Classification

Regression

Huiping Cao

Outline

Linear regression

- 1 Linear regression
- 2 Solution
- 3 Logistic Regression
- 4 Parameter fitting and cost function

Regression problem

Linear regression

•0000000000

- Regression problem: predict the value of one or more continuous target variables y given the value of a d-dimensional vector x.
 - Output is a real number, which is why the method is called regression
- **Linear Regression** is one of the most basic and important technique for usually predicting a value of an attribute (y).
 - It is used to fit values in a forecasting or predictive model.

Parameter fitting and cost function

Linear regression – Example

A collection of observations of the Old Faithful geyser in the USA Yellowstone National Park.

> head(faithful) eruptions waiting 3.600 79 1.800 54 3 3.333 74 4 2.283 62 5 4.533 85 2.883 55

- There are two observation variables in the data set.
 - *eruptions*: the duration of the geyser eruptions.
 - waiting: the length of waiting period until the next eruption.
- Predict eruption time given waiting time.

Linear regression – representation

- Training set: $\{\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \cdots, \mathbf{x}^{(n)}\}$
 - n is the number of training data points
 - $\mathbf{x}^{(i)}$ is a d-dimensional data point (or vector)
 - $\mathbf{v} = (v^{(1)}, \dots, v^{(n)})$ is output
 - (x, y) one training example
 - $\mathbf{x}^{(i)}, \mathbf{y}^{(i)}$) the *i*-th training example.
- Hypothesis: $h(\cdot)$. The learning algorithm learns the hypnosis. Using h, we can predict y for any given x.

- Linear regression with one variable (univariate linear regression).
- $\bullet h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x$

Linear regression – cost function

- Hypothesis $h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x$.
- Parameters: θ_i s.
- How to choose θ_i s?

Linear regression – cost function (cont.)

- Hypothesis: $h_{\theta}(\mathbf{x}^{(i)}) = \theta_0 + \theta_1 x^{(i)}$.
- Idea: Choose θ_0 and θ_1 such that $h_{\theta}(\mathbf{x})$ is close to \mathbf{y} for our training examples.
- Intuitively

minimize_{$$\theta_0,\theta_1$$} $\sum_{i=1}^n (h_\theta(\mathbf{x}^{(i)}) - \underline{y}^{(i)})^2$.

Linear regression – cost function (cont.)

Cost function.

$$\underline{J(\theta_0, \theta_1)} = \frac{1}{2n} \sum_{i=1}^{n} (h_{\underline{\theta}}(\mathbf{x}^{(i)}) - \underline{y}^{(i)})^2$$

- Factor $\frac{1}{n}$ is to average the cost, and the factor $\frac{1}{2}$ is to make the analysis easier.
- J is called squared error function, or cost function, or squared error cost function.
- There are other cost functions, but squared error cost function is working well.
- Goal: $minimize_{\theta_0,\theta_1}J(\theta_0,\theta_1)$

Multivariate Linear Regression - motivation and notation

- Example
 - **y** house prices
 - $x_{.1}$: house square feet
 - x_2 : number of bedrooms
 - $x_{.3}$: age of home
 - etc.
- Notation
 - d: number of features
 - $\mathbf{x}^{(i)}$: the *i*-th input example
 - $x_i^{(i)}$: the value of the *j*-th feature of the *i*th training example.

Multivariate Linear Regression - Hypothesis

$$h_{\theta}(\mathbf{x}^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \dots + \theta_d x_d^{(i)}$$
 E.g., $h_{\theta}(\mathbf{x}^{(i)}) = 80 + 0.1 x_1^{(i)} + 0.01 x_2^{(i)} + 3 x_3^{(i)} - 2 x_4^{(i)}$ For convenience, denote $x_0^{(i)} = 1$ to define a 0th feature.

