 	REPORT DO	DCUMENTAT	ION PAGE		Form Approved OMB No. 0704-0188
Public reporting burden for maintaining the data need	or this collection of information is ded, and completing and review	s estimated to average 1 hour pring this collection of information	er response, including the time	for reviewing instruction	S. searching existing data courses with the
L collection of information if	It does not display a currently y	alid OMB control number. PLE	twithstanding any other provisi ASE DO NOT RETURN YOUR	on of law, no person sha	ations and Reports (0704-0188), 1215 Jefferson Davis Ill be subject to any penalty for failing to comply with a
1. REPORT DATE	(DD-MM-YYYY)	2. REPORT TYPE		TO THE ABOV	3. DATES COVERED (From - To)
4. TITLE AND SUB	TITI E	Technical Papers			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				5a. CONTRACT NUMBER
		•			5b. GRANT NUMBER
					SD. GRANT NUMBER
					5c. PROGRAM ELEMENT NUMBER
					OS. I HOGHAM ELEMENT NUMBER
6. AUTHOR(S)				· · · · · · · · · · · · · · · · · · ·	5d. PROJECT NUMBER
			•		2308
					5e. TASK NUMBER
·					M19B
					5f. WORK UNIT NUMBER
7 PERFORMING O	DCANIZATION NAME	(S) AND ADDRESS(ES			
7.1 Litt Onwing O	AGANIZATION NAME	(S) AND ADDRESS(ES)	•	8. PERFORMING ORGANIZATION
Air Force Research	ch Laboratory (AFM	3)			REPORT
AFRL/PRS		<i>J</i>)	•		1
5 Pollux Drive					
Edwards AFB CA	93524-7048			va sa e a h	
9. SPONSORING / I	MONITORING AGENCY	Y NAME(S) AND ADDR	FSS/FS)		:
		(0) (112) (122)	200(20)		10. SPONSOR/MONITOR'S ACRONYM(S)
Ain Fana D				1	rient rim(o)
	h Laboratory (AFMC	2)		Í	
AFRL/PRS 5 Pollux Drive				Ţ	11. SPONSOR/MONITOR'S
Edwards AFB CA	02524 7040		V	ĺ	NUMBER(S)
12. DISTRIBUTION	AVAILABILITY STATE	MENT			
Approved for publ	lic release; distributio	m vantinate. I			
approved for publ	ne release, distributio	n uniimited.			•
13. SUPPLEMENTA	DV NOTES				;
10. OUT PERMENTA	NT NOTES				
14. ABSTRACT					ì
Ì					
		,			
			•	フロロてロ	110 078
				טכטטי	טוט טוו
15. SUBJECT TERMS	S				
•					·
16. SECURITY CLAS	CIEICATION				
O. SECURITY CLAS	SIFICATION OF:		17. LIMITATION	18. NUMBER	19a. NAME OF RESPONSIBLE
		-	OF ABSTRACT	OF PAGES	PERSON
. REPORT	b. ABSTRACT	c. THIS PAGE	1		Leilani Richardson
		J. THO TAGE	(, '\		19b. TELEPHONE NUMBER
Inclassified	Unclassified	Unclassified	$\left(\begin{array}{c} A \end{array}\right)$		(include area code) (661) 275-5015
					Standard Form 298 (Rev. 8-98)
	\sim .				Prescribed by ANSI Sed Gas 46

21 separate items enclosed

2308M19B

MEMORANDUM FOR PRS (Contractor/In-House Publication)

FROM: PROI (TI) (STINFO)

25 Oct 2000

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-AB-2000-208 Vaghjiana, Ghanshyam (ERC), "Kinetics of OH Reactions with N₂H₄, CH₃NHNH₂ and (CH₃)₂NNH₂ in the Gas Phase"

International Journal of Chemical Kinetics (Deadline: 30 Sep 2000 - PAST DUE)

(Statement A)

1. This request has been reviewed by the Fob.) military/national critical technology, c.)d.) appropriateness for release to a foreign recomments:	export controls or distribution restrictions, nation, and e.) technical sensitivity and/or e	conomic sensitivity.
		1041 404 404
Signature	Date	
2. This request has been reviewed by the Pu and/or b) possible higher headquarters reviecements:		
Signature	Date	
3. This request has been reviewed by the ST b.) appropriateness of distribution statemen e.) parallel review completed if required, an Comments:	t, c.) military/national critical technology, on df.) format and completion of meeting clean	1.) economic sensitivity, arance form if required
Signature	Date	
4. This request has been reviewed by PRS f appropriateness of distribution statement, d national critical technology, and f.) data rigin Comments:	 technical sensitivity and economic sensitients and patentability 	ivity, e.) military/
	APPROVED/APPROVED AS A	AMENDED/DISAPPROVED
	PHILIP A. KESSEL Technical Advisor	Date
Cleared (PA)		

Kinetics of OH Reactions With N2H4, CH3NHNH2 and (CH3)2NNH2 in the Gas Phase

GHANSHYAM L. VAGHJIANI

ERC
Air Force Research Laboratory
AFRL/PRSA
10 E Saturn Blvd
Edwards AFB, CA 93524
Tel: 661 275 5657
Fax: 661 275 6245

Email: ghanshyam.vaghjiani@ple.af.mil

ABSTRACT

The gas phase reaction kinetics of OH with three di-amine rocket fuels; N₂H₄, CH₃NHNH₂ and (CH₃)₂NNH₂ was studied in a discharge flow-tube apparatus and a pulsed-photolysis reactor under pseudo-first-order conditions in [OH]. Direct laser-induced fluorescence monitoring of the [OH] temporal profiles in a known excess of the [di-amine] yielded the following absolute second-order OH rate coefficient expressions; $k_1 = (2.17 \pm 0.39)$ x 10-11 e(160 ± 30)/T, $k_2 = (4.59 \pm 0.83)$ x 10-11 e(85 ± 35)/T and $k_3 = (3.35 \pm 0.60)$ x 10-11 e(175 ± 25)/T cm³ molec-1 s-1, respectively, for reactions with N₂H₄, CH₃NHNH₂ and (CH₃)₂NNH₂ in the temperature range 232-637 K. All three reactions did not show any discernable pressure dependence on He or N₂ buffer gas pressure of up to 530 torr. The magnitude, and the weak temperature and the lack of pressure effects of the OH + N₂H₄ reaction

Approved for Public Release, Distribution is Unlimited

rate coefficient suggests that a simple direct metathesis of H-atom may not be important compared to addition of the OH to one of the N-centers of the di-amine skeleton, followed by rapid dissociation of the intermediate into products. Our findings on this reaction are qualitatively consistent with a previous ab-initio study [Armstrong et al. J Phys Chem A 1997, 101, 4761]. However, in the alkylated di-amines, direct H-abstraction from the methyl moiety can not be completely ruled out.

INTRODUCTION

Hydrazine $(N_2H_4),$ methylhydrazine (CH3NHNH2) and unsymmetrical dimethylhydrazine ((CH₃)₂NNH₂) form an important class of di-amine based rocket fuels. Understanding the reactivity of OH radicals towards these di-amines is important in accurately modeling the combustion of these fuels with nitrogen tetroxide, and for assessing their environmental human health impact when inadvertently released into the lower atmosphere near launch pads. The other tropospheric oxidant for these fuels is expected to be ozone. To our knowledge, no accurate reaction rate coefficient data is available in the literature for the O3 reactions, and only two groups [1,2] have reported a limited data set on the rate coefficient, k1 for the OH + N_2H_4 reaction. The 298 K values of k_1 differ by a factor of ~ 3 in these two studies. A brief study on the rate coefficient, k2 for the OH + CH3NHNH2 reaction has also been carried out previously [1]. There is no data to be found on the direct measurement of the rate coefficient, k3 for the OH + (CH3)2NNH2 reaction.

