Raport z zadania 4.

Rozkład według wartości osobliwych (ang. Singular Value Decomposition, SVD) to fundamentalna operacja w algebrze liniowej, która umożliwia dekompozycję dowolnej macierzy prostokątnej $A \in \mathbb{R}^{n \times m}$ na trzy macierze U, S, V takie, że zachodzi

$$A = USV^T$$
,

gdzie $U \in \mathbb{R}^{n \times n}$ jest macierzą ortogonalną zawierającą lewe wektory osobliwe jako kolumny, $S \in \mathbb{R}^{n \times m}$ jest prostokątną macierzą diagonalną zawierającą wartości osobliwe $S_{ii} \geq 0$, $V \in \mathbb{R}^{m \times m}$ jest macierzą ortogonalną zawierającą prawe wektory osobliwe jako kolumny. Wartości osobliwe S_{ii} to pierwiastki kwadratowe z niezerowych wartości własnych macierzy A^TA (lub AA^T). Wektory własne tych macierzy tworzą odpowiednio V i U. Celem niniejszego ćwiczenia było praktyczne przeanalizowanie rozkładu SVD dla losowo wygenerowanej macierzy prostokątnej A poprzez analizę jej pokrewnych macierzy A^TA oraz AA^T , a także zrozumienie różnic w sposobach uzyskiwania macierzy ortonormalnych U i V przy dwóch alternatywnych metodach dekompozycji. Szczególny nacisk położono na wizualizację struktur macierzy, analizę spektralną (obliczenie wartości własnych i wektorów własnych), sprawdzenie zgodności różnych sposobów obliczania macierzy U i V oraz obliczenie rzędu i jądra operatora A.

Dla losowo wygenerowanej macierzy $A \in \mathbb{R}^{8 \times 5}$ wykonano następujące kroki:

1. **Wizualizacja macierzy** *A*: użyto funkcji matplotlib.pyplot.matshow(A) do wizualizacji macierzy

2. **Obliczenie macierzy** AA^T : za pomocą mnożenia macierzy obliczono AAT = A @ A.T, a następnie zwizualizowano

3. Wyznaczenie wartości i wektorów własnych AA^T : za pomocą funkcji numpy.linalg.eigh(AAT) z biblioteki Numpy, która zwraca uporządkowane wartości własne (dla macierzy symetrycznych) i odpowiadające im wektory własne obliczono wektory i wartości własne macierzy AA^T . Otrzymane wektory posłużyły jako kolumny macierzy U, a wartości posłużyły do budowy macierzy S, gdzie $S_{ij} = \sqrt{\lambda_i}$.

```
eigvals_U, U1 = np.linalg.eigh(AAT)
idx = np.argsort(eigvals_U)[::-1]
eigvals_U = eigvals_U[idx]
U1 = U1[:, idx]
S1 = np.diag([np.sqrt(v) if v > 1e-10 else 0.0 for v in eigvals_U])
```


4. Wyznaczenie macierzy V: w celu obliczenia macierzy V zastosowano zależność $V=A^TUS^{-1}$

S1_inv = np.diag([1 / s if s > 1e-10 else 0.0 for s in np.diag(S1)]) V1 = A.T @ U1 @ S1_inv

5. Wyznaczenie alternatywne rozkładu SVD (przez A^TA): obliczono ATA = A.T @ A, a następnie analogicznie wyznaczono wartości i wektory własne oraz macierz S i obliczono macierz U korzystając z z tożsamości $U = AVS^{-1}$.

6. **Sprawdzenie rekonstrukcji**: dla obu rozkładów porównano wejściową macierz A z jej dekompozycją SVD USV^T za pomocą funkcji numpy.allclose.

```
print("Czy A i dekompozycja SVD są równe?", np.allclose(A, U1 @ S1 @ V1.T))
print("Czy A i dekompozycja SVD są równe?", np.allclose(A, U2 @ S2 @ V2.T))
```

7. **Obliczenie rzędu i wymiaru jądra**: wywołanie funkcji bibliotecznej matrix_rank(A) zwróciło rząd macierzy *A* równy 5, natomiast wymiar jądra obliczono jako różnicę liczby kolumn i rzędu otrzymując 0.

Ponieważ macierz A została wygenerowana losowo, wizualna analiza nie wykazała żadnej dominującej struktury – dane były rozproszone, z wartościami dodatnimi i ujemnymi. Macierze AA^T i A^TA były zgodnie z oczekiwaniami macierzami symetrycznymi i dodatnio określonymi, co zostało potwierdzone przez ich dodatnie (lub zerowe) wartości własne. Uzyskane niezerowe wartości osobliwe S_{ii} były identyczne dla obu sposobów dekompozycji, lecz macierze V i U różniły się, co jednak jest zgodne z teorią: kolumny mogą się różnić znakiem, kolejnością lub być rozszerzeniem tej samej przestrzeni wektorowej. W przypadku obu sposobów dekompozycji otrzymano zgodność z wejściową macierzą A. Ćwiczenie pokazało, jak potężnym narzędziem jest SVD – zarówno teoretycznie, jak i praktycznie. Poprzez zbadanie dwóch możliwych podejść (przez obliczenie wartości własnych macierzy AA^T lub A^TA) uzyskano te same wartości osobliwe i zgodne pod względem przestrzeni macierze ortonormalne. Różnice wynikające z kolejności i znaku są zgodne z teorią i nie wpływają na poprawność rekonstrukcji ani interpretacji.