

## General Structure of Heterobifunctional Linkers



**R**= Alkyl, cycloalkyl, cycloalkyl-alkyl, aromatic, alkyl-aromatic, stillbene, heterocyclic, alkyl-heterocyclic, CH<sub>2</sub>CH<sub>2</sub>-O-, alkyl-CH<sub>2</sub>CH<sub>2</sub>-O-alkyl, CH<sub>2</sub>-CH=CH-, CH<sub>2</sub>-NHCO, alkyl-NHCO-alkyl, CH<sub>2</sub>CH<sub>2</sub>-S-, CH<sub>2</sub>CH<sub>2</sub>-NH-, Long Chain Alkyl Amino, etc.

**X** = NH<sub>2</sub>, succinimidyl, maleimidyld, iodoacetamido, bromoacetamido, thiol,

**Y** = Biotin

- = Biotin/Avidin
- = Biotin/Streptavidin (SA)
- = Alkaline Phosphatase (AP)
- = Casein
- = beta-Lactamase
- = BSA
- = IgG
- =Avidin-AP
- = Streptavidin-AP
- = Biotin or Streptavidin complexed with :

Glycoproteins, enzymes, antibodies, DNA, RNA, peptides , derivatized particles made of polystyrene, nylon, gold, polyacrylamide, and other solid surfaces such as microtitre plates, glass ( silicon) plates, and any other polymer comprised of active functions, for example, -OH, -NH<sub>2</sub>, -SH, succnimidym, maleimido groups.

**Figure 1. General chemical structure and compositions of the heterobifunctional linkers of the Present Invention**

Figure 2. Classification of Kinases and Phosphatases by Target Structure



Figure 2a . a) representative water insoluble target and sites of specific actions of lipid kinases.  
Phosphatidyl Inositol and the Site specific actions of two lipid kinases

BEST AVAILABLE COPY



**STARBRIGHT GREEN - PHOSPHATIDYLINOSITOL- 4,5- BISPHOSPHATE  
[ STARBRIGHT GREEN - PtdIns(4,5)P2 ]**



**Figure 2.b. Water soluble lipid kinase target substrates:** above, an example of the water soluble, StarBright-labeled derivatives of phosphatidyl inositol and its phosphorylated products. Alternative target substrates may be the single fatty acyl chain 1-StarBright Green -*myo*-inositol -1 phosphate lithium salts shown below and described in the text.

**Arg – Phe – Ala – Arg – Lys – Gly – Ser – Leu – Arg – Gln – Lys – Asn – Val – COOH**



**Arg – Phe – Ala – Arg – Lys – Gly – Ser – Leu – Arg – Gln – Lys – Asn – Val – COOH**



**Figure 2. c. Peptide Target Substrate Phosphorylation –**  
The pseudosubstrate of Protein Kinase C-alpha and the site specific  
Phosphorylation of Serine by the PKC isozyme, PKC-theta



**Figure 2.d. Oligonucleotide Target Substrate Phosphorylation –**  
The beta-actin target of T4 nucleotide kinase and the terminal phosphorylation  
of the oligonucleotide by the kinase

a) Single Step *Homogeneous* Assay using the rapid reaction method of the Present Invention

b) the " Nucleation Effect " in which multiple heterobifunctional linkers are attached to High Molecular weight core molecules such as avidin or another polymer to create a multi-valent reaction center that serves to enhance reaction rates,



where the square at the center represents the high molecular weight core that is conjugated to multiple copies ( $n > 2$ ) of the heterobifunctional linkers (arrow heads) shown in Figure 1.

