PROPEDÉUTICO DE TRANSFERENCIA DE CALOR Programa

Temario

- I. Introducción
- II. Conducción

 Conducción en pared plana
 Conducción en cilindros
 Conducción de calor en estado transitorio
 Cartas para conducción transitoria
- III. Convección Espesor crítico
- IV. Radiación
- V. Aletas Eficiencia de aleta
- VI. Flujo en dos dimensiones
- VII. Coeficientes convectivos Capa límite hidráulica Capa límite térmica
- VIII. Teoría de modelos de convección
 Ecuación para aire
 Ecuación para flujo dentro de tubos
 Ecuación para flujo por fuera de tubos y esferas
 Ecuación flujo en banco de tubos

Bibliografía

BEJAN, <u>Convection Heat Transfer</u>, Wiley, USA, 1984
INCROPERA & DEWITT, <u>Fundamentals of Heat Transfer</u>, John Willey & Sons, 1981
HOLMAN, <u>Heat Transfer</u>, Mc Graw Hill, 1984
KREITH F., <u>Principles of Heat Transfer</u>, 2003
CENGEL, Transferencia de calor, Mc Graw Hill, 2005

ANTECEDENTES

Termodinámica

Propiedades de las sustancias

Presiones

Trabajo

Calor

Potencia

1^a. Ley
$$h = u + Pv$$

2^a. Ley
$$Q \rightarrow W \neq 100\%$$

$$W \rightarrow O100\%$$

Balance de masa y energía

Mecánica de fluidos

Fuerza
$$F = \frac{uA}{v} \mu$$

Esfuerzo cortante
$$\sigma = \frac{F}{A} = \mu \frac{du}{dy}$$

Viscosidad absoluta o dinámica
$$\mu = \frac{\sigma}{du/dy} = \frac{1gr}{cm * seg}$$

Viscosidad cinemática
$$y = \frac{\mu}{\rho}$$
 $stocke = \frac{cm^2}{seg}$

Tensión superficial Ecuación de continuidad Ecuación de energía Modelo de elasticidad volumétrico

$$k = \frac{P}{\frac{dv}{dv}} \to \left[\frac{F}{A}\right]$$

Unidades

I. INTRODUCCIÓN

Siempre que existe un gradiente de temperatura en un sistema, o cuando se ponen en contacto dos sistemas a diferentes temperaturas, se transfiere energía calorífica. Este proceso se conoce como transferencia de calor.

El flujo de calor, como la ejecución de un trabajo, es un proceso por medio del cual se cambia la energía interna de un sistema.

La termodinámica estudia la relación entre el calor y otras formas de energía, así como sus procesos de transformación, calor a trabajo y trabajo a calor.

El proceso de conversión de trabajo a calor puede analizarse y explicarse bajo un análisis de primera ley (h = u + Pv) y puede demostrarse que este proceso puede tener una eficiencia de hasta 100%. Pero el proceso contrario, es decir la conversión de calor a trabajo no puede realizarse al 100% y la primera ley no tiene el concepto que permite explicar el por qué sucede, de esta forma la segunda ley y el concepto de entropía explican este comportamiento.

$$W \to Q \operatorname{con} \eta \le 1$$
 $Q \to W \operatorname{con} \eta < 1$ ¿Porqué? $\Delta h = \Delta u + W = \Delta Q$ donde $\Delta u = 0$ en procesos cíclicos $\Delta h = W = \Delta Q$

Todos los procesos de transferencia de calor involucran la transformación y conversión de energía, por tanto deben cumplir con la primera y la segunda ley de la termodinámica. Pero la termodinámica sólo estudia estados de equilibrio o estado final menos inicial, es decir no estudia el proceso mediante el cual se llega a dichos estados.

$$\Delta Q = Q_2 - Q_1$$
1
A
B
C

Este análisis no considera ni el mecanismo del flujo ni el tiempo requerido para transferir la energía.

Para la termodinámica
$$\begin{matrix} \overset{\bullet}{m_A} \ C_A \Delta T = \overset{\bullet}{m_B} \ C_B \Delta T = \overset{\bullet}{Q} \\ \overset{\bullet}{m_A} \ \Delta h = \overset{\bullet}{m_B} \ \Delta h = \overset{\bullet}{Q} \end{matrix}$$

Para la transferencia de calor
$$m_A A [k+h]_A \Delta T = m_B A [k+h]_B \Delta T = Q$$

Para la transferencia de calor la determinación del mecanismo y la rapidez de la transferencia y la cantidad de calor con una diferencia de temperatura específica, constituyen el principal problema.

De esta forma se puede conocer el costo, factibilidad y el tamaño del equipo necesario para transferir una cantidad específica de calor en un tiempo dado.

Las dimensiones y características de los equipos que realizan esta función dependen de la cantidad de energía, masa y rapidez con que se desea realizar la tarea.

Los análisis y aplicaciones de transferencia de calor están presentes en la operación de un proceso en si mismo o como un proceso de apoyo o servicio a un proceso o equipo, como el enfriamiento de alabes, cámaras de refrigeración, camisas de agua, venas de vapor, valeros, chumaceras, en general prevenir el sobrecalentamiento de partes que provoquen un daño al equipo.

También en el diseño se deben considerar efectos derivados de la generación y transferencia de calor, como la elongación o dilatación, fatiga, variación de conductividad térmica, viscosidad o afectaciones al proceso de transferencia de calor como incrustaciones y fugas de calor, en estas situaciones la transferencia de calor proporciona el análisis y evalúa los métodos usados para corregir estas posibles afectaciones no deseadas.

Resumiendo, la transferencia de calor tiene que ver con los procesos industriales, equipos de transferencia, sistemas de transferencia, instalaciones industriales y efectos no deseados generados por el calor, además de aplicaciones para el confort y los servicios.

Los factores, conceptos, consideraciones, aplicaciones que conforman la transferencia de calor práctica están contenidos en los requerimientos térmicos de procesos industriales, confort; a implementar con vapor, agua, aire, aceite, materias primas, etc.; a través de equipos de procesos y sus instalaciones:

- Economizadores, precalentadores, marmitas, autoclaves, Venas de vapor, torres de enfriamiento, torre de destilación.
- Tuberías, aislamientos
- Trampas de vapor
- Piernas colectoras
- Carga de calentamiento
- Carga de condensado
- Diámetro de tubería
- Tiempo de calentamiento
- Longitud de la tubería
- Tiro de trampa
- Número de trampas
- Pérdidas pro forma
- Pérdida por fricción

- Radio hidráulico
- Velocidad del vapor agua
- Espesor del tubo
- Expansión de tubería

Forms of Heat Transfer

I. MECANISMOS DE TRANSFERENCIA

La transferencia de calor puede regirse por la interacción de una, dos o tres leyes de la física. Estas leyes son: conducción, radiación y convección.

2.1 CONDUCCIÓN

Es el flujo de calor de una región caliente a otra fría dentro de un medio (sólido, líquido o gaseoso) o entre medios diferentes en contacto físico directo. Aquí el calor se transfiere por comunicación molecular directa sin desplazamiento apreciable de las moléculas.

La energía que posee un elemento de materia debido a la velocidad y a la posición relativa de las moléculas, recibe el nombre de energía interna. En este caso la que posea mayor energía interna tendrá la capacidad de proveer más energía debido a la diferencia de temperatura.

Los mecanismos de transferencia de calor en este caso pueden ser:

- Choque elástico (fluidos)
- Difusión de los electrones rápidos de alta a baja temperatura (metales)

Independientemente del mecanismo exacto, que no esta completamente entendido (1822 a 2000), el efecto observable de la conducción del calor es un equilibrio de temperatura.

Si el ΔT se mantiene entre dos cuerpos se genera un flujo de calor.

La conducción es el mismo mecanismo por el cual puede fluir calor en sólidos opacos ó grises. La conducción es importante en fluidos, pero en medios no sólidos está generalmente combinada con la convección y en algunos con la radiación.

El modelo analítico que caracteriza este mecanismo es derivado de la Ley de Fourier

$$Q\alpha - A\frac{dT}{dx}$$
 [W]

 α = proporcional

A = área transversal o normala la dirección del flujo

$$\frac{dT}{dx}$$
 = gradientede temperatura

$$\alpha \cong \mathbf{k}$$

$$Q = -kA\frac{dT}{dx}$$

$$k = \text{conductividad térmica} \left[\frac{W}{m^{\circ} K} \right]$$

Es una cantidad vectorial, tiene magnitud, dirección y sentido. Se coloca el signo de menos para cumplir con la segunda Ley

2.1.1 CONDUCCIÓN EN UNA PARED PLANA

Donde "e" es el espesor de cada elemento [mm. , m. , etc.]

Haciendo un símil con la electrónica

Resistencias en serie: $R_T = R_1 + R_2 + R_3$

Resistencias en paralelo: $R_T = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_4}} + R_3$

Si tenemos un tubo cubierto con varios materiales el calor transferido se calcula de la siguiente forma.

$$A_{l} = 2\pi r l$$

$$q = -2\pi l k \frac{dT}{dr}$$

 $T=T_{i} \ \mathrm{en} \ \mathrm{r}=\mathrm{r_{i}} \ \ \mathrm{dentro} \ \mathrm{del} \ \mathrm{tubo}$

 $T=T_0 \ {\rm en} \ {\rm r}={\rm r}_0 \ \ {\rm fuera} \ {\rm del} \ {\rm tubo}$

$$q = \frac{2\pi l k \left(T_i - T_0\right)}{\ln\left(\frac{r_o}{r_i}\right)}$$

2.1.2 CONVECCIÓN

Es un proceso de transporte de energía por la acción combinada de la conducción de calor, almacenamiento de energía y movimiento de mezcla, este proceso es el que se efectúa por la transferencia de calor entre una superficie sólido y un líquido o un gas.

La transferencia de calor por convección desde una superficie cuya temperatura es superior a la del fluido que la rodea, se realiza en varias etapas:

- 1. El calor fluirá por conducción desde la superficie hacia las partículas adyacentes del fluido (capa límite), la energía así transferida servirá para incrementar la temperatura y la energía interna de esas partículas de fluido.
- 2. Las partículas del fluido se moverán hacia una región del fluido con una temperatura más baja, donde se mezclarán y transferirán una parte de su energía a otras partículas del fluido. El flujo en este caso es de fluido y energía.

Este mecanismo requiere además de una diferencia de temperaturas, de un fluido de masa, por lo que estrictamente no corresponde a la definición de transferencia de calor, pero como el efecto neto es un transporte de energía en una dirección del gradiente de transferencia, se clasifica como un modo de transferencia de calor llamado convección.

