Some Liouville theorems and applications

YanYan Li*

Department of Mathematics Rutgers University 110 Frelinghuysen Road Piscataway, NJ 08854 USA

Dedicated to Haim Brezis with high respect and friendship

2000 Mathematics Subject Classification: 35J60, 35J70, 53A30

Abstract

We give exposition of a Liouville theorem established in [6] which is a novel extension of the classical Liouville theorem for harmonic functions. To illustrate some ideas of the proof of the Liouville theorem, we present a new proof of the classical Liouville theorem for harmonic functions. Applications of the Liouville theorem, as well as that of earlier ones in [5], can be found in [6, 7] and [9].

The Laplacian operator Δ is invariant under rigid motions: For any function u on \mathbb{R}^n and for any rigid motion $T: \mathbb{R}^n \to \mathbb{R}^n$,

$$\Delta(u \circ T) = (\Delta u) \circ T.$$

^{*}Partially supported by NSF grant DMS-0401118. To appear in a volume in honor of Haim Brezis' sixtieth birthday.

The following theorem is classical:

$$u \in C^2$$
, $\Delta u = 0$ and $u > 0$ in \mathbb{R}^n imply that $u \equiv \text{constant}$. (1)

In this note we present a Liouville theorem in [6] which is a fully nonlinear version of the classical Liouville theorem (1).

Let u be a positive function in \mathbb{R}^n , and let $\psi : \mathbb{R}^n \cup \{\infty\} \to \mathbb{R}^n \cup \{\infty\}$ be a Möbius transformation, i.e. a transformation generated by translations, multiplications by nonzero constants and the inversion $x \to x/|x|^2$. Set

$$u_{\psi} := |J_{\psi}|^{\frac{n-2}{2n}} (u \circ \psi),$$

where J_{ψ} is the Jacobian of ψ .

It is proved in [3] that an operator $H(u, \nabla u, \nabla^2 u)$ is conformally invariant, i.e.

 $H(u_{\psi}, \nabla u_{\psi}, \nabla^2 u_{\psi}) \equiv H(u, \nabla u, \nabla^2 u) \circ \psi$ holds for all positive u and all Möbius ψ ,

if and only if H is of the form

$$H(u, \nabla u, \nabla^2 u) \equiv f(\lambda(A^u))$$

where

$$A^{u} := -\frac{2}{n-2}u^{-\frac{n+2}{n-2}}\nabla^{2}u + \frac{2n}{(n-2)^{2}}u^{-\frac{2n}{n-2}}\nabla u \otimes \nabla u - \frac{2}{(n-2)^{2}}u^{-\frac{2n}{n-2}}|\nabla u|^{2}I,$$

I is the $n \times n$ identity matrix, $\lambda(A^u) = (\lambda_1(A^u), \dots, \lambda_n(A^u))$ denotes the eigenvalues of A^u , and f is a function which is symmetric in $\lambda = (\lambda_1, \dots, \lambda_n)$.

Due to the above characterizing conformal invariance property, A^u has been called in the literature the conformal Hessian of u. Since

$$\sum_{i=1}^{n} \lambda_i(A^u) = -\frac{2}{n-2} u^{-\frac{n+2}{n-2}} \Delta u,$$

Liouville theorem (1) is equivalent to

$$u \in C^2$$
, $\lambda(A^u) \in \partial \Gamma_1$ and $u > 0$ in \mathbb{R}^n imply that $u \equiv \text{constant}$, (2)

where

$$\Gamma_1 := \{ \lambda \mid \sum_{i=1}^n \lambda_i > 0 \}.$$

Let

 $\Gamma \subset \mathbb{R}^n$ be an open convex symmetric cone with vertex at the origin (3)

satisfying

$$\Gamma_n := \{ \lambda \mid \lambda_i > 0, 1 \le i \le n \} \subset \Gamma \subset \Gamma_1. \tag{4}$$

Examples of such Γ include those given by elementary symmetric functions. For $1 \leq k \leq n$, let

$$\sigma_k(\lambda) := \sum_{1 \le i_1 < \dots < i_k \le n} \lambda_{i_1} \cdots \lambda_{i_k}$$

be the k-th elementary symmetric function and let $\Gamma_k := \{\lambda \in \mathbb{R}^n \mid \sigma_1(\lambda), \dots, \sigma_k(\lambda) > 0\}$, which is equal to the connected component of $\{\lambda \in \mathbb{R}^n \mid \sigma_k(\lambda) > 0\}$ containing the positive cone Γ_n , satisfies (3) and (4).

