

Transformation and decomposition

Bahman Rostami-Tabar

Outline

- 1 Learning outcome
- 2 Per capita adjustments
- 3 Inflation adjustments
- 4 Mathematical transformations
- 5 Time series decompositions

Outline

- 1 Learning outcome
- 2 Per capita adjustments
- 3 Inflation adjustments
- 4 Mathematical transformations
- 5 Time series decompositions

Learning outcome

You should be able to:

- Apply required adjustments on time series data before your analysis
- Understand when time series decomposition would be helpful
- Decompose time series using STL method

Outline

- 1 Learning outcome
- 2 Per capita adjustments
 - 3 Inflation adjustments
 - 4 Mathematical transformations
- 5 Time series decompositions

Per capita adjustments

```
global_economy |>
  filter(Country == "Australia") |>
  autoplot(GDP)
```


Per capita adjustments

```
global_economy |>
  filter(Country == "Australia") |>
  autoplot(GDP / Population)
```


Outline

- 1 Learning outcome
- 2 Per capita adjustments
- 3 Inflation adjustments
- 4 Mathematical transformations
- 5 Time series decompositions

Inflation adjustments

```
print_retail <- aus_retail |>
  filter(Industry == "Newspaper and book retailing") |>
  group by(Industry) |>
 index_by(Year = year(Month)) |>
  summarise(Turnover = sum(Turnover))
aus_economy <- filter(global_economy, Code == "AUS")</pre>
print retail |>
 left_join(aus_economy, by = "Year") |>
 mutate(Adj_turnover = Turnover / CPI) |>
  pivot longer(c(Turnover, Adj turnover),
    names_to = "Type", values_to = "Turnover"
 ) |>
  ggplot(aes(x = Year, y = Turnover)) +
  geom_line() +
  facet_grid(vars(Type), scales = "free_y") +
 labs(x = "Years", y = NULL,
       title = "Turnover: Australian print media industry")
```

Inflation adjustments

Outline

- 1 Learning outcome
- 2 Per capita adjustments
- 3 Inflation adjustments
- 4 Mathematical transformations
- 5 Time series decompositions

If the data show different variation at different levels of the series, then a transformation can be useful.

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$

Cube root
$$w_t = \sqrt[3]{y_t}$$
 Increasing

Logarithm $w_t = \log(y_t)$ strength

If the data show different variation at different levels of the series, then a transformation can be useful.

Denote original observations as y_1, \ldots, y_n and transformed observations as w_1, \ldots, w_n .

Mathematical transformations for stabilizing variation

Square root
$$w_t = \sqrt{y_t}$$
 \downarrow Cube root $w_t = \sqrt[3]{y_t}$ Increasing Logarithm $w_t = \log(y_t)$ strength

Logarithms, in particular, are useful because they are more interpretable: changes in a log value are **relative (percent)** changes on the original scale.

```
food <- aus_retail |>
  filter(Industry == "Food retailing") |>
  summarise(Turnover = sum(Turnover))
```



```
food |> autoplot(sqrt(Turnover)) +
  labs(y = "Square root turnover")
```



```
food |> autoplot(Turnover^(1 / 3)) +
  labs(y = "Cube root turnover")
```



```
food |> autoplot(log(Turnover)) +
  labs(y = "Log turnover")
```



```
food |> autoplot(-1 / Turnover) +
  labs(y = "Inverse turnover")
```


Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (\operatorname{sign}(y_t)|y_t|^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

Each of these transformations is close to a member of the family of **Box-Cox transformations**:

$$w_t = \begin{cases} \log(y_t), & \lambda = 0; \\ (\operatorname{sign}(y_t)|y_t|^{\lambda} - 1)/\lambda, & \lambda \neq 0. \end{cases}$$

- Actually the Bickel-Doksum transformation (allowing for $y_t < 0$)
- λ = 1: (No substantive transformation)
- $\lambda = \frac{1}{2}$: (Square root plus linear transformation)
- λ = 0: (Natural logarithm)
- $\lambda = -1$: (Inverse plus 1)

```
food |>
  features(Turnover, features = guerrero)

## # A tibble: 1 x 1
```

```
## lambda_guerrero
## <dbl>
## 1 0.0895
```

