Pretraživanje multimedijalnih sadržaja

Dragan Ivanović dragan.ivanovic@uns.ac.rs

Katedra za informatiku, Fakultet tehničkih nauka, Novi Sad
2015.

Vrste IR po sadržajima u kolekciji

- Pretraga tekstualnih sadržaja
- Pretraga linkovanih tekstualnih sadržaja (pretraga veba)
- Pretraga multimedijalnih sadržaja
 - slika
 - zvuk
 - video

Mediji i multimediji

- Informacije mogu biti prenete u obliku teksta, slike, veb stranice, videa ili zvuka
- Svaki medij ima svoje karakteristike, prednosti i slabosti
- Odabir najprikladnijeg medija za neku svrhu je težak zadatak
- Mediji se mogu kombinovati u multimediju
- Digitalni mediji i multimediji se mogu obrađivati, a i konzumirati upotrebom odgovarajućeg hardvera i softvera
- Postoji i hipermedija linkovani multimedijalni sadržaji (veb)

Podele medija

- Prema zavisnosti od vremena
 - Vremenski zavisni: video, animacija, zvuk
 - Statični: tekst, slika
- Prema načinu konzumiranja medija
 - linearni
 - nelinearni

Multimedija IR - motivacija

- Sve je više hardvera koji može da kreira multimedijalni sadržaj
- Sve je više softvera koji može da kreira multimedijalni sadržaj
- Sve je više multimedijalnih sadržaja
- Sve je više kolekcija multimedijalnih sadržaja i na vebu i van njega
- Teško je pronaći, odabrati, filterisati multimedijalne sadržaje
- Potrebne su nam informacije o tome šta je u multimedijalnom sadržaju

Multimedija IR - problemi

- Sirova reprezentacija podataka, bez metapodataka
- Način kreiranja upita kako opisati šta nam treba
- Dosta redudanse iste slike u različitoj rezoluciji i slično

Multimedija IR - cilj

- Želimo da napravimo multimedijalne sadržaje pretraživim kao što su tekstualni sadržaji
- U današnjem svetu prepunom digitalnih podataka vrednost sadržaja ne zavisi samo od kvaliteta sadržaja nego i od toga koliko ga je lako pronaći
- Potreban nam je efikasan način opisa multimedijalnih sadržaja i kao način kreiranja upita i pretraživanja ovih sadržaja

Komponente MMIR modela

- Upitni jezik
- Indeksiranje i pretraživanje

Upitni jezik

- Kako izraziti upit nad kolekcijom multimedijalnih sadržaja?
 - rečima: specifičan upitni jezik oslanjamo se na metapodatke o medijima
 - uzorkom: tražimo medije slične datom uzorku
 - šta je kriterijum sličnosti uzorka i medija u kolekciji?
- Da li se mogu definisati neki dodatni uslovi: minimalna rezolucija tražene slike, godina objavljivanja, daj mi sve multimedije koji imaju i video i zvuk, itd.
- Da li se mogu definisati neki složeniji uslovi:daj mi sve slike koje imaju crvenu kuću
- Naravno trebala bi da postoji i mogućnost pregledanja kolekcije i navigacije

Indeksiranje i pretraživanje

- Kakav indeks koristiti za pretraživanje medija?
- Sekvencijalna pretraga nije dovoljno efikasna
 - izračunavanje sličnosti vektora u visoko-dimenzionalnom prostoru, na primer 4000 dimenzija
 - za svaku od npr. 50000 medija
 - $50000 \times 4000 = \text{previše}$

Indeksiranje i pretraživanje

- Kakav indeks koristiti za pretraživanje medija?
- Sekvencijalna pretraga nije dovoljno efikasna
 - izračunavanje sličnosti vektora u visoko-dimenzionalnom prostoru, na primer 4000 dimenzija
 - za svaku od npr. 50000 medija
 - 50000x4000 = previše
- Plan A: neka od struktura za višedimenzionalne vektorske prostore
 - grid file, k-d tree, quad-tree, K-D-B tree, hB-tree, R-tree
- Plan B: svođenje problema na prethodni (pretraživanje teksta)
- Plan C: specijalizovani indeksi za pojedine osobine medija

Nivoi osobina medija

• Osobine visokog nivoa - *high-level features*: sadržaj na slici, videu, prepoznavanje govora, itd.

