Invariant and Equivariant Graph Networks

Angelo Rajendram 14 Feb 2024

Motivation

Question:

How do we construct operators that respect arbitrary symmetries over graph data?

Definitions: Hyper-graphs And Tensors

Definitions: Permutations

Permutation Invariance

$$P^T$$
 $f(P^T\mathbf{A}P) = f(\mathbf{A})$

$$f(p\cdot \mathbf{A})=f(\mathbf{A})$$

Definitions: Permutation Equivariance

$$f(PAP^{T}) = P^{T}f(A)P \qquad f(p \cdot A) = p \cdot f(A)$$

$$D \qquad \downarrow L$$

$$L \downarrow \qquad \downarrow L$$

$$p$$

Definitions: Vectorization

Given
$$\mathbf{X} \in \mathbb{R}^{a \times b}$$
, denote $\mathsf{vec}(\mathbf{X}) \in \mathbb{R}^{ab \times 1}$ $[\mathsf{vec}(\mathbf{X})] = \mathbf{X} \in \mathbb{R}^{a \times b}$

Definitions: Kronecker Product for Vectors

Example for vectors,

$$\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ \vec{w} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$$

$$\vec{v} \otimes \vec{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 4 & 5 \end{bmatrix} = \begin{bmatrix} 4 \cdot 1 & 5 \cdot 1 \\ 4 \cdot 2 & 5 \cdot 2 \\ 4 \cdot 3 & 5 \cdot 3 \end{bmatrix} = \begin{bmatrix} 4 & 5 \\ 8 & 10 \\ 12 & 15 \end{bmatrix}$$

7

Definitions: Kronecker Product for Matrices

Consider $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$,

$$A \otimes B = \begin{bmatrix} a_{11}B & \dots & a_{1n}B \\ \vdots & \ddots & \vdots \\ a_{mm}B & \dots & a_{mn}B \end{bmatrix}$$

$$A \otimes B \in \mathbb{R}^{(mp) \times (nq)}$$

Matrix multiplication is a linear operation of vectors,

 $L: \mathbb{R}^n \to \mathbb{R}^m$ is encoded as $\mathbf{L} \in \mathbb{R}^{m \times n}$,

Matrix multiplication is a linear operation of vectors,

 $L: \mathbb{R}^n \to \mathbb{R}^m$ is encoded as $\mathbf{L} \in \mathbb{R}^{m \times n}$, similarly,

 $L_I: \mathbb{R}^{n \times n} \to \mathbb{R}$ is encoded as $\mathbf{L}_I \in \mathbb{R}^{1 \times n^2}$ (invariance)

Matrix multiplication is a linear operation of vectors,

 $L: \mathbb{R}^n \to \mathbb{R}^m$ is encoded as $\mathbf{L} \in \mathbb{R}^{m \times n}$, similarly,

 $L_I: \mathbb{R}^{n \times n} \to \mathbb{R}$ is encoded as $\mathbf{L}_I \in \mathbb{R}^{1 \times n^2}$ (invariance)

 $L_E: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is encoded as $\mathbf{L}_E \in \mathbb{R}^{n^2 \times n^2}$ (equivariance)

Matrix multiplication is a linear operation of vectors,

 $L: \mathbb{R}^n \to \mathbb{R}^m$ is encoded as $\mathbf{L} \in \mathbb{R}^{m \times n}$, similarly,

 $L_I: \mathbb{R}^{n \times n} \to \mathbb{R}$ is encoded as $\mathbf{L}_I \in \mathbb{R}^{1 \times n^2}$ (invariance)

 $L_E: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is encoded as $\mathbf{L}_E \in \mathbb{R}^{n^2 \times n^2}$ (equivariance)

 $L_M: \mathbb{R}^{n^k} o \mathbb{R}^{n^l}$ is encoded as $\mathbf{L}_M \in \mathbb{R}^{n^l imes n^k}$ (mixed-order)

