Some constructions on ω -groupoids

Thorsten Altenkirch ¹ Nuo Li ¹ Ondřej Rypáček ²

¹School of Computer Science University of Nottingham, UK

²University of Oxford, UK

17/07/14

Outline

- Introduction to weak ω -groupoids
- Basic syntax of $\mathcal{T}_{\infty- ext{groupoid}}$ (describing the structure of weak ω -groupoids)
- Heterogeneous equality for syntactic terms
- Suspension and replacement
- Coherences constructions
- Semantic interpretation

Introduction to weak ω -groupoids 1

- To internalize equality in types : setoids, groupoids
- A new interpreted of types : weak ω -groupoids (In Homotopy Type Theory)
 - weak ω -groupoid: A higher dimensional category (ω -category) where every morphism is an weak equivalence (equivalence for short)
 - Equivalence: invertible morphism up to all higher equivalence (generalization of isomorphism)
 - Weak: equality in coherence laws are up to equivalence (not strictly equal) e.g. $(f \circ g) \circ h \to f \circ (g \circ h)$
- How can we formalize weak ω -groupoids in type theory?
 - Warren's strict ω -groupoid model
 - Altenkirch and Rypacek's syntactic approach
 - Brunerie's syntactic approach: $\mathcal{T}_{\infty-\text{groupoid}}$

Basic syntax of $\mathcal{T}_{\infty- ext{groupoid}}$ |

• We use $\mathcal{T}_{\infty-\mathsf{groupoid}}$ to describe the internal structure of a weak ω -groupoid

```
\begin{array}{lll} \text{data Con} & : \; \mathsf{Set} \\ \text{data Ty } (\Gamma : \mathsf{Con}) & : \; \mathsf{Set} \\ \text{data Tm} & : \; \{\Gamma : \mathsf{Con}\}(\mathsf{A} : \mathsf{Ty} \; \Gamma) \to \mathsf{Set} \end{array}
```

• The structure is inductively defined as

Structure of weak ω -groupoids |

- Equality on each levels:
- Setoid:

id:
$$x = x$$
 $^{-1}: x = y \rightarrow y = x$
 $_{-} \circ _{-}: y = z \rightarrow x = y \rightarrow x = z$

• Groupoid:

$$\lambda : id \circ p = p$$

$$\rho : p \circ id = p$$

$$\alpha : p \circ (q \circ r) = (p \circ q) \circ r$$

$$\kappa : p^{-1} \circ p = id$$

$$\kappa' : p \circ p^{-1} = id$$

Structure of weak ω -groupoids II

- In weak ω -groupoids, additionally we have more provable equalities on higher dimensions which are all weak (up to higher equivalences) e.g. horizontal composition, interchange law, coherence laws
- Coherence laws usually state that various compostions of elementary morphisms are equal. Example: There are two ways to show $(f \circ id) \circ g = f \circ g$

- For higher dimensions things becomes much more complicated
- Infinitely many coherence constants

Contractible Contexts and Coherences I

- All coherence constants are derivable from *J*-eliminator of equality
- A analogous construction in $\mathcal{T}_{\infty-\text{groupoid}}$: contractible contexts
 - €, *
 - ϵ , x: *, y: *, α : x = y
 - ... Γ , y : A, $\alpha : x = y$ (Given $\Gamma \vdash A$ and $\Gamma \vdash x : A$)
- Anything in a contractible context is a coherence constant: intuitively the extension of contractible context internalise the J-eliminator

Example: Assume $\epsilon, x : * \vdash x = x$ (weakening)

$$\Rightarrow \epsilon, x : *, x : *, \alpha : x = x \vdash x = x$$
 (J-eliminator)

$$\Rightarrow \epsilon, x : *, y : *, \alpha : x = y \vdash y = x$$

Contractible Contexts and Coherences II

 Contexts for 0-level coherences in minimum contractible contexts:

- $\epsilon, x : * \vdash x = x \ (id^*)$ • $\epsilon, x : *, y : *, \alpha : x = y \vdash y = x \ (\ ^{-1*})$
- $\epsilon, x : *, y : *, \alpha : x = y, z : A, \beta : y = z \vdash x = z$ (\circ^*)
- If we "replace" ϵ by arbitrary context Γ , and * by arbitrary A, we obtain contexts for general 0-level coherences:
 - Γ , $x : A \vdash x = x$ (id)
 - $\Gamma, x : A, y : A, \alpha : x = y \vdash y = x (_{-1})$
 - $\Gamma, x : A, y : A, \alpha : x = y, z : A, \beta : y = z \vdash x = z (_ \circ _)$

Contractible Contexts and Coherences III

 Indeed any coherence constant exists in a context which we can substitute into a contractible context

data Tm where $\begin{array}{ll} \text{var} & : \ \forall \{\Gamma\}\{A: \mathsf{Ty}\ \Gamma\} \to \mathsf{Var}\ \mathsf{A} \to \mathsf{Tm}\ \mathsf{A} \\ \text{coh} & : \ \forall \{\Gamma\ \Delta\} \to \mathsf{isContr}\ \Delta \to (\delta: \Gamma \Rightarrow \Delta) \\ & \to (\mathsf{A}: \mathsf{Ty}\ \Delta) \to \mathsf{Tm}\ (\mathsf{A}\ \lceil\ \delta\ \rceil\mathsf{T}) \\ \end{array}$

