A szóprobléma eldöntése

Formális nyelvek, 8. gyakorlat

Célja: A szóprobléma megoldásának bemutatása a különböző Chomsky-osztályok esetén

Fogalmak: i. típusú nyelvtanok, Chomsky-normálforma, szóprobléma, elemzés, összes levezetések gráfja, szélességi bejárás, mélységi bejárás, gyakorlati megoldhatóság, CYK algoritmus, véges determinisztikus automata (VDA), az automaták megadásának lehetőségei.

Feladatok jellege: Konkrét nyelvtanra az összes levezetések gráfjának felírása, az utak és a levezetések közötti összefüggés bemutatása, a szélességi bejárás algoritmusának elkészítése struktogramként, a CYK algoritmus egy példán keresztül, utalva a műveleti igényre, automatakészítés néhány egyszerű nyelv esetében.

2005/06 II. félév

Formális nyelvek (8. gyakorlat)

Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév

2005/06 II. félév

1/15 Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév

.

Összes levezetések gráfja

1. 2. 3. 4. 5. 6. 7. 8.
$$S \rightarrow bA \mid aB \quad A \rightarrow bAA \mid a \mid aS \quad B \rightarrow aBB \mid b \mid bS$$

A szóprobléma eldöntése

Összes levezetések gráfja

1.feladat:

 $S \rightarrow bA \mid aB$

 $A \rightarrow bAA \mid a \mid aS$

 $B \rightarrow aBB \mid b \mid bS$

Rajzoljuk fel *G* összes levezetéseinek gráfjából az *S* által meghatározott rész első 3 szintjét!

A levezethető szavakat kiíró algoritmus

Valamely $G = \langle T, N.\mathcal{P} = \{p_1 \to q_1, \dots, p_k \to q_k\}, S \rangle \in \mathcal{G}_0$ nyelvtan esetén a következő algoritmus szintfolytonosan bejárja az összes levezetések gráfjának $\alpha_0 \in (T \cup N)^*$ -ból levezethető részét és a levezethető szavakat kiírja.

Jelölések: A h = (i, j) rendezett pár első, illetve második koordinátájára úgy hivatkozunk, hogy h.1, illetve h.2.

Ha h = (h.1, h.2) akkor legyen h^+ a következő:

$$h^+ = \left\{ egin{array}{ll} (h.1,h.2+1) & h.2 < k \ (h.1+1,1) & h.2 = k \ ext{nem definiált} & ext{egyébként} \end{array}
ight.$$

Az algoritmus használja a sor adatszerkezetet.

 $IN(\mathbf{q},x)$ beteszi az x elemet a \mathbf{q} sor végére, $OUT(\mathbf{q},x)$ kiveszi az első elemet a \mathbf{q} sor elejéről,

x-nek ezt az értéket adja és törli a sorból.

Empty az üres sor,

IsEmpty(q) TRUE/FALSE attól függően, hogy a q sor üres-e.

Formális nyelvek (8. gyakorlat) A szóprobléma eldöntése 2005/06 II. félév 4/15

Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév

5/15

A szóprobléma eldöntése

2.feladat:

Hogyan kell módosítani az előbbi algoritmust, ha egy adott $u(\in T^*)$ szórol szeretnénk eldönteni, hogy

- a. benne van-e L(G)-ben?
- b. benne van-e L(G)-ben, és ha igen mi egy levezetése?
- c. Mit kell módosítani az előbbi algoritmuson hosszúságot nem csökkentő nyelvtan esetén, ha azt akarjuk, hogy mindig termináljon?

Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév

.

Szóprobléma eldöntése

0. típusú nyelvtanok

Megoldás:

- *a.* IF $\alpha \in T^*$ THEN WRITE(α) helyett: IF $\alpha = u$ THEN RETURN(Igen)
- *b.* Csinálunk egy A[i,j] tömböt is, $1 \le j \le 4$. A tömb egy sorának típusa $(T \cup N)^* \times \mathbb{N} \times \mathbb{N} \times \mathbb{N}$ legyen. Amikor **q**-ba bekerül egy β elem, melyet az $\alpha = A[m,1]$ -ból vezettünk le, akkor a legkisebb olyan h indexre melyre A még nem definiált legyen $A[h,1] := \beta$, A[h,2] ahanyadik betűtől, A[h,3] pedig ahanyadik szabály helyettesítésével kapjuk α -ból β -t. Végül legyen A[h,4] := m.

Az algoritmusunkat továbbá úgy módosítjuk, hogy ha $\alpha = u$, akkor előállítjuk a levezetést is, fordított sorrendben. Az A tömb tartalmazza azt az információt, mellyel megkapható a levezetés.

Szóprobléma eldöntése

1. típusú nyelvtanok

c. Az első $f(t) := \sum_{i=0}^{t} |(T \cup N)|^i$ szintet bejárva, az eredeti algoritmus kiírja az összes legfeljebb t hosszú levezethető szót. Számolja a módosított algoritmusunk tehát azt, hogy hanyadik szinten járunk! A **q** sorba tehát először ne α_0 -t, hanem $(\alpha_0, 0)$ -t írjunk, illetve β helyett a $(\beta, t+1)$ párt tegyük be, ha (α, t) -t vettünk ki.

