Discrete Mathematics for Computer Science

Lecture 4: Set and Function

Dr. Ming Tang

Department of Computer Science and Engineering Southern University of Science and Technology (SUSTech) Email: tangm3@sustech.edu.cn

A Question from Students Last Lecture

Are $\forall x((x \neq 0) \rightarrow \exists y(xy = 1))$ and $\forall x \exists y((x \neq 0) \rightarrow (xy = 1))$ equivalent?

A Question from Students Last Lecture

Are $\forall x((x \neq 0) \rightarrow \exists y(xy = 1))$ and $\forall x \exists y((x \neq 0) \rightarrow (xy = 1))$ equivalent?

Quick Answer: Yes. This is because $p \to \exists y Q(y)$ and $\exists y (p \to Q(y))$ are equivalent. To prove this, see page 45 in the textbook:

- If $p \to \exists y Q(y)$ is true, then $\exists y (p \to Q(y))$ is true;
- If $\exists y (p \to Q(y))$ is true, then $p \to \exists y Q(y)$ is true.

A Question from Students Last Lecture

Are $\forall x((x \neq 0) \rightarrow \exists y(xy = 1))$ and $\forall x \exists y((x \neq 0) \rightarrow (xy = 1))$ equivalent?

Quick Answer: Yes. This is because $p \to \exists y Q(y)$ and $\exists y (p \to Q(y))$ are equivalent. To prove this, see page 45 in the textbook:

- If $p \to \exists y Q(y)$ is true, then $\exists y (p \to Q(y))$ is true;
- If $\exists y (p \to Q(y))$ is true, then $p \to \exists y Q(y)$ is true.

Complicated Answer: (out of the scope of this course)

• Free variable: $\sum_{k=1}^{10} f(k, n)$, n is a free variable

Where φ is any formula and where x is *not* a free variable in ψ :

$$\forall x \ \varphi \to \psi \Leftrightarrow \forall x(\varphi \to \psi) \text{ (No!)}$$

$$\psi \to \forall x \ \varphi \Leftrightarrow \forall x(\psi \to \varphi) \text{ (Yes!)}$$

$$\exists x \ \varphi \to \psi \Leftrightarrow \exists x(\varphi \to \psi) \text{ (No!)}$$

$$\psi \to \exists x \ \varphi \Leftrightarrow \exists x(\psi \to \varphi) \text{ (Yes!)}$$

Review of Last Lecture

- Nested Quantifiers: $\forall x \exists y P(x, y), \exists x \forall y P(x, y)$
 - ► The order matters if quantifiers are of different type.
 - ★ $\forall x \exists y P(x, y), \exists y \forall x P(x, y)$
 - ► The order does no matter if quantifiers are of the same type.
 - ★ $\exists x \exists y P(x, y) \equiv \exists y \exists x P(x, y)$
 - $\star \forall x \forall y P(x, y) \equiv \forall y \forall x P(x, y)$
- Argument and Inference
 - Argument form is valid, if

$$(p_1 \wedge p_2 \wedge \cdots \wedge p_n) \rightarrow q$$
 is a tautology.

- ▶ The validity of an argument follows from the validity of argument form.
- Rules of inference
- Proofs: direct proof, proof by contrapositive, proof by contradiction, proof by cases, ...

 SUSTech Southern University of Soleno and Tablesco and T

- "It is not sunny this afternoon and it is colder than yesterday."
- "We will go swimming only if it is sunny."
- "If we do not go swimming then we will take a canoe trip."
- "If we take a canoe trip, then we will be home by sunset."
- Show the conclusion that "we will be home by sunset."

- "It is not sunny this afternoon and it is colder than yesterday."
- "We will go swimming only if it is sunny."
- "If we do not go swimming then we will take a canoe trip."
- "If we take a canoe trip, then we will be home by sunset."
- Show the conclusion that "we will be home by sunset."

- p: It is sunny this afternoon.
- q: It is colder than yesterday.
- r: We will go swimming.

- s: We will take a canoe trip.
- t: We will be home by sunset.

 SUSTech of Science and Technology

4 / 65

Ming Tang @ SUSTech CS201 Spring 2022

"It is not sunny this afternoon and it is colder than yesterday."

$$\neg p \land q$$

• "We will go swimming only if it is sunny."

$$r \rightarrow p$$

• "If we do not go swimming then we will take a canoe trip."

$$\neg r \rightarrow s$$

• "If we take a canoe trip, then we will be home by sunset."

$$s \rightarrow t$$

Show the conclusion that "we will be home by sunset."

t

- p: It is sunny this afternoon.
- q: It is colder than yesterday.
- r: We will go swimming.

- s: We will take a canoe trip.
- t: We will be home by sunset.

 SUSTech Souther University of Science and Technology

• p: It is sunny this afternoon.

• s: We will take a canoe trip.

q: It is colder than yesterday.

• t: We will be home by sunset.

• r: We will go swimming.

Premises: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Conclusion: *t*

• p: It is sunny this afternoon.

• s: We will take a canoe trip.

• q: It is colder than yesterday.

• t: We will be home by sunset.

• r: We will go swimming.

Premises: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

Conclusion: *t*

Step	Reason
1. $\neg p \land q$	Premise
$2. \neg p$	Simplification using (1)
3. $r \rightarrow p$	Premise
4. $\neg r$	Modus tollens using (2) and (3)
5. $\neg r \rightarrow s$	Premise
6. <i>s</i>	Modus ponens using (4) and (5)
7. $s \rightarrow t$	Premise
8. <i>t</i>	Modus ponens using (6) and (7)

Summary of Logic and Proof

Logic:

- ▶ Proposition, applications, equivalence \equiv , ...
- ▶ Predicates P(x)
- ▶ Quantifiers $\forall x P(x)$, $\exists x P(x)$

• Mathematical Proofs:

- Argument: premises, conclusion
- Rules of inference
- Proofs

This Lecture

Set and Functions: set, set operations, functions, sequences and Southern University of Soleto summation, cardinality of sets

Sets

A set is an unordered collection of objects. These objects are called elements or members.

