COSC 290 Discrete Structures

Lecture 8: Predicate Logic

Prof. Michael Hay Friday, Sep. 15, 2017 Colgate University

Predicate Logic

Plan for today

- 1. Predicate Logic
- 2. Nesting Quantifiers
- 3. Theorems

Predicate

An atomic proposition p is a Boolean variable.

A predicate P(x) is a Boolean function. A predicate can take one or more arguments.

Examples:

- isPrime(x) returns true if x is a prime number and false otherwise.
- isDivisibleBy(x,y) returns true if x is evenly divisible by y.

Propositions that include predicates

We can form a proposition by supplying arguments to each predicate.

$$\varphi := isPrime(8) \lor isDivisibleBy(8, 2)$$

The truth of this proposition requires interpreting the predicates: isPrime(8) is false whereas isDivisibleBy(8, 2) is true according to definitions of these predicates.

Universal Quantification

Let $P := \{p_1, p_2, \dots\}$ be the (infinite) set of all persons.

$$\forall p \in P : At(p, Colgate) \implies BrushesTeeth(p)$$

means "Every person at Colgate brushes their teeth."

The above is roughly equivalent to

$$(At(p_1, Colgate) \implies BrushesTeeth(p_1))$$

 $\land (At(p_2, Colgate) \implies BrushesTeeth(p_2))$
 $\land (At(p_3, Colgate) \implies BrushesTeeth(p_3))$

Common mistake with universal quantification

Typically, \implies is the main connective with \forall .

Common mistake: using \wedge as the main connective with \forall :

$$\forall p \in P : At(p, Colgate) \land BrushesTeeth(p)$$

means "Every person is at Colgate and everyone brushes their teeth."

Existential Quantification

Let $P\{p_1, p_2, \dots, \}$ be the (infinite) set of all persons.

$$\exists p \in P : At(p, Bucknell) \land BrushesTeeth(p)$$

means "Some person at Bucknell brushes their teeth."

The above is roughly equivalent to

$$\begin{split} & (\mathsf{At}(p_1,\mathsf{Bucknell}) \land \mathsf{BrushesTeeth}(p_1)) \\ & \lor (\mathsf{At}(p_2,\mathsf{Bucknell}) \land \mathsf{BrushesTeeth}(p_2)) \\ & \lor (\mathsf{At}(p_3,\mathsf{Bucknell}) \land \mathsf{BrushesTeeth}(p_3)) \end{split}$$

٧...

Common mistake with existential quantification

Typically, \wedge is the main connective with \exists .

Common mistake: using \implies as the main connective with \exists :

$$\exists p \in P : At(p, Bucknell) \implies BrushesTeeth(p)$$

is true provided that there is some person who is not at Bucknell!

Credit: slides adapted from Russell & Norvig, At: A Modern Approach

Poll: fastest person

Let faster(x,y) be true if x runs faster than y or x and y run the same speed and false otherwise.

Which of the following is the correct definition for fastest(x)?

A)
$$\exists v \in P : faster(x, v)$$

B)
$$\neg (\exists y \in P : faster(y, x))$$

C)
$$\forall y \in P : faster(x, y)$$

D)
$$\neg (\forall y \in P : faster(y, x))$$

E) None of the above / More than one of the above

Constructing Predicates

In programming, we can define functions that call other functions.

In predicate logic, we can define predicate in terms of other predicates.

Examples:

- follows(x, y) means that x follows the tweets of y
- TrumpFollower(x) := follows(x, @realDonaldTrump)
- $popularTweeter(y) := \forall x \in P : follows(x, y)$

Poll: fastest lacrosse player

Let faster(x, y) be true if x runs faster than y or x and y run the same speed and false otherwise.

Let lax(x) be true if x plays lacrosse.

Which of the following is the correct definition for fastestLacrossePlayer(x)?

