The Entity-Relationship Model

Davood Rafiei

Original material Copyright 2001-2018 (some material from textbooks and other instructors)

Database Design Process

ER Model Overview

- Developed by Peter Chen in the mid 70's
- Used for the design of conceptual schema.
- The "world" is described in terms of
 - entities
 - relationships
 - attributes
- The model is visualized by creating an ER diagram.

- Entity: a distinguishable object
 - e.g. person, thing, concept
- Entity set: a set of entities of the same type.
- Examples of entity sets:
 - students registered at UofA
 - cars currently registered in Alberta
 - flights offered by Air Canada
- Graphical representation:

students

cars

flights

- Relationship: represents the fact that certain entities are related to each other.
 - e.g. John has taken CMPUT 291.
- Relationship set: set of relationships of the same type.
- Examples of relationship sets:
 - students enrolled in courses
 - cars registered to owners
 - passengers booked on flights
- Graphical representation:

- Attribute: describes a property of an entity or a relationship.
- Attributes of entities examples
 - student: id, name, major, ...
 - car: VIN, year, model, ...
 - flight: No, source, destination, ...
- Graphical representation:

- Key: a minimal set of attributes that uniquely identifies each entity in an entity set.
- Attributes of relationships examples
 - student enrolled in a course: year, semester, grade
 - book on loan: loan date, due date

Examples

- Role: the function of an entity set in a relationship set.
- Role labels are needed whenever an entity set has multiple functions in a relationship set.

Constraints and Complications

- Key constraints
 - in binary relationships:
 binary relationship types

- in general relationships
- Participation constraints
- Set-valued attributes
- Weak entities
- ISA hierarchies

Binary Relationship Types: Many-to-Many

Constraint: none.

- Each employee can be in relationships with many projects and vice versa.
- Alternative representation

Binary Relationship Types: Many-to-One

Constraint: each employee works in at most one department.

- Given an employee, we can uniquely identify the department he/she works in.
- Alternative representation:

Binary Relationship Types: One-to-One

 Constraint: each employee can manage at most one department and each department is managed by at most one employee.

- Each employee can be in relationship with at most one department and vice versa.
- Alternative representation:

Ternary Relationships

- Meaning: Supplier s supplies part p for project r
- Can we represent this using binary relationships?
- Complication: add the Constraint "each part is supplied by a unique supplier for a unique project,"
 - i.e. each part is in relationship with at most one supplier and one project.

Participation Constraints

- Let's force each project to have a supervisor.
 - This is a <u>participation constraint</u>: the participation of Projects in Supervises is said to be *total* (vs. *partial*).
 - ✓ Every pid value in Projects must be in a "supervises" relationship with a sin of an employee (i.e., sin cannot be null)

Set-Valued Attributes

- Each employee can have one or more hobby.
 - Attribute value can be a set (in contrast to relational model)
 - E.g. (12345, Joe, (hockey, music))

Weak Entities

- A weak entity models an entity which is "part-of" an owner entity, and it cannot be uniquely identified without the primary key of the owner entity.
 - Relationship is one-to-many (one owner, many weak entities).
 - Weak entity set has total participation in the identifying relationship set.

Weak Entities

ISA Hierarchy

Consider forming a new entity set as the union of two or more entity sets.

Professors

Attributes and relationships common to all lower-level entity sets are moved to the higher-level entity set.

ISA Hierarchy (cont.)

 Also consider forming a derived entity set by taking a subset of a given entity set.

We did a specialization

Properties of ISA

- Inheritance
 - Attributes of supertype are attributes of subtype
 - Key of supertype is key of subtype
 - Relationships of supertype are relationships of subtype
- Transitivity Hierarchy of IsA
 - Undergard student is subtype of Student, Student is subtype of Person, so Undergard student is also a subtype of Person
- Reasons for using ISA:
 - Makes ER diagram more concise and readable.
 - Common attributes/relationships need not be repeated.

ISA Constraints

Covering constraints:

Does every *Students* entity also have to be a *Graduates* or an *Undergrads* entity? (default:no)

 Overlap constraints: Can Joe be a Graduates as well as an Undergrads entity? (default:disallowed)

Conceptual Design Using the ER Model

Design choices:

- Should a concept be modeled as an entity or an attribute?
- Should a concept be modeled as an entity or a relationship?
- Identifying relationships: binary or ternary?

Entity vs. Attribute

- Should address be an attribute (of Students) or an entity (connected to Students by a relationship)?
- Depends on (a) its use and (b) its relationships with other entities.
 - is it an object that we want to keep information about (independent of Students)?
 - does it participate in a relationship with an entity other than students?
 - are there many students with no addresses?
 - can several students share the same address?
- A positive answer to one or more of those questions implies address better be modeled as an entity.

Entity vs. Attribute (Contd.)

- Compare & contrast
- Can an employee work in two or more shifts in the same department?
 - first diagram: No
 - second diagram: Yes

We have made up an entity called Shifts!

Entity vs. Relationship

Compare & contrast

Binary vs. Ternary Relationships

- Can we represent this using binary relationships?
 - ✓ supplier s "supplies" part p,
 - ✓ part p "used_in" project r, and
 - ✓ Supplier s "supplies_to" project r
 - No combination of binary relationships implies that part p supplied by supplier s is used in project r.
 - Not clear how to record qty?

Binary vs. Ternary Relationships

- Now add the constraint: each part is supplied by a unique supplier.
 - not possible!
 - a key constraint on Parts would also mean each part can only be used in a single project!

What is the additional constraint here?

Work Out!

- Model the following in ER:
 - Canada Posts has for each employee a name, a phone number, and an employee id.
 - For each delivery employee, a cell number is also kept.
 - Each postal code in the city has a community name and a designated delivery employee.

ER Review

Basics:

- entities,
- relationships,
- attributes

emp

- name
- Additions:
 - key constraint
 - participation constraint
 - Set-valued attributes
 - weak entities
 - isa hierarchy

dependent

Summary of Conceptual Design

- Conceptual design follows requirements analysis,
 - Yields a high-level description of data to be stored
- ER model popular for conceptual design
 - Constructs are expressive, close to the way people think about their applications.
- Basic constructs: entities, relationships, and attributes (of entities and relationships).
- Some additional constructs: weak entities and ISA hierarchies.

Summary of ER (Contd.)

- Constraints play an important role in determining the best database design for an enterprise.
 - Several kinds of integrity constraints can be expressed in the ER model.
 - Some constraints (notably, functional dependencies) cannot be expressed in the ER model.
- ER design is subjective. There are often many ways to model a given scenario!

ER Exercise

- Professors have a SIN, a name, an age, a rank, and a research specialty.
- Projects have a project number, a sponsor name (e.g. NSERC), a starting date, an ending date, and a budget.
- Graduate students have a SIN, a name, an age, and a degree program (e.g. MS or PhD)
- Each project is managed by one professor (principal investigator).
- Each project is worked on by one or more professors (co-investigators).
- Professors can manage and/or work on multiple projects.
- Each project is worked on by one or more graduate students (research assistants).
- When graduate students work on a project, a professor must supervise their work on the project. Graduate students can work on multiple projects, in which case they will have a (potentially different) supervisor for each one.
- Departments have a department number, a department name, and a main office.
- Departments have a professor (chairman) who runs the department.
- Professors work in one or more departments, and for each department that they work in, a time percentage is associated with their job.

