15: Anomaly Detection

Anomaly detection - problem motivation

- Anomaly detection is a reasonably commonly used type of machine learning application
 - Can be thought of as a solution to an unsupervised learning problem
 - o But, has aspects of supervised learning
- What is anomaly detection?
 - o Imagine vou're an aircraft engine manufacturer
 - As engines roll off your assembly line you're doing QA
 - Measure some features from engines (e.g. heat generated and vibration)
 - You now have a dataset of x¹ to x^m (i.e. m engines were tested)
 - o Say we plot that dataset

- o Next day you have a new engine
- An anomaly detection method is used to see if the new engine is anomalous (when compared to the previous engines)
- o If the new engine looks like this;

- Probably OK looks like the ones we've seen before
- o But if the engine looks like this

- Uh oh! this looks like an anomalous data-point
- More formally
 - We have a dataset which contains **normal** (data)
 - How we ensure they're normal is up to us
 - \blacksquare In reality it's OK if there are a few which aren't actually normal
 - Using that dataset as a reference point we can see if other examples are **anomalous**
- · How do we do this?
 - o First, using our training dataset we build a model
 - We can access this model using p(x)
 - This asks, "What is the probability that example x is normal"
 - Having built a model
 - if $p(x_{test}) < \varepsilon -->$ flag this as an anomaly
 - if $p(x_{test}) >= \epsilon --> this$ is OK
 - lacktriangledown is some threshold probability value which we define, depending on how sure we need/want to be
 - We expect our model to (graphically) look something like this;

• i.e. this would be our model if we had 2D data

Applications

- Fraud detection
 - o Users have activity associated with them, such as
 - Length on time on-line
 - Location of login
 - Spending frequency
 - Using this data we can build a model of what normal users' activity is like
 - What is the probability of "normal" behavior?
 - o Identify unusual users by sending their data through the model
 - Flag up anything that looks a bit weird
 - Automatically block cards/transactions
- Manufacturing
 - Already spoke about aircraft engine example
- Monitoring computers in data center
 - o If you have many machines in a cluster
 - o Computer features of machine
 - $\mathbf{x}_1 = \text{memory use}$
 - x_2 = number of disk accesses/sec
 - x₃ = CPU load
 - o In addition to the measurable features you can also define your own complex features
 - x₄ = CPU load/network traffic
 - o If you see an anomalous machine
 - Maybe about to fail
 - Look at replacing bits from it

The Gaussian distribution (optional)

- Also called the **normal distribution**
- Example
 - o Say x (data set) is made up of real numbers
 - Mean is μ
 - Variance is σ^2
 - lacktriangledown of is also called the **standard deviation** specifies the width of the Gaussian probability
 - The data has a Gaussian distribution
 - $\circ\,$ Then we can write this $\sim N(\mu,\sigma^2\,)$
 - ~ means = is distributed as
 - N (should really be "script" N (even curlier!) -> means normal distribution
 - \blacksquare μ,σ^2 represent the mean and variance, respectively
 - These are the two parameters a Gaussian means
 - o Looks like this;

- $\circ\,$ This specifies the probability of x taking a value
 - lacksquare As you move away from μ
- Gaussian equation is
 - \circ P(x: μ , σ^2) (probability of x, parameterized by the mean and squared variance)

- · Some examples of Gaussians below
 - Area is always the same (must = 1)
 - o But width changes as standard deviation changes

Parameter estimation problem

- What is it?
 - o Say we have a data set of m examples
 - Give each example is a real number we can plot the data on the x axis as shown below

- o Problem is say you suspect these examples come from a Gaussian
 - Given the dataset can you estimate the distribution?
- Could be something like this

- Seems like a reasonable fit data seems like a higher probability of being in the central region, lower probability of being further away
- $\bullet \;$ Estimating μ and σ^2
 - \circ μ = average of examples
 - $\circ \sigma^2$ = standard deviation squared

- As a side comment
 - \blacksquare These parameters are the maximum likelihood estimation values for μ and σ^2
 - You can also do 1/(m) or 1/(m-1) doesn't make too much difference

