

大数据的统计学基础——第14周

DATAGURU专业数据分析社区

【声明】本视频和幻灯片为炼数成金网络课程的教学资料,所有资料只能在课程内使用,不得在课程以外范围散播,违者将可能被追究法律和经济责任。

课程详情访问炼数成金培训网站

http://edu.dataguru.cn

关注炼数成金企业微信

■提供全面的数据价值资讯,涵盖商业智能与数据分析、大数据、企业信息化、数字化技术等,各种高性价比课程信息,赶紧掏出您的手机关注吧!

◆ 洛杉矶年降水量

◆ 化工过程

◆ 加拿大野兔年丰度

◆ 某市月平均气温

◆ 滤油器月销售量

时间序列分类

- ◆ 所研究的对象的多少
 - 一元
 - 多元
- ◆ 时间的连续性
 - 连续
 - 离散
- ◆ 序列的统计特性
 - 平稳时间序列
 - 非平稳时间序列

时间序列分析方法

- ◆ 随机性时间序列分析
 - 自回归模型(AR)
 - 滑动平均模型(MA)
 - 自回归滑动平均模型(ARMA)
 - 差分自回归滑动平均模型(ARIMA)
- ◆ 确定性时间序列分析
 - 趋势预测法
 - 平滑预测法
 - 分解分析法

时间序列影响因素

- ◆ 时间序列影响因素:
- ◆ 1. 长期趋势Trend
- ◆ 2. 循环变动\周期性Cyclic
- ◆ 3. 季节性变化Seasonal variation
- ◆ 4. 不规则变化Irregular movement

影响因素的叠加

图1.1 平稳序列

图1.3 季节型序列

图1.2 趋势序列

图1.4 含有季节与趋势因素的序列

时间序列分析模型

◆ 乘法模型:Y=T*S*C*I

◆ 加法模型:Y=T+S+C+I

时间序列

- ◆ 随机变量序列 $\{Y_t: t=0,1,2,.....\}$ 称为一个时间序列模型。
- ◆ 均值函数: $\mu_t = E(Y_t), t = 0, 1, 2, ...$...
- 自协方差函数: $\gamma_{t,s} = Cov(Y_t, Y_s) = E[(Y_t \mu_t)(Y_s \mu_s)] = E(Y_t Y_s) \mu_t \mu_s, t, s = 0, 1, 2,$
- ◆ 自相关函数: $\rho_{s,t} = Corr(Y_t, Y_s) = \frac{Cov(Y_t, Y_s)}{\sqrt{Var(Y_t)Var(Y_s)}} = \frac{\gamma_{t,s}}{\sqrt{\gamma_{t,t}\gamma_{s,s}}}$

平稳性

- ◆ 假定时间序列 $\{Y_t: t=0,\pm 1,\pm 2,\dots \}$ 的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:
 - 1)均值 $E(Y_t) = \mu$ 与时间t无关的常数;
 - 2) 方差 $Var(Y_t) = \gamma$ 与时间t 无关的常数;
 - 3) 协方差 $Cov(Y_t,Y_{t+k}) = \gamma_{0,k}$ 只与时期间隔k 有关,与时间t 无关的常数。
- ◆ 则称该随机时间序列是平稳的 (stationary)

白噪声(White Noise)

- ◆ 纯随机过程
- ◆ 白噪声

平稳时间序列分析

- ◆ 自回归模型(AR)
- ◆ 滑动平均模型(MA)
- ◆ 自回归滑动平均模型(ARMA)

自回归模型(AR)

$$\begin{cases} Y_t = \varphi_1 Y_{t-1} + + \cdots \dots + \varphi_p Y_{t-p} + \varepsilon_t \\ \varphi_p \neq 0 \\ E(\varepsilon_t) = 0, Var(\varepsilon_t) = \sigma_{\varepsilon}^2, E(\varepsilon_t \varepsilon_s) = 0, s \neq t \\ E(Y_s \varepsilon_t) = 0, \forall s < t \end{cases}$$

- ◆ 称上述模型为p阶自回归模型——AR(p)
- ◆ 中心化模型

滑动平均模型(MA)

$$\Phi \begin{cases} Y_t = \varepsilon_t - \theta_1 \varepsilon_{t-1} - \dots - \theta_q \varepsilon_{t-q} \\ \theta_p \neq 0 \\ E(\varepsilon_t) = 0, Var(\varepsilon_t) = \sigma_{\varepsilon}^2, E(\varepsilon_t \varepsilon_s) = 0, s \neq t \end{cases}$$

