

# Winning Space Race with Data Science

Maia Otermin May 4, 2024



### **Outline**

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

### **Executive Summary**

- In order to determine what a competitive bid against SpaceX would be, SpaceY needs to determine SpaceX's cost of a launch. One component of cost is the rate of successful and unsuccessful launches under different conditions
- Data on SpaceX Falcon9 launches was gathered, cleaned, and analyzed in order to identify what factors relate to successful mission outcomes
  - Key factors identified: payload mass, orbit, launch site, flight number, and booster version
  - Interactive maps and dashboards were also created to examine patterns in the data
- Four different modeling techniques were tested under a variety of parameters to identify the model & parameter combination that yields the most accurate results
  - (1) Logistic Regression, (2) Smooth Vector Classification, (3) Decision Tree, & (4) K-Nearest Neighbor
- Decision Tree produced the most accurate model, with an accuracy score of 94%
- All analysis, code, and project documentation can be found on Github.

### Introduction

- SpaceY is an company seeking to compete with SpaceX, the leader in the space rocket industry
- Part of SpaceX's success is due to the company's cost to launch a Falcon9 rocket:
  - Falcon9 Rocket: \$62 million
  - Other providers: \$165+ million
- SpaceX is able to offer such a (comparatively) low price because it can reuse the first stage of its rockets, by far the most expensive component
- If SpaceY can determine when and why a first stage rocket lands (and thus be available for reuse), SpaceY can determine the cost of a launch – and develop a competitive bid against SpaceX for a rocket launch
- This project seeks to answers the following questions:
  - Will a SpaceX first-stage rocket land successfully? What factors contribute to a mission outcome?
  - O What is the overall cost of each rocket launch?



# Methodology

#### **Executive Summary**

- Data collection methodology:
  - Collected directly from Space X's API (https://api.spacexdata.com/v4/launches/past)
  - Collected by web-scraping the Wikipedia page for Falcon 9 Launches
     (https://en.wikipedia.org/wiki/List\_of\_Falcon\_9\_and\_Falcon\_Heavy\_launches)
- Perform data wrangling
  - The data was processed to remove missing fields and develop indicator variables
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
  - Multiple techniques were used to build a model, each assessed using accuracy scores

### **Data Collection**

- Two methods were used to collect data on Falcon9 Launches:
  - Accessing the Space X's API directly (https://api.spacexdata.com/v4/launches/past)
  - Collected by web-scraping the Wikipedia page for Falcon 9 Launches (https://en.wikipedia.org/wiki/List\_of\_Falcon\_9\_and\_Falcon\_Heavy\_launches)
- The same variables were collected using either method:
  - Flight Number
  - Date
  - Booster VersionGrid FinsSerial
  - Payload Mass Reused Longitude
  - Orbit
  - Launch Site

- Outcome
- Flights
- Legs
  - Landing Pad

- Block
- ReusedCount

  - Latitude

See Appendix for a full data dictionary

### Data Collection – SpaceX API

 Data was collected directly from the SpaceX API using REST calls

https://api.spacexdata.com/v4/launches/past

- The process for accessing the API involved collecting information from specific columns:
  - Rocket Column
  - Launchpad Column
  - Payload Column
  - Cores Column
- <u>Jupyter Notebook #1</u> contains the completed SpaceX API calls



### **Data Collection - Scraping**

 Data was scraped from the Wikipedia page for Falcon 9 and Falcon Heavy Launches

https://en.wikipedia.org/wiki/List\_of\_Falcon\_9
\_and\_Falcon\_Heavy\_launches

- Information was collected from HTML an table with information for 78 flights
- <u>Jupyter Notebook #2</u> contains the code for this web-scraping process



from the HTML table header

Create a Pandas DataFrame by parsing the launch HTML Tables

# **Data Wrangling**

- The data collection process resulted in a dataset with 17 variables:
  - For additional information on these variables, a data dictionary is included in Appendix A1
- After exploration, some variables were of particular interest:
  - o 3 launch sites:
    - Cape Canaveral Space Force Station Space Launch Complex ("CCSFS SLC-40" or "CCSFS LC-40")
    - Vandenberg Air Force Base Space Launch Complex 4E ("VAFB SLC 4E")
    - Kennedy Space Center Launch Complex 39A ("KSC LC 39A")
  - 11 possible orbits (see Appendix for specific values)
- For easier data analysis, the 'Outcome' variable was used to create a binary variable, 'Class', that abstracts all outcomes to Success (1) or Failure (0)
  - Space X's Falcon 9 success rate, across all launch sites and orbits, is 66.67%
- <u>Jupyter Notebook #3</u> contains the code for the data wrangling portion of this project

