Harvard CS 121 and CSCI E-207 Lecture 6: Regular Expressions

Harry Lewis

September 21, 2010

• Reading: Sipser, §1.3.

Reprise on the optimality of the subset construction

Could it be that for any NFA N, there is an equivalent DFA with fewer than 2^n states, where n is the number of states of N?

To disprove this, show that there exist "bad" NFAs of every size

Theorem: For every $n \geq 1$, there is a language L_n such that

- 1. There is an (n+1)-state NFA recognizing L_n .
- 2. There is no DFA recognizing L_n with fewer than 2^n states.

$$L_n = \{w \in \{a,b\}^* : \text{the } n \text{th symbol} \}$$
 from the right end of $w \in \{a,b\}^*$

Conclusion: For finite automata, nondeterminism provides an *exponential savings* (in the worst case).

Regular Expressions

• Let $\Sigma = \{a, b\}$. The **regular expressions** over Σ are certain expressions formed using the symbols $\{a, b, (,), \varepsilon, \emptyset, \cup, \circ, *\}$

- We use red for the strings under discussion (the object language) and black for the ordinary notation we are using for doing mathematics (the metalanguage).
- Construction Rules (= inductive/recursive definition):
 - 1. $a, b, \varepsilon, \emptyset$ are regular expressions
 - 2. If R_1 and R_2 are RE's, then so are $(R_1 \circ R_2), (R_1 \cup R_2)$, and (R_1^*) .
- Examples:

$$(a \circ b) \qquad ((((a \circ (b^*)) \circ c) \cup ((b^*) \circ a))^*) \qquad (\emptyset^*)$$

What REs Do

 Regular expressions (which are strings) represent languages (which are sets of strings), via the function L:

(1)
$$L(a) = \{a\}$$

(2) $L(b) = \{b\}$
(3) $L(\varepsilon) = \{\varepsilon\}$
(3) $L(\emptyset) = \emptyset$
(4) $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$
(5) $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
(6) $L((R_1^*)) = L(R_1)^*$

Example:

$$L(((a^*) \circ (b^*))) = \{a\}^* \circ \{b\}^*$$

• $L(\cdot)$ is called the **semantics** of the expression.

Syntactic Shorthand

 Omit many parentheses, because union and concatenation of languages are associative. For example,

for any languages L_1, L_2, L_3 :

$$(L_1L_2)L_3 = L_1(L_2L_3)$$

and therefore for any regular expressions R_1, R_2, R_3 ,

$$L((R_1 \circ (R_2 \circ R_3))) = L(((R_1 \circ (R_2 \circ R_3)))$$

- Omit o symbol
- Drop the distinction between red and black, between object language and metalanguage.

Semantic equivalence

The following are equivalent:

$$((ab)c)$$
 $(a(bc))$ abc

or strictly speaking

$$((a \circ b) \circ c) \qquad (a \circ (b \circ c))$$

$$(a \circ (b \circ c))$$

Equivalent means:

"same semantics—same $L(\cdot)$ -value—maybe different syntax"

More syntactic sugar

 By convention, * takes precedence over ○, which takes precedence over ∪.

So $a \cup bc^*$ is equivalent to $(a \cup (b \circ (c^*)))$.

• Σ is shorthand for $a \cup b$ (or the analogous RE for whatever alphabet is in use).

Examples of Regular Languages

Strings ending in $a = \Sigma^* a$

Strings containing the substring abaab = ?

Strings of even length = $(aa \cup ab \cup ba \cup bb)^*$

Strings with even # of a's = $(b \cup ab^*a)^*$ $=b^*(ab^*ab^*)^*$

Strings with \leq two a's =?

Strings of form $x_1x_2\cdots x_k$, $k\geq 0$, each $x_i\in\{aab,aaba,aaa\}=$?

Decimal numerals, no leading zeroes

$$= 0 \cup ((1 \cup \ldots \cup 9)(0 \cup \ldots \cup 9)^*)$$

All strings with an even # of a's and an even # of b's

$$=(b \cup ab^*a)^* \cap (a \cup ba^*b)^*$$
 but this isn't a regular expression

Equivalence of REs and FAs

Recall: we call a language regular if there is a finite automaton that recognizes it.

Theorem: For every regular expression R, L(R) is regular.

Proof (going back to hyper-formality for a moment):

Induct on the construction of regular expressions ("structural induction").

Base Case: R is a, b, ε , or \emptyset

accepts $\{\sigma\}$ accepts \emptyset

accepts $\{\varepsilon\}$

Equivalence of REs and FAs, continued

Inductive Step: If R_1 and R_2 are REs and $L(R_1)$ and $L(R_2)$ are regular (inductive hyp.), then so are:

$$L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$$

 $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$
 $L((R_1^*)) = L(R_1)^*$

(By the closure properties of the regular languages).

Proof is <u>constructive</u> (actually produces the equivalent finite automaton, not just proves its existence).

Example Conversion of a RE to a FA

$$(a \cup \varepsilon)(aa \cup bb)^*$$

The Other Direction

Theorem: For every regular language L, there is a regular expression R such that L(R) = L.

Proof:

Define generalized NFAs (GNFAs) (of interest only for this proof)

- Transitions labelled by regular expressions (rather than symbols).
- One start state $q_{\rm start}$ and only one accept state $q_{\rm accept}$.
- Exactly one transition from q_i to q_j for every two states $q_i \neq q_{\text{accept}}$ and $q_j \neq q_{\text{start}}$ (including self-loops).

Example conversion of an NFA to a RE

Steps toward the proof

Lemma: For every NFA N, there is an equivalent GNFA G.

