Chapter 2: Number Fields and Number Rings

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 2.28. Let $f(x) = x^3 + ax + b$, a and $b \in \mathbb{Z}$, and assume f is irreducible over \mathbb{Q} . Let α be a root of f.

- (a) Show that $f'(\alpha) = -\frac{2a\alpha + 3b}{\alpha}$.
- (b) Show that $2a\alpha + 3b$ is a root of

$$\left(\frac{x-3b}{2a}\right)^3 + a\left(\frac{x-3b}{2a}\right) + b.$$

Use this to find $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha+3b)$.

- (c) Show that $disc(\alpha) = -(4a^3 + 27b^2)$.
- (d) Suppose $\alpha^3 = \alpha + 1$. Prove that $\{1, \alpha, \alpha^2\}$ is an integral basis for $\mathbb{A} \cap \mathbb{Q}[\alpha]$. (See Exercise 2.27(e).) Do the same if $\alpha^3 + \alpha = 1$.

Proof of (a).

- (1) Show that $\alpha \neq 0$. If α were 0, then $f(\alpha) = f(0) = b$. So $f(x) = x^3 + ax = x(x^2 + a)$ is reducible, contrary to the irreducibility of f.
- (2) Since α be a root of f, $f(\alpha) = 0$, or $\alpha^3 + a\alpha + b = 0$, or $\alpha^3 = -a\alpha b$.
- (3)

$$f'(x) = 3x^{2} + a \Longrightarrow f'(\alpha) = 3\alpha^{2} + a$$

$$\iff \alpha f'(\alpha) = 3\alpha^{3} + a\alpha \qquad (\alpha \neq 0)$$

$$\iff \alpha f'(\alpha) = 3(-a\alpha - b) + a\alpha \qquad (\alpha^{3} = -a\alpha - b)$$

$$\iff \alpha f'(\alpha) = -2a\alpha - 3b.$$

So $f'(\alpha) = -\frac{2a\alpha + 3b}{\alpha}$.

Proof of (b).

(1) Since $\alpha^3 + a\alpha + b = 0$,

$$\left(\frac{(2a\alpha+3b)-3b}{2a}\right)^3+a\left(\frac{(2a\alpha+3b)-3b}{2a}\right)+b=0.$$

That is, $2a\alpha + 3b$ is a root of $\left(\frac{x-3b}{2a}\right)^3 + a\left(\frac{x-3b}{2a}\right) + b$.

(2) $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha+3b)$ is the product of three roots of $\left(\frac{x-3b}{2a}\right)^3+a\left(\frac{x-3b}{2a}\right)+b$. Hence,

$$\begin{split} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha + 3b) &= (2a)^3 \left[\left(\frac{-3b}{2a} \right)^3 + a \cdot \frac{-3b}{2a} + b \right] \\ &= 8a^3 \left[\frac{-27b^3}{8a^3} - \frac{b}{2} \right] \\ &= -27b^3 - 4a^3b. \end{split}$$

Proof of (c).

$$\operatorname{disc}(\alpha) = (-1)^{\frac{n(n-1)}{2}} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(f'(\alpha)) \qquad \text{(Theorem 2.8)}$$

$$= -N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} \left(-\frac{2a\alpha + 3b}{\alpha} \right) \qquad (n = 3 \text{ and (a)})$$

$$= \frac{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(2a\alpha + 3b)}{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\alpha)}$$

$$= \frac{-27b^3 - 4a^3b}{b} \qquad ((b))$$

$$= -27b^2 - 4a^3.$$

Proof of (d).

- (1) (a) $\alpha^3 = \alpha + 1$, or $\alpha^3 \alpha 1 = 0$.
 - (b) $f(x) = x^3 x 1$ is irreducible over \mathbb{Q} since f(x) is irreducible over $\mathbb{Z}/3\mathbb{Z}$.
 - (c) $disc(\alpha) = -23$ (by (c)).
 - (d) Since $\operatorname{disc}(\alpha)$ is squarefree, the result is established (Exercise 2.27(e)).
- (2) (a) $\alpha^3 + \alpha = 1$, or $\alpha^3 + \alpha 1 = 0$.
 - (b) $f(x) = x^3 + x 1$ is irreducible over \mathbb{Q} since f(x) is irreducible over $\mathbb{Z}/2\mathbb{Z}$.
 - (c) $disc(\alpha) = -31$ (by (c)).
 - (d) Since $\operatorname{disc}(\alpha)$ is squarefree, the result is established (Exercise 2.27(e)).

Exercise 2.43. Let $f(x) = x^5 + ax + b$, a and $b \in \mathbb{Z}$, and assume f is irreducible over \mathbb{Q} . Let α be a root of f.

