

Curso de Ciência da Computação

Sumário

- Medidas de desempenho
 - Tempo de execução
 - Tempo de execução paralelo
 - Speedup
 - Eficiência
 - Custo computacional
 - Grão
 - Escalabilidade
 - Facilidade de programação
- Obtenção de resultados

Tempo de Execução Sequencial

- Simbologia: T* ou T_e
- Unidade: segundos (s) horas, dias, semanas ...
- Diferença entre início e o fim da execução
 - Geralmente é descontado o tempo necessário para a entrada
- Varia
 - De acordo com o tamanho a entrada
 - De acordo com a capacidade da máquina

Tempo de Execução **Paralelo**

- Similar ao sequencial, porém paralelo
 - Depende também da arquitetura em que foi executado
- T_n onde p é o número de processadores
- T₅ é o tempo de execução em 5 processadores
- Medicão:
 - Após o primeiro
 - Até o último

Speedup

- Razão dos tempos de execução: seqüencial pelo paralelo
 - Representa a ACELERAÇÃO conseguida
 - Varia com o número de processadores
- Evolução
 - Geralmente não alcança o número de processadores
 - Escala proporcional ao número de processadores: difícil

Speedup

- Onde T_s: tempo de execução seqüencia
 - T_n: tempo de execução paralelo em "p" processadores
- Speedup geralmente obtido: Sp ≤ p
- Speedup buscado: $Sp \cong p$

Cálculos do speedup

- Utilizar o melhor algoritmo següencial disponível
 - Possível de ser implementado
 - Viável de se obter o tempo de execução
- Não aconselhado o uso do programa paralelo em 1 processador
 - Falsa ilusão de aceleração
 - Comunicação e controles de sincronização
- Aceleração em apenas um processador = 1

Speedup - Caso especial

- Por vezes Sp > p
 - Com x processadores consegue-se acelerar em escala maior que x
- · Considerado "Speedup superlinear"
 - -Acima da evolução linear
- Pode ocorrer com uma configuração ou em várias
- Deve-se ter absoluta certeza, pois não é comum

Eficiência

- Medida de desempenho que permite comparar execuções paralelas com número de processadores diferentes
- Razão do speedup pelo número de processadores
- Porção de tempo
 - Processadores/núcleos empregados de forma útil
 - Resolução do problema

1

Eficiência

•
$$E_p = \frac{S_p}{p}$$

- Onde S_p: speedup em p processadores
 p: "p" processadores
- Eficiência buscada = 1 (100%)
- Eficiência geralmente conseguida [0 .. 1[

Cálculos da eficiência

- De forma similar ao speedup
 - Varia com o número de processadores
 - Varia de acordo com a configuração da máquina paralela
- Ligação com percentuais
 - $-E_p = 0.78 \rightarrow 78\%$
- Eficiência de aplicações sequenciais: 100% (1)

1

Custo computacional

- Somatório dos tempos de processamento utilizados em cada processador
 - Produto do tempo de execução paralelo pelo número de processadores
- · Unidade de medida
 - -As mesmas de T* ou Tp
- · Quando em aplicações sequencias
 - -C = T*

13

Considerações sobre o Custo computacional

- Sistema paralelo de custo ótimo
 - $-S_n = p$
 - E_p = 1
- · Alguns autores consideram a quantia de RAM
 - Análises de complexidade
 - Compiladores paralelizantes
- Tradicionalmente
 - Acesso a memória local: custo desprezível (0)
 - Acesso a memória não local:
 - # custo = tempo de acesso

14

Grão

- Granulosidade
- · Tamanho da tarefa
 - Tempo de processamento
- 2 definições:
 - Tempo de execução de uma tarefa alocada a um processador
 - Tempo de execução
 - # Entre 2 comunicações consecutivas de uma tarefa
 - # Tarefa sem comunicação

Análises de Grão

- Ideal
 - Grãos idênticos
 - Quantidade igual à de processadores (múltiplo);
 - Grandes: Pouca (sem) comunicação
- Quanto maior puder ser o grão, maior o speedup que poderá ser obtido

1

Escalabilidade

- Aumento do número de processadores
 - -Reduz o speedup
 - -Reduz a eficiência
 - -Aumenta o custo
- Aumento do grão (entrada)
 - -Aumenta o speedup
 - -Aumenta a eficiência

Conceitos de escalabilidade

- Ideal
 - A escalabilidade é a medida da capacidade de um sistema aumentar o speedup em proporção linear ao número de processadores
- De forma mais realista
 - Um sistema escalável mantém sua eficiência com o aumento do número de processadores e do grão computacional

1

Escalabilidade

- · Quando se consegue
 - Aumento simultâneo do grão e "p"
 - Mantendo fixo (baixo impacto) no speedup e a eficiência
- Varia
 - De uma arquitetura paralela para outra
 - De um problema para outro

Escalabilidade

n	<i>p</i> = 1	<i>p</i> = 4	<i>p</i> = 8	<i>p</i> = 16	<i>p</i> = 32
64	1.0	.80	.57	.33	.17
192	1.0	.92	.80	.60	.38
320	1.0	.95	.87	.71	.50
512	1.0	.97	.91	.80	.62

20

Escalabilidade

- · Sistema escalável
 - Desempenho varia linearmente com o custo do sistema
- Realisticamente
 - Manter constante a relação custo/desempenho
- Arquiteturas escaláveis
 - Multiprocessadores de memória distribuída
 - Multicomputadores

Facilidade de programação

- · Conceito subjetivo, depende
 - Preferências pessoais
 - Hábito do programador
 - Experiência com paradigma de programação
- Desempenho não relacionado
- · Literatura tradicional
 - Aplicações com memória compartilhada são mais fáceis do que com trocas de mensagens
 - Não é verdade absoluta

2

Obtenção dos resultados

- Medidas de desempenho dependentes do tempo de execução
- Em aplicações sequenciais
 - Dificilmente varia (controladas pelo usuário)
 - Mudanças mínimas
- · Aplicações paralelas/distribuídas
 - Grandes variações nos resultados
 - Rede de comunicação não confiável
 - Detecção do final da aplicação

Obtenção dos resultados

- Em aplicações paralelas/distribuídas
 - Não tomar por base uma execução
 - # Nem em aplicações sequenciais
 - Utilizar repetições
 - # Mínimo de 5 (exercícios de aula)
 - # 30 para trabalhos sérios
 - Remover valores discrepantes (máximo, mínimo)
 - Calcular média, desvio padrão, coeficiente de variação...

2

UPF	Exercício				
Processadores 1 2 3 4 5 6 7 8	Tempo de execução paralelo 637 318,5 231,4 210,6 200,9 182,8 162,1 145,5				
	26				

Exercício

- Utilizando um software de planilha eletrônica (Excel, Libreoffice Calc, ...), resolver
 - Calcular o speedup, a eficiência e o custo computacional para todos os casos
 - Traçar um gráfico de linhas com os resultados do speedup
 - # Adicionar uma linha com o speedup linear
 - Traçar um gráfico de linhas com os resultados da eficiência
 - Traçar um gráfico de colunas com os resultados do custo computacional

!7