- This attempts to balance the seasonal fluctuations and random variation across the series.
- Always check the results.
- A low value of λ can give extremely large prediction intervals

```
food |> autoplot(box_cox(Turnover, 0.0524)) +
  labs(y = "Box-Cox transformed turnover")
```


Transformations

- Often no transformation needed.
- Simple transformations are easier to explain and work well enough.
- Transformations can have very large effect on PI.
- If some data are zero or negative, then use $\lambda > 0$.
- log1p() can also be useful for data with zeros.
- Choosing logs is a simple way to force forecasts to be positive
- Transformations must be reversed to obtain forecasts on the original scale. (Handled automatically by fable.)

Outline

- 1 Learning outcome
- 2 Per capita adjustments
- 3 Inflation adjustments
- 4 Mathematical transformations
- 5 Time series decompositions

Time series decomposition

Trend-Cycle aperiodic changes in level over time.

Seasonal (almost) periodic changes in level due to seasonal factors (e.g., the quarter of the year, the month, or day of the week).

Additive decomposition

$$y_t = S_t + T_t + R_t$$

where $y_t = data$ at period t

trend-cycle component at period t

seasonal component at period t

 R_t = remainder component at period t

STL decomposition

- STL: "Seasonal and Trend decomposition using Loess"
- Very versatile and robust.
- Seasonal component allowed to change over time, and rate of change controlled by user.
- Smoothness of trend-cycle also controlled by user.
- Optionally robust to outliers
- No trading day or calendar adjustments.
- Only additive.
- Take logs to get multiplicative decomposition.
- Use Box-Cox transformations to get other decompositions.

```
us_retail_employment <- us_employment |>
  filter(year(Month) >= 1990, Title == "Retail Trade") |>
  select(-Series_ID)
us_retail_employment
```

```
# A tsibble: 357 x 3 [1M]
##
        Month Title
                           Employed
##
        <mth> <chr>
                              <fdb>>
##
   1 1990 Jan Retail Trade
                             13256.
   2 1990 Feb Retail Trade
##
                             12966.
   3 1990 Mar Retail Trade
##
                             12938.
##
   4 1990 Apr Retail Trade
                             13012.
   5 1990 May Retail Trade
##
                             13108.
##
   6 1990 Jun Retail Trade
                             13183.
##
   7 1990 Jul Retail Trade
                             13170.
   8 1990 Aug Retail Trade
##
                             13160.
   9 1990 Sep Retail Trade
##
                             13113.
```

26

```
us_retail_employment |>
  autoplot(Employed) +
  labs(y = "Persons (thousands)", title = "Tot")
```



```
dcmp <- us_retail_employment |>
  model(stl = STL(Employed))
dcmp

## # A mable: 1 x 1
## stl
## <model>
## 1 <STL>
```

components(dcmp)

```
## # A dable: 357 x 7 [1M]
##
  # Key: .model [1]
## # :
           Employed = trend + season_year +
## # remainder
## .model Month Employed trend seaso~1 remai~2
## <chr>
             <mth> <dbl> <dbl> <dbl> <dbl>
##
  1 stl 1990 Jan 13256. 13288. -33.0 0.836
## 2 stl 1990 Feb 12966. 13269. -258. -44.6
##
  3 stl 1990 Mar 12938. 13250. -290. -22.1
   4 stl
          1990 Apr 13012. 13231. -220. 1.05
##
##
  5 stl
           1990 May 13108. 13211. -114. 11.3
##
   6 stl
           1990 Jun 13183. 13192. -24.3 15.5
##
  7 stl
          1990 Jul 13170. 13172. -23.2 21.6
           1990 Aug 13160. 13151. -9.52
##
   8 stl
                                        17.8
   9 stl
           1990 Sep 13113. 13131. -39.5 22.0
##
шш 1Λ -Т]
           1000 0-4 12105 12110 61 6 12 2
```

29

components(dcmp) |> autoplot()


```
us_retail_employment |>
  autoplot(Employed, color = "gray") +
  autolayer(components(dcmp), trend, color = "
  labs(y = "Persons (thousands)", title = "Tot")
```


