"I am aware that any forms of cheating in this exam will result in a tero grade and a disciplinary investigation. I accept all rules and regulations regarding online exams. I give permission for the processing of my personal data as stated in the clarification text provided on the Faculty of Engineering website." Dural

Question 1

i) Build the mathematical model of the problem.

Desicion variables! Xi! Type! X2 1 Type 2

Constraints ! 3×1+×2 ≤ 450 X1 & 100 X2 < 300 X1, X2 >, O

Maximize profit = 8 X1 + 5 X2 Objective : Maximize profit

		· 1		
(X_1, X_1)	2)_	Profit		
X, = 100	x2 = 300	2300	not feasible	
X1 = 100	x2=150	1550	feasible	
	×2 = 300	1900	feasible ->	optimum
1				

ii) Solve the problem graphically.

$$\begin{array}{cccc} (X_1, X_2) & Profit \\ (0,0) & \rightarrow & 0 & Feasible \\ (100,0) & \rightarrow & 800 & Feasible \\ (0,300) & \rightarrow & 1500 & Feasible \\ (100,150) & \rightarrow & 1550 & Feasible \\ (100,150) & \rightarrow & 1900 & Feasible & \rightarrow & Optimum \\ (50,300) & \rightarrow & 1900 & Feasible & \rightarrow & Optimum \\ \end{array}$$

maximum value.