

Escola Nacional de Ciências Estatísticas

9ª Semana da Estatística – IME – UFF Modelagem Econométrica em Finanças: Modelos ARCH, GARCH e EGARCH

APRESENTAÇÃO DO MINICURSO

Objetivo:

Apresentar os conceitos básicos e algumas aplicações da moderna modelagem econométrica de séries temporais em finanças para alunos de graduação em Estatística e áreas afins.

• Ementa:

Conceitos básicos da análise de séries temporais no domínio do tempo; testes de raiz unitária; e introdução aos modelos SARIMA, ARCH, GARCH e EGARCH.

- Softwares indicados para a modelagem:
- > Eviews, software **R**, PcGive, PcFiml, Stata, Matlab e SAS.

Bibliografia recomendada:

- > Engle, R.; 1982; "Autoregressive Conditional Heteroskedasticity whith Estimates of the variance of UK Inflation". Econometrica, 50, 987-1008.
- > Bollerslev, T. Y.; 1986; "Generalized Autoregressive Conditional Heteroskedasticity whith Estimates of the variance of UK Inflation". Econometrica, 50, 987-1008.
- Campbell, J.; Lo, A.; MacKinlay, A.; 1997; "The Econometrics of Financial Markets". Princeton University Press; Princeton, NJ.
- Hamilton, J.; 1994; "Time Series Analysis". Princeton University Press; Princeton, NJ.

• Introdução

DEFINIÇÃO INFORMAL DE SÉRIE TEMPORAL

Uma série temporal pode ser definida como um conjunto de observações de uma variável ou fenômeno de interesse, ordenadas no tempo e geralmente medidas e coletadas em valores numéricos de mesma periodicidade.

(Na prática, comumente se trabalha com séries temporais de periodicidades diária, mensal, trimestral e anual.)

Tipos de Série Temporal

- Série Temporal Discreta: descreve o comportamento de realizações de uma variável aleatória discreta no tempo. Variáveis que definem processos de contagem ou conjuntos enumeráveis de uma forma geral.
- Série Temporal Contínua: descreve o comportamento de realizações de uma variável aleatória contínua no tempo. Variáveis que representam conjuntos não enumeráveis.
- Amostragem de uma Série Temporal: é sempre realizada de forma discreta, mesmo que o fenômeno ou a variável aleatória seja contínua, pois não é possível investigar e modelar dados essencialmente contínuos.

Número de Ligações Telefônicas Diárias Recebidas por um Call Center, no período de janeiro a setembro de 2003

Brasil - PIB per capita anual, no período de 1900 a 2013 (em mil US\$ de 2013)

Fonte: IBGE (dados brutos); IPEA – GAC (cálculos e derivações)

Saldo Trimestral da Balança Comercial Brasileira (FOB), no Período de 1980 a 2014 - (em milhões de US\$)

Fonte: Banco Central do Brasil

Taxa Mensal de Inflação - IGP- DI - FGV, no Período de jan/1995 a fev/2017 (em %)

Fonte: Fundação Getúlio Vargas - FGV

Índice Diário de ações - Ibovespa - Fechamento - no Período de 04/01/2010 a 04/04/2017

Fonte: Bolsa de Valores de São Paulo

Produção Mensal de Ovos de Galinha – Brasil jan/1989 a mar/2001 (em mil dúzias)

Consumo Mensal de Energia Elétrica no Brasil Jan/1968 a jun/1979 (em MWh)

Objetivos da Análise de Séries Temporais:

Estudar e tentar descrever o comportamento e a dinâmica temporal do processo estocástico gerador dos dados, com a finalidade de identificar fatos estilizados, estimar componentes não observáveis definidos como tendência, ciclo e sazonalidade, e realizar previsões pontuais e intervalares da variável de interesse.

1. Conceitos e Definições Básicas:

1.1. Definição de Processo Estocástico:

Processo estocástico como uma família de variáveis aleatórias;

$$\{Y(w, t); \omega \in \Omega \ e \ t \in T\}$$

Espaço de estados e Espaço de Parâmetros (tempo);

• Especificação do processo estocástico.

1.2. Definição Probabilística de Série Temporal:

Uma vez especificado o processo estocástico $\{Y(w, t); \omega \in \Omega \text{ e } t \in T\}$, pode-se definir uma série temporal, denotada por Y(t), como uma específica realização ou trajetória deste processo.

1. Conceitos e Definições Básicas:

Processo estocástico como uma família de variáveis aleatórias

1. Conceitos e Definições Básicas:

Processo estocástico como uma família de variáveis aleatórias

1.3. Especificação e Momentos do Processo Estocástico

i) Especificação:

Um processo estocástico estará completamente especificado se as suas distribuições finito-dimensionais, aqui representadas pela função de distribuição conjunta,

$$F(y_1, ..., y_n; t_1, ..., t_n) = P(Y(t_1) \le y_1, ..., Y(t_n) \le y_n)$$

são conhecidas e satisfazem as seguintes propriedades:

• Simetria: para qualquer permutação do tempo ($\mathbf{t_{k_1}}, \dots, \mathbf{t_{k_n}}$)

$$F(y_1, ..., y_n; t_{k_1}, ..., t_{k_n}) = F(y_1, ..., y_n; t_1, ..., t_n)$$

ou

$$P(Y(t_{k_1}) \le y_1, ..., Y(t_{k_n}) \le y_n) = P(Y(t_1) \le y_1, ..., Y(t_n) \le y_n)$$

1.3. Especificação e Momentos do Processo Estocástico

i) Especificação:

• Consistência: para qualquer permutação do tempo $(t_{k_1}, \dots, t_{k_n}),$

$$lim F(y_1, ..., y_m, y_{m+1}, ..., y_n) = F(y_1, ..., y_m)$$

ou

quando
$$y_{m+1} \to +\infty, ..., y_n \to +\infty$$
.

$$\mathbf{F}(\mathbf{y}_1, \dots, \mathbf{y}_m, +\infty, \dots, +\infty) = \mathbf{F}(\mathbf{y}_1, \dots, \mathbf{y}_m)$$

ii) Momentos:

Função média:
$$E(Y(t)) = m(t) = \int_{-\infty}^{+\infty} y_t dF(y_t)$$

quando
$$y_{m+1} \to +\infty, ..., y_n \to +\infty$$

1.3. Especificação e Momentos do Processo Estocástico

ii) Momentos:

Função de Autocovariância - FACV:

$$\gamma(k) = COV(Y_t, Y_{t-k}) = [E(Y_t - E(Y_t))][E(Y_{t-k} - E(Y_{t-k})]$$

Função de Autocorrelação - FAC:

$$\rho(\mathbf{k}) = \gamma(\mathbf{k})/\sigma_{\mathbf{Yt}}\,\sigma_{\mathbf{Yt-k}}$$

Estas funções descrevem a estrutura de dependência entre o presente e o passado de Y.

