ЕСМ-алгоритм, стохастическая модель сигнала

§1 Постановка проблемы

Предположим, у нас имеется линейная антенная решетка, состоящая из L сенсоров. Решетка принимает волны, направленные из M различных источников. Этим источникам соответствует вектор углов прибытия (DoA) θ , изменяющийся во времени. По итогам измерений, было получено G снимков полученного сигнала, причем ввиду технических неполадок, связанных с сенсорами, большая часть таких снимков содержит помимо надежных данных ненадежные, которые в рамках данной задачи рассматриваются как пропуски. Пусть X — полный набор сигналов, полученных датчиками в моменты времени $t = \overline{1,G}$, X_t соответствует сигналу в момент времени t, через x и x_t будем обозначать реализации полного набора сигналов и сигнала в отдельный момент времени t соответственно. Ввиду наличия пропусков в данных, будем считать, что X состоит из наблюдаемой части $X_o = \{X_{ot}\}_{t=1}^G$ и ненаблюдаемой: $X_m = \{X_{mt}\}_{t=1}^G$. Полученный сигнал является результатом следующей модели наблюдений:

$$X = AS + N, (1)$$

где $N=\{N_t\}_{t=1}^G$ соответствует набору шумов, связанных с датчиками в моменты времени $t=\overline{1,G},S=\{S_t\}_{t=1}^G$ – соответствует набору сигналов, испускаемых источниками в моменты времени $t=\overline{1,G},A$ – матрица управляющих векторов для равномерного линейного массива:

$$A(\theta) = \begin{bmatrix} 1 & 1 & \dots & 1 \\ e^{-2j\pi\frac{d}{\lambda}\sin(\theta_1)} & e^{-2j\pi\frac{d}{\lambda}\sin(\theta_2)} & \dots & e^{-2j\pi\frac{d}{\lambda}\sin(\theta_M)} \\ \dots & & \dots & \vdots \\ e^{-2j\pi(L-1)\frac{d}{\lambda}\sin(\theta_1)} & e^{-2j\pi(L-1)\frac{d}{\lambda}\sin(\theta_2)} & \dots & e^{-2j\pi(L-1)\frac{d}{\lambda}\sin(\theta_M)} \end{bmatrix}.$$

Сигналы, испускаемые источниками, также как и шумы на сенсорах, предполагаются стохастическими: $S_t \sim CN(\mathbf{O}_{M\times 1}, \mathbf{P}), t = \overline{1, G}, \ N_t \sim CN(\mathbf{O}_{L\times 1}, \mathbf{\Lambda})$. Матрицы \mathbf{P} и $\mathbf{\Lambda}$ предполагаются диагональными, т.е. и сигналы, и шумы, являются некоррелированными. Для простоты дальнейших рассуждений введем также следующие величины:

- L_{o_t} число исправных сенсоров в момент времени t;
- L_{m_t} число неисправных сенсоров в момент времени t;
- A_{ot} матрица, образованная теми строками матрицы A, которые соответствуют работающим сенсорам в момент времени t;
- A_{m_t} матрица, образованная теми строками матрицы A, которые соответствуют неисправным сенсорам в момент времени t;
- Λ_{m_t} ковариационная матрица шума на неисправных сенсорах в момент времени t;
- Λ_{o_t} ковариационная матрица шума на исправных сенсорах в момент времени t.

Coctabum ECM-алгоритм (Expectation Conditional Maximization алгоритм) для двух случаев:

- Известный шум;
- Неизвестный шум.

§2 Известный шум

Воспользуемся ЕСМ-алгоритмом для того, чтобы определить значения параметров $\Psi = (\theta, \mathbf{P})$, пропущенные значения $X_m = \{X_{m_t}\}_{t=1}^G$ рассматриваются как латентные переменные. Наблюдения X_t , $t = \overline{1,L}$ предполагаются независимыми и одинаково распределенными.

