1 Cela števila 1

1 Cela števila

- 1. Osnovni izrek o deljenju celih števil
 - Načelo dobre urejenosti v N.
 - Načeli dobre urejenosti v $\mathbb{Z}.$
 - Izrek. Osnovni izrek o deljenju celih števil. Ostanek.
- 2. Največji skupni delitelj
 - **Definicija.** Kadar pravimo, da celo število $k \neq 0$ deli celo število m? Zapis.
 - **Definicija.** Delitelj. Število m deljivo s številom k.
 - Definicija. Skupni delitelj. Največji skupni delitelj.
 - Izrek. Obstoj največjega skupnega delitelja. Kako lahko ga zapišemo?
 - Definicija. Tuji števili.
 - Posledica. Kadar sta števili m in n tuji?
- 3. Osnovni izrek aritmetike
 - Definicija. Praštevila.
 - Lema. Evklidova lema.
 - Izrek. Osnovni izrek aritmetike.
 - Izrek. Ali je praštevil neskončno?

2 Uvod v teorijo grup

- 1. Osnovni pojmi teoriji grup
 - **Definicija.** Binarna operacija na množice S. Kadar pravimo, da je operacija asociativna. Kadar pravimo, da je operacija komutativna?
 - Definicija. Polgrupa.
 - Definicija. Nevtralni element.
 - Trditev. Ali če v množici S obstaja enota za operacijo *, potem je ena sama?
 - Definicija. Monoid.
 - Definicija. Levi inverz. Desni inverz. Inverz.
 - **Definicija.** Obrnljiv element.
 - Trditev. Kaj če v monoidu ima element x levi in desni inverz?
 - Posledica. Koliko inverzov lahko ima obrnljiv element v monoidu?
 - Posledica. Kaj če je x obrnljiv element monoida in xy = 1?
 - Trditev. Obrnljivost produkta obrnljivih elementov.
 - Definicija. Grupa. Abelova grupa.
 - Definicija. Multiplikativni in aditivni zapis operacije. Kdaj jih uporabljamo?
 - Trditev. Računanje z potenci v grupi. Pravilo krajšanja v grupi.
 - **Zgled.** Primeri številskih grup. Simetrična grupa množice X. Grupa permutacij.
 - **Zgled.** Grupa simetrij kvadrata. Diedrska grupa D_{2n} moči 2n.
 - **Zgled.** Kako iz monoida dobimo grupo? Splošna linearna grupa $GL_n(\mathbb{F})$.
 - **Zgled.** Direktni produkt grup.
- 2. Grupa permutacij S_n
 - Izrek. Kako lahko zapišemo vsako permutacijo?
 - Definicija. Transpozicija.
 - Trditev. Kako lahko zapišemo vsako permutacijo z pomočjo transpozicij? Koliko je transpozicij v tem zapisu?
 - Definicija. Soda permutacija. Liha permutacija. Znak permutacije.
 - Trditev. Znak produkta permutacij.
- 3. Podgrupe
 - Definicija. Podgrupa.
 - Opomba. Kaj sta vedno podgrupi grupe G? Ali je enota vedno vsebovana v podgrupi? Ali se enota deduje pri monoidih?
 - Trditev. Dve karakterizaciji podgrupe.
 - Posledica. Karakterizacija podgrupe končne grupe G.
 - Zgled.
 - Kakšne so oblike vse prave podgrupe grupe \mathbb{Z} ?
 - Specialna linearna grupa $\mathrm{SL}_n(\mathbb{F})$. Grupa ortogonalnih matrik $\mathrm{O}_n(\mathbb{F})$. Specialna grupa ortogonalnih matrik $\mathrm{SO}_n(\mathbb{F})$.
 - Trditev. Ali je presek podgrup grupe G podgrupa grupe G?
 - Definicija. Produkt podgrup.
 - **Zgled.** Ali je produkt podgrup vedno podgrupa?
 - Trditev. Zadosten pogoj, da je produkt podgrup podgrupa.
 - **Zgled.** Konjugiranje podgrupe $H \leq G$ z elementov $a \in G$. Ali je konjugiranje podgrupa?

