FY1001/TFY4145/TFY4109. Institutt for fysikk, NTNU. Høsten 2015.

Veiledning: 19. - 22. oktober.

Øving 8

Oppgave 1

En bølge forplanter seg på en streng utstrakt horisontalt (i x-retning). Strengen har kun vertikale utsving (i y-retning). Vi antar at strengen er uendelig lang og at utsvinget til strengen (overalt og til alle tider) er beskrevet ved:

$$y = A\sin(kx - \omega t)$$

der A = 1.0 cm, $k = 2\pi/10$ cm⁻¹ og $\omega = 200\pi$ s⁻¹.

a) Hvilken figur viser utsvinget y som funksjon av x for $0 \le x \le 25$ cm, for t = 0, t = 2.5 og t = 5.0 ms?

- b) I hvilken retning forplanter bølgen seg?
- A) I positiv x-retning.
- B) I negativ x-retning.
- C) I positiv y-retning.
- D) I negativ y-retning.
- c) For hvilke tider t vil utslaget y (for alle verdier av x) være det samme som for t = 0?
- A) t = 2.5n ms
- B) t = 5.0n ms
- C) t = 7.5n ms
- D) t = 10n ms
- $(n = 1, 2, 3, \ldots)$

d) Hva er perioden T for denne bølgen?

A) T = 2.5 ms

B) T = 5.0 ms C) T = 7.5 ms D) T = 10 ms

e) Hva er bølgelengden λ for denne bølgen?

A) $\lambda = 1$ cm B) $\lambda = 2$ cm C) $\lambda = 10$ cm D) $\lambda = 25$ cm

f) Hva er bølgehastigheten v? (Kalles også fasehastigheten.)

A) v = 5 cm/s B) v = 10 cm/s C) v = 5 m/s D) v = 10 m/s

g) Hva er maksimal hastighet v_p^{\max} til et strengelement? (Hastigheten v_p kalles ofte partikkelhastighet.)

A) 2.2 cm/s

B) 6.3 cm/s C) 2.2 m/s

D) 6.3 m/s

h) Hva er maksimal akselerasjon a^{\max} til et strengelement?

A) 3.9 km/s^2

B) 3.9 m/s^2 C) 3.9 cm/s^2 D) 3.9 mm/s^2

i) Dersom $y = A\cos(kx - \omega t + \phi)$ skal beskrive eksakt den samme bølgen som $y = A\sin(kx - \omega t)$, hvilken verdi må ϕ ha?

A) $\phi = \pi$ B) $\phi = -\pi$ C) $\phi = \pi/2$ D) $\phi = -\pi/2$

Oppgave 2

a) Summen $y_3 = y_1 + y_2$ av to harmoniske bølger med samme amplitude, frekvens og bølgelengde beskrevet ved $y_1 = A\cos(kx - \omega t + \phi_1)$ og $y_2 = A\cos(kx - \omega t + \phi_2)$ er også en harmonisk bølge beskrevet ved $y_3 = A_3 \cos(kx - \omega t + \phi_3)$. Hva er A_3 og ϕ_3 uttrykt ved A, ϕ_1 og ϕ_2 ? (Hint: $\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$)

A) $A_3 = 2A\cos\frac{\phi_1 + \phi_2}{2}$, $\phi_3 = \frac{\phi_1 - \phi_2}{2}$ B) $A_3 = 2A\cos\frac{\phi_1 - \phi_2}{2}$, $\phi_3 = \frac{\phi_1 + \phi_2}{2}$

C) $A_3 = A \cos \frac{\phi_1 + \phi_2}{2}$, $\phi_3 = \frac{\phi_1 - \phi_2}{2}$ D) $A_3 = A \cos \frac{\phi_1 - \phi_2}{2}$, $\phi_3 = \frac{\phi_1 + \phi_2}{2}$

b) Vi lar nå faseforskjellen mellom de to bølgene y_1 og y_2 , dvs $\Delta \phi \equiv \phi_1 - \phi_2$, variere. Hvilke verdier av $\Delta \phi$ gir henholdsvis maksimalverdi og minimalverdi for $|A_3|$?

A) $|A_3|^{\text{max}}$ for $\Delta \phi = n\pi/2$, $|A_3|^{\text{min}}$ for $\Delta \phi = (2n+1)\pi$

B) $|A_3|^{\text{max}}$ for $\Delta \phi = 2\pi n$, $|A_3|^{\text{min}}$ for $\Delta \phi = (2n+1)\pi$

C) $|A_3|^{\text{max}}$ for $\Delta \phi = n\pi/2$, $|A_3|^{\text{min}}$ for $\Delta \phi = (n/3 + 1)\pi$

D) $|A_3|^{\text{max}}$ for $\Delta \phi = 2\pi n$, $|A_3|^{\text{min}}$ for $\Delta \phi = (n/3 + 1)\pi$

(n = 0, 1, 2, ...)

c) Hva blir $|A_3|^{\max}$ og $|A_3|^{\min}$?

