MRR project

Beijing's PM 2.5 pollution

LIU Hao

18/01/2018

Dataset descrption

Number of instance: 43824

Number of variables: 13

No: row number

Year: year of data in this row

Month: month of data in this row

Day: day of data in this row

Hour: hour of data in this row

DEWP: Dew Point (â,, f)

PM2.5: PM2.5 concentration (ug/m³) ----- (Y)

TEMP: Temperature (\hat{a}, f)

PRES: Pressure (hPa)

cbwd: Combined wind direction

Iws: Cumulated wind speed (m/s)

Is: Cumulated hours of snow

Ir: Cumulated hours of rain

Object and problems

By building a linear regression model, to predict the PM 2.5 value at a given situation in the future.

Problems:

- 1: Certain PM2.5 values (Y) are missing NA
- 2: Quite a lot instances, low performance with a normal computer
- 3: Four variables they are in some way related with each other. (Year, Month, Day, Hour)
- 4: Categorical variable instead of numerical variable (Combined wind direction)

Study of dataset

Correlation matrix:

correlation = cor(dataset)
corrplot(correlation, method="circle")

Dependence of time

Data processing

Change of variables: Month, year, days, hour

```
X_{cos} = \cos(i*2\pi/X)
X_{sin} = \sin(i*2\pi/X)
```

Missing values: dataset = na.omit(dataset)

Dummy Coding : cbwd = dummy(dataset[,'cbwd'])

Time serie: Y = dataset[,'pm2.5']
Y = Y[1:length(Y)-1]
dataset = cbind(dataset,Y)

Result: 19 variables

Data separation

Separation dataset to training and test sets:

```
sample = sample(c(1:nrow(dataset)),n)
subset = dataset[sample,]
training size = 0.8*nrow(subset)
test size = 0.2*nrow(subset)
train Y = Y[1:training size]
train X = X[1:training size,]
test Y = Y[(training size+1):nrow(subset)]
test X = X[(training size+1):nrow(subset),]
```

Normalisation

Idea:

```
(trainData - mean(trainData)) / sd(trainData)
(testData - mean(trainData)) / sd(trainData)
```

Implementation:

```
mean <- colMeans(train_X)
sd <- colSds(as.matrix(train_X))
train X = scale(train X)</pre>
```

First trial

Linear models :

reg =

Im('train Y~.', data = as.data.frame(cbind(train X,train Y)))

Mean square error:

sum((train Y-reg\$fitted.values)^2)/training size

MSE(train) = 547.4764

MSE(test) = 573.7022

Pr(>|t|)## (Intercept) 0.634800

##

Ir

year 0.703091 < 2e-16 *** ## DEWP

TEMP < 2e-16 ***

PRES 3.41e-08 *** ## Iws 0.122921

Is 0.000431 ***

3.88e-16 ***

Y < 2e-16 ***

sin month 0.902409

cos month 0.717136 ## sin day 0.256935

cos day 0.021958 *

sin hour < 2e-16 ***

cos hour 0.850291 ## cv

0.002876 ** ## NE 7.82e-13 ***

NW < 2e-16 ***

SE NA

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model selection

Forward selection:

```
regbackward = step(reg,direction = 'backward');

train_Y ~ Y + NW + cos_month + sin_hour + NE + DEWP + TEMP + Ir + cv + sin_day + PRES

AIC : 12 202769.9 MSE(train) = 547.4968
```

Backward selection:

```
regforward = step(reg,list(upper=reg),direction = 'forward');

train_Y ~ DEWP + TEMP + PRES + Ir + Y + cos_month + sin_day + sin_hour + cv + NE + NW

AIC : 12 202769.9 MSE(train) = 547.4764
```

Residuals plot

L2 regularization

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}}(\|Y - X\beta\|^2 + \lambda \|\beta\|^2)$$

Ridge:

ridge <- lm.ridge('pm2.5~.', data = as.data.frame(subset), lambda = seq(10,15,0.01))

smallest value of GCV at 12.2

GCV.MIN<-ridge\$GCV[which.min(reg_l2\$GCV)]

MSE(train) = 17784.68

MSE(test) = 17949.88

L1 regularization

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} (\|Y - X\beta\|^2 + \lambda \|\beta\|_1)$$

Lasso:

lasso <- lars(as.matrix(train_X),as.matrix(train_Y),type="lasso")

predict.lars(lasso,train_X,type='coefficients',mode='lambda',s=13.0)

4 variables removed : cos_month, sin_day, cos_hour, datasetSE

MSE(train) = 547.8338

MSE(test) = 574.3286

Polynomial regression

Expression:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{33} x_3^2 + \dots + \epsilon$$

Implementation:

```
poly_reg <- Im(train_Y \sim poly(train_X[,1],train_X[,2]train_X[,3],....,degree = 2))
MSE(train) = 516.3504
MSE(test) = 65424.36 \quad (Overfitting)
```

Elastic Net regularization

$$\hat{\beta} = \underset{\beta}{\operatorname{argmin}} (\|Y - X\beta\|^2 + \lambda((1 - \alpha)\|\beta\|^2 + \alpha\|\beta\|_1))$$

MSE(train) = 569.9181

MSE(test) = 592.3498

cvm <dbl></dbl>	lambda.1se <dbl></dbl>	alpha <dbl></dbl>
578.2529	5.541698	0.05
578.3614	5.314240	0.10
575.9144	4.683408	0.15
579.9925	4.643392	0.20
595.8421	5.914875	0.25
576.5218	3.728655	0.30
569.3507	2.653367	0.35
582.3067	4.057230	0.40
589.1240	4.767484	0.45
582.6376	3.909558	0.50
586.2465	4.280979	0.55
576.5973	2.968537	0.60
585.4732	3.975543	0.65
580.5482	3.363626	0.70
585.1212	3.781400	0.75
580.8580	3.230129	0.80
571.7995	1.909285	0.85
584.6648	3.458401	0.90
578.3657	2.720108	0.95