Problem Set 4

Student Name: Noah Reef

Problem 7.1

Suppose that $f \in H^1(\mathbb{R}^d)$. Then we see that

$$||f||_{H^1} = ||f||_{W^{1,2}} = \left\{ ||f||_{L^2}^2 + ||Df||_{L^2}^2 \right\}^{1/2}$$

recall that

$$||f||_{L^2} = \left| \left| \hat{f} \right| \right|_{L^2}$$

and

$$||Df||_{L^2} = \left|\left|\widehat{Df}\right|\right|_{L^2} = \left|\left|i\xi\widehat{f}\right|\right|_{L^2} = |\xi|\left|\left|\widehat{f}\right|\right|_{L^2}$$

Thus we see that

$$\left\{ ||f||_{L^{2}}^{2} + ||Df||_{L^{2}}^{2} \right\}^{1/2} = \left\{ \left| \left| \hat{f} \right| \right|_{L^{2}}^{2} + |\xi|^{2} \left| \left| \hat{f} \right| \right|_{L^{2}}^{2} \right\}^{1/2} = \int_{\mathbb{R}^{d}} (1 + |\xi|^{2}) |\hat{f}(\xi)|^{2} d\xi$$

and in general for $f \in H^k(\mathbb{R}^d)$ we have that

$$||f||_{H^k}^2 = \left\{ ||f||_{L^2}^2 + \sum_{j=1}^k \left| \left| D^j f \right| \right|_{L^2}^2 \right\}^{1/2} = \int_{\mathbb{R}^d} \sum_{|\alpha| \le k} |\xi^\alpha|^2 |\hat{f}(\xi)|^2 d\xi = \int_{\mathbb{R}^d} (1 + |\xi|^2)^k |\hat{f}(\xi)|^2 d\xi$$

Problem 7.3

Let $f \in H^1(\mathbb{R}^d)$ and we define

$$\delta_0(f) = f(0)$$

note that for d=1 we have that $H^1(\mathbb{R})$ is continuously embedded in $C^0(\mathbb{R})$ and hence there exists a C such that

$$||f||_{C^0} \leq C \, ||f||_{H^1}$$

and from the fundemental theorem of calculus, we get that

$$f(x) - f(0) = \int_0^x f'(t)dt$$

which then, by using Cauchy-Schwartz, gives us

$$|f(0)| \leq ||f||_{C^0} \leq C \, ||f||_{H^1}$$

that is δ_0 is a bounded linear functional on $H^1(\mathbb{R})$ and hence in $(H^1(\mathbb{R}))^*$. However for $d \geq 2$ we consider the sequence $f_n(x) = \phi(nx)$ where $\phi \in C_0^{\infty}(\mathbb{R}^d)$ and $\phi(0) = 1$. Then we see that

$$||f_n||_{H^1}^2 = ||f_n||_{W^{1,2}} = \left\{ ||f_n||_{L^2}^2 + ||Df_n||_{L^2}^2 \right\} = \frac{1}{n^d} ||\phi||_{L^2}^2 + \frac{n^2}{n^d} ||\nabla \phi||_{L^2}^2 \le Cn^{1-\frac{d}{2}}$$

then we see that as $n \to \infty$ we have that $||f_n||_{H^1} \to 0$ but $\delta_0(f_n) = 1$ and hence δ_0 is not a bounded linear functional on $H^1(\mathbb{R}^d)$ for $d \ge 2$.

Problem 7.7

Let $u \in \mathcal{D}'(\mathbb{R}^d)$ and $\phi \in \mathcal{D}(\mathbb{R}^d)$.

Part a

Note that by the fundamental theorem of calculus we have that

$$u(\tau_y \phi) - u(\tau_0 \phi) = \int_0^1 \frac{d}{dt} u(\tau_{ty} \phi) dt$$

and we see that by applying the usual chain rule we get

$$\frac{d}{dt}\tau_{ty}\phi = \sum_{j=1}^{d} y_j \partial_j \phi(\tau_{ty}x)$$

and hence we see that

$$\frac{d}{dt}u(\tau_{ty}\phi) = \sum_{j=1}^{d} y_j \partial_j u(\tau_{ty}\phi)$$

and finally we get that

$$u(\tau_y\phi) - u(\tau_0\phi) = \int_0^1 \sum_{j=1}^d y_j \partial_j u(\tau_{ty}\phi) dt = \sum_{j=1}^d y_j \int_0^1 \partial_j u(\tau_{ty}\phi) dt$$

Part b

Let $f \in W^{1,1}_{loc}(\mathbb{R}^d)$ and hence $f \in L^1_{loc}(\mathbb{R}^d)$ and hence $f \in \mathcal{D}'(\mathbb{R}^d)$. Then we see that

$$\langle \tau_{-y} f, \phi \rangle - \langle f, \phi \rangle = \sum_{j=1}^{d} y_j \int_0^1 \partial_j f(\tau_{ty} \phi) dt$$

which is equivalent to

$$\sum_{j=1}^{d} y_j \int_0^1 \int_{\mathbb{R}^d} \partial_j f(\tau_{ty} x) \phi(x) dx dt = \int_0^1 y \cdot \nabla f(x + ty) dt \phi(x) dx$$

which implies that

$$f(x+y) - f(x) = \int_0^1 y \cdot \nabla f(x+ty) dt$$

Part c

From b we have that

$$|f(x+y) - f(x)| \left| \int_0^1 y \cdot \nabla f(x+ty) dt \right| \le |y| \int_0^1 |\nabla f(x+ty)| dt$$

then for any fixed ball $B_R(0)$ if $f \in W^{1,1}_{loc}(\mathbb{R}^d)$ then by taking $L_{R,f} = \sup_{x \in B_R(0)} |\nabla f(x)|$ we see that

$$|f(x+y) - f(x)| \le |y| L_{R,f}$$

and hence f is locally Lipschitz continuous and hence $W^{1,1}_{loc}(\mathbb{R}^d) \subseteq C^{0,1}_{loc}(\mathbb{R}^d)$.

