Q_i is $4^{838} \equiv 9^{427} \mod 35$
We can analyze the question by calculating the value of 41536 mod 35 and onlycing if it is the sample as 9 mod 35. We begin by solving 41536 mod 35.
$(nq+r)^{k} \mod n \equiv r^{k} \mod n \leftarrow$
42.76 => 16768 mod 35 / we know 41536 mod 35=1, we can use
162 394 => 256 384 mod 35. Fermat's little theorem to solve whether or not
=> (2 35+11) 84 mod 35
112-192 => 121 192 mod 35
$= > (355 + 16)^{192} \mod 5$ get $35 = 5.7$
$16^{-26} = 256^{96} \mod 35$ / $0 a_1^{-1} = 1 \mod n$ for $n = 5$
$a^4 = 1 \mod 5$
$(1)^{2}$, $(48) => 12)^{48} \mod 35$
$= 2 \left(\frac{3}{3} + 16 \right)^{48} \mod 35 \qquad a^{b} = 1 \mod 7 \qquad a^{b} = 1 \mod 7$
$(6^{24} = 7) 256^{24} \mod 35$. Combine (1) (2) yields
$11^{2 \cdot 12} \Rightarrow 121^{2} \mod 25$
=> $(3.85 + 16)^2$ mod 35 Solve for a by $\frac{4824}{24} = 201$
$16^{2.6} = 256^{\circ} \mod 35$
. => (35.7+11)6 mod 35 (by fermat's we have found a value that.
.112.3 => 1213 mod 35
=> (3-35+16)3 mod 35
$16^2 \cdot 16^1 = > .256 \cdot 16 \mod 35$. Bean the left nand side and right hand side
=> (255+11) 1.6 Mod 35
176 mod 35 = 1
4.536 mod 35=1.

Q2 Solve $x^{86} \equiv 6 \mod 29$

Q3 Prove that $gcd(F_{n+1}, F_n) = 1$, for $n \ge 1$, where F_n is the n-th Fibonacci element.

Solution:

When the gcd of two numbers is 1, that means that the numbers are relatively prime, meaning that there is no number $n \neq 1$ that divides both of the numbers. We can prove the following statement by induction.

Base case:

For n=0, we check the $gcd(F_0,F_1)$, which are gcd(1,1), these two numbers satisfy as gcd(1,1)=1

Induction step:

For our induction hypothesis, we assume that $gcd(F_n, F_{n+1}) = 1$. We must prove that the statement is true as well for n = k + 1 and prove $gcd(F_{k+1}, F_{k+2}) = z$, for z = 1

By the equation, we know that $z \mid F_{k+1}$, $z \mid F_{k+2}$ and $z \mid F_k + F_{k+1}$ since $F_x = F_{x-2} + F_{x-1}$ for $x \in \mathbb{N}$. $z \mid F_k + F_k + 1$ tells us that $z \mid F_k$ and $z \mid F_{k+1}$, we can derive Euclid's GCD by stating $gcd(F_k, F_{k+1}) = z$. From our induction hypothesis, we know that $gcd(F_n, F_{n+1}) = 1$, therefore, z is also 1. We prove the following claim by a direct proof via induction.