Е-шаг

Требуется найти условное математическое ожидание с учетом апостериорного распределения ненаблюдаемых/пропущенных принятых сигналов и апостериорного распределения сигналов S и текущей оценки параметров

$$\mathbb{E}_{(X_m,S)|X_o=x_o,\Psi^{(\tau-1)}}[\log P(X,S)]. \tag{2}$$

Сначала найдем апостериорное распределение $P(X_m|X_o=x_o,\Psi)$, воспользуемся формулой произведения плотностей:

$$P((X_m, S)|X_o = x_o, \Psi) = P(X_m|X_o = x_o, \Psi) \cdot P(S|X_o = x_o, X_m = \hat{x}_m, \Psi)$$
(3)

$$X_t = AS_t + N_t$$

$$S_t \sim CN(\mathbf{O}_{M \times 1}, \mathbf{P})$$

$$X_t \sim CN(\mathbf{O}_{L \times 1}, A\mathbf{P}A^H + \mathbf{\Lambda})$$

$$X_t | S_t \sim CN(AS_t, \mathbf{\Lambda})$$

$$X_{o_t} \sim CN(\mathbf{O}_{L \times 1}, A_{o_t}\mathbf{P}A_{o_t}^H + \mathbf{\Lambda}_{\mathbf{o_t}})$$

$$P(S|\Psi) = \prod_{t=1}^{G} \frac{1}{\pi^M \operatorname{Det}(\mathbf{\Lambda})} e^{-S_t^H(\mathbf{P})^{-1} S_t},$$
(4)

$$P(X|\Psi) = \prod_{t=1}^{G} \frac{1}{\pi^L \operatorname{Det}(A\mathbf{P}A^H + \mathbf{\Lambda})} e^{-X_t^H (A\mathbf{P}A^H + \mathbf{\Lambda})^{-1} X_t},$$
 (5)

$$P(X|S, \Psi) = \prod_{t=1}^{G} \frac{1}{\pi^L \operatorname{Det}(\mathbf{\Lambda})} e^{-(X_t - AS_t)^H(\mathbf{\Lambda})^{-1}(X_t - AS_t)},$$
(6)

$$P(X_o|\Psi) = \prod_{t=1}^G \frac{1}{\pi^{L_{o_t}} \operatorname{Det}(\mathbf{\Lambda}_{o_t})} e^{-(X_{o_t})^H (\mathbf{\Lambda}_{o_t})^{-1} (X_{o_t})}, \tag{7}$$

Параметры апостериорного распределения $P(X_{m_t}|X_{o_t}=x_{o_t},\Psi)$ можно найти исходя из следующих формул:

$$\begin{cases} \mu_{X_{m_t}|x_{o_t}} = \hat{\Sigma}_{x_{m_t},x_{o_t}} \hat{\Sigma}_{x_{o_t},x_{o_t}}^{-1} \cdot x_{o_t} \\ \Sigma_{x_{m_t}|x_{o_t}} = \hat{\Sigma}_{x_{m_t},x_{m_t}} - \hat{\Sigma}_{x_{m_t},x_{o_t}} \hat{\Sigma}_{x_{o_t},x_{o_t}}^{-1} \hat{\Sigma}_{x_{o_t},x_{m_t}} \end{cases}$$
(8)

Оцениваем пропущенные значения для каждого наблюдения через условное математическое ожидание: $\hat{x}_{m_t} = \mu_{x_{m_t}|x_{o_t}}$. $\widetilde{x}_t^{(\tau)}$ — оценка x_t с учетом оценки пропусков. Параметры апостериорного распределения $P(S_t|X_{o_t}=x_{o_t},X_{m_t}=\hat{x}_{m_t},\Psi)$ можно найти исходя из следующих формул

$$\begin{cases}
\mu_{S_t|X_{o_t}=x_{o_t},X_{m_t}=\hat{x}_{m_t},\Psi} = \mathbf{P}A^H(A\mathbf{P}A^H + Q)^{-1}\widetilde{x}_t^{(\tau)} \\
\Sigma_{S_t|X_{o_t}=x_{o_t},X_{m_t}=\hat{x}_{m_t},\Psi} = \mathbf{P} - \mathbf{P}A^H(A\mathbf{P}A^H + Q)^{-1}A\mathbf{P}
\end{cases}$$
(9)

