MA3201 Homework 5

Tan Yee Jian (A0190190L)

March 26, 2021

Question 1

Part 1(i)

Solution

Claim. If e is central idempotent, so is (1 - e).

Proof of claim.

$$(1-e)^2 = 1 - e - e + e^2 = 1 - e$$

 $(1-e)r = 1r - er = r - re = r(1-e).$

Proof. With the claim above, it suffices to show for any central idempotent $e \in R$, eM is a submodule of M. Let e be given, then we show the submodule criterion: for any $m_1, m_2 \in M, r \in R$,

Since $e \cdot 0 = 0 \in eM \neq \emptyset$, eM is a submodule of M.

Part 1(ii)

Proof. We first show eM and (1-e)M have trivial intersection. Suppose x=em=(1-e)m' for some $m,m'\in M$, then

$$e(x) = e(em) = em = x$$

but $e(x) = e(1 - e)m' = em' - em' = 0$

Combining, we have that any $x \in eM \cap (1-e)M$ must be 0, hence the intersection is trivial. Consider the map

$$\phi: M \to eM \oplus (1-e)M, \ m \mapsto (em, (1-e)m).$$

We show this is an isomorphism. Let e be central idempotent, $m_1, m_2 \in M, r \in R$. Homomorphism:

$$\begin{split} \phi(m_1+rm_2) &= (e(m_1+rm_2), (1-e)(m_1+rm_2)) \\ &= (em_1+e(rm_2), (1-e)m_1+(1-e)(rm_2)) \\ &= (em_1, (1-e)m_1) + ((re)m_2, [r(1-e)]m_2) & \text{direct sum, central idempotence} \\ &= \phi(m_1) + r(em_2, (1-e)m_2) & \text{direct sum of modules} \\ &= \phi(m_1) + r\phi(m_2). \end{split}$$

Injectivity:

$$\ker \phi = \{ m \in M | em = 0 = (1 - e)m \in M \}$$

For any $m \in \ker \phi$, $em = m - em \implies m = 0$. Therefore the kernel is trivial.

Surjectivity: Let $(em, (1-e)m') \in em \oplus (1-e)M$ be given. Note that $e(1-e) = e - e^2 = 0 = (1-e)e$. Then

$$\phi(em + (1 - e)m')$$
= $(e^2m + e(1 - e)m', (1 - e)em + (1 - e)^2m')$
= $(em, (1 - e)m')$.

Therefore $M \cong eM \oplus (1-e)M$.

Question 2

Proof. Denote the map as ϕ . We check for homomorphism and its kernel.

R-module homomorphism: We check $\phi(m+rn) = \phi(m) + r\phi(n)$ for any $m, m' \in M, r \in R$. For simplicity, we write

$$(m + A_1M, m + A_2M, ..., m + A_nM)$$
 as $(m + A_iM)$.

Then

$$\phi(m+rm') = (m+rm'+A_iM)$$

$$= (m+A_iM) + (rm'+A_iM)$$

$$= \phi(m) + r \cdot (m'+A_iM) \qquad (A_i \text{ is an ideal for all } i)$$

$$= \phi(m) + r \cdot \phi(m').$$

On the other hand, the kernel:

$$\ker \phi = \{ M | m + A_i M = A_i M, i = 1, \dots, n \}$$

$$= \{ m \in M | \bigwedge_{i=1}^{n} (m \in A_i M) \}$$

$$= A_1 M \cap A_2 M \cap \dots \cap A_n M. \qquad (\forall i, A_i M \subset M)$$

Question 3

Let $\phi: M \to M/A_1M \oplus M/A_2M \oplus \ldots \oplus M/A_n$ be the map as defined in the previous question. We only show the n=2 case, and by properties of direct sum (in particular, cartesian product), we can repeatedly apply this process till the n desired and show what the question asked for, as long as we have that $A_1A_2\ldots A_{n-1}+A_n=R$.

Claim 1. Given $A_i + A_j = R$ for any $i \neq j$, then $A_1 A_2 \dots A_{n-1} + A_n = R$.

Proof of Claim 1. It then sufficies to just show that $A_1 cdots A_{n-1} + A_n \ni 1$. Let $x_k \in A_k$ be such that $x_k + x_n = 1$. Then,

$$1 = (x_1 + x_n)(x_2 + x_n) \dots (x_{n-1} + x_n)$$

$$\in x_1 x_2 \dots x_{n-1} + A_n$$

$$\in A_1 A_2 \dots A_{n-1} + A_i$$

as desired.

Claim 2. Given $A_1 + A_2 = R$, $(A_1 A_2)M = A_1 M \cap A_2 M$.

