Sensitivity Analysis of Stokes flow

Considerations

The q value was fixed at q=0.01 in order to simplify the problem and that is the reason the result **control.pvd** does not get in the global optimum.

This code uses Dolfin-Adjoint for the sake of simplicity, however it can also be done purely with Fenics.

Simulation

All the code used in this simulation can be found in this Github repository Sensitivity_Analysis_Stokes.py .

Results

The sensitivity can be found for each iteration in **output/derivative.pvd**. Here's our logo (hover to see the title text):

Final Derivatie Plot:

Final Design Variable:

The results of the control variable can be found in **output/control.pvd** and the sensitivity in **output/derivatives_999.vtu** where 999 is the iteration wanted. The output file look like:

```
<UnstructuredGrid>
<Piece NumberOfPoints="2601" NumberOfCells="5000">
<Points>
<DataArray type="Float64" NumberOfComponents="3" format="ascii">
0 0 0 0.03 0 0 0.06 0 0 0.09 0 0 0.12 0 0 0.15 0 0 0.18 0 0
0.21 0 0 0.24 0 0 0.27 0 0 0.3 0 0 0.33 0 0 0.36 0 0 0.39 0 0
0.42 0 0 0.45 0 0 0.48 0 0 0.51 0 0 0.54 0 0 0.57 0 0 0.6 0 0
0.63 0 0 0.66 0 0 0.68999999999999 0 0 0.72 0 0 0.75 0 0 0.78
0 0 0.8100000000000001 0 0 0.84 0 0 0.87 0 0 0.9 0 0 0.93 0 0
```

. . .

</PointData>

</Piece>

</UnstructuredGrid>

</VTKFile>