- **Zgled.** Center Z(G) grupe G. Centralizator $C_a(G)$ elementa $a \in G$. Ali sta podgrupi?
- **Zgled.** Krožna grupa \mathbb{T} . *n*-ti koreni enote \mathbf{U}_n . Ali sta podgrupi \mathbb{C}^* ?
- **Zgled.** Alternirajoča grupa A_n .
- 4. Odseki podgrup in Lagrangeev izrek

Naj bo G grupa in $H \leq G$.

- Relacija \sim na G. ki porodi leve odseke.
- Trditev. Ali je relacija ~ ekvivalenčna?
- **Definicija.** Ekvivalenčni razred elementa $a \in G$.
- **Definicija.** Ekvivalenčne razredi po relaciji \sim . Levi odseki G po podgrupe H.
- Opomba. Z kakšno ekvivalenčno relacijo dobimo desne odseke?
- **Definicija.** Kvocientna množica glede na relacijo \sim .
- Opomba. Kaj tvorijo ekvivalenčni razredi glede na množico G?
- Opomba. Ali je G/H vedno grupa? Kadar sta dva odseka enaka? Ali je G/H končna, če je G končna?
- **Definicija.** Indeks podgrupe H.
- Izrek. Lagrangeev izrek.
- Posledica. Ključni pomen izreka.
- Opomba. Kako lahko definiramo operacijo na G/H, če je G Abelova?
- Trditev. Ali je s prej definirano operacijo G/H Abelova grupa?
- **Zgled.** Grupa ostankov po modulu *n*. Ali za vsako naravno število *n* obstaja grupa moči *n*?
- 5. Generatorji grup. Ciklične grupe

Naj bo G grupa ter $X \subseteq G$.

- **Definicija.** Podgrupa, generirana z množico X.
- Opomba. Ali je $\langle X \rangle$ vedno obstaja?
- **Definicija.** Grupa, generirana z množico X. Generatorji grupe. Končno generirana grupa. Ciklična grupa.
- **Trditev.** Kako zgledajo elementi $\langle X \rangle$?
- **Posledica.** Kako zgledajo elementi $\langle x \rangle$?
- **Zgled.** Generatorji grup \mathbb{Z} in \mathbb{Z}_n .
- **Zgled.** S čim sta generirani grupi D_{2n} in S_n ? Ali je A_n generirana z 3-cikli?
- **Zgled.** Ali je grupa U_n ciklična? Kaj pa D_4 ?
- **Zgled.** Ali je Q* končno generirana?
- Definicija. Red elementa.
- **Zgled.** Kateri elementi v grupi imajo red 1? Kakšen red imajo transpozicije v grupi S_n ?
- Trditev. Karakterizacija reda elementa.
- Posledica. Kdaj je končna grupa G ciklična?
- Posledica. Kaj lahko povemo o redu elementa a v končni grupi? Kaj če je |G| praštevilo?

Rezultati vaj

- 1. Monoidi
 - (naloga 2.21) Ali je v končnem monoidu levi inverz avtomatično tudi desni inverz? Kakšno obliko ima?
 - (naloga 2.22) Ali je element monoida obrnljiv, če obrnljiva neka njegova potenca?
- 2. Grupe
 - (naloga 3.10) Ali je polgrupa z deljenjem grupa?
 - (naloga 3.9) Zadostni pogoj, da je grupa Abelova.
- 3. Grupa permutacij
 - Kako zapišemo permutacijo kot produkt transpozicij?
 - (naloga 3.13) Kako dobimo inverz k-cikla?
 - (naloga 3.19) Konjugiranje cikla.
 - (naloga 3.20) Kadar pravimo, da permutaciji $\pi, \pi' \in S_n$ imata enako zgradbo disjunktnih ciklov?
 - (naloga 3.21) Kako sta povezana komutativnost in konjugiranje?
 - (naloga 3.103) S čim je generirana grupa S_n ?
- 4. Diedrska grupa
 - (naloga 3.22) Grupa D_{∞} .
- 5. Podgrupe
 - (naloga 3.31) Diagonalna podgrupa.
 - (naloga 3.60) Naj bosta $H, G \leq G, H, G$ končni. Čemu je enaka |HK|?
- 6. Ciklične grupe
 - (naloga 3.71) Kadar je \mathbb{Z}_n vsebuje podgrupo reda k? Alo je ta podgrupa enolična?
 - (naloga 3.72) Kaj lahko povemo o vsake podgrupe cilkične grupe?
 - (naloga 3.81) Naj bo $k \in \mathbb{Z}_n$. Čemu je enak red(k)? Kadar je $\langle k \rangle = \mathbb{Z}_n$?
 - (naloga 3.85) Ali je konjugiranje ohranja red elementa?

