

시계열 분석

시계열 분석

일정한 시간을 간격으로 표시된 자료의 특성을 파악하여 미래를 예측하는 방법 독립변수(x)와 종속변수(y)가 시간단위(xt)를 가진다. 회귀분석 vs 시계열 분석 - 시간을 고려하는가

시계열 데이터의 특성

시계열 정보 = 규칙적인 패턴 + 불규칙적인 패턴

규치적인 패턴

자기상관성 - 이전의 결과와 이후의 결과 사이에서 발생 바로 이전의 결과의 영향을 받을 수도 있지만 Delay가 발생하기도 한다. 이동평균 - 이전에 생긴 불규칙한 사건이 이후의 결과에 편향성을 초래

불규칙적인 패턴(White Noise)

평균이 0이며 일정한 분산을 지닌 정규분포에서 추출된 임의의 수 대표적인 모델 : AR, MA, ARMA, ARIMA, ARIMAX

시계열 모형

1.자기상관(AR) - 자기상관성을 시계열 모형으로 구성한 것 바로 직전의 값 1개가 다음 값에 영향을 미치는 모형

$$X(t) = a * X(t-1) + c + u * e(t)$$

2이동평균(MA) - 시간이 지날수록 어떠한 변수의 평균값이 지속적으로 증/감이 생길 수 있음 직전의 값 1개에서 발생한 오차가 다음 데이터에 영향을 준다고 가정한 모형

$$X(t) = a * e(t-1) + c + u * e(t)$$

3.ARMA 모형 - AR+MA

$$ARMA(1,1) \ X(t) = a*X(t-1) + b*e(t-1) + c + u*e(t)$$

4.ARIMA 모형 - 과거의 데이터가 지닌 추세(trend)까지 반영한 모형

추세는 자기 자신의 추세만 반영하며 백색소음(White Noise)을 고려하지 않는다.

• 추세관계

두 변수 X-Y간에 cointegration이 0보다 크면 X의 값이 이전 값보다 증가하면 Y값도 증가

두 변수 X-Y간에 cointegration이 0보다 작으면 X의 값이 이전 값보다 증가하면 Y값은 감소

$$ARIMA(1,1,1) \\ a*X(t) - X(t-1) = b*X(t-1) + c*e(t-1) + d + u*e(t) \\ X(t) = [X(t-1) + b*X(t-1) + c*e(t-1) + d + u*e(t)]/a$$

1.추세(Trend) - 세부적인 데이터가 아닌 전체적인 동향을 이용하는 것

2.계절성(Seasonality) - 특정한 기간을 토대로 기간마다 어떤 패턴을 가지는 지 확인하는 것

3.순환(Cyclical) - 2~3년 정도의 기간을 주기로 순환 발생

4.우연변동(Random) - 추세, 계절성으로 설명할 수 없는 시계열 데이터

- 시간에 따른 규칙적인 움직임과는 무관하게 랜덤한 원인에 의해 나타나는 변동
- 백색잡음 (White Noise): 평균이 0이고 분산이 일정한 시계열 데이터

- •추세변동 (Trend)
- •순환변동 (Cycle)
- •계절변동 (Seasonal variations)
- •우연변동 (Random fluctuation)

^{*}observed = trend + seasonal + random

자기상관성 - Autocorrelation

자기 자신(데이터)가 한 단계 아래로 밀린 데이터 간의 상관성 (x1과 x1'의 상관계수)

Positive Autocorrelation - 양수 다음엔 양수, 음수 다음엔 음수가 나오는 자기 상관성

Negative Autocorrelation - 양수 다음엔 음수, 음수 다음엔 양수가 나오는 자기 상관성

Random Autocorrelation - 규칙적인 패턴이 없는 자기 상관성

*자기상관성이 없다면 기본 회귀분석 기법과 차이가 없기 때문에 꼭 확인이 필요함 회귀분석은 cov(x1,x2)=0으로 가정하지만 시계열 데이터는 이를 위반할 가능성이 높음

Darbin-Watson Test - 자기상관성 여부 확인 방법

귀무가설과 대립가설을 통해 확인하는 방법
1.Positive Autocorrelation 확인 방법
검정통계량(d) < dL - 대립가설 채택
검정통계량(d) > dU - 귀무가설 채택
dL < d < du - 부적절한 검증 방법

• For the first-order positive autocorrelation.

예제

$$\begin{split} H_0: & \rho = 0 \\ H_1: & \rho > 0 \end{split}$$

$$d = \frac{\sum_{t=2}^{20} (e_t - e_{t-1})^2}{\sum_{t=1}^{20} e_t^2} = \frac{8195.2065}{7587.9154} = 1.08$$

$$\alpha = 0.05 \quad d_L = 1.20 \quad and \quad d_U = 1.41$$

$$d = 1.08 < d_L = 1.20 \end{split}$$

Reject H_0 Errors are positively autocorrelated.