• Slightly different mathematical problems, but in practice it makes little difference

Anomaly detection algorithm

- Unlabeled training set of m examples
 - Data = $\{x^1, x^2, ..., x^m\}$
 - Each example is an n-dimensional vector (i.e. a feature vector)
 - We have n features!
 - o Model P(x) from the data set
 - What are high probability features and low probability features
 - x is a vector
 - So model p(x) as
 - $= p(x_1; \mu_1, \sigma_1^2) * p(x_2; \mu_2, \sigma_2^2) * \dots p(x_n; \mu_n, \sigma_n^2)$
 - Multiply the probability of each features by each feature
 - We model each of the features by assuming each feature is distributed according to a Gaussian distribution
 - $\quad \ \ p(x_i; \mu_i \,, \sigma_i^{\,2})$
 - The probability of feature x_i given μ_i and σ_i^2 , using a Gaussian distribution
 - o As a side comment
 - Turns out this equation makes an independence assumption for the features, although algorithm works if features are independent or not
 - Don't worry too much about this, although if you're features are tightly linked you should be able to do some dimensionality reduction anyway!
 - We can write this chain of multiplication more compactly as follows;

$$= \prod_{j=1}^{n} p(x_j; \mu_j, \epsilon_j^2)$$

- Capital PI (Π) is the product of a set of values
- The problem of estimation this distribution is sometimes call the problem of **density estimation**

Algorithm

- 1. Choose features x_i that you think might be indicative of anomalous examples.
- Fit parameters $\mu_1,\ldots,\mu_n,\sigma_1^2,\ldots,\sigma_n^2$

$$\mu_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

$$\sigma_j^2 = \frac{1}{m} \sum_{i=1}^m (x_j^{(i)} - \mu_j)^2$$

$$\sigma_{j}^{2} = \frac{1}{m} \sum_{i=1}^{n} (x_{j}^{(i)} - \mu_{j})^{2}$$
3. Given new example x , compute $p(x)$:
$$p(x) = \prod_{j=1}^{n} p(x_{j}; \mu_{j}, \sigma_{j}^{2}) = \prod_{j=1}^{n} \frac{1}{\sqrt{2\pi}\sigma_{j}} \exp{(-\frac{(x_{j} - \mu_{j})^{2}}{2\sigma_{j}^{2}})}$$

Anomaly if $p(x) < \varepsilon$

• 1 - Chose features

- Try to come up with features which might help identify something anomalous may be unusually large or small values
- o More generally, chose features which describe the general properties
- o This is nothing unique to anomaly detection it's just the idea of building a sensible feature vector

- $\circ\,$ Determine parameters for each of your examples μ_i and $\sigma_i{}^2$
 - Fit is a bit misleading, really should just be "Calculate parameters for 1 to n"
- o So you're calculating standard deviation and mean for each feature
- o You should of course used some vectorized implementation rather than a loop probably
- 3 compute p(x)
 - o You compute the formula shown (i.e. the formula for the Gaussian probability)
 - o If the number is very small, very low chance of it being "normal"

Anomaly detection example

- o Mean is about 5
- o Standard deviation looks to be about 2
- - o Mean is about 3
 - o Standard deviation about 1
- · So we have the following system

$15_Anomaly_Detection$

• If we plot the Gaussian for x₁ and x₂ we get something like this

• If you plot the product of these things you get a surface plot like this

 $\circ\,$ With this surface plot, the height of the surface is the probability - p(x)

o We can't always do surface plots, but for this example it's quite a nice way to show the probability of a 2D feature vector

· Check if a value is anomalous

o Set epsilon as some value

o Say we have two new data points new data-point has the values

x¹test

 $\blacksquare x^2_{test}$

• We compute

• $p(x^1_{test}) = 0.436 \ge epsilon (\sim 40\% chance it's normal)$

Normal

■ $p(x^2_{test}) = 0.0021 < epsilon (~0.2\% chance it's normal)$

Anomalous

 What this is saying is if you look at the surface plot, all values above a certain height are normal, all the values below that threshold are probably anomalous

