Satisfiability with Agreement and Counting

Krasimir Georgiev

July 2, 2016

Contents

1	Intr	oduction 1					
	1.1	Notation					
	1.2	Syntax					
	1.3	Semantics					
	1.4	Games					
	1.5	Types					
	1.6	Normal forms					
	1.7	Complexity					
2	Cou	nter setups 11					
	2.1	Bits					
	2.2	Counters					
	2.3	Vectors					
	2.4	Permutations					
3	Equ	Equivalence relations 17					
	3.1	Two equivalence relations in agreement					
	3.2	Many equivalence relations in agreement					
4	Red	reductions 21					
	4.1	Global agreement to refinement					
	4.2	Local agreement to refinement					
	4.3	Granularity					
5	Moi	nadic logics 33					
	5.1	Cells					
	5.2	Organs					
	5.3	Satisfiability					
	5.4	Hardness with a single equivalence					
	5.5	Hardness with many equivalences in refinement					
6	Two	-variable first-order logics 47					
	6.1	Type realizibility					
		6.1.1 Type instances					
	6.2	Type realizability with equivalences					
		6.2.1 Cosmic spectrums					
		6.2.2 Properties of the intended star-type					

Glossary

A the cardinality of A. 1	$v \prec w$ lexicographically smaller. 2
$\wp A$ the powerset of A. 1	\mathbb{S}_n the set of permutations of $[1, n]$. 2
$\wp^+ A$ the set of nonempty subsets of A. 1	$\exp_a^e(x)$ tetration. 2
$\wp^{\kappa}A$ the set of subsets of A of cardinality	Ω an alphabet. 2
κ . 1	$w = w_1 w_2 \dots w_n$ a word. 2
$A \times B$ the cartesian product of A and B. 1	Ω^* the set of words over Ω . 2
dom R the domain of R . 1	Ω^+ the set of nonempty words over Ω . 2
$\operatorname{ran} R$ the range of R . 1	Ω^n the set of words of length n over Ω . 2
R^{-1} the inverse of R . 1	\mathbb{B} the bits. 2
$R \upharpoonright S$ the restriction of R to S. 1	\mathbb{B}^+ the bitstrings. 2
R[a] the R-successors of a . 1	n the bitsize of n . 2
$S \circ R$ the composition of S and R . 1	\overline{n} the binary encoding of n . 2
id_A the identity on A . 1	$\underline{\mathbf{b}}$ the number encoded by \mathbf{b} . 2
$f:A\to B$ a total function from A to $B.$ 1	N_t the largest t-bit number. 2
$f:A\hookrightarrow B$ an injective function from A	\mathbb{B}_t the t-bit numbers. 2
into $B. 1$	$\Omega_{\mathcal{C}}$ the symbol alphabet. 2
$f:A \twoheadrightarrow B$ a surjective function from A	$\mathcal V$ the variable symbols. 3
onto $B. 1$	$m{x}$ the first variable symbol. 3
$f:A\leftrightarrow B$ a bijective function between A	\boldsymbol{y} the second variable symbol. 3
and $B. 1$	z the third variable symbol. 3
$f:A \leadsto B$ a partial function from A to B.	Σ a predicate signature. 3
1	p_i a predicate symbol. 3
$f(a) \simeq b \ f$ is defined at a with value b. 1	$\operatorname{ar} \boldsymbol{p}_i$ the arity of \boldsymbol{p}_i . 3
$f(a) \simeq \perp f$ is not defined at a . 1	$\mathcal{A}t[\Sigma]$ the atomic formulas over Σ . 3
ch_S^A characteristic function. 1	$\mathcal{L}it[\Sigma]$ the literals over Σ . 3
$\ A\ $ the length of A. 1	$\mathcal{C}[\Sigma]$ the first-order formulas with counting
$\langle a, b, c \rangle$ a sequence. 1	quantifiers over Σ . 3
ε the empty sequence. 1	$\mathcal{L}[\Sigma]$ the first-order formulas over Σ . 3
A + B the concatenation of A and B. 1	vars φ the variables occurring φ . 3
A - B A without the elements of B. 1	fvars φ the variables freely occurring φ . 3
\mathbb{N} the natural numbers. 1	$\mathcal{L}^{v}[\Sigma]$ the v-variable first-order formulas
\mathbb{N}^+ the positive natural numbers. 1	over Σ . 3
[n, m] the discrete interval between n and	$\mathcal{C}^v[\Sigma]$ the <i>v</i> -variable first-order formulas
m. 1	with counting quantifiers over Σ
log the base-2 logarithm. 2	3

$\operatorname{qr} \varphi$ the quantifier rank of φ . 3	$[\boldsymbol{u}:eq-d](\boldsymbol{x})$ \boldsymbol{u} -data at \boldsymbol{x} is d . 11
$\mathcal{L}_r[\Sigma]$ the r-rank first-order formulas over	[u:eq](x,y) u-data equal at x and y . 11
Σ . 4	$[\boldsymbol{u}:eq-01](\boldsymbol{x},\boldsymbol{y})$ \boldsymbol{u} -data at \boldsymbol{x} and \boldsymbol{y} is 0 and
$C_r[\Sigma]$ the r-rank first-order formulas with	1. 11
counting quantifiers over Σ . 4	$[\boldsymbol{u}:eq-10](\boldsymbol{x},\boldsymbol{y})$ \boldsymbol{u} -data at \boldsymbol{x} and \boldsymbol{y} is 1 and
$\mathcal{L}_r^v[\Sigma]$ the r-rank v-variable first-order for-	0. 11
mulas over Σ . 4	C a counter setup. 11
$\mathcal{C}_r^v[\Sigma]$ the r-rank v-variable first-order for-	[C:data] ^A C-data at A. 12
mulas with counting quantifiers	[C:eq- d](\boldsymbol{x}) C-data at \boldsymbol{x} is d . 12
over Σ . 4	[C:eq] (x, y) C-data equal at x and y . 12
\mathfrak{A} a structure. 4	[C:less]($\boldsymbol{x}, \boldsymbol{y}$) C-data at \boldsymbol{x} less than C-data
$\varphi^{\mathfrak{A}}$ interpretation of φ in \mathfrak{A} . 5	at y . 12
SAT- \mathcal{K} the satisfiable sentences of \mathcal{K} . 5	[C:succ] (x,y) C-data at y succeeds C-data
FIN-SAT- \mathcal{K} the finitely satisfiable sen-	at x . 12
tences of \mathcal{K} . 6	[C:less] $d(x)$ C-data at x less than d . 13
$\varphi \equiv \psi$ logically equivalent formulas. 6	[C:betw- d - e](x) C-data at x between d and
$\mathfrak{A} \equiv \mathfrak{B}$ elementary equivalent structures. 6	e. 13
$\mathfrak{A} \equiv_r \mathfrak{B}$ r-rank equivalent structures. 6	[C:allbetw- d - e] C-data between d and e . 13
$\mathfrak{A} \equiv^{v} \mathfrak{B}$ v-variable equivalent structures. 6	$[V(p):data]^{\mathfrak{A}}$ a the value of the p-th counter
$\mathfrak{A} \equiv_r^v \mathfrak{B}$ r-rank v-variable equivalent struc-	at a . 13
tures. 6	$[V:data]^{\mathfrak{A}}$ the V-data at $a. 13$
p parital isomorphism. 6	[V:eq-v](\boldsymbol{x}) the V-data at \boldsymbol{x} . 13
$G_r(\mathfrak{A},\mathfrak{B})$ the r-round Ehrenfeucht-Fraïssé	[V(pq):at-i-eq](x) equal i-th bits at p and
game. 6	q at x . 14
$\Pi[\Sigma]$ the set of 1-types over Σ . 7	[V(pq):at-i-eq-01](x) equal <i>i</i> -th bits at p
$T[\Sigma]$ the set of 1-types over Σ . 7	and q are 0 and 1. 14
τ^{-1} the inverse of the type τ . 7	[V(pq):at-i-eq-10](x) equal i-th bits at p
$\operatorname{tp}_{m{x}} au$ the $m{x}$ -type of $ au$. 7	and q are 1 and 0. 14
$\operatorname{tp}_{\boldsymbol{y}} \tau$ the \boldsymbol{y} -type of τ . 7	[V(pq):eq](x) equal p and q V-data at x .
$\tau \parallel \tau'$ parallel 2-types. 7	$\frac{14}{}$
$\operatorname{tp}^{\mathfrak{A}}[a]$ the 1-type of a in \mathfrak{A} . 7	[V(pq):less](x) V-data at p less than at q .
$\pi^{\mathfrak{A}}$ the interpretation of the 1-type π in \mathfrak{A} .	14
7	[V(pq):succ](x) V-data at q succeeds the
$\operatorname{tp}^{\mathfrak{A}}[a,b]$ the 1-type of a in \mathfrak{A} . 7	$\det \operatorname{at} p. 14$
$\tau^{\mathfrak{A}}$ the interpretation of the 2-type τ in \mathfrak{A} .	[P:alldiff] P-data at different positions is
7	different. 15
PTIME complexity class. 8	[P:perm] P-data is a permutation. 15
$A \leq_{\text{PTIME}}^{\text{PTIME}} B A$ is polynomial-time reducible	$\mathscr{E}E$ the set of equivalence classes of E . 17
to B . 9	[e:refl] e is reflexive. 17
$A =_{\mathbf{m}}^{\text{PTIME}} B A$ and B are polynomial-time	[e:symm] e is symmetric. 17
equivalent. 9	[e:trans] e is transitive. 17
B a bit setup. 11	[e:equiv] e is transitive. 17
$[u:data]^{\mathfrak{A}}$ u -data at \mathfrak{A} . 11	[d, e :refine] refinement. 18
[w.dava] w-dava av M. II	[w, coremic] remiement. 10

[L:locperm] local agreement condition. 27
[L: $el-i$] local refinement induced by levels.
27
ltr translation of local agreement to refine-
ment. 28
g granularity. 29
G granularity color setup. 29
$[\Gamma:d]$ finer equivalence granularity formula.
30
grtr granularity translation. 30
$[\Sigma:cell](x,y)$ Σ -cell formula. 33
\mathcal{O} organ-equivalence relation. 34
O sub-organ-equivalence relation. 35
$[D:Data]^{\mathfrak{A}}$ D-Data. 39
[D:Zero](x) zero D-Data at x . 39
[D:Largest](x) maximum D-Data at x . 40
m_i message symbols. 47
$\langle \Sigma, \bar{\boldsymbol{m}} \rangle$ classified signature. 48
$\pi \sim^{\mathrm{T}} \pi'$ connectable 1-types. 49

1 Introduction

1.1 Notation

The cardinal number |A| is the cardinality of the set A. The set $\mathcal{P}A$ is the powerset of A. The set $\mathcal{P}A = \mathcal{P}A \setminus \{\emptyset\}$ is the set of nonempty subsets of A. If κ is a cardinal number, the set $\mathcal{P}A = \{S \in \mathcal{P}A \mid |S| = \kappa\}$ is the κ -powerset of A. The cartesian product of A and $A \in A$ is $A \times A \in A$. The sets $A \in A$ and $A \in A$ is the properly intersect if $A \cap B \neq \emptyset$, $A \setminus B \neq \emptyset$ and $A \in A$.

If R is a binary relation, its domain is dom R and its range is ran R. The inverse of $R \subseteq A \times B$ is

$$R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}.$$

If S is a set and $R \subseteq A \times B$, the restriction of R to S is

$$R \upharpoonright S = \{(a,b) \in R \mid a \in S\}$$
.

If $R \subseteq A \times B$ is a binary relation and $a \in A$, the R-successors of a are

$$R[a] = \{b \in B \mid (a, b) \in R\}.$$

If $S \subseteq B \times C$ and $R \subseteq A \times B$ are two binary relations, their *composition* is

$$S \circ R = \{(a, c) \in A \times C \mid (\exists b \in B)(a, b) \in R \land (b, c) \in S\}.$$

A function is formally just a functional relation. The identity function on A is id_A . A total function from A to B is denoted $f:A\to B$. A injective function from A into B is denoted $f:A\hookrightarrow B$. A surjective function from A onto B is denoted $f:A\to B$. A bijective function between A and B is denoted $f:A\hookrightarrow B$. A partial function from A to B is denoted $f:A\hookrightarrow B$. If $f:A\hookrightarrow B$ is a partial function and $a\in A$, the notation $f(a)\simeq b$ means that f is defined at a and its value is b; the notation $f(a)\simeq \bot$ means that f is not defined at a. If $f:A\hookrightarrow A$, the characteristic function of f:A is $f:A\to \{0,1\}$.

A sequence is formally just a function with domain an ordinal number. If A is a sequence, its length $\|A\|$ is just the domain of A. The sequence consisting of the elements a, b and c in that order is $\langle a, b, c \rangle$. The empty sequence is ε . A finite sequence is a sequence of finite length. If A and B are two sequences, their concatenation is A + B, and the sequence obtained from A by dropping all elements of B is A - B.

The set of natural numbers is $\mathbb{N} = \{0, 1, \dots\}$. The set of positive natural numbers is $\mathbb{N}^+ = \mathbb{N} \setminus \{0\}$. If $n, m \in \mathbb{N}$ are natural numbers, the discrete interval [n, m] between n

and m is

$$[n,m] = \begin{cases} \{n, n+1, \dots, m\} & \text{if } n \leq m \\ \emptyset & \text{otherwise.} \end{cases}$$

The function log is the base-2 logarithm.

An *n*-vector $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n) \in \mathbb{N}^n$ is just a tuple of natural numbers. The *n*-vector \mathbf{v} is lexicographically smaller ¹ than the *n*-vector \mathbf{w} (written $\mathbf{v} \prec \mathbf{w}$) if there is a position $p \in [1, n]$ such that $\mathbf{v}_p < \mathbf{w}_p$ and $\mathbf{v}_q = \mathbf{w}_q$ for all $q \in [p+1, n]$.

The set of *n*-permutations of [1, n] is \mathbb{S}_n . We think of an *n*-permutation ν as an *n*-vector $\nu = (\nu(1), \nu(2), \dots, \nu(n))$.

A function $f: \mathbb{N} \to \mathbb{N}$ is polynomially bounded if there is a polynomial p and a number $n_0 \in \mathbb{N}$ such that $f(n) \leq p(n)$ for all $n \geq n_0$. The function f is exponentially bounded if there is a polynomial p and a number $n_0 \in \mathbb{N}$ such that $f(n) \leq 2^{p(n)}$ for all $n \geq n_0$. We are going to use these terms implicitly with respect to quantities that depend on one another. For example, the cardinality of \mathbb{S}_n is exponentially bounded by n.

Define the *tetration* operation $\exp_a^e(x)$ by $\exp_a^0(x) = x$ and $\exp_a^{e+1}(x) = a^{\exp_a^e(x)}$, so $\exp_a^e(x) = a^{a^{-a^{e^{-}}}}}}}}}}}}}}}}}$

An alphabet Ω is just a nonempty set. The elements of Ω are characters. A word $w = w_1 w_2 \dots w_n$ is a finite sequence of characters. The set of words over Ω is Ω^* . The set of nonempty words over Ω is $\Omega^+ = \Omega^* \setminus \{\varepsilon\}$. If $n \in \mathbb{N}$, the set of words of length n over Ω is Ω^n .

The set of bits is $\mathbb{B} = \{0, 1\}$. The set of bitstrings is \mathbb{B}^+ . The bitstrings are read right-to-left, that is the bitstring b = 10 has first character 0. If $t < u \in \mathbb{N}^+$, the t-bit bitstrings \mathbb{B}^t are embedded into the u-bit bitstrings \mathbb{B}^u by appending leading zeroes. If $n \in \mathbb{N}$, the bitsize ||n|| of n is:

$$||n|| = \begin{cases} 1 & \text{if } n = 0\\ \lfloor \log n \rfloor + 1 & \text{otherwise.} \end{cases}$$

If $n \in \mathbb{N}$, the binary encoding of n is $\overline{n} \in \mathbb{B}^{\|n\|}$. If $b \in \mathbb{B}^t$, the number encoded by b is \underline{b} . The largest t-bit number is $N_t = 2^t - 1$. The set of t-bit numbers is $\mathbb{B}_t = [0, N_t]$.

1.2 Syntax

The symbol alphabet for the first-order logic with counting quantifiers is

$$\Omega_{\mathcal{C}} = \left\{ \neg, \land, \lor, \rightarrow, \leftrightarrow; \exists, \forall; =; (,,,); \leq^{,=}, \geq^{,0}, {}^{1} \right\}.$$

The propositional connectives are listed in decreasing order of precedence. The negation \neg is unary; the disjunction \lor , conjunction \land and equivalence \leftrightarrow are left-associative; the

¹the higher positions to the right are more significant; it may *look like* this ordering is the anti-lexicographic one, for example $(1,1,0) \prec (0,0,1)$.

 $implication \rightarrow is right-associative$. The quantifiers bind as strong as the negation. Note that we consider logics with $formal\ equality =$.

A counting quantifier is a word over $\Omega_{\mathcal{C}}$ of the form $\exists^{\leq \overline{m}}$ or $\exists^{=\overline{m}}$ or $\exists^{\geq \overline{m}}$, where $m \in \mathbb{N}$ and $\overline{m} \in \mathbb{B}^+$ is the binary encoding of m. Note that this encoding of the counting quantifiers is succinct. As we note in Remark 1, this succinct representation allows for exponentially small counting formulas compared to their pure first-order equivalents. We denote the counting quantifiers by $\exists^{\leq m}$, $\exists^{=m}$ and $\exists^{\geq m}$, that is, we omit the encoding notation for m.

The sequence $\mathcal{V} = \langle \boldsymbol{v}_1, \boldsymbol{v}_2, \ldots \rangle$ is a countable sequence of distinct variable symbols. We pay special attention to $\boldsymbol{x} = \boldsymbol{v}_1$, $\boldsymbol{y} = \boldsymbol{v}_2$ and $\boldsymbol{z} = \boldsymbol{v}_3$, the first, second and third variable symbol, respectively.

A predicate signature $\Sigma = \langle \boldsymbol{p}_1, \boldsymbol{p}_2, \dots, \boldsymbol{p}_s \rangle$ is a finite sequence of distinct predicate symbols \boldsymbol{p}_i together with their arities ar $\boldsymbol{p}_i \in \mathbb{N}^+$. A predicate signature is unary or monadic if all of its predicate symbols have arity 1. A predicate signature is binary if all of its predicate symbols have arity 1 or 2. For the purposes of this work we will not be considering constant and function symbols—constant symbols can be simulated by a fresh unary predicate symbol having the intended interpretation of being true at a unique element; presence of function symbols on the other hand leads quite easily to undecidable satisfiability problems. By convention $\Omega_{\mathcal{C}}$, \mathcal{V} and Σ are disjoint.

Let Σ be a predicate signature. The set of atomic formulas $\mathcal{A}t[\Sigma] \subset (\Omega_{\mathcal{C}} \cup \mathcal{V} \cup \Sigma)^*$ over Σ is generated by the grammar:

$$\alpha ::= (x = y) \mid p(x_1, x_2, \dots, x_n)$$

for $x, y \in \mathcal{V}$, $p \in \Sigma$, n = ar p and $x_1, x_2, \dots, x_n \in \mathcal{V}$.

The set of literals $\mathcal{L}it[\Sigma] \subset (\Omega_{\mathcal{C}} \cup \mathcal{V} \cup \Sigma)^*$ over Σ is generated by the grammar:

$$\lambda ::= \alpha \mid (\neg \alpha).$$

The set of first-order formulas with counting quantifiers $\mathcal{C}[\Sigma] \subset (\Omega_{\mathcal{C}} \cup \mathcal{V} \cup \Sigma)^*$ over Σ is generated by the grammar:

$$\varphi ::= \alpha \mid (\neg \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid (\varphi \to \varphi) \mid (\varphi \leftrightarrow \varphi) \mid (\exists x \varphi) \mid (\forall x \varphi) \mid (\exists x \varphi$$

for $x \in \mathcal{V}$ and $m \in \mathbb{N}$.

The set of first-order formulas $\mathcal{L}[\Sigma] \subset \mathcal{C}[\Sigma]$ over Σ consists of the formulas that do not feature a counting quantifier.

The set of variables occurring in φ is $\operatorname{vars} \varphi \subset \mathcal{V}$. The set of variables freely occurring in φ is $\operatorname{fvars} \varphi \subset \mathcal{V}$. A formula φ is a sentence if $\operatorname{fvars} \varphi = \emptyset$. For $v \in \mathbb{N}$, a formula φ is a v-variable formula if $\operatorname{vars} \varphi \subseteq \{v_1, v_2, \dots, v_v\}$. The set of v-variable first-order formulas over Σ is $\mathcal{L}^v[\Sigma]$. The set of v-variable first-order formulas with counting quantifiers over Σ is $\mathcal{C}^v[\Sigma]$.

If $\varphi \in \mathcal{C}[\Sigma]$, the quantifier rank $\operatorname{qr} \varphi \in \mathbb{N}$ of φ is defined as follows. If φ matches:

1 Introduction

- (x = y), then $qr \varphi = 0$
- $p(x_1, x_2, \ldots, x_n)$, then $qr \varphi = 0$
- $(\neg \psi)$, then $\operatorname{qr} \varphi = \operatorname{qr} \psi$
- $\psi_1 \oplus \psi_2$ for $\emptyset \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, then $\operatorname{qr} \varphi = \max(\operatorname{qr} \psi_1, \operatorname{qr} \psi_2)$
- $(\exists x\psi)$ or $(\forall x\psi)$, then $\operatorname{qr} \varphi = 1 + \operatorname{qr} \psi$
- $(\exists^{\leq m} x \psi)$ or $(\exists^{=m} x \psi)$, then $\operatorname{qr} \varphi = m + 1 + \operatorname{qr} \psi$
- $(\exists^{\geq m} x \psi)$, then $\operatorname{qr} \varphi = m + \operatorname{qr} \psi$.

An r-rank formula is a formula having quantifier rank r. The set of r-rank first-order formulas over Σ is $\mathcal{L}_r[\Sigma]$. The set of r-rank first-order formulas with counting quantifiers over Σ is $\mathcal{C}_r[\Sigma]$. The set of r-rank v-variable first-order formulas over Σ is $\mathcal{C}_r^v[\Sigma]$. The set of r-rank v-variable first-order formulas with counting quantifiers over Σ is $\mathcal{C}_r^v[\Sigma]$.

If φ is a formula and $x_1, x_2, \ldots, x_n \in \mathcal{V}$ are distinct variables, we use the notation $\varphi(x_1, x_2, \ldots, x_n)$, a focused formula, to show that we are interested in the free occurrences of the variables x_i in φ . If $\varphi(x_1, x_2, \ldots, x_n)$ is a focused formula and $y_1, y_2, \ldots, y_n \in \mathcal{V}$, then $\varphi(y_1, y_2, \ldots, y_n)$ denotes the formula φ where all free occurrences of x_i are replaced by y_i . The notation $\varphi = \varphi(x_1, x_2, \ldots, x_n)$ means that fvars $\varphi \subseteq \{x_1, x_2, \ldots, x_n\}$.

We will omit unnecessary brackets in formulas.

1.3 Semantics

If Σ is a predicate signature, a Σ -structure \mathfrak{A} consists of a nonempty set A (the domain of \mathfrak{A}), together with a relation $p^{\mathfrak{A}} \subseteq A^{\operatorname{ar} p}$ (the interpretation of p at \mathfrak{A}) for every predicate symbol $p \in \Sigma$. A structure is finite if its domain is finite. We omit the standard definition of semantic notions. Seldom it will be useful to consider structures with possibly empty domain. We will be explicit when this is the case. If \mathfrak{A} is a structure and $B \subseteq A$ there is a substructure $\mathfrak{B} \subseteq \mathfrak{A}$ with possibly empty domain B. We call it the substructure induced by B and denote it $(\mathfrak{A} \upharpoonright B)$.

Note that the interpretation of the counting quantifiers is clear: $\exists^{\leq m} x \varphi$ means that "at most m elements satisfy φ "; $\exists^{=m} x \varphi$ means that "exactly m elements satisfy φ "; $\exists^{\geq m} x \varphi$ means that "at least m elements satisfy φ ".

The standard translation st : $\mathcal{C}[\Sigma] \to \mathcal{L}[\Sigma]$ of first-order formulas with counting quantifiers to logically equivalent first-order formulas is defined as follows. If φ matches:

- (x = y) or $p(x_1, x_2, \dots, x_n)$, then st $\varphi = \varphi$
- $(\neg \psi)$, then st $\varphi = (\neg \operatorname{st} \psi)$
- $(\psi_1 \oplus \psi_2)$ for $\emptyset \in \{\land, \lor, \rightarrow, \leftrightarrow\}$, then st $\varphi = (\operatorname{st} \psi_1 \oplus \operatorname{st} \psi_2)$
- $(Qx\psi)$ for $Q \in \{\exists, \forall\}$, then st $\varphi = (Qx \operatorname{st} \psi)$

• $(\exists^{\leq m} x \psi(x))$ or $(\exists^{=m} x \psi(x))$ or $(\exists^{\geq m} x \psi(x))$, then let

$$\theta_{\leq} = \forall y_1 \forall y_2 \dots \forall y_m \forall y_{m+1} \left(\bigwedge_{1 \leq i \leq m+1} \operatorname{st} \psi(y_i) \to \bigvee_{1 \leq i < j \leq m+1} y_i = y_j \right)$$

$$\theta_{\geq} = \exists y_1 \exists y_2 \dots \exists y_m \left(\bigwedge_{1 \leq i \leq m} \operatorname{st} \psi(y_i) \land \bigwedge_{1 \leq i < j \leq m} y_i \neq y_j \right)$$

where $y_1, y_2, \ldots, y_{m+1}$ are distinct variable symbols not occurring in φ . The formula θ_{\leq} asserts that there are at most m distinct values satisfying ψ . The formula θ_{\geq} asserts that there are at least m distinct values satisfying ψ . If $\varphi = (\exists^{\leq m} x \psi(x))$, then st $\varphi = \theta_{\leq}$. If $\varphi = (\exists^{=m} x \psi(x))$, then st $\varphi = \theta_{\geq}$. If $\varphi = (\exists^{=m} x \psi(x))$, then st $\varphi = \theta_{\geq}$.

Remark 1. The translation of a first-order formula with counting quantifiers φ to a logically equivalent first-order formula $\psi = \operatorname{st} \varphi$ preserves quantifier rank. However, the resulting formula ψ may have exponentially larger length.

A predicate signature with intended interpretations Σ is formally a predicate signature together with an intended interpretation condition \mathcal{A} , which is formally a class of Σ -structures. A Σ -structure $\mathfrak A$ is then just an element of \mathcal{A} . That is, when we speak about a predicate signature with intended interpretations, we are considering the logics strictly over the class of structures respecting the intended interpretation condition. The semantic concepts are relativised appropriately in this context. For example, if $\Sigma = \langle e \rangle$ is a predicate signature consisting of the single binary predicate symbol e, having intended interpretation as an equivalence, then the Σ -formula $\forall xe(x,x)$ is logically valid. From now on, we will use the term predicate signature as predicate signature with possible intended interpretations.

The predicate signature Σ' is an *enrichment* of the predicate signature Σ if Σ' contains all predicate symbols of Σ and respects their intended interpretation in Σ . A Σ' -structure \mathfrak{A}' is an enrichment of the Σ -structure \mathfrak{A} if they have the same domain and the same interpretation of the predicate symbols of Σ . The basic semantic significance of enrichment is that if $\varphi(x_1, x_2, \ldots, x_n)$ is a Σ -formula and $a_1, a_2, \ldots, a_n \in A$, then $\mathfrak{A} \models \varphi(a_1, a_2, \ldots, a_n)$ iff $\mathfrak{A}' \models \varphi(a_1, a_2, \ldots, a_n)$. If \mathfrak{A}' is an enrichment of \mathfrak{A} then \mathfrak{A} is a reduct² of \mathfrak{A}' .

If $\varphi(x_1, x_2, \dots, x_n)$ is a focused formula, the interpretation of φ in $\mathfrak A$ is

$$\varphi^{\mathfrak{A}} = \{(a_1, a_2, \dots, a_n) \in A^n \mid \mathfrak{A} \models \varphi(a_1, a_2, \dots, a_n)\}.$$

If Σ is a predicate signature and φ is a Σ -sentence, then φ is satisfiable if there is a Σ -structure that is a model for φ ; φ is finitely satisfiable if there is a finite Σ -structure that is a model for φ . If $\mathcal{K} \subseteq \mathcal{C}[\Sigma]$ is a family of formulas over the predicate signature Σ , the set of satisfiable sentences is SAT- $\mathcal{K} \subseteq \mathcal{K}$ and the set of finitely satisfiable sentences

²or why not *empoverishment*?

is FIN-SAT- $\mathcal{K} \subseteq \mathcal{K}$. The family \mathcal{K} has the *finite model property* if SAT- $\mathcal{K} = \text{FIN-SAT-}\mathcal{K}$. By the Löwenheim-Skolem theorem, every satisfiable sentence φ has a finite or countable model (assuming the intended interpretation condition of the predicate signature is first-order-definable). In this work the intended interpretation conditions of the predicate signatures will always be first-order-definable formula and we will silently assume that all structures are either finite or countable.

Two Σ -sentences φ and ψ are logically equivalent (written $\varphi \equiv \psi$) if they have the same models.

Two Σ -structures $\mathfrak A$ and $\mathfrak B$ are elementary equivalent (written $\mathfrak A \equiv \mathfrak B$) if they satisfy the same first-order sentences (hence also the same first-order sentences with counting quantifiers). The structures $\mathfrak A$ and $\mathfrak B$ are r-rank equivalent (written $\mathfrak A \equiv_r \mathfrak B$) if they satisfy the same r-rank first-order sentences. The structures $\mathfrak A$ and $\mathfrak B$ are r-variable equivalent (written $\mathfrak A \equiv_r \mathfrak B$) if they satisfy the same r-variable first-order sentences. The structures $\mathfrak A$ and $\mathfrak B$ are r-rank r-variable equivalent (written $\mathfrak A \equiv_r r$) if they satisfy the same r-rank r-variable first-order sentences.

1.4 Games

Logic games capture structure equivalence. Let Σ be a predicate signature and let \mathfrak{A} and \mathfrak{B} be Σ -structures. A partial isomorphism $\mathfrak{p}: A \leadsto B$ from \mathfrak{A} to \mathfrak{B} is a partial mapping that is an isomorphism between the induced substructures $(\mathfrak{A} \upharpoonright \text{dom } \mathfrak{p})$ and $(\mathfrak{B} \upharpoonright \text{ran } \mathfrak{p})$.

