

S. Wehofer JUL 24 1981

AEDC-TR-81-2

c.2

NOV 03 1983

JUL 31 1984

ALCM Preflight-Test Thrust Uncertainty Analysis

B. D. Couch, W. O. Boals, and B. M. Bishop
ARO, Inc.

July 1981

Final Report for Period June — October 1979

Approved for public release; distribution unlimited.

TECHNICAL REPORTS FILE COPY

Property of U. S. Air Force
AEDC LIBRARY
F40600-81-C-0004

ARNOLD ENGINEERING DEVELOPMENT CENTER
ARNOLD AIR FORCE STATION, TENNESSEE
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE

NOTICES

When U. S. Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, or in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Qualified users may obtain copies of this report from the Defense Technical Information Center.

References to named commercial products in this report are not to be considered in any sense as an indorsement of the product by the United States Air Force or the Government.

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

APPROVAL STATEMENT

This report has been reviewed and approved.

DALE BRADLEY
Aeronautical Systems Division
Deputy for Operations

Approved for publication:

FOR THE COMMANDER

JOHN M. RAMPSY
Director of Aerospace Flight Dynamics Test
Deputy for Operations

UNCLASSIFIED

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1 REPORT NUMBER AEDC-TR-81-2	2 GOVT ACCESSION NO.	3 RECIPIENT'S CATALOG NUMBER
4 TITLE (and Subtitle) ALCM PREFLIGHT-TEST THRUST UNCERTAINTY ANALYSIS		5 TYPE OF REPORT & PERIOD COVERED Final Report, June - October 1979
7 AUTHOR(s) B. D. Couch, W. O. Boals, and B. M. Bishop, ARO, Inc., a Sverdrup Corporation Company		6 PERFORMING ORG. REPORT NUMBER
9 PERFORMING ORGANIZATION NAME AND ADDRESS Arnold Engineering Development Center Air Force Systems Command Arnold Air Force Station, Tennessee 37389		10 PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Program Element 64361F
11 CONTROLLING OFFICE NAME AND ADDRESS Arnold Engineering Development Center/DOS Air Force Systems Command Arnold Air Force Station, Tennessee 37389		12. REPORT DATE July 1981
14 MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 97
		15 SECURITY CLASS. (of this report) UNCLASSIFIED
		15a DECLASSIFICATION/DOWNGRADING SCHEDULE N/A
16 DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18 SUPPLEMENTARY NOTES Available in Defense Technical Information Center (DTIC).		
19 KEY WORDS (Continue on reverse side if necessary and identify by block number) F107 engine ALCM inlet performance thrust calculation		
20 ABSTRACT (Continue on reverse side if necessary and identify by block number) Uncertainty analyses of the F107 engine in-flight net thrust data acquisition systems and data reduction equations were conducted for both the AGM-86B (Boeing) and the AGM-109 (General Dynamics) Air-Launched Cruise Missile (ALCM) systems in preparation for the competitive flyoff between these two missile systems. An analytical model was developed to integrate the uncertainty estimates of the engine and missile inlet performance, the flight		

UNCLASSIFIED

UNCLASSIFIED

20. ABSTRACT, Concluded.

missile instrumentation and telemetering systems, and the flight data recording and reduction systems. This model was also used to calculate uncertainty estimates for each of several different net thrust equations which were used as a guide to select the primary and backup thrust calculation methods for the subsequent ALCM competitive flyoff and to predict the error limits of the measured flight data.

PREFACE

The work reported herein was conducted by the Arnold Engineering Development Center (AEDC), Air Force Systems Command (AFSC) at the request of the Directorate of Analysis and Evaluation (DOA), AEDC, for the Joint Cruise Missiles Project Office (JCMPO), Washington, D.C. The results of the research were obtained by ARO, Inc., AEDC Group (a Sverdrup Corporation Company), operating contractor for the AEDC, AFSC, Arnold Air Force Station, Tennessee, under ARO Project Number E43Y-87A. The AEDC project manager was Mr. D. Bradley. The manuscript was submitted for publication on December 30, 1980.

B. D. Couch is currently employed by Williams Research Corporation. W. O. Boals is employed by Sverdrup Technology, Inc., AEDC Group, and B. M. Bishop is employed by Sverdrup Technology, Inc., Technology Group.

CONTENTS

	<u>Page</u>
1.0 INTRODUCTION	5
2.0 DISCUSSION	5
2.1 ALCM Data Transmission, Processing, and Reduction	6
2.2 Measurement Uncertainties	6
2.2.1 Methodology	6
2.2.2 Procedural Example	7
2.3 Engine Calibrations	9
2.4 Missile Inlet Calibrations	9
2.5 Flight Test Data Uncertainties	9
2.5.1 Error Propagation Methodology	9
2.5.2 Computer Program Inputs	11
2.5.3 Computer Program Outputs	12
3.0 RESULTS	13
3.1 AGM-86B ALCM	13
3.2 AGM-109 ALCM	15
3.3 AGM-86B/AGM-109 Uncertainty Analysis Comparison	16
4.0 CONCLUSIONS AND RECOMMENDATIONS	17
REFERENCES	18

ILLUSTRATIONS

Figure

1. F107 Engine Instrumentation Station Locations	21
2. Scope of Measurement System	22
3. In-Flight Thrust Uncertainty Analysis	23
4. Precision Error	24
5. Elemental Error Treatment	25
6. Measurement Uncertainty Interval	26
7. Engine Exhaust Gas Temperature Measurement System	27
8. Engine Calibration Uncertainties	28
9. Data Uncertainty Analysis Flow Chart	34

TABLES

1. Engine Instrumentation	35
2. Flight Measurement Systems Estimated Measurement Uncertainties	38
3. Simulated Flight Conditions for NAPC Engine Calibrations	40
4. Flight Conditions Investigated for Preflight Uncertainty Estimates	41
5. EP Program Input Parameters from Math Models	42
6. Engine Characteristic Constants	43
7. EP Program Inputs from Engine and Inlet Calibration Data	44
8. AGM-86B In-Flight Engine Parameter Uncertainty Estimates	45
9. AGM-109 In-Flight Parameter Uncertainty Estimates	50
10. AGM-86B System Contributions to the Uncertainty of Engine Airflow	55
11. AGM-86B Contributions to the Uncertainty of Engine Net Thrust	56
12. AGM-109 System Contributions to the Uncertainty of Engine Airflow	59
13. AGM-109 System Contributions to the Uncertainty of Engine Net Thrust	60
14. Comparison of AGM-86B and AGM-109 Uncertainty Estimates	63

APPENDIXES

A. General Engine Performance Equations	65
B. Influence Coefficients for the AGM-86B Thrust Calculations	67
C. Influence Coefficients for the AGM-109 Thrust Calculations	73
NOMENCLATURE	95

1.0 INTRODUCTION

The AGM-86B and the AGM-109 Air-Launched Cruise Missile (ALCM) weapons systems were the competitors in a flight test program to determine which of the systems would enter final production for the U.S. Air Force. The AGM-86B is manufactured by The Boeing Company (TBC), and the AGM-109 is built by the General Dynamics Corporation (GDC). Both of the ALCM systems are powered by F107 engines manufactured by the Williams Research Corporation (WRC). The F107-WR-101 engine is used in the AGM-86B, and the F107-WR-102 engine is used in the AGM-109.

The competitive flight tests were to be conducted at the Air Force Flight Test Center (AFFTC) using the Center's data acquisition and data reduction systems. The F107 engines were calibrated at the Naval Air Propulsion Center (NAPC), and the missile inlets were calibrated at the Arnold Engineering Development Center (AEDC). Since several techniques were proposed for calculating inflight net thrust during the competitive flight test program, pretest thrust uncertainties of the different thrust calculation methods were estimated to provide the information required for selection of the primary and backup inflight thrust calculation techniques for each missile system. These estimates also quantify the thrust data error that can be expected. The methodology for the uncertainty analyses was based on Ref. 1.

2.0 DISCUSSION

Engine inflight net thrust was determined during flight performance evaluation tests of the AGM-86B and the AGM-109 ALCM systems using calculation procedures which were dependent upon measurements obtained with the missile and engine flight test measurement systems and upon separate ground test calibrations of the engines and the missile inlet air induction systems. Each flight engine was calibrated at the NAPC to determine engine airflow and gross thrust as functions of measured engine parameters. The flight instrumentation used to obtain the engine parameters during the engine calibration is listed in Table 1; the instrumentation station locations and the scope of the overall measurement systems are shown in Figs. 1 and 2, respectively.

Preflight-test missile inlet pressure recovery calibration data were obtained for each ALCM system from full-scale missile wind tunnel tests conducted in the AEDC's Propulsion Wind Tunnel (16T) (Refs. 2 and 3).

2.1 ALCM DATA ACQUISITION, TRANSMISSION, PROCESSING, AND REDUCTION

The missile data acquisition/transmission system converts the sensor signals to a pulse code modulated format and telemeters the data to ground and airborne stations (Fig. 2). Each missile data system has two Pulse Code Modulations (PCM), one used primarily for engine data and the other primarily for guidance and air frame data.

Data processing and reduction responsibilities were shared by the missile contractors and the AFFTC. Information concerning the measurement system probable errors was obtained from the missile systems contractors (Refs. 4 and 5) and the AFFTC. The flow of information required to accomplish the inflight net thrust analysis is illustrated in Fig. 3. The responsibility of the AEDC was to assimilate the measurement systems error information and to process this information using the methodology of Ref. 1 to estimate the measurement systems uncertainties.

2.2 MEASUREMENT UNCERTAINTIES

2.2.1 Methodology

The measurement uncertainty methodology utilized herein is outlined in Ref. 1, wherein measurement errors are the differences between the measurements and the true value defined by the National Bureau of Standards (NBS). Uncertainty (U) is the maximum error which might reasonably be expected. The uncertainty includes two types of measurement errors (i.e., fixed and random errors). The component of the uncertainty estimate that represents random error is called precision. Precision is derived from the standard deviation of repeated measurements as shown in Fig. 4. The fixed error component of the uncertainty estimate is called bias. Bias error levels are generally derived by engineering judgement and provide an upper limit of the fixed error. Bias is categorized into five classes: (1) large known biases, (2) small known biases, (3) large unknown biases, and small unknown biases which may have (4) unknown sign (\pm) or (5) known sign. Some bias errors can be eliminated through calibrations, proper installation techniques, and environmental control. The remaining errors representative of controlled processes were analyzed. Errors incurred from improper installation, equipment failure, telemetry dropouts, etc., were not considered.

The method for combining elemental measurement errors is to first determine the bias limit (B) and precision index (S) from the root-sum-squared (RSS) values of the elemental biases (b) and precisions (s), and then to apply the uncertainty formula (Ref. 1) to the combined bias limits and precision indices as illustrated in Fig. 5.

In the uncertainty formula

$$U = \pm (B_{\text{meas}} + t_{95} S_{\text{meas}})$$

the bias limit, B , represents an upper limit, and the precision index, S , is weighted by t_{95} , which is the 95th percentile point of the two-tailed Student's "t" distribution. (The t value is a function of the number of degrees of freedom used in calculating S . The number of degrees of freedom is the size of the sample, and when the number of samples is 30 and above, $t_{95} = 2$. Using the uncertainty formula to combine the fixed and random errors provides an uncertainty estimate that defines an interval about the measurement which encompasses the true value. A graphic example of this is shown in Fig. 6. To obtain the measurement uncertainty of a system one must accomplish the following tasks:

1. Determine the elemental bias and precision errors for the calibration, measuring, data acquisition, and data reduction processes.
2. Combine elemental bias and precision errors into system total bias and total precision error components.
3. Combine system bias and precision into an uncertainty estimate.

2.2.2 Procedural Example

Elemental error information of the AGM-86B and AGM-109 measurement systems (including data transmission and data reduction systems) was obtained from the respective ALCM contractors and AFFTC and analyzed at the AEDC. Block diagrams were made of each measurement system, and the elemental error sources were listed. A typical block diagram of the exhaust gas temperature measurement system is shown in Fig. 7. The system elemental errors shown for the EGT measurement are defined as follows:

- b_1 = bias error of the thermocouple wire from the manufacturers' chemical composition tolerances = ± 0.75 percent, full scale.
- s_1 = precision error of the thermocouple wire = 0 percent.
- b_2 = bias error of the signal conditioner from 0.1-percent nonlinearity, 0.1-percent power supply variations, and 0.3-percent cold junction temperature coefficient = ± 0.33 percent, full scale.

s_2 = precision error of the signal conditioner from nonrepeatability of redundant calibrations = ± 0.25 percent, full scale.

b_3 = bias error of pulse code modulation (PCM) system from manufacturers' specification tolerances = ± 0.25 percent, full scale.

s_3 = precision error of PCM system from manufacturers' specification tolerances = ± 0.08 percent, full scale.

b_4 = bias error of digital telemetry receiver recording onto magnetic tape = 0 percent.

s_4 = precision error of digital telemetry receiver recording onto magnetic tape = 0 percent.

b_5 = bias error of digital preprocessor system recording onto magnetic tape = 0 percent.

s_5 = precision error of digital preprocessor system recording onto magnetic tape = 0 percent.

b_6 = bias error of digital tape conversion to engineering units from linear approximation of calibration curve = ± 0.75 percent, full scale.

s_6 = precision error of digital tape conversion to engineering units = 0 percent.

The telemetered and on-ground data processing errors (b_4 , b_5 , s_4 , s_5) are assumed negligible because the data are transmitted in a digital format and the word size of the data processing equipment is greater than the transmitted data word size. Bias errors b_1 , b_2 , and b_6 cancel out because the same sensors and signal conditioners were used during the engine calibration as are being used during the flight test. Therefore, these three bias errors were not included in the system uncertainty estimate.

A measurement system uncertainty estimate is determined using the uncertainty formula (Ref. 1) and the individual bias limits and precision indices as previously outlined.

The above methodology was applied to each measurement system required for in-flight net thrust determination for both the AGM-86B and AGM-109 ALCM systems. The resultant measurement system uncertainties are presented in Table 2.

2.3 ENGINE CALIBRATIONS

The engines were calibrated at the NAPC for engine airflow and gross thrust at the simulated flight conditions shown in Table 3. The engine calibrations consisted of obtaining steady-state data at discrete power settings at each flight condition and correlating engine performance data from facility-measured and engine-measured parameters.

A data uncertainty analysis was provided by the NAPC for each engine calibrated at that facility. These analyses were based on the Ref. 1 methodology and included uncertainty estimates of engine corrected airflow, WAC, and each of the five calculated gross thrust calibration parameters, i.e., FGP, CV8M, CV8E, CV8A, and FGC.

At the time of this study, the only NAPC engine calibration data and uncertainty estimates available were from the first two -101 flight engine calibration tests (S/N's 330 and 331). Therefore, these estimates were also used for the -102 engine. The NAPC-provided engine calibration data uncertainty estimates are presented in graphical form in Fig. 8.

2.4 MISSILE INLET CALIBRATIONS

Prior to the ALCM competitive flight test program, full-scale model tests were conducted at the AEDC (Refs. 2 and 3) to assess both the AGM-86B and AGM-109 inlet performance. These tests indicate that the inlet ram recovery was predominantly a function of corrected inlet airflow for both ALCM systems. For ram recovery (ETAR), the uncertainty estimate based on measurement uncertainty estimates from Refs. 2 and 3 and the error propagation methodology outlined in Ref. 1 was calculated to be

$$U_{ETAR} = \pm 0.15 \text{ percent}$$

This value was used in the flight test uncertainty analysis for both ALCM systems.

2.5 FLIGHT TEST DATA UNCERTAINTIES

2.5.1 Error Propagation Methodology

Engine net thrust cannot be measured directly during flight. More basic parameters such as rotor speeds, fuel flow, temperatures, and pressures are directly measured, and through correlation with engine and inlet calibration data obtained in an altitude test facility, in-flight net thrust is derived. Errors which exist in the measured parameters during flight are propagated through the governing net thrust equations.

A schematic representation of the error propagation technique is presented in Fig. 9. The primary components in the analysis are the influence coefficient (IC) computer program and the flight test engine performance (EP) computer program.

The IC program is a standard AEDC computer program for error propagation utilizing the procedures and guidelines outlined in Ref. 1. The IC program handles a maximum of 40 independent and 30 dependent variables.

The IC program is operated in two modes. One mode (influence mode) is used to obtain influence coefficients indicating the level of dependence of the calculated parameter on the independent parameters used in its calculation. This information is used as an analysis tool to estimate the partial derivative of the dependent variables by determining the effect of a one-percent change in each independent variable on the selected dependent variable. The influence coefficient matrices at the five flight conditions investigated are presented in Appendixes B and C for the AGM-86B and AGM-109 thrust calculations, respectively. The second mode (error mode) is used to determine the estimated errors (uncertainty) in the calculated parameter from estimated errors of the independent parameters.

Errors in the independent parameters are accepted by the IC program in the form of symmetrical bias (B) and precision (S) errors. The IC program uses separate Taylor's series expansions to operate on the bias and precision errors to propagate the errors into the final calculated (dependent) parameter.

For this investigation, the estimated errors in measured flight parameters and engine calibration results were propagated into estimates of uncertainty of net thrust at five specific flight conditions for both ALCM systems. The propagation of bias and precision errors of parameters x_1, x_2, \dots, x_n in a calculated parameter y , i.e.,

$$y = f(x_1, x_2, \dots, x_n)$$

approximated by a Taylor's series expansion (Ref. 1) is

$$B_y = \pm \left\{ \left[(\partial y / \partial x_1) (B_{x_1}) + \left[(\partial y / \partial x_2) (B_{x_2}) \right]^2 + \dots + \left[(\partial y / \partial x_n) (B_{x_n}) \right]^2 \right] \right\}^{1/2}$$

and

$$S_y = \pm \left\{ \left[(\partial y / \partial x_1) (S_{x_1}) \right]^2 + \left[(\partial y / \partial x_2) S_{x_2} \right]^2 + \dots + \left[(\partial y / \partial x_n) (S_{x_n}) \right]^2 \right\}^{1/2}$$

where the partial derivatives $\partial y / \partial x_i$ are referred to as the uncertainty influence coefficients (estimated by exercising the IC program in the influence coefficient mode) and the products $[(\partial y / \partial x_i) (Bx_i)]$ and $[(\partial y / \partial x_i) (Sx_i)]$ are the error contributions of the system components to the bias and precision errors of y , respectively (i.e., elemental bias and precision errors). The total uncertainty in net thrust (or other selected dependent parameter) is then calculated as

$$U = \pm (B_y + t_{95} S_y)$$

where $t_{95} = 2$ because the degrees of freedom for this analysis are greater than 30 (Ref. 1).

Both modes of the IC program require a specific set of equations for each ALCM system which mathematically describes the relationships between the dependent and the independent parameters. These specific equations are provided within the EP program. The EP program is used to generate the base data set for each flight condition investigated and serves as the engine model during error propagation.

The information required by the IC and EP programs for error propagation is shown in Fig. 9. The EP program requires engine and inlet calibration test results and engine characteristic constants to supplement the basic engine performance equations. The equations used in the EP program are based on flight test equations (Refs. 6 and 7). The EP program also requires nominal values for measured engine parameters at each flight condition; these are obtained from the engine math model. The IC program, when operated in the error mode, requires estimates not only of the bias and precision errors of measured flight parameters, but also of engine and inlet calibration data.

Although the engine and inlet calibration data errors consisted of the combined bias and precision errors obtained in the ground test facility, these combined errors are treated as fixed bias errors (precision error equal to zero) for inputs into the flight test uncertainty analysis. Thus the bias error of the calibration data in the flight test analyses is equivalent to the total error of the ground test data; i.e.,

$$(B_{x_i})_{\text{Flight Test}} = (U_{x_i})_{\text{Ground Test}} = (B_{x_i} + t_{95} S_{x_i})_{\text{Ground Test}}$$

where x_i is a calibration parameter.

2.5.2 Computer Program Inputs

Flight Conditions

The flight conditions at which uncertainties in engine net thrust were investigated are listed in Table 4 for both ALCM systems. Flight condition one was chosen to provide

comparisons between the two systems while conditions two through five were chosen by the respective contractors. All flight conditions chosen are representative of conditions expected during a typical flight test mission.

Engine Math Models

Nominal values of some of the input parameters supplied to the EP program were determined for all flight conditions from the engine math models supplied by the engine manufacturer (WRC). Math models designated No. CD 22951-2 and No. CD 23700-2 (Refs. 8 and 9) were utilized for the AGM-86B and the AGM-109 systems, respectively. The math model parameters used as inputs to the EP program are listed in Table 5.

