

Model Name: T240XVN01.0 SKD Panel

Issue Date: 2012/08/15

() Preliminary Specifications(*)Final Specifications

Customer Signature	Date	AUO	Date							
Approved By		Approval By PM Director								
Note		Reviewed By RD Director								
		Reviewed By Project Leader るまる。								
		Prepared By PM Kelly Tseng								

Contents

No		
		CONTENTS
		RECORD OF REVISIONS
1		GENERAL DESCRIPTION
2		ABSOLUTE MAXIMUM RATINGS
3		ELECTRICAL SPECIFICATION
	3-1	ELECTRIACL CHARACTERISTICS
	3-2	INTERFACE CONNECTIONS
	3-3	SIGNAL TIMING SPECIFICATION
	3-4	SIGNAL TIMING WAVEFORM
	3-5	COLOR INPUT DATA REFERENCE
	3-6	POWER SEQUENCE
4		OPTICAL SPECIFICATION
5		Open Cell Drawing
6		RELIABILITY TEST ITEMS
7		AUO's Basic BLU Optical Performance
8		INTERNATIONAL STANDARD
	8-1	SAFETY
	8-2	EMC
9		PACKING
	9-1	DEFINITION OF LABEL
	9-2	PACKING METHODS
10		PRECAUTION
	10-1	MOUNTING PRECAUTIONS
	10-2	OPERATING PRECAUTIONS
	10-3	ELECTROSTATIC DISCHARGE CONTROL
	10-4	PRECAUTIONS FOR STRONG LIGHT EXPOSURE
	10-5	STORAGE
	10-6	HANDLING PRECAUTIONS FOR PROTECT FILM

Record of Revision

Version	Date	Page	Description
0.0	2012/02/06		First release
0.1	2012/05/15	4	Update general description
		15	Update optical specification (Cell Transparency)
		20	Update AUO's Basic BLU Optical Performance
0.2	2012/05/18	1	Model Name: T240XVN02.0 SKD Panel
0.3	2012/08/15	1	Model Name: T240XVN01.0

1. General Description

This specification applies to the 24.0 inch Color TFT-LCD open cell unit. T240XVN01.0. This LCD open cell unit has a TFT active matrix type liquid crystal panel 1,366x 768 pixels, and diagonal size of 24.0 inch. This open cell unit supports 1,366x 768 mode. Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 8-bit gray scale signal for each dot.

The T240XVN01.0 has been designed to apply the 8-bit 1 channel LVDS interface method. It is intended to support displays where high brightness, wide viewing angle, high color saturation, and high color depth are very important.

* General Information

Items	Specification	Unit	Note
Active Screen Size	24.00	inch	
Display Area	531.72(H) x 298.94 (V)	mm	
Outline Dimension	546.06 (H) x 314.78 (V)	mm	
Driver Element	a-Si TFT active matrix		
Display Colors	8 bit, 16.7M	Colors	
Number of Pixels	1,366x 768	Pixel	
Pixel Pitch	0.389 (H) x 0.389 (W)	mm	
Pixel Arrangement	RGB Horizontal stripe		
Display Operation Mode	Normally Black		
Surface Treatment	ace Treatment Anti-Glare, 3H		Haze=2%
Weight	535.1	g	

2. Absolute Maximum Ratings

The followings are maximum values which, if exceeded, may cause faulty operation or damage to the unit

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	Vcc	-0.3	14	[Volt]	Note 1
Input Voltage of Signal	Vin	-0.3	4	[Volt]	Note 1
Operating Temperature	TOP	0	+50	[°C]	Note 2
Operating Humidity	HOP	10	90	[%RH]	Note 2
Storage Temperature	TST	-20	+60	[°C]	Note 2
Storage Humidity	HST	10	90	[%RH]	Note 2
Panel Surface Temperature	PST		65	[°C]	Note 3

Note 1: Duration:50 msec.

The relative humidity must not exceed 90% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C.

Note 3: Surface temperature is measured at 50°C Dry condition

3. Electrical Specification

The T240XVN01.0 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input for BLU is to power inverter.

