Devoir maison n°12 : Première fois. Stabilité géométrique

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier 1E1

Problème 1 - Première fois.

Partie A: Une fonction agissant sur les nombres entiers naturels.

Soit une fonction $\Delta: \mathbb{N} \to \mathbb{N}$ possédant les propriétés :

- (1) $\Delta(0) = \Delta(1) = 0$
- (2) Pour tout entier premier p, $\Delta(p) = 1$
- (3) Pour tous entiers a et b: $\Delta(a \times b) = b\Delta(a) + a\Delta(b)$
- 1) Soit p un nombre premier, n un entier naturel. On cherche à prouver que $\Delta(p^n) = np^{n-1}$.

Initialisation:

Pour n = 0, $\Delta(p^0) = \Delta(1) = 0$ d'après (1). Ce qui correspond à la formule.

Pour n=1, $\Delta(p^1)=\Delta(p)=1$ d'après (2). Or avec la formule on obtient $p^0=1,$ ce qui est donc correct.

Hérédité:

On suppose que $\Delta(p^n)=np^{n-1}$, cherchons à prouver que $\Delta(p^{n+1})=(n+1)p^n$.

$$\Delta(p^{n+1}) = \Delta(p \times p^n) = p^n \Delta(p) + p \Delta(p^n) = p^n + pnp^{n-1} = (n+1)p^n$$

Par principe de récurrence, $\Delta(p^n)=np^{n-1}$.

- **2)** a) Soit p et q des nombres premiers distincts, m et n des entiers naturels supérieurs ou égaux à 1. $\Delta(p^m \times q^n) = q^n \Delta(p^m) + p^m \Delta(q^n)$ D'après la question précédente, on a alors : $mq^np^{m-1} + np^mq^{n-1} = (p^{m-1}q^{n-1})(mq + np)$
- **b)** $\Delta(10^n) = \Delta(2^n \times 5^n)$ Comme 2 et 5 sont premiers et distincts, n supérieur ou égal à 1, on a d'après la question précédente : $\Delta(2^n \times 5^n) = 7n(2^{n-1} \times 5^{n-1})$. $\Delta(10^n)$ est donc un multiple de 7 quand $n \ge 1$.
- 3) a) On cherche à montrer que si $n\geq 2$ alors $\Delta(n)=\alpha_1q_1+\alpha_2q_2+\ldots+\alpha_kq_k$ avec $q_{1\ldots k}=\frac{n}{p_{1\ldots k}}.$

Soit $n\geq 2$, On a donc, $n=p_1^{\alpha_1}p_2^{\alpha_2}...p_k^{\alpha_k}$ avec $p_{1...k}$ premier et $\alpha_{1...k}\in\mathbb{N}^*.$

Initialisations:

On suppose que k=1, que $n=p_1^{\alpha_1}$, alors $\Delta(n)=\alpha_1p_1^{\alpha_1-1}$ Or $q_1=\frac{n}{p_1}=p_1^{\alpha_1-1}$.

1

Donc
$$\Delta(n) = \alpha_1 q_1$$

On suppose que
$$k=2$$
, que $n=p_1^{\alpha_1}p_2^{\alpha_2}$, alors d'après 2)a), $\Delta(n)=p_2^{\alpha_2}\alpha_1p_1^{\alpha_1-1}+p_1^{\alpha_1}\alpha_2p_2^{\alpha_2-1}=(p_1^{\alpha_1}p_2^{\alpha_2})\left(\frac{\alpha_1}{p_1}+\frac{\alpha_2}{p_2}\right)=\alpha_1q_1+\alpha_2q_2.$

Hérédité:

On suppose que $\Delta(m)=\alpha_1'q_1'+\alpha_2'q_2'+\ldots+\alpha_k'q_k'$ pour m pouvant s'écrire $m=p_1'^{\alpha_1'}\times p_2'^{\alpha_2'}\times\ldots\times p_k'^{\alpha_k'}$.

On cherche à prouver que $\Delta(n)=\alpha_1q_1+\alpha_2q_2+\ldots+\alpha_kq_k+\alpha_{k+1}q_{k+1}$ pour n pouvant s'écrire sous la forme $n=p_1^{\alpha_1}\times p_2^{\alpha_2}\times\ldots\times p_k^{\alpha_k}\times p_{k+1}^{\alpha_{k+1}}.$

$$\begin{split} &\Delta(n) = \Delta(p_1^{\alpha_1}) \Bigg(\frac{n}{p_1^{\alpha_1}}\Bigg) + p_1^{\alpha_1} \Delta \Bigg(\frac{n}{p_1^{\alpha_1}}\Bigg) \text{ d'après 2)a)} \\ &= \alpha_1 \Bigg(n \frac{p_1^{\alpha_1-1}}{p_1^{\alpha_1}}\Bigg) + p_1^{\alpha_1} \Delta \Bigg(\underbrace{p_2^{\alpha_2} \times \ldots \times p_k^{\alpha_k} \times p_{k+1}^{\alpha_{k+1}}}_{\text{est un nombre comme } m}\Bigg) \end{split}$$

