LEKGUR 4 Собственные веклоры и собственные значения runelmoro oneparopa Onp. Sugero L-«μεθικοε πρ-βο, A: L » L - «μεθικοι» oneparop. Hengrebog βεκπορ $\vec{x} \in L$ μας. coδς βεκποροм лин. oneparopa A, ECIU ∃ A ∈ IR: A(x)= Ax. Число д нау собственным значением или собственным числом оператора А Onp. Juyero A: L>L run. oneparop, A - ero maipuya в нек. базисе Е. Характеристическим многочленом А уравнением А MHOTOTIEM HOS YPABMENCIE $\mathcal{L}_{A}(\lambda) = |A - \lambda E|, \quad \mathcal{L}_{A}(\lambda) = 0$ $\det(A - \lambda E)$ Collegon A | Onpegenurenen A наз ruero, pabriose detA retzA = aut...+ann

T.K. dx c = 0 (=0.c) YCER

Опр. Спектром лин. операгора нау. ин-во всех его соб. значений.

Теорема об инвариантности хар мн-на, хар ур-г , следа и

Хар. ин-н, хар. ур-е, след и det мин. операгора не зависет от выгогра базиса мин. пр-ва.

DOK-bo.

Jugers AuA'- maspenger min. onep. A: L>L B sagueax & u & min. npba. 1) Pac Vienorornem XA(A) 4 XA(A); nyor TETE, map. nepex. of ExE':

 $X_A'(\lambda) = det(A-\lambda E) = E$ $= det(T^{-1}AT -)T^{-1}ET) = no cb-ban$ $= det(T^{-1}AT -)T^{-1}ET) = no cb-ban$ $= det(T^{-1}AT -)T^{-1}ET) = no cb-ban$ = det (T-1(A-)E)T)= = $det(T^{-1})det(A-\lambda E)detT =$ взаиннорбратные чина = $det(A-\lambda E) = X_A(\lambda)$, т.е. хар. многочлени совпадают 2) Cobnagencie хар ми-в означает совпадение их котро-в \Longrightarrow \Longrightarrow совпадение решений хар. yp-сий det $\mathcal{L}_A(\lambda)=0$ и det $\mathcal{L}_A(\lambda)=0$. 3) Запишем хар, мн-к $\mathcal{L}_{A}(\lambda) = (-1)^{n} \lambda^{n} + p_{n-1} \lambda^{n-1} + \dots + p_{1} \lambda + p_{0},$ rge 1039-101 pi une jahraer or broopa Faguea E une E! Можно док-то (не будем), что tr $A = (-1)^{n-1} p_{n-1}$, det $A = p_0$. Trossony tr A u det A takke He jahraet οτ βπδορα δαμικα. L. T.g.

$$n = 2, \mathcal{E}_{KAK Hapur}$$

$$A = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \hat{A}(\vec{e}_{1}) \hat{A}(\vec{e}_{2})$$

$$\hat{A}(\vec{e}_{1}) \hat{A}(\vec{e}_{2})$$

 $\frac{\partial C}{\partial x} = \frac{\partial A(e_i)}{\partial x} > x$

Хар.мн-н:

$$det(A-\lambda E) = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} 2-\lambda & 3 \\ 1 & 4-\lambda \end{vmatrix} =$$

Jipumep,

$$= (2-\lambda)(4-\lambda)-1.3=8-6\lambda+\lambda^2-3=\lambda^2-6\lambda+5.$$

Xap. yp-e:
$$\lambda^2-6\lambda+5=0$$

Creg oneparopa: $trA = 2+4=6=(-1)^{2-1}P_1$
Creg oneparopa: $trA = 2+4=6=(-1)^{2-1}P_1$
Oupegerurers oneparopa: $detA = \begin{vmatrix} 2 & 3 \\ 1 & 4 \end{vmatrix} = 8-3=5=p_0$

Георена. число д ∈ R els. coscsвенногу значением лин. операгора (=> (=> д явл. корнем хар. ур-я этого операгора. DOK-bo Typer $\lambda - \cos z$ However $A: L \rightarrow L$. Fro OSH, CFO $\exists \vec{X} \in L:$ $\vec{X} \neq \vec{O}$ u $\vec{A}(\vec{X}) = \lambda \vec{X}$. (1) (не обизах.) Pac. roxgecibennois oneparop I: L→L, r.e. I(x)=x Yx=L. Repenueure (1) rax: A(Z)=JI(Z) $(\widehat{A} - \lambda I)(\widehat{X}) = \widehat{\mathcal{O}}$ Due masping onepasopol le reex. organe E: $(A - \lambda E)X = 0 \quad (2)$ Maspueja onepasopa A- II (2) - 200 ognopognal CAAY. Ona uneer nempre boe pemerene (=> \Leftrightarrow det $(A-\lambda E)=0$, 470 u ogn., 470 λ - kopens xap.

урга мин. операгора. Hanomurarene Eem det CA-JE) =0 то по Ф-лам Крамера HOULGEN X=0, HO MOI UNIEN X≠7.