3.1.1 Electrical Characteristics

	Parameter	Cymbol		Value		Unit	Note
	Farameter	Symbol	Min.	Тур.	Max	Uffil	Note
LCD							
Power Su	pply Input Voltage	V_{DD}	10.8	12	13.2	V _{DC}	1
Power Su	pply Input Current	I _{DD}		0.28	0.483	Α	2
Power Co	nsumption	Pc		3.363	4.275	Watt	2
Inrush Cu	rrent	I _{RUSH}			3	Α	3
	Input Differential Voltage	V _{ID}	200	400	600	mV_{DC}	4
LVDS	Differential Input High Threshold Voltage	V_{TH}			+100	mV_{DC}	4
Interface	Differential Input Low Threshold Voltage	V _{TL}	-100			mV_{DC}	4
	Input Common Mode Voltage	V _{ICM}	1.1	1.25	1.4	V_{DC}	4
CMOS	Input High Threshold Voltage	V _{IH} (High)	2.7		3.3	V_{DC}	
Interface	Input Low Threshold Voltage	V _{IL} (Low)	0		0.6	V _{DC}	
Backlight	Power Consumption	P_{BL}	45	50	55	Watt	

3.1.2: AC Characteristics

	Parameter	Symbol		Value	Unit	Note	
	Farameter	Symbol	Min.	Тур.	Max	Oill	Note
	Receiver Clock : Spread Spectrum	Fclk_ss	Fclk		Fclk	MHz	8
	Modulation range		-3%		+3%	1011 12	
LVDS Interface	Receiver Clock : Spread Spectrum Modulation frequency	Fss	30	1	200	KHz	8
Interiace	Receiver Data Input Margin						
	Fclk = 85 MHz	tRMG	-0.4		0.4	ns	9
	Fclk = 65 MHz		-0.5		0.5		

Note:

- 1. The ripple voltage should be controlled under 10% of V_{CC}
- 2. Test Condition:
 - (1) $V_{DD} = 12V$
 - (2) Fv = 60Hz
 - (3) $F_{CLK} = Max. Freq.$
 - (4) Temperature = 25 $^{\circ}$ C
 - (5) Test Pattern: White Pattern

3. Measurement condition: Rising time = 400us

4. $V_{ICM} = 1.25V$

5. Input Channel Pair Skew Margin

- **6.** The relative humidity must not exceed 80% non-condensing at temperatures of 40° C or less. At temperatures greater than 40° C, the wet bulb temperature must not exceed 39° C. When operate at low temperatures, the brightness of LED will drop and the life time of LED will be reduced.
- 7. The lifetime (MTTF) is defined as the time which luminance of LED is 50% compared to its original value. [Operating condition: Continuous operating at $Ta = 25\pm2^{\circ}$
- 8. LVDS Receiver Clock SSCG (Spread spectrum clock generator) is defined as below figures

9. Receiver Data Input Margin

Parameter	Symbol		Unit	Note		
Faranietei	Symbol	Min	Type	Max	Oilit	Note
Input Clock Frequency	Fclk	Fclk (min)		Fclk (max)	MHz	T=1/Fclk
Input Data Position0	tRIP1	- tRMG	0	tRMG	ns	
Input Data Position1	tRIP0	T/7- tRMG	T/7	T/7+ tRMG	ns	
Input Data Position2	tRIP6	2T/7- tRMG	2T/7	2T/7+ tRMG	ns	

Input Data Position3	tRIP5	3T/7- tRMG	3T/7	3T/7+ tRMG	ns	
Input Data Position4	tRIP4	4T/7- tRMG	4T/7	4T/7+ tRMG	ns	
Input Data Position5	tRIP3	5T/7- tRMG	5T/7	5T/7+ tRMG	ns	
Input Data Position6	tRIP2	6T/7- tRMG	6T/7	6T/7+ tRMG	ns	_