3 Uvod v teorijo kolobarjev

- 1. Uvod v teorijo kolobarjev
 - Definicija. Kolobar. Enica kolobarja. Komutativen kolobar.
 - **Zgled.** Številski kolobarji. Kolobar matrik. Kolobar \mathbb{R}^X , kjer $X \subseteq \mathbb{R}$.
 - Definicija. Levi/desni delitelj niča. Delitelj niča. Idempotent. Nilpotent.
 - Opomba. Kako so idempotenti in nilpotenti povezani z delitelji niča?
 - Opomba. Ali v kolobarjih brez delitelja niča velja pravilo krajšanja?
 - **Zgled.** Delitelji niča v $\mathbb{R}^{2\times 2}$. Idempotenti v poljubnem kolobarju. Nilpotenti v $\mathbb{R}^{n\times n}$.
 - Definicija. Cel kolobar.
 - **Zgled.** Ali je $(\mathbb{Z}, +, \cdot)$ cel kolobar?
 - Definicija. Obseg. Polje.
 - **Zgled.** Številski polja.
 - Trditev. Ali lahko obrnljiv element kolobarja delitelj niča?
 - **Definicija.** Algebra nad poljem F.
- 2. Primeri kolobarjev in algeber
 - Kolobar (algebra) kvadratnih matrik. Algebra endomorfizmov.
 - Algebra realnih funkcij.
 - Polinomi:
 - **Definicija.** Polinom s koeficienti iz kolobarja K.
 - Seštevanje in množenje v K[X].
 - Polinomi več spremenljivk. Kolobar formalnih potenčnih vrst.
 - **Trditev.** Ali je K[X] komutativen, če je K komutativen? Ali je isto velja, če je K brez deliteljev niča ali K cel?
 - Polje ulomkov celega kolobarja K:
 - Ekvivalenčna relacija na $P = K \times (K \setminus \{0\})$.
 - Množenje in seštevanje na $P/_{\sim}$.
 - **Trditev.** Ali je $(P/_{\sim}, +, \cdot)$ polje?
 - **Zgled.** Polje ulomkov kolobarja \mathbb{Z} .
 - Kako lahko K vložimo v $P/_{\sim}$?
 - Trditev. Potreben pogoj, da je algebra nad R obseg.
 - Algebra kvaternionov:
 - Baza prostora kvaternionov.
 - Definicija množenja v $\mathbb{H}.$
 - **Definicija.** Kvaternioni. Konjugiran kvaternion.
 - Trditev. Ali je ℍ obseg? Ali je algebra?
 - **Definicija.** Kvaternionska algebra \mathbb{H} . Kvaternionska grupa Q.
 - **Zgled.** Ali je direktni produkt polj lahko polje?
- 3. Podkolobarji, podalgebre, podpolja
 - Definicija. Podkolobar. Podalgebra. Podpolje.
 - Zgled. Zakaj moramo zahtevati, da podkolobar vsebuje enico?
 - Definicija. Razšeritev polja.
 - Trditev. Karakterizacija podkolobarja.
 - Trditev. Karakterizacija podalgebre.
 - Trditev. Karakterizacija podpolja.
 - Zgled. Številski primeri podkolobarjev. Odnos med celi kolobarji in njihovim