Engine Characteristic Constants

Calculations of engine performance parameters by the EP program require nominal values for certain engine characteristic constants such as combustion efficiency and turbine efficiency. A listing of the required constants and the values used is presented in Table 6.

Estimated Bias and Precision Elemental Errors

Errors in measured flight parameters and engine calibration data were estimated as described in the sections on measurement uncertainties and engine calibration. These errors are presented in Table 2 and Fig. 8 and were input to the IC program during operation in the error mode.

Engine/Inlet Calibration Results

The engine and inlet calibration results used in the EP program to calculate in-flight engine performance are presented in Table 7. The results were supplied in the form of polynomial equations; for example, corrected engine airflow (WAC) was supplied as a quadratic equation in terms of the corrected fan speed (N1C).

2.5.3 Computer Program Outputs

The computer outputs for both ALCM systems consisted of baseline data, influence coefficients, bias error, precision error, and total uncertainty estimates for each thrust calculation method (as well as free-stream velocity and engine airflow) at each flight condition.

3.0 RESULTS

The primary results of the uncertainty analysis of in-flight net thrust are presented in Tables 8 and 9 for both the AGM-86B and the AGM-109 ALCM's. Included in Tables 8 and 9 are estimates of net thrust uncertainty for each of the five proposed thrust calculation methods, i.e., FGP, CV8M, CV8E, CV8A, and FGC, at each selected flight condition (Table 4). The bias error and precision error components as well as the total uncertainty estimates of net thrust are presented. Uncertainty estimates of free-stream velocity and engine airflow are also presented in Tables 8 and 9.

3.1 AGM-86B ALCM

For the AGM-86B, the total uncertainty estimates (Table 8) using the FGP, CV8M, and FGC methods were consistently lower than those using the CV8E and CV8A methods. The total uncertainty estimates using the FGP, CV8M and FGC methods were within ± 0.3 percent agreement for all AGM-86B flight conditions, whereas the CV8E and CV8A methods deviated an additional $+1.5$ percent. The ranges of total uncertainty estimates using all five calculation methods for each of the flight conditions were as follows:

<u>AGM-86B</u> <u>Flight Condition,</u> <u>Altitude, ft/Mach No.</u>	<u>Range of U</u> <u>(All Methods),</u> <u>\pm percent</u>
1,000/0.65	5.4 to 6.6
500/0.50	5.0 to 6.3
500/0.65	3.8 to 4.6
8,000/0.55	6.4 to 8.0
8,000/0.65	4.9 to 5.6

The total uncertainty estimate of in-flight thrust, as discussed above, can be interpreted as the uncertainty of a calculated net thrust value for a single data point as measured and processed with flight test measurement and data systems. However, these data are generally obtained at near steady-state conditions over a period of several (approximately 100) seconds, and the approximately 200 single data points taken during the most stable segment (30 to 40 sec) are averaged to obtain one performance evaluation data point. Since approximately 200 single data points are averaged, the in-flight thrust precision error will be reduced by the factor $1/\sqrt{200}$. Therefore, the estimated precision error of a performance evaluation data point is greatly reduced and, in fact, becomes negligible relative to the estimated bias error.

For the AGM-86B ALCM, the estimated bias errors of in-flight net thrust (Table 8), which can be assumed to approximate the total uncertainty for a flight data point, have the following ranges for the different flight conditions:

AGM-86B	
<u>Flight Condition, Altitude, ft/Mach No.</u>	<u>Range of B, ± percent</u>
1,000/0.65	4.6 to 6.0
500/0.50	4.2 to 5.8
500/0.65	3.0 to 4.2
8,000/0.55	5.0 to 7.4
8,000/0.65	4.0 to 5.1

On the basis of estimated bias errors only, net thrust calculation by the FGP, CV8M, and FGC methods again consistently provides lower uncertainty estimates than the CV8E and CV8A methods.

Free-stream velocity total uncertainty estimates varied from ±0.8 percent at 1,000 ft/Mach 0.65 and 500 ft/Mach 0.5 to ±1.4 percent at 8,000 ft/Mach 0.55. Bias error estimates for the same conditions varied from ±0.6 percent to ±1.1 percent, respectively.

Engine airflow total uncertainty estimates varied from ±1.7 percent at 500 ft/Mach 0.65 to ±2.6 percent at 8,000 ft/Mach 0.55. Bias error estimates for the same conditions varied from ±1.5 percent to ±2.4 percent, respectively.

In addition to providing relative uncertainty information for selection of the primary and backup methods for calculating net thrust, this analysis indicates the major contributors to these uncertainties. The error contributions to the AGM-86B uncertainty estimates of engine airflow and engine net thrust as calculated by the FGP, CV8M, and FGC methods for the 1,000 ft/Mach 0.65 condition are presented in Tables 10 and 11. The major contributors to in-flight engine airflow and net thrust uncertainties are the engine calibration data uncertainties. For in-flight engine airflow the bias error of the airflow calibration coefficient (CWAC) is -1.5 percent (approximately three times as large as the next largest contributor) compared to a total airflow uncertainty estimate of ±2.0 percent. The elemental bias error of the gross thrust parameter calibration coefficient (CFGP) is +3.7 percent compared to the total net thrust uncertainty of ±5.7 percent. Similar errors are noted for net thrust calculation by the CV8M and FGC methods. The influence of the engine airflow error contribution to net thrust uncertainty should also be noted. For example, for net thrust calculation by the FGP method, the bias error of the airflow calibration coefficient is 1.8 percent. It is evident also from Tables 10 and 11

that other significant contributors to airflow and net thrust bias error estimates are the free-stream temperature, TO, static pressure, PSO, and differential pressure, DELPO. The major contributors to the precision error estimates are the exhaust nozzle total pressures P6 and P16.

3.2 AGM-109 ALCM

The primary results of the uncertainty analysis for the AGM-109 ALCM are presented in Table 9. As was noted for the AGM-86B, the total uncertainty estimates provided by the FGP, CV8M, and FGC net thrust calculation methods were consistently lower than estimates provided by the CV8E and CV8A methods. However, for the AGM-109, the estimates based on the FGC method were consistently lower than the FGP and CV8M methods. The net thrust total uncertainty estimates from the five thrust calculation procedures at each selected AGM-109 flight condition (Table 4) were as follows:

AGM-109 Flight Condition, <u>Altitude, ft/Mach No.</u>	Range of U (All Methods), <u>± percent</u>
1,000/0.65 (PLA = 0.6)	5.6 to 7.0
1,000/0.65 (PLA = 1.5)	4.7 to 5.9
1,000/0.75	3.7 to 4.9
8,000/0.65	5.8 to 6.9
8,000/0.75	4.8 to 5.9

The estimated bias errors of AGM-109 in-flight net thrust (Table 9), which, as with the AGM-86B, can be assumed to approximate the total uncertainty for a flight data point, have the following ranges for the different flight conditions:

AGM-109 Flight Condition, <u>Altitude, ft/Mach No.</u>	Range of B, <u>± percent</u>
1,000/0.65 (PLA = 0.6)	4.6 to 6.1
1,000/0.65 (PLA = 1.5)	3.8 to 5.2
1,000/0.75	3.0 to 4.3
8,000/0.65	4.8 to 6.0
8,000/0.75	4.0 to 5.2

On the basis of estimated bias errors only, net thrust calculations by the FGP, CV8M, and FGC methods are again seen to provide consistently lower uncertainty estimates than the CV8E and CV8A methods, with the FGC method consistently providing the lowest estimates.

Free-stream velocity total uncertainty estimates varied from ± 0.6 percent at 1,000 ft/Mach 0.75 to ± 0.9 percent at 8,000 ft/Mach 0.65. Bias error estimates ranged from ± 0.5 percent to ± 0.8 percent.

Engine airflow total uncertainty estimates varied from ± 1.5 percent at 1,000 ft/Mach 0.75 to ± 2.2 percent at 8,000 ft/Mach 0.75. Bias error estimates ranged from ± 1.3 percent to ± 1.9 percent.

Error contributions to the AGM-109 uncertainty estimates of engine airflow and engine net thrust as calculated by the FGP, CV8M, and FGC methods for the 1,000 ft/Mach 0.65 (PLA = 0.6) flight condition are presented in Tables 12 and 13. As was the case with the AGM-86B, the major contributors to the AGM-109 in-flight engine airflow and net thrust uncertainties are the engine calibration data uncertainties. For in-flight engine airflow, the bias error of the airflow calibration coefficient (CWAC) is -1.4 percent compared to a total airflow uncertainty of ± 1.9 percent. The elemental bias error of the gross thrust parameter calibration coefficient is +3.7 percent compared to the total net thrust uncertainty estimate of ± 6.0 percent. Similar errors are noted for the CV8M and FGC net thrust calculation methods. The AGM-109 engine airflow calibration bias error has, as for the AGM-86B, a significant effect on net thrust. For example, for the FGP thrust calculation method, the airflow calibration coefficient bias error is +2.1 percent. Other major contributors to airflow and net thrust bias error estimates are the free-stream total temperature, TO, and differential pressure, DELPO, exhaust nozzle exit static pressure, PS8NE, and exhaust nozzle total pressures, P6 and P16. The major contributors to the precision error estimates are the high-pressure rotor speed, N2, engine fuel flow, and the exhaust nozzle total pressures, P6 and P16.

3.3 AGM-86B/AGM-109 UNCERTAINTY ANALYSIS COMPARISON

A common flight condition (1,000 ft/Mach 0.65) for each of the ALCM systems was arbitrarily selected to provide a direct comparison of uncertainty estimates of engine net thrust, free-stream velocity, and engine airflow. This comparison is presented in Table 14. The uncertainty estimates for free-stream velocity and engine airflow for the two ALCM systems are within 0.1 percentage point agreement. For net thrust uncertainty, the AGM-86B estimates are 0.3 to 0.4 percentage points lower than the corresponding AGM-109 estimates for each thrust calculation method except the FGC method, where the AGM-109 method is 0.2 percentage points lower. The lowest estimated net thrust

uncertainty for the AGM-86B for this flight condition was provided by the CV8M method (± 5.4 percent); the lowest for the AGM-109 was provided by the FGC method (± 5.6 percent).

4.0 CONCLUSIONS AND RECOMMENDATIONS

Several conclusions concerning the preflight-test estimates of ALCM in-flight net thrust uncertainties were reached as a result of this study. These conclusions were instrumental in the pre-flight-test selection of the primary and backup thrust calculation methods to be used during the competitive flight test program. Some of the conclusions are presented below along with recommendations for follow-on analyses.

CONCLUSIONS

1. The results of this study supported each of the ALCM systems contractors' pretest choices of primary thrust calculation method (i.e., CV8M for the AGM-86B and FGC for the AGM-109).
2. The FGP thrust calculation was selected as the principal backup method for each ALCM contractor and was programmed into the AFFTC flight test data reduction programs.
3. The inflight engine airflow and net thrust uncertainties are predominantly comprised of bias-type errors. The major cause of the large bias errors is the engine airflow and gross thrust calibration data uncertainties. The engine airflow calibration uncertainty estimate also has a substantial influence on the net thrust calculations.
4. Only bias errors of engine instrumentation used in the calculation of net thrust which are common to both the calibration test and flight test can be neglected.
5. Based on the common flight conditions for the AGM-86B and the AGM-109, the total uncertainty estimates of free-stream velocity, engine airflow, and net thrust (using each contractor's primary method) agreed within 0.2 percentage points. Therefore, although the magnitudes of the uncertainty estimates for engine airflow (on the order of ± 2 percent) and net thrust (on the order of ± 5 percent) may be considered large, the uncertainty levels of the two systems are comparable. Also, the major contributions to these uncertainty estimates (the engine calibration uncertainties) are common to both the AGM-86B and the AGM-109 systems since all engine calibration tests were conducted at the NAPC. Although the absolute inflight engine airflow and net thrust

uncertainties may be large for each system, the relative uncertainty between the two systems is much smaller. Therefore, on the basis of this uncertainty analysis, comparison of AGM-86B and AGM-109 flight test performance evaluation data should be valid.

RECOMMENDATIONS

1. A post-flight-test net thrust uncertainty analysis should be conducted on the basis of flight test results.
2. Since the major contributors to the net thrust uncertainty estimates are the engine calibration uncertainties, emphasis should be placed on obtaining the highest possible degree of accuracy in all future engine calibrations.

REFERENCES

1. Abernethy, Dr. A. B. et al., Pratt and Whitney Aircraft, and Thompson, J. W., Jr., ARO, Inc. "Handbook - Uncertainty in Gas Turbine Measurements." AEDC-TR-73-5 (AD755356), February 1973.
2. McDill, H. E. "Inlet/Compatibility Test of the Full-Scale Boeing Air-Launched Cruise Missile (AGM-86B)." AEDC-TSR-79-P39 (AD-B050295L), July 1979.
3. Lauer, R. F., Jr. "Full-Scale AGM-109 Inlet Performance Test in the AEDC 16-ft Transonic Wind Tunnel." AEDC-TSR-79-P15 (AD-B050217L), March 1979.
4. Diamond, A. J. "Fullscale Development Master Measurement List, ALCM Program AGM-86." The Boeing Company Document No. D232-10560-1, Contract No. F33657-77-C-0226, March 30, 1977.
5. Eggen, A. M. "Full-Scale Development AGM-109 Instrumentation Summary, Revision A." General Dynamics Convair Division. May 14, 1979.
6. Boeing AV Flight Test Data Reduction Software Program Specification, Document No. 232-11878. The Boeing Company, December 1977.
7. "AGM-109 System Computer Program Development Specification, Flight Test Data Reduction Software, Part I." General Dynamics Convair Division Report No. ALCM-1168, March 1979.

8. "MQT Engine Performance Simulation Program Document No. CD22951-2." Supplement to User's Manual UM22951-2, Williams Research Corporation, September 1978.
9. "MQT Engine Performance Simulation Program Document No. CD 23700-2." Supplement to User's Manual UM 23700-2, Williams Research Corporation, September 1978.

Figure 1. F107 engine instrumentation station locations.

Figure 2. Scope of measurement system.

Figure 3. In-flight thrust uncertainty analysis.

Figure 4. Precision error.

Calibration b_{11} through b_{i1} s_{11} through s_{i1}

$$B_{CAL} = \pm \sqrt{b_{11}^2 + \dots b_{i1}^2}$$

$$S_{CAL} = \pm \sqrt{s_{11}^2 + \dots s_{i1}^2}$$

$$B_{meas} = \pm \sqrt{B_{CAL}^2 + B_{DATA\ AC}^2 + B_{DR}^2}$$

$$S_{meas} = \pm \sqrt{S_{CAL}^2 + S_{DATA\ AC}^2 + S_{DR}^2}$$

Data Acquisition b_{12} through b_{i2} s_{12} through s_{i2}

$$B_{DATA\ AC} = \pm \sqrt{b_{12}^2 + \dots b_{i2}^2}$$

$$S_{DATA\ AC} = \pm \sqrt{s_{12}^2 + \dots s_{i2}^2}$$

Data Reduction b_{13} through b_{i3} s_{13} through s_{i3}

$$B_{DR} = \pm \sqrt{b_{13}^2 + \dots b_{i3}^2}$$

$$S_{DR} = \pm \sqrt{s_{13}^2 + \dots s_{i3}^2}$$

UNCERTAINTY FORMULA

$$U = \pm (B_{meas} + t_{95} S_{meas})$$

where t_{95} is the 95th percentile of the two-tailed Student's "t" distribution.

Figure 5. Elemental error treatment.

Figure 6. Measurement uncertainty interval.

T6 Engine Exhaust Gas Temperature

Range -100 to 1900 °F

 $B = \pm 4.75^{\circ}\text{F}$ $S = \pm 4.9^{\circ}\text{F}$ $U = \pm 14.6^{\circ}\text{F}$

$b_1 = 14.25^{\circ}\text{F}$

$b_2 = 6.27^{\circ}\text{F}$

$b_3 = 4.75^{\circ}\text{F}$

$b_4 = 0$

$b_5 = 0$

$b_6 = 14.25^{\circ}\text{F}$

$s_1 = 0$

$s_2 = 4.75^{\circ}\text{F}$

$s_3 = 1.52^{\circ}\text{F}$

$s_4 = 0$

$s_5 = 0$

$s_6 = 0$

$B = \sqrt{b_1^2 + b_2^2 + b_3^2 + b_4^2 + b_5^2 + b_6^2}$

$S = \sqrt{s_1^2 + s_2^2 + s_3^2 + s_4^2 + s_5^2 + s_6^2}$

$U = \pm(B + t_{95} S)$

$B = \sqrt{(4.75)^2 + (0)^2 + (0)^2}$

$S = \sqrt{(0)^2 + (4.75)^2 + (1.75)^2 + (0)^2 + (0)^2 + (0)^2}$

$U = \pm(4.75 + 2 [4.9])$

$B = 4.75^{\circ}\text{F}$

$S = 4.9^{\circ}\text{F}$

$U = \pm 14.6^{\circ}\text{F}$

Figure 7. Engine exhaust gas temperature measurement system.

a. Corrected airflow uncertainty
Figure 8. Engine calibration uncertainties.

b. **Corrected gross thrust uncertainty**
Figure 8. Continued.

c. Gross thrust parameter uncertainty
Figure 8. Continued.

d. Velocity coefficient (mass-weighted, dual-stream) uncertainty
Figure 8. Continued.

e. Velocity coefficient (mass-weighted, single-stream) uncertainty

Figure 8. Continued.

f. Velocity coefficient (area-weighted, single-stream) uncertainty
Figure 8. Concluded.

Figure 9. Data uncertainty analysis flow chart.

Table 1. Engine Instrumentation**a. AGM-86B Development Test Instrumentation Kit (DTIK) Instrumentation**

Nomenclature	Number of Sensors	Parameter
P16(1)	2	Bypass duct discharge pressure
p3(1)	1	Compressor discharge pressure
P6(1)	3	LP turbine discharge pressure
T16(2)	2	Bypass duct discharge temperature
T6(3)	3	LP turbine discharge temperature
TCDPX(2)	1	Temperature of the compressor discharge pressure transducer
TFM(2)	1	Fuel temperature at the engine flowmeter
TTEPX(2)	1	Temperature of the LP turbine exhaust pressure transducer
WFE(4)	1	Engine fuel flowmeter
N1(4)	1	LP rotor speed
N2(4)	1	HP rotor speed

- (1) These engine-mounted transducers produce a frequency output signal at the DTIK harness connector.
- (2) These externally excited resistance temperature devices produce an output signal at the DTIK harness connector.
- (3) These three thermocouple signals are conditioned with an engine-mounted thermocouple amplifier which averages the signals and produces two 0- to 5-volt output signals (a full range and an expanded range) at the DTIK harness connector.
- (4) These frequency output signals are amplified through an engine-mounted signal conditioner which produces frequency output signals at the DTIK harness connector.

Table 1. Continued
b. AGM-109 DTIK Instrumentation

Nomenclature	Number of Sensors	Parameter
P3(1)	1	Compressor discharge pressure
T6(2)	3	LP turbine discharge temperature
TFM(3)	1	Fuel temperature at the engine flowmeter
TCDPX(3)	1	Temperature of the compressor discharge pressure transducer
WFE(4)	1	Engine fuel flowmeter
N1 (4)	1	LP rotor speed
N2 (4)	1	HP rotor speed

- (1) These engine-mounted transducers produce a millivolt output signal at the DTIK harness connector.
- (2) These three thermocouple signals are conditioned with an engine-mounted thermocouple amplifier which averages the signals and produces two 0- to 5-volt output signals (a full range and an expanded range) at the DTIK harness connector.
- (3) These externally excited resistance temperature devices produce an output signal at the DTIK harness connector.
- (4) These frequency output signals are amplified through an engine-mounted signal conditioner which produces frequency output signals at the DTIK harness connector.

Table 1. Concluded
c. AGM-109 Performance Instrumentation

Nomenclature	Number of Sensors	Parameter
P16(1)	8	Bypass duct discharge pressure
P6(1)	12	Turbine discharge pressure
PS8NE(1)	4	External nozzle exit static pressure
TCDPX(2)	1	Temperature of the compressor discharge pressure transducer

- (1) These pressures were manifolded (one for each P16, P6, PS8NE) to a GDC-furnished differential pressure transducer.
- (2) This externally-excited resistance temperature device (flight-type) produced an output signal at the harness connector.

