ADVANCED TOPICS IN OR

Lecture Notes 8 Semi-Markov Decision Processes

Zhao Xiaobo
Department of IE
Tsinghua University
Beijing 100084, China
Tel. 010-62784898
Email. xbzhao@tsinghua.edu.cn

Introduction

If the process is in state i and action a is chosen, then

- (i) The transition probability $P_{ij}(a)$
- (ii) The time from i to j, a random variable with probability distribution $F_{ij}(|a|)$

Immediate cost: C(i, a), bounded

Cost rate: c(i, a), bounded

Total cost: transition time t, C(i, a) + t c(i, a)

Condition 1: Avoid infinite number of transitions in finite interval

There exist $\delta > 0$, $\varepsilon > 0$, such that

$$\sum_{i=0}^{\infty} P_{ij}(a) F_{ij}(\delta | a) \leq 1 - \varepsilon$$

Discounted Cost Criterion

 α : discount rate

Cost C incurred at time $t \rightarrow Ce^{-\alpha t}$ at time 0

 τ_n : time between the (n-1)st and the *n*th transition

$$V_{\pi}(i) = E_{\pi} \left[\sum_{n=1}^{\infty} e^{-\alpha(\tau_1 + \cdots + \tau_{n-1})} \left(C(X_n, a_n) + \int_0^{\tau_n} c(X_n, a_n) e^{-\alpha t} dt \right) | X_1 = i \right]$$

Letting
$$V_{\alpha}(i) = \inf_{\pi} V_{\pi}(i)$$

 π^* is α – optimal if $V_{\pi^*}(i) = V_{\alpha}(i)$, for all i

Theorem 7.1

$$V_{\alpha}(i) = \min_{a} \left\{ \overline{C}_{\alpha}(i,a) + \sum_{j=0}^{\infty} P_{ij}(a) \int_{0}^{\infty} e^{-\alpha t} V_{\alpha}(j) dF_{ij}(t|a) \right\}$$

Discounted Cost Criterion

where

$$\bar{C}_{\alpha}(i,a) = C(i,a) + \sum_{j=0}^{\infty} P_{ij}(a) \int_{0}^{\infty} \int_{0}^{t} e^{-\alpha s} c(i,a) ds dF_{ij}(t|a)$$

is the expected one stage discounted cost

 f_{α} : stationary policy, minimizing right side of $V_{\alpha}(i)$

Theorem 7.2

The stationary policy f_{α} is α – optimal. That is

$$V_{f_{\alpha}}(i) = V_{\alpha}(i)$$
, for all i

Remark: For each stationary policy f, define the mapping

$$T_f: B(I) \to B(I)$$
 by

Discounted Cost Criterion

$$(T_f u)(i) = \overline{C}_{\alpha} [i, f(i)] + \sum_{i=0}^{\infty} P_{ij} [f(i)] \int_{0}^{\infty} e^{-\alpha t} u(j) dF_{ij} [t|f(i)]$$

Then by making use of Condition 1, the equivalent of Lemma 6.2 may be proven and then to prove Theorem 7.2

Define the mapping $T_{\alpha}: B(I) \to B(I)$ by

$$(T_{\alpha}u)(i) = \min_{a} \left\{ \overline{C}_{\alpha}(i,a) + \sum_{j=0}^{\infty} P_{ij}(a) \int_{0}^{\infty} e^{-\alpha t} u(j) dF_{ij}(t|a) \right\}$$

Theorem 7.3

 $||T_{\alpha}u - T_{\alpha}v|| \le (1 - \varepsilon + \varepsilon e^{-\alpha\delta}) ||u - v|| \text{ for all } u, v \in B(I).$

 $\rightarrow T_{\alpha}$ is a contraction mapping with fixed point V_{α} .