Reynols nos dice el desprendimiento de capa límite, nos ayuda a saber si el flujo es laminar, en transición ó turbulento.

La convección puede ser libre o forzada. Libre, para el movimiento generado por diferencia de densidades del líquido frío y del caliente; forzada, para un movimiento de fluido en forma inducida.

La velocidad de mezclado puede ser manipulada y entonces el movimiento de convección sería forzada.

La eficiencia de este procesos es grandemente influido por las propiedades del fluido que caracterizan el tipo de movimiento.

El modelo analítico que evalúa este mecanismo está definido por la ley de convección de Newton donde:

h = coeficiente convectivo A = área de transferencia Ts = temperatura de superficie Tm = temperatura del medio

$$q = Ah(T_s - T_m)$$

El coeficiente convectivo depende ampliamente de la viscosidad, ya que la viscosidad define el perfil de velocidad y la velocidad en la transferencia de calor.

La ebullición y la condensación caen dentro de la convección. En la solución de algunas aplicaciones no existe solución analítica y se recurre a relaciones experimentales y métodos numéricos.

Espesor crítico de aislamiento

El aumento de aislante al exterior de pequeños tubos o alambres, no siempre reduce la transferencia de calor. Para un tubo de pared simple de radio interior r_i fijo, el aumento del radio exterior r_o , es decir (del espesor del aislamiento) incrementa logarítmicamente la resistencia térmica debida a la conducción y al mismo tiempo reduce la resistencia térmica de la superficie exterior en sentido lineal con r_o . Como la térmica total es proporcional a la suma de estas dos resistencias, la relación del flujo de calor puede acelerarse agregando aislante a un tubo o alambre desnudo. Si entonces se aumenta aún más el espesor del aislamiento, la perdida de calor decae gradualmente hasta ser menor que la perdida para una superficie desnuda. Este principio se utiliza ampliamente al recubrir los cables conductores de corriente (no para reducir la pérdida de calor, sino al contrario, para aumentarla) Esto también reviste en la refrigeración donde el flujo de calor hacia el refrigerador frío debe mantenerse al mínimo.

Si se supone que T_i es la temperatura interior del aislamiento e igual a la temperatura de la superficie del tubo o alambre, se puede establecer que el flujo de calor es:

$$q = \frac{2\pi l \left(T_i - T_o\right)}{\ln \frac{r_o}{r_i} + \frac{k}{h_o r_o}}$$

 T_0

Para r_i fijo el flujo de calor es función de r_o y el flujo de calor será máximo para el valor de r_o que haga:

$$\frac{dq}{dr_o} = \frac{-2\pi k l \left(T_i - T_o \right) \left(\frac{1}{r_o} - \frac{k}{h_o r_o^2}\right)}{\left(\ln \frac{r_o}{r_i} + \frac{k}{h_o r_o}\right)^2} = 0$$

De donde se halla que el valor de r_o que hace máximo el flujo de calor es llamado radio crítico.

$$r_{o_{crítico}} = \frac{k}{h_0}$$

2.1.3 RADIACIÓN

Es un proceso por el cual fluye calor desde un cuerpo de alta temperatura a un cuerpo de baja temperatura, cuando estos están separados por un espacio que incluso puede ser el vacío.

La radiación son ondas electromagnéticas, pero en transferencia de calor la forma que interesa es la radiación térmica derivada de una alta temperatura y que fluye a través de un medio transparente o del espacio. Todos los cuerpos emiten radiación térmica o calor radiante de forma continua. La intensidad de la emisión depende de la temperatura y de la naturaleza de la superficie. El calor

radiante es emitido en forma de paquetes o cuantos de energía, los cuales se mueven en forma similar a la propagación de la luz y pueden describirse con la teoría ondulatoria. Cuando las ondas alcancen un objeto su energía es absoluta cerca de su superficie.

Para propósitos prácticos la radiación térmica importante en transferencia de calor está entre 0.1 y 100 micrones.

 λ = longitud de onda

V = velocidad de propagación

f = frecuencia

$$\lambda = \frac{V}{f} [\mu]$$

$$\mu = 10^{-6} m$$

Por ejemplo el Sol a 10 000° F emite alrededor del 90% de su radiación entre 0.1 y 3 micrones y un cuerpo a 2000° F entre 1 y 20 micrones.

Esto explicaría porqué un invernadero esta caliente aún cuando el exterior está frío, dado que el vidrio permite la entrada de radiación con una longitud de onda de 0.1 y 3 μ pero no deja salir la que emite en su interior otro cuerpo (1 a 20 μ)

Forma en la que es absorbida la radiación:

Un cuerpo negro absorbe toda la radiación que incide sobre él, sin embargo cuando una superficie no absorbe toda la radiación, la fracción remanente es reflejada de regreso hacia el espacio hemisférico o transmitida a través de ésta.

Para cuerpos negros $\alpha = 1$

Para otros $\rho + \alpha + \tau = 1$

Los cuerpos que no transmiten la radiación se conocen como cuerpos opacos o que tienen una transmitancia igual a cero.

La reflectancia hemisférica monocromática $\rho\lambda$ se define como la fracción en la radiación monocromática que se refleja.

La mayoría de los materiales sólidos que se encuentran en la práctica absorben prácticamente toda la radiación en su superficie muy delgada menor de 0.05 pulgadas de profundidad. El vidrio, la sal y

otros cristales orgánicos son ejemplos de excepciones entre los sólidos, porque a menos de que sean muy gruesos tienen un cierto grado de transparencia a la radicación de ciertas longitudes de onda.

La radiación es importante a medida que se incrementa la temperatura de un objeto y en el caso contrario su efecto es despreciable.

Ley de radicación de Stefan Boltsman

$$q = \sigma A \left(T_1^4 - T_2^4 \right)$$

$$\sigma = 5.669 \ x 10^{-8} \left[\frac{W}{m^2 K^4} \right]$$

Algunas superficies no irradian tanta energía térmica como las superficies negras, por tanto, las superficies pulidas o brillantes (grises) además de la geometría influyen factores de emisividad.

Ley de Prevost

$$q = F_{\varepsilon} F_{g} \sigma A \left(T_{1}^{4} - T_{2}^{4}\right)$$
 $F_{\varepsilon} = \text{factor de emisividad}$
 $F_{g} = \text{factor de geometría}$

EL ESPECTRO DE LA RADIACION

TIPO DE RADIACION	Intervalos de las longitudes de onda
Rayos Gamma	inferiores a 10 ⁻² nanómetros
Rayos X	entre 10 ⁻² nanómetros y 15 nanómetros
Ultravioleta	entre 15 nanómetros y 4.10 ² nanómetros
ESPECTRO VISIBLE	entre 4.10 ² nanómetros y 7,8.10 ² nanómetros (4000 Angstroms y 7800 Angstroms)
Infrarrojo	entre 7,8.10 ² nanómetros y 10 ⁶ nanómetros
Región de Microondas	entre 10 ⁶ nanómetros y 3.10 ⁸ nanómetros
Ondas de Radio	mayores de 3.10 ⁸ nanómetros

 $(1 \text{ metro} = 10^2 \text{ cms} = 10^3 \text{ mms} = 10^9 \text{ nanómetros} = 10^{10} \text{ angstroms})$

CONDUCCIÓN DE CALOR EN ESTADO TRANSITORIO

En muchas aplicaciones el proceso de calentamiento o enfriamiento depende casi exclusivamente del tiempo. Puede suponerse que en este puede.

La conductividad térmica del material o solución es suficientemente alta para considerar que la caída de temperatura en su interior es insignificante.

El análisis en transitorio es de gran importancia e interés práctico, debido al gran número de procesos de calentamiento y enfriamiento que deben analizarse en aplicaciones industriales.

No obstante que no existen en la naturaleza materiales que posean una conductividad térmica infinita, muchos problemas de flujo de calor transitorio pueden resolverse fácilmente con exactitud aceptable, suponiendo que la temperatura dentro del sistema es sustancialmente uniforme en cualquier instante. Esta simplificación está justificada cuando la resistencia térmica externa entre la superficie del sistema y el medio que lo rodea es grande, comparada con la resistencia térmica interna del sistema que controla el proceso de transformación de calor.

Una medida de la importancia relativa de la resistencia térmica dentro de un cuerpo sólido, es la razón de la resistencia interna a la externa. Esta razón puede escribirse en forma adimensional

como
$$\frac{hL}{K_s}$$
, el número de Biot, donde:

 $\overline{h}={
m \ coeficiente\ convectivo\ por\ unidad\ de\ superficie\ promedio}^*$

L = es la longitud y es una constate significativa que se obtiene al dividir el volumen del cuerpo por el área de su superficie.

Ks = es la conductividad del cuerpo sólido.

En cuerpos cuya forma se asemeja a una placa, un cilindro o una esfera, el error introducido por la hipótesis de la temperatura en cualquier instante es uniforme, será menor del 5% cuando la resistencia térmica sea menor del 100% de la resistencia de la superficie externa es decir:

^{*} Se encuentra en la página 14 de Kreith

$$\frac{\overline{h}L}{K_s} < 0.1$$

MODELO CAPACITIVO O DE PARÁMETROS CONECTIVOS PARA ENFRIAMIENTO SÓLIDO-LÍQUIDO.

Cambio de energía interna del sólido = Flujo neto de calor al medio durante $d\theta$

$$-\rho CDdT = hA(T_s - T_m)d\theta$$

 $d\theta$ = differencial de tiempo

 ρ = densidad del sólido

C =capacidad calorífica

A =área de transferencia

h =coeficiente convectivo

 θ = tiempo

(-) indica que la energía interna del sólida decrece cuando Ts > Tm (se enfría)

 $dT = d(T_{s_{\theta}} - T_m)$ puesto que Tm es constante. $T_{s_i} = \text{inicial } T_{s_{\theta}} = \text{al instante } \theta$

RADIACIÓN COMBINADA CON CONDUCCIÓN Y CONVECCIÓN

El intercambio de energía por radiación es el mecanismo predominante en el flujo de calor a altas temperaturas, debido a que la rapidez del flujo de calor depende de la cuarta potencia de la temperatura absoluta.

Sin embargo en muchas aplicaciones no puede despereciarse la convección ni la conducción, esto es aplicaciones donde se involucran simultáneamente dos o 3 formas de transferencia de calor.

