DACON HD현대 AI Challenge

항만 內 선박 대기 시간 예측을 위한 선박 항차 데이터 분석 AI 알고리즘 개발

2023.09.25 ~ 2023.10.31

목차

1. 문제 배경 및 목표

2. 데이터 확인

3. EDA 및 데이터 전처리

4. 모델링 및 추론

5. 결론

6. 또다른 방법론

1. 문제 배경 및 목표

코로나 19 이후 물류정체로 인한 다수의 항만에서 선박 대기 시간이 길어지는 현상 발생

1. 항만 정체로 인한 연쇄적인 물류 지연

2. 연료 사용 증가와 연료비 증가

3. 연료 사용 증가로 인한 온실가스 배출량 증가

* 선박 대기 시간이란?

=> 접안 전에 선박이 해상에 정박하는 시간을 의미

해결 방안 및 목표 선박의 제원 및 운항 정보를 활용해 산출된 항차 데이터 활용

선박 대기시간 예측 AI 알고리즘

선박의 접안 시간 예측 가능 =〉 문제점 해결 가능

2. 데이터 확인

* 총 2개의 데이터 셋

- 1. 학습 데이터(train.csv) 21개의 독립변수와 1개의 종속변수('Cl_HOUR)로 구성
- 2. 시험 데이터(test.csv) 21개의 독립변수로만 구성

