Approaches to duality: an overview

Stefan Zetzsche

University of Hamburg

Outline

- 1. Introduction
- 2. Properties of rigid categories
- 3. Star-autonomous categories
- 4. Linearly distributive categories
- 5. Frobenius pseudomonoids

Introduction

We will mainly work in monoidal categories $(\mathcal{C}, \otimes, 1)$ and use string diagram notation:

We will mainly work in monoidal categories $(\mathcal{C}, \otimes, \mathbf{1})$ and use string diagram notation:

Read diagrams from bottom to top

We will mainly work in monoidal categories $(C, \otimes, 1)$ and use string diagram notation:

- Read diagrams from bottom to top
- Objects are strings, morphisms are points: $\uparrow : A \rightarrow B$

We will mainly work in monoidal categories $(\mathcal{C}, \otimes, 1)$ and use string diagram notation:

- Read diagrams from bottom to top
- Objects are strings, morphisms are points: $^{\dagger}: A \rightarrow B$
- Parallel strings denote the tensor product \otimes : $A \otimes B \to C$

We will mainly work in monoidal categories $(\mathcal{C}, \otimes, \mathbf{1})$ and use string diagram notation:

- Read diagrams from bottom to top
- Objects are strings, morphisms are points: $^{\dagger}: A \rightarrow B$
- Parallel strings denote the tensor product \otimes : $A \otimes B \to C$
- The unit object **1** is transparent: ${}^{\bullet}: \mathbf{1} \to A$

Example

The monoidal category ($\text{vect}_{\Bbbk}, \otimes, \Bbbk$) of finite-dimensional vector spaces over a field \Bbbk with the usual tensor product.

Example

The monoidal category ($\mathsf{vect}_{\Bbbk}, \otimes, \Bbbk$) of finite-dimensional vector spaces over a field \Bbbk with the usual tensor product.

• $V \in \text{vect}_{\mathbb{k}}$, $V^* \coloneqq \text{Hom}_{\mathbb{k}}(V, \mathbb{k}) \in \text{vect}_{\mathbb{k}}$

Example

The monoidal category ($\text{vect}_{\mathbb{k}}, \otimes, \mathbb{k}$) of finite-dimensional vector spaces over a field \mathbb{k} with the usual tensor product.

- $V \in \text{vect}_{\mathbb{k}}$, $V^* \coloneqq \text{Hom}_{\mathbb{k}}(V, \mathbb{k}) \in \text{vect}_{\mathbb{k}}$
- $(v_i)_{i=1,...,n}$ basis of V, $(v_i^*)_{i=1,...,n}$ dual basis of V^* .

Example

The monoidal category ($\text{vect}_{\mathbb{k}}, \otimes, \mathbb{k}$) of finite-dimensional vector spaces over a field \mathbb{k} with the usual tensor product.

- $V \in \text{vect}_{\mathbb{k}}$, $V^* := \text{Hom}_{\mathbb{k}}(V, \mathbb{k}) \in \text{vect}_{\mathbb{k}}$
- $(v_i)_{i=1,...,n}$ basis of V, $(v_i^*)_{i=1,...,n}$ dual basis of V^* .
- $ightharpoonup^*: V^* \otimes V \to \mathbb{k}, \quad v' \otimes v \mapsto v'(v),$
- $\mathbb{k} \to V \otimes V^*, \quad 1 \mapsto \sum_i v_i \otimes v_i^*.$

Example

The monoidal category ($\text{vect}_{\mathbb{k}}, \otimes, \mathbb{k}$) of finite-dimensional vector spaces over a field \mathbb{k} with the usual tensor product.

- $V \in \text{vect}_{\mathbb{k}}$, $V^* := \text{Hom}_{\mathbb{k}}(V, \mathbb{k}) \in \text{vect}_{\mathbb{k}}$
- $(v_i)_{i=1,...,n}$ basis of V, $(v_i^*)_{i=1,...,n}$ dual basis of V^* .
- $V^* \otimes V \to \mathbb{R}$, $v' \otimes v \mapsto v'(v)$,
- $\mathbb{k} \to V \otimes V^*$, $1 \mapsto \sum_i v_i \otimes v_i^*$.

Rigid categories

Definition

Let $(\mathcal{C}, \otimes, \mathbf{1})$ be a monoidal category.

• $A \dashv B :\Leftrightarrow$ there exists $(A \otimes B \to 1)$: $(A \otimes B \to 1)$: $(A \otimes B \to 1)$

• $(C, \otimes, \mathbf{1})$ rigid/autonomous : \Leftrightarrow for all $A \in C$ there exist $^{\vee}A, A^{\vee} \in C$, s.t. $A \dashv A^{\vee}$ and $^{\vee}A \dashv A$.

Examples

 \bullet Category of f.d. vector spaces, vect $_{\Bbbk}.$

- Category of f.d. vector spaces, vect_k.
- Representation categories $\operatorname{Rep}_{f.d.}(A)$ with A f.d. Hopf algebra. In particular, $\operatorname{Rep}_{f.d.}(\Bbbk[G])$ for some finite group G.

- Category of f.d. vector spaces, vect_k.
- Representation categories $\operatorname{Rep}_{f.d.}(A)$ with A f.d. Hopf algebra. In particular, $\operatorname{Rep}_{f.d.}(\Bbbk[G])$ for some finite group G.
- Cobordism categories Cob(n) with dual object given by the same manifold with opposite orientation (more later).

