COLOR THEORY

TOPICS TO BE COVERED

The color problem

Cone response and Tristimulus Vectors

Solution to the Color problem – using CMFs

Chromaticity Diagrams

Color Spaces and Examples

Displays

Color Quantization

THE COLOR PROBLEM

How do we perceive an object?

How do we capture the image of an object?

- Digital Still Camera
- Camcorders
- Film processing/scanning

How do render an object image

- Storage/Transfer issues
- Rendering on Client
- Printing

The Color Problem – How do you ensure that the colors in the image of a rendered object look the same as the original colors of that object?

EYE STRUCTURE

RETINA

RETINA

HOW DO WE PERCEIVE COLORS?

Spectrum of visible light $f(\lambda)$: $\lambda = 360-830$ nm $(\lambda = wavelength)$

In the *retin*a: 3 types of cones with different spectral absorptance (or sensitivity). The response c_i of a cone of type i is modeled as

$$c_i = \int_{\lambda_{\min}}^{\lambda_{\max}} s_i(\lambda) f(\lambda) d\lambda$$

SPECTRAL DISTRIBUTION

SPECTRAL SENSITIVITY

Sensitivity for Entire Spectrum

SPECTRAL SENSITIVITY OF CONES

DISCRETE FUNCTION EVALUATION OF CONE RESPONSE

Instead of evaluating the cone response as a continuous integral function, we will use discrete quantities with summations

- Represent the light spectral stimulus $f(\lambda)$ as a vector f on N different wavelength (with a spectral interval of 10 nm)
- Represent each sensitivity $s_i(\lambda)$ as vector s_i as N different wavelength

Then the cone response is represented by a vector (called tristimulus vector):

$$C = S^T f$$

TRISTIMULUS VECTORS

 $C = S^T f$ is a 3-vector (called *color*) which represents how we *perceive* a light with spectrum f (which is a N-vector).

If two different spectra f_1 and f_2 produce the same color $C = S^T f_1 = S^T f_2$, then they *look the same*, that is, they are undistinguishable by the human eye.

Thus, it is *not* important that after processing, transmission and reproduction we recreate the same light spectrum f as the original, but that we reproduce a light spectrum that has the same perceived color c.

Thus, 3 values (the entries of C) are sufficient to represent the color of a pixel (instead of *N* values)

ISSUES WITH GENERATING COLOR

The tristimulus or color equation is $C = S^T f$

- We need to know S
- We need to know f

We don't actually know S; we will show soon that it doesn't matter

To understand f we need to know

- How should we capture a light spectrum?
 (How do we take a color picture?)
- How do we reproduce a light spectrum? (How do we render a color?)

HOW DOES A 3-CCD CAMERA WORK?

Light is refracted onto 3 CCDs (through a prism). In front of each CCD there is a *color filter* with frequency response $m_i(\lambda)$. Thus, a pixel of the i-th CCD gives an output

$$a_i = \int_{\lambda_{\min}}^{\lambda_{\max}} m_i(\lambda) f(\lambda) d\lambda$$

In discrete form: $a = M^Tf$ where the i-th column of M contains the samples of $m_i(\lambda)$

Note that M can only have positive entries!

HOW DOES A COLOR PROJECTOR WORK?

Color Projectors work using Additive Synthesis: there are actually 3 light projectors focusing light onto the same spot.

Let the light spectra produced by each be: p_1 , p_2 , p_3 . The intensity of each projector can be controlled at each pixel via a *gain* a_i . Thus, the actual light spectrum on the screen is $g = p_1a_1 + p_2a_2 + p_3a_3 = Pa$ where $P = [p_1, p_2, p_3]$ (size: Nx3) and $a = [a_1, a_2, a_3]^T$ (size:3x1)

Are 3 projectors able to create all the *light spectra* that we want to reproduce? No! But we just need that they create the *colors* we need to reproduce.

COLOR PROJECTOR (2)

Let $\{p_1, p_2, p_3\}$ by three "colorimetrically independent" light sources (called *primaries*).

Then, given any spectrum f, we can always find gains a such that the light g = Pa generated by additive synthesis has the same *color* of f.

Proof: We need to find a vector a such that $S^{T}g = S^{T}Pa = C$. Just choose $a=(S^{T}P)^{-1}C$.

Problem: a may have negative components, which makes no physical sense (gains and spectra can only have positive values!)

THE PROBLEM

Given a set of primaries P, how can we be sure that for any light spectrum f, the projector reproduces a light spectrum with the same color of f?

THE PROBLEM (2)

Given a set of primaries P, design the "filters" M of a color camera such that for any input spectrum f, the light g generated by the projector has the same color of f.