### **EDA** with Data Visualization

- Exploratory Data Analysis ("EDA") was conducted using data visualization techniques that rely on Python' Pandas and MatPlotlib libraries. In particular, these relationships were examined:
  - Payload by Flight Number (Has the size of the payload changed as more launches took place?)
  - Launch Site by Flight Number (Is there a pattern in which launch sites were chosen over time?)
  - Launch Site by Payload Mass (Is the size of the payload correlated with the chosen launch site?)
  - Success Rate by Orbit Type (Is the success rate of a launch correlated with the targeted orbit?)
  - Orbit by Flight Number (Has the target orbit of a launch changed over time?)
  - Orbit Type Payload Mass (Is the size of the payload correlated with the targeted orbit for a launch?)
  - Success Rate by Year (Has the success rate for a launch improved over time?)
- Data visualization indicated 12 variables would be useful for modeling
- <u>Jupyter Notebook #5</u> contains the EDA conducted with data visualization techniques

### EDA with SQL

- EDA was also performed using Structured Query Language ("SQL") queries
- The following were examined to search for patterns in the data:
  - Unique launch sites, including records for those marked "CCA"
  - Total payload mass carried by boosters launched by NASA (CRS)
  - Average Payload mass carried by booter version F9 v1.1
  - o Date when first successful landing outcome on a ground pad was achieved
  - List of boosters that have successfully landed on a drone ship with a payload greater than 4,000 kg but less than 6,000 kg.
  - Total number of successful and failed mission outcomes
  - Names of the booster versions that have carried the maximum payload mass
  - o List of launches that failed (the month, booster version, and launch site) in 2015
  - o Successful and failed launches between June 4, 2010 and March 20, 2017
- Jupyter Notebook #4 contains the code for EDA with SQL

### Build an Interactive Map with Folium

- Using the Python library Folium, a geographic analysis of the launch sites was conducted
  - Marked all launch sites using Folium Circles on a map of the United States, centered on NASA's Johnson Space Center in Houston
  - Marked all the successful and failed launches for each site on the map using color-indexed Folium markers
  - Calculated the distances between a launch site to important proximities like railways, highways, and coastlines – and marked an example with a line
- With these visual cues, it was easier to analyze the relationship between launch sites and success rates, as well was what factors might influence launch site selection
- Jupyter Notebook #6 contains the interactive maps created with Folium

### Build a Dashboard with Plotly Dash

- Using the Python libraries Plotly and Dash, a Space X Launch Records Dashboard was developed.
- Two plots displayed data on all launch sites (or one of the four, depending on user selection)
  - Total successful launches were shown in a pie chart
  - o Total successful launches were shown by payload mass and booster version
- These visualizations of the success rates, and the ability to filter them by launch site, made it easy to see patterns by launch site and payload sizes for launches.
- The completed Plotly Dash lab code can be found in <u>Python script file #7</u>

# Predictive Analysis (Classification)

• Multiple modeling techniques and strategies were explored to determine the best predictor of launch success or failure. The process followed a standard flow:



• <u>Jupyter Notebook #8</u> contains the code for predictive analysis

# Results

| Exploratory Data Analysis                                                                                                                                                                                                                                       | Interactive Analytics Demo                                                                                                                                                                       | Predictive Analysis                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>EDA identified the following features as potentially influential on successful landing outcomes:         <ul> <li>Payload Mass</li> <li>Orbit</li> <li>Launch site</li> <li>Flight number (experience)</li> <li>Booster Version</li> </ul> </li> </ul> | <ul> <li>Launch sites are always located near major waterways (i.e. oceans) and have easy access to railways and highways</li> <li>Launch cites in Florida have higher success rates.</li> </ul> | <ul> <li>The model technique with the most accurate predictions is Decision Tree         <ul> <li>94% Accuracy Score</li> </ul> </li> <li>Using a Decision Tree Model, we can predict the success or failure of a Falcon9 landing based on a number of key inputs</li> <li>The model will help determine the overall cost of a launch</li> </ul> |