3.2 Interface Connections

• FFC Connector : Starconn 106F30-A00000-A2-R

Pin No	Symbol	Description
1	Reserved	AUO Internal Use Only
2	Reserved	AUO Internal Use Only
3	Reserved	AUO Internal Use Only
4	GND	Ground
5	CH1_0-	LVDS Channel, Signal 0-
6	CH1_0+	LVDS Channel, Signal 0+
7	GND	Ground
8	CH1_1-	LVDS Channel, Signal 1-
9	CH1_1+	LVDS Channel, Signal 1+
10	GND	Ground
11	CH1_2-	LVDS Channel, Signal 2-
12	CH1_2+	LVDS Channel, Signal 2+
13	GND	Ground
14	CH1_CLK-	LVDS Channel, Clock -
15	CH1_CLK+	LVDS Channel, Clock +
16	GND	Ground
17	CH1_3-	LVDS Channel, Signal 3-
18	CH1_3+	LVDS Channel, Signal 3+
19	GND	Ground
20	NC	No connection
21	LVDS_SEL	Open/High(3.3V) for NS, Low(GND) for JEIDA
22	NC	No connection
23	GND	Ground
24	GND	Ground
25	GND	Ground
26	Vdd (+12V)	12V, DC, Regulated
27	Vdd (+12V)	12V, DC, Regulated
28	Vdd (+12V)	12V, DC, Regulated
29	Vdd (+12V)	12V, DC, Regulated
30	Vdd (+12V)	12V, DC, Regulated

Note: N.C. : please leave this pin unoccupied. It can not be connected by any signal (Low/GND/High).

LVDS Option = High/Open→NS

Note: x = 1, 2, 3, 4...

LVDS Option = Low→JEIDA

Note: x = 1, 2, 3, 4...

3.3 Signal Timing Specification

This is the signal timing required at the input of the user connector. All of the interface signal timing should be satisfied with the following specifications for its proper operation.

Timing Table

Signal	Item	Symbol	Min.	Тур.	Max	Unit
	Period	Tv	784	810	1015	Th
Vertical Section	Active	Tdisp (v)				
	Blanking	Tblk (v)	16	42	247	Th
	Period	Th	1460	1648	2000	Tclk
Horizontal Section	Active	Tdisp (h)				
	Blanking	Tblk (h)	94	282	634	Tclk
Clock	Frequency	Fclk=1/Tclk	50	80	86	MHz
Vertical Frequency Frequency		Fv	47	60	63	Hz
Horizontal Frequency	Frequency	Fh	43	48	53	KHz

Notes:

- (1) Display position is specific by the rise of DE signal only.
 Horizontal display position is specified by the rising edge of 1st DCLK after the rise of 1st DE, is displayed on the left edge of the screen.
- (2) Vertical display position is specified by the rise of DE after a "Low" level period equivalent to eight times of horizontal period. The 1st data corresponding to one horizontal line after the rise of 1st DE is displayed at the top line of screen.
- (3)If a period of DE "High" is less than 1366 DCLK or less than 768 lines, the rest of the screen displays black.
- (4)The display position does not fit to the screen if a period of DE "High" and the effective data period do not synchronize with each other.

3.4 Signal Timing Waveforms

3.5 Color Input Data Reference

The brightness of each primary color (red, green and blue) is based on the 8 bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

COLOR DATA REFERENCE

											I	npu	t Co	lor	Data	a									
	Color				RI	ΞD							GRI	EEN				BLUE							
	Coloi	MS	В					LS	SB	MS	MSB				LS	SB	MS	MSB					LSB		
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	GO	В7	B6	B5	B4	ВЗ	B2	B1	В0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(001)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R																									
	RED(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
G																									
	GREEN(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	GREEN(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	BLUE(000)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE(001)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
В																900000000									
	BLUE(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	BLUE(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

3.6 Power Sequence for LCD

Davasatas		I I to it			
Parameter	Min.	Min. Type.		Unit	
t1	0.4		30	ms	
t2	0.1		50	ms	
t3	450			ms	
t4	0 ^{*1}			ms	
t5	0			ms	
t6			*2 	ms	
t7	500			ms	
t8	10		50	ms	
t9	0			ms	

Note:

- (1) T4=0: concern for residual pattern before BLU turn off.
- (2) T6: voltage of VDD must decay smoothly after power-off. (customer system decide this value)

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 45 minutes in a dark environment at 25 °C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of ϕ and θ equal to 0° .

