Objectives:

- Students will understand equivalent resistance and how to calculate it
- Students will be able to analyze parallel circuits
- Students will be able to design simple parallel circuits

Analyzing Parallel Circuits

- Start by finding "Equivalent Resistance" (R_{eq})
 - > For series paths, add the resistance together (do this first for all series paths!)
 - > For parallel paths, there is a different formula: $\frac{1}{R_{tot}} = \frac{1}{R_{tot}} + \frac{1}{R_{tot}} + \frac{1}{R_{tot}}$ $R_{tot} = \frac{1}{R_{tot}} + \frac{1}{R_{tot}} + \frac{1}{R_{tot}}$ > If necessary, redraw the circuit to make R_{eq}

$$R_{tot} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_2} \dots$$

- clear
- > Continue finding R_{eq} for series and parallel paths as they emerge in your drawings

Next ...

- After you've found R_{eq} for the entire circuit, you can find the total current (I_{tot}) for the circuit
- Remember that current:
 - > Is always the same in series paths
 - > Is conserved at junctions (incoming current =
 outgoing current)
- Remember that voltage:
 - > Stays (roughly) the same in wires
 - > Drops through resistors and other components according to Ohm's Law
- Use Ohm's Law to find
 - > Voltage changes (usually the first step)
 - > Current through parallel paths
 - > Any other quantities


```
INDIVIDUALLY:
```

Design 3 draw the circuit you proposed for the 1st part of the preliminary lab (5V, 15 mA, 1 LED = 2001)

Build 3 test (with LED) & Measure

draw

· total corrent

· Voltage @ power supply (while on)

if you

want calculate actual resistance of LED