ME720 - Modelos Lineares Generalizados

Parte 6 - Métodos de diagnóstico em modelos normais lineares

Profa. Larissa Avila Matos

Forma matricial para do MNL

Considere o modelo,

$$Y = X\beta + \xi,$$

com

$$oldsymbol{Y} = \left[egin{array}{c} Y_1 \ Y_2 \ dots \ Y_n \end{array}
ight], oldsymbol{X} = \left[egin{array}{c} X_{11} & ... & X_{1p} \ X_{21} & ... & X_{2p} \ dots & \ddots & dots \ X_{n1} & ... & X_{np} \end{array}
ight], oldsymbol{eta} = \left[egin{array}{c} eta_1 \ eta_2 \ dots \ eta_p \end{array}
ight], oldsymbol{\xi} = \left[egin{array}{c} \xi_1 \ \xi_2 \ dots \ eta_n \end{array}
ight].$$

- Suposição: $\boldsymbol{\xi} \sim N_n(\boldsymbol{0}, \sigma^2 \boldsymbol{I}_n)$ (vetor $n \times 1$ de erros).
- $lackbreak Y_{n \times 1}$: vetor das variáveis resposta.
- $X_{n \times p}$: matriz de plajenamento (ou delineamento) que define a parte sistemática do modelo.

Suposições

As principais suposições do MNL são:

- Homocedasticidade.
- Independência dos erros.
- Normalidade dos erros.

Como verificar as suposições do modelo?

Como proceder se uma ou mais de uma suposição não for (satisfatoriamente) válida?

Resíduos

Como os erros (ξ) não são observados, precisamos de algum preditor apropriado para avaliar as suposições feitas sobre eles.

Já definimos os resíduos: $\hat{\xi}_i = R_i = Y_i - \hat{Y}_i = Y_i - \boldsymbol{x}_i' \hat{\boldsymbol{\beta}}$. Definimos também $\boldsymbol{H} = \boldsymbol{X} (\boldsymbol{X}' \boldsymbol{X})^{-1} \boldsymbol{X}'$ (matriz de projeção), então matricialmente,

$$R = Y - \widehat{Y} = Y - X\widehat{\beta} = (I - H)Y = (I - H)\xi.$$

Em termos dos elementos da matriz \boldsymbol{H} , temos que

$$R_i = \xi_i - \sum_{j=1}^n h_{ij}\xi_j, \quad i = 1, \dots, n.$$

 \Rightarrow Se os h_{ij} 's são pequenos (em valor absoluto), \mathbf{R} é próximo de $\boldsymbol{\xi}$.

Propriedades dos Resíduos

- $\blacksquare \mathbb{E}(\mathbf{R}) = \mathbb{E}((\mathbf{I} \mathbf{H})\boldsymbol{\xi}) = \mathbf{0}.$
- $\quad \blacksquare \ Cov(\boldsymbol{R}) = Cov((\boldsymbol{I} \boldsymbol{H})\boldsymbol{\xi}) = (\boldsymbol{I} \boldsymbol{H})\sigma^2 = (\boldsymbol{I} \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{X}')\sigma^2.$

Então, sob as suposições do modelo,

$$\boldsymbol{R} \sim N_n(\boldsymbol{0}, \sigma^2(\boldsymbol{I} - \boldsymbol{H})),$$

são correlacionados.

- $Cov(\mathbf{R}, \mathbf{Y}) = Cov((\mathbf{I} \mathbf{H})\mathbf{Y}, \mathbf{Y}) = (\mathbf{I} \mathbf{H})\sigma^{2}.$
- $Cov(\mathbf{R}, \hat{\mathbf{Y}}) = Cov((\mathbf{I} \mathbf{H})\mathbf{Y}, \mathbf{H}\mathbf{Y}) = \mathbf{0}.$

$$\blacksquare \mathbf{R}'\mathbf{Y} = SQR = \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y}.$$

$$\blacksquare R'\hat{Y} = Y'(I - H)HY = 0.$$

$$\blacksquare R'X = Y'(I - H)X = 0.$$

Potanto, através das propeiedades dos resíduos podemos verificar se as suposições estão corretas.

Propriedades da Matriz \boldsymbol{H}

Se X é uma matriz $n \times p$, de posto p < n, e se a primeira coluna de X é $\mathbf{1}_n$. Então, os elementos da matriz $H = X(X'X)^{-1}X'$ tem as seguintes propriedades:

- $-\frac{1}{2} \le h_{ij} \le \frac{1}{2}, \ \forall \ j \ne i.$
- $tr(\mathbf{H}) = \sum_{i=1}^{n} h_{ii} = p.$

Prova: ??

