QUESTION

Soit n un entier naturel tel que $n \geq 2$ et $A \in \mathcal{M}_n(\mathbb{R})$. On note $V = \{M \in \mathcal{S}_n(\mathbb{R})/\operatorname{rg}(M) \neq n\}$.

- 1. Montrer que V est un fermé de $\mathcal{M}_n(\mathbb{R})$.
- 2. En déduire qu'il existe $B \in V$ tel que d(A, V) = ||A B||.
- 3. Montrer que si $B \in V$ et d(A, V) = ||A B|| alors AB BA est symétrique.

RÉPONSE

- 1. On remarque que $V = \mathcal{S}_n(\mathbb{R}) \cap (\mathcal{M}_n(\mathbb{R}) \backslash \mathbf{GL}_n(\mathbb{R}))$. Il en découle que V est une intersection de deux fermés : le premier c'est $\mathcal{S}_n(\mathbb{R})$ car c'est un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ (de dimension finie) et le deuxième est le complémentaire de $\mathbf{GL}_n(\mathbb{R})$ qui est ouvert, donc son complémentaire est fermé.
- 2. Par définition de la borne inférieure, pour tout $k \in \mathbb{N}$ il existe $B_k \in V$ tel que

$$(\star)$$
 $d(A, V) + 2^{-k} \ge d(A, B_k) = ||A - B_k||.$

Pour tout $k \in \mathbb{N}$, on a $||B_k|| \le ||B_k - A|| + ||A|| \le d(A, V) + 2^{-k} + ||A|| \le ||A|| + d(A, V) + 1$, donc la suite (B_k) est bornée. Comme on est en dimension finie, d'après le théorème de Bolzano Weierstarss, il existe une application $\chi : \mathbb{N} \to \mathbb{N}$ strictement croissante tel que $\lim_{k \to +\infty} B_{\chi(k)} = B$ avec $B \in V$ par fermeture de V. Par (\star) ci dessus on a

$$\forall k \in \mathbb{N} \quad d(A, V) + 2^{-\chi(k)} \ge d(A, B_{\chi(k)})$$

et comme $d(A, B_{\chi(k)}) \geq d(A, V)$, on peut dire que

$$\forall k \in \mathbb{N} \quad d(A, V) + 2^{-\chi(k)} \ge d(A, B_{\chi(k)}) \ge d(A, V).$$

Il en découle que $\lim_{k\to +\infty} d(A, B_{\chi(k)}) = d(A, V)$ et par continuité de $X\mapsto d(A, X) = \|A - X\|$ et ke fait que $B_{\chi(k)} \xrightarrow[k\to +\infty]{} B$, on déduit par passage à la limite que $d(A, V) \geq \|A - B\| \geq d(A, V)$, donc $d(A, V) = \|A - B\|$.

3. Soit $M \in \mathcal{A}_n(\mathbb{R})$ alors pour tout nombre réel t la matrice e^{tM} est une matrice de $\mathbf{O}_n(\mathbb{R})$. On suppose donc que $B \in V$ et $||A - B|| = \mathrm{d}(A, V)$. Considérons l'application $\varphi : \mathbb{R} \to \mathcal{M}_n(\mathbb{R}); t \mapsto ||A - e^{tM}Be^{-tM}||^2$. On remarque d'une part que si on note $\Phi(t) = e^{tM}Be^{-tM}$ pour tout $t \in \mathbb{R}$ alors $\Phi(\mathbb{R}) \subset V$ et d'autre part que $\varphi(0) = ||A - B||$. Il en découle que

$$\forall t \in \mathbb{R}, \quad \varphi(0) \le \varphi(t)$$

et que par suite $\varphi(0)$ est un minimum globale de φ sur \mathbb{R} . Il est aisé de voir que la fonction φ est dérivable sur \mathbb{R} . Remarquons que pour tout $t \in \mathbb{R}$, on a $\varphi(t) = ||A||^2 + ||\Phi(t)||^2 - 2\langle A, \Phi(t) \rangle$. Par ailleurs on a $||\Phi(t)||^2 = ||B||^2$ car d'une part $e^{tM} \in \mathcal{O}_n(\mathbb{R})$ et d'autre part, en général si $\Omega \in \mathcal{O}_n(\mathbb{R})$ on a

$$\|\Omega B \Omega^{\top}\|^{2} = \operatorname{Tr}((\Omega B \Omega^{\top})^{\top} \Omega B \Omega^{\top}\|$$

$$= \operatorname{Tr}(\Omega B \Omega^{\top} \Omega B \Omega^{\top})$$

$$= \operatorname{Tr}(\Omega B^{2} \Omega^{\top}) = \operatorname{Tr}(\Omega^{\top} \Omega B^{2})$$

$$= \operatorname{Tr}(B^{2}) = \operatorname{Tr}(B^{\top} B) = \|B\|^{2}$$

On a donc l'expression définitive de $\varphi(t)$, à savoir

$$\varphi(t) = ||A||^2 + ||B||^2 - 2\langle A, \Phi(t) \rangle$$

et par suite $\varphi'(t) = -2\langle A, \Phi'(t) \rangle$.

- On a $\Phi(t) = e^{tM}Be^{-tM}$, donc $\Phi'(t) = Me^{tM}Be^{-tM} + e^{tM}B(-M)e^{-tM}$, et en particulier $\Phi'(0) = MB BM$, donc $\varphi'(0) = 2\langle A, BM MB \rangle$. Il en découle que $\varphi'(0) = 2(\langle BM, A \rangle \langle MB, A \rangle)$. Or on peut remarquer que :
- On a $\langle BM, A \rangle = \text{Tr}((BM)^{\top}A) = \text{tr}(M^{\top}BA) = \langle M, BA \rangle$.
- On a $\langle MB, A \rangle = \text{Tr}((MB)^{\top}A) = \text{Tr}(BM^{\top}A) = \text{Tr}(ABM^{\top}) = \langle AB, M \rangle = \langle M, AB \rangle$
- Il en découle que

$$\varphi'(0) = 2\langle M, BA \rangle - \langle M, AB \rangle = 2\langle M, BA - AB \rangle = 0$$

On a ainsi prouvé que

$$\forall M \in \mathcal{A}_n(\mathbb{R}), \quad \langle AB - BA, M \rangle = 0.$$

Cela veut dire que $AB - BA \in \mathcal{A}(\mathbb{R})^{\top}$, donc $AB - BA \in \mathcal{S}_n(\mathbb{R})$.