Молдавский Государственный Университет Факультет Математики и Информатики Департамент Информатики

Лабораторная работа №6 по курсу "Securitatea Sistemelor Informatice"

Тема: "Обнаружение и предотвращение вторжений в компьютерные системы. Системы защиты от вредоносного ПО и журналирования. IDS/IPS (Intrusion Detection Systems / Intrusion Prevention Systems) (Windows, Linux и т. д.)"

Выполнил: Slavov Constantin, студент группы I2302 Проверила: L. Novac, doctor conferențiar universitar

Кишинев, 2024

- Введение: В этой лабораторной работе я буду изучать характеристики и принципы работы систем обнаружения и предотвращения вторжений (IDS/IPS). По ходу выполнения я проанализирую основные параметры этих систем, чтобы лучше понять, как они работают и насколько они эффективны в разных условиях.

Также я сравню несколько IDS/IPS систем из предложенного списка. Особое внимание будет уделено их совместимости с операционными системами, такими как Windows, Linux и iOS, а также возможности управления через мобильные устройства, например телефоны и планшеты.

Кроме того, я рассмотрю, как эти системы работают, и попробую классифицировать их по популярности и эффективности. Это поможет мне выделить наиболее удобные и полезные решения.

- Ход работы:

- Общая характеристика систем обнаружения вторжений (IDS). Классификация систем IDS

IDS отслеживают активность в сети или на устройствах для выявления угроз. Основные виды:

- Сигнатурные ищут известные угрозы по базам сигнатур.
- Аномалийные выявляют отклонения от нормального поведения.
- **Гибридные** совмещают оба подхода для повышения эффективности.

- Типичные механизмы обнаружения вторжений. Распространенные типы систем IDS

Механизмы:

- Сигнатурное обнаружение поиск совпадений с шаблонами атак.
- Анализ аномалий обнаружение отклонений в поведении.

Типы систем:

- **Сетевые (NIDS)** мониторят сетевой трафик.
- **Хостовые (HIDS)** следят за активностью конкретного устройства.

- Характеристики решений IDS, важные для практического применения. Смешанные системы

Важные параметры:

- Точность снижение ложных срабатываний.
- Скалируемость работа с большими объемами данных.

Смешанные IDS объединяют сигнатурный и аномалийный подходы для более точной и гибкой защиты.

Сравнение IDS и IPS:

- Назначение

IDS (система обнаружения вторжений) используется для выявления подозрительных действий в сети и отправки уведомлений администраторам. IPS (система предотвращения вторжений) не только обнаруживает угрозы, но и автоматически блокирует их в реальном времени.

- Методы работы

IDS анализирует сетевой трафик с помощью сигнатурного анализа (поиск известных угроз) и поведенческого подхода (выявление аномалий). IPS использует аналогичные методы, но также имеет возможность вмешиваться в сетевой трафик.

- Реакция на угрозы

IDS фиксирует угрозы и отправляет уведомления, не блокируя действия. IPS активно предотвращает атаки, прерывая соединения или изменяя сетевые правила.

- Влияние на сеть

IDS не влияет на производительность сети, так как только анализирует данные. IPS может вызывать задержки или ложные срабатывания из-за вмешательства в сетевой трафик.

- Примеры

Примерами IDS являются Snort, Zeek (Bro) и NetworkMiner. К примерам IPS относятся Palo Alto Networks, FortiGate и Wireshark.

IDS подходит для анализа и выявления угроз, предоставляя подробную информацию о подозрительных действиях, а IPS обеспечивает проактивную защиту, блокируя атаки в реальном времени. Вместе они создают комплексную систему безопасности.

