

RNA-seq to study HIV Infection in cells

Jason Laird
Bioinformatics Scientist
Feb 2022

Research Technology Team

Delilah Maloney
High Performance Computing Specialist

Kyle Monahan Senior Data Science Specialist

Shawn Doughty

Manager, Research Computing

Jason LairdBioinformatics Scientist

Chris Barnett Senior Geospatial Analyst

Tom Phimmasen
Senior Data Consultant

Patrick Florance
Director, Academic Data Services

Jake Perl
Digital Humanities NLP Specialist

Carolyn Talmadge
Senior GIS Specialist

Uku-Kaspar Uustalu Data Science Specialist

- ✓ Consultation on Projects and Grants
- ✓ High Performance Compute Cluster
- ✓ Workshops

https://it.tufts.edu/research-technology

Outline

Bulk and single cell RNA sequencing

Intro to Galaxy Platform for Bioinformatics (Tufts network or VPN required)

https://galaxy.cluster.tufts.edu/

Work through RNAseq example together on Galaxy

https://rbatorsky.github.io/in tro-to-rnaseq-with-galaxy/ 2 days!

DNA and RNA in a cell

Two common analyses

DNA Sequencing

- Fixed number of copies of a gene per cell
- Analysis goal:
 Variant calling and interpretation

RNA Sequencing

- Number of copies of a gene transcript per cell depends on gene expression
- Analysis goal:
 - Bulk : Differential expression
 - Single cell : Quantify different cell populations

Today we will cover RNA sequencing

RNA Sequencing

- Number of copies of a gene transcript per cell depends on gene expression
- Analysis goal:
 - Bulk : Differential expression
 - Single cell : Quantify different cell populations

"Bulk" RNA seq workflow

Library prep and sequencing

Bioinformatics

Good resource: Griffiths et al Plos Comp Bio 2015

RNA seq library prep and sequencing

Good resource: <u>Griffiths et al Plos Comp Bio 2015</u>

RNA seq library prep and sequencing

- Enrichment for mRNA, two options
- In humans, ~95%–98% of all RNA molecules are rRNAs

Good resource: <u>Griffiths et al Plos Comp Bio 2015</u>

RNA seq library prep and sequencing

- Enrichment for mRNA, two options
- In humans, ~95%–98% of all RNA molecules are rRNAs
- Random priming and reverse transcription
- Double stranded cDNA synthesis
- Sequencing adapter ligation

Resources:

Illumina Sequencing by Synthesis
Griffiths et al Plos Comp Bio 2015

RNA seq bioinformatics

Goal of Differential Expression

"How can we detect genes for which the counts of reads change between conditions **more systematically** than as expected by chance"

Oshlack et al. 2010. From RNA-seq reads to differential expression results. Genome Biology 2010, 11:220

Our dataset

Next-Generation Sequencing Reveals HIV-1-Mediated Suppression of T Cell Activation and RNA Processing and Regulation of Noncoding RNA Expression in a CD4⁺ T Cell Line

Stewart T. Chang, Pavel Sova, Xinxia Peng, Jeffrey Weiss, G. Lynn Law, Robert E. Palermo, Michael G. Katze

HIV lifecycle

HIV lifecycle

Life Cycle 1. Binding 2. Fusion 7. Budding CD4 Cell 3. Reverse Transcription 6. Assembly 4. Integration 5. Replication

HIV infection in a human host

The study question

What changes take place in the first 12-24 hours of HIV infection in terms of gene expression of host cell and viral replication levels?

Study findings

Using RNAseq, authors demonstrate:

- 20% of reads mapped to HIV at 12 hr, 40% at 24hr
- Downregulation of T cell differentiation genes at 12hr
- 'Large-scale disruptions to host transcription' at 24hr

Bulk vs Single Cell RNA Sequencing

scRNA cell subsets in PBMC

10x single cell technology

Bulk RNAseq for Differential Expression is OK!

Compare relative gene expression between conditions

Our (bulk) RNAseq Workflow

Quality control on Raw Reads

Raw reads in Fastq format

@SRR098401.109756285

GACTCACGTAACTTTAAACTCTAACAGAAATATACTA...

+

CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD...

