IT-Systemengineering & -Operations

Storageysteme im RZ

(nur physikalischer Storage)

Vers. 1.0

Markus Waldmann

Lucerne University of
Applied Sciences and Arts
HOCHSCHULE
LUZERN

Lernziele

- Kennen der verschiedenen Bauformen
- Einsatzzwecke der verschiedenen Typen
 - Vor- und Nachteile kennen lernen
 - Optimale Platz-Ausnutzung
- Ausbaumöglichkeiten kennen lernen
- Leistungsbereiche von Storage-Geräten kennen

Inhalt

- Storage: was ist das
- Speichermedien
- Anschlüsse
- Raid-Level
- Bauformen
- Enterprise Arrays
- Funktionen
- Ausbaumöglichkeiten
- Leistungen

Achtung: Skala in Inches

https://en.wikipedia.org/wiki/Disk_storage#/media/File:SixHardDriveFormFactors.jpg

Geschichte und Anekdoten

13.09.1956, IBMs erste Festplatte der Welt: IBM 350 RAMAC 7 Mio Zeichen mit je 7 Bit

IBM 2314: total 240MBytes, 1950Kg

Stromverbrauch 9.1kVA

Passender Diskstapel

Headcrash: www-uxsup.csx.cam.ac.uk

Storage: was ist das?

- Nicht flüchtiger Bereich zur Ablage von Daten
 - Kurzfristig als Cache
 - Mittelfristig als aktive Daten (Files, DBs, ...)
 - Langfristig für Achivierung
- Integriertes oder eigenständiges Gerät
 - Lokale Festplatte, DVD, ...
 - NAS, Disk-Subsystem, Enterprise-Storage
- Primär Storage: online, hoch verfügbar, direkt erreichbar
- Sekundär: near line, langsamer, offline, Wechselmedien
- Archiv: offline, nicht mehr aktive Daten, ausgelagert
- Kann verschiedene Medien und Sicherheitsstufen integrieren

Speichermedien Geschichte

Magnetkernspeicher

http://kkraftonline.de/Museum/data/kernspeicher-01.html

http://www.hyperkommunikation.ch/lexikon/kernspeicher.htm

Trommelspeicher

http://computermuseum.htw-berlin.de/index.php/Detail/Object/Show/object_id/434

http://www.robotrontechnik.de

Speichermedien

HD

- Magnetische Aufzeichnung, erschütterungsempfindlich
- Rotierende Teile, Verschleiss, Energieverbrauch rel. hoch

SSD

- Elektronische Speicherung, begrenzte Schreibzyklen
- lage- und erschütterungsunempfindlich
- Sehr schnell, geringer Stromverbrauch

TAPE

- Höchste Speicherdichte, langsam,

CD/DVD/BlueRay

Kleine Dateneinheiten,
 kein Stromverbrauch

RAID 5-5

15K Fibre Channel or SAS

SSD

7K SAS

Speichermedien Entsorgung

- Was geschieht mit einer HD die ausfällt? Sind die Daten weg?
- Daten permanent löschen durch
 - Mechanische Zerstörung (schreddern)
 - Erhitzen (Curie-Temperatur)
 - Verbrennen
 - Entmagnetisieren (Degausser)

http://www.destructdata.com/degaussers/

- Nur formatieren oder ein einfaches Überschreiben reicht nicht 100%
 - Mehrfach überschreiben (verschiedene Standards, DoD)
- Verfahren oft kombiniert
- Spezialfirmen mit mobilen Schreddern

Anschlüsse

■ IDE / ATA

- Paralleles Kabel, kurze Strecken, 2 Geräte pro Bus, ca. 10 MB/s

SATA

- Serial ATA, HotPlug möglich,

SCSI

- Paralleler Bus, bis 15 Geräte, 8-32 Bit breit

SAS

- Serial attached SCSI, bis 10 m, 2 * 6 Mbit/s

SATA Interface http://img.tomshardware.com/de/2005/11/16/das_grosse_t hg_stecker_kompendium

FC

- Meist Glasfaserinterface, Geräteintern auch Kupfer
- Schnelle und mächtige serielle SCSI Schnittstelle
- FC-Netzwerke mit eigenen Switches, Glas, sehr lange Distanzen

M.2

- Neustes Interface im SSD Bereich

Raid-Level

- JBOD / RAID 0

- RAID 1

JBOD Αl A64 A92 A2 A65 A93 АЗ A66 A94 Α4 A67 A95 Disk 0 Disk 1 Disk 2

RAID 1

A1

A2

A3

A4

Disk 0 Disk 1

RAID 0+1
RAID 1
RAID 0

Δl

Disk 2

Disk 3

RAID 0

Α5

Disk 0

Disk 1

Hochschule Luzern

Informatik

■ RAID 0 + 1 oder RAID 10

RAID 5

RAID 6 / ADG: 2 Parity Platten, Advanced Data Guarding

Bauformen

- Disk Subsystem
 - Lokale Speichererweiterung für Server
 - Direkt an Diskkontroller angehängt

NAS

- Speicher wird via Netzwerk verteilt
- Zugriff via Webinterface, SMB, ...

