Math 3B: Lecture 11

Noah White

February 6, 2017

Introduction

Quiz this week

- Quiz 3 questions will be drawn from problem set 5
- Notes on long division and partial fractions online

Survey

I have put a survey online: math.ucla.edu/~noah/3Bsurvey

Last time

• Integration by parts

Last time

- Integration by parts
- Polynomial long division

How to deal with rational functions?

How can we integrate something like

$$\int \frac{3x^3 - 7x^2 + 17x - 3}{x^2 - 2x - 8} \; \mathrm{d}x$$

or

$$\int \frac{x+2}{x^3-x} \, \mathrm{d}x?$$

Long division of polynomials

For the first example we can rewrite it in the form

$$\frac{3x^3 - 7x^2 + 17x - 3}{x^2 - 2x - 8} = 3x - 1 + \frac{39x - 11}{x^2 - 2x - 8}$$

using polynomial long division.

Long division of polynomials

For the first example we can rewrite it in the form

$$\frac{3x^3 - 7x^2 + 17x - 3}{x^2 - 2x - 8} = 3x - 1 + \frac{39x - 11}{x^2 - 2x - 8}$$

using polynomial long division.

This is still not something we can integrate so we need to go further.

Partial fractions

When we are faced with a sum of the form

$$\frac{1}{x+1} + \frac{3}{2-3x} + \cdots$$

Partial fractions

When we are faced with a sum of the form

$$\frac{1}{x+1} + \frac{3}{2-3x} + \cdots = \frac{P(x)}{Q(x)}$$

Partial fractions

When we are faced with a sum of the form

$$\frac{1}{x+1} + \frac{3}{2-3x} + \dots = \frac{P(x)}{Q(x)}$$

How do we reverse this process?

Answer: partial fractions

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2)\cdots(a_nx + b_n)$$

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2)\cdots(a_nx + b_n)$$

• If the degree of Q(x) is larger than the degree of P(x)

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2)\cdots(a_nx + b_n)$$

- If the degree of Q(x) is larger than the degree of P(x)
- Q(x) has no repeated factors. E.g. Q(x) = (x-1)(x+2) but not $Q(x) = (x-1)^2(x+2)$, then

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2)\cdots(a_nx + b_n)$$

- If the degree of Q(x) is larger than the degree of P(x)
- Q(x) has no repeated factors. E.g. Q(x) = (x-1)(x+2) but not $Q(x) = (x-1)^2(x+2)$, then

We want to rewrite $\frac{P(x)}{Q(x)}$ as a sum. Let

$$Q(x) = (a_1x + b_1)(a_2x + b_2)\cdots(a_nx + b_n)$$

- If the degree of Q(x) is larger than the degree of P(x)
- Q(x) has no repeated factors. E.g. Q(x)=(x-1)(x+2) but not $Q(x)=(x-1)^2(x+2)$, then

we can always find constants A_1, A_2, \ldots, n so that

$$\frac{P(x)}{Q(x)} = \frac{A_1}{a_1 x + b_1} + \frac{A_2}{a_2 x + b_2} + \dots \frac{A_n}{a_n x + b_n}$$

$$\frac{1}{(x-1)(x+1)} = \frac{A}{x+1} + \frac{B}{x-1}$$

$$\frac{1}{(x-1)(x+1)} = \frac{A}{x+1} + \frac{B}{x-1}$$
 Multiplying both sides by $(x-1)(x+1)$
$$1 = \frac{A(x-1)(x+1)}{x+1} + \frac{B(x-1)(x+1)}{x-1}$$

= A(x-1) + B(x+1)= (A+B)x + (B-A)

$$\frac{1}{(x-1)(x+1)} = \frac{A}{x+1} + \frac{B}{x-1}$$

Multiplying both sides by (x-1)(x+1)

$$0x + 1 = \frac{A(x-1)(x+1)}{x+1} + \frac{B(x-1)(x+1)}{x-1}$$
$$= A(x-1) + B(x+1)$$
$$= (A+B)x + (B-A)$$

Comparing coefficients

$$A + B = 0$$
 and $B - A = 1$

$$\frac{1}{(x-1)(x+1)} = \frac{A}{x+1} + \frac{B}{x-1}$$

Multiplying both sides by (x-1)(x+1)

$$0x + 1 = \frac{A(x-1)(x+1)}{x+1} + \frac{B(x-1)(x+1)}{x-1}$$
$$= A(x-1) + B(x+1)$$
$$= (A+B)x + (B-A)$$

Comparing coefficients

$$A + B = 0$$
 and $B - A = 1$

$$-2A = 1$$
 hence $A = -\frac{1}{2}$ and $B = \frac{1}{2}$.

Repeated factors

What if
$$q(x)$$
 contains repeated factors? E.g. if $q(x) = (x-1)^2$ or $q(x) = (x-1)(x+2)^3$?

Repeated factors

What if q(x) contains repeated factors? E.g. if $q(x) = (x-1)^2$ or $q(x) = (x-1)(x+2)^3$?

