Министерство образования и науки Российской Федерации Московский физико-технический институт (государственный университет)

Факультет управления и прикладной математики Кафедра «Интеллектуальные системы», специализация «Проектирование и организация систем»

Выпускная квалификационная работа бакалавра по направлению 010900 «Прикладные математика и физика»

Спектры предложений первого порядка с ограниченным количеством переменных

Студент 573 группы Ярмошик Д. В.

Научный руководитель Жуковский М. Е.

Содержание

1.	Аннот	ация	1
2.	Введе	ние	3
3.	Поста	новка задачи	7
4.	Полученные результаты		9
	4.1. Ф	ормула из $\mathcal{L}^3_{\infty,\omega}$ с бесконечным спектром	9
	4.2. П <u>ј</u>	редельные точки \mathcal{L}^3 в левой окрестности единицы \dots	10
	4.3. O	законе нуля или единицы при иррациональных $lpha$ для языка $\mathcal{L}^3_{\infty,\omega}$	13
5.	Заклю	очение	15

Аннотация

В данной работе исследуются асимптотические свойства случайных графов модели Эрдеша-Реньи и свойства языков первого порядка с ограниченным числом переменных на графах. Рассматриваются вопросы о спектрах предложений из этих языков и о выполнении законов нуля или единицы для этих языков. В работе доказано существование формулы с бесконечным спектром из $\mathcal{L}^3_{\infty,\omega}$, доказано, что объединение спектров всех формул из \mathcal{L}^3 имеет бесконечное число предельных точек в левой окрестности единицы.

 ${\it Knnoveвые\ c.noвa:}$ случайные графы, модель Эрдёша-Реньи, языки первого порядка

Введение

Случайные графы — один из центральных разделов дискретной математики, расположенный на стыке теории вероятностей, комбинаторики и теории графов. Основы теории случайных графов были заложены в 50-х — 60-х годах прошлого века венгерскими математиками П. Эрдёшем и А. Реньи. Существует множество моделей случайных графов, разработанных с учётом адекватности их применения в прикладных областях: моделирования социальных, биологических и инфраструктурных сетей. В настоящей работе мы будем иметь дело с моделью Эрдёша-Реньи, также называемой классической моделью случайного графа.

Многие вопросы этой теории связаны с асимптотическими свойствами случайного графа, то есть с тем, как он ведёт себя при устремлении количества вершин N к бесконечности. Удивительным образом оказывается, что для целого класса таких вопросов можно, совершенно не вдаваясь в сущность конкретного вопроса, дать на него едва ли не исчерпывающий ответ. Точнее говоря, если про случайный граф спрашивается "Как при увеличении числа вершин до бесконечности будет вести себя вероятность того, что граф обладает свойством A?", то во многих случаях можно заранее сказать: "Будет стремиться к 0 или к 1". В этом состоит суть теорем, называемых законами нуля или единицы, уточнению условий применимости которых посвящена данная работа.

Чтобы перейти к изложению известных результатов о законах нуля или единицы, дадим определения основным понятиям и сформулируем теоремы, касающиеся важных для нас свойств случайного графа G(N, p) (см. [1]).

Пусть $N \in \mathbb{N}$, $0 \le p \le 1$. Рассмотрим множество $\Omega_N = \{G = (V_N, E)\}$, $|\Omega_N| = 2^{C_N^2}$ всех неориентированных графов без петель и кратных ребер с множеством вершин $V_N = \{1, \dots, N\}$.

Определение. Случайный граф G(N,p) в модели Эрдёша-Реньи – это случайный элемент со значениями во множестве Ω_N и распределением $\mathsf{P}_{N,p}(G) = p^{|E|} (1-p)^{C_N^2 - |E|},$ определённом на $\mathscr{F} = 2^{\Omega_N}$.

Иначе говоря, это полный граф на N вершинах, в котором каждое ребро независимо от других рёбер удаляется с вероятностью 1-p. Параметр p называют вероят-

ностью проведения ребра.

Определение. Для произвольного языка \mathcal{F} , случайный граф G(N,p) подчиняется закону нуля или единицы для языка \mathcal{F} , если для любой формулы φ из языка \mathcal{F} выполнено $\lim_{N\to\infty} \mathsf{P}(G(N,p)\models\varphi)\in\{0,1\}$.