For an open subset Ω of \mathbb{R}^n , consider

$$\lambda(A^u) \in \partial \Gamma, \quad \text{in } \Omega.$$
 (5)

The following definition of viscosity super and sub solutions of (5) has been given in [6].

Definition 1 A positive continuous function u in Ω is a viscosity subsolution [resp. supersolution] of (5) when the following holds: if $x_0 \in \Omega$, $\psi \in C^2(\Omega)$, $(u - \psi)(x_0) = 0$ and $u - \psi \leq 0$ near x_0 then

$$\lambda(A^{\psi}(x_0)) \in \mathbb{R}^n \setminus \Gamma.$$

[resp. if $(u - \psi)(x_0) = 0$ and $u - \psi \ge 0$ near x_0 then $\lambda(A^{\psi}(x_0)) \in \overline{\Gamma}$].

We say that u is a viscosity solution of (5) if it is both a viscosity supersolution and a viscosity subsolution.

Remark 1 If a positive u in $C^{1,1}(\Omega)$ satisfies $\lambda(A^u) \in \partial \Gamma$ a.e. in Ω , then it is a viscosity solution of (5).

Here is the Liouville theorem.

Theorem 1 ([6]) For $n \geq 3$, let Γ satisfy (3) and (4), and let u be a positive locally Lipschitz viscosity solution of

$$\lambda(A^u) \in \partial \Gamma \qquad in \ \mathbb{R}^n. \tag{6}$$

Then $u \equiv u(0)$ in \mathbb{R}^n .

Remark 2 It was proved by Chang, Gursky and Yang in [1] that positive $C^{1,1}(\mathbb{R}^4)$ solutions to $\lambda(A^u) \in \partial \Gamma_2$ are constants. Aboling Li proved in [2] that positive $C^{1,1}(\mathbb{R}^3)$ solutions to $\lambda(A^u) \in \partial \Gamma_2$ are constants, and, for all k and n, positive $C^3(\mathbb{R}^n)$ solutions to $\lambda(A^u) \in \partial \Gamma_k$ are constants. The latter result for $C^3(\mathbb{R}^n)$ solutions is independently established by Sheng, Trudinger and Wang in [8]. Our proof is completely different.

Remark 3 Writing $u = w^{-\frac{n-2}{2}}$, then

$$A^u \equiv A_w := w\nabla^2 w - \frac{1}{2}|\nabla w|^2 I.$$

Theorem 1, with $\lambda(A^u) \in \partial \Gamma$ being replaced by $\lambda(A_w) \in \partial \Gamma$, holds for n = 2 as well. See [6].

In order to illustrate some of the ideas of our proof of Theorem 1 in [6], we give a new proof of the classical Liouville theorem (1). We will derive (1) by using the

Comparison Principle for Δ : Let Ω be a bounded open subset of \mathbb{R}^n containing the origin 0. Assume that $u \in C^2_{loc}(\overline{\Omega} \setminus \{0\})$ and $v \in C^2(\overline{\Omega})$ satisfy

$$\Delta u \leq 0 \quad in \ \Omega \setminus \{0\} \qquad and \qquad \Delta v \geq 0 \quad in \ \Omega,$$

and

$$u > v$$
 on $\partial \Omega$.

Then

$$\inf_{\Omega\setminus\{0\}}(u-v)>0.$$

It is easy to see from this proof of the Liouville theorem (1) that the following Comparison Principle for locally Lipschitz viscosity solutions of (5), established in [5, 6], is sufficient for a proof of Theorem 1.