Para incluir a la radiación en una red térmica es conveniente definir una unidad de conductancia térmica de radiación o coeficiente de transferencia radiante $\overline{h_r}$.

$$\overline{h_r} = \frac{q_r}{A_1(T_1 - T_2)} = \int \frac{\sigma(T_1^4 - T_2^4)}{T_1 - T_2}$$

Donde A_1 = área sobre la que se basa el factor de forma en $[ft^2]$ en $[ft^2]$ $T_1 - T_2$ = Una diferencia de temperaturas [°F], en la que puede escogerse $T_2 = T_2$ o cualquier otra temperatura conveniente al sistema.

 q_r = flujo de calor por radiación

$$\overline{h_r}$$
 = conductancia radiante $\frac{Btu}{hft^{-2} \circ F}$

Esto es útil porque la rapidez de flujo de calor llega a ser linealmente dependiente de la diferencia de temperatura y puede incluirse en una red térmica donde la temperatura es el principal potencial impulso.

$$\overline{h} = \overline{h_r} + \overline{h_c}$$

Si
$$T_2 = T_2$$
 entonces $\frac{\sigma(T_1^4 - T_2^4)}{T_1 - T_2}$ se conoce como el factor de temperatura (F_T) por lo

tanto $\overline{h_r} = 1-2 * F_T$ donde F_T se puede obtener de gráficas o por cálculo.

$$F_T = 0.172 \frac{\left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right]}{T_1 - T_2}$$

T = temperatura en grados Ranking

 T_1 = temperatura de la superficie absorbente

 T_2 = temperatura de la superficie radiante

Un caso particular
$$\overline{h_r} = 1-2 * \mathcal{E}$$

FLUJO DE CALOR POR RADIACIÓN ENTRE SUPERFICIES GRISES

La hipótesis de que una superficie es negra simplifica los campos de radiación de calor debido a que toda la radiación incidente es absorbida.

En la práctica puede despreciarse generalmente la reflexión sin introducir serios errores. Si la absortancia de las superficies es mayor a 0.9. Pero hay casos prácticos donde la radiación es indeseable y están presentes superficies de baja absortancia y baja emisividad. Por ejemplo las paredes de los carros son plateadas para reducir el flujo de calor por radiación, los termopares están recubiertos para reducir la diferencia entre la temperatura indicada y la temperatura del medio que se mide, cuando estas son altas temperaturas.

Si las superficies radiantes no son negras, el análisis se vuelve complicado a menos que se consideren que las superficies son grises (opacas y difusas). El poder de radiación (J) se define como la rapidez con la que la radiación abandona una superficie dada por unidad de área. El poder de radiación es la suma de la radiación emitida, reflejada y transmitida, para cuerpos opacos y

difusos que no transmiten la radiación, el poder de radiación puede definirse como $J = PG + \varepsilon E_h$

donde J
$$\left[\frac{Btu}{hft^2}\right]$$

G irradiación o radiación por unidad de tiempo incidente ó unidad de área de la superficie $\left\lceil \frac{Btu}{hr*ft^2} \right\rceil$

$$E_b$$
 poder de emisión del cuerpo negro $\left\lceil \frac{\mathit{Btu}}{\mathit{hft}^2} \right\rceil$

 ρ reflectividad

$$\varepsilon$$
 emisividad $\varepsilon = \frac{E}{E_b}$

E poder de emisión del cuerpo

Para una superficie gris (opaca o difusa) $\rho = cons \tan te$ y $\rho + \varepsilon = 1$ y el flujo de calor se puede expresar como:

$$\mathbf{q} = \frac{\mathcal{E}}{\rho} A \big(E_b - J \big) \text{ donde A es la superficie donde se irradia, si el intercambio se da en 2 superficies}$$
 grises $\mathbf{A}_i \ \mathbf{A}_k \ q_{i \Leftrightarrow k} = \big(J_i - J_k \big) A_i F_{i-k} = \big(J_i - J_k \big) A_k F_{k-i} \text{ donde F}_{i-k} \text{ y F}_{k-i}$

son factores de forma geométricos se obtienen de tablas estas relaciones proporcionan la base para determinar la rapidez neta de transferencia de calor por radiación entre cuerpos grises dentro de una envoltura gris.

Eiemplo:

Un termopar con una emisividad de 0.8 se usa para medir la temperatura de un gas transparente que fluye en un ducto largo cuyas paredes están a una temperatura de 440°F. La temperatura indicada por el termopar es de 940°F si el coeficiente de transferencia de calor por convección entre

la superficie del termopar y el gas es 25 $\frac{Btu}{hft°F}$ ¿Cuál es la temperatura verdadera del gas?

En sistemas donde el calor se transfiere simultáneamente por convección y radiación, frecuentemente no es posible determinar el coeficiente de transferencia de calor radiante $\overline{h_r}$.

Dado que el factor de temperatura (F_t) que tiene las temperaturas de radiación emitida y recibida, puede evaluarse únicamente cuando ambas temperaturas son conocidas.

Si una de las temperaturas depende de la rapidez de flujo de calor, es decir, si uno de los potenciales de la red es variable, debe suponerse un valor para el potencial variable y entonces determinar si tal valor satisface la continuidad del flujo de calor en el estado estable. Si la rapidez del flujo de calor a un punto no es igual a la rapidez con la que sale, debe suponerse otra temperatura hasta que se satisfaga el balance.

RADIACIÓN DEBIDA A GASES, VAPORES Y FLAMAS

Muchos de los gases comunes y mezclas de gases tales como O_2, N_2, H_2 aire seco, etc. Tienen moléculas simétricas y son prácticamente transparentes a la radiación térmica, es decir ni emiten ni absorben cantidades apreciables de energía radiante a temperaturas de interés práctico.

Por otro lado, la radiación de gases heteropolares (los núcleos tienen una distribución no uniforme de cargas eléctricas). Y vapores tales como CO_2 , agua, SO_2 , CO, NH_3 (amoniaco), hidrocarburos y alcoholes, es de importancia en equipos de transferencia de calor.

Mientras los sólidos radian o irradian en todas las longitudes de onda, los gases emiten y absorben radiación únicamente entre angostas regiones de longitud de onda llamadas bandas.

Suponiendo radiación del cuerpo negro dentro de las bandas la radiación para el Co2 a 200, 1000 y 2000 °C es 12, 10.5 y 6%, emitida a las temperaturas correspondientes.

Para el vapor de H2O a las mismas temperaturas 67,46 y 24 %

La radiación de los gases difiere de la de cuerpos sólidos en otro.

$$\begin{split} I_{\lambda_{2}} &= I_{\lambda_{0}} e^{-k_{\lambda}^{'}L} \\ I_{\lambda_{0}} &- I_{\lambda_{L}} &= I_{\lambda_{0}} (1 - e^{-k_{\lambda}^{'}L}) \end{split}$$

que expresa la diferencia entre la radiación que entra y sale de la capa de gas con espesor L, lo cual representa la cantidad de energía absorbida por el gas.

El factor $(1-e^{-k_\lambda^i L})$ es la absorbencia del gas y lo expresamos como $\alpha_{G\lambda}$ a la longitud de onda λ o también de acuerdo con la ley de Kirchoff la emisividad a la longitud de onda

Para obtener valores efectivos de la emisividad o de la absorbencia, es necesaria sumar sobre todas las bandas de radiación.

Para espesores grandes de gas o capas gruesas, la radiación del gas se aproxima a las condiciones del cuerpo negro dentro de las longitudes de onda de sus bandas.

Para cuerpos gaseosos de dimensiones finitas, la absorbencia efectiva por la emisividad depende la forma o tamaño del cuerpo gaseoso, puesto que la radiación no esta confinada a una dirección.

Este método o metodología evalúa las emisividades a varias temperaturas y presiones y dibuja sus curvas para varios gases, estrictamente el método aplica para un sistema en el que el gas tiene una forma semiesférico de radio "l" e irradia hacia un elemento de superficie colocado en el centro de la semiesfera.

Para formas diferentes se pueden calcular la longitud efectiva del gas.

Forma L

- 1. Esfera. $\frac{2}{3}$ diametro
- 2. Cilindro infinito (tubería). diámetro
- 3. Espacios entre dos planos paralelos e infinitos. (4.8) * separación entre planos

4. Cubo.

 Espacio fuera de un banco finito de tubos cuyos centros forman triángulos equiláteros, diámetro de tubo igual claro entre tubos.

6. Igual al anterior excepto que el diámetro del todo es igual a la mitad del claro.

7. Ducto cuadrado.

$$\frac{2}{3}l$$

(2.8)* claro usa radiación y convección

3.8 * claro

3.4 * volúmen de la sección área de superficie

El valor de "L" se usa en las gráficas para agua y para CO_2

ALETAS

Las aletas o superficies extendidas tienen varias aplicaciones industriales como aletas fijas a las paredes de equipos de transferencia de calor, con el propósito de incrementar la rapidez de calentamiento o de enfriamiento.

 $A_r = ez$ área lateral

P = 2z + 2e perímetro

$$q_n = hPdx (T_s - T_m)$$

$$-kAr\frac{dT}{dx} = -kAr\left(\frac{dT}{dx} + \frac{d^{2}T}{dx^{2}}dx\right) + hPdx(Ts - Tm)$$

$$-kAr\frac{dT}{dx}$$
 conducción por Ar, base de la cara izquierda el calor entra

$$-kAr\left(\frac{dT}{dx} + \frac{d^2T}{dx^2}dx\right)$$
 conducción Ar de la parte derecha el calor sale

hPdx(Ts-Tm) es la convección en el área superficial y el calor sale

$$\theta = T_{\scriptscriptstyle s} - T_{\scriptscriptstyle m} ~$$
 condición de frontera x = 0 $\theta_{\scriptscriptstyle 0} = T_{\scriptscriptstyle s0} - T_{\scriptscriptstyle m}$

Caso 1
$$L \rightarrow \infty y T_s - T_m$$

Caso 2 L es pequeña y se pierde calor por
$$A_r$$

Caso 3 L es pequeña y no se pierde calor por A_r

Se define
$$m^2 = \frac{hP}{{}_k A_r}$$
 $A_r = ze$

$$P = perímetro$$

$$\theta = C_1 e^{-mx} + C_2 e^{mx}$$

Para el caso 1
$$\theta = \theta_0 \ en \ \mathbf{x} = 0 \qquad \frac{\theta}{\theta_0} = \frac{T_s - T_m}{T_{s0} - T_m} e^{-mx}$$

$$\theta = 0 \ \text{en} \ \mathbf{x} = \infty$$

$$q = \sqrt{hPkAr}\theta_0$$

Para caso 2
$$\frac{\theta}{\theta_0} = \frac{\cosh m (L - x) + \frac{h}{mk} senhm (L - x)}{\cosh mL + \frac{h}{mk} senh(mL)}$$
$$q = \sqrt{hPkAr} \theta_0 * \frac{senh(mL) + \frac{h}{mk} \cosh(mL)}{\cosh(mL) + \frac{h}{mK} senh(mL)}$$

Para caso 3
$$\frac{\theta}{\theta_0} = \frac{\cosh m (L - x)}{\cosh mL}$$

$$q = \sqrt{hPkAr}\theta_0 \tanh(mL)$$

Se supuso que el calor es en la dirección de x, lo cual se cumple si la aleta es delgada. Esta suposición introduce un error de aproximadamente 1% para los 3 casos.