Table 2. Flight Measurement Systems Estimated Measurement Uncertainties
a. AGM-86b

Parameter	Precision Index, S, \pm	Bias, B, \pm	Degrees of Freedom	Uncertainty, U, \pm	Measuring System Range	Remarks
Low-pressure Rotor Speed, N_1 , rpm	5.7	3.0	31	14.0	17 to 37,000	Speed errors mainly due to resolution of PCM assessed to be: $\pm 1 \text{ ct} = 3\sigma$ precision error.
High-pressure Rotor Speed, N_2 , rpm	31.3	3.2	31	66.0	94 to 64,000	
Fuel Flow, WF , gpm	0.005	0.003	31	0.013	0.125 to 1.25	
Bypass Duct Discharge Pressure, P_{16} , psia	0.047	0.010	31	0.100	0 to 36	
LP Turbine Discharge Pressure, P_6 , psia	0.047	0.010	31	0.100	0 to 36	
Compressor Discharge Pressure, P_3 , psia	0.39	0.09	31	0.87	0 to 300	
Exhaust Gas Temperature, T_6 , °F	4.9	4.75	31	14.6	-100 to 1,900	
	3.1	3.0	31	9.2	700 to 1,200	
Bypass Duct Discharge Temperature, T_{16} , °F	1.67	3.2	31	5.3	-65 to 400	Probe position error included for T_2 , PSI, and DELPO.
Inlet Air Total Temperature, T_2 , °F	0.35	2.67	31	3.4	-100 to 220	
Inlet Static Pressure, PSI, psf	1.8	15.4	31	19.0	0 to 2,000	
Inlet Total minus Static Pressure, DELPO psf	1.0	8.4	31	10.4	0 to 1,000	

Table 2. Concluded
b. AGM-109

Parameter	Precision Index, $S_i \pm$	Bias, $B_i \pm$	Degrees of Freedom	Uncertainty, $U_i \pm$	Measuring System Range	Remarks
Low-pressure Rotor Speed, N_1 , rpm	22.7	7.0	31	52.0	68 to 37,000	Speed errors mainly due to resolution of PCM assessed to be: $\pm 1 \text{ ct} = 3\sigma$ precision error. Fuel temperature and pressure transducer case temperature measurement errors are included in the flow and pressure measurement uncertainties.
High-pressure Rotor Speed, N_2 , rpm	29.0	8.9	31	67.0	89 to 64,000	
Fuel Flow, WF , gpm	0.0045	0.001	31	0.01	0.125 to 1.25	
Bypass Duct Discharge Pressure, P_{16} , psia	0.045	0.11	31	0.20	0 to 40	
LP Turbine Discharge Pressure, P_6 , psia	0.045	0.11	31	0.20	0 to 40	
Nozzle Exit Static Pressure, $PS8NE$, psia	0.0018	0.11	31	0.11	0 to 15	
Compressor Discharge Pressure, P_3 , psia	0.51	2.1	31	3.1	0 to 300	
Exhaust Gas Temperature, T_6 , °F	4.7	1.9	31	11.3	-100 to 1,900	
Engine Inlet Air Temperature, T_2 , °F	0.1	1.9	31	2.1	-323 to 215	
Inlet Cavity Static Pressure, PSI , psf	1.8	12.2	31	15.9	302 to 2,304	
Inlet Total minus Static Pressure, $DELPO$, psi	0.72	7.6	31	9.1	0 to 1,440	Probe position error included for TO , PSI , and $DELPO$.

Table 3. Simulated Flight Conditions for NAPC Engine Calibrations

Altitude, ft	Mach Number
1,000	0.50
1,000	0.65
15,000	0.65
15,000	0.80

**Table 4. Flight Conditions Investigated for Preflight
Uncertainty Estimates**

Flight Condition Designation	Vehicle System	Altitude, H, ft	Mach Number, MO	Ambient Temperature, TSO, °R	Power Lever Angle, PLA, volts	Bleed, WBL, Percent of Bypass Flow
1	AGM-86B	1,000	0.65	545	0.5	0.6
2		500	0.50	547	0.37	0.6
3		500	0.65	547	3.04	0.6
4		8,000	0.55	520	-0.50	0.6
5		8,000	0.65	520	1.96	0.6
1	AGM-109	1,000	0.65	545	0.5	0.6
2		1,000	0.65	545	1.5	0
3		1,000	0.75	545	3.5	0
4		8,000	0.65	520	1.0	0
5		8,000	0.75	520	2.65	0

NOTE: Power extraction for both systems at all flight conditions was 4.0 hp (HPX).

Table 5. EP Program Input Parameters from Math Models

Math Model Inputs	Source	
H		Flight Condition
MO		Flight Condition
PLA		Flight Condition
WBL		Flight Condition
HPX		Flight Condition
LHV		Engine Specification
Math Model Outputs (Inputs to Flight Calculation Program)		
PSO	P3	WBL
DELPO	P6	WF
TO	P16	N1
	T6	N2
	T16	

Table 6. Engine Characteristic Constants

Symbol	Value	Description
ETAB	0.99	Combustion Efficiency
ETAT	0.860	Turbine Efficiency
BLOSS	1.030	Burner Loss Ratio (P3/P4)
MFP4	1.679	High-pressure Turbine Flow Parameter
A6	27.24 in. ²	Turbine Discharge Area at Mixing Plane
A16	17.60 in. ²	Bypass Duct Area at Mixing Plane
A8	32.08 in. ²	Engine Exhaust Nozzle Exit Area
CDPQ1	-0.05114	}
CDPQ2	0.005621 lbf/lbm ft ² g	Constants in PO-PSO Correction Equation
CDPQ3	6.200 x 10 ⁻⁵ ft ² /lbf	
XNZ	1.0 g	Acceleration factor
GWT	2,100 lbm	Vehicle gross weight
XKTR	0.92	Temperature recovery factor

Table 7. EP Program Inputs from Engine and Inlet Calibration Data*

Vehicle System	Calibrated Engine or Inlet Parameters, Z	Correlation Parameters, X, Y	A0	A1	A2	B1	B2
AGM-86B	WAC	N1C	-1.185	4.666×10^{-4}	-2.593×10^{-10}	-	-
	ETAR	WAC	0.9876	2.551×10^{-3}	-1.525×10^{-4}	-	-
	FGP	N2C	6.442	-2.463×10^{-4}	2.883×10^{-9}	-	-
	CV8M	NPR	0.9758	-3.095×10^{-4}	1.385×10^{-3}	-	-
	CV8E	NPR	0.9426	2.720×10^{-3}	1.687×10^{-2}	-	-
	CV8A	NPR,RPR	0.8072	2.573×10^{-2}	2.575×10^{-3}	1.393	-8.336×10^{-2}
AGM-109	WAC	N1C	-1.185	4.666×10^{-4}	-2.593×10^{-10}	-	-
	ETAR	WAC	0.8536	2.924×10^{-2}	-1.675×10^{-3}	-	-
	FGP	N2C	6.442	-2.463×10^{-4}	2.883×10^{-9}	-	-
	CV8M	NPR	0.9758	-3.095×10^{-4}	1.385×10^{-3}	-	-
	CV8E	NPR	0.9426	2.720×10^{-3}	1.687×10^{-2}	-	-
	CV8A	NPR,RPR	0.8072	2.573×10^{-2}	2.575×10^{-3}	1.393	-8.336×10^{-2}
	FGC	NPR,RPR	-998.0	812.7	-91.82	711.6	-420.4

*General Form: $Z = A_0 + A_1X + A_2X^2 + B_1Y + B_2Y^2$

Table 8. AGM-86B In-Flight Engine Parameter Uncertainty Estimates
a. 1,000 ft/Mach No. 0.65

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	$t(B + t_{95} S)$, percent
VO	0.08	>30	0.66	0.81
WA	0.10		1.75	1.94
FN(1)	0.57		4.59	5.73
FN(2)	0.26		4.85	5.36
FN(3)	0.26		6.03	6.55
FN(4)	0.30		5.63	6.23
FN(5)	0.61	↓	4.55	5.76

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 8. Continued
b. 500 ft/Mach No. 0.5

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	$\pm(B + t_{95} S)$, percent
VO	0.13	>30	1.06	1.31
WA	0.11		1.94	2.15
FN(1)	0.53		4.19	5.25
FN(2)	0.25		4.49	4.99
FN(3)	0.25		5.80	6.30
FN(4)	0.28		5.09	5.65
FN(5)	0.53		4.20	5.27

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 8. Continued
c. 500 ft/Mach No. 0.65

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Dogrees of Freedom	Percent of Reading	$\pm(B + t_{95} S)$, percent
VO	0.08	>30	0.63	0.78
WA	0.10		1.52	1.71
FN(1)	0.49		3.41	4.38
FN(2)	0.19		3.52	3.89
FN(3)	0.19		4.20	4.59
FN(4)	0.22		3.94	4.39
FN(5)	0.37		3.01	3.76

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 8. Continued
d. 8,000 ft/Mach No. 0.55

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	$\pm(B + t_{95} S)$, percent
VO	0.14	>30	1.12	1.39
WA	0.12		2.39	2.64
FN(1)	0.56		5.25	6.37
FN(2)	0.30		6.01	6.62
FN(3)	0.30		7.39	7.99
FN(4)	0.33		6.70	7.36
FN(5)	0.69		5.12	6.51

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 8. Concluded
e. 8,000 ft/Mach No. 0.65

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	$\pm(B + t_{95} S)$, percent
VO	0.10	>30	0.81	1.01
WA	0.12		1.93	2.17
FN(1)	0.50		4.16	5.15
FN(2)	0.22		4.44	4.88
FN(3)	0.22		5.11	5.55
FN(4)	0.26		4.94	5.45
FN(5)	0.47		4.00	4.94

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 9. AGM-109 In-Flight Engine Parameter Uncertainty Estimates
a. 1,000 ft/Mach No. 0.65

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	(B + t ₉₅ S), percent
VO	0.06	>30	0.62	0.75
WA	0.11		1.66	1.89
FN(1)	0.52		4.94	5.98
FN(2)	0.53		4.97	6.04
FN(3)	0.41		6.13	6.95
FN(4)	0.37		5.73	6.48
FN(5)	0.54	↓	4.57	5.65

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 9. Continued
b. 1,000 ft/Mach No. 0.65

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	$\pm(B + t_{95} S)$, percent
VO	0.06	>30	0.62	0.75
WA	0.11		1.57	1.79
FN(1)	0.47		4.37	5.32
FN(2)	0.47		4.27	5.22
FN(3)	0.36		5.18	5.90
FN(4)	0.33		4.86	5.52
FN(5)	0.44		3.85	4.73

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 9. Continued
c. 1,000 ft/Mach No. 0.75

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	$\pm(B + t_{95} S)$, percent
VO	0.05	>30	0.51	0.62
WA	0.10		1.30	1.50
FN(1)	0.44		3.84	4.71
FN(2)	0.39		4.04	4.83
FN(3)	0.29		4.20	4.78
FN(4)	0.28		4.29	4.86
FN(5)	0.34		3.01	3.69

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 9. Continued
d. 8,000 ft/Mach No. 0.65

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	$\pm(B + t_{95} S)$, percent
VO	0.08	>30	0.77	0.92
WA	0.13		1.82	2.07
FN(1)	0.46		4.80	5.73
FN(2)	0.46		5.14	6.26
FN(3)	0.43		6.01	6.87
FN(4)	0.38		5.93	6.70
FN(5)	0.50	↓	4.80	5.79

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 9. Concluded
e. 8,000 ft/Mach No. 0.75

Parameter* Designation	Precision Index, S		Bias, B	Uncertainty, U
	Percent of Reading	Degrees of Freedom	Percent of Reading	$\pm(B + t_{95} S)$, percent
VO	0.06	>30	0.60	0.74
WA	0.12		1.93	2.17
FN(1)	0.45		4.66	5.56
FN(2)	0.50		4.28	5.27
FN(3)	0.37		5.18	5.91
FN(4)	0.34		5.11	5.79
FN(5)	0.40		3.98	4.77

*FN(1) = FGP Method
 FN(2) = CV8M Method
 FN(3) = CV8E Method
 FN(4) = CV8A Method
 FN(5) = FGC Method

Table 10. AGM-86B System Contributions to the Uncertainty of Engine Airflow

Flight Condition: 1000 ft/0.65 M/0.5 VDC		
Parameter [x_i]	Bias $\left[\frac{\partial WA}{\partial x_i} \times Bx_i \right]$	Precision $\left[\frac{\partial WA}{\partial x_i} \times Sx_i \right]$
CWAC	-1.54	-
PSO	0.56	0.07
TO	-0.47	-0.06
DELPO	0.32	0.03
CETAR	0.15	-
N1	0.01	0.02
	*Total Bias (B), <u>± 1.75 Percent</u>	**Total Precision, (S) <u>± 0.10 Percent</u>

Total Uncertainty $\underline{(B + 2S)} = \pm 1.95$ percent

$$* B = \pm \sqrt{ \sum_{i=1}^N \left[\frac{\partial WA}{\partial x_i} \times Bx_i \right]^2 }$$

$$** S = \pm \sqrt{ \sum_{i=1}^N \left[\frac{\partial WA}{\partial x_i} \times Sx_i \right]^2 }$$

where WA = engine airflow

Table 11. AGM-86B System Contributions to the Uncertainty of Engine Net Thrust

a. Gross Thrust Parameter Method [FN(1)]

Flight Condition: 1000 ft/0.65 M/0.5 VDC		
Parameter [x_i]	Bias $\left[\frac{\partial F_N(1)}{\partial x_i} \times B_{x_i} \right]$	Precision $\left[\frac{\partial F_N(1)}{\partial x_i} \times S_{x_i} \right]$
CFGP	3.70	-
TO	-1.89	-0.25
CWAC	1.78	-
PSO	0.60	0.07
CETAR	0.41	-
DELPO	0.27	-0.03
N2	0.05	-0.03
N1	-0.01	0.51
	Total Bias (B), <u>+4.59 Percent</u>	Total Precision, (S) <u>+0.57 Percent</u>

Total Uncertainty $\pm(B + 2S) = \pm5.73$ percent

Table 11. Continued
b. CV8M Method [FN(2)]

Flight Condition: 1000 ft/0.65 M/0.5 VDC		
Parameter [x_i]	Bias $\left[\frac{\partial F_N(2)}{\partial x_i} \times B_{x_i} \right]$	Precision $\left[\frac{\partial F_N(2)}{\partial x_i} \times S_{x_i} \right]$
CCV8M	4.66	-
CWAC	-1.06	-
TO	-0.57	-0.08
PSO	-0.40	-0.05
DELPO	-0.39	-0.04
T16	0.23	0.08
CETAR	0.10	0.09
T6	< 0.10	-
P6	< 0.10	0.16
P16	< 0.10	0.11
P3	< 0.10	0.07
N1	< 0.10	< 0.02
WF	-	< 0.02
	Total Bias (B), <u>+4.85</u> Percent	Total Precision (S), <u>±0.26</u> Percent

Total Uncertainty $\pm(B + 2S) = \pm5.36$ percent

Table 11. Concluded
c. Corrected Gross Thrust Method [FN(5)]

Flight Condition: 1000 ft/0.65 M/0.5 VDC		
Parameter [x_i]	Bias $\left[\frac{\partial F_N(5)}{\partial x_i} \times B_{x_i} \right]$	Precision $\left[\frac{\partial F_N(5)}{\partial x_i} \times S_{x_i} \right]$
TO	0.27	0.04
PSO	-1.84	-0.22
DELPO	-1.14	-0.12
CWAC	1.74	-
N1	-0.01	-0.03
CETAR	-0.24	-
P6	0.10	0.47
P16	0.06	0.29
CFGC	-3.58	
	Total Bias (B), <u>+4.55 Percent</u>	Total Precision (S), <u>+0.61 Percent</u>

Total Uncertainty (B + 2S) = +5.76 percent

Table 12. AGM-109 System Contributions to the Uncertainty of Engine Airflow

Flight Condition: 1000 ft/0.65 M/0.5 VDC		
Parameter [x_i]	Bias $\left[\frac{\partial WA}{\partial x_i} \times Bx_i \right]$	Precision $\left[\frac{\partial WA}{\partial x_i} \times Sx_i \right]$
CWAC	-1.45	-
TO	-0.58	-0.03
PSO	0.45	0.07
DELPO	0.28	0.03
CETAR	0.15	-
N1	0.03	0.08
	Total Bias (B), <u>+1.66</u> Percent	Total Precision (S), <u>+0.11</u> Percent

Total Uncertainty $\pm(B + 2S) = \pm1.89$ percent

Table 13. AGM-109 System Contributions to the Uncertainty of Engine Net Thrust
a. Gross Thrust Parameter Method [FN(1)]

Flight Condition: 1000 ft/0.65 M/0.5 VDC		
Parameter [x_i]	Bias $\left[\frac{\partial F_N(1)}{\partial x_i} \times B_{x_i} \right]$	Precision $\left[\frac{\partial F_N(1)}{\partial x_i} \times S_{x_i} \right]$
CFGP	3.74	-
TO	-2.39	-0.13
CWAC	2.07	-
PSO	0.47	0.07
CETAR	0.42	-
DELPO	0.24	0.02
N2	0.15	0.48
N1	-0.04	-0.12
	Total Bias (B), <u>+4.94</u> Percent	Total Precision (S), <u>+0.52</u> Percent

Total Uncertainty $\pm(B + 2S) = \pm5.98$ percent

Table 13. Continued
b. CV8M Method [FN(2)]

Flight Condition: 1000 ft/0.65 M/0.5 VDC		
Parameter [x_i]	Bias $\left[\frac{\partial F_N(2)}{\partial x_i} \times B_{x_i} \right]$	Precision $\left[\frac{\partial F_N(2)}{\partial x_i} \times S_{x_i} \right]$
CCV8M	4.68	-
PS8NE	-1.19	< 0.02
CWAC	-0.81	-
PSO	0.54	0.08
DELPO	0.41	-0.04
P6	0.35	0.14
P16	0.26	0.11
P3	0.22	0.05
TO	0.18	< 0.02
CETAR	< 0.10	-
T6	< 0.10	-0.11
N1	< 0.10	0.05
WF	-	0.48
	Total Bias (B), <u>+4.97</u> Percent	Total Precision (S), <u>+0.53</u> Percent

Total Uncertainty $\pm(B + 2S) = \pm6.04$ percent

Table 13. Concluded
c. Corrected Gross Thrust Method [FN (5)]

Flight Condition: 1000 ft/0.65 M/0.5 VDC		
Parameter [x_i]	Bias $\left[\frac{\partial F_N(5)}{\partial x_i} \times B_{x_i} \right]$	Precision $\left[\frac{\partial F_N(5)}{\partial x_i} \times S_{x_i} \right]$
CFGC	-3.62	-
CWAC	1.62	-
PS8NE	-1.53	-0.03
P6	1.09	0.44
DELPO	0.96	-0.09
P16	0.67	0.28
PSO	0.35	-0.05
TO	0.33	0.17
ETAR	-0.21	-
N1	-0.03	-0.09
	Total Bias (B), <u>+4.57</u> Percent	Total Precision (S), <u>+0.54</u> Percent

Total Uncertainty $\pm(B + 2S) = \pm5.65$ percent

Table 14. Comparison of AGM-86B and AGM-109 Uncertainty Estimates

Calculation Method	AGM-86B	AGM-109
FN(1)		
B, percent	4.6	4.9
S, percent	0.6	0.5
U, percent	5.3	6.0
FN(2)		
B, percent	4.8	5.0
S, percent	0.3	0.5
U, percent	5.4	6.0
FN(3)		
B, percent	6.0	6.1
S, percent	0.3	0.4
U, percent	6.6	7.0
FN(4)		
B, percent	5.6	5.7
S, percent	0.3	0.4
U, percent	6.2	6.5
FN(5)		
B, percent	4.6	4.6
S, percent	0.6	0.5
U, percent	5.8	5.6
VO		
B, percent	0.7	0.6
S, percent	0.1	0.1
U, percent	0.9	0.8
WA		
B, percent	1.8	1.7
S, percent	0.1	0.1
U, percent	2.0	1.9

FN(1) = FGP Method

FN(2) = CV8M Method

FN(3) = CV8E Method

FN(4) = CV8A Method

FN(5) = FGC Method

APPENDIX A

GENERAL ENGINE PERFORMANCE EQUATIONS

Engine net thrust is calculated in flight by the equation

$$FN = FG - (WA) (VO)/gc$$

Engine airflow is dependent upon engine calibration data as follows:

$$WA = (WAC) \left(\frac{P_2}{14.696} \right) \left(\sqrt{\frac{518.67}{T_2}} \right)$$

where the corrected airflow, WAC, is obtained from engine calibration data as a function of corrected low-pressure rotor (fan) speed, N1C; i.e.,

$$WAC = f(N1C)$$

Free-stream velocity, VO, is calculated from the measured free-stream total temperature, TO, static pressure, PS, and differential pressure, DELPO, where $DELPO = PO - PSO$. Functionally,

$$VO = f(PSO, DELPO, TO)$$

Five different calculation procedures were proposed for the calculation of engine gross thrust; each of these methods is dependent upon engine calibration data as described below.