Введём обозначение \mathcal{L} для языка первого порядка с сигнатурой, в которую входят только двуместные предикаты равенства (=) и смежности (\sim). За точными определениями можно обратиться, например, к [2], а здесь мы ограничимся лишь напоминанием о том, что формулы языка первого порядка – это предложения, составленные из символов, обозначающих переменные: x, y, z, x_1, \ldots , логических связок \land , \neg , \lor , кванторов \exists , \forall и предикатных символов (в нашем случае \sim , =). Например, формула, утверждающая, что диаметр графа (расстояние между двумя наиболее удалёнными друг от друга вершинами, измеряемое в рёбрах) не превосходит 2, выглядит так:

$$\forall x \forall y \ x = y \lor x \sim y \lor (\exists z \ x \sim z \land z \sim y)$$

Определение. Плотность графа G

$$\rho(G) = \frac{|E(G)|}{|V(G)|}.$$

Здесь E(G) — множество вершин графа G, V(E) — множество рёбер Определение. ${\it Makcumanbhas nnomhocmb}$ графа G

$$\rho^{max}(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)|}.$$

Определение. Граф G называется cбалансированным, если

$$\rho^{max}(G) = \rho(G).$$

Определение. Граф G называется *строго сбалансированным*, если

$$\rho^{max}(G) = \rho(G) > \max_{H \subsetneq G} \frac{|E(H)|}{|V(H)|}.$$

В 1960 г. П. Эрдёш и А. Реньи доказали теорему о об условиях справедливости утверждения "G(N, p) содержит копию данного сбалансированного графа" [3]. Позже этот результат получил следующее обобщение.

Теорема 1. (А. Ручински, А. Винс, 1985, [4]) Вероятность того, что G(N, p) имеет подграф H стремится κ 1 при $N \to \infty$, если $N^{-1/\rho^{max}(H)} = o(p(N))$ и стремится κ 0, если $p(N) = o(N^{-1/\rho^{max}(H)})$.

Для нас очень важно то, что при $p=N^{-1/\rho^{max}(H)}$ вероятность содержать подграф H не стремится ни к нулю, ни к единице. Это утверждение, содержащееся в следую-

Введение 5

щей теореме, даёт удобный способ доказывать отсутствие законов нуля или единицы для $G(N, N^{-\alpha}), \ \alpha \in \mathbb{Q}$.

Теорема 2. (Б. Боллобаш, 1981, [5]). Пусть H – строго сбалансированный граф, a – количество автоморфизмов графа H, $p = N^{-1/\rho^{max}(H)}$ Тогда

$$N_H \xrightarrow[N \to \infty]{d} Poiss(1/a)$$

Здесь N_H — количество копий графа H в G(N,p), Poiss(1/a) — пуассоновская случайная величина со средним 1/a.

Из последней теоремы и доказанного в [6] утверждения о том, что для любого $\alpha \in (0,1] \cap \mathbb{Q}$ существует строго сбалансированный граф H с плотностью $\rho(H) = 1/\alpha$, следует, что $G(N,N^{-\alpha})$ не подчиняется закону нуля или единицы для языка \mathcal{L} при всех рациональных α из интервала (0,1]. Это верно и для $\alpha = (k+1)/k, \ k > 0$, т.к. для каждого из таких α существует дерево с соответствующей плотностью. При $\alpha > 2$ граф $G(N,N^{-\alpha})$ асимптотически почти наверное пуст, и, следовательно, подчиняется закону нуля или единицы. Оказывается, что при всех прочих α случайный граф $G(N,N^{-\alpha})$ также подчиняется закону нуля или единицы. Итак, имеет место следующая теорема

Теорема 3. (Дж. Спенсер, С. Шелах, 1988, [7]) Случайный граф $G(N, N^{-\alpha})$ подчиняется закону нуля или единицы для языка \mathcal{L} при всех α , кроме $\alpha \in ((0,1] \cap \mathbb{Q}) \cup \{(k+1)/k \mid k \in \mathbb{N}\}.$

Ниже мы сформулируем несколько аналогичных теорем для других языков.

