PCSO: physique des ondes Cours 2 - étude d'ondes progressives

2 Entrez le code d'événement dans le bandeau supérieur

1 Envoyez @NGSTBK au 06 44 60 96 62

Vous pouvez participer

Rappels

- Une onde est la propagation d'une perturbation, elle transporte de l'énergie et non de la matière.
- Les ondes sont émises par des sources et se propagent dans un milieu (mais une OEM n'a pas besoin de milieu matériel)
- La vitesse de propagation s'appelle la célérité, elle dépend de la nature du milieu.

- Une onde progressive se propage sans atténuation ni déformation.

Propagation à une dimension

Soit une onde progressive transversale droite à une dimension :

La coordonnée y d'un point est fonction de l'espace et du temps : y = f(x,t).

Entre les deux instants, l'onde a parcouru une distance c.∆t

Propagation à une dimension

On obtient l'onde après propagation par simple translation dans l'espace :

Si t_1 =0 est l'origine des temps, alors l'onde se propageant pendant un temps t vérifie : f(x,t) = f(x-ct,0)

Propagation à une dimension

Si Δt est le temps de parcours entre la position x=0 et la position x, on a Δt =x/c et ainsi : $f(x,t) = f(0,t-\Delta t) = f(0,t-x/c)$

Cas d'une onde gauche

La propagation se fait selon la même direction, mais dans l'autre sens : translation vers la gauche.

L'onde à *t*=0 est maintenant à droite de l'onde à *t*>0.

$$f(x,t) = f(x+ct,0)$$
 signe +!

Pour la propagation à partir de x=0, on a maintenant des x négatifs : $\Delta t = -x/c$ et $f(x,t) = f(0,t-\Delta t) = f(0,t+x/c)$ signe +!

Deux points de vue

Imaginons une onde se déplaçant le long d'une corde :

On peut représenter la perturbation à différents temps donnés, en immortalisant les positions des points de la corde

On peut aussi représenter la perturbation à une position donnée, en fonction du temps

Deux points de vue

Imaginons une onde se déplaçant le long d'une corde :

On peut représenter la perturbation à différents temps donnés, en immortalisant les positions des points de la corde

On peut aussi représenter la perturbation à une position donnée, en fonction du temps

Pour une onde progressive droite ces représentations sont inversées, comme dans un miroir. Ce n'est pas le cas pour une onde gauche.

Propagation des ondes progressives

On a vu comment propager une onde dans le temps et dans l'espace, par simple opération de translation :

$$f(x,t) = f(0,t\pm x/c) = f(x\pm ct,0)$$

Les deux aspects sont importants : une onde dépend de la position et du temps. Mais pour représenter l'onde il faut choisir un point de vue.

Limites de l'onde progressive

En réalité les ondes (en particulier mécaniques) ne sont pas parfaitement progressives : elles subissent de l'amortissement et des déformations et la translation n'est alors plus exacte.

Dans les prochains cours les ondes seront considérées comme progressives : elles se répètent à l'identique à l'infini

Exercices

TD1: 1.5, 1.6, 2.1, 2.2