LABORATORIO_03_ JAIRO-LEAL.R

jairo

2023-02-23

```
# Laboratorio 3: Importar datos a R
# Maestría en Ciencias Forestales UANL
# Alumno: Jairo Alberto Leal Gómez
# Matricula: 1723093
# Objetivos de la práctica
## Iniciar una sesión en Rstudio
## Realizar una descripción estadística de un conjunto de datos.
## Comprender el diseño del panel de RStudio.
## Conozca la sintaxis markdown
# Parte 1: Importar datos -----
# Importar desde archivos csv
trees <- read.csv("C:/Users/jairo/OneDrive/Escritorio/MCF 2022-2023/PRIMER SEMESTRE/ANALISIS EST
ADISTICO/DR. MARCO/HW_2/DBH_1.csv", header = TRUE)
head(trees)
```

```
Tree dbh parcela
##
## 1
       1 16.5
       2 25.3
## 2
## 3
      3 22.1
## 4
       4 17.2
                    1
                     1
       5 16.1
## 5
## 6
        6 8.1
```

```
# Ingresar datos directo en la consola
dbh <- c(16.5, 25.3, 22.1, 17.2, 16.1, 8.1, 34.3, 5.4, 5.7, 11.2, 24.1,
         14.5, 7.7, 15.6, 15.9, 10, 17.5, 20.5, 7.8, 27.3,
         9.7, 6.5, 23.4, 8.2, 28.5, 10.4, 11.5, 14.3, 17.2, 16.8)
head(dbh)
```

```
## [1] 16.5 25.3 22.1 17.2 16.1 8.1
```

```
dbh
```

```
## [1] 16.5 25.3 22.1 17.2 16.1 8.1 34.3 5.4 5.7 11.2 24.1 14.5 7.7 15.6 15.9
## [16] 10.0 17.5 20.5 7.8 27.3 9.7 6.5 23.4 8.2 28.5 10.4 11.5 14.3 17.2 16.8
```

```
# Accesar datos de Internet
```

prof url <- "http://www.profepa.gob.mx/innovaportal/file/7635/1/accionesInspeccionfoanp.csv"</pre> profepa <- read.csv(prof_url, header = FALSE)</pre> head(profepa)

```
##
                      ٧1
                                     V2
                                               ٧3
                                                          ٧4
                 Entidad Inspecci\xf3n Recorrido Operativo
## 1
                                      7
## 2
          Aguascalientes
                                                5
                                                           1
## 3
         Baja California
                                      0
                                               12
                                                           3
## 4 Baja California Sur
                                      5
                                                9
                                                           3
## 5
                Campeche
                                      1
                                                4
                                                           3
## 6
                 Chiapas
                                      3
                                                           0
                                               11
```

```
prof_url_2 <- paste0("http://www.profepa.gob.mx/innovaportal/","file/7635/1/accionesInspeccionfo</pre>
anp.csv")
profepa2 <- read.csv(prof url 2, header = FALSE)</pre>
head(profepa2)
```

#:	#	V1	V2	V3	V4
#:	# 1	Entidad	Inspecci\xf3n	Recorrido	Operativo
#:	‡ 2	Aguascalientes	7	5	1
#:	# 3	Baja California	0	12	3
#:	# 4	Baja California Sur	5	9	3
#:	# 5	Campeche	1	4	3
#:	# 6	Chiapas	3	11	0

```
# Datos de URL seguras: Dropbox y Github
```

Link https://mran.microsoft.com/snapshot/2014-12-26/web/packages/repmis/repmis.pdf

#Dropbox

library(repmis)

conjunto <- source_data("https://www.dropbox.com/s/hmsf07bbayxv6m3/cuadro1.csv?dl=1")</pre>

Downloading data from: https://www.dropbox.com/s/hmsf07bbayxv6m3/cuadro1.csv?dl=1

```
## SHA-1 hash of the downloaded data file is:
## 2bdde4663f51aa4198b04a248715d0d93498e7ba
```

```
conjunto
```