Method 1 – Gross thrust parameter (FGP):

$$FGP = \left\{ FG / \left[(A8) (PAMB) \right] + 1 \right\} \quad (1/RPR)$$

where PAMB = PSO for the AGM-86B, PAMB = PS8NE for the AGM-109, and RPR is the inlet ram pressure ratio ($RPR = P_2/PAMB$).

The gross thrust parameter is obtained from the engine calibration data as a function of corrected high-pressure rotor speed, N2C; i.e.,

$$FGP = f(N2C)$$

Method 2 – Mass-weighted, dual-stream (no mixing) nozzle velocity coefficient (CV8M):

$$CV8M = FG/MV8MI$$

where MV8MI is the ideal nozzle exit momentum calculated from flight test instrumentation measurements and engine airflow. CV8M is obtained from the engine calibration data as a function of the mass-weighted nozzle pressure ratio, RPRM; i.e.,

$$CV8M = f(NPRM)$$

Method 3 — Mass-weighted, single-stream (total mixing) nozzle velocity coefficient (CV8E):

$$CV8E = FG/MV8EI$$

where MV8EI is the ideal nozzle exit momentum which is calculated from flight test instrumentation measurements and engine airflow, and CV8E is obtained from engine calibration data as a function of the mass-weighted nozzle pressure ratio, NPRM; i.e.,

$$CV8E = f(NPRM)$$

Method 4 — Area-weighted, single-stream (total mixing) nozzle velocity coefficient (CV8A):

$$CV8A = FG \cdot MV8AI$$

where MV8AI is the ideal nozzle exit momentum which is calculated from flight test instrumentation measurements and engine airflow, and CV8A is obtained from engine calibration data as a function of the area-weighted nozzle pressure ratio, NPRA, and inlet ram pressure ratio, RPR; i.e.,

$$CV8A = f(NPRA, RPR)$$

Method 5 — Corrected gross thrust (FGC):

$$FGC = (FG) (14.696/P2)$$

where FGC is obtained from engine calibration data as a function of the area-weighted nozzle pressure ratio, NPRA, and ram pressure ratio, RPR; i.e.,

$$FGC = f(NPRA, RPR)$$

Engine inlet total temperature, T2, is assumed equivalent to the in-flight measured freestream total temperature, TO; i.e.,

$$T2 = TO$$

Engine inlet total pressure, P2, is calculated in flight as a function of the measured free-stream properties, TO, PSO, DELPO, and an inlet ram recovery, ETAR, obtained from previously conducted air vehicle wind tunnel tests; i.e.,

$$P2 = f(TO, PSO, DELPO, ETAR)$$

APPENDIX B

INFLUENCE COEFFICIENTS FOR THE AGM-86B THRUST CALCULATIONS

The influence coefficient printout presents the percent change in the dependent parameter for a 1-percent increase in the independent parameter. Note that a negative sign indicates a decrease in the dependent parameter for a 1-percent increase in the independent parameter. The net thrust (FN) and gross thrust (FG) calculations by the various methods are identified by suffixes as follows:

<u>Suffix</u>	<u>Calculation Method</u>
I	FGP Method
M	CV8M Method
E	CV8E Method
A	CV8A Method

DATE 7-5-79 PROJECT NUMBER,
 AEDC, INC.
 AEDC DIVISION
 -A EVERDRUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 -ARNOLD-AIR FORCE STATION, TENN

TEST CELL. TEST DATE. 0-0-0 0 HRS
 TEST ARTICLE. AGM86-B COMP DATE. 7-9-79 1019 HRS
 TEST ARTICLE S/N. COMP RUN. OFF LINE
 PROGRAM.

TEST. 0001 DATA POINT. 101101

TEST 001 (Flt Cond 1: 1,000 ft/Mach 0.65)

INFLUENCE COEFFICIENT INDEF	ITNO	PER	VO	WA	FN1	FNM	FNL	FNA	FCI	FGM	FGE	FGA	
TTO	201	1.0100	0.4588	251	257	326	327	328	329	265	268	290	314
P80	202	1.0100	-0.4153	0.7531	0.7556	-4.1576	-1.2677	-1.2714	-1.5887	-2.2412	-0.6819	-0.8842	-1.0304
PIODSO	203	1.0100	0.4164	0.2469	0.2056	-0.3001	-0.2977	-0.2977	-0.2929	0.5514	-0.0734	-0.0693	-0.0077
CWAC1	204	1.0100	0.0000	-0.1103	0.1274	-0.0760	-0.0765	-0.0765	-0.1098	0.0015	-0.0942	-0.0944	-0.1101
CWAC2	205	1.0100	0.0000	1.1185	-1.2931	0.7706	0.7751	1.1134	-0.0159	0.9549	0.9568	1.1161	
CWAC3	206	1.0100	0.0000	-0.0160	0.0185	+0.0110	-0.0111	-0.0111	-0.0159	0.0002	-0.0137	-0.0137	-0.0160
XN1	207	1.0100	0.0000	1.0863	-1.2558	0.7484	0.7528	1.0813	-0.0153	0.9274	0.9293	1.0840	
CETAR1	208	1.0100	0.0000	0.9901	2.7093	0.6821	0.6862	0.7251	1.7987	0.8453	0.8470	0.8661	
CETAR2	209	1.0100	0.0000	0.0273	0.0746	0.0188	0.0189	0.0201	0.0495	0.0233	0.0233	0.0239	
CETAR3	210	1.0100	0.0000	-0.0174	-0.0476	-0.0120	-0.0121	-0.0128	-0.0316	-0.0146	-0.0149	-0.0153	
AB	211	1.0100	0.0000	0.0000	2.1261	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	
CFGP1	212	1.0100	0.0000	0.0000	14.8150	0.0000	0.0000	0.0000	6.8682	0.0000	0.0066	0.0000	
CFGP2	213	1.0100	0.0000	0.0000	-31.6404	0.0000	0.0000	0.0000	-14.8920	0.0000	0.0000	0.0000	
CFGP3	214	1.0100	0.0000	0.0000	20.6879	0.0000	0.0000	0.0000	9.7305	0.0000	0.0000	0.0000	
XN2	215	1.0100	0.0000	0.0000	9.9421	0.0000	0.0000	0.0000	4.6763	0.0000	0.0000	0.0000	
CCV8M1	216	1.0100	0.0000	0.0000	0.0000	2.1164	0.0000	0.0000	0.0000	0.9953	0.0000	0.0000	
CCV8M2	217	1.0100	0.0000	0.0000	0.0000	-0.0013	0.0000	0.0000	0.0000	-0.0006	0.0000	0.0000	
CCV8M3	218	1.0100	0.0000	0.0000	0.0000	0.0113	0.0000	0.0000	0.0000	0.0053	0.0000	0.0000	
P6	219	1.0100	0.0000	0.0000	0.0000	0.8596	0.5618	1.0024	0.0000	0.4043	0.3117	0.4690	
P16	220	1.0100	0.0000	0.0000	0.0000	0.6703	0.8666	0.6645	0.0000	0.3153	0.4081	0.3109	
WBL	221	1.0100	0.0000	0.0000	0.0000	-0.0061	-0.0061	-0.0072	0.0000	-0.0029	-0.0029	-0.0033	
T6	222	1.0100	0.0000	0.0000	0.0000	0.4154	0.5624	0.8367	0.0000	0.1954	0.2649	0.3915	
T16	223	1.0100	0.0000	0.0000	0.0000	0.5096	0.3821	0.2435	0.0000	0.2397	0.1800	0.1139	
ETAT	224	1.0100	0.0000	0.0000	0.0000	-0.0639	-0.0622	0.0000	0.0000	-0.0301	-0.0293	0.0000	
P3	225	1.0100	0.0000	0.0000	0.0000	0.2750	0.2672	0.0000	0.0000	0.1293	0.1250	0.0000	
BLOSS	226	1.0100	0.0000	0.0000	0.0000	-0.2726	-0.2655	0.0000	0.0000	-0.1282	-0.1250	0.0000	
MFF4	227	1.0100	0.0000	0.0000	0.0000	0.3040	0.2953	0.0000	0.0000	0.1430	0.1391	0.0000	
WF	228	1.0100	0.0000	0.0000	0.0000	0.0131	0.0168	0.0137	0.0000	0.0062	0.0079	0.0084	
CCV8E1	229	1.0100	0.0000	0.0000	0.0000	0.0000	2.0976	0.0000	0.0000	0.0000	0.9679	0.0000	
CCV8E2	230	1.0100	0.0000	0.0000	0.0000	0.0000	0.0117	0.0000	0.0000	0.0000	0.0055	0.0000	
CCV8E3	231	1.0100	0.0000	0.0000	0.0000	0.0000	0.0141	0.0000	0.0000	0.0000	0.0066	0.0000	
CCV8A1	232	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	1.9084	0.0000	0.0000	0.0000	0.8979	
CCV8A2	233	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1162	0.0000	0.0000	0.0000	0.0543	
CCV8A3	234	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0222	0.0000	0.0000	0.0000	0.0104	
CCV8A4	235	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.4364	0.0000	0.0000	0.0000	0.2042	
CCV8A5	236	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.3457	0.0000	0.0000	0.0000	-0.1618	
A6	237	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1352	0.0000	0.0000	0.0000	0.0637	
A16	238	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1357	0.0000	0.0000	0.0000	-0.0639	

DATE 7-9-79 PROJECT NUMBER,
 ARO, INC.
 AEDC DIVISION
 A SVERDRUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD-AIR FORCE STATION, TENN

TEST CELL. AGM86-B TEST DATE. 0-0-0 0 HRS TEST. 0001 DATA POINT. 102101
 TEST ARTICL#, COMP DATE. 7-9-79 1020 HRS TEST 001
 TEST ARTICLE S/N. COMP NUM. OFF LINE PROGRAM. (Fit Cond 2: 500 ft/Mach 0.50)

INFLUENCE COEFFICIENT												
INDEP	ITNO	PER	VO	WA	FNI	FNM	FNE	FNA	FGI	FGF	FGE	FGA
TIO	201	1.0100	0.4988	-1.0313	-3.8971	-1.1289	-1.1348	-1.4047	-2.4387	-0.8720	-0.8754	-1.0281
PSU	202	1.0100	-0.4455	0.8431	0.9275	-0.4926	-0.4821	-0.3615	0.6958	-0.1074	-0.1017	-0.0335
P10D50	203	1.0100	0.4471	0.1569	0.0736	-0.2301	-0.2290	-0.1087	0.3042	0.1326	0.1331	0.1445
CWAC1	204	1.0100	0.0000	-0.1080	0.0859	-0.0785	-0.0791	-0.1074	0.0018	-0.0913	-0.0916	-0.1077
CWAC2	205	1.0100	0.0000	1.1155	-0.8890	0.8108	0.8165	1.1103	-0.0188	0.9432	0.9463	1.1146
CWAC3	206	1.0100	0.0000	-0.0163	0.0130	-0.0118	-0.0119	-0.0162	0.0003	-0.0138	-0.0138	-0.0162
XN1	207	1.0100	0.0000	1.0028	-0.8629	0.7870	0.7925	1.0770	-0.0182	0.9155	0.9186	1.0799
CETAR1	208	1.0100	0.0000	0.9903	2.6337	0.7198	0.7249	0.8492	1.9202	0.8373	0.8401	0.9105
CETAR2	209	1.0100	0.0000	0.0278	0.0740	0.0202	0.0204	0.0240	0.0560	0.0235	0.0236	0.0257
CETAR3	210	1.0100	0.0000	-0.0181	-0.0482	-0.0132	-0.0133	-0.0156	-0.0351	-0.0153	-0.0154	-0.0167
A8	211	1.0100	0.0000	0.0000	1.7672	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000
CFGP1	212	1.0100	0.0000	0.0000	12.6797	-0.0000	0.0000	0.0000	7.1751	0.0000	0.0000	0.0000
CFGP2	213	1.0100	0.0000	0.0000	-27.3102	0.0000	0.0000	0.0000	-15.4541	0.0000	0.0000	0.0000
CFGP3	214	1.0100	0.0000	0.0000	18.0572	0.0000	0.0000	0.0000	10.2181	0.0000	0.0000	0.0000
XN2	215	1.0100	0.0000	0.0000	6.9848	0.0000	0.0000	0.0000	5.0441	0.0000	0.0000	0.0000
CCV8M1	216	1.0100	0.0000	0.0000	0.0000	1.7614	0.0000	0.0000	0.0000	0.9961	0.0000	0.0000
CCV8M2	217	1.0100	0.0000	0.0000	-0.0010	0.0000	0.0000	0.0000	-0.0006	0.0000	0.0000	0.0000
CCV8M3	218	1.0100	0.0000	0.0000	0.0000	0.0088	0.0000	0.0000	0.0000	0.0045	0.0000	0.0000
P6	219	1.0100	0.0000	0.0000	0.0000	0.8251	0.6453	0.9366	0.0000	0.4666	0.3650	0.5299
P16	220	1.0100	0.0000	0.0000	0.6272	0.8072	0.6100	0.0000	0.3547	0.4566	0.3452	
MBL	221	1.0100	0.0000	0.0000	0.0000	-0.0049	-0.0049	-0.0057	0.0000	-0.0027	-0.0028	-0.0032
T6	222	1.0100	0.0000	0.0000	0.0000	0.3482	0.4714	0.9228	0.0000	0.1969	0.2666	0.3920
T16	223	1.0100	0.0000	0.0000	0.0000	0.4136	0.3070	0.1990	0.0000	0.2339	0.1736	0.1126
ETAT	224	1.0100	0.0000	0.0000	0.0000	-0.0564	-0.0546	0.0000	0.0000	-0.0319	-0.0309	0.0000
P3	225	1.0100	0.0000	0.0000	0.0000	0.2415	0.2334	0.0000	0.0000	0.1366	0.1320	0.0000
BLOSS	226	1.0100	0.0000	0.0000	0.0000	-0.2393	-0.2319	0.0000	0.0000	-0.1353	-0.1312	0.0000
MFP4	227	1.0100	0.0000	0.0000	0.0000	0.2670	0.2590	0.0000	0.0000	0.1510	0.1459	0.0000
WF	228	1.0100	0.0000	0.0000	0.0000	0.0110	0.0141	0.0115	0.0000	0.0062	0.0080	0.0065
CCV8E1	229	1.0100	0.0000	0.0000	0.0000	0.0000	1.7488	0.0000	0.0000	0.9892	0.0000	
CCV8E2	230	1.0100	0.0000	0.0000	0.0000	0.0000	0.0090	0.0000	0.0000	0.0000	0.0051	0.0000
CCV8E3	231	1.0100	0.0000	0.0000	0.0000	0.0000	0.0100	0.0000	0.0000	0.0000	0.0057	0.0000
CCV8A1	232	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	1.5695	0.0000	0.0000	0.0000	0.0000
CCV8A2	233	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0085	0.0000	0.0000	0.0000	0.0000
CCV8AJ	234	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0137	0.0000	0.0000	0.0000	0.0089
CCV8A4	235	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.3205	0.0000	0.0000	0.0000	0.1813
CCV8A5	236	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.2268	0.0000	0.0000	0.0000	-0.1283
A6	237	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1179	0.0000	0.0000	0.0000	0.0067
A16	238	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1184	0.0000	0.0000	0.0000	-0.0670

DATE 7-9-79 PROJECT NUMBER.
 ARO, INC.
 AEDC DIVISION
 A SVERDRUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN

TEST CELL. TEST ARTICLE. TEST ARTICLE S/N.
 TEST CELL. TEST ARTICLE. TEST ARTICLE S/N.
 TEST DATE. 0-0-0 COMP DATE. 7-9-79
 COMP PUN. OFF LINE PROGRAM.
 1020 HRS

TEST. 0001 DATA POINT. 103101

(Flt Cond 3: 500 ft/Mach 0.65)

INFLUENCE COEFFICIENT	INDEP	ITNO	PER	VD	WA	FN1	FNH	FNE	FNA	FG1	FGW	FGE	FGA
TIO	201	1.0100	0.4988	251	257	326	327	328	329	265	468	280	314
P50	302	1.0100	-0.4153	0.7530	0.8182	-0.2488	-0.2503	-0.1993	-0.0909	0.5920	0.0239	0.0238	0.1063
PI0D80	203	1.0100	0.4164	0.2470	0.1827	-0.2031	-0.1992	-0.1771	0.4080	0.2024	0.2040	0.2166	
CWAC1	204	1.0100	0.0000	-0.0992	0.0910	-0.0856	-0.0668	-0.0985	0.0021	-0.0813	-0.0819	-0.0888	
CWAC2	205	1.0100	0.0000	1.1036	-1.0138	0.7301	0.7433	1.0969	-0.0234	0.9047	0.9116	1.1000	
CWAC3	206	1.0100	0.0000	-0.0174	0.0159	-0.0115	-0.0117	-0.0172	0.0004	-0.0142	-0.0143	-0.0173	
XH1	207	1.0100	0.0000	1.0688	-0.9818	0.7070	0.7199	1.0622	-0.0227	0.8761	0.8818	1.0653	
CETAR1	208	1.0100	0.0000	0.5911	2.2054	0.6556	0.6676	0.7579	1.6374	0.8125	0.8186	0.8670	
CETAR2	209	1.0100	0.0000	0.6302	0.6672	0.0200	0.0204	0.0233	0.0499	0.0248	0.0250	0.0265	
CETAR3	210	1.0100	0.0000	-0.0213	-0.0475	-0.0141	-0.0144	-0.0164	-0.0352	-0.0175	-0.0176	-0.0187	
A8	211	1.0100	0.0000	0.0000	1.8788	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000	
CFGP1	212	1.0100	0.0000	0.0000	10.4925	0.0000	0.0000	0.0000	5.5848	0.0000	0.0000	0.0000	
CFGP2	213	1.0100	0.0000	0.0000	-23.7926	0.0000	0.0000	0.0000	-12.3979	0.0000	0.0000	0.0000	
CFGP3	214	1.0100	0.0000	0.0000	15.9041	0.0000	0.0000	0.0000	0.4652	0.0000	0.0000	0.0000	
XH2	215	1.0100	0.0000	0.0000	8.6748	0.0000	0.0000	0.0000	4.6172	0.0000	0.0000	0.0000	
CCVBM1	216	1.0100	0.0000	0.0000	0.0000	1.8864	0.0000	0.0000	0.0000	0.9939	0.0000	0.0000	
CCVBM2	217	1.0100	0.0000	0.0000	0.0000	-0.0013	0.0000	0.0000	0.0000	-0.0007	0.0000	0.0000	
CCVBM3	218	1.0100	0.0000	0.0000	0.0000	0.0127	0.0000	0.0000	0.0000	0.0068	0.0000	0.0000	
P6	219	1.0100	0.0000	0.0000	0.0000	0.6884	0.5454	0.7622	0.0000	0.3559	0.2907	0.4056	
P16	220	1.0100	0.0000	0.0000	0.0000	0.4621	0.5983	0.4865	0.0000	0.2461	0.3190	0.2989	
NBL	221	1.0100	0.0000	0.0000	0.0000	-0.0048	-0.0049	-0.0059	0.0000	-0.0026	-0.0026	-0.0031	
T6	222	1.0100	0.0000	0.0000	0.0000	0.3825	0.5133	0.7440	0.0000	0.2037	0.2736	0.3960	
T16	223	1.0100	0.0000	0.0000	0.0000	0.4087	0.3010	0.2088	0.0000	0.2176	0.1605	0.1111	
ETAT	224	1.0100	0.0000	0.0000	0.0000	-0.0707	-0.0672	0.0000	0.0000	-0.0376	-0.0358	0.0000	
P3	225	1.0100	0.0000	0.0000	0.0000	0.2984	0.2832	0.0000	0.0000	0.1589	0.1510	0.0000	
SLOSS	226	1.0100	0.0000	0.0000	0.0000	-0.1957	-0.2813	0.0000	0.0000	-0.1575	-0.1500	0.0000	
MFP4	227	1.0100	0.0000	0.0030	0.0000	0.3292	0.3124	0.0000	0.0000	0.1753	0.1665	0.0000	
NF	228	1.0100	0.0000	0.0000	0.0000	0.0142	0.0181	0.0149	0.0000	0.0075	0.0096	0.0079	
CCVBM1	229	1.0100	0.0000	0.0000	0.0000	0.0000	1.8484	0.0000	0.0000	0.0000	0.9853	0.0000	
CCVBE2	230	1.0100	0.0000	0.0000	0.0000	0.0000	0.0117	0.0000	0.0000	0.0000	0.0062	0.0000	
CCVBE3	231	1.0100	0.0000	0.0000	0.0000	0.0000	0.0159	0.0000	0.0000	0.0000	0.0085	0.0000	
CCVBA1	232	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	1.6597	0.0000	0.0000	0.0000	0.8833	
CCVBA2	233	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1152	0.0000	0.0000	0.0000	0.0613	
CCVBA3	234	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0251	0.0000	0.0000	0.0000	0.0134	
CCVBA4	235	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.3791	0.0000	0.0000	0.0000	0.2018	
CCVBA5	236	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.3001	0.0000	0.0000	0.0000	-0.1597	
A6	237	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1414	0.0000	0.0000	0.0000	0.0752	
A16	238	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1418	0.0000	0.0000	0.0000	-0.0755	

DATE 7- 9-79 PROJECT NUMBER.
 ARO, INC.
 AEDC DIVISION
 A SVERDRUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN

TEST CELL. TEST ARTICLE. TEST ARTICLE S/N. AGMB6-B

TEST DATE. 0-0-0 COMP DATE, 7-9-79 COMP RUN, OFF LINE PROGRAM.

