ECE5884 Wireless Communications Assignments of wreether Main Help

https://powcoder.com

ARC Future Fellow at The University of Melbourne Sessional Lecturer at Monash University

Add WeChatopowcoder

Course outline

This week: Ref. Ch. 3 of [Goldsmith, 2005]

- Week 1: Overview of Wireless Communications ssignment-Projects Exam Help
 - Week 3: Wireless Channel Models
 - Week 4: Capacity of Wireless Channels
 - Week 6: Performance Analysis

 - Week 7: Equalization

 - Week 3: Multigarnier Modulation (OFDM)
 Week 9: Diversity Yechniques nat powcoder
 - Week 10: Multiple-Antenna Systems (MIMO Communications)
 - Week 11: Multiuser Systems
 - Week 12: Guest Lecture (Emerging 5G/6G Technologies)

Doppler effect and delay

Figure 1: Illustration of the Doppler effect.

https://powcoder.com Doppler frequency: $f_D = \frac{v}{\lambda} \cos \theta$ where $\lambda = \frac{c}{f_c}$ and $c = 3 \times 10^8 m/s$

Doppler frequency:
$$f_D = \frac{v}{\lambda} \cos \theta$$
 where $\lambda = \frac{c}{f_c}$ and $c = 3 \times 10^8 m/s$ (1)

- Dopple and WeChat powcoder

 Scatters:

Received signal
$$r(t) = \Re\left[\left(\sum_{i=0}^{N(t)-1} \alpha_i(t)e^{-j\phi_i(t)}u(t-\tau_i(t))\right)e^{j2\pi f_c t}\right]$$
 (2)

 $\alpha_i(t)$ is fading (also a function of path loss and shadowing). $\phi_i(t)$ depends on delay and Doppler. These two random processes are independent.

Fast/slow fading (w.r.t. time)

- In Coherence time (T_c), channel is not varying.
- **1** Fast fading: $T_c < T_s$ where T_s is the transmitted symbol duration.
- 2 Slow fading: $T_c \gg T_s$, e.g. Shadowing (Log-normal model).

Flat/frequency-selective fading (w.r.t. frequency)

B. Selective fading effect

Add We Chat powcoder

- In coherence bandwidth (B_c), channel response is not varying.
- 1 Flat fading: $B_s \ll B_c$ where B_s is the signal bandwidth.
- 2 Frequency-selective fading: $B_s \gg B_c$, OFDM (Week 8).

Intersymbol interference (ISI)

ISI is a form of distortion of a signal in which one symbol interferes with subsequent symbols.

• Send the next symbol after the delay spread, T_m , to avoid ISI.

https://www.telecomhall.net/t/what-is-isi-inter-symbol-interference-in-1te/6370

Narrowband/wideband communications

Narrowband communications use a narrow bandwidth; are used in a slower form of communication as we allow a longer time for a symbol by the slower form of communication as we allow a longer time for a symbol by the symbol by the slower form of communications use a narrow bandwidth; are used in a slower form of communications use a narrow bandwidth; are used in a slower form of communications use a narrow bandwidth; are used in a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as we allow a longer time for a slower form of communication as well as a slower form of communication as a slower form of communicatio

- Wideband communications use a higher bandwidth; apply Wifi, 4G LTE and beyond, HSPA.
 - : https://powcoder.com

Multipath fading

- 1 Fast fading: $T_s \ll T_c$
- Assignment, Project Exam Help

Figure 5: Ref. Ch. 3 of [Goldsmith, 2005].

System model

The received signal:
$$r(t) = h s(t) + n(t)$$
 (3)

Astraismit signal with A power, and to (s) the addition has the p

The received signal power: $P_r = |h|^2 P_s$

https://powcoder.com/

Multipath channel gain:
$$h = h_r + jh_i = z e^{j\theta}$$
 (5)

Channel enverop: $h = h_r + jh_i = z e^{j\theta}$ (6)

• Additive white Gaussian noise: $n(t) = n_r + jn_i$; noise power is constant for all the functions with zero mean and N_0 variance, i.e., $n(t) \sim \mathcal{CN}(0, N_0)$ where $n_r \sim \mathcal{N}(0, N_0/2)$ and $n_i \sim \mathcal{N}(0, N_0/2)$.

Instantaneous SNR:
$$\gamma = \frac{\text{Signal power}}{\text{Noise power}} = \frac{|h|^2 P_s}{N_0}$$
 (7)

We need distributions of |h| and $|h|^2$ – Multipath fading models!!!

(4)

Rayleigh distribution

 Rayleigh fading is a model that can be used to describe the form of fading that occurs when multipath propagation exists with no Los component.

