Create a notebook instance ("EmployeeAttrition")

1. Create a s3 bucket("evy1234")

2. Create a notebook

3. Import necessary libraries

```
[84]: # Import Libraries

Import pandas as nd

Import newsy as nd

Import seaborn as ns

Import seaborn as ns

Import newsings  

Import newsings
```

4. Import the train data

5. Check for missing values

6. Describe the data

7. Checking for any repeating column names or same

```
*(50): **Forcolumn in df.columns:

if df(column).dtype sm object:
    print(str(column) + : '+str(df(column].unique()))
    print(df(column).dtype sm object:
        print(str(column) + : '+str(df(column].unique()))
        print(df(column).dtype sm object:
        print(df(column)
```

8. Visualization of the data

9. Label encoding

10. Predict target

11. Features selection

x.head()																	
4	Age	Gender	Years at Company		Monthly Income	Work- Life Balance	Job Satisfaction		Number of Promotions	Overtime	Distance from Home	Education Level	Marital Status		Company Size	Company Tenure	
0	31	1	19	0	2611	0	2	0	2	0	22	0	1	1	1	89	
1	59	0	4	3	2755	3	0	3	3	0	21	3	0	1	1	21	
2	24	0	10	2	5380	2	0	3	0	0	11	1	1	1	1	74	
3	36	0	7	0	1212	2	0	2	1	0	27	2	2	1	2	50	
4	56	1	41	0	2042	1	3	0	0	1	71	2	0	2	1	68	

12. Split the data and save the x_train and x_test

13. Import necessary libraries

```
In [210]: # import libraries
import boto3
import re
```

14. Create files and upload them to s3

```
In [211]: # Create the files to load the data
bucketName = 'evy1234'
TrainFile = r'AttritionData/traindata/x_train.csv'
TestFile = r'AttritionData/testdata/x_test.csv'
valFile = r'AttritionModel/val/val.csv'
model = r'AttritionModel/model'
In [212]: # load the data to s3
s3ModelOutput = r's3://{0}/{1}'.format(bucketName, model)
s3Train = r's3://{0}/{1}'.format(bucketName, TrainFile)
s3Test = r's3://{0}/{1}'.format(bucketName, TestFile)
s3Val = r's3://{0}/{1}'.format(bucketName, valFile)
```

15. Output the path where my model will be stored

```
In [213]: # The path of my s3 bucket
s3ModelOutput

Out[213]: 's3://evy1234/AttritionModel/model'
```

16. Store the files to s3

```
In [214]: with open('x_train.csv','rb') as f:
    boto3.Session().resource('s3').Bucket(bucketName).Object(TrainFile).upload_fileobj(f)

INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole

In [215]: with open('x_test.csv','rb') as f:
    boto3.Session().resource('s3').Bucket(bucketName).Object(TestFile).upload_fileobj(f)

INFO:botocore.credentials:Found credentials from IAM Role: BaseNotebookInstanceEc2InstanceRole
```

17. Train the model

```
In [221]:

LogisticModel=sagemaker.estimator.Estimator(image_uri=ECRdockercontainer, role=role, train_instance_count=1, train_instance_type='ml.mst.xlarge', output_path=sModelOutput, sagemaker_session-sagemakerSess, base_job_name = 'Logistic-Demo-v1' }

MARNING:sagemaker.deprecations:train_instance_count has been renamed in sagemaker>=2.

See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.

MARNING:sagemaker.deprecations:train_instance_type has been renamed in sagemaker>=2.

See: https://sagemaker.readthedocs.io/en/stable/v2.html for details.

In [222]: LogisticModel.set_hyperparameters(predictor_type='binary_classifier', mini_batch_size = 100)

In [223]: LogisticModel.hyperparameters(predictor_type='binary_classifier', mini_batch_size = 100)

In [223]: trainconfig=sagemaker.session.s3_input(s3_data=s3Train,content_type='text/csv')

MARNING:sagemaker.deprecations:The class sagemaker.session.s3_input has been renamed in sagemaker>=2.

See: https://sagemaker.deprecations:The class sagemaker.session.s3_input has been renamed in sagemaker>=2.

In [188]: LogisticModel.fit('train':trainconfig):

In [188]: LogisticModel.fit('train':trainconfig):

In [188]: LogisticModel.fit('train':trainconfig):

2024-08-20 07:18:21 Starting - Starting the training job...
2024-08-20 07:18:21 Starting - Preparing the instances for training...
2024-08-20 07:18:21 Starting - Preparing the instances for training...
2024-08-20 07:18:21 Starting - Preparing the instances for training...
2024-08-20 07:18:21 Starting - Preparing the instances for training...
```

18. Deploy the model