Applicability of DFL

'Cause the Devil is in the Details

Let's Second-Guess Ourselvers

However, let's not discount the prediction-focused approach yet

In fact, it's easy to see that:

$$\mathbb{E}[\operatorname{regret}(y, \hat{y})] \xrightarrow{\mathbb{E}[L(y, \hat{y})] \to 0} 0$$

Intuitively:

- The more accurate we can be, the lower the regret
- Eventually, perfect predictions will result in 0 regret

Let's Second-Guess Ourselvers

However, let's not discount the prediction-focused approach yet

In fact, it's easy to see that:

$$\mathbb{E}[\operatorname{regret}(y, \hat{y})] \xrightarrow{\mathbb{E}[L(y, \hat{y})] \to 0} 0$$

Intuitively:

- The more accurate we can be, the lower the regret
- Eventually, perfect predictions will result in 0 regret

But then... What if we make our model bigger?

- We could get good predictions and good regret
- ...And training would be much faster

Our Baseline

Let's check again the results for our PFL linear regressor

```
In [4]: pfl = util.build_ml_model(input_size=1, output_size=nitems, hidden=[], name='pfl_det', output
 history = util.train ml model(pfl, data tr.index.values, data tr.values, epochs=1000, loss=
 r tr = util.compute regret(prb, pfl, data tr.index.values, data tr.values)
 r ts = util.compute regret(prb, pfl, data ts.index.values, data ts.values)
util.plot histogram(r tr, figsize=figsize, label='training', data2=r ts, label2='test', pri
                                                                                             training
  0.35
  0.30
  0.25
  0.20
  0.15
  0.10
  0.05
  0.00
        0.00
                           0.05
                                               0.10
                                                                   0.15
                                                                                      0.20
 Mean: 0.052 (training), 0.052 (test)
```


PFL Strikes Back

Let's try to use a non-linear model

```
In [5]: pfl_acc = util.build_ml_model(input_size=1, output_size=nitems, hidden=[8], name='pfl_det_ac
history = util.train ml model(pfl acc, data tr.index.values, data tr.values, epochs=1000, la
util.plot_training_history(history, figsize=figsize_narrow, print_scores=False, print_time=
util.print ml metrics(pfl acc, data tr.index.values, data tr.values, label='training')
util.print ml metrics(pfl acc, data ts.index.values, data ts.values, label='test')
 0.3
 0.2
 0.1
 0.0
                                                                                         1000
                       200
                                        400
                                                        600
                                                                        800
Training time: 7.3678 sec
R2: 0.98, MAE: 0.029, RMSE: 0.04 (training)
R2: 0.98, MAE: 0.029, RMSE: 0.04 (test)
```

More accurate, it is!

PFL Strikes Back

...And the improvement in terms of regret is remarkable

- DFL might do better with the same model complexity
- ...But the return would be diminished

Evening the Field

Can't we do anything about it?

- DFL predictions will always be off (more or less)
- ...But there are ways to make the approach faster

For example:

- You can use a problem relaxation, as in [1]
- You can limit recomputation by caching past solutions, as in [2]
- You can warm start the DFL approach with the PFL weights

Let's see the last two tricks in deeper detail

^[2] Maxime Mulamba, Jayanta Mandi, Michelangelo Diligenti, Michele Lombardi, Victor Bucarey, Tias Guns: Contrastive Losses and Solution Caching for Predict-and-Optimize. IJCAI 2021: 2833-2840

^[1] Mandi, Jayanta, and Tias Guns. "Interior point solving for lp-based prediction+ optimisation." Advances in Neural Information Processing Systems 33 (2020): 7272-7282.

Warm Starting and Solution Caching

Warm starting simple consists in using the PFL weights to initialize θ

Since accuracy is correlated with regret, this might accelerate convergence

Warm Starting and Solution Caching

Warm starting simple consists in using the PFL weights to initialize heta

Since accuracy is correlated with regret, this might accelerate convergence

Solution caching is applicable if the feasible space is fixed

I.e. to problems in the form:

$$z^*(y) = \operatorname{argmin}_z \{ f(z) \mid z \in F \}$$

- lacktriangle During training, we maintain a solution cache S
- Initially, we populate S with the true optimal solutions $z^*(y_i)$ for all examples
- Before computing $z^*(\hat{y})$ for the current prediction we flip a coin
- With probability p, we run the computation (and store any new solution in S)
- With probability 1-p, we solve instead $\hat{z}^*(\hat{y}) = \operatorname{argmin}_z\{f(z) \mid z \in S\}$

Speeding Up DFL

Let's use DFL with linear regression, a warm start, and a solution cache

In [7]: spo = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[], name history = util.train dfl model(spo, data tr.index.values, data tr.values, epochs=200, verbos util.plot training history(history, figsize=figsize narrow, print scores=False, print time= util.print ml metrics(spo, data tr.index.values, data tr.values, label='training') util.print ml metrics(spo, data ts.index.values, data ts.values, label='test') 0.615 0.610 125 175 100 150 200 Training time: 21.0472 sec R2: 0.65, MAE: 0.12, RMSE: 0.16 (training) R2: 0.65, MAE: 0.12, RMSE: 0.16 (test)

The training time is still large, but much lower than our earlier DFL attempt

Speeding Up DFL

And the regret is even better!

