Dcard Popular Posts Prediction

Team 6 0816061 王凱俐 0816131 蔡佩君

I. Dcard Popular Posts

- 1. Dcard: Dcard 是一個大型網路論壇,提供台灣民眾分享各式各樣的貼文。
- **2.** Popular Posts: Dcard 首頁會呈現當前的熱門文章,並依照熱門程度排序文章,而能成為熱門文章的貼文,為 36 小時內快速取得大家關注的文章。

3. Objective: 我們的目的是透過文章的標題、內文、標籤及發文者資訊等,預測該篇文章發布後是否能成為熱門文章,也希望能藉此了解流行趨勢跟時下熱門話題,找出熱門文章通常具備什麼要素。

II. Data Collection

- 1. Web Crawler: 我們使用爬蟲抓取 Dcard 上的文章資料。
 - a. Popular: 首先從 Dcard 首頁·按照熱門程度排序·抓取前 50~60 篇熱門文章 id·再透過 id 抓取文章內文及詳細資訊。label 標記為 1。
 - b. Not popular: 首先從 Dcard 首頁依據發布時間排序,抓取已發布超過 36 小時,且愛心數仍小於 50 的文章 id,則判斷此文章為非熱門,再透過 id 抓取文章內文及詳細資訊。label 標記為 0。

c. Features: 下圖為資料範例,我們採用的 features 為:標題、內文、是 否匿名校名、使否匿名系名、性別、看板名稱及標記。

title	content	anonymousSchool	${\tt anonymousDepartment}$	gender	forumName	topics	label
本週連續3位網紅與政 府槓上	因為連續看到3位網紅與政府槓上\r\n所以發這篇文v\n以下按照youtube 上傳影片時間	False	False	М	YouTuber	['博恩', 'cheap', 'bump', '機車', '政府']	1
#贈品 今天抽一位贈 送星巴克	今天租到房子蠻開心的\n心情好就想送東西??\nhttps://i.imgur.com/qv	False	False	М	省錢	['贈送', '星巴克', '省錢', '情報', '抽獎']	1
Dr.Wu包裝先別丟?? ~	目前沒有回收瓶活動喔!!(下文語意修正)In是包裝留射標鐵累積活動??InIn(購買商品的包	False	False	F	美妝	['保養', '分享']	1
#詢問多那之工作	想請問推薦去多那之打工嗎~\n爬文過幾乎都是幾年前的留言\n身邊朋 友也都沒有相關經歷可以參考	True	True	F	工作	['工作', '工作經驗', '打工', '面試', '求職']	0
突然覺得好迷茫	前女友是在交友軟體認識的,聊天過程蠻開心的,一段時間我們也約出 來聊聊天,我對她也繼有好感的,	True	True	M	感情	['迷茫', '感情', '分手', '失 戀', '出軌']	0
#國小 請問桃園英語 教甄 數學複試	各位前輩們好?????\n請問在進行數學複試時,能否打開課本上課。\n (看著課本裡的數學題目	False	True	F	教師	['桃園', '英語', '教甄']	0

2. Amount of data: 為了預測的準確性,熱門與非熱門兩種類別的資料數量,各為百分之 50,各約五百多筆資料。

III. Data Analysis

1. Feature Distribution: 觀察其中三種 feature: 發文者性別、是否匿名校名,及是否匿名系名,在兩個 label 種類中的數量分布。由圖表顯示,這些 feature 在兩個種類中的分布差異都不大。另外也能發現,女性及顯示校名的整體比例

