Parte Práctica

1. Se sabe que la función $f(x) = e^x - 1 - 2x$ tiene 2 raíces, una en x = 0 y otra en el intervalo [1,2]. Considere las siguientes funciones de iteración para encontrar la raíz no nula:

$$x_{n+1} = \frac{e^{x_n} - 1}{2}, \qquad x_{n+1} = \ln(1 + 2x_n).$$

Decida si existe un intevarlo de convergencia para cada una de ellas. Justifique.

2. Aproxime la función $f(x) = e^{-3x}$ para $x \in (0, \infty)$, por un polinomio cuadrático utilizando el método de cuadrados mínimos respecto a la función de peso $\omega(x) = e^{-x}$ y considerando los polinomios de Laguerre.

Ayuda: Los Polinomios de Laguerre están definidos como

$$\phi_k(x) = \frac{e^x}{k!} \frac{d^k}{dx^k} (x^k e^{-x})$$

para todo $x \in [0, \infty), k = 0, 1, 2, \ldots$ Además, se sabe que para cada n natural vale que $\int_0^\infty x^n e^{-x} dx = n!$

3. Considere el problema

minimizar
$$-2x_1 - 3x_2$$

sujeto a $x_1 + x_2 \le 8$,
 $-x_1 + 2x_2 \le 4$,
 $x_1 \ge 0, x_2 \ge 0$.

Grafique las restricciones, resuelva usando el método Simplex, de el minimizador y el valor mínimo.

4. Considere la matriz:

$$A = \begin{bmatrix} 4 & 3 & 0 \\ 2 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$

- (a) Deduzca la iteración de Jacobi para resolver el sistema lineal Ax=b para algún vector $b\in\mathbb{R}^3$.
- (b) ¿Es esta iteración convergente? Justifique la respuesta.

5. Sólo alumnos libres.

(a) Determine el polinomio interpolante de grado menor o igual a 3 en la forma de Newton, que interpola los siguientes datos:

$$(1,0), (2,-1), (3,0), (4,1).$$

(b) Asuma que se obtiene un dato adicional (5,0). Recalcule el polinomio interpolante en la forma de Newton. (Nota: se evaluará la forma en que se haga este item, no solamente el resultado).

Parte Teórica

- De la definición de una función spline en general y de las condiciones para que sea un spline cúbico natural.
- 2. De una deducción de la regla de Simpson para una función en el intervalo [0, 1].
- 3. Demuestre el teorema de convergencia del método de bisección.

1 Se	sahe	ane	la fire	nción	f(x) =	ox 1	- 2x t	iona 2	raíona	1100.0	n æ -	O v ot	20.00	al inte	rvolo					
[1,	2]. C	lonsi	dere	las sig	guiente	s funci	ones d	le iter	ación p	ara en	contra	ar la ra	aíz no	nula:	valu					
					x_{n+1}	$=\frac{e^{x_n}}{2}$	$\frac{-1}{2}$,	x_n	+1 = lr	1(1+2)	x_n).									
De	cida s	si ex	iste u	ın inte	evarlo	de con	vergen	icia pa	ıra cad	la una	de ella	as. Jus	stifiqu	e.						
sboco (en de	os co	0505	•																
Tomo	o la	Pel	c1010	fóra	nula:										- o (:	r)	(5.	ريملمه		
χ ₀₊₁	<u> </u>	, Ku	_ 1	⇒	9 (x)	= <u>e</u>	× - 1	le,	vêo t	uc bu	scor	I tal	que:	<	• a'	(x) <	1 Yx	e E I	(Vnicia	lod)
		Z.			(×) =										, 0					
	o X		1 -		<2										Laura	10				
2	. C		7 -					,	3 3, 3	, 4			CXIS	το (((re i O Q	10				
Segu															• g(:	r)⊆ I	(E,	(isten	(19)	
n+1 = 1	ln (1	1+2	2 KU	<i>⇒</i> 9((x) =	n(1+	2x)	le	080 E	ve bu	scor	I tal	\$nc:	<	→ g′	(x) <	1 4x	ίξΙ	(Vaici	lod)
(\(\alpha\) =	1+2	=	= 2.	(1+2	2×)-1	, 2	. (1+2	(x)-1	< 1	⇒ <u> </u>	1 +2 X	< <u>1</u>	- න	$\frac{1}{z}$	× ,	sutor	ces	prop	0080	
																I = [1,2]			
					tc,9														extr	cmos
(1) = la	n (1+	12)	=1,0	9>1	1 y	g (z) =	=ln(1	+4)=	1,61	< 2 ⇒	> <u>[(</u>	nteru	alo	I=LI	,2]	es v	à lide			
																				Pedro

