Compte rendu : Traveaux pratiques thermochimie

Igor et Antoine

 $26~{\rm janvier}~2022$

Table des matières

1	Vérification de la loi de Hess			1
	1.1 Mesures			1
		1.1.1	Première réaction	2
		1.1.2	Deuxième réaction	2
		1.1.3	Troisième réaction	2
	1.2	2 Calculs		2
		1.2.1	Enthaplie première réaction	2
		1.2.2	Enthalpie deuxième réaction	3
		1.2.3	Enthalpie troisième réaction	3
	1.3	Résult	ats	3
2	Dét	ermine	er la température de combustion du magnésium	3

1 Vérification de la loi de Hess

1.1 Mesures

Les mesures suivantes sont prises du groupe Camille/Dune car notre équipe n'en a pas.

1.1.1 Première réaction

Rappel de la réaction :

$$NaOH_{(sol)} \xrightarrow{+ H_2O} Na^+ + OH^-$$

Masse H_2O : 0.1003 kg Masse NaOH: 0.00212 kg

Température initiale $H_2O(Ti)$: 23°C

Température finale (Tf): 27°C

Différence de température (ΔT): 4°C

1.1.2 Deuxième réaction

Rappel de la réaction :

$$NaOH_{(sol)} + H^+ + Cl^- \longrightarrow Na^+ + Cl^- + H_2O$$

Masse H_2O : 0.10377 kg Masse NaOH: 0.00202 kg

Température initiale HCl (Ti): 23°C

Température finale (Tf): 32°C

Différence de température (ΔT): 9°C

1.1.3 Troisième réaction

Rappel de la réaction :

$$Na^+ + OH^- + H^+ + Cl^- \longrightarrow Na^+ + Cl^- + H_2O$$

Masse HCL: 0.10038 kg

Température initiale HCl (Ti): 23°C

Température finale (Tf): 29°C

Différence de température (ΔT): 6°C

1.2 Calculs

1.2.1 Enthaplie première réaction

$$\Delta H1 \approx 4180 Jkg^{-1}K^{-1} \cdot 0.1003 kg \cdot 4K \approx 1677 J$$

1.2.2 Enthalpie deuxième réaction

$$\Delta H2 \approx 4180Jkg^{-1}K^{-1}\cdot 0.1038kg\cdot 9K \approx 3905J$$

1.2.3 Enthalpie troisième réaction

$$\Delta H3 \approx 4180 J k g^{-1} K^{-1} \cdot 0.1004 kg \cdot 6K \approx 2518 J$$

1.3 Résultats

Selon la loi de *Hess*, l'enthalpie est une fonction d'état, sa variation ne dépend que de la différence entre l'état initial et final.

Ainsi,

2 Déterminer la température de combustion du magnésium