- Category of f.d. vector spaces, vect_k.
- Representation categories $\operatorname{Rep}_{f.d.}(A)$ with A f.d. Hopf algebra. In particular, $\operatorname{Rep}_{f.d.}(\Bbbk[G])$ for some finite group G.
- Cobordism categories Cob(n) with dual object given by the same manifold with opposite orientation (more later).
- Category of profunctors with dual object given by the opposite category (more later).

Examples

- Category of f.d. vector spaces, vect_k.
- Representation categories $\operatorname{Rep}_{f.d.}(A)$ with A f.d. Hopf algebra. In particular, $\operatorname{Rep}_{f.d.}(\Bbbk[G])$ for some finite group G.
- Cobordism categories Cob(n) with dual object given by the same manifold with opposite orientation (more later).
- Category of profunctors with dual object given by the opposite category (more later).

However, definition of rigidity is sometimes too restrictive.

Properties of rigid categories

Duality as functor

Definition

Let $(C, \otimes, \mathbf{1})$ be a rigid category and $A, B, A^{\vee}, B^{\vee} \in C$ with

- $: B \otimes B^{\vee} \to \mathbf{1}$, and $: \mathbf{1} \to A^{\vee} \otimes A$.
 - For $f \equiv A \rightarrow B$ define

$$f^{\vee} :=$$
 : $B^{\vee} \to A^{\vee}$.

• Similarly define ${}^{\vee}f: {}^{\vee}B \rightarrow {}^{\vee}A$.

Duality as functor

Definition

Let $(C, \otimes, \mathbf{1})$ be a rigid category and $A, B, A^{\vee}, B^{\vee} \in C$ with

$$: B \otimes B^{\vee} \to \mathbf{1}$$
, and $: \mathbf{1} \to A^{\vee} \otimes A$.

• For $f \equiv A \rightarrow B$ define

$$f^{\vee} :=$$
 : $B^{\vee} \to A^{\vee}$.

• Similarly define ${}^{\vee}f: {}^{\vee}B \rightarrow {}^{\vee}A$.

Lemma

 $(-)^{\vee}: (\mathcal{C}, \otimes, \mathbf{1}) \rightarrow (\mathcal{C}, \otimes, \mathbf{1})^{\mathsf{opp}(0,1)} \ \textit{monoid. equiv. with quasi-inv.} \ ^{\vee}(-).$

Internal homs

Example

The hom space of $vect_k$ is an internal hom:

$$\mathsf{Hom}_{\Bbbk}(V \otimes W, U) \cong \mathsf{Hom}_{\Bbbk}(V, \mathsf{Hom}_{\Bbbk}(W, U)).$$

Internal homs

Example

The hom space of $vect_k$ is an internal hom:

$$\operatorname{\mathsf{Hom}}_{\Bbbk}(V\otimes W,U)\cong\operatorname{\mathsf{Hom}}_{\Bbbk}(V,\operatorname{\mathsf{Hom}}_{\Bbbk}(W,U)).$$

Definition

• $(\mathcal{C}, \otimes, 1)$ left closed : \Leftrightarrow there exists functor $\underline{\mathsf{Hom}}(-, -) : \mathcal{C}^\mathsf{opp} \times \mathcal{C} \to \mathcal{C}$, s.t.

$$\operatorname{\mathsf{Hom}}_{\mathcal{C}}(A\otimes B,C)\cong\operatorname{\mathsf{Hom}}_{\mathcal{C}}(A,\operatorname{\underline{\mathsf{Hom}}}(B,C)).$$

• $(C, \otimes, 1)$ right closed : \Leftrightarrow there exists functor $Hom(-, -) : C^{opp} \times C \to C$, s.t.

$$\operatorname{\mathsf{Hom}}_{\mathcal{C}}(A\otimes B,C)\cong \operatorname{\mathsf{Hom}}_{\mathcal{C}}(B,\widecheck{\operatorname{\mathsf{\underline{Hom}}}}(A,C)).$$

Dualizing objects

Lemma

Any rigid category $(C, \otimes, \mathbf{1})$ is biclosed:

$$\underline{\mathsf{Hom}}(A,B) = B \otimes A^{\vee} \text{ and } \underline{\widetilde{\mathsf{Hom}}}(A,B) = {^{\vee}}A \otimes B.$$

In particular, since
$$\underline{\mathsf{Hom}}(-,\mathbf{1})\cong (-)^\vee$$
 and $\underline{\widetilde{\mathsf{Hom}}}(-,\mathbf{1})\cong {}^\vee(-)$,

$$\underline{\mathsf{Hom}}(\widecheck{\mathsf{Hom}}(A,\mathbf{1}),\mathbf{1})\cong A\cong \widecheck{\mathsf{Hom}}(\widecheck{\mathsf{Hom}}(A,\mathbf{1}),\mathbf{1}).$$

Dualizing objects

Lemma

Any rigid category $(C, \otimes, \mathbf{1})$ is biclosed:

$$\underline{\mathsf{Hom}}(A,B) = B \otimes A^{\vee} \text{ and } \underbrace{\mathsf{Hom}}(A,B) = {^{\vee}}A \otimes B.$$

