从线性代数到张量计算

Tensor Computations: An Algebraic Perspective

陈新宇

程展鸿

赵熙乐

孙立君

发布时间: 2022 年 11 月 更新时间: 2022 年 12 月

目录

第一章	代数结构 7
1.1	向量与矩阵
	1.1.1 向量
	1.1.2 矩阵
	1.1.3 矩阵向量化
1.2	张量 8
	1.2.1 张量结构 8
	1.2.2 高阶张量矩阵化 9
	1.2.3 高阶张量向量化 9
1.3	特殊代数结构
	1.3.1 循环矩阵
	1.3.2 卷积矩阵
	1.3.3 Hankel 矩阵
	1.3.4 Toeplitz 矩阵
	1.3.5 构造特定矩阵
第二章	矩阵分解 13
2.1	特征值分解
2.2	奇异值分解
2.3	随机奇异值分解
2.4	动态模态分解
2.5	矩阵分解
第三章	Kronecker 积与 Kronecker 分解 15
3.1	Kronecker 积定义
	3.1.1 基本定义
	3.1.2 Khatri-Rao 积
3.2	Kronecker 积基本性质
	3.2.1 结合律与分配律
	3.2.2 矩阵相乘
	3.2.3 求逆矩阵
	3.2.4 向量化
3.3	Kronecker 积特殊性质
	3.3.1 矩阵的迹
	3.3.2 矩阵的 Frobenius 范数
	3.3.3 矩阵的行列式

4	目录
	3.3.4 矩阵的秩
3.4	朴素 Kronecker 分解
	3.4.1 定义
	3.4.2 引入 permute 概念
	3.4.3 求解过程
3.5	广义 Kronecker 分解
3.6	模型参数压缩问题 26
第四章	模态积与 Tucker 张量分解 29
4.1	模态积定义 29
4.2	模态积性质
4.3	高阶奇异值分解
4.4	Tucker 分解
	4.4.1 Tucker 分解形式
	4.4.2 交替最小二乘法
	4.4.3 处理缺失数据
4.5	Tucker 分解特例: CP 分解
第五章	低秩线性回归 33
5.1	低秩线性回归
5.2	高维向量自回归
	5.2.1 一阶向量自回归
	5.2.2 高阶向量自回归
5.3	时变低秩向量自回归
	5.3.1 模型表达式
	5.3.2 求解过程 38
	5.3.3 算法
	5.3.4 案例: 时空数据模式挖掘 30
第六章	低秩时序模型 37
6.1	时序矩阵分解
	6.1.1 模型表达式
	6.1.2 求解过程 38
6.2	低秩拉普拉斯卷积模型
	6.2.1 拉普拉斯卷积核
	6.2.2 循环矩阵核范数最小化
	OLICE MATTER ASSESSED TO THE STATE OF THE ST

前言

在过去的数十年间,随着信号处理、图像处理、机器学习与数值计算等领域的快速发展,张量计算已从以线性代数为支撑的矩阵计算中逐步拓展开来,相关研究贯穿信号处理、机器学习等众多领域。随着大量张量计算算法涌现出来,我们不难发现:这些算法大多建立在张量分解的基础上。本文以张量计算这一概念为核心,将从线性代数出发,讲述张量计算相关的一系列内容。为了提高读者的阅读体验,笔者进行了以下尝试:

- **化繁为简**。将线性代数以及张量计算的范畴限定在实空间中。另外,严格来说,向量和 矩阵属于低阶张量,为区分概念,我们默认常提到的张量特指高阶张量(阶数大于或等 于 3)。
- **由浅入深**。从基本的线性代数内容展开,通过循序渐进的方式引出一系列矩阵分解与张量分解技术,使读者体会到线性代数的巨大价值。
- 熟能生巧。本文在撰写过程中尽可能考虑初学者的学习历程,在全文中设计一系列难度适中的例题让读者更直观地理解一系列理论,并通过练习熟练掌握相应内容。

笔者深感自身才疏学浅,对于线性代数与张量计算的认识具有一定的局限性,请广大读者批评指正。另外,全文内容设置的合理性也有待考究,需要等待读者的检验。尽管如此,笔者愿竭心力,在后续版本中逐步更新与完善本文,如有建议或疑问,请在 GitHub 开源项目https://github.com/xinychen/tensor-book的问答区与笔者进行互动交流。

作者声明:

- 撰写本文的初衷在于传播知识,为感兴趣的读者提供参考素材。
- 禁止将本文放在其他网站上,唯一下载网址为https://xinychen.github.io/books/tensor_book.pdf。
- 禁止将本文用于任何形式的商业活动。

6 目录

第一章 代数结构

长期以来,线性代数一直作为机器学习中最为重要的数学工具之一,被人们广泛用于开发各类机器学习算法。线性代数本质上是以向量与矩阵为基本代数结构,本书要讨论的张量分解等模型则主要以张量为基本代数结构。在过去的数十年间,借助线性代数这一基本数学工具,机器学习中涌现出了很多经典的代数模型,这其中不乏矩阵分解、主成分分析,而张量分解在某种程度上可看作是矩阵分解的一种衍生物。

近年来,张量分解在机器学习的众多问题中得到了很好的应用,但关于张量的一些计算与我们所熟悉的线性代数却大相径庭,同时,张量计算相比以矩阵计算为主导的线性代数更为抽象,这使得很多与张量分解相关的内容看起来晦涩难懂。实际上,向量与矩阵都是张量的特例,可以被定义为低阶张量。一般而言,向量是第 1 阶张量,英文表述为 first-order tensor;矩阵是第 2 阶张量,英文表述为 second-order tensor;第 3 阶或者更高阶数的张量被称为高阶张量,英文表述为 higher-order tensor。在各类文献中,通常提到的张量都是特指高阶张量,当然,这在本书的叙述中也不例外。需要注意的是,在各类程序语言中,人们更愿意将张量称为多维数组。

在一个矩阵中,某一元素的位置可以说是"第i7、第j7列",即要描述某一元素的位置需用到行和列索引构成的组合 (i,j)。类似地,在一个第37阶张量中,描述某一元素的位置需用到三个索引构成的组合,例如 (i,j,k)。在处理稀疏矩阵或稀疏张量时,用索引来标记元素的位置会节省下一些不必要的存储开支。

1.1 向量与矩阵

1.1.1 向量

向量包括行向量与列向量。在写法上,为避免混淆,向量在没有特别申明的情况是指列向量,给定任意向量 $x \in \mathbb{R}^n$ 表示大小为 n 的向量,写作

$$\boldsymbol{x} = (x_1, x_2, \cdots, x_n)^{\top} \tag{1.1}$$

或

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \tag{1.2}$$

其中,符号· 表示转置 (transpose)。

1.1.2 矩阵

单位矩阵一般记作 I_n ,大小为 $n \times n$,其对角线上的元素均为 1、其他位置上的元素均为 0。

第一章 代数结构

1.1.3 矩阵向量化

8

给定任意矩阵 $X \in \mathbb{R}^{m \times n}$,若矩阵的列向量为 $x_1, x_2, \ldots, x_n \in \mathbb{R}^m$,则可对矩阵按列进行向量化,得到的向量为

$$\operatorname{vec}(\boldsymbol{X}) = \begin{bmatrix} \boldsymbol{x}_1 \\ \boldsymbol{x}_2 \\ \vdots \\ \boldsymbol{x}_n \end{bmatrix} \in \mathbb{R}^{mn}$$
(1.3)

与矩阵向量化相反, 也可定义向量的矩阵化规则。

1.2 张量

1.2.1 张量结构

对于任意三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times d}$,可用三个方向的切片 (slice) 书写该张量,其中,frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1}, \boldsymbol{\mathcal{X}}_{:,:,2}, \dots, \boldsymbol{\mathcal{X}}_{:,:,d} \in \mathbb{R}^{m \times n}$$

$$\tag{1.4}$$

lateral 切片为

$$\mathcal{X}_{:1:}, \mathcal{X}_{:2:}, \dots, \mathcal{X}_{:n:} \in \mathbb{R}^{m \times d}$$

$$\tag{1.5}$$

horizontal 切片为

$$\boldsymbol{\mathcal{X}}_{1,:,:}, \boldsymbol{\mathcal{X}}_{2,:,:}, \dots, \boldsymbol{\mathcal{X}}_{m,:,:} \in \mathbb{R}^{n \times d}$$
(1.6)

不难发现,这些切片的代数结构均为矩阵。

例 1. 给定张量 $\mathcal{X} \in \mathbb{R}^{2 \times 2 \times 2}$, 若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} x_{111} & x_{121} \\ x_{211} & x_{221} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} x_{112} & x_{122} \\ x_{212} & x_{222} \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
(1.7)

试写出张量 X 的 lateral 切片与 horizontal 切片。

解. 张量 X 的 lateral 切片为

$$\boldsymbol{\mathcal{X}}_{:,1,:} = \begin{bmatrix} x_{111} & x_{112} \\ x_{211} & x_{212} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 3 & 7 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,2,:} = \begin{bmatrix} x_{121} & x_{122} \\ x_{221} & x_{222} \end{bmatrix} = \begin{bmatrix} 2 & 6 \\ 4 & 8 \end{bmatrix}$$
(1.8)

张量 X 的 horizontal 切片为

$$\boldsymbol{\mathcal{X}}_{1,:,:} = \begin{bmatrix} x_{111} & x_{112} \\ x_{121} & x_{122} \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 2 & 6 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{2,:,:} = \begin{bmatrix} x_{211} & x_{212} \\ x_{221} & x_{222} \end{bmatrix} = \begin{bmatrix} 3 & 7 \\ 4 & 8 \end{bmatrix}$$
(1.9)

1.3 特殊代数结构 9

1.2.2 高阶张量矩阵化

1.2.3 高阶张量向量化

1.3 特殊代数结构

1.3.1 循环矩阵

循环矩阵 (circulant matrix) 是一种特殊的代数结构,广泛应用于信号处理等。从定义出发,给定任意向量 $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\mathsf{T}} \in \mathbb{R}^T$,其对应的循环矩阵可写作如下形式:

$$C(\boldsymbol{x}) \triangleq \begin{bmatrix} x_1 & x_T & \cdots & x_2 \\ x_2 & x_1 & \cdots & x_3 \\ \vdots & \vdots & \ddots & \vdots \\ x_T & x_{T-1} & \cdots & x_1 \end{bmatrix} \in \mathbb{R}^{T \times T}$$

$$(1.10)$$

其中, $\mathcal{C}: \mathbb{R}^T \to \mathbb{R}^{T \times T}$ 表示循环算子 (circulant operator)。该循环矩阵的第一列为向量 x 本身,对角线元素均为 x_1 。

例 2. 给定任意向量 $x = (x_1, x_2, x_3, x_4, x_5)^{\mathsf{T}} \in \mathbb{R}^5$, 试写出其对应的循环矩阵。

 \mathbf{M} . 向量 \mathbf{x} 对应的循环矩阵为

$$C(\boldsymbol{x}) = \begin{bmatrix} x_1 & x_5 & x_4 & x_3 & x_2 \\ x_2 & x_1 & x_5 & x_4 & x_3 \\ x_3 & x_2 & x_1 & x_5 & x_4 \\ x_4 & x_3 & x_2 & x_1 & x_5 \\ x_5 & x_4 & x_3 & x_2 & x_1 \end{bmatrix} \in \mathbb{R}^{5 \times 5}$$

$$(1.11)$$

例 3. 给定任意向量 $\mathbf{x} = (x_1, x_2, \cdots, x_T)^{\mathsf{T}} \in \mathbb{R}^T$ 与 $\mathbf{y} = (y_1, y_2, \cdots, y_T)^{\mathsf{T}} \in \mathbb{R}^T$,若两者之间的循环卷积 (circular convolution) 为 $\mathbf{z} = \mathbf{x} \star \mathbf{y} \in \mathbb{R}^T$,其中,符号 \star 表示卷积运算,则向量 \mathbf{z} 的任意元素为

$$z_{t} = \sum_{k=1}^{T} x_{t-k+1} y_{k}, \, \forall t \in \{1, 2, \dots, T\}$$
(1.12)

