Գևորգ Մինասյան

Երևանի Պետական Համալսարան

31 Մայիսի 2019

Դասական մեքենայական ուսուցում

Դասական մեքենայական ուսուցում

Մեկուսացված առաջադրանք 1

Մեկուսացված առաջադրանք 2

Դասական մեքենայական ուսուցում

Մեկուսացված առաջադրանք 1

Մեկուսացված առաջադրանք 2

Sրանսֆերային ուսուցում

Դասական մեքենայական ուսուցում

Մեկուսացված առաջադրանք 1

Մեկուսացված առաջադրանք 2

Տրանսֆերային ուսուցում

Աղբյուրի տիրույթ

Խորը տրասֆերային ուսուցում

Խորը տրասֆերային ուսուցում

խորը տրասֆերային ուսուցում

0000

Վերահսկվող առաջադրանքներ

 $oldsymbol{\mathcal{X}}$ բոլոր հնարավոր տվյալների օրինակների բազմություն

- X բոլոր հնարավոր տվյալների օրինակների բազմություն
- *C* բոլոր հնարավոր դասերի բազմություն

- X բոլոր հնարավոր տվյալների օրինակների բազմություն
- ullet $\mathcal C$ բոլոր հնարավոր դասերի բազմություն
- ullet ${\mathcal F}$ տվյալների ներկայացումների ֆունկցիաների դաս

$$f: \mathcal{X} \to \mathbb{R}^d, \ \forall f \in \mathcal{F}$$

- X բոլոր հնարավոր տվյալների օրինակների բազմություն
- *C* բոլոր հնարավոր դասերի բազմություն
- ullet ${\mathcal F}$ տվյալների ներկայացումների ֆունկցիաների դաս

$$f: \mathcal{X} \to \mathbb{R}^d, \ \forall f \in \mathcal{F}$$

 $\blacksquare \exists R > 0 \ \forall f \in \mathcal{F} \ ||f(x)|| \le R \ \forall x \in \mathcal{X}$

Վերահսկվող առաջադրանքներ

ullet $\mathcal T$ վերահսկվող առաջդրանքը բաղկացած է k հատ

$$\{c_1, c_2, ..., c_k\} \subseteq \mathcal{C}$$

միմյանցից տարբեր դասերից, ոտեղ $k \geq 2$

ullet $\mathcal T$ վերահսկվող առաջդրանքը բաղկացած է k հատ

$$\{c_1, c_2, ..., c_k\} \subseteq \mathcal{C}$$

միմյանցից տարբեր դասերից, ոտեղ $k \geq 2$

 P(T) վերասիկվող առաջադրանքների դիտարկվելու հավանականային բաշխումը

ullet ${\mathcal T}$ վերահսկվող առաջդրանքը բաղկացած է k հատ

$$\{c_1, c_2, ..., c_k\} \subseteq \mathcal{C}$$

միմյանցից տարբեր դասերից, ոտեղ $k \geq 2$

- $\mathcal{P}(\mathcal{T})$ վերասիկվող առաջադրանքների դիտարկվելու հավանականային բաշխումը
- $\mathcal{P}(\mathcal{T}\mid |\mathcal{T}|=k)$ k հատ դասերից բաղկացած վերասիկվող առաջադրանքների դիտարկվելու հավանականային բաշխումը

Վերաիսկվող առաջադրանքներ

• $\mathcal{D}_c(x)$ c դասին համապատասխան հավանականային բաշխումն է, ցույց է տալիս, թե x օրինակը ինչքանով է համապատասխան c դասին

- $\mathcal{D}_c(x)$ c դասին համապատասխան հավանականային բաշխումն է, ցույց է տալիս, թե x օրինակը ինչքանով է համապատասխան c դասին
- $\mathcal{D}_{\mathcal{T}}(x,c)=\mathcal{D}_{\mathcal{T}}(c)\mathcal{D}_c(x)$ \mathcal{T} վերահսկվող առաջադրանգի պիտակավորված տվյալների հավանականային բաշխումն է

- $\mathcal{D}_c(x)$ c դասին համապատասխան հավանականային բաշխումն է, ցույց է տալիս, թե x օրինակը ինչքանով է համապատասխան c դասին
- $\mathcal{D}_{\mathcal{T}}(x,c)=\mathcal{D}_{\mathcal{T}}(c)\mathcal{D}_c(x)$ \mathcal{T} վերահսկվող առաջադրանգի պիտակավորված տվյալների հավանականային բաշխումն է
- lacksquare $S=\{(x_1,y_1),...,(x_M,y_M)\ |x_i\in\mathcal{X},y_i\in\mathcal{T}\}\ \mathcal{T}$ առաջադրանքի պիտակավորված օրինակների ուսուցման բազմությունն է ընտրված միմյանցից անկախ և $\mathcal{D}_{\mathcal{T}}(x,c)$ հավանականային բաշխումից