- $A = \{1, 2, 3, 4\}$
- $B = \{a, b, c, d\}$
- $C = \{a, 2, 1, Mary\}$

Sets

A set is an unordered collection of objects. These objects are called elements or members.

- $A = \{1, 2, 3, 4\}$
- $B = \{a, b, c, d\}$
- $C = \{a, 2, 1, Mary\}$

Many discrete structures are built with sets:

- combinations
- relations
- graphs

Set Representation

Examples:

- $A = \{2, 3, 5, 7\}$
- $B = \{1, 2, 3, ..., 100\}$
- $C = \{a \ge 2 \mid a \text{ is a prime}\}$
- $D = \{2n \mid n = 0, 1, 2, ..., \}$

Set Representation

Examples:

- $A = \{2, 3, 5, 7\}$
- $B = \{1, 2, 3, ..., 100\}$
- $C = \{a \ge 2 \mid a \text{ is a prime}\}$
- $D = \{2n \mid n = 0, 1, 2, ..., \}$

Representing a set by:

- listing (enumerating) the elements
- if enumeration is hard, use ellipses (...)
- definition by property, using the set builder

$$\{x \mid x \text{ has property } P \text{ or property } P(x)\}$$

Set Representation

Examples:

- $A = \{2, 3, 5, 7\}$
- $B = \{1, 2, 3, ..., 100\}$
- $C = \{a \ge 2 \mid a \text{ is a prime}\}$
- $D = \{2n \mid n = 0, 1, 2, ..., \}$

Representing a set by:

- listing (enumerating) the elements
- if enumeration is hard, use ellipses (...)
- definition by property, using the set builder

$$\{x \mid x \text{ has property } P \text{ or property } P(x)\}$$

Notation:

- $a \in A$: a is an element of set A
- $a \notin A$: a is not an element of set A

Natural numbers:

$$\diamond$$
 N = {0, 1, 2, 3, ...}

Integers:

$$\diamond \mathbf{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$$

Positive integers:

$$\diamond \mathbf{Z}^+ = \{1, 2, 3, \ldots\}$$

Rational numbers:

$$\diamond \mathbf{Q} = \{ \frac{p}{q} \mid p \in \mathbf{Z}, q \in \mathbf{Z}, q \neq 0 \}$$

■ Real numbers:

$$\diamond R$$

Complex numbers:

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

■ Two sets A, B are *equal* if and only if $\forall x \ (x \in A \leftrightarrow x \in B)$.

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

■ Two sets A, B are *equal* if and only if $\forall x \ (x \in A \leftrightarrow x \in B)$.

Are sets $\{1,2,5\}$ and $\{2,5,1\}$ equal?

Are sets $\{1, 2, 2, 2, 5\}$ and $\{2, 5, 1\}$ equal?

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

■ Two sets A, B are *equal* if and only if $\forall x \ (x \in A \leftrightarrow x \in B)$.

Are sets $\{1,2,5\}$ and $\{2,5,1\}$ equal? Yes Are sets $\{1,2,2,2,5\}$ and $\{2,5,1\}$ equal? Yes

Universal and Empty Set

The universal set is the set of all objects under consideration, denoted by U.

The empty set is the set of no object, denoted by \emptyset or $\{\}$.

Universal and Empty Set

The universal set is the set of all objects under consideration, denoted by U.

The empty set is the set of no object, denoted by \emptyset or $\{\}$.

• Are \emptyset and $\{\emptyset\}$ equal?

Universal and Empty Set

The universal set is the set of all objects under consideration, denoted by U.

The empty set is the set of no object, denoted by \emptyset or $\{\}$.

• Are \emptyset and $\{\emptyset\}$ equal? No

Venn Diagrams

A set can be visualized using Venn diagrams

Subset

The set A is a subset of B if and only if every element of A is also an element of B, i.e., $\forall x (x \in A \rightarrow x \in B)$, denoted by $A \subseteq B$.

Subset

The set A is a subset of B if and only if every element of A is also an element of B, i.e., $\forall x (x \in A \rightarrow x \in B)$, denoted by $A \subseteq B$.

If $A \subseteq B$, but $A \neq B$, then we say A is a proper subset of B, i.e., $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$, denoted by $A \subset B$.

Subset

The set A is a subset of B if and only if every element of A is also an element of B, i.e., $\forall x (x \in A \rightarrow x \in B)$, denoted by $A \subseteq B$.

If $A \subseteq B$, but $A \neq B$, then we say A is a proper subset of B, i.e., $\forall x (x \in A \rightarrow x \in B) \land \exists x (x \in B \land x \notin A)$, denoted by $A \subset B$.

Proof of Subset

Proof:

- Showing $A \subseteq B$: if x belongs to A, then x also belongs to B.
- Showing $A \nsubseteq B$: find a single $x \in A$ such that $x \notin B$.

Prove that $\emptyset \subseteq S$.

Prove that $\emptyset \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in \emptyset \to x \in S)$. Since the empty set does not contain any element, $x \in \emptyset$ is always false. Then the implication is always true.

Prove that $\emptyset \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in \emptyset \to x \in S)$. Since the empty set does not contain any element, $x \in \emptyset$ is always false. Then the implication is always true.

Prove that $S \subseteq S$.

Prove that $\emptyset \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in \emptyset \to x \in S)$. Since the empty set does not contain any element, $x \in \emptyset$ is always false. Then the implication is always true.

Prove that $S \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in S \rightarrow x \in S)$. This is obviously true.

Prove that $\emptyset \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in \emptyset \to x \in S)$. Since the empty set does not contain any element, $x \in \emptyset$ is always false. Then the implication is always true.