Для более подробного сравнительного анализа систем IDS были взять следующие системы:

Сравнение Wireshark и NetworkMiner

Критерий	Wireshark	NetworkMiner
Условия	Бесплатное ПО с	Бесплатная версия с
использования	открытым исходным	ограниченными
	кодом (GPL).	функциями, платная
		версия для
		расширенного
		функционала.
Совместимость с ОС	Поддержка Windows,	Поддержка Windows;
	macOS, Linux, UNIX.	возможно, работает
		через Wine на Linux, но
		официально не
		поддерживается.
Предлагаемые	Анализ сетевого	Анализ захваченных
услуги/принципы	трафика в реальном	пакетов, фокус на
работы	времени; мощные	восстановлении
	инструменты	файлов и данных из
	фильтрации и	сетевых сессий.
-	декодирования.	
Преимущества	- Мощный и гибкий	- Простота для анализа
	анализ трафика.	рсар-файлов.
	- Поддерживает тысячи	- Поддержка
	протоколов.	восстановления
	- Огромное	данных (например,
11	сообщество.	изображений).
Недостатки	- Крутая кривая	- Ограниченная
	обучения для новичков Может быть	функциональность в бесплатной версии.
		*
	ресурсоемким.	- Ограниченная поддержка ОС.
Интерфейс/удобство	Графический	Удобный графический
титерфене удобетво	интерфейс.	интерфейс, но без CLI.
	Поддержка работы с	mirepwene, no oes CDI.
	командной строкой.	
Степень безопасности	Высокий уровень	Минимальный риск
	безопасности, но	ложных тревог, но
	возможны ошибки	ограничен в реальном
	анализа, если данные	времени.
	повреждены.	ı
	1102 poniquini.	

Популярность/катего	Популярен среди	Используется
рии пользователей	сетевых инженеров,	исследователями
	исследователей.	кибербезопасности,
		экспертами по анализу
		данных.
Общая простота	Высокая сложность для	Прост в освоении,
использования	новичков, но огромный	особенно для
	потенциал для анализа.	восстановления файлов
		или анализа
		содержимого.

Wireshark и NetworkMiner имеют разные подходы к анализу сетевого трафика. Wireshark подходит для детального анализа трафика в реальном времени, предоставляя мощные инструменты декодирования, но требует высокой квалификации. NetworkMiner, напротив, более удобен для восстановления данных из уже захваченных пакетов, отличается простотой в использовании, но ограничен функционально и поддержкой ОС. Выбор между ними зависит от конкретных задач: глубокий анализ в реальном времени или восстановление данных из сессий.

- Перейдем к обзору программ:

Работа в программе WireShark:

Данное программное обеспечение можно скачать с официального сайта разработчика, после чего установить его на свой компьютер. После установки требуется перезагрузка компьютера. Затем, можно начинать работы в самой программе.

После открытия программы, предоставляется возможность выбрать отображение желаемого интерфейса:

В моем случае, я выберу беспроводную сеть, потому что это тот сетевой интерфейс, к которому подключен мой компьютер.

После выбора подходящего интерфейса, появляется следующее окно. Пройдемся подробнее по его функционалу:

1. Панель фильтров

В верхней части интерфейса расположена панель, позволяющая применять фильтры для поиска необходимой информации. Фильтрация помогает сузить выборку отображаемых данных. Подробнее об этой функции можно узнать в соответствующем разделе руководства.

2. Панель наименований

Эта панель отображает заголовки столбцов с ключевой информацией о каждом пакете: номер, время с начала захвата, исходный и конечный адреса, используемый протокол, длину пакета и краткое описание содержимого.

3. Панель пакетов

Обновляется в реальном времени, отображая список всех захваченных пакетов. Информация в этой панели представлена в столбцах, которые соответствуют заголовкам на панели наименований.

4. Панель уровней

Эта область описывает содержимое выбранного пакета с точки зрения уровней модели OSI. Здесь отображаются такие данные, как заголовки Ethernet, IP, TCP/UDP и других протоколов.

5. Панель метаданных

В нижней части интерфейса расположена панель, отображающая содержимое выбранного пакета в шестнадцатеричном коде и текстовом представлении. Это позволяет детально анализировать данные пакета.

