Liczby Zespolone

Piotr Laskowski

12 grudnia 2014

Spis treści

1	Liczby zespolone						
	1.1 Rozmieszczenie liczb zespolonych						
2	Postać algebraiczna (kanoniczna)						
	2.1 Zapis alternatywny						
	2.2 Równość						
	2.3 Działania						
3	Przejście odwrotne						
4	tabele						

1 Liczby zespolone

Liczby¹ będące elementami rozszerzenia ciała liczb rzeczywistych o jednostkę urojoną i, tj. pierwiastek wielomianu x^2+1 (innymi słowy, jednostka urojona spełnia równanie $i^2=-1$). Każda liczba zespolona z może być zapisana w postaci z=a+bi, gdzie a, b są pewnymi liczbami rzeczywistymi, nazywanymi odpowiednio częścią rzeczywistą oraz częścią urojoną liczby z.

1.1 Rozmieszczenie liczb zespolonych

Rysunek 1: Liczby zespolone

 $^{^1\}mathrm{To}$ jest stopka

2 Postać algebraiczna (kanoniczna)

Każdą liczbę zespoloną z można zapisać w postaci

$$z = a + bi$$

, gdzie a i b są pewnymi liczbami rzeczywistymi oraz i jest tzw. jednostką urojoną, tj. i jest jednym z dwóch elementów zbioru liczb zespolonych, spełniającym warunek $i^2 = -1$ (drugim elementem jest -i). Spotyka się czasami zapis $i = \sqrt{-1}$, który nie jest formalnie poprawny ze względu na fakt, że również $(-i)^2 = -1$, jest on jednak uznawany za pewien skrót myślowy i powszechnie akceptowany.

Postać z=a+bi nazywana jest postacią algebraiczną (albo kanoniczną) liczby zespolonej z.

Dla liczby z = a + bi definiuje się jej

- \bullet część rzeczywistą (łac. pars realis) jako rez=a (inne oznaczenia: $\Re z, Re, z),$
- część urojoną (łac. pars imaginaria) jako im z=b (inne oznaczenia: $\Im z, Im, z$).

Przykładowo liczba **7 - 5i** jest liczbą zespoloną, której część rzeczywista wynosi 7, a część urojona -5. Liczby rzeczywiste są utożsamiane z liczbami zespolonymi o części urojonej równej 0.

Liczby postaci z = 0 + bi nazywa się liczbami urojonymi.

2.1 Zapis alternatywny

W zastosowaniach fizycznych, elektrycznych, elektrotechnicznych itp. zapis z=a+bi może okazać się mylący z powodu wykorzystywania w tych dziedzinach litery i do innych celów, np. chwilowego natężenia prądu elektrycznego. Dlatego też stosuje się zapis niepowodujący podobnych kłopotów, mianowicie z=a+jb, w którym to j oznacza jednostkę urojoną.

2.2 Równość

Dwie liczby zespolone² są równe wtedy i tylko wtedy, gdy ich części rzeczywiste i urojone są sobie równe. Innymi słowy, liczby zespolone postaci a + bi oraz c + di są sobie równe wtedy i tylko wtedy, gdy a = c oraz b = d.

²To jest druga stopka

2.3 Działania

Dodawanie, odejmowanie i mnożenie liczb zespolonych w postaci algebraicznej wykonuje się tak samo jak odpowiednie operacje na wyrażeniach algebraicznych³, przy czym $i^2=-1$

 $(a+bi)\pm(c+di)=(a\pm c)+(b\pm d)i$ $(a+bi)(c+di)=ac+(bc+ad)i+bdi^2=(ac-bd)+(bc+ad)i$ Aby podzielić przez siebie dwie liczby zespolone, wystarczy pomnożyć dzielną i dzielnik przez liczbę sprzężoną do dzielnika (analogicznie do usuwania niewymierności z mianownika w wyrażeniach algebraicznych):

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{(ac+bd)+(bc-ad)i}{c^2+d^2}$$

3 Przejście odwrotne

$$\gamma = \begin{cases} arctg\frac{b}{a}, & \text{dla } a > 0\\ arctg\frac{b}{a} + \pi, & \text{dla } a < 0 \text{ oraz } b \geqslant 0\\ arctg\frac{b}{a} - \pi, & \text{dla } a < 0 \text{ oraz } b < 0\\ +\frac{\pi}{2}, & \text{dla } a = 0 \text{ oraz } b > 0\\ -\frac{\pi}{2}, & \text{dla } a = 0 \text{ oraz } b < 0\\ niezdefiniowane, & \text{dla } a = 0 \text{ oraz } b = 0 \end{cases}$$

³To jest trzecia stopka

4 tabele

	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
	0°	30°	45°	60°	90°
sinx	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cosx	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0

Tablica 1: Macierz

MINISTER ZOROWIA OSTRZEGA PRZED KWEJK.PI

Rysunek 2: Heheszki

Literatura

- [1] http://www.matematyka.pl/latex.htm/
- [2] http://pl.wikipedia.org/wiki/Liczby_zespolone/
- [3] http://pl.wikibooks.org/wiki/LaTeX/Zarządzanie_bibliografią/
- [4] http://pl.wikibooks.org/wiki/LaTeX/Tabele/
- [5] http://pl.wikibooks.org/wiki/LaTeX/Zaczynamy/