In particular, since
$$\underline{\mathsf{Hom}}(-,\mathbf{1})\cong (-)^\vee$$
 and $\underline{\widetilde{\mathsf{Hom}}}(-,\mathbf{1})\cong {}^\vee(-)$,

$$\underline{\mathsf{Hom}}(\underline{\mathsf{Hom}}(A,\mathbf{1}),\mathbf{1})\cong A\cong \underline{\mathsf{Hom}}(\underline{\mathsf{Hom}}(A,\mathbf{1}),\mathbf{1}).$$

Definition

 $(\mathcal{C}, \otimes, \mathbf{1})$ biclosed monoidal. Call $k \in \mathcal{C}$ a dualizing object, if

$$\underline{\mathsf{Hom}}(\widecheck{\mathsf{Hom}}(A,k),k) \cong A \cong \widecheck{\mathsf{Hom}}(\widecheck{\mathsf{Hom}}(A,k),k)$$

for all $A \in \mathcal{C}$.

Let us give an example in which there exists a dualizing object not necessarily given by the tensor unit.

Let us give an example in which there exists a dualizing object not necessarily given by the tensor unit.

Example

• G: finite abelian group

Let us give an example in which there exists a dualizing object not necessarily given by the tensor unit.

- G: finite abelian group
- $V = \bigoplus_{g \in G} V_g$, $V_g \in \text{vect}_k$
- $(V \otimes W)_g := \bigoplus_{hk=g} V_h \otimes W_k$; $\rightarrow \mathbb{k}_{1_G}$ tensor unit

Let us give an example in which there exists a dualizing object not necessarily given by the tensor unit.

- G: finite abelian group
- $V = \bigoplus_{g \in G} V_g$, $V_g \in \text{vect}_k$
- $(V \otimes W)_g := \bigoplus_{hk=g} V_h \otimes W_k$; $\rightarrow \mathbb{k}_{1_G}$ tensor unit
- $\underline{\mathsf{Hom}}(V,W)_g \coloneqq \{f: V \to W \mid f(V_h) \subseteq W_{gh} \text{ for all } h \in G\}$

Let us give an example in which there exists a dualizing object not necessarily given by the tensor unit.

- G: finite abelian group
- $V = \bigoplus_{g \in G} V_g$, $V_g \in \text{vect}_k$
- $(V \otimes W)_g := \bigoplus_{hk=g} V_h \otimes W_k$; $\rightarrow \mathbb{k}_{1_G}$ tensor unit
- $\underline{\mathsf{Hom}}(V,W)_g \coloneqq \{f: V \to W \mid f(V_h) \subseteq W_{gh} \text{ for all } h \in G\}$
- Implies $\rightsquigarrow \underline{\mathsf{Hom}}(V, \Bbbk_{g_0})_g = (V_{g^{-1}g_0})^*$

Let us give an example in which there exists a dualizing object not necessarily given by the tensor unit.

- G: finite abelian group
- $V = \bigoplus_{g \in G} V_g$, $V_g \in \text{vect}_k$
- $(V \otimes W)_g := \bigoplus_{hk=g} V_h \otimes W_k$; $\rightarrow \mathbb{k}_{1_G}$ tensor unit
- $\underline{\mathsf{Hom}}(V,W)_g \coloneqq \{f: V \to W \mid f(V_h) \subseteq W_{gh} \text{ for all } h \in G\}$
- Implies $\rightsquigarrow \underline{\mathsf{Hom}}(V, \Bbbk_{g_0})_g = (V_{g^{-1}g_0})^*$
- Implies $\underline{\mathsf{Hom}}(\underline{\mathsf{Hom}}(V,\Bbbk_{g_0}),\Bbbk_{g_0})_g \cong V_{g_0^{-1}gg_0} = V_g$

Some more properties...

Since any rigid category is left closed with $\underline{\text{Hom}}(A,B) = B \otimes A^{\vee}$ and the duality functor is contravariant, we obtain

$$\mathsf{Hom}_{\mathcal{C}}(A\otimes B,C^{\vee})\cong \mathsf{Hom}_{\mathcal{C}}(A,C^{\vee}\otimes B^{\vee})\cong \mathsf{Hom}_{\mathcal{C}}(A,(B\otimes C)^{\vee}).$$

In particular for C = 1 we can deduce

$$\operatorname{\mathsf{Hom}}(A\otimes B,\mathbf{1})\cong\operatorname{\mathsf{Hom}}(A,B^{\vee}).$$

Analogously to the dualizing object definition, we can generalise latter equations.

Some more properties...

Since any rigid category is left closed with $\underline{\text{Hom}}(A,B) = B \otimes A^{\vee}$ and the duality functor is contravariant, we obtain

$$\mathsf{Hom}_{\mathcal{C}}(A\otimes B,C^{\vee})\cong \mathsf{Hom}_{\mathcal{C}}(A,C^{\vee}\otimes B^{\vee})\cong \mathsf{Hom}_{\mathcal{C}}(A,(B\otimes C)^{\vee}).$$

In particular for C = 1 we can deduce

$$\operatorname{\mathsf{Hom}}(A\otimes B,\mathbf{1})\cong\operatorname{\mathsf{Hom}}(A,B^{\vee}).$$

Analogously to the dualizing object definition, we can generalise latter equations. It turns out that all three approaches are equivalent!