Prove that $S \subseteq S$.

Proof:

By definition, we need to prove $\forall x (x \in S \rightarrow x \in S)$. This is obviously true.

Note: two sets are equal if and only if each is a subset of the other:

$$\forall x (x \in A \leftrightarrow x \in B)$$

The Size of a Set – Cardinality

Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and n is the cardinality of S, denoted by |S|.

The Size of a Set – Cardinality

Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and n is the cardinality of S, denoted by |S|.

A set is said to be infinite if it is not finite.

The Size of a Set – Cardinality

Let S be a set. If there are exactly n distinct elements in S, where n is a nonnegative integer, we say that S is a finite set and n is the cardinality of S, denoted by |S|.

A set is said to be infinite if it is not finite.

Examples:

- $A = \{1, 2, 3, ..., 20\}$, where |A| = 20
- $B = \{1, 2, 3, ...\}$, which is infinite
- $|\emptyset| = 0$
- $|\{\emptyset\}| = 1$

Many problems involve testing <u>all combinations of elements of a set</u> to see if they satisfy some property. To consider all such combinations,

Many problems involve testing <u>all combinations of elements of a set</u> to see if they satisfy some property. To consider all such combinations,

Given a set S, the power set of S is the set of all subsets of the set S, denoted by $\mathcal{P}(S)$.

Many problems involve testing <u>all combinations of elements of a set</u> to see if they satisfy some property. To consider all such combinations,

Given a set S, the power set of S is the set of all subsets of the set S, denoted by $\mathcal{P}(S)$.

Example: What is the power set of the set $\{0, 1, 2\}$?

Many problems involve testing <u>all combinations of elements of a set</u> to see if they satisfy some property. To consider all such combinations,

Given a set S, the power set of S is the set of all subsets of the set S, denoted by $\mathcal{P}(S)$.

Example: What is the power set of the set $\{0, 1, 2\}$?

$$\mathcal{P}(\{0,1,2\}) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\}\}$$

Many problems involve testing <u>all combinations of elements of a set</u> to see if they satisfy some property. To consider all such combinations,

Given a set S, the power set of S is the set of all subsets of the set S, denoted by $\mathcal{P}(S)$.

Example: What is the power set of the set $\{0, 1, 2\}$?

$$\mathcal{P}(\{0,1,2\}) = \{ \emptyset, \{0\}, \{1\}, \{2\}, \{0,1\}, \{0,2\}, \{1,2\}, \{0,1,2\} \}$$

If S is a set with |S| = n, then $|\mathcal{P}(S)| = 2^n$. Why?

What is the power set of \emptyset ?

What is the power set of \emptyset ?

$$\mathcal{P}(\emptyset) = \{\emptyset\}.$$

What is the power set of \emptyset ?

$$\mathcal{P}(\emptyset) = \{\emptyset\}.$$

What is the power set of the set $\{\emptyset\}$?

What is the power set of \emptyset ?

$$\mathcal{P}(\emptyset) = \{\emptyset\}.$$

What is the power set of the set $\{\emptyset\}$?

$$\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$$

Tuples

The ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on.

coordinates of a point in the 2-D plane

Tuples

The ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on.

coordinates of a point in the 2-D plane

Two ordered n-tuples are equal if and only if each corresponding pair of their elem-ents is equal. That is, $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ if and only if $a_i = b_i$ for i = 1, 2, ..., n.

Tuples

The ordered n-tuple $(a_1, a_2, ..., a_n)$ is the ordered collection that has a_1 as its first element and a_2 as its second element and so on.

coordinates of a point in the 2-D plane

Two ordered n-tuples are equal if and only if each corresponding pair of their elem-ents is equal. That is, $(a_1, a_2, ..., a_n) = (b_1, b_2, ..., b_n)$ if and only if $a_i = b_i$ for i = 1, 2, ..., n.

Ordered 2-tuples are called ordered pairs

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Example:

•
$$A = \{1, 2\}, B = \{a, b, c\}$$

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Example:

- $A = \{1, 2\}, B = \{a, b, c\}$
- $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$

Are $A \times B$ and $B \times A$ equal?

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Example:

• $A = \{1, 2\}, B = \{a, b, c\}$

Are $A \times B$ and $B \times A$ equal? No, $A \times B \neq B \times A$

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Example:

• $A = \{1, 2\}, B = \{a, b, c\}$

Are $A \times B$ and $B \times A$ equal? No, $A \times B \neq B \times A$

What is the cardinality $|A \times B|$?

Let A and B be sets. The Cartesian product of A and B, denoted by $A \times B$, is the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$:

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$

Example:

• $A = \{1, 2\}, B = \{a, b, c\}$

Are $A \times B$ and $B \times A$ equal? No, $A \times B \neq B \times A$

What is the cardinality $|A \times B|$? $|A \times B| = |A| \times |B|$

The Cartesian product of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of ordered *n*-tuples $(a_1, a_2, ..., a_n)$ where $a_i \in A_i$ for i = 1, ..., n:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i = 1, 2, ..., n\}$$

The Cartesian product of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of ordered *n*-tuples $(a_1, a_2, ..., a_n)$ where $a_i \in A_i$ for i = 1, ..., n:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i = 1, 2, ..., n\}$$

Example:

$$A = \{0, 1\}, B = \{1, 2\}, C = \{0, 1, 2\}$$

 $A \times B \times C = \{(0, 1, 0), (0, 1, 1), (0, 1, 2), (0, 2, 0), (0, 2, 1), (0, 2, 2), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 0), (1, 2, 1), (1, 2, 2)\}$

The Cartesian product of the sets $A_1, A_2, ..., A_n$, denoted by $A_1 \times A_2 \times ... \times A_n$, is the set of ordered *n*-tuples $(a_1, a_2, ..., a_n)$ where $a_i \in A_i$ for i = 1, ..., n:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i \text{ for } i = 1, 2, ..., n\}$$

 A^n denotes $A \times A \times ... \times A$ with n sets:

$$A^n = \{(a_1, a_2, ..., a_n) \mid a_i \in A \text{ for } i = 1, 2, ..., n\}$$

Relation

A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B.