Nivoi osobina medija

- Osobine visokog nivoa high-level features: sadržaj na slici, videu, prepoznavanje govora, itd.
- Osobine srednjeg nivoa medium-level features: detektor lica, klasifikacija regiona, žanr muzike, itd.

Nivoi osobina medija

- Osobine visokog nivoa high-level features: sadržaj na slici, videu, prepoznavanje govora, itd.
- Osobine srednjeg nivoa medium-level features: detektor lica, klasifikacija regiona, žanr muzike, itd.
- Osobine niskog nivoa low-level features: Furijeova transformacija, texture histograms, colour histograms, shape primitives, itd.

Multimedija IR - pristupi

- Text based pretraga multimedijalnih sadržaja bazirana na tekstu kojim je opisana
- Content based pretraga multimedijalnih sadržaja bazirana na sadržaju

• Kako izvući informacije o sadržaju medija?

- Kako izvući informacije o sadržaju medija?
- Angažovati čoveka

- Kako izvući informacije o sadržaju medija?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka

- Kako izvući informacije o sadržaju medija?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)

- Kako izvući informacije o sadržaju medija?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate

- Kako izvući informacije o sadržaju medija?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate
 - za pretraživanje se koristi klasična baza podataka ili tehnike za pretraživanje teksta

- Kako izvući informacije o sadržaju medija?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate
 - za pretraživanje se koristi klasična baza podataka ili tehnike za pretraživanje teksta
 - skupo i dugotrajno formiranje metapodataka

- Kako izvući informacije o sadržaju medija?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate
 - za pretraživanje se koristi klasična baza podataka ili tehnike za pretraživanje teksta
 - skupo i dugotrajno formiranje metapodataka
 - opis zavisi od konteksta onoga ko opisuje; to može da bude različito od konteksta onoga ko pretražuje

- Kako izvući informacije o sadržaju medija?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate
 - za pretraživanje se koristi klasična baza podataka ili tehnike za pretraživanje teksta
 - skupo i dugotrajno formiranje metapodataka
 - opis zavisi od konteksta onoga ko opisuje; to može da bude različito od konteksta onoga ko pretražuje
- Problem se svodi na prethodni pretraživanje teksta

Kako izvući informacije o sadržaju medija?

- Kako izvući informacije o sadržaju medija?
- Angažovati računar

- Kako izvući informacije o sadržaju medija?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina medija (slike, zvuka, videa)

- Kako izvući informacije o sadržaju medija?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina medija (slike, zvuka, videa)
 - opis predstavlja osobine niskog nivoa (low-level features)

- Kako izvući informacije o sadržaju medija?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina medija (slike, zvuka, videa)
 - opis predstavlja osobine niskog nivoa (low-level features)
 - ove osobine se izracunavaju na osnovu prostog sadržaja medija - na primer: piksela slike

- Kako izvući informacije o sadržaju medija?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina medija (slike, zvuka, videa)
 - opis predstavlja osobine niskog nivoa (low-level features)
 - ove osobine se izracunavaju na osnovu prostog sadržaja medija - na primer: piksela slike
 - za pretraživanje se koristi specijalizovani indeks

- Kako izvući informacije o sadržaju medija?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina medija (slike, zvuka, videa)
 - opis predstavlja osobine niskog nivoa (low-level features)
 - ove osobine se izracunavaju na osnovu prostog sadržaja medija - na primer: piksela slike
 - za pretraživanje se koristi specijalizovani indeks
 - brzo i jeftino kreiranje metapodataka

- Kako izvući informacije o sadržaju medija?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina medija (slike, zvuka, videa)
 - opis predstavlja osobine niskog nivoa (low-level features)
 - ove osobine se izracunavaju na osnovu prostog sadržaja medija - na primer: piksela slike
 - za pretraživanje se koristi specijalizovani indeks
 - brzo i jeftino kreiranje metapodataka
 - manji kvalitet pretrage