- 1. Sequence identifier
- 2. Sequence
- 3. + (optionally lists the sequence identifier again)
- 4. Quality string

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

```
Quality encoding: !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHI
```

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Base Quality Scores

The symbols we see in the read quality string are an encoding of the quality score:

A quality score is a prediction of the probability of an error in base calling:

Quality Score	Probability of Incorrect Base Call	Inferred Base Call Accuracy
10 (Q10)	1 in 10	90%
20 (Q20)	1 in 100	99%
30 (Q30)	1 in 1000	99.9%

Back to our read:

```
@SRR098401.109756285
GACTCACGTAACTTTAAACTCTAACAGAAATATACTA...
+
CAEFGDG?BCGGGEEDGGHGHGDFHEIEGGDDDD...
```

 $C \rightarrow Q = 34 \rightarrow Probability < 1/1000 of an error$

Raw read quality control

Fastq File

@SRR497699.30343179.1 HWI-EAS39X_10175_FC61MK0_4_117_4812_10346 length=75 CAGATGGCCGCAGAGGGAAGCCATGAAGGCCCTGCATGGGGAAGACCGGTTCAGCAGGAATGCCGAGAC

+

+

+

-

HHHHHHHHHHGGGGGHHHGHGEBEEGGEDGGGGGGHHHHHGGEGBDGGGDDGBGGC<EADBEBE<GGGGBEEDGD

• • •

<u>Metrics</u>

- Sequence Quality
- GC content

FastQC Tool

- Per base sequence content
- Adapters in Sequence

FastQC: Sequence Quality Histogram

Position in read (bp)

GOOD
High quality over the length of the read

BAD Read quality drops at the beginning and end

FastQC: Per sequence GC content

Per sequence GC content

Mean GC content (%)

FastQC: Per sequence GC content

Per sequence GC content

GOOD: follows normal distribution (sum of deviations is < 15% of reads)

Per sequence GC content

BAD: can indicate contamination with adapter dimers, or another species

FastQC: Per Base Sequence Content

- Proportion of each position for which each DNA base has been called
- RNAseq data tends to show a positional sequence bias in the first ~12 bases
- The "random" priming step during library construction is not truly random and certain hexamers are more prevalent than others

FastQC: Per Base Sequence Content

EXPECTED for RNAseq

BAD:

Shows a strong positional bias throughout the reads, which in this case is due to the library having a certain sequence that is overrepresented

FastQC: Adapter content

FastQC will scan each read for the presence of known adapter sequences

The plot shows that the adapter content rises over the course of the read

Solution – Adapter trimming!

FastQC -> MultiQC

Should view all samples at once to notice abnormalities for our dataset.

We'll use a tool called "Trim Galore!" to trim adapters and remove low quality bases/reads.

Workflow

Read Alignment

- RNAseq data originates from spliced mRNA (no introns)
- When aligning to the genome, our aligner must find a spliced alignment for reads
- We use a tool called STAR (Spliced Transcripts Alignment to a Reference) that has a exon-aware mapping algorithm.

full-length mRNA AAAAAA 3' **cDNA** fragments sequencing aligned reads exon

Reference sequence

Sequence Alignment Map (SAM)

Read ID

Sequence Alignment Map (SAM)

Genome Annotation Standards

- STAR can use an annotation file gives the location and structure of genes in order to improve alignment in known splice junctions
- Annotation is dynamic and there are at least three major sources of annotation
- The intersection among RefGene, UCSC, and Ensemble annotations shows high overlap. RefGene has the fewest unique genes, while more than 50% of genes in Ensemble are unique
- Be consistent with your choice of annotation source!

Gene Annotation Format (GTF)

In order to count genes, we need to know where they are located in the reference sequence STAR uses a Gene Transfer Format (GTF) file for gene annotation

Frame

						Stra	and	
Chrom	Source	Feature type	Start	Stop	(Sco	re)		Attribute
chr5	hg38_refGene	exon	138465492	138466068		+		gene_id "EGR1";
chr5	hg38_refGene	CDS	138465762	138466068		+	0	gene_id "EGR1";
chr5	hg38_refGene	start_codon	138465762	138465764		+		gene_id "EGR1";
chr5	hg38_refGene	CDS	138466757	138468078		+	2	gene_id "EGR1";
chr5	hg38_refGene	exon	138466757	138469315		+		gene_id "EGR1";
chr5	hg38_refGene	stop_codon	138468079	138468081		+		gene_id "EGR1";

A note on standards

HOW STANDARDS PROLIFERATE: (SEE: A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC.)