We are matching the more complex PFL model with a simple linear regressor

Reflecting on What we Have

Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

- As the models become more complex we have diminishing returns
- ...But for some applications every little bit counts

Second, it may allow using simpler ML models

- Simple models are faster to evaluate
- ...But more importantly they are easier to explain
- E.g. we can easily perform feature importance analysis

Reflecting on What we Have

Therefore, DFL gives us at least two benefits

First, it can lead to lower regret compared to a prediction-focused appraoch

- As the models become more complex we have diminishing returns
- ...But for some applications every little bit counts

Second, it may allow using simpler ML models

- Simple models are faster to evaluate
- ...But more importantly they are easier to explain
- E.g. we can easily perform feature importance analysis

Can we exploit this fact to maximize our advantage?

Maximizing Results

There's a simple case where PFL cannot make perfect predictions

You just need need to target a stochastic problem!

■ E.g. you can usually tell the traffic situation based on (e.g.) time and weather

Adjusting Goals

But with a stochastic problem, what is our real objective?

For a given x (i.e. a given context), we can formalize it like this:

$$\operatorname{argmin}_{z} \left\{ \mathbb{E}_{y \sim P(Y|x)} [y^{T} z] \mid z \in F \right\}$$

- lacksquare Given a value for the observable $oldsymbol{x}$
- lacktriangle We want to find a single decision vector $oldsymbol{z}$
- Such that z is feasible
- ...And z minimizes the expected cost over the distribution $P(Y \mid x)$

This is called a one-stage stochastic optimization problem

...And Keeping the Setup

Let's look again at the DFL training problem

$$\theta^* = \operatorname{argmin}_{\theta} \{ \mathbb{E}_{(x,y) \sim P(X,Y)} [\operatorname{regret}(y, \hat{y})] \mid \hat{y} = h(x; \theta) \}$$

With:

regret
$$(y, \hat{y}) = y^T z^*(\hat{y}) - y^T z^*(y)$$

Since $y^T z^*(y)$ is independent on θ , this is equivalent to:

$$\theta^* = \operatorname{argmin}_{\theta} \{ \mathbb{E}_{(x,y) \sim P(X,Y)} [y^T z^*(\hat{y})] \mid \hat{y} = h(x;\theta) \}$$

Which can be rewritten as:

$$\theta^* = \operatorname{argmin}_{\theta} \{ \mathbb{E}_{x \sim P(X), y \sim P(Y|x)} [y^T z^*(\hat{y})] \mid \hat{y} = h(x; \theta) \}$$

...And Keeping the Setup

Now, let's restrict to the case where x is fixed

$$\theta^* = \operatorname{argmin}_{\theta} \{ \mathbb{E}_{y \sim P(Y|x)} [y^T z^*(\hat{y})] \mid \hat{y} = h(x; \theta) \}$$

Finally, by definition of $z^*(\cdot)$ we have:

$$\theta^* = \operatorname{argmin}_{\theta} \{ \mathbb{E}_{y \sim P(Y|x)} [y^T z^*(\hat{y})] \mid \hat{y} = h(x; \theta), z^*(\hat{y}) \in F \}$$

In other words:

- lacksquare We are choosing heta
- So that $z^*(\hat{y})$ minimizes $\mathbb{E}_{y \sim P(Y|x)}[y^T z^*(\hat{y})]$

This is almost identical to one-stage stochastic optimization!

DFL For One-Stage Stochastic Optimization

DFL can address 1s-SOPs, with one restriction and two "superpowers":

The restriction is that we control z only through heta

- Therefore, depending on the chosen ML model architecture
- ...Obtaining some solutions might be impossible
- This issue can be sidestepped with a careful model choice

DFL For One-Stage Stochastic Optimization

DFL can address 1s-SOPs, with one restriction and two "superpowers":

The restriction is that we control z only through θ

- Therefore, depending on the chosen ML model architecture
- ...Obtaining some solutions might be impossible
- This issue can be sidestepped with a careful model choice

The first superpower is that we are not restricted to a single x value

- Given a new value for x, we just need to evaluate $h(x, \theta^*)$
- ...And then solve the usual optimization problem
- lacktriangle Many approaches do not deal with the estimation of the y distribution

DFL For One-Stage Stochastic Optimization

DFL can address 1s-SOPs, with one restriction and two "superpowers":

The restriction is that we control z only through θ

- Therefore, depending on the chosen ML model architecture
- ...Obtaining some solutions might be impossible
- This issue can be sidestepped with a careful model choice

The first superpower is that we are not restricted to a single x value

- Given a new value for x, we just need to evaluate $h(x, \theta^*)$
- ...And then solve the usual optimization problem
- lacktriangle Many approaches do not deal with the estimation of the y distribution

For the second superpower, we need to investigate a bit more

Classical Solution Approach

What would be the classical solution approach?

