GLAJENJE ČASOVNIH VRST

Časovna vrsta je zaporedje podatkov y_1, y_2, \ldots izmerjenih v zaporednih časovnih trenutkih, med katerimi so običajno enaki časovni razmiki.

Glajenje je aproksimacija zbranih podatkov s krivuljo, ki vsebuje vse bistvene vzorce iz podatkov, ne vsebuje pa šuma in drugih mikrostruktur. Zglajena časovna vrsta bolj nazorno prikaže dinamiko opazovanega pojava. Če se bistveni vzorec pojava s časom ne spreminja, lahko zglajeno časovno vrsto uporabimo za napovedovanje prihodnosti.

1. Uvoz in predstavitev podatkov

(a) Na internetu poiščite podatke za zaključne tečaje trgovanja z zlatom, srebrom ali bitcoini (npr. internetna stran: http://www.quandl.com). Podatkov naj bo vsaj 60. Uvozite jih v R.

Datoteko s podatki oddajte na spletni učilnici skupaj z R-ovo datoteko.

(b) Narišite graf časovne vrste.

2. Glajenje z drsečim povprečjem reda k

Glajenje z drsečim povprečjem reda k časovni vrsti y_1, \ldots, y_T priredi glajene vrednosti $\widehat{y}_{k+1}, \ldots, \widehat{y}_T$, ki so povprečja zadnjih k vrednosti

$$\widehat{y}_{t+1} = \frac{y_t + \dots + y_{t-k+1}}{k}.$$

Napoved vrednosti y_{T+h} v trenutku T je enaka \hat{y}_{T+1} .

Prileganje krivulje dani časovni vrsti merimo s srednjo kvadratno napako

$$MSE = \frac{1}{T - k} \sum_{t=-k}^{T-1} (y_{t+1} - \widehat{y}_{t+1})^2.$$

- (a) Pripravite funkcijo G(vrsta,k), ki časovni vrsti $y_1,...,y_T$ priredi zglajene vrednosti $\widehat{y}_{k+1},...,\widehat{y}_T$.
- (b) Dano časovno vrsto zgladite z drsečim povprečjem reda 7. Pripravite še napoved za naslednji dan.
- (c) Na graf časovne vrste iz (1b) dodajte še zglajeno vrsto.
- (d) Izračunajte srednjo kvadratno napako.
- (e) Ponovite točke (b), (c) in (d) za red glajenja 14 in 30. Grafe iz točke (c) nariši skupaj.

3. Eksponentno glajenje

Enostavno eksponentno glajenje je podano z začetno vrednostjo $\ell_1=y_1$ in rekurzivno formulo

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1},$$

kjer je $0 \le \alpha \le 1$. Glajena vrednost $\widehat{y}_{t+1} = \ell_t$ je uteženo povprečje opazovanj y_1, \ldots, y_t .

Napoved vrednosti y_{T+h} v trenutku Tje enaka $\widehat{y}_{T+1}=\ell_T.$

Srednja kvadratna napaka je dana z enačbo

MSE =
$$\frac{1}{T-1} \sum_{t=1}^{T-1} (y_{t+1} - \hat{y}_{t+1})^2$$
.

- (a) Pripravite funkcijo EG(vrsta, alpha), ki sprejme časovno vrsto y_1, \ldots, y_T ter parameter α in vrne zglajene vrednosti ℓ_1, \ldots, ℓ_T .
- (b) Izberite $0 \le \alpha \le 1$ ter zgladite časovno vrsto. Izračunajte napoved za naslednji dan. Na graf časovne vrste iz (1b) dodajte še zglajeno vrsto.
- (c) Določite vrednost α^* , pri kateri zglajena časovna vrsta najmanj odstopa od opazovanih vrednosti. Za kriterij prileganja uporabite srednjo kvadratno napako.
- (d) Ponovite nalogo (b) pri optimalni vrednosti α .