In other words: we want that the projectors, using as gains the output a of the camera, create a light g = Pa such that $S^{T}g = S^{T}Pa = S^{T}f = C$.

And we want to do it without knowing S (which is difficult to compute)

PROBLEM SOLUTION

The solution is based on color matching experiments

The columns { m_1 , m_2 , m_3 } of M (size: Nx3) are called the color matching functions (CMF) associated with the primaries P.

Problem (again): CMF can take on negative values.

WHAT ARE COLOR MATCHING FUNCTIONS?

Like we said before: the three CMFs $\{ m_1, m_2, m_3 \}$ correspond to the "filters" in a color camera to generate the three color channels $a = \{ a_1, a_2, a_3 \}$.

Each color signal can be used to control the intensities of the primaries (projectors) in order to generate a spectrum g = Pa that has the same color as f $S^Tg = S^TPa$

Note: Given a set or primaries P, there is just one set of CMFs M associated to it, and vice-versa

Remember, C is the "perceptual" color vector; a is the color vector associated to the chosen primaries

CHANGING PRIMARIES

What happens when we change primaries? (e.g., we use a different projector, or we use a CRT screen instead of a projector)

Suppose we use primaries Q instead of P. We want to find a new color vector b such that $S^TPa = S^TQb$

The solution is b=Ta with $T=(S^TQ)^{-1}(S^TP)$ (T is a 3x3 matrix which is independent of a)

Thus T is a linear operator that maps from one color space into a new one.

CIE CMFS

The International Commission on Illumination (CIE) has standardized two sets of CMFs: *RGB* and *XYZ*

RGB: The CMF's are associated with *monochromatic* primaries at wavelengths of 700, 546 and 435 nm. (Note that one RGB CMF takes on -ve values.)

XYZ: One of the 3 CMFs, $y(\lambda)$, is the *luminous efficient* function, which gives the relative sensitivity of the eye to each wavelength. Y is called *luminance*. (Note that all XYZ CMFs are positive; however, it can be shown that the corresponding primaries are not physically realizable)

Note: $\{r(\lambda),g(\lambda),b(\lambda)\}$ ($\{x(\lambda),y(\lambda),z(\lambda)\}$) are the CMFs (corresponding to the columns of M); the values $\{R,G,B\}$ $\{X,Y,Z\}$ are the color channels (corresponding to a)

CIE RGB CMFs

CIE XYZ CMFs

CIE CMFS

R, G, B primaries (pure wavelength)

R = 615 nm

G = 525 nm

B = 445 nm

X, Y, Z primaries (physically impossible but theoretically useful)

RGB & XYZ COLOR SPACE

CHROMATICITY DIAGRAMS

Can we represent all colors by additive synthesis of 3 primaries? No! That's because CMFs can assume negative values, and the frequency responses of the color filters can only be positive.

Problem: represent all achievable colors on a 2-D plane (color channels $a_1a_2a_3$ live in a 3-D space!)

Solution: normalize colors to live in 2-D.

Example: CIE xy chromaticity diagram. Given a color value (X,Y,Z), compute the normalized values x=X/(X+Y+Z), y=Y/(X+Y+Z), z=Z/(X+Y+Z).

Then, plot only the colors corresponding to 2 chromaticity coordinates (x, y)

NORMALIZED XYZ SPACE

CIE XY CHROMATICITY DIAGRAMS

COLOR GAMUTS

Color gamut of a color synthesis device = set of obtainable colors. Represented by a polygonal on the chromaticity diagram, example shown here

VISUALIZATIONS

Color Applets

Visualization of CIE XYZ and RGB

Visualization of Color Gamuts

LINEAR TRANSFORMATIONS OF *RGB* COLOR SPACES

RGB: used in CRT monitors (additive synthesis)

Y/Q (used in NTSC TV). T=
$$\begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.274 & 0.322 \\ 0.211 & -0.523 & 0.312 \end{pmatrix}$$

YUV (used in PAL, SECAM). T=
$$\begin{pmatrix} 0.299 & 0.587 & 0.114 \\ -0.147 & -0.289 & 0.436 \\ 0.615 & -0.515 & -0.1 \end{pmatrix}$$

YCrCb (for JPEG, MPEG). T=
$$\begin{pmatrix} 0.299 & 0.587 & 0.114 \\ 0.500 & -0.4187 & -0.0813 \\ -0.1687 & -0.3313 & 0.5 \end{pmatrix}$$

2/7/2001

WHY IS RGB NOT USED?