Matrix multiplication is a linear operation of vectors,

 $L: \mathbb{R}^n \to \mathbb{R}^m$ is encoded as $\mathbf{L} \in \mathbb{R}^{m \times n}$, similarly,

 $L_I: \mathbb{R}^{n \times n} \to \mathbb{R}$ is encoded as $\mathbf{L}_I \in \mathbb{R}^{1 \times n^2}$ (invariance)

 $L_E: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$ is encoded as $\mathbf{L}_E \in \mathbb{R}^{n^2 \times n^2}$ (equivariance)

 $L_M:\mathbb{R}^{n^k} o\mathbb{R}^{n^l}$ is encoded as $\mathbf{L}_M\in\mathbb{R}^{n^l imes n^k}$ (mixed-order)

The exponent of the index size n indicates the tensor order

What are the set of all invariant and equivariant linear operators? Paper Sketch:

Determine conditions for invariant/equivariant linear operators:
 Fixed-point Equations

What are the set of all invariant and equivariant linear operators? Paper Sketch:

- Determine conditions for invariant/equivariant linear operators:
 Fixed-point Equations
- Identify a basis for solutions to the Fixed-point Equations

What are the set of all invariant and equivariant linear operators? Paper Sketch:

- Determine conditions for invariant/equivariant linear operators:
 Fixed-point Equations
- Identify a basis for solutions to the Fixed-point Equations
- Incorporate biases (e.g. a linear layer in an ANN is given as Ax + b, where $A \in \mathbb{R}^{n \times n}$, and $x, b \in \mathbb{R}^n$)

What are the set of all invariant and equivariant linear operators? Paper Sketch:

- Determine conditions for invariant/equivariant linear operators:
 Fixed-point Equations
- Identify a basis for solutions to the Fixed-point Equations
- Incorporate biases (e.g. a linear layer in an ANN is given as Ax + b, where $A \in \mathbb{R}^{n \times n}$, and $x, b \in \mathbb{R}^n$)
- Incorporate node/edge/hyper-edge vector-valued features

What is the set of all invariant and equivariant linear operators? Paper Sketch:

- Determine conditions for invariant/equivariant linear operators:
 Fixed-point Equations
- Identify a basis for solutions to the Fixed-point Equations
- Incorporate biases (e.g. a linear layer in an ANN is given as Ax + b, where $A \in \mathbb{R}^{n \times n}$, and $x, b \in \mathbb{R}^n$)
- Incorporate node/edge/hyper-edge vector-valued features
- Generalize to Mixed-order Equivariant layers and Multi-node sets

$$L_M: \mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$$

Fixed-Point Equations (Invariant Layer)

Consider order-2 tensors with edge-value data (adjacency matrix) $\mathbf{A} = A \in \mathbb{R}^{n \times n} \equiv \mathbb{R}^{n^2}$

Operators of interest for invariance are $L_I: \mathbb{R}^{n^2} \to \mathbb{R}$, given as $\mathbf{L}_I \in \mathbb{R}^{1 \times n^2}$

 L_I is order invariant iff $L_I \operatorname{vec}(p \cdot \mathbf{A}) = L_I \operatorname{vec}(\mathbf{P}^T \mathbf{A} \mathbf{P}) = L_I \operatorname{vec}(\mathbf{A})$

Fixed-Point Equations (Invariant Layer)

Consider order-2 tensors with edge-value data (adjacency matrix)

$$\mathbf{A} = A \in \mathbb{R}^{n \times n} \equiv \mathbb{R}^{n^2}$$

Operators of interest for invariance are $L_I: \mathbb{R}^{n^2} \to \mathbb{R}$, given as $\mathbf{L}_I \in \mathbb{R}^{1 \times n^2}$

$$L_I$$
 is order invariant iff $L_I \operatorname{vec}(p \cdot \mathbf{A}) = L_I \operatorname{vec}(\mathbf{P}^T \mathbf{A} \mathbf{P}) = L_I \operatorname{vec}(\mathbf{A})$