Reasoning about syntactic terms

- Using homogeneous equality to reason about syntactic terms, we have to deal with **subst** e.g. subst p = y, subst $p(\text{subst } p^{-1} x) = x$
- Heterogeneous equality for Tm

```
data \_\cong \_ \{\Gamma : \mathsf{Con}\}\{\mathsf{A} : \mathsf{Ty}\ \Gamma\}
 : \{\mathsf{B} : \mathsf{Ty}\ \Gamma\} \to \mathsf{Tm}\ \mathsf{A} \to \mathsf{Tm}\ \mathsf{B} \to \mathsf{Set}\ \mathsf{where}
 \mathsf{refl} : (\mathsf{b} : \mathsf{Tm}\ \mathsf{A}) \to \mathsf{b} \cong \mathsf{b}
```

 Justification: The equality of inductively defined types are decidable, hence from Hedberg's Theorem they have UIP

Construction of coherences I

- To obtain a coherence term for arbitrary context Γ in two steps:
 - \bullet a coherence term in a contractible context Δ
 - 2 a substitution $\Gamma \Rightarrow \Delta$
- To do the second step: replacement and suspension
- **Replacement**: Given an arbitrary type A in arbitrary context Γ , we can replace * in a contractible context Δ by A and paste it onto A in Γ , such that we can obtain coherence B in Δ for type A

$$\frac{\Gamma \vdash A \vdash \Delta \text{ contractible } \Delta \vdash B}{\Gamma, \Delta^A \vdash B^A}$$

An example of Γ , Δ^A : Γ , y: A, α : x = y

Construction of coherences II

- Intuitively, we can filter out variables in Γ which are unrelated to A. However it is very difficult to do that. Instead we build a new context using
- **Suspension**: build a minimum contractible context for type *A* of level *n*:
 - $(x_0:*)$ (the one-variable context) for n=0;
 - $(x_0: *, x_1: *, x_2: x_0 =_h x_1)$ for n = 1;
 - $(x_0: *, x_1: *, x_2: x_0 =_h x_1, x_3: x_0 =_h x_1, x_4: x_2 =_h x_3)$ for n = 2, etc.

with Δ whose * is replaced by A

$$\frac{\Gamma \vdash A \vdash \Delta \text{ contractible } \Delta \vdash B}{\sum A. \Delta^A \vdash B^A}$$

Construction of coherences III

 Thus we can define a substitution from a replaced context to a suspended context called filter

$$\Gamma, \Delta^A \Rightarrow \Sigma A, \Delta^A$$

Note: The suspended context is contractible because one-step suspension proves to preserve contractibility.

Construction of coherences IV

- Case: Reflexivity
 - 1st step: reflexivity in a minimum contractible context

```
refl*-Tm : Tm \{x:*\} (var v0 =h var v0)
refl*-Tm = Coh-Contr c*
```

ullet 2nd step: reflexivity for arbitrary type A in arbitrary context Γ

```
 \begin{array}{ll} \text{refl-Tm} & : \; \{\Gamma : \mathsf{Con}\}(\mathsf{A} : \mathsf{Ty}\; \Gamma) \\ & \to \mathsf{Tm}\; (\mathsf{rpl-T}\; \{\Delta = \mathsf{x} : ^*\}\; \mathsf{A}\; (\mathsf{var}\; \mathsf{v0} = \mathsf{h}\; \mathsf{var}\; \mathsf{v0})) \\ \text{refl-Tm}\; \mathsf{A} & = \mathsf{rpl-tm}\; \mathsf{A}\; \mathsf{refl}^*\text{-}\mathsf{Tm} \\ \end{array}
```

Semantics

- A syntactic Grothendieck weak ω -groupoids is a globular set with an interpretation of syntactic coherence terms (coh)
- A globular set A consists coinductively of:
 - A set obj_A
 - For every x, y: obj_A, a globular set $Hom_A(x, y)$
- Example: the identity globular set $Id^{\omega}A$
 - $obj_{Id^{\omega}A} = A$
 - $\operatorname{Hom}_{Id^{\omega}A}(a,b) = Id^{\omega}A(a=b)$
- The interpretation of contexts, types and terms

Conclusion

- Types bear the structure of weak ω -groupoids: the tower of iterated identity types
- ullet An implementation of syntactic weak ω -groupoids in Agda
 - Basic syntax of the type theory $\mathcal{T}_{\infty-\mathsf{groupoid}}$
 - Heterogeneous equality for terms
 - Constructions of coherences
 - Semantic interpretation with globular sets
- ullet To complete a weak ω -groupoid model of type theory
- A computational interpretation of univalent axiom in Intensional Type Theory