

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS SENIORSERTIFIKAAT-EKSAMEN/ NASIONALE SENIORSERTIFIKAAT-EKSAMEN

TECHNICAL MATHEMATICS P2/TEGNIESE WISKUNDE V2

MAY/JUNE 2024

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

CODE/	EXPLANATION/VERDUIDELIKING
KODE	
A	Accuracy/Akkuraatheid
AO	Answer only/Slegs antwoord
CA	Consistent accuracy/Volgehoue akkuraatheid
Ι	Identity/Identiteit
M	Method/ <i>Metode</i>
NPR	No penalty for rounding/Geen penalisering vir afronding nie
NPU	No penalty for omitting units/Geen penalisering vir eenhede weggelaat nie
R	Rounding/Afronding
RE	Reason/Rede
S	Simplification/Vereenvoudiging
SF	Substitution in correct formula/Vervanging in korrekte formule
ST/RE	Statement with reason/Bewering met rede
F	Correct formula/Korrekte formule

These marking guidelines consist of 20 pages. *Hierdie nasienriglyne bestaan uit 20 bladsye.*

Copyright reserved/Kopiereg voorbehou

Please turn over/Blaai om asseblief

NOTE:

- If a candidate answers a question **TWICE**, only mark the **FIRST** attempt.
- The method of Consistent Accuracy marking must be applied in all aspects of the marking guideline where indicated with the marking code **CA**.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, sien slegs die EERSTE poging na.
- Die metode van Volgehoue Akkuraatheid-nasien moet waar moontlik op alle aspekte van die nasienriglyne toegepas word soos aangedui deur die nasienkode **CA**.

1.1.3	y = -1x + c $4 = -1(5) + c$	✓ gradient/gradiënt ✓ substitution/ vervanging	CA CA
	$\therefore c = 9$ $\therefore y = -x + 9$	✓equation/vergelyking	CA
	\mathbf{OR}/\mathbf{OF} $y - y_1 = m(x - x_1)$	OR/OF	
	$y - 4 = -1(x - 5)$ $y - 4 = -x + 5$ $\therefore y = -x + 9$	✓ gradient/gradiënt ✓ substitution/vervanging ✓ equation/vergelyking AO: full marks/ volpunte	CA CA CA
1.2	$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$, ,
	$= \sqrt{(-5 - (-1))^2 + (-2 - (-6))^2}$	✓ SF	A
	$= 4\sqrt{2} \mathbf{OR/OF} \approx 5,66$ $\mathbf{SN} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ $= \sqrt{(0 - 2)^2 + (1 - (-1))^2}$	✓ value of/waarde van PQ	A
	$= \sqrt{(0-2)^2 + (1-(-1))^2}$ = $2\sqrt{2}$ OR/OF $\approx 2,83$	✓ value of /waarde van SN	A
	$\frac{PQ}{SN} = \frac{4\sqrt{2}}{2\sqrt{2}}$	$\checkmark \frac{4\sqrt{2}}{2\sqrt{2}}$	CA (4)
	= 2		
			[11]

3.1.1	$cosec P \times tan Q$		
3.1.1	$= \csc 119^{\circ} \times \tan 61^{\circ}$	✓ substitution/vervanging	\mathbf{A}
	1 v ton 61°		
	$=\frac{1}{\sin 119^{\circ}} \times \tan 61^{\circ}$	✓ I	A
	≈ 2,06	√ 2,06	CA
			(3)
3.1.2	$\cos^2(P+2Q)$		
	$=\cos^2(119^\circ + 2\times61^\circ)$	✓ substitution/vervanging	A
	≈0,24	√ 0,24	CA
	1		(2)
3.2	$\frac{1}{2}\tan\theta=2$		
	$\tan \theta = 4$	✓ S	A
	$r^2 = x^2 + y^2$		
	$r^2 = (4)^2 + (1)^2$	✓ cylectitution/years are size	A
	$=\sqrt{17}$	✓ substitution/vervanging	A
		✓ r value/waarde van	CA
	$\sin^2 \theta + \cos^2 \theta = \left(\frac{4}{\sqrt{17}}\right)^2 + \left(\frac{1}{\sqrt{17}}\right)^2$		
		✓ sin ratio/ <i>verh</i>	CA
	$=\frac{16}{17}+\frac{1}{17}$		
		✓ cos ratio/verh	CA
	$=\frac{17}{17}$		
	1 / = 1	✓ S	CA
	– 1	, B	(6)
3.3	$\sin x = \tan 318^{\circ}$		
	$\sin x = -0.9004040443$	✓ S	A
	$Ref / Verw \angle = 64,21^{\circ}$	✓ reference angle/verw.hk	CA
	$x = 180^{\circ} + 64,21^{\circ}$ or/of $x = 360^{\circ} - 64,21^{\circ}$		
	$x = 244,21^{\circ} \text{ or/} of \ x = 295,79^{\circ}$	✓ 244,21°	CA
		✓ 295,79°	CA
		,	(4)
			[15]

