Machine Learning and Compiler Optimization

P. (Saday) Sadayappan

Oct. 28, 2024

Compiler Optimization: Strengths & Limitations

- Compilers very effective in lowering sequential high-level language programs to minimize the number of executed low-level instructions
 - Production compilers like gcc, llvm/clang, Intel icc/icx, IBM xlc can exploit ILP effectively
 - Many mature optimizations: register allocation, common sub-expr elimination...
- However, the dominant cost is data movement and not the arithmetic ops.
 - Data movement can be orders of magnitude more expensive, in terms of energy & time

```
for (i=0; i<n; i++)
a[i]= s*a[i]+a[i];
```

```
L13:
vmovaps (%r11,%rax), %ymm0
addl $1, %ecx
vmulps %ymm2, %ymm0, %ymm1
vaddps %ymm1, %ymm0, %ymm0
vmovaps %ymm0, (%r11,%rax)
addq $32, %rax
cmpl %ecx, %r9d
ja .L13

AVX code
```

Data Movement vs. Computation (Energy and Throughput)

- Energy per FLOP is orders of magnitude lower than data movement
 - Technology scaling lowered energy for arithmetic much more than for data movement
- Peak memory bandwidth is rising slower than peak performance

Data Movement Cost: Energy Trends

Illustration: Data Movement is Expensive

- The main cause of performance loss is data movement overheads
 - -Between nodes in a multi-node system
 - -Through the memory hierarchy at each node
- Illustrative synthetic example
 - -Functionally identical codes with very different performance on my laptop

```
double A[4096][4096];
// Initialize A[][] to 0.0
for (t=0; t<64; t++)
                              6.4 sec
for (j=0; j<4096; j++)
 for (i=0; i<4096; i++)
   A[i][j] += (2*t+j)+(3*t+i);
     i=0
     i=1
                                  t=1..63
     i=2
```


High-Level Summary

- Many efforts on using ML for Compiler Optimization
- But few (so far) have addressed problems of significance
 - Examples: Best loop-unroll factor; Device selection (CPU or GPU)
- Or the comparison baselines have been weak
 - Ideally, performance should match/exceed manual optimization
- Significant SW Problem: Developing high-performance applications for parallel/heterogeneous systems
 - Challenges: Application developer productivity & performance portability
- One impressive ML-based compiler: TVM/Ansor
 - Automated synthesis of high-performance code
 - Multi-core CPUs, GPUs, FPGA
 - Input: High-level "Einsum" tensor expression
 - Performance exceeds highly tuned vendor libraries (MKL, cuDNN)
 - But only fixed operator sizes (OK for ML inference pipelines)
- Can we expand the scope of effective ML-based high-perf. code synthesis beyond what TVM/Ansor can now achieve?

TVM/Ansor Performance: ResNet

TVM/Ansor Auto-Tuning Compiler

TVM/Ansor: Code Schema for Nvidia GPU

```
1 // blockIdx.x i.0@j.0@ (None)
    for i.0 (None)
       for j.0 (None)
        //vthread i.1@j.1@ (None)
        for i.1 (None)
           for j.1 (None)
             // threadIdx.x i.2@j.2@ (None)
             for i.2 (None)
8
               for j.2 (None)
                 // thread level code Line 10 - 22
10
                for k.0 (None)
11
                   // shared memory buffer loading Line 13- 14
12
                   B.shared[...] = B[...]
13
                   A.shared[...] = A[...]
14
                   __syncthreads();
15
                   // register level
16
                   for k.1 (None) for k.2 (None)
17
                     for i.3 (None) for i.4 (None)
18
                       for j.3 (None) for j.4 (None)
19
                         matmul.local = ...
20
                 // store output to global memory
                  matmul[...] = matmul.local[...]
```

Generate configuration space

Search for optimal configuration

- Multi-level tiled code
 - 5-level tiling of each "parallel" loop
 - 3-level tiling of "reduction" loops
- Configuration: Set of tile sizes
- < i0, i1, i2, i3, i4, j0, j1, j2, j3, j4, k0, k1, k2 >
- XGBoost proxy perf. model
 - Ansor uses a 167-component feature vector for training model
- <t1,t2,...,tk> => <f1,f2,...,f167>
- 167 features generated from AST
- op count, buffer sizes, ...