Property of Kronecker Product

$$\mathsf{vec}(\mathsf{XAY}) = \mathsf{Y}^{\mathcal{T}} \otimes \mathsf{X} \, \mathsf{vec}(\mathsf{A})$$

$$L_I P^T \otimes P^T \operatorname{vec}(A) = L_I \operatorname{vec}(A)$$

Fixed-Point Equations (Invariant Layer)

Consider order-2 tensors with edge-value data (adjacency matrix)

$$\mathbf{A} = A \in \mathbb{R}^{n \times n} \equiv \mathbb{R}^{n^2}$$

Operators of interest for invariance are $L_I : \mathbb{R}^{n^2} \to \mathbb{R}$, given as $L_I \in \mathbb{R}^{1 \times n^2}$

 L_I is order invariant iff $L_I \operatorname{vec}(p \cdot \mathbf{A}) = L_I \operatorname{vec}(\mathbf{P}^T \mathbf{A} \mathbf{P}) = L_I \operatorname{vec}(\mathbf{A})$

Property of Kronecker Product

$$\mathsf{vec}(\mathsf{XAY}) = \mathsf{Y}^{\mathcal{T}} \otimes \mathsf{X} \, \mathsf{vec}(\mathsf{A})$$

$$L_I P^T \otimes P^T \operatorname{vec}(A) = L_I \operatorname{vec}(A)$$

Noting that $\mathbf{L}_{I}^{T} = \text{vec}(\mathbf{L}_{I})$, and transposing we have,

Fixed Point Equation (Invariance) for order-2 tensors

$$\textbf{P} \otimes \textbf{P} \operatorname{vec}(\textbf{L}_I) = \operatorname{vec}(\textbf{L}_I)$$

Fixed-Point Equations (Equivariant Layer)

Consider order-2 tensors with edge-value data (adjacency matrix)

$$\mathbf{A} = A \in \mathbb{R}^{n \times n} \equiv \mathbb{R}^{n^2}$$

Operators of interest for equivariance are $L_E: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$, given as $\mathbf{L}_F \in \mathbb{R}^{n^2 \times n^2}$

$$L_E$$
 is order equivariant iff $[\mathbf{L}_E \operatorname{vec}(p \cdot \mathbf{A})] = [\mathbf{L}_E \operatorname{vec}(\mathbf{P}^T \mathbf{A} \mathbf{P})] = \mathbf{P}^T [\mathbf{L}_E \operatorname{vec}(\mathbf{A})] \mathbf{P}$

Fixed-Point Equations (Equivariant Layer)

Consider order-2 tensors with edge-value data (adjacency matrix)

$$\mathbf{A} = A \in \mathbb{R}^{n \times n} \equiv \mathbb{R}^{n^2}$$

Operators of interest for equivariance are $L_E: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$, given as $\mathbf{L}_F \in \mathbb{R}^{n^2 \times n^2}$

 L_E is order equivariant iff

$$[\mathbf{L}_E \operatorname{vec}(p \cdot \mathbf{A})] = [\mathbf{L}_E \operatorname{vec}(\mathbf{P}^T \mathbf{A} \mathbf{P})] = \mathbf{P}^T [\mathbf{L}_E \operatorname{vec}(\mathbf{A})] \mathbf{P}$$

Using properties of the Kronecker product we get,

Fixed-Point Equation (Equivariance) for order-2 tensors

$$\mathsf{P} \otimes \mathsf{P} \otimes \mathsf{P} \otimes \mathsf{P} \operatorname{\mathsf{vec}}(\mathsf{L}_{E}) = \operatorname{\mathsf{vec}}(\mathsf{L}_{E})$$

(Note:
$$\mathbf{P} \in \mathbb{R}^{n^2}$$
 and $\mathbf{P} \otimes \mathbf{P} \in \mathbb{R}^{n^2 \times n^2}$)

