#### Parasitic Computing Example

### Initial configuration



- Actions
  - Open TCP connection from parasite code
  - Exchange three messages
  - Extract sequence number
    - from SYN received from host
    - needed for further communication



1a) Send SYN message



1b) Receive SYN message, extract host sequence number



1c) Send ACK message, connection open, ready for data

#### Step 2: Prepare TCP segment



- Checksum
  - Determined by SAT equation
- Data
  - Values of variables for this test

#### Step 2: Prepare TCP segment

- Compute checksum
  - Normally
    - Put 0's in checksum field
    - ◆ Sum segment (add each 16-bits)
    - Insert complemented sum into checksum field
  - Modified (for our exploit)
    - Put 0's in checksum field
    - ◆ Put "answer" in data field, padded to proper length
    - Sum segment (add each 16-bits)
    - Insert complemented sum into checksum field

# Step 3a: Compute (positive answer)



3.a.1) Send modified TCP segment

# Step 3a: Compute (positive answer)



3.a.2) TCP segment is valid, pushed up to HTTP

# Step 3a: Compute (positive answer)



3.a.3) Receive HTTP reply interpret this as a positive answer

# Step 3b: Compute (negative answer)



3.b.1) Send modified TCP sement

# Step 3b: Compute (negative answer)



3.b.2) Invalid segment dropped by TCP

# Step 3b: Compute (negative answer)



3.b.3) Parasite times out, interprets that as negative answer