Developing and evaluating and anomaly detection system

• Here talk about developing a system for anomaly detection

o How to evaluate an algorithm

• Previously we spoke about the importance of real-number evaluation

• Often need to make a lot of choices (e.g. features to use)

■ Easier to evaluate your algorithm if it returns a **single number** to show if changes you made improved or worsened an algorithm's performance

• To develop an anomaly detection system quickly, would be helpful to have a way to evaluate your algorithm

• Assume we have some labeled data

o So far we've been treating anomalous detection with unlabeled data

o If you have labeled data allows evaluation

■ i.e. if you think something iss anomalous you can be sure if it is or not

• So, taking our engine example

You have some labeled data

■ Data for engines which were non-anomalous -> y = o

■ Data for engines which were anomalous -> y = 1

 $\circ\,$ Training set is the collection of normal examples

OK even if we have a few anomalous data examples

• Next define

Cross validation set

■ Test set

For both assume you can include a few examples which have anomalous examples

Specific example

Engines

■ Have 10 000 good engines

OK even if a few bad ones are here...

- LOTS of y = 0
- 20 flawed engines
 - Typically when y = 1 have 2-50
- Split into
 - Training set: 6000 good engines (y = 0)
 - CV set: 2000 good engines, 10 anomalous
 - Test set: 2000 good engines, 10 anomalous
 - Ratio is 3:1:1
- Sometimes we see a different way of splitting
 - Take 6000 good in training
 - Same CV and test set (4000 good in each) different 10 anomalous,
 - Or even 20 anomalous (same ones)
 - This is bad practice should use different data in CV and test set
- o Algorithm evaluation
 - Take trainings set { x¹, x², ..., x^m }
 - Fit model p(x)
 - On cross validation and test set, test the example x
 - $\mathbf{v} = \mathbf{v} = \mathbf{v}$ if $\mathbf{p}(\mathbf{x}) < \mathbf{epsilon}$ (anomalous)
 - y = o if p(x) >= epsilon (normal)
 - Think of algorithm a trying to predict if something is anomalous
 - But you have a label so can check!
 - Makes it look like a supervised learning algorithm
- What's a good metric to use for evaluation
 - \circ y = o is very common
 - So classification would be bad
 - o Compute fraction of true positives/false positive/false negative/true negative
 - o Compute precision/recall
 - o Compute F1-score
- Earlier, also had **epsilon** (the threshold value)
 - o Threshold to show when something is anomalous
 - o If you have CV set you can see how varying epsilon effects various evaluation metrics
 - Then pick the value of epsilon which maximizes the score on your CV set
 - Evaluate algorithm using cross validation
 - o Do final algorithm evaluation on the test set

Anomaly detection vs. supervised learning

- If we have labeled data, we not use a supervised learning algorithm?
 - o Here we'll try and understand when you should use supervised learning and when anomaly detection would be better

Anomaly detection

- Very small number of positive examples
 - Save positive examples just for CV and test set
 - o Consider using an anomaly detection algorithm
- Not enough data to "learn" positive examples
 Have a very large number of negative examples
 - Use these negative examples for p(x) fitting
 - o Only need negative examples for this
- Many "types" of anomalies
 - $\circ \ \ \text{Hard for an algorithm to learn from positive examples when anomalies may look nothing like one another}$
 - So anomaly detection doesn't know what they look like, but knows what they *don't* look like
 - When we looked at SPAM email,
 - Many types of SPAM
 - For the spam problem, usually enough positive examples
 - So this is why we usually think of SPAM as supervised learning
- · Application and why they're anomaly detection
 - Fraud detection
 - Many ways you may do fraud
 - If you're a major on line retailer/very subject to attacks, sometimes might shift to supervised learning
 - o Manufacturing
 - If you make HUGE volumes maybe have enough positive data -> make supervised
 - Means you make an assumption about the kinds of errors you're going to see
 - It's the unknown unknowns we don't like!
- Monitoring machines in data

