RWorksheet_asenjo#4b

Samuel Asenjo

2024-10-28

```
1.
vectorA \leftarrow c(1, 2, 3, 4, 5)
matrixA <- matrix(0, nrow = 5, ncol = 5)</pre>
for (i in 1:5) {
  for (j in 1:5) {
    matrixA[i, j] <- abs(i - vectorA[j])</pre>
}
print(matrixA)
         [,1] [,2] [,3] [,4] [,5]
## [1,]
            0
                       2
                1
## [2,]
           1
                       1
## [3,]
                          1
         2
               1
                      0
## [4,]
## [5,]
v \leftarrow c(1, 2, 3, 4, 5)
for(i in v){
  cat(rep("*", i),"\n")
## *
  3.
start_num <- as.integer(readline(prompt="Enter the starting number for the Fibonacci sequence: "))</pre>
\mbox{\tt \#\#} 
 Enter the starting number for the Fibonacci sequence:
a <- 0
b <- 1
if (!is.na(start_num) < 0) {</pre>
```

```
cat("Please enter a non-negative starting number.\n")
} else {
repeat {
if (!is.na(start_num) && a >= start_num) {
cat(a, "\n")
temp <- a + b
a <- b
b <- temp
if (!is.na(start_num) && a > 500) {
break
}
}
}
## Please enter a non-negative starting number.
  4.
     a.
Shoesizes <-read.csv("/cloud/project/Worksheet 4/shoesizes.csv")
head(Shoesizes)
##
     Shoe.size Height Gender
## 1
           6.5
                 66.0
           9.0 68.0
## 2
                           F
## 3
          8.5 64.5
                           F
          8.5 65.0
## 4
         10.5 70.0
## 5
                           М
          7.0
## 6
                 64.0
                           F
  b.
male_data <- subset(Shoesizes, Gender == "M")</pre>
female_data <- subset(Shoesizes, Gender == "F")</pre>
num_males <- nrow(male_data)</pre>
num_females <- nrow(female_data)</pre>
cat("Number of observations for Male: ", num_males, "\n")
## Number of observations for Male: 14
cat("Number of observations for Female: ", num_females, "\n")
## Number of observations for Female: 14
  c.
library(ggplot2)
HouseHoldData <-read.csv("/cloud/project/Worksheet 4/HouseholdData.csv")</pre>
ggplot(HouseHoldData, aes(x=Sex, fill=Sex)) +
  geom bar() +
  ggtitle("Number of Males and Females in Household Data") +
  xlab("Gender") +
```

```
ylab("Count") +
scale_fill_manual(values = c("blue", "pink")) +
theme_minimal()
```

Number of Males and Females in Household Data


```
5.

expenses <- c(Food = 60, Electricity = 10, Savings = 5, Miscellaneous = 25)

percentages <- round(100 * expenses / sum(expenses), 1)

labels <- paste(names(expenses), percentages, "%")

colors <- c("lightblue", "lightgreen", "yellow", "pink")

pie(expenses, labels = labels, col = colors, main = "Dela Cruz Family Monthly Expenses")
```

Dela Cruz Family Monthly Expenses

a. The output shows number of variables and objects, and rows and columns

```
## 'data.frame': 150 obs. of 5 variables:
## $ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
## $ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
## $ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
## $ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
## $ Species : Factor w/ 3 levels "setosa", "versicolor", ..: 1 1 1 1 1 1 1 1 1 1 1 1 ...
b.
means <- colMeans(iris[, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")])</pre>
```

```
## Sepal.Length Sepal.Width Petal.Length Petal.Width
## 5.843333 3.057333 3.758000 1.199333
```

str(iris)

means

```
species_distribution <- table(iris$Species)

colors <- c("blue", "green", "yellow")

pie(species_distribution,
    main = "Distribution of Iris Species",
    col = colors,
    labels = paste(names(species_distribution), "(", species_distribution, ")", sep=""))

legend("topright", legend = names(species_distribution), fill = colors, title = "Species")</pre>
```

Distribution of Iris Species

d.

```
setosa <- subset(iris, Species == "setosa")
versicolor <- subset(iris, Species == "versicolor")
virginica <- subset(iris, Species == "virginica")
tail(setosa)</pre>
```

```
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width Species
## 45
              5.1
                         3.8
                                     1.9
                                                 0.4 setosa
## 46
              4.8
                         3.0
                                     1.4
                                                 0.3 setosa
## 47
              5.1
                         3.8
                                     1.6
                                                 0.2 setosa
## 48
              4.6
                         3.2
                                     1.4
                                                 0.2 setosa
                                                 0.2 setosa
## 49
              5.3
                         3.7
                                     1.5
                                                 0.2 setosa
## 50
              5.0
                         3.3
                                     1.4
```

tail(versicolor)

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	95	5.6	2.7	4.2	1.3	versicolor
##	96	5.7	3.0	4.2	1.2	versicolor
##	97	5.7	2.9	4.2	1.3	versicolor
##	98	6.2	2.9	4.3	1.3	versicolor
##	99	5.1	2.5	3.0	1.1	versicolor
##	100	5.7	2.8	4.1	1.3	versicolor

tail(virginica)

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	145	6.7	3.3	5.7	2.5	virginica
##	146	6.7	3.0	5.2	2.3	virginica
##	147	6.3	2.5	5.0	1.9	virginica
##	148	6.5	3.0	5.2	2.0	virginica
##	149	6.2	3.4	5.4	2.3	virginica
##	150	5.9	3.0	5.1	1.8	virginica

e.