4.1.1	$\tan(\pi + A) = \tan A$	✓ tan A	A
410	$\tan(\pi + A) \cdot \cos(180^{\circ} - A) \cdot \sin(360^{\circ} - A)$		(1)
4.1.2	$\sin(2\pi + A)$		
	$\tan A \cdot - \cos A \cdot - \sin A$	$\sqrt{-\cos A}$	A
	$=\frac{\sin 77 - \cos 77 - \sin 77}{\sin A}$	✓ – sin A	A
		✓ sin A	A
	$=\frac{\sin A}{\cos A}\cdot\frac{\cos A}{1}$	\checkmark I $\frac{\sin A}{\cos A}$	A
	cosA 1		CA
	$= \sin A$	V SIII A	CA
	OR/OF	OR / OF	
	$\tan(\pi + A) \cdot \cos(180^{\circ} - A) \cdot \sin(360^{\circ} - A)$		
	$\sin(2\pi + A)$	√ 200 A	A
	$= \frac{\tan A \cdot - \cos A \cdot - \sin A}{\sin A}$	$\checkmark - \cos A$ $\checkmark - \sin A$	A
	sinA	✓ sin A	A A
	$= \tan A \cdot \frac{\cos A}{\sin A} \cdot \sin A$	Sill A	A
	$= tanA \cdot cotA \cdot sinA$		
	$= \tan A \cdot \frac{1}{\tan A} \cdot \sin A$	$\checkmark I \frac{\cos A}{\sin A} = \cot A$	A
	$= \sin A$	✓ sin A	CA
		SMI I I	(5)
4.2	-1	√ -1	A
4.3	$\sin x + \cos^2 x \cdot \csc x = \csc x$		(1)
	$LHS / LK = \sin x + \cos^2 x \cdot \frac{1}{\sin x}$	\checkmark I $\frac{1}{\sin x}$	A
	$= \frac{\sin^2 x + \cos^2 x}{\sin x}$	✓ S	CA
	$=\frac{1}{\sin x}$	$\int \mathbf{I} \sin^2 x + \cos^2 x = 1$	A
	$= \cos \operatorname{ec} x = \operatorname{RHS} / RK$		(3)
			[10]

5.2	90°	$\checkmark x \text{ value/waarde}$ A (1)
5.3	360°	✓ period/periode A (1)
5.4	$-\frac{1}{2}\cos(x-45^\circ) = \sin x$	
	$\cos(x - 45^\circ) = -2\sin x$	✓ S
	A on the graph B on the graph	✓ A on the graph/op die grafiek A ✓ B on the graph/op die
		grafiek A (3)
5.5	$x \in (45^\circ; 225^\circ)$	✓ critical values/ kritiese waardes ✓ notation/ notasie A
	OR/ OF 45° < x < 225°	OR/OF ✓ critical values/kritiese
		waardes A
		✓ notation/notasie A
		(2)
		[14]