- poljem ulomkov.
- **Zgled.** Podkolbar Gaussovih celih števil $\mathbb{Z}[i]$.
- **Zgled.** Podalgebra zgornje trikotnih matrik v $\mathbb{R}^{n \times n}$. Podalgebra zveznih funkcij v \mathbb{R}^X , kjer $X \subseteq \mathbb{R}$.
- Zgled. Center kolobarja.
- Zgled. Podalgebra konvergentnih zaporedij.
- 4. Kolobar ostankov in karakteristika kolobarja
 - Definicija množenja v \mathbb{Z}_n . Ali je dobra?
 - **Trditev.** Ali je $(\mathbb{Z}_n, +, \cdot)$ komutativen kolobar?
 - Definicija. Karakteristika kolobarja.
 - **Zgled.** Določi char \mathbb{Z} ter char \mathbb{Z}_n .
 - Trditev. Naj bo K kolobar s karakteristiko n > 0.
 - Čemu je enako $n \cdot x$ za vsak $x \in K$?
 - Kdaj je $m \cdot 1 = 0$?
 - Kaj če je K neničeln kolobar in nima deliteljev niča?
 - Lema. Ali je končen cel kolobar vedno polje?
 - Opomba. Ali lema še vedno drži brez predpostavki o komutativnosti? Ali so vsi končni obsegi komutativni?
 - Trditev. Kdaj je \mathbb{Z}_n polje?
 - **Zgled.** Karakteristika kolobarja matrik $M_k(\mathbb{Z}_n)$, kolobarja polinomov $\mathbb{Z}_n[X]$, polja racionalnih funkcij $\mathbb{Z}_p(X)$.
 - Izrek. Mali Fermatov izrek. TODO: *
- 5. Generatorji kolobarjev, algeber, polj
 - **Definicija.** Podkolobar (podalgebra, podpolje) generiran z množico X.
 - Trditev. Kako zgledajo elementi v podkolobarju (podalgebre, podpolju), ki je generiran z množico X?
 - Zgled.
 - Kaj je podkolobar kolobarja ℂ, generiran z 1?
 - Kaj je podpolje kolobarja ℂ, generirano z 1?
 - Kaj je podkolobar kolobarja \mathbb{C} , generiran z i?
 - Kaj je podpolje kolobarja \mathbb{C} , generirano z i?
 - Kaj je podkolobar kolobarja $\mathbb{R}[X]$, generiran z X?
 - S čim je generirana realna algebra $\mathbb{R}[X]$?
 - S čim je generirana algebra $M_2(\mathbb{R})$? Čemu je enaka dim $M_2(\mathbb{R})$.
 - Kaj je podkolobar kolobarja $M_2(\mathbb{R})$, generiran z E_{12} in E_{21} ?

Rezultati z vaj

- 1. Kolobarji, obsegi, polja
 - (naloga 4.3) Kako iz kolobarja brez enote lahko naredimo kolobar z enoto?
 - (nalogi 4.10-4.11) Boolov kolobar. Primer Boolova kolobarja.
- 2. Algebre
 - (naloga 4.27) Ali je \mathbb{Z} lahko algebra nad kakim poljem?
 - (naloga 4.30) Naj bo A končnorazsežna algebra.
 - Kaj velja za vsak $a \in A \setminus \{0\}$?
 - Kaj če ima $a \in A$ levi ali desni inverz?
 - Recimo, da je A tudi obseg. Kaj lahko povemo o vsaki podalgebri?
 - Algebra kvaternionov.
 - (naloga 4.52) Čemu je enak $Z(\mathbb{H})$? Čemu je enak Z(Q)?
 - (naloga 4.56) Kaj lahko povemo o enačbi $h^2 + \alpha h + \beta = 0$ za vsak $h \in \mathbb{H}$?
 - Kolobar \mathbb{Z}_n .
 - Kadar je $k \in \mathbb{Z}_n$ obrn
ljiv?
 - Koliko je obrnljivih elementov v \mathbb{Z} ? Koliko v \mathbb{Z}_n ? Kaj če je n praštevilo?