Iris Dataset

f. The scatterplot shows clear separation between setosa and the other two species based on Sepal Length and Sepal Width. Setosa has distinctively shorter and wider sepals, forming a separate cluster. Versicolor and virginica overlap more, particularly in sepal width, but virginica tends to have longer sepals. Overall, there is a slight negative correlation, where longer sepals tend to be narrower, especially in virginica.

8.

a.

library(readxl)

```
alexa <- read_excel("/cloud/project/Worksheet 4/alexa_file.xlsx")</pre>
alexa$variation <- gsub("Black Show", "BlackShow", alexa$variation)</pre>
alexa$variation <- gsub("Black Dot", "BlackDot", alexa$variation)</pre>
alexa$variation <- gsub("Black Plus", "BlackPlus", alexa$variation)</pre>
alexa$variation <- gsub("Black Spot", "BlackSpot", alexa$variation)</pre>
alexa$variation <- gsub("White Show", "WhiteShow", alexa$variation)</pre>
alexa$variation <- gsub("White Dot", "WhiteDot", alexa$variation)
alexa$variation <- gsub("White Plus", "WhitePlus", alexa$variation)
alexa$variation <- gsub("White Spot", "WhiteSpot", alexa$variation)</pre>
knitr::include_graphics("/cloud/project/Worksheet 4/Screenshot 2024-11-03 231530.png")
[1] "BlackShow" "WhiteShow" "BlackShow" "B
    [9] "BlackShow" "BlackShow" "BlackShow" "BlackPlus" "WhitePlus" "BlackPlus" "B
    [25] "BlackPlus" "BlackPlus" "WhitePlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus"
   [33] "WhitePlus" "BlackPlus" "BlackPlus" "BlackPlus" "WhitePlus" "BlackPlus" "
    [57] "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "WhitePlus" "BlackPlus"
    [65] "BlackPlus" "BlackPlus" "WhitePlus" "BlackPlus" "BlackPlus" "WhitePlus" "BlackPlus" "WhitePlus" [73] "WhitePlus" "BlackPlus" "BlackPl
    [81] "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "WhitePlus"
    [89] "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus"
[97] "BlackPlus" "
[113] "BlackPlus" "BlackPlus" "WhitePlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus" "BlackPlus"
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
                                           filter, lag
## The following objects are masked from 'package:base':
##
                                            intersect, setdiff, setequal, union
variations.RData <- alexa %>%
            count (alexa$variation)
save(variations.RData, file = "variations.RData")
```

```
print(variations.RData)
## # A tibble: 16 x 2
## `alexa$variation`
                                      n
     <chr>
                                  <int>
## 1 Black
                                    261
## 2 BlackDot
                                    516
## 3 BlackPlus
                                    270
## 4 BlackShow
                                    265
## 5 BlackSpot
                                    241
## 6 Charcoal Fabric
                                    430
## 7 Configuration: Fire TV Stick 350
## 8 Heather Gray Fabric
                                    157
## 9 Oak Finish
                                    14
## 10 Sandstone Fabric
                                   90
## 11 Walnut Finish
                                    9
## 12 White
                                     91
## 13 WhiteDot
                                    184
## 14 WhitePlus
                                    78
## 15 WhiteShow
                                    85
## 16 WhiteSpot
                                    109
  c.
barplot(
 variations.RData$n,
 names.arg = variations.RData$`alexa$variation`,
 cex.names = 0.4,
 main = "Count of Variations",
 ylab = "Count",
 col = rainbow(length(variations.RData$n)),
 border = "black",
 las = 2
)
```

Count of Variations


```
bv <- variations.RData %>%
  filter(grepl("^Black|^White", `alexa$variation`))
par(mfrow = c(1, 2))
barplot(
  bv$n[bv$`alexa$variation` %in% c("Black", "BlackPlus", "BlackShow", "BlackSpot", "BlackDot")],
  names.arg = bv$`alexa$variation`[bv$`alexa$variation` %in% c("Black", "BlackPlus", "BlackShow", "Black
  las = 3,
  cex.names = 1,
  main = "Black Variations",
  ylab = "Count",
  col = "black",
  border = "black"
)
barplot(
  bv$n[bv$`alexa$variation` %in% c("White", "WhitePlus", "WhiteShow", "WhiteSpot", "WhiteDot")],
  names.arg = bv$`alexa$variation`[bv$`alexa$variation` %in% c("White", "WhitePlus", "WhiteShow", "Whit
  las = 2,
  cex.names = 1,
  main = "White Variations",
  ylab = "Count",
  col = "white",
  border = "black"
)
```