### Flight Number vs. Launch Site



- In a plot that maps the size of the rocket's payload in kgs over flight number, it is clear that there has been an increase in the max payload size over time, with payloads becoming larger and larger until achieving approx. 10,000 kg around flight 70
- Additionally, it looks like the dots trend towards orange (successful launches) over blue (failed launches), indicating an improvement in success rates as more launches have taken place

# Payload vs. Launch Site



- Comparing the 3 launch sites, it seems like CCAFS SLC 40 (Cape Canaveral, Florida) has had the most launches, including some of the highest payloads
- VAFB SLC 4E (Vandenberg) has trended towards lower payload sizes, on average
- The relationship between payload mass and launch success is unclear, as both sites have a mix – with higher payloads generally having higher success rates than lower payloads at all sites.

### Success Rate vs. Orbit Type



- The success rates are higher for orbits that are father from earth (see Appendices A3 & A4 for a description of orbit types):
  - LEO (Low Earth Orbit) and MEO have lower success rates than GEO and HEO
  - GTO had the lowest success rate, apart from SO (which is similar to SSO)
  - These success rates would be more informative if weighted by the number of times the orbit was attempted – the ones with lower success rates have been attempted more often.
- From this graph, it seems there is a relationship between the type of orbit and the success rate

# Flight Number vs. Orbit Type



- SpaceX has attempted new orbit types as it has conducted more flights:
  - Early flights focused on LEO (Low Earth Orbit), ISS, and GTO orbits
  - With more flights under their belt, SpaceX began conducting launches to ES-L1, SSO, HEO, MEO, VLEO, SO, and GEO
  - While some orbits have only been attempted once, VLEO has become a common orbit after flight no. 60
- While there is a relationship between flight number and orbit type, it does not seem overly strong

# Payload vs. Orbit Type



- Payload mass does affect which orbits are attempted:
  - VLEO has only been attempted for payloads higher than 13,000 kg
  - Payloads for GTO orbit are always between 2,000 kg and 8,000 kg
  - ISS orbit (for International Space Station) has the widest range of payloads, from about 1,000 kg to over 12,000 kg.
- There seems to be a strong relationship between orbit type and payload mass – some orbit types are only attempted if under a payload threshold.

# Launch Success Yearly Trend



- SpaceX has improved its launch capabilities over time, resulting in higher success rates year over year
- From 210 to 2013, all landings were unsuccessful
- Starting in 2014, SpaceX began successfully landing Falcon9 rockets
- Over time, SpaceX has improved its annual success rate to about 80%

### All Launch Site Names

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

%%sql

select distinct Launch\_Site from SPACEXTABLE

#### [Output]:

| Launch_Site  |
|--------------|
| CCAFS LC-40  |
| VAFB SLC-4E  |
| KSC LC-39A   |
| CCAFS SLC-40 |

- This SQL query extracts a list of unique launch site values
- Note: Cape Canaveral is represented by two values: CCAFS LC-40" and "CCAFS SLC-40"

# Launch Site Names Begin with 'CCA'

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

%%sql select \* from SPACEXTABLE where Launch\_Site like 'CCA%' limit 5

#### [Output]:

Booster\_Version Launch\_Site Payload PAYLOAD MASS KG Orbit Customer Mission Outcome Landing Outcome Dragon CCAFS LC-Spacecraft F9 v1.0 B0003 0 LEO Success Failure (parachute) SpaceX Qualification Unit Dragon demo flight C1, two NASA CCAFS LC-F9 v1.0 B0004 CubeSats, (COTS) Success Failure (parachute) barrel of Brouere cheese Dragon CCAFS LC-NASA F9 v1.0 B0005 demo flight Success No attempt (COTS) CCAFS LC-SpaceX NASA F9 v1.0 B0006 Success No attempt CRS-1 (CRS) CCAFS LC-LEO SpaceX NASA F9 v1.0 B0007 Success No attempt CRS-2 (CRS)

- This query identifies the first 5 launches that took place in Cape Canaveral
  - See Appendix A6 for a complete table with all columns.

