Volume et centre de masse

Déterminer le volume et la position du centre de masse du bloc triangulaire de la figure 1 en supposant que sa masse volumique est uniforme. La position de chacun des quatre sommets de ce bloc est aussi indiquée dans cette figure.

Coin	position	
1	$(-4,0,0)^T$ m	
2	$(0,0,0)^T$ m	
3	$(0,3,0)^T$ m	
4	$(1,1,1)^T$ m	

Solution

Ici, comme on a un bloc composé seulement de surface triangulaire, on peut utiliser la méthode de Euler. On a $n_c=4$ coins, $n_s=4$ faces et $n_a=6$ arêtes donc le critère de Euler

$$n_c + n_s - n_a = 2$$

est satisfait. On doit alors classer les vecteurs \vec{a}_i , \vec{b}_i et \vec{c}_i associés à chacune des faces du bloc dans un ordre antihoraire lorsque l'on regarde le solide de l'extérieur. Le résultat est donné au tableau 1.

Tableau 1: Ordre des coins pour les surfaces du bloc triangulaire

Surface i	$ec{a}_i$	$ec{b}_i$	$ec{c}_i$
1	$1=(-4, 0, 0)^T$ m	$2=(0,0,0)^T$ m	$4=(1,1,1)^T$ m
2	$2=(0,0,0)^T$ m	$3=(0,3,0)^T$ m	$4=(1,1,1)^T$ m
3	$3=(0,3,0)^T$ m	$1=(-4, 0, 0)^T$ m	$4=(1,1,1)^T$ m
4	$3=(0,3,0)^T$ m	$2=(0,0,0)^T$ m	$1=(-4, 0, 0)^T$ m

Le volume et la position du centre de masse du bloc sont donnés par

$$V = \sum_{i=1}^{4} dV_{i}$$

$$\vec{r}_{c} = \frac{1}{V} \sum_{i=1}^{4} dV_{i} \frac{\vec{a}_{i} + \vec{b}_{i} + \vec{c}_{i}}{4}$$

où les éléments de volume dV_i associés à chaque surface sont

$$dV_i = \frac{1}{6}\vec{a}_i \cdot \left(\vec{b}_i \times \vec{c}_i\right)$$

Pour les faces 1, 2 et 4, le vecteur $(0,0,0)^T$ est toujours utilisé, on aura $dV_i = 0$. Il reste à calculer $dV_3 = 2$ m^3 . Le volume total est donc V = 2 m^3 et la position du centre de masse est

$$\vec{r_c} = \frac{1}{4} \left(-3 \ \textit{m}, 4 \ \textit{m}, 1 \ \textit{m} \right)^T$$