OBA_иTK-5

In a rather strong sense, we really only care about groups because they act on things: knowing that G acts on A tells us something about A; group actions are one key tool in the study of geometric and algebraic entities.

Aluffi P., Algebra. Chapter 0

Немного теории

Простейшие примеры действия групп

Мы познакомились с таким понятием, как действие группы на множестве. Напомню, что оно заключается в следующем: задать действие G на X значит каждому элементу группы $g \in G$ сопоставить отображение $\phi_g: X \to X$ так, чтобы выполнялось $\phi_g \phi_h = \phi_{gh}$. Отсюда напрямую следует, что элементу $e_G \in G$ сопоставляется тождественное отображение: $\phi_e: x \mapsto x$, а $\phi_{g^{-1}}$ является обратным к ϕ_g . Их последнего напрямую следует, что все ϕ_g обратимы, а значит является биекциями.

Пример 1. Группа S_n действует на множестве $\{1,\ldots,n\}$.

Пример 2. Рассмотрим множество биекций множества X на себя c операцией композиции и назовем получившуюся группу S(X). Для любой подгруппы S(x) тривиальным образом определено действие на X.

Внимательно посмотрев на определение действия выше, можно лаконично его сформулировать следующим образом.

Определение 1. Задать действие группы G на множестве X значит определить гомоморфизм $G \to S(X)$.

Пример 3. Сопоставим каждому элементу k из Z_n поворот плоскости на $\frac{2\pi k}{n}$. Это задаст действие группы Z_n на плоскости.

Но особо интересные результаты появляются, когда мы действуем группой на себе.

Пример 4. Действие группы на себе левыми сдвигами. Каждому элементу группы g сопоставляется отображение, действующее по правилу $x \mapsto gx$.

Заметим, что если группа G конечна, то гомоморфизм $G \to S(G)$, задающий действие из примера 4, является инъекцией. Действительно, если g_1 и g_2 задают одинаковое отображение $G \to G$, то выполнено в частности $g_1e=g_2e$. Следовательно, мы нашли инъекцию $G \to S(G) \cong S_{|G|}$. Отсюда сразу вытекает теорема Кэли:

Теорема 1 (Кэли). Любая конечная группа изоморфна некоторой подгруппе группы перестановок

Еще один хороший пример действие группы на себе:

Пример 5. Действие группы на себе сопряжениями. Каждому элементу группы д сопоставляется отображение, действующее по правилу $x \mapsto gxg^{-1}$.

В этом примере (в отличие от примера 4) каждое отображение ϕ_g является не просто биекцией группы на себя, а автоморфизмами (напоминаю, что автоморфизм = изморфизм на себя). Такие автоморфизмы называют внутренними.

Пример 6. На последнем семинаре мы ввели группу, действующую на $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ (комплексная плоскость с добавленной бесконечно удаленной точкой). Каждой преобразование задается ная плоскость с обощьленной осстолечно убительной постоя, и постоя, и постоя, и постоя пост При этом мы считаем, что $\infty \mapsto \frac{a}{c}, \frac{-d}{c} \mapsto \infty$. Убедитесь самостоятельно, что композиция дробно-линейных преобрахований также явля-

ется дробно-линейным, и что у каждого дробно-динейного преобразования существует обратный.

Очень часто отображение ϕ_g обозначают той же буквой, что и g, и пишут g(x). Давайте договоримся тоже так делать, если это не приводит к недоразумению.

Как изучать действия групп

В первую очередь определим такие понятия, как орбита и стабилизатор.

Определение 2. Орбитой элемента $x \in X$ называют все элементы множества X, в которые этот элемент может перейти под действием действия (извините за тавтологию) группы G. Φ ормально, $Orb(x) = \{g(x) \mid g \in G\}$

Заметим, что бинарное отношения $x \in \mathrm{Orb}(y)$ является отношением эквивалентности (рефлексивно, симметрично и транзитивно), а значит все множество X разбивается на непересекающиеся классы эквивалентности, которые также называются орбитами. Для любых $x,y \in X$ можно найти такой элемент группы g, что g(x) = y если и только если x и y лежат в одной орбите.

Определение 3. Стабилизитором элемента $x \in X$ называют все элементы группы G, которые оставляют x на месте. Формально, $Stab(x) = \{g \mid g(x) = x\}$

Несложная проверка показывает, что стабилизатор любого элемента является подгруппой группы G. Менее тривиальна связь между левыми (и правыми) смежными классами стабилизатора и элементами орбиты. A именно, два элемента группы g и h лежат в одном левом смежно классе $\operatorname{Stab}(x)$ если и только если g(x) = h(x). Докажем этот факт.

Пусть g и h лежат в одном левом смежном классе, т.е. $g \in h \operatorname{Stab}(x)$. Тогда $g = hs, s \in \operatorname{Stab}(x)$ g(x) = hs(x) = h(s(x)) = h(x).