Here we report a detailed study of the gas phase kinetics of OH reactions with the three di-amines in the temperature range 232-637 K and for He or N₂ buffer gas pressure of up to 530 torr. The experimental observations are discussed in terms of a reaction mechanism involving the initial addition of the OH to the di-amine molecule followed by rapid dissociation of the intermediate to products [3].

EXPERIMENTAL TECHNIQUE

Previously, we have described the details of the fast flow-tube apparatus and the pulsed-photoylsis reactor [4,5]. Here, we only give the details of reagent preparations, and how the reaction kinetics data were collected and analyzed.

The di-amine plus OH reactions were studied under pseudo-first-order conditions in OH concentration ([OH] << [di-amine]). The gas phase [di-amine] concentration in the experiments was determined by uv photometric techniques, and accurate measurements of the system's pressure, temperature and carrier gas flow rates using previously calibrated capacitance manometers, thermocouples and electronic mass-flow meters. The uv-absorption cross sections, $\sigma_{213.9-nm}$ of 220.5 x 10-20, 248.9 x 10-20 and 399.9 x 10-20 cm² molec-1, respectively for N₂H₄, CH₃NHNH₂ and (CH₃)₂NNH₂ were used [4,6]. The Teflon/Pyrex flow-lines were previously conditioned with the di-amines so that its in-situ decomposition in the reactors was negligible. The OH was probed using a tunable pulsed-laser operating at ~ 282.15 nm to excite the Q₁2 line of the OH transition, (A²Σ+, v' = 1 \leftarrow X²Π, v" = 0). The resulting laser-induced

fluorescence due to the transitions, $(A^2\Sigma^+, v'=1 \to X^2\Pi, v''=1)$, bandhead at 312.16 nm) and $(A^2\Sigma^+, v'=0 \to X^2\Pi, v''=0)$, bandhead at 306.36 nm), ensuing from the detection zone was detected orthogonally to the probe laser beam by gated-charge integration/signal averaging techniques [5,7].

The OH was generated either in a fixed side-arm or in a sliding double-injector microwave discharge port of the fast flow-tube apparatus. The inside walls of the port were coated with a 30% solution of H₃PO₄ acid to minimize loss of the precursor radicals for OH production. 1% H₂ in He or 1% CF₄ in He mixtures were discharged to produce H-atoms and Fatoms, respectively. These were immediately titrated downstream of the plasma with NO2 and H2O, respectively, to produce OH radicals before injecting them into a known amount of the diamine being carried by He with a total linear bulk-flow velocity, v. (The di-amine entered the main reaction zone of the flow-tube from the sliding injector when the OH was produced in the side-arm, and vice versa.) All surfaces that came in contact with the OH were coated with a halocarbon wax to reduce the loss rate of OH to the walls. The flow-tube was operated under plug-flow conditions at a nominal He pressure of ~ 2 torr and in the temperature range 232-374 K. Below 232 K, the loss rate of OH to the walls in the presence of the di-amine was so high that the signal-to-noise ratio of the OH-fluorescence fell below the detection limit (of 1 x 109) molec cm⁻³ per 1000-pulse-integrations). The flow-tube had to be warmed to 232 K or above in order to recover the OH signal to its original level. Similarly above 374 K, the OH could not be detected, this time due to fogging of the cooler optical components of the detection chamber from condensation of the halocarbon wax vapor ensuing from the heated reaction zone of the flow-tube. At each [di-amine], the kinetics of the OH plus di-amine reaction was followed by

recording the steady-state OH-fluorescence signal strength as a function of the reaction distance, z between the point of reagent mixing at the injector tip and the fixed detection zone downstream of the flow-tube.

A pulsed-photolysis reactor operating at up to 530 torr of He pressure under slow-flow conditions was employed to extend the rate coefficient measurements to 637 K. Data at higher temperatures was not collected as significant charring of the inside surfaces of the reactor was observed due to heterogeneous decomposition of the alkylated di-amines. A premixed flow of N₂O, and H₂O and di-amine vapors in He was subjected to 193-nm laser photolysis to generate the hydroxyl radicals (N₂O + hv \rightarrow N₂ + O(1D) followed by O(1D) + H₂O \rightarrow 2OH [8,9]). In this setup, the kinetics was followed by determining the [OH] time profile immediately after the photolysis by recording the relative OH-fluorescence signal strength as a function of the delay time between the photolysis and probe laser pulses.

Materials

He (>99.997%) from U. S. Bureau of Mines, N₂ (99.9995%) from Spectra Gases and N₂O (99.99%) from Matheson Gas Products were used as received. Hydrocarbon-free N₂H₄ (Viking Grade) from Edwards AFB, (CH₃)₂NNH₂ (>99.3%) and CH₃NHNH₂ (>99.5%) from Olin Chemicals were subjected to several freeze-thaw purification cycles at a grease-less vacuum line, and the purified distillates dried over BaO or CaH₂. NO₂ (99.9%) from M. G. Scientific Gases was mixed with excess O₂ to react away any NO present and the mixture collected in a

trap over silica gel at 213 K. The excess O₂ and any other volatiles were pumped off and the condensate subjected to several freeze-thaw purification cycles. A standard 1% NO₂ in He titration mixture was prepared. O₂ (99.991%) from Big Three Industries, CF₄ (99.7%) from Scott Specialty and H₂ (99.999%) from Linde Specialty Gases were used as supplied to make up a 1% in He discharge mixtures. The water was distilled in the laboratory.

RESULTS

Since the [di-amine] is always in a great excess over the [OH] in the flow-tube, it can be shown that the pseudo-first-order decay coefficient, k, for OH radicals is given by, $ln\{OHS/OHS_O\} = -k.t.$ Where OHS is the net (background-subtracted) steady-state OH-fluorescence signal strength recorded at the detection zone for a reaction time of t = z/v. The flow-tube reaction distance, z, is defined to be the length between the tip of the injector where the OH enters and the OH-fluorescence detection axis. v is the bulk linear flow velocity of the He carrier gas. OHS_O is the net signal strength that would be observed for z = 0 and corresponds to the initial concentration, $[OH]_O$ available at the detection zone. $k = k_W + k_i[di-amine]$, where k_W is the first-order loss rate term for OH radicals to the walls, and k_i the absolute second-order OH reaction rate coefficient with the di-amine (i = 1, 2, or 3 for N_2H_4 , CH3NHNH2 and (CH3)2NNH2, respectively). Values of k in the range 100-600 s⁻¹ were extracted from non-linear-least-squares fits to the data points of the observed exponential decays of the OH radical signal, see Figure 1. In the absence of the di-amine, k_W was typically found to

be $\sim 30\text{-}40 \text{ s}^{-1}$ at 298 K. (For OH entering upstream via the fixed side-arm port, there is additional loss of OH, that increases as the reaction length is decreased due to increasing amount of exposure to the injector walls. This lost rate term, $k_{\text{W,i}}$ was typically found to be $\sim 10 \text{ s}^{-1}$ at 298 K.) The values of k were plotted as a function of [di-amine] to extract the corresponding k_{i} values by fitting the data to a linear-least-squares routine, see Figure 2.