Osnove

- Slike se prikazuju kao nizovi piksela, a reprezentovani su korišćenjem internog modela: kao bit-mape (bitmaps, rasterska grafika) ili vektorskom grafikom
- Generisanje piksela od modela zove se renderovanje
- Bit-mapa je niz logičkih piksela (skladištenih vrednosti boja) koji mogu biti direktno mapirani na fizičke piksele na ekranu: velike mogućnosti, dosta prostora zauzimaju, problemi u prepoznavanju oblika i transformaciji slike
- U vektorskoj grafici slike su skladištene kao matematički opis kolekcije linija, krivi i oblika (često u formi nekog XML-a): renderovanje složenije, prepoznavanje oblika i transformacije slike mnogo jednostavnije

Pretraživanje slika

- Novi Sad Priča android aplikacija
- Google Images
- Raspolažemo velikom kolekcijom rasterskih slika
- Kako da je pretražujemo?

Pretraživanje slika

- Novi Sad Priča android aplikacija
- Google Images
- Raspolažemo velikom kolekcijom rasterskih slika
- Kako da je pretražujemo?
- "Treba mi slika na kojoj je letnji pejzaž"

Pretraživanje slika

- Novi Sad Priča android aplikacija
- Google Images
- Raspolažemo velikom kolekcijom rasterskih slika
- Kako da je pretražujemo?
- "Treba mi slika na kojoj je letnji pejzaž"

Semantički jaz

- Zašto je pretraživanje slika komplikovano?
- Šta je tema ove slike?
- Kojim ključnim rečima bismo je opisali?
- Koje reči bismo koristili u pretrazi?

Semantički jaz

- Problem 1: jedna slika vredi 1000 reči
- Problem 2: značenje (interpretacija sadržaja) slike je vrlo individualno i subjektivno

Semantički jaz

- Problem 1: jedna slika vredi 1000 reči
- Problem 2: značenje (interpretacija sadržaja) slike je vrlo individualno i subjektivno
- Po čemu su slične ove dve slike?

Konačna rezolucija slike

• Mi ovde vidimo patke, a računar?

Konačna rezolucija slike

• Mi ovde vidimo patke, a računar?

Konačna rezolucija slike

• Mi ovde vidimo patke, a računar?

Kako izraziti upit nad kolekcijom slika?

- rečima: oslanjamo se na metapodatke o slikama
- slikom: tražimo slike slične datom uzorku
 - šta je kriterijum sličnosti uzorka i slike u kolekciji?

Kako izraziti upit nad kolekcijom slika?

- rečima: oslanjamo se na metapodatke o slikama
- slikom: tražimo slike slične datom uzorku
 - šta je kriterijum sličnosti uzorka i slike u kolekciji?

Upit:

Rezultat pretrage:

44028 18.58 5

• Kako izvući informacije o sadržaju slike?

- Kako izvući informacije o sadržaju slike?
- Angažovati čoveka

- Kako izvući informacije o sadržaju slike?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka

- Kako izvući informacije o sadržaju slike?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)

- Kako izvući informacije o sadržaju slike?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate

- Kako izvući informacije o sadržaju slike?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate
 - za pretraživanje se koristi klasična baza podataka ili tehnike za pretraživanje teksta

- Kako izvući informacije o sadržaju slike?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate
 - za pretraživanje se koristi klasična baza podataka ili tehnike za pretraživanje teksta
 - skupo i dugotrajno formiranje metapodataka

- Kako izvući informacije o sadržaju slike?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate
 - za pretraživanje se koristi klasična baza podataka ili tehnike za pretraživanje teksta
 - skupo i dugotrajno formiranje metapodataka
 - opis zavisi od konteksta onoga ko opisuje; to može da bude različito od konteksta onoga ko pretražuje

- Kako izvući informacije o sadržaju slike?
- Angažovati čoveka
 - opisivanje sadržaja = formiranje metapodataka
 - opis predstavlja karakteristike visokog nivoa (high-level features)
 - opis koristi alfanumeričke tipove podataka: ključne reči, datume, imena, koordinate
 - za pretraživanje se koristi klasična baza podataka ili tehnike za pretraživanje teksta
 - skupo i dugotrajno formiranje metapodataka
 - opis zavisi od konteksta onoga ko opisuje; to može da bude različito od konteksta onoga ko pretražuje
- Problem se svodi na prethodni pretraživanje teksta

• Kako izvući informacije o sadržaju slike?