En faisant correspondre $m=\frac{n}{p_1^{\alpha_1}},$ $p_1'=p_2,$..., $p_k'=p_{k+1}$ et $\alpha_1'=\alpha_2,$..., $\alpha_k'=\alpha_{k+1},$ on a

$$\begin{split} \Delta(n) &= \alpha_1 q_1 + p_1^{\alpha_1} \bigg(\alpha_2 \frac{m}{p_2} + \ldots + \alpha_k \frac{m}{p_k} + \alpha_{k+1} \frac{m}{p_{k+1}} \bigg) \\ &= \alpha_1 q_1 + \alpha_2 q_2 + \ldots + \alpha_k q_k + \alpha_{k+1} q_{k+1} \end{split}$$

Par principe de récurrence, nous avons prouvé que quelque soit $k \in \mathbb{N}^*$ et par conséquent quelque soit $n \in \mathbb{N}$ avec $n \geq 2$, $\Delta(n) = \alpha_1 q_1 + \ldots + \alpha_k q_k$.

- **b)** Vérifions que $\Delta(n)=\alpha_1q_1+\ldots+\alpha_kq_k$ satisfait les propriétés (2) et (3) :
- (1) Pour p premier, $p=p^1:\Delta(p)=1\times \frac{p}{p}=1$. Cela correspond bien à la propriété (1).
- (2) Introduisons une notation alternative.

Soient $a, b, c \in \mathbb{N}$ tel que $c = a \times b$.

$$\mathbb{I} = \{(p, \alpha) \in \mathbb{N}^{*2}, p \text{ premier}\} \text{ tel que}$$

$$\forall (p, \alpha) \in \mathbb{I}, \forall (p', \alpha') \in \mathbb{I}, p = p' \Rightarrow \alpha = \alpha'$$

On prend I tel que

$$\begin{split} c &= \prod_{(p,\alpha) \in \mathbb{I}} p^{\alpha} \\ \mathbb{A} &= \left\{ (p,\alpha) \in \mathbb{N}^{*2}, p \text{ premier} \right\} \\ \mathbb{B} &= \left\{ (p,\alpha) \in \mathbb{N}^{*2}, p \text{ premier} \right\} \end{split}$$

avec les conditions suivantes :

$$\begin{split} \forall (p,\alpha) \in \mathbb{A}, \forall (p',\alpha') \in \mathbb{A}, p = p' \Rightarrow \alpha = \alpha' \\ \forall (p,\alpha) \in \mathbb{B}, \forall (p',\alpha') \in \mathbb{B}, p = p' \Rightarrow \alpha = \alpha' \\ (A): \{p \in \mathbb{N} \mid (p,_) \in \mathbb{A} \cup \mathbb{B}\} = \{p \in \mathbb{N} \mid (p,_) \in \mathbb{I}\} \\ (B): \forall (p,\alpha) \in \mathbb{I}, \forall (p_a,\alpha_a) \in \mathbb{A}, \forall (p_b,\alpha_b) \in \mathbb{B}, p = p_a = p_b \Rightarrow \alpha_a + \alpha_b = \alpha \\ a = \prod_{(p,\alpha) \in \mathbb{A}} p^{\alpha} \\ b = \prod_{(p,\alpha) \in \mathbb{B}} p^{\alpha} \end{split}$$

Il est logique par association que:

$$\begin{split} \Delta(a) &= \sum_{(p,\alpha) \in \mathbb{A}} \alpha \frac{a}{p} \qquad \Delta(b) = \sum_{(p,\alpha) \in \mathbb{B}} \alpha \frac{b}{p} \qquad \Delta(c) = \sum_{(p,\alpha) \in \mathbb{I}} \alpha \frac{c}{p} \\ \Delta(a) \times b + a \times \Delta(b) \\ &= b \left(\sum_{(p,\alpha) \in \mathbb{A}} \alpha \frac{a}{p} \right) + a \left(\sum_{(p,\alpha) \in \mathbb{B}} \alpha \frac{b}{p} \right) \\ &= c \left(\sum_{(p,\alpha) \in \mathbb{A}} \frac{\alpha}{p} + \sum_{(p,\alpha) \in \mathbb{B}} \frac{\alpha}{p} \right) \end{split}$$

Nous savons avec (A) que l'union des p de $\mathbb A$ et $\mathbb B$ donne bien tous les p de $\mathbb I$. De plus avec (B) nous savons pour les cas qui le demandent que la somme des α correspond au α de $\mathbb I$. Donc on obtient en developpant les sommes :

$$=c\sum_{(p,\alpha)\in\mathbb{I}}\frac{\alpha}{p}=\Delta(c)$$

(Je sais que cette partie n'a quasiment aucune chance de rester dans le DM final mais je me suis bien amusé)

Partie B : Étude de quelques images d'entiers par la fonction Δ .