其中, 当 $t+1 \le k$ 时,则令 $x_{t-k+1} = x_{t-k+1+T}$ 。试根据循环矩阵的定义写出循环卷积。

解. 在这里,循环卷积可写作如下形式:

$$\boldsymbol{z} = \boldsymbol{x} \star \boldsymbol{y} = \begin{bmatrix} x_{1}y_{1} + x_{T}y_{2} + \dots + x_{2}y_{T} \\ x_{2}y_{1} + x_{1}y_{2} + \dots + x_{3}y_{T} \\ \vdots \\ x_{T}y_{1} + x_{T-1}y_{2} + \dots + x_{1}y_{T} \end{bmatrix} = \begin{bmatrix} x_{1} & x_{T} & \dots & x_{2} \\ x_{2} & x_{1} & \dots & x_{3} \\ \vdots & \vdots & \ddots & \vdots \\ x_{T} & x_{T-1} & \dots & x_{1} \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{T} \end{bmatrix} = \mathcal{C}(\boldsymbol{x})\boldsymbol{y} \quad (1.13)$$

第一章 代数结构

1.3.2 卷积矩阵

10

- 1.3.3 Hankel 矩阵
- 1.3.4 Toeplitz 矩阵
- 1.3.5 构造特定矩阵

例 4. 给定矩阵 $X \in \mathbb{R}^{N \times 5}$, 即

$$X = \begin{bmatrix} | & | & | & | & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \mathbf{x}_4 & \mathbf{x}_5 \\ | & | & | & | & | \end{bmatrix}$$
(1.14)

试将如下线性方程组写成矩阵形式。

$$\begin{cases} x_3 = A_1 x_2 + A_2 x_1 \\ x_4 = A_1 x_3 + A_2 x_2 \\ x_5 = A_1 x_4 + A_2 x_3 \end{cases}$$
 (1.15)

其中, $A_1, A_2 \in \mathbb{R}^{N \times N}$ 已知。

解. 若令

$$\Psi_0 = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}$$
(1.16)

则

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \begin{bmatrix} | & | & | & | & | \\ \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \boldsymbol{x}_{4} & \boldsymbol{x}_{5} \\ | & | & | & | & | \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_{3} & \boldsymbol{x}_{4} & \boldsymbol{x}_{5} \\ | & | & | \end{bmatrix}$$
(1.17)

同理,令

$$\Psi_{1} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \quad \Psi_{2} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
(1.18)

则

$$\boldsymbol{X}\boldsymbol{\Psi}_{1}^{\top} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_{2} & \boldsymbol{x}_{3} & \boldsymbol{x}_{4} \\ | & | & | \end{bmatrix} \qquad \boldsymbol{X}\boldsymbol{\Psi}_{2}^{\top} = \begin{bmatrix} | & | & | \\ \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \boldsymbol{x}_{3} \\ | & | & | \end{bmatrix}$$
(1.19)

由此,线性方程组可写作如下形式:

$$\boldsymbol{X}\boldsymbol{\Psi}_0^{\top} = \boldsymbol{A}_1 \boldsymbol{X} \boldsymbol{\Psi}_1^{\top} + \boldsymbol{A}_2 \boldsymbol{X} \boldsymbol{\Psi}_2^{\top}$$
 (1.20)

例 5 (向量自回归)·对于多元时间序列,若任意时刻 t 对应的观测数据为向量 $\mathbf{x}_t \in \mathbb{R}^N$,则向量自回归的表达式为

$$x_t = \sum_{k=1}^{d} A_k x_{t-k} + \epsilon_t, t = 2, 3, \dots, T$$
 (1.21)

其中, A_1, A_2, \ldots, A_d 为自回归过程的系数矩阵 (coefficient matrix); d 为自回归过程的阶数 (order); $\epsilon_t \in \mathbb{R}^N$ 为残差向量。

1.3 特殊代数结构 11

$$\boldsymbol{X} = \begin{bmatrix} | & | & & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_T \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{N \times T}$$
(1.22)

若构造分块矩阵

$$\Psi_{k} = \begin{bmatrix}
0 & \cdots & 0 & 1 & \cdots & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & \cdots & 0 & 0 & \cdots & 1 & 0 & \cdots & 0
\end{bmatrix}$$

$$= \begin{bmatrix}
\mathbf{0}_{(T-d)\times(d-k)} & \mathbf{I}_{T-d} & \mathbf{0}_{(T-d)\times k}
\end{bmatrix} \in \mathbb{R}^{(T-d)\times T}, k = 0, 1, \dots, d$$
(1.23)

则向量自回归可写作如下形式:

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X} \boldsymbol{\Psi}_{k}^{\top} + \boldsymbol{E}$$
(1.24)

其中, $E \in \mathbb{R}^{N \times (T-d)}$ 为残差矩阵。

参考资料

1. Stephen Boyd, Lieven Vandenberghe (2018). Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares. https://web.stanford.edu/~boyd/vmls/vmls.pdf

第二章 矩阵分解

- 2.1 特征值分解
- 2.2 奇异值分解
- 2.3 随机奇异值分解
 - 2.4 动态模态分解
 - 2.5 矩阵分解

14 第二章 矩阵分解

第三章 Kronecker 积与 Kronecker 分解

Kronecker 积是张量计算中非常重要的一种运算规则,不同于常见的矩阵运算规则,给定任意两个矩阵,两者之间进行 Kronecker 积得到的是一个分块矩阵。Kronecker 分解是一种以 Kronecker 积为基础的分解形式,又被称为 Kronecker 积分解、Kronecker 积逼近 (Kronecker product approximation)、最近 Kronecker 积 (nearest Kronecker product)等,它是矩阵计算与张量计算中十分重要的逼近问题。本章首先介绍 Kronecker 积的定义与性质,然后引出 Kronecker 分解的一般形式、优化问题、求解过程等,最后给出以 Kronecker 分解为基础的模型参数压缩问题。

3.1 Kronecker 积定义

3.1.1 基本定义

Kronecker 积是以德国数学家 Leopold Kronecker 的名字命令的运算规则,已广泛应用于各类矩阵计算以及张量计算算法中。从定义出发,给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,则两者之间的 Kronecker 积为

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} x_{11}\boldsymbol{Y} & x_{12}\boldsymbol{Y} & \cdots & x_{1n}\boldsymbol{Y} \\ x_{21}\boldsymbol{Y} & x_{22}\boldsymbol{Y} & \cdots & x_{2n}\boldsymbol{Y} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1}\boldsymbol{Y} & x_{m2}\boldsymbol{Y} & \cdots & x_{mn}\boldsymbol{Y} \end{bmatrix} \in \mathbb{R}^{(mp)\times(nq)}$$
(3.1)

其中,符号 \otimes 表示 Kronecker 积。这里的 Kronecker 积得到的矩阵大小为 $(mp) \times (nq)$,在 写法上符合线性代数中对分块矩阵 (block matrix) 的定义,其中,分块矩阵的子矩阵是由矩阵 X 的每个元素与矩阵 Y 相乘得到。

矩阵 X 与 Y 之间的 Kronecker 积存在前后顺序,根据 Kronecker 积的定义,可得到矩阵 Y 与 X 之间的 Kronecker 积为

$$\boldsymbol{Y} \otimes \boldsymbol{X} = \begin{bmatrix} y_{11}\boldsymbol{X} & y_{12}\boldsymbol{X} & \cdots & y_{1q}\boldsymbol{X} \\ y_{21}\boldsymbol{X} & y_{22}\boldsymbol{X} & \cdots & y_{2q}\boldsymbol{X} \\ \vdots & \vdots & \ddots & \vdots \\ y_{p1}\boldsymbol{X} & y_{p2}\boldsymbol{X} & \cdots & y_{pq}\boldsymbol{X} \end{bmatrix} \in \mathbb{R}^{(mp)\times (nq)}$$

$$(3.2)$$

尽管矩阵 $X\otimes Y$ 与矩阵 $Y\otimes X$ 大小一致,但两者并不相等,因此,Kronecker 积不存在交换律。

例 6. 给定矩阵
$$m{X}=\begin{bmatrix}1&2\\3&4\end{bmatrix}$$
 与 $m{Y}=\begin{bmatrix}5&6&7\\8&9&10\end{bmatrix}$,试写出两者之间的 Kronecker 积 $m{X}\otimes m{Y}$ 与 $m{Y}\otimes m{X}$ 。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{X} \otimes \boldsymbol{Y} = \begin{bmatrix} 1 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 2 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \\ 3 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} & 4 \times \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(3.3)

$$\boldsymbol{Y} \otimes \boldsymbol{X} = \begin{bmatrix} 5 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 6 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 7 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \\ 8 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 9 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & 10 \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 10 & 6 & 12 & 7 & 14 \\ 15 & 20 & 18 & 24 & 21 & 28 \\ 8 & 16 & 9 & 18 & 10 & 20 \\ 24 & 32 & 27 & 36 & 30 & 40 \end{bmatrix}$$
(3.4)

例 7. 给定矩阵 $\mathbf{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 与 $\mathbf{Y} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$, 试问等式 $(\mathbf{X} \otimes \mathbf{Y})^{\mathsf{T}} = \mathbf{X}^{\mathsf{T}} \otimes \mathbf{Y}^{\mathsf{T}}$ 是否成立。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{X}^{\top} \otimes \boldsymbol{Y}^{\top} = \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 2 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} & 3 \times \begin{bmatrix} 5 & 8 \\ 6 & 9 \\ 7 & 10 \\ 5 & 8 \\ 6 & 9 \\ 7 & 10 \end{bmatrix} = \begin{bmatrix} 5 & 8 & 15 & 24 \\ 6 & 9 & 18 & 27 \\ 7 & 10 & 21 & 30 \\ 10 & 16 & 20 & 32 \\ 12 & 18 & 24 & 36 \\ 14 & 20 & 28 & 40 \end{bmatrix}$$
(3.5)

在这里, 等式 $(X \otimes Y)^{\top} = X^{\top} \otimes Y^{\top}$ 是成立的。

例 8. 给定向量 $\boldsymbol{x} = (1,2)^{\mathsf{T}}$ 与 $\boldsymbol{y} = (3,4)^{\mathsf{T}}$, 试写出 $\boldsymbol{x} \otimes \boldsymbol{y}$ 与 $\boldsymbol{x} \otimes \boldsymbol{y}^{\mathsf{T}}$ 。

解. 根据 Kronecker 积定义, 有

$$\boldsymbol{x} \otimes \boldsymbol{y} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \\ 2 \times \begin{bmatrix} 3 \\ 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 \\ 4 \\ 6 \\ 8 \end{bmatrix}$$
 (3.6)

$$\boldsymbol{x} \otimes \boldsymbol{y}^{\top} = \begin{bmatrix} 1 \times \begin{bmatrix} 3 & 4 \\ 2 \times \begin{bmatrix} 3 & 4 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 6 & 8 \end{bmatrix}$$
 (3.7)