Վերահսկվող ներկայացումների գնահատման չափը

Վերահսկվող ներկայացումների գնահատման չափը

Նշանակումներ

• \mathcal{T} առաջադրանքի բազմադաս դասակարգիչը ֆուկցիա է՝ $g: \mathcal{X} \to \mathcal{R}^k$, որի արժեքի կորդինատները ինդեքսավորված են այդ առաջադրանքի դասերով։

- \mathcal{T} առաջադրանքի բազմադաս դասակարգիչը ֆուկցիա է՝ $g: \mathcal{X} \to \mathcal{R}^k$, որի արժեքի կորդինատները ինդեքսավորված են այդ առաջադրանքի դասերով։
- $l(\{g(x)_y g(x)_{y'}\}_{y \neq y'})$ -ը $(x,y) \in \mathcal{X} \times \mathcal{T}$ կետում g դասակարգիչով պայմանավորված կորուստն է

- \mathcal{T} առաջադրանքի բազմադաս դասակարգիչը ֆուկցիա է՝ $g: \mathcal{X} \to \mathcal{R}^k$, որի արժեքի կորդինատները ինդեքսավորված են այդ առաջադրանքի դասերով։
- $l(\{g(x)_y-g(x)_{y'}\}_{y\neq y'})$ -ը $(x,y)\in\mathcal{X}\times\mathcal{T}$ կետում g դասակարգիչով պայմանավորված կորուստն է
- $l(v) = \max\{0, 1 + \max_{i}\{-v_i\}\}$

- \mathcal{T} առաջադրանքի բազմադաս դասակարգիչը ֆուկցիա է՝ $g: \mathcal{X} \to \mathcal{R}^k$, որի արժեքի կորդինատները ինդեքսավորված են այդ առաջադրանքի դասերով։
- $l(\{g(x)_y-g(x)_{y'}\}_{y\neq y'})$ -ը $(x,y)\in\mathcal{X}\times\mathcal{T}$ կետում g դասակարգիչով պայմանավորված կորուստն է
- $l(v) = \max\{0, 1 + \max_{i}\{-v_i\}\}$
- $l(v) = \log_2(1 + \sum_i e^{-v_i})$

Վերահսկվող ներկայացումների գնահատման չափը

 $m{ ilde{T}}$ առաջադրանքի համար g դասակարգիչի կորուստը հետևյալն է`

$$L(\mathcal{T}, g) = \underset{(x,c) \sim \mathcal{D}_{\mathcal{T}}}{\mathbb{E}} \left[l(\{g(x)_c - g(x)_{c'}\}_{c \neq c'}) \right]$$

Վերահսկվող ներկայացումների գնահատման չափը

Նշանակումներ

 $m{ ilde{ ilde{T}}}$ առաջադրանքի համար g դասակարգիչի կորուստը հետևյալն է`

$$L(\mathcal{T}, g) = \underset{(x,c) \sim \mathcal{D}_{\mathcal{T}}}{\mathbb{E}} \left[l(\{g(x)_c - g(x)_{c'}\}_{c \neq c'}) \right]$$

 $m{ ilde{T}}$ առաջադրանքի համար g դասակարգիչի կորուստը հետևյալն է`

$$L(\mathcal{T}, g) = \underset{(x,c) \sim \mathcal{D}_{\mathcal{T}}}{\mathbb{E}} \left[l(\{g(x)_c - g(x)_{c'}\}_{c \neq c'}) \right]$$

- g(x) = Wf(x), npunting $W \in \mathcal{V}$

 $m{ ilde{T}}$ առաջադրանքի համար g դասակարգիչի կորուստը հետևյալն է`

$$L(\mathcal{T}, g) = \underset{(x,c) \sim \mathcal{D}_{\mathcal{T}}}{\mathbb{E}} \left[l(\{g(x)_c - g(x)_{c'}\}_{c \neq c'}) \right]$$

- g(x) = Wf(x), npmth $W \in \mathcal{V}$
- $L(\mathcal{T}, f) = \inf_{W \in \mathcal{V}} L(\mathcal{T}, f, W)$

ևը **Հիմ**նական արդյունքներ 00000000 0000000

Վերահսկվող ներկայացումների գնահատման չափը

Վերահսկվող ներկայացումների գնահատման չափը

Նշանակումներ

Վերահսկիչ միջին կորուստ

k դասերից բաղկացած առաջադրանքների վերահսկիչ միջին կորուստը f ներկայացման համար սահմանվում է որպես`

$$L_k(f) = \underset{\mathcal{T} \sim \mathcal{P}}{\mathbb{E}} [L(\mathcal{T}, f) \mid |\mathcal{T}| = k]$$