Z(t): total cost by time t

$$Z_n = C(X_n, a_n) + \tau_n c(X_n, a_n)$$
: cost during the *n*th trnasition

For any policy π

$$\phi_{\pi}^{1}(i) = \lim_{t \to \infty} E_{\pi} \left[\frac{Z(t)}{t} | X_{1} = i \right]$$

and

$$\phi_{\pi}^{2}(i) = \lim_{t \to \infty} \frac{E_{\pi} \left[\sum_{j=1}^{n} Z_{j} | X_{1} = i \right]}{E_{\pi} \left[\sum_{j=1}^{n} \tau_{j} | X_{1} = i \right]}$$

 φ^1 is the usual mean of average expected cost φ^2 easier to work

Is φ^1 equivalent to φ^2 ? Under certain condition, they are.

Sufficient condition: For any stationary policy f, the resultant semi-Markov process $\{X(t), t \ge 0\}$ is a regenerative process with finite expected cycle length

Let
$$T = \min \left\{ t > 0 : X\left(t\right) = i, X\left(t^{-}\right) \neq i \right\}$$

 $N = \min \left\{ n > 0 : X_{n+1} = i \right\}$

Lemma 7.4 If $E_{\pi}[T|X_1 = i] < \infty$, then

$$E_{\pi}[N|X_1=i]<\infty$$
, and $T=\sum_{n=1}^N \tau_n$

Proof. It follows that $T \ge \sum_{n=1}^{N} \tau_n$ with equality if $N < \infty$

Let
$$\overline{\tau}_{n} = \begin{cases} 0 & \text{if } \tau_{n} \leq \delta \\ \delta \text{ with probability } \frac{\varepsilon}{1 - \sum_{j=0}^{\infty} P_{kj}(a) F_{kj}(\delta|a)} & \text{if } \tau_{n} > \delta, X_{n} = k, a_{n} = a \end{cases}$$

$$0 \text{ with probability } 1 - \frac{\varepsilon}{1 - \sum_{j=0}^{\infty} P_{kj}(a) F_{kj}(\delta|a)} & \text{if } \tau_{n} > \delta, X_{n} = k, a_{n} = a \end{cases}$$

From condition 1, $\bar{\tau}_n$ are iid with

$$P\{\overline{\tau}_n = \delta\} = \varepsilon = 1 - P\{\overline{\tau}_n = 0\}$$

From Wald's equation

if
$$EN = \infty$$
 then $E\sum_{n=1}^{N} \overline{\tau}_n = \infty$

$$ET \ge E \sum_{n=1}^{N} \tau_n \ge E \sum_{n=1}^{N} \overline{\tau}_n = \infty$$

Therefore, if $ET < \infty$, then EN and hence N are finite

Theorem 7.5 If f is a stationary policy, and if $E_f[T|X_1=i] < \infty$

$$\phi_f^1(i) = \phi_f^2(i) = \frac{E_f \left[Z(T) | X_1 = i \right]}{E_f \left[T | X_1 = i \right]}$$

Proof. Under a stationary policy, $\{X(t), t > 0\}$ is a regenerative process with regeneration point T

 $\{Z(t), t > 0\}$: renewal reward process

 $\{X_n, n = 1, 2, ...\}$: discrete time regenerative process with regeneration time N

 $Z_1 + \cdots + Z_N$: reward during the first cycle

$$E_f \sum_{i=1}^n \frac{Z_i}{n} \to \frac{E_f \sum_{i=1}^N Z_i}{E_f N}$$
 as $n \to \infty$

Regard $\tau_1 + \cdots + \tau_N$ as reward during the first cycle

$$E_f \sum_{i=1}^n \frac{\tau_i}{n} \to \frac{E_f \sum_{i=1}^N \tau_i}{E_f N} \quad \text{as} \quad n \to \infty$$

We obtain

$$\phi_f^2(i) = \frac{E_f \sum_{i=1}^N Z_i}{E_f \sum_{i=1}^N \tau_i}$$

However, since $N < \infty$, it is easy to see

$$\sum_{i=1}^{N} Z_i = Z(T) \qquad \sum_{i=1}^{N} \tau_i = T$$

the result follows

Remarks: It follows, with probability 1

$$\lim_{t \to \infty} \frac{Z(t)}{t} = \lim_{n \to \infty} \frac{\sum_{i=1}^{n} Z_i}{\sum_{i=1}^{n} \tau_i} = \frac{E_f Z(T)}{E_f T}$$

When is it true that $\phi_f^1(j) = \phi_f^2(j) = \phi_f^1(i)$?