**Figure 3.** Schematic diagram (a) of the single step *homogeneous* assay method based upon the " nucleation effect " of the present invention and an idealized diagram (b) illustrating the nucleation effect itself;

a) Multi- Step *Heterogeneous* Assay of the Present Invention

b)



Figure 4. Schematic diagram (a) and mechanism (b) of the *heterogeneous* assay method based upon the nucleation effect of the present invention

**Phosphoramidate Chemistry For Developing Fluorescence Polarization Based Protein Kinase Assays**

**Schematic Representation of Steps Involved:**



**Figure 5. Novel protocols for blocking potentially reactive -NH<sub>2</sub> and -COOH groups on peptide targets of the present invention**

**Applied Biosystems Voyager System 1107****Voyager Spec #1 [BP = 2028.9, 2077]**

**Figure 6.** Mass spectrum of the PKC-peptide target labeled with fluorescein at its N-terminal for the kinase activities of the isoforms of Protein Kinase C / PKC



Where k = 1-15

and Y = biotin, biotin-avidin complex, biotin-streptavidin complex, avidin-alkaline phosphatase (AP) conjugate, or unconjugated AP, b-Lactamase, Casein, or any other large molecular weight, including but not limited to antibodies, and derivatized particles.

**Figure 7.** Protocol and chemistry of the present invention for the formation of phosphor-amidates used in the detection of phosphoryl groups using the Nucleation Centers and rapid assay methods and phosphoramidate Chemistry I of the present invention

10/31

**Applied Biosystems Voyager System 1197****Voyager Spec #1 [BP = 2199.9, 10117]**

|                      |          |
|----------------------|----------|
| Mode of operation:   | Linear   |
| Extraction mode:     | Delayed  |
| Polarity:            | Positive |
| Acquisition control: | Manual   |

|                              |          |
|------------------------------|----------|
| 1.0E+4 Accelerating voltage: | 20000 V  |
| Grid voltage:                | 95%      |
| Guide wire (%):              | 0.05%    |
| Extraction delay time:       | 200 nsec |

|                         |               |
|-------------------------|---------------|
| Acquisition mass range: | 600 – 6000 Da |
| Number of laser shots:  | 100/spectrum  |
| Laser Intensity:        | 1605          |
| Laser Rep Rate:         | 20.0 Hz       |

|                     |                                        |
|---------------------|----------------------------------------|
| Calibration type:   | Default                                |
| Calibration matrix: | $\alpha$ -Cyano-4-hydroxycinnamic acid |
| Low mass gate:      | 500 Da                                 |

|                        |         |
|------------------------|---------|
| Digitizer start time:  | 14.258  |
| Bin size:              | 2 nsec  |
| Number of data points: | 16284   |
| Vertical scale:        | 1000 mV |
| Vertical offset:       | 0%      |
| Input bandwidth:       | 150 MHz |

|                      |                               |
|----------------------|-------------------------------|
| Sample well:         | 56                            |
| Plate ID:            | JEFF                          |
| Serial number:       | 1197                          |
| Instrument name:     | Voyager-DE                    |
| Plate type filename: | C:\VOYAGER\100 well plate.plt |
| Lab name:            | PE Biosystems                 |

|                      |            |
|----------------------|------------|
| Absolute x-position: | 26803.1    |
| Absolute y-position: | 21733.4    |
| Relative x-position: | -184.412   |
| Relative y-position: | -154.076   |
| Shots in spectrum:   | 100        |
| Source pressure:     | 1.332e-006 |
| Mirror pressure:     | 0          |
| TCA pressure:        | 0.01227    |
| TIS gate width:      | 30         |
| TIS flight length:   | 940        |

Figure 8a: Maldi-MS of fully protected fluoresceinated PKC peptide target that potential reactive sites blocked as described in figure 5

11/31

**Applied Biosystems Voyager System 1197****Voyager Spec #1[BP = 2279.6, 3814]**

Figure 3b:

Maldi-MS of phosphorylated, fluoresceinated-PKC peptide target that had potential sites blocked as described in Example 1 before the addition of multiplexed

Nucleation Centers that had been preformed from avidin and the heterobifunctional biotin linkers of chemistry I.

12/31

**Applied Biosystems Voyager System 1197**

Voyager Spec #1[BP = 1762.0, 13304]



Figure 8c: Matrix-MS of phosphoramidated, fluoresceinated PKC peptide target that had potential reactive sites blocked before the addition of multiplexed preformed Nucleation Centers from avidin and heterobifunctional biotin

Acquired: 17:30:00, November 19, 2001  
VoyagerRAWBmrfnov19\_01\_0001.dat

### Phosphoramidate Chemistry



**Figure 9.** Fluorescence Polarization analysis of the stoichiometry of Nucleation Center Binding. The phosphoramidated PKC peptide target shown in Figure 7 after the addition of varying amounts of multiplexed Nucleation Centers using the linkers of Chemistry I. The two samples differed in that the negative controls were performed in the presence of 5mMolar EDTA which destroys the activity of the kinase.