In the pulsed-photolysis experiments, the OH signal after the initiating laser pulse is recorded as a function of the delay time between the photolysis and probe laser pulses. Again, exponential profiles were recorded with decay coefficients, k given by; $k_d + k_1$ [di-amine]. Here, k_d represents the sum of first-order loss rate terms of OH due to diffusion out of the detection volume and reaction with background impurities. k_d was typically measured to be in the range 50-100 s⁻¹ and k in the range 500-5000 s⁻¹.

Tables I, II and III show the values of k_i determined in this work with the experimental conditions employed. Variation in the initial hydroxyl radical concentration, $[OH]_0$ employed or the source chemistry utilized had no systematic effect on the k_i values, showing that the influence of any source radicals or secondary OH reactions on the rate coefficient determinations is negligible. Also, no discernable pressure effect of k_i was observed in this work for up to 530 torr of He. k_1 was also found to be independent of N_2 pressure of up to 403 torr. Data in N_2 was obtained by looking at the temporal profile of the hydroxyl radical in the reaction of O-atoms with N_2H_4 which is known to yield OH(v'') [5]. O-atoms were produced by the rapid N_2 quenching of $O(^1D)$ generated in the 193-nm photolysis of N_2O [10]. Sufficient CO_2 is added

î

to the photolysis mixture, such that it preferentially quenches the OH(v'') product to its ground v'' = 0 state before any significant reactive loss takes place [11]. The observed OH-fluorescence profiles were fitted to a bi-exponential expression as described previously [5] to extract the absolute second-order reaction rate coefficients, k_1 (phenomenological) and k_0 , respectively, for OH and O-atom [12] reactions with hydrazine, see Figure 3. The temperature dependencies of k_1 are summarized in Figure 4.

DISCUSSION

The reactions of OH with the di-amines are very fast, close to the gas-kinetic limit, and show slight negative temperature dependencies. The Arrhenius fits to the data points of Figure 4 give the following expressions; $k_1 = (2.17 \pm 0.39) \times 10^{-11} e(160 \pm 30)/T$, $k_2 = (4.59 \pm 0.83) \times 10^{-11} e(85 \pm 35)/T$ and $k_3 = (3.35 \pm 0.60) \times 10^{-11} e(175 \pm 25)/T$ cm³ molec⁻¹ s⁻¹, respectively, for reactions with N₂H₄, CH₃NHNH₂ and (CH₃)₂NNH₂ in the temperature range 232-637 K, and for employed He or N₂ pressure of up to 530 torr. Previous flash photolysis-resonance fluorescence study of Harris et al. [1] reported a temperature dependence of 4.4 x 10⁻¹¹ e(116 \pm 176)/T cm³ molec⁻¹ s⁻¹, in the range 298-424 K, for the OH + N₂H₄ reaction. No dependence was observed on the Ar pressure used which was varied in the range 25-50 torr. Also under their conditions, a temperature independent rate coefficient of (6.5 \pm 1.3) x 10⁻¹¹ cm³ molec⁻¹ s⁻¹ was reported for the OH + CH₃NHNH₂ reaction. However, for the OH + (CH₃)₂NNH₂ reaction, they could only estimate a room temperature value of (5 \pm 2) x 10⁻¹¹ cm³ molec⁻¹ s⁻¹

ī

because of severe handling problems encountered with this dialkylated di-amine. At 298 K, Harris et al.'s values are ~ 75% larger, ~ 6% larger and ~ 17% smaller than our values for N₂H₄, CH3NHNH2 and (CH3)2NNH2, respectively. An earlier communication from Hack et al. [2] for the OH + N2H4 reaction studied by discharge flow-tube-ESR technique reported a value of 2.2 x 10-11 cm³ molec-1 s-1 at 298 K which is ~ 41% smaller than our value. Harris et al.'s values for the alkylated di-amines are in very good agreement with the present study. However, their absolute N2H4 values differ significantly from ours, though the reported temperature dependence agrees reasonably well. The lack of proper quantification of the N2H4 number density in their and Hack et al.'s work might possibly be one of the reasons as to why there is disagreement in the absolute values for k₁. We have made accurate, to within $\pm \sim 6\%$ [6], in-situ measurements of the [di-amine] in our experiments and have confirmed that the measured rate coefficients are independent of the [OH]_O range employed. The overall accuracy of the rate coefficients in this work is calculated to be $\sim \pm 18\%$ (1- σ precision plus systematic errors) [5]. Some problematic wall effects were noticed when using (CH₃)₂NNH₂, especially at temperatures below 278 K. The flow-tube became easily contaminated with yellow oily deposits on prolonged exposures which resulted in unusually large OH wall loss rates compared to that observed in a freshly coated flow-tube with the halocarbon wax. This was evident from the larger than normal intercepts in k versus [(CH₃)₂NNH₂] plots even at the lowest [OH]₀ used. The flow-tube was frequently re-waxed to minimize this problem.

The slight negative temperature dependence and lack of pressure effect on k₁ suggests that the mechanism of OH attack involves its initial addition to N₂H₄ followed by fast

dissociation of the adduct to products (H2O and N2H3). The findings of a previous ab-initio study by Armstrong et al. [3] on this reaction are qualitatively consistent with the present experimental observations. The shape of the potential energy profile along the reaction coordinate leading to N₂H₃ + H₂O as the products was examined. A single pre-reaction complex characterized by an OH---NN hydrogen-bond (OH---N distance 1.859Å, H---N-N angle 170.1°) was found at both B3LYP/6-31+G(D, P) and MP2/6-31+G(D, P) levels of theory. The G2(MP2) energy of this was computed to be ~ 5.5 kcal mol-1 lower than that of (N₂H₄ + OH). However, no transition-state for the direct H-abstraction by OH could be located at the B3LYP/6-31+G(D, P) level. Any approach by OH to an endo-H of hydrazine resulted in H-atom loss without activation. Instead, a transition-state structure for inversion of the N-atom bearing a hydrogen in close proximity to the hydroxyl was located at this level (N-H--OH angle 120.7°, NH--OH distance 1.707 Å, and NN-H distance 1.023 Å). The G2(MP2) energy of this transition-state was ~ 2.7 kcal mol⁻¹ above that of the separated reactants. By contrast, at MP2/6-31+G(D, P) level, a well defined transition-state structure for H abstraction by OH was found (NN-H--OH angle 141.90, NH--OH distance 1.459 Å, and NN-H distance 1.073 Å), its G2(MP2) energy being ~ 1.3 kcal mol-1 lower than that of the reactants. This transition-state was directly connected to the hydrogen-bonded pre-reaction complex. The MP2/6-31+G(D, P) description of the energetics of the reaction would predict a negative experimental activation energy and a pressure insensitive rate coefficient [16]. The results of the present gas phase work are consistent with this. In the future, it would be most interesting to see how the computed barrier to H-abstraction and vibrational frequency information on the transition-state and prereaction complex predict the absolute magnitude and temperature dependence of the OH + N2H4 gas phase reaction rate coefficient by means of transition-state theory rate expressions.

