Paul Gustafson Representations of Lie Algebras

HW 1

1 Let \mathfrak{g} be a real Lie algebra, and $\mathfrak{g}_{\mathbb{C}}$ its complexification: as a vector space it is \mathfrak{g} tensored with \mathbb{C} over \mathbb{R} . What is the bracket [x,y] on $\mathfrak{g}_{\mathbb{C}}$?

Proof. The bracket on $\mathfrak{g}_{\mathbb{C}}$ is given by $[a_1 + ib_1, a_2 + ib_2] = [a_1, a_2] - [b_1, b_2] + i([b_1, a_2] + [a_1, b_2])$. This bracket is clearly \mathbb{R} -bilinear, antisymmetric, and restricts to the previous bracket of \mathfrak{g} . For \mathbb{C} -bilinearity, we have, for $x_1, x_2 \in \mathbb{R}$,

$$\begin{split} [i(a_1+ib_1),a_2+ib_2] &= [-b_1+ia_1,a_2+ib_2] \\ &= -[b_1,a_2] - [a_1,b_2] + i([a_1,a_2] - [b_1,b_2]) \\ &= -[b_1,a_2] - [a_1,b_2] + i([a_1,a_2] - [b_1,b_2]) \\ &= -[b_1,a_2] - [a_1,b_2] + i([a_1,a_2] - [b_1,b_2]) \\ &= i([a_1,a_2] - [b_1,b_2] + i([b_1,a_2] + [a_1,b_2])) \\ &= [a_1+ib_1,a_2+ib_2] \end{split}$$

The Jacobi identity follows from the real form.

2 Determine the adjoint representation and Killing form for $\mathfrak{o}(S, V)$ with $V = \mathbb{C}^3$. Is the Killing form non-degenerate? Is the adjoint representation faithful?

Proof. The Lie algebra $\mathfrak{o}(3) \subset \mathfrak{gl}(3)$ consists of the endomorphisms E for which S(Ev, w) + S(v, Ew) = 0. Restricting to the standard basis, we get the equivalent condition $E_{ij} = -E_{ij}$. Hence, a basis for $\mathfrak{o}(3)$ is the set $f_{ij} := e_{ij} - e_{ji}$ for i < j. To calculate the adjoint representation, we have

$$\begin{split} [f_{ij},f_{kl}] &= [e_{ij}-e_{ji},e_{kl}-e_{lk}] \\ &= [e_{ij},e_{kl}] - [e_{ij},e_{lk}] - [e_{ji},e_{kl}] + [e_{ji},e_{lk}] \\ &= (\delta_{jk}e_{il} - \delta_{li}e_{kj}) - (\delta_{jl}e_{ik} - \delta_{ki}e_{lj}) - (\delta_{ik}e_{jl} - \delta_{lj}e_{ki}) + (\delta_{il}e_{jk} - \delta_{kj}e_{li}) \\ &= \delta_{jk}f_{il} + \delta_{il}f_{jk} + \delta_{jl}f_{ki} + \delta_{ik}f_{lj} \end{split}$$

Hence, in the basis (f_{12}, f_{13}, f_{23}) , we have

$$ad(f_{12}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \quad ad(f_{13}) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \quad ad(f_{23}) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

For the Killing form, we have

$$K(f_{12}, f_{13}) = \operatorname{Tr} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0$$

$$K(f_{12}, f_{23}) = \operatorname{Tr} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} = 0$$

$$K(f_{13}, f_{23}) = \operatorname{Tr} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = 0,$$

and $K(f_{ij}, f_{ij}) = -2$. Thus, the Killing form is nondegenerate. Hence $\mathfrak{o}(S, V)$ is semisimple, so the adjoint representation is faithful.

3 Compute the Casimir for the 3-dimensional representation of o(S,V) with dim(V)=3 directly, by finding a basis and dual basis.

Proof. The set $(f_{ij})_{i < j}$ forms a basis, and the dual basis is $f_{ij}^* = -\frac{1}{2}f_{ij}$. Thus the Casimir element is

$$\begin{split} \Omega &= -\frac{1}{2} \sum_{i < j} f_{ij}^2 \\ &= -\frac{1}{2} \sum_{i < j} -e_{ii} - e_{jj} \\ &= \operatorname{Id} \end{split}$$