CSC230

Intro to C++ Lecture 10

#### Outline

2

Recursion

□ Lab 6 / Project 2 discussion

### Segfault

- Segmentation Faults usually related to miss-use on memory
  - GDB
    - set breakpoint
    - run the program line by line
  - Valgrind
  - □ g++ -g .cpp
  - examples

#### Outline

4

□ Recursion

□ Lab 6 / Project 2 discussion

# How to solve a problem?

#### **Divide and conquer**





The focus of this lecture

#### Recursion

Arises in two forms in computer science

- Recursion as a mathematical tool for defining a function in terms of itself in a simpler case
- Recursion as a programming tool

Mathematical induction is used to prove that a recursive function works correctly. This requires a good, precise function specification. See this in a later lecture.

### Example, Sum the digits in a number



What is the **simple case** ? (base case)

4

How can we **reduce** the complexity of the problem? (**reduction step**)



### Example: Sum the digits in a number

How to do it?

```
#include <iostream>
using namespace std;
/* return sum of digits in n.
 * Precondition: h >= 0 */
static int sum(int n){
  if (n < 10) return n;
    // { n has at least two digits }
    // return first digit + sum of rest
    return n%10 + sum(n/10);
int main() {
  cout << sum(187526) << endl;</pre>
```

sum calls itself!



 $\Box$  E.g. sum(187526) = 29

#### **Palindrome**

**Palindrome**: a sequence of characters which reads the same backward or forward.

racecar



tcnj



Q: How to decide whether a string is palindrome? A: A palindrome is symmetric.

Q: How to determine whether a string is symmetric? A: ....



Q: How to determine whether a string is symmetric?
A: If (the first char and the last char are equal) &&
(the substring in the middle is symmetric)

50



# Example: Is a string a palindrome?

How to check if a string is a palindrome?

```
#include <iostream>
#include <string>
using namespace std;
/* = "s is a palindrome" */
bool isPal(string s) {
    if (s.length() <= 1) // base case</pre>
    return true;
    // { s has at least 2 chars }
    int n= s.length();
    return s.at(0) == s.at(n-1) \&\& isPal(s.substr(1, n-2));
}
int main(){
    cout<<isPal("abccba")<<endl:</pre>
    cout<<isPal("tcnj")<<endl;</pre>
                                             50
}
```

# Example: Count 'c' in a string



## Example: Count 'c' in a string

```
#include <iostream>
#include <string>
using namespace std;
                                             Substring s[1..],
static int charCt(char c, string s){
                                             i.e. s[1], ...,
  if(s.length() == 0) return 0;
                                             s(s.length()-1)
  if(s.at(0) != c)
    return charCt(c, s.substr(1));
  else
    return 1 + charCt(c, s.substr(1));
}
int main(){
  cout << charCt('c', "tcnj rocks!") << endl;</pre>
}
```

```
charCt('c', "tcnj rocks") = 2
charCt('e', "new jersey") = 3
```

### Example: The Factorial Function (n!)

- □ Define n! = n·(n-1)·(n-2)···3·2·1
   read: "n factorial"
   E.g. 3! = 3·2·1 = 6
- $\square$  Looking at definition, can see that n! = n \* (n-1)!
- $\square$  By convention, 0! = 1
- □ The function int → int that gives n! on input n is called the factorial function

# A Recursive Program

```
0! = 1

n! = n \cdot (n-1)!, n > 0
```

```
/* = n!. Precondition: n >= 0 */
static int fact(int n) {
    if (n = = 0)
        return 1;
    // { n > 0 }
    return n*fact(n-1);
}
```

#### Approach to Writing Recursive Functions

- 1. Find base case(s) small values of n for which you can just write down the solution (e.g. 0! = 1)
- 2. Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g. (n-1) in our factorial example)
- 3. Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

#### The Fibonacci Function

#### Mathematical definition:

```
fib(0) = 0 two base cases!

fib(1) = 1 fib(n - 1) + fib(n - 2), n \ge 2
```

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13,

. . .

```
/** = fibonacci(n). Pre: n >= 0 */
static int fib(int n) {
    if (n <= 1) return n;
    // n > 1
    return fib(n-2) + fib(n-1);
}
```



Fibonacci (Leonardo Pisano) 1170-1240?