Relation

A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B.

Example: What are the ordered pairs in the less than or equal to relation, which contains (a, b) if $a \le b$, on the set $\{0, 1, 2, 3\}$?

Relation

A subset R of the Cartesian product $A \times B$ is called a relation from the set A to the set B.

Example: What are the ordered pairs in the less than or equal to relation, which contains (a, b) if $a \le b$, on the set $\{0, 1, 2, 3\}$?

The ordered pair (a, b) belongs to R if and only if both a and b belong to $\{0, 1, 2, 3\}$ and $a \le b$. Consequently,

$$R = \{(0,0), (0,1), (0,2), (0,3), (1,1), (1,2), (1,3), (2,2), (2,3), (3,3)\}$$

.

Summary of Set

- Set: unordered collection of objects
- Subset $A \subseteq B$
- Cardinality: size of set
- Power of set $\mathcal{P}(A)$
- Tuple: (*a*, *b*)
- Cartesian Product $A \times B$
- Relation: a subset of $A \times B$

This Lecture

Set and Functions: <u>set</u>, <u>set operations</u>, <u>functions</u>, sequences and summation, cardinality of sets

25/65

Union: Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set $\{x \mid x \in A \lor x \in B\}$.

Union: Let A and B be sets. The union of the sets A and B, denoted by $A \cup B$, is the set $\{x \mid x \in A \lor x \in B\}$.

Intersection: The intersection of the sets A and B, denoted by $A \cap B$, is the set $\{x \mid x \in A \land x \in B\}$.

Complement: If A is a set, then the complement of the set A (with respect to U), denoted by \bar{A} is the set U-A, $\bar{A}=\{x\in U\mid x\notin A\}$

Complement: If A is a set, then the complement of the set A (with respect to U), denoted by \bar{A} is the set U-A, $\bar{A}=\{x\in U\mid x\notin A\}$

Difference: Let A and B be sets. The difference of A and B, denoted by A - B, is the set containing the elements of A that are not in B.

$$A - B = \{x \mid x \in A \land x \notin B\} = A \cap \bar{B}.$$

Disjoint Sets

Two sets A and B are called disjoint if their intersection is empty, i.e., $A \cap B = \emptyset$.

Example: $A = \{1, 3, 5, 7\}$ and $B = \{2, 4, 6\}$ are disjoint, because $A \cap B = \emptyset$.

Cardinality of the Union

What is the cardinality of $A \cup B$?

 $A \cup B$ is shaded.

Cardinality of the Union

What is the cardinality of $A \cup B$?

 $A \cup B$ is shaded.

$$|A \cup B| = |A| + |B| - |A \cap B|$$

Cardinality of the Union

What is the cardinality of $A \cup B$?

 $|A \cup B| = |A| + |B| - |A \cap B|$

The generalization of this result to unions of <u>an arbitrary number of sets</u> is called the <u>principle of inclusion</u>—exclusion.

Exercises

- $U = \{0, 1, 2, \dots, 10\}, A = \{1, 2, 3, 4, 5\}, B = \{4, 5, 6, 7, 8\}$
 - 1. $A \cup B$
 - 2. $A \cap B$
 - 3. *Ā*
 - 4. *B*
 - 5. A B
 - 6. B A

Set Identities

The properties and laws of sets that help us demonstrate and prove set operations, subsets and equivalence.

- Identity laws
 - $\diamond A \cup \emptyset = A$
 - $\Diamond A \cap U = A$
- Domination laws
 - $\diamond A \cup U = U$
 - $\diamond A \cap \emptyset = \emptyset$
- Idempotent laws
 - $\diamond A \cup A = A$
 - $\Diamond A \cap A = A$
- Complementation laws

$$\Diamond \bar{\bar{A}} = A$$

Set Identities

Commutative laws

$$\Diamond A \cup B = B \cup A$$

$$\diamond A \cap B = B \cap A$$

Associative laws

$$\diamond A \cup (B \cup C) = (A \cup B) \cup C$$

$$\diamond A \cap (B \cap C) = (A \cap B) \cap C$$

Distributive laws

$$\diamond A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$\diamond A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

■ De Morgan's laws

$$\diamond \overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\diamond \overline{A \cup B} = \overline{A} \cap \overline{B}$$

Set Identities

Absorbtion laws

$$\diamond A \cup (A \cap B) = A$$

$$\diamond A \cap (A \cup B) = A$$

Complement laws

$$\diamond A \cup \bar{A} = U$$

$$\diamond A \cap \bar{A} = \emptyset$$

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x is in A; 0, x is not in A.

	Α	В	Ā	\overline{B}	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$	
	1	1	0	0	0	0	
	1	0	0	1	1	1	
	0	1	1	0	1	1	
	0	0	1	1	1	1	

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x is in A; 0, x is not in A.

Proof 2: by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$:

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x is in A; 0, x is not in A.

Proof 2: by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$:
 - ▶ Suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, $\neg((x \in A) \land (x \in B))$ is true.

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x is in A; 0, x is not in A.

Proof 2: by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$:
 - ▶ Suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, $\neg((x \in A) \land (x \in B))$ is true.
 - ▶ By applying De Morgan's law, $\neg(x \in A) \lor \neg(x \in B)$). Thus, $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, $x \in \bar{A}$ or $x \in \bar{B}$.

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x is in A; 0, x is not in A.