0 HRS 1020 HRS

TEST. 0001 TEST 001 (Flt Cond 4: 8,000 ft/Mach 0.55)

DATA POINT. 104101

INFLUENCE COEFFICIENT INDEP	ITNO	PER	VO	WA	FNI	FNM	FNE	FNA	FCI	FCP	FGE	FGA
TIO	201	1.0100	0.4988	-1.0309	-1.9619	-1.1587	-1.1646	-1.4496	-2.3783	-0.8716	-0.8749	-1.0282
P50	202	1.0100	-0.4360	0.8143	0.8892	-0.4694	-0.4604	-0.3350	0.6514	-0.0794	-0.0747	-0.0072
P10D60	203	1.0100	0.4374	0.1857	0.1119	-0.2438	-0.2425	-0.2217	0.3406	0.1570	0.1575	0.1688
CHAC1	204	1.0100	0.0000	-0.1073	0.0956	-0.0765	-0.0771	-0.1069	0.0016	-0.0907	-0.0910	-0.1071
CHAC2	205	1.0100	0.0000	1.1146	-0.9935	0.7946	0.8004	1.1102	-0.0187	0.9425	0.9455	1.1122
CHAC3	206	1.0100	0.0000	-0.0164	0.0146	-0.0117	-0.0117	-0.0163	0.0003	-0.0130	-0.0139	-0.0163
XN1	207	1.0100	0.0000	1.0818	-0.9642	0.7712	0.7769	1.0775	-0.0182	0.9147	0.9177	1.0795
CETAR1	208	1.0100	0.0000	0.9903	2.6070	0.7060	0.7112	0.8200	1.8595	0.8373	0.8401	0.8987
CETAR2	209	1.0100	0.0000	0.0280	0.0737	0.0200	0.0201	0.0233	0.0526	0.0237	0.0238	0.0255
CETAR3	210	1.0100	-0.0000	-0.0183	-0.0483	-0.0131	-0.0132	-0.0153	-0.0344	-0.0155	-0.0155	-0.0167
A8	211	1.0100	0.0000	0.0000	1.6601	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000
CCVGP1	212	1.0100	0.0000	0.0000	12.9022	0.0000	0.0000	0.0000	6.9363	0.0000	0.0000	0.0000
CCVGP2	213	1.0100	0.0000	0.0000	-27.8573	0.0000	0.0000	0.0000	-14.9763	0.0000	0.0000	0.0000
CFGP3	214	1.0100	0.0000	0.0000	18.4477	0.0000	0.0000	0.0000	9.9176	0.0000	0.0000	0.0000
XN2	215	1.0100	0.0000	0.0000	9.2225	0.0000	0.0000	0.0000	4.9581	0.0000	0.0000	0.0000
CCVBM1	216	1.0100	0.0000	0.0000	0.0000	1.8506	0.0000	0.0000	0.0000	0.9957	0.0000	-0.0000
CCVBM2	217	1.0100	0.0000	0.0000	0.0000	-0.0011	0.0000	0.0000	0.0000	-0.0006	0.0000	0.0000
CCVBM3	218	1.0100	0.0000	0.0000	0.0000	0.0090	0.0000	0.0000	0.0000	0.0049	0.0000	0.0000
P6	219	1.0100	0.0000	0.0000	0.0000	0.8146	0.6367	0.9282	0.0000	0.4383	0.3427	0.4995
P10	220	1.0100	0.0000	0.0000	0.0000	0.6173	0.7965	0.6067	0.0000	0.3321	0.4287	0.3265
NBL	221	1.0100	0.0000	0.0000	0.0000	-0.0052	-0.0052	-0.0061	0.0000	-0.0020	-0.0020	-0.0033
T6	222	1.0100	-0.0000	0.0000	0.0000	0.3866	0.4946	0.7287	0.0000	0.1973	0.2662	0.3921
T16	223	1.0100	0.0000	0.0000	0.0000	0.4343	0.3264	0.2092	0.0000	0.2337	0.1757	0.1126
EIA1	224	1.0100	0.0000	0.0000	0.0000	-0.0602	-0.0583	0.0000	0.0000	-0.0324	-0.0314	0.0000
PJ	225	1.0100	0.0000	0.0000	0.0000	0.2543	0.2460	0.0000	0.0000	0.1368	0.1324	0.0000
BLDS6	226	1.0100	0.0000	0.0000	0.0000	-0.2520	-0.2444	0.0000	0.0000	-0.1356	-0.1316	0.0040
NFF4	227	1.0100	0.0000	0.0000	0.0000	0.2812	0.2721	0.0000	0.0000	0.1513	0.1464	0.0000
WF	228	1.0100	0.0000	0.0000	0.0000	0.0111	0.0142	0.0116	0.0000	0.0060	0.0076	0.0063
CCVBE1	229	1.0100	0.0000	0.0000	0.0000	0.0000	1.0368	0.0000	0.0000	0.0000	0.9886	0.0000
CCVBE2	230	1.0100	0.0000	0.0000	0.0000	0.0000	0.0098	0.0000	0.0000	0.0000	0.0053	0.0000
CCVBE3	231	1.0100	0.0000	0.0000	0.0000	0.0000	0.0113	0.0000	0.0000	0.0000	0.0061	0.0000
CCVBA1	232	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	1.6508	0.0000	0.0000	0.0000	0.8883
CCVBA2	233	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0965	0.0000	0.0000	0.0000	0.0519
CCVRAJ	234	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0177	0.0000	0.0000	0.0000	0.0095
CCVRA4	235	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.3490	0.0000	0.0000	0.0000	0.1878
CCVRA5	236	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.2557	0.0000	0.0000	0.0000	-0.1376
A6	237	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1241	0.0000	0.0000	0.0000	0.0668
A1b	238	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1245	0.0000	0.0000	0.0000	-0.0670

DATE 7-9-79 PROJECT NUMBER,
 ABC, INC.
 AEDC DIVISION
 A EVERDUR CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN

TEST CELL. AGM86-B TEST DATE. 0-0-0 0 HRS TEST, 0001 DATA POINT, 105101
 TEST ARTICLE. COMP DATE. 7-9-79 1021 HRS TEST 001 (Flt Cond 5: 8,000 ft/Mach 0.65)
 TEST ARTICLE S/N.

INFLUENCE COEFFICIENT			INDEP	ITNO	PER	VO	WA	FNI	FNM	FNE	FNA	FGI	FCM	FGE	FGA
TIO	201	1.0100	0.4988	251	257	326	327	326	328	329	365	268	290	314	
P80	202	1.0100	-0.4153	0.7530	0.6199	-3.6715	-1.0989	-1.1117	-1.4399	-2.2209	-0.8303	-0.8434	-1.0197		
PTOPSD	203	1.0100	0.4164	0.2470	0.1810	-0.2250	-0.2273	-0.0662	0.5958	0.0133	0.0318	0.1149			
CWAC1	204	1.0100	0.0000	-0.0980	0.0880	-0.0647	-0.0659	-0.1912	-0.1674	0.4042	0.2018	0.2034	0.2167		
CWAC2	205	1.0100	0.0000	1.1020	-0.9906	0.7275	0.7410	1.0960	-0.0243	0.9004	0.9075	0.9088			
CWAC3	206	1.0100	0.0000	-0.0175	0.0157	-0.0116	-0.0118	-0.0174	0.0004	-0.0143	-0.0144	-0.0175			
XN1	207	1.0100	0.0000	1.0668	-0.9589	0.7043	0.7174	1.0610	-0.0235	0.8716	0.8705	1.0637			
CETAR1	208	1.0100	0.0000	0.9913	2.1638	0.6544	0.6666	0.7615	1.6224	0.8099	0.8163	0.8676			
CETAR2	209	1.0100	0.0000	0.0306	0.0667	0.0202	0.0206	0.0236	0.0500	0.0250	0.0252	0.0268			
CETAR3	210	1.0100	0.0000	-0.0218	-0.0476	-0.0144	-0.0147	-0.0169	-0.0357	-0.0176	-0.0180	-0.0192			
A8	211	1.0100	0.0000	0.0000	1.8579	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.0000			
CFGPI	212	1.0100	0.0000	0.0000	10.1246	0.0000	0.0000	0.0000	5.4517	0.0000	0.0000	0.0000			
CFGP2	213	1.0100	0.0000	0.0000	-22.6086	0.0000	0.0000	0.0000	-12.1691	0.0000	0.0000	0.0000			
CFGP3	214	1.0100	0.0000	0.0000	15.5208	0.0000	0.0000	0.0000	8.3541	0.0000	0.0000	0.0000			
XN2	215	1.0100	0.0000	0.0000	0.5402	0.0000	0.0000	0.0000	4.6226	0.0000	0.0000	0.0000			
CCV8M1	216	1.0100	0.0000	0.0000	0.0000	1.8457	0.0000	0.0000	0.0000	0.9938	0.0000	0.0000			
CCV8M2	217	1.0100	0.0000	0.0000	0.0000	-0.0013	0.0000	0.0000	0.0000	-0.0007	0.0000	0.0000			
CCV8M3	218	1.0100	0.0000	0.0000	0.0000	0.0129	0.0000	0.0000	0.0000	0.0069	0.0000	0.0000			
P6	219	1.0100	0.0000	0.0000	0.0000	0.6524	0.5352	0.7427	0.0000	0.3513	0.2984	0.3948			
P16	220	1.0100	0.0000	0.0000	0.0000	0.4456	0.5772	0.4726	0.0000	0.2399	0.3110	0.2544			
WBL	221	1.0100	0.0000	0.0000	0.0000	-0.0047	-0.0048	-0.0057	0.0000	-0.0025	-0.0026	-0.0031			
T6	222	1.0100	0.0000	0.0000	0.0000	0.3800	0.5077	0.7361	0.0000	0.2046	0.2736	0.3962			
T16	223	1.0100	0.0000	0.0000	0.0000	0.4002	0.2952	0.2056	0.0000	0.2154	0.1590	0.1107			
ETAT	224	1.0100	0.0000	0.0000	0.0000	-0.0721	-0.0685	0.0000	0.0000	-0.0388	-0.0369	0.6000			
P3	225	1.0100	0.0000	0.0000	0.0000	0.2285	0.2171	0.0000	0.0000	0.1238	0.1170	0.0000			
BLOSS	226	1.0100	0.0000	0.0000	0.0000	-0.2973	-0.2829	0.0000	0.0000	-0.1600	-0.1524	0.2500			
MFP4	227	1.0100	0.0000	0.0000	0.0000	0.2613	0.2482	0.0000	0.0000	0.1407	0.1337	0.6000			
WF	228	1.0100	0.0000	0.0000	0.0000	0.0135	0.0171	0.0142	0.0000	0.0072	0.0092	0.2076			
CCV8E1	229	1.0100	0.0000	0.0000	0.0000	0.0000	1.8281	0.0000	0.0000	0.0000	0.9850	0.0000			
CCV8E2	230	1.0100	0.0000	0.0000	0.0000	0.0000	0.0117	0.0000	0.0000	0.0000	0.0063	0.0000			
CCV8E3	231	1.0100	0.0000	0.0000	0.0000	0.0000	0.0161	0.0000	0.0000	0.0000	0.0067	0.0000			
CCV8A1	232	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	1.6389	0.0000	0.0000	0.0000	0.0000			
CCV8A2	233	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1154	0.0000	0.0000	0.0000	0.0000			
CCV8A3	234	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0255	0.0000	0.0000	0.0000	0.0000			
CCV8A4	235	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.3743	0.0000	0.0000	0.0000	0.0000			
CCV8A5	236	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.2963	0.0000	0.0000	0.0000	-0.1595			
A6	237	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1415	0.0000	0.0000	0.0000	0.0000			
A16	238	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1420	0.0000	0.0000	0.0000	0.0000			

APPENDIX C

INFLUENCE COEFFICIENTS FOR THE AGM-109 THRUST CALCULATIONS

The influence coefficient printout presents the percent change in the dependent parameter for a 1-percent increase in the independent parameter. Note that a negative sign indicates a decrease in the dependent parameter for a 1-percent increase in the independent parameter. The net thrust (FG) and gross thrust (FG) calculations by the various methods are identified by suffixes as follows:

<u>Suffix</u>	<u>Calculation Method</u>
I	FGP Method
M	CV8M Method
E	CV8E Method
A	CV8A Method
C	FGC Method

DATE 7-9-79 PROJECT NUMBER.

APD, INC.

AEDC DIVISION

A STANDUP-CORPORATION COMPANY

ENGINE TEST FACILITY

ARNOLD AIR FORCE STATION, TENN.

TEST CELL, TEST DATE, 0-0-0
 TEST ARTICLE, AGM-109 COMP DATE, 7-9-79 0 HRS
 TEST ARTICLE S/N, PROGRAM, TEST 001 TEST 001 DATA POINT, 201201
 (Flt Cond 1: 1,000 ft/Mach 0.65)

	INFLUENCE COEFFICIENT	INDEP	1THO	PER	V0	VA	FNL	FNM	FNE	FNA	FNC	FCI	FCM	FGE
			251		-257	326	327	326	326	329	330	-265	-368	290
CDPQ1	194	1.0100	-0.0293		-0.0000	0.0026	0.0333	0.0331	0.0334	0.0333	0.0333	-0.0144	0.0000	0.0000
CDPQ2	195	1.0100	-0.0099		-0.0000	0.0009	0.0112	0.0111	0.0112	0.0112	0.0112	-0.0048	0.0000	0.0000
CDPQ3	196	1.0100	0.0244		-0.0000	-0.0021	-0.0277	-0.0276	-0.0278	-0.0277	0.0120	-0.0000	-0.0000	-0.0000
XN2	197	1.0100	-0.0099		-0.0000	0.0009	0.0112	0.0111	0.0112	0.0112	0.0112	-0.0048	0.0000	0.0000
GNT	198	1.0100	-0.0099		0.0000	0.0009	0.0112	0.0111	0.0112	0.0112	0.0112	-0.0048	0.0000	0.0000
KTR	199	1.0100	-0.0160		-0.0000	0.0410	0.0409	0.0406	0.0410	0.0409	0.0409	-0.0000	0.0000	0.0000
TTU	201	1.0100	0.4988		-0.3994	-4.0910	-0.3120	-0.5635	-1.1180	0.5640	-2.1831	-0.8150	-0.5320	
P8Q	202	1.0100	-0.4142		-0.7466	0.7835	0.8924	0.9188	0.9984	0.5977	0.5417	-0.5330	-0.6047	
PTOD80	203	1.0100	0.4497		0.2534	0.2147	-0.3703	-0.3579	-0.3352	-0.0681	0.4753	0.2013	0.2053	
CWAC1	204	1.0100	-0.0000		-0.1033	0.1484	-0.0580	-0.0646	-0.0688	0.1152	0.0145	-0.0821	-0.0832	
CWAC2	205	1.0100	0.0000		1.0438	-1.5114	0.5858	0.6218	0.9994	-1.1639	-0.1516	0.8294	0.8456	
CWAC3	206	1.0100	-0.0000		-0.0150	-0.0216	-0.0084	-0.0089	-0.0143	-0.0167	-0.0021	-0.0119	-0.0122	
XN1	207	1.0100	0.0000		1.0138	-1.4677	0.5690	0.6040	0.9707	-1.1305	-0.1471	0.8056	0.8213	
CETAR1	208	1.0100	-0.0000		-0.8756	2.4419	0.4908	0.5213	0.6128	-1.2633	-1.4084	0.8955	0.7092	
CETAR2	209	1.0100	0.0000		0.3198	0.8919	0.1793	0.1906	0.2248	-0.4509	0.5875	0.2540	0.2591	
CETAR3	210	1.0100	-0.0000		-0.1854	-0.8450	-0.1036	-0.1165	-0.1378	-0.2697	-0.3590	-0.1372	-0.1584	
A8	211	1.0100	0.0000		0.0000	2.1375	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	
CFGP1	212	1.0100	0.0000		-0.0000	-14.9548	0.0000	0.0000	0.0000	0.0000	6.9966	-0.0000	0.0000	
CFGP2	213	1.0100	0.0000		0.0000	-31.8600	0.0000	0.0000	0.0000	0.0000	-14.9056	0.0000	0.0000	
CFGP3	214	1.0100	0.0000		0.0000	20.8314	0.0000	0.0000	0.0000	0.0000	9.7459	0.0000	0.0000	
XN2	215	1.0100	0.0000		0.0000	10.0111	0.0000	0.0000	0.0000	0.0000	4.6837	0.0000	0.0000	
CCV8M1	216	1.0100	-0.0000		-0.0000	-0.0000	-2.1263	0.0000	0.0000	0.0000	0.0000	-0.9251	0.0000	
CCV8M2	217	1.0100	0.0000		0.0000	0.0000	-0.0013	0.0000	0.0000	0.0000	0.0000	-0.0006	0.0000	
CCV8M1	218	1.0100	-0.0000		-0.0000	-0.0000	0.0113	0.0000	0.0000	-0.0000	-0.0000	-0.0053	-0.0000	
P6	219	1.0100	0.0000		0.0000	0.0000	0.8371	0.6429	0.9794	2.3960	0.0000	0.3919	0.3020	
P16	220	1.0100	0.0000		0.0000	0.0000	0.6562	0.8572	0.6649	-1.7194	0.0000	-0.3072	0.4027	
T6	222	1.0100	0.0000		0.0000	0.0000	-0.3468	0.0105	0.4807	0.0000	0.0000	-0.1623	0.0049	
ETAT	224	1.0100	0.0000		0.0000	0.0000	0.0393	0.0129	0.0512	-0.0000	0.0000	-0.0184	0.0060	
P3	225	1.0100	0.0000		0.0000	0.0000	-0.1702	-0.0576	-0.2226	0.0000	0.0000	-0.0797	-0.0270	
BL05B	226	1.0100	-0.0000		0.0000	0.0000	0.1679	0.0542	0.2178	0.0000	0.0000	-0.0786	0.0258	
MFP4	227	1.0100	0.0000		0.0000	0.0000	-0.1883	-0.0637	-0.2463	0.0000	0.0000	-0.0881	-0.0299	
WF	228	1.0100	-0.0000		0.0000	0.0000	0.6281	0.4658	0.3075	0.0000	0.0000	-0.2940	0.2188	
CCV8E1	229	1.0100	0.0000		0.0000	0.0000	0.0000	2.1030	0.0000	0.0000	0.0000	0.0000	0.9479	
CCV8E2	230	1.0100	0.0000		0.0000	0.0000	0.0000	-0.0117	0.0000	-0.0000	-0.0000	-0.0000	0.0055	
CCV8E3	231	1.0100	0.0000		0.0000	0.0000	0.0000	0.0141	0.0000	0.0000	0.0000	0.0000	0.0066	
CCV8A1	232	1.0100	-0.0000		0.0000	0.0000	0.0000	0.0000	1.9046	-0.0000	-0.0000	-0.0000	0.0000	
CCV8A2	233	1.0100	0.0000		0.0000	0.0000	0.0000	0.0000	0.1159	0.0000	0.0000	0.0000	0.0000	

DATE 7- 9-79 PROJECT NUMBER,
 AEDC, INC.
 AEDC DIVISION
 A-SVERDRUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD-AIR FORCE STATION, TENN

TEST CELL.	TEST ARTICLE.	TEST ARTICLE S/N.	TEST DATE. 0-0-0	0 HRS	TEST. 0001	DATA POINT. 201201
	AGM-109		COMP DATE. 7-9-79	4022 HRS	TEST 001	(Flt Cond 1, Cont.)
			COMP RUN, OFF LINE			
			PROGRAM			