2.Negative Autocorrelation 확인 방법

if (4-d) < dL - 대립가설 채택

if (4-d) > dU - 귀무가설 채택

dL < (4-d) < du - 부적절한 검증 방법

Consider testing the null hypothesis

 H_0 :The error terms are not autocorrelated

Versus the alternative hypothesis

H_1 : The error terms are negatively autocorrelated

Durbin and Watson have shown that based on setting the probability of a Type I error equal to α , the points $d_{L,\alpha}$ and $d_{U,\alpha}$ are such that

$$d = \frac{\sum_{i=2}^n (e_i - e_{i-1})^2}{\sum_{i=1}^n e_i^2} \quad \text{where } e_i = y_i - \hat{y}_i$$

If
$$(4-d) < d_{L,\alpha}$$
 we reject H_0 . If $(4-d) > d_{U,\alpha}$ we do not reject H_0 . If $d_{L,\alpha} \le (4-d) \le d_{U,\alpha}$ the test is inconclusive.

시계열 모형 선택방법 (Box-Jenkins ARIMA Procedure)

주관적인 방법이기 때문에 다시 한 번 검증이 필요함

Identification ARIMA Model

 Graphical method: making inferences from the patterns of the sample autocorrelation and partial autocorrelation functions of the series

Model	ACF	Fartial ACF
MA(q)	Cut off after lag q (q시차 이후 0으로 절단)	Die out (지수적으로 감소, 소멸하는 sine함수 형태)
AR(p)	Die out (지수적으로 감소, 소멸하는 sine함수 형태)	Cut off after lag p (p시차 이후 0으로 절단)
ARMA(p, q)	Die out (시차 (q-p)이후 부터 소멸)	Die out (시차 (q-p)이후 부터 소멸)

1번의 경우 - Cut Off, 2,3,4번의 경우는 모두 Die Out을 의미함.

시계열 모형

1.자기상관 - AR - 이전의 값이 이후의 값에 영향을 미치고 있는 경향을 반영

= 자기 자신(x)에 lag된 값들과의 관계를 모델링하는 방법

$$\underbrace{y_t} = \emptyset_0 + \emptyset_1 \underbrace{y_{t-1}}_{1} + \emptyset_2 \underbrace{y_{t-2}}_{1} + \dots + \emptyset_p \underbrace{y_{t-p}}_{1} + \varepsilon_t$$

2.이동평균 - MA - 시간이 지날수록 어떤 평균값이 지속적으로 증가하거나 감소하는 경향 반영

= 연속적인 Error term으로 y와의 관계를 모델링하는 방법

$$\underbrace{y_t} = \theta_0 + \underbrace{\varepsilon_t}_{t} + \theta_1 \underbrace{\varepsilon_{t-1}}_{t-1} + \theta_2 \underbrace{\varepsilon_{t-2}}_{t-2} + \dots + \theta_q \underbrace{\varepsilon_{t-q}}_{t-q}$$

3.ARMA - AR+MA

$$y_t = \emptyset_0 + \emptyset_1 y_{t-1} + \emptyset_2 y_{t-2} + \cdots \oplus_p y_{t-p} + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \ldots + \theta_q \varepsilon_{t-q}$$

*1,2,3번 방법은 시계열 데이터가 정상성을 가질 때 적용이 가능한 모델이다.

정상성을 만들어주기 위해 differencing을 사용한다

4.ARIMA - ARMA 모형에 과거의 데이터가 지니고 있던 추세까지 반영 I(differencing)을 추가한 모델링 기법 (AR(p), I(d), MA(q))

- p Independent Variable의 개수
- d Differencing의 횟수
- q 파라미터의 개수

Differencing - 차분(현 시점 데이터에서 d시점 이전 데이터를 뺀 것)

효과 : 비정상성 시계열 데이터도 차분을 하면 정상성을 가질 확률이 높음

I차 차분:
$$Y_t = X_t - X_{t-1} = \nabla X_t$$

2차 차분:
$$Y_t^{(2)} = X_t - X_{t-2} = \nabla^{(2)} X_t$$

d차 차분:
$$Y_t^{(d)} = X_t - X_{t-d} = \nabla^{(d)} X_t$$

X		
2	X	Y
7	2	5
10	7	3
5	10	-5
8	5	3
	8	-

- *오리지널 데이터가 정상성을 가지면 차분이 필요없음
- *오리지널 데이터가 Constant하다면 1차 차분으로 충분하다 (복잡할 경우 최대 2차 차분)
- *대부분의 문제는 2차 차분으로 충분하다.