- Kako izvući informacije o sadržaju slike?
- Angažovati računar

- Kako izvući informacije o sadržaju slike?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina slike

- Kako izvući informacije o sadržaju slike?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina slike
 - opis predstavlja osobine niskog nivoa (low-level features)

- Kako izvući informacije o sadržaju slike?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina slike
 - opis predstavlja osobine niskog nivoa (low-level features)
 - ove osobine se izračunavaju na osnovu prostog sadržaja slike piksela

- Kako izvući informacije o sadržaju slike?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina slike
 - opis predstavlja osobine niskog nivoa (low-level features)
 - ove osobine se izračunavaju na osnovu prostog sadržaja slike piksela
 - za pretraživanje se koristi specijalizovani indeks

- Kako izvući informacije o sadržaju slike?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina slike
 - opis predstavlja osobine niskog nivoa (low-level features)
 - ove osobine se izračunavaju na osnovu prostog sadržaja slike piksela
 - za pretraživanje se koristi specijalizovani indeks
 - brzo i jeftino kreiranje metapodataka

- Kako izvući informacije o sadržaju slike?
- Angažovati računar
 - opisivanje sadržaja = ekstrakcija osobina slike
 - opis predstavlja osobine niskog nivoa (low-level features)
 - ove osobine se izračunavaju na osnovu prostog sadržaja slike piksela
 - za pretraživanje se koristi specijalizovani indeks
 - brzo i jeftino kreiranje metapodataka
 - manji kvalitet pretrage

Osobine niskog nivoa

- Najčešće osobine niskog nivoa
 - boja
 - oblik
 - tekstura

Segmentacija slike

- Da li osobine izračunavamo za celu sliku ili pojedinačno po delovima?
 - globalne osobine: za celu sliku
 - lokalne osobine: po delovima

Globalne osobine

- Vrednosti predstavljaju prosek za celu sliku
- Gubi se razlikovanje prednjeg plana i pozadine
- Ne odslikava čovekovo poimanje slike
- Računski jednostavno
- Postoje (relativno) uspešne implementacije

Način segmentacije

- Tile-based: pravilan raspored delova
- Slični problemi kao kod globalnih osobina
- Računski jednostavno
- Neke šeme su se pokazale dobro u praksi

Način segmentacije

- Region-based: regioni se formiraju na osnovu sadržaja
- Podela slike na vizuelno koherentne zone
- Može da identifikuje značajne objekte
- Računski složeno
- Nepouzdano

Boja kao osobina slike

- Izračuna se signatura regiona/slike na osnovu boje piksela
- Veći broj različitih osobina
 - histogram boja
 - vektor koherencije boja
 - •

Histogram boja

- Prebrojimo koliko ima piksela za svaku boju u slici
- Od dobijenih vrednosti sastavimo histogram
- Za kolor slike to uradimo za svaki kanal (npr. R, G i B)

Histogram boja

- Histogram boja je proizveo 3 niza integer-a
- Normalizujemo njihove vrednosti (da ne zavise od veličine slike)
- Spojimo sve u jedan niz → signatura
- Histogram boja je prilično neosetljiv na male promene
- Sve slike moraju imati isti model boja (RGB, HSV, ...)