INFLUENCE COEFFICIENTS

INDEX	ITNO	PER	FCA	FCC
			314	335
CDPG1	194	1.0100	-0.0000	-0.0000
CDPG2	195	1.0100	-0.0000	-0.0000
CDPG3	196	1.0100	-0.0000	0.0000
XN1	197	1.0100	0.0000	-0.0000
GWT	198	1.0100	0.0000	0.0000
XTR	199	1.0100	0.0000	-0.0000
TTO	201	1.0100	-0.7920	-0.0046
PZO	202	1.0100	-0.6421	-0.4050
PT0D80	203	1.0100	0.2183	-0.0322
CWAC1	204	1.0100	-0.1042	-0.0009
CWAC2	205	1.0100	1.0230	0.0097
CWAC3	206	1.0100	-0.0147	-0.0001
XN1	207	1.0100	0.9937	0.0094
CETAR1	208	1.0100	0.7528	-0.1262
CETAR2	209	1.0100	0.3754	-0.0412
CETAR3	210	1.0100	-0.1685	-0.0224
A8	211	1.0100	0.0000	0.0000
CFGP1	212	1.0100	0.0000	-0.0000
CFGP2	213	1.0100	0.0000	0.0000
CFGP3	214	1.0100	0.0000	-0.0000
XN2	215	1.0100	0.0000	0.0000
CCV8M1	216	1.0100	-0.0000	-0.0000
CCV8M2	217	1.0100	0.0000	0.0000
CCV8M3	218	1.0100	-0.0000	-0.0000
P6	219	1.0100	0.4580	1.2160
R16	220	1.0100	-0.3102	-0.4054
T6	222	1.0100	0.2248	0.0000
ETAT	224	1.0100	-0.0240	-0.0000
P3	225	1.0100	-0.1041	0.0000
BLOSA	226	1.0100	-0.1018	0.0000
MFP4	227	1.0100	-0.1152	0.0000
MF	228	1.0100	0.1438	0.0000
CCV8E1	229	1.0100	0.0000	0.0000
CCV8E2	230	1.0100	0.0000	0.0000
CCV8E3	231	1.0100	0.0000	0.0000
CCV8A1	232	1.0100	0.8905	-0.0000
CCV8A2	233	1.0100	0.0542	0.0000

DATE 7-9-79 PROJECT NUMBER.
ARDO INC
AEDC DIVISION
AERODRUD CORPORATION COMPANY
ENGINE TEST FACILITY
ARDO AIR FORCE STATION, TENN

TEST CELL-- AGM-109 TEST DATE, 0-0-0 0 HRS TEST. 0001 DATA POINT. 201201
 TEST ARTICLE. COMP DATE, 7-9-79 1029 HRS TEST 001 (Flt Cond 1, Cont.)
 TEST ARTICLE S/N. COMP RUN. OFF LINE PROGRAM,

INFLUENCE COEFFICIENT

INDEP	ITNO	PER	VO	WA	FNI	FNM	FNE	FNA	FNC	FG1	FGM	FGE
CCV8A3	234	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CCV8A4	235	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
CCV8A5	236	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
A6	237	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
A16	238	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
P88NE	239	1.0100	0.0000	0.0000	0.0000	-1.5237	-1.5114	-1.4426	0.0783	0.0000	0.0000	0.0000
QLHV	243	1.0100	0.0000	0.0000	0.0000	0.6351	0.4635	0.3033	0.0000	0.0000	0.2973	0.2177
E7AB	244	1.0100	0.0000	0.0000	-0.0000	0.6351	0.4635	-0.3033	0.0000	0.0000	0.2973	0.2177
CHPXJ	245	1.0100	0.0000	0.0000	0.0000	-0.0013	-0.0009	-0.0006	0.0000	0.0000	0.0006	-0.0004
CFGC1	246	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.8912	0.0000	0.0000	0.0000
CFGC2	247	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	7.6050	0.0000	0.0006	0.0000
CFGC3	248	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	-0.0000	-1.6405	0.0000	0.0000	0.0000
CFGC4	249	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	4.5147	0.0000	0.0000	0.0000
CFGC5	250	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-3.4530	0.0000	0.0000	0.0000

DATE 7- 9-79 PROJECT NUMBER.
AEDC, INC.
AEDC DIVISION
A. STERNDREIER CORPORATION COMPANY
ENGINE TEST FACILITY
ARNOLD AIR FORCE STATION, TENN.

TEST CELL. TEST ARTICLE. TEST ARTICLE S/N. TEST DATE. 0- 0- 0 COMP DATE. 7- 9-79 COMP RUN. OFF LINE PROGRAM. 0 HRS 1029 HRS TEST. 0001 TEST 001 DATA POINT. 201201 (Flt Cond 1, Concl.)

-INFLUENCE COEFFICIENT-

INDEP	ITNO	PER	FGA	FCC
			314	335
CCV8A3	234	1.0100	0.0104	0.0000
CCV8A4	235	1.0100	-0.1980	0.0000
CCV8A5	236	1.0100	-0.1541	0.0000
A6	237	1.0100	0.0664	-0.0366
A16	238	1.0100	-0.0667	0.0367
P80NE	239	1.0400	-0.6756	-0.9197
OLHV	243	1.0100	0.1418	0.0000
STAB	244	1.0400	-0.1418	0.0000
CNPX1	245	1.0100	-0.0003	0.0000
CPGC1	246	1.0400	-0.0000	-2.2910
CPGC2	247	1.0100	0.0000	3.5622
CPGC3	248	1.0100	0.0000	-0.7684
CPGC4	249	1.0100	0.0000	2.1147
CPGC5	250	-1.0100	-0.0000	-1.6174

DATE 7-9-79 PROJECT NUMBER,
 ABO, INC.
 AEDC DIVISION
 AEROMARINE CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN.

TEST CELL. --- TEST ARTICLE. AGM-109 TEST DATE. 0-0-0 COMP DATE. 7-9-79 TEST 001 DATA POINT. 702201
 TEST ARTICLE S/N. --- COMP RUN. OFF LINE HRS 1023 HRS
 PROGRAM. --- TEST 001
 (Flt Cond 2: 1,000 ft/Mach 0.65)

INFLUENCE COEFFICIENT		INDEP	ITNO	PER	VO	NA	FN1	FNM	FNE	FNA	FNC	FG1	FGH	FGE
			251	-	267	-	326	327	328	329	330	265	-368	-290
CDPQ1	194	1.0100	-0.0293	-	0.0000	0.0034	0.0297	0.0296	0.0297	0.0298	-0.0131	-0.0000	-0.0000	
CDPQ2	195	1.0100	-0.0099	-	0.0000	0.0011	0.0100	0.0098	0.0100	0.0100	-0.0044	0.0000	0.0000	
CDPQ3	196	1.0100	0.0244	-	0.0000	-0.0026	-0.0248	-0.0246	-0.0247	-0.0248	0.0109	-0.0000	-0.0000	
XN2	197	1.0100	-0.0089	-	0.0000	0.0011	0.0100	0.0099	0.0100	0.0100	-0.0044	-0.0000	-0.0000	
GWT	198	1.0100	-0.0099	-	0.0000	0.0011	0.0100	0.0099	0.0100	0.0100	-0.0044	0.0000	0.0000	
KIR	199	1.0100	-0.0360	-	0.0000	-0.0365	0.0362	0.0363	0.0365	0.0365	-0.0000	0.0000	0.0000	
TIO	201	1.0100	0.4998	-	-0.9853	-3.8409	-0.2981	-0.5374	-1.0635	0.4995	-2.1547	-0.3955	-0.5143	
PSD	202	1.0100	-0.4143	-	0.7466	-0.7849	0.8308	0.8588	0.9572	-0.3661	0.5604	0.5782	0.5918	
PT0D80	203	1.0100	0.4497	-	0.2534	0.2022	-0.3192	-0.3060	-0.2750	-0.7188	0.4550	0.1963	0.2013	
CHAC1	204	1.0100	-	0.0000	-0.0965	-0.1328	-0.0522	-0.0567	-0.0924	-0.0979	-0.0174	-0.0168	-0.0167	
CHAC2	205	1.0100	-	0.0000	0.0149	-1.4082	0.5543	0.5954	0.9730	-1.0302	-0.1884	0.7863	0.8060	
CHAC3	206	1.0100	-	0.0000	-0.0153	0.0209	-0.0003	-0.0082	-0.0145	-0.0154	-0.0027	-0.0118	-0.0121	
XN1	207	1.0100	-	0.0000	0.9846	-1.3659	0.5378	0.5776	0.9439	-0.9994	-0.1826	0.7628	0.7810	
CETAR1	208	1.0100	-	0.0000	-0.8788	-2.2243	0.4795	0.5152	0.6281	-0.9330	1.5469	0.6808	0.6978	
CETAR2	209	1.0100	-	0.0000	0.3354	0.0489	0.1830	0.1988	0.2406	-0.3470	0.5904	0.2597	0.2664	
CETAR3	210	1.0100	-	0.0000	-0.2161	-0.5420	-0.1168	-0.1251	-0.1542	-0.2151	-0.3720	-0.1458	0.1701	
A8	211	1.0100	-	0.0000	0.0000	2.0137	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	
CXGP1	212	1.0100	-	0.0000	-0.4000	12.7909	0.0000	0.0000	0.0000	0.0000	6.3518	0.0000	0.0000	
CFGP2	213	1.0100	-	0.0000	0.0000	-27.6765	0.0000	0.0000	0.0000	0.0000	-13.7438	0.0000	0.0000	
CFGP3	214	1.0100	-	0.0000	0.0000	18.4305	0.0000	0.0000	0.0000	0.0000	9.1523	-0.0000	0.0000	
XN2	215	1.0100	-	0.0000	0.0000	9.3687	0.0000	0.0000	0.0000	0.0000	4.6524	0.0000	0.0000	
CCV8M1	216	1.0100	-	0.0000	-0.0000	-0.0000	2.0041	0.0000	0.0000	0.0000	-0.0000	-0.1944	-0.0000	
CCV8M2	217	1.0100	-	0.0000	0.0000	0.0000	-0.0013	0.0000	0.0000	0.0000	0.0000	-0.0006	0.0000	
CCV8M3	218	1.0100	-	0.0000	-0.0000	-0.0000	0.0418	0.0000	0.0000	0.0000	-0.0000	-0.0059	0.0000	
P6	219	1.0100	-	0.0000	0.0000	0.0000	0.7421	0.5863	0.8589	2.2594	0.0000	0.3683	0.2919	
PL8	220	1.0100	-	0.0000	-0.0000	-0.0000	-0.3527	0.7244	0.5766	1.4743	0.0000	-0.2763	0.3607	
T6	222	1.0100	-	0.0000	0.0000	0.0000	-0.3490	0.0070	0.4313	0.0000	0.0000	-0.1733	0.0035	
ETAT	224	1.0100	-	0.0000	-0.0000	-0.0000	0.0376	0.0107	0.0536	0.0000	0.0000	0.0187	0.0053	
P3	225	1.0100	-	0.0000	0.0000	0.0000	-0.1587	-0.0431	-0.2295	0.0000	0.0000	-0.0788	-0.0215	
BLO8S	226	1.0100	0.0000	-	0.0000	-0.0000	0.1582	0.0470	0.2252	0.0000	0.0000	-0.0785	0.0234	
MFP4	227	1.0100	0.0000	-	0.0000	0.0000	-0.1751	-0.0475	-0.2536	0.0000	0.0000	-0.0869	-0.0237	
WF	228	1.0100	-0.0000	-	0.0000	-0.0000	0.6301	0.4663	0.3180	0.0000	0.0000	0.3128	0.2321	
CCV8E1	229	1.0100	0.0000	-	0.0000	0.0000	0.0000	1.9821	0.0000	0.0000	0.0000	0.0000	0.9869	
CCV8E2	230	1.0100	-0.0000	-	0.0000	-0.0000	0.0000	0.0117	0.0000	0.0000	0.0000	-0.0000	0.0058	
CCV8E3	231	1.0100	0.0000	-	0.0000	0.0000	0.0000	0.0147	0.0000	0.0000	0.0000	0.0000	0.0073	
CCV8AL	232	1.0100	0.0000	-	0.0000	0.0000	0.0000	0.0000	1.7847	0.0000	0.0000	0.0000	0.0000	
CCV8A2	233	1.0100	0.0000	-	0.0000	0.0000	0.0000	0.0000	0.1148	0.0000	0.0000	0.0000	0.0000	

DATE 7-9-79 PROJECT NUMBER,
 AEDC INC.
 AEDC DIVISION
 EVERDURB CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN

TEST CELL.	AGM-109	TEST DATE, 0-0-0	0 HRS	TEST. 0001	DATA POINT, 202201
TEST ARTICLE.		COMP DATE, 7-9-79	1023 HRS	TEST 001	(Flt Cond 2, Cont.)
TEST ARTICLE S/N.		COMP RUN, OFF LINE			
		PROGRAM.			

--INFLUENCE COEFFICIENT

INDEP	ITNO	PER	FGA	FCC
COP01	194	1.0100	-0.0000	0.0000
COP02	195	1.0100	-0.0000	0.0000
COP03	196	1.0100	-0.0000	0.0000
XN2	197	1.0100	-0.0000	-0.0000
GWT	198	1.0100	0.0000	0.0000
KTR	199	1.0100	0.0000	-0.0000
TIO	201	1.0100	-0.7756	-0.0001
P60	202	1.0100	-0.6411	-0.0149
PTODE0	203	1.0100	0.2179	-0.0020
CMAC1	204	1.0100	-0.0945	-0.0000
CMAC2	205	1.0100	0.9941	-0.0001
CMAC3	206	1.0100	-0.0149	-0.0000
XN1	207	1.0100	0.9644	-0.0001
CETAR1	208	1.0100	0.7543	-0.0204
CETAR2	209	1.0100	0.2883	-0.0033
CETAR3	210	1.0100	-0.1844	-0.0008
A8	211	1.0100	0.0000	0.0000
CFGP1	212	1.0100	0.0000	-0.0000
CFGP2	213	1.0100	0.0000	0.0000
CEGP3	214	1.0100	0.0000	0.0000
XN2	215	1.0100	0.0000	0.0000
CCV8M1	216	1.0100	-0.0000	-0.0000
CCV8M2	217	1.0100	0.0000	0.0000
CCV8M3	218	1.0100	0.0000	0.0000
P6	219	1.0100	0.4266	1.1214
P16	220	1.0100	0.2854	0.7317
T6	222	1.0100	0.2142	0.0000
ETAT	224	1.0100	0.0266	0.0000
P3	225	1.0100	-0.1140	0.0000
BLOC8	226	1.0100	0.1119	0.0000
NFP4	227	1.0100	-0.1259	0.0000
WF	228	1.0100	0.1578	-0.0000
CCV8E1	229	1.0100	0.0000	0.0000
CCV8E2	230	1.0100	-0.0000	-0.0000
CCV8E3	231	1.0100	0.0000	0.0000
CCV8A1	232	1.0100	0.2864	0.0000
CCV8A2	233	1.0100	0.0570	0.0000

DATE 7- 9-79 PROJECT NUMBER.

-ARO-LNC-
 AEDC DIVISION
 -SVERDRUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN.

TEST CELL. TEST DATE. 0- 0- 0 0 HRS
 TEST ARTICLE. AGM-109 COMP DATE. 7- 9-79 1029 HRS
 TEST ARTICLE S/N. COMP RUN. OFF LINE
 PROGRAM.

TEST. 0001 DATA POINT. 201201

TEST 001 | (Flt Cond 2, Cont.)

INFLUENCE COEFFICIENT

	INDEP	ITNO	PER	V0	WA	FNI	FNM	FNE	FNA	FNC	FG1	FGM	FGE
				251	-257	326	327	328	329	330	-365	-366	290
CCVBA3	234	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0232	0.0000	0.0000	0.0000	0.0000
CCVBA4	235	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.3974	0.0000	0.0000	0.0000	0.0000
CCVBA5	236	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.3067	0.0000	0.0000	0.0000	0.0000
A6	237	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1444	-0.0542	-0.0400	-0.0000	-0.0000
A16	238	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1449	0.0543	0.0000	0.0000	0.0000
PBBME	239	1.0100	0.0000	0.0000	0.0000	-1.3214	-1.3193	-1.3193	-1.2522	-1.7510	-0.0000	-0.6559	-0.6569
QLHV	243	1.0100	0.0000	0.0000	0.0000	0.0000	0.6375	0.4641	0.3140	0.0000	0.0000	0.3164	0.2311
STAR	244	1.0100	0.0000	0.0000	0.0000	-0.6275	-0.4641	-0.3140	-0.0000	-0.0000	-0.3164	-0.2311	
CNPX1	245	1.0100	0.0000	0.0000	0.0000	-0.0000	-0.0011	-0.0008	-0.0006	0.0000	0.0000	-0.0006	-0.0004
CPGC1	246	1.0100	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-6.2109	-0.0000	-0.0000	0.0000
CPGC2	247	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	6.9778	0.0000	0.0000	0.0000
CPGC3	248	1.0100	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-1.5620	0.0000	-0.0000	-0.0000
CPGC4	249	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.8496	0.0000	0.0000	0.0000
CPGC5	250	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-2.9338	-0.0000	-0.0000	-0.0000

DATE 7-9-79 PROJECT NUMBER.
AEDC INC
AEDC DIVISION
A STERODRUP CORPORATION COMPANY
ENGINE TEST FACILITY
ARNOLD AIR FORCE STATION, TENN.

TEST DATE, 0-0-0 0 HRS TEST, 0001 DATA POINT, 202201
TEST CELL, --- COMP DATE, 7-9-79 1029 HRS TEST 001
TEST ARTICLE, AGM-109 COMP RUN, OFF LINE (Fit Cond 2, Concl.)
TEST ARTICLE SN, PROGRAM

-INFLUENCE-COEFFICIENT

INDEP	ITNU	PER	FGA	FCC
CCV8A3	234	1.0100	0.0115	0.0000
CCV8A4	235	1.0100	0.1974	0.0000
CCV8A5	236	1.0100	-0.1523	0.0000
A6	237	1.0100	-0.0717	-0.0269
A16	238	1.0100	-0.0720	0.0270
PS8ME	239	-1.0100	-0.6219	-0.6691
QLHV	243	1.0100	0.1559	0.0000
STAB	244	1.0100	-0.1559	0.0000
CHPI1	245	1.0100	-0.0003	0.0000
CFGC1	246	-1.0100	-0.0000	-3.0898
CFG2	247	1.0100	0.0000	3.4136
CFG3	248	1.0100	-0.0000	-0.7782
CFG4	249	1.0100	0.0000	1.9105
CFG5	250	1.0100	0.0000	-1.4561

DATE 7- 9-79 PROJECT NUMBER.
AEDC, INC.
AEDC DIVISION
SVERDRUP CORPORATION COMPANY
ENGINE TEST FACILITY
ARNOLD AIR FORCE STATION, TENN.

TEST DATE. 0-0-0 0 HRS TEST. 0001 DATA POINT. 203201
 TEST CELL. COMP DATE. 7- 9-79 1025 HRS TEST 001 (Flt Cond 3: 1,000 ft/Mach 0.75)
 TEST ARTICLE. AGM-109 COMP RUN, OFF LINE
 TEST ARTICLE S/N. PROGRAM.