Վերահսկվող ներկայացումների գնահատման չափը

Նշանակումներ

Էմպիրիկ վերահսկիչ միջին կորուստ

Դիցուք ունենք միմյանցից անկախ $\mathcal{P}(\mathcal{T} \mid |\mathcal{T}| = k)$ բաշխումից ընտրված N հատ առաջադրանքներ՝ $\mathcal{T}_1,...,\mathcal{T}_N$: Էմպիրիկ վերահսկիչ միջին կորուստը f ներկայացման համար հետևյալն է՝

$$\hat{L}_k(f) = \frac{1}{N} \sum_{i=1}^{N} L(\mathcal{T}_i, f)$$

Ռադեմախերի բարդությունը

•000

Ռադեմախերի բարդությունը

Ռադեմախերի բարդությունը

Ներկայացումների էմպիրիկ Ռադեմախերի բարդությունը

Դիցուք ${\mathcal F}$ տվյալների ներկայացումների ֆունկցիաների ընտանիք է՝

$$\forall f \in \mathcal{F}, f \colon \mathcal{X} : \to \mathbb{R}^d$$

իսկ S-ը m հզորությամբ տվյալների ֆիքսված օրինակների բազմություն է՝

$$S = \{x_i | x_i \in \mathcal{X}, \forall i \in [m]\}$$

Այդ դեպքում ներկայացումների ${\mathcal F}$ ընտանիքի Էմպիրիկ Ռադեմախերի բարդությունը ֆիքսված օրինակների S բազմության համար սահմանվում է հետևյալ կերպ`

$$\hat{\mathcal{R}}_S(\mathcal{F}) = \frac{1}{m} \mathop{\mathbb{E}}_{\sigma \sim \{\pm 1\}^{md}} \sup_{f \in \mathcal{F}} \sum_{i=1}^m \sum_{j=1}^d \sigma_{ij} f_j(x_i)$$

Տրանսֆերային ուսուցում

Անհավասարություն Ռադեմախերի բարդությունների վերաբերյալ

Անհավասարություն Ռադեմախերի բարդությունների վերաբերյալ

Թեորեմ

Դիցուք \mathcal{X} -ը և \mathcal{Y} -ը որևէ բազմություններ են և $(x_1,x_2,...,x_n)\in X^N$ ։ Տրված է նաև \mathcal{F} ֆունկցիաների բազմություն, որի կամայական $f\in\mathcal{F}$ ֆունկցիա \mathcal{X} բազմությունը արտապատկերում է \mathbb{R}^d Էվկլիդյան տարածություն՝ $f\colon \mathcal{X} \to \mathbb{R}^d$ ։ Դիցուք h_i ֆունկցիաներ ունենք՝

$$h_i: \mathbb{R}^d \times \mathcal{Y} \to \mathbb{R}$$

կամայական $i\in [n]$ համար։ Կենթադրենք, որ բոլոր $h_i(v,y)$ ֆունկցիաները, ինչ-որ L դրական հաստատունով Լիպշից հատկությամբ օժտված ֆունկցիաներ են ըստ v-ի կամայական $y\in \mathcal{Y}$ համար։ Այդ դեպքում տեղի ունի հետևյալ անհավասարությունը`

$$\mathbb{E}_{\sigma \sim \{\pm 1\}^n} \left[\sup_{\substack{f \in \mathcal{F} \\ y \in \mathcal{Y}}} \sum_{i=1}^n \sigma_i h_i(f(x_i), y) \right] \leq \sqrt{2} L \mathbb{E}_{\sigma \sim \{\pm 1\}^{nd}} \left[\sup_{f \in \mathcal{F}} \sum_{i=1}^n \sum_{j=1}^d \sigma_{ij} f_j(x_i) \right]$$

4) d (4

Չևորգ Մինասյան ԵՊՀ

Ներկայացումների ուսուցման ալգորիթմը

Ներկայացումների ուսուցման ալգորիթմը

F դասից ներկայցման ֆունկցիա սովորելու ալգորիթմը հետևյալն է`

$$(\hat{f}, \hat{W}) = \underset{\substack{f \in \mathcal{F} \\ W \in \mathcal{V}}}{\operatorname{argmin}} \hat{L}(\mathcal{T}, f, W)$$

որտեղ \hat{f} -ը փևտրվող ներկայացումն է։

$$\rho_{min} = \min_{c \in \mathcal{T}} D_{\mathcal{T}}(c)$$

- $\rho_{min} = \min_{c \in \mathcal{T}} D_{\mathcal{T}}(c)$
- $m{m}(c)$ այն T_i առաջադրանքների քանակը, որոնցում c դասն է մասնակցում

- $\rho_{min} = \min_{c \in \mathcal{T}} D_{\mathcal{T}}(c)$
- $m{m}(c)$ այն T_i առաջադրանքների քանակը, որոնցում c դասն է մասնակցում
- $m_{max} = \max_{c \in T} m(c)$

