# DS 598 Introduction to RL

Xuezhou Zhang

### Announcements

• Homework 2 will be out this week and due next Friday.

• Office hour changing from Thursday to Friday 1:00-2:00PM.

Please go to the discussion sections.

# Chapter 4: Value-based RL (Continued)

### Recap from last time

- When using function approximation,
  - 1) Value-based RL can converge to the wrong solution (Bellman-completeness)
  - 2) Value-based RL may not even converge (Q-learning)
- Heuristic methods to combat divergence
  - 1) Target network
  - 2) Double Q-learning
  - 3) Replay Buffer
  - 4) Multi-step Return

## A quick overview for Deep RL coding

- Environment
- Agent

### Environment

 The OpenAl Gym format: class YourEnv(gym.Env): def init (self, parameters): ## Set parameters for the environment. def step(self, action): self.state, reward, terminate = transition(self.state, action) return self.state, reward, terminate def reset(self): self.state = sample\_initial\_state() return self.state

### Environment

• Common benchmark environments are already included, e.g.

• env = gym.make("CartPole-v1")



# Agent

- Replay buffer
- Network
- Training

### Replay Buffer

```
Transition = namedtuple('Transition',
                        ('state', 'action', 'next_state', 'reward'))
class ReplayMemory(object):
   def __init__(self, capacity):
        self.memory = deque([], maxlen=capacity)
   def push(self, *args):
        """Save a transition"""
        self.memory.append(Transition(*args))
    def sample(self, batch_size):
       return random.sample(self.memory, batch_size)
   def __len__(self):
       return len(self.memory)
```

### Network

```
class DQN(nn.Module):
   def __init__(self, n_observations, n_actions):
        super(DQN, self).__init__()
        self.layer1 = nn.Linear(n_observations, 128)
        self.layer2 = nn.Linear(128, 128)
        self.layer3 = nn.Linear(128, n_actions)
   # Called with either one element to determine next action, or a batch
   # during optimization. Returns tensor([[left0exp,right0exp]...]).
   def forward(self, x):
       x = F.relu(self.layer1(x))
       x = F.relu(self.layer2(x))
       return self.layer3(x)
```

Initializations

```
policy_net = DQN(n_observations, n_actions).to(device)
target_net = DQN(n_observations, n_actions).to(device)
target_net.load_state_dict(policy_net.state_dict())

optimizer = optim.AdamW(policy_net.parameters(), lr=LR, amsgrad=True)
memory = ReplayMemory(10000)
```

Sample from replay buffer

"classic" deep Q-learning algorithm:

- 1. take some action  $\mathbf{a}_i$  and observe  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ , add it to  $\mathcal{B}$
- 2. sample mini-batch  $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_i, r_j\}$  from  $\mathcal{B}$  uniformly
- 3. compute  $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$  using target network  $Q_{\phi'}$
- 4.  $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. update  $\phi'$ : copy  $\phi$  every N steps

```
state_action_values = policy_net(state_batch).gather(1, action_batch)
transitions = memory.sample(BATCH_SIZE)
batch = Transition(*zip(*transitions))
state_batch = torch.cat(batch.state)
action_batch = torch.cat(batch.action)
reward_batch = torch.cat(batch.reward)
```

Updating the Q-network

"classic" deep Q-learning algorithm:

- 1. take some action  $\mathbf{a}_i$  and observe  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ , add it to  $\mathcal{B}$
- 2. sample mini-batch  $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_j, r_j\}$  from  $\mathcal{B}$  uniformly
- 3. compute  $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$  using target network  $Q_{\phi'}$
- 4.  $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. update  $\phi'$ : copy  $\phi$  every N steps

```
next_state_values = torch.zeros(BATCH_SIZE, device=device)
with torch.no_grad():
   next_state_values[non_final_mask] = target_net(non_final_next_states).max(1).values
# Compute the expected Q values
expected_state_action_values = (next_state_values * GAMMA) + reward_batch
# Compute Huber loss
criterion = nn.SmoothL1Loss()
loss = criterion(state_action_values, expected_state_action_values.unsqueeze(1))
# Optimize the model
optimizer.zero_grad()
loss.backward()
# In-place gradient clipping
torch.nn.utils.clip_grad_value_(policy_net.parameters(), 100)
optimizer.step()
```

Updating the target network

"classic" deep Q-learning algorithm:

- 1. take some action  $\mathbf{a}_i$  and observe  $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}_i', r_i)$ , add it to  $\mathcal{B}$
- 2. sample mini-batch  $\{\mathbf{s}_j, \mathbf{a}_j, \mathbf{s}'_i, r_j\}$  from  $\mathcal{B}$  uniformly
- 3. compute  $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$  using target network  $Q_{\phi'}$
- 4.  $\phi \leftarrow \phi \alpha \sum_{j} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{j}, \mathbf{a}_{j})(Q_{\phi}(\mathbf{s}_{j}, \mathbf{a}_{j}) y_{j})$
- 5. update  $\phi'$ : copy  $\phi$  every N steps

```
# Soft update of the target network's weights

# \theta' \in \tau \theta + (1 - \tau) \theta'

target_net_state_dict = target_net.state_dict()

policy_net_state_dict = policy_net.state_dict()

for key in policy_net_state_dict:

target_net_state_dict[key] = policy_net_state_dict[key]*TAU +

target_net_state_dict[key]*(1-TAU)

target_net.load_state_dict(target_net_state_dict)
```

