南京大学大学数学试卷

二. (10分) 设 A 是 n 阶矩阵, $\alpha_i (i=1,2,\cdots,n)$ 为 n 维非零向量,且 $A\alpha_i = \alpha_{i+1}, 1 \leq i < n, A\alpha_n = 0$,证 明向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性无关.

三. $(10\mathbf{分})$ 设 A,B 都是 n 阶方阵,且 A 和 B 相似,证明 A,B 有相同的特征值。反之是否成立,请说明理由.

四. (10分) 设 A,B 都是 n 阶方阵,I 是 n 阶单位矩阵,且 $A^2 = I, B^2 = I, |A| + |B| = 0$,证明 A + B 不可 $\dot{\oplus}$.

五. (12分) 已知 A,B 都是 $m \times n$ 矩阵,秩分别为 r(A) = n - s, r(B) = n - t,且 s + t > n,证明方程组 Ax = 0 和 Bx = 0 有非零公共解.

六.
$$(12分)$$
 设 $\alpha=\begin{pmatrix}1\\2\\1\end{pmatrix}$, $\beta=\begin{pmatrix}1\\\frac{1}{2}\\1\end{pmatrix}$, $\gamma=\begin{pmatrix}0\\0\\8\end{pmatrix}$, $A=\alpha\beta^T, B=\beta^T\alpha$, 试求解方程 $2B^2A^2x=A^4x+B^4x+\gamma$.

七. (10分) 设 R^3 中的线性变换 T 把基 $\alpha = (1,0,1), \beta = (0,1,0), \gamma = (0,0,1)$ 变为基 $\alpha_1 = (1,0,2), \beta_1 = (-1,2,-1), \gamma_1 = (1,0,0)$,设 T 在基 α,β,γ 以及基 $\alpha_1,\beta_1,\gamma_1$ 下的矩阵分别为 A,B,求出 A 和 B.

八. (12**分**) 已知三阶方阵 A 和三维向量 ξ ,使得向量组 ξ , $A\xi$, $A^2\xi$ 线性无关,且满足 $A^3\xi = 3A\xi - 2A^2\xi$,(1) 记 $P = [\xi, A\xi, A^2\xi]$,求三阶方阵 B 使得 $A = PBP^{-1}$,(2) 计算行列式 |A + I|,其中 I 是三阶单位矩阵.

九. (14分) 已知二次型 $f(x_1,x_2,x_3)=(1-a)x_1^2+(1-a)x_2^2+2x_3^2+2(1+a)x_1x_2$ 的秩为2. (1) 求a的值; (2) 求正交变换 x=Py,把 $f(x_1,x_2,x_3)$ 化成标准形; (3) 求方程 $f(x_1,x_2,x_3)=0$ 的解.