Simplifying diag expressions*

Kevin S. Van Horn Adobe Inc.

March 29, 2019

1 Definition of diag

We use the following definitions:

- \mathbb{R}_0 is the set of scalars (real numbers), \mathbb{R}_1 is the set of vectors over \mathbb{R} , \mathbb{R}_2 is the set of matrices over \mathbb{R} , and \mathbb{R}_3 is the set of three-dimensional arrays over \mathbb{R} .
- $(v \circ w)$ is the vector obtained by appending vectors v and w, and (s:v) is the vector obtained by prepending scalar s to vector v.
- (A B) is the block diagonal matrix whose blocks are matrices A and B.
 Note that is an associative operator whose left and right identity is the 0 × 0 matrix.
- The operation δ converts scalars, vectors, and three-dimensional arrays to matrices: for $s \in \mathbb{R}_0$, $v \in \mathbb{R}_1$, and $\alpha \in \mathbb{R}_3$, we define

 $\delta(s) = \text{the } 1 \times 1 \text{ matrix with single element } s$

 $\delta(v)$ = the diagonal matrix with diagonal v

 $\delta(\alpha) = \alpha_1 \bullet \alpha_2 \bullet \dots \bullet \alpha_n$

where n is the length of α in its first dimension.

We define the function diag as follows:

1. The domain of diag is all *n*-tuples (x_1, \ldots, x_n) , $n \geq 0$, such that each x_i is a member of one of \mathbb{R}_0 , \mathbb{R}_1 , \mathbb{R}_2 , or \mathbb{R}_3 . The range is \mathbb{R}_2 .

^{*©2019,} Adobe Inc. This document is licensed to you under the Apache License, Version 2.0. You may obtain a copy of the license at http://www.apache.org/licenses/LICENSE-2.0.

2. If $n \geq 0$, $s \in \mathbb{R}_0$, $v \in \mathbb{R}_1$, $A \in \mathbb{R}_2$, and $\alpha \in \mathbb{R}_3$, then

$$\operatorname{diag}() = \operatorname{the} 0 \times 0 \operatorname{matrix}$$

$$\operatorname{diag}(s, x_1, \dots, x_n) = \delta(x) \bullet \operatorname{diag}(x_1, \dots, x_n)$$

$$\operatorname{diag}(v, x_1, \dots, x_n) = \delta(v) \bullet \operatorname{diag}(x_1, \dots, x_n)$$

$$\operatorname{diag}(A, x_1, \dots, x_n) = A \bullet \operatorname{diag}(x_1, \dots, x_n)$$

$$\operatorname{diag}(\alpha, x_1, \dots, x_n) = \delta(\alpha) \bullet \operatorname{diag}(x_1, \dots, x_n).$$

2 Normal form

Definition. An expression A is said to be *diagish* if it has the form $A = \text{diag}(e_1, \ldots, e_n)$.

Definition. An expression diag (e_1, \ldots, e_n) is

- nullary if n = 0;
- scalar-normal if n=1 and $e_1 \in \mathbb{R}_0$;
- vector-normal if n = 1, $e_1 \in \mathbb{R}_1$, and if e_1 is veckish it is in normal form and has at least two arguments;
- *sv-normal* if it is scalar-normal or vector-normal;
- array-normal if n = 1 and $e_1 \in \mathbb{R}_3$; and
- unary-normal if it is either scalar-normal, vector-normal, or array-normal.

Definition. An expression $A = \text{diag}(e_1, \dots, e_n)$ is quasi-block-normal if

- all $e_i \in \mathbb{R}_2$,
- any diagish e_i is unary-normal, and
- \bullet no two consecutive e_i are sv-normal diagish expressions.

A is block-normal if it is both quasi-block-normal and n > 1.

Definition. A diagish expression is in *normal form* if it is either nullary, unary-normal, or block-normal.

3 Quasi-normal triples

The simplification algorithm for diagish expressions is based on the idea of a *quasi-normal triple*, which is used to scan through the arguments of a diagish expression to build a new, equivalent expression that is in normal form.

Definition. An expression diag (x_1, \ldots, x_n) is *vector-initial* if $n \ge 1$ and either $x_1 \in \mathbb{R}_0$, $x_1 \in \mathbb{R}_1$, or x_1 is a vector-initial diagish expression.

Definition. An expression diag $(x_1, ..., x_n)$ is vector-final if $n \ge 1$ and either $x_n \in \mathbb{R}_0$, $x_n \in \mathbb{R}_1$, or x_n is a vector-final diagish expression.

Proposition. If n > 0 and $u = \text{diag}(x_1, \dots, x_n)$ is quasi-block-normal then u is vector-final iff x_n is sv-normal.

Definition. A quasi-normal triple is a triple of diagish expressions (A, B, C) such that

- A is quasi-block-normal,
- all arguments of B are scalars or vectors,
- ullet if A is vector-final then B is nullary and C is not vector-initial.

You can think of A as the result arguments we have already produced, B as an (eventually) sv-normal result argument we are in the process of constructing, and C as the arguments we have not yet processed.

Definition. Two quasi-normal triples a = (A, B, C) and b = (A', B', C') are equivalent, written $a \equiv b$, if

$$A \bullet B \bullet C = A' \bullet B' \bullet C'.$$

Similarly, quasi-normal triple (A,B,C) is equivalent to expression e if $e=A \bullet B \bullet C$.

