Introduction to Algorithm design and analysis

Example: sorting problem.

Input: a sequence of n number $\langle a_1, a_2, ..., a_n \rangle$ Output: a permutation (reordering) $\langle a_1', a_2', ..., a_n' \rangle$ such that $a_1' \leq a_2' \leq ... \leq a_n'$.

Different sorting algorithms:

Insertion sort and Mergesort.

Efficiency comparison of two algorithms

• Suppose $n=10^6$ numbers:

- Insertion sort: $c_1 n^2$
- Merge sort: $c_2 n (\lg n)$
- Best programmer (c_1 =2), machine language, one billion/second computer A.
- Bad programmer (c_2 =50), high-language, ten million/second computer B.
- $-2(10^6)^2$ instructions/ 10^9 instructions per second = 2000 seconds.
- 50 (10⁶ lg 10⁶) instructions/10⁷ instructions per second ≈ 100 seconds.
- Thus, merge sort on B is 20 times faster than insertion sort on A!
- If sorting ten million numbers, 2.3 days VS. 20 minutes.

• Conclusions:

- Algorithms for solving the same problem can differ dramatically in their efficiency.
- much more significant than the differences due to hardware and software.

Algorithm Design and Analysis

- Design an algorithm
 - Prove the algorithm is correct.
 - Loop invariant.
 - Recursive function.
 - Formal (mathematical) proof.
- Analyze the algorithm
 - Time
 - Worse case, best case, average case.
 - For some algorithms, worst case occurs often, average case is often roughly as bad as the worst case. So generally, worse case running time.
 - Space
- Sequential and parallel algorithms
 - Random-Access-Model (RAM)
 - Parallel multi-processor access model: PRAM

Insertion Sort Algorithm (cont.)

INSERTION-SORT(A) for j = 2 to length[A] **do** $key \leftarrow A[j]$ 3. //insert A[j] to sorted sequence A[1..j-1] $i \leftarrow j-1$ 4. while i > 0 and A[i] > key5. 6. **do** $A[i+1] \leftarrow A[i]$ //move A[i] one position right $i \leftarrow i-1$ 7. 8. $A[i+1] \leftarrow key$

Correctness of Insertion Sort Algorithm

Loop invariant

 At the start of each iteration of the for loop, the subarray A[1..j-1] contains original A[1..j-1] but in sorted order.

• Proof:

- Initialization : j=2, A[1..j-1]=A[1..1]=A[1], sorted.
- Maintenance: each iteration maintains loop invariant.
- Termination: j=n+1, so A[1..j-1]=A[1..n] in sorted order.

Analysis of Insertion Sort

```
INSERTION-SORT(A)
                                                                       cost times
        for j = 2 to length[A]
                                                                       C_1
                                                                                   n
2.
          do key \leftarrow A[j]
                                                                       c_2 n-1
3.
            //insert A[j] to sorted sequence A[1..j-1]
                                                                        0 \qquad n-1
                                                                        c_4 n-1
             i \leftarrow j-1
                                                                        c_{5} \sum_{j=2}^{n} t_{j}
c_{6} \sum_{j=2}^{n} (t_{j}-1)
c_{7} \sum_{j=2}^{n} (t_{j}-1)
5.
            while i > 0 and A[i] > key
6.
                 do A[i+1] \leftarrow A[i]
7.
                   i \leftarrow i-1
8.
             A[i+1] \leftarrow key
                                                                                   n-1
(t_i) is the number of times the while loop test in line 5 is executed for that value of j)
The total time cost T(n) = \text{sum of } cost \times times \text{ in each line}
                    =c_1n+c_2(n-1)+c_4(n-1)+c_5\sum_{i=2}^n t_i+c_6\sum_{i=2}^n (t_i-1)+c_7\sum_{i=2}^n (t_i-1)+c_8(n-1)
```

Analysis of Insertion Sort (cont.)

- Best case cost: already ordered numbers
 - $-t_i=1$, and line 6 and 7 will be executed 0 times

$$- T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8) = cn + c'$$

- Worst case cost: reverse ordered numbers
 - $-t_j=j,$
 - SO $\sum_{j=2}^{n} t_j = \sum_{j=2}^{n} j = n(n+1)/2-1$, and $\sum_{j=2}^{n} (t_j-1) = \sum_{j=2}^{n} (j-1) = n(n-1)/2$, and
 - $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n(n+1)/2 1) + c_6 (n(n-1)/2 1) + c_7 (n(n-1)/2) + c_8 (n-1) = ((c_5 + c_6 + c_7)/2) n_2 + (c_1 + c_2 + c_4 + c_5/2 c_6/2 c_7/2 + c_8) n (c_2 + c_4 + c_5 + c_8) = an^2 + bn + c$
- Average case cost: random numbers
 - in average, $t_i = j/2$. T(n) will still be in the order of n^2 , same as the worst case.

Merge Sort—divide-and-conquer

- **Divide:** divide the n-element sequence into two subproblems of n/2 elements each.
- Conquer: sort the two subsequences recursively using merge sort. If the length of a sequence is 1, do nothing since it is already in order.
- Combine: merge the two sorted subsequences to produce the sorted answer.

Merge Sort –merge function

- Merge is the key operation in merge sort.
- Suppose the (sub)sequence(s) are stored in the array A. moreover, A[p..q] and A[q+1..r] are two sorted subsequences.
- MERGE(A,p,q,r) will merge the two subsequences into sorted sequence A[p..r]
 - MERGE(A,p,q,r) takes $\Theta(r$ -p+1).