For every factor $(ax + b)^k$ in q(x), the partial fraction expansion has terms of the form

$$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \frac{A_3}{(ax+b)^3} + \cdots + \frac{A_k}{(ax+b)^k}.$$

$$\frac{x}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$

$$\frac{x}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$

Multiplying both sides by $(x-1)^2$

$$x = A(x-1) + B$$
$$= Ax + (B - A)$$

$$\frac{x}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$

Multiplying both sides by $(x-1)^2$

$$x = A(x - 1) + B$$
$$= Ax + (B - A)$$

Comparing coefficients

$$A=1$$
 and $B-A=0$

$$\frac{x}{(x-1)^2} = \frac{A}{x-1} + \frac{B}{(x-1)^2}$$

Multiplying both sides by $(x-1)^2$

$$x = A(x - 1) + B$$
$$= Ax + (B - A)$$

Comparing coefficients

$$A=1$$
 and $B-A=0$

So

$$A=1$$
 and $B=1$.

Side note: integrating $\frac{1}{x}$.

Recall that

Fact

$$\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C$$

Side note: integrating $\frac{1}{x}$.

Recall that

Fact

$$\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C$$

Side note: integrating $\frac{1}{x}$.

Recall that

Fact

$$\int \frac{1}{x} \, \mathrm{d}x = \ln|x| + C$$

Using substitution this gives the formula

$$\int \frac{1}{ax+b} \, \mathrm{d}x = \frac{1}{a} \ln|ax+b| + C.$$

Side note: integrating $\frac{1}{x^k}$.

Recall that if k > 1

Fact

$$\int \frac{1}{x^k} \, \mathrm{d}x = -\frac{1}{(k-1)x^{k-1}} + C$$

Side note: integrating $\frac{1}{x^k}$.

Recall that if k > 1

Fact

$$\int \frac{1}{x^k} \, \mathrm{d}x = -\frac{1}{(k-1)x^{k-1}} + C$$

Side note: integrating $\frac{1}{x^k}$.

Recall that if k > 1

Fact

$$\int \frac{1}{x^k} \, \mathrm{d}x = -\frac{1}{(k-1)x^{k-1}} + C$$

Using substitution this gives the formula

$$\int \frac{1}{(ax+b)^k} dx = -\frac{1}{a(k-1)(ax+c)^{k-1}} + C.$$

Action plan

Action plan

1. Express $\frac{p(x)}{q(x)}$ in the form

$$d(x) + \frac{r(x)}{q(x)}$$

using polynomial long division.

Action plan

1. Express $\frac{p(x)}{q(x)}$ in the form

$$d(x) + \frac{r(x)}{q(x)}$$

using polynomial long division.

2. Write $\frac{r(x)}{g(x)}$ as a sum of fractions of the form

$$\frac{A}{(ax+b)^k}$$

using partial fractions

Action plan

1. Express $\frac{p(x)}{q(x)}$ in the form

$$d(x) + \frac{r(x)}{q(x)}$$

using polynomial long division.

2. Write $\frac{r(x)}{q(x)}$ as a sum of fractions of the form

$$\frac{A}{(ax+b)^k}$$

using partial fractions

3. Integrate all these pieces seperately.

$$I = \int \frac{x^4 - 3x^2 + 3}{x^2 - 1} \, \mathrm{d}x$$

$$I = \int \frac{x^4 - 3x^2 + 3}{x^2 - 1} \, \mathrm{d}x$$

Solution

Using long division

$$\frac{x^4 - 3x^2 + 3}{x^2 - 1} = x^2 - 2 + \frac{1}{x^2 - 1}$$

$$I = \int \frac{x^4 - 3x^2 + 3}{x^2 - 1} \, \mathrm{d}x$$

Solution

Using long division and partial fractions

$$\frac{x^4 - 3x^2 + 3}{x^2 - 1} = x^2 - 2 + \frac{1}{x^2 - 1} = x^2 - 2 + \frac{1}{2(x - 1)} - \frac{1}{2(x + 1)}$$

$$I = \int \frac{x^4 - 3x^2 + 3}{x^2 - 1} \, \mathrm{d}x$$

Solution

Using long division and partial fractions

$$\frac{x^4 - 3x^2 + 3}{x^2 - 1} = x^2 - 2 + \frac{1}{x^2 - 1} = x^2 - 2 + \frac{1}{2(x - 1)} - \frac{1}{2(x + 1)}$$

So

$$I = \frac{1}{3}x^2 - 2x + \frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C.$$

$$I = \int \frac{x^3 - 2x^2 + 4x}{(x - 1)^3} \, \mathrm{d}x$$

$$I = \int \frac{x^3 - 2x^2 + 4x}{(x - 1)^3} \, \mathrm{d}x$$

Solution

Using long division

$$\frac{x^3 - 2x^2 + 4x}{(x-1)^3} = 1 + \frac{x^2 + x + 1}{(x-1)^3}$$

$$I = \int \frac{x^3 - 2x^2 + 4x}{(x - 1)^3} \, \mathrm{d}x$$

Solution

Using long division and partial fractions

$$\frac{x^3 - 2x^2 + 4x}{(x - 1)^3} = 1 + \frac{x^2 + x + 1}{(x - 1)^3} = 1 + \frac{1}{x - 1} + \frac{3}{(x - 1)^2} + \frac{3}{(x - 1)^3}$$

$$I = \int \frac{x^3 - 2x^2 + 4x}{(x - 1)^3} \, \mathrm{d}x$$

Solution

Using long division and partial fractions

$$\frac{x^3 - 2x^2 + 4x}{(x-1)^3} = 1 + \frac{x^2 + x + 1}{(x-1)^3} = 1 + \frac{1}{x-1} + \frac{3}{(x-1)^2} + \frac{3}{(x-1)^3}$$

So

$$I = x + \ln|x - 1| - \frac{3}{x - 1} - \frac{3}{2(x - 1)^2} + C.$$