Discrete Mathematics, 2016 Fall - Worksheet 16

November 7, 2016

Instructor: Zsolt Pajor-Gyulai, CIMS

In all of the above problems explain your answer in full English sentences.

1. For each of the pair of functions below, determine which of $g \circ f$ and $f \circ g$ is defined. If one or both are defined, find the resulting functions. If both are defined, determine whether $g \circ f = f \circ g$.

Clearly, $f \circ g \neq g \circ f$.

- (a) $f = \{(1,2),(2,3),(3,4)\}$ and $g = \{(1,3),(2,4),(3,1)\}$ Note that $Im(f) = \{2,3,4\} \not\subseteq Dom(g) = \{1,2,3\}$ and therefore $g \circ f$ is not defined. Similarly, $Im(g) = \{1,3,4\} \not\subseteq \{1,2,3\} = Dom(g)$ and therefore $f \circ g$ is not defined either
- (b) $f = \{(1,2),(2,3),(3,4)\}$ and $g = \{(2,1),(3,1),(4,1)\}$ Note that $Im(g) = \{1\} \subseteq \{1,2,3\} = Dom(f)$ and $f \circ g$ is defined and

$$f \circ q = \{(2,2), (3,2), (4,2)\}.$$

Also note that $Im(f) = \{2, 3, 4\} = Dom(g)$ and so $g \circ f$ is defined and

$$g \circ f = \{(1,1), (2,1), (3,1)\}.$$

Clearly $g \circ f \neq f \circ g$.

(c) $f = \{(1,4),(2,4),(3,3),(4,4)\}$ and $g = \{(1,1),(2,1),(3,4),(4,4)\}.$ Note that $\operatorname{Im}(g) = \{1,4\} \subseteq \{1,2,3,4\} = \operatorname{Dom}(f)$ and $f \circ g$ is defined with

$$f \circ g = \{(1,4), (2,4), (3,4), (4,4)\}.$$

Note also that $Im(f) = \{3,4\} \subseteq \{1,2,3,4\} = Dom(g)$ and thus $g \circ f$ is defined with

$$g \circ f = \{(1,4), (2,4), (3,4), (4,4)\}.$$

Clearly, $f \circ g = g \circ f$.

(d) f(x) = 1 - x and g(x) = 2 - x for $x \in \mathbb{R}$.

Note that $Dom(f) = Im(f) = Dom(g) = Im(g) = \mathbb{R}$ and therefore both $f \circ g$ and $g \circ f$ are defined. Moreover,

$$f \circ g(x) = 1 - g(x) = 1 - (2 - x) = x - 1,$$
 $g \circ f(x) = 2 - f(x) = 2 - (1 - x) = x + 1.$

In particular, $f \circ g \neq g \circ f$.

- 2. Suppose A, B, and C are sets and $f: A \to B$ and $g: B \to C$. Prove the following:
 - (a) If f and g are one-to-one, so is $g \circ f$.

Proof. We use the direct method, assume $g \circ f(x) = g \circ f(y)$. Then

$$g(f(x)) = g(f(y)).$$

Since g is one to one, this implies

$$f(x) = f(y)$$
.

Since f is one to one, this implies x = y and therefore $g \circ f$ is one to one.

(b) If f and g are onto, so is $g \circ f$.

Proof. Let $c \in C$. Then since g is onto, there is a $b \in B$ such that g(b) = c. Since f is onto, there is an $a \in A$ such that f(a) = b. Then

$$g \circ f(a) = g(f(a)) = g(b) = c.$$

Since c was arbitrary, we conclude that $g \circ f$ is onto.

(c) If f and g are bijections, so is $g \circ f$.

Proof. Since f and g are bijections they are both one to one and onto. By (a) and (b), this implies that $g \circ f$ is also one to one and onto. Thus it is a bijection.

- 3. Define the operation * on the integers defined by x * y = |x y|.
 - (a) Is * closed on the integers?

Solution. If $x, y \in \mathbb{Z}$, then so is |x - y| and therefore * is closed on the integers.

(b) Is * commutative?

Solution. For any $x, y \in \mathbb{Z}$, |x-y| = |-(y-x)| = |y-x| and thus * is commutative.

(c) Is * associative?

Solution. * is not associative, e.g.

$$(6*3)*2 = |6-3|*2 = 3*2 = |3-2| = 1 \neq 5 = |6-1| = 6*|3-2| = 6*(3*2)$$

(d) Does * have an identity element? If so, does every integer have an inverse?

Solution. * does not have an identity element. To see this, assume FTSC that $e \in \mathbb{Z}$ is an identity element, i.e

$$|x - e| = x * e = x.$$

But clearly $|x - e| \ge 0$ so this indentity cannot hold for any $x < 0 \Rightarrow \Leftarrow$.