Table of Fourier Transform Pairs

Function, f(t)	Fourier Transform, F(ω)
Definition of Inverse Fourier Transform	Definition of Fourier Transform
$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{j\omega t} d\omega$	$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t} dt$
$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
$f(t)e^{j\omega_0t}$	$F(\omega - \omega_0)$
$f(\alpha t)$	$\frac{1}{ \alpha }F(\frac{\omega}{\alpha})$
F(t)	$2\pi f(-\omega)$
$\frac{d^n f(t)}{dt^n}$	$(j\omega)^n F(\omega)$
$(-jt)^n f(t)$	$\frac{d^n F(\omega)}{d\omega^n}$
$\int_{-\infty}^{t} f(\tau)d\tau$	$\frac{F(\omega)}{j\omega} + \pi F(0)\delta(\omega)$
$\delta(t)$	1
$e^{j\omega_0 t}$	$2\pi\delta(\omega-\omega_0)$
sgn(t)	$\frac{2}{j\omega}$

$j\frac{1}{\pi t}$	$\operatorname{sgn}(\omega)$
u(t)	$\pi\delta(\omega) + \frac{1}{j\omega}$
$\sum_{n=-\infty}^{\infty} F_n e^{jn\omega_0 t}$	$2\pi \sum_{n=-\infty}^{\infty} F_n \delta(\omega - n\omega_0)$
$rect(\frac{t}{\tau})$	$\tau Sa(\frac{\omega\tau}{2})$
$\frac{B}{2\pi}Sa(\frac{Bt}{2}) \frac{\text{Sa (x)} = \sin(x) / x}{\text{sinc function}}$	$rect(\frac{\omega}{B})$
tri(t) $tri(t) = (1-ltl)rect(t/2)$ $triangle function = rect(t)*rect(t)$	$Sa^{2}(\frac{\omega}{2})$ Sa (x) = sin(x) / x sinc function
$A\cos(\frac{\pi t}{2\tau})rect(\frac{t}{2\tau})$	$\frac{A\pi}{\tau} \frac{\cos(\omega\tau)}{(\pi/2\tau)^2 - \omega^2}$
$\cos(\omega_0 t)$	$\pi \big[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \big]$
$\sin(\omega_0 t)$	$\frac{\pi}{j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right]$
$u(t)\cos(\omega_0 t)$	$\frac{\pi}{2} \left[\delta(\omega - \omega_0) + \delta(\omega + \omega_0) \right] + \frac{j\omega}{\omega_0^2 - \omega^2}$
$u(t)\sin(\omega_0 t)$	$\frac{\pi}{2j} \left[\delta(\omega - \omega_0) - \delta(\omega + \omega_0) \right] + \frac{\omega^2}{\omega_0^2 - \omega^2}$
$u(t)e^{-\alpha t}\cos(\omega_0 t)$	$\frac{(\alpha + j\omega)}{\omega_0^2 + (\alpha + j\omega)^2}$

$u(t)e^{-\alpha t}\sin(\omega_0 t)$	$\frac{\omega_0}{\omega_0^2 + (\alpha + j\omega)^2}$
$e^{-lpha t }$	$\frac{2\alpha}{\alpha^2 + \omega^2}$
$e^{-t^2/(2\sigma^2)}$	$\sigma\sqrt{2\pi}\;e^{-\sigma^2\omega^2/2}$
$u(t)e^{-\alpha t}$	$\frac{1}{\alpha + j\omega}$
$u(t)te^{-\alpha t}$	$\frac{1}{(\alpha+j\omega)^2}$

> Trigonometric Fourier Series

$$f(t) = a_0 + \sum_{n=1}^{\infty} (a_n \cos(\omega_0 nt) + b_n \sin(\omega_0 nt))$$

where

$$a_0 = \frac{1}{T} \int_0^T f(t)dt , a_n = \frac{2}{T} \int_0^T f(t) \cos(\omega_0 nt)dt , \text{and}$$

$$b_n = \frac{2}{T} \int_0^T f(t) \sin(\omega_0 nt)dt$$

> Complex Exponential Fourier Series

$$f(t) = \sum_{n=-\infty}^{\infty} F_n e^{j\omega nt}$$
, where $F_n = \frac{1}{T} \int_0^T f(t) e^{-j\omega_0 nt} dt$