# **Total Payload Mass**

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

```
%%sql
select sum(PAYLOAD_MASS__KG_)
as Nasa_CRS_payload_sum
from SPACEXTABLE
where Customer = 'NASA (CRS)'
```

#### [Output]:

Nasa\_CRS\_payload\_sum
45596

 This query calculates the total payload amount launched by NASA (CRS) over all launches

# Average Payload Mass by F9 v1.1

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

%%sql select avg(PAYLOAD\_MASS\_\_KG\_) as f9\_1v1\_payload\_avg from SPACEXTABLE where Booster\_Version like 'F9 v1.1%'

#### [Output]:

f9\_1v1\_payload\_avg

2534.666666666665

 This query calculates the average payload for a Falvon9 rocket that's version 1.1

# First Successful Ground Landing Date

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

%%sql select min(Date)
from SPACEXTABLE
where Landing\_Outcome = 'Success (ground pad)'

#### [Output]:

#### min(Date)

2015-12-22

 This query returns the date of the first successful landing on a ground pad

### Successful Drone Ship Landing with Payload between 4000 and 6000

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

%%sql
select Booster\_Version from SPACEXTABLE
where Landing\_Outcome = 'Success (drone ship)'
and PAYLOAD\_MASS\_\_KG\_ > 4000
and PAYLOAD\_MASS\_\_KG\_ < 6000

#### [Output]:

|               | Booster_Version |
|---------------|-----------------|
| F9 FT B1022   |                 |
| F9 FT B1026   |                 |
| F9 FT B1021.2 |                 |
| F9 FT B1031.2 |                 |

 This query returns a list of versions of the Falcon9 rocket that have successfully landed on a drone ship after carrying payloads greater than 4,000kg and less than 6,000kg

### Total Number of Successful and Failure Mission Outcomes

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

```
%%sql
select distinct
    (select count(Mission_Outcome) from SPACEXTABLE
    where Mission_Outcome Like '%Success%')
as success_count,
    (select count(Mission_Outcome)
    from SPACEXTABLE
    where Mission_Outcome Like '%failure%')
as failure_Count FROM SPACEXTABLE
```

#### [Output]:

| success_count | failure_Count |
|---------------|---------------|
| 100           | 1             |

 This query returns a total count of both successful and failed mission outcomes

# **Boosters Carried Maximum Payload**

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

```
%%sql
select distinct Booster_Version from SPACEXTABLE
where PAYLOAD_MASS__KG_ =
    (select max(PAYLOAD_MASS__KG_)
    from SPACEXTABLE)
```

#### [Output]:

| Booster_Version |               |
|-----------------|---------------|
| F9 B5 B1048.4   | F9 B5 B1049.5 |
| F9 B5 B1049.4   | F9 B5 B1060.2 |
| F9 B5 B1051.3   | F9 B5 B1058.3 |
| F9 B5 B1056.4   | F9 B5 B1051.6 |
| F9 B5 B1048.5   | F9 B5 B1060.3 |
| F9 B5 B1051.4   | F9 B5 B1049.7 |

 This query returns a list of the Falcon9 versions that have carried ever carried the maximum payload

### 2015 Launch Records

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

%%sql select substr(Date, 6, 2) as month, substr(Date, 0, 5) as year, Booster\_Version, Launch\_Site from SPACEXTABLE where landing\_outcome = "Failure (drone ship)" and year = '2015'

#### [Output]:

| month | year | Booster_Version | Launch_Site |
|-------|------|-----------------|-------------|
| 01    | 2015 | F9 v1.1 B1012   | CCAFS LC-40 |
| 04    | 2015 | F9 v1.1 B1015   | CCAFS LC-4  |

