AU OPTRONICS CORPORATION

()	Preliminary Specification
(V	١	Final Specification

Module	21.5" Color TFT-LCD
Model Name	M215HW01 VB

Customer	Date		Approved by	Date
			<u>Paul Huang</u>	Aug 06, 2010
Approved by			Prepared by	Date
			Jerry Cheng	<u>Aug 06, 2010</u>
Note: This Specification change without no		-	Desktop Display E AU Optronics	

M215HW01 VB

AU OPTRONICS CORPORATION

Contents

1.0 Handling Precautions	4
2.0 General Description	
2.1 Display Characteristics	
2.2 Optical Characteristics	
3.0 Functional Block Diagram	
4.1 TFT LCD Module	
4.2 Absolute Ratings of Environment	
5.0 Electrical characteristics	
5.1 TFT LCD Module	
5.1.1 Power Specification	12
5.1.2 Signal Electrical Characteristics	
6.1 Pixel Format Image	
6.2 The input data format	
6.3 Signal Description	
6.4 Timing Characteristics	
6.5 Timing diagram	
6.6 Power ON/OFF Sequence	20
7.0 Connector & Pin Assignment	21
7.1 TFT LCD Module	21
7.1.1 Pin Assignment	21
7.2 Connector on Backlight Unit.	
7.2.1 Signal for LED light bar connector	
8.0 Reliability Test	
9.0 Shipping Label	

M215HW01 VB

AU OPTRONICS CORPORATION

Record of Revision

Ver	sion and Date	Page	Old description	New Description	Remark
0.1	2010/05/13	All	First Edition for Customer	-	
0.2	2010/07/01	last	No packing specificaton	Add packing specification	
1.0	2010/08/06			Final version	

M215HW01 VB

AU OPTRONICS CORPORATION

1.0 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the LED lightbar edge. Instead, press at the far ends of the LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.

M215HW01 VB

AU OPTRONICS CORPORATION

2.0 General Description

This specification applies to the 21.5 inch-wide Color a-Si TFT-LCD Module M215HW01. The display supports the Full HD - 1920(H) x 1080(V) screen format and 16.7M colors (RGB 6-bits + Hi-FRC data). All input signals are 2-channel LVDS interface and this module doesn't contain an driver board for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25°C condition:

ITEMS	Unit	SPECIFICATIONS
Screen Diagonal	[mm]	546.86(21.53")
Active Area	[mm]	476.64 (H) x 268.11 (V)
Pixels H x V		1920(x3) x 1080
Pixel Pitch	[um]	248.25 (per one triad) ×248.25
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		TN Mode, Normally White
White Luminance (Center)	[cd/m ²]	250cd/m ² (Typ.)
Contrast Ratio		1000 (Typ.)
Optical Response Time	[msec]	5ms (Typ., on/off)
Nominal Input Voltage VDD	[Volt]	+5.0 V
Power Consumption	[Watt]	17.6 (Typ.)
(VDD line + LED line)		(without driver board, all black pattern)
Weight	[Grams]	1800 (max.)
Physical Size	[mm]	495.6(W) × 292.2(H) × 10.3(D) Typ.
Electrical Interface		Dual channel LVDS
Support Color		16.7M colors (RGB 6-bit + Hi_FRC)
Surface Treatment		Anti-Glare, 3H
Temperature Range		
Operating	[°C]	0 to +50
Storage (Shipping)	[°C]	-20 to +60
RoHS Compliance		RoHS Compliance
TC0'03 Compliance		TC0'03 Compliance

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25 $^{\circ}\!\!\!\!\!\!\!\mathrm{C}\!:$

