

Sistemas Operacionais Métodos de Alocação

Acadêmicos: Caciano D. Mattiello

Eduardo dos Santos

Orientador: Prof. Msc. Bruno Ribas

Métodos de Alocação

Motivo:

Quando é necessário armazenar muitos arquivos no mesmo disco, surge o problema de alocação de espaço para esses arquivos, de modo que o disco seja efetivamente utilizado e os arquivos possam ser rapidamente acessados.

Métodos:

- Contíguo;
- Encadeado;
- Indexado.

 Neste método cada arquivo ocupa um conjunto de blocos contíguos no disco. Assim o número de operações para acessar os arquivos que foram alocados contiguamente é mínimo.

É a melhor escolha quando:

- Arquivos não são deletados do disco;
- O tamanho dos arquivos é fixo.

Alocação Contígua (2)

- Para a alocação de um arquivo, se ele tiver n blocos e iniciar na localização b, então ele ira ocupar os blocos b, b+1, b+2 até b+n-1.
- A entrada de diretório para cada arquivo indicara o endereço do bloco inicial e o tamanho da área alocada para o arquivo.

File Allocation Table

File Name	Start Block	Length
File A	2	3
File B	9	5
File C	18	8
File D	30	2
File E	26	3

Para resolver o problema de fragmentação externa utiliza-se a compactação, porem a operação pode levar horas.

Como resolver a fragmentação externa?

Para remover a fragmentação externa é necessário realizar uma desfragmentação.

Porém, é muito cara

- A ação pode ser lenta, pode envolver todos os arquivos no disco.
- O disco torna-se não disponível durante este procedimento

Alocação Contígua (3)

Problemas:

- Tem como dificuldade encontrar espaço para um novo arquivo;
- Apresenta o problema de fragmentação externa, que é resolvido com o uso de compactação, porém uma operação altamente custosa.

Vantagens:

 Cada arquivo ocupa um conjunto contíguo de blocos no disco, assim o número de operações para acessar os arquivos que foram alocados contiguamente é mínimo.

Quando usar?

- Quando tamanho de arquivos forem fixos;
- Os arquivos não são deletados do disco;
 - Por exemplo, CD-ROM (ISO9660).

Alternativa ao Sistema Contíguo

- Fixar os tamanhos de alocação e vazio em blocos pequenos e iguais;
- Quebrar um novo arquivo em blocos pequenos ;
- Colocar os novos arquivos no espaço vazio bloco a bloco.

Alocação Encadeada

- Este método é utilizar lista encadeadas para alocação;
- Pode-se utilizar a lista também para gerenciar o espaço livre.

Alocação encadeada (2)

Vantagens:

- Evita fragmentação externa,um novo arquivo pode ser colocado no espaço vazio disponível efetivamente;
- Fácil de implementar;
- Tabela de arquivos do sistema menor em relação ao contíguo;
- Arquivos poder alterar seu tamanho sem muito custo.

Contras:

- Acesso aleatório é custoso com grande número de acessos a disco;
- Gera fragmentação interna.

Melhorando a alocação encadeada

- Agrupa os dados da lista em uma tabela;
- As entradas na tabela são armazenadas contiguamente;
- Cada entrada corresponde a um bloco de alocação do arquivo no dispositivo de armazenamento;
- O tamanho da tabela depende da capacidade do dispositivo e do tamanho do bloco;
- Método conhecido como FAT (File Allocation Table).

FAT

Vantagens:

- Tabela pode ser carregada em memória para maior velocidade de busca de blocos;
- Evita o problema do custo para acesso aleatório.

Contras:

- Tabela do FAT é grande;
- Fragmentação interna.

Alternativa

- Novamente dividir para conquistar!
- Ao invés de carregar toda a tabela em mémoria para localizar os blocos de dados, particionamos ela em pequenos pedaços;
- Assim somente poucos pedaços da tabela precisam ser lido.

Alocação Indexada (2)

Vantagens

- Duas operações de leitura localizam todos os blocos de dados de um arquivo;
- Não necessita tanta memória alocada como na FAT.

Contras

 Necessidade do tamanho do inode ser variável, dificultando uma leitura eficiente na leitura desta tabela.

Outra alternativa com indexação

- Dividir mais ainda!
- Funcionamento:
 - Cada inode terá tamanho FIXO;
 - Dividimos o sistema em Blocos Diretos, Bloco indireto, Bloco duplo indireto e Bloco triplo indireto;
 - Primeiramente é usado os blocos diretos (inodes) para guardar os endereços dos blocos de dados;
 - Depois de usados os endereços diretos, começa a usar os blocos indiretos.

Alocação indexada direta/indireta

- Bloco de inode de endereços indireto:
 - Bloco que aponta para outro bloco com endereços de blocos de dados;
 - Assim se o bloco tiver 4 bytes e um bloco de dados tem 1 Kbytes, o total sera de 256 endereços para blocos de dados.
- Aumentado para duplamente indireto:
 - Assim como no bloco indireto, o segundo bloco apontará para outro de endereços para blocos de dados, aumentando a quantidade de blocos alocáveis para um arquivo possível ainda mais.

Alocação Indexada com blocos indiretos

Alocação Indexada com blocos indiretos

Vantagens:

- Inode tem tamanho fixo;
- Aumenta significativamente o tamanho máximo de um arquivo!

Ex: Considerando tamanho de um endereço de blocos 4 bytes (2²) e tamanho de bloco 4 Kbytes (2^12) e:

- Blocos Diretos: 12
- Bloco Indireto: 1
- Bloco Duplamente Indireto: 1
- Bloco Triplamente Indireto: 1

Teríamos $12*2^2 + 2^2(2*12-2) + 2^2(3*12-4) + 2^2(4*12-6) = 4$ TBytes tamanho máximo para um arquivo.

Sistemas de alocação usados atualmente

Maioria dos sistemas hoje utilizam indexação.

Sistemas e métodos de alocação:

- ISO9660(CDROM) → contíguo;
- EXT4, XFS (*NIX) → Indexado;
- FAT32 (Windows anteriores a XP e o XP) → Lista encadeada;
- NTFS (Windows XP e versões mais novas) → Indexado;