

COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

Chapter 1

Computer Abstractions and Technology

Thanks to Authors & MK for the slides

The Computer Revolution

- Progress in computer technology
 - Underpinned by Moore's Law

- Computers in automobiles
- Cell phones
- Human genome project
- World Wide Web
- Search Engines
- Computers are pervasive

Classes of Computers

Desktop computers

- General purpose, variety of software
- Subject to cost/performance tradeoff

Intel i3-35K, i5-50K, i7-80K (Rs)

Server computers

- Network based
- Super computers: High capacity, performance, reliability
- Cloud computing: Range from
 10's of servers to 100K servers
 (E.g., DCs built by Google, Amazon..)
- Embedded computers
 - Hidden as components of systems
 - Stringent power/performance/cost constraints

Super computer: >100 crores, 1000's of processors, Terabytes of memory

The Processor Market

What You Will Learn

- How programs are translated into the machine language
 - And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - And how it can be improved
- How hardware designers improve performance
- What is parallel processing

Understanding Performance

- Algorithm
 - Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - Determine how fast instructions are executed
- I/O system (including OS)
 - Determines how fast I/O operations are executed

Below Your Program

- Application software
 - Written in high-level language
 - Java, Python, C, C++
- System software
 - Compiler: translates HLL code to machine code
 - Ex: GCC
 - Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
 - Ex: Linux, Windows
- Hardware
 - Processor, memory, I/O controllers
 - Ex: Intel i3-7, ARM, DRAM

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - Textual representation of instructions
- Hardware representation
 - Binary digits (bits)
 - Encoded instructions and data

High-level language program (in C)

Assembly language program (for MIPS)

\$15. 4(\$2)

\$31

Binary machine language program (for MIPS)

Components of a Computer

The BIG Picture

- Same components for all kinds of computer
 - Desktop, server, embedded
- Input/output includes
 - User-interface devices
 - Display, keyboard, mouse
 - Storage devices
 - Hard disk, CD/DVD, flash
 - Network adapters
 - For communicating with other computers

Anatomy of a Computer

Through the Looking Glass

- LCD screen: picture elements (pixels)
 - Mirrors content of frame buffer memory

Opening the Box

Inside the Processor

AMD Barcelona: 4 processor cores

Block diagram of computer

- Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - Small fast SRAM memory for immediate access to data
- Primary storage DRAM
 - Large
- Secondary storage Hard disk

Block diagram of Computer

A Safe Place for Data

- Volatile main/primary memory
 - Loses instructions and data when power off
 - Cache (SRAM), DRAM
- Non-volatile secondary memory
 - Magnetic disk (also hard disk)
 - Flash memory (also SSD)
 - Optical disk (CDROM, DVD)

Networks

- Communication and resource sharing
- Local area network (LAN): Ethernet
 - Within a building
- Wide area network (WAN: the Internet)
- Wireless network: WiFi, Bluetooth

Networks enable compute and storage at massive scales

The network has thousands of switches and millions of links (Datacenters built by Google, facebook, Amazon, MS..)

NIC: 10Gbps

• CPUs: 64

• DRAM: 16GB, 100ns

Disk: 2TB, 10ms

Bandwidth: 800Gbps

• CPUs: 5K

• DRAM: 1TB, 300us

Disk: 160TB, 11ms

Bandwidth: 24Tbps

• CPUs: 153K

DRAM: 30TB, 500usDisk: 4.80PB, 12ms

Reference: Jeff Dean. Designs, Lessons and Advice from Building Large Distributed Systems.

Technology Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

DRAM capacity

Year	Technology	Relative performance/cost
1951	Vacuum tube	1
1965	Transistor	35
1975	Integrated circuit (IC)	900
1995	Very large scale IC (VLSI)	2,400,000
2005	Ultra large scale IC	6,200,000,000

Manufacturing ICs

Yield: proportion of working dies per wafer

Intel core i7

- 300mm (12 inch) wafer
- 100% yields = 280 chips, 32nm technology

Integrated Circuit Cost

Cost per die =
$$\frac{\text{Cost per wafer}}{\text{Dies per wafer} \times \text{Yield}}$$

Dies per wafer $\approx \text{Wafer area/Die area}$

Yield = $\frac{1}{(1+(\text{Defects per area} \times \text{Die area/2}))^2}$

- Nonlinear relation to area and defect rate
 - Wafer cost and area are fixed
 - Defect rate determined by manufacturing process
 - Die area determined by architecture and circuit design

Defining Performance

Which airplane has the best performance?

Response Time and Throughput

- Response time
 - How long it takes to do a task
- Throughput
 - Total work done per unit time
 - e.g., tasks/transactions/... per hour
- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?
- We'll focus on response time for now...