INFLUENCE COEFFICIENT				INDF	ITNO	PER	VD	WA	FHI	FNM	FNE	FNA	FNC	FG1	FCM	FGL
					251			-257	326	327	328	329	330	345	368	390
CDFQ1	194	1.0100	-0.0298		-0.0000	0.0031	0.0013	0.0310	0.0315	0.0315	0.0315	-0.0138	0.0000	0.0000		
CDFQ2	195	1.0100	-0.0074		-0.0000	-0.0000	0.0078	0.0077	-0.0078	0.0078	-0.0078	-0.0034	-0.0000	0.0000		
CDFQ3	196	1.0100	0.0335		0.0000	-0.0034	-0.0352	-0.0349	-0.0354	-0.0354	-0.0354	0.0155	0.0000	0.0000		
XNZ	197	1.0100	-0.0074		-0.0000	0.0008	0.0078	0.0072	-0.0078	0.0078	-0.0078	-0.0036	-0.0000	0.0000		
GWT	198	1.0100	-0.0074		-0.0000	0.0008	0.0078	0.0077	0.0078	0.0078	0.0078	-0.0034	0.0000	0.0000		
KTR	199	1.0100	-0.0668		0.0000	0.0491	0.0492	-0.0488	-0.0495	0.0495	0.0495	-0.0000	-0.0000	0.0000		
TTO	201	1.0100	0.4988		-0.9666	-3.6204	-0.2785	-0.5234	-1.0610	0.4778	-2.0083	-0.3779	-0.4975			
PBD	202	1.0100	-0.3952		0.6869	-0.7281	0.7537	0.7850	-0.8480	-0.5534	0.5032	-0.5156	0.5319			
PTODS0	203	1.0100	0.4371		0.3131	0.2684	-0.3074	-0.2879	-0.2675	0.9008	0.5159	0.2351	0.2425			
CNAC1	204	1.0100	-0.0000		-0.0885	-0.1334	-0.0433	-0.0478	-0.0856	-0.0895	-0.0197	-0.0665	-0.0686			
CWAC2	205	1.0100	0.0000		0.9763	-1.4835	0.4778	0.5267	0.9458	-0.9867	-0.2238	0.7332	0.7561			
CWAC3	206	1.0100	-0.0000		-0.0153	-0.0231	-0.0075	-0.0083	-0.0148	0.0155	0.0034	-0.0115	-0.0119			
XN1	207	1.0100	0.0000		0.9457	-1.4367	0.4629	0.5102	0.9162	-0.9559	-0.2166	0.7102	0.7324			
CETAR1	208	1.0100	0.0000		0.8837	-1.9561	0.4320	0.4764	-0.5492	-1.2623	1.4069	0.6634	0.6843			
CETAR2	209	1.0100	0.0000		0.3555	0.7869	0.1738	0.1918	0.2221	-0.4976	0.5660	0.2669	0.2753			
CETAR3	210	1.0100	0.0000		-0.2393	-0.5296	-0.1130	-0.1292	-0.1503	-0.3272	-0.3809	-0.1796	-0.1854			
AB	211	1.0100	0.0000		0.0000	2.0497	0.0000	0.0000	0.0000	1.0000	1.0000	0.0000	0.0000	0.0000		
CFGP1	212	1.0100	0.0000		0.0000	-11.0464	0.0000	0.0000	-0.0000	0.0000	5.3892	0.0000	0.0000			
CFGP2	213	1.0100	0.0000		0.0000	-24.3681	0.0000	0.0000	0.0000	0.0000	-11.8884	0.0000	0.0000			
CFGP3	214	1.0100	0.0000		0.0000	-16.5849	0.0000	0.0000	0.0000	0.0000	8.0912	0.0000	0.0000			
XN2	215	1.0100	0.0000		0.0000	8.9674	0.0000	0.0000	0.0000	0.0000	4.3749	0.0000	0.0000			
CCVBN1	216	1.0100	0.0000		0.0000	-0.0000	2.0355	0.0000	-0.0000	-0.0000	-0.0000	-0.9928	-4.0000			
CCVBN2	217	1.0100	0.0000		0.0000	0.0000	-0.0015	0.0000	0.0000	0.0000	0.0000	-0.0007	0.0000			
CCVBN3	218	1.0100	0.0000		0.0000	0.0000	0.0163	0.0000	-0.0000	0.0000	-0.0000	-0.0079	0.0000			
P6	219	1.0100	0.0000		0.0000	0.0000	0.6302	0.5172	0.7438	1.9751	0.0000	0.3074	0.2533			
P16	220	1.0100	0.0000		0.0000	0.0000	0.4402	0.5798	0.4942	1.2666	0.0000	-0.2147	0.2840			
T6	222	1.0100	0.0000		0.0000	0.0000	-0.3809	-0.0047	0.4103	0.0000	0.0000	-0.1856	-0.0023			
ETAT	224	1.0100	0.0000		0.0000	0.0000	0.0357	0.0080	-0.0607	0.0000	0.0000	-0.0174	-0.0039			
P3	225	1.0100	0.0000		0.0000	0.0000	-0.1544	-0.0344	-0.2607	0.0000	0.0000	-0.0753	-0.0168			
BLOSS	226	1.0100	0.0000		0.0000	0.0000	0.1488	0.0332	-0.2530	0.0000	0.0000	-0.0726	0.0163			
NFP4	227	1.0100	0.0000		0.0000	0.0000	-0.1705	-0.0379	-0.2879	0.0000	0.0000	-0.0832	-0.0185			
WF	228	1.0100	0.0000		0.0000	-0.0000	0.6760	-0.4966	-0.3591	0.0000	0.0000	-0.3297	0.2432			
CCVBE1	229	1.0100	0.0000		0.0000	0.0000	0.0000	2.0079	0.0000	0.0000	0.0000	0.0000	0.9834			
CCVBE2	230	1.0100	0.0000		0.0000	-0.0000	0.0000	-0.0137	-0.0000	-0.0000	-0.0000	-0.0000	-0.0067			
CCVBEJ	231	1.0100	0.0000		0.0000	0.0000	0.0000	0.0202	0.0000	0.0000	0.0000	0.0000	0.0099			
CCVBA1	232	1.0100	0.0000		0.0000	0.0000	0.0000	0.0000	1.8165	0.0000	0.0000	0.0000	0.0000			
CCVBA2	233	1.0100	0.0000		0.0000	0.0000	0.0000	0.0000	0.1366	0.0000	0.0000	0.0000	0.0000			

DATE 7- 9-79 PROJECT NUMBER.
 AEDC, INC.
 AEDC DIVISION
 A-SVERDRUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN

TEST CELL. TEST ARTICLE. AGM-109 TEST DATE. 0- 0- 0 0 HRS TEST, 0001 DATA POINT. 203201
 TEST ARTICLE S/N. PROGRAM. COMP DATE. 7- 9-79 1025 HRS TEST 001 (Flt Cond 3, Cont.)

	INFLUENCE COEFFICIENT	INDEP	ITNO	PER	FGA	FCC
					314	-336
COPQ1		194	1.0100	-	-0.0000	0.0000
COPQ2		195	-1.0100	-	-0.0000	-0.0000
COPD3		196	1.0100	-	0.0000	0.0000
XMZ		197	1.0100	-	-0.0000	-0.0000
GWT		198	1.0100	-	-0.0000	0.0000
KTR		199	-1.0100	-	-0.0000	-0.0000
TTO		201	1.0100	-	-0.7588	-0.0104
P40		202	-1.0100	-	-0.5608	-0.1207
PTOD80		203	1.0100	-	0.2560	-0.0519
CMAC1		204	-1.0100	-	-0.0871	-0.0020
CMAC2		205	1.0100	-	0.9615	0.0216
CMAC3		206	1.0100	-	-0.0151	-0.0003
AN1		207	1.0100	-	0.9314	0.0210
CETAR1		208	1.0100	-	0.7210	-0.1599
CETAR2		209	1.0100	-	0.2906	-0.0594
CETAR3		210	-1.0100	-	-0.1960	-0.0342
AB		211	1.0100	-	0.0000	0.0000
CFGCP1		212	-1.0100	-	-0.0000	0.0000
CFGCP2		213	1.0100	-	0.0000	0.0000
CFGCP3		214	-1.0100	-	-0.0000	-0.0000
XH2		215	1.0100	-	0.0000	0.0000
CCV8M1		216	-1.0100	-	-0.0000	-0.0000
CCV8M2		217	1.0100	-	0.0000	0.0000
CCV8M3		218	-1.0100	-	-0.0000	-0.0000
P6		219	1.0100	-	0.3618	0.9605
P14		220	-1.0100	-	0.2403	0.6159
T6		222	1.0100	-	0.1995	0.0000
ETAT		224	1.0100	-	0.0295	0.0000
P3		225	1.0100	-	-0.1268	0.0000
BLOSS		226	-1.0100	-	0.1230	0.0000
NFP4		227	1.0100	-	-0.1400	0.0000
WE		228	-1.0100	-	0.1787	-0.0000
CCV8E1		229	1.0100	-	0.0000	0.0000
CCV8E2		230	-1.0100	-	-0.0000	-0.0000
CCV8E3		231	1.0100	-	0.0000	0.0000
CCV8A1		232	1.0100	-	0.8834	0.0000
CCV8A2		233	1.0100	-	0.0664	0.0000

DATE 7-9-79 PROJECT NUMBER.
ARO, INC.
AEDC DIVISION
A. EVERDURE CORPORATION COMPANY
ENGINE TEST FACILITY
ARNOLD AIR FORCE STATION, TENN

TEST CELL	TEST ARTICLE	TEST ARTICLE-S/N	TEST DATE. 0-0-0 COMP DATE. 7-9-79 COMP RUN. OFF LINE PROGRAM.				TEST. 0001 TEST 001 (Fit Cond 3, Cont.)				DATA POINT. 203201			
			0 HRS -1030 HRS	FNA	FNC	FGL	FNM	FNE	FNA	FNC	FGL	FNM	FNE	FGE
CCVBA3	234	1.0100	251 0.0000	257 0.0000	326 0.0000	327 0.0000	328 0.0000	329 0.0322	330 0.0000	265 0.0000	268 0.0000	290 0.0000		
CCVBA4	235	1.0100	0.0000 -0.0000	-0.0000 -0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.4397 -0.3689	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0400 0.0000		
CCTBA5	236	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.1602 -0.1600	-0.0134 0.0135	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000		
A6	237	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-1.0934 -0.9742	-1.0023 -0.9698	-0.0000 -0.0000	-0.0000 -0.0000	-0.5328 -0.5398		
A16	238	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.1800 -0.1550	-0.0135 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000		
PBBNE	239	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.1800 -0.1550	-0.0135 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000		
QLHV	243	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.6846 0.4941	0.4941 0.0000	0.0000 0.0000	0.0000 0.0000	0.3339 0.3339	0.2420 0.2420		
ETAB	244	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.6846 0.4941	-0.4941 -0.0010	-0.0007 -0.0007	-0.0000 -0.0005	-0.0000 0.0000	-0.0000 0.0005	-0.3339 -0.3339	0.2420 0.2420
CHPX1	245	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.0010 -0.0006	-0.0007 -0.0006	-0.0000 -3.6718	-0.0000 -0.0000	-0.0000 -0.0000	-0.0005 -0.0000	-0.0003 0.0000
CFGC1	246	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.0006 -0.0000	-0.0007 -0.0000	-0.0000 -0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0005 0.0000	-0.0003 0.0000
CFGC2	247	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.0000 -0.0000	-0.0000 -0.0000	-0.0000 -0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000
CFGC3	248	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.0000 -0.0000	-0.0000 -0.0000	-0.0000 -4.8550	-0.0000 -0.0000	-0.0000 -0.0000	-0.0000 0.0000	-0.0000 0.0000
CFGC4	249	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.0000 -0.0000	-0.0000 -0.0000	-0.0000 -3.0032	-0.0000 -0.0000	-0.0000 -0.0000	-0.0000 0.0000	-0.0000 0.0000
CFGC5	250	1.0100	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	0.0000 0.0000	-0.0000 -0.0000	-0.0000 -0.0000	-0.0000 -3.0032	-0.0000 -0.0000	-0.0000 -0.0000	-0.0000 0.0000	-0.0000 0.0000

DATE 7-9-79 PROJECT NUMBER,
AEDC INC.
AEDC DIVISION
A EVERDRUP CORPORATION COMPANY
ENGINE TEST FACILITY
ARNOLD AIR FORCE STATION, TENN

TEST CELL. TEST DATE. 0-0-0 0 HRS
TEST ARTICLE. AGM-109 COMP DATE. 7-9-79 1030 HRS
TEST ARTICLE S/N. COMP RUN. OFF LINE
PROGRAM.

TEST. 0001 DATA POINT. 203201
TEST 001 (Flt Cond 3, Concl.)

INFLUENCE COEFFICIENT
INDEP ITNO PER FGA FGC
CCV8A3 234 1.0100 0.0157 0.0000
CCV8A4 235 -1.0100 -0.2139 -0.0000
CCV8A5 236 1.0100 -0.1794 0.0000
A6 237 1.0100 -0.0379 -0.0163
A16 238 1.0100 -0.0782 0.0163
PS8NE 239 1.0100 -0.4738 -0.4425
OLHY 243 1.0100 0.1726 0.0000
ETAB 244 1.0100 -0.1726 -0.0000
CNPX1 245 1.0100 -0.0002 0.0000
CFGCI 246 1.0100 0.0000 -1.7856
CFGCI 247 1.0100 0.0000 3.3854
CFGCI 248 1.0100 0.0000 -0.9021
CFGCI 249 1.0100 0.0000 1.7623
CFGCI 250 1.0100 0.0000 -1.4600

DATE 7- 9-79 PROJECT NUMBER.
 ARO, INC.
 AEDC DIVISION
 B-EVERDRUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN.

TEST CELL. -- TEST DATE. 0-0-0 0 HRS
 TEST ARTICLE. AGM-109 COMP DATE. 7-9-79 1026 HRS
 TEST ARTICLE S/N. TEST PROGRAM. TEST 001 TEST 001 (Flt Cond 4: 8,000 ft/Mach 0.65)

INFLUENCE COEFFICIENT				INFLUENCE COEFFICIENT				INFLUENCE COEFFICIENT				
INDEP	ITNO	PER	VO	WA	FNI	FNN	FNE	FNA	FNC	FGL	FGM	FGE
COPQ1	194	1.0100	-0.0297	0.357	0.0000	0.0039	0.0281	0.0280	0.0280	-0.0124	0.0000	0.0000
COPQ2	195	1.0100	-0.0128	0.326	0.0000	0.0017	0.0121	0.0120	-0.0121	-0.0054	0.0000	0.0000
COPQ3	196	1.0100	-0.0194	0.326	0.0000	-0.0025	-0.0183	-0.0182	-0.0163	-0.0182	0.0081	0.0000
XN2	197	1.0100	-0.0128	0.326	0.0000	-0.0017	0.0124	0.0120	-0.0121	-0.0054	-0.0000	0.0000
GHT	198	1.0100	-0.0128	0.326	0.0000	0.0017	0.0121	0.0120	0.0121	-0.0054	0.0000	0.0000
RIP	199	1.0100	-0.0360	0.326	0.0000	-0.0340	0.0341	-0.0339	-0.0340	-0.0339	0.0000	-0.0000
TTO	201	1.0100	0.4988	-0.9743	-3.6939	-0.2923	-0.5217	-1.0341	0.4614	-2.1331	-0.3837	-0.5017
PSO	202	1.0100	-0.4132	-0.7428	0.7973	0.7930	0.8219	0.9319	-0.2221	0.5691	-0.5667	0.5822
PT0080	203	1.0100	0.4455	0.2572	0.1994	-0.2841	-0.2708	-0.2334	-0.6278	0.6444	0.1962	0.2016
CHAC1	204	1.0100	0.0000	-0.0917	-0.1244	-0.0494	-0.0533	-0.0882	0.0881	0.0195	-0.0700	-0.0715
CHAC2	205	1.0100	0.0000	0.9922	-1.3587	0.5348	0.5761	0.9554	-0.9547	-0.2169	0.7572	0.7774
CHAC3	206	1.0100	0.0000	-0.0153	0.0208	-0.0082	-0.0089	-0.0147	-0.0147	-0.0032	-0.0117	-0.0120
XN1	207	1.0100	0.0000	0.9617	-1.3166	0.5163	0.5954	0.9260	-0.9253	-0.2101	0.7339	0.7539
CETAR1	208	1.0100	0.0000	0.8816	2.1025	0.4747	0.5116	0.6407	-0.7335	-1.5101	-0.6725	0.6810
CETAR2	209	1.0100	0.0000	0.3473	0.6287	0.1870	0.2017	0.2533	-0.2807	0.5949	0.2650	0.2723
CETAR3	210	1.0100	0.0000	-0.2289	-0.5462	-0.1233	-0.1330	-0.1675	-0.1792	-0.3921	-0.1246	-0.1785
AB	211	1.0100	0.0000	0.9443	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000
CFGP1	212	1.0100	0.0000	0.0000	-11.5634	0.0000	0.0000	-0.0000	0.0000	5.9472	0.0000	0.0000
CFGP2	213	1.0100	0.0000	0.0000	-25.2978	0.0000	0.0000	0.0000	0.0000	-13.0111	0.0000	0.0000
CFGP3	214	1.0100	0.0000	0.0000	17.0568	0.0000	0.0000	0.0000	0.0000	8.2747	0.0000	0.0000
XN2	215	1.0100	0.0000	0.0000	9.0024	0.0000	0.0000	0.0000	0.0000	4.6301	0.0000	0.0000
CCV8M1	216	1.0100	0.0000	0.0000	-0.0000	-1.9353	0.0000	-0.0000	-0.0000	-0.0000	-0.9244	0.0000
CCV8M2	217	1.0100	0.0000	0.0000	0.0000	-0.0013	0.0000	0.0000	0.0000	-0.0007	0.0000	0.0000
CCV8M3	218	1.0100	0.0000	0.0000	0.0000	-0.0123	-0.0000	0.0000	0.0000	-0.0063	-0.0000	-0.0000
P6	219	1.0100	0.0000	0.0000	0.0000	0.6895	0.5537	0.7914	2.0505	0.0000	0.3542	0.2853
P16	220	1.0100	0.0000	0.0000	0.0000	0.4935	0.6490	0.5274	1.3248	0.0000	0.2536	0.3344
T6	222	1.0100	0.0000	0.0000	0.0000	-0.3428	-0.0001	0.4070	0.0000	0.0000	-0.1761	-0.0000
ETAT	224	1.0100	0.0000	0.0000	0.0000	0.0347	0.0090	-0.0548	0.0000	0.0000	-0.0129	0.0046
P3	225	1.0100	0.0000	0.0000	0.0000	-0.1478	-0.0379	-0.2331	0.0000	0.0000	-0.0759	-0.0195
BLUES	226	1.0100	0.0000	0.0000	0.0000	0.1461	0.0375	0.2270	0.0000	0.0000	0.0740	0.0193
MFP4	227	1.0100	0.0000	0.0000	0.0000	-0.1634	-0.0410	-0.2578	0.0000	0.0000	-0.0840	-0.0215
MF	228	1.0100	0.0000	0.0000	0.0000	0.6222	0.4609	0.3197	0.0000	0.0000	0.3197	0.2375
CCV8E1	229	1.0100	0.0000	0.0000	0.0000	0.0000	1.9139	0.0000	0.0000	0.0000	0.0000	0.9861
CCV8E2	230	1.0100	0.0000	0.0000	0.0000	0.0000	0.0117	0.0000	0.0000	-0.0000	-0.0000	-0.0000
CCV8E3	231	1.0100	0.0000	0.0000	0.0000	0.0000	0.0153	0.0000	0.0000	0.0000	0.0000	0.0079
CCV8A1	232	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.7159	0.0000	0.0000	-0.0000	0.0000
CCV8A2	233	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1148	0.0000	0.0000	0.0000	0.0000

DATE 7- 9-79 PROJECT NUMBER,
 ARO, INC.
 AEDC DIVISION
 A-STERDORUP CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN

TEST CELL. -- AGM-109 TEST DATE. 0- 0- 0 0 HRS
 TEST ARTICLE. COMP DATE. 7- 9-79 - 1026 HRS
 TEST ARTICLE S/N. COMP RUN. OFF LINE
 PROGRAM.

TEST. 0001 DATA POINT. 204201
 TEST 001 (Flt Cond 4, Cont.)

INFLUENCE COEFFICIENT INDEP	ITNO	PER	FCA	FCC
COP01	194	1.0100	0.0000	0.0000
COP02	195	1.0100	0.0000	0.0000
COP03	196	1.0100	0.0000	0.0000
XN2	197	1.0100	0.0000	0.0000
CWI	198	1.0100	0.0000	0.0000
KTR	199	1.0100	0.0000	0.0000
TTO	201	1.0100	-0.7654	0.0045
P60	202	-1.0100	-0.6386	0.0446
PYOD60	203	1.0100	-0.2214	0.0183
CWAC1	204	1.0100	-0.0889	-0.0009
CWAC2	205	1.0100	0.9732	-0.0101
CWAC3	206	1.0100	-0.0150	-0.0001
XN1	207	1.0100	0.9433	-0.0098
CETAR1	208	-1.0100	0.7576	0.0801
CETAR2	209	1.0100	0.2989	0.0240
CETAR3	210	1.0100	-0.1813	-0.0188
A8	211	1.0100	0.0000	0.0000
CFGP1	212	1.0100	0.0000	-0.0000
CFGP2	213	1.0100	0.0000	0.0000
CFGP3	214	1.0100	0.0000	-0.0000
XN2	215	1.0100	0.0000	0.0000
CCV8M1	216	1.0100	-0.0000	-0.0000
CCV8M2	217	1.0100	0.0000	0.0000
CCV8M3	218	1.0100	-0.0000	-0.0000
P6	219	1.0100	0.4073	1.0556
P16	220	1.0100	0.3714	-0.6820
T6	222	1.0100	0.2095	0.0000
EIAT	224	1.0100	-0.0282	-0.0000
PJ	225	1.0100	-0.1200	0.0000
ALOSE	226	1.0100	-0.1169	-0.0000
NFP4	227	1.0100	-0.1327	0.0000
WF	228	1.0100	0.1645	0.0000
CCV8E1	229	1.0100	0.0000	0.0000
CCV8E2	230	1.0100	0.0000	-0.0000
CCV8E3	231	1.0100	0.0000	0.0000
CCV8A1	232	1.0100	0.8833	0.0000
CCV8A2	233	1.0100	0.0591	0.0000

DATE 7-9-79 PROJECT NUMBER,
ARO, INC.
AEDC DIVISION
A-EVERARD CORP-COMPANY
ENGINE TEST FACILITY
ARNOLD-AIR FORCE STATION, TENN

TEST CELL. TEST ARTICLE. AGM-109 TEST ARTICLE S/N.
 TEST DATE. 0-0-0 COMP DATE. 7-9-79
 0 HRS 1030 HRS
 COMP RUN. OFF LINE PROGRAM.
 TEST 001 TEST 001 DATA POINT. 204201
 (Flt Cond 4, Cont.)