A)
$$\forall y \in P : lax(y) \land faster(x, y)$$

B)
$$\forall y \in P : lax(y) \implies faster(x, y)$$

C)
$$lax(x) \land \forall y \in P : lax(y) \land faster(x, y)$$

D)
$$lax(x) \land \forall y \in P : lax(y) \implies faster(x, y)$$

Nesting Quantifiers

Unpacking a complex predicate can reveal nested quantifiers

Consider universes of professors *P*, students *S*, and courses *C*. A course every student takes:

$$favCourse(c) := \forall s \in S : takes(s, c)$$

Professor who teaches a course that every student takes:

$$profOfFav(p) := \exists c \in C : favCourse(c) \land teaches(p, c)$$

 $\equiv \exists c \in C : (\forall s \in S : takes(s, c)) \land teaches(p, c)$
 $\equiv \exists c \in C : \forall s \in S : (takes(s, c) \land teaches(p, c))$

11

Order of quantification

The order the of the quantifiers matters.

$$Q_1(p) := \exists c \in C : \forall s \in S : (takes(s, c) \land teaches(p, c))$$

Q1(p): "Prof. who teaches a course every student takes"

$$Q_{z}(p) := \forall s \in S: \exists c \in C: (takes(s,c) \land teaches(p,c))$$

Q₂(p): "Prof. who teaches every student" (but not necessarily in the same course).

Poll: nested quantifiers, part 1

Predicate $likes(p_1, p_2)$ means " p_1 likes p_2 ," shown by an arrow from p_1 to p_2 .

Which figure represents the following proposition:

$$\forall p_1 \in P : \exists p_2 \in P : likes(p_1, p_2)$$

More than one/ None of the above

(d)

Poll: nested quantifiers, part 2

Predicate $likes(p_1, p_2)$ means " p_1 likes p_2 ," shown by an arrow from p_1 to p_2 .

Which figure represents the following proposition:

$$\exists p_2 \in P : \forall p_1 \in P : likes(p_1, p_2)$$

More than one/ None of the above (d)

Theorem

A fully quantified expression of predicate logic is a theorem if and only if it is true for every possible meaning of its predicates.

Analogous to a tautology from propositional logic.

Theorems

Two important theorems

$$\neg [\forall x P(x)] \iff [\exists x \neg P(x)]$$

$$\neg [\exists x \ P(x)] \iff [\forall x \ \neg P(x)]$$

See book for others!

Proving a theorem

Given a universally quantified statement $(\forall x : P(x))$

- To prove it: use induction, direct proof, by cases, proof by contrapositive, etc. (More on this soon! Ch. 4 & 5)
- To disprove it: find a single counter example, some x_{bad} where $\neg P(x_{bad})$ is true.

Given an existentially quantified statement $(\exists x : P(x))$

- To prove it: find a single example x_{good} where $P(x_{good})$ is true.
- To disprove it: prove its negation is true. If claim is ∃x: P(x), then negation ¬(∃x: P(x)) ≡ ∀x: ¬P(x). Use techniques listed above for universally quantified statements.

17

Poll: disproving a proposition

Given the proposition

$$\forall p_1 \in P: \exists p_2 \in P: likes(p_1,p_2)$$

How could you disprove it?

- A) By counterexample: show there is a person who loves everyone
- B) By counterexample: show there is a person who loves no one
- C) By counterexample: show there is a person who nobody loves
- D) By counterexample: show there is a person who everyone loves
- E) Other/more/none

Poll: disproving a proposition

Given the proposition

$$\exists p_2 \in P : \forall p_1 \in P : likes(p_1, p_2)$$

What is its negation?

B)
$$\forall p_2 \in P : \exists p_1 \in P : \neg likes(p_1, p_2)$$

C)
$$\exists p_2 \in P : \forall p_1 \in P : \neg likes(p_1, p_2)$$

D)
$$\forall p_2 \in P : \exists p_1 \in P : \neg likes(p_2, p_1)$$

E) Other/more/none