Assignment #4 Matt Langlois - 7731813 December 7

Question 1

a) 2-4 Tree with 13 3-nodes

b) After 1 minimum insertion:

After 2 minimum insertions:

After 3 minimum insertions:

After 4 minimum insertions:

After 5 minimum insertions:

c) After 1 max deletion:

After 2 max deletions:

After 3 max deletions:

After 4 max deletions:

After 5 max deletions:

Question 2

a) DFS Traversal order: $v5 \rightarrow v4 \rightarrow v2 \rightarrow v4 \rightarrow v3 \rightarrow v1 \rightarrow v10 \rightarrow v9 \rightarrow v8 \rightarrow v6 \rightarrow v7$

Discovery Edges	Back Edges
(v5, v4)	(v10, v3)
(v4, v2)	(v6, v3)
(v4, v3)	(v6, v5)
(v3, v1)	(v7, v8)
(v1, v10)	
(v10, v9)	
(v9, v8)	
(v8, v6)	
(v6, v7)	

b) BFS Traversal Levels:

Level	Nodes	Discovery Edges	Cross Edges
L1	v4	(v5, v4)	
	v6	(v5, v6)	
L2	v2	(v4, v2)	(v6, v3)
	v3	(v4, v3)	
	v7	(v6, v7)	
	v8	(v6, v8)	
L3	v1	(v3, v1)	(v7, v8)
	v10	(v3, v10)	
	v9	(v8, v9)	
L4			(v1, v10)
			(v10, v9)

Question 3

a) Dijkstra's algorithm trace:

New Vertex	S	Р	U	X	Q	Y	V	R	W	Т	New Edge
S	0 √	6	3*	∞							
U	0 √	6	3√	4*	∞	∞	6	∞	∞	∞	(S,U)
X	0✓	6*	3√	4√	12	10	6	∞	∞	∞	(U,X)
P	0 √	6√	3√	4√	11	10	6*	∞	∞	∞	(S,P)
V	0✓	6√	3√	4√	11	10*	6√	∞	10	∞	(U,V)
Y	0 🗸	6√	3√	4√	11	10✓	6√	11	10*	∞	(X,Y)
W	0 √	6√	3√	4√	11*	10√	6√	11	10√	15	(V,W)
Q	0✓	6√	3√	4√	11√	10✓	6√	11*	10✓	15	(P,Q)
R	0 √	6√	3√	4√	11√	10√	6√	11√	10√	13*	(Y,R)
T	0✓	6√	3√	4√	11√	10✓	6√	11√	10✓	13√	(R,T)

Minimum Spanning Tree:

b) SUXYRT is the shortest path from S to T.

Question 4

a) Insertion into a hash table using linear probing with the function $h(X) = X \mod 11$ on the following elements: 3, 32, 46, 58, 57, 26, 17, 74.

h(X)	0	1	2	3	4	5	6	7	8	9	10
X			46	3	58	57	26	17	74		32

- b) Four elements would have to be probed before we find 57. This is because 57 $\mod 11 = 2$ but 57 is found at the 5th position.
- c) Eight elements would have to be probed before we realize 68 is not in the table. This is because $68 \mod 11 = 2$ but the first empty element is found at the 9th position.
- d) i) Insertion into a hash table using linear probing with the double hash function $h_2(X) = 7 (X \mod 7)$ on the following elements: 3, 32, 46, 58, 57, 26, 17, 74.

h(z)	$\overline{Y)}$	0	1	2	3	4	5	6	7	8	9	10
Х		74		46	3	26		17		58	57	32

- ii) Four elements would have to be probed before we find 57. This is because 57 mod 11 = 2 but element 46 is found at position 2. So then the double hashing algorithm is applied $7 (57 \mod 7) = 6$. Jumping 6 buckets we find 58, jumping 6 more we find 3, jumping 6 more we find 57. \therefore 57 is found on the 4th probe.
- iii) Six elements would have to be probed before we realize 68 is not in the table. This is because 68 mod 11 = 2 but element 46 is found at position 2. So then the double hashing algorithm is applied $7 (68 \mod 7) = 2$. Jumping 2 buckets we find 26, jumping 2 more we find 17, jumping 2 more we find 58, jumping 2 more we find 32 and finally jumping 2 more we find null. \therefore 68 is determine to not be in the hash table on the 6th probe.