在这里, $x \otimes y^{\top} = xy^{\top}$, 即向量外积。

例 9 (向量自回归). 对于多元时间序列, 向量自回归可写作如下形式 (参见例5):

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X} \boldsymbol{\Psi}_{k}^{\top} + \boldsymbol{E}$$
(3.8)

若令

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{A}_2 & \cdots & \mathbf{A}_d \end{bmatrix} \in \mathbb{R}^{N \times (dN)}$$

$$\mathbf{\Psi} = \begin{bmatrix} \mathbf{\Psi}_1 & \mathbf{\Psi}_2 & \cdots & \mathbf{\Psi}_d \end{bmatrix} \in \mathbb{R}^{(T-d) \times (dT)}$$
(3.9)

则向量自回归可进一步写作如下形式:

$$\boldsymbol{X}\boldsymbol{\Psi}_{0}^{\top} = \boldsymbol{A}(\boldsymbol{I}_{d} \otimes \boldsymbol{X})\boldsymbol{\Psi}^{\top} + \boldsymbol{E}$$
(3.10)

3.1.2 Khatri-Rao 积

以 Kronecker 积为基础,可定义另一种十分重要的运算规则,即 Khatri-Rao 积。给定任意矩阵

$$\boldsymbol{X} = \begin{bmatrix} | & | & & | \\ \boldsymbol{x}_1 & \boldsymbol{x}_2 & \cdots & \boldsymbol{x}_d \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{m \times d} \quad \boldsymbol{Y} = \begin{bmatrix} | & | & & | \\ \boldsymbol{y}_1 & \boldsymbol{y}_2 & \cdots & \boldsymbol{y}_d \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{n \times d}$$
(3.11)

若两个矩阵列数相同,则两者之间的 Khatri-Rao 积为

$$\boldsymbol{X} \odot \boldsymbol{Y} = \begin{bmatrix} & & & & & & & \\ \boldsymbol{x}_1 \otimes \boldsymbol{y}_1 & \boldsymbol{x}_2 \otimes \boldsymbol{y}_2 & \cdots & \boldsymbol{x}_d \otimes \boldsymbol{y}_d \\ & & & & & & \end{bmatrix} \in \mathbb{R}^{(mn) \times d}$$
(3.12)

其中, 列向量是由 X 与 Y 的列向量进行 Kronecker 积运算得到的。

例 10. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \\ 9 & 10 \end{bmatrix}$, 试写出 $X \odot Y$.

解. 根据 Khatri-Rao 积定义,有

$$\mathbf{X} \odot \mathbf{Y} = \begin{bmatrix} 1 \\ 3 \end{bmatrix} \otimes \begin{bmatrix} 5 \\ 7 \\ 9 \end{bmatrix} \quad \begin{bmatrix} 2 \\ 4 \end{bmatrix} \otimes \begin{bmatrix} 6 \\ 8 \\ 10 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 & 12 \\ 7 & 16 \\ 9 & 20 \\ 15 & 24 \\ 21 & 32 \\ 27 & 40 \end{bmatrix}$$
(3.13)

3.2 Kronecker 积基本性质

3.2.1 结合律与分配律

在小学数学中,我们学习了加减乘除的运算规则。以乘法为例,不妨重温一下烙印在我们脑海中的基本概念:

- 乘法结合律: $x \times y \times z = x \times (y \times z)$
- 乘法分配律: $x \times z + y \times z = (x + y) \times z$

由于 Kronecker 积本质上也是元素间相乘,所以同样存在结合律与分配律。对于任意矩阵 X、Y 与 Z,结合律可归纳为

$$X \otimes Y \otimes Z = X \otimes (Y \otimes Z) \tag{3.14}$$

分配律可归纳为

$$X \otimes Z + Y \otimes Z = (X + Y) \otimes Z \tag{3.15}$$

例 11. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ 与 $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,试写出 $X \otimes Y \otimes Z$ 与 $X \otimes (Y \otimes Z)$ 。

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (3.16)

$$\mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix}$$
(3.17)

从而, 可得到

$$\boldsymbol{X} \otimes \boldsymbol{Y} \otimes \boldsymbol{Z} = \begin{bmatrix} 5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\ 5 & 5 & 6 & 6 & 10 & 10 & 12 & 12 \\ 7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\ 7 & 7 & 8 & 8 & 14 & 14 & 16 & 16 \\ 15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\ 15 & 15 & 18 & 18 & 20 & 20 & 24 & 24 \\ 21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \\ 21 & 21 & 24 & 24 & 28 & 28 & 32 & 32 \end{bmatrix} = \boldsymbol{X} \otimes (\boldsymbol{Y} \otimes \boldsymbol{Z})$$
(3.18)

例 12. 给定
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
、 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$ 与 $Z = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$,试写出 $X \otimes Z + Y \otimes Z$ 与 $(X + Y) \otimes Z_3$

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Z} + \mathbf{Y} \otimes \mathbf{Z} = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 1 & 1 & 2 & 2 \\ 3 & 3 & 4 & 4 \\ 3 & 3 & 4 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 5 & 6 & 6 \\ 5 & 5 & 6 & 6 \\ 7 & 7 & 8 & 8 \\ 7 & 7 & 8 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8 \\ 6 & 6 & 8 & 8 \\ 10 & 10 & 12 & 12 \\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(3.19)

$$(\mathbf{X} + \mathbf{Y}) \otimes \mathbf{Z} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix} \otimes \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 6 & 8 & 8 \\ 6 & 6 & 8 & 8 \\ 10 & 10 & 12 & 12 \\ 10 & 10 & 12 & 12 \end{bmatrix}$$
(3.20)

3.2.2 矩阵相乘

对于任意矩阵 $X \in \mathbb{R}^{m \times n}$ 、 $Y \in \mathbb{R}^{s \times t}$ 、 $U \in \mathbb{R}^{n \times p}$ 与 $V \in \mathbb{R}^{t \times q}$,则矩阵 $X \otimes Y \in \mathbb{R}^{(ms) \times (nt)}$ 的列数 nt 与矩阵 $U \otimes V \in \mathbb{R}^{(nt) \times (pq)}$ 的行数 nt 一致,可进行矩阵相乘,两者相乘得到的矩

阵满足:

$$(\boldsymbol{X} \otimes \boldsymbol{Y})(\boldsymbol{U} \otimes \boldsymbol{V}) = \begin{bmatrix} x_{11}\boldsymbol{Y} & \cdots & x_{1n}\boldsymbol{Y} \\ \vdots & \ddots & \vdots \\ x_{m1}\boldsymbol{Y} & \cdots & x_{mn}\boldsymbol{Y} \end{bmatrix} \begin{bmatrix} u_{11}\boldsymbol{V} & \cdots & u_{1p}\boldsymbol{V} \\ \vdots & \ddots & \vdots \\ u_{n1}\boldsymbol{V} & \cdots & u_{np}\boldsymbol{V} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{k=1}^{n} x_{1k}u_{k1}\boldsymbol{Y}\boldsymbol{V} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp}\boldsymbol{Y}\boldsymbol{V} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} x_{mk}u_{k1}\boldsymbol{Y}\boldsymbol{V} & \cdots & \sum_{k=1}^{n} x_{mk}u_{kp}\boldsymbol{Y}\boldsymbol{V} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{k=1}^{n} x_{1k}u_{k1} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp} \\ \vdots & \ddots & \vdots \\ \sum_{k=1}^{n} x_{mk}u_{k1} & \cdots & \sum_{k=1}^{n} x_{1k}u_{kp} \end{bmatrix} \otimes (\boldsymbol{Y}\boldsymbol{V})$$

$$= (\boldsymbol{X}\boldsymbol{U}) \otimes (\boldsymbol{Y}\boldsymbol{V}) \in \mathbb{R}^{(ms) \times (pq)}$$

例 13 (矩阵的奇异值分解). 给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,若奇异值分解分别为

$$X = WSQ^{\top} \quad Y = UDV^{\top}$$
 (3.22)

试证明矩阵 $X\otimes Y$ 的奇异值分解可由矩阵 X 与 Y 的奇异值分解计算得到,即

$$X \otimes Y = (W \otimes U)(S \otimes D)(Q \otimes V)^{\top}$$
(3.23)

解. 根据 Kronecker 积性质, 有

$$X \otimes Y = (WSQ^{\top}) \otimes (UDV^{\top})$$

$$= (W \otimes U)((SQ^{\top}) \otimes (DV^{\top}))$$

$$= (W \otimes U)(S \otimes D)(Q^{\top} \otimes V^{\top})$$

$$= (W \otimes U)(S \otimes D)(Q \otimes V)^{\top}$$

$$(3.24)$$

3.2.3 求逆矩阵

对于任意可逆矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$,由于

$$(\boldsymbol{X} \otimes \boldsymbol{Y}) (\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1}) = (\boldsymbol{X} \boldsymbol{X}^{-1}) \otimes (\boldsymbol{Y} \boldsymbol{Y}^{-1}) = \boldsymbol{I}_m \otimes \boldsymbol{I}_n = \boldsymbol{I}_{mn}$$
 (3.25)

故有

$$(\boldsymbol{X} \otimes \boldsymbol{Y})^{-1} = \boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1} \tag{3.26}$$

恒成立。这意味着:若计算 $X \otimes Y$ 的逆矩阵,可先对 X 与 Y 分别求逆矩阵,再对得到的逆矩阵进行 Kronecker 积运算。

例 14. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$,试写出 $(X \otimes Y)^{-1}$ 与 $X^{-1} \otimes Y^{-1}$ 。

解. 根据 Kronecker 积定义, 有

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (3.27)

对该矩阵求逆矩阵, 得到

$$(\mathbf{X} \otimes \mathbf{Y})^{-1} = \begin{bmatrix} 8 & -6 & -4 & 3 \\ -7 & 5 & 3.5 & -2.5 \\ -6 & 4.5 & 2 & -1.5 \\ 5.25 & -3.75 & -1.75 & 1.25 \end{bmatrix}$$
 (3.28)

对矩阵 X 与 Y 分别求逆矩阵:

$$\boldsymbol{X}^{-1} = \begin{bmatrix} -2 & 1\\ 1.5 & -0.5 \end{bmatrix} \quad \boldsymbol{Y}^{-1} = \begin{bmatrix} -4 & 3\\ 3.5 & -2.5 \end{bmatrix}$$
 (3.29)

再对得到的逆矩阵进行 Kronecker 积运算,有

$$\boldsymbol{X}^{-1} \otimes \boldsymbol{Y}^{-1} = \begin{bmatrix} 8 & -6 & -4 & 3 \\ -7 & 5 & 3.5 & -2.5 \\ -6 & 4.5 & 2 & -1.5 \\ 5.25 & -3.75 & -1.75 & 1.25 \end{bmatrix}$$
(3.30)

3.2.4 向量化

对于任意矩阵 $A \in \mathbb{R}^{m \times m}$ 、 $X \in \mathbb{R}^{m \times n}$ 与 $B \in \mathbb{R}^{n \times n}$, 三者相乘满足:

$$\operatorname{vec}(\boldsymbol{A}\boldsymbol{X}\boldsymbol{B}) = (\boldsymbol{B}^{\top} \otimes \boldsymbol{A})\operatorname{vec}(\boldsymbol{X}) \tag{3.31}$$