In order to show that our algorithm terminates, we'll need to show that some "size" metric decreases at each iteration.

Definition. The *diag-size* of an expression is defined by

$$\operatorname{dsize}(e) = 1$$
 if e is not diagish $\operatorname{dsize}\left(\operatorname{diag}\left(x_{1},\ldots,x_{n}\right)\right) = 1 + \sum_{i=1}^{n}\operatorname{dsize}\left(x_{1}\right)$

Definition. The *QNT-size* of a quasi-normal triple is defined by

$$\operatorname{qntsize}(A,B,C) = 2 \cdot \operatorname{dsize}(C) + \begin{cases} 0 & \text{if } B \text{ is nullary} \\ 1 & \text{otherwise} \end{cases}$$

Definition. $a \mapsto b$ ("a reduces to b") means that if a is a quasi-normal triple,

- \bullet b is a quasi-normal triple,
- $b \equiv a$, and
- qntsize(b) < qntsize(a).

Our algorithm works by successively reducing a quasi-normal triple until no further reduction is possible. We make use of the algorithm for simplifying veckish expression.

Definition. If e is a veckish expression then simpv(e) is the result of applying to e the algorithm described in "Simplifying vec expressions." (Note that simpv(e) is in veckish normal form if it is veckish.)

Here are the reductions we use.

Proposition 1. The following reduction properties hold:

1. If y' is a scalar or vector expression then

$$(A, \operatorname{diag}(y_1, \dots, y_m), \operatorname{diag}(y', x_1, \dots, x_n)) \rightarrow (A, \operatorname{diag}(y_1, \dots, y_m, y'), \operatorname{diag}(x_1, \dots, x_n)).$$

2.

$$(A, B, \operatorname{diag}(\operatorname{diag}(y_1, \dots, y_k), x_1, \dots, x_n)) \rightarrow (A, B, \operatorname{diag}(y_1, \dots, y_k, x_1, \dots, x_n)).$$

3. If n > 0 and w does not have a scalar, vector, or diagish first argument, then

$$(\operatorname{diag}(y_1,\ldots,y_m),\operatorname{diag}(x_1,\ldots,x_n),C) \rightarrow (A',\operatorname{diag}(),C)$$

where

$$v = \operatorname{simpv} (\operatorname{vec} (x_1, \dots, x_n))$$

$$A' = \begin{cases} \operatorname{diag} (y_1, \dots, y_m) & \text{if } v \text{ is nullary} \\ \operatorname{diag} (y_1, \dots, y_m, \operatorname{diag}(s)) & \text{if } v = \operatorname{vec}(s) \\ \operatorname{diag} (y_1, \dots, y_m, \operatorname{diag}(v)) & \text{otherwise} \end{cases}$$

4. If y is neither scalar nor vector nor diagish, then

$$(\operatorname{diag}(y_1,\ldots,y_m),\operatorname{diag}(),\operatorname{diag}(y,x_1,\ldots,x_n)) \rightarrow (\operatorname{diag}(v_1,\ldots,v_m,y'),\operatorname{diag}(),\operatorname{diag}(x_1,\ldots,x_n))$$

where

$$y' = \begin{cases} y & \text{if } y \in \mathbb{R}_2\\ \operatorname{diag}(y) & \text{if } y \in \mathbb{R}_3 \end{cases}.$$

We'll need to show that, on termination, we have a normal-form expression equivalent to the original. We'll use the following.

Proposition 2. If (A, B, C) is a quasi-normal triple that does not match any of reductions 1–4, then both B and C are nullary, hence $(A, B, C) \equiv A$. Furthermore.

- if A has exactly one argument x, so that A = diag(x), then x is a matrix expression that either is not diagish or is in normal form;
- otherwise A is in normal form.

Proof. As follows:

- C does not have a scalar or vector first argument (no match with reduction 1).
- C does not have a diagish first argument (no match with reduction 2).
- B is nullary (no match with reduction 3, and C has no scalar, vector, or diagish first argument).
- C is nullary (no match with reduction 4, B is nullary, C has no scalar, vector, or diagish first argument).

If A is nullary, then it is by definition in normal form. If A has exactly one argument x, then since A is quasi-block-normal, x is a matrix expression that either is not diagish or is unary-normal; in the latter case x is by definition in normal form. If u has more than one argument then it is block-normal, and hence in normal form.

4 Algorithm for simplifying diagish expressions

Here is the algorithm:

- \bullet Input: a diagish expression e, all of whose arguments are either scalars, vectors, matrices, or 3D arrays.
- Output: an expression e' equivalent to e which, if diagish, is in normal form.
- Pseudocode:

```
A := \operatorname{diag}(); B := \operatorname{diag}(); C := e; while (A, B, C) matches any of reductions 1--4: apply a matching reduction; if A has exactly one argument: return that argument; else: return A;
```

From Proposition 1 we have that $(A,B,C) \equiv e$ is an invariant of the while loop, and qutsize (A,B,C) decreases at each iteration. Since qutsize (A,B,C) is by definition a positive integer, it cannot decrease indefinitely, so the loop terminates. Proposition 2 then tells us that the returned value is equivalent to e and, if diagish, is in normal form.