EXAMEN LA ANALIZA MATEMATICA I

I. 1) Fie

$$A = \{(x,y) \in \mathbb{R}^2 \ \big| 1 < x^2 + y^2 \le 4 \} \cup \big\{ \big(0, 2^{-n} \big) \ \big| \ n \in \mathbb{N} \big\} \subset \mathbb{R}^2.$$

Determinati interiorul, aderenta si multimea punctelor de acumulare ale multimii A. Decideti daca A este inchisa, deschisa sau compacta. Decideti daca aderenta multimii A este compacta. Justificati raspunsurile!

- 2) Aratati ca daca $A \subset \mathbb{R}^3$ este o multime conexa atunci aderenta multimii A este o multime conexa.
- **II.** Fie $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} x \sin \frac{1}{x}, & \text{daca } x < 0\\ \sqrt{x^2 + x} - x, & \text{daca } x \ge 0 \end{cases}$$

- 1) Studiati continuitatea si derivabilitatea lui f.
- 2) Studiati uniform continuitatea functiei f pe \mathbb{R} si pe $(0, \infty)$.
- **III.** 1) Pentru $n \geq 1$, fie $f_n : \mathbb{R} \to \mathbb{R}$,

$$f_n(x) = \frac{3n^2 - ne^{3x} + e^{6x}}{3n^2 + e^{6x}}$$

Sa se studieze convergenta simpla si convergenta uniforma a sirului $(f_n)_{n\geq 1}$ pe $(-\infty,0)$ si $[1,\infty)$.

2) Fie $(f_n)_{n\geq 1}$ un sir de functii reale definite pe \mathbb{R} care converge uniform catre functia $f:\mathbb{R}\to\mathbb{R}$ si fie $g:\mathbb{R}\to\mathbb{R}$. Pentru $n\geq 1$, fie $h_n:\mathbb{R}\to\mathbb{R}$, definite prin $h_n(x)=f_n(x)\cos(g(x))$.

Este adevarat ca sirul de functii $(h_n)_{n\geq 1}$ este uniform convergent pe \mathbb{R} ? Justificati raspunsul!

IV. 1) Studiati convergenta seriei:

$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n+2}} \cdot \ln \left(\frac{n^2 + n + 1}{n^2} \right).$$

2) Studiati convergenta sirului de numere reale $(x_n)_{n\geq 1}$ cu proprietatea ca

$$|x_{n+1} - x_n| < \frac{\cos \frac{1}{n}}{n^2 + n}$$
, pentru orice $n \ge 1$.

Nota. Timpul de lucru este de 2 ore. Fiecare subiect se noteaza cu note de la 1 la 10. Nota obtinuta la aceasta lucrare este media aritmetica a celor 4 note. Toate raspunsurile trebuie justificate!

Rezolvarile trebuie scanate si trimise impreuna cu lista de subiecte sub forma unui **singur** fisier pdf la adresele radu-bogdan.munteanu@g.unibuc.ro si radu.munteanu@unibuc.ro.