2024-25

Devoir maison 1

Exercice 1 (Algèbre):

Notations:

Soit $n \in \mathbb{N}^*$

On note
$$\mathbb{D}^n = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ . \\ . \\ x_n \end{pmatrix} \in \mathbb{R}^n, x_1 \ge x_2 \ge .. \ge x_n \right\}$$

Si $x \in \mathbb{R}^n$, on note x^* le vecteur des coordonnées de x triées dans l'ordre décroissant

On définit la relation \leq : soient $x, y \in \mathbb{R}^n, y \leq x$ si $\sum_{i=1}^n y_i^* = \sum_{i=1}^n x_i^*$ et pour tout $k \in [|1, n-1|], \sum_{i=1}^k y_i^* \leq \sum_{i=1}^k x_i^*$ (par exemple,

si
$$x = \begin{pmatrix} 3 \\ -8 \\ 1 \\ 1 \end{pmatrix}$$
, $y = \begin{pmatrix} 2 \\ -2 \\ -5 \\ 2 \end{pmatrix}$ alors $x^* = \begin{pmatrix} 3 \\ 1 \\ 1 \\ -8 \end{pmatrix}$, $y^* = \begin{pmatrix} 2 \\ 2 \\ -2 \\ -5 \\ 2 \end{pmatrix}$ et $y \le x$)

Soit $M \in \mathcal{M}_n(\mathbb{R})$, M est doublement stochastique si tous ses coefficients sont positifs et pour tout $i \in [|1, n|]$, $\sum_{k=1}^n M_{i,k} = \sum_{k=1}^n M_{k,i} = 1$

Une relation R sur un ensemble E est d'ordre si elle est réflexive ($\forall x \in E, xRx$), antisymétrique ($\forall x, y \in E, xRy$ et $yRX \Rightarrow x = y$) et transitive ($\forall x, y, z \in E, xRy$ et $yRz \Rightarrow xRz$)

On note \mathcal{S}_n l'ensemble des bijections de [|1,n|] dans [|1,n|]. A tout $\sigma \in \mathcal{S}_n$, on associe la matrice de permutation $P_{\sigma} = (p_{i,j}) \in \mathcal{M}_n(\mathbb{R})$ telle que $p_{i,j} = \begin{cases} 1 & \text{si } i = \sigma(j) \\ 0 & \text{sinon.} \end{cases}$

- 1. (a) Vérifier que \leq n'est pas une relation d'ordre sur \mathbb{R}^n mais en est une sur \mathbb{D}^n .
 - (b) Soient $x, y \in \mathbb{R}^n$, montrer que $y \leq x$ si et seulement si

$$\sum_{i=0}^{n-1} y_{n-i}^* = \sum_{i=0}^{n-1} x_{n-i}^* \text{ et pour tout } k \in [|0, n-2|], \sum_{i=0}^k y_{n-i}^* \ge \sum_{i=0}^k x_{n-i}^*.$$

- (c) On note $e = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$. Montrer que si $x \in \mathbb{R}^n$ et $\sum_{i=1}^n x_i = n$ alors $e \leq x$.
- 2. (a) Soit $P \in \mathcal{M}_n(\mathbb{R})$. Démontrer que P est doublement stochastique si et seulement si tous ses coefficients sont positifs, Pe = e et $e^T P = e^T$.
 - (b) Soient P_1 et P_2 deux matrices doublement stochastiques, montrer que P_1P_2 est aussi doublement stochastique.
 - (c) Soit $P \in \mathcal{M}_n(\mathbb{R})$, montrer que si $xP \leq x$ pour tout $x \in \mathbb{R}^n$ alors P est doublement stochastique (on pourra étudier pour $x = e_i$ et x = e avec $(e_1, ..., e_n)$ les vecteurs de la base canonique de \mathbb{R}^n et utiliser la question 1).
- 3. (a) Montrer que $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$ est une matrice de permutation et exprimer la bijection associée.
 - (b) Démontrer que toute matrice de permutation est doublement stochastique.
 - (c) Soit $x \in \mathbb{R}^n$, démontrer qu'il existe $\sigma \in \mathcal{S}_n$ telle que $x^* = P_{\sigma}x$.
 - (d) Démontre que pour tout $\sigma \in \mathcal{S}_n, P_{\sigma}^{-1} = P_{\sigma^{-1}}$.
 - (e) Soient P une matrice doublement stochastique et $x, y \in \mathbb{R}^n$ tels que y = Px. Démontrer qu'il existe Q une matrice doublement stochastique telle que $y^* = Qx^*$ et que $y \leq x$.

Exercice 2 (Analyse) : On définit $f: x \mapsto \frac{1}{x^{2(x-E(x))}}$ avec E la fonction partie entière. 1. Soit $k \in \mathbb{N}^*$, démontrer que $\int_k^{k+1} f(x) dx \ge \ln(1 + \frac{1}{2k})$.

- 2. En déduire la nature de $I = \int_1^{+\infty} f(x)dx$