(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2001 (04.01.2001)

PCT

(10) International Publication Number WO 01/00804 A2

(51) International Patent Classification?: C12N 15/00
 (21) International Application Number: PCT/IB00/00922

(22) International Filing Date: 23 June 2000 (23.06.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/141,031 25 June 1999 (25.06.1999) US 60/142,692 1 July 1999 (01.07.1999) US 199 30 429.7 1 July 1999 (01.07.1999) DE 199 31 541.8 8 July 1999 (08.07.1999) DE 199 31 413.6 8 July 1999 (08.07.1999) DE 199 31 457.8 8 July 1999 (08.07.1999) DE 9 July 1999 (09.07.1999) 199 32 230.9 DE 199 32 209.0 9 July 1999 (09.07.1999) DE 199 32 914.1 14 July 1999 (14.07.1999) DE 27 August 1999 (27.08.1999) 60/151.214 US 199 40 764.9 27 August 1999 (27.08.1999) DE 199 41 382.7 31 August 1999 (31.08.1999) DE

(71) Applicant: BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Inventors: POMPEJUS, Markus; Wenjenstrasse 21, D-67251 Freinsheim (DE). KRÖGER, Burkhard; Im Waldhof 1, D-67117 Limburgerhof (DE). SCHRÖDER, Hartwig; Goethestrasse 5, D-69226 Nussloch (DE). ZELDER, Oskar; Rossmarktstrasse 27, D-67346 Speyer (DE). HABERHAUER, Gregor; Moselstrasse 42, D-67117 Limburgerhof (DE). LEE, Heung-Shick; Korea University, Graduate School of Biotechnology, Anam Dong, Sungbook-Gu, Seoul 136-701 (KR). KIM, Hyung-Joon; Korea University, Graduate School of Biotechnology, Anam Dong, Sungbook-Gu, Seoul 136-701 (KR).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 Without international search report and to be republished upon receipt of that report.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A

4

(54) Title: CORYNEBACTERIUM GLUTAMICUM GENES ENCODING STRESS, RESISTANCE AND TOLERANCE PROTEINS

(57) Abstract: Isolated nucleic acid molecules, designated SRT nucleic acid molecules, which encode novel SRT proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing SRT nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated SRT proteins, mutated SRT proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of SRT genes in this organism.

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING STRESS, RESISTANCE AND TOLERANCE PROTEINS

Related Applications

5 This application claims priority to prior filed U.S. Provisional Patent Application Serial No. 60/141031, filed June 25, 1999, U.S. Provisional Patent Application Serial No. 60/142692, filed July 1, 1999, and also to U.S. Provisional Patent Application Serial No. 60/151214, filed August 27, 1999. This application also claims priority to German Patent Application No. 19930429.7, filed July 1, 1999, German Patent Application No. 10 19931413.6, filed July 8, 1999, German Patent Application No. 19931457.8, filed July 8, 1999, German Patent Application No. 19931541.8, filed July 8, 1999, German Patent Application No. 19932209.0, filed July 9, 1999, German Patent Application No. 19932230.9, filed July 9, 1999, German Patent Application No. 19932914.1, filed July 14, 1999, German Patent Application No. 19940764.9, filed August 27, 1999, and German Patent Application No. 19941382.7, filed August 31, 1999. The entire contents 15 of all of the aforementioned applications are hereby expressly incorporated herein in their entirety by this reference.

Background of the Invention

Certain products and by-products of naturally-occurring metabolic processes in cells have utility in a wide array of industries, including the food, feed, cosmetics, and pharmaceutical industries. These molecules, collectively termed 'fine chemicals', include organic acids, both proteinogenic and non-proteinogenic amino acids, nucleotides and nucleosides, lipids and fatty acids, diols, carbohydrates, aromatic compounds, vitamins and cofactors, and enzymes. Their production is most conveniently performed through large-scale culture of bacteria developed to produce and secrete large quantities of a particular desired molecule. One particularly useful organism for this purpose is *Corynebacterium glutamicum*, a gram positive, nonpathogenic bacterium. Through strain selection, a number of mutant strains have been developed which produce an array of desirable compounds. However, selection of strains improved for the production of a particular molecule is a time-consuming and difficult process.

5

10

15

20

25

30

Summary of the Invention

The invention provides novel bacterial nucleic acid molecules which have a variety of uses. These uses include the identification of microorganisms which can be used to produce fine chemicals, the modulation of fine chemical production in *C. glutamicum* or related bacteria, the typing or identification of *C. glutamicum* or related bacteria, as reference points for mapping the *C. glutamicum* genome, and as markers for transformation. These novel nucleic acid molecules encode proteins, referred to herein as stress, resistance and tolerance (SRT) proteins.

C. glutamicum is a gram positive, aerobic bacterium which is commonly used in industry for the large-scale production of a variety of fine chemicals, and also for the degradation of hydrocarbons (such as in petroleum spills) and for the oxidation of terpenoids. The SRT nucleic acid molecules of the invention, therefore, can be used to identify microorganisms which can be used to produce fine chemicals, e.g., by fermentation processes. Modulation of the expression of the SRT nucleic acids of the invention, or modification of the sequence of the SRT nucleic acid molecules of the invention, can be used to modulate the production of one or more fine chemicals from a microorganism (e.g., to improve the yield or production of one or more fine chemicals from a Corynebacterium or Brevibacterium species).

The SRT nucleic acids of the invention may also be used to identify an organism as being *Corynebacterium glutamicum* or a close relative thereof, or to identify the presence of *C. glutamicum* or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of *C. glutamicum* genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a *C. glutamicum* gene which is unique to this organism, one can ascertain whether this organism is present. Although *Corynebacterium glutamicum* itself is nonpathogenic, it is related to species pathogenic in humans, such as *Corynebacterium diphtheriae* (the causative agent of diphtheria); the detection of such organisms is of significant clinical relevance.

The SRT nucleic acid molecules of the invention may also serve as reference points for mapping of the *C. glutamicum* genome, or of genomes of related organisms.

- 3 -

Similarly, these molecules, or variants or portions thereof, may serve as markers for genetically engineered Corynebacterium or Brevibacterium species.

The SRT proteins encoded by the novel nucleic acid molecules of the invention are capable of, for example, permitting C. glutamicum to survive in a setting which is 5 either chemically or environmentally hazardous to this microorganism. Given the availability of cloning vectors for use in Corynebacterium glutamicum, such as those disclosed in Sinskey et al., U.S. Patent No. 4,649,119, and techniques for genetic manipulation of C. glutamicum and the related Brevibacterium species (e.g., lactofermentum) (Yoshihama et al., J. Bacteriol. 162: 591-597 (1985); Katsumata et al., J. Bacteriol. 159: 306-311 (1984); and Santamaria et al., J. Gen. Microbiol. 130: 2237-10 2246 (1984)), the nucleic acid molecules of the invention may be utilized in the genetic engineering of this organism to make it a better or more efficient producer of one or more fine chemicals, through the ability of these proteins to permit growth and multiplication of C. glutamicum (and also continuous production of one or more fine 15 chemicals) under circumstances which would normally impede growth of the organism, such as those conditions frequently encountered during large-scale fermentative growth. For example, by overexpressing or engineering a heat-shock induced protease molecule such that it is optimized in activity, one may increase the ability of the bacterium to degrade incorrectly folded proteins when the bacterium is challenged with high 20 temperatures. By having fewer misfolded (and possibly misregulated or nonfunctional) proteins to interfere with normal reaction mechanisms in the cell, the cell is increased in its ability to function normally in such a culture, which should in turn provide increased viability. This overall increase in number of cells having greater viability and activity in the culture should also result in an increase in yield, production, and/or efficiency of 25 production of one or more desired fine chemicals, due at least to the relatively greater number of cells producing these chemicals in the culture.

This invention provides novel SRT nucleic acid molecules which encode SRT proteins which are capable of, for example, permitting *C. glutamicum* to survive in a setting which is either chemically or environmentally hazardous to this microorganism. Nucleic acid molecules encoding an SRT protein are referred to herein as SRT nucleic acid molecules. In a preferred embodiment, the SRT protein participates in metabolic pathways permitting *C. glutamicum* to survive in a setting which is either chemically or

- 4 -

environmentally hazardous to this microorganism. Examples of such proteins include those encoded by the genes set forth in Table 1.

Accordingly, one aspect of the invention pertains to isolated nucleic acid molecules (e.g., cDNAs, DNAs, or RNAs) comprising a nucleotide sequence encoding an SRT protein or biologically active portions thereof, as well as nucleic acid fragments suitable as primers or hybridization probes for the detection or amplification of SRTencoding nucleic acid (e.g., DNA or mRNA). In particularly preferred embodiments, the isolated nucleic acid molecule comprises one of the nucleotide sequences set forth as the odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....), or the coding region or a complement thereof of one of these nucleotide sequences. In other particularly preferred embodiments, the isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes to or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80% or 90%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence set forth as an odd-numbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7...), or a portion thereof. In other preferred embodiments, the isolated nucleic acid molecule encodes one of the amino acid sequences set forth as an evennumbered SEQ ID NO in the Sequence Listing (e.g., SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:8...).. The preferred SRT proteins of the present invention also preferably possess at least one of the SRT activities described herein.

In another embodiment, the isolated nucleic acid molecule encodes a protein or portion thereof wherein the protein or portion thereof includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence having an even-numbered SEQ ID NO: in the Sequence Listing), e.g., sufficiently homologous to an amino acid sequence of the invention such that the protein or portion thereof maintains an SRT activity. Preferably, the protein or portion thereof encoded by the nucleic acid molecule maintains the ability to increase the survival of C. glutamicum in a setting which is either chemically or environmentally hazardous to this microorganism. In one embodiment, the protein encoded by the nucleic acid molecule is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90% and most preferably at least about 95%, 96%, 97%, 98%, or 99% or

5

15

20

more homologous to an amino acid sequence of the invention (e.g., an entire amino acid sequence selected from those having an even-numbered SEQ ID NO in the Sequence Listing). In another preferred embodiment, the protein is a full length *C. glutamicum* protein which is substantially homologous to an entire amino acid sequence of the invention (encoded by an open reading frame shown the corresponding odd-numbered SEQ ID NOs in the Sequence Listing (e.g., SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:7....).

In another preferred embodiment, the isolated nucleic acid molecule is derived from *C. glutamicum* and encodes a protein (*e.g.*, an SRT fusion protein) which includes a biologically active domain which is at least about 50% or more homologous to one of the amino acid sequences of the invention (*e.g.*, a sequence of one of the even-numbered SEQ ID NOs in the Sequence Listing) and has the ability to increase the survival of *C. glutamicum* in a setting which is either chemically or environmentally hazardous to this microorganism, or possesses one or more of the activities set forth in Table 1, and which also includes heterologous nucleic acid sequences encoding a heterologous polypeptide or regulatory regions.

In another embodiment, the isolated nucleic acid molecule is at least 15 nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule comprising a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO in the Sequence Listing). Preferably, the isolated nucleic acid molecule corresponds to a naturally-occurring nucleic acid molecule. More preferably, the isolated nucleic acid encodes a naturally-occurring C. glutamicum SRT protein, or a biologically active portion thereof.

Another aspect of the invention pertains to vectors, e.g., recombinant expression vectors, containing the nucleic acid molecules of the invention, and host cells into which such vectors have been introduced. In one embodiment, such a host cell is used to produce an SRT protein by culturing the host cell in a suitable medium. The SRT protein can be then isolated from the medium or the host cell.

Yet another aspect of the invention pertains to a genetically altered microorganism in which an SRT gene has been introduced or altered. In one embodiment, the genome of the microorganism has been altered by the introduction of a nucleic acid molecule of the invention encoding wild-type or mutated SRT sequence as

5

10

15

20

25

- 6 -

a transgene. In another embodiment, an endogenous SRT gene within the genome of the microorganism has been altered, e.g., functionally disrupted, by homologous recombination with an altered SRT gene. In another embodiment, an endogenous or introduced SRT gene in a microorganism has been altered by one or more point 5 mutations, deletions, or inversions, but still encodes a functional SRT protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of a SRT gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the SRT gene is modulated. In a preferred embodiment, the microorganism belongs to the genus 0 Corynebacterium or Brevibacterium, with Corynebacterium glutamicum being particularly preferred. In a preferred embodiment, the microorganism is also utilized for the production of a desired compound, such as an amino acid, with lysine being particularly preferred.

In another aspect, the invention provides a method of identifying the presence or activity of *Cornyebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth in the Sequence Listing as SEQ ID NOs 1 through 304)) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject.

Still another aspect of the invention pertains to an isolated SRT protein or a portion, e.g., a biologically active portion, thereof. In a preferred embodiment, the isolated SRT protein or portion thereof possesses the ability to increase the survival of C. glutamicum in a setting which is either chemically or environmentally hazardous to this microorganism. In another preferred embodiment, the isolated SRT protein or portion thereof is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: in the Sequence Listing) such that the protein or portion thereof maintains the ability to increase the survival of C. glutamicum in a setting which is either chemically or environmentally hazardous to this microorganism.

The invention also provides an isolated preparation of an SRT protein. In

30 preferred embodiments, the SRT protein comprises an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing).

In another preferred embodiment, the invention pertains to an isolated full length protein

15

5

10

15

25

30

which is substantially homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) (encoded by an open reading frame set forth in a corresponding odd-numbered SEQ ID NO: of the Sequence Listing).) In yet another embodiment, the protein is at least about 50%, preferably at least about 60%, and more preferably at least about 70%, 80%, or 90%, and most preferably at least about 95%, 96%, 97%, 98%, or 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing). In other embodiments, the isolated SRT protein comprises an amino acid sequence which is at least about 50% or more homologous to one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and is able to improve the survival rate of C. glutamicum in a setting which is either chemically or environmentally hazardous to this microorganism, or has one or more of the activities set forth in Table 1.

Alternatively, the isolated SRT protein can comprise an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, or is at least about 50%, preferably at least about 60%, more preferably at least about 70%, 80%, or 90%, and even more preferably at least about 95%, 96%, 97%, 98,%, or 99% or more homologousto a nucleotide sequence of one of the even-numbered SEQ ID NOs set forth in the Sequence Listing. It is also preferred that the preferred forms of SRT proteins also have one or more of the SRT bioactivities described herein.

The SRT polypeptide, or a biologically active portion thereof, can be operatively linked to a non-SRT polypeptide to form a fusion protein. In preferred embodiments, this fusion protein has an activity which differs from that of the SRT protein alone. In other preferred embodiments, this fusion protein results in increased yields, production, and/or efficiency of production of a desired fine chemical from *C. glutamicum*. In particularly preferred embodiments, integration of this fusion protein into a host cell modulates the production of a desired compound from the cell.

In another aspect, the invention provides methods for screening molecules which modulate the activity of an SRT protein, either by interacting with the protein itself or a substrate or binding partner of the SRT protein, or by modulating the transcription or translation of an SRT nucleic acid molecule of the invention.

-8-

Another aspect of the invention pertains to a method for producing a fine chemical. This method involves the culturing of a cell containing a vector directing the expression of an SRT nucleic acid molecule of the invention, such that a fine chemical is produced. In a preferred embodiment, this method further includes the step of obtaining a cell containing such a vector, in which a cell is transfected with a vector directing the expression of an SRT nucleic acid. In another preferred embodiment, this method further includes the step of recovering the fine chemical from the culture. In a particularly preferred embodiment, the cell is from the genus *Corynebacterium* or *Brevibacterium*, or is selected from those strains set forth in Table 3.

Another aspect of the invention pertains to methods for modulating production of a molecule from a microorganism. Such methods include contacting the cell with an agent which modulates SRT protein activity or SRT nucleic acid expression such that a cell associated activity is altered relative to this same activity in the absence of the agent. In a preferred embodiment, the cell is modulated in resistance to one or more toxic chemicals or in resistance to one or more environmental stresses, such that the yields or rate of production of a desired fine chemical by this microorganism is improved. The agent which modulates SRT protein activity can be an agent which stimulates SRT protein activity or SRT nucleic acid expression. Examples of agents which stimulate SRT protein activity or SRT nucleic acid expression include small molecules, active SRT proteins, and nucleic acids encoding SRT proteins that have been introduced into the cell. Examples of agents which inhibit SRT activity or expression include small molecules, and antisense SRT nucleic acid molecules.

Another aspect of the invention pertains to methods for modulating yields of a desired compound from a cell, involving the introduction of a wild-type or mutant SRT gene into a cell, either maintained on a separate plasmid or integrated into the genome of the host cell. If integrated into the genome, such integration can random, or it can take place by homologous recombination such that the native gene is replaced by the introduced copy, causing the production of the desired compound from the cell to be modulated. In a preferred embodiment, said yields are increased. In another preferred embodiment, said chemical is a fine chemical. In a particularly preferred embodiment, said fine chemical is an amino acid. In especially preferred embodiments, said amino acid is L-lysine.

10

20

25

5

10

Detailed Description of the Invention

The present invention provides SRT nucleic acid and protein molecules which are involved in the survival of C. glutamicum upon exposure of this microorganism to chemical or environmental hazards. The molecules of the invention may be utilized in the modulation of production of fine chemicals from microorganisms, since these SRT proteins provide a means for continued growth and multiplication of C. glutamicum in the presence of toxic chemicals or hazardous environmental conditions, such as may be encountered during large-scale fermentative growth. By increasing the growth rate or at least maintaining normal growth in the face of poor, if not toxic, conditions, one may increase the yield, production, and/or efficiency of production of one or more fine chemicals from such a culture, at least due to the relatively greater number of cells producing the fine chemical in the culture. Aspects of the invention are further explicated below.

15 Fine Chemicals

The term 'fine chemical' is art-recognized and includes molecules produced by an organism which have applications in various industries, such as, but not limited to, the pharmaceutical, agriculture, and cosmetics industries. Such compounds include organic acids, such as tartaric acid, itaconic acid, and diaminopimelic acid, both 20 proteinogenic and non-proteinogenic amino acids, purine and pyrimidine bases, nucleosides, and nucleotides (as described e.g. in Kuninaka, A. (1996) Nucleotides and related compounds, p. 561-612, in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, and references contained therein), lipids, both saturated and unsaturated fatty acids (e.g., arachidonic acid), diols (e.g., propane diol, and butane diol), carbohydrates 25 (e.g., hyaluronic acid and trehalose), aromatic compounds (e.g., aromatic amines, vanillin, and indigo), vitamins and cofactors (as described in Ullmann's Encyclopedia of Industrial Chemistry, vol. A27, "Vitamins", p. 443-613 (1996) VCH: Weinheim and references therein; and Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press, (1995)), enzymes, polyketides (Cane et al. (1998) Science 282: 63-68), and all other chemicals described in

Gutcho (1983) Chemicals by Fermentation, Noyes Data Corporation, ISBN: 0818805086 and references therein. The metabolism and uses of certain of these fine chemicals are further explicated below.

5 A. Amino Acid Metabolism and Uses

Amino acids comprise the basic structural units of all proteins, and as such are essential for normal cellular functioning in all organisms. The term "amino acid" is artrecognized. The proteinogenic amino acids, of which there are 20 species, serve as structural units for proteins, in which they are linked by peptide bonds, while the 10 nonproteinogenic amino acids (hundreds of which are known) are not normally found in proteins (see Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97 VCH: Weinheim (1985)). Amino acids may be in the D- or L- optical configuration, though Lamino acids are generally the only type found in naturally-occurring proteins. Biosynthetic and degradative pathways of each of the 20 proteinogenic amino acids have been well characterized in both prokaryotic and eukaryotic cells (see, for example, Stryer, L. Biochemistry, 3rd edition, pages 578-590 (1988)). The 'essential' amino acids (histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine), so named because they are generally a nutritional requirement due to the complexity of their biosyntheses, are readily converted by simple biosynthetic pathways. to the remaining 11 'nonessential' amino acids (alanine, arginine, asparagine, aspartate, 20 cysteine, glutamate, glutamine, glycine, proline, serine, and tyrosine). Higher animals do retain the ability to synthesize some of these amino acids, but the essential amino acids must be supplied from the diet in order for normal protein synthesis to occur.

Aside from their function in protein biosynthesis, these amino acids are interesting chemicals in their own right, and many have been found to have various applications in the food, feed, chemical, cosmetics, agriculture, and pharmaceutical industries. Lysine is an important amino acid in the nutrition not only of humans, but also of monogastric animals such as poultry and swine. Glutamate is most commonly used as a flavor additive (mono-sodium glutamate, MSG) and is widely used throughout the food industry, as are aspartate, phenylalanine, glycine, and cysteine. Glycine, Lmethionine and tryptophan are all utilized in the pharmaceutical industry. Glutamine, valine, leucine, isoleucine, histidine, arginine, proline, serine and alanine are of use in

15

- 11 -

both the pharmaceutical and cosmetics industries. Threonine, tryptophan, and D/L-methionine are common feed additives. (Leuchtenberger, W. (1996) Amino aids – technical production and use, p. 466-502 in Rehm *et al.* (eds.) Biotechnology vol. 6, chapter 14a, VCH: Weinheim). Additionally, these amino acids have been found to be useful as precursors for the synthesis of synthetic amino acids and proteins, such as N-acetylcysteine, S-carboxymethyl-L-cysteine, (S)-5-hydroxytryptophan, and others described in Ulmann's Encyclopedia of Industrial Chemistry, vol. A2, p. 57-97, VCH: Weinheim, 1985.

The biosynthesis of these natural amino acids in organisms capable of 10 producing them, such as bacteria, has been well characterized (for review of bacterial amino acid biosynthesis and regulation thereof, see Umbarger, H.E.(1978) Ann. Rev. Biochem. 47: 533-606). Glutamate is synthesized by the reductive amination of αketoglutarate, an intermediate in the citric acid cycle. Glutamine, proline, and arginine are each subsequently produced from glutamate. The biosynthesis of serine is a threestep process beginning with 3-phosphoglycerate (an intermediate in glycolysis), and 15 resulting in this amino acid after oxidation, transamination, and hydrolysis steps. Both cysteine and glycine are produced from serine; the former by the condensation of homocysteine with serine, and the latter by the transferal of the side-chain β-carbon atom to tetrahydrofolate, in a reaction catalyzed by serine transhydroxymethylase. 20 Phenylalanine, and tyrosine are synthesized from the glycolytic and pentose phosphate pathway precursors erythrose 4-phosphate and phosphoenolpyruvate in a 9-step biosynthetic pathway that differ only at the final two steps after synthesis of prephenate. Tryptophan is also produced from these two initial molecules, but its synthesis is an 11step pathway. Tyrosine may also be synthesized from phenylalanine, in a reaction 25 catalyzed by phenylalanine hydroxylase. Alanine, valine, and leucine are all biosynthetic products of pyruvate, the final product of glycolysis. Aspartate is formed from oxaloacetate, an intermediate of the citric acid cycle. Asparagine, methionine, threonine, and lysine are each produced by the conversion of aspartate. Isoleucine is formed from threonine. A complex 9-step pathway results in the production of histidine from 5-phosphoribosyl-1-pyrophosphate, an activated sugar. 30

Amino acids in excess of the protein synthesis needs of the cell cannot be stored, and are instead degraded to provide intermediates for the major metabolic pathways of

- 12 -

the cell (for review see Stryer, L. Biochemistry 3rd ed. Ch. 21 "Amino Acid Degradation and the Urea Cycle" p. 495-516 (1988)). Although the cell is able to convert unwanted amino acids into useful metabolic intermediates, amino acid production is costly in terms of energy, precursor molecules, and the enzymes necessary to synthesize them.

Thus it is not surprising that amino acid biosynthesis is regulated by feedback inhibition, in which the presence of a particular amino acid serves to slow or entirely stop its own production (for overview of feedback mechanisms in amino acid biosynthetic pathways, see Stryer, L. Biochemistry, 3rd ed. Ch. 24: "Biosynthesis of Amino Acids and Heme" p. 575-600 (1988)). Thus, the output of any particular amino acid is limited by the amount of that amino acid present in the cell.

B. Vitamin, Cofactor, and Nutraceutical Metabolism and Uses

Vitamins, cofactors, and nutraceuticals comprise another group of molecules which the higher animals have lost the ability to synthesize and so must ingest, although they are readily synthesized by other organisms, such as bacteria. These molecules are either bioactive substances themselves, or are precursors of biologically active substances which may serve as electron carriers or intermediates in a variety of metabolic pathways. Aside from their nutritive value, these compounds also have significant industrial value as coloring agents, antioxidants, and catalysts or other processing aids. (For an overview of the structure, activity, and industrial applications of these compounds, see, for example, Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996.) The term "vitamin" is artrecognized, and includes nutrients which are required by an organism for normal functioning, but which that organism cannot synthesize by itself. The group of vitamins may encompass cofactors and nutraceutical compounds. The language "cofactor" includes nonproteinaceous compounds required for a normal enzymatic activity to occur. Such compounds may be organic or inorganic; the cofactor molecules of the invention are preferably organic. The term "nutraceutical" includes dietary supplements having health benefits in plants and animals, particularly humans. Examples of such molecules are vitamins, antioxidants, and also certain lipids (e.g., polyunsaturated fatty acids).

10

20

25

- 13 -

The biosynthesis of these molecules in organisms capable of producing them, such as bacteria, has been largely characterized (Ullman's Encyclopedia of Industrial Chemistry, "Vitamins" vol. A27, p. 443-613, VCH: Weinheim, 1996; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley & Sons; Ong, A.S., Niki, E. & Packer, L. (1995) "Nutrition, Lipids, Health, and Disease" Proceedings of the UNESCO/Confederation of Scientific and Technological Associations in Malaysia, and the Society for Free Radical Research – Asia, held Sept. 1-3, 1994 at Penang, Malaysia, AOCS Press: Champaign, IL X, 374 S).

Thiamin (vitamin B₁) is produced by the chemical coupling of pyrimidine and 10 thiazole moieties. Riboflavin (vitamin B₂) is synthesized from guanosine-5'-triphosphate (GTP) and ribose-5'-phosphate. Riboflavin, in turn, is utilized for the synthesis of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). The family of compounds collectively termed 'vitamin B₆' (e.g., pyridoxine, pyridoxamine, pyridoxa-5'-phosphate, and the commercially used pyridoxin hydrochloride) are all derivatives of 15 the common structural unit, 5-hydroxy-6-methylpyridine. Pantothenate (pantothenic acid, (R)-(+)-N-(2,4-dihydroxy-3,3-dimethyl-1-oxobutyl)-β-alanine) can be produced either by chemical synthesis or by fermentation. The final steps in pantothenate biosynthesis consist of the ATP-driven condensation of β-alanine and pantoic acid. The enzymes responsible for the biosynthesis steps for the conversion to pantoic acid, to β-20 alanine and for the condensation to panthotenic acid are known. The metabolically active form of pantothenate is Coenzyme A, for which the biosynthesis proceeds in 5 enzymatic steps. Pantothenate, pyridoxal-5'-phosphate, cysteine and ATP are the precursors of Coenzyme A. These enzymes not only catalyze the formation of panthothante, but also the production of (R)-pantoic acid, (R)-pantolacton, (R)-25 panthenol (provitamin B₅), pantetheine (and its derivatives) and coenzyme A.

Biotin biosynthesis from the precursor molecule pimeloyl-CoA in microorganisms has been studied in detail and several of the genes involved have been identified. Many of the corresponding proteins have been found to also be involved in Fe-cluster synthesis and are members of the nifS class of proteins. Lipoic acid is derived from octanoic acid, and serves as a coenzyme in energy metabolism, where it becomes part of the pyruvate dehydrogenase complex and the α -ketoglutarate dehydrogenase complex. The folates are a group of substances which are all derivatives

30

- 14 -

of folic acid, which is turn is derived from L-glutamic acid, p-amino-benzoic acid and 6-methylpterin. The biosynthesis of folic acid and its derivatives, starting from the metabolism intermediates guanosine-5'-triphosphate (GTP), L-glutamic acid and p-amino-benzoic acid has been studied in detail in certain microorganisms.

Corrinoids (such as the cobalamines and particularly vitamin B₁₂) and porphyrines belong to a group of chemicals characterized by a tetrapyrole ring system. The biosynthesis of vitamin B₁₂ is sufficiently complex that it has not yet been completely characterized, but many of the enzymes and substrates involved are now known. Nicotinic acid (nicotinate), and nicotinamide are pyridine derivatives which are also termed 'niacin'. Niacin is the precursor of the important coenzymes NAD (nicotinamide adenine dinucleotide) and NADP (nicotinamide adenine dinucleotide phosphate) and their reduced forms.

The large-scale production of these compounds has largely relied on cell-free chemical syntheses, though some of these chemicals have also been produced by large-scale culture of microorganisms, such as riboflavin, Vitamin B₆, pantothenate, and biotin. Only Vitamin B₁₂ is produced solely by fermentation, due to the complexity of its synthesis. *In vitro* methodologies require significant inputs of materials and time, often at great cost.

20 C. Purine, Pyrimidine, Nucleoside and Nucleotide Metabolism and Uses

Purine and pyrimidine metabolism genes and their corresponding proteins are important targets for the therapy of tumor diseases and viral infections. The language "purine" or "pyrimidine" includes the nitrogenous bases which are constituents of nucleic acids, co-enzymes, and nucleotides. The term "nucleotide" includes the basic structural units of nucleic acid molecules, which are comprised of a nitrogenous base, a pentose sugar (in the case of RNA, the sugar is ribose; in the case of DNA, the sugar is D-deoxyribose), and phosphoric acid. The language "nucleoside" includes molecules which serve as precursors to nucleotides, but which are lacking the phosphoric acid moiety that nucleotides possess. By inhibiting the biosynthesis of these molecules, or their mobilization to form nucleic acid molecules, it is possible to inhibit RNA and DNA synthesis; by inhibiting this activity in a fashion targeted to cancerous cells, the ability of tumor cells to divide and replicate may be inhibited. Additionally, there are

5

10

15

25

- 15 -

nucleotides which do not form nucleic acid molecules, but rather serve as energy stores (i.e., AMP) or as coenzymes (i.e., FAD and NAD).

Several publications have described the use of these chemicals for these medical indications, by influencing purine and/or pyrimidine metabolism (e.g. Christopherson, 5 R.I. and Lyons, S.D. (1990) "Potent inhibitors of de novo pyrimidine and purine biosynthesis as chemotherapeutic agents." Med. Res. Reviews 10: 505-548). Studies of enzymes involved in purine and pyrimidine metabolism have been focused on the development of new drugs which can be used, for example, as immunosuppressants or anti-proliferants (Smith, J.L., (1995) "Enzymes in nucleotide synthesis." Curr. Opin. Struct. Biol. 5: 752-757; (1995) Biochem Soc. Transact. 23: 877-902). However, purine 10 and pyrimidine bases, nucleosides and nucleotides have other utilities: as intermediates in the biosynthesis of several fine chemicals (e.g., thiamine, S-adenosyl-methionine, folates, or riboflavin), as energy carriers for the cell (e.g., ATP or GTP), and for chemicals themselves, commonly used as flavor enhancers (e.g., IMP or GMP) or for 15 several medicinal applications (see, for example, Kuninaka, A. (1996) Nucleotides and Related Compounds in Biotechnology vol. 6, Rehm et al., eds. VCH: Weinheim, p. 561-612). Also, enzymes involved in purine, pyrimidine, nucleoside, or nucleotide metabolism are increasingly serving as targets against which chemicals for crop protection, including fungicides, herbicides and insecticides, are developed.

20 The metabolism of these compounds in bacteria has been characterized (for reviews see, for example, Zalkin, H. and Dixon, J.E. (1992) "de novo purine nucleotide biosynthesis", in: Progress in Nucleic Acid Research and Molecular Biology, vol. 42, Academic Press:, p. 259-287; and Michal, G. (1999) "Nucleotides and Nucleosides", Chapter 8 in: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, 25 Wiley: New York). Purine metabolism has been the subject of intensive research, and is essential to the normal functioning of the cell. Impaired purine metabolism in higher animals can cause severe disease, such as gout. Purine nucleotides are synthesized from ribose-5-phosphate, in a series of steps through the intermediate compound inosine-5'phosphate (IMP), resulting in the production of guanosine-5'-monophosphate (GMP) or 30 adenosine-5'-monophosphate (AMP), from which the triphosphate forms utilized as nucleotides are readily formed. These compounds are also utilized as energy stores, so their degradation provides energy for many different biochemical processes in the cell.

Pyrimidine biosynthesis proceeds by the formation of uridine-5'-monophosphate (UMP) from ribose-5-phosphate. UMP, in turn, is converted to cytidine-5'-triphosphate (CTP). The deoxy- forms of all of these nucleotides are produced in a one step reduction reaction from the diphosphate ribose form of the nucleotide to the diphosphate deoxyribose form of the nucleotide. Upon phosphorylation, these molecules are able to participate in DNA synthesis.

D. Trehalose Metabolism and Uses

Trehalose consists of two glucose molecules, bound in α, α-1,1 linkage. It is commonly used in the food industry as a sweetener, an additive for dried or frozen foods, and in beverages. However, it also has applications in the pharmaceutical, cosmetics and biotechnology industries (see, for example, Nishimoto *et al.*, (1998) U.S. Patent No. 5,759,610; Singer, M.A. and Lindquist, S. (1998) *Trends Biotech*. 16: 460-467; Paiva, C.L.A. and Panek, A.D. (1996) *Biotech. Ann. Rev.* 2: 293-314; and Shiosaka, M. (1997) J. Japan 172: 97-102). Trehalose is produced by enzymes from many microorganisms and is naturally released into the surrounding medium, from which it can be collected using methods known in the art.

II. Resistance to Damage from Chemicals, Environmental Stress, and Antibiotics

Production of fine chemicals is typically performed by large-scale culture of bacteria developed to produce and secrete large quantities of these molecules. However, this type of large-scale fermentation results in the subjection of the microorganisms to stresses of various kinds. These stresses include environmental stress and chemical stress.

25

30

20

5

10

15

A. Resistance to Environmental Stress

Examples of environmental stresses typically encountered in large-scale fermentative culture include mechanical stress, heat stress, stress due to limited oxygen, stress due to oxygen radicals, pH stress, and osmotic stress. The stirring mechanism used in most large-scale fermentors to ensure aeration of the culture produces heat, thus increasing the temperature of the culture. Increases in temperature induce the well-characterized heat shock response, in which a set of proteins are expressed which not

- 17 -

only aid in the survival of the bacterium in the face of high temperatures, but also increase survival in response to a number of other environmental stresses (see Neidhardt, F.C., et al., eds. (1996) E. coli and Salmonella. ASM Press: Washington, D.C., p. 1382-1399; Wosten, M. M. (1998) FEMS Microbiology Reviews 22(3): 127-50; Bahl, H. et al. (1995) FEMS Microbiology Reviews 17(3): 341-348; Zimmerman, J.L., 5 Cohill, P.R. (1991) New Biologist 3(7): 641-650; Samali, A., and Orrenius, S. (1998) Cell. Stress Chaperones 3(4): 228-236, and references contained therein from each of these citations). Regulation of the heat shock response in bacteria is facilitated by specific sigma factors and other cellular regulators of gene expression (Hecker, M., 10 Volker, U (1998). Molecular Microbiology 29(5): 1129-1136). One of the largest problems that the cell encounters when exposed to high temperature is that protein folding is impaired; nascent proteins have sufficient kinetic energy in high temperature circumstances that it is difficult for the growing polypeptide chain to remain in a stable conformation long enough to fold properly. Thus, two of the key types of proteins 15 expressed during the heat shock response consist of chaperones (proteins which assist in the folding or unfolding of other proteins – see, e.g., Fink, A.L. (1999) Physiol. Rev. 79(2): 425-449), and proteases, which can destroy any improperly folded proteins. Examples of chaperones expressed during the heat shock response include GroEL and DNAK; proteases known to be expressed during this cellular reaction to heat shock 20 include Lon, FtsH, and ClpB.

Other environmental stresses besides heat may also provoke a stress response. Though the fermentor stirring process is meant to introduce oxygen into the culture, oxygen may remain in limited supply, particularly when the culture is advanced in growth and the oxygen needs of the culture are thereby increased; an insufficient supply of oxygen is another stress for the microorganism. Cells in fermentor cultures are also subjected to a number of osmotic stresses, particularly when nutrients are added to the culture, resulting in a high extracellular and low intracellular concentration of these molecules. Further, the large quantities of the desired molecules produced by these organisms in culture may contribute to osmotic stress of the bacteria. Lastly, aerobic metabolism such as that used by *C. glutamicum* results in carbon dioxide as a waste product; secretion of this molecule may acidify the culture medium due to conversion of this molecule to carboxylic acid. Thus, bacteria in culture are also frequently subjected

- 18 -

to acidic pH stress. The converse may also be true – when high levels of basic waste molecules such as ammonium are present in the culture medium, the bacteria in culture may be subjected to basic pH stress as well.

To combat such environmental stresses, bacteria have elegant gene systems which are expressed upon exposure to one or more stresses, such as the aforementioned heat shock system. Genes expressed in response to osmotic stress, for example, encode proteins capable of transporting or synthesizing compatible solutes such that osmotic intake or export of a particular molecule is slowed to manageable levels. Other examples of stress-induced bacterial proteins are those involved in trehalose biosynthesis, those encoding enzymes involved in ppGpp metabolism, those involved in signal transduction, particularly those encoding two-component systems which are sensitive to osmotic pressure, and those encoding transcription factors which are responsive to a variety of stress factors (e.g., RssB analogues and/or sigma factors). Many other such genes and their protein products are known in the art.

15

20

25

30

10

5

B. Resistance to Chemical Stress

Aside from environmental stresses, cells may also experience a number of chemical stresses. These may fall into two categories. The first are natural waste products of metabolism and other cellular processes which are secreted by the cell to the surrounding medium. The second are chemicals present in the extracellular medium which do not originate from the cell. Generally, when cells excrete toxic waste products from the concentrated intracellular cytoplasm into the relatively much more dilute extracellular medium, these products dissipate such that extracellular levels of the possibly toxic compound are quite low. However, in large-scale fermentative culture of the bacterium, this may not be the case: so many bacteria are grown in a relatively small environment and at such a high metabolic rate that waste products may accumulate in the medium to nearly toxic levels. Examples of such wastes are carbon dioxide, metal ions, and reactive oxygen species such as hydrogen peroxide. These compounds may interfere with the activity or structure of cell surface molecules, or may re-enter the cell, where they can seriously damage proteins and nucleic acids alike. Certain other chemicals hazardous to the normal functioning of cells may be naturally found in the extracellular medium. For example, metal ions such as mercury, cadmium, nickel or

copper are frequently found in water sources, and may form tight complexes with cellular enzymes which prevent the normal functioning of these proteins.

C. Resistance to Antibiotics

5 Bacteriocidal proteins or antibiotics, may also be found in the extracellular milieu, either through the intervention of the researcher, or as a natural product from another organism, utilized to gain a competitive advantage. Microorganisms have several art-known mechanisms to protect themselves against antimicrobial chemicals. Degradation, modification, and export of compounds toxic to the cell are common 10 methods by which microorganisms eliminate or detoxify antibiotics. Cytoplasmic 'efflux-pumps' are known in several prokaryotes and show similarities to the so-called 'multidrug resistance' proteins from higher eukaryotes (Neyfakh, A. A., et al. (1991) Proc. Natl. Acad. Sci. USA 88: 4781-4785). Examples of such proteins include emrAB from E. coli (Lomovskaya, O. and K. Lewis (1992) Proc. Natl. Acad. Sci. USA 89: 15 8938-8942), ImrB from B. subtilis (Kumano, M. et al. (1997) Microbiology 143: 2775-2782), smr from S. aureus (Grinius, L.G. et al. (1992) Plasmid 27: 119-129) or cmr from C. glutamicum (Kaidoh, K. et al. (1997) Micro. Drug Resist. 3: 345-350). C. glutamicum itself is non-pathogenic, in contrast to several other members of the genus Corynebacterium, such as C. diphtheriae or C. pseudotuberculosis. Several pathogenic 20 Corynebacteria are known to have multiple resistances against a variety of antibiotics, such as C. jeikeium and C. urealyticum (Soriano, F. et al. (1995) Antimicrob. Agents Chemother. 39: 208-214).

Lincosamides are recognized as effective antibiotics against Corynebacterium species (Soriano, F. et al. (1995) Antimicrob. Agents Chemother. 39: 208-214). An unexpected result of the present invention was the identification of a gene encoding a lincosamide-resistance protein (in particular, a lincomycin-resistance protein). The LMRB protein from C. glutamicum shows 40% homology to the product of the lmrB gene from B. subtilis (see Genbank accession no. AL009126), as calculated using version 1.7 of the program CLUSTALW (Thompson, J.D., Higgins, D.G., Gibson, T. J. (1994) Nucl. Acids Res. 22: 4673-4680) using standard parameters (PAIRWISE ALIGNMENT PARAMETERS: slow/accurate alignments: Gap Open Penalty = 10.00, Gap Extension Penalty = 0.10, Protein weight matrix = BLOSUM 30, DNA weight

25

WO 01/00804

- 20 -

PCT/IB00/00922

matrix = IUB, Fast/Approximate alignments: Gap penalty = 3, K-tuple (word) size = 1, No. of top diagonals = 5, Window size = 5, Toggle Slow/Fast pairwise alignments = slow. Multiple alignment parameters: Gap Opening Penalty = 10.00, Gap Extension Penalty = 0.05, Delay divergent sequences = 40%, DNA transitions weight = 0.50, Protein weight matrix = BLOSUM series, DNA weight matrix = IUB, Use negative matrix = OFF).

Environmental stress, chemical stress, and antibiotic or other antimicrobial

stress may influence the behavior of the microorganisms during fermentor culture, and may have an impact on the production of the desired compound from these organisms. For example, osmotic stress of a microorganism may cause inappropriate or inappropriately rapid uptake of one or more compounds which can ultimately lead to cellular damage or death due to osmotic shock. Similarly, chemicals present in the culture, either exogenously added (e.g., antimicrobial compounds intended to eliminate unwanted microbes) or generated by the bacteria themselves (e.g., waste compounds such as heavy metals or oxygen radicals, or even antimicrobial compounds) may result in inhibition of fine chemical production or even death of the organism. The genes of the invention encode C. glutamicum proteins which act to prevent cell damage or death, by specifically counteracting the source or effect of the environmental or chemical stress.

20

25

30

5

10

15

III. Elements and Methods of the Invention

The present invention is based, at least in part, on the discovery of novel molecules, referred to herein as SRT nucleic acid and protein molecules, which increase the ability of *C. glutamicum* to survive in chemically or environmentally hazardous settings. In one embodiment, the SRT molecules function to confer resistance to one or more environmental or chemical stresses to *C. glutamicum*. In a preferred embodiment, the activity of the SRT molecules of the present invention has an impact on the production of a desired fine chemical by this organism. In a particularly preferred embodiment, the SRT molecules of the invention are modulated in activity, such that the yield, production, and/or efficiency of production of one or more fine chemicals from *C. glutamicum* is also modulated.

5

10

15

20

25

30

The language, "SRT protein" or "SRT polypeptide" includes proteins which participate in the resistance of C. glutamicum to one or more environmental or chemical stresses. Examples of SRT proteins include those encoded by the SRT genes set forth in Table 1 and by the odd-numbered SEQ ID NOs. The terms "SRT gene" or "SRT nucleic acid sequence" include nucleic acid sequences encoding an SRT protein, which consist of a coding region and also corresponding untranslated 5' and 3' sequence regions. Examples of SRT genes include those set forth in Table 1. The terms "production" or "productivity" are art-recognized and include the concentration of the fermentation product (for example, the desired fine chemical) formed within a given time and a given fermentation volume (e.g., kg product per hour per liter). The term "efficiency of production" includes the time required for a particular level of production to be achieved (for example, how long it takes for the cell to attain a particular rate of output of a fine chemical). The term "yield" or "product/carbon yield" is art-recognized and includes the efficiency of the conversion of the carbon source into the product (i.e., fine chemical). This is generally written as, for example, kg product per kg carbon source. By increasing the yield or production of the compound, the quantity of recovered molecules, or of useful recovered molecules of that compound in a given amount of culture over a given amount of time is increased. The terms "biosynthesis" or a "biosynthetic pathway" are art-recognized and include the synthesis of a compound, preferably an organic compound, by a cell from intermediate compounds in what may be a multistep and highly regulated process. The terms "degradation" or a "degradation pathway" are art-recognized and include the breakdown of a compound, preferably an organic compound, by a cell to degradation products (generally speaking, smaller or less complex molecules) in what may be a multistep and highly regulated process. The language "metabolism" is art-recognized and includes the totality of the biochemical reactions that take place in an organism. The metabolism of a particular compound, then, (e.g., the metabolism of an amino acid such as glycine) comprises the overall biosynthetic, modification, and degradation pathways in the cell related to this compound. The terms "resistance" and "tolerance" are art-known and include the ability of a cell to not be affected by exposure to a chemical or an environment which would otherwise be detrimental to the normal functioning of these organisms. The terms "stress" or "hazard" include factors which are detrimental to the normal functioning of

- 22 -

cells such as *C. glutamicum*. Examples of stresses include "chemical stress", in which a cell is exposed to one or more chemicals which are detrimental to the cell, and "environmental stress" where a cell is exposed to an environmental condition outside of those to which it is adapted. Chemical stresses may be either natural metabolic waste products such as, but not limited to reactive oxygen species or carbon dioxide, or chemicals otherwise present in the environment, including, but not limited to heavy metal ions or bacteriocidal proteins such as antibiotics. Environmental stresses may be, but are not limited to temperatures outside of the normal range, suboptimal oxygen availability, osmotic pressures, or extremes of pH, for example.

In another embodiment, the SRT molecules of the invention are capable of modulating the production of a desired molecule, such as a fine chemical, in a microorganism such as C. glutamicum. Using recombinant genetic techniques, one or more of the SRT proteins of the invention may be manipulated such that its function is modulated. The alteration of activity of stress response, resistance or tolerance genes such that the cell is increased in tolerance to one or more stresses may improve the ability of that cell to grow and multiply in the relatively stressful conditions of largescale fermentor culture. For example, by overexpressing or engineering a heat-shock induced chaperone molecule such that it is optimized in activity, one may increase the ability of the bacterium to correctly fold proteins in the face of nonoptimal temperature conditions. By having fewer misfolded (and possibly misregulated or nonfunctional) proteins, the cell is increased in its ability to function normally in such a culture, which should in turn provide increased viability. This overall increase in number of cells having greater viability and activity in the culture should also result in an increase in the yield, production, and/or efficiency of production of one or more desired fine chemicals, due at least to the relatively greater number of cells producing these chemicals in the culture.

The isolated nucleic acid sequences of the invention are contained within the genome of a *Corynebacterium glutamicum* strain available through the American Type Culture Collection, given designation ATCC 13032. The nucleotide sequence of the isolated *C. glutamicum* SRT DNAs and the predicted amino acid sequences of the *C. glutamicum* SRT proteins are shown the Sequence Listing as odd-numbered SEQ ID NOs and even-numbered SEQ ID NOs, respectively.,.

5

10

15

20

25

- 23 -

Computational analyses were performed which classified and/or identified these nucleotide sequences as sequences which encode chemical and environmental stress, resistance, and tolerance proteins.

The present invention also pertains to proteins which have an amino acid sequence which is substantially homologous to an amino acid sequence of the invention (e.g., the sequence of an even-numbered SEQ ID NO of the Sequence Listing). As used herein, a protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence is least about 50% homologous to the selected amino acid sequence, e.g., the entire selected amino acid sequence. A protein which has an amino acid sequence which is substantially homologous to a selected amino acid sequence can also be least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, or 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to the selected amino acid sequence.

Ranges and identity values intermediate to the above-recited values, (e.g., 75%-80% identical, 85-87% identical, 91-92% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included.

The SRT proteins or biologically active portions or fragments thereof of the invention can confer resistance or tolerance to one or more chemical or environmental stresses, or may have one or more of the activities set forth in Table 1.

Various aspects of the invention are described in further detail in the following subsections:

A. Isolated Nucleic Acid Molecules

One aspect of the invention pertains to isolated nucleic acid molecules that encode SRT polypeptides or biologically active portions thereof, as well as nucleic acid fragments sufficient for use as hybridization probes or primers for the identification or amplification of SRT-encoding nucleic acid (e.g., SRT DNA). As used herein, the term "nucleic acid molecule" is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. This term also encompasses untranslated sequence located at both the 3' and 5' ends of the coding region of the gene: at least about 100 nucleotides

5

10

15

- 24 -

of sequence upstream from the 5' end of the coding region and at least about 20 nucleotides of sequence downstream from the 3'end of the coding region of the gene. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA. An "isolated" nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (*i.e.*, sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated SRT nucleic acid molecule can contain less than about 5 kb, 4kb, 3kb, 2kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived (*e.g.*, a *C. glutamicum* cell). Moreover, an "isolated" nucleic acid molecule, such as a DNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, e.g., a nucleic acid molecule having a nucleotide sequence of an odd-numbered SEQ ID NO of the Sequence Listing, or a portion thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. For example, a C. glutamicum SRT DNA can be 20 isolated from a C. glutamicum library using all or portion of one of the odd-numbered SEQ ID NO sequences of the Sequence Listing as a hybridization probe and standard hybridization techniques (e.g., as described in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989). 25 Moreover, a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO:) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this sequence (e.g., a nucleic acid molecule encompassing all or a portion of one of the nucleic acid sequences of the invention (e.g., an odd-numbered SEQ ID NO of the 30 Sequence Listing) can be isolated by the polymerase chain reaction using oligonucleotide primers designed based upon this same sequence). For example, mRNA

can be isolated from normal endothelial cells (e.g., by the guanidinium-thiocyanate

5

10

- 25 -

extraction procedure of Chirgwin et al. (1979) Biochemistry 18: 5294-5299) and DNA can be prepared using reverse transcriptase (e.g., Moloney MLV reverse transcriptase, available from Gibco/BRL, Bethesda, MD; or AMV reverse transcriptase, available from Seikagaku America, Inc., St. Petersburg, FL). Synthetic oligonucleotide primers for polymerase chain reaction amplification can be designed based upon one of the nucleotide sequences shown in the Sequence Listing. A nucleic acid of the invention can be amplified using cDNA or, alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to an SRT nucleotide sequence can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.

In a preferred embodiment, an isolated nucleic acid molecule of the invention comprises one of the nucleotide sequences shown in the Sequence Listing. The nucleic acid sequences of the invention, as set forth in the Sequence Listing, correspond to the *Corynebacterium glutamicum* SRT DNAs of the invention. This DNA comprises sequences encoding SRT proteins (*i.e.*, the "coding region", indicated in each odd-numbered SEQ ID NO: sequence in the Sequence Listing), as well as 5' untranslated sequences and 3' untranslated sequences, also indicated in each odd-numbered SEQ ID NO: in the Sequence Listing. Alternatively, the nucleic acid molecule can comprise only the coding region of any of the nucleic acid sequences of the Sequence Listing.

For the purposes of this application, it will be understood that each of the nucleic acid and amino acid sequences set forth in the Sequence Listing has an identifying RXA, RXN, or RXS number having the designation "RXA", "RXN", or "RXS" followed by 5 digits (i.e., RXA01524, RXN00493, or RXS01027). Each of the nucleic acid sequences comprises up to three parts: a 5' upstream region, a coding region, and a downstream region. Each of these three regions is identified by the same RXA, RXN, or RXS designation to eliminate confusion. The recitation "one of the odd-numbered sequences of the Sequence Listing", then, refers to any of the nucleic acid sequences in the Sequence Listing, , which may be also be distinguished by their differing RXA, RXN, or RXS designations. The coding region of each of these sequences is translated into a corresponding amino acid sequence, which is also et forth in the Sequence Listing, as an

5

10

15

20

25

- 26 -

even-numbered SEQ ID NO: immediately following the corresponding nucleic acid sequence. For example, the coding region for RXA01524 is set forth in SEQ ID NO:1, while the amino acid sequence which it encodes is set forth as SEQ ID NO:2. The sequences of the nucleic acid molecules of the invention are identified by the same

5 RXA, RXN, or RXS designations as the amino acid molecules which they encode, such that they can be readily correlated. For example, the amino acid sequence designated RXA01524 is a translation of the coding region of the nucleotide sequence of nucleic acid molecule RXA01524, the amino acid sequence designated RXN00034 is a translation of the coding region of the nucleotide sequence of nucleic acid molecule

10 RXN00034, and the amino acid sequence in designated RXS00568 is a translation of the coding region of the nucleotide sequence of nucleic acid molecule RXS00568. The correspondence between the RXA, RXN, and RXS nucleotide and amino acid sequences of the invention and their assigned SEQ ID NOs is set forth in Table 1.

Several of the genes of the invention are "F-designated genes". An F-designated gene includes those genes set forth in Table 1 which have an 'F' in front of the RXA, RXN, or RXS designation. For example, SEQ ID NO:7, designated, as indicated on Table 1, as "F RXA00498", is an F-designated gene, as are SEQ ID NOs: 25, 33, and 37 (designated on Table 1 as "F RXA01345", "F RXA02543", and "F RXA02282", respectively).

In one embodiment, the nucleic acid molecules of the present invention are not intended to include those compiled in Table 2. In the case of the dapD gene, a sequence for this gene was published in Wehrmann, A., et al. (1998) J. Bacteriol. 180(12): 3159-3165. However, the sequence obtained by the inventors of the present application is significantly longer than the published version. It is believed that the published version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

In another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule which is a complement of one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing, or a portion thereof. A nucleic acid molecule which is complementary to one of the nucleotide sequences of the invention is one which is sufficiently complementary to one of the nucleotide sequences shown in the Sequence

15

20

25

- 27 -

Listing (e.g., the sequence of an odd-numbered SEQ ID NO:) such that it can hybridize to one of the nucleotide sequences of the invention, thereby forming a stable duplex.

In still another preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing), or a portion thereof. Ranges and identity values intermediate to the above-recited ranges, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In an additional preferred embodiment, an isolated nucleic acid molecule of the invention comprises a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to one of the nucleotide sequences of the invention, or a portion thereof.

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the coding region of the sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing for example a fragment which can be used as a probe or primer or a fragment encoding a biologically active portion of an SRT protein. The nucleotide sequences determined from the cloning of the SRT genes from *C. glutamicum* allows for the generation of probes and primers designed for use in identifying and/or cloning SRT homologues in other cell types and organisms, as well as SRT homologues from other *Corynebacteria* or related species. The probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, preferably about 25, more preferably about 40, 50 or 75 consecutive nucleotides of a sense strand of one of the nucleotide sequences of the invention (*e.g.*, a sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing),, an anti-sense sequence of one of these sequences, or naturally occurring mutants thereof. Primers based on a nucleotide sequence of the invention can be used in PCR reactions to clone SRT homologues.

5

10

15

20

25

- 28 -

Probes based on the SRT nucleotide sequences can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In preferred embodiments, the probe further comprises a label group attached thereto, e.g. the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme cofactor. Such probes can be used as a part of a diagnostic test kit for identifying cells which misexpress an SRT protein, such as by measuring a level of an SRT-encoding nucleic acid in a sample of cells, e.g., detecting SRT mRNA levels or determining whether a genomic SRT gene has been mutated or deleted.

In one embodiment, the nucleic acid molecule of the invention encodes a protein 10 or portion thereof which includes an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an evennumbered SEQ ID NO of the Sequence Listing) such that the protein or portion thereof maintains the ability to confer resistance or tolerance of C. glutamicum to one or more chemical or environmental stresses. As used herein, the language "sufficiently homologous" refers to proteins or portions thereof which have amino acid sequences 15 which include a minimum number of identical or equivalent (e.g., an amino acid residue which has a similar side chain as an amino acid residue in a sequence of one of the evennumbered SEQ ID NOs of the Sequence Listing) amino acid residues to an amino acid sequence of the invention such that the protein or portion thereof is capable of 20 participating in the resistance of C. glutamicum to one or more chemical or environmental stresses. Protein members of such metabolic pathways, as described herein, function to increase the resistance or tolerance of C. glutamicum to one or more environmental or chemical hazards or stresses. Examples of such activities are also described herein. Thus, "the function of an SRT protein" contributes to the overall 25 resistance of C. glutamicum to elements of its surroundings which may impede its normal growth or functioning, and/or contributes, either directly or indirectly, to the yield, production, and/or efficiency of production of one or more fine chemicals. Examples of SRT protein activities are set forth in Table 1.

In another embodiment, the protein is at least about 50-60%, preferably at least about 60-70%, and more preferably at least about 70-80%, 80-90%, 90-95%, and most preferably at least about 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of

30

- 29 -

the Sequence Listing). Ranges and identity values intermediate to the above-recited values, (e.g., 75%-80% identical, 85-87% identical, or 91-92% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included.

Portions of proteins encoded by the SRT nucleic acid molecules of the invention are preferably biologically active portions of one of the SRT proteins. As used herein, the term "biologically active portion of an SRT protein" is intended to include a portion, e.g., a domain/motif, of an SRT protein that is capable of imparting resistance or tolerance to one or more environmental or chemical stresses or hazards, or has an activity as set forth in Table 1. To determine whether an SRT protein or a biologically active portion thereof can increase the resistance or tolerance of C. glutamicum to one or more chemical or environmental stresses or hazards, an assay of enzymatic activity may be performed. Such assay methods are well known to those of ordinary skill in the art, as detailed in Example 8 of the Exemplification.

Additional nucleic acid fragments encoding biologically active portions of an SRT protein can be prepared by isolating a portion of one of the amino acid sequences of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing), expressing the encoded portion of the SRT protein or peptide (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the SRT protein or peptide.

The invention further encompasses nucleic acid molecules that differ from one of the nucleotide sequences of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing) (and portions thereof) due to degeneracy of the genetic code and thus encode the same SRT protein as that encoded by the nucleotide sequences of the invention. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in the Sequence Listing (e.g., an even-numbered SEQ ID NO:).. In a still further embodiment, the nucleic acid molecule of the invention encodes a full length C. glutamicum protein which is substantially homologous to an amino acid sequence of the invention (encoded by an open reading frame shown in an odd-numbered SEQ ID NO: of the Sequence Listing).

5

10

15

20

25

- 30 -

It will be understood by one of ordinary skill in the art that in one embodiment the sequences of the invention are not meant to include the sequences of the prior art, such as those Genbank sequences set forth in Tables 2 or 4 which were available prior to the present invention. In one embodiment, the invention includes nucleotide and amino acid sequences having a percent identity to a nucleotide or amino acid sequence of the invention which is greater than that of a sequence of the prior art (e.g., a Genbank sequence (or the protein encoded by such a sequence) set forth in Tables 2 or 4). For example, the invention includes a nucleotide sequence which is greater than and/or at least 39% identical to the nucleotide sequence designated RXA00084 (SEQ ID NO:189), a nucleotide sequence which is greater than and/or at least 56% identical to the nucleotide sequence designated RXA00605 (SEQ ID NO:11), and a nucleotide sequence which is greater than and/or at least 50% identical to the nucleotide sequence designated RXA00886 (SEQ ID NO:39). One of ordinary skill in the art would be able to calculate the lower threshold of percent identity for any given sequence of the invention by examining the GAP-calculated percent identity scores set forth in Table 4 for each of the three top hits for the given sequence, and by subtracting the highest GAP-calculated percent identity from 100 percent. One of ordinary skill in the art will also appreciate that nucleic acid and amino acid sequences having percent identities greater than the lower threshold so calculated (e.g., at least 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%,

In addition to the *C. glutamicum* SRT nucleotide sequences set forth in the Sequence Listing as odd-numbered SEQ ID NOs, it will be appreciated by one of ordinary skill in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of SRT proteins may exist within a population (*e.g.*, the *C. glutamicum* population). Such genetic polymorphism in the SRT gene may exist among individuals within a population due to natural variation. As used herein, the terms "gene" and "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding an SRT protein, preferably a *C. glutamicum* SRT protein. Such

98%, 99% or more identical) are also encompassed by the invention.

5

10

15

20

25

- 31 -

natural variations can typically result in 1-5% variance in the nucleotide sequence of the SRT gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in SRT that are the result of natural variation and that do not alter the functional activity of SRT proteins are intended to be within the scope of the invention.

Nucleic acid molecules corresponding to natural variants and non-C. glutamicum homologues of the C. glutamicum SRT DNA of the invention can be isolated based on their homology to the C. glutamicum SRT nucleic acid disclosed herein using the C. glutamicum DNA, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 15 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising a nucleotide sequence of an odd-numbered SEQ ID NO: of the Sequence Listing. In other embodiments, the nucleic acid is at least 30, 50, 100, 250 or more nucleotides in length. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other. Preferably, the conditions are such that sequences at least about 65%, more preferably at least about 70%, and even more preferably at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those of ordinary skill in the art in the art and can be found in Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. Preferably, an isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to a nucleotide sequence of the invention corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein). In one embodiment, the nucleic acid encodes a natural C. glutamicum SRT protein.

In addition to naturally-occurring variants of the SRT sequence that may exist in the population, one of ordinary skill in the art will further appreciate that changes can be

5

10

15

20

25

- 32 -

introduced by mutation into a nucleotide sequence of the invention, thereby leading to changes in the amino acid sequence of the encoded SRT protein, without altering the functional ability of the SRT protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in a nucleotide sequence of the invention. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of one of the SRT proteins (e.g., an even-numbered SEQ ID NO: of the Sequence Listing) without altering the activity of said SRT protein, whereas an "essential" amino acid residue is required for SRT protein activity. Other amino acid residues, however, (e.g., those that are not conserved or only semi-conserved in the domain having SRT activity) may not be essential for activity and thus are likely to be amenable to alteration without altering SRT activity.

Accordingly, another aspect of the invention pertains to nucleic acid molecules encoding SRT proteins that contain changes in amino acid residues that are not essential for SRT activity. Such SRT proteins differ in amino acid sequence from a sequence of an even-numbered SEQ ID NO: of the Sequence Listing yet retain at least one of the SRT activities described herein. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 50% homologous to an amino acid sequence of the invention and is capable of increasing the resistance or tolerance of C. glutamicum to one or more environmental or chemical stresses, or has one or more of the activities set forth in Table 1. Preferably, the protein encoded by the nucleic acid molecule is at least about 50-60% homologous to the amino acid sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, more preferably at least about 60-70% homologous to one of these sequences, even more preferably at least about 70-80%, 80-90%, 90-95% homologous to one of these sequences in, and most preferably at least about 96%, 97%, 98%, or 99% homologous to one of the amino acid sequences of the invention.

To determine the percent homology of two amino acid sequences (e.g., one of the amino acid sequences of the invention and a mutant form thereof) or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one

5

10

15

20

25

- 33 -

sequence (e.g., one of the amino acid sequences of the invention) is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence (e.g., a mutant form of the amino acid sequence), then the molecules are homologous at that position (i.e., as used herein amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity"). The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100).

An isolated nucleic acid molecule encoding an SRT protein homologous to a protein sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing)can be created by introducing one or more nucleotide 10 substitutions, additions or deletions into a nucleotide sequence of the invention such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Mutations can be introduced into one of the nucleotide sequences of the invention by standard techniques, such as site-directed mutagenesis and PCRmediated mutagenesis. Preferably, conservative amino acid substitutions are made at 15 one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side 20 chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, 25 phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in an SRT protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of an SRT coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for an SRT activity described 30 herein to identify mutants that retain SRT activity. Following mutagenesis of one the nucleotide sequence of one of the odd-numbered SEQ ID NOs of the Sequence Listing, the encoded protein can be expressed recombinantly and the activity of the protein can

- 34 -

be determined using, for example, assays described herein (see Example 8 of the Exemplification).

In addition to the nucleic acid molecules encoding SRT proteins described above, another aspect of the invention pertains to isolated nucleic acid molecules which are antisense thereto. An "antisense" nucleic acid comprises a nucleotide sequence which is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded DNA molecule or complementary to an mRNA sequence. Accordingly, an antisense nucleic acid can hydrogen bond to a sense nucleic acid. The antisense nucleic acid can be complementary to an entire SRT coding strand, or to only a portion thereof. In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding an SRT protein. The term "coding region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the entire coding region of SEQ ID NO.: 120 (RXA00600) comprises nucleotides 1 to 1098). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding SRT. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding SRT disclosed herein (e.g., the 20 sequences set forth as odd-numbered SEQ ID NOs in the Sequence Listing), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of SRT mRNA, but more preferably is an oligonucleotide which is 25 antisense to only a portion of the coding or noncoding region of SRT mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of SRT mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an 30 antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to

5

10

- 35 -

increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-

fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylguanine, 2,2-dimethylguanine, 2-methylguanine, 2-methylguanine, 5-

methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a cell or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding an SRT protein to thereby inhibit expression of the protein, *e.g.*, by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. The antisense molecule can be modified such that it specifically binds to a receptor or an antigen expressed on a selected cell surface, *e.g.*, by linking the antisense nucleic acid molecule to a peptide or an antibody which binds to a cell surface receptor or antigen. The antisense nucleic acid molecule can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in

10

15

20

25

- 36 -

which the antisense nucleic acid molecule is placed under the control of a strong prokaryotic, viral, or eukaryotic promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2'-omethylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave SRT mRNA transcripts to thereby inhibit translation of SRT mRNA. A ribozyme having specificity for an SRT-encoding nucleic acid can be designed based upon the nucleotide sequence of an SRT cDNA disclosed herein (i.e., SEQ ID NO:119 (RXA00600)). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in an SRT-encoding mRNA. See, e.g., Cech et al. U.S. Patent No. 4,987,071 and Cech et al. U.S. Patent No. 5,116,742. Alternatively, SRT mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel, D. and Szostak, J.W. (1993) Science 261:1411-1418.

25 Alternatively, SRT gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of an SRT nucleotide sequence (e.g., an SRT promoter and/or enhancers) to form triple helical structures that prevent transcription of an SRT gene in target cells. See generally, Helene, C. (1991) Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L.J. (1992) Bioassays 14(12):807-15.

5

10

15

20

- 37 -

B. Recombinant Expression Vectors and Host Cells

Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding an SRT protein (or a portion thereof). As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively linked. Such vectors are referred to herein as "expression vectors". In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids. In the present specification, "plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adenoassociated viruses), which serve equivalent functions.

The recombinant expression vectors of the invention comprise a nucleic acid of the invention in a form suitable for expression of the nucleic acid in a host cell, which means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, "operably linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel; Gene Expression Technology: Methods in Enzymology 185,

5

10

15

20

Academic Press, San Diego, CA (1990). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells. Preferred regulatory sequences are, for example, promoters such as cos-, tac-, trp-, tet-, trp-tet-, lpp-, lac-, lpp-lac-, lacI^q-, T7-, T5-, T3-, gal-, trc-, ara-, SP6-, arny, SPO2, λ-P_R- or λ P_L, which are used preferably in bacteria. Additional regulatory sequences are, for example, promoters from yeasts and fungi, such as ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH, promoters from plants such as CaMV/35S, SSU, OCS, lib4, usp, STLS1, B33, nos or ubiquitin- or phaseolin-promoters. It is also possible to use artificial promoters. It will be appreciated by one of ordinary skill in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, etc. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., SRT proteins, mutant forms of SRT proteins, fusion proteins, etc.).

The recombinant expression vectors of the invention can be designed for expression of SRT proteins in prokaryotic or eukaryotic cells. For example, SRT genes can be expressed in bacterial cells such as C. glutamicum, insect cells (using baculovirus expression vectors), yeast and other fungal cells (see Romanos, M.A. et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8: 423-488; van den Hondel, 20 C.A.M.J.J. et al. (1991) "Heterologous gene expression in filamentous fungi" in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, eds., p. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics 25 of Fungi, Peberdy, J.F. et al., eds., p. 1-28, Cambridge University Press: Cambridge), algae and multicellular plant cells (see Schmidt, R. and Willmitzer, L. (1988) High efficiency Agrobacterium tumefaciens - mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.: 583-586), or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Alternatively, the 30 recombinant expression vector can be transcribed and translated in vitro, for example

using T7 promoter regulatory sequences and T7 polymerase.

10

- 39 -

Expression of proteins in prokaryotes is most often carried out with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase.

Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D.B. and Johnson, K.S. (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. In one embodiment, the coding sequence of the SRT protein is cloned into a pGEX expression vector to create a vector encoding a fusion protein comprising, from the N-terminus to the C-terminus, GST-thrombin cleavage site-X protein. The fusion protein can be purified by affinity chromatography using glutathione-agarose resin. Recombinant SRT protein unfused to GST can be recovered by cleavage of the fusion protein with thrombin.

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann *et al.*, (1988) *Gene* 69:301-315) pLG338, pACYC184, pBR322, pUC18, pUC19, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN- III113-B1, λgt11, pBdCl, and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 60-89; and Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018). Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HMS174(DE3) from a resident λ prophage harboring a T7

5

10

15

gn1 gene under the transcriptional control of the lacUV 5 promoter. For transformation of other varieties of bacteria, appropriate vectors may be selected. For example, the plasmids pIJ101, pIJ364, pIJ702 and pIJ361 are known to be useful in transforming Streptomyces, while plasmids pUB110, pC194, or pBD214 are suited for transformation of Bacillus species. Several plasmids of use in the transfer of genetic information into Corynebacterium include pHM1519, pBL1, pSA77, or pAJ667 (Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

One strategy to maximize recombinant protein expression is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in the bacterium chosen for expression, such as C. glutamicum (Wada et al. (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the SRT protein expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYepSec1 (Baldari, *et al.*, (1987) *Embo J.* 6:229-234), 2 μ, pAG-1, Yep6, Yep13, pEMBLYe23, pMFa (Kurjan and Herskowitz, (1982) *Cell* 30:933-943), pJRY88 (Schultz *et al.*, (1987) *Gene* 54:113-123), and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors appropriate for use in other fungi, such as the filamentous fungi, include those detailed in: van den Hondel, C.A.M.J.J. & Punt, P.J. (1991) "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, J.F. Peberdy, *et al.*, eds., p. 1-28, Cambridge University Press: Cambridge, and Pouwels *et al.*, eds. (1985) Cloning Vectors. Elsevier: New York (IBSN 0 444 904018).

Alternatively, the SRT proteins of the invention can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983) Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

30

10

In another embodiment, the SRT proteins of the invention may be expressed in unicellular plant cells (such as algae) or in plant cells from higher plants (e.g., the spermatophytes, such as crop plants). Examples of plant expression vectors include those detailed in: Becker, D., Kemper, E., Schell, J. and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", *Plant Mol. Biol.* 20: 1195-1197; and Bevan, M.W. (1984) "Binary *Agrobacterium* vectors for plant transformation", *Nucl. Acid. Res.* 12: 8711-8721, and include pLGV23, pGHlac+, pBIN19, pAK2004, and pDH51 (Pouwels et al., eds. (1985) Cloning Vectors. Elsevier: New York IBSN 0 444 904018).

In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed, B. (1987) *Nature* 329:840) and pMT2PC (Kaufman *et al.* (1987) *EMBO J.* 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements.

For example, commonly used promoters are derived from polyoma, Adenovirus 2,

For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory*, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) PNAS 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Patent No. 4,873,316 and

20

25

- 42 -

European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) *Science* 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) *Genes Dev.* 3:537-546).

The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to SRT mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews - Trends in Genetics, Vol. 1(1) 1986.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

A host cell can be any prokaryotic or eukaryotic cell. For example, an SRT protein can be expressed in bacterial cells such as *C. glutamicum*, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those of ordinary skill in the art. Microorganisms related

5

10

20

- 43 -

to Corynebacterium glutamicum which may be conveniently used as host cells for the nucleic acid and protein molecules of the invention are set forth in Table 3.

Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms "transformation" and "transfection" are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., linear DNA or RNA (e.g., a linearized vector or a gene construct alone without a vector) or nucleic acid in the form of a vector (e.g., a plasmid, phage, phasmid, phagemid, transposon or other DNA)) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory manuals.

For stable transfection of mammalian cells, it is known that, depending upon the
expression vector and transfection technique used, only a small fraction of cells may
integrate the foreign DNA into their genome. In order to identify and select these
integrants, a gene that encodes a selectable marker (e.g., resistance to antibiotics) is
generally introduced into the host cells along with the gene of interest. Preferred
selectable markers include those which confer resistance to drugs, such as G418,
hygromycin and methotrexate. Nucleic acid encoding a selectable marker can be
introduced into a host cell on the same vector as that encoding an SRT protein or can be
introduced on a separate vector. Cells stably transfected with the introduced nucleic
acid can be identified by drug selection (e.g., cells that have incorporated the selectable
marker gene will survive, while the other cells die).

To create a homologous recombinant microorganism, a vector is prepared which contains at least a portion of an SRT gene into which a deletion, addition or substitution has been introduced to thereby alter, e.g., functionally disrupt, the SRT gene.

Preferably, this SRT gene is a Corynebacterium glutamicum SRT gene, but it can be a homologue from a related bacterium or even from a mammalian, yeast, or insect source. In a preferred embodiment, the vector is designed such that, upon homologous recombination, the endogenous SRT gene is functionally disrupted (i.e., no longer encodes a functional protein; also referred to as a "knock out" vector). Alternatively,

5

10

25

- 44 -

the vector can be designed such that, upon homologous recombination, the endogenous SRT gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the endogenous SRT protein). In the homologous recombination vector, the altered portion of the SRT gene is flanked at its 5' and 3' ends by additional nucleic acid of the SRT gene to allow for homologous recombination to occur between the exogenous SRT gene carried by the vector and an endogenous SRT gene in a microorganism. The additional flanking SRT nucleic acid is of sufficient length for successful homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5' and 3' ends) are included in the vector (see e.g., Thomas, K.R., and Capecchi, M.R. (1987) Cell 51: 503 for a description of homologous recombination vectors). The vector is introduced into a microorganism (e.g., by electroporation) and cells in which the introduced SRT gene has homologously recombined with the endogenous SRT gene are selected, using art-known techniques.

In another embodiment, recombinant microorganisms can be produced which contain selected systems which allow for regulated expression of the introduced gene. For example, inclusion of an SRT gene on a vector placing it under control of the lac operon permits expression of the SRT gene only in the presence of IPTG. Such regulatory systems are well known in the art.

In another embodiment, an endogenous SRT gene in a host cell is disrupted (e.g., by homologous recombination or other genetic means known in the art) such that expression of its protein product does not occur. In another embodiment, an endogenous or introduced SRT gene in a host cell has been altered by one or more point mutations, deletions, or inversions, but still encodes a functional SRT protein. In still another embodiment, one or more of the regulatory regions (e.g., a promoter, repressor, or inducer) of an SRT gene in a microorganism has been altered (e.g., by deletion, truncation, inversion, or point mutation) such that the expression of the SRT gene is modulated. One of ordinary skill in the art will appreciate that host cells containing more than one of the described SRT gene and protein modifications may be readily produced using the methods of the invention, and are meant to be included in the present invention.

5

10

15

20

25

- 45 -

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (i.e., express) an SRT protein. Accordingly, the invention further provides methods for producing SRT proteins using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a recombinant expression vector encoding an SRT protein has been introduced, or into which genome has been introduced a gene encoding a wild-type or altered SRT protein) in a suitable medium until SRT protein is produced. In another embodiment, the method further comprises isolating SRT proteins from the medium or the host cell.

10

15

20

25

30

C. Isolated SRT Proteins

Another aspect of the invention pertains to isolated SRT proteins, and biologically active portions thereof. An "isolated" or "purified" protein or biologically active portion thereof is substantially free of cellular material when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of SRT protein in which the protein is separated from cellular components of the cells in which it is naturally or recombinantly produced. In one embodiment, the language "substantially free of cellular material" includes preparations of SRT protein having less than about 30% (by dry weight) of non-SRT protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-SRT protein, still more preferably less than about 10% of non-SRT protein, and most preferably less than about 5% non-SRT protein. When the SRT protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The language "substantially free of chemical precursors or other chemicals" includes preparations of SRT protein in which the protein is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of SRT protein having less than about 30% (by dry weight) of chemical precursors or non-SRT chemicals, more preferably less than

- 46 -

about 20% chemical precursors or non-SRT chemicals, still more preferably less than about 10% chemical precursors or non-SRT chemicals, and most preferably less than about 5% chemical precursors or non-SRT chemicals. In preferred embodiments, isolated proteins or biologically active portions thereof lack contaminating proteins from the same organism from which the SRT protein is derived. Typically, such proteins are produced by recombinant expression of, for example, a *C. glutamicum* SRT protein in a microorganism such as *C. glutamicum*.

An isolated SRT protein or a portion thereof of the invention can contribute to the resistance or tolerance of C. glutamicum to one or more chemical or environmental stresses or hazards, or has one or more of the activities set forth in Table 1. In preferred embodiments, the protein or portion thereof comprises an amino acid sequence which is sufficiently homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) such that the protein or portion thereof maintains the ability to mediate the resistance or tolerance of C. glutamicum to one or more chemical or environmental stresses or hazards. The portion of the protein is preferably a biologically active portion as described herein. In another preferred embodiment, an SRT protein of the invention has an amino acid sequence set forth as an even-numbered SEQ ID NO: of the Sequence Listing. In yet another preferred embodiment, the SRT protein has an amino acid sequence which is encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention (e.g., a sequence of an odd-numbered SEQ ID NO: of the Sequence Listing). In still another preferred embodiment, the SRT protein has an amino acid sequence which is encoded by a nucleotide sequence that is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to one of the nucleic acid sequences of the invention, or a portion thereof. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper

5

10

15

20

25

5

10

15

20

25

30

and/or lower limits are intended to be included. The preferred SRT proteins of the present invention also preferably possess at least one of the SRT activities described herein. For example, a preferred SRT protein of the present invention includes an amino acid sequence encoded by a nucleotide sequence which hybridizes, e.g., hybridizes under stringent conditions, to a nucleotide sequence of the invention, and which can increase the resistance or tolerance of C. glutamicum to one or more environmental or chemical stresses, or which has one or more of the activities set forth in Table 1.

In other embodiments, the SRT protein is substantially homologous to an amino acid sequence of the invention (e.g., a sequence of an even-numbered SEQ ID NO: of the Sequence Listing) and retains the functional activity of the protein of one of the amino acid sequences of the invention yet differs in amino acid sequence due to natural variation or mutagenesis, as described in detail in subsection I above. Accordingly, in another embodiment, the SRT protein is a protein which comprises an amino acid sequence which is at least about 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, or 60%, preferably at least about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, or 70%, more preferably at least about 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, or 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, or 90%, or 91%, 92%, 93%, 94%, and even more preferably at least about 95%, 96%, 97%, 98%, 99% or more homologous to an entire amino acid sequence of the invention and which has at least one of the SRT activities described herein. Ranges and identity values intermediate to the above-recited values, (e.g., 70-90% identical or 80-95% identical) are also intended to be encompassed by the present invention. For example, ranges of identity values using a combination of any of the above values recited as upper and/or lower limits are intended to be included. In another embodiment, the invention pertains to a full length C. glutamicum protein which is substantially homologous to an entire amino acid sequence of the invention.

Biologically active portions of an SRT protein include peptides comprising amino acid sequences derived from the amino acid sequence of an SRT protein, e.g., an amino acid sequence of an even-numbered SEQ ID NO: of the Sequence Listing or the amino acid sequence of a protein homologous to an SRT protein, which include fewer amino acids than a full length SRT protein or the full length protein which is homologous to an SRT protein, and exhibit at least one activity of an SRT protein.

Typically, biologically active portions (peptides, e.g., peptides which are, for example, 5, 10, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) comprise a domain or motif with at least one activity of an SRT protein. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the activities described herein. Preferably, the biologically active portions of an SRT protein include one or more selected domains/motifs or portions thereof having biological activity.

SRT proteins are preferably produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the protein is cloned into an expression vector (as described above), the expression vector is introduced into a host cell (as described above) and the SRT protein is expressed in the host cell. The SRT protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques. Alternative to recombinant expression, an SRT protein, polypeptide, or peptide can be synthesized chemically using standard peptide synthesis techniques. Moreover, native SRT protein can be isolated from cells (e.g., endothelial cells), for example using an anti-SRT antibody, which can be produced by standard techniques utilizing an SRT protein or fragment thereof of this invention.

The invention also provides SRT chimeric or fusion proteins. As used herein, an SRT "chimeric protein" or "fusion protein" comprises an SRT polypeptide operatively linked to a non-SRT polypeptide. An "SRT polypeptide" refers to a polypeptide having an amino acid sequence corresponding to SRT, whereas a "non-SRT polypeptide" refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the SRT protein, *e.g.*, a protein which is different from the SRT protein and which is derived from the same or a different organism. Within the fusion protein, the term "operatively linked" is intended to indicate that the SRT polypeptide and the non-SRT polypeptide are fused in-frame to each other. The non-SRT polypeptide can be fused to the N-terminus or C-terminus of the SRT polypeptide. For example, in one embodiment the fusion protein is a GST-SRT fusion protein in which the SRT sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant SRT proteins. In another embodiment, the fusion protein is an SRT protein containing a heterologous signal sequence at its N-terminus. In certain host cells (*e.g.*, mammalian host cells), expression

10

15

20

25

- 49 -

and/or secretion of an SRT protein can be increased through use of a heterologous signal sequence.

Preferably, an SRT chimeric or fusion protein of the invention is produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, for example by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Current Protocols in Molecular Biology, eds. Ausubel et al. John Wiley & Sons: 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). An SRTencoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the SRT protein.

Homologues of the SRT protein can be generated by mutagenesis, e.g., discrete point mutation or truncation of the SRT protein. As used herein, the term "homologue" refers to a variant form of the SRT protein which acts as an agonist or antagonist of the activity of the SRT protein. An agonist of the SRT protein can retain substantially the same, or a subset, of the biological activities of the SRT protein. An antagonist of the SRT protein can inhibit one or more of the activities of the naturally occurring form of the SRT protein, by, for example, competitively binding to a downstream or upstream member of the SRT system which includes the SRT protein. Thus, the C. glutamicum SRT protein and homologues thereof of the present invention may increase the tolerance or resistance of C. glutamicum to one or more chemical or environmental stresses.

In an alternative embodiment, homologues of the SRT protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the SRT protein for SRT protein agonist or antagonist activity. In one embodiment, a variegated library of SRT variants is generated by combinatorial mutagenesis at the nucleic acid

5

10

15

20

- 50 -

level and is encoded by a variegated gene library. A variegated library of SRT variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential SRT sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display) containing the set of SRT sequences therein. There are a variety of methods which can be used to produce libraries of potential SRT homologues from a degenerate oligonucleotide sequence. Chemical synthesis of a degenerate gene sequence can be performed in an automatic DNA synthesizer, and the synthetic gene then ligated into an appropriate expression vector. Use of a degenerate set of genes allows for the provision, in one mixture, of all of the sequences encoding the desired set of potential SRT sequences. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang, S.A. (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477.

In addition, libraries of fragments of the SRT protein coding can be used to generate a variegated population of SRT fragments for screening and subsequent selection of homologues of an SRT protein. In one embodiment, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of an SRT coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the SRT protein.

Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. Such techniques are adaptable for rapid screening of the gene libraries generated by the combinatorial mutagenesis of SRT homologues. The most widely used techniques, which are amenable to high through-put analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of

5

15

20

5

15

20

25

30

vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify SRT homologues (Arkin and Yourvan (1992) *PNAS* 89:7811-7815; Delgrave *et al.* (1993) *Protein Engineering* 6(3):327-331).

In another embodiment, cell based assays can be exploited to analyze a variegated SRT library, using methods well known in the art.

10 D. Uses and Methods of the Invention

The nucleic acid molecules, proteins, protein homologues, fusion proteins, primers, vectors, and host cells described herein can be used in one or more of the following methods: identification of *C. glutamicum* and related organisms; mapping of genomes of organisms related to *C. glutamicum*; identification and localization of *C. glutamicum* sequences of interest; evolutionary studies; determination of SRT protein regions required for function; modulation of an SRT protein activity; modulation of the activity of an SRT pathway; and modulation of cellular production of a desired compound, such as a fine chemical.

The SRT nucleic acid molecules of the invention have a variety of uses. First, they may be used to identify an organism as being Corynebacterium glutamicum or a close relative thereof. Also, they may be used to identify the presence of C. glutamicum or a relative thereof in a mixed population of microorganisms. The invention provides the nucleic acid sequences of a number of C. glutamicum genes; by probing the extracted genomic DNA of a culture of a unique or mixed population of microorganisms under stringent conditions with a probe spanning a region of a C. glutamicum gene which is unique to this organism, one can ascertain whether this organism is present.

Although Corynebacterium glutamicum itself is nonpathogenic, it is related to pathogenic species, such as Corynebacterium diphtheriae. Corynebacterium diphtheriae is the causative agent of diphtheria, a rapidly developing, acute, febrile infection which involves both local and systemic pathology. In this disease, a local lesion develops in the upper respiratory tract and involves necrotic injury to epithelial cells; the bacilli secrete toxin which is disseminated through this lesion to distal susceptible tissues of the

- 52 -

body. Degenerative changes brought about by the inhibition of protein synthesis in these tissues, which include heart, muscle, peripheral nerves, adrenals, kidneys, liver and spleen, result in the systemic pathology of the disease. Diphtheria continues to have high incidence in many parts of the world, including Africa, Asia, Eastern Europe and the independent states of the former Soviet Union. An ongoing epidemic of diphtheria in the latter two regions has resulted in at least 5,000 deaths since 1990.

In one embodiment, the invention provides a method of identifying the presence or activity of *Cornyebacterium diphtheriae* in a subject. This method includes detection of one or more of the nucleic acid or amino acid sequences of the invention (e.g., the sequences set forth as odd-numbered or even-numbered SEQ ID NOs, respectively, in the Sequence Listing) in a subject, thereby detecting the presence or activity of *Corynebacterium diphtheriae* in the subject. *C. glutamicum* and *C. diphtheriae* are related bacteria, and many of the nucleic acid and protein molecules in *C. glutamicum* are homologous to *C. diphtheriae* nucleic acid and protein molecules, and can therefore be used to detect *C. diphtheriae* in a subject.

The nucleic acid and protein molecules of the invention may also serve as markers for specific regions of the genome. This has utility not only in the mapping of the genome, but also for functional studies of *C. glutamicum* proteins. For example, to identify the region of the genome to which a particular *C. glutamicum* DNA-binding protein binds, the *C. glutamicum* genome could be digested, and the fragments incubated with the DNA-binding protein. Those which bind the protein may be additionally probed with the nucleic acid molecules of the invention, preferably with readily detectable labels; binding of such a nucleic acid molecule to the genome fragment enables the localization of the fragment to the genome map of *C. glutamicum*, and, when performed multiple times with different enzymes, facilitates a rapid determination of the nucleic acid sequence to which the protein binds. Further, the nucleic acid molecules of the invention may be sufficiently homologous to the sequences of related species such that these nucleic acid molecules may serve as markers for the construction of a genomic map in related bacteria, such as *Brevibacterium lactofermentum*.

The SRT nucleic acid molecules of the invention are also useful for evolutionary and protein structural studies. The resistance processes in which the molecules of the invention participate are utilized by a wide variety of cells; by comparing the sequences

5

10

15

20

25

- 53 -

of the nucleic acid molecules of the present invention to those encoding similar enzymes from other organisms, the evolutionary relatedness of the organisms can be assessed. Similarly, such a comparison permits an assessment of which regions of the sequence are conserved and which are not, which may aid in determining those regions of the protein which are essential for the functioning of the enzyme. This type of determination is of value for protein engineering studies and may give an indication of what the protein can tolerate in terms of mutagenesis without losing function.

The genes of the invention, e.g., the gene encoding LMRB (SEQ ID NO:1) or other gene of the invention encoding a chemical or environmental resistance or tolerance protein (e.g., resistance against one or more antibiotics), may be used as genetic markers for the genetic transformation of (e.g., the transfer of additional genes into or disruption of preexisting genes of) organisms such as C. glutamicum or other bacterial species. Use of these nucleic acid molecules permits efficient selection of organisms which have incorporated a given transgene cassette (e.g., a plasmid, phage, phasmid, phagemid, transposon, or other nucleic acid element), based on a trait which permits the survival of the organism in an otherwise hostile or toxic environment (e.g., in the presence of an antimicrobial compound). By employing one or more of the genes of the invention as genetic markers, the speed and ease with which organisms having desirable transformed traits (e.g., modulated fine chemical production) are engineered and isolated are improved. While it is advantageous to use the genes of the invention for selection of transformed C. glutamicum and related bacteria, it is possible, as described herein, to use homologs (e.g., homologs from other organisms), allelic variants or fragments of the gene retaining desired activity. Furthermore, 5' and 3' regulatory elements of the genes of the invention may be modified as described herein (e.g., by nucleotide substitution, insertion, deletion, or replacement with a more desirable genetic element) to modulate the transcription of the gene. For example, an LMRB variant in which the nucleotide sequence in the region from -1 to -200 5' to the start codon has been altered to modulate (preferably increase) the transcription and/or translation of LMRB may be employed, as can constructs in which a gene of the invention (e.g., the LMRB gene (SEQ ID NO:1)) is functionally coupled to one or more regulatory signals (e.g., inducer or repressor binding sequences) which can be used for modulating gene expression.

5

10

15

20

25

- 54 -

Similarly, more than one copy of a gene (functional or inactivated) of the invention may be employed.

An additional application of the genes of the invention (e.g., the gene encoding LMRB (SEQ ID NO:1) or other drug- or antibiotic-resistance gene) is in the discovery of new antibiotics which are active against Corynebacteria and/or other bacteria. For example, a gene of the invention may be expressed (or overexpressed) in a suitable host to generate an organism with increased resistance to one or more drugs or antibiotics (in the case of LMRB, lincosamides in particular, especially lincomycin). This type of resistant host can subsequently be used to screen for chemicals with bacteriostatic and/or bacteriocidal activity, such as novel antibiotic compounds. It is possible, in particular, to use the genes of the invention (e.g., the LMRB gene) to identify new antibiotics which are active against those microorganisms which are already resistant to standard antibiotic compounds.

The invention provides methods for screening molecules which modulate the activity of an SRT protein, either by interacting with the protein itself or a substrate or binding partner of the SRT protein, or by modulating the transcription or translation of SRT nucleic acid molecule of the invention. In such methods, a microorganism expressing one or more SRT proteins of the invention is contacted with one or more test compounds, and the effect of each test compound on the activity or level of expression of the SRT protein is assessed.

Manipulation of the SRT nucleic acid molecules of the invention may result in the production of SRT proteins having functional differences from the wild-type SRT proteins. These proteins may be improved in efficiency or activity, may be present in greater numbers in the cell than is usual, or may be decreased in efficiency or activity. The goal of such manipulations is to increase the viability and activity of the cell when the cell is exposed to the environmental and chemical stresses and hazards which frequently accompany large-scale fermentative culture. Thus, by increasing the activity or copy number of a heat-shock-regulated protease, one may increase the ability of the cell to destroy incorrectly folded proteins, which may otherwise interfere with normal cellular functioning (for example, by continuing to bind substrates or cofactors although the protein lacks the activity to act on these molecules appropriately). The same is true for the overexpression or optimization of activity of one or more chaperone molecules

5

10

15

20

25

- 55 -

induced by heat or cold shock. These proteins aid in the correct folding of nascent polypeptide chains, and thus their increased activity or presence should increase the percentage of correctly folded proteins in the cell, which in turn should increase the overall metabolic efficiency and viability of the cells in culture. The overexpression or optimization of the transporter molecules activated by osmotic shock should result in an increased ability on the part of the cell to maintain intracellular homeostasis, thereby increasing the viability of these cells in culture. Similarly, the overproduction or increase in activity by mutagenesis of proteins involved in the development of cellular resistance to chemical stresses of various kinds (either by transport of the offending chemical out of the cell or by modification of the chemical to a less hazardous substance) should increase the fitness of the organism in the environment containing the hazardous substance (i.e., large-scale fermentative culture), and thereby may permit relatively larger numbers of cells to survive in such a culture. The net effect of all of these mutagenesis strategies is to increase the quantity of fine-chemical-producing compounds in the culture, thereby increasing the yield, production, and/or efficiency of production of one or more desired fine chemicals from the culture.

This aforementioned list of mutagenesis strategies for SRT proteins to result in increased yields of a desired compound is not meant to be limiting; variations on these mutagenesis strategies will be readily apparent to one of ordinary skill in the art. By these mechanisms, the nucleic acid and protein molecules of the invention may be utilized to generate *C. glutamicum* or related strains of bacteria expressing mutated SRT nucleic acid and protein molecules such that the yield, production, and/or efficiency of production of a desired compound is improved. This desired compound may be any natural product of *C. glutamicum*, which includes the final products of biosynthesis pathways and intermediates of naturally-occurring metabolic pathways, as well as molecules which do not naturally occur in the metabolism of *C. glutamicum*, but which are produced by a *C. glutamicum* strain of the invention.

This invention is further illustrated by the following examples which should not be construed as limiting. The contents of all references, patent applications, patents, published patent applications, Tables, and the sequence listing cited throughout this application are hereby incorporated by reference.

5

10

15

20

25

TABLE 1: Genes Included in the Application

Eunction Lincomycine RESISTANCE PROTEIN 10 KD CHAPERONIN 60 KD CHAPERONIN 60 KD CHAPERONIN 60 KD CHAPERONIN 60 KD CHAPERONIN 62 KD CHAPERONIN 62 KD CHAPERONIN 63 KD CHAPERONIN 64 KD CHAPERONIN 65 KD CHAPERONIN 66 KD CHAPERONIN 66 KD CHAPERONIN 67 KD CHAPERONIN 68 KD CHAPERONIN 68 KD CHAPERONIN 69 KD CHAPERONIN 69 KD CHAPERONIN 60 KD CHAPERONIN		Function	Moleculares chaperon (HSP70/DnaK family)	Molecular chaperones (HSP70/DnaK family)	DNAJ PROTEIN	GRPE PROTEIN	DNAK PROTEIN	DNAK PROTEIN	TRAP1	Molecular chaperone, HSP90 family	DNAJ PROTEIN	TRIGGER FACTOR	PS1 PROTEIN VORLÄUFER	PS1 PROTEIN VORLÄUFER PS1 PROTEIN VORLÄUFER	PS1 PROTEIN VORLÄUFER	PS1 PROTEIN VORLÄUFER	PREPROTEIN TRANSLOKASE SECE UNTEREINHEIT PREPROTEIN TRANSLOKASE SECA LINTERFINHEIT	PROTEIN-EXPORT MEMBRANE PROTEIN SECD	Signal Erkennung particle GTPase	/O/C Thioredoxin-ähnliche oxidoreductase	THIOL PEROXIDASE (EC 1.11.1)
NT Stop 30483 348 16002 1601 203 5865 594 87008 87476 15252		NT Stop	3432	9	12473	13865	20178	14522	92	1480	13541	1582	43666	631 1069	3566	3486	31575	5954	6058	54	8533
NT Start 29041 52 14389 363 802 7412 2909 86877 87351 14716 2130		NT Start	4883	1172	13657	14518	22031	16375	1849	1145	12396	2928	42941	2 761	2832	1906	31243	7795	5363	1172	8039
Contig. GR00424 VV0086 GR00124 GR00159 GR00089 VV0098 VV0098 VV0098 GR00156		Contig.	VV0123	GR00391	GR00726	GR00726	VV0057	GR00726	VV0152	GR00659	GR00242	VV0251	VV0017	VV0018	W0022	0.000	VV0025	W0171	W0119	00200	081000
Identification Code RXA01524 RXA00493 FXN00493 F RXA01217 RXA00605 RXA00404 RXN03119 RXN03120 RXN03125 FXN03125 FXN03125		Identification Code	RXN01345	F RXA01345	RXA02541	RXA02542	RXN02543	F RXA02543	RXN02280	F RXA02282	RXA00886	RXS00568	RXN03038	RXN03039 RXN03040	RXN03051	RXN03054	RXN02949 RXN02462	RXN01559	RXN00046	RXN01863	RXN00833
Amino Acid SEQ ID NO 2 4 4 6 6 6 112 114 116 118 20 22	sə	Amino Acid SEQ ID NO	24	56	28	30	32	34	36	38	40	42	44	46 48	20 9	52	2 2 %	2 85	09	62	64
Nucleic Acid SEQ ID NO 1 1 1 1 1 1 1 1 1 1 1 1 1	Chaperones	Nucleic Acid SEQ ID NO	23	25	27	29	31	33	35	37	39	41	43	45	64	51	£ 53	57	29	61	63

	Function	THIOL: DISULFIDE AUSTAUSCH PROTEIN DSBD THIOL: DISULFIDE AUSTAUSCH PROTEIN TLPA	THIOREDOXIN	THIOREDOXIN	PEPTIDYL-PROLYL CIS-TRANS ISOMERASE (EC 5.2.1.8)	PEPTID KETTE RELEASE FACTOR 3	PEPTID KETTE RELEASE FACTOR 3	PUTATIVES OXPPCYCLE PROTEIN OPCA	SMALL COLD-SHOCK PROTEIN SMALL COLD-SHOCK PROTEIN			Function	COLD SHOCK-LIKE PROTEIN CSPC	SMALL COLD-SHOCK PROTEIN BROBABI E LYDBOGEN BEBOXIDE INDITIBLE CENES ACTIVATOR	FINODABLE III DAOGEN FENONDE-IIVDOCIBLE GENEO ACTIVATOR damage-inducible profein P	OSMOTICALLY INDUCIBLE PROTEIN C	probable metallothionein u0308aa - Mycobacterium leprae	GTP PYROPHOSPHOKINASE (EC 2.7.6.5)	B PROLEIN DENOSINE S'E'', DA DA TETDA BHOS BHATE LIVABOLIASE (EC. 2 6 4 42)	DIADENOSINE 5:5"-P1,P4-TETRAPHOSPHATE HYDROLASE (EC.36.1.17)	EXOPOLYPHOSPHATASE (EC 3.6.1.11)	GUANOSINE-3',5'-BIS(DIPHOSPHATE) 3'-PYROPHOSPHOHYDROLASE (EC 3.1.7.2)	EXOPOLYPHOSPHATASE (EC 3.6.1.11) EXOPOLYPHOSPHATASE (EC 3.6.1.11)			Function	ARGININE HYDROXIMATE RESISTANCE PROTFIN	ARSENATE REDUCTASE	SENICAL-RESISTANCE PROTEIN ACR3	SENICAL-RESISTANCE PROTEIN ACR3	ARGENICAL-RESISTANCE PROTEIN ACRO ARSENICAL-RESISTANCE PROTEIN ACRO	BACITRACIN RESISTANCE PROTEIN (PUTATIVE UNDECAPRENDI, KINASE) (FC 2.7.1.66)	BICYCLOMYCIN RESISTANCE PROTEIN
Q	Stop	11304 THI 216 THI	. 9	6393 THI	7879 PEI	741 PEI	518 PE	14556 PU	SM. 3665 SM.			NT Stop Fun	ω	992 SM	_		1633 prol		_	•			16535 EXC 2353 EXC	•		NT Stop Fu	6743 AR				5/50 AR 6916 AR	-	
Table 1 (continued)	NT Start	12059 836	42335	5527	7103		141	13600	3465			NT Start		1878		0		3388		"	••		15609 1 2763 2			NT Start	6231			2940 1			
Table	Contig.	VV0179 VV0223	6/00/V	VV0047	VV0320	VV0284	W0111	VV0074	GR00549		nses	Contig.	GR00641	GR00218	GR00708	GR00709	GR10006	GR00276	VV0321	VV0050	W0319	VV0143	VV000/ VV0319			Contig.	GR00640	GR00646	GR00159	GR00159	GR00646	GR00646	GR00245
	Identification Code	RXN01676 RXN00380	RXN00937	RXN02325	RXN01837	RXN01926	RXN02002	RXN02736	RXS03217 F RXA01917		Proteins involved in stress responses	Identification Code	RXA02184	EXA00810	RXA02431	RXA02446	RXA02861	RXA00981	RXS01027	RXS01528	RXS01716	RXS01835	RXS02972		erance	Identification Code	RXA02159	RXA02201	RXA00599	RXA00600	RXA02202	RXA02205	RXA00900
	Amino Acid	99 89	20	72	74	92	78	88	82 84		involved i	Amino Acid SEQ ID NO	88	8 G	92	94	96	98	102	104	106	108	112		Resistance and tolerance	Amino Acid SEQ ID NO	114	116	118	120	124	126	128
	Nucleic Acid SEQ ID NO	65 67	69	71	73	75	77	79	81 83	1	Proteins	Nucleic Acid SEQ ID NO	85	0 80	9 5	93	95	65 65	5	103	105	107	5 1		Resistan	Nucleic Acid SEQ ID NO	113	115	117	119	123	125	127

WO 01/00804

		ICE PROTEIN	ICE PROTEIN STANCE PROTEIN	STANCE PROTEIN	STANCE PROTEIN	OTEIN C PRECURSOR	OTEIN C PRECURSOR	DAUNORUBICIN RESISTANCE ATP-BINDING PROTEIN DRRA	ICE PROTEIN	ICE PROTEIN	ICE PROTEIN	DAUNORUBICIN RESISTANCE TRANSMEMBRANE PROTEIN		ISTANCE PROTEIN	ISTANCE PROTEIN	ISTANCE PROTEIN	ISTANCE PROTEIN	E PROTEIN MYRA	IEIN	TEIN	TEIN	NORA PROTEIN	NORA PROTEIN	NORA PROTEIN	NORA PROTEIN	NORA PROTEIN	NORA PROTEIN	PROTEIN TERC	XYLASE N DBOTEIN VII ID		EC 1.16.1.1)	EC 1.16.1.1)	EC 1.16.1.1)	E PROTEIN PRECURSOR	E PROTEIN PRECURSOR	Profesion	Poteis	PROTEINB	Protein			-		
	Function	BICYCLOMYCIN RESISTANCE PROTEIN	BICTCLOMYCIN RESISTANCE PROTEIN CHLORAMPHENICOL RESISTANCE PROTEIN	CHLORAMPHENICOL RESISTANCE PROTEIN	CHLORAMPHENICOL RESISTANCE PROTEIN	COPPER RESISTANCE PROTEIN C PRECURSOR	COPPER RESISTANCE PROTEIN C PRECURSOR	DAUNORUBICIN RESISTAN	DAUNORUBICIN RESISTANCE PROTEIN	DAUNORUBICIN RESISTANCE PROTEIN	DAUNORUBICIN RESISTANCE PROTEIN	MATTEST ENORGOIN A DESIGNATION PROTEIN	METHYLENOMYCIN A REGIOLANCE TROLEIN	METHYLENOMYCIN A RESISTANCE PROTEIN	METHYLENOMYCIN A RES	METHYLENOMYCIN A RESISTANCE PROTEIN	METHYLENOMYCIN A RESISTANCE PROTEIN	MYCINAMICIN-RESISTANCE PROTEIN MYRA	MACROLIDE-EFFLUX PROTEIN	NICKEL RESISTANCE PROTEIN	NICKEL RESISTANCE PROTEIN	QUINOLONE RESISTANCE NORA PROTEIN	QUINOLONE RESISTANCE NORA PROTEIN	QUINOLONE RESISTANCE	QUINOLONE RESISTANCE NORA PROTEIN	QUINOLONE RESISTANCE NORA PROTEIN	QUINOLONE RESISTANCE NORA PROTEIN	TELLURIUM RESISTANCE PROTEIN TERC	DAUNOMYCIN C-14 HYDROXYLASE	ARSENATE REDUCTASE	MERCURIC REDUCTASE (EC 1.16.1.1)	MERCURIC REDUCTASE (E	MERCURIC REDUCTASE (E	HEAVY METAL TOLERANCE PROTEIN PRECURSOR	VANZ DEOTEIN TRICONNER PRECURSOR	Hypothetical Dura Resistance Protein	Hypothetical Drug Resistance Protein	MULTIDRUG RESISTANCE PROTEIN B	Hypothetical Drug Resistance Protein	Hypothetical Drug Transporter				
(pan	NT Stop	8168	3980 4438	1811	4	565	2 62	1023	5611	256	2025	283	5162	3028	4184	3182	1109	339	41387	8975	9821	4894	4	4612	2917	6714	<u>ب</u> ن ی	2147	2070	3580	3706	4191	4717	1245	2600	819	1946	18381	9002	3216	2120	14101	963	292
Table 1 (continued)	NT Start	8581	4557 3263	. 1515	282	1176	1176	1763	7950	5	463	1023	4560	3918	4384	2031	ო	_ ;	40116	9426	10246	3776	774	5754	3807	7931	911	1680	2921	3236	3398	3772	4229	88 3	320g	2054	855	16933	8058	2491	1395	16290	4	4
Table	Contig.	VV0140	GR00045	VV0056	GR00574	GR00015	GR00015	GR00283	VV0180	GR00224	GR00225	GR00283	GR00214	GR00410	GR00410	VV0020	GR00552	GR00626	W0127	GR00555	GR00555	VV0209	GR00288	VV0136	GR00323	W0102	GR00636	GR00233	GR00663	GR00228	GR00296	GR00296	GR00296	VV0106	GR00282	VV0248	GR00535	VV0020	GR00655	VV0042	GR10044	GR00119	VV0108	GR00336
	Identification Code	RXN00901	RXA00289	RXN01984	F RXA01984	RXA00109	RXA00109	RXA00996	RXN00829	F RXA00829	F RXA00834	KXA00995 PXN00803	F RXADDRO3	RXA01407	RXA01408	RXN01922	F RXA01922	RXA02060	RXN01936	F RXA01936	F RXA01937	RXN01010	F RXA01010	RXN03142	F RXA01150	RXN02964	F RXA02116	KXAU0858	EXA02305	RXA00843	RXA01052	RXA01053	EXA01054	EXN03123	F KAN0995 RXA01051	RXN01873	F RXA01873	RXN00034	F RXA02273	RXN03075	F RXA02907	RXA00479	RXN03124	F RXA01180
	Amino Acid SEQ ID NO		134	136	138	140	142	144	146	148	150	152	156	158	160	162	164	166	168	170	172	174	176	178	180	182	184	28 29 30 30 30 30 30 30 30 30 30 30 30 30 30	86 5	192	194	196	198	200	202 204	206	208	210	212	214	216	218	220	222
	Nucleic Acid	129	133	135	137	139	141	143	145	147	149	151	155	157	159	161	163	165	167	169	171	173	175	177	179	181	183	2 2 3	/8 8 8	191	193	195	197	199	203	205	207	209	211	213	215	217	219	221

	Function	Hypothetical Drug Transporter	Hypothetical Drug Transporter	Hypothetical Drug Transporter	Hypothetical Drug Transporter	MULTIDRUG EFFLUX PROTEIN QACB	MULTIDRUG RESISTANCE PROTEIN	MULTIDRUG RESISTANCE PROTEIN B	RESISTANCE	MULTIDRUG RESISTANCE PROTEIN B	BMRU PROTEIN Bacillus subtilis bmrU, multidrug efflux transporter	Hypothetical Drug Transporter	Hypothetical Drug Permease	Hypothetical Drug Resistance Protein	Hypothetical Drug Transporter	Hypothetical Drug Transporter	MULTIDRUG RESISTANCE PROTEIN B	MYCINAMICIN-RESISTANCE PROTEIN MYRA	LYSOSTAPHIN IMMUNITY FACTOR	MULTIDRUG RESISTANCE-LIKE ATP-BINDING PROTEIN MDL	MULTIDRUG RESISTANCE-LIKE ATP-BINDING PROTEIN MDL	QUINOLONE RESISTANCE NORA PROTEIN	CHLORAMPHENICOL RESISTANCE PROTEIN	A201A-RESISTANCE ATP-BINDING PROTEIN	DAUNORUBICIN RESISTANCE TRANSMEMBRANE PROTEIN	MAZG PROTEIN	MERCURIC TRANSPORT PROTEIN PERIPLASMIC COMPONENT PRECURSOR	MERCURIC TRANSPORT PROTEIN PERIPLASMIC COMPONENT PRECURSOR	CADMIUM EFFLUX SYSTEM ACCESSORY PROTEIN HOMOLOG											
ned)	NT Stop	10027	10253	1835	1236	203	3683	11855	15294	6223	5884	1481	1304	11500	4	1200	9866	4	53	5730	7080	2169	1142	26520	5871	3521	13593	511	4	S.	1860	10338	4884	3648	9602	5610	4	2383	294	4424
Table 1 (continued)	NT Start	10296	12343	2440	1841	1684	2307	13252	13834	4892	4892	1837	2713	13146	744	1979	11497	1197	1423	7076	8294	3284	972	25201	5155	1173	13120	65	489	547	3275	8992	6128	3424	11242	7124	267	2150	527	4056
Table	Contig.	GR00741	GR00741	VV0018	GR10035	GR00450	GR00463	GR00009	GR00032	VV0038	GR00151	GR10016	GR00169	VV0082	GR00382	GR00383	VV0082	GR00383	GR00439	GR00629	GR00629	GR00204	VV0108	VV0135	VV0219	0.000	W0171	VV0002	VV0163	VV0358	VV0232	VV0169	W0059	W0321	VV0102	VV0137	VV0326	W0149	VV0234	VV0057
	Identification Code	RXA02586	RXA02587	RXN03042	F RXA02893	RXA01616	RXA01666	RXA00062	RXA00215	RXN03064	F RXA00565	F RXA02878	RXA00648	RXN01320	F RXA01314	F RXA01320	RXN02926	F RXA01319	RXA01578	RXA02087	RXA02088	RXA00764	RXN03125	RXN01553	RXN00535	RXN00453	RXN00932	RXN03022	RXN03151	RXN02832	RXN00165	RXN01190	RXN01102	RXN00788	RXN02119	RXN01605	RXN01091	RXS02979	RXS02987	RXS03095
	Amino Acid	224	226	228	230	232	234	236	238	240	242	244	246	248	250	252	254	256	258	260	292	264	566	268	270	272	274	276	278	280	282	284	286	288	290	262	294	296	298	300
	Nucleic Acid	223	225	227	229	231	233	235	237	239	241	243	245	247	249	251	253	255	257	259	261	263	265	267	569	271	273	275	277	279	281	283	285	287	289	291	293	295	297	299

		TABLE 2 - Excluded Genes	ded Genes
GenBank TM Accession No.	Gene Name	Gene Function	Reference
A09073	\$dd	Phosphoenol pyruvate carboxylase	Bachmann, B. et al. "DNA fragment coding for phosphoenolpyruvat corboxylase, recombinant DNA carrying said fragment, strains carrying the recombinant DNA and method for producing L-aminino acids using said strains," Patent: EP 0358940-A 3 03/21/90
A45579, A45581, A45583, A45585	·	Threonine dehydratase	Moeckel, B. et al. "Production of L-isoleucine by means of recombinant micro-organisms with deregulated threonine dehydratase," Patent: WO 9519442-A 5 07/20/95
AB003132	murC; ftsQ; ftsZ		Kobayashi, M. et al. "Cloning, sequencing, and characterization of the ftsZ gene from coryneform bacteria," Biochem. Biophys. Res. Commun., 236(2):383-388 (1997)
AB015023	murC; ftsQ		Wachi, M. et al. "A murC gene from Coryneform bacteria," Appl. Microbiol. Biotechnol., 51(2):223-228 (1999)
AB018530	dtsR		Kimura, E. et al. "Molecular cloning of a novel gene, dtsR, which rescues the detergent sensitivity of a mutant derived from <i>Brevibacterium lactofermentum</i> ," <i>Biosci. Biotechnol. Biochem.</i> , 60(10):1565-1570 (1996)
AB018531	dtsR1; dtsR2		
AB020624	murl	D-glutamate racemase	
AB023377	tkt	transketolase	
AB024708	gltB; gltD	Glutamine 2-oxoglutarate aminotransferase large and small subunits	
AB025424	acn	aconitase	
AB027714	rep	Replication protein	
AB027715	rep; aad	Replication protein; aminoglycoside adenyltransferase	
AF005242	argC	N-acety/glutamate-5-semialdehyde dehydrogenase	ı
AF005635	glnA	Glutamine synthetase	
AF030405	hisF	cyclase	
AF030520	argG	Argininosuccinate synthetase	
AF031518	argF	Ornithine carbamolytransferase	
AF036932	aroD	3-dehydroquinate dehydratase	
AF038548	pyc	Pyruvate carboxylase	

		Table 2 (continued)	(panul
AF038651	dciAE; apt; rel	Dipeptide-binding protein; adenine phosphoribosyltransferase; GTP pyrophosphokinase	Wehmeier, L. et al. "The role of the Corynebacterium glutamicum rel gene in (p)ppGpp metabolism," Microbiology, 144:1853-1862 (1998)
AF041436	argR	Arginine repressor	
AF045998	impA	Inositol monophosphate phosphatase	
AF048764	argH	Argininosuccinate lyase	
AF049897	argC; argJ; argB; argC; argC;	N-acetylglutamylphosphate reductase; ornithine acetyltransferase: N-	
	argG; argH	acetylglutamate kinase; acetylomithine	
		transminase; ornithine	
		carbamoyltransferase; arginine repressor;	
		argininosuccinate synthase; argininosuccinate lyase	
AF050109	inhA	Enoyl-acyl carrier protein reductase	
AF050166	hisG	ATP phosphoribosyltransferase	
AF051846	hisA	Phosphoribosylformimino-5-amino-1-	
		phosphoribosyl-4-imidazolecarboxamide isomerase	
AF052652	metA	Homoserine O-acetyltransferase	Park, S. et al. "Isolation and analysis of metA, a methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium glutamicum," Mol. Cells., 8(3):286-294 (1998)
AF053071	aroB	Dehydroquinate synthetase	
AF060558	hisH	Glutamine amidotransferase	
AF086704	hisE	Phosphoribosyl-ATP- pyrophosphohydrolase	
AF114233	aroA	5-enolpyruvylshikimate 3-phosphate synthase	
AF116184	panD	L-aspartate-alpha-decarboxylase precursor	Dusch, N. et al. "Expression of the Corynebacterium glutamicum panD gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli," <i>Appl. Environ. Microbiol.</i> , 65(4)1530-1539 (1999)
AF124518	aroD; aroE	3-dehydroquinase; shikimate dehydrogenase	
AF124600	aroC; aroK; aroB; pepQ	Chorismate synthase; shikimate kinase; 3-dehydroquinate synthase; putative cytoplasmic peptidase	
AF145897	inhA		
AF145898	inhA		

		Table 2 (continued)	nued)
AJ001436	ectP	Transport of ectoine, glycine betaine, proline	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol. 180(22):6005-6012 (1998)
AJ004934	фар	Tetrahydrodipicolinate succinylase (incomplete')	Wehrmann, A. et al. "Different modes of diaminopimelate synthesis and their role in cell wall integrity: A study with Corynebacterium glutamicum," J. Bacteriol., 180(12):3159-3165 (1998)
AJ007732	ppc; secG; amt; ocd; soxA	Phosphoenolpyruvate-carboxylase; ?; high affinity ammonium uptake protein; putative ornithine-cyclodecarboxylase; sarcosine oxidase	
AJ010319	ftsY, glnB, glnD; srp; amtP	Involved in cell division; PII protein; uridylyltransferase (uridylyl-removing enzmye); signal recognition particle; low affinity ammonium uptake protein	Jakoby, M. et al. "Nitrogen regulation in Corynebacterium glutamicum; Isolation of genes involved in biochemical characterization of corresponding proteins," FEMS Microbiol., 173(2):303-310 (1999)
AJ132968	cat	Chloramphenicol aceteyl transferase	
AJ224946	obu	L-malate: quinone oxidoreductase	Molenaar, D. et al. "Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum," Eur. J. Biochem., 254(2):395-403 (1998)
AJ238250	udh	NADH dehydrogenase	
AJ238703	porA	Porin	Lichtinger, T. et al. "Biochemical and biophysical characterization of the cell wall porin of Corynebacterium glutamicum: The channel is formed by a low molecular mass polypeptide," <i>Biochemistry</i> , 37(43):15024-15032 (1998)
D17429		Transposable element IS31831	Vertes et al. "Isolation and characterization of IS31831, a transposable element from Corynebacterium glutamicum," Mol. Microbiol., 11(4):739-746 (1994)
D84102	odhA	2-oxoglutarate dehydrogenase	Usuda, Y. et al. "Molecular cloning of the Corynebacterium glutamicum (Brevibacterium lactofermentum AJ12036) odhA gene encoding a novel type of 2-oxoglutarate dehydrogenase," <i>Microbiology</i> , 142:3347-3354 (1996)
E01358	hdh; hk	Homoserine dehydrogenase; homoserine kinase	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 1 10/12/87
E01359		Upstream of the start codon of homoserine kinase gene	Katsumata, R. et al. "Production of L-thereonine and L-isoleucine," Patent: JP 1987232392-A 2 10/12/87
E01375		Tryptophan operon	
E01376	трL; трЕ	Leader peptide; anthranilate synthase	Matsui, K. et al. "Tryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 10/24/87

	Table 2 (continued)	lled)
E01377	Circum actions of the	
7,5132	rromoter and operator regions of tryptophan operon	Matsul, K. et al. "I ryptophan operon, peptide and protein coded thereby, utilization of tryptophan operon gene expression and production of tryptophan," Patent: JP 1987244382-A 1 10/24/87
E03937	Biotin-synthase	Hatakeyama, K. et al. "DNA fragment containing gene capable of coding biotin synthetase and its utilization," Patent: JP 1992278088-A 1 10/02/92
E04040	Diamino pelargonic acid aminotransferase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 1 11/18/92
E04041	Desthiobiotinsynthetase	Kohama, K. et al. "Gene coding diaminopelargonic acid aminotransferase and desthiobiotin synthetase and its utilization," Patent: JP 1992330284-A 11/18/92
E04307	Flavum aspartase	Kurusu, Y. et al. "Gene DNA coding aspartase and utilization thereof," Patent: JP 1993030977-A 1 02/09/93
E04376	Isocitric acid Iyase	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04377	Isocitric acid Iyase N-terminal fragment	Katsumata, R. et al. "Gene manifestation controlling DNA," Patent: JP 1993056782-A 3 03/09/93
E04484	Prephenate dehydratase	Sotouchi, N. et al. "Production of L-phenylalanine by fermentation," Patent: JP 1993076352-A 2 03/30/93
E05108	Aspartokinase	Fugono, N. et al. "Gene DNA coding Aspartokinase and its use," Patent: JP 1993184366-A 1 07/27/93
E05112	Dihydro-dipichorinate synthetase	Hatakeyama, K. et al. "Gene DNA coding dihydrodipicolinic acid synthetase and its use," Patent: JP 1993184371-A 1 07/27/93
E05776	Diaminopimelic acid dehydrogenase	Kobayashi, M. et al. "Gene DNA coding Diaminopimelic acid dehydrogenase and its use," Patent: JP 1993284970-A 1 11/02/93
E05779	Threonine synthase	Kohama, K. et al. "Gene DNA coding threonine synthase and its use," Patent: JP 1993284972-A 1 11/02/93
E06110	Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06111	Mutated Prephenate dehydratase	Kikuchi, T. et al. "Production of L-phenylalanine by fermentation method," Patent: JP 1993344881-A 1 12/27/93
E06146	Acetohydroxy acid synthetase	Inui, M. et al. "Gene capable of coding Acetohydroxy acid synthetase and its use," Patent: JP 1993344893-A 1 12/27/93
E06825	Aspartokinase	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
E06826	Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94

		Table 2 (continued)	nued)
E06827		Mutated aspartokinase alpha subunit	Sugimoto, M. et al. "Mutant aspartokinase gene," patent: JP 1994062866-A 1 03/08/94
E07701	secY		Honno, N. et al. "Gene DNA participating in integration of membraneous protein to membrane," Patent: JP 1994169780-A 1 06/21/94
E08177		Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08178, E08179, E08180, E08181, E08182		Feedback inhibition-released Aspartokinase	Sato, Y. et al. "Genetic DNA capable of coding Aspartokinase released from feedback inhibition and its utilization," Patent: JP 1994261766-A 1 09/20/94
E08232		Acetohydroxy-acid isomeroreductase	Inui, M. et al. "Gene DNA coding acetohydroxy acid isomeroreductase," Patent: JP 1994277067-A 1 10/04/94
E08234	secE		Asai, Y. et al. "Gene DNA coding for translocation machinery of protein," Patent: JP 1994277073-A 1 10/04/94
E08643		FT aminotransferase and desthiobiotin synthetase promoter region	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95
E08646		Biotin synthetase	Hatakeyama, K. et al. "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031476-A 1 02/03/95
E08649		Aspartase	Kohama, K. et al "DNA fragment having promoter function in coryneform bacterium," Patent: JP 1995031478-A 1 02/03/95
E08900		Dihydrodipicolinate reductase	Madori, M. et al. "DNA fragment containing gene coding Dihydrodipicolinate acid reductase and utilization thereof," Patent: JP 1995075578-A 1 03/20/95
E08901		Diaminopimelic acid decarboxylase	Madori, M. et al. "DNA fragment containing gene coding Diaminopimelic acid decarboxylase and utilization thereof," Patent: JP 1995075579-A 1 03/20/95
E12594		Serine hydroxymethyltransferase	Hatakeyama, K. et al. "Production of L-trypophan," Patent: JP 1997028391-A 1 02/04/97
E12760, E12759, E12758		transposase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12764		Arginyl-tRNA synthetase; diaminopimelic acid decarboxylase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12767		Dihydrodipicolinic acid synthetase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12770		aspartokinase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97
E12773		Dihydrodipicolinic acid reductase	Moriya, M. et al. "Amplification of gene using artificial transposon," Patent: JP 1997070291-A 03/18/97

		Table 2 (continued)	nned)
E13655		ehyd	Hatakeyama, K. et al. "Glucose-6-phosphate dehydrogenase and DNA capable of coding the same," Patent: JP 1997224661-A 1 09/02/97
L01508	llvA	Threonine dehydratase	Moeckel, B. et al. "Functional and structural analysis of the threonine dehydratase of Corynebacterium glutamicum," J. Bacteriol., 174:8065-8072 (1992)
L07603	EC 4.2.1.15	3-deoxy-D-arabinoheptulosonate-7- phosphate synthase	Chen, C. et al. "The cloning and nucleotide sequence of Corynebacterium glutamicum 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase gene," <i>FEMS Microbiol. Lett.</i> , 107:223-230 (1993)
L09232	IIvB; iIvN; iIvC	Acetohydroxy acid synthase large subunit; Acetohydroxy acid synthase small subunit; Acetohydroxy acid isomeroreductase	Keilhauer, C. et al. "Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon," J. Bacteriol., 175(17):5595-5603 (1993)
L18874	PtsM	Phosphoenolpyruvate sugar phosphotransferase	Fouet, A et al. "Bacillus subtilis sucrose-specific enzyme II of the phosphotransferase system: expression in Escherichia coli and homology to enzymes II from enteric bacteria," PNAS USA, 84(24):8773-8777 (1987); Lee, J.K. et al. "Nucleotide sequence of the gene encoding the Corynebacterium glutamicum mannose enzyme II and analyses of the deduced protein sequence," FEMS Microbiol. Lett., 119(1-2):137-145 (1994)
L27123	aceB	Malate synthase	Lee, H-S. et al. "Molecular characterization of aceB, a gene encoding malate synthase in Corynebacterium glutamicum," J. Microbiol. Biotechnol., 4(4):256-263 (1994)
L27126 		Pyruvate kinase	Jetten, M. S. et al. "Structural and functional analysis of pyruvate kinase from Corynebacterium glutamicum," <i>Appl. Environ. Microbiol.</i> , 60(7):2501-2507 (1994)
L28760	aceA	Isocitrate lyase	
L35906	dtxr	Diphtheria toxin repressor	Oguiza, J.A. et al. "Molecular cloning, DNA sequence analysis, and characterization of the Corynebacterium diphtheriae dtxR from Brevibacterium lactofermentum," J. Bacteriol., 177(2):465-467 (1995)
M13774		Prephenate dehydratase	Follettie, M.T. et al. "Molecular cloning and nucleotide sequence of the Corynebacterium glutamicum phe Agene," J. Bacteriol., 167:695-702 (1986)
M16175	5S rRNA		Park, Y-H. et al. "Phylogenetic analysis of the coryneform bacteria by 56 rRNA sequences," J. Bacteriol., 169:1801-1806 (1987)
M16663	трЕ	Anthranilate synthase, 5' end	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," Gene, 52:191-200 (1987)
M16664	trpA	Tryptophan synthase, 3'end	Sano, K. et al. "Structure and function of the trp operon control regions of Brevibacterium lactofermentum, a glutamic-acid-producing bacterium," Gene, 52:191-200 (1987)

_	T		Τ	-	1	<u> </u>	- 66 T		П				\neg
nued)	O'Regan, M. et al. "Cloning and nucleotide sequence of the	Phosphoenolpyruvate carboxylase-coding gene of Corynebacterium glutamicum ATCC13032," Gene, 77(2):237-251 (1989)	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)	Roller, C. et al. "Gram-positive bacteria with a high DNA G+C content are characterized by a common insertion within their 23S rRNA genes," J. Gen. Microbiol., 138:1167-1175 (1992)	Rossol, I. et al. "The Corynebacterium glutamicum aecD gene encodes a C-S lyase with alpha, beta-elimination activity that degrades aminoethylcysteine," <i>J. Bacteriol.</i> , 174(9):2968-2977 (1992); Tauch, A. et al. "Isoleucine uptake in Corynebacterium glutamicum ATCC 13032 is directed by the brnQ gene product," <i>Arch. Microbiol.</i> , 169(4):303-312 (1998)	Herry, D.M. et al. "Cloning of the trp gene cluster from a tryptophan-hyperproducing strain of Corynebacterium glutamicum: identification of a mutation in the trp leader sequence," <i>Appl. Environ. Microbiol.</i> , 59(3):791-799 (1993)	O'Gara, J.P. and Dunican, L.K. (1994) Complete nucleotide sequence of the Corynebacterium glutamicum ATCC 21850 tpD gene." Thesis, Microbiology Department, University College Galway, Ireland.	Schafer, A. et al. "Cloning and characterization of a DNA region encoding a stress-sensitive restriction system from Corynebacterium glutamicum ATCC 13032 and analysis of its role in intergeneric conjugation with Escherichia coli," <i>J. Bacteriol.</i> , 176(23):7309-7319 (1994); Schafer, A. et al. "The Corynebacterium glutamicum cgllM gene encoding a 5-cytosine in an McrBC-deficient Escherichia coli strain," <i>Gene</i> , 203(2):95-101 (1997)	Anly S or all Whitestone in the Commonwell of the Single	biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)	Ankri, S. et al. "Mutations in the Corynebacterium glutamicumproline biosynthetic pathway: A natural bypass of the proA step," J. Bacteriol., 178(15):4412-4419 (1996)	
Table 2 (continued)	Phosphoenolpyruvate carboxylase		23S rRNA gene insertion sequence	23S rRNA gene insertion sequence	Beta C-S Iyase; branched-chain amino acid uptake carrier; hypothetical protein yhbw	Leader gene (promoter)	Anthranilate phosphoribosyltransferase	Putative type II 5-cytosoine methyltransferase; putative type II restriction endonuclease; putative type I or type III restriction endonuclease			L-proline: NADP+ 5-oxidoreductase	?:gamma glutamyl kinase;similar to D- isomer specific 2-hydroxyacid dehydrogenases	
					aecD; brnQ; yhbw	<u>£</u>	ιφΟ	cglIM; cgIIR; clgIIR	recA	vdd	proC	obg; proB; unkdh	
	M25819		M85106	M85107, M85108	M89931	S59299	U11545	U13922	U14965	F221 CO	U31225	U31230	

		Table 2 (continued	nued)
U31281	bioB	Biotin synthase	Serebriiskii, I.G., "Two new members of the bio B superfamily: Cloning, sequencing and expression of bio B genes of Methylobacillus flagellatum and Corynebacterium glutamicum," Gene, 175:15-22 (1996)
U35023	thtR; accBC	Thiosulfate sulfurtransferase; acyl CoA carboxylase	Jager, W. et al. "A Corynebacterium glutamicum gene encoding a two-domain protein similar to biotin carboxylases and biotin-carboxyl-carrier proteins," <i>Arch. Microbiol.</i> , 166(2);76-82 (1996)
U43535	cmr	Multidrug resistance protein	Jager, W. et al. "A Corynebacterium glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli," J. Bacteriol., 179(7):2449-2451 (1997)
U43536	clpB	Heat shock ATP-binding protein	
US3587	aphA-3	3'5"-aminoglycoside phosphotransferase	
U89648		Corynebacterium glutamicum unidentified sequence involved in histidine biosynthesis, partial sequence	
X04960	trpA; trpB; trpC; trpD; trpE; trpG; trpL	Tryptophan operon	Matsui, K. et al. "Complete nucleotide and deduced amino acid sequences of the Brevibacterium lactofermentum tryptophan operon," <i>Nucleic Acids Res.</i> , 14(24):10113-10114 (1986)
X07563	lys A	DAP decarboxylase (meso-diaminopimelate decarboxylase, EC 4.1.1.20)	Yeh, P. et al. "Nucleic sequence of the lysA gene of Corynebacterium glutamicum and possible mechanisms for modulation of its expression," Mol. Gen. Genet., 212(1):112-119 (1988)
X14234	EC 4.1.1.31	Phosphoenolpyruvate carboxylase	Eikmanns, B.J. et al. "The Phosphoenolpyruvate carboxylase gene of Corynebacterium glutamicum: Molecular cloning, nucleotide sequence, and expression," <i>Mol. Gen. Genet.</i> , 218(2):330-339 (1989); Lepiniec, L. et al. "Sorghum Phosphoenolpyruvate carboxylase gene family: structure, function and molecular evolution," <i>Plant. Mol. Biol.</i> , 21 (3):487-502 (1993)
X17313	fda	Fructose-bisphosphate aldolase	Von der Osten, C.H. et al. "Molecular cloning, nucleotide sequence and fine- structural analysis of the Corynebacterium glutamicum fda gene: structural comparison of C. glutamicum fructose-1, 6-biphosphate aldolase to class I and class II aldolases," Mol. Microbiol.
X53993	dapA	L-2, 3-dihydrodipicolinate synthetase (EC 4.2.1.52)	Bonnassie, S. et al. "Nucleic sequence of the dapA gene from Corynebacterium glutamicum," Nucleic Acids Res., 18(21):6421 (1990)
X54223		AttB-related site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)
X54740	argS, lysA	Arginyl-tRNA synthetase; Diaminopimelate decarboxylase	Marcel, T. et al. "Nucleotide sequence and organization of the upstream region of the Corynebacterium glutamicum lysA gene," <i>Mol. Microbiol.</i> , 4(11):1819-1830 (1990)

		Table 2 (continued)	(penu
X55994	trpL; trpE	Putative leader peptide; anthranilate synthase component 1	Heery, D.M. et al. "Nucleotide sequence of the Corynebacterium glutamicum trpE gene," Nucleic Acids Res., 18(23):7138 (1990)
X56037	thrC	Threonine synthase	Han, K.S. et al. "The molecular structure of the Corynebacterium glutamicum threonine synthase gene," Mol. Microbiol., 4(10):1693-1702 (1990)
X56075	attB-related site	Attachment site	Cianciotto, N. et al. "DNA sequence homology between att B-related sites of Corynebacterium diphtheriae, Corynebacterium ulcerans, Corynebacterium glutamicum, and the attP site of lambdacorynephage," FEMS. Microbiol, Lett., 66:299-302 (1990)
X57226	lysC-alpha; lysC-beta; asd	Aspartokinase-alpha subunit; Aspartokinase-beta subunit; aspartate beta semialdehyde dehydrogenase	Kalinowski, J. et al. "Genetic and biochemical analysis of the Aspartokinase from Corynebacterium glutamicum," Mol. Microbiol., 5(5):1197-1204 (1991); Kalinowski, J. et al. "Aspartokinase genes IysC alpha and IysC beta overlap and are adjacent to the aspertate beta-semialdehyde dehydrogenase gene asd in Corynebacterium glutamicum," Mol. Gen. Genet., 224(3):317-324 (1990)
X59403	gap;pgk; tpi	Glyceraldehyde-3-phosphate; phosphoglycerate kinase; triosephosphate isomerase	Eikmanns, B.J. "Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomeras," J. Bacteriol., 174(19):6076-6086 (1992)
X59404	вдр	Glutamate dehydrogenase	Bormann, E.R. et al. "Molecular analysis of the Corynebacterium glutamicum gdh gene encoding glutamate dehydrogenase," Mol. Microbiol., 6(3):317-326 (1992)
X60312	iysi	L-lysine permease	Seep-Feldhaus, A.H. et al. "Molecular analysis of the Corynebacterium glutamicum lysl gene involved in lysine uptake," Mol. Microbiol., 5(12):2995-3005 (1991)
X66078	copl	Ps1 protein	Joliff, G. et al. "Cloning and nucleotide sequence of the csp1 gene encoding PS1, one of the two major secreted proteins of Corynebacterium glutamicum: The deduced N-terminal region of PS1 is similar to the Mycobacterium antigen 85 complex," Mol. Microbiol., 6(16):2349-2362 (1992)
X66112	glt	Citrate synthase	Eikmanns, B.J. et al. "Cloning sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase," <i>Microbiol.</i> , 140:1817-1828 (1994)
X67737	dapB	Dihydrodipicolinate reductase	
X69103	csp2	Surface layer protein PS2	Peyret, J.L. et al. "Characterization of the cspB gene encoding PS2, an ordered surface-layer protein in Corynebacterium glutamicum," <i>Mol. Microbiol.</i> , 9(1):97-109 (1993)
X69104		IS3 related insertion element	Bonamy, C. et al. "Identification of IS1206, a Corynebacterium glutamicum IS3-related insertion sequence and phylogenetic analysis," Mol. Microbiol., 14(3):571-581 (1994)

		Table 2 (continued	nued)
X70959	leuA	Isopropylmalate synthase	Patek, M. et al. "Leucine synthesis in Corynebacterium glutamicum: enzyme activities, structure of leuA, and effect of leuA inactivation on lysine synthesis." Appl. Environ. Microbiol. 60(1):133-140 (1994)
X71489	icq	Isocitrate dehydrogenase (NADP+)	Eikmanns, B.J. et al. "Cloning sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme," J. Bacteriol., 177(3):774-782 (1995)
X72855	GDHA	Glutamate dehydrogenase (NADP+)	
X75083, X70584	mtrA	5-methyltryptophan resistance	Heery, D.M. et al. "A sequence from a tryptophan-hyperproducing strain of Corynebacterium glutamicum encoding resistance to 5-methyltryptophan," <i>Biochem. Biochem. Res. Commun.</i> 201(3):1255-1262 (1994)
X75085	гесА		Fitzpatrick, R. et al. "Construction and characterization of recA mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum," Appl. Microbiol. Biotechnol., 42(4):575-580 (1994)
X75504	aceA; thiX	Partial Isocitrate lyase; ?	Reinscheid, D.J. et al. "Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme," J. Bacteriol., 176(12):3474-3483 (1994)
X76875		ATPase beta-subunit	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Antonie Van Leeuwenhoek, 64:285-305 (1993)
X77034	tuf	Elongation factor Tu	Ludwig, W. et al. "Phylogenetic relationships of bacteria based on comparative sequence analysis of elongation factor Tu and ATP-synthase beta-subunit genes," Antonie Van Leeuwenhoek, 64:285-305 (1993)
X77384	recA		Billman-Jacobe, H. "Nucleotide sequence of a recA gene from Corynebacterium glutamicum," DNA Seq., 4(6):403-404 (1994)
X78491	aceB	Malate synthase	Reinscheid, D.J. et al. "Malate synthase from Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase: sequence analysis," <i>Microbiology</i> , 140:3099-3108 (1994)
X80629	16S rDNA	16S ribosomal RNA	Rainey, F.A. et al. "Phylogenetic analysis of the genera Rhodococcus and Norcardia and evidence for the evolutionary origin of the genus Norcardia from within the radiation of Rhodococcus species," <i>Microbiol.</i> , 141:523-528 (1995)
16118X	gluA; gluB; gluC; gluD	Glutamate uptake system	Kronemeyer, W. et al. "Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum," J. Bacteriol., 177(5):1152-1158 (1995)
X81379	dapE	Succinyldiaminopimelate desuccinylase	Wehrmann, A. et al. "Analysis of different DNA fragments of Corynebacterium glutamicum complementing dapE of Escherichia coli," <i>Microbiology</i> , 40:3349-56 (1994)

		Table 2 (continued)	(pənu
X82061	16S rDNA	16S ribosomal RNA	Ruimy, R. et al. "Phylogeny of the genus Corynebacterium deduced from analyses of small-subunit ribosomal DNA sequences," <i>Int. J. Syst. Bacteriol.</i> , 45(4):740-746 (1995)
X82928	asd; lysC	Aspartate-semialdehyde dehydrogenase; ?	Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)
X82929	proA	Gamma-glutamyl phosphate reductase	Serebrijski, I. et al. "Multicopy suppression by asd gene and osmotic stress-dependent complementation by heterologous proA in proA mutants," J. Bacteriol., 177(24):7255-7260 (1995)
X84257	16S rDNA	16S ribosomal RNA	Pascual, C. et al. "Phylogenetic analysis of the genus Corynebacterium based on 16S rRNA gene sequences," Int. J. Syst. Bacteriol., 45(4):724-728 (1995)
X85965	aroP; dapE	Aromatic amino acid permease; ?	Wehrmann et al. "Functional analysis of sequences adjacent to dapE of C. glutamicum proline reveals the presence of aroP, which encodes the aromatic amino acid transporter," J. Bacteriol., 177(20):5991-5993 (1995)
X861 <i>57</i>	argB; argC; argD; argF; argJ	Acetylglutamate kinase; N-acetyl-gamma- glutamyl-phosphate reductase; acetylornithine aminotransferase; ornithine carbamoyltransferase; glutamate N- acetyltransferase	Sakanyan, V. et al. "Genes and enzymes of the acetyl cycle of arginine biosynthesis in Corynebacterium glutamicum: enzyme evolution in the early steps of the arginine pathway," <i>Microbiology</i> , 142:99-108 (1996)
X89084	pta; ackA	Phosphate acetyltransferase; acetate kinase	Reinscheid, D.J. et al. "Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase," <i>Microbiology</i> , 145:503-513 (1999)
X89850	attB	Attachment site	Le Marrec, C. et al. "Genetic characterization of site-specific integration functions of phi AAU2 infecting "Arthrobacter aureus C70," J. Bacteriol., 178(7):1996-2004 (1996)
X90356		Promoter fragment F1	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90357		Promoter fragment F2	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90358		Promoter fragment F10	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90359		Promoter fragment F13	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)

		Table 2 (continued)	nued)
V00260		202	
730300		Fromoter tragment F.22	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif". Microbiology
			142:1297-1309 (1996)
X90361		Promoter fragment F34	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
			molecular analysis and search for a consensus motif," Microbiology,
67.6001		- 1	142:1297-1309 (1996)
X90362		Promoter fragment F37	Patek, M. et al. "Promoters from C. glutamicum: cloning, molecular analysis
		- 1	and search for a consensus motif," Microbiology, 142:1297-1309 (1996)
X90363		Promoter fragment F45	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
			molecular analysis and search for a consensus motif," Microbiology,
170001		- 1	142:1297-1309 (1996)
X90364		Promoter fragment F64	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
			molecular analysis and search for a consensus motif," <i>Microbiology</i> , 142:1297-1309 (1996)
X90365		Promoter fragment F75	Patek, M. et al. "Promoters from Corvnebacterium glutamicum: cloning
			molecular analysis and search for a consensus motif." Mismokiolom:
			142:1297-1309 (1996)
3903K		Dromoter fragment DE101	Dotal M of al "Dusmotions from Commercial Co
			ratek, M. et al. Promoters from Corynebacterium glutamicum; cloning,
			molecular analysis and search for a consensus motif," Microbiology,
L)(00/			147:1297-1309 (1996)
A9030/		Promoter tragment PF104	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
_			molecular analysis and search for a consensus motif," Microbiology,
			142:1297-1309 (1996)
X90368		Promoter fragment PF109	Patek, M. et al. "Promoters from Corynebacterium glutamicum: cloning,
			molecular analysis and search for a consensus motif," Microbiology,
0.3007			142:1297-1309 (1996)
X93513	amt	Ammonium transport system	Siewe, R.M. et al. "Functional and genetic characterization of the (methyl)
			ammonium uptake carrier of Corynebacterium glutamicum," J. Biol. Chem., 271(10):5198.5401 (1998)
X93514	betP	Glycine betaine transport system	Peter, H. et al. "Isolation, characterization, and expression of the
	_	•	Corynebacterium glutamicum betP gene, encoding the transport system for the
			compatible solute glycine betaine," J. Bacteriol., 178(17):5229-5234 (1996)
X95649	orf4		Patek, M. et al. "Identification and transcriptional analysis of the dapB-ORF2-
			dapA-ORF4 operon of Corynebacterium glutamicum, encoding two enzymes
			involved in L-lysine synthesis," Biotechnol. Lett., 19:1113-1117 (1997)
X964/1	lysE; lysG	Lysine exporter protein; Lysine export	Vrljic, M. et al. "A new type of transporter with a new type of cellular
		regulator protein	function: L-lysine export from Corynebacterium glutamicum," Mol.
			Microbiol., 22(5):815-826 (1996)

		Table 2 (continued)	nned)
X96580	panB; panC; xylB	3-methyl-2-oxobutanoate hydroxymethyltransferase; pantoate-beta- alanine ligase; xylulokinase	Sahm, H. et al. "D-pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding L-valine synthesis for D-pantothenate overproduction," Appl. Environ. Microbiol., 65(5):1973-1979 (1999)
X96962		Insertion sequence IS1207 and transposase	
X99289		Elongation factor P	Ramos, A. et al. "Cloning, sequencing and expression of the gene encoding elongation factor P in the amino-acid producer Brevibacterium lactofermentum (Corynebacterium glutamicum ATCC 13869)," Gene, 198:217-222 (1997)
Y00140	thrB	Homoserine kinase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine kinase (thrB) gene of the Brevibacterium lactofermentum," <i>Nucleic Acids Res.</i> , 15(9):3922 (1987)
Y00151	qpp	Meso-diaminopimelate D-dehydrogenase (EC 1.4.1.16)	Ishino, S. et al. "Nucleotide sequence of the meso-diaminopimelate D-dehydrogenase gene from Corynebacterium glutamicum," Nucleic Acids Res., 15(9):3917 (1987)
Y00476	thrA	Homoserine dehydrogenase	Mateos, L.M. et al. "Nucleotide sequence of the homoserine dehydrogenase (thrA) gene of the Brevibacterium lactofermentum," Nucleic Acids Res., 15(24):10598 (1987)
Y00546	hom; thrB	Homoserine dehydrogenase; homoserine kinase	Peoples, O.P. et al. "Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum hom-thrB operon," Mol. Microbiol., 2(1):63-72 (1988)
Y08964	murC; ftsQ/divD; ftsZ	UPD-N-acetylmuramate-alanine ligase; division initiation protein or cell division protein; cell division protein	Honrubia, M.P. et al. "Identification, characterization, and chromosomal organization of the ftsZ gene from Brevibacterium lactofermentum," Mol. Gen. Genet., 259(1):97-104 (1998)
Y09163	putP	High affinity proline transport system	Peter, H. et al. "Isolation of the putP gene of Corynebacterium glutamicumproline and characterization of a low-affinity uptake system for compatible solutes," <i>Arch. Microbiol.</i> , 168(2):143-151 (1997)
Y09548	pyc	Pyruvate carboxylase	Peters-Wendisch, P.G. et al. "Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene," <i>Microbiology</i> , 144:915-927 (1998)
Y09578	leuB	3-isopropylmalate dehydrogenase	Patek, M. et al. "Analysis of the leuB gene from Corynebacterium glutamicum," Appl. Microbiol. Biotechnol., 50(1):42-47 (1998)
Y12472		Attachment site bacteriophage Phi-16	Moreau, S. et al. "Site-specific integration of corynephage Phi-16: The construction of an integration vector," <i>Microbiol.</i> , 145:539-548 (1999)
Ÿ12537	proP	Proline/ectoine uptake system protein	Peter, H. et al. "Corynebacterium glutamicum is equipped with four secondary carriers for compatible solutes: Identification, sequencing, and characterization of the proline/ectoine uptake system, ProP, and the ectoine/proline/glycine betaine carrier, EctP," J. Bacteriol., 180(22):6005-6012 (1998)

		Table 2 (continued)	ned)
Y13221	glnA	Glutamine synthetase I	Jakoby, M. et al. "Isolation of Corynebacterium glutamicum glnA gene encoding glutamine synthetase 1," FEMS Microbiol. Lett., 154(1):81-88 (1997)
Y16642	pdi	Dihydrolipoamide dehydrogenase	
Y18059		Attachment site Corynephage 304L	Moreau, S. et al. "Analysis of the integration functions of φ304L: An integrase module among corynephages," Virology, 255(1):150-159 (1999)
Z21501	argS; lysA	Arginyl-tRNA synthetase; diaminopimelate decarboxylase (partial)	Oguiza, J.A. et al. "A gene encoding arginyl-tRNA synthetase is located in the upstream region of the lysA gene in Brevibacterium lactofermentum: Regulation of argS-lysA cluster expression by arginine," J. Bacteriol., 175(22):7356-7362 (1993)
Z 21502	dapA; dapB	Dihydrodipicolinate synthase; dihydrodipicolinate reductase	Pisabarro, A. et al. "A cluster of three genes (dapA, orf2, and dapB) of Brevibacterium lactofermentum encodes dihydrodipicolinate reductase, and a third polypeptide of unknown function," J. Bacteriol., 175(9):2743-2749 (1993)
229563	thrC	Threonine synthase	Malumbres, M. et al. "Analysis and expression of the thrC gene of the encoded threonine synthase," Appl. Environ. Microbiol., 60(7)2209-2219 (1994)
Z46753	16S rDNA	Gene for 16S ribosomal RNA	
249822	sigA	SigA sigma factor	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacteriol., 178(2):550-553 (1996)
Z49823	galE; dtxR	Catalytic activity UDP-galactose 4- epimerase; diphtheria toxin regulatory protein	Oguiza, J.A. et al "The galE gene encoding the UDP-galactose 4-epimerase of Brevibacterium lactofermentum is coupled transcriptionally to the dmdR gene," Gene, 177:103-107 (1996)
Z49824	orf1; sigB	?; SigB sigma factor	Oguiza, J.A. et al "Multiple sigma factor genes in Brevibacterium lactofermentum: Characterization of sigA and sigB," J. Bacterial., 178(2):550-553 (1996)
Z66534		Transposase	Correia, A. et al. "Cloning and characterization of an IS-like element present in the genome of Brevibacterium lactofermentum ATCC 13869," <i>Gene</i> , 170(1):91-94 (1996)
A sequence for the published ver	' A sequence for this gene was published in the indicat the published version. It is believed that the published	the indicated reference. However, the sequence published version relied on an incorrect start co	ed reference. However, the sequence obtained by the inventors of the present application is significantly longer than version relied on an incorrect start codon, and thus represents only a fragment of the actual coding region.