* train 데이터

Α	В	С	D	E	F G	H I		J	K	L	М	N O	Р	Q	R	S	T	U	V	W
SAMPLE_ID	ARI_CO	ARI_PO	SHIP_TYPE_CATEGORY	DIST	ATA ID	BREADTH BUILT		DEADWEICD	EPTH	DRAUGHTGT		LENGTH SHIPMAN	AFLAG	U_WIND	V_WIND	AIR_TEMP	BN	ATA_LT	PORT_SIZE	CI_HOUR
TRAIN_000000	SG	GIW5	Container	30.88101761	2018-12-17 21:29 Z618338	30	24	24300	10	10	16700	180 CQSB78	Panama						0.002615416	3.45
TRAIN_000001	IN	UJM2	Bulk	0	2014-09-23 6:59 X886125	30	13	35900	10	10	23500	180 SPNO34	Marshall	Islands				12	0.000216617	0
TRAIN_000002	CN	EUC8	Container	0	2015-02-03 22:00 T674582	50	12	146000	30	20	140000	370 FNPK22	Malta					(0.001614168	0
TRAIN_000003	JP	ZAG4	Container	0	2020-01-17 4:02 Y847238	20	18	6910	10	10	5400	120 PBZV77	Bahamas	-3.18	-1.61	6.7	2.629349642	13	0.000356118	0
TRAIN_000004	SG	GIW5	Container	27.0376502	2020-01-26 7:51 A872328	50	10	116000	20	10	96600	300 GUCE76	Liberia	-0.33	-3.28	25.6	2.495952793	15	0.002615416	253.5544444
TRAIN_000005	AU	WHH4	Bulk	49.95358543	2021-03-05 18:36 \$731836	40	7	183000	20	20	94100	290 HZUO14	Japan	6.1	-2.84	28.1	4.01621746		0.000103275	68.39138889
TRAIN_000006	ID	REJ1	Container	42.27628053	2016-12-11 3:00 A735263	20	30	6800	10	10	4810	110 HCOS27	Indonesia					10	4.11E-05	31.70055556
TRAIN_000007	TW	JWI3	Cargo	0	2022-10-07 10:06 N531887	30	18	46600	20	10	29800	200 EIPX61	Hong Ko	2.82	0.25	28.6	2.255079469	18	0.000989649	0
TRAIN_000008	JP	HYG5	Cargo	0	2015-12-10 2:03 L124642	30	12	37200	20	10	22900	180 UOPG57	Panama					11	0.000256045	0
TRAIN_000009	CN	NGG6	Container	101.5215977	2018-11-30 19:29 \$458225	50	7	124000	30	20	111000	320 YLMR26	United Ki	ngdom				3	0.001742858	58.19305556
TRAIN_000010	CN	UVK6	Bulk	18.02249534	2021-09-23 2:48 U334123	30	11	35000	20	10	22500	180 KLJL33	Montene	-2.16	1.5	25.6	2.146870114	10	0.00051987	2.721944444
TRAIN_000011	SG	GIW5	Container	26.82697615	2017-09-02 1:47 J412562	30	23	30700	20	10	26000	200 ENOX58	Liberia					Ç	0.002615416	271.9302778
TRAIN_000012	CN	EUC8	Container	100.7199348	2016-05-30 23:13 T684332	40	15	80200	20	10	76900	300 CVDP86	Japan					-	0.001614168	68.03222222
TRAIN_000013	CN	TDA5	Bulk	21.88730703	2021-05-12 21:35 R763644	40	9	70400	20	10	54600	220 HULF38	Hong Ko	-4.88	1.55	21.9	3.347518051		0.000455438	7.374722222
TRAIN 000014	QA	KIU2	Bulk	5.06146197	2015-08-27 7:09 D575432	30	11	56800	20	10	33000	190 IOSS33	Hong Ko	ng, China				10	0.000130486	105.8202778