Определение. Язык \mathcal{L}^k – подмножество \mathcal{L} , содержащее предложения, в которые входят не более k переменных.

На языке \mathcal{L}^3 для любого натурального d можно выразить, например, свойство "иметь диаметр не более d":

$$\psi_d = \forall x \forall y \ x = y \lor x \sim y \lor (\exists z \ x \sim z \land z \sim y) \lor (\exists z \ x \sim z \land (\exists x \ z \sim x \land x \sim y)) \lor \dots$$

Определение. Язык $\mathcal{L}^k_{\infty,\omega}$ включает в себя предложения конечной или счётной длины, в которые входят не более k переменных.

На языке $\mathcal{L}^3_{\infty,\omega}$ можно выразить, например, свойство "быть связным": $\psi = \bigvee_{d=1}^\infty \psi_d$. Это свойство невыразимо в \mathcal{L} .

Определение.

$$\mathcal{L}^{\omega}_{\infty,\omega} = \bigcup_{k} \mathcal{L}^{k}_{\infty,\omega}$$

Теорема 4. Случайный граф $G(N, N^{-\alpha})$ подчиняется закону нуля или единицы для языка $\mathcal{L}_{\infty,\omega}^{\omega}$ при $\alpha \in (1,2] \setminus \{(k+1)/k \mid k \in \mathbb{N}\}$ (Дж. Линч, 1993 [8]) и $\alpha > 2$. Закон нуля или единицы не выполнен при $\alpha \in (0,1]$ (С. Шелах, 2017 [9]) и $\alpha \in \{(k+1)/k \mid k \in \mathbb{N}\}$.

Теорема 5. (М. МакАртур, 1997 [10]) Для любого $\alpha < \frac{1}{k-1}$ случайный граф $G(N,N^{-\alpha})$ подчиняется закону нуля или единицы для языка $\mathcal{L}^k_{\infty,\omega}$.

Ниже дано неформальное определение кванторной глубины формулы. Формальное определение есть, например, в [2].

Определение. *Кванторная глубина* формулы – наибольшее число вложенных кванторов в формуле.

Определение. Язык \mathcal{L}_k - подмножество \mathcal{L} , включающее формулы с кванторной глубиной не более k.

Теорема 6. (М. Е. Жуковский, 2012, [11]). Пусть $p = N^{-\alpha}$, $0 < \alpha < 1/(k-2)$. Тогда случайный граф G(N,p) подчиняется закону нуля или единицы для языка \mathcal{L}_k .

Постановка задачи

Нас интересуют выразительные способности языков \mathcal{L}^k и $\mathcal{L}^k_{\infty,\omega}$ и, в частности, наиболее простых среди них – языков \mathcal{L}^3 и $\mathcal{L}^3_{\infty,\omega}$. Из результата МакАртура [10] следует, что для этих языков выполнен закон нуля или единицы при $\alpha < \frac{1}{2}$. Кроме того, известно (М. Жуковский, А. Раджафимахатратра, 2019 [12]), что при $\alpha = \frac{1}{k-1}$ закон нуля или единицы для языка \mathcal{L}^k всё ещё справедлив, но в любой правой полуокрестности $\frac{1}{k-1}$ существует α , для которого закон нуля или единицы нарушается. Что можно сказать о сохранении закона нуля или единицы для языков с тремя переменными при других значениях параметра α , например в окрестности $\alpha = 1$ – точки, при переходе через которую граф теряет связность? Существуют утверждения, не выразимые на языке \mathcal{L} , но выразимые в $\mathcal{L}^3_{\infty,\omega}$ и наоборот. Для языка \mathcal{L} закон нуля или единицы выполнен при всех иррациональных α , верно ли это для $\mathcal{L}^3_{\infty,\omega}$? Различается ли структура множеств параметров, на которых нарушается закон нуля или единицы, у языков с ограниченным количеством переменных и языков с ограниченной кванторной глубиной?