In general we have,

```
Invariant \mathbf{L}_I : \mathbf{P}^{\otimes k} \operatorname{vec}(\mathbf{L}_I) = \operatorname{vec}(\mathbf{L}_I) (Note, \mathbf{P}^{\otimes \ell} = \overbrace{\mathbf{P} \otimes \cdots \otimes \mathbf{P}}^{\ell}) Equivariant \mathbf{L}_E : \mathbf{P}^{\otimes 2k} \operatorname{vec}(\mathbf{L}_E) = \operatorname{vec}(\mathbf{L}_E)
```

In general we have,

Invariant
$$\mathbf{L}_I : \mathbf{P}^{\otimes k} \operatorname{vec}(\mathbf{L}_I) = \operatorname{vec}(\mathbf{L}_I)$$
 (Note, $\mathbf{P}^{\otimes \ell} = \overbrace{\mathbf{P} \otimes \cdots \otimes \mathbf{P}}$) Equivariant $\mathbf{L}_E : \mathbf{P}^{\otimes 2k} \operatorname{vec}(\mathbf{L}_E) = \operatorname{vec}(\mathbf{L}_E)$

Key Identity

$$\mathbf{P}^{\otimes \ell} \operatorname{vec}(\mathbf{L}) = \operatorname{vec}(p \cdot \mathbf{L})$$

In general we have,

Invariant
$$\mathbf{L}_I : \mathbf{P}^{\otimes k} \operatorname{vec}(\mathbf{L}_I) = \operatorname{vec}(\mathbf{L}_I)$$
 (Note, $\mathbf{P}^{\otimes \ell} = \overbrace{\mathbf{P} \otimes \cdots \otimes \mathbf{P}}$) Equivariant $\mathbf{L}_E : \mathbf{P}^{\otimes 2k} \operatorname{vec}(\mathbf{L}_E) = \operatorname{vec}(\mathbf{L}_E)$

Key Identity

$$\mathbf{P}^{\otimes \ell} \operatorname{vec}(\mathbf{L}) = \operatorname{vec}(p \cdot \mathbf{L})$$

In general we have,

Invariant
$$\mathbf{L}_I : \mathbf{P}^{\otimes k} \operatorname{vec}(\mathbf{L}_I) = \operatorname{vec}(\mathbf{L}_I)$$
 (Note, $\mathbf{P}^{\otimes \ell} = \mathbf{P} \otimes \cdots \otimes \mathbf{P}$) Equivariant $\mathbf{L}_E : \mathbf{P}^{\otimes 2k} \operatorname{vec}(\mathbf{L}_E) = \operatorname{vec}(\mathbf{L}_E)$

Key Identity

$$\mathbf{P}^{\otimes \ell} \operatorname{vec}(\mathbf{L}) = \operatorname{vec}(p \cdot \mathbf{L})$$

Question: What are the fixed points under the action $\mathbf{L} \to p \cdot \mathbf{L}$?

Question: What are the fixed points under the action $\mathbf{L} \to p \cdot \mathbf{L}$?

Consider $L_E : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $\mathbf{L}_E \in \mathbb{R}^{n^2 \times n^2}$, $\mathbb{V} = \{1, 2, ..., n\}$ Permutation $p(i, j) : v_i \leftrightarrow v_i$

On the diagonal, require
$$\mathbf{L}_{E,(i,i,i,i)} = a \ \forall i$$

Question: What are the fixed points under the action $\mathbf{L} \to p \cdot \mathbf{L}$?

Consider
$$L_E : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$
, $\mathbf{L}_E \in \mathbb{R}^{n^2 \times n^2}$, $\mathbb{V} = \{1, 2, ..., n\}$
Permutation $p(i, j) : v_i \leftrightarrow v_j$

On the diagonal, require
$$\mathbf{L}_{E,(i,i,i,i)} = a \ \forall i$$

For the off-diagonal elements,

Ex. Consider $\mathbf{L}_{E,(i,i,j,s)}$ with $i \neq j \neq s$, require $\mathbf{L}_{E,(i,i,j,s)} = b \ \forall i,j,s$

Question: What are the fixed points under the action $L \rightarrow p \cdot L$?