TABLE 3: Corynebacterium and Brevibacterium Strains Which May be Used in the Practice of the Invention

Genus	species	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTC	DSMZ [*]
Brevibacterium	ammoniagenes	21054					THE PARTY OF THE P	- and a second a	
Brevibacterium	ammoniagenes	19350							
Brevibacterium	ammoniagenes	19351							
Brevibacterium	ammoniagenes	19352							
Brevibacterium	ammoniagenes	19353							
Brevibacterium	ammoniagenes	19354							
Brevibacterium	ammoniagenes	19355							·
Brevibacterium	ammoniagenes	19356							
Brevibacterium	ammoniagenes	21055							
Brevibacterium	ammoniagenes	21077							
Brevibacterium	ammoniagenes	21553							
Brevibacterium	ammoniagenes	21580							
Brevibacterium	ammoniagenes	39101							
Brevibacterium	butanicum	21196							
Brevibacterium	divaricatum	21792	P928						
Brevibacterium	flavum	21474							
Brevibacterium	flavum	21129							
Brevibacterium	flavum	21518							
Brevibacterium	flavum			B11474		_			
Brevibacterium	flavum			B11472					
Brevibacterium	flavum	21127							
Brevibacterium	flavum	21128							
Brevibacterium	flavum	21427							
Brevibacterium	flavum	21475							
Brevibacterium	flavum	21517							
Brevibacterium	flavum	21528							
Brevibacterium	flavum	21529							
Brevibacterium	flavum			B11477					
Brevibacterium	flavum			B11478					
Brevibacterium	flavum	21127							
Brevibacterium	flavum			B11474					
Brevibacterium	healii	15527							
Brevibacterium	ketoglutamicum	21004							
Brevibacterium	ketoglutamicum	21089							
Brevibacterium	ketosoreductum	21914							
Brevibacterium	lactofermentum				70				
Brevibacterium	lactofermentum				74				
Brevibacterium	lactofermentum				77				
Brevibacterium	lactofermentum	21798							
Brevibacterium	lactofermentum	21799							
Brevibacterium	lactofermentum	21800							
Brevibacterium	lactofermentum	21801							
Brevibacterium	lactofermentum			B11470					
Brevibacterium	lactofermentum			B11471					

Genus:		ATCC	FERM	NRRL	CECT	NCIMB	* CBS	NCTG	DSMZ
Brevibacterium	lactofermentum	21086							
Brevibacterium	lactofermentum	21420							
Brevibacterium	lactofermentum	21086							
Brevibacterium	lactofermentum	31269	_						
Brevibacterium	linens	9174					******		
Brevibacterium	linens	19391							
Brevibacterium	linens	8377					·		
Brevibacterium	paraffinolyticum					11160			
Brevibacterium	spec.						717.73		
Brevibacterium	spec.						717.73		
Brevibacterium	spec.	14604							
Brevibacterium	spec.	21860							
Brevibacterium	spec.	21864							
Brevibacterium	spec.	21865							
Brevibacterium	spec.	21866							-
Brevibacterium	spec.	19240							
Corynebacterium	acetoacidophilum	21476							
Corynebacterium	acetoacidophilum	13870							
Corynebacterium	acetoglutamicum			B11473					
Corynebacterium	acetoglutamicum			B11475	2				
Corynebacterium	acetoglutamicum	15806							
Corynebacterium	acetoglutamicum	21491							
Corynebacterium	acetoglutamicum	31270							
Corynebacterium	acetophilum			B3671					
Corynebacterium	ammoniagenes	6872						2399	
Corynebacterium	ammoniagenes	15511							
Corynebacterium	fujiokense	21496							
Corynebacterium	glutamicum	14067							
Corynebacterium	glutamicum	39137							
Corynebacterium	glutamicum	21254							
Corynebacterium	glutamicum	21255							
Corynebacterium	glutamicum	31830							
Corynebacterium	glutamicum	13032							
Corynebacterium	glutamicum	14305							
Corynebacterium	glutamicum	15455							
Corynebacterium	glutamicum	13058							
	glutamicum	13059							
Corynebacterium	glutamicum	13060							
	glutamicum	21492							
	glutamicum	21513							
	glutamicum	21526		I]				
	glutamicum	21543	1]			
	glutamicum	13287							
	glutamicum	21851]	
	glutamicum	21253							
	glutamicum	21514							
	glutamicum	21516							
Corynebacterium	glutamicum	21299	1						

Genus ?	species 🛪 🛍 🗀 🐇	ATCC	FERM	NRRL	CECT	NCIMB	CBS	NCTC	DSMZ
Corynebacterium	glutamicum	21300							
Corynebacterium	glutamicum	39684							
Corynebacterium	glutamicum	21488							
Corynebacterium	glutamicum	21649							
Corynebacterium	glutamicum	21650							
Corynebacterium	glutamicum	19223							
Corynebacterium	glutamicum	13869							
Corynebacterium	glutamicum	21157							
Corynebacterium	glutamicum	21158							
Corynebacterium	glutamicum	21159							
Corynebacterium	glutamicum	21355							
Corynebacterium	glutamicum	31808							
Corynebacterium	glutamicum	21674							
Corynebacterium	glutamicum	21562							
Corynebacterium	glutamicum	21563							
Corynebacterium	glutamicum	21564							
Corynebacterium	glutamicum	21565					-		
Corynebacterium	glutamicum	21566							
Corynebacterium	glutamicum	21567							
Corynebacterium	glutamicum	21568		·					
Corynebacterium	glutamicum	21569							
Corynebacterium	glutamicum	21570							
Corynebacterium	glutamicum	21571							
Corynebacterium	glutamicum	21572							
Corynebacterium	glutamicum	21573							
Corynebacterium	glutamicum	21579	•						
Corynebacterium	glutamicum	19049							
Corynebacterium	glutamicum	19050							
Corynebacterium	glutamicum	19051							
Corynebacterium	glutamicum	19052							
Corynebacterium	glutamicum	19053							
	glutamicum	19054							
L	glutamicum	19055							
	glutamicum	19056							
Corynebacterium	glutamicum	19057							
Corynebacterium	glutamicum	19058							
Corynebacterium	glutamicum	19059							
Corynebacterium	glutamicum	19060							
Corynebacterium	glutamicum	19185							
Corynebacterium	glutamicum	13286				_			
Corynebacterium	glutamicum	21515							
Corynebacterium	glutamicum	21527							
Corynebacterium	glutamicum	21544							
Corynebacterium	glutamicum	21492							
Corynebacterium	glutamicum			B8183					
Corynebacterium	glutamicum			B8182					
Corynebacterium	glutamicum			B12416					
Corynebacterium	glutamicum			B12417					

Genus The State of	species ;	ATCC	FERM	NRRL	CECT	NEIMB	- CBS	NCTE	DSMZ
Corynebacterium	glutamicum			B12418					
Corynebacterium	glutamicum			B11476					
Corynebacterium	glutamicum	21608							
Corynebacterium	lilium		P973						
Corynebacterium	nitrilophilus	21419				11594		<u> </u>	
Corynebacterium	spec.		P4445						
Corynebacterium	spec.		P4446						
Corynebacterium	spec.	31088							
Corynebacterium	spec.	31089							
Corynebacterium	spec.	31090							
Corynebacterium	spec.	31090		_					
Corynebacterium	spec.	31090							
Corynebacterium	spec.	15954	-	 					20145
Corynebacterium	spec.	21857							
Corynebacterium	spec.	21862				\ <u>-</u>			
Corynebacterium	spec.	21863							

ATCC: American Type Culture Collection, Rockville, MD, USA

FERM: Fermentation Research Institute, Chiba, Japan

NRRL: ARS Culture Collection, Northern Regional Research Laboratory, Peoria, IL, USA

CECT: Coleccion Espanola de Cultivos Tipo, Valencia, Spain

NCIMB: National Collection of Industrial and Marine Bacteria Ltd., Aberdeen, UK

CBS: Centraalbureau voor Schimmelcultures, Baarn, NL NCTC: National Collection of Type Cultures, London, UK

DSMZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany

For reference see Sugawara, H. et al. (1993) World directory of collections of cultures of microorganisms: Bacteria, fungi and yeasts (4th edn), World federation for culture collections world data center on microorganisms, Saimata, Japen.

wo	01/	00804										_	78	_									F	·C	Γ/IE	300	/00	192	2		
% homology Date of	Deposit	5-Jun-99	18-DEC-1997	6-Feb-97	18-DEC-1997	16-OCT-1998	100 cr	8881-100-51	13-OCT-1999		12-Jan-99	12-Apr-99	2-Aug-99	_						000	29-MAR-1990	30-MAR-1998	30-MAR-1998	17 1.11 00	08-UDC-11	15-Jan-97	12-Nov-98	13-Jul-99	;	26-Jul-99	
% homolog	(GAP)	39.080	39,264	36,725	38,957	45,066		89c,0c	36,589		44,444	36,313	44,159							67	40,420	40,420	40,420	120.03	00,271	54,256	54,256	36,245		37,573	
Source of Genbank Hit		Homo sapiens	Homo sapiens	Brassica nigra	Homo sapiens	Homo sapiens		Drosopniia melanogaster 36,369	Drosophila melanogaster 36,589		Streptomyces coelicolor	Streptomyces coelicolor	Burkholderia	pseudomallei							noing sapiens	Homo sapiens	Homo sapiens	1000 HOOSE	tuberculosis	Escherichia coli	Escherichia coli	Streptomyces coelicolor	A3(2)	8 Drosophila melanogaster	
TABLE 4: ALIGNMENT RESULTS Length Accession Name of Genbank Hit		Homo sapiens clone NH0501G22, *** SEQUENCING IN PROGRESS ***, 3 unordered pieces.	Homo sapiens CAGH44 mRNA, partial cds.	B.nigra DNA for tRNA like gene.	Homo sapiens CAGH44 mRNA, partial cds.	HS_2245_A1_F07_MF CIT Approved Human Genomic Sperm Library D Homo	sapiens genomic clone Plate=2245 Col=13 Row=K, genomic survey sequence.	Diosophina metanogaster chilothosomic 2 cours DACA430 to (D321) NFO-30 45.0.18 map 41E-41E strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 13 unordered pieces.	Drosophila melanogaster chromosome 2 clone BACR45018 (D527) RPCI-98 45.0.18 map 41E-41E strain y, cn bw sp, *** SEQUENCING IN PROGRESS***,	13 Unordered pieces.	Streptomyces coelicolor cosmid 9C7.	Streptomyces coelicolor cosmid E94.	Burkholderia pseudomallei strain 1026b DbhB (dbhB), general secretory pathway	protein D (gspD), general secretory pathway protein E (gspE), general secretory	pathway protein F (gspF), GspC (gspC), general secretory pathway protein G	(gspot, general secretory parimary protein in (gspot), general secretory parimary	protein I (gspl.), general secretory parnway protein J (gspl.), general secretory nathway protein K (gspl.), general secretory	parimaly protein in (95ph), general secretory parimaly protein L (95ph), general secretory nathway protein M (05pM), and general secretory nathway protein N	secretory paritively process in (gaptary, and general secretory paritively process in	(gsplv) genes, complete cas, and unknown genes.		SHGC-56832 Human Homo sapiens STS genomic, sequence tagged site.	SHGC-56832 Human Homo sapiens STS genomic, sequence tagged site.	Mirrahadarium tuharaulasis H37Du complete genome: seemast 132(163	injournation in the company of the company sequence of the company	Escherichia coli genomic sequence of minutes 9 to 12.	Escherichia coli K-12 MG1655 section 55 of 400 of the complete genome.	Streptomyces coelicolor cosmid F43A.		Drosophila melanogaster genome survey sequence SP6 end of BAC BACN14G08 Drosophila melanogaster 37,573 of DrosBAC library from Drosophila melanogaster (fruit flv), genomic survey	sequence.
Accession		185001 AC007366	U80741	X89901	U80741	AQ163721	171070 40007054	2000	171979 AC007054		AL035161	AL049628	AF110185							No.467	101000	G37084	G37084	793966	00000	U82598	AE000165	AL096837		AL105910	
Length		185001	912	1732	912	388	171070	6/61	171979	0	31360	38532	20302							707	5	384	384	31850	600	136742	12003	35437	000	1036	
length Genbank Hit		GB_HTG2:AC007366	GB_PR3:HSU80741	GB_PL1:BNDNATRNA	GB_PR3:HSU80741	GB_GSS9:AQ163721	DE LITERANCONTOEA		GB_HTG4:AC007054		GB_BA1:SC9C7	GB_BA1:SCE94	GB_BA2:AF110185							CO CCTC-MOOACZ	GB_E316:1480163	GB_STS:G37084	GB_STS:G37084	CB BA1-MITCV2207		GB_BA1:ECU82598	GB_BA2:AE000165	GB_BA1:SCF43A		GB_GSSZ:CNS015U4 1036	
ID # length	(IN)	rxa00062 1521	rxa00084 948			rxa00109 735					rxa00215 1449									4000	6621 60200841			0576 70700000	50000 TOOOBY			rxa00479 2313			

. . . 1

TABLE 4: ALIGNMENT RESULTS

	GB_PR3:HSA494016	50502	AL117328	Table 4 (continued) AL117328 Human DNA sequence from clone 494016 on chromosome 22 complete	Homo sabiens	36 475	93-Nov-99	W
xa00497 420	GB_BA1:MTCY78		277165	sequence. Mycobacterium tuberculosis H37Rv complete genome; segment 145/162.	Mycobacterium	40,250	17-Jun-98	O 01/
	GB BA2:AF079544	817	AF079544	Mycobacterium avium GroESL operon, partial sequence	tuberculosis Mycobacterium aviium	64 439	16.410.98	0080
	GB_BA1:MTGROEOP		X60350	M.tuberculosis groE gene for KCS and 10-kDa products.	Mycobacterium	62,857	23-Apr-92)4
rxa00575					tuberculosis			
rxa00599 510	GB_GSS10:AQ199703 439	3 439	AQ199703	AQ199703 RPCI11-46O13.TJ RPCI-11 Homo sapiens genomic clone RPCI-11-46O13,	Homo sapiens	42,657	20-Apr-99	
	GB_PR2:AC002127	144165	144165 AC002127	genome, souve) sequence. Human BAC clone RG305H12 from 7q21, complete sequence.	Homo sapiens	37,052	27-MAY-1997	
:	GB_STS:G51234	439	G51234	SHGC-80708 Human Homo sapiens STS genomic, sequence tagged site.	Homo sapiens	42,657	25-Jun-99	
rxa00600 1221	GB_BA1:MTCY441	35187	Z80225	Mycobacterium tuberculosis H37Rv complete genome; segment 118/162.	Mycobacterium tuberculosis	56,183	18-Jun-98	
	GB_BA1:MSGY223	42061	AD000019	Mycobacterium tuberculosis sequence from clone y223.	Mycobacterium tuberculosis	37,217	10-DEC-1996	
2000E 1603	GB_BA1:BSUB0014	213420	213420 Z99117	Bacillus subtilis complete genome (section 14 of 21); from 2599451 to 2812870.	Bacillus subtilis	36,553		-79
אמרטטטט זיסטא	0.0000 NZ. Ar 0000 0	0117	A108901A	endosymbiont of Onchocerca Volvulus catalase gene, complete cds.	endosymbiont of Onchocerca volvulus	55,396	25-Nov-98	9-
	GB_BA1:OVCAT	1845	X82176	Onchocerca volvulus endobacterial mRNA for catalase.	endosymbiont of	55,396	26-Nov-98	
	GR BA1-SC2G5	38404	AI 035478	Strantomyrae malicular memid 20.5	Onchocerca volvulus	004.00	90	
N900648 1533		160401		Unepromytes coencolal costing 2003. Home espices chromosome 24 class BBCIB20404674 mas 24424 ***	Sureptornyces coencolor	39,530	11-Jun-99	
X400040 1333		9		SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens	36,327	27-Aug-99	
	GB_HTG1:HS74016	169401	169401 AL110119	Homo sapiens chromosome 21 clone RPCIP70401674 map 21q21, *** SEQUENCING IN PROCEED *** in monday about	Homo sapiens	36,327	27-Aug-99	
	GB_HTG1:HS74016	169401	169401 AL110119	Homo sapiens chromosome 21 clone RPCIP70401674 map 21q21, ***	Homo sapiens	35,119	27-Aug-99	
				SEQUENCING IN PROGRESS ***, in unordered pieces.			•	
rxa00764 1239	GB_EST36:AI898007	609	AI898007	EST267450 tomato ovary, TAMU Lycopersicon esculentum cDNA clone cLED31K22, mRNA sequence.	Lycopersicon esculentum 34,323	1 34,323	27-Jul-99	
	GB_BA2:PAU93274	8008	U93274	Pseudomonas aeruginosa YafE (yafE), LeuB (leuB), Asd (asd), FimV (fimV), and	Pseudomonas	35,895	23-Jun-98	PC
	GB BA2 PAH93274	8008	1193274	HisT (hisT) genes, complete cds; TrpF (trpF) gene, partial cds; and unknown Peaudomonas agrunings a Yaff (vafF) 1 and (lauR). And (sed. EirnV (fimV)), and	aeruginosa	71 417	60 4.1	CT/I
		}		HisT (hisT) genes, complete cds, TrpF (trpF) gene, partial cds, and unknown	aeruginosa	<u>;</u>	06-100-07	B 00
xa00803 1353		27748	AF100662	Caenorhabditis elegans cosmid H34C03.	Caenorhabditis elegans	34,152	28-OCT-1998	0/0
	GB_HTG2:AC007905	100722	100722 AC007905	Homo sapiens chromosome 16q24.3 clone PAC 754F23, *** SEQUENCING IN PROCEES *** 32 unaddad signal.	Homo sapiens	37,472	24-Jun-99	092
	GB_HTG2:AC007905		100722 AC007905	FRUGRESS ***, 33 unordered pieces. Homo sapiens chromosome 16q24.3 clone PAC 754F23, *** SEQUENCING IN PROGRESS *** 33 unordered pieces.	Homo sapiens	37,472	24-Jun-99	2
				Trooping the process.				

				Table 4 (continued)			
rxa00810 324	GB_BA1:MTY15C10	33050	Z95436	Mycobacterium tuberculosis H37Rv complete genome; segment 154/162.	Mycobacterium	34,615	17-Jun-98
	044:841	2000	60060014	OF SCO Files on a control of the con	tuberculosis		4
	GB_BA ! IMILUB2340			Mycobacterium reprae cosmio 02346.	Mycopacterium leprae	34,013	57-Aug-99
	GB_BA1:ECOUW76			E. coll chromosomal region from 76.0 to 81.5 minutes.	Escherichia coli	52,997	2-Nov-96
rxa00829 2463	GB_BA1:SC5C7	41906	AL031515	Streptomyces coelicolor cosmid 5C7.	Streptomyces coelicolor	65,269	7-Sep-98
	GB BA1:SC5F2A	40105	AL049587	Streptomyces coeficolor cosmid 5F2A	Strentomyces coeliculor	37 490	24-MAY-1999
						5	CC L CALLY
	GB_BA1:STMDRRC	3374	L76359	Streptomyces peucetius daunorubicin resistance protein (drrC) gene, complete	Streptomyces peucetius	55,279	24-DEC-1996
rxa00843 468	GB BA1:MTCY9C4	15916	Z77250	Mycobacterium tuberculosis H37Ry complete genome: segment 113/162.	Mycobacterium	40 000	17-Jun-98
	1				tuberculosis		
	GB_BA1:MTCY9C4	15916	Z77250	Mycobacterium tuberculosis H37Rv complete genome; segment 113/162.	Mycobacterium	37,773	17-Jun-98
					tuberculosis		
rxa00858 568	GB_BA1:SCC54	30753	AL035591	Streptomyces coelicolor cosmid C54.	Streptomyces coelicolor	39,602	11-Jun-99
	GB_EST18:N96610	547	N96610	21285 Lambda-PRL1 Arabidopsis thaliana cDNA clone F10G3T7, mRNA	Arabidopsis thaliana	37,801	5-Jan-98
	GB_EST18:T45493	436	T45493	8756 Lambda-PRL2 Arabidopsis thaliana cDNA clone 133C14T7, mRNA	Arabidopsis thaliana	34,194	4-Aug-98
rxa00886 1269	GB_BA1:SYCSLLLH	132106	D64006	Synechocystis sp. PCC6803 complete genome, 25/27, 3138604-3270709.	Synechocystis sp.	37,459	13-Feb-99
	GB_BA1:SCDNAJ	5611	X77458	S. coelicolor dnaK, grpE and dnaJ genes.	Streptomyces coelicolor	49,744	21-Nov-96
	GB_BA1:STMDNAK	4648	L46700	Streptomyces coelicolor (strain A3(2)) dnaK operon encoding molecular	Streptomyces coelicolor	49,583	22-Nov-96
				chaperones (dnaK, dnaJ), grpE and hspR genes, complete cds's.			-
xa00900 975	GB_BA2:ECOUW67_0 110000	000011	U18997	Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes.	Escherichia coli	38,314	018997
	GB_BA2:ECOUW67_0	0 110000	U18997	Escherichia coli K-12 chromosomal region from 67.4 to 76.0 minutes.	Escherichia coli	37,759	U18997
	GB_BA2:AE000393		AE000393	Escherichia coli K-12 MG1655 section 283 of 400 of the complete genome.	Escherichia coli	38,314	12-Nov-98
rxa00901 537	GB_HTG3:AC010757	175571	AC010757	Homo sapiens chromosome 18 clone 128_C_18 map 18, *** SEQUENCING IN	Homo sapiens	34,857	22-Sep-99
				PROGRESS ***, 20 unordered pieces.			
	GB_HTG3:AC010757	175571	AC010757	Homo sapiens chromosome 18 clone 128_C_18 map 18, *** SEQUENCING IN	Homo sapiens	34,857	22-Sep-99
				PROGRESS, 20 unordered pieces.			
	GB_HTG3:AC011283	87295	AC011283	Homo sapiens clone MS2016A09, *** SEQUENCING IN PROGRESS ***, 1	Homo sapiens	35,448	07-OCT-1999
C37 10000	19931C4.00.000	,	V 1345064	Collected process.		1	
12800801 733	GB_DV.GGA243864 GB_PL2:AC007887	159434		Ganus ganus parual mitura tot at it curate iyase (ACL gene). Genomic sequence for Arabidoosis thaliana BAC F1504 from chromosome I.	Gallus gallus Arabidopsis thaliana	37,600	28-Sep-99 04-OCT-1999
	ı			complete sequence.		<u>!</u>	
	GB_GSS1:CNS00RNW542	N 542	AL087338	Arabidopsis thaliana genome survey sequence T7 end of BAC F14D7 of IGF	Arabidopsis thaliana	41,264	28-Jun-99
				library from strain Columbia of Arabidopsis thaliana, genomic survey sequence.			
rxa00995 864	GB_EST29:AI553951	450	AI553951	te54d01.x1 Soares_NFL_T_GBC_S1 Homo sapiens cDNA clone IMAGE:2090497 Homo sapiens	7 Homo sapiens	42,627	13-Apr-99
				3' similar to gb:X02067 H.sapiens mRNA for 7SL RNA pseudogene (HUMAN);,			
				mKNA sequence.			
	GB_PR3:AC003029	139166	139166 AC003029	Homo sapiens Chromosome 12q24 PAC RPCI3-462E2 (Roswell Park Cancer	Homo sapiens	38,915	17-Sep-98
				Institute Human PAC library) complete sequence.			
	GB_BA1:EAY14603	4479	Y14603	Erwinia amylovora srlA, srlE, srlB, srlD, srlM and srlR genes.	Erwinia amylovora	37,694	6-Jan-98
rxa00996 864	GB_BA2:AE001001		AE001001	Archaeoglobus fulgidus section 106 of 172 of the complete genome.	Archaeoglobus fulgidus	41,078	15-DEC-1997
	GB_EST30:AV018764	1 242	AV018764	AV018764 Mus musculus 18-day embryo C57BL/6J Mus musculus cDNA clone	Mus musculus	39'66	28-Aug-99
				1190006M16, mRNA sequence.			

WO 01/0080	4				-	·81 -					PCT/I	B 00,	/00922	
10-OCT-1997 12-Jul-97 19-DEC-1996	12-Sep-96	21-MAY-1999	04-DEC-1999 19-Jul-99	2-Aug-97 2-Aug-97	7-Feb-99	07-DEC-1999	07-DEC-1999	10-Feb-99 03-DEC-1999	03-DEC-1999	08-OCT-1999 08-OCT-1999 10-Jun-94	21-Apr-98 19-Aug-99	19-Aug-99	14-Aug-98 14-Aug-98 AC011500	23-Sep-99
44,385 46,629 38,677	58,696	37,651	38,640	39,344 38,780	39,205	32,961	38,476	42,925 36,825	36,825	35,794 40,625 37,793	35,014 17,697	17,697	38,195 36,611 36,446	35,764
Arabidopsis thaliana Coturnix coturnix Mus musculus	Mus musculus	Homo sapiens	o nomo sapiens Homo sapiens	Caenorhabditis elegans Caenorhabditis elegans	Gallus gallus	Homo sapiens	Homo sapiens	Ipomoea nil Homo sapiens	Homo sapiens	Caenorhabditis elegans Caenorhabditis elegans Mus musculus	Neisseria meningitidis Plasmodium falciparum	Plasmodium falciparum	Homo sapiens Homo sapiens Homo sapiens	Homo sapiens
F19E16TF IGF Arabidopsis thaliana genomic clone F19E16, genomic survey sequence. Coturnix coturnix arylalkylamine N-acetyltransferase mRNA, partial cds. ms50c09.r1 Life Tech mouse embryo 13 5dpc 10666014 Mus musculus cDNA clone IMAGE:614992 5' similar to SW:NEST_RAT P21263 NESTIN: ,, mRNA	sequence. mf64g11.r1 Soares mouse embryo NbME13.5 14.5 Mus musculus cDNA clone IMAGE:419108 5' similar to SW:NEST_RAT P21263 NESTIN. [1];, mRNA	Sequence. RPCI11-135F10.TJ RPCI-11 Homo sapiens genomic clone RPCI-11-135F10, Homo sapiens genomic survey sequence.	pieces HS_5538_A1_A11_T7A RPCI-11 Human Male BAC Library Homo sapiens	genomic clone Plate=1114 Col=21 Row=A, genomic survey sequence. Caenorhabditis elegans cosmid C13D9. Caenorhabditis elegans cosmid C13D9.	Chicken novel maf-related gene mafG encoding bZip nuclear protein MafG,	promoter region and exon 1. Homo sapiens clone RP11-115N6, *** SEQUENCING IN PROGRESS ***, 26	Unfordered pieces. Homo sapiens clone RP11-115N6, *** SEQUENCING IN PROGRESS ***, 26	unordered pieces. Pharbitis nil mRNA for Pharbitis nil Germin-like protein precursor, complete cds. Homo sapiens chromosome 6 clone RP3-402N21 map p21.1-21.31, ***SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens chromosome 6 clone RP3-402N21 map p21.1-21.31, ***SEQUENCING IN PROGRESS *** in unordered pieces	Caenorhabditis elegans cosmid F18A12. Caenorhabditis elegans cosmid F18A12. Mouse cystic fibrosis transmembrane conductance regulator (CFTR) mRNA,	complete cds. Neisseria meningitidis chloramphenicol acetyltransferase gene, complete cds. Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Plasmodium falciparum chromosome 13 strain 3D7, *** SEQUENCING IN PROGRESS *** in unordered places	Homo sapiens chromosome 17, clone hRPK.214_O_1, complete sequence. Homo sapiens chromosome 17, clone hRPK.214_O_1, complete sequence. Homo sapiens chromosome 19 clone CIT978SKB_60E11, *** SEQUENCING IN	PROGRESS ***, 246 unordered pieces. Homo sapiens clone 6_L_24, LOW-PASS SEQUENCE SAMPLING.
B24189 AF007068 AA166324	W89968	579 AQ381423	AQ746932	AF016420 AF016420	D28601	146468 AC010765	146468 AC010765	D45425 AL049553	AL049553	AF016688 AF016688 M60493	AF031037 AL109815	AL109815	166687 AC005224 166687 AC005224 300851 AC011500	AC010831
377 356 514	46	579	837	43487 43487	1316	146468	146468	962 170302	170302	29784 29784 6304	1472 \80518	\80518	166687 166687 1300851	70233
GB_GSS3:B24189 GB_OV:AF007068 GB_EST10:AA166324	GB_EST7:W89968	GB_GSS12:AQ381423 579	GB_GSS5.AQ746932	GB_IN1:CELC13D9 GB_IN1:CELC13D9	GB_OV:CHKMAFG1	GB_HTG6:AC010765	GB_HTG6:AC010765	GB_PL1:PHNPNGLP 962 GB_HTG2:HSJ402N21 170302	GB_HTG2:HSJ402N21 170302 AL049553	GB_IN2:CELF18A12 GB_IN2:CELF18A12 GB_RO:MUSMCFTR	GB_BA2:AF031037 1472 GB_HTG1:PFMAL13PA80518	GB_HTG1:PFMAL13PA80518	GB_PR3:AC005224 166687 GB_PR3:AC005224 166687 GB_HTG3:AC011500_1300851	GB_HTG3:AC010831
ка01010 1242		rxa01051 732		rxa01052 432	rxa01053 543			rxa01054 612		אס 1217 723 ra	rxa01320 1770		rxa01345 1575	rxa01407 1014

3-Sep-99	3-Sep-99 26-Nov-97 2-Aug-99	2-Aug-99	14-Jul-99 14-Jul-99 23-Sep-97	10-Sep-99 1 23-Nov-98 21-DEC-1998	9-Apr-97 23-Aug-99	23-Aug-99 01-MAY-1999	13-Jul-99 04-OCT-1999	22-Aug-99 P P P P P P P P P P P P P P P P P P
35,764 40,778 41,234 er 39,432	er 39,432 38,201 er 38,302	er 38,302	37,873 40,220 42,960	37,626 37,237 38,406	99,933 er 36,111	er 36,111 39,537	36,419	35,303 35,303 35,409 35,189
Homo sapiens Homo sapiens Homo sapiens Drosophila melanogaster	Drosophila melanogaster 39,432 Bacillus subtilis 38,201 Drosophila melanogaster 38,302	82 Drosophila melanogaster 38,302	Homo sapiens Homo sapiens Ralstonia eutropha	Vogesella indigofera Caenorhabditis elegans Homo sapiens	Corynebacterium 99,933 glutamicum Drosophila melanogaster 36,111	Drosophila melanogaster 36,111 Daucus carota 39,537	Homo sapiens Homo sapiens	nomo sapiens Homo sapiens Homo sapiens Escherichia coli
Homo sapiens clone 6_L_24, LOW-PASS SEQUENCE SAMPLING. Homo sapiens chromosome 4 clone B241P19 map 4q25, complete sequence. Homo sapiens constitutive fragile region FRA3B sequence. Drosophila melanogaster chromosome 3 clone BACR02G21 (D722) RPCI-98 02.G.21 map 90E-91A strain y; cn bw sp. *** SEQUENCING IN PROGRESS****, 89 unordered pieces.	aster chromosome 3 clone BACR02G21 (D722) RPCI-98 A strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, blete genome (section 15 of 21); from 2795131 to 3013540, aster chromosome 2 clone BACR13J10 (D924) RPCI-98	13.J.10 map 4/B-4/C strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 8 unordered pieces. Drosophila melanogaster chromosome 2 clone BACR13J10 (D924) RPCI-98 13.J.10 map 47B-47C strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 82 unordered pieces.	Homo sapiens 14q32 Jagged2 gene, complete cds; and unknown gene. Homo sapiens 14q32 Jagged2 gene, complete cds; and unknown gene. Alcaligenes eutrophus genes for ureases, ureD1, ureD2, ureA, ureB, and ORF1, ORF2.	Vogesella indigofera indigoidine biosynthesis regulatory locus, complete Caenorhabditis elegans cosmid M04D8, complete sequence. qt82d04.x1 NCI_CGAP_Co14 Homo sapiens cDNA clone IMAGE:1961767 3', mRNA sequence.	Corynebacterium glutamicum multidrug resistance protein (cmr) gene, complete cds. Drosophila melanogaster chromosome 3 clone BACR09F18 (D812) RPCI-98 09.F.18 map 98D-98D strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***,	Dosophila melanogaster chromosome 3 clone BACR09F18 (D812) RPCI-98 O9.F.18 map 98D-98D strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 109 unordered pieces. Daucus carota mRNA for citrate synthase, complete cds.	Homo sapiens endothelial nitric oxide synthase gene, complete cds. Homo sapiens clone NH0166D23, *** SEQUENCING IN PROGRESS ***, 7 unordered pieces.	PROGRESS ***, 20 unordered pieces. Homo sapiens chromosome 9 clone 30_C_23 map 9, *** SEQUENCING IN PROGRESS ***, 20 unordered pieces. PROGRESS ***, 20 unordered pieces. Homo sapiens clone 115_i_23, LOW-PASS SEQUENCE SAMPLING. E.coli protein p7 (neu C) gene, complete cds.
70233 AC010831 38400 AC004058 246546 AF152365 121256 AC007890	121256 AC007890 218410 Z99118 107439 AC008260	107439 AC008260	148083 AF111170 148083 AF111170 6740 Y13732	AF088857 Z32682 AI281910	2531 U43535 114735 AC009213	114735 AC009213 1859 AB017159	23142 D26607 154754 AC011234	124337 AC009450 134724 AC009919 1676 M84026
70233 38400 246546 121256	121256 AC0078 218410 Z99118 107439 AC0082	107439	148083 148083 6740	2908 21552 276	2531 114735	114735		124337 134724 1676
GB_HTG3:AC010831 GB_PR3:AC004058 GB_PR4:AF152365 GB_HTG3:AC007890	GB_HTG3:AC007890 GB_BA1:BSUB0015 GB_HTG2:AC008260	GB_HTG2:AC008260	GB_PR4:AF111170 GB_PR4:AF111170 GB_BA1:AEY13732	GB_BA2:AF088857 GB_IN1:CEM04D8 GB_EST25:AI281910	GB_BA1:CGU43535 GB_HTG3:AC009213	GB_HTG3:AC009213 GB_PL1:AB017159	GB_PR1:HUMGNOS4823142 GB_HTG3:AC011234 154754	
rxa01408 324	rxa01524 1566		гха01578 1510	rxa01616 1605	rxa01666 1500	rxa01674 1017	740 TAED	rxa01973 1339

PCT/IB00/00922

WO 01/00804

V	O 01/	00804								01	5						P	CT/	1B 00	/009	22	
	2-Aug-99	2-Aug-99	16-OCT-1999	16-OCT-1999	26-Nov-98	18-OCT-1995	6-Jul-94	16-Jul-96		-83	25-Sep-98 7 24-MAR-1999	27-Aug-99	3-Aug-99	3-Aug-99	3-Aug-99	1-Jul-98			5-Jan-99	5-Jan-99	24-Jun-98 21-Jul-99	
1	er 34,365	er 34,365	er 38,534	er 38,534	36,249	45,679	36,232	42,969		i I	35,724 35,890	38,128	36,662	36,662	34,768	99,843			88,679	100,000	38,951 36,774	-
:	Drosophila melanogaster 34,365 0	Drosophila melanogaster 34,365	Drosophila melanogaster 38,534	Drosophila melanogaster 38,534	Homo sapiens	Homo sapiens	Saccharopolyspora erythraea	Mus musculus			nomo sapiens Arabidopsis thaliana	Arabidopsis thaliana	Homo sapiens	Homo sapiens	Homo sapiens	Corynebacterium			Corynebacterium glutamicum	Corynebacterium glutamicum	Bacillus subtilis Danio rerio	
Table 4 (continued)	Urosophila melanogaster chromosome 3 clone bACKU3LU2 (D/55) RPCI-98 03.L.2 map 96B-96C strain y; cn bw sp, *** SEQUENCING IN PROGRESS ***, 80 unordered pieces.	Drosophila melanogaster chromosome 3 clone BACR03L02 (D766) RPCI-98 03.L.2 map 96B-96C strain y; cn bw sp, *** SEQUENCING IN PROGRESS***, 80 unordered pieces.	Drosophila melanogaster chromosome 3L/66B6 clone RPCI98-6E4, *** SEQUENCING IN PROGRESS ***, 52 unordered pieces.	Drosophila melanogaster chromosome 3L/66B6 clone RPCI98-6E4, *** SEQUENCING IN PROGRESS ***, 52 unordered pieces.	Homo sapiens chromosome 17, clone hRPK.212_E_8, complete sequence.	H.sapiens CpG island DNA genomic Mise1 fragment, clone 169c8, forward read cpg169c8,ft1a.	Saccharopolyspora erythraea excisionase (xis) gene, integrase (int) gene, complete cds's and attB site.	mf98a09.r1 Soares mouse embryo NbME13.5 14.5 Mus musculus cDNA clone IMAGE 427206 8' mDNA societada		HAma canions abromonana 47 alona hODV 240 A 0 acceleta	Arabidopsis thaliana DNA chromosome 4, BAC clone F20B18 (ESSA project).	Arabidopsis thaliana DNA chromosome 4, BAC clone (ESSA project).	nomo sapiens chlomosome o cione CTI 9/85KB_/0D3, *** SEQUENCING IN PROGRESS ***, 54 unordered pieces.	Homo sapiens chromosome 5 clone CIT978SKB_70D3, *** SEQUENCING IN PROGRESS ***, 54 unordered pieces.	Homo sapiens chromosome 5 clone CIT978SKB_76P12, *** SEQUENCING IN PROGRESS ***, 54 unordered pieces.	Corynebacterium glutamicum N-acetylglutamylphosphate reductase (argC), Corynebact ornithine acetylcrathine glutamicum	transaminase (argD), ornithine carbamoyltransferase (argF), arginine repressor (argR), arginine repressor (argR), argininosuccinate synthase (argG), and argininosuccinate lyase (argH)	genes, complete cds.	Corynebacterium glutamicum ornithine carbamolytransferase (argF) gene, complete cds.	Corynebacterium glutamicum arginine repressor (argR) gene, complete cds.	B.subtilis yws[A,B,C] genes and rbs[A,C,D,K,R] genes. fc57a12.y1 Zebrafish WashU MPIMG EST Danio rerio cDNA 5' similar to	TR:Q13151 Q13151 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A0 ;, mRNA sequence.
0000	AC007 833	116280 AC007853	166249 AC010037	166249 AC010037	167228 AC005552	25/239	L11597	W97557		169045 ACODE544	AL049483	AL049171	ACOOSSS/	167932 AC008697	213971 AC008703	AF049897			AF031518	AF041436	Z92953 AI878071	
440000	007011	116280	166249	166249	167228	245	3255	267		169045	104738	89904	756/01	167932	213971	9196			2045	516	8164 593	
CE UTCO. ACCOURTERS 445250 ACCOURT	660/000/000/000/000	GB_HTG2:AC007853	GB_HTG4:AC010037	GB_HTG4:AC010037	GB_PR4:AC005552	GE_PKI:HS169C8F	GB_BA1:SERATTBXIS 3255	GB_EST7:W97557		GB DR3:40005544	GB_PL1:ATF20B18	GB_PL2:ATT25K17	/6000000000000000000000000000000000000	GB_HTG3:AC008697	GB_HTG3:AC008703	GB_BA2:AF049897			GB_BA2:AF031518	GB_BA2:AF041436	GB_BA1:BSZ92953 GB_EST36:AI878071	
			rxa01936 1395		200000	rxa01964 420			rxa02060	0787 1470		4220	0001 00070BX			rxa02159 636					rxa02184 504	

	WO 01/	008	804										O 4											P	. 17	IRO	t)/t	109	22		
	20-Aug-99	23-Nov-99	28-Jul-99	28-141-99		68-UDC-67	29-Jun-95	08-DEC-1995	25-Jun-99		28-Jul-99		11-Nov-98		10-Feb-99	13-Jan-95	27-Aug-99	2-Apr-98		23-Nov-99	23-Nov-99		19-MAY-1998	28-DEC-1995		28-DEC-1995	17 100 00	00-180-1	06-MAY-1999		20-Aug-99
	36,774	38,648	35,938	35 938		30,201	36,552	41.678	43,348		35,568	40,310	40,310	37,703	38,420	42,188	42,000	39,098		39,456	39,456		3 49,369	35,417		37,172	42 446	, i	52,059		45,438
	Danio rerio	Homo sapiens	Mus musculus	Mus mesculus		, noing sapiens	', Homo sapiens	Caenorhabditis elegans	Mus musculus		Homo sapiens	Homo sapiens	Homo sapiens	Brugia pahangi	Mus musculus	Homo sapiens	Mycobacterium leprae	Rattus sp.		Homo sapiens	Homo sapiens		Xanthomonas campestris 49,369	Homo sapiens		Homo sapiens	Deinocente	proteolyticus	Danio rerio		Danio rerio
Table 4 (continued)	fc91f01.y1 Zebrafish WashU MPIMG EST Danio rerio cDNA 5' similar to TR:Q13151 Q13151 HETEROGENEOUS NUCLEAR RIBONUCLEOPROTEIN A0 ;, mRNA sequence.	Human DNA sequence from clone 494O16 on chromosome 22, complete	sequence. Mus musculus clone 182_H_5, *** SEQUENCING IN PROGRESS ***, 29	unordered pieces. Mus musculus clone 182 H 5. *** SEQUENCING IN PROGRESS *** 29	unordered pieces.	MRNA sequence.	ym34a11.r1 Soares infant brain 1NIB Homo sapiens cDNA clone IMAGE:50010 5', Homo sapiens mRNA sequence.	Caenorhabditis elegans cosmid C41A3.	AV080151 Mus musculus stomach C57BL/6J adult Mus musculus cDNA clone	2210413B04, mRNA sequence.	HS_2017_B2_B08_MR CIT Approved Human Genomic Sperm Library D Homo			B.pahangi beta-tubulin gene, complete cds.	Mouse gene for platelet activating factor receptor, complete cds.	Homo sapiens ARL1 mRNA, complete cds.	Mycobacterium leprae cosmid B2533.	EST111890 Rat PC-12 cells, NGF-treated (9 days) Rattus sp. cDNA clone	RPNCO03, mRNA sequence.	Homo sapiens chromosome 20 clone RP4-791K14, *** SEQUENCING IN PROGRESS ***, in unordered pieces.	Homo sapiens chromosome 20 clone RP4-791K14, *** SEQUENCING IN	PROGRESS ***, in unordered pieces.	Aantnomonas campestris organic nydroperoxide resistance protein (onr) gene, complete cds	yx19d10.r1 Soares melanocyte 2NbHM Homo sapiens cDNA clone	IMAGE:262195 5', mRNA sequence.	yx19d10.r1 Soares melanocyte 2NbHM Homo sapiens cDNA clone	Deinococcus protectations 40 kDs heat shock chaperone protein (des 1) nere	complete cds.	fc14c09.y1 Zebrafish WashU MPIMG EST Danio rerio cDNA 5' similar to	SW:DNJ2_HUMAN P31689 DNAJ PROTEIN HOMOLOG 2.;, mRNA sequence.	fd25h11.y1 Zebrafish WashU MPIMG EST Danio rerio cDNA 5' similar to SW:DNJ2_HUMAN P31689 DNAJ PROTEIN HOMOLOG 2.;; mRNA sequence.
	A1958166	AL117328	158440 AC008161	158440 AC008161	116040		H16949	U41541	AV080151		AQ766877		-	M36380	D50872	L28997	AL035310	H35255		155318 AL035685	155318 AL035685		Arusotoo	N25122		N25122	1103358		AI658096		A1959242
	641	50502	158440	158440	765	}	465	37149	236		545	127587	127587	4571	1140	1008	40245	407		155318		į	0 0 0 0	620		620	1267) i	343		545
	GB_EST37:Al958166	GB_PR3:HSA494016	GB_HTG2:AC008161	GB HTG2:AC008161	CD ECTA:H16040		GB_EST4:H16949	GB_IN1:CELC41A3	GB_EST33:AV080151		GB_GSS5:AQ766877	GB_HTG2:AC005959	GB_HTG2:AC005959	GB_IN1:BRPTUBBA	GB_RO:MUSPAFR	GB_PR3:HUMARL1A	GB_BA1:MLCB2533	GB_EST4:H35255		GB_HTG1:HS791K14	GB_HTG1:HS791K14		GB_BAZ:AFU35165	GB_EST5:N25122		GB_EST5:N25122	GR BA2-DD1193358		GB_EST30:AI658096		GB_EST37:A1959242
		xa02200 1233			486 ABE	001		rxa02202 762				rxa02205 1002			rxa02305 975			rxa02431 899					ra02445 556				N200541 1308				

PCT/IB00/00922

WO 01/00804

rxa02542 777	EM_PAT:E10832	1856	E10832	Table 4 (continued) DNA encoding Dnak protein which is one of heat shock protein from	Corynebacterium	000'66	08-OCT-1997
					glutamicum		(Rel. 52, Created)
	GB_EST24:Z82017	396	Z 82017	ne c12c06 5'	Sus scrofa	37,067	30-Apr-99
	GB_OM:CATERYTHRO681	0681	L10606	Cat erythropoietin mRNA, 3' end.	Felis catus	39,409	14-OCT-1993
rxa02543 1977	EM_PAT:E10832	1856	E10832		Corynebacterium	97,306	08-OCT-1997
					glutamicum		(Rel. 52,
	GB_BA1:MPHSP70	2179	X59437	M.paratuberculosis gene for 70 kD heat shock protein.	Mycobacterium avium	73,404	23-Apr-92
-	GB_BA1:MTY13E10	35019	295324	Mycobacterium tuberculosis H37Rv complete genome; segment 18/162.	subsp. paratuberculosis Mycobacterium	72,028	17-Jun-98
					tuberculosis		
rxa02586 393	GB_IN2:AC006472	156362	156362 AC006472	Drosophila melanogaster, chromosome 2R, region 45E1-46A2, BAC clone BACR48G21, complete sequence.	Drosophila melanogaster 37,958	37,958	30-Jan-99
	GB_HTG4:AC010020	106541	AC010020	iome 3L/66D10 clone RPCI98-26I3, *** , 55 unordered pieces.	Drosophila melanogaster 37,333	37,333	16-OCT-1999
	GB_HTG4:AC010020 106541 AC010020	106541	AC010020	Drosophila melanogaster chromosome 3L/66D10 clone RPC198-2613, *** SEQUENCING IN PROGRESS ***, 55 unordered pieces.	Drosophila melanogaster 37,333	37,333	16-OCT-1999
rxa02587 2214		42498		Mycobacterium leprae cosmid L622.	Mycobacterium leprae	39,848	24-Jun-97
	GB_RO:AF074879	3316	AF074879	itein TSPY gene, complete cds.	Rattus norvegicus	35,830	
	GB_RO:RNJ001380	2641	AJ001380	Rattus norvegicus Tspy partial genomic sequence, exons 1-6.	Rattus norvegicus	37,702	29-Jun-98
xs03217 331	GB_BA1:MLCB2548	38916	AL023093		Mycobacterium leprae	37,888	27-Aug-99
	GB_HTG2:HSJ662M14 174772	4 174772	AL079336	Homo sapiens chromosome 20 clone RP4-662M14, *** SEQUENCING IN PROGRESS ***, 10 unordered pieces.	Homo sapiens	36,420	4-Feb-00
	GB_HTG2:HSJ662M14 174772 AL079336	4 174772	AL079336	Homo sapiens chromosome 20 clone RP4-662M14, *** SEQUENCING IN PROGRESS ***, 10 unordered pieces.	Homo sapiens	35,962	4-Feb-00

Exemplification

Example 1: Preparation of total genomic DNA of Corynebacterium glutamicum ATCC 13032

5 A culture of Corynebacterium glutamicum (ATCC 13032) was grown overnight at 30°C with vigorous shaking in BHI medium (Difco). The cells were harvested by centrifugation, the supernatant was discarded and the cells were resuspended in 5 ml buffer-I (5% of the original volume of the culture — all indicated volumes have been calculated for 100 ml of culture volume). Composition of buffer-I: 140.34 g/l sucrose, 2.46 g/l MgSO₄ x 7H₂O, 10 ml/l KH₂PO₄ solution (100 g/l, adjusted to pH 6.7 with KOH), 50 ml/l M12 concentrate (10 g/l (NH₄)₂SO₄, 1 g/l NaCl, 2 g/l MgSO₄ x 7H₂O₅ 0.2 g/l CaCl₂, 0.5 g/l yeast extract (Difco), 10 ml/l trace-elements-mix (200 mg/l FeSO₄ x H₂O₂, 10 mg/l ZnSO₄ x 7 H₂O₂ 3 mg/l MnCl₂ x 4 H₂O₂ 30 mg/l H₃BO₃ 20 mg/l CoCl₂ x 6 H₂O, 1 mg/l NiCl₂ x 6 H₂O, 3 mg/l Na₂MoO₄ x 2 H₂O, 500 mg/l complexing agent (EDTA or critic acid), 100 ml/l vitamins-mix (0.2 mg/l biotin, 0.2 mg/l folic acid, 20 mg/l p-amino benzoic acid, 20 mg/l riboflavin, 40 mg/l ca-panthothenate, 140 mg/l nicotinic acid, 40 mg/l pyridoxole hydrochloride, 200 mg/l myo-inositol). Lysozyme was added to the suspension to a final concentration of 2.5 mg/ml. After an approximately 4 h incubation at 37°C, the cell wall was degraded and the resulting protoplasts are harvested by centrifugation. The pellet was washed once with 5 ml 20 buffer-I and once with 5 ml TE-buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8). The pellet was resuspended in 4 ml TE-buffer and 0.5 ml SDS solution (10%) and 0.5 ml NaCl solution (5 M) are added. After adding of proteinase K to a final concentration of 200 μg/ml, the suspension is incubated for ca.18 h at 37°C. The DNA was purified by 25 extraction with phenol, phenol-chloroform-isoamylalcohol and chloroformisoamylalcohol using standard procedures. Then, the DNA was precipitated by adding 1/50 volume of 3 M sodium acetate and 2 volumes of ethanol, followed by a 30 min incubation at -20°C and a 30 min centrifugation at 12,000 rpm in a high speed centrifuge using a SS34 rotor (Sorvall). The DNA was dissolved in 1 ml TE-buffer containing 20 30 μg/ml RNaseA and dialysed at 4°C against 1000 ml TE-buffer for at least 3 hours. During this time, the buffer was exchanged 3 times. To aliquots of 0.4 ml of the

dialysed DNA solution, 0.4 ml of 2 M LiCl and 0.8 ml of ethanol are added. After a 30

min incubation at -20°C, the DNA was collected by centrifugation (13,000 rpm, Biofuge Fresco, Heraeus, Hanau, Germany). The DNA pellet was dissolved in TE-buffer. DNA prepared by this procedure could be used for all purposes, including southern blotting or construction of genomic libraries.

5

10

15

Example 2: Construction of genomic libraries in *Escherichia coli* of *Corynebacterium glutamicum* ATCC13032.

Using DNA prepared as described in Example 1, cosmid and plasmid libraries were constructed according to known and well established methods (*see e.g.*, Sambrook, J. *et al.* (1989) "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press, or Ausubel, F.M. *et al.* (1994) "Current Protocols in Molecular Biology", John Wiley & Sons.)

Any plasmid or cosmid could be used. Of particular use were the plasmids pBR322 (Sutcliffe, J.G. (1979) *Proc. Natl. Acad. Sci. USA*, 75:3737-3741); pACYC177 (Change & Cohen (1978) *J. Bacteriol* 134:1141-1156), plasmids of the pBS series (pBSSK+, pBSSK- and others; Stratagene, LaJolla, USA), or cosmids as SuperCos1 (Stratagene, LaJolla, USA) or Lorist6 (Gibson, T.J., Rosenthal A. and Waterson, R.H. (1987) *Gene* 53:283-286. Gene libraries specifically for use in *C. glutamicum* may be constructed using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

20

25

Example 3: DNA Sequencing and Computational Functional Analysis

Genomic libraries as described in Example 2 were used for DNA sequencing according to standard methods, in particular by the chain termination method using ABI377 sequencing machines (see *e.g.*, Fleischman, R.D. *et al.* (1995) "Whole-genome Random Sequencing and Assembly of Haemophilus Influenzae Rd., *Science*, 269:496-512). Sequencing primers with the following nucleotide sequences were used: 5'-GGAAACAGTATGACCATG-3' or 5'-GTAAAACGACGGCCAGT-3'.

Example 4: In vivo Mutagenesis

30 In vivo mutagenesis of Corynebacterium glutamicum can be performed by passage of plasmid (or other vector) DNA through E. coli or other microorganisms (e.g. Bacillus spp. or yeasts such as Saccharomyces cerevisiae) which are impaired in their capabilities to maintain

the integrity of their genetic information. Typical mutator strains have mutations in the genes for the DNA repair system (e.g., mutHLS, mutD, mutT, etc.; for reference, see Rupp, W.D. (1996) DNA repair mechanisms, in: *Escherichia col*i and *Salmonella*, p. 2277-2294, ASM: Washington.) Such strains are well known to those of ordinary skill in the art. The use of such strains is illustrated, for example, in Greener, A. and Callahan, M. (1994) *Strategies* 7: 32-34.

Example 5: DNA Transfer Between *Escherichia coli* and *Corynebacterium* glutamicum

Several Corynebacterium and Brevibacterium species contain endogenous 10 plasmids (as e.g., pHM1519 or pBL1) which replicate autonomously (for review see, e.g., Martin, J.F. et al. (1987) Biotechnology, 5:137-146). Shuttle vectors for Escherichia coli and Corynebacterium glutamicum can be readily constructed by using standard vectors for E. coli (Sambrook, J. et al. (1989), "Molecular Cloning: A Laboratory Manual", Cold Spring Harbor Laboratory Press or Ausubel, F.M. et al. (1994) "Current Protocols in Molecular Biology", John Wiley & Sons) to which a origin or replication for and a 15 suitable marker from Corynebacterium glutamicum is added. Such origins of replication are preferably taken from endogenous plasmids isolated from Corynebacterium and Brevibacterium species. Of particular use as transformation markers for these species are genes for kanamycin resistance (such as those derived from the Tn5 or Tn903 20 transposons) or chloramphenicol (Winnacker, E.L. (1987) "From Genes to Clones — Introduction to Gene Technology, VCH, Weinheim). There are numerous examples in the literature of the construction of a wide variety of shuttle vectors which replicate in both E. coli and C. glutamicum, and which can be used for several purposes, including gene overexpression (for reference, see e.g., Yoshihama, M. et al. (1985) J. Bacteriol. 162:591-597, 25 Martin J.F. et al. (1987) Biotechnology, 5:137-146 and Eikmanns, B.J. et al. (1991) Gene, 102:93-98).

Using standard methods, it is possible to clone a gene of interest into one of the shuttle vectors described above and to introduce such a hybrid vector into strains of *Corynebacterium glutamicum*. Transformation of *C. glutamicum* can be achieved by protoplast transformation (Kastsumata, R. et al. (1984) *J. Bacteriol*. 159306-311), electroporation (Liebl, E. et al. (1989) *FEMS Microbiol*. Letters, 53:399-303) and in cases where special vectors are used, also by conjugation (as described e.g. in Schäfer, A et al.

30

5

10

15

20

25

30

(1990) J. Bacteriol. 172:1663-1666). It is also possible to transfer the shuttle vectors for *C. glutamicum* to *E. coli* by preparing plasmid DNA from *C. glutamicum* (using standard methods well-known in the art) and transforming it into *E. coli*. This transformation step can be performed using standard methods, but it is advantageous to use an Mcr-deficient *E. coli* strain, such as NM522 (Gough & Murray (1983) *J. Mol. Biol.* 166:1-19).

Genes may be overexpressed in *C. glutamicum* strains using plasmids which comprise pCG1 (U.S. Patent No. 4,617,267) or fragments thereof, and optionally the gene for kanamycin resistance from TN903 (Grindley, N.D. and Joyce, C.M. (1980) *Proc. Natl. Acad. Sci. USA* 77(12): 7176-7180). In addition, genes may be overexpressed in *C. glutamicum* strains using plasmid pSL109 (Lee, H.-S. and A. J. Sinskey (1994) *J. Microbiol. Biotechnol.* 4: 256-263).

Aside from the use of replicative plasmids, gene overexpression can also be achieved by integration into the genome. Genomic integration in *C. glutamicum* or other Corynebacterium or Brevibacterium species may be accomplished by well-known methods, such as homologous recombination with genomic region(s), restriction endonuclease mediated integration (REMI) (see, *e.g.*, DE Patent 19823834), or through the use of transposons. It is also possible to modulate the activity of a gene of interest by modifying the regulatory regions (*e.g.*, a promoter, a repressor, and/or an enhancer) by sequence modification, insertion, or deletion using site-directed methods (such as homologous recombination) or methods based on random events (such as transposon mutagenesis or REMI). Nucleic acid sequences which function as transcriptional terminators may also be inserted 3' to the coding region of one or more genes of the invention; such terminators are well-known in the art and are described, for example, in Winnacker, E.L. (1987) From Genes to Clones – Introduction to Gene Technology. VCH: Weinheim.

Example 6: Assessment of the Expression of the Mutant Protein

Observations of the activity of a mutated protein in a transformed host cell rely on the fact that the mutant protein is expressed in a similar fashion and in a similar quantity to that of the wild-type protein. A useful method to ascertain the level of transcription of the mutant gene (an indicator of the amount of mRNA available for translation to the gene product) is to perform a Northern blot (for reference see, for example, Ausubel *et al.*

10

15

25

30

(1988) Current Protocols in Molecular Biology, Wiley: New York), in which a primer designed to bind to the gene of interest is labeled with a detectable tag (usually radioactive or chemiluminescent), such that when the total RNA of a culture of the organism is extracted, run on gel, transferred to a stable matrix and incubated with this probe, the
5 binding and quantity of binding of the probe indicates the presence and also the quantity of mRNA for this gene. This information is evidence of the degree of transcription of the mutant gene. Total cellular RNA can be prepared from Corynebacterium glutamicum by several methods, all well-known in the art, such as that described in Bormann, E.R. et al. (1992) Mol. Microbiol. 6: 317-326.

To assess the presence or relative quantity of protein translated from this mRNA, standard techniques, such as a Western blot, may be employed (see, for example, Ausubel et al. (1988) Current Protocols in Molecular Biology, Wiley: New York). In this process, total cellular proteins are extracted, separated by gel electrophoresis, transferred to a matrix such as nitrocellulose, and incubated with a probe, such as an antibody, which specifically binds to the desired protein. This probe is generally tagged with a chemiluminescent or colorimetric label which may be readily detected. The presence and quantity of label observed indicates the presence and quantity of the desired mutant protein present in the cell.

20 Example 7: Growth of Genetically Modified *Corynebacterium glutamicum* — Media and Culture Conditions

Genetically modified *Corynebacteria* are cultured in synthetic or natural growth media. A number of different growth media for Corynebacteria are both well-known and readily available (Lieb *et al.* (1989) *Appl. Microbiol. Biotechnol.*, 32:205-210; von der Osten *et al.* (1998) *Biotechnology Letters*, 11:11-16; Patent DE 4,120,867; Liebl (1992) "The Genus *Corynebacterium*, in: The Procaryotes, Volume II, Balows, A. *et al.*, eds. Springer-Verlag). These media consist of one or more carbon sources, nitrogen sources, inorganic salts, vitamins and trace elements. Preferred carbon sources are sugars, such as mono-, di-, or polysaccharides. For example, glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose serve as very good carbon sources. It is also possible to supply sugar to the media via complex compounds such as molasses or other by-products from sugar refinement. It can also be

- 91 -

advantageous to supply mixtures of different carbon sources. Other possible carbon sources are alcohols and organic acids, such as methanol, ethanol, acetic acid or lactic acid. Nitrogen sources are usually organic or inorganic nitrogen compounds, or materials which contain these compounds. Exemplary nitrogen sources include ammonia gas or ammonia salts, such as NH₄Cl or (NH₄)₂SO₄, NH₄OH, nitrates, urea, amino acids or complex nitrogen sources like corn steep liquor, soy bean flour, soy bean protein, yeast extract, meat extract and others.

Inorganic salt compounds which may be included in the media include the chloride-, phosphorous- or sulfate- salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron. Chelating compounds can be added to the medium to keep the metal ions in solution. Particularly useful chelating compounds include dihydroxyphenols, like catechol or protocatechuate, or organic acids, such as citric acid. It is typical for the media to also contain other growth factors, such as vitamins or growth promoters, examples of which include biotin, riboflavin, thiamin, folic acid, nicotinic acid, pantothenate and pyridoxin. Growth factors and salts frequently originate from complex media components such as yeast extract, molasses, corn steep liquor and others. The exact composition of the media compounds depends strongly on the immediate experiment and is individually decided for each specific case. Information about media optimization is available in the textbook "Applied Microbiol. Physiology, A Practical Approach (eds. P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). It is also possible to select growth media from commercial suppliers, like standard 1 (Merck) or BHI (grain heart infusion, DIFCO) or others.

All medium components are sterilized, either by heat (20 minutes at 1.5 bar and 121°C) or by sterile filtration. The components can either be sterilized together or, if necessary, separately. All media components can be present at the beginning of growth, or they can optionally be added continuously or batchwise.

Culture conditions are defined separately for each experiment. The temperature should be in a range between 15°C and 45°C. The temperature can be kept constant or can be altered during the experiment. The pH of the medium should be in the range of 5 to 8.5, preferably around 7.0, and can be maintained by the addition of buffers to the media. An exemplary buffer for this purpose is a potassium phosphate buffer. Synthetic buffers such as MOPS, HEPES, ACES and others can alternatively or simultaneously be used. It

10

15

20

25

WO 01/00804

- 92 -

PCT/IB00/00922

is also possible to maintain a constant culture pH through the addition of NaOH or NH₄OH during growth. If complex medium components such as yeast extract are utilized, the necessity for additional buffers may be reduced, due to the fact that many complex compounds have high buffer capacities. If a fermentor is utilized for culturing the microorganisms, the pH can also be controlled using gaseous ammonia.

The incubation time is usually in a range from several hours to several days. This time is selected in order to permit the maximal amount of product to accumulate in the broth. The disclosed growth experiments can be carried out in a variety of vessels, such as microtiter plates, glass tubes, glass flasks or glass or metal fermentors of different sizes. For screening a large number of clones, the microorganisms should be cultured in microtiter plates, glass tubes or shake flasks, either with or without baffles. Preferably 100 ml shake flasks are used, filled with 10% (by volume) of the required growth medium. The flasks should be shaken on a rotary shaker (amplitude 25 mm) using a speed-range of 100 – 300 rpm. Evaporation losses can be diminished by the maintenance of a humid atmosphere; alternatively, a mathematical correction for evaporation losses should be performed.

If genetically modified clones are tested, an unmodified control clone or a control clone containing the basic plasmid without any insert should also be tested. The medium is inoculated to an OD₆₀₀ of O.5 – 1.5 using cells grown on agar plates, such as CM plates (10 g/l glucose, 2,5 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l NaCl, 2 g/l urea, 10 g/l polypeptone, 5 g/l yeast extract, 5 g/l meat extract, 22 g/l agar, pH 6.8 with 2M NaOH) that had been incubated at 30°C. Inoculation of the media is accomplished by either introduction of a saline suspension of *C. glutamicum* cells from CM plates or addition of a liquid preculture of this bacterium.

25

30

5

10

15

20

Example 8 - In vitro Analysis of the Function of Mutant Proteins

The determination of activities and kinetic parameters of enzymes is well established in the art. Experiments to determine the activity of any given altered enzyme must be tailored to the specific activity of the wild-type enzyme, which is well within the ability of one of ordinary skill in the art. Overviews about enzymes in general, as well as specific details concerning structure, kinetics, principles, methods, applications and examples for the determination of many enzyme activities may be

- 93 -

found, for example, in the following references: Dixon, M., and Webb, E.C., (1979)
Enzymes. Longmans: London; Fersht, (1985) Enzyme Structure and Mechanism.
Freeman: New York; Walsh, (1979) Enzymatic Reaction Mechanisms. Freeman: San Francisco; Price, N.C., Stevens, L. (1982) Fundamentals of Enzymology. Oxford Univ.
Press: Oxford; Boyer, P.D., ed. (1983) The Enzymes, 3rd ed. Academic Press: New York; Bisswanger, H., (1994) Enzymkinetik, 2nd ed. VCH: Weinheim (ISBN 3527300325); Bergmeyer, H.U., Bergmeyer, J., Graßl, M., eds. (1983-1986) Methods of Enzymatic Analysis, 3rd ed., vol. I-XII, Verlag Chemie: Weinheim; and Ullmann's Encyclopedia of Industrial Chemistry (1987) vol. A9, "Enzymes". VCH: Weinheim, p.
352-363.

The activity of proteins which bind to DNA can be measured by several well-established methods, such as DNA band-shift assays (also called gel retardation assays). The effect of such proteins on the expression of other molecules can be measured using reporter gene assays (such as that described in Kolmar, H. *et al.* (1995) *EMBO J.* 14: 3895-3904 and references cited therein). Reporter gene test systems are well known and established for applications in both pro- and eukaryotic cells, using enzymes such as beta-galactosidase, green fluorescent protein, and several others.

The determination of activity of membrane-transport proteins can be performed according to techniques such as those described in Gennis, R.B. (1989) "Pores,

Channels and Transporters", in Biomembranes, Molecular Structure and Function,

Springer: Heidelberg, p. 85-137; 199-234; and 270-322.

Example 9: Analysis of Impact of Mutant Protein on the Production of the Desired Product

The effect of the genetic modification in *C. glutamicum* on production of a desired compound (such as an amino acid) can be assessed by growing the modified microorganism under suitable conditions (such as those described above) and analyzing the medium and/or the cellular component for increased production of the desired product (*i.e.*, an amino acid). Such analysis techniques are well known to one of ordinary skill in the art, and include spectroscopy, thin layer chromatography, staining methods of various kinds, enzymatic and microbiological methods, and analytical chromatography such as high performance liquid chromatography (see, for example,

- 94 -

Ullman, Encyclopedia of Industrial Chemistry, vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A. et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17; Rehm et al. (1993) Biotechnology, vol. 3, Chapter III: "Product recovery and purification", page 469-714, VCH: Weinheim; Belter, P.A. et al. (1988) Bioseparations: downstream processing for biotechnology, John Wiley and Sons; Kennedy, J.F. and Cabral, J.M.S. (1992) Recovery processes for biological materials, John Wiley and Sons; Shaeiwitz, J.A. and Henry, J.D. (1988) Biochemical separations, in: Ulmann's Encyclopedia of Industrial Chemistry, vol. B3, Chapter 11, page 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology, Noyes Publications.)

In addition to the measurement of the final product of fermentation, it is also possible to analyze other components of the metabolic pathways utilized for the production of the desired compound, such as intermediates and side-products, to determine the overall yield, production, and/or efficiency of production of the compound. Analysis methods include measurements of nutrient levels in the medium (e.g., sugars, hydrocarbons, nitrogen sources, phosphate, and other ions), measurements of biomass composition and growth, analysis of the production of common metabolites of biosynthetic pathways, and measurement of gasses produced during fermentation. Standard methods for these measurements are outlined in Applied Microbial Physiology, A Practical Approach, P.M. Rhodes and P.F. Stanbury, eds., IRL Press, p. 103-129; 131-163; and 165-192 (ISBN: 0199635773) and references cited therein.

Example 10: Purification of the Desired Product from C. glutamicum Culture

Recovery of the desired product from the *C. glutamicum* cells or supernatant of the above-described culture can be performed by various methods well known in the art. If the desired product is not secreted from the cells, the cells can be harvested from the culture by low-speed centrifugation, the cells can be lysed by standard techniques, such as mechanical force or sonication. The cellular debris is removed by centrifugation, and the supernatant fraction containing the soluble proteins is retained for further purification of the desired compound. If the product is secreted from the *C. glutamicum*

10

15

20

25

- 95 -

cells, then the cells are removed from the culture by low-speed centrifugation, and the supernate fraction is retained for further purification.

The supernatant fraction from either purification method is subjected to chromatography with a suitable resin, in which the desired molecule is either retained on a chromatography resin while many of the impurities in the sample are not, or where the impurities are retained by the resin while the sample is not. Such chromatography steps may be repeated as necessary, using the same or different chromatography resins. One of ordinary skill in the art would be well-versed in the selection of appropriate chromatography resins and in their most efficacious application for a particular molecule to be purified. The purified product may be concentrated by filtration or ultrafiltration, and stored at a temperature at which the stability of the product is maximized.

There are a wide array of purification methods known to the art and the preceding method of purification is not meant to be limiting. Such purification techniques are described, for example, in Bailey, J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, McGraw-Hill: New York (1986).

The identity and purity of the isolated compounds may be assessed by techniques standard in the art. These include high-performance liquid chromatography (HPLC), spectroscopic methods, staining methods, thin layer chromatography, NIRS, enzymatic assay, or microbiologically. Such analysis methods are reviewed in: Patek *et al.* (1994) *Appl. Environ. Microbiol.* 60: 133-140; Malakhova *et al.* (1996) *Biotekhnologiya* 11: 27-32; and Schmidt *et al.* (1998) *Bioprocess Engineer.* 19: 67-70. Ulmann's Encyclopedia of Industrial Chemistry, (1996) vol. A27, VCH: Weinheim, p. 89-90, p. 521-540, p. 540-547, p. 559-566, 575-581 and p. 581-587; Michal, G. (1999) Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology, John Wiley and Sons; Fallon, A. *et al.* (1987) Applications of HPLC in Biochemistry in: Laboratory Techniques in Biochemistry and Molecular Biology, vol. 17.

EXAMPLE 11: Cloning of a *Corynebacterium glutamicum* Gene Involved in Lincomycin Resistance Using a Reporter Gene Approach

A. Identification of the Gene Encoding the LMRB Protein

5

10

15

20

25

Plasmid pSL130 was constructed by ligation of the aceB promoter region (paceB) of *C. glutamicum* (Kim, H.J. *et al.* (1997) *J. Microbiol. Biotechnol.* 7: 287-292) into the polylinker of the lac operon fusion vector pRS415, which lacks a promoter (Simon, R.W. *et al.* (1987) *Gene* 53: 85-96). Plasmid pSL145 was constructed by ligating the resulting paceB-lac region into the *E. coli* cloning vector pACYC184. *E. coli* DH5αF' was transformed with pSL145 and the resulting strain was used as a host for screening of a genomic *C. glutamicum* library (in pSL109).

Transformants were screened by growth on agar medium containing 5-bromo-4-chloro-3-indolyl-beta-D-glalactopyranoside (X-Gal). A white colony, containing DNA influencing lacZ expression, was selected for further analysis. This clone was found to contain a 4 kB fragment from the gene library. Subclones were constructed in pSL109 and a subclone which retained the white phenotype on X-Gal plates was identified. This subclone was found to contain a 2.6 kB BamH1-XhoI fragment (plasmid pSL149-5). The fragment was sequenced and identified as a membrane protein-encoding gene (LMRB gene).

The 1442 nucleotides of the coding sequence of the LMRB gene encode a polypeptide of 481 amino acid residues with a high percentage of hydrophobic amino acids. A Genbank search determined that the LMRB protein is 40% identical to the protein product of the lmrB gene from *Bacillus subtilis* (Genbank Accession AL009126, TREMBL Accession P94422), as determined using a CLÜSTAL W analysis (using standard parameters).

The LMRN protein contains a sequence pattern: 158-A-P-A-L-G-P-T-L-S-G-167 (SEQ ID NO:301), which resembles the known multi-drug-resistance-protein consensus motif G-X-X-X-G-P-X-X-G-G (SEQ ID NO:302) (Paulsen, I.T., and Skurray, R.A. (1993) *Gene* 124: 1-11). Therefore, the LMRB protein was classified as a drug resistance protein.

B. In vivo Analysis of lmrB Function

The lmrB gene was overexpressed in *C. glutamicum* ASO19E12 (Kim, H.J. *et al.* 30 (1997) *J. Microbiol. Biotechnol.* 7: 287-292) using the plasmid pSL149-5, described above.

5

10

15

20

Disruption of the LMRB gene was accomplished by use of the vector pSL18-lmrB. This vector was constructed as follows: an internal fragment of the LMRB gene was amplified by PCR under standard conditions using primers 5'-CTCCAGGATTGCTCCGAAGG-3' (SEQ ID NO:303) and 5'-

5 CACAGTGGTTGACCACTGGC-3' (SEQ ID NO:304). The resulting PCR product was treated with T7 DNA polymerase and T7 polynucleotide kinase, and was cloned into the Smal site of plasmid pSL18 (Kim, Y.H. and H.-S. Lee (1996) J. Microbiol. Biotechnol. 6: 315-320). The disruption of the LMRB gene in C. glutamicum ASO19E12 was performed by conjugation, as previously described (Schwarzer and Puhler (1991) Bio/Technology 9:84-87).

C. glutamicum cells transformed with pSL149-5 displayed similar resistances as untransformed cells against erythromycin, penicillin G, tetracycline, chloramphenicol, spectinomycin, nalidixic acid, gentamycin, streptomycin, ethidium bromide, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and sodium dodecyl sulfate. Significant differences were observed, however, in the resistance of transformed and untransformed cells to lincomycin.

LMRB-overexpressing *C. glutamicum* cells were found to be able to grow in the presence of 20 µg/ml lincomycin. In contrast, cells which do not overexpress LMRB (or cells carrying a LMRB disruption) were not able to grow on agar media containing 5 µg/ml lincomycin. This effect was clearly visible in liquid culture. LMRB overexpression led to a 9-fold increased resistance (compared to wild-type) against lincomycin and LMRB disruption resulted in a decreased resistance (28% of wild-type) to this antibiotic.

25 Example 12: Analysis of the Gene Sequences of the Invention

The comparison of sequences and determination of percent homology between two sequences are art-known techniques, and can be accomplished using a mathematical algorithm, such as the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci.* USA 87:2264-68, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci.* USA 90:5873-77. Such an algorithm is incorporated into the NBLAST and XBLAST programs (version 2.0) of Altschul, *et al.* (1990) *J. Mol. Biol.* 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score = 100,

15

20

wordlength = 12 to obtain nucleotide sequences homologous to SRT nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score = 50, wordlength = 3 to obtain amino acid sequences homologous to SRT protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul *et al.*, (1997) *Nucleic Acids Res.* 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, one of ordinary skill in the art will know how to optimize the parameters of the program (*e.g.*, XBLAST and NBLAST) for the specific sequence being analyzed.

Another example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Meyers and Miller ((1988) Comput. Appl. Biosci. 4: 11-17). Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Additional algorithms for sequence analysis are known in the art, and include ADVANCE and ADAM. described in Torelli and Robotti (1994) Comput. Appl. Biosci. 10:3-5; and FASTA, described in Pearson and Lipman (1988) P.N.A.S. 85:2444-8.

The percent homology between two amino acid sequences can also be accomplished using the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blosum 62 matrix or a PAM250 matrix, and a gap weight of 12, 10, 8, 6, or 4 and a length weight of 2, 3, or 4. The percent homology between two nucleic acid sequences can be accomplished using the GAP program in the GCG software package, using standard parameters, such as a gap weight of 50 and a length weight of 3.

A comparative analysis of the gene sequences of the invention with those present in Genbank has been performed using techniques known in the art (see, e.g., Bexevanis and Ouellette, eds. (1998) Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. John Wiley and Sons: New York). The gene sequences of the invention were compared to genes present in Genbank in a three-step process. In a first step, a BLASTN analysis (e.g., a local alignment analysis) was performed for each of the sequences of the invention against the nucleotide sequences present in Genbank, and the

5

10

15

20

- 99 -

top 500 hits were retained for further analysis. A subsequent FASTA search (e.g., a combined local and global alignment analysis, in which limited regions of the sequences are aligned) was performed on these 500 hits. Each gene sequence of the invention was subsequently globally aligned to each of the top three FASTA hits, using the GAP program in the GCG software package (using standard parameters). In order to obtain correct results, the length of the sequences extracted from Genbank were adjusted to the length of the query sequences by methods well-known in the art. The results of this analysis are set forth in Table 4. The resulting data is identical to that which would have been obtained had a GAP (global) analysis alone been performed on each of the genes of the invention in comparison with each of the references in Genbank, but required significantly reduced computational time as compared to such a database-wide GAP (global) analysis. Sequences of the invention for which no alignments above the cutoff values were obtained are indicated on Table 4 by the absence of alignment information. It will further be understood by one of ordinary skill in the art that the GAP alignment homology percentages set forth in Table 4 under the heading "% homology (GAP)" are listed in the European numerical format, wherein a ',' represents a decimal point. For example, a value of "40,345" in this column represents "40,345%".

Example 13: Construction and Operation of DNA Microarrays

The sequences of the invention may additionally be used in the construction and application of DNA microarrays (the design, methodology, and uses of DNA arrays are well known in the art, and are described, for example, in Schena, M. et al. (1995)

Science 270: 467-470; Wodicka, L. et al. (1997) Nature Biotechnology 15: 1359-1367;

DeSaizieu, A. et al. (1998) Nature Biotechnology 16: 45-48; and DeRisi, J.L. et al.

(1997) Science 278: 680-686).

DNA microarrays are solid or flexible supports consisting of nitrocellulose, nylon, glass, silicone, or other materials. Nucleic acid molecules may be attached to the surface in an ordered manner. After appropriate labeling, other nucleic acids or nucleic acid mixtures can be hybridized to the immobilized nucleic acid molecules, and the label may be used to monitor and measure the individual signal intensities of the hybridized molecules at defined regions. This methodology allows the simultaneous quantification of the relative or absolute amount of all or selected nucleic acids in the applied nucleic

30

5

10

- 100 -

acid sample or mixture. DNA microarrays, therefore, permit an analysis of the expression of multiple (as many as 6800 or more) nucleic acids in parallel (see, e.g., Schena, M. (1996) *BioEssays* 18(5): 427-431).

The sequences of the invention may be used to design oligonucleotide primers which are able to amplify defined regions of one or more *C. glutamicum* genes by a nucleic acid amplification reaction such as the polymerase chain reaction. The choice and design of the 5' or 3' oligonucleotide primers or of appropriate linkers allows the covalent attachment of the resulting PCR products to the surface of a support medium described above (and also described, for example, Schena, M. *et al.* (1995) *Science* 270: 467-470).

Nucleic acid microarrays may also be constructed by *in situ* oligonucleotide synthesis as described by Wodicka, L. *et al.* (1997) *Nature Biotechnology* 15: 1359-1367. By photolithographic methods, precisely defined regions of the matrix are exposed to light. Protective groups which are photolabile are thereby activated and undergo nucleotide addition, whereas regions that are masked from light do not undergo any modification. Subsequent cycles of protection and light activation permit the synthesis of different oligonucleotides at defined positions. Small, defined regions of the genes of the invention may be synthesized on microarrays by solid phase oligonucleotide synthesis.

The nucleic acid molecules of the invention present in a sample or mixture of nucleotides may be hybridized to the microarrays. These nucleic acid molecules can be labeled according to standard methods. In brief, nucleic acid molecules (e.g., mRNA molecules or DNA molecules) are labeled by the incorporation of isotopically or fluorescently labeled nucleotides, e.g., during reverse transcription or DNA synthesis.

Hybridization of labeled nucleic acids to microarrays is described (e.g., in Schena, M. et al. (1995) supra; Wodicka, L. et al. (1997), supra; and DeSaizieu A. et al. (1998), supra). The detection and quantification of the hybridized molecule are tailored to the specific incorporated label. Radioactive labels can be detected, for example, as described in Schena, M. et al. (1995) supra) and fluorescent labels may be detected, for example, by the method of Shalon et al. (1996) Genome Research 6: 639-645).

The application of the sequences of the invention to DNA microarray technology, as described above, permits comparative analyses of different strains of *C*.

5

10

- 101 -

glutamicum or other Corynebacteria. For example, studies of inter-strain variations based on individual transcript profiles and the identification of genes that are important for specific and/or desired strain properties such as pathogenicity, productivity and stress tolerance are facilitated by nucleic acid array methodologies. Also, comparisons of the profile of expression of genes of the invention during the course of a fermentation reaction are possible using nucleic acid array technology.

Example 14: Analysis of the Dynamics of Cellular Protein Populations (Proteomics)

The genes, compositions, and methods of the invention may be applied to study the interactions and dynamics of populations of proteins, termed 'proteomics'. Protein populations of interest include, but are not limited to, the total protein population of *C. glutamicum* (e.g., in comparison with the protein populations of other organisms), those proteins which are active under specific environmental or metabolic conditions (e.g., during fermentation, at high or low temperature, or at high or low pH), or those proteins which are active during specific phases of growth and development.

Protein populations can be analyzed by various well-known techniques, such as gel electrophoresis. Cellular proteins may be obtained, for example, by lysis or extraction, and may be separated from one another using a variety of electrophoretic techniques. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins largely on the basis of their molecular weight. Isoelectric focusing polyacrylamide gel electrophoresis (IEF-PAGE) separates proteins by their isoelectric point (which reflects not only the amino acid sequence but also posttranslational modifications of the protein). Another, more preferred method of protein analysis is the consecutive combination of both IEF-PAGE and SDS-PAGE, known as 2-D-gel electrophoresis (described, for example, in Hermann et al. (1998) Electrophoresis 19: 3217-3221; Fountoulakis et al. (1998) Electrophoresis 19: 1193-1202; Langen et al. (1997) Electrophoresis 18: 1184-1192; Antelmann et al. (1997) Electrophoresis 18: 1451-1463). Other separation techniques may also be utilized for protein separation, such as capillary gel electrophoresis; such techniques are well known in the art.

Proteins separated by these methodologies can be visualized by standard techniques, such as by staining or labeling. Suitable stains are known in the art, and

5

10

15

20

25

- 102 -

include Coomassie Brilliant Blue, silver stain, or fluorescent dyes such as Sypro Ruby (Molecular Probes). The inclusion of radioactively labeled amino acids or other protein precursors (e.g., ³⁵S-methionine, ³⁵S-cysteine, ¹⁴C-labelled amino acids, ¹⁵N-amino acids, ¹⁵NO₃ or ¹⁵NH₄⁺ or ¹³C-labelled amino acids) in the medium of *C. glutamicum* permits the labeling of proteins from these cells prior to their separation. Similarly, fluorescent labels may be employed. These labeled proteins can be extracted, isolated and separated according to the previously described techniques.

Proteins visualized by these techniques can be further analyzed by measuring the amount of dye or label used. The amount of a given protein can be determined quantitatively using, for example, optical methods and can be compared to the amount of other proteins in the same gel or in other gels. Comparisons of proteins on gels can be made, for example, by optical comparison, by spectroscopy, by image scanning and analysis of gels, or through the use of photographic films and screens. Such techniques are well-known in the art.

To determine the identity of any given protein, direct sequencing or other standard techniques may be employed. For example, N- and/or C-terminal amino acid sequencing (such as Edman degradation) may be used, as may mass spectrometry (in particular MALDI or ESI techniques (see, e.g., Langen et al. (1997) Electrophoresis 18: 1184-1192)). The protein sequences provided herein can be used for the identification of C. glutamicum proteins by these techniques.

The information obtained by these methods can be used to compare patterns of protein presence, activity, or modification between different samples from various biological conditions (e.g., different organisms, time points of fermentation, media conditions, or different biotopes, among others). Data obtained from such experiments alone, or in combination with other techniques, can be used for various applications, such as to compare the behavior of various organisms in a given (e.g., metabolic) situation, to increase the productivity of strains which produce fine chemicals or to increase the efficiency of the production of fine chemicals.

25

5

10

15

- 103 -

Equivalents

5

Those of ordinary skill in the art will recognize, or will be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.

What is claimed:

- An isolated nucleic acid molecule from Corynebacterium glutamicum encoding a stress, resistance, or tolerance gene, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- The isolated nucleic acid molecule of claim 1, wherein said stress, resistance, or tolerance gene is selected from the group consisting of nucleic acid molecules involved in a stress response, tolerance, or resistance to temperature stresses, pH stresses, oxygen stresses, osmotic stresses, toxic chemicals, oxygen radicals, antibiotics, or to lincomycin.
- 3. An isolated Corynebacterium glutamicum nucleic acid molecule selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 4. An isolated nucleic acid molecule which encodes a polypeptide sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 5. An isolated nucleic acid molecule which encodes a naturally occurring allelic variant of a polypeptide selected from the group of amino acid sequences consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 30 6. An isolated nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, or

a portion thereof, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.

- 7. An isolated nucleic acid molecule comprising a fragment of at least 15 nucleotides of a nucleic acid comprising a nucleotide sequence selected from the group consisting of those sequences set forth as odd-numbered SEQ ID NOs of the Sequence Listing, provided that the nucleic acid molecule does not consist of any of the F-designated genes set forth in Table 1.
- 10 8. An isolated nucleic acid molecule which hybridizes to the nucleic acid molecule of any one of claims 1-7 under stringent conditions.
 - An isolated nucleic acid molecule comprising the nucleic acid molecule of any one
 of claims 1-8 or a portion thereof and a nucleotide sequence encoding a heterologous
 polypeptide.
 - 10. A vector comprising the nucleic acid molecule of any one of claims 1-9.
 - 11. The vector of claim 10, which is an expression vector.

20

30

15

- 12. A host cell transfected with the expression vector of claim 11.
- 13. The host cell of claim 12, wherein said cell is a microorganism.
- 25 14. The host cell of claim 13, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
 - 15. The host cell of claim 12, wherein the expression of said nucleic acid molecule results in the modulation in production of a fine chemical from said cell.

consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine

16. The host cell of claim 15, wherein said fine chemical is selected from the group

and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides, and enzymes.

- 5 17. A method of producing a polypeptide comprising culturing the host cell of claim 12 in an appropriate culture medium to, thereby, produce the polypeptide.
 - 18. An isolated stress, resistance, or tolerance polypeptide from *Corynebacterium* glutamicum, or a portion thereof.

10

WO 01/00804

19. The protein of claim 18, wherein said stress, resistance, or tolerance polypeptide is selected from the group consisting of proteins involved in a stress response, tolerance, or resistance to temperature stresses, pH stresses, oxygen stresses, osmotic stresses, toxic chemicals, oxygen radicals, antibiotics, or to lincomycin.

15

20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.

20

- 21. An isolated polypeptide comprising a naturally occurring allelic variant of a polypeptide comprising an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, or a portion thereof, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 22. The isolated polypeptide of any of claims 18-21, further comprising heterologous amino acid sequences.
- 30 23. An isolated polypeptide which is encoded by a nucleic acid molecule comprising a nucleotide sequence which is at least 50% homologous to a nucleic acid selected from the group consisting of those sequences set forth as odd-numbered SEQ ID

15

NOs of the Sequence Listing,, provided that the nucleic acid molecule does not consist of any of the F-designated nucleic acid molecules set forth in Table 1.

- 24. An isolated polypeptide comprising an amino acid sequence which is at least 50%
 5 homologous to an amino acid sequence selected from the group consisting of those sequences set forth as even-numbered SEQ ID NOs of the Sequence Listing, provided that the amino acid sequence is not encoded by any of the F-designated genes set forth in Table 1.
- 10 25. A method for producing a fine chemical, comprising culturing a cell containing a vector of claim 12 such that the fine chemical is produced.
 - 26. The method of claim 25, wherein said method further comprises the step of recovering the fine chemical from said culture.

27. The method of claim 25, wherein said method further comprises the step of transfecting said cell with the vector of claim 11 to result in a cell containing said vector.

- 28. The method of claim 25, wherein said cell belongs to the genus *Corynebacterium* or *Brevibacterium*.
- 29. The method of claim 25, wherein said cell is selected from the group consisting of:
 Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium, lilium,
 25 Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum,
 Corynebacterium acetophilum, Corynebacterium ammoniagenes, Corynebacterium
 fujiokense, Corynebacterium nitrilophilus, Brevibacterium ammoniagenes,
 Brevibacterium butanicum, Brevibacterium divaricatum, Brevibacterium flavum,
 Brevibacterium healii, Brevibacterium ketoglutamicum, Brevibacterium
 ketosoreductum, Brevibacterium lactofermentum, Brevibacterium linens,

Brevibacterium paraffinolyticum, and those strains set forth in Table 3.

- 30. The method of claim 25, wherein expression of the nucleic acid molecule from said vector results in modulation of production of said fine chemical.
- 31. The method of claim 25, wherein said fine chemical is selected from the group consisting of: organic acids, proteinogenic and nonproteinogenic amino acids, purine and pyrimidine bases, nucleosides, nucleotides, lipids, saturated and unsaturated fatty acids, diols, carbohydrates, aromatic compounds, vitamins, cofactors, polyketides and enzymes.
- 10 32. The method of claim 25, wherein said fine chemical is an amino acid.
 - 33. The method of claim 32, wherein said amino acid is drawn from the group consisting of: lysine, glutamate, glutamine, alanine, aspartate, glycine, serine, threonine, methionine, cysteine, valine, leucine, isoleucine, arginine, proline, histidine, tyrosine, phenylalanine, and tryptophan.
 - 34. A method for producing a fine chemical, comprising culturing a cell whose genomic DNA has been altered by the inclusion of a nucleic acid molecule of any one of claims 1-9.

20

15

5

- 35. A method for diagnosing the presence or activity of Corynebacterium diphtheriae in a subject, comprising detecting the presence of one or more SEQ ID NOs 1 through 304 of the Sequence Listing in the subject, provided that the sequences are not or are not encoded by any of the F-designated sequences set forth in Table 1, thereby diagnosing the presence or activity of Corynebacterium diphtheriae in the subject.
- 36. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the Sequence Listing, wherein the nucleic acid molecule is disrupted.

30

25

37. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set forth as odd-numbered SEQ ID NOs of the

Sequence Listing, wherein the nucleic acid molecule comprises one or more nucleic acid modifications from the sequence set forth as odd-numbered SEQ ID NOs of the Sequence Listing.

38. A host cell comprising a nucleic acid molecule selected from the group consisting of the nucleic acid molecules set as odd-numbered SEQ ID NOs of the Sequence Listing, wherein the regulatory region of the nucleic acid molecule is modified relative to the wild-type regulatory region of the molecule.

10

SEQUENCE LISTING

<12 <13 <14 <14	0 > 0 F 0 > E 0 > 1 > 50 > 3	ORYN ESIS BGI-1	EBAC	TERI E AN	esell IUM G ID TC	LUTA	MICU			ENCC	DING	STR	ESS,			
<21 <21	0> 1 1> 1 2> E 3> C	566 NA	ebac	teri	um g	luta	micu	m							·	
<22	1> C 2> ((1 524	543)												
	0> 1 tggc	act	cttt	agta	gt t	tttt	ctca	t ag	ctca	gttt	cgc	aact	tta ·	gaga	actcta	60
gaa	actg	agc	ttca	tgct	gt g	aaag	gcct	t tt	ctcc	attc					att Ile 5	115
										ctg Leu						163
										atg Met						211
										atc Ile						259
										act Thr						307
										ctg Leu 80						355
										ttc Phe						403
										gtg Val						451
										atg Met						499

120 125 130

gtt Val	acc Thr 135	Let	g aco	g gto val	g gtt . Val	cct Pro	Ala	g gaç ı Glu	g cgt 1 Arg	cgt Arç	ggt Gly 145	Ser	atg Met	atg Met	ggc	547
	Ile					Ser					Leu				ttg Leu 165	595
					Asn					His	tgg Trp				Met	643
				Val					Val		ggt Gly					691
aaa Lys	aat Asn	atc Ile 200	Gly	gaa Glu	acc Thr	aag Lys	atc Ile 205	acc Thr	cca Pro	ctg Leu	gat Asp	gtt Val 210	ctg Leu	tct Ser	gtc Val	739
											tac Tyr 225					787
											ggt Gly					835
											ttg Leu					883
											cga Arg					931
											ttg Leu					979
Met	ctc Leu 295	gga Gly	acc Thr	gtc Val	atg Met	gtt Val 300	ttg Leu	cca Pro	atc Ile	tac Tyr	ctg Leu 305	cag Gln	act Thr	tcc Ser	ctc Leu	1027
gga Gly 310	gtt Val	act Thr	gct Ala	ttg Leu	gtg Val 315	acc Thr	ggt Gly	ttg Leu	gtt Val	gtt Val 320	atg Met	ccc Pro	ggc Gly	ggc Gly	ctc Leu 325	1075
ctc Leu																1123
ggt (cca Pro	Arg	ccg Pro 345	ctg Leu	ctg Leu	att Ile	Pro	gga Gly 350	gca Ala	att Ile	gcg Ala	Leu	gct Ala 355	atc Ile	gcg Ala	1171

_		_	_			ctc Leu								_	-	1219
	_	_		-		ttc Phe 380	-			-	_	-	_	_		1267
						ctc Leu										1315
						aac Asn										1363
		_		-		gca Ala	-								-	1411
		_				cat His	-	_	_	-	_	-			_	1459
_				-		gca Ala 460						-	_	_	_	1507
			-		_	gtc Val		-	-	_		taaa	tacc	aa		1553
aaaa	tggg	gc a	ga													1566

<210> 2

<211> 481

<212> PRT

<213> Corynebacterium glutamicum

<400> 2

Met Asp Ser Gln Ile Asn Thr Gln Thr Ser Pro Ala Ala Ala Lys Leu 1 5 10 15

Pro Arg Glu Val Val Val Leu Ser Ile Leu Val Val Ser Ala Met 20 25 30

Ile Met Ile Leu Asn Glu Thr Ile Leu Ser Val Ala Leu Pro Ser Ile 35 40 45

Met Glu Asp Phe Ser Val Pro Glu Thr Thr Ala Gln Trp Leu Thr Thr 50 55 60

Gly Phe Met Leu Thr Met Ala Val Val Ile Pro Thr Thr Gly Tyr Leu 65 70 75 80

Leu Asp Arg Phe Ser Thr Lys Thr Ile Phe Val Thr Ala Leu Leu Phe 85 90 95

- Phe Thr Val Gly Thr Leu Thr Ala Ala Leu Ala Pro Thr Phe Ala Val 100 105 110
- Leu Leu Gly Ala Arg Ile Val Gln Ala Val Gly Thr Ala Leu Val Met
 115 120 125
- Pro Leu Leu Met Thr Val Thr Leu Thr Val Val Pro Ala Glu Arg Arg 130 135 140
- Gly Ser Met Met Gly Ile Ile Ser Ile Val Ile Ser Val Ala Pro Ala 145 150 155 160
- Leu Gly Pro Thr Leu Ser Gly Val Ile Leu Asn Ser Leu Thr Trp His
 165 170 175
- Trp Leu Phe Trp Met Met Leu Pro Ile Val Val Ile Ala Leu Val Ile 180 185 190
- Gly Phe Phe Leu Ile Lys Asn Ile Gly Glu Thr Lys Ile Thr Pro Leu 195 200 205
- Asp Val Leu Ser Val Ile Leu Ser Val Phe Ala Phe Gly Gly Leu Val 210 215 220
- Tyr Gly Phe Ser Ser Phe Gly Ala Ile Leu Glu Gly Glu Gly Thr Val 225 230 235 240
- Gly Ile Phe Ala Ile Val Val Gly Ala Ile Ala Leu Leu Ile Phe Ala 245 250 255
- Leu Arg Gln His Gln Leu Gly Lys Gln Asp Lys Ala Leu Met Asp Leu 260 265 270
- Arg Ala Phe Lys Val Arg Asn Phe Ser Phe Ser Leu Thr Thr Ile Leu 275 280 285
- Leu Ala Phe Gly Ala Met Leu Gly Thr Val Met Val Leu Pro Ile Tyr 290 295 300
- Leu Gln Thr Ser Leu Gly Val Thr Ala Leu Val Thr Gly Leu Val Val 305 310 315 320
- Met Pro Gly Gly Leu Leu Gln Gly Leu Ile Ser Pro Phe Ile Gly Arg 325 330 335
- Phe Tyr Asp Lys Val Gly Pro Arg Pro Leu Leu Ile Pro Gly Ala Ile 340 345 350
- Ala Leu Ala Ile Ala Ala Ser Ser Met Thr Phe Leu Asn Glu Asn Ser 355 360 365
- Pro Val Trp Met Val Val Wal Met His Val Val Phe Ser Ile Gly Met 370 375 380

385		Met	мет	Inr	390		мет	Thr	inr	395	Leu	GIY	Ala	ьеи	400	
Lys	His	Leu	Tyr	Gly 405		Gly	Ser	Ala	Ile 410		Asn	Thr	Phe	Gln 415	Gln	
Leu	Ala	Gly	Ala 420		Gly	Thr	Ala	Ile 425		Ile	Ala	Ala	Leu 430	Ser	Phe	
Gly	Thr	Ser 435		Ala	Ala	Ser	Ser 440		Ser	Ala	His	Ala 445	Glu	Ala	Val	
Ala	Ala 450		Thr	Lys	Val	Ala 455	Phe	Ile	Ala	Gly	Ala 460	Ile	Ile	Ala	Val	
Ile 465	Ala	Leu	Val	Val	Ser 470	Leu	Phe	Val	Thr	Arg 475	Val	Glu	Glu	Glu	Ala 480	
His																
<21 <21	0> 3 1> 3' 2> DI 3> Co	NΑ	ebac	teri	um gi	lutar	micu	m								
<22	0> 1> Ci 2> (! 3> R)	52).		8)												
	O> 3 aaaco	cca (caac	cggca	ac ac	cacaa	aati	t tti	toto	atgg	agg	gatto	cac (cgtg Val 1		57
aac Asn	gtc Val	aac Asn 5	atc Ile	aag Lys	ccg Pro	ctt Leu	gag Glu 10	gac Asp	aag Lys	atc Ile	ctc Leu	gtt Val 15	cag Gln	atc Ile	aac Asn	105
gaa Glu	gca Ala 20	gag Glu	acc Thr	acc Thr	acc Thr	gct Ala 25	tcc Ser	ggc Gly	ctg Leu	gtc Val	att Ile 30	cca Pro	gat Asp	tcc Ser	gct Ala	153
aag Lys 35	gaa Glu	aag Lys	cca Pro	caa Gln	gag Glu 40	gca Ala	acc Thr	gtt Val	atc Ile	gca Ala 45	gtt Val	.ggc Gly	cca Pro	ggc Gly	cgc Arg 50	201
ttc Phe	gat Asp	gac Asp	aag Lys	ggt Gly 55	aac Asn	cgc Arg	atc Ile	cca Pro	ctg Leu 60	gac Asp	atc Ile	aag Lys	gaa Glu	gat Asp 65	gac Asp	249
gtt Val	gtg Val	atc Ile	ttc Phe 70	tcc Ser	cgt Arg	tac Tyr	ggc Gly	ggc Gly 75	acc Thr	gag Glu	atc Ile	aag Lys	ttc Phe 80	ggt Gly	ggc Gly	297

gtg gag tac ttg ctt ctc tcc gct cgt gac atc ctc gca atc gtc gag 345 Val Glu Tyr Leu Leu Ser Ala Arg Asp Ile Leu Ala Ile Val Glu 85 90 95

aag taggggataa gttcatggca aag Lys 371

<210> 4 <211> 99 <212> PRT <213> Corynebacterium glutamicum

<400> 4

Val Ala Asn Val Asn Ile Lys Pro Leu Glu Asp Lys Ile Leu Val Gln
1 5 10 15

Ile Asn Glu Ala Glu Thr Thr Ala Ser Gly Leu Val Ile Pro Asp 20 25 30

Ser Ala Lys Glu Lys Pro Gln Glu Ala Thr Val Ile Ala Val Gly Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Gly Arg Phe Asp Asp Lys Gly Asn Arg Ile Pro Leu Asp Ile Lys Glu
50 55 60

Asp Asp Val Val Ile Phe Ser Arg Tyr Gly Gly Thr Glu Ile Lys Phe 65 70 75 80

Gly Gly Val Glu Tyr Leu Leu Ser Ala Arg Asp Ile Leu Ala Ile 85 90 95

Val Glu Lys

<210> 5 <211> 1737 <212> DNA <213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1714)
<223> RXN00493

cccgttacgg cggcaccgag atcaagttcg gtggcgtgga gtacttgctt ctctccgctc 60

gtgacatcct cgcaatcgtc gagaagtagg ggataagttc atg gca aag ctc att 115 Met Ala Lys Leu Ile 1

gct ttt gac cag gac gcc cgc gaa ggc att ctc cgg ggc gtt gac gct 163 Ala Phe Asp Gln Asp Ala Arg Glu Gly Ile Leu Arg Gly Val Asp Ala 10 15 20

					aag Lys											211
					ttc Phe											259
					atc Ile											307
					tcc Ser 75											355
					gca Ala											403
					gct Ala											451
					gca Ala											499
					gac Asp											547
					gtt Val 155											595
					ggt Gly											643
					gtc Val											691
					atc Ile											739
					ctg Leu											787
gac Asp 230	ttc Phe	ctc Leu	cca Pro	ttg Leu	ctg Leu 235	gag Glu	aag Lys	gtt Val	gtg Val	gag Glu 240	tcc Ser	aac Asn	cgt Arg	cct Pro	ttg Leu 245	835

			c gca e Ala		ı Ası					Pro					Val	883
gto Val	g aad L Asi	c tco n Se:	c ato r Ile 265	e Arg	aaq J Lys	g acc	ato Ile	aag Lys 270	Val	gtt Val	gca Ala	gtç Val	aag Lys 275	Ser	cct Pro	931
			c gad y Asp)					Phe					Ala			979
acc Thr	295	: Ala	a act	gtc Val	gtg Val	gat Asp 300	Pro	gaa Glu	gtg Val	ggc	atc Ile 305	Asn	ctc Leu	aac Asn	gaa Glu	1027
	Gly		gaa Glu			Gly										1075
gac Asp	gaa Glu	acc Thr	atc Ile	Ile 330	gtt Val	gat Asp	ggt Gly	gca Ala	ggt Gly 335	tcc Ser	gca Ala	gaa Glu	gac Asp	gtt Val 340	gaa Glu	1123
			ggc Gly 345													1171
			gaa Glu													1219
			atc Ile													1267
			cgt Arg													1315
caa Gln	gaa Glu	ggc Gly	gtt Val	atc Ile 410	gct Ala	ggt Gly	ggc Gly	ggt Gly	tcc Ser 415	gct Ala	ttg Leu	gtt Val	cag Gln	atc Ile 420	gct Ala	1363
gag Glu	act Thr	ctg Leu	aag Lys 425	gct Ala	tac Tyr	gcc Ala	gaa Glu	gag Glu 430	ttc Phe	gaa Glu	ggc Gly	gac Asp	cag Gln 435	aag Lys	gtc Val	1411
ggc Gly	gtt Val	cgc Arg 440	gca Ala	ctg Leu	gct Ala	Thr	gct Ala 445	ttg Leu	ggc Gly	aag Lys	cca Pro	gcg Ala 450	tac Tyr	tgg Trp	atc Ile	1459
			gca Ala							Val						1507
gct	ctg	cca	aac	ggc	gag	ggc	ttc	aac	gct	gca	act	ttg	gaa	tac	gga	1555

Ala Leu Pro Asn Gly Glu Gly Phe Asn Ala Ala Thr Leu Glu Tyr Gly 475 480 aac ctg atc aac gac ggt gtc atc gac cca gtc aag gtc acc cat tcc 1603 Asn Leu Ile Asn Asp Gly Val Ile Asp Pro Val Lys Val Thr His Ser 495 qca qta gtg aat gca acc tct gtt gca cgc atg gtt ctg acc act gag 1651 Ala Val Val Asn Ala Thr Ser Val Ala Arg Met Val Leu Thr Thr Glu 510 505 gct tct gtt gtt gag aag cct gca gaa gaa gca gcc gat gca cat gca 1699 Ala Ser Val Val Glu Lys Pro Ala Glu Glu Ala Ala Asp Ala His Ala 525 530 gga cat cat cac cac taaagttctg tgaaaaacac cgt 1737 Gly His His His His 535 <210> 6 <211> 538 <212> PRT <213> Corynebacterium glutamicum Met Ala Lys Leu Ile Ala Phe Asp Gln Asp Ala Arg Glu Gly Ile Leu Arg Gly Val Asp Ala Leu Ala Asn Ala Val Lys Val Thr Leu Gly Pro Arg Gly Arg Asn Val Val Leu Asp Lys Ala Phe Gly Gly Pro Leu Val 40 Thr Asn Asp Gly Val Thr Ile Ala Arg Asp Ile Asp Leu Glu Asp Pro Phe Glu Asn Leu Gly Ala Gln Leu Val Lys Ser Val Ala Val Lys Thr Asn Asp Ile Ala Gly Asp Gly Thr Thr Thr Ala Thr Leu Leu Ala Gln 90 Ala Leu Ile Ala Glu Gly Leu Arg Asn Val Ala Ala Gly Ala Asn Pro 100 Met Glu Leu Asn Lys Gly Ile Ser Ala Ala Glu Lys Thr Leu Glu 120 Glu Leu Lys Ala Arg Ala Thr Glu Val Ser Asp Thr Lys Glu Ile Ala 135 130 Asn Val Ala Thr Val Ser Ser Arg Asp Glu Val Val Gly Glu Ile Val 150 Ala Ala Ala Met Glu Lys Val Gly Lys Asp Gly Val Val Thr Val Glu

165 170 175

Glu Ser Gln Ser Ile Glu Thr Ala Leu Glu Val Thr Glu Gly Ile Ser 180 185 190

Phe Asp Lys Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asp Asn Asp Thr
195 200 205

Gln Gln Ala Val Leu Asp Asn Pro Ala Val Leu Leu Val Arg Asn Lys 210 215 220

Ile Ser Ser Leu Pro Asp Phe Leu Pro Leu Leu Glu Lys Val Val Glu225230235240

Ser Asn Arg Pro Leu Leu Ile Ile Ala Glu Asp Val Glu Glu Pro 245 250 255

Leu Gln Thr Leu Val Val Asn Ser Ile Arg Lys Thr Ile Lys Val Val 260 265 270

Ala Val Lys Ser Pro Tyr Phe Gly Asp Arg Arg Lys Ala Phe Met Asp 275 280 285

Asp Leu Ala Ile Val Thr Lys Ala Thr Val Val Asp Pro Glu Val Gly 290 295 300

Ile Asn Leu Asn Glu Ala Gly Glu Glu Val Phe Gly Thr Ala Arg Arg 305 310 315 320

Ile Thr Val Ser Lys Asp Glu Thr Ile Ile Val Asp Gly Ala Gly Ser 325 330 335

Ala Glu Asp Val Glu Ala Arg Arg Gly Gln Ile Arg Arg Glu Ile Ala 340 345 350

Asn Thr Asp Ser Thr Trp Asp Arg Glu Lys Ala Glu Glu Arg Leu Ala 355 360 365

Lys Leu Ser Gly Gly Ile Ala Val Ile Arg Val Gly Ala Ala Thr Glu 370 375 380

Thr Glu Val Asn Asp Arg Lys Leu Arg Val Glu Asp Ala Ile Asn Ala 385 390 395 400

Ala Arg Ala Ala Gln Glu Gly Val Ile Ala Gly Gly Gly Ser Ala 405 410 415

Leu Val Gln Ile Ala Glu Thr Leu Lys Ala Tyr Ala Glu Glu Phe Glu 420 425 430

Gly Asp Gln Lys Val Gly Val Arg Ala Leu Ala Thr Ala Leu Gly Lys 435 440 445

Pro Ala Tyr Trp Ile Ala Ser Asn Ala Gly Leu Asp Gly Ser Val Val 450 455 460

Val Ala Arg Thr Ala Ala Leu Pro Asn Gly Glu Gly Phe Asn Ala Ala

470 465 475 480 Thr Leu Glu Tyr Gly Asn Leu Ile Asn Asp Gly Val Ile Asp Pro Val 490 Lys Val Thr His Ser Ala Val Val Asn Ala Thr Ser Val Ala Arg Met 505 Val Leu Thr Thr Glu Ala Ser Val Val Glu Lys Pro Ala Glu Glu Ala 520 Ala Asp Ala His Ala Gly His His His 535 <210> 7 <211> 1339 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1339) <223> FRXA00498 cccgttacgg cggcaccgag atcaagttcg gtggcgtgga gtacttgctt ctctccgctc 60 gtgacatect egeaategte gagaagtagg ggataagtte atg gea aag etc att Met Ala Lys Leu Ile get ttt gae eag gae gee ege gaa gge att ete egg gge gtt gae get 163 Ala Phe Asp Gln Asp Ala Arg Glu Gly Ile Leu Arg Gly Val Asp Ala 10 ctg gca aac gct gtc aag gta acc ctc ggc cca cgc ggc cgt aac gtg 211 Leu Ala Asn Ala Val Lys Val Thr Leu Gly Pro Arg Gly Arg Asn Val 25 gtt ctt gat aag gca ttc ggc gga cct ctg gtc acc aac gac ggt gtc 259 Val Leu Asp Lys Ala Phe Gly Gly Pro Leu Val Thr Asn Asp Gly Val 40 45 307 acc att gcc cgc gac atc gac ctt gag gat cct ttt gag aac ctc ggt Thr Ile Ala Arg Asp Ile Asp Leu Glu Asp Pro Phe Glu Asn Leu Gly 55 60 gcg cag ctg gtg aag tcc gtt gct gtt aag acc aac gac atc gct ggt 355 Ala Gln Leu Val Lys Ser Val Ala Val Lys Thr Asn Asp Ile Ala Gly

gac ggc acc acg act gca act ctg ctt gct cag gca ctc att gct gaa

Asp Gly Thr Thr Ala Thr Leu Leu Ala Gln Ala Leu Ile Ala Glu

ggc ctg cgc aac gtt gct gct gcc gca aac cca atg gag ctc aac aag

90

95

403

451

Gly	Leu	Arç	Asr 105		Ala	Ala	Gly	Ala 110		Pro	Met	Glu	Leu 115		Lys	
			gca Ala	_	_	-	_	Thr	_	-		_	Lys	_	_	499
		Glu	gtg Val				Lys					Val				547
	Ser	-	gat Asp	_	_	Val				_	_	_		_	_	595
			aag Lys		Gly											643
		-	ctc Leu 185		_		-					_	-			691
			tat Tyr				_		_		_	_	_	-	_	739
-			gca Ala	_	_		-	_		-						787
			cca Pro													835
			gca Ala												gtt Val	883
			atc Ile 265					_		-			_			931
			gac Asp													979
			act Thr													1027
			gaa Glu													1075
			atc Ile													1123

330 335 340

gca cgt cgc ggc cag atc cgt cgc gaa atc gcc aac acc gat tcc acc $\,$ 1171 Ala Arg Arg Gly Gln Ile Arg Arg Glu Ile Ala Asn Thr Asp Ser Thr $\,$ 345 $\,$ 350 $\,$ 355

tgg gat cgc gaa aag gca gaa gag cgt ttg gct aag ctc tcc ggt ggt 1219
Trp Asp Arg Glu Lys Ala Glu Glu Arg Leu Ala Lys Leu Ser Gly Gly
360 365 370

att gct gtc atc cgc gtt ggt gca gca act gaa acc gaa gtc aac gac 1267 Ile Ala Val Ile Arg Val Gly Ala Ala Thr Glu Thr Glu Val Asn Asp 375 380 385

cgc aag ctg cgt gtc gaa gat gcc atc aac gct gct cgc gca gca gca 1315 Arg Lys Leu Arg Val Glu Asp Ala Ile Asn Ala Ala Arg Ala Ala Ala 390 395 400 405

caa gaa ggc gtt atc gct ggt ggc 1339 Gln Glu Gly Val Ile Ala Gly Gly 410

<210> 8

<211> 413

<212> PRT

<213> Corynebacterium glutamicum

<400> 8

Met Ala Lys Leu Ile Ala Phe Asp Gln Asp Ala Arg Glu Gly Ile Leu 1 5 10 15

Arg Gly Val Asp Ala Leu Ala Asn Ala Val Lys Val Thr Leu Gly Pro 20 25 30

Arg Gly Arg Asn Val Val Leu Asp Lys Ala Phe Gly Gly Pro Leu Val 35 40 45

Thr Asn Asp Gly Val Thr Ile Ala Arg Asp Ile Asp Leu Glu Asp Pro 50 55 60

Phe Glu Asn Leu Gly Ala Gln Leu Val Lys Ser Val Ala Val Lys Thr 65 70 75 80

Asn Asp Ile Ala Gly Asp Gly Thr Thr Thr Ala Thr Leu Leu Ala Gln
85 90 95

Ala Leu Ile Ala Glu Gly Leu Arg Asn Val Ala Ala Gly Ala Asn Pro 100 105 110

Met Glu Leu Asn Lys Gly Ile Ser Ala Ala Ala Glu Lys Thr Leu Glu 115 120 125

Glu Leu Lys Ala Arg Ala Thr Glu Val Ser Asp Thr Lys Glu Ile Ala 130 135 140

Asn Val Ala Thr Val Ser Ser Arg Asp Glu Val Val Gly Glu Ile Val

155 160 145 150 Ala Ala Met Glu Lys Val Gly Lys Asp Gly Val Val Thr Val Glu Glu Ser Gln Ser Ile Glu Thr Ala Leu Glu Val Thr Glu Gly Ile Ser 185 Phe Asp Lys Gly Tyr Leu Ser Pro Tyr Phe Ile Asn Asp Asn Asp Thr Gln Gln Ala Val Leu Asp Asn Pro Ala Val Leu Leu Val Arg Asn Lys 215 Ile Ser Ser Leu Pro Asp Phe Leu Pro Leu Leu Glu Lys Val Val Glu 230 Ser Asn Arg Pro Leu Leu Ile Ile Ala Glu Asp Val Glu Gly Glu Pro 250 Leu Gln Thr Leu Val Val Asn Ser Ile Arg Lys Thr Ile Lys Val Val Ala Val Lys Ser Pro Tyr Phe Gly Asp Arg Arg Lys Ala Phe Met Asp 280 Asp Leu Ala Ile Val Thr Lys Ala Thr Val Val Asp Pro Glu Val Gly Ile Asn Leu Asn Glu Ala Gly Glu Val Phe Gly Thr Ala Arg Arg 315 310 Ile Thr Val Ser Lys Asp Glu Thr Ile Ile Val Asp Gly Ala Gly Ser 325 Ala Glu Asp Val Glu Ala Arg Arg Gly Gln Ile Arg Arg Glu Ile Ala Asn Thr Asp Ser Thr Trp Asp Arg Glu Lys Ala Glu Glu Arg Leu Ala Lys Leu Ser Gly Gly Ile Ala Val Ile Arg Val Gly Ala Ala Thr Glu Thr Glu Val Asn Asp Arg Lys Leu Arg Val Glu Asp Ala Ile Asn Ala 400 385 Ala Arg Ala Ala Gln Glu Gly Val Ile Ala Gly Gly 405 410

