Teoría de la Medida e Integración 2023

Lista 5

23.abril.2023

1. Sea (X,\mathcal{A},μ) un espacio de medida. Adaptar la prueba del Teorema de Convergencia Dominada para mostrar que cualquier secuencia de funciones mesurables $\{f_n\}_{n\geq 1}\subseteq \mathcal{M}(\mathcal{A})$, con $f_n\to f$, y $|f_n|\leq g$ para toda $n\geq 1$, con $g\geq 0$ y $g^p\in L^1(\mu)$, entonces

 $\lim_{n \to \infty} \int |f_n - f|^p d\mu = 0.$

2. Considere el espacio de medida $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \lambda^1)$. Hallar una secuencia de funciones integrables $\{f_n\}_{n\geq 1}$, con $f_n(x)\to f(x)$, para todo $x\in\mathbb{R}$ y una función integrable f, tales que

$$\lim_{n \to \infty} \int_{\mathbb{R}} f_n(x) \, dx \neq \int_{\mathbb{R}} f(x) \, dx.$$

¿Contradice esto el Teorema de Convergencia Limitada? Explique.

3. Probar el **Lema de Fatou para medidas**: Sea (X, \mathcal{A}, μ) espacio de medida y sea $\{A_n\}_{n\geq 1}\subset \mathcal{A}$ una secuencia de conjuntos mesurables. Definiendo

$$\liminf_{n\to\infty}An=\bigcup_{k\geq 1}\bigcap_{n\geq k}A_n\qquad {\rm y}\qquad \limsup_{n\to\infty}An=\bigcap_{k\geq 1}\bigcup_{n\geq k}A_n.$$

- $\mathrm{i)}\ \operatorname{Mostrar}\ \mathrm{que}\ \mathbf{1}_{\lim\inf_{n}A_{n}}=\lim\inf_{n}\mathbf{1}_{A_{n}}\ \mathrm{y}\ \mathbf{1}_{\lim\sup_{n}A_{n}}=\lim\sup_{n}\mathbf{1}_{A_{n}}.$
- ii) Probar que $\mu(\liminf_n A_n) \leq \liminf_n \mu(A_n)$.
- iii) Compruebe que $\limsup_n \mu(A_n) \leq \mu \bigl(\limsup_n A_n\bigr)$, si μ es una medida finita.
- iv) Dé un ejemplo donde (iii) es falso si la medida μ no es finita.
- 4. La Función Gamma de Euler. Probar que la función Gamma

$$\Gamma(t) = \int_{(0,\infty)} e^{-x} x^{t-1} dx, \quad t > 0,$$

es k veces diferenciable (para todo $k \ge 1$) y

$$\Gamma^{(k)}(t) = \int_{(0,\infty)} e^{-x} x^{t-1} (\log x)^k dx.$$

5. Función Generadora de Momentos. Sea X una variable aleatoria positiva en el espacio de probabilidad $(\Omega, \mathcal{F}, \mathbb{P})$. La función

$$\phi_X(t) = \int_{\Omega} e^{tX} d\mathbb{P}$$

se denomina función generadora de momentos. Pruebe que ϕ_X es k-veces diferenciable en $t=0^+$ si el k-ésimo momento absoluto

$$\int_{\Omega} |X|^k d\mathbb{P}$$

existe.

6. **Desigualdad de Tchebyshev**. Sea $(\Omega, \mathcal{F}, \mathbb{P})$ un espacio de probabilildad, $X : \mathcal{F} \to \mathbb{R}$ una variable aleatoria, y sea $\alpha > 0$. Mostrar la Desigualdad de Tchebyshev

$$\mathbb{P}(|X - \mathbb{E}(X)| \ge \alpha \sqrt{\mathbb{V}(X)}) \le \frac{1}{\alpha^2},$$

donde

$$\mathbb{E}(X) = \int_{\Omega} X \, d\mathbb{P}$$
 \mathbf{y} $\mathbb{V}(X) = \int_{\Omega} (X - \mathbb{E}(X))^2 \, d\mathbb{P}$.

(Sugerencia: Ver ejercico 11.3 Schilling).

7. Sea (X, \mathcal{A}, μ) un espacio de medida, y $f \in \mathcal{M}^+(\mathcal{A})$. Mostrar que la función $\nu : \mathcal{A} \to \mathbb{R}$, dada por

$$A \longmapsto \nu(A) = \int_A f \, d\mu = \int f \cdot \mathbf{1}_A \, d\mu$$

es una medida en A.

Esta medida se llama la **medida con función de densidad** f **con respecto** de μ , y se denota por $\nu = f\mu$ ó $d\nu = f\,d\mu$.