1.4. Processos Estocásticos Estacionários

i) Estacionariedade Forte (estrita):

• Definição: Diz-se que um o processo estocástico $\{Y(t)\}$ é estacionário forte se as suas distribuições finito-dimensionais são invariantes no tempo.

Exemplo: $Y(t) \sim N(\mu, \sigma^2), \forall t \in T$

1.4. Processos Estocásticos Estacionários

ii) Estacionariedade Fraca (de segunda ordem):

- Definição: um processo estocástico $\{Y(t)\}$ é dito fracamente estacionário (ou estacionário de segunda ordem) se as seguintes condições de momentos são satisfeitas:
- a) $E(Y(t)) = \mu = constante, \forall t \in T;$
- b) $VAR(Y(t)) = \sigma^2 = constante, \forall t \in T;$
- c) FACV $[\gamma(k)]$ e FAC $[\rho(k)]$ dependem somente da defasagem ou diferença entre tempos (k é denominado de lag). Adicionalmente, diante de um processo estacionário, estas funções convergem rapidamente para zero quando k cresce.

Exemplo de Série Temporal Estacionária e sua FAC:

FAC e FACP de Y_t

2. MODELOS SARIMA (p, d, q) X (P, D, Q)_S

O que significa a sigla SARIMA?

S: Sazonal

AR: Auto-Regressivo

I: Integrado

MA: Média Móvel (Moving Average)

p: ordem do polinômio auto-regressivo $\phi(B)$

d: ordem de integração não sazonal

q: ordem do polinômio média móvel $\theta(B)$

P: ordem do polinômio auto-regressivo sazonal $\phi(B)$

D: ordem de integração não sazonal

Q: ordem do polinômio média móvel sazonal $\Theta(B)$

s: Periodicidade da sazonalidade (por exemplo, s=12 para dados mensais)

REPRESENTAÇÃO GERAL DOS MODELOS

SARIMA
$$(p, d, q) \times (P, D, Q)_s$$

$$\Phi(B)\Phi(B)\Delta_s^D\Delta^dY_t = \Theta(B)\Theta(B)a_t$$

Classe de modelos que generaliza modelos estacionários, não estacionários homogêneos, sazonais e não sazonais. Onde,

- B: operador de defasagem ou de retardo; $B^k Y_t = Y_{t-k}$
- $\Delta = 1 B$: operador de diferença; $\Delta Y_t = Y_t Y_{t-1} = (1 B)Y_t$
- $\Delta^d = (1 B)^d$: operador de diferença aplicado d vezes;
- s: periodicidade sazonal; (exemplo: s = 4, para dados trimestrais)
- $\Delta_s^D = (Y_t Y_{t-s})^D$: operador de diferença sazonal aplicado D vezes;

REPRESENTAÇÃO GERAL DOS MODELOS

SARIMA
$$(p, d, q) \times (P, D, Q)_s$$

$$\Phi(\mathbf{B})\Phi(\mathbf{B})\Delta_{\mathbf{S}}^{\mathbf{D}}\Delta^{\mathbf{d}}\mathbf{Y}_{\mathbf{t}} = \Theta(\mathbf{B})\Theta(\mathbf{B})\mathbf{a}_{\mathbf{t}}$$

Onde,

- $\Phi(B) = (1 \Phi_1 B^s -, ..., -\Phi_P B^{P_s})$; operador auto-regressivo sazonal
- $\phi(B) = (1 \phi_1 B -, ..., -\phi_p B^p)$; operador auto-regressivo não sazonal
- $\Theta(B) = (1 \Theta_1 B^s -, ..., -\Theta_0 B^{Q_s})$; operador média móvel sazonal
- $\theta(B) = (1 \theta_1 B -, ..., -\theta_q B^q)$; operador média móvel não sazonal
- a_t: ruído branco. Sequência de variáveis aleatórias independentes e identicamente distribuídas (i.i.d.), com média zero e variância constante.

2.1 CASOS PARTICULARES DE MODELOS

SARIMA
$$(p, d, q) \times (P, D, Q)_s$$

$$\Phi(B)\Phi(B)\Delta_s^D\Delta^dY_t = \Theta(B)\theta(B)a_t$$

- i) Modelos estacionários e não sazonais
 - 1. Modelos: SARIMA (p, 0, q) x (0, 0, 0)_s ~ ARMA(p, q) $\phi(B)Y_t = \theta(B)a_t$
 - 2. Modelos: SARIMA $(p, 0, 0) \times (0, 0, 0)_s \sim AR(p)$

$$\phi(\mathbf{B})\mathbf{Y}_{\mathbf{t}}=\mathbf{a}_{\mathbf{t}}$$

3. Modelos: SARIMA (0, 0, q) x (0, 0, 0)_s ~ MA(q) $Y_{t} = \theta(B)a_{t}$

SARIMA $(p, d, q) \times (P, D, Q)_s$

$$\Phi(B)\Phi(B)\Delta_s^D\Delta^dY_t = \Theta(B)\Theta(B)a_t$$

ii) Modelos não estacionários e não sazonais

- 1. Modelos: SARIMA (p, d, q) x (0, 0, 0)_s ~ ARIMA(p, d, q) $\phi(B)\Delta^{d}Y_{t} = \theta(B)a_{t}$
- 2. Modelos: SARIMA (p, d, 0) x (0, 0, 0)_s ~ ARI(p, d, 0) $\phi(B)\Delta^{d}Y_{t} = a_{t}$
- 3. Modelos: SARIMA (0, d, q) x (0, 0, 0)_s ~ IMA(0, d, q) $\Delta^{\mathbf{d}}\mathbf{Y}_{\mathbf{t}} = \mathbf{\theta}(\mathbf{B})\mathbf{a}_{\mathbf{t}}$

