XIAO ZHANG

Phone: +1 (434) 466 7098 Email: xiaozhanguva2015@gmail.com

Homepage: https://people.virginia.edu/~xz7bc Github: https://github.com/xiaozhanguva

EDUCATION

Ph.D. in Computer Science Department of Computer Science, University of Virginia, Charlottesville, VA, USA	2017 - Present
Master of Science in Statistics Department of Statistics, University of Virginia, Charlottesville, VA, USA	2015 - 2017
Bachelor of Science in Mathematics Department of Mathematical Science, Tsinghua University, Beijing, China	2011 - 2015

RESEARCH INTERESTS

Machine Learning: adversarial machine learning, deep learning, representation learning Optimization: convex/non-convex optimization, low-rank matrix estimation

PROFESSIONAL EXPERIENCES

Robert Bosch LLC, Pittsburgh, PA, USA

Jun 2020 - Aug 2020

Machine Learning Research Intern (Mentor: Anit Kumar Sahu)

CONFERENCE PUBLICATIONS

- * denotes equal contribution.
- Sicheng Zhu*, Xiao Zhang*, and David Evans
 Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization.
 In the Thirty-seventh International Conference on Machine Learning (ICML 2020) (21.8% acceptance rate)
- 2. Xiao Zhang*, Jinghui Chen*, Quanquan Gu and David Evans Understanding the Intrinsic Robustness of Image Distributions using Conditional Generative Models. In the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020)
- 3. Saeed Mahloujifar*, **Xiao Zhang***, Mohammad Mahmoody and David Evans Empirically Measuring Concentration: Fundamental Limits to Intrinsic Robustness. *In the Thirty-third Conference on Neural Information Processing Systems (NeurIPS 2019)* (Spotlight presentation, 2.97% acceptance rate)
- 4. Xiao Zhang and David Evans

Cost-Sensitive Robustness against Adversarial Examples. In the Seventh International Conference on Learning Representations (ICLR 2019) (33% acceptance rate)

5. Xiao Zhang*, Yaodong Yu*, Lingxiao Wang* and Quanquan Gu Learning One-hidden-layer ReLU Networks via Gradient Descent. In the 22nd International Conference on Artificial Intelligence and Statistics (AISTATS 2019) (32% acceptance rate)

6. Xiao Zhang*, Simon S. Du* and Quanquan Gu

Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow. *In the Thirty-fifth International Conference on Machine Learning (ICML 2018)* (25% acceptance rate)

7. Xiao Zhang*, Lingxiao Wang*, Yaodong Yu and Quanquan Gu

A Primal-Dual Analysis of Global Optimality in Nonconvex Low-Rank Matrix Recovery In the Thirty-fifth International Conference on Machine Learning (ICML 2018) (25% acceptance rate)

8. Xiao Zhang*, Lingxiao Wang* and Quanquan Gu

A Unified Framework for Nonconvex Low-Rank plus Sparse Matrix Recovery In the 21st International Conference on Artificial Intelligence and Statistics (AISTATS 2018) (33% acceptance rate)

9. Lingxiao Wang*, Xiao Zhang* and Quanquan Gu

A Unified Variance Reduction-Based Framework for Nonconvex Low-Rank Matrix Recovery. In the Thirty-fourth International Conference on Machine Learning (ICML 2017) (26% acceptance rate)

10. Lingxiao Wang*, Xiao Zhang* and Quanquan Gu

A Unified Computational and Statistical Framework for Nonconvex Low-Rank Matrix Estimation. In the 20th International Conference on Artificial Intelligence and Statistics (AISTATS 2017) (32% acceptance rate)

PROFESSIONAL SERVICES

Journal Reviewer: Machine Learning (MLJ)

Conference Reviewer: Neural Information Processing Systems (NeurIPS)

TEACHING EXPERIENCES

Teaching Assistant, Department of Computer Science, University of Virginia

CS3102: Theory of Computation 2019 fall
CS6501: Optimization for Machine Learning 2017 fall
CS2102: Discrete Math 2017 fall

Teaching Assistant, Department of Statistics, University of Virginia

STAT2120: Introduction to Statistical Science 2016 fall, 2017 spring