Proposition 1 Let Ω be a bounded open subset of \mathbb{R}^n containing the origin 0, and let $u \in C^{0,1}_{loc}(\overline{\Omega} \setminus \{0\})$ and $v \in C^{0,1}(\overline{\Omega})$. Assume that u and v are respectively positive viscosity supersolution and subsolution of (5), and

$$u > v > 0$$
 on $\partial \Omega$.

Then

$$\inf_{\Omega\setminus\{0\}}(u-v)>0.$$

For the proof of Proposition 1 and Theorem 1, see [5, 6]. In this note, we give the **Proof of Liouville theorem (1) based on the Comparison Principle for** Δ **.** Let

$$v(x) := \frac{1}{2} [\min_{|y|=1} u(y)] |x|^{2-n}, \quad v_1(x) := \frac{1}{|x|^{n-2}} v(\frac{x}{|x|^2}), \quad u_1(x) := \frac{1}{|x|^{n-2}} u(\frac{x}{|x|^2}).$$

Since u_1 and v_1 are still harmonic functions, an application of the Comparison Principle for Δ on Ω :=the unit ball yields

$$\liminf_{|y| \to \infty} |y|^{n-2} u(y) > 0.$$
(7)

Lemma 1 For every $x \in \mathbb{R}^n$, there exists $\lambda_0(x) > 0$ such that

$$u_{x,\lambda}(y) := \frac{\lambda^{n-2}}{|y-x|^{n-2}} u(x + \frac{\lambda^2(y-x)}{|y-x|^2}) \le u(y) \qquad \forall \ 0 < \lambda < \lambda_0(x), |y-x| \ge \lambda.$$

Proof. Without loss of generality we may take x = 0, and we use u_{λ} to denote $u_{0,\lambda}$. By the positivity and the Lipschitz regularity of u, there exists $r_0 > 0$ such that

$$r^{\frac{n-2}{2}}u(r,\theta) < s^{\frac{n-2}{2}}u(s,\theta), \quad \forall \ 0 < r < s < r_0, \ \theta \in \mathbb{S}^{n-1}.$$

The above is equivalent to

$$u_{\lambda}(y) < u(y), \qquad 0 < \lambda < |y| < r_0. \tag{8}$$

We know from (7) that, for some constant c > 0,

$$u(y) \ge c|y|^{2-n}, \qquad |y| \ge r_0.$$

Let

$$\lambda_0 := \left(\frac{c}{\max_{|z| < r_0} u(z)}\right)^{\frac{1}{n-2}}.$$

Then

$$u_{\lambda}(y) \le \left(\frac{\lambda_0}{|y|}\right)^{n-2} (\max_{|z| \le r_0} u(z)) \le c|y|^{2-n} \le u(y), \quad \forall \ 0 < \lambda < \lambda_0, |y| \ge r_0.$$
 (9)

It follows from (8) and (9) that

$$u_{\lambda}(y) \le u(y), \quad \forall \ 0 < \lambda < \lambda_0, |y| \ge \lambda.$$

Lemma 1 is established.

Because of Lemma 1, we may define, for any $x \in \mathbb{R}^n$ and any $0 < \delta < 1$, that

$$\bar{\lambda}_{\delta}(x) := \sup\{\mu > 0 \mid u_{x,\lambda}(y) \le (1+\delta)u(y), \ \forall \ 0 < \lambda < \mu, |y-x| \ge \lambda\} \in (0,\infty].$$

Lemma 2 For any $x \in \mathbb{R}^n$ and any $0 < \delta < 1$, $\bar{\lambda}_{\delta}(x) = \infty$.