Histogram boja

- Histogram boja je proizveo 3 niza integer-a
- Normalizujemo njihove vrednosti (da ne zavise od veličine slike)
- Spojimo sve u jedan niz → signatura
- Histogram boja je prilično neosetljiv na male promene
- Sve slike moraju imati isti model boja (RGB, HSV, ...)
- Pretraživanje = poređenje signatura u vektorskom prostoru

Vektor koherencije boja

- Piksele klasifikujemo u grupe po boji
 - ullet pikseli sa vrednošću u opsegu $[0,10]
 ightarrow \mathsf{klasa}\ 1$, $[11,20]
 ightarrow 2 \dots$

```
    [22
    10
    21
    22
    15
    16

    [24
    21
    13
    20
    14
    17

    [23
    17
    38
    23
    17
    16

    [25
    25
    22
    14
    15
    21

    [27
    22
    12
    11
    21
    20

    [24
    21
    10
    12
    22
    23
```

Vektor koherencije boja

- Piksele klasifikujemo u grupe po boji
 - ullet pikseli sa vrednošću u opsegu $[0,10] o \mathsf{klasa}\ 1$, $[11,20] o 2\dots$

$$\begin{bmatrix} 22 & 10 & 21 & 22 & 15 & 16 \\ 24 & 21 & 13 & 20 & 14 & 17 \\ 23 & 17 & 38 & 23 & 17 & 16 \\ 25 & 25 & 22 & 14 & 15 & 21 \\ 27 & 22 & 12 & 11 & 21 & 20 \\ 24 & 21 & 10 & 12 & 22 & 23 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 & 1 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \end{bmatrix}$$

- Piksele klasifikujemo u grupe po boji
 - ullet pikseli sa vrednošću u opsegu $[0,10] o \mathsf{klasa}\ 1$, $[11,20] o 2\dots$
- Uočimo regione obojene istom klasom (pikseli povezani 8-susedstvom)

$$\begin{bmatrix} 22 & 10 & 21 & 22 & 15 & 16 \\ 24 & 21 & 13 & 20 & 14 & 17 \\ 23 & 17 & 38 & 23 & 17 & 16 \\ 25 & 25 & 22 & 14 & 15 & 21 \\ 27 & 22 & 12 & 11 & 21 & 20 \\ 24 & 21 & 10 & 12 & 22 & 23 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 2 & 1 & 1 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \end{bmatrix}$$

- Piksele klasifikujemo u grupe po boji
 - ullet pikseli sa vrednošću u opsegu $[0,10]
 ightarrow \mathsf{klasa}\ 1$, $[11,20]
 ightarrow 2\dots$
- Uočimo regione obojene istom klasom (pikseli povezani 8-susedstvom)

$$\begin{bmatrix} 22 & 10 & 21 & 22 & 15 & 16 \\ 24 & 21 & 13 & 20 & 14 & 17 \\ 23 & 17 & 38 & 23 & 17 & 16 \\ 25 & 25 & 22 & 14 & 15 & 21 \\ 27 & 22 & 12 & 11 & 21 & 20 \\ 24 & 21 & 10 & 12 & 22 & 23 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} BCBBAA \\ BBCBAA \\ BCDBAA \\ BBBAAE \\ BBAAEE \\ BBAAEE \\ BBAAEE \end{bmatrix}$$

- Piksele klasifikujemo u grupe po boji
 - ullet pikseli sa vrednošću u opsegu $[0,10]
 ightarrow {\sf klasa} \ 1$, $[11,20]
 ightarrow 2 \dots$
- Uočimo regione obojene istom klasom (pikseli povezani 8-susedstvom)
- Označimo piksele kao koheretne ili nekoherentne
 - koherentan piksel je deo regiona piksela iste klase

$$\begin{bmatrix} 22 & 10 & 21 & 22 & 15 & 16 \\ 24 & 21 & 13 & 20 & 14 & 17 \\ 23 & 17 & 38 & 23 & 17 & 16 \\ 25 & 25 & 22 & 14 & 15 & 21 \\ 27 & 22 & 12 & 11 & 21 & 20 \\ 24 & 21 & 10 & 12 & 22 & 23 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} BCBBAA \\ BBCBAA \\ BCDBAA \\ BBBAAE \\ BBAAEE \\ BBAAEE \\ BBAAEE \end{bmatrix}$$