Star-autonomous categories

*-autonomous categories

Lemma

Let $(\mathcal{C}, \otimes, \mathbf{1})$ be a monoidal category. The following are equivalent:

- 1. C is biclosed and there exists a dualizing object $k \in C$.
- 2. There exists an equivalence $(-)^*: \mathcal{C} \to \mathcal{C}^{opp(1)}$ and a natural isomorphism

$$\operatorname{\mathsf{Hom}}(A\otimes B,C^\star)\cong\operatorname{\mathsf{Hom}}(A,(B\otimes C)^\star).$$

3. There exists an object $k \in \mathcal{C}$, an equivalence $(-)^* : \mathcal{C} \to \mathcal{C}^{\mathsf{opp}(1)}$ and a natural isomorphism

$$\operatorname{\mathsf{Hom}}(A\otimes B,k)\cong\operatorname{\mathsf{Hom}}(A,B^*).$$

*-autonomous categories

Lemma

Let $(\mathcal{C}, \otimes, \mathbf{1})$ be a monoidal category. The following are equivalent:

- 1. C is biclosed and there exists a dualizing object $k \in C$.
- 2. There exists an equivalence $(-)^*: \mathcal{C} \to \mathcal{C}^{\text{opp}(1)}$ and a natural isomorphism

$$\operatorname{\mathsf{Hom}}(A\otimes B,C^\star)\cong\operatorname{\mathsf{Hom}}(A,(B\otimes C)^\star).$$

3. There exists an object $k \in \mathcal{C}$, an equivalence $(-)^* : \mathcal{C} \to \mathcal{C}^{\text{opp}(1)}$ and a natural isomorphism

$$\operatorname{\mathsf{Hom}}(A\otimes B,k)\cong\operatorname{\mathsf{Hom}}(A,B^{\star}).$$

Definition

Call such a category *-autonomous (Barr 1979) or Grothendieck-Verdier (Boyarchenko, Drinfeld 2011).

Example

• **TVS** := category of Hausdorff locally convex topological vector spaces with continuous maps.

 $\mathsf{TVS}_m, \mathsf{TVS}_w \subseteq \mathsf{TVS}$ subcategories of weakly, respective Mackey topologized spaces.

- TVS := category of Hausdorff locally convex topological vector spaces with continuous maps.
 - $\mathsf{TVS}_m, \mathsf{TVS}_w \subseteq \mathsf{TVS}$ subcategories of weakly, respective Mackey topologized spaces.
- **chu** := category of triples $(V, W, \langle -, \rangle)$, such that $V \to W^*$ and $W \to V^*$ are injective, and appropriate morphisms.

Example

• **TVS** := category of Hausdorff locally convex topological vector spaces with continuous maps.

 $\mathsf{TVS}_m, \mathsf{TVS}_w \subseteq \mathsf{TVS}$ subcategories of weakly, respective Mackey topologized spaces.

• **chu** := category of triples $(V, W, \langle -, - \rangle)$, such that $V \to W^*$ and $W \to V^*$ are injective, and appropriate morphisms.

•

Example

- **TVS** := category of Hausdorff locally convex topological vector spaces with continuous maps.
 - $\mathsf{TVS}_m, \mathsf{TVS}_w \subseteq \mathsf{TVS}$ subcategories of weakly, respective Mackey topologized spaces.
- **chu** := category of triples $(V, W, \langle -, \rangle)$, such that $V \to W^*$ and $W \to V^*$ are injective, and appropriate morphisms.

•

• **chu** is *-autonomous with $(V, W, \langle -, - \rangle)^* := (W, V, \langle -, - \rangle^{op})$.

Example

- **TVS** := category of Hausdorff locally convex topological vector spaces with continuous maps.
 - $\mathsf{TVS}_m, \mathsf{TVS}_w \subseteq \mathsf{TVS}$ subcategories of weakly, respective Mackey topologized spaces.
- **chu** := category of triples $(V, W, \langle -, \rangle)$, such that $V \to W^*$ and $W \to V^*$ are injective, and appropriate morphisms.

•

- **chu** is *-autonomous with $(V, W, \langle -, \rangle)^* := (W, V, \langle -, \rangle^{op})$.
- Induces tensor product and duality on TVS_w and TVS_m.

De Morgan's laws

Recall De Morgan's law:

$$P \lor Q \Leftrightarrow \neg((\neg Q) \land (\neg P)).$$

De Morgan's laws

Recall De Morgan's law:

$$P \lor Q \Leftrightarrow \neg((\neg Q) \land (\neg P)).$$

Important difference between being *-autonomous and being rigid:

$$(-)^*: \mathcal{C} \to \mathcal{C}^{\mathsf{opp}(1)}$$

is not necessarily monoidal in the former case. Thus one can define a second tensor product

$$A \otimes_2 B := {}^{\star}(B^{\star} \otimes_1 A^{\star}) \cong ({}^{\star}B \otimes_1 {}^{\star}A)^{\star}.$$

De Morgan's laws

Recall De Morgan's law:

$$P \lor Q \Leftrightarrow \neg((\neg Q) \land (\neg P)).$$

Important difference between being *-autonomous and being rigid:

$$(-)^*: \mathcal{C} \to \mathcal{C}^{\mathsf{opp}(1)}$$

is not necessarily monoidal in the former case. Thus one can define a second tensor product

$$A \otimes_2 B := {}^{\star}(B^{\star} \otimes_1 A^{\star}) \cong ({}^{\star}B \otimes_1 {}^{\star}A)^{\star}.$$

How are the two tensor products related?