Estas aletas se aproximan a la forma que proporciona el máximo flujo de calor por unidad de peso.

La selección de la forma geométrica de la aleta requiere de un balance entre el costo, el peso, el espacio disponible y la caída de presión así como de las características de transferencia de calor de la aleta.

Eficiencia de aleta

$$\eta_A = \frac{q_a}{q_0}$$

 q_a = es el calor de la aleta

 $q_0=$ es el calor de la aleta si toda ésta estuviera a la temperatura de superficie

$$q_{s0} = PLh(T_{s0} - T_m)$$

Para el caso 3, una aleta rectangular

$$\eta_A = \frac{tgh(mL)}{mL}$$

COEFICIENTES CONVECTIVOS

Viscosidad, expresa la facilidad que tiene una sustancia para fluir cuando se le aplica una fuerza externa, el coeficiente de viscosidad absoluta es una medida de resistencia al deslizamiento o a sufrir deformaciones relevantes. La melaza es un fluido muy viscoso en comparación con el agua.

La viscosidad absoluta (
$$\mu$$
) tiene unidades de $[Pa*s]$, $[\frac{N*s}{m^2}]$, $[\frac{kg}{ms}]$, $[Poise]$, $[\frac{dina*s}{cm^2}]$

La viscosidad cinemática es el cociente de la viscosidad dinámica y la densidad.

El coeficiente de transferencia de calor por convección es realmente una función complicada del flujo de la sustancia, de las propiedades térmicas del medio y de la sustancia y de la geometría del sistema.

Su valor numérico o magnitud, en general, no es uniforme sobre una superficie y depende del lugar donde se mide la temperatura del fluido.

Un análisis conducirá a una evaluación cuantitativa del coeficiente por transferencia de calor por convección, este debe iniciarse, con un estudio de la dinámica del flujo de la sustancia, por tanto se requiere analizar la influencia de las condiciones del flujo, las propiedades del fluido, de las formas geométricas de las fronteras sobre el coeficiente.

Cuando una sustancia fluye con movimiento laminar sobre una superficie a una temperatura diferente de la de la sustancia el calor se transfiere únicamente por conducción molecular tanto dentro de la sustancia como en la cara intermedia entre la sustancia y la superficie.

No existen mezclas turbulentas o remolinos (vórtices) que transporten a través de las líneas de corriente, la energía almacenada en las partículas de la sustancia, el calor se transfiere entre las capas de la sustancia por el momentum molecular en una escala microscópica.

Por otro lado, en el flujo turbulento, el mecanismo de conducción está modificado y ayudado por innumerables remolinos que acarrean más a la sustancia a través de las líneas de corriente. Estas partículas en la sustancia actúan como transportes de energía y la transfieren al mezclarse por otras partículas de la sustancia, por lo tanto, un incremento en la rapidez del flujo de la sustancia o turbulencia, aumentará también la rapidez del flujo de calor.

Cuando una sustancia fluye a los largo de una superficie, las partículas más cercanas a la superficie son frenadas debido a las fuerzas viscosas, independientemente si el flujo es laminar o turbulento.

El fluido contenido en la región de cambio sustancial de velocidad se llama capa límite hidrodinámica. El grueso de la capa límite, se define como la distancia desde la superficie donde se alcanza el 99% de la velocidad externa o media de la sustancia.

La transición del flujo laminar a turbulento ocurre cuando $\frac{\rho V_{\scriptscriptstyle m} x}{\mu} > 5x10^{\scriptscriptstyle 5}$

ho = densidad x es medida desde x = 0 y V = 0 Vm = velocidad media μ = viscosidad

El intervalo de transición sería de 5 x 10⁵ hasta 5 x 10⁶

Capa límite térmica

La capa límite hidrodinámica se definió como la región del flujo en donde se sienten fuerzas viscosas, una capa límite térmica puede definirse como aquella región donde los gradientes de temperatura están presentes en la sustancia.

Estos gradientes de temperatura serán el resultado de un proceso de intercambio de calor entre la sustancia y las paredes.

TEORÍA DE MODELOS

Es una alternativa experimental a la no-solución de las ecuaciones de Navel – Stock, energía, continuidad y capa límite térmica, para encontrar el campo de temperatura en la capa límite térmica y en el perfil de velocidades.

Los coeficientes adimensionales introduce un error de 5 a 20 % pero permiten una similitud dinámica.

La convección es el mecanismo transferencia de calor a través de un fluido con movimiento masivo de éste. En la convección existe movimiento del fluido a nivel macroscópico mientras que en la conducción existe movimiento a nivel microscópico, atómico o molecular, pero no a nivel macroscópico, entendiendo como nivel mácroscópico movimiento de volúmenes relativamente grandes del fluido.

La convección se clasifica en natural y forzada. En la convección forzada se obliga al fluido a fluir mediante medios externos, como un ventilador o una bomba. En la convección natural el movimiento del fluido es debido a causas naturales, como el efecto de flotación, el cual se manifiesta con la subida del fluido caliente y el descenso del fluido frio.

La convección forzada se clasifica a su vez en externa e interna dependiendo de si el flujo de fluido es interno o externo. El flujo de un fluido se clasifica como interno o externo dependiendo de si se fuerza al fluido a fluir por un canal confinado (superficie interior) o por una superficie abierta. El flujo de un fluido no limitado por una superficie (placa, alambre , exterior de un tubo) es flujo externo. El flujo por un tubo o ducto es flujo interno si ese fluido está limitado por completo por superficies sólidas. El flujo de líquidos en un tubo se conoce como flujo en canal abierto si ese tubo está parcialmente lleno con el líquido y se tiene una superficie libre.

La velocidad de transferencia de calor a través de un fluido es mucho mayor por convección que por conducción. Cuanto mayor es la velocidad del fluido mayor es la velocidad de transferencia de calor.

La transferencia de calor por convección depende de las propiedades del fluido, de la superficie en contacto con el fluido y del tipo de flujo. Entre las propiedades del fluido se encuentran: la viscosidad dinámica m, la conductividad térmica k, la densidad. También se podría considerar que depende de la viscosidad cinemática. Entre las propiedades de la superficie que intervienen en la convección

están la geometría y la aspereza. El tipo de flujo, laminar o turbulento, también influye en la velocidad de transferencia de calor por convección.

En cualquier caso, la velocidad de transferencia de calor por convección siempre es proporcional a la diferencia de temperatura entre la superficie y el fluido. Este hecho se modela matemáticamente mediante la Ley de Enfriamiento de Newton: q = h (Ts - Tf) o Q = h As (Ts - Tf) donde Ts es la temperatura de la superficie en contacto con el fluido y Tf es la temperatura del fluido lo suficientemente lejos de dicha superficie. La influencia de las propiedades del fluido, de la superficie y del flujo se cuantifica en el coeficiente de película o coeficiente de transferencia de calor por convección (h) .

NÚMEROS ADIMENSIONALES

En el análisis de la convección es práctica común quitar las dimensiones a las expresiones físicomatemáticas que modelan el mecanismo y agrupar las variables, dando lugar a los números adimensionales. En convección se emplean los siguientes números adimensionales:

A) Número de NUSSELT (Nu) .- Representa la relación que existe entre el calor transferido por convección a través del fluido y el que se transferiría si sólo existiese conducción.

Se considera una capa de fluido de espesor L con sus superficies a diferentes temperaturas T1 y T2, T1 > T2, Δ T = T1 - T2, como se muesta en la figura:

El flujo de calor debido a la convección será: q convección = $h \Delta T$, mientras que el flujo de calor si sólo existiera conducción sería q conducción = $k (\Delta T / L)$. Dividiendo ambas expresiones:

$$\frac{\mathbf{\dot{q}_{conv}}}{\mathbf{\dot{q}_{cond}}} = \frac{h \, \triangle T}{k \, \frac{\triangle T}{L}} = \frac{h \, L}{k} = \mathbf{Nu}$$

$$\mathbf{N}\mathbf{u} = \frac{\mathbf{h} \; \mathbf{L}\mathbf{c}}{\mathbf{k}}$$

En general:

donde Lc es la longitud característica.

$$Nu = \frac{h D}{k}$$

Para un tubo circular:

donde D es el diámetro interior del tubo.

$$Nu = \frac{h \ D_{hid}}{k}$$

Para un tubo no circular:

donde Dhid es el diámetro hidraúlico = (4 Ac) / p ; Ac: área de la sección transversal del tubo; p: perímetro de la sección tranversal

Cuanto mayor es el número de Nusselt más eficaz es la convección

Un número de Nusselt de Nu = 1, para una capa de fluido, representa transferencia de calor a través de ésta por conducción pura.

El número de Nusselt se emplea tanto en convección forzada como natural

B) Número de PRANDTL (Pr) .- Representa la relación que existe entre la difusividad molecular de la cantidad de movimiento y la difusividad molecular del calor o entre el espesor de la capa límite de velocidad y la capa límite térmica:

$$Pr = \frac{\text{Difusividad molecular de la cantidad de movimiento}}{\text{Difusividad molecular del calor}} = \frac{v}{\alpha} = \frac{\mu \ Cp}{k}$$

El número de Prandtl va desde menos de 0.01 para los metales líquidos hasta más de 100.000 para los aceites pesados. El Pr es del orden de 10 para el agua. Los valores del número de Prandtl para los gases son de alrededor de 1, lo que indica que tanto la cantidad de movimiento como de calor se difunden por el fluido a una velocidad similar. El calor se difunde con mucha rapidez en los metales líquidos (Pr << 1) y con mucha lentitud en los aceites (Pr >> 1) en relación con la cantidad de movimiento. Esto indica que la capa límite térmica es mucho más gruesa para los metales líquidos y mucho más delgada para los aceites, en relación con la capa límite de velocidad. Cuanto más gruesa sea la capa límite térmica con mayor rapidez se difundirá el calor en el fluido.