 This query returns a list of all 2015 launch records with unsuccessful landings on a drone ship, including the launch site and version of the Falcon9 booster used

### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

#### **SQL Query (in Jupyter Notebook with SQL Magic)**

%%sql
select launch site, count('Mission\_Outcome')
as MISSION\_OUTCOME\_COUNT
where date between '2010-06-04' and '2017-03-20'
from SPACEXTABLE
group by Launch\_Site
order by MISSION\_OUTCOME\_COUNT DESC

#### [Output]:

| Launch_Site | MISSION_OUTCOME_COUNT |
|-------------|-----------------------|
| CCAFS LC-40 | 26                    |
| VAFB SLC-4E | 3                     |
| KSC LC-39A  | 2                     |

 This query returns a list of launch sites and a count of the launches/missions conducted at each site, in descending order by mission count, for launches that occurred between June 4, 2010 and March 20, 2017



### Folium maps key locations for Space X Launches



- All launch sites located in the southern United States
- Most have occurred in Central Florida, implying that the warmer climates are worth potential interference by stormy weather

### Individual launches are mapped and color-coded



- The folium map was modified to have markers for each launch, color-coded to visually represent success or failure
- As a user zooms in (or out), they see more (or grouped) markers.

### Folium also maps proximity to key geographic features



- All 3 launch sites are close to water or a coastline
- All 3 launch sites also are close to highways and railways
- This can be visually represented and explored using a Folium map



## A dashboard easily visualizes launch site success rates



- The majority of successful launches have occurred in Central Florida, either at Cape Canaveral (~41.6%) or Kennedy Space Center (~41.7%)
- Vandenberg Space Force Base is responsible for  $\sim 16.7\%$  of successful launches

## Individual Site Information can be seen using a filter



- At 76.9%, Vandenberg Space Force Base has the highest launch success ratio of all launch sites
- Dashboard results for the other launch sites are available in Appendices A8, A9, A10, & A11

## A scatter plot maps successes by Booster Version



- A second plots allows further examination of the selected launch site(s)
  - This graph shows more information and can be adjusted by a slider
  - Color-coded dots indicate that the "FT" Booster version has had the most successful launches of all versions, while "v1.1" has had the least
  - Over time, launches have shifted away from "v1" and "v1.1" and presumably towards newer versions



# **Classification Accuracy**

#### **Accuracy Scores for Test Data**



- Accuracy scores were calculated for each of the 4 model types:
  - Logistical Regression (Appendix A13)
  - Support Vector Machine/Classification (Appendix A14)
  - Decision Trees (Appendix A15)
  - K-Nearest Neighbor (Appendix A16)
- Additionally, for each of the Grid Searches conducted to identify the strongest version of a specific model type, we identified:
  - The optimal parameters
  - That version's accuracy score
- The Decision Tree modeling technique had the highest Accuracy Score, at 0.94

#### Confusion Matrix – Decision Tree



- The Decision Tree technique produced the most accurate model, with a test accuracy score of 0.944444
  - The best parameters, per the grid search, were:
    - criterion: 'gini'
    - max\_depth: 16
    - max\_features: 'sqrt'
    - min\_samples\_leaf: 2
    - min\_samples\_split: 10
    - splitter: 'random'
  - The best accuracy score was 0.873214
- As shown in the confusion matrix, the model had only one false positive
  - 5 landing failures were predicted correctly
  - 12 landing successes were predicted correctly

#### **Conclusions**

- There is a relationship between the success of a launch and its payload, orbit, and launch site.
  - The flight number (indicative of experience) is also correlated to success with larger flight numbers having higher success rates
  - Booster version is also correlated with success, though there is a correlation between booster version and experience (flight number)
- Launch sites are always located near major waterways (i.e. oceans)
  - Easy access to railways and highways is also prioritized
  - Launch cites in Florida have higher success rates
- The model technique with the most accurate predictions is Decision Tree
- Using a Decision Tree Model, we can predict the success or failure of a Falcon9 landing based on a number of key inputs – which will help determine the overall cost of a launch

