Macroeconomía Internacional

Francisco Roldán IMF

November 2022

The views expressed herein are those of the authors and should not be attributed to the IMF, its Executive Board, or its management.

Idea

- · Crisis después de booms de crédito
- · Reversiones rápidas en flujos de capital
- Generar endógenamente estos movimientos con una restricción de endeudamiento
- Externalidad de sobreendeudamiento
- Descentralizar el problema de planificador
 - Impuestos óptimos a la deuda

Bianchi, J. (2011): "Overborrowing and Systemic Externalities in the Business Cycle," American Economic Review, 101, 3400-3426

Idea

- · Crisis después de booms de crédito
- Reversiones rápidas en flujos de capital
- Generar endógenamente estos movimientos con una restricción de endeudamiento
- Externalidad de sobreendeudamiento
- · Descentralizar el problema de planificador
 - · Impuestos óptimos a la deuda

Bianchi, J. (2011): "Overborrowing and Systemic Externalities in the Business Cycle," *American Economic Review*, 101, 3400-3426

Idea

- · Crisis después de booms de crédito
- · Reversiones rápidas en flujos de capital
- Generar endógenamente estos movimientos con una restricción de endeudamiento
- · Externalidad de sobreendeudamiento
- Descentralizar el problema del planificador
 - · Impuestos óptimos a la deuda

Bianchi, J. (2011): "Overborrowing and Systemic Externalities in the Business Cycle," American Economic Review, 101, 3400-3426

Idea

- · Crisis después de booms de crédito
- Reversiones rápidas en flujos de capital
- Generar endógenamente estos movimientos con una restricción de endeudamiento
- · Externalidad de sobreendeudamiento
- Descentralizar el problema del planificador
 - · Impuestos óptimos a la deuda

Bianchi, J. (2011): "Overborrowing and Systemic Externalities in the Business Cycle," American Economic Review, 101, 3400-3426

Show, don't tell: el principio de no repetirse

Modelo en una ecuación: TNT de la vez pasada +

$$b' \leq \kappa(y_T + p_N y_N)$$

Problema del agente, tomando como dadas $p_{C}(A, z), y(A, z), \Phi(A, z)$

$$v(a, A, z) = \max_{a'} u(c) + \beta \mathbb{E} \left[v(a', A', z') \mid z \right]$$
sujeto a $p_C(A, z)c + \frac{a'}{1+r} = y(A, z) + a$

$$A' = \Phi(A, z)$$

$$a' \ge -\kappa y(A, z)$$

Al mismo tiempo, deducir $p_C(A, z), y(A, z), \Phi(A, z)$ de las decisiones del agente

Show, don't tell: el principio de no repetirse

Modelo en una ecuación: TNT de la vez pasada +

$$b' \leq \kappa(y_T + p_N y_N)$$

• Problema del agente, tomando como dadas $p_C(A, z), y(A, z), \Phi(A, z)$

$$v(a,A,z) = \max_{a'} u(c) + \beta \mathbb{E} \left[v(a',A',z') \mid z \right]$$

sujeto a $p_C(A,z)c + \frac{a'}{1+r} = y(A,z) + a$
 $A' = \Phi(A,z)$
 $a' \ge -\kappa y(A,z)$

· Al mismo tiempo, deducir $p_C(A, z), y(A, z), \Phi(A, z)$ de las decisiones del agente

 \cdot Esta vez el planificador también entiende que A' afecta la restricción de endeudamiento

$$\begin{aligned} v(A,z) &= \max_{c_T,h_N,h_T,A'} u(F(h_N),c_T) + \beta \mathbb{E}\left[v(A',z') \mid z\right] \\ \text{sujeto a } c_T + \frac{A'}{1+r} &= zh_T^{\alpha} + A \\ h_N + h_T &= \min\left\{1,\mathcal{H}(\bar{w},c_T)\right\} \\ A' &\geq -\kappa \left(zh_T^{\alpha} + \underbrace{\frac{\varpi_N}{\varpi_T}\left(\frac{c_T}{F(h_N)}\right)^{1+\eta}}_{=p_N} F(h_N)\right) \end{aligned}$$

• **Observación**: Equiv. elegir c_N , c_T , deducir h_N , deducir h_T , deducir A'

Esta vez el planificador también entiende que A' afecta la restricción de endeudamiento

$$\begin{aligned} v(A,z) &= \max_{c_T,h_N,h_T,A'} u(F(h_N),c_T) + \beta \mathbb{E}\left[v(A',z') \mid z\right] \\ \text{sujeto a } c_T + \frac{A'}{1+r} &= zh_T^{\alpha} + A \\ h_N + h_T &= \min\left\{1,\mathcal{H}(\bar{w},c_T)\right\} \\ A' &\geq -\kappa \left(zh_T^{\alpha} + \underbrace{\frac{\varpi_N}{\varpi_T}\left(\frac{c_T}{F(h_N)}\right)^{1+\eta}}_{=p_N} F(h_N)\right) \end{aligned}$$

• Observación: Equiv. elegir c_N , c_T , deducir h_N , deducir h_T , deducir A'

Descentralización

- · Truco brillante y más viejo que el mar
- 1. Mirar fijo la ecuación de Euler del agente representativo (con impuestos!)

$$u'(c) = \beta(1+r)(1-\tau(A,z))\mathbb{E}\left[u'(c')\mid z\right] + \mu$$

- 2. Evaluar en $c^*(A, z)$ de la solución del planificado
- 3. Resolver $\tau(A, z)$

Descentralización

- · Truco brillante y más viejo que el mar
- 1. Mirar fijo la ecuación de Euler del agente representativo (con impuestos!)

$$u'(c) = \beta(1+r)(1-\tau(A,z))\mathbb{E}\left[u'(c')\mid z\right] + \mu$$

- 2. Evaluar en $c^*(A, z)$ de la solución del planificador
- 3. Resolver $\tau(A, z)$

Descentralización

- · Truco brillante y más viejo que el mar
- 1. Mirar fijo la ecuación de Euler del agente representativo (con impuestos!)

$$u'(c) = \beta(1+r)(1-\tau(A,z))\mathbb{E}\left[u'(c')\mid z\right] + \mu$$

- 2. Evaluar en $c^*(A, z)$ de la solución del planificador
- 3. Resolver $\tau(A, z)$

Código

suddenstops.jl