Полученные результаты

4.1 Формула из $\mathcal{L}^3_{\infty,\omega}$ с бесконечным спектром

Определение. Спектром формулы φ называется множество α таких, что вероятность $\mathsf{P}(G(N,N^{-\alpha})\vDash\varphi)$ не стремится ни к 0, ни к 1 при $N\to\infty$. Здесь использовано обозначение $G\vDash\varphi$, означающее, что для графа G истинна φ .

Теорема 7. В языке $\mathcal{L}^3_{\infty,\omega}$ существует формула с бесконечным спектром с предельной точкой 1 (справа).

Доказательство. Обозначим φ_m замкнутую формулу, которая истинна тогда и только тогда, когда в графе существует цикл длины не более m или простой путь длины $m,\,\varphi_m\in\mathcal{L}^3$. Например,

$$\varphi_3 = \exists x \ \exists y \ x \sim y \land (\exists z \ y \sim z \land z \neq x \land (\exists x \ x \sim z \land x \neq y))$$

Определим $\varphi \in \mathcal{L}^3_{\infty,\omega}$:

$$\varphi = \bigvee_{k=2}^{+\infty} \left(\bigwedge_{i=3}^{2k-1} \varphi_i \wedge \neg \varphi_{2k} \right)$$

Пусть $\alpha=1+\frac{1}{2k}$. Напомним, что при таком α , по теореме 1, вероятность обнаружить в случайном графе $G(N,N^{-\alpha})$ подграф H с плотностью $\rho_H>\frac{2k}{2k+1}$ стремится к нулю, с плотностью $\rho_H<\frac{2k}{2k+1}$ стремится к 1, а с плотностью $\rho_H=\frac{2k}{2k+1}$ — ни к нулю ни к единице. Поскольку $\frac{2k}{2k+1}$ — это плотность простого пути длины 2k, то асимптотически почти наверное случайный граф $G(N,N^{-\alpha})$ содержит простой путь длины 2k-1, поэтому в формуле φ дизъюнкция конъюнктов до k-1 -го включительно ложна с вероятностью, стремящейся к 1. Также, с вероятностью, стремящейся к 1, G(N,p) не содержит циклов длины не более 2k+1 и простых путей длины 2k+1. Поэтому дизъюнкция конъюнктов от k+1-го до бесконечности ложна с вероятностью, стремящейся к 1.

Количество простых путей длины 2k в $G(N, N^{-\frac{2k+1}{2k}})$ имеет асимптотическое рас-

10

пределение Poiss(1/2), поэтому

$$\mathsf{P}(G(n,p) \models \varphi) = \mathsf{P}(G(n,p) \models \neg \varphi_{2k}) \to e^{-1/2}$$

Аналогично, при $\alpha = 1 + \frac{1}{2k+1}$

$$\mathsf{P}(G(n,p) \models \varphi) = \mathsf{P}\left(G\left(n,p\right) \models \varphi_{2k+1}\right) \to 1 - e^{-1/2}$$

Таким образом, спектр формулы φ содержит множество $\{1+1/k \mid k>5\}$, что и требовалось.

Предельные точки \mathcal{L}^3 в левой окрестности единицы 4.2

Определение. Назовём *предельной точкой языка* ${\mathcal F}$ такое α , что в любой окрестности α существует α' , для которого не выполнен закон нуля или единицы для языка F.

Докажем, что в языке \mathcal{L}^3 предельные точки существуют в любой левой полуокрестности единицы: $\forall \varepsilon > 0 \ \exists \alpha \in (1 - \varepsilon, 1).$

Рассмотрим граф, состоящий из k+2 треугольников, соединённых простыми путями. Причём, расстояние (в рёбрах) между вторым и третьим треугольниками, третьим и четвёртым и т. д., одинаково. Обозначим это расстояние m, а расстояние между первым и вторым треугольником — s.

Рис. 1. Граф с $k=2,\,s=2$ и m=4

Плотность такого графа равна

$$\rho(H_{ksm}) = \frac{6+s+(3+m)k}{5+s+(2+m)k}$$

и при увеличении k стремится к $\rho_{\infty} = \frac{3+m}{2+m}$. Граф с k=0 состоит из двух треугольников и имеет вид гантели.