Item	Unit	Conditions	Min.	Тур.	Max.	Note
Viewing Angle	[degree]	Horizontal (Right) CR = 10 (Left)	75 75	85 85	-	_
Viewing Angle	[uegree]	Vertical (Up) CR = 10 (Down)	70 70	80 80	-	2
Contrast ratio		Normal Direction	600	1000	-	3
		Raising Time (T _{rR})	-	3.8	5.5	
Response Time	[msec]	Falling Time (T _{rF})	-	1.2	2.5	4
		Raising + Falling	-	5	8	
		Red x	0.605	0.635	0.665	
		Red y	0.319	0.349	0.379	
Color / Chromaticity		Green x	0.302	0.332	0.362	
Coordinates (CIE)		Green y	0.589	0.619	0.649	_
		Blue x	0.125	0.155	0.185	5
		Blue y	0.025	0.055	0.085	
Onland On a siling Long (OIF) Wilder		White x	0.283	0.313	0.343	
Color Coordinates (CIE) White		White y	0.299	0.329	0.359	
Central Luminance	[cd/m ²]		200	250	-	6
Luminance Uniformity	[%]		75	80	-	7
Crosstalk (in 60Hz)	[%]				1.5	8
Flicker	dB				-20	9

Note 1: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring (at surface 35° C). In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 2: Definition of viewing angle measured by ELDIM (EZContrast 88)

Viewing angle is the measurement of contrast ratio ≥ 10 , at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 3: Contrast ratio is measured by TOPCON SR-3

Note 4: Definition of Response time measured by Westar TRD-100A

The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time, Tr_R), and from "Full White" to "Full Black" (falling time, Tf_F), respectively. The response time is interval between the 10% and 90% (1 frame at 60 Hz) of amplitudes.

 $Tr_R + Tf_F = 5 \text{ msec (typ.)}.$

Note 5: Color chromaticity and coordinates (CIE) is measured by TOPCON SR-3

Note 6: Central luminance is measured by TOPCON SR-3

Note 7: Luminance uniformity of these 9 points is defined as below and measured by TOPCON SR-3

Uniformity = $\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}}$

Note 8: Crosstalk is defined as below and measured by TOPCON SR-3

 $CT = | YB - YA | / YA \times 100 (\%)$

Where

YA = Luminance of measured location without gray level 0 pattern (cd/m2)

YB = Luminance of measured location with gray level 0 pattern (cd/m2)

Note 9: Test Patern: Subchecker Pattern measured by TOPCON SR-3

Method: Record dBV & DC value with TRD-100

AU OPTRONICS CORPORATION

3.0 Functional Block Diagram

The following diagram shows the functional block of the 21.5 inch Color TFT-LCD Module:

I/F PCB Interface:

FI-XB30SRL-HF11(JAE) \ 093F30-B0T01A(Starconn)

Mating Type:

FI-X30HL (Locked Type)

4.0 Absolute Maximum Ratings

Absolute maximum ratings of the module are as following:

4.1 TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive	VDD	0	6.0	[Volt]	Note 1,2
Voltage					,

4.2 Absolute Ratings of Environment

Item	Symbol	Min.	Max.	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	
Operation Humidity	HOP	5	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 3
Storage Humidity	HST	5	90	[%RH]	

Note 1: With in Ta (25°C)

Note 2: Permanent damage to the device may occur if exceeding maximum values

Note 3: For quality perfermance, please refer to AUO IIS(Incoming Inspection Standard).

Operating Range

Storage Range

+

AU OPTRONICS CORPORATION

5.0 Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as following:

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
VDD	Logic/LCD Drive Voltage	4.5	5.0	5.5	[Volt]	+/-10%
IDD	Input Current	-	0.98	1.22	[A]	VDD= 5.0V, All Black Pattern At 60Hz
PDD	VDD Power	-	4.9	6.1	[Watt]	VDD= 5.0V, All Black Pattern At 60Hz
IRush	Inrush Current	-	-	3	[A]	Note 1
VDDrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	500	[mV] p-p	VDD= 5.0V, All Black Pattern At 75Hz

Note 1: Measurement conditions:

The duration of rising time of power input is 470us.

AU OPTRONICS CORPORATION

5.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when VDD is off. Please refer to specifications of SN75LVDS82DGG (Texas Instruments) in detail.