SARIMA $(p, d, q) \times (P, D, Q)_s$

$$\Phi(B)\Phi(B)\Delta_s^D\Delta^dY_t = \Theta(B)\theta(B)a_t$$

iii) Modelos estacionários e sazonais puros

1. Modelos: SARIMA $(0, 0, 0) \times (P, 0, Q)_s \sim SARMA (P, 0, Q)_s$

$$\Phi(\mathbf{B})\mathbf{Y}_{\mathbf{t}} = \Theta(\mathbf{B})\mathbf{a}_{\mathbf{t}}$$

- 2. Modelos: SARIMA $(0, 0, 0) \times (P, 0, 0)_s \sim SAR(P, 0, 0)$ $\Phi(B)Y_t = a_t$
- 3. Modelos: SARIMA $(0, 0, 0) \times (0, 0, Q)_s \sim \text{SMA}(0, 0, Q)$ $\mathbf{Y_t} = \mathbf{\Theta}(\mathbf{B})\mathbf{a_t}$

SARIMA $(p, d, q) \times (P, D, Q)_s$

$$\Phi(B)\Phi(B)\Delta_s^D\Delta^dY_t = \Theta(B)\theta(B)a_t$$

iv) Modelos não estacionários e sazonais puros

- 1. Modelos: SARIMA (0, 0, 0) x (P, D, Q)_s ~ SARIMA(P, D, Q) $\Phi(B)\Delta_s^D Y_t = \Theta(B)a_t$
- 2. Modelos: SARIMA $(0, 0, 0) \times (P, D, 0)_s \sim SARI(P, D, 0)$ $\Phi(B)\Delta_s^D Y_t = a_t$
- 3. Modelos: SARIMA $(0, 0, 0) \times (0, D, Q)_s \sim SIMA(0, D, Q)$ $\Delta_s^D Y_t = \Theta(B) a_t$

MODELOS AR(p)

$$AR(1) \Rightarrow (1 - \phi B)Y_{t} = a_{t}$$

$$Y_{t} - \phi BY_{t} = a_{t}$$

$$Y_{t} - \phi Y_{t-1} = a_{t}$$

$$Y_{t} = \phi Y_{t-1} + a_{t}$$

$$AR(2) \Rightarrow (1 - \phi_{1}B - \phi_{2}B^{2})Y_{t} = a_{t}$$

$$\Rightarrow Y_{t} = \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + a_{t}$$

MODELOS SAR(P)

SAR(1)
$$\Rightarrow$$
 (1- Φ B^s) $Y_t = a_t$

$$Y_t - \Phi$$
B^s $Y_t = a_t$

$$Y_t - \Phi$$
Y_{t-s} = a_t

$$\Rightarrow Y_t = \Phi$$
Y_{t-s} + a_t
SAR(2) \Rightarrow (1- Φ ₁B^s - Φ ₂B^{2s}) $Y_t = a_t$

$$Y_t - \Phi$$
₁B^s $Y_t - \Phi$ ₂B^{2s} $Y_t = a_t$

$$\Rightarrow Y_t = \Phi$$
₁ $Y_{t-s} + \Phi$ ₂ $Y_{t-2s} + a_t$

MODELOS MA(q)

$$MA(1) \Rightarrow Y_t = (1 - \theta_1 B) a_t$$

 $\Rightarrow Y_t = a_t - \theta_1 a_{t-1}$

$$MA(2) \Rightarrow Y_{t} = (1 - \theta_{1}B - \theta_{2}B^{2}) a_{t}$$

$$\Rightarrow Y_{t} = a_{t} - \theta_{1}a_{t-1} - \theta_{2}a_{t-2}$$

MODELOS MA(Q)

$$SMA(1) \Rightarrow Y_{t} = (1 - \Theta_{1}B^{s})a_{t}$$

$$\Rightarrow Y_{t} = a_{t} - \Theta_{1}a_{t-s}$$

$$SMA(2) \Rightarrow Y_{t} = (1 - \Theta_{1}B^{s} - \Theta_{2}B^{2s})a_{t}$$

$$\Rightarrow Y_{t} = a_{t} - \Theta_{1}a_{t-s} - \Theta_{2}a_{t-2s}$$

MODELOS ARMA(p, q)

Representação na forma de equação de diferenças:

$$Y_{t} = \phi_{1}Y_{t-1} + \dots + \phi_{p}Y_{t-p} + a_{t} - \theta_{1}a_{t-1} - \dots - \theta_{q}a_{t-q}$$

$$ARMA(1,1) \Rightarrow (1-\phi_1 B)Y_t = (1-\theta_1 B)a_t$$
$$\Rightarrow Y_t = \phi_1 Y_{t-1} + a_t - \theta_1 a_{t-1}$$

MODELOS SARMA(P, Q)

Representação na forma de equação de diferenças:

$$Y_{t} = \Phi_{1}Y_{t-s} + \dots + \Phi_{p}Y_{t-p_{s}} + a_{t} - \Theta_{1}a_{t-s} - \dots - \Theta_{Q}a_{t-Qs}$$

$$SARMA(1,1) \Rightarrow (1 - \Phi_1 B^s) Y_t = (1 - \Theta_1 B^s) a_t$$
$$\Rightarrow Y_t = \Phi Y_{t-s} + a_t - \Theta_1 a_{t-s}$$

MODELOS ARIMA(p, d, q)

EXEMPLO: ARIMA(1, 1, 1)

$$(1 - \phi_1 B)\Delta Y_t = a_t - \theta a_{t-1}$$

$$\Leftrightarrow (1 - \phi_1 B)(1 - B)Y_t = a_t - \theta a_{t-1}$$

$$\Leftrightarrow (1 - (1 + \phi_1)B + \phi_1 B^2)Y_t = a_t - \theta a_{t-1}$$

$$\Leftrightarrow Y_t = (1 + \phi_1)Y_{t-1} - \phi_1 Y_{t-2} a_t - \theta a_{t-1}$$

Ou seja, uma representação ARMA(2, 1) não estacionária:

MODELOS SARIMA(p, d, q)x(P, D, Q)_s

Representação na forma de equação de diferenças:

EXEMPLO: SARIMA(1,0,0)x(1,1,0)₁₂

$$\begin{split} (1 - \Phi_1 B^{12})(1 - \varphi_1 B)(1 - B^{12})Y_t &= a_t \\ \Rightarrow \quad Y_t = a_t + \varphi_1 Y_{t-1} + (1 + \Phi_1)Y_{t-12} - \varphi_1 (1 + \Phi_1)Y_{t-13} - \varphi_1 Y_{t-14} + \varphi_1 \Phi_1 Y_{t-25} \end{split}$$