2. Popular Forum: 我們抓出在熱門文章中,數量最多的 15 個看板,數量最多的 為追星、有趣、心情、感情、個人看板等。

3. Not Popular Forum: 非熱門文章部分,分布最多的前幾名看板為感情、心情、閒聊、傳說對決、新生季、工作板等。

4. Popular and Not Popular Forum: 綜合兩者觀察,首先在感情、心情、閒聊三個看板中,熱門與非熱門文章都有很多的數量,兩者比例差距不大。而在這星、有趣、youtuber、穿搭版中,可以發現熱門文章幾乎占了大量的比例,由此可以推測在這些看板中的文章,有很大機率可以登上熱門。在傳說對決、新生季兩個看板中,非熱文文章都佔了很大比例,也能由此推測在這兩個看板中的文章,較難以受到大眾關注。

5. Word Cloud

我們對資料中的詞語製作了文字雲,使更清楚觀察不同字詞的影響程度,文字雲中字體越大的詞語,代表出現的頻率越高。

a. Popular Title: 在熱門文章標題部分可以發現 IG、男友、穿搭、梗、新聞等占了很大部分,而由於我們蒐集的資料是近期幾周的資料,因此也能發現一些近期的熱門話題,例如:王心凌、確診等。

b. Not Popular Title: 非熱門文章標題部分,顯示請益、詢問、請問等, 多發表問題的字詞,也推測這些詢問資訊的文章,能得到的關注與回應 都較少。

c. Popular Topics: 熱門的標記中,穿搭、有趣、梗圖、謎因、搞笑等占了很大部分,能發現這些能帶來生活樂趣的主題,有很大機會能成為熱門文章。

d. Not Popular Topics: 非熱門標記則包括工作、感情、傳說、手遊等。

IV. Data Preprocessing

- 1. Drop nan: 移除有缺失的資料。
- 2. Lable Encoding: 由於 dataset 中每一筆資料除了包含文字資料外,還有 categorical feature,譬如: anonymousSchool、anonymousDepartment、 gender.所以此處是針對 categorical feature 進行 label encoding,將 True/False 以及 female/male 轉換成 0/1。
- 3. Remove Other Symbols: 由於文章內容會出現數字、中文、字母以外的內容 譬如: 表情符號、標點符號、網址等,這些內容會增加模型訓練的困難度,因此 我們會將這些內容去除。
- **4. Remove Stop Words:** stop words 泛指一些在文章中出現頻率很高但卻沒什麼意義的文字,譬如: 除了、那麼、隨著等。因此我們也會移除這些不具參考價值的字詞,來減少 dataset 的複雜度。
- 5. **TF-IDF**: 是一種常用於文字處理的統計方法,用來評估詞彙在這篇文章中的重要程度。首先會計算各個詞彙出現的頻率,而頻率越低的詞彙會給予較高的權重,使模型更關注在重要的詞彙上。
- **6. Label Binarizer:** 將 categorical feature 經過 label binarizer 轉換成 one hot encoding 的形式。

V. Model

- 1. Naive Bayes: 使用貝氏定理,在已知的條件下,計算各個類別發生的機率,而分類器會輸出發生機率最高的類別。
- 2. Logistic Regression: 適用於二元分類的分類器,目的是要找出一條平滑的線,將兩個類別分開。
- 3. K Nearest Neighbor: 採多數決標準,計算目前該筆資料與其他資料的距離,接著找出 k 個最接近的鄰居來判定該筆資料位於哪一群。在此項作業中,我們設置了不同大小的 k,並進行實驗找出最佳的 k,實驗結果撰寫於後方實驗部分,而最後決定將 k 設置為 10。
- **4. MLP:** 我們建立 Multilayer Perceptron 神經網路,作為二元分類器。MLP 為具有多個節點的 layer 所組成,layer 中所有節點都與下一層所有節點相連,形

成全連接層。其中分為輸入層、隱藏層及輸出層,我們實驗了不同層數模型的 表現,撰寫於後方實驗部分。

我們使用 Tensor Flow Dense function 來建立全連接層,使用 relu 作為 activation function。由於我們要處理的是二元分類問題,因此輸出層由一個節點組成,並以 sigmoid 作為 activation function,使模型輸出 0~1 之間的預測值,數值越接近 1,代表越有可能是熱門文章。

