Statistics 2

Multiple regression: Partial Correlation. Standardized Regression

Casper Albers & Jorge Tendeiro Lecture 6, 2019 – 2020

Overview

	4.5		1000	
Par	tıal	corre	lati	\circ n

Semi-partial correlation

Ballantine Venn diagrams

Squared semipartial correlation

Squared partial correlation

Standardized regression coefficients

Literature for this lecture

Read:

Agresti, Section 11.6 - 11.7

Note: The material on Ballantine Venn diagrams and the semi-partial correlation on the slides is not part of the book but it is part of the exam material!

Example – Predicting academic performance

Niessen et al. (2016) studied various predictors of academic performance¹.

- Dependent variable
 - y: FYGPA, grade point average of courses in the first year.
- ▶ Independent variables (p = 2)
 - x₁: CST, curriculum-sampling test; a test representative for the psychology curriculum
 - \triangleright x_2 : HSGPA, the grade point average obtained in high school.

Correlations ($n = 201$):					
	у	<i>x</i> ₁	<i>X</i> ₂		
у					
x_1	.451				
<i>X</i> ₂	.408	.523			

How much is the correlation between y and x_i when controlling for x_i ?

¹Niessen, A.S.M., Meijer, R.R., Tendeiro, J.N. (2016). Predicting Performance in Higher Education Using Proximal Predictors. *PLoS ONE*, doi:10.1371/journal.pone.0153663

In case of k = 2 predictors:

The partial correlation between y and x_1 is the correlation of 'y without x_2 ' with ' x_1 without x_2 '.

$$pr_1 = r_{yx_1 \cdot x_2} = \frac{r_{yx_1} - r_{yx_2} r_{x_1 x_2}}{\sqrt{\left(1 - r_{yx_2}^2\right) \left(1 - r_{x_1 x_2}^2\right)}}.$$

$$pr_1 = r_{yx_1 \cdot x_2} = \frac{.451 - .408 \times .523}{\sqrt{(1 - .408^2) \times (1 - .523^2)}} = \frac{.238}{.778} = .305$$

The correlation between average first year grade (y) and curriculum sampling test (x_1) , when partialing out the effect of the average high school grade, is .305.

Similarly,

$$pr_2 = r_{yx_2 \cdot x_1} = \frac{.408 - .451 \times .523}{\sqrt{(1 - .451^2) \times (1 - .523^2)}} = \frac{.172}{.579} = .297.$$

Alternative approach (k = 2)

1. Partial out x_2 from y:

$$y_i = \alpha_0 + \alpha_1 x_{2,i} + e_{y,i}$$

Here, e_y are what is left over from y once x_2 is taken out;

2. Partial out x_2 from x_1 :

$$x_{i,1} = \gamma_0 + \gamma_1 x_{2,i} + e_{x_1,i}$$

Here, e_{x1} is what is left over from x_1 once x_2 is taken out;

3. Compute the regular (zero-order) correlation between e_y and e_{x_1} :

$$pr_1 = r_{yx_1 \cdot x_2} = cor(e_y, e_{x_1}).$$

Alternative approach (k = 2) – Example

1. Partial out x_2 from y:

$$y = \alpha_0 + \alpha_1 x_2 + e_y$$

	Coefficients					
Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	3.549	.472		7.515	.000
	CST	.099	.016	.408	6.311	.000

2. Partial out x_2 from x_1 :

$$x_{i,1} = \gamma_0 + \gamma_1 x_{2,i} + e_{x_1,i}$$

	Coefficients					
Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	-2.134	.999		-2.136	.034
	HSGPA	1.295	.150	.523	8.655	.000

3. For both analyses, save the residuals and compute the correlation:

$$pr_1 = .305$$

Partial correlation when k > 2

In case of k > 2 predictors:

The partial correlation between y and x_1 is the correlation of 'y without x_2, x_3, \ldots ' with ' x_1 without x_2, x_3, \ldots '.

Computation:

Can be done with direct formula (see p. 346, not exam material), or indirect approach.