4 Homomorfizmi 8

Homomorfizmi 4

1. Homomorfizmi

- **Definicija.** Homomorfizem grup.
- **Definicija.** Homomorfizem kolobarjev (polj).
- Opomba. Zakaj pri homomorfizmu kolobarjev zahtevamo, da je f(1) = 1? Zakaj to ni potrebno pri grupih?
- Trditev. Kam homomorfizem slika obrnljive elemente?
- **Definicija.** Homomorfizem algeber.
- Definicija. Endomorfizem, monomorfizem (vložitev), epimorfizem, izomorfizem, avtomorfizem.
- **Definicija.** Izomorfni strukturi.
- Trditev. Ali je f^{-1} izomorfizem, če je f izomorfizem?
- Trditev. Ali je kompozitum homomorfizmov homomorfizem?
- Definicija. Slika homomorfizma. Jedro homomorfizma.
- Trditev. Ali sta jedro in slika podgrupi (podkolobarji, podalgebre)?
- Trditev. Karakterizacija injektivnosti homomorfizma.
- **Zgled.** Potenciranje $a \mapsto a^m$, $m \in \mathbb{Z}$ kot endomorfizem grupe G.
 - Kaj če je m = -1?
 - Kaj če je $a \mapsto a^{-1}$ avtomorfizem grupe G?
- **Zgled.** Izomorfizem grup \mathbb{Z} in $n\mathbb{Z}$
- **Zgled.** Homomorfizem grup \mathbb{Z} in \mathbb{Z}_n . Kaj je im f ter ker f? Ali obstajajo netrivialni homomorfizmi iz \mathbb{Z}_n v \mathbb{Z} ?
- Zgled. Ali je f: GL_n(F) → F*, f(A) = det A epimorfizem grup? Kaj je ker f?
 Zgled. Ali je f: S_n → -1, 1, f(π) = sgn π epimorfizem grup? Kaj je ker f?
- **Zgled.** Naj bo G grupa ter $a \in G$. Konjugiranje. Ali je avtomorfizem? Notranji avtomorfizem grupe G.
- **Zgled.** Grupa notranjih avtomorfizmov Inn G kot podgrupa v grupi Aut G avtomorfizmov grupe G.
- **Zgled.** Naj bo K komutativen kolobar. Evalvacija polinoma v točki x. Ali je homomorfizem?
- **Zgled.** Brucove sanje. TODO: *
- **Zgled.** Čemu so izomorfni naslednji podkolobarji kolobarja $M_2(F)$:

$$-K_{1} = \left\{ \begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} \mid x \in \mathbb{R} \right\}.$$

$$-K_{2} = \left\{ \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix} \mid x, y \in \mathbb{R} \right\}.$$

$$-K_{3} = \left\{ \begin{bmatrix} x & y \\ -y & x \end{bmatrix} \mid x, y \in \mathbb{R} \right\}.$$

$$-K_{4} = \left\{ \begin{bmatrix} z & w \\ -\overline{w} & \overline{z} \end{bmatrix} \mid z, w \in \mathbb{C} \right\}.$$

4 Homomorfizmi 9

Rezultati z vaj

- 1. Homomorfizmi
 - (naloga 5.4) S čim je vsak homomorfizem natančno določen?
 - (nalogi 5.5-5.6) Kdaj obstaja homomorfizem $\varphi:\mathbb{Z}\to G,\ \varphi(1)=a?$ Kdaj obstaja homomorfizem $\varphi:\mathbb{Z}^n\to G,\ \varphi(1)=a?$
 - (naloga 5.20) Kaj lahko redu homomorfne slike?
 - (naloga 5.50) Ali je homomorfna slika idempotenta idempotent?

5 Kvocientne strukture 10

5 Kvocientne strukture

1. Kvocientne grupe

Naj boGgrupa in $H \leq G.$ K
daj lahko na množici $G/_H$ vpeljemo operacijo z predpisom

$$(aH) \cdot (bH) = (ab)H$$
?