VI. Experiments

1. All Model

在此作業中,我們一共使用 4 種模型來進行實驗,以下數據皆為 testing data 上的結果,並使用 Accuracy、Precision、F1 score、ROC AUC score、ROC curve、Confusion Matrix 作為 metric。

a. Accuracy: 由下表可知·4 種模型的 Accuracy 都具有一定的水準·皆在 0.79 以上·其中表現最好的是 MLP。

Method	Accuracy
Naive Bayes	0.85
Logistic Regression	0.85
KNN(k=10)	0.79
MLP 4 layer with dropout	0.87

b. Precision · F1 score · ROC AUC score

Method	Precision	F1 score	ROC AUC score
Naive Bayes	0.8431	0.8444	0.8458
Logistic Regression	0.8431	0.8444	0.8458
KNN(k=10)	0.785	0.7864	0.7958
MLP 4 layer with dropout	0.8101	0.8696	0.8713

c. ROC curve: 當 ROC curve 以下的面積越大,代表模型的準確率越高,從底下的圖可知,紅線底下的面積很大,代表我們模型的分類精準度都很高。

d. Confusion Matrix

2. KNN

我們實驗了三種不同大小的 k(判斷資料屬於哪個類別,所需的鄰居個數),並將模型的訓練資料分為兩類: "使用文字資料及 categorical feature"及"單純使用文字資料"。其中表現最好的模型,皆為 k=10 的模型(黃框處)。

l.	without	with
K	categorical feature	categorical feature
10	0.76	0.79
20	0.73	0.76
30	0.71	0.71

3. MLP

我們實驗了四種不同的 MLP 架構,並監控它們的訓練情形,與在測試資料及上的表現,四種模型分別為:

	input layer	hidden layer 1	hidden layer 2	output layer	dropout
MLP 4 layer without dropout	128	64	32	1	False
MLP 4 layer with dropout	128	64	32	1	True
MLP 3 layer	64	32		1	True
MLP 2 layer	64			1	True

a. Training:

以訓練資料中的 30%作為 validation data · 使用 binary crossentropy loss 監督 · 各訓練 15 個 epochs ·

b. Result-accuracy:

Method	Accuracy
MLP 4 layer without dropout	0.81
MLP 4 layer with dropout	0.87
MLP 3 layer	0.82
MLP 2 layer	0.82

上表為在 test data 上預測結果的 accuracy · 其中 MLP 4 layer with dropout 得到了最佳的結果。

c. Result-dropout:

在第一個 MLP 模型中,沒有加入 dropout,而在其餘的模型中,我們在全連接層之間加入了 dropout layer,每個節點有 0.5 的機率會被關閉,防止overfitting。

下圖為 MLP 4 layer without dropout 在訓練時的準確率變化。可以觀察到,訓練時在 training set 的準確率很快就達到 1.0,但在 validation 及 test 資料上,結果反而較差。可由此推測,在沒有加入 dropout layer 的情況下,容易造成在訓練資料集上過擬合的現象。

d. Result-Precision, F1 score, ROC AUC score:

Method	Precision	F1 score	ROC AUC score
MLP 4 layer without dropout	0.8100	0.8098	0.8097
MLP 4 layer with dropout	0.8766	0.8697	0.8713
MLP 3 layer	0.8215	0.8197	0.8195
MLP 2 layer	0.8199	0.8199	0.8199

e. Result-Confusion Matrix, ROC Curve:

MLP 4 layer with dropout

3. Categorical Feature:

在資料的 feature 中,我們實驗了不採用 categorical feature,只使用文字資料(標題、內文、標籤),以及採用 categorical feature(性別、匿名校名、系名、看板名稱)兩種方式,下表為兩種做法在各個模型中的預測準確率。

由結果觀察,加入 categorical feature 後,在各個模型上的表現都能有所提升,顯示 categorical feature 也能提供一定程度的資訊,協助模型分類。