- (a) Show that $disc(\alpha) = 4^4a^5 + 5^4b^4$. (Suggestion: See Exercise 2.28.)
- (b) Suppose $\alpha^5 = \alpha + 1$. Prove that $\mathbb{A} \cap \mathbb{Q}[\alpha] = \mathbb{Z}[\alpha]$. $(x^5 x 1 \text{ is irreducible over } \mathbb{Q}; \text{ this can be shown by reducing } \pmod{3}$.)
- (c) ...
- (d) ...

Proof of (a)(Exercise 2.28).

- (1) Show that $f'(\alpha) = -\frac{4a\alpha + 5b}{\alpha}$.
 - (a) Show that $\alpha \neq 0$. If α were 0, then $f(\alpha) = f(0) = b$. So $f(x) = x^5 + ax = x(x^4 + a)$ is reducible, contrary to the irreducibility of f.
 - (b) Since α be a root of f, $f(\alpha) = 0$, or $\alpha^5 + a\alpha + b = 0$, or $\alpha^5 = -a\alpha b$.
 - (c)

$$f'(x) = 5x^4 + a \Longrightarrow f'(\alpha) = 5\alpha^4 + a$$

$$\iff \alpha f'(\alpha) = 5\alpha^5 + a\alpha \qquad (\alpha \neq 0)$$

$$\iff \alpha f'(\alpha) = 5(-a\alpha - b) + a\alpha \quad (\alpha^5 = -a\alpha - b)$$

$$\iff \alpha f'(\alpha) = -4a\alpha - 5b.$$

So
$$f'(\alpha) = -\frac{4a\alpha + 5b}{\alpha}$$
.

(2) Show that $4a\alpha + 5b$ is a root of

$$\left(\frac{x-5b}{4a}\right)^5 + a\left(\frac{x-5b}{4a}\right) + b.$$

Use this to show that $N_{\mathbb{O}}^{\mathbb{Q}[\alpha]}(4a\alpha+5b)=-4^4a^5b-5^5b^5$.

(a) Since $\alpha^5 + a\alpha + b = 0$,

$$\left(\frac{(4a\alpha+5b)-5b}{4a}\right)^5+a\left(\frac{(4a\alpha+5b)-5b}{4a}\right)+b=0.$$

That is, $4a\alpha + 5b$ is a root of $\left(\frac{x-5b}{4a}\right)^5 + a\left(\frac{x-5b}{4a}\right) + b$.

(b) $N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(4a\alpha+5b)$ is the product of three roots of $\left(\frac{x-5b}{4a}\right)^5+a\left(\frac{x-5b}{4a}\right)+b$. Hence,

$$N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(4a\alpha + 5b) = (4a)^5 \left[\left(\frac{-5b}{4a} \right)^5 + a \cdot \frac{-5b}{4a} + b \right]$$
$$= 4^5 a^5 \left[\frac{-5^5 b^5}{4^5 a^5} - \frac{b}{4} \right]$$
$$= -5^5 b^5 - 4^4 a^5 b.$$

(3) Show that $disc(\alpha) = 4^4a^5 + 5^4b^4$.

$$\operatorname{disc}(\alpha) = (-1)^{\frac{n(n-1)}{2}} N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(f'(\alpha)) \qquad \text{(Theorem 2.8)}$$

$$= N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]} \left(-\frac{4a\alpha + 5b}{\alpha} \right) \qquad (n = 5 \text{ and } (1))$$

$$= -\frac{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(4a\alpha + 5b)}{N_{\mathbb{Q}}^{\mathbb{Q}[\alpha]}(\alpha)}$$

$$= -\frac{-4^4 a^5 b - 5^5 b^5}{b}$$

$$= 4^4 a^5 + 5^4 b^4.$$

Proof of (b)(Exercise 2.28).

- (1) $\alpha^5 = \alpha + 1$, or $\alpha^5 \alpha 1 = 0$.
- (2) $f(x) = x^5 x 1$ is irreducible over \mathbb{Q} since f(x) is irreducible over $\mathbb{Z}/3\mathbb{Z}$.
- (3) $disc(\alpha) = 881$ (by (a)).
- (4) Since $\mathrm{disc}(\alpha)$ is squarefree (a prime number), the result is established (Exercise 2.27(e)).

Exercise 2.44. Let $f(x) = x^5 + ax^4 + b$, a and $b \in \mathbb{Z}$, and assume f is irreducible over \mathbb{Q} . Let α be a root of f and let d_1, d_2, d_3 and d_4 be as in Theorem 2.13.

- (a) Show that $disc(\alpha) = b^3(4^4a^5 + 5^5b)$.
- (b) ...
- (c) ...
- (d) ...

Proof of (a)(Exercise 2.28). ... \square

Exercise 2.45. Obtain a formula for $disc(\alpha)$ if α is a root of an irreducible polynomial $x^n + ax + b$ over \mathbb{Q} . Do the same for $x^n + ax^{n-1} + b$.

Proof (Exercise 2.28). ... \square