Despite increased complexity in the reaction mechanism from solvent/solute interactions in the liquid phase, the following comparisons can be made for the kinetics of the hydroxyl radical with hydrazine(s) where the same initial reaction products as those in the gas phase are formed. In basic aqueous solutions, Hayon and Simic [17] reported the room temperature rate coefficient to be 2.32 x 10⁻¹¹ (±15%) cm³ molec⁻¹ s⁻¹ which was independent of pH in the range 9-11. This is comparable to the present gas phase value. However, more recently Buxton and Stuart [18] reported a smaller observed room temperature (293 K) reaction rate coefficient, k_{obs} , of $(0.75 \pm 0.08) \times 10^{-11} \text{ cm}^3 \text{ molec}^{-1} \text{ s}^{-1}$ at pH = 11, which increased with temperature in the range 293-473 K in a non-Arrhenius fashion. At these high pHs, the hydroxyl radical interacts with neutral hydrazine that is preferentially hydrogen-bonds, via N-lone pair donation to the H-atom in water [3,19], to form a solvent complex whose H-abstraction reaction with OH is partially diffusion controlled [17] to produce H₂O and the hydrazyl radical, N₂H₃. Buxton and Stuart modeled the non-Arrhenius behavior of kobs by calculating the non-Arrhenius temperature dependence [20,21] of the diffusion controlled rate coefficient, kdiff = (1/kobs-1/k₁), and interpolated a positive Arrhenius activation energy of ~ 2.6 Kcal mol-1 for k₁ in the aqueous solution. Existence of the hydrazyl radical in the liquid phase reaction was directly identified by the appearance/disappearance of a transient uv-absorption signal at $\lambda_{max} = 230 \text{ nm}$ at early (< ~ 50 µs) reaction times after the initiating radiolysis pulse. Furthermore, in acidic solutions, this prompt uv-absorption became much weaker with $\lambda_{max} = \sim 225$ nm which was identified to be due to the protonated hydrazyl, N2H4+, formed from the reaction of OH with N₂H₅+. A much smaller observed rate coefficient of (1.36 ± 0.08) x 10^{-13} cm³ molec⁻¹ s⁻¹ was measured at 293 K for pH values of 6 and below. Here, kobs showed an upward curvature in the

Arrhenius plot, which could be rationalized by the fact that more free hydrazine became available ($N_2H_5+\Leftrightarrow N_2H_4+H^+$) since the hydrozonium ion, N_2H_5+ , acid dissociation constant increased with temperature. In these experiments delayed transient uv-absorption at $\lambda_{max} = \sim 230$ nm was also seen at long (ms) reaction times after the initiating radiolysis pulse [17,18,22]. The kinetic behavior of which pointed to the triazene species, N_3H_3 , formed in the unimolecular dissociation of the tetrazane, N_4H_6 , intermediate as the source of the absorbance. The unobservable N_4H_6 species is directly formed in the self-reaction of the hydrazyl species, N_2H_3 , formed in the initial OH attack on N_2H_4 .

To our knowledge, such extensive product studies in the gas phase have not been carried out for OH plus di-amine systems, though in the related gas phase H-abstraction reaction, $H + N_2H_4 \rightarrow H_2 + N_2H_3$, the hydrazyl radical has been identified as a major product by its mass spectrum signal [23,24] and from stable end-product analyses [25,26]. N_2H_3 is also formed as a minor product in the gas phase reaction, $O + N_2H_4 \rightarrow$ products [27,28]. Our on previous work on unit H-atom primary quantum yield determinations in laser photolysis of di-amine vapors suggests that the corresponding stable co-fragment in the gas phase must be the hydrazyl radical [4,6]. Its gas phase ESR spectrum is known [29] and its low lying electronic structures have been computed previously [30]. The introduction of the CH3 moiety in the hydrazine molecule opens up the possibility of direct H-abstraction from the stronger C-H bonds, or enhancement of hydrogen bonding tendency and eventual removal of the H-atom from the weaker N-H bond. On the other hand, fewer N-H sites (but more C-H sites) are present on increased methylation. Experimentally, we see an increase in the measured gas phase rate coefficient for CH3NHNH2

÷

and (CH₃)₂NNH₂ compared to that for N₂H₄. Some empirical comparisons of the relative OH reactivity at the N-H center and the C-H site can be made. The per N-H reactivity of ~ 0.93 x 10-11 cm³ s⁻¹ in N₂H₄ if assumed to be the same in (CH₃)₂NNH₂ (i.e. the N-H site preexponential factor, A and the activation energy, EA remain constant) would imply a reactivity of ~ 0.69 x 10-11 cm³ s⁻¹ for the C-H bond. Thus direct H-abstraction can compete with complex formation in (CH₃)₂NNH₂. Use of these reactivities in CH₃NHNH₂ together with the observed k2 value at 298 K suggests a reactivity of ~ 2.18 x 10-11 cm³ s-1 for the N-H with the methyl substitution, which is approximately twice that observed at the unsubstituted site. enhancement could well be due to the formation of a more strongly bound hydrogen-bonded complex due to electron-donating effect of the methyl group compared to that formed at the unsubstituted site. Since in reality both the site-specific EA and A values for a given reaction channel determine the overall reaction probability, only when absolute product yields and/or deuterium kinetic isotopic effects on the reaction rates are measured can we say which reaction path is the preferred mode for H-atom removal in OH plus di-amine system. It is encouraging to know that in the related amine homologous series: NH3, NH2CH3, NH(CH3)2, N(CH3)3, the alkylated amine reactions with OH are also fast and show negative temperature dependencies [31], while the ammonia reaction (involving H-atom metathesis) is slow and exhibits a positive temperature dependence [32]. It could well be that even here, methyl substitution promotes the formation of a hydrogen-bonded, OH---NH(3-x)(CH3)x, pre-reaction complex (where x = 1,2,3) that dissociates quickly to eliminate H2O and a radical co-fragment. The relative changes in the C-H and N-H bond energies in this homologous series [33] could well be influencing the site preference for H-atom removal to give the following observed reactivity trend of NH₂CH₃ <

ì

N(CH₃)₃ < NH(CH₃)₂ [31]. For purely H-metathesis reactions of OH (and other radicals) with alkanes (and other reagents), strong correlations between C-H bond energy strength and measured reaction rates and/or product yields have amply been verified previously [34].

The fate of di-amines in the atmosphere will be determined by their reactions with OH and O3. Using an average value of ~ 1.1 x 106 molec cm⁻³ for the OH number density, lifetimes of ~ 6.6, ~ 4.1 and ~ 4.0 hours are calculated for N2H4, CH3NHNH2 and (CH3)2NNH2, respectively for the troposphere at an average ambient temperature of 279 K. The corresponding lifetimes for reactions with ozone cannot be deduced accurately as only an upper limit for the O₃ + N_2H_4 reactivity is available in the literature. The rate coefficient is estimated to be ~ 1.4 x 10-16 cm³ molec-1 s-1 at 298 K [35]. Use of an ozone number density of 7.5 x 10¹¹ molec cm⁻³ or less gives N2H4 lifetime of ~ 2.6 hours or longer. The lifetimes of the alkylated di-amines with respect to O3 reaction may well be much shorter than this since they are thought to be much more reactive than N2H4 [35]. Therefore in urban air, during an ozone episode, the fate of the di-amines will most likely be governed by their degradation with ozone. An accurate assessment of the human health impact of the inherently toxic di-amines released at rocket launch sites must await proper determination of the O₃ reaction rates, and the elucidation of the subsequent degradation chemistry of the initial products which are also believed to be toxic and/or carcinogenic in nature.

ACKNOWLEDGMENT

Funding for this work was provided by the Air Force Office of Scientific Research under Contract # F04611-99-C-0025 with the Air Force Research Laboratory, Edwards AFB, CA 93524.