Az első WHILE ciklus addig menjen csak amíg a kivett elem második koordinátája legfeljebb $f(\ell(u))$. Ha eddig nem vezettük le u-t, akkor már nem is fogjuk, álljunk le "Nem" válasszal.

Formális nyelvek (8. gyakorlat) A szóprobléma eldöntése 2005/06 II. félév 7/15 Formális nyelvek (8. gyakorlat) A szóprobléma eldöntése 2005/06 II. félév 8/

CYK algoritmus

A szóprobléma eldöntése 2. típusú nyelvtanokra

Cocke-Younger-Kasami (CYK) algoritmus:

Adott egy környezetfüggetlen $G = \langle T, N, P, S \rangle$ nyelvtan Chomsky-normálformában adva.

Az algoritmus adott $u \in T^*$ esetén eldönti, hogy " $u \in L(G)$ "-e.

Legyen $u = t_1 \dots t_n, \ t_i \in T$. Jelölje α_i a $P_i \in \mathcal{P}$ szabály bal-, β_i pedig a jobboldalát. ($\alpha_i \in N, \beta_i \in T \cup N^2$.)

A CYK algoritmus rekurzíven definiál $H_{i,j}$, $1 \le i \le j \le n$ halmazokat (j-i) szerint növekvő sorrendben.

$$H_{i,i} := \{ \alpha_j \mid \beta_j = t_i \}$$

$$H_{i,j} := \{ \alpha_k \mid \beta_k \in \bigcup_{h=i}^{j-1} H_{i,h} H_{h+1,j} \} \quad (i < j)$$

Ha $S \in H_{1,n}$, akkor $u \in L(G)$, különben $u \notin L(G)$.

Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév

CYK algoritmus

3.feladat:

Elemezzük CYK algoritmussal az *aabbcc* szót az alábbi *G* nyelvtan esetén:

 $S \rightarrow AB \mid BC$

 $A \rightarrow XA \mid a$

 $X \rightarrow a$

 $C \rightarrow YC \mid c$

 $\boldsymbol{Y} \to \boldsymbol{c}$

 $B \rightarrow UV \mid VW$

 $U \rightarrow XX$

 $W \rightarrow YY$

 $V \to Z\!\!Z$

 $Z \rightarrow b$

Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév

CYK algoritmus

Tehát $aabbcc \in L(G)$.

CYK tábla

Megoldás:

Véges determinisztikus automaták

A szóprobléma eldöntése 3. típusú nyelvtanokra

Véges determinisztikus automata (VDA) alatt a következő 5-öst értjük:

 $\mathcal{A} = \langle A, T, \delta, a_0, F \rangle$, ahol

A az állapotok (véges) halmaza

T egy ábécé, a bemenő ábécé

 $\delta: A \times T \rightarrow A$ az állapotátmeneti függvény

 $a_0 \in A$ kezdőállapot

 $F \subseteq A$ a végállapotok halmaza.

A VDA egy ütemben kiolvassa a központi egység állapotát, az input szó aktuális szimbólumát, ennek függvényében új állapotba kerül és az input szó következő betűjére áll az olvasófej (azaz, jobbra lép).

Konfiguráció (amitől a VDA további működése függ): [a, v], $a \in A$, $v \in T^*$, a az aktuális állapot, v az input szó még olvasatlan része.

Az $u \in T^*$ input szóhoz tartozó kezdőkonfiguáció: $[a_0, u]$.

Formális nyelvek (8. gyakorlat) A szóprobléma eldöntése 2005/06 II. félév 11/15 Formális nyelvek (8. gyakorlat) A szóprobléma eldöntése 2005/06 II. félév 12/15

Véges determinisztikus automaták

A szóprobléma eldöntése 3. típusú nyelvtanokra

Közvetlen konfiguációátmenet: $[a, u] \underset{\mathcal{A}}{\dashv} [b, v]$, ha u = tv, és $b = \delta(a, t)$.

Közvetett konfigurációáatmenet: a közvetlen konfigurációátmenet tranzitív, reflexív lezártja, jelölése: $\stackrel{*}{\dashv}$.

[a, v] elfogadó konfiguráció: ha $a \in F$ és $v = \varepsilon$

 \mathcal{A} elfogad egy u szót ha az u-t végig beolvasó konfigurációátmenet elfogadó konfigurációval terminál.

VDA-k és 3. típusú nyelvtanok kölcsönösen megfeleltethetők egymásnak úgy, hogy az elfogadott nyelv illetve a generált nyelv ugyanaz lesz.

Tehát VDA-k remekül használhatók 3. típusú nyelvtanok szóproblémáinak eldöntésére.

Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév 1.

Házi feladat

- 1. Elemezzük CYK algoritmussal az 3. feladatban adott nyelvtan esetén a következő 2 szót: *aaabcc* és *abbccc*.
- 2. Adjunk VDA-t mely a legalább 4 hosszú szavakat fogadja el!
- 3. Adjunk VDA-t mely a 7-tel osztható számokat fogadja el!

Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév

Véges determinisztikus automaták

VDA-k megadása

3. Feladat: $T = \{a, b, c\}$. Adjunk VDA-t mely a legfeljebb 5 hosszú szavakat fogadja el!

Megoldás: I.

Formális nyelvek (8. gyakorlat)

A szóprobléma eldöntése

2005/06 II. félév 14