- Piksele klasifikujemo u grupe po boji
 - ullet pikseli sa vrednošću u opsegu $[0,10]
 ightarrow {\sf klasa} \ 1$, $[11,20]
 ightarrow 2 \dots$
- Uočimo regione obojene istom klasom (pikseli povezani 8-susedstvom)
- Označimo piksele kao koheretne ili nekoherentne
 - koherentan piksel je deo regiona piksela iste klase
- Formiramo binarne vektore po horizontali ili vertikali

$$\begin{bmatrix} 22 & 10 & 21 & 22 & 15 & 16 \\ 24 & 21 & 13 & 20 & 14 & 17 \\ 23 & 17 & 38 & 23 & 17 & 16 \\ 25 & 25 & 22 & 14 & 15 & 21 \\ 27 & 22 & 12 & 11 & 21 & 20 \\ 24 & 21 & 10 & 12 & 22 & 23 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 & 2 & 2 & 1 & 1 \\ 2 & 2 & 1 & 2 & 1 & 1 \\ 2 & 2 & 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 & 2 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} BCBBAA \\ BBCBAA \\ BCDBAA \\ BBAAEE \\ BBAAEE \\ BBAAEE \\ BBAAEE \end{bmatrix}$$

Boja nije uvek dovoljna

Aktivne konture

- M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour Models. Intl.J. Computer Vision, vol. 1, pp. 321 -331, 1987.
- Generiše krive koje se kreću unutar slike i traže granicu objekta
- Zavise od početne pozicije
- Mogu da završe u lokalnom minimumu

Gradient Vector Flow

- C. Xu and J.L. Prince. Snakes, Shapes, and Gradient Vector Flow. IEEE Transactions on Image Processing, 359-369, March 1998
- Usavršene aktivne konture

Furijeovi deskriptori

- Hannu Kauppinen et.al. An Experimental Comparison of Autoregressive and Fourier Based Descriptors in 2D Shape Classification. IEEE Transactions on Pattern Recognition and Machine Intelligence Vol. 17 No 2 Feb, 1995.
- Izračunava varijantu Furijeove transformacije za ivice objekta
- Otporan na geometrijske transformacije i šum

Oblik nije uvek dovoljan

Ovo se lako klasifikuje po obliku:

Oblik nije uvek dovoljan

Ovo se teško klasifikuje po obliku:

Boja i oblik zajedno ne moraju biti dovoljni

Ovo se teško klasifikuje i po obliku i po boji:

Pojam teksture

Ove dve slike su različite po boji, ali slične po teksturi:

Pojam teksture

- Tekstura je matematički opis ponavljajućeg šablona u slici
 - glatko
 - peskovito
 - zrnasto
 - trakasto

Matrica pojavljivanja

- P_{ij}: prebrojimo koliko puta se piksel boje i pojavljuje u smeru p u odnosu na piksel boje j
- Na primer: ako slika ima tri boje: 0, 1 i 2 i smer je "dole desno"

$$slika = \begin{bmatrix} 0 & 0 & 0 & 1 & 2 \\ 1 & 1 & 0 & 1 & 1 \\ 2 & 2 & 1 & 0 & 0 \\ 1 & 1 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \Rightarrow P_{ij} = \begin{bmatrix} 4 & 2 & 1 \\ 2 & 3 & 2 \\ 0 & 2 & 0 \end{bmatrix}$$

ISO/IEC 13249-5:2001

- "SQL/MM Still Image standard"
- Definiše standardne objektno-relacione tipove podataka za pretraživanje slika po sadržaju
 - SI_StillImage
 - SI_AverageColor
 - SI Color
 - SI ColorHistogram
 - SI FeatureList
 - SI PositionalColor
 - SI Texture

Oracle interMedia

- Proširenje Oracle relacione baze podataka za rad sa slikama, zvukom i videom
- Slike se smeštaju u BLOB kolone baze podataka
- Podrška za više formata
- Ekstrakcija metapodataka zavisno od formata
- Konverzija formata
- Pretraživanje po sadržaju

Oracle interMedia

- Indeksiranje slike obuhvata:
 - segmentaciju slike
 - analizu boje
 - analizu oblika
 - analizu teksture
- Rezultat ovih koraka je vektor sa 3000-4000 elemenata
 - ightarrow signatura
- Upit se izražava slikom-uzorkom
- Izračunavanje upita = poređenje signatura u vektorskom prostoru

Kakav indeks koristiti za pretraživanje slika?

