Data-driven Intelligent Systems

Lecture 20 Self-organizing Networks

http://www.informatik.uni-hamburg.de/WTM/

Self-organizing Maps – Overview

- Topological Maps
 - SOM Cost Function and Learning Algorithm
 - Visualizing SOMs
 - SOM Applications
 - Growing Neural Gas & Growing When Required networks

Model-Based Clustering

- What is model-based clustering?
 - Assumption: a cluster is generated by a model such as a probability distribution
 - A model (e.g., Gaussian distribution) is determined by a set of parameters
 - Cluster assignments might be soft, to represent uncertainties
 - Task: optimize the fit between the given data and some mathematical model by learning the parameters of the model
- Typical statistical methods
 - Gaussian Mixture Models
 - EM (Expectation maximization)

Neural Network Approaches

- Neural network approaches
 - Represent each cluster with an exemplar (a neuron), acting as a "prototype" of the cluster
 - New objects are assigned to the cluster whose exemplar is the most similar according to some distance measure
 - Neuron interactions can represent additional features of the data, such as topology
- Typical methods
 - SOM (Self-Organizing feature Map)
 - Competitive learning
 - Neurons compete in a "winner-takes-all" fashion for the currently presented object

Feature Maps: Topological Mapping of Sound

Feature Maps: Topological Mapping in Vision

Nearby visual stimuli processed nearby in lower visual cortex

retinotopy

Localized Mapping of Sensors and Effectors

Feature Maps

- The mapping preserves the ordering of the inputs:
 - Sensory stimuli that are similar ('nearby in input space') excite neurons that are near to each other (in `output space')
 - Sensory stimuli that are very different excite neurons that are far from each other
- This map property is known as topology preservation
 - "tonotopy" in case of sound
 - "visuotopy" for vision
 - "somatotopy" for touch
- Another example with topology
 - Convolutional neural networks, on their lower layers
- Not all neural projections or representations are topological!

Topology Preservation in Non-matching Dimensions

1D network topology

2D network topology

Network representation of 2D input space

The Self-Organising Map

Competitive Neuron Interactions in one Layer

The *Mexican hat function*, or *Difference of Gaussians*, represents the strength of interactions *within* the neural layer (while not modelling actual connections)

- Remote neighborhood negative, inhibitory effect
 - → "winner-take-all" behavior (WTA, competitive network!)
- Near neighborhood short range lateral excitation area has strong positive effect
 - → topology preservation

Neuron Connections?

- We can implement WTA behavior directly
 - \rightarrow we do not actually need the inhibitory connections neurons i,j
 - \rightarrow just use a neighborhood of positive interactions: h(i,j)
- How large should this neighborhood be?
 neighbourhood strength
 - At the beginning of learning, the network is unordered
 - Large neighborhood: each input vector excites many neurons
 - → Nearby neurons will learn similarly
 - → Their weights will be ordered in input space
 - Later on, fine-tuning
 - Small neighborhood: an input excites only neurons closeby
 - → Neurons specialize on small input regions

Self-Organizing Map (SOM)

- Also called Kohonen Self-Organizing Feature Map
- It maps the points in a high-dimensional source space into a 1D or 2D target space (rarely, 3D or other)
- distances and proximity relationships (i.e., topology) are preserved as much as possible ("topological ordered map")
- Clustering is performed by having several units competing for the current object
 - The unit whose weight vector is closest to the current object wins
 - The winner and its neighbors learn by having their weights adjusted
- SOMs mimic some aspects of competitive processing in the brain
- Useful for visualizing high-dimensional data

Self organizing maps

- The activation of the neuron is spread in its direct neighborhood
 - neighbors become sensitive to the same input patterns

 The size of the neighborhood is initially large but reduced over time during training as the network neurons become more specialized

Adaptation

- During training, the "winner" neuron and its neighborhood adapt to make their weight vectors more similar to the input pattern that caused the activation
- The neurons` weight vectors are moved closer to the input pattern
- The magnitude of the adaptation is controlled via a learning parameter, which may decay over time

Influence by Pre-Defined Topology

- The winner B and its neighbors such as A, C, D and E move towards the input vector X
- Modified units are shown as dark circles

Self-organizing Maps – Overview

- Topological Maps
- SOM Cost Function and Learning Algorithm
 - Visualizing SOMs
 - SOM Applications
 - Growing Neural Gas & Growing When Required networks

SOM `Cost Function'

