Problem: Trigonometry In Triangles Bài Tập: Hệ Thức Lượng Trong Tam Giác

Nguyễn Quản Bá Hồng*

Ngày 21 tháng 8 năm 2023

Tóm tắt nôi dung

Last updated version: GitHub/NQBH/elementary STEM & beyond/elementary mathematics/grade 9/trigonometry/problem: set \mathbb{Q} of trigonometrys [pdf]. $[T_FX]^2$.

Mục lục

1	1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông	1
2	Miscellaneous	2
Tà	ıi liêu	2

1 1 Số Hệ Thức Lượng về Cạnh & Đường Cao Trong Tam Giác Vuông

Ký hiệu. $\triangle ABC$ vuông tại $A: a \coloneqq BC, b \coloneqq CA, c \coloneqq AB, b' \coloneqq CH, c' \coloneqq BH, h \coloneqq AH.$ **Tính chất.** $\boxed{1}$ $b^2 = ab', c^2 = ac'.$ $\boxed{2}$ Dịnh lý Pythagore thuận & đảo: $\triangle ABC$ vuông tại $A \Leftrightarrow a^2 = b^2 + c^2.$ $\boxed{3}$ $h^2 = b'c'.$ $\boxed{4}$ $ah = bc = 2S_{ABC}.$ $\boxed{5}$ $\frac{1}{h^2} = \frac{1}{b^2} + \frac{1}{c^2}.$

Bài toán 1 ([Bìn23], Ví dụ 1, p. 84). Tính diện tích hình thang ABCD có đường cao bằng 12 cm, 2 đường chéo AC, BD vuông góc với nhau, BD = 15 cm.

 $Gi \acute{a}i. \text{ K\'e } BE \parallel AC, E \in CD. \text{ Gọi } BH \text{ là đường cao của hình thang. } BE \parallel AC \& AC \bot BD \Rightarrow BE \bot BD. \text{ Áp dụng định lý}$ Pythagore cho $\triangle BDH$ vuông tại $H: HD = \sqrt{BD^2 - BH^2} = \sqrt{15^2 - 12^2} = \sqrt{225 - 144} = \sqrt{81} = 9 \text{ cm. Áp dụng hệ thức lượng}$ $b^2 = ab' \text{ vào } \triangle BDE \text{ vuông tại } B: DE = \frac{BD^2}{DH} = \frac{15^2}{9} = \frac{225}{9} = 25 \text{ cm. } AB \parallel CE \& AC \parallel BE \Rightarrow ABCE \text{ là hình bình hành}$ $\Rightarrow AB = CE \Rightarrow AB + CD = CE + CD = DE = 25 \text{ cm} \Rightarrow S_{ABCD} = \frac{1}{2}(AB + CD) \cdot BH = \frac{1}{2} \cdot 25 \cdot 12 = 150 \text{ cm}^2.$

Bài toán 2 ([Bìn23], Ví dụ 2, p. 85). Hình thang cân ABCD có đáy lớn CD = 10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính đường cao của hình thang.

Giải. Gọi AH, BK là 2 đường cao của hình thang ABCD. Đặt $x \coloneqq AB = AH = BK$. Tứ giác ABKH có $AB \parallel HK$, $AH \parallel BK$ (vì $AH \perp CD \& BK \perp CD$) nên ABKH là hình bình hành, mà $\hat{H} = \hat{K} = 90^{\circ}$ nên ABKH là hình chữ nhật, kết hợp với AB = AH, suy ra ABKH là hình vuông, nên HK = AB = x (1). ABCD là hình thang cân $\Rightarrow AD = BC \& \hat{C} = \hat{D}$, suy ra $\triangle AHD = \triangle BKC$ (2 tam giác vuông lần lượt tại H, K, trường hợp cạnh huyền—góc nhọn³) $\Rightarrow DH = CK$ (2). Từ (1) & (2), suy ra: $DH = CK = \frac{CD - HK}{2} = \frac{10 - x}{2} \Rightarrow CH = CK + HK = \frac{10 - x}{2} + x = \frac{10 + x}{2}$. Áp dụng hệ thức lượng $h^2 = b'c'$ cho $\triangle ACD$ vuông tại A (đường chéo $AC \perp AD$: giả thiết): $AH^2 = DH \cdot CH \Leftrightarrow x^2 = \frac{10 + x}{2} \cdot \frac{10 - x}{2} = \frac{100 - x^2}{4} \Leftrightarrow 4x^2 = \frac{10 - x}{2}$

$$100 - x^2 \Leftrightarrow 5x^2 = 100 \Leftrightarrow x = \sqrt{\frac{100}{5}} = \sqrt{20} = 2\sqrt{5} \text{ cm. Vậu đường cao của hình thang } ABCD \text{ bằng } 2\sqrt{5} \text{ cm.}$$

Bài toán 3 ([Bìn23], Ví dụ 3, p. 85). Tính diện tích 1 tam giác vuông có chu vi 72 cm, hiệu giữa đường trung tuyến & đường cao ứng với cạnh huyền bằng 7 cm.

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

¹URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/trigonometry/problem/NQBH_trigonometry_problem.pdf.

²URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_9/rational/problem/NQBH_trigonometry_problem.tex.

 $^{^3}$ Hoặc có thể lý luận: $\Delta AHD = \Delta BKC$ (cạnh huyền–cạnh góc vuông) vì 2 tam giác vuông này có AD = BC (2 cạnh bên của hình thang cân ABCD) & AH = BK (cùng bằng chiều cao của hình thang ABCD).

Giải. Xét $\triangle ABC$, AB < AC, M là trung điểm BC, $AH \perp BC$, $H \in BC$, như hình:

Đặt x := AM, BC = 2AM = 2x, AH = AM - 7 = x - 7. Áp dụng định lý Pythagore & hệ thức lượng bc = ah cho ΔABC vuông tại $A: b^2 + c^2 = a^2 = (2x)^2 = 4x^2$, bc = ah = 2x(x - 7). Giải hệ phương trình:⁴

$$\begin{cases} b^2 + c^2 = 4x^2, \\ bc = 2x(x-7). \end{cases}$$

Có
$$a+b+c=72 \Leftrightarrow b+c=72-a=72-2x$$
. Từ hệ phương trình vừa thu được: $(b+c)^2=b^2+c^2+2bc=4x^2+4x(x-7)=8x^2-28x \Leftrightarrow (72-2x)^2=8x^2-28x \Leftrightarrow 72^2-2\cdot72\cdot2x+4x^2=8x^2-28x \Leftrightarrow 4x^2+260x-72^2=0 \Leftrightarrow x^2+65x-1296=0 \Leftrightarrow (x-16)(x+81)=0 \Leftrightarrow x=16 \lor x=-81$ (loại vì $x>0$) $\Rightarrow x=16 \Rightarrow S_{ABC}=\frac{1}{2}bc=x(x-7)=16(16-7)=144$ cm².

2 Miscellaneous

Tài liệu

[Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 9 Tập 1. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 275.

⁴Xem cách giải của dạng tổng quát của hệ phương trình này ở bài viết sau của tác giả: Problem & Solution: System of Equations of 2 Variables – Bài Tập & Lời Giải: Hệ Phương Trình 2 Biến: URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/miscellaneous/system_of_equations_2_variables_problem.pdf.