Pokemon

John Cruz

2023-03-01

R Markdown

National Pokedex

Pokemon Stats

Pokemon Types

A few kinds of analysis that could be done would be:

to look at which types of Pokémon tend to have the highest base stats to find the 6 Pokémon with the highest base speed to observe whether Pokémon with a single type have higher base stats than Pokémon with two types to find the 10 rarest Pokémon abilities, i.e. the abilities that the fewest number of Pokémon have access to

Required Libraries

```
library(tidyverse)
library(rvest)
library(xml2)
library(janitor)
```

```
url <- "https://www.serebii.net/pokemon/nationalpokedex.shtml"

web_table <- read_html(url)

# use XML to account for <br>
xml_find_all(web_table, ".//br") |>
xml_add_sibling("p", "\n")

xml_find_all(web_table, ".//br") |>
xml_remove()

web_table <-
web_table |>
html_element('.dextable') |>
html_table()

pokemon_stats <- as.data.frame(web_table)</pre>
```

```
# drop null values if Pokemon name is N/A
stats_df <-
 pokemon_stats |>
 drop_na(4)
# drop first row (duplicate header) and second column (pic)
stats_df <- stats_df[-1,-2]
# set column headers from first row and clean names
stats_df <-
 stats_df |>
 row_to_names(row_number = 1) |>
 clean_names()
# shift pokemon names, etc to left by 1 column
stats_df[c(2:10)] = stats_df[, c(3:11)]
# drop 'na' column
stats_df <-
  stats_df |>
  select(!c(na, type))
# split multiple abilities into long format based on created '\n'
stats_df <-
  stats df |>
  separate_longer_delim(abilities, delim = "\n")
# change to pokemon number
stats_df$no <-
 parse_number(stats_df$no)
```

Working with HTML

```
# drop null values if Pokemon name is N/A
types_df <-
pokemon_types |>
```

```
drop_na(2)
# drop unnecessary columns
types_df <-
 types_df[, 1:5]
# set column headers from first row and clean names
types_df <-
 types_df |>
 row_to_names(row_number = 1) |>
  clean_names()
# change to pokemon number
types_df$ndex <-
 parse_number(types_df$ndex)
# drop N/A or zero (0) while keeping only distinct pokemon numbers
types_df <-
 types_df |>
 drop_na() |>
 filter(ndex != 0) |>
 distinct(ndex, .keep_all=TRUE)
# within same pokemon number, replace repeated types with N/A
types_df <-
  types_df |>
 mutate(type_2 = if_else(type_2 != type, type_2, NA)) |>
 select(-c(2)) \mid >
 rename(no = ndex)
# melt both type columns into one column
temp1 <-
 types_df |>
  select(1:3)
temp2 <-
  types_df |>
  select(1,2,4) |>
 rename(type = type_2)
types_df <-
 temp1 |>
 full_join(temp2) |>
 drop_na() |>
  select(!pokemon) |>
 arrange(no)
stats_types_df <-
 stats_df |>
  inner_join(types_df) |>
 relocate(type, .after = name)
```

to observe the frequency of Pokémon by type

```
grouped_type <-
  stats_types_df |>
  group_by(type) |>
  summarise(count = n()) |>
    arrange(desc(count))

grouped_type |>
  ggplot(aes(x = count, y = reorder(type, count))) +
  geom_bar(stat = 'identity')
```


knitr::kable(grouped_type)

type	count
Water	381
Normal	347
Grass	275
Flying	271
Psychic	223
Bug	213
Poison	194
Ground	180

count
177
174
169
160
154
153
140
133
122
118