Let $r \in \mathbb{N}^+$. The r-round Ehrenfeucht-Fraissé game $G_r(\mathfrak{A},\mathfrak{B})$ is a two-player game, played with a pair of pebbles, one for each structure. The two players are Spoiler and Duplicator. Initially the pebbles are off the structures. During each round, Spoiler picks a pebble and a structure and places it on some element in that structure. Duplicator responds by picking the other pebble and placing it on some element in the other structure. Thus during round i the players play a pair of elements $a_i \mapsto b_i \in A \times B$. Collect the sequences of played elements $\bar{a} = \langle a_1, a_2, \ldots, a_r \rangle$ and $\bar{b} = \langle b_1, b_2, \ldots, b_r \rangle$. Duplicator wins the match if the relation $\bar{a} \mapsto \bar{b} = \{a_1 \mapsto b_1, a_2 \mapsto b_2, \ldots, a_r \mapsto b_r\} \subseteq A \times B$, built from the pairs of elements in each round, is a partial isomorphism from \mathfrak{A} to \mathfrak{B} . Ehrenfeucht's theorem says that Duplicator has a winning strategy for $G_r(\mathfrak{A},\mathfrak{B})$ iff $\mathfrak{A} \equiv_r \mathfrak{B}$. Fraïssé's theorem gives a back-and-forth characterization of the winning strategy for Duplicator [1, ch. 2]:

Theorem 1. Suppose that $(\mathfrak{I}_0, \mathfrak{I}_1, \ldots, \mathfrak{I}_r)$ is a sequence of nonempty sets of partial isomorphisms between \mathfrak{A} and \mathfrak{B} with the following properties:

- 1. For every i < r, $\mathfrak{p} \in \mathfrak{I}_i$ and $a \in A$, there is $\mathfrak{q} \in \mathfrak{I}_{i+1}$ such that $\mathfrak{p} \subseteq \mathfrak{q}$ and $a \in \text{dom } \mathfrak{q}$.
- 2. For every i < r, $\mathfrak{p} \in \mathfrak{I}_i$ and $b \in B$, there is $\mathfrak{q} \in \mathfrak{I}_{i+1}$ such that $\mathfrak{p} \subseteq \mathfrak{q}$ and $b \in \operatorname{ran} \mathfrak{q}$.

 Then $\mathfrak{A} \equiv_r \mathfrak{B}$.

1.5 Types

Let $\Sigma = \langle p_1, p_2, \dots, p_s \rangle$ be a predicate signature. A 1-type π over Σ is a maximal consistent set of literals featuring only the variable symbol x^3 . The set of 1-types over Σ is $\Pi[\Sigma]$. Note that consistency here is relativised by the intended interpretations of the predicate signature. For example if Σ contains the binary predicate symbol e with intended interpretation as an equivalence, then every 1-type over Σ includes the literal e(x,x). Also note that the cardinality of a 1-type over Σ is polynomially bounded by the length s of Σ and the cardinality of $\Pi[\Sigma]$ is exponentially bounded by s.

A 2-type τ over Σ is a maximal consistent set of literals featuring only the variable symbols \boldsymbol{x} and \boldsymbol{y} and including the literal $(\boldsymbol{x} \neq \boldsymbol{y})$. The set of 2-types over Σ is $T[\Sigma]$. Again, consistency is relativised by the intended interpretation of the predicate signature. For example, if Σ contains the binary predicate symbol \boldsymbol{e} with intended interpretation as an equivalence, then if $\boldsymbol{e}(\boldsymbol{x},\boldsymbol{y}) \in \tau$, then $\boldsymbol{e}(\boldsymbol{y},\boldsymbol{x}) \in \tau$. Again, the cardinality of a 2-type over Σ is polynomially bounded by s and the cardinality of $T[\Sigma]$ is exponentially bounded by s.

If $\tau \in T[\Sigma]$, the inverse τ^{-1} of τ is the 2-type obtained from τ by swapping the variables \boldsymbol{x} and \boldsymbol{y} in every literal. The \boldsymbol{x} -type of τ is the 1-type $\operatorname{tp}_{\boldsymbol{x}}\tau$ consisting of all the literals of τ featuring only the variable symbol \boldsymbol{x} . Similarly, the \boldsymbol{y} -type of τ is the 1-type $\operatorname{tp}_{\boldsymbol{y}}\tau$ consisting of all the literals of τ featuring only the variable symbol \boldsymbol{y} , that is replaced by \boldsymbol{x} . For instance we have the identity $\operatorname{tp}_{\boldsymbol{x}}\tau^{-1}=\operatorname{tp}_{\boldsymbol{y}}\tau$. We say that τ connects the 1-types $\operatorname{tp}_{\boldsymbol{x}}\tau$ and $\operatorname{tp}_{\boldsymbol{y}}\tau$ and we refer to $\operatorname{tp}_{\boldsymbol{x}}\tau$ and $\operatorname{tp}_{\boldsymbol{y}}\tau$ as the endpoints of τ . Two 2-types τ,τ' are parallel if they have the same endpoints, that is if $\operatorname{tp}_{\boldsymbol{x}}\tau=\operatorname{tp}_{\boldsymbol{x}}\tau'$ and $\operatorname{tp}_{\boldsymbol{y}}\tau=\operatorname{tp}_{\boldsymbol{y}}\tau'$. We use the notation $\tau\parallel\tau'$ to denote parallel 2-types.

If $\mathfrak A$ is a Σ -structure and $a \in A$, the 1-type of a in $\mathfrak A$ is

$$\operatorname{tp}^{\mathfrak{A}}[a] = \{\lambda(\boldsymbol{x}) \in \mathcal{L}it[\Sigma] \mid \mathfrak{A} \vDash \lambda(a)\}.$$

If $\operatorname{tp}^{\mathfrak{A}}[a] = \pi$, we say that the 1-type π is *realized* by a in \mathfrak{A} . The interpretation of the 1-type π in \mathfrak{A} is the set of elements realizing π :

$$\pi^{\mathfrak{A}} = \left\{ a \in A \mid \operatorname{tp}^{\mathfrak{A}}[a] = \pi \right\}.$$

If $a \neq b \in A$, the 2-type of (a, b) in \mathfrak{A} is

$$\operatorname{tp}^{\mathfrak{A}}[a,b] = \left\{ \lambda(\boldsymbol{x},\boldsymbol{y}) \in \mathcal{L}it[\Sigma] \mid \mathfrak{A} \vDash \lambda(a,b) \right\}.$$

We do not define a 2-type in case a = b. If $\operatorname{tp}^{\mathfrak{A}}[a,b] = \tau$, we say that the 2-type τ is realized by (a,b) in \mathfrak{A} . The interpretation of the 2-type τ in \mathfrak{A} is the set of pairs realizing τ :

$$\tau^{\mathfrak{A}} = \left\{ (a,b) \in A \times A \;\middle|\; a \neq b \wedge \operatorname{tp}^{\mathfrak{A}}[a,b] = \tau \right\}.$$

³this is different than the commonly used notion of type in model theory, where types are sets of general formulas, not just literals

1.6 Normal forms

In two-variable logics, a common technique of reducing formula quantifier rank while preserving satisfiability is Skolemization [2]: Let φ be a \mathcal{L}^2 -sentence. By replacing universally quantified subformulas $\forall x\psi$ by twofold existential negations $\neg \exists x \neg \psi$, without loss of generality assume that only existential quantifiers occur in φ . Consider a subformula ψ of φ that has the lowest possible nontrivial quantifier rank 1. Then $\psi = \psi(y) = \exists x\alpha(x,y)$, where the formula α is quantifier-free, $\{x,y\} = \{x,y\}$ and y may or may not necessarly occur freely in α . Introduce a new unary predicate symbol u_{ψ} with the intended interpretation $\forall y(u_{\psi}(y) \leftrightarrow \exists x\alpha(x,y))$ and let φ' be the formula obtained from φ by replacing the subformula ψ by $u_{\psi}(y)$. The original formula φ is equisatisfiable with $\varphi_1 = \forall y(u_{\psi}(y) \leftrightarrow \exists x\alpha(x,y)) \land \varphi'$ in a strinct sense, that is any model for φ can be u_{ψ} -enriched into a model for φ_1 and any model for φ_1 is a model for φ . By repeating this process linearly many times, we can bring the formula to a form where the quantifier rank is at most 2 [3, 2]:

Theorem 2 (Scott). There is a polynomial-time reduction sctr : $\mathcal{L}^2 \to \mathcal{L}^2$ which reduces every sentence φ to a sentence sctr φ in Scott normal form:

$$\forall \boldsymbol{x} \forall \boldsymbol{y} (\alpha_0(\boldsymbol{x}, \boldsymbol{y}) \vee \boldsymbol{x} = \boldsymbol{y}) \wedge \bigwedge_{1 \leq i \leq m} \forall \boldsymbol{x} \exists \boldsymbol{y} (\alpha_i(\boldsymbol{x}, \boldsymbol{y}) \wedge \boldsymbol{x} \neq \boldsymbol{y}),$$

where the formulas α_i are quantifier-free and use at most linearly many new unary predicate symbols. The sentences φ and sctr φ are satisfiable over the same domains. Moreover the length sctr φ is linear in the length of φ .

A completely analogous normal form can be described for the two-variable fragment with counting quantifiers [4]:

Theorem 3 (Pratt-Hartmann). There is a polynomial-time reduction prtr : $C^2 \to C^2$ with reduces every sentence φ to a sentence prtr φ in the form:

$$\forall x \forall y (\alpha_0(x, y) \lor x = y) \land \bigwedge_{1 \le i \le m} \forall x \exists^{=M_i} y (\alpha_i(x, y) \land x \ne y),$$

where the formulas α_i are quantifier-free and may use linearly many new unary and binary predicate symbols. Let $M = \max\{M_1, M_2, \dots, M_m\}$. Then φ and prtr φ are satisfiable over the same domains of cardinality greater than M. Moreover the length prtr φ is linear in the length of φ .

1.7 Complexity

We denote the complexity classes $PTIME = TIME[poly(n)] = \bigcup_{c \in \mathbb{N}^+} TIME[n^c]$, NPTIME, PSPACE, EXPTIME and NEXPTIME. For $e \in \mathbb{N}^+$, the e-exponential deterministic and nondeterministic time classes are $eEXPTIME = TIME[exp_2^e(poly(n))]$ and NeEXPTIME. The complexity class ELEMENTARY is the union of the complexity classes eEXPTIME for $e \in \mathbb{N}^+$.

The Grzegorczyk hierarchy \mathcal{E}^i for $i \in \mathbb{N}$ orders the primitive recursive functions by means of the power of recursion needed. The *basic functions* are the zero function $\operatorname{zero}(n) = 0$, the successor function $\operatorname{succ}(n) = n+1$ and the projection functions $\operatorname{proj}_i^u(n_1, n_2, \ldots, n_u) = n_i$. If $u, v \in \mathbb{N}$, $f : \mathbb{N}^u \to \mathbb{N}$ and $g_1, g_2, \ldots, g_u : \mathbb{N}^v \to \mathbb{N}$ are functions, their *superposition* is the function $h : \mathbb{N}^v \to \mathbb{N}$ defined by $h(\bar{n}) = f(g_1(\bar{n}), g_2(\bar{n}), \ldots, g_u(\bar{n}))$ for $\bar{n} \in \mathbb{N}^v$. If $u \in \mathbb{N}$, $f : \mathbb{N}^u \to \mathbb{N}$ and $g : \mathbb{N}^{u+2} \to \mathbb{N}$, their *primitive recursion* is the function $h : \mathbb{N}^{u+1} \to \mathbb{N}$ defined by:

$$h(\bar{n},0) = f(\bar{n})$$

$$h(\bar{n},i+1) = g(\bar{n},i,h(\bar{n},i))$$

for $\bar{n} \in \mathbb{N}^u$. For $i \in \mathbb{N}$, define the function E_i by $E_0(n) = n + 1$ and

$$E_{i+1}(n) = E_i^n(2) = \underbrace{E_i(E_i(\dots E_i(2)))}_{n}.$$

For $i \in \mathbb{N}$, the *i*-th level of the Grzegorczyk hierarchy \mathcal{E}^i as the least set of functions containing the basic functions, the functions E_k for $k \in [0, i]$ and closed under superposition and limited primitive recursion, that is a primitive recursion $h: \mathbb{N}^{u+1}$ of the functions $f: \mathbb{N}^u \to \mathbb{N}, g: \mathbb{N}^{u+2} \to \mathbb{N}, f, g \in \mathcal{E}^i$, such that there is a function $b: \mathbb{N}^{u+1} \to \mathbb{N}, b \in \mathcal{E}^i$ bounding $h: h(\bar{n}) \leq b(\bar{n})$ for all $n \in \mathbb{N}^{u+1}$. A decision problem $A \subseteq \Omega^*$ is in some level of the Grzegorczyk hierarchy just in case its characteristic function occurs at that level. The primitive recursive functions are partitioned by the Grzegorczyk hierarchy. The complexity class Elementary coincides with the third level of the Grzegorczyk hierarchy \mathcal{E}^3 .

If $A\subseteq\Omega_1^*$ and $B\subseteq\Omega_2^*$ are decision problems, the problem A is many-one polynomial-time reducible to B (written $A\leq_{\mathbf{m}}^{\mathbf{PTIME}}B$) if there is a polynomial-time algorithm $f:\Omega_1^*\to\Omega_2^*$ such that $a\in A$ iff $f(a)\in B$. Similar reductions are defined analogously. The decision problems A and B are many-one polynomial-time equivalent (written $A=_{\mathbf{m}}^{\mathbf{PTIME}}B$) if $A\leq_{\mathbf{m}}^{\mathbf{PTIME}}B$ and $B\leq_{\mathbf{m}}^{\mathbf{PTIME}}A$.

A decision problem is *hard* for a complexity class if any decision problem of that complexity class is polynomial-time reducible to it. A decision problem is *complete* for a complexity class if it is hard for that class and contained in that class.

We will need the following standard domino tiling problem [5, p. 403]: A domino system is a triple D=(T,H,V), where T=[1,k] is a finite set of tiles and $H,V\subseteq T\times T$ are horizontal and vertical matching relations. A tiling of $m\times m$ for a domino system D with initial condition $c^0=\langle t_1^0,t_2^0,\ldots,t_n^0\rangle$, where $n\leq m$, is a mapping $t:[1,m]\times[1,m]\to T$ such that:

- $(t(i,j),t(i+1,j)) \in H$ for all $i \in [1,m-1]$ and $j \in [1,m]$
- $(t(i,j),t(i,j+1)) \in V$ for all $i \in [1,m]$ and $j \in [1,m-1]$
- $t(i,1) = t_i^0$ for all $i \in [1,n]$.

It is well-known [6, 7] that there exists a domino system D_0 for which:

1 Introduction

- the problem asking whether there exists a tiling of $m \times m$ with initial condition c^0 of length n, where m = n, is NPTIME-complete.
- the problem asking whether there exists a tiling of $m \times m$ with initial condition c^0 of length n, where $m = 2^n$, is NEXPTIME-complete.
- the problem asking whether there exists a tiling of $m \times m$ with initial condition c^0 of length n, where $m = 2^{2^n}$, is N2ExpTime-complete.
- the argument extends to arbitrary exponential towers: the problem asking whether there exists a tiling of $m \times m$ with initial condition c^0 of length n, where $m = \exp_2^e(n)$ is NeExpTime-complete.

2 Counter setups

2.1 Bits

A bit setup $\mathbf{B} = \langle \mathbf{u} \rangle$ is a predicate signature consisting of a single unary predicate symbol \mathbf{u} .

Definition 1. Let \mathfrak{A} be a B-structure. Define the function $[\mathbf{u}: \mathtt{data}]^{\mathfrak{A}} : A \to \mathbb{B}$ by:

$$[\boldsymbol{u}:data]^{\mathfrak{A}}a = \begin{cases} 1 & \text{if } \mathfrak{A} \vDash \boldsymbol{u}(a) \\ 0 & \text{otherwise.} \end{cases}$$

Definition 2. Let $d \in \mathbb{B}$. Define the quantifier-free $\mathcal{L}^1[B]$ -formula [u:eq-d](x) by:

$$[oldsymbol{u}: ext{eq-}d](oldsymbol{x}) = egin{cases} oldsymbol{u}(oldsymbol{x}) & \textit{if } d = 1 \
eg oldsymbol{u}(oldsymbol{x}) & \textit{otherwise}. \end{cases}$$

If \mathfrak{A} is a B-structure, $a \in A$ and $d \in \mathbb{B}$, then $\mathfrak{A} \models [\mathbf{u} : \mathsf{eq} - d](a)$ iff $[\mathbf{u} : \mathsf{data}]^{\mathfrak{A}} a = d$.

Definition 3. Define the quantifier-free $\mathcal{L}^2[B]$ -formulas $[\mathbf{u}:eq](\mathbf{x}, \mathbf{y})$, $[\mathbf{u}:eq-01](\mathbf{x}, \mathbf{y})$ and $[\mathbf{u}:eq-10](\mathbf{x}, \mathbf{y})$ by:

$$egin{aligned} [m{u} : & \mathsf{eq}](m{x}, m{y}) = m{u}(m{x}) \leftrightarrow m{u}(m{y}) \ [m{u} : & \mathsf{eq} - 01](m{x}, m{y}) =
egli{u} (m{x}) \wedge m{u}(m{y}) \ [m{u} : & \mathsf{eq} - 10](m{x}, m{y}) = m{u}(m{x}) \wedge
egli{u} (m{x}) \end{aligned}$$

If \mathfrak{A} is a B-structure and $a, b \in A$, then:

- $\mathfrak{A} \models [\mathbf{u} : eq](a, b) \text{ iff } [\mathbf{u} : data]^{\mathfrak{A}} a = [\mathbf{u} : data]^{\mathfrak{A}} b$
- $\mathfrak{A} \vDash [\mathbf{u} : eq-01](a,b)$ iff $[\mathbf{u} : data]^{\mathfrak{A}} a = 0$ and $[\mathbf{u} : data]^{\mathfrak{A}} b = 1$
- $\mathfrak{A} \vDash [\mathbf{u}:eq-10](a,b) \text{ iff } [\mathbf{u}:data]^{\mathfrak{A}} a = 1 \text{ and } [\mathbf{u}:data]^{\mathfrak{A}} b = 0.$

2.2 Counters

A *t-bit counter setup* for $t \in \mathbb{N}^+$ is a predicate signature $\mathbf{C} = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_t \rangle$ consisting of t distinct unary predicate symbols \boldsymbol{u}_i .

Definition 4. Let \mathfrak{A} be a C-structure. Define the function $[C:data]^{\mathfrak{A}}: A \to \mathbb{B}_t$ by:

$$[C:data]^{\mathfrak{A}}a = \sum_{1 \leq i \leq t} 2^{i-1} [\mathbf{u}_i:data]^{\mathfrak{A}}a.$$

Definition 5. Let $d \in \mathbb{B}_t$ be a t-bit number. Define the quantifier-free $\mathcal{L}^1[C]$ -formula [C:eq-d](x) by:

$$[\mathrm{C}\text{:eq-}d](\boldsymbol{x}) = \bigwedge_{1 \leq i \leq t} [\boldsymbol{u}_i\text{:eq-}\overline{d}_i](\boldsymbol{x}).$$

If \mathfrak{A} is a C-structure, $a \in A$ and $d \in \mathbb{B}_t$, then $\mathfrak{A} \models [C:eq-d](a)$ iff $[C:data]^{\mathfrak{A}}a = d$.

If A is a nonempty set and data : $A \to \mathbb{B}_t$ is any function, there is a C-structure \mathfrak{A} over A such that $[C:data]^{\mathfrak{A}} = data$.

Definition 6. Define the quantifier-free $\mathcal{L}^2[\mathbb{C}]$ -formula $[\mathbb{C}:eq](x,y)$ by:

$$[\mathrm{C}\!:\!\mathsf{eq}](oldsymbol{x},oldsymbol{y}) = \bigwedge_{1 \leq i \leq t} oldsymbol{[u_i\!:\!\mathsf{eq}](x,y)}.$$

If \mathfrak{A} is a C-structure and $a, b \in A$, then $\mathfrak{A} \models [C:eq](a, b)$ iff $[C:data]^{\mathfrak{A}}a = [C:data]^{\mathfrak{A}}b$. The bitstring $a \in \mathbb{B}^t$ encodes a number less than the number encoded by the bitstring $b \in \mathbb{B}^t$, if they differ and at least position where they are different $j \in [1, t]$ the bitstring a has value 0 and the bitstring b has value 1, that is, iff there is a position $j \in [1, t]$ such that the following two conditions hold:

$$a_j = 0 \text{ and } b_j = 1$$
 (Less1)

$$\mathbf{a}_k = \mathbf{b}_k \text{ for all } k \in [j+1,t].$$
 (Less2)

Definition 7. Define the quantifier-free $\mathcal{L}^2[C]$ -formula [C:less](x,y) by:

$$[\mathrm{C:less}](\boldsymbol{x},\boldsymbol{y}) = \bigvee_{1 \leq j \leq t} [\boldsymbol{u}_j : \mathrm{eq\text{-}}01](\boldsymbol{x},\boldsymbol{y}) \wedge \bigwedge_{j < k \leq t} [\boldsymbol{u}_k : \mathrm{eq}](\boldsymbol{x},\boldsymbol{y}).$$

If \mathfrak{A} is a C-structure and $a, b \in A$, then $\mathfrak{A} \models [C:less](a, b)$ iff $[C:data]^{\mathfrak{A}}a < [C:data]^{\mathfrak{A}}b$. The bitstring $b \in \mathbb{B}^t$ encodes the successor of the number encoded by the bitstring a if there is a position $j \in [1, t]$ such that the following four conditions hold:

$$a_i = 0 \text{ and } b_i = 1$$
 (Succ1)

$$\mathbf{a}_i = 1 \text{ for all } i \in [1, j-1] \tag{Succ2}$$

$$\mathbf{b}_i = 0 \text{ for all } i \in [1, j-1] \tag{Succ3}$$

$$\mathbf{a}_k = \mathbf{b}_k \text{ for all } k \in [j+1, t].$$
 (Succ4)

Definition 8. Define the quantifier-free $\mathcal{L}^2[C]$ -formula $[C:succ](\boldsymbol{x},\boldsymbol{y})$ by:

$$[\mathrm{C:succ}](\boldsymbol{x},\boldsymbol{y}) = \bigvee_{1 \leq j \leq t} [\boldsymbol{u}_j : \mathrm{eq}\text{-}01](\boldsymbol{x},\boldsymbol{y}) \wedge \bigwedge_{1 \leq i < j} [\boldsymbol{u}_i : \mathrm{eq}\text{-}10](\boldsymbol{x},\boldsymbol{y}) \wedge \bigwedge_{j < k \leq t} [\boldsymbol{u}_k : \mathrm{eq}](\boldsymbol{x},\boldsymbol{y}).$$

If \mathfrak{A} is a C-structure and $a, b \in A$, then:

$$\mathfrak{A} \models [C:succ](a,b) \text{ iff } [C:data]^{\mathfrak{A}}b = 1 + [C:data]^{\mathfrak{A}}a.$$

Definition 9. Let $d \in \mathbb{B}_t$. Define the quantifier-free $\mathcal{L}^1[\mathbb{C}]$ -formula $[\mathbb{C}:less]d(x)$ by:

$$[\mathrm{C:less}\text{-}d](\boldsymbol{x}) = \bigvee_{1 \leq j \leq t} \neg \boldsymbol{u}_j(\boldsymbol{x}) \wedge \neg [\boldsymbol{u}_j\text{:eq-}\overline{d}_j](\boldsymbol{x}) \wedge \bigwedge_{j < k \leq t} [\boldsymbol{u}_k\text{:eq-}\overline{d}_k](\boldsymbol{x}).$$

If \mathfrak{A} is a C-structure, $a \in A$ and $d \in \mathbb{B}_t$, then $\mathfrak{A} \models [C:less-d](a)$ iff $[C:data]^{\mathfrak{A}}a < d$.

Definition 10. Let $d \leq e \in \mathbb{B}_t$. Define the quantifier-free $\mathcal{L}^1[\mathbb{C}]$ -formula [C:betw-d-e](\boldsymbol{x}) by:

$$[C:\mathsf{betw}\text{-}d\text{-}e](\boldsymbol{x}) = \neg[C:\mathsf{less}\text{-}d](\boldsymbol{x}) \wedge ([C:\mathsf{less}\text{-}e](\boldsymbol{x}) \vee [C:\mathsf{eq}\text{-}e](\boldsymbol{x})).$$

If \mathfrak{A} is a C-structure, $a \in A$ and $d \leq e \in \mathbb{B}_t$, then

$$\mathfrak{A} \models [C:betw-d-e](a) \text{ iff } d \leq [C:data]^{\mathfrak{A}} a \leq e.$$

Definition 11. Let $d \leq e \in \mathbb{B}_t$. Define the $\mathcal{L}^1[C]$ -sentence [C:allbetw-d-e] by:

[C:allbetw-
$$d$$
- e] = $\forall x$ [C:betw- d - e](x).

If \mathfrak{A} is a C-structure and $d \leq e \in \mathbb{B}_t$, then $\mathfrak{A} \models [C:betw-d-e]$ iff $d \leq [C:data]^{\mathfrak{A}} a \leq e$ for all $a \in A$.

2.3 Vectors

Let $n, t \in \mathbb{N}^+$. Recall the set of *n*-dimensional *t*-bit vectors is \mathbb{B}_t^n . An *n*-dimensional *t*-bit vector setup is a predicate signature $V = \langle \boldsymbol{u}_{11}, \boldsymbol{u}_{12}, \dots, \boldsymbol{u}_{nt} \rangle$ of (nt) distinct unary predicate symbols. The counter setup V(p) of V at position $p \in [1, n]$ is $V(p) = \langle \boldsymbol{u}_{p1}, \boldsymbol{u}_{p2}, \dots, \boldsymbol{u}_{pt} \rangle$.

Definition 12. Let \mathfrak{A} be a V-structure and $a \in A$. We refer to $[V(p):data]^{\mathfrak{A}}a$ as the value of the p-th counter at a. Define the function $[V:data]^{\mathfrak{A}}: A \to \mathbb{B}^n_t$ by:

$$[V:data]^{\mathfrak{A}}a = \left([V(1):data]^{\mathfrak{A}}a, [V(2):data]^{\mathfrak{A}}a, \dots, [V(n):data]^{\mathfrak{A}}a \right).$$

Definition 13. Let $\mathbf{v} = (d_1, d_2, \dots, d_n) \in \mathbb{B}_t^n$ be an n-dimensional t-bit vector. Define the quantifier-free $\mathcal{L}^1[V]$ -formula $[V:eq-v](\mathbf{x})$ by:

$$[\mathrm{V}\!:\!\mathsf{eq}\text{-}\!\,\mathrm{v}](\boldsymbol{x}) = \bigwedge_{1 \leq p \leq n} [\mathrm{V}(p)\!:\!\mathsf{eq}\text{-}\!\,d_p](\boldsymbol{x}).$$

If $\mathfrak A$ is a V-structure, $a \in A$ and $\mathbf v \in \mathbb B^n_t$, then $\mathfrak A \models [V:\mathsf{eq-v}](a)$ iff $[V:\mathsf{data}]^{\mathfrak A}a = \mathbf v$. If $\mathfrak A$ is a nonempty set and data : $A \to \mathbb B^n_t$ is any function, then there is a V-structure $\mathfrak A$ over A such that $[V:\mathsf{data}]^{\mathfrak A} = \mathsf{data}$. **Definition 14.** Let $p, q \in [1, n]$ and let $i \in [1, t]$. Define the quantifier-free $\mathcal{L}^1[V]$ -formulas [V(pq):at-i-eq](x), [V(pq):at-i-eq-01](x) and [V(pq):at-i-eq-10](x) by:

$$egin{aligned} & [V(pq)$:at-$i-eq](oldsymbol{x}) &= oldsymbol{u}_{pi}(oldsymbol{x}) &\leftrightarrow oldsymbol{u}_{qi}(oldsymbol{x}) \ & [V(pq)$:at-$i-eq-$10](oldsymbol{x}) &= oldsymbol{u}_{pi}(oldsymbol{x}) \wedge
oldsymbol{u}_{qi}(oldsymbol{x}). \end{aligned}$$

If \mathfrak{A} is a V-structure and $a \in A$, then:

- $\mathfrak{A} \models [V(pq):at-i-eq](a)$ iff $[u_{pi}:data]^{\mathfrak{A}} = [u_{qi}:data]^{\mathfrak{A}}$, that is the values of the *i*-th bit at positions p and q at a are equal
- $\mathfrak{A} \models [V(pq):at-i-eq-01](a)$ iff $[\boldsymbol{u}_{pi}:data]^{\mathfrak{A}}a = 0$ and $[\boldsymbol{u}_{qi}:data]^{\mathfrak{A}}a = 1$, that is the *i*-th bit at position p at a is 0 and the *i*-th bit at position q at a is 1
- $\mathfrak{A} \models [V(pq):at-i-eq-10](a)$ iff $[\mathbf{u}_{pi}:data]^{\mathfrak{A}}a = 1$ and $[\mathbf{u}_{qi}:data]^{\mathfrak{A}}a = 0$, that is the *i*-th bit at position p at a is 1 and the i-th bit at position q at a is 0.

Definition 15. Let $p, q \in [1, n]$. Define the quantifier-free $\mathcal{L}^1[V]$ -formula [V(pq):eq](x) by:

$$[\mathbf{V}(pq) \mathbf{:} \mathbf{eq}](\boldsymbol{x}) = \bigwedge_{1 \leq i \leq t} [\mathbf{V}(pq) \mathbf{:} \mathbf{at} \text{-} i \text{-} \mathbf{eq}](\boldsymbol{x}).$$

If $\mathfrak A$ is a V-structure and $a \in A$, then:

$$\mathfrak{A} \vDash [V(pq):eq](a) \text{ iff } [V(p):data]^{\mathfrak{A}} a = [V(q):data]^{\mathfrak{A}} a.$$

Definition 16. Let $p, q \in [1, n]$. Define the quantifier-free $\mathcal{L}^1[V]$ -formula $[V(pq):less](\boldsymbol{x})$ by:

$$[\mathbf{V}(pq) \textbf{:less}](\boldsymbol{x}) = \bigvee_{1 \leq j \leq t} [\mathbf{V}(pq) \textbf{:at-} j - \mathsf{eq-} 01](\boldsymbol{x}) \wedge \bigwedge_{j < k \leq t} [\mathbf{V}(pq) \textbf{:at-} k - \mathsf{eq}](\boldsymbol{x}).$$

If \mathfrak{A} is a V-structure and $a \in A$, then:

$$\mathfrak{A} \vDash [V(pq):less](a) \text{ iff } [V(p):data]^{\mathfrak{A}} a < [V(q):data]^{\mathfrak{A}} a.$$

Definition 17. Let $p, q \in [1, n]$. Define the quantifier-free $\mathcal{L}^1[V]$ -formula

$$\begin{split} [\mathbf{V}(pq) \text{:} \mathsf{succ}](\boldsymbol{x}) &= \bigvee_{1 \leq j \leq t} \bigwedge_{1 \leq i < j} [\mathbf{V}(pq) \text{:} \mathsf{at}\text{-}i\text{-}\mathsf{eq}\text{-}10](\boldsymbol{x}) \wedge [\mathbf{V}(pq) \text{:} \mathsf{at}\text{-}j\text{-}\mathsf{eq}\text{-}01](\boldsymbol{x}) \wedge \\ &\qquad \qquad \bigwedge_{j < k \leq t} [\mathbf{V}(pq) \text{:} \mathsf{at}\text{-}k\text{-}\mathsf{eq}](\boldsymbol{x}). \end{split}$$

If \mathfrak{A} is a V-structure and $a \in A$, then:

$$\mathfrak{A} \vDash [\mathbf{V}(pq) : \mathsf{succ}](a) \text{ iff } [\mathbf{V}(q) : \mathsf{data}]^{\mathfrak{A}} a = 1 + [\mathbf{V}(p) : \mathsf{data}]^{\mathfrak{A}} a.$$

2.4 Permutations

Let $n \in \mathbb{N}^+$. An *n*-permutation setup $P = \langle \boldsymbol{u}_{11}, \boldsymbol{u}_{12}, \dots, \boldsymbol{u}_{nt} \rangle$ is just an *n*-dimensional *t*-bit vector setup, where t = ||n|| is the bitsize of *n*. Recall that the set \mathbb{S}_n of all permutations of [1, n] is a subset of \mathbb{B}_t^n .

