AGU Fall Meeting 2019 Email: ksargsy@sandia.gov

Calibration and Propagation of Model Structural Error for E3SM Land Model

Khachik Sargsyan¹, Cosmin Safta¹, Vishagan Ratnaswamy¹, Daniel Ricciuto²

Sandia National Laboratories, Livermore, CA, USA, ² Oak Ridge National Laboratory, Oak Ridge, TN, USA

Expense Mitigated by Surrogate Construction

Key Challenge

Likelihood requires online evaluation of model at candidate values

 $p(D|\lambda) \propto \exp\left(-\frac{1}{2}||D - f(\lambda)||^2\right)$

Surrogate Construction

Construct a surrogate, inexpensive approximation

$$f(\lambda) \approx f_s(\lambda)$$

using a few 'training' simulations.

Side Effect: Global Sensitivity Analysis

We employ Polynomial Chaos surrogates

$$f_s(\lambda) = \sum_k c_k \Psi_k(\lambda)$$

enabling variance decomposition (global sensitivity analysis) and uncertainty propagation.

This is business-as-usual

Predictive uncertainty is decomposed due to model parameters, surrogate errors and data noise.

What About Model Structural Error?

Uncertainty decomposition of model prediction needs to account for model error — often the dominant component of the uncertainty.

Elephant in the room!

Error associated with

- Simplifying assumptions, parameterizations
- Mathematical formulation, theoretical framework.

Scientific discovery and model development: "is it worth resolving details, or just parameterize empirically?"

Optimal resource allocation: "do I improve my model (e.g. high-res), or run more simulations?"

Embedded Model Structural Error

How to account for model error

Embedded but non-intrusive!

 Specific submodel phenomenology Modified transport law, material property, turbulent constant Naturally preserves physics

Disambiguates from data noise

• Does not vanish with more data

• Allows prediction of non-observable QoIs

Simultaneous Bayesian inference of model parameters and structural error

Posterior predictive uncertainty decomposition accounts for model structural error

General Embedding UQ Workflow

Polynomial chaos representation as embedded model error correction

Technical ingredients

- Non-intrusive spectral projection (NISP) for uncertainty propagation
- ullet Simultaneous Bayesian inference of λ and lpha via Markov chain Monte Carlo
- Prediction of full set of Qols with variance decomposition of predictive uncertainty

$$\mu(x) = \mathbb{E}_{\lambda,\alpha}[\mu(x;\lambda,\alpha)]$$

$$\sigma^2(x) = \underbrace{\mathbb{V}_{\lambda,\alpha}[\mu(x;\lambda,\alpha)]}_{\text{Posterior uncertainty}} + \underbrace{\mathbb{E}_{\lambda,\alpha}[\sigma^2(x;\lambda,\alpha)]}_{\text{Model error}}$$

 Automated workflow is implemented in UQ Toolkit (www.sandia.gov/uqtoolkit)

Reference: K. Sargsyan, X. Huan, H. Najm, Embedded model error representation for Bayesian model calibration, International Journal for Uncertainty Quantification, 9(4), pp. 365-394. Also on arXiv:1801.06768.

