- 1. Construire le quadrilatère en question.
- 2. Comment trouver le centre du cercle à partir des droites remarquables du quadrilatère?
- 3. Comment en déduire le rayon de ce cercle?

37

On suppose que l'hexagone régulier est inscrit dans un cercle de 5cm de rayon.

- 1. Quelle est la longueur d'un côté de l'hexagone?
- 2. En déduire le périmètre de l'hexagone.
- 3. Quelle est l'aire d'un hexagone (on utilisera un triangle équilatéral pour commencer)?

38

On suppose que l'octogone régulier est inscrit dans un cercle de 5cm de rayon.

- 1. Tracer cet octogone en partant d'un carré.
- 2. Quelle est la longueur d'un côté du carré?
- 3. En déduire la longueur d'un des côtés de l'octogone (on s'intéressera au triangle formé par trois côtés consécutifs).
- 4. En déduire le périmètre de l'octogone.
- 5. Quelle est l'aire de l'octogone (on calculera l'aire du carré pour commencer)?

30

- 1. Construire le pentagone régulier ABCDE inscrit dans un cercle de centre O et rayon 4cm.
- 2. Quelle est la longueur d'un côté du pentagone?
- 3. En déduire le périmètre du pentagone puis son aire.
- 4. Construire les diagonales du pentagone régulier.
- 5. Nous allons maintenant nous intéresser au rapport de longueur entre une diagonale et un côté du pentagone.
 - (a) Montrer que l'angle \widehat{CDE} mesure 108° .
 - (b) En déduire que l'angle \widehat{ECD} mesure 36°
 - (c) En déduire la longueur EC.

(d) Calculer le rapport de longueur entre une diagonale et un côté du pentagone. Le résultat obtenu est appelé le nombre d'or φ (voir Exercice 60 du chapitre *Suites*).

40

Dessiner un losange ABCO tel que $\widehat{AOC} = 120^{\circ}$.

- 1. Construire son symétrique par la symétrie d'axe (OC), on notera E le symétrique de A et D le symétrique de B.
- 2. Construire son symétrique par la symétrie d'axe (OA). On notera F le symétrique de B.
- 3. Prouver alors que ABCDEF est un hexagone régulier

41

La chapelle « Palatine » a été construite au VIIIe siècle. Elle était la synthèse accomplie entre l'Antiquité et les dernières innovations techniques et stylistiques de l'époque. Elle constitue ainsi une référence qui a donné lieu à de nombreuses reprises. Ci-dessous figure un plan du plancher de la chapelle.

- 1. Repérer et nommer les deux polygones réguliers.
- 2. Quelle est la mesure de l'angle au centre pour chacun de ces polygones?
- 3. Le polygone central est inscrit dans un diamètre de 16,54 mètres. Quelle est la longueur d'un côté de ce polygone?
- 4. Quelle est l'aire de la partie centrale?
- 5. Donner une construction géométrique permettant de passer du polygone central à celui du déambulatoire.

42

La construction d'Euclide – On considère le triangle AOF rectangle et isocèle en O; G est le milieu de [AO]; le cercle de centre G et passant par F coupe la demi-droite [AO) en C. Soit B et H les points d'intersections des cercles C_1 et C_2 de rayon OA et de centres respectifs A et C avec B dans le même demi-plan que F par rapport à (OA). Soit D et E les intersections respectives de la droite (AH) avec C_2 et de la droite (CH) avec C_1 . Montrer que ABCDE est un pentagone régulier.

Pavages

43

Compléter la figure suivante afin de réaliser un pavage. Tracer les deux vecteurs permettant de créer ce pavage par translation du motif donné.

Télécharger la figure

44

Compléter la figure suivante afin de réaliser un pavage. Tracer les deux vecteurs permettant de créer ce pavage par translation du motif donné.

Télécharger la figure

45

Compléter la figure suivante afin de réaliser un pavage. Tracer les deux vecteurs permettant de créer ce pavage par translation du motif donné.

Télécharger la figure

46

Compléter la figure suivante afin de réaliser un