<의학통계학 과제_5장 연습문제>

2016610010 김유민

```
1. data data1;
      input trt $ x y;
cards;
A 5 20
A 10 23
A 12 30
A 9 25
A 23 34
A 21 40
A 14 27
A 18 38
A 6 24
A 13 31
в 7 19
B 12 26
В 27 33
B 24 35
В 18 30
B 22 31
B 26 34
B 21 28
B 14 23
B 9 22
PROC GLM data=data1 ;
CLASS trt;
MODEL y=trt x /SOLUTION;
LSMEANS trt/TDIFF;
RUN;
```

Source	DF	Type III SS	Mean Square	F Value	Pr > F
trt	1	115.3059567	115.3059567	16.03	0.0009
x	1	540.1797947	540.1797947	75.07	<.0001

Parameter	Estimate		Standard Error	t Value	Pr > [t]
Intercept	13.20533654	В	1.91693288	6.89	<.0001
trt A	5.15465839	В	1.28765245	4.00	0.0009
trt B	0.00000000	В	- 1		
х	0.82748130		0.09550226	8.66	<.0001

각 모수 추정치 SAS 결과를 확인해보면 최면 유도법별 공분산 모형식은 다음과 같다.

$$\begin{split} \overline{y_{1j}} &= \widehat{\beta_0} + \widehat{\alpha_1} + \widehat{\beta} x_{1j} = 13.21 + 5.15 + 0.827^* x_{1j} \\ \overline{y_{2j}} &= \widehat{\beta_0} + \widehat{\alpha_2} + \widehat{\beta} x_{1j} = 13.21 + 0 + 0.827^* x_{2j} \end{split}$$

위 SAS 결과 중 Type III SS의 결과를 보면 공변량 x(피암시성)를 보정한 최면 유도법의 효과에 대한 p값은 0.0009로, 유의수준 5% 하에서 유의하게 나타난다. 즉 피암시성을 제어했을 때 최면 유도법의 종류에 따라 차이가 유의하다고 판단된다. 또한 공변량 x(피암시성)의 효과를 보면 p값이 <.0001로 유의수준 5% 하에서 유의하게 나타난다. 즉 최면 효과 지수에 피암시성의 정도가 미치는 영향이 유의하다고 판단된다.

2-(2).

DATA edu;

input method x y @@;

cards;

1 29 39 1 4 34 1 18 36

2 17 35 2 35 38 2 3 32

3 1 38 3 15 43 3 32 44

;

PROC GLM data=edu ;

CLASS method;

MODEL y=method x /SOLUTION;

LSMEANS method/TDIFF;

RUN;

Source DI		Type III SS	Mean Square	F Value	Pr > F	
method	2	83.13074123	41.56537062	51.59	0.0005	
×	1	47.30493388	47.30493388	58.71	0.0006	

Parameter	Estimate		Standard Error	t Value	Pr > [t]
Intercept	38.62699220	В	0.65262985	59.19	<.0001
method 1	-5.52331299	В	0.73330392	-7.53	0.0007
method 2	-7.10995253	В	0.73516439	-9.67	0.0002
method 3	0.00000000	В			
×	0.18997965		0.02479335	7.66	0.0006

공분산 모형에서 공변량에 공변량의 전체 평균값을 넣어서 교육 방법별 보정된 평균을 다음과 같이 계산할 수 있다.

$$\begin{aligned} & \overline{y_1} = \hat{\beta_0} + \hat{\alpha_1} + \hat{\beta} \overline{x}.. = 38.627 - 5.523 + 0.19*17.1 = 36.353 \\ & \overline{y_2} = \hat{\beta_0} + \hat{\alpha_2} + \hat{\beta} \overline{x}.. = 38.627 - 7.11 + 0.19*17.1 = 34.766 \\ & \overline{y_3} = \hat{\beta_0} + \hat{\alpha_3} + \hat{\beta} \overline{x}.. = 38.627 + 0 + 0.19*17.1 = 41.876 \end{aligned}$$

한편 시험성적 X를 공변량으로 보정한 후 교육방법 간에 Y의 차이가 있는지를 보기 위해 위 SAS 결과 중 Type III SS를 보면 교육 방법에 대한 p값은 0.0005로 유의수준 5% 하에서 유의하게 나타난다. 즉 초기 시험성적을 제어했을 때 교육 방법에 따라 차이가 유의하다고 판단

된다.

3.