<210> 9

<211> 723

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (101)...(700)

<223> RXA01217 <400> 9 gcgctgcctg cgaagactcg accaagacat tcgagtcggt cgcgggcatt ttttattttc 60 qcqqccqaqt qtccaccttc atccatgagg agaaatcact atg gca aag tac caa Met Ala Lys Tyr Gln acc att qaq qct gct gtc cgc tct gag ttc ggc aag ggc tct gca cgt 163 Thr Ile Glu Ala Ala Val Arg Ser Glu Phe Gly Lys Gly Ser Ala Arg cgt gca cgc gtt gct ggc cag atc cct gct gtt gtt tac ggc gca gat 211 Arg Ala Arg Val Ala Gly Gln Ile Pro Ala Val Val Tyr Gly Ala Asp 25 30 gtt gag too aac etg cac gtc acc atc gac cac ege acc tte get geg 259 Val Glu Ser Asn Leu His Val Thr Ile Asp His Arg Thr Phe Ala Ala 40 45 307 ctq qtt cqc caq gaa ggc qta aac gct gtt ctt gag ctc gac atc gag Leu Val Arg Gln Glu Gly Val Asn Ala Val Leu Glu Leu Asp Ile Glu 60 355 qqc caq aaq cag ctc acc atg atc aag cac atc gac cag aac gtg ctg Gly Gln Lys Gln Leu Thr Met Ile Lys His Ile Asp Gln Asn Val Leu 75 acc ttc cac atc gac cac ttg gac ctg ctt gcc att aag cgc ggc gaa 403 Thr Phe His Ile Asp His Leu Asp Leu Leu Ala Ile Lys Arg Gly Glu 95 90 aag gtt gag gtt gac gtt cca gtt atc gtc gag ggc gag cca gct cca 451 Lys Val Glu Val Asp Val Pro Val Ile Val Glu Gly Glu Pro Ala Pro 105 110 ggc acc atg tgg gtt cag gat gct gac acc atc aag gtt gag gct gac 499 Gly Thr Met Trp Val Gln Asp Ala Asp Thr Ile Lys Val Glu Ala Asp 125 120 gtt ctg tcc atc cct gaa gag ttc acc gtt tcc atc gaa ggc ctt gag 547 Val Leu Ser Ile Pro Glu Glu Phe Thr Val Ser Ile Glu Gly Leu Glu 140 135 ctc ggc gca cag atc acc gca gct gac atc aag ctc gag ggc gac acc 595 Leu Gly Ala Gln Ile Thr Ala Ala Asp Ile Lys Leu Glu Gly Asp Thr 155 150 acc ctg gtt gag gat cct gag acc ctc atc gtc aac atc gtt ctc cca Thr Leu Val Glu Asp Pro Glu Thr Leu Ile Val Asn Ile Val Leu Pro

691

175

qct qtc gaq gaa gaa gac acc gaa gag gac gaa gca gct gaa gaa gca

Ala Val Glu Glu Glu Asp Thr Glu Glu Asp Glu Ala Ala Glu Glu Ala

170

185 190 195

gct act gag taagctttt tagatagctt tat 723
Ala Thr Glu

200

<210> 10

<211> 200 <212> PRT

<213> Corynebacterium glutamicum

<400> 10

Met Ala Lys Tyr Gln Thr Ile Glu Ala Ala Val Arg Ser Glu Phe Gly
1 5 10 15

Lys Gly Ser Ala Arg Ala Arg Val Ala Gly Gln Ile Pro Ala Val 20 25 30

Val Tyr Gly Ala Asp Val Glu Ser Asn Leu His Val Thr Ile Asp His 35 40 45

Arg Thr Phe Ala Ala Leu Val Arg Gln Glu Gly Val Asn Ala Val Leu 50 55 60

Glu Leu Asp Ile Glu Gly Gln Lys Gln Leu Thr Met Ile Lys His Ile 65 70 75 80

Asp Gln Asn Val Leu Thr Phe His Ile Asp His Leu Asp Leu Leu Ala 85 90 95

Ile Lys Arg Gly Glu Lys Val Glu Val Asp Val Pro Val Ile Val Glu
100 105 110

Gly Glu Pro Ala Pro Gly Thr Met Trp Val Gln Asp Ala Asp Thr Ile 115 120 125

Lys Val Glu Ala Asp Val Leu Ser Ile Pro Glu Glu Phe Thr Val Ser 130 135 140

Ile Glu Gly Leu Glu Leu Gly Ala Gln Ile Thr Ala Ala Asp Ile Lys
145 150 155 160

Leu Glu Gly Asp Thr Thr Leu Val Glu Asp Pro Glu Thr Leu Ile Val
165 170 175

Asn Ile Val Leu Pro Ala Val Glu Glu Glu Asp Thr Glu Glu Asp Glu
180 185 190

Ala Ala Glu Glu Ala Ala Thr Glu

<210> 11

<211> 1603

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (33)..(1580) <223> RXA00605 <400> 11 ataggtaacc ctcataaaag gaaggaatgc taatg tct gag aag tca gca gca 53 Met Ser Glu Lys Ser Ala Ala 1 gac cag atc gta gat cgc gga atg cgt cca aag ctt tct gga aac act 101 Asp Gln Ile Val Asp Arg Gly Met Arg Pro Lys Leu Ser Gly Asn Thr acc cgc cac aac gga gca cca gtt cca tct gag aac atc tcc gca acc Thr Arg His Asn Gly Ala Pro Val Pro Ser Glu Asn Ile Ser Ala Thr gca ggc cca cag ggt cca aac gtt ctc aat gac att cac ctc att gaa Ala Gly Pro Gln Gly Pro Asn Val Leu Asn Asp Ile His Leu Ile Glu 45 aag ctc gca cac ttt aac cgc gag aac gtt cca gag cgt atc cct cac Lys Leu Ala His Phe Asn Arg Glu Asn Val Pro Glu Arg Ile Pro His 65 qca aag ggc cac ggc gct ttc ggt gag ctg cac atc acc gag gac gta 293 Ala Lys Gly His Gly Ala Phe Gly Glu Leu His Ile Thr Glu Asp Val 75 tee gaa tae ace aag gea gae etg tte eag eet ggt aag gte ace eeg 341 Ser Glu Tyr Thr Lys Ala Asp Leu Phe Gln Pro Gly Lys Val Thr Pro 90 95 ctg gct gtt cgc ttc tct act gtt gct ggt gag cag ggc tcc cca gat 389 Leu Ala Val Arg Phe Ser Thr Val Ala Gly Glu Gln Gly Ser Pro Asp 105 110 acc tgg cgc gac gtc cac ggc ttc gct ctt cgc ttc tac acc gaa gag 437 Thr Trp Arg Asp Val His Gly Phe Ala Leu Arg Phe Tyr Thr Glu Glu 120 125 135 ggc aac tac gac atc gtg ggt aac aac acc cca acc ttc ttc ctt cgt 485 Gly Asn Tyr Asp Ile Val Gly Asn Asn Thr Pro Thr Phe Phe Leu Arg 140 145 gac age atg aag tto cog gac tto atc cac tca cag aag cgt ctc aac 533 Asp Gly Met Lys Phe Pro Asp Phe Ile His Ser Gln Lys Arg Leu Asn 155 160 aag aac ggt ctg cgc gat gca gac atg cag tgg gat ttc tgg acc cgc 581 Lys Asn Gly Leu Arg Asp Ala. Asp Met Gln Trp Asp Phe Trp Thr Arg 170 175 629 gca cct gaa tct gca cac cag gtg acc tac ctg atg ggt gac cgc ggt Ala Pro Glu Ser Ala His Gln Val Thr Tyr Leu Met Gly Asp Arg Gly

195 190 185 acc cct aag acc tcc cqc cac cag gac ggc ttc ggc tcc cac acc ttc Thr Pro Lys Thr Ser Arg His Gln Asp Gly Phe Gly Ser His Thr Phe 205 cag tgg atc aac gct gaa ggt aag cca gtt tgg gtt aag tac cac ttc 725 Gln Trp Ile Asn Ala Glu Gly Lys Pro Val Trp Val Lys Tyr His Phe 225 aag acc cgc cag ggc tgg gat tgc ttc acc gat gca gaa gca gca aag 773 Lys Thr Arg Gln Gly Trp Asp Cys Phe Thr Asp Ala Glu Ala Ala Lys 240 gtt gca ggc gag aac gct gac tac cag cgc gaa gac ctc tac aac gct 821 Val Ala Gly Glu Asn Ala Asp Tyr Gln Arg Glu Asp Leu Tyr Asn Ala att gaa aac ggc gac ttc cca atc tgg gac gtc aag gtt cag atc atg 869 Ile Glu Asn Gly Asp Phe Pro Ile Trp Asp Val Lys Val Gln Ile Met cct ttc gag gat gca gag aac tac cgc tgg aac cca ttc gac ctg acc Pro Phe Glu Asp Ala Glu Asn Tyr Arg Trp Asn Pro Phe Asp Leu Thr 290 aag acc tgg tcc cag aag gat tac cca ctg atc cca gtc ggt tac ttc Lys Thr Trp Ser Gln Lys Asp Tyr Pro Leu Ile Pro Val Gly Tyr Phe 300 305 atc ctg aac cgc aac cca cgc aac ttc ttc gct cag atc gag cag ctt 1013 Ile Leu Asn Arg Asn Pro Arg Asn Phe Phe Ala Gln Ile Glu Gln Leu gca ctg gat cca ggc aac atc gtt cct ggc gtc ggc ctg tcc cca gac 1061 Ala Leu Asp Pro Gly Asn Ile Val Pro Gly Val Gly Leu Ser Pro Asp 335 1109 cgc atg ctc cag gca cgt atc ttc gca tac gct gac cag cag cgt tac Arg Met Leu Gln Ala Arg Ile Phe Ala Tyr Ala Asp Gln Gln Arg Tyr 350 1157 cgc atc ggc. gct aac tac cgc gac ctg cca gtg aac cgt cca atc aac Arg Ile Gly Ala Asn Tyr Arg Asp Leu Pro Val Asn Arg Pro Ile Asn 370 365 gag gtc aac acc tac agc cgc gaa ggt tcc atg cag tac atc ttc gac 1205 Glu Val Asn Thr Tyr Ser Arg Glu Gly Ser Met Gln Tyr Ile Phe Asp 380 385 1253 gct gag ggc gag cct tcc tac agc cct aac cgc tac gac aag ggc gca Ala Glu Gly Glu Pro Ser Tyr Ser Pro Asn Arg Tyr Asp Lys Gly Ala 400 ggc tac ctg gat aac ggt acg gat tcc tcc tcc aac cac acc tcc tac 1301 Gly Tyr Leu Asp Asn Gly Thr Asp Ser Ser Ser Asn His Thr Ser Tyr

ggc cag gct gat gac atc tac gtc aac cca gac cca cac ggc acc gac Gly Gln Ala Asp Asp Ile Tyr Val Asn Pro Asp Pro His Gly Thr Asp 425 430 435	1349
ctg gtt cgt gct tac gtc aag cac cag gat gat gac gac ttc atc Leu Val Arg Ala Ala Tyr Val Lys His Gln Asp Asp Asp Asp Phe Ile 440 445 450 450	1397
cag cca ggc atc cta tac cgc gag gtc ctg gat gag ggc gag aag gag Gln Pro Gly Ile Leu Tyr Arg Glu Val Leu Asp Glu Gly Glu Lys Glu 460 465 470	1445
cga ttg gca gac aac atc tcc aac gca atg cag ggc atc tct gag gca Arg Leu Ala Asp Asn Ile Ser Asn Ala Met Gln Gly Ile Ser Glu Ala 475 480 485	1493
acc gag cca cgc gtc tac gac tac tgg aac aac gtt gat gag aac ctc Thr Glu Pro Arg Val Tyr Asp Tyr Trp Asn Asn Val Asp Glu Asn Leu 490 495 500	1541
ggc gct cgc gtc aag gag ctt tac ctc cag aag aag gct taagtccttc Gly Ala Arg Val Lys Glu Leu Tyr Leu Gln Lys Lys Ala 505 510 515	1590
tgatttaaaa tga	1603
<210> 12	
<211> 516 <212> PRT <213> Corynebacterium glutamicum	
<212> PRT <213> Corynebacterium glutamicum <400> 12	
<212> PRT <213> Corynebacterium glutamicum <400> 12 Met Ser Glu Lys Ser Ala Ala Asp Gln Ile Val Asp Arg Gly Met Arg 1 5 10 15	
<212> PRT <213> Corynebacterium glutamicum <400> 12 Met Ser Glu Lys Ser Ala Ala Asp Gln Ile Val Asp Arg Gly Met Arg	
<212> PRT <213> Corynebacterium glutamicum <400> 12 Met Ser Glu Lys Ser Ala Ala Asp Gln Ile Val Asp Arg Gly Met Arg 1 5 10 15 Pro Lys Leu Ser Gly Asn Thr Thr Arg His Asn Gly Ala Pro Val Pro	
<pre><212> PRT <213> Corynebacterium glutamicum <400> 12 Met Ser Glu Lys Ser Ala Ala Asp Gln Ile Val Asp Arg Gly Met Arg</pre>	•
<pre><212> PRT <213> Corynebacterium glutamicum <400> 12 Met Ser Glu Lys Ser Ala Ala Asp Gln Ile Val Asp Arg Gly Met Arg</pre>	
<pre><212> PRT <213> Corynebacterium glutamicum <400> 12 Met Ser Glu Lys Ser Ala Ala Asp Gln Ile Val Asp Arg Gly Met Arg 1</pre>	
<pre><212> PRT <213> Corynebacterium glutamicum <400> 12 Met Ser Glu Lys Ser Ala Ala Asp Gln Ile Val Asp Arg Gly Met Arg 1</pre>	

Leu	130		э Туг	r Thi	r Glu	135		/ Asr	Туг	Asp	11e		. Gly	Asn	Asn
Thr 145		Thr	. Phe	e Phe	150		J Asp	Gly	Met	Lys 155		Pro	Asp	Phe	Ile 160
His	Ser	Glr	Lys	165	-	Asn	Lys	a Asn	170		Arg	Asp	Ala	Asp 175	
Gln	Trp	Asp	Phe 180		Thr	Arg	, Ala	Pro 185		Ser	Ala	His	Gln 190		Thr
Tyr	Leu	Met 195		/ Asp	Arg	Gly	Thr 200	Pro	Lys	Thr	Ser	Arg 205	His	Gln	Asp
Gly	Phe 210		Ser	His	Thr	Phe 215		Trp	Ile	Asn	Ala 220		Gly	Lys	Pro
Val 225	Trp	Val	Lys	Tyr	His 230	Phe	Lys	Thr	Arg	Gln 235	_	Trp	Asp	Cys	Phe 240
Thr	Asp	Ala	Glu	Ala 245		Lys	Val	Ala	Gly 250		Asn	Ala	Asp	Tyr 255	Gln
Arg	Glu	Asp	Leu 260	_	Asn	Ala	Ile	Glu 265		Gly	Asp	Phe	Pro 270	Ile	Trp
Asp	Val	Lys 275		Gln	Ile	Met	Pro 280	Phe	Glu	Asp	Ala	Glu 285	Asn	Tyr	Arg
Trp	Asn 290	Pro	Phe	Asp	Leu	Thr 295	Lys	Thr	Trp	Ser	Gln 300	Lys	Asp	Tyr	Pro
Leu 305	Ile	Pro	Val	Gly	Tyr 310	Phe	Ile	Leu	Asn	Arg 315	Asn	Pro	Arg	Asn	Phe 320
Phe	Ala	Gln	Ile	Glu 325	Gln	Leu	Ala	Leu	Asp 330	Pro	Gly	Asn	Ile	Val 335	Pro
Gly	Val	Gly	Leu 340	Ser	Pro	Asp	Arg	Met 345	Leu	Gln	Ala	Arg	Ile 350	Phe	Ala
Tyr	Ala	Asp 355	Gln	Gln	Arg	Tyr	Arg 360	Ile	Gly	Ala	Asn	Tyr 365	Arg	Asp	Leu
Pro	Val 370	Asn	Arg	Pro	Ile	Asn 375	Glu	Val	Asn	Thr	Tyr 380	Ser	Arg	Glu	Gly
Ser 385	Met	Gln	Tyr	Ile	Phe 390	Asp	Ala	Glu	Gly	Glu 395	Pro	Ser	Tyr	Ser	Pro 400
Asn	Arg	Tyr	Asp	Lys 405	Gly	Ala	Gly	Tyr	Leu 410	Asp	Asn	Gly	Thr	Asp 415	Ser
Ser	Ser	Asn	His 420	Thr	Ser	Tyr	Gly.	Gln 425	Ala	Asp	Asp	Ile	Tyr 430	Val	Asn

Pro Asp Pro His Gly Thr Asp Leu Val Arg Ala Ala Tyr Val Lys His Gln Asp Asp Asp Phe Ile Gln Pro Gly Ile Leu Tyr Arg Glu Val Leu Asp Glu Gly Glu Lys Glu Arg Leu Ala Asp Asn Ile Ser Asn Ala Met Gln Gly Ile Ser Glu Ala Thr Glu Pro Arg Val Tyr Asp Tyr Trp 490 Asn Asn Val Asp Glu Asn Leu Gly Ala Arg Val Lys Glu Leu Tyr Leu. 505 Gln Lys Lys Ala 515 <210> 13 <211> 2439 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(2416) <223> RXA00404 <400> 13 aagatccgat catcggcata cagaaacacc catctggccg aactttcctt tttctgcatg 60 cattlctgca cacagittct gcccgctgtt tctacgcata gtg gct ttg aaa cga Val Ala Leu Lys Arg ccc gaa gag aaa aca gta aag atc gtg acc ata aaa cag act gac aac 163 Pro Glu Glu Lys Thr Val Lys Ile Val Thr Ile Lys Gln Thr Asp Asn atc aat gac gat gat ttg gtg tac agc aac gct act gac ctt cca gta 211 Ile Asn Asp Asp Asp Leu Val Tyr Ser Asn Ala Thr Asp Leu Pro Val ggc gtg aag aag tcc cct aaa atg tca ccg acc gcc cgc gtt ggt ctc 259 Gly Val Lys Lys Ser Pro Lys Met Ser Pro Thr Ala Arg Val Gly Leu 40 45 307 ctt gtc ttt ggg gtt atc gcg gcg gtg ggt tgg gga gca atc gct ttc Leu Val Phe Gly Val Ile Ala Ala Val Gly Trp Gly Ala Ile Ala Phe 55 60 tcc cgt ggc gaa aca atc aac tct gtg tgg ctg gtt ttg gcg gca gtt 355 Ser Arg Gly Glu Thr Ile Asn Ser Val Trp Leu Val Leu Ala Ala Val 70 75

					e Ala					c Āla					a tac 1 Tyr)	403
				s Pro					Ala					Туг	gtt Val	451
			/ Lys					Thr					Leu		ggc Gly	499
cac His	cac His 135	Phe	gca Ala	gct Ala	att	gca Ala 140	Gly	gcc Ala	ggt Gly	cca Pro	ttg Leu 145	Val	gga Gly	cct	gtc Val	547
atg Met 150	gcc Ala	gcg Ala	cag Gln	atg Met	ggc Gly 155	tac Tyr	ctg Leu	cca Pro	ggc	acc Thr	Leu	tgg Trp	att	ato	ctc Leu 165	595
					Gly			cag Gln		Tyr						643
tct Ser	act Thr	cgt Arg	agg Arg 185	cgt Arg	gga Gly	cgc Arg	tca Ser	ctt Leu 190	ggc Gly	cag Gln	atg Met	gtt Val	cgt Arg 195	gat Asp	gaa Glu	691
atg Met	ggc Gly	acg Thr 200	gtc Val	ggt Gly	gga Gly	gct Ala	gcc Ala 205	ggt Gly	atc Ile	ttg Leu	gcg Ala	acc Thr 210	atc Ile	tcc Ser	atc Ile	739
atg Met	atc Ile 215	atc Ile	att Ile	atc Ile	gcg Ala	gtg Val 220	ctc Leu	gca Ala	ttg Leu	atc Ile	gtg Val 225	gtt Val	aat Asn	gca Ala	ctg Leu	787
gct Ala 230	gat Asp	tca Ser	cca Pro	tgg Trp	ggc Gly 235	gtt Val	ttc Phe	tcc Ser	atc Ile	acc Thr 240	atg Met	acc Thr	atc Ile	cca Pro	att Ile 245	835
gca Ala	ctg Leu	ttc Phe	atg Met	ggt Gly 250	gtg Val	tac Tyr	ttg Leu	cgt Arg	tac Tyr 255	ctg Leu	cgc Arg	cca Pro	ggt Gly	cgt Arg 260	gtt Val	883
act Thr	gaa Glu	gtg Val	tcc Ser 265	atc Ile	atc Ile	ggt Gly	gtg Val	gca Ala 270	ctg Leu	ctc Leu	ctg Leu	ctg Leu	gct Ala 275	atc Ile	gtt Val	931
gct Ala						Asp										979
tgg t	tct Ser 295	aag Lys	acc Thr	act Thr	Leu .	gcg Ala: 300	ttg Leu .	gcc Ala	ttg Leu	Ile	ggt Gly 305	tac Tyr	gga Gly	atc Ile	atg Met	1027
gct o	gcg	att	ttg	ccg	gtg	tgg (ctg	ctg	ctt	gca	ccg	cgc	gat	tac	ctg	1075

Ala 310		Ile	Leu	Pro	Val 315		Leu	Leu	Leu	Ala 320		Arg	Asp	Tyr	Leu 325	
tct Ser	acc Thr	ttt Phe	atg Met	aag Lys 330	Ile	ggc	gtc Val	atc Ile	ggt Gly 335	ctg Leu	ttg Leu	gca Ala	gtg Val	ggt Gly 340	att Ile	1123
				Pro				atg Met 350								1171
								tct Ser								1219
								ctg Leu								1267
								gtg Val								1315
atg Met	ctc Leu	ggc Gly	tac Tyr	ggc Gly 410	ggc Gly	atg Met	ttg Leu	atg Met	gaa Glu 415	tct Ser	ttc Phe	gtg Val	gcg Ala	atg Met 420	atg Met	1363
gca Ala	ctg Leu	atc Ile	acc Thr 425	gct Ala	gtt Val	att Ile	ctg Leu	gat Asp 430	cgt Arg	cac His	ctg Leu	tac Tyr	ttc Phe 435	tcc Ser	atg Met	1411
aac Asn	gct Ala	ccg Pro 440	ctg Leu	gca Ala	ctg Leu	act Thr	ggt Gly 445	gga Gly	gat Asp	cca Pro	gca Ala	acc Thr 450	gca Ala	gct Ala	gag Glu	1459
								ggt Gly								1507
								gga Gly								1555
acc Thr	ggt Gly	ggc Gly	gca Ala	cca Pro 490	acc Thr	ttg Leu	gcg Ala	ttc Phe	ggt Gly 495	atg Met	tct Ser	gaa Glu	atc Ile	ctc Leu 500	tcc Ser	1603
gga Gly	ttc Phe	atc Ile	ggc Gly 505	ggc Gly	gct Ala	gga Gly	atg Met	aag Lys 510	gcg Ala	ttc Phe	tgg Trp	tac Tyr	cac His 515	ttc Phe	gcc Ala	1651
atc Ile	atg Met	ttt Phe 520	gag Glu	gct Ala	ctg Leu	ttc Phe	atc Ile 525	ctc Leu	act Thr	act Thr	gtg Val	gat Asp 530	gca Ala	ggt Gly	act Thr	1699
								gat Asp								1747

ctg cgc cgt ttc aag gat cct tca tgg act gtc ggt aac tgg att tct 1795
Leu Arg Arg Phe Lys Asp Pro Ser Trp Thr Val Gly Asn Trp Ile Ser
550 565

acc gtg ttt gtg tgt gct cta tgg ggt gct att ttg ctc atg ggt gtt 1843
Thr Val Phe Val Cys Ala Leu Trp Gly Ala Ile Leu Met Gly Val
570 575 580

acc gat cca ctg ggc ggc atc aac gtg ctt ttc cca cta ttc ggt atc 1891 Thr Asp Pro Leu Gly Gly Ile Asn Val Leu Phe Pro Leu Phe Gly Ile

gct aac cag ctg ctc gcc gct att gca ctt gct ctc gtg ctg gtt gtt 1939 Ala Asn Gln Leu Leu Ala Ala Ile Ala Leu Ala Leu Val Leu Val Val 600 605

gtg gtg aag aag ggc ctg tac aag tgg gcg tgg att cca gct gtt cct 1987 Val Val Lys Lys Gly Leu Tyr Lys Trp Ala Trp Ile Pro Ala Val Pro 615 620 625

ttg gca tgg gat ctc att gtc acg atg act gcg tca tgg cag aag att 2035 Leu Ala Trp Asp Leu Ile Val Thr Met Thr Ala Ser Trp Gln Lys Ile 630 645

ttc cac tct gat ccg gct att ggc tac tgg gct cag aac gcg aac ttc 2083 Phe His Ser Asp Pro Ala Ile Gly Tyr Trp Ala Gln Asn Ala Asn Phe 650 655 660

cgc gat gca aag tct caa ggc ctt acc gaa ttt ggt gcc gct aaa tct 2131 Arg Asp Ala Lys Ser Gln Gly Leu Thr Glu Phe Gly Ala Ala Lys Ser 665 670 675

cct gag gca atc gat gcg gtt atc cga aac acc atg att cag ggc atc 2179
Pro Glu Ala Ile Asp Ala Val Ile Arg Asn Thr Met Ile Gln Gly Ile
680 685 690

att gcg gtg tgc atc aag tcc atc agg gct cgt gca gcc gga aca cct 2275 Ile Ala Val Cys Ile Lys Ser Ile Arg Ala Arg Ala Ala Gly Thr Pro 710 725

ttg gag acc act gaa gag cct gat act gaa tct gag ttc ttc gcc cca 2323 Leu Glu Thr Thr Glu Glu Pro Asp Thr Glu Ser Glu Phe Phe Ala Pro 730 735 740

act gga ttc ctt gca tct tcc agg gat aag gaa gtc cag gcc atg tgg 2371
Thr Gly Phe Leu Ala Ser Ser Arg Asp Lys Glu Val Gln Ala Met Trp
745 750 755

gac gag cgc tac cca ggc ggt gcg ccc gtg tct tct gga ggg cac
Asp Glu Arg Tyr Pro Gly Gly Ala Pro Val Ser Ser Gly Gly His
760 765 770

taaaacatga tggctcttac tca

2439

<210> 14

<211> 772

<212> PRT

<213> Corynebacterium glutamicum

<400> 14

Val Ala Leu Lys Arg Pro Glu Glu Lys Thr Val Lys Ile Val Thr Ile 1 5 10 15

Lys Gln Thr Asp Asn Ile Asn Asp Asp Leu Val Tyr Ser Asn Ala 20 25 30

Thr Asp Leu Pro Val Gly Val Lys Lys Ser Pro Lys Met Ser Pro Thr 35 40 45

Ala Arg Val Gly Leu Leu Val Phe Gly Val Ile Ala Ala Val Gly Trp
50 55 60

Gly Ala Ile Ala Phe Ser Arg Gly Glu Thr Ile Asn Ser Val Trp Leu 65 70 75 80

Val Leu Ala Ala Val Gly Ser Tyr Ile Ile Ala Phe Ser Phe Tyr Ala 85 90 95

Arg Leu Ile Glu Tyr Lys Val Val Lys Pro Lys Asp Gln Arg Ala Thr 100 105 110

Pro Ala Glu Tyr Val Asn Asp Gly Lys Asp Tyr Val Pro Thr Asp Arg 115 120 125

Arg Val Leu Phe Gly His His Phe Ala Ala Ile Ala Gly Ala Gly Pro 130 135 140

Leu Val Gly Pro Val Met Ala Ala Gln Met Gly Tyr Leu Pro Gly Thr 145 150 155 160

Leu Trp Ile Ile Leu Gly Val Ile Phe Ala Gly Ala Val Gln Asp Tyr 165 170 175

Leu Val Leu Trp Val Ser Thr Arg Arg Gly Arg Ser Leu Gly Gln 180 185 190

Met Val Arg Asp Glu Met Gly Thr Val Gly Gly Ala Ala Gly Ile Leu 195 200 205

Ala Thr Ile Ser Ile Met Ile Ile Ile Ile Ala Val Leu Ala Leu Ile 210 215 220

Val Val Asn Ala Leu Ala Asp Ser Pro Trp Gly Val Phe Ser Ile Thr 225 230 235 240

Met Thr Ile Pro Ile Ala Leu Phe Met Gly Val Tyr Leu Arg Tyr Leu 245 250 255

- Arg Pro Gly Arg Val Thr Glu Val Ser Ile Ile Gly Val Ala Leu Leu 260 265 270
- Leu Leu Ala Ile Val Ala Gly Gly Trp Val Ala Asp Thr Ser Trp Gly 275 280 285
- Val Glu Trp Phe Thr Trp Ser Lys Thr Thr Leu Ala Leu Ala Leu Ile 290 295 300
- Gly Tyr Gly Ile Met Ala Ala Ile Leu Pro Val Trp Leu Leu Leu Ala 305 310 315 320
- Pro Arg Asp Tyr Leu Ser Thr Phe Met Lys Ile Gly Val Ile Gly Leu 325 330 335
- Leu Ala Val Gly Ile Leu Phe Ala Arg Pro Glu Val Gln Met Pro Ser 340 345 350
- Val Thr Ser Phe Ala Leu Glu Gly Asn Gly Pro Val Phe Ser Gly Ser 355 360 365
- Leu Phe Pro Phe Leu Phe Ile Thr Ile Ala Cys Gly Ala Leu Ser Gly 370 375 380
- Phe His Ala Leu Ile Ser Ser Gly Thr Thr Pro Lys Leu Val Glu Lys 385 390 395 400
- Glu Ser Gln Met Arg Met Leu Gly Tyr Gly Gly Met Leu Met Glu Ser 405 410 415
- Phe Val Ala Met Met Ala Leu Ile Thr Ala Val Ile Leu Asp Arg His 420 425 430
- Leu Tyr Phe Ser Met Asn Ala Pro Leu Ala Leu Thr Gly Gly Asp Pro 435 440 445
- Ala Thr Ala Ala Glu Trp Val Asn Ser Ile Gly Leu Thr Gly Ala Asp 450 455 460
- Ile Thr Pro Glu Gln Leu Ser Glu Ala Ala Glu Ser Val Gly Glu Ser 465 470 475 480
- Thr Val Ile Ser Arg Thr Gly Gly Ala Pro Thr Leu Ala Phe Gly Met 485 490 495
- Ser Glu Ile Leu Ser Gly Phe Ile Gly Gly Ala Gly Met Lys Ala Phe 500 505 510
- Trp Tyr His Phe Ala Ile Met Phe Glu Ala Leu Phe Ile Leu Thr Thr 515 520 525
- Val Asp Ala Gly Thr Arg Val Ala Arg Phe Met Met Thr Asp Thr Leu 530 535 540
- Gly Asn Val Pro Gly Leu Arg Arg Phe Lys Asp Pro Ser Trp Thr Val 545 550 555 560

Gly Asn Trp Ile Ser Thr Val Phe Val Cys Ala Leu Trp Gly Ala Ile 565 570 575

Leu Leu Met Gly Val Thr Asp Pro Leu Gly Gly Ile Asn Val Leu Phe 580 585 590

Pro Leu Phe Gly Ile Ala Asn Gln Leu Leu Ala Ala Ile Ala Leu Ala 595 600 · 605

Leu Val Leu Val Val Val Lys Lys Gly Leu Tyr Lys Trp Ala Trp 610 615 620

Ile Pro Ala Val Pro Leu Ala Trp Asp Leu Ile Val Thr Met Thr Ala 625 630 635 640

Ser Trp Gln Lys Ile Phe His Ser Asp Pro Ala Ile Gly Tyr Trp Ala 645 650 655

Gln Asn Ala Asn Phe Arg Asp Ala Lys Ser Gln Gly Leu Thr Glu Phe 660 665 670

Gly Ala Ala Lys Ser Pro Glu Ala Ile Asp Ala Val Ile Arg Asn Thr 675 680 685

Met Ile Gln Gly Ile Leu Ser Ile Leu Phe Ala Val Leu Val Leu Val 690 695 700

Val Val Gly Ala Ala Ile Ala Val Cys Ile Lys Ser Ile Arg Ala Arg 705 710 715 720

Ala Ala Gly Thr Pro Leu Glu Thr Thr Glu Glu Pro Asp Thr Glu Ser 725 730 735

Glu Phe Phe Ala Pro Thr Gly Phe Leu Ala Ser Ser Arg Asp Lys Glu
740 745 750

Val Gln Ala Met Trp Asp Glu Arg Tyr Pro Gly Gly Ala Pro Val Ser 755 760 765

Ser Gly Gly His 770

<210> 15

<211> 255

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(232)

<223> RXN03119

<400> 15

tqqqaqqtqt cgcaccaagt acttttgcga agcgccatct gacggatttt caaaagatgt 60

atatgctcgg tgcggaaacc tacgaaagga ttttttaccc atg gct gta tac gaa Met Ala Val Tyr Glu 1 5	115
ctc cca gaa ctc gac tac gca tac gac gct ctc gag cca cac atc gtc Leu Pro Glu Leu Asp Tyr Ala Tyr Asp Ala Leu Glu Pro His Ile Val 10 15 20	163
gct gaa atc atg gag ctt gac cag tcc aag gac cac gca acc tac gtt Ala Glu Ile Met Glu Leu Asp Gln Ser Lys Asp His Ala Thr Tyr Val 25 30 35	211
gcg ggc gca aat gca gca ctc taggcactag agaaggcacg cga Ala Gly Ala Asn Ala Ala Leu 40	255
<210> 16 <211> 44 <212> PRT <213> Corynebacterium glutamicum	
<400> 16 Met Ala Val Tyr Glu Leu Pro Glu Leu Asp Tyr Ala Tyr Asp Ala Leu 1 5 10 15	
Glu Pro His Ile Val Ala Glu Ile Met Glu Leu Asp Gln Ser Lys Asp 20 25 30	
His Ala Thr Tyr Val Ala Gly Ala Asn Ala Ala Leu 35 40	
<210> 17 <211> 249 <212> DNA <213> Corynebacterium glutamicum	
<220> <221> CDS <222> (101)(226) <223> RXN03120	
<400> 17 ctgggcagtt cttgggtacg accacatatc cggtcgcctg gttatcgagc agctcaccga	60
ccaggagggc aacatctcct tcgacatcac cccagttctg atg ctc gat atg tgg Met Leu Asp Met Trp 1 5	115
gag cac gct ttc tac ctg cag tac atg aac gtt aag gca gat tac gtc Glu His Ala Phe Tyr Leu Gln Tyr Met Asn Val Lys Ala Asp Tyr Val 10 15 20	163
aag gct gtt tgg aac gtc ttc aac tgg gac gac gca aga gca cgc ttc Lys Ala Val Trp Asn Val Phe Asn Trp Asp Asp Ala Arg Ala Arg Phe 25 30 35	211

gca gca gct tcc aag taagcatttt tagtccgtgc aat 249 Ala Ala Ala Ser Lys 40 <210> 18 <211> 42 <212> PRT <213> Corynebacterium glutamicum <400> 18 Met Leu Asp Met Trp Glu His Ala Phe Tyr Leu Gln Tyr Met Asn Val Lys Ala Asp Tyr Val Lys Ala Val Trp Asn Val Phe Asn Trp Asp Asp 25 Ala Arg Ala Arg Phe Ala Ala Ala Ser Lys <210> 19 <211> 660 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(637) <223> RXN00575 <400> 19 qaaqcqtccq caggcaagaa aacgtcccqq aaaacggcga taggggtcac ccgcgcatgt 60 ccqqttqccq atctatttaa ataccaggac aattgcgtgc atg gtt gaa aga gac Met Val Glu Arg Asp 163 ttc act atc cga cca atc cgc gag ggt gat ttc cct cag gtg agg gac Phe Thr Ile Arg Pro Ile Arg Glu Gly Asp Phe Pro Gln Val Arg Asp 10 211 atc tac gaa ttg ggc ctg gag acg gga cat gcg act tat gag act tct Ile Tyr Glu Leu Gly Leu Glu Thr Gly His Ala Thr Tyr Glu Thr Ser 25 30 259 ggt eec acg tgg gac cag tte tee caa tet aaa ate atg gat ace gte Gly Pro Thr Trp Asp Gln Phe Ser Gln Ser Lys Ile Met Asp Thr Val 40 45 307 atg gtg gcg gta gaa aac aac gac ccg gac ttc atc ctc gga tgg gtg Met Val Ala Val Glu Asn Asn Asp Pro Asp Phe Ile Leu Gly Trp Val 55 60 tot got got coa att toa ago oga cag gtt tto cat gga gtg gtg gaa 355 Ser Ala Ala Pro Ile Ser Ser Arg Gln Val Phe His Gly Val Val Glu

70 75 80 85 gat tee ate tat ate cae eec cag gge caa gge ega gga ate gge gge 403 Asp Ser Ile Tyr Ile His Pro Gln Gly Gln Gly Arg Gly Ile Gly Gly 90 get ttg etc gac gec ett atc acc tac tge gaa agc aac gge atc tgg 451 Ala Leu Leu Asp Ala Leu Ile Thr Tyr Cys Glu Ser Asn Gly Ile Trp 105 110 tog atc cac too tgg atc tto cog gaa aac cto ggt tot gog aaa ctg 499 Ser Ile His Ser Trp Ile Phe Pro Glu Asn Leu Gly Ser Ala Lys Leu cat gaa tcg aag ggc ttc gtg aag gtg ggc acc atg cac caa atg gca 547 His Glu Ser Lys Gly Phe Val Lys Val Gly Thr Met His Gln Met Ala 140 agg atg ccc tac ggc gag atg gaa gga caa tgg cgc gat tgt gat ctg Arg Met Pro Tyr Gly Glu Met Glu Gly Gln Trp Arg Asp Cys Asp Leu 155 160 tgg gag tgc ctc tta tcc gtt cca gag caa gct caa agt tcc 637 Trp Glu Cys Leu Leu Ser Val Pro Glu Gln Ala Gln Ser Ser 175 taaagcaatt taaatctgac ttt 660

<210> 20

<211> 179

<212> PRT

<213> Corynebacterium glutamicum

<400> 20

Met Val Glu Arg Asp Phe Thr Ile Arg Pro Ile Arg Glu Gly Asp Phe 1 5 10 15

Pro Gln Val Arg Asp Ile Tyr Glu Leu Gly Leu Glu Thr Gly His Ala
20 25 30

Thr Tyr Glu Thr Ser Gly Pro Thr Trp Asp Gln Phe Ser Gln Ser Lys
35 40 45

Ile Met Asp Thr Val Met Val Ala Val Glu Asn Asp Pro Asp Phe
50 55 60

Ile Leu Gly Trp Val Ser Ala Ala Pro Ile Ser Ser Arg Gln Val Phe 65 70 75 80

His Gly Val Val Glu Asp Ser Ile Tyr Ile His Pro Gln Gly Gln Gly
85 90 95

Arg Gly Ile Gly Gly Ala Leu Leu Asp Ala Leu Ile Thr Tyr Cys Glu 100 105 110

Ser Asn Gly Ile Trp Ser Ile His Ser Trp Ile Phe Pro Glu Asn Leu

115 120 125

Gly Ser Ala Lys Leu His Glu Ser Lys Gly Phe Val Lys Val Gly Thr 130 135 140

Met His Gln Met Ala Arg Met Pro Tyr Gly Glu Met Glu Gly Gln Trp 145 150 155 160

Arg Asp Cys Asp Leu Trp Glu Cys Leu Leu Ser Val Pro Glu Gln Ala 165 170 175

Gln Ser Ser

<210> 21

<211> 606

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(583)

<223> FRXA00575

<400> 21

gcatgtccgg ttgccgatct atttaaatac caggacaatt gcgtgcatgg ttgaaagaga 60

cttcactatc cgaccaatcc gcgagggtga tttccctcag gtg agg gac atc tac 115
Val Arg Asp Ile Tyr
1

gaa ttg ggc ctg gag acg gga cat gcg act tat gag act tct ggt ccc 163 Glu Leu Gly Leu Glu Thr Gly His Ala Thr Tyr Glu Thr Ser Gly Pro 10 15 20

acg tgg gac cag ttc tcc caa tct aaa atc atg gat acc gtc atg gtg 211
Thr Trp Asp Gln Phe Ser Gln Ser Lys Ile Met Asp Thr Val Met Val
25 30 35

gcg gta gaa aac aac gac ccg gac ttc atc ctc gga tgg gtg tct gct 259 Ala Val Glu Asn Asn Asp Pro Asp Phe Ile Leu Gly Trp Val Ser Ala 40 45 50

gct cca att tca agc cga cag gtt ttc cat gga gtg gtg gaa gat tcc 307 Ala Pro Ile Ser Ser Arg Gln Val Phe His Gly Val Val Glu Asp Ser 55 60 65

atc tat atc cac ccc cag ggc caa ggc cga gga atc ggc ggc gct ttg 355

Ile Tyr Ile His Pro Gln Gly Gln Gly Arg Gly Ile Gly Gly Ala Leu
70 75 80 85

ctc gac gcc ctt atc acc tac tgc gaa agc aac ggc atc tgg tcg atc
Leu Asp Ala Leu Ile Thr Tyr Cys Glu Ser Asn Gly Ile Trp Ser Ile
90 95 100

cac tcc tgg atc ttc ccg gaa aac ctc ggt tct gcg aaa ctg cat gaa 451

His	Ser	Trp	Ile 105	Phe	Pro	Glu	Asn	Leu 110	Gly	Ser	Ala	Lys	Leu 115	His	Glu	
_	aag Lys				_				-			-	_		_	499
	tac Tyr 135															547
_	ctc Leu			_				-		_		taaa	igcaa	itt		593
taaa	taaatctgac ttt														606	

<210> 22

<211> 161

<212> PRT

<213> Corynebacterium glutamicum

<400> 22

Val Arg Asp Ile Tyr Glu Leu Gly Leu Glu Thr Gly His Ala Thr Tyr 1 5 10 15

Glu Thr Ser Gly Pro Thr Trp Asp Gln Phe Ser Gln Ser Lys Ile Met
20 25 30

Asp Thr Val Met Val Ala Val Glu Asn Asp Pro Asp Phe Ile Leu 35 40 45

Gly Trp Val Ser Ala Ala Pro Ile Ser Ser Arg Gln Val Phe His Gly 50 55 60

Val Val Glu Asp Ser Ile Tyr Ile His Pro Gln Gly Gln Gly Arg Gly 65 70 75 80

Ile Gly Gly Ala Leu Leu Asp Ala Leu Ile Thr Tyr Cys Glu Ser Asn 85 90 95

Gly Ile Trp Ser Ile His Ser Trp Ile Phe Pro Glu Asn Leu Gly Ser 100 105 110

Ala Lys Leu His Glu Ser Lys Gly Phe Val Lys Val Gly Thr Met His 115 120 125

Gln Met Ala Arg Met Pro Tyr Gly Glu Met Glu Gly Gln Trp Arg Asp 130 135 140

Cys Asp Leu Trp Glu Cys Leu Leu Ser Val Pro Glu Gln Ala Gln Ser 145 150 155 160

Ser

<210> 23 <211> 1575 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1552) <223> RXN01345 <400> 23 cataacctca ttgaacatgc aaaactaatg cttttggggg gtatgcataa attcgtttcg 60 ttccactgca cagcccgaaa atgctgctag ggtcaagttc atg cgt ttt gga ctt Met Arg Phe Gly Leu gac ttg gga act acc cgc aca atc gcg gcc gcc gtg gac cgc gga aac 163 Asp Leu Gly Thr Thr Arg Thr Ile Ala Ala Val Asp Arg Gly Asn tat ccc atc gtc act gtg gaa gat tct tta ggc gac acc cac gat ttc 211 Tyr Pro Ile Val Thr Val Glu Asp Ser Leu Gly Asp Thr His Asp Phe att cca tct gtg gtg gcc ctc aag gca gat agg att gtc gcg ggt tgg 259 Ile Pro Ser Val Val Ala Leu Lys Ala Asp Arg Ile Val Ala Gly Trp gat gct att gag gtt ggg cag gac cac cct tcc ttc gta cgt tct ttc 307 Asp Ala Ile Glu Val Gly Gln Asp His Pro Ser Phe Val Arg Ser Phe aaa cgc cta ctc tct gaa ccc aat gtc acg gaa gcc acc ccg gtc tac 355 Lys Arg Leu Leu Ser Glu Pro Asn Val Thr Glu Ala Thr Pro Val Tyr 70 ttg ggc gat cat gta cac cct ttg ggc gcc gtc ctg gag gct ttt gcg 403 Leu Gly Asp His Val His Pro Leu Gly Ala Val Leu Glu Ala Phe Ala 90 gaa aac gtg gtc act gcg ctg cgt gca ttt cag acg caa ttg gga gat 451 Glu Asn Val Val Thr Ala Leu Arg Ala Phe Gln Thr Gln Leu Gly Asp 105 499 acc tcc ccg atc gaa gta gtc att ggt gtg ccc gcc aac tcc cac agc Thr Ser Pro Ile Glu Val Val Ile Gly Val Pro Ala Asn Ser His Ser ged dag etg etg acc atg ted ged ttd agd ged aca ggd atd acc 547 Ala Gln Arg Leu Leu Thr Met Ser Ala Phe Ser Ala Thr Gly Ile Thr 140 gtt gtc ggt ttg gtc aat gag ccc agc gcc gca gct ttc gag tac acc 595 Val Val Gly Leu Val Asn Glu Pro Ser Ala Ala Ala Phe Glu Tyr Thr 155 160

					Thr					Arg	caa Gln					643
	_	_		Gĺy				_	Ser	_	ctc Leu		_		_	691
			His					Ser			att Ile					739
											gcg Ala 225					787
											aaa Lys					835
-	_		_			_	-	-		_	ccg Pro			_	_	883
											gtt Val					931
											tcc Ser					979
											tcc Ser 305					1027
			_					-			ctc Leu	-				1075
											tcc Ser					1123
											gac Asp					1171
											ggt Gly					1219
	-			_	Ala		_		-	Pro	ctg Leu 385		-	_	_	1267

-	gat Asp		-		_			-	-		_				1315
	ggt Gly						-								1363
	ccc Pro		-			_		_	_		_			_	1411
_	tcc Ser			-	-	_	_					_	_		1459
	gaa Glu 455	-	-	-				-		_			 _		1507
	tcc Ser							-		-					1552
tagt	tacc	at t	ttgg	tgct	g gt	g	•								1575

<210> 24

<211> 484

<212> PRT

<213> Corynebacterium glutamicum

<400> 24

Met Arg Phe Gly Leu Asp Leu Gly Thr Thr Arg Thr Ile Ala Ala Ala 1 5 10 15

Val Asp Arg Gly Asn Tyr Pro Ile Val Thr Val Glu Asp Ser Leu Gly 20 25 30

Asp Thr His Asp Phe Ile Pro Ser Val Val Ala Leu Lys Ala Asp Arg
35 40 45

Ile Val Ala Gly Trp Asp Ala Ile Glu Val Gly Gln Asp His Pro Ser 50 55 60

Phe Val Arg Ser Phe Lys Arg Leu Leu Ser Glu Pro Asn Val Thr Glu 65 70 75 80

Ala Thr Pro Val Tyr Leu Gly Asp His Val His Pro Leu Gly Ala Val 85 90 95

Leu Glu Ala Phe Ala Glu Asn Val Val Thr Ala Leu Arg Ala Phe Gln 100 105 110

Thr Gln Leu Gly Asp Thr Ser Pro Ile Glu Val Val Ile Gly Val Pro 115 120 125

Ala Asn Ser His Ser Ala Gln Arg Leu Leu Thr Met Ser Ala Phe Ser 130 135 140

- Ala Thr Gly Ile Thr Val Val Gly Leu Val Asn Glu Pro Ser Ala Ala 145 150 155 160
- Ala Phe Glu Tyr Thr His Arg His Ala Arg Thr Leu Asn Ser Lys Arg 165 170 175
- Gln Ala Ile Val Val Tyr Asp Leu Gly Gly Gly Thr Phe Asp Ser Ser 180 185 190
- Leu Ile Arg Ile Asp Gly Thr His His Glu Val Val Ser Ser Ile Gly 195 200 205
- Ile Ser Arg Leu Gly Gly Asp Asp Phe Asp Glu Ile Leu Leu Gln Cys 210 215 220
- Ala Leu Lys Ala Ala Gly Arg Gln His Asp Ala Phe Gly Lys Arg Ala 225 230 235 240
- Lys Asn Thr Leu Leu Asp Glu Ser Arg Asn Ala Lys Glu Ala Leu Val 245 250 255
- Pro Gln Ser Arg Arg Leu Val Leu Glu Ile Gly Asp Asp Asp Ile Thr 260 265 270
- Val Pro Val Asn Lys Phe Tyr Glu Ala Ala Thr Pro Leu Val Glu Lys 275 280 285
- Ser Leu Ser Ile Met Glu Pro Leu Ile Gly Val Asp Asp Leu Lys Asp 290 295 300
- Ser Asp Ile Ala Gly Ile Tyr Leu Val Gly Gly Gly Ser Ser Leu Pro 305 310 315 320
- Leu Val Ser Arg Leu Leu Arg Glu Arg Phe Gly Arg Arg Val His Arg 325 330 335
- Ser Pro Phe Pro Ser Gly Ser Thr Ala Val Gly Leu Ala Ile Ala Ala 340 345 350
- Asp Pro Ser Ser Gly Phe His Leu Arg Asp Arg Val Ala Arg Gly Ile 355 360 365
- Gly Val Phe Arg Glu His Asp Ser Gly Arg Ala Val Ser Phe Asp Pro 370 375 380
- Leu Ile Ala Pro Asp Thr Asp Ser Ala Thr Val Ala Lys Arg Cys Tyr 385 390 395 400
- Lys Ala Val His Asn Ile Gly Trp Phe Arg Phe Val Glu Tyr Ser Thr 405 410 415
- Val Ser Glu Asp Gly Ser Pro Gly Asp Ile Ser Leu Leu Ser Glu Ile 420 425 430

Lys Ile Pro Phe Asp Ser Ser Ile Thr Asp Val Asp Ala Thr Glu Ile 435 440 445

Ser Arg Phe Asp Gly Pro Glu Val Glu Glu Thr Ile Thr Val Asn Asp 450 455 460

Asn Gly Val Ala Ser Ile Ser Ile Lys Ile Leu Gly Gly Val Thr Val 465 470 475 480

Glu His Thr Ile

<210> 25

<211> 1267

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1267)

<223> FRXA01345

<400> 25

cataacctca ttgaacatgc aaaactaatg cttttggggg gtatgcataa attcgtttcg 60

ttccactgca cagcccgaaa atgctgctag ggtcaagttc atg cgt ttt gga ctt 115

Met Arg Phe Gly Leu

1

gac ttg gga act acc cgc aca atc gcg gcc gcc gtg gac cgc gga aac 163 Asp Leu Gly Thr Thr Arg Thr Ile Ala Ala Ala Val Asp Arg Gly Asn 10 15 20

tat ccc atc gtc act gtg gaa gat tct tta ggc gac acc cac gat ttc 211
Tyr Pro Ile Val Thr Val Glu Asp Ser Leu Gly Asp Thr His Asp Phe
25 30 35

att cca tct gtg gtg gcc ctc aag gca gat agg att gtc gcg ggt tgg 259
Ile Pro Ser Val Val Ala Leu Lys Ala Asp Arg Ile Val Ala Gly Trp
40 45 50

gat gct att gag gtt ggg cag gac cac cct tcc ttc gta cgt tct ttc 307 Asp Ala Ile Glu Val Gly Gln Asp His Pro Ser Phe Val Arg Ser Phe

aaa cgc cta ctc tct gaa ccc aat gtc acg gaa gcc acc ccg gtc tac
Lys Arg Leu Leu Ser Glu Pro Asn Val Thr Glu Ala Thr Pro Val Tyr
70 75 80 85

ttg ggc gat cat gta cac cct ttg ggc gcc gtc ctg gag gct ttt gcg 403 Leu Gly Asp His Val His Pro Leu Gly Ala Val Leu Glu Ala Phe Ala 90 95 100

gaa aac gtg gtc act gcg ctg cgt gca ttt cag acg caa ttg gga gat 451 Glu Asn Val Val Thr Ala Leu Arg Ala Phe Gln Thr Gln Leu Gly Asp 105 110 115

			o Ile	c gaa e Glu				e G13					Ser			499
		Ar		g cto ı Lev			Ser					Thr				547
gtt Val 150	Val	Gly	t tto / Let	g gto 1 Val	aat Asn 155	Glu	g ccc Pro	ago Ser	gcc Ala	gca Ala 160	Ala	ttc Phe	gag Glu	tac Tyr	acc Thr 165	595
cac His	Arg	cac His	gco Ala	c cgc Arg 170	Thr	tta Leu	aac Asn	tcc Ser	aag Lys 175	Arg	caa Gln	gcc Ala	atc	gtg Val 180	gtt Val	643
				ggc Gly					Ser							691
ggc Gly	acc Thr	cac His 200	His	gag Glu	gtt Val	gtg Val	tcc Ser 205	tcc Ser	att Ile	ggc	att Ile	tca Ser 210	cgc Arg	ctt Leu	ggt Gly	739
				gat Asp												787
ggc Gly 230	aga Arg	cag Gln	cac His	gat Asp	gcg Ala 235	ttt Phe	ggc Gly	aag Lys	cgt Arg	gct Ala 240	aaa Lys	aac Asn	acg Thr	ctt Leu	ctc Leu 245	835
gac Asp	gaa Glu	tcc Ser	cgc Arg	aac Asn 250	gcg Ala	aag Lys	gaa Glu	gct Ala	ctt Leu 255	gtt Val	ccg Pro	caa Gln	tcc Ser	cgt Arg 260	cgc Arg	883
Leu	Val	Leu	Glu 265	att Ile	Gly	Asp	Asp	Asp 270	Ile	Thr	Val	Pro	Val 275	Asn	Lys	931
Phe	Tyr	Glu 280	Ala	gcc Ala	Thr	Pro	Leu 285	Val	Glu	Lys	Ser	Leu 290	Ser	Ile	Met	979
gaa Glu	ccc Pro 295	ctc Leu	atc Ile	ggc	gtc Val	gat Asp 300	gat Asp	ctt Leu	aaa Lys	gat Asp	tcc Ser 305	gac Asp	atc Ile	gca Ala	ggc Gly	1027
11e 310	Tyr	Leu	Val	ggt Gly	Gly 315	Gly	Ser	Ser	Leu	Pro 320	Leu	Val	Ser	Arg	Leu 325	1075
				ttc Phe 330				Val								1123

ggt tcc act gcg gtg ggt ctg gcc atc gcg gct gac cct tcc tct ggt 1171 Gly Ser Thr Ala Val Gly Leu Ala Ile Ala Ala Asp Pro Ser Ser Gly 345 350 355

ttc cac cta agg gac cgc gtt gcg cga ggc atc ggt gtg ttc cgt gag 1219 Phe His Leu Arg Asp Arg Val Ala Arg Gly Ile Gly Val Phe Arg Glu 360 365 370

cac gat tot ggt cgt gcc gtg agc ttt gac ccg ctg atc gcc ccg gac 1267 His Asp Ser Gly Arg Ala Val Ser Phe Asp Pro Leu Ile Ala Pro Asp 375 380 385

<210> 26

<211> 389

<212> PRT

<213> Corynebacterium glutamicum

<400> 26

Met Arg Phe Gly Leu Asp Leu Gly Thr Thr Arg Thr Ile Ala Ala 1 5 10 15

Val Asp Arg Gly Asn Tyr Pro Ile Val Thr Val Glu Asp Ser Leu Gly
20 25 30

Asp Thr His Asp Phe Ile Pro Ser Val Val Ala Leu Lys Ala Asp Arg 35 40 45

Ile Val Ala Gly Trp Asp Ala Ile Glu Val Gly Gln Asp His Pro Ser
50 60

Phe Val Arg Ser Phe Lys Arg Leu Leu Ser Glu Pro Asn Val Thr Glu 65 70 75 80

Ala Thr Pro Val Tyr Leu Gly Asp His Val His Pro Leu Gly Ala Val 85 90 95

Leu Glu Ala Phe Ala Glu Asn Val Val Thr Ala Leu Arg Ala Phe Gln
100 105 110

Thr Gln Leu Gly Asp Thr Ser Pro Ile Glu Val Val Ile Gly Val Pro 115 120 125

Ala Asn Ser His Ser Ala Gln Arg Leu Leu Thr Met Ser Ala Phe Ser 130 135 140

Ala Thr Gly Ile Thr Val Val Gly Leu Val Asn Glu Pro Ser Ala Ala 145 150 155 160

Ala Phe Glu Tyr Thr His Arg His Ala Arg Thr Leu Asn Ser Lys Arg 165 170 175

Gln Ala Ile Val Val Tyr Asp Leu Gly Gly Gly Thr Phe Asp Ser Ser 180 185 190

Leu Ile Arg Ile Asp Gly Thr His His Glu Val Val Ser Ser Ile Gly
195 200 205

Ile Ser Arg Leu Gly Gly Asp Asp Phe Asp Glu Ile Leu Leu Gln Cys 210 Ala Leu Lys Ala Ala Gly Arg Gln His Asp Ala Phe Gly Lys Arg Ala 230 235 Lys Asn Thr Leu Leu Asp Glu Ser Arg Asn Ala Lys Glu Ala Leu Val 250 Pro Gln Ser Arg Arg Leu Val Leu Glu Ile Gly Asp Asp Asp Ile Thr 260 265 Val Pro Val Asn Lys Phe Tyr Glu Ala Ala Thr Pro Leu Val Glu Lys 280 Ser Leu Ser Ile Met Glu Pro Leu Ile Gly Val Asp Asp Leu Lys Asp 295 Ser Asp Ile Ala Gly Ile Tyr Leu Val Gly Gly Ser Ser Leu Pro 310 Leu Val Ser Arg Leu Leu Arg Glu Arg Phe Gly Arg Arg Val His Arg Ser Pro Phe Pro Ser Gly Ser Thr Ala Val Gly Leu Ala Ile Ala Ala Asp Pro Ser Ser Gly Phe His Leu Arg Asp Arg Val Ala Arg Gly Ile 360 Gly Val Phe Arg Glu His Asp Ser Gly Arg Ala Val Ser Phe Asp Pro 380 375 Leu Ile Ala Pro Asp 385 <210> 27 <211> 1308 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1285) <223> RXA02541 <400> 27 atccgccggt gtccggacaa caaaacttgc aacacaagat aacttaagaa attgcataca 60 attcaccqca tataagactc atqqaaqqaq qqqatqccca gtg aac aac agc gaa Val Asn Asn Ser Glu 1 tgg gca aat aag aac tat tac gca gac ctg ggg gtc tcc tcg tcc gct Trp Ala Asn Lys Asn Tyr Tyr Ala Asp Leu Gly Val Ser Ser Ser Ala

10 15 20

									aag						211
Ser	Glu	Asp	0 Glu 25		: Lys	. Lys	Ala	Tyr 30	Lys	Leu	Ala	Arg 35	Glu	Asn	
			Lys					Lys	gct Ala						259
		Ala					Val		gat Asp						307
	Tyr								tct Ser 80						355
									ggc						403
									gga Gly						451
									atc Ile						499
									agg Arg						547
									gtt Val 160						595
									gcg Ala						643
									gca Ala						691
									ggt Gly						739
									gaa Glu						787
				His					cgg Arg 240						835

	gtg Val				Thr										883
	ggc								Gly						931
	gtg Val														979
	aac Asn 295														1027
	ggc Gly	_					_			_					1075
	cct Pro														1123
	atc Ile														. 1171
_	tct Ser														1219
_	tat Tyr 375	_	_	-	-						-		-	•	1267
	gcg Ala		_		_	taga	cgtt	ct c	tttg:	agaa	ia gg	_J a			1308
<211 <212)> 28 .> 39 !> PR !> Co	5 .T	bact	eriu	m gl	utam	icum								
<400	> 28														

Val Asn Asn Ser Glu Trp Ala Asn Lys Asn Tyr Tyr Ala Asp Leu Gly
1 5 10 15

Val Ser Ser Ser Ala Ser Glu Asp Glu Ile Lys Lys Ala Tyr Arg Lys

Leu Ala Arg Glu Asn His Pro Asp Lys Asn Pro Gly Asp Lys Ala Ala

Glu Asp Arg Phe Lys Lys Ala Ala Glu Ala Tyr Asp Val Leu Gly Asp
50 55 60

Asp Lys Lys Arg Lys Glu Tyr Asp Glu Leu Lys Ala Leu Leu Ala Ser 65 70 75 80

Gly Gly Ile Arg Gly Gly Phe Gly Ser Gly Gly Ala Gly Phe Pro Gly 85 90 95

Gly Phe Arg Thr Ser Thr Gly Gly Phe Asp Thr Ser Asp Leu Phe Gly
100 105 110

Gly Gly Gly Gly Gly Phe Ser Thr Asp Gly Gly Leu Gly Asp Ile 115 120 125

Phe Gly Gly Leu Phe Asn Arg Gly Ala Gly Ser His Gln Ser Ala Arg 130 135 140

Pro Thr Arg Gly Ala Asp Val Gln Thr Glu Ile Thr Leu Ser Phe Val 145 150 155 160

Glu Ala Ala Lys Gly Thr Thr Ile Pro Val Glu Leu Thr Gly Asp Ala 165 170 175

Pro Cys Asn Thr Cys His Gly Ser Gly Ser Lys Ser Gly His Pro Ala 180 185 190

Lys Cys Gly Thr Cys Asp Gly Thr Gly Phe Thr Ser Glu Asn Lys Gly
195 200 205

Ala Phe Gly Phe Ser Ala Pro Cys Ala Thr Cys Gly Gly Thr Gly Glu 210 215 220

Ile Ile Thr Asp Pro Cys Asp Asn Cys His Gly Arg Gly Thr Val Arg 225 230 235 240

Lys Ser Arg Ser Ile Thr Val Arg Ile Pro Thr Gly Val Glu Asp Gly 245 250 255

Gln Lys Val Arg Leu Ala Gly Gln Gly Glu Ala Gly Pro Asn Gly Lys 260 265 270

Pro Ala Gly Asp Leu Phe Val Lys Val His Val Lys Lys Asp Asp Val 275 280 285

Phe Thr Arg Asp Gly Ser Asn Ile Leu Ile Thr Ile Pro Val Ser Phe 290 295 300

Ser Glu Leu Ala Leu Gly Gly Ala Ile Ser Val Pro Thr Leu Asn Lys 305 310 315 320

Pro Val Lys Leu Lys Leu Pro Ala Gly Thr Pro Asp Gly Arg Thr Leu 325 330 335

Arg Val Arg Gly Arg Gly Ile Glu Ala Arg Asp Ser Thr Gly Asp Leu 340 345 350

Leu Val Thr Val Gln Val Ser Val Pro Lys Asn Leu Asp Asp Asn Ala 355 360 365

Ala Glu Ala Leu Arg Ala Tyr Ala Glu Ala Glu Thr Asn Ser Gly Phe 370 375 380

Asp Pro Arg Ala Asn Trp Ala Gly Gln Asn Arg 385 390 395

<210> 29

<211> 777

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(754)

<223> RXA02542

<400> 29

ccaqqctgac gcaggtgcag aaggcgctqc agatgacaat gttgttgacg ctgaagttgt 60

cgaagacgac gcagctgaca atggtgagga caagaagtaa atg act acc cct aac 115 Met Thr Thr Pro Asn 1

gga atg ccc gac aat cct ggg gat cct gaa aat acc gat cca gag gca 163 Gly Met Pro Asp Asn Pro Gly Asp Pro Glu Asn Thr Asp Pro Glu Ala 10 15 20

acc tct gct gat cgt gct gag cag gct gaa gaa gca gct gcc cgc 211
Thr Ser Ala Asp Arg Ala Glu Glu Ala Ala Glu Glu Ala Ala Arg
25 30 35

caa gcg gag gaa tct cca ttt gga cag gcc tca gag gaa gaa att tct 259 Gln Ala Glu Glu Ser Pro Phe Gly Gln Ala Ser Glu Glu Glu Ile Ser 40 45 50

cca gag ctc gaa gca gag atc aat gat ctt cta tca gat gtt gat cca 307 Pro Glu Leu Glu Ala Glu Ile Asn Asp Leu Leu Ser Asp Val Asp Pro 55 60 65

gat ttg gat ggc gat ggt gaa gtg tcc gct gta gaa aca cag ctt gcc 355 Asp Leu Asp Gly Asp Gly Glu Val Ser Ala Val Glu Thr Gln Leu Ala 70 75 80 85

gaa cgc act gag gat ctg cag cga gtc acc gct gag tac gcc aac tac 403 Glu Arg Thr Glu Asp Leu Gln Arg Val Thr Ala Glu Tyr Ala Asn Tyr 90 95

cgt cga cgt acc gag cgt gaa cgc cag ggc atc atc gac acc gca cgc 451 Arg Arg Arg Thr Glu Arg Glu Arg Gln Gly Ile Ile Asp Thr Ala Arg 105 110 115

gca ggt gtt gtt acc caa ctt ctg ccg ttg ctc gac gat ctt gac ctg 499 Ala Gly Val Val Thr Gln Leu Leu Pro Leu Leu Asp Asp Leu Asp Leu

120 125 130

gct gaa cag cac ggt gac ctt aac gaa ggt ccg ctg aag tca ctg tct 547 Ala Glu Gln His Gly Asp Leu Asn Glu Gly Pro Leu Lys Ser Leu Ser 135 gac aag ctg atc aac atc ctg ggt gga ttg aag gtg gaa tcc ttc ggc 595 Asp Lys Leu Ile Asn Ile Leu Gly Gly Leu Lys Val Glu Ser Phe Gly 160 155 gag atc ggc gaa gca ttc gat cca gag atc cac gaa gca gta cag gat 643 Glu Ile Gly Glu Ala Phe Asp Pro Glu Ile His Glu Ala Val Gln Asp 170 ctc tca cag ggt gat gtc aag gtt ctg gga acg gta ctc cgc aag gga 691 Leu Ser Gln Gly Asp Val Lys Val Leu Gly Thr Val Leu Arg Lys Gly 185 190 tac ege etc gge gac ege gte ate ege ace gea atg gte etc att ggg 739 Tyr Arg Leu Gly Asp Arg Val Ile Arg Thr Ala Met Val Leu Ile Gly 205 777 gat cca gag gag agc tagagagact aagtctctta gtg Asp Pro Glu Glu Ser 215

<210> 30

<211> 218

<212> PRT

<213> Corynebacterium glutamicum

<400> 30

Met Thr Thr Pro Asn Gly Met Pro Asp Asn Pro Gly Asp Pro Glu Asn 1 5 10 15

Thr Asp Pro Glu Ala Thr Ser Ala Asp Arg Ala Glu Gln Ala Ala Glu 20 25 30

Glu Ala Ala Arg Gln Ala Glu Glu Ser Pro Phe Gly Gln Ala Ser 35 40 45

Glu Glu Glu Ile Ser Pro Glu Leu Glu Ala Glu Ile Asn Asp Leu Leu 50 55 60

Ser Asp Val Asp Pro Asp Leu Asp Gly Asp Gly Glu Val Ser Ala Val 65 70 75 80

Glu Thr Gln Leu Ala Glu Arg Thr Glu Asp Leu Gln Arg Val Thr Ala 85 90 95

Glu Tyr Ala Asn Tyr Arg Arg Thr Glu Arg Glu Arg Gln Gly Ile 100 105 110

Ile Asp Thr Ala Arg Ala Gly Val Val Thr Gln Leu Leu Pro Leu Leu 115 120 125

Asp Asp Leu Asp Leu Ala Glu Gln His Gly Asp Leu Asn Glu Gly Pro 135 Leu Lys Ser Leu Ser Asp Lys Leu Ile Asn Ile Leu Gly Gly Leu Lys 150 Val Glu Ser Phe Gly Glu Ile Gly Glu Ala Phe Asp Pro Glu Ile His Glu Ala Val Gln Asp Leu Ser Gln Gly Asp Val Lys Val Leu Gly Thr 185 Val Leu Arg Lys Gly Tyr Arg Leu Gly Asp Arg Val Ile Arg Thr Ala Met Val Leu Ile Gly Asp Pro Glu Glu Ser 215 <210> 31 <211> 1977 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1954) <223> RXN02543 ctcaatgagg agtttttctt accggcgaaa gtcggtggga agcaagtcaa agctcaagcc 60 gtggacagta ctaaaatcac ctaaaacagg aggcaccatt atg gga cgt gca gta 115 Met Gly Arg Ala Val gga att gac ctt gga acc acc aac tct gtg gtt tcc gta ctt gaa ggc 163 Gly Ile Asp Leu Gly Thr Thr Asn Ser Val Val Ser Val Leu Glu Gly 10 ggc gag cca gta gtt atc gca aac gca gaa ggc tca cgc acc acc cct 211 Gly Glu Pro Val Val Ile Ala Asn Ala Glu Gly Ser Arg Thr Thr Pro 25 tcc gtc gtt gca ttc gca aag aac ggt gaa gtt cta gtc ggc cag tcc 259 Ser Val Val Ala Phe Ala Lys Asn Gly Glu Val Leu Val Gly Gln Ser gct aag aac cag gcg gtc acc aac gtt gac cgc acc att cgc tcc gtc 307 Ala Lys Asn Gln Ala Val Thr Asn Val Asp Arg Thr Ile Arg Ser Val 55

aag cgc cac atc ggc acc gac tgg tcc gtt gct atc gat gac aag aac

Lys Arg His Ile Gly Thr Asp Trp Ser Val Ala Ile Asp Asp Lys Asn

tac acc tea cag gaa atc teg get egt acc etg atg aag etg aag ege

355

403

Тух	Thr	Ser	Glr	3 Glu 90	ı Ile	Ser	Ala	a Arç	Thr 95		Met	Lys	Leu	Lys 100		
				Туз	ctg Leu				Val					Ile		451
			Туг		gag Glu			Gln								499
		Ile			ctt Leu							Asn				547
	Āla				tac Tyr 155						Glu					595
					ctc Leu											643
					gtt Val											691
					gac Asp											739
	_		_		tcc Ser				-	_		_	_	-	_	787
_	_	_			cgt Arg 235											835
			_	_	gca Ala									-	-	883
					ctg Leu											931
					cag Gln	Asp										979
					gac Asp											1027
-	_		_		ggt Gly			_	_		-	_				1075

310)				315	5				320)			325	
					Gly					Asn			aac Asn 340		1123
				. Āla					Leu				ctc Leu		1171
		-	Lys	-	_			Leu	-	_		Leu	tcc Ser		1219
		Glu		_			Val	_		_			cgc Arg		1267
	Thr												gag Glu		1315
				-	_		_	_		_		 _	gaa Glu 420		1363
													atc Ile		1411
													atc Ile		1459
-				_		_		_	_	_	_		ggc Gly	_	1507
_						_	-					_	gat Asp	-	1555
													gac Asp 500		1603
													ctg Leu		1651
													tcc Ser		1699
					Val								gaa Glu		1747

		ggc Gly														1795
		gag Glu														1843
_	_	ggt Gly	_		_	_	-	_		-	_		-	-	_	1891
_		gtt Val 600	_	_	_	_	_	Val	_	_	_	-	_	-	aat. Asn	1939
	-	gac Asp			taaa	itgac	ta c	ecct	aacç	jg aa	ıt					1977

<210> 32

<211> 618

<212> PRT

<213> Corynebacterium glutamicum

<400> 32

Met Gly Arg Ala Val Gly Ile Asp Leu Gly Thr Thr Asn Ser Val Val 1 5 10 15

Ser Val Leu Glu Gly Gly Glu Pro Val Val Ile Ala Asn Ala Glu Gly
20 25 30

Ser Arg Thr Thr Pro Ser Val Val Ala Phe Ala Lys Asn Gly Glu Val 35 40 45

Leu Val Gly Gln Ser Ala Lys Asn Gln Ala Val Thr Asn Val Asp Arg 50 55 60

Thr Ile Arg Ser Val Lys Arg His Ile Gly Thr Asp Trp Ser Val Ala 65 70 75 80

Ile Asp Asp Lys Asn Tyr Thr Ser Gln Glu Ile Ser Ala Arg Thr Leu 85 90 95

Met Lys Leu Lys Arg Asp Ala Glu Ala Tyr Leu Gly Glu Asp Val Thr 100 105 110

Asp Ala Val Ile Thr Val Pro Ala Tyr Phe Glu Asp Ser Gln Arg Gln 115 120 125

Ala Thr Lys Glu Ala Gly Gln Ile Ala Gly Leu Asn Val Leu Arg Ile 130 135 140

Val Asn Glu Pro Thr Ala Ala Ala Leu Ala Tyr Gly Leu Glu Lys Gly 145 150 155 160

Glu Gln Glu Gln Thr Ile Leu Val Phe Asp Leu Gly Gly Gly Thr Phe Asp Val Ser Leu Leu Glu Ile Gly Asp Gly Val Val Glu Val Arg Ala Thr Ser Gly Asp Asn Glu Leu Gly Gly Asp Asp Trp Asp Gln Arg Ile Val Asp Trp Leu Val Glu Lys Phe Gln Ser Ser Asn Gly Ile Asp Leu Thr Lys Asp Lys Met Ala Leu Gln Arg Leu Arg Glu Ala Ala Glu Lys 230 235 Ala Lys Ile Glu Leu Ser Ser Gln Ser Ala Asn Ile Asn Leu Pro 245 Tyr Ile Thr Val Asp Ala Asp Lys Asn Pro Leu Phe Leu Asp Glu Thr 265 Leu Ser Arg Ala Glu Phe Gln Arg Ile Thr Gln Asp Leu Leu Ala Arg 280 Thr Lys Thr Pro Phe Asn Gln Val Val Lys Asp Ala Gly Val Ser Val 295 Ser Glu Ile Asp His Val Val Leu Val Gly Gly Ser Thr Arg Met Pro 310 Ala Val Thr Glu Leu Val Lys Glu Leu Thr Gly Gly Arg Glu Pro Asn 330 Lys Gly Val Asn Pro Asp Glu Val Val Ala Val Gly Ala Ala Leu Gln Ala Gly Val Leu Arg Gly Glu Val Lys Asp Val Leu Leu Leu Asp Val 360 Thr Pro Leu Ser Leu Gly Ile Glu Thr Lys Gly Gly Val Met Thr Lys Leu Ile Glu Arg Asn Thr Thr Ile Pro Thr Lys Arg Ser Glu Thr Phe 390 Thr Thr Ala Glu Asp Asn Gln Pro Ser Val Gln Ile Gln Val Phe Gln 410 Gly Glu Arg Glu Ile Ala Thr Ala Asn Lys Leu Leu Gly Ser Phe Glu 425 Leu Gly Gly Ile Ala Pro Ala Pro Arg Gly Val Pro Gln Ile Glu Val 435 440 Thr Phe Asp Ile Asp Ala Asn Gly Ile Val His Val Thr Ala Lys Asp 455 460

Lys Gly Thr Gly Lys Glu Asn Thr Ile Thr Ile Gln Asp Gly Ser Gly 465 Leu Ser Gln Asp Glu Ile Asp Arg Met Ile Lys Asp Ala Glu Ala His 490 Ala Asp Glu Asp Lys Lys Arg Arg Glu Glu Glu Glu Val Arg Asn Asn 505 Ala Glu Ser Leu Val Tyr Gln Thr Arg Lys Phe Val Glu Glu Asn Ser Glu Lys Val Ser Glu Asp Leu Lys Ala Lys Val Glu Glu Ala Ala Lys 535 Gly Val Glu Glu Ala Leu Lys Gly Glu Asp Leu Glu Ala Ile Lys Ala Ala Val Glu Lys Leu Asn Thr Glu Ser Gln Glu Met Gly Lys Ala Ile Tyr Glu Ala Asp Ala Ala Ala Gly Ala Thr Gln Ala Asp Ala Gly Ala Glu Gly Ala Ala Asp Asp Asn Val Val Asp Ala Glu Val Val Glu Asp 600 Asp Ala Ala Asp Asn Gly Glu Asp Lys Lys 615 <210> 33 <211> 1977 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1954) <223> FRXA02543 <400> 33 ctcaatgagg agtttttctt accggcgaaa gtcggtggga agcaagtcaa agctcaagcc 60 115 gtggacagta ctaaaatcac ctaaaacagg aggcaccatt atg gga cgt gca gta Met Gly Arg Ala Val gga att gac ctt gga acc acc aac tct gtg gtt tcc gta ctt gaa ggc Gly Ile Asp Leu Gly Thr Thr Asn Ser Val Val Ser Val Leu Glu Gly 163 10 211 gge gag eca gta gtt ate gea aac gea gaa gge tea ege ace ace eet Gly Glu Pro Val Val Ile Ala Asn Ala Glu Gly Ser Arg Thr Thr Pro 25 30

			Ālā			a aag a Lys		Ğĺy					Gly			259
		Asr				acc Thr 60	Asn					Ile				307
	Arg					gac Asp					Ile					355
					Ile	tcg Ser										403
				Tyr		ggc										451
						gac Asp										499
						aac Asn 140										547
						ggc Gly										595
						ggt Gly										643
						gtt Val										691
						tgg Trp										739
						aac Asn 220										787
						gag Glu										835
			_	-	-	aac Asn		Asn						-	-	883
gca	gac	aag	aac	cca	ctg	ttc	ttg	gat	gag	acc	ctt	tcc	cgt	gcc	gag	931

Ala	Asp	Lys	265	_	Leu	Phe	e Leu	270		Thr	Leu	Ser	Arg 275		Glu	
			ıle					ctg Leu					Thr			979
	_	Val					Gly	gtg Val		_	_	Glu				1027
_	Йаl		_			Ser		cgt Arg	-		Āla	-		_	_	1075
_	_	_			Gly		_	gag Glu			_		_			1123
								gca Ala 350								1171
								ctt Leu								1219
				_				atg Met		_				_		1267
								gag Glu								1315
								gtc Val								1363
_		_		_	_			tcc Ser 430							-	1411
								atc Ile								1459
								gca Ala								1507
_						_	_	ggc Gly	Ser				_	_	-	1555
	-	-	_		-	-	-	gaa Glu	-		_	-		-	-	1603

490 495 500

_	_	cgc Arg			_	_	_	_			_			-	_	1651
	_	acc Thr 520	_	_		-	_					_	_		-	1699
		aag Lys														1747
	_	ggc Gly		-			_		_	_	-	-			_	1795
		gag Glu														1843
	_	ggt Gly	-		_	-	_	-		-	-		_	-	-	1891
_		gtt Val 600	-	-	-	-	-	-	_	_	_	-	_	_		1939
		gac Asp	-	_	taaa	tgac	ta c	ccct	aaco	jg aa	ıt					1977

<210> 34

<211> 618

<212> PRT

<213> Corynebacterium glutamicum

<400> 34

Met Gly Arg Ala Val Gly Ile Asp Leu Gly Thr Thr Asn Ser Val Val 1 5 10 15

Ser Val Leu Glu Gly Gly Glu Pro Val Val Ile Ala As
n Ala Glu Gly 20 25 30

Ser Arg Thr Thr Pro Ser Val Val Ala Phe Ala Lys Asn Gly Glu Val 35 40 45

Leu Val Gly Gln Ser Ala Lys Asn Gln Ala Val Thr Asn Val Asp Arg 50 55 60

Thr Ile Arg Ser Val Lys Arg His Ile Gly Thr Asp Trp Ser Val Ala 65 70 75 80

Ile Asp Asp Lys Asn Tyr Thr Ser Gln Glu Ile Ser Ala Arg Thr Leu

85 90 95

Met Lys Leu Lys Arg Asp Ala Glu Ala Tyr Leu Gly Glu Asp Val Thr 100 105 110 110 ...

Asp Ala Val Ile Thr Val Pro Ala Tyr Phe Glu Asp Ser Gln Arg Gln 115 120 125

Ala Thr Lys Glu Ala Gly Gln Ile Ala Gly Leu Asn Val Leu Arg Ile 130 135 140

Val Asn Glu Pro Thr Ala Ala Ala Leu Ala Tyr Gly Leu Glu Lys Gly 145 150 155 160

Glu Gln Glu Gln Thr Ile Leu Val Phe Asp Leu Gly Gly Gly Thr Phe 165 170 175

Asp Val Ser Leu Leu Glu Ile Gly Asp Gly Val Val Glu Val Arg Ala 180 185 190

Thr Ser Gly Asp Asn Glu Leu Gly Gly Asp Asp Trp Asp Gln Arg Ile 195 200 205

Val Asp Trp Leu Val Glu Lys Phe Gln Ser Ser Asn Gly Ile Asp Leu 210 215 220

Thr Lys Asp Lys Met Ala Leu Gln Arg Leu Arg Glu Ala Ala Glu Lys 225 230 235 240

Ala Lys Ile Glu Leu Ser Ser Ser Gln Ser Ala Asn Ile Asn Leu Pro 245 250 255

Tyr Ile Thr Val Asp Ala Asp Lys Asn Pro Leu Phe Leu Asp Glu Thr 260 265 270

Leu Ser Arg Ala Glu Phe Gln Arg Ile Thr Gln Asp Leu Leu Ala Arg 275 280 285

Thr Lys Thr Pro Phe Asn Gln Val Val Lys Asp Ala Gly Val Ser Val 290 295 300

Ser Glu Ile Asp His Val Val Leu Val Gly Gly Ser Thr Arg Met Pro 305 310 315 320

Ala Val Thr Glu Leu Val Lys Glu Leu Thr Gly Gly Arg Glu Pro Asn 325 330 335

Lys Gly Val Asn Pro Asp Glu Val Val Ala Val Gly Ala Ala Leu Gln 340 345 350

Ala Gly Val Leu Arg Gly Glu Val Lys Asp Val Leu Leu Leu Asp Val 355 360 365

Thr Pro Leu Ser Leu Gly Ile Glu Thr Lys Gly Gly Val Met Thr Lys 370 375 380

Leu Ile Glu Arg Asn Thr Thr Ile Pro Thr Lys Arg Ser Glu Thr Phe

385 390 395 400

Thr Thr Ala Glu Asp Asn Gln Pro Ser Val Gln Ile Gln Val Phe Gln 405 410 415

Gly Glu Arg Glu Ile Ala Thr Ala Asn Lys Leu Leu Gly Ser Phe Glu
420 425 430

Leu Gly Gly Ile Ala Pro Ala Pro Arg Gly Val Pro Gln Ile Glu Val 435 440 445

Thr Phe Asp Ile Asp Ala Asn Gly Ile Val His Val Thr Ala Lys Asp 450 455 460

Lys Gly Thr Gly Lys Glu Asn Thr Ile Thr Ile Gln Asp Gly Ser Gly 465 470 475 480

Leu Ser Gln Asp Glu Ile Asp Arg Met Ile Lys Asp Ala Glu Ala His 485 490 495

Ala Asp Glu Asp Lys Lys Arg Arg Glu Glu Glu Glu Val Arg Asn Asn 500 505 510

Ala Glu Ser Leu Val Tyr Gln Thr Arg Lys Phe Val Glu Glu Asn Ser 515 520 525

Glu Lys Val Ser Glu Asp Leu Lys Ala Lys Val Glu Glu Ala Ala Lys 530 540

Gly Val Glu Glu Ala Leu Lys Gly Glu Asp Leu Glu Ala Ile Lys Ala 545 550 555 560

Ala Val Glu Lys Leu Asn Thr Glu Ser Gln Glu Met Gly Lys Xaa Ile 565 570 575

Xaa Glu Ala Asp Ala Xaa Ala Gly Ala Thr Gln Ala Asp Ala Gly Ala 580 585 590

Glu Gly Ala Ala Asp Asp Asn Val Val Asp Ala Glu Val Val Glu Asp 595 600 605

Asp Ala Ala Asp Asn Gly Glu Asp Lys Lys

<210> 35

<211> 1947

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1924)

<223> RXN02280

<400> 35

cgcgattgcg tcatcgatcg ttgttgcttc catgcgcacc acactatctt tctgcacgcc 60

ctg	atgo	cct	gtgg	gatto	aa a	actg	ıtgct	t tt	atag	ıgcgt	Gln	tcc Ser		115
					Val					gtt Val				163
				Ser					Tyr	gtg Val				211
			Asp					Arg		gaa Glu				259
		Pro								acc Thr				307
										acc Thr 80				355
										aaa Lys				403
										ggc Gly				451
										gtg Val				499
	_									gat Asp			-	547
										att Ile 160				595
										acg Thr				643
										cgc Arg				691
										atc Ile				739

ttt Phe	gca Ala 215	Lys	g gat s Asp	act Thi	t gat r Asp	cag Gln 220	Glr	g cac His	agg Arg	rctg Leu	tat Tyr 225	Ala	ggc Gly	c cgo Aro	g gag g Glu	787
cgc Arg 230	, Leu	ggt Gly	aaa Lys	a act	cct Pro 235	Phe	gat Asp	gtc Val	: atc	gat Asp 240	Leu	acc Thr	ggt Gly	cct Pro	ggc Gly 245	835
ato	gag Glu	ggt Gly	gtg Val	gct Ala 250	Tyr	gta Val	ttg Leu	ccg Pro	gag Glu 255	Ala	cag Gln	gct Ala	ccg Pro	cat His 260	atg Met	883
tcc Ser	agg Arg	cgt Arg	cac His 265	Ser	att Ile	tat Tyr	gtc Val	aac Asn 270	cgc Arg	atg Met	ttg Leu	gtc Val	Ser 275	Asp	GJ À aaa	931
			Val										Cys		atc Ile	979
			gat Asp												gat Asp	1027
			ttc Phe												aaa Lys 325	1075
tcg Ser	tgg Trp	ctg Leu	att Ile	aat Asn 330	ctc Leu	gcc Ala	atg Met	acc Thr	aag Lys 335	cct Pro	cac His	cgc Arg	gtg Val	cgg Arg 340	gaa. Glu	1123
ttt Phe	act Thr	gcg Ala	att Ile 345	cat His	gat Asp	ctt Leu	gcc Ala	ctg Leu 350	cgc Arg	gag Glu	ctg Leu	tgc Cys	caa Gln 355	tcg Ser	gac Asp	1171
gcg Ala	gac Asp	ctg Leu 360	gct Ala	gaa Glu	acc Thr	atg Met	ttg Leu 365	ggt Gly	ctt Leu	ctc Leu	acc Thr	ttg Leu 370	gag Glu	acc Thr	tcc Ser	1219
cgt Arg	ggt Gly 375	cgc Arg	atc Ile	tcg Ser	atc Ile	ggt Gly 380	gag Glu	atc Ile	acc Thr	acg Thr	ttg Leu 385	tcc Ser	atc Ile	acc Thr	gag Glu	1267
gat Asp 390	gtg Val	tcg Ser	ctg Leu	Gln	ctg Leu 395	gct Ala	acc Thr	acg Thr	ttg Leu	gat Asp 400	gat Asp	ttc Phe	agg Arg	cag Gln	ctc Leu 405	1315
			gcg Ala					Leu								1363
		Ser	gat Asp 425				Leu					Tyr				1411
acg	gta	tct	act	gct	gac (ctg (cgc (gaa	tcc .	atg	gat	ctg	atg	gag	ctt	1459

Thr	Val	Ser 440		Ala	Asp	Leu	Arg 445	Glu	Ser	Met	Asp	Leu 450	Met	Glu	Leu	
					att Ile											1507
					gat Asp 475											1555
gaa Glu	ccc Pro	gca Ala	gat Asp	gtt Val 490	cct Pro	gcc Ala	gtg Val	gtg Val	atc Ile 495	att Ile	gat Asp	tcc Ser	aag Lys	gcg Ala 500	cag Gln	1603
					aat Asn											1651
gct Ala	gac Asp	att Ile 520	ttg Leu	gca Ala	acg Thr	gtg Val	gat Asp 525	aac Asn	acg Thr	ttg Leu	agc Ser	cgt Arg 530	caa Gln	aca Thr	gcc Ala	1699
					cag Gln											1747
					aaa Lys 555											1795
					ttg Leu											1843
					aag Lys											1891
-	_	_			tct Ser	_					taaç	jacaa	itc o	ctccg	gctaat	1944
ctt																1947
<210> 36 <211> 608 <212> PRT <213> Corynebacterium glutamicum																
	> 36 Gln		Ser	Ser 5	Arg	Asp	Asn	Phe	Gln 10	Val	Asp	Leu	Gly	Gly 15	Val	
Val	Asp	Leu	Leu 20	Ser	Arg	His	Ile	Tyr 25	Ser	Gly	Pro	Arg	Val 30	Tyr	Val	

Arg Glu Leu Leu Gln Asn Ala Val Asp Ala Cys Thr Ala Arg Ser Glu 35 40 45

- Gln Gly Glu Gly Tyr Glu Pro Ser Ile Arg Ile Arg Pro Val Thr 50 55 60
- Lys Asp Arg Ala Thr Phe Ser Leu Val Asp Asn Gly Thr Gly Leu Thr 65 70 75 80
- Ala Gln Glu Ala Arg Glu Leu Leu Ala Thr Val Gly Arg Thr Ser Lys
 85 90 95
- Arg Asp Glu Phe Gly Leu Gln Arg Glu Gly Arg Leu Gly Gln Phe Gly 100 105 110
- Ile Gly Leu Leu Ser Cys Phe Met Val Ala Asp Glu Ile Thr Met Val 115 120 125
- Ser His Ala Glu Gly Ala Ser Ala Ile Arg Trp Thr Gly His Ala Asp 130 135 140
- Gly Thr Phe Asn Leu Glu Ile Leu Gly Asp Asp Ala Thr Asp Val Ile 145 150 155 160
- Pro Val Gly Thr Thr Val His Leu Thr Pro Arg Pro Asp Glu Arg Thr 165 170 175
- Leu Leu Thr Glu Asn Ser Val Val Thr Ile Ala Ser Asn Tyr Gly Arg 180 185 190
- Tyr Leu Pro Ile Pro Ile Val Val Gln Gly Glu Lys Asn Thr Thr Ile 195 200 205
- Thr Thr Ser Pro Val Phe Ala Lys Asp Thr Asp Gln Gln His Arg Leu 210 215 220
- Tyr Ala Gly Arg Glu Arg Leu Gly Lys Thr Pro Phe Asp Val Ile Asp 225 230 235 240
- Leu Thr Gly Pro Gly Ile Glu Gly Val Ala Tyr Val Leu Pro Glu Ala 245 250 255
- Gln Ala Pro His Met Ser Arg Arg His Ser Ile Tyr Val Asn Arg Met 260 265 270
- Leu Val Ser Asp Gly Pro Ser Thr Val Leu Pro Asn Trp Ala Phe Phe 275 280 285
- Val Glu Cys Glu Ile Asn Ser Thr Asp Leu Glu Pro Thr Ala Ser Arg 290 295 300
- Glu Ala Leu Met Asp Asp Thr Ala Phe Ala Ala Thr Arg Glu His Ile 305 310 315 320
- Gly Glu Cys Ile Lys Ser Trp Leu Ile Asn Leu Ala Met Thr Lys Pro 325 330 335

His Arg Val Arg Glu Phe Thr Ala Ile His Asp Leu Ala Leu Arg Glu Leu Cys Gln Ser Asp Ala Asp Leu Ala Glu Thr Met Leu Gly Leu Leu 360 Thr Leu Glu Thr Ser Arg Gly Arg Ile Ser Ile Gly Glu Ile Thr Thr Leu Ser Ile Thr Glu Asp Val Ser Leu Gln Leu Ala Thr Thr Leu Asp 395 390 Asp Phe Arg Gln Leu Asn Thr Ile Ala Arg Pro Asp Thr Leu Ile Ile 410 Asn Gly Gly Tyr Ile His Asp Ser Asp Leu Ala Arg Leu Ile Pro Val His Tyr Pro Pro Leu Thr Val Ser Thr Ala Asp Leu Arg Glu Ser Met 440 Asp Leu Met Glu Leu Pro Pro Leu Gln Asp Ile Glu Lys Ala Lys Ala 455 Leu Asp Ala Gln Val Thr Glu Ser Leu Lys Asp Phe Gln Ile Lys Gly 470 475 Ala Thr Arg Val Phe Glu Pro Ala Asp Val Pro Ala Val Val Ile Ile 490 485 Asp Ser Lys Ala Gln Ala Ser Arg Asp Arg Asn Glu Thr Gln Ser Ala 505 Thr Thr Asp Arg Trp Ala Asp Ile Leu Ala Thr Val Asp Asn Thr Leu 520 Ser Arg Gln Thr Ala Asn Ile Pro Gln Asp Gln Gly Leu Ser Ala Leu 535 Cys Leu Asn Trp Asn Asn Ser Leu Val Arg Lys Leu Ala Ser Thr Asp 550 Asp Thr Ala Val Val Ser Arg Thr Val Arg Leu Leu Tyr Val Gln Ala 570 565 Leu Leu Ser Ser Lys Arg Pro Leu Arg Val Lys Glu Arg Ala Leu Leu Asn Asp Ser Leu Ala Asp Leu Val Ser Leu Ser Leu Ser Ser Asp Ile 600

<210> 37

<211> 436 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(436) <223> FRXA02282 <400> 37 egegattgeg teategateg ttgttgette catgegeace acactatett tetgeacgee 60 ctgatgccct gtggattcaa aactgtgctt ttataggcgt atg caa gaa tcc tca Met Gln Glu Ser Ser cgt gat aat ttc caa gtt gac ctc ggc ggc gtt gtt gat ctt ttg agt 163 Arg Asp Asn Phe Gln Val Asp Leu Gly Gly Val Val Asp Leu Leu Ser 10 cgc cac att tat tcc ggt ccg agg gtg tat gtg cgt gag ttg ctg cag 211 Arg His Ile Tyr Ser Gly Pro Arg Val Tyr Val Arg Glu Leu Leu Gln 25 aat gcg gtt gat gct tgt act gca cgt tct gaa cag ggt gag gag ggc 259 Asn Ala Val Asp Ala Cys Thr Ala Arg Ser Glu Gln Gly Glu Glu Gly 40 tac gag ccg agt att cgt att cgg ccg gtg acc aag gat cgt gcc acg 307 Tyr Glu Pro Ser Ile Arg Ile Arg Pro Val Thr Lys Asp Arg Ala Thr 55 ttt tca ctg gtt gat aat ggt acg ggc ctg acc gcg cag gag gcg cqg Phe Ser Leu Val Asp Asn Gly Thr Gly Leu Thr Ala Gln Glu Ala Arg gaa ttg ctg gcg acg gtg ggg cgg acg tcg aaa cgc gat gaa ttc ggt 403 Glu Leu Leu Ala Thr Val Gly Arg Thr Ser Lys Arg Asp Glu Phe Gly ctg cag cgg gaa ggt cgc ctg ggg caa ttt ggc 436 Leu Gln Arg Glu Gly Arg Leu Gly Gln Phe Gly <210> 38 <211> 112 <212> PRT <213> Corynebacterium glutamicum <400> 38 Met Gln Glu Ser Ser Arg Asp Asn Phe Gln Val Asp Leu Gly Gly Val

62

Val Asp Leu Leu Ser Arg His Ile Tyr Ser Gly Pro Arg Val Tyr Val

25

20

Arg Glu Leu Gln Asn Ala Val Asp Ala Cys Thr Ala Arg Ser Glu 35 40 45

Gln Gly Glu Glu Tyr Glu Pro Ser Ile Arg Ile Arg Pro Val Thr 50 55 60

Lys Asp Arg Ala Thr Phe Ser Leu Val Asp Asn Gly Thr Gly Leu Thr 65 70 75 80

Ala Gln Glu Ala Arg Glu Leu Leu Ala Thr Val Gly Arg Thr Ser Lys 85 90 95

Arg Asp Glu Phe Gly Leu Gln Arg Glu Gly Arg Leu Gly Gln Phe Gly 100 105 110

<210> 39

<211> 1269

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1246)

<223> RXA00886

<400> 39

taagtatgtt ggtcgtgtgc tcgctggcga atagctgcgg gtatagttgg ccatttgttt 60

tgattaatct gtttagaagc taaaggaagt atcacccacc gtg gca cgt gac tat 115 Val Ala Arg Asp Tyr 1 5

tac ggc att ctc ggc gtc gat cgc aat gca acc gaa tca gag atc aaa 163 Tyr Gly Ile Leu Gly Val Asp Arg Asn Ala Thr Glu Ser Glu Ile Lys

aag gca tac cga aag ctt gcc cgc aaa tac cac ccg gac gta aac cca 211 Lys Ala Tyr Arg Lys Leu Ala Arg Lys Tyr His Pro Asp Val Asn Pro 25 30 35

ggt gag gaa gca gcg gag aaa ttc cgc gag gct tct gtt gcg cat gag 259 Gly Glu Glu Ala Ala Glu Lys Phe Arg Glu Ala Ser Val Ala His Glu 40 45 50

gta ctc act gat ccg gat aag cgc cgc att gtt gat atg ggc ggt gac 307 Val Leu Thr Asp Pro Asp Lys Arg Arg Ile Val Asp Met Gly Gly Asp 55 60 65

cca atg gag caa ggc ggc gga gct ggc gct ggc ttc ggt gga ggc 355 Pro Met Glu Gln Gly Gly Gly Ala Gly Ala Gly Gly Phe Gly Gly Gly 70 75 80 85

tto ggo ggo ago ggt gga otg ggo gat ato tto gat goo tto tto ggo 403

Phe	e Gly	Gly	/ Ser	Gl ₃		/ Let	Gly	y Asp	95		Asp	Ala	Phe	Phe 100	Gly	
				/ Gly				e cca / Pro 110	Arg					Pro	ggc Gly	451
			Leu					ato Ile					Ala			499
		Lys					Leu	gac Asp				Leu				547
	His					Ala		gac Asp			Pro					595
	_			_	Gly	_		cag Gln	-		_	_	_		_	643
			_	_		-		tgc Cys 190			_	_				691
				_		-		gag Glu	_	_	_	-		_		739
_	_	_	-	-			_	aac Asn			_			_		787
								caa Gln								835
								gaa Glu								883
								ctg Leu 270								931
								gaa Glu								979
					Ile			cct Pro								1027
								atg Met								1075

310				315					320)		,		325	
cac gg His Gl				Ala					Phe						1123
gat ga Asp As			Arg												1171
gac aa Asp As		Ser													1219
gac aa Asp Ly 37	s Lev	_		_		_		taa	tgtc	act	gcca	gtati	tt		1266
atc															1269
<210> <211> <212> <213>	382 PRT	ebact	teri	um gl	lutar	nicu	n								
<400> Val Al		Asp	Tyr 5	Tyr	Gly	Ile	Leu	Gly 10	Val	Asp	Arg	Asn	Ala 15	Thr	
Glu Se	r Glu	Ile 20	Lys	Lys	Ala	Tyr	Arg 25	Lys	Leu	Ala	Arg	Lys 30	Tyr	His	
Pro Ası	Val 35	Asn	Pro	Gly	Glu	Glu 40	Ala	Ala	Glu	Lys	Phe 45	Arg	Glu	Ala	
Ser Val		His	Glu	Val	Leu 55	Thr	Asp	Pro	Asp	Lys 60	Arg	Arg	Ile	Val	
Asp Met	Gly	Gly	Asp	Pro 70	Met	Glu	Gln	Gly	Gly 75	Gly	Ala	Gly	Ala	Gly 80	
Gly Phe	e Gly	Gly	Gly 85	Phe	Gly	Gly	Ser	Gly 90	Gly	Leu	Gly	Asp	Ile 95	Phe	
Asp Ala	a Phe	Phe 100	Gly	Gly	Gly	Ala	Gly 105	Gly	Ser	Arg	Gly	Pro 110	Arg	Ser	
Arg Val	. Gln 115	Pro	Gly	Ser	_	Thr 120	Leu	Trp	Arg	Thr	Ser 125	Ile	Thr	Leu	
Glu Glu 130		Tyr	Lys	_	Ala 135	Lys	Lys	Asp	Leu	Thr 140	Leu	Asp	Thr	Ala	
Val Leu 145	Cys	Thr		Cys 150	His	Gly	Ser	Gly	Ser 155	Ala	Ser	Asp	Lys	Lys 160	

Pro Val Thr Cys Gly Thr Cys Asn Gly Ala Gly Glu Ile Gln Glu Val 165 . 170 175

Gln Arg Ser Phe Leu Gly Asn Val Met Thr Ser Arg Pro Cys His Thr 180 185 190

Cys Asp Gly Thr Gly Glu Ile Ile Pro Asp Pro Cys Thr Glu Cys Ala 195 200 205

Ala Asp Gly Arg Val Arg Ala Arg Arg Asp Ile Val Ala Asn Ile Pro 210 215 220

Ala Gly Ile Gln Ser Gly Met Arg Ile Arg Met Ala Gly Gln Gly Glu 225 230 235 240

Val Gly Ala Gly Gly Pro Ala Gly Asp Leu Tyr Ile Glu Val Met 245 250 255

Val Arg Pro His Ala Ile Phe Thr Arg Asp Gly Asp Asp Leu His Ala 260 265 270

Ser Ile Lys Val Pro Met Phe Asp Ala Ala Leu Gly Thr Glu Leu Asp 275 280 285

Val Glu Ser Leu Thr Gly Glu Glu Val Lys Ile Thr Ile Pro Ala Gly 290 295 300

Thr Gln Pro Asn Asp Val Ile Thr Leu Asp Gly Glu Gly Met Pro Lys 305 310 315 320

Leu Arg Ala Glu Gly His Gly Asn Leu Met Ala His Val Asp Leu Phe 325 330 335

Val Pro Thr Asp Leu Asp Asp Arg Thr Arg Glu Leu Leu Glu Glu Ile 340 345 350

Arg Asn His Arg Ser Asp Asn Ala Ser Val His Arg Glu Gly Glu 355 360 365

Glu Ser Gly Phe Phe Asp Lys Leu Arg Asn Lys Phe Arg Lys 370 375 380

<210> 41

<211> 1470

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1447)

<223> RXS00568

<400> 41

gtttcggacg acgcgagaaa tcgcattaat cgtcggaaac cgggcttgtt tttgtaatat 60 ctgaaacttt ccctttcccg atcatccagg agatttactc gtg aag agt tct gtc 11

Val Lys Ser Ser Val gag aag ctg agc gac acc cgt tca aag atc acc gtt gag gtt cca ttt Glu Lys Leu Ser Asp Thr Arg Ser Lys Ile Thr Val Glu Val Pro Phe tet qua etg aug eca gag ate gae eag gea tae qee get eta geg eag 211 Ser Glu Leu Lys Pro Glu Ile Asp Gln Ala Tyr Ala Ala Leu Ala Gln caa gtc cag atc cct ggt ttc cgt aag ggc aag gca ccg cgt cag ctt 259 Gin Val Gin Ile Pro Gly Phe Arg Lys Gly Lys Ala Pro Arg Gin Leu ate gae gea ege tte gge egt geg gtt etg gag eag gtt gte aac 307 Ile Asp Ala Arg Phe Gly Arg Gly Ala Val Leu Glu Gln Val Val Asn gac atg ctt cct aac cgc tac gca cag gca atc gaa gct gag ggc atc 355 Asp Met Leu Pro Asn Arg Tyr Ala Gln Ala Ile Glu Ala Glu Gly Ile aag gca atc ggc cag cct aac gta gag gtc acc aag atc gaa gac aac 403 Lys Ala Ile Gly Gln Pro Asn Val Glu Val Thr Lys Ile Glu Asp Asn 90 95 gag etc gtt gag ttc gtc gct gag gtt gac gtt egc eca gag ttc gag 451 Glu Leu Val Glu Phe Val Ala Glu Val Asp Val Arg Pro Glu Phe Glu 110 ctt cct aag ttc gag gac atc act gtt gag gtc cca gct atc aag gct 499 Leu Pro Lys Phe Glu Asp Ile Thr Val Glu Val Pro Ala Ile Lys Ala gac gaa gag gca atc gaa gca gag ctc gag acc ctg cgt gca cgt ttc 547 Asp Glu Glu Ala Ile Glu Ala Glu Leu Glu Thr Leu Arg Ala Arg Phe tcc acc ttg aag gat cac aac cac aag ctg aag aag ggt gag ttc gtc 595 Ser Thr Leu Lys Asp His Asn His Lys Leu Lys Lys Gly Glu Phe Val 155 acc atc aac atc acc gca agc att gac ggt gag aag att gaa gag gca 643 Thr Ile Asn Ile Thr Ala Ser Ile Asp Gly Glu Lys Ile Glu Glu Ala 170 691 acc act gag ggt ctg tcc tac gaa atc gga tct gac gat ctg att gac Thr Thr Glu Gly Leu Ser Tyr Glu Ile Gly Ser Asp Asp Leu Ile Asp 185 ggc ctg gac aag gct ctg atc ggc gct aag aag gat gaa acc gta gag 739 Gly Leu Asp Lys Ala Leu Ile Gly Ala Lys Lys Asp Glu Thr Val Glu 200 787 ttc acc tct gag ctg gca aac ggc gag cac aag ggc aag gaa gct caa

Phe Thr Ser Glu Leu Ala Asn Gly Glu His Lys Gly Lys Glu Ala Gln

215 220 225 atc agc gtt gag atc acc gca acc aag cag cgc gag ctg cct gag ctg 835 Ile Ser Val Glu Ile Thr Ala Thr Lys Gln Arg Glu Leu Pro Glu Leu 230 235 gat gat gag ttc gca cag ctg gct tct gag ttc gac acc atc gaa gag 883 Asp Asp Glu Phe Ala Gln Leu Ala Ser Glu Phe Asp Thr Ile Glu Glu ctt cgt gag tcc acc gtg tct gac gtt gag gct aag cag aac gag 931 Leu Arg Glu Ser Thr Val Ser Asp Val Glu Ala Lys Gln Lys Asn Glu cag gct gct gca atc cgc gac gaa gtt ctc gct gcg gct ctt ggc qaq 979 Gln Ala Ala Ala Ile Arg Asp Glu Val Leu Ala Ala Ala Leu Gly Glu 280 gct gac ttc gct ctg cca cag tcc atc gtt gac gag cag gca cac tcc 1027 Ala Asp Phe Ala Leu Pro Gln Ser Ile Val Asp Glu Gln Ala His Ser 295 cag ctg cac cag ctc ctc ggc gag ctt gca cac gac gat gct gca ctg 1075 Gln Leu His Gln Leu Leu Gly Glu Leu Ala His Asp Asp Ala Ala Leu 315 aac tcc ctc ctt gag gct cag ggc acc act cgt gaa gag ttc gac aag 1123 Asn Ser Leu Leu Glu Ala Gln Gly Thr Thr Arg Glu Glu Phe Asp Lys 330 aag aac gtc gaa gat gct gag aag gct gtt cgc acc cag ctg ttc ctg 1171 Lys Asn Val Glu Asp Ala Glu Lys Ala Val Arg Thr Gln Leu Phe Leu gac acc ctc tct gag gtt gag gag cct gag gtt tcc cag cag gag ctc 1219 Asp Thr Leu Ser Glu Val Glu Glu Pro Glu Val Ser Gln Gln Glu Leu 360 365 acc gac cac atc ctg ttc acc gca cag tct tac ggc atg gac cca aac 1267 Thr Asp His Ile Leu Phe Thr Ala Gln Ser Tyr Gly Met Asp Pro Asn 375 cag ttc atc ggt cag ctg cag tcc ggc cag atc gcg aac ctc ttc 1315 Gln Phe Ile Gly Gln Leu Gln Gln Ser Gly Gln Ile Ala Asn Leu Phe 390 tcc gac gtt cgc cgt ggc aag gct ctt gca cag gct atc tgc cgc gta 1363 Ser Asp Val Arg Arg Gly Lys Ala Leu Ala Gln Ala Ile Cys Arg Val 410 415

aac gtg aag gac tcc gag ggt aac gag atc gac cct aag gaa tac ttc

Asn Val Lys Asp Ser Glu Gly Asn Glu Ile Asp Pro Lys Glu Tyr Phe

ggt gaa gaa gaa gta gct gag act gag tct gaa gct taaaaacttt

430

Gly Glu Glu Glu Val Ala Glu Thr Glu Ser Glu Ala

425

1411

1457

aaagaaataa cgc 1470

<210> 42

<211> 449

<212> PRT

<213> Corynebacterium glutamicum

<400> 42

Val Lys Ser Ser Val Glu Lys Leu Ser Asp Thr Arg Ser Lys Ile Thr 1 5 10 15

Val Glu Val Pro Phe Ser Glu Leu Lys Pro Glu Ile Asp Gln Ala Tyr 20 25 30

Ala Ala Leu Ala Gln Gln Val Gln Ile Pro Gly Phe Arg Lys Gly Lys
35 40 45

Ala Pro Arg Gln Leu Ile Asp Ala Arg Phe Gly Arg Gly Ala Val Leu 50 55 60

Glu Gln Val Val Asn Asp Met Leu Pro Asn Arg Tyr Ala Gln Ala Ile 65 70 75 80

Glu Ala Glu Gly Ile Lys Ala Ile Glý Gln Pro Asn Val Glu Val Thr 85 90 95

Lys Ile Glu Asp Asn Glu Leu Val Glu Phe Val Ala Glu Val Asp Val 100 105 110

Arg Pro Glu Phe Glu Leu Pro Lys Phe Glu Asp Ile Thr Val Glu Val 115 120 125

Pro Ala Ile Lys Ala Asp Glu Glu Ala Ile Glu Ala Glu Leu Glu Thr 130 135 140

Leu Arg Ala Arg Phe Ser Thr Leu Lys Asp His Asn His Lys Leu Lys 145 150 155 160

Lys Gly Glu Phe Val Thr Ile Asn Ile Thr Ala Ser Ile Asp Gly Glu 165 170 175

Lys Ile Glu Glu Ala Thr Thr Glu Gly Leu Ser Tyr Glu Ile Gly Ser 180 185 190

Asp Asp Leu Ile Asp Gly Leu Asp Lys Ala Leu Ile Gly Ala Lys Lys 195 200 205

Asp Glu Thr Val Glu Phe Thr Ser Glu Leu Ala Asn Gly Glu His Lys 210 215 220

Gly Lys Glu Ala Gln Ile Ser Val Glu Ile Thr Ala Thr Lys Gln Arg 225 230 235 240

Glu Leu Pro Glu Leu Asp Asp Glu Phe Ala Gln Leu Ala Ser Glu Phe 245 250 255

Asp Thr Ile Glu Glu Leu Arg Glu Ser Thr Val Ser Asp Val Glu Ala Lys Gln Lys Asn Glu Gln Ala Ala Ala Ile Arg Asp Glu Val Leu Ala 280 Ala Ala Leu Gly Glu Ala Asp Phe Ala Leu Pro Gln Ser Ile Val Asp 295 Glu Gln Ala His Ser Gln Leu His Gln Leu Leu Gly Glu Leu Ala His 310 315 Asp Asp Ala Ala Leu Asn Ser Leu Leu Glu Ala Gln Gly Thr Thr Arg 330 Glu Glu Phe Asp Lys Lys Asn Val Glu Asp Ala Glu Lys Ala Val Arg 340 Thr Gln Leu Phe Leu Asp Thr Leu Ser Glu Val Glu Glu Pro Glu Val 360 Ser Gln Gln Glu Leu Thr Asp His Ile Leu Phe Thr Ala Gln Ser Tyr 375 Gly Met Asp Pro Asn Gln Phe Ile Gly Gln Leu Gln Gln Ser Gly Gln 390 395 Ile Ala Asn Leu Phe Ser Asp Val Arg Arg Gly Lys Ala Leu Ala Gln 405 410 Ala Ile Cys Arg Val Asn Val Lys Asp Ser Glu Gly Asn Glu Ile Asp 425 Pro Lys Glu Tyr Phe Gly Glu Glu Glu Val Ala Glu Thr Glu Ser Glu 435 440 Ala <211> 826

<210> 43

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(826)

<223> RXN03038

<400> 43

gcgcggaaaa caccaagtaa gccttacagt ccgacagcct catagcggat gggataagtt 60

ccaaacacgt tcaaatccgt taaagtgcct gtttaaaact atg cat tca aag gaa Met His Ser Lys Glu 1

					Lys					, Val	ctc Leu					163
_	-			e Gly					-		ggc Gly			Ile		211
-	_		Asp					Tyr		_	gat Asp		Asn	_		259
		Pro		-	_		Lys	_	_		gaa Glu 65		_			307
	Pro										ggc Gly					355
	_				_						ccg Pro	_			_	403
_	_										aag Lys					451
_			_	_			_			_	ttc Phe	_		_	-	499
	-	-		_						_	cca Pro 145		_		-	547
				-		-	_		_	-	aac Asn					595
											gga Gly					643
		-		-				_	_		acc Thr	_	_			691
											agt Ser					739
					Gln						caa Gln 225					787

ttg ctc atg cac gaa ctg cct gag ccg ctt gta gcg gcc Leu Leu Met His Glu Leu Pro Glu Pro Leu Val Ala Ala 230 235 240 826

<210> 44

<211> 242

<212> PRT

<213> Corynebacterium glutamicum

<400> 44

Met His Ser Lys Glu Glu Leu Thr Val Arg Lys Gly Ile Ser Arg Val 1 5 10 15

Leu Ser Val Ala Val Ala Ser Ser Ile Gly Phe Gly Thr Val Leu Thr 20 25 30

Gly Thr Gly Ile Ala Ala Gln Asp Ser Ala Phe Asp Tyr Gly Met 35 40 45

Asp Pro Asn Met Asn Tyr Asn Pro Ile Asp Asp Ile Lys Asp Arg Pro 50 55 60

Glu Gly Leu Ser Asn Leu Pro Tyr Phe Gly Ser Lys Leu Thr Ser Trp
65 70 75 80

Gly Ser Ser Tyr Ala Thr Ala Ser Ser Gly Val Val Thr Ser Ala Leu $85 \hspace{1cm} 90 \hspace{1cm} 95$

Pro Gln Tyr Thr Asp Pro Arg Tyr Pro Leu Gly Lys Asp Asp Leu Pro 100 105 110

Lys Ala Thr Ile Asp Met Glu Pro Glu Val Leu Ala Arg Leu Glu Arg 115 120 : 125

Phe Val Gly Val Asp Gly Asp Arg Ile Arg Gln Ile Asn Ala Tyr Ser 130 135 140

Pro Ser Met Gly Arg Thr Ile Pro Leu Val Trp Val Val Pro Glu Asp 145 150 155 160

Asn Thr Val Pro Gly Pro Thr Val Tyr Ala Leu Gly Gly Gly Asp Gly
165
170
175

Gly Gln Gly Gln Asn Trp Val Thr Arg Thr Asp Leu Glu Glu Leu 180 185 190

Thr Ser Asp Asn Asn Ile Asn Leu Ile Met Pro Met Leu Gly Ser Phe 195 200 205

Ser Phe Tyr Ser Asp Trp Ala Arg Glu Ser Gln Ser Met Gly Cys Ala 210 215 220

Gln Gln Trp Glu Thr Leu Leu Met His Glu Leu Pro Glu Pro Leu Val 225 230 235 240

Ala Ala

<210> 4 <211> 6 <212> 1 <213> 0	553 DNA	bacter	ium g	luta	micu	m					
<220> <221> 0 <222> (<223> F	(1)(
<400> 4 gca cto Ala Leu 1	ccg	Gln Ty									48
ctg ccc Leu Pro											96
gag cga Glu Arg											144
tac tcg Tyr Ser 50	Pro S										192
gaa gac Glu Asp 65											240
gac ggt Asp Gly			Gly								288
gag ttg Glu Leu	Thr S	-						_	-		336
tct ttt Ser Phe											384
ggt gcg Gly Ala 130											432
cta gaa Leu Glu 145				-	-		_				480
tcc atg Ser Met						Asn					528

ttt tay tcc tck gtc ggc tca ttt tct gga tgt gcc gaa acc aac tcc 576 Phe Xaa Ser Xaa Val Gly Ser Phe Ser Gly Cys Ala Glu Thr Asn Ser 185 tgg atg ggr cgc cgn tgg cat cgc agc cac tgc cta caa cgg caa tgt 624 Trp Met Xaa Arg Arg Trp His Arg Ser His Cys Leu Gln Arg Gln Cys 200 205 653 cgt gcc tgagcaaatc tttggtgaag tag Arg Ala 210 <210> 46 <211> 210 <212> PRT <213> Corynebacterium glutamicum Ala Leu Pro Gln Tyr Thr Asp Pro Arg Tyr Pro Leu Gly Lys Asp Asp Leu Pro Lys Ala Thr Ile Asp Met Glu Pro Glu Ala Leu Ala Arg Leu Glu Arg Phe Val Gly Val Asp Gly Asp Arg Ile Arg Gln Ile Asn Ala Tyr Ser Pro Ser Met Gly Arg Thr Ile Pro Leu Val Trp Val Val Pro Glu Asp Asn Thr Val Pro Gly Pro Thr Val Tyr Ala Leu Gly Gly Gly Asp Gly Gly Gln Gly Gln Asn Trp Val Thr Arg Thr Asp Leu Asp Glu Leu Thr Ser Glu Asn Asn Ile Asn Leu Ile Met Pro Met Leu Gly 105 Ser Phe Ser Phe Tyr Ala Asp Trp Ala Gly Glu Ser Glu Ser Met Gly 120 Gly Ala Gln Gln Trp Glu Thr Phe Leu Met His Glu Xaa Xaa Glu Pro Leu Glu Ala Ala Ile Gly Ala Asp Gly Gln Arg Ser Ile Val Gly Met 150 Ser Met Ser Gly Gly Xaa Val Leu Asn Phe Ala Thr His Asp Pro Asn 170 Phe Xaa Ser Xaa Val Gly Ser Phe Ser Gly Cys Ala Glu Thr Asn Ser

Trp Met Xaa Arg Arg Trp His Arg Ser His Cys Leu Gln Arg Gln Cys

195 200 205

Arg Ala 210

<210> 47

<211> 432

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(409)

<223> RXN03040

<400> 47

attactctcg ctataacgat ccttntgctc aacgctgcga agctcgaaga acaagacaac 60

ctctacatct tcgccggttc cggtgtgttc tctgaactag atg tca tnc ggt gac 115

Met Ser Xaa Gly Asp
1

aac gca ccg att gat gag gat gcg ttc aaa aac cgc gtc ttg gtt ggg $\,$ 163 Asn Ala Pro Ile Asp Glu Asp Ala Phe Lys Asn Arg Val Leu Val Gly $\,$ 10 $\,$ 15 $\,$ 20

ttt gaa atc gaa gct atg tcc aac acc tgc acc cat aac ctc aag gct 211 Phe Glu Ile Glu Ala Met Ser Asn Thr Cys Thr His Asn Leu Lys Ala 25 30 35

gcg acc gat caa atg ggc atc gac aac atc aac tac gat ttc cga cca 259
Ala Thr Asp Gln Met Gly Ile Asp Asn Ile Asn Tyr Asp Phe Arg Pro

acc gga acc cac gcc tgg gat tac tgg aac gaa gcg ctc cac cgc ttc 307
Thr Gly Thr His Ala Trp Asp Tyr Trp Asn Glu Ala Leu His Arg Phe
55 60 65

ttc ccg ttg atg atg cag ggc ttc ggc ctc gac ggt ggt ccc atc ccg 355

Phe Pro Leu Met Met Gln Gly Phe Gly Leu Asp Gly Gly Pro Ile Pro
70 75 80 85

atc tat aac cct aac ggt gtg acc tcc agc gag tct tct ntc aga act 403

Ile Tyr Asn Pro Asn Gly Val Thr Ser Ser Glu Ser Ser Xaa Arg Thr
90 95 100

gtc ttc tgatgtgagc cttggcaccn gtg 432 Val Phe

<210> 48

<211> 103

<212> PRT

<213> Corynebacterium glutamicum

PCT/IB00/00922

WO 01/00804 <400> 48 Met Ser Xaa Gly Asp Asn Ala Pro Ile Asp Glu Asp Ala Phe Lys Asn Arg Val Leu Val Gly Phe Glu Ile Glu Ala Met Ser Asn Thr Cys Thr His Asn Leu Lys Ala Ala Thr Asp Gln Met Gly Ile Asp Asn Ile Asn Tyr Asp Phe Arg Pro Thr Gly Thr His Ala Trp Asp Tyr Trp Asn Glu Ala Leu His Arg Phe Phe Pro Leu Met Met Gln Gly Phe Gly Leu Asp Gly Gly Pro Ile Pro Ile Tyr Asn Pro Asn Gly Val Thr Ser Ser Glu Ser Ser Xaa Arg Thr Val Phe 100 <210> 49 <211> 835 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(835) <223> RXN03051 <400> 49 acatccaqaa gtagtcgttg agtatcacga gcaagtcaac gatagtaaag ataatgtcga 60 ggaactcccg ctgcctaagc gggacatagt tgcaggggac atg cgt tca gat gtt Met Arg Ser Asp Val atc gag tta ccg gag ggg gta agc aag gag aaa gct gac cag cta gaa 163 Ile Glu Leu Pro Glu Gly Val Ser Lys Glu Lys Ala Asp Gln Leu Glu gtt gcg gaa gcg cga ctt aac gag ggt gca cga ctg atg gca acc acc 211 Val Ala Glu Ala Arg Leu Asn Glu Gly Ala Arg Leu Met Ala Thr Thr ggg tgt gag gtt atg tgg cca acg ggc ttc tca gtt tgt ggc cga att. 259 Gly Cys Glu Val Met Trp Pro Thr Gly Phe Ser Val Cys Gly Arg Ile 40 ctt gac acc tat cgc cag gtt gga ggt cag ttg tca tgg ctt ggg cca 307 Leu Asp Thr Tyr Arg Gln Val Gly Gly Gln Leu Ser Trp Leu Gly Pro

355

ccg aag tca aac gag ttg acc aat ccc gac ggt gtt ggc aaa aga agt

Pro 70	_	Ser	Asn	Glu	Leu 75		Asn	Pro	Asp	Gly 80		Gly	Lys	Arg	Ser 85	
					gcc Ala					Pro						403
				Asp	ggt Gly											451
					tac Tyr											499
					cag Gln											547
					gct Ala 155											595
					aat Asn											643
		_			gag Glu											691
	_		_		gat Asp	-	_				_		_	_	_	739
					gcg Ala											787
	_	_	-	_	aca Thr 235			-								835

<210> 50

<211> 245

<212> PRT

<213> Corynebacterium glutamicum

<400> 50

Met Arg Ser Asp Val Ile Glu Leu Pro Glu Gly Val Ser Lys Glu Lys 1 5 10 15

Ala Asp Gln Leu Glu Val Ala Glu Ala Arg Leu Asn Glu Gly Ala Arg 20 25 30

Leu Met Ala Thr Thr Gly Cys Glu Val Met Trp Pro Thr Gly Phe Ser

35 40 45

Val Cys Gly Arg Ile Leu Asp Thr Tyr Arg Gln Val Gly Gln Leu
50 55 60

Ser Trp Leu Gly Pro Pro Lys Ser Asn Glu Leu Thr Asn Pro Asp Gly 65 70 75 80

Val Gly Lys Arg Ser Glu Phe Phe Gly Gly Ala Ile Tyr Trp His Pro 85 90 95

Asp Thr Gly Ala Tyr Ala Val Thr Leu Asp Gly Leu Arg Gln Trp Gly
100 105 110

Thr Leu Asn Trp Glu Ser Gly Pro Leu Gly Tyr Pro Thr Ser Gly Pro 115 120 125

Met Asp Thr Asn Tyr Pro Leu Thr Gln Arg Gln Thr Phe Gln Gly Gly 130 140

Asp Asn Tyr Tyr Asn Pro Leu Thr Gly Gly Ala Val Trp Gly Asp Ile 145 150 155 160

Lys Gln Arg Tyr Glu Glu Leu Gly Gly Ser Asn His Ala Ile Gly Ile 165 170 175

Pro Ile Thr Asn Glu Leu Pro Ser Gly Thr Glu Tyr Phe Tyr Asn Asn 180 185 190

Phe Ser Asn Gly Thr Ile Ser Trp Arg Asn Asp Arg Gln Thr Arg Phe 195 200 205

Met Tyr Leu Ala Thr Gln Arg Val Trp Asp Ala Leu Gly Arg Glu Thr 210 215 220

Gly Arg Leu Gly Phe Pro Glu Ala Asp Glu Thr Pro Glu Val Ser Gly 225 230 235 240

Leu Phe His Val Ala 245

<210> 51

<211> 1704

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1681)

<223> RXN03054

<400> 51

ggtggaaata cgcgcacaac aattttattc acagaactta tgattttttc gggttagggt 60

cagtttgttc acatcaacta gtaacgaaag gatcatgtga atg aaa ctg ttt tcc 115 Met Lys Leu Phe Ser

1 9

													1	1			5	i
aag Lys	gct	t go a Al	a go a Gl	Ly Va	cc a al I lO	tt g le A	ct la .	gca Ala	gc Al	a Le	t c u L .5	tt eu	gtt Val	gc. L Al	a gg a Gl	y Gl	t ata y Ile O	163
gca Ala	cct Pro	gt Va	I AI	a ca .a Gl !5	ng go .n G	gg c ly G	aa d ln 1	gct Ala	ag Se:	r Gl	ig g .n V	tg al	gto Val	aca Th:	a cc r Pr 3	o Gl	a gac u Asp	211
caa Gln	gat Asp	gc Al	а Ту	t gt r Va	t ca 1 G1	aa ca .n Gi	ag t ln E	tc Phe 45	cac His	c ca s Hi	c ga s Gi	aa lu	ggg Gly	aat Asr 50	n Th	c cc r Pr	a cct o Pro	259
gtg Val	gta Val 55	Asp	c gg o Gl	g gt y Va	g gç 1 Gl	y Gl	gc t Ly I 50	ac 'yr	act Thr	ga Gl	g ca u Gl	aa In	gaa Glu 65	Il€	gce Ala	c gad a Glu	g atc ı Ile	307
cac His 70	gag Glu	gct Ala	ate a Ile	c cg e Ar	a ca g Gl 7	n Al	c c	aa ln	gaa Glu	tci Sei	r Gl	у 0	gca Ala	cct	aat Asr	gaa Glu	a gag a Glu 85	355
ctc Leu	att Ile	Pro	ggt Gly	t gad y Gli 90	ı Me	g tg t Tr	g t p S	ca er	gat Asp	aaq Lys 95	. Va	g (gag Glu	ctg Leu	Pro	gta Val	act Thr	403
att Ile	gat Asp	aaa Lys	gca Ala 105	a Ala	gc Ala	t ga a As	tg. pG.	lu	gca Ala 110	gag Glu	g at i Il	a q e A	gct Ala	att Ile	gca Ala 115	Gln	caa Gln	451
caa Gln	tct Ser	cag Gln 120	cca Pro	cag Gln	acq Thi	g cg	g G	gc Ly 25	ctt Leu	gct Ala	gc. Ala	grog a. <i>P</i>	gct Ala	gcg Ala 130	gcg Ala	tgt Cys	cag Gln	499
acg Thr	ttt Phe 135	tgg Trp	ccg Pro	tca Ser	Pro	cat His	5 G]	ag (gtt Val	tgt Cys	ggt Gl	y A	ict la 45	att Ile	tta Leu	gag Glu	cgc Arg	547
tat a Tyr 1 150	att [le	cag Gln	cag Gln	ggt Gly	gcc Ala 155	Glr	y tt Ph	t d	gj A aaa	tgg Trp	ato Met 160	L	tg eu	ttt Phe	ccg Pro	agt Ser	gaa Glu 165	595
ggc o	caa Sln '	acg Thr	tta Leu	aat Asn 170	cct Pro	gat Asp	gg Gl	t d y C	cag Sln	999 Gly 175	tat Tyr	A	gt rg (cag Gln	cgg Arg	ttt Phe 180	atg Met	643
aat g Asn G	igg 1 Sly 1	Phe	gtt Val 185	tat Tyr	tgg Trp	cat His	cc Pr	o T	hca hr 90	act Thr	ggt Gly	g A	cg (la 1	His	gct Ala 195	gtt Val	aat Asn	691
aat t Asn T	yr S	agt Ser 200	gcg Ala	cag Gln	gtg Val	tgg Trp	ga Gl: 20	ιA	gt . rg /	aat Asn	ggg Gly	t q	cp (gag Glu 210	tct Ser	Gly ggg	tgg Trp	739
atg g Met G 2	gt t ly T 15	at (ccc Pro	act Thr	ggt Gly	ggt Gly 220	gaa Glu	ag uV	tc d al I	cct Pro	gtg Val	a a A s 2 2	n G	ggt : Sly :	tcc Ser	aat Asn	ccg Pro	787

at: 11: 230	e Ası	t ggt p Gly	t gad y Glu	g tte	g agt u Sei 239	Gl	g tgo y Trị	g gto o Va.	g caa l Glr	a act n Thi 240	r Phe	c caa e Glr	a ggt a Gly	ggg Gly	cga Arg 245	835
gto Val	g tat L Tyi	cgo r Aro	c agt g Sei	250	Val	tto Lei	g gad ı Asp	c ggt c Gly	tto Phe 255	Glr	g gto n Val	g gco l Ala	agt Ser	att Ile 260	Asn	883
ggç Gl	g cto / Lei	g ato 1 Ile	tto Lev 265	a Asp	aaa Lys	tgg Trp	g ctt Lei	gaa Glu 270	ı Lev	g ggt i Gly	ggt Gly	cct Pro	gat Asp 275	Ser	gac Asp	931
			Pro					Ala					ggt Gly			979
		Ser					Gly					His	ccg Pro			1027
	Ala										Ile		aga Arg			1075
													cca Pro			1123
													gaa Glu 355			1171
													ttt Phe			1219
ttt Phe	gct Ala 375	aat Asn	ctt Leu	gag Glu	gaa Glu	gca Ala 380	ata Ile	gag Glu	tat Tyr	ttt Phe	gag Glu 385	aac Asn	gga Gly	ttg Leu	tca Ser	1267
													gat Asp			1315
caa Gln	tgt Cys	caa Gln	tcg Ser	caa Gln 410	tcc Ser	gct Ala	aac Asn	att Ile	cat His 415	gtg Val	aga Arg	acg Thr	aag Lys	agt Ser 420	gac Asp	1363
gga Gly	gtc Val	Gly ggg	att Ile 425	agg Arg	gtt Val	cca Pro	aag Lys	att Ile 430	G] À gga	ttt Phe	aag Lys	gct Ala	agg Arg 435	atg Met	gat Asp	1411
tgc Cys	Asp	ctt Leu 440	cct Pro	gga Gly	act Thr	Val	tca Ser 445	gat Asp	gta Val	gtg Val	ggg Gly	tat Tyr 450	gga Gly	tgg Trp	att Ile	1459

			tgg Trp												1507
			agg Arg			-									1555
_	-	 	aag Lys 490												1603
		-	ggt Gly	-	•				_		-				1651
gct Ala		_	-	-		-	_	_	taac	ataa	igg a	atgo	gaata	ıg	1701
gag															1704