Linearly distributive categories

Linearly distributive categories

Linearly distributive categories

Definition (Cockett, Seely 1997)

A linearly distributive category is a category $\mathcal C$ with two monoidal structures $(\otimes_1,\mathbf 1_1,\alpha_1,\lambda_1,\rho_1),\ (\otimes_2,\mathbf 1_2,\alpha_2,\lambda_2,\rho_2),$ and, not necessarily invertible, natural transformations

$$\delta^{L}: A \otimes_{1} (B \otimes_{2} C) \to (A \otimes_{1} B) \otimes_{2} C,$$

$$\delta^{R}: (A \otimes_{2} B) \otimes_{1} C \to A \otimes_{2} (B \otimes_{1} C),$$

called distributors, subject to certain pentagon and triangle constraints.

Linearly distributive categories

Definition (Cockett, Seely 1997)

A linearly distributive category is a category $\mathcal C$ with two monoidal structures $(\otimes_1,\mathbf 1_1,\alpha_1,\lambda_1,\rho_1),\ (\otimes_2,\mathbf 1_2,\alpha_2,\lambda_2,\rho_2),$ and, not necessarily invertible, natural transformations

$$\delta^{L}: A \otimes_{1} (B \otimes_{2} C) \to (A \otimes_{1} B) \otimes_{2} C,$$

$$\delta^{R}: (A \otimes_{2} B) \otimes_{1} C \to A \otimes_{2} (B \otimes_{1} C),$$

called distributors, subject to certain pentagon and triangle constraints.

Example

Every monoidal category is linearly distributive with distributors given by the associator and its inverse.

Duality in linearly distributive categories

Definition

Let C be a linearly distributive category.

• $A \rightarrow B$: \Leftrightarrow there exist $: \mathbf{1}_1 \rightarrow B \otimes_2 A, \qquad A \otimes_1 B \rightarrow \mathbf{1}_2$, s.t.

Duality in linearly distributive categories

Definition

Let C be a linearly distributive category.

• $A \rightarrow B$: \Leftrightarrow there exist $: \mathbf{1}_1 \rightarrow B \otimes_2 A, : A \otimes_1 B \rightarrow \mathbf{1}_2$, s.t.

• Duality on $C :\Leftrightarrow$ for all $A \in C$ there exist ${}^*A, A^* \in C$, s.t. $A \dashv A^*$ and ${}^*A \dashv A$.

Properties of linearly distributive categories

Lemma

Let C be linearly distributive with duality. Then

$$(-)^*: (\mathcal{C}, \otimes_1, \mathbf{1}_1) \to (\mathcal{C}, \otimes_2, \mathbf{1}_2)^{\mathsf{opp}(0,1)}$$

is a monoidal equivalence with quasi-inverse $^*(-)$.

Properties of linearly distributive categories

Lemma

Let C be linearly distributive with duality. Then

$$(-)^*: (\mathcal{C}, \otimes_1, \mathbf{1}_1) \to (\mathcal{C}, \otimes_2, \mathbf{1}_2)^{\mathsf{opp}(0,1)}$$

is a monoidal equivalence with quasi-inverse $^*(-)$.

Lemma

Let $\mathcal C$ be a linearly distributive with duality. Then $(\mathcal C,\otimes_1,\mathbf 1_1)$ is biclosed with

$$\underline{\text{Hom}}(A,B) = B \otimes_2 {}^*A \text{ and } \underline{\widetilde{\text{Hom}}}(A,B) = A^* \otimes_2 B.$$

In particular $\underline{\mathsf{Hom}}(\overline{\mathsf{Hom}}(A,\mathbf{1}_2),\mathbf{1}_2) \cong A \cong \underline{\overline{\mathsf{Hom}}(\mathsf{Hom}}(A,\mathbf{1}_2),\mathbf{1}_2).$

Proposition (Cockett, Seely 1997)

The notion of \star -autonomous category coincides with the notion of a linearly distributive category with duality.

Proposition (Cockett, Seely 1997)

The notion of \star -autonomous category coincides with the notion of a linearly distributive category with duality.

•
$$(-)^{g_0} := \underline{\mathsf{Hom}}(-,\mathbb{C}_{g_0})$$

Proposition (Cockett, Seely 1997)

The notion of \star -autonomous category coincides with the notion of a linearly distributive category with duality.

- $(-)^{g_0} := \underline{\mathsf{Hom}}(-, \mathbb{C}_{g_0})$
- $\bullet \ (V \otimes_{g_0} W)_g \coloneqq (V^{g_0} \otimes W^{g_0})^{g_0} \cong (V \otimes W)_{gg_0}$

Proposition (Cockett, Seely 1997)

The notion of \star -autonomous category coincides with the notion of a linearly distributive category with duality.

- $(-)^{g_0} := \underline{\mathsf{Hom}}(-, \mathbb{C}_{g_0})$
- $\bullet \ (V \otimes_{g_0} W)_g \coloneqq (V^{g_0} \otimes W^{g_0})^{g_0} \cong (V \otimes W)_{gg_0}$
- $\bullet \ \ (\textit{G}\text{-vect}, \otimes_{\textit{g}_0}, \mathbb{C}_{\textit{g}_0}) \stackrel{(-)^{\textit{g}_1}}{\cong} (\textit{G}\text{-vect}, \otimes_{\textit{g}_1\textit{g}_0^{-1}}, \mathbb{C}_{\textit{g}_1\textit{g}_0^{-1}})^{\mathsf{opp}(0,1)}$

Proposition (Cockett, Seely 1997)

The notion of \star -autonomous category coincides with the notion of a linearly distributive category with duality.