Proof of Claim 2. Recall in Homework 1, we showed if two ideals I, J of a ring R such that I+J=R, then $IJ=I\cap J$. Therefore,

$$\begin{split} A_1A_2M &= (A_1 \cap A_2)M \\ &= \{(\sum_{\text{finite}} rm) \in M | r \in A_1 \wedge r \in A_2\} \\ &= \{(\sum_{\text{finite}} rm) \in M | r \in A_1\} \cap \{(\sum_{\text{finite}} rm) \in M | r \in A_2\} \\ &= A_1M \cap A_2M. \end{split}$$

Claim 3. $\phi: M \to M/A_1M \oplus M/A_2M$ is surjective, given A_1, A_2 are ideals such that $A_1 + A_2 = R$.

Proof of Claim 3. It suffices to show that (0,1), (1,0) are in the image of ϕ . Since $A_1 + A_2 = R$, let $a_1 + a_2 = 1 \implies a_1 m + a_2 m = m$ for any $m \in M$, where $a_1 \in A_1$, $a_2 \in A_2$. Then

$$\begin{split} \phi(a_1m) &= (a_1m + A_1M, \ a_1m + A_2M) \\ &= (A_1M, \ 1 \cdot m - a_2m + A_2M) \\ &= (0,1) \in M/A_1M \oplus M/A_2M \\ \phi(a_2m) &= (a_2m + A_1M, \ a_2m + A_2M) \\ &= (1 \cdot m - a_1m + A_1M, \ A_2M) \\ &= (1,0) \in M/A_1M \oplus M/A_2M. \end{split} \tag{$a_2m = m - a_1m$}$$

Thus ϕ is surjective.

Finally, by the first isomorphism theorem,

$$M/A_1M \oplus M/A_2M \cong M/\ker \phi$$
 (ker ϕ is surjective, Claim 3)
= $M/(A_1M \cap A_2M)$ (Q2)
= $M/(A_1A_2)M$ (Claim 2).

Together with the condition to repeat in Claim 1, we have the results desired.

Question 4

Proof. \Longrightarrow : Let M be an Artinian R-module, N a submodule of M. Let $N_1 \supset N_2 \supset \ldots$ be a descending chain of submodules of N. This is a descending chain of submodules of M too so it stabilizes, therefore N is Artinian. By the 4th Isomorphism Theorem, any descending chain of M/N can be written as $M_1/N \supset M_2/N \supset \ldots$, where $M_1 \supset M_2 \supset \ldots$ is a descending chain in M. Since the descending chain M_i stabilizes, so must M_i/N , and therefore M/N is also Artinian.

Take any submodule N of M, and we know N and N/M are Artinian. Then given any descending chain in M,

$$M_1 \supset M_2 \supset \dots$$
 (1)

consider the chains

$$M_1 \cap N \supset M_2 \cap N \supset \dots$$
 (2)

and

$$M_1 + N \supset M_2 + N \supset \dots \tag{3}$$

in N and M/N respectively. We will show that (1) must stabilize. Since N and M/N are Artinian, let n be large enough such that both (2) and (3) stabilize at the n-th term, ie. $M_n \cap N = M_{n+1} \cap N = \dots$ and $M_n + N = M_{n+1} + N = \dots$ We want to show that (1) must stabilize at n too, in other words, $M_n = M_{n+1} = \dots$ It suffices to just show $M_n \subset M_{n+1}$ since we already have the other inclusion.

Let m_n be from M_n . Then

$$m_n+N\in M_n+N=M_{n+1}+N$$

$$\Longrightarrow m_n=m_{n+1}+n \qquad \text{for some } m_{n+1}\in M_{n+1} \text{ and } n\in N.$$

Now,
$$M_n \supset M_{n+1} \implies n = m_n - m_{n+1} \in M_n$$
. Therefore,
$$m_n - m_{n+1} \in M_n \cap N = M_{n+1} \cap N$$

$$\implies m_n - m_{n+1} \in M_{n+1}$$

$$\implies m_n \in M_{n+1}$$

Therefore, $M_n \subset M_{n+1}$ as desired. Since any descending chain of submodules in M stablilizes, M is Artinian.

Question 5

Proof. We consider the ring F[G] as a **left-**F[G] module. Then F[G] is naturally a F-module, hence a F-vector space, by considering the restricted action of $F \cdot 1_G$, where 1_G is the identity element in the group G.

Now since G is finite, any element in F[G] can be expressed by a n-tuple, where n = |G|, hence it is a n-dimensional vector space. Any proper inclusion of submodules (subspaces) of F[G], say $M_1 \subset M_2$ must have an increase of dimension, and thus any ascending/descending chain of submodules must stabilize due to finite dimensions. In particular, any ascending/descending chain of left ideals in F[G] (thus F[G]-submodules) must stabilize.

The proof is identical considering F[G] as a **right** F[G]-module, therefore we will have that any ascending/descending chain of **right** ideals must stabilize as well. We can then conclude that any ascending/descending chain of (**two-sided**) ideals of F[G] must also stabilize, thus F[G] must be both Artinian and Noetherian as a ring.