**Structure of  $\gamma$ -NH<sub>2</sub>-ATP:**

7

**Figure 10.** Chemical structure of the ATP structural analog,  $\gamma$ -Amino ATP ( $\gamma$ -NH<sub>2</sub>-ATP)

## Synthesis of $\gamma$ -Amino-ATP



**Figure 11.** Protocol and chemistry of the present invention for the synthesis of  $\gamma\text{-NH}_2\text{-ATP}$

Scheme for the synthesis of gamma-Amino-ATP continues-----



Figure 11: continuation (page 2)

Page 3 of Synthesis of  $\gamma$ -Amino-NH<sub>2</sub>

i. TMG, RT, 4 Hours

ii. NH<sub>4</sub>OH, 60°C, 8 hours

iii. Concentrate to dryness under vacuum

iv. TBAF, RT, 16 hours



$\gamma$ -Amino-NH<sub>2</sub>

Figure 11: continuation (page 3)

## **Alternative Approach For Monitoring the Activity of Protein Kinases.**



**Figure 12.** Procedure for phosphoroamidation of fluoresceinated -PKC peptide target using PKC-alpha and  $\gamma$ -NH<sub>2</sub>-ATP

## Phosphorothioate Chemistry

**F-Arg.Phe.Ala.Arg.Lys.Gly.Ser.Leu.Arg.Gln.Lys.Asn.Val-OH**



**F-Arg.Phe.Ala.Arg.Lys.Gly.Ser.Leu.Arg.Gln.Lys.Asn.Val-OH**



**F-Arg.Phe.Ala.Arg.Lys.Gly.Ser.Leu.Arg.Gln.Lys.Asn.Val-OH**



where  $k = 1-100$   
 $R = \text{Alkyl, alkoxy, cycloalkanyl, aromatic, heterocyclic, ethylene glycolic, peptidyl, etc}$

$Y = \text{Biotin, Biotin-Avidin, Biotin-Streptavidin, or Large Polymer such as Alkaline Phosphatase (AP), Streptavidin (SA), Casein, glycoprotein, IgG, enzyme, DNA, RNA with or without conjugation to Avidin}$



**Figure 13.** Protocol and chemistry of the present invention for phosphorothiolation and detection of fluoresceinated PKC-peptide target using the single step, nucleation effect rapid assay method and Chemistry III of the present invention

**Applied Biosystems Voyager System 1197**  
**Voyager Spec #1 [BP = 2130.5, 13023]**



**Applied Biosystems Voyager System 1137**

**Voyager Spec #1[BP = 1125.6, 9311]**



Updated: 17:40:00, September 21, 2001

Target 15 minutes after addition of equimolar equivalents multiplexed Nucleation

Centers preformed from avidin and the hetero-hifinrinne 1137  
Averygur@RBBB-B-11-B1\_0002.dat

BEST AVAILABLE COPY



$R =$  Long Chain alkyl

Figure 14 (C) Fluorescence polarization analysis of the same sample used to generate the spectrum of 14(b), above, showing the titration with multiplexed Nucleation Centers that were preformed from avidin and the hetero-bifunctional linkers, maleimido BMCC-biotin.

BEST AVAILABLE COPY

**Applied Biosystems Voyager System 1107**  
**Voyager Spec # [BP = 2135.2, 10132]**



Figure 15 (a): Maldi-MS of StarBright Green -PKC peptide target before the addition of enzyme and donor

Applid: 14:50:00, October 12,  
 D:\Patent\IR\Recombinant\707R\H33

# BEST AVAILABLE COPY

## Applied Biosystems Voyager System 1197

Voyager Spec # [BP = 2231.9, 1398]

WO 2004/089295

PCT/US2004/010289

24/31



queued: 12:12:01 October 11, 2011  
RebeccaRebecca@RH657-8Beacon RT

Figure 15 (b): MALDI-MS of Phosphothiolated StarBright Green -PKC peptide target

**Applied Biosystems Voyager System 1197**

F-PKC-Ser-OH Spec #4 [BP = 1694.6, 10483]



25/31

Figure 15 (c): Mass-MS of phosphothioated StarBright Green -PKC peptide target

After the addition of multiplexed Nucleation Centers performed from  
Biotin and the maleimido-heterobifunctional  
linker.