##							Diametro	
##		1	12	F	С	4	15.3	
##	2	2	12	F	D	3	17.8	
##	3	3	9	С	D	5	18.2	
##		4	9	Н	S	4	9.7	8.79
##		5	7	Н	I	6	10.8	10.18
##		6	10	С	I	3	14.1	
##	7	7	10	С	С	2	17.1	15.34
##	8	8	12	C	D	2	20.6	17.22
##	9	9	16	F	С	4	18.2	15.15
##	10	10	14	F	I	5	16.1	14.66
##	11	11	8	Н	D	3	14.2	17.43
##	12	12	5	Н	D	6	14.8	17.45
##	13	13	12	F	I	2	19.1	14.18
##	14	14	5	C	I	2	16.7	13.40
##	15	15	12	С	S	4	18.9	10.40
##	16	16	20	Н	S	3	12.4	11.52
	17	17	15	Н	С	0	17.3	14.61
##	18	18	20	F	D	1	22.7	21.46
	19	19	15	С	С	4		
	20	20	14	С	I	3	17.7	11.38
	21	21	14	C	S	5	13.4	
	22	22	13	С	I	4		
	23	23	14	F	D	1		18.71
	24	24	20	F	I	4	15.0	14.48
	25	25	21	F.	C	2		14.81
	26	26	5	Н	I	4	15.8	12.01
	27	27	2	Н	I	3	16.1	
	28	28	22	C	C	3	15.4	
	29	29	22	C	I	0	17.8	14.46
	30	30	18	C	S	1		8.47
	31	31	16	C	I	3		
	32	32	16	C	C	5	14.8	
	33	33	17	F	C	4	15.5	
	34	34	17	F.	I			
	35	35	18	F F	S	6		
	36					4		
		36	20	Н	C	2		
	37	37	22	Н	C	0		
	38	38	20	Н	I	3		
	39	39	17	C	I	4		
	40	40	17	C	I	6		
	41	41	16	C	C	3		
	42	42	23	F	C	3		
	43	43	23	Н	C	4		
	44	44	22	C	I	5		
	45	45	24	C	I	4		
	46	46	23	F	I	3		
	47	47	24	С	S	6	7.7	
	48	48	25	С	S	5		
	49	49	25	Н	D	1		
##	50	50	24	Н	D	3	20.9	16.25

```
# Github
library(readr)
file <- paste0("https://raw.githubusercontent.com/mgtagle/",</pre>
                "202_Analisis_Estadistico_2020/master/cuadro1.csv")
inventario <- read.csv(file)</pre>
inventario
```

##							Diametro	
##		1	12	F	С	4	15.3	
##	2	2	12	F	D	3	17.8	
##	3	3	9	С	D	5	18.2	
##		4	9	Н	S	4	9.7	8.79
##		5	7	Н	I	6	10.8	10.18
##		6	10	С	I	3	14.1	
##	7	7	10	С	С	2	17.1	15.34
##	8	8	12	C	D	2	20.6	17.22
##	9	9	16	F	C	4	18.2	15.15
##	10	10	14	F	I	5	16.1	14.66
##	11	11	8	Н	D	3	14.2	17.43
##	12	12	5	Н	D	6	14.8	17.45
##	13	13	12	F	I	2	19.1	14.18
##	14	14	5	C	I	2	16.7	13.40
##	15	15	12	С	S	4	18.9	10.40
##	16	16	20	Н	S	3	12.4	11.52
	17	17	15	Н	С	0	17.3	14.61
##	18	18	20	F	D	1	22.7	21.46
	19	19	15	С	С	4		
	20	20	14	С	I	3	17.7	11.38
	21	21	14	C	S	5	13.4	
	22	22	13	С	I	4		
	23	23	14	F	D	1		18.71
	24	24	20	F	I	4	15.0	14.48
	25	25	21	F.	C	2		14.81
	26	26	5	Н	I	4	15.8	12.01
	27	27	2	Н	I	3	16.1	
	28	28	22	C	C	3	15.4	
	29	29	22	C	I	0	17.8	14.46
	30	30	18	C	S	1		8.47
	31	31	16	C	I	3		
	32	32	16	C	C	5	14.8	
	33	33	17	F	C	4	15.5	
	34	34	17	F.	I			
	35	35	18	F F	S	6		
	36					4		
		36	20	Н	C	2		
	37	37	22	Н	C	0		
	38	38	20	Н	I	3		
	39	39	17	C	I	4		
	40	40	17	C	I	6		
	41	41	16	C	C	3		
	42	42	23	F	C	3		
	43	43	23	Н	C	4		
	44	44	22	C	I	5		
	45	45	24	C	I	4		
	46	46	23	F	I	3		
	47	47	24	С	S	6	7.7	
	48	48	25	С	S	5		
	49	49	25	Н	D	1		
##	50	50	24	Н	D	3	20.9	16.25

```
# Parte 2: Operaciones con La base de datos -----
mean(trees$dbh)
## [1] 15.64333
sd(trees$dbh)
## [1] 7.448892
# Selección mediante restricciones
# ¿Cuántosindividuos tiene un diámetro menor (<) a 10 cm?
# Indica la sumatoria de los individuos en el objeto tree con un dbh < a 10
sum(trees$dbh < 10)</pre>
## [1] 8
# También es interesante saber cuales son los individuos que son inferiores al diámetro (dbh< 10
# Para esto, hacemos uso de la función which que no regresara cuales individuos son los que pose
n tal restricción
which(trees$dbh < 10)</pre>
## [1] 6 8 9 13 19 21 22 24
# Excluir los diámetros que se encuentran en la parcela 2. El objeto resultante se puede grabar
como trees.13.
# El símbolo ! indica NO.
trees.13 <- trees[!(trees$parcela=="2"),]</pre>
trees.13
```

```
##
      Tree dbh parcela
         1 16.5
## 1
## 2
         2 25.3
                      1
## 3
         3 22.1
                      1
         4 17.2
## 4
                      1
         5 16.1
## 5
                      1
## 6
         6 8.1
                      1
         7 34.3
## 7
                      1
         8 5.4
## 8
                      1
## 9
         9 5.7
                      1
## 10
       10 11.2
                      1
## 21
        21 9.7
                      3
## 22
        22 6.5
                      3
## 23
       23 23.4
                      3
## 24
        24 8.2
                      3
## 25
        25 28.5
                      3
## 26
        26 10.4
                      3
## 27
        27 11.5
                      3
## 28
       28 14.3
                      3
## 29
        29 17.2
                      3
## 30
        30 16.8
                      3
```