Method	without	with	
ivietriou	categorical feature	categorical feature	
Multinomial NB	0.71	0.85	
Logistic Regression	0.76	0.85	
KNN(k=10)	0.76	0.79	
MLP 4 layer without dropout	0.76	0.81	
MLP 4 layer with dropout	0.86	0.87	
MLP 3 layer	0.81	0.82	
MLP 2 layer	0.79	0.82	

4. 不同 categorical feature 及文字資料組合:

在使用不同 feature 的實驗上,除了做上述的實驗外(是否加入 categorical feature 作為訓練資料)外,我們還實驗了"使用部分 categorical feature 及文字資料"的實驗,每筆資料的 feature 最多有 anonymousSchool、anonymousDepartment、gender、forumName、title、topics,我們實驗了搭配不同組合的 feature,形成下表的結果。

Anonymous	Anonymous	gender	forumName	title	topics	Accuracy
School	Department	gender	Torumname	uue	topics	Accuracy
V	V	V	V	V	V	0.89
V	V	V	X	V	V	0.79
V	V	X	X	V	V	0.81
V	V	X	V	V	V	0.85
V	X	Χ	V	V	V	0.87
X	X	X	V	V	V	0.88

上表中,表現最好的為,使用所有 feature(黃框處)作為訓練資料的設定。另外我們觀察到,當不加入 forumName 這項 feature 時,會造成 Accuracy 大幅降低,產生兩個表現最差的結果(綠框處)。而當不加入 anonymousSchool 或anonymousDepartment 或 gender 時,皆只導致 Accuracy 微幅下降。由此可判斷,forumName 對模型來說,為非常重要的判斷依據。

VII. Demo

我們實際去 Dcard 中尋找剛發布的文章,輸入到模型中預測,並在一天後驗收成果。

1. 熱門文章

首先在文章剛發布時抓取資料,進行預測。

模型預測的結果都在 0.9 以上 代表模型認為他有高機率會成為熱門文章。

[[0.91030985]]

一天之後,這兩篇文章也的確出現在熱門文章當中。

2. 非熱門文章

兩篇文章中,模型預測的結果都趨近於 0,代表模型認為他成為熱門文章的機率很低。

一天之後驗收成果,這兩篇文章的按讚留言數少於30,非熱門文章。

VIII. Conclusion

		£\$
看板	追星、有趣、youtuber、穿搭	傳說對決、新生季、工作
標題	IG、男友、穿搭、梗、歷史、 新聞、偶像、小吃、影片	請益、詢問、請問、推薦、 發問、排位、工作、活動
標記	有趣、穿搭、梗圖、迷因、 搞笑、日常、美食、男友	工作、感情、請益、傳說、 手遊、新生、愛情

- 1. 根據資料分析結果,我們歸納出上圖中,熱門與非熱門文章具備的要素,若想撰寫出熱門文章時,可依此為參考依據。
- 2. 我們實驗了多種模型進行分類預測,皆能達到不錯的結果,其中最佳的為 4 層 MLP 模型。
- 3. 除了文字資料,我們也採用了其他 categorical 資料,並實驗以不同組合的資料訓練模型,當使用所有資料時,能達到最好的結果。
- 4. 為了測驗模型的實用性,我們也實際抓取剛發布的文章,交由模型預測成為熱門文章的機率,並在數小時後驗證結果,能達到一定的準確率。若是想發布熱門文章,可以在發布前先經由我們的模型預測登上熱門的機率,並依此修改文章,直到模型預測出高的數值,就能有高機率成為熱門文章。
- 5. 在此 project 中·我們只蒐集到近幾周的文章資料·若想讓模型學習到更完整的流行趨勢·可以再收集更長期的資料·增加模型預測能力。

Github Link

https://github.com/kelly8911/Dcard-Popular-Posts-Prediction