Fig.1 presents additional information concerning the measurement equipment and method.

Symbol	Values			l lait	Netes
	Min.	Тур.	Max	Unit	Notes
CR	1200	2000			1
L _{WH}	250	300		cd/m ²	2
δ _{WHITE(9P)}			1.33		3
Tr		5.5		%	4
Тү		6.5	13	Ms	5
NTSC		72		%	
R _x		0.65			
R_Y		0.33	Тур.+0.03		
G _X		0.29			
G_Y	Turn 0.00	0.61			
B _X	тур0.03	0.15			
B_Y		0.05			
W _X		0.28			
W_{Y}		0.29			
					6
θ_{r}		89		degree	
θι		89		degree	
θ_{u}		89		degree	
$\theta_{\sf d}$		89		degree	
	$\begin{array}{c} CR \\ L_{WH} \\ \hline \delta_{WHITE(9P)} \\ \hline Tr \\ \hline T\gamma \\ \hline NTSC \\ \hline R_X \\ R_Y \\ G_X \\ G_Y \\ B_X \\ B_Y \\ W_X \\ W_Y \\ \hline \theta_r \\ \theta_l \\ \theta_u \\ \end{array}$	Min. CR 1200 L _{WH} 250 δ _{WHITE(9P)} Tr Tγ NTSC Typ0.03 B _X B _Y W _X W _Y Φ _r θ ₁ θ _u θ _u	Symbol Min. Typ. CR 1200 2000 L _{WH} 250 300 δ _{WHITE(9P)} Tr 5.5 Tγ 6.5 NTSC 72 R _X 0.65 R _Y 0.33 G _X 0.29 G _Y 0.61 B _X 0.05 W _X 0.28 W _Y 0.29 θ _r 89 θ _I 89 θ _U 89	Symbol Min. Typ. Max CR 1200 2000 L _{WH} 250 300 δ _{WHITE(9P)} 1.33 Tr 5.5 13 NTSC 72 72 R _X 0.65 0.33 R _Y 0.29 0.61 B _X 0.05 0.29 W _X 0.28 0.29 W _Y 0.29 θ ₁ 89 θ ₁ 89 θ _u 89	Symbol Min. Typ. Max Unit CR 1200 2000 Cd/m² L _{WH} 250 300 cd/m² δ _{WHITE(9P)} 1.33 Tr 5.5 % % Tγ 6.5 13 Ms NTSC 72 % R _Y 0.65 G _Y 0.29 B _X 0.05 B _Y 0.05 W _Y 0.29 θ _r 89 degree θ _I 89 degree θ _U 89 degree

Note:

1. Contrast Ratio (CR) is defined mathematically as:

Contrast Ratio=
$$\frac{\text{Surface Luminance of L}_{\text{on5}}}{\text{Surface Luminance of L}_{\text{off5}}}$$

- 2. Surface luminance is luminance value at point 5 across the LCD surface 50cm from the surface with all pixels displaying white. From more information see FIG 2.
- 3. The variation in surface luminance, δ WHITE is defined (center of Screen) as:

 $\delta_{WHITE(9P)}$ = Maximum(L_{on1} , L_{on2} ,..., L_{on9})/ Minimum(L_{on1} , L_{on2} ,... L_{on9})

- 4. Cell Transparency (Tr) is the ratio of model luminance at center point of active area to backlight luminance at center point. Tr is defined as, Tr (%) = (Model luminance / Backlight luminance) x 100. Where the film structure of backlight should not include any reflective type of prism such as DBEFD, and Measurement of model or backlight luminance should be under the same condition of BLU power and no any lamp mura is found.
- 5. Response time T_{γ} is the average time required for display transition by switching the input signal for five luminance ratio (0%,25%,50%,75%,100% brightness matrix) and is based on F_{ν} =60Hz to optimize.