4) a)

Calculons $\Delta(12)$. On a $12=2^2\times 3$.

Donc d'après la formule, $\Delta(12)=2\frac{12}{2}+\frac{12}{3}=16.$

Calculons $\Delta(56)$. On a $56 = 2^3 \times 7$.

Donc d'après la formule, $\Delta(56)=3\frac{56}{2}+\frac{56}{7}=92$.

Calculons $\Delta(1001)$. On a $1001=7\times11\times13$.

Donc d'après la formule, $\Delta(1001) = \frac{1001}{7} + \frac{1001}{11} + \frac{1001}{13} = 311$.

Preuves générés automatiquement (le script est sur Github).12

b) Cherchons les solutions de $\Delta(x) = 0$ avec $x \in \mathbb{N}$.

Si x = 0 ou x = 1 alors d'après (1), $\Delta(x) = 0$.

Si $x\geq 2$, $\Delta(x)=\alpha_1q_1+\ldots+\alpha_kq_k$. Or $\alpha_{1\ldots k}\in\mathbb{N}^*$ et $q_{1\ldots k}=\frac{x}{p_{1\ldots k}}$, comme $x,p_{1\ldots k}\in\mathbb{N}^*$ alors $q_{1\ldots k}>0$. Ainsi comme somme de nombres tous strictements positifs, $\Delta(x)>0$.

Les seules solutions à $\forall x \in \mathbb{N}, \Delta(x) = 0$ sont $\{0, 1\}$.

Nous avons également prouvé que pour tout $x \ge 2$ alors $\Delta(x) > 0$.

c) Cherchons les solutions de $\Delta(x) = 1$ avec $x \in \mathbb{N}$.

Si x = 0 ou x = 1 alors d'après (1), $\Delta(x) = 0$.

Si x est premier alors d'après (2), $\Delta(x) = 1$.

Si x n'est pas premier et différent de 0 et 1, alors on peut écrire x sous la forme $x=p\times b$ avec p premier et $b\in\mathbb{N},b\geq 2$. En effet si b=0 alors x=0 et si b=1 alors x est premier, ce qui n'est pas autorisé. D'après la question précédente, $\Delta(b)>0$. On a donc :

$$\Delta(x) = \Delta(p \times b) = b\Delta(p) + p\Delta(b) = \underbrace{b}_{\geq 2} + \underbrace{p}_{\geq 2} \underbrace{\Delta(b)}_{> 0}$$

Par addition d'un nombre supérieur ou égal à 2 avec un nombre strictement supérieur à 0, $\Delta(x)>2$.

Les seules solutions à $\forall x \in \mathbb{N}, \Delta(x) = 1$ sont donc l'ensemble des nombres premiers.

d) Nous cherchons à prouver que 2 et 3 ne possèdent pas d'antécédent par Δ .

Soit $n \in \mathbb{N}$. Si n = 0 ou n = 1 alors $\Delta(n) = 0$ et si n est premier alors $\Delta(n) = 1$. On considère donc tous les $n \geq 2$ et qui ne sont pas premier.

On peut alors réécrire n comme le produit de deux entiers naturels différents de 0 et 1 : $n=a\times b$. On a alors :

$$\Delta(n) = \Delta(a \times b) = \Delta(a) \times \underbrace{b}_{\geq 2} + \underbrace{a}_{\geq 2} \times \Delta(b)$$

Or nous avons prouvé précédement que les seules solutions à l'équation $\Delta(x)=0$ sont 0 et 1. Comme a et b sont différents de 0 et 1 on a :

$$\Delta(n) = \underbrace{\Delta(a)}_{\geq 1} \times \underbrace{b}_{\geq 2} + \underbrace{a}_{\geq 2} \times \underbrace{\Delta(b)}_{\geq 1}$$

La valeur minimale de $\Delta(n)$ est donc 4 quand n est différent de 0 et 1 et n'est pas premier.

 $^{^{1}\}text{Par exemple}:$ Calculons $\Delta(987654321).$ On a $987654321=3^{2}\times17^{2}\times379721.$ Donc d'après la formule, $\Delta(987654321)=2\frac{987654321}{3}+2\frac{987654321}{17}+\frac{987654321}{379721}=774633441.$

²(Pourquoi écrire les preuves à la main alors qu'on peut passer 5 fois plus de temps à coder le script qui le fait automatiquement ?)