Consider
$$L_E : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$$
, $\mathbf{L}_E \in \mathbb{R}^{n^2 \times n^2}$, $\mathbb{V} = \{1, 2, ..., n\}$
Permutation $p(i,j) : v_i \leftrightarrow v_j$

On the diagonal, require
$$\mathbf{L}_{E,(i,i,i,i)} = a \ \forall i$$

For the off-diagonal elements,

Ex. Consider
$$\mathbf{L}_{E,(i,i,j,s)}$$
 with $i \neq j \neq s$, require $\mathbf{L}_{E,(i,i,j,s)} = b \ \forall i,j,s$

In general require $L_{index} = L_{index'}$, where index and index' have the same equality pattern.

We had $L_E : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $\mathbf{L_E} \in \mathbb{R}^{n^2 \times n^2} \equiv \mathbb{R}^{n^4}$, $\mathbf{L_E}$ is indexed by a tuple of size 4, (i, j, s, t)

Question: How many ways are there to partition sets of size 4 (and generally of size ℓ)?

We had $L_E : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $\mathbf{L_E} \in \mathbb{R}^{n^2 \times n^2} \equiv \mathbb{R}^{n^4}$, $\mathbf{L_E}$ is indexed by a tuple of size 4, (i, j, s, t)

Question: How many ways are there to partition sets of size 4 (and generally of size ℓ)?

We had $L_E : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $\mathbf{L_E} \in \mathbb{R}^{n^2 \times n^2} \equiv \mathbb{R}^{n^4}$, $\mathbf{L_E}$ is indexed by a tuple of size 4, (i, j, s, t)

Question: How many ways are there to partition sets of size 4 (and generally of size ℓ)?

We had $L_E : \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}$, $\mathbf{L_E} \in \mathbb{R}^{n^2 \times n^2} \equiv \mathbb{R}^{n^4}$, $\mathbf{L_E}$ is indexed by a tuple of size 4, (i, j, s, t)

Question: How many ways are there to partition sets of size 4 (and generally of size ℓ)?

In general there are $\mathsf{bell}(\ell)$ equality patterns Grows combinatorially with ℓ

Question: What are the fixed points under the action $\mathbf{L} \to p \cdot \mathbf{L}$? (for $\mathbf{L} \in \mathbb{R}^{n^{\ell}}$)

Ans: There are $bell(\ell)$ fixed points.

Question: What are the fixed points under the action $\mathbf{L} \to p \cdot \mathbf{L}$? (for $\mathbf{L} \in \mathbb{R}^{n^{\ell}}$)

Ans: There are $bell(\ell)$ fixed points.

Given an equality pattern, define the indicator tensor, $\mathbf{B}_{i,j,s,t}^{\alpha}=1$ iff $(i,j,s,t)\in\alpha$ and 0 otherwise.

Basis of the Solution Space to the Fixed-Point Equations

Question: What are the fixed points under the action $\mathbf{L} \to p \cdot \mathbf{L}$? (for $\mathbf{L} \in \mathbb{R}^{n^{\ell}}$)

Ans: There are bell(ℓ) fixed points.

Given an equality pattern, define the indicator tensor, $\mathbf{B}_{i,j,s,t}^{\alpha}=1$ iff $(i,j,s,t)\in\alpha$ and 0 otherwise.

e.g. $\mathbf{B}_{i,j,s,t}^{\alpha_1}=1$ for equality pattern $\alpha_1=\{(i,i,i,i)\}$, and $\mathbf{B}_{i,j,s,t}^{\alpha_2}=1$ for equality pattern $\alpha_2=\{(i,i,j,s)\}$