Рассчитаем оценку пространственной ковариационной матрицы (пользуемся результатами выкладок по детерминированной модели):

$$\hat{R}^{(\tau)} = \frac{1}{G} \sum_{t=1}^{G} \left[\widetilde{\Sigma}_{t}^{(\tau)} + \widetilde{x}_{t}^{(\tau)} (\widetilde{x}_{t}^{(\tau)})^{H} \right]$$

$$(10)$$

где $\widetilde{\Sigma_t}^{(\tau)}$ — матрица размера $L \times L$, в которой все элементы являются нулями, за исключением тех, что стоят на пересечении строк с номерами (m_t) и столбцов с номерами (m_t) : они заменены величиной $\Sigma_{x_{m_t}|x_{o_t}}^{(\tau)}$. Вернемся к ранее рассмотренному условному математическому ожиданию:

$$\mathbb{E}_{(X_m,S)|X_o=x_o,\Psi^{(\tau-1)}}[\log P(X,S)].$$

Его следует максимизировать, мы можем перейти от логарифма произведения к сумме логарифмов.

$$\log P(X, S | \theta, \mathbf{P}) = -G \log(\text{Det}(\pi \mathbf{\Lambda})) - \sum_{t=1}^{G} (X_t - A(\theta)S_t)^H \mathbf{\Lambda}^{-1} (X_t - A(\theta)S_t)$$
$$-G \log(\text{Det}(\pi \mathbf{P})) - \sum_{t=1}^{G} S_t^H \mathbf{P}^{-1} S_t$$

М-шаг

Требуется найти наилучшую оценку параметров, решив следующую задачу оптимизации:

$$\begin{split} \Psi^{(\tau)} &= \operatorname*{argmax}_{\Psi} \mathbb{E}_{(X_m,S)|X_o = x_o, \Psi^{(\tau)}}[\log P(X,S)] = \\ \operatorname*{argmax}_{\Psi} \mathbb{E}_{(X_m,S)|X_o = x_o, \Psi^{(\tau-1)}} \bigg[-G \log(\mathrm{Det}(\pi \mathbf{\Lambda})) - \sum_{t=1}^G (X_t - A(\theta)S_t)^H \mathbf{\Lambda}^{-1} (X_t - A(\theta)S_t) \\ -G \log(\mathrm{Det}(\pi \mathbf{P})) - \sum_{t=1}^G S_t^H \mathbf{P}^{-1} S_t \bigg] \end{split}$$

Первый СМ-шаг

Оценим углы прибытия сигналов θ , но оставляем оценку ковариации сигналов \mathbf{P} фиксированной: $\mathbf{P} = \mathbf{P}^{(\tau-1)}$.

$$\begin{split} \theta^{(\tau)} &= \operatorname*{argmax}_{\theta} Q(\theta|\theta^{(\tau-1)}) = \\ \operatorname*{argmax}_{\theta} \mathbb{E}_{(X_m,S)|X_o = x_o, \Psi^{(\tau-1)}} \bigg[-G \log(\mathrm{Det}(\pi \mathbf{\Lambda})) - \sum_{t=1}^G (X_t - A(\theta)S_t)^H \mathbf{\Lambda}^{-1} (X_t - A(\theta)S_t) \\ -G \log(\mathrm{Det}(\pi \mathbf{P})) - \sum_{t=1}^G S_t^H \mathbf{P}^{-1} S_t \bigg] \end{split}$$