Proof 2: by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$:
 - ▶ Suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, $\neg((x \in A) \land (x \in B))$ is true.
 - ▶ By applying De Morgan's law, $\neg(x \in A) \lor \neg(x \in B)$). Thus, $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, $x \in \bar{A}$ or $x \in \bar{B}$.
 - ▶ By the definition of union, we see that $x \in \bar{A} \cup \bar{B}$. Thus, $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$.

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 1: Using membership tables. Consider an arbitrary element x: 1, x is in A; 0, x is not in A.

Proof 2: by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

- $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$:
 - ▶ Suppose that $x \in \overline{A \cap B}$. By the definition of complement, $x \notin A \cap B$. Using the definition of intersection, $\neg((x \in A) \land (x \in B))$ is true.
 - ▶ By applying De Morgan's law, $\neg(x \in A) \lor \neg(x \in B)$). Thus, $x \notin A$ or $x \notin B$. Using the definition of the complement of a set, $x \in \bar{A}$ or $x \in \bar{B}$.
 - ▶ By the definition of union, we see that $x \in \bar{A} \cup \bar{B}$. Thus, $\overline{A \cap B} \subseteq \bar{A} \cup \bar{B}$.
- $\bar{A} \cup \bar{B} \subseteq \overline{A \cap B}$

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 1: using membership tables.

Proof 2: by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

Proof 3: Using set builder and logical equivalences

Prove that $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Proof 1: using membership tables.

Proof 2: by showing that $\overline{A \cap B} \subseteq \overline{A} \cup \overline{B}$ and $\overline{A} \cup \overline{B} \subseteq \overline{A \cap B}$

Proof 3: Using set builder and logical equivalences

$\overline{A \cap B} = \{x \mid x \notin A \cap B\}$	by definition of comp
$= \{x \mid \neg (x \in (A \cap B))\}\$	by definition of does i
$= \{x \mid \neg (x \in A \land x \in B)\}\$	by definition of inters
$= \{x \mid \neg(x \in A) \lor \neg(x \in B)\}\$	by the first De Morga
$= \{x \mid x \notin A \lor x \notin B\}$	by definition of does i
$= \{x \mid x \in \overline{A} \lor x \in \overline{B}\}$	by definition of comp
$= \{x \mid x \in \overline{A} \cup \overline{B}\}\$	by definition of union
$=\overline{A}\cup\overline{B}$	by meaning of set bui

plement

not belong symbol

section

an law for logical equivalences

not belong symbol

plement

ilder notation

Generalized Unions and Intersections

■ The *union of a collection of sets* is the set that contains those elements that are members of at least one set in the collection $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n$.

■ The *intersection of a collection of sets* is the set that contains those elements that are members of all sets in the collection $\bigcap_{i=1}^{n} A_i = A_1 \cap A_2 \cap \cdots \cap A_n$.

Question: How to represent sets in a computer?

• One solution: explicitly store the elements in a list

- One solution: explicitly store the elements in a list
 - ► Computing the union, intersection, or difference operations would be time-consuming, because of the needs for searching elements.

- One solution: explicitly store the elements in a list
 - ► Computing the union, intersection, or difference operations would be time-consuming, because of the needs for searching elements.
- A better solution: assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is in the set.

- One solution: explicitly store the elements in a list
 - ► Computing the union, intersection, or difference operations would be time-consuming, because of the needs for searching elements.
- A better solution: assign a bit in a bit string to each element in the universal set and set the bit to 1 if the element is in the set.
 - Universal set U is finite and with n elements
 - ▶ Represent a subset A of U with n bits, where the i-th bit is 1 if a_i belongs to A and is 0 if a_i does not belong to A.

Example: $U = \{1, 2, 3, 4, 5\}$ $A = \{2, 5\}$. Thus, A is represented by 01001 $B = \{1, 5\}$. Thus, B is represented by 10001

Example: $U = \{1, 2, 3, 4, 5\}$ $A = \{2, 5\}$. Thus, A is represented by 01001 $B = \{1, 5\}$. Thus, B is represented by 10001

• Union: $A \lor B = 11001$, i.e., $\{1, 2, 5\}$

Example: $U = \{1, 2, 3, 4, 5\}$ $A = \{2, 5\}$. Thus, A is represented by 01001 $B = \{1, 5\}$. Thus, B is represented by 10001

- Union: $A \lor B = 11001$, i.e., $\{1, 2, 5\}$
- Intersection: $A \wedge B = 00001$, i.e., $\{5\}$


```
Example: U = \{1, 2, 3, 4, 5\} A = \{2, 5\}. Thus, A is represented by 01001 B = \{1, 5\}. Thus, B is represented by 10001
```

- Union: $A \lor B = 11001$, i.e., $\{1, 2, 5\}$
- Intersection: $A \wedge B = 00001$, i.e., $\{5\}$
- Complement: $\bar{A} = 10110$, i.e., $\{1, 3, 4\}$

Summary of Set Operations

- Union $A \cup B$, cardinality (principle of inclusion-exclusion)
- Intersection $A \cap B$
- ullet Complement $ar{A}$
- Difference A B
- Disjoint set
- Set identities
- Proof of set identities
 - membership table, subset, set build and logical equivalences
- Computer representations

This Lecture

Set and Functions: <u>set</u>, <u>set operations</u>, <u>functions</u>, sequences and summation, cardinality of sets

Function

Let A and B be two sets. A function from A to B, denoted by $f : A \rightarrow B$, is an assignment of exactly one element of B to each element of A.

• We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Function

Let A and B be two sets. A function from A to B, denoted by $f: A \to B$, is an assignment of exactly one element of B to each element of A.

• We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Function

Let A and B be two sets. A function from A to B, denoted by $f : A \rightarrow B$, is an assignment of exactly one element of B to each element of A.

• We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A.

Representing Functions

1 Explicitly state the assignments between elements of the two sets

Note: Admas $\mapsto A$, Chou $\mapsto C$, ...