Ou seja, uma representação SARIMA não estacionária:

2. MODELOS SARIMA (P, D, Q) X (P, D, Q)_S

2.2 Etapas da Modelagem (ciclo iterativo)

- i) Identificação do modelo;
 - a) Identificação dos graus p, q, P e Q dos polinômios AR e MA através da análise das funções FAC e FACP;
 - b) Testes de Raiz Unitária para avaliação da estacionariedade e identificação das ordens de integração d e D;
- ii) Estimação do modelo identificado através do Método de Máxima Verossimilhança ou de Mínimos Quadrados;
- iii) Testes Diagnóstico: avaliação da qualidade do ajuste e verificação das hipótese básicas do modelo.
- iv) Previsão

a) Análise Gráfica da FAC e FACP - Exemplos

Exemplo 1: Modelo AR(1), com $0 < \phi < 1$

Série - X1

_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	ı		1	0.704	0.704	120.55	0.000
	ı		2	0.515	0.038	185.37	0.000
	ı	I	3	0.407	0.062	226.02	0.000
	1	I <mark>[</mark>	4	0.274	-0.084	244.55	0.000
	ı 🗖	I <mark>[</mark>]	5	0.155	-0.064	250.48	0.000
	ı þ i	<u> </u>	6	0.112	0.050	253.60	0.000
	ı <mark>þ</mark> i	<u> </u>	7	0.097	0.042	255.93	0.000
	ı þ i		8	0.077	0.010	257.41	0.000
	1 1	 	9	0.005	-0.121	257.42	0.000
	1 [] 1	I[[1	10	-0.042	-0.044	257.85	0.000
	= +	I <mark>[</mark>	11	-0.103	-0.089	260.57	0.000
	= +	i Ii	12	-0.105	0.068	263.36	0.000
	₁ ┫ י		13	-0.096	0.018	265.71	0.000
	1 [] 1		14	-0.069	0.033	266.93	0.000
	101		15	-0.032	0.017	267.19	0.000
	1)1		16	0.013	0.035	267.24	0.000
	ı þ i	<u> </u>	17	0.067	0.084	268.42	0.000
	1 j i 1	[]	18	0.031	-0.113	268.66	0.000
	1)1		19	0.012	0.003	268.70	0.000
_	1(1)	"["	20	-0.017	-0.080	268.78	0.000
_		·					

Exemplo 2: Modelo AR(1), com -1 $< \phi < 0$

Série - X2

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	1 1 1	4 5 6	-0.449 0.224 -0.083 0.151 -0.172 0.111	-0.449 0.028 0.034 0.151 -0.074 -0.028	49.095 61.393 63.091 68.678 76.024 79.066	0.000 0.000 0.000 0.000 0.000 0.000
		8 9 10 11 12 13 14	0.052 -0.105 0.043 -0.034 0.037 -0.031	0.087 0.037 -0.003	80.012 82.593 83.748 84.438 87.221 87.692 87.988 88.339 88.584 88.584 92.525	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
		18 19 20	-0.037 0.000 0.025	0.100 0.014 -0.002	92.882 92.882 93.042	0.000 0.000 0.000

Exemplo 3: Modelo AR(2), com $0 < \phi_1 e \phi_2 < 1$

Série - X3

_	Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
	1		1	0.631	0.631	96.840	0.000
	1		2	0.578	0.299	178.50	0.000
	' 🔼		3	0.450	0.010	228.18	0.000
	' 	'[['	4	0.354	-0.038	259.01	0.000
	' 	"	5	0.223	-0.114	271.27	0.000
	ı 		6	0.204	0.065	281.64	0.000
	ı 🗖		7	0.143	0.016	286.77	0.000
	ı 🗖		8	0.127	0.024	290.81	0.000
	ı j i	I <mark>[</mark>	9	0.057	-0.079	291.62	0.000
	1 1	I <mark>[</mark>	10	0.015	-0.072	291.68	0.000
	1 [] 1	I <mark>[</mark>	11	-0.047	-0.062	292.23	0.000
	1(1)		12	-0.028	0.072	292.43	0.000
	1 (1)		13	-0.037	0.051	292.78	0.000
	1(1)		14	-0.019	0.018	292.86	0.000
	1(1)	1(1	15	-0.019	-0.023	292.96	0.000
	1)1		16	0.016	0.025	293.02	0.000
	ı b ı		17	0.060	0.104	293.96	0.000
	1)1	10 1	18	0.018	-0.076	294.04	0.000
	1)1	101	19	0.011	-0.052	294.07	0.000
_	<u>ulu</u>	100	20	-0.016	-0.065	294.14	0.000

Exemplo 4: Modelo AR(2), com -1 < ϕ_1 < 0 e 0 < ϕ_2 < 1

Série - X4

utocorrelation Partial Correlation		AC	PAC	Q-Stat	Prob
	2 3 4 5 6 7 8	-0.895 0.856 -0.799 0.763 -0.731 0.684 -0.646 0.608	-0.895 0.277 0.017 0.058 -0.059 -0.074 0.013 0.009	194.72 373.69 530.18 673.48 805.49 921.50 1025.4 1118.0	0.000 0.000 0.000 0.000 0.000 0.000 0.000
	10 11 12 13 14 15 16 17 18 19 20 21 22	-0.500 0.460 -0.430 0.384 -0.350 0.316 -0.276 0.252 -0.218 0.182 -0.160	-0.052 0.008 -0.065 0.017 -0.002 0.053 0.032 0.021 -0.058 -0.038 -0.070	1198.5 1269.0 1332.4 1386.4 1433.6 1471.5 1503.1 1529.1 1549.0 1565.6 1578.0 1586.8 1593.6 1597.4 1600.5 1602.4	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Exemplo 5: Modelo AR(2), com -1 < ϕ_1 < 0 e -1 < ϕ_2 < 0

