24. Задача Коши решения обыкновенных дифференциальных уравнений. Явный и неявный методы ломаных Эйлера, метод трапеций

Андрей Бареков Ярослав Пылаев По лекциям Устинова С.М. January 10, 2020

$$\frac{dx}{dt} = f(t, x), x(t_0) = x_0 \tag{1}$$

Первоначально рассмотрим одно уравнение, хотя все полученные методы сохраняют свой внешний вид и для случая, когда x - вектор.

Задача Коши или задача с начальными условиями:

Исходное дифференциальное уравнение сводится к некоторому разностному, которое потом решается пошаговым методом.

$$t_n = t_0 + n \times h^{[a]}$$
$$x_n \stackrel{\text{def}}{=} x(n), \quad f_n \stackrel{\text{def}}{=} f(t_n, x_n)$$

Проинтегрируем уравнение (1) на промежутке $[t_n, t_{n+1}]$:

$$x_{n+1} = x_n + \int_{t_n}^{t_{n+1}} f(\tau, x(\tau)) d\tau$$
 (2)

Различные методы отличаются друг от друга способом вычисления интеграла в формуле (2). Применяем формулу левых прямоугольников:

$$\int_{a}^{b} G(x) dx \approx (b - a)G(a)$$
$$x_{n+1} = x_n + hf(t_n, x_n)$$

Явный метод ломаных Эйлера

 $[^]a$ шаг интегрирования или шаг дискретности

Применяем формулу правых прямоугольников:

$$\int_{a}^{b} G(x) dx \approx (b - a)G(b)$$
$$x_{n+1} = x_n + hf(t_{n+1}, x_{n+1})$$

Неявный метод ломаных Эйлера

Применяем формулу трапеций:

$$\int_{a}^{b} G(x) dx \approx \frac{b-a}{2} (G(a) + G(b))$$
$$x_{n+1} = x_n + \frac{h}{2} (f(t_n, x_n) + f(t_{n+1}, x_{n+1}))$$

Неявный метод трапеций

В неявных методах на каждом шаге приходится решать нелинейное уравнение относительно x_{n+1} .