Corrigé (3M 270, janvier 2016)

- I.1°/ Comme le groupe $(\mathbb{Z}/9\mathbb{Z})^* = \{\bar{1},\bar{2},\bar{4},\bar{5},\bar{7},\bar{8}\}$ est d'ordre $\phi(9) = 3.2 = 6$, l'ordre de $\bar{2}$ divise 6. Comme 2^2 et $2^3 \not\equiv 1 \pmod{9}$, ce n'est ni 2 ni 3 (ni 1), donc $\bar{2}$ est d'ordre 6. [Ou noter que $2^3 \equiv -1 \pmod{9}$, donc $\bar{2}^3$ est d'ordre 2, donc $\bar{2}$ est d'ordre 3×2 .]
- $2^o/\operatorname{Par}$ conséquent, le groupe $(\mathbb{Z}/9\mathbb{Z})^*$ est cylique d'ordre 6. Comme 7 est premier, $(\mathbb{Z}/7\mathbb{Z})^* = \mathbb{F}_7^*$ est aussi cyclique, et d'ordre $\phi(7) = 6$, donc $(\mathbb{Z}/9\mathbb{Z})^* \simeq \mathbb{Z}/6\mathbb{Z} \simeq (\mathbb{Z}/7\mathbb{Z})^*$.
- $3^{o}/$ Par le lemme chinois (version multiplicative) et puisque \mathbb{F}_{5}^{*} est cyclique d'ordre 4, $(\mathbb{Z}/N\mathbb{Z})^{*} \simeq (\mathbb{Z}/5\mathbb{Z})^{*} \times (\mathbb{Z}/7\mathbb{Z})^{*} \times (\mathbb{Z}/9\mathbb{Z})^{*} \simeq (\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/6\mathbb{Z}) \times (\mathbb{Z}/6\mathbb{Z})$, qui, par le lemme chinois, est isomorphe à $(\mathbb{Z}/4\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})^{2} \times (\mathbb{Z}/3\mathbb{Z})^{2} \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/6\mathbb{Z}) \times (\mathbb{Z}/12\mathbb{Z})$. Ses facteurs invariants sont donc $\{2, 6, 12\}$.
- $4^o/$ Dans cette décomposition, l'ordre de x=(a,b,c) est le ppcm de o(a),o(b),o(c), qui vaut 12 si et seulement si ou bien o(c)=12, ce qui fournit $|(\mathbb{Z}/2\mathbb{Z})\times(\mathbb{Z}/6\mathbb{Z})|\times\phi(12)=12\times 4=48$ éléments, ou bien o(c)=4 et o(b)=3 ou 6, donnant $|(\mathbb{Z}/2\mathbb{Z})|\times(\phi(3)+\phi(6))\times\phi(4)=16$ éléments. Il y a donc 64 éléments x d'ordre 12.
- II.1°/ Pour i=1,...,k, soit ℓ_i la longueur du cycle c_i . Comme les c_i ont des supports disjoints, l'ordre de $c_1...c_k$ est le ppcm des ℓ_i . Ainsi chaque ℓ_i divise le nombre premier p, donc vaut p ou 1. Comme σ ne fixe aucun point, aucun des c_i n'est de longueur 1 (autrement dit : tout $j \in \{1,...,m\}$ apparaît dans le support d'un c_i de longueur > 1). Donc $\ell_i = p$ pour tout i, et $m = \sum_{i=1,...,k} \ell_i = pk$.
- $2^o/$ Soit g un élément d'ordre p=2 de G (il en existe d'après Cauchy). Alors, la permutation $\sigma:=\phi(g)\in\mathcal{S}_{2n}$ n'a aucun point fixe (car $\forall x\in G,g.x\neq x$), et est d'ordre 2 car ϕ est injective. Donc la décomposition de σ en produit de cycles disjoints ne fait intervenir que des cycles $c_1,...,c_k$ de longueur $\ell_i=2$, avec 2n=2k, c-à-d. k=n transpositions. La signature de $\phi(g)$ vaut donc $(-1)^n$, qui vaut -1 puisque n est impair.
- $3^{\circ}/$ Soit $\epsilon: \mathcal{S}_{2n} \to \{\pm 1\}$ l'homomorphisme de signature. Alors, $\epsilon \circ \phi: G \to \{\pm 1\}$ est un homomorphisme de groupes, et la question précédente montre qu'il est surjectif. Son noyau $H:=Ker(\epsilon \circ \phi)$ est donc un sous-groupe de G d'indice $[G:H]=|\{\pm 1\}|=2$.
- III.1°/ (NB : p := 31 est bien un nombre premier.) $n_p \equiv 1 \mod 31$, et n_p divise 32, donc vaut 1 ou 32, donc 32 vu l'hypothèse.