Опр. Собственным подпространством мин. оператора Айдия собственного значения λ нау. ин-во всех соб. векторов А, отвечающих соб. значению λ , с добавлением к этому ин-ву нучевого вектора δ . Обозн. $L(A, \lambda)$.

Теорена. L(A, I) els. линедном подпр-вом в мен пр-ве L.

Опр. Алгебранческой Теометрической кратостью соб. значения д оператора над.

кратостью д как размерность корне хар. ур. в собственного det $(A-\lambda E)=0$, подпр-ва $L(A,\lambda)$, где A- матр A 7-e. $dim L(A,\lambda)$.

Теорема. Геом краткость < = алгебр. кратносте. Если собств значенией ди..., да лин операгора А: L>L попарно различны, то система Фи,..., Фо соответств. им собств. векторов лин независемия. Док-во (по индукции).

1. $\sqrt{r} = 1$ (τ . e, λ_1 - τ 016KO ogreo c0 δ . zHarehere) $\Rightarrow c$ 00 τ 6. c0 δ . beK τ 0 ρ 0 η 1 (τ .K. σ H η 0 onp. Heregnehol, ρ 1 лин. Hezahrceny.

2. Try cro bepro gre r = m, r = m, r = g pagauthor r = m, r = g pagauthor r = m, r = g pagauthor r = m, r = g r = m, r = g r = m, r = m,

3. Док-м для r=m+1, т.е. док-м что дле разл. соб. значений, г.е. док-м что дле разл. соб. значений, г.е. док-м что дле разл. соб. значений, егоб. соб. векторы дл., для дляня лин, независения.

Pac. $d_1 d_1 + ... + d_m d_m + d_{m+1} d_{m+1} = 0$ (1).

Sipume Hum K rebot u npabot yacre (1)

One parop A: A($\lambda_1\vec{q}_1+...+\lambda_m\vec{q}_m+\lambda_m+i\vec{q}_m+i)=A(\vec{0})$ Uf onp. MH. oneparopa u creschino uf Hero (cui, npeg. reneguro): d, A(an) + ... + dm A(am) + dm+, A(am+1) = 0 21 21 Q1 + ... + dm 2m Qm + dm+1 2m+1 Qm+1 = 0 (2) Рас разност ур-ий: (2)-лин; (1): d1 (2 - 2 m+1) a1+ ... + dm (2m - 2 m+1) am + dm+1 (2 m+1 - 2 m+1) am+1 = 3 21 (7,-2m+1) at + ... + &m (2m-2m+1) am = 3. $\pi_{1.K.}$ по предположению индукции (см. n.2) \bar{q}_{i} ,..., $\bar{q}_{i_{M}}$ лин. независ., π_{0} Li (li-lm+1)=0 ∀i=1,...,m. Cueg., Li=0 UNU Di-Jm+1=0, T. e. li= Am+1. Но последнее невози, T.K. no yes. bce Octahetal $d_i=0$ $\forall i=1,...,m$]
Thogerable b (1) nonyrum $d_{m+1}\bar{q}_{m+1}=\bar{0}$.

T.K. cob bekrop no onp. Hereyre $b\bar{q}$, no \bar{q}_{m+1} \bar{q}_{m+1} \bar{q}_{m+1} \bar{q}_{m+1} \bar{q}_{m} . $d_{m+1}\neq\bar{0}$. Cref, $d_{m+1}=0$. $d_{m+1}=0$. $d_{m+1}=0$.

Ckahupobaho c CamScanner A1,..., Am, Am+ pagau4407.

Марица операпора в базисе у соб. векторов

Tacinal cs. Trycho oneparop $A: L \to L$,

rge dim L = n, unever n paymentors

coo sharehili. Thora A unever BL $n \not\equiv nuh$. Hejahic. coo bekropob,

orbeyaroujux onm coo shareheary.

Tipumen ux za bajuc L u zammun

maspungy A B or same.

$$A = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda_3 & -1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & -1 & \lambda_n \end{pmatrix} \qquad A(\vec{e_1}) = \lambda_1 \vec{e_1}$$

$$A(\vec{e_2}) = \lambda_2 \vec{e_2} \qquad A(\vec{e_3}) = \lambda_3 \vec{e_3}$$

План нахождения соб. значений др и соб. подпространств ЦА, др.

- 1) Записат матрину А оператора Ав Каком-нибудь базисе Е.
- 2) Peruno xap.yp.e: det (A-1E)=0. Ero gelicitier. KOPHU olygyt coo. ZHarehunn, oneparopa A.
- 3) $\forall \cos z \text{ Harereese} \lambda_R \text{ Hadr bee} \vec{x}$: $\hat{A}(\vec{x}) = \lambda_R \vec{x}.$

Due sono percurs yp-e (buap. copue) AX=1/kX

(A-AE)X=0

200 ognopognas CIAY. É pemerenessels. cos. nognf-lo L(A, IR).

PCP ognopognoù CNAY будет базиком в L(A, NE).

3am. ECNU d-arresp. Kparreoco IR, β -recom. Kparreoco IR, $(\beta = \dim L(A, \lambda_k) = \ker - ky \varphi CP)$, 70 $\beta \leq d$.