ESPACES VECTORIELS

PROPRIÉTÉS DES ESPACES VECTORIELS

1 Axiomes d'un espace vectoriel

Soient $\mathbb{K}=\mathbb{R} \ \mathrm{ou} \ \mathbb{C}$ et un ensemble E muni d'une loi interne « + » et d'une loi externe « . » définies par

1.1 Axiomes relatifs à la loi interne

L'espace vectoriel (E,+) est commutatif, associatif et admet un **unique** élément neutre 0_E et un **unique** symétrique pour tout élément de E.

1.2 Axiomes relatifs à la loi externe

1. 1 est l'élément neutre de la multiplication de \mathbb{K} , c'est-à-dire

$$\forall u \in E, 1. u = u.$$

2.
$$\forall (\lambda, \mu) \in \mathbb{K}^2 \text{ et } \forall \ u \in E, \lambda.(\mu.\ u) = (\lambda \mu).\ u.$$

1.3 Axiomes liant les deux lois

- $\forall \lambda \in \mathbb{K} \text{ et } \forall (u_1, u_2) \in E^2, \lambda.(u_1 + u_2) = \lambda.u_1 + \lambda.u_2.$
- $\forall (\lambda, \mu) \in \mathbb{K}^2 \text{ et } \forall u \in E, (\lambda + \mu). \ u = \lambda.u + \mu.u.$

2 Règles de calcul

Soit (E,+,.) un espace vectoriel sur un corps $\mathbb K$. Alors, pour tous $u\in E$ et $\lambda\in\mathbb K$, on a :

- $0. u = 0_E.$
- λ . $0_E = 0_E$.
- -(-1). u = -u.
- λ . $u = 0_E \Leftrightarrow \lambda = 0$ ou $u = 0_E$.

Remarque 1 1. On définit la **soustraction** de u et de v comme étant la somme de u et de l'opposé de v, c'est-à-dire

$$u - v = u + (-v).$$

- 2. $\forall \lambda \in \mathbb{K} \text{ et } \forall (u, v) \in E^2$, $\lambda \cdot (u v) = \lambda \cdot u \lambda \cdot v$.
- 3. $\forall (\lambda, \mu) \in \mathbb{K}^2 \text{ et } \forall u \in E, (\lambda \mu). u = \lambda. u \mu. u.$