Definition 18. Define the quantifier-free $\mathcal{L}^1[P]$ -sentence [P:alldiff] by:

$$[\mathrm{P:alldiff}] = \forall \boldsymbol{x} \bigwedge_{1 \leq p < q \leq n} \neg [\mathrm{P}(pq) \mathrm{:eq}](\boldsymbol{x}).$$

If \mathfrak{A} is a P-structure then $\mathfrak{A} \models [P:alldiff]$ iff $[P(p):data]^{\mathfrak{A}} a \neq [P(q):data]^{\mathfrak{A}} a$ for all $a \in A$ and $p \neq q \in [1, n]$.

Definition 19. Define the quantifier-free $\mathcal{L}^1[P]$ -sentence [P:perm] by:

$$[P:perm] = [P:betw-1-n] \land [P:alldiff].$$

If \mathfrak{A} is a P-structure then $\mathfrak{A} \models [P:perm]$ iff $[P:data]^{\mathfrak{A}} a \in \mathbb{S}_n$ for all $a \in A$.

If A is a nonempty set and data : $A \to \mathbb{S}_n$ is any function, then there is a P-structure $\mathfrak{A} \models [P:perm]$ over A such that $[P:data]^{\mathfrak{A}} = data$.

3 Equivalence relations

An equivalence relation $E \subseteq A \times A$ on A is a relation that is reflexive, symmetric and transitive. The set of equivalence classes of E is $\mathscr{E}E = \{E[a] \mid a \in A\}$.

Let $E = \langle e \rangle$ be a predicate signature consisting of a single binary predicate symbol e. Define the $\mathcal{L}^2[E]$ -sentence [e:refl] by:

$$[e:refl] = \forall xe(x,x).$$

Define the $\mathcal{L}^2[E]$ -sentence [e:symm] by:

$$[e extstyle{:}\mathsf{symm}] = orall x orall y \left(e(x,y)
ightarrow e(y,x)
ight)$$
 .

Define the $\mathcal{L}^3[E]$ -sentence [e:trans] by:

$$[e:\mathsf{trans}] = \forall x \forall y \forall z \, (e(x,y) \land e(y,z) \rightarrow e(x,z))$$
 .

Define the $\mathcal{L}^3[E]$ -sentence [e:equiv] by:

$$[e:equiv] = [e:refl] \land [e:symm] \land [e:trans].$$

Let \mathfrak{A} be an E-structure and let $E = e^{\mathfrak{A}}$. Then E is reflexive iff $\mathfrak{A} \models [e:refl]$; E is symmetric iff $\mathfrak{A} \models [e:symm]$; E is transitive iff $\mathfrak{A} \models [e:trans]$; E is an equivalence on E iff $\mathfrak{A} \models [e:equiv]$. It can be shown that transitivity and equivalence cannot be defined in the two-variable fragment with counting $C^2[E]$.

3.1 Two equivalence relations in agreement

Definition 20. Let $\langle D, E \rangle$ be a sequence of two equivalence relations on A. The relation D is finer than the relation E if every equivalence class of D is a subset of some equivalence class of E. Equivalently, $D \subseteq E$. Equivalently,

$$(\forall a \in A)(\forall b \in A) (D(a,b) \to E(a,b)).$$

If D is finer than E, then E is coarser than D. The sequence $\langle D, E \rangle$ is a sequence of equivalence relations on A in refinement if D is finer E.

The sequence $\langle D, E \rangle$ is a sequence of equivalence relations in global agreement if either D is finer than E or E is finer than D.

The sequence $\langle D, E \rangle$ is a sequence of equivalence relations in local agreement if for every $a \in A$, either $D[a] \subseteq E[a]$ or $E[a] \subseteq D[a]$. Equivalently, no two equivalence classes E[a] and D[b] properly intersect. Equivalently,

$$(\forall a \in A) ((\forall b \in A) (D(a,b) \rightarrow E(a,b)) \lor (\forall b \in A) (E(a,b) \rightarrow D(a,b))).$$

Let $E = \langle d, e \rangle$ be a predicate signature consisting of the two binary predicate symbols d and e. Let \mathfrak{A} is an E-structure and suppose that d and e are interpreted in \mathfrak{A} as equivalence relations on A. Let $D = d^{\mathfrak{A}}$ and $E = e^{\mathfrak{A}}$ be the interpretations of the two symbols.

Definition 21. Define the $\mathcal{L}^2[E]$ -sentence [d, e]-refine by:

$$[oldsymbol{d},e ext{:}\mathsf{refine}] = orall x orall y \left(oldsymbol{d}(oldsymbol{x},oldsymbol{y})
ight) oldsymbol{e}(oldsymbol{x},oldsymbol{y})
ight).$$

Then $\langle D, E \rangle$ is in refinement iff $\mathfrak{A} \models [d, e]$:refine].

Definition 22. Define the $\mathcal{L}^2[E]$ -sentence [d, e:global] by:

$$[d, e:global] = [d, e:refine] \lor [e, d:refine].$$

Then $\langle D, E \rangle$ is in global agreement iff $\mathfrak{A} \models [d, e:\mathsf{global}]$.

Definition 23. Define the $\mathcal{L}^2[E]$ -sentence [d, e:local] by:

$$[d,e ext{:local}] = orall x \left(orall y \left(d(x,y)
ightarrow e(x,y)
ight) ee \, orall y \left(e(x,y)
ightarrow d(x,y)
ight)
ight).$$

Then $\langle D, E \rangle$ is in global agreement iff $\mathfrak{A} \models [d, e:local]$.

Lemma 1. If $\langle D, E \rangle$ is a sequence two equivalence relations on A, then it is in local agreement iff $L = D \cup E$ is an equivalence relation on A.

Proof. The union of two equivalence relations on A is a reflexive and symmetric relation. First suppose that D and E are in local agreement. We claim that E is transitive. Let $e, b, c \in A$ be such that $e, c \in A$ be such that e

Next suppose that L is an equivalence relation, let $b \in A$ and assume towards a contradiction that $D[b] \not\subseteq E[b]$ and $E[b] \not\subseteq D[b]$. There is some $a \in D[b] \setminus E[b]$ and $c \in E[b] \setminus D[b]$. Then $(a,b) \in D \subseteq L$ and $(b,c) \in E \subseteq L$, hence $(a,c) \in L$. Without loss of generality $(a,c) \in E$. Since $c \in E[b]$, we have $a \in E[b]$ —a contradiction.

3.2 Many equivalence relations in agreement

Let e be a positive natural number.

Definition 24. Let $\langle E_1, E_2, \dots, E_e \rangle$ be a sequence of equivalence relations on A. The sequence is in refinement if $E_1 \subseteq E_2 \subseteq \dots \subseteq E_e$.

The sequence is in global agreement if the equivalence relations form a chain under inclusion, that is for all $i, j \in [1, e]$, either $E_i \subseteq E_j$ or $E_j \subseteq E_i$. Equivalently, there is a (not necessarily unique) permutation $\nu \in \mathbb{S}_e$ such that $E_{\nu(1)} \subseteq E_{\nu(2)} \subseteq \cdots \subseteq E_{\nu(e)}$.

The sequence is in local agreement if for every element $a \in A$ the equivalence classes $E_1[a], E_2[a], \ldots, E_e[a]$ form a chain under inclusion. Equivalently, no two equivalence classes $E_i[a]$ and $E_j[b]$ properly intersect.

Let $E = \langle e_1, e_2, \dots, e_e \rangle$ be a predicate signature consisting of e binary predicate symbols. Let \mathfrak{A} be an E-structure and suppose that the symbols e_i are interpreted as equivalence relations on A. Let $E_i = e_i^{\mathfrak{A}}$ for $i \in [1, e]$.

Definition 25. Define the $\mathcal{L}^2[E]$ -sentence $[e_1, e_2, \dots, e_e]$:refine by:

$$[m{e}_1,m{e}_2,\ldots,m{e}_e ext{:refine}] = orall m{x} orall m{y} igwedge_{1 \leq i < e} \left(m{e}_i(m{x},m{y})
ightarrow m{e}_{i+1}(m{x},m{y})
ight).$$

Then $\langle E_1, E_2, \dots, E_e \rangle$ is in refinement iff $\mathfrak{A} \models [e_1, e_2, \dots, e_e]$:refine.

Definition 26. Define the $\mathcal{L}^2[E]$ -sentence $[e_1, e_2, \dots, e_e]$:global by:

$$[m{e}_1,m{e}_2,\ldots,m{e}_e$$
:global $]=igvee_{
u\in\mathbb{S}_e}[m{e}_{
u(1)},m{e}_{
u(2)},\ldots,m{e}_{
u(e)}$:refine $].$

Then $\langle E_1, E_2, \dots, E_e \rangle$ is in global agreement iff $\mathfrak{A} \models [e_1, e_2, \dots, e_e : \mathsf{global}]$. Note that the length of the formula $[e_1, e_2, \dots, e_e : \mathsf{global}]$ grows exponentially as e grows.

Definition 27. Define the $\mathcal{L}^2[E]$ -sentence $[e_1, e_2, \dots, e_e]$: local by:

$$[\boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_e \text{:local}] = \forall \boldsymbol{x} \bigvee_{\nu \in \mathbb{S}_e} \forall \boldsymbol{y} \bigwedge_{1 \leq i < e} (\boldsymbol{e}_{\nu(i)}(\boldsymbol{x}, \boldsymbol{y}) \rightarrow \boldsymbol{e}_{\nu(i+1)}(\boldsymbol{x}, \boldsymbol{y})).$$

Then $\langle E_1, E_2, \dots, E_e \rangle$ is in local agreement iff $\mathfrak{A} \models [e_1, e_2, \dots, e_e : local]$. Note that the length of the formula $[e_1, e_2, \dots, e_e : local]$ grows exponentially as e grows.

Let $E = \langle E_1, E_2, \dots, E_e \rangle$ be a sequence of equivalence relations on A.

Theorem 4. The sequence E is in local agreement iff the union $\cup S$ of any nonempty subsequence $S \subseteq E$ is an equivalence relation on A.

Proof. First suppose that the equivalence relations E_i are in local agreement. We show that the union $\cup S$ of arbitrary nonempty subsequence $S = \{E_{i(1)}, E_{i(2)}, \dots, E_{i(s)}\}$, where $1 \leq i(1) < i(2) < \dots < i(s) \leq e$, is an equivalence relation by induction on s, the length of S. If s = 1 this claim is trivial. Suppose s > 1. By the induction hypothesis, $D = \bigcup \{E_{i(1)}, E_{i(2)}, \dots, E_{i(s-1)}\}$ is an equivalence relation on A. We claim that D and $E_{i(s)}$ are in local agreement. Indeed, let $a \in A$ be arbitrary and consider $D[a] = E_{i(1)}[a] \cup E_{i(2)}[a] \cup \dots \cup E_{i(s-1)}[a]$ and $E_{i(s)}[a]$. Since all equivalences E_k are in local agreement, either $E_{i(s)}[a] \subseteq E_{i(j)}[a]$ for some $j \in [1, s-1]$, or $E_{i(j)}[a] \subseteq E_{i(s)}[a]$ for all $j \in [1, s-1]$. In the first case $E_{i(s)}[a] \subseteq D[a]$; in the second case $D[a] \subseteq E_{i(s)}[a]$. Thus D and $E_{i(s)}$ are in local agreement. By Lemma $1, \cup S = D \cup E_{i(s)}$ is an equivalence relation on A.

Next suppose that the equivalences are not in local agreement. There is an element $a \in A$ such that $\{E_i[a] \mid i \in [1,e]\}$ is not a chain. There are $i,j \in [1,e]$ such that $E_i[a] \not\subseteq E_j[a]$ and $E_j[a] \not\subseteq E_i[a]$. Thus E_i and E_j are not in local agreement. By Lemma 1, the union $E_i \cup E_j$ is not an equivalence relation on A.

Suppose that the sequence $E = \langle E_1, E_2, \dots, E_e \rangle$ is in local agreement.

Definition 28. An index set is an element $I \in \wp^+[1, e]$. Define $(E \upharpoonright \cdot) : \wp^+[1, e] \to \wp^+E$ by:

$$(E \upharpoonright I) = \{E_i \mid i \in I\}.$$

That is, $(E \upharpoonright I)$ just collects the equivalences having indices from I.

The level sequence $L = \langle L_1, L_2, \dots, L_e \rangle$ of the sequence E is defined as follows. For $k \in [1, e]$:

 $L_k = \cap \left\{ \cup (E \upharpoonright \mathbf{I}) \mid \mathbf{I} \in \wp^k[1, e] \right\}.$

Remark 2. All L_k are equivalence relations on A.

Proof. Let $k \in [1, e]$ and let $K \in \wp^k[1, e]$ be any k-index set. By Theorem 4, $\cup (E \upharpoonright K)$ is an equivalence relation on A. Since intersection of equivalence relations on A is again an equivalence relation on A, the level $L_k = \cap \{ \cup (E \upharpoonright K) \mid K \in \wp^k[1, e] \}$ is an equivalence relation on A.

Remark 3. The level sequence $L = \langle L_1, L_2, \dots, L_e \rangle$ is a sequence of equivalence relations on A in refinement.

Proof. Let $i < j \in [1, e]$. Let $J \in \wp^j[1, e]$ be any j-index set. We claim that $L_i \subseteq \cup (E \upharpoonright J)$. Indeed, choose some i-index set $I \subset J$. By the definition of L_i we have $L_i \subseteq \cup (E \upharpoonright I) \subseteq \cup (E \upharpoonright J)$. Hence $L_i \subseteq \cap \{ \cup (E \upharpoonright J) \mid J \in \wp^j[1, e] \} = L_j$.

Let $a \in A$. Since the sequence $E = \langle E_1, E_2, \dots, E_e \rangle$ is in local agreement, there is a permutation $\nu \in \mathbb{S}_e$ such that:

$$E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \dots \subseteq E_{\nu(e)}[a]. \tag{3.1}$$

Lemma 2. If $\nu \in \mathbb{S}_e$ is a permutation satisfying eq. (3.1), then $L_{\nu^{-1}(i)}[a] = E_i[a]$ for all $i \in [1, e]$.

Proof. Let $k = \nu^{-1}(i)$, so $\nu(k) = i$. We claim that $L_k[a] = E_i[a]$. First, consider the k-index set $K = {\nu(1), \nu(2), \dots, \nu(k)}$. By the definition of L_k , followed by eq. (3.1), we have $L_k[a] \subseteq \bigcup (E \upharpoonright K)[a] = E_{\nu(k)}[a] = E_i[a]$. Next, let $K \subseteq \wp^k[1, e]$ be any k-index set. By the pigeonhole principle, there is some $k' \ge k$ such that $k' \in K$. By eq. (3.1) we have:

$$E_i[a] = E_{\nu(k)}[a] \subseteq E_{\nu(k')}[a] \subseteq \cup (E \upharpoonright \mathbf{K})[a].$$

Hence
$$E_i[a] \subseteq \cap \{ \cup (E \upharpoonright K)[a] \mid K \in \wp^k[1, e] \} = L_k[a].$$

4 Reductions

We restrict our attention to binary predicate signatures, consisting of unary and binary predicate symbols only. To denote various logics with builtin equivalence symbols, we use the notation

$$\Lambda_p^v e \mathbf{E}_{\mathsf{a}}$$

where:

- $\Lambda \in \{\mathcal{L}, \mathcal{C}\}$ is the ground logic
- \bullet v, if given, bounds the number of variables
- e, if given, bounds the number of builtin equivalence symbols
- $a \in \{refine, global, local\}$, if given, gives the agreement condition between the builtin equivalence symbols
- p, the signature power, specifies constraints on the signature:
 - if p=0, the signature consists of only constantly many unary predicate symbols in addition to the builtin equivalence symbols
 - if p = 1, the signature consists of unboundedly many unary predicate symbols in addition to the builtin equivalence symbols
 - if p is not given, the signature consists of unboundedly many unary and binary predicate symbols in addition to the builtin equivalence symbols. This is the commonly investigated fragment with respect to satisfiability of the two-variable logics with or without counting quantifiers.

For example \mathcal{L}_1 is the monadic first-order logic, featuring only unary predicate symbols. \mathcal{L}_01E is the first-order logic of a single equivalence relation. \mathcal{C}^2 is the two-variable logic with counting quantifiers, featuring unary and binary predicate symbols. \mathcal{L}^22E is the two-variable logic, featuring unary, binary predicate symbols and two builtin equivalence symbols. $\mathcal{C}_1^22E_{\text{local}}$ is the two-variable logic with counting quantifiers, featuring unary predicate symbols and two builtin equivalence symbols in local agreement. $\mathcal{L}_1E_{\text{global}}$ is the monadic first-order logic featuring many equivalence symbols in global agreement.

When we working with a concrete logic, for example $C^2 2E_{local}$, we implicitly assume an appropriate generic predicate signature Σ for it. In this case, there are two builtin equivalence symbols \boldsymbol{d} and \boldsymbol{e} in Σ and in addition Σ contains arbitrary many unary

and binary predicate symbols. The *intended interpretation* of the builtin equivalence symbols is fixed by an appropriate condition θ . In this case:

$$\theta = [d:equiv] \land [e:equiv] \land [d, e:local].$$

Note that the interpretation condition might in general be a first-order formula outside the logic in interest, as in this case, since for instance [d:equiv] uses the variables x, y and z and the logic $C^2 2E_{local}$ is a two-variable logic. Recall that when talking about semantics, we include the intended interpretation condition in the definition of Σ -structures.

4.1 Global agreement to refinement

In this section we demonstrate how (finite) satisfiability in logics featuring builtin equivalence symbols in global agreement reduces to (finite) satisfiability in logics featuring builtin equivalence symbols in refinement. Our strategy is to encode the permutation of the builtin equivalence symbols in global agreement that turns them in refinement into a permutation setup.

Fix an arbitrary ground logic $\Lambda \in \{\mathcal{L}, \mathcal{C}\}$ and think of Σ as a predicate signature for the logics $\Lambda e E_{\mathsf{global}}$ and $\Lambda e E_{\mathsf{refine}}$. The e builtin equivalence symbols of Σ are e_1, e_2, \ldots, e_e . Let φ be a $\Lambda[\Sigma]$ -sentence. The class of $\Lambda e E_{\mathsf{refine}}$ -structures satisfying φ coincides with the class of $\Lambda e E_{\mathsf{global}}$ -structures satisfying:

$$\varphi \wedge [e_1, e_2, \dots, e_e]$$
:refine].

Hence:

$$(FIN\text{-})SAT\text{-}\Lambda eE_{\mathsf{refine}} \leq^{PTIME}_{m} (FIN\text{-})SAT\text{-}\Lambda eE_{\mathsf{global}}.$$

Since the length of the formula $[e_1, e_2, \ldots, e_e]$: refine grows polynomially as e grows:

$$(FIN\text{-})SAT\text{-}\Lambda E_{\text{refine}} \leq_m^{PTIME} (FIN\text{-})SAT\text{-}\Lambda E_{\text{global}}.$$

Consider the opposite direction. Let $P = \langle \boldsymbol{u}_{11}, \boldsymbol{u}_{12}, \dots, \boldsymbol{u}_{et} \rangle$ be an e-permutation setup (where t = ||e||).

Definition 29. Define the $\mathcal{L}^2[P]$ -sentence [P:alleq] by:

$$[\mathrm{P:alleq}] = \forall \pmb{x} \forall \pmb{y} \bigwedge_{1 \leq i \leq e} [\mathrm{P}(i) \mathrm{:eq}](\pmb{x}, \pmb{y}).$$

If $\mathfrak A$ is a P-structure, then $\mathfrak A \models [P:alleq]$ iff $[P:data]^{\mathfrak A}a = [P:data]^{\mathfrak A}b$ for all $a,b \in A$. If A is a nonempty set and $v \in \mathbb B^e_t$ is any e-dimensional t-vector, there is a P-structure $\mathfrak A$ over A such that $\mathfrak A \models [P:alleq]$ and $[P:data]^{\mathfrak A}a = v$ for all $a \in A$.

Definition 30. Define the $\mathcal{L}^2[P]$ -sentence [P:globperm] by:

$$[P:globperm] = [P:perm] \land [P:alleq].$$

If \mathfrak{A} be a P-structure then $\mathfrak{A} \models [P:globperm]$ iff there is a permutation $\nu \in \mathbb{S}_e$ such that $[P:data]^{\mathfrak{A}} a = \nu$ for all $a \in A$.

If A be a nonempty set and $\nu \in \mathbb{S}_e$ is any permutation, there is a P-structure \mathfrak{A} over A such that $\mathfrak{A} \models [P:globperm]$ and $[P:data]^{\mathfrak{A}} a = \nu$ for all $a \in A$.

Let $L = \langle l_1, l_2, \dots, l_e \rangle + P$ be a predicate signature consisting of the binary predicate symbols l_k in addition to the symbols from P.

Definition 31. For $i \in [1, e]$, define the quantifier-free $\mathcal{L}^2[L]$ -formula $[L:eg-i](\boldsymbol{x}, \boldsymbol{y})$ by:

$$[ext{L:eg-}i](m{x},m{y}) = igwedge_{1 \leq k \leq e} \left([ext{P}(k) ext{:eq-}i](m{x})
ightarrow m{l}_k(m{x},m{y})
ight).$$

Remark 4. Let \mathfrak{A} be an L-structure and suppose that $\mathfrak{A} \models [P:globperm]$ and that the binary symbols l_k are interpreted as equivalence relations on A in refinement. Recall that there is a permutation $\nu \in \mathbb{S}_e$ such that $[P:data]^{\mathfrak{A}}a = \nu$ for all $a \in A$. Then for all $i \in [1, e]$:

$$[\mathrm{L}\!:\!\mathsf{eg}\!-\!i]^{\mathfrak{A}}=oldsymbol{l}_{
u^{-1}(i)}^{\mathfrak{A}}.$$

In particular, $\langle [L:eg-1]^{\mathfrak{A}}, [L:eg-2]^{\mathfrak{A}}, \dots, [L:eg-e]^{\mathfrak{A}} \rangle$ is a sequence of equivalence relations on A in global agreement.

Proof. Let $k = \nu^{-1}(i)$, so $\nu(k) = i$ and $[P(k):data]^{\mathfrak{A}}a = i$. Since ν is a permutation, for every $k' \in [1, e]$:

$$\mathfrak{A} \models [P(k'):eq-i](a) \text{ iff } [P(k'):data]^{\mathfrak{A}} a = i \text{ iff } k' = k.$$

$$(4.1)$$

Let $a, b \in A$. First suppose that $\mathfrak{A} \models [L:eg-i](a, b)$. By eq. (4.1) we must have that $\mathfrak{A} \models [P(k):eq-i](a)$, hence $\mathfrak{A} \models l_k(a, b)$.

Now suppose that $\mathfrak{A} \models \neg[\text{L:eg-}i](a,b)$. There is some $k' \in [1,e]$ such that:

$$\mathfrak{A} \vDash \neg ([P(k'):eq-i](a) \rightarrow l_{k'}(a,b)) \equiv [P(k'):eq-i](a) \land \neg l_{k'}(a,b).$$

By eq. (4.1) we have k' = k, hence $\mathfrak{A} \models \neg l_k(a, b)$.

Let $E = \langle e_1, e_2, \dots, e_e \rangle$ be a predicate signature consisting of the binary predicate symbols e_i . Let Σ be a predicate signature enriching E and not containing any symbols from L. Let $\Sigma' = \Sigma \cup L$ and $L' = \Sigma' - E$.

Definition 32. Define the syntactic operation $\operatorname{\mathsf{gtr}}: \Lambda[\Sigma] \to \Lambda[\mathrm{L}']$ by:

$$\operatorname{gtr} \varphi = \varphi' \wedge [P: \operatorname{globperm}],$$

where φ' is obtained from φ by replacing all occurrences of a subformula of the form $e_i(x,y)$ by the formula [L:eg-i](x,y), where x and y are (not necessarily distinct) variables and $i \in [1,e]$.

Remark 5. Let φ be a $\Lambda[\Sigma]$ -formula and let \mathfrak{A} be a Σ -structure. Suppose that $\mathfrak{A} \models \varphi$ and that the symbols e_1, e_2, \ldots, e_e are interpreted in \mathfrak{A} as equivalence relations on A in global agreement. Then there is a Σ' -enrichment \mathfrak{A}' of \mathfrak{A} such that $\mathfrak{A}' \models \operatorname{gtr} \varphi$ and that the symbols l_1, l_2, \ldots, l_e are interpreted in \mathfrak{A}' as equivalence relations on A in refinement.

Proof. There is a permutation $\nu \in \mathbb{S}_e$ such that $e^{\mathfrak{A}}_{\nu(1)} \subseteq e^{\mathfrak{A}}_{\nu(2)} \subseteq \cdots \subseteq e^{\mathfrak{A}}_{\nu(e)}$. Consider an enrichment \mathfrak{A}' of \mathfrak{A} to a Σ' -structure where $l^{\mathfrak{A}'}_k = e^{\mathfrak{A}}_{\nu(k)}$, so the interpretations of l_k in \mathfrak{A}' are equivalence relations on A in refinement. We can interpret the unary predicate symbols from permutation setup P in \mathfrak{A}' so that $\mathfrak{A}' \models [P:globperm]$ and $[P:data]^{\mathfrak{A}}a = \nu$ for all $a \in A$. By Remark 4, for every $i \in [1, e]$:

$$\left[ext{L:eg-}i
ight]^{\mathfrak{A}'}=l^{\mathfrak{A}'}_{
u^{-1}(i)}=e^{\mathfrak{A}'}_{
u(
u^{-1}(i))}=e^{\mathfrak{A}'}_i=e^{\mathfrak{A}}_i.$$

Hence $\mathfrak{A}' \models \forall x \forall y (e_i(x, y) \leftrightarrow [\text{L:eg-}i](x, y))$. Since $\mathfrak{A}' \models \varphi$ we have $\mathfrak{A}' \models \text{gtr } \varphi$.

Remark 6. Let φ be a $\Lambda[\Sigma]$ -formula and let $\mathfrak A$ be an L'-structure. Suppose that $\mathfrak A \models \operatorname{gtr} \varphi$ and that the symbols l_1, l_2, \ldots, l_e are interpreted in $\mathfrak A$ as equivalence relations on A in refinement. Then there is a Σ' -enrichment $\mathfrak A'$ of $\mathfrak A$ such that $\mathfrak A' \models \varphi$ and that the symbols e_1, e_2, \ldots, e_e are interpreted as equivalence relations on A in global agreement in $\mathfrak A'$.

Proof. Consider an enrichment \mathfrak{A}' of \mathfrak{A} to a Σ' -structure where $e_i^{\mathfrak{A}'} = [\text{L:eg-}i]^{\mathfrak{A}}$. By Remark 4, $\langle e_1^{\mathfrak{A}'}, e_2^{\mathfrak{A}'}, \dots, e_e^{\mathfrak{A}'} \rangle$ is a sequence of equivalence relations on A in global agreement. For every $i \in [1, e]$ we have $\mathfrak{A}' \models \forall x \forall y (e_i(x, y) \leftrightarrow [\text{L:eg-}i](x, y))$ by definition. Since $\mathfrak{A}' \models \text{gtr } \varphi$ we have $\mathfrak{A}' \models \varphi$.

The last two remarks show that a $\Lambda e E_{\mathsf{global}}$ -formula φ has essentially the same models as the $\Lambda e E_{\mathsf{refine}}$ -formula $\mathsf{gtr}\,\varphi$, so we have shown:

Proposition 1. The logic $\Lambda e E_{\mathsf{global}}$ has the finite model property iff the logic $\Lambda e E_{\mathsf{refine}}$ has the finite model property. The corresponding satisfiability problems are polynomial-time equivalent: (FIN-)SAT- $\Lambda e E_{\mathsf{global}} =_{\mathrm{m}}^{\mathrm{PTIME}}$ (FIN-)SAT- $\Lambda e E_{\mathsf{refine}}$.

Since the relative size of gtr φ with respect to φ grows polynomially as e grows, we have shown:

Proposition 2. The logic $\Lambda E_{\mathsf{global}}$ has the finite model property iff the logic $\Lambda E_{\mathsf{refine}}$ has the finite model property. The corresponding satisfiability problems are polynomial-time equivalent: (FIN-)SAT- $\Lambda E_{\mathsf{global}} = \mathbb{P}^{\mathsf{TIME}}_{\mathsf{m}}$ (FIN-)SAT- $\Lambda E_{\mathsf{refine}}$.

The reduction is two-variable first-order and uses additional (et) unary predicate symbols for the permutation setup P, so it is also valid for the two-variable fragments $\Lambda_0^2 e E_a$, $\Lambda_1^2 e E_a$ and $\Lambda_1^2 E_a$ for $a \in \{global, refine\}$ (but not for the fragment $\Lambda_0^2 E_a$).

4.2 Local agreement to refinement

In this section demonstrate how (finite) satisfiability in logics featuring builtin equivalence symbols in local agreement reduces to (finite) satisfiability in logics featuring builtin equivalence symbols in refinement. Our strategy is to start with the level equivalences which form a refinement, and to encode a permutation specifying the local chain structure for every element in the structure.