Для анализа трафика был использован фильтр **http**, который позволил выделить HTTP-запросы, содержащие потенциально подозрительные действия. В процессе анализа пакетов важно уделять внимание необычным IP-адресам и типам запросов, которые могут указывать на возможные аномалии или угрозы.

Вывод по работе с программой:

Работа с программой, такой как Wireshark, позволяет эффективно анализировать сетевой трафик, выявлять потенциальные угрозы и отслеживать подозрительную активность. Использование фильтров, например для выделения НТТР-запросов, значительно упрощает поиск нужной информации среди большого объема данных. Анализ пакетов предоставляет детальную информацию о сетевом взаимодействии, что помогает идентифицировать необычные IP-адреса, нестандартные типы запросов и возможные попытки атак. Программа является мощным инструментом для диагностики сети, но требует внимания к деталям и базовых знаний сетевых протоколов для правильного интерпретирования полученных данных.

- Работа в программе Network Miner:

Это программное обеспечение также необходимо скачать с официального сайта разработчика, однако, его не нужно устанавливать. На компьютер скачивается уже готовый для работы .exe-файл.

После открытия программы, необходимо выбрать нужный интерфейс для его анализа. В моем случае, выбираю свою беспроводную сеть Wi-Fi.

После выбора нужного интерфейса, нажимаю кнопку "Start" для запуска анализа, после чего начинается сбор данных, отображая все хосты, соединения и трафик.

Во вкладке "Hosts" отображаются все устройства, подключенные к сети, с IP-адресов, МАС-адресов и общей информации о указанием их соединениях. Вкладка "Files" показывает файлы, передаваемые в сети, что позволяет анализировать переданные документы на наличие Bo вкладке "Credentials" подозрительных данных. программа автоматически извлекает учетные данные, переданные через незащищенные протоколы, что помогает выявить возможные риски безопасности.

В итоге я проверил, не появились ли неизвестные устройства в списке хостов, и проанализировал подозрительные соединения, в которых передавался большой объем данных или использовались необычные порты. Также я обратил внимание на активность, связанную с нестандартными IP-адресами, и проверил, не происходило ли передач данных через незащищенные протоколы, что могло бы указывать на потенциальные угрозы безопасности.

- Вывод по программе:

Network Miner — это удобный инструмент для анализа захваченного сетевого трафика, который позволяет восстанавливать файлы и извлекать

полезные данные, такие как учетные записи и метаданные. Программа проста в использовании и особенно полезна для анализа содержимого сетевых пакетов. Однако ее функционал ограничен в бесплатной версии, что может сужать возможности более глубокого исследования.

- **Вывод:** В процессе выполнения лабораторной работы я изучил принципы работы систем обнаружения и предотвращения вторжений (IDS/IPS), их основные задачи и значимость в обеспечении информационной безопасности. Эти системы играют ключевую роль в выявлении угроз и защите сетевых ресурсов от несанкционированного доступа.

Я провел анализ сетевого трафика с использованием инструментов Wireshark и NetworkMiner. Wireshark предоставил возможность изучать трафик в реальном времени, фильтровать данные по протоколам и выявлять подозрительные действия на уровне пакетов. NetworkMiner оказался удобным для анализа уже захваченных данных, включая восстановление файлов, учетных записей и метаданных, что значительно упростило поиск потенциальных угроз.

Работа с этими инструментами позволила глубже понять, как осуществляется мониторинг сетевого трафика, как идентифицировать угрозы и учитывать важные данные при анализе. Особое внимание было уделено анализу нестандартных соединений, передаче больших объемов данных через необычные порты и проверке новых устройств в сети. Полученные знания о системах IDS/IPS и методах анализа сетевого трафика сформировали прочную базу для дальнейшего изучения информационной безопасности и использования подобных инструментов в реальной практике.

- Библиография:

- 1. https://habr.com/ru/articles/204274//
- 2. https://selectel.ru/blog/ips-and-ids/
- 3. https://www.wireshark.org/download.html
- 4. https://www.netresec.com/?page=NetworkMiner
- 5. https://spy-soft.net/networkminer/