ECEn 671: Mathematics of Signals and Systems

Randal W. Beard

Brigham Young University

September 1, 2023

Section 1

Orthogonality

Orthogonality

Let $x, y \in \mathbb{X}$ where \mathbb{X} is an inner product space. Then the angle between x and y is

$$\theta = \cos^{-1}\left(\frac{\langle x, y \rangle}{\|x\| \|y\|}\right).$$

i.e.

$$\langle x, y \rangle = ||x|| \, ||y|| \cos \theta$$

Orthogonality, cont.

Definition (Colinear)

Two vectors $x, y \in \mathbb{X}$ are said to be <u>colinear</u> if

$$\theta = 180 * n$$
 $n = 0, \pm 1, \pm 2, \dots$

Definition (Orthogonal)

Two vectors $x, y \in \mathbb{X}$ are said to be orthogonal if

$$\theta = 90 * n$$
 $n = \pm 1, \pm 3, \pm 5, \dots$

i.e.,
$$\langle x, y \rangle = 0$$
.

If $\langle x, y \rangle = 0$ we write $x \perp y$.

Orthogonality, cont.

Example (Vectors in $L_2[0,2\pi)$)

The functions x = sin(t) and y = cos(t) are orthogonal since

$$\langle x,y\rangle = \int_0^{2\pi} \sin(t)\cos(t)dt = 0.$$

Example (Vectors in ℓ)

The sequences

$$x = (1, 1, 1, 1, 0, 0, \dots)$$

 $y = (1, -1, 1, -1, 1, \dots)$

are orthogonal since

$$\langle x,y\rangle = \sum_{i=1}^{\infty} x_i y_i = 0.$$

Other useful inner products and norms: Weighting

Definition (Positive Definite Matrix)

A matrix $W: \mathbb{R}^k \to \mathbb{R}^k$ is positive definite (PD) if $\forall x \in \mathbb{R}^k$ $x^T W x > 0$

- ▶ *W* is positive semi-definite (PSD) if $x^T Wx \ge 0$
- ▶ *W* is negative definite (ND) if $x^T Wx < 0$ $\forall x \in \mathbb{R}^k$
- ▶ *W* is negative semi-definite (NSD) if $x^T Wx \le 0$ $\forall x \in \mathbb{R}^k$
- Otherwise it is indefinite

Examples of positive definiteness

$$W = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 is PD since

$$x^T W x = x_1^2 + x_2^2 > 0 \qquad \forall x \in \mathbb{R}^2$$

• $W = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ is PSD since

$$x^T W x = x_1^2 = 0$$
 $\forall x = \begin{pmatrix} 0 \\ \alpha \end{pmatrix} \neq 0$

 $W = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ is indefinite since

$$x^T W x = -x_1^2 + x_2^2$$

which can be positive or negative depending on x.

Examples of Inner Products

Weighted Inner Products and Norms

If W>0 then $\langle x,y\rangle_W=x^HWy$ is a valid inner product which induces the weighted norm $\|x\|_W=(x^HWx)^{\frac{1}{2}}$ We can define weighted inner products for functions:

$$\langle f, g \rangle_W = \int f(t)g(t)w(t)dt$$

where w(t) > 0 except on a set of measure zero.

Examples of Inner Products

Definition (Expectation)

Expectation is a weighted inner product with weight $f_{XY}(x,y)$

$$\langle \mathbb{X}, \mathbb{Y} \rangle = \int xy f_{\mathbb{X}\mathbb{Y}}(x, y) dx dy$$
 $= E[\mathbb{X}\mathbb{Y}]$

if X is a zero mean then

$$\langle x, x \rangle = var(x)$$

is the norm induced by $E[\cdot \cdot]$

Examples of Inner Products

- Let $\mathbb{I}(m, n)$ be the set of grayscale images with $m \times n$ pixels, each valued between [0, 255].
- ▶ A valid inner on $\mathbb{I}(m, n)$ is given by

$$\langle I, J \rangle = \sum_{u=1}^{m} \sum_{v=1}^{n} I(u, v) J(u, v), \quad \forall I, J \in \mathbb{I}(m, n).$$

Orthogonal Subspaces

Definition (Orthogonal Subspaces)

Let V, W be subspaces of S. $V \perp W$ if

$$\forall v \in V \text{ and } \forall w \in W, \qquad \langle v, w \rangle = 0$$

Definition (Orthogonal Complement)

 V^{\perp} , called the orthogonal complement of V, is the set

$$V^{\perp} = \{ x \in S : \forall v \in V, \langle x, v \rangle = 0 \}$$

Orthogonal Subspaces, cont.