Recall k-means:
$$E = \sum_{i=1}^{k} \sum_{p \in C_i} (x_p - \mu_i)^2$$

each data point is assigned to **one** winning cluster C_i (cluster = neuron)

SOM:

$$E = \sum_{i=1}^{k} \sum_{p \in C_i} \sum_{j=1}^{k} h(|i-j|) (x_p - \mu_j)^2$$

data point **assigned to several** neurons j around winning neuron i

neighbourhood activation function h signifies the degree of assignment

SOM Algorithm in Short

The Self-Organising Map Algorithm

- Initialization
 - Determine shape and size of the map (e.g. 2D with neurons j)
 - Randomly initialise the weight vectors w_j
- Learning: Repeat ...
 - Present input vector x to the network
 - Determine best matching neuron n_b with the minimal Euclidean distance between input x and weight vector w

$$n_b = \min_{j} \left\| x - w_j^T \right\|$$

• The winning node has weight vector moved closer to the input (with learning rate $\eta(t)$)

$$w_j^T \leftarrow w_j^T + \eta(t) \cdot \left(x - w_j^T\right)$$

... so far, it's k-means (online version) ...

The Self-Organising Map Algorithm

- Initialization
 - Determine shape and size of the map (e.g. 2D with neurons j)
 - Randomly initialise the weight vectors w_j
- Learning: Repeat ...
 - Present input vector x to the network
 - Determine best matching neuron n_b with the minimal Euclidean distance between input x and weight vector w

$$n_b = \min_{j} \left\| x - w_j^T \right\|$$

• The winning node and neighbours have weight vector moved closer to the input (with learning rate $\eta(t)$)

$$w_j^T \leftarrow w_j^T + \eta(t) \cdot h(n_b, t) \cdot (x - w_j^T)$$

 Over time, the network self-organises so that the input topology is preserved

Neighborhood Function Preserves Topology

The neighborhood function $h(n_b,t)$ determines the degree of weight vector change of the neighbors

$$w_j^T \leftarrow w_j^T + \eta(t) \cdot h(n_b, t) \cdot (x - w_j^T)$$

- Mostly: Gaussian function; rarely: Mexican Hat function
- Width decreases during training (→ implicit decrease of learning rate)
- may decrease to zero (→ k-means)

Mexican Hat (Difference of Gaussian)

The Self-Organizing Map

Begin of training (large neighbourhood)

End of training (small neighbourhood)

If neighbourhood reduced to zero size:

→ behavior like k-means

K-means vs.

- "Clusters"
- Cluster movements independent of others
 - cluster indices can be exchanged
- # clusters typically small
- Used for clustering
- Learning typically in batch mode
 - convergence after few batches
 - on-line mode possible

SOM

- "Neurons"
- Neurons co-excited by neighbourhood function
 - Neurons arranged on a map in 1D, 2D, ...
- # neurons typically large
- Used for mapping
- Learning in online mode
 - approximate convergence
 - no batch mode

Self-Organization

- Global ordering from local interactions
 - Each neuron sees its neighbors
 - The whole network becomes ordered

Understanding self-organization is part of complexity science

Network Size

We have to predetermine the network size

- Small network
 - Too much generalization
 - → no differentiation
- Large network
 - Each neuron can represent exact features
 - → "little generalization"
- Neighbourhood interaction ties parameters to each other
 - if **not** letting neighbourhood interaction size decrease to zero:
 - → small effective network size
 - → this "regularization" allows SOMs to be kept large

Self-organizing Maps – Overview

- Topological Maps
- SOM Cost Function and Learning Algorithm
- Visualizing SOMs
 - SOM Applications
 - Growing Neural Gas & Growing When Required networks

SOM Demo – 2D lattice in 2D / 3D input space

[http://www.borgelt.net/somd.html]

Good Fit of dimensions: Mapping a Square with a 2-dimensional Lattice

- Upper right with some overlapped learning iterations
- Results for 100, 1000, 5000, 10000 iterations (Kohonen 1984)

Unfolding of a 2-D Map in a 2-D Data Space

Planar Network with a Knot

State difficult to correct

1D Lattice Mapping a 2D Triangular Region

 Triangular input domain is mapped to a small number of one-dimensional representative units

Boundary Conditions: No Neurons at the End of the Map

1D Ring-Form SOM for the Travelling Salesman Problem

Unfolding of a 2-D Map in a 3-D Data Space

Little spread of data in

Self-organizing Maps – Overview

- Topological Maps
- SOM Cost Function and Learning Algorithm
- Visualizing SOMs
- SOM Applications
 - Growing Neural Gas & Growing When Required networks