<210> 52

<211> 527

<212> PRT

<213> Corynebacterium glutamicum

<400> 52

Met Lys Leu Phe Ser Lys Ala Ala Gly Val Ile Ala Ala Ala Leu Leu 1 5 10 15

Val Ala Gly Gly Ile Ala Pro Val Ala Gln Gly Gln Ala Ser Gln Val 20 25 30

Val Thr Pro Glu Asp Gln Asp Ala Tyr Val Gln Gln Phe His His Glu 35 40 45

Gly Asn Thr Pro Pro Val Val Asp Gly Val Gly Gly Tyr Thr Glu Gln
50 55 60

Glu Ile Ala Glu Ile His Glu Ala Ile Arg Gln Ala Gln Glu Ser Gly
65 70 75 80

Ala Pro Asn Glu Glu Leu Ile Pro Gly Glu Met Trp Ser Asp Lys Val 85 90 95

Glu Leu Pro Val Thr Ile Asp Lys Ala Ala Ala Asp Glu Ala Glu Ile 100 105 110

Ala Ile Ala Gln Gln Ser Gln Pro Gln Thr Arg Gly Leu Ala Ala 115 120 125

Ala Ala Cys Gln Thr Phe Trp Pro Ser Pro His Gln Val Cys Gly
130 135 140

Ala Ile Leu Glu Arg Tyr Ile Gln Gln Gly Ala Gln Phe Gly Trp Met

145 150 155 160

Leu Phe Pro Ser Glu Gly Gln Thr Leu Asn Pro Asp Gly Gln Gly Tyr 165 170 175

Arg Gln Arg Phe Met Asn Gly Phe Val Tyr Trp His Pro Thr Thr Gly 180 185 190

Ala His Ala Val Asn Asn Tyr Ser Ala Gln Val Trp Glu Arg Asn Gly
195 200 205

Trp Glu Ser Gly Trp Met Gly Tyr Pro Thr Gly Gly Glu Val Pro Val 210 215 220

Asn Gly Ser Asn Pro Ile Asp Gly Glu Leu Ser Gly Trp Val Gln Thr 225 230 235 240

Phe Gln Gly Gly Arg Val Tyr Arg Ser Pro Val Leu Asp Gly Phe Gln
245 250 255

Val Ala Ser Ile Asn Gly Leu Ile Leu Asp Lys Trp Leu Glu Leu Gly 260 265 270

Gly Pro Asp Ser Asp Leu Gly Phe Pro Ile Ala Asp Glu Ala Val Thr 275 280 285

Ala Asp Gly Val Gly Arg Phe Ser Val Phe Gln Asn Gly Val Val Tyr 290 295 300

Trp His Pro Gln His Gly Ala His Pro Ile Leu Gly Asn Ile Tyr Ser 305 310 315 320

Ile Trp Arg Glu Glu Gly Ala Glu Ser Gly Glu Phe Gly Tyr Pro Ile 325 330 335

Gly Asp Pro Glu Lys Tyr Thr Glu Asn Met Ala Asn Gln Val Phe Glu 340 345 350

Lys Gly Glu Leu Ala Ala Asn Leu Tyr Pro Asn Pro Leu Glu Ala Phe 355 360 365

Ile Glu Phe Leu Pro Phe Ala Asn Leu Glu Glu Ala Ile Glu Tyr Phe 370 375 380

Glu Asn Gly Leu Ser Asn Ser Arg Val Glu Ala Asn Ser Leu Asn Ala 385 390 395 400

Lys Lys Asp Ser Ile Gln Cys Gln Ser Gln Ser Ala Asn Ile His Val 405 410 415

Arg Thr Lys Ser Asp Gly Val Gly Ile Arg Val Pro Lys Ile Gly Phe 420 425 430

Lys Ala Arg Met Asp Cys Asp Leu Pro Gly Thr Val Ser Asp Val Val 435 440 445

Gly Tyr Gly Trp Ile Tyr Tyr Asp Tyr Trp Gly Arg Trp Ala Gln Ala

450 455 460

Ala Tyr Ala Gln Gln Phe Phe Gly Asn Arg Asn Ser Val Val Gln Thr 465 470 475 480

Asn Leu Glu Ala Gly Cys Ser Gly Glu Lys Asn Thr Leu Phe Trp Gly
485 490 495

Thr Ser Tyr Phe Gln Val Thr Tyr Glu Gly Gln Pro Tyr Phe Gly Gln 500 505 510

Ser Ala Thr Asn Tyr Ala Tyr Leu Pro Cys Thr Ile Asp Arg Ser 515 520 525

<210> 53

<211> 456

<212> DNA -

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(433)

<223> RXN02949

<400> 53

actotogaag gttgaacaca gggctgcgat tgtgctggat caaatgtotg cacgaaaaat 60

tgttatcgcc cctggatgag tagtgattta gaggagtgct gtg agc gac gag cag 115 Val Ser Asp Glu Gln

aat tot ggc gta ggc gga acg tot cgc cca acg ggt aaa cgc cag ctg $\,$ 163 Asn Ser Gly Val Gly Gly Thr Ser Arg Pro Thr Gly Lys Arg Gln Leu $\,$ 10 $\,$ 15 $\,$ 20

tcg ggt gct tcc act acc tct acc tct tct tat gag gct aag cag gta 211 Ser Gly Ala Ser Thr Thr Ser Thr Ser Ser Tyr Glu Ala Lys Gln Val 25 30 35

tct aca cag aag aag tca tcc ggt tcg gat tct aag cct ggc ggc ggt 259 Ser Thr Gln Lys Lys Ser Ser Gly Ser Asp Ser Lys Pro Gly Gly Gly 40 45 50

gtt att tct ttt ctg cct gag gtt gtg gga gaa gtc cgt aag gtt att 307 Val Ile Ser Phe Leu Pro Glu Val Val Gly Glu Val Arg Lys Val Ile 55 60 65

tgg cct act gcg cgc cag atg gtc acg tac acc ctt gtc gtt ttg gga 355 . Trp Pro Thr Ala Arg Gln Met Val Thr Tyr Thr Leu Val Val Leu Gly 70 80 85

ttc ttg att gtt ttg acc gct ttg gtg tct ggt gtg gat ttc cta gct 403 Phe Leu Ile Val Leu Thr Ala Leu Val Ser Gly Val Asp Phe Leu Ala 90 95 100

ggt ctt gga gtt gag aag att ctg act ccg taggtaggat gtgtaacatc 453

Gly Leu Gly Val Glu Lys Ile Leu Thr Pro 105 110

ttt 456

<210> 54

<211> 111

<212> PRT

<213> Corynebacterium glutamicum

<400> 54

Val Ser Asp Glu Gln Asn Ser Gly Val Gly Gly Thr Ser Arg Pro Thr 1 5 10 15

Gly Lys Arg Gln Leu Ser Gly Ala Ser Thr Thr Ser Thr Ser Tyr
20 25 30

Glu Ala Lys Gln Val Ser Thr Gln Lys Lys Ser Ser Gly Ser Asp Ser 35 40 45

Lys Pro Gly Gly Gly Val Ile Ser Phe Leu Pro Glu Val Val Gly Glu 50 55 60

Val Arg Lys Val Ile Trp Pro Thr Ala Arg Gln Met Val Thr Tyr Thr 65 70 75 80

Leu Val Val Leu Gly Phe Leu Ile Val Leu Thr Ala Leu Val Ser Gly 85 90 95

Val Asp Phe Leu Ala Gly Leu Gly Val Glu Lys Ile Leu Thr Pro 100 105 110

<210> 55

<211> 1941

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1918)

<223> RXN02462

<400> 55

tecatectea tegacgaage eegcaceeca etgattatet eegggaeeag tagaeggeae 60

ategeagtte tacaaegtet tegeacagat egteecaege atg ace aag gae gtt 115 Met Thr Lys Asp Val 1 5

cac tac gaa gtc gac gaa cgt aaa aag acc gtc ggt gtg aaa gaa gaa 163 His Tyr Glu Val Asp Glu Arg Lys Lys Thr Val Gly Val Lys Glu Glu 10 15 20

ggc gtc gaa tac gtc gaa gac caa ctc ggc atc gac aac ctc tac gca 211 Gly Val Glu Tyr Val Glu Asp Gln Leu Gly Ile Asp Asn Leu Tyr Ala

25 30 35

			۷.	•					,							
			Sei	_		-	_	Tyr	_		aac Asn	-				259
_	-	Leu			-	-) Lys				gtc Val 65	Arg			_	307
	Met					Phe					ctt Leu					355
		_		_	His	_			-	_	aaa Lys		_	_		403
				Asn	_		-			_	acc Thr		_			451
											ggt Gly					499
											gac Asp 145					547.
			_			_	_	-	-	_	acc Thr	-	-			595
											gac Asp					643
_		_	_				_		_		acc Thr	_		-		691
											cga Arg					739
											gca Ala 225					787
											acc Thr					835
											gaa Glu					883

				g Gl				gat Asp 270	Pro					Glu	agc Ser	931
			ı Ala					ı Let							tgc Cys	979
gaa Glu	gaa Glu 295	Arc	g Gly	gad Asp	aaa Lys	gto Val	. Arg	gaa Glu	gcc Ala	gga Gly	gga Gly 305	Leu	tac Tyr	gtc Val	ctt Leu	1027
ggc Gly 310	Thr	gaa Glu	a cgo a Arg	cac His	gaa Glu 315	Ser	cga Arg	cgc Arg	ato Ile	gac Asp 320	Asn	cag Gln	ctg Leu	cgc Arg	ggt Gly 325	1075
					Gly			gga Gly		Thr						1123
				Leu				ttc Phe 350								1171
atg Met	atg Met	aac Asn 360	Arg	ctc Leu	aac Asn	gtc Val	cca Pro 365	gac Asp	gat Asp	gtg Val	ccc Pro	atc Ile 370	gaa Glu	tcc Ser	aaa Lys	1219
								gcc Ala								1267
aac Asn 390	ttc Phe	gaa Glu	atg Met	cgt Arg	aag Lys 395	aac Asn	gtt Val	ctg Leu	aag Lys	tac Tyr 400	gac Asp	gaa Glu	gtc Val	atg Met	aac Asn 405	1315
gaa Glu	cag Gln	cgc Arg	aag Lys	gtt Val 410	atc Ile	tac Tyr	agc Ser	gag Glu	cga Arg 415	cgc Arg	gaa Glu	atc Ile	ctc Leu	gaa Glu 420	tcc Ser	1363
gca Ala	gac Asp	atc Ile	tcc Ser 425	cgc Arg	tac Tyr	atc Ile	caa Gln	aac Asn 430	atg Met	atc Ile	gaa Glu	gaa Glu	aca Thr 435	gtc Val	agc Ser	1411
								aac Asn								1459
								gaa Glu								1507
aac Asn 470	tgg Trp	acc Thr	gac Asp	ctc Leu	gtc Val 475	gaa Glu	ggc Gly	agc Ser	gaa Glu	tac Tyr 480	ggc Gly	aaa Lys	cca Pro	ggg Gly	gag Glu 485	1555

	tcc Ser															1603
	tac Tyr															1651
	atc Ile															1699
	tgg Trp 535	_	_				_	_	_		_		_			1747
	ctg Leu	-	-	_	_	_	_	_		-	_	-			-	1795
	ggc Gly															1843
	gtc Val															1891
	aag Lys	_	_			Ser	_		tgaa	attc	ag c	atco	gcca	С		1938
atg																1941

<210> 56

<211> 606

<212> PRT

<213> Corynebacterium glutamicum

<400> 56

Met Thr Lys Asp Val His Tyr Glu Val Asp Glu Arg Lys Lys Thr Val 1 5 10 15

Gly Val Lys Glu Glu Gly Val Glu Tyr Val Glu Asp Gln Leu Gly Ile

Asp Asn Leu Tyr Ala Pro Glu His Ser Gln Leu Val Ser Tyr Leu Asn $35 \hspace{1cm} 40 \hspace{1cm} 45$

Asn Ala Ile Lys Ala Gln Glu Leu Phe Thr Arg Asp Lys Asp Tyr Ile
50 55 60

Val Arg Asn Gly Glu Val Met Ile Val Asp Gly Phe Thr Gly Arg Val 65 70 75 80

Leu Ala Gly Arg Arg Tyr Asn Glu Gly Met His Gln Ala Ile Glu Ala

95 95

Lys Glu Arg Val Glu Ile Lys Asn Glu Asn Gln Thr Leu Ala Thr Val 100 105 110

Thr Leu Gln Asn Tyr Phe Arg Leu Tyr Thr Lys Leu Ala Gly Met Thr 115 120 125

Gly Thr Ala Glu Thr Glu Ala Ala Glu Leu Asn Gln Ile Tyr Lys Leu 130 135 140

Asp Val Ile Ala Ile Pro Thr Asn Arg Pro Asn Gln Arg Glu Asp Leu 145 150 155 160

Thr Asp Leu Val Tyr Lys Thr Gln Glu Ala Lys Phe Ala Ala Val Val 165 170 175

Asp Asp Ile Ala Glu Arg Thr Glu Lys Gly Gln Pro Val Leu Val Gly 180 185 190

Thr Val Ser Val Glu Arg Ser Glu Tyr Leu Ser Gln Leu Leu Thr Lys 195 200 205

Arg Gly Ile Lys His Asn Val Leu Asn Ala Lys His His Glu Gln Glu 210 215 220

Ala Gln Ile Val Ala Gln Ala Gly Leu Pro Gly Ala Val Thr Val Ala 225 230 235 240

Thr Asn Met Ala Gly Arg Gly Thr Asp Ile Val Leu Gly Gly Asn Pro 245 250 255

Glu Ile Leu Leu Asp Ile Lys Leu Arg Glu Arg Gly Leu Asp Pro Phe 260 265 270

Glu Asp Glu Glu Ser Tyr Gln Glu Ala Trp Asp Ala Glu Leu Pro Ala 275 280 285

Met Lys Gln Arg Cys Glu Glu Arg Gly Asp Lys Val Arg Glu Ala Gly 290 295 300

Gly Leu Tyr Val Leu Gly Thr Glu Arg His Glu Ser Arg Arg Ile Asp 305 310 315 320

Asn Gln Leu Arg Gly Arg Ser Ala Arg Gln Gly Asp Pro Gly Ser Thr 325 330 335

Arg Phe Tyr Leu Ser Met Arg Asp Asp Leu Met Val Arg Phe Val Gly 340 345 . 350

Pro Thr Met Glu Asn Met Met Asn Arg Leu Asn Val Pro Asp Asp Val 355 360 365

Pro Ile Glu Ser Lys Thr Val Thr Asn Ser Ile Lys Gly Ala Gln Ala 370 375 380

Gln Val Glu Asn Gln Asn Phe Glu Met Arg Lys Asn Val Leu Lys Tyr

400

395 390 385 Asp Glu Val Met Asn Glu Gln Arg Lys Val Ile Tyr Ser Glu Arg Arg 405 410

Glu Ile Leu Glu Ser Ala Asp Ile Ser Arg Tyr Ile Gln Asn Met Ile

Glu Glu Thr Val Ser Ala Tyr Val Asp Gly Ala Thr Ala Asn Gly Tyr

Val Glu Asp Trp Asp Leu Asp Lys Leu Trp Asn Ala Leu Glu Ala Leu

Tyr Asp Pro Ser Ile Asn Trp Thr Asp Leu Val Glu Gly Ser Glu Tyr

Gly Lys Pro Gly Glu Leu Ser Ala Glu Asp Leu Arg Thr Ala Leu Val 490

Asn Asp Ala His Ala Glu Tyr Ala Lys Leu Glu Glu Ala Val Ser Ala

Ile Gly Gly Glu Ala Gln Ile Arg Asn Ile Glu Arg Met Val Leu Met 520

Pro Val Ile Asp Thr Lys Trp Arg Glu His Leu Tyr Glu Met Asp Tyr

Leu Lys Glu Gly Ile Gly Leu Arg Ala Met Ala Gln Arg Asp Pro Leu

Val Glu Tyr Gln Lys Glu Gly Gly Asp Met Phe Asn Gly Met Lys Asp

Gly Ile Lys Glu Glu Thr Val Arg Gln Leu Phe Leu Ser Ala Ser Ser 585

Ser Ser Ser Lys Thr Arg Lys Ser Leu Thr Asn Ser Glu Pro 600

<210> 57

<211> 1965

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1942)

<223> RXN01559

<400> 57

gtctggttga ttggaattga aggagacttt cttggctcgg caaaaaaaaga gtgccgctag 60

cgcctgggaa cgatggccaa aacgcgcaat agcgttgttt gtg ctc atc gtc gtt Val Leu Ile Val Val

1 5

						_			_	
gtt Val			Val							163
ttg Leu		Asp								211
ggg										259
gaa Glu 55										307
gac Asp										355
gcg Ala										403
cag Gln										451
atg Met										499
aat Asn 135										547
gtg Val										595
 acc Thr	_	_		_			-			643
cag Gln										691
act Thr										739
atg Met 215										787

gca Ala 230	Cys	gat Asp	cca Pro	gct Ala	gta Val 235	ggt Gly	ggc Gly	gtg Val	tat Tyr	gta Val 240	ctt Leu	gat Asp	cct Pro	gca Ala	cct Pro 245	835
ttg Leu	ctc Leu	aac Asn	ggc Gly	gaa Glu 250	acc Thr	gat Asp	gag Glu	gaa Glu	aat Asn 255	ggt Gly	gcg Ala	cgc Arg	cta Leu	acc Thr 260	ggt Gly	883
					aac Asn											931
					atc Ile			Ala								979
					tgg Trp											1027
cag Gln 310	atc Ile	gcc Ala	atc Ile	acc Thr	ctg Leu 315	gac Asp	tct Ser	cag Gln	gtg Val	att Ile 320	tct Ser	gca Ala	ccc Pro	gtg Val	att Ile 325	1075
					gtg Val											1123
act Thr	caa Gln	act Thr	gaa Glu 345	gcc Ala	caa Gln	gat Asp	ctg Leu	gcg Ala 350	aac Asn	aac Asn	ctg Leu	cgc Arg	tac Tyr 355	ggt Gly	gca Ala	1171
					gca Ala											1219
					tca Ser											1267
atc Ile 390	gca Ala	ggc Gly	atc Ile	gtc Val	ggc Gly 395	atc Ile	gcg Ala	ctg Leu	gtc Val	gcc Ala 400	atc Ile	ttc Phe	gtg Val	ttc Phe	gcc Ala 405	1315
					gga Gly											1363
					ggc Gly											1411
					gct Ala											1459

WO 01/00804 PCT/IB00/00922 ace ace gee gae tee tte gtg gtg tte tat gag ege ate aag gat gag 1507 Thr Thr Ala Asp Ser Phe Val Val Phe Tyr Glu Arg Ile Lys Asp Glu 455 atc cgt gaa gga aga tcc ttt aga tct gca gta cct cgt gca tgg gaa 1555 Ile Arg Glu Gly Arg Ser Phe Arg Ser Ala Val Pro Arg Ala Trp Glu 470 age gee aag ege ace ate gte aca gge aac atq.qte act ttq ete qqe 1603 Ser Ala Lys Arg Thr Ile Val Thr Gly Asn Met Val Thr Leu Leu Gly get ate gtg att tae ttg ete geg gte gge gaa gte aag gge ttt gee 1651 Ala Ile Val Ile Tyr Leu Leu Ala Val Gly Glu Val Lys Gly Phe Ala 505 ttc acc ctg ggt ctg acc acc gta ttc gat ctc gtt gtc acc ttc ctg 1699 Phe Thr Leu Gly Leu Thr Thr Val Phe Asp Leu Val Val Thr Phe Leu 520 525 atc acg gca cca ctg gtt atc ctg gca tca cgc aac cca ttc ttt qcc 1747 Ile Thr Ala Pro Leu Val Ile Leu Ala Ser Arg Asn Pro Phe Phe Ala 535 aag tca tcg gtc aac ggc atg gga cga gtg atg aag ctc gtt gaa gaa 1795 Lys Ser Ser Val Asn Gly Met Gly Arg Val Met Lys Leu Val Glu Glu 555 ege ege gee aac ggt gaa ttg gat gag eet gag tae etg aaa aag ate 1843 Arg Arg Ala Asn Gly Glu Leu Asp Glu Pro Glu Tyr Leu Lys Lys Ile 570 cat gcc aag aat gcg gca gct gat aag gct tcc act gac aat tct tcc 1891 His Ala Lys Asn Ala Ala Ala Asp Lys Ala Ser Thr Asp Asn Ser Ser 585 590 act gac aat tot gaa goa oot ggc acc gat acg aac caa gag gag gag 1939 Thr Asp Asn Ser Glu Ala Pro Gly Thr Asp Thr Asn Gln Glu Glu 600 605 aag tagccatgac tgattcccag act 1965

<210> 58

Lys

<211> 614

<212> PRT

<213> Corynebacterium glutamicum

<400> 58

Val Leu Ile Val Val Gly Val Tyr Ala Leu Val Leu Leu Thr Gly Asp
1 5 10 15

Arg Ser Ala Thr Pro Lys Leu Gly Ile Asp Leu Gln Gly Gly Thr Arg

Val Thr Leu Val Pro Gln Gly Gln Asp Pro Thr Gln Asp Gln Leu Asn 40 Gln Ala Arg Thr Ile Leu Glu Asn Arg Val Asn Gly Met Gly Val Ser Gly Ala Ser Val Val Ala Asp Gly Asn Thr Leu Val Ile Thr Val Pro Gly Glu Asn Thr Ala Gln Ala Gln Ser Leu Gly Gln Thr Ser Gln Leu Leu Phe Arg Pro Val Gly Gln Ala Gly Met Pro Asp Met Thr Thr Leu Met Pro Glu Leu Glu Glu Met Ala Asn Arg Trp Val Glu Tyr Gly Val 120 Ile Thr Glu Glu Gln Ala Asn Ala Ser Leu Glu Glu Met Asn Thr Ala 135 Val Ala Ser Thr Thr Ala Val Glu Glu Glu Glu Ala Thr Glu Pro Glu 155 150 Pro Val Thr Val Ser Ala Thr Pro Met Asp Glu Pro Ala Asn Ser Ile 170 Glu Ala Thr Gln Arg Arg Gln Glu Ile Thr Asp Met Leu Arg Thr Asp 185 Arg Gln Ser Thr Asp Pro Thr Val Gln Ile Ala Ala Ser Ser Leu Met 200 Gln Cys Thr Thr Asp Glu Met Asp Pro Leu Ala Gly Thr Asp Asp Pro 215 Arg Leu Pro Leu Val Ala Cys Asp Pro Ala Val Gly Gly Val Tyr Val Leu Asp Pro Ala Pro Leu Leu Asn Gly Glu Thr Asp Glu Glu Asn Gly 250 Ala Arg Leu Thr Gly Asn Glu Ile Asp Thr Asn Arg Pro Ile Thr Gly Gly Phe Asn Ala Gln Ser Gly Gln Met Glu Ile Ser Phe Ala Phe Lys Ser Gly Asp Gly Glu Glu Gly Ser Ala Thr Trp Ser Ser Leu Thr Ser Gln Tyr Leu Gln Gln Gln Ile Ala Ile Thr Leu Asp Ser Gln Val Ile 315 310 Ser Ala Pro Val Ile Gln Ser Ala Thr Pro Val Gly Ser Ala Thr Ser 330

325

Ile Thr Gly Asp Phe Thr Gln Thr Glu Ala Gln Asp Leu Ala Asn Asn 340 345 350

Leu Arg Tyr Gly Ala Leu Pro Leu Ser Phe Ala Gly Glu Asn Gly Glu 355 360 365

Arg Gly Gly Thr Thr Thr Thr Val Pro Pro Ser Leu Gly Ala Ala Ser 370 375 380

Leu Lys Ala Gly Leu Ile Ala Gly Ile Val Gly Ile Ala Leu Val Ala 385 390 395 400

Ile Phe Val Phe Ala Tyr Tyr Arg Val Phe Gly Phe Val Ser Leu Phe 405 410 415

Thr Leu Phe Ala Ala Gly Val Leu Val Tyr Gly Leu Leu Val Leu Leu 420 425 430

Gly Arg Trp Ile Gly Tyr Ser Leu Asp Leu Ala Gly Ile Ala Gly Leu
435 440 445

Ile Ile Gly Ile Gly Thr Thr Ala Asp Ser Phe Val Val Phe Tyr Glu 450 455 460

Arg Ile Lys Asp Glu Ile Arg Glu Gly Arg Ser Phe Arg Ser Ala Val 465 470 475 480

Pro Arg Ala Trp Glu Ser Ala Lys Arg Thr Ile Val Thr Gly Asn Met 485 490 495

Val Thr Leu Leu Gly Ala Ile Val Ile Tyr Leu Leu Ala Val Gly Glu 500 505 510

Val Lys Gly Phe Ala Phe Thr Leu Gly Leu Thr Thr Val Phe Asp Leu 515 520 525

Val Val Thr Phe Leu Ile Thr Ala Pro Leu Val Ile Leu Ala Ser Arg 530 535 540

Asn Pro Phe Phe Ala Lys Ser Ser Val Asn Gly Met Gly Arg Val Met 545 550 555 560

Lys Leu Val Glu Glu Arg Arg Ala Asn Gly Glu Leu Asp Glu Pro Glu 565 570 575

Tyr Leu Lys Lys Ile His Ala Lys Asn Ala Ala Ala Asp Lys Ala Ser 580 585 590

Thr Asp Asn Ser Ser Thr Asp Asn Ser Glu Ala Pro Gly Thr Asp Thr 595 600 605

Asn Gln Glu Glu Glu Lys 610

<210> 59 <211> 819

<212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(796) <223> RXN00046 <400> 59 tggtgcccaa gcagccgtca tcgcagcagc aaaatatgcc cgcgataacg ccttttaagc 60 acctaaaacg ctgttctcaa cacaggagtt tccttaaata atg gac tta aat act Met Asp Leu Asn Thr 1 caa cgc tca aag ctc tac gca cag ctt caa ggc cag ctc att gtt tcc 163 Gln Arg Ser Lys Leu Tyr Ala Gln Leu Gln Gly Gln Leu Ile Val Ser gtg caa gct ccc gac ggc cat gcc atg cga gat acc cat acg ctc acc 211 Val Gln Ala Pro Asp Gly His Ala Met Arg Asp Thr His Thr Leu Thr 30 259 cat gtg gcc gca gcc tgt gtc gat ggc ggt gct cct gcc att cgc tgt His Val Ala Ala Ala Cys Val Asp Gly Gly Ala Pro Ala Ile Arg Cys 307 ggc ggt tac ggc ggt ttg gaa gat atc cgt tca atc tcc aac cgt gtc Gly Gly Tyr Gly Gly Leu Glu Asp Ile Arg Ser Ile Ser Asn Arg Val 60 355 gac gtt ccc gtt ttc gga ctc acc aaa gaa ggc tcc gaa gga gtt tac Asp Val Pro Val Phe Gly Leu Thr Lys Glu Gly Ser Glu Gly Val Tyr 70 75 80 atc acc cca acc agg gat tcc gtt cga gca gtg gca gaa tcc ggc gcc 403 Ile Thr Pro Thr Arg Asp Ser Val Arg Ala Val Ala Glu Ser Gly Ala 95 90 act gta gtc tgc gcg gat gca act ttc cga cct agg cct gac ggc tcc 451 Thr Val Val Cys Ala Asp Ala Thr Phe Arg Pro Arg Pro Asp Gly Ser 105 110 acc ttt gca gag ctg gtc act gtt gcc cac gat tcc gga att ctc atc 499 Thr Phe Ala Glu Leu Val Thr Val Ala His Asp Ser Gly Ile Leu Ile 120 125 547 atq qcq qac tqc gca act ccc gaa gaa gtt ctc agt gcg cat aag gct Met Ala Asp Cys Ala Thr Pro Glu Glu Val Leu Ser Ala His Lys Ala 140 135 ggc gcg gat ttt gtg tcc acc acg ctt gct gga tac acc gaa cac cgc 595 Gly Ala Asp Phe Val Ser Thr Thr Leu Ala Gly Tyr Thr Glu His Arg 165 160 150 155 gag aaa aca gtc ggt cca gat ttc gat tgc ctc cgc gaa gca cgt gag Glu Lys Thr Val Gly Pro Asp Phe Asp Cys Leu Arg Glu Ala Arg Glu

170 175 180

tta gtt ccc gat gcg ttc ctc att ggc gaa ggt cgc ttc tcc aac cct 691 Leu Val Pro Asp Ala Phe Leu Ile Gly Glu Gly Arg Phe Ser Asn Pro 185 190 195

gcg gat gtg gcg cac ggt cgt ctc att ggt gcc aac gcg atc atc gtg 739 Ala Asp Val Ala His Gly Arg Leu Ile Gly Ala Asn Ala Ile Ile Val 200 205 2:10

ggc acc gca atc act gac cct ggt ttc atc act gga cag ttc gcg tca 787 Gly Thr Ala Ile Thr Asp Pro Gly Phe Ile Thr Gly Gln Phe Ala Ser 215 220 225

ctg ttg cac tagcacttag tccagcgctg cac 819
Leu Leu His
230

<210> 60

<211> 232

<212> PRT

<213> Corynebacterium glutamicum

<400> 60

Met Asp Leu Asn Thr Gln Arg Ser Lys Leu Tyr Ala Gln Leu Gln Gly
1 5 10 15

Gln Leu Ile Val Ser Val Gln Ala Pro Asp Gly His Ala Met Arg Asp 20 25 30

Thr His Thr Leu Thr His Val Ala Ala Cys Val Asp Gly Gly Ala 35 40 45

Pro Ala Ile Arg Cys Gly Gly Tyr Gly Gly Leu Glu Asp Ile Arg Ser 50 55 60

Ile Ser Asn Arg Val Asp Val Pro Val Phe Gly Leu Thr Lys Glu Gly 65 70 75 80

Ser Glu Gly Val Tyr Ile Thr Pro Thr Arg Asp Ser Val Arg Ala Val 85. 90 95

Ala Glu Ser Gly Ala Thr Val Val Cys Ala Asp Ala Thr Phe Arg Pro 100 105 110

Arg Pro Asp Gly Ser Thr Phe Ala Glu Leu Val Thr Val Ala His Asp 115 120 125

Ser Gly Ile Leu Ile Met Ala Asp Cys Ala Thr Pro Glu Glu Val Leu 130 135 140

Ser Ala His Lys Ala Gly Ala Asp Phe Val Ser Thr Thr Leu Ala Gly 145 150 155 160

Tyr Thr Glu His Arg Glu Lys Thr Val Gly Pro Asp Phe Asp Cys Leu 165 170 175

Arg Glu Ala Arg Glu Leu Val Pro Asp Ala Phe Leu Ile Gly Glu Gly 185 180 Arg Phe Ser Asn Pro Ala Asp Val Ala His Gly Arg Leu Ile Gly Ala 200 Asn Ala Ile Ile Val Gly Thr Ala Ile Thr Asp Pro Gly Phe Ile Thr Gly Gln Phe Ala Ser Leu Leu His 230 <210> 61 <211> 1219 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (48)..(1196) <223> RXN01863 <400> 61 qqtatcatac cqatatgaac caaatagaaa gaaggaagtt taagacgatg aat agc 56 Met Asn Ser qtc aaa ttq aaq caa cct gtt agc att tac aat gat cca tgg gaa tca 104 Val Lys Leu Lys Gln Pro Val Ser Ile Tyr Asn Asp Pro Trp Glu Ser 10 152 tat aac gat gtt aaa gaa cat ggc caa tta act tta agt aac atc gaa Tyr Asn Asp Val Lys Glu His Gly Gln Leu Thr Leu Ser Asn Ile Glu 20 ttt aca act aca aat ctt tgt aat atg cgt tgt agc cac tgt gca gtt 200 Phe Thr Thr Asn Leu Cys Asn Met Arg Cys Ser His Cys Ala Val 40 248 ggt tat act tta caa act gtc gac ccc gag cct tta gat atg gac tta Gly Tyr Thr Leu Gln Thr Val Asp Pro Glu Pro Leu Asp Met Asp Leu 55 296 att tat cgt aga ctt gat gaa att cca aat ctg cga acg atg tca att Ile Tyr Arg Arg Leu Asp Glu Ile Pro Asn Leu Arg Thr Met Ser Ile aca ggt ggc gaa cca atg ttt tct aaa aag tct att aga aat gtt gtt 344 Thr Gly Gly Glu Pro Met Phe Ser Lys Lys Ser Ile Arg Asn Val Val 90 392 aaa cct cta tta aag tat gca cat cat cga ggt ata tat aca caa atg Lys Pro Leu Lys Tyr Ala His His Arg Gly Ile Tyr Thr Gln Met 100 105 110

WO 01/00804	PCT/IB00/00922
	1 0 1/15 00/00/22

					Leu	cct Pro				Tyr						440
		-	-	Met		atc Ile			Asn					_	-	488
			Val			ggc Gly		Met								536
_	-					gaa Glu 170		_		-						584 .
						gta Val										632
						aaa Lys										680
						att Ile										728
						act Thr										776
						gat Asp 250										824
_					_	tta Leu	_	_	-	_	-		_			872
	_		_		-	aac Asn		_	_		_		_	_	_	920
	_	_	_			gtc Val		-					_		_	968
						aca Thr										1016
Lys					Phe	gat Asp 330				Ser						1064
tca	tta	aat	tgt	cat	tgt	tcc	gag	ttt	agt	tgt	tta	gga	cca	aat	gtt	1112

Ser Leu Asn Cys His Cys Ser Glu Phe Ser Cys Leu Gly Pro Asn Val 340 C Set Glu Phe Ser Cys Leu Gly Pro Asn Val 355 C Set Glu Pro Asn Ser Cys Leu Gly Pro Asn Val 355 C Set Glu Pro Asn Ser Cys Leu Gly Pro Asn Val 355 C Set Glu Gly Pro Asn Ser Cys Leu Gly Pro Asn Val 355 C Ser Glu Gly Pro Asn Ser Cys Leu Gly Pro Asn Val 355 C Ser Glu Gly Pro Asn Ser Cys Leu Gly Pro Asn Val 355 C Ser Glu Gly Pro Asn Met Asp Phe Lys Asp Asn Glu 370 C Ser Cys Leu Gly Pro Asn Met Asp Phe Lys Asp Asn Glu 370 C Ser Cys Cys Leu Gly Pro Asn Val 355 C Ser Cys Leu Gly Pro As

<210> 62 <211> 383 <212> PRT <213> Corynebacterium glutamicum

Met Asn Ser Val Lys Leu Lys Gln Pro Val Ser Ile Tyr Asn Asp Pro

1 5 10 15

Trp Glu Ser Tyr Asn Asp Val Lys Glu His Gly Gln Leu Thr Leu Ser 20 . 25 30

Asn Ile Glu Phe Thr Thr Asn Leu Cys Asn Met Arg Cys Ser His 35 40 45

Cys Ala Val Gly Tyr Thr Leu Gln Thr Val Asp Pro Glu Pro Leu Asp 50 55 60

Met Asp Leu Ile Tyr Arg Arg Leu Asp Glu Ile Pro Asn Leu Arg Thr
65 70 75 80

Met Ser Ile Thr Gly Gly Glu Pro Met Phe Ser Lys Lys Ser Ile Arg 85 90 95

Asn Val Val Lys Pro Leu Leu Lys Tyr Ala His His Arg Gly Ile Tyr 100 105 110

Thr Gln Met Asn Ser Asn Leu Thr Leu Pro Gln Asp Arg Tyr Leu Asp 115 120 125

Ile Ala Glu Tyr Ile Asp Val Met His Ile Ser His Asn Trp Gly Thr 130 135 140

Thr Asp Glu Phe Ala Asn Val Gly Phe Gly Ala Met Lys Lys Gln Pro 145 150 155 160

Pro Leu Lys Ala Lys Leu Lys Leu Tyr Glu Gln Met Ile Ser Asn Ala 165 170 175

Arg Thr Leu Ser Glu Gln Gly Met Phe Val Ser Ala Glu Thr Met Leu 180 - 185 190

Asn Gln Ser Thr Leu Pro His Leu Arg Lys Ile His Gln Glu Val Val

195 200 205

His Asp Met Lys Cys Ser Arg His Glu Ile His Pro Met Tyr Pro Ala 210 215 220

Asp Phe Ala Ser Gln Leu Asn Val Leu Thr Leu Ala Glu Met Lys Lys 225 230 235 240

Thr Ile His Asp Ile Leu Asp Phe Arg Asp Glu Asp Ile Trp Met Leu 245 250 255

Phe Gly Thr Leu Pro Val Phe Pro Cys Leu Lys Asp Asp Glu Asp Gln 260 265 270

Lys Leu Leu Ser Arg Leu Arg Asn Ala Asn Asn Val Thr Thr Arg Asn 275 280 285

Asp Pro Asp Gly Arg Ser Arg Leu Asn Val Asn Val Phe Thr Gly Asn 290 295 300

Val Ile Val Thr Asp Phe Gly Asp Glu Thr Gly Thr Ile Ser Asn Ile 305 310 315 320

Gln Lys Asp Lys Leu Thr Asp Val Phe Asp Lys Trp Leu Ser Ser Asp 325 330 335

Leu Ala Lys Ser Leu Asn Cys His Cys Ser Glu Phe Ser Cys Leu Gly 340 345 350

Pro Asn Val Leu Val Lys Asn Met Tyr Tyr Pro Asn Met Asp Phe Lys 355 360 365

Asp Asn Glu Arg His Met His Lys Gln Pro Gln Ile Ile Gln Phe 370 375 380

<210> 63

<211> 618

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(595)

<223> RXN00833

<400> 63

agetttttge atgtgteata tegtacegtt tgeataggee tgttegeget tggtgaacet 60 -

tttctagcac caaaacaaaa ctctccctag tatggggtcc atg gct aaa aca cat 115

Met Ala Lys Thr His

1 5

ttt caa ggc aac gaa act gct acc tcc ggc gaa ctg cca cag gtc ggc 163 Phe Gln Gly Asn Glu Thr Ala Thr Ser Gly Glu Leu Pro Gln Val Gly 10 15 20

	aac Asn															211
	tca Ser	_	_		_		_	_		_	_					259
-	gtt Val 55	_			_	-	-			_	-	_				307
	gca Ala	_	_	_	-					-	_			_	_	355
	cca Pro															403
	acc Thr		_		_		_					_	_			451
	gtg Val		_					-				_	_	-	-	499
	gtc Val 135	_	_	-			_	_	_			_	_	_	-	547
gag Glu 150	atc Ile															595
taat	ttac	tt c	gctc	aggg	g aa	t										618

<210> 64

<211> 165

<212> PRT

<213> Corynebacterium glutamicum

<400> 64

Met Ala Lys Thr His Phe Gln Gly Asn Glu Thr Ala Thr Ser Gly Glu 1 5 10 15

Leu Pro Gln Val Gly Asp Asn Leu Ala Glu Phe Asn Leu Val Asn Thr 20 25 30

Glu Leu Gly Glu Val Ser Ser Lys Asp Phe Gln Gly Arg Lys Leu Val 35 40 45

Leu Asn Ile Phe Pro Ser Val Asp Thr Gly Val Cys Ala Thr Ser Val 50 55 60

Arg Lys Phe Asn Glu Ala Ala Ser Leu Glu Asn Thr Thr Val Leu 70 Cys Ile Ser Lys Asp Leu Pro Phe Ala Leu Gly Arg Phe Cys Ser Ala Glu Gly Ile Glu Asn Val Thr Pro Val Ser Ala Phe Arg Ser Thr Phe 100 105 Gly Glu Asp Asn Gly Ile Val Leu Glu Gly Ser Pro Leu Lys Gly Leu 120 Leu Ala Arg Ser Val Ile Val Val Asp Glu Asn Gly Lys Val Ala Tyr 130 135 Thr Gln Leu Val Asp Glu Ile Phe Thr Glu Pro Asp Tyr Asp Ala Ala 150 Leu Ala Gly Leu Asn 165 <210> 65 <211> 879 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(856) <223> RXN01676 <400> 65 agttacaget ttteteggtg geacactege getaettage cettgtgeeg cacteetttt 60 accagcattt tttgcatcct cagtgggtgc tggcccgcgc atg atc ctt cac ggt Met Ile Leu His Gly 1 gtt gtg ttc tac gca gga ctt cta gta ctt ctc gtg cca ctt ggc ctt 163 Val Val Phe Tyr Ala Gly Leu Leu Val Leu Leu Val Pro Leu Gly Leu 10 15 ggt gcg gga atc ctc ggc gag ctg ttt atc acc caa cgc cag acc atc 211 Gly Ala Gly Ile Leu Gly Glu Leu Phe Ile Thr Gln Arg Gln Thr Ile 25 30 atc gtg gtt tca tcg atc gtg ctg att atc cta ggt ttt gtc cag atc 259 Ile Val Val Ser Ser Ile Val Leu Ile Ile Leu Gly Phe Val Gln Ile 40 45 ttc ggc ggc gga ttc gac ttc gga aaa gca ctc cca gga tta gat cgt 307 Phe Gly Gly Gly Phe Asp Phe Gly Lys Ala Leu Pro Gly Leu Asp Arg 55 60 ctg caa tot aag goo act gtg acc toa ggt ota gga aag ago ttt tta 355

Leu Gln Ser Lys Ala Thr Val Thr Ser Gly Leu Gly Lys Ser Phe Leu

70)				75	i				80	ı				85	
			acc Thr		Ser					Cys						403
			ctt Leu 105	Thr					Ser							451
			ttg Leu													499
_		_	gcg Ala			_				_	_		_	-	-	547
			cgg Arg													595
			agc Ser													643
			ggc Gly 185													691
			cta Leu													739
_		_	ttg Leu			_	_	-		_		_				787
		-	caa Gln	_	_		_	_	_	_	_			-	_	835
			att Ile				taat	tatt	ag t	tttg	ıgagc	g ag	ig			879
~210	·> 66															

<210> 66

<211> 252

<212> PRT

<213> Corynebacterium glutamicum

<400> 66

Met Ile Leu His Gly Val Val Phe Tyr Ala Gly Leu Leu Val Leu Leu 1 5 10 15

Val Pro Leu Gly Leu Gly Ala Gly Ile Leu Gly Glu Leu Phe Ile Thr

20 25 30

Gln Arg Gln Thr Ile Ile Val Val Ser Ser Ile Val Leu Ile Ile Leu 35 40 45

Gly Phe Val Gln Ile Phe Gly Gly Phe Asp Phe Gly Lys Ala Leu
50 55 60

Pro Gly Leu Asp Arg Leu Gln Ser Lys Ala Thr Val Thr Ser Gly Leu 65 70 75 80

Gly Lys Ser Phe Leu Leu Gly Met Thr Ser Ser Ile Ala Gly Phe Cys 85 90 95

Ser Gly Pro Ile Leu Gly Ala Val Leu Thr Leu Ala Ala Thr Ser Gly 100 105 110

Asn Ser Ile Thr Ser Ala Leu Ile Leu Ser Ala Tyr Gly Ala Gly Met 115 120 125

Val Leu Pro Leu Met Ala Ile Ala Ala Leu Trp Ala Lys Leu Gly Gln 130 135 140

Arg Gly Gln Gln Met Leu Arg Gly Arg Glu Phe Thr Phe Leu Gly Arg 145 150 155 160

Gln Trp His Ile Val Ser Val Ile Ser Gly Ala Leu Ile Ile Ala Val 165 170 175

Gly Ile Leu Phe Trp Ser Thr Asn Gly Leu Val Ser Met Pro Glu Leu 180 185 190

Val Pro Met Asp Thr Gln Ile Trp Leu Gln Glu Ala Thr Phe Ser Leu 195 200 205

Gly Ser Pro Leu Phe Asp Ile Ala Leu Ile Ile Val Ala Ala Gly Leu 210 215 220

Phe Leu Tyr Phe Trp Asn Lys Arg Gln Lys Arg Lys Glu Glu Ala Gln 225 230 235 240

Arg Pro Lys Glu Ser Gly Trp Val Ile Asn Pro Arg 245 250

<210> 67

<211> 744

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(721)

<223> RXN00380

<400> 67

caggcaatgc gacctcgcct cagtgacatc cttggtgttc caagacgatc aaattgtcgg 60

cgt	gcat	tac	aacç	aacc	ag c	tcag	ıgaga	t tt	gato	actc			ttg Leu			115
cta Leu	gca Ala	gca Ala	aca Thr	atc Ile 10	Gly	tgc Cys	gtg Val	aca Thr	ctc Leu 15	agc Ser	gga Gly	ctt Leu	gcg Ala	cta Leu 20	gta Val	163
				Asp					Thr	gac Asp						211
gga Gly	acc Thr	ttc Phe 40	Gln	ttc Phe	cac His	tcc Ser	ccg Pro 45	gat Asp	gga Gly	aag Lys	atg Met	gaa Glu 50	att Ile	ttc Phe	tac Tyr	259
										att Ile						307
atg Met 70	gaa Glu	gag Glu	ggc Gly	aca Thr	cag Gln 75	atc Ile	aac Asn	ctg Leu	tct Ser	gat Asp 80	ttc Phe	gaa Glu	aac Asn	caa Gln	gtt Val 85	355
										gca Ala						403
tcc Ser	gat Asp	gat Asp	ctc Leu 105	cag Gln	att Ile	atc Ile	cat His	gag Glu 110	gaa Glu	ctc Leu	caa Gln	gct Ala	gcc Ala 115	gga Gly	aac Asn	451
										atc Ile						499
										gac Asp						547
										gca Ala 160						595
										gtg Val						643
										acc Thr						691
						Val		gag Glu		taaa	tgto	tg a	ıgatt	gtgç	jt.	741

agc 744

<210> 68

<211> 207

<212> PRT

<213> Corynebacterium glutamicum

<400> 68

Val Arg Leu Thr Lys Leu Ala Ala Thr Ile Gly Cys Val Thr Leu Ser 1 5 10 15

Gly Leu Ala Leu Val Ala Cys Ser Ser Asp Ser Thr Ala Gly Thr Asp 20 25 30

Ala Val Ala Val Gly Gly Thr Phe Gln Phe His Ser Pro Asp Gly Lys
35 40 45

Met Glu Ile Phe Tyr Asp Glu Ala Asp Arg Gln Gln Leu Pro Asp Ile 50 55 60

Gly Gly Asp Ser Leu Met Glu Glu Gly Thr Gln Ile Asn Leu Ser Asp 65 70 75 80

Phe Glu Asn Gln Val Val Ile Leu Asn Ala Trp Gly Gln Trp Cys Ala 85 90 95

Pro Cys Arg Ser Glu Ser Asp Asp Leu Gln Ile Ile His Glu Glu Leu 100 105 110

Gln Ala Ala Gly Asn Gly Asp Thr Pro Gly Gly Thr Val Leu Gly Ile 115 120 125

Asn Val Arg Asp Tyr Ser Arg Asp Ile Ala Gln Asp Phe Val Thr Asp 130 135 140

Asn Gly Leu Asp Tyr Pro Ser Ile Tyr Asp Pro Pro Phe Met Thr Ala 145 150 155 160

Ala Ser Leu Gly Gly Val Pro Ala Ser Val Ile Pro Thr Thr Ile Val 165 170 175

Leu Asp Lys Gln His Arg Pro Ala Ala Val Phe Leu Arg Glu Val Thr 180 185 190

Ser Lys Asp Val Leu Asp Val Ala Leu Pro Leu Val Asp Glu Ala 195 200 205

<210> 69

<211> 495

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101) .. (472)

<223> RXN00937

	0> 6 tgcc		caat	gaag	aa a	atcc	ttgg	c cg	ggaa	taac	tac	agtc	cgc	tgaa	agttgg	60
tct	atat	ata	gacc	ttac	aa a	tctt	gaac	g ga	gatt	ctta	-	gca Ala			-	115
												gac Asp				163
												cgc Arg				211
				_	_		_				_	gca Ala 50			-	259
_		_		_	-		_		_	-	_	gca Ala	_	_		307
												atc Ile				355
												gat Asp				403
												cag Gln				451
_	-			gca Ala		_	taag	cttc	ca a	ittgt	gttt	t gg	ŗt			495

<210> 70

<211> 124

<212> PRT

<213> Corynebacterium glutamicum

<400> 70

Met Ala Thr Ile Asp Val Thr Glu Glu Thr Phe Glu Ser Thr Val Thr 1 5 10 15

Gly Asp Gly Ile Val Leu Val Asp Ala Trp Ala Ser Trp Cys Gly Pro 20 25 30

Cys Arg Gln Phe Ala Pro Thr Tyr Glu Lys Val Ser Glu Thr His Thr 35 40 45

Asp Ala Thr Phe Ala Lys Leu Asp Thr Glu Ala Asn Gln Gly Leu Ala 50 55 60

Ala Ala Leu Gln Ile Gln Ser Ile Pro Thr Leu Met Val Phe Arg Asp

65 70 75 80

Gly Ile Met Val Tyr Arg Glu Ala Gly Thr Met Pro Ala Pro Ala Leu 85 90 95

Asp Asp Leu Val Asn Gln Val Lys Ala Leu Asp Met Asp Asp Val Arg 100 105 110

Arg Gln Val Ala Glu Gln Gln Gly Ser Ala Glu Ala 115 120

<210> 71

<211> 990

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(967)

<223> RXN02325

<400> 71

cagagatttg aagatggaga ccaaggctca aagggaatcc atgccgtctt ggtttaatac 60

tgcacccgtc taatgaaaat cattactatt aggtgtcatg atg gac cat gca cac 115

Met Asp His Ala His

1

gat too tgo toa coa act otg ogo ogt gat ttg gag gto act ggo cag 163 Asp Ser Cys Ser Pro Thr Leu Arg Arg Asp Leu Glu Val Thr Gly Gln 10 15 20

ctc caa cct gag aaa gct gtc gat tta gca gcg ccg cac gaa ggg aag 211 Leu Gln Pro Glu Lys Ala Val Asp Leu Ala Ala Pro His Glu Gly Lys 25 30 35

gtt gcc aat ata acg aag gtg acc tcc tca aat atg gag cac acc atc 259
Val Ala Asn Ile Thr Lys Val Thr Ser Ser Asn Met Glu His Thr Ile
40 45 50

acg cag gcc tca aaa gct aag gag gtg gtg gtg ctc att ggt cac tcc 307
Thr Gln Ala Ser Lys Ala Lys Glu Val Val Val Leu Ile Gly His Ser
55 60 65

ctg ctg ccc aca ttt cag gat ttg gaa aaa gac att ctg cac ttt cag 355 Leu Leu Pro Thr Phe Gln Asp Leu Glu Lys Asp Ile Leu His Phe Gln 70 75 80 85

gca ggt aat aaa ggg cga ttt tct gta gcg att gtt gat cct gat cgc 403 Ala Gly Asn Lys Gly Arg Phe Ser Val Ala Ile Val Asp Pro Asp Arg 90 95 100

	M	0001	/0000	+												PC 1/1B00/00
					gcc Ala											451
tac Tyr	gtg Val	gtg Val 120	aaa Lys	gat Asp	ggc Gly	gcc Ala	agc Ser 125	att Ile	gcg Ala	gag Glu	ttc Phe	aac Asn 130	tcg Ser	ctc Leu	aac Asn	499
aag Lys	gag Glu 135	ccg Pro	gtt Val	gca Ala	caa Gln	tgg Trp 140	ctt Leu	gat Asp	cat His	ttt Phe	gtg Val 145	tcg Ser	cgg Arg	gaa Glu	acg Thr	547
atc Ile 150	ccc Pro	aat Asn	gaa Glu	aaa Lys	gag Glu 155	ggg Gly	gac Asp	gtc Val	gat Asp	aag Lys 160	caa Gln	ata Ile	gac Asp	ccg Pro	cgc Arg 165	595
ctg Leu	tgg Trp	cgg Arg	gca Ala	gcg Ala 170	gaa Glu	ttg Leu	gtg Val	aac Asn	gcc Ala 175	ggt Gly	gat Asp	ttt Phe	cgc Arg	gcg Ala 180	gcg Ala	643
					cag Gln											691
cac His	gcg Ala	gcg Ala 200	gtg Val	tcg Ser	gta Val	ttg Leu	gcg Ala 205	cgg Arg	atg Met	tct Ser	gtg Val	gcg Ala 210	gat Asp	cgg Arg	gga Gly	739
					aag Lys											787
gcg Ala 230	ctg Leu	gcg Ala	gcg Ala	gcg Ala	gat Asp 235	atg Met	tat Tyr	gtg Val	ttg Leu	atg Met 240	aat Asn	cag Gln	ccg Pro	gac Asp	aca Thr 245	835
Ala	Leu	Ala	His	Leu 250	gca Ala	Ala	Leu	Leu	Pro 255	Lys	Pro	Glu	Ala	Ala 260	Arg	883
					ctg Leu											931
					cag Gln	Val						taag	aaaa	ıca		977
cttt	aaat	at t	ct													990

PCT/IB00/00922

<210> 72

<211> 289 <212> PRT

<213> Corynebacterium glutamicum

WO 01/00804

<400> 72

Met Asp His Ala His Asp Ser Cys Ser Pro Thr Leu Arg Arg Asp Leu 1 5 10 15

Glu Val Thr Gly Gln Leu Gln Pro Glu Lys Ala Val Asp Leu Ala Ala 20 25 30

Pro His Glu Gly Lys Val Ala Asn Ile Thr Lys Val Thr Ser Ser Asn 35 40 45

Met Glu His Thr Ile Thr Gln Ala Ser Lys Ala Lys Glu Val Val 50 55 60

Leu Ile Gly His Ser Leu Leu Pro Thr Phe Gln Asp Leu Glu Lys Asp 65 70 75 80

Ile Leu His Phe Gln Ala Gly Asn Lys Gly Arg Phe Ser Val Ala Ile $85 \hspace{1cm} 90 \hspace{1cm} 95$

Val Asp Pro Asp Arg Ser Ala Asp Val Val Ala Arg Phe Arg Pro Lys
100 105 110

Gln Ile Pro Val Ala Tyr Val Val Lys Asp Gly Ala Ser Ile Ala Glu 115 120 125

Phe Asn Ser Leu Asn Lys Glu Pro Val Ala Gln Trp Leu Asp His Phe 130 135 140

Val Ser Arg Glu Thr Ile Pro Asn Glu Lys Glu Gly Asp Val Asp Lys 145 150 155 160

Gln Ile Asp Pro Arg Leu Trp Arg Ala Ala Glu Leu Val Asn Ala Gly 165 170 175

Asp Phe Arg Ala Ala Leu Ala Leu Tyr Glu Gln Leu Pro Gln Asp Ala 180 185 190

Thr Val Lys Arg Ala His Ala Ala Val Ser Val Leu Ala Arg Met Ser 195 200 205

Val Ala Asp Arg Gly Glu Asp Pro Ile Glu Lys Ser Arg Arg Asp Pro 210 215 220

Asp Asp Val Asn Lys Ala Leu Ala Ala Ala Asp Met Tyr Val Leu Met 225 230 235 240

Asn Gln Pro Asp Thr Ala Leu Ala His Leu Ala Ala Leu Leu Pro Lys 245 250 255

Pro Glu Ala Ala Arg Arg Ile Val Glu Leu Leu Asn Leu Phe Asp Pro 260 265 270

Leu Asp Leu Val Ala Leu Glu Ile Arg Ala Gln Val Gly Asn Ala Met 275 280 285

Ser

<21 <21		000 NA	ebac	teri	lum g	gluta	micu	ım								
<22		DS 101) XN01		377)												
	0> 7 ccat		tccc	tcaa	igg t	gtga	agat	a cg	gtta	ggat	aga	aaag	aat	tttt	ttgacg	60
ttg	gaca	ttc	tcaa	aato	aa g	tago	aagg	g at	caaa	ctct		Ser		aat Asn		115
					Ala					Glu				aaa Lys 20		163
				Glu										gct Ala		211
														gct Ala		259
cgc Arg	agc Ser 55	acc Thr	gaa Glu	gac Asp	gaa Glu	gtc Val 60	atc Ile	acc Thr	gct Ala	gat Asp	gaa Glu 65	aca Thr	tcc Ser	acc Thr	acc Thr	307
gca Ala 70	gag Glu	acc Thr	cct Pro	gac Asp	tac Tyr 75	cag Gln	cca Pro	ctg Leu	gcg Ala	ctg Leu 80	acc Thr	cgc Arg	acc Thr	acc Thr	gcg Ala 85	355
ctc Leu	ggc Gly	gac Asp	tcc Ser	gtg Val 90	acc Thr	tgt Cys	gag Glu	tac Tyr	cca Pro 95	gat Asp	gct Ala	ggc Gly	gag Glu	gct Ala 100	tcc Ser	403
														ggc Gly		451
gtg Val	acc Thr	gtc Val 120	aac Asn	ctg Leu	acc Thr	acc Thr	gcc Ala 125	cag Gln	ggc Gly	aac Asn	atc Ile	ggc Gly 130	atg Met	gaa Glu	ctt Leu	499
														atg Met		547
cc Ser 150	gag Glu	ggc Gly	tac Tyr	tac Tyr	aac Asn 155	gat Asp	act Thr	gtc Val	tgc Cys	cac His 160	cgc Arg	atc Ile	acc Thr	acc Thr	tct Ser 165	595

									agc Ser			643
									acc Thr			691
									acc Thr			739
									ctt Leu 225			787
									cgg Arg			835
									agt Ser			877
tgaa	ggtg	ga a	ccgg	cgac	g ga	g						900
-21A	~ 74											

<210> 74

<211> 259

<212> PRT

<213> Corynebacterium glutamicum

<400> 74

Val Ser Thr Asn Lys Glu Arg Arg Gln Gln Ala Leu Ser Gln Leu Glu 1 5 10 15

Lys Glu Ile Lys Ser Arg Asp Arg Lys Glu Lys Thr Lys Pro Leu Thr 20 25 30

Val Val Phe Ala Ser Leu Ala Val Ile Leu Val Val Val Gly Gly Ile 35 40 45

Trp Tyr Ala Ala Thr Arg Ser Thr Glu Asp Glu Val Ile Thr Ala Asp 50 55 60

Glu Thr Ser Thr Thr Ala Glu Thr Pro Asp Tyr Gln Pro Leu Ala Leu 65 70 75 80

Thr Arg Thr Thr Ala Leu Gly Asp Ser Val Thr Cys Glu Tyr Pro Asp 85 90 95

Ala Gly Glu Ala Ser Lys Asp Val Ser Lys Pro Ala Thr Glu Asn Val 100 105 110

Pro Ala Thr Gly Thr Val Thr Val Asn Leu Thr Thr Ala Gln Gly Asn 115 120 125

155

Arg Ile Thr Thr Ser Gly Ile Tyr Val Leu Gln Cys Gly Asp Pro Ser

Ser Thr Gly Ala Gly Gly Pro Gly Phe Ser Phe Ala Asn Glu Tyr Pro 180 185 190

Thr Asp Glu Ala Thr Asp Leu Thr Thr Pro Val Ile Tyr Glu Arg Gly
195 200 205

Thr Ile Ala Met Ala Asn Ala Gly Ala Asp Thr Asn Gly Leu Pro Val 210 215 220

Leu Pro Gln Leu Arg Gly Phe Pro Thr Gly Thr Glu Leu His Leu Leu 225 230 235 240

Arg Pro Asp His Arg Arg Pro Cys Asn Pro Arg Arg His Arg Arg 245 250 255

Ser Trp His

<210> 75

<211> 741

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(741)

<223> RXN01926

<400> 75

ctg cga agc ttc tac acc cca gaa caa gcc atc gaa cgc gaa ggc gac 48 Leu Arg Ser Phe Tyr Thr Pro Glu Gln Ala Ile Glu Arg Glu Gly Asp 1 5 10 15

gtc tgg aaa gcc gcc acc gaa gaa gca gaa ctc ctc gca gct gac ggc 96 Val Trp Lys Ala Ala Thr Glu Glu Ala Glu Leu Leu Ala Ala Asp Gly 20 25 30

gcc gtc cac gac cag gaa ctc ttc ctc aac tgc acc acc tcc cca ctg 144
Ala Val His Asp Gln Glu Leu Phe Leu Asn Cys Thr Thr Ser Pro Leu
35 40 45

atc ttc gcc tcc gcg atg ctc aac ttc ggc gtc cac caa atc ctg gac 192
Ile Phe Ala Ser Ala Met Leu Asn Phe Gly Val His Gln Ile Leu Asp
50 55 60

acc etc tgc caa etc gca eca tec eee gee gge ege gae gea gae eee 240

Thr 65	Leu	Cys	Gln	Leu	Ala 70	Pro	Ser	Pro	Ala	Gly 75	Arg	Asp	Ala	Asp	Pro 80	
					gcc Ala											288
					ggc Gly											336
					acc Thr											384
					caa Gln											432
				-	ctc Leu 150		-			_		_			-	480
					ggc Gly											528
	_			-	acc Thr			-		-					cca Pro	576
					gcg Ala											624
					aaa Lys											672
				Val	cag Gln 230											720
aac Asn					cgg Arg											741

<210> 76 <211> 247 <212> PRT

<213> Corynebacterium glutamicum

<400> 76

Leu Arg Ser Phe Tyr Thr Pro Glu Gln Ala Ile Glu Arg Glu Gly Asp 1 5 10 15

Val Trp Lys Ala Ala Thr Glu Glu Ala Glu Leu Leu Ala Ala Asp Gly
20 25 30

Ala Val His Asp Gln Glu Leu Phe Leu Asn Cys Thr Thr Ser Pro Leu 35 40 45

Ile Phe Ala Ser Ala Met Leu Asn Phe Gly Val His Gln Ile Leu Asp 50 55 60

Thr Leu Cys Gln Leu Ala Pro Ser Pro Ala Gly Arg Asp Ala Asp Pro 65 70 75 80

Lys-Ala Leu Glu Ala Ala Thr Ser Ala Met Asp Asp His Arg Asp Thr 85 90 95

Thr Asp Asp Phe Ser Gly Val Val Phe Lys Val Gln Ala Gly Met Asp 100 105 110

Lys Asn His Arg Asp Thr Leu Ala Phe Met Arg Val Val Ser Gly Glu 115 120 125

Phe Asp Arg Gly Met Gln Val Thr His Ser Gln Ser Gly Arg Ser Phe 130 135 140

Ser Thr Lys Tyr Ala Leu Thr Val Phe Gly Arg Thr Arg Ser Thr Val 145 150 155 160

Glu Thr Ala Phe Pro Gly Asp Ile Val Gly Leu Val Asn Ala Gly Ala 165 170 175

Leu Ala Pro Gly Asp Thr Ile Phe Glu Gly Arg Lys Ile Gln Tyr Pro 180 185 190

Pro Met Pro Lys Phe Ala Pro Glu His Phe Arg Ile Leu Arg Ala Lys 195 200 205

Ser Leu Gly Lys Tyr Lys Gln Phe Arg Lys Ala Leu Glu Gln Leu Asp 210 215 220

Ser Glu Gly Val Val Gln Ile Leu Lys Asn Asp Leu Arg Gly Asp Ala 225 230 235 240

Asn Pro Gly His Gly Arg Cys 245

<210> 77

<211> 478

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(478)

<223> RXN02002

<400> 77

aag	tggc	aaa	aaac	gttt	ca a	gcag	gcaa	c go	cggc	gtac	aac	ttcg	ctg	agct	ggggcg	60
att	atgg	ccc	agcg	ıccca	ca a	cccg	ctat	t ct	taat	accc	_			gcc Ala		115
			acc Thr													163
			Pro 25	Asp												211
			cac His													259
			gcc Ala													307
			atc Ile													355
			ggc Gly													403
			ttc Phe 105													451
-	-	-	atg Met		_			_								478

<210> 78

<211> 126

<212> PRT

<213> Corynebacterium glutamicum

<400> 78

Met Ser Asn Ala Asn Ser Asp Thr Thr Ala Ala Glu Ala His Arg Arg 1 5 10 15

Arg Thr Phe Ala Val Ile Ala His Pro Asp Ala Gly Lys Ser Thr Leu 20 25 30

Thr Glu Ala Leu Ala Leu His Ala His Ile Ile Ser Glu Ala Gly Ala 35 40 45

Thr His Gly Lys Ala Gly Arg Lys Ala Thr Val Ser Asp Trp Met Glu 50 55 60

Met Glu Lys Asp Arg Gly Ile Ser Ile Ala Ser Ser Ala Leu Gln Phe 65 70 75 80

Glu Tyr Ala Pro Glu Gly His Ala Gly Glu Pro Phe Met Ile Asn Leu 85 90 95

Val Asp Thr Pro Gly His Ala Asp Phe Ser Glu Asp Thr Tyr Arg Val

Leu Met Ala Val Asp Ala Ala Val Met Leu Met His Ser Val 115 120 125

<210> 79

<211> 1080

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1057)

<223> RXN02736

<400> 79

cagaggatta cccagcgggt acgtggggtc caaagagcgc tgatgaaatg ctttcccgca 60

acggtcacac ctggcgcagg ccataattta ggggcaaaaa atg atc ttt gaa ctt 115
Met Ile Phe Glu Leu

ccg gat acc acc cag caa att tcc aag acc cta act cga ctg cgt 163
Pro Asp Thr Thr Gln Gln Ile Ser Lys Thr Leu Thr Arg Leu Arg
10 15 20

gaa tcg ggc acc cag gtc acc acc ggc cga gtg ctc acc ctc atc gtg 211 Glu Ser Gly Thr Gln Val Thr Thr Gly Arg Val Leu Thr Leu Ile Val 25 30 35

gtc act gac tcc gaa agc gat gtc gct gca gtt acc gag tcc acc aat 259
Val Thr Asp Ser Glu Ser Asp Val Ala Ala Val Thr Glu Ser Thr Asn
40 45 50

gaa gcc tcg cgc gag cac cca tct cgc gtg atc att ttg gtg gtt ggc 307 Glu Ala Ser Arg Glu His Pro Ser Arg Val Ile Ile Leu Val Val Gly 55 60 65

gat aaa act gca gaa aac aaa gtt gac gca gaa gtc cgt atc ggt ggc 355 Asp Lys Thr Ala Glu Asn Lys Val Asp Ala Glu Val Arg Ile Gly Gly 70 75 80 85

gac gct ggt gct tcc gag atg atc atc atg cat ctc aac gga cct gtc 403 Asp Ala Gly Ala Ser Glu Met Ile Ile Met His Leu Asn Gly Pro Val 90 95 100

gct gac aag ctc cag tat gtc gtc aca cca ctg ttg ctt cct gac acc 451
Ala Asp Lys Leu Gln Tyr Val Val Thr Pro Leu Leu Pro Asp Thr
105 110 115

		-	Ala					Glu			_			tcc Ser		499
		Ile					Gln							ttg Leu		547
	Arg													cca Pro		595
														ctt Leu 180		643
_			_	_					_	-				gtg Val		691
_			-	_		•		_		-	_	_	_	ggc Gly		739
														gat Asp		787
														atc Ile		835
														atc Ile 260		883
														gcc Ala		931
														tct Ser		979
		_		_	_		-	_			_		-	cta Leu		1027
				Val	aag Lys 315					taag	ıgaga	aa t	acaa	icact	a	1077
tgg																1080

<210> 80

- <211> 319
- <212> PRT
- <213> Corynebacterium glutamicum

<400> 80

Met Ile Phe Glu Leu Pro Asp Thr Thr Gln Gln Ile Ser Lys Thr 1 5 10 15

Leu Thr Arg Leu Arg Glu Ser Gly Thr Gln Val Thr Thr Gly Arg Val 20 25 30

Leu Thr Leu Ile Val Val Thr Asp Ser Glu Ser Asp Val Ala Ala Val 35 40 45

Thr Glu Ser Thr Asn Glu Ala Ser Arg Glu His Pro Ser Arg Val Ile 50 55 60

Ile Leu Val Val Gly Asp Lys Thr Ala Glu Asn Lys Val Asp Ala Glu 65 70 75 80

Val Arg Ile Gly Gly Asp Ala Gly Ala Ser Glu Met Ile Ile Met His 85 90 95

Leu Asn Gly Pro Val Ala Asp Lys Leu Gln Tyr Val Val Thr Pro Leu 100 105 110

Leu Leu Pro Asp Thr Pro Ile Val Ala Trp Trp Pro Gly Glu Ser Pro 115 120 125

Lys Asn Pro Ser Gln Asp Pro Ile Gly Arg Ile Ala Gln Arg Arg Ile 130 135 140

Thr Asp Ala Leu Tyr Asp Arg Asp Asp Ala Leu Glu Asp Arg Val Glu 145 150 155 160

Asn Tyr His Pro Gly Asp Thr Asp Met Thr Trp Ala Arg Leu Thr Gln 165 170 175

Trp Arg Gly Leu Val Ala Ser Ser Leu Asp His Pro Pro His Ser Glu 180 185 190

Ile Thr Ser Val Arg Leu Thr Gly Ala Ser Gly Ser Thr Ser Val Asp 195 200 205

Leu Ala Ala Gly Trp Leu Ala Arg Arg Leu Lys Val Pro Val Ile Arg 210 215 220

Glu Val Thr Asp Ala Pro Thr Val Pro Thr Asp Glu Phe Gly Thr Pro 225 230 235 240

Leu Leu Ala Ile Gln Arg Leu Glu Ile Val Arg Thr Thr Gly Ser Ile 245 250 255

Ile Ile Thr Ile Tyr Asp Ala His Thr Leu Gln Val Glu Met Pro Glu 260 265 270

Ser Gly Asn Ala Pro Ser Leu Val Ala Ile Gly Arg Arg Ser Glu Ser

275 280 285 Asp Cys Leu Ser Glu Glu Leu Arg His Met Asp Pro Asp Leu Gly Tyr 295 300 Gln His Ala Leu Ser Gly Leu Ser Ser Val Lys Leu Glu Thr Val 310 315 <210> 81 <211> 331 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(301) <223> RXS03217 <400> 81 tctgtgaagg tagatggttt gacgaggagt tccaacgact cggacgctgg tgaatcatgc 60 tggcgaacgt agcatcacct gattaggaaa aggtacaaat atg gca cag ggt act Met Ala Gln Gly Thr gtg aaa tgg ttc aac ggc gaa aag gga ttt ggt ttc atc gct ccc aac 163 Val Lys Trp Phe Asn Gly Glu Lys Gly Phe Gly Phe Ile Ala Pro Asn 10 gat ggc tcc gca gat ctc ttc gtc cac tac tct gag att cag ggc tcc 211 Asp Gly Ser Ala Asp Leu Phe Val His Tyr Ser Glu Ile Gln Gly Ser 25 ggt ttc cgt aat ctt gag gaa aac cag cca gtt gaa ttt gag gtc ggc Gly Phe Arg Asn Leu Glu Glu Asn Gln Pro Val Glu Phe Glu Val Gly 40 45 gag ggc gcc aag ggc cca cag gct cag cag gtt cgt gct ctc 301 Glu Gly Ala Lys Gly Pro Gln Ala Gln Gln Val Arg Ala Leu 60 taagctctaa ctgctagcta aaaattccgc 331 <210> 82

<211> 67 <212> PRT <213> Corynebacterium glutamicum <400> 82

Met Ala Gln Gly Thr Val Lys Trp Phe Asn Gly Glu Lys Gly Phe Gly

Phe Ile Ala Pro Asn Asp Gly Ser Ala Asp Leu Phe Val His Tyr Ser 20 25

Glu Ile Gln Gly Ser Gly Phe Arg Asn Leu Glu Glu Asn Gln Pro Val 40 Glu Phe Glu Val Gly Glu Gly Ala Lys Gly Pro Gln Ala Gln Gln Val Arg Ala Leu 65 <210> 83 <211> 324 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(301) <223> FRXA01917 <400> 83 tctgtgaagg tagatggttt gacgaggagt tccaacgact cggacgctgg tgaatcatgc 60 tggcgaacgt agcatcacct gattaggaaa aggtacaaat atg gca cag ggt act Met Ala Gln Gly Thr gtg aaa tgg ttc aac ggc gaa aag gga ttt ggt ttc atc gct ccc aac Val Lys Trp Phe Asn Gly Glu Lys Gly Phe Gly Phe Ile Ala Pro Asn gat ggc tcc gca gat ctc ttc gtc cac tac tct gag att cag ggc tcc 211 Asp Gly Ser Ala Asp Leu Phe Val His Tyr Ser Glu Ile Gln Gly Ser 25 ggt ttc cgt aat ctt gag gaa aac cag cca gtt gaa ttt gag gtc ggc 259 Gly Phe Arg Asn Leu Glu Glu Asn Gln Pro Val Glu Phe Glu Val Gly 45 40 301 gag ggc gcc aag ggc cca cag gct cag cag gtt cgt gct ctc Glu Gly Ala Lys Gly Pro Gln Ala Gln Gln Val Arg Ala Leu 60 65 324 taagctctaa ctgctagcta aaa <210> 84 <211> 67 <212> PRT <213> Corynebacterium glutamicum <400> 84 Met Ala Gln Gly Thr Val Lys Trp Phe Asn Gly Glu Lys Gly Phe Gly Phe Ile Ala Pro Asn Asp Gly Ser Ala Asp Leu Phe Val His Tyr Ser 25

Glu Ile Gln Gly Ser Gly Phe Arg Asn Leu Glu Glu Asn Gln Pro Val Glu Phe Glu Val Gly Glu Gly Ala Lys Gly Pro Gln Ala Gln Gln Val Arg Ala Leu 65 <210> 85 <211> 504 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(481) <223> RXA02184 <400> 85 tttaccgcga tgcttgcggt gtataataat ttcttctggt caaaaatagt tgatcaattt 60 gaatcagcat atgaattagg aatgaaagtg gtgaggacaa gtg cct gtc gga aca Val Pro Val Gly Thr 1 gtg aag tgg tac gac gcg gag cgt ggt ttc ggc ttt gtc tcc aat cca 163 Val Lys Trp Tyr Asp Ala Glu Arg Gly Phe Gly Phe Val Ser Asn Pro ggt ggt gaa gat tgc ttc gta ggt aag caa gta ctt ccc aag gga gtc 211 Gly Gly Glu Asp Cys Phe Val Gly Lys Gln Val Leu Pro Lys Gly Val acc gaa ttg cac aag gga cag cga atc gat ttt gac ttc gcc gca ggc 259 Thr Glu Leu His Lys Gly Gln Arg Ile Asp Phe Asp Phe Ala Ala Gly cgt aag ggc cct caa gca ctt cga ata aag att ctt gaa act cca cgc 307 Arg Lys Gly Pro Gln Ala Leu Arg Ile Lys Ile Leu Glu Thr Pro Arg 55 agg cgt cca cag cac aaa tac aag cca gaa gag ctc aac gga atg atc 355 Arg Arg Pro Gln His Lys Tyr Lys Pro Glu Glu Leu Asn Gly Met Ile 75 tct gac ctc atc acg ctt cta gaa agt gga gtg caa cca ggc ctt gcc 403 Ser Asp Leu Ile Thr Leu Leu Glu Ser Gly Val Gln Pro Gly Leu Ala

aaa ggg caa tac ccg gag cac aaa gct gga gcg cag gta gca gaa att

Lys Gly Gln Tyr Pro Glu His Lys Ala Gly Ala Gln Val Ala Glu Ile

ctt cgc gtt gtt gcg aag gag ctt gag tct taaaacaata aggagaggat

451

501

Leu Arg Val Val Ala Lys Glu Leu Glu Ser 120 125

ccg 504

<210> 86

<211> 127

<212> PRT

<213> Corynebacterium glutamicum

<400> 86

Val Pro Val Gly Thr Val Lys Trp Tyr Asp Ala Glu Arg Gly Phe Gly
1 5 10 15

Phe Val Ser Asn Pro Gly Gly Glu Asp Cys Phe Val Gly Lys Gln Val 20 25 30

Leu Pro Lys Gly Val Thr Glu Leu His Lys Gly Gln Arg Ile Asp Phe 35 40 45

Asp Phe Ala Ala Gly Arg Lys Gly Pro Gln Ala Leu Arg Ile Lys Ile 50 55 60

Leu Glu Thr Pro Arg Arg Pro Gln His Lys Tyr Lys Pro Glu Glu 65 70 75 80

Leu Asn Gly Met Ile Ser Asp Leu Ile Thr Leu Leu Glu Ser Gly Val 85 90 95

Gln Pro Gly Leu Ala Lys Gly Gln Tyr Pro Glu His Lys Ala Gly Ala 100 105 110

Gln Val Ala Glu Ile Leu Arg Val Val Ala Lys Glu Leu Glu Ser 115 120 125

<210> 87

<211> 324

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(301)

<223> RXA00810

<400> 87

teggegtteg tteaagaaac ggccagatgt tgetgttega geteatgeaa gagtggaaca 60

tcgaacccgg tagtaattcc aatcagtaaa ggtaagacaa atg gca cag ggc act 115
Met Ala Gln Gly Thr
1

gtt aag tgg ttc aac cca gag aag ggc ttc ggc ttc atc gct cct tcc 163 Val Lys Trp Phe Asn Pro Glu Lys Gly Phe Gly Phe Ile Ala Pro Ser 10 15 20

		tcc Ser							Tyr					Gly		211
		cgt Arg 40													ggc Gly	259
		gct Ala														301
taat	ttgca	atc t	gagt	tcga	aa a	cc										324
<211 <212	0> 88 l> 67 2> PF 3> Co	7	ebact	eriu	ım gl	utan	nicum	n								
)> 88 Ala	Gln	Gly	Thr	Val	Lys	Trp	Phe	Asn	Pro	Glu	Lys	Gly	Phe	Gly	
1				5					10					15		
Phe	Ile	Ala	Pro 20	Ser	Asp	Gly	Ser	Ala 25	Asp	Val	Phe	Val	His 30	Tyr	Ser	
Glu	Ile	Glu 35	Gly	Asn	Gly	Phe	Arg 40	Thr	Leu	Glu	Glu	Asn 45	Gln	Leu	Val	
Glu	Phe 50	Glu	Ile	Gly	Glu	Gly 55	Ala	Lys	Gly	Leu	Gln 60	Ala	Gln	Ala	Val	
Arg 65	Ala	Ile														
<211 <212	> 89 > 10 > DN > Co	17	bacto	eriu	m gl	utam	icum									·
<222	> CD > (1	S 01). A016		4)												
	> 89	1010	, ,													
		at to	ccaga	aaggi	t tt	gtag	acat	gct	tcaa	ggt	tgcg	ctaa	tt g	aaaa	gaacg	60
eggta	agac	gg ta	actt	cata	a tco	cacc	cata	taa	tgtt	_	atg Met . 1	_				115
		ctg c Leu G														163

10 15 20

agc Ser	ctc Leu	ggt	gcc Ala 25	a Gly	gct Ala	cga Arg	aaa Lys	gtc Val	Gly	atg Met	gcc Ala	caa Gln	cct Pro 35	Asn	gcc Ala	211
			ato Ile					Ala					Glu			259
		His	cct Pro				His									307
	Glu		tcg Ser			Leu										355
			gag Glu		Arg					Leu						403
			acc Thr 105													451
			cgt Arg													499
			gta Val													547
			aca Thr													595
			aag Lys													643
			ggt Gly 185													691
ata Ile	gtg Val	agg Arg 200	gaa Glu	gtc Val	ggc Gly	tca Ser	ggt Gly 205	acc Thr	cga Arg	gaa Glu	gca Ala	tta Leu 210	caa Gln	gaa Glu	tta Leu	739
			tat Tyr													787
			cgt Arg													835

ggt gaa tta gcc ttg cgt gat cat ctt gcg ctc ggc agg ctg ttg agt 883 Gly Glu Leu Ala Leu Arg Asp His Leu Ala Leu Gly Arg Leu Leu Ser 250 255 gtg cca ttt gaa ggc agt gga gtt act cgt cct ctt aca gct gtg tgg 931 Val Pro Phe Glu Gly Ser Gly Val Thr Arg Pro Leu Thr Ala Val Trp 265 270 agt gga ccc cgc aga ttg ccg att cta gcg gga gaa tta gtg tcc atc 979 Ser Gly Pro Arg Arg Leu Pro Ile Leu Ala Gly Glu Leu Val Ser Ile 285 gca tcg aac cac atc tgattttgag ccctggctaa cgg 1017 Ala Ser Asn His Ile 295

<210> 90

<211> 298

<212> PRT

<213> Corynebacterium glutamicum

<400> 90

Met Asp Asn Gly Trp Pro Asn Leu Gln Thr Leu Ala Leu Phe Val Ala 1 5 10 15

Ile Val Glu Glu Gly Ser Leu Gly Ala Gly Ala Arg Lys Val Gly Met 20 25 30

Ala Gln Pro Asn Ala Ser Arg Ala Ile Ala Glu Leu Glu Ala Asp Met
35 40 45

Lys Ala Glu Leu Leu Val Arg His Pro Arg Gly Ser His Pro Thr Ala 50 55 60

Ala Gly Leu Ala Leu Val Glu His Ser Arg Asp Leu Leu Gln Ser Val 65 70 75 80

Gln Glu Phe Thr Glu Trp Val Thr Glu Gly Arg Thr Glu Gln Pro Leu 85 90 95

Lys Leu His Val Gly Ala Ser Met Thr Ile Ala Glu Ala Leu Leu Pro 100 105 110

Ala Trp Val Ala Asp Met Arg Thr Arg Phe Pro Ala Cys Arg Val Asp 115 120 125

Val Ser Val Met Asn Ser Ser Gln Val Ile Glu Ala Val Gln Lys Gly 130 135 140

His Leu Gln Leu Gly Phe Ile Glu Thr Pro His Val Pro Val Arg Leu 145 150 155 160

His Ala Arg Val Val Gln Glu Asp Lys Leu Ile Val Val Ile Ser Pro 165 170 175

Asn His Glu Trp Ala Asn Arg Thr Gly Arg Ile Ser Leu Arg Glu Leu 180 185 190

Ser Glu Thr Pro Leu Ile Val Arg Glu Val Gly Ser Gly Thr Arg Glu 195 200 205

Ala Leu Gln Glu Leu Leu Ala Asp Tyr Asp Met Ala Glu Pro Ile Gln 210 215 220

Val Leu Asn Ser Asn Ala Ala Val Arg Val Val Glu Ala Gly Ala 225 230 235 240

Gly Pro Ala Val Leu Gly Glu Leu Ala Leu Arg Asp His Leu Ala Leu 245 250 255

Gly Arg Leu Ser Val Pro Phe Glu Gly Ser Gly Val Thr Arg Pro 260 · 265 270

Leu Thr Ala Val Trp Ser Gly Pro Arg Arg Leu Pro Ile Leu Ala Gly 275 280 285

·Glu Leu Val Ser Ile Ala Ser Asn His Ile 290 295

<210> 91

<211> 1214

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(1191)

<223> RXA02431

<400> 91

gtg gtg gtg aca ccc cgt cat atc gtt tac tcc gca gcc tcg cgc cgg 48 Val Val Val Thr Pro Arg His Ile Val Tyr Ser Ala Ala Ser Arg Arg 1 5 10 15

gtg ttc caa atc gtg gaa aaa cgc gcc gga att gtc gaa cgc ctc agc 96 Val Phe Gln Ile Val Glu Lys Arg Ala Gly Ile Val Glu Arg Leu Ser 20 25 30

atc gat gaa ggc ttc atg gaa cca gag gct ctc gtt gga gcc acc cca 144
Ile Asp Glu Gly Phe Met Glu Pro Glu Ala Leu Val Gly Ala Thr Pro
35 40 45

gaa gag gtg aaa cag tgg gcg gaa gaa tta cgc gcg gaa att aaa gaa 192 Glu Glu Val Lys Gln Trp Ala Glu Glu Leu Arg Ala Glu Ile Lys Glu 50 55 60

gtt act ggc tta ccc tcc tcg gtt ggt gct ggc tcc ggt aag cag atc 240
Val Thr Gly Leu Pro Ser Ser Val Gly Ala Gly Ser Gly Lys Gln Ile
65 70 75 80

gcc aaa att ggt tca ggc gaa gca aag cca gat ggt gtg ttt gtc gtg 288

Ala	Lys	Il€	e Gly	y Sei 85		y Glu	Ala د	a Lys	90	_	Gly	Val	Phe	• Val 95		
				Glr			tto Leu		Asp					Gly		336
			v Val				g aca Thr 120	Gly					Ser			384
	_	Thr			-		gca Ala					Lys	_	_	-	432
	Ser					Ile	gga Gly			-				_	-	480
							gaa Glu									528
							aaa Lys									576
_	_	_			_		gcc Ala 200	_		_		_				624
	_		_		_	_	act Thr	-	_			_		_	-	672
							tcc Ser									720
-		_				_	aca Thr	-		_		_	_			768
	_	-				_	ctt Leu	_		-	-				_	816
							ctc Leu 280									864
							acc Thr									912
							caa Gln									960

310 315 320 305 ttg agt atg tgg tgc gca acg caa gat gtc tac cac cca gaa tat ggc 1008 Leu Ser Met Trp Cys Ala Thr Gln Asp Val Tyr His Pro Glu Tyr Gly 330 cac ggt tgg gta caa ggt gcc ggt cac ggt gtt gta tca gta cgt ttt 1056 His Gly Trp Val Gln Gly Ala Gly His Gly Val Val Ser Val Arg Phe gaa acc cgc agc acc aca aaa ggg cga act aaa agt ttt tcc atg gat 1104 Glu Thr Arg Ser Thr Thr Lys Gly Arg Thr Lys Ser Phe Ser Met Asp 360 gac ecg gac etc acc ecg gea gac ect eta gat agt ttg gat tgg get 1152 Asp Pro Asp Leu Thr Pro Ala Asp Pro Leu Asp Ser Leu Asp Trp Ala 375 1201 gac tgg ttt gct gaa aat ggt gaa acg ggg gat gac gaa tagggtttca Asp Trp Phe Ala Glu Asn Gly Glu Thr Gly Asp Asp Glu 390 tcgggtttcg ggg 1214 <210> 92 <211> 397 <212> PRT <213> Corynebacterium glutamicum <400> 92 Val Val Thr Pro Arg His Ile Val Tyr Ser Ala Ala Ser Arg Arg Val Phe Gln Ile Val Glu Lys Arg Ala Gly Ile Val Glu Arg Leu Ser Ile Asp Glu Gly Phe Met Glu Pro Glu Ala Leu Val Gly Ala Thr Pro Glu Glu Val Lys Gln Trp Ala Glu Glu Leu Arg Ala Glu Ile Lys Glu Val Thr Gly Leu Pro Ser Ser Val Gly Ala Gly Ser Gly Lys Gln Ile Ala Lys Ile Gly Ser Gly Glu Ala Lys Pro Asp Gly Val Phe Val Val Pro Val Asp Lys Gln His Asp Leu Leu Asp Pro Leu Pro Val Gly Ala Leu Trp Gly Val Gly Pro Val Thr Gly Ser Lys Leu Ala Ser Met Gly 115 Val Glu Thr Ile Gly Asp Leu Ala Ala Leu Thr Gln Lys Glu Val Glu 135 140

Ile Ser Leu Gly Ala Thr Ile Gly Ile Ser Leu Trp Asn Leu Ala Arg 145 150 155 160

Gly Ile Asp Asp Arg Pro Val Glu Pro Arg Ala Glu Ala Lys Gln Ile 165 170 175

Ser Gln Glu His Thr Tyr Glu Lys Asp Leu Leu Thr Arg Gln Gln Val 180 185 190

Asp Ala Ala Ile Ile Arg Ser Ala Glu Gly Ala His Arg Arg Leu Leu 195 200 205

Lys Asp Gly Arg Gly Ala Arg Thr Val Ser Val Lys Leu Arg Met Ala 210 215 220

Asp Phe Arg Ile Glu Ser Arg Ser Tyr Thr Leu Ser Tyr Ala Thr Asp 225 230 235 240

Asp Tyr Ala Thr Leu Glu Ala Thr Ala Phe Arg Leu Ala Arg Tyr Pro 245 250 255

Gly Glu Val Gly Pro Ile Arg Leu Val Gly Val Ser Phe Ser Gly Leu 260 265 270

Glu Glu Ser Arg Gln Asp Ile Leu Phe Pro Glu Leu Asp Gln Gln Ile 275 280 285

Ile Val Pro Pro Ala Pro Asp Thr Asp Tyr Glu Val Gly Val Gln Ser 290 295 300

Ser Ser Ser Ser Glu Ser Thr Gln Val Glu Ala Pro Gln Asp Val Ala 305 310 315 320

Leu Ser Met Trp Cys Ala Thr Gln Asp Val Tyr His Pro Glu Tyr Gly 325 330 335

His Gly Trp Val Gln Gly Ala Gly His Gly Val Val Ser Val Arg Phe 340 345 350

Glu Thr Arg Ser Thr Thr Lys Gly Arg Thr Lys Ser Phe Ser Met Asp 355 360 365

Asp Pro Asp Leu Thr Pro Ala Asp Pro Leu Asp Ser Leu Asp Trp Ala 370 375 380

Asp Trp Phe Ala Glu Asn Gly Glu Thr Gly Asp Asp Glu 385 390 395

<210> 93

<211> 558

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(535) <223> RXA02446

<400> 93

caggaaatct tgctgtctaa tgcacaacgg aaaactgctc acggacgaac tagttgtagc 60

gagcgtattc tttgtgttct ctcacgacag gaatactgct atg gcg atc gag tcc 115
Met Ala Ile Glu Ser

atc gcg tac acc agt gaa gca ctc tca acc ggc agt ggc cgg ctg ggg 163
Ile Ala Tyr Thr Ser Glu Ala Leu Ser Thr Gly Ser Gly Arg Leu Gly
10 15 20

cat gtg cgc tcc aca gat ggt gcg ctc gaa ttt gaa atg aca ccg cca 211 His Val Arg Ser Thr Asp Gly Ala Leu Glu Phe Glu Met Thr Pro Pro 25 30 35

aag gct ttg ggc gga tcc ggt gaa ggc acc aat cca gaa cag ctg ttc 259 Lys Ala Leu Gly Gly Ser Gly Glu Gly Thr Asn Pro Glu Gln Leu Phe

gcg gta ggt tac gca gcc tgt ttc cac tct gcc atg cac tct gca 307 Ala Val Gly Tyr Ala Ala Cys Phe His Ser Ala Met His Ser Val Ala

cgc agc cgc aag atc act ctt gaa gac aca gcg gtt ggt gcc cga gtt 355
Arg Ser Arg Lys Ile Thr Leu Glu Asp Thr Ala Val Gly Ala Arg Val
70 75 80 85

agc atc ggg cca aac ggc gct ggt gga ttt gag att gcc gta gaa ctc 403 Ser Ile Gly Pro Asn Gly Ala Gly Gly Phe Glu Ile Ala Val Glu Leu

gaa gta tcg att cct caa ttg cca caa gca gaa gcc cag gaa ctt gct 451 Glu Val Ser Ile Pro Gln Leu Pro Gln Ala Glu Ala Gln Glu Leu Ala 105 110 115

gat gcc gcg cac cag gtg tgc ccg tat tcc aac gcc aca cga ggc aat 499 Asp Ala Ala His Gln Val Cys Pro Tyr Ser Asn Ala Thr Arg Gly Asn 120 125 130

atc tcg gta act gtg tca gtc atc gac gaa gag gct taaaaccaca 545

Ile Ser Val Thr Val Ser Val Ile Asp Glu Glu Ala
135 140 145

ggattaacaa aac 558

<210> 94

<211> 145

<212> PRT

<213> Corynebacterium glutamicum

<400> 94

Met Ala Ile Glu Ser Ile Ala Tyr Thr Ser Glu Ala Leu Ser Thr Gly
1 10 15

Ser Gly Arg Leu Gly His Val Arg Ser Thr Asp Gly Ala Leu Glu Phe 20 25 30

Glu Met Thr Pro Pro Lys Ala Leu Gly Gly Ser Gly Glu Gly Thr Asn 35 40 45

Pro Glu Gln Leu Phe Ala Val Gly Tyr Ala Ala Cys Phe His Ser Ala 50 55 60

Met His Ser Val Ala Arg Ser Arg Lys Ile Thr Leu Glu Asp Thr Ala 65 70 75 80

Val Gly Ala Arg Val Ser Ile Gly Pro Asn Gly Ala Gly Gly Phe Glu 85 90 95

Ile Ala Val Glu Leu Glu Val Ser Ile Pro Gln Leu Pro Gln Ala Glu 100 105 110

Ala Gln Glu Leu Ala Asp Ala Ala His Gln Val Cys Pro Tyr Ser Asn 115 120 125

Ala Thr Arg Gly Asn Ile Ser Val Thr Val Ser Val Ile Asp Glu Glu 130 135 140

Ala 145

<210> 95

<211> 1206

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1183)

<223> RXA02861

<400> 95

ccctcgatta ttacaatccg gctacttcgg aagcgtttgt ggccggattt ttctatcctg 60

gaaggtatta atacttcttt aagggtcgga ggattttcgt atg tct act aga aca 115

Met Ser Thr Arg Thr

1 5

acg cca caa gac cgt tat acc gac gaa tac ggc atc gaa cgc gtc aac $$ 163 Thr Pro Gln Asp Arg Tyr Thr Asp Glu Tyr Gly Ile Glu Arg Val Asn $$ 10 $$ 15 $$ 20

aag gat gaa ccc ggc ctg gtg gac aaa ctc cgg gac aag cac gac tgg 211 Lys Asp Glu Pro Gly Leu Val Asp Lys Leu Arg Asp Lys His Asp Trp 25 30 35

ttt gat cat ctc atg cgc atg aat gaa cgt ttc ggc gca aaa ggt ggc $\,$ 259 Phe Asp His Leu Met Arg Met Asn Glu Arg Phe Gly Ala Lys Gly Gly $\,$ 40 $\,$ 45 $\,$ 50

	Leu					Thr				Leu			ttc Phe	307
Ile					Phe				, Val			gcc Ala	gga Gly 85	355
	_	_		Thr	_			Arg			_	gct Ala 100	Leu	403
			Gly				ĞĨy					gcg Ala		451
												ctg Leu		499
												cgc Arg		547
 _		_			_					-	_	ctc Leu		595
												gcc Ala 180		643
	_				_						_	ctg Leu	_	691
												tgg Trp		739
												atg Met		787
												ggt Gly		835
		Leu										cag Gln 260		883
	Leu					Ala				Ala		gca Ala		931

		_	atc Ile				_	-		_	_		_	979
			tat Tyr											1027
_			act Thr			-				-				1075
			gat Asp											1123
			gtg Val 345											1171
_	_	aaa Lys 360	aaa Lys	tagt	tttt	at t	aagg	gcat	t co	: c				1206

<210> 96

<211> 361

<212> PRT

<213> Corynebacterium glutamicum

<400> 96

Met Ser Thr Arg Thr Thr Pro Gln Asp Arg Tyr Thr Asp Glu Tyr Gly
1 10 15

Ile Glu Arg Val Asn Lys Asp Glu Pro Gly Leu Val Asp Lys Leu Arg
20 25 30

Asp Lys His Asp Trp Phe Asp His Leu Met Arg Met Asn Glu Arg Phe 35 40 45

Gly Ala Lys Gly Gly Asn Gln Leu Ser Ala Gly Ile Thr Tyr Phe Ser 50 55 60

Val Leu Ser Ile Phe Pro Ile Ala Met Leu Val Phe Gly Ile Ala Gly 65 70 75 80

Val Ile Leu Ala Gly Asn Pro Glu Val Leu Thr Asp Ile Gln Asn Arg 85 90 95

Ile Asn Asp Ala Leu Glu Gly Glu Ile Gly Asn Thr Val Asn Gly Ile 100 105 110

Ile Asp Ser Ala Ile Ala Gln Arg Gly Ala Val Leu Gly Ile Gly Gly 115 120 125

Val Thr Ala Leu Trp Ser Gly Leu Gly Trp Met Ala Asn Leu Arg Phe 130 135 140

Gly Val Ser Arg Met Trp Ala Ile Asp Pro Thr Glu Gly Asn Phe Ile 145 150 155 160

Gln Lys Lys Leu Thr Asp Leu Val Ala Leu Ile Val Leu Leu Ala 165 170 175

Met Gly Val Ala Phe Gly Ile Thr Ala Leu Gly Ala Ser Gly Leu Thr 180 185 190

Lys Asn Leu Leu Asp Phe Val Gly Leu Gly Glu Ile Pro Gly Ile Ser 195 200 205

Tyr Ile Thr Trp Val Val Ala Ala Leu Val Gly Val Leu Ala Asn Phe 210 215 220

Leu Val Phe Met Trp Leu Ile Phe Ser Leu Pro Arg Thr Lys Val Pro 225 230 235 240

Met Lys Pro Gly Leu Gln Ala Ala Leu Leu Gly Ala Ile Gly Phe Glu 245 250 255

Val Val Lys Gln Val Gly Ser Leu Leu Ala Ser Asn Ala Leu Ser Asn 260 265 270

Pro Ala Gly Ala Ala Phe Gly Pro Ile Ile Gly Ile Met Val Val Leu 275 280 285

Tyr Leu Ile Trp Arg Ile Leu Met Tyr Cys Ser Ala Trp Ala Ala Thr 290 295 300

Ser Glu Glu Ala Leu Arg Leu Ala Thr Val Pro Ala Pro Glu Pro Ala 305 310 315 320

Ile Ile Arg Val Arg His Glu Ile Asp Pro Gly Glu Glu Val Ser Gln 325 330 335

Ser Ala Arg Lys Val Gly Ile Gly Val Ala Val Gly Ala Ala Thr Ala 340 345 350

Gly Ala Phe Ala Leu Leu Arg Lys Lys 355 360

<210> 97

<211> 753

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(730)

<223> RXA00981

<400> 97

aaccaatggc tgggtactga tgtggtgatc agtgcccagt ttcttctttc tactagtgtc 60

gga	ataga	aagt	acco	cca	gtc o	agaa	atgaa	ıg gt	caco	acca		Ser	_	ı aat ı Asn		115
					Leu		g gac 1 Asp			Arg					Lys	163
				ı Glu			ggg Gly		Met					Phe		211
			Ile				atc Ile 45	Asn								259
_	-	His					atc			-			_	_	-	307
	Pro						aag Lys									355
							aca Thr									403
							gat Asp									451
	Asn						gtc Val 125									499
							aag Lys									547
							gtg Val									595
							ttc Phe									643
							gtt Val									691
	Glu					Pro	cgg Arg 205				Val		taaa	cctc	ca	740
gttgaaacca ctg												753				

<210> 98

<211> 210

<212> PRT

<213> Corynebacterium glutamicum

<400> 98

Met Ser Glu Asn Leu Pro Ala Pro Glu Asn Leu Leu Asp Ala Glu Arg
1 5 10 15

Ile Gln Met Ile Lys Asn Phe Arg Asn Glu Leu Thr Gly Phe Met Leu 20 25 30

Asn Tyr Gln Phe Gly Ile Asp Glu Ile Leu Thr Lys Ile Asn Ile Leu 35 40 45

Lys Thr Glu Phe Ser Gln Leu His Glu Tyr Ala Pro Ile Glu His Val

Ser Ser Arg Leu Lys Thr Pro Glu Ser Ile Val Lys Lys Val Ile Arg 65 70 75 80

Lys Gly Asp Glu Leu Ser Leu Ala Ala Ile Lys Asp Thr Val Phe Asp 85 90 95

Ile Ala Gly Ile Arg Ile Val Cys Ser Phe Leu Lys Asp Ala Tyr Ala 100 105 110

Ile Ala Asp Met Leu Thr Asn Gln Lys Asp Val Thr Val Ile Glu Ala 115 120 125

Lys Asp Tyr Ile Ala Asn Pro Lys Pro Asn Gly Tyr Lys Ser Leu His 130 135 140

Leu Ile Leu Gln Val Pro Val Phe Leu Ser Asn Ser Val Glu Lys Val 145 150 155 160

Asn Val Glu Val Gln Ile Arg Thr Ile Ala Met Asp Phe Trp Ala Ser 165 170 175

Leu Glu His Lys Ile Tyr Tyr Lys Phe Glu Gln Glu Val Pro Gln Ser 180 185 190

Ile Leu Asp Glu Leu Ser Glu Asp Gly Lys Asn Pro Arg Gly Ser Glu
195 200 205

Val Thr 210

<210> 99

<211> 1098

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS <222> (101)..(1075) <223> RXN00786

<400> 99

teettettee accagetaaa agtgaattae eeegeetttg teggggtggt tgeatteeca 60

gtctaggtgt ttagcctcaa cgttggatac gctgggaggc atg agc tca cct gtt 115 Met Ser Ser Pro Val 1 5

atc agc ccc gaa acc aaa acc gga aag atc ctg ctt gca gcc cct 163
Ile Ser Pro Glu Thr Lys Thr Gly Lys Lys Ile Leu Leu Ala Ala Pro
10 15 20

cgc gga tac tgt gcc ggc gta gac cgt gca gtg gaa acc gtc gag cgc 211 Arg Gly Tyr Cys Ala Gly Val Asp Arg Ala Val Glu Thr Val Glu Arg 25 30 35

gcg ctc gag gaa tac ggc gcc cca att tat gtc cgt aaa gaa atc gtg 259
Ala Leu Glu Glu Tyr Gly Ala Pro Ile Tyr Val Arg Lys Glu Ile Val

cac aac cgt tac gtt gtg gac acc ctg gca gaa aag ggc gcg att ttt 307 His Asn Arg Tyr Val Val Asp Thr Leu Ala Glu Lys Gly Ala Ile Phe 55 60 65

gtc aac gaa gca tct gaa gca cca gaa ggt gcc aac atg gtg ttc tct 355 Val Asn Glu Ala Ser Glu Ala Pro Glu Gly Ala Asn Met Val Phe Ser 70 80 85

gca cac ggc gtg agc cca atg gtc cac gaa gaa gct gca gct aaa aac 403 Ala His Gly Val Ser Pro Met Val His Glu Glu Ala Ala Ala Lys Asn 90 95

atc aag gct att gac gcg gcc tgc ccg ctg gtc acc aaa gtg cac aag 451
Ile Lys Ala Ile Asp Ala Ala Cys Pro Leu Val Thr Lys Val His Lys
105 110 115

gaa gtc cag cgc ttt gat aag cag gga ttc cac att ctc ttc atc ggt 499 Glu Val Gln Arg Phe Asp Lys Gln Gly Phe His Ile Leu Phe Ile Gly 120 125 130

cac gaa ggc cat gaa gaa gta gag ggc acc atg ggt cat tcc gtt gag
His Glu Gly His Glu Glu Val Glu Gly Thr Met Gly His Ser Val Glu
135
140
145

aaa acc cac ctg gtt gac ggc gtt gct ggc att gcc acc ctg cct gaa 595 Lys Thr His Leu Val Asp Gly Val Ala Gly Ile Ala Thr Leu Pro Glu 150 165

ttc tta aac gat gaa cca aac ctg atc tgg ctg tct cag acc acg ctt

Phe Leu Asn Asp Glu Pro Asn Leu Ile Trp Leu Ser Gln Thr Thr Leu

170 175 180

tct gtg gac gag acc atg gag atc gtc cgc gag ctg aag gtg aag ttc 691 Ser Val Asp Glu Thr Met Glu Ile Val Arg Glu Leu Lys Val Lys Phe

185 190 195

													_			
		_	cag Gln	_		_		-	_		_		_	_	_	739
			gtt Val							Ğlū						787
			ggt Gly													835
	_	_	caa Gln			_	_		_		_		-		_	883
			gac Asp 265													931
			gct Ala													979
_	-	_	gag Glu				-	_	_		-	_			-	1027
			att Ile													1075
taat	tgca	ag a	atga	aaaa	t cc	С										1098

<210> 100

<211> 325

<212> PRT

<213> Corynebacterium glutamicum

<400> 100

Met Ser Ser Pro Val Ile Ser Pro Glu Thr Lys Thr Gly Lys Lys Ile
1 5 10 15

Leu Leu Ala Ala Pro Arg Gly Tyr Cys Ala Gly Val Asp Arg Ala Val 20 25 30

Glu Thr Val Glu Arg Ala Leu Glu Glu Tyr Gly Ala Pro Ile Tyr Val 35 40 45

Arg Lys Glu Ile Val His Asn Arg Tyr Val Val Asp Thr Leu Ala Glu 50 55 60

Lys Gly Ala Ile Phe Val Asn Glu Ala Ser Glu Ala Pro Glu Gly Ala 65 70 75 80

Asn Met Val Phe Ser Ala His Gly Val Ser Pro Met Val His Glu Glu 85 90 95

Ala Ala Ala Lys Asn Ile Lys Ala Ile Asp Ala Ala Cys Pro Leu Val 100 105 110

Thr Lys Val His Lys Glu Val Gln Arg Phe Asp Lys Gln Gly Phe His 115 120 125

Ile Leu Phe Ile Gly His Glu Gly His Glu Glu Val Glu Gly Thr Met 130 135 140

Gly His Ser Val Glu Lys Thr His Leu Val Asp Gly Val Ala Gly Ile 145 150 155 160

Ala Thr Leu Pro Glu Phe Leu Asn Asp Glu Pro Asn Leu Ile Trp Leu 165 170 175

Ser Gln Thr Thr Leu Ser Val Asp Glu Thr Met Glu Ile Val Arg Glu 180 185 190

Leu Lys Val Lys Phe Pro Gln Leu Gln Asp Pro Pro Ser Asp Asp Ile 195 200 205

Cys Tyr Ala Thr Gln Asn Arg Gln Val Ala Val Lys Ala Ile Ala Glu 210 215 220

Arg Cys Glu Leu Met Ile Val Val Gly Ser Arg Asn Ser Ser Asn Ser 225 230 235 240

Val Arg Leu Val Glu Val Ala Lys Gln Asn Gly Ala Asp Asn Ala Tyr 245 250 255

Leu Val Asp Tyr Ala Arg Glu Ile Asp Pro Ala Trp Phe Glu Gly Val 260 265 270

Glu Thr Ile Gly Ile Ser Ser Gly Ala Ser Val Pro Glu Ile Leu Val 275 280 285

Gln Gly Val Ile Glu Arg Leu Ala Glu Phe Gly Tyr Asp Asp Val Glu 290 295 300

Glu Val Thr Ser Ala Ala Glu Lys Ile Val Phe Ala Leu Pro Arg Val 305 310 315 320

Leu Arg His Lys Asn 325

<210> 101

<211> 1131

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1108) <223> RXS01027

<400> 101 aatagatgga agtagttttt cattcactta tgtgcgcgtt tttaatctgg tttctaccaa 60 gaactgtgtg caccacaacg cggaaggtga atcgcaccca atg gca aat aag aac Met Ala Asn Lys Asn aat aag cct cat gag gtg gac aaa gac caa gat tca gcc atg ctg atc 163 Asn Lys Pro His Glu Val Asp Lys Asp Gln Asp Ser Ala Met Leu Ile 10 aac ggt cgc ctg caa cag atc ccg gcg cgt ccc act gag gaa ttc acc 211 Asn Gly Arg Leu Gln Gln Ile Pro Ala Arg Pro Thr Glu Glu Phe Thr 259 cgc cca act ctt gca gca ggt gca gta ctg tgg cgc ggc gac atc acc Arg Pro Thr Leu Ala Ala Gly Ala Val Leu Trp Arg Gly Asp Ile Thr 307 aac ccg gac agc atc gag gtc gct gtc atc cac cgc ccg cac tat gat Asn Pro Asp Ser Ile Glu Val Ala Val Ile His Arg Pro His Tyr Asp 60 qac tgg tcc ctg gcc aag ggc aaa gtc gat ccc ggc gag tct att ccg 355 Asp Trp Ser Leu Ala Lys Gly Lys Val Asp Pro Gly Glu Ser Ile Pro 80 aca acc gcg gcc cgt gaa atc ctt gaa gaa act ggc tac gac atc cgt 403 Thr Thr Ala Ala Arg Glu Ile Leu Glu Glu Thr Gly Tyr Asp Ile Arg ctg ggc aag ctg atc ggc aag gtt act tac cct gtg ctc gac cga acc 451 Leu Gly Lys Leu Ile Gly Lys Val Thr Tyr Pro Val Leu Asp Arg Thr aaa gtg gtc tac tac tgg act gcc cag gtt ctt ggt gga gag ttt gtc 499 Lys Val Val Tyr Tyr Trp Thr Ala Gln Val Leu Gly Gly Glu Phe Val ccc aac gat gaa gtt gat gaa atc cgt tgg ctg tct gtt gat gaa gca 547 Pro Asn Asp Glu Val Asp Glu Ile Arg Trp Leu Ser Val Asp Glu Ala tgc gag ttg ctc agc tac caa gta gat acc gaa gtt ctg gcc aag gca 595 Cys Glu Leu Leu Ser Tyr Gln Val Asp Thr Glu Val Leu Ala Lys Ala 155 gca aag cgt ttc cgc act cct tcc acc act cgg gtg ctg tat gtt cgc 643 Ala Lys Arg Phe Arg Thr Pro Ser Thr Thr Arg Val Leu Tyr Val Arg 170 175 cat gct cat gca cat ggt cgc caa acc tgg ggt ggc gac gac aat aag 691 His Ala His Ala His Gly Arg Gln Thr Trp Gly Gly Asp Asp Asn Lys 185 190

			Asp								gaa Glu					739
											tcg Ser 225					787
											gag Glu					835
											tgg Trp					883
											gcg Ala					931
											gaa Glu					979
											aag Lys 305					1027
											ggt Gly					1075
gct Ala	_		_		-		_	_	_		tagg	agcg	ıcg t	ttaa	iggcct	1128
cca																1131
<210> 102 <211> 336 <212> PRT <213> Corynebacterium glutamicum																
<400 Met			Lys .	Asn	Asn	Lys	Pro	His	Glu	Val	Asp	Lys	Asp	Gln	Asp	

Arg Gly Asp Ile Thr Asn Pro Asp Ser Ile Glu Val Ala Val Ile His 50 55 60

Ser Ala Met Leu Ile Asn Gly Arg Leu Gln Gln Ile Pro Ala Arg Pro

Thr Glu Glu Phe Thr Arg Pro Thr Leu Ala Ala Gly Ala Val Leu Trp

10

Arg Pro His Tyr Asp Asp Trp Ser Leu Ala Lys Gly Lys Val Asp Pro Gly Glu Ser Ile Pro Thr Thr Ala Ala Arg Glu Ile Leu Glu Glu Thr Gly Tyr Asp Ile Arg Leu Gly Lys Leu Ile Gly Lys Val Thr Tyr Pro 105 Val Leu Asp Arg Thr Lys Val Val Tyr Tyr Trp Thr Ala Gln Val Leu 120 Gly Glu Phe Val Pro Asn Asp Glu Val Asp Glu Ile Arg Trp Leu Ser Val Asp Glu Ala Cys Glu Leu Leu Ser Tyr Gln Val Asp Thr Glu Val Leu Ala Lys Ala Ala Lys Arg Phe Arg Thr Pro Ser Thr Thr Arg 170 Val Leu Tyr Val Arg His Ala His Ala His Gly Arg Gln Thr Trp Gly 180 Gly Asp Asp Asn Lys Arg Pro Leu Asp Lys Lys Gly Arg Arg Gln Ala 200 Glu Met Leu Val Pro Met Leu Leu Pro Phe Lys Pro Thr Ala Ile Tyr 215 Ser Ala Val Pro Asp Arg Cys Gln Ala Thr Ala Leu Pro Leu Ala Asp 230 235 Glu Leu Gly Leu Asp Val Ser Val Asn Arg Leu Phe Gly Asp Asp Ala Trp Glu Thr Asp Pro Glu Ala Cys Lys Lys Arg Phe Thr Asp Val Val 265 Ala Gln Gly Gly Val Pro Met Ile Val Gly Gln Gly Asp Ile Ile Pro 280. Glu Met Ile Lys Trp Phe Ser Glu Asn Gly Thr Leu Pro Ile Asp Glu Lys Ile Lys Ala Lys Lys Gly Ser Val Trp Val Leu Ser Phe His Asp Gly Val Phe Thr Gly Ala Asp Tyr Leu Ala Ser Ser Leu Pro Val Lys 330

<210> 103

<212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(628) <223> RXS01528 <400> 103 cacccaaacc caaacctetc aqtcqaataa qcaqaaqtet caqqacaacc gcaggggtaa 60 qqqtcqtaqq tctccaacca ggaggcqttc caacacgagg gtg aat cag gcg tgg Val Asn Gln Ala Trp cag cag tee egt ttg gtt act tet gat gag act tee gea ggt ggt ete Gln Gln Ser Arg Leu Val Thr Ser Asp Glu Thr Ser Ala Gly Gly Leu 211 gtg gtg tca ggt ttg gct gag gcg gtc aac gct aac aat gag gtt gat Val Val Ser Gly Leu Ala Glu Ala Val Asn Ala Asn Asn Glu Val Asp ctg tcg aag att tat gtt gcg ttg att ggt cgc ctt gat cgt cgt ggt Leu Ser Lys Ile Tyr Val Ala Leu Ile Gly Arg Leu Asp Arg Arg Gly 307 cgt ttg ttg tcg atg ccg aag ggc cat gtt gag cct ggt gag gat Arg Leu Leu Trp Ser Met Pro Lys Gly His Val Glu Pro Gly Glu Asp 60 aag gct gcg act gct gag cgt gag gtg tgg gag gag acc ggc atc cac 355 Lys Ala Ala Thr Ala Glu Arg Glu Val Trp Glu Glu Thr Gly Ile His 75 80 ggt gag gtg ttc act gag ttg ggt gtg att gat tat tgg ttc gtt tcg 403 Gly Glu Val Phe Thr Glu Leu Gly Val Ile Asp Tyr Trp Phe Val Ser 90 95 gaa ggg aag cgg atc cat aag acg gtg cat cat cat ttg ttg cgt tat 451 Glu Gly Lys Arg Ile His Lys Thr Val His His His Leu Leu Arg Tyr 110 499 gtt gat ggc gat ttg aat gat gag gat cca gaa gtc act gag gtg gcg Val Asp Gly Asp Leu Asn Asp Glu Asp Pro Glu Val Thr Glu Val Ala 125 tgg att ccg gcg aat cag ttg att gag cat ttg gct ttt gcg gat gag 547 Trp Ile Pro Ala Asn Gln Leu Ile Glu His Leu Ala Phe Ala Asp Glu 140 cgg aag ttg gct agg cag gcg cat gat ttg ttg cct gag ttt gct ttg 595 Arg Lys Leu Ala Arg Gln Ala His Asp Leu Leu Pro Glu Phe Ala Leu 160 aag gaa aag gcg gag gga agg tcc acc cca agg tgattccgaa ccccaacccg 648

<211> 651

Lys Glu Lys Ala Glu Gly Arg Ser Thr Pro Arg 170 175

aac 651

<210> 104

<211> 176

<212> PRT

<213> Corynebacterium glutamicum

<400> 104

Val Asn Gln Ala Trp Gln Gln Ser Arg Leu Val Thr Ser Asp Glu Thr 1 5 10 15

Ser Ala Gly Gly Leu Val Val Ser Gly Leu Ala Glu Ala Val Asn Ala 20 25 30

Asn Asn Glu Val Asp Leu Ser Lys Ile Tyr Val Ala Leu Ile Gly Arg 35 40 45

Leu Asp Arg Gly Arg Leu Leu Trp Ser Met Pro Lys Gly His Val 50 60

Glu Pro Gly Glu Asp Lys Ala Ala Thr Ala Glu Arg Glu Val Trp Glu 65 70 75 80

Glu Thr Gly Ile His Gly Glu Val Phe Thr Glu Leu Gly Val Ile Asp 85 90 95

Tyr Trp Phe Val Ser Glu Gly Lys Arg Ile His Lys Thr Val His His 100 105 110

His Leu Leu Arg Tyr Val Asp Gly Asp Leu Asn Asp Glu Asp Pro Glu 115 120 125

Val Thr Glu Val Ala Trp Ile Pro Ala Asn Gln Leu Ile Glu His Leu 130 135 140

Ala Phe Ala Asp Glu Arg Lys Leu Ala Arg Gln Ala His Asp Leu Leu 145 150 155 160

Pro Glu Phe Ala Leu Lys Glu Lys Ala Glu Gly Arg Ser Thr Pro Arg 165 170 175

<210> 105

<211> 509

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(486)

<223> RXS01716

<40	0> 1	05														
	Val				Gly					Thr				acc Thr 15		48
				Lys										ccc Pro		96
														ctc Leu		144
														gca Ala		192
														cag Gln		240
														ggc Gly 95		288
	-	_	_	_			_		_		-	-	-	cct Pro	-	336
														act Thr		384
														tca Ser		432
	_		_		_	_		-			_	_	_	gac Asp		480
ccc Pro	gac Asp	tgaa	accg	aa g	tgga	aatc	g cc	c								509

```
<210> 106
```

<400> 106

Glu Val Thr Pro Glu Gly Phe Lys Glu Ile Thr Arg Glu Asn Thr Ile 1 5 10 15

<211> 162

<212> PRT

<213> Corynebacterium glutamicum

Val Arg Leu Gly Lys Gly Val Asp Ala Thr Gly Gln Leu Asp Pro Glu 25 Ala Ile Glu Arg Thr Arg Val Ala Leu Glu Asn Tyr Val Glu Leu Met Glu Thr His Gly Val Glu Ala Val Arg Met Val Ala Thr Ser Ala Thr Arg Asp Ala Ser Asn Arg Asp Glu Phe Phe Ser Met Thr Arg Gln Leu 70 Leu Ser Lys Ile Arg Pro Gly Tyr Gln Ala Glu Val Ile Ser Gly Glu Glu Glu Ala Leu Leu Ser Phe Arg Gly Ala Ile Val Asp Leu Pro Glu 105 Asp Gln Gly Pro Phe Cys Val Ile Asp Leu Gly Gly Gly Ser Thr Glu 120 Phe Ile Val Gly Thr Tyr Asp Gly Glu Ile Leu Gly Ser His Ser Thr 135 Gln Met Gly Cys Val Arg Leu Thr Glu Arg Ile Met Arg Ser Asp Pro 145 150 155 Pro Asp <210> 107 <211> 654 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(631) <223> RXS01835 <400> 107 tcaacatcta ttcctcctgc gatttgcatg ggatatatat taaaaaattct agccgaaagt 60 ttcctgcgtg aatacacttt ccccgcgcct tcgcaaagct atg aat act gcc gcg 115 Met Asn Thr Ala Ala tgg gca cac cgc cac gta cgc aaa ggc ggt gga att ccg tat gtc 163 Trp Ala His Arg His His Val Arg Lys Gly Gly Gle Pro Tyr Val age cat ett tat tea gtg atg tae ttg etg gee age gte aet aat gat 211 Ser His Leu Tyr Ser Val Met Tyr Leu Leu Ala Ser Val Thr Asn Asp 25 gaa gat gtg ctc atc gcc ggg ctg ctc cac gac acc ctc gaa gac gta 259

Glu	Asp	Val 40		Il∈	Ala	Gly	Leu 45		His	a Asp	Thi	Leu 50		Asp	Val	
		Glu					Gln				gat Asp 65	Phe				307
						Glu					ccc Pro					355
										Leu	agc Ser					403
											ctg Leu					451
											gat Asp					499
											tat Tyr 145					547
											ttg Leu					595
GJ À aaa											gcc Ala	tago	gege	tcg		641
gcgg	cgtc	ga t	aa													654
<210 <211 <212 <213	> 17 > PR	7 T	bact	eriu	m gl	.utan	ni cum	1								
_			Ala .	_	Trp	Ala	His	Arg		His	Val	Arg	Lys		Gly	
l Gly	Ile	Pro	Tyr ' 20	5 Val	Ser	His	Leu	Tyr 25	10 Ser	Val	Met	Tyr	Leu 30	15 Leu	Ala	
Ser '	Val '	Thr 3	Asn i	Asp	Glu	Asp	Val 40	Leu	Ile	Ala	Gly	Leu 45	Leu	His	Asp	
Thr 1	Leu (50	Glu A	Asp V	Val	Pro	Glu 55	Glu	Tyr	Asn	Ser	Ala 60	Gln	Leu	Glu	Ala	

Asp Phe Gly Pro Arg Val Arg Glu Leu Val Glu Glu Leu Thr Lys Gln

70 75 80 65 Pro Leu Lys Ser Trp Lys Ala Arg Ala Asp Ala Tyr Leu Leu His Leu 85 Ser Ala Gly Ala Ser Leu Glu Ala Val Leu Ile Ser Thr Ala Asp Lys 105 Leu His Asn Leu Met Ser Ile Leu Asp Asp Leu Glu Ile His Gly Glu 120 Asp Leu Trp Gln Arg Phe Asn Ala Gly Lys Glu Gln Gln Ile Trp Trp Tyr Ser Glu Val Tyr Gln Ile Ser Leu Gln Arg Leu Gly Phe Asn Glu 160 Leu Asn Lys Gln Leu Gly Leu Cys Val Glu Lys Leu Leu Lys Gln Ser Ala <210> 109 <211> 1050 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1027) <223> RXS02497 <400> 109 tcgatgccgc cgctggcgaa gactcgggga aacctaaaaa taccgaagaa gaatttgacc 60 gattcacact ttgccaccct agaccgtcta acctttaggt gtg aga tta ggt gta Val Arg Leu Gly Val tta gat gtg ggc agc aat act gtc cac cta gtt gca gta gac gcg cgt 163 Leu Asp Val Gly Ser Asn Thr Val His Leu Val Ala Val Asp Ala Arg 10 15 ccc ggt gga cac ccc acc ccg atg agc aat tgg cgt acc cca ctg cgc 211 Pro Gly Gly His Pro Thr Pro Met Ser Asn Trp Arg Thr Pro Leu Arg 25 30 259 ctt gtt gag ctt ctt gat gac tee ggg geg ate tee gaa aag gge ate Leu Val Glu Leu Leu Asp Asp Ser Gly Ala Ile Ser Glu Lys Gly Ile

45

60

aac aaa ctc acc tca gca gtc ggg gaa gca gca gac cta gcg aaa acg

Asn Lys Leu Thr Ser Ala Val Gly Glu Ala Ala Asp Leu Ala Lys Thr

50

65

307

40

55

	Gly					ı Met					Ser				tcc Ser 85	355
gcc Ala	acc Thr	aac Asn	ago Sei	gaç Glu 90	ı Ala	gto Val	cto Lev	gac 1 Asp	cac His	. Val	g gag . Glu	aag Lys	gaa Glu	acc Thr 100	ggc	403
gtc Val	cgc Arg	ctg Leu	Ser 105	Ile	ctt Leu	tcc Ser	ggt Gly	gaa Glu 110	Asp	gaa Glu	gca Ala	cgc	caa Gln 115	Thr	ttc Phe	451
ctc Leu	gca Ala	gtt Val 120	cga Arg	cgt Arg	tgg Trp	tat Tyr	gga Gly 125	Trp	tcc Ser	gca Ala	ggg Gly	cgc Arg 130	Ile	act Thr	aac Asn	499
ctc Leu	gac Asp 135	Ile	ggt Gly	ggc Gly	ggc Gly	tcc Ser 140	Leu	gaa Glu	cta Leu	tcc Ser	tcc Ser 145	gga Gly	acc Thr	gac Asp	gaa Glu	547
tcc Ser 150	cca Pro	gac Asp	ctc Leu	gcg Ala	ttc Phe 155	tca Ser	ctg Leu	gat Asp	ctg Leu	ggt Gly 160	gcg Ala	ggc Gly	cgc Arg	ttg Leu	acc Thr 165	595
cac His	aac Asn	tgg Trp	ttc Phe	gac Asp 170	acc Thr	gat Asp	cca Pro	ccg Pro	gca Ala 175	cgt Arg	aag Lys	aaa Lys	atc Ile	aac Asn 180	ctc Leu	643
ctg Leu	cgc Arg	gat Asp	tat Tyr 185	atc Ile	gat Asp	gcg Ala	gaa Glu	ctt Leu 190	gca Ala	gaa Glu	ccc Pro	gcc Ala	cgc Arg 195	cag Gln	atg Met	691
cgc Arg	acc Thr	cta Leu 200	ggg Gly	ccc Pro	gcg Ala	cgc Arg	ctg Leu 205	gca Ala	gtg Val	gga Gly	aca Thr	tcc Ser 210	aaa Lys	act Thr	ttc Phe	739
Arg	acc Thr 215	ctg Leu	gca Ala	cga Arg	ctg Leu	act Thr 220	ggt Gly	gct Ala	gcg Ala	ccc Pro	tca Ser 225	tcc Ser	gca Ala	gga Gly	cca Pro	787
cac His 230	gtc Val	acc Thr	cga Arg	acc Thr	ctc Leu 235	acc Thr	gcg Ala	ccg Pro	ggt Gly	ctg Leu 240	cgc Arg	cag Gln	ctg Leu	atc Ile	gca Ala 245	835
ttt Phe	atc Ile	tca Ser	cga Arg	atg Met 250	act Thr	gcg Ala	gcg Ala	gac Asp	cgc Arg 255	gct Ala	gag Glu	ctg Leu	gaa Glu	ggt Gly 260	atc Ile	883
agc Ser	tcg Ser	Asp	cgg Arg 265	tca Ser	cat His	cag Gln	atc Ile	gtg Val 270	gca Ala	ggt Gly	gcg Ala	cta Leu	gtt Val 275	gcg Ala	gaa Glu	931
gct (Ala /	Ala	atg Met 280	cgt Arg	gcg Ala	ttg Leu .	Asp	att Ile 285	gac Asp	aag Lys	gta Val	Glu	att Ile 290	tgt Cys	ccg Pro	tgg Trp	979
gca (ctt	cgt	gaa	ggt	gtg	atc	ctc	acc	agg	atc	gac	aaa	gga	ctc	gag	1027

Ala Leu Arg Glu Gly Val Ile Leu Thr Arg Ile Asp Lys Gly Leu Glu 295 300 305

taacatttac ccggaaagga gtt

1050

<210> 110

<211> 309

<212> PRT

<213> Corynebacterium glutamicum

<400> 110

Val Arg Leu Gly Val Leu Asp Val Gly Ser Asn Thr Val His Leu Val 1 5 10 15

Ala Val Asp Ala Arg Pro Gly Gly His Pro Thr Pro Met Ser Asn Trp
20 25 30

Arg Thr Pro Leu Arg Leu Val Glu Leu Leu Asp Asp Ser Gly Ala Ile 35 40 45

Ser Glu Lys Gly Ile Asn Lys Leu Thr Ser Ala Val Gly Glu Ala Ala 50 60

Asp Leu Ala Lys Thr Leu Gly Cys Ala Glu Leu Met Pro Phe Ala Thr 65 70 75 80

Ser Ala Val Arg Ser Ala Thr Asn Ser Glu Ala Val Leu Asp His Val 85 90 95

Glu Lys Glu Thr Gly Val Arg Leu Ser Ile Leu Ser Gly Glu Asp Glu 100 105 110

Ala Arg Gln Thr Phe Leu Ala Val Arg Arg Trp Tyr Gly Trp Ser Ala 115 120 125

Gly Arg Ile Thr Asn Leu Asp Ile Gly Gly Gly Ser Leu Glu Leu Ser 130 135 140

Ser Gly Thr Asp Glu Ser Pro Asp Leu Ala Phe Ser Leu Asp Leu Gly 145 150 155 160

Ala Gly Arg Leu Thr His Asn Trp Phe Asp Thr Asp Pro Pro Ala Arg 165 170 175

Lys Lys Ile Asn Leu Leu Arg Asp Tyr Ile Asp Ala Glu Leu Ala Glu 180 185 190

Pro Ala Arg Gln Met Arg Thr Leu Gly Pro Ala Arg Leu Ala Val Gly
195 200 205

Thr Ser Lys Thr Phe Arg Thr Leu Ala Arg Leu Thr Gly Ala Ala Pro 210 215 220

Ser Ser Ala Gly Pro His Val Thr Arg Thr Leu Thr Ala Pro Gly Leu 225 230 235 240

Arg Gln Leu Ile Ala Phe Ile Ser Arg Met Thr Ala Ala Asp Arg Ala 245 250 Glu Leu Glu Gly Ile Ser Ser Asp Arg Ser His Gln Ile Val Ala Gly 265 Ala Leu Val Ala Glu Ala Ala Met Arg Ala Leu Asp Ile Asp Lys Val Glu Ile Cys Pro Trp Ala Leu Arg Glu Gly Val Ile Leu Thr Arg Ile 295 Asp Lys Gly Leu Glu 305 <210> 111 <211> 534 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(511) <223> RXS02972 <400> 111 acctacgacg gtgaaatcct aggctcccac tcaacccaaa tgggatgcgt gcgcctgacc 60 gaacgaatca tgcgcagcga cccacccgac tgaaaccgaa gtg gaa atc gcc cgc Val Glu Ile Ala Arg 1 gac tac gtt gca gaa cgc atc cag gaa gta aaa gcc atc gtc cca att 163 Asp Tyr Val Ala Glu Arg Ile Gln Glu Val Lys Ala Ile Val Pro Ile 10 tca aag gca aaa acc ttt gtg gga tgc gca ggc acc ttc acc aca atc 211 Ser Lys Ala Lys Thr Phe Val Gly Cys Ala Gly Thr Phe Thr Thr Ile 25 259 tee gee tag gtg caa gge eta gaa age tae gae ege gee ate eae Ser Ala Trp Val Gln Gly Leu Glu Ser Tyr Asp Arg Asp Ala Ile His 50 40 307 ctc tct qca ctc aac ttc gat qca ctg cga gtt gtc acc gat gag atc Leu Ser Ala Leu Asn Phe Asp Ala Leu Arg Val Val Thr Asp Glu Ile 55 60 355 att toa qaa toa toa toa cag ogo goo ago aac coa gtt gtt gat coa Ile Ser Glu Ser Ser Gln Arg Ala Ser Asn Pro Val Val Asp Pro 70 75 ggt cgc gcc gac gtc atc ggt ggc gga tcc gtt gtt gtc caa gca gcg 403 Gly Arg Ala Asp Val Ile Gly Gly Gly Ser Val Val Gln Ala Ala 95

atc gac tta gcc tcc aaa gaa gcc ggt gta gac tac atc att att tcc Ile Asp Leu Ala Ser Lys Glu Ala Gly Val Asp Tyr Ile Ile Ser 110 499 qaa aaa qac atc ctc gac ggc ctc atc ctt ggc ctg gta gaa gcc gac Glu Lys Asp Ile Leu Asp Gly Leu Ile Leu Gly Leu Val Glu Ala Asp 125 534 tct ttg aag aaa taggacccta gttttaaacc act Ser Leu Lys Lys <210> 112 <211> 137 <212> PRT <213> Corynebacterium glutamicum <400> 112 Val Glu Ile Ala Arg Asp Tyr Val Ala Glu Arg Ile Gln Glu Val Lys Ala Ile Val Pro Ile Ser Lys Ala Lys Thr Phe Val Gly Cys Ala Gly Thr Phe Thr Thr Ile Ser Ala Trp Val Gln Gly Leu Glu Ser Tyr Asp Arg Asp Ala Ile His Leu Ser Ala Leu Asn Phe Asp Ala Leu Arg Val Val Thr Asp Glu Ile Ile Ser Glu Ser Ser Ser Gln Arg Ala Ser Asn Pro Val Val Asp Pro Gly Arg Ala Asp Val Ile Gly Gly Ser Val Val Val Gln Ala Ala Ile Asp Leu Ala Ser Lys Glu Ala Gly Val Asp Tyr Ile Ile Ile Ser Glu Lys Asp Ile Leu Asp Gly Leu Ile Leu Gly Leu Val Glu Ala Asp Ser Leu Lys Lys <210> 113 <211> 636 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(613) <223> RXA02159

