

Plugin Optimus: Parameters estimation in biomechanical models

Parameters determination via Bayesian Inference

Forcing

Bayesian inference:

- Statistical inference based on conditional probability
- ► The probability for hypothesis is updated, when more information becomes available

On-the-fly stochastic estimation of system state and parameters

- ► System state: model position, velocity, ...
- ► Parameters: Young's modulus, Poisson ration, stiffness, ...

$$P(H \mid E) = rac{P(E \mid H) \cdot P(H)}{P(E)}$$

Kalman filtering process

linear-quadratic estimation (linear system, quadratic cost)

estimates unknown variables based on noisy observations which are sequentially acquired

Cost function:

$$J_m = rac{1}{2}(y_k - Hx_k)^T R^{-1}(y_k - Hx_k) + rac{1}{2}(x_k - Fx_{k-1})^T P_{k|k-1}^{-1}(x_k - Fx_{k-1})$$

Optimus plugin: principal moments

- 1. Combine stochastic data assimilation steps with simulation steps based on correspondence
- 2. Create a wrapper around sofa components to avoid code duplications and recoding

Documentation:

(ReadMe file and doc folder in code)

Proposed architecture

 PythonScriptController unnamed ViewerSetting □ VisualStyle VisualStyle FilteringAnimationLoop StochAnimLoop **ROUKFilter ROUKF** MeshGmshLoader loader DefaultVisualManagerLoop defaultVisualManagerLoop externalImpSimu PreStochasticWrapper PreStochasticWrapper EulerImplicitSolver EulerImplicitSolver □ CGLinearSolver CGLinearSolver MechanicalObject state SimulatedStateObservationSource ImpactSim ShowSpheres ShowSpheres MasterScene ⚠ StochasticStateWrapper StateWrapper EulerImplicitSolver EulerImplicitSolver ☐ SparsePARDISOSolver precond ■ MechanicalObject Volume TetrahedronSetTopologyContainer Container TetrahedronSetTopologyModifier Modifier TetrahedronSetTopologyAlgorithms TopoAlgo TetrahedronSetGeometryAlgorithms GeomAlgo MeshMatrixMass mass BoxROI impactBounds RestShapeSpringsForceField impactSpring OptimParams paramE TetrahedronFEMForceField FEM BoxROI boundBoxes0 RestShapeSpringForceField ▼ ○ obsNode MeshVTKLoader obsLoader MechanicalObject SourceMO ▶ ■ BarycentricMapping BarycentricMapping MappedStateObservationManager MOBS SimulatedStateObservationSource ObsSource

High level components:

- **▶** Filtering animation loop
- ► Filtering approach
- State wrappers
 - **▶** StochasticStateWrapper
 - ▶ PreStochasticWrapper
 - **▶** OptimParams
- **▶** Observation handlers
 - ObservationManager
 - ➤ SimulationStateObservationSource

Components description (1)

 PythonScriptController unnamed ViewerSetting □ VisualStyle VisualStyle FilteringAnimationLoop StochAnimLoop **ROUKFilter ROUKF** MeshGmshLoader loader DefaultVisualManagerLoop defaultVisualManagerLoop externalImpSimu PreStochasticWrapper PreStochasticWrapper EulerImplicitSolver EulerImplicitSolver □ CGLinearSolver CGLinearSolver MechanicalObject state SimulatedStateObservationSource ImpactSim ShowSpheres ShowSpheres MasterScene ⚠ StochasticStateWrapper StateWrapper EulerImplicitSolver EulerImplicitSolver ☐ SparsePARDISOSolver precond MechanicalObject Volume TetrahedronSetTopologyContainer Container TetrahedronSetTopologyModifier Modifier TetrahedronSetTopologyAlgorithms TopoAlgo TetrahedronSetGeometryAlgorithms GeomAlgo MeshMatrixMass mass BoxROI impactBounds RestShapeSpringsForceField impactSpring OptimParams paramE TetrahedronFEMForceField FEM BoxROI boundBoxes0 RestShapeSpringForceField ▼ ○ obsNode MeshVTKLoader obsLoader MechanicalObject SourceMO ▶ ■ BarycentricMapping BarycentricMapping MappedStateObservationManager MOBS SimulatedStateObservationSource ObsSource