Supervised learning

- Reasonably large number of positive and negative examples
- Have enough positive examples to give your algorithm the opportunity to see what they look like
 - If you expect anomalies to look anomalous in the same way
- Application
 - Email/SPAM classification
 - Weather prediction
 - Cancer classification

Choosing features to use

- One of the things which has a huge effect is which features are used
- Non-Gaussian features
 - Plot a histogram of data to check it has a Gaussian description nice sanity check
 - Often still works if data is non-Gaussian
 - Use hist command to plot histogram
 - o Non-Gaussian data might look like this

- o Can play with different transformations of the data to make it look more Gaussian
- o Might take a log transformation of the data
 - i.e. if you have some feature x_1 , replace it with $log(x_1)$

- This looks much more Gaussian
- Or do $log(x_1+c)$
 - Play with c to make it look as Gaussian as possible
- Or do x^{1/2}
- \blacksquare Or do $x^{1/3}$

Error analysis for anomaly detection

- · Good way of coming up with features
- Like supervised learning error analysis procedure
 - Run algorithm on CV set
 - o See which one it got wrong
 - o Develop new features based on trying to understand why the algorithm got those examples wrong
- Example
 - \circ p(x) large for normal, p(x) small for abnormal

o e.g.

- Here we have one dimension, and our anomalous value is sort of buried in it (in green Gaussian superimposed in blue)
 - Look at data see what went wrong
 - Can looking at that example help develop a new feature (x2) which can help distinguish further anomalous
- Example data center monitoring
 - Features
 - x_1 = memory use
 - x₂ = number of disk access/sec
 - x₃ = CPU load
 - x₄ = network traffic
 - We suspect CPU load and network traffic grow linearly with one another
 - If server is serving many users, CPU is high and network is high
 - Fail case is infinite loop, so CPU load grows but network traffic is low
 - New feature CPU load/network traffic
 - May need to do feature scaling

Multivariate Gaussian distribution

- Is a slightly different technique which can sometimes catch some anomalies which non-multivariate Gaussian distribution anomaly detection fails to
 - o Unlabeled data looks like this

- o Say you can fit a Gaussian distribution to CPU load and memory use
- Lets say in the test set we have an example which looks like an anomaly (e.g. $x_1 = 0.4$, $x_2 = 1.5$)
 - Looks like most of data lies in a region far away from this example
 - Here memory use is high and CPU load is low (if we plot x_1 vs. x_2 our green example looks miles away from the others)
- Problem is, if we look at each feature individually they may fall within acceptable limits the issue is we know we shouldn't don't get those kinds of values **together**
 - But individually, they're both acceptable

 \circ This is because our function makes probability prediction in concentric circles around the the means of both

- Probability of the two red circled examples is basically the same, even though we can clearly see the green one as an outlier
 - Doesn't understand the meaning

Multivariate Gaussian distribution model

- To get around this we develop the multivariate Gaussian distribution
 - o Model p(x) all in one go, instead of each feature separately
 - What are the parameters for this new model?
 - \blacksquare μ which is an *n* dimensional vector (where n is number of features)
 - Σ which is an [n x n] matrix the **covariance matrix**

• For the sake of completeness, the formula for the multivariate Gaussian distribution is as follows

- NB don't memorize this you can always look it up
- What does this mean?
 - = absolute value of Σ (determinant of sigma)
 This is a mathematic function of a matrix
 You can compute it in MATLAB using det (sigma)
- More importantly, what does this p(x) look like?
 - o 2D example

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

• Sigma is sometimes call the identity matrix

- p(x) looks like this
 - For inputs of x_1 and x_2 the height of the surface gives the value of p(x)
- What happens if we change Sigma?