<400> 113 tgatggacca gcgtccaaag ttttcgatga agcagaaaac cgcctccacg ctcagaaagc 60 actgctggtg tggctgctgg ccaaccagcc gaggtaagac atg tcc ctt ggc tca Met Ser Leu Gly Ser acc ccg tca aca ccg gaa aac tta aat ccc gtg act cgc act gca cgc 163 Thr Pro Ser Thr Pro Glu Asn Leu Asn Pro Val Thr Arg Thr Ala Arg 15 caa gct ctc att ttg cag att ttg gac aaa caa aaa gtc acc agc cag 211 Gln Ala Leu Ile Leu Gln Ile Leu Asp Lys Gln Lys Val Thr Ser Gln 25 30 gta caa ctg tct gaa ttg ctg ctg gat gaa ggc atc gat atc acc cag 259 Val Gln Leu Ser Glu Leu Leu Asp Glu Gly Ile Asp Ile Thr Gln 40 gcc acc ttg tcc cga gat ctc gat gaa ctc ggt gca cgc aag gtt cgc 307 Ala Thr Leu Ser Arg Asp Leu Asp Glu Leu Gly Ala Arg Lys Val Arg 55 ccc gat ggg gga cgc gcc tac tac gcg gtc ggc cca gta gat agc atc 355 Pro Asp Gly Gly Arg Ala Tyr Tyr Ala Val Gly Pro Val Asp Ser Ile 70 75 403 gcc cgc gaa gat ctc cgg ggt ccg tcg gag aag ctg cgc cgc atg ctt Ala Arg Glu Asp Leu Arg Gly Pro Ser Glu Lys Leu Arg Arg Met Leu 95 gat gaa ctg ctg gtt tct aca gat cat tcc ggc aac atc gcg atg ctg 451 Asp Glu Leu Leu Val Ser Thr Asp His Ser Gly Asn Ile Ala Met Leu 105 110 115 cgc acc ccg ccg gga gct gcc cag tac ctg gca agt ttc atc gat agg 499 Arg Thr Pro Pro Gly Ala Ala Gln Tyr Leu Ala Ser Phe Ile Asp Arg 120 125 gtg ggg ctg aaa gaa gtc gtt ggc acc atc gct ggt gat gac acc gtt 547 Val Gly Leu Lys Glu Val Val Gly Thr Ile Ala Gly Asp Asp Thr Val 135 140 ttc gtt ctc gcc cgt gat ccg ctc aca ggt aaa gaa cta ggt gaa tta 595 Phe Val Leu Ala Arg Asp Pro Leu Thr Gly Lys Glu Leu Gly Glu Leu 150 ctc agc ggg cgc acc act taaagcgccc ctagttcaag gct 636 Leu Ser Gly Arg Thr Thr 170

<210> 114

<211> 171

<212> PRT

<213> Corynebacterium glutamicum

<400> 114 Met Ser Leu Gly Ser Thr Pro Ser Thr Pro Glu Asn Leu Asn Pro Val Thr Arg Thr Ala Arg Gln Ala Leu Ile Leu Gln Ile Leu Asp Lys Gln Lys Val Thr Ser Gln Val Gln Leu Ser Glu Leu Leu Asp Glu Gly Ile Asp Ile Thr Gln Ala Thr Leu Ser Arg Asp Leu Asp Glu Leu Gly Ala Arg Lys Val Arg Pro Asp Gly Gly Arg Ala Tyr Tyr Ala Val Gly 75 Pro Val Asp Ser Ile Ala Arg Glu Asp Leu Arg Gly Pro Ser Glu Lys 85 Leu Arg Arg Met Leu Asp Glu Leu Leu Val Ser Thr Asp His Ser Gly 105 Asn Ile Ala Met Leu Arg Thr Pro Pro Gly Ala Ala Gln Tyr Leu Ala 120 Ser Phe Ile Asp Arg Val Gly Leu Lys Glu Val Val Gly Thr Ile Ala 135 Gly Asp Asp Thr Val Phe Val Leu Ala Arg Asp Pro Leu Thr Gly Lys 150 Glu Leu Gly Glu Leu Leu Ser Gly Arg Thr Thr 165 <210> 115 <211> 486 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(463) <223> RXA02201 <400> 115 tctaccagcc aaatcatcaa ctcatagcga aggaatcaac ttcatgaata atcaaccatc 60 agtacttttc gtttgcgtcg gcaatggtgg aaaatctcaa atg gcc gca gcg cta Met Ala Ala Leu 163 gcc aaa aaa cat gcc ggg gac gct ctc aaa gtt tat tca gct ggc aca Ala Lys Lys His Ala Gly Asp Ala Leu Lys Val Tyr Ser Ala Gly Thr 211 aag cca ggt acg aaa tta aat caa cag tcc ctt gat tcc att gct gaa

Lys Pro Gly Thr Lys Leu Asn Gln Gln Ser Leu Asp Ser Ile Ala Glu gtt ggc gca gat atg tct caa ggg ttt cca aag ggc att gac cag gag Val Gly Ala Asp Met Ser Gln Gly Phe Pro Lys Gly Ile Asp Gln Glu tta att aag cga gta gac cgc gtg gtc att ctt ggt gcc gaa gct caa Leu Ile Lys Arg Val Asp Arg Val Val Ile Leu Gly Ala Glu Ala Gln 55 cta gaa atg cct atc gat gca aac ggc ata cta cag cgc tgg gta act Leu Glu Met Pro Ile Asp Ala Asn Gly Ile Leu Gln Arg Trp Val Thr 70 75 gac gaa ccc tct gaa cgt gga att gaa ggt atg gaa cgc atg cgc ctg 403 Asp Glu Pro Ser Glu Arg Gly Ile Glu Gly Met Glu Arg Met Arg Leu 95 100 gtc cga gat gat att gac gcc cga gtc caa aac ctc gtc gct gaa cta 451 Val Arg Asp Asp Ile Asp Ala Arg Val Gln Asn Leu Val Ala Glu Leu 105 110 486 acc caa aac gca tagcagtttt ctaatctcac aca Thr Gln Asn Ala 120 <210> 116 <211> 121

<212> PRT

<213> Corynebacterium glutamicum

<400> 116

Met Ala Ala Ala Leu Ala Lys Lys His Ala Gly Asp Ala Leu Lys Val

Tyr Ser Ala Gly Thr Lys Pro Gly Thr Lys Leu Asn Gln Gln Ser Leu

Asp Ser Ile Ala Glu Val Gly Ala Asp Met Ser Gln Gly Phe Pro Lys

Gly Ile Asp Gln Glu Leu Ile Lys Arg Val Asp Arg Val Val Ile Leu

Gly Ala Glu Ala Gln Leu Glu Met Pro Ile Asp Ala Asn Gly Ile Leu

Gln Arg Trp Val Thr Asp Glu Pro Ser Glu Arg Gly Ile Glu Gly Met

Glu Arg Met Arg Leu Val Arg Asp Asp Ile Asp Ala Arg Val Gln Asn

Leu Val Ala Glu Leu Thr Gln Asn Ala 115

<21 <21	0> 1 1> 5 2> D 3> C	10 NA	ebac	teri	.um g	luta	micu	ım								
<22	1> C 2> (DS 101) XA00		87)												
	0> 1 cgat		ccct	ttga	tt g	aagt	ccca	g ta	ttag	tcgg	att	ggtt	tat	gtca	tgttgt	60
ggc	ttgg	acc	aaaa	atct	tt a	aaaa	ggag	a at	gcag	gatc			tca Ser			115
													gcg Ala			163
													gct Ala 35			211
													atc Ile			259
gtg Val	ggc Gly 55	gct Ala	gat Asp	atg Met	tcg Ser	caa Gln 60	gga Gly	att Ile	ccc Pro	aaa Lys	gcg Ala 65	atc Ile	gat Asp	ccg Pro	gag Glu	307
ctg Leu 70	ctg Leu	cgc Arg	act Thr	gtc Val	gat Asp 75	cgt Arg	gtg Val	gtt Val	att Ile	ttg Leu 80	ggc Gly	gat Asp	gac Asp	gca Ala	cag Gln 85	355
													tgg Trp			403
													gtg Val 115			451
				cga Arg								taaç	geged	ega		497
aaaa	gggg	ca t	gt													510

<210> 118 <211> 129 <212> PRT

<213> Corynebacterium glutamicum

<400> 118

Met Lys Ser Val Leu Phe Val Cys Val Gly Asn Gly Gly Lys Ser Gln
1 5 10 15

Met Ala Ala Leu Ala Gln Lys Tyr Ala Ser Asp Ser Val Glu Ile 20 25 30

His Ser Ala Gly Thr Lys Pro Ala Gln Gly Leu Asn Gln Leu Ser Val 35 40 45

Glu Ser Ile Ala Glu Val Gly Ala Asp Met Ser Gln Gly Ile Pro Lys 50 55 60

Ala Ile Asp Pro Glu Leu Leu Arg Thr Val Asp Arg Val Val Ile Leu 65 70 75 80

Gly Asp Asp Ala Gln Val Asp Met Pro Glu Ser Ala Gln Gly Ala Leu 85 90 95

Glu Arg Trp Ser Ile Glu Glu Pro Asp Ala Gln Gly Met Glu Arg Met 100 105 110

Arg Ile Val Arg Asp Gln Ile Asp Asn Arg Val Gln Ala Leu Leu Ala 115 120 125

Gly

<210> 119

<211> 1221

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1198)

<223> RXA00600

<400> 119

cggagttaat gagcggtagg tggatgggtg cggtcatgtc cgtcattata tattgacgca 60

catcgatatt gaaggtattt ttatatcggc aaacatcaat atg att gaa ggc tgg 115 Met Ile Glu Gly Trp 1 5

ctc atg acc ctt act aaa gag cat tcg aca cct cga gcg gct ggc tca $\,$ 163 Leu Met Thr Leu Thr Lys Glu His Ser Thr Pro Arg Ala Ala Gly Ser $\,$ 10 $\,$ 15 $\,$ 20

atg tcg ttt ctt gac cgc tgg tta gct gcc tgg att ttc ttg gct atg 211 Met Ser Phe Leu Asp Arg Trp Leu Ala Ala Trp Ile Phe Leu Ala Met 25 30 35

get get ggg ttg tta atc ggc aag gtc ttt cca gga att ggg gcg ctt 259

Ala	Ala	Gly 40		ı Let	ı Ile	e Gly	Lys 45		Phe	Pro	Gly	Ile 50	Gly	Ala	Leu	
		Ala					gga Gly									307
	Ile					Pro	cct Pro				Val					355
					Thr		cgc Arg			Met						403
_				Val	-		gca Ala		-		_					451
							ctt Leu 125									499
		_	_			_	gtt Val		_		_	_		-	-	547
	_		-				gtg Val	_		-						595
							ctt Leu									643
							acc Thr									691
					_		gtg Val 205		_					_	_	739
	_			_	_		ggt Gly	_			-			-		787
		-	-		_		aag Lys				_		_			835
							ctg Leu									883
							gct Ala									931

265 270 275 tac ttt gtg ggc atg ttt ttc att tcc ctg gtg gta tcc aaa ctg tcc 979 Tyr Phe Val Gly Met Phe Phe Ile Ser Leu Val Val Ser Lys Leu Ser 285 ggg tta act tat gag cga gct gct tcc gtg tct ttt act gca gca gga 1027 Gly Leu Thr Tyr Glu Arg Ala Ala Ser Val Ser Phe Thr Ala Ala Gly 300 aac aac ttt gaa tta gcg att gcg gta tcg atc gga acc ttt ggt gcg 1075 Asn Asn Phe Glu Leu Ala Ile Ala Val Ser Ile Gly Thr Phe Gly Ala 315 aca tca ccg cag gca tta gct gga acg atc ggc cct ttg att gaa gtc 1123 Thr Ser Pro Gln Ala Leu Ala Gly Thr Ile Gly Pro Leu Ile Glu Val cca gta tta gtc gga ttg gtt tat gtc atg ttg tgg ctt gga cca aaa 1171 Pro Val Leu Val Gly Leu Val Tyr Val Met Leu Trp Leu Gly Pro Lys atc ttt aaa aag gag aat gca gga tca tgaaatcagt tttgtttgtg 1218 Ile Phe Lys Lys Glu Asn Ala Gly Ser 360 tgc 1221 <210> 120 <211> 366 <212> PRT <213> Corynebacterium glutamicum <400> 120

Met Ile Glu Gly Trp Leu Met Thr Leu Thr Lys Glu His Ser Thr Pro

Arg Ala Ala Gly Ser Met Ser Phe Leu Asp Arg Trp Leu Ala Ala Trp 20

Ile Phe Leu Ala Met Ala Ala Gly Leu Leu Ile Gly Lys Val Phe Pro

Gly Ile Gly Ala Leu Leu Ser Ala Val Glu Ile Gly Gly Ile Ser Ile

Pro Ile Ala Ile Gly Leu Ile Val Met Met Tyr Pro Pro Leu Ala Lys

Val Arg Tyr Asp Lys Thr Lys Glu Ile Ser Thr Asp Arg Ala Leu Met

Val Val Ser Ile Met Leu Asn Trp Ile Val Gly Pro Ala Leu Met Phe

Ser Leu Ala Trp Leu Phe Leu Pro Asp Gln Pro Glu Leu Arg Thr Gly

115

120

125

Leu Ile Ile Val Gly Leu Ala Arg Cys Ile Ala Met Val Leu Val Trp 130 135 140

Ser Asp Leu Ala Cys Gly Asp Arg Glu Ala Thr Ala Val Leu Val Ala 145 150 155 160

Ile Asn Ser Val Phe Gln Ile Leu Met Phe Gly Val Leu Gly Trp Phe 165 170 175

Tyr Leu Gln Ile Leu Pro Ser Trp Leu Gly Leu Asp Thr Thr Ser Val 180 185 190

Thr Phe Ser Val Val Ser Ile Val Thr Ser Val Leu Val Phe Leu Gly 195 200 205

Ile Pro Leu Val Ala Gly Val Leu Ser Arg Val Ile Gly Glu Lys Thr 210 215 220

Lys Gly Arg Arg Trp Tyr Glu Asp Thr Phe Leu Pro Lys Ile Ser Pro 225 230 235 240

Leu Ala Leu Ile Gly Leu Leu Tyr Thr Ile Val Leu Leu Phe Ser Leu 245 250 255

Gln Gly Asp Glu Ile Thr Ala Gln Pro Trp Thr Val Ala Arg Leu Ala 260 265 270

Leu Pro Leu Leu Met Tyr Phe Val Gly Met Phe Phe Ile Ser Leu Val 275 280 285

Val Ser Lys Leu Ser Gly Leu Thr Tyr Glu Arg Ala Ala Ser Val Ser 290 295 300

Phe Thr Ala Ala Gly Asn Asn Phe Glu Leu Ala Ile Ala Val Ser Ile 305 310 315 320

Gly Thr Phe Gly Ala Thr Ser Pro Gln Ala Leu Ala Gly Thr Ile Gly 325 330 335

Pro Leu Ile Glu Val Pro Val Leu Val Gly Leu Val Tyr Val Met Leu 340 345 350

Trp Leu Gly Pro Lys Ile Phe Lys Lys Glu Asn Ala Gly Ser 355 360 365

<210> 121

<211> 1233

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1210)

<223> RXA02200

<400> 121 attgtgtgga gagtggtcat aaatccacta tatattgacg aatgtcgata ttgaaagtat 60 tttgaatatc gacaggtatc aatataccga aaggtgtcgc atg aca aac tca act Met Thr Asn Ser Thr cag acg cgg gcc aag cca gcc cga atc tca ttt ctt gat aaa tac att 163 Gln Thr Arg Ala Lys Pro Ala Arg Ile Ser Phe Leu Asp Lys Tyr Ile 10 15 cca ctt tgg att att ttg gcg atg gcg ttt ggg cta ttt tta ggc cgg 211 Pro Leu Trp Ile Ile Leu Ala Met Ala Phe Gly Leu Phe Leu Gly Arg 25 30 age gtt teg gga ete tea gge ttt eta gge gea atg gaa gte gga ggg 259 Ser Val Ser Gly Leu Ser Gly Phe Leu Gly Ala Met Glu Val Gly Gly ate tee tig eea ate get tia gge ete ett gta atg atg tae eea eeg 307 Ile Ser Leu Pro Ile Ala Leu Gly Leu Leu Val Met Met Tyr Pro Pro 60 ttg gcc aaa gtt cgg tat gac aaa act aaa caa att gcc act gat aag 355 Leu Ala Lys Val Arg Tyr Asp Lys Thr Lys Gln Ile Ala Thr Asp Lys cat ttg atg ggc gtg tca ctc att ctc aat tgg gtg gtg ggt cct gcc 403 His Leu Met Gly Val Ser Leu Ile Leu Asn Trp Val Val Gly Pro Ala tta atg ttc gcg cta gct tgg ttg ttc ctc cca gac caa ccg gaa tta 451 Leu Met Phe Ala Leu Ala Trp Leu Phe Leu Pro Asp Gln Pro Glu Leu cga acc ggc ctg att att gta gga ctc gca cga tgt att gcg atg gtc 499 Arg Thr Gly Leu Ile Ile Val Gly Leu Ala Arg Cys Ile Ala Met Val 125 ttg gtt tgg tct gat atg tcc tgt gga gac cgc gag gct aca gca gtt 547 Leu Val Trp Ser Asp Met Ser Cys Gly Asp Arg Glu Ala Thr Ala Val 595 ctc gta gcc att aat tca gtt ttt caa gtc gca atg ttt ggt gca ctt Leu Val Ala Ile Asn Ser Val Phe Gln Val Ala Met Phe Gly Ala Leu 160 ggc tgg ttc tat ctg caa gtt tta cca tcc tgg cta gga tta cca act 643 Gly Trp Phe Tyr Leu Gln Val Leu Pro Ser Trp Leu Gly Leu Pro Thr 170 acc acc gct caa ttc tct ttc tgg tca att gtg act tcg gtt ttg gtg 691 Thr Thr Ala Gln Phe Ser Phe Trp Ser Ile Val Thr Ser Val Leu Val 190 ttc ctc gga ata cct cta ctt gct gga gtt ttc tcg cga att att ggc 739

Phe	Leu	Gly 200		Pro	Leu	Leu	Ala 205	Gly	Val	Phe	Ser	Arg 210	Ile	Ile	Gly	
								tat Tyr								787
								ctg Leu								835
								gtc Val								883
								tat Tyr 270								931
								ggc Gly	_			_	_		-	979
								aac Asn								1027
	_			_			-	act Thr		_	_	-	_	_		1075
								cca Pro								1123
								ttg Leu 350								1171
			_				_	caa Gln					tago	gaag	ıga	1220
atca	actt	ca t	ga													1233

<210> 122 <211> 370

<212> PRT

<213> Corynebacterium glutamicum

<400> 122

Met Thr Asn Ser Thr Gln Thr Arg Ala Lys Pro Ala Arg Ile Ser Phe

Leu Asp Lys Tyr Ile Pro Leu Trp Ile Ile Leu Ala Met Ala Phe Gly

Leu Phe Leu Gly Arg Ser Val Ser Gly Leu Ser Gly Phe Leu Gly Ala Met Glu Val Gly Gly Ile Ser Leu Pro Ile Ala Leu Gly Leu Leu Val Met Met Tyr Pro Pro Leu Ala Lys Val Arg Tyr Asp Lys Thr Lys Gln Ile Ala Thr Asp Lys His Leu Met Gly Val Ser Leu Ile Leu Asn Trp Val Val Gly Pro Ala Leu Met Phe Ala Leu Ala Trp Leu Phe Leu Pro Asp Gln Pro Glu Leu Arg Thr Gly Leu Ile Ile Val Gly Leu Ala Arg 115 120 Cys Ile Ala Met Val Leu Val Trp Ser Asp Met Ser Cys Gly Asp Arg Glu Ala Thr Ala Val Leu Val Ala Ile Asn Ser Val Phe Gln Val Ala 150 Met Phe Gly Ala Leu Gly Trp Phe Tyr Leu Gln Val Leu Pro Ser Trp Leu Gly Leu Pro Thr Thr Ala Gln Phe Ser Phe Trp Ser Ile Val Thr Ser Val Leu Val Phe Leu Gly Ile Pro Leu Leu Ala Gly Val Phe Ser Arg Ile Ile Gly Glu Lys Ile Lys Gly Arg Glu Trp Tyr Glu Gln Lys Phe Leu Pro Ala Ile Ser Pro Phe Ala Leu Ile Gly Leu Leu Tyr 230 235 Thr Ile Val Leu Leu Phe Ser Leu Gln Gly Asp Gln Ile Val Ser Gln Pro Trp Ala Val Val Arg Leu Ala Ile Pro Leu Val Ile Tyr Phe Val Gly Met Phe Phe Ile Ser Leu Ile Ala Ser Lys Leu Ser Gly Met Asn Tyr Ala Lys Ser Ala Ser Val Ser Phe Thr Ala Ala Gly Asn Asn Phe Glu Leu Ala Ile Ala Val Ser Ile Gly Thr Phe Gly Ala Thr Ser Ala Gln Ala Met Ala Gly Thr Ile Gly Pro Leu Ile Glu Ile Pro Val Leu 325 330

Val Gly Leu Val Tyr Ala Met Leu Trp Leu Gly Pro Lys Leu Phe Pro 340 345 350

Asn Asp Pro Thr Leu Pro Ser Ser Ala Arg Ser Thr Ser Gln Ile Ile 355 360 365

Asn Ser 370

<210> 123

<211> 762

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(739)

<223> RXA02202

<400> 123

cgctgaacta acccaaaacg catagcagtt ttctaatctc acacatcttc aacaccgtta 60

aatctattgg tttccccgta aaatcttcga aaggaagaac atg acc ggg caa gct 115

Met Thr Gly Gln Ala

1 5

gca cca aac ttg cat acc aat att ttg aac cgt atc gca aat gaa ctg 163 Ala Pro Asn Leu His Thr Asn Ile Leu Asn Arg Ile Ala Asn Glu Leu 10 15 20

gcg ttg acc tat caa gga gtt ttc tct gca gag act atc aac cgc tat 211 Ala Leu Thr Tyr Gln Gly Val Phe Ser Ala Glu Thr Ile Asn Arg Tyr 25 30 35

att ttt gaa tcg tat gtg tcg ttg gcg aga aca gca aaa atc cat acg 259
Ile Phe Glu Ser Tyr Val Ser Leu Ala Arg Thr Ala Lys Ile His Thr
40 45 50

cac ctg cca att ttg gca gaa ggt ttt gct aaa gac cgg ctg cac gca 307 His Leu Pro Ile Leu Ala Glu Gly Phe Ala Lys Asp Arg Leu His Ala

ctt gcg gta gct gaa ggt aag gtg gct tca cct gtg cct cag gtc cta 355 Leu Ala Val Ala Glu Gly Lys Val Ala Ser Pro Val Pro Gln Val Leu 70 85

ttt att tgc gtc cac aac gca ggt cgt tca caa att gct tcg gcg ttg 403 Phe Ile Cys Val His Asn Ala Gly Arg Ser Gln Ile Ala Ser Ala Leu 90 95 100

ttg tct cac tat gcc ggt agt tct gta gag gta cgt tct gca ggt tct 451 Leu Ser His Tyr Ala Gly Ser Ser Val Glu Val Arg Ser Ala Gly Ser 105 110 115

tta cct gct tct gaa att cac cca ctg gtg ttg gaa att ttg tca gag 499

Let	ı Pro	120		: Glu	ı Ile	e His	125		Val	. Leu	Glu	11e		Ser	Glu	
-		, Val				_			_		_	Leu		_	gat Asp	547
	Ile					Туг	gtc Val				Gly					595
					Gly		cac His			Asp						643
				Gly			aag Lys									691
							tgg Trp 205	Lys								739
tag	gcag	tca (aagg	tctg	gc a	cc										762
<21	0> 1: 1> 2: 2> PI	13														
			ebact	teri	um g	luta	micur	n								
<21 <40	3> Co 0> 12	oryne 24							uia	πh∽	n .	Tle	Lou	N an	A ra	
<21 <40	3> Co 0> 12	oryne 24					micur Asn		His 10	Thr	Asn	Ile	Leu	Asn 15	Arg	
<21 <40 Met 1	3> Co 0> 1: Thr	oryne 24 Gly	Gln	Ala 5	Ala	Pro		Leu	10					15		
<21 <40 Met 1 Ile	3> Co 0> 12 Thr Ala	oryne 24 Gly Asn	Glu 20	Ala 5 Leu	Ala Ala	Pro Leu	Asn	Leu Tyr 25	10 Gln	Gly	Val	Phe	Ser 30	15 Ala	Glu	
<21 <400 Met 1 Ile	3> Co 0> 12 Thr Ala Ile	24 Gly Asn Asn 35	Glu 20 Arg	Ala 5 Leu Tyr	Ala Ala Ile	Pro Leu Phe	Asn Thr Glu	Leu Tyr 25 Ser	10 Gln Tyr	Gly Val	Val Ser	Phe Leu 45	Ser 30 Ala	15 Ala Arg	Glu Thr	·
<21 <400 Met 1 Ile Thr	3> Co 0> 12 Thr Ala Ile Lys 50	24 Gly Asn Asn 35	Glu 20 Arg	Ala 5 Leu Tyr	Ala Ala Ile	Pro Leu Phe Leu 55	Asn Thr Glu 40	Leu Tyr 25 Ser	10 Gln Tyr Leu	Gly Val Ala	Val Ser Glu 60	Phe Leu 45 Gly	Ser 30 Ala Phe	15 Ala Arg Ala	Glu Thr Lys	
<21 <400 Met 1 Ile Thr Ala Asp 65	3> Co 0> 1: Thr Ala Ile Lys 50 Arg	24 Gly Asn Asn 35 Ile	Glu 20 Arg His	Ala 5 Leu Tyr Thr	Ala Ala Ile His Leu 70	Pro Leu Phe Leu 55	Asn Thr Glu 40 Pro	Leu Tyr 25 Ser Ile Ala	10 Gln Tyr Leu Glu	Gly Val Ala Gly 75	Val Ser Glu 60 Lys	Phe Leu 45 Gly Val	Ser 30 Ala Phe	15 Ala Arg Ala Ser	Glu Thr Lys Pro 80	
<21 <400 Met 1 Ile Thr Ala Asp 65 Val	3> Co Thr Ala Ile Lys 50 Arg	Asn Asn 35 Ile Leu Gln Ser	Glu 20 Arg His Val	Ala 5 Leu Tyr Thr Ala Leu 85	Ala Ala Ile His Leu 70 Phe	Pro Leu Phe Leu 55 Ala	Asn Thr Glu 40 Pro Val Cys	Leu Tyr 25 Ser Ile Ala Val	10 Gln Tyr Leu Glu His 90	Gly Val Ala Gly 75 Asn	Val Ser Glu 60 Lys Ala	Phe Leu 45 Gly Val Gly Ser	Ser 30 Ala Phe Ala	Ala Arg Ala Ser Ser 95	Glu Thr Lys Pro 80 Gln	
<21 <400 Met 1 Ile Thr Ala Asp 65 Val	3> Co 7) 12 Thr Ala Ile Lys 50 Arg Pro Ala	Asn Asn 35 Ile Leu Gln	Glu 20 Arg His Val	Ala 5 Leu Tyr Thr Ala Leu 85	Ala Ala Ile His Leu 70 Phe	Pro Leu Phe Leu 55 Ala Ile Ser Pro	Asn Thr Glu 40 Pro Val Cys	Leu Tyr 25 Ser Ile Ala Val Tyr 105	10 Gln Tyr Leu Glu His 90 Ala	Gly Val Ala Gly 75 Asn	Val Ser Glu 60 Lys Ala Ser	Phe Leu 45 Gly Val Gly Ser	Ser 30 Ala Phe Ala Arg Val	Ala Arg Ala Ser Ser 95	Glu Thr Lys Pro 80 Gln Val	

130 135 140 Pro Leu Thr Asp Asp Val Ile Arg Ala Ser Asp Tyr Val Ile Thr Met 150 155 Gly Cys Gly Asp Val Cys Pro Met Tyr Pro Gly Lys His Tyr Leu Asp Trp Glu Leu Ala Asp Pro Ser Asp Glu Gly Glu Asp Lys Ile Gln Glu 180 185 Ile Ile Glu Glu Ile Asp Gly Arg Ile Arg Glu Leu Trp Lys Ser Ile Gln Leu Ser Gln Asn 210 <210> 125 <211> 1002 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(979) <223> RXA02205 <400> 125 gcccaaaccg agcctggata cccgcaaacc acttgaaccg accattcgct gtttcacgcc 60 caccacacta ctgaggtcat aaggtagtac ggtagatcgg gtg aat gaa gag ata Val Asn Glu Glu Ile 1 acc ctc cta gcc gca gca gca gat cct gcc gca act gaa aat att ggc Thr Leu Leu Ala Ala Ala Ala Asp Pro Ala Ala Thr Glu Asn Ile Gly 10 15 20 tgg gta caa acc att gtg ctc tcc atc gtt caa ggc ctc aca gag ttc 211 Trp Val Gln Thr Ile Val Leu Ser Ile Val Gln Gly Leu Thr Glu Phe 25 ctg ccg atc agc tcc agc gga cac ctc cga atc atc tct gag ctg ttc 259 Leu Pro Ile Ser Ser Ser Gly His Leu Arg Ile Ile Ser Glu Leu Phe 40 45 307 tgg ggt gcc gat gcc ggc gcg tcc ttt acc gcc gtg gtt cag ctt ggt Trp Gly Ala Asp Ala Gly Ala Ser Phe Thr Ala Val Val Gln Leu Gly

acc gaa gcc gca gtg ctg gtg ttt ttt gcc aag gaa atc tgg caa atc

Thr Glu Ala Ala Val Leu Val Phe Phe Ala Lys Glu Ile Trp Gln Ile

ate aca ggt tgg ttc gct ggc gta ttc aat aag gaa cgc cgc gga ttt

60

75

355

403

70

55

WO 01/00804	PCT/IB00/00922
-------------	----------------

100 90 95 gaa tac cgc atg ggc tgg atg atc att gtt gcc acc att ccc gtc gtg 451 Glu Tyr Arg Met Gly Trp Met Ile Ile Val Ala Thr Ile Pro Val Val 499 atc ttg ggt gtg ttg ggc aag gac ctg atc cgt gag gcg ctg cga aat Ile Leu Gly Val Leu Gly Lys Asp Leu Ile Arg Glu Ala Leu Arg Asn 547 atg tgg atc act gca tcc gtg ctg atc ctg ttc tcc ctg gtg ttc att Met Trp Ile Thr Ala Ser Val Leu Ile Leu Phe Ser Leu Val Phe Ile 140 595 ttg gcc gag aag atg ggc aag aag gaa cgc gac tac gac aaa ctg acc Leu Ala Glu Lys Met Gly Lys Lys Glu Arg Asp Tyr Asp Lys Leu Thr 155 160 atq aaa gat gcc atc atc atg ggt ctt gca cag tgt ctt gcg ctg atc 643 Met Lys Asp Ala Ile Ile Met Gly Leu Ala Gln Cys Leu Ala Leu Ile 175 691 cct ggc gtg tct cgc tcc ggc ggc acc atc tct gct ggt ttg ttc ctt Pro Gly Val Ser Arg Ser Gly Gly Thr Ile Ser Ala Gly Leu Phe Leu 190 739 ggt ctc aag cgt gaa gta gcc acc aag ttc tcc ttc ctg ctg gca atc Gly Leu Lys Arg Glu Val Ala Thr Lys Phe Ser Phe Leu Leu Ala Ile 205 787 cct gca gtg ctt ggc tcc ggt ttg tac tcc ctg cct gac gct ttt gcg Pro Ala Val Leu Gly Ser Gly Leu Tyr Ser Leu Pro Asp Ala Phe Ala 220 835 cca age tee gga caa get gee tee gge eta cag ete ace gtg ggt ace Pro Ser Ser Gly Gln Ala Ala Ser Gly Leu Gln Leu Thr Val Gly Thr 235 ctg gtt gcc ttc gta gtt ggc tac att tcc att gcg tgg ctg atg aag 883 Leu Val Ala Phe Val Val Gly Tyr Ile Ser Ile Ala Trp Leu Met Lys 931 ttc gtg gca aac cac tcc ttc agc tgg ttt gct gca tac cgt att cct Phe Val Ala Asn His Ser Phe Ser Trp Phe Ala Ala Tyr Arg Ile Pro 270 gca ggt ctg ctc gtg atg ctg ctc gca ctg ggc atg ctc aac cca Ala Gly Leu Leu Val Met Leu Leu Leu Ala Leu Gly Met Leu Asn Pro

285

<210> 126 <211> 293 <212> PRT

<213> Corynebacterium glutamicum

taaaattcct gtacatctta aaa

1002

<400> 126 Val Asn Glu Glu Ile Thr Leu Leu Ala Ala Ala Ala Asp Pro Ala Ala Thr Glu Asn Ile Gly Trp Val Gln Thr Ile Val Leu Ser Ile Val Gln 25 Gly Leu Thr Glu Phe Leu Pro Ile Ser Ser Ser Gly His Leu Arg Ile Ile Ser Glu Leu Phe Trp Gly Ala Asp Ala Gly Ala Ser Phe Thr Ala Val Val Gln Leu Gly Thr Glu Ala Ala Val Leu Val Phe Phe Ala Lys Glu Ile Trp Gln Ile Ile Thr Gly Trp Phe Ala Gly Val Phe Asn Lys Glu Arg Arg Gly Phe Glu Tyr Arg Met Gly Trp Met Ile Ile Val Ala Thr Ile Pro Val Val Ile Leu Gly Val Leu Gly Lys Asp Leu Ile Arg Glu Ala Leu Arg Asn Met Trp Ile Thr Ala Ser Val Leu Ile Leu Phe Ser Leu Val Phe Ile Leu Ala Glu Lys Met Gly Lys Lys Glu Arg Asp Tyr Asp Lys Leu Thr Met Lys Asp Ala Ile Ile Met Gly Leu Ala Gln Cys Leu Ala Leu Ile Pro Gly Val Ser Arg Ser Gly Gly Thr Ile Ser 185 Ala Gly Leu Phe Leu Gly Leu Lys Arg Glu Val Ala Thr Lys Phe Ser Phe Leu Leu Ala Ile Pro Ala Val Leu Gly Ser Gly Leu Tyr Ser Leu 215 Pro Asp Ala Phe Ala Pro Ser Ser Gly Gln Ala Ala Ser Gly Leu Gln Leu Thr Val Gly Thr Leu Val Ala Phe Val Val Gly Tyr Ile Ser Ile 245 250 Ala Trp Leu Met Lys Phe Val Ala Asn His Ser Phe Ser Trp Phe Ala Ala Tyr Arg Ile Pro Ala Gly Leu Leu Val Met Leu Leu Leu Ala Leu 280 285

Gly Met Leu Asn Pro

290

<210> 127 <211> 975 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(952) <223> RXA00900 <400> 127 gtgcggtggc tgcgctggtc gctagtgtgg tgtgcgcgct ggcgccgtcg ataaqcqtat 60 tagtgatcgc acgcctggtg caggggcttg gcggcggtgc gtg cgt ggt att gcg Val Arg Gly Ile Ala cgc gcg atc gtg cca gac ctt gaa cgc gga caa aag gct gcg cac gcc 163 Arg Ala Ile Val Pro Asp Leu Glu Arg Gly Gln Lys Ala Ala His Ala ttt gca ctg ctg atg att att cag gga att gct ccc gtg gta gct ccg 211 Phe Ala Leu Leu Met Ile Ile Gln Gly Ile Ala Pro Val Val Ala Pro ctc att ggt ggt gtg ctg gtc ggg cct ttt ggc tgg cgg gga att ttc 259 Leu Ile Gly Gly Val Leu Val Gly Pro Phe Gly Trp Arg Gly Ile Phe tgg gca ctt gca ctg gtg aat ttt gcg cag ctg ctt gtt gct ttg ctg 307 Trp Ala Leu Ala Leu Val Asn Phe Ala Gln Leu Leu Val Ala Leu Leu cag att aag gag tcg aag cca gtt gaa gag cgt acc gca gca gga ctt 355 Gln Ile Lys Glu Ser Lys Pro Val Glu Glu Arg Thr Ala Ala Gly Leu ggc gga atg ctg tcc aac tat gtc ttt gtg ctg aag aat cct caa ttt 403 Gly Gly Met Leu Ser Asn Tyr Val Phe Val Leu Lys Asn Pro Gln Phe ttg gca tat gta ttc aca ttg ggg ctg tct ttt ggg gcg atg ttc tcc 451 Leu Ala Tyr Val Phe Thr Leu Gly Leu Ser Phe Gly Ala Met .Phe Ser tac att tcg gcg tcg ccg ttc gtg ctg cag aat caa atg ggc att ccg 499 Tyr Ile Ser Ala Ser Pro Phe Val Leu Gln Asn Gln Met Gly Ile Pro 125 gta ctg ctg tat tcc att att ttc gga gtg aat gct ttt ggt ttg att 547 Val Leu Leu Tyr Ser Ile Ile Phe Gly Val Asn Ala Phe Gly Leu Ile 140 gtg ggc gga atg gtc aat agg cga ctt ctg cag cgg att cat cca cac 595

Va]	-	/ Gly	Met	: Val	l Asr 155		, Arg	J Leu	Leu	Glr 160		Ile	His	Pro	His 165	
cgc Arg	ato Ile	atg Met	caa Glr	act Thr 170	. Val	ctg Leu	gcc Ala	agt Ser	ttt Phe 175	Thr	gtg Val	ctg Leu	tgt Cys	gcg Ala 180	ctt Leu	643
		att Ile		Val					Trp					Leu		691
		ttt Phe 200						Ile								739
aca Thr	gct Ala 215	ctg Leu	gga Gly	act Thr	gaa Glu	gtg Val 220	gtg Val	cga Arg	agc Ser	agg Arg	gcg Ala 225	gga Gly	tcg Ser	ggt Gly	tct Ser	787
gca Ala 230	Ile	ttg Leu	ggt Gly	ttc Phe	gtg Val 235	caa Gln	ttc Phe	acg Thr	atg Met	ggt Gly 240	gct Ala	ttg Leu	gtg Val	agt Ser	tca Ser 245	835
		gga Gly														883
		tgt Cys														931
		att Ile 280					tago	ctcta	agg t	ggc	gttt	a aq	3 9			975
<211 <212)> 12 l> 28 2> PF 3> Co	3 4	bact	eriu	ım gl	utam	icum	ı								
)> 12 Arg	8 Gly	Ile	Ala 5	Arg	Ala	Ile	Val	Pro 10	Asp	Leu	Glu	Arg	Gly 15	Gln	
Lys	Ala	Ala	His 20	Ala	Phe	Ala	Leu	Leu 25	Met	Ile	Ile	Gln	Gly 30	Ile	Ala	
Pro	Val	Val 7	Ala	Pro	Leu	Ile (Gly 40	Gly	Val	Leu	Val	Gly 45	Pro	Phe	Gly	
Trp	Arg 50	Gly :	Ile	Phe '	Trp 2	Ala : 55	Leu .	Ala	Leu	Val	Asn 60	Phe	Ala	Gln	Leu	
Leu 65	Val .	Ala 1	Leu 1	Leu (Gln :	Ile 1	Lys (Glu :	Ser	Lys 75	Pro	Val	Glu	Glu	Arg 80	

Thr Ala Ala Gly Leu Gly Gly Met Leu Ser Asn Tyr Val Phe Val Leu 85 90 95

Lys Asn Pro Gln Phe Leu Ala Tyr Val Phe Thr Leu Gly Leu Ser Phe 100 105 110

Gly Ala Met Phe Ser Tyr Ile Ser Ala Ser Pro Phe Val Leu Gln Asn 115 120 125

Gln Met Gly Ile Pro Val Leu Leu Tyr Ser Ile Ile Phe Gly Val Asn 130 135 140

Ala Phe Gly Leu Ile Val Gly Gly Met Val Asn Arg Arg Leu Leu Gln 145 150 155 160

Arg Ile His Pro His Arg Ile Met Gln Thr Val Leu Ala Ser Phe Thr 165 170 175

Val Leu Cys Ala Leu Leu Leu Ile Glu Val Leu Phe Ile Asn Trp Ile 180 185 190

Pro Leu Phe Leu Leu Leu Phe Leu Ile Val Ser His Ile Pro Met 195 200 205

Val Met Ala Asn Ala Thr Ala Leu Gly Thr Glu Val Val Arg Ser Arg 210 215 220

Ala Gly Ser Gly Ser Ala Ile Leu Gly Phe Val Gln Phe Thr Met Gly 225 230 235 240

Ala Leu Val Ser Ser Leu Val Gly Leu Gly Ser Asp Lys Ala Leu Thr 245 250 255

Met Gly Ile Ala Met Thr Ala Cys Ala Leu Leu Ala Cys Gly Cys Ala 260 265 270

Tyr Leu Ala Gly Arg Lys Gly Ile Pro Glu Met Lys 275 280

<210> 129

<211> 537

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(514)

<223> RXN00901

<400> 129

ttttaagtat tggtgctatc ttccggtgct gatggtacct gaatgaaaat ttctaattaa 60

aaataccccc aaatcttcga tatagataca cgagacagtg atg cag aaa aaa caa 115 Met Gln Lys Lys Gln 1 5

					Leu								gcc Ala 20		163
					_	_		-	_	_	-		att Ile		211
													tct Ser		259
	_	_		_					_				ttg Leu	-	307
													gct Ala		355
													gta Val 100		403
													gtg Val		451
_	_		_	_	_	_		_			_		ctg Leu	_	499
_		_	cac His	_	tgat	gatt	at t	cagg	ıgaat	t go	:t				537

·<210> 130

<211> 138

<212> PRT

<213> Corynebacterium glutamicum

<400> 130

Met Gln Lys Lys Gln Gln Leu Ser Thr Ala Leu Ile Met Gly Leu Ala 1 5 10 15

Leu Leu Ser Ala Ser Ser Ala Leu Ala Thr Asp Met Tyr Leu Pro Ala 20 25 30

Met Pro Gly Ile Ala Glu Asp Leu Gly Thr Thr Ala Pro Met Val Gln 35 40 45

Leu Thr Leu Ser Ser Phe Met Ala Gly Met Ala Ile Gly Gln Leu Ile 50 55 60

Ile Gly Pro Leu Ser Asp Gln Leu Gly Arg Lys Gly Leu Leu Val Ala 65 70 75 80

Gly Ala Val Ala Ala Leu Val Ala Ser Val Val Cys Ala Leu Ala Pro Ser Ile Ser Val Leu Val Ile Ala Arg Leu Val Gln Gly Leu Gly Gly Gly Ala Cys Val Val Leu Arg Ala Arg Ser Cys Gln Thr Leu Asn Ala Asp Lys Arg Leu Arg Thr Pro Leu His Cys 130 135 <210> 131 <211> 501 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(478) <223> FRXA00901 <400> 131 acctgaatga aaatttctaa ttaaaaatac ccccaaatct tcgatataga tacacgagac 60 agtgatgcag aaaaaacaac agctgagcac cgccctgatt atg gga ttg gca tta 115 Met Gly Leu Ala Leu ttg tca gcc agc tcc gcg cta gcg act gat atg tat ttg ccg gca atg Leu Ser Ala Ser Ser Ala Leu Ala Thr Asp Met Tyr Leu Pro Ala Met 10 cct ggt att gcg gaa gat ttg ggg aca act gca ccg atg gtg cag tta 211 Pro Gly Ile Ala Glu Asp Leu Gly Thr Thr Ala Pro Met Val Gln Leu act ctt tct tcc ttt atg gct gga atg gcg att ggc caa ttg atc att Thr Leu Ser Ser Phe Met Ala Gly Met Ala Ile Gly Gln Leu Ile Ile 40 ggt cct ttg tcg gat caa ttg gga agg aaa ggc ctg ctc gtt gca ggt Gly Pro Leu Ser Asp Gln Leu Gly Arg Lys Gly Leu Leu Val Ala Gly 55 gcg gtg gct gcg ctg gtc gct agt gtg gtg tgc gcg ctg gcg ccg tcg

70 75 80 85

ata agc gta tta gtg atc gca cgc ctg gtg cag ggg ctt ggc ggc ggt 403

Ile Ser Val Leu Val Ile Ala Arg Leu Val Gln Gly Leu Gly Gly 90 95 100

Ala Val Ala Ala Leu Val Ala Ser Val Val Cys Ala Leu Ala Pro Ser

gcg tgc gtg gta ttg cgc gcg cga tcg tgc cag acc ttg aac gcg gac 451 Ala Cys Val Val Leu Arg Ala Arg Ser Cys Gln Thr Leu Asn Ala Asp WO 01/00804

105

110

115

aaa agg ctg cgc acg cct ttg cac tgc tgatgattat tcagggaatt
Lys Arg Leu Arg Thr Pro Leu His Cys
120

gct

501

<210> 132 <211> 126 <212> PRT <213> Corynebacterium glutamicum

Tyr Leu Pro Ala Met Pro Gly Ile Ala Glu Asp Leu Gly Thr Thr Ala 20 25 30

Pro Met Val Gln Leu Thr Leu Ser Ser Phe Met Ala Gly Met Ala Ile 35 40 45

Gly Gln Leu Ile Ile Gly Pro Leu Ser Asp Gln Leu Gly Arg Lys Gly
50 60

Leu Leu Val Ala Gly Ala Val Ala Ala Leu Val Ala Ser Val Val Cys 65 70 75 80

Ala Leu Ala Pro Ser Ile Ser Val Leu Val Ile Ala Arg Leu Val Gln 85 90 95

Gly Leu Gly Gly Gly Ala Cys Val Val Leu Arg Ala Arg Ser Cys Gln 100 105 110

Thr Leu Asn Ala Asp Lys Arg Leu Arg Thr Pro Leu His Cys 115 120 125

<210> 133 <211> 1299 <212> DNA

<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1276)
<223> RXA00289

<400> 133

cctccccata agttcactca agcaagttct cccgaacaga ttcacccgag aagtcgacag 60

accccattaa acagcccgat tcaagaaagg cttcgcagcc atg agc acc acc acc 115

Met Ser Thr Thr

1 5

					, Phe					Leu	g acc					163
				Tyr					Met		gca Ala			Leu	atc Ile	211
			: Ala					Val			tcc Ser		Ile		ctg Leu	259
		Thr					Val				gtg Val 65					307
	Leu										gtt Val					355
											gca Ala					403
											gca Ala					451
											cgt Arg					499
											gga Gly 145					547
											ggt Gly					595
tgg Trp	cgt Arg	cct Pro	gcc Ala	acc Thr 170	tgg Trp	att Ile	ctt Leu	ggt Gly	gcg Ala 175	ctg Leu	acc Thr	att Ile	gcg Ala	gcc Ala 180	gtg Val	643
											cca Pro					691
											tgg Trp					739
					Leu						gtt Val 225					787.
acc	tac	ctt	ggc	ctc	atc	atc	gct	gaa	aca	gca	ggg	gac	agc	ttc	gtg	835

Thr 230	Tyr	Leu	Gly	Leu	Ile 235	Ile	Ala	Glu	Thr	Ala 240	Gly	Asp	Ser	Phe	Val 245	
tcc Ser	att Ile	ggc Gly	ttg Leu	ttc Phe 250	gcc Ala	ttc Phe	ggt Gly	gca Ala	ctc Leu 255	gga Gly	ctc Leu	att Ile	ggc Gly	gtg Val 260	aca Thr	883
gtg Val	gca Ala	acc Thr	cga Arg 265	act Thr	gtg Val	gat Asp	caa Gln	cgc Arg 270	atg Met	ctg Leu	cgt Arg	gga Gly	agt Ser 275	gtt Val	cac His	931
					gtc Val											979
gga Gly	tta Leu 295	gag Glu	ggc Gly	aca Thr	cta Leu	gcc Ala 300	gta Val	gta Val	gct Ala	atc Ile	ttc Phe 305	ctt Leu	gca Ala	gtc Val	acc Thr	1027
					tac Tyr 315											1075
ttc Phe	ctc Leu	cat His	gcg Ala	ggt Gly 330	cgc Arg	gac Asp	cac His	cca Pro	gat Asp 335	act Thr	gca Ala	tcc Ser	tcc Ser	att Ile 340	tat Tyr	1123
					gtg Val											1171
atg Met	gct Ala	gtg Val 360	gat Asp	gcc Ala	gat Asp	tgg Trp	gtt Val 365	gct Ala	ggc Gly	act Thr	ttg Leu	tgg Trp 370	atc Ile	atg Met	gct Ala	1219
					tcc Ser											1267
	ctg Leu	-	tago	:agcc	ca a	atto	agco	c ac	:t							1299
<211 <212	> 13 > 39 > PR > Co	2 .T	bact	eriu	m gl	utam	icum	ı								
	> 13 Ser		Thr	Thr 5	Ala	Pro	Glu	Ala	Arg 10	Phe	Pro	Val	Val	Pro 15	Leu	
Thr	Ala	Met	Ser 20	Phe	Ala	Ala	Phe	Val 25	Tyr	Val	Thr	Phe	Glu 30	Met	Phe	

Ala Val Gly Leu Ile Lys Pro Met Ala Ser Asp Leu Gly Val Ser Glu

35 40 45

Ser Ser Ile Gly Leu Leu Met Thr Val Tyr Ala Thr Val Val Ala Val 50 55 60

- Val Thr Ile Pro Ala Met Leu Trp Val Ser Arg Phe Asn Lys Arg Thr 65 70 75 80
- Val Phe Leu Ile Thr Leu Ala Phe Leu Ala Thr Gly Ile Val Val Gln 85 90 95
- Ala Leu Thr Val Asn Tyr Gly Met Leu Ala Ile Gly Arg Thr Ile Ala 100 105 110
- Ala Leu Thr His Gly Val Phe Trp Ala Leu Val Gly Pro Met Ala Ala 115 120 125
- Arg Met Ser Pro Gly His Thr Gly Arg Ala Val Gly Val Val Ser Ile 130 135 140
- Gly Ser Thr Met Ala Leu Val Val Gly Ser Pro Leu Ala Thr Trp Ile 145 150 155 160
- Gly Glu Leu Ile Gly Trp Arg Pro Ala Thr Trp Ile Leu Gly Ala Leu 165 170 175
- Thr Ile Ala Ala Val Ala Val Leu Ile Pro Thr Val Pro Ser Leu Pro 180 185 190
- Pro Leu Pro Asp Thr Glu Ser Glu Ser Lys Glu Lys Lys Ser Leu Pro 195 200 205
- Trp Gly Leu Ile Ser Leu Val Ile Phe Leu Leu Ala Val Thr Gly 210 215 220
- Val Phe Ala Ala Tyr Thr Tyr Leu Gly Leu Ile Ile Ala Glu Thr Ala 225 230 235 240
- Gly Asp Ser Phe Val Ser Ile Gly Leu Phe Ala Phe Gly Ala Leu Gly 245 250 255
- Leu Ile Gly Val Thr Val Ala Thr Arg Thr Val Asp Gln Arg Met Leu 260 265 270
- Arg Gly Ser Val His Thr Thr Leu Phe Val Ile Ala Ala Ile Leu 275 280 285
- Gly Gln Ile Ala Phe Gly Leu Glu Gly Thr Leu Ala Val Val Ala Ile 290 295 300
- Phe Leu Ala Val Thr Val Phe Gly Gly Ala Tyr Gly Ala Leu Pro Thr 305 310 315 320
- Leu Gly Thr Thr Ile Phe Leu His Ala Gly Arg Asp His Pro Asp Thr 325 330 335
- Ala Ser Ser Ile Tyr Val Val Thr Tyr Gln Val Gly Ile Ala Ser Gly

340 345 350

Ala Ala Leu Gly Ala Met Ala Val Asp Ala Asp Trp Val Ala Gly Thr 355 360 365

Leu Trp Ile Met Ala Gly Leu Ser Leu Ala Ser Thr Leu Ala Leu Ala 370 375 380

Leu Trp Ser Arg Pro Leu Leu Lys 385 390

<210> 135

<211> 420

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(397)

<223> RXN01984

<400> 135

aggaaatgtc tcacgtcaca accttttgaa aggtggctaa gtacgcacat ttgttgtctg 60

caatagtgcc ggtgagggag ctgtccgata ttgtgcttac atg cac gaa tct gga 115 Met His Glu Ser Gly

aaa aat cct gtc aag gtt gtc gac tcg cag gca cca caa gga cgc ggt 163 Lys Asn Pro Val Lys Val Val Asp Ser Gln Ala Pro Gln Gly Arg Gly 10 15 20

ggg cat atc ggc gga cat atc aaa cgc cgc ccg att cct agg caa acg 211 Gly His Ile Gly Gly His Ile Lys Arg Arg Pro Ile Pro Arg Gln Thr 25 30 35

gaa att tcc gag gtt cgt cga tat atc gtc atg act gcc ctc gca ctc 259 Glu Ile Ser Glu Val Arg Arg Tyr Ile Val Met Thr Ala Leu Ala Leu 40 45 50

ggt ggc ttc gcc atc ggt gtg acg gaa ttt gtc tcc atg ggt ctg ctc 307 Gly Gly Phe Ala Ile Gly Val Thr Glu Phe Val Ser Met Gly Leu Leu 55 60 65

agc gcg atc gcc tcc gac ttt gag atc tcc gaa gac caa gcc gga cac 355 Ser Ala Ile Ala Ser Asp Phe Glu Ile Ser Glu Asp Gln Ala Gly His 70 75 80 85

atc atc acc atc tac gcc ctc gcg tgg ttg tgg gtg ccc cgc

Ile Ile Thr Ile Tyr Ala Leu Ala Trp Leu Trp Val Pro Arg

90

95

tgatcacagc gtttaccggc aaa 420

<210> 136

<211> 99

<212> PRT

<213> Corynebacterium glutamicum

<400> 136

Met His Glu Ser Gly Lys Asn Pro Val Lys Val Val Asp Ser Gln Ala 1 5 10 15

Pro Gln Gly Arg Gly His Ile Gly Gly His Ile Lys Arg Arg Pro 20 25 30

Ile Pro Arg Gln Thr Glu Ile Ser Glu Val Arg Arg Tyr Ile Val Met 35 40 45

Thr Ala Leu Ala Leu Gly Gly Phe Ala Ile Gly Val Thr Glu Phe Val
50 60

Ser Met Gly Leu Leu Ser Ala Ile Ala Ser Asp Phe Glu Ile Ser Glu 65 70 75 80

Asp Gln Ala Gly His Ile Ile Thr Ile Tyr Ala Leu Ala Trp Leu Trp 85 90 95

Val Pro Arg

<210> 137

<211> 379

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(379)

<223> FRXA01984

<400> 137

aggaaatgtc tcacgtcaca accttttgaa aggtggctaa gtacgcacat ttgttgtctg 60

caatagtgcc ggtgagggag ctgtccgata ttgtgcttac atg cac gaa tct gga 115 Met His Glu Ser Gly 1 5

aaa aat cct gtc aag gtt gtc gac tcg cag gca cca caa gga cgc ggt $\,$ 163 Lys Asn Pro Val Lys Val Val Asp Ser Gln Ala Pro Gln Gly Arg Gly $\,$ 10 $\,$ 15 $\,$ 20

ggg cat atc ggc gga cat atc aaa cgc cgc ccg att cct agg caa acg 211 Gly His Ile Gly Gly His Ile Lys Arg Arg Pro Ile Pro Arg Gln Thr

gaa att tcc gag gtt cgt cga tat atc gtc atg act gcc ctc gca ctc 259 Glu Ile Ser Glu Val Arg Arg Tyr Ile Val Met Thr Ala Leu Ala Leu 40 45 50

ggt ggc ttc gcc atc ggt gtg acg gaa ttt gtc tcc atg ggt ctg ctc 307

Gly Gly Phe Ala Ile Gly Val Thr Glu Phe Val Ser Met Gly Leu Leu 55 60 age geg ate gee tee gae tit gag ate tee gaa gae caa gee gga cae 355 Ser Ala Ile Ala Ser Asp Phe Glu Ile Ser Glu Asp Gln Ala Gly His 80 75 379 atc atc acc atc tac gcc ctc gcg Ile Ile Thr Ile Tyr Ala Leu Ala 90 <210> 138 <211> 93 <212> PRT <213> Corynebacterium glutamicum <400> 138 Met His Glu Ser Gly Lys Asn Pro Val Lys Val Val Asp Ser Gln Ala Pro Gln Gly Arg Gly Gly His Ile Gly Gly His Ile Lys Arg Arg Pro Ile Pro Arg Gln Thr Glu Ile Ser Glu Val Arg Arg Tyr Ile Val Met 35 Thr Ala Leu Ala Leu Gly Gly Phe Ala Ile Gly Val Thr Glu Phe Val Ser Met Gly Leu Leu Ser Ala Ile Ala Ser Asp Phe Glu Ile Ser Glu Asp Gln Ala Gly His Ile Ile Thr Ile Tyr Ala Leu Ala <210> 139 <211> 735 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(712) <223> RXA00109 <400> 139 aagtggggga agatttcgac aactaaccgg gcgcaaagat gaaactaatg cgtccgacca 60 cggcgaaaag gaagtttcgc ccatctatga gaggttgaat gtg gct tca gag aag 115 Val Ala Ser Glu Lys

15

163

aat cta aaa ttg cgt acc ttg gcg gca gct gct ggg gtg ttg ggc gtt

Asn Leu Lys Leu Arg Thr Leu Ala Ala Ala Ala Gly Val Leu Gly Val

10

ggc	gco Ala	ı atg Met	Ser 25	Met	ctc Leu	gtg Val	gct Ala	ccg Pro 30	Gln	gct Ala	gct Ala	gcc Ala	cat His 35	gat Asp	gtg Val	211
gtg Val	gtç Val	gat Asp 40	Ser	aat Asn	cct Pro	gaa Glu	aat Asn 45	Gly	agt Ser	gtc Val	gtt Val	gat Asp 50	gag Glu	ttc Phe	ccg Pro	259
gag Glu	acc Thr 55	att	gag Glu	ttg Leu	gag Glu	ttt Phe 60	tcc Ser	ggt Gly	att Ile	cct Pro	cag Gln 65	gat Asp	ctg Leu	ttc Phe	aca Thr	307
aca Thr 70	Val	gca Ala	ttg Leu	agc Ser	aat Asn 75	gcg Ala	gat Asp	tcc Ser	gga Gly	gag Glu 80	gtg Val	tta Leu	act Thr	tct Ser	gga Gly 85	355
		cag Gln														403
gtg Val	cag Gln	acg Thr	gga Gly 105	gct Ala	ggt Gly	aac Asn	Tyr	att Ile 110	ttg Leu	ggt Gly	ttc Phe	cag Gln	atc Ile 115	act Thr	tct Ser	451
		ggt Gly 120														499
		gaa Glu														547
		acc Thr														595
act Thr	gct Ala	gat Asp	gaa Glu	act Thr 170	tct Ser	gga Gly	att Ile	cct Pro	gcg Ala 175	ccg Pro	tgg Trp	aat Asn	tgg Trp	gtt Val 180	ttg Leu	643
agc Ser	atc Ile	gtg Val	gcg Ala 185	gtg Val	ctt Leu	gtt Val	Val	gca Ala 190	agt Ser	gcc Ala	atc Ile	Val	atg Met 195	atg Met	att Ile	691
		aat Asn 200					taag	aggg	tt t	attc	acca	t ga	a			735

<210> 140

<211> 204 <212> PRT

<213> Corynebacterium glutamicum

Val Ala Ser Glu Lys Asn Leu Lys Leu Arg Thr Leu Ala Ala Ala Ala

1 5 10 15

Gly Val Leu Gly Val Gly Ala Met Ser Met Leu Val Ala Pro Gln Ala 20 25 30

Ala Ala His Asp Val Val Val Asp Ser Asn Pro Glu Asn Gly Ser Val
35 40 45

Val Asp Glu Phe Pro Glu Thr Ile Glu Leu Glu Phe Ser Gly Ile Pro 50 55 60

Gln Asp Leu Phe Thr Thr Val Ala Leu Ser Asn Ala Asp Ser Gly Glu 65 70 75 80

Val Leu Thr Ser Gly Thr Pro Gln Leu Glu Gly Gln His Leu Ser Tyr 85 90 95

Glu Val Pro Ser Asp Val Gln Thr Gly Ala Gly Asn Tyr Ile Leu Gly 100 105 110

Phe Gln Ile Thr Ser Ser Asp Gly His Ala Thr Lys Gly Ser Ile Ser 115 120 125

Phe Glu Val Thr Gly Ser Ala Glu Thr Thr Glu Thr Thr Ala Glu 130 135 140

Thr Thr Glu Ser Ala Ala Thr Thr Asp Thr Ser Glu Thr Thr Glu 145 150 155 160

Ala Glu Thr Thr Glu Thr Ala Asp Glu Thr Ser Gly Ile Pro Ala Pro 165 170 175

Trp Asn Trp Val Leu Ser Ile Val Ala Val Leu Val Val Ala Ser Ala 180 185 190

Ile Val Met Met Ile Ala Lys Asn Arg Asn Gln Lys 195 200

<210> 141

<211> 735

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(712)

<223> RXA00109

<400> 141

aagtggggga agatttcgac aactaaccgg gcgcaaagat gaaactaatg cqtccgacca 60

cggcgaaaag gaagtttcgc ccatctatga gaggttgaat gtg gct tca gag aag 115 Val Ala Ser Glu Lys 1

aat cta aaa ttg cgt acc ttg gcg gca gct gct ggg gtg ttg ggc gtt 163

Asn	Leu	Lys	Leu	Arg 10	Leu	Ala	Ala	Ala 15		Gly	Val	Leu	Gly 20	Val	
		atg Met		Met											211
		gat Asp 40	Ser					-	_	-	_	_			259
		att Ile													307
	-	gca Ala	-												355
		cag Gln													403
	_	acg Thr		_				_			_				451
	_	ggt Gly 120		_								-			499
	_	gaa Glu	_					_		-					547
_	_	acc Thr		-					-	_				_	595
		gat Asp													643
_		gtg Val	-	-	_	-	-	-	-		_	_	_		691
		aat Asn 200				taag	aggg	tt t	atto	acca	t ga	ıa			735

<210> 142

<211> 204

<212> PRT <213> Corynebacterium glutamicum

<400> 142

Val Ala Ser Glu Lys Asn Leu Lys Leu Arg Thr Leu Ala Ala Ala 1 5 10 15

Gly Val Leu Gly Val Gly Ala Met Ser Met Leu Val Ala Pro Gln Ala 20 25 30

Ala Ala His Asp Val Val Val Asp Ser Asn Pro Glu Asn Gly Ser Val 35 40 45

Val Asp Glu Phe Pro Glu Thr Ile Glu Leu Glu Phe Ser Gly Ile Pro 50 55 60

Gln Asp Leu Phe Thr Thr Val Ala Leu Ser Asn Ala Asp Ser Gly Glu 65 70 75 80

Val Leu Thr Ser Gly Thr Pro Gln Leu Glu Gly Gln His Leu Ser Tyr 85 90 95

Glu Val Pro Ser Asp Val Gln Thr Gly Ala Gly Asn Tyr Ile Leu Gly 100 105 110

Phe Gln Ile Thr Ser Ser Asp Gly His Ala Thr Lys Gly Ser Ile Ser 115 120 125

Phe Glu Val Thr Gly Ser Ala Glu Thr Thr Thr Glu Thr Thr Ala Glu 130 135 140

Thr Thr Glu Ser Ala Ala Thr Thr Asp Thr Ser Glu Thr Thr Glu 145 150 155 160

Ala Glu Thr Thr Glu Thr Ala Asp Glu Thr Ser Gly Ile Pro Ala Pro 165 170 175

Trp Asn Trp Val Leu Ser Ile Val Ala Val Leu Val Val Ala Ser Ala 180 185 190

Ile Val Met Met Ile Ala Lys Asn Arg Asn Gln Lys 195 200

<210> 143

<211> 864

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(841)

<223> RXA00996

<400> 143

atcttaagcc ttttgtccaa ggctctgagt tcttagtggc ggtatttacc aagaagtaac 60

acctctatct tgcacctgat ctggcgtaga ctcataagtt atg agc acc gta acg 115

Met Ser Thr Val Thr

1 5

					Gly		a aaa Lys			Ile				163
_	-			Lys	_		ttg Leu		Asp		_		Val	 211
			Ile				ctg Leu 45	Gly						259
							gga Gly							307
						Ala	ggt Gly							355
							agc Ser							403
							gct Ala							451
							gag Glu 125							499
							tct Ser							547
		_				-	tca Ser		-		_	 _	-	595
							att Ile							643
							ggt Gly							691
	Leu						tgc Cys 205							739
							aca Thr							787

ggc aaa agc tca tac gaa gat gct ttc ttg gct gcc att gac ggg gta 835 Gly Lys Ser Ser Tyr Glu Asp Ala Phe Leu Ala Ala Ile Asp Gly Val 230 245

agg tca tgaaccctca ctatctgctt gcc Arg Ser 864

<210> 144

<211> 247

<212> PRT

<213> Corynebacterium glutamicum

<400> 144

Met Ser Thr Val Thr Ala Val Gln Val Asn Gly Leu Lys Val Ser Ile 1 5 10 15

Ser Ser Gly Phe Ser Arg Lys Lys Thr Lys Thr Ile Leu His Asp Leu 20 · 25 30

Asp Phe Thr Val Glu Thr Gly Lys Ile Thr Gly Leu Leu Gly Pro Ser 35 40 45

Gly Ser Gly Lys Thr Thr Leu Met Arg Ala Ile Val Gly Val Gln Asn 50 55 60

Phe Asp Gly Thr Leu Glu Val Phe Asp Gln Pro Ala Gly Ala Ala Ser 65 70 75 80

Leu Arg Gly Lys Ile Gly Tyr Val Thr Gln Asn Ala Ser Val Tyr His
85 90 95

Asp Leu Ser Val Ile Glu Asn Leu Lys Tyr Phe Gly Ala Leu Ala Lys 100 105 110

Gly Thr Ser Thr Pro Arg Thr Pro Glu Lys Ile Leu Glu Val Leu Asp 115 120 125

Ile Ala Asp Leu Ala Gln Arg Gln Val Ser Thr Leu Ser Gly Gln 130 135 140

Arg Gly Arg Val Ser Leu Gly Cys Ala Leu Ile Ala Ser Pro Glu Leu 145 150 155 160

Leu Val Met Asp Glu Pro Thr Val Gly Leu Asp Pro Ile Thr Arg Gln 165 170 175

Ala Leu Trp Glu Glu Phe Thr Thr Ile Ala Lys Ala Gly Ala Gly Val 180 185 190

Val Ile Ser Ser His Val Leu Glu Glu Ala Ala Arg Cys Asp Asn Leu 195 200 205

Ile Leu Leu Arg Asp Gly Arg Ile Ile Trp Arg Gly Thr Pro Thr Arg 210 215 220

Leu Leu Glu Asp Thr Gly Lys Ser Ser Tyr Glu Asp Ala Phe Leu Ala 225 230 235 240

Ala Ile Asp Gly Val Arg Ser

<210> 145

<211> 2463

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(2440)

<223> RXN00829

<400> 145

tgttttagcc atggacccca tactagggag agttttgttt tggtgctaga aaaggttcac 60

caagcgcgaa caggcctatg caaacggtac gatatgacac atg caa aaa gct gat 115 Met Gln Lys Ala Asp

tcc cat gat tgg att tcg gtc cac ggt gcg aat gaa aac aac ctc aaa 163 Ser His Asp Trp Ile Ser Val His Gly Ala Asn Glu Asn Asn Leu Lys 10 15 20

aat gtg tcg gtg cgc atc cct aaa agg cgt ctc acc gtg ttc acg ggt 211 Asn Val Ser Val Arg Ile Pro Lys Arg Arg Leu Thr Val Phe Thr Gly 25 30 35

gtg tcg gga tct ggc aag tcc tcg ctg gtg ttc ggc aca att gct gcg 259 Val Ser Gly Ser Gly Lys Ser Ser Leu Val Phe Gly Thr Ile Ala Ala 40 45 50

gaa tca cgc cgg ttg atc aac gaa acc tat agc act ttt gtg caa ggt 307 Glu Ser Arg Arg Leu Ile Asn Glu Thr Tyr Ser Thr Phe Val Gln Gly
55 60 65

ttc atg ccg tcg atg gca agg ccc gat gtt gac cat ttg gaa ggc atc 355
Phe Met Pro Ser Met Ala Arg Pro Asp Val Asp His Leu Glu Gly Ile
70 80 85

acc acg gcg atc atc gtc gat cag gag cag atg ggc gca aac cca cgg 403 Thr Thr Ala Ile Ile Val Asp Gln Glu Gln Met Gly Ala Asn Pro Arg 90 95 100

tct acg gtg ggt acc gca act gat gcc acc gcg atg ttg cgc att ttg 451 Ser Thr Val Gly Thr Ala Thr Asp Ala Thr Ala Met Leu Arg Ile Leu 105 110 115

ttt tcc cga atc gcg gaa cct aac gcg ggt ggc ccg gga gct tat tcc 499
Phe Ser Arg Ile Ala Glu Pro Asn Ala Gly Gly Pro Gly Ala Tyr Ser
120 130

tto aac gtc ccc tct gtt tcc gca tcc ggc gcc atc acg gtg gaa aag 547

Phe	Asn 135	. Pro	Ser	Val	Ser 140		Ser	Gly	Ala	Ile 145	Val	Glu	Lys	
	Gly				Glu		gct Ala			Lys				595
				Glu			ggc Gly		Ala					643
			Asp				tcc Ser 190							691
		Tyr					tgg Trp							739
_			_	_	-	_	ccg Pro		-	_			_	787
							gag Glu							835
							ctt Leu							883
							atg Met 270							931
							cct Pro							979
_				_	_		tcc Ser	_						1027
							cgt Arg							1075
							ccc Pro							1123
							ggt Gly 350							1171
							ggt Gly							1219

360 365 370

	c cgc Arg 375	His					Let					Туг				1267
	ccc Pro					His					Glu					1315
	ctg Leu				Arg					Thr					Glu	1363
	aag Lys			Thr					Asp					Leu		1411
	ggt Gly		Gly													1459
	aag Lys 455															1507
cgg Arg 470	gcg Ala	tca Ser	ttg Leu	aag Lys	gaa Glu 475	tcc Ser	gtg Val	cgt Arg	gcg Ala	ccg Pro 480	cat His	ggc Gly	gcc Ala	ctg Leu	gag Glu 485	1555
	cgc Arg															1603
	ctc Leu															1651
	tcg Ser															1699
	caa Gln 535															1747
	ggc Gly															1795
	aaa Lys															1843
	aag Lys	Gly					Tyr									1891

	tct Ser		Pro												1939
	ttg Leu 615	_									-				1987
_	tcg Ser	_	-								-		-	_	2035
	ttg Leu			_	-		-	_			-	_	-		2083
	tac Tyr					_	_			_	_			 -	2131
_	cag Gln	_	_	_		-			_	_	_	_	-		2179
	att Ile 695	_							-			-	_		2227
	ttg Leu	_	-			_		_	-	_	_		_	_	2275
	gtc Val														2323
	gat Asp	_				-	-		-			_			2371
	ggc Gly					Leu									2419
	ctt Leu 775		-		Val	-	tagt	ttct	ta t	ggaa	aacc	c tg	g		2463

<210> 146

<400> 146

Met Gln Lys Ala Asp Ser His Asp Trp Ile Ser Val His Gly Ala Asn

<211> 780

<212> PRT

<213> Corynebacterium glutamicum

10 15 Glu Asn Asn Leu Lys Asn Val Ser Val Arg Ile Pro Lys Arg Arg Leu Thr Val Phe Thr Gly Val Ser Gly Ser Gly Lys Ser Ser Leu Val Phe Gly Thr Ile Ala Ala Glu Ser Arg Arg Leu Ile Asn Glu Thr Tyr Ser Thr Phe Val Gln Gly Phe Met Pro Ser Met Ala Arg Pro Asp Val Asp His Leu Glu Gly Ile Thr Thr Ala Ile Ile Val Asp Gln Glu Gln Met Gly Ala Asn Pro Arg Ser Thr Val Gly Thr Ala Thr Asp Ala Thr Ala Met Leu Arg Ile Leu Phe Ser Arg Ile Ala Glu Pro Asn Ala Gly Gly 120 115 Pro Gly Ala Tyr Ser Phe Asn Val Pro Ser Val Ser Ala Ser Gly Ala 135 Ile Thr Val Glu Lys Gly Gly Asn Thr Lys Arg Glu Lys Ala Thr Phe Lys Arg Thr Gly Gly Met Cys Pro Ala Cys Glu Gly Met Gly Arg Ala 170 Ser Asp Ile Asp Leu Lys Glu Leu Phe Asp Ala Ser Leu Ser Leu Asn Asp Gly Ala Leu Thr Ile Pro Gly Tyr Thr Pro Gly Gly Trp Ser Tyr Arg Met Tyr Ser Glu Ser Gly Leu Phe Asp Ala Ala Lys Pro Ile Lys Asp Phe Thr Glu Glu Glu Arg His Asn Phe Leu Tyr Leu Glu Pro Thr Lys Met Lys Ile Ala Gly Ile Asn Met Thr Tyr Glu Gly Leu Ile Pro Arg Ile Gln Lys Ser Met Leu Ser Lys Asp Arg Glu Gly Met Gln Lys His Ile Arg Ala Phe Val Asp Arg Ala Val Thr Phe Ile Pro Cys Pro 275 Ala Cys Gly Gly Thr Arg Leu Ala Pro His Ala Leu Glu Ser Lys Ile Asn Gly Lys Asn Ile Ala Glu Leu Cys Ala Met Glu Val Arg Asp Leu

320 305 310 315 Ala Lys Trp Ile Lys Thr Val Glu Ala Pro Ser Val Ala Pro Leu Leu 325 330 Thr Ala Leu Thr Glu Thr Leu Asp Asn Phe Val Glu Ile Gly Leu Gly 345 Tyr Ile Gln Leu Asp Arg Pro Ala Gly Thr Leu Ser Gly Gly Glu Ala Gln Arg Thr Lys Met Ile Arg His Leu Gly Ser Ala Leu Thr Asp Val Thr Tyr Val Phe Asp Glu Pro Thr Ala Gly Leu His Ala Tyr Asp Ile Glu Arg Met Asn Lys Leu Leu Leu Asp Leu Arg Asp Lys Gly Asn Thr Val Leu Val Val Glu His Lys Pro Glu Thr Ile Ala Ile Ala Asp His 420 Val Val Asp Leu Gly Pro Gly Ala Gly Ala Gly Gly Glu Ile Arg Phe Glu Gly Ser Val Asp Lys Leu Lys Asp Ser Asp Thr Val Thr Gly Leu His Phe Asn Asp Arg Ala Ser Leu Lys Glu Ser Val Arg Ala Pro His Gly Ala Leu Glu Ile Arg Gly Ala Asp Arg Asn Asn Leu Asn Asn . Val Asp Val Asp Ile Pro Leu Gly Val Phe Thr Ala Ile Ser Gly Val 505 Ala Gly Ser Gly Lys Ser Ser Leu Ile His Glu Ile Pro Arg Asp Glu 520 Ser Val Val Phe Val Asp Gln Thr Ala Ile His Gly Ser Asn Arg Ser 535 Asn Pro Ala Thr Tyr Thr Gly Met Leu Asp Ser Ile Arg Lys Ala Phe Ala Lys Ala Asn Asp Val Lys Pro Ala Leu Phe Ser Pro Asn Ser Glu 570 Gly Ala Cys Pro Asn Cys Lys Gly Ala Gly Ser Val Tyr Val Asp Leu Gly Met Met Ala Gly Val Ser Ser Pro Cys Glu Val Cys Glu Gly Lys Arg Phe Asp Glu Ser Val Leu Asp Tyr His Phe Gly Gly Lys Asp Ile

610 615 620

Ala Asp Val Leu Gly Leu Ser Ala Ala Asn Ala Tyr Glu Phe Phe Ala 625 630 635 640

Ala Lys Asp Ser Lys Ile Leu Pro Ala Ala Lys Ile Ala Lys Arg Leu 645 650 655

Val Asp Val Gly Leu Gly Tyr Ile Thr Leu Gly Gln Pro Leu Thr Thr 660 665 670

Leu Ser Gly Gly Glu Arg Gln Arg Leu Lys Leu Ala Thr His Met Ala 675 680 685

Asp Lys Ala Thr Thr Phe Ile Leu Asp Glu Pro Thr Thr Gly Leu His 690 700

Leu Ala Asp Val Lys Thr Leu Leu Asp Leu Phe Asp Gln Leu Val Asp 705 710 715 720

Asp Gly Lys Ser Val Ile Val Ile Glu His His Leu Gly Val Leu Ala 725 730 735

His Ala Asp His Ile Ile Asp Val Gly Pro Gly Ala Gly Ser Asp Gly 740 745 750

Gly Ser Ile Val Phe Glu Gly Ser Pro Ala Glu Leu Ile Lys Thr Asp 755 760 765

Thr Pro Thr Gly Arg His Leu Lys Ala Tyr Val Asp 770 775 780

<210> 147

<211> 278

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(255)

<223> FRXA00829

<400> 147

ttg gat gag ccc acc aca ggc ctg cac ctc gct gat gtg aaa acc ttg 48 Leu Asp Glu Pro Thr Thr Gly Leu His Leu Ala Asp Val Lys Thr Leu 1 5 10 15

ctg gat ctt ttt gat caa ctg gtt gat gac ggc aag tct gtc atc gtc 96 Leu Asp Leu Phe Asp Gln Leu Val Asp Asp Gly Lys Ser Val Ile Val

atc gaa cac cac ctc ggc gtg ctc gct cac gct gac cac atc att gat

Ile Glu His His Leu Gly Val Leu Ala His Ala Asp His Ile Ile Asp

35

40

45

gtc ggc cct ggt gca ggt tct gat ggt ggc tcg att gta ttc gag ggc 192

Val Gly Pro Gly Ala Gly Ser Asp Gly Gly Ser Ile Val Phe Glu Gly 50 55 240 ago coo gog gaa cto ato aaa act gat act coa aca gga cgo cac ctt Ser Pro Ala Glu Leu Ile Lys Thr Asp Thr Pro Thr Gly Arg His Leu 70 278 aaa gct tat gta gat tagtttctta tggaaaaccc tgg Lys Ala Tyr Val Asp <210> 148 <211> 85 <212> PRT <213> Corynebacterium glutamicum <400> 148 Leu Asp Glu Pro Thr Thr Gly Leu His Leu Ala Asp Val Lys Thr Leu Leu Asp Leu Phe Asp Gln Leu Val Asp Asp Gly Lys Ser Val Ile Val Ile Glu His His Leu Gly Val Leu Ala His Ala Asp His Ile Ile Asp 35 Val Gly Pro Gly Ala Gly Ser Asp Gly Gly Ser Ile Val Phe Glu Gly Ser Pro Ala Glu Leu Ile Lys Thr Asp Thr Pro Thr Gly Arg His Leu 70 Lys Ala Tyr Val Asp <210> 149 <211> 1663 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1663) <223> FRXA00834 <400> 149 tqttttaqcc atggacccca tactagggag agttttgttt tggtgctaga aaaggttcac 60 caagcgcgaa caggcctatg caaacggtac gatatgacac atg caa aaa gct gat Met Gln Lys Ala Asp 163 tcc cat gat tgg att tcg gtc cac ggt gcg aat gaa aac aac ctc aaa Ser His Asp Trp Ile Ser Val His Gly Ala Asn Glu Asn Asn Leu Lys 15 10

			Arg	atc Ile										211
		Ser		aag Lys										259
_	Arg		_	atc Ile		_			-					307
				gca Ala 75										355
				gtc Val										403
				gca Ala										451
				gaa Glu										499
				gtt Val										547
				cgg Arg 155										595
				gag Glu										643
				gcc Ala										691
				cca Pro				_			_		_	739
_			_	gct Ala	-	_	_		_	_			-	787
				ctt Leu 235										835

					Ty:	gaç Glu				Pro						883
				Asp		g gaa g Glu			Gln					Ala		931 .
			, Ala			ttc Phe		Pro					Gly			979
		Ala				ttg Leu 300	Glu					Gly				1027
	Glu					gag Glu										1075
						gtt Val										1123
						gag Glu										1171
						tct Ser										1219
						gca Ala 380										1267
						cac His										1315
						gat Asp										1363
						gcc Ala										1411
						gga Gly										1459
_	_			_	_	gac Asp 460				Gly					-	1507
cgg	gcg	tca	ttg	aag	gaa	tcc	gtg	cgt	gcg	ccg	cat	ggc	gcc	ctg	gag	1555

Arg Ala Ser Leu Lys Glu Ser Val Arg Ala Pro His Gly Ala Leu Glu 475 480 485

atc cgc ggg gcc gat cga aat aat ttg aac aat gtg gat gtc gat att 1603
Ile Arg Gly Ala Asp Arg Asn Asn Leu Asn Asn Val Asp Val Asp Ile
490 495 500

ccg ctc ggc gtg ttc acg gcg att tcc ggc gtt gca ggt tcg ggt aag 1651 Pro Leu Gly Val Phe Thr Ala Ile Ser Gly Val Ala Gly Ser Gly Lys 505 510 515

tcc tcg ttg att
Ser Ser Leu Ile
520

<210> 150

<211> 521

<212> PRT

<213> Corynebacterium glutamicum

<400> 150

Met Gln Lys Ala Asp Ser His Asp Trp Ile Ser Val His Gly Ala Asn 1 5 10 15

Glu Asn Asn Leu Lys Asn Val Ser Val Arg Ile Pro Lys Arg Arg Leu 20 25 30

Thr Val Phe Thr Gly Val Ser Gly Ser Gly Lys Ser Ser Leu Val Phe 35 40 45

Gly Thr Ile Ala Ala Glu Ser Arg Arg Leu Ile Asn Glu Thr Tyr Ser 50 55 60

Thr Phe Val Gln Gly Phe Met Pro Ser Met Ala Arg Pro Asp Val Asp 65 70 75 80

His Leu Glu Gly Ile Thr Thr Ala Ile Ile Val Asp Gln Glu Gln Met 85 90 95

Gly Ala Asn Pro Arg Ser Thr Val Gly Thr Ala Thr Asp Ala Thr Ala 100 105 110

Met Leu Arg Ile Leu Phe Ser Arg Ile Ala Glu Pro Asn Ala Gly Gly
115 120 125

Pro Gly Ala Tyr Ser Phe Asn Val Pro Ser Val Ser Ala Ser Gly Ala 130 135 140

Ile Thr Val Glu Lys Gly Gly Asn Thr Lys Arg Glu Lys Ala Thr Phe 150 155 160

Lys Arg Thr Gly Gly Met Cys Pro Ala Cys Glu Gly Met Gly Arg Ala 165 170 175

Ser Asp Ile Asp Leu Lys Glu Leu Phe Asp Ala Ser Leu Ser Leu Asn 180 185 190

Asp Gly Ala Leu Thr Ile Pro Gly Tyr Thr Pro Gly Gly Trp Ser Tyr Arg Met Tyr Ser Glu Ser Gly Leu Phe Asp Ala Ala Lys Pro Ile Lys Asp Phe Thr Glu Glu Glu Arg His Asn Phe Leu Tyr Leu Glu Pro Thr 230 235 Lys Met Lys Ile Ala Gly Ile Asn Met Thr Tyr Glu Gly Leu Ile Pro Arg Ile Gln Lys Ser Met Leu Ser Lys Asp Arg Glu Gly Met Gln Lys 265 His Ile Arq Ala Phe Val Asp Arg Ala Val Thr Phe Ile Pro Cys Pro Ala Cys Gly Gly Thr Arg Leu Ala Pro His Ala Leu Glu Ser Lys Ile 295 Asn Gly Lys Asn Ile Ala Glu Leu Cys Ala Met Glu Val Arg Asp Leu Ala Lys Trp Ile Lys Thr Val Glu Ala Pro Ser Val Ala Pro Leu Leu 330 Thr Ala Leu Thr Glu Thr Leu Asp Asn Phe Val Glu Ile Gly Leu Gly Tyr Ile Gln Leu Asp Arg Pro Ala Gly Thr Leu Ser Gly Gly Glu Ala Gln Arg Thr Lys Met Ile Arg His Leu Gly Ser Ala Leu Thr Asp Val Thr Tyr Val Phe Asp Glu Pro Thr Ala Gly Leu His Ala Tyr Asp Ile 390 Glu Arg Met Asn Lys Leu Leu Leu Asp Leu Arg Asp Lys Gly Asn Thr Val Leu Val Val Glu His Lys Pro Glu Thr Ile Ala Ile Ala Asp His 425 Val Val Asp Leu Gly Pro Gly Ala Gly Ala Gly Gly Glu Ile Arg Phe Glu Gly Ser Val Asp Lys Leu Lys Asp Ser Asp Thr Val Thr Gly Leu His Phe Asn Asp Arg Ala Ser Leu Lys Glu Ser Val Arg Ala Pro 470 His Gly Ala Leu Glu Ile Arg Gly Ala Asp Arg Asn Asn Leu Asn Asn

490

485

Val Asp Val Asp Ile Pro Leu Gly Val Phe Thr Ala Ile Ser Gly Val 500 505 510

Ala Gly Ser Gly Lys Ser Ser Leu Ile 515 520

<210> 151

<211> 864

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(841)

<223> RXA00995

<400> 151

gtcggatcat ctggagggga acacccacac gccttctaga agatacaggc aaaagctcat 60

acgaagatgc tttcttggct gccattgacg gggtaaggtc atg aac cct cac tat 115

Met Asn Pro His Tyr

1

ctg ctt gcc acg gtc aaa cga gtc ctg ctg cag ctg aaa gcc gat aaa 163 Leu Leu Ala Thr Val Lys Arg Val Leu Leu Gln Leu Lys Ala Asp Lys 10 15 20

cgt tcc atc gcg ctg att ctt cta gca ccc gtg gcg ttg atg tcg ctg 211 Arg Ser Ile Ala Leu Ile Leu Leu Ala Pro Val Ala Leu Met Ser Leu 25 30 35

ttt tat tac atg tat tcc tcc aca ccg gca ggc acc cag ctg ttt aag 259
Phe Tyr Tyr Met Tyr Ser Ser Thr Pro Ala Gly Thr Gln Leu Phe Lys
40 45 50

acc att tcc acg gtc atg atc gca gtg ttc ccc ttg atg ctc atg ttt 307
Thr Ile Ser Thr Val Met Ile Ala Val Phe Pro Leu Met Leu Met Phe
55 60 65

ttg atg acg tcg gtg acg atg caa aga gaa cgc aac gct gga acg ctc 355 Leu Met Thr Ser Val Thr Met Gln Arg Glu Arg Asn Ala Gly Thr Leu 70 85

gag cgc ttg tgg acc acg aac att cac cgc gtt gat ttg atc ggt ggc 403 Glu Arg Leu Trp Thr Thr Asn Ile His Arg Val Asp Leu Ile Gly Gly 90 95 100

tac ggg gtg gcc ttc ggc atc atg gcg gtg gcg caa tct ttg ctc atg 451 Tyr Gly Val Ala Phe Gly Ile Met Ala Val Ala Gln Ser Leu Leu Met 105 110 115

gtg ctc acc ctt cgg tat ctc ctg ggt gtg gaa acc gaa tcg gag tgg 499 Val Leu Thr Leu Arg Tyr Leu Leu Gly Val Glu Thr Glu Ser Glu Trp 120 125 130

tgg Trp	att Ile 135	tct Ser	acg Thr	ctc Leu	att Ile	gct Ala 140	gcg Ala	atc Ile	acc Thr	ggt Gly	ctt Leu 145	atc Ile	gga Gly	gtg Val	tct Ser	547
ctt Leu 150	ggc Gly	ctg Leu	ttg Leu	agc Ser	tct Ser 155	gcg Ala	ttt Phe	gcc Ala	agc Ser	act Thr 160	gag Glu	ttc Phe	caa Gln	gct Ala	atc Ile 165	595
								ccc Pro		Phe						643
								gat Asp 190								691
								gat Asp								739
acg Thr	gga Gly 215	atc Ile	gga Gly	cag Gln	caa Gln	gta Val 220	gtg Val	gtc Val	aac Asn	att Ile	gcc Ala 225	atc Ile	tgc Cys	gcc Ala	gcg Ala	787
								gcg Ala								835
acc Thr		taga	ttac	tc t	tcca	gcga	g gt	g								864

<210> 152

<211> 247

<212> PRT

<213> Corynebacterium glutamicum

<400> 152

Met Asn Pro His Tyr Leu Leu Ala Thr Val Lys Arg Val Leu Leu Gln
1 5 10 15

Leu Lys Ala Asp Lys Arg Ser Ile Ala Leu Ile Leu Leu Ala Pro Val 20 25 30

Ala Leu Met Ser Leu Phe Tyr Tyr Met Tyr Ser Ser Thr Pro Ala Gly 35 40 45

Thr Gln Leu Phe Lys Thr Ile Ser Thr Val Met Ile Ala Val Phe Pro 50 55 60

Leu Met Leu Met Phe Leu Met Thr Ser Val Thr Met Gln Arg Glu Arg 65 70 75 80

Asn Ala Gly Thr Leu Glu Arg Leu Trp Thr Thr Asn Ile His Arg Val\$85\$ 90 95

Asp Leu Ile Gly Gly Tyr Gly Val Ala Phe Gly Ile Met Ala Val Ala 105 Gln Ser Leu Leu Met Val Leu Thr Leu Arg Tyr Leu Leu Gly Val Glu 120 Thr Glu Ser Glu Trp Trp Ile Ser Thr Leu Ile Ala Ala Ile Thr Gly 130 Leu Ile Gly Val Ser Leu Gly Leu Leu Ser Ser Ala Phe Ala Ser Thr Glu Phe Gln Ala Ile Gln Thr Leu Pro Leu Leu Ile Leu Pro Gln Phe Leu Leu Cys Gly Leu Leu Ile Pro Arg Asp Asp Leu Pro Asp Val Leu 185 Arg Trp Val Ser Asn Val Leu Pro Leu Ser Tyr Ala Val Asp Ala Ala Leu Glu Ala Ser Arg Thr Gly Ile Gly Gln Gln Val Val Val Asn Ile 215 Ala Ile Cys Ala Ala Phe Ala Val Ser Phe Leu Leu Val Ala Ala Leu 230 Ser Met Pro Arg Met Thr Arg 245 <210> 153 <211> 1353 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1330) <223> RXN00803 <400> 153 tcatccttcc ttagctcgcg tgagcttccc aagcgtaagc acccccgtgt gagggcataa 60 eggeegttet gttaaagatt ggtetggeea ttteeteeat atg ggg gtg tee geg Met Gly Val Ser Ala ctt aac atg tct gac atg gtg gcg aac aaa cgg gca cag cgt aaa gtc Leu Asn Met Ser Asp Met Val Ala Asn Lys Arg Ala Gln Arg Lys Val tgg cta gcg gta gct tta tcg gtc ttt acg gtc gcg tgg ggt ggc aat 211 Trp Leu Ala Val Ala Leu Ser Val Phe Thr Val Ala Trp Gly Gly Asn 259 gaa ttc act ccc ttg ctg gtg ttt tac cga ggt gaa ggg ttc ttt agc

Glu Phe Thr Pro Leu Leu Val Phe Tyr Arg Gly Glu Gly Phe Phe Ser aac ctg ttc atc gac ctt ttg ctg gtg ttt tat gcc atc gga gta gcg 307 Asn Leu Phe Ile Asp Leu Leu Val Phe Tyr Ala Ile Gly Val Ala gta ggt ttg ctg gca gct ggt cct tta tct gac cgc tat ggc cga cgt 355 Val Gly Leu Leu Ala Ala Gly Pro Leu Ser Asp Arg Tyr Gly Arg Arg gcc gtc atg ttg cct gcg cca ttg atc gcg atc ttg ggt tcc gcg ttg 403 Ala Val Met Leu Pro Ala Pro Leu Ile Ala Ile Leu Gly Ser Ala Leu 95 att gcc tcg ggt gaa gaa acc gcc atc ctg att gcc att ggt cga gtg 451 Ile Ala Ser Gly Glu Glu Thr Ala Ile Leu Ile Ala Ile Gly Arg Val 110 ctg tcg gga att tcg gtg ggc atg gtg atg aca gcg gga ggt tcc tgg 499 Leu Ser Gly Ile Ser Val Gly Met Val Met Thr Ala Gly Gly Ser Trp 125 att aag gag ctt tca tcg tcg cgg ttt gag cca ggg gtg aaa acc agt 547 Ile Lys Glu Leu Ser Ser Ser Arg Phe Glu Pro Gly Val Lys Thr Ser 140 gct ggt gca aaa cgc gca tcg atg tct ttg acc ggt ggt ttt gcg ctc 595 Ala Gly Ala Lys Arg Ala Ser Met Ser Leu Thr Gly Gly Phe Ala Leu 160 ggc cca gcg ctt gct ggt gtg atg gca cag tgg ctg cca cta cct gga Gly Pro Ala Leu Ala Gly Val Met Ala Gln Trp Leu Pro Leu Pro Gly 170 cag ttg gca tat gtt ttg cac att att ctc act ctg att ttg ttc ccg 691 Gln Leu Ala Tyr Val Leu His Ile Ile Leu Thr Leu Ile Leu Phe Pro 185 190 ttg ctt att aca gcg ccg gaa act cgt caa tca gcg cac ctg aaa act 739 Leu Leu Ile Thr Ala Pro Glu Thr Arg Gln Ser Ala His Leu Lys Thr 200 aag gga tca ttc tgg tca gat gtg ctt gtg cca tct gca cta gac aag 787 Lys Gly Ser Phe Trp Ser Asp Val Leu Val Pro Ser Ala Leu Asp Lys cga ttc ttg ttt gtg gtt gct cca att gga ccg tgg gtt ttc ggt gcg 835 Arg Phe Leu Phe Val Val Ala Pro Ile Gly Pro Trp Val Phe Gly Ala 230 235 gcc ttc act gcc tac gca gtt ttg ccg tcg cag ctg cgt gac atg gtt 883 Ala Phe Thr Ala Tyr Ala Val Leu Pro Ser Gln Leu Arg Asp Met Val 250 260 tet gea eee gtt geg tat tet geg etg ate get ttg gtt ace tta ggt Ser Ala Pro Val Ala Tyr Ser Ala Leu Ile Ala Leu Val Thr Leu Gly

tct gga ttt ggt atc caa caa ttc ggt cct caa atc atg ggc acc tct 979
Ser Gly Phe Gly Ile Gln Gln Phe Gly Pro Gln Ile Met Gly Thr Ser 280 285 290

aaa act cgc ggg ccg att ttg gcc atg ttc gtc aca gtc atc ggc atg 1027

Lys Thr Arg Gly Pro Ile Leu Ala Met Phe Val Thr Val Ile Gly Met
295 300 305

atc ggc gcg gtg atc gtg gtg atg aac cct cat cca tgg tgg gcg cta 1075

Ile Gly Ala Val Ile Val Val Met Asn Pro His Pro Trp Trp Ala Leu
310 325

gtt ggc tgc atg gcc ctc ggc ctg tct tat ggc ctg tgt atg ttc atg 1123 Val Gly Cys Met Ala Leu Gly Leu Ser Tyr Gly Leu Cys Met Phe Met 330 335 340

ggg ttg gcg gaa act caa aac att gct cca cct att gat atg gca ggc 1171 Gly Leu Ala Glu Thr Gln Asn Ile Ala Pro Pro Ile Asp Met Ala Gly 345 350 355

ctg acg ggt att ttc tac tgc ctg acg tac gta ggt atg gtc ttt cca 1219 Leu Thr Gly Ile Phe Tyr Cys Leu Thr Tyr Val Gly Met Val Phe Pro 360 365 370

gcc ttg atg acc tgg ttg aat caa tgg ctc agt tac ccg ttc atg ctg 1267
Ala Leu Met Thr Trp Leu Asn Gln Trp Leu Ser Tyr Pro Phe Met Leu
375 380 385

ggc ttt ggt gcg gtg atg gca act att tgt ctg atc att gtg agt ttt 1315 Gly Phe Gly Ala Val Met Ala Thr Ile Cys Leu Ile Ile Val Ser Phe 390 395 400 405

agt gca cgc cga ttc tgagaaacaa ctaaagtgag cca 1353

Ser Ala Arg Arg Phe 410

<210> 154

<211> 410

<212> PRT

<213> Corynebacterium glutamicum

<400> 154

Met Gly Val Ser Ala Leu Asn Met Ser Asp Met Val Ala Asn Lys Arg 1 5 10 15

Ala Gln Arg Lys Val Trp Leu Ala Val Ala Leu Ser Val Phe Thr Val 20 25 30

Ala Trp Gly Gly Asn Glu Phe Thr Pro Leu Leu Val Phe Tyr Arg Gly 35 40 45

Glu Gly Phe Phe Ser Asn Leu Phe Ile Asp Leu Leu Leu Val Phe Tyr 50 55 60

Ala Ile Gly Val Ala Val Gly Leu Leu Ala Ala Gly Pro Leu Ser Asp Arg Tyr Gly Arg Arg Ala Val Met Leu Pro Ala Pro Leu Ile Ala Ile Leu Gly Ser Ala Leu Ile Ala Ser Gly Glu Glu Thr Ala Ile Leu Ile Ala Ile Gly Arg Val Leu Ser Gly Ile Ser Val Gly Met Val Met Thr 120 Ala Gly Gly Ser Trp Ile Lys Glu Leu Ser Ser Arg Phe Glu Pro Gly Val Lys Thr Ser Ala Gly Ala Lys Arg Ala Ser Met Ser Leu Thr 150 155 Gly Gly Phe Ala Leu Gly Pro Ala Leu Ala Gly Val Met Ala Gln Trp Leu Pro Leu Pro Gly Gln Leu Ala Tyr Val Leu His Ile Ile Leu Thr 185 Leu Ile Leu Phe Pro Leu Leu Ile Thr Ala Pro Glu Thr Arg Gln Ser 200 Ala His Leu Lys Thr Lys Gly Ser Phe Trp Ser Asp Val Leu Val Pro 215 Ser Ala Leu Asp Lys Arg Phe Leu Phe Val Val Ala Pro Ile Gly Pro 230 Trp Val Phe Gly Ala Ala Phe Thr Ala Tyr Ala Val Leu Pro Ser Gln 250 Leu Arg Asp Met Val Ser Ala Pro Val Ala Tyr Ser Ala Leu Ile Ala Leu Val Thr Leu Gly Ser Gly Phe Gly Ile Gln Gln Phe Gly Pro Gln Ile Met Gly Thr Ser Lys Thr Arg Gly Pro Ile Leu Ala Met Phe Val Thr Val Ile Gly Met Ile Gly Ala Val Ile Val Val Met Asn Pro His Pro Trp Trp Ala Leu Val Gly Cys Met Ala Leu Gly Leu Ser Tyr Gly Leu Cys Met Phe Met Gly Leu Ala Glu Thr Gln Asn Ile Ala Pro Pro 345 Ile Asp Met Ala Gly Leu Thr Gly Ile Phe Tyr Cys Leu Thr Tyr Val

Gly Met Val Phe Pro Ala Leu Met Thr Trp Leu Asn Gln Trp Leu Ser 370 375 380

Tyr Pro Phe Met Leu Gly Phe Gly Ala Val Met Ala Thr Ile Cys Leu 385 390 395 400

Ile Ile Val Ser Phe Ser Ala Arg Arg Phe 405 410

<210> 155

<211> 703

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(703)

<223> FRXA00803

<400> 155

tcatccttcc ttagctcgcg tgagcttccc aagcgtaagc acccccgtgt gagggcataa 60

cggccgttct gttaaagatt ggtctggcca tttcctccat atg ggg gtg tcc gcg 115

Met Gly Val Ser Ala

1

ctt aac atg tct gac atg gtg gcg aac aaa cgg gca cag cgt aaa gtc 163 Leu Asn Met Ser Asp Met Val Ala Asn Lys Arg Ala Gln Arg Lys Val 10 15 20

tgg cta gcg gta gct tta tcg gtc ttt acg gtc gcg tgg ggt ggc aat 211 Trp Leu Ala Val Ala Leu Ser Val Phe Thr Val Ala Trp Gly Gly Asn 25 30 35

gaa ttc act ccc ttg ctg gtg ttt tac cga ggt gaa ggg ttc ttt agc 259
Glu Phe Thr Pro Leu Leu Val Phe Tyr Arg Gly Glu Gly Phe Phe Ser
40 45 50

aac ctg ttc atc gac ctt ttg ctg gtg ttt tat gcc atc gga gta gcg 307 Asn Leu Phe Ile Asp Leu Leu Val Phe Tyr Ala Ile Gly Val Ala 55 60 65

gta ggt ttg ctg gca gct ggt cct tta tct gac cgc tat ggc cga cgt 355
Val Gly Leu Leu Ala Ala Gly Pro Leu Ser Asp Arg Tyr Gly Arg Arg
70 75 80 85

gcc gtc atg ttg cct gcg cca ttg atc gcg atc ttg ggt tcc gcg ttg 403 Ala Val Met Leu Pro Ala Pro Leu Ile Ala Ile Leu Gly Ser Ala Leu 90 95 100

att gcc tcg ggt gaa gaa acc gcc atc ctg att gcc att ggt cga gtg

Ile Ala Ser Gly Glu Glu Thr Ala Ile Leu Ile Ala Ile Gly Arg Val

105

110

115

ctg tcg gga att tcg gtg ggc atg gtg atg aca gcg gga ggt tcc tgg 499 Leu Ser Gly Ile Ser Val Gly Met Val Met Thr Ala Gly Gly Ser Trp

	V	V O 01	/0080-	4												PCT/IB00/00922
		120					125					130				
att Ile	aag Lys 135	gag Glu	ctt Leu	tca Ser	tcg Ser	tcg Ser 140	cgg Arg	ttt	gag Glu	cca Pro	ggg Gly 145	gtg Val	aaa Lys	acc Thr	agt Ser	547
gct Ala 150	ggt Gly	gca Ala	aaa Lys	cgc Arg	gca Ala 155	tcg Ser	atg Met	tct Ser	ttg Leu	acc Thr 160	ggt Gly	ggt Gly	ttt Phe	gcg Ala	ctc Leu 165	595
ggc Gly	cca Pro	gcg Ala	ctt Leu	gct Ala 170	ggt Gly	gtg Val	atg Met	gca Ala	cag Gln 175	tgg Trp	ctg Leu	cca Pro	caa Gln	cct Pro 180	gga Gly	643
cag Gln	ttg Leu	gca Ala	tat Tyr 185	gtt Val	ttg Leu	cac His	att Ile	att Ile 190	ctc Leu	act Thr	ctg Leu	att Ile	ttg Leu 195	ttc Phe	ccg Pro	691
_	ctt Leu															703
<212	0> 15 1> 20 2> PI 3> Co	01 RT	ebact	ceri	um gl	lutar	nicum	n								
	0> 15 Gly		Ser	Ala 5	Leu	Asn	Met	Ser	Asp 10	Met	Val	Ala	Asn	Lys 15	Arg	
Ala	Gln	Arg	Lys 20	Val	Trp	Leu	Ala	Val 25	Ala	Leu	Ser	Val	Phe 30	Thr	Val	
Ala	Trp	Gly 35	Gly	Asn	Glu	Phe	Thr 40	Pro	Leu	Leu	Val	Phe 45	Tyr	Arg	Gly	
Glu				Ser					Asp		Leu 60	Leu	Val	Phe	Tyr	
Ala 65	Ile	Gly	Val	Ala	Val 70	Gly	Leu	Leu	Ala	Ala 75	Gly	Pro	Leu	Ser	Asp 80	
Arg	Tyr	Gly	Arg	Arg 85	Ala	Val	Met	Leu	Pro 90	Ala	Pro	Leu	Ile	Ala 95	Ile	
Leu	Gly	Ser	Ala 100	Leu	Ile	Ala	Ser	Gly 105	Glu	Glu	Thr	Ala	Ile 110	Leu	Ile	
Ala	Ile	Gly 115	Arg	Val	Leu	Ser	Gly 120	Ile	Ser	Val	Gly	Met 125	Val	Met	Thr	
Ala	Gly 130	Gly	Ser	Trp	Ile	Lys 135	Glu	Leu	Ser	Ser	Ser 140	Arg	Phe	Glu	Pro	
Gly	Val	Lys	Thr	Ser	Ala	Gly	Ala	Lys	Arg	Ala	Ser	Met	Ser	Leu	Thr	

160 150 155 145 Gly Gly Phe Ala Leu Gly Pro Ala Leu Ala Gly Val Met Ala Gln Trp 170 Leu Pro Gln Pro Gly Gln Leu Ala Tyr Val Leu His Ile Ile Leu Thr 185 Leu Ile Leu Phe Pro Leu Leu Ile Thr 195 <210> 157 <211> 1014 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(991) <223> RXA01407 <400> 157 atccggggaa cggatcccaa agatctcctt gatgccatcg cgtttttaac ctggccagct 60 ctggttgccc cagtgatcgc cccacttctg ggaggtcttc ttg caa gat acc att Leu Gln Asp Thr Ile ggt tgc cga tgg atc ttc ctc ctc aac gtg ccc tta gga atc atc gcg Gly Cys Arg Trp Ile Phe Leu Leu Asn Val Pro Leu Gly Ile Ile Ala 10 atc atg gct gga cta ttc atc cag ccc aag aac acg gcc gtg aat gtg 211 Ile Met Ala Gly Leu Phe Ile Gln Pro Lys Asn Thr Ala Val Asn Val 25 aag cga ttt gat cgg cca ggt ttc ctc ggc gca atg ctg gtg atg gtg Lys Arg Phe Asp Arg Pro Gly Phe Leu Gly Ala Met Leu Val Met Val 40 gcg caa gcc gtg att gcg gag tta att tgc agc aga agt ccg gcc gca 307 Ala Gln Ala Val Ile Ala Glu Leu Ile Cys Ser Arg Ser Pro Ala Ala 55 ctt act atc tgt gca tgc ctc gtc tta agt gct gcg gtg gta tgc ggt Leu Thr Ile Cys Ala Cys Leu Val Leu Ser Ala Ala Val Val Cys Gly 70 ttt gta gtg cgc tgg ctg cga gtt cca ggc cga ctt ttt gat ctc agc Phe Val Val Arg Trp Leu Arg Val Pro Gly Arg Leu Phe Asp Leu Ser 90 atc atg cgc atc cca ggt ttc cga gtg ggt aat tcc tcc gga agt atc Ile Met Arg Ile Pro Gly Phe Arg Val Gly Asn Ser Ser Gly Ser Ile 110 105

PCT/IB00/00922 WO 01/00804

tac Tyr	cgc Arg	ttg Leu 120	gta Val	atc Ile	acc Thr	gca Ala	gca Ala 125	cca Pro	ttc Phe	atg Met	ttc Phe	act Thr 130	ttg Leu	ctc Leu	ttc Phe	499
caa Gln	gtg Val 135	gcg Ala	ttt Phe	Gly	tgg Trp	tct Ser 140	gca Ala	aca Thr	tta Leu	gcg Ala	ggt Gly 145	gcc Ala	atg Met	gtg Val	gtc Val	547
gca Ala 150	cta Leu	ttc Phe	gca Ala	ggc Gly	aac Asn 155	gtg Val	gca Ala	atc Ile	aaa Lys	cct Pro 160	ttc Phe	acc Thr	acg Thr	ccg Pro	atc Ile 165	595
att Ile	aaa Lys	cgc Arg	tgg Trp	aat Asn 170	ttc Phe	aaa Lys	cca Pro	gta Val	ctg Leu 175	gtc Val	ttt Phe	tct Ser	aac Asn	gct Ala 180	gct Ala	643
ggc Gly	gcc Ala	ttg Leu	gta Val 185	ttg Leu	gca Ala	act Thr	ttt Phe	ttg Leu 190	ttc Phe	gtt Val	cgt Arg	gca Ala	gat Asp 195	acc Thr	cca Pro	691
ctg Leu	gtt Val	ctc Leu 200	atc Ile	gtg Val	ctg Leu	ctg Leu	ctc Leu 205	ttt Phe	gtt Val	tcg Ser	ggc Gly	gca Ala 210	tta Leu	agg Arg	tcc Ser	739
													atc Ile			787
gaa Glu 230	caa Gln	acc Thr	agc Ser	aac Asn	gcc Ala 235	aac Asn	gtg Val	tta Leu	tca Ser	gca Ala 240	acc Thr	ctg Leu	cac His	caa Gln	cta Leu 245	835
ggc Gly	atg Met	tct Ser	ttg Leu	ggt Gly 250	att Ile	gcg Ala	gta Val	gca Ala	gtc Val 255	atc Ile	gcc Ala	atg Met	tcc Ser	ctt Leu 260	gca Ala	883
ccc Pro	acc Thr	gcc Ala	aac Asn 265	tgg Trp	gca Ala	ttc Phe	cca Pro	ctg Leu 270	gca Ala	gca Ala	gcg Ala	ttg Leu	ttc Phe 275	ctc Leu	att Ile	931
cct Pro	cta Leu	atc Ile 280	ggc Gly	gca Ala	cta Leu	tct Ser	ttg Leu 285	cct Pro	cgc Arg	gac Asp	ggc Gly	ggt Gly 290	gcc Ala	cga Arg	gcc Ala	979
	tcc Ser 295			taga	aacc	ca c	ttct	gaaa	ig gt	.a						1014

<210> 158 <211> 297

<212> PRT

<213> Corynebacterium glutamicum

<400> 158

Leu Gln Asp Thr Ile Gly Cys Arg Trp Ile Phe Leu Leu Asn Val Pro 1 5 10 15

Leu Gly Ile Ile Ala Ile Met Ala Gly Leu Phe Ile Gln Pro Lys Asn 20 25 30

Thr Ala Val Asn Val Lys Arg Phe Asp Arg Pro Gly Phe Leu Gly Ala 35 40 45

Met Leu Val Met Val Ala Gln Ala Val Ile Ala Glu Leu Ile Cys Ser 50 60

Arg Ser Pro Ala Ala Leu Thr Ile Cys Ala Cys Leu Val Leu Ser Ala 65 70 75 80

Ala Val Val Cys Gly Phe Val Val Arg Trp Leu Arg Val Pro Gly Arg 85 90 95

Leu Phe Asp Leu Ser Ile Met Arg Ile Pro Gly Phe Arg Val Gly Asn 100 105 110

Ser Ser Gly Ser Ile Tyr Arg Leu Val Ile Thr Ala Ala Pro Phe Met 115 120 125

Phe Thr Leu Leu Phe Gln Val Ala Phe Gly Trp Ser Ala Thr Leu Ala 130 135 140

Gly Ala Met Val Val Ala Leu Phe Ala Gly Asn Val Ala Ile Lys Pro 145 150 155 160

Phe Thr Thr Pro Ile Ile Lys Arg Trp Asn Phe Lys Pro Val Leu Val

Phe Ser Asn Ala Ala Gly Ala Leu Val Leu Ala Thr Phe Leu Phe Val 180 185 190

Arg Ala Asp Thr Pro Leu Val Leu Ile Val Leu Leu Leu Phe Val Ser 195 200 205

Gly Ala Leu Arg Ser Leu Gly Phe Ser Ala Tyr Asn Thr Leu Gln Phe 210 215 220

Val Asp Ile Ser Pro Glu Gln Thr Ser Asn Ala Asn Val Leu Ser Ala 225 230 235 240

Thr Leu His Gln Leu Gly Met Ser Leu Gly Ile Ala Val Ala Val Ile 245 250 255

Ala Met Ser Leu Ala Pro Thr Ala Asn Trp Ala Phe Pro Leu Ala Ala 260 265 270

Ala Leu Phe Leu Ile Pro Leu Ile Gly Ala Leu Ser Leu Pro Arg Asp 275 280 285

Gly Gly Ala Arg Ala Phe Ser Ser Ser 290 295

<210> 159

<2	11> 3 12> E 13> C	NA	iebac	teri	.um g	luta	ımicu	ım								
<22 <22	20> 21> C 22> (23> R	101)		301)												
	00> 1 atag		tato	tcga	aa c	tacc	aaga	c gg	tttc	tttt	ctt	taga	tct	aagg	aggaga	60
gad	cgtc	ttt	cacc	cttt	ca t	ctga	ttgg	a ca	tcga	cgcc		Arg		gat Asp		115
	ttt Phe				Ile					Ala						163
	atc Ile			Gly					Thr							211
cgt Arg	gac Asp	ttc Phe 40	Gly	att Ile	gac Asp	gcc Ala	gtg Val 45	gat Asp	gtc Val	agc Ser	att Ile	gca Ala 50	ctg Leu	gtt Val	gct Ala	259
	ttg Leu 55	Āla														301
tag	cgga	tcg a	attt	ggtgi	tg c	gc										324
<21 <21	0> 10 1> 60 2> Pl 3> Co	7 R T	ebact	teri	ım g]	lutar	nicur	n								
	0> 16 Arg		Asp	Arg 5	Ser	Phe	Ser	Val	Pro 10	Ile	Ala	Leu	Leu	Ala 15	Ala	
Gly	Ala	Leu	Phe 20	Leu	Glu	Ile	Leu	Asp 25	Gly	Thr	Ile	Leu	Thr 30	Thr	Ala	
Val	Pro	Ala 35	Ile	Ala	Arg	Asp	Phe 40	Gly	Ile	Asp	Ala	Val 45	Asp	Val	Ser	
Ile	Ala	Leu	Val	Ala	Tyr	Leu	Ala	Ala	Ala	Ala	Ala	Gly	Ile	Pro	Leu	

Gln Gly Gly

<210> 161 <211> 1275 <212> DNA <213> Corynebacterium glutamicum																
<220> <221> CDS <222> (101)(1252) <223> RXN01922																
	<400> 161 acactccttt ggtcacctgg tttggttgag ggaaacagac cgcccaagaa cccaagaaat															60
cccaagaaaa catgctgctt atgaattaaa gtgagcaccc atg aga tca Met Arg Ser 1															115	
					Ile		gtt Val			Leu						163
				His			tca Ser		Leu							211
			Ser				gtc Val 45	Asn								259
							ctc Leu									307
							ctc Leu									355
							ttt Phe									403
							ggc Gly									451
							cgc Arg 125									499
Gly							ttc Phe									547
	-		_		_		agc Ser			-			-		-	595

					ılle					Ğİy	ttt Phe				Asp	643
				Pro					Ala		agc Ser					691
			Met					Ala			ttg Leu		Met			739
		Phe									gtg Val 225					787
	Asp										ccc Pro					835
											ttt Phe					883
											gcg Ala					931
gcg Ala	ggt Gly	ttt Phe 280	gcg Ala	ctg Leu	gca Ala	gct Ala	ttt Phe 285	ggt Gly	ggc Gly	gac Asp	tcc Ser	att Ile 290	cca Pro	gtg Val	tgg Trp	979
											gca Ala 305					1027
											acg Thr					1075
											acg Thr					1123
		Pro					Ala				cac His					1171
						Ala					ggc Gly					1219
Arg		gta Val			Lys .						taga	tttc	ta c	ctac	gacct	1272
gaa																1275

- <210> 162
- <211> 384
- <212> PRT
- <213> Corynebacterium glutamicum
- <400> 162
- Met Arg Ser Gly Asn Ala Asn Arg Val Phe Ile Gly Val Thr Ile Leu
 1 5 10 15
- Leu Phe Thr Ala Gly Trp Ala Ala Asn His Phe Ala Ser Val Leu Val 20 25 30
- Leu Ile Arg Glu Gln Leu Asp Val Ser Ser Val Leu Val Asn Gly Ala 35 40 45
- Phe Gly Ile Tyr Ala Leu Gly Leu Leu Pro Ser Leu Leu Ala Gly Gly 50 55 60
- Val Leu Ala Asp Arg Phe Gly Ala Arg Met Val Val Leu Thr Gly Gly 65 70 75 80
- Val Leu Ser Ala Leu Gly Asn Leu Ser Leu Leu Ala Phe His Asp Gly
 85 90 95
- Pro Ser Leu Leu Val Gly Arg Phe Ile Val Gly Leu Gly Val Gly Leu 100 105 110
- Val Val Ser Ala Gly Thr Ala Trp Ala Gly Arg Leu Arg Gly Ala Ser 115 120 125
- Gly Val Thr Leu Ala Gly Ile Ile Leu Thr Ala Gly Phe Met Met Gly 130 135 140
- Pro Ile Val Thr Ser Gly Leu Gly Met Ala Ser Thr Ser Ile Ile Thr 145 150 155 160
- Pro Phe Ala Ile Ser Val Ala Leu Ser Leu Ile Ala Val Val Gly 165 170 175
- Phe Ala Leu Gly Asp Ala Arg Ser Thr Pro Ser Ala Leu Gly Ala Ser 180 185 190
- Ser Gly Ile Lys His Glu Arg Ser Met Lys Lys Ala Leu Ala Val Ser 195 200 205
- Leu Pro Met Ala Ile Trp Val Phe Ser Cys Ile Thr Thr Ser Leu Ile 210 215 220
- Val Met Ser Ala Arg Ile Asp Ser Thr Phe Gly Asn Ala Ile Leu Leu 225 230 235 240
- Pro Gly Ile Gly Ala Ala Ile Ala Phe Ser Ala Gly Leu Ile Ala Gln 245 250 255
- Phe Leu Gly Arg Lys Phe Ala Trp Gly Arg Gly Ser Gly Ile Val Gly

260 265 270

Ala Leu Cys Ala Leu Ala Gly Phe Ala Leu Ala Ala Phe Gly Gly Asp 275 280 285

Ser Ile Pro Val Trp Leu Phe Val Ile Ala Ser Ile Leu Phe Gly Thr 290 295 300

Ala Tyr Gly Leu Cys Leu Arg Glu Gly Leu Leu Ser Ile Glu Thr Tyr 305 310 315 320

Thr Pro Leu Asn Arg Gly Thr Gly Ile Gly Ile Tyr Tyr Val Phe 325 330 335

Thr Tyr Leu Gly Phe Gly Leu Pro Val Leu Leu Asp Ala Leu Leu Pro 340 345 350

His Leu Gly Ala Ser Ile Pro Leu Tyr Ala Leu Ala Ala Leu Ala Leu 355 360 365

Gly Ser Ala Val Ile Arg Gly Val Gln Ile Lys Arg Gly Tyr Val Val 370 380

<210> 163

<211> 1130

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(1107)

<223> FRXA01922

<400> 163

ctg ctg ttt act gca gga tgg gca gcc aat cat ttc gcg tca gtg ttg 48 Leu Leu Phe Thr Ala Gly Trp Ala Ala Asn His Phe Ala Ser Val Leu 1 5 10

gtg ttg atc cgt gaa caa tta gac gta tca agc gtg ctg gtc aac ggc 96 Val Leu Ile Arg Glu Gln Leu Asp Val Ser Ser Val Leu Val Asn Gly 20 25 30

gct ttt ggt att tat gca ctg gga ctt ctt cca agt ttg ctc gca ggc 144 Ala Phe Gly Ile Tyr Ala Leu Gly Leu Leu Pro Ser Leu Leu Ala Gly 35 40 45

ggt gtg ctt gcc gac cgt ttt ggt gcc cgc atg gtg gta ctc acc gga 192 Gly Val Leu Ala Asp Arg Phe Gly Ala Arg Met Val Val Leu Thr Gly 50 55 60

ggt gta ctt tct gcg ctt gga aac ctt tct ctt tta gcg ttt cat gat 240 Gly Val Leu Ser Ala Leu Gly Asn Leu Ser Leu Leu Ala Phe His Asp 65 70 75 80

ggt Gly	cci Pro	t to Se	c ct r Le	c ct u Le: 8:	u Va	a gg	a cga y Ara	a tto g Phe	e ato e Ilo 90	e Va	t gg 1 Gl	t cto y Lei	g ggo ı Gly	c gtt y Val 95	gga Gly	288
tta Leu	gto Val	gte L Val	c age 1 Se: 100	r Ala	g gge a Gl	c acc	c gca r Ala	a tgg a Trp 105	Ala	g ggo a Gly	c aga y Aro	atto g Leo	g cgo ı Aro 110	g Gl	gca Ala	336
agc Ser	ggc Gly	gto Val	l Thi	a tto r Lei	g gco 1 Ala	e ggo a Gly	2 att 7 Ile 120	e Ile	cto Lei	g aco	c gcc Ala	ggt Gly 125	/ Phe	ato Met	atg Met	384
GJ À à à à	ccg Pro 130	11e	gto Val	g aca L Thr	agt Ser	ggg Gly 135	/ Leu	. Gly	ato Met	g geg : Ala	tco Ser 140	Thr	ago Ser	att Ile	att Ile	432
acg Thr 145	ccc	ttt Phe	gco Ala	ata Ile	agc Ser 150	Val	gcc Ala	ctc Leu	tcg Ser	ctg Leu 155	Ile	gcg Ala	gtg Val	gtt Val	gtg Val 160	480
gga Gly	ttt Phe	gcg Ala	ctt Leu	ggc Gly 165	Asp	gcc Ala	cgc Arg	agc Ser	acc Thr 170	Pro	ago Ser	gca Ala	ctt Leu	ggc Gly 175	gca Ala	528
tcc Ser	agc Ser	gga Gly	atc Ile 180	Lys	cac His	gaa Glu	cga Arg	agc Ser 185	atg Met	aaa Lys	aag Lys	gcc Ala	ctc Leu 190	gcg Ala	gtg Val	576
tcc Ser	ttg Leu	ccg Pro 195	atg Met	gca Ala	att Ile	tgg Trp	gtg Val 200	ttc Phe	agc Ser	tgc Cys	atc Ile	acc Thr 205	acc Thr	tcc Ser	ctg Leu	624
Ile	gtg Val 210	atg Met	tcc Ser	gcg Ala	cgc Arg	atc Ile 215	gac Asp	tcc Ser	acc Thr	ttc Phe	ggc Gly 220	aac Asn	gcc Ala	att	ctt Leu	672
ctc Leu 225	ccc Pro	gga Gly	atc Ile	ggc Gly	gcg Ala 230	gcg Ala	atc Ile	gcc Ala	ttc Phe	agc Ser 235	gca Ala	ggc Gly	ctg Leu	atc Ile	gca Ala 240	720
caa Gln	ttt Phe	tta Leu	ggt [°] Gly	agg Arg 245	aaa Lys	ttc Phe	gcg Ala	tgg Trp	ggt Gly 250	cgt Arg	ggc Gly	tcc Ser	gga Gly	atc Ile 255	gtg Val	768
ggc Gly	gcg Ala	ctg Leu	tgt Cys 260	gcc Ala	ctc Leu	gcg Ala	ggt Gly	ttt Phe 265	gcg Ala	ctg Leu	gca Ala	gct Ala	ttt Phe 270	ggt Gly	ggc Gly	816
gac Asp	Ser	att Ile 275	cca Pro	gtg Val	tgg Trp	Leu	ttc Phe 280	gtt Val	atc Ile	gcc Ala	tcg Ser	atc Ile 285	ctg Leu	ttc Phe	ggc Gly	864
acc of Thr 1	gca Ala 290	tat Tyr	ggc Gly	ctc Leu	Cys	ctg Leu 295	cgc Arg	gaa Glu	ggc Gly	Leu	ctc Leu 300	agc Ser	atc Ile	gaa Glu	act Thr	912

			ctc Leu										960
	_		ttg Leu				-	-		-	-		1008
-			ggc Gly 340						 -	_	_	-	1056
	-		gca Ala										1104
gtt Val	taga	tttc	ta c	ctac	gaco	t ga	.a						1130

<210> 164

<211> 369

<212> PRT

<213> Corynebacterium glutamicum

<400> 164

Leu Leu Phe Thr Ala Gly Trp Ala Ala Asn His Phe Ala Ser Val Leu 1 5 10 15

Val Leu Ile Arg Glu Gln Leu Asp Val Ser Ser Val Leu Val Asn Gly
20 25 30

Ala Phe Gly Ile Tyr Ala Leu Gly Leu Leu Pro Ser Leu Leu Ala Gly 35 40 45

Gly Val Leu Ala Asp Arg Phe Gly Ala Arg Met Val Val Leu Thr Gly 50 60

Gly Val Leu Ser Ala Leu Gly Asn Leu Ser Leu Leu Ala Phe His Asp 65 70 75 80

Gly Pro Ser Leu Leu Val Gly Arg Phe Ile Val Gly Leu Gly Val Gly 85 90 95

Leu Val Val Ser Ala Gly Thr Ala Trp Ala Gly Arg Leu Arg Gly Ala 100 105 110

Ser Gly Val Thr Leu Ala Gly Ile Ile Leu Thr Ala Gly Phe Met Met 115 120 125

Gly Pro Ile Val Thr Ser Gly Leu Gly Met Ala Ser Thr Ser Ile Ile 130 135 140

Thr Pro Phe Ala Ile Ser Val Ala Leu Ser Leu Ile Ala Val Val 145 150 155 160

Gly Phe Ala Leu Gly Asp Ala Arg Ser Thr Pro Ser Ala Leu Gly Ala 165 170 175

Ser Ser Gly Ile Lys His Glu Arg Ser Met Lys Lys Ala Leu Ala Val 180 185 190

Ser Leu Pro Met Ala Ile Trp Val Phe Ser Cys Ile Thr Thr Ser Leu 195 200 205

Ile Val Met Ser Ala Arg Ile Asp Ser Thr Phe Gly Asn Ala Ile Leu 210 215 220

Leu Pro Gly Ile Gly Ala Ala Ile Ala Phe Ser Ala Gly Leu Ile Ala 225 230 235 240

Gln Phe Leu Gly Arg Lys Phe Ala Trp Gly Arg Gly Ser Gly Ile Val 245 250 255

Gly Ala Leu Cys Ala Leu Ala Gly Phe Ala Leu Ala Ala Phe Gly Gly 260 265 270

Asp Ser Ile Pro Val Trp Leu Phe Val Ile Ala Ser Ile Leu Phe Gly 275 280 285

Thr Ala Tyr Gly Leu Cys Leu Arg Glu Gly Leu Leu Ser Ile Glu Thr 290 295 300

Tyr Thr Pro Leu Asn Arg Arg Gly Thr Gly Ile Gly Ile Tyr Tyr Val 305 310 315 320

Phe Thr Tyr Leu Gly Phe Gly Leu Pro Val Leu Leu Asp Ala Leu Leu 325 330 335

Pro His Leu Gly Ala Ser Ile Pro Leu Tyr Ala Leu Ala Ala Leu Ala 340 345 350

Leu Gly Ser Ala Val Ile Arg Gly Val Gln Ile Lys Arg Gly Tyr Val 355 360 365

Val

<210> 165

<211> 362

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(339)

<223> RXA02060

<400> 165

gaa ttt gcc cgc att ttg aag cca aag gga cag gtc atc gtg ctt acc 48
Glu Phe Ala Arg Ile Leu Lys Pro Lys Gly Gln Val Ile Val Leu Thr
1 5 10 15

													atc Ile		96
_		-	-			_	_	_	_	_			gca Ala		144
		_			-	_		_	_	 -		-	atg Met		192
_	-					_		-		 _	_		tct Ser	-	240
													cta Leu 95		288
_		_	_	_		_		_	_			_	gaa Glu	_	336
atc Ile	taac	tctt	at c	tcac	tggg	c ct	t								362