- 2 By a formula
- 3 By a relation from A to B

Representing Functions

- 1 Explicitly state the assignments between elements of the two sets
- 2 By a formula: f(x) = x + 1
- 3 By a relation from A to B

Representing Functions

- 1 Explicitly state the assignments between elements of the two sets
- 2 By a formula: f(x) = x + 1
- 3 By a relation from A to B: (Abdul, 22), (Brenda, 24), (Carla, 21), (Desire, 22), (Eddie, 24), and (Felicia, 22).

Let f be a function from A to B.

• A is the domain of f; B is the codomain of f

Let f be a function from A to B.

- A is the domain of f; B is the codomain of f
- If f(a) = b, b is called the image of a and a is a preimage of b.

Let f be a function from A to B.

- A is the domain of f; B is the codomain of f
- If f(a) = b, b is called the image of a and a is a preimage of b.
- The range of f is the set of all images of elements of A, denoted by f(A).

Let f be a function from A to B.

- A is the domain of f; B is the codomain of f
- If f(a) = b, b is called the image of a and a is a preimage of b.
- The range of f is the set of all images of elements of A, denoted by f(A).
- We also say f maps A to B.

Let f be a function from A to B.

- A is the domain of f; B is the codomain of f
- If f(a) = b, b is called the image of a and a is a preimage of b.
- The range of f is the set of all images of elements of A, denoted by f(A).
- We also say f maps A to B.

Example:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

Let f be a function from A to B.

- A is the domain of f; B is the codomain of f
- If f(a) = b, b is called the image of a and a is a preimage of b.
- The range of f is the set of all images of elements of A, denoted by f(A).
- We also say f maps A to B.

Example:

$$A = \{1, 2, 3\}, B = \{a, b, c\}$$

- -c is the image of 1
- -2 is a preimage of a
- the domain of f is $\{1, 2, 3\}$
- the codomain of f is $\{a, b, c\}$
- the range of f is $\{a, c\}$

Image of a Subset

For a function $f: A \to B$ and $S \subseteq A$, the image of S is a subset of B that consists of the images of the elements of S, denoted by f(S), where $f(S) = \{f(s) | s \in S\}$

Image of a Subset

For a function $f: A \to B$ and $S \subseteq A$, the image of S is a subset of B that consists of the images of the elements of S, denoted by f(S), where $f(S) = \{f(s) | s \in S\}$

Image of a Subset

For a function $f: A \to B$ and $S \subseteq A$, the image of S is a subset of B that consists of the images of the elements of S, denoted by f(S), where $f(S) = \{f(s) | s \in S\}$

44 / 65

One-to-One and Onto Functions

One-to-one function

never assign the same value to two different domain elements.

Onto function

every member of the codomain is the image of some element of the domain.

One-to-one correspondence

One-to-one and onto

A function f is called one-to-one or injective if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. Also called an injunction.

A function f is called one-to-one or injective if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. Also called an injunction.

Alternatively: A function is one-to-one if and only if $x \neq y$ implies $f(x) \neq f(y)$. (contrapositive!)

A function f is called one-to-one or injective if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. Also called an injunction.

Alternatively: A function is one-to-one if and only if $x \neq y$ implies $f(x) \neq f(y)$. (contrapositive!)

Not injective

A function f is called one-to-one or injective if and only if f(x) = f(y) implies x = y for all x, y in the domain of f. Also called an injunction.

Alternatively: A function is one-to-one if and only if $x \neq y$ implies $f(x) \neq f(y)$. (contrapositive!)

Not injective

Injective function

Example 1:

Whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one?

Example 1:

Whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one? Yes.

Example 1:

Whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one? Yes.

Example 2:

Whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one?

Example 1:

Whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one? Yes.

Example 2:

Whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one? No, f(-1) = f(1)

Example 1:

Whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one? Yes.

Example 2:

Whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one? No, f(-1) = f(1)

What if it is from the set of positive integers to the set of integers?

Example 1:

Whether the function f from $\{a, b, c, d\}$ to $\{1, 2, 3, 4, 5\}$ with f(a) = 4, f(b) = 5, f(c) = 1, and f(d) = 3 is one-to-one? Yes.

Example 2:

Whether the function $f(x) = x^2$ from the set of integers to the set of integers is one-to-one? No, f(-1) = f(1)

What if it is from the set of positive integers to the set of integers? Yes.

Onto (Surjective) Function

A function f is called onto or surjective if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. Also called a surjection.

Onto (Surjective) Function

A function f is called onto or surjective if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. Also called a surjection.

Alternatively: A function is onto if and only if all codomain elements are covered, i.e., f(A) = B.

Onto (Surjective) Function

A function f is called onto or surjective if and only if for every $b \in B$ there is an element $a \in A$ such that f(a) = b. Also called a surjection.

Alternatively: A function is onto if and only if all codomain elements are covered, i.e., f(A) = B.

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function?

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function? Yes.

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function? Yes.

What if the codomain were $\{1, 2, 3, 4\}$?

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function? Yes.

What if the codomain were $\{1, 2, 3, 4\}$? No.

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function? Yes.

What if the codomain were $\{1, 2, 3, 4\}$? No.

Example 2: Is the function $f(x) = x^2$ from the set of integers to the set of integers onto?

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3\}$ defined by f(a) = 3, f(b) = 2, f(c) = 1, and f(d) = 3. Is f an onto function? Yes.

What if the codomain were $\{1, 2, 3, 4\}$? No.

Example 2: Is the function $f(x) = x^2$ from the set of integers to the set of integers onto? No, as there is no integer x with $x^2 = -1$.

One-to-One Correspondence (Bijective Function)

A function f is called one-to-one correspondence or bijective, if and only if it is both one-to-one and onto. Also called bijection.

One-to-One Correspondence (Bijective Function)

A function f is called one-to-one correspondence or bijective, if and only if it is both one-to-one and onto. Also called bijection.