With probability 1, the process will eventually enter state i, then $\{X(t), t > 0\}$ is a delayed regenerative process.

Additional notation
$$\bar{\tau}(i,a) = \sum_{j=0}^{\infty} P_{ij}(a) \int_{0}^{\infty} t dF_{ij}(t|a)$$

 $\bar{C}(i,a) = C(i,a) + c(i,a)\bar{\tau}(i,a)$

 $\overline{\tau}(i,a)$: the expected time until a transition occurs

 $\overline{C}(i,a)$: the expected cost during such a transition

 φ^2 only depends on the parameters of the process through the three functions $\overline{\tau}(i,a)$, $\overline{C}(i,a)$, $P_{ij}(a)$

Choose cost and transition time distributions in as convenient a manner as possible

Without loss of generality, assume

$$C(i,a) = \overline{C}(i,a)$$
 $c(i,a) = 0$

and the time until transition is (with probability 1)

$$\overline{\tau}(i,a)$$

Theorem 7.6 If there exists a bounded function h(i) and a

constant g such that

$$h(i) = \min_{a} \left\{ C(i,a) + \sum_{j=0}^{\infty} P_{ij}(a)h(j) - g\overline{\tau}(i,a) \right\}$$

then there exists a stationary π^* such that

$$g = \phi_{\pi^*}^2(i) = \min_{\pi} \phi_{\pi}^2(i) \quad \text{for all } i$$

Proof. Let $H_n = (X_1, a_1, \dots, X_n, a_n)$

For any policy
$$\pi$$
,
$$E_{\pi} \left\{ \sum_{i=2}^{n} \left[h(X_i) - E_{\pi}(h(X_i)|H_{i-1}) \right] \right\} = 0$$

But
$$E_{\pi} \Big[h(X_{i}) | H_{i-1} \Big] = \sum_{j=0}^{\infty} h(j) P_{X_{i-1}j} (a_{i-1})$$

$$= \overline{C} (X_{i-1}, a_{i-1}) + \sum_{j=0}^{\infty} h(j) P_{X_{i-1}j} (a_{i-1}) - g \overline{\tau} (X_{i-1}, a_{i-1})$$

$$- \overline{C} (X_{i-1}, a_{i-1}) + g \overline{\tau} (X_{i-1}, a_{i-1})$$

$$\geq \min_{a} \left\{ \overline{C} (X_{i-1}, a) + \sum_{j=0}^{\infty} h(j) P_{X_{i-1}j} (a) - g \overline{\tau} (X_{i-1}, a) \right\}$$

$$- \overline{C} (X_{i-1}, a_{i-1}) + g \overline{\tau} (X_{i-1}, a_{i-1})$$

$$= h(X_{i-1}) - \overline{C} (X_{i-1}, a_{i-1}) + g \overline{\tau} (X_{i-1}, a_{i-1})$$

with equality for π^* . Hnece

$$0 \le E_{\pi} \left\{ \sum_{i=2}^{n} \left[h(X_i) - h(X_{i-1}) + C(X_{i-1}, a_{i-1}) - g\overline{\tau}(X_{i-1}, a_{i-1}) \right] \right\}$$

$$g \leq \frac{E_{\pi} \left[h(X_n) - h(X_1) \right] + E_{\pi} \sum_{i=2}^{n} \overline{C}(X_{i-1}, a_{i-1})}{E_{\pi} \sum_{i=2}^{n} \overline{\tau}(X_{i-1}, a_{i-1})}$$

with equality for π^* .