- Zgled. Kdaj ne moremo vpeljati tako operacijo?
- **Definicija.** Podgrupa edinka v G.
- **Zgled.** Kaj so vedno edinki v G? Enostavne grupe. Center grupe. Kaj so edinki v Abelovih grupih? Nekomutativna grupa, kjer je vsaka podgrupa edinka. Edinki v S_3 .
- Trditev. 4 karakterizacije edink.
- Trditev. Zadosten pogoj, da je grupa edinka (indeks podgrupe).

$$Dokaz$$
. Karakterizacija $aH = Ha$.

- **Zgled.** Ali je $A_n \triangleleft S_n$? Ali je $\langle r \rangle \triangleleft D_{2n}$?
- Trditev. Recimo, da $H \leq G$ in $N \triangleleft G$. Kaj lahko povemo o produktu podgrup? Kaj če tudi $H \triangleleft G$? Presek edink.

Dokaz. Definicija podgrupe ednike.

- Izrek. Kvocientna grupa. Epimorfizem π grup G in $G/_N$. Jedro ker π .
- Izrek. 1. izrek o izomorfizmu. TODO: *
- Opomba. Kaj so edinke (jedra)? Kanonični epimorfizem. Diagram.
- Izrek. 2. izrek o izomorfizmu.
- Izrek. 3. izrek o izomorfizmu.
- Lema. Naj bo $\varphi: G \to H$ homomorfizem grup, $K \subseteq G$, $L \subseteq H$.
 - Zadosten pogoj, da je $\varphi_*(K) \leq H$;
 - Zadosten pogoj, da je $\varphi_*(K) \triangleleft H$;
 - Zadosten pogoj, da je $\varphi^*(L) \leq G$;
 - Zadosten pogoj, da je $\varphi^*(L) \triangleleft G$.
- Izrek. Korespondenčni izrek.
- 2. Uporaba izrekov
 - Trditev. Opis cikličnih grup do izomorfizma natančno.
 - Trditev. Opis podgrup v \mathbb{Z}_n .
 - **Trditev.** Naj bo G netrivialna grupa. Kdaj nima G pravih netrivialnih podgrup?
 - Lema. Naj bo G grupa, $N \triangleleft G$ in $a \in G$. Kaj lahko povemo o redu elementa aN, če red elementa a enak $n \in \mathbb{N}$?
 - Izrek. Cauchyjev izrek za Abelove grupe. TODO: *

Dokaz. Indukcija po
$$n = |G|$$
.

• **Zgled.** Čemu so izomorfne grupe S_n/A_n , $\operatorname{GL}_n(\mathbb{F})/_{\operatorname{SL}_n(\mathbb{F})}$, $G_1 \times G_2/_{\overline{G}_1}$, kjer $\overline{G}_1 = \{(g,1) \mid g \in G_1\}$, in $G/_{Z(G)}$? Ali so kvocienti dobro definirani?

5 Kvocientne strukture

3. Kvocientni kolobarji

Naj bo K kolobar ter $(I, +) \leq (K, +)$. Radi bi na K/I vpeljali množenje z predpisom

11

$$(a+I) \cdot (b+I) = ab + I.$$

- Definicija. Ideal. Levi (desni) ideal.
- **Zgled.** Kaj so vedno ideali v K? Enostavni kolobarji. aK in Ka kot ideali. Glavni ideal. Ideali v \mathbb{Z} .
- **Zgled.** Desni ideal, ki ni levi v $\mathbb{R}^{2\times 2}$. Levi ideal, ki ni desni v $\mathbb{R}^{2\times 2}$. Ali je $\mathbb{R}^{n\times n}$ enostaven?
- Opomba. Ideali v algebri.
- Trditev. Kvocientni kolobar.
- Trditev. Kaj če (levi/desni) ideal vsebuje obrnljiv element?
- Trditev. Presek idealov. Produkt idealov. Vsota idealov.
- Izrek. 1. izrek o izomorfizmu. TODO: *
- Opomba. Kaj so ideali (jedra)? Kanonični epimorfizem. Diagram.
- Izrek. 2. izrek o izomorfizmu.
- Izrek. 3. izrek o izomorfizmu.
- Izrek. Korespondenčni izrek.
- Definicija. Maksimalen ideal.
- Izrek. Karakterizacija maksimalnih idealov. TODO: *

 $Dokaz.\ (\Rightarrow)$ Naj bo $a+M\in K/_M\setminus\{0\}.$ Oglejmo si ideal M+aK. (\Leftarrow) Vzemimo strogo večji od M ideal.

