

examples of integrally closed extensions

Canonical name ExamplesOfIntegrallyClosedExtensions

Date of creation 2013-03-22 17:01:32 Last modified on 2013-03-22 17:01:32

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 9

Author rm50 (10146) Entry type Example Classification msc 13B22 Classification msc 11R04 **Example.** $\mathbb{Z}[\sqrt{5}]$ is not integrally closed, for $u = \frac{1+\sqrt{5}}{2} \in \mathbb{Q}[\sqrt{5}]$ is integral over $\mathbb{Z}[\sqrt{5}]$ since $u^2 - u - 1 = 0$, but $u \notin \mathbb{Z}[\sqrt{5}]$.

Example. $R = \mathbb{Z}[\sqrt{2}, \sqrt{3}]$ is not integrally closed. Note that $(\sqrt{6} + \sqrt{2})/2 \notin R$, but that

$$\left(\frac{\sqrt{6}+\sqrt{2}}{2}\right)^2 = 2+\sqrt{3}$$

and so $(\sqrt{6} + \sqrt{2})/2$ is integral over \mathbb{Z} since it satisfies the polynomial $(z^2 - 2)^2 - 3 = 0$.

Example. \mathcal{O}_K is integrally closed when $[K:\mathbb{Q}]<\infty$. For if $u\in K$ is integral over \mathcal{O}_K , then $\mathbb{Z}\subset\mathcal{O}_K\subset\mathcal{O}_K[u]$ are all integral extensions, so u is integral over \mathbb{Z} , so $u\in\mathcal{O}_K$ by definition. In fact, \mathcal{O}_K can be defined as the integral closure of \mathbb{Z} in K.

Example. $\mathbb{C}[x,y]/(y^2-x^3)$. This is a domain because y^2-x^3 is irreducible hence a prime ideal. But this quotient ring is not integrally closed. To see this, parameterize $\mathbb{C}[x,y] \to \mathbb{C}[t]$ by

$$\begin{array}{ccc} x & \mapsto t^2 \\ y & \mapsto t^3 \end{array}$$

The kernel of this map is $(y^2 - x^3)$, and its image is $\mathbb{C}[t^2, t^3]$. Hence

$$\mathbb{C}[x,y]/(y^2-x^3) \cong \mathbb{C}[t^2,t^3]$$

and the field of fractions of the latter ring is obviously $\mathbb{C}(t)$. Now, t is integral over $\mathbb{C}[t^2,t^3]$ (z^2-t^2 is its polynomial), but is not in $\mathbb{C}[t^2,t^3]$. t corresponds to $\frac{y}{x}$ in the original ring $\mathbb{C}[x,y]/(y^2-x^3)$, which is thus not integrally closed (the minimal polynomial of $\frac{y}{x}$ is z^2-x since $(\frac{y}{x})^2-x=\frac{y^2}{x^2}-x=\frac{x^3}{x^2}-x=0$). The failure of integral closure in this coordinate ring is due to a codimension 1 singularity of y^2-x^3 at 0.

Example. $A = \mathbb{C}[x, y, z]/(z^2 - xy)$ is integrally closed. For again, parameterize $A \to \mathbb{C}[u, v]$ by

$$\begin{array}{ccc}
x & \mapsto u^2 \\
y & \mapsto v^2 \\
z & \mapsto uv
\end{array}$$

The kernel of this map is $z^2 - xy$ and its image is $B = \mathbb{C}[u^2, v^2, uv]$. Claim B is integrally closed. We prove this by showing that the integral closure of

 $\mathbb{C}[x,y]$ in $\mathbb{C}(x,y,\sqrt{xy})$ is $\mathbb{C}[x,y,\sqrt{xy}]$. Choose $r+s\sqrt{xy}\in\mathbb{C}(x,y,\sqrt{xy}), r,s\in\mathbb{C}(x,y)$ such that $r+s\sqrt{xy}$ is integral over $\mathbb{C}[x,y]$. Then $r-s\sqrt{xy}$ is also integral over $\mathbb{C}[x,y]$, so their sum is. Hence 2r is integral over $\mathbb{C}[x,y]$. But $\mathbb{C}[x,y]$ is a UFD, hence integrally closed, so $2r\in\mathbb{C}[x,y]$ and thus $r\in\mathbb{C}[x,y]$. Similarly, $s\sqrt{xy}$ is integral over $\mathbb{C}[x,y]$, hence $s^2xy\in\mathbb{C}[x,y], s\in\mathbb{C}(x,y)$. Clearly, then, s can have no denominator, so $s\in\mathbb{C}[x,y]$. Hence $r+s\sqrt{xy}\in\mathbb{C}[x,y,\sqrt{xy}]$.