Fix an arbitrary ground logic $\Lambda \in \{\mathcal{L}, \mathcal{C}\}$ and think of Σ as a predicate signature for the logics $\Lambda e \to \mathbb{E}_{local}$ and $\Lambda e \to \mathbb{E}_{refine}$. The e builtin equivalence symbols of Σ are e_1, e_2, \ldots, e_e .

Let φ be a $\Lambda[\Sigma]$ -sentence. The class of $\Lambda e E_{\mathsf{refine}}$ -structures satisfying φ coincides with the class of $\Lambda e E_{\mathsf{local}}$ -structures satisfying

$$\varphi \wedge [e_1, e_2, \dots, e_e]$$
:refine].

Hence:

$$(\text{FIN-}) SAT\text{-}\Lambda e E_{\text{refine}} \leq^{\text{PTIME}}_{m} (\text{FIN-}) SAT\text{-}\Lambda e E_{\text{local}}.$$

Since the size of the formula $[e_1, e_2, \dots, e_e]$: refine grows polynomially as e grows, we have:

$$(FIN\text{-})SAT\text{-}\Lambda E_{\text{refine}} \leq_m^{PTIME} (FIN\text{-})SAT\text{-}\Lambda E_{\text{local}}.$$

Consider the opposite direction. Let $E = \langle e_1, e_2, \dots, e_e \rangle$ be a predicate signature consisting of the binary predicate symbols e_i (later, we will need these to be not necessarily interpreted as equivalences, but for now we will interpret them as such). Let \mathfrak{A} be an E-structure and suppose that the symbols e_i are interpreted in \mathfrak{A} as equivalence relations on A in local agreement. Let $E_i = e_i^{\mathfrak{A}}$ for $i \in [1, e]$. Recall that for every $a \in A$ there is a permutation $\nu \in \mathbb{S}_e$ satisfying eq. (3.1):

$$E_{\nu(1)}[a] \subseteq E_{\nu(2)}[a] \subseteq \dots \subseteq E_{\nu(e)}[a]. \tag{4.2}$$

Definition 33. The characteristic E-permutation of a in $\mathfrak A$ is the lexicographically smallest permutation $\nu \in \mathbb S_e$ satisfying eq. (4.2). Define the function $[\mathbf E:\mathbf{chperm}]^{\mathfrak A}$: $A \to \mathbb S_e$ so that $[\mathbf E:\mathbf{chperm}]^{\mathfrak A}$ is the characteristic E-permutation of a in $\mathfrak A$.

Remark 7. Let $a \in A$, $\nu = [\text{E:chperm}]^{\mathfrak{A}} a$ and $i < j \in [1, e]$. Suppose that $E_{\nu(i)}[a] = E_{\nu(j)}[a]$. Then $\nu(i) < \nu(j)$.

Proof. Suppose not. For some $i < j \in [1, e]$ we have $\nu(i) \ge \nu(j)$. Since ν is a permutation and $i \ne j$, we have $\nu(i) > \nu(j)$. Since $E_{\nu(i)}[a] = E_{\nu(j)}[a]$, by eq. (4.2) we have $E_{\nu(k)} = E_{\nu(i)}$ for all $k \in [i, j]$. Consider the permutation $\mu \in \mathbb{S}_e$ defined by:

$$\mu(k) = \begin{cases} \nu(j) & \text{if } k = i \\ \nu(i) & \text{if } k = j \\ \nu(k) & \text{otherwise.} \end{cases}$$

Clearly, μ is a permutation satisfying eq. (4.2) that is lexicographically smaller than ν — a contradiction.

Remark 8. Let $a, b \in A$ and let $\alpha = [\text{E:chperm}]^{\mathfrak{A}} a$ and $\beta = [\text{E:chperm}]^{\mathfrak{A}} b$. Let $i \in [1, e]$ and suppose that $(a, b) \in E_i$. Then $\alpha^{-1}(i) = \beta^{-1}(i)$.

Proof. Suppose not, so $\alpha^{-1}(i) \neq \beta^{-1}(i)$. Let $p = \alpha^{-1}(i)$ and $q = \beta^{-1}(i)$. Without loss of generality, suppose that p < q. Thus p is the position of i in the permutation α and q > p is the position of i in the permutation β . By the pigeonhole principle, there is $k \in [1, e]$ that occurs after i in α and before j in β : $p < \alpha^{-1}(k)$ and $\beta^{-1}(k) < q$. Since β is the characteristic E-permutation of b in \mathfrak{A} , by eq. (4.2) we have $E_k[b] \subseteq E_i[b]$. Since $(a, b) \in E_i$, we have $E_k[b] \subseteq E_i[a]$. Since $E_k[b] \subseteq E_i[a]$ are equivalence classes, $E_k[a] \subseteq E_i[a]$. Since $E_k[a] \subseteq E_i[a]$ since $E_k[a] \subseteq E_i[a]$ are equivalence of $E_k[a] \subseteq E_i[a]$. By Remark 7, $E_k[a] \subseteq E_i[a]$ is impossible. Since $E_k[a] \subseteq E_i[a]$ by eq. (4.2) we have $E_k[b] \subseteq E_i[b]$ is impossible. Since $E_k[a] \subseteq E_i[b]$ in $E_k[a] \subseteq E_i[b]$. Hence

$$E_k[b] \subset E_i[b] = E_i[a] = E_k[a]$$

— a contradiction — since the equivalence classes $E_k[b]$ and $E_k[a]$ are either equal or disjoint.

Let $L = \langle L_1, L_2, \dots, L_e \rangle$ be the levels of $E = \langle E_1, E_2, \dots, E_e \rangle$. Recall that by Remark 3, the levels are equivalence relations on A in refinement.

Remark 9. Let $a \in A$, $\alpha = [E:chperm]^{\mathfrak{A}}a$ and let $k \in [1,e]$. Then $L_k[a] = E_{\alpha(k)}[a]$.

Proof. Since α satisfies eq. (4.2), by Lemma 2:

$$L_k[a] = L_{\alpha^{-1}(\alpha(k))}[a] = E_{\alpha(k)}[a].$$

Remark 10. Let $a, b \in A$, $\alpha = [E:chperm]^{\mathfrak{A}} a$, $\beta = [E:chperm]^{\mathfrak{A}} b$ and $k \in [1, e]$. Suppose that $(a, b) \in L_k$. Then $\alpha(k) = \beta(k)$. That is, the elements connected at level k agree at position k in their characteristic permutations.

Proof. By Remark 9, $L_k[a] = E_{\alpha(k)}[a]$, thus $(a,b) \in E_{\alpha(k)}$. By Remark 7,

$$k = \alpha^{-1}(\alpha(k)) = \beta^{-1}(\alpha(k)).$$

Hence $\beta(k) = \alpha(k)$.

Let $P = \langle \boldsymbol{u}_{11}, \boldsymbol{u}_{12}, \dots, \boldsymbol{u}_{et} \rangle$ be an *e*-permutation setup. Let $L = \langle \boldsymbol{l}_1, \boldsymbol{l}_2, \dots, \boldsymbol{l}_e \rangle + P$ be a predicate signature containing the binary predicate symbols \boldsymbol{l}_k (not necessarily interpreted as equivalence relations) together with the symbols from P.

Definition 34. Define the $\mathcal{L}^2[L]$ -sentence [L:fixperm] by:

$$[\mathrm{L:fixperm}] = \forall \boldsymbol{x} \forall \boldsymbol{y} \bigwedge_{1 \leq k \leq e} (\boldsymbol{l}_k(\boldsymbol{x}, \boldsymbol{y}) \to [\mathrm{P}(k) \text{:eq}](\boldsymbol{x}, \boldsymbol{y})) \,.$$

Definition 35. Define the $\mathcal{L}^2[L]$ -sentence [L:locperm] by:

$$[L:locperm] = [P:perm] \land [L:fixperm].$$

Remark 11. Let \mathfrak{A} be an L-structure and suppose that $\mathfrak{A} \models [L:locperm]$. Let $a, b \in A$, $k \in [1, e]$ and suppose that $\mathfrak{A} \models l_k(a, b)$. Let $\alpha = [P:data]^{\mathfrak{A}}a$ and $\beta = [P:data]^{\mathfrak{A}}b$ be the e-permutations at a and b, encoded by the permutation setup P. Then $\alpha(k) = \beta(k)$.

Proof. Since $\mathfrak{A} \models [L:fixperm]$ and $\mathfrak{A} \models l_k(a,b)$, we have $\mathfrak{A} \models [P(k):eq](a,b)$, which means $\alpha(k) = \beta(k)$.

Definition 36. For $i \in [1, e]$, define the quantifier-free $\mathcal{L}^2[L]$ -formula [L:el-i] by:

$$[ext{L:el-}i](m{x},m{y}) = igwedge_{1 \leq k \leq n} ([ext{P}(k) ext{:eq-}i](m{x}) o m{l}_k(m{x},m{y}))\,.$$

Remark 12. Let \mathfrak{A} be an L-structure and suppose that $\mathfrak{A} \models [L:locperm]$ and that the binary symbols l_k are interpreted in \mathfrak{A} as equivalence relations on A in refinement. Define $\nu: A \to \mathbb{S}_e$ by $\nu(a) = [P:data]^{\mathfrak{A}}a$ for $a \in A$. Let $a \in A$ be arbitrary. Then for all $i \in [1, e]$:

$$[L:el-i]^{\mathfrak{A}}[a] = l^{\mathfrak{A}}_{\nu(a)^{-1}(i)}[a].$$

Proof. Let $E_i = [\text{L:el-}i]^{\mathfrak{A}}$ and $L_i = \boldsymbol{l}_i^{\mathfrak{A}}$ for every $i \in [1, e]$. Let $i \in [1, e]$ be arbitrary. Let $\alpha = \nu(a)$ and $k = \alpha^{-1}(i)$, so $\alpha = [\text{P:data}]^{\mathfrak{A}}a$ and $\alpha(k) = i$. We have to show that $E_i[a] = L_k[a]$. Since α is a permutation, for every $k' \in [1, e]$ we have:

$$\mathfrak{A} \models [P(k'):eq-i](a) \text{ iff } \alpha(k') = i \text{ iff } k' = k. \tag{4.3}$$

First, suppose $b \in E_i[a]$. Then $\mathfrak{A} \models [L:el-i](a,b)$ and by eq. (4.3) we have $\mathfrak{A} \models l_k(a,b)$, hence $b \in L_k[a]$.

Next, suppose $b \notin E_i[a]$. Then $\mathfrak{A} \models \neg[\text{L:el-}i](a,b)$, so there is some $k' \in [1,e]$ such that $\mathfrak{A} \models \neg([P(k'):\text{eq-}i](a) \rightarrow \boldsymbol{l}_{k'}(a,b)) \equiv [P(k'):\text{eq-}i](a) \wedge \neg \boldsymbol{l}_{k'}(a,b)$. By eq. (4.3) we have k' = k. Hence $\mathfrak{A} \models \neg \boldsymbol{l}_k(a,b)$, so $b \notin L_k[a]$.

Remark 13. Let \mathfrak{A} and ν are declared as in Remark 12. Then the sequence of interpretations $\langle [L:el-1]^{\mathfrak{A}}, [L:el-2]^{\mathfrak{A}}, \ldots, [L:el-e]^{\mathfrak{A}} \rangle$ is a sequence of equivalence relations on A in local agreement.

Proof. Let $E_i = [L:el-i]^{\mathfrak{A}}$ and $L_i = l_i^{\mathfrak{A}}$ for every $i \in [1, e]$. Let $i \in [1, e]$ be arbitrary. We check that E_i is reflexive, symmetric and transitive.

- For reflexivity, let $a \in A$. By Remark 12, $E_i[a] = L_k[a]$ for $k = \nu(a)^{-1}(i)$. But $L_k[a]$ is an equivalence class, hence $a \in L_k[a]$, so $(a, a) \in E_i$.
- For symmetry, let $a, b \in A$ and $(a, b) \in E_i$. Let $k = \nu(a)^{-1}(i)$ so that $i = \nu(k)$. By Remark 12, $E_i[a] = L_k[a]$. Thus $\mathfrak{A} \models \mathbf{l}_k(a, b)$ and by Remark 11, $i = \nu(a)(k) = \nu(b)(k)$. By Remark 12:

$$E_i[b] = \left[\mathrm{L:el-}i \right]^{\mathfrak{A}}[b] = \boldsymbol{l}^{\mathfrak{A}}_{\nu(b)^{-1}(i)}[b] = L_k[b] = L_k[a].$$

Since $a \in L_k[a] = E_i[b]$, we have $(b, a) \in E_i$.

• For transitivity, continue the argument for symmetry. Let $c \in E_i[b]$. Then $c \in E_i[b] = L_k[a] = E_i[a]$, thus $(a, c) \in E_i$.

By Remark 12, since the relations L_k are in refinement, we have that E_1, E_2, \ldots, E_e are in local agreement.

Let $E = \langle e_1, e_2, \dots, e_e \rangle$ be a predicate signature consisting of binary predicate symbols. Let Σ be a predicate signature enriching E and not containing any symbols from L. Let $\Sigma' = \Sigma + L$ and $L' = \Sigma' - E$.

Definition 37. Define the syntactic operation $\operatorname{ltr}: \Lambda[\Sigma] \to \Lambda[L']$ by:

$$\operatorname{ltr} \varphi = \varphi' \wedge [L: \operatorname{locperm}],$$

where φ' is obtained from φ by replacing all occurrences of a subformula of the form $e_i(x,y)$ by the formula [L:el-i](x,y), where x and y are (not necessarily distinct) variable symbols and $i \in [1,e]$.

Remark 14. Let φ be a $\Lambda[\Sigma]$ -formula and let \mathfrak{A} be a Σ -structure. Suppose that $\mathfrak{A} \models \varphi$ and that the symbols e_1, e_2, \ldots, e_e are interpreted in \mathfrak{A} as equivalence relations on A in local agreement. Then there is a Σ' -enrichment \mathfrak{A}' of \mathfrak{A} such that $\mathfrak{A}' \models \operatorname{ltr} \varphi$ and that the symbols l_1, l_2, \ldots, l_e are interpreted in \mathfrak{A}' as equivalence relations on A in refinement.

Proof. Since the binary symbols e_1, e_2, \ldots, e_e are interpreted as equivalence relations on A in local agreement in \mathfrak{A} , we may define the levels $L_1, L_2, \ldots, L_e \subseteq A \times A$ and the characteristic E-permutation mapping $\nu = [\text{E:chperm}]^{\mathfrak{A}} : A \to \mathbb{S}_e$. Consider an enrichment \mathfrak{A}' of \mathfrak{A} where $l_i^{\mathfrak{A}'} = L_i$. By Remark 3, L_i are equivalences on A in refinement. We interpret the unary symbols from the permutation setup P so that $[\text{P:data}]^{\mathfrak{A}'} a = \nu(a)$ for all $a \in A$. By Remark 10, $\mathfrak{A}' \models [\text{L:fixperm}]$. By Remark 12, followed by Lemma 2, for every $i \in [1, e]$ and $a \in A$ we have:

$$[\mathrm{L:el-}i]^{\mathfrak{A}'}[a] = \textit{\textbf{l}}^{\mathfrak{A}'}_{\nu(a)^{-1}(i)}[a] = \textit{\textbf{e}}^{\mathfrak{A}'}_{\nu(a)(\nu(a)^{-1}(i))}[a] = \textit{\textbf{e}}^{\mathfrak{A}'}_{i}[a].$$

By Remark 13, the interpretations $[L:el-i]^{\mathfrak{A}'}$ are equivalence relations. Since the interpretation of the formula [L:el-i] has the same classes as the interpretation of the symbol e_i , we have $\mathfrak{A}' \models \forall x \forall y (e_i(x,y) \leftrightarrow [L:el-i](x,y))$. Since $\mathfrak{A}' \models \varphi$ we have $\mathfrak{A}' \models \operatorname{ltr} \varphi$.

Remark 15. Let φ be a $\Lambda[\Sigma]$ -formula and let \mathfrak{A} be an L'-structure. Suppose that $\mathfrak{A} \models \operatorname{ltr} \varphi$ and that the symbols l_1, l_2, \ldots, l_e are interpreted as equivalence relations on A in refinement in \mathfrak{A} . Then there is a Σ' -enrichment \mathfrak{A}' of \mathfrak{A} such that $\mathfrak{A}' \models \varphi$ and that the binary symbols e_1, e_2, \ldots, e_e are interpreted as equivalence relations on A in global agreement in \mathfrak{A}' .

Proof. Consider an enrichment \mathfrak{A}' of \mathfrak{A} to a Σ' -structure where $e_i^{\mathfrak{A}'} = [\text{L:el-}i]^{\mathfrak{A}}$. By Remark 13, $e_i^{\mathfrak{A}'}$ are equivalence relations on A in local agreement. For every $i \in [1, e]$ we have $\mathfrak{A}' \models \forall x \forall y (e_i(x, y) \leftrightarrow [\text{L:el-}i](x, y))$ by definition. Since $\mathfrak{A}' \models \text{ltr } \varphi$ we have $\mathfrak{A}' \models \varphi$.

The last two remarks show that a $\Lambda e E_{\text{local}}$ -formula φ has essentially the same models as the $\Lambda e E_{\text{refine}}$ -formula ltr φ , so we have shown:

Proposition 3. The logic $\Lambda e E_{\mathsf{local}}$ has the finite model property iff the logic $\Lambda e E_{\mathsf{refine}}$ has the finite model property. The corresponding satisfiability problems are polynomial-time equivalent: (FIN-)SAT- $\Lambda e E_{\mathsf{local}} = _{\mathrm{m}}^{\mathrm{PTIME}}$ (FIN-)SAT- $\Lambda e E_{\mathsf{refine}}$.

Since the relative size of $\operatorname{ltr} \varphi$ with respect to φ grows polynomially as e grows, we have shown:

Proposition 4. The logic $\Lambda E_{\mathsf{local}}$ has the finite model property iff the logic $\Lambda E_{\mathsf{refine}}$ has the finite model property. The corresponding satisfiability problems are polynomial-time equivalent: (FIN-)SAT- $\Lambda E_{\mathsf{local}} =_{\mathrm{m}}^{\mathrm{PTIME}}$ (FIN-)SAT- $\Lambda E_{\mathsf{refine}}$.

The reduction is two-variable first-order and uses additional (et) unary predicate symbols for the permutation setup P, so it is also valid for the two-variable fragments $\Lambda_0^2 e E_a$, $\Lambda_1^2 e E_a$ and $\Lambda_1^2 E_a$ for $a \in \{local, refine\}$ respectively.

4.3 Granularity

In this section we demonstrate how to replace the finest equivalence from a sequence of equivalences in refinement with a counter setup. This works if the structures are granular, that is, if the finest equivalence doesn't have many classes within a single bigger equivalence class.

Definition 38. Let $\langle D, E \rangle$ be a sequence of two equivalence relations on A in refinement. Let $g \in \mathbb{N}^+$. The sequence is g-granular if every E-equivalence class includes at most g D-equivalence classes.

Definition 39. Let $g \in \mathbb{N}^+$ and let $\langle D, E \rangle$ be g-granular. The function $c : A \to [1, g]$ is a g-granular coloring for the sequence, if two E-equivalent elements have the same color iff they are D-equivalent. That is, for every $(a, b) \in E$ we have c(a) = c(b) iff $(a, b) \in D$.

Remark 16. Let $g \in \mathbb{N}^+$ and let $\langle D, E \rangle$ be g-granular. Then there is a g-granular coloring for the sequence.

Proof. Let X be an E-class. Since $D \subseteq E$ is g-granular, the set $S = \{D[a] \mid a \in X\}$ has cardinality at most g. Let $i: S \hookrightarrow [1,g]$ be any injective function. Define the color c on X as c(a) = i(D[a]).

Remark 17. Let $E \subseteq A \times A$ be an equivalence relation on A, $g \in \mathbb{N}^+$ and $c : A \to [1, g]$. Then there is an equivalence relation $D \subseteq E$ on A such that $\langle D, E \rangle$ is g-granular, having c as a g-granular coloring.

Proof. Take
$$D = \{(a, b) \in E \mid c(a) = c(b)\}$$
.

Definition 40. Let $g \in \mathbb{N}^+$ and let t = ||g|| be the bitsize of g. A g-color setup $G = \langle u_1, u_2, \dots, u_t \rangle$ is just a t-bit counter setup.

Let $\Lambda \in \{\mathcal{L}, \mathcal{C}\}$ be a ground logic, $g \in \mathbb{N}^+$ and $G = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_t \rangle$ be a g-color setup. Let Σ be a predicate signature containing the binary symbols \boldsymbol{d} and \boldsymbol{e} and not containing any symbols from G. Let $\Sigma' = \Sigma + G$ and $\Gamma = \Sigma' - \{\boldsymbol{d}\}$.

Definition 41. Define the quantifier-free $\mathcal{L}^2[\Gamma]$ -formula $[\Gamma:d](x,y)$ by:

$$[\Gamma:d](x,y) = e(x,y) \wedge [G:eq](x,y).$$

Definition 42. Define the syntactic operation grtr : $\Lambda[\Sigma] \to \Lambda[\Gamma]$ by:

$$\operatorname{grtr} \varphi = \varphi' \wedge [G: betw-1-g],$$

where φ' is obtained from the formula φ by replacing all subformulas of the form $\mathbf{d}(x,y)$ by $[\Gamma:\mathbf{d}](x,y)$, where x and y are (not necessarily distinct) variable symbols.

Lemma 3. Let \mathfrak{A} be a Σ -structure and suppose that the sequence of symbols $\langle \mathbf{d}, \mathbf{e} \rangle$ is interpreted in \mathfrak{A} as a g-granular sequence $\langle D, E \rangle$. Suppose that $\mathfrak{A} \models \varphi$. Then there is a Σ' -enrichment \mathfrak{A}' of \mathfrak{A} such that $\mathfrak{A}' \models \operatorname{grtr} \varphi$.

Proof. By Remark 16, there exists a g-granular coloring $c: A \to [1, g]$. We interpret the unary symbols in G so that $[G:data]^{\mathfrak{A}} = c$. Since \mathfrak{A}' is an enrichment of \mathfrak{A} , we have $\mathfrak{A}' \models \varphi$. Let $a, b \in A$. Then $\mathfrak{A}' \models [\Gamma:d](a, b)$ is equivalent to:

$$\mathfrak{A}' \models e(a,b)$$
 and $\mathfrak{A}' \models [G:eq](a,b)$,

which is equivalent to:

$$(a,b) \in E$$
 and $[G:data]^{\mathfrak{A}'}a = [G:data]^{\mathfrak{A}'}b$,

which, since $[G:data]^{\mathfrak{A}'} = c$ is a g-granular coloring, is equivalent to:

$$(a,b) \in D$$
.

Hence $\mathfrak{A}' \models \forall x \forall y (d(x, y) \leftrightarrow [\Gamma:d](x, y))$ and since $\mathfrak{A}' \models \varphi$, we have $\mathfrak{A}' \models \operatorname{grtr} \varphi$.

Lemma 4. Let \mathfrak{A} be a Γ -structure and suppose that the binary symbol e is interpreted in \mathfrak{A} as an equivalence relation on A. Suppose that $\mathfrak{A} \models \operatorname{grtr} \varphi$. Then there is a Σ' -structure \mathfrak{A}' enriching \mathfrak{A} such that $\mathfrak{A}' \models \varphi$ and the sequence of binary symbols $\langle d, e \rangle$ is interpreted in \mathfrak{A}' as a q-granular sequence $\langle D, E \rangle$.

Proof. Since $\mathfrak{A} \models [G:betw-1-g]$, we have $[G:data]^{\mathfrak{A}}a \in [1,g]$ for all $a \in A$. Define $c: A \to [1,g]$ by $c(a) = [C:data]^{\mathfrak{A}}a$. By Remark 16, we can find $D \subseteq E$ such that the sequence $\langle D, E \rangle$ is g-granular, having c as a g-granular coloring. Consider the Σ' -structure \mathfrak{A}' , where $d^{\mathfrak{A}'} = D$. Since \mathfrak{A}' is an enrichment of $\mathfrak{A} \models \operatorname{grtr} \varphi$, we have $\mathfrak{A}' \models \operatorname{grtr} \varphi$. Let $a, b \in A$. Then $\mathfrak{A}' \models [\Gamma:d](a,b)$ is equivalent to:

$$\mathfrak{A}' \models e(a,b) \text{ and } \mathfrak{A}' \models [G:eq](a,b),$$

which is equivalent to:

$$(a,b) \in E$$
 and $c(a) = c(b)$,

which, since c is a g-granular coloring, is equivalent to:

$$(a,b) \in D$$
.

Hence $\mathfrak{A}' \vDash \forall x \forall y (e(x, y) \leftrightarrow [\Gamma:d](x, y))$ and since $\mathfrak{A}' \vDash \operatorname{grtr} \varphi$, we have $\mathfrak{A}' \vDash \varphi$.

5 Monadic logics

In this chapter we investigate questions about (finite) satisfiability of first-order sentences featuring unary predicate symbols and builtin equivalence symbols in refinement. Our strategy is to extract small substructures of structures and analyse them using Ehrenfeucht-Fraïssé games. It is known that:

- The monadic first-order logic \mathcal{L}_1 has the finite model property and its (finite) satisfiability problem is NEXPTIME-complete [8]
- The first-order logic of a single equivalence relation \mathcal{L}_01E has the finite model property and its (finite) satisfiability problem is PSPACE-complete [6]
- The first-order logic of two equivalence relations \mathcal{L}_02E lacks the finite model property and both the satisfiability and finite satisfiability problems are undecidable [9].

Let $U(u) = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_u \rangle$ be an unary predicate signature consisting of the unary predicate symbols \boldsymbol{u}_i . Let $E(e) = \langle \boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_e \rangle$ be a binary predicate signature consisting of the builtin equivalence symbols \boldsymbol{e}_j in refinement. Let $\Sigma(u, e) = U(u) + E(e)$, so $\Sigma(u, e)$ is a generic predicate signature for the monadic first-order logic $\mathcal{L}_1 e E_{\text{refine}}$.

5.1 Cells

Let $u, e \in \mathbb{N}$, $e \geq 1$ and $\Sigma = \Sigma(u, e) = \langle u_1, u_2, \dots, u_u, e_1, e_2, \dots, e_e \rangle$ be a predicate signature. Abbreviate the finest equivalence symbol $d = e_1$.

Definition 43. Define the quantifier-free $\mathcal{L}^2[\Sigma]$ -formula $[\Sigma:cell](\boldsymbol{x},\boldsymbol{y})$ by:

$$[\Sigma\text{:cell}](\boldsymbol{x},\boldsymbol{y}) = \boldsymbol{d}(\boldsymbol{x},\boldsymbol{y}) \wedge \bigwedge_{1 \leq i \leq u} (\boldsymbol{u}_i(\boldsymbol{x}) \leftrightarrow \boldsymbol{u}_i(\boldsymbol{y})).$$

If \mathfrak{A} is a Σ -structure and $D = d^{\mathfrak{A}}$, then the interpretation $C = [\Sigma:\mathsf{cell}]^{\mathfrak{A}} \subseteq A \times A$ is an equivalence relation on A that refines D. The cells of \mathfrak{A} are the equivalence classes of C. That is, a cell is a maximal set of D-equivalent elements satisfying the same u-predicates.

Remark 18. Let \mathfrak{A} be a Σ -structure, $r \in \mathbb{N}$, $\bar{a} = a_1 a_2 \dots a_r \in A^r$, $\bar{b} = b_1 b_2 \dots b_r \in A^r$ and a_i and b_i are in the same \mathfrak{A} -cell for all $i \in [1, r]$. Suppose that $a_i = a_j$ iff $b_i = b_j$ for all $i, j \in [1, r]$. Then $\bar{a} \mapsto \bar{b}$ is a partial isomorphism.

Proof. Direct consequence of the fact that the cell equivalence relation refines the finest equivalence relation D and that the elements in the same cell satisfy the same u-predicates. The equality condition ensures that the mapping is a bijection.

Lemma 5. Let \mathfrak{A} be a Σ -structure and $r \in \mathbb{N}^+$. There is $\mathfrak{B} \subseteq \mathfrak{A}$ such that $\mathfrak{B} \equiv_r \mathfrak{A}$ and every \mathfrak{B} -cell has cardinality at most r.

Proof. Let $C \subseteq A \times A$ be the \mathfrak{A} -cell equivalence relation. Execute the following process: for every \mathfrak{A} -cell, if it has cardinality less than r, select all elements from that cell; otherwise select r distinct elements from that cell. Let $B \subseteq A$ be the set of selected elements and let $\mathfrak{B} = \mathfrak{A} \upharpoonright B$. By construction, every \mathfrak{B} -cell has cardinality at most r. We claim that $\mathfrak{A} \equiv_r \mathfrak{B}$. Let $h = C \cap (A \times B)$ relates elements from A with elements from B in the same cell. Note that for all $a \in A$:

$$|h[a]| = \min(|C[a]|, r).$$
 (5.1)

For $i \in [0, r]$ let \mathfrak{I}_i be the set of partial isomorphisms from \mathfrak{A} to \mathfrak{B} that have length i and that are included in h. The set \mathfrak{I}_0 is nonempty since it contains the empty partial isomorphism. We claim that the sequence $\mathfrak{I}_0, \mathfrak{I}_1, \ldots, \mathfrak{I}_r$ satisfies the back-and-forth conditions of Theorem 1. Let $i \in [0, r-1]$ and let

$$\mathfrak{p} = \bar{a} \mapsto \bar{b} = a_1 a_2 \dots a_i \mapsto b_1 b_2 \dots b_i \in \mathfrak{I}_i$$

be any partial isomorphism.

1. For the forth condition, let $a \in A$. We have to find some $b \in B$ such that $\bar{a}a \mapsto \bar{b}b \in \mathfrak{I}_{i+1}$. If $a = a_k$ for some $k \in [1,i]$, then $b = b_k$ is appropriate.

Suppose that $a \neq a_k$ for all $k \in [1, i]$. Let $S \subseteq C[a]$ be the set of \bar{a} -elements in the same \mathfrak{A} -cell as a:

$$S = \left\{a_k \in C[a] \mid k \in [1,i]\right\}.$$

Note that $|S| \le r - 1$ and $|C[a]| \ge |S| + 1$. By eq. (5.1), $|h[a]| \ge |S| + 1$. Hence there is an element $b \in h[a]$ that is distinct from b_k for all $k \in [1, i]$ and this b is appropriate.

2. For the back condition, let $b \in B$. We have to find some $a \in A$ such that $\bar{a}a \mapsto \bar{b}b \in \mathfrak{I}_{i+1}$. If $b = b_k$ for some $k \in [1, i]$, then $a = a_k$ is appropriate.

Suppose that $b \neq b_k$ for all $k \in [1, i]$. Since $b \in h[b]$, a = b is appropriate.

