КиМ. Лекция

17 декабря 2024 г.

Lemma 4

Упр M - простой R - модуль $\iff \forall \, 0 \neq m_1, m_2 \in M, \; \exists \, r \in R \mid m_2 = rm_1$

$$0 \neq A = (a_{ij}) \in I, \ B \in I$$

$$\begin{pmatrix} 0 & 0 & 0 \\ a_{i1} \dots & a_{ij} \dots & a_{in} \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \dots & 0 \dots & 0 \\ a_{ij}^{-1} b_{i1} \dots & \dots & a_{ij}^{-1} b_{in} \\ 0 \dots & 0 & \dots 0 \end{pmatrix} = \begin{pmatrix} 0 & \dots & 0 \\ b_{i1} & \dots & b_{in} \\ 0 & \dots & 0 \end{pmatrix}$$

Th (Веддерберн-Артин, 1950)

- $\overline{1}$) R артиново справа, если R_R артинов модуль, т.е. $I_1\supset I_2\supset\cdots\supset I_n=I_{n+1}=\ldots$
- 2) R- полупервичное $\nexists\,0 \neq I \lhd R \mid I^n = 0$
- 3) R кл/пр справа, если R полупервичное и артиново справа
- R кл/пр справа $\iff R \cong \bigoplus_{k=1}^n M_{n_K}(D_k), \, D_k$ тело

При этом кольцо R имеет ровно m простых модулей (с точностью до изом-ма)

Следствие R - простое артиново справа кольцо $\iff R \cong M_n(D)$

 $\overline{\text{Proof}} \Longrightarrow : \text{R}$ - кл/пр $\iff R_R$ - вполне приводим $\iff R_R$ - прямая сумма простых модулей (т.к. R_R - артинов справа - сумма конечна). Пусть U_1, \ldots, U_m - классы изоморфных модулей в этой сумме. $\implies R_R = U_1 \oplus \cdots \oplus U_m, \ U_k = N_{k_1} \oplus \cdots \oplus N_{k_t}; \ N_{k_i} \cong N_{k_j} \cong N \ \forall i,j$

$$End_R(R_R) \cong R = hom_R(R_R, R_R) = hom_R(U_1 \oplus \cdots \oplus U_m, U_1 \oplus \cdots \oplus U_m)$$

$$\cong \bigoplus_{i,j} \hom(U_i, U_j)$$

 $\underline{i \neq j}$

$$\hom_R(U_i,U_j) = \hom_R\left(\bigoplus_{p=1}^{n_i} N_{i_p},\bigoplus_{q=1}^{n_j} N_{j_q}\right) \cong \bigoplus_{p,q} \hom_R(N_{i_p},N_{j_q}) = 0 \text{ по лемме Шура}$$

i = j

$$hom_R(U_i, U_i) = End_R(U_i) \cong End_R(N \oplus \cdots \oplus N) = M_n(End_RN)$$

 $End_RN=D$ - тело по лемма Шура

$$R \cong \bigoplus_{k=1}^{m} \hom_{R}(U_{k}, U_{k}) \cong \bigoplus_{k=1}^{m} M_{n_{K}}(D_{k})$$

 \iff

$$R \cong \begin{pmatrix} M_{n_1}(D_1) & 0 \dots & 0 \\ & \ddots & 0 \\ 0 & & M_{n_k}(D_k) \end{pmatrix}$$

 e^k_{ij} - матричная еденица в $M_{n_k}(D_k)$, дополним нулями до большой матрицы

$$e^k_{ii} \cdot R = N^k_i$$
 - і - ая строка в R

$$\Longrightarrow R = \bigoplus_{k=1}^m \bigoplus_{i=1}^{n_k} N_i^k$$
 - прямая сумма простых подмодулей $\Longrightarrow R_R$ вп. приводим $\iff R$ - кл/пр

$$N_i^k$$
 - простой R - модуль

Пусть М - простой R - модуль

$$\hom_R(R_R, M) \cong M \stackrel{\star}{=} \forall R$$
 - модуля М

Упр Указание: $\phi: M \to \hom_R(R_R, M): m \mapsto \phi_m$, где $\phi_m(r) = mr \ \forall r \in R$

$$\stackrel{\star}{=} \hom_R \left(\bigoplus_{k,i} N_i^k, M \right) = \bigoplus_{k,i} \hom_R(N_i^k, M) \neq 0 \implies \exists N_s^k \mid N_s^k \cong M$$

$$\operatorname{\underline{Proof}}$$
 (Следствия) \Longrightarrow : R - кл/пр \Longrightarrow $R \cong \bigoplus_{k=1}^m M_{n_k}(D_k) \overset{\mathrm{R}}{\Longrightarrow} \overset{\mathrm{простое}}{\Longrightarrow} R \cong M_n(D)$

$$R \cong \begin{pmatrix} M_{n_1}(D_1) & 0 & 0 \\ & \ddots & \\ 0 & & 0 \end{pmatrix} \begin{pmatrix} M_{n_1}(D_k) & 0 & 0 \\ & \ddots & \\ 0 & & M_{n_k}(D_k) \end{pmatrix} = \begin{pmatrix} M_{n_1}(D_k) & 0 & 0 \\ & \ddots & \\ 0 & & 0 \end{pmatrix}$$