6.1.1	$SR^2 = TS^2 + TR^2 - 2TS \cdot TR \cos T$	✓ cos rule/reël A
	$= (22)^2 + (18)^2 - 2(22)(18)\cos 67^\circ$	✓ substitution/vervanging A
	= 498,5409462	
	SR ≈ 22,33 m	✓ length of/lengte van SR
		CA (3)
6.1.2	$\hat{M} = 180^{\circ} - 67^{\circ} = 113^{\circ}$	✓ size of/grootte $\stackrel{\wedge}{M}$ A (1)
6.2.1	$\frac{SM}{\sin R_1} = \frac{SR}{\sin M}$	✓ $\sin \text{rule}/re\ddot{e}l$ A (1)
6.2.2	$\frac{\text{SM}}{\sin 42.5^{\circ}} = \frac{22.33}{\sin 113^{\circ}}$	✓ substitution/verv CA
	$SM = \frac{22,33\sin 42,5^{\circ}}{\sin 113^{\circ}}$	
	= 16,39 m	✓ length of/lengte van SM CA (2)
6.3	$\hat{\mathbf{S}}_2 = 24,5^{\circ}$	✓ size of $\hat{\mathbf{S}}_2$ CA
	Area of/ $van \Delta SMR = \frac{1}{2} SR \times SM \sin \hat{S}_2$	✓ area rule/reël A
	OR/OF Area of/ $van \Delta SMR = \frac{1}{2} m \times r \times \sin \hat{S}_2$	
	Area of/ $van \Delta SMR = \frac{1}{2}(22,33)(16,39) \sin 24,5^{\circ}$	✓ substitution/vervanging CA
	$= 75,89 \text{ m}^2$	✓ area CA
	Bags/ $sakke = \frac{75,89}{15,178} = 5$	
	5 bags will be required / sakke sal benodig word	✓ number of bags/aantal sakke
		CA (5)
		[12]

7.1.1	$\hat{\mathbf{V}}_1 = 40^{\circ} \left(\angle \text{ at centre} = 2 \times \angle \text{ at circum } / \\ midpts \angle = 2 \times omtreks \angle \right)$	✓ ST A ✓ RE A
7.1.2	$\hat{T} = 20^{\circ} \left(\text{ext} \angle \text{ of } \Delta / \textit{buite} \angle \textit{van } \Delta \right)$	(2) ✓ ST ✓ RE (2) CA A (2)
7.2	$\hat{S}_1 = 40^{\circ} \left(\begin{array}{c} \angle \text{ at centre} = 2 \times \angle \text{ at circum } / \\ midpts \angle = 2 \times omtreks \angle \end{array} \right)$	✓ ST CA
	$\hat{S}_1 = 40^{\circ} \begin{pmatrix} \angle s \text{ on same segm } / \\ \angle e \text{ dies segm} \end{pmatrix}$	
	$\therefore \hat{P}_4 = 60^\circ \text{ (ext } \angle \text{ of } \Delta / \text{buite } \angle \text{van} \Lambda \text{)}$ $\therefore \hat{P}_4 + \hat{T} \neq 180^\circ$	✓ ST CA
	$\therefore STVP \left(\begin{array}{c} \text{Not cyclic} / \\ \text{Nie siklies} \end{array} \right) \left(\begin{array}{c} \text{opp } \angle \text{s NOT supp } / \\ \text{teenoorst } \angle \text{e NIE sup } pl \end{array} \right)$	✓RE A
	OR/OF	OR/OF
	$\hat{\mathbf{S}}_1 = 40^{\circ} \left(\angle \text{ at centre} = 2 \times \angle \text{ at circum } / \right) $ $midpts \angle = 2 \times omtreks \angle$	✓ ST CA
	$\therefore \hat{\mathbf{P}}_{3} = 120^{\circ} \begin{pmatrix} \text{Int } \angle s \text{ of } \Delta / \\ Binne \angle e van \Delta \end{pmatrix}$	✓ ST CA
	$\therefore \hat{P}_{3} \neq \hat{T}$ $\therefore STVP \left(\begin{array}{c} \text{Not cyclic} / \\ \text{Nie siklies} \end{array} \right) \left(\begin{array}{c} \text{Opp int } \angle \neq \text{ ext } \angle / \\ \text{Teenoorst binne } \angle \neq \text{buite } \angle \right)$	√RE A
	OR/OF	OR/OF