例 15. 对于任意向量 $x \in \mathbb{R}^n$ 、 $z \in \mathbb{R}^p$ 与矩阵 $Y \in \mathbb{R}^{p \times q}$,试证明

$$(\boldsymbol{x}^{\top} \otimes \boldsymbol{Y})^{\top} \boldsymbol{z} = ((\boldsymbol{x}\boldsymbol{z}^{\top}) \otimes \boldsymbol{I}_q) \operatorname{vec}(\boldsymbol{Y}^{\top})$$
 (3.32)

恒成立。

解. 根据 Kronecker 积性质,有

$$(\boldsymbol{x}^{\top} \otimes \boldsymbol{Y})^{\top} \boldsymbol{z} = (\boldsymbol{x} \otimes \boldsymbol{Y}^{\top}) \boldsymbol{z}$$

$$= \operatorname{vec} (\boldsymbol{Y}^{\top} \boldsymbol{z} \boldsymbol{x}^{\top})$$

$$= \operatorname{vec} (\boldsymbol{I}_{q} \boldsymbol{Y}^{\top} (\boldsymbol{z} \boldsymbol{x}^{\top}))$$

$$= ((\boldsymbol{x} \boldsymbol{z}^{\top}) \otimes \boldsymbol{I}_{q}) \operatorname{vec} (\boldsymbol{Y}^{\top})$$

$$(3.33)$$

例 16. Sylvester 方程是一种著名的矩阵方程,由英国数学家 James Joseph Sylvester 于 1884年提出。时至今日,Sylvester 方程已在控制理论中具有极为广泛的应用。具体而言,已知矩阵 $A \in \mathbb{R}^{m \times m}$ 、 $B \in \mathbb{R}^{n \times n}$ 与 $C \in \mathbb{R}^{m \times n}$,则 Sylvester 方程的一般形式为

$$AX + XB = C (3.34)$$

其中, $X \in \mathbb{R}^{m \times n}$ 为待定参数。试根据 Kronecker 积性质写出 Sylvester 方程的解析解。

解. 首先将 Sylvester 方程写成

$$AXI_n + I_mXB = C (3.35)$$

根据 Kronecker 积性质, Sylvester 方程可写成如下形式:

$$(I_n \otimes A + B^{\top} \otimes I_m) \operatorname{vec}(X) = \operatorname{vec}(C)$$
(3.36)

因此, Sylvester 方程的解析解¹为

$$\operatorname{vec}(\boldsymbol{X}) = (\boldsymbol{I}_n \otimes \boldsymbol{A} + \boldsymbol{B}^{\top} \otimes \boldsymbol{I}_m)^{-1} \operatorname{vec}(\boldsymbol{C})$$
(3.37)

尽管该解析解形式简洁,但复杂度却很高。在实际问题中,往往需要借助更为高效的数值 计算方法(如 Bartels-Stewart 算法)对 Sylvester 方程进行求解。

3.3 Kronecker 积特殊性质

3.3.1 矩阵的迹

在线性代数中,矩阵的迹 (trace) 表示方阵对角线元素之和,数学符号为 $\operatorname{tr}(\cdot)$ 。对于任意矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$,矩阵 $X \otimes Y$ 的迹等于矩阵 X 的迹乘以矩阵 Y 的迹,即

$$tr(X \otimes Y) = tr(X) \cdot tr(Y)$$
(3.38)

恒成立。

例 17. 给定矩阵
$$\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $\boldsymbol{Y} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$,试写出 $\operatorname{tr}(\boldsymbol{X})$ 、 $\operatorname{tr}(\boldsymbol{Y})$ 与 $\operatorname{tr}(\boldsymbol{X} \otimes \boldsymbol{Y})$ 。

 \mathbf{M} . 根据定义,矩阵 \mathbf{X} 的迹与矩阵 \mathbf{Y} 的迹分别为

$$tr(X) = 1 + 4 = 5$$
 $tr(Y) = 5 + 8 = 13$ (3.39)

由于

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (3.40)

故 $tr(X \otimes Y) = 5 + 8 + 20 + 32 = 65$ 。

3.3.2 矩阵的 Frobenius 范数

从定义出发,矩阵的 Frobenius 范数表示矩阵元素的平方和开根号,一般用 $\|\cdot\|_F$ 表示。对于任意矩阵 $\pmb{X} \in \mathbb{R}^{m \times n}$,其 Frobenius 范数为

$$\|\boldsymbol{X}\|_{F} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij}^{2}}$$
(3.41)

据此定义,给定任意矩阵 $X \in \mathbb{R}^{m \times n}$ 与 $Y \in \mathbb{R}^{p \times q}$,有

$$\|\boldsymbol{X} \otimes \boldsymbol{Y}\|_{F} = \|\boldsymbol{X}\|_{F} \cdot \|\boldsymbol{Y}\|_{F} \tag{3.42}$$

恒成立。

例 18. 给定矩阵
$$X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 与 $Y = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$,试写出 $\|X\|_F$ 、 $\|Y\|_F$ 与 $\|X \otimes Y\|_F$ 。

 $^{^1}$ 有时候,可定义 Kronecker 和 (Kronecker sum,数学符号通常为 \oplus) 令 $\mathbf{A} \oplus \mathbf{B}^{\top} = \mathbf{I}_n \otimes \mathbf{A} + \mathbf{B}^{\top} \otimes \mathbf{I}_m$,将该解析解简 记为 $\operatorname{vec}(\mathbf{X}) = (\mathbf{A} \oplus \mathbf{B}^{\top})^{-1} \operatorname{vec}(\mathbf{C})$ 。

解. 根据定义, 矩阵 $X \to Y$ 的 Frobenius 范数分别为

$$\|X\|_F = \sqrt{1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30} \quad \|Y\|_F = \sqrt{5^2 + 6^2 + 7^2 + 8^2} = \sqrt{174}$$
 (3.43)

由于

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 10 & 12 \\ 7 & 8 & 14 & 16 \\ 15 & 18 & 20 & 24 \\ 21 & 24 & 28 & 32 \end{bmatrix}$$
 (3.44)

故 $\|\boldsymbol{X} \otimes \boldsymbol{Y}\|_F = \sqrt{5220}$ 。

Frobenius 范数这一概念不适用于向量,对于任意向量 $x \in \mathbb{R}^m$,其元素的平方和开根号是 ℓ_2 范数,即

$$\|\boldsymbol{x}\|_{2} = \sqrt{\sum_{i=1}^{m} x_{i}^{2}} \tag{3.45}$$

例 19. 给定向量 $x = (1,2)^{\top}$ 与 $y = (3,4)^{\top}$,试写出 $||x||_2$ 、 $||y||_2$ 与 $||x \otimes y||_2$ 。

解. 根据定义,向量 x 与 y 的 ℓ_2 范数分别为

$$\|\boldsymbol{x}\|_{2} = \sqrt{1^{2} + 2^{2}} = \sqrt{5} \quad \|\boldsymbol{y}\|_{2} = \sqrt{3^{2} + 4^{2}} = 5$$
 (3.46)

由于 $\mathbf{x} \otimes \mathbf{y} = (3,4,6,8)^{\mathsf{T}}$, 故 $\|\mathbf{x} \otimes \mathbf{y}\|_2 = \sqrt{3^2 + 4^2 + 6^2 + 8^2} = 5\sqrt{5}$.

3.3.3 矩阵的行列式

矩阵的行列式 (determinant) 是线性代数中非常重要的一个概念,贯穿线性代数的几乎所有内容,一般使用符号 $\det(\cdot)$ 表示。若给定矩阵 $X \in \mathbb{R}^{m \times m}$ 与 $Y \in \mathbb{R}^{n \times n}$,则

$$\det(\mathbf{X} \otimes \mathbf{Y}) = \det(\mathbf{X})^n \cdot \det(\mathbf{Y})^m \tag{3.47}$$

恒成立。

例 20. 给定矩阵 $\boldsymbol{X} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 与 $\boldsymbol{Y} = \begin{bmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & 5 & 2 \end{bmatrix}$, 试写出矩阵的行列式 $\det(\boldsymbol{X})$ 、 $\det(\boldsymbol{Y})$ 与 $\det(\boldsymbol{X} \otimes \boldsymbol{Y})$ 。

 \mathbf{M} . 矩阵 \mathbf{X} 与 \mathbf{Y} 的行列式分别为

$$\det(\mathbf{X}) = \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = -2 \quad \det(\mathbf{Y}) = \begin{vmatrix} 1 & 3 & 2 \\ 4 & 1 & 3 \\ 2 & 5 & 2 \end{vmatrix} = 17 \tag{3.48}$$

故 $\det(\boldsymbol{X})^3 \cdot \det(\boldsymbol{Y})^2 = -2312$ 。

矩阵 $X \otimes Y$ 的行列式为

$$\det(\mathbf{X} \otimes \mathbf{Y}) = \begin{vmatrix} 1 & 3 & 2 & 2 & 6 & 4 \\ 4 & 1 & 3 & 8 & 2 & 6 \\ 2 & 5 & 2 & 4 & 10 & 4 \\ 3 & 9 & 6 & 4 & 12 & 8 \\ 12 & 3 & 9 & 16 & 4 & 12 \\ 6 & 15 & 6 & 8 & 20 & 8 \end{vmatrix} = -2312$$
(3.49)

3.3.4 矩阵的秩

矩阵的秩 (rank) 是线性代数中非常重要的一个概念,在信号处理、图像处理等领域中应用广泛,一般使用符号 $\operatorname{rank}(\cdot)$ 表示。若给定矩阵 $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ 与 $\boldsymbol{Y} \in \mathbb{R}^{p \times q}$,则

$$rank(\mathbf{X} \otimes \mathbf{Y}) = rank(\mathbf{X}) \cdot rank(\mathbf{Y})$$
(3.50)

恒成立。

例 21. 给定矩阵 $X = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 与 $Y = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$, 试写出 $\operatorname{rank}(X)$ 、 $\operatorname{rank}(Y)$ 与 $\operatorname{rank}(X \otimes Y)$ 。

解. 在这里, $\operatorname{rank}(\boldsymbol{X}) = 1$, $\operatorname{rank}(\boldsymbol{Y}) = 2$ 。 由于

$$\mathbf{X} \otimes \mathbf{Y} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(3.51)

故 $\operatorname{rank}(\boldsymbol{X} \otimes \boldsymbol{Y}) = 2$ 。

3.4 朴素 Kronecker 分解

3.4.1 定义

一般而言,给定任意矩阵 $X \in \mathbb{R}^{(mp)\times (nq)}$,若 $A \in \mathbb{R}^{m\times n}$, $B \in \mathbb{R}^{p\times q}$ 为朴素 Kronecker 分解中的待定参数,则可将分解过程描述为如下优化问题:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_F^2 \tag{3.52}$$

其中, 我们建模的目标是寻找最佳的矩阵 A, B 使得损失函数最小化。

为便于理解该优化问题,不妨用一组小矩阵一窥究竟,令 m=3, n=p=q=2,则此时的目标函数为

$$\|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_{F}^{2} = \left\| \begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ \hline x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \\ \hline x_{51} & x_{52} & x_{53} & x_{54} \\ x_{61} & x_{62} & x_{63} & x_{64} \end{bmatrix} - \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix} \otimes \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} \right\|_{F}$$
 (3.53)

3.4.2 引入 permute 概念

在这里,我们引入 permute 概念是为了对矩阵的维度按照特定规则进行调整,这一做法最早是由 Van Loan 和 Pitsianis 于 1993 年提出的²。在公式(3.53)中,首先使用分块矩阵表示

²C. Van Loan, N. Pitsianis (1993). Approximation with Kronecker products. Linear Algebra for Large Scale and Real-Time Applications, 232: 293-314.

