Table of Contents

Example of Debugging and Scope	1
Consider the analytical value of sin(x) for angle	
Lets identify that on a graph of sin	
Now lets use the function taylorSine to estimate with 2 terms	
Use taylorSine to estimate 3 terms	3
Create a legend and axis labels	

Example of Debugging and Scope

This script is intended to show you how functions and scripts fit together and how to use the MATLAB debugger. The script finds the analytical solution to $\sin(x)$ in degrees, identifies it on a plot of $\sin(x)$, then calculates estimates of $\sin(x)$ using the taylor series approx with varying number of terms.

Created on: 17 Jan 2018 By: DrB

clear

clc close all

Consider the analytical value of sin(x) for angle

```
angle = 112; % in degrees
analyticalAnswer = sind(angle);
```

Lets identify that on a graph of sin

```
x = 0:1:360;
y = sind(x);
plot(x,y);
hold on;
plot(angle,analyticalAnswer,'ro');
```


Now lets use the function taylorSine to estimate with 2 terms

Use function taylorSine

```
taylor2 = taylorSine(angle,2);
% Then plot to see where estimate is
plot(angle,taylor2,'bx');
```


Use taylorSine to estimate 3 terms

taylor3 = taylorSine(angle,3);
plot(angle,taylor3,'gx');

Create a legend and axis labels

```
\label{limits}  \begin{tabular}{ll} title('sin(x) Analytical vs Taylor Estimates') \\ legend('sin(x)', 'analytical sol', 'taylor est 2 terms', 'taylor est 3 terms') \\ xlabel('x') \\ ylabel('sin(x)') \\ \end{tabular}
```


Published with MATLAB® R2017b