Storage Server

- Spezialisertes OS für Speicherverwaltung
- Anbindung via Netzwerk

Storage Arrays

- Anschluss via SAS, FC, FCoE
- Interne Intelligenz zur Blockverwaltung
- Zentrale, redundante Controller mit X Diskshelfs

Hochschule Luzern Informatik

Storage Server von https://www.sysgen.de

Enterprise Array Technologie

Conventional:

- Disks werden zu Arrays mit RAID-Level zusammengestellt
- Bereitstellung von Luns aus Teilen von physikalischen Arrays

Compellent:

- Disks werden zusammengefasst und als Block-Array verwaltet
- Zusammenstellung der virtuellen Disks (LUN) via lokale Intelligenz, Blöcke über das gesamte Array verstreut
- RAID Level innerhalb der Auswahl gewährleistet

Funktionen (Auszug)

HotSpare Disks

- Als Reserve eingebaute Disks welche im Fehlerfall ausgefallene Disks ersetzen, z.T. schon vor Komplettausfall

Replikation

- Im Controller eines Arrays/Storage integriert
- Autonome Funktion, meist Lizenzgebunden (Diskgrösse)
- Synchron oder Asynchron möglich

SnapShot

- Der aktuelle Zustand wird eingefroren und weitere Änderungen separat verwaltet -> mehrere Stufen -> sehr schnelles zurückstellen
- Möglichkeit zum Kopieren von Daten bei komplettem SnapShot

AutoService

- Grosse Arrays sind oft mit speziellem SLA verbunden
- Array ruft selbstständig um technische Hilfe

SnapShot Funktion

(a) Before a snapshot.

(b) After a snapshot, before any blocks change.

(c) After block D has changed to D'.

 $https://www.cs.uic.edu/\sim jbell/CourseNotes/OperatingSystems/12_FileSystemImplementation.html$

https://swtch.com/~rsc/papers/fndn/

Ausbaumöglichkeiten

- Speichererweiterung on the fly
 - HotPlug Disks, dynamische Arrays, Controller kann selber Daten neu verteilen -> erhalt der RAIDs und Verteilung auf alle Disks
- Speichererweiterung mit neuer Technologie
 - SAS/FC zu SSD: migrieren von LUNs auf schnelleren oder langsameren Speicher während Betrieb
- Einbau von Cache
 - Grosse Arrays haben z.T. noch grosse RAM-Speicher als Cache für oft gebrauchte Bereiche
 - Intelligente Zuordnung zu Speicherbereichen
- Mehr Shelfs / Controller

Zwischenübung

- Suchen sie im Web nach einer Storageübersicht mit Ausbaumöglichkeiten für die folgenden Hersteller:
 - HPE
 - DELL
 - IBM
 - Fujitsu
 - NetApp
 - Hitachi
- Stellen sie eine Herstellerbezogene Übersicht zusammen

Vendor Groups	4Q16 Revenue	4Q16Market Share	4Q15 Revenue	4Q15 Market Share	4Q16/4Q15 Revenue Growth
1. Dell Technologies ^a	\$2,124.9	32.9%	\$2,570.3	36.8%	-17.3%
T2. HPE/New H3C Group*b	\$656.5	10.2%	\$706.5	10.1%	-7.1%
T2. IBM*	\$653.8	10.1%	\$791.4	11.3%	-17.4%
T2. NetApp*	\$642.0	10.0%	\$650.9	9.3%	-1.4%
5. Hitachi	\$451.6	7.0%	\$532.0	7.6%	-15.1%
Others	\$1,920.0	29.8%	\$1,741.8	24.9%	10.2%
All Vendors	\$6,499.0	100.0%	\$6,992.9	100.0%	-7.8%

und legen sie diese in den ILIAS Dateiaustausch

■ Zeit: 30 min

Leistung

- Welche Faktoren bestimmen die Leistung eines Storage-Geräts?
 - -
 - _
 - _
 - _
 - _
 - _
 - _

Testat-Übung Server

- Erweitern sie in den 2er-Gruppen die Zusammenstellung vom Serverteil mit den benötigten Storage-Komponenten für ein Rechenzentrum mit Listenpreisen, welche zusammen die folgenden Bedingungen erfüllen:
 - N+1 Redundanz für alle Komponenten
 - 100 TB Nutzkapazität (30% SSD, 30% SAS, 40% SATA)
 - 30 TB NAS
 - Passendes Backupgerät
 - Versuchen sie die Kosten gering zu halten (verschiedene Storagetypen?)
- Abgabe bis 31. März 2017 im ILIAS
- Präsentation der Ergebnisse am 3. April durch 2 Teams