# **Appendix**

The following 18 slides include relevant assets like Python code snippets, SQL queries, charts, Notebook outputs, or data sets that were created during this project and provide useful, if more detailed, information on the items discussed in the report.

| List of Appendix Slides                             |                                                    |  |  |  |
|-----------------------------------------------------|----------------------------------------------------|--|--|--|
| 1. Data Dictionary                                  | 10. Dashboard for KSC LC-39A                       |  |  |  |
| 2. List of All Launch Sites                         | 11. Dashboard for VAFB SLC-4E                      |  |  |  |
| 3. Types of Orbits                                  | 12. Summary Table of Model Outcomes                |  |  |  |
| 4. Diagram of 4 Possible Orbits                     | 13. Confusion Matrix – Logarithmic Regression      |  |  |  |
| <ol><li>Detailed Types of Launch Outcomes</li></ol> | 14. Confusion Matrix – SVM                         |  |  |  |
| 6. First 5 CCA Launches (Full Table)                | 15. Confusion Matrix – Decision Tree               |  |  |  |
| 7. Dashboard for All Launch Sites                   | 16. Confusion Matrix – K-Nearest Neighbors         |  |  |  |
| 8. Dashboard for CCAFS LC-40                        | 17. Bar Chart of Accuracy Scores (Test)            |  |  |  |
| 9. Dashboard for CCAFS SLC-40                       | 18. Bar Chart of Accuracy Scores (Best GridSearch) |  |  |  |

# A1: Data Dictionary

| Variable       | Data Type | Description                                                                                    |
|----------------|-----------|------------------------------------------------------------------------------------------------|
| FlightNumber   | Int64     | A launch's flight number, starting at 1 and ending at 90                                       |
| Date           | Object    | The data a launch occurred; formatted as YYYY-MM-DD                                            |
| BoosterVersion | Object    | The specific version of the booster that was used for the launched                             |
| PayloadMass    | Float64   | The size or mass, in kilograms, of the payload sent to space in a launch                       |
| Orbit          | Object    | The type of orbit that for a specific launch (11 values)                                       |
| LaunchSite     | Object    | The location from which a rocket was launched (4 values for 3 space launch centers)            |
| Outcome        | Object    | Indicates the outcome of the launch – a successful landing or failed one                       |
| Flights        | Int64     | The number of flights with this core (Falcon 9 Rocket)                                         |
| GridFins       | Bool      | Indicated whether a GridFin was used (True) or not (False)                                     |
| Reused         | Bool      | Indicated whether the first stage rocker was reused (True) or not (False)                      |
| Legs           | Bool      | Indicates whether legs were used (True) or (Not)                                               |
| LandingPad     | Object    | The landing pad used; "None" in instances where a landing failed.                              |
| Block          | Float64   | The block number of the core (Falcon 9 rocket), which is used to separate version of cores     |
| ReusedCount    | Int64     | The number of times the first-stage rocket has been reused                                     |
| Serial         | Object    | The serial number of the core (Falcon 9 rocket) used in a launch                               |
| Longitude      | Float64   | The longitude of the Launch Site                                                               |
| Latitude       | Float64   | The latitude of the Launch Site                                                                |
| Class          | Float64   | Binary value based on 'Outcome' that generalizes outcomes details: success (1) and failure (0) |

### A2: List of All Launch Sites

| Value in Data | Launch Site Name                                        | Location (State) | Count |
|---------------|---------------------------------------------------------|------------------|-------|
| CCAFS SLC 40  | Cape Canaveral Space Force Station Space Launch Complex | Florida          | 55    |
| KSC LC 39A    | Kennedy Space Center Launch Complex 39A                 | Florida          | 22    |
| VAFB SLC 4E   | Vandenberg Air Force Base Space Launch Complex 4E       | California       | 13    |
|               |                                                         | Total:           | 90    |