- Add new start state, new accept state. Transitions?
- If multiple transitions between two states, combine. How?
- If no transition between two states, add one. With what transition?

Lemma: For every GNFA G, there is an equivalent RE R.

- By induction on the number of states k of G.
- Base case: k=2. Set R to be the label of the transition from $q_{\rm start}$ to $q_{\rm accept}$.

Ripping and repairing GNFAs to reduce the number of states

- Inductive Hypothesis: Suppose every GNFA G of k or fewer states has an equivalent RE (where $k \ge 2$).
- Induction Step: Given a (k + 1)-state GNFA G, we will construct an equivalent k-state GNFA G'.

Rip: Remove a state q_r (other than q_{start} , q_{accept}).

Repair: For every two states $q_i \notin \{q_{\text{accept}}, q_r\}$, $q_j \notin \{q_{\text{start}}, q_r\}$, let $R_{i,j}$, $R_{i,r}$, $R_{r,r}$, $R_{r,j}$ be REs on transitions $q_i \to q_j$, $q_i \to q_r$, $q_r \to q_r$ and $q_r \to q_j$ in G, respectively,

In G', put RE $R_{ij} \cup R_{i,r}R_{r,r}^*R_{r,j}$ on transition $q_i \rightarrow q_j$.

Argue that L(G') = L(G), which is regular by IH.

Also constructive.

Examples of Regular Languages

- $\{w \in \{a,b\}^* : |w| \text{ even & every 3rd symbol is an } a\}$
- $\{w \in \{a,b\}^* : \text{There are not 7 } a \text{'s or 7 } b \text{'s in a row} \}$
- $\{w \in \{a,b\}^* : w \text{ has both an even number of } a$'s and an even number of b's $\}$
- Are there non-regular languages???

Goal: Existence of Non-Regular Languages

Intuition:

- Every regular language can be described by a finite string (namely a regular expression).
- To specify an arbitrary language requires an infinite amount of information.
 - For example, an infinite sequence of bits would suffice:
 - Σ^* has a lexicographic ordering, and the i'th bit of an infinite sequence specifying a language would say whether or not the i'th string is in the language.
- ⇒ Some language must not be regular.

How to formalize?

Countability

- A set S is <u>finite</u> if there is a bijection $\{1, \ldots, n\} \leftrightarrow S$ for some $n \ge 0$.
- Countably infinite if there is a bijection $f : \mathcal{N} \leftrightarrow S$

This means that S can be "enumerated," i.e. listed as $\{s_0, s_1, s_2, \ldots\}$ where $s_i = f(i)$ for $i = 0, 1, 2, 3, \ldots$

So ${\mathcal N}$ itself is countably infinite

So is \mathcal{Z} (integers) since $\mathcal{Z} = \{0, -1, 1, -2, 2, \ldots\}$

Q: What is f?

- Countable if S is finite or countably infinite
- Uncountable if it is not countable

Facts about Infinite Sets

 Proposition: The union of 2 countably infinite sets is countably infinite.

If
$$A=\{a_0,a_1,\ldots\}$$
, $B=\{b_0,b_1,\ldots\}$
Then $A\cup B=C=\{c_0,c_1,\ldots\}$
where $c_i=\begin{cases}a_{i/2} & \text{if } i \text{ is even}\\b_{(i-1)/2} & \text{if } i \text{ is odd}\end{cases}$

Q: If we are being fussy, there is a small problem with this argument. What is it?

• **Proposition:** If there is a function $f: \mathcal{N} \to S$ that is onto S then S is countable.

Countable Unions of Countable Sets

• **Proposition:** The union of countably many countably infinite sets is countably infinite

Countable Unions of Countable Sets

• **Proposition:** The union of countably many countably infinite sets is countably infinite

Each element is "reached" eventually in this ordering

Q: What is the bijection $\mathcal{N} \leftrightarrow \mathcal{N} \times \mathcal{N}$?

Are there uncountable sets? (Infinite but not countably infinite)

Theorem: $P(\mathcal{N})$ is uncountable (The set of all sets of natural numbers)

Proof by contradiction:

(i.e. assume that P(N) is countable and show that this results in a contradiction)

- Suppose that $P(\mathcal{N})$ were countable.
- Then there is an enumeration of all subsets of \mathcal{N} say $P(\mathcal{N}) = \{S_0, S_1, \ldots\}$

Diagonalization

- Let $D = \{i \in \mathcal{N} : i \in S_i\}$ be the diagonal.
- $D = YNNY \dots = \{0, 3, \dots\}$
- Let $\overline{D} = \mathcal{N} D$ be its complement.
- $\overline{D} = NYYN \dots = \{1, 2, \dots\}$
- Claim: \overline{D} is omitted from the enumeration, contradicting the assumption that every set of natural numbers is one of the S_i s.

Pf: \overline{D} is different from each row because they differ at the diagonal.

Cardinality of Languages

- An alphabet Σ is finite by definition
- **Proposition:** Σ^* is countably infinite
- So every language is either finite or countably infinite
- $P(\Sigma^*)$ is uncountable, being the set of subsets of a countable infinite set.
 - i.e. There are uncountably many languages over any alphabet
 - **Q:** Even if $|\Sigma| = 1$?

Existence of Non-regular Languages

Theorem: For every alphabet Σ , there exists a non-regular language over Σ .

Proof:

- There are only countably many regular expressions over Σ .
 - \Rightarrow There are only countably many regular languages over Σ .
- There are uncountably many languages over Σ .
- Thus at least one language must be non-regular.
- ⇒ In fact, "almost all" languages must be non-regular.
 - Q: Could we do this proof using DFAs instead?
 - Q: Can we get our hands on an explicit non-regular language?