Problem 7.8

Part a

Let $\Omega \subseteq \mathbb{R}^d$ be bounded and contains 0. Let $f(x) = |x|^{\alpha}$ and $1 \le p < d$ and q > dp/(d-p). Then $f(x) = \frac{d}{p} < \alpha \le -\frac{d}{q}$ since we have that for $f \in W^{1,p}(\Omega)$ we have that

$$||f||_{W^{1,p}} = ||f||_{L^p}^p + ||Df||_{L^p}^p = \int_0^R r^{\alpha p} r^{d-1} dr + \alpha \int_0^R r^{(\alpha - 1)p} r^{d-1} dr$$

which we see that both integrals converge for $\alpha > 1 - (d/p)$ and hence $f \in W^{1,p}(\Omega)$. Additionally we have that

$$||f||_{L^q(\Omega)}^q = \int_0^R r^{q\alpha} r^{d-1} dr$$

which only converges for $q\alpha + d > 0$, however since $\alpha \leq -d/q$ we see that $q\alpha + d \leq 0$ and hence $f \notin L^q(\Omega)$.

Part b

Since we see that our function f in part a is such that $f \notin L^q(\Omega)$ for $\alpha \leq -d/q$ and hence the Dirac mass is in $W^{-s,p}(\Omega)$ for s > d/p and $1 \leq p < d$.

Part c

Let $\Omega \subseteq \mathbb{R}^d = B_R(0)$ and let $f(x) = \log(\log(4R/|x|))$. Then we see that

$$||f||_{W^{1,p}(B_R(0))}^p = ||f||_{L(B_R(0))}^{p p} + ||Df||_{L(B_R(0))}^{p p}$$

Note that

$$||f||_{L}^{p} p(B_{R}(0)) = \int_{B_{R}(0)} |\log(\log(4R/|x|))|^{d} dx = \int_{0}^{R} |\log(\log(4R/r))|^{d} r^{d-1} dr$$

$$||Df||_{L}^{p} p(B_{R}(0)) = \int_{B_{R}(0)} \left| \frac{1}{|x| \log(4R/|x|)} \right|^{d} dx = \int_{0}^{R} \left| \frac{1}{r \log(4R/r)} \right|^{d} r^{d-1} dr$$

note that

$$\int_0^R |\log(4R/r)|^d r^{d-1} dr \le \int_0^R r^{2d-1} dr < \infty$$

and similarly

$$\int_0^R \left| \frac{1}{r \log(4R/r)} \right|^d r^{d-1} dr = \int_0^R \frac{1}{r |\log(4R/r)|^d} \, dr$$

and making the substitution $r = 4Re^{-u}$ and $dr = -4Re^{-u}du$ we see that

$$\int_0^R \frac{1}{r|\log(4R/r)|^d} dr = \int_{u_0}^\infty \frac{1}{4Re^{-u}|u|^d} 4Re^{-u} du = \int_{u_0}^\infty \frac{1}{|u|^d} du < \infty$$

thus $f \in W^{1,p}(B_R(0))$ for $1 \le p = d$, but $f \notin L^{\infty}(\Omega)$.

Part d

Let $\Omega = (-1,1)$ and u(x) = |x|, then we see that

$$||u||_{W^{1,\infty}} = \max\{||u||_{L^{\infty}}\,, ||Du||_{L^{\infty}}\}$$

where

$$||u||_{L^{\infty}} = \max_{x \in \Omega} |u(x)| = 1$$

and

$$||Du||_{L^{\infty}} = \max_{x \in \Omega} |Du(x)| = 1$$

and hence

$$||u||_{W^{1,\infty}}=1$$

and thus $u \in W^{1,\infty}(\Omega)$. However we see that if $\{u_k\}_{k=1}^{\infty} \subseteq C^{\infty}$ are such that $u_k \to u$ in $C^{\infty}(\Omega)$, but we see that

$$||u_k - u||_{W^{1,\infty}} = \max\{||u_k - u||_{L^{\infty}}, ||Du_k - Du||_{L^{\infty}}\}$$

and we see that

$$||u_k - u||_{L^{\infty}} = \max_{x \in \Omega} |u_k(x) - u(x)| = 0$$

however since $u_k \in C^{\infty}$ we see that $\lim_{x\to 0^+} Du_k(x) = 1$ and $\lim_{x\to 0^-} Du_k(x) = -1$ and hence there must exist an N such that for all $k \geq N$ we have that

$$\lim_{x \to 0^+} |Du_k(x) - 1| < \epsilon \quad \text{and} \quad \lim_{x \to 0^-} |Du_k(x) + 1| < \epsilon$$

however this is a contradiction since Du(x) is not continuous at x = 0 and hence u_k does not converge to u in $W^{1,\infty}(\Omega)$.