Comme 0, 1 et les nombres premiers ne donnent ni 2 ni 3 par Δ nous avons prouvé que 2 et 3 ne possèdent pas d'antécédents par Δ .

Tout entier entier naturel n n'a donc pas au moins un antécédent par Δ .

e) Calculons $\Delta(8)$. On a $8=2^3$.

Donc d'après la formule, $\Delta(8) = 3\frac{8}{2} = 12$.

Nous avons donc $\Delta(8) > 8$. La propriété $\forall n \in \mathbb{N}, \Delta(n) \leq n$ est fausse.

5) a) Montrons que pour deux nombres p et q premiers, $\Delta(p \times q) = p + q$. D'après les propriétés (1) et (2) :

$$\Delta(p\times q)=q\Delta(p)+p\Delta(q)=p+q$$

b) On considère les entiers naturels 3 et 4.

Calculons $\Delta(12)$. On a $12=2^2\times 3$. Donc d'après la formule, $\Delta(12)=2\frac{12}{2}+\frac{12}{3}=16$.

Or $3+4=7\neq 16$. La propriété $\forall n,m\in\mathbb{N}, \Delta(n\times m)=n+m$ est donc fausse.

6) a) Considérons les nombres 2 et 3. Comme 2, 3 et 2 + 3 = 5 sont premiers, on a :

$$\Delta(2+3) = 1 \neq \Delta(2) + \Delta(3) = 2$$

La propriété $\forall n, m \in \mathbb{N}, \Delta(n+m) = \Delta(n) + \Delta(m)$ est donc fausse.

b) Soient $a,b\in\mathbb{N}$ tel que $\Delta(a+b)=\Delta(a)+\Delta(b)$. Soit $k\in\mathbb{N}$. D'après la propriété (3) :

$$\Delta(ka+kb) = \Delta(k(a+b)) = \Delta(k)(a+b) + k\Delta(a+b)$$

$$= \Delta(k)a + \Delta(k)b + k\Delta(a) + k\Delta(b)$$

$$= (a\Delta(k) + k\Delta(a)) + (b\Delta(k) + k\Delta(b))$$

$$\Delta(ka+kb) = \Delta(ka) + \Delta(kb)$$

Partie C: Les points fixes de la fonction

7) a) Soit p un nombre premier. Soit m un entier naturel multiple de p^p . Soit n un entier naturel tel que $m=np^p$.

Considérons $\Delta(p^p)$, d'après la question 1), $\Delta(p^p)=pp^{p-1}=p^p$

$$\Delta(m) = \Delta(np^p) = p^p \Delta(n) + n \Delta(p^p) = p^p (n + \Delta(n))$$

Nous avons prouvé que $\Delta(m)$ est un multiple de p^p .

b)

 $^{^{3}\}Delta$ n'est pas surjective.

Problème 2 - Stabilité géométrique

Dans tout le problème, soit ε et q deux réels strictements positifs. On considère une suite $(x_n)_{n\in\mathbb{N}}$ de réels telle que $x_0>0$ et pour tout entier naturel $n,0\leq x_{n+1}-qx_n\leq \varepsilon$.

1) Pour tout entier naturel n, on pose $b_n=x_{x+1}-qx_n$. Montrons que pour tout entier naturel $n\geq 1$, on a $x_n=q^nx_0+q^{n-1}b_0+q^{n-2}b_1+\ldots+qb_{n-2}+b_{n-1}$.

$$\begin{split} q^n x_0 + q^{n-1} b_0 + q^{n-2} b_1 + \ldots + q b_{n-2} + b_{n-1} \\ &= q^n x_0 + \sum_{k=0}^{n-1} q^{n-k-1} b_k \\ &= q^n x_0 + \sum_{k=0}^{n-1} q^{n-k-1} x_{k+1} - \sum_{k=0}^{n-1} q^{n-k} x_k \\ &= \text{en posant } l = k+1 \\ &= q^n x_0 + \sum_{l=1}^n q^{n-l} x_l - \sum_{k=0}^{n-1} q^{n-k} x_k \\ &= q^n x_0 + x_n - q^n x_0 + \underbrace{\sum_{l=1}^n q^{n-l} x_l - \sum_{k=1}^n q^{n-k} x_k}_{\text{s'annule}} \\ &= x_n \end{split}$$

Nous avons montré que pour tout entier naturel $n \ge 1$, on a :

$$x_n = q^n x_0 + q^{n-1} b_0 + q^{n-2} b_1 + \ldots + q b_{n-2} + b_{n-1}$$

- **2)** On suppose que 0 < q < 1.
 - a)