## A3: Types of Orbits

- **LEO**: Low Earth orbit (LEO)is an Earth-centred orbit with an altitude of 2,000 km (1,200 mi) or less (approximately one-third of the radius of Earth),[1] or with at least 11.25 periods per day (an orbital period of 128 minutes or less) and an eccentricity less than 0.25.[2] Most of the manmade objects in outer space are in LEO [1].
- **VLEO**: Very Low Earth Orbits (VLEO) can be defined as the orbits with a mean altitude below 450 km. Operating in these orbits can provide a number of benefits to Earth observation spacecraft as the spacecraft operates closer to the observation[2].
- **GTO** A geosynchronous orbit is a high Earth orbit that allows satellites to match Earth's rotation. Located at 22,236 miles (35,786 kilometers) above Earth's equator, this position is a valuable spot for monitoring weather, communications and surveillance. Because the satellite orbits at the same speed that the Earth is turning, the satellite seems to stay in place over a single longitude, though it may drift north to south," NASA wrote on its Earth Observatory website [3].
- **SSO (or SO)**: It is a Sun-synchronous orbit also called a heliosynchronous orbit is a nearly polar orbit around a planet, in which the satellite passes over any given point of the planet's surface at the same local mean solar time [4].
- **ES-L1**: At the Lagrange points the gravitational forces of the two large bodies cancel out in such a way that a small object placed in orbit there is in equilibrium relative to the center of mass of the large bodies. L1 is one such point between the sun and the earth [5].
- **HEO** A highly elliptical orbit, is an elliptic orbit with high eccentricity, usually referring to one around Earth [6].
- **ISS** A modular space station (habitable artificial satellite) in low Earth orbit. It is a multinational collaborative project between five participating space agencies: NASA (United States), Roscosmos (Russia), JAXA (Japan), ESA (Europe), and CSA (Canada) [7]
- **MEO** Geocentric orbits ranging in altitude from 2,000 km (1,200 mi) to just below geosynchronous orbit at 35,786 kilometers (22,236 mi). Also known as an intermediate circular orbit. These are "most commonly at 20,200 kilometers (12,600 mi), or 20,650 kilometers (12,830 mi), with an orbital period of 12 hours [8]
- HEO Geocentric orbits above the altitude of geosynchronous orbit (35,786 km or 22,236 mi) [9]
- GEO It is a circular geosynchronous orbit 35,786 kilometres (22,236 miles) above Earth's equator and following the direction of Earth's rotation [10]
- PO It is one type of satellites in which a satellite passes above or nearly above both poles of the body being orbited (usually a planet such as the Earth [11]

# A4: Diagram of 4 Possible Orbits



# A5: Detailed Types of Launch Outcomes

| Value in Data | Description                                             | Count |
|---------------|---------------------------------------------------------|-------|
| True ASDS     | Successfully landed on a drone ship                     | 41    |
| False ASDS    | Unsuccessfully landed on a drone ship                   | 6     |
| None ASDS     | Failure to land                                         | 2     |
| True RTLS     | Successfully landed on a ground pad                     | 14    |
| False RTLS    | Unsuccessfully landed on a ground pad                   | 1     |
| True Ocean    | Successfully landed on a specific region of the ocean   | 5     |
| False Ocean   | Unsuccessfully landed on a specific region of the ocean | 2     |
| None None     | Failure to land                                         | 19    |
|               | Total:                                                  | 90    |

# A6: First 5 CCA Launches (Full Table)

| Date       | Time<br>(UTC) | Booster_Version | Launch_Site | Payload                                                                      | PAYLOAD_MASSKG_ | Orbit        | Customer              | Mission_Outcome | Landing_Outcome     |
|------------|---------------|-----------------|-------------|------------------------------------------------------------------------------|-----------------|--------------|-----------------------|-----------------|---------------------|
| 2010-06-04 | 18:45:00      | F9 v1.0 B0003   | CCAFS LC-40 | Dragon<br>Spacecraft<br>Qualification<br>Unit                                | 0               | LEO          | SpaceX                | Success         | Failure (parachute) |
| 2010-12-08 | 15:43:00      | F9 v1.0 B0004   | CCAFS LC-40 | Dragon demo<br>flight C1, two<br>CubeSats,<br>barrel of<br>Brouere<br>cheese | 0               | LEO<br>(ISS) | NASA<br>(COTS)<br>NRO | Success         | Failure (parachute) |
| 2012-05-22 | 7:44:00       | F9 v1.0 B0005   | CCAFS LC-40 | Dragon demo<br>flight C2                                                     | 525             | LEO<br>(ISS) | NASA<br>(COTS)        | Success         | No attempt          |
| 2012-10-08 | 0:35:00       | F9 v1.0 B0006   | CCAFS LC-40 | SpaceX CRS-1                                                                 | 500             | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |
| 2013-03-01 | 15:10:00      | F9 v1.0 B0007   | CCAFS LC-40 | SpaceX CRS-2                                                                 | 677             | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |