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3. Is f a one-to-one correspondence?

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3. Is f a one-to-one correspondence? Yes.

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3. Is f a one-to-one correspondence? Yes.

Example 2: Consider an identity function on A, i.e., $\iota : A \to A$, where $\iota_A(x) = x$. Is this function a one-to-one correspondence?

Example 1:

Let f be the function from $\{a, b, c, d\}$ to $\{1, 2, 3, 4\}$ with f(a) = 4, f(b) = 2, f(c) = 1, and f(d) = 3. Is f a one-to-one correspondence? Yes.

Example 2: Consider an identity function on A, i.e., $\iota : A \to A$, where $\iota_A(x) = x$. Is this function a one-to-one correspondence? Yes.

Are These Functions Injective, Surjective, Bijective?

Are These Functions Injective, Surjective, Bijective?

Not a function

4

Proof for One-to-One and Onto

Suppose that $f: A \rightarrow B$.

To show that f is injective	Show that if $f(x) = f(y)$ for all $x, y \in A$, then $x = y$
To show that f is not injective	Find specific elements $x, y \in A$ such that $x \neq y$ and $f(x) = f(y)$
To show that f is surjective	Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x) = y$
To show that <i>f</i> is not <i>surjective</i>	Find a specific element $y \in B$ such that $f(x) \neq y$ for all $x \in A$

 $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = x + 1. Is f injective? Surjective? Bijective?

 $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = x + 1. Is f injective? Surjective? Bijective?

Proof:

 $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = x + 1. Is f injective? Surjective? Bijective?

Proof:

• Injective (one-to-one function): If f(x) = f(x') for any arbitrary x and x', then x = x'.

 $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = x + 1. Is f injective? Surjective? Bijective?

Proof:

- Injective (one-to-one function): If f(x) = f(x') for any arbitrary x and x', then x = x'.
- Surjective (onto function): For every integer y, these exists an integer x such that f(x) = y.

Example

 $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = x + 1. Is f injective? Surjective? Bijective?

Proof:

- Injective (one-to-one function): If f(x) = f(x') for any arbitrary x and x', then x = x'.
- Surjective (onto function): For every integer y, these exists an integer x such that f(x) = y.
- Bijective (one-to-one correspondence): injective and surjective

Prove that "for a function $f: A \to B$ with |A| = |B| = n, f is one-to-one if and only if f is onto."

Prove that "for a function $f: A \to B$ with |A| = |B| = n, f is one-to-one if and only if f is onto."

Proof: Since |A| = n, let $\{x_1, x_2, ..., x_n\}$ be elements of A.

Prove that "for a function $f: A \to B$ with |A| = |B| = n, f is one-to-one if and only if f is onto."

Proof: Since |A| = n, let $\{x_1, x_2, ..., x_n\}$ be elements of A.

• If f is one-to-one, then f is onto (direct proof): Suppose that f is one-to-one. According to the definition of one-to-one function, $f(x_i) \neq f(x_j)$ for any $i \neq j$. Thus, $|f(A)| = |\{f(x_1), ..., f(x_n)\}| = n$. Since |B| = n and $f(A) \subseteq B$, we have f(A) = B.

Prove that "for a function $f: A \to B$ with |A| = |B| = n, f is one-to-one if and only if f is onto."

Proof: Since |A| = n, let $\{x_1, x_2, ..., x_n\}$ be elements of A.

- If f is one-to-one, then f is onto (direct proof): Suppose that f is one-to-one. According to the definition of one-to-one function, $f(x_i) \neq f(x_j)$ for any $i \neq j$. Thus, $|f(A)| = |\{f(x_1), ..., f(x_n)\}| = n$. Since |B| = n and $f(A) \subseteq B$, we have f(A) = B.
- If f is onto, then f is one-to-one (contradiction): Suppose that f is onto. Suppose that f is not one-to-one. Thus, $f(x_i) = f(x_j)$ for some $i \neq j$. Then, $|\{f(x_1), ..., f(x_n)\}| \leq n-1$. Note that |f(A)| = |B| = n, which leads to a contradiction.

Consider an infinite set A and a function from A to A. Consider the statement "For any arbitrary $f:A\to A$, f is one-to-one if and only if f is onto". Is this statement true?

Consider an infinite set A and a function from A to A. Consider the statement "For any arbitrary $f:A\to A$, f is one-to-one if and only if f is onto". Is this statement true?

Proof (Counterexample): Consider the following $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = 2x. f is one-to-one but not onto:

- f(1) = 2
- f(2) = 4
- f(3) = 6
- ...

We can prove that 3 has no preimage.

Two Functions on Real Numbers

Let f_1 and f_2 be functions from A to R. Then $f_1 + f_2$ and f_1f_2 are also functions from A to R defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1 f_2)(x) = f_1(x) f_2(x)$

Two Functions on Real Numbers

Let f_1 and f_2 be functions from A to \mathbf{R} . Then $f_1 + f_2$ and $f_1 f_2$ are also functions from A to \mathbf{R} defined for all $x \in A$ by

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1 f_2)(x) = f_1(x) f_2(x)$

Example:

$$f_1 = x - 1$$
 and $f_2 = x^3 + 1$

Then

$$(f_1 + f_2)(x) = x^3 + x$$

 $(f_1 f_2)(x) = x^4 - x^3 + x - 1$

57 / 65

Let f be a one-to-one correspondence (bijection) from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $\overline{f(a)} = b$.

The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

Let f be a one-to-one correspondence (bijection) from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $\overline{f(a) = b}$.

The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

58 / 65

Let f be a one-to-one correspondence (bijection) from the set A to the set B. The inverse function of f is the function that assigns to an element b belonging to B the unique element a in A such that $\overline{f(a) = b}$.