Statue in Pisa, Italy Giovanni Paganucci 1863

#### Recursive Execution

```
/* = fibonacci(n) ...*/
                                                       static int fib(int n) {
                                                         if (n <= 1) return n;
                                                         // \{ 1 < n \}
                                                         return fib(n-2) + fib(n-1);
Execution of fib(4):
                                        fib(4)
                                                        fib(3)
                           fib(2)
                                   fib(1)
                    fib(0)
                                                fib(1)
                                                              fib(2)
                                                        fib(0)
                                                                        fib(1)
```

50

#### Comparison: Recursion v.s. Iteration

- □ How to compute Fibonacci Function with iteration?
- Example code
- Which one is more efficient? Iteration or Recursion?

According to the memory management lectures, how will the recursion and iteration be executed in memory?

#### Comparison: Recursion v.s. Iteration

- Roughly speaking, recursion and iteration perform the same kinds of tasks:
  - Solve a complicated task one piece at a time, and combine the results
- Emphasis of iteration:
  - keep repeating until a task is "done" e.g., loop counter reaches limit, linked list reaches null pointer, instream.eof() becomes true
- Emphasis of recursion:
  - Solve a large problem by breaking it up into smaller and smaller pieces until you can solve it; combine the results.
  - Recursion is usually simpler to implement and easy to follow.

# Example: Tower of Hanoi

Legend has it that there were three diamond needles set into the floor of the temple of Brahma in Hanoi.



- Stacked upon the leftmost needle were 64 golden disks
- each a different size
- stacked in concentric order

# A Legend

The monks were to transfer the disks from the first needle to the second needle, using the third as necessary.



- move one disk at a time
- could never put a larger disk on top of a smaller one.

When they complete this task, will the world end?

#### To Illustrate

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...



Since we can only move one disk at a time, we move the top disk from A to B.

# Example

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...



We then move the top disk from A to C.

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...



We then move the top disk from B to C.

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...



We then move the top disk from A to B.

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...



We then move the top disk from C to A.

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...



We then move the top disk from C to B.

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...



We then move the top disk from A to B.

For simplicity, suppose there were just 3 disks, and we'll refer to the three needles as A, B, and C...



and we're done!

The problem gets more difficult as the number of disks increases...

#### Our Problem

Today's problem is to write a program that generates the instructions for the priests to follow in moving the disks.



While quite difficult to solve iteratively, this problem has a simple and elegant *recursive* solution.

# General Approach to Writing Recursive Functions

- 1. Find base case(s) small values of n for which you can just write down the solution (e.g. 0! = 1)
- 2. Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g. (n-1) in our factorial example)
- 3. Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases

# Design

Basis: What is an instance of the problem that is trivial?

$$\rightarrow$$
 n == 1



Since this base case could occur when the disk is on any needle, we simply output the instruction to move the top disk from A to B.

# Design

Basis: What is an instance of the problem that is trivial?

$$\rightarrow$$
 n == 1



Since this base case could occur when the disk is on any needle, we simply output the instruction to move the top disk from A to B.

#### 34

# Design (Ct'd)

#### Induction Step: n > 1

→ How can recursion help us out?



a. Recursively move n-1 disks from A to C.

#### 35

# Design (Ct'd)

#### Induction Step: n > 1

→ How can recursion help us out?



b. Move the one remaining disk from A to B.

#### 36

# Design (Ct'd)

#### Induction Step: n > 1

→ How can recursion help us out?



c. Recursively move n-1 disks from C to B...

#### 37

# Design (Ct'd)

#### Induction Step: n > 1

→ How can recursion help us out?