A) $|A_3|^{\max} = 2A$, $|A_3|^{\min} = 0$ B) $|A_3|^{\max} = 2A$, $|A_3|^{\min} = A/2$ C) $|A_3|^{\max} = A$, $|A_3|^{\min} = 0$ D) $|A_3|^{\max} = A$, $|A_3|^{\min} = A/4$

Oppgave 3

Den venstre enden av en (lang) streng strukket i x-retning tvinges til å vibrere normalt på strengens utstrekning (dvs såkalt transversalt) med et utsving gitt ved

$$y = A\cos\omega t$$

der A=0.10 m og $\omega=2\pi f$ med f=1.0 Hz. Strekket i strengen er S=8.5 N, og masse pr lengdeenhet er $\mu=28$ g/m. Anta at svingningen gitt ovenfor resulterer i at en rent harmonisk transversal bølge forplanter seg i positiv x-retning på strengen. Velg x=0 ved strengens venstre ende, og anta at strengen er så lang at du ikke får noen reflektert bølge mens du gjør eksperimentet.)

- a) Hva er bølgehastigheten v på strengen?
- A) 17 m/s B) 49 cm/s C) 6 cm/s D) 5.8 m/s
- b) Hva er bølgelengden til bølgen som forplanter seg langs strengen?
- A) 17 m B) 49 cm C) 6 cm D) 5.8 m
- c) Hva blir bølgehastigheten dersom strengens venstre ende svinger tre ganger så fort (dvs med f = 3.0 Hz)?
- A) 17 m/s B) 49 cm/s C) 6 cm/s D) 5.8 m/s
- d) Hva blir bølgelengden dersom strengens venstre ende svinger tre ganger så fort?
- A) 17 m B) 49 cm C) 6 cm D) 5.8 m
- e) Med frekvensen 1.0 Hz, hva blir utsvinget y til et punkt på strengen som ligger i posisjonen x = 1.0 m? (Målt i meter, som funksjon av tiden t, målt i sekunder.)
- A) $y(1.0,t) = 0.10\cos(0.37 + 6.28t)$ B) $y(1.0,t) = 0.10\cos(0.37 6.28t)$ C) $y(1.0,t) = 0.10\cos(0.37 + 1.57t)$ D) $y(1.0,t) = 0.10\cos(0.37 1.57t)$
- f) Med frekvensen 1.0 Hz, hva blir utsvinget y til et punkt på strengen som ligger i posisjonen x = 5.0 m? (Målt i meter, som funksjon av tiden t, målt i sekunder.)
- A) $y(5.0,t) = 0.10\cos(1.85 + 6.28t)$ B) $y(5.0,t) = 0.10\cos(1.85 6.28t)$ C) $y(5.0,t) = 0.10\cos(1.85 + 1.57t)$ D) $y(5.0,t) = 0.10\cos(1.85 1.57t)$
- g) Hvor stor er faseforskjellen mellom utsvinget i disse to posisjonene (dvs 1.0 og 5.0 m fra svingekilden)?
- A) 12 $^{\circ}$ B) 49 $^{\circ}$ C) 83 $^{\circ}$ D) 117 $^{\circ}$

Oppgave 4

En gaussformet bølgepuls

$$\xi(x,t) = \xi_0 \exp\left[-\frac{(x-vt)^2}{a^2}\right]$$

vandrer med hastighet v langs en (uendelig lang) streng med massetetthet μ [kg/m] og strekk-kraft S [N]. Størrelsen $\xi(x,t)$ representerer det transversale utsvinget (i forhold til likevekt) ved tidspunkt t for den biten av strengen som befinner seg i posisjon x. Bølgens maksimale utsving ξ_0 er lite (dvs: i forhold til bølgens utstrekning, som er av størrelsesorden a).

- a) Hvorfor kan vi være sikre på at $\xi(x,t)$ virkelig er en mulig bølgepuls langs en slik streng?
- A) $\xi(x,t)$ er to ganger deriverbar og har riktig avhengighet av x og t.
- B) $\xi(x,t)$ har endelig utstrekning i rommet.
- C) $\xi(x,t)$ er symmetrisk.
- D) $\xi(x,t)$ avtar tilstrekkelig raskt mot null for store verdier av x og t.
- b) I hvilken retning propagerer bølgen?
- A) I positiv x-retning. B) I negativ x-retning. C) I positiv y-retning. D) I negativ y-retning.
- c) Hva er bølgepulsens hastighet v?

A)
$$v = a \cdot t$$
 B) $v = \sqrt{S/\mu}$ C) $v = \xi_0/t$ D) $v = a/t$

d) Hva blir (den totale) energien E assosiert med bølgepulsen?

A)
$$E = \pi \mu v^2 \xi_0^2 / \sqrt{2a}$$
 B) $E = \mu v^2 a / 2$ C) $E = \sqrt{\pi} \mu v^2 \xi_0^2 / \sqrt{2}a$ D) $E = 42$

Tips til d): Ta utgangspunkt i at bølgens energi pr lengdeenhet er

$$\varepsilon(x,t) = \mu v^2 \left(\frac{\partial \xi}{\partial x}\right)^2$$

som utledet i forelesningene. Dermed er $\varepsilon(x,t)\,dx$ bølgens energiinnhold mellom x og x+dx. Det oppgis her følgende integral:

$$\int_{-\infty}^{\infty} \beta^2 e^{-\beta^2} d\beta = \frac{\sqrt{\pi}}{2}$$