TRAIN 000015	CN	QQW1	Cargo	0	2021-04-16 15:52 L286286	20	17	13600	10	10	9090	130 KICF32	Panama	-0.52	4.15	10.5	2.925160854	23	0.000594691	0
TRAIN_000016	TW	JWI3	Bulk	0	2016-06-30 1:00 R748821	30	10	81700	20	10	45000	230 MBAX66	Liberia					9	0.000989649	0
TRAIN 000017		NGG6	Container	109.021105	2017-07-10 14:27 \$764487	30	9	25300	20	10	25100	180 VNII45	Korea, So	uth				22	0.001742858	15.03972222
TRAIN 000018	AU	NQO4	Cargo	29.62476772	2020-11-17 22:41 Q418441	30	27	55800	20	10	36000	200 GXKR25	Bahamas	-1.25	1.09	20.3	1.578840632	9	0.000110384	18.00722222
TRAIN 000019	CN	NGG6	Container	96.46359378	2017-07-17 22:45 U753134	30	14	34200	20	10	26400	210 UOQB77	Hong Ko	ng, China				(0.001742858	42.74194444
TRAIN 000020	П	IVU2	Container	7.796448889	2017-03-02 8:31 K848657	20	18	13700	10	10	9960		Panama	ĺ				-	4.45E-05	11.61416667
TRAIN_000021	CN	QQW1	Container	0	2016-03-16 4:53 H341333	50	10	115000	30	20	110000	330 WOLG37	Singapor					12	0.000594691	0
TRAIN 000022		YDP4	Bulk	11.36544169	2016-10-08 6:16 C866378	40	17	99300	20	10	55300	250 IBFB81	Indonesia					17	2.63E-05	213.3669444
TRAIN_000023	JP	WJ1	Bulk	9.80218885	2019-06-09 23:32 X345112	20	16	5800	10	10	3500	110 RCGL58	Japan	0	0	19	0	8	0.000264287	1.752777778
TRAIN 000024		JEN5	Bulk	16.61221048	2022-05-23 22:59 D626134	30	17	30400	10	10	17900	170 UREU81	Liberia	-2.36	5.42	21.5	3.684073668	6	0.00102563	13.82277778
TRAIN 000025		NGG6	Container	99.19756524	2015-08-20 5:58 M766643	20	17	13800	10	10	9950	150 HORJ86	Panama					13	0.001742858	193.9163889
TRAIN 000026		FCD5	Bulk	0	2022-01-12 9:50 512572	10	19	3280	10	10	1980	80 AOOV31	Barbados	0.28	-11.42	-11.1	5.715578805	11	0.000398636	0
TRAIN 000027		NGG6	Container	97.79634477	2020-09-25 0:38 Q641134	20	8	12400	10	10	9860	140 QJKV12	Panama	-1.05	-2.26	20.7	2.071231677	8	0.001742858	12.95694444
TRAIN 000028		GIW5	Container		2018-02-15 13:48 Q311584	40	9	65200	20	10	51900	260 TKWC13		Islands					0.002615416	
TRAIN 000029		RKA2	Cargo		2021-02-24 23:30 L258551	20	12	7670	10		5140				0.29	14	1.364128179		0.000148811	
TRAIN_000030		EUC8	Container	78.61684388		20	11	11900	10		9890	150 EGOJ72			1.07		1.298255122		0.001614168	
TRAIN 000031		VRT6	Bulk		2018-07-03 14:28 F415413	30	10	48600	20		30200			ople's Repu		2-7.0			0.000360428	
TRAIN 000032		NGG6	Container	-	2019-11-14 15:58 L753758	20	6	12300	10	- ''	9990	140 ENFG14	-			13.3	3.314675386	-	0.001742858	-