Seleccion de una submuestra

Una submuestra se puede obtener de cualquier base de datos que este disponible en R mediante l a función subset[Crawley, 2007].

Por ejemplo queremos obtener solo los diámetros iguales o menor esa 10 cm y deseamos guardarla en un objeto que se denominará trees.1.

```
trees.1 <- subset(trees, dbh <= 10)</pre>
head(trees.1)
```

```
##
     Tree dbh parcela
## 6
        6 8.1
                     1
## 8
        8 5.4
                     1
## 9
        9 5.7
                     1
## 13
       13 7.7
                     2
## 16
       16 10.0
                     2
## 19
       19 7.8
                     2
```

```
mean(trees$dbh)
```

```
## [1] 15.64333
```

```
mean(trees.1$dbh)
```

[1] 7.677778

```
# Parte 3. Representación gráfica ------
# Histogramas
# Representación parcial de los datos de mamíferos y su comportamiento durante el sueño.
# Datos tomados de la fuente OpenIntro: t.ly/Yr5I.
mamiferos <- read.csv("https://www.openintro.org/data/csv/mammals.csv")</pre>
head(mamiferos)
```

##			species	body_wt	brain_wt	non_dreaming	dreaming	total_sleep	
##	1	Africa	nelephant	6654.000	5712.0	NA	NA	3.3	
##	2	Africangiantp	ouchedrat	1.000	6.6	6.3	2.0	8.3	
##	3		ArcticFox	3.385	44.5	NA	NA	12.5	
##	4	Arcticgroun	dsquirrel	0.920	5.7	NA	NA	16.5	
##	5	Asia	nelephant	2547.000	4603.0	2.1	1.8	3.9	
##	6		Baboon	10.550	179.5	9.1	0.7	9.8	
##		life_span ges	tation pre	edation ex	xposure da	anger			
##	1	38.6	645	3	5	3			
##	2	4.5	42	3	1	3			
##	3	14.0	60	1	1	1			
##	4	NA	25	5	2	3			
##	5	69.0	624	3	5	4			
##	6	27.0	180	4	4	4			

hist(mamiferos\$total_sleep)

Histogram of mamiferos\$total_sleep


```
hist(mamiferos$total_sleep,
     xlim = c(0,20), ylim = c(0,14),
     main = "Total de horas suelo de las 39 especies",
     xlab = "Horas de sueño",
     ylab = "Frecuencia",
     las = 1,
     col = "blue")
```

Total de horas suelo de las 39 especies


```
# Barplot o grafico de barras
data("chickwts")
head(chickwts[c(1:2,42:43, 62:64), ])
```

```
##
      weight
                   feed
## 1
         179 horsebean
## 2
         160 horsebean
## 42
         226 sunflower
## 43
         320 sunflower
## 62
         379
                 casein
## 63
         260
                 casein
```

```
# Primeramente tendremos que acomodar los datos en columnas (los datos originales estan acomodad
# en dos columnas (weight, feed, Peso y tipo de alimentación de los pollos.)
feeds <- table(chickwts$feed)</pre>
feeds
```

```
##
##
      casein horsebean
                          linseed
                                   meatmeal
                                               soybean sunflower
##
          12
                    10
                                         11
                                                    14
                               12
                                                              12
```

Los datos fueron acomodados en una tabla de frecuencias (Tipo de alimentación y la cantidad de pollos alimentados por cada tipo).

barplot(feeds)

Para ordenar de forma decreciente las barras podemos personalizar como sigue barplot(feeds[order(feeds, decreasing = TRUE)])


```
barplot(feeds[order(feeds, decreasing = FALSE)],
        main = "Frecuencias por tipos de alimentacion",
        xlab = "Número de pollos",
        col = colorRampPalette(c('yellow', 'yellow4'))(6),
        horiz = 1,
        las = 1)
```

Frecuencias por tipos de alimentacion

