Big Data & Automated Content Analysis Week 6 – Wednesday: »Text as data«

Damian Trilling

d.c.trilling@uva.nl @damian0604 www.damiantrilling.net

3 March 2021

Afdeling Communicatiewetenschap Universiteit van Amsterdam

Today

The bag-of-words (BOW) model

General idea

Getting a clean BOW representation

Better tokenization

Stopword removal

Pruning

Stemming and lemmatization

How further?

How did the exam go?

Everything clear from last week?

The bag-of-words (BOW) model

The bag-of-words (BOW) model

General idea

A text as a collections of word

Let us represent a string

```
t = "This this is is a test test test"
```

like this:

- 1 from collections import Counter
- print(Counter(t.split()))

```
Counter({'is': 3, 'test': 3, 'This': 1, 'this': 1, 'a': 1})
```

Compared to the original string, this representation

- is less repetitive
- preserves word frequencies
- but does not preserve word order
- can be interpreted as a vector to calculate with (!!!)

A text as a collections of word

Let us represent a string

```
t = "This this is is a test test test"
```

like this:

- from collections import Counter
- print(Counter(t.split()))

```
Counter({'is': 3, 'test': 3, 'This': 1, 'this': 1, 'a': 1})
```

Compared to the original string, this representation

- is less repetitive
- preserves word frequencies
- but does *not* preserve word order
- can be interpreted as a vector to calculate with (!!!)

From vector to matrix

If we do this for multiple texts, we can arrange the vectors in a table.

t1 ="This this is is a test test test"

t2 = "This is an example"

	а	an	example	is	this	This	test
t1	1	0	0	3	1	1	3
t2	0	1	1	1	0	1	0

What can you do with such a matrix? Why would you want to represent a collection of texts in such a way?

 In the example, we entered simple counts (the "term frequency")

But are all terms equally important?

- In the example, we entered simple counts (the "term frequency")
- But does a word that occurs in almost all documents contain much information?
- And isn't the presence of a word that occurs in very few documents a pretty strong hint?
- Solution: Weigh by the number of documents in which the term occurs at least once) (the "document frequency")

⇒ we multiply the "term frequency" (tf) by the inverse document frequency (idf)

(usually with some additional logarithmic transformation and normalization applied, see https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text TfidfTransformer.html)

- In the example, we entered simple counts (the "term frequency")
- But does a word that occurs in almost all documents contain much information?
- And isn't the presence of a word that occurs in very few documents a pretty strong hint?
- Solution: Weigh by the number of documents in which the term occurs at least once) (the "document frequency")

 \Rightarrow we multiply the "term trequency" (tt) by the inverse document frequency (idf)

(usually with some additional logarithmic transformation and normalization applied, see https://scikit-learn.org/stable/modules/generated/sklearn_feature_extraction.text TfidfTransformer.html)

- In the example, we entered simple counts (the "term frequency")
- But does a word that occurs in almost all documents contain much information?
- And isn't the presence of a word that occurs in very few documents a pretty strong hint?
- Solution: Weigh by the number of documents in which the term occurs at least once) (the "document frequency")

⇒ we multiply the "term frequency" (tf) by the inverse document frequency (idf)

(usually with some additional logarithmic transformation and normalization applied, see $\label{logarithmic} $$ \text{https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.} $$ TfidfTransformer.html)$

Is tf-idf always better?

It depends.

- Ultimately, it's an empirical question which works better (→ weeks on machine learning)
- In many scenarios, "discounting" too frequent words and "boosting" rare words makes a lot of sense (most frequent words in a text can be highly un-informative)
- Beauty of raw tf counts, though: interpretability + describes document in itself, not in relation to other documents

Internal representations

Sparse vs dense matrices

- Most are not not contained in a given document
- ullet tens of thousands of columns (terms), and one row per document
- Filling all cells is inefficient and can make the matrix too large to fit in memory (!!!)
- Solution: store only non-zero values with their coordinates! (sparse matrix)
- dense matrix (or dataframes) not advisable, only for toy examples

Internal representations

Little over-generalizing R vs Python remark

Among R users, it is very common to manually inspect document-term matrices, and many operations are done directly on them. In Python, they are more commonly seen as a means to an end (mostly, as input for machine learning).

Many R modules convert to dense matrices: really problematic for larger datasets!

Getting a clean BOW

representation

Room for improvement

tokenization How do we (best) split a sentence into tokens (terms, words)?

pruning How can we remove unneccessary words?

lemmatization How can we make sure that slight variations of the same word are not counted differently?