Т.к. $sign\left(\frac{\partial \rho(H_{ksm})}{\partial k}\right) = sign(3+s-m)$, то при m < 3+s плотность графа растёт при увеличении \hat{k} и, как нетрудно убедиться, при этом выполнено равенство

 $\rho(H_{ksm}) = \rho^{max}(H_{ksm})$. Будем считать m = s + 2, т.к. при таком соотношении длины гантели и длины добавочных звеньев граф получается оптимальным с точки зрения плотности, что пригодится в дальнейшем.

Таким образом, для доказательства утверждения достаточно предъявить для каждого такого графа формулу из \mathcal{L}^3 , выражающую его существование.

Вместо $\exists x\exists y\exists z\ x\sim y\wedge y\sim z\wedge x\sim z$ будем писать \triangle_{xyz}

Рассмотрим формулу

$$\varphi_{0s} = \triangle_{xyz} \wedge \psi_s^{x\xi},$$

$$\psi_s^x = \exists x \ [x \sim z \wedge x \neq y \wedge x \nsim y]$$

$$\wedge \exists y \ [y \sim x \wedge y \neq z \wedge y \nsim z]$$

$$\wedge \exists z \ [z \sim y \wedge z \neq x \wedge z \nsim x]$$

$$\wedge \qquad \cdots$$

$$\wedge \exists \xi \ \xi \sim \nu \wedge \xi \sim \eta,$$
(1)

где количество выражений в квадратных скобках в ψ_s^x равно s+1; верхний индекс x соответствует переменной, стоящей после первого квантора существования, вместо символа ξ стоит одна из переменных x,y,z — какая именно определяется параметром s (переменные у кванторов существования следуют в циклическом порядке: x,y,z,x,y,\ldots); ν и η — две оставшиеся из x,y,z переменные, отличные от ξ .

Если бы в этой формуле после каждого нового квантора существования присутствовало условие на то, что переменная, стоящая после квантора не равна всем переменным, объявленным ранее, то φ_{0s} выражала бы существование гантели с расстоянием между треугольниками, равным s. К сожалению, имея лишь три переменных, мы не можем напрямую запретить одной переменной соответствовать нескольким вершинам, поэтому $G \vDash \varphi_{0s}$ не только в случае, когда граф G содержит гантель соответствующей длины (например, граф, изображённый на на Рис. 3, удовлетворяет $\varphi_{0,6}$). Впрочем, как мы покажем далее, делать это и не обязательно.

Составим теперь аналогичную формулу φ_{ksm} для графа H_{ksm} .

$$\varphi_{ksm} = \triangle_{xyz} \wedge \psi_s^{\xi_0} \wedge \underbrace{\psi_m^{\xi_1} \wedge \ldots \wedge \psi_m^{\xi_k}}_{\text{k pas}}$$

По той же причине, существование в $G(n,n^{-\alpha})$ подграфа H_{ksm} не является необходимым для того, чтобы формула φ_{ksm} была верна. Однако, оно становится необходимым (с вероятностью, стремящейся к единице) при $\alpha=1/\rho_{H_{ksm}}$ и m=s+2. Действительно, покажем, что любой другой граф \tilde{H}_{ksm} , для которого выполнено φ_{ksm} , содержит подграф ограниченного размера с максимальной плотностью большей, чем $\rho_{H_{ksm}}$.

Пемма 1. Если $G \vDash \varphi_{ksm}$ и G не содержит подграфа, изоморфного H_{ksm} , то G содержит более плотный подграф с меньшим числом вершин.

Рис. 2. Только последняя вершина использована повторно. Черным обозначены вершины и рёбра $\tilde{H}_{k'sm}$, серым вершины и рёбра $H_{k'sm}$, красным пунктиром – рёбра, запрещённые формулой

Доказательство. В графе H_{ksm} каждой переменной формулы φ_{ksm} соответствует отдельная вершина. Пусть для графа G истинна φ_{ksm} , и он не содержит подграфа, изоморфного H_{ksm} .

