LINEAR ALGEBRA (MA20105)

Problems Sheet:

Notation: $\mathbb{F} = (\mathbb{R}, \mathbb{C})$ will always denote a field and $\mathbb{F}^n := \mathbb{F} \times \cdots \times \mathbb{F}$ (n times). \mathbb{R} will denote the field of real numbers \mathbb{C} will denote the field of complex numbers

Eigen values, Eigen vectors, characteristic polynomial, diagonalization

1. Find the eigen values and eigen vectors of A thinking A as a matrix from $\mathbb{R}^2 \to \mathbb{R}^2$, also calculate the same while thinking them as a map from $\mathbb{C}^2 \to \mathbb{C}^2$.

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, A = \begin{bmatrix} 2 & 3 \\ -1 & 1 \end{bmatrix}, A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.$$

- 2. Let \mathbb{F}^n be a *n*-dimensional vector space over the field F. What is the characteristic polynomial for Identity map and zero map on \mathbb{F}^n .
- 3. Let A be an $n \times n$ triangular matrix over the field \mathbb{F} . Prove that the eigen values of A are the diagonal entries of \mathbb{F} .
- 4. Let T be a linear map on \mathbb{R}^3 which is represented in the standard ordered basis by the matrix A=

$$\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}.$$

Prove that A is diagonalizable by exhibiting a basis for \mathbb{R}^3 , each of vector of which is a eigen vector of A.

5. Let A =

$$\begin{bmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{bmatrix}.$$

Is A similar over \mathbb{R} to a diagonal matrix? Is A similar over \mathbb{C} to a diagonal matrix?