矩阵 $X \in \mathbb{R}^{6 \times 4}$:

$$\begin{bmatrix} x_{11} & x_{12} & x_{13} & x_{14} \\ x_{21} & x_{22} & x_{23} & x_{24} \\ \hline x_{31} & x_{32} & x_{33} & x_{34} \\ x_{41} & x_{42} & x_{43} & x_{44} \\ \hline x_{51} & x_{52} & x_{53} & x_{54} \\ x_{61} & x_{62} & x_{63} & x_{64} \end{bmatrix} = \begin{bmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \\ X_{31} & X_{32} \end{bmatrix}$$

$$(3.54)$$

其中,分块矩阵 X 拥有 3×2 个分块,即子矩阵,每个子矩阵的大小为 2×2 ,这些子矩阵 分别写作如下形式:

$$\mathbf{X}_{11} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{bmatrix} \quad \mathbf{X}_{12} = \begin{bmatrix} x_{13} & x_{14} \\ x_{23} & x_{24} \end{bmatrix}
\mathbf{X}_{21} = \begin{bmatrix} x_{31} & x_{32} \\ x_{41} & x_{42} \end{bmatrix} \quad \mathbf{X}_{22} = \begin{bmatrix} x_{33} & x_{34} \\ x_{43} & x_{44} \end{bmatrix}
\mathbf{X}_{31} = \begin{bmatrix} x_{51} & x_{52} \\ x_{61} & x_{62} \end{bmatrix} \quad \mathbf{X}_{32} = \begin{bmatrix} x_{53} & x_{54} \\ x_{63} & x_{64} \end{bmatrix}$$
(3.55)

有了这些子矩阵之后,需要对这些子矩阵进行向量化,得到的向量依次为

$$\operatorname{vec}(\boldsymbol{X}_{11}) = \begin{bmatrix} x_{11} \\ x_{21} \\ x_{12} \\ x_{22} \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{21}) = \begin{bmatrix} x_{31} \\ x_{41} \\ x_{32} \\ x_{42} \end{bmatrix} \quad \cdots \quad \operatorname{vec}(\boldsymbol{X}_{32}) = \begin{bmatrix} x_{53} \\ x_{63} \\ x_{54} \\ x_{64} \end{bmatrix}$$
(3.56)

最后,使用这些向量构造如下矩阵:

$$\tilde{\boldsymbol{X}} = \begin{bmatrix} \operatorname{vec}(\boldsymbol{X}_{11})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{21})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{31})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{12})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{22})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{32})^{\top} \end{bmatrix} \in \mathbb{R}^{6 \times 4}$$
(3.57)

在这里,将矩阵 X 构造成矩阵 \tilde{X} 的过程通常被称为 permute。 由于

$$\operatorname{vec}(\boldsymbol{X}_{11}) = a_{11} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$\operatorname{vec}(\boldsymbol{X}_{21}) = a_{21} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$\vdots$$

$$\operatorname{vec}(\boldsymbol{X}_{32}) = a_{32} \cdot \operatorname{vec}(\boldsymbol{B})$$

$$(3.58)$$

此时, Kronecker 分解的优化问题可写作如下形式:

$$\underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\boldsymbol{X} - \boldsymbol{A} \otimes \boldsymbol{B}\|_F^2 = \underset{\boldsymbol{A},\boldsymbol{B}}{\operatorname{arg\,min}} \|\tilde{\boldsymbol{X}} - \operatorname{vec}(\boldsymbol{A})\operatorname{vec}(\boldsymbol{B})^\top\|_F^2$$
(3.59)

实际上,向量化之后的待定参数 $\text{vec}(\boldsymbol{A})$ 和 $\text{vec}(\boldsymbol{B})$ 构成了一个标准的矩阵分解问题。

3.4.3 求解过程

对于公式(3.52)中 Kronecker 分解的优化问题,可根据 Eckhart-Young 定理对如下优化问题进行求解:

$$\min_{\boldsymbol{A},\boldsymbol{B}} \|\tilde{\boldsymbol{X}} - \text{vec}(\boldsymbol{A})\text{vec}(\boldsymbol{B})^{\top}\|_F^2$$
(3.60)

若 \tilde{X} 的奇异值分解为 $\tilde{X} = \sum_{r=1}^{\min\{mn,pq\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\top}$, 其中,奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{mn,pq\}}$,则矩阵 \boldsymbol{A} 与 \boldsymbol{B} 的最优解为

$$\begin{cases} \operatorname{vec}(\hat{\boldsymbol{A}}) = \sqrt{\sigma_1} \cdot \boldsymbol{u}_1 \\ \operatorname{vec}(\hat{\boldsymbol{B}}) = \sqrt{\sigma_2} \cdot \boldsymbol{v}_1 \end{cases}$$
(3.61)

这里的最优解恰好是秩为 1 的逼近问题。

例 22. 给定矩阵 $m{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 与 $m{B} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix}$,试写出两者之间的 Kronecker 积 $m{X} = m{A} \otimes m{B}$,并求 Kronecker 分解 $\hat{m{A}}, \hat{m{B}} = \mathop{\arg\min}_{m{A} \mid m{B}} \|m{X} - m{A} \otimes m{B}\|_F^2$ 。

 \mathbf{M} . 矩阵 \mathbf{A} 与 \mathbf{B} 之间的 Kronecker 积为

$$\mathbf{X} = \mathbf{A} \otimes \mathbf{B} = \begin{bmatrix} 5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40 \end{bmatrix}$$
(3.62)

令分块矩阵 X 由如下 4个子矩阵构成:

$$\mathbf{X}_{11} = \begin{bmatrix} 5 & 6 & 7 \\ 8 & 9 & 10 \end{bmatrix} \qquad \mathbf{X}_{12} = \begin{bmatrix} 10 & 12 & 14 \\ 16 & 18 & 20 \end{bmatrix}
\mathbf{X}_{21} = \begin{bmatrix} 15 & 18 & 21 \\ 24 & 27 & 30 \end{bmatrix} \qquad \mathbf{X}_{22} = \begin{bmatrix} 20 & 24 & 28 \\ 32 & 36 & 40 \end{bmatrix}$$
(3.63)

对这些子矩阵分别进行向量化:

$$\operatorname{vec}(\boldsymbol{X}_{11}) = \begin{bmatrix} 5\\8\\6\\9\\7\\10 \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{21}) = \begin{bmatrix} 15\\24\\18\\27\\21\\30 \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{12}) = \begin{bmatrix} 10\\16\\12\\18\\14\\20 \end{bmatrix} \quad \operatorname{vec}(\boldsymbol{X}_{22}) = \begin{bmatrix} 20\\32\\24\\36\\28\\40 \end{bmatrix} \quad (3.64)$$

有了这些向量之后,构造如下矩阵:

$$\tilde{\boldsymbol{X}} = \begin{bmatrix} \operatorname{vec}(\boldsymbol{X}_{11})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{21})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{12})^{\top} \\ \operatorname{vec}(\boldsymbol{X}_{22})^{\top} \end{bmatrix} = \begin{bmatrix} 5 & 8 & 6 & 9 & 7 & 10 \\ 15 & 24 & 18 & 27 & 21 & 30 \\ 10 & 16 & 12 & 18 & 14 & 20 \\ 20 & 32 & 24 & 36 & 28 & 40 \end{bmatrix}$$
(3.65)

由此, Kronecker 分解的优化问题等价于

$$\hat{\boldsymbol{A}}, \hat{\boldsymbol{B}} = \underset{\boldsymbol{A}, \boldsymbol{B}}{\operatorname{arg \, min}} \| \tilde{\boldsymbol{X}} - \operatorname{vec}(\boldsymbol{A}) \operatorname{vec}(\boldsymbol{B})^{\top} \|_F^2$$
(3.66)

对矩阵 \tilde{X} 进行奇异值分解,则矩阵 \hat{A} 与 \hat{B} 分别为

$$\hat{\mathbf{A}} = \begin{bmatrix} -1.85471325 & -3.7094265 \\ -5.56413975 & -7.418853 \end{bmatrix}$$

$$\hat{\mathbf{B}} = \begin{bmatrix} -2.69583452 & -3.23500142 & -3.77416832 \\ -4.31333523 & -4.85250213 & -5.39166904 \end{bmatrix}$$
(3.67)

在这里, 矩阵 \hat{A} 与 \hat{B} 的所有元素均为负数, 可将这些元素全部写成相反数。

3.5 广义 Kronecker 分解

在《Convolutional neural network compression through generalized Kronecker product decomposition》中,作者给出了一种广义 Kronecker 分解。形式上说,给定任意矩阵 $X \in \mathbb{R}^{(mp)\times(nq)}$,若 $A_r \in \mathbb{R}^{m\times n}$, $B_r \in \mathbb{R}^{p\times q}$, $r=1,2,\ldots,R$ 为广义 Kronecker 分解中的待定参数,则可将分解过程描述为如下逼近问题:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \left\| \boldsymbol{X} - \sum_{r=1}^R \boldsymbol{A}_r \otimes \boldsymbol{B}_r \right\|_F^2$$
(3.68)

其中,我们的建模目标是寻找最佳的矩阵 $\{A_r, B_r\}_{r=1}^R$ 使得损失函数最小化。

与朴素 Kronecker 分解类似,可先将广义 Kronecker 分解的逼近问题写作如下形式:

$$\underset{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R}{\operatorname{arg\,min}} \left\| \boldsymbol{X} - \sum_{r=1}^R \boldsymbol{A}_r \otimes \boldsymbol{B}_r \right\|_F^2 = \underset{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R}{\operatorname{arg\,min}} \left\| \boldsymbol{X} - \sum_{r=1}^R \operatorname{vec}(\boldsymbol{A}_r) \operatorname{vec}(\boldsymbol{B}_r)^\top \right\|_F^2$$
(3.69)

其中, 矩阵 \tilde{X} 是由矩阵 X 进行 permute 构造得到。

根据 Eckhart-Young 定理对上述优化问题进行求解,若矩阵 $\tilde{\boldsymbol{X}}$ 的奇异值分解为 $\tilde{\boldsymbol{X}} = \sum_{r=1}^{\min\{mn,pq\}} \sigma_r \boldsymbol{u}_r \boldsymbol{v}_r^{\top}$,其中,奇异值为 $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{\min\{mn,pq\}}$,则矩阵 \boldsymbol{A}_r 和 \boldsymbol{B}_r 的最优解为

$$\begin{cases} \operatorname{vec}(\hat{\boldsymbol{A}}_r) = \sqrt{\sigma_r} \boldsymbol{u}_r \\ \operatorname{vec}(\hat{\boldsymbol{B}}_r) = \sqrt{\sigma_r} \boldsymbol{v}_r \end{cases}$$
(3.70)

3.6 模型参数压缩问题

Kronecker 分解的一个重要用途是压缩模型参数。以多元线性回归 (multivariate linear regression) 为例,给定输入、输出数据为 $\mathcal{D} = \{(\boldsymbol{x}_1, \boldsymbol{y}_1), \cdots, (\boldsymbol{x}_N, \boldsymbol{y}_N)\} \in \mathbb{R}^{nq} \times \mathbb{R}^{mp}$,则多元线性回归的优化问题为

$$\min_{\mathbf{W}} \ \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{y}_n - \mathbf{W} \mathbf{x}_n\|_2^2$$
 (3.71)