Тогда минимизируемая функция примет следующий вид:

$$\mathcal{J}(\theta) = \sum_{t=1}^{G} \mathbb{E} \Big[(X_t - A(\theta)S_t)^H \mathbf{\Lambda}^{-1} (X_t - A(\theta)S_t) | X_o \Big] =$$

$$\sum_{t=1}^{G} \operatorname{Tr} \Big(\mathbf{\Lambda}^{-1} \mathbb{E} \Big[(X_t - A(\theta)S_t) (X_t - A(\theta)S_t)^H \Big| X_o \Big] \Big) =$$

$$\operatorname{Tr} \Big(\mathbf{\Lambda}^{-1} (\hat{R} - A\mathbf{P}^{\tau - 1} A^H) \Big)$$

$$\underset{\theta}{\operatorname{argmin}} = \operatorname{Tr}\left(\mathbf{\Lambda}^{-1}(\hat{R} - A\mathbf{P}^{\tau - 1}A^{H})\right) \tag{11}$$

Второй СМ-шаг

Оценим ковариацию сигналов ${\bf P}$, но оставляем оценку углов прибытия сигналов θ фиксированной: $\theta = \theta^{(au)}$

 $\mathbf{P}^{(\tau)} = \operatorname*{argmax}_{\mathbf{P}} Q(\mathbf{P}|\mathbf{P}^{(\tau-1)})$

Пользуемся тем фактом, что полное правдоподобие раскладывается на сумму $\log P(X|S,\Psi) + \log(S|\Psi)$. Первый логарифм не зависит от **P**. Поэтому раскрываем мат.ожидание исключительно второго логарифма .

$$\mathcal{K}(\mathbf{P}) = \mathbb{E}_{S|X=\hat{x},\Psi^{(\tau-1)}} \left[-G \log(\mathrm{Det}(\pi\mathbf{P})) - \sum_{t=1}^{G} S_{t}^{H} \mathbf{P}^{-1} S_{t} \right] =$$

$$-G \log(\mathrm{Det}(\pi\mathbf{P})) - \mathbb{E}_{\Psi^{(\tau-1)}} \left[\sum_{t=1}^{G} S_{t}^{H} \mathbf{P}^{-1} S_{t} \middle| X = \hat{x}^{(\tau)} \right] =$$

$$-G \log(\mathrm{Det}(\pi)) - G \log(\mathrm{Det}(\mathbf{P})) - \mathbb{E}_{\Psi^{(\tau-1)}} \left[\sum_{t=1}^{G} S_{t}^{H} \mathbf{P}^{-1} S_{t} \middle| X = \hat{x}^{(\tau)} \right] =$$

$$-G \log(\mathrm{Det}(\mathbf{P})) - \sum_{t=1}^{G} \mathrm{Tr} \left(\mathbf{P}^{-1} \mathbb{E}[S_{t} S_{t}^{H} \middle| X = \hat{x}^{(\tau)}] \right)$$

$$\frac{d}{d\mathbf{P}} \log(\mathrm{Det}(\mathbf{P})) = P^{-1}$$

 $X = \hat{x}^{(\tau)}$ – оценка наблюдений, полученная с учетом Е-шага текущей итерации. Обозначим через M величину $\mathbb{E}[S_tS_t^H\Big|X = \hat{x}^{(\tau)}]$.

$$\frac{d}{d\mathbf{P}}\operatorname{Tr}(P^{-1}M) = -P^{-1}MP^{-1}$$
$$\frac{d\mathcal{K}(\mathbf{P})}{d\mathbf{P}} = -GP^{-1} + P^{-1}MP^{-1}$$

Приравняем производную к нулю (функция по ${\bf P}$ выпукла).

$$O = -GP^{-1} + P^{-1}MP^{-1} \Rightarrow M = GP \Rightarrow \mathbf{P}^{(\tau)} = \frac{1}{G} \sum_{t=1}^{G} \left(\Sigma_{S_t|X_t} + \mu_{S_t|X_t} (\mu_{S_t|X_t})^H \right)$$
$$\mathbf{P}^{(\tau)} = \frac{1}{G} \sum_{t=1}^{G} \left(\Sigma_{S_t|X_t} + \mu_{S_t|X_t} (\mu_{S_t|X_t})^H \right)$$
(12)

§3 Неизвестный шум

Е-шаг

М-шаг

Первый СМ-шаг

Второй СМ-шаг

Список источников