BIBLIORAPHY

- 1. Harris, G. W.; Atkinson, R.; Pitts, J. N. J Phys Chem 1979, 83, 2557.
- 2. Hack, W.; Hoyermann, K.; Wagner, H. Gg. Ber Bunsenges Phys Chem 1976, 78, 386.
- 3. Armstrong, D. A.; Yu, D.; Rauk, A. J Phys Chem A 1997, **101**, 4761.
- 4. Vaghjiani, G. L. J Phys Chem A 1997, **101**, 4167.
- 5. Vaghjiani, G. L. J Chem Phys 1996, **104**, 5479.
- 6. Vaghjiani, G. L. J Chem Phys 1993, 98, 2123.
- 7. Vaghjiani, G. L.; Ravishankara, A. R. J Phys Chem 1989, 93, 1948.
- 8. Greenblatt, G. D.; Ravishankara, A. R. J Geophys Res 1990, 95, 3539.
- 9. Wine, P. H.; Ravishankara, A. R. Chem Phys 1982, 69, 365.
- Streit, G. E.; Howard, C. J.; Schmeltekopf, A. L.; Davidson, J. A.; Schiff, H. I. J Chem
 Phys 1976, 65, 4761.
- 11. G. A.; Jeffries, J. B.; Rensberger, K. J.; Crosley, D. R. J Chem Phys 1990, 92, 7258.
- 12. Vaghjiani, G. L. J Chem Phys 2000, to be submitted.
- 13. Howard, C. J. J Phys Chem 1979, 83, 3.
- 14. Kaufman, F. Proc R Soc London Ser A 1958, 247, 123 and Prog React Kinet 1961, 1, 3.

- Hirschfelder, J. D.; Curtiss, C. F.; Bird, R. B. Molecular Theory of Gases and Liquids;
 Wiley Publ.: New York, 1954.
- See for example: Chen, Y.; Rauk, A.; Roux, E. T. J Phys Chem 1991, 95, 9900 and
 Berry, R. J.; Marshall, P. Int J Chem Kinet 1998, 30, 179.
- 17. Hayon, E.; Simic, M. J Am Chem Soc 1972, 94, 42.
- 18. Buxton, G. V.; Stuart, C. R. J Chem Soc Faraday Trans 1996, 92, 1519.
- 19. Yu, D.; Rauk, A.; Armstrong, A. Can J Chem 1994, 72, 471.
- 20. Smoluchowski, von M. Z Phys Chem 1917, **92**, 129.
- 21. Elliot, A. J.; McCracken, D. R.; Buxton, G. V.; Wood, N. D. J Chem Soc Faraday Trans I 1990, 86, 1539
- 22. Southland, J. W. J Phys Chem 1979, 83, 789.
- 23. Gehring, M.; Hoyermann, K.; Wagner, H. Gg.; Wolfrum, J. Ber Bunsenges Phys Chem 1971, 75, 1287.
- 24. Foner, S. N.; Hudson, R. L. J Chem Phys 1958, 29, 442 and 1970, 53, 4377.
- 25. Schiavello, M.; Volpi, G.G. J Chem Phys 1963, 37, 1510.
- 26. Stief, L. J.; DeCarlo, V.J.; Mataloni, R. J. J Chem Phys 1967, 46, 592.
- 27. Foner, S. N.; Hudson, R. L. J Chem Phys 1968, 49, 3724.
- 28. Gehring, von M.; Hoyermann, K.; Wagner, H. Gg.; Wolfrum, J. Ber Bunsenges Phys Chem 1969, 73, 956 and Gehring, M.; Hoyermann, K.; Schacke, H.; Wolfrum, J. Symp (Int) Combust Proc 1972, 14, 99.
- 29. Fantechi, R.; Helcke, G. A. J Chem Soc Faraday Trans II 1972, 68, 924.
- 30. Chandler, G. S.; McLean, A. D. J Chem Phys 1979, 71, 2175.

- 31. Atkinson, R.; Perry, R. A.; Pitts, J. N. Jr. J Chem Phys 1978, **68**, 1850 and 1977, **66**, 1578.
- 32. See for example: Diau, E. W. -G.; Tso, T. -L.; Lee, Y. -P. J Phys Chem 1990, **94**, 5261 and Smith, I. W. M.; Zellner, R. Int J Chem Kinet 1975, **1**, 341.
- 33. McMillen, D. F.; Golden, D. M. Ann Rev Phys Chem 1982, 33, 493 and references therein.
- 34. See for example: Tully, F. P. Chem Phys Lett 1988, 143, 510, Hess, E. P.; Durant, J. L. Jr.; Tully, F. P. J Phys Chem 1989, 93, 6402 and Atkinson, R. J Phys Chem Ref Data 1989, Monograph 1 and references therein.
- Tuazon, E. C.; Carter, W. P. L.; Winer, A. M.; Pitts, J. N. Jr. Environ Sci Technol 1981,
 15, 823.

* Table I Temperature dependence of $OH + N_2H_4$ reaction rate coefficient, k_1 .