By Theorem 1,
$$\mathfrak{A} \equiv_r \mathfrak{B}$$
.

5.2 Organs

Let $u, e \in \mathbb{N}$, $e \geq 2$ and $\Sigma = \Sigma(u, e) = \langle u_1, u_2, \dots, u_u, e_1, e_2, \dots, e_e \rangle$ be a predicate signature. Abbreviate the finest two equivalence symbols $d = e_1$ and $e = e_2$.

Definition 44. Let \mathfrak{A} be a Σ -structure and let $D = d^{\mathfrak{A}}$ and $E = e^{\mathfrak{A}}$. Recall that the set of D-classes is $\mathscr{E}D$. Two D-classes $X,Y \in \mathscr{E}D$ are organ-equivalent if they are included in the same E-class (equivalently $X \times Y \subseteq E$), and the induced substructures $(\mathfrak{A} \upharpoonright X)$ and $(\mathfrak{A} \upharpoonright Y)$ are isomorphic. The organ-equivalence relation is $\mathcal{O} \subseteq \mathscr{E}D \times \mathscr{E}D$.

Since D refines E, organ-equivalence is an equivalence relation on $\mathcal{E}D$. An organ is an organ-equivalence-class. That is, an organ is a maximal set of isomorphic D-classes, included in the same E-class.

For any two organ-equivalent D-classes $(X,Y) \in \mathcal{O}$, fix an isomorphism

$$\mathfrak{h}_{XY}:(\mathfrak{A}\upharpoonright X)\leftrightarrow(\mathfrak{A}\upharpoonright Y)$$

consistently, so that $\mathfrak{h}_{XX} = \mathrm{id}_X$, $\mathfrak{h}_{YX} = \mathfrak{h}_{XY}^{-1}$ and if $(Y,Z) \in \mathcal{O}$ then $\mathfrak{h}_{XZ} = \mathfrak{h}_{YZ} \circ \mathfrak{h}_{XY}$. Two elements $a,b \in A$ are sub-organ-equivalent if $(D[a],D[b]) \in \mathcal{O}$ and $\mathfrak{h}_{D[a]D[b]}(a) = b$. Since the isomorphisms \mathfrak{h}_{XY} are chosen consistently, sub-organ-equivalence $O \subseteq A \times A$ is an equivalence relation on A that refines E.

Remark 19. Let \mathfrak{A} be a Σ -structure, $r \in \mathbb{N}$, $\bar{a} = a_1 a_2 \dots a_r \in A^r$, $\bar{b} = b_1 b_2 \dots b_r \in A^r$, a_i and b_i are sub-organ-equivalent for all $i \in [1, r]$. Suppose that $\mathfrak{A} \models \mathbf{d}(a_i, a_j)$ iff $\mathfrak{A} \models \mathbf{d}(b_i, b_j)$ for all $i, j \in [1, r]$. Then $\bar{a} \mapsto \bar{b}$ is a partial isomorphism.

Proof. The condition about the finest equivalence symbol d ensures that the interpretation of d is preserved. Since sub-organ-equivalence relates isomorphic elements, the interpretation of the unary symbols and the formal equality is preserved. Since the sub-organ-equivalence $O \subseteq A \times A$ refines the second finest equivalence relation E, the interpretation of all remaining equivalence symbols e_i is preserved.

Lemma 6. Let \mathfrak{A} be a Σ -structure and $r \in \mathbb{N}^+$. There is $\mathfrak{B} \subseteq \mathfrak{A}$ such that $\mathfrak{B} \equiv_r \mathfrak{A}$ and every \mathfrak{B} -organ has cardinality at most r.

Proof. Let $D = d^{\mathfrak{A}}$, $E = e^{\mathfrak{A}}$ and let $\mathcal{A} = \mathscr{E}D$ be the set of D-classes. Let $\mathcal{O} \subseteq \mathcal{A} \times \mathcal{A}$ be the \mathfrak{A} -organ-equivalence relation on \mathcal{A} . Execute the folloing process: for every \mathfrak{A} -organ, if it has cardinality at most r, select all D-classes from that organ; otherwise select r distinct D-classes from that organ (note that these will be isomorphic). Let $\mathcal{B} \subseteq \mathcal{A}$ be the set of selected D-classes. Let $\mathcal{B} = \cup \mathcal{B} \subseteq \mathcal{A}$ be the set of elements in the selected classes and let $\mathfrak{B} = (\mathfrak{A} \upharpoonright \mathcal{B})$. By construction, every \mathfrak{B} -organ has cardinality at most r. We claim that $\mathfrak{A} \equiv_r \mathfrak{B}$. Let $\mathcal{H} = \mathcal{O} \cap (\mathcal{A} \times \mathcal{B})$ relates the D-classes with the isomorphic D-classes from \mathcal{B} in the same organ. Let h relates the elements of A with their isomorphic elements from B. Note that for all elements $a \in A$:

$$|h[a]| = \min(|\mathcal{O}[D[a]]|, r). \tag{5.2}$$

For $i \in [0, r]$ let \mathfrak{I}_i be the set of partial isomorphisms from \mathfrak{A} to \mathfrak{B} that have length i and that are included in h. The set \mathfrak{I}_0 is nonempty since it contains the empty partial isomorphism. We claim that the sequence $\mathfrak{I}_0, \mathfrak{I}_1, \ldots, \mathfrak{I}_r$ satisfies the back-and-forth conditions of Theorem 1. Let $i \in [0, r-1]$ and let

$$\mathfrak{p} = \bar{a} \mapsto \bar{b} = a_1 a_2 \dots a_i \mapsto b_1 b_2 \dots b_i \in \mathfrak{I}$$

be any partial isomorphism.

1. For the forth condition, let $a \in A$. We have to find some $b \in B$ such that $\bar{a}a \mapsto \bar{b}b \in \mathfrak{I}_{i+1}$. If $a \in D[a_k]$ for some $k \in [1,i]$, then $b = \mathfrak{h}_{D[a_k]D[b_k]}(a)$ is appropriate. Suppose $a \notin D[a_k]$ for all $k \in [1,i]$. Let $S \subseteq \mathcal{O}[D[a]]$ be the set of D-classes of \bar{a} -elements in the same \mathfrak{A} -organ as D[a]:

$$S = \{D[a_k] \in \mathcal{O}[D[a]] \mid k \in [1, i]\}.$$

Note that $|\mathcal{S}| \leq r - 1$ and $|\mathcal{O}[D[a]]| \geq |\mathcal{S}| + 1$. By eq. (5.2), $|h[a]| \geq |\mathcal{S}| + 1$. Hence there is some $b \in h[a]$ such that $b \notin D[b_k]$ for all $k \in [1, i]$. This b is appropriate.

2. For the back condition, let $b \in B$. We have to find some $a \in A$ such that $\bar{a}a \mapsto \bar{b}b \in \mathfrak{I}$. If $b \in D[b_k]$ for some $k \in [1,i]$, then $a = \mathfrak{h}_{D[b_k]D[a_k]}(b)$ is appropriate. Suppose that $b \notin D[b_k]$ for all $k \in [1,i]$. Since $b \in h[b]$, a = b is appropriate.

By Theorem 1,
$$\mathfrak{A} \equiv_r \mathfrak{B}$$
.

5.3 Satisfiability

In this section we will employ the results on cells and organs to bound the size of a small substructure of a general structure.

Remark 20. Let $u, e \in \mathbb{N}$, $e \geq 2$ and consider the predicate signature $\Sigma = \Sigma(u, e) = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_u, \boldsymbol{e}_1, \boldsymbol{e}_2, \dots, \boldsymbol{e}_e \rangle$. Abbreviate $\boldsymbol{d} = \boldsymbol{e}_1$ and $\boldsymbol{e} = \boldsymbol{e}_2$. Let $r \in \mathbb{N}^+$. There is $\mathfrak{B} \subseteq \mathfrak{A}$ such that $\mathfrak{B} \equiv_r \mathfrak{A}$ and $\langle \boldsymbol{d}^{\mathfrak{B}}, \boldsymbol{e}^{\mathfrak{B}} \rangle$ is g-granular for $g = g(u, r) = r.((r+1)^{2^u} - 1)$. Furthermore, this \mathfrak{B} has the property that every \mathfrak{B} -cell has cardinality at most r.

Proof. By Lemma 5, there is $\mathfrak{B}' \subseteq \mathfrak{A}$ such that $\mathfrak{B}' \equiv_r \mathfrak{A}$ and every \mathfrak{B}' -cell has cardinality at most r. By Lemma 6, there is $\mathfrak{B} \subseteq \mathfrak{B}'$ such that $\mathfrak{B} \equiv_r \mathfrak{B}'$ and the \mathfrak{B} -organs have cardinality at most r. Let $D = d^{\mathfrak{B}}$ and $E = e^{\mathfrak{B}}$. Since every D-class includes at most 2^u cells and is nonempty and every cell has cardinality at most r, there are at most $((r+1)^{2^u}-1)$ nonisomorphic D-classes in \mathfrak{B} . Since every E-class includes at most r isomorphic D-classes, we get that $\langle D, E \rangle$ is g-granular.

Corollary 1. Let $u, e \in \mathbb{N}$, $e \geq 2$ and consider $\Sigma = \Sigma(u, e)$. Let φ be a $\mathcal{L}[\Sigma]$ -sentence having quantifier rank r. By Lemma 3 and Lemma 4 about granularity, the formula φ is essentially equisatisfiable with the formula $\operatorname{grtr} \varphi$, which is a $\Sigma(u + \|g(u, r)\|, e - 1)$ -sentence. Note that $\|g(u, r)\|$ is exponentially bounded by the length $\|\varphi\|$ of the formula. So we have a reduction:

$$(FIN-)SAT^{\mathcal{L}}1eE_{\mathsf{refine}} \leq_{\mathsf{m}}^{EXPTIME} (FIN-)SAT^{\mathcal{L}}1(e-1)E_{\mathsf{refine}}.$$

If u is a constant independent of φ , then ||g(u,r)|| is polynomially bounded by $||\varphi||$. So we have a reduction:

$$(\text{FIN-}) \text{SAT-}^{\mathcal{L}} 0 e \text{E}_{\text{refine}} \leq_{\text{m}}^{\text{PTIME}} (\text{FIN-}) \text{SAT-}^{\mathcal{L}} 1 (e-1) \text{E}_{\text{refine}}.$$

Remark 21. Let $u \in \mathbb{N}$ and consider $\Sigma = \Sigma(u,1) = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_u, \boldsymbol{d} \rangle$. Let $r \in \mathbb{N}^+$. There is $\mathfrak{B} \subseteq \mathfrak{A}$ such that $\mathfrak{A} \equiv_r \mathfrak{B}$ and $|B| \leq g.r.2^u$ for $g = g(u,r) = r.((r+1)^{2^u} - 1)$.

Proof. Let $\Sigma' = \Sigma + \langle e \rangle$ be an enrichment of Σ with the builtin equivalence symbols e. Consider an enrichment \mathfrak{A}' of \mathfrak{A} to a Σ' -structure, where $e^{\mathfrak{A}'} = A \times A$ is interpreted as the full relation on A. Then $\langle d^{\mathfrak{A}'}, e^{\mathfrak{A}'} \rangle$ is a sequence of equivalence relations on A in refinement. By Remark 20, there is $\mathfrak{B}' \subseteq \mathfrak{A}'$ such that $\mathfrak{B}' \equiv_r \mathfrak{A}'$ and $\langle d^{\mathfrak{B}'}, e^{\mathfrak{B}'} \rangle$ is g-granular. Consider the reduct \mathfrak{B} of \mathfrak{B}' to a Σ -structure. Let $D = d^{\mathfrak{B}}$ and $E = e^{\mathfrak{B}}$. Since every \mathfrak{B} -cell has cardinality at most r and every D-class includes at most 2^u cells, we have that every D-class has cardinality at most $r.2^u$. Since e was interpreted in \mathfrak{A} as the full relation, it is also interpreted in \mathfrak{B} as the full relation, so there is a single E-class—the whole domain E. Since the sequence E is E-class, the full relation in E is E-class, so E is E-class.

Corollary 2. The logic \mathcal{L}_1 1E has the finite model property and its (finite) satisfiability problem is in N2EXPTIME.

Combining Corollary 2 with Corollary 1, we get by induction on e:

Proposition 5. For $e \in \mathbb{N}^+$, the logic $\mathcal{L}_1 e E_{\mathsf{refine}}$ has the finite model property and its (finite) satisfiability problem is in N(e+1)EXPTIME.

By Proposition 1 and Proposition 3, the same holds for \mathcal{L}_1eE_{global} and \mathcal{L}_1eE_{local} .

Proposition 6. The logic \mathcal{L}_1 E_{refine} has the finite model property and its (finite) satisfiability problem is in the forth level of the Grzegorczyk hierarchy \mathcal{E}^4 .

By Proposition 2 and Proposition 4, the same holds for $\mathcal{L}_1 E_{\mathsf{global}}$ and $\mathcal{L}_1 E_{\mathsf{local}}$.

Proposition 7. For $e \geq 2$, the logic $\mathcal{L}_0 e E_{\mathsf{refine}}$ has the finite model property and its (finite) satisfiability problem is in NeExptime.

By Proposition 1 and Proposition 3, the same holds for $\mathcal{L}_0 e E_{\mathsf{global}}$ and $\mathcal{L}_0 e E_{\mathsf{local}}$.

5.4 Hardness with a single equivalence

In this section we show that the (finite) satisfiability of monadic first-order logic with a single equivalence symbol \mathcal{L}_11E is N2ExpTime-hard by reducing the doubly exponential tiling problem to such satisfiability. Our strategy is to employ a counter setup of u unary predicate symbols to encode the exponentially many positions of a binary encoding of a doubly exponentially bounded quantity, encoding the coordinates of a cell of the doubly exponential tiling square.

Consider the counter setup $C(u) = \langle \boldsymbol{u}_1, \boldsymbol{u}_2, \dots, \boldsymbol{u}_u \rangle$ for $u \in \mathbb{N}^+$. Recall that the intention of a counter setup is to encode an arbitrary exponentially bounded value at every element of a structure. Let $D(u) = C(u) + \langle \boldsymbol{d} \rangle$ be a predicate signature enriching C(u) with the builtin equivalence symbol \boldsymbol{d} . We will define a system where every \boldsymbol{d} -equivalence class includes exponentially many cells. These cells will correspond to the exponentially many positions of the binary encoding of a doubly exponential value for

the d-class. The bit values at each cell position will be encoded by the cardinality of that cell: bit value 0 if the cardinality of the cell is 1 and bit value 1 if the cardinality is greater than 1. This will allow us to encode a doubly exponential value at each d-class. Call the data [C:data]²a, encoded by the counter setup at a the position of a.

Let \mathfrak{A} be a D = D(u)-structure.

Definition 45. Define the quantifier-free $\mathcal{L}^2[D]$ -formula [D:pos-eq](x, y) by:

$$[D:pos-eq](x, y) = [C:eq](x, y).$$

Then $\mathfrak{A} \models [D:pos-eq](a,b)$ iff a and b are at the same positions (in possibly distinct d-classes): $[C:data]^{\mathfrak{A}} a = [C:data]^{\mathfrak{A}} b$.

Definition 46. Define the quantifier-rank-1 $\mathcal{L}^2[D]$ -formula [D:bit-0](x) by:

$$[\mathrm{D}\mathtt{:}\mathsf{bit} ext{-}0](oldsymbol{x}) = orall oldsymbol{y}\,(oldsymbol{d}(oldsymbol{y},oldsymbol{x}) \wedge [\mathrm{D}\mathtt{:}\mathsf{pos} ext{-}\mathsf{eq}](oldsymbol{y},oldsymbol{x}) o oldsymbol{y} = oldsymbol{x})\,.$$

Then $\mathfrak{A} \models [D:bit-0](a)$ iff the cell of a has cardinality 1.

Definition 47. Define the quantifier-rank-1 $\mathcal{L}^2[D]$ -formula [D:bit-1](\mathbf{x}) by:

$$[\mathrm{D} ext{:}\mathsf{bit} ext{-}1](oldsymbol{x}) = \exists oldsymbol{y}\,(oldsymbol{d}(oldsymbol{y},oldsymbol{x}) \wedge [\mathrm{D} ext{:}\mathsf{pos} ext{-}\mathsf{eq}](oldsymbol{y},oldsymbol{x}) \wedge oldsymbol{y}
eq oldsymbol{x}.$$

Then $\mathfrak{A} \models [D:bit-1](a)$ iff the cell of a has cardinality greater than 1.

Definition 48. Define the quantifier-free $\mathcal{L}^2[D]$ -formula [D:pos-zero](x) by:

$$[\mathrm{D}\text{:}\mathsf{pos\text{-}zero}](\boldsymbol{x}) = \bigwedge_{1 \leq i \leq u} \neg \boldsymbol{u}_i(\boldsymbol{x}).$$

Then $\mathfrak{A} \models [D:pos-zero](a)$ iff the position of a is 0.

Definition 49. Define the quantifier-free $\mathcal{L}^2[D]$ -formula [D:pos-largest](x) by:

$$[\mathrm{D}\text{:}\mathsf{pos}\text{-}\mathsf{largest}](\boldsymbol{x}) = \bigwedge_{1 \leq i \leq u} \boldsymbol{u}_i(\boldsymbol{x}).$$

Then $\mathfrak{A} \models [D:pos-largest](a)$ iff the position of a is the largest u-bit number N_u .

Definition 50. Define the quantifier-free $\mathcal{L}^2[D]$ -formula [D:pos-less](x,y) by:

[D:pos-less]
$$(x, y) = d(x, y) \wedge [C:less](x, y)$$
.

Then $\mathfrak{A} \models [D:pos-less](a,b)$ iff a and b are in the same d-class and the position of a is less than the position of b.

Definition 51. Define the quantifier-free $\mathcal{L}^2[D]$ -formula [D:pos-succ](x, y) by:

$$[D:pos-succ](x,y) = d(x,y) \wedge [C:succ](x,y).$$

Then $\mathfrak{A} \models [D:\mathsf{pos\text{-}succ}](a,b)$ iff a and b are in the same d-class and the position of b is the successor of the position of a.

Definition 52. Define the closed $\mathcal{L}^2[D]$ -sentence [D:pos-full] by:

$$[ext{D:pos-full}] = orall x \exists y \Big(d(y,x) \wedge [ext{D:pos-zero}](y) \Big) \wedge \ orall x \Big(\neg [ext{D:pos-largest}](x)
ightarrow \exists y [ext{D:pos-succ}](x,y) \Big).$$

The first part of this formula asserts that every d-class has an element at position 0. The second part asserts that if a is an element at position p, that is not the largest possible, there exists an element b in the same d-class at position p+1. Therefore in any model of [D:pos-full], every d-class has 2^u cells. For example, in particular, every d-class has cardinality at least 2^u . For the rest of the section, suppose that $\mathfrak{A} \models [D:pos-full]$.

Definition 53. For every u-bit number $p \in \mathbb{B}_u$, define the $\mathcal{L}^2[D]$ -formula [D:pos-p](x) recursively by:

$$[D:pos-0](x) = [D:pos-zero](x)$$

and for $p \in [0, N_u - 1]$:

$$[D:pos-(p+1)](x) = \exists y ([D:pos-p](y) \land [D:pos-succ](y,x)).$$

In this case, for the formula to be a two-variable formula, the formula [D:pos-p](y) is obtained from [D:pos-p](x) by swapping all occurrences (not only the unbounded ones) of the variables x and y^1 . Note that the length of the formula [D:pos-p](x) grows linearly as p grows.

Then $\mathfrak{A} \models [D:pos-p](a)$ iff p is the position of a.

Definition 54. Let \mathfrak{A} be a D-structure. Let $D = d^{\mathfrak{A}}$. Define the function [D:Data]^{\mathfrak{A}}: $\mathscr{E}D \to \mathbb{B}^{2^u}$, assiging a 2^u -bit bitstring to any D-class X by:

$$[D:Data]_p^{\mathfrak{A}}X = \begin{cases} 1 & \text{if } [C:data]^{\mathfrak{A}}(a) = (p-1) \text{ implies } \mathfrak{A} \vDash [D:bit-1](a) \text{ for all } a \in X \\ 0 & \text{otherwise} \end{cases}$$

for $p \in [1, 2^u]$.

Definition 55. Define the quantifier-rank-1 $\mathcal{L}^2[D]$ -formula [D:Zero](x) by:

$$[ext{D:Zero}](oldsymbol{x}) = orall oldsymbol{y} \Big(oldsymbol{d}(oldsymbol{y}, oldsymbol{x})
ightarrow [ext{D:bit-0}](oldsymbol{y}) \Big).$$

Then $\mathfrak{A} \models [D:Zero](a)$ iff the data at the *D*-class of *a* encodes 0: $[D:Data]^{\mathfrak{A}}D[a] = 0$.

¹this is reminiscent to the process of defining a standard translation of modal logic to the two-variable first-order fragment

Definition 56. Define the quantifier-rank-1 $\mathcal{L}^2[D]$ -formula [D:Largest](x) by:

$$[\mathrm{D}\mathsf{:}\mathsf{Largest}](x) = orall y \Big(oldsymbol{d}(oldsymbol{y},oldsymbol{x}) o [\mathrm{D}\mathsf{:}\mathsf{bit} ext{-}1](oldsymbol{y}) \Big).$$

Then $\mathfrak{A} \models [D:Largest](a)$ iff the data at the *D*-class of *a* encodes the largest 2^u -bit number: $[D:Data]^{\mathfrak{A}}D[a] = N_{2^u}$.

Definition 57. Let $M \in \mathbb{B}_{2^u}$ be a t-bit number (where $t \leq 2^u$). Define the $\mathcal{L}^2[D]$ -formula $[D:\mathsf{Eq}-M](x)$ by:

$$\begin{split} [\mathrm{D}\text{:Eq-}M](\boldsymbol{x}) &= \forall \boldsymbol{y} \bigg(\boldsymbol{d}(\boldsymbol{y}, \boldsymbol{x}) \to \bigwedge_{0 \leq p < t} \Big([\mathrm{D}\text{:pos-}p](\boldsymbol{y}) \to [\mathrm{D}\text{:bit-}(\overline{M}_{p+1})](\boldsymbol{y}) \Big) \land \\ &\forall \boldsymbol{x} \Big([\mathrm{D}\text{:pos-}(t-1)](\boldsymbol{y}) \land [\mathrm{D}\text{:pos-less}](\boldsymbol{y}, \boldsymbol{x}) \to [\mathrm{D}\text{:bit-}0](\boldsymbol{x}) \Big) \Big). \end{split}$$

The first part of this formula asserts that the bits at the first t positions of the d-class of x encode the number M. The second part asserts that all the remaining bits at larger positions are zeroes. Note that the length of this formula is polynomially bounded by t, the bitsize of M. We have $\mathfrak{A} \models [D:\mathsf{Eq}\text{-}M](a)$ iff the data at the D-class of a encodes M: $[D:\mathsf{Data}]^{\mathfrak{A}}D[a] = M$.

Definition 58. Define the $\mathcal{L}^6[D]$ -formula [D:Less](x,y) by:

$$[\text{D:Less}](\boldsymbol{x},\boldsymbol{y}) = \exists \boldsymbol{x}' \exists \boldsymbol{y}' \bigg(\boldsymbol{d}(\boldsymbol{x}',\boldsymbol{x}) \wedge \boldsymbol{d}(\boldsymbol{y}',\boldsymbol{y}) \wedge \\ \Big([\text{D:pos-eq}](\boldsymbol{x}',\boldsymbol{y}') \wedge [\text{D:bit-0}](\boldsymbol{x}') \wedge [\text{D:bit-1}](\boldsymbol{y}') \Big) \wedge \\ \forall \boldsymbol{x}'' \Big([\text{D:pos-less}](\boldsymbol{x}',\boldsymbol{x}'') \rightarrow \exists \boldsymbol{y}'' \Big(\boldsymbol{d}(\boldsymbol{y}'',\boldsymbol{y}') \wedge \\ \\ [\text{D:pos-eq}](\boldsymbol{y}'',\boldsymbol{x}'') \wedge ([\text{D:bit-0}](\boldsymbol{y}'') \leftrightarrow [\text{D:bit-0}](\boldsymbol{x}'')) \Big) \bigg) \bigg). \tag{Less2}$$

Then $\mathfrak{A} \models [D:\mathsf{Less}](a,b)$ iff $[D:\mathsf{Data}]^{\mathfrak{A}}D[a] < [D:\mathsf{Data}]^{\mathfrak{A}}D[b]$. By rearrangement and reusing variables, this can be also written using just three variables (but not using just two variables). Indeed, $[D:\mathsf{Less}](x,y)$ is logically equivalent to:

Definition 59. Define the $\mathcal{L}^6[D]$ -formula [D:Succ](x,y) by:

$$[\text{D:Succ}](\boldsymbol{x},\boldsymbol{y}) = \exists \boldsymbol{x}' \exists \boldsymbol{y}' \bigg(\boldsymbol{d}(\boldsymbol{x}',\boldsymbol{x}) \wedge \boldsymbol{d}(\boldsymbol{y}',\boldsymbol{y}) \wedge \\ \\ \Big([\text{D:pos-eq}](\boldsymbol{x}',\boldsymbol{y}') \wedge [\text{D:bit-0}](\boldsymbol{x}') \wedge [\text{D:bit-1}](\boldsymbol{y}') \Big) \wedge \\ \\ \forall \boldsymbol{x}'' \Big([\text{D:pos-less}](\boldsymbol{x}'',\boldsymbol{x}') \rightarrow [\text{D:bit-1}](\boldsymbol{x}'') \Big) \wedge \\ \\ \forall \boldsymbol{y}'' \Big([\text{D:pos-less}](\boldsymbol{y}'',\boldsymbol{y}') \rightarrow [\text{D:bit-0}](\boldsymbol{y}'') \Big) \wedge \\ \\ \forall \boldsymbol{x}'' \Big([\text{D:pos-less}](\boldsymbol{x}',\boldsymbol{x}'') \rightarrow \exists \boldsymbol{y}'' \Big(\boldsymbol{d}(\boldsymbol{y}'',\boldsymbol{y}') \wedge \\ \\ [\text{D:pos-eq}](\boldsymbol{y}'',\boldsymbol{x}'') \wedge ([\text{D:bit-0}](\boldsymbol{y}'') \leftrightarrow [\text{D:bit-0}](\boldsymbol{x}'')) \Big) \Big) \Big).$$
 (Succ4)

By rearrangement and reusing variables, this can be also written using just three variables (but not using just two variables).

Then
$$\mathfrak{A} \models [D:Succ](a,b)$$
 iff $[D:Data]^{\mathfrak{A}}D[b] = 1 + [D:Data]^{\mathfrak{A}}D[a]$.

Definition 60. Define the $\mathcal{L}^3[D]$ -sentence [D:Full] by:

$$[ext{D:Full}] = \exists m{x} [ext{D:Zero}](m{x}) \land orall m{x} \Big(\neg [ext{D:Largest}](m{x})
ightarrow \exists m{y} [ext{D:Succ}](m{x}, m{y}) \Big).$$

If \mathfrak{A} satisfies [D:Full] then \mathfrak{A} contains a **d**-class of encoding any possible data: for every $M \in [0, N_{2^u}]$, there is a **d**-class X such that [D:Data] $^{\mathfrak{A}}X = M$.

Definition 61. Define the $\mathcal{L}^4[D]$ -formula [D:Eq](x,y) by:

$$[\mathrm{D}\mathtt{:Eq}](\boldsymbol{x},\boldsymbol{y}) = \forall \boldsymbol{x}' \forall \boldsymbol{y}' \Big(\boldsymbol{d}(\boldsymbol{x}',\boldsymbol{x}) \wedge \boldsymbol{d}(\boldsymbol{y}',\boldsymbol{y}) \wedge \\ [\mathrm{D}\mathtt{:pos-eq}](\boldsymbol{x}',\boldsymbol{y}') \rightarrow ([\mathrm{D}\mathtt{:bit-0}](\boldsymbol{x}') \leftrightarrow [\mathrm{D}\mathtt{:bit-0}](\boldsymbol{y}')) \Big).$$

By rearrangement and reusing variables, this can be also written using just three variables (but not using just two variables).

Then
$$\mathfrak{A} \vDash [D:\mathsf{Eq}](\boldsymbol{x},\boldsymbol{y})$$
 iff $[D:\mathsf{Data}]^{\mathfrak{A}}D[a] = [D:\mathsf{Data}]^{\mathfrak{A}}D[b]$.

Definition 62. Define the $\mathcal{L}^4[D]$ -sentence [D:Alldiff] by:

$$\begin{split} \text{[D:Alldiff]} &= \forall \boldsymbol{x} \forall \boldsymbol{y} \Big(\neg \boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y}) \rightarrow \exists \boldsymbol{x}' \exists \boldsymbol{y}' \Big(\boldsymbol{d}(\boldsymbol{x}', \boldsymbol{x}) \land \boldsymbol{d}(\boldsymbol{y}', \boldsymbol{y}) \land \\ & \text{[D:pos-eq]}(\boldsymbol{x}', \boldsymbol{y}') \land \neg (\text{[D:bit-0]}(\boldsymbol{x}') \leftrightarrow \text{[D:bit-0]}(\boldsymbol{y}')) \Big) \Big). \end{split}$$

By rearrangement and reusing variables, this can be also written using just three variables (but not using just two variables).

If \mathfrak{A} satisfies [D:Alldiff] then all D-classes in \mathfrak{A} encode different data.

Recall from Section 1.7 that an instance of the doubly exponential tiling problem is an initial condition $c^0 = \langle t_1^0, t_2^0, \dots, t_n^0 \rangle \subseteq T = [1, k]$ of tiles from the domino system $D_0 = (T, H, V)$, where $H, V \subseteq T \times T$ are the horizontal and vertical matching relations. We need to define a predicate signature capable enough to express a doubly exponential grid of tiles. Consider the predicate signature

$$D = \left\langle \boldsymbol{u}_1^H, \boldsymbol{u}_2^H, \dots, \boldsymbol{u}_n^H; \boldsymbol{u}_1^V, \boldsymbol{u}_2^V, \dots, \boldsymbol{u}_n^V; \boldsymbol{u}_1^T, \boldsymbol{u}_2^T, \dots, \boldsymbol{u}_k^T; \boldsymbol{d} \right\rangle.$$

It has the following relevant subsignatures:

- $D^H = \langle \boldsymbol{u}_1^H, \boldsymbol{u}_2^H, \dots, \boldsymbol{u}_n^H, \boldsymbol{d} \rangle$ encodes the horizontal index of a tile
- ullet $\mathbf{D}^V = \left\langle oldsymbol{u}_1^V, oldsymbol{u}_2^V, \dots, oldsymbol{u}_n^V, oldsymbol{d}
 ight
 angle$ encodes the vertical index of a tile
- $D^{HV} = \langle \boldsymbol{u}_1^H, \boldsymbol{u}_2^H, \dots, \boldsymbol{u}_n^H, \boldsymbol{u}_1^V, \boldsymbol{u}_2^V, \dots, \boldsymbol{u}_n^V, \boldsymbol{d} \rangle$ encodes the combined horizontal and vertical index of a tile; we need this to define the full grid
- $D^T = \langle \boldsymbol{u}_1^T, \boldsymbol{u}_2^T, \dots, \boldsymbol{u}_k^T \rangle$ encodes the type of a tile.

