Lecture 4: Modeling Physical Dynamics

Seyed-Hosein Attarzadeh-Niaki

Based on the Slides by Edward Lee

Embedded Real-Time Systems

-

Review

- CPS requirements
 - Functional requirements
 - Extra-functional requirements
 - Real-time-ness
 - Efficiency (energy, code size, run time, etc.)
 - Dependability
- Requirement analysis

Embedded Real-Time Systems

Models of Computation

- What does it mean, "to compute"?
- Models of computation define
 - Components and an execution model for computations of each component
 - Communication model for exchange of information between components.

Embedded Real-Time Systems

Modeling Techniques in this Course

Models that are abstractions of **system dynamics** (how system behavior changes over time)

- Modeling continuous dynamics differential equations
 Feedback control systems time-domain modeling
- Modeling discrete dynamics finite-state machines
- Modeling hybrid systems modal models, timed automata
- Concurrent models of computation
 - Synchronous composition
 - Dataflow models
 - **–** ...

Embedded Real-Time Systems

Notation Continuous-Time Signals

Position is given by three functions:

$$x \colon \mathbb{R} \to \mathbb{R}$$

$$y \colon \mathbb{R} \to \mathbb{R}$$

$$z \colon \mathbb{R} \to \mathbb{R}$$

where the domain \mathbb{R} represents time and the co-domain (range) \mathbb{R} represents position along the axis. Collecting into a vector:

$$\mathbf{x} \colon \mathbb{R} \to \mathbb{R}^3$$

Position at time $t \in \mathbb{R}$ is $\mathbf{x}(t) \in \mathbb{R}^3$.

Embedded Real-Time Systems

0

Notation Differential Equation

Velocity

$$\dot{\mathbf{x}} \colon \mathbb{R} \to \mathbb{R}^3$$

is the derivative, $\forall t \in \mathbb{R}$,

$$\dot{\mathbf{x}}(t) = \frac{d}{dt}\mathbf{x}(t)$$

Acceleration $\ddot{\mathbf{x}} \colon \mathbb{R} \to \mathbb{R}^3$ is the second derivative,

$$\ddot{\mathbf{x}} = \frac{d^2}{dt^2} \mathbf{x}$$

Force on an object is $\mathbf{F} \colon \mathbb{R} \to \mathbb{R}^3$.

Embedded Real-Time Systems

Newton's Second Law Integral Equations

Newton's second law states $\forall t \in \mathbb{R}$,

$$\mathbf{F}(t) = M\ddot{\mathbf{x}}(t)$$

where ${\cal M}$ is the mass. To account for initial position and velocity, convert this to an integral equation

$$\mathbf{x}(t) = \mathbf{x}(0) + \int_{0}^{t} \dot{\mathbf{x}}(\tau) d\tau$$
$$= \mathbf{x}(0) + t\dot{\mathbf{x}}(0) + \frac{1}{M} \int_{0}^{t} \int_{0}^{\tau} \mathbf{F}(\alpha) d\alpha d\tau,$$

Embedded Real-Time Systems

11

Orientation

- Orientation: $\theta \colon \mathbb{R} \to \mathbb{R}^3$
- Angular velocity: $\dot{\theta} \colon \mathbb{R} \to \mathbb{R}^3$
- Angular acceleration: $\ddot{\theta} \colon \mathbb{R} \to \mathbb{R}^3$
- \bullet Torque: $\mathbf{T} \colon \mathbb{R} \to \mathbb{R}^3$

$$\theta(t) = \left[\begin{array}{c} \theta_x(t) \\ \theta_y(t) \\ \dot{\theta}_z(t) \end{array} \right] = \left[\begin{array}{c} \text{roll} \\ \text{yaw} \\ \text{pitch} \end{array} \right]$$

Embedded Real-Time Systems

Angular Version of Force: Torque For a point mass rotating around a fixed axis:

- radius of the arm: $r \in \mathbb{R}$
- force orthogonal to arm: $f \in \mathbb{R}$
- mass of the object: $m \in \mathbb{R}$

$$T_{v}(t) = rf(t)$$

angular momentum, momentum

Just as force is a push or a pull, a torque is a twist.

Units: newton-meters/radian, Joules/radian

Note that radians are meters/meter (2π meters of circumference per 1 meter of radius), so as units, are optional.

Embedded Real-Time Systems

1

Rotational Version of Newton's Second Law

$$\mathbf{T}(t) = \frac{d}{dt} \left(I(t)\dot{\theta}(t) \right),\,$$

where I(t) is a 3×3 matrix called the moment of inertia tensor.

$$\begin{bmatrix} T_x(t) \\ T_y(t) \\ T_z(t) \end{bmatrix} = \frac{d}{dt} \begin{pmatrix} \begin{bmatrix} I_{xx}(t) & I_{xy}(t) & I_{xz}(t) \\ I_{yx}(t) & I_{yy}(t) & I_{yz}(t) \\ I_{zx}(t) & I_{zy}(t) & I_{zz}(t) \end{bmatrix} \begin{bmatrix} \dot{\theta}_x(t) \\ \dot{\theta}_y(t) \\ \dot{\theta}_z(t) \end{bmatrix}$$

Here, for example, $T_y(t)$ is the net torque around the y axis (which would cause changes in yaw), $I_{yx}(t)$ is the inertia that determines how acceleration around the x axis is related to torque around the y axis.