- ◆ 称上述模型为q阶滑动平均模型——MA(q)
- ◆ 中心化模型

自回归滑动平均模型(ARMA)

$$\begin{cases} Y_t = \varphi_1 Y_{t-1} + + \cdots ... + \varphi_p Y_{t-p} + \varepsilon_t - \theta_1 \varepsilon_{t-1} - \cdots ... - \theta_q \varepsilon_{t-q} \\ \varphi_p \neq 0, \theta_p \neq 0 \end{cases}$$

$$E(\varepsilon_t) = 0, Var(\varepsilon_t) = \sigma_\varepsilon^2, E(\varepsilon_t \varepsilon_s) = 0, s \neq t$$

$$E(Y_s \varepsilon_t) = 0, \forall s < t$$

◆ 称上述模型为自回归滑动平均模型——ARMA(p,q)

非平稳时间序列

- ◆ 随机性时间序列分析
 - 差分自回归滑动平均模型(ARIMA)
- ◆ 确定性时间序列分析
 - 平滑预测法
 - 趋势预测法
 - 分解分析法

ARIMA模型

- ARIMA(p,d,q)
- ◆ p——自回归阶数
- ◆ d——差分阶数
- ◆ q——移动平均阶数
- ◆ 通过差分运算讲非平稳时间序列模型转化为平稳时间序列模型

差分

- ◆ 对于时间序列{ Y_t : t = 0, 1, 2,}
- ◆ 1阶差分运算: $\nabla X_t = X_t X_{t-1}$
- ◆ 2阶差分运算: $\nabla^2 X_t = \nabla X_t \nabla X_{t-1}$
- **•**
- ◆ p阶差分运算: $\nabla^p X_t = \nabla^{p-1} X_t \nabla^{p-1} X_{t-1}$
- ◆ k步差分: $\nabla_k X_t = X_t X_{t-k}$

◆ 1866年到1911年每年女人们裙子的直径——非平稳

◆ 1阶差分

◆ 2阶差分

平滑法

◆ 简单移动平均法

$$\hat{y}_t(1) = \hat{y}_{t+1} = (y_t + y_{t-1} + \dots + y_1) / t$$

◆ 加权移动平均法

对不同时间点的数据不同的权重:

$$\alpha_{i} > 0; \sum \alpha_{i} = 1$$

$$\hat{y}_{t}(1) = \hat{y}_{t+1} = \sum_{1}^{t} \alpha_{i} y_{i}$$

◆ k期移动平均法

$$\hat{y}_{t+1} = \frac{y_t + y_{t-1} + \dots + y_{t-k+1}}{k}$$

平滑法

- ◆ 指数平滑法
 - 一次指数平滑法

$$F_{t+1} = \alpha Y_t + (1 - \alpha) F_t$$

- 二次指数平滑法
- 平滑系数α的选择

- ◆ 某百货公司一柜台2003年下半年各月的销售额分别为18、17、19、20、17、19万元, 试用简单移动平均法预测2004年1月份该柜台的销售额。
- ◆ 设2003年7-12月的权数分别为0.5、1.0、2.5、3.5、5.0,使用加权移动平均法预测 2004年1月份该柜台的销售额

◆ 下表是我国1980-1981年平板玻璃月产量,试选用№3和№5用一次移动平均法进行预测。 计算结果列入表中。

时间	序号	实际观测值	三个月移动平均值	五个月移动平均值
1980.1	1	203.8		
1980.2	2	214.1		
1980.3	3	229.9		
1980.4	4	223.7		
1980.5	5	220.7		
1980.6	6	198.4		
1980.7	7	207.8		
1980.8	8	228.5		
1980.9	9	206.5		
1980.10	10	226.8		
1980.11	11	247.8		
1980.12	12	259.5		

时间	序号	实际观测值 三个月移动平均值 五个月移动		五个月移动平均值
1980.1	1	203.8	-	-
1980.2	2	214.1	-	-
1980.3	3	229.9		-
1980.4	4	223.7	215.9	-
1980.5	5	220.7	222.6	-
1980.6	6	198.4	224.8	218.4
1980.7	7	207.8	214.6	217.4
1980.8	8	228.5	209.0	216.1
1980.9	9	206.5	211.6	215.8
1980.10	10	226.8	214.3	212.4
1980.11	11	247.8	220.6	213.6
1980.12	12	259.5	227.0	223.5