- $2^o/$ Soit $H_1, ..., H_{32}$ les p-Sylows de G. Comme p est la plus grande puissance de p divisant |G|, chaque H_j est d'ordre p, donc chaque élément $\neq e_G$ de H_j est d'ordre p, et engendre H_j . Deux p-Sylows $H_j, H_{j'}$ distincts ne se rencontrent donc qu'en e_G . Par ailleurs, tout élément d'ordre p de G engendre l'un des H_j . Ainsi, il y a $32 \times \phi(31) = 32 \times 30 = 960$ éléments de G d'ordre p = 31.
- $3^o/$ Par Sylow, G admet au moins un 2-Sylow K, et celui-ci a $2^5=32$ éléments. S'il existait un second 2-Sylow K', celui-ci admettrait un élément $g' \notin K$, et d'ordre divisant 2^5 , donc différent de p. D'après la question précédente, G admettrait au moins 960+32+1>992 éléments. Contradiction.
- 4^{o} / Supposons que G soit un groupe simple d'ordre 992. On vient de voir que si $n_{p} > 1$, il n'admet qu'un 2-Sylow K, qui est donc distingué dans G (et $\neq \{e_{G}\}, G$), ce que la simplicité de G interdit. Donc $n_{p} = 1$. Mais alors, l'unique p-Sylow H de G est distingué, contradiction.
- IV.1°/ a) $n_{11}(N)$ est $\equiv 1 \mod 11$, et divise 3, donc vaut 1. $n_3(N)$ est $\equiv 1 \mod 3$ et divise 11, donc vaut 1. b) Par conséquent, l'unique 11-, resp. 3-, Sylow K, resp. H, de N est distingué dans N, et N est isomorphe au produit direct $K \times H$. Comme $K \simeq \mathbb{Z}/3\mathbb{Z}, H \simeq \mathbb{Z}/11\mathbb{Z}$, le lemme chinois entraı̂ne que $N \simeq \mathbb{Z}/33\mathbb{Z}$.

- 2^o / Soit $x \notin N$. Alors, la classe à gauche xN (resp. à droite Nx) de x modulo N est distincte, donc disjointe, de la classe N, et G est réunion disjointe de N et xN, resp. de N et de Nx. Ainsi, xN = Nx, et bien sûr, yN = Ny pour $y \in N$. Donc $\forall g \in G, gNg^{-1} = N$.
- $3^{\circ}/$ a) $n_{11}(G)$ est $\equiv 1$ modulo 11 et divise 6, donc vaut 1. b) Comme l'unique 11-Sylow K de G est distingué dans G, la partie N := KH de G en est un sous-groupe, d'ordre 33 puisque $K \cap H = \{e_G\}$. Il est donc cyclique, et distingué dans G car d'indice $\frac{66}{33} = 2$.
- $4^o/$ Soient $h \in H$, qu'on peut supposer $\neq e_G$, donc d'ordre 3, et $g \in G$. Alors, h appartient au sous-groupe distingué KH de G, donc $ghg^{-1} \in KH$, et c'est un élément d'ordre 3 du groupe KH. Comme KH est cyclique, il admet un unique sous-groupe d'ordre 3, à savoir H. Donc $ghg^{-1} \in H$ pour tout $g \in G$, et $H \triangleleft G$.
- $5^o/$ a) Comme K et H sont distingués dans G, $KH \simeq K \times H$. Soit S l'unique 2-Sylow de G. Alors S est distingué dans G, et $S \cap KH = \{e_G\}$ pour des raisons d'ordres. Donc G, d'ordre |KH|.|S|, est isomorphe à $KH \times S \simeq K \times H \times S$. On conclut par le lemme chinois. b) Le groupe diédral D_{33} , d'ordre 66, n'est pas abélien, donc pas cyclique.
- $6^{o}/$ a) Soit s l'élément d'ordre 2 de $\mathbb{Z}/2\mathbb{Z}$. Un tel homomorphisme ϕ est déterminé par $\phi(s) := f$, où f est un élément quelconque d'ordre divisant 2 de $Aut(\mathbb{Z}/33\mathbb{Z})$. Or $Aut(\mathbb{Z}/33\mathbb{Z}) \simeq (\mathbb{Z}/33\mathbb{Z})^* \simeq (\mathbb{Z}/32\mathbb{Z})^* \times (\mathbb{Z}/11\mathbb{Z})^* = \mathbb{F}_3^* \times \mathbb{F}_{11}^*$ et tout corps de cardinal premier $p \neq 2$ admet exactement deux racines carrées $\{1, -1\}$ de 1. Donc $Aut(\mathbb{Z}/33\mathbb{Z})$ a quatre éléments d'ordre divisant $2: f_1 = id$, et trois éléments f_2, f_3, f_4 d'ordre 2. Il y a donc 4 homomorphismes distincts ϕ_i de $\mathbb{Z}/2\mathbb{Z}$ dans $Aut(\mathbb{Z}/33\mathbb{Z})$, avec $\phi_i(s) = f_i$.