1. DC Characteristics of each signal are as following:

Symbol	Parameter	Min	Тур	Max	Units	Condition
VTH	Differential Input High	_		+100	[mV]	VICM = 1.2V
VIH	Threshold		-	+100	[IIIV]	Note 1
VTL	Differential Input Low	100			[mV]	VICM = 1.2V
VIL	Threshold	-100	-	-		Note 1
VID	Input Differential Voltage	100	ı	600	[mV]	Note 1
VICM	Differential Input Common	.10	.10	.1 5	r\/1	VTH-VTL = 200MV (max)
VICM	Mode Voltage	+1.0	+1.2	+1.5	[V]	Note 1

Note 1: LVDS Signal Waveform

2. AC Characteristics

Description	Symbol	Min	Max	Unit	Note
Maximum deviation of input clock frequency during SSC	FDEV	-	± 3	%	
Maximum modulation frequency of input clock during SSC	Fмоd	-	200	KHz	

M215HW01 VB

AU OPTRONICS CORPORATION

5.2 Backlight Unit

Parameter guideline for LED driver is under stable conditions at 25°C (Room Temperature):

Symbol	Parameter	Min.	Тур.	Max.	Unit	Note
IR _{LED}	LED Operation Current	-	60	63	[mA] Note 1	
V _{LB}	Light Bar Operation Voltage (for reference)	48	52.8	57.6	[Volt] Note 2	Operating with fixed
P _{BLU}	BLU Power consumption (for reference)		12.7	13.8	[Watt] Note 3	driving current
LT _{LED}	LED life Time	30000			[Hour] Note 3	

Note 1 :The specified current is input LED chip 100% duty current.

Note 2: The value showed in the table is one light bar's operation voltage.

Note 3 : Definition of life time : brightness becomes 50% of its original value. The minimum life time of LED unit is on the condition of IR_{LED} =60mA and 25±2°C (Room temperature).

Note 4: Each LED light bar consists of 64 pcs LED package (4 strings x 16 pcs / string).

AU OPTRONICS CORPORATION

6.0 Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

		1			2			1	91	9	19	920	C
1st Line	R	G	В	R	G	В		R	G	В	R	G	В
		•					:					•	
		•			•				•			•	
									:			:	
		•			•				•			•	
					:		:		:			:	
		•			•		:		•			•	
		:			:		:					:	
		•			•		•		•			•	
1080 Line	R	G	В	R	G	В		R	G	В	R	G	В

6.2 The input data format

Note 1: R/G/B data 7:MSB, R/G/B data 0:LSB O = "First Pixel Data" E = "Second Pixel Data"

AU OPTRONICS CORPORATION

6.3 Signal Description

The module using one LVDS receiver SN75LVDS82(Texas Instruments). LVDS is a differential signal technology for LCD interface and high speed data transfer device. LVDS transmitters shall be SN75LVDS83(negative edge sampling). The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

PIN#	SIGNAL NAME	DESCRIPTION
1	RxOIN0-	Negative LVDS differential data input (Odd data)
2	RxOIN0+	Positive LVDS differential data input (Odd data)
3	RxOIN1-	Negative LVDS differential data input (Odd data)
4	RxOIN1+	Positive LVDS differential data input (Odd data)
5	RxOIN2-	Negative LVDS differential data input (Odd data.DSPTMG)
6	RxOIN2+	Positive LVDS differential data input (Odd data, DSPTMG)
7	GND	Power Ground
8	RxOCLK-	Negative LVDS differential clock input (Odd clock)
9	RxOCLK+	Positive LVDS differential clock input (Odd clock)
10	RxOIN3-	Negative LVDS differential data input (Odd data)
11	RxOIN3+	Positive LVDS differential data input (Odd data)
12	RxEIN0-	Negative LVDS differential data input (Even data)
13	RxEIN0+	Positive LVDS differential data input (Even data)
14	GND	Power Ground
15	RxEIN1-	Positive LVDS differential data input (Even data)
16	RxEIN1+	Negative LVDS differential data input (Even data)
17	GND	Power Ground
18	RxEIN2-	Negative LVDS differential data input (Even data)
19	RxEIN2+	Positive LVDS differential data input (Even data)
20	RxECLK-	Negative LVDS differential clock input (Even clock)
21	RxECLK+	Positive LVDS differential clock input (Even clock)
22	RxEIN3-	Negative LVDS differential data input (Even data)
23	RxEIN3+	Positive LVDS differential data input (Even data)
24	GND	Power Ground
25	NC	No connection (for AUO test only. Do not connect)
26	NC	No connection (for AUO test only. Do not connect)
27	NC	No connection (for AUO test only. Do not connect)
28	VDD	Power +5V
29	VDD	Power +5V
30	VDD	Power +5V

Note1: Start from left side

Note2: Input signals of odd and even clock shall be the same timing.