El número de Prandtl se emplea tanto en convección forzada como natural.

C) Número de REYNOLDS (Re).- Representa la relación que existe entre las fuerzas de inercia y las fuerzas viscosas que actúan sobre un elemento de volumen de un fluido. Es un indicativo del tipo de flujo del fluido, laminar o turbulento.

$$Re = \frac{Fuerzas \ de \ inercia}{Fuerzas \ viscosas} = \frac{U_f \ Lc}{v} = \frac{\rho \ U_f \ Lc}{\mu}$$

Donde Uf es la velocidad del flujo del fluido a una distancia lo suficientemente alejada de la superficie.

Lc es la longitud característica: para una placa plana Lc = distancia al borde de ataque de la placa. Para un tubo de sección circular Lc = Diámetro (D). Para un tubo de sección no circular Lc = Diámetro hidraúlico (Dhid).

n es la viscosidad cinemática.

Un valor grande del número de Reynolds indica régimen turbulento.

Un valor pequeño del número de Reynolds indica régimen laminar.

El valor del número de Reynolds para el cual el flujo se vuelve turbulento es el número crítico de Reynolds. Este valor crítico es diferente para las diferentes configuraciones geométricas.

Para una placa plana Re crítico = 5×10^{5} .

Para tubos: si Re < 2300 el flujo es laminar. Si 2300 < Re < 10000 el flujo es de transición. Si Re > 10000 el flujo es turbulento.

El número de Reynolds sólo se utiliza en convección forzada.

D) Número de GRASHOF (Gr) .- Representa la relación que existe entre las fuerzas de empuje y las fuerzas viscosas que actúan sobre el fluido. Es un indicativo del régimen de flujo en convección natural, equivalente al número de Reynolds en convección forzada.

$$Gr = \frac{g \beta (Ts - Tf) Lc^3}{v^2}$$

Donde g es la aceleración de la gravedad.

b es el coeficiente de expansión volumétrica de una sustancia; representa la variación de la densidad de esa sustancia con la temperatura a presión constante. Para un gas ideal b = 1 / T; T es la temperatura absoluta en K.

Lc es la longitud característica. Para una placa vertical del longitud L, Lc = L. Para un cilindro de diámetro D, Lc = D.

n es la viscosidad cinemática.

El número de Grashof sólo se utiliza en convección natural.

E) Número de RAYLEIGH (Ra).- Es función del número de Grashof y del número de Prandtl. Su valor es el número de Grashof multiplicado por el número de Prandtl.

$$Ra = Gr Pr$$

El número de Rayleigh sólo se utiliza en convención natural .

El problema básico en convección consiste en conocer el valor del coeficiente de película h. Una vez conocido este coeficiente es inmediato calcular la potencia térmica puesta en juego mediante la Ley de Enfriamiento de Newton: Q = h A (Tt - Ts).

El análisis de la convección está basado en datos experimentales que se presentan mediante las llamadas correlaciones. Existen casos que permiten abordarlos analíticamente, pero son los menos y no son prácticos desde el punto de vista ingenieril.

El coeficiente de película h se calcula a partir del número de Nusselt pues Nu = (h L) / k y, entonces, h = (Nu k) / L.

Para el cálculo del número de Nusselt hay que distinguir entre convección forzada y natural.

En convección forzada el número de Nusselt es función del número de Reynolds y de Prandtl, Nu = f (Re, Pr)

En convección natural el número de Nusselt es función del nuúmero de Grashof y de Prandtl o del núméro de Rayleigh y de Prandtl puesto que Ra = Gr Pr. Nu = f (Ra, Pr) = f (Gr, Pr)

El método de cálculo de la potencia térmica puesta en juego en la convección es el siguiente:

- a) Se analizan las condiciones en la que tiene lugar la convección (geometría de la superficie, convección natural o forzada, tipo de flujo) para seleccionar la correlación adecuada.
- b) A partir de la correlación adecuada y los datos conocidos se calcula el número de Nusselt.
- c) Una vez conocido el número de Nusselt se calcula el coeficiente de película: h = (Nu k) / L .
- d) Se calcula la potencia térmica mediante la Ley de enfriamiento de Newton : Q = h (Tf Ts)

1.- GRUPOS ADIMENSIONALES UTILIZADOS EN LA TRANSFERENCIA DE CALOR

1) N° de BIOT: Bi =
$$\frac{h_c L}{k}$$

Es el cociente entre la resistencia térmica del sólido y la resistencia térmica del fluido.

2) N° de FOURIER: Fo =
$$\frac{\alpha t}{L^2}$$

Es el cociente entre la conducción del calor y el calor almacenado Se utiliza en problemas de transferencia de calor transitorios

3) N° de GRAETZ:
$$Gz = Re Pr \left(\frac{d}{L}\right) = \frac{\rho u d^2 c_p}{k L}$$

Se utiliza en problemas de convección forzada

4) N° de GRASHOF:
$$Gr = \frac{g \beta \Delta T L^3}{v^2}$$

Es el cociente entre las fuerzas de flotación y las fuerzas de viscosidad.

5) N° de LEWIS: Le =
$$\frac{\alpha}{\epsilon}$$

Es el cociente entre la difusividad térmica y la difusividad molecular Se utiliza en problemas de transferencia de masa.

6) N° de NUSSELT: Nu =
$$\frac{h_c L}{k}$$

Es el coeficiente básico de la transferencia de calor por convección

7) N° de PECLET: Pe = Re Pr =
$$\frac{\rho \text{ u L c}_p}{k}$$

Es el cociente entre la transferencia de calor por convección y por conducción Se utiliza en problemas de convección forzada.

8) N° de PRANDTL:
$$Pr = \frac{v}{\alpha} = \frac{\eta c_p}{k}$$

Es el cociente entre el impulso y la difusividad térmica.

9) N° de RAYLEIGH: Ra = Gr Pr =
$$\frac{g \beta \Delta T L^3}{v \alpha}$$

Se utiliza en problemas de convección libre

10) N° de REYNOLDS: Re
$$=\frac{uL}{v}$$

Es el cociente entre las fuerzas de inercia y las fuerzas de viscosidad

11) N° de SCHMIDT: Sc =
$$\frac{V}{\varepsilon}$$

Es el cociente entre el impulso y la difusión de masa.

12) N° de SHERWOOD: Sh =
$$\frac{kL}{\epsilon}$$

Es el cociente entre la difusividad de masa y la difusividad molecular.

13) N° de STANTON: St =
$$\frac{Nu}{Re Pr} = \frac{h_c}{\rho c_p u}$$

Es el cociente entre el calor transferido en la superficie y el transportado por el fluido.

$$14) \ N^{\circ} \ de \ JAKOB: \ Ja_{1} = \ \frac{c_{pl} \ (T_{sat} - T_{pared})}{r_{l-v}}$$

Es el cociente entre el calor sensible del líquido sobrecalentado y el calor latente del cambio de estado

La nomenclatura cambia de libro en libro de autor en autor, por lo cual no hay una homogénea.

2.- EMISIVIDADES NORMALES

METALES	Estado superficie	Temperatura (°C)	Emisividad	NO METALES	Estado superficie	Temperatura (°C)	Emisividad
Aluminio	placa pulida	25	0,040	Amianto	en cartón	37	0,960
Aluminio	placa pulida	200-600	0,038-0,06	Amianto	en papel	37	0,930
Aluminio	oxidado	100-500	0,20-0,33	Ladrillo	magnesita refractar	1000	0,380
Aluminio	placa mate	25	0,070	Ladrillo	rojo, rugoso	20	0,930
Antimonio	pulido	37-260	0,28-0,31	Ladrillo	gris, satinado	1100	0,750
Latón	oxidado	200-500	0,600	Ladrillo	sílice	540	0,800
Latón	pulido	20-300	0.05-0.032	Carbón.	filamento	1050-1400	0,526
Latón	placa usada	50-350	0,220	Carbón,	carbonilla bujías	95-270	0,953
Latón	mate	50	0,202	Carbón,	negro de humo	20	0,930
Cromo	pulido	37-1100	0,058	Cerámica	alfarería, satinado	20	0,900
Cobre	negro oxidado	37	0,780	Cerámica	porcelana	22	0,920
Cobre	ligeramente mate	25	0,037	Cerámica	refractaria, negra	93	0,940
Cobre	pulido	37-260	0,04-0,05	Arcilla	caldeada	70	91
	pulido electrolítico	80		Hormigón		37	0.94
Cobre			0,018		rugoso	22	
Oro	no pulido	20	0,470	Vidrio	liso		0,940
Oro	pulido	37-260	0,020	Vidrio	Pyrex, plomo, sosa	260-530	0,95-0,85
Hierro	oxidado	100	0,740	Hielo	liso	0	0,966
Hierro	esmerilado	20	0,240	Hielo	rugoso	0	0,985
Hierro	pulido	425-1025	0,14-0,38	Mármol	grano fino pulido	22	0,93
Hierro	pulido electrolítico	175-225	0,052-0,064	Mica		37	0,75
Hierro	todo oxidado	20	0,69	Mampostería	emplastecida	0	0,930
Hierro	laminado	925-1100	0,87-0,95	Pape1	ordinario	20	0,8-0,9
Fundición	mecanizada	22	0,44	Pape1	amianto	20	0,950
Fundición	oxidada a 600°C	200-600	0,64-0,78	Pape1	alquitranado	20	0,910
Plomo	oxidado a 200°C	200	0,63	Pape1	ordinario	95	0,920
Plomo	oxidado gris	23	0,280	Yeso blanco	rugosa	20	0,930
Plomo	pulido	130-260	0,08-0,056	Porcelana	vidriada	20	0,930
Magnesio	pulido	37-260	0,07-0,13	Cuarzo fundido	rugoso	20	0,930
Magnesio	oxidado	275-825	0,55-0,2	Goma blanda	gris	25	0,860
Molibdeno	para filamentos	700-2600	0,10-0,20	Goma dura	negra rugosa	25	0,950
Molibdeno	pulido	150-480	0,02-0,05	Madera de haya	1áminas	25	0,935
Mone1	pulido	37	0,170	Madera de encina	1áminas	25	0,885
Níquel	oxidado a 600°C	260-540	0,37-0,48	Tierra		37	0,950
Níquel	pulido	100-260	0,045-0,07	PINTURAS			
Níquel	electrolítico	37-260	0,04-0,06	Aluminio	bronce de	100	0,300
Platino	electrolítico	260-540	0,06-0,1	Aluminio	esmaltado rugoso	20	0,390
Platino	placa pulida	260-540	0,06-0,1	Aluminio pintado	calentado a 325°C	150-300	0,350
Platino	oxidado a 600°C	260-540 26-1225	0,07-0,11 0,04-0,19	Aluminio	Al 10%, laca 22% Al 26%, laca 27%	100	0,520
Platino Plata	filamento pulida, pura	225-625	0,02-0,03	Aluminio Laca	blanca	100	0,925
Plata	pulida pulida	37-370	0,02-0,03	Laca	negra mate	80	0,970
Acero	pulido	23	0,160	Aceite	pintura	20	0,89-0,97
Estaño	brillante	225-265	0,02-0,03	Aceite pintura	todos los colores	100	0,92-0,96
Estaño	pulido	37-370	0,070	Baquelita	esmaltada	80	0,935
Tungsteno	para filamentos	3300	0,390	Esmalte	blanco rugoso	20	0,900
Tungsteno	filamento envejecio	25-3300	0,03-0,35	Esmalte	negro brillante	25	0,876
Cinc	oxidado	20	0,250	Pintura al aceite		1-200	0,885
Cinc	pulido	225-325	0,05-0,06	Imprimación minio		20-1100	0,930