232.0	k1((10-13 cm ³ molec	c-1 s-1) b Pressure (tor	r) OH-Source	c[OH] _O (1010 cm-3)	v (cm s ⁻¹)
255.0		475.0	1.84		18.0	1961
Sliding-injector 11.0 12.50 12.86 H2-discharge/NO2-titration 11.0 11.0 12.86 H2-discharge/NO2-titration 14.9						
255.0		440.8	1.84	H ₂ -discharge/NO ₂ -titration	9.52	2270
Side-arm port						
278.0 322.0 1.85 H2-discharge/NO2-titration 14.9		454.0	1.86	H2-discharge/NO2-titration	11.0	2112
278.0 322.0 1.85 H2-discharge/NO2-titration 14.9				side-arm portf		
Sliding-injector S.74 S.353.4		322.0	1.85		14.9	2251
278.0 353.4 1.84 H2-discharge/NO2-titration 8.74		0				
Siding-injector 1.72		353.4	1.84		8 74	2474
279.0 380.3 1.86 CF4-discharge/H2O-titration 1.72 side-arm port		00011				2.,,
Side-arm port Side-arm por		380.3	1.86		1.72	2345
292.0 386.1 1.84 H2-discharge/NO2-titration sliding-injector 1.55		300.5	1.00		1.72	2545
Sliding-injector 1.55 1.		386.1	1 84		8 32	2587
298.0 361.0 1.87 CF4-discharge/H2O-titration 1.55		500.1	1.04	t control of the cont	0.52	2507
Side-arm port Hy-discharge/NO2-titration 10.8		261.0	1 07		155	2468
298.0 363.0 1.76		301.0	1.07		1.55	2408
Sliding-injector 11.6		262.0	1.76		10.0	0.550
298.0 383.0 1.77 H2-discharge/NO2-titration 11.6		363.0	1./6	1	10.8	2572
Sliding-injector 19.1 ([O] _O) 298.0 362.2 1.81d O2-discharge, sliding-injector 19.1 ([O] _O) 1.78 H2-discharge/NO2-titration 0.50 Sliding-injector 19.1 ([O] _O) 299.0 391.0 1.82 CF4-discharge/H2O-titration 6.99 1.82 CF4-discharge/H2O-titration 6.99 1.84 H2-discharge/NO2-titration 7.50 1.85 H2-discharge/NO2-titration 7.50 1.83 H2-discharge/NO2-titration 6.50 1.84 H2-discharge/NO2-titration 6.50 1.85 H2-discharge/NO2-titration 6.50 1.85 H2-discharge/NO2-titration 6.50 1.84 H2-discharge/NO2-titration 6.50 1.85 H2-discharge/NO2-titration 6.50 1.80 H2-discharge/NO2-titration 6.50 1.80 1.80 H2-discharge/NO2-titration 6.50 1.80 1.80 1.80 H2-discharge/NO2-titration 6.50 1.80						
298.0 362.2 1.81d O2-discharge, sliding-injector look at OH appearance 19.1 ([O]o) 298.0 398.0 1.78 H2-discharge/NO2-titration sliding-injector 0.50 299.0 391.0 1.82 CF4-discharge/H2O-titration siding-injector 6.99 324.0 338.0 1.84 H2-discharge/NO2-titration sliding-injector 7.50 374.0 268.3 1.83 H2-discharge/NO2-titration sliding-injector 6.50 290.0 393.7 441.4 N2O/H2O-photolysis sliding-injector 80.5 290.0 403.3 441.4 N2O/H2O-photolysis sliding-injector 12.6 290.0 378.5 52.01 N2O/H2O-photolysis sliding-injector 12.6 290.0 378.5 52.01 N2O/H2O-photolysis sliding-injector 43.8 290.0 378.5 52.01 N2O/H2O-photolysis sliding-injector 43.8 291.0 378.5 52.01 N2O/N2-photolysis sliding-injector 43.8 291.0 378.5 52.01 N2O/N2-photolysis sliding-injector 76.0 ([O]o) 291.0		383.0	1.77		11.6	2518
look at OH appearance 298.0 398.0 1.78 H2-discharge/NO2-titration 0.50						
298.0 398.0 1.78 H2-discharge/NO2-titration sliding-injector 0.50 299.0 391.0 1.82 CF4-discharge/H2O-titration side-arm port 6.99 324.0 338.0 1.84 H2-discharge/NO2-titration sliding-injector 7.50 374.0 268.3 1.83 H2-discharge/NO2-titration sliding-injector 6.50 290.0 393.7 441.4 N2O/H2O-photolysis N2O/H2O-photolysis sliding-injector 80.5 290.0 403.3 441.4 N2O/H2O-photolysis sliding-injector 12.6 290.0 403.3 441.4 N2O/H2O-photolysis sliding-injector 12.6 290.0 378.5 52.01 N2O/H2O-photolysis sliding-injector 12.6 290.0 378.5 52.01 N2O/H2O-photolysis sliding-injector 43.8 291.0 378.5 52.01 N2O/H2O-photolysis sliding-injector 43.8 291.0 321.2 403.2 (N2)e N2O/N2-photolysis sliding-injector 76.0 ([O] _O) 295.0 390.8 21.31 (N2)e N2O/N2-photolysis sliding-injector 56.0 ([O] _O) 295.0 381.0 186.3 (N2)e N2O/N2-photolysis sliding-injector 59.0 ([O] _O) 3 Hz 193-nm laser rap rate look at OH appearance 59.0 ([O] _O)		362.2	1.81 d		19.1 ([O] _O)	2556
Sliding-injector 299.0 391.0 1.82 CF4-discharge/H2O-titration 6.99						
299.0 391.0 1.82 CF4-discharge/H2O-titration side-arm port 6.99 324.0 338.0 1.84 H2-discharge/NO2-titration sliding-injector 7.50 374.0 268.3 1.83 H2-discharge/NO2-titration sliding-injector 6.50 290.0 393.7 441.4 N2O/H2O-photolysis 3Hz 193-nm laser rap rate 80.5 290.0 403.3 441.4 N2O/H2O-photolysis 3Hz 193-nm laser rap rate 12.6 290.0 378.5 52.01 N2O/H2O-photolysis 3Hz 193-nm laser rap rate 43.8 291.0 321.2 403.2 (N2)e N2O/N2-photolysis 76.0 ([O] _O) 76.0 ([O] _O) 295.0 390.8 21.31 (N2)e N2O/N2-photolysis 3Hz 193-nm laser rap rate look at OH appearance 56.0 ([O] _O) 295.0 381.0 186.3 (N2)e N2O/N2-photolysis 3Hz 193-nm laser rap rate look at OH appearance 59.0 ([O] _O)		398.0	1.78		0.50	2536
Side-arm port 324.0 338.0 1.84 H2-discharge/NO2-titration 7.50						
338.0 1.84 H2-discharge/NO2-titration 7.50 374.0 268.3 1.83 H2-discharge/NO2-titration 6.50 290.0 393.7 441.4 N2O/H2O-photolysis 80.5 3 Hz 193-nm laser rap rate 290.0 378.5 52.01 N2O/H2O-photolysis 43.8 3 Hz 193-nm laser rap rate 291.0 321.2 403.2 (N2)e N2O/N2-photolysis 76.0 ([O] ₀) 2 Hz 193-nm laser rap rate 295.0 390.8 21.31 (N2)e N2O/N2-photolysis 56.0 ([O] ₀) 3 Hz 193-nm laser rap rate 295.0 381.0 186.3 (N2)e N2O/N2-photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate 1		391.0	1.82		6.99	2488
Sliding-injector						
374.0 268.3 1.83 H2-discharge/NO2-titration sliding-injector 6.50 290.0 393.7 441.4 N2O/H2O-photolysis 3 Hz 193-nm laser rap rate 80.5 290.0 403.3 441.4 N2O/H2O-photolysis 3 Hz 193-nm laser rap rate 12.6 290.0 378.5 52.01 N2O/H2O-photolysis 3 Hz 193-nm laser rap rate 43.8 291.0 321.2 403.2 (N2)e N2O/N2-photolysis 76.0 ([O]o) 2 Hz 193-nm laser rap rate look at OH appearance 76.0 ([O]o) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 390.8 21.31 (N2)e N2O/N2-photolysis 3 Hz 193-nm laser rap rate look at OH appearance 56.0 ([O]o) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N2)e N2O/N2-photolysis 3 Hz 193-nm laser rap rate look at OH appearance 59.0 ([O]o)		338.0	1.84	H ₂ -discharge/NO ₂ -titration	7.50	2810
Sliding-injector Sliding-inj						
290.0 393.7 441.4 N2O/H2O-photolysis 80.5 290.0 403.3 441.4 N2O/H2O-photolysis 12.6 290.0 378.5 52.01 N2O/H2O-photolysis 43.8 291.0 321.2 403.2 (N2)e N2O/N2-photolysis 76.0 ([O] _O) 2 Hz 193-nm laser rap rate 100k at OH appearance 186.3 (N2)e N2O/N2-photolysis 56.0 ([O] _O) 3 Hz 193-nm laser rap rate 100k at OH appearance 59.0 ([O] _O) 3 Hz 193-nm laser rap rate 100k at OH appearance 59.0 ([O] _O) 3 Hz 193-nm laser rap rate 100k at OH appearance 59.0 ([O] _O) 3 Hz 193-nm laser rap rate 100k at OH appearance 59.0 ([O] _O) 3 Hz 193-nm laser rap rate 100k at OH appearance 186.3 (N2)e 186.3 (N2)e N2O/N2-photolysis 59.0 ([O] _O) 3 Hz 193-nm laser rap rate 100k at OH appearance 180.5 12.6 34.8		268.3	1.83	H ₂ -discharge/NO ₂ -titration	6.50	3235
3 Hz 193-nm laser rap rate 290.0 403.3 441.4 N ₂ O/H ₂ O-photolysis 12.6 3 Hz 193-nm laser rap rate 290.0 378.5 52.01 N ₂ O/H ₂ O-photolysis 43.8 3 Hz 193-nm laser rap rate 291.0 321.2 403.2 (N ₂)e N ₂ O/N ₂ -photolysis 76.0 ([O] _O) 2 Hz 193-nm laser rap rate look at OH appearance 295.0 390.8 21.31 (N ₂)e N ₂ O/N ₂ -photolysis 56.0 ([O] _O) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] _O) 3 Hz 193-nm laser rap rate look at OH appearance 59.0 ([O] _O)				sliding-injector		
290.0 403.3 441.4 N ₂ O/H ₂ O-photolysis 12.6 3 Hz 193-nm laser rap rate 290.0 378.5 52.01 N ₂ O/H ₂ O-photolysis 43.8 3 Hz 193-nm laser rap rate 291.0 321.2 403.2 (N ₂)e N ₂ O/N ₂ -photolysis 76.0 ([O] ₀) 2 Hz 193-nm laser rap rate look at OH appearance 295.0 390.8 21.31 (N ₂)e N ₂ O/N ₂ -photolysis 56.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N		393.7	441.4	N ₂ O/H ₂ O-photolysis	80.5	7.83
290.0 403.3 441.4 N ₂ O/H ₂ O-photolysis 12.6 3 Hz 193-nm laser rap rate 290.0 378.5 52.01 N ₂ O/H ₂ O-photolysis 43.8 3 Hz 193-nm laser rap rate 291.0 321.2 403.2 (N ₂)e N ₂ O/N ₂ -photolysis 76.0 ([O] ₀) 2 Hz 193-nm laser rap rate look at OH appearance 295.0 390.8 21.31 (N ₂)e N ₂ O/N ₂ -photolysis 56.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O/N				3 Hz 193-nm laser rap rate		
3 Hz 193-nm laser rap rate		403.3	441.4		12.6	7.83
290.0 378.5 52.01 N ₂ O/H ₂ O-photolysis 43.8 3 Hz 193-nm laser rap rate 291.0 321.2 403.2 (N ₂)e N ₂ O/N ₂ -photolysis 76.0 ([O] ₀) 2 Hz 193-nm laser rap rate look at OH appearance 295.0 390.8 21.31 (N ₂)e N ₂ O/N ₂ -photolysis 56.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 193.0 ([O] ₀) 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 193.0 ([O] ₀) 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 193.0 ([O] ₀) 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 186.3 (N ₂)e N ₂ O						
3 Hz 193-nm laser rap rate 291.0 321.2 403.2 (N ₂)e N ₂ O/N ₂ -photolysis 76.0 ([O] ₀) 2 Hz 193-nm laser rap rate look at OH appearance 295.0 390.8 21.31 (N ₂)e N ₂ O/N ₂ -photolysis 56.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 193.0 ([O] ₀) 193.0 ([O] ₀) ([O] ₀) 193.0 ([O] ₀) ([O] ₀) 193.0 ([O] ₀) ([O] ₀		378.5	52.01		43.8	17.41
291.0 321.2 403.2 (N ₂)e N ₂ O/N ₂ -photolysis 76.0 ([O] ₀) 2 Hz 193-nm laser rap rate look at OH appearance 295.0 390.8 21.31 (N ₂)e N ₂ O/N ₂ -photolysis 56.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance						
2 Hz 193-nm laser rap rate look at OH appearance 295.0 390.8 21.31 (N ₂)e N ₂ O/N ₂ -photolysis 56.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance		321.2	403.2 (Na)e		76.0 ([O] _o)	14.63
look at OH appearance			403.2 (112)		. 5.5 ([- 10)	
295.0 390.8 21.31 (N ₂)e N ₂ O/N ₂ -photolysis 56.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance						
3 Hz 193-nm laser rap rate look at OH appearance 295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] _O) 3 Hz 193-nm laser rap rate look at OH appearance		390.8	21.31 (Na)e		56.0 ([O] _o)	44.76
look at OH appearance			21.31 (112)		35.5 ([5]0)	,
295.0 381.0 186.3 (N ₂)e N ₂ O/N ₂ -photolysis 59.0 ([O] ₀) 3 Hz 193-nm laser rap rate look at OH appearance						
3 Hz 193-nm laser rap rate look at OH appearance		381.0	1863 (No)e		59.0 ([O] ₀)	10.63
look at OH appearance		201.0	180.3 (142)		33.0 ([0]0)	10.03
557.0 51.05 11.Z0/11.Z0-Photorysis 55.5		337.0	51.85		35.3	21.62
3 Hz 193-nm laser rap rate		337.0	31.03		55.5	21.02
491.0 316.7 50.92 N ₂ O/H ₂ O-photolysis 25.8		316.7	50.02		25.9	29.98
316.7 30.92 N2O/H2O-pnotolysis 25.8 3 Hz 193-nm laser rap rate		310.7	30.92		23.8	29.90