#### A7: Dashboard for All Launch Sites



#### A8: Dashboard for CCAFS LC-40



#### A9: Dashboard for CCAFS SLC-40



### A10: Dashboard for KSC LC-39A



### A11: Dashboard for VAFB SLC-4E



# A12: Summary Table of Model Outcomes

|                                | logreg                                                                         | svm                                                                                         | tree                                                                                                                                                                                         | knn                                                                               |  |
|--------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
| Accuracy Test<br>(Test Data)   | 0.833333                                                                       | 0.833333                                                                                    | 0.944444                                                                                                                                                                                     | 0.833333                                                                          |  |
| Best<br>Parameters             | <ul><li>'C': 0.01,</li><li>'penalty': 'I2'</li><li>'solver': 'Ibfgs'</li></ul> | <ul><li>'C': 1.0</li><li>'gamma': 0.03162277660168379</li><li>'kernel': 'sigmoid'</li></ul> | <ul> <li>'criterion': 'gini'</li> <li>max_depth': 16</li> <li>'max_features': 'sqrt'</li> <li>min_samples_leaf': 2</li> <li>'min_samples_split': 10</li> <li>'splitter': 'random'</li> </ul> | <ul><li> 'algorithm': 'auto'</li><li> 'n_neighbors': 10</li><li> 'p': 1</li></ul> |  |
| Best Accuracy Score (Training) | 0.846429                                                                       | 0.848214                                                                                    | 0.873214                                                                                                                                                                                     | 0.84821                                                                           |  |

### A13: Confusion Matrix - Logarithmic Regression





|                 | Count |
|-----------------|-------|
| True Positives  | 12    |
| True Negatives  | 3     |
| False Positives | 3     |
| False Negatives | 0     |
| Total:          | 18    |

#### A14: Confusion Matrix - SVM

yhat=svm\_cv.predict(X\_test)
plot\_confusion\_matrix(Y\_test,yhat)



|                 | Count |
|-----------------|-------|
| True Positives  | 12    |
| True Negatives  | 3     |
| False Positives | 3     |
| False Negatives | 0     |
| Total:          | 18    |

# A15: Confusion Matrix - Decision Tree

yhat\_tree = tree\_cv.predict(X\_test)
plot\_confusion\_matrix(Y\_test,yhat\_tree)



|                 | Count |
|-----------------|-------|
| True Positives  | 12    |
| True Negatives  | 5     |
| False Positives | 1     |
| False Negatives | 0     |
| Total:          | 18    |

### A16: Confusion Matrix - K-Nearest Neighbors

yhat = knn\_cv.predict(X\_test)
plot\_confusion\_matrix(Y\_test,yhat)



|                 | Count |
|-----------------|-------|
| True Positives  | 12    |
| True Negatives  | 3     |
| False Positives | 3     |
| False Negatives | 0     |
| Total:          | 18    |

### A17: Bar Chart of Accuracy Scores (Test)

```
| bar_a=sns.barplot(data=all_scores_pd)
  bar_a.set_ylim(0,1)
(0.0, 1.0)
   1.0
   0.8
   0.6
   0.4
   0.2
   0.0
             logreg
                              svm
                                              tree
                                                               knn
```

#### A18: Bar Chart of Accuracy Scores (Best GridSearch)

```
bar_b=sns.barplot(data=all_best_scores_pd)
bar_b.set_ylim(0,1)
(0.0, 1.0)
  1.0
 0.8
 0.6
 0.4
 0.2
 0.0
           logreg
                                                               knn
                             svm
                                              tree
```