The inverse function of f is denoted by f^{-1} . Hence, $f^{-1}(b) = a$ when f(a) = b.

A bijection is called invertible.

If is not a one-to-one correspondence (bijection), it is impossible to define the inverse function of f. Why?

If is not a one-to-one correspondence (bijection), it is impossible to define the inverse function of f. Why?

Assume *f* is not one-to-one (injective):

If is not a one-to-one correspondence (bijection), it is impossible to define the inverse function of f. Why?

Assume *f* is not one-to-one (injective):

The inverse is not a function: one element of B is mapped to two different elements of A.

If is not a one-to-one correspondence (bijection), it is impossible to define the inverse function of f. Why?

If is not a one-to-one correspondence (bijection), it is impossible to define the inverse function of f. Why?

Assume f is not onto (surjective):

If is not a one-to-one correspondence (bijection), it is impossible to define the inverse function of f. Why?

Assume *f* is not onto (surjective):

The inverse is not a function: one element of B is not assigned an element of A.

SUSTech Southern University of Science and Technology

Proof for Inverse Function

1 Prove function f is a bijection: injective, surjective

To show that f is injective	Show that if $f(x) = f(y)$ for all $x, y \in A$, then $x = y$
To show that <i>f</i> is not <i>injective</i>	Find specific elements $x, y \in A$ such that $x \neq y$ and $f(x) = f(y)$
To show that f is surjective	Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that $f(x) = y$
To show that <i>f</i> is not <i>surjective</i>	Find a specific element $y \in B$ such that $f(x) \neq y$ for all $x \in A$

- 2 If f is a bijection, then it is invertible
- 3 Determine the inverse function

 $f: \mathbf{Z} \to \mathbf{Z}$, where f(x) = x + 1. Is f invertible? If yes, then what is the inverse function f^{-1} ?

 $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1. Is f invertible? If yes, then what is the inverse function f^{-1} ?

Proof: *f* is invertible, as it is a bijection (one-to-one correspondence):

 $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1. Is f invertible? If yes, then what is the inverse function f^{-1} ?

Proof: *f* is invertible, as it is a bijection (one-to-one correspondence):

• Injective (one-to-one function): If f(x) = f(x') for any arbitrary x and x', then x = x'.

 $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1. Is f invertible? If yes, then what is the inverse function f^{-1} ?

Proof: *f* is invertible, as it is a bijection (one-to-one correspondence):

- Injective (one-to-one function): If f(x) = f(x') for any arbitrary x and x', then x = x'.
- Surjective (onto): For every integer y, these exists an integer x such that f(x) = y.

 $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1. Is f invertible? If yes, then what is the inverse function f^{-1} ?

Proof: *f* is invertible, as it is a bijection (one-to-one correspondence):

- Injective (one-to-one function): If f(x) = f(x') for any arbitrary x and x', then x = x'.
- Surjective (onto): For every integer y, these exists an integer x such that f(x) = y.

To reverse the function, suppose that y is the image of x, so that y=x+1. Then, x=y-1. This means that y-1 is the unique element of \boldsymbol{Z} that is sent to y by f. Consequently, $f^{-1}(y)=y-1$.

Let f be the function from **R** to **R** with $f(x) = x^2$. Is f invertible?

Let f be the function from **R** to **R** with $f(x) = x^2$. Is f invertible?

Proof: No, f is not invertible. This is because f is not injective, as f(-2) = f(2).

Let f be the function from **R** to **R** with $f(x) = x^2$. Is f invertible?

Proof: No, f is not invertible. This is because f is not injective, as f(-2) = f(2).

What if we restrict function $f(x) = x^2$ to a function from the set of all nonnegative real numbers to the set of all nonnegative real numbers?

Let f be the function from **R** to **R** with $f(x) = x^2$. Is f invertible?

Proof: No, f is not invertible. This is because f is not injective, as f(-2) = f(2).

What if we restrict function $f(x) = x^2$ to a function from the set of all nonnegative real numbers to the set of all nonnegative real numbers?

Proof: It is invertible, as it is a bijection:

- Injective: Consider x and x'. If f(x) = f(x') (i.e., $x^2 = (x')^2$), then we have $x^2 (x')^2 = (x + x')(x x') = 0$. Since we consider the set of all nonnegative real numbers, we must have x = x'.
- Surjective: Consider an arbitrary nonnegative real number y. There exists a nonnegative real number x such that $x = \sqrt{x}$, which means that $x^2 = y$.

Let f be the function from **R** to **R** with $f(x) = x^2$. Is f invertible?

Proof: No, f is not invertible. This is because f is not injective, as f(-2) = f(2).

What if we restrict function $f(x) = x^2$ to a function from the set of all nonnegative real numbers to the set of all nonnegative real numbers?

Proof: It is invertible, as it is a bijection:

- Injective: Consider x and x'. If f(x) = f(x') (i.e., $x^2 = (x')^2$), then we have $x^2 (x')^2 = (x + x')(x x') = 0$. Since we consider the set of all nonnegative real numbers, we must have x = x'.
- Surjective: Consider an arbitrary nonnegative real number y. There exists a nonnegative real number x such that $x = \sqrt{x}$, which means that $x^2 = y$.

To reverse the function, suppose that y is the image of souther y souther y souther y Then, $x = \sqrt{y}$. Consequently, $f^{-1}(y) = \sqrt{y}$.

63 / 65

Summary of Function

- Function $f: A \rightarrow B$: an assignment of exactly one element of B to each element of A
- Domain, codedomain, image, preimage, range
- One-to-one function
 - also called an injunction or injective function
- Onto function
 - also called a surjection or surjective function
- One-to-one correspondence
 - one-to-one and onto
 - also called a bijection or bijective function
- Inverse function
 - One-to-one correspondence

Next Lecture

Set and Functions: set, set operations, functions, sequences and summation, cardinality of sets