### d. We're done!

### Tower of Hanoi: Code

```
void Hanoi(int n, string a, string b, string c)
    if (n == 1) /* base case */
       Move(n, a, b); // move disk n from a to b
     else { /* reduction */
       Hanoi(n-1,a,c,b);
       Move(n, a, b);
       Hanoi(n-1,c,b,a);
```

# Non-Negative Integer Powers

```
a^n = a \cdot a \cdot a \cdot a \cdot a \cdot (n \text{ times})
```

#### Alternative description:

- $\Box a^0 = 1$
- $\square a^{n+1} = a \cdot a^n$

```
/* = a<sup>n</sup>. Pre: n >= 0 */

static int power(int a, int n) {

if (n == 0) return 1;

return a*power(a, n-1);
}
```

### A Smarter Version

#### Power computation:

- $\Box a^0 = 1$
- If n is nonzero and even,  $a^n = (a^*a)^{n/2}$
- If n is nonzero,  $a^n = a * a^{n-1}$

C++ note: For ints x and y, x/y is the integer part of the quotient

Judicious use of the second property makes this a logarithmic algorithm, as we will see

Example: 
$$3^8 = (3*3) * (3*3) * (3*3) * (3*3) * (3*3) = (3*3)^4$$

# Smarter Version in C++

41

```
□ n = 0: a^0 = 1
□ n nonzero and even: a^n = (a^*a)^{n/2}
□ n nonzero: a^n = a \cdot a^{n-1}
```

```
/* = a**n. Precondition: n >= 0 */
static int power(int a, int n) {
    if (n == 0) return 1;
    if (n%2 == 0) return power(a*a, n/2);
    return a * power(a, n-1);
}
```

# Build table of multiplications

| n   | n                     | mults |
|-----|-----------------------|-------|
| 0   |                       | 0     |
| 1   | 20                    | 1     |
| 2   | 21                    | 2     |
| 3   |                       | 3     |
| 4   | <b>2</b> <sup>2</sup> | 3     |
| 5   |                       | 4     |
| 6   |                       | 4     |
| 7   |                       | 4     |
| 8   | <b>2</b> <sup>3</sup> | 4     |
| 9   |                       | 5     |
| ••• |                       |       |
| 16  | 24                    | 5     |

Start with n = 0, then n = 1, etc. For each, calculate number of mults based on method body and recursion.

```
See from the table: For n a power of 2,

n = 2^k, only k+1 = (\log n) + 1 mults
```

```
For n = 2^{15} = 32768, only 16 mults!
```

```
static int power(int a, int n) {
  if (n == 0) return 1;
  if (n%2 == 0) return power (a*a, n/2);
  return a * power (a, n-1);
}
```

# How C++ "compiles" recursive code

#### Key idea:

- C++ uses a stack to remember parameters and local variables across recursive calls
- Each function invocation gets its own stack frame

### A stack frame contains storage for

- Local variables of method
- Parameters of method
- Return info (return address and return value)
- Perhaps other bookkeeping info

## Stacks



### Stack Frame

A new stack frame is pushed with each function call

The stack frame is **popped** when the function returns

 Leaving a return value (if there is one) on top of the stack



## Stack Frame

A new stack frame is pushed with each function call

The stack frame is **popped** when the function returns

 Leaving a return value (if there is one) on top of the stack



# How Do We Keep Track?

- Many frames may exist, but computation occurs only in the top
   frame
  - The ones below it are waiting for results
- The hardware has nice support for this way of implementing function calls, and recursion is just a kind of function call

### Conclusion

Recursion is a convenient and powerful way to define functions

Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:

- Reduce a big problem to smaller problems of the same kind, solve the smaller problems
- Recombine the solutions to smaller problems to form solution for big problem

### Lab 6 discussion

- Flexible "loop" using recursion
- □ How to loop from 000 to 999 with FOR loop
  - for
    - for
      - for
- How to build it with recursion?
- com(int len, int size)
- len: the number of elements that needs to loop
- size: the total length of the output string
- □ demo

# Project 2

- What is the value of Project 2?
- Why we want to implement it with arrays?
- What should we concern about this project?