Feature Maps in Visual Cortex V1

Biology

ocular dominance (OD)

SOM 4D inputs: pos_x, pos_v, OD, ori

orientation preference (ori)

Obermayer, Blasdel. .. Orientation and Ocular Dominance Columns in Monkey .. Jneurosci, 1993

Goodhill. .. Theoretical Modeling .. Neural Map Development. Neuron, 2007

Learning Simple Inverse Kinematics (IK)

- Map configuration space of a robot arm using 2D network
- For one point only one parameter combination
 - Pair input (x,y) coordinates with "output" coordinates (α,β)
 - → supervised learning

 \rightarrow IK: Given input (x,y), retrieve matching (α,β)

Learning Obstacles in Work Area

- SOM charts configuration space avoiding the obstacles
- Moving the arm from A to B avoids the obstacle

Learning Simple Inverse Kinematics

Semantic Map – Input data

attributes			dove	hen	duck	goose	owl	hawk	eagle	tox .	gop	wolf	cat	tiger	lion	horse	zebra	COW	data points
_	is	small	1	1	1	1	1	1	0	0	0	0	1	0	0	0	0	0	•
		medium	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	
		\mathbf{big}	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	
	has	2 legs	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	•
		4 legs	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
		hair	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	
		hooves	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	
		mane	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0	
		feathers	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	
_	hunt likes run] 0	0	0	0	1	1	1	1	0	1	1	1	1	0	0	0	•
			0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0	
	to	\mathbf{fly}	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	
		swim	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	

Semantic Map - Results

winning units are labeled

Semantic Map - Results

each unit is labeled according to its nearest data point

Self-organizing Maps – Overview

- Topological Maps
- SOM Cost Function and Learning Algorithm
- Visualizing SOMs
- SOM Applications
- Growing Neural Gas & Growing When Required networks

Existing Neural Clustering models

- Static Models (fixed number of units): Competitive Learning (CL), Self-Organizing Map (SOM), Neural Gas (NG),
 - Hierarchical: Multilayered Self-Organising Feature Maps (M-SOM), etc.

There are shortcomings for static models in a non-stationary environment.

- Dynamic Models (variable number of units): Growing Grid (GG), Growing Cell Structure (GCS), Growing Neural Gas (GNG), Grow When Required (GWR), etc.
 - Hierarchical: Growing Hierarchical Self-Organizing Map (GHSOM), etc.

Shortcomings of Static Models in a Non-stationary Environment

- Pre-defined number of units
- Pre-defined topology (mostly a grid)
- Pre-defined training length
- A decaying learning rate (e.g. SOM, CL, NG, GG, GSOM, Snet-SOM, M-SOM, GHSOM)

Growing Neural Gas – GNG

(Fritzke, 1994)

- GNG adds unit after every predefined period.
- Units are represented as circles.
- Circle A indicates unit with maximum accumulated error
- Circle B indicates neighbor with largest error for Circle A.
- The grey circle is the new unit at each stage.

Growing Neural Gas – GNG

(Fritzke, 1994)

Growing Neural Gas – GNG

(Fritzke, 1994)

Growing When Required – GWR

(Marsland et al., 2002)

GNG: network grows with *time*

GWR: network grows when required

- Each neuron has a firing counter (how often is it the winner)
 - Many counts → lower learning rate to help convergence ("habituation")
 - Few counts → novelty detected
- Each edge has an age (refreshed when linking winner and 2nd winner)
 - Old edge → cut it (and remove units when isolated)
- → strong neurogenesis at early stages

Room Mapping via GNG (KT Lab)

Room Mapping via GNG (KT Lab)

- Map the topological structure of a room using growing neural gas for robot navigation
- Since the person's movement can show the free space in the room, we use the detected position of a person as the network input

Room Mapping via GNG (KT Lab)

- Blue dots: particles for person detection
- Red bounding box: estimated position of target person
- Yellow dots: the neurons of the growing neural gas and the green lines are the connections

Self-organizing Maps – Summary

- WTA behavior of Kohonen's algorithm resembles k-means
 - unlike the distributed code on most (deep) neural networks
- Topology preservation is a feature of Kohonen's SOM
 - brain-inspired, implemented by near-surround excitation
 - leads to good spread of neurons over the data space
 - grid of 2D topology ideal for visualization
- Growing architectures
 - do not use grid to define neighbor interactions
 - use flexibly linked neighbours