- ► Filtering animation loop + filter
 - ▶ Responsible for execution at each time step
 - ► Implementation of the filtering algorithm step
- ► StochasticStateWrapper
 - ► Interface between filter and SOFA
 - ► Implements *transformState*, which require several model execution in each time step

Components description (2)

 PythonScriptController unnamed ViewerSetting □ VisualStyle VisualStyle FilteringAnimationLoop StochAnimLoop **ROUKFilter ROUKF** MeshGmshLoader loader DefaultVisualManagerLoop defaultVisualManagerLoop externalImpSimu PreStochasticWrapper PreStochasticWrapper EulerImplicitSolver EulerImplicitSolver □ CGLinearSolver CGLinearSolver MechanicalObject state ▲ SimulatedStateObservationSource ImpactSim ShowSpheres ShowSpheres MasterScene ⚠ StochasticStateWrapper StateWrapper EulerImplicitSolver EulerImplicitSolver ☐ SparsePARDISOSolver precond MechanicalObject Volume TetrahedronSetTopologyContainer Container TetrahedronSetTopologyModifier Modifier TetrahedronSetTopologyAlgorithms TopoAlgo TetrahedronSetGeometryAlgorithms GeomAlgo MeshMatrixMass mass BoxROI impactBounds RestShapeSpringsForceField impactSpring OptimParams paramE TetrahedronFEMForceField FEM BoxROI boundBoxes0 RestShapeSpringForceField ▼ ○ obsNode MeshVTKLoader obsLoader MechanicalObject SourceMO ▶ ■ BarycentricMapping BarycentricMapping ☐ MappedStateObservationManager MOBS SimulatedStateObservationSource ObsSource

- **▶** OptimParams
 - **▶** Container of estimated parameters
 - ► Transfers the parameters to physics (typically to forceField)
 - ► The force must be updated properly (no hidden precomputations)
- ObservationManager
 - Provides metric between reality and model
 - ► Requires observation source (feature extractor, data from sensor, file)

Workflow overview: direct simulation

Workflow overview: prediction

Workflow overview: correction (analysis)

Experimental setup

Example: liver with boundary conditions (1)

► The hyperelastic FEM with StVK material is used to simulate liver behavior

► Boundary conditions are presented as (Polynomial)RestShapeSpringForceField with unknown stiffness values

► OptimParams is used to store the spring unknowns

Example: liver with boundary conditions (2)

▶ Points that present the known features are attached as markers to the liver model using BarycentricMapping

SimulationStateObservationSource is used to load the markers positions, generated on a separate scene

► The external impact is added to scene using PreStochasticWrapper

Real-time estimation

Prediction-correction (analysis) iteration instead of normal simulation step

- ► Prediction: perform a simulation transformation given actual state/parameters
- ► Correction: compare the prediction with reality via optimization and update state/parameters

Delayed estimation

Update estimated parameters after prediction-correction (analysis) iteration

Available data assimilation approaches

4 filters are available:

- ► UKFClassicOrig classical unscented Kalman filter + modifications made by Raffaella
- ► UKFSimmCorr classical unscented Kalman filter to estimated only unchangeable parameters
- ► ROUKF reduce order unscented Kalman filter
- **► ETKF** ensemble transform Kalman filter

Plugin dependences

Required dependences:

- **►** SOFA framework
- ► SOFA Python/Python3 plugin for python 2/python 3 compatible scenes
- ► SOFA pardiso solver to solve linear system with pardiso (optional)
- ► Eigen for covariance/correlation matrix processing
- ► BLAS highly efficient matrix operation processing
- ▶ pthread threads for a sigma points /ensemble members computations

Tested setups

- ► System solver: dynamic (Euler Implicit) and static (Newton-Raphson)
- ► Identification of homogeneous Young's modulus (Corotational, hyperelastic StVK), stiffness of elastic/hyperelastic springs (including boundary conditions), and contact plane positions/orientations
- ► Estimation of state (velocities, forces) with and without contacts including those modeled as constraints
- ▶ Pre-conditioner acceleration (multiple executions of model per time step)
- ► Python scenes (including Python3) + YAML configurations and results MatPlotLib plotting

Conclusion

- ► Easy to add new data assimilation approaches
- ► Can be combined with other SOFA plugins
- ► Possible to use other SOFA scenes without modifications
- ► Configuration file provides a way to set various setups and compare approaches