Обратно, пусть g(x) = h(x), тогда $h^{-1}g(x) = x$ и $h^{-1}g \in Stab(x)$. Но тогда домножением на hслева мы получим $g \in h \operatorname{Stab}(x)$.

Таким образом мы получили биекцию между элементами Orb(x) и левыми смежными классами подгруппы $\mathrm{Stab}(x) < G$. Напоминаю, что число смежных классов подгруппы называется её индексом и обозначается (G:H), и имеет место соотношение $|H| \cdot (G:H) = |G|$ (здесь H < G). Последнее соотношение носит имя теоремы Лагранжа. Применив ее к нашему случаю, получим следующее соотношение:

Теорема 2. Для любого действия G на X и любого $x \in X$ выполнено

$$|\operatorname{Orb}(x)| \cdot |Stab(x)| = |G|$$

Пример 7. Самая простая иллюстрация теоремы $2 - \text{действие } S_n$ на множестве $\{1, \ldots, n\}$. Для каждого числа k его стабилизатором является подгруппа S_n , изоморфная S_{n-1} . Это значит, Для каждого числи к его стиситовитории $\frac{n!}{(n-1)!}=n, \ a$ значит равна всему множеству (что нетрудно было показать и по определению)

Теорема 3. Также представляет интерес тот факт, что все стабилизаторы сопряжены друг другу, а именно, если g(x) = y, то $Stab(y) = gStab(x)g^{-1}$

Доказательство. Действительно, $\forall h \in gStab(x)g^{-1} \ h = gsg^{-1}, s \in Stab(x), \ \text{и} \ h(y) = gsg^{-1}(y) = gs(x) = g(x) = y.$ Отсюда, $gStab(x)g^{-1} \subseteq Stab(y)$.

С другой стороны, можно показать, что для любого $h \in g^{-1}Stab(y)g$ выполнено h(x) = x. т.е. $g^{-1}Stab(y)g \subseteq Stab(x)$. Перенеся g в правую часть уравнения, получим $Stab(y) \subseteq gStab(x)g^{-1}$. Мы получили включение в обе стороны, откуда следует утверждение теоремы.

Действие группы может обладать следующими хорошими свойствами:

Определение 4. Действие группы G на X называется

- Эффективным, если гомоморфизм $G \to S(X)$ инъективен. Это означает, среди элементов G не найдется двух элементов, которые действуют на X одинаково.
- Транзитивным, если весь X представляет собой одну орбиту. Это значит, что каждый элемент множества X может быть переведен в любой другой, а именно $\forall x,y \in X \ \exists g \in G : g(x) = y.$
- n-транзитивным, если для различных x_1, \ldots, x_n и различных y_1, \ldots, y_n найдется $g \in G$ такой что $g(x_i) = y_i$ для всех i.
- Свободным, если для любых элементов $g, h \in G$ и любого $x \in X$ выполнено $g(x) \neq h(x)$

Полезные применения

Докажем, например, следующую терему:

Теорема 4. Пусть p- наименьший простой делитель |G|, u индекс некоторой ее подгруппы H равен p. Тогда $H \triangleleft G$.

Доказательство. Давайте действовать группой G на левых смежных классах H левыми сдвигами. Таким образом, элемент g будет действовать по правилу $xH \to gxH$ (убедитесь, что действие определено корректно).

Таким образом мы построили гомоморфизм из G в группу S(G/H) (под G/H мы здесь понимаем множество левых смежных классов как множество, без операции). Поскольку G/H состоит из p элементов, то $S(G/H) \cong S_p$, и мы построили гомоморфизм $\phi: G \to S_p$.

По теореме о гомоморфизме, $G/\ker(\phi)$ изоморфиа некоторой подгруппе S_p . Воспользуемся теоремой Лагранжа: с одной стороны, порядок группы $G/\ker(\phi)$ делит порядок G, и все простые делители $|G/\ker(\phi)|$ должны быть больге или равны p. А с другой стороны, порядок группы $G/\ker(\phi)$ делит порядок S_p , и все простые делители $|G/\ker(\phi)|$ должны быть меньше или равны p, и простой делитель p может входить в разложение $|G/\ker(\phi)|$ максимум в первой степени. Получаем, что $|G/\ker(\phi)|$ либо равно p, либо 1.

Но что означает, что элемент g лежит в ядре ϕ , Это означает, что g действует на G/H как тождественная перестановка. В частности, gH=H. Но это возможно только если $g\in H$. Таким образом мы получили, что $\ker \phi\subseteq H$.

Из этого сразу следует, что $\ker \phi \neq G$, и $|G/\ker(\phi)| \neq 1$. Но тогда $|G/\ker(\phi)| = p$, и $|\ker \phi| = \frac{|G|}{p}$.

Мы получили, что $\ker \phi \subseteq H$, и что $\ker \phi$ и H имеют одинаковую мощность. Следовательно, $H = \ker \phi$.