- We can define two vectors \mathbf{x} and θ

$$\mathbf{x}^{(i)} = \begin{pmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_d^{(i)} \end{pmatrix} \in \mathbb{R}^{d+1}, \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_d \end{pmatrix} \in \mathbb{R}^{d+1}$$

$$h_{\theta}(\mathbf{x}) = \theta^T \mathbf{x}$$

Multivariate Linear Regression - Representation

- Hypothesis: $h_{\theta}(\mathbf{x}^{(i)}) = \theta^T \mathbf{x}^{(i)}$ where $\mathbf{x}_0^{(i)} = 1$
- Parameters: $\theta_0, \theta_1, \theta_2, \cdots, \theta_d$ (or, $\theta \in \mathbb{R}^{d+1}$)
- Cost function:

$$\int_{Or} \int_{\mathcal{V}} \frac{J(\theta_0, \theta_1, \cdots, \theta_n) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})^2}{J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})^2}$$

- Linear regression models: linear functions of the adjustable parameters.
 - The simplest form of linear regression models are also <u>linear</u> functions of the <u>input variables</u>.

Linear regression model

Solution

- Formally,

together with (2) corresponding target variables
$$\mathbf{y} = \begin{pmatrix} y^{(1)} \\ y^{(2)} \\ \dots \\ y^{(n)} \end{pmatrix}$$

- Goal: predict the value of y for a new observation x.
- Linear model $h_{\theta}(\mathbf{x}^{(i)}) = \theta^{\top}\mathbf{x}^{(i)}$ or $h_{\theta}(\mathbf{x}^{(i)}) = \theta_0 + \theta_1\mathbf{x}_1^{(i)} + \dots + \theta_d\mathbf{x}_d^{(i)}$ Decides d+1 parameters (or a (d+1)-vector) $\theta \neq (\theta_0, \theta_1, \dots, \theta_d)$ s.t. $\frac{1}{2n}\sum_{i=1}^{n}(h(\mathbf{x}^{(i)})-y^{(i)})^2$ is minimal.
- Solution: (1) gradient descent, (2) normal equation (or analytic pseudo-inverse algorithm)

Gradient descent - intuition

Solution

•000000

Gradient descent algorithm

Repeat until convergence
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1) \text{ for } j = 0 \text{ and } j = 1$$

- Notations: partial derivative $\frac{\partial}{\partial \theta_0}$; Derivative $\frac{d}{d\theta_1}$
- \bullet α : learning rate; large α indicates aggressive learning;
- \bullet θ_0 and θ_1 need to be updated simultaneously.
 - CORRECT:

$$\begin{array}{l} \textit{temp}_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} \textit{J}(\theta_0, \theta_1) \\ \textit{temp}_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} \textit{J}(\theta_0, \theta_1) \\ \theta_0 = \textit{temp}_0 \\ \theta_1 = \textit{temp}_1 \end{array}$$

INCORRECT:

$$temp_0 = \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\theta_0 = temp_0$$

$$temp_1 = \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\theta_1 = temp_1$$

Multivariate Linear Regression - Feature Scaling (1)

- Idea: Make sure that features are on a similar scale for the dataset which has multiple features. The gradient descent can converge more quickly.
- For example, if a problem's dataset has two features $x_1^{(i)}$ and $x_2^{(i)}$ $x_1^{(i)} = \text{size } (0\text{-}2000|\text{feet}^2)$ $x_2^{(i)} = \text{number of bedrooms } (1\text{-}5)$
- It takes long time to converge.
- A strategy we do is to scale the feature values $x_1^{(i)} = \frac{\text{size}(\text{feet}^2)}{2000}$ $x_2^{(i)} = \frac{\text{number of bedrooms}}{\text{number of bedrooms}}$

Then, the contour plot of $J(\theta)$ is much less skewed (circle shape).

Multivariate Linear Regression - Feature Scaling (2)

- Idea: make every feature into approximately $-1 \le x_i^{(i)} \le 1$ range.
 - $\mathbf{x}_0^{(i)} = 1$ fits in the range.