Série - X5

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
		1 -0.439			0.000
111		2 -0.063 3 0.215	0.055	47.748 59.107	0.000
i 🗖		4 -0.035	0.126	59.417	0.000
d (l ufi	5 -0.116	-0.027	62.723	0.000
ı <mark>D</mark> i	1(1	6 0.098	-0.009	65.111	0.000
101	10 1	7 -0.043	-0.057	65.563	0.000
۱) ۱		8 0.030	0.044	65.785	0.000
1 1	'	9 0.003	0.044	65.787	0.000
<u>'</u>]'	<u>'</u>]'	10 0.015	0.055	65.842	0.000
' - '	<u>"</u>		-0.089	67.617	0.000
11.	<u>"</u>	12 0.035		67.936	0.000
11.	'¶'	13 -0.010		67.959	0.000
<u>'</u> .'.'			0.054	68.113	0.000
<u>'</u> 1'.	''.	15 -0.062 16 -0.009		69.097 69.118	0.000
, <u>, , , , , , , , , , , , , , , , , , </u>	"".	17 0.121	0.072	72.946	0.000
	; ;;	18 -0.074	0.072	74.378	0.000
ï¶;	l ; i i	19 0.008	0.032	74.370	0.000
i j ii		20 0.052	0.037	75.103	0.000

Exemplo 6: Modelo AR(2), com $0 < \phi_1 < 1$ e $-1 < \phi_2 < 0$

Série - X6

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
-		1	0.626	0.626	95.152	0.000
1	 	2	0.294	-0.161	116.19	0.000
ı 		3	0.130	0.030	120.35	0.000
1 1	'['	4	0.017	-0.073	120.42	0.000
10 1		5	-0.063	-0.049	121.39	0.000
1 1		6	-0.021	0.102	121.50	0.000
ı j i		7	0.029	0.010	121.70	0.000
ı j ı		8	0.056	0.029	122.48	0.000
1 1	I <mark>I</mark> I	9	0.005	-0.095	122.48	0.000
ı l	I <mark>I</mark> I	10	-0.072	-0.075	123.78	0.000
<u> </u>		11	-0.129	-0.049	128.01	0.000
d 1		12	-0.100	0.056	130.57	0.000
ı (13	-0.075	-0.025	132.01	0.000
1 [1		14	-0.055	-0.016	132.80	0.000
1(1		15	-0.028	-0.008	133.00	0.000
ı b ı	 	16	0.059	0.108	133.90	0.000
ı 🗖		17	0.132	0.089	138.46	0.000
ı b ı	101	18	0.106	-0.046	141.41	0.000
ı b ı		19	0.070	0.014	142.69	0.000
1 1	1 11	20	0.016	-0.076	142.76	0.000

Avaliação Gráfica da Estacionariedade

Exemplo de Série Temporal Não Estacionária e sua FAC

Exemplos de FACs de Processos Não Estacionários

FAC de uma série temporal não sazonal e não estacionária

FAC de uma série sazonal e não estacionária

2. 2 Modelagem SARIMA

a) Teste de Raiz Unitária

Teste Augmented Dickey – Fuller (ADF)

Hipóteses Gerais do teste:

H₀: Yt é um processo de raiz unitária

H₁: Yt é um processo tendência estacionário ou estacionário

(Comentários gerais sobre processos estocásticos TE e DE)

a) Teste de Raiz Unitária - ADF

Equações Auxiliares do Teste ADF

i)
$$\Delta y_t = \gamma y_{t-1} + \sum_{i=2}^p \beta_i \Delta y_{t+1} + \varepsilon_t$$

ii)
$$\Delta y_t = \alpha + \gamma y_{t-1} + \sum_{i=2}^p \beta_i \Delta y_{t+1} + \varepsilon_t$$

iii)
$$\Delta y_t = \alpha + \gamma y_{t-1} + \beta t + \sum_{i=2}^p \beta_i \Delta y_{t+1} + \varepsilon_t$$

a) Testes de Raiz Unitária - ADF

Hipóteses Estatísticas do teste:

$$H_0$$
: $\gamma = 0$

$$H_1: \gamma < 0$$

Regra de decisão do teste: rejeita-se H_0 , ao nível de significância de $\alpha\%$, se a estatística $t_{calc} < t_{tab}$ ($\alpha\%$)

(Tabelas de valores críticos simuladas por MacKinnon (1996))

i) Exemplo de Identificação do Modelo SARIMA

Etapa i) a): Analisar os Gráficos da Série Temporal (Y2) e da sua FAC

Comentário: Os gráficos mostram comportamento estacionário para a série temporal \mathbf{Y}_2 . Logo, a hipótese de raiz unitária do teste ADF provavelmente será rejeitada.

b) Resultados de Teste ADF para a Série Temporal (Y₂)

Resultados do Teste ADF para (Y2):

Equação 1: com constante e com tendência - CCCT

$$H_0: \gamma = 0$$
; $H_1: \gamma < 0$

Regra de decisão do teste: rejeita-se H₀, ao nível de significância de

1%, pois
$$t_{calc} = -14,593 < t_{tab} (1\%) = (1\%) = tau3 (1\%) = -3,99$$
.

Comentário: O teste ADF rejeita a hipótese de raiz unitária ao nível de significância de 1% e em níveis inferiores a 1%. Portanto, com base neste resultado pode-se assumir a hipótese de estacionária fraca para a série Y2 e considerar (d = D = 0). O número ótimo de defasagens da equação de teste foi definido pelo usual teste-t e pelos critérios de informação de Akaike (AIC) e BIC. Contudo, antes da conclusão final é necessário verificar se FAC dos resíduos da equação de teste indicam um processo de ruído branco.

Etapa i) b): Teste ADF para a Série Temporal (Y₂)

Conclusão: A FAC dos resíduos da equação 1 mostram configuração de um processo de ruído branco e confirmam os resultados do teste ADF e a estacionariedade de Y2.

Etapa i) c): Análise gráfica da FAC e FACP na tentativa de identificação das ordens p, q, P e Q do modelo SARIMA

Conclusão: Os gráficos indicam que há fortes evidências de ser um modelo AR(2) não sazonal.

Etapa ii): Estimação do Modelo AR(2) para Y2

ARIMA(2,0,0) with non-zero mean:

Coefficients: sigma^2 estimated = 0.0005203

ar1 ar2 mean 0.7136 -0.6325 4.8266 log likelihood = 425.99

s.e. $0.0583 \quad 0.0581 \quad 0.0018$ AIC = $-843.98 \quad AICc = -843.75 \quad BIC = -831.2$

error measures: RMSE MAE MAPE

2.824 2.230 1.788%

Conclusão: Os resultados atestam o modelo AR(2) como uma possível representação do processo Y2.