Let \mathfrak{A} be a D-structure satisfying [D^{HV}:pos-full] and let $D = d^{\mathfrak{A}}$. The sentence

$$[D^{HV}:Full] \wedge [D^{HV}:Alldiff]$$
 (5.3)

asserts that the *D*-classes form a doubly exponential grid. The sentence

$$\forall \boldsymbol{x} \Big(\bigwedge_{1 \le i \le k} \boldsymbol{u}_i^T(\boldsymbol{x}) \to \bigwedge_{i < j \le k} \neg \boldsymbol{u}_j^T(\boldsymbol{x}) \Big)$$
 (5.4)

asserts that every element has a unique type. The sentence

$$\forall \boldsymbol{x} \forall \boldsymbol{y} \Big(\boldsymbol{d}(\boldsymbol{x}, \boldsymbol{y}) \to \bigwedge_{1 \le i \le k} (\boldsymbol{u}_i^T(\boldsymbol{x}) \leftrightarrow \boldsymbol{u}_i^T(\boldsymbol{x})) \Big)$$
 (5.5)

asserts that all elements in a D-class have the same type—the type of the tile corresponding to that D-class. For $j \in [1, n]$, the sentence

$$\forall \boldsymbol{x} \Big([\mathbf{D}^{H} : \mathsf{Eq} - (j-1)](\boldsymbol{x}) \wedge [\mathbf{D}^{V} : \mathsf{Zero}](\boldsymbol{x}) \to \boldsymbol{u}_{t_{i}^{0}}^{T}(\boldsymbol{x}) \Big)$$
 (5.6)

encodes the initial segment in the first row of the square. The sentence

$$\forall \boldsymbol{x} \forall \boldsymbol{y} \Big([\mathbf{D}^H : \mathsf{Succ}](\boldsymbol{x}, \boldsymbol{y}) \wedge [\mathbf{D}^V : \mathsf{Eq}](\boldsymbol{x}, \boldsymbol{y}) \to \bigvee_{(i, j) \in H} \boldsymbol{u}_i^T(\boldsymbol{x}) \wedge \boldsymbol{u}_j^T(\boldsymbol{y}) \Big)$$
(5.7)

encodes the horizontal matching condition. The sentence

$$\forall \boldsymbol{x} \forall \boldsymbol{y} \Big([\mathbf{D}^{V} : \mathsf{Succ}](\boldsymbol{x}, \boldsymbol{y}) \wedge [\mathbf{D}^{H} : \mathsf{Eq}](\boldsymbol{x}, \boldsymbol{y}) \to \bigvee_{(i,j) \in V} \boldsymbol{u}_{i}^{T}(\boldsymbol{x}) \wedge \boldsymbol{u}_{j}^{T}(\boldsymbol{y}) \Big)$$
(5.8)

encodes the vertical matching condition.

Combining $[D^{HV}:pos-full]$ with the formulas 5.3–5.8, we may encode an instance of the doubly exponential tiling problem as a (finite) satisfiability of a formula, so we have:

Proposition 8. The (finite) satisfiability problem for the monadic first-order logic with a single equivalence symbol \mathcal{L}_11E is N2EXPTIME-hard. More precisely, even the three-variable fragment \mathcal{L}_1^31E has this property.

5.5 Hardness with many equivalences in refinement

The argument from the previous section can be iterated to yield the hardness of the (finite) satisfiability of the monadic first-order logic with several builtin equivalence symbols in refinement $\mathcal{L}_1 e E_{\text{refine}}$. Our strategy is to encode (e+1)-exponential numbers at every equivalence class of the coarsest relation by thinking of the e-exponential numbers at the classes of the second-to-coarsest relation as bit positions.

For $e \in \mathbb{N}^+$, consider the predicate signature $E(e) = \langle e_1, e_2, \dots, e_e \rangle$ consisting of the builtin equivalence symbols e_i in refinement. Abbreviate the *coarsest* equivalence symbol $d = e_e$.

Definition 63. Let $e \in \mathbb{N}^+$. An e-exponential setup is a uniform effective polynomial-time process for creating the following data structure. For every $u \in \mathbb{N}^+$, there is a predicate signature D(e, u) having length polynomial in u, consisting of unary predicate symbols and containing E(e). The following data is effectively defined:

- E1 There is a $\mathcal{L}^3[D(e,u)]$ -sentence [D(e,u):pos-full], whose length grows polynomially as u grows.
- E2 If \mathfrak{A} is a D(e,u)-structure, $\mathfrak{A} \models [D(e,u)$:pos-full] and $D = d^{\mathfrak{A}}$, then there is a function [D(e,u):Data] $^{\mathfrak{A}} : \mathscr{E}D \to \mathbb{B}^{\exp_2^e(u)}$ that assigns an e-exponential bitstring to every D-class.
- E3 There is a $\mathcal{L}^3[D(e,u)]$ -formula $[D(e,u): Eq](\boldsymbol{x},\boldsymbol{y})$ whose length grows polynomially as u grows, such that for all $a,b\in A$:

$$\mathfrak{A} \vDash [\mathrm{D}(e,u) : \mathsf{Eq}](a,b) \ \mathit{iff} \ [\mathrm{D}(e,u) : \mathrm{Data}]^{\mathfrak{A}} D[a] = [\mathrm{D}(e,u) : \mathrm{Data}]^{\mathfrak{A}} D[b].$$

E4 There is a $\mathcal{L}^3[D(e,u)]$ -formula $[D(e,u):\mathsf{Zero}](\boldsymbol{x})$, whose length grows polynomially as u grows, such that for all $a \in A$:

$$\mathfrak{A} \vDash [D(e, u): \mathsf{Zero}](a) \text{ iff } [D(e, u): \mathsf{Data}]^{\mathfrak{A}} D[a] = 0.$$

E5 There is a $\mathcal{L}^3[D(e, u)]$ -formula [D(e, u): Largest](x), whose length grows polynomially as u grows, such that for all $a \in A$:

$$\mathfrak{A} \vDash [\mathrm{D}(e,u) : \mathsf{Largest}](a) \ \mathit{iff} \ [\mathrm{D}(e,u) : \mathrm{Data}]^{\mathfrak{A}} D[a] = N_{\exp_2^e(u)} = \exp_2^{e+1}(u) - 1.$$

E6 There is a $\mathcal{L}^3[D(e,u)]$ -formula $[D(e,u):Less](\boldsymbol{x},\boldsymbol{y})$, whose length grows polynomially as u grows, such that for all $a,b\in A$:

$$\mathfrak{A} \vDash [D(e, u): \mathsf{Less}](a, b) \ \textit{iff} \ [D(e, u): \mathsf{Data}]^{\mathfrak{A}} D[a] < [D(e, u): \mathsf{Data}]^{\mathfrak{A}} D[b].$$

E7 There is a $\mathcal{L}^3[D(e,u)]$ -formula $[D(e,u):Succ](\boldsymbol{x},\boldsymbol{y})$, whose length grows polynomially as u grows, such that for all $a,b\in A$:

$$\mathfrak{A} \vDash [\mathrm{D}(e,u) : \mathsf{Succ}](a,b) \ \mathit{iff} \ [\mathrm{D}(e,u) : \mathrm{Data}]^{\mathfrak{A}} D[b] = [\mathrm{D}(e,u) : \mathrm{Data}]^{\mathfrak{A}} D[a] + 1.$$

E8 For every $\exp_2^e(u)$ -bit number M, there is a $\mathcal{L}^3[D(e,u)]$ -formula [D(e,u):Eq-M](\boldsymbol{x}), whose length grows polynomially as u and M grow, such that for all $a \in A$:

$$\mathfrak{A} \vDash [D(e, u): \mathsf{Eq}\text{-}M](a) \ \mathit{iff} \ [D(e, u): \mathsf{Data}]^{\mathfrak{A}} D[a] = M.$$

The previous section defines a 1-exponential setup. Suppose that we have an e-exponential setup having predicate signature D = D(e, u). Analogously to the previous section, we will describe an (e+1)-exponential setup $D' = D(e+1, u) = D + \langle e \rangle$ which is based on D, where $e = e_{e+1}$ is the new coarsest builtin equivalence symbol in D'. Define the following formulas:

$$\begin{split} & [\mathrm{D}':\mathsf{pos-eq}](x,y) = [\mathrm{D}:\mathsf{Eq}](x,y) \\ & [\mathrm{D}':\mathsf{bit-0}](x) = \forall y (e(y,x) \land [\mathrm{D}':\mathsf{pos-eq}](y,x) \rightarrow d(y,x)) \\ & [\mathrm{D}':\mathsf{bit-1}](x) = \exists y (e(y,x) \land [\mathrm{D}':\mathsf{pos-eq}](y,x) \land \neg d(y,x)) \\ & [\mathrm{D}':\mathsf{pos-zero}](x) = [\mathrm{D}:\mathsf{Zero}](x) \\ & [\mathrm{D}':\mathsf{pos-largest}](x) = [\mathrm{D}:\mathsf{Largest}](x) \\ & [\mathrm{D}':\mathsf{pos-less}](x,y) = e(x,y) \land [\mathrm{D}:\mathsf{Less}](x,y) \\ & [\mathrm{D}':\mathsf{pos-succ}](x,y) = e(x,y) \land [\mathrm{D}':\mathsf{pos-zero}](x,y) \\ & [\mathrm{D}':\mathsf{pos-full}] = \forall x \exists y \Big(e(y,x) \land [\mathrm{D}':\mathsf{pos-zero}](y) \Big) \land \\ & \forall x \Big(\neg [\mathrm{D}':\mathsf{pos-largest}](x) \rightarrow \exists y [\mathrm{D}':\mathsf{pos-succ}](x,y) \Big) \\ & [\mathrm{D}':\mathsf{pos-0}](x) = [\mathrm{D}':\mathsf{pos-zero}](x) \\ & [\mathrm{D}':\mathsf{pos-}(p+1)](x) = \exists y \Big([\mathrm{D}':\mathsf{pos-}p](y) \land [\mathrm{D}':\mathsf{pos-succ}](y,x) \Big) \\ & \text{for } p \in [0, N_{\exp_5^6(y)} - 1]. \end{split}$$

Let $\mathfrak A$ be a D'-structure, $\mathfrak A \models [\mathrm{D':pos-full}]$ and let $E = e^{\mathfrak A}$. Define the function $[\mathrm{D':Data}]^{\mathfrak A} : \mathscr E E \to \mathbb B^{\exp_2^{e+1}(u)}$ assiging a $\exp_2^{e+1}(u)$ -bit bitstring to any E-class X by:

$$[\mathrm{D':Data}]_p^{\mathfrak{A}} X = \begin{cases} 1 \text{ if } \mathfrak{A} \vDash [\mathrm{D':pos-}(p-1)](a) \text{ implies } \mathfrak{A} \vDash [\mathrm{D':bit-1}](a) \text{ for all } a \in X \\ 0 \text{ otherwise} \end{cases}$$
 (E2) for $p \in [1, \exp_2^{e+1}(u)].$

Define the following formulas:

$$[\mathrm{D}' : \mathsf{Eq}](x,y) = \forall x' \forall y' \Big(e(x',x) \wedge e(y',y) \wedge \\ \tag{E3}$$

$$[\mathrm{D}' \texttt{:pos-eq}](\boldsymbol{x}', \boldsymbol{y}') \to ([\mathrm{D}' \texttt{:bit-0}](\boldsymbol{x}') \leftrightarrow [\mathrm{D}' \texttt{:bit-0}](\boldsymbol{y}'))\Big)$$

$$[\mathrm{D}'\mathsf{:}\mathsf{Zero}](oldsymbol{x}) = orall oldsymbol{y} \Big(oldsymbol{e}(oldsymbol{y},oldsymbol{x}) o [\mathrm{D}'\mathsf{:}\mathsf{bit} ext{-}0](oldsymbol{y}) \Big)$$

$$[\mathrm{D}'\mathsf{:}\mathsf{Largest}](\boldsymbol{x}) = \forall \boldsymbol{y} \Big(\boldsymbol{e}(\boldsymbol{y}, \boldsymbol{x}) \to [1\mathsf{:}\mathsf{bit-D}'](\boldsymbol{y}) \Big) \tag{E5}$$

$$[\mathrm{D}' \mathtt{:Less}](\boldsymbol{x}, \boldsymbol{y}) = \exists \boldsymbol{x}' \exists \boldsymbol{y}' \bigg(\boldsymbol{e}(\boldsymbol{x}', \boldsymbol{x}) \wedge \boldsymbol{e}(\boldsymbol{y}', \boldsymbol{y}) \wedge \tag{E6} \bigg)$$

$$\Big([\mathrm{D}' \texttt{:pos-eq}](\boldsymbol{x}', \boldsymbol{y}') \wedge [\mathrm{D}' \texttt{:bit-0}](\boldsymbol{x}') \wedge [\mathrm{D}' \texttt{:bit-1}](\boldsymbol{y}')\Big) \wedge$$

$$orall x''ig(\mathrm{[D':pos-less]}(x',x'')
ightarrow \exists y''ig(e(y'',y') \wedge$$

$$\left[\mathrm{D':pos\text{-}eq}](\boldsymbol{y''},\boldsymbol{x''}) \land \left([\mathrm{D':bit\text{-}}0](\boldsymbol{y''}) \leftrightarrow [\mathrm{D':bit\text{-}}0](\boldsymbol{x''})\right)\right)\right)$$

$$[D':\mathsf{Succ}](x,y) = \exists x' \exists y' \bigg(e(x',x) \land e(y',y) \land$$

$$(E7)$$

$$\Big([\mathrm{D}' \mathtt{:pos-eq}](\boldsymbol{x}', \boldsymbol{y}') \wedge [\mathrm{D}' \mathtt{:bit-0}](\boldsymbol{x}') \wedge [\mathrm{D}' \mathtt{:bit-1}](\boldsymbol{y}')\Big) \wedge$$

$$\forall \boldsymbol{x}'' \Big([\mathrm{D}' \texttt{:pos-less}](\boldsymbol{x}'', \boldsymbol{x}') \to [\mathrm{D}' \texttt{:bit-1}](\boldsymbol{x}'') \Big) \land$$

$$orall oldsymbol{y}''ig([\mathrm{D}'\mathtt{:}\mathsf{pos\text{-}less}](oldsymbol{y}'',oldsymbol{y}') o [\mathrm{D}'\mathtt{:}\mathsf{bit\text{-}}0](oldsymbol{y}'')ig) \wedge$$

$$orall x''ig([\mathrm{D}' ext{:pos-less}](x',x'')
ightarrow \exists y''ig(e(y'',y') \wedge$$

$$\big[\mathrm{D}' \mathtt{:pos\text{-}eq} \big](\boldsymbol{y}'', \boldsymbol{x}'') \wedge \big([\mathrm{D}' \mathtt{:bit\text{-}}0](\boldsymbol{y}'') \leftrightarrow [\mathrm{D}' \mathtt{:bit\text{-}}0](\boldsymbol{x}'')) \big) \bigg) \bigg).$$

If $M \in \mathbb{B}_{\exp_2^{e+1}(u)}$ is an $\exp_2^{e+1}(u)$ -bit number, let $t = \|M\|$ and define the formula:

$$[\mathrm{D}':\mathsf{Eq}\text{-}M](\boldsymbol{x}) = \forall \boldsymbol{y} \bigg(\boldsymbol{e}(\boldsymbol{y},\boldsymbol{x}) \to \bigwedge_{0 \le p < t} \Big([\mathrm{D}':\mathsf{pos}\text{-}p](\boldsymbol{y}) \to [\mathrm{D}':\mathsf{bit}\text{-}\overline{M}_{p+1}](\boldsymbol{y}) \Big) \wedge \qquad (E8)$$

$$\forall \boldsymbol{x} \Big([\mathrm{D}':\mathsf{pos}\text{-}(t-1)](\boldsymbol{y}) \wedge [\mathrm{D}':\mathsf{pos}\text{-}\mathsf{less}](\boldsymbol{y},\boldsymbol{x}) \to [\mathrm{D}':\mathsf{bit}\text{-}0](\boldsymbol{x}) \Big) \bigg).$$

This completes the definition of the (e+1)-exponential setup.

We can encode an instance of the (e + 1)-exponential tiling problem into a (finite) satisfiability D-formula completely analogously to the previous section. Thus we have:

Proposition 9. The (finite) satisfiability problem for the monadic first-order logic with e equivalence symbols in refinement $\mathcal{L}_1 e E_{\mathsf{refine}}$ is N(e+1) EXPTIME-hard. Even the three-variable fragment $\mathcal{L}_1^3 e E_{\mathsf{refine}}$ has this property.

5 Monadic logics

By Proposition 1 and Proposition 3, the same holds for $\mathcal{L}_1^{(3)}eE_{\mathsf{global}}$ and $\mathcal{L}_1^{(3)}eE_{\mathsf{local}}$.

Proposition 10. The (finite) satisfiability problem for the monadic first-order logic with many equivalence symbols in refinement $\mathcal{L}_1 E_{\mathsf{refine}}$ is Elementary-hard. Even the three-variable fragment $\mathcal{L}_1^3 E_{\mathsf{refine}}$ has this property.

By Proposition 2 and Proposition 4, the same holds for $\mathcal{L}_1^{(3)} E_{\mathsf{global}}$ and $\mathcal{L}_1^{(3)} E_{\mathsf{local}}$.

6 Two-variable first-order logics

In this chapter we investigate quastions about the complexity of satisfiability and finite satisfiability of the two-variable first-order logic \mathcal{L}^2 with builtin equivalence symbols in refinement. Recall that for this logic we are only interested in predicate signatures restricted to only unary and binary predicate symbols and the formal equality.

The base case for \mathcal{L}^2 and the general case of several *unrelated* builtin equivalence symbols have been studied. The following is known:

- The two-variable first-order logic \mathcal{L}^2 has the finite model property [10] and its (finite) satisfiability problem is NEXPTIME-complete [11].
- The two-variable first-order logic with a single builtin equivalence symbol \mathcal{L}^21E has the finite model property and its (finite) satisfiability problem is NEXPTIME-complete [12].
- The two-variable first-order logic with two *unrelated* builtin equivalence symbols \mathcal{L}^22E lacks the finite model property and both its satisfiability and finite satisfiability problems are N2ExpTime-complete [13].
- The satisfiability and finite satisfiability problems for the two-variable first-order logic with e builtin equivalence symbols $\mathcal{L}^2 e \mathbf{E}$ are both undecidable for $e \geq 3$ [14].

In this chapter we prove that the logic $\mathcal{L}^2 e \mathcal{E}_{\mathsf{refine}}$ has the finite model property and its (finite) satisfiability problem is in NEXPTIME for every $e \geq 0$.

6.1 Type realizibility

Recall from Section 1.6 about normal forms that every \mathcal{L}^2 -sentence φ can be reduced in deterministic polynomial time to a sentence sctr φ in Scott normal form:

$$\forall \boldsymbol{x} \forall \boldsymbol{y} (\alpha_0(\boldsymbol{x}, \boldsymbol{y}) \vee \boldsymbol{x} = \boldsymbol{y}) \wedge \bigwedge_{1 \leq i \leq m} \forall \boldsymbol{x} \exists \boldsymbol{y} (\alpha_i(\boldsymbol{x}, \boldsymbol{y}) \wedge \boldsymbol{x} \neq \boldsymbol{y}),$$

where $m \geq 1$, all the formulas α_i are quantifier-free and use at most linearly many new unary predicate symbols. The semantic connection between φ and sctr φ is that they are essentially equisatisfiable. More precisely, every model for φ of cardinality at least 2 can be enriched to a model for sctr φ and also every model of sctr φ (which by $m \geq 1$ must have cardinality at least 2) is a model for φ . We refer to α_0 as the universal part of the formula sctr φ and to α_i for $i \in [1, m]$ as the existential parts of sctr φ .

For any formula $\operatorname{sctr} \varphi$ in Scott normal form, we may replace its existential parts by fresh binary predicate symbols: for $i \in [1, m]$ let m_i be a fresh binary predicate symbol with intended interpretation $\forall x \forall y (m_i(x, y) \leftrightarrow \alpha_i(x, y))$. Since this is a universal sentence, it can be added to the universal part α_0 . The symbols m_i are the message symbols. Hence $\operatorname{sctr} \varphi$ can be transformed in deterministic polynomial time to the form:

$$\forall \boldsymbol{x} \forall \boldsymbol{y} (\alpha(\boldsymbol{x}, \boldsymbol{y}) \vee \boldsymbol{x} = \boldsymbol{y}) \wedge \bigwedge_{1 \leq i \leq m} \forall \boldsymbol{x} \exists \boldsymbol{y} (\boldsymbol{m}_i(\boldsymbol{x}, \boldsymbol{y}) \wedge \boldsymbol{x} \neq \boldsymbol{y}), \tag{6.1}$$

where the universal part α is quantifier-free and over an extended signature. For convenience, we make the existential parts part of the signature, so we can focus only on the universal part. The following term is similar to the one defined in [4]:

Definition 64. A classified signature $\langle \Sigma, \bar{m} \rangle$ for the two-variable first-order logic \mathcal{L}^2 is a predicate signature Σ together with a nonempty sequence $\bar{m} = m_1 m_2 \dots m_m$ of distinct binary predicate symbols from Σ having intended interpretation

$$\bigwedge_{1 \le i \le m} \forall \boldsymbol{x} \exists \boldsymbol{y} (\boldsymbol{m}_i(\boldsymbol{x}, \boldsymbol{y}) \land \boldsymbol{x} \ne \boldsymbol{y}). \tag{6.2}$$

That is, a classified signature *automatically includes* the existential parts, so $\langle \Sigma, \bar{m} \rangle$ -structures *automatically satisfy* the the existential parts:

Definition 65. A structure \mathfrak{A} for the classified signature $\langle \Sigma, \bar{m} \rangle$ is a structure for the predicate signature Σ that satisfies the intended interpretation eq. (6.2) of the message symbols. Note that \mathfrak{A} must have cardinality at least 2 by $m \geq 1$.

Definition 66. The (finite) classified satisfiability problem for two-variable first-order logic is: given a classified signature $\langle \Sigma, \bar{m} \rangle$ and a quantifier-free $\mathcal{L}^2[\Sigma]$ -formula $\alpha(x, y)$, is there a (finite) $\langle \Sigma, \bar{m} \rangle$ -structure \mathfrak{A} satisfying eq. (6.1). Note that since \mathfrak{A} is a $\langle \Sigma, \bar{m} \rangle$ -structure, it must also satisfy eq. (6.2) and must have cardinality at least 2. Denote the classified satisfiability problem by CL-SAT- \mathcal{L}^2 and its finite version by FIN-CL-SAT- \mathcal{L}^2 .

Remark 22. The problem of (finite) satisfiability reduces in nondeterministic polynomial time to the problem of (finite) classified satisfiability:

$$(\text{FIN-}) \text{SAT-} \mathcal{L}^2 \leq_m^{\text{NPTIME}} (\text{FIN-}) \text{CL-SAT-} \mathcal{L}^2.$$

Proof. Note that (finite) satisfiability in the class of models of cardinality 1 is trivially decidable in nondeterministic polynomial time — just guess the atomic 1-type (whose size is polynomially bounded by the size of the predicate signature) of the unique element of the structure and check (in deterministic polynomial time) that it satisfies the original formula.

Scott normal form shows that (finite) satisfiability in the class of models of cardinality at least 2 reduces in deterministic polynomial time to (finite) classified satisfiability. Hence the following nondeterministic polynomial time procedure reduces an instance (Σ, φ) of the (finite) satisfiability problem to an instance (Σ', \bar{m}) , α of the (finite)

classified satisfiability problem: First check if φ is satisfiable in the class of models of cardinality 1. If that is the case, then extend Σ to Σ' by adding a single message symbol m_1 and let $\alpha = (x = x)$ be a fixed predicate tautology. Otherwise transform φ into the form eq. (6.1) and let α be the universal part of that normal form.

6.1.1 Type instances

A type instance $T \subseteq T[\Sigma]$ over the classified signature $\langle \Sigma, \bar{m} \rangle$ is a nonempty set of 2-types that is closed under inversion. The set of 1-types included in the type instance T is $\Pi_T = \{ \operatorname{tp}_x \tau \mid \tau \in T \}$. Two 1-types $\pi, \pi' \in \Pi_T$ are connectable if some $\tau \in T$ connects them. Connectability is symmetric, however it is not necessarily neither transitive nor reflexive. A 1-type is a king type if it is not connectable with itself; the set of king types is K_T . A 1-type that is not a king type is a worker type; the set of worker types is W_T . If $\pi \in \Pi_T$, the neighbours $T[\pi] \subseteq \Pi_T$ of π are:

$$T[\pi] = \begin{cases} \Pi_T & \text{if } \pi \text{ is a worker type} \\ \Pi_T \setminus \{\pi\} & \text{otherwise, that is if } \pi \text{ is a king type.} \end{cases}$$

If \mathfrak{A} is a $\langle \Sigma, \bar{m} \rangle$ -structure, the type instance of \mathfrak{A} is:

$$\mathcal{T}[\mathfrak{A}] = \left\{ \operatorname{tp}^{\mathfrak{A}}[a,b] \;\middle|\; a \in A, b \in A \setminus \{a\} \right\}.$$

That is $T = T[\mathfrak{A}]$ is the set of 2-types realized in \mathfrak{A} . Note that this is indeed a type instance over $\langle \Sigma, \bar{m} \rangle$ since \mathfrak{A} has cardinality at least 2 and since it is closed under inversion by construction. If T is the type instance of \mathfrak{A} , then \mathfrak{A} is a model for T. Then Π_T is the set of 1-types that are realized in \mathfrak{A} ; K_T is the set of 1-types that are realized by a unique element in \mathfrak{A} and W_T is the set of 1-types that are realized by at least 2 elements in \mathfrak{A} . If $a \in A$ realizes $\pi = \operatorname{tp}^{\mathfrak{A}}[a]$, then the neighbours $T[\pi] = \{\operatorname{tp}^{\mathfrak{A}}[b] \mid b \in A \setminus \{a\}\}$ are exactly the 1-types realized by elements other than a. The element a is a king if it realizes a king type; otherwise a is a worker.

Definition 67. The (finite) type realizability problem for \mathcal{L}^2 is: given a classified signature $\langle \Sigma, \bar{m} \rangle$ and a type instance T over $\langle \Sigma, \bar{m} \rangle$, is there a (finite) model for T. Denote the type realizability problem by TP-REALIZ- \mathcal{L}^2 and its finite version by FIN-TP-REALIZ- \mathcal{L}^2 .

Remark 23. Let $\langle \Sigma, \bar{m} \rangle$ be a classified signature and let $\alpha(x, y)$ be a quantifier-free $\mathcal{L}^2[\Sigma]$ -formula. Let $T^{\alpha} \subseteq T[\Sigma]$ is the set of those 2-types that are consistent with $\alpha(x, y)$ and the intended interpretation for classified signatures eq. (6.2). Then a $\langle \Sigma, \bar{m} \rangle$ -structure \mathfrak{A} is a classified model for $\alpha(x, y)$ iff $T[\mathfrak{A}] \subseteq T^{\alpha}$.

Recall that the number of possible 1-types or 2-types over Σ is exponentially bounded by the size of Σ and that the size of a 1-type or a 2-type over Σ is linearly bounded by the size of Σ . Hence the (finite) classified satisfiability problem reduces to the (finite) type realizability problem in nondeterministic exponential time:

$$(\text{FIN-})\text{CL-SAT-}\mathcal{L}^2 \leq_m^{\text{NEXPTIME}} (\text{FIN-})\text{TP-REALIZ-}\mathcal{L}^2.$$

Definition 68. Let T be a type instance over $\langle \Sigma, \bar{m} \rangle$. A star-type $\sigma \subseteq T$ over T is a nonempty set of 2-types satisfying the following conditions:

- (σx) If $\tau, \tau' \in \sigma$, then $\operatorname{tp}_x \tau = \operatorname{tp}_x \tau'$. Denote $\operatorname{tp}_x \tau$ for any $\tau \in \sigma$ by $\pi = \operatorname{tp}_x \sigma$. The star-type is a king star-type if π is a king type. Otherwise the star-type is a worker star-type.
- $(\sigma \pi y)$ If $\pi' \in T[\pi]$, then some $\tau \in \sigma$ has $tp_y \tau = \pi'$.
- $(\sigma \kappa \boldsymbol{y})$ If $\kappa' \in T[\pi] \cap K_T$, then a unique $\tau \in \sigma$ has $tp_{\boldsymbol{y}}\tau = \kappa'$. The existence follows from $(\sigma \pi \boldsymbol{y})$.
- (σm) If $m \in \bar{m}$, then some $\tau \in \sigma$ has $m(x, y) \in \tau$.

The size of a star-type is linear with respect to the size of the type instance.

If \mathfrak{A} is a model for T, the *star-type* $\operatorname{stp}^{\mathfrak{A}}[a]$ of any element $a \in A$ is:

$$\operatorname{stp}^{\mathfrak{A}}[a] = \left\{ \operatorname{tp}^{\mathfrak{A}}[a, b] \mid b \in A \setminus \{a\} \right\}.$$

Remark 24. Indeed $\sigma = \text{stp}^{\mathfrak{A}}[a]$ is a star-type over T.