- Opomba. Zakaj potrebujemo predpostavko o komutativnosti?
- Izrek. Ali je vsak pravi ideal vsebovan v nekem maksimalnem idealu? (*)

6 Klasifikacija končnih Abelovih grup

- 1. Direktni produkt
 - Naj bo G grupa.
 - **Definicija.** Direktni notranji produkt edink N_1, \ldots, N_s .
 - **Zgled.** Zapis produkta grup kot produkt edink.
 - Lema. Karakterizacija kdaj je G notranji direktni produkt edink N_1, \ldots, N_s .
 - **Definicija.** Komutator elementov $x, y \in G$.
 - Opomba. Kaj in zakaj meri komutator?
 - Lema. Recimo, da $M, N \triangleleft G$ ini $M \cup N = \{1\}$. Kaj lahko povemo o elementih M in N?
 - Izrek. Kaj če G notranji direktni produkt edink N_1, \ldots, N_s . TODO: *
 - Zgled.
 - Ali zapis grupe G kot notranji direktni produkt vedno obstaja?
 - Zapiši D_4 kot notranji direktni produkt pravih edink. Čemu je izomorfna D_4 ?
 - Zapiši $GL_n(\mathbb{R})$, kjer je n liho število, kot notranji direktni produkt $SL_n(\mathbb{R})$ in grupe skalarnih matrik. Čemu je enak center grupe $GL_n(\mathbb{R})$?
 - Opomba. Neskončni notranji produkt. Ali izrek še vedno drži?
 - Definicija. Naj bo G Abelova. Direktna vsota edink N_1, \ldots, N_s .
- 2. Klasifikacija končnih Abelovih grup

Naj bo G končna Abelova grupa z operacijo seštevanja.

- Lema. Recimo, da je $|G| = m \cdot n$, kjer sta m, n tuji. Kako lahko zapišemo G kot direktno vsoto?
- **Zgled.** Dokaži: če sta m, n tuji, potem $\mathbb{Z}_m \oplus \mathbb{Z}_n \approx \mathbb{Z}_{mn}$. Ali je $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \approx \mathbb{Z}_4$?
- Posledica. Kako lahko zapišemo vsako grupo moči n?
- **Definicija.** *p*-grupa.
- Opomba. Ali je vsaka končna Abelova grupa direktna vsota p_i -grup?
- Lema. Kdaj je p-grupa ciklična?
- **Lema.** Ali lahko vsako *p*-grupo zapišemo kot vsoto ciklične podgrupe in neke druge podgrupe?
- **Posledica.** Ali vsako *p*-grupo lahko zapišemo kot direktno vsoto cikličnih grup? Ali vsako grupo lahko zapišemo kot direktno vsoto cikličnih grup?
- Opomba. Kako vidimo, ali dva razcepa Abelovih grup na direktni vsoti cikličnih p_i -grup prestavljata isto grupo do izomorfizma natančno?
- Izrek. Kdaj sta končni Abelovi p-grupi izomorfni?
- Povzetek. Čemu je izomorfna vsaka končna Abelova grupa? TODO: *
- **Zgled.** Poišči vse Abelove grupe moči 432.
- 3. Klasifikacija končno generiranih Abelovih grup

Naj bo G končno generirana Abelova grupa.

- Izrek. Čemu je izomorfna grupa G? Torzijska podgrupa. Kdaj pravimo, da je G brez torzije? TODO: *
- Opomba. Kaj je potenca n v izomorfizmu iz prejšnjega izreka?
- Trditev. Ali lahko vsako končno generirano Abelovo grupo zapišemo kot direktno vsoto končne Abelove grupe in neke druge?
- **Opomba.** Ali iz tega, da je G Abelova in ima vsak element končen red sledi, da je G končna?

7 Delovanja grup 13

7 Delovanja grup

1. Delovanja grup

Naj bo G grupa in X neprazna množica.

