Endomorphismes orthogonaux 10

Espaces euclidiens

Soient $x = (x_1; x_2; \dots; x_n)$ et $y = (y_1; y_2; \dots; y_n)$ deux vecteurs de \mathbb{R}^n .

Le **produit scalaire** de x et de y, que l'on note $x \cdot y$, est le nombre

$$x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i$$

Un espace vectoriel muni d'un produit scalaire s'appelle un **espace euclidien**.

10.1 Montrer les propriétés du produit scalaire :

1)
$$x \cdot y = y \cdot x$$

2)
$$x \cdot (y+z) = x \cdot y + x \cdot z$$

3)
$$(\lambda x) \cdot y = \lambda (x \cdot y)$$

4)
$$x \cdot x \geqslant 0$$

5)
$$x \cdot x = 0 \iff x = 0$$

Deux vecteurs d'un espace euclidien E sont dits orthogonaux si leur produit scalaire est nul : $x \cdot y = 0$.

Soit $x = (x_1; \ldots; x_n)$ un vecteur de \mathbb{R}^n .

La **norme** de x, notée ||x||, est le nombre $\sqrt{x_1^2 + \ldots + x_n^2}$.

10.2 Démontrer les propriétés suivantes de la norme :

1)
$$||x||^2 = x \cdot x$$

2)
$$||x|| = 0 \iff x = 0$$
 3) $||\alpha x|| = |\alpha| ||x||$

3)
$$\|\alpha x\| = |\alpha| \|x\|$$

10.3 Inégalité de Cauchy-Schwartz

Soient x et y des vecteurs d'un espace euclidien et λ un scalaire.

1) Vérifier que $0 \le \|\lambda x + y\|^2 = \lambda^2 \|x\|^2 + (2\lambda)(x \cdot y) + \|y\|^2$.

Utiliser la formule $||x||^2 = x \cdot x$ et les propriétés du produit scalaire.

2) En déduire l'inégalité de Cauchy-Schwartz : $|x \cdot y| \le ||x|| ||y||$.

L'inéquation $\lambda^2 ||x||^2 + (2\lambda)(x \cdot y) + ||y||^2 \ge 0$, quelle que soit la variable λ , implique que son discrimant est négatif ou nul.

1) Montrer que $x \cdot y = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2)$. 10.4

Indication : calculer $(x + y) \cdot (x + y)$.

- 2) En déduire le **théorème de Pythagore** : deux vecteurs x et y sont orthogonaux si et seulement si $||x + y||^2 = ||x||^2 + ||y||^2$.
- Montrer l'inégalité du triangle : $||x + y|| \le ||x|| + ||y||$. 10.5

Montrer que $||x+y||^2 \le (||x||+||y||)^2$ grâce à l'inégalité de Cauchy-Schwartz.

Une base d'un espace euclidien est dite **orthonormée** si ses vecteurs sont deux à deux orthogonaux et si leur norme vaut 1.

Par exemple, la base canonique de \mathbb{R}^n est orthonormée.

- 10.6 1) Soient $(e_1; e_2)$ une base de \mathbb{R}^2 , $x = \alpha_1 e_1 + \alpha_2 e_2$ et $y = \beta_1 e_1 + \beta_2 e_2$ deux vecteurs. Montrer, à l'aide des propriétés du produit scalaire, que $x \cdot y = (\alpha_1 \beta_1) \|e_1\|^2 + (\alpha_1 \beta_2 + \alpha_2 \beta_1) (e_1 \cdot e_2) + (\alpha_2 \beta_2) \|e_2\|^2$.
 - 2) Soient $(e_1; e_2)$ une base orthonormée de \mathbb{R}^2 , $x = \alpha_1 e_1 + \alpha_2 e_2$ et $y = \beta_1 e_1 + \beta_2 e_2$ deux vecteurs. Montrer que $x \cdot y = \alpha_1 \beta_1 + \alpha_2 \beta_2$.
 - 3) On considère $(e_1; \ldots; e_n)$ une base orthonormée d'un espace euclidien E, ainsi que des vecteurs $x = \alpha_1 e_1 + \ldots + \alpha_n e_n$ et $y = \beta_1 e_1 + \ldots + \beta_n e_n$. Montrer que $x \cdot y = \alpha_1 \beta_1 + \ldots + \alpha_n \beta_n$.
- Soient E un espace euclidien et $F \subset E$. On appelle **orthogonal** de F, et on le note F^{\perp} , l'ensemble des vecteurs orthogonaux à tous les éléments de F:

$$\mathbf{F}^{\perp} = \{ x \in \mathbf{E} : x \cdot y = 0 \text{ pour tout } y \in \mathbf{F} \}$$

Montrer que \mathcal{F}^\perp est un sous-espace vectoriel de E.

Endomorphismes orthogonaux

Un endomorphisme h d'un espace euclidien E est dit **orthogonal** s'il conserve le produit scalaire :

$$h(x) \cdot h(y) = x \cdot y$$
 quels que soient $x, y \in E$.

10.8 Montrer qu'un endomorphisme h d'un espace euclidien E est orthogonal si et seulement s'il conserve la norme :

$$||h(x)|| = ||x||$$
 pour tout $x \in E$

- 1) Si h est orthogonal, utiliser la propriété $||x||^2 = x \cdot x$ pour montrer que ||h(x)|| = ||x||.
- 2) Si h conserve la norme, montrer que $h(x) \cdot h(y) = x \cdot y$, grâce à l'exercice 10.4 1).

Cet exercice montre que les endomorphismes orthogonaux se confondent avec les isométries vectorielles.