6.4 Timing Characteristics

Basically, interface timing described here is not actual input timing of LCD module but close to output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

It	tem	Symbol	Min	Тур	Max	Unit
Data CLK		Tclk	40	75	90	[MHz]
	Period	Th	1034	1060	2047	[Tclk]
H-section	Display Area	Tdisp(h)	960	960	960	[Tclk]
	Blanking	Tblk(h)	74	100	1087	[Tclk]
	Period	Tv	1088	1120	2047	[Th]
V-section	Display Area	Tdisp(h)	1080	1080	1080	[Th]
	Blanking	Tblk(h)	8	40	967	[Th]
Frame Rate		F	50	60	75	[Hz]

Note: DE mode only

6.5 Timing diagram

AU OPTRONICS CORPORATION

6.6 Power ON/OFF Sequence

VDD power and lamp on/off sequence are as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VDD is off.

Downwoodow	Valu	l lmit	
Parameter	Min. Max.		Unit
T1	0.5	10	[msec]
T2	0	50	[msec]
Т3	500	-	[msec]
T4	200	-	[msec]
T5	0	50	[msec]
T6	1000	-	[msec]

AU OPTRONICS CORPORATION

7.0 Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	Interface Connector / Interface card			
Manufacturer	JAE, Starconn			
Type Part Number	FI-XB30SRL-HF11(JAE) 093F30-B0T01A(Starconn)			
Mating Housing Part Number	FI-X30HL (Locked Type)			

7.1.1 Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	GND	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	GND
15	RxEIN1-	16	RxEIN1+
17	GND	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	GND
25	NC (for AUO test only. Do not connect)	26	NC (for AUO test only. Do not connect)
27	NC (for AUO test only. Do not connect)	28	VDD
29	VDD	30	VDD

7.2 Connector on Backlight Unit.

This connector is mounted on LED light-bar.

Connector Name / Designation	Light Bar Connector
Manufacturer	CVILUX
Type Part Number	CI1406M1HRB-NH

7.2.1 Signal for LED light bar connector

Pin no.	Signal name	
1 I _{LED} (current out)		
2	I _{LED} (current out)	
3	V _{LED} (voltage in)	
4	V _{LED} (voltage in)	
5	I _{LED} (current out)	
6	I _{LED} (current out)	

8.0 Reliability Test

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 50%RH, 300hours	
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60° C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 Grms Wave: Random Frequency: 10 - 200 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20°C/30min, 60°C/30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Electro Static Discharge)	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 8 points, 25 times/ point.	_ 2
LOD (LIECTIO Static Discharge)	Air Discharge: \pm 15KV, 150pF(330 Ω) 1sec 8 points, 25 times/ point.	2
Altitude Test	Operation:10,000 ft Non-Operation:30,000 ft	

Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20° C to 60° C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 2: EN61000-4-2, ESD class B: Certain performance degradation allowed

No data lost

Self-recoverable

No hardware failures.

M215HW01 VB

AU OPTRONICS CORPORATION

9.0 Shipping Label

The label is on the panel as shown below:

- Note 1: For Pb Free products, AUO will add 🔊 for identification.
- Note 2: For RoHS compatible products, AUO will add RoHS for identification.
- Note 3: For China RoHS compatible products, AUO will add for identification.
- **Note 4:** The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

11. Packing Specification

2. Pallet and shipment information

Item			Remark		
	Item	Q'ty	Dimension	Weight(kg)	Kemark
1	Panel	1	556(H)mm x 323(V)mm x 17.1(D)mm	1.75	
2	Cushion	1	-	1.11	
3	Box	1	568(L)mm x 277(W)mm x 382(H)mm	1.035	without Panel & cushion
4	Packing Box	10 pcs/Box	568(L)mm x 277(W)mm x 382(H)mm	19.6	with panel & cushion
5	Pallet	1	1150(L)mm x 840(W)mm x 138(H)mm	12	
6	Pallet after Packing	16 boxes/pallet	1150(L)mm x 840(W)mm x 128.6(H)mm	365.6	