$\hat{S}_2 = 180^\circ - 40^\circ = 140^\circ \qquad \begin{pmatrix} \angle s \text{ on a straight line/} \\ \angle e \text{ op'n reguitlyn} \end{pmatrix}$	✓ ST CA
$\hat{S}_2 = 180^\circ - 40^\circ = 140^\circ \qquad \begin{pmatrix} \angle s \text{ on a straight line/} \\ \angle e \text{ op 'n reguitlyn} \end{pmatrix}$ $\hat{V}_2 = 180^\circ - 40^\circ = 140^\circ \qquad \begin{pmatrix} \angle s \text{ on a straight line/} \\ \angle e \text{ op 'n reguitlyn} \end{pmatrix}$	✓ ST CA
$\hat{S}_{2} + \hat{V}_{2} \neq 180^{\circ}$ ∴ STVP $\begin{pmatrix} \text{Not cyclic } / \\ \text{Nie siklies} \end{pmatrix} \begin{pmatrix} \text{Opp } \angle \text{s not supp } / \\ \text{Teenoorst } \angle \text{e nie supp} \end{pmatrix}$ $\mathbf{OR} / \mathbf{OF}$	✓RE A OR/OF
$\hat{\mathbf{V}}_2 = \hat{\mathbf{S}}_2 = 180^\circ - 40^\circ = 140^\circ \left(\begin{array}{c} \angle s \text{ on a straight line/} \\ \angle e \text{ op 'n reguitlyn} \end{array} \right)$	✓ ST CA
$\hat{\mathbf{V}}_1 \neq \hat{\mathbf{S}}_2 \mathbf{OR}/\mathbf{OF} \hat{\mathbf{V}}_2 \neq \hat{\mathbf{S}}_1$	✓ ST CA
$\therefore STVP \left(\begin{array}{c} \text{Not cyclic} / \\ \text{Nie siklies} \end{array} \right) \left(\begin{array}{c} \text{Ext } \angle \neq \text{opp int } \angle / \\ \text{Buite } \angle \neq \text{teenoorst binne } \angle \right)$	✓RE A
	(3)
	[7]

8.1

8.1.1	$\stackrel{\circ}{\mathrm{BC}}\mathrm{A} = 46^{\circ} \ \left(\tan - \operatorname{chord} / \operatorname{raaklyn} - \operatorname{koord} \right)$	✓ ST ✓ RE	A A
		· KL	(2)
8.1.2	$O \hat{A} T = 90^{\circ} \begin{pmatrix} \tan \perp \operatorname{rad} / \\ \operatorname{raaklyn} \perp \operatorname{rad} \end{pmatrix}$	✓ ST ✓ RE	A A
	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $, ALL	**
	$\therefore \mathring{\mathbf{A}}_3 = 44^{\circ}$	✓ ST	CA
			(3)
8.1.3	$\hat{A}_{1} = 66^{\circ} \begin{pmatrix} \text{alt } \angle s; CD \parallel NT / \\ verw \angle e; CD \parallel NT \end{pmatrix}$	✓ ST ✓ RE	CA A
			(2)
8.1.4	$\hat{\mathbf{B}} = 66^{\circ} \text{ (tan - chord / } raaklyn - koord)$	✓ ST	CA
	$\hat{O}_1 = 132^{\circ} \left(\begin{array}{c} \angle \text{ at centre} = 2 \times \angle \text{ at circum } / \\ midpts \angle = 2 \times omtreks \angle \end{array} \right)$	✓ ST ✓ RE	CA A
	OR / OF	OR / OF	
	$\hat{A}_2 = 24^{\circ} \begin{pmatrix} \tan \perp \operatorname{rad} / \\ \operatorname{raaklyn} \perp \operatorname{rad} \end{pmatrix}$	✓ ST	CA
	$\therefore \hat{C}_3 = 24^{\circ} \begin{pmatrix} \angle s \text{ opp = sides /} \\ \angle e \text{ teenoor = sye} \end{pmatrix}$	✓ ST	CA
	$\therefore \hat{O}_1 = 132^{\circ} \begin{pmatrix} \text{int } \angle s \text{ of } \Delta / \\ binne \ \angle e \ van \Delta \end{pmatrix}$	✓ ST	CA (3)

8.2.1	$\hat{E} = 48^{\circ}$ $\left(\angle s \text{ in the same segment } / \right)$ $\angle e \text{ in dieselfde segment}$	✓ ST ✓ RE	A A (2)
8.2.2	$\hat{D}_2 = 48^{\circ} \begin{pmatrix} equal \ chords / \\ gelyke \ koorde \end{pmatrix}$	✓ ST ✓ RE	CA A (2)
8.2.3	$\hat{G}_4 = 96^{\circ}$ $\left(\begin{array}{c} \text{ext } \angle \text{ of cyclic quad } / \\ \text{buite } \angle \text{ van kdvh} \end{array}\right)$	✓ ST ✓ RE	CA A (2)
			[16]

