The University of Newcastle School of Electrical Engineering and Computer Science

COMP3260/COMP6360 Data Security

Week 7 Workshop – 11th and 12th April 2019

- 1. Consider the known plaintext attack on triple DES with two keys as presented in the lectures. Show that the expected effort for this attack is of order $2^{120 \lg n}$, where n is the number of plaintext-ciphertext pairs available to the intruder.
- **2.** Find the unicity distance of Triple-DES, and the Advanced Encryption Standard that uses the key which uses key with 128, 192 or 256 bits.
- **3.** The first stage in each round of the AES is Substitute Bytes Transformation which uses 16×16 S-box. Bytes of the State are replaced one at the time, in the following way: the leftmost 4 bits of a byte determine the row and the rightmost 4 bits determine the column in the S box. The first row and the first column of the S-box are shown below:

	0	1	2	3	4	5	6	7	8	9	A	В	С	D	Е	F
0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
1	CA															
2	B7															
3	04															
4	09															
5	53															
6	D0															
7	51															
8	CD															
9	60					2A										
A	E0															
В	E7															
С	BA															
D	70															
Е	E1															
F	8C															

The S-box is constructed in the following way:

a. The S-box is initialized with byte values where leftmost 4 bits correspond to the row and the rightmost 4 bits correspond to columns, that is, the value of the byte in row *x* and column *y* is *xy*.

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
1	10	11	12	13	14	15	16	17	18	19	1A	1B	1C	1D	1E	1F
2	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F
3	30	31	32	33	34	35	36	37	38	39	3A	3B	3C	3D	3E	3F
4	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
5	50	51	52	53	54	55	56	57	58	59	5A	5B	5C	5D	5E	5F
6	60	61	62	63	64	65	66	67	68	69	6A	6B	6C	6D	6E	6F
7	70	71	72	73	74	75	76	77	78	79	7A	7B	7C	7D	7E	7F
8	80	81	82	83	84	85	86	87	88	89	8A	8B	8C	8D	8E	8F
9	90	91	92	93	94	95	96	97	98	99	9A	9B	9C	9D	9E	9F
Α	A0	A 1	A2	A3	A4	A5	A6	A7	A8	A9	AA	AB	AC	AD	AE	AF
В	B0	B1	B2	В3	B4	B5	B6	B7	B8	B9	BA	BB	BC	BD	BE	BF
C	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9	CA	CB	CC	CD	CE	CF
D	D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	DA	DB	DC	DD	DE	DF
Е	E0	E1	E2	E3	E4	E5	E6	E7	E8	E9	EA	EB	EC	ED	EE	EF
F	F0	F1	F2	F3	F4	F5	F6	F7	F8	F9	FA	FB	FC	FD	FE	FF

- b. Each byte is mapped into its multiplicative inverse in $GF(2^8)$ with irreducible polynomial $p(x) = x^8 + x^4 + x^3 + x + 1$; byte 00 is mapped into itself.
- c. The following transformation is applied to each byte $(b_7,b_6,b_5,b_4,b_3,b_2,b_1,b_0)$, where the values of c is $(c_7,c_6,c_5,c_4,c_3,c_2,c_1,c_0) = (01100011)$:
 - $b_i' = b_i \oplus b_{(i+4) \mod 8} \oplus b_{(i+5) \mod 8} \oplus b_{(i+6) \mod 8} \oplus b_{(i+7) \mod 8} \oplus c_i$, or, in matrix form $\mathbf{B'} = \mathbf{XB} \oplus \mathbf{C}$:

b ₀ '		1	0	0	0	1	1	1	1	b_0		1	
b ₁ '		1	1	0	0	0	1	1	1	b ₁		1	
b ₂ '		1	1	1	0	0	0	1	1	b ₂		0	i
b ₃ '		1	1	1	1	0	0	0	1	b ₃		0	i
b4'	1	1	1	1	1	0	0	0	b ₄		0	i	
b5'	_	0	1	1	1	1	1	0	0	b 5	\oplus	1	i
b ₆ '		0	0	1	1	1	1	1	0	b ₆		1	i
b ₇ '		0	0	0	1	1	1	1	1	b ₇		0	

Show that the byte in row labeled 9 and column labeled 5 has value 2A. (Hint: Multiplicative inverse of 95 in $GF(2^8)$ with irreducible polynomial $p(x) = x^8 + x^4 + x^3 + x + 1$ is 8A; try to find this yourself!)

4. The Inverse Substitute Byte Transformation uses the inverse S-box, which is constructed by first applying the inverse of the transformation $B' = XB \oplus C$ (we denote this transformation as $B' = YB \oplus D$), and then taking the multiplicative inverse in GF(28) with irreducible polynomial p(x) = x8 + x4 + x3 + x + 1. The inverse transformation is

bi' = $b(i+2) \mod 8 \oplus b(i+5) \mod 8 \oplus b(i+7) \mod 8 \oplus di$ In matrix form we have

b ₀ ' b ₁ ' b ₂ ' b ₃ ' b ₄ ' b ₅ ' b ₆ '	=	0 1 0 1 0 0	0 0 1 0 1 0	1 0 0 1 0 1	0 1 0 0 1 0	0 0 1 0 0 1	1 0 0 1 0 0	0 1 0 0 1 0	1 0 1 0 0 1	b0 b1 b2 b3 b4 b5	\oplus	1 0 1 0 0 0	
b ₆ ' b ₇ '		1 0	0 1	0	1 0	0 1	1 0	0 1	0	b ₆ b ₇		0	

Prove that inverse S-box is indeed the inverse of S-box.

- 5. a. What is $\{53\}^{-1}$ in $GF(2^8)$?
 - b. Verify the entry for {53} in the S-box.
- **6.** Compare AES to DES. For each of the following elements of DES, indicate the comparable element in AES or explain why it is not needed in AES.
 - a. XOR of subkey with the input to the f function.
 - **b.** XOR of the f function output with the left half of the block
 - c. f function
 - **d.** permutation P
 - e. swapping of halves of the block