 $G \vDash \varphi_{ksm}$ означает, что существует такое отображение из множества вершин графа на множество переменных* формулы, что если в формулу вместо переменных подставить соответствующие вершины и убрать кванторы, то получится верное утверждение. Здесь мы под $nepemennoù^*$ понимаем переменную в зоне действия квантора по этой переменной. Так, одной букве-переменной x соответствует несколько переменных со звёздочкой. Зафиксируем одно из таких отображений. Обозначим \tilde{H}_{ksm} подграф графа G, индуцированный на прообразе этого отображения. Очевидно, что некоторой вершине \tilde{H}_{ksm} соответствует более одной переменной, т.к. иначе \tilde{H}_{ksm} изоморфен H_{ksm} . Назовём конъюнкт вида $\psi_*^{\xi_l}$, $*\in\{s,m\}$, l-ой $ce\kappa uue\check{u}$ формулы φ_{ksm} . Пусть k' — номер секции, в которой впервые произошло повторное "использование" вершины, то есть в $(\Delta_{xyz} \wedge \psi_s^{\xi_0} \wedge \psi_m^{\xi_1} \wedge \ldots \wedge \psi_m^{\xi_{k'}})$ есть две переменные, соответствующие одной вершине, а в $(\Delta_{xyz} \wedge \psi_s^{\xi_0} \wedge \psi_m^{\xi_1} \wedge \ldots \wedge \psi_m^{\xi_{k'}})$ таких двух переменных нет. $e := |E(H_{k'sm})|$, $v := |V(H_{k'sm})|$ $\tilde{e} := |E(\tilde{H}_{k'sm})|$, $\tilde{v} := |V(\tilde{H}_{k'sm})|$

Есть три возможности:

- 1. Последняя вершина в звене уже была использована та, которая сразу добавляет два ребра
 - (а) повторно использована только она: $\tilde{\rho}^{max} \geq \frac{e}{v-1}$, так как в этом случае число вершин в $\tilde{H}_{k'sm}$ равно v-1, а число рёбер не меньше e. Действительно, в рассматриваемом случае (по определению) $\tilde{H}_{k'sm}$ содержит все рёбра $H_{k'sm}$, кроме, быть может, двух рёбер, инцидентных последней вершине (вершине, соответствующей последней переменной секции с номером k'), которые могут уже присутствовать в $H_{k'sm}$. Однако, легко видеть, что это невозможно (см. Рис. 2).
 - (b) она и какая-то до неё: $\tilde{\rho}^{max} \geq \frac{e-2}{v-2}$. Действительно, посмотрим на первую

Рис. 3. Повторное использование промежуточной вершины

повторно использованную вершину. Т.к. формула запрещает совпадать вершинам, соответствующим разным переменным, для её соединения с предыдущими вершинами необходимо добавить ребро, которого нет в графе $H_{k'sm}$. С каждой новой секцией в $H_{k'sm}$ добавляется 3+m рёбер и 2+m вершин. Однако, проведя дополнительное ребро к уже имеющейся вершине, мы уже добавили на одно ребро больше, чем вершин, поэтому имеем рёбер $\tilde{e}' = e - (3+m) + (\nu+1) = e - (m-\nu)$, вершин $\tilde{v}' = v - (2+m) + \nu = v - (m-\nu)$, где ν – число вершин, уже добавленных в последней "секции" $\tilde{H}_{k'sm}$. Поскольку $\tilde{H}_{k'sm}$ связен, при добавлении новой вершины добавляется и как минимум одно ребро, поэтому $\tilde{v} = \tilde{v}' + \mu$, $\tilde{e} \geq \tilde{e}' + \mu$, $\mu > 0$ – число вершин добавленных после повторного использования. В рассматриваемом случае $\tilde{v} \leq v-2$, поэтому $\tilde{\rho}^{max} \geq \frac{e-2}{v-2}$

2. Последняя вершина ещё не была использована: $\tilde{\rho}^{max} \geq \frac{e}{v-1}$. Этот случай похож на 1b, но теперь $\tilde{v} \le v - 1$ и последняя вершина добавляет 2 ребра

Итого
$$\tilde{\rho}^{max} \ge \min(\frac{e-2}{v-2}, \frac{e}{v-1}) = \frac{e-2}{v-2} = \frac{4+s+(3+m)k'}{3+s+(2+m)k'}.$$

Итого $\tilde{\rho}^{max} \geq \min(\frac{e-2}{v-2}, \frac{e}{v-1}) = \frac{e-2}{v-2} = \frac{4+s+(3+m)k'}{3+s+(2+m)k'}.$ Используя m=s+2, получаем $\tilde{\rho}^{max}-\rho_{\infty}=\frac{1}{((2+m)(k+1)-1)(m+2)},$ следовательно $\tilde{\rho}^{max} > \rho_{\infty} > \rho_{H_{ksm}}$.