10.9 Montrer qu'un endomorphisme orthogonal est un automorphisme.

Soit $x \in E$ tel que h(x) = 0. Calculer ||h(x)|| et en déduire que x = 0, ce qui prouve que h est injectif. En conclure que h est bijectif.

10.10 Montrer que les seules valeurs propres possibles d'un endomorphisme orthogonal sont ± 1 .

Si x est un vecteur propre associé à la valeur propre λ , alors $h(x) = \lambda x$; conclure grâce aux exercices 10.8 et 10.2 3).

10.11 Soient h un endomorphisme orthogonal d'un espace euclidien E et F un sous-espace vectoriel invariant, c'est-à-dire que $h(x) \in F$ pour tout $x \in F$.

Montrer que F^{\perp} est aussi un sous-espace vectoriel invariant.

Indication : d'après l'exercice 10.9, h est un automorphisme ; la restriction de h à F est donc bijective, c'est-à-dire que pour un $y \in F$ quelconque, il existe $y' \in F$ tel que h(y') = y.

- 10.12 Montrer qu'un endomorphisme est orthogonal si et seulement si l'image d'une base orthonormée est une base orthonormée.
 - 1) Soit $(e_1; \ldots; e_n)$ une base orthonormée. Montrer que si h est un endomorphisme orthogonal, alors $(h(e_1); \ldots; h(e_n))$ forme une base orthonormée.
 - 2) Soit $(e_1; \ldots; e_n)$ une base orthonormée telle que $(h(e_1); \ldots; h(e_n))$ soit aussi une base orthonormée. Si $x = \alpha_1 e_1 + \ldots + \alpha_n e_n$ et $y = \beta_1 e_1 + \ldots + \beta_n e_n$ sont des vecteurs de E, montrer que $h(x) \cdot h(y) = x \cdot y$ grâce à l'exercice 10.6 3).

Proposition Un endomorphisme est orthogonal si et seulement si sa matrice A relativement à une base orthonormée vérifie ${}^{t}AA = I$.

Preuve Soient $(e_1; \ldots; e_n)$ une base orthonormée et $A = (a_{ij})$ la matrice de l'endomorphisme h relativement à cette base.

$$\mathbf{A} = \begin{pmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \underline{a_{n1}} & \dots & \underline{a_{nj}} & \dots & \underline{a_{nn}} \end{pmatrix}$$

$$h(e_1) \qquad h(e_j) \qquad h(e_n)$$

On rappelle que $h(e_j) = a_{1j} e_1 + \ldots + a_{nj} e_n$ pour tout $1 \le j \le n$.

- 1) Vu l'exercice 10.6 3), $h(e_i) \cdot h(e_j) = a_{1i} a_{1j} + \ldots + a_{n1} b_{nj} = \sum_{k=1}^n a_{ki} a_{kj}$.

 Par conséquent, la famille $(h(e_1); \ldots; h(e_n))$ forme une base orthonormée si et seulement si $\sum_{k=1}^n a_{ki} a_{kj} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$.
- 2) Posons B = t AA. Par définition du produit matriciel, on a que $b_{ij} = \sum_{k=1}^{n} {}^{t}a_{ik} a_{kj} = \sum_{k=1}^{n} a_{ki} a_{kj}$.

Ainsi
$${}^{t}\!AA = I$$
 si et seulement si $\sum_{k=1}^{n} a_{ki} \, a_{kj} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases}$.

L'exercice 10.12 parachève la démonstration.

On dit d'une matrice carrée A qu'elle est **orthogonale** si ${}^t\! AA = I$.

Ainsi une matrice A est orthogonale si et seulement si elle est inversible et si sa transposée est égale à son inverse : $A^{-1} = {}^{t}A$.

- 10.13 Vérifier que les matrices ci-dessous sont orthogonales :
 - $1) \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0\\ 0 & 0 & 1\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}$

- $2) \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$
- $3) \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$
- $4) \begin{pmatrix} \frac{6}{7} & \frac{2}{7} & \frac{3}{7} \\ \frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \\ -\frac{3}{7} & \frac{6}{7} & \frac{2}{7} \end{pmatrix}$
- 10.14 Les familles suivantes forment-elles une base orthonormée?
 - 1) $\left(\left(\frac{1}{\sqrt{2}}; 0; \frac{1}{\sqrt{2}} \right); \left(\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}}; -\frac{1}{\sqrt{3}} \right); \left(-\frac{1}{\sqrt{2}}; 0; \frac{1}{\sqrt{2}} \right) \right)$
 - 2) $\left(\left(\frac{2}{3}; -\frac{2}{3}; \frac{1}{3} \right); \left(\frac{2}{3}; \frac{1}{3}; -\frac{2}{3} \right); \left(\frac{1}{3}; \frac{2}{3}; \frac{2}{3} \right) \right)$
 - 3) $\left(\left(\frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}}; \frac{1}{\sqrt{3}} \right); \left(-\frac{1}{\sqrt{2}}; \frac{1}{\sqrt{2}}; 0 \right); \left(\frac{1}{\sqrt{6}}; \frac{1}{\sqrt{6}}; -\frac{2}{\sqrt{6}} \right) \right)$
- 10.15 Montrer que le déterminant d'une matrice orthogonale est égal à ± 1 . Utiliser les propriétés 5) et 6) du déterminant de la page 8.2.
- **10.16** Est-ce que $|\det(A)| = 1$ implique que A est orthogonale?

Réponses

- **10.14** 1) non
- 2) oui
- 3) oui

10.16 non