Similarly to the processing in the human visual system, transformed color spaces such as *YIQ, YUV, YCrCb* represent color with *luminance* (Y) and *chrominance* (the other 2 channels). Advantages:

- We can subsample the chrominance channels (e.g., 4:2:2, 4:2:0 subsampling schemes)
- We can quantize the chrominance channels more coarsely (with fewer bits)
- The chrominance channels are rather *uncorrelated* with the luminance channel, which yields better compression.

OTHER TRANSFORMATIONS

CMY: Cyan, magenta, yellow – complementary to red, green and blue respectively. Used for *subtractive* synthesis from white in color printers.

(C, M, Y) = (1,1,1) - (R,G,B)

CMYK: like CMY, uses black (K) as fourth color.

Given (C, M, Y):

K=min(C, M, Y); C=C-K; M=M-K; Y=Y-K

UNIFORM COLOR SPACES

CIE XYZ is not perceptually uniform because perceptual differences between colors do not correspond to equal distance in color space

CIE defined two uniform color spaces:

CIE Luv and CIE Lab:

- L depends only on Y (luminance)
- Radial distance (e.g. sqrt(u²+ v²)) correlates to chroma (or saturation)
- Angular position (e.g. tan⁻¹(u/v)) correlates to hue

HSV COLOR SPACE

HSV is based on a cylindrical coordinate system

H (hue) is measured in angles with respect to the V (value) axis. S (saturation) goes from 0 to 1.

Complementary colors in HSV are 180 degrees from each other.

Hue distinguishes among colors such as red, green, purple, and yellow. Saturation refers to how far color is from a gray of equal intensity. Value represents the lightness (or brightness)

COLOR SPACE EXAMPLES – RGB

COLOR SPACE EXAMPLES – YIQ

COLOR SPACE EXAMPLES – YUV

COLOR DISPLAYS

Visible light is produce by bombardment of a thin layer of phosphor by a beam of electrons.

Shadow-mask color CRT: mosaic of *r,g,b* light emitting phosphors illuminated by 3 independent electron beams.

Color is controlled through application of different voltage to *r*, *g*, *b* guns.

How can we take into account non-linearities?

GAMMA CORRECTION

For each gun, the power of the emitted light $S_i(\lambda)$ is a function of the *control voltage* v_i . Ideally, the relationship would be linear: $S_i(\lambda) = v_i p_i(\lambda)$ (so we would set $v_i = a_i$.) In practice, the relation is *not linear*. A better approximation is

$$S_i(\lambda) = (v_i / v)^{\gamma} p_i(\lambda)$$

where v is the maximum value of the voltage and γ is the exponential parameter. The monitor γ is usually approximately equal to 2.2

Thus, given a value of a_i , instead of controlling the light with voltage $v_i = a_i$, we should use $v_i = v a_i^{1/\gamma}$

This transformation is called gamma correction.

CCD CAMERAS

3 CCD

- Light is refracted into each CCD using a prism
- In front of each CCD there is a color filter (corresponding to CMF functions r, g, b)
- More expensive (need 3 CCDs per pixel) but better resolution

1 CCD

• There is 1 filter (r, g or b) on top of each pixel. The filters are chosen according to a "mosaic" layout. E.g.

```
rgbrgbrgb
gbrgbrgbr
brgbrgbrg
```

 Cheaper (1 CCD) but with less color resolution (e.g.: for an r pixel, the other colors must be interpolated from nearby pixels.

COLOR QUANTIZATION

What is color quantization and why is it required?

Frame buffer architecture: Image is stored in a video memory from which controllers constantly refresh the display screen. How many bits per pixel should we use? (8-12-16-24...)

The more pixels you use, the longer it takes to read and longer to refresh your monitor screen.

Palletized image: Uses a finite set of colors indexed in a table (palette or color map or LUT). You may choose this color mapping in two ways

- Pre designed or fixed
- Adaptively "quantized" version is similar to the original

ADAPTIVE COLOR QUANTIZATION METHODS

The process occurs in stages

- Sampling the original image for color statistics (Histogram)
- Choosing a color map based on those statistics
- Mapping colors to their representative colors to get new image

Different algorithms proposed and used depend on how the second step above is done

- Uniform Quantization
- Median Cut (Heckbert)
- Octree (Gervautz & Purgathofer)
- Peano Curve Mapping

QUESTIONS

The chromaticity diagram in (x, y) represents the normalized color matching functions X, Y and Z. Prove that

$$Z = [(1-x-y)/y] Y$$

QUESTIONS

The chromaticity space is a 2D space obtained by projecting the 3D conical XYZ space onto a plane.

- What is the equation of this plane
- Why is there no black color in the chromaticity space?
- Where do the CIE primaries lie in the chromaticity space?