- Sekvencijalna pretraga nije dovoljno efikasna
 - izračunavanje sličnosti vektora u 4000-dimenzionalnom prostoru
 - za svaku od npr. 50000 slika
 - 50000x4000 = previše

Kakav indeks koristiti za pretraživanje slika?

- Sekvencijalna pretraga nije dovoljno efikasna
 - izračunavanje sličnosti vektora u 4000-dimenzionalnom prostoru
 - za svaku od npr. 50000 slika
 - 50000x4000 = previše
- Plan A: neka od struktura za višedimenzionalne vektorske prostore
 - grid file, k-d tree, quad-tree, K-D-B tree, hB-tree, R-tree
- Plan B: svođenje problema na prethodni (pretraživanje teksta)
- Plan C: specijalizovani indeksi za pojedine osobine slike

Plan B

- Koristi mehanizme za pretraživanje teksta: invertovani indeks i tf-idf težine
- Prilagodi reprezentaciju osobina slike tako da se mogu smestiti u rečnik Lucene indeksa
- LIRE: Lucene Image REtrieval
 - http://www.semanticmetadata.net/lire/
 - koristi tri osobine iz MPEG-7 standarda: ScalableColor, ColorLayout i EdgeHistogram
 - dodaje još jednu svoju: Auto Color Correlogram

Osnove

- Zvuk se proizvodi konverzijom energije u talase koji se prostiru kroz neki etar, talasi dolaze do uha gde se konvertuju u nervni impuls što mozak detektuje kao zvuk
- Ljudsko uho može detektovati zvuk frekvencije između 20Hz i 20kHz (zavisi i od godina)
- Složen i subjektivan fenomen, teško je napraviti precizan model zvuka
- Waveform (predstava talasima) zvuka prikazuje promenu amplitude zvuka kroz vreme
- MIDI format za skladištenje instrukcija kako će se zvuk proizvesti (nešto kao vektorska grafika kod slike)
- Percepcija zvuka ima i psihološku dimenziju: isti zvuk prvo tiše pa glasnije, Vaše ime na kraju glasne sale, Stereo zvuk, utisak da je nešto desno, odnosno levo, itd.

Audio žanrovi

- Bazirani na govoru: radio program, telefonska komunikacija, snimljeni razgovori
- Bazirana na muzici: instumentalna, vokalna (pevanje)
- Ostalo: alarm, zvuci iz prirode

Zvuci bazirani na govoru

- Pretraga radio vesti, snimljenih razgovora, predavanja
- Iste reči izgovorene od iste osobe pod istim uslovima mogu proizvesti prilično različite talase
- Kolike su tek onda razlike kada su u pitanju različiti ljudi
- Koliko glasno je nešto izgovoreno, akcenat, harmonici, itd.
- Zvuk je vrlo složen fenomen, ne čujemo svi isto, subjektivnost u slušanju (poznate termine bolje čujemo od drugih, naše ime na kraju bučne sale)

Detekcija osobina u govoru

- Sadržaj: fonemi, one-best word recognition, n-best
- Identitet: identifikacija govornika, podela zvuka po različitim govornicima
- Jezičke osobine: jezik, dijalekt, akcenat
- Ostale osobine: okruženje, kanal (stereo, surround), itd.

