PLANO DE TRABALHO DO BOLSISTA 2

BOLSISTA 2									
-	Utilização de enzimas imobilizadas de espécies vegetais em biotransformações de compostos carbonílicos.								
Modalidade de bolsa solicitada:	PIBITI								

Objetivos geral e específicos:

Treinar os alunos de graduação da Universidade Federal do Cariri visando à formação de pesquisadores capacitados a desenvolver trabalhos científicos/tecnológicos em centros de pesquisa na área de química de produtos naturais, na realização de biotransformações em compostos carbonilados utilizando enzimas imobilizadas de espécies vegetais, a citar, as da família Fabaceae.

Metodologia:

- 1. Levantamento bibliográfico em sites de busca científicos;
- 2. Coleta e identificação do material botânico a ser investigado como fonte de novos biocatalisadores;
- 3. Obtenção e determinação dos padrões: os padrões dos álcoois racêmicos serão obtidos através de síntese química a partir das cetonas e dos aldeídos padrões com boroidreto de sódio. A purificação dos produtos será efetuada através de coluna cromatográfica de sílica gel. Todos os padrões serão elucidados por RMN e a separação dos enantiômeros será realizada por coluna quiral de CG-DIC ou por CLAE;
- 4. Realização de imobilização de enzimas de espécies vegetais: no processo de imobilização enzimática será adotado o procedimento adaptado da metodologia de Kalogeris (MACHADO et al., 2008). O extrato aquoso vegetal ou microbiano será misturado a uma solução de alginato de sódio 1% (m/m), na proporção de 10:1 (extrato/alginato). A mistura será agitada à temperatura ambiente por 2 horas até total miscibilidade. A solução resultante será adicionada sobre uma de solução de CaCl₂ 5 % utilizando uma seringa, onde pequenas esferas serão formadas. As esferas serão então deixadas em repouso à temperatura ambiente por 20 horas. Ao fim deste período, a solução contendo as esferas será filtrada. Após sucessivas lavagens com água destilada as esferas serão deixadas por dois dias à temperatura ambiente para que possam secar e então as enzimas imobilizadas estarão prontas para uso;
- 5. Realização das biotransformações, especificamente biorreduções, em substratos carbonílicos como cetonas e aldeídos aromáticos e alifáticos utilizando enzimas imobilizadas de espécies vegetais: nos experimentos serão utilizadas as esferas com as enzimas imobilizadas, em solução aquosa, juntamente com os substratos a serem testados e agitados em Shake (150 rpm). A biorredução de cetonas e aldeídos aromáticos e alifáticos será realizada usando a proporção de 145 mL de água, 200 mg de substrato (esferas com enzimas imobilizadas), acondicionada em Erlenmeyer (250 mL), e submetidas a agitação em Shaker (150 rpm) por um período de 72 h. As amostras então serão filtradas e o filtrado será extraído com AcOEt (3x100mL). As fases orgânicas serão secas com Na₂SO₄ anidro e concentradas sob pressão

reduzidas. As frações obtidas serão analisadas inicialmente por CCD, recromatografadas em gel de sílica e analisadas por infravermelho (IV), ressonância magnética nuclear de hidrogênio e carbono (RMN ¹H e ¹³C) e/ou cromatografia gasosa acoplada a espectrometria de massas (CG/EM) e quantificadas por cromatografia líquida de alta eficiência (CLAE) ou outros processos. As esferas com as enzimas imobilizadas serão secas e estarão prontas para o reuso;

- 6. Análises espectroscópicas dos bioprodutos: Infravermelho: os espectros de absorção na região do infravermelho serão registrados em espectrômetro Perkin-Elmer modelo 720. Para as substâncias sólidas serão utilizadas pastilhas de KBr e para as demais serão preparados filmes (análise realizada pelo bolsista na UFCA); Cromatógrafo Gasoso acoplado a espectrometria de massas: o cromatógrafo a gás a ser utilizado será da marca Shimadzu modelo GC 17A, acoplado a um espectrômetro de massas MS QP5050A equipado com coluna capilar de sílica fundida J&W Scientific DB-5 (50m de comprimento e 0,25µm de diâmetro interno e 0,25µm de das espessura do filme). Determinação estruturas dos produtos biotransformações, dos excessos enantioméricos e da enantiosseletividade (análise realizada em parceria com a URCA); Ressonância Magnética Nuclear de Hidrogênio-1 (RMN ¹H) e de Carbono-13 (RMN ¹³C): os espectros de RMN uni- e bidimensionais serão obtidos em espectrômetro Bruker AC-500, operando em 500 MHz para hidrogênio (RMN ¹H) e 125 MHz para carbono-13 (RMN ¹³C), respectivamente. Os espectros unidimensionais de RMN ¹³C serão obtidos totalmente desacoplados e, também, utilizando-se a técnica DEPT-135 (ângulo de nutação 135°). Utilizar-se-ão algumas técnicas de RMN bidimensionais: espectroscopia de correlação homonuclear (¹H-¹H-COSY), espectroscopia de Efeito Nuclear Overhauser bidimensional (NOESY). Os métodos de detecção inversa que serão utilizados são coerências quânticas múltiplas heteronucleares (HMQC) e correlação de ligações múltiplas heteronucleares (HMBC). Os solventes deuterados: clorofórmio (CDCl₃), metanol (MeOD), piridina (C₅D₅N) e dimetilsulfóxido (DMSO) serão utilizados na dissolução das substâncias submetidas às análises (análise realizada em parceria com a UFC – caso seja necessária);
- 7. Determinação das estruturas dos produtos das biotransformações, dos excessos enantioméricos e da enantiosseletividade: os excessos enantioméricos (% ee) dos produtos quirais serão determinados através de Cromatógrafo Gasoso (CG-DIC) e CLAE utilizando coluna quiral. A enantiosseletividade e o teor de conversão serão determinados por meio de programa especifico obtido por meio de uma curva de calibração usando 20 padrões (análise realizada em parceria com a UFC);
- 8. Elaboração de artigos a serem apresentados em eventos científicos e/ou publicados em periódicos científicos;
- 9. Elaboração e envio do Relatório Final individual.

Cronograma de atividades:

Atividade		Mês										
		2	3	4	5	6	7	8	9	10	11	12
Realização de												
levantamento	X											
bibliográfico.												
Obtenção e determinação	v		v									
dos padrões.		Λ	Λ									

Coleta de material botânico		X	X	X	X	X	X			
Realização de										
imobilização de enzimas		X	X	X	X	X	X			
de espécies vegetais										
Realização das										
biotransformações,										
especificamente										
biorreduções, em										
substratos carbonílicos		X	X	X	X	X	X			
como cetonas e aldeídos		1 L	11	21	21	7 %	21			
aromáticos e alifáticos										
utilizando enzimas										
imobilizadas de espécies										
vegetais.										
Análises espectroscópicas		X	X	X	X	X	X			
dos bioprodutos		7 L	7.	21	7 %	2 %	7 %			
Determinação das										
estruturas dos produtos										
das biotransformações,				X	X	X	X			
dos excessos				2.	11	1	11			
enantioméricos e da										
enantiosseletividade.										
Elaboração de artigos a										
serem apresentados em										
eventos científicos e/ou								X	X	
publicados em periódicos										
científicos.										
Elaboração e envio do										X
Relatório Final individual										