### DQN

 Jupyter Notebook/Colab example at <a href="https://pytorch.org/tutorials/intermediate/reinforcement q learning">https://pytorch.org/tutorials/intermediate/reinforcement q learning</a>
 <a href="https://pytorch.org/tutorials/intermediate/reinforcement">https://pytorch.org/tutorials/intermediate/reinforcement q learning</a>
 <a href="https://pytorch.org/tutorials/intermediate/reinforcement">httml</a>
 <a href="https://pytorch.org/tutorials/intermediate/reinforcement">httml</a>
 <a href="https://pytorch.org/tutorials/intermediate/reinforcement">httml</a>
 <a href="https://pytorch.org/tutorials/intermediate/reinforcement">httml</a>
 <a href="https://pytorch.org/tutorials/intermediate/reinforcement">httml</a>
 <a href="https://pytorch.org/tutorials/intermediate/reinforcement">httml</a>
 <a href="https://pytorch.org/tutorials/intermediate/reinforcement">https://pytorch.org/tutorials/intermediate/reinforcement</a>
 <a href="https://pytorch.org/tutorials/intermediate/">https://pytorch.org/tutorials/intermediate/</a>
 <a href="https://pytorch.org/tutorials/">https://pytorch.org/tutorials/intermediate/</a>
 <a href="https://pytorch.org/tutorials/">https://pytorch.org/tutorials/</a>
 <a href="https://pytorch.org/tutorials/">https://pytorch.o

# Chapter 5: Policy-based RL

## Policy-based RL

• Let  $\tau = (s_0, a_0, s_1, a_1,...)$  denotes the trajectory, the goal of RL is to maximize

$$J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi}[R_{\theta}(\tau)]$$

# Policy-based RL

 Why not just treat it as any other optimization problem and run gradient ascent?

$$\theta_{t+1} = \theta_t + \alpha_t \nabla_{\theta} J(\pi_{\theta_t})$$



### Policy Gradient

• Parameterized Policy  $\pi_{\theta}(a|s) = \pi_{\theta}(a|s;\theta)$ .

• Core question: How to compute  $\nabla_{\theta} J(\pi_{\theta})$ , where  $J(\pi_{\theta}) = \mathbb{E}_{\pi_{\theta}}[\sum_{h=0}^{\infty} \gamma^h r_h]$ ?

### Policy Gradient

• A general change of measure trick

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(\cdot)} [f(x)] = \nabla_{\theta} \int_{x} p_{\theta}(x) f(x) dx$$

## Policy Gradient

$$\nabla_{\theta} \mathbb{E}_{x \sim p_{\theta}(\cdot)} [f(x)] = \mathbb{E}_{x \sim p_{\theta}(\cdot)} [\nabla_{\theta} \log p_{\theta}(x) f(x)]$$

Applying to our problem,

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[ \nabla_{\theta} \log p_{\theta}(\tau) R(\tau) \right]$$

### The Policy Gradient Theorem

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[ \sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_h | s_h) R(\tau) \right]$$

• Estimate PG from sample trajectories  $\tau_1, \dots, \tau_n \sim \pi_\theta$ 

$$\nabla_{\theta} J(\pi_{\theta}) \approx \frac{1}{n} \sum_{i=1}^{n} \left[ \sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{i;h}|s_{i;h}) R(\tau_{i}) \right]$$

### The REINFORCE algorithm

- 1. Initialize  $\theta_0$
- 2. For iteration t = 0,...,T
  - 1) Run  $\pi_{\theta_t}$  and collect trajectories  $\tau_1, \dots, \tau_n$
  - 2) Estimate the PG by

$$g_t = \frac{1}{n} \sum_{i=1}^{n} \left[ \sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_{i;h}|s_{i;h}) R(\tau_i) \right]$$

3) Do SGD update  $\theta_{t+1} = \theta_t + \alpha_t g_t$ 

### The REINFORCE algorithm

- REINFORCE is an "on-policy" algorithm
- i.e. it only uses data collected by  $\pi_t$  to update  $\pi_t$ .

- Not using of historical data ⇒ sample inefficient!
- However, REINFORCE is stable
- i.e. always converge to a local optimal solution.

### Pytorch Implementation Snippet

 Save data as trajectories instead of individual transitions in the replay buffer.

```
for log_prob, R in zip(policy.saved_log_probs, returns):
    policy_loss.append(-log_prob * R)

optimizer.zero_grad()

policy_loss = torch.cat(policy_loss).sum()

policy_loss.backward()

optimizer.step()
```

### The REINFORCE algorithm

#### • Pros:

- ✓ Convergence
- ✓ Conceptually simple

### • Cons:

- Only works with stochastic policies
- **❖**On-policy -> Sample inefficient
- ightharpoonup High Variance  $\mathbb{E}\left[\left|\left|g_t \nabla_{\theta} J(\pi_{\theta})\right|\right|_2^2\right]$

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[ \sum_{h=0}^{\infty} \nabla_{\theta} \log \pi(a_h | s_h) R(\tau) \right]$$

### The next few lectures...

• Solve each of the cons of REINFORCE.