Medidas de Erro ou de Qualidade do Ajuste

RMSE =
$$\sqrt{\frac{\sum_{t=1}^{n} (y_t - \hat{y}_t)^2}{n}} = 2,824$$

MAE =
$$\frac{1}{n} \sum_{t=1}^{n} |(y_t - \hat{y}_t)| = 2,230$$

MAPE =
$$\left(\frac{1}{n} \sum_{t=1}^{n} \left| \frac{(y_t - \hat{y}_t)}{y_t} \right| \right) \times 100 = 1,788\%$$

Etapa iii): Testes Diagnóstico do Modelo Estimado para Y2

Verificação das Hipóteses Básicas dos Erros do Modelo AR(2)

- Erros Não Autocorrelacionados
- Homocedasticidade
- Normalidade

Verificação das Hipóteses Básicas dos Erros do Modelo AR(2)

Teste de Autocorrelação de Ljung – Box

$$H_0: \mathbf{Q} = 0; \quad H_1: \mathbf{Q} > 0$$

$$Q = n(n+2) \sum_{j=1}^k r_j^2 \ \sim \ \chi^2_{(k-(p+q))_{gl}}$$

Onde os r_j são as k primeiras autocorrelações amostrais dos resíduos do modelo SARIMA estimado.

Verificação das Hipóteses do Modelo AR(2)

Comentário:

Os resíduos padronizados, a FAC dos resíduos e as estatísticas do teste de LJung – Box indicam que a estrutura de erro do modelo é de um processo do tipo ruído branco. Contudo, é necessário ainda testar a normalidade.

• Teste LM para Heterocedasticidade (Breusch-Pagan)

Equação auxiliar do teste: Auto-regressão no quadrado dos resíduos do modelo estimado.

$$e_t^2 = \alpha + \beta_1 e_{t-1}^2 + \beta_2 e_{t-2}^2 + \dots + \beta_k e_{t-k}^2 + u_t$$
, onde $u_t \sim N(0, \sigma_u^2)$.

Hipóteses
$$\left\{ egin{aligned} H_0: eta_1 = eta_2 = \cdots = eta_k = 0 & \text{Estatística de teste} \\ H_0: \text{pelo menos um } eta_i \
eq 0 & BP = n imes R_e^2 & ass & \chi^2_{(k)gl} \end{aligned}
ight.$$

Regra de Decisão: Rejeita-se H_0 , ao nível de significância de $\alpha\%$, se

$$BP_{cal} > BP_{tab} = \chi^2(\alpha\%; kgl).$$

Conclusão do Teste: Os resultados do teste LM, ao nível de significância de 5%, indicam que a hipótese de homocedasticidade dos resíduos do modelo estimado não deve ser rejeitada, pois

$$BP_{cal} = 1,5031 < BP_{tab}(5\%; 2gl) = 5,991.$$

• Teste de Normalidade de Jarque - Bera (JB)

$$JB = n \left[\frac{\widehat{A}}{6} - \frac{(\widehat{K} - 3)^2}{24} \right] \quad ass \quad \chi^2_{(2)gl}$$

Onde \widehat{A} e \widehat{K} são, respectivamente, os estimadores amostrais do coeficiente de assimetria e curtose dos resíduos do modelo.

$$Hip \acute{o}teses egin{cases} H_0: oldsymbol{arepsilon}_t \sim Normal \ H_0: oldsymbol{arepsilon}_t
eq Normal \end{cases}$$

Regra de Decisão: Rejeita-se H₀, ao nível de significância de α %, se $IB_{cal} > IB_{tab} = \chi^2(\alpha\%; 2gl)$.

Conclusão do Teste: Os resultados do teste indicam, ao nível de significância de 5%, que a hipótese de normalidade dos resíduos do modelo AR(2) estimado não apresenta evidências empíricas para ser rejeitada, pois

$$JB_{cal} = 0.51178 < JB_{tab}(5\%; 2gl) = 5.991.$$

REPRESENTAÇÃO SARIMA-ARCH

SARIMA
$$(p, d, q) \times (P, D, Q)_s$$

$$\Phi(\mathbf{B})\Phi(\mathbf{B})\Delta_{\mathbf{S}}^{\mathbf{D}}\Delta^{\mathbf{d}}\mathbf{Y}_{\mathbf{t}} = \Theta(\mathbf{B})\Theta(\mathbf{B})\mathbf{\varepsilon}_{\mathbf{t}}$$

$$\epsilon_t = \sigma_t z_t$$
, onde $z_t \sim RB(0, 1) \sim NIID(0, 1)$

e

$$\sigma_t^2 = \alpha + \beta_1 \varepsilon_{t-1}^2 + \beta_2 \varepsilon_{t-2}^2 + \dots + \beta_k \varepsilon_{t-k}^2$$

$$\alpha > 0, \beta_i \ge 0; \ i = 1, 2, \dots, k; \ e^{\sum_{i=1}^k \beta_i} < 1;$$

Assim definido, temos que $\varepsilon_t \sim ARCH(k)$

REPRESENTAÇÃO SARIMA-ARCH

Pode-se demonstrar que:

$$E(\varepsilon_t) = 0$$
; $Cov(\varepsilon_t, \varepsilon_{t-s}) = 0$; $Var(\varepsilon_t) = \frac{\alpha}{1 - \sum_{i=1}^k \beta_i}$.

Mas,

$$Var(\varepsilon_t|I_{t-1}) = \sigma_t^2 e Cov(\varepsilon_t, \varepsilon_{t-s}|I_{t-1}) = \gamma(s) \neq 0.$$

REPRESENTAÇÃO SARIMA-GARCH

$$\Phi(\mathbf{B})\Phi(\mathbf{B})\Delta_{\mathbf{S}}^{\mathbf{D}}\Delta^{\mathbf{d}}\mathbf{Y}_{\mathbf{t}} = \Theta(\mathbf{B})\Theta(\mathbf{B})\mathbf{\varepsilon}_{\mathbf{t}}$$

$$\varepsilon_t = \sigma_t z_t$$
, onde $z_t \sim RB(0, 1) \sim NIID(0, 1)$

e

$$\sigma_{t}^{2} = \alpha + \sum_{i=1}^{k} \beta_{i} \varepsilon_{t-i}^{2} + \sum_{j=1}^{m} \rho_{j} \sigma_{t-j}^{2}$$

$$\alpha > 0; \beta_{i} \geq 0 \ e \ \rho_{j} \geq 0; i = 1, 2, ..., k; j = 1, 2, ..., m;$$

$$\sum_{i=1}^{v} (\beta_{i} + \rho_{i}) < 1; \ v = max(k, m).$$

Assim definido, temos que $\varepsilon_t \sim GARCH(k, m)$

REPRESENTAÇÃO SARIMA-GARCH

Pode-se demonstrar que:

$$E(\epsilon_t) = 0 \; ; \; Cov(\epsilon_t, \epsilon_{t-s}) = 0 ; Var(\epsilon_t) = \frac{\alpha}{1 - \sum_{i=1}^{\nu} \left(\beta_i + \rho_i\right)}.$$