令

$$\boldsymbol{X} = \begin{bmatrix} | & & | \\ \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_N \\ | & & | \end{bmatrix} \in \mathbb{R}^{nq \times N}$$
(3.72)

$$\boldsymbol{Y} = \begin{bmatrix} | & & | \\ \boldsymbol{y}_1 & \cdots & \boldsymbol{y}_N \\ | & & | \end{bmatrix} \in \mathbb{R}^{mp \times N}, \tag{3.73}$$

则此时多元线性回归的等价优化问题为

$$\min_{\mathbf{W}} \ \frac{1}{2} \|\mathbf{Y} - \mathbf{W}\mathbf{X}\|_F^2 \tag{3.74}$$

不妨假设这里的系数矩阵 $\mathbf{W} \in \mathbb{R}^{(mp) \times (nq)}$ 存在一个广义 Kronecker 分解,且由 R 个成分构成,则基于广义 Kronecker 分解的多元线性回归可写作如下形式:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \frac{1}{2} \left\| \boldsymbol{Y} - \sum_{r=1}^R (\boldsymbol{A}_r \otimes \boldsymbol{B}_r) \boldsymbol{X} \right\|_F^2$$
(3.75)

将优化问题改写为如下形式即可得到一个标准的广义 Kronecker 分解:

$$\min_{\{\boldsymbol{A}_r,\boldsymbol{B}_r\}_{r=1}^R} \frac{1}{2} \left\| \boldsymbol{Y} \boldsymbol{X}^{\dagger} - \sum_{r=1}^R (\boldsymbol{A}_r \otimes \boldsymbol{B}_r) \right\|_F^2$$
(3.76)

从而可根据广义 Kronecker 分解的求解方法对该多元线性回归问题进行求解。

例 23 (矩阵自回归模型³). 对于多维时间序列 (multidimensional time series), 若任意时刻 t 对应的观测数据为矩阵 $X_t \in \mathbb{R}^{M \times N}$, 则矩阵自回归的表达式为

$$X_t = AX_{t-1}B^{\top} + E_t, t = 2, 3, ..., T$$
 (3.77)

其中, $\mathbf{A} \in \mathbb{R}^{M \times M}$ 与 $\mathbf{B} \in \mathbb{R}^{N \times N}$ 为自回归过程的系数矩阵 (coefficient matrix); 矩阵 $\mathbf{E}_t \in \mathbb{R}^{M \times N}$ 为自回归过程的残差矩阵 (residual matrix)。若令 $\mathbf{x}_t = \text{vec}(\mathbf{X}_t)$ 与 $\mathbf{\epsilon}_t = \text{vec}(\mathbf{E}_t)$,试写出与矩阵自回归等价的向量自回归表达式。

解. 根据 Kronecker 积性质、矩阵自回归等价于如下向量自回归:

$$\operatorname{vec}(\boldsymbol{X}_{t}) = \operatorname{vec}(\boldsymbol{A}\boldsymbol{X}_{t-1}\boldsymbol{B}^{\top}) + \operatorname{vec}(\boldsymbol{E}_{t})$$

$$= (\boldsymbol{B} \otimes \boldsymbol{A}) \operatorname{vec}(\boldsymbol{X}_{t-1}) + \operatorname{vec}(\boldsymbol{E}_{t})$$

$$\implies \boldsymbol{x}_{t} = (\boldsymbol{B} \otimes \boldsymbol{A}) \boldsymbol{x}_{t-1} + \boldsymbol{\epsilon}_{t}$$
(3.78)

在这里,矩阵自回归的待定参数数量为 $M^2 + N^2$,若对观测数据进行向量化且不对系数矩阵进行 Kronecker 分解,则向量自回归的待定参数数量为 $(MN)^2$,容易引发过参数化 (over-parameterization) 问题。

参考资料

1. Kathrin Schacke (2013). On the Kronecker Product. https://www.math.uwaterloo.ca/~hwolkowi/henry/reports/kronthesisschaecke04.pdf

³http://www.stat.rutgers.edu/home/rongchen/publications/20JoE_Matrix_AR.pdf

第四章 模态积与 Tucker 张量分解

模态积 (modal product) 是张量计算中非常重要的一种运算,用于表示张量与矩阵之间相乘。基于模态积的运算规则,我们可描述一种非常经典的分解结构,即 Tucker 分解。具体而言,对于高阶张量,Tucker 分解会将其分解为一个核心张量与一系列因子矩阵,核心张量与因子矩阵之间便是借助模态积表示张量与矩阵的乘积。本章将首先介绍模态积的定义与性质,以此为基础,逐步引出高阶奇异值分解与 Tucker 分解,最后讨论另一种经典的张量分解结构,即 CP 分解。

4.1 模态积定义

在张量计算中,模态积是一种表示张量与矩阵相乘的运算。相比矩阵计算中的矩阵与矩阵间相乘、矩阵与向量间相乘,模态积更为复杂。给定任意张量 $\mathcal{X} \in \mathbb{R}^{m_1 \times m_2 \times \cdots \times m_d}$,同时令矩阵 $\mathbf{A} \in \mathbb{R}^{n \times m_k}$,则两者之间的模态积可记作 $\mathbf{X} \times_k \mathbf{A}$,其中,乘法符号的下标 k 表示以第 k 维度进行相乘,这里模态积得到的张量大小为 $m_1 \times m_2 \times \cdots \times m_{k-1} \times n \times m_{k+1} \times \cdots \times m_d$,任意第 $(i_1, i_2, \ldots, i_{k-1}, j, i_{k+1}, \ldots, i_d)$ 个元素为

$$(\mathcal{X} \times_k \mathbf{A})_{i_1, i_2, \dots, i_{k-1}, j, i_{k+1}, \dots, i_d} = \sum_{i_k=1}^{m_k} x_{i_1, i_2, \dots, i_{k-1}, i_k, i_{k+1}, \dots, i_d} a_{j, i_k}$$
(4.1)

其中, $i_1 \in \{1, 2, \dots, m_1\}, \dots, i_d \in \{1, 2, \dots, m_d\}, j \in \{1, 2, \dots, n\}$ 。 对于三阶张量 $\mathcal{X} \in \mathbb{R}^{m \times n \times p}$,可进行如下模态积运算:

• 若矩阵 $\mathbf{A} \in \mathbb{R}^{q \times m}$, 则模态积为 $\mathbf{X} \times_1 \mathbf{A} \in \mathbb{R}^{q \times n \times p}$, 任意第 (k, j, h) 个元素为

$$(\boldsymbol{\mathcal{X}} \times_1 \boldsymbol{A})_{k,j,h} = \sum_{i=1}^m x_{i,j,h} a_{k,i}$$
(4.2)

• 若矩阵 $\mathbf{A} \in \mathbb{R}^{q \times n}$, 则模态积为 $\mathbf{\mathcal{X}} \times_2 \mathbf{A} \in \mathbb{R}^{m \times q \times p}$, 任意第 (i, k, h) 个元素为

$$(\boldsymbol{\mathcal{X}} \times_2 \boldsymbol{A})_{i,k,h} = \sum_{j=1}^n x_{i,j,h} a_{k,j}$$
(4.3)

• 若矩阵 $\mathbf{A} \in \mathbb{R}^{q \times p}$,则模态积为 $\mathbf{\mathcal{X}} \times_3 \mathbf{A} \in \mathbb{R}^{m \times n \times q}$,任意第 (i, j, k) 个元素为

$$(\boldsymbol{\mathcal{X}} \times_3 \boldsymbol{A})_{i,j,k} = \sum_{k=1}^p x_{i,j,h} a_{k,h}$$
(4.4)

其中, $i \in \{1, 2, ..., m\}$, $j \in \{1, 2, ..., n\}$, $h \in \{1, 2, ..., p\}$, $k \in \{1, 2, ..., q\}$ 。

例 24. 给定张量 $\mathcal{X} \in \mathbb{R}^{2 \times 2 \times 2}$, 若其 frontal 切片为

$$\boldsymbol{\mathcal{X}}_{:,:,1} = \begin{bmatrix} x_{111} & x_{121} \\ x_{211} & x_{221} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \quad \boldsymbol{\mathcal{X}}_{:,:,2} = \begin{bmatrix} x_{112} & x_{122} \\ x_{212} & x_{222} \end{bmatrix} = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}$$
(4.5)

若矩阵
$$m{A} = egin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$$
,大小为 3×2 ,试写出张量 $m{\mathcal{X}}$ 与矩阵 $m{A}$ 的模态积 $m{\mathcal{X}} \times_1 m{A}$ 。

解. 张量 \mathcal{X} 与矩阵 \mathbf{A} 的模态积 $\mathcal{X} \times_1 \mathbf{A}$ 是一个大小为 $3 \times 2 \times 2$ 的张量,令 $\mathcal{Y} = \mathcal{X} \times_1 \mathbf{A}$,则其 frontal 切片上的元素分别为

$$\begin{cases} y_{111} = \sum_{i=1}^{2} x_{i11} a_{1i} = x_{111} a_{11} + x_{211} a_{12} = 1 \times 1 + 3 \times 2 = 7 \\ y_{121} = \sum_{i=1}^{2} x_{i21} a_{1i} = x_{121} a_{11} + x_{221} a_{12} = 2 \times 1 + 4 \times 2 = 10 \\ y_{211} = \sum_{i=1}^{2} x_{i11} a_{2i} = x_{111} a_{21} + x_{211} a_{22} = 1 \times 3 + 3 \times 4 = 15 \\ y_{221} = \sum_{i=1}^{2} x_{i21} a_{2i} = x_{121} a_{21} + x_{221} a_{22} = 2 \times 3 + 4 \times 4 = 22 \\ y_{311} = \sum_{i=1}^{2} x_{i11} a_{3i} = x_{111} a_{31} + x_{211} a_{32} = 1 \times 5 + 3 \times 6 = 23 \\ y_{321} = \sum_{i=1}^{2} x_{i21} a_{3i} = x_{121} a_{31} + x_{221} a_{32} = 2 \times 5 + 4 \times 6 = 34 \end{cases}$$

$$(4.6)$$

$$\begin{cases} y_{112} = \sum_{i=1}^{2} x_{i12}a_{1i} = x_{112}a_{11} + x_{212}a_{12} = 5 \times 1 + 7 \times 2 = 19 \\ y_{122} = \sum_{i=1}^{2} x_{i22}a_{1i} = x_{122}a_{11} + x_{222}a_{12} = 6 \times 1 + 8 \times 2 = 22 \\ y_{212} = \sum_{i=1}^{2} x_{i12}a_{2i} = x_{112}a_{21} + x_{212}a_{22} = 5 \times 3 + 7 \times 4 = 43 \\ y_{222} = \sum_{i=1}^{2} x_{i22}a_{2i} = x_{122}a_{21} + x_{222}a_{22} = 6 \times 3 + 8 \times 4 = 50 \\ y_{312} = \sum_{i=1}^{2} x_{i12}a_{3i} = x_{112}a_{31} + x_{212}a_{32} = 5 \times 5 + 7 \times 6 = 67 \\ y_{322} = \sum_{i=1}^{2} x_{i22}a_{3i} = x_{122}a_{31} + x_{222}a_{32} = 6 \times 5 + 8 \times 6 = 78 \end{cases}$$

$$(4.7)$$

因此, 张量 \mathcal{Y} 的 frontal 切片为

$$\mathbf{\mathcal{Y}}_{:,:,1} = \begin{bmatrix} 7 & 10 \\ 15 & 22 \\ 23 & 34 \end{bmatrix} \quad \mathbf{\mathcal{Y}}_{:,:,2} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \\ 67 & 78 \end{bmatrix}$$

$$(4.8)$$

例 25 (矩阵自回归模型¹). 对于多维时间序列,若任意时刻 t 对应的观测数据为矩阵 $X_t \in \mathbb{R}^{M \times N}$,恰好是张量 $X \in \mathbb{R}^{M \times N \times T}$ 的第 t 个 frontal 切片,试将矩阵自回归的表达式写成模态积的形式。在这里,矩阵自回归的表达式为

$$X_t = AX_{t-1}B^{\top} + E_t, t = 2, 3, \dots, T$$
 (4.9)