Resíduos Padronizados / Studentizados

Como vimos, as variâncias dos resíduos não são constantes, então desejamos padronizar os resíduos para que eles tenham mesma variância. Sabemos que $Var(R_i) = (1 - h_{ii})\sigma^2$.

Resíduos Padronizados:

$$Z_i = \frac{R_i}{\sqrt{\sigma^2(1 - h_{ii})}},$$

onde Z_i tem média 0 e variância 1, e h_{ii} é o i-ésimo elemento da diagonal principal de \boldsymbol{H} .

Podemos substituir σ^2 por $\hat{\sigma}^2 = S^2 = \frac{SQR}{n-p}.$

Resíduos Studentizados: Defina,

$$T_i^* = \frac{R_i}{\sqrt{S^2(1 - h_{ii})}},$$

em que

$$S^{2} = \frac{1}{n-p} \left(\mathbf{Y} - \mathbf{X} \widehat{\boldsymbol{\beta}} \right) \left(\mathbf{Y} - \mathbf{X} \widehat{\boldsymbol{\beta}} \right).$$

A divisão por $(1 - h_{ii})$ atenua a correlação entre os resíduos.

Contudo, R_i e S^2 não são independentes.

Podemos padronizar os resíduos considerando um estimador para σ^2 que exclua a *i*-ésima observação.

Então, temos que $S_{(i)}^2$ e R_i são independentes (em que $S_{(i)}^2$ é S^2 correspondente ao modelo sem a i-ésima observação).

Pode-se provar, além disso, que

$$S_{(i)}^2 = S^2 \left(\frac{n - p - T_i^2}{n - p - 1} \right),$$

uma vez que
$$\hat{\boldsymbol{\beta}}_{(i)} = (\boldsymbol{X}'_{(i)}\boldsymbol{X}_{(i)})^{-1}\boldsymbol{X}'_{(i)}\boldsymbol{Y}_{(i)} = \hat{\boldsymbol{\beta}} - \frac{R_i}{1 - h_{ii}}(\boldsymbol{X}'\boldsymbol{X})^{-1}\boldsymbol{x}_i$$
.

Tem-se, então, que

$$T_i = \frac{R_i}{\sqrt{S_{(i)}^2(1 - h_{ii})}} \sim t_{(n-p-1)},$$

sob a validade das hipóteses do modelo.

O que e como observar os resíduos?

Gráfico de dispersão dos resíduos versus seu índice: Ausência de tendência (autocorrelações, por exemplo).

Gráfico de dispersão dos resíduos versus valores ajustados: Variâncias parecidas para diferentes "grupos" de resíduos.

Boxplot e/ou gráfico de quantis-quantis: Simetria, ausência de "outliers" e multimodalidade.

Problema no gráfico de quantis-quantis: Visualmente, muitas vezes, é complicado avaliar a proximidade dos quantis.

Solução: criar bandas de confiança.

Gráfico de quantis-quantis (Q-Q plot)

Usado para checar a suposição de normalidade dos erros (resíduos).

Graficamos as estatísticas de odem dos resíduos (T_i) versus os quantis da N(0,1) (s_i) .

Temos que, $T_{(1)} \leq T_{(2)} \leq \cdots \leq T_{(n)}$ (estatísticas de ordem, quantis amostrais).

Também que, $s_1 \leq s_2 \leq \cdots \leq s_n$ os scores da normal, onde são definidos como

$$\mathbb{P}(N(0,1) \le s_i) = \frac{i-1/2}{n} \quad \text{(quantis teóricos)}.$$

Gráfico de envelopes

Ajusta-se o modelo e obtem-se

$$t_i = \frac{r_i}{\sqrt{s_{(i)}^2 (1 - h_{ii})}}.$$

- **2** Gera-se n observações N(0,1) as quais são armazenadas em $\mathbf{y} = (y_1, ..., y_n)$.
- 3 Ajusta-se o modelo considerando-se \boldsymbol{y} e obtem-se $r_i = y_i \widehat{y}_i$ (relativo ao modelo ajustado nesta etapa).
- 4 Obtem-se agora,

$$t_i = \frac{r_i}{\sqrt{s_{(i)}^2(1 - h_{ii})}}, i = 1, ..., n.$$

Gráfico de envelopes

- Repete-se os passos (2)-(4), m vezes. Logo, teremos t_{ij} , i = 1, ..., n e j = 1, ..., m.
- **6** Colocamos cada grupo de n resíduos em ordem crescente, obtendo-se $t_{(i)j}$.
- 7 Obtemos os limites

$$t_{(i)I} = min_j t_{(i)j}$$
 e $t_{(i)S} = max_j t_{(i)j}$.

Assim, os limites correspondentes ao i-ésimo resíduo serão dados por $t_{(i)I}$ e $t_{(i)S}$.