<210> 166

<211> 113

<212> PRT

<213> Corynebacterium glutamicum

<400> 166

Glu Phe Ala Arg Ile Leu Lys Pro Lys Gly Gln Val Ile Val Leu Thr 1 5 10 15

Ala Asp Thr Gly His Leu Ala Glu Leu Arg Glu Pro Leu Gly Ile Ile 20 25 30

Asp Val Glu Ala Gly Lys Val Asp Arg Met Ile Glu Gln Ala Ala Gly 35 40 45

His Leu Lys Pro Val Gly Glu Arg Asp Leu Val Glu Phe Glu Met Leu 50 55 60

Leu Asp Gln Lys Ser Ile Ala Ser Gln Ile Gly Met Ser Pro Ser Ala
65 70 75 80

Arg His Ile Lys Pro Glu Ala Leu Ala Glu Arg Ile Ala Ala Leu Pro 85 90 95

Glu Gln Met Lys Val Thr Ala Arg Ala Lys Ile Thr Arg Leu Glu Arg 100 105 110

Ile

<21 <21	10> 1 11> 1 12> 1 13> 0	L 395 DNA	nebad	cteri	ium ç	gluta	amicu	ım								
<22	20> 21> 0 22> (23> F	(101)		.372)												
	0> 1 cggt		acca	cago	cg t	tgtc	agcg	ıg cg	cttg	gtct	gtg	gagg	atc	gccg	aggtta	60
cta	acaa	ata	ggcc	caac	aa a	ıgagg	tcta	a gc	tcta	cctg		agt Ser				115
					Arg					Pro		ttc Phe				163
				Val	-		_			-		tta Leu		_	_	211
			Val									tcc Ser 50				259
												att Ile				307
												atc Ile				355
												ttt Phe				403
												ata Ile				451
												cga Arg 130				499
ctt Leu	cga Arg 135	agt Ser	att Ile	ttg Leu	ccg Pro	att Ile 140	gat Asp	caa Gln	tta Leu	gcg Ala	tcg Ser 145	gca Ala	aca Thr	tca Ser	ctg Leu	547

	Met	-	•	_		Thr		-		_	. Ğĺy	ccg Pro	_		_	595
					Leu					Trp		tat Tyr			Asp	643
				Ile					Ala			tca Ser		Pro		691
			Ser									gcc Ala 210				739
												ttg Leu				787
												cgt Arg				835
			_	_							-	gcc Ala		_	-	883
_	_							_	-	_		gca Ala	-			931
												cag Gln 290				979
												gct Ala				1027
gtg Val 310	gca Ala	att Ile	gtt Val	gtc Val	agc Ser 315	ccc Pro	ggc Gly	gcg Ala	gtg Val	act Thr 320	gcg Ala	tgg Trp	gcg Ala	tgg Trp	atg Met 325	1075
			_	_	_				_	-	-	atg Met		-	_	1123
												gaa Glu				1171
	Arg				_	Trp			-			ggt Gly 370			_	1219
tta	gct	gac	gtc	ctt	cac	ggt	tgg	gcc	gct	gag	ccc	ctc	ggc	gca	ggt	1267

Leu Ala Asp Val Leu His Gly Trp Ala Ala Glu Pro Leu Gly Ala Gly 375 380 385

tgg acg gta tta tgg ggc gga gta gcg gtg gtt gta ctc act gca att 1315 Trp Thr Val Leu Trp Gly Gly Val Ala Val Val Leu Thr Ala Ile 390 395 400 405

tgt atg gtg gtg cct aaa ttc tgg aaa tac gag aaa cca aaa att 1363 Cys Met Val Ala Val Pro Lys Phe Trp Lys Tyr Glu Lys Pro Lys Ile 410 415 420

acc ggc atc taaatactta tccatgccca ttt 1395
Thr Gly Ile

<210> 168

<211> 424

<212> PRT

<213> Corynebacterium glutamicum

<400> 168

Val Ser Phe Arg Asp Ile Phe Ala Asp Thr Arg Pro Leu Lys Glu Pro 1 5 10 15

Ala Phe Lys Arg Leu Trp Leu Gly Asn Val Ala Thr Val Ile Gly Ala
20 25 30

Gln Leu Thr Val Val Ala Val Pro Val Gln Ile Tyr Gln Met Thr Gly
35 40 45

Ser Ser Gly Tyr Val Gly Leu Thr Gly Leu Phe Gly Leu Ile Pro Leu 50 55 60

Val Ile Phe Gly Leu Tyr Gly Gly Ser Ile Ala Asp Ala Phe Asp Lys
65 70 75 80

Arg Ile Val Leu Ile Cys Thr Thr Ile Gly Met Cys Val Thr Thr Ala 85 90 95

Gly Phe Trp Val Leu Thr Ile Leu Gly Asn Glu Asn Ile Trp Leu Leu 100 105 110

Leu Ile Asn Phe Ser Leu Gln Gln Ala Phe Phe Ala Val Asn Gln Pro 115 120 125

Thr Arg Thr Ala Ile Leu Arg Ser Ile Leu Pro Ile Asp Gln Leu Ala 130 135 140

Ser Ala Thr Ser Leu Asn Met Leu Leu Met Gln Thr Gly Ala Ile Val 145 150 155 160

Gly Pro Leu Ile Ala Gly Ala Leu Ile Pro Leu Ile Gly Phe Gly Trp 165 170 175

Leu Tyr Phe Leu Asp Val Val Ser Ile Ile Pro Thr Leu Trp Ala Val 180 185 190

Trp Ser Leu Pro Ser Ile Lys Pro Ser Gly Lys Val Met Lys Ala Gly
195 200 205

Phe Ala Ser Val Val Asp Gly Leu Lys Tyr Leu Ala Gly Gln Pro Val 210 215 220

Leu Leu Met Val Met Val Leu Asp Leu Ile Ala Met Ile Phe Gly Met 225 230 235 240

Pro Arg Ala Leu Tyr Pro Glu Ile Ala Glu Val Asn Phe Gly Gly Gly 245 250 255

Asp Ala Gly Ala Thr Met Leu Ala Phe Met Tyr Ser Ser Met Ala Val 260 265 270

Gly Ala Val Leu Gly Gly Val Leu Ser Gly Trp Val Ala Arg Ile Ser 275 280 285

Arg Gln Gly Val Ala Val Tyr Trp Cys Ile Ile Ala Trp Gly Ala Ala 290 295 300

Val Ala Leu Gly Gly Val Ala Ile Val Val Ser Pro Gly Ala Val Thr 305 310 315 320

Ala Trp Ala Trp Met Phe Ile Ile Met Met Val Ile Gly Gly Met Ala 325 330 335

Asp Met Phe Ser Ser Ala Val Arg Asn Ala Ile Leu Gln Gln Ser Ala 340 345 350

Ala Glu His Val Gln Gly Arg Ile Gln Gly Val Trp Ile Ile Val Val 355 360 365

Val Gly Gly Pro Arg Leu Ala Asp Val Leu His Gly Trp Ala Ala Glu 370 375 380

Pro Leu Gly Ala Gly Trp Thr Val Leu Trp Gly Gly Val Ala Val Val 385 390 395 400

Val Leu Thr Ala Ile Cys Met Val Ala Val Pro Lys Phe Trp Lys Tyr 405 410 415

Glu Lys Pro Lys Ile Thr Gly Ile 420

<210> 169

<211> 945

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(922)

<223> FRXA01936

<400> 169 tttacagcag qcatttttcg cggtgaatca acccacccga acggcgatcc ttcgaagtat 60 tttgccgatt gatcaataag cgtcggcaac atcactgaat atg ctg ctc atg cag 115 Met Leu Leu Met Gln 1 acc ggc gca atc gtt ggc ccg ctg atc gca ggt gcg ttg att ccg ctg 163 Thr Gly Ala Ile Val Gly Pro Leu Ile Ala Gly Ala Leu Ile Pro Leu atc ggt ttc ggg tgg ctg tat ttc ctt gat gtt gtc tcc atc atc ccc Ile Gly Phe Gly Trp Leu Tyr Phe Leu Asp Val Val Ser Ile Ile Pro aca ctq tqq gct gta tgg tca ctg cct tcg atc aag cca tcc ggc aag Thr Leu Trp Ala Val Trp Ser Leu Pro Ser Ile Lys Pro Ser Gly Lys 40 gtg atg aag gct ggt ttc gcc agt gtg gtg gat ggc ctg aag tat ttg 307 Val Met Lys Ala Gly Phe Ala Ser Val Val Asp Gly Leu Lys Tyr Leu 55 gct ggc caa ccc gtg ttg ttg atg gtg atg gtg ctg gat ctt atc gcc 355 Ala Gly Gln Pro Val Leu Leu Met Val Met Val Leu Asp Leu Ile Ala 70 atq att ttc ggc atg cca cgt gcg ctt tac ccc gag atc gca gaa gtg Met Ile Phe Gly Met Pro Arg Ala Leu Tyr Pro Glu Ile Ala Glu Val aac ttc ggt ggg ggt gac gcc ggt gca acg atg ctg gcg ttc atg tac Asn Phe Gly Gly Gly Asp Ala Gly Ala Thr Met Leu Ala Phe Met Tyr 105 110 tca tcc atg gct gtt ggc gca gtt ctt ggc ggc gtg ctg tct ggt tgg 499 Ser Ser Met Ala Val Gly Ala Val Leu Gly Gly Val Leu Ser Gly Trp 125 120 gtg gcc cgg att agc cgc cag ggt gtt gca gtt tat tgg tgc atc atc 547 Val Ala Arg Ile Ser Arg Gln Gly Val Ala Val Tyr Trp Cys Ile Ile 140 135 gcc tgg ggc gca gcc gtt gct ttg ggt ggt gtg gca att gtt gtc agc 595 Ala Trp Gly Ala Ala Val Ala Leu Gly Gly Val Ala Ile Val Val Ser 160 165 150 ccc ggc gcg gtg act gcg tgg gcg tgg atg ttc atc atc atg atg gtc 643 Pro Gly Ala Val Thr Ala Trp Ala Trp Met Phe Ile Ile Met Met Val 170 180 691 att ggt ggc atg gct gac atg ttc agc tcg gca gtt cga aac gct att Ile Gly Gly Met Ala Asp Met Phe Ser Ser Ala Val Arg Asn Ala Ile 190 185 739 ttq caq caq tct gct gcg gaa cat gtg cag ggc cga atc caa ggt gtg Leu Gln Gln Ser Ala Ala Glu His Val Gln Gly Arg Ile Gln Gly Val

205 210 200 tgg atc atc gtc gtg gtg ggt gga cct cgt tta gct gac gtc ctt cac 787 Trp Ile Ile Val Val Val Gly Gly Pro Arg Leu Ala Asp Val Leu His 220 215 ggt tgg gcc gct gag ccc ctc ggc gca ggt tgg acg gta tta tgg ggc 835 Gly Trp Ala Ala Glu Pro Leu Gly Ala Gly Trp Thr Val Leu Trp Gly 235 qqa qta gcg gtg gtt gta ctc act gca att tgt atg gtg gcg gtg cct 883 Gly Val Ala Val Val Val Leu Thr Ala Ile Cys Met Val Ala Val Pro 250 932 aaa ttc tqq aaa tac gag aaa cca aaa att acc qqc atc taaatactta Lys Phe Trp Lys Tyr Glu Lys Pro Lys Ile Thr Gly Ile 270

tccatgccca ttt 945

<210> 170

<211> 274

<212> PRT

<213> Corynebacterium glutamicum

<400> 170

Met Leu Leu Met Gln Thr Gly Ala Ile Val Gly Pro Leu Ile Ala Gly
1 5 10 15

Ala Leu Ile Pro Leu Ile Gly Phe Gly Trp Leu Tyr Phe Leu Asp Val 20 25 30

Val Ser Ile Ile Pro Thr Leu Trp Ala Val Trp Ser Leu Pro Ser Ile 35 40 45

Lys Pro Ser Gly Lys Val Met Lys Ala Gly Phe Ala Ser Val Val Asp 50 55 60

Gly Leu Lys Tyr Leu Ala Gly Gln Pro Val Leu Leu Met Val Met Val 65 70 75 80

Leu Asp Leu Ile Ala Met Ile Phe Gly Met Pro Arg Ala Leu Tyr Pro 85 90 95

Glu Ile Ala Glu Val Asn Phe Gly Gly Gly Asp Ala Gly Ala Thr Met 100 105 110

Leu Ala Phe Met Tyr Ser Ser Met Ala Val Gly Ala Val Leu Gly Gly 115 120 125

Val Leu Ser Gly Trp Val Ala Arg Ile Ser Arg Gln Gly Val Ala Val 130 135 140

Tyr Trp Cys Ile Ile Ala Trp Gly Ala Ala Val Ala Leu Gly Gly Val 145 150 155 160

Ala Ile Val Val Ser Pro Gly Ala Val Thr Ala Trp Ala Trp Met Phe 165 Ile Ile Met Met Val Ile Gly Gly Met Ala Asp Met Phe Ser Ser Ala 185 Val Arg Asn Ala Ile Leu Gln Gln Ser Ala Ala Glu His Val Gln Gly 200 Arg Ile Gln Gly Val Trp Ile Ile Val Val Gly Gly Pro Arg Leu 215 Ala Asp Val Leu His Gly Trp Ala Ala Glu Pro Leu Gly Ala Gly Trp Thr Val Leu Trp Gly Gly Val Ala Val Val Leu Thr Ala Ile Cys Met Val Ala Val Pro Lys Phe Trp Lys Tyr Glu Lys Pro Lys Ile Thr Gly Ile <210> 171 <211> 549 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(526) <223> FRXA01937 gcqcqqtqac accacaqccq ttqtcaqcqq cgcttggtct gtggaggatc gccgaggtta 60 ctaacaaata ggcccaacaa agaggtctaa gctctacctg gtg agt ttc cga gat Val Ser Phe Arg Asp att ttc gct gac acc aga ccg ctg aaa gaa ccg gcc ttc aaa cgc ctc 163 Ile Phe Ala Asp Thr Arg Pro Leu Lys Glu Pro Ala Phe Lys Arg Leu 10 15 tgg ctt ggc aat gtt gcc acc gtc att ggt gcc caa tta act gtt gtt 211 Trp Leu Gly Asn Val Ala Thr Val Ile Gly Ala Gln Leu Thr Val Val 30 gcc gtt ccg gtg cag att tac caa atg act ggg tcc tcc ggc tat gtg 259 Ala Val Pro Val Gln Ile Tyr Gln Met Thr Gly Ser Ser Gly Tyr Val 45 ggc ttg acc ggg ctt ttt ggc ctt att cct ttg gtt att ttt ggc ctt 307 Gly Leu Thr Gly Leu Phe Gly Leu Ile Pro Leu Val Ile Phe Gly Leu 60

	Gly				gcg Ala 75											355
					atg Met											403
					gag Glu											45]
					ttc Phe											499
	_	_		_	ccg Pro		_		taad	gcgt	cgg (caaca	atcad	ct		546
gaa																549
<211 <212	0> 17 l> 14 2> PF 3> Co	12 RT	ebact	eriu	ım gj	Lutan	nicum	n								
)> 17			_	T1 -	Dh.	n 1 -	λερ	m 1	_		•	T	61		
1	Ser	Phe	Arg	Asp 5	11e	Pne	Ala	Asp	10	Arg	Pro	Leu	гуѕ	15	Pro	
1				5	Trp				10					15		
l Ala	Phe	Lys	Arg 20	5 Leu		Leu	Gly	Asn 25	10 Val	Ala	Thr	Val	Ile 30	15 Gly	Ala	
l Ala Gln	Phe Leu	Lys Thr 35	Arg 20 Val	5 Leu Val	Trp	Leu Val	Gly Pro 40	Asn 25 Val	10 Val Gln	Ala	Thr Tyr	Val Gln 45	Ile 30 Met	15 Gly Thr	Ala Gly	
l Ala Gln Ser	Phe Leu Ser 50	Lys Thr 35 Gly	Arg 20 Val Tyr	5 Leu Val Val	Trp Ala	Leu Val Leu 55	Gly Pro 40 Thr	Asn 25 Val Gly	10 Val Gln Leu	Ala Ile Phe	Thr Tyr Gly 60	Val Gln 45 Leu	Ile 30 Met	15 Gly Thr Pro	Ala Gly Leu	
1 Ala Gln Ser Val 65	Phe Leu Ser 50	Lys Thr 35 Gly	Arg 20 Val Tyr	5 Leu Val Val	Trp Ala Gly Tyr	Leu Val Leu 55 Gly	Gly Pro 40 Thr	Asn 25 Val Gly Ser	10 Val Gln Leu Ile	Ala Ile Phe Ala 75	Thr Tyr Gly 60 Asp	Val Gln 45 Leu Ala	Ile 30 Met Ile	15 Gly Thr Pro Asp	Ala Gly Leu Lys 80	
1 Ala Gln Ser Val 65 Arg	Phe Leu Ser 50 Ile	Lys Thr 35 Gly Phe Val	Arg 20 Val Tyr Gly	5 Leu Val Val Leu Ile 85	Trp Ala Gly Tyr 70	Leu Val Leu 55 Gly	Gly Pro 40 Thr Gly Thr	Asn 25 Val Gly Ser	10 Val Gln Leu Ile Gly 90	Ala Ile Phe Ala 75 Met	Thr Tyr Gly 60 Asp Cys	Val Gln 45 Leu Ala Val	Ile 30 Met Ile Phe	15 Gly Thr Pro Asp	Ala Gly Leu Lys 80 Ala	
1 Ala Gln Ser Val 65 Arg	Phe Leu Ser 50 Ile Ile	Lys Thr 35 Gly Phe Val	Arg 20 Val Tyr Gly Leu Val	5 Leu Val Val Leu Ile 85 Leu	Trp Ala Gly Tyr 70 Cys	Leu Val Leu 55 Gly Thr Ile	Gly Pro 40 Thr Gly Thr	Asn 25 Val Gly Ser Ile Gly 105	10 Val Gln Leu Ile Gly 90 Asn	Ala Ile Phe Ala 75 Met	Thr Tyr Gly 60 Asp Cys	Val Gln 45 Leu Ala Val	Ile 30 Met Ile Phe Thr	15 Gly Thr Pro Asp Thr 95 Leu	Ala Gly Leu Lys 80 Ala	

<210> 173 <211> 1242 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1219) <223> RXN01010 <400> 173 gtgccaaagc gtttcctgta aaacgcataa ccccgaatac cccctgtttc cagatccaaa 60 aaaagatctg gcagggggtt taggcataga ttaggaactt atg aag aaa ctg caa Met Lys Lys Leu Gln atg ccg gcc att ttg gtc gga ggc ttt gtg ggg ccg ttt act ggc caa 163 Met Pro Ala Ile Leu Val Gly Gly Phe Val Gly Pro Phe Thr Gly Gln gct cta tca gtg gtc ttg ccg gaa ttt gca gac acc ttt gat atc agt 211 Ala Leu Ser Val Val Leu Pro Glu Phe Ala Asp Thr Phe Asp Ile Ser gtc agc cag gca gcg ctg acc atg acc gca tac ttg ttg ccc ttt gcc 259 Val Ser Gln Ala Ala Leu Thr Met Thr Ala Tyr Leu Leu Pro Phe Ala 45 acc atg atg ttg ttt tcg ggg cgc atc acc aga aag atc cat ccg cat 307 Thr Met Met Leu Phe Ser Gly Arg Ile Thr Arg Lys Ile His Pro His aag gtg gtg cag gcg gct tat att gtc aca ctg cca ctt gcg ctg ttg 355 Lys Val Val Gln Ala Ala Tyr Ile Val Thr Leu Pro Leu Ala Leu Leu 70 ctc cta gtt aca cca tcg tgg ggg ctg ttt atg gct gcg tat gcc acg 403 Leu Leu Val Thr Pro Ser Trp Gly Leu Phe Met Ala Ala Tyr Ala Thr att ggt atc gct aat gca ttt acc act ccg gtg ctg caa att atg ttg 451 Ile Gly Ile Ala Asn Ala Phe Thr Thr Pro Val Leu Gln Ile Met Leu cgt gag ctt gtt ccg ccg cgt tct ttg ggt aag gca ttg ggc acc tat 499 Arg Glu Leu Val Pro Pro Arg Ser Leu Gly Lys Ala Leu Gly Thr Tyr 120 gct gcg atg caa tca ctc ggc atg ttg tcg gcg cca ctg atc gca ggt 547 Ala Ala Met Gln Ser Leu Gly Met Leu Ser Ala Pro Leu Ile Ala Gly 140 gtg tct tcg gtg gtg tcg tgg agg ttg acc ttc ctg gtc act gca gca 595 Val Ser Ser Val Val Ser Trp Arg Leu Thr Phe Leu Val Thr Ala Ala 160

		ctg Leu			Leu					Pro						643
		tcg Ser		Gln					Lys							691
		cac His 200						Val								739
		ttc Phe														787
	Āla	gcg Ala														835
		tcc Ser														883
		ctc Leu														931
_	_	atc Ile 280	_	_						-	_	_		_		979
		gca Ala														1027
		agc Ser														1075
cga Arg	ttc Phe	ttc Phe	gga Gly	tca Ser 330	gcg Ala	gca Ala	gca Ala	cca Pro	gtg Val 335	aca Thr	ttc Phe	ctt Leu	cct Pro	atc Ile 340	tat Tyr	1123
		atc Ile														1171
		gcc Ala 360														1219
tgag	ggag	ac g	tcga	gaag	c gt	С										1242

<210> 174

- <211> 373
- <212> PRT
- <213> Corynebacterium glutamicum

<400> 174

- Met Lys Lys Leu Gln Met Pro Ala Ile Leu Val Gly Gly Phe Val Gly
 1 5 10 15
- Pro Phe Thr Gly Gln Ala Leu Ser Val Val Leu Pro Glu Phe Ala Asp 20 25 30
- Thr Phe Asp Ile Ser Val Ser Gln Ala Ala Leu Thr Met Thr Ala Tyr 35 40 45
- Leu Leu Pro Phe Ala Thr Met Met Leu Phe Ser Gly Arg Ile Thr Arg
 50 55 60
- Lys Ile His Pro His Lys Val Val Gln Ala Ala Tyr Ile Val Thr Leu 65 70 75 80
- Pro Leu Ala Leu Leu Leu Val Thr Pro Ser Trp Gly Leu Phe Met 85 90 95
- Ala Ala Tyr Ala Thr Ile Gly Ile Ala Asn Ala Phe Thr Thr Pro Val 100 105 110
- Leu Gln Ile Met Leu Arg Glu Leu Val Pro Pro Arg Ser Leu Gly Lys 115 120 125
- Ala Leu Gly Thr Tyr Ala Ala Met Gln Ser Leu Gly Met Leu Ser Ala 130 135 140
- Pro Leu Ile Ala Gly Val Ser Ser Val Val Ser Trp Arg Leu Thr Phe 145 150 155 160
- Leu Val Thr Ala Ala Ala Ser Leu Phe Ile Leu Val Ala Arg Leu Pro 165 170 175
- Val Val Pro Pro Pro Ser Ala Ser Lys Gln Asn Val Ser Gly Lys Val 180 185 190
- Gln Trp Gly Pro Thr Ile Ile His Met Val Ser Gly Phe Val Val Gly 195 200 205
- Ile Gly Ile Gly Ile Gly Phe Met Thr Ser Leu His Val Gly Glu 210 215 220
- Gln Phe Gly Leu Asp Ala Ala Ala Arg Gly Leu Val Val Met Cys Gly 235 230 235
- Gly Leu Ala Ala Phe Phe Ala Ser Arg Lys Ile Gly Asp Leu Ala Asp
 245 250 255
- Lys Phe Gly Val Arg Ala Val Leu Ile Val Ser Ala Val Ile Gly Thr 260 265 270
- Ile Ala Leu Ala Leu Pro Ile Ala Pro Trp Ile Ile Val Val Ala

275 280 285

Val Leu Trp Ala Phe Ala Val Ala Ala Gln Gly Ile Gln Ala Thr 290 295 300

Val Asn Leu Ala Val Ile Gly Ser Pro Gly Gly Ser Ser Leu Leu Ser 305 310 315 320

Thr Val Gln Ala Phe Arg Phe Phe Gly Ser Ala Ala Ala Pro Val Thr 325 330 335

Phe Leu Pro Ile Tyr Met Gly Ile Gly Ser Gly Ala Phe Trp Val Ser 340 345 350

Ala Val Ala Leu Phe Phe Val Ala Ile Ala Gln Trp Leu Asn Pro Gln 355 360 365

Arg Val Glu Arg Gly 370

<210> 175

<211> 871

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(871)

<223> FRXA01010

<400> 175

gtgccaaagc gtttcctgta aaacgcataa ccccgaatac cccctgtttc cagatccaaa 60

aaaagatctg gcagggggtt taggcataga ttaggaactt atg aag aaa ctg caa 115 Met Lys Lys Leu Gln

atg ccg gcc att ttg gtc gga ggc ttt gtg ggg ccg ttt act ggc caa 163 Met Pro Ala Ile Leu Val Gly Gly Phe Val Gly Pro Phe Thr Gly Gln 10 15 20

gct cta tca gtg gtc ttg ccg gaa ttt gca gac acc ttt gat atc agt 211 Ala Leu Ser Val Val Leu Pro Glu Phe Ala Asp Thr Phe Asp Ile Ser

gtc agc cag gca gcg ctg acc atg acc gca tac ttg ttg ccc ttt gcc 259 Val Ser Gln Ala Ala Leu Thr Met Thr Ala Tyr Leu Leu Pro Phe Ala 40 45 50

acc atg atg ttg ttt tcg ggg cgc atc acc aga aag atc cat ccg cat 307
Thr Met Met Leu Phe Ser Gly Arg Ile Thr Arg Lys Ile His Pro His
55 60 65

aag gtg gtg cag gcg gct tat att gtc aca ctg cca ctt gcg ctg ttg 355 Lys Val Val Gln Ala Ala Tyr Ile Val Thr Leu Pro Leu Ala Leu Leu 70 75 80 85

cta Leu				Ser				Met					403
ggt Gly			Asn				Pro						451
gag Glu		Val											499
gcg Ala 135													547
 tct Ser	-			_	 	_			_	-	-	-	595
tca Ser													643
gca Ala													691
atc Ile													739
gga Gly 215													787
gca Ala													835
gcc Ala													871

<210> 176

<211> 257

<212> PRT

<213> Corynebacterium glutamicum

<400> 176

Met Lys Lys Leu Gln Met Pro Ala Ile Leu Val Gly Gly Phe Val Gly 1 5 10 15

Pro Phe Thr Gly Gln Ala Leu Ser Val Val Leu Pro Glu Phe Ala Asp 20 25 30

Thr Phe Asp Ile Ser Val Ser Gln Ala Ala Leu Thr Met Thr Ala Tyr 35 40 45

Leu Leu Pro Phe Ala Thr Met Met Leu Phe Ser Gly Arg Ile Thr Arg 50 55 60

Lys Ile His Pro His Lys Val Val Gln Ala Ala Tyr Ile Val Thr Leu 65 70 75 80

Pro Leu Ala Leu Leu Leu Val Thr Pro Ser Trp Gly Leu Phe Met 85 90 95

Ala Ala Tyr Ala Thr Ile Gly Ile Ala Asn Ala Phe Thr Thr Pro Val 100 105 110

Leu Gln Ile Met Leu Arg Glu Leu Val Pro Pro Arg Ser Leu Gly Lys 115 120 125

Ala Leu Gly Thr Tyr Ala Ala Met Gln Ser Leu Gly Met Leu Ser Ala 130 135 140

Pro Leu Ile Ala Gly Val Ser Ser Val Val Ser Trp Arg Leu Thr Phe 145 150 155 160

Leu Val Thr Ala Ala Ala Ser Leu Phe Ile Leu Val Ala Arg Leu Pro 165 170 175

Val Val Pro Pro Pro Ser Ala Leu Lys Gln Asn Val Ser Gly Lys Val 180 185 190

Gln Trp Gly Pro Thr Ile Ile His Met Val Ser Gly Phe Val Val Gly
195 200 205

Ile Gly Ile Ile Gly Ile Gly Phe Met Thr Ser Leu His Val Gly Glu 210 215 220

Gln Phe Gly Leu Asn Thr Ala Ala Arg Gly Leu Val Val Met Cys Gly 225 230 235 240

Gly Arg Ala Ala Phe Phe Ala Ser Arg Lys Ile Gly Asp Leu Ala Asp 245 250 255

Lys

<210> 177

<211> 1266

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1243)

<223> RXN03142

<400> 177 gcaatttggc caatcaacaa cataggagga ctgcgtggcg gtcaccgcaa gaacggacat 60

- aaaaccacac ccatcgcaac caacggcact gttcactcca gtg ttt att ttg ggc 115 Val Phe Ile Leu Gly 1 5
- tgg ctc gtc aac ttg acc cag tac ttg agc ttc tac ttc ctg atc aca $$ 163 Trp Leu Val Asn Leu Thr Gln Tyr Leu Ser Phe Tyr Phe Leu Ile Thr $$ 10 $$ 15 $$ 20
- gtc atg gcg ctg tat gcg atg gaa agc ttc gcc gtt tca gag gcc gct 211 Val Met Ala Leu Tyr Ala Met Glu Ser Phe Ala Val Ser Glu Ala Ala 25 30 35
- gtc gga ttt gcg gcc agc tcc ttt gtt atc ggc gca acc gtg gct cgt 259 Val Gly Phe Ala Ala Ser Ser Phe Val Ile Gly Ala Thr Val Ala Arg 40 45 50
- gtg ttc gcg gga tgg acg tcc gac cgt ttt ggt aaa aaa cag atc ctg 307 Val Phe Ala Gly Trp Thr Ser Asp Arg Phe Gly Lys Lys Gln Ile Leu 55 60 65
- ctc atc ttt gtc ggc ttg gaa gcg gta gca tca cta ttc tat att cca 355 Leu Ile Phe Val Gly Leu Glu Ala Val Ala Ser Leu Phe Tyr Ile Pro 70 75 80 85
- gct gcc tca cta cca gcg ctg gtt gct gtg cgt ttt gtt cac ggt ttt 403 Ala Ala Ser Leu Pro Ala Leu Val Ala Val Arg Phe Val His Gly Phe 90 95 100
- tct tat tct ctt gct tcc acc gct gtg atg gca ctt gtg cag tcc gtg 451 Ser Tyr Ser Leu Ala Ser Thr Ala Val Met Ala Leu Val Gln Ser Val 105 110 115
- att cct gca agc cgt agg gca gag ggc acc ggc tac ttc gcg ctc gga 499

 Ile Pro Ala Ser Arg Arg Ala Glu Gly Thr Gly Tyr Phe Ala Leu Gly

 120 130
- tcc aca ctg gct aca gct ttc ggc cca gca att gcg ctg ttt gtt atc 547 Ser Thr Leu Ala Thr Ala Phe Gly Pro Ala Ile Ala Leu Phe Val Ile 135 140 145
- gat gac ttc aac tac aac acc ctg ttc tgg att acc act gcg acc agt 595 Asp Asp Phe Asn Tyr Asn Thr Leu Phe Trp Ile Thr Thr Ala Thr Ser 150 165
- gtt ttc ggc ctg atc ctc acc gtt ttg atc cgc aag ccg gag ttc att 643 Val Phe Gly Leu Ile Leu Thr Val Leu Ile Arg Lys Pro Glu Phe Ile 170 175 180
- aag aat gcg gaa cac ggc aga gta aag cca gtc tgg tct atc aag act 691 Lys Asn Ala Glu His Gly Arg Val Lys Pro Val Trp Ser Ile Lys Thr 185 190 195
- gtt gtg cac cca tcg gtc atg ctc att gga ttc ttc atg ctc gct gtc 739 Val Val His Pro Ser Val Met Leu Ile Gly Phe Phe Met Leu Ala Val

		200)				205					210				
	_	Åla		_			Ile			ctc Leu						787
	Thr									ttc Phe 240						835
					Met					gga Gly						883
										ttg Leu						931
										gac Asp						979
_		_				_				acc Thr		_	_	_	_	1027
	-		_	-	_		-		_	act Thr 320	_	_				1075
										ggc Gly						1123
										gga Gly						1171
										ggc Gly						1219
-	_				Āla	_		taag	ttag	ag c	attt	tatt	g ag	ic		1266
	> 17 > 38															

<211> 381

<212> PRT

<213> Corynebacterium glutamicum

<400> 178

Val Phe Ile Leu Gly Trp Leu Val Asn Leu Thr Gln Tyr Leu Ser Phe 1 5 10 15

Tyr Phe Leu Ile Thr Val Met Ala Leu Tyr Ala Met Glu Ser Phe Ala

30

20 25

Val Ser Glu Ala Ala Val Gly Phe Ala Ala Ser Ser Phe Val Ile Gly 35 40 45

Ala Thr Val Ala Arg Val Phe Ala Gly Trp Thr Ser Asp Arg Phe Gly 50 55 60

Lys Lys Gln Ile Leu Leu Ile Phe Val Gly Leu Glu Ala Val Ala Ser 65 70 75 80

Leu Phe Tyr Ile Pro Ala Ala Ser Leu Pro Ala Leu Val Ala Val Arg 85 90 95

Phe Val His Gly Phe Ser Tyr Ser Leu Ala Ser Thr Ala Val Met Ala 100 105 110

Leu Val Gln Ser Val Ile Pro Ala Ser Arg Arg Ala Glu Gly Thr Gly 115 120 125

Tyr Phe Ala Leu Gly Ser Thr Leu Ala Thr Ala Phe Gly Pro Ala Ile 130 135 140

Ala Leu Phe Val Ile Asp Asp Phe Asn Tyr Asn Thr Leu Phe Trp Ile 145 150 155 160

Thr Thr Ala Thr Ser Val Phe Gly Leu Ile Leu Thr Val Leu Ile Arg 165 170 175

Lys Pro Glu Phe Ile Lys Asn Ala Glu His Gly Arg Val Lys Pro Val 180 185 190

Trp Ser Ile Lys Thr Val Val His Pro Ser Val Met Leu Ile Gly Phe 195 200 205

Phe Met Leu Ala Val Gly Leu Ala Tyr Ala Gly Val Ile Thr Phe Leu 210 215 220

Asn Gly Phe Ala Gln Asp Thr Gly Leu Thr Ala Gly Ala Gly Leu Phe 225 230 235 240

Phe Ile Ala Tyr Ala Val Ala Met Leu Val Met Arg Phe Phe Leu Gly 245 250 255

Arg Ile Gln Asp Lys His Gly Asp Asn Pro Val Ile Tyr Phe Gly Leu 260 265 270

Ile Ser Phe Ala Leu Ala Leu Gly Leu Met Ala Leu Ala Thr Glu Asp 275 280 285

Trp His Ile Val Leu Ala Gly Ala Leu Thr Gly Leu Gly Tyr Gly Thr 290 295 300

Ile Met Pro Ala Ala Gln Ala Ile Ala Val Asp Ser Val Pro Ser Thr 305 310 315 320

Gln Val Gly Ser Gly Ile Ser Thr Leu Phe Leu Phe Thr Asp Ile Gly

325 330 335

Ile Gly Leu Gly Pro Ile Leu Leu Gly Gly Leu Val Ala Ala Thr Gly 340 345 350

Tyr Asn Val Met Tyr Ala Ala Leu Ala Ala Val Ile Val Val Ala Gly 355 360 365

Val Leu Tyr Leu Val Ala Leu Gly Arg Lys Ala Ser His 370 375 380

<210> 179

<211> 914

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(891)

<223> FRXA01150

<400> 179

cca gct gcc tca cta cca gcg ctg gtt gct gtg cgt ttt gtt cac ggt 48
Pro Ala Ala Ser Leu Pro Ala Leu Val Ala Val Arg Phe Val His Gly
1 5 10 15

ttt tct tat tct ctt gct tcc acc gct gtg atg gca ctt gtg cag tcc 96
Phe Ser Tyr Ser Leu Ala Ser Thr Ala Val Met Ala Leu Val Gln Ser
20 25 30

gtg att cct gca agc cgt agg gca gag ggc acc ggc tac ttc gcg ctc 144 Val Ile Pro Ala Ser Arg Arg Ala Glu Gly Thr Gly Tyr Phe Ala Leu 35 40 45

gga tcc aca ctg gct aca gct ttc ggc cca gca att gcg ctg ttt gtt 192 Gly Ser Thr Leu Ala Thr Ala Phe Gly Pro Ala Ile Ala Leu Phe Val

atc gat gac ttc aac tac aac acc ctg ttc tgg att acc act gcg acc

Ile Asp Asp Phe Asn Tyr Asn Thr Leu Phe Trp Ile Thr Thr Ala Thr

65 70 75 80

agt gtt ttc ggc ctg atc ctc acc gtt ttg atc cgc aag ccg gag ttc 288 Ser Val Phe Gly Leu Ile Leu Thr Val Leu Ile Arg Lys Pro Glu Phe 85 90 95

att aag aat gcg gaa cac ggc aga gta aag cca gtc tgg tct atc aag 336 Ile Lys Asn Ala Glu His Gly Arg Val Lys Pro Val Trp Ser Ile Lys 100 105 110

act gtt gtg cac cca tcg gtc atg ctc att gga ttc ttc atg ctc gct 384
Thr Val Val His Pro Ser Val Met Leu Ile Gly Phe Phe Met Leu Ala
115 120 125

gtc gga ctg gct tac gca ggc gtg atc acc ttc ctc aac ggc ttc gcg 432 Val Gly Leu Ala Tyr Ala Gly Val Ile Thr Phe Leu Asn Gly Phe Ala

135 140 130 480 caa gac act ggc ct: acc gcc gga gcg ggt ctt ttc ttt atc gct tat Gln Asp Thr Gly Lei Thr Ala Gly Ala Gly Leu Phe Phe Ile Ala Tyr 150 gcg gtt gcg atg ct; gtc atg cgt ttc ttc ctt gga cgc att cag gac 528 Ala Val Ala Met Leı Val Met Arg Phe Phe Leu Gly Arg Ile Gln Asp 165 170 aaa cat ggt gac aa; ccg gtt att tac ttc ggt ttg atc agc ttc gcc 576 Lys His Gly Asp Ası Pro Val Ile Tyr Phe Gly Leu Ile Ser Phe Ala 624 ctc gcg ctg ggg ct: atg gct ttg gcg act gaa gac tgg cac att gtt Leu Ala Leu Gly Lei Met Ala Leu Ala Thr Glu Asp Trp His Ile Val 200 672 ctc gct ggc gca ct; acc ggt ttg ggc tat ggc acc atc atg ccg gcc Leu Ala Gly Ala Lei Thr Gly Leu Gly Tyr Gly Thr Ile Met Pro Ala 215 gca caa gcc att gc: gtc gat tca gtt cca agc act cag gtt ggt tcc 720 Ala Gln Ala Ile Al: Val Asp Ser Val Pro Ser Thr Gln Val Gly Ser 230 768 ggt att tot acg of: the etg the acc gad atc ggd att ggd tha ggd Gly Ile Ser Thr Lei Phe Leu Phe Thr Asp Ile Gly Ile Gly Leu Gly 250 cca atc ctg ctg gg: gga ttg gtt gca gcg acc gga tac aac gtc atg 816 Pro Ile Leu Gly Gly Leu Val Ala Ala Thr Gly Tyr Asn Val Met 265 tac gca gct ttg gc: gca gtg att gtt gtg gcg ggc gtg ctc tac ctg 864 Tyr Ala Ala Leu Ala Ala Val Ile Val Val Ala Gly Val Leu Tyr Leu 280 gtt gct ttg ggt age aaa gct agc cac taagttagag cattttattg Val Ala Leu Gly Are Lys Ala Ser His 911 290 295 914 agc <210> 180

<211> 297

<212> PRT

<213> Corynebacterium glutamicum

<400> 180

Pro Ala Ala Ser Leu Pro Ala Leu Val Ala Val Arg Phe Val His Gly

Phe Ser Tyr Ser Let Ala Ser Thr Ala Val Met Ala Leu Val Gln Ser 20 25 30

Val Ile Pro Ala Ser Arg Arg Ala Glu Gly Thr Gly Tyr Phe Ala Leu 35 40 45

- Gly Ser Thr Leu Ala Thr Ala Phe Gly Pro Ala Ile Ala Leu Phe Val 50 55 60
- Ile Asp Asp Phe Asn Tyr Asn Thr Leu Phe Trp Ile Thr Thr Ala Thr 65 70 75 80
- Ser Val Phe Gly Leu Ile Leu Thr Val Leu Ile Arg Lys Pro Glu Phe 85 . 90 95
- Ile Lys Asn Ala Glu His Gly Arg Val Lys Pro Val Trp Ser Ile Lys
 100 105 110
- Thr Val Val His Pro Ser Val Met Leu Ile Gly Phe Phe Met Leu Ala 115 120 125
- Val Gly Leu Ala Tyr Ala Gly Val Ile Thr Phe Leu Asn Gly Phe Ala 130 135 140
- Gln Asp Thr Gly Leu Thr Ala Gly Ala Gly Leu Phe Phe Ile Ala Tyr 145 150 155 160
- Ala Val Ala Met Leu Val Met Arg Phe Phe Leu Gly Arg Ile Gln Asp 165 170 175
- Lys His Gly Asp Asn Pro Val Ile Tyr Phe Gly Leu Ile Ser Phe Ala 180 185 190
- Leu Ala Leu Gly Leu Met Ala Leu Ala Thr Glu Asp Trp His Ile Val 195 200 205
- Leu Ala Gly Ala Leu Thr Gly Leu Gly Tyr Gly Thr Ile Met Pro Ala 210 215 220
- Ala Gln Ala Ile Ala Val Asp Ser Val Pro Ser Thr Gln Val Gly Ser 225 230 235 240
- Gly Ile Ser Thr Leu Phe Leu Phe Thr Asp Ile Gly Ile Gly Leu Gly 245 250 255
- Pro Ile Leu Cly Gly Leu Val Ala Ala Thr Gly Tyr Asn Val Met 260 265 270
- Tyr Ala Ala Leu Ala Ala Val Ile Val Val Ala Gly Val Leu Tyr Leu 275 280 285
- Val Ala Leu Gly Arg Lys Ala Ser His 290 295

<210> 181

<211> 1341

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(1318) <223> RXN02964 <400> 181 ttttatatcc tagcaagggt gttgcatgat gcaataaacg tggtagtttg tgttcataac 60 aaaattgcat gatgcaataa tttcgattta aaggagaaca gtg tcc gta gct gaa 115 Val Ser Val Ala Glu gaa ggg aaa ctt ttt aca cca acg ttt gtc atg gga tgg ttt gcc aac 163 Glu Gly Lys Leu Phe Thr Pro Thr Phe Val Met Gly Trp Phe Ala Asn ctt ttc cag ttc ctg gtg ttc tac ttc ctc atc acc acc atg gct ttg 211 Leu Phe Gln Phe Leu Val Phe Tyr Phe Leu Ile Thr Thr Met Ala Leu tac gcc atc aag gaa ttt caa gcc tct gaa gta gaa gct ggc ttc gca 259 Tyr Ala Ile Lys Glu Phe Gln Ala Ser Glu Val Glu Ala Gly Phe Ala tcc agc tca att gtt atc ggc gca gtc ttt tcc agg ttt ttc tcc ggc 307 Ser Ser Ser Ile Val Ile Gly Ala Val Phe Ser Arg Phe Phe Ser Gly tat att att gac cgt ttt ggt cga cgc aag att gtg ctc atc tca gtc 355 Tyr Ile Ile Asp Arg Phe Gly Arg Arg Lys Ile Val Leu Ile Ser Val 75 cta gtc act acc att gcg tgt gcc ttg tac ctt ccc atc gaa tca ttg 403 Leu Val Thr Thr Ile Ala Cys Ala Leu Tyr Leu Pro Ile Glu Ser Leu cca ttg cta tac gca aac agg ttc ctc cac ggt gtt gga tac gct ttt 451 Pro Leu Leu Tyr Ala Asn Arg Phe Leu His Gly Val Gly Tyr Ala Phe 105 get gee ace geg ate atg gea atg gte eag gag ete att eea geg tea 499 Ala Ala Thr Ala Ile Met Ala Met Val Gln Glu Leu Ile Pro Ala Ser 120 125 cga cgt tcc gaa ggt act ggt tac ctg gca ttg ggc act acc gtt tct

Arg Arg Ser Glu Gly Thr Gly Tyr Leu Ala Leu Gly Thr Thr Val Ser

gca gca ctt gga cca gcc cta gca ctt ttt gtc cta gga aca ttt gat

Ala Ala Leu Gly Pro Ala Leu Ala Leu Phe Val Leu Gly Thr Phe Asp

tac gac atg ctg ttt atc gtg gtc ttg gca acc tcg gtc atc tct ttg

Tyr Asp Met Leu Phe Ile Val Val Leu Ala Thr Ser Val Ile Ser Leu

atc gcc gtc gtg ttc atg tac ttt aag acc agc gac cct gag cct tct

240 .

140

155

170

547

595

643

691

BNSDOCID: <WO___0100804A2_I_>

Ile	Ala	Val	Val 185		Met	Tyr	Phe	Lys 190		Ser	Asp	Pro	Glu 195	Pro	Ser	
ggg	gaa Glu	cca Pro 200	Ala	aag Lys	ttc Phe	agc Ser	ttc Phe 205	aaa Lys	tct Ser	att Ile	atg Met	aac Asn 210	Pro	aag Lys	atc Ile	739
								ctt Leu								787
								gct Ala								835
ggt Gly	gct Ala	gga Gly	ttg Leu	ttc Phe 250	ttc Phe	att Ile	gcc Ala	tac Tyr	gca Ala 255	gta Val	tca Ser	atg Met	ttt Phe	gtg Val 260	atg Met	883
cgc Arg	agc Ser	ttc Phe	ctt Leu 265	ggc Gly	aaa Lys	ctg Leu	cag Gln	gac Asp 270	cgt Arg	cgc Arg	gga Gly	gac Asp	aac Asn 275	gtc Val	gtt Val	931
att Ile	tac Tyr	ttt Phe 280	gga Gly	ttg Leu	ttc Phe	ttc Phe	ttc Phe 285	gtt Val	att Ile	tcc Ser	ttg Leu	acg Thr 290	att Ile	ttg Leu	tcc Ser	979
ttt Phe	gcc Ala 295	act Thr	tcc Ser	aac Asn	tgg Trp	cac His 300	gtt Val	gtg Val	ttg Leu	tcc Ser	gga Gly 305	gtc Val	att Ile	gca Ala	ggt Gly	1027
ctg Leu 310	gga Gly	tac Tyr	ggc Gly	act Thr	ttg Leu 315	atg Met	cca Pro	gca Ala	gtg Val	cag Gln 320	tcc Ser	atc Ile	gct Ala	gtt Val	ggt Gly 325	1075
								acg Thr								1123
	Val		Leu	Gly	Phe	Gly	Phe	gga Gly 350	Pro	Ile	Ile					1171
tct Ser	gcg Ala	gca Ala 360	att Ile	ggt Gly	ttc Phe	gga Gly	cct Pro 365	atg Met	tat Tyr	gca Ala	gca Ala	ctg Leu 370	gca Ala	ggt Gly	gtg Val	1219
ggt Gly	gtg Val 375	att Ile	gcc Ala	gga Gly	atc Ile	ttc Phe 380	tac Tyr	ctg Leu	ttc Phe	aca Thr	cac His 385	gct Ala	cgc Arg	acc Thr	gat Asp	1267
cga Arg 390	gct Ala	aag Lys	aat Asn	ggc Gly	ttt Phe 395	gtt Val	aaa Lys	cac His	cca Pro	gag Glu 400	cct Pro	gtc Val	gct Ala	tta Leu	gtt Val 405	1315
agc Ser	tagt	tctt	tc a	gctt	tccc	t cc	С									1341

<210> 182

<211> 406

<212> PRT

<213> Corynebacterium glutamicum

<400> 182

Val Ser Val Ala Glu Glu Gly Lys Leu Phe Thr Pro Thr Phe Val Met
1 5 10 15

Gly Trp Phe Ala Asn Leu Phe Gln Phe Leu Val Phe Tyr Phe Leu Ile 20 25 30

Thr Thr Met Ala Leu Tyr Ala Ile Lys Glu Phe Gln Ala Ser Glu Val 35 40 45

Glu Ala Gly Phe Ala Ser Ser Ser Ile Val Ile Gly Ala Val Phe Ser 50 55 60

Arg Phe Phe Ser Gly Tyr Ile Ile Asp Arg Phe Gly Arg Arg Lys Ile 65 70 75 80

Val Leu Ile Ser Val Leu Val Thr Thr Ile Ala Cys Ala Leu Tyr Leu 85 90 95

Pro Ile Glu Ser Leu Pro Leu Leu Tyr Ala Asn Arg Phe Leu His Gly
100 105 110

Val Gly Tyr Ala Phe Ala Ala Thr Ala Ile Met Ala Met Val Gln Glu 115 120 125

Leu Ile Pro Ala Ser Arg Arg Ser Glu Gly Thr Gly Tyr Leu Ala Leu 130 135 140 .

Gly Thr Thr Val Ser Ala Ala Leu Gly Pro Ala Leu Ala Leu Phe Val
145 150 155 160

Leu Gly Thr Phe Asp Tyr Asp Met Leu Phe Ile Val Val Leu Ala Thr 165 170 175

Ser Val Ile Ser Leu Ile Ala Val Val Phe Met Tyr Phe Lys Thr Ser 180 185 190

Asp Pro Glu Pro Ser Gly Glu Pro Ala Lys Phe Ser Phe Lys Ser Ile 195 200 205

Met Asn Pro Lys Ile Ile Pro Ile Gly Ile Phe Ile Leu Leu Ile Cys 210 215 220

Phe Ala Tyr Ser Gly Val Ile Ala Tyr Ile Asn Ala Phe Ala Glu Glu 225 230 235 240

Arg Asp Leu Ile Thr Gly Ala Gly Leu Phe Phe Ile Ala Tyr Ala Val 245 250 255

Ser Met Phe Val Met Arg Ser Phe Leu Gly Lys Leu Gln Asp Arg Arg 265 260 Gly Asp Asn Val Val Ile Tyr Phe Gly Leu Phe Phe Phe Val Ile Ser 280 Leu Thr Ile Leu Ser Phe Ala Thr Ser Asn Trp His Val Val Leu Ser 295 Gly Val Ile Ala Gly Leu Gly Tyr Gly Thr Leu Met Pro Ala Val Gln 310 Ser Ile Ala Val Gly Val Val Asp Lys Thr Glu Phe Gly Thr Ala Phe 330 Ser Thr Leu Phe Leu Phe Val Asp Leu Gly Phe Gly Pro Ile Ile Leu Gly Ala Val Ser Ala Ala Ile Gly Phe Gly Pro Met Tyr Ala Ala Leu Ala Gly Val Gly Val Ile Ala Gly Ile Phe Tyr Leu Phe Thr His Ala Arg Thr Asp Arg Ala Lys Asn Gly Phe Val Lys His Pro Glu 395 Pro Val Ala Leu Val Ser 405 <210> 183 <211> 1006 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1006) <223> FRXA02116 <400> 183 ttttatatcc tagcaagggt gttgcatgat gcaataaacg tggtagtttg tgttcataac 60 aaaattgcat gatgcaataa tttcgattta aaggagaaca gtg tcc gta gct gaa 115 Val Ser Val Ala Glu gaa ggg aaa ctt ttt aca cca acg ttt gtc atg gga tgg ttt gcc aac 163 Glu Gly Lys Leu Phe Thr Pro Thr Phe Val Met Gly Trp Phe Ala Asn 10 15 ctt ttc cag ttc ctg gtg ttc tac ttc ctc atc acc acc atg gct ttg 211 Leu Phe Gln Phe Leu Val Phe Tyr Phe Leu Ile Thr Thr Met Ala Leu tac gcc atc aag gaa ttt caa gcc tct gaa gta gaa gct ggc ttc gca 259

Туг	Ala	Ile 40	_	Glu	ı Phe	≘ Glr	Ala 45		Glu	val	Glu	Ala 50	_	Phe	Ala	
	_	Ser		_			gca Ala	_				Phe				307
	Ile		-			e Gly	cga Arg	_	_		Val				-	355
					Ala		gcc Ala			Leu						403
	-			Āla			ttc Phe				-			_		451
							atg Met 125									499
							tac Tyr									547
							gca Ala									595
							gtc Val									643
							ttt Phe									691
	_		_	_		_	ttc Phe 205				_			_		739
							ttg Leu									787
							ttt Phe									835
			Leu				gcc Ala									883
							cag Gln									931

265 270 275

att tac ttt gga ttg ttc ttc ttc gtt att tcc ttg acg att ttg tcc 979

Ile Tyr Phe Gly Leu Phe Phe Phe Val Ile Ser Leu Thr Ile Leu Ser
280 285 290

ttt gcc act tcc aac tgg cac gtt gtg

Phe Ala Thr Ser Asn Trp His Val Val

300

<210> 184

<211> 302

<212> PRT

<213> Corynebacterium glutamicum

<400> 184

Val Ser Val Ala Glu Glu Gly Lys Leu Phe Thr Pro Thr Phe Val Met 1 5 10 15

Gly Trp Phe Ala Asn Leu Phe Gln Phe Leu Val Phe Tyr Phe Leu Ile 20 25 30

Thr Thr Met Ala Leu Tyr Ala Ile Lys Glu Phe Gln Ala Ser Glu Val 35 40 45

Glu Ala Gly Phe Ala Ser Ser Ser Ile Val Ile Gly Ala Val Phe Ser 50 55 60

Arg Phe Phe Ser Gly Tyr Ile Ile Asp Arg Phe Gly Arg Arg Lys Ile 65 70 75 80

Val Leu Ile Ser Val Leu Val Thr Thr Ile Ala Cys Ala Leu Tyr Leu 85 90 95

Pro Ile Glu Ser Leu Pro Leu Leu Tyr Ala Asn Arg Phe Leu His Gly
100 105 110

Val Gly Tyr Ala Phe Ala Ala Thr Ala Ile Met Ala Met Val Gln Glu 115 120 125

Leu Ile Pro Ala Ser Arg Arg Ser Glu Gly Thr Gly Tyr Leu Ala Leu 130 135 140

Gly Thr Thr Val Ser Ala Ala Leu Gly Pro Ala Leu Ala Leu Phe Val 145 150 155 160

Leu Gly Thr Phe Asp Tyr Asp Met Leu Phe Ile Val Val Leu Ala Thr 165 170 175

Ser Val Ile Ser Leu Ile Ala Val Val Phe Met Tyr Phe Lys Thr Ser 180 185 190

Asp Pro Glu Pro Ser Gly Glu Pro Ala Lys Phe Ser Phe Lys Ser Ile 195 200 205

Met Asn Pro Lys Ile Ile Pro Ile Gly Ile Phe Ile Leu Leu Ile Cys

210 215 220

Phe Ala Tyr Ser Gly Val Ile Ala Tyr Ile Asn Ala Phe Ala Glu Glu 225 230 235 240

Arg Asp Leu Ile Thr Gly Ala Gly Leu Phe Phe Ile Ala Tyr Ala Val 245 250 255

Ser Met Phe Val Met Arg Ser Phe Leu Gly Lys Leu Gln Asp Arg Arg 260 265 270

Gly Asp Asn Val Val Ile Tyr Phe Gly Leu Phe Phe Phe Val Ile Ser 275 280 285

Leu Thr Ile Leu Ser Phe Ala Thr Ser Asn Trp His Val Val 290 295 300

<210> 185

<211> 568

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(568)

<223> RXA00858

<400> 185

ttttqttttt caqatgcatg ttagatgcgt tgagggacaa gggtggggga gacctccggt 60

tcttaaattg tctaaccaag aaccggaggt tctttttgtc atg gaa gta aac tta 115 Met Glu Val Asn Leu 1

gcc aca tgg cta atc act atc gca gtg att gct ggc ttc ttc att ttc $\,$ 163 Ala Thr Trp Leu Ile Thr Ile Ala Val Ile Ala Gly Phe Phe Ile Phe $\,$ 10 $\,$ 15 $\,$ 20

gat ttc tat tcc cac gtc cgc acc cca cac gag ccc act atc aaa gaa $$ 211 Asp Phe Tyr Ser His Val Arg Thr Pro His Glu Pro Thr Ile Lys Glu $$ 25 $$ 30 $$ 35

tcc gca tgg tgg agc ctc ttc tac gta gcc ctc gcc tgt gtt ttc ggc 259 Ser Ala Trp Trp Ser Leu Phe Tyr Val Ala Leu Ala Cys Val Phe Gly 40 45 50

gtg ttc ctc tgg ttt gct tgg ggc gag cca ggt aac cca cac cag cac 307 Val Phe Leu Trp Phe Ala Trp Gly Glu Pro Gly Asn Pro His Gln His 55 60 65

ggc att gag ttc ttc acc ggt tac gtg aca gag aag gcg ttg agt gtt 355 Gly Ile Glu Phe Phe Thr Gly Tyr Val Thr Glu Lys Ala Leu Ser Val 70 75 80 85

gat aac ctc ttc atc ttc gcg ctg atc atg ggt tct ttc aag att cct 403 Asp Asn Leu Phe Ile Phe Ala Leu Ile Met Gly Ser Phe Lys Ile Pro

95 100

cgc aag tac cag cag aag gtt ctg ctc atc ggt atc gcg ctg gca ctg 451 Arg Lys Tyr Gln Gln Lys Val Leu Leu Ile Gly Ile Ala Leu Ala Leu 105 110 115

gtc ttc cgc ctg gca ttc atc ctc gca ggt gct gca gtt atc gaa gcc 499 Val Phe Arg Leu Ala Phe Ile Leu Ala Gly Ala Ala Val Ile Glu Ala 120 125 130

tgg tcc gat gtc ttc tac atc ttc tcc atc tgg ctg atc tac acc gct
Trp Ser Asp Val Phe Tyr Ile Phe Ser Ile Trp Leu Ile Tyr Thr Ala
135
140
145

gtg aag gct cct gtg cac gag
Val Lys Ala Pro Val His Glu
150 155

<210> 186

<211> 156

<212> PRT

<213> Corynebacterium glutamicum

90

<400> 186

Met Glu Val Asn Leu Ala Thr Trp Leu Ile Thr Ile Ala Val Ile Ala 1 5 10 15

Gly Phe Phe Ile Phe Asp Phe Tyr Ser His Val Arg Thr Pro His Glu 20 25 30

Pro Thr Ile Lys Glu Ser Ala Trp Trp Ser Leu Phe Tyr Val Ala Leu 35 40 45

Ala Cys Val Phe Gly Val Phe Leu Trp Phe Ala Trp Gly Glu Pro Gly 50 55 60

Asn Pro His Gln His Gly Ile Glu Phe Phe Thr Gly Tyr Val Thr Glu 65 70 75 80

Lys Ala Leu Ser Val Asp Asn Leu Phe Ile Phe Ala Leu Ile Met Gly
85 90 95

Ser Phe Lys Ile Pro Arg Lys Tyr Gln Gln Lys Val Leu Leu Ile Gly 100 105 110

Ile Ala Leu Ala Leu Val Phe Arg Leu Ala Phe Ile Leu Ala Gly Ala 115 120 125

Ala Val Ile Glu Ala Trp Ser Asp Val Phe Tyr Ile Phe Ser Ile Trp 130 135 140

Leu Ile Tyr Thr Ala Val Lys Ala Pro Val His Glu 145 150 155

<210> 187

<211> 975 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(952)

<400> 187

<223> RXA02305

tatgcgcgca ggtgtctact ggtgacgcag ccgacgacga ttattttgac gaagccaccg 60

caaacgatga cttcgatccc gaaaagtgga ggaacatgta atg cca gcc ttt gag 115
Met Pro Ala Phe Glu
1

gca atg cca gga atg ccg tat tgg atc gac ctg tcc acc tcg gac att 163
Ala Met Pro Gly Met Pro Tyr Trp Ile Asp Leu Ser Thr Ser Asp Ile
10 15 20

gca aaa tct gca cac ttc tac gaa aac gtt ctc ggc tgg gaa att gaa 211
Ala Lys Ser Ala His Phe Tyr Glu Asn Val Leu Gly Trp Glu Ile Glu
25 30 35

gaa gtc aac gat ggc tac cgc atg gct cgt ctg cag gga cta ccc gtg 259
Glu Val Asn Asp Gly Tyr Arg Met Ala Arg Leu Gln Gly Leu Pro Val
40 45 50

gca ggg ctg atc gat cag cgc ggt gaa tca agc atc ccg gat acc tgg 307 Ala Gly Leu Ile Asp Gln Arg Gly Glu Ser Ser Ile Pro Asp Thr Trp 55 60 65

att acc tac ttc ctc tcc tac gat ctg gat gcc act gca aag aag atc 355

Ile Thr Tyr Phe Leu Ser Tyr Asp Leu Asp Ala Thr Ala Lys Lys Ile
70 75 80 85

gca gaa ctg ggt gga cga att ctg gcc gag cca act gac gtg cac ttg 403 Ala Glu Leu Gly Gly Arg Ile Leu Ala Glu Pro Thr Asp Val His Leu 90 95 100

gga cgc atg atc cta gct gtt gat act gcc ggc gca ctg ttc ggc gtt 451 Gly Arg Met Ile Leu Ala Val Asp Thr Ala Gly Ala Leu Phe Gly Val 105 110 115

att gag cca ggc agc gag gaa tca ttc gtc gct ggt gaa cca ggc 499 Ile Glu Pro Gly Ser Glu Glu Ser Phe Val Ala Ala Gly Glu Pro Gly 120 125 130

aca tcc gtg tgg cat gaa ctc acc act gtc tcc aaa tat tcc gaa gct 547 Thr Ser Val Trp His Glu Leu Thr Thr Val Ser Lys Tyr Ser Glu Ala 135 140 145

atc gat ttc tac ggt gag ctg ttc act tgg aca acc tct gaa atg gct 595 Ile Asp Phe Tyr Gly Glu Leu Phe Thr Trp Thr Thr Ser Glu Met Ala 150 160 165

agt gct gaa gac gat agt ttc cgc tac acc gca ttg gct gac ggt 643

Ser Ala Phe Ala Gly Ile Phe Asp Ala Lys Gly His Phe Pro Pro Gln 185 190 195	39
Val Pro Ser Phe Trp Gln Ser Tyr Leu Gly Val Leu Asn Ala Asp Asp	39
gct gca gcg aag gcc aag gaa ttt ggt ggc gat gtt att cgt aag cca Ala Ala Ala Lys Ala Lys Glu Phe Gly Gly Asp Val Ile Arg Lys Pro 215 220 225	87
tgg gac tca gaa ttt ggc cgc atg gtt ctc atc tct gat tcc act ggt Trp Asp Ser Glu Phe Gly Arg Met Val Leu Ile Ser Asp Ser Thr Gly 230 235 240 245	35
gcc aca att acc ttg tgt gaa gta gag gaa tac gtc gag gaa gca gca Ala Thr Ile Thr Leu Cys Glu Val Glu Glu Tyr Val Glu Glu Ala Ala 250 255 260	83
gaa ggc gat gat ctc ttc gac atc gat ctc agt gct ttc gaa gag cag Glu Gly Asp Asp Leu Phe Asp Ile Asp Leu Ser Ala Phe Glu Glu Gln 265 270 275	31
ttc cgc aag caa gaa gga cag taatcctaca gcgccatgga gga Phe Arg Lys Gln Glu Gly Gln 280	75
<210> 188 <211> 284 <212> PRT <213> Corynebacterium glutamicum	
<400> 188 Met Pro Ala Phe Glu Ala Met Pro Gly Met Pro Tyr Trp Ile Asp Leu 1 5 10 15	
Ser Thr Ser Asp Ile Ala Lys Ser Ala His Phe Tyr Glu Asn Val Leu 20 25 30	
Gly Trp Glu Ile Glu Glu Val Asn Asp Gly Tyr Arg Met Ala Arg Leu 35 40 45	
Gln Gly Leu Pro Val Ala Gly Leu Ile Asp Gln Arg Gly Glu Ser Ser 50 55 60	
Ile Pro Asp Thr Trp Ile Thr Tyr Phe Leu Ser Tyr Asp Leu Asp Ala 65 70 75 80	
Thr Ala Lys Lys Ile Ala Glu Leu Gly Gly Arg Ile Leu Ala Glu Pro 85 90 95	

Thr Asp Val His Leu Gly Arg Met Ile Leu Ala Val Asp Thr Ala Gly

100 105 110

Ala Leu Phe Gly Val Ile Glu Pro Gly Ser Glu Glu Ser Phe Val Ala 115 120 125

Ala Gly Glu Pro Gly Thr Ser Val Trp His Glu Leu Thr Thr Val Ser 130 135 140

Lys Tyr Ser Glu Ala Ile Asp Phe Tyr Gly Glu Leu Phe Thr Trp Thr 145 150 155 160

Thr Ser Glu Met Ala Ser Ala Glu Asp Asp Ser Phe Arg Tyr Thr Thr 165 170 175

Ala Leu Ala Asp Gly Ser Ala Phe Ala Gly Ile Phe Asp Ala Lys Gly 180 185 190

His Phe Pro Pro Gln Val Pro Ser Phe Trp Gln Ser Tyr Leu Gly Val 195 200 205

Leu Asn Ala Asp Asp Ala Ala Ala Lys Ala Lys Glu Phe Gly Gly Asp 210 215 220

Val Ile Arg Lys Pro Trp Asp Ser Glu Phe Gly Arg Met Val Leu Ile 225 230 235 240

Ser Asp Ser Thr Gly Ala Thr Ile Thr Leu Cys Glu Val Glu Glu Tyr 245 250 255

Val Glu Glu Ala Ala Glu Gly Asp Asp Leu Phe Asp Ile Asp Leu Ser 260 265 270

Ala Phe Glu Glu Gln Phe Arg Lys Gln Glu Gly Gln 275 280

<210> 189

<211> 948

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(925)

<223> RXA00084

<400> 189

tcaccettgt egataceage tactgggtat etggegtegg tecaettgge ggeageaaag 60 .

tcttggaaga catcgatgcc ttcctcgacg cacagcaata atg tcc aca gct ctc $\,$ 115 Met Ser Thr Ala Leu $\,$ 1 $\,$ 5

ccc gat cag ctc aag tgg gaa tac agt gcc ttc ccc gtg cag atc tcg 163 Pro Asp Gln Leu Lys Trp Glu Tyr Ser Ala Phe Pro Val Gln Ile Ser 10 15 20

	g aaq n Lys			Le					Met					Thr	ggt Gly	211
	c aag o Lys		Arg					Trp					Arg			259
	g ato 1le 55	lle					Gly					Phe				307
	gaa Glu					Pro					Pro					355
	cca Pro		_		Arg	_		_	-							403
	cga Arg															451
	tcg Ser															499
	cta Leu 135															547
	atc Ile															595
	gat Asp															643
	gta Val														gat Asp	691
	ttg Leu															739
	tac Tyr 215				Val											787
	tca Ser															835
att	cgc	aaa	gaa	cta	atc	aac	agc	tac	cga	gtt	gat	tcc	tca	cga	atc	883

925

Ile Arg Lys Glu Leu Ile Asn Ser Tyr Arg Val Asp Ser Ser Arg Ile
250 255 260

act ttc ctc ggc tac tgg aaa tac ggc cga cga acc gta gac
Thr Phe Leu Gly Tyr Trp Lys Tyr Gly Arg Thr Val Asp
265 270 275

tagctttcag attcagaccc cag 948

<210> 190

<211> 275

<212> PRT

<213> Corynebacterium glutamicum

<400> 190

Met Ser Thr Ala Leu Pro Asp Gln Leu Lys Trp Glu Tyr Ser Ala Phe 1 5 10 15

Pro Val Gln Ile Ser Gln Lys Gln Arg Leu Ser Pro Gly Phe Met Arg
20 25 30

Ile Thr Val Thr Gly Asp Lys Leu Arg Phe Phe Gly Gln Trp Gly Leu 35 40 45

Asp Gln Arg Ile Lys Leu Ile Ile Pro Ser Pro Ala Gly Asn Ile Pro
50 55 60

Asp Phe Gly Ile Leu Asp Glu Pro Thr Pro Pro Pro Thr Thr Trp Leu 65 70 75 80

Pro Arg Ala Lys Ser Phe Pro Ala Asp Gln Arg Pro Ile Leu Arg Thr 85 90 95

Tyr Thr Pro Ser Ala Val Arg Pro Glu Leu Cys Glu Val Asp Ile Asp 100 105 110

Ile Tyr Leu His Asn Pro Ser Gly Pro Val Ser Arg Trp Ala Lys Asn 115 120 125

Cys Ser Val Asp Asp Glu Leu Ile Ile Thr Gly Pro Asp Val Arg Ala 130 135 140

Gly Glu Thr Gly Tyr Gly Ile Thr Tyr His Pro Thr Ser Ala Ile Asp 145 150 155 160

Arg Leu Cys Leu Ile Gly Asp Cys Ala Ser Ala Pro Ala Ile Ala Asn 165 170 175

Ile Val Asn Gln Ser Lys Val Pro Thr Thr Val Phe Leu His Val Asp 180 185 190

Ser Leu Glu Asp Asp Val Leu Ile Ala Asp Ser Ser Thr Lys Leu Thr 195 200 205

Phe Glu Asp Ile Asp Ala Tyr Lys Ala Lys Val Phe Gln Trp Ala Ser 210 215 220

Ala Asn Ala Ala Asp Pro Ser Val His Phe Trp Ile Ala Gly Glu Thr 235 Ser Met Val Arg Phe Ile Arg Lys Glu Leu Ile Asn Ser Tyr Arg Val 245 250 Asp Ser Ser Arg Ile Thr Phe Leu Gly Tyr Trp Lys Tyr Gly Arg Arg 265 Thr Val Asp 275 <210> 191 <211> 468 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(445) <223> RXA00843 <400> 191 gccctgatgc gaaaccggcg ccaacaatga tgccgacgaa qqcaaatgcc actcttaqqa 60 tttgaataat catggaacaa accttagtag gctcaacgtt atg aaa gtc acg att Met Lys Val Thr Ile ttc cat aat ccg cgt tgt tcc aca tcc aga aat acc ctc gct tac ctc 163 Phe His Asn Pro Arg Cys Ser Thr Ser Arg Asn Thr Leu Ala Tyr Leu 10 cgc gac aag gac att gag cct gaa att gtt cag tat ctc aaa gac acg 211 Arg Asp Lys Asp Ile Glu Pro Glu Ile Val Gln Tyr Leu Lys Asp Thr 30 ccc acc gct tcc gag ctc aaa gaa cta ttc aat acg ctg gga att cca 259 Pro Thr Ala Ser Glu Leu Lys Glu Leu Phe Asn Thr Leu Gly Ile Pro 40 45 gto cao gao ggo ato aga aco ogo gaa got gag tao aca gaa otg ggo 307 Val His Asp Gly Ile Arg Thr Arg Glu Ala Glu Tyr Thr Glu Leu Gly 55 60 ctg tca cca gaa aca cct gaa act gag ctt atc gac gcc atc gtt gcc 355 Leu Ser Pro Glu Thr Pro Glu Thr Glu Leu Ile Asp Ala Ile Val Ala 70 75 80 cat ccc agg ctc ctt cag cgt ccg atc gtg gtg acg gcc aaa ggc gcg 403 His Pro Arg Leu Leu Gln Arg Pro Ile Val Val Thr Ala Lys Gly Ala 90 95 cgc att gcg cgc ccc aaa atc gac gtc att gac agc atc ttg 445 Arg Ile Ala Arg Pro Lys Ile Asp Val Ile Asp Ser Ile Leu

105 110 115

tgacaacatt ttgtagagca acc 468

<210> 192

<211> 115

<212> PRT

<213> Corynebacterium glutamicum

<400> 192

Met Lys Val Thr Ile Phe His Asn Pro Arg Cys Ser Thr Ser Arg Asn 1 5 10 15

Thr Leu Ala Tyr Leu Arg Asp Lys Asp Ile Glu Pro Glu Ile Val Gln
20 25 30

Tyr Leu Lys Asp Thr Pro Thr Ala Ser Glu Leu Lys Glu Leu Phe Asn 35 40 45

Thr Leu Gly Ile Pro Val His Asp Gly Ile Arg Thr Arg Glu Ala Glu
50 55 60

Tyr Thr Glu Leu Gly Leu Ser Pro Glu Thr Pro Glu Thr Glu Leu Ile
65 70 75 80

Asp Ala Ile Val Ala His Pro Arg Leu Gln Arg Pro Ile Val Val 85 90 95

Thr Ala Lys Gly Ala Arg Ile Ala Arg Pro Lys Ile Asp Val Ile Asp 100 105 110

Ser Ile Leu 115

<210> 193

<211> 432

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(409)

<223> RXA01052

<400> 193

tatggccaac cctaggggga tggcctgtgt gttcactgtt aggtttcctc aaaatcttta 60

acgaacaacg aagagcttgc ccgagagtat cttgggtcgc atg gac aca aaa tta 115 Met Asp Thr Lys Leu 1

ggc gct gaa ttg ggt act gaa ttt gat ctc att gtt gtt ggt ttc ggc 163 Gly Ala Glu Leu Gly Thr Glu Phe Asp Leu Ile Val Val Gly Phe Gly 10 15 20

											gca Ala				211
											ggc Gly				259
	-		_							_	ttt Phe 65				307
	_	_		_	_		-			_	gat Asp	_	_		355
_	_		_	_				_	_		gac Asp	-			403
cgt Arg		tgat	ggaa	iaa <u>c</u>	ıctac	gttt:	a ca	ıg							432

<210> 194

<211> 103

<212> PRT

<213> Corynebacterium glutamicum

<400> 194

Met Asp Thr Lys Leu Gly Ala Glu Leu Gly Thr Glu Phe Asp Leu Ile 1 5 10 15

Val Val Gly Phe Gly Lys Ala Gly Lys Thr Ile Ala Met Lys Arg Ser 20 25 30

Ala Ala Gly Asp Lys Val Ala Leu Ile Glu Gln Ser Pro Gln Met Tyr 35 40 45

Gly Gly Thr Cys Ile Asn Val Gly Cys Ile Pro Thr Lys Lys Leu Leu 50 55 60

Phe Glu Thr Ala Thr Gly Lys Asp Phe Pro Asp Ala Val Val Ala Arg 65 70 75 80

Asp Gln Leu Ile Gly Lys Leu Asn Ala Lys Asn Leu Ala Met Ala Thr 85 90 95

Asp Lys Gly Val Thr Arg His 100

<210> 195

<211> 543

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(520) <223> RXA01053 <400> 195 ttgcgatggc cacagacaag ggtgtcaccc gtcattgatg gaaaagctac gtttacagct 60 agccacgaaa tcacaagtaa cttcaggtag tgacactctt gtg ctg tat gcg cca Val Leu Tyr Ala Pro 1 acg att gtg atc aac acg ggc tcc acg ccg gtc atc ccc aat gtc cca 163 Thr Ile Val Ile Asn Thr Gly Ser Thr Pro Val Ile Pro Asn Val Pro 10 15 ggc acc gac aat ccg cat gtt ttt gat tcc act ggc att cag cac att 211 Gly Thr Asp Asn Pro His Val Phe Asp Ser Thr Gly Ile Gln His Ile 25 teg eec etg eeg aag eac ete geg ate ate gge ggt gge eec ate ggt 259 Ser Pro Leu Pro Lys His Leu Ala Ile Ile Gly Gly Pro Ile Gly 40 ttg gaa ttt gcc acg ctt ttc agt gga caa ggc tcc aaa gtc acc atc 307 Leu Glu Phe Ala Thr Leu Phe Ser Gly Gln Gly Ser Lys Val Thr Ile 60 55 atc gac cgt ggt gaa ttg ccg ctg aaa aat ttc gac agg gaa gta gcg 355 Ile Asp Arg Gly Glu Leu Pro Leu Lys Asn Phe Asp Arg Glu Val Ala 70 75 gag ctg gcc aaa acc gac ctg gag gcc cgc gga atc acc ttc ctc aac 403 Glu Leu Ala Lys Thr Asp Leu Glu Ala Arg Gly Ile Thr Phe Leu Asn 90 aac gct gaa ctc acc gga ttc agc ggt gac ctc acc atc gcg ctc aaa 451 Asn Ala Glu Leu Thr Gly Phe Ser Gly Asp Leu Thr Ile Ala Leu Lys 105 110 gac cac gac etc etc gec gac gec gea ett ttt gea teg gec gac gec 499 Asp His Asp Leu Leu Ala Asp Ala Ala Leu Phe Ala Ser Ala Asp Ala 120 130 543 cgg cac cga cgg gct cgg cct tgaacaggcg ggcatcaaaa cag Arg His Arg Arg Ala Arg Pro 135 <210> 196

<211> 140

<212> PRT

<213> Corynebacterium glutamicum

<400> 196

Val Leu Tyr Ala Pro Thr Ile Val Ile Asn Thr Gly Ser Thr Pro Val

5 10 15 1 Ile Pro Asn Val Pro Gly Thr Asp Asn Pro His Val Phe Asp Ser Thr 25 Gly Ile Gln His Ile Ser Pro Leu Pro Lys His Leu Ala Ile Ile Gly Gly Gly Pro Ile Gly Leu Glu Phe Ala Thr Leu Phe Ser Gly Gln Gly 55 Ser Lys Val Thr Ile Ile Asp Arg Gly Glu Leu Pro Leu Lys Asn Phe 70 Asp Arg Glu Val Ala Glu Leu Ala Lys Thr Asp Leu Glu Ala Arg Gly Ile Thr Phe Leu Asn Asn Ala Glu Leu Thr Gly Phe Ser Gly Asp Leu 100 Thr Ile Ala Leu Lys Asp His Asp Leu Leu Ala Asp Ala Ala Leu Phe 115 120 Ala Ser Ala Asp Ala Arg His Arg Arg Ala Arg Pro 135 <210> 197 <211> 612 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(589) <223> RXA01054 <400> 197 gaceteeteg cegaegeege actttttgca teggeegaeg eeeggeaeeg aegggetegg 60 ccttgaacag gcgggcatca aaacaggcac gcgtggggag gtg ctt gtc gac gcc Val Leu Val Asp Ala cac ctc cgg acc aac atc gac ggc atc ttc gct gta ggt gat gtc aat 163 His Leu Arg Thr Asn Ile Asp Gly Ile Phe Ala Val Gly Asp Val Asn ggc ggc ccg cag ttt acc tac gtg tcc tac gat gac cac cgc att gtg 211 Gly Gly Pro Gln Phe Thr Tyr Val Ser Tyr Asp Asp His Arg Ile Val

ate eec ace acg tte ate gaa eeg eeg tta tee ace ate ggt gae 307

30

ctg gat caa cta gcc gga aca ggt aag aaa tcc att gca cac cga ctg

Leu Asp Gln Leu Ala Gly Thr Gly Lys Lys Ser Ile Ala His Arg Leu
40 45 50

259

Ile	Pro		Thr	Thr	Phe	Ile 60		Pro	Pro	Leu	Ser 65		Ile	Gly	Asp	
	act Thr					Val					Ala					355
	ccg Pro				Arg					Asn						403
	aag Lys			Val												451
_	tac Tyr	-	_	_		_									-	499
_	cgg Arg 135			-		_					-					547
	ccc Pro	_		_							_		_			589
taa	cgca	gcg (gatc	gaac	gg ct	t										612
<213	0> 19 1> 16 2> PF 3> Co	63 RT	ebact	eriu	ım gl	.utam	nicum	ı				٠				
<213 <213 <213 <400	1> 16 2> PF 3> Co 0> 19	63 RT oryne 98							D	T] =	7.00		Tlo	Dh o	מות	
<213 <213 <213 <400	1> 16 2> PI 3> Co	63 RT oryne 98							Asn 10	Ile	Asp	Gly	Ile	Phe 15	Ala	
<213 <213 <213 <400 Val	1> 16 2> PF 3> Co 0> 19	63 RT oryne 98 Val	Asp	Ala 5	His	Leu	Arg	Thr	10		-	-		15		
<21: <21: <21: <400 Val 1	1> 10 2> PI 3> Co 0> 19 Leu	63 RT oryne 98 Val Asp	Asp Val 20	Ala 5 Asn	His Gly	Leu Gly	Arg Pro	Thr Gln 25	10 Phe	Thr	Tyr	Val	Ser 30	15 Tyr	Asp	
<21: <21: <21: <400 Val 1 Val	1> 10 2> PP 3> Co 0> 19 Leu Gly	Asp Arg 35	Asp Val 20 Ile	Ala 5 Asn Val	His Gly Leu	Leu Gly Asp	Arg Pro Gln 40	Thr Gln 25 Leu	10 Phe Ala	Thr Gly	Tyr Thr	Val Gly 45	Ser 30 Lys	15 Tyr Lys	Asp Ser	
<21: <21: <21: <400 Val 1 Val Asp	1> 10 2> PI 3> Co 0> 19 Leu Gly His	Asp Arg 35	Asp Val 20 Ile Arg	Ala 5 Asn Val Leu	His Gly Leu Ile	Leu Gly Asp Pro 55	Arg Pro Gln 40 Thr	Thr Gln 25 Leu Thr	10 Phe Ala Thr	Thr Gly Phe	Tyr Thr Ile 60	Val Gly 45 Glu	Ser 30 Lys Pro	15 Tyr Lys Pro	Asp Ser Leu	

Gln Pro His Gly Met Val Lys Phe Phe Val Asp Lys Gln Ser Asp Ala 100 $$ 105 $$ 110

Leu Leu Gly Ala Thr Leu Tyr Cys Ala Asp Ser Gln Glu Leu Ile Asn 115 120 125

Thr Val Ala Leu Ala Met Arg His Gly Val Thr Ala Ser Glu Leu Gly 130 135 140

Asp Gly Ile Tyr Thr His Pro Ala Thr Ser Glu Ile Phe Asn Gln Leu 145 150 155 160

Leu Gly Ser

<210> 199

<211> 561

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(538)

<223> RXN03123

<400> 199

agetetacea aegegeetae acettgacea aegtggatge egatgeeggt acetttgace 60

tggcttttgt gctgcacgag ccgctggggc ccgcctcggc gtg ggc gac gcg ctg 115 Val Gly Asp Ala Leu 1 5

cga ggc cgg gga aag cct gaa gtc atg cgc tac cca gga att ccg ttc 163 Arg Gly Arg Gly Lys Pro Glu Val Met Arg Tyr Pro Gly Ile Pro Phe 10 15 20

gcc atc cca gat cca gcg ccg cgt ggc ttc ctt ttc tta ggc gat ctc 211
Ala Ile Pro Asp Pro Ala Pro Arg Gly Phe Leu Phe Leu Gly Asp Leu
25 30 35

acc tct tac cca gcg atc tgc tcg att ctg gag acc ttg gac ggt gaa 259
Thr Ser Tyr Pro Ala Ile Cys Ser Ile Leu Glu Thr Leu Asp Gly Glu
40 45 50

atc cct gcg acc gcg tat ctt atc gcc cac gat cca ctt gat tac acc 307

Ile Pro Ala Thr Ala Tyr Leu Ile Ala His Asp Pro Leu Asp Tyr Thr

60 65

ttc gat ttt ccc cag ggc gag cac atc acc gcg cag tgg att tcc aac 355
Phe Asp Phe Pro Gln Gly Glu His Ile Thr Ala Gln Trp Ile Ser Asn
70 75 80 85

gaa caa tcc ttc att gat cac atc gct gac acg gat tac acc gat ttt 403 Glu Gln Ser Phe Ile Asp His Ile Ala Asp Thr Asp Tyr Thr Asp Phe 90 95 100

tat acc tgg atc ggc gcg gaa tcc tcc gaa acc cgt gcg gcc aag aag 451 Tyr Thr Trp Ile Gly Ala Glu Ser Ser Glu Thr Arg Ala Ala Lys Lys 105 110 115

499 cat ctq cag acc cac gcc ggc atg ccc aag acg cac atg aac gcg caa His Leu Gln Thr His Ala Gly Met Pro Lys Thr His Met Asn Ala Gln 130 120 125 548 qqt tat tgg aac aag ggc aga gcc atg ggt aaa agc aat taaaagattt Gly Tyr Trp Asn Lys Gly Arg Ala Met Gly Lys Ser Asn 135 140 561 ttgcttatcg acg <210> 200 <211> 146 <212> PRT <213> Corynebacterium glutamicum <400> 200 Val Gly Asp Ala Leu Arg Gly Arg Gly Lys Pro Glu Val Met Arg Tyr Pro Gly Ile Pro Phe Ala Ile Pro Asp Pro Ala Pro Arg Gly Phe Leu Phe Leu Gly Asp Leu Thr Ser Tyr Pro Ala Ile Cys Ser Ile Leu Glu Thr Leu Asp Gly Glu Ile Pro Ala Thr Ala Tyr Leu Ile Ala His Asp Pro Leu Asp Tyr Thr Phe Asp Phe Pro Gln Gly Glu His Ile Thr Ala Gln Trp Ile Ser Asn Glu Gln Ser Phe Ile Asp His Ile Ala Asp Thr Asp Tyr Thr Asp Phe Tyr Thr Trp Ile Gly Ala Glu Ser Ser Glu Thr 105 Arg Ala Ala Lys Lys His Leu Gln Thr His Ala Gly Met Pro Lys Thr 120 His Met Asn Ala Gln Gly Tyr Trp Asn Lys Gly Arg Ala Met Gly Lys 130 135 Ser Asn 145 <210> 201 <211> 736 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(736)

<223> FRXA00993

<400> 201 gctgagctag tgcttttgcg acacacctct tgcgaatgtt gattaggtta ggcaagccat 60 atttacaggg tgttgtgaaa gcataaggga gcaaggaaac atg ggc aag gga ttt Met Gly Lys Gly Phe acc ggc gct att ttg acc gtc atg ggc gtg aaa tcg cat atc gcc acc 163 Thr Gly Ala Ile Leu Thr Val Met Gly Val Lys Ser His Ile Ala Thr 10 acc acg gga aaa acc gtg atc aat gac cgc atg gtg acc att cat ttt 211 Thr Thr Gly Lys Thr Val Ile Asn Asp Arg Met Val Thr Ile His Phe 30 cat tcc gag acg ctg ctc aac acg gaa ggt gaa gtc ccc ggc gat tgg 259 His Ser Glu Thr Leu Leu Asn Thr Glu Gly Glu Val Pro Gly Asp Trp 40 45 ctg cgt ctg tgg ttc ccg cac gag agc cga cct gga aag ctc tac caa 307 Leu Arg Leu Trp Phe Pro His Glu Ser Arg Pro Gly Lys Leu Tyr Gln 60 cgc gcc tac acc ttg acc aac gtg gat gcc gat gcc ggt acc ttt gac 355 Arg Ala Tyr Thr Leu Thr Asn Val Asp Ala Asp Ala Gly Thr Phe Asp 7.5 ctg gct ttt gtg ctg cac gag ccg ctg ggg ccc gcc tcg gcg tgg gcg 403 Leu Ala Phe Val Leu His Glu Pro Leu Gly Pro Ala Ser Ala Trp Ala acg cgc tgc gag gcc ggg gaa agc ctg gaa gtc atg cgc tac cca gga 451 Thr Arg Cys Glu Ala Gly Glu Ser Leu Glu Val Met Arg Tyr Pro Gly 110 att ccg ttc gcc atc cca gat cca gcg ccg cgt ggc ttc ctt ttc cta 499 Ile Pro Phe Ala Ile Pro Asp Pro Ala Pro Arg Gly Phe Leu Phe Leu 120 gge gat etc ace tet tac eca geg ate tge teg att etg gag ace ttg 547 Gly Asp Leu Thr Ser Tyr Pro Ala Ile Cys Ser Ile Leu Glu Thr Leu gac ggt gaa atc cct gcg acc gcg tat ctt atc gcc cac gat cca ctt 595 Asp Gly Glu Ile Pro Ala Thr Ala Tyr Leu Ile Ala His Asp Pro Leu gat tac acc ttc gat ttt ccc cag ggc gag cac atc acc gcg cag tgg 643 Asp Tyr Thr Phe Asp Phe Pro Gln Gly Glu His Ile Thr Ala Gln Trp 170 175 att tee aac gaa caa tee tte att gat cae ate get gae acg gat tae 691 Ile Ser Asn Glu Gln Ser Phe Ile Asp His Ile Ala Asp Thr Asp Tyr 185 190

acc gat ttt tat acc tgg atc ggc gcg gaa tcc tcc gaa acc cgt
Thr Asp Phe Tyr Thr Trp Ile Gly Ala Glu Ser Ser Glu Thr Arg
200 205 210

736

<210> 202

<211> 212

<212> PRT

<213> Corynebacterium glutamicum

<400> 202

Met Gly Lys Gly Phe Thr Gly Ala Ile Leu Thr Val Met Gly Val Lys
1 10 15

Ser His Ile Ala Thr Thr Gly Lys Thr Val Ile Asn Asp Arg Met 20 25 30

Val Thr Ile His Phe His Ser Glu Thr Leu Leu Asn Thr Glu Gly Glu 35 40 45

Val Pro Gly Asp Trp Leu Arg Leu Trp Phe Pro His Glu Ser Arg Pro 50 55 60

Gly Lys Leu Tyr Gln Arg Ala Tyr Thr Leu Thr Asn Val Asp Ala Asp 65 70 75 80

Ala Gly Thr Phe Asp Leu Ala Phe Val Leu His Glu Pro Leu Gly Pro 85 90 95

Ala Ser Ala Trp Ala Thr Arg Cys Glu Ala Gly Glu Ser Leu Glu Val 100 105 110

Met Arg Tyr Pro Gly Ile Pro Phe Ala Ile Pro Asp Pro Ala Pro Arg 115 120 125

Gly Phe Leu Phe Leu Gly Asp Leu Thr Ser Tyr Pro Ala Ile Cys Ser 130 135 140

Ile Leu Glu Thr Leu Asp Gly Glu Ile Pro Ala Thr Ala Tyr Leu Ile 145 150 155 160

Ala His Asp Pro Leu Asp Tyr Thr Phe Asp Phe Pro Gln Gly Glu His
165 170 175

Ile Thr Ala Gln Trp Ile Ser Asn Glu Gln Ser Phe Ile Asp His Ile 180 185 190

Ala Asp Thr Asp Tyr Thr Asp Phe Tyr Thr Trp Ile Gly Ala Glu Ser 195 200 205

Ser Glu Thr Arg 210

<210> 203

<211> 732

<212> DNA

<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(709)
<223> RXA01051

<400> 203

tgcgacccaa gatactctcg ggcaagctct tcgttgttcg ttaaagattt tgaggaaacc 60

taacagtgaa cacacaggcc atcccctag ggttggccat atg tca acc att cac 115

Met Ser Thr Ile His

1

gcc tcc gga atc cag gct cca caa gtg cca cac ggt tcc cac cat gcc 163
Ala Ser Gly Ile Gln Ala Pro Gln Val Pro His Gly Ser His His Ala
10 15 20

ccg cca caa aag gac gaa tca gtg aag agc ttc aat gcc tct tct 211 Pro Pro Gln Lys Asp Glu Ser Val Lys Lys Ser Phe Asn Ala Ser Ser 25 30 35

tta ctg ttc gcg ttt tcc ttc ggc gtg tac ctg gtg ctg ctt gtg atg 259 Leu Leu Phe Ala Phe Ser Phe Gly Val Tyr Leu Val Leu Leu Val Met 40 45 50

atg aca ctt ctt aaa agt cgc ctt tct tta ggc gga ctg tgg aac aca 307 Met Thr Leu Leu Lys Ser Arg Leu Ser Leu Gly Gly Leu Trp Asn Thr 55 60 65

gaa gca cac caa tac aga tcc atc gac tta gag ctt ttc aac ggc ttt 355 Glu Ala His Gln Tyr Arg Ser Ile Asp Leu Glu Leu Phe Asn Gly Phe 70 75 80 85

gct gat cca cca att tgg tgg ggg cct tgg acc aac act ttt ggc aac Ala Asp Pro Pro Ile Trp Trp Gly Pro Trp Thr Asn Thr Phe Gly Asn 90 95 100

atc gca ctg ttc atg cca ttt ggg ttt ttc ctg tac aaa atg ctc cgt

Ile Ala Leu Phe Met Pro Phe Gly Phe Phe Leu Tyr Lys Met Leu Arg

105

110

115

aga ttc aac cat cga ttc ccc ttc gta gaa acc atc ctg ttt gcc agc $$ 499 Arg Phe Asn His Arg Phe Pro Phe Val Glu Thr Ile Leu Phe Ala Ser $$ 120 $$ 125 $$ 130

gtc acc agc ctc agt atc gaa gtt ctg caa tgg gtg ttt gct att gga 547 Val Thr Ser Leu Ser Ile Glu Val Leu Gln Trp Val Phe Ala Ile Gly 135 140 145

tat tca gat gtc gat gac ctg ttg ttt aat acg atc ggc gga ctc att 595 Tyr Ser Asp Val Asp Asp Leu Leu Phe Asn Thr Ile Gly Gly Leu Ile 150 165 160

gga gca tcc gta gca gcg ctt gtc tcg ctt aaa tcc tcc aag gta gtc 643 Gly Ala Ser Val Ala Ala Leu Val Ser Leu Lys Ser Ser Lys Val Val 170 175 180

agc gga atc atc atg ggc ggt tca cta tct gtg atg gcg atg atg atg 691 Ser Gly Ile Ile Met Gly Gly Ser Leu Ser Val Met Ala Met Met Met 185 190 195

tat tca agt ttt atc gcc tagaaggttt cagcagttcc gct 732

Tyr Ser Ser Phe Ile Ala

200

<210> 204

<211> 203

<212> PRT

<213> Corynebacterium glutamicum

<400> 204

Met Ser Thr Ile His Ala Ser Gly Ile Gln Ala Pro Gln Val Pro His
1 5 10 15

Gly Ser His His Ala Pro Pro Gln Lys Asp Glu Ser Val Lys Lys Ser 20 25 30

Phe Asn Ala Ser Ser Leu Leu Phe Ala Phe Ser Phe Gly Val Tyr Leu 35 40 45

Val Leu Leu Val Met Met Thr Leu Leu Lys Ser Arg Leu Ser Leu Gly 50 55 60

Gly Leu Trp Asn Thr Glu Ala His Gln Tyr Arg Ser Ile Asp Leu Glu 65 70 75 80

Leu Phe Asn Gly Phe Ala Asp Pro Pro Ile Trp Trp Gly Pro Trp Thr 85 90 95

Asn Thr Phe Gly Asn Ile Ala Leu Phe Met Pro Phe Gly Phe Phe Leu 100 105 110

Tyr Lys Met Leu Arg Arg Phe Asn His Arg Phe Pro Phe Val Glu Thr 115 120 125

Ile Leu Phe Ala Ser Val Thr Ser Leu Ser Ile Glu Val Leu Gln Trp 130 135 140

Val Phe Ala Ile Gly Tyr Ser Asp Val Asp Asp Leu Leu Phe Asn Thr 145 150 155 160

Ile Gly Gly Leu Ile Gly Ala Ser Val Ala Ala Leu Val Ser Leu Lys 165 170 175

Ser Ser Lys Val Val Ser Gly Ile Ile Met Gly Gly Ser Leu Ser Val 180 185 190

Met Ala Met Met Tyr Ser Ser Phe Ile Ala 195 200

<210> 205

<211> 1359 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1336) <223> RXN01873 <400> 205 ccqtcqttqc ccatqqtcac agcctacatq cacaaaqtqa atcaaaaaca gctatttcta 60 acattttact aatatttgct gttggcgcat gatgaactcc atg agc caa gca ata Met Ser Gln Ala Ile gat agc aag gtc gag gca cac gaa ggc cac gaa ggc cac gaa ggc atc 163 Asp Ser Lys Val Glu Ala His Glu Gly His Glu Gly His Glu Gly Ile 10 gag cga gga aca cgc aat tac aag cgc gct gtg ttt gcg atg ctg gcc 211 Glu Arg Gly Thr Arg Asn Tyr Lys Arg Ala Val Phe Ala Met Leu Ala 30 gcc ggt ctt gct gct ttc aat ggt ctt tat tgc acg cag gca ttg ctt 259 Ala Gly Leu Ala Ala Phe Asn Gly Leu Tyr Cys Thr Gln Ala Leu Leu 45 ccc acc atg acg gaa gag ttg gga att acg ccc act gag tcc gcg ctg 307 Pro Thr Met Thr Glu Glu Leu Gly Ile Thr Pro Thr Glu Ser Ala Leu acg gtg tcg gct acg act gga atg ttg gcg ctg tgt att gtt ccg gcg 355 Thr Val Ser Ala Thr Thr Gly Met Leu Ala Leu Cys Ile Val Pro Ala 403 tcq ata ctt tcg gag aaa ttt ggt cgc ggt cgg gtg ctg aca att tca Ser Ile Leu Ser Glu Lys Phe Gly Arg Gly Arg Val Leu Thr Ile Ser ctc acg ttg gcc atc atc gtg gga tta att ttg ccg ctt gtc ccc aat 451 Leu Thr Leu Ala Ile Ile Val Gly Leu Ile Leu Pro Leu Val Pro Asn att act gct ctc atc ctg ctc aga ggt ctc caa ggt gcg ctg ctt gct 499 Ile Thr Ala Leu Ile Leu Leu Arg Gly Leu Gln Gly Ala Leu Leu Ala ggc act cca gcg gtg gcg atg acc tgg ttg tct gag gaa att cac ccc 547 Gly Thr Pro Ala Val Ala Met Thr Trp Leu Ser Glu Glu Ile His Pro

aag gat att ggg cat gcg atg gga att tac atc gcg gga aat act gtc Lys Asp Ile Gly His Ala Met Gly Ile Tyr Ile Ala Gly Asn Thr Val

ggc ggg ctc act gga cgt atg att ccg gcg gga cta ctt gaa gta act

155

595

643

Gl	, Gly	/ Le	ı Th	r Gl		g Met	: Ile	e Pro	Ala 175	_	/ Leu	ı Lev	Glu	val 180	. Thr	
				n Ala					Ser					ıle	ttc Phe	691
ggc Gly	gta Val	ato 110 200	e Met	g gto Val	g gto L Val	g tto Lev	ctt Leu 205	Pro	aaç Lys	g caç Glr	g egg Arg	aaa Lys 210	Phe	cag Gln	ccg Pro	739
aag Lys	aat Asn 215	Ile	aat Asr	cto Lev	g ego Arg	cat His 220	Glu	att Ile	tcg Ser	gcg Ala	atg Met 225	Ala	gct Ala	cat His	tgg Trp	787
cgg Arg 230	Asn	cct	cgt Arg	ttg Leu	gcg Ala 235	ttg Leu	ctt Leu	ttt Phe	ggt Gly	act Thr 240	Ala	ttt Phe	ttg Leu	ggc Gly	atg Met 245	835
ggt Gly	act Thr	ttt Phe	gtg Val	Ser 250	Leu	tac Tyr	aac Asn	tat Tyr	ttg Leu 255	ggt Gly	ttc Phe	cgc Arg	atg Met	att Ile 260	gat Asp	883
				Ser		gtg Val										931
						tcc Ser										979
						gtt Val 300										1027
						att Ile										1075
ctg Leu	ttt Phe	gtg Val	ttt Phe	acc Thr 330	gcg Ala	gca Ala	ttt Phe	ttc Phe	gca Ala 335	Leu	cat His	tcc Ser	agt Ser	gct Ala 340	tcg Ser	1123
gga Gly	tgg Trp	atc Ile	gga Gly 345	atc Ile	atc Ile	gca Ala	acg Thr	aag Lys 350	gat Asp	cgc Arg	gcg Ala	gaa Glu	gcc Ala 355	tcc Ser	agc Ser	1171
						tac Tyr										1219
Ser	gga Gly 375	ttc Phe	gcg Ala	ttt Phe	acg Thr	cat His 380	ttg Leu	ccg Pro	tgg Trp	ttg Leu	gcg Ala 385	ttc Phe	att Ile	ggc Gly	tgg Trp	1267
ttg Leu						gga Gly										1315

390 395 400 405

agg ctt gcc cgc aac gcc aat taatacgagt ttgtccgtgt tta 1359 Arg Leu Ala Arg Asn Ala Asn 410

<210> 206

<211> 412

<212> PRT

<213> Corynebacterium glutamicum

<400> 206

Met Ser Gln Ala Ile Asp Ser Lys Val Glu Ala His Glu Gly His Glu 1 5 10 15

Gly His Glu Gly Ile Glu Arg Gly Thr Arg Asn Tyr Lys Arg Ala Val 20 25 30

Phe Ala Met Leu Ala Ala Gly Leu Ala Ala Phe Asn Gly Leu Tyr Cys
35 40 45

Thr Gln Ala Leu Leu Pro Thr Met Thr Glu Glu Leu Gly Ile Thr Pro 50 55 60

Thr Glu Ser Ala Leu Thr Val Ser Ala Thr Thr Gly Met Leu Ala Leu 65 70 75 80

Cys Ile Val Pro Ala Ser Ile Leu Ser Glu Lys Phe Gly Arg Gly Arg 85 90 95

Val Leu Thr Ile Ser Leu Thr Leu Ala Ile Ile Val Gly Leu Ile Leu 100 105 110

Pro Leu Val Pro Asn Ile Thr Ala Leu Ile Leu Leu Arg Gly Leu Gln 115 120 125

Gly Ala Leu Leu Ala Gly Thr Pro Ala Val Ala Met Thr Trp Leu Ser 130 135 140

Glu Glu Ile His Pro Lys Asp Ile Gly His Ala Met Gly Ile Tyr Ile 145 150 155 160

Ala Gly Asn Thr Val Gly Gly Leu Thr Gly Arg Met Ile Pro Ala Gly 165 170 175

Leu Leu Glu Val Thr His Trp Gln Asn Ala Leu Leu Gly Ser Ser Ile 180 185 190

Ala Ala Leu Ile Phe Gly Val Ile Met Val Val Leu Leu Pro Lys Gln 195 200 205

Arg Lys Phe Gln Pro Lys Asn Ile Asn Leu Arg His Glu Ile Ser Ala 210 215 220

Met Ala Ala His Trp Arg Asn Pro Arg Leu Ala Leu Leu Phe Gly Thr 225 230 235 240

Ala Phe Leu Gly Met Gly Thr Phe Val Ser Leu Tyr Asn Tyr Leu Gly 245 Phe Arg Met Ile Asp Gln Phe Gly Leu Ser Glu Val Leu Val Gly Ala 265 Val Phe Ile Met Tyr Leu Ala Gly Thr Trp Ser Ser Thr Gln Ala Gly 275 280 Ala Leu Arg Glu Lys Ile Gly Asn Gly Ser Thr Val Ile Phe Leu Ser 290 295 Leu Thr Met Ile Ala Ser Met Ala Leu Met Gly Ile Asn Asn Leu Trp 310 315 Val Thr Leu Val Ala Leu Phe Val Phe Thr Ala Ala Phe Phe Ala Leu His Ser Ser Ala Ser Gly Trp Ile Gly Ile Ile Ala Thr Lys Asp Arg Ala Glu Ala Ser Ser Met Tyr Leu Phe Cys Tyr Tyr Val Gly Ser Ser Val Ile Gly Trp Val Ser Gly Phe Ala Phe Thr His Leu Pro Trp Leu 375 Ala Phe Ile Gly Trp Leu Ile Leu Leu Cys Gly Val Leu Ala Ile 385 390 400 Cys Val Thr Leu Ala Arg Leu Ala Arg Asn Ala Asn 405 <210> 207 <211> 1215 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1192) <223> FRXA01873 <400> 207 ccgtcgttgc ccatggtcac agcctacatg cacaaagtga atcaaaaaca gctatttcta 60 acattttact aatatttgct gttggcgcat gatgaactcc atg agc caa gca ata Met Ser Gln Ala Ile gat age aag gte gag gea eae gaa gge eae gaa gge eae gaa gge ate 163 Asp Ser Lys Val Glu Ala His Glu Gly His Glu Gly His Glu Gly Ile

211

gag cga gga aca cgc aat tac aag cgc gct gtg ttt gcg atg ctg gcc

Glu	Arg	Gly	Thr 25		J Asn	Tyr	Lys	Arg 30		Val	Phe	Ala	Met 35	Leu	Ala	
gcc Ala	ggt Gly	ctt Leu 40	Ala	gct Ala	ttc Phe	aat Asn	ggt Gly 45	Leu	tat Tyr	tgc Cys	acg Thr	cag Gln 50	Ala	ttg Leu	ctt Leu	259
		Met	_				Gly		_			Glu		gcg Ala		307
											Cys			ccg Pro		355
-			_		Lys			_						att Ile 100		403
				Ile										ccc Pro		451
														ctt Leu		499
														cac His		547
														act Thr		595
														gta Val 180	Thr	643
														atc Ile		691
2 2	_		_			_				-				cag Gln	_	739
														cat His		787
														ggc Gly		835
														att Ile		883

250 255 260

cag ttt ggg ctg agt gaa gtg ctg gtt ggt gcg gtg ttc atc atg tat 931 Gln Phe Gly Leu Ser Glu Val Leu Val Gly Ala Val Phe Ile Met Tyr 265 270 275

ctg gcc ggg acc tgg agt tcc acc cag gcg ggt gcg ttg agg gag aag 979 Leu Ala Gly Thr Trp Ser Ser Thr Gln Ala Gly Ala Leu Arg Glu Lys

atc ggc aat ggg tca acg gtt att ttc ttg agt ctg acg atg atc gcg 1027 Ile Gly Asn Gly Ser Thr Val Ile Phe Leu Ser Leu Thr Met Ile Ala 295 300 305

tcg atg gca ctg atg ggg att aat aat ttg tgg gtc acg ttg gtt gcc 1075 Ser Met Ala Leu Met Gly Ile Asn Asn Leu Trp Val Thr Leu Val Ala 310 320 325

ctg ttt gtg ttt acc gcg gca ttt ttc gca ctg cat tcc agt gct tcg $\,$ 1123 Leu Phe Val Phe Thr Ala Ala Phe Phe Ala Leu His Ser Ser Ala Ser $\,$ 330 $\,$ 335 $\,$ 340

gga tgg atc gga atc atc gca acg aag gat cgc gcg gaa gcc tcc agc 1171 Gly Trp Ile Gly Ile Ile Ala Thr Lys Asp Arg Ala Glu Ala Ser Ser 345 350 355

atg tat ttg ttc tgt gaa tac taggatcctc ggtgattggt tgg 1215 Met Tyr Leu Phe Cys Glu Tyr 360

<210> 208

<211> 364

<212> PRT

<213> Corynebacterium glutamicum

<400> 208

Met Ser Gln Ala Ile Asp Ser Lys Val Glu Ala His Glu Gly His Glu 1 5 10 15

Gly His Glu Gly Ile Glu Arg Gly Thr Arg Asn Tyr Lys Arg Ala Val 20 25 30

Phe Ala Met Leu Ala Ala Gly Leu Ala Ala Phe Asn Gly Leu Tyr Cys 35 . 40 45

Thr Gln Ala Leu Leu Pro Thr Met Thr Glu Glu Leu Gly Ile Thr Pro 50 55 60

Thr Glu Ser Ala Leu Thr Val Ser Ala Thr Thr Gly Met Leu Ala Leu 65 70 75 80

Cys Ile Val Pro Ala Ser Ile Leu Ser Glu Lys Phe Gly Arg Gly Arg 85 90 95

Val Leu Thr Ile Ser Leu Thr Leu Ala Ile Ile Val Gly Leu Ile Leu 100 105 110

Pro Leu Val Pro Asn Ile Thr Ala Leu Ile Leu Leu Arg Gly Leu Gln 115 120 125

Gly Ala Leu Leu Ala Gly Thr Pro Ala Val Ala Met Thr Trp Leu Ser 130 135 140

Glu Glu Ile His Pro Lys Asp Ile Gly His Ala Met Gly Ile Tyr Ile 145 150 155 160

Ala Gly Asn Thr Val Gly Gly Leu Thr Gly Arg Met Ile Pro Ala Gly
165 170 175

Leu Leu Glu Val Thr His Trp Gln Asn Ala Leu Leu Gly Ser Ser Ile 180 185 190

Ala Ala Leu Ile Phe Gly Val Ile Met Val Val Leu Leu Pro Lys Gln 195 200 205

Arg Lys Phe Gln Pro Lys Asn Ile Asn Leu Arg His Glu Ile Ser Ala 210 215 220

Met Ala Ala His Trp Arg Asn Pro Arg Leu Ala Leu Leu Phe Gly Thr 225 230 235 240

Ala Phe Leu Gly Met Gly Thr Phe Val Ser Leu Tyr Asn Tyr Leu Gly 245 250 255

Phe Arg Met Ile Asp Gln Phe Gly Leu Ser Glu Val Leu Val Gly Ala 260 265 270

Val Phe Ile Met Tyr Leu Ala Gly Thr Trp Ser Ser Thr Gln Ala Gly 275 280 285

Ala Leu Arg Glu Lys Ile Gly Asn Gly Ser Thr Val Ile Phe Leu Ser 290 295 300

Leu Thr Met Ile Ala Ser Met Ala Leu Met Gly Ile Asn Asn Leu Trp 305 310 315 320

Val Thr Leu Val Ala Leu Phe Val Phe Thr Ala Ala Phe Phe Ala Leu 325 330 335

His Ser Ser Ala Ser Gly Trp Ile Gly Ile Ile Ala Thr Lys Asp Arg 340 345 350

Ala Glu Ala Ser Ser Met Tyr Leu Phe Cys Glu Tyr 355 360

<210> 209

<211> 1572

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1549) <223> RXN00034

<400> 209

taaattttgt ggcactcccc acatttctat caatctatag aaagtatgac ttaaagtcga 60

ttttgcaagt ttctatagat tgatagaaaa gggagtttag atg tct tac aca tct $$ 115 Met Ser Tyr Thr Ser $$ 1 $$ 5

ttt aaa ggc gat gat aaa gcc ctc atc ggc ata gtt tta tca gtt ctc 163 Phe Lys Gly Asp Asp Lys Ala Leu Ile Gly Ile Val Leu Ser Val Leu 10 15 20

aca ttt tgg ctt ttt gct cag tca acc cta aat atc ggc cca gat atg 211
Thr Phe Trp Leu Phe Ala Gln Ser Thr Leu Asn Ile Gly Pro Asp Met
25 30 35

gca act gat tta ggg atg agc gat ggc acc atg aac ata gct gtc gtg 259 Ala Thr Asp Leu Gly Met Ser Asp Gly Thr Met Asn Ile Ala Val Val 40 45 50

gcc gcc gcg tta ttc tgt gga aca ttt atc gtc gca gcc ggc ggc atc 307 Ala Ala Ala Leu Phe Cys Gly Thr Phe Ile Val Ala Ala Gly Gly Ile 55 60 65

gca gat gtc ttt ggc cga gta cga atc atg atg att ggc aac atc ctt 355 Ala Asp Val Phe Gly Arg Val Arg Ile Met Met Ile Gly Asn Ile Leu 70 75 80 85

aac atc ctg gga tct ctc ctc atc gcc acg gca acg act tct tta gcc 403 Asn Ile Leu Gly Ser Leu Leu Ile Ala Thr Ala Thr Thr Ser Leu Ala

acc caa atg gtg atc acc ggc cga gtt ctc caa gga ctg gca gca gcg 451
Thr Gln Met Val Ile Thr Gly Arg Val Leu Gln Gly Leu Ala Ala Ala
105 110 115

gcc atc atg tct gca tcc cta gca tta gtt aag aca tat tgg tta ggt 499 Ala Ile Met Ser Ala Ser Leu Ala Leu Val Lys Thr Tyr Trp Leu Gly 120 125 130

act gac cgc caa cga gca gtc tcc att tgg tcc att ggt tca tgg ggt 547
Thr Asp Arg Gln Arg Ala Val Ser Ile Trp Ser Ile Gly Ser Trp Gly
135 140 145

ggc acc gga ttc tgc gcg ctt ttc gcg ggt ctt gtt gta gca agc ccc 595 Gly Thr Gly Phe Cys Ala Leu Phe Ala Gly Leu Val Val Ala Ser Pro 150 155 160 165

ttt ggt tgg aga gga atc ttc gcc ctc tgc gcg atc gtc tcc atc gtt 643 Phe Gly Trp Arg Gly Ile Phe Ala Leu Cys Ala Ile Val Ser Ile Val 170 175 180

gct att gcc ctt acc cgc cac atc ccg gaa tcc cgt ccg gct caa tcc 691 Ala Ile Ala Leu Thr Arg His Ile Pro Glu Ser Arg Pro Ala Gln Ser 185 190 195

		_	His	ttg Lev	_		_	Gly			-		Āla		-	739
_		Ser		gaa Glu	_		Ile				_					787
-	His		_	acc Thr		Thr			_	_		_				835
_	_		_	Phe 250	Ile	_	-		-	_			_		-	883
				aaa Lys	_		_		_							931
				gct Ala												979
-		_		tgg Trp		_					_				-	1027
				gcc Ala												1075
				gtt Val 330												1123
_	-	-		gcg Ala		_			_				_	_		1171
				gtc Val												1219
				ttc Phe	-			_		_						1267
				cgt Arg												1315
				gca Ala 410				Ile								1363

ctc gca ctt cgc gac ggc acc tcc atc aac tcc gac gtc gca ctc gcc Leu Ala Leu Arg Asp Gly Thr Ser Ile Asn Ser Asp Val Ala Leu Ala 425 430 435	1411
gga aca gtt tca ctt ggc atc aac gtt gta ttc gca gca aca gcc acc Gly Thr Val Ser Leu Gly Ile Asn Val Val Phe Ala Ala Thr Ala Thr 440 445 450	1459
atc acc gca gca gtc ctt att cca aaa gcc gct ggc aaa gtc tca caa Ile Thr Ala Ala Val Leu Ile Pro Lys Ala Ala Gly Lys Val Ser Gln 455 460 465	1507
acc agc atc acc ctt cct gag cca gct atc gct gta aaa atc Thr Ser Ile Thr Leu Pro Glu Pro Ala Ile Ala Val Lys Ile 470 475 480	1549
taaaacttca ccaggacaga taa	1572
<210> 210 <211> 483 <212> PRT <213> Corynebacterium glutamicum	
<pre><400> 210 Met Ser Tyr Thr Ser Phe Lys Gly Asp Asp Lys Ala Leu Ile Gly Ile 1 5 10 15</pre>	
Val Leu Ser Val Leu Thr Phe Trp Leu Phe Ala Gln Ser Thr Leu Asn 20 25 30	
Ile Gly Pro Asp Met Ala Thr Asp Leu Gly Met Ser Asp Gly Thr Met 35 40 45	
Asn Ile Ala Val Val Ala Ala Ala Leu Phe Cys Gly Thr Phe Ile Val 50 55 60	
Ala Ala Gly Gly Ile Ala Asp Val Phe Gly Arg Val Arg Ile Met Met 65 70 75 80	
Ile Gly Asn Ile Leu Asn Ile Leu Gly Ser Leu Leu Ile Ala Thr Ala 85 90 95	
Thr Thr Ser Leu Ala Thr Gln Met Val Ile Thr Gly Arg Val Leu Gln 100 105 110	
Gly Leu Ala Ala Ala Ile Met Ser Ala Ser Leu Ala Leu Val Lys 115 120 125	
Thr Tyr Trp Leu Gly Thr Asp Arg Gln Arg Ala Val Ser Ile Trp Ser 130 135 140	
Ile Gly Ser Trp Gly Gly Thr Gly Phe Cys Ala Leu Phe Ala Gly Leu 145 150 155 160	
Val Val Ala Ser Pro Phe Gly Trp Arg Gly Ile Phe Ala Leu Cys Ala 165 170 175	

PCT/IB00/00922 WO 01/00804

Ile Val Ser Ile Val Ala Ile Ala Leu Thr Arg His Ile Pro Glu Ser 180 Arg Pro Ala Gln Ser Ile Gly Met His Leu Asp Trp Ser Gly Ile Ile 200 Val Leu Ala Leu Ser Val Leu Ser Leu Glu Leu Phe Ile Thr Gln Gly 215 Glu Ser Leu Gly Trp Thr His Trp Met Thr Trp Thr Leu Leu Ala Val 230 235 Ser Leu Thr Phe Leu Ala Val Phe Val Phe Ile Glu Arg Ile Ala Ser 245 250 Trp Pro Val Leu Asp Phe Asn Leu Phe Lys Asp His Ala Phe Ser Gly Ala Thr Ile Thr Asn Phe Ile Met Ser Ala Thr Gly Gly Val Val Ala 280 Val Val Met Trp Val Gln Gln Met Gly Trp Gly Val Ser Pro Thr Ile Ser Gly Leu Thr Ser Ile Gly Phe Ala Ala Phe Val Ile Leu Phe Ile 310 Arg Val Gly Glu Lys Ala Met Gln Lys Val Gly Ala Arg Ala Val Ile Ile Thr Ala Gly Ile Leu Val Ala Thr Ala Thr Ala Leu Leu Met Ile 345 Thr Ala Val Ser Glu Ser Thr Tyr Ile Val Ile Ser Leu Ala Gly Phe 360 355 Ser Leu Tyr Gly Leu Gly Leu Gly Leu Phe Ala Thr Pro Val Thr Asp 375 Thr Ala Leu Gly Thr Leu Pro Lys Asp Arg Thr Gly Ala Gly Ala Gly 390 Val Phe Lys Met Ser Ser Leu Gly Ala Ala Leu Gly Ile Ala Ile 405 410 Ser Thr Ser Val Phe Leu Ala Leu Arg Asp Gly Thr Ser Ile Asn Ser 420 Asp Val Ala Leu Ala Gly Thr Val Ser Leu Gly Ile Asn Val Val Phe 440 Ala Ala Thr Ala Thr Ile Thr Ala Ala Val Leu Ile Pro Lys Ala Ala 455

Gly Lys Val Ser Gln Thr Ser Ile Thr Leu Pro Glu Pro Ala Ile Ala

470

475

450

Val Lys Ile

<21 <21	10> 2 11> 1 12> [13> 0	1045 DNA	nebad	cter	ium q	gluta	micu	1 m								
<22	?1> C ?2> (101))(1)22 7 3		ı											
	0> 2 attt		ggca	ctco	cc a	catt	tcta	t ca	atct	atag	aaa	gtat	gac	ttaa	agtcga	60
ttt	tgca	agt	ttct	atag	at t	gata	gaaa	a gg	gagt	ttag		Ser				115
					Lys	gcc Ala										163
				Phe		cag Gln										211
			Leu			agc Ser										259
						gga Gly 60										307
						gta Val										355
						ctc Leu										403
						ggc Gly										451
						cta Leu										499
						gtc Val 140										547

	acc Thr					Leu					Val					595
	ggt Gly									Ala						643
	att Ile															691
	ggc Gly	-		_	_		_				_		-		_	739
	cta Leu 215															787
	cac His															835
	gtt Val														gac Asp	883
	aac Asn															931
	att Ile															979
	caa Gln 295															1027
	ggc Gly															1045
<211 <212	> 21 > 31 > PR > Co	5 T	bact	eriu	m gl	utam	icum									
	> 21 Ser		Thr :	Ser 5	Phe :	Lys	Gly .	Asp .	Asp 10	Lys	Ala	Leu	Ile	Gly 15	Ile	
Val	Leu	Ser	Val 1	Leu '	Thr :	Phe	Trp	Leu 25	Phe	Ala	Gln	Ser	Thr 30	Leu	Asn	

Ile Gly Pro Asp Met Ala Thr Asp Leu Gly Met Ser Asp Gly Thr Met 35 40 45

Asn Ile Ala Val Val Ala Ala Ala Leu Phe Cys Gly Thr Phe Ile Val 50 55 60

Ala Ala Gly Gly Ile Ala Asp Val Phe Gly Arg Val Arg Ile Met Met 65 70 75 80

Ile Gly Asn Ile Leu Asn Ile Leu Gly Ser Leu Leu Ile Ala Thr Ala 85 90 95

Thr Thr Ser Leu Ala Thr Gln Met Val Ile Thr Gly Arg Val Leu Gln 100 105 110

Gly Leu Ala Ala Ala Ile Met Ser Ala Ser Leu Ala Leu Val Lys 115 120 125

Thr Tyr Trp Leu Gly Thr Asp Arg Gln Arg Ala Val Ser Ile Trp Ser 130 135 140

Ile Gly Ser Trp Gly Gly Thr Gly Phe Cys Ala Leu Phe Ala Gly Leu 145 150 155 160

Val Val Ala Ser Pro Phe Gly Trp Arg Gly Ile Phe Ala Leu Cys Ala 165 170 175

Ile Val Ser Ile Val Ala Ile Ala Leu Thr Arg His Ile Pro Glu Ser 180 185 190

Arg Pro Ala Gln Ser Ile Gly Met His Leu Asp Trp Ser Gly Ile Ile 195 200 205

Val Leu Ala Leu Ser Val Leu Ser Leu Glu Leu Phe Ile Thr Gln Gly 210 215 220

Glu Ser Leu Gly Trp Thr His Trp Met Thr Trp Thr Leu Leu Ala Val 225 230 235 240

Ser Leu Thr Phe Leu Ala Val Phe Val Phe Ile Glu Arg Ile Ala Ser 245 250 255

Trp Pro Val Leu Asp Phe Asn Leu Phe Lys Asp His Ala Phe Ser Gly 260 265 270

Ala Thr Ile Thr Asn Phe Ile Met Ser Ala Thr Gly Gly Val Val Ala 275 280 285

Val Val Met Trp Val Gln Gln Met Gly Trp Gly Val Ser Pro Thr Ile 290 295 300

Ser Gly Leu Thr Ser Ile Gly Phe Ala Ala Phe 305 310 315

<210> 213

<211> 826 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(826) <223> RXN03075 <400> 213

tgtgcaaaat tgcattcagg ctgaaaaatt cctaaaqqqa ctccqtccga ataattgqaa 60 agcccagaag aacagtcaac tcctagatta aaggataatc gtg gcg aaa ttc ctg Val Ala Lys Phe Leu tat aag tta ggc tcc acg gcc tat caa aag aaa tgg ccg ttt ctt gcg 163 Tyr Lys Leu Gly Ser Thr Ala Tyr Gln Lys Lys Trp Pro Phe Leu Ala gtc tgg ctc gtg att ctc ata ggt atc acg acg ctg gcg ggg ctg tat 211 Val Trp Leu Val Ile Leu Ile Gly Ile Thr Thr Leu Ala Gly Leu Tyr gcc aag cca acg tcg agt agc ttc tct atc cct ggt ctt gat tct gtc 259 Ala Lys Pro Thr Ser Ser Ser Phe Ser Ile Pro Gly Leu Asp Ser Val 4.5 acg acc atg gag aag atg cag gag cgt ttc cct ggt tcg gat gat gca 307 Thr Thr Met Glu Lys Met Gln Glu Arg Phe Pro Gly Ser Asp Asp Ala aca tog got occ act ggt tot gto gto att cag goa cog gaa ggo aag 355 Thr Ser Ala Pro Thr Gly Ser Val Val Ile Gln Ala Pro Glu Gly Lys

Thr Leu Thr Asp Pro Glu Val Gly Ala Glu Val Asn Gln Met Leu Asp gag gtt cgg gcg act ggt gtg ctg aag gat gct gat tcc gtt gtg gat 451 Glu Val Arg Ala Thr Gly Val Leu Lys Asp Ala Asp Ser Val Val Asp cct gtg ttg gct gcg cag ggt gtg gct gct cag atg acc cca gcc ctg 499 Pro Val Leu Ala Ala Gln Gly Val Ala Ala Gln Met Thr Pro Ala Leu gag get cag ggt gta eet geg gag aag ate gee gea gat att gag teg 547 Glu Ala Gln Gly Val Pro Ala Glu Lys Ile Ala Ala Asp Ile Glu Ser att agt cca ctg agt gca gat gag act acc ggc atc atc tcg atg act 595 Ile Ser Pro Leu Ser Ala Asp Glu Thr Thr Gly Ile Ile Ser Met Thr 155 ttt gat gca gat tct gcc atg gat ata tcc gca gag gat cgt gag aag 643

acc ctc act gat cct gag gtt ggg gct gaa gta aac cag atg ctt gat

403

Phe Asp Ala Asp Ser Ala Met Asp Ile Ser Ala Glu Asp Arg Glu Lys 170 175 180

gtc acc aat att ctt gat gaa tac gat gac ggc gat ctg act gtt gtc

gtc acc aat att ctt gat gaa tac gat gac ggc gat ctg act gtt gtc (Val Thr Asn Ile Leu Asp Glu Tyr Asp Asp Gly Asp Leu Thr Val Val

185 190 195

tac aac ggc aac gtg ttt ggc gca gct gca acc agc ttg gac atg acc 739
Tyr Asn Gly Asn Val Phe Gly Ala Ala Ala Thr Ser Leu Asp Met Thr
200 205 210

tct gag ctc atc ggc ctg ctg gtg gct gcg gtc gtt ctt atc gtg acc 787 Ser Glu Leu Ile Gly Leu Leu Val Ala Ala Val Val Leu Ile Val Thr 215 220 225

ttc ggt tcg ttc atc gct gcc ggt atg ccg ctg atc tct
Phe Gly Ser Phe Ile Ala Ala Gly Met Pro Leu Ile Ser
230 235 240

<210> 214

<211> 242

<212> PRT

<213> Corynebacterium glutamicum

<400> 214

Val Ala Lys Phe Leu Tyr Lys Leu Gly Ser Thr Ala Tyr Gln Lys Lys 1 5 10 15

Trp Pro Phe Leu Ala Val Trp Leu Val Ile Leu Ile Gly Ile Thr Thr 20 25 30

Leu Ala Gly Leu Tyr Ala Lys Pro Thr Ser Ser Ser Phe Ser Ile Pro 35 40 45

Gly Leu Asp Ser Val Thr Thr Met Glu Lys Met Gln Glu Arg Phe Pro 50 60

Gly Ser Asp Asp Ala Thr Ser Ala Pro Thr Gly Ser Val Val Ile Gln 65 70 75 80

Ala Pro Glu Gly Lys Thr Leu Thr Asp Pro Glu Val Gly Ala Glu Val 85 90 95

Asn Gln Met Leu Asp Glu Val Arg Ala Thr Gly Val Leu Lys Asp Ala 100 105 110

Asp Ser Val Val Asp Pro Val Leu Ala Ala Gln Gly Val Ala Ala Gln 115 120 125

Met Thr Pro Ala Leu Glu Ala Gln Gly Val Pro Ala Glu Lys Ile Ala 130 135 140

Ala Asp Ile Glu Ser Ile Ser Pro Leu Ser Ala Asp Glu Thr Thr Gly
145 150 155 160

Ile Ile Ser Met Thr Phe Asp Ala Asp Ser Ala Met Asp Ile Ser Ala

165 170 175

Glu Asp Arg Glu Lys Val Thr Asn Ile Leu Asp Glu Tyr Asp Asp Gly 180 185 190

Asp Leu Thr Val Val Tyr Asn Gly Asn Val Phe Gly Ala Ala Ala Thr 195 200 205

Ser Leu Asp Met Thr Ser Glu Leu Ile Gly Leu Leu Val Ala Ala Val 210 215 220

Val Leu Ile Val Thr Phe Gly Ser Phe Ile Ala Ala Gly Met Pro Leu 225 230 235 240

Ile Ser

<210> 215

<211> 826

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(826)

<223> FRXA02907

<400> 215

tgtgcaaaat tgcattcagg ctgaaaaatt cctaaaggga ctccgtccga ataattggaa 60

agcccagaag aacagtcaac tectagatta aaggataate gtg gcg aaa tte etg 115 Val Ala Lys Phe Leu 1

tat aag tta ggc tcc acg gcc tat caa aag aaa tgg ccg ttt ctt gcg $\,$ 163 Tyr Lys Leu Gly Ser Thr Ala Tyr Gln Lys Lys Trp Pro Phe Leu Ala $\,$ 10 $\,$ 15 $\,$ 20

gtc tgg ctc gtg att ctc ata ggt atc acg acg ctg gcg ggg ctg tat 211 Val Trp Leu Val Ile Leu Ile Gly Ile Thr Thr Leu Ala Gly Leu Tyr 25 30 35

gcc aag cca acg tcg agt agc ttc tct atc cct ggt ctt gat tct gtc 259
Ala Lys Pro Thr Ser Ser Ser Phe Ser Ile Pro Gly Leu Asp Ser Val
40 45 50

acg acc atg gag aag atg cag gag cgt ttc cct ggt tcg gat gat gca 307 Thr Thr Met Glu Lys Met Gln Glu Arg Phe Pro Gly Ser Asp Asp Ala 55 60 65

aca tcg gct ccc act ggt tct gtc gtc att cag gca ccg gaa ggc aag 355 Thr Ser Ala Pro Thr Gly Ser Val Val Ile Gln Ala Pro Glu Gly Lys 70 75 80 85

acc ctc act gat cct gag gtt ggg gct gaa gta aac cag atg ctt gat 403 Thr Leu Thr Asp Pro Glu Val Gly Ala Glu Val Asn Gln Met Leu Asp

90 95 100

 _		-	Thr	ggt Gly		_	_	-	_	_		-		-	451
	_	-		cag Gln			_	-	_	_			-	-	499
				cct Pro											547
_		-	_	gca Ala 155	_							_	_		595
_	-	_		gcc Ala	-	-			_		-	_		_	643
				gat Asp											691
				ttt Phe											739
				ctg Leu											787
	_			gct Ala 235	_		_	_	_						826

<210> 216

<211> 242

<212> PRT

<213> Corynebacterium glutamicum

<400> 216

Val Ala Lys Phe Leu Tyr Lys Leu Gly Ser Thr Ala Tyr Gln Lys Lys

1 5 10 15

Trp Pro Phe Leu Ala Val Trp Leu Val Ile Leu Ile Gly Ile Thr Thr 20 25 30

Leu Ala Gly Leu Tyr Ala Lys Pro Thr Ser Ser Ser Phe Ser Ile Pro 35 40 45

Gly Leu Asp Ser Val Thr Thr Met Glu Lys Met Gln Glu Arg Phe Pro 50 55 60

Gly Ser Asp Asp Ala Thr Ser Ala Pro Thr Gly Ser Val Val Ile Gln Ala Pro Glu Gly Lys Thr Leu Thr Asp Pro Glu Val Gly Ala Glu Val Asn Gln Met Leu Asp Glu Val Arg Ala Thr Gly Val Leu Lys Asp Ala Asp Ser Val Val Asp Pro Val Leu Ala Ala Gln Gly Val Ala Ala Gln 120 115 Met Thr Pro Ala Leu Glu Ala Gln Gly Val Pro Ala Glu Lys Ile Ala 135 Ala Asp Ile Glu Ser Ile Ser Pro Leu Ser Ala Asp Glu Thr Thr Gly 150 155 Ile Ile Ser Met Thr Phe Asp Ala Asp Ser Ala Met Asp Ile Ser Ala 170 165 Glu Asp Arg Glu Lys Val Thr Asn Ile Leu Asp Glu Tyr Asp Asp Gly 180 185 Asp Leu Thr Val Val Tyr Asn Gly Asn Val Phe Gly Ala Ala Ala Thr 200 Ser Leu Asp Met Thr Ser Glu Leu Ile Gly Leu Leu Val Ala Ala Val 215 Val Leu Ile Val Thr Phe Gly Ser Phe Ile Ala Ala Gly Met Pro Leu 235 225 230 Ile Ser <210> 217 <211> 2313 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(2290) <223> RXA00479 <400> 217 tagatcccaa ggctcaaaat ttattactta aacaagttga gcaactagcc agccgcaaat 60

cttagaacta acctttacgc ctttaacgga agtgaatttg atg tct act agc atc Met Ser Thr Ser Ile