MERGE-SORT(A,p,r)

- 1. if p < r
- 2. then $q \leftarrow \lfloor (p+r)/2 \rfloor$
- 3. MERGE-SORT(A,p,q)
- 4. MERGE-SORT(A,q+1,r)
- 5. MERGE(A,p,q,r)

Call to MERGE-SORT(A,1,n) (suppose n=length(A))

Analysis of Divide-and-Conquer

- Described by recursive equation
- Suppose T(n) is the running time on a problem of size n.

•
$$T(n) = \begin{cases} \Theta(1) & \text{if } n \le n_c \\ aT(n/b) + D(n) + C(n) & \text{if } n > n_c \end{cases}$$

Where *a*: number of subproblems

n/b: size of each subproblem

D(n): cost of divide operation

C(n): cost of combination operation

Analysis of MERGE-SORT

- **Divide**: $D(n) = \Theta(1)$
- Conquer: a=2,b=2, so 2T(n/2)
- Combine: $C(n) = \Theta(n)$
- $T(n) = \Theta(1)$ if n=1 $2T(n/2) + \Theta(n)$ if n>1
- $T(n) = \begin{cases} c & \text{if } n=1 \\ 2T(n/2) + cn & \text{if } n>1 \end{cases}$

Compute T(n) by Recursive Tree

- The recursive equation can be solved by recursive tree.
- T(n) = 2T(n/2) + cn, (See its Recursive Tree).
- $\lg n+1$ levels, cn at each level, thus
- Total cost for merge sort is
 - $-T(n) = cn \lg n + cn = \Theta(n \lg n).$
 - Question: best, worst, average?
- In contrast, insertion sort is
 - $T(n) = \Theta(n^2).$

Recursion tree of T(n)=2T(n/2)+cn

Figure 2.5 The construction of a recursion tree for the recurrence T(n) = 2T(n/2) + cn. Part (a) shows T(n), which is progressively expanded in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) has $\lg n + 1$ levels (i.e., it has height $\lg n$, as indicated), and each level contributes a total cost of cn. The total cost, therefore, is $cn \lg n + cn$, which is $\Theta(n \lg n)$.

Order of growth

- Lower order item(s) are ignored, just keep the highest order item.
- The constant coefficient(s) are ignored.
- The rate of growth, or the order of growth, possesses the highest significance.
- Use $\Theta(n^2)$ to represent the worst case running time for insertion sort.
- Typical order of growth: $\Theta(1)$, $\Theta(\lg n)$, $\Theta(\sqrt{n})$, $\Theta(n)$, $\Theta(n\lg n)$, $\Theta(n^2)$, $\Theta(n^3)$, $\Theta(2^n)$, $\Theta(n!)$
- Asymptotic notations: Θ , O, Ω , o, ω .

There exist positive constants c_1 and c_2 such that there is a positive constant n_0

There exist positive constants c such that there is a positive constant n_0

$$f(n) = O(g(n))$$

n

 $f(n) = \Theta(g(n))$

There exist positive constants c such that there is a positive constant n_0 such that ... f(n) n_0

$$f(n) = \Omega(g(n))$$

16

Prove
$$f(n)=an^2+bn+c=\Theta(n^2)$$

- a, b, c are constants and a>0.
- Find c_1 , and c_2 (and n_0) such that
 - $-c_1 n^2 \le f(n) \le c_2 n^2$ for all $n \ge n_0$.
- It turns out: $c_1 = a/4$, $c_2 = 7a/4$ and
 - $-n_0 = 2 \cdot \max(|\mathbf{b}|/\mathbf{a}, \operatorname{sqrt}(|\mathbf{c}|/\mathbf{a}))$
- Here we also can see that lower terms and constant coefficient can be ignored.
- How about $f(n)=an^3+bn^2+cn+d$?

o-notation

- For a given function g(n),
 - o(g(n))={f(n): for any positive constant c, there exists a positive n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$ }
 - Write $f(n) \in o(g(n))$, or simply f(n) = o(g(n)).

Notes on o-notation

- *O*-notation may or may not be asymptotically tight for upper bound.
 - $-2n^2 = O(n^2)$ is tight, but $2n = O(n^2)$ is not tight.
- o-notition is used to denote an upper bound that is not tight.
 - $-2n = o(n^2)$, but $2n^2 \neq o(n^2)$.
- Difference: for some positive constant *c* in *O*-notation, but all positive constants *c* in *o*-notation.
- In o-notation, f(n) becomes insignificant relative to g(n) as n approaches infinitely: i.e.,

$$-\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

ω-notation

- For a given function g(n),
 - $ω(g(n))={f(n): for any positive constant c, there exists a positive <math>n_0$ such that 0 ≤ cg(n) ≤ f(n) for all $n ≥ n_0$ }
 - Write $f(n) \in \omega(g(n))$, or simply $f(n) = \omega(g(n))$.
- ω-notation, similar to *o*-notation, denotes lower bound that is not asymptotically tight.
 - $n^2/2 = \omega(n)$, but $n^2/2 \neq \omega(n^2)$
- $f(n) = \omega(g(n))$ if and only if g(n) = o(f(n)).
- $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$

Techniques for Algorithm Design and Analysis

- Data structure: the way to store and organize data.
 - Disjoint sets
 - Balanced search trees (red-black tree, AVL tree, 2-3 tree).
- Design techniques:
 - divide-and-conquer, dynamic programming, prune-and-search,
 laze evaluation, linear programming, ...
- Analysis techniques:
 - Analysis: recurrence, decision tree, adversary argument, amortized analysis,...

NP-complete problem

• Hard problem:

- Most problems discussed are efficient (poly time)
- An interesting set of hard problems: NP-complete.

• Why interesting:

- Not known whether efficient algorithms exist for them.
- If exist for one, then exist for all.
- A small change may cause big change.

• Why important:

- Arise surprisingly often in real world.
- Not waste time on trying to find an efficient algorithm to get best solution, instead find approximate or near-optimal solution.
- Example: traveling-salesman problem.