* test 데이터

Α	В	C	D	Е	F	G	Н		J	K	L	М	N	0	P	Q	R	S	Ţ	U	V
SAMPLE_ID	ARI_CO	ARI_PO	SHIP_TYPE	DIST	ATA	ID	BREADTH	BUILT	DEADWE	DEPTH	DRAUGHTG	iΤ	LENGTH	SHIPMAN	IFLAG	U_WIND	V_WIND	AIR_TEMP	BN	ATA_LT	PORT_SIZE
TEST_000000	SG	GIW5	Container	1.826588579	2020-06-18 11:58	K322654	50	1	117000	30	20	109000	340	KQMD74	Panama	0.37	1.63	27.1	1.587063314	19	9 0.002615416
TEST_000001	CN	WEY7	Cargo	25.39938609	2021-05-26 22:20	E376681	10	1	3810	10	10	2560	80	LBYS27	Belize	-2.79	-2.33	14.2	2.663971821	(6 0.001027827
TEST_000002	CN	NGG6	Container	111.0794666	2019-12-16 0:09	F811111	20	2	10900	10	10	8440	140	EKFV15	Singapore	0.04	-4.91	9.3	3.255315483	8	8 0.001742858
TEST_000003	CA	FFM2	Bulk	9.175258136	2015-11-16 5:30	A737561	30		55800	20	10	31500	190	MASW32	Panama					2	2 0.000181866
TEST_000004	JP	QYY1	Container	0	2018-10-24 1:11	A827175	30	1	39800	20	10	33000	220	SIEL54	Liberia					10	0.000551732
TEST_000005	BR	TMW2	Bulk	0	2019-03-19 3:59	J321515	30		81900	20	10	43100	230	NAED28	Marshall I:	0	0	28.3	0	1	1 8.00E-05
TEST_000006	IN	UJM2	Bulk	15.56861608	2022-04-28 4:50	N677182	30	1	58800	20	10	32400	190	ZAKR16	Marshall I:	9.86	5.63	36.3	5.692442474	10	0.000216617
TEST_000007	CA	FFM2	Bulk	9.508438896	2019-01-27 21:10	N786165	30	1	58000	20	10	32400	190	XXFC66	Hong Kon	0	0	6.4	0	17	7 0.000181866
TEST_000008	SG	GIW5	Container	24.78372206	2017-04-05 5:21	D541785	60		199000	30	20	192000	400	KQMD74	Panama					13	0.002615416
TEST_000009	AU	KSF1	Bulk	35.57995566	2015-12-12 4:14	U444818	30	1	81900	20	10	44300	230	BDOS41	Marshall Is	slands				15	5.75E-05
TEST_000010	AU	WHH4	Bulk	25.48101129	2014-11-22 1:50	H615556	60		251000	30	20	133000	330	YQFC33	Japan					12	2 0.000103275
TEST_000011	CN	WAF5	Bulk	0	2019-01-03 23:26	L133228	30	1	33500	10	10	20000	180	HZSD87	China, Peo	ople's Rep	ublic Of			1	7 0.000617532
TEST_000012	MY	LHD1	Bulk	10.15347641	2023-02-07 8:45	C624433	40	1	92800	20	10	51200	230	VBDT16	Liberia	1.64	-5.73	28.5	3.704221852	16	6 1.55E-05
TEST_000013	RU	FCD5	Container	0.001576814	2018-02-09 5:30	Z638542	30	1	41400	20	10	35900	210	NITL57	Antigua &	Barbuda				1	7 0.000398636
TEST_000014	SG	GIW5	Container	31.30004468	2022-01-10 20:07	U214617	40	2	68800	20	10	66300	280	TQXV21	Liberia	-0.86	-4.78	25.1	3.231663909	2	4 0.002615416
TEST_000015	CN	JEN5	Bulk	14.91571572	2019-01-22 17:04	H126285	30	2	46700	20	10	27000	190	NFMS48	China, Per	-4.26	2.51	3.3	3.270457308	1	0.00102563
TEST_000016	CA	BAZ5	Bulk	12.70293409	2014-12-20 3:37	X867471	40	1	87200	20	10	48100	230	TUYZ57	Singapore					(3.94E-05
TEST_000017	TW	JWI3	Container	6.512424005	2019-07-16 3:02	D377771	20	1	6900	10	10	5400	120	PBZV77	Bahamas	1.55	-5	28.4	3.397237248	11	0.000989649
TEST_000018	RU	AZU6	Bulk	4.742566276	2020-06-24 5:45	L545226	30	1	55100	20	10	31000	190	ZFFW62	Malta	-0.28	1	13.7	1.155550974	1	7 0.000176888
TEST_000019	CN	EUC8	Container	0	2021-07-28 4:57	V843875	30	1	23300	10	10	18400	180	UILI44	Portugal (-4.53	6.68	26.6	4.534044032	12	2 0.001614168
TEST_000020	TW	JWI3	Bulk	187.0438299	2017-05-14 11:18	K657125	50		210000	20	20	107000	300	CJLN55	Panama					19	9 0.000989649
TEST_000021	CN	NGG6	Container	126.7541046	2018-01-02 10:17	N667434	20	2	11000	10	10	8000	140	LWMA34	Hong Kon	g, China				18	8 0.001742858
TEST_000022	MY	EFG4	Container	0	2020-05-05 5:01	W617545	20	2	5200	10	10	3840	100	CMLA18	Vanuatu	1.04	1.34	27.6	1.602700967	13	7.01E-05
TEST_000023	CN	JTD1	Bulk	21.09388328	2020-10-19 8:50	W285657	30		75300	20	10	40900	220	DDBP51	China, Per	1.71	-4.48	11	3.204329282	16	6 0.000556558
TEST_000024	TW	EKP8	Container	0	2022-02-07 6:57	N552716	20	1	13700	10	10	9920	150	ENFG14	Hong Kon	0.06	-0.67	18.2	0.865104709	14	4 0.000427115
TEST_000025	JP	QYY1	Cargo	0	2022-10-28 2:27	J361314	10	1	1600	10	0	500	80	GMAU61	Japan	0.44	-1.69	16.6	1.63411088	11	0.000551732
TEST_000026	CN	NCU8	Container	0	2018-03-27 0:12	P188467	40	2	69200	20	10	65500			United Kin	-				8	8 0.000939155
TEST_000027	CN	EKP8	Container	0	2020-12-17 23:28	G668727	30		35300	20	10	26800	190	OAJG44	Hong Kon	-1.63	-9.89	-0.6	5.238494693	1	7 0.001660242
TEST 000028	CN	JTD1	Bulk	0	2016-11-10 20:18	Q172674	30	2	25400	10	10	15100	160	QWOE62	Cameroon						4 0.000556558