Letting $n \to \infty$ and using the boundedness of h and the fact that Condition 1 implies

$$E_{\pi} \sum_{i=2}^{n} \overline{\tau} \left(X_{i-1}, a_{i-1} \right) \ge (n-1) \varepsilon \delta \to \infty$$

we have

$$g \le \lim_{n \to \infty} \frac{E_{\pi} \sum_{i=2}^{n} \bar{C}(X_{i-1}, a_{i-1})}{E_{\pi} \sum_{i=2}^{n} \bar{\tau}(X_{i-1}, a_{i-1})} = \phi_{\pi}^{2}(X_{i})$$

with equality for π^* and all values of X_1 .

When the conditions of Theorem 6.7 are satisfied?

We have assumed that (without loss of generality)

$$C(i,a) = \overline{C}(i,a) \qquad c(i,a) = 0 \qquad \text{transition time } \overline{\tau}(i,a)$$

$$V_{\alpha}(i) = \min_{a} \left\{ \overline{C}(i,a) + e^{-\alpha \overline{\tau}(i,a)} \sum_{j=0}^{\infty} P_{ij}(a) V_{\alpha}(j) \right\}$$

Fix state 0, and define $h_{\alpha}(i) = V_{\alpha}(i) - V_{\alpha}(0)$

Then, we obtain

$$h_{\alpha}(i) = \min_{a} \left\{ \overline{C}(i,a) + e^{-\alpha \overline{\tau}(i,a)} \sum_{j=0}^{\infty} P_{ij}(a) V_{\alpha}(j) + \left[e^{-\alpha \overline{\tau}(i,a)} - 1 \right] V_{\alpha}(0) \right\}$$

$$= \min_{a} \left\{ \overline{C}(i,a) + e^{-\alpha \overline{\tau}(i,a)} \sum_{j=0}^{\infty} P_{ij}(a) V_{\alpha}(j) - V_{\alpha}(0) \left[\alpha \overline{\tau}(i,a) + o(\alpha) \right] \right\}$$

Theorem 7.7 If
$$|V_{\alpha}(i) - V_{\alpha}(0)| < N$$
 for all α , all i

(i) Exist bounded h(i) and constant g satisfying (6)

(ii) For
$$\alpha_n \to 0$$
, $h(i) = \lim_{n \to \infty} \left(V_{\alpha_n}(i) - V_{\alpha_n}(0) \right)$

(iii)
$$\lim_{\alpha \to 0} \alpha V_{\alpha_n}(0) = g$$

Letters arrive at post office ~ Poisson process with rate λ

Action: (i) summon a truck to pick up all letters, $\cos K$ (ii) wait, $\cos t$ rate C(i) bounded increasing nonnegative

Problem: select a policy, minimize the long-run average cost

SMDP: state i, the number of letters in the post

action 1: summon a truck

action 2: don't summon a truck

$$P_{i1}(1) = 1$$
 $\overline{\tau}(i,1) = 1/\lambda$ $\overline{C}(i,1) = K + C(0)/\lambda$
 $P_{ii+1}(2) = 1$ $\overline{\tau}(i,2) = 1/\lambda$ $\overline{C}(i,2) = C(i)/\lambda$

$$V_{\alpha}(i,1) = \min \left\{ K + \frac{C(0)}{\lambda}; \frac{C(i)}{\lambda} \right\}$$

and for n > 1

$$V_{\alpha}(i,n) = \min \left\{ K + \frac{C(0)}{\lambda} + e^{-\alpha/\lambda} V_{\alpha}(1,n-1); \frac{C(i)}{\lambda} + e^{-\alpha/\lambda} V_{\alpha}(i+1,n-1) \right\}$$