Mas,

$$Var(\varepsilon_t|I_{t-1}) = \sigma_t^2 e Cov(\varepsilon_t, \varepsilon_{t-s}|I_{t-1}) = \gamma(s) \neq 0.$$

REPRESENTAÇÃO SARIMA-EGARCH

$$\Phi(\mathbf{B})\Phi(\mathbf{B})\Delta_{\mathbf{S}}^{\mathbf{D}}\Delta^{\mathbf{d}}\mathbf{Y}_{\mathbf{t}} = \Theta(\mathbf{B})\Theta(\mathbf{B})\mathbf{\varepsilon}_{\mathbf{t}}$$

$$\varepsilon_t = \sigma_t z_t$$
, onde $z_t \sim RB(0, 1) \sim NIID(0, 1)$

e

$$log(\sigma_t^2) = \alpha + \sum_{i=1}^k \beta_i g(\mathbf{z}_{t-i}) + \sum_{j=1}^m \rho_j log(\sigma_{t-j}^2).$$

Onde

$$g(\mathbf{z}_{t}) = \theta \mathbf{z}_{t} + \lambda(|\mathbf{z}_{t}| - \mathbf{E}(|\mathbf{z}_{t}|))$$

A formulação para $g(\mathbf{z}_t)$ permite que o sinal e a magnitude de \mathbf{z}_t tenham efeitos separados na variância condicional. Esta assimetria possibilita que a volatilidade responda mais rapidamente a retornos negativos do que a positivos. Isto é particularmente útil na modelagem de precificação de ativos.

Assim definido, temos que $\varepsilon_t \sim \text{EGARCH}(k, m)$

EXEMPLO DE MODELAGEM: AÇÃO - PETR4

Series: PETR4 Observations 1195					
Mean	20.37126				
Median	19.56000				
Maximum	33.77000				
Minimum	9.180000				
Std. Dev.	4.687168				
Skewness	0.655183				
Kurtosis	3.308702				
Jarque-Bera	90.24010				
Probability	0.000000				

Resultados do Modelo ARCH para a PETR4

Dependent Variable: D(LOG(PETR4))

Method: ML - ARCH (Marquardt) - Normal distribution

Included observations: 1153 after adjustments Convergence achieved after 12 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-2)^2 + C(6)*RESID(-3)^2$

+ C(7)*RESID(-4)^2 + C(8)*RESID(-5)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.
AR(13) AR(41)	-0.103983 0.096657	0.023190 0.025223	-4.484041 3.832107	0.0000 0.0001
	Variance	Equation		
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2 RESID(-4)^2 RESID(-5)^2	0.000246 0.045996 0.154912 0.084803 0.182764 0.122746	2.07E-05 0.020105 0.039912 0.026672 0.026095 0.026042	11.90873 2.287728 3.881386 3.179499 7.003880 4.713442	0.0000 0.0222 0.0001 0.0015 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.006654 0.005791 0.024074 0.667066 2748.184 1.955727	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001014 0.024144 -4.753138 -4.718098 -4.739913

Forecast: PETR4_ARCH Actual: PETR4 Forecast sample: 1/04/2010 3/30/2015 Adjusted sample: 3/03/2010 8/20/2014 Included observations: 1153 Root Mean Squared Error 0.454968 Mean Absolute Error 0.335431 Mean Abs. Percent Error 1.748827 Theil Inequality Coefficient 0.011135 Bias Proportion 0.001842 Variance Proportion 0.000103 Covariance Proportion 0.998055

.Resultados do Modelo GARCH para a PETR4

Dependent Variable: D(LOG(PETR4))

Method: ML - GARCH (Marquardt) - Normal distribution

Included observations: 1153 after adjustments Convergence achieved after 13 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.					
AR(13) AR(41)	-0.102605 0.088160	0.028409 0.026774	-3.611678 3.292681	0.0003 0.0010					
Variance Equation									
C RESID(-1)^2 GARCH(-1)	1.48E-05 0.076552 0.900451	3.27E-06 0.012398 0.013780	4.526941 6.174260 65.34584	0.0000 0.0000 0.0000					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.006861 0.005998 0.024071 0.666927 2753.263 1.956433	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001014 0.024144 -4.767152 -4.745252 -4.758886					

Forecast: PETR4_GARCH Actual: PETR4 Forecast sample: 1/04/2010 3/30/2015 Adjusted sample: 3/03/2010 8/20/2014 Included observations: 1153 Root Mean Squared Error 0.454860 Mean Absolute Error 0.335301 Mean Abs. Percent Error 1.748364 Theil Inequality Coefficient 0.011132 Bias Proportion 0.001856 Variance Proportion 0.000100 Covariance Proportion 0.998045

Resultados do Modelo EGARCH para a PETR4

Dependent Variable: D(LOG(PETR4))

Method: ML - EGARCH

Included observations: 1153 after adjustments Convergence achieved after 19 iterations

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5)

*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.				
AR(13) AR(41)	-0.104104 0.075617	0.027762 0.028295	-3.749869 2.672402	0.0002 0.0075				
Variance Equation								
C(3) C(4) C(5) C(6)	-0.355693 0.162501 -0.023318 0.969274	0.058929 0.026345 0.015057 0.006240	-6.035930 6.168294 -1.548676 155.3379	0.0000 0.0000 0.1215 0.0000				
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.006636 0.005773 0.024074 0.667077 2754.880 1.957217	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.001014 0.024144 -4.768222 -4.741942 -4.758303				

Forecast: PETR4_EGARCH Actual: PETR4 Forecast sample: 1/04/2010 3/30/2015 Adjusted sample: 3/03/2010 8/20/2014 Included observations: 1153 Root Mean Squared Error 0.454834 Mean Absolute Error 0.335212 Mean Abs. Percent Error 1.748128 Theil Inequality Coefficient 0.011131 Bias Proportion 0.001884 Variance Proportion 0.000093 Covariance Proportion 0.998023

EXEMPLO DE MODELAGEM: AÇÃO – VALE5

Sample 1/04/2010 12/30/2014 Observations 1236						
Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis	32.01127 32.12500 44.27000 16.00000 5.429266 -0.188351 2.722558					
Jarque-Bera Probability	11.27222 0.003567					