Basis of the Solution Space to the Fixed-Point Equations

So far,

Fixed Point Equation (Invariance)

$$\mathbf{P}^{\otimes k} \operatorname{vec}(\mathbf{L}_I) = \operatorname{vec}(\mathbf{L}_I)$$

Fixed-Point Equation (Equivariance)

$$\mathbf{P}^{\otimes 2k}\operatorname{vec}(\mathbf{L}_E) = \operatorname{vec}(\mathbf{L}_E)$$

Basis of the Solution Space to the Fixed-Point Equations

So far,

Fixed Point Equation (Invariance)

$$\mathbf{P}^{\otimes k} \operatorname{vec}(\mathbf{L}_l) = \operatorname{vec}(\mathbf{L}_l)$$

Fixed-Point Equation (Equivariance)

$$\mathbf{P}^{\otimes 2k}\operatorname{vec}(\mathbf{L}_E) = \operatorname{vec}(\mathbf{L}_E)$$

Basis

$$\mathbf{B}_{i,j,s,t}^{\alpha} = 1 \text{ iff } (i,j,s,t) \in \alpha$$

 $\mathbf{B}_{i,j,s,t}^{\alpha''}$ is a complete orthogonal basis bell(k) bases for \mathbf{L}_{i} and bell(2k) bases

bell(k) bases for \mathbf{L}_I and bell(2k) bases for \mathbf{L}_E

Examples

Invariant operators on
$$\mathbf{a} \in \mathbb{R}^n$$
, e.g. $L_I : \mathbb{R}^n \to \mathbb{R}$, $\mathbf{L}_I \in \mathbb{R}^{1 \times n}$

We have the sum operator
$$L(\mathbf{a}) = \gamma \mathbf{1}^T \mathbf{a}$$

 $\mathbf{B}_i^{\alpha} = \mathbf{1}^T$

Examples

Invariant operators on
$$\mathbf{a} \in \mathbb{R}^n$$
, e.g. $L_I : \mathbb{R}^n \to \mathbb{R}$, $\mathbf{L}_I \in \mathbb{R}^{1 \times n}$

We have the sum operator $L(\mathbf{a}) = \gamma \mathbf{1}^T \mathbf{a}$ $\mathbf{B}_i^{\alpha} = \mathbf{1}^T$

Equivariant operators on
$$\mathbf{a} \in \mathbb{R}^n$$
,
e.g. $L_E : \mathbb{R}^n \to \mathbb{R}^n$, $\mathbf{L}_E \in \mathbb{R}^{n \times n}$
 $\mathbf{B}_{ij}^{\alpha_1} = \mathbf{I}$ for equality pattern $\alpha_1 = \{(i, i)\}$
 $\mathbf{B}_{ij}^{\alpha_2} = \mathbf{1}\mathbf{1}^T - \mathbf{I}$ for equality pattern $\alpha_2 = \{(i, j)\}, i \neq j$

• • •

Extensions: Incorporating bias terms

Incorporating bias terms:

- For invariant layers $(\mathbf{L}_l \in \mathbb{R}^{1 \times n^k})$ use $c \in \mathbb{R}$, i.e. $\mathbf{L}_l \mathbf{a} + c$
- For equivariant layers ($\mathbf{L}_E \in \mathbb{R}^{n^k \times n^k}$), use \mathbf{B}^{β} where $|\beta| = \text{bell}(k)$

Extensions: Incorporating bias terms

Incorporating bias terms:

- For invariant layers $(\mathbf{L}_l \in \mathbb{R}^{1 \times n^k})$ use $c \in \mathbb{R}$, i.e. $\mathbf{L}_l \mathbf{a} + c$
- For equivariant layers ($\mathbf{L}_E \in \mathbb{R}^{n^k \times n^k}$), use \mathbf{B}^{β} where $|\beta| = \text{bell}(k)$

e.g. for
$$L: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$$
, $\mathbf{L}_E \in \mathbb{R}^{n^2 \times n^2} \equiv \mathbb{R}^{n^4}$, we have $\mathbf{La} + \mathbf{B}^{\beta}$, where $k = 4$ and $|\beta| = 2$

