CMOS Basics

Pravin Zode

Outline

- Introduction
- Benefits of Integration
- Why CMOS?
- CMOS Gate Design
- Compound Gate Design

Introduction

 VLSI refers to the process of creating integrated circuits (ICs) by combining thousands to millions of transistors on a single chip

Key features

- High Complexity: Enables the integration of complex circuits
- Low Power Consumption: Optimized for power efficiency in modern devices
- Miniaturization: Small, compact ICs with powerful functionality

Benefits of Integration

Benefits

- Increased Performance: Greater speed and functionality
- Cost Efficiency: Reduces manufacturing costs as circuits are smaller
- Energy Efficiency: Reduced power consumption in devices

Challenges

- Design Complexity: As transistor counts increase, design and verification become harder
- Heat Dissipation: Managing heat in densely packed chips.

Why Study CMOS?

- Low Power Dissipation
- High Integration Density
- CMOS gates allow rail-to-rail output logic voltage swings
- Rail-to-rail swings provide better noise immunity and aid in designing reliable logic circuits
- Symmetrical Transient Response
- Merger of bipolar with CMOS (Speed)

Why Silicon CMOS?

- Abundance: Silicon is the second most abundant element on Earth (Gallium Arsenide does not occur naturally)
- Semiconductor Properties: Exhibits both insulator and conductor properties, making it ideal for switching operations in transistors.
- Technology Know-How: Silicon is the best studied element on earth

Semiconductor Properties

Carriers (Electrons and Holes)

 Electrons are negatively charged particles, and holes are positively charged vacancies created when electrons move

Intrinsic vs. Extrinsic Silicon

- Intrinsic Silicon: Pure silicon with equal numbers of electrons and holes, having limited conductivity.
- Extrinsic Silicon: Doped with impurities to enhance conductivity
 - n-type: Doped with elements like phosphorus, adding extra electrons (negative charge carriers).
 - p-type: Doped with elements like boron, creating more holes (positive charge carriers).

P-N Junction

PN junction is formed when a p-type semiconductor (rich in holes)
 and an n-type semiconductor (rich in electrons) are joined together

- Depletion region
 decreases in width as
 more charge carriers move
 across the junction
- Depletion region increases in width as charge carriers are pulled away from the junction

Modulation of the depletion region to control current flow

Transistor

CMOS

- CMOS stands for Complementary Metal-Oxide-Semiconductor
- It is a widely used technology for building integrated circuits (ICs)
- CMOS transistors include n-channel (NMOS) and p-channel (PMOS) MOSFETs, working together
- Offers low power consumption by only drawing power during switching
- Essential for VLSI (Very Large Scale Integration), used in microprocessors, memory chips, and digital logic circuits

NMOS (N-Channel MOSFET)

- Carries electrons as the primary charge carriers
- Gate voltage turns the transistor ON by attracting electrons, forming a conductive channel
- Faster than PMOS due to higher electron mobility

PMOS (P-Channel MOSFET)

- Carries holes as the primary charge carriers
- Gate voltage turns the transistor ON by attracting holes, forming a conductive channel
- Slower than NMOS due to lower hole mobility.

MOSFET as Switch

OFF state

ON state

MOSFET controlled conduction

CMOS Inverter

- Basic building block of CMOS logic circuits.
- Consists of an NMOS and PMOS transistor connected in series

CMOS Inverter

- Consumes almost no power in steady state (except during switching).
- Power is only consumed during the transition between states (switching).
- Provides robust performance with high noise margins, making it ideal for digital circuits
- Widely used in logic gates, flip-flops, and digital ICs like microprocessors

CMOS Inverter

- Consumes almost no power in steady state (except during switching).
- Power is only consumed during the transition between states (switching).
- Provides robust performance with high noise margins, making it ideal for digital circuits
- Widely used in logic gates, flip-flops, and digital ICs like microprocessors

CMOS Gate Design

- Complementary CMOS logic gates
 - nMOS pull-down network
 - pMOS pull-up network
 - a.k.a. static CMOS

Rule of Conduction Complements

Pull-up network is complement of pull-down

Parallel -> series, series -> parallel

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

MOS Series Connections

MOS Parallel Connections

NOR Gate

$$Y = \overline{A + B}$$

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

NAND Gate

$$Y = \overline{A \cdot B}$$

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

Compound Gates

 A compound gate implements a complex Boolean function with fewer transistors than combining individual gates

Advantages:

- Reduced Delay: Fewer stages of logic
- Compact Design: Optimized for area efficiency
- Power Efficiency: Fewer switching events

Examples:

- AND-OR-Invert (AOI): Combines AND, OR, and NOT
- OR-AND-Invert (OAI): Combines OR, AND, and NOT

Compound Gates

(a)

(c)

(e)

$$Y = (A \cdot B) + (C \cdot D)$$

$$A \rightarrow C$$

$$B \rightarrow D$$

$$A \rightarrow$$

(f)

Compound Gates

20 Transistors for AND-OR-Invert 8 Transistors for Compound Gate

Summary

- Integration in VLSI reduces cost, size, and power while improving speed and reliability.
- CMOS technology is preferred due to its low static power consumption and high noise immunity.
- CMOS gates use complementary PMOS and NMOS networks to achieve efficient logic implementation.
- CMOS gate design ensures minimal power dissipation in steady state and full voltage swing at output.
- Compound gate design allows realization of complex logic functions with fewer transistors and lower delay.

Thank you!

Happy Learning