알아야 할 용어

AIC - Akaike's Information Criterion

AIC = 2 (log-likelihood) + 2k

log-likelihood : 모형 적합도를 나타낸 척도 k =모형 파라미터의 개수(독리변수의 개수)

*정규분포를 따르는 잔차를 가진 경우 - AIC = $n \log(\sigma^2) + 2k$

정상 프로세스 (Stationary Process)

시간에 관계없이 평균과 분산이 일정한 시계열 데이터

정상성 확인

acf - AutoCorrelation Function

pacf - Partial AutoCorrelation Function

lag - ex)lag = 1 → 현재 데이터와 1시점을 미룬 데이터 (차분 파트 참조)

```
정상성 확인
import Statsmodels.api as sm
sm.graphics.tsa.plot_acf(train.values.squeeze(), lags=30, ax=ax[0]) #acf =
sm.graphics.tsa.plot_pacf(train.values.squeeze(), lags=30, ax=ax[1])
```

비정상 프로세스 (Nonstationary Process)

시간에 따라서 평균 혹은 분산이 일정하지 않은 시계열 데이터

비정상성 확인 (Autocorrelation Function의 패턴을 이용)

Box-Jenkins ARIMA Procedure 절차

- 1.데이터 전처리
- 2.임시 사용 모델 선택
- 3.파라미터 추정
- 4.모델 적합성 검증
- 5.적합할 시 모델 사용

1.Original 데이터 확인

```
fig = df.plot()
fig

#시계열 분해
decompostion = sm.tsa.seasonal_decompose(df['passengers'], model='additive', period=1) #trend, seasonal, Resid를 확인하기 위한 작업
fig = decompostion.plot()
fig.set_size_inches(10,10)
```


2.정상성 or 비정상성 확인 (acf 확인)

```
fig, ax = plt.subplots(1, 2, figsize=(10,5))
fig.suptitle('Raw Data')
sm.graphics.tsa.plot_acf(train.values.squeeze(), lags=30, ax=ax[0])
sm.graphics.tsa.plot_pacf(train.values.squeeze(), lags=30, ax=ax[1])
```


- *lag 0은 무조건 1 (데이터 자기 자신과 비교하는 것이기 때문)
- *lag 1부터 보았을 때 값이 천천히 감소하는 것을 확인 (비정상성의 대표적 현상)
- *정상성을 띄는 경우 급격하게 감소하는 경향을 보임

3.비정상성임을 확인하고 차분 진행

- *차분을 진행한 결과 정상성을 띄는 시계열 데이터로 변한 것을 확인
- 4.Box-Jenkins ARIMA Procedure을 통해 사용할 분석 모형 선택

Model	ACF	Partial ACF
/ MA(q)	Cut off after lag q (q시차 이후 0으로 절단)	Die out (지수적으로 감소, 소멸하는 sine함수 형태)
AR(p)	Die out (지수적으로 감소, 소멸하는 sine함수 형태)	Cut off after lag p (p시차 이후 0으로 걸단)
$\sqrt{ARMA(p,q)}$	Die out (시차 (գ-р)이후 부터 소멸)	Die out (시차 (գ-р)이후 부터 소멸)

*Acf - Cut Off, Pacf - Die out 이라고 판단하여 MA 모델 적용

5.MA모델 적용

```
model = ARIMA(train.values, order=(0,1,1))
model_fit = model.fit()
model_fit.summary()
#한 가지만 적용하는 것이 아닌 주변의 값들을 대입해 모델을 더 돌려본다.
#최적 파라미터 구하기
print('Examples of parameter combinations for Seasonal ARIMA')
p = range(0,3)
d = range(1,2)
q = range(0,3)
pdq = list(itertools.product(p, d, q))
aic = []
for i in pdq:
   model = ARIMA(train.values, order=(i))
    model_fit = model.fit()
    print(f'ARIMA: {i} >>AIC : {round(model_fit.aic,2)}')
    aic.append(round(model_fit.aic,2))
#최적 파라미터 추출
optimal = [(pdq[i], j) for i, j in enumerate(aic) if j == min(aic)]
#모델링 (최적 파라미터 이용)
model_opt = ARIMA(train.values, order=(2,1,1))
model_opt_fit = model_opt.fit()
model_opt_fit.summary()
```


6.최적 파라미터 모델 성능 평가

ACF Plot of the residual values from the ARIMA (0,1,3) model

*최적의 MA모형 파라미터가 (0,1,3)임을 확인

SARIMA 모델

- 기존 ARIMA 모델에 계절성을 반영한 모델
- 각 계절에 따른 독립적인 ARIMA 모델이 합쳐진 형태
- ARIMA(p,d,q)(P,D,Q)s의 형태로 구성
 - s=12(월별인 경우), s=4(분기인 경우)

지RIMA
$$(1,1,1)(1,1,1)_{(4)}$$
 $(1-\phi_1B)(1-\phi_1B^4)(1-B)^1(1-B^4)^1y_t = (1+\theta_1B)(1+\theta B^4)a_t$ 비개설 AA(1) 비계성 AA(1) 비계성 사원 1 개성 사원 4 비계성 MA(1) 개성 MA(1) 자성 MA(1) 사업 MA(1) 사업 MA(1) 사업 MA(2) $\phi_p(B)\phi_p(B^s)(1-B)^d(1-B^s)^By_t = \theta_q(B)\theta_Q(B^s)a_t$ 비계성 AA(p) 개성 AA(p) 비계성 AA(p)