3.- ABSORTIVIDAD SOLAR DE SUPERFICIES

METALES	Estado superficial	Absortividad	METALES	Estado superficial	Absortividad
Aluminio	pulido	0,10	Magnesio	pulido	0,19
Aluminio	anodizado	0,14	Magnesio	oxidado	0,55-0,2
Aluminio	en placas	0,15	Níquel	muy pulido	0,15
Bronce	pulido	0,3-0,5	Níquel	pulido	0,36
Bronce	mate	0,4-0,65	Níquel	oxidado	0,79
Cromo	electroplateado	0,41	Platino	brillante	0,31
Cobre	muy pulido	0,18	P1ata	muy pulida	0,07
Cobre	decapado	0,25	P1ata	pulida	0,13
Cobre	decolorada por exposición	0,64	Acero inoxidable	pulido	0,33
Oro		0,21	Acero inoxidable	decapado	0,52
Hierro	galvanizado pulido	0,34	Tungsteno	muy pulido	0,37
Hierro	galvanizado nuevo	0,64	Cinc	muy pulido	0,34
Hierro	mate, oxidado	0,96	Cinc	pulido	0,55
NO METALES			NO METALES		
Asfalto pavimento		0,85	Hormigón	descolorido	0,65
Asfalto pavimento	libre de polvo	0,93	Hormigón	marrón	0,85
Asfalto pavimento	nuevo	0,93	Hormigón	sucio, oscuro	0,71
Ladrillo	barnizado blanco	0,26	Granito		0,45
Ladrillo	arcilla, barnizado crema	0,36	Grasa		0,75-0,80
Ladrillo	rojo	0,70	Grava		0,29
Ladrillo rojo	satinado oscuro	0,77	Oxido de magnesio		0,15
Mármol	sin pulir	0,47	Pintura aceite	plomo blanco	0,24-0,26
Mármol	blanco	0,44	Pintura aceite	crema clara	0,30
Mármol	con fisuras	0,60	Pintura aceite	verde claro	0,50
Papel aglomerado		0,25	Pintura aluminio		0,55
Papel blanco		0,28	Pintura aceite	gris claro	0,75
Arena		0,76	Pintura aceite negra	sobre hierro galvanizado	
Serrín de madera		0,75	Pizarra	gris plateado	0,79
Nieve	1impia	0,2-0,35	Pizarra	gris azulado	0,85
Hollín, carbón		0,95	Pizarra	gris verdoso	0,88
Oxido de cinc		0,15	Pizarra	gris oscuro	0,90

4.- PROPIEDADES TERMICAS DE ALGUNOS ELEMENTOS METALICOS

	Conduct	ividad té	rmica "k	" (W/m°K	 a la te 	mperatur	a de:		Prop	oiedades :	a 20°C	
						-		ρ	сp	k	$\alpha \times 10^6$	T.fusión
ELEMENTO	200°K	273°K	400°K	600°K	800°K	1000°K	1200°K	Kg/m ³	kJ/Kg℃	W/m.ºK	m ² /seg	°K
Aluminio	237,0	236,0	240,0	232,0	220,0			2702	896	236,0	97,5	933
Antimonio	30,2	25,5	21,2	18,2	16,8			6684	208	24,6	17,7	904
Berilio	301,0	218,0	161,0	126,0	107,0	89,0	73,0	1850	1750	205,0	63,3	1550
Bismuto	9,7	8,2						9780	124	7,9	6,5	545
Boro	52,5	31,7	18,7	11,3	8,1	6,3	5,2	2500	1047	28,6	10,9	2573
Cadmio	99,3	97,5	94,7					8650	231	97,0	48,5	594
Cesio	36,8	36,1						1873	230	36,0	83,6	302
Cromo	111,0	94,8	87,3	80,5	71,3	65,3	62,4	7160	440	91,4	29,0	2118
Cobalto	122,0	104,0	84,8					8862	389	100,0	29,0	1765
Cobre	413,0	401,0	392,0	383,0	371,0	357,0	342,0	8933	383	399,0	116,6	1356
Germanio	96,8	66,7	43,2	27,3	19,8	17,4	17,4	5360	61,6			1211
Oro	327,0	318,0	312,0	304,0	292,0	278,0	262,0	19300	129	316,0	126,9	1336
Hafnio	24,4	23,3	22,3	21,3	20,8	20,7	20,9	13280	23,1			2495
Indio	89,7	83,7	74,5					7300	82,2			430
Iridio	153,0	148,0	144,0	138,0	132,0	126,0	120,0	22500	134	147,0	48,8	2716
Hierro	94,0	83,5	69,4	54,7	43,3	32,6	28,2	7870	452	81,1	22,8	1810
Plomo	36,6	35,5	33,8	31,2				11340	129	35,3	24,1	601
Litio	88,1	79,2	72,1					534	3391	77,4	42,7	454
Magnesio	159,0	157,0	153,0	149,0	146,0			1740	1017	156,0	88,2	923
Manganeso	7,2	7,7						7290	486	7,8	2,2	1517
Mercurio	28,9							13546				234
Molibdeno	143,0	139,0	134,0	126,0	118,0	112,0	105,0	10240	251	138,0	53,7	2883
Níquel	106,0	94,0	80,1	65,5	67,4	71,8	76,1	8900	446	91,0	22,9	1726
Niobio	52,6	53,3	55,2	58,2	61,3	64,4	67,5	8570	270	53,6	23,2	2741
Paladio	75,5	75,5	75,5	75,5	75,5	75,5		12020	247	75,5	25,4	1825
Platino	72,4	71,5	71,6	73,0	75,5	78,6	82,6	21450	133	71,4	25,0	2042
Potasio	104,0	104,0	52,0					860	741	103,0	161,6	337
Renio	51,0	48,6	46,1	44,2	44,1	44,6	45,7	21100	137	48,1	16,6	3453
Rodio	154,0	151,0	146,0	136,0	127,0	121,0	115,0	12450	248	150,0	48,6	2233
Rubidio	58,9	58,3						1530	348	58,2	109,3	312
Silicio	264,0	168,0	98,9	61,9	42,2	31,2	25,7	2330	703	153,0	93,4	1685
P1ata	403,0	428,0	420,0	405,0	389,0	374,0	358,0	10500	234	427,0	173,8	1234
Sodio	138,0	135,0						971	1206	133,0	113,6	371
Tántalo	57,5	57,4	57,8	58,6	59,4	60,2	61,0	16600	138	57,5	25,1	3269
Estaño	73,3	68,2	62,2					5750	227	67,0	51,3	505
Titanio	24,5	22,4	20,4	19,4	19,7	20,7	22,0	4500	611	22,0	8,0	1953
Tungsteno	197,0	182,0	162,0	139,0	128,0	121,0	115,0	19300	134	179,0	69,2	3653
Uranio	25,1	27,0	29,6	34,0	38,8	43,9	49,0	19070	113	27,4	12,7	1407
Vanadio	31,5	31,3	32,1	34,2	36,3	38,6	41,2	6100	502	31,4	10,3	2192
Cinc	123,0	122,0	116,0	105,0				7140	385	121,0	44,0	693
Circonio	25,2	23,2	21,6	20,7	21,6	23,7	25,7	6570	272	22,8	12,8	2125

5.- PROPIEDADES TERMICAS DE ALGUNAS ALEACIONES

The second section of	-d 20%C	Densidad		l	Difusividad			luctiv					W/m	°C)
Propied	ades a 20°C	ρ	especif	k	ο. x 10 ⁵		a	la te	mpe	ratur	a en	°C:		
Aleaciones	Composición	Kg/m ³	J/kg°K	W/m°K	m ² /seg	-100	0°C	100	200	300	400	600	800	1000
Duraluminio	94-96% A1; 3-5% Cu	2787	833	164	6,680	126	159	182	194					
Siluminio	87% A1; 1,33% Si	2659	871	164	7,100	119	137	144	152	161				
Alusil	80% A1; 20% Si	2627	854	161	7,172	144	157	168	175	178				
Al-Mg-Si	97% A1; 1% Mg; 1% Si	2707	8922	177	7,311		175	189	204					
Bronce de alumin	95% Cu; 5% A1	8666	410	83	2,330									
Bronce	75% Cu; 25% Sn	8666	343	26	0,860									
Latón rojo	85% Cu; 9% Sn; 6% Zn	8714	385	61	1,804		59	71						
Latón	70% Cu; 30% Zn	8522	385	111	3,412	88		128	144	147	147			
Plata alemana	62% Cu; 15% Ni; 22% Zn	8618	394	24,9	0,733	19,2		31	40	45	48			
Constantán	60% Cu; 40% Ni	8922	410	22,7	0,612	21		22	26					
Fundición	4% C	7272	420	52	1,702									
Acero al carbono	0,5% C	7833	465	54	1,474		55	52	48	45	42	35	31	29
	1% C	7801	473	43	1,172		43	43	42	40	36	33	29	28
	1,5% C	7753	486	36	0,970		36	36	36	35	33	31	28	28
Acero al cromo	1% Cr	7865	460	61	1,665		62	55	52	47	42	36	33	33
	5% Cr	7833	460	40	1,110		40	38	36	36	33	29	29	29
	20% Cr	7689	460	40	1,11		22	22	22	22	24	24	26	29
Acero al níquel	10% Ni	7945	460	26	0,720									
	20% Ni	7993	460	19	0,526									
	40% Ni	8169	460	10	0,279									
	60% Ni	8378	460	19	0,493									
	80% Ni	8618	0,46	35	0,872									
	Invar 36% Ni	8,137	460	10,7	0,286									
Acero al Cr-Ni	15% Cr; 10% Ni	7865	460	19	0,526									
	15% Cr; 40% Ni	8073	460	11,6	0,305									
	18% Cr; 8% Ni	7817	460	16,3	0,444		16	17	17	19	19	22	27	31
	20% Cr; 15% Ni	7833	460	15,1	0,415									
	25% Cr; 20% Ni	7865	460	12,8	0,361									
	80% Cr; 15% Ni	8522	460	17	0,444									
Acero al mangane	1% Mn	7865	460	50	1,388									
	5% Mn	7849	460	22	0,637									
Acero al silicio	1% Si	7769	460	42	1,164									
	5% Si	7417	460	19	0,555									
Acero al tungsteno	1% W	7913	448	66	1,858									
	5% W	8073	435	54	1,525									
	10% W	8314	419	48	1,391									
Ni-Cr	90% Ni; 10% Cr	8666	444	17	0,444		17	19	21	23	25			
	80% Ni; 20% Cr	8314	444	12,6	0,343		12	14	16	17	18	23		
Mg-A1; electrol.	Mg; 7 % A1; 1,5% Zn;	1810	1000	66	3,605		52	62	74	83				