3. Conside	e las r	estricc			sujeto :	$\begin{array}{ccc} \mathbf{a} & x_1 - \\ & -x_1 \\ & x_1 \end{array}$	$x_1 - 3x_2 + x_2 \le 8 + 2x_2 \le 0, x_2$ método	$\leq 4,$ $\geq 0.$	plex, de e	l minim	izador y	y el					
MINIMIZOCIE	όι το	n Sir	nplex	(10bc	?QU)												
· Primero	deb	o exp)(<i>(</i> \$Q(el pa	oblor	19 60	form	o es	tándar								
MIUIMIE	ar -	2 x, -	-3× _z	+05	1+0:	5 z											
s.a		Xı	+ × _z	+ 51		_ {	3	A =		1 0		b =	8				
		- X, ·	+ 2×z		+ Sz	= 9	4		-1 2	0 1			[4]				
		χ, , ,	/ _z , S1	,Sz	20												
								_									
	base		Ϋ́Z	Sı							S ₁ S						
	-2	-2	-3	0		0	6		2 - 1/2		0 3/			F1.7/3 F0+7/2			
	Sı	-1	1 (2)	1	0	8	Fo+3F	z	1,	0	0 1/2		T	fz+ 1/2			
	Sz					7		X	2								
		enta.				C			XI entro								
	۳۵۶	salo	z ya	puc 1	S=M10	₹ 8 ,2	\$		S, sale	ya go	uc 4 = (<u> ኅ ነ</u> በ ን ዛ	1,4 &				
	basc	Χι	¥z	Sı	Sz	LD											
	-2	0				46/3		- 5	e llege	10.50	د در در داد	ادم					
	× ₁	1	0	2/3		4		7	, X1, X2, S			•					
	X ₂	٥	1	1/2	1/3	4			K() X Z / S								
																Pedro	Villar

4. Considere la matriz:	$A = \begin{bmatrix} 4 & 3 & 0 \\ 2 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$	
 (a) Deduzca la iteración de vector b∈ R³. (b) ¿Es esta iteración conver 		ira algún
	está doda po: X.	donde $M = D$ y $N = -(L+v)$ $\begin{bmatrix} 0 & -\frac{3}{4} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{4} \end{bmatrix}$
$\Rightarrow X_{0+1} = \begin{bmatrix} 0 & -\frac{3}{4} & 0 \\ -\frac{1}{2} & 0 & \frac{1}{4} \\ 0 & \frac{4}{4} & 0 \end{bmatrix}$		
b) La matriz es diagon		3 a;j , para i=1,2,3.
⇒ councibe boto cnotônio	(X ₀ ∈ 13 ³ ,	
		Pedro Vil

Parte Teórica

- De la definición de una función spline en general y de las condiciones para que sea un spline cúbico natural.
- 2. De una deducción de la regla de Simpson para una función en el intervalo [0, 1].
- 3. Demuestre el teorema de convergencia del método de bisección.

1) Se llome spline a la llamade interpolación per partes e a trezes, se teman subintervalos en los cuales se Forman polinemios unidos seguin ciertas condiciones de continuidad.

Para pue un spline cúbico se de de forma natural, hay que imponer dos condiciones edicionales:

5"(xo) = 5"(xo) = 0 y 5"(xn-1) = 5"(xn) = 0.

2) Para deducir la regla de simpson en [0,1], se liene que former el polinomio interpolante tomando como

$$\int_{0}^{1} f(x) dx \approx \int_{0}^{1} p(x) dx = \int_{0}^{1/2} f(x_{i}) l_{i}(x) dx = \int_{0}^{1} (f(0)) l_{0}(x) + f(1/2) l_{i}(x) + f(1/2) l_{z}(x) dx$$

$$= f(0) \int_{0}^{1} l_{0}(x) dx + f(1/2) \int_{0}^{1} l_{1}(x) dx + f(1) \int_{0}^{1} l_{z}(x) dx$$

$$= \mathcal{L}(0) \int_{0}^{1} \frac{(x-1/2)(x-1)}{(0-1/2)(0-1)} dx + \mathcal{L}(1/2) \int_{0}^{1} \frac{x(x-1)}{(1/2)(1/2-1)} dx + \mathcal{L}(1) \int_{0}^{1} \frac{x - (x-1/2)}{(1/2)} dx$$

$$=2f(0)\int_{0}^{1}(x-1/2)(x-1)dx-4f(1/2)\int_{0}^{1}x(x-1)dx+2f(1)\int_{0}^{1}x(x-1/2)dx$$

$$=2f(0)\int_{0}^{1}(x^{2}-x-1/2x+1/2)dx-4f(1/2)\int_{0}^{1}(x^{2}-x)dx+7f(1)\int_{0}^{1}(x^{2}-1/2x)dx$$

$$=2f(0)\left(\frac{1}{3}-\frac{1}{2}-\frac{1}{4}+\frac{1}{2}\right)-4f(\frac{1}{2})\left(\frac{1}{3}-\frac{1}{2}\right)+2f(1)\left(\frac{1}{3}-\frac{1}{4}\right)\\ =\frac{f(0)}{6}-\frac{2f(\frac{1}{2})}{3}+\frac{f(1)}{6}$$

3) Scan [Qo,bo], ..., [Onba] los intervalos del mòtodo de biseccció, si $c_n = \frac{1}{2}$ (Qatb) y $c_n = \lim_{n \to \infty} c_n$, entoncos $|c_n| \leq \frac{b_0 - Q_0}{2^{n+1}}$

Romo $a_0 \leq a_1 \leq a_2 \leq \dots \leq b_0$, $a_0 \leq a_0 \leq$

> f(1) f(1) 60 > f(r) = 0 11.