции $f_1(\tilde{x})$ или $f_2(\tilde{x}) \Rightarrow g(\tilde{x}) \in D_5$.

Следовательно, множество D_5 является ES_U -замкнутым классом мультифункций.

Теорема 4

Количество ES_U -замкнутых классов мультифункций, являющихся подмножествами K_7 , не менее 76.

Для каждого Ex-замкнутого класса Q построим вектор $v_Q=(\gamma_Q^1,\dots,\gamma_Q^{13})$ принадлежности множествам D_1-D_{13} :

$$\gamma_Q^i = egin{cases} 1, \ ext{ec}$$
ли класс принадлежит множеству D_i ; $0, \ ext{uhave}. \end{cases}$

I	П	III	IV
1	B ₁₈	(****)	0110110111001
2	C_1	(1111)	110000001100
3	U_{16}	()	1001101000111
4	Q_1	(* *)	0110110100001
5	Q_2	(-**-)	1001101000001
38	Q_{17}	(****),(*)	0010100100000

I	Ш	III	IV
39		(-***), (-**-)	0001100000000
40	V_{15}^{*}	(-111), (-11-)	1001000000100
41	Q_{19}	(***-),(-**-)	1000101000000
42	Q_{20}	(-11*)	0111010000000
43	Q_{21}	(*-1*)	0110010100000
76	K ₇	(****),(1**-)	0000000000000

Вложимость классов множества K_7 (76 классов) (2021)

Вложимость классов множества K_9 (21 класс) (2019)

Вложимость классов множества $K_6(H_2)$ (78 классов) (2020)

Известные классы множества M_2 (359 классов)

Разделяющие множества для M_2 (всего 24)

```
Дополнительно к K_1 - K_{11}
K_{12} = \{f \mid f(\tilde{0}) = * \text{ либо } f(\tilde{1}) = *\}
K_{13} = \{f \mid (f(\tilde{0}), f(\tilde{1})) \in \{(-, 1), (0, 1)\} \text{ либо } f(\tilde{1}) = *\}
K_{14} = \{f \mid (f(\tilde{0}), f(\tilde{1})) \in \{(0, -), (0, 1)\} \text{ либо } f(\tilde{0}) = *\}
K_{17} = \{f \mid (f(\tilde{0}), f(\tilde{1})) \in \{(-, 1)\} \text{ либо } f(\tilde{1}) = *\}
K_{18} = \{f \mid (f(\tilde{0}), f(\tilde{1})) \in \{(0, -)\} \text{ либо } f(\tilde{0}) = *\}
K_{25} = \{ f \mid f(\tilde{0}) = - \}
K_{27} = \{ f \mid f(\tilde{1}) = - \}
K_{30} = \{f \mid (f(\tilde{0}), f(\tilde{1})) \in \{(-, -), (-, 1), (0, -), (0, 1)\}\}
K_{34} = \{ f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(*, *), (0, *), (*, 0), (1, *), (*, 1), (*, -), (-, *) \}
             и (f(\tilde{0}), f(\tilde{1})) \notin \{(1,0), (0,1)\}
K_{47} = \{f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(-, -), (0, -), (-, 0), (0, 1), (1, 0), (1, -), (-, 1)\}\}
K_{48} = \{ f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in
\{(*,*),(0,*),(*,0),(1,*),(*,1),(*,-),(-,*)\}
K_{54} = \{f \mid (f(\tilde{0}), f(\tilde{1})) \in \{(-, -), (-, 1), (0, -)\}\}
K_{138} = \{ f \mid (f(\tilde{\alpha}), f(\overline{\tilde{\alpha}})) \in \{(-, -), (0, -), (-, 0), (1, -), (-, 1)\} \}
```