*Table I continued:

T(K)	ak ₁ (10-13 cm ³ molec-1 s-1)	bPressure (torr)	OH-Source	c[OH] _O (10 ¹⁰ cm ⁻³)	v (cm s ⁻¹)
628.0	303.1	51.25	N2O/H2O-photolysis	16.3	38.88
			3 Hz 193-nm laser rap rate		
633.0	292.9	51.25	N ₂ O/H ₂ O-photolysis	11.3	38.98
			3 Hz 193-nm laser rap rate		

aOverall 1- σ uncertainty in k₁ is ~ \pm 18% (precision plus estimated systematic).

bPressure of He carrier gas unless otherwise stated.

cWhen O-atoms are reacted with N2H4, the initial O-atom concentration, [O]_O is indicated.

 d_{Excess} [H₂O] (1.0 x 10¹⁵ molec cm⁻³) present.

eExcess $[CO_2]$ (8.1 x 10^{16} molec cm⁻³) present.

fOH-fluorescence signal decay recorded for a fixed injector position, z and varying [N2H4].

The observed 1st-order decays at each position are then plotted as a function of z to calculate k1.

This approach at low-T gave somewhat better reproducibility in the measured decay rate compared to that when the decay rate was measured for a fixed [N₂H₄] and varying z.

Table II Temperature dependence of OH + CH3NHNH2 reaction rate coefficient, k2.