DATA na;

input trt \$ x y @@;

cards;

A 11 6 A 8 0 A 5 2 A 14 8 A 19 11 A 6 4 A 10 13 A 6 1 A 11 8 A 3 0

B 6 0 B 6 2 B 7 3 B 8 1 B 18 18 B 8 4 B 19 14 B 8 9 B 5 1 B 15 9

C 16 13 C 13 10 C 11 18 C 9 5 C 21 23 C 16 12 C 12 5 C 12 16 C 7 1 C 12 20

;

PROC GLM data=na ;

CLASS trt;

MODEL y=trt x /SOLUTION;

LSMEANS trt/TDIFF;

RUN;

Source	DF	Type III SS	Mean Square	F Value	Pr > F	
trt	2	68.5537106 34.27685	34.2768553	2.14	0.1384	
×	1	577.8974030	577.8974030	36.01	<.0001	

Parameter	Estimate		Standard Error	t Value	Pr > [t]
Intercept	-0.434671164	В	2.47135356	-0.18	0.8617
trt A	-3.446138280	В	1.88678065	-1.83	0.0793
trt B	-3.337166948	В	1.85386642	-1.80	0.0835
trt C	0.000000000	В			
×	0.987183811		0.16449757	6.00	<.0001

(1)

위 SAS 결과 중 실험하기 전의 나병균수를 제어한 후 각각의 치료약 간에 차이가 있는지를 검정한 Type III SS 표를 보면, 치료약에 대한 p값은 0.1384로 유의수준 5% 하에서 유의하 지 않다. 즉 실험하기 전의 나병균수를 제어했을 때 치료약에 따른 차이가 유의하지 않다고 판단된다.

(2)

공분산 모형에서 공변량에 공변량의 전체 평균값을 넣어서 치료약별 보정된 평균을 다음과 같이 계산할 수 있다.

$$\overline{y_1} = \widehat{\beta_0} + \widehat{\alpha_1} + \widehat{\beta} \overline{x} \dots = -0.435 - 3.446 + 0.987*10.73 = 6.71$$

$$\overline{y_1} = \widehat{\beta_0} + \widehat{\alpha_1} + \widehat{\beta} \overline{x} \dots = -0.435 - 3.337 + 0.987*10.73 = 6.82$$

$$\overline{y_1} = \widehat{\beta_0} + \widehat{\alpha_1} + \widehat{\beta} \overline{x} \dots = -0.435 + 0 + 0.987*10.73 = 10.16$$

4.

DATA sale;

input type x y @@;

cards;

1 38 21 1 39 26 1 36 22 1 45 28 1 33 19 2 43 34 2 38 26 2 38 29 2 27 18 2 34 25 3 24 23 3 32 29 3 31 30 3 21 16 3 28 29 ;

PROC GLM data=sale ;

CLASS type;

MODEL y=type x /SOLUTION;

LSMEANS type/TDIFF;

RUN;

Source	DF	Type III SS	Mean Square	F Value	Pr > F
type	2	212.0242886	106.0121443	27.91	<.0001
×	1	291.4185956	291.4185956	76.72	<.0001

Parameter	Estimate		Standard Error	t Value	Pr > [t]
Intercept	-1.07490247	В	3.14568940	-0.34	0.7390
type 1	-12.90676203	В	1.73593123	-7.44	<.0001
type 2	-7.56540962	В	1.57339417	-4.81	0.0005
type 3	0.00000000	В			
×	0.97334200		0.11112250	8.76	<.0001

(1)

위 SAS 결과 중 작년의 판매량(x)을 제어한 후 각각의 판촉에 차이가 있는지를 검정한 Type III SS 표를 보면, 판촉 방식 대한 p값은 <.0001로 유의수준 5% 하에서 유의하게 나타난다. 즉 초기값인 작년 판매량을 제어했을 때 판촉 방식에 따라 차이가 유의하다고 판단된다.

(2)

각 모수 추정치 SAS 결과를 확인해보면 판촉 방식별 공분산 모형식은 다음과 같다.

$$\begin{split} \overline{y_{1j}} &= \widehat{\beta_0} + \widehat{\alpha_1} + \widehat{\beta} x_{1j} = -1.075 - 12.9 + 0.973^* x_{1j} \\ \overline{y_{2j}} &= \widehat{\beta_0} + \widehat{\alpha_2} + \widehat{\beta} x_{1j} = -1.075 - 7.565 + 0.973^* x_{2j} \\ \overline{y_{3j}} &= \widehat{\beta_0} + \widehat{\alpha_3} + \widehat{\beta} x_{3j} = -1.075 + 0 + 0.973^* x_{3j} \end{split}$$