Proof. That σ is nonempty follows from the observation that A has cardinality at most 2. We check the conditions for σ to be a star-type over T:

- (σx) Let $\tau, \tau' \in \sigma$. Then $\tau = \operatorname{tp}^{\mathfrak{A}}[a, b]$ and $\tau' = \operatorname{tp}^{\mathfrak{A}}[a, b']$ for some $b, b' \in A \setminus \{a\}$. Then $\operatorname{tp}_x \tau = \operatorname{tp}^{\mathfrak{A}}[a] = \operatorname{tp}_x \tau' = \pi$.
- $(\sigma \pi \boldsymbol{y})$ Let $\pi' \in T[\pi]$. If π' is a worker type then at least 2 elements in \mathfrak{A} realize π' . Let $b \neq c \in A$ realize π' . Let $b' \in \{b, c\} \setminus \{a\}$. Then $\tau = \operatorname{tp}^{\mathfrak{A}}[a, b'] \in \sigma$ has $\operatorname{tp}_{\boldsymbol{y}} \tau = \pi'$. If π' is a king type then $\pi' \neq \pi$ and some $b \in A \setminus \{a\}$ realizes π' . Then $\tau = \operatorname{tp}^{\mathfrak{A}}[a, b] \in \sigma$ has $\operatorname{tp}_{\boldsymbol{y}} \tau = \pi'$.
- $(\sigma \kappa y)$ Let $\kappa' \in T[\pi] \cap K_T$. Then $\kappa' \neq \pi$. Suppose towards a contradiction that some $\tau \neq \tau' \in \sigma$ have $\operatorname{tp}_y \tau = \operatorname{tp}_y \tau' = \kappa'$. Then $\tau = \operatorname{tp}^{\mathfrak{A}}[a,b]$ and $\tau' = \operatorname{tp}^{\mathfrak{A}}[a,b']$ for some $b \neq b' \in A \setminus \{a\}$. Then $\operatorname{tp}^{\mathfrak{A}}[b] = \operatorname{tp}^{\mathfrak{A}}[b'] = \kappa'$ a contradiction with the observation that king types are realized by a unique element in \mathfrak{A} .
- (σm) Let $m \in \bar{m}$. Since \mathfrak{A} is a $\langle \Sigma, \bar{m} \rangle$ -structure, some $b \in A \setminus \{a\}$ has $m(x, y) \in \operatorname{tp}^{\mathfrak{A}}[a, b]$. Now $\tau = \operatorname{tp}^{\mathfrak{A}}[a, b] \in \sigma$.

Definition 69. Let T be a type instance over $\langle \Sigma, \bar{m} \rangle$. A certificate \mathcal{S} for T is a nonempty set of star-types over T satisfying the following conditions:

(ST) If $\tau \in T$ then some $\sigma \in S$ has $\tau \in \sigma$, that is there is a star-type containing each 2-type. Note that if $\pi \in \Pi_T$ then some $\sigma \in S$ has $\operatorname{tp}_x \sigma = \pi$. Indeed, if $\pi \in \Pi_T$ then some $\tau \in T$ has $\operatorname{tp}_x \tau = \pi$.

 $(S\kappa)$ If $\kappa \in K_T$, then a unique $\sigma \in S$ has $\operatorname{tp}_x \sigma = \kappa$. The existence follows from (ST).

Note that in general the size of a certificate may be exponential in the size of the type instance. However, polynomial certificates exist:

Lemma 7 (Certificate extraction). Let \mathfrak{A} be a model for the type instance T. For each 2-type $\tau \in T$ let $a_{\tau} \neq b_{\tau} \in A$ be two distinct elements realizing τ , that is $\operatorname{tp}^{\mathfrak{A}}[a_{\tau}, b_{\tau}] = \tau$. Let $S = \{ \operatorname{stp}^{\mathfrak{A}}[a_{\tau}] \mid \tau \in T \}$. Then S is a certificate for T. The size of S is quadratic with respect to the size of the type instance.

Proof. That S is nonempty follows from T being nonempty. We check the conditions for a certificate for T:

- (ST) Let $\tau \in T$. Then $\tau = \operatorname{tp}^{\mathfrak{A}}[a_{\tau}, b_{\tau}] \in \operatorname{stp}^{\mathfrak{A}}[a_{\tau}] \in S$.
- $(S\kappa)$ Let $\kappa \in K_T$ and let $\sigma, \sigma' \in S$ have $\operatorname{tp}_x \sigma = \operatorname{tp}_x \sigma' = \kappa$. We claim that $\sigma = \sigma'$. We have $\sigma = \operatorname{stp}^{\mathfrak{A}}[a_{\tau}]$ and $\sigma' = \operatorname{stp}^{\mathfrak{A}}[a_{\tau'}]$ for some $\tau, \tau' \in T$. We claim that $a_{\tau} = a_{\tau'}$. Indeed, if $a_{\tau} \neq a_{\tau'}$ then $\tau'' = \operatorname{tp}^{\mathfrak{A}}[a_{\tau}, a_{\tau'}] \in \operatorname{stp}^{\mathfrak{A}}[a_{\tau}]$ connects κ with itself a contradiction. So $a_{\tau} = a_{\tau'}$, hence $\sigma = \sigma'$.

Lemma 8 (Certificate expansion). Let S be a certificate for the type instance T over the classified signature $\langle \Sigma, \bar{m} \rangle$. Then T has a finite model. More precisely, let $t \geq |T|$ be a parameter. Then T has a finite model in which each worker type is realized at least t times.

Proof. We adapt the standard strategy¹ used in the proof of the finite model property for the logic \mathcal{L}^2 , as presented in [2]. We build a model \mathfrak{A} for T as follows. The domain A of \mathfrak{A} is the union of the following disjoint sets of elements:

- The singleton set $A^{\sigma} = \{a^{\sigma}\}$ for every king star-type $\sigma \in \mathcal{S}$, $\operatorname{tp}_{x} \sigma \in K_{T}$. The elements a^{σ} are the *kings*.
- The three disjoint copies of t elements $A^{\sigma} = A_0^{\sigma} \cup A_1^{\sigma} \cup A_2^{\sigma}$ for every worker star-type $\sigma \in \mathcal{S}$, $\operatorname{tp}_{\boldsymbol{x}} \sigma \in \operatorname{W}_{\operatorname{T}}$, where $A_i^{\sigma} = \{a_{i1}^{\sigma}, a_{i2}^{\sigma}, \dots, a_{it}^{\sigma}\}$ for $i \in \{0, 1, 2\}$. The elements a_{ii}^{σ} are the workers.

Let $\sigma: A \to \mathcal{S}$ denote the intended star-type of the elements: $\sigma(a) = \sigma$ on A^{σ} . Let $\pi: A \to \Pi_{\mathcal{T}}$ denote the intended 1-type of the elements: $\pi(a) = \operatorname{tp}_{\boldsymbol{x}}(\sigma(a))$. We consistently assign 2-types between distinct elements on stages.

Realization of kings We first assign 2-types consistently between the kings and any other element. Let $a \in A$ be any king. Then $a = a^{\sigma}$ for some king star-type $\sigma \in \mathcal{S}$. Let $\kappa = \pi(a) = \operatorname{tp}_x \sigma$ be the intended (king) 1-type of a. Let $b \in A \setminus \{a\}$ be any

¹ with the slight difference that our approach doesn't need a court, since the information about it is implicit in the certificate

other element and let $\sigma' = \sigma(b)$ and $\pi' = \pi(b)$ be its intended star-type and 1-type, respectively. By $(\mathcal{S}\kappa)$, $\sigma' \neq \sigma$ and $\pi' \neq \kappa$, so $\kappa \in T[\pi'] \cap K_T$. By $(\sigma \kappa y)$, a unique $\tau' \in \sigma'$ has $\operatorname{tp}_y \tau' = \kappa$. We assign $\operatorname{tp}^{\mathfrak{A}}[b,a] = \tau'$. We claim that this assignment is consistent. First, it is symmetric: suppose that b is a king, so that π' is a king type. Then by $(\sigma \kappa y)$, there is a unique $\tau \in \sigma$ having $\operatorname{tp}_y \tau = \pi'$. Since T is closed under inversion, $\tau^{-1} \in \sigma''$ for some $\sigma'' \in \mathcal{S}$. Since $\operatorname{tp}_x \sigma'' = \pi'$ is a king type, by $(\mathcal{S}\kappa)$ $\sigma'' = \sigma'$ and by $(\sigma \kappa y)$, $\tau^{-1} = \tau'$. That is, at the opposite situation we would assign exactly the inverse type consistently. Next, the assignment covers the star-type σ . Indeed, let $\tau \in \sigma$ be any 2-type that needs to be realized. Since κ is a king type, $\pi' = \operatorname{tp}_y \tau \neq \kappa$. Since T is closed under inversion, $\tau^{-1} \in \sigma'$ for some $\sigma' \in \mathcal{S}$. Since $\operatorname{tp}_x \sigma' = \pi' \neq \kappa$, $\sigma' \neq \sigma$ and $\kappa \in T[\pi'] \cap K_T$, so $\tau' = \tau^{-1} \in \sigma'$ is the unique having $\operatorname{tp}_y \tau' = \kappa$, and for every element $b \in A$ having intended star-type σ' , we would have assigned $\operatorname{tp}^{\mathfrak{A}}[b,a] = \tau'$, so $\operatorname{tp}^{\mathfrak{A}}[a,b] = \tau$ is realized. Note that these assignments fix the 2-type between any king and any other element.

Realization of workers Next we consistently assign 2-types between workers. Let $a \in A$ be any worker and let $\sigma = \sigma(a)$ and $\pi = \pi(a)$ be its intended star-type and 1-type, respectively. Then $a = a_{ij}^{\sigma}$ for some $i \in \{0,1,2\}$ and $j \in [1,t]$. Let $i' = (i+1 \mod 3) \in \{0,1,2\}$ be the index of the next copy of the workers. Let $\tau \in \sigma$ be any 2-type such that $\pi' = \operatorname{tp}_y \tau$ is a worker type (the case where $\operatorname{tp}_y \tau$ is a king type has been taken care of during the realization of kings). Let $U = \{\eta \in \sigma \mid \operatorname{tp}_y \eta = \pi'\}$ be the set of all 2-types from σ parallel to τ . We simultaneously find distinct elements b_{η} that are distinct from a for the assignments $\operatorname{tp}^{\mathfrak{A}}[a,b_{\eta}] = \eta$. By (ST) and since T is closed under inversion, for every $\eta \in U$ there is some star-type $\sigma'_{\eta} \in \mathcal{S}$ such that $\eta^{-1} \in \sigma'_{\eta}$. Note that $\operatorname{tp}_x \sigma'_{\eta} = \pi'$ is a worker type. Since $U \subseteq T$ we have $|U| \le t$, so there are enough distinct peasants from the next copy $b_{\eta} \in A_{i'}^{\sigma'_{\eta}}$ for the assignments $\operatorname{tp}^{\mathfrak{A}}[a,b_{\eta}] = \eta$. These assignments do not clash with each other, since they are made between consecutive copies of worker elements.

Completion Suppose that $a \neq b \in A$ are any two distinct elements such that $\operatorname{tp}^{\mathfrak{A}}[a,b]$ has not yet been assigned. Then both $\pi(a)$ and $\pi(b)$ are worker types, so $\pi(b) \in T[\pi(a)] = \Pi_T$. By $(\sigma \pi y)$, some $\tau \in \sigma(a)$ has $\operatorname{tp}_y \tau = \pi(b)$, so we may assign $\operatorname{tp}^{\mathfrak{A}}[a,b] = \tau$

The structure \mathfrak{A} is a $\langle \Sigma, \overline{m} \rangle$ -structure by (σm) and is a model for T by $(\mathcal{S}T)$.

Proposition 11. The type realizability problem for \mathcal{L}^2 coincides with the finite type realizability problem and is in NPTIME.

Proof. Let (Π, T) be a type instance for the classified signature $\langle \Sigma, \bar{m} \rangle$. Guess a polynomial certificate for (Π, T) . By Lemma 7 and Lemma 8, such a certificate exists iff (Π, T) is realizable. The general version coincides with the finite version since the model constructed in Lemma 8 is finite.

Corollary 3 ([11]). The logic \mathcal{L}^2 has the finite model property and its (finite) satisfiability problem is in NEXPTIME.

6.2 Type realizibility with equivalences

In this section we consider the logic $\mathcal{L}^2 e \mathcal{E}_{\mathsf{refine}}$ featuring $e \geq 1$ equivalence symbols e_1, e_2, \ldots, e_e in refinement. By convention let e_0 be the formal equality, so that $\mathcal{L}^2 0 \mathcal{E}_{\mathsf{refine}}$ means \mathcal{L}^2 . Abbreviate the coarsest equivalence symbol $e = e_e$.

The following reductions carry over from the previous section:

$$\begin{split} &(\text{FIN-})\text{SAT-}\mathcal{L}^2eE_{\text{refine}} \leq_m^{\text{NPTIME}} (\text{FIN-})\text{CL-SAT-}\mathcal{L}^2eE_{\text{refine}} \\ &(\text{FIN-})\text{CL-SAT-}\mathcal{L}^2eE_{\text{refine}} \leq_m^{\text{NEXPTIME}} (\text{FIN-})\text{TP-REALIZ-}\mathcal{L}^2eE_{\text{refine}}. \end{split}$$

We proceed to define new terms. The terminology is based on [4].

Let $\langle \Sigma, \bar{m} \rangle$ be a predicate signature. A 2-type $\tau \in T[\Sigma]$ is a galactic type if $e(x, y) \in \tau$. Otherwise, that is if $(\neg e(x, y)) \in \tau$, the 2-type is a cosmic type. Let T be a type instance over $\langle \Sigma, \bar{m} \rangle$. The sets of galactic and cosmic types in T are T^g and T^c , respectively. Two 1-types $\pi, \pi' \in \Pi_T$ are cosmically connectable if some cosmic $\tau \in T^c$ connects them. A 1-type $\nu \in \Pi_T$ is a noble type if it is not cosmically connectable with itself; the set of noble types is N_T . A 1-type that is not noble is a peasant type and the set of peasant types is P_T . Any king type is a noble type.

We think of the *e*-classes in a structure as *galaxies*; of the whole structure as the *cosmos*; of the galactic 2-types as characterizing the interactions in the interior of the galaxies, while cosmic 2-types characterize the interactions between different galaxies.

Let \mathfrak{A} be a model for T. An element $a \in A$ is *noble* if it realizes a noble type; otherwise a is *peasant*. Then N_T is the set of 1-types realized in a unique galaxy of \mathfrak{A} and P_T is the set of 1-types realized in at least 2 galaxies of \mathfrak{A} .

Definition 70. The model \mathfrak{A} for T is peasantly united if whenever $\pi \in \Pi_T$ is a peasant type that is realized in some peasant galaxy $X \in \mathcal{G}_P$, then π is also realized in some other peasant galaxy $Y \in \mathcal{G}_P \setminus \{X\}$.

Lemma 9 (Peasant unitedness). If the type instance T has a (finite) model, then it has a (finite) peasantly united model.

Proof. Suppose that \mathfrak{A} is a (finite) model for T. We copy its peasant galaxies. We describe the (finite) model \mathfrak{A}' by describing its galaxies \mathcal{G}' . The noble galaxies \mathcal{G}'_N of \mathfrak{A}' coincide with the noble galaxies \mathcal{G}_N of \mathfrak{A} . The peasant galaxies \mathcal{G}'_P of \mathfrak{A}' consist of two copies X_1, X_2 of each peasant galaxy $X \in \mathcal{G}_P$ of \mathfrak{A} . This naturally induces the 1-type of every $a \in A'$ and the 2-type between distinct elements that do not come from the two copies of the same peasant galaxy. Already at this point, the partial structure \mathfrak{A}' already satisfies the existential parts eq. (6.2), so it is a partial $\langle \Sigma, \bar{m} \rangle$ -structure. We proceed to complete \mathfrak{A}' . Let $X \in \mathcal{G}_P$ be a peasant \mathfrak{A} -galaxy and let $a_1 \in X_1$ and $b_2 \in X_2$ be any elements from the different copies of X in \mathfrak{A}' . Note that $a, b \in X$ and let $\pi = \operatorname{tp}^{\mathfrak{A}'}[a] = \operatorname{tp}^{\mathfrak{A}}[a]$. Since X is a peasant galaxy, we have that π is a peasant type. Hence π is realized in at least 2 \mathfrak{A} -galaxies. Let $a' \in A \setminus X$ realizes π . Then $\operatorname{tp}^{\mathfrak{A}'}[a_1,b_2] = \operatorname{tp}^{\mathfrak{A}}[a',b]$ is appropriate. The model \mathfrak{A}' is peasantly united by construction: any peasant type that is realized in a peasant galaxy X_i is also realized in X_{3-i} .

Definition 71. The model \mathfrak{A} for T is nobly distinguished if every noble galaxy contains only noble elements. That is, if $E = e^{\mathfrak{A}}$ and $a \in A$ has $\operatorname{tp}^{\mathfrak{A}}[a] \in N_T$, then $\operatorname{tp}^{\mathfrak{A}}[b] \in N_T$ for every $b \in E[a]$.

Definition 72. The (finite) nobly distinguished type realizability problem for the fragment $\mathcal{L}^2 e E_{\mathsf{refine}}$ is: given a classified signature $\langle \Sigma, \bar{m} \rangle$ and a type instance T over $\langle \Sigma, \bar{m} \rangle$, is there a (finite) nobly distinguished model for T. Denote the nobly distinguished type realizability problem by ND-TP-REALIZ- $\mathcal{L}^2 e E_{\mathsf{refine}}$ and its finite version by FIN-ND-TP-REALIZ- $\mathcal{L}^2 e E_{\mathsf{refine}}$.

Let T be a type instance over $\langle \Sigma, \bar{\boldsymbol{m}} \rangle$. For every noble type $\nu \in N_T$, let \boldsymbol{p}^{ν} be a new unary predicate symbol. Let $\Sigma' = \Sigma + \langle \boldsymbol{p}^{\nu} \mid \nu \in N_T \rangle$ be an enrichment of Σ featuring these new symbols. Consider the following sets of literal over Σ' :

$$oldsymbol{p}_{
u}(oldsymbol{x}) = \{oldsymbol{p}^{
u}(oldsymbol{x})\} \cup \left\{
eg oldsymbol{p}^{
u'}(oldsymbol{x}) \ \middle| \
u' \in \mathrm{N_T} \setminus \{
u\}
ight\}.$$

Let \perp be a special element and define the special set of literals:

$$\boldsymbol{p}_{\perp}(\boldsymbol{x}) = \{ \neg \boldsymbol{p}^{\nu}(\boldsymbol{x}) \mid \nu \in N_{\mathrm{T}} \}$$
.

If $\pi \in \Pi_T$ is a 1-type and $\rho \in N_T \cup \{\bot\}$, let π_ρ be the following 1-type over Σ' :

$$\pi_{\rho} = \pi \cup \boldsymbol{p}_{\rho}(\boldsymbol{x}).$$

We refer to π_{ρ} as the ρ -copy of π . If $\tau \in T$ and $\rho, \rho' \in N_T \cup \{\bot\}$, let $\tau_{\rho\rho'}$ be the following 2-type over Σ :

$$\tau_{\rho\rho'} = \tau \cup \boldsymbol{p}_{\rho}(\boldsymbol{x}) \cup \boldsymbol{p}_{\rho'}(\boldsymbol{y}).$$

So we have $\operatorname{tp}_{\boldsymbol{x}}(\tau_{\rho\rho'}) = (\operatorname{tp}_{\boldsymbol{x}}\tau)_{\rho}$. Define the type instance T' over $\langle \Sigma', \bar{\boldsymbol{m}} \rangle$ as follows:

$$T' = \left\{ \tau_{\rho \rho'} \mid \tau \in T; \rho, \rho' \in N_T \cup \{\bot\} \right\}.$$

The size of T' is quadratic with respect to the size of T.

Definition 73. A promotion for the type instance T over $\langle \Sigma, \bar{m} \rangle$ is a type instance $T_{\bullet} \subseteq T'$ over $\langle \Sigma', \bar{m} \rangle$ such that for every $\tau \in T$ there are some $\rho, \rho' \in N_T \cup \{\bot\}$ such that $\tau_{\rho\rho'} \in T_{\bullet}$.

Lemma 10 (Noble distinguishability). The type instance T has a (finite) model iff there is some promotion T_{\bullet} for T that has a (finite) nobly distinguished model.

Proof. First, suppose that \mathfrak{A} is (finite) a model for T and let $\mathcal{G} = \mathscr{E}e^{\mathfrak{A}}$ be the set of its galaxies. By Lemma 9 we may without loss of generality assume that \mathfrak{A} is peasantly united. We define a promotion T_{\bullet} for T and a Σ' -enrichment \mathfrak{A}' that is a nobly distinguished model for T_{\bullet} . For every noble type $\nu \in N_T$, let $X_{\nu} \in \mathcal{G}_N$ be the unique (noble) galaxy realizing it. Note that there might be distinct noble types realized in the same galaxy: $X_{\nu} = X_{\nu'}$ for $\nu \neq \nu' \in N_T$. For every noble galaxy $X \in \mathcal{G}_N$ choose an arbitrary noble type ν realized in it: $X = X_{\nu}$. Define the enrichment \mathfrak{A}' as follows: for every $a \in A$:

- If $a \in X_{\nu}$ is an element of some noble galaxy, then let $\operatorname{tp}^{\mathfrak{A}'}[a] = \operatorname{tp}^{\mathfrak{A}}[a]_{\nu}$.
- Otherwise, if $a \in X$ is an element of a peasant galaxy, then let $\operatorname{tp}^{\mathfrak{A}'}[a] = \operatorname{tp}^{\mathfrak{A}}[a]_{\perp}$.

Let $T_{\bullet} = T[\mathfrak{A}']$ be the type instance of \mathfrak{A}' . Then T_{\bullet} is a promotion for T by construction. We claim that the noble types of T_{\bullet} are exactly the types of the form π_{ν} for $\nu \in N_{T}$. By construction any $\pi_{\nu} \in \Pi_{T_{\bullet}}$ must be a noble type. On the other hand, by construction if $\pi_{\perp} \in \Pi_{T_{\bullet}}$ then π must be realized by an element a in some peasant galaxy $X \in \mathcal{G}$ of \mathfrak{A} and since \mathfrak{A} is peasantly united, π must also be realized by some other element $b \in A \setminus X$ in another peasant galaxy of \mathfrak{A} . Hence we have a cosmic 2-type $\operatorname{tp}^{\mathfrak{A}'}[a,b] \in T_{\bullet}$ that connects π_{\perp} with itself, so π_{\perp} is a peasant type. Then by construction \mathfrak{A}' is nobly distinguished.

Next, the reduct of any model \mathfrak{A}' for T_{\bullet} to a Σ -structure is a model for T by the promotion definition condition.

Corollary 4. The (finite) type realizability problem is reducible in nondeterministic polynomial time to the (finite) nobly distinguished type realizability problem.

$$(FIN-)TP-REALIZ-\mathcal{L}^2eE_{\mathsf{refine}} \leq^{NPT_{IME}}_m (FIN-)ND-TP-REALIZ-\mathcal{L}^2eE_{\mathsf{refine}}.$$

Observe that any nobly distinguished model is peasantly united.

6.2.1 Cosmic spectrums

Let T be a type instance over the \mathcal{L}^2eE_{refine} -classified signature $\langle \Sigma, \bar{m} \rangle$.

Definition 74. A cosmic spectrum over T is a triple of 2-types $\varsigma = (\varsigma_{\mathcal{I}\mathcal{I}}, \varsigma_{\mathcal{I}\mathcal{E}}, \varsigma_{\mathcal{E}\mathcal{E}})$ such that the following conditions are satisfied:

- (ςII) The set of internal types $\varsigma_{II} \subseteq T^g$ is a set of galactic types that is closed under inversion.
- $(\varsigma \mathcal{I} \mathcal{E})$ The set of boundary types $\varsigma_{\mathcal{I} \mathcal{E}} \subseteq T^c$ is a nonempty set of cosmic types.
- $(\varsigma \mathcal{E} \mathcal{E})$ The set of external types $\varsigma_{\mathcal{E} \mathcal{E}} \subseteq T$ is a set of 2-types that is closed under inversion.
- $(\varsigma T) \ \ Let \ \varsigma_{\mathcal{E}\mathcal{I}} = \{\tau^{-1} \mid \tau \in \varsigma_{\mathcal{I}\mathcal{E}}\}. \ \ We \ require \ that \ \varsigma_{\mathcal{I}\mathcal{I}} \cup \varsigma_{\mathcal{I}\mathcal{E}} \cup \varsigma_{\mathcal{E}\mathcal{I}} \cup \varsigma_{\mathcal{E}\mathcal{E}} = T.$
- (ςNP) The (nonempty) set $\operatorname{Tp}_x \varsigma = (\operatorname{tp}_x \upharpoonright \varsigma_{\mathcal{I}\mathcal{E}})$ the set of internal 1-types of ς . The (nonempty) set $\operatorname{Tp}_y \varsigma = (\operatorname{tp}_y \upharpoonright \varsigma_{\mathcal{I}\mathcal{E}})$ the set of external 1-types of ς . We require that either $\operatorname{Tp}_x \varsigma \subseteq \operatorname{N}_T$, in which case ς is a noble cosmic spectrum, or $\operatorname{Tp}_x \varsigma \subseteq \operatorname{P}_T$, in which case ς is a peasant cosmic spectrum.

For any 1-type π or a 2-type τ over Σ denote by π^{-e} or τ^{-e} the reducts of π and τ to the language $\Sigma - \langle e \rangle$. That is, $\pi^{-e} \subset \pi$ and $\tau^{-e} \subset \tau$ consist of those literals that do not feature e. Let in be a new unary predicate symbol and let $\Sigma' = \Sigma - \langle e \rangle + \langle in \rangle$ be the predicate signature obtained from Σ by removing the coarsest equivalence symbol e and adding the new predicate symbol e.

Definition 75. The spectral type instance T^{ς} of the cosmic spectrum ς is a type instance over the simpler $\mathcal{L}^2(e-1)$ E_{refine}-classified signature $\langle \Sigma', \bar{m} \rangle$ defined as follows:

- For every internal $\tau \in \varsigma_{\mathcal{II}}$, add $\tau^{\mathcal{II}} = \tau^{-e} \cup \{in(x), in(y)\}$ to T^{ς} .
- For every boundary $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$, add $\tau^{\mathcal{I}\mathcal{E}} = \tau^{-e} \cup \{in(x), \neg in(y)\}$ and its inverse to T^{ς} .
- For every external $\tau \in \varsigma_{\mathcal{E}\mathcal{E}}$, add $\tau^{\mathcal{E}\mathcal{E}} = \tau^{-e} \cup \{\neg in(x), \neg in(y)\}$ to T^{ς} .

This is indeed a type instance since $\varsigma_{\mathcal{I}\mathcal{E}}$ is nonempty and since $\varsigma_{\mathcal{I}\mathcal{I}}$ and $\varsigma_{\mathcal{E}\mathcal{E}}$ are closed under inversion. We also denote $\pi^{\mathcal{I}} = \pi^{-e} \cup \{in(x)\}$ and $\pi^{\mathcal{E}} = \pi^{-e} \cup \{\neg in(x)\}$ for any 1-type $\pi \in \Pi_T$.

The cosmic spectrum ς is locally consistent if its spectral type instance T^{ς} has a model.

Note that the size of a cosmic spectrum over a type instance is linear with respect to the size of the type instance.

Let \mathfrak{A} be a nobly distinguished model for T such that $E = a^{\mathfrak{A}} \neq A \times A$ is not full on A (equivalently, there are at least 2 galaxies). If $X \in \mathcal{G}$ is any galaxy, the *cosmic* spectrum $\varsigma = \operatorname{csp}^{\mathfrak{A}}[X]$ of X is defined by:

$$\begin{split} \varsigma_{\mathcal{I}\mathcal{I}} &= \left\{ \operatorname{tp}^{\mathfrak{A}}[a,b] \;\middle|\; a \in X, b \in X \setminus \{a\} \right\} \\ \varsigma_{\mathcal{I}\mathcal{E}} &= \left\{ \operatorname{tp}^{\mathfrak{A}}[a,b] \;\middle|\; a \in X, b \in A \setminus X \right\} \\ \varsigma_{\mathcal{E}\mathcal{E}} &= \left\{ \operatorname{tp}^{\mathfrak{A}}[a,b] \;\middle|\; a \in A \setminus X, b \in (A \setminus X) \setminus \{a\} \right\}. \end{split}$$

Remark 25. Then indeed ς is a locally consistent cosmic spectrum over T.

Proof. First we check that ς is a cosmic spectrum over T:

- $(\varsigma \mathcal{I} \mathcal{I})$ Let $\tau \in \varsigma_{\mathcal{I} \mathcal{I}}$. Then $\tau = \operatorname{tp}^{\mathfrak{A}}[a, b]$ for some $a, b \in X$, so τ is galactic. Also $\tau^{-1} = \operatorname{tp}^{\mathfrak{A}}[b, a] \in \varsigma_{\mathcal{I} \mathcal{I}}$, so $\varsigma_{\mathcal{I} \mathcal{I}}$ is closed under inversion.
- ($\varsigma \mathcal{IE}$) Let $\tau \in \varsigma_{\mathcal{IE}}$. Then $\tau = \operatorname{tp}^{\mathfrak{A}}[a,b]$ for some $a \in X$ and $b \in A \setminus X$, so τ is cosmic. Since E is not full on A, there is some $a \in X$ and $b \in A \setminus X$. Then $\operatorname{tp}^{\mathfrak{A}}[a,b] \in \varsigma_{\mathcal{IE}}$, so $\varsigma_{\mathcal{IE}}$ is nonempty.
- $(\varsigma \mathcal{E} \mathcal{E})$ If $\tau \in \varsigma_{\mathcal{E} \mathcal{E}}$, then $\tau = \operatorname{tp}^{\mathfrak{A}}[a,b]$ for some $a \in A \setminus X$ and $b \in (A \setminus X) \setminus \{a\}$, so $\tau^{-1} = \operatorname{tp}^{\mathfrak{A}}[b,a] \in \varsigma_{\mathcal{E} \mathcal{E}}$ and hence $\varsigma_{\mathcal{E} \mathcal{E}}$ is closed under inversion.
 - (ςT) follows since \mathfrak{A} is a model for T.
- (ςNP) follows since \mathfrak{A} is nobly distinguished.

We transform \mathfrak{A} to a Σ' -structure \mathfrak{A}' by forgetting the interpretation of e and by interpreting $in^{\mathfrak{A}'} = X$. It is immediate that \mathfrak{A}' is a model for T^{ς} .

Let ς be a locally consistent cosmic spectrum over T.

Remark 26. $\operatorname{Tp}_{x} \varsigma \cup \operatorname{Tp}_{y} \varsigma = \Pi_{T}$.

Proof. Immediate by $\varsigma^{\mathcal{I}} \cup \varsigma^{\mathcal{I}\mathcal{E}} \cup \varsigma^{\mathcal{E}\mathcal{I}} \cup \varsigma^{\mathcal{E}} = T$.

Let $\Pi_{T^\varsigma}^{\mathcal{I}} = \left\{ \pi^{\mathcal{I}} \in \Pi_{T^\varsigma} \mid \pi \in \Pi_T \right\}$ be the set of internal spectral 1-types over the spectral type instance T^ς and let $\Pi_{T^\varsigma}^{\mathcal{E}} = \left\{ \pi^{\mathcal{E}} \in \Pi_{T^\varsigma} \mid \pi \in \Pi_T \right\}$ be the set of external spectral 1-types over T^ς .

Remark 27. If \mathfrak{A} be a model for T^{ς} and $X = in^{\mathfrak{A}}$, then $\Pi^{\mathcal{I}}_{T^{\varsigma}}$ is the set of 1-types realized by elements in X; $\Pi^{\mathcal{E}}_{T^{\varsigma}}$ is the set of 1-types realized by elements outside of X.