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Sigma = \begin{bmatrix} 0.6 & 0 \\ 0 & 0.6 \end{bmatrix}$$

• So now we change the plot to

- Now the width of the bump decreases and the height increases
- o If we set sigma to be different values this changes the identity matrix and we change the shape of our graph

- o Using these values we can, therefore, define the shape of this to better fit the data, rather than assuming symmetry in every dimension
- One of the cool things is you can use it to model correlation between data
 - o If you start to change the off-diagonal values in the covariance matrix you can control how well the various dimensions correlation

- So we see here the final example gives a very tall thin distribution, shows a strong positive correlation
- We can also make the off-diagonal values negative to show a negative correlation
- Hopefully this shows an example of the kinds of distribution you can get by varying sigma
 - \circ We can, of course, also move the mean (μ) which varies the peak of the distribution

Applying multivariate Gaussian distribution to anomaly detection

- Saw some examples of the kinds of distributions you can model
- $\bullet \ \ \text{Now let's take those ideas and look at applying them to different anomaly detection algorithms }$
- As mentioned, multivariate Gaussian modeling uses the following equation;

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

- \bullet Which comes with the parameters μ and Σ
 - o Where
 - μ the mean (n-dimenisonal vector)
 - Σ covariance matrix ([nxn] matrix)
- Parameter fitting/estimation problem
 - o If you have a set of examples

The formula for estimating the parameters is
$$\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$$

$$\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \mu)(x^{(i)} - \mu)^T$$

o Using these two formulas you get the parameters

Anomaly detection algorithm with multivariate Gaussian distribution

- 1) Fit model take data set and calculate μ and Σ using the formula above
- 2) We're next given a new example (x_{test}) see below

$15_Anomaly_Detection$

• For it compute p(x) using the following formula for multivariate distribution

$$p(x) = \frac{1}{(2\pi)^{\frac{n}{2}} |\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$

- 3) Compare the value with ϵ (threshold probability value)
 - \circ if $p(x_{test}) < \varepsilon -->$ flag this as an anomaly
 - \circ if $p(x_{test}) >= \epsilon -->$ this is OK
- If you fit a multivariate Gaussian model to our data we build something like this

- Which means it's likely to identify the green value as anomalous
- Finally, we should mention how multivariate Gaussian relates to our original simple Gaussian model (where each feature is looked at individually)
 - o Original model corresponds to multivariate Gaussian where the Gaussians' contours are axis aligned
 - i.e. the normal Gaussian model is a special case of multivariate Gaussian distribution
 - This can be shown mathematically
 - Has this constraint that the covariance matrix sigma as ZEROs on the non-diagonal values

$$p(x;\mu,\Sigma) = \frac{1}{(2\pi)^{\frac{n}{2}}|\Sigma|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$$
 where

■ If you plug your variance values into the covariance matrix the models are actually identical

Original model vs. Multivariate Gaussian

Original Gaussian model

- Probably used more often
- There is a need to manually create features to capture anomalies where x1 and x2 take unusual combinations of values
 - o So need to make extra features
 - Might not be obvious what they should be
 - This is always a risk where you're using your own expectation of a problem to "predict" future anomalies
 - Typically, the things that catch you out aren't going to be the things you though of
 - If you thought of them they'd probably be avoided in the first place
 - Obviously this is a bigger issue, and one which may or may not be relevant depending on your problem space
- Much cheaper computationally
- Scales much better to very large feature vectors
 - Even if n = 100 000 the original model works fine
- Works well even with a small training set
 - o e.g. 50, 100
- Because of these factors it's used more often because it really represents a optimized but axis-symmetric specialization of the general model

Multivariate Gaussian model

- Used less frequently
- Can capture feature correlation
 - o So no need to create extra values
- · Less computationally efficient
 - o Must compute inverse of matrix which is [n x n]
 - So lots of features is bad makes this calculation very expensive
 - \circ So if n = 100 000 not very good

• Needs for m > n

- i.e. number of examples must be greater than number of features
 If this is not true then we have a singular matrix (non-invertible)
 So should be used only in m >> n
 If you find the matrix is non-invertible, could be for one of two main reasons

 - So use original simple model
 Redundant features (i.e. linearly dependent)

 i.e. two features that are the same
 If this is the case you could use PCA or sanity check your data