Chaînes de Markov

Présenté par : Pr.Abdelaziz Qaffou

EST-Beni Mellal – Université Sultan Moulay Slimane

DUT-GI2-ARI2-S3-2024-2025

Plan du cours

- Introduction
- Vocabulaire
 - Chaînes de Markov
 - Chaînes réductibles et irréductibles
- Comportement asymptotique
- Comportement asymptotique des chaînes ergodiques

Outline

- Introduction
- 2 Vocabulaire
 - Chaînes de Markov
 - Chaînes réductibles et irréductibles
- Comportement asymptotique
- 4 Comportement asymptotique des chaînes ergodiques

Exemple météorologique

Aujourd'hui il y a du soleil / il pleut. Quel temps fera-t-il demain? Modélisation :

Probabilités de transition :

$$P(X_{n+1} = S/X_n = S) = 0.9, P(X_{n+1} = S/X_n = P) = 0.5,$$

$$P(X_{n+1} = P/X_n = S) = 0.1$$
 et $P(X_{n+1} = P/X_n = P) = 0.5$.

Matrice de transition :

$$T = \begin{pmatrix} 0,9 & 0,1 \\ 0,5 & 0,5 \end{pmatrix}$$

Représentation :

Prédiction du temps

Initialement il fait beau : $X_0 = S$.

Réalisations possibles de (X_n) :

$$X_0 = S$$
, $X_1 = P$, $X_2 = S$, $X_3 = S$, $X_4 = P$...

Le temps qu'il fera à l'instant n+1 ne dépend que du temps à l'instant n.

La distribution de X_n : $\pi_n = (\mathbb{P}(X_n = S), \mathbb{P}(X_n = P))$

D'après la formule des probabilités totales :

$$\mathbb{P}(X_{n+1} = S) = \mathbb{P}(X_{n+1} = S \text{ et } X_n = S) + \mathbb{P}(X_{n+1} = S \text{ et } X_n = P)$$

$$= \mathbb{P}(X_n = S) \times \mathbb{P}(X_{n+1} = S/X_n = S)$$

$$+ \mathbb{P}(X_n = P) \times \mathbb{P}(X_{n+1} = S/X_n = P).$$

D'où $\pi_{n+1} = \pi_n$. T avec T est la probabilité de transition.

Pour l'exemple précédent, on a : $\pi_0 = \begin{pmatrix} 1 & 0 \end{pmatrix}$, $\pi_1 = \begin{pmatrix} 0, 9 & 0, 1 \end{pmatrix}$,

$$\pi_2 = \pi_1$$
. $T = \pi_0$. $T^2 = (0.86 \quad 0.14)$

Etat stationnaire du temps?

On a $\pi_n = \pi_{n-1}$. $T = \pi_0$. T^n

Question 1 : est-ce que π_n converge lorsque $n \to +\infty$? (vers une distribution stationnaire π^*)

Question 2 : π^* est-elle unique?

Question 3 : quelle est la typologie des chaînes pour lesquelles on peut prévoir le comportement de π_n ?

Pour l'exemple précédent, π^*) existe est unique, et vaut (0,86)Veut dire : dans t jours (assez grand), il y a 86% de chance qu'il fasse soleil (quelque soit le temps actuel) et 14% de chance qu'il pleut.

Outline

- Introduction
- 2 Vocabulaire
 - Chaînes de Markov
 - Chaînes réductibles et irréductibles
- Comportement asymptotique
- Comportement asymptotique des chaînes ergodiques

Soit *E* un ensemble fini (ou dénombrable) d'états.

Définition

Une suite de variables aléatoires (X_n) à valeurs dans E t.q. :

$$\mathbb{P}(X_{n+1} = j | X_n = i, X_{n-1} = i_{n-1}, ..., X_0 = i_0) = \mathbb{P}(X_{n+1} = j | X_n = i)$$

est une chaîne de Markov.

Définition

 $\mathbb{P}(X_{n+1} = j | X_n = i) = p_n(i,j)$ est la probabilité de transition de l'état i à l'état j.

Remarque

On ne considérera que des chaînes homogènes i.e. telles que $p_n(i,j) = p_{ij}$. Si E est fini alors $T = (p_{ij})$ est la matrice de transition de (X_n) .

Représentation graphique

Soit G le graphe orienté valué tel que :

- sommets=états (E).
- arête de i vers j si $p_{ij} > 0$.
- valuation de l'arête $i \longrightarrow j : p_{ij}$.

Une chaîne de Markov peut être vue comme une marche aléatoire sur G, connaissant π_0 .

Exemple:

Matrice de transition et distribution de X_t

Espace d'états E fini, matrice de transition : $T=(p_{ij})$

Proposition

- La somme des éléments d'une ligne de T vaut 1. (Matrice stochastique)
- Pour tout t, $p_{ij}^n = \mathbb{P}(X_{t+n} = j | X_t = i)$
- Si π_0 est la distribution de X_0 alors la distribution de X_n est :

$$\pi_n = \pi_{n-1} T = \pi_0 T^n$$
.