9.1.1 a)	$\hat{M}_1 = 90^{\circ}$ (line from centre to midpt of chord / lyn vanaf midpt sirkel na midpt vankrd)	✓ ST ✓ RE	A A (2)
9.1.1 b)	$MB = 5 \text{ cm}$ $OB^{2} = OM^{2} + MB^{2} \text{(Pythagoras)}$ $\therefore OB^{2} = 3^{2} + 5^{2} = 34$	✓ length of/lengte van AB ✓ Pythagoras	A
	$\therefore OB = \sqrt{34} \approx 5,83 \text{ cm}$	✓ length of/lengte van OB	CA (3)
9.1.2	BC = 2 MN (Midpoint t hm / Middelpt st) $\therefore BC = 10,24 \text{ cm}$	✓ ST ✓ RE	CA A (2)

9.2.1	In Δ ADC and Δ BAC:		
	$\stackrel{\wedge}{ADC} = \stackrel{\wedge}{A} = 90^{\circ} \text{ (given/ } gegee)$	✓ ST	A
	\hat{C} is common / gemeen $\therefore \Delta ADC \parallel \Delta BAC (\angle\angle\angle)$	✓ ST ✓ RE	A A
			(3)
9.2.2	$\frac{DC}{AC} = \frac{AC}{BC} \left(\Delta ADC \parallel \Delta BAC \right)$	✓ ST correct ratio / korrekte	
	$\therefore AC^2 = DC.BC$		A (1)
9.2.3 a)	$\frac{DC}{BC} = \frac{CE}{AC} (Prop th/ewer st; DE AB)$	✓ ST ✓ RE	A A
9.2.3 b)			(2)
7.2.3 0)	$\frac{DC}{12} = \frac{2}{3} \text{ (from/ vanaf 9.2.3a)}$	✓ substitution / vervanging	A
	$\therefore DC = \frac{2}{3} \times 12 = 8 \text{ cm}$	✓ ST	CA (2)
9.2.3 c)	$\therefore AC^2 = 8 \times 12 = 96 \text{ cm}$	✓ ST	(2) CA
	∴ AC ≈ 9,80 cm	✓ ST	CA
			(2) [17]

10.1

	∴ $n \approx 3.87 \text{ rev/s}$ OR/OF	OR/OF	
	$\therefore n = \frac{16,67}{1,37 \pi}$	✓answer/antwoord	CA
	$\therefore 16,67 \text{ m/s} = \pi(1,37)n$	✓SF	CA
	$v = \pi D n$	√F	A
10.1.3	$v = 60 \text{ km/h} = \frac{60 \text{ km}}{1 \text{ h}} \times \frac{1 \text{ h}}{3600 \text{ s}} \times \frac{1000 \text{ m}}{1 \text{ km}} = 16,67 \text{ m/s}$	✓ conversion/herleiding	A
	Diameter/ $Middellyn = 2 \times 0,684 \approx 1,37 \text{ m}$	✓answer/antwoord	CA (2)
	$= 0.66 + 24 \text{ mm} \times \frac{1 \text{ m}}{1000 \text{ mm}} \approx 0.684 \text{ m}$	✓M	A
	OR/ OF Radius	OR/OF	
	$= 0.66 \times 2 + 2 \times 24 \text{ mm} \times \frac{1 \text{ m}}{1000 \text{ mm}} \approx 1.37 \text{ m}$	✓M ✓answer/antwoord	A CA
10.1.2	Diameter/ Middellyn		(1)
10.1.1	26 inch/ $duim = 26$ inch $/ duim \times \frac{0.0254 \text{ m}}{1 \text{ inch}} \approx 0.66 \text{ m}$	✓answer/antwoord	A (1)