Թեորեմ

Դիցուք δ -ն կամայական դրական թիվ է, իսկ l կորստի ֆունկցիան սահմափակ է B-ով և η հաստատունով Լիպշից հատկությամբ օժտված ֆունկցիա է։ Այդ դեպքում առնվազն $1-\delta$ հավանականությամբ $\forall f\in\mathcal{F}$ ներկայացման ֆունկցիայի և $\forall W\in\mathcal{V}$ մատրիցայի համար տեղի ունի հետևյալ անհավասարությունը`

$$L_k(\hat{f}) \leq \frac{m_{max}}{n\rho_{min}} L(\mathcal{T}, f, W) + O\left(\frac{\eta Q m_{max}}{\sqrt{n\rho_{min}}} \hat{\mathcal{R}}_S(\mathcal{F}) + \frac{B m_{max}}{n\rho_{min}} \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{M}} + B\sqrt{\frac{k\log\left(\frac{1}{\delta}\right)}{n}}\right)$$

Հետևանք

Դիցուք δ -ն կամայական դրական թիվ է, իսկ l կորստի ֆունկցիան սահմափակ է B-ով և η հաստատունով Լիպշից հատկությամբ օժտված ֆունկցիա է։ Բացի այդ $\mathcal{P}(\mathcal{T})$ և $\mathcal{D}_{\mathcal{T}}(c)$ -ն հավասարավանական են, այդ դեպքում առնվազն $1-\delta$ հավանականությամբ $\forall f \in \mathcal{F}$ ներկայացման ֆունկցիայի և $\forall W \in \mathcal{V}$ մատրիցայի համար տեղի ունի հետևյալ անհավասարությունը`

$$L_k(\hat{f}) \le m_{max} L(\mathcal{T}, f, W) + O\left(\eta Q m_{max} \sqrt{n} \hat{\mathcal{R}}_S(\mathcal{F}) + B m_{max} \sqrt{\frac{\log\left(\frac{1}{\delta}\right)}{M}} + B \sqrt{\frac{k \log\left(\frac{1}{\delta}\right)}{n}}\right)$$

Իսկ եթե $|\mathcal{C}| o \infty$, ապա $m_{max} o 1$ ։

k=2 քանակությամբ դասերից բաղկացած առաջադրանքի էմպիրիկ միջին վերահսկիչ կորստի կախվածությունը ներկայացումների ցանցի վարժեցման ժամանակ օգտագործված դասերի քանակից։

k=2 քանակությամբ դասերից բաղկացած առաջադրանքի ճշգրտության կախվածությունը ներկայացումների ցանցի վարժեցման ժամանակ օգտագործված դասերի քանակից։

k=5 քանակությամբ դասերից բաղկացած առաջադրանքի Էմպիրիկ միջին վերահսկիչ կորստի կախվածությունը ներկայացումների ցանցի վարժեցման ժամանակ օգտագործված դասերի քանակից։

k=5 քանակությամբ դասերից բաղկացած առաջադրանքի ճշգրտության կախվածությունը ներկայացումների ցանցի վարժեցման ժամանակ օգտագործված դասերի քանակից։

k=10 քանակությամբ դասերից բաղկացած առաջադրանքի Էմպիրիկ միջին վերահսկիչ կորստի կախվածությունը ներկայացումների ցանցի վարժեցման ժամանակ օգտագործված դասերի քանակից։

k=10 քանակությամբ դասերից բաղկացած առաջադրանքի ճշգրտության կախվածությունը ներկայացումների ցանցի վարժեցման ժամանակ օգտագործված դասերի քանակից։

				M			M		
	M = const			$\frac{M}{\sqrt{n}} = const$			$\frac{M}{n} = const$		
	k = 2	k = 5	k = 10	k = 2	k = 5	k = 10	k = 2	k = 5	k = 10
n = 10	85.930	66.386	51.077	85.955	66.918	51.352	85.440	66.498	51.760
n = 20	87.590	70.856	56.126	88.350	71.168	56.594	89.130	73.404	58.875
n = 30	88.795	72.506	57.624	89.840	74.356	60.393	91.435	77.400	63.458
n = 40	89.005	73.002	57.835	90.725	75.866	61.643	92.385	79.386	66.309
n = 50	89.580	73.442	58.853	91.325	77.436	63.865	93.105	80.966	68.515
n = 60	89.610	73.614	59.526	91.820	78.522	65.085	93.895	82.396	69.817
n = 70	89.665	74.238	60.060	92.200	78.854	65.473	94.170	82.928	71.096
n = 80	89.920	74.724	60.410	92.545	79.166	66.401	94.430	83.810	72.518
n = 90	89.855	74.156	60.107	92.750	79.642	66.821	95.265	84.906	73.671

Շևորհակալություն