Alternative approach (k > 2)

Partial correlations can be computed for every pair of variables. For instance $\{x_1, y\}$:

1. Partial out x_2, \ldots, x_p from y:

$$y_i = \alpha_0 + \alpha_1 x_{2,i} + \ldots + \alpha_{p-1} x_{p,i} + e_{y,i}$$

Here, e_y is what is left over from y once all x but x_1 are taken out;

2. Partial out x_2, \ldots, x_p from x_1 :

$$x_{i,1} = \gamma_0 + \gamma_1 x_{2,i} + \ldots + \gamma_{p-1} x_{p,i} + e_{x_1,i}$$

Here, e_{x1} is what is left over from x_1 once all x but x_1 are taken out;

3. Compute the regular (zero-order) correlation between e_y and e_{x_1} :

$$r_{yx_1\cdot x_2,...,x_p}=\operatorname{cor}(e_y,e_{x_1}).$$

Semi-partial correlation

- ▶ The partial correlation removes $x_2, x_3, ...$ from y and x_1 and then computes the correlation.
- ▶ The semi-partial correlation removes $x_2, x_3, ...$ from x_1 only and then computes the correlation.

Computation:

- 1. Do nothing with y
- 2. Partial out x_2, \ldots, x_p from x_1 :

$$x_{i,1} = \gamma_0 + \gamma_1 x_{2,i} + \ldots + \gamma_{p-1} x_{p,i} + e_{x_1,i}$$

Here, e_{x1} is what is left over from x_1 once all x but x_1 are taken out;

3. Compute the regular (zero-order) correlation between y and e_{x_1} :

$$sr_1=\operatorname{cor}(y,e_{x_1}).$$

Semi-partial correlation - direct computation

The following formula gives the same result for k = 2 predictors:

$$sr_1 = \frac{r_{yx_1} - r_{yx_2}r_{x_1x_2}}{\sqrt{1 - r_{x_1x_2}^2}}$$

Example:

$$sr_1 = \frac{.451 - .408 \times .523}{\sqrt{1 - .523^2}} = \frac{.238}{.852} = .279,$$

 $sr_2 = \frac{.408 - .451 \times .523}{\sqrt{1 - .523^2}} = \frac{.172}{.852} = .202.$

For k > 2 direct computation formulas do exist, but are not part of the course material.

Interpretation squared correlation

- Pearson correlation, *r*, measures strength (and direction) of relation between *x* and *y*.
- $ightharpoonup r^2$: percentage of variance in common by x and y.
- ▶ partial correlation, *pr*, and semi-partial correlation, *sr*, have interpretation as a special type of correlation.
- ▶ Do their squared values, pr^2 and sr^2 have a 'percentage explained variance'-interpretation?

Answer: Yes.

To see this, we use the Ballantine Venn Diagram.

Example

- ▶ Dependent variable: y = FYGPA
- ▶ Independent variables: x₁: CST and x₂: HSGPA

Coefficients

Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	-2.085	.976		-2.137	.034
	CST	.052	.016	.217	3.277	.001
	HSGPA	1.053	.164	.425	6.434	.000

Coefficients					
Model	R	R Square	Adjusted	Std. Error of	
			R Square	the estimate	
1	.558	.311	.304	.913	

Important: The univariate R^2 's don't add up to the multiple R^2 :

$$R^2 \neq r_{y1}^2 + r_{y2}^2.$$

Simple Linear Regression

Model summary

Model summary

		R	Adjusted	Std. Error of
Model	R	Square	R Square	the Estimate
1	.408ª	.167	.163	1.001

Model
 R
 R Square R Square 1
 Square 2
 R Square 2
 Square 3
 Square 3

Multiple Regression

Model summary

		R	Adjusted	Std. Error of
Model	R	Square	R Square	the Estimate
1	.558ª	.311	.304	.913

a Predictors: (Constant), CST, HSGPA

$$R^2 \neq r_{y1}^2 + r_{y2}^2$$
.
.311 \neq .167 + .273 = .440.

^a Predictors: (Constant), CST

^a Predictors: (Constant), HSGPA

Ballentine Venn Diagram

- Conceptual method of visualizing strength of relations between variables.
- The larger the overlap between the circles for y and x_1 , the larger the explained variance $(r_{yx_1}^2)$.
- Left: Overlap, r^2 , 53%. Right: Approximately 14%.