- $(-)^{g_0} := \underline{\mathsf{Hom}}(-, \mathbb{C}_{g_0})$
- $\bullet \ (V \otimes_{g_0} W)_g \coloneqq (V^{g_0} \otimes W^{g_0})^{g_0} \cong (V \otimes W)_{gg_0}$
- $\bullet \ (\textit{G}\text{-vect}, \otimes_{\textit{g}_0}, \mathbb{C}_{\textit{g}_0}) \overset{(-)^{\textit{g}_1}}{\cong} (\textit{G}\text{-vect}, \otimes_{\textit{g}_1\textit{g}_0^{-1}}, \mathbb{C}_{\textit{g}_1\textit{g}_0^{-1}})^{\mathsf{opp}(0,1)}$
- QF $(G, \mathbb{C}^{\times}) \stackrel{\mathsf{EM}}{\cong} H^3_{\mathsf{ab}}(G, \mathbb{C}^{\times})$ classify braiding and twisting of G-vect \mathbb{C}

Proposition (Cockett, Seely 1997)

The notion of \star -autonomous category coincides with the notion of a linearly distributive category with duality.

- $(-)^{g_0} := \underline{\mathsf{Hom}}(-, \mathbb{C}_{g_0})$
- $\bullet \ (V \otimes_{g_0} W)_g \coloneqq (V^{g_0} \otimes W^{g_0})^{g_0} \cong (V \otimes W)_{gg_0}$
- $\bullet \ (\textit{G}\text{-vect}, \otimes_{\textit{g}_0}, \mathbb{C}_{\textit{g}_0}) \overset{(-)^{\textit{g}_1}}{\cong} (\textit{G}\text{-vect}, \otimes_{\textit{g}_1\textit{g}_0^{-1}}, \mathbb{C}_{\textit{g}_1\textit{g}_0^{-1}})^{\mathsf{opp}(0,1)}$
- QF $(G, \mathbb{C}^{\times}) \stackrel{\mathsf{EM}}{\cong} H^3_{\mathsf{ab}}(G, \mathbb{C}^{\times})$ classify braiding and twisting of G-vect \mathbb{C}
- $q \in QF(G, \mathbb{C}^{\times})$, s.t. $q(g) = q(g_0g^{-1}) \Rightarrow Duality(-)^{g_0}$ is compatible with braiding and twisting in the ribbon sense.

Frobenius pseudomonoids

Frobenius algebras

Example

R: commutative ring

 Mat_n(R) is an associative R-algebra, i.e. a monoid in the monoidal category of R-modules.

Frobenius algebras

Example

R: commutative ring

- $Mat_n(R)$ is an associative R-algebra, i.e. a monoid in the monoidal category of R-modules.
- Define $\sigma(A, B) := \operatorname{tr}(AB)$ for $A, B \in \operatorname{Mat}_n(R)$, then

$$\sigma(AB,C) = \sigma(A,BC).$$

Frobenius algebras

Example

R: commutative ring

- $Mat_n(R)$ is an associative R-algebra, i.e. a monoid in the monoidal category of R-modules.
- Define $\sigma(A, B) := \operatorname{tr}(AB)$ for $A, B \in \operatorname{Mat}_n(R)$, then

$$\sigma(AB,C) = \sigma(A,BC).$$

This is an example of a Frobenius algebra.

Frobenius algebras can be generalised to Frobenius pseusdomonoids in monoidal bicategories.

Pseudomonoids in bicategories

Definition

 $(\mathcal{C}, \otimes, \mathbf{1})$ monoidal bicategory.

$$(A, \mu, \eta) \coloneqq (A, \mu, \eta, \alpha, \lambda, \varrho)$$
 pseudomonoid : \Leftrightarrow

- 1-morphisms $\mu \equiv$, $\eta \equiv$,
- invertible 2-morphisms

• subject to certain pentagon and triangle constraints.

Duality in bicategories

Definition

 $(\mathcal{C}, \otimes, \mathbf{1})$ monoidal bicategory.

 $A \dashv B : \Leftrightarrow$ there exist 1-morphisms $(A \otimes B \to 1)$ $(A \otimes B \to 1)$ $(A \otimes B \to 1)$ and invertible 2-morphisms $(A \otimes B \to 1)$ $(A \otimes B \to 1)$

Duality in bicategories

Definition

 $(\mathcal{C}, \otimes, \mathbf{1})$ monoidal bicategory.

