Lista 9

Para todas as listas de exercício, você deve criar arquivos .m com os códigos implementados e, se necessário, um arquivo em pdf com os resultados gerados (pode ser a impressão dos resultados calculados ou figuras). Todos arquivos devem ser nomeados como RA000000_LXX_YY.m, em que

- 000000 é o número do seu RA
- XX é o número da lista.
- YY é o número do exercício.

1) A temperatura num lago varia de forma senoidal ao longo do período de um ano. Use a regressão linear de quadrados mínimos para ajustar os dados abaixo a uma senoide do tipo

$$y = A_0 + A_1 \cos(\omega_0 t) + B_1 \sin(\omega_0 t) + e$$

A partir da sua regressão, determine a média, amplitude e a data da máxima temperatura. Observe que o período é de 365 dias.

t, d	15	45	75	105	135	165	195	225	255	285	315	345
<i>T</i> , ° <i>C</i>	3.4	4.7	8.5	11.7	16	18.7	20.5	19.7	17.1	12.7	7.7	5.1

Sua função deve retornar os valores A0, A1 e B1 da regressão, a amplitude C1 da senoide e a data dia_max da máxima temperatura, nessa ordem.

```
[A0, A1, B1, C1, dia_max] = RA000000_L09_01();
```

2) Em circuitos elétricos, é comum observar correntes na forma de uma onda quadrada, conforme mostrada na figura abaixo.

A onda quadrada da figura acima pode ser descrita pela seguinte equação:

$$f(t) = \begin{cases} A_0, & 0 \le t \le T/2 \\ -A_0, & T/2 \le t \le T \end{cases}$$

A série de Fourier dessa função periódica pode ser representada por:

$$f(t) = \sum_{n=1}^{\infty} \left(\frac{4A_0}{(2n-1)\pi} \right) \sin\left(\frac{2\pi (2n-1)t}{T} \right)$$

A partir dessa equação, desenvolva uma função que gera o gráfico da soma dos n primeiros termos da série de Fourier, dados a amplitude ${\tt A0}$ e o período ${\tt T}$ da onda quadrada. Escreva a função de forma que a curva seja plotada de t=0 até 4T.

Sua função deve retornar o vetor de tempo t e o vetor com a aproximação da onda quadrada y, com dimensões adequadas para que sejam plotados.

```
n = 10;
[t, y] = RA000000_L09_02(A0,T,n);
plot(t,y)
```

```
function [t, y] = RA000000_L09_02(A0,T,n)
   % seu código aqui
end
```

3) Utilize a função fft para calcular a DFT da seguinte função:

$$f(t) = 1.5 + 1.8\cos(2\pi(12)t) + 0.8\sin(2\pi(20)t) - 1.25\cos(2\pi(28)t)$$

Utilize n=64 amostras, com uma frequência de amostragem de $f_s=128\,\mathrm{Hz}$. O seu código deve calcular os valores de Δt , t_n , Δf , f_{\min} e f_{\max} . Gere os gráficos de amplitude e fase da DFT numa única janela de figura. Sua função deve retornar os valores calculados e um ponteiro para a figura gerada.

```
[dt, tn, df, fmin, fmax, h] = RA000000_L09_03;
```

```
function [dt, tn, df, fmin, fmax, h] = RA000000_L09_03()
   h = figure;
   % seu código aqui
end
```