Ballentine Venn Diagram

Adding $x_1 = \mathsf{CST}$ when $x_2 = \mathsf{HSGPA}$ is already in the model: R^2 barely increases.

The univariate R^2 's (usually) don't add up to the multiple R^2 .

Explanation:

- Multicollinearity:
 Correlation between predictor variables.
- CST explains 17% of variance in FYGPA and HSGPA explains 27%.
- Together not 44% because of the large overlap between CST and HSGPA: $r_{x_1x_2} = .523$.
- Only if $r_{x_1x_2}=0$ (completely uncorrelated predictor variables) then $R^2=r_{yx_1}^2+r_{yx_2}^2$.

Multicollinearity

Multicollinearity: Correlation between independent variables.

- Consequences of large correlation:
 - Difficult to decide which variables are 'important'.
 - Large standard errors.
- How to check for multicollinearity:
 - Inspect the bivariate correlations between the independent variables.
 - The so-called Variance Inflation Factor measures the amount of multicollinearity.
 - ▶ Rule of thumb: VIF_j < 4 is okay. (Computation of VIF: Statistics III)
- Solution if multicollinearity is detected:
 - Using other variables, combining variables, not using (some) variables.

Ballentine Venn Diagram

What do all the parts of the Ballantine mean?

- ightharpoonup a: the *unique* contribution of x_1 to y.
- ightharpoonup c: the *unique* contribution of x_2 to y.
- **b**: the *common* contribution of x_1 and x_2 to y.
- e: 'error': unexplained part of y.

$$r_{yx_1}^2 = a + b$$
 and $r_{yx_2}^2 = c + b$

$$R^2 = a + b + c$$

Squared semipartial correlation

Semipartial correlation² of x_i : How much of the total variance of y is uniquely explained by this IV?

For x_1 :

$$ightharpoonup sr_1^2 = a$$

$$ightharpoonup sr_1^2 = R^2 - r_{yx_2}^2 = (a+b+c) - (b+c)$$

Squared partial correlations

Partial correlation² of x_i : What proportion of the variance of y not explained by the other IVs, is uniquely explained by this IV?

For x_1 :

▶
$$pr_1^2 = \frac{a}{a+e} = \frac{a}{1-b-c}$$
▶ $pr_1^2 = \frac{R^2 - r_{yx_2}^2}{1 - r_{yx_2}^2}$

$$pr_1^2 = \frac{R^2 - r_{yx_2}^2}{1 - r_{yx_2}^2}$$

Standardized regression coefficients

Up to now: Correlations.

Now let's focus on the regression coefficients.

	Coefficients					
Model		Unstandardized	Standard Error	Standardized	t	p
1	(Intercept)	-2.085	.976		-2.137	.034
	CST	.052	.016	.217	3.277	.001
	HSGPA	1.053	.164	.425	6.434	.000

How to interpret, e.g., 0.052?

- ▶ If HSGPA is kept fixed, then each increase by 1 unit in CST represents a .052 increase in the mean of FYGPA.
- How to understand '1 unit increase in CST'? Not possible with background knowledge of study.
- ▶ To overcome this: Standardize all variables and re-run the regression.

Standardized regression coefficients

Original regression model:

$$y_i = b_0 + b_1 x_{1,i} + b_2 x_{2,i} + e_i.$$

Regression model based on standardized values:

$$y_i^* = b_0^* + b_1^* x_{1,i}^* + b_2^* x_{2,i}^* + e_i^*.$$

here, y^* and x_i^* are standardized (mean 0, sd 1) and

$$b_1^* = b_1 \frac{s_{x_1}}{s_y}, \quad b_1^* = b_2 \frac{s_{x_2}}{s_y}.$$

Coefficients

Model		Unstandardized	Standard Error	Standardized	t	р
1	(Intercept)	-2.085	.976		-2.137	.034
	CST	.052	.016	.217	3.277	.001
	HSGPA	1.053	.164	.425	6.434	.000

$$y_i^* = b_0^* + .217x_{1,i}^* + .425x_{2,i}^* + e_i^*.$$

Easier to interpret:

1 SD increase in CST, when holding HSGPA constant, leads to .217 SD increase in mean FYGPA.

Next week: Assumptions

Assumptions

Read: Only the lecture slides