163 aca aca gag aac aag aag aaa tot ggt oot oot ogc ttg atg aga atc Thr Thr Glu Asn Lys Lys Ser Gly Pro Pro Arg Leu Met Arg Ile 10 15

				Let					Trp					Gly	gtc Val	211
			Туг					Ser					Asn		cag Gln	259
		Tyr					Āla					Val			cag Gln	307
	Gly										Ala			gta Val		355
					Leu					Ile				aat Asn 100		403
														gtc Val		451
														gtc Val		499
														tct Ser		547
														acc Thr		595
														att Ile 180		643
														ctt Leu		691
														acc Thr		739
ttg Leu	ttt Phe 215	gcg Ala	ctg Leu	act Thr	gta Val	gct Ala 220	cta Leu	ttg Leu	gtg Val	gtg Val	tgg Trp 225	tgg Trp	cta Leu	gct Ala	aag Lys	787
				Leu					Thr					ttc Phe		835

					a Ala					Let					cgt Arg	883
				Let					Asp					Thr	ggg	931
			Arg					Pro					Gly		act Thr	979
		Ala										Leu			aac Asn	1027
tcc Ser 310	Thr	cta Leu	ggt Gly	cca Pro	gta Val 315	Ala	tcg Ser	gtg Val	ggc Gly	att Ile 320	Ile	ttt Phe	gca Ala	atg Met	ctt Leu 325	1075
	gct Ala															1123
_	ttt Phe			_	_				_		-		_	-		1171
	aac Asn															1219
	gag Glu 375															1267
	ttg Leu															1315
	tcc Ser															1363
	tta Leu															1411
atc Ile	gtt Val	gat Asp 440	gaa Glu	aca Thr	cag Gln	Ala	gca Ala 445	cag Gln	gct Ala	gct Ala	gac Asp	gta Val 450	gtc Val	ctt Leu	aac Asn	1459
	gac Asp 455				Thr					Ser						1507
ggc	tca	gcc	cca (atc .	acc	gct	gac	ggt	att	gtg	ccg	tta	ggt	tct	ggt	1555

Gly 470		Ala	Pro	o Ile	₹ Thr		a Asp	Gly	, Ile	Val 480		Leu	Gly	Ser	Gly 485	
					Val		gta Val			Gln					Ala	1603
				Ala			tcc Ser		Glu					Ile		1651
			Gln				gat Asp 525	Glu					Val			1699
	_	Thr	-			_	gac Asp			_	_	Ser			-	1747
	Asn						gta Val									1795
							gtc Val									1843
					-		gct Ala				-	_				1891
		_					gga Gly 605	-	-		-	-				1939
							ttg Leu									1987
_		-		_	-	-	acc Thr						_			2035
							acc Thr									2083
-	_		-	_	_		gca Ala	-			_					2131
	_	-			_		att Ile 685	_	-			-	Leu		-	2179
							ttg Leu									2227

695 700 705

gga ccg aaa atc tgg tgg ccg tca aaa ttg tcc aat cag aaa tac cag 2275 Gly Pro Lys Ile Trp Trp Pro Ser Lys Leu Ser Asn Gln Lys Tyr Gln 710 725 725

aag cag cct cag cta tgacacacca aaattcgcct ctc 2313 Lys Gln Pro Gln Leu 730

<210> 218

<211> 730

<212> PRT

<213> Corynebacterium glutamicum

<400> 218

Met Ser Thr Ser Ile Thr Thr Glu Asn Lys Lys Lys Ser Gly Pro Pro 1 5 10 15

Arg Leu Met Arg Ile Phe Leu Pro Ala Leu Leu Ile Leu Val Trp Leu 20 25 30

Val Gly Ala Gly Val Gly Gly Pro Tyr Phe Gly Lys Val Ser Glu Val 35 40 45

Ser Ser Asn Ser Gln Thr Thr Tyr Leu Pro Glu Ser Ala Asp Ala Thr 50 55 60

Gln Val Gln Glu Gln Leu Gly Asp Phe Thr Asp Ser Glu Ser Ile Pro 65 70 75 80

Ala Ile Val Val Met Val Ser Asp Glu Pro Leu Thr Gln Gln Asp Ile 85 90 95

Thr Gln Leu Asn Glu Val Val Ala Gly Leu Ser Glu Leu Asp Ile Val 100 105 110

Ser Asp Glu Val Ser Pro Ala Ile Pro Ser Glu Asp Gly Arg Ala Val 115 120 125

Gln Val Phe Val Pro Leu Asn Pro Ser Ala Glu Leu Thr Glu Ser Val 130 135 140

Glu Lys Leu Ser Glu Thr Leu Thr Gln Gln Thr Pro Asp Tyr Val Ser 145 150 155 160

Thr Tyr Val Thr Gly Pro Ala Gly Phe Thr Ala Asp Leu Ser Ala Ala 165 170 175

Phe Ala Gly Ile Asp Gly Leu Leu Leu Ala Val Ala Leu Ala Ala Val 180 185 190

Leu Val Ile Leu Val Ile Val Tyr Arg Ser Phe Ile Leu Pro Ile Ala 195 200 205

Val Leu Ala Thr Ser Leu Phe Ala Leu Thr Val Ala Leu Leu Val Val

210	215	220
	2 ± 2	220

Trp Trp Leu Ala Lys Trp Asp Ile Leu Leu Ser Gly Gln Thr Gln 235 Gly Ile Leu Phe Ile Leu Val Ile Gly Ala Ala Thr Asp Tyr Ser Leu 245 250 Leu Tyr Val Ala Arg Phe Arg Glu Glu Leu Arg Val Gln Gln Asp Lys 265 Gly Ile Ala Thr Gly Lys Ala Ile Arg Ala Ser Val Glu Pro Ile Leu Ala Ser Gly Ser Thr Val Ile Ala Gly Leu Leu Cys Leu Leu Phe Ser Asp Leu Lys Ser Asn Ser Thr Leu Gly Pro Val Ala Ser Val Gly Ile Ile Phe Ala Met Leu Ser Ala Leu Thr Leu Leu Pro Ala Leu Leu Phe Val Phe Gly Arg Val Ala Phe Trp Pro Lys Arg Pro Lys Tyr Glu Pro Glu Lys Ala Arg Ala Lys Asn Asp Ile Pro Ala Ser Gly Ile Trp Ser Lys Val Ala Asp Leu Val Glu Gln His Pro Arg Ala Ile Trp Val Ser 375 Thr Leu Ile Val Leu Leu Gly Ala Ala Phe Val Pro Thr Leu Lys 390 395 Ala Asp Gly Val Ser Gln Ser Asp Leu Val Leu Gly Ser Ser Glu Ala 405 410 Arg Asp Gly Gln Gln Ala Leu Gly Glu His Phe Pro Gly Gly Ser Gly 420 425 Ser Pro Ala Tyr Ile Ile Val Asp Glu Thr Gln Ala Ala Gln Ala Ala 440 Asp Val Val Leu Asn Asn Asp Asn Phe Glu Thr Val Thr Val Thr Ser 450 455 Ala Asp Ser Pro Ser Gly Ser Ala Pro Ile Thr Ala Asp Gly Ile Val 470 475 Pro Leu Gly Ser Gly Thr Ala Pro Gly Pro Val Val Glu Gly Gln 485 Val Leu Leu Gln Ala Thr Leu Val Glu Ala Pro Asp Ser Glu Glu Ala Gln Lys Ala Ile Arg Ser Ile Arg Gln Thr Phe Ala Asp Glu Asn Ile

515 520 525

Ser Ala Val Val Gly Gly Val Thr Ala Thr Ser Val Asp Thr Asn Asp 530 540

Ala Ser Ile His Asp Arg Asn Leu Ile Ile Pro Ile Val Leu Leu Val 545 550 555 560

Ile Leu Val Ile Leu Met Leu Leu Leu Arg Ser Ile Val Ala Pro Leu 565 570 575

Leu Leu Val Val Thr Thr Val Val Ser Phe Ala Thr Ala Leu Gly Val 580 585 590

Ala Ala Leu Leu Phe Asn His Val Phe Ser Phe Pro Gly Ala Asp Pro 595 600 605

Ala Val Pro Leu Tyr Gly Phe Val Phe Leu Val Ala Leu Gly Ile Asp 610 615 620

Tyr Asn Ile Phe Leu Val Thr Arg Ile Arg Glu Glu Thr Lys Thr His 625 630 635 640

Gly Thr Arg Leu Gly Ile Leu Arg Gly Leu Thr Val Thr Gly Gly Val 645 650 655

Ile Thr Ser Ala Gly Val Val Leu Ala Ala Thr Phe Ala Ala Leu Tyr
660 665 670

Val Ile Pro Ile Leu Phe Leu Ala Gln Ile Ala Phe Ile Val Ala Phe 675 680 685

Gly Val Leu Ile Asp Thr Leu Leu Val Arg Ala Phe Leu Val Pro Ala 690 695 700

Leu Phe Tyr Asp Ile Gly Pro Lys Ile Trp Trp Pro Ser Lys Leu Ser 705 710 715 720

Asn Gln Lys Tyr Gln Lys Gln Pro Gln Leu 725 730

<210> 219

<211> 983

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(960)

<223> RXN03124

<400> 219

atg act cct acc ctg gcg tcg atg att ggt ctg gct gtc ggt atc gac

Met Thr Pro Thr Leu Ala Ser Met Ile Gly Leu Ala Val Gly Ile Asp

1 5 10 15

				: Ile					Arg					Ser	cag Gln	96
		_	Asr	_	_			Lys	_	_	_		Arg	_	cgc Arg	144
							Ala					Met			ggc Gly	192
	Ala				_	Val					_		_	atc Ile	-	240
														atg Met 95		288
	-	_	-						-	_	_	-	_	ctg Leu		336
														gca Ala		384
														cca Pro		432
														gct Ala		480
														gcg Ala 175		528
														ggc Gly		576
	Pro													ccg Pro		624
														cct Pro		672
				Leu					Ala					ttg Leu		720
act	gat	ggt	gtg	aag	aat	gct	cag	atc	act	cag	acc	acg	gag	aat	ttc	768

Thr	Asp	Gly	Val	Lys 245	Asn	Ala	Gln	Ile	Thr 250	Gln	Thr	Thr	Glu	Asn 255	Phe	
			cag Gln 260				Pro									816
-		_	aga Arg		_					_	_					864
			ccg Pro													912
_	-		tct Ser	_		-	_	-	-					_		960
tgat	cgtt	tt g	gttc	tago	g tt	c										983

<210> 220

<211> 320

<212> PRT

<213> Corynebacterium glutamicum

<400> 220

Met Thr Pro Thr Leu Ala Ser Met Ile Gly Leu Ala Val Gly Ile Asp
1 5 10 15

Tyr Ala Leu Phe Ile Val Ser Arg Phe Arg Asn Glu Leu Ile Ser Gln 20 25 30

Thr Gly Ala Asn Asp Leu Glu Pro Lys Glu Leu Ala Glu Arg Leu Arg 35 40 45

Thr Met Pro Leu Ala Ala Arg Ala His Ala Met Gly Met Ala Val Gly 50 55 60

Thr Ala Gly Ser Ala Val Val Phe Ala Gly Thr Thr Val Leu Ile Ala 65 70 75 80

Leu Val Ala Leu Ser Ile Ile Asn Ile Pro Phe Leu Thr Val Met Ala 85 90 95

Ile Ala Ala Ile Thr Val Ala Ile Ala Val Leu Val Ala Leu Ser 100 105 110

Phe Leu Pro Ala Leu Leu Gly Leu Leu Gly Thr Arg Ile Phe Ala Ala 115 120 125

Arg Val Pro Gly Pro Lys Val Pro Asp Pro Glu Asp Glu Lys Pro Thr 130 135 140

Met Gly Leu Lys Trp Val Arg Leu Val Arg Lys Met Pro Val Ala Tyr 145 150 155 160

Leu Leu Val Gly Val Val Leu Leu Gly Ala Ile Ala Ile Pro Ala Thr 165 170 175

Asn Met Arg Leu Ala Met Pro Thr Asp Gly Thr Ser Thr Leu Gly Thr 180 185 190

Ala Pro Arg Thr Gly Tyr Asp Met Thr Ala Asp Ala Phe Gly Pro Gly 195 200 205

Arg Asn Ala Pro Met Ile Ala Leu Ile Asp Ala Thr Asp Val Pro Glu 210 215 220

Glu Glu Arg Pro Leu Val Phe Gly Gln Ala Val Glu Gln Phe Leu Asn 225 230 235 240

Thr Asp Gly Val Lys Asn Ala Gln Ile Thr Gln Thr Thr Glu Asn Phe
245 250 255

Asp Thr Ala Gln Ile Leu Leu Pro Gln Asn Leu Met Arg Ser Met Ser 260 265 270

Ala Pro Leu Arg Leu Ser Gln Leu Phe Val Gln Met Leu Arg Pro Ser 275 280 285

Leu Met Thr Pro Ala Arg Arg Met Ala Leu Leu Ala Ser Pro Gln Phe 290 295 300

Thr Met Thr Ser Leu Leu Ala Ser Ala Thr Ser Trp Phe Leu Thr Phe 305 310 315 320

<210> 221

<211> 762

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(762)

<223> FRXA01180

<400> 221

atg act cct acc ctg gcg tcg atg att ggt ctg gct gtc ggt atc gac 48
Met Thr Pro Thr Leu Ala Ser Met Ile Gly Leu Ala Val Gly Ile Asp
1 5 10 15

tac gcg cta ttt atc gtg tcc cgt ttc cgc aat gag ttg att tct cag 96 Tyr Ala Leu Phe Ile Val Ser Arg Phe Arg Asn Glu Leu Ile Ser Gln 20 25 30

act ggc gct aat gat ctg gag cca aag gaa ttg gct gag cgt ctg cgc 144
Thr Gly Ala Asn Asp Leu Glu Pro Lys Glu Leu Ala Glu Arg Leu Arg
35 40 45

		Pro					Ala					Met			ggc Gly	192
	Ala					Val					Thr				gct Ala 80	240
-	-									Phe				-	gcc Ala	288
			gca Ala 100												tcc Ser	336
			gct Ala			-	_				_			_	-	384
			gga Gly													432
_		_	aag Lys		_	_			_	_	_	_		_		480
_	_	-	ggc Gly	-	-	_			_		_			-		528
	_	_	ctg Leu 180	_	_	_		-				_	_			576
			acg Thr													624
-			ccc Pro	-					_	_		-	_			672
			cca Pro	Leu												720
			gtg Val					Ile								762

<210> 222

<211> 254 <212> PRT

<213> Corynebacterium glutamicum

<400> 222

Met Thr Pro Thr Leu Ala Ser Met Ile Gly Leu Ala Val Gly Ile Asp 1 5 10 15

Tyr Ala Leu Phe Ile Val Ser Arg Phe Arg Asn Glu Leu Ile Ser Gln 20 25 30

Thr Gly Ala Asn Asp Leu Glu Pro Lys Glu Leu Ala Glu Arg Leu Arg 35 40 45

Thr Met Pro Leu Ala Ala Arg Ala His Ala Met Gly Met Ala Val Gly 50 55 60

Thr Ala Gly Ser Ala Val Val Phe Ala Gly Thr Thr Val Leu Ile Ala 65 70 75 80

Leu Val Ala Leu Ser Ile Ile Asn Ile Pro Phe Leu Thr Val Met Ala 85 90 95

Ile Ala Ala Ile Thr Val Ala Ile Ala Val Leu Val Ala Leu Ser 100 105 110

Phe Leu Pro Ala Leu Leu Gly Leu Leu Gly Thr Arg Ile Phe Ala Ala 115 120 125

Arg Val Pro Gly Pro Lys Val Pro Asp Pro Glu Asp Glu Lys Pro Thr 130 135 140

Met Gly Leu Lys Trp Val Arg Leu Val Arg Lys Met Pro Val Ala Tyr 145 150 155 160

Leu Leu Val Gly Val Val Leu Leu Gly Ala Ile Ala Ile Pro Ala Thr
165 170 175

Asn Met Arg Leu Ala Met Pro Thr Asp Gly Thr Ser Thr Leu Gly Thr 180 185 190

Ala Pro Arg Thr Gly Tyr Asp Met Thr Ala Asp Ala Phe Gly Pro Gly 195 200 205

Arg Asn Ala Pro Met Ile Ala Leu Ile Asp Ala Thr Asp Val Pro Glu 210 215 220

Glu Glu Arg Pro Leu Val Phe Gly Gln Ala Val Glu Gln Phe Leu Asn 225 230 235 240

Thr Asp Gly Val Lys Asn Ala Gln Ile Thr Gln Thr Thr Glu 245 250

<210> 223

<211> 393

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(370) <223> RXA02586 <400> 223 ttctctgaga tcgtcatgat gaagtacatc gcgttcggca tgatcgcagc gctgattctg 60 gatgccacca tcatccgcat gctgcttgtc ccccgccgtg atg cac ctg ctt cgc Met His Leu Leu Arg 163 gac gac aac tgg tgg gca ccc ggc ttc gtt aaa aag gcc tac acc gtc Asp Asp Asn Trp Trp Ala Pro Gly Phe Val Lys Lys Ala Tyr Thr Val 10 211 atg ggt cac ggc tct gag gtg gag gaa gca cct cgc cca acc cgt Met Gly His Gly Ser Glu Val Glu Glu Ala Pro Arg Pro Thr Thr Arg 30 cgc ctc aac gac gat gag gaa gtc acc gtg cat gaa gca gtt gtc gct 259 Arg Leu Asn Asp Asp Glu Glu Val Thr Val His Glu Ala Val Val Ala 45 ggc gat acc gtg gca tct cgc ggt ggt ttg agc acg cag gaa aac cgt 307 Gly Asp Thr Val Ala Ser Arg Gly Gly Leu Ser Thr Gln Glu Asn Arg 60 355 gat ctg gtg tcc ttc gtg gaa ctt aag gct cgt ttg gaa aag cgc agg Asp Leu Val Ser Phe Val Glu Leu Lys Ala Arg Leu Glu Lys Arg Arg 75 80 393 ctt gag gat cta gat taaatctatg cgaggatttt tca Leu Glu Asp Leu Asp <210> 224 <211> 90 <212> PRT <213> Corynebacterium glutamicum <400> 224 Met His Leu Leu Arg Asp Asp Asn Trp Trp Ala Pro Gly Phe Val Lys Lys Ala Tyr Thr Val Met Gly His Gly Ser Glu Val Glu Glu Ala Pro

Arg Pro Thr Thr Arg Arg Leu Asn Asp Asp Glu Glu Val Thr Val His 35 40 45

Glu Ala Val Val Ala Gly Asp Thr Val Ala Ser Arg Gly Gly Leu Ser 50 55 60

Thr Gln Glu Asn Arg Asp Leu Val Ser Phe Val Glu Leu Lys Ala Arg 65 70 75 80

Leu Glu Lys Arg Arg Leu Glu Asp Leu Asp 85 90

<21 <21	0> 2 1> 2 2> D 3> C	214 NA	iebac	cteri	ium ç	gluta	micu	ım								
<22	1> C 2> (2191)												
	0> 2 ctgg		acct	gcca	iga c	ggtg	gcgc	a tg	gctg	cagc	cgt	tccg	ccc	tctg	actgcc	60
ttg	ttat	cca	accg	ccac	aa t	tccc	agga	g ta	atcc	accc				aaa Lys		115
					Arg					Val				gtc Val 20		163
_			_	Āla	_		-		Phe			_	_	ggc Gly	_	211
_	_	_	_	_			-	-						acc Thr		259
														ggc Gly		307
														gat Asp		355
														gag Glu 100		403
_	_	-				•		_		_		Ξ		cgt Arg	_	451
														ctc Leu		499
Leu			_				_	_	_	_			_	att Ile	-	547

gat Asp 150	Gln	ctc Leu	cat His	ccg Pro	gac Asp 155	aac Asn	ctt Leu	gcc Ala	ggt Gly	ggc Gly 160	gtc Val	acc Thr	act Thr	gag Glu	gtc Val 165	595
					Val			gca Ala		Asp						643
								gcg Ala 190								691
								gtt Val								739
								tcg Ser								787
gct Ala 230	gga Gly	ttc Phe	ttc Phe	cag Gln	gtc Val 235	aac Asn	gta Val	ttt Phe	gca Ala	caa Gln 240	tct Ser	gtt Val	gtg Val	acc Thr	ctt Leu 245	835
								tat Tyr								883
ttc Phe	cgt Arg	gag Glu	gaa Glu 265	atg Met	gat Asp	aag Lys	ggc Gly	acc Thr 270	ccg Pro	gtt Val	gaa Glu	cag Gln	gct Ala 275	gtt Val	gcc Ala	931
acc Thr	act Thr	acg Thr 280	gcg Ala	acc Thr	gcg Ala	ggt Gly	aag Lys 285	act Thr	gtg Val	gtg Val	ttc Phe	tct Ser 290	gca Ala	gcg Ala	atg Met	979
								ttt Phe								1027
								tcc Ser								1075
atg Met	tcg Ser	gtg Val	acg Thr	gtg Val 330	ttg Leu	ccg Pro	tcg Ser	ctg Leu	ttc Phe 335	agc Ser	atg Met	ttg Leu	ggt Gly	aag Lys 340	aat Asn	1123
								act Thr 350								1171
	Asp					Arg		ccg Pro								1219

	gca Ala 375	Val					Val								gtg Val	1267
	ttg Leu					Phe					Glu					1315
	gct Ala				Arg											1363
	gcc Ala			Thr											gac Asp	1411
	aac Asn															1459
	aca Thr 455															1507
	ttg Leu															1555
	cag Gln															1603
	ggc Gly															1651
	ctc Leu															1699
	gca Ala 535															1747
	acc Thr															1795
	gtc Val															1843
	atg Met						Leu									1891
tcc	acc	gac	tat	gag	gtg	ttc	ctg	gta	tct	cgc	atg	gtg	gag	gcc	cgc	1939

Ser	Thr	Asp 600	Tyr	Glu	Val	Phe	Leu 605	Val	Ser	Arg ·	Met	Val 610	Glu	Ala	Arg	
gat Asp	aaa Lys 615	ggc Gly	gaa Glu	tcc Ser	acc Thr	gac Asp 620	gac Asp	gcc Ala	atc Ile	aga Arg	tac Tyr 625	ggc Gly	act Thr	gca Ala	cac His	1987
acc Thr 630	gga Gly	tct Ser	atc Ile	atc Ile	acc Thr 635	gcg Ala	gcc Ala	gca Ala	ctg Leu	atc Ile 640	atg 'Met	att Ile	gtg Val	gtc Val	tgt Cys 645	2035
gga Gly	gcg Ala	ttt Phe	ggt Gly	ttc Phe 650	tct Ser	gag Glu	atc Ile	gtc Val	atg Met 655	atg Met	aag Lys	tac Tyr	atc Ile	gcg Ala 660	ttc Phe	2083
ggc Gly	atg Met	atc Ile	gca Ala 665	gcg Ala	ctg Leu	att Ile	ctg Leu	gat Asp 670	gcc Ala	acc Thr	atc Ile	atc Ile	cgc Arg 675	atg Met	ctg Leu	2131
ctt Leu	gtc Val	ccc Pro 680	cgc Arg	cgt Arg	gat Asp	gca Ala	cct Pro 685	gct Ala	tcg Ser	cga Arg	cga Arg	caa Gln 690	ctg Leu	gtg Val	ggc Gly	2179
	cgg Arg 695		_	taaa	aagg	jcc t	acac	cgto	a to	13						2214

<210> 226

<211> 697

<212> PRT

<213> Corynebacterium glutamicum

<400> 226

Val Phe Ser Lys Trp Gly His Phe Ala Tyr Arg Phe Arg Arg Ile Val 1 5 10 15

Pro Leu Val Val Ile Ala Ala Ile Leu Ala Leu Phe Val Ile Phe Gly 20 25 30

Thr Lys Leu Gly Asp Arg Met Ser Gln Glu Gly Trp Asp Asp Pro Gly 35 40 45

Ser Ser Ser Thr Ala Ala Ala Arg Ile Glu Leu Glu Thr Phe Gly Arg 50 55 60

Asp Asn Asp Gly Asp Val Val Leu Leu Phe Thr Ala Pro Glu Gly Thr 65 70 75 80

Ser Phe Asp Asp Ala Glu Val Phe Ser Ser Ile Ser Gly Tyr Leu Asp 85 90 95

Gly Leu Ile Glu Asn Asn Pro Asp Glu Val Ser His Ile Asn Ser Tyr 100 105 110

Phe Asp Thr Arg Asn Gln Asn Leu Leu Ser Lys Asp Gly Thr Gln Thr 115 120 125

- Phe Ala Ala Leu Gly Leu Lys Gly Asp Gly Glu Gln Thr Leu Lys Asp 130 135 140
- Phe Arg Glu Ile Glu Asp Gln Leu His Pro Asp Asn Leu Ala Gly Gly 145 150 155 160
- Val Thr Thr Glu Val Ala Gly Ala Thr Ala Val Ala Asp Ala Leu Asp 165 170 175
- Glu Gly Met Ala Gly Asp Ile Ser Arg Ala Glu Val Phe Ala Leu Pro 180 185 190
- Phe Val Ala Ile Leu Leu Leu Ile Val Phe Gly Ser Val Val Ala Ala 195 200 205
- Ala Met Pro Leu Ile Val Gly Ile Leu Ser Ile Leu Gly Ser Leu Gly 210 215 220
- Ile Leu Ala Ile Leu Ala Gly Phe Phe Gln Val Asn Val Phe Ala Gln 225 230 235 240
- Ser Val Val Thr Leu Leu Gly Leu Gly Leu Ala Ile Asp Tyr Gly Leu 245 250 255
- Phe Met Val Ser Arg Phe Arg Glu Glu Met Asp Lys Gly Thr Pro Val 260 265 270
- Glu Gln Ala Val Ala Thr Thr Ala Thr Ala Gly Lys Thr Val Val 275 280 285
- Phe Ser Ala Ala Met Val Ala Val Ala Leu Ser Gly Leu Phe Val Phe 290 295 300
- Pro Gln Ala Phe Leu Lys Ser Val Ala Phe Gly Ala Ile Ser Ala Val 305 310 315 320
- Gly Leu Ala Ala Leu Met Ser Val Thr Val Leu Pro Ser Leu Phe Ser 325 330 335
- Met Leu Gly Lys Asn Ile Asp Lys Trp Ser Leu Arg Arg Thr Ala Arg 340 345 350
- Thr Ala Arg Arg Leu Glu Asp Thr Ile Trp Tyr Arg Val Pro Ala Trp 355 360 365
- Ala Met Arg His Ala Lys Ala Val Thr Val Gly Val Val Leu Leu 370 375 380
- Leu Ala Leu Thr Val Pro Leu Thr Gly Val Lys Phe Gly Gly Ile Asn 385 390 395 400
- Glu Thr Tyr Leu Pro Pro Ala Asn Asp Thr Arg Val Ala Gln Glu Arg
 405 410 415
- Phe Asp Glu Ala Phe Pro Ala Phe Arg Thr Glu Pro Val Lys Leu Val 420 425 430

Val Thr Gly Ala Asp Asn Asn Gln Leu Ile Asp Ile Tyr Val Gln Ala 435 440 445

Asn Glu Val Glu Gly Leu Thr Asp Arg Phe Thr Ala Gly Ala Thr Thr 450 455 460

Asp Asp Gly Thr Thr Val Leu Ser Thr Gly Ile Gln Asp Arg Ser Leu 465 470 475 480

Asn Glu Gln Val Val Glu Gln Leu Arg Ala Ile Ser Val Pro Glu Gly
485 490 495

Val Glu Val Gln Ile Gly Gly Thr Pro Ala Met Glu Ile Glu Ser Ile 500 505 510

Glu Ala Leu Phe Glu Lys Leu Leu Trp Met Ala Leu Tyr Ile Val Leu 515 520 525

Ala Thr Phe Ile Leu Met Ala Leu Val Phe Gly Ser Val Ile Leu Pro 530 535 540

Ala Lys Ala Ile Ile Met Thr Ile Leu Gly Met Gly Ala Thr Leu Gly 545 550 555 560

Ile Leu Thr Leu Met Phe Val Asp Gly Val Gly Ala Ser Ala Leu Asn 565 570 575

Phe Ser Pro Gly Pro Leu Met Ser Pro Val Leu Val Leu Ile Met Ala 580 585 590

Ile Ile Tyr Gly Leu Ser Thr Asp Tyr Glu Val Phe Leu Val Ser Arg 595 600 605

Met Val Glu Ala Arg Asp Lys Gly Glu Ser Thr Asp Asp Ala Ile Arg 610 620

Tyr Gly Thr Ala His Thr Gly Ser Ile Ile Thr Ala Ala Ala Leu Ile 625 630 635 640

Met Ile Val Val Cys Gly Ala Phe Gly Phe Ser Glu Ile Val Met Met 645 650 655

Lys Tyr Ile Ala Phe Gly Met Ile Ala Ala Leu Ile Leu Asp Ala Thr 660 665 670

Ile Ile Arg Met Leu Leu Val Pro Arg Arg Asp Ala Pro Ala Ser Arg 675 680 685

Arg Gln Leu Val Gly Thr Arg Leu Arg

<210> 227

<211> 729

<212> DNA

<213> Corynebacterium glutamicum

<220> <221> CDS <222> (101)..(706) <223> RXN03042 <400> 227 atgacaccgg cgcgacgtat ggcattactg gcgtacccca atttacgatg acatctctgc 60 tegectegge gacgteetgg tteettaegt tetgategtt ttg gtt eta geg tte Leu Val Leu Ala Phe 1 ctc gtg ctg ttg ctc gtg ttc cgg tcc att tgg gtc cca ttg atc gcg 163 Leu Val Leu Leu Val Phe Arg Ser Ile Trp Val Pro Leu Ile Ala 10 gct ctg ggc ttt ggc ttg tca gtt ctg gct acc ttt ggt gct acc gtg 211 Ala Leu Gly Phe Gly Leu Ser Val Leu Ala Thr Phe Gly Ala Thr Val 30 gcg atc ttc caa gaa ggt gct ttc ggc atc atc gac gat cct cag cca 259 Ala Ile Phe Gln Glu Gly Ala Phe Gly Ile Ile Asp Asp Pro Gln Pro 40 45 ctg ctg tcc ttc ttg ccg atc atg ctc atc ggc ctg gta ttt ggt ctg 307 Leu Leu Ser Phe Leu Pro Ile Met Leu Ile Gly Leu Val Phe Gly Leu 55 60 gcc atg gat tac cag atc ttc ctc gtt act cgt atg cgt gag ggc ttc 355 Ala Met Asp Tyr Gln Ile Phe Leu Val Thr Arg Met Arg Glu Gly Phe 75 80 acc aag ggc aag act gcg ggc aac gca acg tcg aat ggt ttc aag cac 403 Thr Lys Gly Lys Thr Ala Gly Asn Ala Thr Ser Asn Gly Phe Lys His 95 ggt gcc cgc gtg gtc act gct gcg gcg ctg atc atg gtg tct gtg ttc 451 Gly Ala Arg Val Val Thr Ala Ala Ala Leu Ile Met Val Ser Val Phe 105 110 gcg gca ttc ata gcg cag gac atg gcg ttt att aag acc atg ggc ttt 499 Ala Ala Phe Ile Ala Gln Asp Met Ala Phe Ile Lys Thr Met Gly Phe 120 125 get etg gee gtt get gtg tte tte gat gee tte gtt gtt ege atg atg 547 Ala Leu Ala Val Ala Val Phe Phe Asp Ala Phe Val Val Arg Met Met 135 140 att atc cct gca aca atg ttc ctg ctt gat gac aag gct tgg tgg cta 595 Ile Ile Pro Ala Thr Met Phe Leu Leu Asp Asp Lys Ala Trp Trp Leu 150 155 160 cct aag tgg ttg gat aag att ctt ccc aac gtt gat gtt gaa ggt gag 643 Pro Lys Trp Leu Asp Lys Ile Leu Pro Asn Val Asp Val Glu Gly Glu 170

729

ggt ctt agt gaa cta cat gag gct cgc acc gag gaa ctg aag gaa aat 691 Gly Leu Ser Glu Leu His Glu Ala Arg Thr Glu Glu Leu Lys Glu Asn 185 190 195

gta ggt gtc ggg gct tagagaaaca aaaaaggctg cta Val Gly Val Gly Ala 200

<210> 228

<211> 202

<212> PRT

<213> Corynebacterium glutamicum

<400> 228

Leu Val Leu Ala Phe Leu Val Leu Leu Leu Val Phe Arg Ser Ile Trp
1 5 10 15

Val Pro Leu Ile Ala Ala Leu Gly Phe Gly Leu Ser Val Leu Ala Thr 20 25 30

Phe Gly Ala Thr Val Ala Ile Phe Gln Glu Gly Ala Phe Gly Ile Ile 35 40 45

Asp Asp Pro Gln Pro Leu Leu Ser Phe Leu Pro Ile Met Leu Ile Gly 50 60

Leu Val Phe Gly Leu Ala Met Asp Tyr Gln Ile Phe Leu Val Thr Arg 65 70 75 80

Met Arg Glu Gly Phe Thr Lys Gly Lys Thr Ala Gly Asn Ala Thr Ser 85 90 95

Asn Gly Phe Lys His Gly Ala Arg Val Val Thr Ala Ala Ala Leu Ile 100 105 110

Met Val Ser Val Phe Ala Ala Phe Ile Ala Gln Asp Met Ala Phe Ile 115 120 125

Lys Thr Met Gly Phe Ala Leu Ala Val Ala Val Phe Phe Asp Ala Phe 130 135 140

Val Val Arg Met Met Ile Ile Pro Ala Thr Met Phe Leu Leu Asp Asp 145 150 155 160

Lys Ala Trp Trp Leu Pro Lys Trp Leu Asp Lys Ile Leu Pro Asn Val

Asp Val Glu Gly Glu Gly Leu Ser Glu Leu His Glu Ala Arg Thr Glu 180 185 190

Glu Leu Lys Glu Asn Val Gly Val Gly Ala 195 200

<210> 229 <211> 729

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(706)

<223> FRXA02893

<400> 229

atgacaccgg cgcgacgtat ggcattactg gcgtacccca atttacgatg acatctctgc 60

tegeetegge gaegteetgg tteettaegt tetgategtt ttg gtt eta geg tte 115

Leu Val Leu Ala Phe
1 5

ctc gtg ctg ttg ctc gtg ttc cgg tcc att tgg gtc cca ttg atc gcg 163 Leu Val Leu Leu Val Phe Arg Ser Ile Trp Val Pro Leu Ile Ala 10 15 20

gct ctg ggc ttt ggc ttg tca gtt ctg gct acc ttt ggt gct acc gtg 211
Ala Leu Gly Phe Gly Leu Ser Val Leu Ala Thr Phe Gly Ala Thr Val
25 30 35

gcg atc ttc caa gaa ggt gct ttc ggc atc atc gac gat cct cag cca 259
Ala Ile Phe Gln Glu Gly Ala Phe Gly Ile Ile Asp Asp Pro Gln Pro
40 45 50

ctg ctg tcc ttc ttg ccg atc atg ctc atc ggc ctg gta ttt ggt ctg 307 Leu Leu Ser Phe Leu Pro Ile Met Leu Ile Gly Leu Val Phe Gly Leu
55 60 65

gcc atg gat tac cag atc ttc ctc gtt act cgt atg cgt gag ggc ttc 355
Ala Met Asp Tyr Gln Ile Phe Leu Val Thr Arg Met Arg Glu Gly Phe
70 75 80 85

acc aag ggc aag act gcg ggc aac gca acg tcg aat ggt ttc aag cac 403 Thr Lys Gly Lys Thr Ala Gly Asn Ala Thr Ser Asn Gly Phe Lys His 90 95 100

ggt gcc cgc gtg gtc act gct gcg gcg ctg atc atg gtg tct gtg ttc 451 Gly Ala Arg Val Val Thr Ala Ala Ala Leu Ile Met Val Ser Val Phe 105 110 115

gcg gca ttc ata gcg cag gac atg gcg ttt att aag acc atg ggc ttt 499
Ala Ala Phe Ile Ala Gln Asp Met Ala Phe Ile Lys Thr Met Gly Phe
120 125 130

gct ctg gcc gtt gct gtg ttc ttc gat gcc ttc gtt gtt cgc atg atg 547 Ala Leu Ala Val Ala Val Phe Phe Asp Ala Phe Val Val Arg Met Met 135 140 145

att atc cct gca aca atg ttc ctg ctt gat gac aag gct tgg tgg cta 595

Ile Ile Pro Ala Thr Met Phe Leu Leu Asp Asp Lys Ala Trp Trp Leu
150 160 165

cct aag tgg ttg gat aag att ctt ccc aac gtt gat gtt gaa ggt gag 643 Pro Lys Trp Leu Asp Lys Ile Leu Pro Asn Val Asp Val Glu Gly Glu

170 175 180

ggt ctt agt gaa cta cat gag gct cgc acc gag gaa ctg aag gaa aat 691 Gly Leu Ser Glu Leu His Glu Ala Arg Thr Glu Glu Leu Lys Glu Asn 185 190 195

gta ggt gtc ggg gct tagagaaaca aaaaaggctg cta 729 Val Gly Val Gly Ala 200

<210> 230

<211> 202

<212> PRT

<213> Corynebacterium glutamicum

<400> 230

Leu Val Leu Ala Phe Leu Val Leu Leu Val Phe Arg Ser Ile Trp 1 5 10 15

Val Pro Leu Ile Ala Ala Leu Gly Phe Gly Leu Ser Val Leu Ala Thr 20 25 30

Phe Gly Ala Thr Val Ala Ile Phe Gln Glu Gly Ala Phe Gly Ile Ile 35 40 45

Asp Asp Pro Gln Pro Leu Leu Ser Phe Leu Pro Ile Met Leu Ile Gly 50 55 60

Leu Val Phe Gly Leu Ala Met Asp Tyr Gln Ile Phe Leu Val Thr Arg 65 70 75 80

Met Arg Glu Gly Phe Thr Lys Gly Lys Thr Ala Gly Asn Ala Thr Ser 85 90 95

Asn Gly Phe Lys His Gly Ala Arg Val Val Thr Ala Ala Ala Leu Ile 100 105 110

Met Val Ser Val Phe Ala Ala Phe Ile Ala Gln Asp Met Ala Phe Ile 115 120 125

Lys Thr Met Gly Phe Ala Leu Ala Val Ala Val Phe Phe Asp Ala Phe 130 135 140

Val Val Arg Met Met Ile Ile Pro Ala Thr Met Phe Leu Leu Asp Asp 145 150 155 160

Lys Ala Trp Trp Leu Pro Lys Trp Leu Asp Lys Ile Leu Pro Asn Val 165 170 175

Asp Val Glu Gly Glu Gly Leu Ser Glu Leu His Glu Ala Arg Thr Glu 180 185 190

Glu Leu Lys Glu Asn Val Gly Val Gly Ala 195 200

<210> 231 <211> 1605 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1582) <223> RXA01616 <400> 231 cctacgattt ccgacgtctt aaatcgccac acagcgccgt ggtctaaaac accaacaaaa 60 gagttgtaac tgtaccgacc attcgttaca gttacgatcc atg act tca gaa acc Met Thr Ser Glu Thr 1 tta cag gcg caa gcg cct acg aaa acc caa cgt tgg gct ttc ctc gcc 163 Leu Gln Ala Gln Ala Pro Thr Lys Thr Gln Arg Trp Ala Phe Leu Ala 10 gtt atc agc ggt ggt ctc ttt ctg atc ggt gta gac aac tcg att ctc 211 Val Ile Ser Gly Gly Leu Phe Leu Ile Gly Val Asp Asn Ser Ile Leu 30 tac acc gca ctc cct ctg ctg cgt gaa cag ctc gca gcc tcc gaa acc 259 Tyr Thr Ala Leu Pro Leu Leu Arg Glu Gln Leu Ala Ala Ser Glu Thr 40 45 caa gcg ttg tgg atc atc aac gca tat ccc ctg ctc atg gcg ggc ctt 307 Gln Ala Leu Trp Ile Ile Asn Ala Tyr Pro Leu Leu Met Ala Gly Leu cgt ttg ggt gcc ggc act ttg ggt gac aaa aac ggc cac cgc cgg atg 355 Arg Leu Gly Ala Gly Thr Leu Gly Asp Lys Asn Gly His Arg Arg Met ttc ctc atg ggc ttg agc att ttc gga atc gct tca ctt ggt gct gcg 403 Phe Leu Met Gly Leu Ser Ile Phe Gly Ile Ala Ser Leu Gly Ala Ala ttt gct cca act gcg tgg gct ctt gtt gct gcg aga gct ttc ctt ggc 451 Phe Ala Pro Thr Ala Trp Ala Leu Val Ala Ala Arg Ala Phe Leu Gly 110 atc ggt gcg gca acg atg atg cct gca acc ttg gct ctg atc cgc att 499 Ile Gly Ala Ala Thr Met Met Pro Ala Thr Leu Ala Leu Ile Arg Ile 120 125 acg ttt gag gat gag cgt gag cgc aac act gca att ggt att tgg ggt 547 Thr Phe Glu Asp Glu Arg Glu Arg Asn Thr Ala Ile Gly Ile Trp Gly 135 140 tcc gtg gca att ctt ggc gct gcg gca ggc ccg atc att ggt ggt gcg 595 Ser Val Ala Ile Leu Gly Ala Ala Ala Gly Pro Ile Ile Gly Gly Ala 150 160

ctg Leu	ttg Leu	gaa Glu	ttc Phe	ttc Phe 170	tgg Trp	tgg Trp	ggt Gly	tcg Ser	gtt Val 175	ttc Phe	ctc Leu	att Ile	aac Asn	gtt Val 180	ccg Pro	643
gtg Val	gct Ala	gtt Val	atc Ile 185	gcg Ala	ttg Leu	atc Ile	gct Ala	acg Thr 190	ctt Leu	ttt Phe	gtg Val	gcg Ala	ccg Pro 195	gcc Ala	aat Asn	691
atc Ile	gcg Ala	aat Asn 200	ccg Pro	tct Ser	aag Lys	cat His	tgg Trp 205	gat Asp	ttc Phe	ttg Leu	tcg Ser	tcg Ser 210	ttc Phe	tat Tyr	gcg Ala	739
ctg Leu	ctc Leu 215	aca Thr	ctt Leu	gct Ala	ggg Gly	ttg Leu 220	atc Ile	atc Ile	acg Thr	atc Ile	aag Lys 225	gaa Glu	tct Ser	gtg Val	aat Asn	787
act Thr 230	gca Ala	cgc Arg	cat His	atg Met	cct Pro 235	ctt Leu	ctt Leu	ttg Leu	ggt Gly	gca Ala 240	gtc Val	atc Ile	atg Met	ttg Leu	atc Ile 245	835
att Ile	ggt Gly	gcg Ala	gtg Val	ttg Leu 250	ttt Phe	agc Ser	agt Ser	cgt Arg	cag Gln 255	aag Lys	aag Lys	atc Ile	gag Glu	gag Glu 260	cca Pro	883
ctt Leu	cta Leu	gat Asp	ctg Leu 265	tcg Ser	ttg Leu	ttc Phe	cgt Arg	aat Asn 270	cgc Arg	ctt Leu	ttc Phe	tta Leu	ggc Gly 275	ggt Gly	gtg Val	931
gtt Val	gct Ala	gcg Ala 280	ggc Gly	atg Met	gcg Ala	atg Met	ttt Phe 285	act Thr	gtg Val	tcc Ser	ggt Gly	ttg Leu 290	gaa Glu	atg Met	act Thr	979
acc Thr	tcg Ser 295	cag Gln	cgt Arg	ttc Phe	cag Gln	ttg Leu 300	tct Ser	gtg Val	ggt Gly	ttc Phe	act Thr 305	cca Pro	ctt Leu	gag Glu	gct Ala	1027
ggt Gly 310	ttg Leu	ctc Leu	atg Met	atc Ile	cca Pro 315	gct Ala	gca Ala	ttg Leu	ggt Gly	agc Ser 320	ttc Phe	ccg Pro	atg Met	tct Ser	att Ile 325	1075
atc Ile	ggt Gly	ggt Gly	gca Ala	aac Asn 330	ctg Leu	cat His	cgt Arg	tgg Trp	ggc Gly 335	ttc Phe	aaa Lys	ccg Pro	ctg Leu	atc Ile 340	agt Ser	1123
ggt Gly	ggt Gly	ttt Phe	gct Ala 345	gcc Ala	act Thr	gcc Ala	Val	ggc Gly 350	atc Ile	gcc Ala	ctg Leu	tgt Cys	att Ile 355	tgg Trp	ggc Gly	1171
gcg Ala	act Thr	cat His 360	act Thr	gat Asp	ggt Gly	ttg Leu	ccg Pro 365	ttt Phe	ttc Phe	atc Ile	gcg Ala	ggt Gly 370	cta Leu	ttc Phe	ttc Phe	1219
atg Met	ggc Gly 375	gcg Ala	ggt Gly	gct Ala	ggt Gly	tcg Ser 380	gta Val	atg Met	tct Ser	gtg Val	tct Ser 385	tcc Ser	act Thr	gcg Ala	att Ile	1267
atc	ggt	tcc	gcg	ccg	gtg	cgt	aag	gct	ggc	atg	gcg	tcg	tcg	atc	gaa	1315

Ile 390	Gly	Ser	Ala	Pro	Val 395	Arg	Lys	Ala	Gly	Met 400	Ala	Ser	Ser	Ile	Glu 405	
					ttc Phe											1363
					ttc Phe											1411
					ggt Gly											1459
					acc Thr											1507
					gct Ala 475											1555
					aat Asn				tagt	aaaa	aa g	agat	gatt	c		1602
tgc																1605
<210	> 23	2														

<211> 494

<212> PRT

<213> Corynebacterium glutamicum

<400> 232

Met Thr Ser Glu Thr Leu Gln Ala Gln Ala Pro Thr Lys Thr Gln Arg 1 5 10 15

Trp Ala Phe Leu Ala Val Ile Ser Gly Gly Leu Phe Leu Ile Gly Val 20 25 30

Asp Asn Ser Ile Leu Tyr Thr Ala Leu Pro Leu Leu Arg Glu Gln Leu 35 40 45

Ala Ala Ser Glu Thr Gln Ala Leu Trp Ile Ile Asn Ala Tyr Pro Leu 50 55 60

Leu Met Ala Gly Leu Arg Leu Gly Ala Gly Thr Leu Gly Asp Lys Asn 65 70 75 80

Gly His Arg Arg Met Phe Leu Met Gly Leu Ser Ile Phe Gly Ile Ala 85 90 95

Ser Leu Gly Ala Ala Phe Ala Pro Thr Ala Trp Ala Leu Val Ala Ala 100 105 110

Arg Ala Phe Leu Gly Ile Gly Ala Ala Thr Met Met Pro Ala Thr Leu 115 120 125

- Ala Leu Ile Arg Ile Thr Phe Glu Asp Glu Arg Glu Arg Asn Thr Ala 130 135 140
- Ile Gly Ile Trp Gly Ser Val Ala Ile Leu Gly Ala Ala Ala Gly Pro 145 150 155 160
- Ile Ile Gly Gly Ala Leu Leu Glu Phe Phe Trp Trp Gly Ser Val Phe
 165 170 175
- Leu Ile Asn Val Pro Val Ala Val Ile Ala Leu Ile Ala Thr Leu Phe 180 185 190
- Val Ala Pro Ala Asn Ile Ala Asn Pro Ser Lys His Trp Asp Phe Leu 195 200 205
- Ser Ser Phe Tyr Ala Leu Leu Thr Leu Ala Gly Leu Ile Ile Thr Ile 210 215 220
- Lys Glu Ser Val Asn Thr Ala Arg His Met Pro Leu Leu Gly Ala 225 230 235 240
- Val Ile Met Leu Ile Ile Gly Ala Val Leu Phe Ser Ser Arg Gln Lys 245 250 255
- Lys Ile Glu Glu Pro Leu Leu Asp Leu Ser Leu Phe Arg Asn Arg Leu 260 265 270
- Phe Leu Gly Gly Val Val Ala Ala Gly Met Ala Met Phe Thr Val Ser 275 280 285
- Gly Leu Glu Met Thr Thr Ser Gln Arg Phe Gln Leu Ser Val Gly Phe 290 295 300
- Thr Pro Leu Glu Ala Gly Leu Leu Met Ile Pro Ala Ala Leu Gly Ser 305 310 315 320
- Phe Pro Met Ser Ile Ile Gly Gly Ala Asn Leu His Arg Trp Gly Phe 325 330 335
- Lys Pro Leu Ile Ser Gly Gly Phe Ala Ala Thr Ala Val Gly Ile Ala 340 345 350
- Leu Cys Ile Trp Gly Ala Thr His Thr Asp Gly Leu Pro Phe Phe Ile 355 360 365
- Ala Gly Leu Phe Phe Met Gly Ala Gly Ala Gly Ser Val Met Ser Val 370 375 380
- Ser Ser Thr Ala Ile Ile Gly Ser Ala Pro Val Arg Lys Ala Gly Met 385 390 395 400
- Ala Ser Ser Ile Glu Glu Val Ser Tyr Glu Phe Gly Thr Leu Leu Ser 405 410 415

Val Ala Ile Leu Gly Ser Leu Phe Pro Phe Phe Tyr Ser Leu His Ala 420 425 430

- Pro Ala Glu Val Ala Asp Asn Phe Ser Ala Gly Val His His Ala Ile 435 440 445
- Asp Gly Asp Ala Ala Arg Ala Ser Leu Asp Thr Ala Tyr Ile Asn Val 450 455 460
- Leu Ile Ile Ala Leu Val Cys Ala Val Ala Ala Ala Leu Ile Ser Ser 465 470 475 480
- Tyr Leu Phe Arg Gly Asn Pro Lys Gly Ala Asn Asn Ala His 485 490
- <210> 233
- <211> 1500
- <212> DNA
- <213> Corynebacterium glutamicum
- <220>
- <221> CDS
- <222> (101)..(1477)
- <223> RXA01666
- <400> 233
- cgacgcgccc ctccaccttt tcagtagcgt cacgggcgcc aatcctgtat ttttagcagc 60
- agtttgaggg tttttgctcc ccatctttag gagacacccc gtg tcc acg ttt cat $$ 115 $$ Val Ser Thr Phe His $$ 1
- aaa gtt ttg atc aac acc atg atc tcc aac gtc acc act gga ttt ctg $\,$ 163 Lys Val Leu Ile Asn Thr Met Ile Ser Asn Val Thr Thr Gly Phe Leu $\,$ 10 $\,$ 15 $\,$ 20
- ttc ttt gcc gtg gtg ttt tgg atg tat ctt tcc act ggc aac gtc gca 211 Phe Phe Ala Val Val Phe Trp Met Tyr Leu Ser Thr Gly Asn Val Ala 25 30 35
- ctg acc ggc atc gtc agt gga att tac atg ggt ttg atc gcc gtt tgt 259 Leu Thr Gly Ile Val Ser Gly Ile Tyr Met Gly Leu Ile Ala Val Cys 40 45 50
- tcc atc ttt ttc gga acc gtt gtt gat cac aat cgc aag aag tcc gtc 307 Ser Ile Phe Phe Gly Thr Val Val Asp His Asn Arg Lys Lys Ser Val 55 60 65
- atg ctg ttt tcc agc gtc acc aca ctc gtg ttt tat tgt ctc agt gcc 355
 Met Leu Phe Ser Ser Val Thr Thr Leu Val Phe Tyr Cys Leu Ser Ala
 70 80 85
- ctg gtg tgg gtg ttt tgg ctg gag gaa gac ggc ctg agc atc gga aat 403 Leu Val Trp Val Phe Trp Leu Glu Glu Asp Gly Leu Ser Ile Gly Asn 90 95 100

				Val	g ttc Phe				Ile					Ile	gtg Val	451
			Arg		ato Ile			Ser					Leu			499
		Ala			gac Asp		Ala					Gly				547
	Val				gtc Val 155											595
					atc Ile											643
-		-	_		ctg Leu	-	_		_	-	_	-	_	_		691
					gca Ala											739
				_	ttg Leu								_			787
					atc Ile 235											835
					aac Asn											883
					ctg Leu											931
					agc Ser											979
					ggc Gly											1027
				Ala	ttt Phe 315											1075
tgg	tgg	ctc	tac	atc	ctg	ggc	att	ttc	atc	ttc	atg	gct	atc	acc	cca	1123

Trp	Trp	Leu	Tyr	Ile 330	Leu	Gly	Ile	Phe	Ile 335		Met	Ala	Ile	Thr 340		
					gaa Glu				Leu							1171
					gta Val											1219
					aca Thr											1267
ctc Leu 390	att Ile	cca Pro	tgg Trp	atg Met	gct Ala 395	ggc Gly	ccc Pro	ggc Gly	gcg Ala	gac Asp 400	acc Thr	atc Ile	tgg Trp	ggc Gly	gtg Val 405	1315
					aaa Lys											1363
					ttg Leu											1411
					agc Ser											1459
Ala		-	-		aag Lys	taag	tgct	ct a	gacc	gttg	t tt	g				1500
<210 <211 <212 <213	> 45 > PR	9 T	bact	eriu	m gl:	utam	icum									
<400 Val 1		-	Phe	His :	Lys '	Val :	Leu	Ile .	Asn 10	Thr	Met	Ile	Ser	Asn 15	Val	

Thr Thr Gly Phe Leu Phe Phe Ala Val Val Phe Trp Met Tyr Leu Ser 20 . 25

Thr Gly Asn Val Ala Leu Thr Gly Ile Val Ser Gly Ile Tyr Met Gly

Leu Ile Ala Val Cys Ser Ile Phe Phe Gly Thr Val Val Asp His Asn

Arg Lys Lys Ser Val Met Leu Phe Ser Ser Val Thr Thr Leu Val Phe

Tyr Cys Leu Ser Ala Leu Val Trp Val Phe Trp Leu Glu Glu Asp Gly 85 90 95

- Leu Ser Ile Gly Asn Thr Ala Leu Trp Val Phe Val Ser Phe Ile Leu 100 105 110
- Ile Gly Ser Ile Val Glu His Met Arg Asn Ile Ala Leu Ser Thr Val 115 120 125
- Val Thr Leu Leu Val Pro Glu Ala Glu Arg Asp Lys Ala Asn Gly Leu 130 135 140
- Val Gly Ala Val Gln Gly Val Gly Phe Leu Val Thr Ser Val Ile Ala 145 150 155 160
- Gly Ser Ala Ile Gly Phe Leu Gly Met Glu Ile Thr Leu Trp Ile Cys 165 170 175
- Leu Gly Leu Ser Leu Val Ala Leu Leu His Leu Leu Pro Ile Arg Val 180 185 190
- Asp Glu Pro Glu Ile Ile Thr Gln Glu Asp Ala Gln Pro Thr Val Ser 195 200 205
- Asp Asp Ser Val Pro Thr Pro Thr Ser Asp Leu Ala Ile Val Ser Lys 210 215 220
- Gly Ile Asp Leu Lys Gly Ser Met Lys Ile Ile Leu Ser Val Pro Gly 225 230 235 240
- Leu Leu Ala Leu Val Leu Phe Ala Ser Phe Asn Asn Leu Ile Gly Gly 245 250 255
- Val Tyr Ser Ala Leu Met Asp Pro Tyr Gly Leu Glu Leu Phe Ser Pro 260 265 270
- Gln Leu Trp Gly Leu Leu Gly Leu Thr Ser Leu Gly Phe Ile Val 275 280 285
- Gly Gly Ala Val Ile Ser Lys Thr Gly Leu Gly Lys Asn Pro Val Arg 290 295 300
- Thr Leu Leu Val Asn Val Gly Val Ala Phe Val Gly Met Leu Phe 305 310 315 320
- Ala Ile Arg Glu Trp Trp Trp Leu Tyr Ile Leu Gly Ile Phe Ile Phe 325 330 335
- Met Ala Ile Thr Pro Ala Ala Glu Ala Ala Glu Gln Thr Ile Leu Gln 340 345 350
- Arg Val Val Pro Phe Arg Gln Gln Gly Arg Val Phe Gly Leu Ala Met 355 360 365
- Ala Val Glu Met Ala Ala Asn Pro Leu Ser Thr Val Ile Val Ala Ile 370 375 380

Leu Ala Glu Ala Tyr Leu Ile Pro Trp Met Ala Gly Pro Gly Ala Asp 390 395 Thr Ile Trp Gly Val Ile Leu Gly Glu Gly Lys Ala Arg Gly Met Ala 410 Leu Met Phe Leu Ala Ser Gly Ala Ile Met Leu Val Val Val Leu Leu 420 425 Ala Phe Met Ser Arg Ser Tyr Arg Lys Leu Ser Gln Tyr Tyr Ala Thr 440 Thr Ser Gln Asp Ile Ala Gly Ala Ala Glu Lys 455 <210> 235 <211> 1521 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1498) <223> RXA00062 <400> 235 cttcaacata ggcgttgggg ctgactttta aacaggtacc agtagtaccg gcataagcga 60 tcactgttgc gttttcttgc tgccatcaaa aattagtcac atg att tta agc atc Met Ile Leu Ser Ile 1 gtc ctt ttg ggc tac ttc atg att ctg ctt gac acc tcc atc gtc att 163 Val Leu Leu Gly Tyr Phe Met Ile Leu Leu Asp Thr Ser Ile Val Ile 10 acg ggt cta cct gcc atc ggc agt gaa ctt ggc atc gat ccc gtg cac 211 Thr Gly Leu Pro Ala Ile Gly Ser Glu Leu Gly Ile Asp Pro Val His 25 30 ctg tca tgg gtg cag agt tcc tac aca tta gtc ttc ggc gca ctt ctt 259 Leu Ser Trp Val Gln Ser Ser Tyr Thr Leu Val Phe Gly Ala Leu Leu 45 50 40 307 ctg ctg gga gct cgt gcc ggt gat atc ttc ggc cga aag aaa gtg ctc Leu Leu Gly Ala Arg Ala Gly Asp Ile Phe Gly Arg Lys Lys Val Leu 55 60 tac att ggt ctc gcg ttg ttt gcg gct tca tcg ttg gca att gcg ctt 355 Tyr Ile Gly Leu Ala Leu Phe Ala Ala Ser Ser Leu Ala Ile Ala Leu 70 75 tet eea aat get geg gte ete att gga gea ege gta gtt eaa gge geg 403 Ser Pro Asn Ala Ala Val Leu Ile Gly Ala Arg Val Val Gln Gly Ala 90

				: Ile					Leu					Glu	ttc Phe	451
			Gly					cgt Arg					Tyr			499
		Gl y					Ala	ggc Gly				Gly				547
_	Āsp		_	-		_		ggc Gly			Ile		_			595
_	_	-	-	-				cac His		_			_			.643
-						-		ttc Phe 190		_				_	-	691
			Ala					att Ile								739
								tcc Ser								787
								tcc Ser								835
	_						_	agg Arg	_				_	_	_	883
_			_	_				atg Met 270						-		931
								atg Met								979
		_	_			_	_	cag Gln		_	_	_		_		1027
				Arg				tct Ser	Asp							1075
ggt	ttc	gcc	atc	atg	gtc	atc	ggc	atg	gca	ggc	ctc	gca	ttt	gta	cca	1123

Gly	Phe	Ala	Ile	Met 330	Val	Ile	Gly	Met	Ala 335	Gly	Leu	Ala	Phe	Val 340	Pro		
											ttg Leu					1171	
											gca Ala					1219	
											gtg Val 385					1267	
											tcc Ser					1315	
											atc Ile					1363	
											acg Thr					1411	
											cga Arg					1459	
Arg					Val						acc Thr 465		tagt	gege	tg:	1508	
cago	atcc	ca g	tt													1521	

<210> 236

<211> 466

<212> PRT

<213> Corynebacterium glutamicum

<400> 236

Met Ile Leu Ser Ile Val Leu Leu Gly Tyr Phe Met Ile Leu Leu Asp 1 5 10 15

Thr Ser Ile Val Ile Thr Gly Leu Pro Ala Ile Gly Ser Glu Leu Gly 20 25 30

Ile Asp Pro Val His Leu Ser Trp Val Gln Ser Ser Tyr Thr Leu Val 35 40 45

Phe Gly Ala Leu Leu Leu Gly Ala Arg Ala Gly Asp Ile Phe Gly 50 55 60

Arg Lys Lys Val Leu Tyr Ile Gly Leu Ala Leu Phe Ala Ala Ser Ser

65 70 75 80

Leu Ala Ile Ala Leu Ser Pro Asn Ala Ala Val Leu Ile Gly Ala Arg 85 90 95

Val Val Gln Gly Ala Gly Ala Ala Ile Ile Ala Pro Ala Thr Leu Ala 100 105 110

Leu Ile Thr Glu Phe Phe Pro Glu Gly Pro Ala Arg Leu Arg Ala Thr
115 120 125

Ser Ala Tyr Gly Ala Val Ala Gly Ile Gly Val Ala Ala Gly Leu Val 130 135 140

Ile Gly Gly Val Phe Ala Asp Leu Leu Ser Trp Arg Ile Gly Phe Phe 145 150 155 160

Ile Asn Val Pro Ile Ala Ala Val Leu Ala Tyr Ile Val His Lys Ala 165 170 175

Ile Pro Ala Thr Phe Ser Arg Pro Gly Ser Leu Asp Ile Phe Gly Ala 180 185 190

Ile Thr Ser Thr Ala Gly Ile Ala Ala Val Leu Tyr Ala Ile Val Arg 195 . 200 205

Ser Ala Asp Tyr Ser Trp Thr Asp Pro Phe Val Leu Ile Ser Leu Val 210 215 220

Leu Gly Ile Ala Val Phe Ile Trp Phe Leu Arg His Glu Ser Ser Ala 225 230 235 240

Lys Glu Pro Leu Pro Leu Gly Leu Phe Lys Asn Arg Arg Asn 245 250 255

Thr Ile Leu Ala Ser Arg Phe Leu Leu Val Gly Ser Val Met Ser Phe 260 265 270

Phe Phe Phe Ala Thr Gln Leu Phe Gln Asp Thr Met Gly Met Asn Ala 275 280 285

Leu Gln Ala Gly Leu Ala Phe Met Pro Leu Ser Leu Leu Gln Phe Ala 290 295 300

Ser Ala Ala Met Val Pro Arg Leu Ser Arg Ala Gly Val Ser Asp Ser 305 310 315 320

Met Leu Thr Val Ile Gly Phe Ala Ile Met Val Ile Gly Met Ala Gly 325 330 335

Leu Ala Phe Val Pro Asn Thr Met Ile Ala Leu Ile Leu Pro Ile Val 340 345 350

Leu Val Gly Phe Gly Gln Gly Phe Ala Phe Gly Pro Met Thr Ala Leu 355 360 365

Ala Val Gln Gly Ala Pro Lys Asp Gln Ser Gly Ala Val Ser Gly Leu

370 375 380

Val Asn Ser Leu His Gln Ile Gly Gly Thr Phe Gly Leu Gly Val Phe 385 390 395 400

Ser Ser Leu Ala Val Ala Val Ile Gly His Asp Ala Thr Ser Glu Met 405 410 415

Ile Ser Asp Arg Ala His Phe Gly Phe Leu Leu Ser Thr Val Thr Leu 420 425 430

Thr Leu Ala Thr Ile Phe Ala Val Thr Leu Leu Lys Arg His Glu Thr 435 440 445

Arg Lys Ser Ser Glu Arg Pro Thr Gln Leu Val Asp Glu Lys Ala Val 450 455 460

Thr Ser

<210> 237

<211> 1584

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1561)

<223> RXA00215

<400> 237

cagtgcaaac tgaccccgca tcctaaaccg cgccagattt ctacctcaaa gaattgaagg 60

ccttttccag gcgccctcgt gcgtgaaaga ataactcaac gtg tct gac aaa aag 115 Val Ser Asp Lys Lys 1

cag gat cta aca tcc tcc gca gca ggt agt gct gca ccc caa acc aag $$ 163 Gln Asp Leu Thr Ser Ser Ala Ala Gly Ser Ala Ala Pro Gln Thr Lys $$ 10 $$ 15 $$ 20

gcc tac ccc gcc atg ccc ttg cct gaa aag caa gct tgg cca gct cta 211 Ala Tyr Pro Ala Met Pro Leu Pro Glu Lys Gln Ala Trp Pro Ala Leu 25 30 35

att gcc ttg tgc att ggg ttt ttc atg atc ctg ttg gat caa acc atc 259
Ile Ala Leu Cys Ile Gly Phe Phe Met Ile Leu Leu Asp Gln Thr Ile
40 45 50

gtg gcc gtc tct acc cca gcg tta cag gca gac atg ggc gcg tcc tac 307 Val Ala Val Ser Thr Pro Ala Leu Gln Ala Asp Met Gly Ala Ser Tyr 55 60 65

aac gag gtc atc tgg gta acc tcg gtg tat ctc ctc act ttc gcg gtg 355
Asn Glu Val Ile Trp Val Thr Ser Val Tyr Leu Leu Thr Phe Ala Val
70 75 80 85

Pro	a cto Lev	g cti Lei	t gti u Val	act L Thi	Gly	cgt Arg	ttg Leu	g ggc Gly	gac Asp 95	Lys	g tac s Tyr	ggt Gly	ccg Pro	aaa Lys 100	aat Asn	403
	tat L Tyr			Gly					Thr					Āla		451
	ttg / Leu		Pro					Leu					Gly			499
	ttg Leu 135	Gly					Thr					Āla				547
	atc Ile										Leu					595
tct Ser	aca Thr	gct Ala	ggc	ctt Leu 170	gca Ala	tcc Ser	cta Leu	gca Ala	gga Gly 175	ccg Pro	atc Ile	ctg Leu	ggt Gly	ggt Gly 180	gtc Val	643
	acc Thr															691
	ggc Gly															739
	ccg Pro 215															787
gtg Val 230	gcc Ala	gtg Val	ttc Phe	ttc Phe	ctg Leu 235	gtg Val	ttt Phe	gct Ala	ttc Phe	cag Gln 240	gaa Glu	ggc Gly	gaa Glu	ggc Gly	gct Ala 245	835
	tgg Trp															883
ttt Phe	gcg Ala	tgg Trp	ttt Phe 265	atc Ile	tac Tyr	caa Gln	Gln	agc Ser 270	agg Arg	gcc Ala	gag Glu	aaa Lys	tcc Ser 275	gga Gly	aac Asn	931
	cct Pro					Glu										979
	aat Asn 295				Met .					Thr						1027

_	Pro		_	-			cag Gln		-			_		_	-	1075
							cct Pro									1123
							gtt Val									1171
							gtg Val 365									1219
_	_	_			-	-	ggt Gly		-		_		_	-	-	1267
							gcc Ala									1315
		_	_	-	_		cac His	_		_						1363
					_		tta Leu			_			_	_	_	1411
							cga Arg 445									1459
-							ctt Leu	_	-			_	_			1507
							gga Gly									1555
aag Lys		taaa	ggtc	gc a	tgaa	tcct	t cg	a								1584

<210> 238

<211> 487

<212> PRT

<213> Corynebacterium glutamicum

<400> 238

Val Ser Asp Lys Lys Gln Asp Leu Thr Ser Ser Ala Ala Gly Ser Ala 1 5 10 15

Ala Pro Gln Thr Lys Ala Tyr Pro Ala Met Pro Leu Pro Glu Lys Gln 20 Ala Trp Pro Ala Leu Ile Ala Leu Cys Ile Gly Phe Phe Met Ile Leu Leu Asp Gln Thr Ile Val Ala Val Ser Thr Pro Ala Leu Gln Ala Asp Met Gly Ala Ser Tyr Asn Glu Val Ile Trp Val Thr Ser Val Tyr Leu Leu Thr Phe Ala Val Pro Leu Leu Val Thr Gly Arg Leu Gly Asp Lys Tyr Gly Pro Lys Asn Val Tyr Val Ala Gly Met Val Ile Phe Thr Val Ser Ser Leu Ala Cys Gly Leu Ala Pro Asp Met Phe Thr Leu Ile Ile Ala Arg Gly Val Gln Gly Leu Gly Ala Ala Leu Leu Thr Pro Gln Thr Met Ala Thr Ile Asn Arg Ile Phe Ala Phe Glu Arg Arg Gly Ala Ala 155 Leu Gly Val Trp Gly Ser Thr Ala Gly Leu Ala Ser Leu Ala Gly Pro Ile Leu Gly Gly Val Ile Thr Glu Asn Trp Gly Trp Gln Trp Val Phe Tyr Ile Asn Val Pro Ile Gly Val Ile Ser Val Ile Ala Val Met Lys 200 Tyr Val Pro Glu Phe Pro Pro Leu Thr Arg Pro Leu Asp Pro Leu Ser 215 220 Ile Val Leu Ser Ile Val Ala Val Phe Phe Leu Val Phe Ala Phe Gln 230 Glu Gly Glu Gly Ala Gly Trp Ala Ala Trp Val Trp Ile Met Ile Val 250 Ala Ala Phe Ala Leu Phe Ala Trp Phe Ile Tyr Gln Gln Ser Arg Ala 265 Glu Lys Ser Gly Asn Asp Pro Leu Val Pro Leu Glu Ile Phe Lys Phe 280 Arg Asn Phe Ser Leu Gly Asn Ile Cys Ile Met Ala Met Gly Phe Thr 290 Val Ala Gly Thr Pro Leu Pro Ile Met Leu Tyr Phe Gln Gln Ala His 315

Gly Met Asn Ala Met Glu Ala Gly Phe Met Met Val Pro Gln Ala Leu 325 Met Ala Ala Val Leu Ser Pro Phe Val Gly Lys Leu Val Asp Arg Ser 340 345 Asn Pro Gly Leu Met Ala Ala Leu Gly Phe Ser Thr Val Ala Val Ser 360 Ile Val Leu Leu Ser Met Val Met Ile Phe Asp Thr Gly Leu Val Trp 375 Ala Leu Val Ser Met Thr Leu Leu Gly Ile Gly Asn Ala Phe Val Trp 390 Ala Pro Asn Ser Thr Ser Thr Met Arg Asp Leu Pro His Lys Phe Met 405 Gly Ala Gly Ser Gly Val Phe Asn Thr Thr Arg Gln Leu Gly Ser Val Ile Gly Ala Ala Ile Gly Ala Val Met Gln Ile Arg Leu Ala Ala 440 Gly Asp Glu Gly Ala Ala Phe Gly Gln Ala Leu Leu Leu Ala Ala Ala Val Leu Val Ile Gly Ile Val Ala Ser Thr Met Ala Gly Lys Asn Ala 470 His Pro Ala Pro Val Lys Pro 485 <210> 239 <211> 1455 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1432) <223> RXN03064 <400> 239 tggagcettg tetteeteea geaateeeae aacggageag gttgggatee egagaaatgt 60 tgtcatcatc ttggctgtat tagtttttac agcctttgtc atg atg ttg aat gag Met Met Leu Asn Glu act act ctg gca gtc gcg ttg ccg tcg atc atg gcg gac ttt gac att 163 Thr Thr Leu Ala Val Ala Leu Pro Ser Ile Met Ala Asp Phe Asp Ile 15 gag gcg aat act gcg cag tgg ttg ctc act ggt ttt atg ttg acc atg 211

Glu	ı Ala	Asr	Th:		a Glr	Trp	Leu	Leu 30		Gly	Phe	Met	Leu 35		Met	
			Let					Trp		ttg Leu						259
		Val					Thr			ttc Phe		Ile				307
	Ala					Thr				atg Met 80	Leu					355
_	_				Thr	-			_	ccg Pro	_	_	_		_	403
									_	ggc						451
		-	-	_	-	_			_	ctt Leu			_		-	499
		_		_	-		_			gcg Alà				-	_	547
-	_	_				_	_	-		ggt Gly 160		_	-	_		595
	_	_	_			_			_	gat Asp	_					643
		-								tac Tyr	_	_	_			691
										ttg Leu						739
										cgc Arg						787
				Ala						ccg Pro 240						835
			_	_		_		_	_	ctg Leu			_			883

250 255 260 ggt gtc atg aat aca ctg ccg ctc tac ctg cag gga tcc ttg atg gtc 931 Gly Val Met Asn Thr Leu Pro Leu Tyr Leu Gln Gly Ser Leu Met Val acc gcc ttg gtc gcg ggt cta gtg ctg ttg cca ggt ggt ctt ttg gaa 979 Thr Ala Leu Val Ala Gly Leu Val Leu Leu Pro Gly Gly Leu Leu Glu ggt gtg ctg tcg cca ttt gtg ggt cga att tat gat cgt cat ggt cca 1027 Gly Val Leu Ser Pro Phe Val Gly Arg Ile Tyr Asp Arg His Gly Pro 295 cgc gga ctc gtg atc ggc ggt atg tca ctc gtt gtg atc tcc ctg ttt 1075 Arg Gly Leu Val Ile Gly Gly Met Ser Leu Val Val Ile Ser Leu Phe 315 320 gca ctg tcc acc gtc gat gag ttc gcc aac gtg tgg ttc atc atc ggc 1123 Ala Leu Ser Thr Val Asp Glu Phe Ala Asn Val Trp Phe Ile Ile Gly 330 335 gta cac atc gtg ttc tcc atc ggc ctt gcg ctg ctg ttc acc cca ctg 1171 Val His Ile Val Phe Ser Ile Gly Leu Ala Leu Leu Phe Thr Pro Leu 345 350 atg aca gtc gcg ctc gca tcc gtc ccc gac aac atg tac ggc cac ggc 1219 Met Thr Val Ala Leu Ala Ser Val Pro Asp Asn Met Tyr Gly His Gly 365 too gog ato etc aac acc etc caa cag etc gec ggc gec gea ggc acc 1267 Ser Ala Ile Leu Asn Thr Leu Gln Gln Leu Ala Gly Ala Ala Gly Thr 380 gcg gtc atg att gcg gtt tat tcc acc gtc agc aac aac gcg ctt atc 1315 Ala Val Met Ile Ala Val Tyr Ser Thr Val Ser Asn Asn Ala Leu Ile 400 gac ggc gca acc caa caa acc gcc ctc gcc gac ggc gcc aac tct gca 1363 Asp Gly Ala Thr Gln Gln Thr Ala Leu Ala Asp Gly Ala Asn Ser Ala 415 ttc ttc gcc tca gcg tgc gtg gca gtg ttt gca ctg atc gtg ggc ttc 1411 Phe Phe Ala Ser Ala Cys Val Ala Val Phe Ala Leu Ile Val Gly Phe 430 ttt gta aag agg cca gcc cgc taagctaggt cgcatgatca gca 1455 Phe Val Lys Arg Pro Ala Arg 440

<210> 240

<211> 444

<212> PRT

<213> Corynebacterium glutamicum

<400> 240

Met Met Leu Asn Glu Thr Thr Leu Ala Val Ala Leu Pro Ser Ile Met 1 5 10 15

Ala Asp Phe Asp Ile Glu Ala Asn Thr Ala Gln Trp Leu Leu Thr Gly

Phe Met Leu Thr Met Ala Val Val Leu Pro Ala Thr Gly Trp Met Leu 35 40 45

25

- Glu Arg Phe Thr Thr Arg Ser Val Phe Ile Phe Ala Thr Val Val Phe
 50 55 60
- Leu Ile Gly Thr Val Thr Ala Ala Leu Ser Pro Thr Phe Ala Ile Met
 65 70 75 80
- Leu Ala Ala Arg Val Ala Gln Ala Ile Gly Thr Ala Val Ile Met Pro 85 90 95
- Leu Leu Met Thr Val Ala Met Thr Val Val Pro Pro Glu Arg Arg Gly
 100 105 110
- Ala Val Met Gly Leu Ile Ala Val Val Met Ala Val Gly Pro Ala Leu 115 120 125
- Gly Pro Ser Val Ala Gly Phe Val Leu Ser Leu Ser Ser Trp His Ala 130 135 140
- Ile Phe Trp Val Met Val Pro Leu Val Phe Val Ala Ser Leu Ile Gly 145 150 155 160
- Thr Leu Arg Leu Thr Asn Val Ser Glu Pro Lys Lys Thr Pro Leu Asp 165 170 175
- Val Ile Ser Phe Leu Ile Ser Ala Val Ala Phe Gly Gly Leu Val Tyr 180 185 190
- Ala Leu Ser Ser Ile Gly Ile Ile Leu Glu Gly Asp Arg Ser Ala Leu 195 200 205
- Val Val Leu Ala Val Gly Ile Ile Ala Leu Val Val Phe Val Trp Arg 210 215 220
- Gln Ile Ala Met Gly Lys Gln Asp Lys Ala Leu Leu Asp Leu Arg Pro 225 230 235 240
- Leu Ala Ile Arg Glu Tyr Thr Ile Pro Leu Val Val Leu Leu Thr Leu 245 250 255
- Phe Gly Ala Leu Leu Gly Val Met Asn Thr Leu Pro Leu Tyr Leu Gln 260 265 270
- Gly Ser Leu Met Val Thr Ala Leu Val Ala Gly Leu Val Leu Pro 275 280 285
- Gly Gly Leu Leu Glu Gly Val Leu Ser Pro Phe Val Gly Arg Ile Tyr 290 295 300

Asp Arg His Gly Pro Arg Gly Leu Val Ile Gly Gly Met Ser Leu Val 310 Val Ile Ser Leu Phe Ala Leu Ser Thr Val Asp Glu Phe Ala Asn Val 325 330 Trp Phe Ile Ile Gly Val His Ile Val Phe Ser Ile Gly Leu Ala Leu 340 345 Leu Phe Thr Pro Leu Met Thr Val Ala Leu Ala Ser Val Pro Asp Asn 360 Met Tyr Gly His Gly Ser Ala Ile Leu Asn Thr Leu Gln Gln Leu Ala 375 Gly Ala Ala Gly Thr Ala Val Met Ile Ala Val Tyr Ser Thr Val Ser Asn Asn Ala Leu Ile Asp Gly Ala Thr Gln Gln Thr Ala Leu Ala Asp Gly Ala Asn Ser Ala Phe Phe Ala Ser Ala Cys Val Ala Val Phe Ala Leu Ile Val Gly Phe Phe Val Lys Arg Pro Ala Arg 435 <210> 241 <211> 1093 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1093) <223> FRXA00565 <400> 241 tggagccttg tcttcctcca gcaatcccac aacggagcag gttgggatcc cgagaaatgt 60 tgtcatcatc ttggctgtat tagtttttac agcctttgtc atg atg ttg aat gag 115 Met Met Leu Asn Glu 1 act act ctg gca gtc gcg ttg ccg tcg atc atg gcg gac ttt gac att 163 Thr Thr Leu Ala Val Ala Leu Pro Ser Ile Met Ala Asp Phe Asp Ile 10 15 gag gcg aat act gcg cag tgg ttg ctc act ggt ttt atg ttg acc atg 211 Glu Ala Asn Thr Ala Gln Trp Leu Leu Thr Gly Phe Met Leu Thr Met 25 30 gct gtg gtt ctt cca gct act ggt tgg atg ttg gaa cgt ttt acc act 259 Ala Val Val Leu Pro Ala Thr Gly Trp Met Leu Glu Arg Phe Thr Thr 40 45

cgt Arg	agt Ser 55	Val	ttt. Phe	att	ttc Phe	gcc Ala 60	Thr	gtg Val	gtc Val	ttc Phe	ctg Leu 65	Ile	ggt Gly	act Thr	gtg Val	307
acg Thr 70	Āla	gcg Ala	ttg Leu	tct Ser	cct Pro 75	act Thr	ttt Phe	gcg Ala	att Ile	atg Met 80	Leu	gca Ala	gcc Ala	cgc Arg	gtc Val 85	355
gct Ala	cag Gln	gcg Ala	att	ggt Gly 90	Thr	gct Ala	gtg Val	atc Ile	atg Met 95	ccg Pro	ctg Leu	ctg Leu	atg Met	act Thr 100	gtc Val	403
			gtt Val 105						Arg							451
			gtg Val													499
ggt Gly	ttc Phe 135	gta Val	ctc Leu	agc Ser	ttg Leu	tct Ser 140	tcg Ser	tgg Trp	cac His	gcg Ala	att Ile 145	ttc Phe	tgg Trp	gtc Val	atg Met	547
gtt Val 150	ccg Pro	ttg Leu	gtg Val	ttt Phe	gtg Val 155	gca Ala	agc Ser	ctg Leu	atc Ile	ggt Gly 160	acc Thr	ctg Leu	cgt Arg	ctg Leu	acc Thr 165	595
aac Asn	gtc Val	agt Ser	gag Glu	cct Pro 170	aaa Lys	aag Lys	act Thr	cct Pro	ttg Leu 175	gat Asp	gtt Val	att Ile	tcc Ser	ttc Phe 180	ctg Leu	643
			gtg Val 185													691
ggc Gly	atc Ile	att Ile 200	ttg Leu	gaa Glu	ggt Gly	gac Asp	aga Arg 205	agc Ser	gct Ala	ttg Leu	gtc Val	gtg Val 210	ttg Leu	gct Ala	gtc Val	739
ggc Gly	atc Ile 215	att Ile	gcg Ala	ttg Leu	gtg Val	gtg Val 220	ttt Phe	gtg Val	tgg Trp	cgc Arg	cag Gln 225	att Ile	gcc Ala	atg Met	ggt Gly	787
aag Lys 230	cag Gln	gat Asp	aag Lys	gcg Ala	ctg Leu 235	ttg Leu	gat Asp	ctg Leu	cgt Arg	ccg Pro 240	ttg Leu	gcg Ala	att Ile	cgt Arg	gag Glu 245	835
tac Tyr	acc Thr	att Ile	ccg Pro	ctg Leu 250	gtt Val	gtg Val	ctt Leu	ttg Leu	acg Thr 255	ctg Leu	ttc Phe	ggt Gly	gcg Ala	ctg Leu 260	ctc Leu	883
			aat Asn 265													931
acc	gcc	ttg	gtc	gcg	ggt	cta	gtg	ctg	ttg	cca	ggt	ggt	ctt	ttg	gaa	979

Thr Ala Leu Val Ala Gly Leu Val Leu Leu Pro Gly Gly Leu Leu Glu 280 285 290

ggt gtg ctg tcg cca ttt gtg ggt cga att tat gat cgt cat ggt cca 1027 Gly Val Leu Ser Pro Phe Val Gly Arg Ile Tyr Asp Arg His Gly Pro 295 300 305

cgc gga ctc gtg atc ggc ggt atg tca ctc gtt gtg atc tcc ctg ttt 1075 Arg Gly Leu Val Ile Gly Gly Met Ser Leu Val Val Ile Ser Leu Phe 310 325

gca ctg tcc acc gtc gat 1093 Ala Leu Ser Thr Val Asp 330

<210> 242

<211> 331

<212> PRT

<213> Corynebacterium glutamicum

<400> 242

Met Met Leu Asn Glu Thr Thr Leu Ala Val Ala Leu Pro Ser Ile Met

1 5 10 15

Ala Asp Phe Asp Ile Glu Ala Asn Thr Ala Gln Trp Leu Leu Thr Gly
20 25 30

Phe Met Leu Thr Met Ala Val Val Leu Pro Ala Thr Gly Trp Met Leu 35 40 45

Glu Arg Phe Thr Thr Arg Ser Val Phe Ile Phe Ala Thr Val Val Phe
50 55 60

Leu Ile Gly Thr Val Thr Ala Ala Leu Ser Pro Thr Phe Ala Ile Met 65 70 75 80

Leu Ala Ala Arg Val Ala Gln Ala Ile Gly Thr Ala Val Ile Met Pro $85 \hspace{1cm} 90 \hspace{1cm} 95$

Leu Leu Met Thr Val Ala Met Thr Val Val Pro Pro Glu Arg Arg Gly
100 105 110

Ala Val Met Gly Leu Ile Ala Val Val Met Ala Val Gly Pro Ala Leu 115 120 125

Gly Pro Ser Val Ala Gly Phe Val Leu Ser Leu Ser Ser Trp His Ala 130 . 135 140

Thr Leu Arg Leu Thr Asn Val Ser Glu Pro Lys Lys Thr Pro Leu Asp 165 170 175

Val Ile Ser Phe Leu Ile Ser Ala Val Ala Phe Gly Gly Leu Val Tyr 180 185 190

Ala Leu Ser Ser Ile Gly Ile Ile Leu Glu Gly Asp Arg Ser Ala Leu 200 Val Val Leu Ala Val Gly Ile Ile Ala Leu Val Val Phe Val Trp Arg Gln Ile Ala Met Gly Lys Gln Asp Lys Ala Leu Leu Asp Leu Arg Pro Leu Ala Ile Arg Glu Tyr Thr Ile Pro Leu Val Val Leu Leu Thr Leu 245 250 Phe Gly Ala Leu Leu Gly Val Met Asn Thr Leu Pro Leu Tyr Leu Gln 265 Gly Ser Leu Met Val Thr Ala Leu Val Ala Gly Leu Val Leu Pro 280 Gly Gly Leu Leu Glu Gly Val Leu Ser Pro Phe Val Gly Arg Ile Tyr 295 Asp Arg His Gly Pro Arg Gly Leu Val Ile Gly Gly Met Ser Leu Val Val Ile Ser Leu Phe Ala Leu Ser Thr Val Asp 325 <210> 243 <211> 380 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (1)..(357) <223> FRXA02878 <400> 243 48 tgc ctg tcc acc gtc gat gag ttc gcc acg tgt tgg tca tca ttc gcg Cys Leu Ser Thr Val Asp Glu Phe Ala Thr Cys Trp Ser Ser Phe Ala 96 gac aca teg tgg tte tea teg gee ett geg etg tte ace eea etg Asp Thr Ser Trp Phe Ser Ser Ala Leu Ala Leu Leu Phe Thr Pro Leu 144 atg aca gtc gcg ctc gca tcc gtc ccc gac aac atg tac ggc cac ggc Met Thr Val Ala Leu Ala Ser Val Pro Asp Asn Met Tyr Gly His Gly 192 too gog ato ote aac acc ote caa cag ote goo gge goo goa ggc acc Ser Ala Ile Leu Asn Thr Leu Gln Gln Leu Ala Gly Ala Ala Gly Thr 240 gcg gtc atg att gcg gtt tat tcc acc gtc agc aac aac gcg ctt atc

Ala Val Met Ile Ala Val Tyr Ser Thr Val Ser Asn Asn Ala Leu Ile 65 70 75 80

- gac ggc gca acc caa caa acc gcc ctc gcc gac ggc gcc aac tct gca 288 Asp Gly Ala Thr Gln Gln Thr Ala Leu Ala Asp Gly Ala Asn Ser Ala 85 90 95
- ttc ttc gcc tca gcg tgc gtg gca gtg ttt gca ctg atc gtg ggc ttc 336 Phe Phe Ala Ser Ala Cys Val Ala Val Phe Ala Leu Ile Val Gly Phe 100 105 110
- ttt gta aag agg cca gcc cgc taagctaggt cgcatgatca gca 380 Phe Val Lys Arg Pro Ala Arg 115

<210> 244

<211> 119

<212> PRT

<213> Corynebacterium glutamicum

<400> 244

Cys Leu Ser Thr Val Asp Glu Phe Ala Thr Cys Trp Ser Ser Phe Ala 1 5 10 15

Asp Thr Ser Trp Phe Ser Ser Ala Leu Ala Leu Leu Phe Thr Pro Leu 20 25 30

Met Thr Val Ala Leu Ala Ser Val Pro Asp Asn Met Tyr Gly His Gly 35 40 45

Ser Ala Ile Leu Asn Thr Leu Gln Gln Leu Ala Gly Ala Ala Gly Thr 50 55 60

Ala Val Met Ile Ala Val Tyr Ser Thr Val Ser Asn Asn Ala Leu Ile 65 70 75 80

Asp Gly Ala Thr Gln Gln Thr Ala Leu Ala Asp Gly Ala Asn Ser Ala 85 90 95

Phe Phe Ala Ser Ala Cys Val Ala Val Phe Ala Leu Ile Val Gly Phe 100 105 110

Phe Val Lys Arg Pro Ala Arg 115

<210> 245

<211> 1533

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1510)

<223> RXA00648

<400> 245 gtttgccagc tattgcatct tgcacaaaat gtgtaccata cacataatgt catcgagtcc 60 tecegaatea gecacaceae agateaaata eggeetgetg gtg gte act ete gee Val Val Thr Leu Ala tca gct ggt atc act gtt tcc cta gcg cag acc ctg gtt att ccg atc 163 Ser Ala Gly Ile Thr Val Ser Leu Ala Gln Thr Leu Val Ile Pro Ile 15 att ggt cgg ttg ccc gag atc ttc aac acc acg gct gct aat gcc tct 211 Ile Gly Arg Leu Pro Glu Ile Phe Asn Thr Thr Ala Ala Asn Ala Ser 25 30 259 tgg atc att act gtg acg ctg ttg gtg ggc gca gtg gcg act cct gtg Trp Ile Ile Thr Val Thr Leu Leu Val Gly Ala Val Ala Thr Pro Val 40 307 atq qqc agq ctt gca gat atg tac ggc aag aaa aag atg atg ctc atc Met Gly Arg Leu Ala Asp Met Tyr Gly Lys Lys Met Met Leu Ile 60 tca ctt gtc ccg ttc att ctt gga tca gtg atc tgc gct gtg tcg gtg 355 Ser Leu Val Pro Phe Ile Leu Gly Ser Val Ile Cys Ala Val Ser Val 70 75 403 gat ttg att ccg atg atc atc ggc cgt ggt ttt cag ggg ctt ggc tct Asp Leu Ile Pro Met Ile Ile Gly Arg Gly Phe Gln Gly Leu Gly Ser 90 95 ggc ctg att cct ctt ggc att tct ctc atg cat gat ttg ttg ccc cgg 451 Gly Leu Ile Pro Leu Gly Ile Ser Leu Met His Asp Leu Leu Pro Arg 105 110 gag aaa gca ggg tot gcc att gct ttg atg agt tot tcc atg ggc att 499 Glu Lys Ala Gly Ser Ala Ile Ala Leu Met Ser Ser Met Gly Ile 120 125 ggc ggt gca ctc ggt cta ccg ctg gct gct gct att gcc cag ttt gcg 547 Gly Gly Ala Leu Gly Leu Pro Leu Ala Ala Ala Ile Ala Gln Phe Ala 135 140 tee tgg egg gtg etg tte tgg tte ace get etg gta geg ett aca gtt 595 Ser Trp Arg Val Leu Phe Trp Phe Thr Ala Leu Val Ala Leu Thr Val 150 155 ggc gcg gtc att tgg aag gcg att cct gct aga ccc agg atc gtg agg 643 Gly Ala Val Ile Trp Lys Ala Ile Pro Ala Arg Pro Arg Ile Val Arg agt ggc ggc ttt gat tat ttc ggt gct ctc ggc ctt gca atg gga ctt 691 Ser Gly Gly Phe Asp Tyr Phe Gly Ala Leu Gly Leu Ala Met Gly Leu 185 190 739 atc gca ttg ttg ctc gcg gtg tcc aag gga tca gaa tgg ggc tgg aga Ile Ala Leu Leu Leu Ala Val Ser Lys Gly Ser Glu Trp Gly Trp Arg

200 205 210

agt Ser	gcc Ala 215	Le	g ac u Th	c at r Il	t gg e Gl	g tta y Le 22	u Ph	c gt e Va	g gc	a gc a Al	g cto a Leu 225	ı Val	g att	tto Lev	g gtg 1 Val	787
ggt Gly 230	Trp	ggo Gl	c tg y Tr	g tte p Phe	c ga e Gl 23	u Thi	c cg	c ca g Gl:	g aaa n Ly:	a to s Se 24	c cct r Pro 0	tto Lev	att Ile	gat Asp	ctg Leu 245	835
cgc Arg	acc Thr	act Thi	t ato	t cgg e Arg 250	g Ala	g aco	gto Val	g tte	g ato 1 Met 259	Th	a aat r Asn	att Ile	gcg Ala	Ser 260	· Ile	883
ctc Leu	atc Ile	ggt Gly	tto Phe 265	Th:	ato Met	g tat Tyr	gga Gly	a ato 7 Met 270	Ası	cto Lei	g ato 1 Ile	ctg Leu	ect Pro 275	Gln	gtc Val	931
atg Met	cag Gln	ctg Leu 280	Pro	gta Val	att Ile	ctg Leu	ggc Gly 285	y Tyr	ggt Gly	cta Leu	a ggc a Gly	cag Gln 290	Ser	atg Met	ctt Leu	979
cag Gln	atg Met 295	ggc Gly	ato Ile	tgg Trp	cto Lev	ato Ile 300	Pro	atç Met	ggt Gly	cta Leu	ggc Gly 305	atg Met	atg Met	ttg Leu	att Ile	1027
tcg Ser 310	aat Asn	gca Ala	ggt Gly	gca Ala	gcc Ala 315	Ile	agc Ser	gct Ala	gct Ala	cat His 320	ggt Gly	cct Pro	cgt Arg	gtg Val	acg Thr 325	1075
Leu	Thr	Ile	Ala	Gly 330	Val	Val	Ile	Ala	Val 335	Gly	tat Tyr	Ala	Leu	Thr 340	Ala	1123
Thr	Val	Leu	Phe 345	Thr	Ile	Gly	Asn	Arg 350	Thr	Pro	gga Gly	Gly	Asp 355	Ala	Asp	1171
Asn	Ala	Leu 360	Ile	Leu	Thr	Thr	Leu 365	Val	Leu	Phe	tca Ser	Val 370	Cys	Ser	Leu	1219
gtg Val	gtc Val 375	ggt Gly	atc Ile	ggc Gly	att Ile	ggc Gly 380	ctg Leu	gca Ala	ttt Phe	ggt Gly	tcc Ser 385	atg Met	cct Pro	gcc Ala	ttg Leu	1267
atc Ile 390	atg Met	ggt Gly	gcc Ala	gta Val	cca Pro 395	gcc Ala	acg Thr	gag Glu	aaa Lys	gcc Ala 400	gca Ala	gcg Ala	aat Asn	ggt Gly	ttc Phe 405	1315
aac Asn	tct (Ser)	ctt Leu	atg Met	cgt Arg 410	tca Ser	ctg Leu	ggc Gly	acc Thr	acc Thr 415	ggc Gly	tca Ser	tca Ser	gct Ala	gtc Val 420	atc Ile	1363
ggt (Gly i	gca (Ala V	/al	ttg Leu 425	gcc Ala	gga Gly	atg Met	atg Met	agt Ser 430	ggc Gly	gga Gly	gta Val	Pro	acc Thr 435	tta Leu	Gly ggg	1411

gga ttc atg acc act ctg atc atc gga tgc tgc gcc gcg ctt gtg gct Gly Phe Met Thr Thr Leu Ile Ile Gly Cys Cys Ala Ala Leu Val Ala 440 445 450	1459
gcg gtc atc tcc tat ttc atc ccc acc aca acc act gtg gtg gaa gca Ala Val Ile Ser Tyr Phe Ile Pro Thr Thr Thr Thr Val Val Glu Ala 455 460 465	1507
aaa taatcccggc agcgactcga cca Lys 470	1533
<210> 246 <211> 470 <212> PRT <213> Corynebacterium glutamicum	
<400> 246 Val Val Thr Leu Ala Ser Ala Gly Ile Thr Val Ser Leu Ala Gln Thr 1 5 10 15	
Leu Val Ile Pro Ile Ile Gly Arg Leu Pro Glu Ile Phe Asn Thr Thr 20 25 30	
Ala Ala Asn Ala Ser Trp Ile Ile Thr Val Thr Leu Leu Val Gly Ala 35 40 45	
Val Ala Thr Pro Val Met Gly Arg Leu Ala Asp Met Tyr Gly Lys Lys 50 55 60	
Lys Met Met Leu Ile Ser Leu Val Pro Phe Ile Leu Gly Ser Val Ile 65 70 . 75 80	
Cys Ala Val Ser Val Asp Leu Ile Pro Met Ile Ile Gly Arg Gly Phe 85 90 95	
Gln Gly Leu Gly Ser Gly Leu Ile Pro Leu Gly Ile Ser Leu Met His 100 105 110	
Asp Leu Leu Pro Arg Glu Lys Ala Gly Ser Ala Ile Ala Leu Met Ser 115 120 125	
Ser Ser Met Gly Ile Gly Gly Ala Leu Gly Leu Pro Leu Ala Ala Ala 130 135 140	
Ile Ala Gln Phe Ala Ser Trp Arg Val Leu Phe Trp Phe Thr Ala Leu 145 150 155 160	
Val Ala Leu Thr Val Gly Ala Val Ile Trp Lys Ala Ile Pro Ala Arg 165 170 175	
Pro Arg Ile Val Arg Ser Gly Gly Phe Asp Tyr Phe Gly Ala Leu Gly 180 185 190	
Leu Ala Met Gly Leu Ile Ala Leu Leu Leu Ala Val Ser Lys Gly Ser	

205

195 200

Glu Trp Gly Trp Arg Ser Ala Leu Thr Ile Gly Leu Phe Val Ala Ala 210 215 220

Leu Val Ile Leu Val Gly Trp Gly Trp Phe Glu Thr Arg Gln Lys Ser 225 230 235 240

Pro Leu Ile Asp Leu Arg Thr Thr Ile Arg Ala Thr Val Leu Met Thr 245 250 255

Asn Ile Ala Ser Ile Leu Ile Gly Phe Thr Met Tyr Gly Met Asn Leu 260 265 270

Ile Leu Pro Gln Val Met Gln Leu Pro Val Ile Leu Gly Tyr Gly Leu 275 280 285

Gly Gln Ser Met Leu Gln Met Gly Ile Trp Leu Ile Pro Met Gly Leu 290 295 300

Gly Met Met Leu Ile Ser Asn Ala Gly Ala Ala Ile Ser Ala Ala His 305 310 315 320

Gly Pro Arg Val Thr Leu Thr Ile Ala Gly Val Val Ile Ala Val Gly 325 330 335

Tyr Ala Leu Thr Ala Thr Val Leu Phe Thr Ile Gly Asn Arg Thr Pro 340 345 350

Gly Gly Asp Ala Asp Asn Ala Leu Ile Leu Thr Thr Leu Val Leu Phe 355 360 365

Ser Val Cys Ser Leu Val Val Gly Ile Gly Ile Gly Leu Ala Phe Gly 370 375 380

Ser Met Pro Ala Leu Ile Met Gly Ala Val Pro Ala Thr Glu Lys Ala 385 390 395 400

Ala Ala Asn Gly Phe Asn Ser Leu Met Arg Ser Leu Gly Thr Thr Gly 405 410 415

Ser Ser Ala Val Ile Gly Ala Val Leu Ala Gly Met Met Ser Gly Gly 420 425 430

Val Pro Thr Leu Gly Gly Phe Met Thr Thr Leu Ile Ile Gly Cys Cys 435 440 445

Ala Ala Leu Val Ala Ala Val Ile Ser Tyr Phe Ile Pro Thr Thr 450 455 460

Thr Val Val Glu Ala Lys 465 470

<210> 247 <211> 1770

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1747)

<223> RXN01320

<400> 247

gtgaatggca cgacatgcca caaggcacgc aagctgattt ccaagcctgc tgtcgcaaag 60

caattaaaaa tacttttctt cttagaggtg gattttcaga atg aca tca cag gtc 115
Met Thr Ser Gln Val

aag ccg gac gac gaa cgt ccg gta aca aca att tca aaa agt ggt gca 163 Lys Pro Asp Asp Glu Arg Pro Val Thr Thr Ile Ser Lys Ser Gly Ala

cct tcg gcc cac acc tca gca cca tat ggt gca gca gca act gaa gaa 211
Pro Ser Ala His Thr Ser Ala Pro Tyr Gly Ala Ala Ala Thr Glu Glu
25 30 35

gct gtc gag gaa aaa acc aaa ggt cgc gtt gga ttt atc atc gca gcc 259
Ala Val Glu Glu Lys Thr Lys Gly Arg Val Gly Phe Ile Ile Ala Ala

ctc atg ttg gcg atg ctt ctt agc tcc ttg ggt cag acc att ttc ggt . 307 Leu Met Leu Ala Met Leu Leu Ser Ser Leu Gly Gln Thr Ile Phe Gly

tct gcc ctg cca acg att gtt ggt gag ctt ggc ggc gtt aac cac atg 355 Ser Ala Leu Pro Thr Ile Val Gly Glu Leu Gly Gly Val Asn His Met 70 75 80 85

acc tgg gtg att acc gcc ttc ctc ttg ggc cag acc att tca ttg cct 403
Thr Trp Val Ile Thr Ala Phe Leu Leu Gly Gln Thr Ile Ser Leu Pro
90 95 100

att ttc ggc aag ttg ggt gac cag ttt ggt cgc aaa tac ctc ttc atg

Ile Phe Gly Lys Leu Gly Asp Gln Phe Gly Arg Lys Tyr Leu Phe Met

105

110

115

ttt gcc atc gca ctg ttc gtg gtg ggt tcc atc atc ggt gct ttg gct

Phe Ala Ile Ala Leu Phe Val Val Gly Ser Ile Ile Gly Ala Leu Ala

120

130

cag aac atg acc acc ttg att gtg gct cgt gca ctg cag ggt atc gcc 547 Gln Asn Met Thr Thr Leu Ile Val Ala Arg Ala Leu Gln Gly Ile Ala 135 140 145

ggt ggt ggc ttg atg att ctt tct cag gca att acc gct gat gtc acc 595 Gly Gly Gly Leu Met Ile Leu Ser Gln Ala Ile Thr Ala Asp Val Thr 150 165

acc gcc cgt gag cgt gca aag tac atg ggc atc atg ggt tcc gtt ttc 643
Thr Ala Arg Glu Arg Ala Lys Tyr Met Gly Ile Met Gly Ser Val Phe
170 175 180

				: Ile					Leu		ggc Gly			Thr		691
			, Trp					Trp			gtt Val					739
		Lev					Val				ctt Leu 225					787
	Gly										atc Ile					835
					Val						ggt Gly					883
											atc Ile					931
											gct Ala					979
											gtg Val 305					1027
gcc Ala 310	ggt Gly	atc Ile	ggc Gly	gta Val	ggc Gly 315	ctg Leu	ttt Phe	atg Met	atg Met	ggc Gly 320	acc Thr	atc Ile	gcg Ala	tac Tyr	atg Met 325	1075
											cca Pro					1123
											ggt Gly					1171
											aag Lys					1219
										Val	ctg Leu 385					1267
				Ser					Gly		tac Tyr					1315

gga Gly	ttc Phe	ggc Gly	ctg Leu	ggc Gly 410	Cys	gca Ala	atg Met	cag Gln	att Ile 415	ttg Leu	gtt Val	ctc Leu	atc Ile	gtg Val 420	cag Gln	1363
		ttc Phe														1411
ttc Phe	ttc Phe	cgc Arg 440	caa Gln	atc Ile	ggt Gly	gga Gly	gca Ala 445	gta Val	ggt Gly	tcc Ser	gca Ala	ctg Leu 450	atc Ile	ggt Gly	ggc Gly	1459
ctg Leu	ttt Phe 455	atc Ile	tcc Ser	aac Asn	ctg Leu	tcc Ser 460	gac Asp	cga Arg	ttc Phe	acc Thr	gaa Glu 465	aac Asn	gtc Val	ccc Pro	gca Ala	1507
		gct Ala														1555
		ttc Phe														1603
		caa Gln														1651
		cca Pro 520														1699
		ctc Leu														1747
taat	gaca	ca c	gaaa	cttc	c gt	С										1770

<210> 248

<211> 549

<212> PRT

<213> Corynebacterium glutamicum

<400> 248

Met Thr Ser Gln Val Lys Pro Asp Asp Glu Arg Pro Val Thr Thr Ile 1 5 10 15

Ser Lys Ser Gly Ala Pro Ser Ala His Thr Ser Ala Pro Tyr Gly Ala 20 25 30

Ala Ala Thr Glu Glu Ala Val Glu Glu Lys Thr Lys Gly Arg Val Gly 35 40 45

Phe Ile Ile Ala Ala Leu Met Leu Ala Met Leu Leu Ser Ser Leu Gly 50 55 60

Gln Thr Ile Phe Gly Ser Ala Leu Pro Thr Ile Val Gly Glu Leu Gly 65 70 75 80

- Gly Val Asn His Met Thr Trp Val Ile Thr Ala Phe Leu Leu Gly Gln 85 90 95
- Thr Ile Ser Leu Pro Ile Phe Gly Lys Leu Gly Asp Gln Phe Gly Arg 100 105 110
- Lys Tyr Leu Phe Met Phe Ala Ile Ala Leu Phe Val Val Gly Ser Ile 115 120 125
- Ile Gly Ala Leu Ala Gln Asn Met Thr Thr Leu Ile Val Ala Arg Ala 130 . 135 140
- Leu Gln Gly Ile Ala Gly Gly Gly Leu Met Ile Leu Ser Gln Ala Ile 145 150 155 160
- Thr Ala Asp Val Thr Thr Ala Arg Glu Arg Ala Lys Tyr Met Gly Ile 165 170 175
- Met Gly Ser Val Phe Gly Leu Ser Ser Ile Leu Gly Pro Leu Leu Gly 180 185 190
- Gly Trp Phe Thr Asp Gly Pro Gly Trp Arg Trp Gly Leu Trp Leu Asn 195 200 205
- Val Pro Ile Gly Ile Ile Ala Leu Val Ala Ile Ala Val Leu Lys 210 215 220
- Leu Pro Ala Arg Glu Arg Gly Lys Val Ser Val Asp Trp Leu Gly Ser 225 230 235 240
- Ile Phe Met Ala Ile Ala Thr Thr Ala Phe Val Leu Ala Val Thr Trp 245 250 255
- Gly Gly Asn Glu Tyr Glu Trp Ala Ser Pro Met Ile Ile Gly Leu Phe 260 265 270
- Ile Thr Thr Leu Val Ala Ala Ile Val Phe Val Phe Val Glu Lys Arg 275 280 285
- Ala Val Asp Pro Leu Val Pro Met Gly Leu Phe Ser Asn Arg Asn Phe 290 295 300
- Val Leu Thr Ala Val Ala Gly Ile Gly Val Gly Leu Phe Met Met Gly 305 310 315 320
- Thr Ile Ala Tyr Met Pro Thr Tyr Leu Gln Met Val His Gly Leu Asn 325 330 335
- Pro Thr Gln Ala Gly Leu Met Leu Ile Pro Met Met Ile Gly Leu Ile 340 345 350
- Gly Thr Ser Thr Val Val Gly Asn Ile Val Ser Lys Thr Gly Lys Tyr 355 360 365

Lys Trp Tyr Pro Phe Ile Gly Met Leu Ile Met Val Leu Ala Leu Val 375 Leu Leu Ser Thr Leu Thr Pro Ser Ala Ser Leu Ala Leu Ile Gly Leu 390 395 Tyr Phe Phe Val Phe Gly Phe Gly Leu Gly Cys Ala Met Gln Ile Leu Val Leu Ile Val Gln Asn Ser Phe Pro Ile Thr Met Val Gly Thr Ala 425 Thr Gly Ser Asn Asn Phe Phe Arg Gln Ile Gly Gly Ala Val Gly Ser 440 Ala Leu Ile Gly Gly Leu Phe Ile Ser Asn Leu Ser Asp Arg Phe Thr 455 Glu Asn Val Pro Ala Ala Val Ala Ser Met Gly Glu Glu Gly Ala Gln 470 Tyr Ala Ser Ala Met Ser Asp Phe Ser Gly Ala Ser Asn Leu Thr Pro 490 His Leu Val Glu Ser Leu Pro Gln Ala Leu Arg Glu Ala Ile Gln Leu 500 505 Ser Tyr Asn Asp Ala Leu Thr Pro Ile Phe Leu Ala Leu Thr Pro Ile 520 525 Ala Val Val Ala Ala Ile Leu Leu Phe Phe Ile Arg Glu Asp His Leu 535 Lys Glu Thr His Glu <210> 249 <211> 841 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(841) <223> FRXA01314 <400> 249 gtgaatggca cgacatgcca caaggcacgc aagctgattt ccaagcctgc tgtcgcaaag 60 caattaaaaa tacttttctt cttagaggtg gattttcaga atg aca tca cag gtc Met Thr Ser Gln Val

aag ccg gac gaa cgt ccg gta aca aca att tca aaa agt ggt gca

Lys Pro Asp Asp Glu Arg Pro Val Thr Thr Ile Ser Lys Ser Gly Ala

10

15

163

				Thi		a gca Ala			Gly			Glu		211
			Glu			aaa Lys		Arg			Ile			259
		Leu				ctt Leu 60	Ser							307
	Ala					Val				Gly			atg Met 85	355
					Ala	ttc Phe								403
						gac Asp								451
						gtg Val								499
						att Ile 140								547
						ctt Leu								595
						aag Lys								643
						ggc Gly								691
						ggt Gly								739
Ile						gct Ala 220								787
cgt Arg 230				Ser					Gly					835

gcc acc Ala Thr 841

<210> 250

<211> 247

<212> PRT

<213> Corynebacterium glutamicum

<400> 250

Met Thr Ser Gln Val Lys Pro Asp Asp Glu Arg Pro Val Thr Thr Ile

1 5 10 15

Ser Lys Ser Gly Ala Pro Ser Ala His Thr Ser Ala Pro Tyr Gly Ala 20 25 30

Ala Ala Thr Glu Glu Ala Val Glu Glu Lys Thr Lys Gly Arg Val Gly
35 40 45

Phe Ile Ile Ala Ala Leu Met Leu Ala Met Leu Leu Ser Ser Leu Gly 50 55 60

Gln Thr Ile Phe Gly Ser Ala Leu Pro Thr Ile Val Gly Glu Leu Gly 65 70 75 80

Gly Val Asn His Met Thr Trp Val Ile Thr Ala Phe Leu Leu Gly Gln 85 90 95

Thr Ile Ser Leu Pro Ile Phe Gly Lys Leu Gly Asp Gln Phe Gly Arg 100 105 110

Lys Tyr Leu Phe Met Phe Ala Ile Ala Leu Phe Val Val Gly Ser Ile 115 120 125

Ile Gly Ala Leu Ala Gln Asn Met Thr Thr Leu Ile Val Ala Arg Ala 130 135 140

Leu Gln Gly Ile Ala Gly Gly Gly Leu Met Ile Leu Ser Gln Ala Ile 145 150 155 160

Thr Ala Asp Val Thr Thr Ala Arg Glu Arg Ala Lys Tyr Met Gly Ile 165 170 175

Met Gly Ser Val Phe Gly Leu Ser Ser Ile Leu Gly Pro Leu Leu Gly 180 185 190

Gly Trp Phe Thr Asp Gly Pro Gly Trp Arg Trp Gly Leu Trp Leu Asn 195 200 205

Val Pro Ile Gly Ile Ile Ala Leu Val Ala Ile Ala Val Leu Lys 210 215 220

Leu Pro Ala Arg Glu Arg Gly Lys Val Ser Val Asp Trp Leu Gly Ser 225 230 235 240

Ile Phe Met Ala Ile Ala Thr

<2 <2	10> 11> 12> 13>	803 DNA	neba	cter	ium (glut	amic	mL								
<2: <2:	20> 21> 22> 23>	(1).														
<40	00>	251														
gtt Val	ga	c cca	a cto Del	g gto u Val	l Pro	ato Met	g ggd : Gly	cti Lei	tto Phe	e Sei	g aad Asr	c cgc n Arg	aac Asn	tto Phe	gtg Val	48
cto Lev	aco Thi	gco Ala	gto a Val 20	l Ala	ggt Gly	ato Ile	ggc Gly	gta Val 25	. Gly	cto Leu	ttt Phe	atg Met	atg Met 30	Gly	acc Thr	96
ato Ile	gcg Ala	tac Tyr 35	Met	g cct Pro	acc Thr	tac Tyr	ctg Leu 40	Glr	atg Met	gtt Val	cat His	ggt Gly 45	ctg Leu	aac Asn	cca Pro	144
acg Thr	Gln 50	Ala	ggt Gly	ctg Leu	atg Met	ctg Leu 55	Ile	cca Pro	atg Met	atg Met	atc Ile 60	Gly	ctg Leu	att Ile	ggt Gly	192
	Ser										Thr			tac Tyr		240
tgg Trp	tac Tyr	cca Pro	ttc Phe	atc Ile 85	ggc	atg Met	ctc Leu	atc Ile	atg Met 90	gtc Val	ctt Leu	gcc Ala	cta Leu	gta Val 95	ctg Leu	288
cta Leu	tcg Ser	acg Thr	ctg Leu 100	aca Thr	cct Pro	tcg Ser	gca Ala	agc Ser 105	ttg Leu	gct Ala	ctc Leu	att Ile	gga Gly 110	ctg Leu	tac Tyr	336
ttc Phe	ttc Phe	gtc Val 115	ttc Phe	gga Gly	ttc Phe	ggc Gly	ctg Leu 120	ggc Gly	tgt Cys	gca Ala	atg Met	cag Gln 125	att Ile	ttg Leu	gtt Val	384
ctc Leu	atc Ile 130	gtg Val	cag Gln	aac Asn	tcc Ser	ttc Phe 135	cca Pro	atc Ile	acc Thr	atg Met	gtt Val 140	ggc Gly	acc Thr	gcg Ala	acc Thr	432
ggt Gly 145	tcc Ser	aac Asn	aac Asn	ttc Phe	ttc Phe 150	cgc Arg	caa Gln	atc Ile	ggt Gly	gga Gly 155	gca Ala	gta Val	ggt Gly	tcc Ser	gca Ala 160	480
ctg Leu	atc Ile	ggt Gly	ggc Gly	ctg Leu 165	ttt Phe	atc Ile	tcc Ser	aac Asn	ctg Leu 170	tcc Ser	gac Asp	cga Arg	ttc Phe	acc Thr 175	gaa Glu	528

			gca Ala 180												576
			atg Met												624
	_	_	tca Ser				_		_	-	-				672
		_	gcc Ala	_					_				_	_	720
_	_	-	gcg Ala							-	_	-		_	768
-	acg Thr		gaa Glu 260	taat	gaca	ca c	gaaa	ictto	c gt	c					803

<210> 252

<211> 260

<212> PRT

<213> Corynebacterium glutamicum

<400> 252

Val Asp Pro Leu Val Pro Met Gly Leu Phe Ser Asn Arg Asn Phe Val 1 5 10 15

Leu Thr Ala Val Ala Gly Ile Gly Val Gly Leu Phe Met Met Gly Thr
20 25 30

Ile Ala Tyr Met Pro Thr Tyr Leu Gln Met Val His Gly Leu Asn Pro 35 40 45

Thr Gln Ala Gly Leu Met Leu Ile Pro Met Met Ile Gly Leu Ile Gly 50 55 60

Thr Ser Thr Val Val Gly Asn Ile Val Ser Lys Thr Gly Lys Tyr Lys
65 70 75 80

Trp Tyr Pro Phe Ile Gly Met Leu Ile Met Val Leu Ala Leu Val Leu 85 90 95

Leu Ser Thr Leu Thr Pro Ser Ala Ser Leu Ala Leu Ile Gly Leu Tyr 100 105 110

Phe Phe Val Phe Gly Phe Gly Leu Gly Cys Ala Met Gln Ile Leu Val 115 120 125

Leu Ile Val Gln Asn Ser Phe Pro Ile Thr Met Val Gly Thr Ala Thr

130 135 140

Gly Ser Asn Asn Phe Phe Arg Gln Ile Gly Gly Ala Val Gly Ser Ala 145 150 155 160

Leu Ile Gly Gly Leu Phe Ile Ser Asn Leu Ser Asp Arg Phe Thr Glu 165 170 175

Asn Val Pro Ala Ala Val Ala Ser Met Gly Glu Glu Gly Ala Gln Tyr 180 185 · 190

Ala Ser Ala Met Ser Asp Phe Ser Gly Ala Ser Asn Leu Thr Pro His 195 200 205

Leu Val Glu Ser Leu Pro Gln Ala Leu Arg Glu Ala Ile Gln Leu Ser 210 215 220

Tyr Asn Asp Ala Leu Thr Pro Ile Phe Leu Ala Leu Thr Pro Ile Ala 225 230 235 240

Val Val Ala Ala Ile Leu Leu Phe Phe Ile Arg Glu Asp His Leu Lys 245 250 255

Glu Thr His Glu 260

<210> 253

<211> 1755

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1732)

<223> RXN02926

<400> 253

ccctgacacc aatcttcttg gcgctcaccc cgatcgcagt agtcgccgcg atcctcctct 60

ttttcatccg tgaagatcac ctcaaggaaa cgcacgaata atg aca cac gaa act 115

Met Thr His Glu Thr

1

tcc gtc ccc gga cct gcc gac gcg cag gtc gca gga gat acg aag ctg $\,$ 163 Ser Val Pro Gly Pro Ala Asp Ala Gln Val Ala Gly Asp Thr Lys Leu $\,$ 10 $\,$ 15 $\,$ 20

cgc aaa ggc cgc gcg aag aag gaa aaa act cct tca tca atg acg cct 211 Arg Lys Gly Arg Ala Lys Lys Glu Lys Thr Pro Ser Ser Met Thr Pro 25 30 35

gaa caa caa aag aaa gtc tgg tgg gtc ctc agc gcg ctg atg gtc gcc 259 Glu Gln Gln Lys Lys Val Trp Trp Val Leu Ser Ala Leu Met Val Ala 40 45 50

atg atg gcc tcc ctt gac cag atg att ttc ggc aca gcc ctg cca 307

Met	. Met 55		: Ala	a Sei	. Lei	ı Asp 60		Met	Ile	Phe	Gly 65		Ala	Leu	Pro	
	Ile					Gly			gac Asp		Met					355
					Ala				atg Met 95	Leu					Lys	403
				Val					ctc Leu							451
			Ile						Gly							499
		Ile							ggc Gly							547
									gac Asp							595
									gga Gly 175							643
									ttc Phe							691
									ctg Leu							739
_	_				_	-			aag Lys	_	_	-	_		_	787
									atc Ile							835
									cag Gln 255							883
							Thr		atc Ile							931
									cca Pro							979

280 285 290

tt. Ph	c caa e Gli 29!	n As	c cg n Ar	c aa g As:	c tto n Pho	c acce Th: 300	r Le	c aco u Thi	c acc	c att	t gca e Ala 305	a Gly	c cto / Lei	g ato	ctg Leu	1027
gg ¹ Gl ₂ 310	y Ile	gca Ala	a ato a Me	g tto t Pho	c ggd e Gly 315	y Ile	e ato	c ggd e Gly	tao Y Tyi	c ctt Lei 320	Pro د	g acc	tac Tyr	cto Leu	cag Gln 325	1075
ato Met	g gto Val	cae His	c gga s Gly	a ato y Ile 330	e Asr	gco n Ala	aco Thi	c gaa r Glu	a gco a Ala 335	a Gly	tac Tyr	ato Met	g ctç : Leu	ato Ile 340	cca Pro	1123
ato Met	g ato : Met	gto Val	ggc L Gl ₃ 345	/ Met	g ato : Met	ggt Gly	aco Thr	Ser 350	Ile	tgg Trp	g act Thr	ggt	ato Ile 355	Arg	atc	1171
tcc Ser	aac Asn	aca Thr 360	: Gly	aaç Lys	tac Tyr	aaa Lys	Cto Leu 365	ı Phe	cca Pro	cca Pro	atc Ile	ggc Gly 370	Met	gtg Val	gtt Val	1219
acc Thr	ttc Phe 375	Val	gca Ala	ctg Leu	atc Ile	ttc Phe 380	Phe	gcc Ala	cga Arg	atg Met	gaa Glu 385	gtg Val	tcc Ser	acc Thr	acc Thr	1267
ctg Leu 390	tgg Trp	cag Gln	atc Ile	gga Gly	atc Ile 395	tac Tyr	ctc Leu	ttc Phe	gtc Val	ctc Leu 400	Gly	gtc Val	ggc Gly	ctg Leu	ggt Gly 405	1315
cta Leu	gcc Ala	atg Met	cag Gln	gtt Val 410	ctg Leu	gtc Val	ctg Leu	atc Ile	gtt Val 415	cag Gln	aac Asn	acc Thr	ctg Leu	cca Pro 420	acc Thr	1363
gcg Ala	gtg Val	gtc Val	gga Gly 425	tcc Ser	gca Ala	acc Thr	gct Ala	gtg Val 430	aac Asn	aac Asn	ttc Phe	ttc Phe	cgt Arg 435	caa Gln	atc Ile	1411
ggt Gly	tcc Ser	tca Ser 440	ctc Leu	gga Gly	tcc Ser	gcg Ala	ctg Leu 445	gtc Val	ggt Gly	ggc Gly	atg Met	ttc Phe 450	gtt Val	ggc Gly	aac Asn	1459
ttg Leu	gga Gly 455	acc Thr	ctc Leu	atg Met	gaa Glu	gaa Glu 460	aga Arg	atg Met	cca Pro	gca Ala	gcc Ala 465	atg Met	gca Ala	caa Gln	ctt Leu	1507
tca Ser 470	cca Pro	gaa Glu	gaa Glu	caa Gln	gcc Ala 475	gcc Ala	atg Met	gca Ala	gcc Ala	caa Gln 480	ggc Gly	gga Gly	ctg Leu	gac Asp	tcc Ser 485	1555
aac Asn	gaa Glu	ttg Leu	acg Thr	ccg Pro 490	gca Ala	atc Ile	gtc Val	aat Asn	caa Gln 495	ttg Leu	cca Pro	acc Thr	gcg Ala	ctc Leu 500	cac His	1603
gat Asp	gcg Ala	ttc Phe	gcc Ala 505	ggt Gly	tcc Ser	tac Tyr	aac Asn	gac Asp 510	gca Ala	ctc Leu	atc Ile	cca Pro	gtg Val 515	ttc Phe	tac Tyr	1651

gtg atg atg cca ctg atc ggc atc gcg ctg ctt ctc ttg ctg ttt att 1699 Val Met Met Pro Leu Ile Gly Ile Ala Leu Leu Leu Leu Leu Phe Ile 520 525 530

aag caa gaa aaa cta cgc gaa acc acc aca gac taaacacaaa acaaatgaga 1752 Lys Gln Glu Lys Leu Arg Glu Thr Thr Thr Asp 535 540

cct 1755

<210> 254

<211> 544

<212> PRT

<213> Corynebacterium glutamicum

<400> 254

Met Thr His Glu Thr Ser Val Pro Gly Pro Ala Asp Ala Gln Val Ala 1 5 10 15

Gly Asp Thr Lys Leu Arg Lys Gly Arg Ala Lys Lys Glu Lys Thr Pro 20 25 30

Ser Ser Met Thr Pro Glu Gln Gln Lys Lys Val Trp Trp Val Leu Ser 35 40 45

Ala Leu Met Val Ala Met Met Met Ala Ser Leu Asp Gln Met Ile Phe 50 55 60

Gly Thr Ala Leu Pro Thr Ile Val Gly Glu Leu Gly Gly Val Asp His 65 70 75 80

Met Met Trp Val Ile Thr Ala Tyr Leu Leu Ala Glu Thr Ile Met Leu 85 90 95

Pro Ile Tyr Gly Lys Leu Gly Asp Leu Val Gly Arg Lys Gly Leu Phe 100 105 110

Ile Gly Ala Leu Gly Ile Phe Leu Ile Gly Ser Val Ile Gly Gly Leu 115 120 125

Ala Gly Asn Met Thr Trp Leu Ile Val Gly Arg Ala Val Gln Gly Ile 130 135 140

Gly Gly Gly Leu Met Ile Leu Ser Gln Ala Ile Ile Ala Asp Val 145 150 155 160

Val Pro Ala Arg Glu Arg Gly Arg Tyr Met Gly Val Met Gly Gly Val 165 170 175

Phe Gly Leu Ser Ala Val Leu Gly Pro Leu Leu Gly Gly Trp Phe Thr 180 185 190

Glu Gly Pro Gly Trp Arg Trp Ala Phe Trp Met Asn Ile Pro Leu Gly
195 200 205

Ile Ile Ala Ile Gly Val Ala Ile Tyr Phe Leu Asp Ile Pro Lys Lys 210 215 220

- Ser Val Lys Phe Arg Trp Asp Tyr Leu Gly Thr Phe Phe Met Ile Val 225 230 235 240
- Ala Ala Thr Ser Leu Ile Leu Phe Thr Thr Trp Gly Gly Ser Gln Tyr 245 250 255
- Glu Trp Ser Asp Pro Ile Ile Ile Gly Leu Ile Ile Thr Thr Ile Val 260 265 270
- Ala Ala Leu Leu Val Val Glu Leu Arg Ala Lys Asp Pro Leu 275 280 285
- Val Pro Met Ser Phe Phe Gln Asn Arg Asn Phe Thr Leu Thr Thr Ile 290 295 300
- Ala Gly Leu Ile Leu Gly Ile Ala Met Phe Gly Ile Ile Gly Tyr Leu 305 310 315 320
- Pro Thr Tyr Leu Gln Met Val His Gly Ile Asn Ala Thr Glu Ala Gly 325 330 335
- Tyr Met Leu Ile Pro Met Met Val Gly Met Met Gly Thr Ser Ile Trp 340 345 350
- Thr Gly Ile Arg Ile Ser Asn Thr Gly Lys Tyr Lys Leu Phe Pro Pro 355 360 365
- Ile Gly Met Val Val Thr Phe Val Ala Leu Ile Phe Phe Ala Arg Met 370 375 380
- Glu Val Ser Thr Thr Leu Trp Gln Ile Gly Ile Tyr Leu Phe Val Leu 385 390 395 400
- Gly Val Gly Leu Gly Leu Ala Met Gln Val Leu Val Leu Ile Val Gln 405 410 415
- Asn Thr Leu Pro Thr Ala Val Val Gly Ser Ala Thr Ala Val Asn Asn 420 425 430
- Phe Phe Arg Gln Ile Gly Ser Ser Leu Gly Ser Ala Leu Val Gly Gly 435 440 445
- Met Phe Val Gly Asn Leu Gly Thr Leu Met Glu Glu Arg Met Pro Ala 450 460
- Ala Met Ala Gln Leu Ser Pro Glu Glu Gln Ala Ala Met Ala Ala Gln 465 470 475 480
- Gly Gly Leu Asp Ser Asn Glu Leu Thr Pro Ala Ile Val Asn Gln Leu 485 490 495
- Pro Thr Ala Leu His Asp Ala Phe Ala Gly Ser Tyr Asn Asp Ala Leu 500 505 510

Ile Pro Val Phe Tyr Val Met Met Pro Leu Ile Gly Ile Ala Leu Leu 515 520 525

Leu Leu Phe Ile Lys Gln Glu Lys Leu Arg Glu Thr Thr Thr Asp 530 535 540

<210> 255 <211> 1294 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1294) <223> FRXA01319 <400> 255 ccctgacacc aatcttettg gegeteaccc egategeagt agtegeegeg atceteetet 60 ttttcatccg tgaagatcac ctcaaggaaa cgcacgaata atg aca cac gaa act Met Thr His Glu Thr 1 tcc gtc ccc gga cct gcc gac gcg cag gtc gca gga gat acg aag ctg 163 Ser Val Pro Gly Pro Ala Asp Ala Gln Val Ala Gly Asp Thr Lys Leu 10 15 cgc aaa ggc cgc gcg aag aag gaa aaa act cct tca tca atg acg cct 211 Arg Lys Gly Arg Ala Lys Lys Glu Lys Thr Pro Ser Ser Met Thr Pro 30 gaa caa caa aag aaa gtc tgg tgg gtc ctc agc gcg ctg atg gtc gcc 259 Glu Gln Gln Lys Lys Val Trp Trp Val Leu Ser Ala Leu Met Val Ala 40 atg atg gcc tcc ctt gac cag atg att ttc ggc aca gcc ctg cca 307 Met Met Met Ala Ser Leu Asp Gln Met Ile Phe Gly Thr Ala Leu Pro aca atc gtc ggt gaa ctc ggc ggc gtt gac cac atg atg tgg gtc atc 355 Thr Ile Val Gly Glu Leu Gly Gly Val Asp His Met Met Trp Val Ile acc gca tac cta ctt gcc gaa acc atc atg ctg ccg atc tac gga aag 403 Thr Ala Tyr Leu Leu Ala Glu Thr Ile Met Leu Pro Ile Tyr Gly Lys 95 100 ctc ggc gac ctg gtt gga cgt aaa ggt ctc ttc atc gga gcc ctc ggc 451 Leu Gly Asp Leu Val Gly Arg Lys Gly Leu Phe Ile Gly Ala Leu Gly 105 110 115 atc ttc ctg atc ggc tcc gtc atc ggc ggg ctt gca gga aat atg acc 499 Ile Phe Leu Ile Gly Ser Val Ile Gly Gly Leu Ala Gly Asn Met Thr

120 125 130

															ctg	547
Trp	135		e Vai	l Gly	y Ar	Ala 140		l Glr	ı Gly	/ Ile	9 Gly 145	_	Gly	Gly	Leu	
atg Met 150	Ile	cto Lev	tcq Sei	g caq Glr	g gca n Ala 155	a Ile	ato Elle	gcg Ala	g gad Asp	gtt Val 160	Val	cca Pro	gca Ala	cgt Arg	gaa Glu 165	595
cgt Arg	ggc	cgc Arc	tac Tyr	ato Met 170	: Gl	gtc Val	ato Met	ggt : Gly	gga Gly 175	, Val	tto Phe	gga Gly	cto Leu	Ser 180	Ala	643
gtt Val	ctt Leu	ggc Gly	cca Pro 185	Leu	cto Leu	ggt Gly	ggc	tgg Trp 190	Phe	acc Thr	gaa Glu	gga Gly	cca Pro 195	ggc Gly	tgg Trp	691
			Phe					cca Pro								739
gtc Val	gcc Ala 215	att Ile	tac Tyr	ttc Phe	ctg Leu	gac Asp 220	att Ile	cca Pro	aag Lys	aag Lys	agc Ser 225	gtc Val	aag Lys	ttc Phe	cgc Arg	787
								atg Met								835
								tcc Ser								883
								acc Thr 270								931
								gat Asp								979
								acc Thr								1027
								ggc Gly								1075
atg Met																1123
atg Met		Val					Thr									1171

	aac Asn											1219
	ttc Phe 375		_	-		-	_	_	_			1267
_	tgg Trp	-										1294
)> 25 L> 39											