T(K)	ak2(10-13 cm3 molec-1 s-1)	He Pressure (torr)	OH-Source	[OH] _O (10 ¹⁰ cm ⁻³)	v (cm s ⁻¹)
250.0	(15.1	2.00	H ₂ -discharge/NO ₂ -titration	2.63	2803
258.0	645.1	2.00	side-arm port		
	(27.1	2.06	H2-discharge/NO2-titration	1.48	2983
278.0	637.1	2.00	side-arm port		
	5.550	2.09	H ₂ -discharge/NO ₂ -titration	4.40	3209
292.0	565.0	2.09	side-arm port		
		100	H2-discharge/NO2-titration	2.50	3300
298.0	561.0	1.9.0		2.00	
		1.07	sliding-injector H2-discharge/NO2-titration	0.76	3096
298.0	613.0	1.97		0.75	
		2.02	sliding-injector H2-discharge/NO ₂ -titration	1.17	3225
298.0	564.4	2.02	1 -	1.17	
			side-arm port	2.15	3203
298.0	640.0	2.02	H ₂ -discharge/NO ₂ -titration	2.13	3203
			side-arm port	2.12	3374
316.0	540.0	2.06	H2-discharge/NO2-titration	2.12	33/4
			side-arm port	2.01	3685
345.0	506.8	2.11	H2-discharge/NO2-titration	2.91	3083
			side-arm port		1000
373.0	528.1	2.08	H2-discharge/NO2-titration	2.73	4023
	:		side-arm port		15.00
289.0	691.3	51.05	N ₂ O/H ₂ O-photolysis	33.6	17.08
			3 Hz 193-nm laser rap rate		1.7.6
289.0	697.5	50.98	N2O/H2O-photolysis	1.98	17.53
207.0			3 Hz 193-nm laser rap rate		
289.0	604.8	503.7	N2O/H2O-photolysis	76.2	6.44
207.0	00.10		3 Hz 193-nm laser rap rate		
357.0	648.3	51.78	N2O/H2O-photolysis	29.2	21.32
	0.40.5		3 Hz 193-nm laser rap rate	·	
475.0	588.4	51.55	N2O/H2O-photolysis	21.9	28.50
	, 300.4		3 Hz 193-nm laser rap rate		
637.0	529.1	487.9	N2O/H2O-photolysis	34.1	14.11
03/.0	323.1	107.5	2 Hz 193-nm laser rap rate		

aOverall 1- σ uncertainty in k2 is ~ \pm 18% (precision plus estimated systematic).

•Table III Temperature dependence of OH + (CH3)2NNH2 reaction rate coefficient, k3.

T(K)	ak ₁ (10-13 cm ³ molec-1 s-1)	He Pressure (torr)	OH-Source	[OH] _O (10 ¹⁰ cm ⁻³)	v (cm s ⁻¹)
254.0	724.5	1.99	H2-discharge/NO2-titration	2.85	2834
251.0	.		side-arm port		
278.0	745.5	2.04	H2-discharge/NO2-titration	1.93	3034
270.0	743.3		side-arm port		
296.0	576.9	2.01	H2-discharge/NO2-titration	1.04	3387
270.0	370.9	2.01	side-arm port		
297.0	573.1	2.05	H2-discharge/NO2-titration	1.18	3216
297.0	373.1	2.03	side-arm port		
298.0	641.0	1.98	H2-discharge/NO2-titration	3.20	3368
298.0	041.0	1.70	side-arm port		
200.0	524.0	2.06	H ₂ -discharge/NO ₂ -titration	1.10	3124
298.0	534.0	2.00	side-arm port		
200.0	606.9	1.97	H2-discharge/NO ₂ -titration	1.20	2956
298.0	606.8	1.97	1	1.20	2,00
2000	(05.6	1.04	sliding-injector H2-discharge/NO2-titration	1.57	3158
298.0	635.6	1.94		1.57	3130
		0.16	sliding-injector	1.61	3012
298.0	693.0	2.16	H ₂ -discharge/NO ₂ -titration	1.01	3012
		2.01	sliding-injector	3.05	3507
315.0	560.4	2.01	H ₂ -discharge/NO ₂ -titration	3.03	3307
			side-arm port	2.83	3790
341.0	535.0	2.02	H ₂ -discharge/NO ₂ -titration	2.63	3790
			side-arm port	1.05	2001
373.0	498.0	2.06	H ₂ -discharge/NO ₂ -titration	1.85	3991
			side-arm port	106.0	20.10
296.0	572.0	36.2	N ₂ O/H ₂ O-photolysis	196.0	20.10
			10 Hz 193-nm laser rap rate	264	20.20
297.0	570.0	35.1	N ₂ O/H ₂ O-photolysis	86.1	20.30
			10 Hz 193-nm laser rap rate	100.5	24.10
446.0	472.6	32.6	N ₂ O/H ₂ O-photolysis	108.7	34.10
			10 Hz 193-nm laser rap rate		42.00
533.0	447.4	33.4	N ₂ O/H ₂ O-photolysis	185.7	39.98
			10 Hz 193-nm laser rap rate		
630.0	499.1	33.4	N ₂ O/H ₂ O-photolysis	3.52	48.60
			10 Hz 193-nm laser rap rate		
630.0	472.3	33.4	N ₂ O/H ₂ O-photolysis	150.5	48.60
			10 Hz 193-nm laser rap rate		
632.0	476.0	530.0	N ₂ O/H ₂ O-photolysis	155.2	13.43
			1 Hz 193-nm laser rap rate		
632.0	376.0	530.0	N ₂ O/H ₂ O-photolysis	155.2	13.43
			10 Hz 193-nm laser rap rate		
633.0	475.9	508.0	N ₂ O/H ₂ O-photolysis	34.1	13.79
			2 Hz 193-nm laser rap rate		

aOverall 1- σ uncertainty in k3 is ~ \pm 18% (precision plus estimated systematic).

FIGURE CAPTIONS

Figure 1 Measured OH-fluorescence signal, OHS as a function of flow-tube reaction time, t in different (CH₃)₂NNH₂ concentrations; = zero (crosses), = 0.292×10^{13} (open circles), = 0.643×10^{13} (open triangles), = 0.957×10^{13} (open squares), and = 1.339×10^{13} molec cm⁻³ (open diamonds) at 373 K and in 2 torr He. OH is produced in the side-arm discharge port.

Figure 2 Plot of pseudo-first-order decay coefficients, $k_{net} = (k + k_{W,i})$ versus the $[(CH_3)_2NNH_2]$ of Figure 1. Because the upward correction, Refs. [13,14], of k_{net} for axial diffusion, $k_{corr} = k_{net}(1 + k_{net}\mathcal{D}/v^2)$, where \mathcal{D} , in units of cm² s⁻¹, is the diffusion coefficient of OH in He is expected to be < 5%, Ref. [15], the flow-tube data was not corrected for this since the other overall errors in the experiment are calculated to be $\sim \pm 18\%$, Ref. [5]. The absolute second-order rate coefficient, k_3 is determined to be $(4.98 \pm 0.89) \times 10^{-11}$ cm³ molec⁻¹ s⁻¹ at 373 K.

Figure 3 OH appearance profile in the O + N₂H₄ reaction during 193-nm photolysis of N₂O (2.1 x 1015) in N₂ (6.2 x 1017) and CO₂ (8.1 x 1016 molec cm⁻³). The laser fluence was ~ 1.6 mJ/cm²/pulse and N₂H₄ concentration was 1.10 x 10¹³ molec cm⁻³. The characteristic coefficients of appearance and decay in the signal yield values for k₁(phenomenological) and k_O, respectively. Where k_O is the absolute second-order rate coefficient for O-atom reaction with hydrazine, and k₁(phenomenological) corresponds closely to the absolute second-order rate coefficient for OH reaction with the di-amine.

Figure 4 The Arrhenius temperature dependencies of the absolute second-order rate coefficients; k₁, k₂ and k₃ for OH reactions with N₂H₄ (diamonds), CH₃NHNH₂ (circles), and (CH₃)₂NNH₂ (squares), respectively. Open data points were obtained using the flow-tube apparatus and solid data points using the pulsed-photolysis reactor. Previous results of Ref. [1] (crosses) and Ref. [2] (plus) are also shown.

Figure

OH-fluorescence signal (arbitrary units)

 2^{nd} -order rate coefficients, $k_i (10^{-11} cm^3 molec^{-1} s^{-1})$

