- 1. Given a complex vector $\bar{\mathbf{x}} = [x_1 \quad x_2 \quad \dots \quad x_n]^T$. Then, $\bar{\mathbf{x}}^H = [x_1^* \quad x_2^* \quad \dots \quad x_n^*]$ Ans d
- 2. Give a Gaussian random variable **X** with mean μ and variance σ^2 . The random variable $\frac{X-\mu}{\sigma}$ is termed a Standard Normal random variable
- 3. Given the vectors $\overline{\mathbf{w}}_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ and $\overline{\mathbf{w}}_2 = \begin{bmatrix} -2 & -2 \end{bmatrix}^T$. These are Linearly dependent since $2\overline{\mathbf{w}}_1 + \overline{\mathbf{w}}_2 = 0$
- 4. It can be seen that $\overline{\mathbf{w}}_1 = [1 \ 1 \ 1]^T$ and $\overline{\mathbf{w}}_2 = [-1 \ 2 \ -1]^T$ satisfy $\overline{\mathbf{w}}_2^T \overline{\mathbf{w}}_1 = 0$. Hence they are orthogonal. This also implies that they are linearly independent Ans d
- 5. a_{ij} denotes the element in the *i*th row and *j*th column Ans b
- 6. Given the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. One of its eigenvalues is $\sqrt{2}$ Ans a
- 7. Given a Hermitian symmetric matrix \mathbf{A} , i.e., $\mathbf{A} = \mathbf{A}^H$. Hence, all of its eigenvalues are real Ans b
- 8. Given the vector $\bar{\mathbf{x}} = \begin{bmatrix} 1 & 1 & \dots & 1 \end{bmatrix}^T$ of size $n \times 1$. The quantity $\|\bar{\mathbf{x}}\|_2$ equals $\sqrt{1+1+\dots+1} = \sqrt{n}$

Ans c

- 9. It is always true that $rank(\mathbf{A}) \leq min\{m, n\}$ Ans a
- 10. Given the vector $\overline{\mathbf{x}} = \begin{bmatrix} 1 & 2 & \dots & n \end{bmatrix}^T$. The quantity $\|\mathbf{x}\|_2$ equals $\sqrt{1 + 4 + \dots + n^2} = \sqrt{\frac{n(n+1)(2n+1)}{6}}$

Ans c