Wenjie Qu

Email: wen_jie_qu@outlook.com Website: https://quwenjie.github.io/

EDUCATION

Huazhong University of Science and Technology, Wuhan, China

2019.9-2023.6(Expected)

B.E. in Automation(ECE), Honor Class

GPA: 3.88/4.0, Rank:1/27, National Scholarship 2020 (Top 0.2% national-wide)

PUBLICATIONS

[1] EncoderMI: Membership Inference against Contrastive Learning Hongbin Liu*, Jinyuan Jia*, Wenjie Qu, Neil Gong ACM Conference on Computer and Communications Security (CCS) 2021

- [2] jTrans: Jump-Aware Transformer for Binary Code Similarity Detection Hao Wang*, Wenjie Qu*, Gilad Katz, Wenyu Zhu, Zeyu Gao, Han Qiu, Jianwei Zhuge, Chao Zhang International Symposium on Software Testing and Analysis (ISSTA) 2022
- [3] MultiGuard: Provably Robust Multi-label Classification against Adversarial Examples Jinyuan Jia*, Wenjie Qu*, Neil Gong Advances in Neural Information Processing Systems (NeurIPS) 2022
- [4] A Certified Radius-Guided Attack Framework to Image Segmentation Models Wenjie Qu*, Youqi Li*, Binghui Wang Submitted to NDSS 2023
- [5] REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder as a Service

Wenjie Qu, Jinyuan Jia, Neil Gong Submitted to NDSS 2023

RESEARCH EXPERIENCE

CoLink: A Programming Framework for Decentralized Data Science

Research Intern at University of California, Berkeley

April 2022-Present

Advisor: Prof. Dawn Song

- One of the top contributors to open source project CoLink, a programming framework that can greatly simplify the deployment of decentralized data science solutions.
- Designed and implemented CoLink SDK python interface, based on gRPC services, basis for most CoLink-based machine learning applications.
- Designed and implemented the CoLink-ML-MPC protocols which enables users to perform general privacy-preserving data collaboration tasks, covering horizontal vertical hybrid machine learning scenarios.
- Our highly flexible json structure for ML-MPC protocols enables users to freely define and specify their task and dataset without writing any code, and performing different tasks on the same data only requires negligible manual modification.

jTrans: Jump-Aware Transformer for Binary Code Similarity Detection [2]

Research Intern at Tsinghua University

July 2021-January 2022

Advisor: Prof. Chao Zhang

- Proposed a novel neural network architecture for binary function similarity detection, encoding control flow information into the transformer.
- Proved through attention weights how our mechanism delivered the jump target information.
- Released the currently largest binary dataset to the community as a benchmark.
- Outperformed state-of-the-art binary similarity detection methods by 30.5%.

REaaS: Enabling Adversarially Robust Downstream Classifiers via Robust Encoder as a Service [5]

Research Intern at Duke University

June 2021-November 2022

Advisor: Prof. Neil Gong

- Proposed a novel method for encoder cloud service which enables a client to build a provably robust downstream classifier and derive certified radius while reducing the number of queries.
- Proposed a novel pre-training method to enhance the robustness of the encoder based on a spectral-norm regularization term.
- Achieved much better certified robustness for the clients' downstream classifiers when the cloud server pre-trains the encoder via our spectral-norm regularized training method.

${\it MultiGuard: Provably Robust Multi-label Classification against Adversarial Examples} \ [3]$

Research Intern at Duke University

Feburary 2021-May 2021

Advisor: **Prof. Neil Gong**

- Proposed the first provable defense algorithm against adversarial examples on the task of multi-label classification.
- Derived a lower bound of intersection size between the set of labels predicted by our MultiGuard and ground truth labels, by a variant of Neyman-Pearson Lemma.
- Outperformed previous work by 7% on top-k precision, 15% on top-k recall.

A Certified Radius-Guided Attack Framework to Image Segmentation Models [4]

Research Intern at Illinois Institute of Technology

August 2020-January 2021

Advisor: Prof. Binghui Wang

- Designed an attack framework for image segmentation models leveraging the properties of certified radius.
- Proposed the first blackbox attack to image segmentation models via gradient estimation based on bandits.
- Outperformed state-of-the-art PGD attack by 13% relatively.

ACADEMIC SERVICE

External Reviewer

• International Conference on Machine Learning (ICML), 2022

HONORS & AWARDS

2022
2022
2021
2020
2020
2020
2018
2017