第14次作业: 8.1, 8.4, 8.6

8.1 在一个单因子试验中, 因子A 有3 个水平, 每个水平下各重复5 次, 具体数据及其均值、组内偏差平方和如下:

水平	数据					和	均值	组内平方和
1	4	8	5	7	6	30	6	10
2	2	0	2	2	4	10	2	8
3	3	4	6	2	5	20	4	10

试计算误差平方和 S_e ,因子A的偏差平方和 S_A ,总的偏差平方和 S_T ,并指出它们各自的自由度.

解:

$$S_A = \sum_{i=1}^r \frac{y_{i\bullet}^2}{t} - n\bar{y}^2 = \sum_{i=1}^3 \frac{y_{i\bullet}^2}{5} - 15\bar{y}^2 = 1400/5 - 240 = 40, f_A = 2$$

$$S_e = \sum_{i=1}^r \sum_{j=1}^t \left(y_{ij} - \bar{y}_{i\bullet} \right)^2 = 10 + 8 + 10 = 28, f_e = 12$$

$$S_T = S_e + S_A = 68, f_T = 14.$$

8.4 考察温度对某一化工产品得率的影响,选了五种不同的温度,在同一温度下做了三次实验,测得其得率如下,试分析温度对得率有无显著影响。

温度	60	65	70	75	80
	90	91	96	84	84
得率	92	93	96	83	89
	88	92	93	83	82

解: r = 5, t = 3, n = 15. 要检验的假设为

 H_0 : 温度对得率无显著影响.

若 H_0 为真,则

$$F = \frac{S_A/(r-1)}{S_e/(n-r)} = \frac{MS_A}{MS_e} \sim F(r-1, n-r)$$

把原始数据均减去90 后可列出如下计算表和方差分析表, r = 5 表示因子水平数, t = 3 为重复实验次数。

温度	60	65	70	75	80
y_{ij}	0	1	6	-6	-6
	2	3	6	-7	-4
	-2	-2	3	-2	-8
$y_{i\bullet}$	0	6	15	-15	-18

$$\sum_{i=1}^{5} \sum_{j=1}^{3} y_{ij}^{2} = 308, \sum_{i=1}^{5} y_{i\bullet}^{2} = 810, \frac{\left(\sum_{i=1}^{5} \sum_{j=1}^{3} y_{ij}\right)^{2}}{15} = 9.6,$$

$$S_{A} = \frac{1}{3} \times 810 - 9.6 = 260.4$$

$$S_{T} = 308 - 9.6 = 298.4$$

$$S_{e} = S_{T} - S_{A} = 38$$

方差分析表

来源	平方和	自由度	均方和	F比
A	260.4	4	65.1	17.1
e	38	10	3.8	
总和	298.4	17		

由于

$$f = 17.1, F_{0.99}(4, 10) = 6, F_{0.95}(4, 10) = 3.478,$$

所以在 $\alpha = 0.01, 0.05$ 时均认为温度对得率有显著影响。

8.6 有7 种人造纤维,每种抽4 根测其强度,得每种纤维的平均强度如下表所列.

		2					
$\bar{y}_{i\bullet}$	6.3	6.2	6.7	6.8	6.5	7.0	7.1

又有 $\sum_{i=1}^{7} \sum_{j=1}^{4} (y_{ij} - \bar{y}_{i\bullet})^2 = 18.9$,并假定各种纤维的强度服从等方差的正态分布. 试问: 7 种纤维平均强度有无显著差异? ($\alpha = 0.05$.)

解:
$$r = 7, t = 4, n = 28$$
. 要检验的假设为

Ho: 7 种纤维平均强度无显著差异.

若 H_0 为真,则

$$F = \frac{S_A/(r-1)}{S_e/(n-r)} = \frac{MS_A}{MS_e} \sim F(r-1, n-r)$$

$$\bar{y} = \frac{1}{r} \sum_{i=1}^{r} \bar{y}_{i\bullet} = \frac{1}{7} (6.3 + \dots + 7.1) = 6.6571,$$

所以

$$S_A = \sum_{i=1}^r t \bar{y}_{i\bullet}^2 - n \bar{y}^2 = 4 \times (6.3^2 + \dots + 7.1^2) - 28 \times 6.6571^2 = 2.8045, f_A = 6$$

$$S_e = \sum_{i=1}^{7} \sum_{i=1}^{4} (y_{ij} - \bar{y}_{i\bullet})^2 = 18.9, \quad f_e = 21$$

因而

$$MS_A = 2.085/6 = 0.4674, MS_e = 18.9/21 = 0.9.$$

从而

$$f = \frac{MS_A}{MS_e} = \frac{0.4674}{0.9} = 0.5193.$$

由

$$F_{0.95}(6,21) = 2.57 > 0.5193$$

(或检验的p值为0.668 > 0.05)知因子是不显著的,故认为七种纤维之间的强度无显著性差异.