

Modeling Melodic Feature Dependency with Modularized Variational Auto-Encoder

Yu-An Wang* Yu-Kai Huang* Tzu-Chuan Lin* Shang-Yu Su Yun-Nung (Vivian) Chen

Motivation

Approach

Experiments

Conclusion

Outline

Motivation

Experiments

Conclusion

Symbolic Music Generation

Sequence Modeling

RNN (Recurrent Neural Networks)

Generative Modeling

- VAE (Variational Auto-Encoders)
- GAN (Generative Adversarial Networks)

- VRAE = RNN + VAE
 - modeling temporal dependency via recurrent units
 - o diverse generation via controllable codes

Idea: modeling melodic dependency of notes in terms of time, duration, and pitch in a specific order

- Contributions
 - ✓ incorporate domain knowledge by a *modularized* framework
 - ✓ integrate *note-unrolling* to model the dependency between melodic features
 - ✓ achieve better performance than other generative models

Outline

Approach

Experiments

Conclusion

MVAE: Modularized Variational Auto-Encoder

Data Representation

Represent note events via different features

Variational Auto-Encoder

• Given an input $x=(x_1,\cdots,x_t)$, the goal is to reconstruct the input

Modularized Encoder and Decoder

Each feature is modeled by its own RNN

Modularized Note-Unrolling Decoder

Modeling inter-feature dependency in a specific order

$$p(P_t, T_t, dT_t \mid \text{note}_{1:t-1})$$

$$= p(dT_t \mid \text{note}_{1:t-1}) \times p(T_t \mid \text{note}_{1:t-1}) \times p(P_t \mid \text{note}_{1:t-1})$$

Outline

Motivation

Approach

Experiments

Conclusion

Experimental Setup

• Data: a merged set of Nottingham, Piano-midi.de, JSB Chorales

- Q1: Is the modularized encoder better?
 - Baseline BachProp (Colombo & Gerstner, 2018)
- Q2: Is the *variational* inference important?
 - Baseline modularized auto-encoder
- Q3: Is the note-enrolling important?
 - Ablation test

Human Evaluation

- 1-6 scales (1: machine-generated; 6: human-generated)
- Collect 85 scores for each model

Model	Reconstruction Error	KL Divergence	Human Score	
			μ	σ
BachProp	240.16	-	3.51	1.61
Modularized AutoEncoder	20.79	-	2.77	1.65
Proposed w/o note unrolling	85.88	264.00	3.22	1.73
Proposed w/ note unrolling	73.19	30.37	4.24	1.54
Real data	-	-	4.34	1.55

- ✓ A1: The *modularized encoder* is better.
- ✓ A2: The variational inference is necessary.
- ✓ A3: The *note-enrolling* is important.

Latent Space Analysis

IULAB

⊃ ⊢ Z

15

Interpolation distribution

Fig. 2. Average distance between two random datapoints on Z.

Smooth curve: meaningful interpolation points

Visualization

Fig. 3. Visualization on the latent space via PCA, where three different types of music are separated in Z.

Distinct features for different music characteristics

→ informative latent codes

Outline

Motivation

Approach

Experiments

Conclusion

16

Conclusion

- We propose a VAE with a modularized framework to model the melodic dependency between note attributes
- The proposed note event representations bring better flexibility
- The experiments in a merged dataset with diverse music types show the superior performance of our MVAE
 - ✓ The *modularized encoder* is better.
 - ✓ The *variational* inference is necessary.
 - ✓ The *note-enrolling* is important.
 - ✓ The learned latent codes are informative.

Yu-An Wang*

Yu-Kai Huang*

Tzu-Chuan Lin*

Shang-Yu Su

Yun-Nung Chen

http://mvae.miulab.tw

