Representations of geometric relations in point geometry and vector geometry

NO.	Geometric relations	Expressions in point geometry	Expressions in vector geometry
1	A, B, C are collinear and $t\overrightarrow{CA} = (t-1)\overrightarrow{CD}$. If $t = 1/2$, C is the midpoint of AB.	C = tA + (1 - t)B	$\overrightarrow{OC} = t\overrightarrow{OA} + (1-t)\overrightarrow{OB}$
2	ABCD is a parallelogram	D = A - B + C	$\overrightarrow{CD} = \overrightarrow{BA}$
3	$ABCD$ is a trapezoid with $AB//CD$ and $CD = t \cdot BA$	$D = t(A - B) + C, t \neq 1$	$\overrightarrow{CD} = t\overrightarrow{BA}$
4	G is the centroid of $\triangle ABC$.	$G = \frac{A+B+C}{3}$	$\overrightarrow{OG} = \frac{\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}}{3}$
5	ABC is a triangle with orthocenter H and circumcenter D	H = A + B + C - 2D	$\overrightarrow{OH} = \overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} - 2\overrightarrow{OD}$
6	$AB \perp CD$	(A-B)(C-D)=0	$\overrightarrow{BA} \cdot \overrightarrow{DC} = 0$
7	A is on the perpendicular bisector of BC.	$(A - \frac{B+C}{2})(B-C) = 0$	$(\overrightarrow{OA} - \frac{\overrightarrow{OB} + \overrightarrow{OC}}{2}) \cdot \overrightarrow{CB} = 0$
8	$\angle BAC = 90^{\circ}$	(A-B)(A-C)=0	$\overrightarrow{BA} \cdot \overrightarrow{CA} = 0$
9	H is the orthocenter of $\triangle ABC$.	(A-H)(B-C) = 0 and	$\overrightarrow{HA} \cdot \overrightarrow{CB} = 0$ and
		(B-H)(C-A)=0	$\overrightarrow{HB} \cdot \overrightarrow{CA} = 0$
10	O is the circumcenter of $\triangle ABC$.	$(O-A)^2 - (O-B)^2 = 0$ and	$\overrightarrow{OA}^2 = \overrightarrow{OB}^2$ and
		$(O-A)^2 - (O-C)^2 = 0$	$\overrightarrow{OA}^2 = \overrightarrow{OC}^2$
11	Projection Theorem: BAC is a triangle with $BA \perp AC$ and $AD \perp BC$ where D lies on BC .	$(A-D)^{2}-(B-D)(D-C)=0$	$\overrightarrow{DA}^2 - \overrightarrow{DB} \cdot \overrightarrow{CD} = 0$
		$(A-B)^{2} - (B-D)(B-C) = 0$	$\overrightarrow{BA}^2 - \overrightarrow{DB} \cdot \overrightarrow{CB} = 0$
12	Circle-Power Theorem: ABCD is a cyclic quadrilateral, AC intersects BD at P.	(P-A)(P-B) - (P-C)(P-D) = 0	$\overrightarrow{AP} \cdot \overrightarrow{BP} - \overrightarrow{CP} \cdot \overrightarrow{DP} = 0$
13	$\sqrt{k_1}AB = \sqrt{k_2}CD$	$k_1(A-B)^2 - k_2(C-D)^2 = 0$	$k_1 \overrightarrow{BA}^2 - k_2 \overrightarrow{DC}^2 = 0$
14	$AB^2 = k_1 CD^2 + k_2 EF^2$	$(A-B)^{2} - k_{1}(C-D)^{2} - k_{2}(E-F)^{2} = 0$	$\overrightarrow{AB}^2 - k_1 \overrightarrow{CD}^2 - k_2 \overrightarrow{EF}^2 = 0$
15	CD//EF and $k_1AB^2 = k_2CD \cdot EF$	$k_1(A-B)^2 - k_2(C-D)(E-F) = 0$	$k_{1}\overrightarrow{AB}^{2} - k_{2}\overrightarrow{DC} \cdot \overrightarrow{FE} = 0$
	C, D, E are collinear and $k_1 AB^2 = k_2 CD \cdot DE$	$k_1(A-B)^2 - k_2(C-D)(D-E) = 0$	$k_{1}\overrightarrow{AB}^{2} - k_{2}\overrightarrow{CD} \cdot \overrightarrow{DE} = 0$
16	A , B , C are collinear. D , E , F are collinear. And $k_1AB \cdot BC = k_2DE \cdot EF$	$k_1(A-B)(B-C) - k_2(D-E)(E-F) = 0$	$k_{_{1}}\overrightarrow{AB}\cdot\overrightarrow{BC} = k_{_{2}}\overrightarrow{DE}\cdot\overrightarrow{EF}$
17	AB//CD. E , F , G are collinear. And $k_1AB \cdot CD = k_2EF \cdot FG$	$k_1(A-B)(C-D) - k_2(E-F)(F-G) = 0$	$k_{_{1}}\overrightarrow{AB} \cdot \overrightarrow{CD} = k_{_{2}}\overrightarrow{EF} \cdot \overrightarrow{FG}$
18	AB//CD, EF//GH and $k_1AB \cdot CD = k_2EF \cdot GH$	$k_1(A-B)(C-D) - k_2(E-F)(G-H) = 0$	$k_{_{1}}\overrightarrow{AB}\cdot\overrightarrow{CD} = k_{_{2}}\overrightarrow{EF}\cdot\overrightarrow{GH}$