§3. Действия с комплексными числами, представленными в тригонометрической форме

1. Умножение комплексных чисел. Пусть отличные от нуля комплексные числа z_1 и z_2 записаны в тригонометрической форме:

$$z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1), \quad z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2).$$
 (3.1)

Найдем тригонометрическую форму произведения $z_1 z_2$. Имеем:

$$z_{1}z_{2} = r_{1}r_{2} \left(\cos\varphi_{1} + i\sin\varphi_{1}\right)\left(\cos\varphi_{2} + i\sin\varphi_{2}\right) =$$

$$= r_{1}r_{2}\left[\left(\cos\varphi_{1}\cos\varphi_{2} - \sin\varphi_{1}\sin\varphi_{2}\right) + i\left(\cos\varphi_{1}\sin\varphi_{2} + \sin\varphi_{1}\cos\varphi_{2}\right)\right] =$$

$$= r_{1}r_{2}\left[\cos(\varphi_{1} + \varphi_{2}) + i\sin(\varphi_{1} + \varphi_{2})\right]. \text{ Отсюда:}$$

$$z_{1}z_{2} = r_{1}r_{2}\left(\cos(\varphi_{1} + \varphi_{2}) + i\sin(\varphi_{1} + \varphi_{2})\right). \tag{3.2}$$

Правая часть равенства (3.2) является тригонометрической формой числа $z_1 z_2$.

Из (3.2) следует:

$$|z_1z_2| = |z_1| \cdot |z_2| = r_1r_2$$
; $\arg(z_1z_2) = \varphi_1 + \varphi_2 = \arg z_1 + \arg z_2$.

При умножении комплексных чисел z_1 , z_2 их модули перемножаются, а аргументы складываются (точнее: сложив аргументы сомножителей, получаем одно из значений $\arg(z_1z_2)$). Геометрически умножение z_1 на z_2 сводится к повороту вектора z_1 на угол $\arg z_2$ и к изменению длины вектора z_1 в $|z_2|$ раз.

2. Деление комплексных чисел. Найдём частное z_1/z_2 , где z_1 и z_2 заданы равенствами (3.1). Имеем:

$$\frac{z_{1}}{z_{2}} = \frac{r_{1}(\cos\varphi_{1} + i\sin\varphi_{1})}{r_{2}(\cos\varphi_{2} + i\sin\varphi_{2})} = \frac{r_{1}}{r_{2}} \cdot \frac{(\cos\varphi_{1} + i\sin\varphi_{1})(\cos\varphi_{2} - i\sin\varphi_{2})}{(\cos\varphi_{2} + i\sin\varphi_{2})(\cos\varphi_{2} - i\sin\varphi_{2})} =
= \frac{r_{1}}{r_{2}} \cdot \frac{(\cos\varphi_{1}\cos\varphi_{2} + \sin\varphi_{1}\sin\varphi_{2}) + i(\sin\varphi_{1}\cos\varphi_{2} - \cos\varphi_{1}\sin\varphi_{2})}{\cos^{2}\varphi_{2} + \sin^{2}\varphi_{2}} =
= \frac{r_{1}}{r_{2}} \cdot (\cos(\varphi_{1} - \varphi_{2}) + i\sin(\varphi_{1} - \varphi_{2})) \cdot 3\text{начит},
\frac{z_{1}}{z_{2}} = \frac{r_{1}}{r_{2}} (\cos(\varphi_{1} - \varphi_{2}) + i\sin(\varphi_{1} - \varphi_{2})),$$
(3.3)

причём правая часть этого равенства является тригонометрической формой числа z_1/z_2 . Таким образом,

при делении комплексных чисел их модули делятся, а аргументы вычитаются (точнее: при вычитании из аргумента числителя аргумента знаменателя получается одно из значений аргумента частного).

Пример 3.1. Пусть
$$z_1 = 1 - i$$
, $z_2 = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$, $z_3 = \frac{1}{2} + i \frac{\sqrt{3}}{2}$. Найти $z_1 z_2$ и

$$\frac{z_1}{z_3}$$
.

▶ Запишем заданные числа в тригонометрической форме:

$$z_1 = \sqrt{2} \cdot (\cos(-\pi/4) + i\sin(-\pi/4); \ z_2 = \cos(\pi/4) + i\sin(\pi/4);$$
$$z_3 = \cos(\pi/3) + i\sin(\pi/3).$$

Таким образом, $|z_1| = \sqrt{2}$, $\arg z_1 = -\pi/4$; $|z_2| = |z_3| = 1$; $\arg z_2 = \pi/4$; $\arg z_3 = \pi/3$, $z_1 z_2 = \sqrt{2} \cdot 1 \cdot (\cos(-\pi/4 + \pi/4) + i \sin(-\pi/4 + \pi/4)) = \sqrt{2}$;

$$\frac{z_1}{z_3} = \frac{\sqrt{2}}{1} \left(\cos \left(-\frac{\pi}{4} - \frac{\pi}{3} \right) + i \sin \left(-\frac{\pi}{4} - \frac{\pi}{3} \right) \right) = \sqrt{2} \cdot \left(\cos \left(-\frac{7}{12} \pi \right) + i \sin \left(-\frac{7}{12} \pi \right) \right). \blacktriangleleft$$