Из теоремы 1 и леммы 1 следует

Теорема 8. Закон нуля или единицы для языка \mathcal{L}^3 нарушается в точках $\alpha =$ $\frac{m+3+(2+m)k}{m+4+(3+m)k}, \ m \geq 3, \ k \geq 0.$ В языке \mathcal{L}^3 есть предельные точки в любой левой полуокрестности единицы.

4.3 O законе нуля или единицы при иррациональных α для языка \mathcal{L}^3_{∞}

Последовательность графов, у которых ρ^{max} стремится к иррациональному числу, можно использовать для доказательства отсутствия закона нуля или единицы при рациональных α .

Рассмотрим граф

Рис. 4. Первый блок

Если присоединить к нему кусочек, как на рисунке 5, то плотность и максимальная плотность графа не изменятся

Рис. 5. Два блока

Можно присоединить 9 кусочков, увеличив число рёбер и вершин в десять раз, затем добавить (или не добавлять) одно ребро. Получившийся граф будет иметь вид, как граф на рисунке 6

Таким образом можно увеличивать число рёбер и вершин в 10^k раз и добавлять ребро. Последовательность плотностей графов будет стремиться к бесконечной апериодической десятичной дроби.

Рис. 6. Несколько блоков и дополнительное ребро

Граф состоит из примыкающих друг к другу секций, поэтому для записи формулы, выражающей существование этого или более плотного графа, достаточно столько переменных, сколько нужно, чтобы выразить существование наибольшей из секций.

 $//{\rm TODO}$: исправить – приближаться к иррациональному числу нужно справа а не слева, рёбра нужно удалять, а не добавлять

Заключение

//TODO

Литература

- [1] Максим Евгеньевич Жуковский and Андрей Михайлович Райгородский. Случайные графы: модели и предельные характеристики. Успехи математических наук, 70(1 (421):35–88, 2015.
- [2] Николай Константинович Верещагин and Александр Шень. Лекции по математической логике и теории алгоритмов. Часть 2. Языки и исчисления. Учебное пособие. МЦНМО, 2013.
- [3] Pál Erdős and Alfréd Rényi. On the evolution of random graphs. Selected Papers of Alfréd Rényi, 2:482–525, 1976.
- [4] Andrzej Rucinski and Andrew Vince. Balanced graphs and the problem of subgraphs of random graphs. *Congr. Numer*, 49:181–190, 1985.
- [5] Béla Bollobás. Threshold functions for small subgraphs. In *Mathematical Proceedings* of the Cambridge Philosophical Society, volume 90, pages 197–206. Cambridge University Press, 1981.
- [6] Andrzej Ruciński and Andrew Vince. Strongly balanced graphs and random graphs. Journal of graph theory, 10(2):251–264, 1986.
- [7] Saharon Shelah and Joel Spencer. Zero-one laws for sparse random graphs. *Journal* of the American Mathematical Society, 1(1):97–115, 1988.
- [8] James F Lynch. Infinitary logics and very sparse random graphs. In [1993] Proceedings Eighth Annual IEEE Symposium on Logic in Computer Science, pages 191–198. IEEE, 1993.
- [9] Saharon Shelah. Failure of 0-1 law for sparse random graph in strong logics. arXiv preprint arXiv:1706.01226, 2017.
- [10] M McArthur. The asymptotic behavior of $l_{\infty,\omega}^k$ on sparse random graphs. Logic and random structures, 33:53–63, 1997.
- [11] Maksim Zhukovskii. Zero-one k-law. Discrete Mathematics, 312(10):1670–1688, 2012.
- [12] AS Razafimahatratra and M Zhukovskii. Zero-one laws for k-variable first-order logic of sparse random graphs. *Discrete Applied Mathematics*, 2019.