Extensions: Incorporating bias terms

Incorporating bias terms:

- For invariant layers $(\mathbf{L}_I \in \mathbb{R}^{1 \times n^k})$ use $c \in \mathbb{R}$, i.e. $\mathbf{L}_I \mathbf{a} + c$
- For equivariant layers ($\mathbf{L}_E \in \mathbb{R}^{n^k \times n^k}$), use \mathbf{B}^{β} where $|\beta| = \text{bell}(k)$

e.g. for
$$L: \mathbb{R}^{n^2} \to \mathbb{R}^{n^2}$$
, $\mathbf{L}_E \in \mathbb{R}^{n^2 \times n^2} \equiv \mathbb{R}^{n^4}$, we have $\mathbf{La} + \mathbf{B}^{\beta}$, where $k = 4$ and $|\beta| = 2$

Figure 1: The full basis for equivariant linear layers for edge-value data $\mathbf{A} \in \mathbb{R}^{n \times n}$, for n=5. The purely linear 15 basis elements, \mathbf{B}^{μ} , are represented by matrices $n^2 \times n^2$, and the 2 bias basis elements (right), \mathbf{C}^{λ} , by matrices $n \times n$, see equation 9.

Note: bell(4) = 15, bell(2) = 2

Extensions: Multi-order Equivariance, Multi-node sets

Straightforward generalization of **equivariant** operators

$$L_E: \mathbb{R}^{n^k} \to \mathbb{R}^{n^k}$$

to mixed-order equivariant operators

$$L_M: \mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$$

Generalization to multi-node sets

Extensions: Multi-order Equivariance, Multi-node sets

Straightforward generalization of equivariant operators

 $L_E: \mathbb{R}^{n^k} \to \mathbb{R}^{n^k}$

to mixed-order equivariant operators

 $L_M: \mathbb{R}^{n^k} \to \mathbb{R}^{n^l}$

Generalization to multi-node sets

Tuples of nodes on subsets of the nodes

Invariance:

$$L_I: \mathbb{R}^{n_1^{k_1} \times n_2^{k_2} \times \cdots \times n_m^{k_m}} \to \mathbb{R}$$

dimension $\prod_{i=1}^m \operatorname{bell}(k_i)$

Equivariance:

$$L_E: \mathbb{R}^{n_1^{k_1} \times n_2^{k_2} \times \cdots \times n_m^{k_m}} \to \mathbb{R}^{n_1^{l_1} \times n_2^{l_2} \times \cdots \times n_m^{l_m}}$$
 dimension $\prod_{i=1}^m \text{bell}(k_i + l_i)$

Extensions: Vector-valued features

When we have vector-valued features instead of scalars on node tuples:

Invariance
$$L_l: \mathbb{R}^{n^k \times d} \to \mathbb{R}^{1 \times d'}$$
 dimension $dd' \operatorname{bell}(k) + d'$

Equivariance
$$L_E : \mathbb{R}^{n^k \times d} \to \mathbb{R}^{n^k \times d'}$$
 dimension $dd' \text{ bell}(2k) + d' \text{ bell}(k)$

Connection to Message-Passing

Message Passing

Step 1: Compute Messages

$$m_u^{t+1} = \sum_{v \in N(u)} M_t(h_u^t, h_v^t, e_{uv})$$

Step 2: Update feature vectors $h_u^{t+1} = U_t(h_u^t, m_u^{t+1})$

$$\mathbf{H} = (h_u) \in \mathbb{R}^{n \times d}$$

$$\mathbf{A} = (a_{uv}) \in \mathbb{R}^{n \times n}$$

$$\mathbf{E} = (e_{uv}) \in \mathbb{R}^{(n \times n) \times l}$$

Connection to Message-Passing

Message Passing

Step 1: Compute Messages $m_u^{t+1} = \sum_{v \in N(u)} M_t(h_u^t, h_v^t, e_{uv})$

Step 2: Update feature vectors
$$h_t^{t+1} = U_t(h_t^t, m_t^{t+1})$$

New Formulation

Input data: $\mathbf{Y} \in \mathbb{R}^{(n \times n) \times (1 + l + d)}$

Theorem 4: The proposed model can represent message passing layers to an arbitrary precision on compact sets.