US Retail Employment

components(dcmp) |> gg_subseries(season_year)

Seasonal adjustment

- Useful by-product of decomposition: an easy way to calculate seasonally adjusted data.
- Additive decomposition: seasonally adjusted data given by

$$y_t - S_t = T_t + R_t$$

 Multiplicative decomposition: seasonally adjusted data given by

$$y_t/S_t = T_t \times R_t$$

US Retail Employment

```
us_retail_employment |>
  autoplot(Employed, color = "gray") +
  autolayer(components(dcmp), season_adjust, color = "Persons (thousands)", title = "Total"
```


Seasonal adjustment

- We use estimates of S based on past values to seasonally adjust a current value.
- Seasonally adjusted series reflect remainders as well as trend. Therefore they are not "smooth" and "downturns" or "upturns" can be misleading.
- It is better to use the trend-cycle component to look for turning points.

```
us_retail_employment |>
  model(STL(Employed ~ trend(window = 15) + se
  robust = TRUE
  )) |>
  components()
```

- trend(window = ?) controls wiggliness of trend component.
- season(window = ?) controls variation on seasonal component.
- season(window = 'periodic') is equivalent to an infinite window.

```
us_retail_employment |>
  model(STL(Employed)) |>
  components() |>
  autoplot()
```


- STL() chooses season(
 by default
- Can include transformat

```
us_retail_employment |>
  model(STL(Employed)) |>
  components() |>
  autoplot()
```


- Algorithm that updates trend and seasonal components iteratively.
- Starts with $\hat{T}_t = 0$
- Uses a mixture of loess and moving averages to successively refine the trend and seasonal estimates.
- trend window controls loess bandwidth on deasonalised values.
- season window controls loess bandwidth on detrended subseries.
- Robustness weights based on remainder.
- Default season: window = 13
- Default trend:

```
window = nextodd(ceiling((1.5*period)/(1-
```

Australian holidays

Australian holidays

```
holidays |>
  model(stl = STL(Trips)) |>
  components() |>
  autoplot()
```


Holidays decomposition

```
dcmp <- holidays |>
  model(stl = STL(Trips)) |>
  components()
dcmp
```

```
## # A dable: 640 x 8 [10]
## # Key: State, .model [8]
## # :
     Trips = trend + season_year +
## # remainder
##
    State .model Quarter Trips trend season year
##
    <chr> <chr> <qtr> <dbl> <dbl>
                                     <dbl>
   1 ACT stl
               1998 01 196. 172.
                                     -8.48
##
   2 ACT stl 1998 Q2 127. 157. 10.3
##
   3 ACT stl 1998 Q3 111. 142. -16.8
##
   4 ACT stl
               1998 04 170. 130. 14.6
##
   5 ACT stl
##
               1999 01 108. 135. -8.63
               1999 02 125. 148. 11.0
##
   6 ACT stl
   7 ACT stl
               1999 03 178. 166. -16.0
##
   8 ACT stl
               1999 04
                      218. 177.
                                     13.2
##
```

Holidays decomposition

dcmp |> gg_subseries(season_year)

Holidays decomposition

```
autoplot(dcmp, trend, scale_bars = FALSE) +
autolayer(holidays, alpha = 0.4)
```


Lab Session -transformation

per capita

Consider the GDP information in global_economy. Plot the GDP per capita for each country over time. Which country has the highest GDP per capita? How has this changed over time?

transformation

- For the following series, find an appropriate transformation in order to stabilise the variance.
 - United States GDP from global_economy
 - Slaughter of Victorian "Bulls, bullocks and steers" in aus_livestock
 - Victorian Electricity Demand from vic_elec.

Lab Session- decomposition

Produce the following decomposition

```
canadian_gas |>
  model(STL(Volume ~ season(window=7) + trend(window=11))) |>
  components() |>
  autoplot()
```

- What happens as you change the values of the two window arguments?
- How does the seasonal shape change over time? [Hint: Try plotting the seasonal component using gg_season.]
- Can you produce a plausible seasonally adjusted series? [Hint: season_adjust is one of the variables returned by STL.]