Assignment, Project Exam Help

- When h_r and h_i are two independent and identical distributed (i.i.d.) Gaussian random variables with mean zero and variance σ^2 , i.e., h_r , h_i **WOODET.COM**
- 1) The average envelope power is $\Omega_p = 2\sigma^2$.
- 2 the envelop $|h| = z = \sqrt{h_r^2 + h_i^2}$ is Rayleigh distributed;

Add
$$W_{r_z(z)} = C_{\Omega_p} = A_{r_p} = A_{r_p}$$

3 the power $|h|^2$ is Exponentially distributed;

$$f_{Z^2}(t) = \frac{1}{\Omega_D} e^{-\frac{t}{\Omega_D}}$$
 and $F_{Z^2}(t) = 1 - e^{-\frac{t}{\Omega_D}}$ (10)

Rician distribution

- The channel has a LOS component with a much larger signal power than the other multipath components.
- $h_r \sim \mathcal{N}(m_r, \sigma^2)$ and $h_i \sim \mathcal{N}(m_i, \sigma^2)$;
- As 2 igher me priver in the Ds component.
 - 1 Average envelope power: $\Omega_0 = s^2 + 2\sigma^2$

2 the envelopis Rician/Ricean/Rice distributed;
$$\frac{\text{Nttps:}//\text{pow_zcoders}}{\text{pow_zcoders}} Com$$

$$I_{I_Z(Z)} = \frac{1}{\sigma^2} e^{-\frac{1}{2\sigma^2}} I_0\left(\frac{1}{\sigma^2}\right)$$
(11)

3 The Rice factor K (fading parameter): $K = \frac{s^2}{2\sigma^2}$ where K = 0 for no LoS; $K \to \infty$ catter, and a singlettimble severe along the severe K = 0 for no LoS;

$$f_{Z}(z) = \frac{2(K+1)z}{\Omega_{p}} e^{-K - \frac{(K+1)z^{2}}{\Omega_{p}}} I_{0} \left(2z\sqrt{\frac{K(K+1)}{\Omega_{p}}}\right)$$
(12)

where $s^2 = \frac{K\Omega_p}{K+1}$ and $\sigma^2 = \frac{\Omega_p}{2(K+1)}$

Nakagami-*m* distribution

1 The Nakagami distribution was selected to fit empirical data and is known to provide a closer match to some measurement data than

either the Rayleigh, Ricean, or log-normal distributions. Selegiam entgal roge to Exam Help

 $f_{Z}(z) = 2\left(\frac{m}{\Omega_{p}}\right)^{m} \frac{z^{2m-1}}{\Gamma(m)} e^{-\frac{mz^{2}}{\Omega_{p}}}; m \ge \frac{1}{2}$ $\text{Average en relope power: } \Omega_{p} \text{ Coder.com}$ (13)

- - m = 1: Rayleigh distribution.
 - m = 1/2: a one-sided Gaussian distribution

 - m = japhrologs an implifie (no fading) wcoder
 m = jok + 1). approximation for Rician distribution.
- 4 the power $|h|^2$ is Gamma distributed;

$$f_{Z^2}(z) = \left(\frac{m}{\Omega_p}\right)^m \frac{z^{m-1}}{\Gamma(m)} e^{-\frac{mz}{\Omega_p}}; m \ge \frac{1}{2}$$
(14)

SNR outage probability

• The SNR outage probability is the probability that the SNR γ falls below a certain predetermined threshold SNR γ_{th}

Assignment_{th} Project Exam Help $= \Pr\left[\frac{|h|^2 P_s}{N_0} < \gamma_{th}\right] = \Pr\left[|h|^2 < \frac{N_0 \gamma_{th}}{P_s}\right] = F_{|h|^2} \left(\frac{N_0 \gamma_{th}}{P_s}\right) \quad (16)$

· For Pattps://powcoder.com

When
$$\gamma \to \infty$$
; $P_{out} \to 1 - e^{-\frac{\left(\frac{N_0 \gamma_{th}}{P_s}\right)}{P_s^2}} = 1 - e^{-\left(\frac{\gamma_{th}}{P_s}\frac{N_0}{P_s}\right)} = 1 - e^{-\left(\frac{\gamma_{th}}{2\sigma^2}\frac{N_0}{\bar{\gamma}}\right)}$ (17)

When $\gamma \to \infty$; $P_{out} \to 1 - \left(1 - \frac{1}{2\sigma^2}\frac{1}{\bar{\gamma}}\right)$ $P_{out} \to 1 - e^{-\left(\frac{\gamma_{th}}{P_s}\frac{N_0}{P_s}\right)} = 1 - e^{-\left(\frac{\gamma_{th}}{2\sigma^2}\frac{1}{\bar{\gamma}}\right)}$ (17)

(18)

where $\bar{\gamma} = \frac{P_s}{N_0}$ (we sometime call this as the average transmit SNR!).

 Similarly, you can evaluate the SNR outage probabilities for Rician and Nakagami-m fading channels!

SNR outage probability

SNR outage probability

Assignment Project Exam Help

A. Goldnettps://powcoder.com, 2005.

Add WeChat powcoder

Assignment Project Exam Help Thank You!

https://powcoder.com

Add WeChat powcoder