CS3SD3 - Assignment 3

Hien Tu - tun1

December 1, 2021

Question 7

- (a) (i) $\neg p \Rightarrow r \equiv \neg(\neg p) \lor r$ $\equiv p \lor r$. Since we have $L(s_0) = \{r\}$, $M, s_0 \vDash \varphi$. We have $L(s_2) = \{p, q\}$, so $M, s_2 \vDash \varphi$
 - (ii) Since $r \in L(s_0)$, $r \in L(s_1)$, and we can have path $s_0 \to s_1 \to s_1 \to s_1 \to s_1 \to \ldots$, we know that $M, s_0 \models \operatorname{EG} r$. Therefore, $M, s_0 \models \neg \operatorname{EG} r$ is false. Since $r \notin L(s_2)$, we know that $M, s_0 \models \neg \operatorname{EG} r$ is true as future also includes present.
 - (iii) Since $t \notin L(s_0)$, we know that $M, s_0 \models E(t \cup q)$ is false. Since $q \in L(s_2)$, we know that q already holds in s_2 , thus, we don't need t to hold anymore. Therefore, $M, s_2 \models E(t \cup q)$ is true.
 - (iv) Since $q \in L(s_2)$, and we have a path $s_0 \to s_2 \to \ldots$, we know $M, s_0 \models F$ q is true. Since $q \in L(s_2)$, we also know $M, s_2 \models F$ q is true since future also includes present.