Getting a clean BOW representation

Better tokenization

.split()

- ullet space o new word
- no further processing whatsoever
- thus, only works well if we do a preprocessing outselves (e.g., remove punctuation)

- tokens = [d.split() for d in docs]

Tokenizers from the NLTK pacakge

- multiple improved tokenizers that can be used instead of .split()
- e.g., Treebank tokenizer:
 - split standard contractions ("don't")
 - deals with punctuation
- from nltk.tokenize import TreebankWordTokenizer
- tokens = [TreebankWordTokenizer().tokenize(d) for d in docs]

OK, so we can tokenize with a list comprehension (and that's often a good idea!). But what if we want to *directly* get a DTM instead of lists of tokens?

scikit-learn's CountVectorizer (default settings)

- applies lowercasing
- deals with punctuation etc. itself
- minimum word length == 1
- more technically, tokenizes using this regular expression:
 r"(?u)\b\w\w+\b"¹

 $^{^{1}}$?u = support unicode, b =word boundary

CountVectorizer supports more

- stopword removal
- custom regular expression
- or even using an external tokenizer
- ngrams instead of unigrams

 ${\bf see}\ https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.\ CountVectorizer.html$

Best of both worlds

Use the Count vectorizer with a NLTK-based external tokenizer! (see book)

CountVectorizer supports more

- stopword removal
- custom regular expression
- or even using an external tokenizer
- ngrams instead of unigrams

 ${\bf see}\ https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text. CountVectorizer.html$

Best of both worlds

Use the Count vectorizer with a NLTK-based external tokenizer! (see book)

Getting a clean BOW

representation

Stopword removal

Stopword removal

What are stopwords?

- Very frequent words with little inherent meaning
- the, a, he, she, ...
- context-dependent: if you are interested in gender, he and she are no stopwords.
- Many existing lists as basis

When using the CountVectorizer, we can simply provide a stopword list.

But we can also remove stopwords "by hand" (next slide):

Stopword removal

```
from nltk.corpus import stopwords
    mystopwords = stopwords.words("english")
    mystopwords.extend(["test", "this"])
3
4
    def tokenize_clean(s, stoplist):
5
       cleantokens = []
6
       for w in TreebankWordTokenizer().tokenize(s):
7
           if w.lower() not in stoplist:
8
9
               cleantokens.append(w)
10
       return cleantokens
11
    tokens = [tokenize_clean(d, mystopwords) for d in docs]
12
```

```
[['text'], ["n't", 'seen', 'John', 'derring-do.', 'Second', 'sentence', '!']]
```

You can do more!

For instance, in line 8, you could add an or statement to also exclude punctuation.

Getting a clean BOW

representation

Pruning

- Idea behind both stopword removal and tf-idf: too frequent words are uninformative
- (possible) downside stopword removal: a priori list, does not take empirical frequencies in dataset into account
- (possible) downside tf-idf: does not reduce number of features

- Idea behind both stopword removal and tf-idf: too frequent words are uninformative
- (possible) downside stopword removal: a priori list, does not take empirical frequencies in dataset into account
- (possible) downside tf-idf: does not reduce number of features

- Idea behind both stopword removal and tf-idf: too frequent words are uninformative
- (possible) downside stopword removal: a priori list, does not take empirical frequencies in dataset into account
- (possible) downside tf-idf: does not reduce number of features

- Idea behind both stopword removal and tf-idf: too frequent words are uninformative
- (possible) downside stopword removal: a priori list, does not take empirical frequencies in dataset into account
- (possible) downside tf-idf: does not reduce number of features

CountVectorizer, only stopword removal

- - CountVectorizer, better tokenization, stopword removal (pay attention that stopword list uses same tokenization!):
- myvectorizer = CountVectorizer(tokenizer = TreebankWordTokenizer().
 tokenize, stop_words=mystopwords)
 - Additionally remove words that occur in more than 75% or less than n=2 documents:
- myvectorizer = CountVectorizer(tokenizer = TreebankWordTokenizer().
 tokenize, stop_words=mystopwords, max_df=.75, min_df=2)
 - All togehter: tf-idf, explicit stopword removal, pruning
- myvectorizer = TfidfVectorizer(tokenizer = TreebankWordTokenizer().
 tokenize, stop_words=mystopwords, max_df=.75, min_df=2)

What is "best"? Which (combination of) techniques to use, and how to decide?

Getting a clean BOW

representation

Stemming and lemmatization

Stemming and lemmatization

- Stemming: reduce words to its stem by removing last part (drinking → drink)
- Lemmatization: find word that you would need to look up in a dictionary (drinking → drink, but also went → go)
- stemming is simpler than lemmatization
- lemmatization often better

Example below: tokenization and lemmatization with spacy in one go:

- 1 import spacy

Stemming and lemmatization

- Stemming: reduce words to its stem by removing last part (drinking → drink)
- Lemmatization: find word that you would need to look up in a dictionary (drinking \rightarrow drink, but also went \rightarrow go)
- stemming is simpler than lemmatization
- lemmatization often better

Example below: tokenization and lemmatization with spacy in one go:

- 1 import spacy
- 2 nlp = spacy.load('en') # potentially you need to install the language model first
- 3 lemmatized_tokens = [[token.lemma_ for token in nlp(doc)] for doc in
 docs]

How further?

Main takeaway

- It matters how you transform your text into numbers ("vectorization").
- Preprocessing matters, be able to make informed choices.
- Keep this in mind when we will discuss Machine Learning! It will come back throughout Part II!
- Once you vectorized your texts, you can do all kinds of calculations (random example: get the cosine similarity between two texts)

More NLP

I really recommend looking into spacy (https://spacy.io). It allows you to do cool advanced natural language processing, such as part-of-speech-tagging and named entity recognition.

E.g., get all persons or organizations from texts (NER), or only nouns or verbs (POS).

Friday

TODO TODO TODO