3. Формула Муавра. Пусть $z \neq 0$, $z = r(\cos \varphi + i \sin \varphi)$, где r = |z|, $\varphi = \arg z$, n — натуральное число. Степень z^n представляет собой произведение n одинаковых множителей, поэтому z^n можно вычислить по формуле (3.2):

$$z^{n} = r^{n}(\cos n\varphi + i\sin n\varphi). \tag{3.4}$$

Определим целые неположительные степени комплексного числа z, $z \neq 0$. По определению положим $z^0 = 1$ и $z^{-n} = \frac{1}{z^n}$ для всякого n, $n \in \mathbb{N}$. Заметим: если r = |z|, $\varphi = \arg z$, а $n \in \mathbb{N}$, то, воспользовавшись формулой (1.6), получим:

$$z^{-n} = \frac{1}{r^n(\cos n\varphi + i\sin n\varphi)} = \frac{1}{r^n}(\cos n\varphi - i\sin n\varphi) = r^{-n}(\cos(-n)\varphi + i\sin(-n)\varphi).$$

Итак, равенство (3.4) справедливо при любых целых n. Это равенство называют формулой Муавра; его правая часть представляет собой тригонометрическую форму числа z^n , $n \in \mathbb{Z}$. Заметим, что $|z^n|$ равен $|z|^n$. Если $\varphi = \arg z$, то $n\varphi$ есть одно из значений $\arg(z^n)$. В частности, при r = 1 из (3.4) имеем:

$$(\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin n\varphi. \tag{3.5}$$

4. Извлечение корня из комплексного числа.

Определение 3.1. Пусть n — натуральное число, $n \ge 2$. *Корнем n-ой степени* из комплексного числа z называется комплексное число w, удовлетворяющее равенству:

$$w^n = z. (3.6)$$

Обозначение: $w = \sqrt[n]{z}$.

Покажем, что корень n-ой степени из любого комплексного числа существует и имеет ровно n различных значений, за исключением случая z = 0. Положим: $w = \rho(\cos\psi + i\sin\psi)$, $z = r(\cos\phi + i\sin\phi)$. Равенство (3.6) в силу формулы Муавра эквивалентно следующему:

$$\rho^{n}(\cos n\psi + in\sin\psi) = r(\cos\varphi + i\sin\varphi). \tag{3.7}$$

Два комплексных числа равны только в том случае, когда равны их модули, а аргументы отличаются на слагаемое, кратное 2π , поэтому из (3.7) имеем:

$$\rho^n = r, \quad n\psi = \varphi + 2\pi k, \ k \in \mathbb{Z}.$$

Отсюда получаем:

$$\rho = \sqrt[n]{r}$$
 (корень арифметический), $\psi = \frac{\varphi + 2\pi k}{n}, k \in \mathbb{Z}.$

Таким образом, корень n-ой степени из числа z существует и имеет значения:

$$w = \sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \ k \in \mathbf{Z}.$$
 (3.8)

В случае z=0, очевидно, $\rho=0$ и w=0 — единственное значение $\sqrt[n]{0}$. Покажем, что при $z\neq 0$ среди чисел, определяемых (3.8), ровно n различных. Положив в (3.8) k=0,1,2,...,n-1, получим n различных значений $\sqrt[n]{z}$:

$$w_k = \sqrt[n]{z} = \sqrt[n]{r} \left(\cos \frac{\varphi + 2\pi k}{n} + i \sin \frac{\varphi + 2\pi k}{n} \right), \quad k = 0, 1, 2, ..., n - 1.$$
 (3.9)

Если k не совпадает ни с одним из чисел 0,1,2,...,n-1, то соответствующее ему значение $\sqrt[n]{z}$ в силу периодичности синуса и косинуса будет совпадать с

одним из чисел в (3.9). Так, $w_n = w_0$, $w_{n+1} = w_1$ и т.д. Итак, показано, что все различные значения корня n-ой степени из числа $z = r(\cos\varphi + i\sin\varphi)$ содержатся в формуле (3.9). Модуль любого из этих значений равен $\sqrt[n]{r}$ (имеется в виду арифметическое значение корня степени n из положительного числа r), а аргументы соседних значений отличаются на одно и то же число $2\pi/n$, так что все они лежат на окружности радиуса $\sqrt[n]{r}$ с центром в точке z = 0 и делят эту окружность на n равных дуг (рис. 3.1).

Рис. 3.1. Расположение корней степени n из числа z

Пример 3.2. Найти все значения $\sqrt[n]{1}$.

► Обозначим $w = \sqrt[n]{1}$ и представим число 1 в тригонометрической форме: $1 = 1 \cdot (\cos 0 + i \sin 0)$. Так как r = 1; $\varphi = \arg 1 = 0$, то в силу (3.9) имеем:

$$w_k = \sqrt[n]{1} \cdot \left(\cos\frac{0 + 2k\pi}{n} + i\sin\frac{0 + 2k\pi}{n}\right) = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n},$$

где k достаточно придать значения 0, 1, ..., n-1.

При n=2 и k=0,1, получаем два значения корня квадратного из единицы:

$$z_0 = \cos 0 + i \sin 0 = 1$$
; $z_1 = \cos \frac{2\pi}{2} + i \sin \frac{2\pi}{2} = -1$.

При n=3 и k=0,1,2, имеем три значения корня кубического из единицы:

$$z_0 = \cos 0 + i \sin 0 = 1,$$

$$z_1 = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}; \ z_1 = \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}.$$

Эти три точки делят единичную окружность на три равные дуги. ◀