Inclass 18.1. (a) For a free particle with $H=\frac{p^2}{2m}$, determine $[\hat{p},\widehat{H}]$. (b) For a simple harmonic oscillator with $H=\frac{p^2}{2m}+\frac{1}{2}kx^2$, determine $[\hat{p},\widehat{H}]$.

Inclass 18.2. Given $\frac{d < A >}{dt} = \frac{i}{\hbar} \int dx \left[(\widehat{H} \psi)^* \widehat{A} \psi - \psi^* \widehat{A} \widehat{H} \psi \right]$ Show that $\frac{d < A >}{dt} = \frac{i}{\hbar} \int \psi^* [\widehat{H}, \widehat{A}] \psi \, dx \equiv \frac{i}{\hbar} < [\widehat{H}, \widehat{A}] >$ (Hint: make use the Hermitian property of \widehat{H} .) Inclass 18.3. For Hamiltonian $H=\frac{p^2}{2m}+V(x)$, show that $\frac{d}{dt}=<-\frac{\partial V}{\partial x}> \qquad \text{(Ehrenfest's equation)}$

Inclass 18.4. For Hamiltonian $H = \frac{p^2}{2m} + V(x)$, show that $\frac{d < x >}{dt} = /m$