- b) Via l'isomorphisme $Aut(\mathbb{Z}/33\mathbb{Z}) \simeq (\mathbb{Z}/3\mathbb{Z})^* \times (\mathbb{Z}/11\mathbb{Z})^*$, tout automorphisme f d'ordre divisant 2 de $\mathbb{Z}/33\mathbb{Z}$ est représenté par un couple (a,b), avec $a \equiv \pm 1 \mod 3$ et $b \equiv \pm 1$ mod 11, et est donc représenté dans $(\mathbb{Z}/33\mathbb{Z})^*$ par la classe de $k_1 \equiv 1, k_2 \equiv -1, k_3 \equiv 10$, ou $k_4 \equiv -10$ modulo 33. Fixant un générateur r de $\mathbb{Z}/33\mathbb{Z}$, et écrivant dorénavant les lois de groupes de $\mathbb{Z}/33\mathbb{Z}$ et des G_i multiplicativement, on a alors : $f_i(r) = r^{k_i}$. Par conséquent, pour tout i = 1, ..., 4, le produit semi-direct $G_i = \langle r \rangle \rtimes_{\phi_i} \langle s \rangle$ est caractérisé par la relation $\phi_i(s)(r) = srs^{-1} = r^{k_i}$. Pour $k_1 = 1$, on reconnait ici le groupe cyclique $G_1 = \mathbb{Z}/33\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, qui a $\nu_1=1$ élément d'ordre 2; pour $k_2=-1$, le groupe diédral $G_2:=D_{33}=\mathbb{Z}/33\mathbb{Z}\rtimes_{\phi_2}\mathbb{Z}/2\mathbb{Z},$ dont les symétries forment les $\nu_2=33$ éléments d'ordre 2. Plus généralement, les éléments d'ordre 2 de G_i ne peuvent être dans $\langle r \rangle$, d'ordre impair, et sont donc de la forme sr^t , avec $t \in \mathbb{Z}/33\mathbb{Z}$ et $1 = sr^t.sr^t = sr^ts^{-1}r^t = r^{(k_i+1)t}$, soit $(k_i+1)t \equiv 0$ modulot 33. Pour $k_1 = 1$, resp. $k_2 = -1$, on retrouve l'unique solution $t \equiv 0 \mod 33$, donc $\nu_1 = 1$, resp. les $\nu_2 = 33$ solutions $t \equiv 0, ..., 32$ modulo 33. Pour $k_3 = 10$, les solutions sont données par la condition $t \equiv 0 \mod 3$, d'où $\nu_3 = \frac{33}{3} = 11$ éléments d'ordre 2 dans G_3 . Enfin, pour $k_4 = -10$, la condition $9t \equiv 0 \mod 33$ équivaut à $t \equiv 0,11$ ou 22 mod 33, et il y a $\nu_4 = 3$ éléments d'ordre 2 dans G_4 .
- [Autre méthode : soit $i \in [1, ..., 4]$. Le groupe G_i est d'ordre 66, donc ses 2-Sylows sont d'ordre 2, et sont donc en bijection avec les éléments d'ordre 2 de G_i . Ainsi, $\nu_i = n_2(G_i)$, et si x_i désigne un élément d'ordre 2 de G_i , tous les autres forment l'orbite de x_i sous l'action de G_i sur lui-même par conjugaison. Choisissant $x_i = s = (1, s) \in \langle r \rangle \rtimes_{\phi_i} \langle s \rangle$, il reste à calculer le nombre de conjugués de s dans G_i . Ceux-ci sont de la forme $r^t s r^{-t}$, $t \in \mathbb{Z}/33\mathbb{Z}$. De $Int(r)(s) = r s r^{-1} = s r^{k_i-1}$, on tire : $Int(r^t)(s) = s r^{t(k_i-1)}$. Ainsi, ν_i est égal à l'ordre de r^{k_i-1} , soit $\nu_1 = o(r^0) = 1$, $\nu_2 = o(r^2) = 33$, $\nu_3 = o(r^9) = 11$, $\nu_4 = o(r^{11}) = 3$.]
- c) G contient un sous-groupe distingué $N \simeq \mathbb{Z}/33\mathbb{Z}$ et un sous-groupe $S \simeq \mathbb{Z}/2\mathbb{Z}$, avec $N \cap S = \{e_G\}$ et |N|.|S| = |G|, donc c'est un produit semi-direct, nécessairement isomorphe à l'un des G_i . Et ces groupes G_i sont deux à deux non isomorphes puisqu'ils n'ont pas le même nombre d'éléments d'ordre 2.