2. 데이터 확인

* 데이터 이해

- 학습 데이터와 시험데이터는 모두 결측치를 가지고 있으며, 공통적으로 U_WIND, V_WIND, AIR_TEMPERATURE, BN변수에서 결측치를 갖는다는 공통점이 있다.
- 기본적으로 DIST변수가 0의 값을 가지면, CI_HOUR의 값 또한 0을 가진다는 것을 전제로 한다.
- PORT_SIZE는 도착항의 항구마다 다르며, 즉 항구마다 항구크기가 겹치지 않아, PORT_SIZE를 도착항을 대표한다고 할 수 있다.

Feature Name	Description	Feature Name	Description
ARI_CO	도착항의 소속국가(도착항 앞 2글자)	GT	용적톤수(Gross Tonnage)값
ARI_PO	도착항의 항구명(도착항 뒤 글자)	LENGTH	선박의 길이
SHIP_TYPE_CATEGORY	/ 선종 통합 바탕으로 5대 선종으로 분류	SHIPMANAGER	선박 소유주
DIST	정박지(ber_port)와 접안지 사이의 거리	FLAG	선박의 국적
ATA	anc_port에 도착한 시점의 utc. 실제 정박 시각(Actual Time of Arrival)	U_WIND	풍향 u벡터
ID	선박식별 일련번호	V_WIND	풍향 ∨벡터
BREADTH	선박의 폭	AIR_TEMPERATURE	기온
BUILT	선박의 연령	BN	보퍼트 풍력 계급
DEADWEIGHT	선박의 재화중량톤수	ATA_LT	anc_port에 도착한 시점의 현지 정박 시각(Local Time of Arrival)(단위 : H)
DEPTH	선박의 깊이	PORT_SIZE	접안지 폴리곤 영역의 크기
DRAUGHT	· 출수 높이	CI_HOUR(target)	대기시간

EDA에 앞서..

결측치 처리

앞서 확인되었던 U_WIND, V_WIND, AIR_TEMPERATURE, BN의 결측치를 데이터가 완전한 2021년 이후의 데이터를 이용해 같은 달, 같은 시간의 데이터의 평균으로 결측치 대체

CI_HOUR에 따른 데이터 셋 분류

CI_HOUR가 0인 비율이 전체 중 30%가 넘기 때문에, 따로 나누어 모델을 학습하는 것이 예측력을 높일 수 있지만 먼저 도착한 선박의 영향을 고려하기 위해 데이터셋을 분류하지 않음

이상치 제거

DIST가 0임에도 CI_HOUR가 0이 아닌 Train 데이터 제거 (28개의 데이터 제거)

날짜 형식의 ATA 변수로 파생변수 생성

EDA에 이용하기 위해, 날짜 형식의 ATA 변수로 년, 월, 일, 시간, 분을 나타내는 파생변수를 생성하고, ATA 변수 제거

* EDA 결과

- 다양한 EDA로 특징을 발견하기 위한 노력이 있었으나, 아래의 세가지 정도만 유의하다고 생각됨
- => EDA의 결과에 따라, PORT_SIZE에 따라 3개의 데이터셋에 대한 각각의 모델 생성하기로 결정 (PORT_SIZE <= 0.0005, 0.0005 < PORT_SIZE < 0.0020, PORT_SIZE > 0.0020)

x축 GT, y축 PORT_SIZE, z축 CI_HOUR

x축 DIST, y축 PORT_SIZE, z축 CI_HOUR

x축 DIST, y축 PORT_SIZE, z축 CI_HOUR (SHIP_TYPE_CATEGORY = Container 경우)

* 파생변수 생성 및 PCA로 변수 변환

GT/Port_Size	GT / 항구별 PORT_SIZE 항구의 화물처리능력을 의미
ARI_CO_mean	도착 나라별 CI_HOUR 평균
ARI_PO_mean	도착 항구별 CI_HOUR 평균
Weekday	월~일을 나타내며 1~7로 표현됨, 휴일의 영향을 고려
SHIP_PHYSICAL	서로 상관계수가 높은 GT. DEADWEIGHT, LENGTH, BREADTH, DEPTH, DRAUGHT를 PCA를 통해 하나의 변수로 변환

PCA로 생성된 한 개의 주성분(SHIP_PHYSICAL)으로도 나머지 6개의 변수 GT. DEADWEIGHT, LENGTH, BREADTH, DEPTH, DRAUGHT를 잘 설명할 수 있음을 보임

* Label Encoding 및 Min-Max scaling 수행

Label Encoding

- 머신 러닝과 데이터 처리에서 범주형 데이터 (카테고리형 데이터)를 숫자형으로 변환

Min-Max Scale

- 데이터를 정해진 범위 내로 스케일링하는 방법 중 하나
- 이상치(outliers)에 민감하다는 특징을 가짐
- 일반적으로 신경망과 같은 기계 학습 모델에서 입력 데이터를 전처리할 때 유용하게 사용

