Transcriptomic homogeneity and an age-dependent onset of hemoglobin expression characterize morphological PV types

Lin Que, David Lukacsovich, Wenshu Luo and Csaba Földy

Supplementary Figures:

Fig. S1.	Morphological reconstruction of different PV types. (Related to Fig. 1.)
119.01.	reconstruction of unference very pess. (reduced to Fig. 1.)
Fig. S2.	Single-cell RNAseq profiling of PV-INs. (Related to Fig. 1.)
Fig. S3.	Transcriptomic clustering at low sample numbers. (Related to Fig. 1 and 4.)
Fig. S4.	Transcriptomic characterization of PV-INs. (Related to Fig. 2.)
Fig. S5.	Cross-comparison of electrophysiological parameters measured in PV-INs. (Related to Fig. 3.)
Fig. S6.	Support vector machine classification and gene selection in morphological PV types. (Related to Fig. 4.)
Fig. S7.	Expression of morphology-associated genes in the CA1-IN data set (Harris et al., 2018) (Related to Fig. 4)
Fig. S8.	Morphological and electrophysiological analysis of vBC type PV-INs during circuit maturation. (Related to Fig. 6.)
Fig. S9.	Age-dependent gene expression changes in PV-INs. (Related to Fig. 7.)

Detection of hemoglobin expression in publicly available single-cell RNAseq datasets.

Hemoglobin subunit expression at single-nucleotide level. (Related to Fig. 7.)

Supplementary Data Sheet:

(Related to Fig. 7.)

Fig. S10.

Fig. S11.

Que_et_al.xlsx This file contains all numerical information referenced in the manuscript. (Related to Figs. 1-7.)