 $A\dashv B:\Leftrightarrow$ there exist 1-morphisms $(A\otimes B\to 1)$: $(A\otimes B\to 1)$: $(A\otimes B\to 1)$ and invertible 2-morphisms $(A\otimes B\to 1)$ such that

Lemma

 $(A, \land \land, \bullet)$ pseudomonoid in bicategory $(\mathcal{C}, \otimes, \mathbf{1})$. T.f.a.e.:

• There exists ↑, s.t. witnesses A ¬ A

Lemma

 $(A, \land \land, \bullet)$ pseudomonoid in bicategory $(\mathcal{C}, \otimes, \mathbf{1})$. T.f.a.e.:

- There exists † , s.t. witnesses $A \rightarrow A$
- There exists $\ ^{lack}$, witnessing $A\dashv A$, and an invertible 2-morphism

Lemma

 $(A, \land \land, \bullet)$ pseudomonoid in bicategory $(\mathcal{C}, \otimes, \mathbf{1})$. T.f.a.e.:

- There exists † , s.t. $^{\prime}$ witnesses $A \rightarrow A$
- There exists $\ ^{lack}$, witnessing $A \dashv A$, and an invertible 2-morphism

• There exists pseudocomonoid structure (A, , ,) on A and invertible 2-morphisms

Cobordism categories

Definition

A pseudomonoid with one of the previous structures is called Frobenius.

Cobordism categories

Definition

A pseudomonoid with one of the previous structures is called Frobenius.

Definition

The corbordism category Cob(n) has

- objects: closed oriented smooth (n-1)-dim. manifolds
- morphisms $M \to N$: class of oriented n-dim. manifolds B (bordisms) with $\partial B \cong \overline{M} \coprod N$.

Cobordism categories

Definition

A pseudomonoid with one of the previous structures is called Frobenius.

Definition

The corbordism category Cob(n) has

- objects: closed oriented smooth (n-1)-dim. manifolds
- morphisms $M \to N$: class of oriented n-dim. manifolds B (bordisms) with $\partial B \cong \overline{M} \coprod N$.

Example

Imagine Cob(2) partially as

Classification of cobordism categories

Lemma

Cob(2) is the free symmetric monoidal category generated by a commutative Frobenius monoid:

- Object:
- Morphisms:

• Relations:

- ◀ □ ▶ ◀ 🗇 ▶ ◀ 필 Þ - (필 ·) 역 Q @

Topological field theories

Definition (Atiyah, Segal 1988)

Let k be a field. A topological field theory of dimension n is a symmetric monoidal functor

$$Z: (\mathsf{Cob}(n), \coprod, \varnothing) \to (\mathsf{vect}_{\Bbbk}, \otimes, \Bbbk).$$

Topological field theories

Definition (Atiyah, Segal 1988)

Let k be a field. A topological field theory of dimension n is a symmetric monoidal functor

$$Z: (\mathsf{Cob}(n), \coprod, \varnothing) \to (\mathsf{vect}_{\Bbbk}, \otimes, \Bbbk).$$

Proposition (Folklore, Abrams 1996)

The functor $Z \mapsto Z(\bigcirc)$ provides an equivalence between the category of topological field theories in dimension 2 and the category of commutative Frobenius algebras over \Bbbk .

Recall: $(\mathcal{C}, \otimes, \mathbf{1})$ *-autonomous : \Leftrightarrow There exists an equivalence $(-)^*: \mathcal{C} \to \mathcal{C}^{opp(1)}$ and a natural isomorphism

$$\operatorname{\mathsf{Hom}}_{\mathcal{C}}(A\otimes B,C^{\star})\cong \operatorname{\mathsf{Hom}}_{\mathcal{C}}(A,(B\otimes C)^{\star}).$$

Recall: $(\mathcal{C}, \otimes, 1)$ *-autonomous : \Leftrightarrow There exists an equivalence $(-)^*: \mathcal{C} \to \mathcal{C}^{opp(1)}$ and a natural isomorphism

$$\mathsf{Hom}_{\mathcal{C}}(A \otimes B, C^*) \cong \mathsf{Hom}_{\mathcal{C}}(A, (B \otimes C)^*).$$

Defining

$$(A,B) \coloneqq \mathsf{Hom}_{\mathcal{C}}(A,B^*)$$

yields a functor

$$(-,-): \mathcal{C}^{\mathsf{opp}(1)} \times \mathcal{C}^{\mathsf{opp}(1)} \to \mathsf{Set}$$

Recall: $(\mathcal{C}, \otimes, 1)$ *-autonomous : \Leftrightarrow There exists an equivalence $(-)^*: \mathcal{C} \to \mathcal{C}^{opp(1)}$ and a natural isomorphism

$$\mathsf{Hom}_{\mathcal{C}}(A \otimes B, C^{\star}) \cong \mathsf{Hom}_{\mathcal{C}}(A, (B \otimes C)^{\star}).$$

Defining

$$(A,B) \coloneqq \mathsf{Hom}_{\mathcal{C}}(A,B^*)$$

yields a functor

$$(-,-): \mathcal{C}^{\mathsf{opp}(1)} \times \mathcal{C}^{\mathsf{opp}(1)} \to \mathsf{Set}$$

with Frobenius invariance

$$(A \otimes B, C) \cong (A, B \otimes C).$$

Recall: $(\mathcal{C}, \otimes, 1)$ *-autonomous : \Leftrightarrow There exists an equivalence $(-)^*: \mathcal{C} \to \mathcal{C}^{opp(1)}$ and a natural isomorphism

$$\mathsf{Hom}_{\mathcal{C}}(A \otimes B, C^*) \cong \mathsf{Hom}_{\mathcal{C}}(A, (B \otimes C)^*).$$

Defining

$$(A,B) \coloneqq \mathsf{Hom}_{\mathcal{C}}(A,B^*)$$

yields a functor

$$(-,-): \mathcal{C}^{\mathsf{opp}(1)} \times \mathcal{C}^{\mathsf{opp}(1)} \to \mathsf{Set}$$

with Frobenius invariance

$$(A \otimes B, C) \cong (A, B \otimes C).$$

However, $\mathbf{Set} \neq \mathbf{1}_{\mathbf{Cat}}!$ But we can fix this.