Starting from:

$$\operatorname{argmin}_{z} \left\{ \mathbb{E}_{y \sim P(Y|x)} [y^{T} z] \mid z \in F \right\}$$

We can use linearity to obtain:

$$\operatorname{argmin}_{z} \left\{ \mathbb{E}_{y \sim P(Y|x)} [y]^{T} z \mid z \in F \right\}$$

- So, we would first need to estimate the expected costs
- ...Then we could solve a deterministic problem

Classical Solution Approach

What would be the classical solution approach?

Starting from:

$$\operatorname{argmin}_{z} \left\{ \mathbb{E}_{y \sim P(Y|x)} [y^{T} z] \mid z \in F \right\}$$

We can use linearity to obtain:

$$\operatorname{argmin}_{z} \left\{ \mathbb{E}_{y \sim P(Y|x)} [y]^{T} z \mid z \in F \right\}$$

- So, we would first need to estimate the expected costs
- ...Then we could solve a deterministic problem

Regression and Expectation

(Stochastic) Regression is often presented as learning an expectation

...But it's trickier than that

- Using an MSE loss is equivalent to trying to learn $\mathbb{E}_{y \sim P(Y|x)}[y]$
- ...But only assuming that $P(Y \mid x)$ is Normally distributed
- ...And that it has the same variance everywhere

It is possible to do the same under more general conditions

...But it is much more complex

- If we know the distribution type, we can use a neuro-probabilistic model
- Otherwise, we need a fully fledged contextual generative model

In DFL, we can address this problem with 0 added effort!

A Simple Stress Test

We can test this idea by generating a stochastic dataset

```
In [15]: data_tr = util.generate_costs(nsamples=350, nitems=nitems, seed=seed, noise_scale=.2, noise_
 data ts = util.generate costs(nsamples=150, nitems=nitems, seed=seed, sampling seed=seed+1,
 util.plot df cols(data tr, figsize=figsize, title='Training Set', scatter=True)
                                              Training Set
  0.2
  0.0
```

- lacktriangleright ...And scaling the variance with $oldsymbol{y}$
- Which is also a very common setting in practice

Training a PFL Approach

We will train again a non-linear prediction focused approach

```
In [16]: pfl_1s = util.build_ml_model(input_size=1, output_size=nitems, hidden=[8], name='pfl_1s', output_size=nitems, 
                               history = util.train ml model(pfl 1s, data tr.index.values, data tr.values, epochs=1000, log
                               util.plot_training_history(history, figsize=figsize_narrow, print_scores=False, print_time=
                               util.print ml metrics(pfl 1s, data tr.index.values, data tr.values, label='training')
                               util.print ml metrics(pfl 1s, data ts.index.values, data ts.values, label='test')
                                   0.15
                                   0.10
                                   0.05
                                                                                                                                  200
                                                                                                                                                                                                                                                                                                                                                  800
                                                                                                                                                                                                                                                                                                                                                                                                                      1000
                                                                                                                                                                                                       400
                                                                                                                                                                                                                                                                             600
                                Training time: 7.3259 sec
                                R2: 0.91, MAE: 0.042, RMSE: 0.06 (training)
                                R2: 0.91, MAE: 0.042, RMSE: 0.06 (test)
```

The accuracy is (inevitably) worse, but still pretty good

PFL Regret

Let's evaluate the regret of the PFL approach

The regret has slighly worsened, due to the effect of uncertainty

Training a DFL Approach

We also a DFL approach with the same non-linear model

```
In [18]: | spo_1s = util.build_dfl_ml_model(input_size=1, output_size=nitems, problem=prb, hidden=[8],
 history = util.train_dfl_model(spo_1s, data_tr.index.values, data_tr.values, epochs=200, ve
 util.plot_training_history(history, figsize=figsize_narrow, print_scores=False, print_time=
 util.print ml metrics(spo 1s, data tr.index.values, data tr.values, label='training')
 util.print ml metrics(spo 1s, data ts.index.values, data ts.values, label='test')
  0.450
  0.445
  0.440
  0.435
                                        75
                                                            125
                                                                                 175
                                                  100
                                                                      150
                                                                                           200
 Training time: 20.4491 sec
 R2: 0.82, MAE: 0.063, RMSE: 0.09 (training)
 R2: 0.81, MAE: 0.063, RMSE: 0.09 (test)
```


DFL Regret

Now we can compare the regret for both approaches

- There is a significant gap again
- Since the PFL approach is operating on an incorrect semantic

Considerations

DFL can be thought of as a one-stage stochastic optimization approach

In this setting:

- In particular, using a more accurate PFL model might still have poor regret
- ...Unless we know a lot about the distribution
- ...or we use a very complex estimator
- Conversely, DFL has not such issues

The gap becomes wider in case of non-linear cost functions:

- In this case the expected cost would not be equivalent to a sum of expectations
- But a DFL approach would have no such issues
- ...Provided it could deal with with non-linear functions