Ме	Measured Targe			Target			
Respo	nse Time	0%	25%	50%	75%	100%	
	0%		0% to 25%	0% to 50%	0% to 75%	0% to 100%	
Start	25%	25% to 0%		25% to 50%	25% to 75%	25% to 100%	
	50%	50% to 0%	50% to 25%		50% to 75%	50% to 100%	
	75%	75% to 0%	75% to 25%	75% to 50%		75% to 100%	
	100%	100% to 0%	100% to 25%	100% to 50%	100% to 75%		

The response time is defined as the following figure and shall be measured by switching the input signal for "any level of grey(bright)" and "any level of gray(dark)".

Any level of gray (Bright) Any level of gray (Dark) Any level of gray (Bright)

6. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG3.

FIG. 2 Luminance

FIG.3 Viewing Angle

5. Open Cell Drawing

6. Reliability Test Items

	Test Item	Q'ty	Condition
1	High temperature storage test	3	60°C, 300hrs
2	Low temperature storage test	3	-20°C , 300hrs
3	High temperature operation test	3	50℃, 300hrs
4	Low temperature operation test	3	-5℃, 300hrs
5	Vibration test (With carton)	30	Random wave (1.5G RMS, 10-200Hz) 30mins/ Per each X,Y,Z axes
6	Drop test (With carton)	30	Height: 457 mm 1 corner, 3 edges, 6 surfaces (ASTMD5276)

7. AUO's Basic BLU Optical Performance

The center luminance & Chromaticity of AUO's BLU

Item		Тур.	Unit	Note	
Luminance		6800	nit	100% Dimming	
Central	Item	min	typ	Max	
Chromaticity (CIE	Wx	0.252	0.267	0.282	
1930)	Wy	0.236	0.251	0.266	

8. International Standard

8.1 Safety

- (1) UL 60950-1, UL 60065; Standard for Safety of Information Technology Equipment Including electrical Business Equipment.
- (2) IEC 60950-1: 2001, IEC 60065:2001; Standard for Safety of International Electrotechnical Commission
- (3) EN 60950 : 2001+A11, EN 60065:2002+A1:2006; European Committee for Electrotechnical Standardization (CENELEC), EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

8.2 EMC

- (1) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHz to 40GHz. "American National standards Institute(ANSI), 1992
- (2) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special committee on Radio Interference.
- (3) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization. (CENELEC), 1998

9. Packing

9-1 OPEN CELL SHIPPING LABEL (35*7mm):

- 1. S/N Number
- 2. Grade
- 3. Manufacture Fab.
- 4. Manufactured date
- 5. Model name

Carton Label:

Carton: 720(L)mm*520(W)mm*355(H)mm

Pallet: 1070mm*740mm*132mm

9-2 PACKING METHODS:

10.PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD model.

10-1 MOUNTING PRECAUTIONS

- (1) You must mount a model using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. twisted stress) is not applied to model. And the case on which a model is mounted should have sufficient strength so that external force is not transmitted directly to the model.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter cause circuit broken by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizer with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment. Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front/ rear polarizer. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

10-2 OPERATING PRECAUTIONS

- (1) The device listed in the product specification sheets was designed and manufactured for TV application
- (2) The spike noise causes the mis-operation of circuits. It should be lower than following voltage: V=±200mV(Over and under shoot voltage)
- (3) Response time depends on the temperature. (In lower temperature, it becomes longer..)
- (4) Brightness of LED depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time (required time that brightness is stable after turned on) becomes longer.
- (5) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (6) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (7) Model has high frequency circuits. Sufficient suppression to the electromagnetic interference shall

be done by system manufacturers. Grounding and shielding methods may be important to minimize the interface.

10-3 ELECTROSTATIC DISCHARGE CONTROL

Since a model is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wristband etc. And don't touch interface pin directly.

10-4 PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

10-5 STORAGE

When storing models as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the model to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object. It is recommended that they be stored in the container in which they were shipped.

10-6 HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) The protection film is attached to the bezel with a small masking tape. When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) When the model with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the bezel after the protection film is peeled off.
- (3) You can remove the glue easily. When the glue remains on the bezel or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.