Proof. We prove it by contradiction. Suppose the contrary, then, for some $x \in \mathbb{R}^n$ and some $0 < \delta < 1$, $\bar{\lambda}_{\delta}(x) < \infty$. We may assume, without loss of generality, that x = 0, and we use u_{λ} and $\bar{\lambda}_{\delta}$ to denote respectively $u_{0,\lambda}$ and $\bar{\lambda}_{\delta}(0)$. Since the harmonicity is invariant under conformal transformations and multiplication by constants, and since

$$u(y) = u_{\bar{\lambda}_{\delta}}(y) < (1+\delta)u_{\bar{\lambda}_{\delta}}(y), \qquad \forall |y| = \bar{\lambda}_{\delta},$$

an application of (7) yields, using the fact that $(u_{\lambda})_{\lambda} \equiv u$,

$$\inf_{0<|y|<\bar{\lambda}_{\delta}}[(1+\delta)u_{\bar{\lambda}_{\delta}}(y)-u(y)]>0.$$

Namely, for some constant c > 0,

$$(1+\delta)u(y) - u_{\bar{\lambda}_{\delta}}(y) \ge c|y|^{2-n}, \qquad \forall \ |y| \ge \bar{\lambda}_{\delta}. \tag{10}$$

By the uniform continuity of u on the ball $\{z \mid |z| < \bar{\lambda}_{\delta}\}$, there exists $0 < \epsilon < \bar{\lambda}_{\delta}$ such that for all $\bar{\lambda}_{\delta} \leq \lambda \leq \bar{\lambda}_{\delta} + \epsilon$, and for all $|y| \geq \lambda$, we have

$$\begin{array}{lcl} (1+\delta)u(y)-u_{\lambda}(y) & \geq & (1+\delta)u(y)-u_{\bar{\lambda}_{\delta}}(y)+[u_{\bar{\lambda}_{\delta}}(y)-u_{\lambda}(y)] \\ \\ & \geq & c|y|^{2-n}-|y|^{2-n}|\lambda^{n-2}u(\frac{\lambda^{2}y}{|y|^{2}})-\bar{\lambda}_{\delta}^{n-2}u(\frac{\bar{\lambda}_{\delta}^{2}y}{|y|^{2}})|\geq \frac{c}{2}|y|^{2-n}. \end{array}$$

This violates the definition of $\bar{\lambda}_{\delta}$. Lemma 2 is established.

By Lemma 2, $\bar{\lambda}_{\delta} \equiv \infty$ for all $0 < \delta < 1$. Namely,

$$(1+\delta)u(y) \ge u_{x,\lambda}(y), \quad \forall \ 0 < \delta < 1, x \in \mathbb{R}^n, |y-x| \ge \lambda > 0.$$

Sending δ to 0 in the above leads to

$$u(y) \ge u_{x,\lambda}(y), \quad \forall \ x \in \mathbb{R}^n, |y - x| \ge \lambda > 0.$$

This easily implies $u \equiv u(0)$. Liouville theorem (1) is established.

References

- [1] S.Y.A. Chang, M. Gursky and P. Yang, A prior estimate for a class of nonlinear equations on 4-manifolds, Journal D'Analyse Journal Mathematique 87 (2002), 151-186.
- [2] A. Li, Liouville type theorem for some degenerate conformally invariant fully nonlinear equation, in preparation.
- [3] A. Li and Y.Y. Li, On some conformally invariant fully nonlinear equations, Comm. Pure Appl. Math. 56 (2003), 1416-1464.
- [4] A. Li and Y.Y. Li, On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe, Acta Math. 195 (2005), 117-154.
- [5] Y.Y. Li, Degenerate conformally invariant fully nonlinear elliptic equations, arXiv:math.AP/0504598 v1 29 Apr 2005; v2 24 May 2005; final version, to appear in Arch. Rational Mech. Anal.
- [6] Y.Y. Li, Local gradient estimates of solutions to some conformally invariant fully nonlinear equations, arXiv:math.AP/0605559 v1 20 May; v2 7 Jul 2006.
- [7] Y.Y. Li, Local gradient estimates of solutions to some conformally invariant fully nonlinear equations, C. R. Math. Acad. Sci. Paris, Ser. I, to appear.
- [8] W. Sheng, N.S. Trudinger and X.J. Wang, The Yamabe problem for higher order curvatures, arXiv:math.DG/0505463 v1 23 May 2005.
- [9] X.J. Wang, Apriori estimates and existence for a class of fully nonlinear elliptic equations in conformal geometry, Chin. Ann. Math., to appear.