Resultados do Modelo ARCH para a VALE5

Dependent Variable: DLOG(VALE5)

Method: ML - ARCH (Marquardt) - Normal distribution

Included observations: 1235 after adjustments Convergence achieved after 11 iterations

Presample variance: backcast (parameter = 0.7)

GARCH = $C(1) + C(2)*RESID(-1)^2 + C(3)*RESID(-2)^2 + C(4)*RESID(-3)^2$

+ C(5)*RESID(-4)^2 + C(6)*RESID(-5)^2

Variable	Coefficient	Std. Error	z-Statistic	Prob.					
Variance Equation									
C RESID(-1)^2 RESID(-2)^2 RESID(-3)^2 RESID(-4)^2 RESID(-5)^2	0.000213 0.012042 0.131498 0.118284 0.065306 0.045796	1.35E-05 0.027164 0.026923 0.032494 0.025563 0.014803	15.78498 0.443316 4.884294 3.640205 2.554700 3.093773	0.0000 0.6575 0.0000 0.0003 0.0106 0.0020					
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000732 0.000079 0.018334 0.415139 3219.104 1.936786	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000496 0.018335 -5.203407 -5.178538 -5.194052					

Forecast: VALE5F_ARCH Actual: VALE5 Forecast sample: 1/04/2010 12/30/2014 Adjusted sample: 1/05/2010 9/30/2014 Included observations: 1235 Root Mean Squared Error 0.567591 Mean Absolute Error 0.419417 Mean Abs. Percent Error 1.348172 Theil Inequality Coefficient 0.008740 Bias Proportion 0.000537 Variance Proportion 0.000397 Covariance Proportion 0.999066

Resultados do Modelo GARCH para a VALE5

Dependent Variable: DLOG(VALE5)

Method: ML - ARCH (Marquardt) - Normal distribution

Included observations: 1234 after adjustments Convergence achieved after 10 iterations

Presample variance: backcast (parameter = 0.7)

 $GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)$

Variable	Coefficient	Std. Error	z-Statistic	Prob.
AR(1)	0.060184	0.031818	1.891468	0.0586
Variance Equation				
C RESID(-1)^2 GARCH(-1)	2.04E-05 0.077175 0.863962	5.10E-06 0.012323 0.023928	3.993666 6.262729 36.10617	0.0001 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000613 -0.000613 0.018344 0.414888 3221.379 2.056923	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000507 0.018338 -5.214553 -5.197963 -5.208313
Inverted AR Roots	.06			

Forecast: VALE5F_GARCH
Actual: VALE5
Forecast sample: 1/04/2010 12/30/2014
Adjusted sample: 1/06/2010 9/30/2014
Included observations: 1234
Root Mean Squared Error 0.567495
Mean Absolute Error 0.420427
Mean Abs. Percent Error 1.352097
Theil Inequality Coefficient 0.008739
Bias Proportion 0.000533

0.000225

0.999243

Variance Proportion

Covariance Proportion

Resultados do Modelo EGARCH para a VALE5

Dependent Variable: DLOG(VALE5)

Method: ML - ARCH (Marquardt) - Normal distribution

Included observations: 1235 after adjustments Convergence achieved after 12 iterations

Presample variance: backcast (parameter = 0.7)

LOG(GARCH) = C(1) + C(2)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(3)

*RESID(-1)/@SQRT(GARCH(-1)) + C(4)*LOG(GARCH(-1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.
Variance Equation				
C(1) C(2) C(3) C(4)	-0.462624 0.056003 -0.134002 0.948685	0.072882 0.019105 0.012792 0.008174	-6.347557 2.931357 -10.47568 116.0579	0.0000 0.0034 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000732 0.000079 0.018334 0.415139 3257.871 1.936786	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		-0.000496 0.018335 -5.269427 -5.252848 -5.263191

Forecast: VALE5F_EGARCH

Actual: VALE5

Forecast sample: 1/04/2010 12/30/2014 Adjusted sample: 1/05/2010 9/30/2014

Included observations: 1235

Root Mean Squared Error 0.567591

Mean Absolute Error 0.419417

Mean Abs. Percent Error 1.348172

Theil Inequality Coefficient 0.008740

Bias Proportion 0.000397

Variance Proportion 0.999066

EXEMPLO DE APLICAÇÃO: MODELOS DE OPÇÕES DE COMPRA

Resultados dos Exercícios de Precificação de Opções Europeias

1) Opções de Compra da Petrobras e da Vale, com Ativo-Objeto: PETR4 e VALE5

1, opgood do compra da romobiado da rano, com ranto conjetor i a raiza						
Sigla da Opção	Valor da Opção na Data do Contrato	Preço de Exercício PE	Preço do Ativo-Objeto na Data Inicial - P0	Maturidade em dias úteis - T	Data do Contrato de Opção	Data de Vencimento do Contrato
PETRK15E	2,86	14,91	16,61	18	22/10/14	17/11/14
PETRL17E	2,39	16,91	16,61	38	22/10/14	15/12/14
PETRC1E	0,14	12,41	10,00	29	03/02/15	16/03/15
PETRF70E	1,61	10,75	10,20	93	04/02/15	15/06/15
PETRL12E	0,72	12,25	8,18	232	30/01/15	21/12/15
VALEC71E	1,07	17,60	17,82	28	04/02/15	16/03/15
VALED75E	0,07	24,10	18,05	54	03/02/15	20/04/15
VALEF78E	1,24	18,75	16,96	128	17/12/14	15/06/15
VALEH91E	0,89	21,86	18,05	139	03/02/15	17/08/15
VALEH5E	0,98	26,36	16,60	433	17/12/14	15/08/16

Sigla da Opção	Estimativa do Valor Justo da Opção (em R\$)					
	Modelo de Black-Scholes	Modelo GARCH	Modelo de PGDA			
PETRK15E	1,93	2,23	1,85			
PETRL17E	0,83	1,82	0,54			
PETRC1E	0,0371	0,0776	0,0004			
PETRF70E	0,91	0,98	0,48			
PETRL12E	0,419	0,472	0,054			
VALEC71E	0,93	0,95	0,75			
VALED75E	0,0268	0,0295	0,0013			
VALEF78E	1,12	1,14	0,72			
VALEH91E	0,730	0,75	0,34			
VALEH5E	1,09	1,12	0,50			