Solution

- Generally, as long as the range is similar, it is OK.
 - E.g., $0 < x_1^{(i)} < 3$ and $-1 < x_2^{(i)} < 1.5$.
 - Adding two more features $(-200 \le x_4^{(i)} \le 200)$ and $-0.001 < x_{\star}^{(i)} < 0.001$) makes the range very different. This is not desirable.

Multivariate Linear Regression - Feature Scaling (3)

Solution

- **Mean normalization**: another way of feature scaling.
- Replace $x_i^{(i)}$ with $x_i^{(i)} \mu_i$ to make features have approximately zero mean (do not apply to $x_0^{(i)}=1$).
 - E.g., $x_1^{(i)} = \frac{\text{size} 1000}{2000}$, $x_2^{(i)} = \frac{\text{\#bedrooms} 2}{5}$. Then, $-0.5 < x_1^{(i)} < 0.5, -0.5 < x_2^{(i)} < 0.5$
- Generally, replace $x_i^{(i)}$ by $\frac{x_j^{(i)} \mu_j}{\sigma_i}$ where σ_j can be the standard deviation or $max(x_i^{(i)}) - min(x_i^{(i)})$.
 - e.g., $0 < x_1^{(i)} < 3$ and $-1 < x_2^{(i)} < 1.5$.
 - Adding two more features $(-200 < x_4^{(i)} < 200)$ and $-0.001 \le x_4^{(i)} \le 0.001$) makes the range very different. This is not desirable.

Multivariate Linear Regression - Normal Equation

Normal equation: method to solve for θ analytically

 Normal equation method has some advantages and disadvantages, which will be discussed later.

Review

- Given the value of a d-dimensional vector x and corresponding y values
- Regression problem: predict the value of one or more continuous target variables y.

$$h(\mathbf{x}) = \theta^T \mathbf{x}$$

Classification problem: output is binary.

$$h(\mathbf{x}) = sign(\theta^T \mathbf{x})$$

- Define a cost function.
- \blacksquare Solution: decides θ such that cost function is minimal.

Logistic regression - Motivation

- Binary classification problem: $y \in \{0, 1\}$
 - 0: Negative class (e.g., benign tutors, normal emails, normal transactions)
 - 1: Positive class (e.g., malignant tumors, spam emails, fraudulent transactions)
- Multiclass classification problem: $y \in \{0, 1, 2, 3, 4\}$

Given $\{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(n)}\}$ and corresponding $(y^{(1)}, \dots, y^{(n)})$.

- Threshold classifier output
 - If $h_{\theta}(\mathbf{x}) \geq 0.5$, predict y = 1
 - If $h_{\theta}(\mathbf{x}) < 0.5$, predict y = 0

Logistic regression - Motivation (2)

Issue with this approach. Example (add one extra non-critical point)

- If we run linear regression, the line will be different. Everything to the right of a point, we predictive it to be positive.
- Directly applying linear regression to do classification generally does not work well.

Linear regression

Logistic regression - Hypothesis

- Logistic regression, generate output in [0, 1]: $0 \le h_{\theta}(\mathbf{x}) \le 1$
- Define $h_{\theta}(\mathbf{x})$ to be $g(\theta^T\mathbf{x})$
- Utilize a logistic function (or sigmoid function) $g(z) = \frac{e^z}{1+e^z}$ (or, rewritten as $\frac{1}{1+e^{-z}}$), get the hypothesis

$$h(\mathbf{x}) = g(\theta^T \mathbf{x}) = \frac{1}{1 + e^{-\theta^T \mathbf{x}}}$$

Sigmoid function

Logistic regression - Hypothesis (cont.)