Но если H является ядром некоторого гомоморфизма, то она нормальна

Теорема 5 (лемма Бернсайда). Пусть $X^g = \{x \in X \mid g(x) = x.$ Тогда число орбит действия G на X равно $\frac{1}{|G|} \sum_{g \in G} X^g$

Доказательство. Давайте посчитаем число пар $\{(g,x)\in G\times X\mid g(x)=x\}$ двумя способами. С одной стороны, для каждый элемент группы g входит в $|X^g|$ пар. Получаем $\sum\limits_{g\in G}X^g$.

С другой стороны, каждый элемент $x \in X$ входит в $|\operatorname{Stab}(x)|$ пар. Если взять орбиту элемента x, то в ней у каждого элемента мощность стабилизатора одинакова (мощности сопряженных групп равны), и элементы одного отдельно взятой орбиты дадут нам ровно $|\operatorname{Stab}(x)| \times |\operatorname{Orb}(x)| = |G|$ пар. Отсюда следует утверждение теоремы.

Лемма Бернсайда полезна тем, что имеет приложения в комбинаторике для подсчета объектов с точностью до некоторого преобразования.

Пример 8. Приведем пример использования леммы Бернсайда.

 Π усть мы хотим посчитать число способов составить ожерелье из 6 бусин. Бусины бывают k цветов. Раскраски мы считаем одинаковыми, если одна получается из другой поворотом (но не переворачиванием) ожерелья.

Итак, в качестве множества выступают набры из 6 чисел от 1 до k, и мы действуем на нем группой C_6 циклическим сдвигом.

 $C \partial B u r$ на 0 бусин оставляем все элементы на месте, а всего раскрасок k^6 .

C d в u r h a 1 u 5 б y c u h ы n e p в o d u m o n b к o m e o ж e p e n ь я, у к o m o p ы х в с е б y c u h ы o d h o r o u в e m a. Таких о ж e p e n u m v k u m y к.

Сдвиг на 2 и 4 бусин перводит в себя те и только те ожерелья, у которых 1, 3 и 5 бусина одного цвета, а также 2, 4 и 6 бусины одного цвета. Таких ожерелий k^2 .

Сдвиг на 3 бусины перводит в себя те и только те ожерелья, у которых 1 и 4, 2 и 5, а также 3 и 6 бусины одного цвета. Таких ожерелий k^3 .

Итого получаем, что раскрасок с точностью до сдвига ровно $\frac{k^6+k^3+2k^2+2k}{6}$

Домашнее задание

1. Слишком маленькая группа перестановок

Докажите, что если p — простое число, то группа S_{p-1} не может транзитивно действовать на множестве из p элементов.

2. "Обращение" теоремы Лагранжа

Пусть p — простой делитель G. Докажите, что в G найдется элемент порядка p.

Для этого рассмотрите следующее множество: наборы (g_1, g_2, \ldots, g_p) элементов группы G таких, что $g_1g_2\ldots g_p=e$. Посчитайте, сколько элементов в этом множестве.

Давайте действовать на этом множестве сдвигами, переводящими набор (g_1, g_2, \ldots, g_p) в $(g_p, g_1, g_2, \ldots, g_{p-1})$. Поскольку сдвиг в степени p дает тождественное действие, то можно считать, что мы действуем группой C_p .

Аккуратно покажите, какой размер может быть у орбит такого действия и сделайте выводы.

3. Представление группы

Если потребовать от множества X чтобы оно было конечномерным линейным пространством, а от действия чтобы каждое ϕ_g было линейным преобразованием (= задавалось матрицей), то полученной действие называют представлением группы G. Другими словами, вещественное представление — это гомоморфизм из G в $GL(n,\mathbb{R})$.

Изучение представлений представляет собой глубокую и содержательную науку (которую я не шарю).

Найдите представление C_n над \mathbb{R}^2 , которое являлось бы **эффективным** действием.

4. Дробно-линейные преобразования

Докажите, что действие дробно-линейными преобразованиями из примера 6 3-транзитивно. $\mathit{Hint:}\ no\mathit{kaseume},\ \mathit{umo}\ 0,\ 1\ u \propto \mathit{можно}\ nepesecmu\ \mathit{e}\ \mathit{любыe}\ \mathit{mpu}\ \mathit{элементa}.$

5. Действие сопряжениями

Так как класс сопряжённости — орбита действия сопряжениями, то мощность каждого класса сопряжённости делит порядок группы. Пользуясь этим утверждением покажите, что если порядок |G| нечётен, то только единичный элемент группы сопряжён своему обратному.

Hint: как связаны класс сопряжённости элемента u его обратного, u какие элементы группы обратны сами себе?

6. Применяем лемму Бернсайда

Посчитайте число графов на 4 вершинах с точностью до изморфизма при помощи леммы Бернсайда.

 Hint : действуйте группой S_4