◆ 利用下表数据运用一次指数平滑法对1981年1月我国平板玻璃月产量进行预测(取 α =0.3,0.5,0.7)。并计算均方误差选择使其最小的 α 进行预测。

时间	序号	实际观测值	指数平滑法		
הוהח	ਹਿੰਦ ਹਿੰਦੀ	头阶观则且	a=0.3	a=0.5	a=0.7
1980.01	1	203.8	_	_	_
1980.02	2	214.1	203.8	203.8	203.8
1980.03	3	229.9	206.9	209.0	211.0
1980.04	4	223.7	213.8	230.0	224.2
1980.05	5	220.7	216.8	226.9	223.9
1980.06	6	198.4	218.0	223.8	221.7
1980.07	7	207.8	212.1	211.1	205.4
1980.08	8	228.5	210.8	209.5	207.1
1980.09	9	206.5	216.1	219.0	222.1
1980.10	10	226.8	213.2	212.8	211.2
1980.11	11	247.8	217.3	219.8	222.1
1980.12	12	259.5	226.5	233.8	240.1
1981.01					

趋势拟合法

◆ 线性趋势预测模型

$$\mu_t = \alpha + \beta t$$
 $Y_t = \alpha + \beta t + \varepsilon_t$
 $E(\varepsilon_t) = 0, Var(\varepsilon_t) = \sigma_{\varepsilon}^2$

◆ 利用最小二乘法估计参数

$$\begin{cases} b = (n\sum ty - \sum t\sum y)/[n\sum t^2 - (\sum t)^2] \\ a = \overline{y} - b\overline{t} \end{cases}$$

•	某单位十年的商品销售额

 年份
 销售

 额

7

◆ 试采用线性趋势预测2011年的销售额

预测2011年的商品销售额,相对应的

2000 12

1999

$$Y_c = a + bt$$
,根据表中资料,可算出:

2001 17

$$\begin{cases} b = \frac{n\sum ty - \sum t\sum y}{n\sum t^2 - (\sum t)^2} = \frac{10 \times 1607 - 55 \times 241}{10 \times 385 - 55^2} = 3.4 \\ a = \overline{y} - b\overline{t} = \frac{241}{10} - 3.4 \times \frac{55}{10} = 5.4 \end{cases}$$

$$y_c = 5.4 + 3.4t$$

2002 20

2003 23

- 2004 26
- 2005 29
- 2006 32
- 2007 35
- 2008 40
- 合计 241

 $t = 13 \ y_c = 5.4 + 3.4 \times 13 = 49.6$

将代表各年度的t值代入方程即可计算出各年的预测值。如

趋势拟合法

◆ 非线性趋势预测模型

- 二次曲线

$$\mu_{t} = a + bt + ct^{2}$$

$$Y_{t} = a + bt + ct^{2} + \varepsilon_{t}$$

$$E(\varepsilon_{t}) = 0, Var(\varepsilon_{t}) = \sigma_{\varepsilon}^{2}$$

- 指数曲线

$$\mu_t = ab^t$$

$$Y_t = ab^t + \varepsilon_t$$

$$E(\varepsilon_t) = 0, Var(\varepsilon_t) = \sigma_{\varepsilon}^2$$

◆ 转化为线性模型求解系数

炼数成金逆向收费式网络课程

- ◆ Dataguru (炼数成金) 是专业数据分析网站,提供教育,媒体,内容,社区,出版,数据分析业务等服务。我们的课程采用新兴的互联网教育形式,独创地发展了逆向收费式网络培训课程模式。既继承传统教育重学习氛围,重竞争压力的特点,同时又发挥互联网的威力打破时空限制,把天南地北志同道合的朋友组织在一起交流学习,使到原先孤立的学习个体组合成有组织的探索力量。并且把原先动辄成干上万的学习成本,直线下降至百元范围,造福大众。我们的目标是:低成本传播高价值知识,构架中国第一的网上知识流转阵地。
- ◆ 关于逆向收费式网络的详情,请看我们的培训网站 http://edu.dataguru.cn

Thanks

FAQ时间