Remark 28. We have that $(\operatorname{tp}_x \upharpoonright \varsigma_{\mathcal{I}\mathcal{I}}) \subseteq \operatorname{Tp}_x \varsigma$ and $(\operatorname{tp}_x \upharpoonright \varsigma_{\mathcal{E}\mathcal{E}}) \subseteq \operatorname{Tp}_y \varsigma$.

Proof. Let \mathfrak{A} be a model for T^{ς} . Note that $\varsigma_{\mathcal{I}\mathcal{E}}$ is nonempty and let $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$ be any boundary type, so by construction $\tau^{\mathcal{I}\mathcal{E}} \in T^{\varsigma}$. Let $a' \neq b' \in A$ be elements such that $\operatorname{tp}^{\mathfrak{A}}[a',b'] = \tau^{\mathcal{I}\mathcal{E}}$. Note that $\mathfrak{A} \models i\boldsymbol{n}(a')$ and $\mathfrak{A} \models \neg i\boldsymbol{n}(b')$.

First let $\pi \in (\operatorname{tp}_x \upharpoonright \varsigma_{\mathcal{I}\mathcal{I}})$, so some $\tau \in \varsigma_{\mathcal{I}\mathcal{I}}$ has $\operatorname{tp}_x \tau = \pi$. By construction $\tau^{\mathcal{I}\mathcal{I}} \in \operatorname{T}^\varsigma$, so let $a \neq b \in A$ be such that $\operatorname{tp}^{\mathfrak{A}}[a,b] = \tau^{\mathcal{I}\mathcal{I}}$, so $\operatorname{tp}^{\mathfrak{A}}[a] = \pi^{\mathcal{I}}$. Note that $\mathfrak{A} \vDash in(a)$, so $a \neq b'$. Then $\operatorname{tp}^{\mathfrak{A}}[a,b'] = \tau'^{\mathcal{I}\mathcal{E}}$ for some $\tau' \in \varsigma_{\mathcal{I}\mathcal{E}}$ such that $\operatorname{tp}_x \tau' = \pi$, so $\pi \in (\operatorname{tp}_x \upharpoonright \varsigma_{\mathcal{I}\mathcal{E}}) = \operatorname{Tp}_x \varsigma$. Next let $\pi \in (\operatorname{tp}_x \upharpoonright \varsigma_{\mathcal{E}\mathcal{E}})$. Then some $\tau \in \varsigma_{\mathcal{E}\mathcal{E}}$ has $\operatorname{tp}_y \tau = \pi$. By construction $\tau^{\mathcal{E}\mathcal{E}} \in \operatorname{T}^\varsigma$, so let $a \neq b \in A$ be such that $\operatorname{tp}^{\mathfrak{A}}[a,b] = \tau^{\mathcal{E}}$, so $\operatorname{tp}^{\mathfrak{A}}[b] = \pi^{\mathcal{E}}$. Note that $\mathfrak{A} \vDash \neg in(b)$, so $a' \neq b$. Then $\operatorname{tp}^{\mathfrak{A}}[a',b] = \tau'^{\mathcal{I}\mathcal{E}}$ for some $\tau' \in \varsigma_{\mathcal{I}\mathcal{E}}$ such that $\operatorname{tp}_y \tau' = \pi$, so $\pi \in (\operatorname{tp}_y \upharpoonright \varsigma_{\mathcal{I}\mathcal{E}}) = \operatorname{Tp}_y \varsigma$.

Remark 29. We have that

$$\Pi_{\mathbf{T}^{\varsigma}} = \left\{ \pi^{\mathcal{I}} \; \middle| \; \pi \in \mathrm{Tp}_{x} \, \varsigma \right\} \cup \left\{ \pi^{\mathcal{E}} \; \middle| \; \pi \in \mathrm{Tp}_{y} \, \varsigma \right\}.$$

Proof. First let $\pi \in \operatorname{Tp}_x \varsigma$, so some $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$ has $\operatorname{tp}_x \tau = \pi$, so $\tau^{\mathcal{I}\mathcal{E}} \in \operatorname{T}^{\varsigma}$ has $\operatorname{tp}_x(\tau^{\mathcal{I}\mathcal{E}}) = \pi^{\mathcal{I}}$. Next let $\pi \in \operatorname{Tp}_y \varsigma$, so some $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$ has $\operatorname{tp}_y \tau = \pi$, so $\tau^{\mathcal{I}\mathcal{E}} \in \operatorname{T}^{\varsigma}$ has $\operatorname{tp}_y(\tau^{\mathcal{I}\mathcal{E}}) = \pi^{\mathcal{E}}$.

Next let $\pi' \in \Pi_{\Gamma^{\varsigma}}$, so some $\tau' \in \Gamma^{\varsigma}$ has $\operatorname{tp}_{\boldsymbol{y}} \tau' = \pi'$. By Remark 28, without loss of generality either $\tau' = \tau^{\mathcal{I}\mathcal{E}}$ or $\tau' = (\tau^{\mathcal{I}\mathcal{E}})^{-1}$ for some $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$. If $\tau' = \tau^{\mathcal{I}\mathcal{E}}$, then $\pi' = \pi^{\mathcal{I}}$ for $\pi = \operatorname{tp}_{\boldsymbol{x}} \tau \in \operatorname{Tp}_{\boldsymbol{x}} \varsigma$. If $\tau' = (\tau^{\mathcal{I}\mathcal{E}})^{-1}$ then $\pi' = \pi^{\mathcal{E}}$ for $\pi = \operatorname{tp}_{\boldsymbol{y}} \tau \in \operatorname{Tp}_{\boldsymbol{y}} \varsigma$.

Remark 30. If $\pi \in \operatorname{Tp}_x \varsigma$ and $\pi' \in \operatorname{Tp}_y \varsigma$, then some $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$ has $\operatorname{tp}_x \tau = \pi$ and $\operatorname{tp}_y \tau = \pi'$.

Proof. Let \mathfrak{A} be a model for T^{ς} , let $a \in A$ realizes $\pi^{\mathcal{I}}$ and let $b \in A$ realizes $\pi'^{\mathcal{E}}$. Then $\operatorname{tp}^{\mathfrak{A}}[a,b] = \tau^{\mathcal{I}\mathcal{E}}$ for some $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$ such that $\operatorname{tp}_{x}\tau = \pi$ and $\operatorname{tp}_{y}\tau = \pi'$.

Remark 31. If $\nu \in N_T$, then either $\nu \notin Tp_x \varsigma$ or $\nu \notin Tp_y \varsigma$.

Proof. Suppose that $\nu \in \operatorname{Tp}_x \varsigma$ and $\nu \in \operatorname{Tp}_y \varsigma$. By Remark 30, some $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$ has $\operatorname{tp}_x \tau = \operatorname{tp}_y \tau = \nu$. Then τ is a cosmic type connecting ν with itself — a contradiction. \square

Remark 32. If $\kappa \in \operatorname{Tp}_x \varsigma \cap \operatorname{K}_T$ is an internal king type, then $\kappa^{\mathcal{I}} \in \operatorname{K}_{T^\varsigma}$ is an internal spectral king type.

Proof. Suppose not. Then some $\tau' \in T^{\varsigma}$ connects $\kappa^{\mathcal{I}}$ with itself. By construction we must have that $\tau' = \tau^{\mathcal{I}\mathcal{I}}$ for some $\tau \in T$. Then τ connects κ with itself — a contradiction. \square

Remark 33. If $\kappa \in \operatorname{Tp}_{y} \varsigma \cap K_{T}$ is an external king type, then $\kappa^{\mathcal{E}} \in K_{T^{\varsigma}}$ is an external spectral king type.

Proof. Suppose not. Then some $\tau' \in T^{\varsigma}$ connects $\kappa^{\mathcal{E}}$ with itself. By construction we must have that $\tau' = e_{\tau}$ for some $\tau \in T$. Then τ connects κ with itself — a contradiction. \square

Remark 34 (Preservation of kings). If ς is noble, then

$$K_{T^\varsigma} = \left\{\kappa^{\mathcal{I}} \;\middle|\; \kappa \in Tp_{\boldsymbol{x}}\,\varsigma \cap K_T\right\} \cup \left\{\kappa^{\mathcal{E}} \;\middle|\; \kappa \in Tp_{\boldsymbol{y}}\,\varsigma \cap K_T\right\}.$$

That is, the notion of a king type is preserved in the spectral type instance of a noble spectrum.

Proof. By Remark 32 and Remark 33, it is sufficient to prove the left-to-right inclusion. First let $\pi^{\mathcal{I}} \in K_{T^{\varsigma}}$ be any internal spectral king type and assume towards a contradiction that $\pi \in W_T$ is a worker type. Then some $\tau \in T$ connects π with itself. Recall that $T = \varsigma_{\mathcal{I}\mathcal{I}} \cup \varsigma_{\mathcal{I}\mathcal{E}} \cup \varsigma_{\mathcal{E}\mathcal{I}} \cup \varsigma_{\mathcal{E}\mathcal{E}}$. If $\tau \in \varsigma_{\mathcal{I}\mathcal{I}}$ then $\tau^{\mathcal{I}\mathcal{I}} \in T^{\varsigma}$ connects $\pi^{\mathcal{I}}$ with itself — a contradiction. In the remaining cases we must have that $\pi^{\mathcal{E}} \in \Pi_{T^{\varsigma}}$, so by Remark 30 some (cosmic) $\tau \in \varsigma_{\mathcal{I}\mathcal{E}}$ connects π with itself. But then $\pi \in Tp_x \varsigma$ is a peasant type — a contradiction with the nobility of ς .

Next let $\pi^{\mathcal{E}} \in K_{T^{\varsigma}}$ be any external spectral king type and assume towards a contradiction that $\pi \in W_T$. Then some $\tau \in T$ connects π with itself. If $\tau \in \varsigma_{\mathcal{E}\mathcal{E}}$ then $\tau^{\mathcal{E}\mathcal{E}} \in T^{\varsigma}$ connects $\pi^{\mathcal{E}}$ with itself — a contradiction. In the remaining cases we must have that $\pi^{\mathcal{I}} \in \Pi_{T^{\varsigma}}$ and the argument proceeds as in the previous case.

If ς is a cosmic spectrum over the type instance T over $\langle \Sigma, \bar{m} \rangle$ and $\pi \in \Pi_{T^{\varsigma}}$ is a 1-type or $\tau \in T^{\varsigma}$ is a 2-type over the spectral type instance T^{ς} over $\langle \Sigma', \bar{m} \rangle$, denote by π^{-in} and τ^{-in} the reducts of π and τ to the language $\Sigma' - \langle in \rangle$. Define the following notations:

$$egin{aligned} \pi_{\mathcal{I}} &= \pi_{\mathcal{E}} = \pi^{-in} \cup \{e(x)\} \ & au_{\mathcal{I}\mathcal{I}} &= au^{-in} \cup \{e(x), e(y), e(x, y), e(y, x)\} \ & au_{\mathcal{I}\mathcal{E}} &= au^{-in} \cup \{e(x), e(y), \neg e(x, y), \neg e(y, x)\} \,. \end{aligned}$$

That is, these are *inverses* of the previous operations: $(\pi^{\mathcal{I}})_{\mathcal{I}} = (\pi^{\mathcal{E}})_{\mathcal{E}} = \pi$ for $\pi \in \Pi_{\mathrm{T}}$ and $(\tau^{\mathcal{I}\mathcal{I}})_{\mathcal{I}\mathcal{I}} = (\tau^{\mathcal{I}\mathcal{E}})_{\mathcal{I}\mathcal{E}} = \tau$ for $\tau \in \varsigma^{\mathcal{I}}$.

Definition 76. Let ς be a locally consistent cosmic spectrum and let \mathfrak{A} be a model for its spectral type instance T^{ς} . Let $X = i n^{\mathfrak{A}}$ be the set of elements $a \in A$ such that $\mathfrak{A} \models i n(a)$. This set is nonempty since $\tau^{\mathcal{I}\mathcal{E}} \in T^{\varsigma}$ for every $\tau \in \varsigma^{\mathcal{I}\mathcal{E}} \neq \varnothing$, so $\tau^{\mathcal{I}\mathcal{E}}$ must be realized in \mathfrak{A} and $i n(x) \in \tau^{\mathcal{I}\mathcal{E}}$. Also $A \setminus X$ is nonempty since $\neg i n(y) \in \tau^{\mathcal{I}\mathcal{E}}$.

Extend X to a model for Σ by interpreting $\mathbf{e}^X = X \times X$ as the full relation on X. Call X the galaxy of the model \mathfrak{A} . Note that X is not necessarily a $\langle \Sigma, \bar{m} \rangle$ -model. For any $a \in X$, define the intended star-type $\sigma(a)$ by:

$$\sigma(a) = \left\{ \operatorname{tp}^{\mathfrak{A}}[a, b]_{\mathcal{I}\mathcal{I}} \mid b \in X \setminus \{a\} \right\} \cup \left\{ \operatorname{tp}^{\mathfrak{A}}[a, b]_{\mathcal{I}\mathcal{E}} \mid b \in A \setminus X \right\}.$$

Remark 35. The intended star-type $\sigma(a)$ is a star-type over T.

Proof. That $\sigma(a)$ is nonempty follows from $A \setminus X \neq \emptyset$. We verify the conditions for a star-type over T:

- (σx) If $\tau, \tau' \in \sigma(a)$, then $\operatorname{tp}_x \tau = \operatorname{tp}_x \tau' = \operatorname{tp}^{\mathfrak{A}}[a]_{\mathcal{I}} \in \Pi_T$. Let $\pi = \operatorname{tp}_x \sigma(a)$ be the intended 1-type of a.
- $(\sigma \pi \boldsymbol{y})$ Let $\pi' \in T[\pi]$. We have to find some $\tau \in \sigma(a)$ such that $\operatorname{tp}_{\boldsymbol{y}} \tau = \pi'$. First, if $\pi' = \pi$, then π is not a king type, so some $\tau \in T$ connects π with itself. Then either $\tau^{\mathcal{I}\mathcal{I}} \in T^{\varsigma}$ or $\tau^{\mathcal{I}\mathcal{E}} \in T^{\varsigma}$ or $\tau^{\mathcal{E}\mathcal{I}} \in T^{\varsigma}$ or $\tau^{\mathcal{E}\mathcal{E}} \in T^{\varsigma}$. If $\tau^{\mathcal{I}\mathcal{I}} \in T^{\varsigma}$, let $b \neq c \in A$ be such that $\operatorname{tp}^{\mathfrak{A}}[b,c] = \tau^{\mathcal{I}\mathcal{I}}$, so $b,c \in X$. Let $b' \in \{b,c\} \setminus \{a\}$. Then $\tau = \operatorname{tp}^{\mathfrak{A}}[a,b']_{\mathcal{I}\mathcal{I}} \in \sigma(a)$ has $\operatorname{tp}_{\boldsymbol{y}} \tau = \pi'$. The remaining cases are similar.

Next, if $\pi' \neq \pi$, by Remark 29, either ${\pi'}^{\mathcal{I}} \in \Pi_{\mathsf{T}^\varsigma}$ or ${\pi'}^{\mathcal{E}} \in \Pi_{\mathsf{T}^\varsigma}$. If ${\pi'}^{\mathcal{I}} \in \Pi_{\mathsf{T}^\varsigma}$, then some $b \in X \setminus \{a\}$ has $\operatorname{tp}^{\mathfrak{A}}[b] = {\pi'}^{\mathcal{I}}$. Hence $\tau = \operatorname{tp}^{\mathfrak{A}}[a,b]_{\mathcal{I}\mathcal{I}} \in \sigma(a)$ has $\operatorname{tp}_{\boldsymbol{y}}\tau = \operatorname{tp}^{\mathfrak{A}}[b]_{\mathcal{I}} = \pi'$. If ${\pi'}^{\mathcal{E}} \in \Pi_{\mathsf{T}^\varsigma}$, then some $b \in A \setminus X$ has $\operatorname{tp}^{\mathfrak{A}}[b] = {\pi'}^{\mathcal{E}}$. Hence $\tau = \operatorname{tp}^{\mathfrak{A}}[a,b]_{\mathcal{I}\mathcal{E}} \in \sigma(a)$ has $\operatorname{tp}_{\boldsymbol{y}}\tau = \operatorname{tp}^{\mathfrak{A}}[b]_{\mathcal{E}} = \pi'$.

- (σκ**y**) Let $\kappa' \in T[\pi] \cap K_T$, hence $\kappa' \neq \pi$. Since κ' is noble, by Remark 30 and Remark 31 either $\kappa'^{\mathcal{I}} \in \Pi_{T^\varsigma}$ or $\kappa'^{\mathcal{E}} \in \Pi_{T^\varsigma}$, but not both. If $\kappa'^{\mathcal{I}} \in \Pi_{T^\varsigma}$ and $\kappa'^{\mathcal{E}} \notin \Pi_{T^\varsigma}$, then by Remark 32, $\kappa'^{\mathcal{I}} \in K_{T^\varsigma}$ is a king type, so there is a unique $b \in X \setminus \{a\}$ having $tp^{\mathfrak{A}}[b] = \kappa'^{\mathcal{I}}$ and also no $b \in A \setminus X$ has $tp^{\mathfrak{A}}[b] = \kappa'^{\mathcal{E}}$, so $\tau = tp^{\mathfrak{A}}[a,b]_{\mathcal{I}\mathcal{I}} \in \sigma(a)$ is the unique having $tp_{\mathbf{y}}\tau = \kappa'$. If $\kappa'^{\mathcal{E}} \in \Pi_{T^\varsigma}$ and $\kappa'^{\mathcal{I}} \notin \Pi_{T^\varsigma}$, then by Remark 33,] $\kappa'^{\mathcal{E}} \in K_{T^\varsigma}$ is a king type, so there is a unique $b \in A \setminus X$ having $tp^{\mathfrak{A}}[b] = \kappa'^{\mathcal{E}}$ and also no $b \in X \setminus \{a\}$ has $tp^{\mathfrak{A}}[b] = \kappa'^{\mathcal{I}}$, so $\tau = tp^{\mathfrak{A}}[a,b]_{\mathcal{I}\mathcal{E}} \in \sigma(a)$ is the unique having $tp_{\mathbf{y}}\tau = \kappa'$.
- (σm) Let $m \in \bar{m}$. Since \mathfrak{A} is a model for T^{ς} , some $b \in A \setminus \{a\}$ has $m(x, y) \in \operatorname{tp}^{\mathfrak{A}}[a, b]$. If $b \in X$, then $m(x, y) \in \operatorname{tp}^{\mathfrak{A}}[a, b]_{\mathcal{I}\mathcal{I}} \in \sigma(a)$. If $b \in A \setminus X$, then $m(x, y) \in \operatorname{tp}^{\mathfrak{A}}[a, b]_{\mathcal{I}\mathcal{E}} \in \sigma(a)$.

6.2.2 Properties of the intended star-type

TODO Let ς be a locally consistent cosmic spectrum, let \mathfrak{A} be a model for T^{ς} and let $X^{\varsigma} = i n^{\mathfrak{A}}$ be the galaxy of \mathfrak{A} .

Remark 36. If $a \in X^{\varsigma}$ and $\tau \in \sigma(a)$ is galactic, then some $b \in X^{\varsigma} \setminus \{a\}$ has $\operatorname{tp}^{\mathfrak{A}}[a,b] = \tau$.

Proof. By construction we must have $\tau = \operatorname{tp}^{\mathfrak{A}}[a,b]_{\mathcal{I}\mathcal{I}}$ for some $b \in X^{\varsigma} \setminus \{a\}$.

Remark 37. Let $\tau \in T^c$ be any cosmic type. Then $\tau \in \varsigma^{\mathcal{IE}}$ iff some $a \in X^{\varsigma}$ has $\tau \in \sigma(a)$.

Remark 38. Let \mathfrak{A} be a model for T^{ς} and let $a \in X$ be such that $\mathfrak{A} \models in(a)$. Then $\operatorname{tp}^{\mathfrak{A}}[a] = \pi^{\mathcal{I}}$ iff $\pi(a) = \pi$.

Remark 39. $\pi \in \text{Tp}_x \varsigma \text{ iff some } a \in X^{\varsigma} \text{ has } \pi(a) = \pi.$

Remark 40. $\kappa \in \operatorname{Tp}_{x} \varsigma \cap \operatorname{K}_{T}$ iff a unique $a \in X^{\varsigma}$ has $\pi(a) = \kappa$.

Definition 77. A certificate S for the type instance T is a nonempty set of locally consistent cosmic spectrums over T satisfying the following conditions:

- (ST^c) If $\tau \in T^c$, then some $\varsigma \in S$ has $\tau \in \varsigma_{\mathcal{IE}}$.
- (ST^g) If $\tau \in T^g$, then some $\varsigma \in S$ has $\tau \in \varsigma_{\mathcal{I}\mathcal{I}}$.
 - $(S\nu)$ If $\nu \in N_T$, then a unique $\varsigma \in S$ has $\nu \in Tp_x \varsigma$.

Lemma 11 (Certificate extraction). TODO: Formulate

$$\mathcal{S} = \left\{ \exp^{\mathfrak{A}}[E[a_{\tau}]] \mid \tau \in \mathbf{T}^{c} \right\}.$$

Proof. TODO

Lemma 12 (Certificate expansion). Let S be a certificate for the type instance T over the $\mathcal{L}^2eE_{\mathsf{refine}}$ -classified signature $\langle \Sigma, \bar{m} \rangle$. Then S has a finite model. More precisely, let $t \geq |T|$ be a parameter. Then T has a finite model in which each worker type is realized at least t times.

Proof. We use induction on e. We have shown the base case e = 0, $\mathcal{L}^2 e \mathbb{E}_{\mathsf{refine}} = \mathcal{L}^2$ in Lemma 8. Now let $e \geq 1$ and assume the hypothesis for (e-1). We build a model \mathfrak{A} for T. For every $\varsigma \in \mathcal{S}$, let \mathfrak{A}^{ς} be a model for T^{ς} in which every worker type is realized at least 3t times and let $X^{\varsigma} = i n^{\mathfrak{A}^{\varsigma}}$ be the galaxy of that model. Such a model exists by induction hypothesis and by Lemma 11.

The galaxies of \mathfrak{A} are:

- A single galaxy X^{ς} for every noble $\varsigma \in \mathcal{S}$. These galaxies are the noble galaxies.
- 3t copies X_{ij}^{ς} of X^{ς} for every peasant $\varsigma \in \mathcal{S}$, where $i \in \{0, 1, 2\}$ and $j \in [1, t]$. These galaxies are the *peasant galaxies*.

Let $\sigma(a)$ be the intended star-type of a and let $\pi(a) = \operatorname{tp}_{\boldsymbol{x}}(\sigma(a))$ be the intended 1-type of a for $a \in A$.

We continue by observing that the worker types are realized numerous times in this structure. First consider any noble type that is not king type $\nu \in N_T \setminus K_T$. By $(S\nu)$, there is a unique $\varsigma \in S$ having $\nu \in \mathrm{Tp}_x \varsigma$. Let $a \in A$ be any element such that $\pi(a) = \nu$. By Remark 39, $a \in X^\varsigma$. Since ς is noble, by Remark 34 we must have that $\nu^{\mathcal{I}} \in \mathrm{P}_{T^\varsigma}$ is a worker type. Since each worker type is realized at least 3t times in \mathfrak{A}^ς , we may choose a partition $A^{\nu} = A_0^{\nu} \cup A_1^{\nu} \cup A_2^{\nu} \subseteq X^{\varsigma}$ of all the elements of A having intended 1-type ν such that $|A_i^{\nu}| \geq t$ for $i \in \{0,1,2\}$. That is, we arbitrary distribute the noble elements having intended 1-type ν into three groups of at least t elements.

Next consider any peasant type $\pi \in P_T$. Let $\varsigma \in \mathcal{S}$ be any peasant cosmic spectrum such that $\pi \in \operatorname{Tp}_x \varsigma$. By construction, there are 3t copies X_{ij}^{ς} of X^{ς} in A that contain

an element that realizes π . Hence we may partition all elements $a \in A$ realizing π in three groups $A^{\pi} = A_0^{\pi} \cup A_1^{\pi} \cup A_2^{\pi}$ such that $|A_i^{\pi}| \geq t$ and any two elements from distinct copies come from distinct galaxies:

$$A_i^\pi = \left\{ a \in X_{ij}^\varsigma \;\middle|\; \pi(a) = \pi \in \operatorname{Tp}_x\varsigma, j \in [1,t] \right\}.$$

We consistently assign the remaining cosmic types between elements in different galaxies on stages.

Realization of kings Let $\kappa \in K_T$ be any king type and let $a \in A$ be any element such that $\pi(a) = \kappa$. We claim that such a is unique. By $(S\nu)$, there is a unique $\varsigma \in S$ having $\kappa \in \operatorname{Tp}_x \varsigma$. By Remark 39, $a \in X^\varsigma$. By Remark 40, such $a \in X\varsigma$ is unique. We proceed to assign a cosmic type consistently between a and every element $b \in A \setminus X^\varsigma$ outside the galaxy of a. Then either $b \in X^{\varsigma'}$ comes from a noble galaxy, or $b \in X^{\varsigma'}_{ij}$ comes from a peasant galaxy; in both cases $\varsigma' \neq \varsigma$. Consider the intended star-type $\sigma' = \sigma(b)$ of b. Since $\operatorname{tp}_x \sigma' = \pi(b) \neq \kappa$, by $(\sigma \kappa y)$ there is a unique $\tau' \in \sigma'$ having $\operatorname{tp}_y \tau' = \kappa$. By Remark 36, τ' must be cosmic. Assign $\operatorname{tp}^{\mathfrak{A}}[b,a] = \tau'$. This assignment is appropriate for b, since τ was the unique with $\operatorname{tp}_y \tau = \kappa$. We claim that it is also appropriate for a. Indeed, let $\tau \in \sigma$ be any cosmic type. Then $\tau' = \tau^{-1} \in T^c$ and by (ST^c) , some $\varsigma' \in S$ has $\tau' \in \varsigma'^{T\mathcal{E}}$. By Remark 37, some $b \in X^{\varsigma'}$ has $\tau' \in \sigma(b)$. Since $\operatorname{tp}_y \tau' = \kappa \neq \pi(b)$, by $(\sigma \kappa y)$ the 2-type $\tau' \in \sigma(b)$ is the unique having $\operatorname{tp}_y \tau' = \kappa$. Hence we had assigned $\operatorname{tp}^{\mathfrak{A}}[b,a] = \tau'$.

Realization of workers We now proceed to realize the star-types of the workers. Let $\pi \in W_T$ be a worker type and let $a \in A_i^{\pi}$ be any element with intended 1-type π . Let $\sigma = \sigma(a)$ be the intended star-type of a. By Remark 36, any galactic $\tau \in \sigma$ is realized in the galaxy of a. Any cosmic $\tau \in \sigma$ such that $\operatorname{tp}_{\boldsymbol{y}} \tau$ is a king type is realized during the realization of kings. Suppose that $\tau \in \sigma$ is any cosmic 2-type such that $\operatorname{tp}_{\boldsymbol{y}}\tau = \pi' \in W_{\mathrm{T}}$ is a worker type. Let $U = \left\{ \eta \in \sigma \cap T^{c} \mid \operatorname{tp}_{\boldsymbol{y}}\eta = \pi' \right\}$ be the set of cosmic types parallel to τ in σ . Let $i' = (i + 1 \mod 3) \in \{0, 1, 2\}$ and consider $A_{i'}^{\pi'}$ the set of workers from the next copy. Note that since $U \subseteq T$ we have $|U| \leq |A_{i'}^{\pi'}|$, so there are enough distinct elements $b_{\nu} \in A_{i'}^{\pi'}$ for the assignment $\operatorname{tp}^{\mathfrak{A}}[a,b_{\eta}] = \eta$. We check that this assignments are appropriate. First, none of these assignments clashes with each other, since they are between elements from consecutive copies. Next, none of these assignments is between elements of the same galaxy. Indeed, if both π and π' are noble, then since τ is cosmic, we must have that $\pi \in \operatorname{Tp}_x \varsigma$ and $\pi' \in \operatorname{Tp}_x \varsigma'$ for different noble cosmic spectrums ς and ς' , so all the elements realizing π come from X^{ς} and all elements realizing π' come from $X^{\varsigma'}$. On the other hand, if both π and π' are peasant, then this is immediate by construction.

$\textbf{Completion} \ \, \mathrm{TODO}$

Bibliography

- [1] H.D. Ebbinghaus and J. Flum. *Finite Model Theory*. Perspectives in Mathematical Logic. Springer Berlin Heidelberg, 1999.
- [2] Erich Grädel and Martin Otto. On logics with two variables. *Theoretical computer science*, 224(1):73–113, 1999.
- [3] Dana Scott. A decision method for validity of sentences in two variables. *Journal of Symbolic Logic*, 27(377):74, 1962.
- [4] Ian Pratt-Hartmann. The two-variable fragment with counting and equivalence. Mathematical Logic Quarterly, 61(6):474–515, 2015.
- [5] I. Cervesato, H. Veith, and A. Voronkov. Logic for Programming, Artificial Intelligence, and Reasoning: 15th International Conference, LPAR 2008, Doha, Qatar, November 22-27, 2008, Proceedings. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2008.
- [6] E. Boerger, E. Grädel, and Y. Gurevich. *The classical decision problem*. Perspectives in mathematical logic. Springer, 1997.
- [7] Peter van Emde Boas. The convenience of tilings. Lecture Notes in Pure and Applied Mathematics, pages 331–363, 1997.
- [8] Leopold Löwenheim. Über möglichkeiten im relativkalkül. *Mathematische Annalen*, 76(4):447–470, 1915.
- [9] A. Janiczak. Undecidability of some simple formalized theories. Fundamenta Mathematicae, 40(1):131–139, 1953.
- [10] Michael Mortimer. On languages with two variables. *Mathematical Logic Quarterly*, 21(1):135–140, 1975.
- [11] Erich Grädel, Phokion G Kolaitis, and Moshe Y Vardi. On the decision problem for two-variable first-order logic. *Bulletin of symbolic logic*, 3(01):53–69, 1997.
- [12] Emanuel Kieroński. Results on the guarded fragment with equivalence or transitive relations. In *Computer Science Logic*, pages 309–324. Springer, 2005.
- [13] Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable first-order logic with equivalence closure. SIAM Journal on Computing, 43(3):1012–1063, 2014.

Bibliography

[14] Emanuel Kieronski and Martin Otto. Small substructures and decidability issues for first-order logic with two variables. In *Logic in Computer Science*, 2005. LICS 2005. Proceedings. 20th Annual IEEE Symposium on, pages 448–457. IEEE, 2005.