4) (a) Likelihood= Vond.
Jor diplihand to be maxim to hasto minm white with a spea XII N2 Nn
white or appa XIIA2 = - An
and = mad (my) 12, con no
(him)
Prox: Pla) of (0m) or own
(o)
=0 otherwise character is ind
Particion of Von Com d of my and
for this to be maxim a hasto minim
Sout or Surver 20)
Os on
··· OMES = max (2/12/2 - 1/2 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 / 0 /
dyende
W) No, because ompo deternos on on but and downs
- Thù in not desirable.

Also, θ_{ml} asymptotically converges to the true value, but $~\theta_{map}\,may$ or may not.

(04) Posterior $\propto \frac{O_m}{O_m} / \frac{n}{1}$ if $O > O_m < 0$ man (n_0) otherwise Posterior $\propto \frac{O_m^{n+\alpha}}{O^{n+\alpha}}$ So, this is a pareto distribution with parameters C, n+x Posterior mean = $\int_{c}^{\infty} \frac{C^{n+x}}{O^{n+x}} \cdot O dO$ $\int_{0}^{\infty} \frac{C^{n+\alpha}}{C^{n+\alpha}} d\theta.$

$$= \left(\frac{n+\alpha-1}{n+d-2}\right) \cdot C$$

$$O_{\text{Posterior}} = \left(\frac{n+\alpha-1}{n+\alpha-2}\right) \cdot \max\left(O_{m_i} \max_{i} C_{x_i}\right)$$

(d) Ae is clear, lim
$$\hat{O}_{posterior} = man (O_m, man (x_i))$$

$$= \hat{O}_{map}$$

$$\neq \hat{O}_{map}$$

This is not desirable, because an infinite sample size should mean that likelihood is much more informative than prior.