SITUATION: THERE ARE 14 COMPETING STANDARDS.

Visualizing reads with JBrowse

Workflow

Counting reads for each gene

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded

Counting reads: featurecounts

- The mapped coordinates of each read are compared with the features in the GTF file
- Reads that overlap with a gene by >=1 bp are counted as belonging to that feature
- Ambiguous reads will be discarded

Result is a gene count matrix:

Gene	Sample 1	Sample 2	Sample 3	Sample 4
Α	1000	1000	100	10
В	10	1	5	6
С	10	1	10	20

Workflow

- Raw Count != Expression strength
- Normalization:
 - Eliminates factors that are not of interest for our experiment
 - Enables accurate comparison between samples or genes

Sample A Reads

The number of reads mapped to a gene depends on

Gene Length

Sample A Reads

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample (RNA Composition)

The number of reads mapped to a gene depends on

- Gene Length
- Sequencing depth
- The expression level of other genes in the sample (RNA Composition)

DESeq2 Median of Ratios

Gene	Sample A	Sample B
X	26	10
Υ	26	10
Z	26	10
DE	2	50

1. Take a row-wise average to produce an average sample (geometric mean)

$\sqrt[n]{x_1x_2}$	•	•	•	$\overline{x_n}$

Gene	Sample A	Sample B	Avg. Sample
Х	26	10	 16
Υ	26	10	16
Z	26	10	16
DE	2	50	10

1. Take a row-wise average to produce an average sample (geometric mean)

an)	$\sqrt[n]{x_1x_2}$	•	•	•	x_n	

Gene	Sample A	Sample B	Avg. Sample
Χ	26	10	 16
Υ	26	10	16
Z	26	10	16
DE	2	50	10

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B /Avg.
Χ	26/16 = 1.6	10/16 = 0.6
Υ	1.6	0.6
Z	1.6	0.6
DE	0.2	5

1. Take a row-wise average to produce an average sample (geometric mean) $\sqrt[n]{x}$

$$\sqrt[n]{x_1x_2\cdots x_n}$$

Gene	Sample A	Sample B	Avg. Sample
Х	26	10	 16
Υ	26	10	16
Z	26	10	16
DE	2	50	16

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B /Avg.
Χ	26/16 = 1.6	10/16 = 0.6
Υ	1.6	0.6
Z	1.6	0.6
DE	0.2	5

3. Take the **median** of each column. Should be ~1 for all

Size factor	1.6	0.6
-------------	-----	-----

1. Take a row-wise average to produce an average sample (geometric mean)

$$\sqrt[n]{x_1x_2\cdots x_n}$$

Gene	Sample A	Sample B	Avg. Sample
Χ	26	10	 16
Υ	26	10	16
Z	26	10	16
DE	2	50	16

2. Divide all rows by the Average Sample for that gene (Ratio)

Gene	Sample A/Avg.	Sample B /Avg.
X	26/16 = 1.6	10/16 = 0.6
Υ	1.6	0.6
Z	1.6	0.6
DE	0.2	5

4. Divide all counts by sample specific size factor

Gene	Sample A / S _A	Sample B / S _B
X	16.3	16.7
Υ	16.3	16.7
Z	16.3	16.7
DE	1.3	83.3

Normalized counts for non-DE genes are similar!

3. Take the **median** of each column. Should be ~1 for all

Size factor	1.6	0.6
-------------	-----	-----

Assumption of DESeq2 Median of Ratios

Median of Ratios method assumes that most genes are not Differentially Expressed between samples.

Assumption of DESeq2 Median of Ratios

Median of Ratios method assumes that most genes are not Differentially Expressed between samples.

COUNTER EXAMPLE

NOTE: add back full picture or remove

- Late stage cell death (total RNA DOWN)
- High c-Myc cells (total RNA UP)

Known quantity spike-in transcripts (ERCC) can be used to normalize in these cases.

