SCHEME AND SOLUTION

CIE-2
BASICS OF ELECTICAL ENGINEERING(EE123ATD)

Q.NO	SOLUTION	Marks
1.a	$I_{RMS} = 0.707 I_{M}, I_{AV} = 0.637 I_{M} 04M$	04
b	28.2A +20A 14.14A	
	- 45° - 45° - 20A	06
	Im = $20\sqrt{2} = 28.2$ A, $\omega = 2\pi \times 50 = 100$ π rad/s. i = 28.2 sin 100 π t ampere (i) When t = 0.0025 second i = 28.2 cos $100\pi \times 0.0025$ angle in radian = 28.2 cos $100 \times 180 \times 0.0025$ angle in degrees = 28.2 cos $45^{\circ} = 20$ Apoint	
	(ii) When $t = 0.0125$ second $i = 28.2 \cos 100 \times 180 \times 0.0125 = 28.2 \cos 225^{\circ} = 28.2 \times (1/\sqrt{2}) = -20 \text{ Apoint}$	
	(iii) Here i = 14.14 A $\therefore 14.14 = 28.2 \cos 100 \times 180 \text{ t}$ $\therefore \cos 100 \times 180 \text{ t} = 1/2 \text{ or } 100 \times 180 \text{ t} = \cos -1 (0.5) = 60^{\circ}, \text{ t} = 1/300 \text{ second}$ point D	
2.a	V_R V_L V_R V_L V_R V_L V_R V_L V_R	05
	$V_R = IR$ and $V_L = I_{XL}$ where $X_L = 2\pi fL$ $V = \sqrt{(V_R)^2 + (V_L)^2} = \sqrt{(IR)^2 + (IX_L)^2}$	
	$V = I\sqrt{R^2 + X_L^2} \qquad \text{or} \qquad$	
	$I = L = \frac{V}{Z}$	

	Where, $Z = \sqrt{R^2 + X_L^2}$	
	$P = \text{average of } \frac{V_m}{\sqrt{2}} \frac{V_m}{\sqrt{2}} \text{cos} \phi - \text{average of } \frac{V_m}{\sqrt{2}} \frac{V_m}{\sqrt{2}} \text{cos} (2\omega t - \phi) \text{or} $	
	$P = rac{V_m}{\sqrt{2}} rac{I_m}{\sqrt{2}} \cos \! \phi - \mathrm{Zero} \mathrm{or}$	
	$P = V_{r.m.s}I_{r.m.s}\cos\phi = VI\cos\phi$	
	Voltage leads by cureent in 90° phase	
	V _m 90° V 1	
b.	25 Ω Coil	
	-125 V - - - - - - - - - -	05
	250V, 50Hz	
	250 V	
	Z3U ZBŽ VL	
	$A \longrightarrow B V_R$	
	$BC^2 + CD^2 = 200^2$ (i) $(125 + BC)^2 + CD^2 = 250^2$ (ii) Subtracting Eq. (i)	
	from (ii), we get, $(125 + BC)2 - BC2 = 250^2 - 200^2$	
	$\therefore BC = 27.5V; CD = \sqrt{(2002 - 27.52)} = 198.1V$	
	(i) Coil impedance = $200/5 = 40 \Omega$ $V_R = IR = BC \text{ or } 5 R = 27.5$	
	$V_R = IR = BC$ of $S_R = 27.5$ ∴ $P = 27.5/5 = 5.5$ Ω Also $V_L = I$. $X_L = CD = 198.1$	
	$\therefore X_L = 198.1/5 = 39.62 \Omega \text{ or } X_L = (402 - 5.52) = 39.62\Omega$	
	(ii) Power absorbed by the coil is = $I^2R = 52 \times 5.5 = 137.5 \text{ W}$	
	Also P = $200 \times 5 \times 27.5/200 = 137.5$ W (iii) Total power = VI $\cos \varphi = 250 \times 5 \times AC/AD = 250 \times 5 \times 152.5/250 = 762.5$	
	(III) Total power = $VT \cos \phi - 230 \times 3 \times AC/AD - 230 \times 3 \times 132.3/230 - 762.3$	
3.a	$I_L = 73.64A$, $I_{PH} = 42.53A$, $W_1 = -2.65$ KW, $W_2 = 24.08$ KW	06
b	Any 4 advantages	04
4.a	Star: $E_L = \sqrt{3} E_{ph}$, $I_L = I_{ph}$, Delta: $I_L = \sqrt{3} I_{ph}$, $E_L = E_{ph}$	05
b	$Z_{ph} = 9.23$ ohm, $R = 7.384$ ohm, $X_{L} = 5.538$ ohm, $L = 0.0176H$ $Q = 10392.30$, $S = 17320.5$	05
5.a	i) Unity $pf = W_1 = W_2$	06
	ii) $0.5 \text{ pf} = W_1 = 0, W_2 = 0.866$	
1.	iii) zero pf = W_1 =-0.5, W_2 = +0.5	Ω4
b	P = 4.5 KW, Pf = 0.866	04