INFLUENCE COEFFICIENT	INDEF	ITNO	PER	VO	WA	FMI	FMM	FME	FNA	FNC	FC1	FGN	FGE
		251		257	-	326	-	327	328	329	330	365	368
CCV8A3	234	1.0100		0.0000	0.0000	0.0000	0.0000	0.0000	0.0241	0.0000	0.0000	0.0000	0.0000
CCV8A4	235	1.0100		-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.3809	-0.0000	-0.0000	-0.0000	-0.0000
CCV8A5	236	1.0100		0.0000	0.0000	0.0000	0.0000	0.0000	-0.2930	0.0000	0.0000	0.0000	0.0000
A6	237	1.0100		0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.4464	-0.0410	-0.0000	-0.0000	-0.0000
A16	238	1.0100		0.0000	0.0000	0.0000	0.0000	0.0000	-0.1470	0.0411	0.0000	0.0000	0.0000
P88NE	239	1.0100		-0.0000	-0.0000	-0.0000	-1.2069	-1.2098	-1.1462	-1.0152	-0.0000	-0.4201	-0.6223
OLHV	243	1.0100		0.0000	0.0000	0.0000	0.6290	0.4587	0.3158	0.0000	0.0000	0.3232	0.2363
STAB	244	1.0100		-0.0000	-0.0000	-0.0000	-0.4280	0.4587	0.3158	-0.0000	-0.0000	-0.3232	0.2363
CHPX1	245	1.0100		0.0000	0.0000	0.0000	-0.0014	-0.0010	-0.0007	0.0000	0.0000	-0.0007	-0.0005
CPGC1	246	1.0100		-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	-2.7955	-0.0000	-0.0000	-0.0000
CPGC2	247	1.0100		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	6.4334	0.0000	0.0000	0.0000
CPGC3	248	1.0100		0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0000	-1.5251	0.0000	0.0000	0.0000
CPGC4	249	1.0100		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.4520	0.0000	0.0000	0.0000
CPGC5	250	1.0100		0.0000	-0.0000	-0.0000	0.0000	0.0000	0.0000	-2.6335	0.0000	0.0000	0.0000

DATE 7-9-79 PROJECT NUMBER.

ARO, INC.

AEDC DIVISION

A-SUPERIOR CORPORATION COMPANY

ENGINE TEST FACILITY

ARMOLD-AIR FORCE STATION, TEXAS

TEST CELL. - - - - -
TEST ARTICLE. AGM-109
TEST ARTICLE S/N. - - - - -

TEST DATE. 0-0-0
COMP DATE. 7-9-79
COMP RUN. OFF LINE
PROGRAM. - - - - -

0 HRS
1030 HRS

TEST. 0001 DATA POINT. 304201
TEST 001 (Flt Cond 4, Concl.)

-INFLUENCE COEFFICIENT-
INDEX ITNO PER FGA FGC

CCV8A3 234 1.0100 0.0124 0.0000
CCV8A4 235 1.0100 -0.1964 -0.0000
CCV8A5 236 1.0100 -0.1500 0.0000
A6 237 1.0100 -0.0754 -0.0211
A16 238 1.0100 -0.0757 0.0212
PSWNE 239 1.0100 -0.8896 -0.8316
QLHV 243 1.0100 0.1625 0.0000
ETAB 244 1.0100 -0.1625 0.0000
CNPK1 245 1.0100 -0.0004 0.0000
CFGC1 246 1.0100 0.0000 -1.9540
CFGC2 247 1.0100 0.0000 3.3120
-CFGC3 248 1.0100 0.0000 -0.7851
CFGC4 249 1.0100 0.0000 1.7772
CFGC5 250 1.0100 0.0000 -1.3501

DATE 7-9-79 PROJECT NUMBER.
 ARI, INC.
 AEDC DIVISION
 STERROUD CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN.

TEST CELL. TEST ARTICLE. AGM-109 TEST ARTICLE S/N.
 TEST DATE. 0-0-0 COMP DATE. 7-9-79
 0 HRS COMP RUN. OFF LINE
 PROGRAM.

TEST DATE. 0-0-0
 COMP DATE. 7-9-79
 1027 HRS
 TEST 001
 (Flt Cond 5: 8,000 ft/Mach 0.75)

TEST. 0001 DATA POINT. 205201

INFLUENCE COEFFICIENT	INDEP	ITNO	PER	V0	MA	FNI	FNM	FNE	FMA	FNC	FG1	FGM	FGE
CDPQ1	194	1.0100	-0.0303	-0.0000	0.0034	0.0306	0.0304	0.0307	0.0307	-0.0136	-0.0000	-0.0000	
CDPQ2	195	1.0100	-0.0096	-0.0000	0.0011	0.0097	0.0096	0.0098	0.0098	-0.0043	-0.0000	-0.0000	
CDPQ3	196	1.0100	0.0267	0.0000	-0.0030	-0.0269	-0.0267	-0.0270	-0.0271	0.0120	0.0000	0.0000	
XNZ	197	1.0100	-0.0096	-0.0000	-0.0011	0.0037	0.0096	0.0098	0.0098	-0.0043	-0.0000	-0.0000	
GWT	198	1.0100	-0.0096	-0.0000	0.0011	0.0097	0.0096	0.0098	0.0098	-0.0043	-0.0000	-0.0000	
KIR	199	1.0100	-0.0468	0.0000	0.0477	0.0473	0.0469	0.0475	0.0475	0.0000	-0.0000	0.0000	
TTO	201	1.0100	0.4988	-0.9601	-3.5996	-0.2398	-0.5076	-1.0361	0.4574	-2.0162	-0.3635	-0.4868	
PSU	202	1.0100	-0.3923	-0.6817	-0.7268	0.7287	0.7617	0.8314	0.4627	0.5047	-0.5066	0.5239	
PTOD80	203	1.0100	0.4295	0.3183	0.2698	-0.2815	-0.2611	-0.2352	-0.8346	0.5117	0.2365	0.2446	
CHAC1	204	1.0100	-0.0000	-0.0860	-0.1297	-0.0416	-0.0462	-0.0834	-0.0844	-0.0208	-0.0639	-0.0661	
CHAC2	205	1.0100	0.0000	0.9629	-1.4657	0.4680	0.5167	0.9357	-0.9454	-0.2400	0.7157	0.7401	
CHAC3	206	1.0100	-0.0000	-0.0154	-0.0232	-0.0074	-0.0083	-0.0149	0.0151	-0.0037	-0.0114	-0.0118	
XN1	207	1.0100	0.0000	0.9323	-1.4187	0.4512	0.5003	0.9059	0.9153	-0.2322	0.6930	0.7166	
CETAR1	208	1.0100	0.0000	-0.0057	-1.9136	0.4381	0.4790	0.5586	-1.1312	-1.3948	-0.6581	0.6806	
CETAR2	209	1.0100	0.0000	0.3623	0.7829	0.1751	0.1945	0.2296	-0.4531	0.5706	0.2692	0.2785	
CETAR3	210	1.0100	0.0000	-0.2480	-0.5358	-0.1109	-0.1332	-0.1580	-0.3025	-0.3906	-0.1043	-0.1902	
A8	211	1.0100	0.0000	0.0000	2.0190	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	
CFGP1	212	1.0100	0.0000	0.0000	-10.5369	0.0000	0.0000	0.0000	0.0000	5.2190	0.0000	0.0000	
CFGP2	213	1.0100	0.0000	0.0000	-23.4536	0.0000	0.0000	0.0000	0.0000	-11.5167	0.0000	0.0000	
CFGP3	214	1.0100	-0.0000	-0.0000	-16.0963	0.0000	0.0000	0.0000	0.0000	7.9726	0.0000	0.0000	
XN2	215	1.0100	0.0000	0.0000	8.9000	0.0000	0.0000	0.0000	0.0000	4.4042	0.0000	0.0000	
CCV8M1	216	1.0100	-0.0000	-0.0000	-0.0000	-1.9554	0.0000	-0.0000	0.0000	-0.0000	-0.9925	0.0000	
CCV8M2	217	1.0100	0.0000	0.0000	0.0000	-0.0015	0.0000	0.0000	0.0000	0.0000	-0.0008	0.0000	
CCV8M3	218	1.0100	0.0000	0.0000	0.0000	0.0167	0.0000	0.0000	0.0000	-0.0000	-0.0083	0.0000	
P6	219	1.0100	0.0000	0.0000	0.0000	0.6070	0.5036	0.7138	1.8632	0.0000	0.3019	0.2515	
P16	220	1.0100	0.0000	0.0000	0.0000	0.4137	0.5459	0.4723	1.1871	0.0000	-0.2057	0.2726	
T6	222	1.0100	0.0000	0.0000	0.0000	-0.3766	-0.0027	0.3960	0.0000	0.0000	-0.1973	-0.0013	
STAT	224	1.0100	0.0000	0.0000	0.0000	0.0364	0.0068	0.0630	0.0000	0.0000	0.0181	0.0034	
P3	225	1.0100	0.0000	0.0000	0.0000	-0.1503	-0.0267	-0.2644	0.0000	0.0000	-0.0747	-0.0133	
BLOSS	226	1.0100	0.0000	0.0000	0.0000	0.1508	0.0304	0.2597	0.0000	0.0000	0.0750	0.0152	
MFP4	227	1.0100	0.0000	0.0000	0.0000	-0.1659	-0.0297	-0.2920	0.0000	0.0000	-0.0825	-0.0148	
WF	228	1.0100	0.0000	0.0000	0.0000	0.6845	0.4983	0.3672	0.0000	0.0000	0.3405	0.2488	
CCV8E1	229	1.0100	0.0000	0.0000	0.0000	0.0000	1.9680	0.0000	0.0000	0.0000	0.0000	0.9828	
CCV8E2	230	1.0100	0.0000	0.0000	-0.0000	0.0000	0.0138	0.0000	0.0000	0.0000	0.0000	-0.0069	
CCV8E3	231	1.0100	0.0000	0.0000	0.0000	0.0000	0.0207	0.0000	0.0000	0.0000	0.0000	0.0103	
CCV8A1	232	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	1.7749	0.0000	0.0000	0.0000	0.0000	
CCV8A2	233	1.0100	0.0000	0.0000	0.0000	0.0000	0.0000	0.1365	0.0000	0.0000	0.0000	0.0000	

DATE 7-9-79 PROJECT NUMBER,

ABD, INC.

AEDC DIVISION

AERODROP CORPORATION CONTRACT

ENGINE TEST FACILITY

ARNOLD AIR FORCE STATION, TENN

TEST CELL. TEST ARTICLE. TEST ARTICLE S/N. TEST DATE. 0-0-0 COMP DATE. 7-9-79 COMP RUN. OFF LINE PROGRAM. TEST. 0001 TEST 001 DATA POINT. 305201
AGM-109

(Flt Cond 5, Cont.)

INFLUENCE COEFFICIENTS

INDEP	ITNO	PER	FGA	FGC
CDP01	194	1.0100	-0.0000	0.0000
CDP02	195	1.0100	-0.0000	0.0000
CDP03	196	1.0100	0.0000	0.0000
JAY	197	1.0100	-0.0000	0.0000
GUT	198	1.0100	-0.0000	0.0000
KER	199	1.0100	-0.0000	0.0000
TTO	201	1.0100	-0.7491	-0.0078
P6G	202	1.0100	-0.5571	-0.0852
PTODEO	203	1.0100	0.2504	-0.0369
CWAC1	204	1.0100	-0.0847	-0.0014
CWAC2	205	1.0100	0.9494	0.0158
CWAC3	206	1.0100	-0.6181	-0.0003
XN1	207	1.0100	0.9192	0.0153
CETAR1	208	1.0100	-0.7223	-0.1183
CETAR2	209	1.0100	0.2965	-0.0424
CETAR3	210	1.0100	-0.3031	-0.0383
A8	211	1.0100	0.0000	0.0000
CFGP1	212	1.0100	-0.0000	0.0000
CFGP2	213	1.0100	0.0000	0.0000
CFGP3	214	1.0100	-0.0000	0.0000
XN2	215	1.0100	0.0000	0.0000
CCV8M1	216	1.0100	0.0000	0.0000
CCV8M2	217	1.0100	0.0000	0.0000
CCV8M3	218	1.0100	0.0000	0.0000
P6	219	1.0100	0.3544	0.9247
P14	220	1.0100	-0.3344	-0.5892
T6	222	1.0100	0.1966	0.0000
ETAT	224	1.0100	-0.0313	0.0000
P3	225	1.0100	-0.1313	0.0000
BLOKE	226	1.0100	0.1289	0.0000
MFP4	227	1.0100	-0.1449	0.0000
ME	228	1.0100	-0.1823	0.0000
CCV8E1	229	1.0100	0.0000	0.0000
CCV8E2	230	1.0100	0.0000	0.0000
CCV8E3	231	1.0100	0.0000	0.0000
CCV8AL	232	1.0100	-0.8811	0.0000
CCV8A2	233	1.0100	0.0678	0.0000

DATE 7- 9-79 PROJECT NUMBER.
 AEDC, INC.
 AEDC DIVISION
 EVERETT CORPORATION COMPANY
 ENGINE TEST FACILITY
 ARNOLD AIR FORCE STATION, TENN.

TEST CELL TEST DATE, 0-0-0 0 HRS TEST. 0001 DATA POINT. 205261
 TEST ARTICLE COMP DATE, 7-9-79 1030 HRS TEST 001 (Flt Cond 5, Cont.)
 TEST ARTICLE S/N, AGM-109 PROGRAM,

INFLUENCE COEFFICIENT		INDEP	ITNO	PER	V0	WA	FH1	FNM	FNE	FNA	FNC	FG1	FGH	FGE
CCVBS3	234	1.0100	261	0.0000	0.0000	0.0000	0.0000	0.0000	0.0330	0.0000	0.0000	0.0000	0.0000	
CCVBS4	235	1.0100	262	0.0000	0.0000	0.0000	0.0000	0.0000	-0.287	0.0000	0.0000	0.0000	0.0000	
CCVBS5	236	1.0100	263	0.0000	0.0000	0.0000	0.0000	0.0000	-0.3589	0.0000	0.0000	0.0000	0.0000	
A6	237	1.0100	264	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1613	0.0268	0.0000	0.0000	0.0000	
A16	238	1.0100	265	0.0000	0.0000	0.0000	0.0000	0.0000	-0.1617	0.0268	0.0000	0.0000	0.0000	
PEME	239	1.0100	266	0.0000	0.0000	0.0000	-1.0421	-1.0529	-0.9213	-0.8653	-0.0000	-0.5183	-0.5263	
QLHV	243	1.0100	267	0.0000	0.0000	0.0000	0.6928	0.4959	0.3633	0.0000	0.0000	0.3446	0.2476	
ERAB	244	1.0100	268	0.0000	0.0000	0.0000	-0.6928	-0.4959	-0.3633	0.0000	0.0000	-0.3446	0.2476	
CRFX1	245	1.0100	269	0.0000	0.0000	0.0000	-0.0012	-0.0009	-0.0006	0.0000	0.0000	-0.0006	-0.0004	
CFGC1	246	1.0100	270	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-3.4226	-0.0000	0.0000	0.0000	
CFGC2	247	1.0100	271	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	6.7305	0.0000	0.0000	0.0000	
CFGC3	248	1.0100	272	0.0000	0.0000	0.0000	-0.0000	-0.0000	-0.0000	-1.8354	0.0000	0.0000	0.0000	
CFGC4	249	1.0100	273	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3.4165	0.0000	0.0000	0.0000	
CFGC5	250	1.0100	274	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	-2.8244	0.0000	0.0000	0.0000	

DATE 7-9-79 PROJECT NUMBER.
ARM, INC.
AEDC DIVISION
A. STERDUP CORPORATION COMPANY
ENGINE TEST FACILITY
ARNDLD AIR FORCE STATION, TERR

TEST CELL. ---
TEST ARTICLE. AGM-109
TEST ARTICLE S/N. ---

TEST DATE. 0-0-0 0 HRS
COMP DATE. 7-9-79 1030 HRS
COMP RUN. OFF LINE
PROGRAM. ---

TEST. 0001 DATA POINT. 205201
TEST 001 (Flt Cond 5, Concl.)

-INFLUENCE COEFFICIENT
INDEP ITNO PER FGA FGC
CCVBA3 234 1.0100 0.0164 -0.335
CCVBA4 235 -1.0100 -0.2128 -0.0000
CCVBA5 236 1.0100 -0.1782 0.0000
A6 237 1.0100 0.0800 -0.0133
A16 238 1.0100 -0.0803 0.0133
PSBHE 239 1.0100 -0.4623 -0.4294
QLHY 243 1.0100 0.1804 0.0000
STAB 244 -1.0100 -0.1804 -0.0000
CHUX1 245 1.0100 -0.0003 0.0000
CFGC1 246 -1.0100 -0.0000 -1.7234
CFGC2 247 1.0100 0.0000 3.3404
CFGC3 248 -1.0100 -0.0000 -0.9109
CFGC4 249 1.0100 0.0000 1.6956
CFGC5 250 1.0100 -0.0000 -1.4047

NOMENCLATURE

A8	Exhaust nozzle exit area
B	Bias error, total
b	Bias error, elemental
BLOSS	Burner loss
CDPQ1,2,3	Constants in DELPO correction equation
CV8A	Nozzle velocity coefficient based on the area-weighted, single-stream analysis
CV8E	Nozzle velocity coefficient based on the mass-weighted, single-stream analysis
CV8M	Nozzle velocity coefficient based on the mass-weighted, dual-stream analysis
DELPO	A flight measurement of the differential between free-stream total and static pressure
EG	Flight generator voltage
EP	Engine performance (computer program)
ETAB	Combustion efficiency
ETAR	Inlet pressure recovery (ram recovery)
ETAT	Turbine efficiency
FG	Gross thrust
FGC	Corrected gross thrust
FGP	Gross thrust parameter
FN	Net thrust
GWT	Vehicle gross weight

gc	Gravitational constant
H	Altitude
HPX	Horsepower extraction
IC	Influence coefficient (computer program)
IG	Flight generator current
LHV	Lower heating value of fuel
MFP4	High-pressure turbine flow parameter
MO	Flight Mach number
N1	Low-pressure rotor speed
N1C	Corrected low-pressure rotor speed
N2	High-pressure rotor speed
N2C	Corrected high-pressure rotor speed
NPR	Nozzle pressure ratio
P	Total pressure
PCM	Pulse code modulated
PLA	Power lever setting
PS	Static pressure
RPR	Ram pressure ratio
S	Precision error, total
s	Precision error, elemental
T	Total temperature
T ₉₅	Ninety-fifth percentile point of the two-tailed Student's "t" distribution
TS	Static temperature

U	Uncertainty
V	Velocity
WA	Engine airflow
WAC	Corrected engine airflow
WBL	Low-pressure bleed airflow
WF	Fuel flow
XKTR	Temperature recovery factor
XNZ	Acceleration factor

Prefix

C	Curve fit coefficient
----------	-----------------------

Suffixes

2,3,6,8,13, 16,22,23	Engine station locations
CDPX	Compressor discharge pressure transducer
CV8M, CV8E, CV8A	Nozzle velocity coefficients
EPX	LP turbine exhaust pressure transducer
FGC	Corrected gross thrust
FGP	Gross thrust parameter
FM	Fuel at flowmeter
I	Inlet cavity
NE	Nozzle exit lip
O	Free-stream condition
WAC	Corrected engine airflow