其中, $A \in \mathbb{R}^{M \times M}$ 与 $B \in \mathbb{R}^{N \times N}$ 为自回归过程的系数矩阵;矩阵 $E_t \in \mathbb{R}^{M \times N}$ 为自回归过程的残差矩阵。

http://www.stat.rutgers.edu/home/rongchen/publications/20JoE_Matrix_AR.pdf

4.2 模态积性质 31

解. 令张量 $\bar{\boldsymbol{\mathcal{X}}} \in \mathbb{R}^{M \times N \times (T-1)}$ 是由 frontal 切片 $\{\boldsymbol{X}_2, \boldsymbol{X}_3, \dots, \boldsymbol{X}_T\}$ 构成, 张量 $\dot{\boldsymbol{\mathcal{X}}} \in \mathbb{R}^{M \times N \times (T-1)}$ 是由 frontal 切片 $\{\boldsymbol{X}_1, \boldsymbol{X}_2, \dots, \boldsymbol{X}_{T-1}\}$ 构成,则

$$\bar{\mathcal{X}} = \dot{\mathcal{X}} \times_1 \mathbf{A} \times_2 \mathbf{B} + \mathbf{\mathcal{E}} \tag{4.10}$$

其中, $\mathcal{E} \in \mathbb{R}^{M \times N \times (T-1)}$ 为残差张量。

4.2 模态积性质

例 26 (矩阵自回归模型²). 对于多维时间序列,若时间序列的观测数据为一系列矩阵,即 $\{X_1, X_2, \dots, X_T\}$, 令张量 $\bar{\mathcal{X}} \in \mathbb{R}^{M \times N \times (T-1)}$ 是由 frontal 切片 $\{X_2, X_3, \dots, X_T\}$ 构成,张量 $\dot{\mathcal{X}} \in \mathbb{R}^{M \times N \times (T-1)}$ 是由 frontal 切片 $\{X_1, X_2, \dots, X_{T-1}\}$ 构成,则矩阵自回归的表达式为

$$\bar{\mathcal{X}} = \dot{\mathcal{X}} \times_1 \mathbf{A} \times_2 \mathbf{B} + \mathbf{\mathcal{E}} \tag{4.11}$$

其中, $\mathbf{A} \in \mathbb{R}^{M \times M}$ 与 $\mathbf{B} \in \mathbb{R}^{N \times N}$ 为自回归过程的系数矩阵;张量 $\mathbf{\mathcal{E}} \in \mathbb{R}^{M \times N \times (T-1)}$ 为自回归过程的残差张量。试以第 1 维度将张量展开成矩阵,并写出展开后的表达式。

解. 根据张量矩阵化性质, 矩阵自回归等价于如下形式:

$$\bar{X}_{(1)} = A\dot{X}_{(1)}(I_{T-1} \otimes B)^{\top} + E_{(1)}$$
 (4.12)

其中, $ar{m{X}}_{(1)},ar{m{X}}_{(1)},m{E}_{(1)}\in\mathbb{R}^{M imes(N(T-1))}$ 分别是张量 $ar{m{\mathcal{X}}},m{\dot{\mathcal{X}}},m{\mathcal{E}}$ 自第 1 维度展开得到的矩阵。

在例26中,根据张量矩阵化规则,可得到张量 $\dot{\mathcal{X}}$ 自第 1 维度展开得到的矩阵

$$\dot{\boldsymbol{X}}_{(1)} = \begin{bmatrix} \boldsymbol{X}_1 & \boldsymbol{X}_2 & \cdots & \boldsymbol{X}_{T-1} \end{bmatrix} \in \mathbb{R}^{M \times (N(T-1))}$$
(4.13)

为分块矩阵,根据 Kronecker 积性质,有

$$\sum_{t=2}^{T} \boldsymbol{A} \boldsymbol{X}_{t-1} \boldsymbol{B}^{\top} = \boldsymbol{A} \dot{\boldsymbol{X}}_{(1)} (\boldsymbol{I}_{T-1} \otimes \boldsymbol{B}^{\top}) = \boldsymbol{A} \dot{\boldsymbol{X}}_{(1)} (\boldsymbol{I}_{T-1} \otimes \boldsymbol{B})^{\top}$$
(4.14)

恒成立。因此,张量矩阵化性质与矩阵计算规则是一致的,Kronecker 积在这里可起到很好的桥梁沟通作用。

4.3 高阶奇异值分解

4.4 Tucker 分解

- 4.4.1 Tucker 分解形式
- 4.4.2 交替最小二乘法
- 4.4.3 处理缺失数据

4.5 Tucker 分解特例: CP 分解

CP 分解是一种常用的张量分解形式。

 $^{^2 \}verb|http://www.stat.rutgers.edu/home/rongchen/publications/20JoE_Matrix_AR.pdf|$

第五章 低秩线性回归

线性回归是机器学习中的一个基本模型,常用于各类回归问题,其建模思路是采用线性方程对给定的变量建立线性关系。本章以线性回归模型为基础,将介绍低秩线性回归模型、低秩自回归模型、时变低秩自回归模型等,这些模型的核心是借助矩阵分解或张量分解对模型参数进行压缩。

5.1 低秩线性回归

5.2 高维向量自回归

- 5.2.1 一阶向量自回归
- 5.2.2 高阶向量自回归

5.3 时变低秩向量自回归

5.3.1 模型表达式

向量自回归作为一个经典统计模型,常被用于各种时间序列建模问题中。为了对时间序列中的时变 (time-varying) 特征进行建模,可引入一种时变向量自回归。给定多元时间序列,观测数据由向量 $s_1, s_2, \ldots, s_T \in \mathbb{R}^N$ 构成,则时变向量自回归可写作如下形式:

$$s_t = \sum_{k=1}^{d} A_{t,k} s_{t-k} + \epsilon_t, t = d+1, d+2, \dots, T$$
 (5.1)

其中,任意时刻 t,系数矩阵为 $\pmb{A}_{t,1}, \pmb{A}_{t,2}, \ldots, \pmb{A}_{t,d} \in \mathbb{R}^{N \times N}$;d 表示自回归过程的阶数 (order)。 若令

$$\boldsymbol{y}_{t} = \boldsymbol{s}_{t} \quad \boldsymbol{z}_{t} = \begin{bmatrix} \boldsymbol{s}_{t-1} \\ \boldsymbol{s}_{t-2} \\ \vdots \\ \boldsymbol{s}_{t-d} \end{bmatrix} \in \mathbb{R}^{dN} \quad \boldsymbol{A}_{t} = \begin{bmatrix} \boldsymbol{A}_{t,1} & \boldsymbol{A}_{t,2} & \cdots & \boldsymbol{A}_{t,d} \end{bmatrix} \in \mathbb{R}^{N \times (dN)}$$
 (5.2)

则时变向量自回归的表达式为

$$\mathbf{y}_t = \mathbf{A}_t \mathbf{z}_t + \boldsymbol{\epsilon}_t, \ t = d + 1, d + 2, \dots, T \tag{5.3}$$

其中,数据对 (data pair) $\{y_t, z_t\}_{t=d+1}^T$ 是作为模型的输入,可用于估计待定参数 $\{A_t\}_{t=d+1}^T$ 。 一般而言,为了估计待定参数,可构造优化问题,优化问题的损失函数为残差平方和,即

$$\min_{\{\boldsymbol{A}_t\}} \frac{1}{2} \sum_{t=d+1}^{T} \|\boldsymbol{y}_t - \boldsymbol{A}_t \boldsymbol{z}_t\|_2^2$$
 (5.4)

尽管这个问题是一个凸优化问题,但直接进行参数估计往往会引发过参数化问题,原因在于时变的系数矩阵拥有 $dN^2(T-d)$ 个参数,会大大超出观测值数量 NT。在这里,不妨将系数矩阵 $\mathbf{A}_{d+1}, \mathbf{A}_{d+2}, \ldots, \mathbf{A}_T$ 作为张量 \mathbf{A} 的 frontal 切片,则系数张量 \mathbf{A} 的大小为 $N \times (dN) \times (T-d)$ 。

为了克服过参数化问题,可采用 Tucker 分解对系数张量 \boldsymbol{A} 进行参数压缩 1 ,令多重线性的秩 (multilinear rank) 为 (R,R,R) (简记为秩 R),则张量分解表达式为

$$\mathcal{A} = \mathcal{G} \times_1 W \times_2 V \times_3 X \tag{5.5}$$

其中, $\mathbf{G} \in \mathbb{R}^{R \times R \times R}$ 为核心张量; $\mathbf{W} \in \mathbb{R}^{N \times R}$ 、 $\mathbf{V} \in \mathbb{R}^{(dN) \times R}$ 与 $\mathbf{X} \in \mathbb{R}^{(T-d) \times R}$ 为因子矩阵。 在系数张量 \mathbf{A} 中,任意 t 时刻的系数矩阵 \mathbf{A}_t 可根据张量分解写作如下形式:

$$\boldsymbol{A}_t = \boldsymbol{\mathcal{G}} \times_1 \boldsymbol{W} \times_2 \boldsymbol{V} \times_3 \boldsymbol{x}_t^{\top} \tag{5.6}$$

其中, $x_t \in \mathbb{R}^R$ 对应着因子矩阵 X 在 t 时刻的向量。

令矩阵 $G = G_{(1)} \in \mathbb{R}^{R \times R^2}$ 表示张量 G 自第 1 维度展开得到的矩阵,则

$$\boldsymbol{A}_t = \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_t^\top \otimes \boldsymbol{V})^\top \tag{5.7}$$

因此, 时变低秩向量自回归的优化问题为

$$\min_{\boldsymbol{W},\boldsymbol{G},\boldsymbol{V},\boldsymbol{X}} \frac{1}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \right\|_{2}^{2}$$
 (5.8)

在这里,待定参数为张量分解的核心张量与因子矩阵。为了估计该优化问题中的待定参数,可采用交替优化算法 (alternating minimization algorithm) 。

例 27. 对于时变低秩向量自回归的表达式:

$$\boldsymbol{y}_{t} = \boldsymbol{W}\boldsymbol{G}(\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} + \boldsymbol{\epsilon}_{t}, \ t = d + 1, d + 2, \dots, T$$
 (5.9)

若今

$$\boldsymbol{Y} = \begin{bmatrix} & | & & | \\ \boldsymbol{y}_{d+1} & \boldsymbol{y}_{d+2} & \cdots & \boldsymbol{y}_T \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{N \times (T-d)}$$

$$(5.10)$$

$$Z = \begin{bmatrix} \boldsymbol{z}_{d+1} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{z}_{d+2} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{z}_T \end{bmatrix} \in \mathbb{R}^{(dN(T-d))\times(T-d)}$$

$$(5.11)$$

试写出矩阵形式的表达式。

解. 根据 Kronecker 积性质, 矩阵形式的表达式为

$$Y = WG(X \otimes V)^{\top}Z + E \tag{5.12}$$

其中, $E \in \mathbb{R}^{N \times (T-d)}$ 为残差矩阵。

¹Xinyu Chen, Chengyuan Zhang, Xiaoxu Chen, Nicolas Saunier, Lijun Sun (2022). Discovering dynamic patterns from spatiotemporal data with time-varying low-rank autoregression. arXiv preprint arXiv:2211.15482.