Définition

Une chaîne de Markov est irréductible si chaque état est accessible à partir de chaque autre état.

Autrement dit, G est fortement connexe.

Sinon elle est dite réductible, et G admet plusieurs composantes fortement connexes.

Une composante qui ne mène à aucune autre est finale, sinon les états qui la composent sont transients (ou transitoires) (une fois qu'on a quitté la classe d'un état transitoire, on n'y retourne pas).

Illustration : chaîne réductible

Espace d'états E fini, matrice de transition : $T = (p_{ij})$

Cette chaîne de Markov est réductible.

Composantes fortement connexes : $\{1,3\}$, $\{2\}$, $\{4,5\}$.

L'état 2 est transitoire.

Les classes $\{1,3\}$ et $\{4,5\}$ sont finales.

Matrice de transition

Quitte à renuméroter les états, on peut écrire :

$$T = \begin{cases} 1 & 3 & 4 & 5 & 2 \\ 1 & 0.5 & 0.5 & 0 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 & 0 \\ 0 & 0 & 0.1 & 0.9 & 0 \\ 0 & 0 & 0.5 & 0.5 & 0 \\ 2 & 0.25 & 0.25 & 0 & 0 & 0.5 \end{cases}$$

Cas particulier : Chaîne absorbante

Cas particulier où les composantes finales sont réduites à des singletons.

Composantes fortement connexes : $\{1,2\}$ et $\{3\}$.

Une seule composante finale : $\{3\}$.

On dit que 3 est état absorbant.

Quitte à renuméroter les états :

15/25

$$T = \begin{pmatrix} I_{m-s,m-s} & 0 \\ R_{s,m-s} & Q_{s,s} \end{pmatrix}$$

où s est le nombre d'états transitoires.

Chaîne périodique et apériodique

Définition

Un état i est périodique (de période p) si :

$$p = pgcd\{n \in \mathbb{N}, \mathbb{P}(X_n = i | X_0 = i) = p_{ii}^n > 0\}$$

(pgcd des longueurs des cycles)

Proposition

Les états d'une même composante ont même période.

Conséquence 1 : on peut parler d'une chaîne de Markov irréductible périodique ou apériodique.

Conséquence 2 : dès que le graphe d'une chaîne de Markov irréductible a une boucle sur un sommet, alors la chaîne est apériodique.

lci, On a chaîne irréductible de période 2.

$$T = \begin{bmatrix} 1 & 3 & 5 & 2 & 4 & 6 \\ 0 & 0 & 0 & 0,8 & 0 & 0,2 \\ 0 & 0 & 0 & 0,2 & 0,8 & 0 \\ 0 & 0 & 0 & 0,2 & 0,8 & 0 \\ 0,4 & 0,6 & 0 & 0 & 0 & 0 \\ 0 & 0,9 & 0,1 & 0 & 0 & 0 \\ 6 & 0,25 & 0 & 0,75 & 0 & 0 & 0 \end{bmatrix}$$

Outline

- Introduction
- 2 Vocabulaire
 - Chaînes de Markov
 - Chaînes réductibles et irréductibles
- Comportement asymptotique
- 4 Comportement asymptotique des chaînes ergodiques

Questions:

- Le comportement d'une chaîne de Markov dépend de
 - La matrice de transition T;
 - La distribution initiale π_0 .
- Etude du comportement à "long terme" :
 - π_n converge-t-elle?
 - Si oui, quelle est la limite? Dépend-elle de π_0 ?
 - Pour une chaîne absorbante, quelle est la durée moyenne avant absorption?

Comportement asymptotique : généralités

On a $\pi_{n+1} = \pi_n$. *T*

Si (π_n) converge, c'est nécessairement vers un vecteur propre (à gauche) de T associé à la valeur propre 1.

Ce VP existe car T est stochastique, mais l'espace propre associé peut-être de dimension > 1.

 (π_n) ne converge pas forcément.

Question: quand est-ce qu'il n'y a pas convergence?

Cas des chaînes réductibles

La limite dépend de π_0 .

Cas des chaînes périodiques

 π_n ne converge pas, car, si on part de 1 (n=0) :

- On est certain de ne pas être en 2, 4, 6 pour *n* pair $(\pi_{2k}(2, 4, 6)=0)$ et $\pi_{2k}(1, 3, 5)>0$,
- ② et certain de ne pas être en 1, 3, 5 pour *n* impair $(\pi_{2k+1}(1, 3, 5)=0$ et $\pi_{2k+1}(2, 4, 6)>0$).

Outline

- Introduction
- 2 Vocabulaire
 - Chaînes de Markov
 - Chaînes réductibles et irréductibles
- Comportement asymptotique
- 4 Comportement asymptotique des chaînes ergodiques

Chaînes de Markov ergodiques

Définition

Une chaîne de Markov est ergodique si (π_n) converge, indépendamment de π_0 .

Remarque : on montre qu'alors l'espace propre associé à la valeur propre 1 est de dimension 1.

 π_n converge vers π^* , appelée distribution stationnaire.

Théorème

Les chaînes de Markov irréductibles et apériodiques sont ergodiques.

Merci pour votre attention