Learning Semantic Representations for Novel Words: Leveraging Both Form and Context

Timo Schick

Sulzer GmbH, Munich, Germany timo.schick@sulzer.de

Hinrich Schütze CIS, LMU Munich, Germany

inquiries@cislmu.org

Why explicitly learn representations for novel words?

- Distributed word representations are a foundational aspect of many natural language processing systems
- Current approaches require many observations of a word for its embedding to become reliable; as a consequence, they struggle with small corpora and infrequent words
- As models are typically trained with a fixed vocabulary, they lack the ability to assign vectors to novel, out-of-vocabulary (OOV) words once training is complete

Why use both form and context?

We should write no one off as being unemployable.

Why use both form and context?

We should write no one off as being unemployable.

A cardigan is a knitted jacket or sweater with buttons up the front.

Why use both form and context?

We should write no one off as being unemployable.

A cardigan is a knitted jacket or sweater with buttons up the front.

Unlike the grapefruit, the **pomelo** has very little importance in the marketplace.

Unlike the grapefruit, the **pomelo** has very little importance in the marketplace.

 $\mathbf{w} = \mathsf{pomelo}$

Unlike the grapefruit, the **pomelo** has very little importance in the marketplace.

$$\mathbf{w} = \mathsf{pomelo}$$

$$\begin{split} \mathcal{S}_{\mathbf{w}} &= \{ \langle s \rangle \mathsf{p}, \mathsf{po}, \mathsf{om}, \mathsf{me}, \mathsf{el}, \mathsf{lo}, \mathsf{o} \langle e \rangle, \langle s \rangle \mathsf{po}, \mathsf{pom}, \mathsf{ome}, \mathsf{mel}, \mathsf{elo}, \mathsf{lo} \langle e \rangle \} \\ &= \{ s_1, \ldots, s_n \} \end{split}$$

Unlike the grapefruit, the **pomelo** has very little importance in the marketplace.

$$\mathbf{w} = \mathsf{pomelo}$$

$$\begin{split} \mathcal{S}_{\mathbf{w}} &= \{ \langle s \rangle \mathsf{p}, \mathsf{po}, \mathsf{om}, \mathsf{me}, \mathsf{el}, \mathsf{lo}, \mathsf{o} \langle e \rangle, \langle s \rangle \mathsf{po}, \mathsf{pom}, \mathsf{ome}, \mathsf{mel}, \mathsf{elo}, \mathsf{lo} \langle e \rangle \} \\ &= \{ s_1, \ldots, s_n \} \end{split}$$

$$\mathcal{C} = \{ \mathsf{unlike}, \mathsf{the}, \mathsf{grapefruit}, \mathsf{the}, \mathsf{has}, \mathsf{very}, \mathsf{little}, \ldots, \mathsf{marketplace} \} \ = \{ c_1, \ldots, c_m \}$$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$

$$\mathcal{C} = \{c_1, \dots, c_m\}$$

 $\mathcal{C} = \{c_1, \ldots, c_m\}$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$

$$e_{\operatorname{ngram}}(s_1) \quad \cdots \quad e_{\operatorname{ngram}}(s_n)$$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$
 $e_{\mathsf{ngram}}(s_1) \qquad e_{\mathsf{ngram}}(s_n)$
 avg
 $\mathsf{v}^{\mathsf{form}}_{(\mathbf{w}, \mathcal{C})}$

$$\mathcal{C} = \{c_1, \ldots, c_m\}$$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$
 $e_{\mathsf{ngram}}(s_1) \cdots e_{\mathsf{ngram}}(s_n)$
 $v_{(\mathbf{w}, \mathcal{C})}^{\mathsf{form}}$

$$\mathcal{C} = \{c_1, \dots, c_m\}$$

$$e(c_1)$$
 \cdots $e(c_m)$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$
 $e_{\mathsf{ngram}}(s_1) \qquad e_{\mathsf{ngram}}(s_n)$
 avg
 $\mathsf{v}^{\mathsf{form}}_{(\mathbf{w}, \mathcal{C})}$

$$\mathcal{S}_{\mathbf{w}} = \{s_1, \dots, s_n\}$$

$$e_{\mathsf{ngram}}(s_1) \quad \cdots \quad e_{\mathsf{ngram}}(s_n)$$

$$e(c_1) \quad \cdots \quad e(c_m)$$

$$v_{(\mathbf{w}, \mathcal{C})}^{\mathsf{form}}$$

$$\hat{v}_{(\mathbf{w}, \mathcal{C})}^{\mathsf{context}}$$

Composition Functions

(i) single-parameter

$$\textit{v}_{(\mathbf{w},\mathcal{C})} = \alpha \cdot \hat{\textit{v}}_{(\mathbf{w},\mathcal{C})}^{\text{context}} + (1-\alpha) \cdot \textit{v}_{(\mathbf{w},\mathcal{C})}^{\text{form}}.$$

with $\alpha \in [0,1]$ being a learnable parameter.