Definition

The monoidal bicategory Prof consists of

• objects: small categories,

Definition

The monoidal bicategory **Prof** consists of

- objects: small categories,
- tensor product: cartesian product of small categories,

Definition

The monoidal bicategory **Prof** consists of

- objects: small categories,
- tensor product: cartesian product of small categories,
- 1-morphisms $\mathcal{C} \nrightarrow \mathcal{D}$ (profunctors/modules): functors $\mathcal{D}^{\text{opp}(1)} \times \mathcal{C} \rightarrow \mathbf{Set}$.

Definition

The monoidal bicategory Prof consists of

- objects: small categories,
- tensor product: cartesian product of small categories,
- 1-morphisms $\mathcal{C} \nrightarrow \mathcal{D}$ (profunctors/modules): functors $\mathcal{D}^{\text{opp}(1)} \times \mathcal{C} \rightarrow \mathbf{Set}$.
- composition of $F: \mathcal{A} \nrightarrow \mathcal{B}$ and $G: \mathcal{B} \nrightarrow \mathcal{C}$: the coend

$$(G \circ F)(\overline{c}, a) = \int^{b \in \mathcal{B}} F(\overline{b}, a) \times G(\overline{c}, b), \quad c \in \mathcal{C}, a \in \mathcal{A},$$

Definition

The monoidal bicategory Prof consists of

- objects: small categories,
- tensor product: cartesian product of small categories,
- 1-morphisms $\mathcal{C} \nrightarrow \mathcal{D}$ (profunctors/modules): functors $\mathcal{D}^{\text{opp}(1)} \times \mathcal{C} \rightarrow \mathbf{Set}$.
- composition of $F: \mathcal{A} \nrightarrow \mathcal{B}$ and $G: \mathcal{B} \nrightarrow \mathcal{C}$: the coend

$$(G \circ F)(\overline{c}, a) = \int^{b \in \mathcal{B}} F(\overline{b}, a) \times G(\overline{c}, b), \quad c \in \mathcal{C}, a \in \mathcal{A},$$

• 2-morphisms: natural transformations between functors $\mathcal{D}^{\text{opp}(1)} \times \mathcal{C} \rightarrow \mathbf{Set}$.

Frobenius pseudomonoids in Prof

Cat embedds into Prof in two canonical ways:

- $\mathcal{C} \mapsto \mathcal{C}$
- $(F: \mathcal{C} \to \mathcal{D}) \mapsto (F_{\star}: \mathcal{C} \nrightarrow \mathcal{D}), \quad F_{\star}(\overline{d}, c) \coloneqq \mathsf{Hom}_{\mathcal{D}}(d, F(c))$
- $(F: \mathcal{C} \to \mathcal{D}) \mapsto (F^*: \mathcal{D} \nrightarrow \mathcal{C}), \quad F^*(\overline{c}, d) = \mathsf{Hom}_{\mathcal{D}}(F(c), d)$

Frobenius pseudomonoids in Prof

Cat embedds into Prof in two canonical ways:

- $\mathcal{C} \mapsto \mathcal{C}$
- $(F: \mathcal{C} \to \mathcal{D}) \mapsto (F_{\star}: \mathcal{C} \to \mathcal{D}), \quad F_{\star}(\overline{d}, c) \coloneqq \mathsf{Hom}_{\mathcal{D}}(d, F(c))$
- $(F: \mathcal{C} \to \mathcal{D}) \mapsto (F^*: \mathcal{D} \nrightarrow \mathcal{C}), \quad F^*(\overline{c}, d) = \mathsf{Hom}_{\mathcal{D}}(F(c), d)$

Lemma

- $F_* \dashv F^*$ for all F.
- $(G \dashv H) \Rightarrow G = F_*$ and $H = F^*$ for some F.

Frobenius pseudomonoids in Prof

Cat embedds into Prof in two canonical ways:

- $\mathcal{C} \mapsto \mathcal{C}$
- $(F: \mathcal{C} \to \mathcal{D}) \mapsto (F_{\star}: \mathcal{C} \to \mathcal{D}), \quad F_{\star}(\overline{d}, c) \coloneqq \mathsf{Hom}_{\mathcal{D}}(d, F(c))$
- $(F: \mathcal{C} \to \mathcal{D}) \mapsto (F^*: \mathcal{D} \nrightarrow \mathcal{C}), \quad F^*(\overline{c}, d) = \mathsf{Hom}_{\mathcal{D}}(F(c), d)$

Lemma

- $F_* \dashv F^*$ for all F.
- $(G \dashv H) \Rightarrow G = F_*$ and $H = F^*$ for some F.

Proposition

Frobenius pseudomonoid structures of $(\mathcal{C}^{opp(1)}, (\mu^{opp(1)})_{\star}, (\eta^{opp(1)})_{\star}) \in \mathbf{Prof}$ are in bijection to \star -autonomous structures of $(\mathcal{C}, \mu, \eta) \in \mathbf{Cat}$.

The end

Thank you!