TVM/Ansor ML-Driven Compiler

TVM/Ansor ML-Driven Compiler

TVM/Ansor Auto-Tuning

- ML perf. model is updated after every batch of 64 configs.
 - Model very effective in filtering out bad configs. After 2-3 batches
- Across-run variability can be as high as 20%

Initial Explorations with TVM/Ansor

- How important is the accuracy of proxy ML model?
 - Can it be improved by using analytically derived features for concurrency, data movement vol...?
- How important is the search technique
 - Can an alternate search strategy improve auto-tuning time and/or performance?
 - Sampled gradient descent
 - Bayesian optimization

Li, C., Xu, Y., Saravani, S. M., & Sadayappan, P. (2024, May). Accelerated Auto-Tuning of GPU Kernels for Tensor Computations. In *Proc. ACM International Conference on Supercomputing* (ICS 2024).

Exploration 1: Use Analytical Modeling

Exploration 1: Use Analytical Modeling

- Replace Ansor's 167 metrics from AST with 7 analytically derived metrics from tile sizes
 - Data movement metrics:
 - 1. Operation Intensity w.r.t. global => shared memory
 - 2. Operation Intensity w.r.t. shared memory => registers
 - 3. Operational Intensity w.r.t. registers => global memory
 - Concurrency metrics:
 - 4. Instruction level parallelism (ILP)
 - 5. Warp level parallelism (WLP)
 - 6. Estimated occupancy
 - Load balance metric:
 - 7. Wave efficiency

Exploration 2: Use Gradient-Descent Search

Exploration 2: Gradient Descent Search

 Replace Genetic Algorithm search by Gradient Descent search

Start at a random configuration

 Use XGB proxy model to predict performance of all 1-hop and 2-hop neighbors in D-dimensional tilespace

 Evaluate the top-k (k=2 used) by compile/execute/measure

 If better, move; else "slide window" and evaluate the next-k

 Abort thresholds to terminate search path and start at new random start

Experimental Evaluation

- Compared TVM/Ansor with Ansor-AF-DS
 - AF: Exploration 1 (Analytical Features for XGBoost model)
 - DS: Exploration 2 (Gradient-Descent Dynamic Search)
- Three runs for each benchmark on two platforms
 - Nvidia RTX 3090 and RTX 4090
 - Mean and variability computed
- Best achieved performance measured after:
 - 1 minute wall-time for auto-tuning
 - -2 minutes wal-Itime for auto-tuning
 - 1000 total trials for auto-tuning

Experimental Evaluation: Benchmarks

Matrix Multiplication (Bert Base/Large)

M	N	K	
512	64	1024	
512	4096	1024	
512	64	768	
512	3072	768	
512	1024	4096	
512	768	3072	
	512 512 512 512 512	512 64 512 4096 512 64 512 3072 512 1024	

Layer	F	C	H/W	R/S
Y0	32	3	544	3
Y1	64	32	272	3
Y2	128	64	136	3
Y3	64	128	136	1
Y4	256	128	68	3
Y5	128	256	68	1
Y6	512	256	68	3
Y7	512	256	34	3
Y8	256	512	34	1
Y9	1024	512	17	3
Y10	512	1024	17	1

ResNet-50 conv2d

Layer	F	C	H/W	R/S
R0*	64	3	224	7
R1	64	64	56	1
R2	64	64	56	3
R3	256	64	56	1
R4*	128	256	56	1
R5	128	128	28	3
R6	512	128	28	1
R7*	256	512	28	1
R8	256	256	14	3
R9	1024	256	14	1
R10*	512	1024	14	1
R11	512	512	7	3
R12	2048	512	7	1

Yolo-9000 conv2d

Experimental Evaluation: Kernel Performance

- Ansor-AF-DS: Comparable (within 5%) or better perf. in 2 minutes (dark maroon) than Ansor 1000 trials (green cross)
- For more than half the benchmarks, Ansor-AF-DS after 1 minute (light maroon bar) is better than Ansor-1000-trials.

Some Open Problems

schema or search strategy across runs?

Summary

- Significant interest in ML for compiler optimization
 - But most efforts are not (yet) targeting high-impact scenarios
- TVM/Ansor's ML-based framework synthesizes parallel high-performance codes for GPUs and CPUs
 - Higher performance than vendor libraries
 - But currently limited to fixed sized tensor operators
- Can the scope/impact of ML for compiler optimization be enlarged via powerful ML models/methodologies?
 - Reinforcement Learning?
 - Bayesian Optimization?
 - -LLMs?