Composition Functions

(i) single-parameter

$$v_{(\mathbf{w},\mathcal{C})} = \alpha \cdot \hat{v}_{(\mathbf{w},\mathcal{C})}^{\text{context}} + (1 - \alpha) \cdot v_{(\mathbf{w},\mathcal{C})}^{\text{form}}.$$

with $\alpha \in [0,1]$ being a learnable parameter.

(ii) gated

As above, except:

$$\alpha = \sigma(\mathbf{w}^{\top}[\mathbf{v}_{(\mathbf{w},\mathcal{C})}^{\text{context}} \circ \mathbf{v}_{(\mathbf{w},\mathcal{C})}^{\text{form}}] + b)$$

with $w \in \mathbb{R}^{2k}$, $b \in \mathbb{R}$ being learnable parameters.

Training

$$\begin{split} \mathcal{B} &= \{ (\mathbf{w}_1, \mathcal{C}_1), (\mathbf{w}_2, \mathcal{C}_2), \dots, (\mathbf{w}_k, \mathcal{C}_k) \} \\ &= \{ (\text{pomelo}, \{\text{unlike}, \text{the}, \text{grapefruit}, \dots \}), (\mathbf{w}_2, \mathcal{C}_2), \dots, (\mathbf{w}_k, \mathcal{C}_k) \} \end{split}$$

$$L_{\mathcal{B}} = \frac{1}{|\mathcal{B}|} \sum_{(\mathbf{w}, \mathcal{C}) \in \mathcal{B}} \|v_{(\mathbf{w}, \mathcal{C})} - e(\mathbf{w})\|^{2}$$

Evaluation

We train the form-context model using skipgram embeddings trained on Wikipedia. To construct our training set, we

- consider all words w that occur at least 100 times;
- ullet create ${\cal C}$ by randomly sampling 20 sentences from Wikipedia in which ${f w}$ occurs;
- create $S_{\mathbf{w}}$ from all 3-, 4- and 5-grams of \mathbf{w} , considering only n-grams that occur in at least 3 different words.

We evaluate the model on two tasks: the **Definitional Nonce Task** and the **Contextual Rare Words Task**.

spies most commonly refers to people who engage in spying, espionage or clandestine operations

spies most commonly refers to people who engage in spying, espionage or clandestine operations

	form	context	frm-ctx	
neighbours	pies, cakes, spied, sandwiches	espionage, clandestine, covert, spying	espionage, spying, clandestine, covert	
rank	668	8	6	

hygiene which comes from the name of the greek goddess of health hygieia is a set of practices performed for the preservation of health

hygiene which comes from the name of the greek goddess of health hygieia is a set of practices performed for the preservation of health

	form	context		frm-ctx
neighbours	hygienic, hygiene, cleansers, hypoallergenic	hygieia, goddess, eileithyia, asklepios		hygienic, hygieia, health, hygiene
rank	2		465	4

perception (from the latin percipio) is the organization, identification and interpretation of sensory information in order to represent and understand the environment

perception (from the latin percipio) is the organization, identification and interpretation of sensory information in order to represent and understand the environment

	form	context	frm-ctx
neighbours	interception, interceptions, fumble, touchdowns	sensory, perceptual, auditory, contextual	sensory, perceptual, perception, auditory
rank	115	51	1 3

Model	Type	Median Rank	MRR
Mimick	form	85573	0.00006
Skipgram	context	111012	0.00007
Additive	context	3381	0.00945
Nonce2Vec	context	623	0.04907
A La Carte	context	165.5	0.07058
surface-form	form	404.5	0.12982
context	context	184	0.06560
single-parameter	both	55	0.16200
gated	both	49	0.17537

The Contextual Rare Words Task

The Gated Model

Words with high form weights:

cookstown, feltham, sydenham, wymondham, cleveland, banbury, highbury, shaftesbury

Words with high context weights:

poverty, hue, slang, flax, rca, bahia, atari, snooker, icq, bronze, esso

Adding Context Information

Adding Subword Information

Related Work

Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017. Enriching word vectors with subword information. *Transactions of the ACL*

Herbelot, A., and Braoni, M. 2017. **High-risk learning: acquiring new word vectors from tiny data**. In *Proceedings of the 2017 Conference on EMNLP*

Khodak, M.; Saunshi, N.; Liang, Y.; Ma, T.; Steward, B.; and Arora, S. 2018. A la carte embedding: Cheap but effective induction of semantic feature vectors. In *Proceedings of the 56th Annual Meeting of the ACL*

Pinter, Y.; Guthrie, R.; and Eisenstein, J. 2017. Mimicking word embeddings using subword RNNs. In *Proceedings of the 2017 Conference on EMNLP*

Conclusion and Future Work

The **form-context model** is capable of inferring high-quality representations for novel words by processing both the word's internal structure and words in its context.

Possible directions for future work include:

- investigating the model's performance for other languages;
- incorporating the number and informativeness of all available contexts into the composition function;
- using more complex ways than averaging to obtain surface-form and context embeddings.