By induction method, $V_a(i, n)$ is increasing in i

$$V_{\alpha}(i) = \lim V_{\alpha}(i, n)$$
 is increasing in i

Since $V_a(i)$ satisfies

$$V_{\alpha}(i) = \min \left\{ K + \frac{C(0)}{\lambda} + e^{-\alpha/\lambda} V_{\alpha}(1); \frac{C(i)}{\lambda} + e^{-\alpha/\lambda} V_{\alpha}(i+1) \right\}$$

It follows that
$$V_{\alpha}(i) \leq K + \frac{C(0)}{\lambda} + e^{-\alpha/\lambda}V_{\alpha}(1)$$

 $< K + \frac{C(0)}{\lambda} + V_{\alpha}(1)$
 $\Rightarrow V_{\alpha}(1) < V_{\alpha}(i) < K + \frac{C(0)}{\lambda} + V_{\alpha}(1)$

From Theorem 7.7, there exist a constant g and bounded increasing function h(i)

$$h(i) = \min \left\{ K + \frac{C(0)}{\lambda} + h(1) - \frac{g}{\lambda}; \frac{C(i)}{\lambda} + h(i+1) - \frac{g}{\lambda} \right\}$$

$$i^* = \min \left\{ i : \frac{C(i)}{\lambda} + h(i+1) > K + \frac{C(0)}{\lambda} + h(1) \right\}$$

From monotonicity of C(i) and h(i), \rightarrow summon a truck whenever the number of letters in the post is at lest i^*

Determine i^*

 f_i : policy, summon a truck whenever at least i letters

Regenerative process, state 1

The long-run average cost

$$\phi_{f_i}(j) = \frac{E_{f_i}[\text{cost of cycle}]}{E_{f_i}[\text{length of cycle}]} = \frac{K + \frac{C(0)}{\lambda} + E\int_{\tau_1}^{\tau_i} C[N(t)]dt}{\frac{i}{\lambda}}$$

Hence
$$\phi_{f_i}(j) = \frac{K + \frac{C(0)}{\lambda} + E[C(1)(\tau_2 - \tau_1) + \dots + C(i-1)(\tau_i - \tau_{i-1})]}{\frac{i}{\lambda}}$$

$$= \frac{\lambda}{i} \left[K + \frac{C(0)}{\lambda} + \sum_{i=1}^{i-1} \frac{C(j)}{\lambda} \right]$$

$$= \frac{\lambda K}{i} + \frac{1}{i} \sum_{i=0}^{i-1} C(j)$$

As an example, if C(i) = iC, then $\phi_{f_i}(j) = \frac{\lambda K}{i} + \frac{(i-1)C}{2}$

The optimal *i* is one of the two integers adjacent to $\sqrt{2\lambda K/C}$

The streetwalker' dilemma

Customers arrive ~ Poisson process with rate λ

offer pair (i, F_i) : i the money

 F_i distribution of service time with offer i

$$t_i = \int_0^\infty x dF_i\left(x\right)$$

 (i, F_i) occurs with probability P_i

SMDP: state i,

action 1: accept

action 2: reject

The streetwalker' dilemma

Customers arrive ~ Poisson process with rate λ

$$P_{ij}(1) = P_j \qquad \overline{\tau}(i,1) = t_i + 1/\lambda \qquad \overline{C}(i,1) = -i$$

$$P_{ij}(2) = P_j \qquad \overline{\tau}(i,2) = 1/\lambda \qquad \overline{C}(i,2) = 0$$

It is easy to check the conditions of Theorem 7.7 are satisfied, hence by Theorem 7.6, we have

$$h(i) = \min \left\{ -i + \sum_{j=1}^{N} P_{j}h(j) - g\left(t_{i} + \frac{1}{\lambda}\right); \sum_{j=1}^{N} P_{j}h(j) - g\frac{1}{\lambda} \right\}$$

The optimal policy accepts an offer (i, F_i) iff $\frac{l}{t_i} \ge g$