UNIVERSITY IBN TOFAIL

Électorstatique et Magnétostatique

Nom: Ilyas ZANAN

Date: Avril 11, 2025

Exercise 1:

Soient deux charges ponctuelles au repos q et -q placées respectivement en A et en B d'un axe Ox. (figure 1)

Figure 1

- $\bullet\,$ Donner l'expression vectorielle de la force électrostatique $\vec{F}_{q/-q}$ créée en B.
- \bullet Donner l'expression vectorielle du champ électrostatique \vec{E} créé en B.
- \bullet Donner l'expression du potentiel électrostatique V créé en B.

Correction

• on applique la loi de coloumb on aurra:

$$\vec{F}_{q/-q} = -k_e \frac{q^2}{d^2} \hat{i}$$

• l'expression vectorielle du champ électrostatique est :

$$\vec{E}_B = \frac{\vec{F}_{q/-q}}{-q}$$

$$= k_e \frac{q}{d^2} \hat{i}$$

 \bullet l'expression du potentiel électrostatique V créé en B est :

$$V_B = k_e \frac{q}{d}$$

Exercise 2:

Soient deux charges ponctuelles au repos q et -q placées respectivement en A et en B (figure 2). On donne OA = OB = a.

- Donner l'expression vectorielle du champ électrostatique $\vec{E} = E_x \hat{i} + E_y \hat{j}$ créé en O.
- \bullet Donner l'expression du potentiel électrostatique V créé en O.

Correction

• L'expression vectorielle du champ électrostatique créé en O est :

Soit A(x,y) et $\vec{BO} = \langle -x, -y \rangle$ et $\vec{BO} = \langle -x', -y' \rangle$.

$$\vec{E}_A = k_e \frac{q}{a^2} \frac{\langle -x, -y \rangle}{a}$$

$$= k_e \frac{q}{a^3} \langle -x, -y \rangle$$

$$\vec{E}_B = k_e \frac{-q}{a^2} \frac{\langle -x', -y' \rangle}{a}$$

$$= k_e \frac{-q}{a^3} \langle -x', -y' \rangle$$

Ensuite, on a:

$$E_x = k_e \frac{q}{a^3} (x' - x)$$
$$E_y = k_e \frac{q}{a^3} (y' - y)$$

Ce qui nous donne :

$$\vec{E} = E_x \hat{i} + E_y \hat{j}$$

$$= k_e \frac{q}{a^3} (x' - x) \hat{i} + k_e \frac{q}{a^3} (y' - y) \hat{j}$$

Correction

 $\bullet\,$ L'expression du potentiel électrostatique créé en O est :

$$V_A = k_e \frac{q}{a}$$

$$V_B = k_e \frac{-q}{a}$$

Ce qui nous donne :

$$V_{total} = V_A + V_B$$
$$= k_e \frac{q}{a} - k_e \frac{q}{a}$$
$$= 0$$

Exercise 3:

Soit un conducteur plan P_1 d'épaisseur négligeable et de surface S chargé avec une densité surfacique $\sigma_1 = +\sigma$ perpendiculaire à un axe XX' de vecteur unitaire \hat{i} (Voir figure cidessous). Un point M de l'espace est repéré par $\vec{OM} = x\hat{i}$.

- \bullet Déterminer la charge totale Q de ce conducteur.
- Représenter sur le schéma le vecteur champ électrostatique $\vec{E}_1(M)$ crée par ce conducteur en un point M à la distance x du plan pour x>0 et aussi pour x<0.

(Figure 3)

- En utilisant le théorème de Gauss, Déterminer le champ électrostatique $\vec{E}_1(M)$ crée en un point M à la distance x du plan (P_1 est considéré comme infini). Donner les expressions du vecteur champ pout x>0 et pour x<0.
- On place parallèlement à P₁ à une distance e (figure 4) un autre conducteur plan P₂ d'épaisseur négligeable et de surface S chargé avec une densité surfacique σ₂ = -σ.
 Les deux conducteurs sont eninfluence total (P₁ et P₂ sont condidérés comme infinis).
 Déduire le champ électrique E(M) crée dans l'espace compris entre ces deux plans

- soient V_1 et V_2 respectivement les potentiels électrostatiques de P_1 et P_2 . Determiner la capacité de ce condensateur dans le cas où (S»e).
- En utilisant l'expression de la densité d'énergie $\frac{d\omega}{dV} = \frac{\epsilon_0}{2}E^2$, Déterminer l'énergie électrostatique emmagasinée dans ce condensateur en fonction de Q, V_1 et V_2 .