6.- PROPIEDADES TERMICAS DE ALGUNOS MATERIALES DE CONSTRUCCION Y AISLANTES

DE C	ONSINO	CCION	AISLAN'	IES	
		Densidad	Calor específico	Cond. térmica	Difusiv. térmica
	Temperatura	ρ 1-σ	C _p	k W	α×10 ⁵
MATERIAL	℃	$\frac{\text{kg}}{\text{m}^3}$	<u>Joules</u> kg°K	m°K	m ² seg
Amianto	20	383	816	0.113	0,036
Asfalto	20-55	2120	310	0,74-0,76	0,030
Baquelita	20	1270		0.233	
Ladrillo común	20	1800	840	0,38-0,52	0,028-0,034
Ladrillo de carborundum (50% SiC	20	2200	040	5,820	0,020 0,034
Ladrillo de carborundum	600			18.5	
	1400			11,1	
Ladrillo de magnesita (50% MgO)	20	2000		2,680	
	200		1,13	3,81	
	650			2,77	
	1200			1,9	
Ladrillo de mampostería	20	1700	837	0,658	0,046
Ladrillo de sílice (95% SiO2)	20	1900		1,070	
Ladrillo de circonio (62% ZrO2)	20	3600		2,440	
Ladrillo al cromo	200	3000	0,84	2,32	0,092
	550			2,47	0,098
	900			1,99	0,079
Arcilla refractaria, cocida a 1330°0	500	2000	0,96	1,04	0,054
	800			1,07	
	1100			1,09	
Arcilla refractaria, cocida a 1450°0	500	2300	0,96	1,28	0,04
	800			1,37	
	1100			1,4	
Cartón	20			0,14-0,35	
Cemento (duro)	20			1,047	
Arcilla (48,7% humedad)	20	1545	880	1,260	0,101
Carbón, (antracita)	20	1370	1260	0,238	0,013-0,015
Hormigón (seco)	20	500	837	0,128	0,049
Corcho (tableros)	20	120	1880	0,042	0,015-0,044
Corcho (expandido)	20	120		0,036	
Tierra de diatomeas	20	466	879	0,126	0,031
Tierra arcillosa (28% humedad)	20	1500		1,510	
Tierra arenosa (8% humedad)	20	1500		1,050	
Fibra de vidrio	20	220		0,035	
Vidrio, (ventanas)	20	2800	800	0,810	0,034
Vidrio, (lana de)	20	100	670	0,036	0.000
Caracita	20	200	670	0,040	0,028
Granito	20	2750	1020	3,000	0.124
Hielo (0°C)	20	913	1830	2,220	0,124
Linóleo	20	535		0,081 0,523	
Mica Corteza de pipo	20	2900 342			
Corteza de pino Yeso	20	1800		0,080 0,814	
Plexiglás	20	1180		0,314	
Madera (chapa)	20	590		0,109	
Poliestireno	20	1050		0,157	
Goma dura (ebonita)	20	1150	2009	0,157	0,006
Goma esponjosa	20	224	2307	0,055	5,000
Arena seca	20			0,582	
Arena húmeda	20	1640		1,130	
Serrín	20	215		0,071	
Madera de roble	20	609-801	2390	0,17-0,21	0,011-0,012
Madera (Pino, abeto, abeto rojo)	20	416-421	2720	0,150	0,012
Láminas de fibra de madera	20	200		0,047	_,

7.- PROPIEDADES TERMICAS DE ALGUNOS ACEITES Y GLICERINAS

ACEITE DE MOTOR SIN USAR

Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c _p J/Kg°C	Conductiv. térmica "k" W/m°C	Dif. térmica α.10 ¹⁰ (m²/seg)	Visc. dinám. η.10 ³ (N.seg/m ²)	Visc. cinem. v.10° (m²/seg)	N° de Prandt Pr	$(\frac{g \beta}{v^2} 10^{-10})$
0	899,1	1796	0,147	911	3848	4280	47100	
20	888,2	1880	0,145	872	799	900	10400	8475
40	876,1	1964	0,144	834	210	240	2870	
60	864	2047	0,14	800	72,5	83,9	1050	
80	852	2131	0,138	769	32	37,5	490	
100	840	2219	0,137	738	17,1	20,3	276	
120	829	2307	0,135	710	10,3	12,4	175	
140	816,9	2395	0,133	686	6,54	8	116	
160	805,9	2483	0,132	663	4,51	5,6	84	

ACEITE DE TRANSFORMADORES

Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c ₂ J/Kg°C	Conductiv. térmica "k" W/m°C	Dif. térmica c. 10 ¹⁰ (m²/seg)	$Visc. din \hat{a}m. \\ \eta. 10^3 \\ (N. seg/m^2)$	Visc. cinem. v.10 ⁶ (m²/seg)	N° de Prandt Pr
-50	922	1,7	0,116	742	29320	31800	428600
-40	916	1,68	0,116	750	3866	4220	56300
-30	910	1,65	0,115	764	1183	1300	17000
-20	904	1,62	0,114	778	365,6	404	5200
-10	898	1,6	0,113	788	108,1	120	1530
0	891	1,62	0,112	778	55,24	67,5	867
10	885	1,65	0,111	763	33,45	37,8	495
20	879	1,71	0,111	736	21,1	24	326
30	873	1,78	0,11	707	13,44	15,4	218
40	867	1,83	0,109	688	9,364	10,8	157

GLICERINA $C_3H_5(OH)_3$

Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c _p J/Kg°C	Visc. cinemát. v.10 ⁴ (m²/seg)	Conductivida térmica "k" W/m°C	Dif. térmica $\alpha.10^7$ (m^2/seg)	N° de Prandt Pr	β (°K)
0	1276	2261	83,1	0,282	0,983	84700	
10	1270	2319	30	0,284	0,965	31000	
20	1264	2386	11,8	0,286	0,947	12500	0,0005
30	1258	2445	5	0,286	0,929	5380	
40	1252	2512	2,2	0,286	0,914	2450	
50	1245	2583	1,5	0,287	0,893	1630	

Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c _e J/Kg°C	Visc. cinemát. v.10 ⁶ (m²/seg)	Conductivida térmica "k" W/m°C	Dif. térmica $\alpha.10^7$ (m^2/seg)	N° de Prandt Pr	β (°K)
0	1130,75	2294	57,53	0,242	0,934	615	
20	1116,65	2382	19,18	0,249	0,939	204	0,00065
40	1101,43	2474	8,69	0,256	0,939	93	
60	1087,66	2562	4,75	0,26	0,932	51	
80	1077,56	2650	2,98	0,261	0,921	32,4	
100	1058,5	2742	2,03	0,263	0,908	22,4	

pag. 33

8.- PROPIEDADES TERMICAS DE ALGUNOS METALES LIQUIDOS

MERCURIO.- Punto de fusión: -38,9°C; Punto de ebullición: 357°C

Temper. ℃	Densidad ρ (Kg/m³)	Coeficiente dilatac, térm. β . 10 ³	Calor específico c _p J/Kg°C	Conductiv. térmica "k" W/m°C	Dif. térmica α.10 ⁷ (m²/seg)	Visc. dinám. η.10 ⁴ (N.seg/m ²)	$\begin{array}{c} \text{Visc. cinem.} \\ \text{v.} 10^6 \\ \text{(m}^2/\text{seg)} \end{array}$	N° Prandtl	$(\frac{g \beta}{v^2} 10^{-10})$
0	13628		140,3	8,2	42,99	16,9	0,124	0,0288	
20	13579	18,2	139,4	8,69	46,06	15,48	0,114	0,0249	13,73
50	13506		138,6	9,4	50,22	14,05	0,104	0,0207	
100	13385		137,3	10,51	57,16	12,42	0,0928	0,0162	
150	13264		136,5	11,49	63,54	11,31	0,0853	0,0134	
200	13145		157	12,34	69,08	10,54	0,0802	0,0116	
250	13026		135,7	13,07	74,06	9,96	0,0765	0,0103	
315,7	12847		134	14,02	81,5	8,65	0,0673	0,0083	

SODIO I	SODIO Punto de fusión: 97,8°C; Punto de ebullición: 883°C												
T(°C)	Densidad ρ (Kg/m³)	Coeficiente dilatac, térm. $\beta . 1 \ 0^3$	Calor específico c₂ J/Kg°C	Conductiv. térmica "k" W/m°C	Dif. térmica α.10 ⁵ (m²/seg)	Visc. dinám. η.10 ⁴ (N.seg/m ²)	Visc. cinem. v.10 ⁷ (m²/seg)	Pr	$(\frac{g \beta}{v^2} 10^{-9})$				
94,0	929	0,27	1382	86,30	6,71	6,99	7,31	0,0110	4,96				
205,0	902	0,36	1340	80,30	6,71	4,32	4,60	0,0072	16,7				
315,6	878,5		1304	75,78	6,65	3,29	3,77	0,0057					
371,0	860		1298	72,40	6,45	2,83	3,16	0,0051					
426,7	852,8		1277	69,39	6,41	2,52	2,97	0,0046					
538,0	820,0		1264	64,37	6,21	2,31	2,82	0,0040					
650,0	790		1261	60,56	6,11	1,96	2,50	0,0041					
705,0	778		1256	59,70	6,19	1,79	2,26	0,0038					
760,0	767,5		1270	56,58	5,83	1,72	2,25	0,0385					