- **Definicija.** Kadar pravimo, da G deluje na X? Delovanje.
- Opomba. Ali pri vektorskih prostorih polje deluje na vektorji? Ali iz 1. pogoja sledi 2. pogoj? Levo in desno delovanje. Kako iz levega delovanja pridemo do desnega?
- **Zgled.** Delovanje porodi homomorfizem $G \to \operatorname{Sym} X$ in obratno.
- **Definicija.** Jedro delovanja. Zvesto delovanje. Kdaj pravimo, da se G vloži v Sym X?
- Zgled.
 - Trivialno delovanje.
 - Levo množenje. Cayleyjev izrek. Levo regularno delovanje.
 - Delovanje grupe G na množico G z konjugiranjem.
 - Naj bo $H \leq G$. Delovanje G na G/H s predpisom $g \cdot hH = (gh)H$.
 - Naj G deluje na množice X. Naj bo Y neprazna množica. Delovanje G na množice Y^X s predpisom $g \cdot f = x \mapsto f(g^{-1} \cdot x)$.
 - Naj boGdeluje na Xin na Y. Naj boYneprazna množica. Delovanje Gna množice Y^X s predpisom $g\cdot f=g*f(g^{-1}\cdot x)$
 - Naj boVvektorski prostor nad $\mathbb F.$ Delovanje grupe avtomorfizmov na množico vektorjev.
 - Naj bo K komutativen kolobar. Gledamo $K[x_1, x_2, ..., x_n]$. Delovanje S_n na $K[x_1, x_2, ..., x_n]$ s permutacijo spremenljivk.
- 2. Orbite, stabilizatorje in fiksne točke delovanj

Naj grupa G deluje na množice X.

- **Definicija.** Orbita elementa $x \in X$. Stabilizator elementa $x \in X$. Množica fiksnih točk elementa $g \in G$. Fiksne točke delovanja.
- Lema. Čemu je enak $x \in X$, če $g \cdot x = y$?
- Trditev. Ali je $G_x \leq G$?
- Trditev. Ekvivalenčna relacija na X, ki jo porodi delovanje. Kaj so ekvivalenčni razredi?
- Posledica. Kaj lahko povemo o orbitah? Prostor orbit.
- Definicija. Tranzitivno delovanje.
- Zgled. Določi orbite, stabilizatorji ter fiksne točki delovanj:
 - Naj bo G deluje na G z levim množenjem. Ali je tranzitivno?
 - Naj bo G deluje na G s konjugiranjem. Konjugirani razred elementa $x \in G$.

- Naj bo $H \leq G$. G deluje na $G/_H$.
- Naj bo S_n deluje na $K[x_1,\ldots,x_n]$ [le fiksne točke]. Simetrični polinomi.
- Izrek. Izrek o orbiti in stabilizatorju. TODO: *

Dokaz. Dovolj dokazati bijekcijo med $G \cdot x$ in $G/_{G_x}$.

- Izrek. Recimo, da G deluje na končni množici X. Kako lahko zapišemo močX?
- Posledica. Naj bo G končna p-grupa, ki deluje na končni množici X. Kakšna je zvezna med |X| in $|X^G|$?

7 Delovanja grup 14

•	Lema. Burnsideova lema (število orbit).	
	$Dokaz. \ \text{Izračunamo moč množice} \ A = \{(g,x) \in G \times X g \cdot x = x\}.$	
3. Raz	Zgled. Naj barvamo oglišča kvadrata z n barvami, pri tem med samo ident ciramo barvanja, če je eno rotacije druge. Koliko barvanj obstaja? credna formula in Cauchyjev izrek Posledica. Razredna formula.	ifi-
	Dokaz. Splošna formula + delovanje s konjugiranjem.	
•	Posledica. Ali lahko ima p -grupa trivialen center? Posledica. Kaj lahko povemo o grupi moči p^2 , kjer je p praštevilo? Izrek. Cauchyjev izrek. TODO: *	
	Dokaz.Z indukcijo po $ G .$ Uporabimo razredno formulo. p lahko deli $ Z(G) $ ali ne.	G)