Correction

• La charge total est $Q = \sigma \times S$

•

• D'apres le theorem de Gauss On a :

$$\vec{E}_1(M) = \frac{\sigma_1}{2\epsilon_0} \hat{\eta}$$

$$\iff \vec{E}_1(M) = \begin{cases} \frac{\sigma}{2\epsilon_0} \hat{i}, & x > 0 \\ -\frac{\sigma}{2\epsilon_0} \hat{i}, & x < 0 \end{cases}$$

• On a :

$$\vec{E}_1 = \frac{\sigma}{2\epsilon_0}\hat{i}$$

$$\vec{E}_2 = \frac{\sigma}{2\epsilon_0}\hat{i}$$

 \vec{E}_2 est positive care on a P_1 est derrière P_2 , Avec $\sigma_2 = -\sigma$:

$$\vec{E}_2 = -\frac{\sigma_2}{2\epsilon_0}\hat{i}$$
$$= \frac{\sigma}{2\epsilon_0}$$

Correction

D'où:

$$\vec{E}_T = \vec{E}_1 + \vec{E}_2$$
$$= \frac{\sigma}{\epsilon_0} \hat{i}$$

 \bullet On a d'aprés la derrière question : $\vec{E} = \frac{\sigma}{\epsilon_0} \hat{i},$ d'ou :

$$V = E \times e$$

$$= \frac{\sigma}{\epsilon_0} e$$

$$= \frac{Qe}{\epsilon_0 S}$$

$$\Rightarrow C = \frac{Q}{V}$$

$$= \frac{\epsilon_0 S}{e}$$

Lorsque la surface S des plaques est beaucoup plus grande que leur séparation e (S >> e), cela donne un champ électrique uniforme entre les plaques.

• On utilisons la relation $\frac{d\omega}{dV}=\frac{\epsilon_0}{2}E^2,$ On a:

La densité d'énergie :

$$\begin{split} \frac{d\omega}{dV} &= \frac{\epsilon_0}{2} E^2 \\ &= \frac{\epsilon_0}{2} \left(\frac{\sigma}{\epsilon_0}\right)^2 \\ &= \frac{\epsilon_0}{2} \cdot \frac{\sigma^2}{\epsilon_0^2} \\ &= \frac{\sigma^2}{2\epsilon_0}. \end{split}$$

L'énergie total:

$$U = \int \frac{d\omega}{dV} dV$$

$$= \int \frac{\sigma^2}{2\epsilon_0} dV$$

$$= \frac{\sigma^2}{2\epsilon_0} \cdot V$$

$$= \frac{\sigma^2}{2\epsilon_0} \cdot (S \cdot e)$$

$$= \frac{\sigma^2 Se}{2\epsilon_0}.$$

Correction

L'énergie total en fonction de Q, V_1 et V_2 :

$$U = \frac{\sigma^2 Se}{2\epsilon_0}$$

$$= \frac{\left(\frac{Q}{S}\right)^2 Se}{2\epsilon_0} \quad (\operatorname{car} \sigma = \frac{Q}{S})$$

$$= \frac{\frac{Q^2}{S^2} Se}{2\epsilon_0}$$

$$= \frac{Q^2 e}{2\epsilon_0 S}$$

$$= \frac{Q^2 e}{2\epsilon_0 S} \cdot \frac{V \epsilon_0 S}{Q} \quad (\operatorname{car} e = \frac{V \epsilon_0 S}{Q}, \text{ où } V = V_1 - V_2)$$

$$= \frac{Q^2 V}{2Q}$$

$$= \frac{1}{2} QV$$

$$= \frac{1}{2} Q(V_1 - V_2).$$