- \bullet $h_{\theta}(\mathbf{x})$: for the input \mathbf{x} , the estimated probability that y=1.
- **Example:** if y = 1 means a tumor is malignant, $h_{\theta}(\mathbf{x}) = 0.7$ tells that 70% chance the tumor is malignant.
- $h_{\theta}(\mathbf{x}) = P(\mathbf{y} = 1 | \mathbf{x}; \theta)$ Probability that y = 1 given **x**, parameterized by θ .
 - $P(y = 0|\mathbf{x}; \theta) + P(y = 1|\mathbf{x}; \theta) = 1$
 - $P(y = 0 | \mathbf{x}; \theta) = 1 P(y = 1 | \mathbf{x}; \theta)$

Logistic regression - Decision boundary

- Hypothesis: $h_{\theta}(\mathbf{x}) = g(\theta^T \mathbf{x})$ where $g(z) = \frac{e^z}{1+e^z}$
- When will we predict y = 0 or y = 1?
- Suppose that
 - we predict y = 1 if $h_{\theta}(\mathbf{x}) \geq 0.5$
 - we predict y = 0 if $h_{\theta}(\mathbf{x}) < 0.5$

- Re-examine the sigmoid function
 - when $z \ge 0$, $g(z) \ge 0.5$; in this case, we predict y = 1 Equivalently, when $\theta^T \mathbf{x} \ge 0$, $h_{\theta}(\mathbf{x}) = g(\theta^T \mathbf{x}) \ge 0.5$
 - when z < 0, g(z) < 0.5; in this case, we predict y = 1Equivalently, when $\theta^T \mathbf{x} < 0$, $h_{\theta}(\mathbf{x}) = g(\theta^T \mathbf{x}) < 0.5$

Logistic regression - Decision boundary (cont.)

- Training data: red circle (class 1), blue triangle (class -1)
- $h_{\theta}(\mathbf{x}^{(i)}) = g(\theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)})$
- Suppose that we have the hypothesis parameter $\theta = \begin{pmatrix} -3 \\ 1 \\ 1 \end{pmatrix}$
- How do we make prediction? Predict y=1 if $-3+x_1+x_2 \ge 0$ (i.e., $x_1+x_2 \ge 3$)

$$\bullet h_{\theta}(\mathbf{x}) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

- If we draw a line $x_1 + x_2 = 3$, the points above this line are predicted to be y = 1; the points below this line are predicted to be y = 0.
- Line $x_1 + x_2 = 3$ is called **decision boundary**, which separates the regions for prediction of y = 0 and y = 1.

Logistic regression - Fit the parameters θ (1)

■ Training set: $\{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(n)}, y^{(n)})\}$ with n examples

$$\mathbf{x} = \begin{pmatrix} x_{,0} \\ x_{,1} \\ \dots \\ x_{,n} \end{pmatrix} \text{ where } x_{,0} = 1$$

$$\mathbf{x} \in \{0,1\}$$

• How to choose parameters θ ?

$$h_{\theta}(\mathbf{x}) = \frac{1}{1 + e^{-\theta^{\mathsf{T}}\mathbf{x}}}$$

Logistic regression - Fit the parameters θ (cont.)

Cost function for linear regression:

$$J(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})^{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{2} (h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})^{2}$$

Define

$$cost(h_{\theta}(\mathbf{x}^{(i)}), y^{(i)}) = \frac{1}{2}(h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)})^{2}$$

Logistic regression

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{cost}(h_{\theta}(\mathbf{x}^{(i)}), y^{(i)})$$

Logistic regression - log function

$$cost(h_{\theta}(\mathbf{x}), y) = \begin{cases} \frac{-\log(h_{\theta}(\mathbf{x}))}{-\log(1 - h_{\theta}(\mathbf{x}))} & \text{if } y = 1 \\ \frac{\log(h_{\theta}(\mathbf{x}))}{\log(1 - h_{\theta}(\mathbf{x}))} & \text{if } y = 0 \end{cases}$$

Linear regression

Logistic regression - Cost function (cont.)

■ The cost function for logistic regression is defined as follows:

$$cost(h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y=1 \\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y=0 \end{cases}$$

• What does this cost function look like when y = 1?

