Photogrammetry & Robotics Lab

Techniques for Self-Driving Cars

Introduction to Control Assignment

Cyrill Stachniss, Jens Behley, Benedikt Mersch, Lucas Nunes

With contributions from Nived Chebrolu, Lasse Peters, Igor Bogoslavskyi, Daniel Wilbers

First Assignment

All material is on Ecampus (Instructions + Code)

Handing In

■ Submit zip file with LastName1_LastName2.zip

Tasks

- 1. Record Trajectory
- 2. Implement PID Controller
- 3. Implement Geometric Lateral Controller
- 4. Implement Model Predictive Controller (MPC)

A tour through the code

```
main.py - sdc_assignments - Visual Studio Code
File Edit Selection View Go Run Terminal Help
                                main.py X
      > OPEN EDITORS
                                 main.py > ...

✓ SDC ASSIGNMENTS

                                       import time
                                      import math
        carla view1.png
                                      from sdc import Window, World
        carla_view2.png
                                      from sdc.utility import load params
        ex1 control.md
                                       from control import Controller
        ex1 control.pdf
                                       from planning import FixedGlobalPlanner, LocalPlanner
       __init__.py
       controller.py
                                       if name == ' main ':
        evaluate controller perfo...
       # load params
       > perception
                                         params = load params('params.yaml')
       > planning
                                         global planner = FixedGlobalPlanner(params)
       main.py
                                         global path = global planner.get global path()
       main_record_trajectory.py
       ! params.vaml
                                         spawn position = carla.Transform(carla.Location(x=global path[0][0], y=global path[0][1], z=1.0))
                                         world = World(spawn position)
                                         debug = world.get debug helper()
                                         ## Setup local planner
                                         local planner = LocalPlanner(global path)
                                         trajectory = []
                                         trajectory file = open("tracked trajectory.txt", "w")
                                           vehicle = world.get vehicle()
```

Some additional hints

- Set sensible parameters in "params.yaml"
- Look in code/utils, etc. if we have already provided a helper function
- CARLA: if error appears that you cannot spawn at that location → restart CARLA/reload world

Questions?

Next Week: Q & A

- Discuss questions related to the task
- General questions

Thanks for your attention