

WHAT IS CLAIMED IS:

1	1. An isola	ated polynucleotide, comprising a nucleic acid sequence selected from the group
2	consisti	,
3	a)	a polynucleot de of an even SEQ ID NO., or of a human cDNA of a deposited clone,
4		encoding at least any single integer from 6 to 500 amino acids of any one odd SEQ ID
5		NO.,
6	b)	a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,
7		encoding the signal peptide sequence of any one odd SEQ ID NO.,
8	c)	a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,
9		encoding a mature polypeptide sequence of any one odd SEQ ID NO.,
10	d)	a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,
11		encoding a full length polypeptide sequence of any one odd SEQ ID NO.,
12	e)	a polynucleotide of an even SEQ ID NO., or of a human cDNA of a deposited clone,
13		encoding a polypeptide sequence of a biologically active fragment of any one odd
14		SEQ ID NO.,
15	f)	a polynucleotide encoding a polypeptide sequence of at least any single integer from 6
16		to 500 amino acids of any one odd SEQ ID NO. or of a polypeptide encoded by a
17		human cDNA of a deposited clone,
18	g)	a polynucleotide encoding a polypeptide sequence of a signal peptide of any one odd
19		SEQ ID NO. or of a signal peptide encoded by a human cDNA of a deposited clone,
20	h)	a polynucleotide encoding a polypeptide sequence of a mature polypeptide of any one
21		odd SEQ ID NO. or of a mature polypeptide encoded by a human cDNA of a
22		deposited clone,
23	i)	a polynucleotide encoding a polypeptide sequence of a full length polypeptide of any
24		one odd SEQ ID NO. or of a mature polypeptide encoded by a human cDNA of a
25		deposited clone,
26	j)	a polynucleotide encoding a polypeptide sequence of a biologically polypeptide of
27		any one odd SEQ ID NO., or of a biologically polypeptide encoded by a human
28		cDNA of a deposited clone,
29	k)	a polynucleotide of any one of a) through j) further comprising an expression vector,
30	1)	a host cell recombinant for a polynucleotide of a) through k) above,
31	m)	a non-human transgenic animal comprising the host cell of k),
32	n)	a polynucleotide of a) through j) further comprising a physiologically acceptable
33		carrier.

1 2. A polypeptide comprising an amino acid sequence selected from the group consisting of:

		91.US2.REG	
2	2	a)	any single integer from 6 to 500 amino acids of any one odd SEQ ID NO. or of a
3	3		polypeptide encoded by a human cDNA of a deposited clone;
4	1	b)	a signal peptide sequence of any one odd SEQ ID NO. or encoded by a human cDNA
5	5		of a deposited clone;
6	5	c)	a mature polypeptide sequence of any one odd SEQ ID NO. or encoded by a human
7	7		cDNA of a deposited clone;
8	}	d)	a full length polypeptide sequence of any one odd SEQ ID NO. or encoded by a
9)		human cDNA of a deposited clone;
10		e)	a polypeptide of a) through d) further comprising a physiologically acceptable carrier.
1	3	. A metho	od of making a polypeptide, said method comprising
2		a)	providing a population of host cells comprising the polynucleotide of claim 1;
3		b)	culturing said population of host cells under conditions conducive to the production of
4			a polypeptide of claim 2 within said host cells; and
5		c)	purifying said polypeptide from said population of host cells.
1	4.	A metho	d of making a polypeptide, said method comprising:
2		a)	providing a population of cells comprising a polynucleotide encoding the polypeptide
3			of claim 2, operably linked to a promoter;
4		b)	culturing said population of cells under conditions conducive to the production of said
5			polypeptide within said cells; and
6		c)	purifying said polypeptide from said population of cells.
1	5.	An antibo	ody that specifically binds to the polypeptide of claim 2.
1	6.	A method	d of binding a polypeptide of claim 2 to an antibody of claim 5, comprising contacting
2		said antib	ody with said polypeptide under conditions in which antibody can specifically bind to
3		said poly	peptide.
1	7.	A method	of determining whether a GENSET gene is expressed within a mammal, said method
2		comprisin	g the steps of:
3			a) providing a biological sample from said mammal
4			b) contacting said biological sample with either of:
5			i) a polynucleotide that hybridizes under stringent conditions to the
6			polynucleotide of claim 1; or
7			ii) a polypeptide that specifically binds to the polypeptide of claim 2; and
^			· · · · · · · · · · · · · · · · · · ·

c) detecting the presence or absence of hybridization between said polynucleotide

	91.US2.REG
9	and an RNA species within said sample, or the presence or absence of binding
10	of said polypeptide to a protein within said sample;
11	wherein a detection of said hybridization or of said binding indicates that said GENSET gene is
12	expressed within said mammal.
1	8. The method of claim 7, wherein said polynucleotide is a primer, and wherein said hybridization
2	is detected by detecting the presence of an amplification product comprising the sequence of
3	said primer.
1	9. The method of claim 7, wherein said polypeptide is an antibody.
1	10. A method of determining whether a mammal has an elevated or reduced level of GENSET gene
2	expression, said method comprising the steps of:
3	a) providing a biological sample from said mammal; and
4	b) comparing the amount of the polypeptide of claim 2, or of an RNA species
5	encoding said polypeptide, within said biological sample with a level
6	detected in or expected from a control sample;
7	wherein an increased amount of said polypeptide or said RNA species within said biological
8	sample compared to said level detected in or expected from said control sample indicates that
9	said mammal has an elevated level of said GENSET gene expression, and wherein a decreased
10	amount of said polypeptide or said RNA species within said biological sample compared to said
11	level detected in or expected from said control sample indicates that said mammal has a reduced
12	level of said GENSET gene expression.
1 1	1. A method of identifying a candidate modulator of a GENSET polypeptide, said method
2	comprising:
3	a) contacting the polypertide of claim 2 with a test compound; and
4	b) determining whether said compound specifically binds to said polypeptide;
5	wherein a detection that said compound specifically binds to said polypeptide indicates that said
6	compound is a candidate modulator of said GENSET polypeptide.
1 12	2. The method of claim 11, further comprising testing the biological activity of said GENSET
2	polypeptide in the presence of said candidate modulator, wherein an alteration in the biological
3	activity of said GENSET polypeptide in the presence of said compound in comparison to the
4	activity in the absence of said compound indicates that the compound is a modulator of said
5	GENSET polypeptide.

91.US2.REG

5

- 1 13. A method for the production of a pharmaceutical composition comprising
- 2 a) identifying a modulator of a GENSET polypeptide using the method of claim 11;
- 3 and
- b) combining said modulator with a physiologically acceptable carrier.

ADD A1/