Kako speech recognition radi

- Tri koraka:
 - Prebacivanje waveform-i u foneme (delove reči, slogove)
 - Segmentacija reči, kako foneme grupisati u reči, gde je kraj jedne reči i početak druge
 - Detekcija koja je reč izgovorena
- Sva tri koraka se obično obučavaju nadgledanim mašinskim učenjem

Pretraživanje zvučnih zapisa bazirano na uzorku

- Pretraživanje zvučnih zapisa baziranih na muzici
- Iz zvučnih zapis izvući osobine i vektore osobina indeksirati nekom strukturom (npr. R-stablom)
- Definisati meru sličnosti dva zapisa
- Klasterovati zapise u MBR (minimal bounding rectangle)
- Iz uzorka izvući osobine i formirati vektor osobina
- Za vektor osobina upita utrđuje se kom klasteru pripada, odnosno utvrđuje se MBR koji se vraća ili najbliži MBR

Osobine u zvučnim zapisima

- Preuzeto iz magistarskog rada: Aleksandar Kovačević, Adaptivni sistem za pretraživanje zvučnih zapisa, Fakultet tehničkih nauka u Novom Sadu (2006)
- Mean square procena apmlitude zvučnog signala
- Zero Crossings broj promena znaka zvučnog signala
- Spectrum[32] prvih 32 koeficijenta dobijena Diskretnom Furijeovom Transformacijom (DFT) signala
- SpectralSum sumu razlika susednih članova niza Spectrum
- Beats (per minute, BPM) procena ritma zvučnog zapisa
- Avg FFT Delta[32] Članovi niza Avg FFT Delta su razlike susednih elemenata niza Spectrum

Osobine u zvučnim zapisima

- Haar[64] Niz 64 koeficijenta dobijena Harovom wavelet transformacijom
- Song seconds Vreme trajanja zvučnog zapisa u sekundama
- Energy difference (ED) signal se deli na delove (frejm), za svaki deo računa se energija, Energy difference je suma razlika energija za sve frejmove zvučnog zapisa
- Energy Zero Crossing događa se kad vrednosti energije dva uzastopna frejma (Energy difference) imaju različit znak, Energy Zero Crossings je broj ovih događaja za zvučni zapis

Definisanje mere sličnosti dva zvučna zapisa

- Formirati obučavajući skup, odnosno mali deo kolekcije zvučnih zapisa podeliti na klase
- Iskoristiti ovaj obučavajući skup za algoritam (npr. genetski algoritam) za tjuniranje prostora osobina
- Rezultat tjuniranja koeficijenti koji se stavljaju ispred osobina kako bi se optimizovala metrika sličnosti

Osnove

- Niz frejmova, odnosno rasterskih slika
- Medij koji je doživeo revoluciju razvojem ICT, digitalni video je danas normalna pojava, digitalne kamere su u telefonima, laptop računarima, itd.
- Video sa zvukom i tekstom je multimedija, ali se pod pojmom video IR najčešće podrazumeva pretraga kolekcije videa koji sadrži i zvučne i tekstualne komponente (u formi subtitle-a)

Primena video IR

- Postoje velike baza video zapisa
- Potreba za pretragom ovih kolekcija je sve veća razvojem ICT
- Primer: BBC arhiva u toku jedne godine primi više od 500,000 upita čiji bi odgovor mogao da bude video ili deo videa, YouTube primi još više upita
- Ogroman prostor za napredak i u text-based video IR, a posebno u content-based video IR

Kompleksnost problema

- Veliki broj osobina koji se mogu ekstrahovati iz videa
- Kretanje objekata u kadrovima, kretanje kamere, promena zoom-a, itd.
- Koristi se: OCR, speech recognition, face recognition, scene recognition, itd.
- Odgovor ne treba da bude ceo video, nego njegov deo koji odgovara informacionoj potrebi korisnika (obično 20-40 sekundi) - zbog ovoga je segmentacija scena jako bitno

Upotreba OCR i speech recognition tehnike

Query:

Find pictures of Harry Hertz, Director of the National Quality Program, NIST

Speech:

We're looking for people that have a broad range of expertise that have business knowledge that have knowledge on quality management on quality improvement and in particular ...

OCR:

H,arry Hertz a Director aro 7 wa,i,,ty Program
.Harry Hertz a Director

Informaciona potreba