* 모델1(PORT_SIZE < = 0.0005)의 학습에 이용할 변수 선택 => LGBM 기준으로 Feature Importance가 95이상인 변수들 선정

Data columns (total 12 columns):

#	Column	Non-Null Count
n	DIST	186615 non-null
Ī	ID	186615 non-null
2	BUILT	186615 non-null
3	SHIPMANAGER	186615 non-null
4	AIR_TEMPERATURE	
5	BN	186615 non-null
6	year	186615 non-null
7	month	186615 non-null
8	GT/Port_Size	186615 non-null
9	ARI_PO_mean	186615 non-null
10	weekday	186615 non-null
11	SHIP_ PHYSICAL	186615 non-null

* 모델2(0.0005 〈 PORT_SIZE 〈= 0.0020)의 학습에 이용할 변수 선택 =〉 LGBM 기준으로 Feature Importance가 95이상인 변수들 선정

	columns (total 16 c	•
#	Column	Non-Null Count
0	SHIP_TYPE_CATEGORY	161435 non-null
1	DIST	161435 non-null
2	ID	161435 non-null
3	BUILT	161435 non-null
4	SHIPMANAGER	161435 non-null
5	FLAG	161435 non-null
6	U_WIND	161435 non-null
7	V_WIND	161435 non-null
8	AIR_TEMPERATURE	161435 non-null
9	BN	161435 non-null
10	year	161435 non-null
11	month	161435 non-null
12	GT/Port_Size	161435 non-null
13	ARI_PO_mean	161435 non-null
14	weekday	161435 non-null
15	SHIP_ PHYSICAL	161435 non-null

* 모델3(PORT_SIZE > 0.0020)의 학습에 이용할 변수 선택 => LGBM 기준으로 Feature Importance가 115이상인 변수들 선정

Data columns (total 12 columns):

#	Column	Non-Null Count
0	DIST	43860 non-null
1	ID	43860 non-null
2	BUILT	43860 non-null
3	SHIPMANAGER	43860 non-null
4	FLAG	43860 non-null
5	V_WIND	43860 non-null
6	AIR_TEMPERATURE	43860 non-null
7	year	43860 non-null
8	month	43860 non-null
9	GT/Port_Size	43860 non-null
10	weekday	43860 non-null
11	SHIP_ PHYSICAL	43860 non-null

* 모델링 - Autogluon

- AutoGluon은 AutoML(Automated Machine Learning) 라이브러리로, 다양한 기계 학습 작업을 자동화하고 최적화하는 데 사용됨
- AutoGluon은 여러 가지 모델을 조정하고 최상의 모델과 하이퍼 파라미터를 선택하여 모델을 구축하고 튜닝하는 작업을 자동화하기 때문에 쉽고 간편하게 이용 가능
- AutoGluon은 다음과 같은 주요 기능을 제공함
 - 1. 다양한 모델 선택: 다양한 종류의 기계 학습 모델들을 지원함
- 2. 하이퍼 파라미터 튜닝: 모델링에 사용되는 하이퍼 파라미터들을 자동으로 튜닝함
- 3. 자동 특성 엔지니어링: 데이터로부터 유용한 특성을 추출하거나 생성하여 모델의 성능을 향상시킴
- 4. 분산 학습 및 스태킹: 여러 머신에서 학습을 병렬로 수행하거나, 여러 모델을 결합하여 더 나은 예측을 가능케 하는 앙상블 방법을 지원함
- => 실제 모델링에서는 regression 옵션을 통해, 회귀에 적합한 모델들만 사용하였고, 앙상블 옵션과, 스태킹 옵션 또한 이용함. 추가로 평가지표를 선택할 수 있는 옵션이 제공되어, 평가지표인 MAE를 기준으로 validatio의 MAE를 확인할 수 있다.