Adjusted: 08:47:00, October 05, 2001

Reference: Reference#57RH537-62 (100 [std])

## Fluorescence Polarization



**Figure 16.** Fluorescence Polarization Analysis of the extent of the reaction of multiplexed Nucleation Centers preformed from avidin and multiple heterobifunctional linkers bearing biotin at one terminus and maleimido- (blue line) and iodoacetamido- reactive groups at the other (purple line). The StarBright Green -PKC peptide target was phosphorylated by PKC-theta using  $\gamma$ -S-ATP as the donor.

BEST AVAILABLE COPY

**Applied Biosystems Voyager System 1137**  
**Voyager Spec #1[BP = 2187.1, 2839]**



Figure 17 (a): Maldi-MS of StarBright Orange-PKC peptide target before the addition of enzyme and donor

acquired: 16:44:00, August 22, 2001

\D:\beamers\beamers\537R\H537-1.scd1

**Applied Biosystems Voyager System 1197**

Voyager Spec #1 [BP = 227.8, 1326]



figure 18 (a) : Fluorescence Polarization of SBO-PKC-Ser-OPO<sub>2</sub>-S-BMCC-LC-Biotin after the addition of Avidin



BEST AVAILABLE COPY

Figure 18 (b) : Fluorescence Polarization of SBO-PKC-Ser-OPO<sub>2</sub>-S-Iodoacetyl-LC-Biotin after the addition of Avidine



## Fluorescence Polarization Using Large Molecules

(a)



(b)



Figure 19: Fluorescence polarization of analysis of phosphorothiolated SBG-PKC after the addition of multiplexed Nucleation centers comprised of Alkaline Phosphatase, figure (a), and Streptavidine, figure (b), bearing multiple maleimido groups capable of reacting with the phosphorothiolated peptide described in figure 13.

**BEST AVAILABLE COPY**

**Figure 20:** Fluorescence polarization analysis of the inhibition of phosphotyrosylation of S6C-PK $\zeta$  target by Protein Kinase C- $\alpha$  by Staurosporine (1% DMSO) measured using multiplexed Biotin Nucleation Centers bearing maleimido groups



| EC50 | 4.39E-07 | 4.76E-07 | 4.40E-07 | 4.01E-07 | 4.16E-07 | 4.39E-07 |
|------|----------|----------|----------|----------|----------|----------|
| KI   | 1.25E-07 | 1.36E-07 | 1.26E-07 | 1.15E-07 | 1.19E-07 | 1.26E-07 |

#### Fluorescence Polarization (mp)

| 15min | 30min | 45min | 1hr | 1hr45 | 2hr |
|-------|-------|-------|-----|-------|-----|
| 67    | 76    | 66    | 85  | 65    | 82  |
| 80    | 78    | 83    | 81  | 80    | 77  |
| 87    | 69    | 85    | 74  | 83    | 81  |
| 87    | 98    | 96    | 101 | 95    | 98  |
| 93    | 85    | 94    | 86  | 93    | 91  |
| 113   | 111   | 134   | 133 | 143   | 151 |
| 142   | 143   | 188   | 179 | 208   | 205 |
| 154   | 158   | 181   | 184 | 211   | 215 |
| 143   | 156   | 189   | 193 | 216   | 221 |
| 150   | 149   | 183   | 193 | 228   | 219 |
| 151   | 152   | 180   | 188 | 230   | 220 |
| 155   | 152   | 185   | 189 | 207   | 227 |
| 155   | 149   | 189   | 194 | 218   | 214 |
| 149   | 154   | 183   | 191 | 217   | 223 |
| 74    | 78    | 71    | 83  | 74    | 80  |
| 152   | 145   | 180   | 191 | 212   | 210 |

BEST AVAILABLE COPY