Семинар №12.

F-критерий, критерий χ^2 и критерий Колмогорова.

Проверка линейных гипотез в линейной гауссовской модели.

Пусть, как обычно, $X = Z\theta + \varepsilon$, $\varepsilon \sim N(0, \sigma^2 I_n)$, $\theta = (\theta_1, \dots, \theta_k)^T$, $k \le n$ — линейная гауссовская модель. Мы хотим построить критерий для проверки линейной гипотезы следующего вида:

$$H_0: T\theta = \tau,$$

где T — матрица размера $m \times k, \ m \le k, \ rank(T) = m.$ (Пример: $T = (\frac{1}{k}, \dots, \frac{1}{k})$, т.е. мы рассматриваем гипотезу, что $\frac{1}{k} \sum_{i=1}^k \theta_i$ равняется некоему τ .)

Вопрос: как строить критерий?

Как мы уже знаем, $\hat{\theta} = (Z^T Z)^{-1} Z^T X$ — оптимальная оценка θ , причём $\hat{\theta} \sim N(\theta, \sigma^2 (Z^T Z)^{-1})$. Поскольку T — это линейное преобразование, то $\hat{t} = T \hat{\theta}$ — оптимальная оценка для $T \theta$. Тогда, в предположении верности гипотезы H_0 ,

$$\hat{t} \sim N\left(\tau, \sigma^2 T(Z^T Z)^{-1} T^T\right)$$
.

Обозначим $B = T(Z^T Z)^{-1} T^T$.

Утверждение.

$$\frac{1}{\sigma^2}(\hat{t} - \tau)^T B^{-1}(\hat{t} - \tau) \sim \chi_m^2. \tag{1}$$

И правда, можно убедиться в том, что выражение выше – это сумма квадратов m независимых стандартных нормальных величин. Заметим также, что это выражение зависит только от $\hat{\theta}$ (так как $\hat{t} = T\hat{\theta}$), значит, по теореме об ортогональном разложении гауссовского вектора, оно не зависит от $X - Z\hat{\theta}$. С другой стороны, уже доказывалось ранее, что $\frac{1}{\sigma^2}\|X - Z\hat{\theta}\|^2 \sim \chi^2_{n-k}$. Т.е., чтобы избавиться от $\frac{1}{\sigma^2}$ в выражении (1) (мы же хотим построить центральную статистику), можно разделить выражение (1) на $\frac{1}{\sigma^2}\|X - Z\hat{\theta}\|^2$. Следовательно,

$$F_T = \frac{(\hat{t} - \tau)^T B^{-1} (\hat{t} - \tau)}{\|X - Z\hat{\theta}\|^2} \frac{n - k}{m} \sim F_{m, n - k},$$

где $F_{m,n-k}$ – так называемое распределение Фишера, $F_{m,n-k}=^d \frac{n-k}{m} \frac{\chi_m^2}{\chi_{n-k}^2}$, где χ_m^2 и χ_{n-k}^2 независимы. Статистика F_T называется F – отношением.

Замечание 1 Распределение Фишера также возникает в задаче проверки гипотезы о равенстве дисперсий двух нормальных выборок – в этом случае берётся отношение выборочных дисперсий.

F-критерий проверки линейных гипотез

Пусть $u_{1-\alpha} - (1-\alpha)$ -квантиль $F_{m,n-k}$. Т.к. F- отношение всегда больше 0, то критерий будет такой:

если
$$F_T = \frac{(\widehat{t} - \tau)^T D^{-1} (\widehat{t} - \tau)}{\|X - Z\widehat{\theta}\|^2} \frac{n - k}{m} > u_{1-\alpha},$$

то H_0 отвергается.

Замечание 2 Матрица T и вектор τ зависят от конкретной задачи и выбираются нами. Например, есть y нас две независимые выборки: X_1, \ldots, X_n из $N(a, \sigma^2)$ и Y_1, \ldots, Y_m из $N(b, \sigma^2)$, хотим проверить гипотезу H_0 : a = b. Для этого приводим задачу κ линейной гауссовской модели путём составления вектора $W = (X_1, \ldots, X_n, Y_1, \ldots, Y_m)^T$, получаем, что вектор параметров $\theta = (a, b)^T$. Тогда для T = (1, -1) и $\tau = 0$ получаем H_0 : a - b = 0.

Задача. Пусть $X_1,\ldots,X_n\sim N(a_1,\sigma^2),\ Y_1,\ldots,Y_m$ – независимые выборки. Построить F – критерий для проверки гипотезы $H_0:a_1=a_2.$

<u>Решение.</u> Составим $W = (W_1, \dots, W_{n+m})^T = (X_1, \dots, X_n, Y_1, \dots, Y_m)^T$, тогда неизвестный параметр $\theta = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix}$,

$$Z = \begin{pmatrix} 1 \dots 10 \dots 0 \\ 0 \dots 0 \underbrace{1 \dots 1}_{m} \end{pmatrix}^{T}.$$
 Предположение гипотезы можно представить в виде $a_{1} - a_{2} = 0$, т.е. в равенстве $T\theta = \tau$ $T = (1, -1)$ и $\tau = 0$.

Посчитаем
$$B=T(Z^TZ)^{-1}T^T=(1,-1)\left(egin{array}{cc} \frac{1}{n} & 0 \\ 0 & \frac{1}{m} \end{array}\right)\left(egin{array}{cc} 1 \\ -1 \end{array}\right)=\frac{1}{n}+\frac{1}{m}.$$

Посчитаем $\hat{t} = T\hat{\theta} = T(Z^TZ)^{-1}Z^TW = \overline{X} - \overline{Y}$.