<212> PRT

<213> Corynebacterium glutamicum

<400> 256

Met Thr His Glu Thr Ser Val Pro Gly Pro Ala Asp Ala Gln Val Ala

Gly Asp Thr Lys Leu Arg Lys Gly Arg Ala Lys Lys Glu Lys Thr Pro

Ser Ser Met Thr Pro Glu Gln Gln Lys Lys Val Trp Trp Val Leu Ser

Ala Leu Met Val Ala Met Met Ala Ser Leu Asp Gln Met Ile Phe

Gly Thr Ala Leu Pro Thr Ile Val Gly Glu Leu Gly Gly Val Asp His

Met Met Trp Val Ile Thr Ala Tyr Leu Leu Ala Glu Thr Ile Met Leu

Pro Ile Tyr Gly Lys Leu Gly Asp Leu Val Gly Arg Lys Gly Leu Phe

Ile Gly Ala Leu Gly Ile Phe Leu Ile Gly Ser Val Ile Gly Gly Leu 120

Ala Gly Asn Met Thr Trp Leu Ile Val Gly Arg Ala Val Gln Gly Ile

Gly Gly Gly Leu Met Ile Leu Ser Gln Ala Ile Ile Ala Asp Val

Val Pro Ala Arg Glu Arg Gly Arg Tyr Met Gly Val Met Gly Gly Val

Phe Gly Leu Ser Ala Val Leu Gly Pro Leu Leu Gly Gly Trp Phe Thr

Glu Gly Pro Gly Trp Arg Trp Ala Phe Trp Met Asn Ile Pro Leu Gly

195 200 205

Ile Ile Ala Ile Gly Val Ala Ile Tyr Phe Leu Asp Ile Pro Lys Lys 210 215 220

Ser Val Lys Phe Arg Trp Asp Tyr Leu Gly Thr Phe Phe Met Ile Val 225 230 235 240

Ala Ala Thr Ser Leu Ile Leu Phe Thr Thr Trp Gly Gly Ser Gln Tyr 245 250 255

Glu Trp Ser Asp Pro Ile Ile Ile Gly Leu Ile Ile Thr Thr Ile Val 260 265 270

Ala Ala Leu Leu Val Val Glu Leu Arg Ala Lys Asp Pro Leu 275 280 285

Val Pro Met Ser Phe Phe Gln Asn Arg Asn Phe Thr Leu Thr Thr Ile 290 295 300

Ala Gly Leu Ile Leu Gly Ile Ala Met Phe Gly Ile Ile Gly Tyr Leu 305 310 315 320

Pro Thr Tyr Leu Gln Met Val His Gly Ile Asn Ala Thr Glu Ala Gly 325 330 335

Tyr Met Leu Ile Pro Met Met Val Gly Met Met Gly Thr Ser Ile Trp 340 345 350

Thr Gly Ile Arg Ile Ser Asn Thr Gly Lys Tyr Lys Leu Phe Pro Pro 355 360 365

Ile Gly Met Val Val Thr Phe Val Ala Leu Ile Phe Phe Ala Arg Met 370 375 380

Glu Val Ser Thr Thr Leu Trp Gln Ile Gly Ile Tyr Leu Phe 385 390 395

<210> 257

<211> 1510

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (93)..(1487)

<223> RXA01578

<400> 257

tgacctcccc tcaaccactc actgaaaaga gaacactgat gtcacttcct gttcagccga 60

gtaaaacctc ggccgccaca gtcataccat tgatg atc gcc ctg ctg gtc gcg 113 Met Ile Ala Leu Leu Val Ala 1 5

gta ttc gcc ttc cag ctc aac gcc tcc atg ctg gcg ccg gca ctg gcc 161

Val Phe Ala Phe Gln Leu Asn Ala Ser Met Leu Ala Pro Ala Leu Ala 15 acc atg gaa act gaa ctt aat gca aca gct gcc caa atc ggc atg acg 209 Thr Met Glu Thr Glu Leu Asn Ala Thr Ala Ala Gln Ile Gly Met Thr 30 cag act gct ttc ttc acc gcg gcg gcg ctg ttt tcc ctg ttc ctg cca 257 Gln Thr Ala Phe Phe Thr Ala Ala Ala Leu Phe Ser Leu Phe Leu Pro 45 cgt tgg ggc gat ctg att ggt cgc cgc aaa gtg ctg gtc ggc atg atg 305 Arg Trp Gly Asp Leu Ile Gly Arg Arg Lys Val Leu Val Gly Met Met att gtc acc ggt att gga tgt gtc gcc gcc ttt gct ccg aat gtg 353 Ile Val Thr Gly Ile Gly Cys Val Val Ala Ala Phe Ala Pro Asn Val acc atc ctc ttc ctg ggc cgc ctg att caa ggt gtt gct ggc cca acc 401 Thr Ile Leu Phe Leu Gly Arg Leu Ile Gln Gly Val Ala Gly Pro Thr gtg cca ctg tgt ctg atc att ctg cgc cag cag gta acc aat gaa aag 449 Val Pro Leu Cys Leu Ile Ile Leu Arg Gln Gln Val Thr Asn Glu Lys 105 110 caa tat gcg cta ctt ctc gga att gtt acc tct gtc aac ggt ggt atc 497 Gln Tyr Ala Leu Leu Gly Ile Val Thr Ser Val Asn Gly Gly Ile ggc ggc gtg gac gcg ctt gct ggt ggc tgg ttg gct gaa aca ctt ggt 545 Gly Gly Val Asp Ala Leu Ala Gly Gly Trp Leu Ala Glu Thr Leu Gly 140 ttc cgt tcc atc ttc tgg gtc atg gct gct ttc tgc gct gtc gcc 593 Phe Arg Ser Ile Phe Trp Val Met Ala Ala Phe Cys Ala Val Ala Ala 155 160 ctc gca ctg cct ttc agc gtg aag gaa tcc acc gct gaa gaa acc ccg 641 Leu Ala Leu Pro Phe Ser Val Lys Glu Ser Thr Ala Glu Glu Thr Pro 170 175 aag atg gac tgg ctt ggt gtg ctg cca ctg gcg gtg tcc att gga tct 689 Lys Met Asp Trp Leu Gly Val Leu Pro Leu Ala Val Ser Ile Gly Ser 185 190 195 ttg ctc atg gct ttc aac gag gcc ggc aaa ctc ggt gcc gcg aac tgg 737 Leu Leu Met Ala Phe Asn Glu Ala Gly Lys Leu Gly Ala Ala Asn Trp 200 205 215 att ctg gtg gtt gtg ctg ttc atc atc ggt atc gcc gga gtc atc ttc Ile Leu Val Val Val Leu Phe Ile Ile Gly Ile Ala Gly Val Ile Phe 220 ttc tac aac att gaa aag cgc gtt aag cac ccg ctg gtc agt gtt gaa 833 Phe Tyr Asn Ile Glu Lys Arg Val Lys His Pro Leu Val Ser Val Glu

235 240 245

		/ Glr	a cga n Arg				Ala							881
	Thr		gta Y Val			Val								929
Gln			gco Ala		Gly									977
			acc Thr 300	Pro										1025
			ctc Leu											1073
		Ala	gcc Ala											1121
			tcg Ser											1169
			gca Ala											1217
			cct Pro 380											1265
			aac Asn											1313
			gca Ala											1361
			gtg Val											1409
			cca Pro											1457
			gcc Ala 460					taaa	tcca	ca a	actg	aact	a	1507

agg 1510

<210> 258

<211> 465

<212> PRT

<213> Corynebacterium glutamicum

<400> 258

Met Ile Ala Leu Leu Val Ala Val Phe Ala Phe Gln Leu Asn Ala Ser 1 5 10 15

Met Leu Ala Pro Ala Leu Ala Thr Met Glu Thr Glu Leu Asn Ala Thr 20 25 30

Ala Ala Gln Ile Gly Met Thr Gln Thr Ala Phe Phe Thr Ala Ala Ala 35 40 45

Leu Phe Ser Leu Phe Leu Pro Arg Trp Gly Asp Leu Ile Gly Arg Arg 50 55 60

Lys Val Leu Val Gly Met Met Ile Val Thr Gly Ile Gly Cys Val Val 65 70 75 80

Ala Ala Phe Ala Pro Asn Val Thr Ile Leu Phe Leu Gly Arg Leu Ile 85 90 95

Gln Gly Val Ala Gly Pro Thr Val Pro Leu Cys Leu Ile Ile Leu Arg 100 105 110

Gln Gln Val Thr Asn Glu Lys Gln Tyr Ala Leu Leu Gly Ile Val 115 120 125

Thr Ser Val Asn Gly Gly Ile Gly Gly Val Asp Ala Leu Ala Gly Gly 130 135 140

Trp Leu Ala Glu Thr Leu Gly Phe Arg Ser Ile Phe Trp Val Met Ala 145 150 155 160

Ala Phe Cys Ala Val Ala Ala Leu Ala Leu Pro Phe Ser Val Lys Glu 165 170 175

Ser Thr Ala Glu Glu Thr Pro Lys Met Asp Trp Leu Gly Val Leu Pro 180 185 190

Leu Ala Val Ser Ile Gly Ser Leu Leu Met Ala Phe Asn Glu Ala Gly 195 200 205

Lys Leu Gly Ala Ala Asn Trp Ile Leu Val Val Val Leu Phe Ile Ile 210 215 220

Gly Ile Ala Gly Val Ile Phe Phe Tyr Asn Ile Glu Lys Arg Val Lys 225 230 235 240

His Pro Leu Val Ser Val Glu Tyr Leu Gly Gln Arg Arg Thr Trp Ala 245 250 255

Leu Leu Ser Thr Leu Leu Thr Met Thr Gly Val Phe Ala Val Met 260 Asn Gly Leu Leu Pro Asn Leu Ala Gln Asp Ala Ala Asn Gly Ala Gly 280 285 Met Ser Ala Ser Val Val Ser Trp Trp Thr Leu Thr Pro Tyr Ala Leu Ala Gly Leu Val Phe Gly Pro Ile Ala Gly Ile Leu Ala Gly Lys Phe Gly Tyr Lys Ile Val Leu Gln Ile Gly Ile Ala Ala Thr Ile Ile Gly Val Ala Gly Ala Thr Phe Leu Val Gly Ser Thr Ser His Leu Ala Tyr Leu Gly Ile Ser Ile Phe Val Gly Ile Thr Tyr Ala Gly Ile Ala Asn Ile Met Leu Asn Gly Leu Gly Ile Val Leu Ser Pro Ala Asn Asn Gln Gly Tyr Leu Pro Gly Met Asn Ala Gly Ala Phe Asn Leu Gly Ala Gly 390 Ile Ser Phe Ala Ile Leu Phe Ala Val Ser Thr Ala Phe Ser Asp Asn Gly Gly Gly Tyr Ala Ala Gly Met Trp Ala Gly Val Ile Ile Leu Val Leu Ala Phe Leu Cys Ser Leu Leu Ile Pro Arg Pro Glu Ser Ile Thr 440 Asp Thr Val Ala Ala Lys Val Gln Ala Glu Glu Ala Ala Gln Ala Ala 455 Ser 465 <210> 259 <211> 1470 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1447) <223> RXA02087

aatcggattc atgctgtgtg gtgtgatcag tttgctggct gcggtcgcat ggatcttcgg 60

<400> 259

ccg	ıggag	acg	ctg	ccaa	egg d	gaaa	igtcg	ia go	aggt:	ataa		Thr				115
gag Glu	tcc Ser	ago	g gco g Ala	g tgg a Trp 10	Lys	gct Ala	ctg Leu	ggc	gct Ala 15	Leu	agt Ser	gtt Val	ggg Gly	ctg Leu 20	ttt Phe	163
				gad Asp					Ala							211
			Leu	ggt Gly												259
gtt Val	tat Tyr 55	ttg Leu	ctc Leu	act Thr	ttt Phe	gcg Ala 60	gtg Val	cca Pro	ctg Leu	ttg Leu	att Ile 65	act Thr	Gly aga	cgc Arg	ttg Leu	307
				gga Gly												355
				gcg Ala 90												403
				cgc Arg												451
				agc Ser												499
				Gly												547
				atc Ile												595
				gtt Val 170												643
gtg Val	gcg Ala	cgt Arg	tat Tyr 185	gtg Val	cct Pro	aaa Lys	ctt Leu	ccc Pro 190	acg Thr	gga Gly	acc Thr	tcg Ser	aag Lys 195	atc Ile	gat Asp	691
				gcg Ala		Ser										739
gcc	ttg	cag	cag	ggg	cca	gaa	ctt	ggg	tgg	gga	aca	ctg	att	tgg	gtg	787

Ala	Leu 215		Gln	Gly	Pro	Glu 220	Leu	Gly	Trp	Gly	Thr 225	Leu	Ile	Trp	Val	
	Leu					gct Ala										835
					Pro	ctg Leu										883
						ttt Phe										931
tat Tyr	tcc Ser	gtt Val 280	aat Asn	ttg Leu	ccc Pro	atc Ile	atg Met 285	ttg Leu	tat Tyr	ctg Leu	caa Gln	acg Thr 290	gct Ala	cag Gln	gga Gly	979
						ggt Gly 300										1027
tct Ser 310	gtg Val	gtg Val	atg Met	tca Ser	cca Pro 315	gta Val	att Ile	gga Gly	cga Arg	ttg Leu 320	gtg Val	gat Asp	cgc Arg	ctg Leu	gca Ala 325	1075
						atc Ile										1123
						atg Met										1171
						ttc Phe										1219
						ctg Leu 380										1267
tct Ser 390	gct Ala	tct Ser	ggt Gly	ttt Phe	tac Tyr 395	aac Asn	acc Thr	tca Ser	cgc Arg	cag Gln 400	gtg Val	ggc Gly	gct Ala	gtt Val	ttg Leu 405	1315
ggc Gly	gcc Ala	gct Ala	acc Thr	ttg Leu 410	ggc Gly	gct Ala	gtg Val	atg Met	caa Gln 415	ata Ile	gga Gly	gtg Val	ggc Gly	acg Thr 420	gtg Val	1363
tcc Ser	ttc Phe	ggt Gly	gtt Val 425	gcc Ala	atg Met	ggt Gly	gcg Ala	gca Ala 430	atc Ile	ctg Leu	gtg Val	aca Thr	ctc Leu 435	gtg Val	ccc Pro	1411
						gcg Ala						tagt	tgct	cc		1457

440

445

gattttctca cga 1470

<210> 260

<211> 449

<212> PRT

<213> Corynebacterium glutamicum

<400> 260

Met Thr Pro Ile Val Glu Ser Arg Ala Trp Lys Ala Leu Gly Ala Leu
1 1 15

Ser Val Gly Leu Phe Leu Thr Leu Leu Asp Gln Ser Leu Val Ala Val 20 25 30

Ala Leu Pro Lys Ile Gln Glu Asp Leu Gly Ala Ser Leu Asn Gln Ala 35 40 45

Val Trp Val Ser Ala Val Tyr Leu Leu Thr Phe Ala Val Pro Leu Leu 50 55 60

Ile Thr Gly Arg Leu Gly Asp Arg Tyr Gly Gln Arg Asn Ile Tyr Leu 65 70 75 80

Ala Gly Met Ala Val Phe Thr Leu Ala Ala Leu Ala Cys Val Phe Ala 85 90 95

Pro Ser Ile Glu Trp Leu Ile Ala Ala Arg Ala Val Gln Gly Leu Gly 100 105 110

Gly Ser Leu Leu Asn Pro Gln Pro Leu Ser Ile Ile His Lys Ile Phe 115 120 125

Ala His Asp Arg Arg Gly Ala Ala Thr Gly Val Trp Ser Ala Val Ala 130 135 140

Ser Ser Ala Gly Leu Phe Gly Pro Val Ile Gly Gly Val Leu Val Gly 145 150 155 160

Trp Ile Ser Trp Arg Ala Val Phe Leu Val Tyr Val Pro Leu Gly Leu 165 170 175

Ile Ser Leu Phe Met Val Ala Arg Tyr Val Pro Lys Leu Pro Thr Gly
180 185 190

Thr Ser Lys Ile Asp Trp Leu Ser Gly Ala Val Ser Leu Val Ala Val 195 200 205

Leu Gly Val Val Leu Ala Leu Gln Gln Gly Pro Glu Leu Gly Trp Gly 210 215 220

Thr Leu Ile Trp Val Ser Leu Ala Val Gly Ile Ala Ala Ala Val Leu 225 230 235 240

Phe Ile Trp Met Gln Thr Arg Ser Lys Ala Pro Leu Met Pro Leu Arg

245 250 255

Ile Phe Lys Thr Arg Asn Phe Ala Ile Gly Ala Phe Ser Ile Phe Ser 260 265 270

Leu Gly Phe Thr Val Tyr Ser Val Asn Leu Pro Ile Met Leu Tyr Leu 275 280 285

Gln Thr Ala Gln Gly Met Ser Ser Gln Leu Ala Gly Leu Met Leu Val 290 295 300

Pro Met Gly Ile Ile Ser Val Val Met Ser Pro Val Ile Gly Arg Leu 305 310 315 320

Val Asp Arg Leu Ala Pro Gly Met Ile Ser Lys Ile Gly Phe Gly Ala 325 330 335

Leu Ile Phe Ser Met Ala Leu Met Ala Val Phe Met Ile Ala As
n Leu 340 345 350

Ser Pro Trp Trp Leu Leu Ile Pro Ile Ile Leu Phe Gly Ser Ser Asn 355 360 365

Ala Met Ser Phe Ala Pro Asn Ser Val Ile Ala Leu Arg Asp Val Pro 370 375 380

Gln Asp Leu Val Gly Ser Ala Ser Gly Phe Tyr Asn Thr Ser Arg Gln 385 390 395 400

Val Gly Ala Val Leu Gly Ala Ala Thr Leu Gly Ala Val Met Gln Ile 405 410 415

Gly Val Gly Thr Val Ser Phe Gly Val Ala Met Gly Ala Ala Ile Leu 420 425 430

Val Thr Leu Val Pro Leu Ile Phe Gly Phe Leu Ala Val Thr Gln Phe 435 440 445

Arg

<210> 261

<211> 1338

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1315)

<223> RXA02088

<400> 261

agageaceca agegacattg ttegataata tgttetatta ttggtattaa taetggteag 60

ctagatataa aaggggcgca gggctagcct tgggtgtgaa atg tta act caa aaa 115 Met Leu Thr Gln Lys

1 5

											_					
ata Ile	gaa Glu	tta Leu	gag Glu	gct Ala 10	Lys	cca Pro	aaa Lys	atc Ile	cca Pro 15	gag Glu	gag Glu	atc Ile	tgg Trp	gtg Val 20	ctg Leu	163
gtt Val	gtg Val	gct Ala	gcg Ala 25	ttt Phe	att Ile	att Ile	gcg Ala	ctg Leu 30	ggc Gly	tat Tyr	ggc Gly	ctg Leu	att Ile 35	gcg Ala	ccg Pro	211
att Ile	ttg Leu	cca Pro 40	cag Gln	ttt Phe	gtg Val	gtc Val	ggt Gly 45	ttt Phe	gat Asp	gta Val	agt Ser	ttt Phe 50	gca Ala	gct Ala	gcc Ala	259
agt Ser	gcg Ala 55	gtg Val	gtg Val	tcc Ser	atc Ile	ttt Phe 60	gcg Ala	ggc Gly	gcc Ala	cgg Arg	ttg Leu 65	ttg Leu	ttt Phe	gcg Ala	ccg Pro	307
atg Met 70	tcg Ser	Gly	agt Ser	ttg Leu	atc Ile 75	gat Asp	aag Lys	atc Ile	ggt Gly	tcc Ser 80	cgt Arg	cgt Arg	gtg Val	tat Tyr	ctc Leu 85	355
act Thr	ggt Gly	tta Leu	ctc Leu	acc Thr 90	gtg Val	gct Ala	atc Ile	acc Thr	acg Thr 95	G] À aàà	ctt Leu	gtt Val	gcg Ala	ttg Leu 100	gcg Ala	403
cag Gln	gaa Glu	tac Tyr	tgg Trp 105	cag Gln	att Ile	ctg Leu	ctg Leu	ctt Leu 110	cgt Arg	ggc Gly	atc Ile	gca Ala	ggt Gly 115	att Ile	ggt Gly	451
tcc Ser	acc Thr	atg Met 120	ttt Phe	acg Thr	gtc Val	tct Ser	gcc Ala 125	atg Met	ggc	ctg Leu	atc Ile	gtg Val 130	aag Lys	atg Met	gcg Ala	499
ccg Pro	gtg Val 135	gag Glu	atc Ile	cgc Arg	Gly ggg	cgg Arg 140	tgt Cys	tcg Ser	tcg Ser	gta Val	tat Tyr 145	gcc Ala	agt Ser	tcg Ser	ttc Phe	547
ctg Leu 150	ttt Phe	ggc Gly	aat Asn	att Ile	att Ile 155	ggc Gly	ccg Pro	gtt Val	gtg Val	ggt Gly 160	gct Ala	gcg Ala	atg Met	tcc Ser	ggt Gly 165	595
ttg Leu	ggc Gly	atg Met	cgg Arg	tgg Trp 170	ccg Pro	ttc Phe	gcg Ala	att Ile	tat Tyr 175	ggt Gly	gct Ala	tcc Ser	gtt Val	ggc Gly 180	tta Leu	643
gct Ala	gca Ala	ctt Leu	gtt Val 185	gtg Val	tgg Trp	tgg Trp	cgg Arg	atg Met 190	ccg Pro	aaa Lys	acc Thr	aac Asn	gat Asp 195	tca Ser	ctt Leu	691
cgg Arg	aag Lys	gct Ala 200	gat Asp	agc Ser	aat Asn	agt Ser	gtg Val 205	ccg Pro	gcg Ala	ttg Leu	cgc Arg	ttt Phe 210	gct Ala	gag Glu	gca Ala	739
att Ile	aag Lys 215	gat Asp	tct Ser	gcc Ala	tac Tyr	cgc Arg 220	tcg Ser	gcg Ala	ttg Leu	ttt Phe	agt Ser 225	gct Ala	ttt Phe	gcc Ala	aat Asn	787

	tgg / Trp					Val							835
	a gct a Ala				Asn				Ala				883
	ttc Phe							Leu					931
	gat Asp												979
	gca Ala 295												1027
_	atc Ile	-	_			_	_	 _		_			1075
	agt Ser												1123
	aaa Lys												1171
	ggc Gly												1219
	gga Gly 375												1267
	atc Ile												1315
taaa	atgad	gc c	aatt	gtgg	a gt	С							1338

<210> 262

<400> 262

<211> 405

<212> PRT

<213> Corynebacterium glutamicum

Met Leu Thr Gln Lys Ile Glu Leu Glu Ala Lys Pro Lys Ile Pro Glu 1 5 10 15

Glu Ile Trp Val Leu Val Val Ala Ala Phe Ile Ile Ala Leu Gly Tyr 25 Gly Leu Ile Ala Pro Ile Leu Pro Gln Phe Val Val Gly Phe Asp Val Ser Phe Ala Ala Ser Ala Val Val Ser Ile Phe Ala Gly Ala Arg Leu Leu Phe Ala Pro Met Ser Gly Ser Leu Ile Asp Lys Ile Gly Ser Arg Arg Val Tyr Leu Thr Gly Leu Leu Thr Val Ala Ile Thr Thr Gly Leu Val Ala Leu Ala Gln Glu Tyr Trp Gln Ile Leu Leu Leu Arg Gly Ile Ala Gly Ile Gly Ser Thr Met Phe Thr Val Ser Ala Met Gly Leu 120 Ile Val Lys Met Ala Pro Val Glu Ile Arg Gly Arg Cys Ser Ser Val 135 Tyr Ala Ser Ser Phe Leu Phe Gly Asn Ile Ile Gly Pro Val Val Gly 150 Ala Ala Met Ser Gly Leu Gly Met Arg Trp Pro Phe Ala Ile Tyr Gly 170 Ala Ser Val Gly Leu Ala Ala Leu Val Val Trp Trp Arg Met Pro Lys Thr Asn Asp Ser Leu Arg Lys Ala Asp Ser Asn Ser Val Pro Ala Leu 200 Arg Phe Ala Glu Ala Ile Lys Asp Ser Ala Tyr Arg Ser Ala Leu Phe Ser Ala Phe Ala Asn Gly Trp Ser Asn Phe Gly Val Arg Val Ala Val 235 Leu Pro Leu Phe Ala Ala Ala Ala Phe Ser Asn Gly Gly Ala Ile Ala 250 Gly Phe Ala Met Ala Ala Phe Ala Ala Gly Asn Ala Leu Cys Leu Gln 265 Phe Ala Gly Asp Leu Ser Asp Arg Ile Gly Arg Lys Pro Met Ile Ile Ser Gly Leu Ile Val Asn Ala Val Phe Thr Ala Met Ile Gly Phe Gly 295 Thr Glu Val Trp Ile Leu Ile Thr Val Ser Ala Leu Ala Gly Ala Gly

Ala Gly Leu Leu Asn Pro Ser Gln Gln Ala Val Leu Ala Asp Val Ile Asp Ser Arg Pro Gly Gly Lys Val Leu Ala Asn Phe Gln Met Ala Gln Asp Phe Gly Ala Ile Val Gly Pro Ile Leu Val Gly Met Ile Ala Glu Gln Ala Gly Phe Gln Ile Gly Phe Met Leu Cys Gly Val Ile Ser Leu 375 Leu Ala Ala Val Ala Trp Ile Phe Gly Arg Glu Thr Leu Pro Thr Ala 390 Lys Val Glu Gln Val <210> 263 <211> 1239 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(1216) <223> RXA00764 <400> 263 tactgcgtcg gatccgctga tgcttgcaga atcggacagt gatgggccgt ctgcgcctgc 60 acctgggacg actggattat taggggtgga attttcgctc atg aca ctc aag act Met Thr Leu Lys Thr age gtt ttg gca cta ctc tta gat aac gtg cat gtt ctt ctg att gcg 163 Ser Val Leu Ala Leu Leu Asp Asn Val His Val Leu Leu Ile Ala aat cct gag tcg acc acg cag acg cag aaa ctt ttc cgt cgt gtg gtg 211 Asn Pro Glu Ser Thr Thr Gln Thr Gln Lys Leu Phe Arg Arg Val Val 30 259 cet geg ttg atg geg ett gat ggt gtg teg ett gaa geg agg ttt aeg Pro Ala Leu Met Ala Leu Asp Gly Val Ser Leu Glu Ala Arg Phe Thr 307 cac tat gga ggc cat gcg gag gaa atg gtt gcg ggt ttg acg gtg gat His Tyr Gly Gly His Ala Glu Glu Met Val Ala Gly Leu Thr Val Asp gat ttt gat gtg att atc ccc gcg ggt ggg gac ggc acc gtc aac gaa 355 Asp Phe Asp Val Ile Ile Pro Ala Gly Gly Asp Gly Thr Val Asn Glu

gtg ata aat ggg tta ctt ggg tcg gcg gaa ggt gat ttt aga aac ctt

403

Val	Ile	e Asr	Gly	/ Let 90	_	ı Gly	y Sei	Ala	95	_	/ Asp	Phe	Arg	Asn 100		
				g gco Ala					Pro					Asn		451
			Ala	g ctt Leu				Thr					Ala			499
_	_	Val		r ttg Leu			Lys				_	Thr			_	547
	Thr			ggt Gly		Asp	_			_	Trp					595
				att Ile 170	Asp					Āla						643
				ttt Phe												691
				gtg Val			_		_		_					739
			_	agc Ser					_				_			787
_	_		-	tcg Ser				_				_		_		835
				aat Asn 250						-			_			883
				agt Ser												931
				gtg Val												979
				gct Ala	Phe											1027
				cgt Arg												1075

315 310 320 325 aca aag gtg gtg ttg gaa tca atc act gat gcg gtg cga gtg tat gcg 1123 Thr Lys Val Val Leu Glu Ser Ile Thr Asp Ala Val Arg Val Tyr Ala 330 335 ccg aag acg cat ccg aca ccg ccg atc atg aat tgg gct gtc cat ttg 1171 Pro Lys Thr His Pro Thr Pro Pro Ile Met Asn Trp Ala Val His Leu ttt aag cac gtc cgt gat ttc ctc cgg gtg cgc acg ttt ggc atc 1216 Phe Lys His Val Arg Asp Phe Leu Arg Val Arg Thr Phe Gly Ile taggattcat cggagttttc ttc 1239 <210> 264 <211> 372 <212> PRT <213> Corynebacterium glutamicum <400> 264 Met Thr Leu Lys Thr Ser Val Leu Ala Leu Leu Leu Asp Asn Val His Val Leu Leu Ile Ala Asn Pro Glu Ser Thr Thr Gln Thr Gln Lys Leu Phe Arg Arg Val Val Pro Ala Leu Met Ala Leu Asp Gly Val Ser Leu Glu Ala Arg Phe Thr His Tyr Gly Gly His Ala Glu Glu Met Val Ala Gly Leu Thr Val Asp Asp Phe Asp Val Ile Ile Pro Ala Gly Gly Asp Gly Thr Val Asn Glu Val Ile Asn Gly Leu Leu Gly Ser Ala Glu Gly Asp Phe Arg Asn Leu Glu Asp Leu Pro Ala Ile Ala Val Leu Pro Thr 105 Gly Ser Ala Asn Val Phe Ala Arg Ala Leu Gly Tyr Pro Thr Asp Pro 115 120 Tyr Ala Ala Ala Asp Ala Leu Val Glu Leu Ile Arg Lys Asn His Thr 135 Arg Thr Ile Thr Leu Gly Thr Trp Lys Gly Asp Asp Gln Gly Thr Arg 150 Trp Phe Ala Val Asn Ala Gly Phe Gly Ile Asp Ala Asp Val Ile Ala

Arg Val Glu Arg Ala Arg Ser Phe Gly Phe Ala Ala Ser Pro Leu Leu

180 185 190

Tyr Leu Gln Val Ser Leu Arg Ala Trp Val Lys Thr Gln Ile Lys Pro 195 200 205

Pro Lys Ile Thr Val Glu Ala Val Asp Ser Lys Gly His Lys Leu Gln 210 215 220

Lys Glu Glu Val Pro Met Leu Leu Ala Ser Asn Thr Asn Pro Trp Thr 225 230 235 240

Phe Leu Gly Pro Leu Pro Val Val Thr Asn Pro Gln Asn Ser Phe Asp 245 250 255

Thr Gly Leu Gly Leu Phe Gly Leu Thr Ser Val Arg Gly Phe Gly Gly 260 265 270

Val Ala Ala Met Met His Leu Ile Gly Val Gly His Gly Arg Lys Leu 275 280 285

Glu Lys Leu Ile Ala Lys Arg Thr Ile Ala Phe Asp Asp Ala Glu Lys 290 295 300

Val Thr Leu Thr Cys Asp Ser Asp Gln Arg Phe Gln Val Asp Gly Glu 305 310 315 320

Tyr Glu Gly Lys Pro Thr Lys Val Val Leu Glu Ser Ile Thr Asp Ala 325 330 335

Val Arg Val Tyr Ala Pro Lys Thr His Pro Thr Pro Pro Ile Met Asn 340 345 350

Trp Ala Val His Leu Phe Lys His Val Arg Asp Phe Leu Arg Val Arg 355 360 365

Thr Phe Gly Ile 370

<210> 265

<211> 271

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(271)

<223> RXN03125

<400> 265

tgacaccggc gcgacgtatg gcattactgg cgtcacccca atttacgatg acatctctgc 60

tegeetegge gacgteetgg tteettaegt tetgategtt ttg gtt eta geg tte 115 Leu Val Leu Ala Phe 1 5

ctc gtg ctg ttg ctc gtg ttc cgg tcc att tgg gtc cca ttg atc gcg 163

Leu	Val	Leu	Leu	Leu 10	Val	Phe	Arg	Ser	Ile 15	Trp	Val	Pro	Leu	Ile 20		
									gct Ala							211
									atc Ile							259
-	_	tgc Cys														271
<210 <211 <212 <213	> 57 > PF	7	bact	eriu	ım gl	lutam	nicum	n								
<400 Leu 1			Ala	Phe 5	Leu	Val	Leu	Leu	Leu 10	Val	Phe	Arg	Ser	Ile 15	Trp	
Val	Pro	Leu	Ile 20	Ala	Ala	Leu	Gly	Phe 25	Gly	Leu	Ser	Val	Leu 30	Ala	Thr	
Phe	Gly	Ala 35	Thr	Val	Ala	Ile	Phe 40	Gln	Glu	Gly	Ala	Phe 45	Gly	Ile	Ile	
Asp .	Asp 50	Pro	Gln	Pro	Leu	Leu 55	Cys	Phe								
<210: <211: <212: <213:	> 14 > DN	43 A	bacte	eriu	m gl	utam.	icum	ı								
<220: <221: <222: <223:	> CD > (1	01).		20)												
<4002 atgat			ctcaç	gcaag	g to	caago	cgcc	aag	ccat	gct	ggaa	acaa	tt c	tcga	gctga	60
tacca	aagc	ca ga	acttā	aatt	tc	tacct	taa	agt	cttg	-	_		-	cag Gln	-	115
ttc ç Phe <i>P</i>		-	-										_			163
gcg t	tt t	gg g	at t	gg g	ıgt t	cc g	ıcc t	ct t	ttc a	ac e	gcg (gtc	ctc	gtg	acc	211

Ala	Phe	Trp	Asp 25		Gly	Ser	Ala	Ser 30		Asn	Ala	Val	Leu 35	Val	Thr	
ttt Phe	att Ile	ttc Phe 40	Ser	gtc Val	tat Tyr	ctc Leu	act Thr 45	gat Asp	tca Ser	gtc Val	ggc Gly	gcc Ala 50	acc Thr	ctc Leu	ccc Pro	259
gag Glu	ggt Gly 55	Ser	aac Asn	gcc Ala	aca Thr	tca Ser 60	Leu	tat Tyr	tcg Ser	atg Met	gcg Ala 65	gtc Val	gcc Ala	atc Ile	gct Ala	307
										atg Met 80						355
atc Ile	aag Lys	ggc Gly	act Thr	cgc Arg 90	cgc Arg	agg Arg	tca Ser	ctg Leu	cgc Arg 95	atg Met	tgg Trp	aca Thr	ctt Leu	gtc Val 100	acc Thr	403
gtg Val	ttc Phe	ttg Leu	atg Met 105	ttt Phe	tgt Cys	ctc Leu	ttt Phe	aca Thr 110	gta Val	aag Lys	aac Asn	act Thr	gat Asp 115	ccc Pro	aca Thr	451
ttt Phe	ttc Phe	tgg Trp 120	ttt Phe	ggt Gly	gta Val	gcc Ala	atc Ile 125	atg Met	gcg Ala	atc Ile	gcc Ala	aac Asn 130	atc Ile	acc Thr	ttt Phe	499
gag Glu	ttc Phe 135	gct Ala	gaa Glu	gtt Val	cag Gln	tac Tyr 140	tat Tyr	gcg Ala	cag Gln	ctc Leu	tcc Ser 145	caa Gln	atc Ile	tcg Ser	acc Thr	547
cgc Arg 150	gaa Glu	aac Asn	gtg Val	ggc Gly	cga Arg 155	gtt Val	tct Ser	ggt Gly	ttc Phe	ggc Gly 160	tgg Trp	tcc Ser	atg Met	ggt Gly	tac Tyr 165	595
ttc Phe	ggt Gly	ggc Gly	atc Ile	gtt Val 170	cta Leu	ctg Leu	ctt Leu	gtt Val	tgt Cys 175	tac Tyr	cta Leu	ggt Gly	ttt Phe	gtt Val 180	gcc Ala	643
ggt Gly	gat Asp	ggc Gly	gat Asp 185	acc Thr	cgc Arg	gga Gly	ttc Phe	cta Leu 190	aac Asn	ctg Leu	ccc Pro	atc Ile	gaa Glu 195	gac Asp	ggc Gly	691
atg Met	aat Asn	atc Ile 200	cgc Arg	ctc Leu	gtc Val	gca Ala	gtg Val 205	ctt Leu	gca Ala	gcc Ala	gtt Val	tgg Trp 210	ttc Phe	ttg Leu	gtc Val	739
tct Ser	gcg Ala 215	att Ile	ccg Pro	gca Ala	ctt Leu	ctt Leu 220	cga Arg	gtc Val	cca Pro	gaa Glu	att Ile 225	gag Glu	gca Ala	cag Gln	gta Val	787
gct Ala 230	gcc Ala	gaa Glu	gac Asp	cac His	ccc Pro 235	aaa Lys	ggc Gly	ctc Leu	ata Ile	gct Ala 240	gcc Ala	tac Tyr	aag Lys	gat Asp	ctc Leu 245	835
										gac Asp						883

250 255 260

		atc lle														931
			265	•				270					275			
acc Thr	tto Phe	ggt Gly 280	gcc Ala	: atc	ctt Leu	gcg Ala	gtc Val 285	Ser	gtg Val	tac Tyr	gga Gly	cta Leu 290	tct Ser	gcc Ala	ggt Gly	979
gat Asp	gto Val 295	ctc Leu	ctc Leu	ttc Phe	ggt Gly	gtc Val 300	Ala	gcc Ala	aac Asn	gtg Val	gtc Val 305	tct Ser	gcg Ala	ttg Leu	gga Gly	1027
gca Ala 310	Leu	ctc Leu	gga Gly	gga Gly	ttc Phe 315	cta Leu	gac Asp	gat Asp	cgc Arg	gtc Val 320	Gly	cca Pro	aaa Lys	ccc Pro	atc Ile 325	1075
atc Ile	ttg Leu	att Ile	tct Ser	ctt Leu 330	gcc Ala	atc Ile	atg Met	atc Ile	gcc Ala 335	gat Asp	gct Ala	gca Ala	att Ile	ctc Leu 340	ttc Phe	1123
ttc Phe	gtt Val	gaa Glu	ggc Gly 345	ccc Pro	act Thr	aat Asn	ttc Phe	tgg Trp 350	atc Ile	ttc Phe	gga Gly	tta Leu	atc Ile 355	ctc Leu	tgt Cys	1171
gcg Ala	ttt Phe	gtg Val 360	gga Gly	cct Pro	gca Ala	cag Gln	tca Ser 365	gcg Ala	tcg Ser	aga Arg	agc Ser	tat Tyr 370	tta Leu	aca Thr	cgt Arg	1219
ctt Leu	tcc Ser 375	cca Pro	gat Asp	ggc Gly	cag Gln	gaa Glu 380	ggc Gly	cag Gln	ctc Leu	ttc Phe	ggc Gly 385	ctt Leu	tat Tyr	gcc Ala	act Thr	1267
acc Thr 390	ggc Gly	cgt Arg	gcc Ala	gtg Val	agt Ser 395	tgg Trp	atg Met	gtg Val	ccg Pro	tcg Ser 400	ctg Leu	ttt Phe	ggt Gly	gta Val	ttt Phe 405	1315
gtg Val	ggg Gly	ctc Leu	Thr	ggc Gly 410	gat Asp	gac Asp	cgc Arg	act Thr	ggt Gly 415	att Ile	ttg Leu	gcc Ala	atc Ile	gcg Ala 420	ctg Leu	1363
att Ile	ctg Leu	cta Leu	ttc Phe 425	ggt Gly	att Ile	gtg Val	ctg Leu	ctg Leu 430	agc Ser	atg Met	gtg Val	Lys	cca Pro 435	ccg Pro	cac His	1411
aag Lys	_	aag Lys 440	taga	caaa	gc g	ccca	caag	g at	t							1443

<210> 268

<211> 440

<212> PRT

<213> Corynebacterium glutamicum

<400> 268

Met Thr Val Gln Glu Phe Asp Arg Ala Thr Lys Pro Thr Pro Lys Pro 1 5 10 15

- Pro Ile Val Ser Trp Ala Phe Trp Asp Trp Gly Ser Ala Ser Phe Asn 20 25 30
- Ala Val Leu Val Thr Phe Ile Phe Ser Val Tyr Leu Thr Asp Ser Val 35 40 45
- Gly Ala Thr Leu Pro Glu Gly Ser Asn Ala Thr Ser Leu Tyr Ser Met 50 55 60
- Ala Val Ala Ile Ala Gly Val Ile Val Ala Val Val Ala Pro Val Met 65 70 75 80
- Gly Arg Arg Ser Asp Ile Lys Gly Thr Arg Arg Arg Ser Leu Arg Met 85 90 95
- Trp Thr Leu Val Thr Val Phe Leu Met Phe Cys Leu Phe Thr Val Lys 100 105 110
- Asn Thr Asp Pro Thr Phe Phe Trp Phe Gly Val Ala Ile Met Ala Ile 115 120 125
- Ala Asn Ile Thr Phe Glu Phe Ala Glu Val Gln Tyr Tyr Ala Gln Leu 130 135 140
- Ser Gln Ile Ser Thr Arg Glu Asn Val Gly Arg Val Ser Gly Phe Gly 145 150 155 160
- Trp Ser Met Gly Tyr Phe Gly Gly Ile Val Leu Leu Val Cys Tyr
 165 170 175
- Leu Gly Phe Val Ala Gly Asp Gly Asp Thr Arg Gly Phe Leu Asn Leu 180 185 190
- Pro Ile Glu Asp Gly Met Asn Ile Arg Leu Val Ala Val Leu Ala Ala 195 200 205
- Val Trp Phe Leu Val Ser Ala Ile Pro Ala Leu Leu Arg Val Pro Glu 210 215 220
- Ile Glu Ala Gln Val Ala Ala Glu Asp His Pro Lys Gly Leu Ile Ala 225 230 235 240
- Ala Tyr Lys Asp Leu Phe Gly Gln Ile Ala Glu Leu Trp Lys Gln Asp 245 250 255
- Arg Asn Ser Val Tyr Phe Leu Ile Ala Ala Thr Val Phe Arg Asp Gly 260 265 270
- Leu Ala Gly Val Phe Thr Phe Gly Ala Ile Leu Ala Val Ser Val Tyr 275 280 285
- Gly Leu Ser Ala Gly Asp Val Leu Leu Phe Gly Val Ala Ala Asn Val 290 295 300

Val Ser Ala Leu Gly Ala Leu Leu Gly Gly Phe Leu Asp Asp Arg Val 310 Gly Pro Lys Pro Ile Ile Leu Ile Ser Leu Ala Ile Met Ile Ala Asp 330 Ala Ala Ile Leu Phe Phe Val Glu Gly Pro Thr Asn Phe Trp Ile Phe Gly Leu Ile Leu Cys Ala Phe Val Gly Pro Ala Gln Ser Ala Ser Arg Ser Tyr Leu Thr Arg Leu Ser Pro Asp Gly Gln Glu Gly Gln Leu Phe 370 Gly Leu Tyr Ala Thr Thr Gly Arg Ala Val Ser Trp Met Val Pro Ser 390 Leu Phe Gly Val Phe Val Gly Leu Thr Gly Asp Asp Arg Thr Gly Ile 405 Leu Ala Ile Ala Leu Ile Leu Leu Phe Gly Ile Val Leu Leu Ser Met 425 Val Lys Pro Pro His Lys Val Lys 435 <210> 269 <211> 840 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(817) <223> RXN00535 <400> 269 aatcqcatqq qqcaccqtqq tcaqacaccq qatcqcqctc cqcaccccaa aaqatqqctc 60 cctaaggagc tcacctttac tcaatgctct gatgacaccg atg tgg tgg gca ggc 115 Met Trp Trp Ala Gly atg agt acc gcg atg ctg gca tat ttc tta caa aca gta gca ctt ggt 163 Met Ser Thr Ala Met Leu Ala Tyr Phe Leu Gln Thr Val Ala Leu Gly 10 20 tte qge acc ctc ttg gta gtg caa cca gtg ctt gtc ctg tcg ctg atg 211 Phe Gly Thr Leu Leu Val Val Gln Pro Val Leu Val Leu Ser Leu Met . 25 30 35 ttc acg ctg ccg ctc tca gca cga ttc aat ggc tac cga cta cgc cga 259 Phe Thr Leu Pro Leu Ser Ala Arg Phe Asn Gly Tyr Arg Leu Arg Arg 40 45 50

PCT/IB00/00922 WO 01/00804

act Thr	gaa Glu 55	atc Ile	ttc Phe	tgg Trp	gct Ala	acc Thr 60	ctc Leu	ctc Leu	acc Thr	gta Val	gcc Ala 65	gtg Val	ggc Gly	atc Ile	atg Met	307
											cac His					355
											gta Val					403
											aaa Lys					451
											gca Ala					499
gcc Ala	gcg Ala 135	gtg Val	gat Asp	ctt Leu	ttt Phe	gtc Val 140	cat His	caa Gln	ggc Gly	ata Ile	acg Thr 145	gga Gly	ctc Leu	atc Ile	ttg Leu	547
											tta Leu					595
											caa Gln					643
											agt Ser					691
											gaa Glu					739
											att Ile 225					787
				Pro						taaa	acto	ca a	agtt	cccc	c	837
cga																840

<210> 270

<211> 239 <212> PRT

<213> Corynebacterium glutamicum

<400> 270

Met Trp Trp Ala Gly Met Ser Thr Ala Met Leu Ala Tyr Phe Leu Gln
1 5 10 15

Thr Val Ala Leu Gly Phe Gly Thr Leu Leu Val Val Gln Pro Val Leu 20 25 30

Val Leu Ser Leu Met Phe Thr Leu Pro Leu Ser Ala Arg Phe Asn Gly 35 40 45

Tyr Arg Leu Arg Arg Thr Glu Ile Phe Trp Ala Thr Leu Leu Thr Val 50 55 60

Ala Val Gly Ile Met Ile Val Leu Gly Arg Pro Leu Pro Gly Asn Pro 65 70 75 80

His Pro Pro Leu Asp Arg Trp Ile Pro Val Leu Leu Val Gly Val Ala 85 90 95

Val Met Gly Gly Met Trp Leu Leu Ala Glu Tyr Val Leu Lys Lys Asp 100 105 110

Lys Ala Leu Ile Leu Gly Leu Val Thr Gly Ala Leu Phe Gly Tyr Val 115 120 125

Ala Val Met Ser Lys Ala Ala Val Asp Leu Phe Val His Gln Gly Ile 130 140

Thr Gly Leu Ile Leu Asn Trp Glu Gly Tyr Gly Leu Ile Leu Thr Ala 145 150 155 160

Leu Leu Gly Thr Ile Val Gln Gln Tyr Ser Phe Asn Ala Gly Glu Leu 165 170 175

Gln Lys Ser Leu Pro Ala Met Thr Ile Ala Glu Pro Ile Val Ala Phe 180 185 190

Ser Leu Gly Tyr Leu Val Leu Gly Glu Lys Phe Gln Val Val Asp Trp 195 200 205

Glu Trp Ile Ala Met Gly Ile Ala Leu Leu Val Met Ile Val Ser Thr 210 215 220

Ile Ala Leu Ser Arg Thr Ser Thr Met Pro Ala Gly Ser Lys Arg 225 230 235

<210> 271

<211> 2472

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(2449)

<223> RXN00453

<400> 271

tagtggggcg tgaaaaaata gctcatttaa gaggagaagc aaccccgtgg cgaaattgct 60 attcaggttg gggcgatggt cctataatcg caagtggatt gtg att tcg gca tgg Val Ile Ser Ala Trp cta ctt att ttg gcc att gtt ggt ggt ctg gcc ctg acg atg cag aag Leu Leu Ile Leu Ala Ile Val Gly Gly Leu Ala Leu Thr Met Gln Lys qqq ttc agt aac tct ttc act att gaa gac acc cct tcg att gat gcc 211 Gly Phe Ser Asn Ser Phe Thr Ile Glu Asp Thr Pro Ser Ile Asp Ala act gtt tct ctg gtt gaa aat ttc cct gat cag acg aac ccg gtg acg 259 Thr Val Ser Leu Val Glu Asn Phe Pro Asp Gln Thr Asn Pro Val Thr gee gee gga gtt aac gtg gtt tte caa tee eeg gaa gga ace aeg ett 307 Ala Ala Gly Val Asn Val Val Phe Gln Ser Pro Glu Gly Thr Thr Leu gat gat cct cag atg atg act gcg atg gat gca gtc gtt gat tac att 355 Asp Asp Pro Gln Met Met Thr Ala Met Asp Ala Val Val Asp Tyr Ile 75 gag gac aat ttg cct gat ttt ggt ggg gga gag cgc ttc ggc aat cct 403 Glu Asp Asn Leu Pro Asp Phe Gly Gly Glu Arg Phe Gly Asn Pro gtt gag gtg tct cct gcg ttg gaa gag atg gtc atc gag cag atg acc 451 Val Glu Val Ser Pro Ala Leu Glu Glu Met Val Ile Glu Gln Met Thr agc atg ggg ctt cct gag gaa acc gct gca aag gat gct gcc aat ctg 499 Ser Met Gly Leu Pro Glu Glu Thr Ala Ala Lys Asp Ala Ala Asn Leu 120 125 gcg gtg ttg agc gaa gac aaa acc att ggc tac acc tct ttc aac att 547 Ala Val Leu Ser Glu Asp Lys Thr Ile Gly Tyr Thr Ser Phe Asn Ile gat gtt gag gcc gca gaa tat gtg gag caa aaa cac cgc gat gtg atc 595 Asp Val Glu Ala Ala Glu Tyr Val Glu Gln Lys His Arg Asp Val Ile aac gaa gcg atg caa atc ggt gaa gat tta ggt gtc cgg gtg gaa gcc 643 Asn Glu Ala Met Gln Ile Gly Glu Asp Leu Gly Val Arg Val Glu Ala ggt gga cct gct ttc ggt gat cca att cag att gaa acc acc agt gag 691 Gly Gly Pro Ala Phe Gly Asp Pro Ile Gln Ile Glu Thr Thr Ser Glu 190 atc atc ggt att ggc atc gcg ttc atc gtg ttg att ttc acc ttt ggt 739 Ile Ile Gly Ile Gly Ile Ala Phe Ile Val Leu Ile Phe Thr Phe Gly 205

		ı Ile					Pro				gcg Ala 225	Val			gtg Val	787
	Ile					ıle					Ala				ctc Leu 245	835
					Val					: Ile	ggc Gly				Gly	883
				Leu					Arg		cgt Arg			Tyr		931
cgc Arg	atg Met	cca Pro 280	Arg	gcc Ala	gat Asp	gct Ala	gcc Ala 285	gga Gly	atg Met	gcg Ala	gtg Val	ggc Gly 290	aca Thr	gct Ala	ggt Gly	979
											atc Ile 305					1027
											atg Met					1075
											ttg Leu					1123
											aag Lys					1171
											tgg Trp					1219
											ctt Leu 385					1267
				Val							ctt Leu					1315
											tct Ser					1363
aat Asn	att Ile	gat Asp	acc Thr 425	act Thr	cag Gln	cgt Arg	Gln :	tcg Ser 430	gct Ala	gat Asp	ttg Leu	Met	gca Ala 435	gag Glu	ggc	1411

ttt Phe	ggc	gcg Ala 440	Gly	gtt Val	aat Asn	gcg Ala	ccg Pro 445	Phe	ttg Leu	gtc Val	atc	gtc Val 450	gat Asp	acg Thr	cat His	1459
		Asn				acc Thr 460										1507
	Pro					ttc Phe					Ala					1555
						cag Gln										1603
						gtc Val										1651
						gga Gly										1699
						cag Gln 540										1747
act Thr 550	gaa Glu	ctg Leu	ggt Gly	acc Thr	act Thr 555	ggg Gly	ttt Phe	acg Thr	gcg Ala	gtt Val 560	cag Gln	ttg Leu	gac Asp	att Ile	act Thr 565	1795
						atg Met										1843
						att Ile										1891
						ttc Phe										1939
gcg Ala	acg Thr 615	gtg Val	ttg Leu	gtc Val	tgg Trp	cag Gln 620	gag Glu	ggc Gly	ttc Phe	ggt Gly	ggc Gly 625	ttt Phe	gtg Val	aac Asn	acc Thr	1987
						ttc Phe										2035
			Ala			tat Tyr		Val								2083
gag	cac	tac	acc	cac	cac	aat	ggc	aag	gga	cag	cct	ggt	tcc	aag	tac	2131

Glu	His	Tyr	Thr 665	His	His	Asn	Gly	Lys 670	Gly	Gln	Pro	Gly	Ser 675	Lys	Tyr		
	_	_		_		gtg Val		-			-	_			_	2179	
						ctg Leu 700										2227	
						ttt Phe										2275	
						gct Ala										2323	
						ggc Gly										2371	
						agt Ser					ĞÎy					2419	
						cag Gln 780				taga	cttg	gc a	ccta	tgtc	:a	2469	
gat																2472	

<210> 272

<211> 783

<212> PRT

<213> Corynebacterium glutamicum

<400> 272

Val Ile Ser Ala Trp Leu Leu Ile Leu Ala Ile Val Gly Gly Leu Ala 1 5 10 15

Leu Thr Met Gln Lys Gly Phe Ser Asn Ser Phe Thr Ile Glu Asp Thr 20 25 30

Pro Ser Ile Asp Ala Thr Val Ser Leu Val Glu Asn Phe Pro Asp Gln 35 40 45

Thr Asn Pro Val Thr Ala Ala Gly Val Asn Val Val Phe Gln Ser Pro 50 55 60

Glu Gly Thr Thr Leu Asp Asp Pro Gln Met Met Thr Ala Met Asp Ala
65 70 75 80

Val Val Asp Tyr Ile Glu Asp Asn Leu Pro Asp Phe Gly Gly Glu 85 90 95

Arg Phe Gly Asn Pro Val Glu Val Ser Pro Ala Leu Glu Glu Met Val Ile Glu Gln Met Thr Ser Met Gly Leu Pro Glu Glu Thr Ala Ala Lys 120 Asp Ala Ala Asn Leu Ala Val Leu Ser Glu Asp Lys Thr Ile Gly Tyr 135 Thr Ser Phe Asn Ile Asp Val Glu Ala Ala Glu Tyr Val Glu Gln Lys 150 155 His Arg Asp Val Ile Asn Glu Ala Met Gln Ile Gly Glu Asp Leu Gly 170 Val Arg Val Glu Ala Gly Gly Pro Ala Phe Gly Asp Pro Ile Gln Ile 185 Glu Thr Thr Ser Glu Ile Ile Gly Ile Gly Ile Ala Phe Ile Val Leu 200 Ile Phe Thr Phe Gly Ser Leu Ile Ala Ala Gly Leu Pro Leu Ile Thr 215 Ala Val Ile Gly Val Gly Ile Gly Ala Leu Ala Ile Val Leu Ala Thr 230 235 Ala Phe Thr Asp Leu Asn Asn Val Thr Pro Val Leu Ala Val Met Ile 245 250 Gly Leu Ala Val Gly Ile Asp Tyr Ala Leu Phe Ile Leu Ser Arg Tyr 265 Arg Ala Glu Tyr Lys Arg Met Pro Arg Ala Asp Ala Ala Gly Met Ala 280 Val Gly Thr Ala Gly Ser Ala Val Val Phe Ala Gly Ala Thr Val Ile 295 Ile Ala Leu Val Ala Leu Ile Ile Ala Asp Ile Gly Phe Leu Thr Ala Met Gly Ile Ser Ala Ala Phe Thr Val Phe Val Ala Val Leu Ile Ala 330 Leu Thr Phe Ile Pro Ala Leu Leu Gly Val Phe Gly Gly His Ala Phe Lys Gly Lys Ile Pro Gly Ile Gly Gly Asn Pro Thr Pro Lys Gln Thr Trp Glu Gln Ala Leu Asn Arg Arg Ser Lys Gly Arg Ser Trp Val Lys 375 370 Leu Val Gln Lys Ala Pro Gly Leu Val Val Ala Val Val Leu Gly 390 395

Leu Gly Ala Leu Thr Ile Pro Ala Met Asn Leu Gln Leu Ser Leu Pro 405 Ser Asp Ser Thr Ser Asn Ile Asp Thr Thr Gln Arg Gln Ser Ala Asp 425 Leu Met Ala Glu Gly Phe Gly Ala Gly Val Asn Ala Pro Phe Leu Val Ile Val Asp Thr His Glu Val Asn Ala Asp Ser Thr Ala Leu Gln Pro Leu Ile Glu Ala Gln Glu Pro Glu Glu Gly Glu Phe Asp Arg Glu Gln 470 475 Ala Ala Arg Phe Ala Thr Tyr Met Tyr Val Thr Gln Thr Tyr Asn Ser Asn Ile Asp Val Lys Asn Ala Gln Ile Ile Ser Val Asn Asp Asp Phe 505 Thr Ala Ala Gln Ile Leu Val Thr Pro Tyr Thr Gly Pro Ala Asp Lys 520 Glu Thr Pro Glu Leu Met His Val Leu Arg Ala Gln Glu Ala Gln Ile 535 Glu Asp Val Thr Gly Thr Glu Leu Gly Thr Thr Gly Phe Thr Ala Val 550 Gln Leu Asp Ile Thr Glu Gln Leu Glu Asp Ala Met Pro Val Tyr Leu 570 Ala Val Val Gly Leu Ala Ile Phe Leu Leu Ile Leu Val Phe Arg 580 Ser Leu Leu Val Pro Leu Val Ala Gly Leu Gly Phe Leu Leu Ser Val 600 Gly Ala Ala Phe Gly Ala Thr Val Leu Val Trp Gln Glu Gly Phe Gly Gly Phe Val Asn Thr Pro Gly Pro Leu Ile Ser Phe Met Pro Ile Phe 635 Leu Ile Gly Val Thr Phe Gly Leu Ala Met Asp Tyr Gln Val Phe Leu Val Thr Arg Met Arg Glu His Tyr Thr His His Asn Gly Lys Gly Gln 665 Pro Gly Ser Lys Tyr Thr Pro Val Glu Gln Ser Val Ile Glu Gly Phe Thr Gln Gly Ser Arg Val Val Thr Ala Ala Ala Leu Ile Met Ile Ala 690 695 700

Val Phe Val Ala Phe Ile Asp Gln Pro Leu Pro Phe Ile Lys Ile Phe 710 705 Gly Phe Ala Leu Gly Ala Gly Val Phe Phe Asp Ala Phe Phe Ile Arg 730 Met Gly Leu Val Pro Ala Ser Met Phe Leu Met Gly Lys Ala Thr Trp 745 740 Trp Met Pro Lys Trp Leu Asp Arg Ile Leu Pro Ser Leu Asp Ile Glu 760 Gly Thr Ala Leu Glu Lys Glu Trp Glu Glu Lys Gln Ala Arg 775 <210> 273 <211> 597 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(574) <223> RXN00932 cccaattaat ttatgcactt cggtgaggtt actcacaaag agtagcgtgc aaagcccagc 60 aataaggtga tgtttcaacg attaggttac ggtaggggcc atg acg cca cag aaa Met Thr Pro Gln Lys 163 ctt cac cgt ttt gca gcc ctt tta gaa atg ggt acc tgg acc ctg ctg Leu His Arg Phe Ala Ala Leu Leu Glu Met Gly Thr Trp Thr Leu Leu 10 15 211 atc atc ggc atg atc tta aaa tac agt gga gtg aca gac gcc gta acc Ile Ile Gly Met Ile Leu Lys Tyr Ser Gly Val Thr Asp Ala Val Thr cct att gcc ggc ggt atc cac ggc ttt ggc ttc ctc tgt ttt gca gcc 259 Pro Ile Ala Gly Gly Ile His Gly Phe Gly Phe Leu Cys Phe Ala Ala 45 ate ace ate ace gtg tgg ate aat aat aag tgg aca tte eeg eag ggt 307 Ile Thr Ile Thr Val Trp Ile Asn Asn Lys Trp Thr Phe Pro Gln Gly atc gca ggt ttg atc gtc tct gtt atc ccg tgg gct gca ttg cca ttt 355 Ile Ala Gly Leu Ile Val Ser Val Ile Pro Trp Ala Ala Leu Pro Phe 75 403 qca ttg tgg gca gac aag aag ggc ctc gtt gcc ggc gga tgg cgc ttt Ala Leu Trp Ala Asp Lys Lys Gly Leu Val Ala Gly Gly Trp Arg Phe 90 95

	-	ccg Pro	-	_					_	_		_	_	451
	_	gtc Val 120			_					-	-			499
		gtc Val												547
	_	gcc Ala	-			_	taaa	caac	ag c	ctcc	ttca:	ic		594
atg														597
<210	> 27	4												

<211> 158

<212> PRT

<213> Corynebacterium glutamicum

Met Thr Pro Gln Lys Leu His Arg Phe Ala Ala Leu Leu Glu Met Gly

Thr Trp Thr Leu Leu Ile Ile Gly Met Ile Leu Lys Tyr Ser Gly Val

Thr Asp Ala Val Thr Pro Ile Ala Gly Gly Ile His Gly Phe Gly Phe 40

Leu Cys Phe Ala Ala Ile Thr Ile Thr Val Trp Ile Asn Asn Lys Trp 55

Thr Phe Pro Gln Gly Ile Ala Gly Leu Ile Val Ser Val Ile Pro Trp

Ala Ala Leu Pro Phe Ala Leu Trp Ala Asp Lys Lys Gly Leu Val Ala

Gly Gly Trp Arg Phe Ser Asp Pro Ser Glu Lys Pro His Thr Phe Phe

Asp Lys Ile Leu Ala Gln Leu Val Arg His Pro Ile Arg Ser Ile Leu 120 125

Ile Leu Leu Val Ile Ile Ala Val Val Phe Ser Ile Leu Leu Ala Met 130 135 140

Gly Pro Pro Tyr Asp Pro Asp Ala Ile Ala Asn Thr Val Asp 150

```
<210> 275
<211> 534
<212> DNA
<213> Corynebacterium glutamicum
<220>
<221> CDS
<222> (65)..(511)
<223> RXN03022
<400> 275
acgcctgtgt catccttttc attagagtgg agaaaagccc atacagaaag ttggcgcccg 60
agcagtg atc atc acc gct ggc atc ttg gta gcg acc gcg acc gcc ctc
    Val Ile Ile Thr Ala Gly Ile Leu Val Ala Thr Ala Thr Ala Leu
cta atg atc acc gcg gtc agc gag tca acg tac atc gtc atc tcc ctc
                                                                   157
Leu Met Ile Thr Ala Val Ser Glu Ser Thr Tyr Ile Val Ile Ser Leu
gcc ggc ttc tcc ctt tat ggc ctt ggc ctc gga ctc ttc gcc acc cca
                                                                   205
Ala Gly Phe Ser Leu Tyr Gly Leu Gly Leu Gly Leu Phe Ala Thr Pro
gtc acc gat act gcg ctt gga aca ctt ccc aaa gac cgt acc ggc gct
                                                                   253
Val Thr Asp Thr Ala Leu Gly Thr Leu Pro Lys Asp Arg Thr Gly Ala
ggt gca ggt gta ttc aag atg tcc tct tcc ctc ggc gca gca ctc ggc
                                                                   301
Gly Ala Gly Val Phe Lys Met Ser Ser Ser Leu Gly Ala Ala Leu Gly
                         70
atc gca atc tcc act tca gtg ttc ctc gca ctt cgc gac ggc acc tcc
                                                                   349
Ile Ala Ile Ser Thr Ser Val Phe Leu Ala Leu Arg Asp Gly Thr Ser
                                         90
 80
                     85
atc aac tcc gac gtc gca ctc gcc gga aca gtt tca ctt ggc atc aac
                                                                   397
Ile Asn Ser Asp Val Ala Leu Ala Gly Thr Val Ser Leu Gly Ile Asn
                100
                                    105
gtt gta ttc gca gca aca gcc acc atc acc gca gca gtc ctt att cca
                                                                   445
Val Val Phe Ala Ala Thr Ala Thr Ile Thr Ala Ala Val Leu Ile Pro
                                120
            115
aaa gcc gct ggc aaa gtc tca caa acc agc atc acc ctt cct gag cca
                                                                   493
Lys Ala Ala Gly Lys Val Ser Gln Thr Ser Ile Thr Leu Pro Glu Pro
                            135
        130
                                                                   534
gct atc gct gta aaa atc taaaacttca ccaggacaga taa
Ala Ile Ala Val Lys Ile
    145
<210> 276
```

383

<211> 149 <212> PRT

<213> Corynebacterium glutamicum

<400> 276

Val Ile Ile Thr Ala Gly Ile Leu Val Ala Thr Ala Thr Ala Leu Leu 1 5 10 15

Met Ile Thr Ala Val Ser Glu Ser Thr Tyr Ile Val Ile Ser Leu Ala 20 25 30

Gly Phe Ser Leu Tyr Gly Leu Gly Leu Gly Leu Phe Ala Thr Pro Val 35 40 45

Thr Asp Thr Ala Leu Gly Thr Leu Pro Lys Asp Arg Thr Gly Ala Gly 50 55 60

Ala Gly Val Phe Lys Met Ser Ser Leu Gly Ala Ala Leu Gly Ile 65 70 75 80

Ala Ile Ser Thr Ser Val Phe Leu Ala Leu Arg Asp Gly Thr Ser Ile 85 90 95

Asn Ser Asp Val Ala Leu Ala Gly Thr Val Ser Leu Gly Ile Asn Val 100 105 110

Val Phe Ala Ala Thr Ala Thr Ile Thr Ala Ala Val Leu Ile Pro Lys 115 120 125

Ala Ala Gly Lys Val Ser Gln Thr Ser Ile Thr Leu Pro Glu Pro Ala 130 135 140

Ile Ala Val Lys Ile 145

<210> 277

<211> 586

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(586)

<223> RXN03151

<400> 277

ccgaacttgg agctttgctg ttggaggcag ccaaatagtc ccaatgtaaa cgcactgggt 60

agtatttgtt taaccatcca cctcaaggag taaaacgcac gtg ctt tcc cac atc 115

Val Leu Ser His Ile

1 5

att gat gtc ctc gcc gac ccg atc gat ggc acc cca ctt gta ggc gcc 163
Ile Asp Val Leu Ala Asp Pro Ile Asp Gly Thr Pro Leu Val Gly Ala
10 15 20

gaa gat ttc tca cgg ttg gtg tct gaa tct ggg cat tcc tac gat gtt 211 Glu Asp Phe Ser Arg Leu Val Ser Glu Ser Gly His Ser Tyr Asp Val

25 . 30 35

	cgt Arg															259
	ggc Gly 55															307
ggc Gly 70	ggt Gly	cac His	ttc Phe	gcg Ala	ccc Pro 75	ttc Phe	gtg Val	gaa Glu	gct Ala	gtc Val 80	acc Thr	gag Glu	cat His	gtt Val	caa Gln 85	355
	gtc Val															403
	gaa Glu															451
	gtt Val															499
	aag Lys 135															547
	gca Ala															586

<210> 278

<211> 162

<212> PRT

<213> Corynebacterium glutamicum

<400> 278

Val Leu Ser His Ile Ile Asp Val Leu Ala Asp Pro Ile Asp Gly Thr 1 5 10 15

Pro Leu Val Gly Ala Glu Asp Phe Ser Arg Leu Val Ser Glu Ser Gly
20 25 30

His Ser Tyr Asp Val Ala Arg Gln Gly Tyr Val Thr Leu Ala Gly Gly 35 40 45

Ala Gly Leu Arg Tyr Ser Gly Asp Asp Ala Gln Met Ile Ala Asp Arg

Glu Thr Phe Leu Ser Gly Gly His Phe Ala Pro Phe Val Glu Ala Val 65 70 75 80

Thr Glu His Val Gln Asp Val Val Asp Gln Ala Gly Leu Ser Asp Asp

85 90 95

Ala Gln Pro Val Val Cys Glu Ile Gly Ala Gly Thr Gly Tyr Tyr Leu 100 105 110

Ser His Thr Leu Asp Ser Val Ala Gly Ser Arg Gly Ile Gly Ile Asp 115 120 125

Val Ser Val His Ala Ala Lys Arg Leu Ala Lys Cys His Pro Arg Val 130 135 140

Gly Ala Val Ile Ala Asn Ala Trp Ala Arg Leu Pro Ile Ala Asp Asn 145 150 155 160

Ser Ser

<210> 279

<211> 543

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (1)..(543)

<223> RXN02832

<400> 279

cgc ggg cca gtg atg gat tat aca aat caa tca tta gta gca ttt ttc $$ 48 Arg Gly Pro Val Met Asp Tyr Thr Asn Gln Ser Leu Val Ala Phe Phe $$ 10 $$ 15

ttt aaa gca tta acg tca tat tta aag aaa cac aat tgt tta tat gtc 96
Phe Lys Ala Leu Thr Ser Tyr Leu Lys Lys His Asn Cys Leu Tyr Val
20 25 30

ctt gta gat cca tat tta att gaa aat tta cgc aat gca gac ggt gaa 144 Leu Val Asp Pro Tyr Leu Ile Glu Asn Leu Arg Asn Ala Asp Gly Glu 35 40 45

att gtt aaa tct tat gat aac cga gca ttt gtt aga aca atg gat aaa 192 Ile Val Lys Ser Tyr Asp Asn Arg Ala Phe Val Arg Thr Met Asp Lys

tta ggt tat aaa cac caa ggt ttc cct gta ggt tat gat tca atg agc
Leu Gly Tyr Lys His Gln Gly Phe Pro Val Gly Tyr Asp Ser Met Ser
65 70 75 80

caa atc cgt tgg ctg tca gtg tta gat tta aaa gat aag act gaa gac 288 Gln Ile Arg Trp Leu Ser Val Leu Asp Leu Lys Asp Lys Thr Glu Asp 85 90 95

caa ctt tta aaa gaa atg gat tat caa acg aga cgt aat att aaa aaa 336 Gln Leu Leu Lys Glu Met Asp Tyr Gln Thr Arg Arg Asn Ile Lys Lys 100 105 110

tat Tyr								384
act Thr 130								432
ttc Phe								480
cac His								528
acg Thr	_							543

<210> 280

<211> 181

<212> PRT

<213> Corynebacterium glutamicum

<400> 280

Arg Gly Pro Val Met Asp Tyr Thr Asn Gln Ser Leu Val Ala Phe Phe 1 5 10 15

Phe Lys Ala Leu Thr Ser Tyr Leu Lys Lys His Asn Cys Leu Tyr Val 20 25 30

Leu Val Asp Pro Tyr Leu Ile Glu Asn Leu Arg Asn Ala Asp Gly Glu 35 40 45

Ile Val Lys Ser Tyr Asp Asn Arg Ala Phe Val Arg Thr Met Asp Lys 50 55 60

Leu Gly Tyr Lys His Gln Gly Phe Pro Val Gly Tyr Asp Ser Met Ser 65 70 75 80

Gln Ile Arg Trp Leu Ser Val Leu Asp Leu Lys Asp Lys Thr Glu Asp 85 90 95

Gln Leu Leu Lys Glu Met Asp Tyr Gln Thr Arg Arg Asn Ile Lys Lys 100 105 110

Thr Tyr Asp Ile Gly Val Lys Thr Lys Thr Leu Thr Ile Asp Glu Thr 115 120 125

Gln Thr Phe Phe Asp Leu Phe His Met Ala Glu Glu Lys His Gly Phe 130 135 140

Lys Phe Arg Glu Leu Pro Tyr Phe Glu Glu Met Gln Lys Leu Tyr Asp 145 150 155 160

Asp His Ala Met Leu Lys Leu Ala Tyr Ile Asp Leu Asn Glu Tyr Leu 165 170 175

Lys Thr Leu Gln Leu 180

<210> 281

<211> 1539

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1516)

<223> RXN00165

<400> 281

aaacctcccc gggcccggcg cgcgaccgtc caagatgccg gcgttggatg ccaaattatg 60

gactctcaaa gtggcgttgt cgcagcggcc gtggagcttt gtg gcg tct gct ggc 119
Val Ala Ser Ala Gly
1

atg gcg gcg tct ttt atc tgc aat ggg tta acg cct gtg att gtg ggt 163 Met Ala Ala Ser Phe Ile Cys Asn Gly Leu Thr Pro Val Ile Val Gly 10 15 20

aag gcg gtg gat gag gct att ggc acg agc gat ctg cag cga ttg tgg 211 Lys Ala Val Asp Glu Ala Ile Gly Thr Ser Asp Leu Gln Arg Leu Trp 25 30 35

ttc tgg att gcc atg ttg gcg gtt ctt ttc tta acg gcg atg acg gtg 259
Phe Trp Ile Ala Met Leu Ala Val Leu Phe Leu Thr Ala Met Thr Val
40 45 50

aac tgg att gct cgg tac atg ttg gtg cgg agc cag cag ttg gtc agc 307 Asn Trp Ile Ala Arg Tyr Met Leu Val Arg Ser Gln Gln Leu Val Ser 55 60 65

cat gat ttg cgc atg ttg gtg act gat cgg att caa gat ccg cgt ggt 355
His Asp Leu Arg Met Leu Val Thr Asp Arg Ile Gln Asp Pro Arg Gly
70 80 85

ttt gct gga aaa gag cgc act gcg ggt gga ttg ttg tcg att gcg tca 403 Phe Ala Gly Lys Glu Arg Thr Ala Gly Gly Leu Leu Ser Ile Ala Ser 90 95 100

tcg gat acg cag cgg gtg ggc gat atc gtc atg atg acg gtg ttc ccg 451 Ser Asp Thr Gln Arg Val Gly Asp Ile Val Met Met Thr Val Phe Pro 105 110 115

gtg gcg gaa ttg gcg tcg att att tat ggc gcc gtg gtg atg tac agc 499 Val Ala Glu Leu Ala Ser Ile Ile Tyr Gly Ala Val Val Met Tyr Ser 120 125 130

att aat ccg tgg ttg agt gtg gct gtg ctg att ggt gga ccg ctg ctg 547

Ile	2 Asr 135		o Tr	o Lei	ı Ser	Val		val	. Leu	ılle	e Gly 145	Gly	Pro	Leu	Leu	
	. Va]					Val					ı Glr	aag Lys				595
-	_	_			Val	_	_	-		Ala		gca Ala		_	Val	643
				ı Arç					Leu			att				691
			Tyr									cgg Arg 210				739
		Āsp	_		-	-	_	_			_	acc Thr	_			787
	Āla										Ala	gga Gly				835
_			_	-	-			_	-		_	gtt Val				883
	_		_		_	_	_		-			cga Arg				931
												att Ile 290				979
												gcg Ala				1027
												gtt Val				1075
	_		_				_			_		cca Pro				1123
							Ala					caa Gln				1171
												gcc Ala				1219

WO 01/00804				PCT/IB00/00922
360	36	5	370	
gcc tcc tgt gac ga Ala Ser Cys Asp As 375				1267
ggt gga cgg ttg c Gly Gly Arg Leu Le 390				1315
cgg gcg att gct tt Arg Ala Ile Ala Ph 41	e Asp Pro Glu			1363
acg gca gtg gat to Thr Ala Val Asp Se 425				1411
gca cac cgt gca gg Ala His Arg Ala Gl 440		Ile Val Phe Ser		1459
tgg agt gcg gtg gc Trp Ser Ala Val Al 455				1507
gtt atg aaa tgagtg Val Met Lys 470	ggga gacgtcga	aaa agc		1539
<210> 282 <211> 472 <212> PRT <213> Corynebacter	ium glutamicu	ım		
<400> 282 Val Ala Ser Ala Gl	/ Met Ala Ala	Ser Phe Ile Cys <i>I</i>	Asn Gly Leu Thr 15	
Pro Val Ile Val Gl	/ Lys Ala Val	Asp Glu Ala Ile C	Gly Thr Ser Asp 30	
Leu Gln Arg Leu Trp 35	Phe Trp Ile 40		Val Leu Phe Leu 45	
Thr Ala Met Thr Val	Asn Trp Ile 55	Ala Arg Tyr Met I 60	Leu Val Arg Ser	
Gln Gln Leu Val Ser 65	His Asp Leu 70	Arg Met Leu Val T 75	Thr Asp Arg Ile 80	
Gln Asp Pro Arg Gly 85		Lys Glu Arg Thr A 90	Ala Gly Gly Leu 95	
Leu Ser Ile Ala Ser 100	Ser Asp Thr	Gln Arg Val Gly A 105	asp Ile Val Met 110	

Met	Thr	Val 115	Phe	Pro	Val	Ala	Glu 120		Ala	Ser	Ile	Ile 125	Tyr	Gly	Ala
Val	Val 130	Met	Tyr	Ser	Ile	Asn 135		Trp	Leu	Ser	Val 140	Ala	Val	Leu	Ile
Gly 145	Gly	Pro	Leu	Leu	Val 150		Val	Ala	Ile	Gln 155	Val	Ser	Lys	Pro	Leu 160
Gln	Lys	Arg	Ser	Gly 165		Arg	Gln	Gln	Ala 170	Val	Ala	Gln	Ala	Ala 175	Ala
Thr	Ala	Thr	Asp 180	Val	Val	Gln	Gly	Leu 185	Arg	Ile	Leu	Lys	Gly 190	Leu	Gly
Ala	Ile	Val 195	Thr	Val	Arg	Arg	Arg 200	Tyr	Glu	Ala	Ile	Ser 205	Gly	Glu	Ala
Tyr	Arg 210	Lys	Thr	Val	His	Ala 215	Asp	Ala	Ala	Glu	Ala 220	Arg	Leu	Asn	Gly
Val 225	Thr	Asp	Ala	Ala	Gly 230	Ala	Ile	Phe	Val	Ser 235	Ala	Leu	Gly	Ile	Gly 240
Ala	Gly	Phe	Leu	Ala 245	Leu	Gln	Gly	Gln	Met 250	Ser	Ile	Gly	Asp	Leu 255	Ile
Thr	Val	Val	Gly 260	Leu	Thr	Gln	Phe	Leu 265	Ile	Met	Pro	Met	Thr 270	Met	Leu
_	_	275					280					285	Ser		
_	290	_				295					300		Ser		
305		_			310					315			Lys		320
				325					330				Leu	335	
			340					345					Asp 350		
_		355					360					365	Val		
_	370					375					380		Gly		
Lys 385	Ile	Val	Gly	Glu	Gly 390	Gly	Arg	Leu	Leu	Ser 395	Gly	Gly	Gln	Arg	Gln 400
Arg	Val	Ala	Leu	Ala 405	Arg	Ala	Ile	Ala	Phe 410	Asp	Pro	Glu	Val	Leu 415	Val

Leu Gln Asp Pro Thr Thr Ala Val Asp Ser Val Thr Glu Gln Asn Ile 420 425 430

Ala Gln Gln Val Ala Ala His Arg Ala Gly Lys Val Thr Ile Val Phe 435 440 445

Ser Glu Ala Pro Ala Trp Ser Ala Val Ala Asp Gln His Val Glu Ala 450 455 460

Ala Ala Leu Arg Glu Val Met Lys

<210> 283

<211> 1470

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1447)

<223> RXN01190

<400> 283

cagggttttg atgagaacaa cacaccgc ttcaagcatt ctgcgaagaa tgatcaggcg 60

gcagcggggc aaggttgcgt ttggcgcatt ctttttgggg atg tgg cag ctg tcg 115

Met Trp Gln Leu Ser

1

gaa gca ttg gtg ccg att gcg att ggt ttg atc gtt gat cat gcg gtt 163 Glu Ala Leu Val Pro Ile Ala Ile Gly Leu Ile Val Asp His Ala Val 10 15 20

ctc aca aaa gat ctc cgc cga tta gtg gtc ggg ctt gtc gct ttt gtt 211 Leu Thr Lys Asp Leu Arg Arg Leu Val Val Gly Leu Val Ala Phe Val 25 30 35

gtg ctg ttt gtg gtg ttg agt ttt tct aat cgt ttc ggt tcg cgc gcg 259 Val Leu Phe Val Val Leu Ser Phe Ser Asn Arg Phe Gly Ser Arg Ala 40 45 50

ttg aat agg gcc gtg aac ttt gaa tcc cat gcg ctc cgc gta gag gta 307 Leu Asn Arg Ala Val Asn Phe Glu Ser His Ala Leu Arg Val Glu Val 55 60 65

gcc gat cat gcg ttg aag aat ctg gat ccg cgc aat ttg gtg cct ggc 355
Ala Asp His Ala Leu Lys Asn Leu Asp Pro Arg Asn Leu Val Pro Gly
70 75 80 85

gag gtg atg tcg cgg tcc acc gca gat gcg gat tct tcg acg cgt att 403 Glu Val Met Ser Arg Ser Thr Ala Asp Ala Asp Ser Ser Thr Arg Ile 90 95 100

ttc ggg cag atc gga acc ggt gtt tcg gct gcg acg gga ttt ctt ggt $\,$ 451 Phe Gly Gln Ile Gly Thr Gly Val Ser Ala Ala Thr Gly Phe Leu Gly

105	110	115	
Tyr Leu Leu Ile	agt gac tgg ctg gtc o Ser Asp Trp Leu Val o 125		499

ctt	~+~	a+ a	at a	CC4	atc	2++	tca		ata	att	aca	cta	act	age	aao	547
Leu																
	135					140		•			145				-	

ggc	att	tct	aaa	agg	agt	atc	acc	cag	cag	αaα	aaq	tta	aca	gag	tct	595
990				- 99	- 5 -	9				33					_	
Gly	Ile	Ser	Lys	Arq	Ser	Val	Thr	Gln	Gln	Glu	Lys	Leu	Ala	GLu	Ser	
-			-	-							_					
150					155					160					165	

ttg	ctg	agc	aac	tcg	att	aat	gcc	tca	gct	att	gcg	cac	ggt	gca	gcg	931
Leu	Leu	Ser	Asn	Ser	Ile	Asn	Ala	Ser	Ala	Ile	Ala	His	Gly	Ala	Ala	
			265					270					275			

				cca Pro							1171
				gag Glu							1219
				tcg Ser							1267
				gac Asp 395							1315
				gtg Val							1363
				aaa Lys							1411
				gat Asp				taat	ttga	itg	1457
gcat	cato	ga c	ac								1470

<210> 284

<211> 449

<212> PRT

<213> Corynebacterium glutamicum

<400> 284

Met Trp Gln Leu Ser Glu Ala Leu Val Pro Ile Ala Ile Gly Leu Ile 1 5 10 15

Val Asp His Ala Val Leu Thr Lys Asp Leu Arg Arg Leu Val Val Gly 20 25 30

Leu Val Ala Phe Val Val Leu Phe Val Val Leu Ser Phe Ser Asn Arg 35 40 45

Phe Gly Ser Arg Ala Leu Asn Arg Ala Val Asn Phe Glu Ser His Ala 50 55 60

Leu Arg Val Glu Val Ala Asp His Ala Leu Lys Asn Leu Asp Pro Arg 65 70 75 80

Asn Leu Val Pro Gly Glu Val Met Ser Arg Ser Thr Ala Asp Ala Asp 85 90 95

Ser Ser Thr Arg Ile Phe Gly Gln Ile Gly Thr Gly Val Ser Ala Ala

100 105 110

Thr Gly Phe Leu Gly Ala Ala Thr Tyr Leu Leu Ile Ser Asp Trp Leu 115 120 125

Val Gly Leu Val Leu Val Leu Val Pro Ile Ile Ser Gly Val Val 130 135 140

Ala Leu Ala Ser Lys Gly Ile Ser Lys Arg Ser Val Thr Gln Glu
145 150 155 160

Lys Leu Ala Glu Ser Gly Ala Gln Ala Ser Asp Ile Met Met Gly Leu 165 170 175

Arg Val Ile Lys Ala Ile Gly Gly Glu Arg Trp Ala Val Lys Thr Phe 180 185 190

Glu Lys Ala Ser Gln Ala Ser Ala Arg Ala Ala Val Asp Thr Ala Val 195 200 205

Ala Ser Gly Lys Val Ala Gly Ile Gly Glu Leu Ser Ile Ala Val Asn 210 215 220

Leu Ala Ala Val Leu Leu Leu Ala Gly Trp Arg Val Thr Thr Gly Glu 225 230 235 240

Leu Gly Pro Gly Gln Leu Ile Ala Ile Val Gly Val Ala Val Tyr Leu 245 250 255

Ser Glu Pro Ile Arg Leu Leu Ser Asn Ser Ile Asn Ala Ser Ala Ile 260 265 270

Ala His Gly Ala Ala Glu Arg Val Ala Asn Phe Leu Asn Leu Asp Glu 275 280 285

Ser Gln Ala Gln Tyr Glu Ser Ser Glu Thr Ile Asn Asp Gly Glu Phe 290 295 300

Leu Val Ile Val Pro Pro Ala Ser Thr Leu Pro His Gly Asp Asn Ile 305 310 315 320

Leu Ala Thr Pro His Ala Ala Asp Ile Phe Glu Gly Thr Leu Arg Ser 325 330 335

Asn Ile Ser Met Asn His Glu Asp Asn Val Pro Ile Asp Pro Gln Val 340 345 350

Ile Arg Ala Ser Gly Leu Thr Asp Ile Ile Glu Val Asp Gly Leu Asp 355 360 365

Ala Pro Val Arg Asp Thr Gly Ser Asn Leu Ser Gly Gly Gln Arg Gln 370 380

Arg Val Ala Leu Ala Arg Ala Leu His Ala Asp Ala Glu Val Leu Val 385 390 395 400

Leu Met Asp Pro Thr Ser Ala Val Asp Ser Val Thr Glu Val Ser Ile

405 410 415

Ala Gln Gly Ile Lys Gln Leu Arg Ala Gly Lys Thr Thr Ile Val Val 420 425 430

Ser Ser Ser Pro Ala Phe Tyr Asn Leu Ala Asp Arg Val Ile Ser His 435 440 445

Val

<210> 285

<211> 1368

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1345)

<223> RXN01102

<400> 285

attotatgqt tgttgggaga gatgacttaa tttggaatca cgggctttaa cacgcgctga 60

cattgagcaa cttcccagca tgtggaaaag cccaggtttc gtg gct gtc ctc gtg 115 Val Ala Val Leu Val 1

gcg gtt gca gca gcg ttc ggc agt tgg tca ctc ctt ctt ccc gtc gta $\,$ 163 Ala Val Ala Ala Ala Phe Gly Ser Trp Ser Leu Leu Leu Pro Val Val $\,$ 10 $\,$ 15 $\,$ 20

ccg cta gcg gtc ctc aac aac ggc gga tca agc gct gtc gcc ggt gcc 211 Pro Leu Ala Val Leu Asn Asn Gly Gly Ser Ser Ala Val Ala Gly Ala 25 30 35

acc act ggc atc ttc atg gca gct aca gtg atc act cag att ttc act $$ 259 Thr Thr Gly Ile Phe Met Ala Ala Thr Val Ile Thr Gln Ile Phe Thr $$ 40 $$ 45 $$ 50

ccc gct gcg ctg cgg aaa att ggc tac acc cca gtg atg gct ttc gcc 307 Pro Ala Ala Leu Arg Lys Ile Gly Tyr Thr Pro Val Met Ala Phe Ala 55 60 65

gca ttc atg ctg ggt gtg cca gcc atc ggg tac atc ttc agc gtc gag 355
Ala Phe Met Leu Gly Val Pro Ala Ile Gly Tyr Ile Phe Ser Val Glu
70 80 85

cca att cca gtg ctg gta gtg tcc gca ctt cga gga att ggg ttc ggt 403 Pro Ile Pro Val Leu Val Val Ser Ala Leu Arg Gly Ile Gly Phe Gly 90 95

gcg ctc acc gtc gca gaa tct gcg ttg gtg gct gaa ctc gtt ccc gta 451 Ala Leu Thr Val Ala Glu Ser Ala Leu Val Ala Glu Leu Val Pro Val 105 110 115

	ttc Phe		Ğİy					Met								499
	caa Gln 135	Met					Ala									547
	tac Tyr					Val					Ile					595
gcg Ala	gtg Val	atg Met	tgt Cys	ctg Leu 170	Arg	att Ile	ccg Pro	cag Gln	gtt Val 175	aag Lys	gca Ala	gcg Ala	gca Ala	aag Lys 180	cag Gln	643
	cca Pro			Ser												691
	ctg Leu															7,39
gca Ala	gtg Val 215	tct Ser	tca Ser	ttc Phe	ctt Leu	cca Pro 220	gct Ala	gca Ala	gtc Val	att Ile	gag Glu 225	tta Leu	gat Asp	cca Pro	gga Gly	787
	ggt Gly															835
	atg Met															883
	cct Pro															931
	gtt Val															979
	att Ile 295															1027
	gaa Glu															1075
	gaa Glu															1123
atc	gga	agc	ttc	ctc	ctt	ggc	ata	gtt	gcc	gca	tcg	ctt	gct	tac	agt	1171

Ile	Gly	Ser	Phe 345	Leu	Leu	Gly	Ile	Val 350	Ala	Ala	Ser	Leu	Ala 355	Tyr	Ser		
						gcc Ala										1219	
						att Ile 380										1267	
						cgc Arg										1315	
						cgc Arg				taaa	acgc	tt t	tcga	cgcc	:a	1365	
ccc																1368	

<210> 286

<211> 415

<212> PRT

<213> Corynebacterium glutamicum

<400> 286

Val Ala Val Leu Val Ala Val Ala Ala Ala Phe Gly Ser Trp Ser Leu
1 5 10 15

Leu Leu Pro Val Val Pro Leu Ala Val Leu Asn Asn Gly Gly Ser Ser 20 25 30

Ala Val Ala Gly Ala Thr Thr Gly Ile Phe Met Ala Ala Thr Val Ile 35 40 45

Thr Gln Ile Phe Thr Pro Ala Ala Leu Arg Lys Ile Gly Tyr Thr Pro
50 60

Val Met Ala Phe Ala Ala Phe Met Leu Gly Val Pro Ala Ile Gly Tyr 65 70 75 80

Gly Ile Gly Phe Gly Ala Leu Thr Val Ala Glu Ser Ala Leu Val Ala 100 105 110

Glu Leu Val Pro Val Arg Phe Leu Gly Lys Ala Ser Gly Met Leu Gly 115 120 125

Val Phe Ile Gly Leu Ser Gln Met Leu Phe Leu Pro Ala Gly Leu Ala 130 135 140

Leu Gly Asp Gln Phe Gly Tyr Asn Val Val Tyr Val Leu Gly Ala Val 145 150 155 160

Ile Ala Leu Val Ala Ala Val Met Cys Leu Arg Ile Pro Gln Val Lys Ala Ala Lys Gln Gln Pro Gln Val Ser Glu Gln Glu Arg Ser Val 185 Ser Thr Trp Lys Leu Val Leu Val Pro Ser Leu Ala Val Thr Ser Leu Ser Met Thr Phe Gly Ala Val Ser Ser Phe Leu Pro Ala Ala Val Ile 210 Glu Leu Asp Pro Gly Leu Gly Ala Ala Leu Ala Gly Ile Ile Leu Ser 235 230 Ile Thr Gly Gly Ser Ser Met Val Phe Arg Tyr Leu Ser Gly Val Ile Ala Asp Arg Arg Gly Val Pro Gly Thr Thr Met Ile Pro Ala Gln Ile 265 Ile Gly Phe Leu Gly Val Val Leu Ile Thr Val Thr Ile Phe Gln Gly 280 Trp Ser Val Trp Leu Leu Ile Ile Gly Ala Val Met Phe Gly Gly Ala 295 Phe Gly Met Val Gln Asn Glu Ala Leu Leu Ser Met Phe Phe Arg Leu 310 Pro Arg Thr Arg Val Ser Glu Ala Ser Ala Ile Trp Asn Ile Ala Phe 330 Asp Ser Gly Thr Gly Ile Gly Ser Phe Leu Leu Gly Ile Val Ala Ala Ser Leu Ala Tyr Ser Gly Ala Phe Gly Ser Gly Ala Val Val Ile Leu Phe Gly Ile Val Leu Thr Thr Ala Asp Arg Ile Ile Gly Arg His Arg Ile Thr Glu Tyr Asn Asn Thr Arg Ala Arg Leu Arg Gln Val Pro Val 395 Ala Arg Arg Ala Val Gln Gly Leu Arg Asn Arg Arg Lys Asp Arg 410

<210> 287

<211> 348

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(325) <223> RXN00788

<400> 287

cgcatccctc tagttttcca tcacctcaat gaacggcgct aactccggtt cattgcgcaa 60

ttgatccagc actgcttgca gtgaggcctc attagttggc atg gcc tcc tcc atc 115

Met Ala Ser Ser Ile
. 1

aac atc gga gtg ttc aac ctt gga aat gct gtt gct gcc tgg ctt gct $\,$ 163 Asn Ile Gly Val Phe Asn Leu Gly Asn Ala Val Ala Ala Trp Leu Ala $\,$ 10 $\,$ 15 $\,$ 20

ggt gca acc atc acc act tcc ctt gga ctc aca tca gcc gga tta gtt 211 Gly Ala Thr Ile Thr Thr Ser Leu Gly Leu Thr Ser Ala Gly Leu Val
25 30 35

ggc ggt ttg atg acg tcc ctc gga cta gtg ttg gcc atc gtg gct gtg 259 Gly Gly Leu Met Thr Ser Leu Gly Leu Val Leu Ala Ile Val Ala Val 40 45 50

gtt ttg cgt cga aaa gcg caa ggc acc caa gcg acc atc agc gtt gtg 307 Val Leu Arg Arg Lys Ala Gln Gly Thr Gln Ala Thr Ile Ser Val Val 55 60 65

gag cac cag ccc gcc caa taaataattt ctctcttcta att 348 Glu His Gln Pro Ala Gln 70 75

<210> 288

<211> 75

<212> PRT

<213> Corynebacterium glutamicum

<400> 288

Met Ala Ser Ser Ile Asn Ile Gly Val Phe Asn Leu Gly Asn Ala Val 1 5 10 15

Ala Ala Trp Leu Ala Gly Ala Thr Ile Thr Thr Ser Leu Gly Leu Thr
20 25 30

Ser Ala Gly Leu Val Gly Gly Leu Met Thr Ser Leu Gly Leu Val Leu 35 40 45

Ala Ile Val Ala Val Val Leu Arg Arg Lys Ala Gln Gly Thr Gln Ala 50 55 60

Thr Ile Ser Val Val Glu His Gln Pro Ala Gln 65 70 75

<210> 289

<211> 1764

<212> DNA

<213> Corynebacterium glutamicum

<220>
<221> CDS
<222> (101)..(1741)
<223> RXN02119

<400> 289

ttcggtccgc tctggcaaaa atggctggct gccacctcgg cgcagcagct taagggctgg 60

gcttaaattg cttgtcgacg cctagtgcca caatggagac atg acc gaa aca ctt 115
Met Thr Glu Thr Leu
1

gtg gtg aat ggc ctt gca ggc ggc tat ggg cac cgc aca tta ttt aac 163 Val Val Asn Gly Leu Ala Gly Gly Tyr Gly His Arg Thr Leu Phe Asn

gat gtg aat ctc acc gta gct gcc ggc gat gtc gtg ggc gtt gtc ggc 211
Asp Val Asn Leu Thr Val Ala Ala Gly Asp Val Val Gly Val Val Gly

gtc aat ggc gct ggt aaa tcc aca ttt cta aaa att ctg gcg ggc gtg 259 Val Asn Gly Ala Gly Lys Ser Thr Phe Leu Lys Ile Leu Ala Gly Val 40 45 50

gaa aag cca ctg gct gga act atc gcg ctt tcg cca gcc gat gct ttt 307 Glu Lys Pro Leu Ala Gly Thr Ile Ala Leu Ser Pro Ala Asp Ala Phe

gtg ggc tac ttg cca cag gaa cac acc cgc acg tct gga gag acg atc 355
Val Gly Tyr Leu Pro Gln Glu His Thr Arg Thr Ser Gly Glu Thr Ile
70 75 80 85

gca gtt tac att gct cgt cga acc ggc tgc caa gct gca aca act gcc 403 Ala Val Tyr Ile Ala Arg Arg Thr Gly Cys Gln Ala Ala Thr Thr Ala

atg gat gac acc gcc gaa gcg ttt ggt gcg gat cca gac aac gct gcc 451 Met Asp Asp Thr Ala Glu Ala Phe Gly Ala Asp Pro Asp Asn Ala Ala 105 110 115

ttg gcc gat gca tac gcc gag gcg ctg gat cgg tgg atg gcc agt ggc 499 Leu Ala Asp Ala Tyr Ala Glu Ala Leu Asp Arg Trp Met Ala Ser Gly 120 125 130

gca gcc gat ttg gat gaa cgc atc ccc atc gtg ctc gct gat ttg ggc 547 Ala Ala Asp Leu Asp Glu Arg Ile Pro Ile Val Leu Ala Asp Leu Gly 135 140 145

ttt gag ctt ccc acc tcg acg ctg atg gaa gga ctt tca ggc ggg cag
Phe Glu Leu Pro Thr Ser Thr Leu Met Glu Gly Leu Ser Gly Gly Gln
150 165 160 165

gca gcc cgg gtc ggg ctg gcg gcg tta ctg ttg tca cgt ttt gac att 643
Ala Ala Arg Val Gly Leu Ala Ala Leu Leu Leu Ser Arg Phe Asp Ile

170 175 180

WO 01/00804	PCT/IB00/00922
-------------	----------------

gto Val	g ctt Lei	cto Lei	gad Asp 185	o Gli	g cco	c acc	c aac Asi	c gat n Asp 190	Lev	g gat ı Asp	cto Lev	c gad ı Asp	ggt Gl ₃ 195	/ Let	gag Glu	691
caa Glr	a cto n Leu	gaç Glu 200	ı Asr	tti n Phe	t gtt e Val	caç L Glr	g ggg Gly 205	/ Let	cgo Aro	g Gly	g gga / Gly	gto Val	. Val	cto Leu	g gtc l Val	739
		Asp					Ser					Thr			ggaa Glu	787
cto Leu 230	Asp	ctg Leu	cac His	caa Glr	aat Asn 235	Ser	cac His	cat His	gtt Val	Tyr 240	Gly	ggt Gly	gga Gly	tat Tyr	gat Asp 245	835
tcc Ser	tac Tyr	ctt Leu	gag Glu	gaa Glu 250	Arg	gca Ala	gtg Val	cta Leu	cgc Arg 255	Gln	cac His	gcc Ala	cgt Arg	gac Asp 260		883
tat Tyr	gag Glu	gaa Glu	ttt Phe 265	Ala	gaa Glu	aag Lys	aag Lys	aag Lys 270	Asp	ctt Leu	gtg Val	gca Ala	cgt Arg 275	Āla	cga Arg	931
								Gly				gct Ala 290				979
gca Ala	cct Pro 295	gac Asp	aac Asn	gac Asp	aaa Lys	ctt Leu 300	cgg Arg	aag Lys	aaa Lys	gcc Ala	gct Ala 305	gcg Ala	gaa Glu	tcc Ser	agt Ser	1027
gaa Glu 310	aag Lys	cag Gln	gct Ala	caa Gln	aaa Lys 315	gtc Val	cgc Arg	cag Gln	atg Met	gaa Glu 320	agc Ser	cgc Arg	atc Ile	gct Ala	cgg Arg 325	1075
tta Leu	gaa Glu	gaa Glu	gtt Val	gaa Glu 330	gag Glu	cca Pro	cgt Arg	aaa Lys	gaa Glu 335	tgg Trp	aaa Lys	ctg Leu	cag Gln	ttc Phe 340	agc Ser	1123
												acg Thr				1171
												gta Val 370				1219
												aac Asn				1267
				Leu								gaa Glu				1315
ggt	act	gcc	acg	atg	ggc	acg	agc	gtg	gcg	atc	gga	gaa	atc	gat	cag	1363

Gly	Thr	Ala	Thr	Met 410	Gly	Thr	Ser	Val	Ala 415	Ile	Gly	Glu	Ile	Asp 420	Gln	
			tta Leu 425													1411
			cca Pro													1459
			ctg Leu													1507
			gag Glu													1555
			gtg Val													1603
gag Glu	gcc Ala	atc Ile	gag Glu 505	caa Gln	ttg Leu	gag Glu	caa Gln	gcg Ala 510	ttg Leu	gcc Ala	tcg Ser	tat Tyr	gat Asp 515	ggt Gly	gtg Val	1651
			gtc Val													1699
			tgg Trp													1741
taac	cgtt	tc c	gtat	tgat	g cc	a										1764
	> 29															

<211> 547

<212> PRT

<213> Corynebacterium glutamicum

<400> 290

Met Thr Glu Thr Leu Val Val Asn Gly Leu Ala Gly Gly Tyr Gly His

Arg Thr Leu Phe Asn Asp Val Asn Leu Thr Val Ala Ala Gly Asp Val

Val Gly Val Val Gly Val Asn Gly Ala Gly Lys Ser Thr Phe Leu Lys 35

Ile Leu Ala Gly Val Glu Lys Pro Leu Ala Gly Thr Ile Ala Leu Ser

Pro Ala Asp Ala Phe Val Gly Tyr Leu Pro Gln Glu His Thr Arg Thr

65 70 75 80

Ser Gly Glu Thr Ile Ala Val Tyr Ile Ala Arg Arg Thr Gly Cys Gln 85 90 95

Ala Ala Thr Thr Ala Met Asp Asp Thr Ala Glu Ala Phe Gly Ala Asp 100 105 110

Pro Asp Asn Ala Ala Leu Ala Asp Ala Tyr Ala Glu Ala Leu Asp Arg 115 120 125

Trp Met Ala Ser Gly Ala Ala Asp Leu Asp Glu Arg Ile Pro Ile Val 130 135 140

Leu Ala Asp Leu Gly Phe Glu Leu Pro Thr Ser Thr Leu Met Glu Gly 145 150 155 160

Leu Ser Gly Gly Gln Ala Ala Arg Val Gly Leu Ala Ala Leu Leu Leu 165 170 175

Ser Arg Phe Asp Ile Val Leu Leu Asp Glu Pro Thr Asn Asp Leu Asp 180 185 190

Leu Asp Gly Leu Glu Gln Leu Glu Asn Phe Val Gln Gly Leu Arg Gly 195 200 205

Gly Val Val Leu Val Ser His Asp Arg Glu Phe Leu Ser Arg Cys Val 210 215 220

Thr Thr Val Leu Glu Leu Asp Leu His Gln Asn Ser His His Val Tyr 225 230 235 240

Gly Gly Gly Tyr Asp Ser Tyr Leu Glu Glu Arg Ala Val Leu Arg Gln 245 250 255

His Ala Arg Asp Gln Tyr Glu Glu Phe Ala Glu Lys Lys Lys Asp Leu 260 265 270

Val Ala Arg Ala Arg Thr Gln Arg Glu Trp Ser Ser His Gly Val Arg 275 280 285

Asn Ala Ile Lys Arg Ala Pro Asp Asn Asp Lys Leu Arg Lys Lys Ala 290 295 300

Ala Ala Glu Ser Ser Glu Lys Gln Ala Gln Lys Val Arg Gln Met Glu 305 310 315 320

Ser Arg Ile Ala Arg Leu Glu Glu Val Glu Glu Pro Arg Lys Glu Trp 325 330 335

Lys Leu Gln Phe Ser Val Gly Lys Ala Ser Arg Ser Ser Ser Val Val 340 345 350

Ser Thr Leu Asn Asp Ala Ser Phe Thr Gln Gly Asp Phe Thr Leu Gly 355 360 365

Pro Val Ser Ile Gln Val Asn Ala Gly Asp Arg Ile Gly Ile Thr Gly

370 375 380

Pro Asn Gly Ala Gly Lys Ser Thr Leu Leu Arg Gly Leu Leu Gly Asn 385 390 395 400

Gln Glu Pro Thr Ser Gly Thr Ala Thr Met Gly Thr Ser Val Ala Ile 405 410 415

Gly Glu Ile Asp Gln Ala Arg Ala Leu Leu Asp Pro Gln Leu Pro Leu 420 425 430

Ile Ser Ala Phe Glu Lys His Val Pro Asp Leu Pro Ile Ser Glu Val 435 440 445

Arg Thr Leu Leu Ala Lys Phe Gly Leu Asn Asp Asn His Val Glu Arg 450 455 460

Asp Val Glu Lys Leu Ser Pro Gly Glu Arg Thr Arg Ala Gly Leu Ala 465 470 475 480

Leu Leu Gln Val Arg Gly Val Asn Val Leu Val Leu Asp Glu Pro Thr 485 490 495

Asn His Leu Asp Leu Glu Ala Ile Glu Gln Leu Glu Gln Ala Leu Ala 500 505 510

Ser Tyr Asp Gly Val Leu Leu Val Thr His Asp Arg Arg Met Leu 515 520 525

Asp Ala Val Gln Thr Asn Arg Arg Trp His Val Glu Ala Gly Glu Val 530 535 540

Arg Glu Leu 545

<210> 291

<211> 1638

<212> DNA

<213> Corynebacterium glutamicum

<220>

<221> CDS

<222> (101)..(1615)

<223> RXN01605

<400> 291

attgaagtca gcgccgagga agccgcgagg gaatcagacg acgggcacct actacttcgg 60

cattgaaatt ccgaagaact tcagcgattc tattgccagc gtg acc agc gat tca 115 Val Thr Ser Asp Ser 1 5

ccc gcg cca gca acc gtc aac gcg gta ttc aac aac agc aac ggc ttc $$ 163 Pro Ala Pro Ala Thr Val Asn Ala Val Phe Asn Asn Ser Asn Gly Phe $$ 10 $$ 15 $$ 20

at Il	t gcd e Ala	e te a Se	c at r Me 2	t Le	a Gl	c aad / Asr	caç n Glr	g gto n Val 30	l Va]	c aad L Asr	c act	t gti r Val	t gto L Val	l Glu	acc Thr	211
at Me	g gad t Asp	c acq o Thi	r Gl	a tto u Phe	e ggd e Gly	gto / Val	cgc Arg 45	, Ile	gto Val	g gat L Asp	aac Asr	ato Met 50	Lev	gto Val	ggt Gly	259
tt: Ph	c tco e Sei 55	Thi	c tto	g ggd u Gly	gac Asp	ggc Gly 60	Met	aac Asn	caa Glr	gco Ala	gco Ala 65	Glu	a ggt a Gly	gcc Ala	act Thr	307
acc Thi	g cto Lev	ago 1 Ser	gat Asp	t ggc o Gly	gtc Val 75	Gly	tcc Ser	gcc Ala	aac Asn	gac Asp 80	Gly	gca Ala	gtt Val	cag Gln	ctt Leu 85	355
	gac Asp				Thr					Ile					Glu	403
	gcg Ala			Leu					Ser					Gly		451
	tcc Ser		Ala										Leu			499
	ser 135															547
	ggc															595
gtt Val	cca Pro	gac Asp	atc Ile	aac Asn 170	tct Ser	cag Gln	ttg Leu	atc Ile	acc Thr 175	ctg Leu	cgc Arg	gac Asp	ggc	gca Ala 180	gcc Ala	643
	att Ile	Ala		Glu		Ser	Asp	Pro	Ser			Tyr				691
gtg Val	gac Asp	tcc Ser 200	gct Ala	gtg Val	agc Ser	gca Ala	tcc Ser 205	cag Gln	caa Gln	cta Leu	gca Ala	gcc Ala 210	ggc Gly	ctg Leu	caa Gln	739
	ctg Leu 215				Ser											787
	gat Asp			Ser					Gly							835
ggc	gca	caa	gca	ctg	cgc (gac	ggc (acc	gtc	cag	ctt	gat	gaa	ggc	tcc	883

Gly	Ala	Gln	Ala	Leu 250		Asp	Gly	Thr	Val 255	Gln	Leu	Asp	Glu	Gly 260	Ser	
				Leu				gac Asp 270	Gly							931
ttc Phe	gct Ala	gac Asp 280	Gly	gca Ala	gac Asp	acc Thr	acc Thr 285	atc	gca Ala	acc Thr	cca Pro	gtt Val 290	gaa Glu	aca Thr	gaa Glu	979
caa Gln	gca Ala 295	Gly	gac Asp	acc Thr	aca Thr	ccg Pro 300	ctc Leu	ttc Phe	ggt Gly	att Ile	ggt Gly 305	ctc Leu	gca Ala	cca Pro	ttc Phe	1027
ttc Phe 310	atg Met	gct Ala	gtc Val	ggc Gly	ctg Leu 315	ttc Phe	atg Met	gga Gly	gca Ala	acc Thr 320	gtt Val	gcc Ala	tgg Trp	atg Met	atc Ile 325	1075
ctg Leu	cac His	cca Pro	atc Ile	agt Ser 330	cgc Arg	cgc Arg	gca Ala	ctc Leu	gac Asp 335	tcc Ser	cgc Arg	atg Met	gga Gly	ggc Gly 340	ttc Phe	1123
cga Arg	ggc Gly	acc Thr	ctg Leu 345	gca Ala	agc Ser	tac Tyr	ctt Leu	cca Pro 350	tca Ser	aca Thr	gtc Val	tta Leu	ggc Gly 355	ctt Leu	ggc Gly	1171
								ctg Leu								1219
								atg Met								1267
gta Val 390	ttc Phe	atc Ile	tcc Ser	att Ile	acc Thr 395	cat His	atg Met	ttc Phe	aac Asn	aac Asn 400	gtg Val	gca Ala	gga Gly	ccc Pro	tcc Ser 405	1315
gca Ala	ggc Gly	cgt Arg	Val	Leu	Ser	Ile	Val	atg Met	Met	Ser	Phe	Gln	Leu	gtc Val 420	tcc Ser	1363
tcc Ser	ggt Gly	ggc Gly	cta Leu 425	tac Tyr	cca Pro	cca Pro	gaa Glu	acc Thr 430	cag Gln	cca Pro	gca Ala	ttc Phe	ttc Phe 435	cac His	tgg Trp	1411
ttc Phe	cac His	acc Thr 440	tac Tyr	gac Asp	ccg Pro	atc Ile	acc Thr 445	tac Tyr	gca Ala	gtc Val	aac Asn	ctc Leu 450	gtg Val	cgc Arg	caa Gln	1459
atg Met	atc Ile 455	ttc Phe	aac Asn	gaa Glu	acc Thr	cca Pro 460	tcc Ser	aac Asn	gac Asp	cca Pro	cgc Arg 465	ttc Phe	ata Ile	caa Gln	gca Ala	1507
atc Ile	tgg Trp	gta Val	ctg Leu	ctc Leu	ttc Phe	atc Ile	tgg Trp	gca Ala	ctg Leu	atg Met	ctc Leu	gcc Ala	atc Ile	tcc Ser	acc Thr	1555

470 475 480 485

ctg gcg aat aga aca aac aag gtt ctt cgc atg aag gac tac cac cca $\,$ 1603 Leu Ala Asn Arg Thr Asn Lys Val Leu Arg Met Lys Asp Tyr His Pro $\,$ 490 $\,$ 495 $\,$ 500

gaa ctg aag gtc taaaagcttt tcccgcccgg ttc 1638 Glu Leu Lys Val 505

<210> 292

<211> 505

<212> PRT

<213> Corynebacterium glutamicum

<400> 292

Val Thr Ser Asp Ser Pro Ala Pro Ala Thr Val Asn Ala Val Phe Asn
1 5 10 15

Asn Ser Asn Gly Phe Ile Ala Ser Met Leu Gly Asn Gln Val Val Asn 20 25 30

Thr Val Val Glu Thr Met Asp Thr Glu Phe Gly Val Arg Ile Val Asp 35 40 45

Asn Met Leu Val Gly Phe Ser Thr Leu Gly Asp Gly Met Asn Gln Ala 50 55 60

Ala Glu Gly Ala Thr Thr Leu Ser Asp Gly Val Gly Ser Ala Asn Asp 65 70 75 80

Gly Ala Val Gln Leu Ala Asp Gly Ala Val Thr Leu Arg Asp Gly Ile 85 90 95

Ala Ser Ala Asn Glu Gly Ala Gln Ser Leu Ala Asp Gly Ala Ser Gln 100 105 110

Leu Asp Thr Gly Leu Gly Ser Ala Ala Thr Gly Ser Gln Thr Leu Ala 115 120 125

Asp Gly Leu Ser Ser Leu Ser Ala Gly Thr Ala Gln Leu Gly Gln Gly 130 135 140

Ala Thr Gln Val Ser Asp Gly Val Gly Gln Leu Val Asp Gln Val Ala 145 150 155 160

Pro Leu Thr Ala Tyr Val Pro Asp Ile Asn Ser Gln Leu Ile Thr Leu 165 170 175

Arg Asp Gly Ala Ala Thr Ile Ala Ser Glu Leu Ser Asp Pro Ser Ser 180 185 190

Thr Tyr Arg Ser Gly Val Asp Ser Ala Val Ser Ala Ser Gln Gln Leu 195 200 205

Ala Ala Gly Leu Gln Thr Leu Lys Asp Gly Ser Ser Gln Leu Ser Ile

210 215 220

Gly Ala Arg Thr Leu Ala Asp Gly Thr Ser Gln Leu Ala Ala Gly Ser 230 Glu Gln Leu Val Val Gly Ala Gln Ala Leu Arg Asp Gly Thr Val Gln 250 Leu Asp Glu Gly Ser Ser Glu Leu Ala Leu Lys Leu Thr Asp Gly Ala Ser Gln Val Pro Thr Phe Ala Asp Gly Ala Asp Thr Thr Ile Ala Thr 280 Pro Val Glu Thr Glu Gln Ala Gly Asp Thr Thr Pro Leu Phe Gly Ile 295 Gly Leu Ala Pro Phe Phe Met Ala Val Gly Leu Phe Met Gly Ala Thr 315 310 Val Ala Trp Met Ile Leu His Pro Ile Ser Arg Arg Ala Leu Asp Ser 330 Arg Met Gly Gly Phe Arg Gly Thr Leu Ala Ser Tyr Leu Pro Ser Thr 345 Val Leu Gly Leu Gly Gln Ala Thr Ile Met Trp Ala Val Leu Tyr Phe 360 Leu Leu Asp Leu Asn Pro Ala His Pro Ala Gly Leu Trp Met Ala Met 375 Val Ala Ile Ser Trp Val Phe Ile Ser Ile Thr His Met Phe Asn Asn 395 Val Ala Gly Pro Ser Ala Gly Arg Val Leu Ser Ile Val Met Met Ser 410 Phe Gln Leu Val Ser Ser Gly Gly Leu Tyr Pro Pro Glu Thr Gln Pro 425 420 Ala Phe Phe His Trp Phe His Thr Tyr Asp Pro Ile Thr Tyr Ala Val Asn Leu Val Arg Gln Met Ile Phe Asn Glu Thr Pro Ser Asn Asp Pro 455

Arg Phe Ile Gln Ala Ile Trp Val Leu Leu Phe Ile Trp Ala Leu Met 470

Leu Ala Ile Ser Thr Leu Ala Asn Arg Thr Asn Lys Val Leu Arg Met 485 490

Lys Asp Tyr His Pro Glu Leu Lys Val 500

<210> 293 <211> 664 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(664) <223> RXN01091 <400> 293 tegteggaaa aactggegat actattgata acgggeatgg gtteacette gataaageae 60 ggtctatgct ggactatcgc cttttgacac gagtatcgca atg gtc ccg aac aca Met Val Pro Asn Thr 1 gtc ctt atc cat gac gaa acc gcc gat ctg gcg acg cag atc cag cgg 163 Val Leu Ile His Asp Glu Thr Ala Asp Leu Ala Thr Gln Ile Gln Arg ctg gaa cat atc atg gcg tgc ctg cgc gat ccg gtc agc gga tgc ccg 211 Leu Glu His Ile Met Ala Cys Leu Arg Asp Pro Val Ser Gly Cys Pro 25 30 tgg gat att gaa cag acc ttt gcc agc atc gcg ccc cac acg att gag 259 Trp Asp Ile Glu Gln Thr Phe Ala Ser Ile Ala Pro His Thr Ile Glu 40 gaa ggc tac gag gtt gcc gac gcc atc gcg cag gaa gac tgg ccc gag 307 Glu Gly Tyr Glu Val Ala Asp Ala Ile Ala Gln Glu Asp Trp Pro Glu cta cgc ggc gag ttg ggc gat ttg ctg ttt cag acc gtg ttt cac gcc Leu Arg Gly Glu Leu Gly Asp Leu Leu Phe Gln Thr Val Phe His Ala 70 75 caa atg gcg cgc gag gca ggc cat ttc gct ttg gtt gac gtg gtg aag Gln Met Ala Arg Glu Ala Gly His Phe Ala Leu Val Asp Val Val Lys 90 100 gca att tcg gac aag atg gtt ttg cgc cat ccg cac gtg ttc ggc gcg 451 Ala Ile Ser Asp Lys Met Val Leu Arg His Pro His Val Phe Gly Ala 105 110 cag tcg aac gcg aaa tcc gcc gac cag cag gtg gaa gat tgg gaa gtc 499 Gln Ser Asn Ala Lys Ser Ala Asp Gln Gln Val Glu Asp Trp Glu Val 120 125 atc aag gcg ccc gag cgc gcg ggc aaa gcg caa aag ggc gtt ttg gat 547 Ile Lys Ala Pro Glu Arg Ala Gly Lys Ala Gln Lys Gly Val Leu Asp 140 135 ggc gtc gcg ctg gga ctg cct gcc ctg atg cgc gcg acg aag ctg caa 595 Gly Val Ala Leu Gly Leu Pro Ala Leu Met Arg Ala Thr Lys Leu Gln 155 150 160

aac aac gcc gcg cgc gtt ggg ttt gat tgg ccc gac att ggg cag gta 643 Asn Asn Ala Ala Arg Val Gly Phe Asp Trp Pro Asp Ile Gly Gln Val 170 175 180

ctt gga aag gtg acc gag gaa Leu Gly Lys Val Thr Glu Glu 185 664

<210> 294

<211> 188

<212> PRT

<213> Corynebacterium glutamicum

<400> 294

Met Val Pro Asn Thr Val Leu Ile His Asp Glu Thr Ala Asp Leu Ala 1 5 10 15

Thr Gln Ile Gln Arg Leu Glu His Ile Met Ala Cys Leu Arg Asp Pro 20 25 30

Val Ser Gly Cys Pro Trp Asp Ile Glu Gln Thr Phe Ala Ser Ile Ala 35 40 45

Pro His Thr Ile Glu Glu Gly Tyr Glu Val Ala Asp Ala Ile Ala Gln
50 55 60

Glu Asp Trp Pro Glu Leu Arg Gly Glu Leu Gly Asp Leu Leu Phe Gln
65 70 75 80

Thr Val Phe His Ala Gln Met Ala Arg Glu Ala Gly His Phe Ala Leu 85 90 95

Val Asp Val Lys Ala Ile Ser Asp Lys Met Val Leu Arg His Pro 100 105 110

His Val Phe Gly Ala Gln Ser Asn Ala Lys Ser Ala Asp Gln Gln Val 115 120 125

Glu Asp Trp Glu Val Ile Lys Ala Pro Glu Arg Ala Gly Lys Ala Gln 130 135 140

Lys Gly Val Leu Asp Gly Val Ala Leu Gly Leu Pro Ala Leu Met Arg 145 150 155 160

Ala Thr Lys Leu Gln Asn Asn Ala Ala Arg Val Gly Phe Asp Trp Pro 165 170 175

Asp Ile Gly Gln Val Leu Gly Lys Val Thr Glu Glu 180 185

<210> 295

<211> 357

<212> DNA

<213> Corynebacterium glutamicum

<22	1> C	101)	(3 979	34)												
	0> 2 ggtc		gaac	ttca	ct c	ggct	agtc	c tt	agac	tcaa	atg	tgtt	cag	acaa	acactg	60
gca	ccgt	aag (gcac	gaaa	gt t	accg	aaag	g ac	tggt	tccc	_		_	cca Pro		115
														cca Pro 20		163
_	_		_		_			_			_	_		gtc Val	_	211
														cac His		259
	_	_	-			_	_		-	-	-	_	-	gag Glu	_	307
			gca Ala	_			_		taaa	aacto	ctc a	agtta	agaco	ca		354
tta																357
<211 <212)> 29 .> 78 ?> PR 3> Co	t T	ebact	eriu	m gl	utaπ	nicum	ı								
)> 29 Thr		Pro	Asn 5	Thr	Leu	Lys	Gln	Thr 10	Thr	Leu	Arg	Ser	Asp 15	Glu	
Phe	Ser	Cys	Pro 20	Ser	Cys	Val	Ser	Lys 25	Ile	Glu	Asn	Lys	Leu 30	Asn	Gly	

Leu Asp Gly Val Asp Asn Ala Glu Val Lys Phe Ser Ser Gly Arg Ile

Leu Val Asp His Asp Pro Ser Lys Val Ser Ile Lys Asp Leu Val Ala

Ala Val Ala Glu Val Gly Tyr Thr Ala Lys Pro Ser Ala Ile

412

٠	<210> 297 <211> 357 <212> DNA <213> Corynebacterium glutamicum																
•	<220> <221> CDS <222> (101)(334) <223> RXS02987																
		0> 2 gttt		ccaç	gtca	aag g	jaatt	aacc	c gg	aaag	gacc	gta	tctt	taa	aggt	gcaagc	60
á	aca	ggaa	cat	gacç	gataa	aa g	gatga	aagg	a cc	tggt	tacg		Thr		ccc Pro		115
ā	icg Thr	ctg Leu	aag Lys	aac Asn	acc Thr	Thr	ttg Leu	cgc Arg	tct Ser	gat Asp 15	Glu	ttc Phe	acc Thr	tgt Cys	ccg Pro 20	agc Ser	163
t	gt Sys	gtc Val	gcc Ala	aag Lys 25	atc :Ile	gaa Glu	aac Asn	aag Lys	ctg Leu 30	Asn	ggt Gly	ttg Leu	gac Asp	ggc Gly 35	gtg Val	gag Glu	211
A	at	gcg Ala	gag Glu 40	gtg Val	aag Lys	ttc Phe	tcc Ser	tcc Ser 45	gga Gly	cgc Arg	atc Ile	ctg Leu	atc Ile 50	acc Thr	cac His	gac Asp	259
P	ca ro	cag Gln 55	aag Lys	gtc Val	tcc Ser	gta Val	cgt Arg 60	gac Asp	ctg Leu	gtc Val	acc Thr	gcg Ala 65	gta Val	gcc Ala	gag Glu	gtc Val	307
					aag Lys					tga	cgca	ctc (ccga	ccc	ac		354
a	ag																357
< <	211 212)> 29 .> 78 ?> PF 8> Co	3 የ ፐ	ebac	teri	ım gi	lutar	nicur	n								
)> 29 Thr		Pro	Ala 5	Thr	Leu	Lys	Asn	Thr 10	Thr	Leu	Arg	Ser	Asp 15	Glu	
P	he	Thr	Cys	Pro 20	Ser	Cys	Val	Ala	Lys 25	Ile	Glu	Asn	Lys	Leu 30	Asn	Gly	
L	eu	Asp	Gly 35	Val	Glu	Asn	Ala	Glu 40	Val	Lys	Phe	Ser	Ser 45	Gly	Arg	Ile	
L	eu	Ile 50	Thr	His	Asp	Pro	Gln 55	Lys	Val	Ser	Val	Arg 60	Asp	Leu	Val	Thr	

Ala Val Ala Glu Val Gly Tyr Thr Ala Lys Pro Ser Ala Ile

<210> 299 <211> 492 <212> DNA <213> Corynebacterium glutamicum <220> <221> CDS <222> (101)..(469) <223> RXS03095 <400> 299 aacgcctcaa ttagtgccag accttgccga ccgcagacca aacttcacca tttcaaacca 60 tccctagcca caacaacggc agttgtgcaa tgatctgcgt atg aat gca gat aag Met Asn Ala Asp Lys aaa atg tgc gga atg aac ccg gat agc caa tac gtc gaa ctt gcc gtc 163 Lys Met Cys Gly Met Asn Pro Asp Ser Gln Tyr Val Glu Leu Ala Val gaa gtt ttc gga ctc ctc gcg gac gcc act cga gtt cgc atc atc ttg Glu Val Phe Gly Leu Leu Ala Asp Ala Thr Arg Val Arg Ile Ile Leu 25 30 gca ctt cga aac agt ggt gaa ctt tcc gta aac cac ctc gcg gac atc 259 Ala Leu Arg Asn Ser Gly Glu Leu Ser Val Asn His Leu Ala Asp Ile 45 307 gtc gat aaa tcc ccc gca gca gtt tcc caa cac ctc gcc cgg ctg cgc Val Asp Lys Ser Pro Ala Ala Val Ser Gln His Leu Ala Arg Leu Arg atg gcc cga atc gtg tcc acc cgt caa gaa ggt caa cga gtt ttc tac 355 Met Ala Arg Ile Val Ser Thr Arg Gln Glu Gly Gln Arg Val Phe Tyr 75 aaa ctc acc aat gaa cac gca tca cag cta gtc tcc gac gct att ttt 403 Lys Leu Thr Asn Glu His Ala Ser Gln Leu Val Ser Asp Ala Ile Phe cag gcg gaa cac acc att gcg gac ggc cag act ccc cca cac cac cac 451 Gln Ala Glu His Thr Ile Ala Asp Gly Gln Thr Pro Pro His His His 110 492 cga gaa cga gaa caa tca tgaccaccca cagtcaccaa gaa Arg Glu Arg Glu Gln Ser 120 <210> 300

414

<211> 123

<212> PRT

<213> Corynebacterium glutamicum

<400> 300

Met Asn Ala Asp Lys Lys Met Cys Gly Met Asn Pro Asp Ser Gln Tyr

1 5 10 15

Val Glu Leu Ala Val Glu Val Phe Gly Leu Leu Ala Asp Ala Thr Arg
20 25 30

Val Arg Ile Ile Leu Ala Leu Arg Asn Ser Gly Glu Leu Ser Val Asn 35 40 45

His Leu Ala Asp Ile Val Asp Lys Ser Pro Ala Ala Val Ser Gln His
50 55 60

Leu Ala Arg Leu Arg Met Ala Arg Ile Val Ser Thr Arg Gln Glu Gly 65 70 75 80

Gln Arg Val Phe Tyr Lys Leu Thr Asn Glu His Ala Ser Gln Leu Val 85 90 95

Ser Asp Ala Ile Phe Gln Ala Glu His Thr Ile Ala Asp Gly Gln Thr 100 105 110

Pro Pro His His His Arg Glu Arg Glu Gln Ser 115 120

<210> 301

<211> 10

<212> PRT

<213> Corynebacterium glutamicum

<400> 301

Ala Pro Ala Leu Gly Pro Thr Leu Ser Gly
1 5 10

<210> 302

<211> 10

<212> PRT

<213> Corynebacterium glutamicum

<400> 302

GÌY Xaa Xaa Xaa Gly Pro Xaa Xaa Gly Gly 1 5 10

<210> 303

<211> 20

<212> DNA

<213> Corynebacterium glutamicum

<400> 303

ctccaggatt gctccgaagg

20

<210> 304 <211> 20 <212> DNA <213> Corynebacterium glutamicum <400> 304 cacagtggtt gaccactggc BGI-124CPPC - 97 -

20

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 4 January 2001 (04.01.2001)

(10) International Publication Number WO 01/00804 A3

(51) International Patent Classification7: C12N 15/31, 1/21, C12Q 1/68, C07K 14/34

PCT/IB00/00922 (21) International Application Number:

(22) International Filing Date: 23 June 2000 (23.06.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/141,031	25 June 1999 (25.06.1999)	US
60/142,692	1 July 1999 (01.07.1999)	US
199 30 429.7	1 July 1999 (01.07.1999)	DE
199 31 541.8	8 July 1999 (08.07.1999)	DE
199 31 413.6	8 July 1999 (08.07.1999)	DE
199 31 457.8	8 July 1999 (08.07.1999)	DE
199 32 230.9	9 July 1999 (09.07.1999)	DE
199 32 209.0	9 July 1999 (09.07.1999)	DE
199 32 914.1	14 July 1999 (14.07.1999)	DE
60/151,214	27 August 1999 (27.08.1999)	US
199 40 764.9	27 August 1999 (27.08.1999)	DE
199 41 382.7	31 August 1999 (31.08.1999)	DE

(71) Applicant: BASF **AKTIENGESELLSCHAFT** [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Inventors: POMPEJUS, Markus; Wenjenstrasse 21, D-67251 Freinsheim (DE). KRÖGER, Burkhard; Im Waldhof 1, D-67117 Limburgerhof (DE). SCHRÖDER, Hartwig; Goethestrasse 5, D-69226 Nussloch (DE). ZELDER, Oskar; Rossmarktstrasse 27, D-67346 Speyer (DE). HABERHAUER, Gregor; Moselstrasse 42, D-67117 Limburgerhof (DE). LEE, Heung-Shick; Korea University, Graduate School of Biotechnology, Anam Dong, Sungbook-Gu, Seoul 136-701 (KR). KIM, Hyung-Joon; Korea University, Graduate School of Biotechnology, Anam Dong, Sungbook-Gu, Seoul 136-701 (KR).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT. LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

(88) Date of publication of the international search report: 2 August 2001

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

CORYNEBACTERIUM GLUTAMICUM GENES ENCODING STRESS, RESISTANCE AND TOLERANCE (54) Title: **PROTEINS**

(57) Abstract: Isolated nucleic acid molecules, designated SRT nucleic acid molecules, which encode novel SRT proteins from Corynebacterium glutamicum are described. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing SRT nucleic acid molecules, and host cells into which the expression vectors have been introduced. The invention still further provides isolated SRT proteins, mutated SRT proteins, fusion proteins, antigenic peptides and methods for the improvement of production of a desired compound from C. glutamicum based on genetic engineering of SRT genes in this organism.

INTERNATIONAL SEARCH REPORT

PCT/IB 00/00922

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C12N15/31 C12N1/21 C12Q1/68 C07K14/34 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) C07K C12N C12Q Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, BIOSIS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ° Relevant to claim No. Х DATABASE EBI [Online] 6,8 AC X13385, 19 March 1999 (1999-03-19) BARASH S. ET AL.: "Enterococcus faecalis genome contig" XP002152527 abstract Х JAEGER WOLFGANG ET AL: "A Corynebacterium 1,2, 8-19,22 glutamicum gene conferring multidrug resistance in the heterologous host Escherichia coli." JOURNAL OF BACTERIOLOGY, vol. 179, no. 7, 1997, pages 2449-2451, XP002152524 ISSN: 0021-9193 the whole document -/--Further documents are listed in the continuation of box C. Patent family members are listed in annex. X Special categories of cited documents : "I later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the investigation." "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed in the art. "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 13.02.01 14 November 2000 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Kania, T Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)