Outliers

Para identificar possíveis "outliers" podemos fazer o boxplot e/ou gráfico de quantis-quantis. Além disso, podemos fazer o gráfico de dispersão dos resíduos versus valores ajustados.

Mas, podemos também examinar os "resíduos deletados". O i-ésimo resíduo, deletando a i-ésima observação, pode ser computado usando

$$R_{(i)} = \mathbf{Y}_i - \hat{\mathbf{Y}}_{(i)} = \mathbf{Y}_i - \mathbf{x}_i' \hat{\boldsymbol{\beta}}_{(i)} = \frac{R_i}{1 - h_{ii}}.$$

Graficamos R_i versus $R_{(i)}$, se o ajuste não muda substancialmente no cálculo de $\hat{\beta}$ quando a *i*-ésima observação é deletada, os pontos no gráfico devem estar em uma reta com inclinação 1.

Observações influentes e alavanca

Alavanca:

Para investigar a influência de cada observação, vamos começar analisando

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y} \Rightarrow \hat{Y}_i = \sum_{j=1}^n h_{ij}Y_j = h_{ii}Y_i + \sum_{j \neq i} h_{ij}Y_j.$$

Sabemos das propriedades da matriz \boldsymbol{H} que

$$1 = h_{ii} + \frac{\sum_{j \neq i} h_{ij}}{h_{ii}}.$$

Então, temos que, se h_{ii} é grande (perto de 1), os h_{ij} 's $i \neq j$ são pequenos e Y_i contribui muito mais que os outros Y's para \hat{Y}_i .

 h_{ii} é chamado de ponto de alavanca da observação i e pode ser interpretado como a alavanca exercida pela i-ésima observação (Y_i) na resposta predita \hat{Y}_i .

Como $tr(\mathbf{H}) = \sum_{i=1}^{n} h_{ii} = p \Rightarrow \sum_{i=1}^{n} h_{ii}/n = p/n$ (média dos h_{ii} 's), é recomendado destacar as obserções onde $h_{ii} \geq 2p/n$.

Observação: Nem toda observação com h_{ii} alto é influente na análise de regressão. Observe que, a diagonal da matriz \boldsymbol{H} avalia a localização da observação no espaço de variáveis explicativas. Como consequência, podemos ter observações com ponto de alavanca alto, mas não influenciarem nas estimativas dos parâmetros.

Distância de Cook:

Para formalizar a influência de um ponto, vamos considerar o efeito dessa observação em $\hat{\beta}$ e $\hat{Y} = X\hat{\beta}$.

Já vimos que $\widehat{\boldsymbol{\beta}}_{(i)} = (\boldsymbol{X}'_{(i)}\boldsymbol{X}_{(i)})^{-1}\boldsymbol{X}'_{(i)}\boldsymbol{Y}_{(i)}$, então podemos comparar $\widehat{\boldsymbol{\beta}}$ com $\widehat{\boldsymbol{\beta}}_{(i)}$ pela $distância\ de\ Cook$, definida como

$$D_i = \frac{(\widehat{\boldsymbol{\beta}}_{(i)} - \widehat{\boldsymbol{\beta}})' \boldsymbol{X}' \boldsymbol{X} (\widehat{\boldsymbol{\beta}}_{(i)} - \widehat{\boldsymbol{\beta}})}{pS^2} = \frac{(\widehat{\boldsymbol{Y}}_{(i)} - \widehat{\boldsymbol{Y}})' (\widehat{\boldsymbol{Y}}_{(i)} - \widehat{\boldsymbol{Y}})}{pS^2},$$

no qual D_i é proporcional a distância euclediana entre $\hat{Y}_{(i)}$ e \hat{Y} . Então, se D_i é grande a *i*-ésima observação tem influência em $\hat{\beta}$ e $\hat{Y} = X\hat{\beta}$.

A distância de Cook pode ser escrita como

$$D_i = \frac{T_i^{*2}}{p} \frac{h_{ii}}{(1 - h_{ii})}.$$

Destacamos as observações quando $D_i > 1$.

Exemplo 1

Voltemos ao exemplo 1.

Considerando primeiro o modelo que contempla os grupos e depois o modelo reduzido.

Considerando as etiologias cardíacas

Considerando as etiologias cardíacas

Um único grupo

Exemplo 2: considerando todos os tipos de solvente

Voltemos ao exemplo 2.

Considerando primeiro o modelo que contempla todos os tipos de solvente e depois o modelo reduzido.

Considerando todos os tipos de solvente

Modelo reduzido

Referência

- Notas de aula do Prof. Caio Azevedo.
- Agresti, A. (2015). Foundations of Linear and Generalized Linear Models. Wiley series in probability and statistics.