5.3.2 求解过程

交替优化算法是求解矩阵分解与张量分解中非凸优化问题的常用方法,该方法采用迭代算法,可通过交替更新待估计变量最终达到收敛。在时变低秩向量自回归的优化问题中,可采用交替优化算法对 $\{W,G,V,X\}$ 进行交替更新,在每次交替更新时,需求解当前变量的最优解 (如最小二乘解) 或近似解。

不妨令优化问题的目标函数为

$$f = \frac{1}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \right\|_{2}^{2}$$
 (5.13)

更新变量 W

对于变量 W,假设其他变量已知,则变量 W 的最小二乘解为

$$W := \underset{\boldsymbol{W}}{\operatorname{arg \, min}} \quad \frac{1}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \right\|_{2}^{2}$$

$$= \left(\sum_{t=d+1}^{T} \boldsymbol{y}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \boldsymbol{G}^{\top} \right) \left(\sum_{t=d+1}^{T} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \boldsymbol{G}^{\top} \right)$$

$$(5.14)$$

例 28. 在公式(5.14)中,试写出推导变量 W 最小二乘解的具体过程。

解. 给定目标函数 f, 对变量 W 求偏导数, 有

$$\frac{\partial f}{\partial \mathbf{W}} = -\sum_{t=d+1}^{T} (\mathbf{y}_{t} - \mathbf{W} \mathbf{G} (\mathbf{x}_{t}^{\top} \otimes \mathbf{V})^{\top} \mathbf{z}_{t}) \mathbf{z}_{t}^{\top} (\mathbf{x}_{t}^{\top} \otimes \mathbf{V}) \mathbf{G}^{\top}$$

$$= -\sum_{t=d+1}^{T} \mathbf{y}_{t} \mathbf{z}_{t}^{\top} (\mathbf{x}_{t}^{\top} \otimes \mathbf{V}) \mathbf{G}^{\top}$$

$$+ \sum_{t=d+1}^{T} \mathbf{W} \mathbf{G} (\mathbf{x}_{t}^{\top} \otimes \mathbf{V})^{\top} \mathbf{z}_{t} \mathbf{z}_{t}^{\top} (\mathbf{x}_{t}^{\top} \otimes \mathbf{V}) \mathbf{G}^{\top}$$
(5.15)

此时, 令 $\frac{\partial f}{\partial W} = 0$ 即可得到公式(5.14)所示的最小二乘解。

更新变量 G

对于变量 G,假设其他变量已知,则变量 G 的最小二乘解为

$$G := \underset{G}{\operatorname{arg\,min}} \quad \frac{1}{2} \sum_{t=d+1}^{T} \left\| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \right\|_{2}^{2}$$

$$= \boldsymbol{W}^{\dagger} \left(\sum_{t=d+1}^{T} \boldsymbol{y}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \right) \left(\sum_{t=d+1}^{T} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V}) \right)^{-1}$$

$$(5.16)$$

其中, · † 表示伪逆 (Moore-Penrose pseudo-inverse)。

例 29. 在公式(5.16)中, 试写出推导变量 G 最小二乘解的具体过程。

 \mathbf{M} . 给定目标函数 f, 对变量 \mathbf{G} 求偏导数, 有

$$\frac{\partial f}{\partial \boldsymbol{G}} = -\sum_{t=d+1}^{T} \boldsymbol{W}^{\top} (\boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t}) \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})$$

$$= -\sum_{t=d+1}^{T} \boldsymbol{W}^{\top} \boldsymbol{y}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})$$

$$+ \sum_{t=d+1}^{T} \boldsymbol{W}^{\top} \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \boldsymbol{z}_{t}^{\top} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})$$
(5.17)

此时,令 $\frac{\partial f}{\partial G}=\mathbf{0}$ 即可得到公式(5.16)所示的最小二乘解。

更新变量 V

更新变量 X

对于变量 X,为了减少计算资源消耗,需对每个时刻的向量 x_t 单独求解,此时,优化问题的目标函数为

$$f = \frac{1}{2} \sum_{t=d+1}^{T} \| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{x}_{t}^{\top} \otimes \boldsymbol{V})^{\top} \boldsymbol{z}_{t} \|_{2}^{2}$$

$$= \frac{1}{2} \sum_{t=d+1}^{T} \| \boldsymbol{y}_{t} - \boldsymbol{W} \boldsymbol{G} (\boldsymbol{I}_{R} \otimes (\boldsymbol{V}^{\top} \boldsymbol{z}_{t})) \boldsymbol{x}_{t} \|_{2}^{2}$$

$$(5.18)$$

其中, 根据 Kronecker 积性质 (参见公式(3.31)), 有

$$(\boldsymbol{x}_{t} \otimes \boldsymbol{V}^{\top}) \boldsymbol{z}_{t} = \operatorname{vec}(\boldsymbol{V}^{\top} \boldsymbol{z}_{t} \boldsymbol{x}_{t}^{\top})$$

$$= \operatorname{vec}((\boldsymbol{V}^{\top} \boldsymbol{z}_{t}) \boldsymbol{x}_{t}^{\top} \boldsymbol{I}_{R})$$

$$= (\boldsymbol{I}_{R} \otimes (\boldsymbol{V}^{\top} \boldsymbol{z}_{t})) \boldsymbol{x}_{t}$$

$$(5.19)$$

因此,假设其他变量已知,则变量 x_t 的最小二乘解为

$$\boldsymbol{x}_t := \left(\boldsymbol{W} \boldsymbol{G} (\boldsymbol{I}_R \otimes (\boldsymbol{V}^{\top} \boldsymbol{z}_t)) \right)^{\dagger} \boldsymbol{y}_t \tag{5.20}$$

5.3.3 算法

5.3.4 案例: 时空数据模式挖掘

第六章 低秩时序模型

在实际应用中,我们可获取到各类时间序列数据。为了刻画这些数据隐含的动态模式,时序建模就显得格外重要。低秩模型(如矩阵分解)可对实际的时间序列数据进行建模,但缺乏对时序关联特征的刻画,往往存在不足。本章将介绍时序矩阵分解与低秩拉普拉斯卷积模型,两种模型都具有低秩建模能力与时序建模能力,能较好地用于分析多元时间序列数据。

6.1 时序矩阵分解

时序矩阵分解是矩阵分解中的一个重要模型,主要用于对时间序列数据进行建模。当多元时间序列数据存在缺失值时,时序矩阵分解中的时序建模技术如向量自回归便会起到不可忽视的作用。在时序矩阵分解中,矩阵分解可从部分观测数据中学习出低秩模式,而时序建模则可刻画时序关联特征。

6.1.1 模型表达式

对于多元时间序列,若任意时刻 t 对应的观测数据为向量 $\boldsymbol{y}_t \in \mathbb{R}^N$,则多元时间序列可写作矩阵形式:

$$\boldsymbol{Y} = \begin{bmatrix} | & | & & | \\ \boldsymbol{y}_1 & \boldsymbol{y}_2 & \cdots & \boldsymbol{y}_T \\ | & | & & | \end{bmatrix} \in \mathbb{R}^{N \times T}$$

$$(6.1)$$

当矩阵中存在缺失值时,可用 Ω 表示被观测元素的索引集合。一般而言,可定义作用于集合 Ω 上的正交映射 (orthogonal projection) $\mathcal{P}_{\Omega}: \mathbb{R}^{N \times T} \to \mathbb{R}^{N \times T}$, 对于矩阵 Y 任意第 (i,t) 个元素,有

$$[\mathcal{P}_{\Omega}(\boldsymbol{Y})]_{i,t} = \begin{cases} \boldsymbol{y}_{i,t} & \text{if } (i,t) \in \Omega \\ 0 & \text{otherwise} \end{cases}$$
(6.2)

同时,可定义作用于集合 Ω 补集上的正交映射 $\mathcal{P}_{\Omega}^{\perp}: \mathbb{R}^{N \times T} \to \mathbb{R}^{N \times T}$ 。

通常来说,对于矩阵Y,矩阵分解的优化问题为

$$\min_{\boldsymbol{W}, \boldsymbol{X}} \frac{1}{2} \| \mathcal{P}_{\Omega} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) \|_{F}^{2} + \frac{\rho}{2} (\| \boldsymbol{W} \|_{F}^{2} + \| \boldsymbol{X} \|_{F}^{2})$$
(6.3)

其中, $W \in \mathbb{R}^{R \times N}$ 与 $X \in \mathbb{R}^{R \times T}$ 为因子矩阵,由于 X 对应着时间维度,也被称为时序因子矩阵; ρ 为正则项的权重系数。

根据例5中给出的向量自回归形式,可利用自回归过程的残差构造损失函数。在这里,不妨对时序因子矩阵构造向量自回归过程,则时序矩阵分解的优化问题为

$$\min_{\boldsymbol{W}, \boldsymbol{X}, \{\boldsymbol{A}_k\}} \frac{1}{2} \left\| \mathcal{P}_{\Omega} (\boldsymbol{Y} - \boldsymbol{W}^{\top} \boldsymbol{X}) \right\|_{F}^{2} + \frac{\rho}{2} \left(\|\boldsymbol{W}\|_{F}^{2} + \|\boldsymbol{X}\|_{F}^{2} \right) + \frac{\lambda}{2} \left\| \boldsymbol{X} \boldsymbol{\Psi}_{0}^{\top} - \sum_{k=1}^{d} \boldsymbol{A}_{k} \boldsymbol{X} \boldsymbol{\Psi}_{k}^{\top} \right\|_{F}^{2}$$
(6.4)

其中, $A_1, A_2, \ldots, A_d \in \mathbb{R}^{R \times R}$ 为自回归过程的系数矩阵; λ 为正则项的权重系数。

6.1.2 求解过程

为了估计优化问题中的待定参数,即变量 $W \setminus X$ 以及 A_1, A_2, \ldots, A_d ,可采用交替优化 算法 (alternating minimization algorithm)。交替优化算法(如交替最小二乘法)是求解矩阵 分解中非凸优化问题的常用方法,该方法采用迭代算法,可通过交替更新带估计变量最终达 到收敛。在时序矩阵分解中,每次更新特定变量时,可令其他变量固定不变,仅求解当前变量的最优解(如最小二乘解)或近似解。

更新变量 W

不妨将时序矩阵分解优化问题的目标函数记作 f, 对变量 W 求偏导数, 有

$$\frac{\partial f}{\partial \mathbf{W}} = -\mathbf{X} \mathcal{P}_{\Omega}^{\top} (\mathbf{Y} - \mathbf{W}^{\top} \mathbf{X}) + \rho \mathbf{W}$$
(6.5)

$$\boldsymbol{w}_{i} = \left(\sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} \boldsymbol{x}_{t}^{\top} + \rho \boldsymbol{I}_{R}\right)^{-1} \sum_{t:(i,t)\in\Omega} \boldsymbol{x}_{t} y_{i,t}$$
(6.6)

更新变量 X

6.2 低秩拉普拉斯卷积模型

- 6.2.1 拉普拉斯卷积核
- 6.2.2 循环矩阵核范数最小化
- 6.2.3 时间序列缺失值重构

除了对时间序列进行建模,该模型同样适用于其他数据场景,例如图片复原。

例 30. 对灰度图片进行重构。