2. Grundbegriffe

Begriff	Definition, Erläuterung
Geordnetes Paar, 2-Tupel	(a,b) wobei $a \in A, b \in B$
Kartesisches Produkt, Kreuzprodukt, Produktmenge, Menge der geordneten Paare	$A \times B = \{(a,b) : a \in A, b \in B\}$
über A und B Menge der geordneten Tupel über $A_1, A_2, \dots A_n$	$A_1 \times A_2 \times \cdots A_n = \{(a_1, a_2, \cdots a_n) : a_i \in A_i \ (i = 1, 2, \cdots n)\}$
Binäre Relation	$R \subseteq A \times B$
Binäre Relation in A	$R \subseteq A \times A$
n-stellige Relation	$R \subseteq A_1 \times A_2 \times \dots A_n \tag{n>1}$
Gerichteter Graph	G = (N, E) wobei
	N endliche Menge von Knoten,
	$E \subseteq N \times N$ Menge von Kanten
	$(a,b) \in E$ Kante von a nach b
Inverse Relation zur binären Relation $R \subseteq A \times B$	$R^{-1} = \{(b,a) : (a,b) \in R\}$
Identitätsrelation in A	$I_A = \{(a,a) : a \in A\}$
Verkettung binärer Relationen S und T	$S \circ T = \{(a,c) : Es \ gibt \ b \ mit \ (a,b) \in S \ und \ (b,c) \in T\}$
	Es gilt: $(S \circ T)^{-1} = T^{-1} \circ S^{-1}$

Begriff	Definition, Erläuterung
Relation $R \subseteq A \times A$ ist reflexiv	$R \cup I_A = R$
Relation $R \subseteq A \times A$ ist symmetrisch	$R = R^{-1}$
Relation $R \subseteq A \times A$ ist transitiv	$R \circ R \subseteq R$
Relation $R \subseteq A \times A$ ist antisymmetrisch	$R \cap R^{-1} \subseteq I_A$
Relation $R \subseteq A \times A$ ist asymmetrisch	$R \cap R^{-1} = \emptyset$
Relation $R \subseteq A \times A$ ist eine	R ist reflexiv, symmetrisch und transitiv.
Äquivalenzrelation	

Begriff	Definition, Erläuterung
Funktion, Abbildung	$f \subseteq A \times B$ und
	ist eindeutig (d. h., falls $(a,b) \in f$ und $(a,c) \in f$, dann gilt $b=c$)
	(Schreibweise: $f: A \rightarrow B$)
Eineindeutige Funktion, eineindeutige Abbildung	f^{-1} ist auch eine Funktion

Begriff	Definition, Erläuterung
Partielle Ordnung, Halbordnung	$R \subseteq A \times A$ und R ist reflexiv,
	antisymmetrisch und transitiv
Totale (oder lineare) Ordnung	R ist Halbordnung und es gilt für beliebige
	$a \in A \text{ und } b \in A, \text{ dass } (a,b) \in R \text{ oder}$
	$(b,a) \in R$