Example

Let
$$S=\mathbb{R}^2$$
 and $V=\left\{\left(\begin{array}{c} \alpha \\ 0 \end{array}\right), \alpha\in\mathbb{R}\right\}$ then $V^\perp=\left\{\left(\begin{array}{c} 0 \\ \alpha \end{array}\right), \alpha\in\mathbb{R}\right\}$

Orthogonal Subspaces, cont.

Theorem

Let V and W be subspaces of an inner product space S (not necessarily Hilbert). Then

- 1. V^{\perp} is a closed subspace of S
- 2. $V \subset V^{\perp \perp}$ $(V = V^{\perp \perp} \text{ if S is complete})$
- 3. If $V \subset W$ then $W^{\perp} \subset V^{\perp}$
- 4. $V^{\perp\perp\perp} = V^{\perp}$
- 5. If $x \in V \cap V^{\perp}$ then x = 0
- 6. $\{0\}^{\perp} = S \text{ and } S^{\perp} = \{0\}$

Prove one in class.

Inner Sum and Direct Sum

Definition (Inner Sum)

If V and W are linear subspaces then

$$V + W = \{x : x = v + w, v \in V \text{ and } w \in W\}$$

is the inner sum.

Definition (Orthogonal Sum)

If V and W are orthogonal subspaces then the sum

$$V \oplus W = \{x : x = v + w, v \in V \text{ and } w \in W\}$$

is called the orthogonal sum.

Definition (Disjoint Subspaces)

Two subspaces are said to be disjoint if

$$V \cap W = \{0\}$$

Inner Sum and Direct Sum, cont.

Lemma

Let V+W be subspaces of S and let $x \in V+W$ then the representation x=v+w is unique iff V+W are disjoint.

Proof.

(\Leftarrow) Assume V,W are disjoint but x=v+w is not unique i.e. $x=v_1+w_1=v_2+w_2$ where $v_1\neq v_2$ and $w_1\neq w_2$. This implies that $v_1-v_2=w_2-w_1$ but $v_1-v_2\in V$ and $w_2-w_1\in W$ since V,W are subspaces. Since $V\cap W=\{0\}$ we must have that $v_1-v_2=w_2-w_1=0$ or $v_1=v_2$ and $w_1=w_2$ which is a contradiction.

Inner Sum and Direct Sum, cont.

Lemma

If V and W are orthogonal subspaces then the representation of $x \in V \oplus W$ is unique (i.e. x = v + w, where $v \in V$ and $w \in W$).

Example

Let
$$S = \mathbb{R}^2$$
, let $V = \left\{ \begin{pmatrix} \alpha \\ 0 \end{pmatrix} : \alpha \in \mathbb{R} \right\}$, let $W = \left\{ \begin{pmatrix} 0 \\ \alpha \end{pmatrix} : \alpha \in \mathbb{R} \right\}$ Then
$$\begin{pmatrix} 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 5 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 2 \end{pmatrix}$$

is a unique decomposition.

Difference between a Hamel basis and a Complete basis.

Definition

An orthonormal set of basis vectors $T = \{p_i, p_2, \ldots\}$ is said to be a compelte basisfor a Hilbert space S if every $x \in S$ can be represented as

$$x = \sum_{j=1}^{\infty} c_j p_j$$

Examples of complete bases: Fourier functions: $e^{j\omega t}$ Legendre & Chebyshev polynomials

<u>Difference:</u> A Hamel basis \Rightarrow every x can be represented by a <u>finite</u> representation. A complete basis allows functions through a limiting process.