Embedded Real-Time Systems

Simplified Model

Yaw dynamics:

$$T_y(t) = I_{yy}\ddot{\theta}_y(t)$$

To account for initial angular velocity, write as

$$\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{1}{I_{yy}} \int_0^t T_y(\tau) d\tau.$$

This type of simplification is called "model order reduction".

Embedded Real-Time Systems

17

Actor Model of Systems

A *system* is a function that accepts an input *signal* and yields an output signal.

Sparameters p, q

The domain and range of the system function are sets of signals, which themselves are functions.

 $x: \mathbb{R} \to \mathbb{R}, \quad y: \mathbb{R} \to \mathbb{R}$ $S: X \to Y$

$$X = Y = (\mathbb{R} \to \mathbb{R})$$

Parameters may affect the definition of the function *S*.

Embedded Real-Time Systems

Actor Model of the Helicopter

- Input is the net torque of the tail rotor and the top rotor.
 - I_{yy} $\dot{\theta}_y(0)$ $\dot{\theta}_y$

Helicopter

- Output is the angular velocity around the y axis.
- Parameters of the model are shown in the box.
- The input and output relation is given by the equation to the right.

$$\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{1}{I_{yy}} \int_0^t T_y(\tau) d\tau$$

Embedded Real-Time Systems

Actor Models with Multiple Inputs

$$\forall t \in \mathbb{R}, \quad y(t) = x_1(t) + x_2(t) \qquad (S(x_1, x_2))(t) = y(t) = x_1(t) - x_2(t)$$

Embedded Real-Time Systems

Properties of Systems I

Causal systems

- A system is causal if its output depends only on current and past inputs
 - i.e., if for two possible inputs that are identical up to (and including) time τ , the outputs are identical up to (and including) time τ .

Memoryless systems

• A system has memory if the output depends not only on the current inputs, but also on past inputs

Embedded Real-Time Systems

Properties of Systems II

Linear and time-invariant (LTI) systems

- Satisfy superposition
 - $\forall x_1, x_2 \in X$ and $\forall a,b \in R$, $S(ax_1+bx_2) = aS(x_1) + bS(x_2)$
- Time invariance (D_T is the delay actor)
 - $\forall x \in X$ and $\forall \tau \in R$, $S(D_{\tau}(x)) = D_{\tau}(S(x))$ if $(D_{\tau}(x))(t) = x(t-\tau)$

Stable systems

desired

angular

velocity

- A system is said to be stable if the output signal is bounded for all input signals that are bounded
 - Bounded-input bounded-output stable (BIBO stable)

Check LeeSeshia for formal definitions.

Embedded Real-Time Systems

Proportional Controller

25

$$e(t) = \psi(t) - \dot{\theta}_y(t)$$
 $T_y(t) = Ke(t)$

$$\begin{split} \dot{\theta}_{y}(t) &= \dot{\theta}_{y}(0) + \frac{1}{I_{yy}} \int\limits_{0}^{t} T_{y}(\tau) d\tau \\ &= \dot{\theta}_{y}(0) + \frac{K}{I_{yy}} \int\limits_{0}^{t} (\psi(\tau) - \dot{\theta}_{y}(\tau)) d\tau \\ \end{split}$$

Note that the angular velocity appears on both sides, so this equation is not trivial to solve.

$$\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{K}{I_{yy}} \int_0^t (\psi(\tau) - \dot{\theta}_y(\tau)) d\tau$$

Desired angular velocity: $\psi(t)=0$

Simplifies differential equation to:

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0) - \frac{K}{I_{yy}} \int_{0}^{t} \dot{\theta}_{y}(\tau) d\tau$$

Which can be solved as follows (see textbook):

$$\dot{\theta}_{y}(t) = \dot{\theta}_{y}(0)e^{-Kt/I_{yy}}u(t)$$

Embedded Real-Time Systems

27

Exercise

- Reformulate the helicopter model so that it has two inputs, the torque of the top rotor and the torque of the tail rotor.
- Show (by simulation) that if the top rotor applies a constant torque, then our controller cannot keep the helicopter from rotating. Increasing the feedback gain, however, reduces the rate of rotation.
- A better controller would include an integrator in the controller. Such controllers are studied in control systems theory.

Embedded Real-Time Systems

Questions

- Can the behavior of this controller change when it is implemented in software?
- How do we measure the angular velocity in practice?
 How do we incorporate noise into this model?
- What happens when you have failures (sensors, actuators, software, computers, or networks) https://www.youtube.com/watch?v=MhEXXgiIVuY

Embedded Real-Time Systems

20

Next Lecture

- Architecture design
 - Block diagrams
 - Sequence diagrams

Embedded Real-Time Systems

SPARE SLIDES

Embedded Real-Time Systems

31

Behavior of the controller

Assume that helicopter is initially at rest, $\dot{\theta}_y(t) = \dot{\theta}_y(0) + \frac{K}{I_{yy}} \int\limits_0^t (\psi(\tau) - \dot{\theta}_y(\tau)) d\tau$

$$\dot{\theta}(0) = 0,$$

and that the desired signal is

$$\psi(t) = au(t)$$

for some constant a.

By calculus (see notes), the solution is

$$\dot{\theta}_y(t) = au(t)(1 - e^{-Kt/I_{yy}})$$

Embedded Real-Time Systems