* 평가지표 - MAE

- MAE(평균 절대 오차, Mean Absolute Error)는 회귀(Regression) 모델의 성능을 측정하는 평가 지표 중 하나
- 모델이 예측한 값과 실제 값 사이의 차이를 절대값으로 계산하고, 이를 모든 데이터 포인트에 대해 평균을 내어 구함
- MAE값이 낮을수록 예측 성능이 좋다고 할 수 있음

```
Fitting model: LightGBMXT_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -56.995 = Validation score (-mean_absolute_error)
       6.4s = Training runtime
       4.19s = Validation runtime
Fitting model: LightGBM_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -56.9438 = Validation score (-mean absolute error)
       7.74s = Training runtime
       3.58s = Validation runtime
Fitting model: RandomForestMSE_BAG_L3 ...
       -60.3938 = Validation score (-mean_absolute_error)
       226.86s = Training runtime
       7.41s = Validation runtime
Fitting model: CatBoost_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -56.9568 = Validation score (-mean_absolute_error)
       13.38s = Training runtime
       0.12s = Validation runtime
Fitting model: ExtraTreesMSE_BAG_L3 ...
       -59.71 = Validation score (-mean_absolute_error)
       27.9s = Training runtime
       6.07s = Validation runtime
Fitting model: NeuralNetFastAl_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -54.3366 = Validation score (-mean_absolute_error)
       226.98s = Training runtime
       9.2s = Validation runtime
Fitting model: XGBoost_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -52.0631 = Validation score (-mean_absolute_error)
       9.02s = Training runtime
       1.46s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -50.2121 = Validation score (-mean_absolute_error)
       201.07s = Training runtime
       3.68s = Validation runtime
Fitting model: LightGBMLarge_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -57.1414 = Validation score (-mean_absolute_error)
       9.57s = Training runtime
       7.6s = Validation runtime
Fitting model: WeightedEnsemble_L4 ...
       -50.2121 = Validation score (-mean_absolute_error)
       3.66s = Training runtime
       0.0s = Validation runtime
```

- 모델1(PORT_SIZE < = 0.0005)의 Autogluon 결과
- => WeightedEnsemble_L4 모형의 Validation MAE가 50.2121로 가장 낮게 나타남

Model	Validation MSE
LightGBMXT_BAG_L3	56.995
LightGBM_BAG_L3	56.938
RandomForestMSE_BAG_L3	60.3938
CatBoost_BAG_L3	56.9568
ExtraTreesMSE_BAG_L3	59.71
NeuralNetFastAI_BAG_L3	54.3366
XGBoost_BAG_L3	52.0631
NeuralNetTorch_BAG_L3	50.2121
LightGBMLarge_BAG_L3	57.1414
WeightedEnsemble_L4	50.2121

```
Fitting model: LightGBMXT_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -30.3741
                     = Validation score (-mean_absolute_error)
       7.12s = Training runtime
       3.57s = Validation runtime
Fitting model: LightGBM_BAG_L3 ...
      Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -30.2323 = Validation score (-mean_absolute_error)
       6.65s = Training runtime
       2.97s = Validation runtime
Fitting model: RandomForestMSE_BAG_L3 ...
       -32.8365 = Validation score (-mean_absolute_error)
       197.39s = Training runtime
       6.0s = Validation runtime
Fitting model: CatBoost BAG L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
                     = Validation score (-mean_absolute_error)
       11.82s = Training runtime
       0.11s = Validation runtime
Fitting model: ExtraTreesMSE_BAG_L3 ...
       -32.628 = Validation score (-mean_absolute_error)
       29.06s = Training runtime
       5.32s = Validation runtime
Fitting model: NeuralNetFastAl_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
                      = Validation score (-mean absolute error)
       200.25s = Training runtime
       9.1s = Validation runtime
Fitting model: XGBoost_BAG_L3 ...
      Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -27.0164 = Validation score (-mean_absolute_error)
       9.79s = Training runtime
       1.15s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -25.9751 = Validation score (-mean_absolute_error)
       154.19s = Training runtime
       3.24s = Validation runtime
Fitting model: LightGBMLarge_BAG_L3 ...
      Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -30.4952 = Validation score (-mean_absolute_error)
       8.54s = Training runtime
       5.51s = Validation runtime
Fitting model: WeightedEnsemble_L4 ...
       -25.9689 = Validation score (-mean_absolute_error)
       3.22s = Training runtime
       0.01s = Validation runtime
```