- When y = 1, this cost function has many good properties.
 - If y = 1 and $\underline{h_{\theta}(\mathbf{x})} = 1$, then Cost = 0.

 If y = 1 and $\underline{h_{\theta}(\mathbf{x})} \to 0$, Cost $\to \infty$.

 - \blacksquare Captures intuition: if y = 1 (actual class) and $h_{\theta}(\mathbf{x}) = 0$ (predict $P(y = 1 | \mathbf{x}; \theta) = 0$; absolutely impossible), we'll penalize the learning algorithm by a very large cost.

$$\mathrm{cost}(h_{\theta}(\mathbf{x}), y) = \left\{ \begin{array}{ll} -\mathrm{log}(h_{\theta}(\mathbf{x})) & \text{if y=1} \\ -\mathrm{log}(1-h_{\theta}(\mathbf{x})) & \text{if y=0} \end{array} \right.$$

■ What does this cost function look like when y = 0?

- When y = 0, this cost function has many good properties.
 - If v=0 and $h_{\theta}(\mathbf{x})=0$, then Cost =0.
 - If y = 0 and $h_{\theta}(\mathbf{x}) \to 1$, Cost $\to \infty$.
 - Captures intuition that $h_{\theta}(\mathbf{x}) = 1$ (predict $P(y = 1 | \mathbf{x}; \theta) = 1$), absolutely impossible

Logistic regression - Cost function - rewriting

Solution

Cost function

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \operatorname{cost}(h_{\theta}(\mathbf{x}^{(i)}), y^{(i)})$$

$$\operatorname{cost}(h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$
where $y = 0$ or 1

The cost function can be rewritten as

$$cost(h_{\theta}(\mathbf{x}), y) = -y \log(h_{\theta}(\mathbf{x})) - (1 - y) \log(1 - h_{\theta}(\mathbf{x}))$$

Cost function

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} \text{cost}(h_{\theta}(\mathbf{x}^{(i)}), y^{(i)})$$

= $-\frac{1}{n} (\sum_{i=1}^{n} y^{(i)} \log(h_{\theta}(\mathbf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\mathbf{x}^{(i)})))$

■ To fit parameters θ :

$$min_{\theta}J(\theta)$$

■ To make a prediction given new x: output

$$h(\mathbf{x}) = \frac{1}{1 + e^{-\theta^T \mathbf{x}}}$$

The meaning is $p(y = 1|\mathbf{x}; \theta)$

Logistic regression - Gradient Descent

Cost function

$$J(\theta) = -\frac{1}{n} \left(\sum_{i=1}^{n} y^{(i)} \log(h_{\theta}(\mathbf{x}^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(\mathbf{x}^{(i)})) \right)$$

Goal

$$min_{\theta}J(\theta)$$

Algorithm

Repeat {
$$\theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$
 (simultaneously update all θ_j)

■ To fit parameters θ :

$$min_{\theta}J(\theta)$$

Logistic regression - Gradient Descent

Solution

```
Repeat {
              \theta_j = \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)
                           (simultaneously update all \theta_i)
■ Since \frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{n} \sum_{i=1}^n (h_\theta(\mathbf{x}^{(i)}) - y^{(i)}) \mathbf{x}^{(i)}, we get
Repeat {
              \theta_i = \theta_i - \alpha \sum_{i=1}^n (h_\theta(\mathbf{x}^{(i)}) - y^{(i)}) \mathbf{x}^{(i)}
                          (simultaneously update all \theta_i)
```

- Algorithm looks identical to linear regression!
- The difference is the definition of $h_{\theta}(\mathbf{x}^{(i)})$.

References

- Chapter 4: Introduction to Data Mining (2nd Edition) by Pang-Ning Tan, Michael Steinbach, Anuj Karpatne, and Vipin Kumar
- Logistic Regression: https: //scikit-learn.org/stable/modules/generated/ sklearn.linear_model.LogisticRegression.html