Relative Performance

- Define Performance = 1/Execution Time
- "X is n time faster than Y"

Performance_x/Performance_y

- = Execution time $_{\times}$ /Execution time $_{\times} = n$
- Example: time taken to run a program
 - 10s on A, 15s on B
 - Execution Time_B / Execution Time_A
 = 15s / 10s = 1.5
 - So A is 1.5 times faster than B

Measuring Execution Time

- Elapsed time
 - Total response time, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- CPU time
 - Time spent processing a given job
 - Discounts I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

CPU Clocking

 Operation of digital hardware governed by a constant-rate clock

- Clock period: duration of a clock cycle
 - e.g., $250ps = 0.25ns = 250 \times 10^{-12}s$
- Clock frequency (rate): cycles per second
 - e.g., $4.0GHz = 4000MHz = 4.0 \times 10^9Hz$

CPU Time

CPU Time = CPU Clock Cycles × Clock Cycle Time

= CPU Clock Cycles

Clock Rate

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 x clock cycles
- How fast must Computer B clock be?

$$Clock Rate_{B} = \frac{Clock Cycles_{B}}{CPU Time_{B}} = \frac{1.2 \times Clock Cycles_{A}}{6s}$$

$$Clock\ Cycles_A = CPU\ Time_A \times Clock\ Rate_A$$

$$= 10s \times 2GHz = 20 \times 10^9$$

Clock Rate_B =
$$\frac{1.2 \times 20 \times 10^9}{6s} = \frac{24 \times 10^9}{6s} = 4GHz$$

Instruction Count and CPI

Clock Cycles = Instruction Count × Cycles per Instruction

CPU Time = Instruction Count × CPI × Clock Cycle Time

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

CPI in More Detail

 If different instruction classes take different numbers of cycles

$$Clock\ Cycles = \sum_{i=1}^{n} (CPI_{i} \times Instruction\ Count_{i})$$

Weighted average CPI

$$CPI = \frac{Clock \ Cycles}{Instruction \ Count} = \sum_{i=1}^{n} \left(CPI_i \times \frac{Instruction \ Count_i}{Instruction \ Count} \right)$$

Relative frequency

CPI Example

 Alternative compiled code sequences using instructions in classes A, B, C

Class	А	В	С	
CPI for class	1	2	3	
IC in sequence 1	2	1	2	
IC in sequence 2	4	1	1	

- Sequence 1: IC = 5
 - Clock Cycles= 2x1 + 1x2 + 2x3= 10
 - Avg. CPI = 10/5 = 2.0

- Sequence 2: IC = 6
 - Clock Cycles= 4×1 + 1×2 + 1×3= 9
 - Avg. CPI = 9/6 = 1.5

Performance Summary

The BIG Picture

$$CPUTime = \frac{Instructions}{Program} \times \frac{Clock\ cycles}{Instruction} \times \frac{Seconds}{Clock\ cycle}$$

- Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, T_c

Power Trends

In CMOS IC technology

Power = Capacitive load× Voltage² × Frequency

Reducing Power

- Suppose a new CPU has
 - 85% of capacitive load of old CPU
 - 15% voltage and 15% frequency reduction

$$\frac{P_{\text{new}}}{P_{\text{old}}} = \frac{C_{\text{old}} \times 0.85 \times (V_{\text{old}} \times 0.85)^2 \times F_{\text{old}} \times 0.85}{C_{\text{old}} \times V_{\text{old}}^2 \times F_{\text{old}}} = 0.85^4 = 0.52$$

- The power wall
 - We can't reduce voltage further
 - We can't remove more heat
- How else can we improve performance?

Uniprocessor Performance

Multiprocessors

- Multicore microprocessors
 - More than one processor per chip
- Requires explicitly parallel programming
 - Compare with instruction level parallelism
 - Hardware executes multiple instructions at once
 - Hidden from the programmer
 - Hard to do
 - Programming for performance
 - Load balancing
 - Optimizing communication and synchronization

Intel core i7 2.66GHz performance

Description	Name	Instruction Count x 10 ⁹	СРІ	Clock cycle time (seconds x 10 ⁻⁹)	Execution Time (seconds)	Reference Time (seconds)	SPECratio
Interpreted string processing	perl	2252	0.60	0.376	508	9770	19.2
Block-sorting compression	bzip2	2390	0.70	0.376	629	9650	15.4
GNU C compiler	gcc	794	1.20	0.376	358	8050	22.5
Combinatorial optimization	mcf	221	2.66	0.376	221	9120	41.2
Go game (AI)	go	1274	1.10	0.376	527	10490	19.9
Search gene sequence	hmmer	2616	0.60	0.376	590	9330	15.8
Chess game (AI)	sjeng	1948	0.80	0.376	586	12100	20.7
Quantum computer simulation	libquantum	659	0.44	0.376	109	20720	190.0
Video compression	h264avc	3793	0.50	0.376	713	22130	31.0
Discrete event simulation library	omnetpp	367	2.10	0.376	290	6250	21.5
Games/path finding	astar	1250	1.00	0.376	470	7020	14.9
XML parsing	xalancbmk	1045	0.70	0.376	275	6900	25.1
Geometric mean	_	-	_	_	_	-	25.7

Concluding Remarks

- Cost/performance is improving
 - Due to underlying technology development
- Execution time: the best performance measure (IC x CPI x Clock period)
- Power is a limiting factor
 - Use parallelism to improve performance