- * 모델2(0.0005 〈 PORT_SIZE 〈= 0.0020) 의 Autogluon 결과
- => WeightedEnsemble_L4 모형의 Validation MAE가 25.9751로 가장 낮게 나타남

Model	Validation MSE
LightGBMXT_BAG_L3	30.3741
LightGBM_BAG_L3	30.2323
RandomForestMSE_BAG_L3	32.8365
CatBoost_BAG_L3	30.2057
ExtraTreesMSE_BAG_L3	32.628
NeuralNetFastAI_BAG_L3	28.7976
XGBoost_BAG_L3	27.0164
NeuralNetTorch_BAG_L3	25.9751
LightGBMLarge_BAG_L3	30.4952
WeightedEnsemble_L4	25.9751

```
Fitting model: LightGBMXT_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -100.6855 = Validation score (-mean_absolute_error)
       4.66s = Training runtime
       1.39s = Validation runtime
Fitting model: LightGBM_BAG_L3 ...
      Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -100.475 = Validation score (-mean_absolute_error)
       4.67s = Training runtime
       0.94s = Validation runtime
Fitting model: RandomForestMSE_BAG_L3 ...
       -107.0598 = Validation score (-mean_absolute_error)
       46.04s = Training runtime
       2.01s = Validation runtime
Fitting model: CatBoost_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -100.1354 = Validation score (-mean_absolute_error)
       7.79s = Training runtime
       0.05s = Validation runtime
Fitting model: ExtraTreesMSE_BAG_L3 ...
       -107.6784 = Validation score (-mean_absolute_error)
       8.06s = Training runtime
       1.93s = Validation runtime
Fitting model: NeuralNetFastAl_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -95.9504 = Validation score (-mean_absolute_error)
       58.37s = Training runtime
       2.28s = Validation runtime
Fitting model: XGBoost BAG L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -93.0233 = Validation score (-mean_absolute_error)
       7.22s = Training runtime
       0.3s = Validation runtime
Fitting model: NeuralNetTorch_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -81.0231 = Validation score (-mean_absolute_error)
       75.63s = Training runtime
       1.08s = Validation runtime
Fitting model: LightGBMLarge_BAG_L3 ...
       Fitting 6 child models (S1F1 - S3F2) | Fitting with ParallelLocalFoldFittingStrategy
       -101.6536 = Validation score (-mean_absolute_error)
       6.42s = Training runtime
       1.74s = Validation runtime
Fitting model: WeightedEnsemble_L4 ...
       -81.0115 = Validation score (-mean_absolute_error)
       0.87s = Training runtime
       0.0s = Validation runtime
```

- * 모델3(PORT_SIZE > 0.0020) 의 Autogluon 결과
- => WeightedEnsemble_L4 모형의 Validation MAE가 81.0115로 가장 낮게 나타남

Model	Validation MSE
LightGBMXT_BAG_L3	100.6855
LightGBM_BAG_L3	100.475
RandomForestMSE_BAG_L3	107.0598
CatBoost_BAG_L3	100.1354
ExtraTreesMSE_BAG_L3	107.6784
NeuralNetFastAI_BAG_L3	95.9504
XGBoost_BAG_L3	93.0233
NeuralNetTorch_BAG_L3	81.0231
LightGBMLarge_BAG_L3	101.6536
WeightedEnsemble_L4	81.0115

5. 결론

결론 및 아쉬운 점

- *모델 1과 모델 2는 Validation MAE가 각각 약 50, 25로 양호했던 반면, 모델 3는 약 81로 좋지 못한 예측력을 나타냈음 => 모델 3 즉, PORT_SIZE가 0.0020보다 큰 항구에 대해선 모델 1, 2와 결합하거나 또다른 방식으로 학습을 하는 것이 타당해 보임
- *최종적으로 발표한 모델을 통해 public 45.18991, private 44.96305를 얻을 수 있었음
- => public보다 private에서 점수가 조금 더 높았던 이유는 배깅과 스태킹을 통한 앙상블로 인해 과적합이 방지되었을 것으로 생각됨
- * 데이터를 통해 특정한 패턴을 확인하지 못했고, 도메인 지식이 너무 부족했다는 것이 대회 내내 느껴져서 아쉬웠음

감사합니다