$v = 60 \text{ km/h} = \frac{60 \text{ km}}{1 \text{ h}} \times \frac{1 \text{ h}}{3600 \text{ s}} \times \frac{1000 \text{ m}}{1 \text{ km}} = 16,67 \text{ m/s}$	✓conversion/herleiding	A
$w = \frac{v}{r}$	√ _F	A
$w = \frac{16,67}{0,684} \approx 24,371$	✓SF	CA
$\therefore w = 2 \pi n$ $\therefore n = \frac{24,371}{2 \pi} \approx 3,87 \text{ rev/s}$	✓answer/antwoord	CA
2π		(4)

10.2

Area of sector/van sektor = $\frac{r^2 \theta}{2}$ ✓ **F** A $2,5 = \frac{(1,8)^2 \alpha}{2}$ ✓ SF A $\alpha = \frac{2,5 \times 2}{3,24} = 1,5432 \text{ rad}$ $\checkmark \alpha$ in rad CA $\therefore \alpha = 1,5432 \text{ rad} \times \frac{180^{\circ}}{\pi \text{ rad}} \approx 88,42^{\circ}..$ \checkmark a in degrees/grade CA Thus α is an acute angle/Dus is α 'n skerphoek ✓ conclusion/gevolgtrekking CA Area of a sector/van' n sektor = $\frac{\theta}{360^{\circ}} \times \pi r^2$ OR / OF $2,5 = \frac{\alpha}{360^{\circ}} \times \pi (1,8)^{2}$ **✓ F** A ✓ SF A CA $\alpha \approx 88,42^{\circ}$ Thus α is an acute angle/Dus is α 'n skerphoek \checkmark a in degrees/grade CA ✓ conclusion/gevolgtrekking CA (5)

11.1

11.1.1	$AB^{2} = 11,18^{2} + 10^{2} $ (Pythagoras) $AB \approx 15 $ cm	✓ Substitute/vervang ✓ answer/antwoord	A CA (2)
11.1.2	width/ $wydte = \frac{15}{5} = 3$ cm	✓ answer/antwoord	CA (1)
11.1.3	Area = $a\left(\frac{o_1 + o_n}{2} + o_2 + o_3 + \dots + o_{n-1}\right)$	✓F	A
	$= 3\left(\frac{2,96+3,99}{2}+6,99+3,98+2+6,05\right)$ $= 3(22,495)$	✓SF	CA
	$\approx 67,49 \text{ cm}^2$	✓ answer/antwoord	CA
	OR / OF	OR / OF	
	Area = $a(m_1 + m_2 + m_3 + + m_n)$		
	$=3\left(\frac{2,96+6,99}{2}+\frac{6,99+3,98}{2}+\frac{3,98+2}{2}+\frac{2+6,05}{2}+\frac{6,05+3,99}{2}\right)$	✓F	A
	=3(22,495)	✓SF	CA
	$\approx 67,49 \text{ cm}^2$	✓answer/antwoord	CA (3)

11.2.1 a)	r of cone / $van ke\ddot{e}l = 1,835 \mathrm{m}$	✓ answer/antwoord	A (1)
11.2.1 b)	height of cylinder / hoogte van silinder = 6,56 m	✓ answer /antwoord	A (1)
11.2.2	Volume of container/ houer $= \pi r^2 h + 2 \times \frac{1}{3} \pi r^2 h$	✓ F	A
	$= \pi (1,835)^{2} (6,56) + 2 \times \frac{1}{3} \pi (1,835)^{2} (1,5)$	✓ SF	CA
	$\approx 25,46 \pi \text{ m}^3 \text{ OR/OF} \approx 79,97 \text{ m}^3$	✓ answer/antwoord	CA (3)
11.2.3	Total surface area / Totale buite opp $= 2\pi r h + 2 \times \pi r \ell$ $= 2\pi (1,835)(6,56) + 2 \times \pi (1,835)(2,37)$ $\approx 32,78\pi \text{ m}^2 \text{ OR/OF} \approx 102,96 \text{ m}^2$ $\therefore \text{The material will not be sufficient to cover / } Die materiaal sal nie voldoende wees nie}$	 ✓ F 2πrh ✓ F 2×πrℓ ✓ substitution/vervanging ✓ substitution/vervanging ✓ answer/antwoord ✓ conclusion/gevolgtrekking 	A A CA CA CA CA (6)
			[17]

TOTAL/TOTAAL:150