BISMUTO.- Punto de fusión: 271°C; Punto de ebullición: 1477°C

T(°C)	Densidad ρ (Kg/m³)	Coeficiente dilatac, térm. β . 10 ³	Calor específico c _p J/Kg°C	Conductiv. térmica "k" W/m°C	Dif. térmica α.10 ⁵ (m²/seg)	Visc. dinám. η.10 ⁴ (N.seg/m ²)	Visc. cinem. v.10 ⁷ (m²/seg)	Pr	$(\frac{g \beta}{v^2} 10^{-9})$
316	10011	0,117	144,5	16,44	1,14	1,622	1,57	0,014	46,5
427	9867	0,122	149,5	15,58	1,06	1,339	1,35	0,013	65,6
811	9739	0,126	154,5	15,58	1,03	1,101	1,08	0,011	106
922	9611		159,5	15,58	1,01	0,923	0,903	0,009	
1033	9467		164,5	15,58	1,01	0,789	0,813	0,008	

PLOMO F	PLOMO Punto de fusión: 327°C; Punto de ebullición: 1737°C										
Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c _p J/Kg°C	Visc. dinámica η.10 ⁴ (N.seg/m ²)	Visc. cinemát. v.10 ⁶ (m²/seg)	Conductivida térmica "k" W/m°C	Difus, térmica $ \begin{array}{c} \alpha.10^6 \\ (m^2/\text{seg}) \end{array} $	N° de Prandt Pr				
371	10540	159	2,4	0,0230	16,1	9,61	0,024				
425	10470	156	2,11	0,0202	17,5		0,019				
525	10350	155	1,72	0,0166	19,0		0,014				
625	10230	155	1,49	0,0146	20,4		0,011				
704	10140	155	1,37	0,0140	21,9	9,48	0,009				

LITIO Pu	LITIO Punto de fusión: 179°C; Punto de ebullición: 1317°C										
Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c _? J/Kg°C	Visc. dinámica η.10 ⁴ (N.seg/m ²)	$\begin{array}{c} Visc.\ cinemát,\\ v.10^6\\ (m^2/seg) \end{array}$	Conductivida térmica "k" W/m°C	Difus, térmica $ \begin{array}{c} \alpha.10^6 \\ (m^2/\text{seg}) \end{array}$	N° de Prandt Pr				
204,4	509,2	4365	5,416	1,1098	46,37	20,96	0,051				
315,6	498,8	4270	4,465	0,8982	43,08	20,32	0,043				
426,7	489,1	4211	3,927	0,8053	38,24	18,65	0,0432				
537,8	476,3	4171	3,473	0,7304	30,45	15,4	0,0476				

POTASIO	POTASIO Punto de fusión: 63,9°C; Punto de ebullición: 760°C										
Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c _? J/Kg°C	Visc. dinámica η.10 ⁴ (N.seg/m ²)	$\begin{array}{c} Visc.\ cinemát,\\ v.10^6\\ (m^2/\text{seg}) \end{array}$	Conductivida térmica "k" W/m°C	$\begin{array}{c} Difus.\ t\acute{e}rmica \\ \alpha.10^6 \\ (m^2/seg) \end{array}$	N° de Prandt Pr				
426,7	741,7	766	2,108	0,2839	39,45	69,74	0,0041				
537,8	714,4	762	1,711	0,24	36,51	67,39	0,0036				
648,9	690,3	766	1,463	0,2116	33,74	64,1	0,0033				
760	667,7	783	1,331	0,1987	31,15	59,86	0,0033				

Na-K, 56%	Na-K, 56% Na, 44% K Punto de fusión: -11°C; Punto de ebullición: 784°C										
Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c _? J/Kg°C	$Visc. \ dinámica \\ \eta. 10^4 \\ (N. seg/m^2)$	$\begin{array}{c} \text{Visc. cinemát.} \\ \text{v.} 10^6 \\ \text{(m²/seg)} \end{array}$	Conductivida térmica "k" W/m°C	$\begin{array}{c} Difus,t\acute{e}rmica\\ \alpha,10^6\\ (m^2/\text{seg}) \end{array}$	N° de Prandt Pr				
93,3	889,8	1130	5,622	0,6347	25,78	27,76	0,0246				
204,4	865,6	1089	3,803	0,4414	26,47	28,23	0,0155				
315,6	838,3	1068	2,935	0,3515	27,17	30,5	0,0115				
426,7	814,2	1051	2,15	0,2652	27,68	32,52	0,0081				
537,8	788,4	1047	2,026	0,2581	27,68	33,71	0,0076				
648,9	759,5	1051	1,695	0,224	27,68	34,86	0,0064				

9.- PROPIEDADES TERMICAS DE LIQUIDOS SATURADOS

FREON 12

Temperatur °C	Densidad ρ (Kg/m³)	Calor específico c _p J/Kg°C	Conductiv. térmica "k" W/m℃	Dif. térmica α.10 ⁶ (m²/seg)	Visc. dinám. η.10 ⁶ N.seg/m ²	$\begin{array}{c} \text{Visc. cinem.} \\ \text{v.} 10^6 \\ \text{(m}^2/\text{seg)} \end{array}$	N° de Prandt Pr	$\frac{g \beta}{v^2}$. 10 ⁻¹⁰
-50	1547	875	0,067	5,01	4,796	0,310	6,2	26,84
-40	1519	884,7	0,069	5,14	4,238	0,279	5,4	
-30	1490	895,6	0,069	5,26	3,770	0,253	4,8	
-20	1461	907,3	0,071	5,39	3,433	0,235	4,4	
-10	1429	920,3	0,073	5,50	3,158	0,221	4,0	
0	1397	934,5	0,073	5,57	2,990	0,214	3,8	
10	1364	949,6	0,073	5,60	2,769	0,203	3,6	
20	1330	965,9	0,073	5,60	2,633	0,198	3,5	
30	1295	983,5	0,071	5,60	2,512	0,194	3,5	
40	1257	1001,9	0,069	5,55	2,401	0,191	3,5	
50	1216	1021,6	0,067	5,45	2,310	0,190	3,5	

AMONIACO

Temperatur ℃	Densidad ρ (Kg/m³)	Calor específico c _p J/Kg°C	Conductiv. térmica "k" W/m℃	Dif. térmica α.10 ⁶ (m²/seg)	Visc. dinám. η.10 ⁶ N.seg/m ²	Visc. cinem. v.10 ⁶ (m²/seg)	N° de Prandt Pr	$\frac{g \beta}{v^2} \cdot 1 \ 0^{-10}$
-50	703,7	4463	0,547	17,42	3,061	0,435	2,60	
-40	691,7	4467	0,547	17,75	2,808	0,406	2,28	
-30	679,3	4476	0,549	18,01	2,629	0,387	2,15	
-20	666,7	4509	0,547	18,19	2,540	0,381	2,09	
-10	653,6	4564	0,543	18,25	2,471	0,378	2,07	
0	640,1	4635	0,540	18,19	2,388	0,373	2,05	
10	626,2	4714	0,531	18,01	2,304	0,368	2,04	
20	611,8	4798	0,521	17,75	2,195	0,359	2,02	18,64
30	596,4	4890	0,507	17,42	2,081	0,349	2,01	
40	581,0	4999	0,493	17,01	1,975	0,340	2,00	
50	564,3	5116	0,476	16,54	1,862	0,330	1,99	

AGUA

Temperatur °C	Densidad ρ (Kg/m³)	Calor específico c _p J/Kg°C	Conductiv. térmica "k" W/m°C	Dif. térmica α.10 ⁶ (m ² /seg)	Visc. dinám. η.10 ⁶ N.seg/m ²	Visc. cinem. v.10 ⁶ (m²/seg)	N° de Prandt Pr	$\frac{g \beta}{v^2}.10^{-9}$
0	999,9	4226	0,558	0,131	1794	1,789	13,7	
20	998,2	4182	0,597	0,143	1004	1,006	7,02	2,035
40	992,3	4178	0,633	0,151	653,0	0,658	4,34	8,833
60	983,2	4181	0,658	0,155	470,0	0,478	3,02	22,75
80	971,8	4194	0,673	0,165	353,7	0,364	2,22	46,68
100	958,4	4211	0,682	0,169	281,0	0,294	1,75	85,09
120	943,1	4245	0,685	0,171	233,0	0,247	1,45	
140	926,1	4279	0,687	0,172	198,2	0,214	1,24	
160	907,6	4338	0,682	0,173	171,5	0,189	1,10	
180	887,0	4413	0,678	0,172	153,5	0,173	1,00	
200	864,8	4501	0,665	0,170	129,0	0,160	0,94	517,2
220	840,5	4606	0,656	0,168	126,0	0,150	0,89	
240	812,2	4752	0,639	0,164	116,0	0,143	0,87	
260	784,0	4944	0,614	0,157	107,5	0,137	0,87	
280	750,8	5204	0,583	0,150	101,4	0,135	0,92	
300	712,5	6594	0,543	0,132	94,1	0,132	1,02	1766

pag. 36

DIOXIDO DE CARBONO CO_2

Temperatur °C	Densidad ρ (Kg/m³)	Calor específico c _p J/Kg°C	Visc. cinemát. v.10 ⁶ (m²/seg)	Conductivida térmica "k" W/m°C	Dif. térmica $\alpha.10^7$ (m^2/seg)	N° de Prandt Pr	β (°K)
-50	1156,3	1840	0,119	0,085	0,4021	2,96	
-40	1117,8	1880	0,118	0,1011	0,481	2,46	
-30	1076,8	1970	0,117	0,1116	0,5272	2,22	
-20	1032,4	2050	0,115	0,1151	0,5445	2,12	
-10	983,4	2180	0,13	0,1099	0,5133	2,2	
0	927,0	2470	0,108	0,1045	0,4578	2,38	
10	860,0	3140	0,101	0,0971	0,3608	2,8	
20	772,6	5000	0,091	0,0872	0,2219	4,1	0,014
30	597,8	36400	0,08	0,0703	0,0279	28,7	