Теперь можно написать F – отношение:

$$F_T = \frac{(\overline{X} - \overline{Y})(\frac{1}{n} + \frac{1}{m})(\overline{X} - \overline{Y})}{|W - Z\widehat{\theta}|^2} \cdot \frac{n + m - 2}{1},$$

где
$$|W - Z\widehat{\theta}|^2 = \sum_{i=1}^n (X_i - \overline{X})^2 + \sum_{j=1}^m (Y_i - \overline{Y})^2 = ns_X^2 + ms_Y^2.$$

Критерий согласия хи-квадрат.

Пусть X_1,\ldots,X_n – выборка из схемы Бернулли с $m\geq 2$ исходами, т.е. a_1,\ldots,a_m – исходы и $P(X_i=a_j)=p_j$ для $j=1,\ldots,m$. Хотим проверить простую гипотезу

$$H_0: p_j = p_j^0, j = 1 \dots m.$$

Определение. Статистикой хи-квадрат называется

$$\widehat{\chi} = \sum_{i=1}^{m} \frac{(\mu_j - np_j^0)^2}{np_j^0},$$

где $\mu_j = \sum\limits_{i=1}^n I\{X_i = a_j\}$ - число выпадений j-того исхода.

Теорема 1 (К. Пирсон)

B условиях гипотезы H_0

$$\widehat{\chi} \xrightarrow[n \to \infty]{d} \chi_{m-1}^2$$
.

Критерий хи-квадрат: Если $\widehat{\chi} > u_{1-\alpha}$, где $u_{1-\alpha} - (1-\alpha)$ -квантиль χ^2_{m-1} , то отвергаем H_0 . Применимость критерия: $\forall i \ np_i^0 \geq 5$.

Чем удобен и для чего нужен критерий хи-квадрат. Критерий хи-квадрат, как и критерий согласия Колмогорова, применяется для проверки гипотезы о равенстве распределения, из которого берётся наша выборка, какому-то определённому распределению. В отличие от критерия Колмогорова, критерий хи-квадрат не требует больших вычислений, но является менее "точным". Как работать с критерием хи-квадрат: область значений нашей выборки разбиваем на несколько интервалов, и смотрим, сколько членов выборки попало в каждый интервал. Это будут μ_i . Дальше находим вероятности этих интервалов для распределения, равенство которому нашего выборочного распределения мы проверяем, это будут p_i^0 . Остаётся только вычислить статистику хи-квадрат, если

она будет меньше квантили хи-квадрат распределения, то принимаем гипотезу H_0 , если больше, то отвергаем.

Задача. По статистике, собранной в психиатрической больнице в течение года, количество пациентов, поступивших в отделение интенсивной терапии, имело следующее распределение по дням недели:

$$\Pi H - 36$$
, $BT - 53$, $CP - 35$, $\Psi T - 26$, $\Pi T - 30$, $CE - 44$, $BC - 28$.

Согласуются ли эти данные с гипотезой о том, что попадание в отделение не зависит от дня недели на уровне значимости 0,95 и 0,99?

<u>Решение.</u> $m=7,\ p_j^0=\frac{1}{7},\$ поскольку предполагаемое распределение является равномерным. Считаем общее количество наблюдений: $n=36+53+35+26+30+44+28=252,\$ таким образом, $np_j^0=36$ $\forall j = 1, \ldots, 7.$

Считаем статистику $\hat{\chi} = 0+8,03+0,03+2,78+1+1,78+1,78=15,4$. Квантили распределения хи-квадрат с 6 степенями свободы такие: $u_{0.95} = 12, 6, u_{0.99} = 16, 8$. Таким образом, на уровне значимости 0,95 мы гипотезу о равномерном поступлении пациентов отвергаем, а на уровне 0,99 – не отвергаем (но во втором случае вероятность ошибки второго рода, т.е. принятия основной гипотезы, если она неверна, существенно увеличивается – высокий уровень значимости не является целесообразным, если наблюдений в нашей модели не так много.)

Критерий согласия Колмогорова.

Определение. Если $X = (X_1, \dots, X_n)$ – выборка растущего размера, то критерий S_n (фактически, последовательность критериев) называется состоятельным, если функция мощности $\beta(Q, S_n) \to 1$ при $n \to \infty$ для любого распределения Q из \mathcal{P}_1 (для любого распределения из альтернативной гипотезы).

Пусть имеется выборка из неизвестного распределения с непрерывной функцией распределения F. Мы хотим проверить гипотезу о том, что эта самая функция распределения есть некая известная нам функция распределения F_0 , т.е. проверяем простую гипотезу $H_0: F = F_0$.

Определение. Эмпирической функцией распределения выборки $X = (X_1, \dots, X_n)$ называется следующая случайная функция: $F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I\{X_i \le x\}.$

Опр<u>еделение.</u> Расстояние Колмогорова – это случайная величина $D_n = \sup_{x} |F_n(x) - F(x)|$.

Теорема 2 (Колмогоров)

B условиях гипотезы H_0

$$\lim_{n \to \infty} P(\sqrt{n}D_n \le t) = \lim_{n \to \infty} P(\sqrt{n} \sup_{x} |F_n(x) - F_0(x)| \le t) = K(t),$$

где $K(t) = \sum_{j=-\infty}^{+\infty} (-1)^j e^{-2j^2t^2}$ — функция Колмогорова (она является функцией распределения).

Критерий Колмогорова. Если $\sqrt{n}D_n > K_{1-\alpha}$, где $K_{1-\alpha} - (1-\alpha)$ -квантиль функции Колмогорова, то отвергаем гипотезу H_0 .

Замечание. $K_{1-\alpha} \approx \sqrt{-\frac{1}{2} \ln \frac{\alpha}{2}}$, если $\alpha \approx 0$.