Idea: Combine Linear operators (tensors) with MLPs to mimic multiplication of features by the adjacency matrix to allow summing over local neighbourhoods.

Experiments

Synthetic Experiments

Table 1: Comparison to baseline methods on synthetic experiments.

	Symmetric projection			Diagonal extraction			Max singular vector			Trace			
# Layers	1	2	3	1	2	3	1	2	3	4	1	2	3
Trivial predictor Hartford et al.	4.17 2.09	4.17 2.09	4.17 2.09	0.21 0.81	0.21 0.81	0.21 0.81	0.025 0.043	0.025 0.044	0.025 0.043			333.33 311.55	
Ours	1E-05	7E-06	2E-05	8E-06	7E-06	1E-04	0.015	0.0084	0.0054	0.0016	0.005	0.001	0.003

Experiments

Graph Classification

Table 3: Graph Classification Results

			ole 3: Grap					
dataset	MUTAG	PTC	PROTEINS	NCI1	NCI109	COLLAB	IMDB-B	IMDB-M
size	188	344	1113	4110	4127	5000	1000	1500
classes	2	2	2	2	2	3	2	3
avg node #	17.9	25.5	39.1	29.8	29.6	74.4	19.7	13
				Results				
DGCNN	85.83±1.7	58.59±2.5	75.54±0.9	74.44±0.5	NA	73.76±0.5	70.03±0.9	47.83±0.9
PSCN (k=10)	88.95 ± 4.4	62.29 ± 5.7	75 ± 2.5	76.34 ± 1.7	NA	72.6 ± 2.2	71 ± 2.3	45.23±2.8
DCNN	NA	NA	61.29 ± 1.6	56.61 ± 1.0	NA	52.11 ± 0.7	49.06 ± 1.4	33.49 ± 1.4
ECC	76.11	NA	NA	76.82	75.03	NA	NA	NA
DGK	87.44 ± 2.7	60.08 ± 2.6	75.68 ± 0.5	80.31 ± 0.5	80.32 ± 0.3	73.09 ± 0.3	66.96 ± 0.6	44.55±0.5
DiffPool	NA	NA	78.1	NA	NA	75.5	NA	NA
CCN	91.64 ± 7.2	70.62 ± 7.0	NA	76.27 ± 4.1	75.54 ± 3.4	NA	NA	NA
GK	81.39 ± 1.7	55.65 ± 0.5	71.39 ± 0.3	62.49 ± 0.3	62.35 ± 0.3	NA	NA	NA
RW	79.17 ± 2.1	55.91 ± 0.3	59.57 ± 0.1	> 3 days	NA	NA	NA	NA
PK	76 ± 2.7	59.5 ± 2.4	73.68 ± 0.7	82.54 ± 0.5	NA	NA	NA	NA
WL	84.11 ± 1.9	57.97 ± 2.5	74.68 ± 0.5	84.46 ± 0.5	85.12 ± 0.3	NA	NA	NA
FGSD	92.12	62.80	73.42	79.80	78.84	80.02	73.62	52.4
AWE-DD	NA	NA	NA	NA	NA	73.93 ± 1.9	74.45 ± 5.8	51.54 ± 3.6
AWE-FB	87.87 ± 9.7	NA	NA	NA	NA	70.99 ± 1.4	73.13 ± 3.2	51.58 ± 4.6
ours	84.61±10	59.47±7.3	75.19±4.3	73.71±2.6	72.48±2.5	77.92±1.7	71.27±4.5	48.55±3.9