Loven et al "Revisiting Global Gene Expression Analysis" Cell 2012 https://doi.org/10.1016/j.cell.2012.10.012

Normalization methods

Normalization method	Description	Accounted factors	Recommended use
CPM (counts per million)	K _i Total Reads per Sample/10 ⁶	sequencing depth	Comparison between replicates of the sample group
R/FPKM (reads/fragments per kilobase of exon per million reads/fragments mapped)	$\frac{K_{i}}{\textit{Gene Length}/10^{3}*\;\textit{Total Reads per Sample}/10^{6}}$	sequencing depth and gene length	Comparison between genes in a sample
DESeq2's median of ratios [1]	K_i divided by sample-specific size factors		Differential Expression between samples

Similar to DESeq2: EdgeR, limma-voom

Quality Control Visualizations

Examine sources of variation in the data

- Principal Component Analysis
- Hierarchical Clustering

(Log2 + 1) Transformed, Normalized Count Table

Gene	Sample A	Sample B	Sample C
1	1	1.6	0.5
2	2.2	-0.2	1
3	-1	1	3.1

Principle Component Analysis

Dimension reduction technique Example: 3 gene dimensions -> 2 PC

Gene	Mock_12h	Mock_12h	Mock_24h	Mock_24h	HIV_12h	HIV_12h	HIV_24h	HIV_24h
Gene 1	8.9	8.9	8.9	9.0	8.9	8.9	9.0	6.8
Gene 2	0.6	-1.0	0.6	-1.0	0.6	-1.0	0.6	3.8
Gene 3	4.1	11.9	4.1	-0.5	4.1	8.7	4.0	4.4

original data space

Gene 1

Gene 2

Do your samples cluster as expected?

What are the major sources of variation in the data?

Principle Component Analysis

- ✓ Do your samples cluster as expected?
- ✓ What are the major sources of variation in the data?

Principle Component Analysis

- ✓ Do your samples cluster as expected?
- ✓ What are the major sources of variation in the data?
- ✓ Is there a batch effect?

Image https://support.bioconductor.org/p/111491/

Differential Expression with DESeq2

Multi-factor experiment design

Factor 1: Infection status (Mock or HIV)

Factor 2: Time (12 or 24 hr)

Multi-factor experiment design

- Differential Expression compares two conditions
- We'll choose Infection status at 12 hr (Mock or HIV) for comparison
- We could also choose time, or a combination of multiple factors

Step 1: Modeling gene expression values

All leading DE tools use regression models to estimate the fold change between conditions for each gene

Step 1: Modeling gene expression values

All leading DE tools use **regression models** to estimate the fold change between conditions for **each gene** Example, simple linear regression:

DESeq2 uses a Generalized Linear Model with a Negative Binomial error Distribution, which has been shown to be best fit for RNAseq data.

Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biol* **15**, 550 (2014).

Step 2: Hypothesis Testing

Is EGR1 differentially expressed?

$$H_0: \beta_1 = 0$$
 vs. $H_A: \beta_1 \neq 0$

H_o: there is no systematic difference between the average read count values for Mock vs. HIV

- Statistical test Wald test (similar to t-test) on β_1
- $Z = \beta_1/SE_{\beta_1}$
- Z-statistic is compared to the normal distribution and probability of getting a statistic at least as extreme is computed

DESeq2 Results table

GeneID	Base mean	log2FoldChange	StdErr	P-value	P-adj
EGR1	1273	1.55	0.13	1.19e-77	1.52e-73
MYC	5226	-1.53	0.14	1.63e-36	1.03e-32

- Mean of normalized counts averaged over all samples from two conditions (HIV, Mock)
- Log of the fold change between two conditions
- StdErr Standard error of coefficient (e.g. b₁)
- P-value the probability that the Wald statistic is as extreme as observed if H_O were true
- P-adj accounting for multiple testing correction

Study findings

 T cell differentiation-related genes were overrepresented in the DEG at 24hr

'Large-scale disruptions to host transcription' at 24hr

References

DESeq2 vignette (R/Rstudio):

http://www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#dif ferential-expression-analysis

HBC Training (Command line/R):

https://hbctraining.github.io/DGE workshop

Galaxy Training:

https://galaxyproject.org/tutorials/rb_rnaseq/