

Chebyshev Inequalities

Dirk Grunwald
University of Colorado, Boulder

Dirk Grunwald | University of Colorado, Boulder Chebyshev Inequalities |

Chebyshev's Inequality

Let Y be a R.V. with expected value E[Y] and variance Var[Y] and P[Y < 0] = 0.

Chebyshev's Inequality

Let Y be a R.V. with expected value E[Y] and variance Var[Y] and P[Y < 0] = 0.

Markov Inequality is $P[X \ge t] \le \frac{E[X]}{t}$.

Chebyshev's Inequality

Let Y be a R.V. with expected value E[Y] and variance Var[Y] and P[Y < 0] = 0.

Markov Inequality is $P[X \ge t] \le \frac{E[X]}{t}$.

Now, substitute $X = (Y - E[Y])^2$ and $w^2 = t$ into Markov Inequality.

$$P[(Y - E[Y])^2 \ge w^2] \le \frac{E[(Y - E[Y])^2}{w^2}$$

Chebyshev's Inequality - Absolute Value

$$P[(Y - E[Y])^2 \ge w^2] \le \frac{E[(Y - E[Y])^2}{w^2}$$

Chebyshev's Inequality - Absolute Value

$$P[(Y - E[Y])^{2} \ge w^{2}] \le \frac{E[(Y - E[Y])^{2}}{w^{2}}$$
$$\le \frac{Var[Y]}{w^{2}}$$

And $E[(Y - E[Y])^2]$ is Var[Y]

Chebyshev's Inequality - Absolute Value

$$P[(Y - E[Y])^{2} \ge w^{2}] \le \frac{E[(Y - E[Y])^{2}}{w^{2}}$$

$$\le \frac{Var[Y]}{w^{2}}$$

$$P[(Y - E[Y])^{2} \ge w^{2}] = P[|(Y - E[Y])| \ge w]$$

And $E[(Y - E[Y])^2]$ is Var[Y]

Rearrange terms noting that $(Y - E[Y])^2 \ge w^2$ whenever $|Y - E[Y]| \ge w$.

Chebyshev's Inequality - Rearranged

$$P[|Y - E[Y]| \ge w] \le \frac{Var[Y]}{w^2}$$

Chebyshev's Inequality - Rearranged

$$\begin{split} P[|Y - E[Y]| \geq w] & \leq \frac{Var[Y]}{w^2} \\ P[|Y - E[Y]| \geq w' \sqrt{Var[Y]}] & \leq \frac{Var[Y]}{(w' \sqrt{Var[Y]})^2} \end{split}$$

Substitue $w = w' \sqrt{Var[Y]}$

$$P[|Y - E[Y]| \ge w] \le \frac{Var[Y]}{w^2}$$

$$P[|Y - E[Y]| \ge w' \sqrt{Var[Y]}] \le \frac{Var[Y]}{(w' \sqrt{Var[Y]})^2}$$

$$P[|Y - E[Y]| \ge w' \sqrt{Var[Y]}] \le \frac{1}{w'^2}$$

Cancel Var[Y] on r.h.s.

The probability of drawing a sample greater than 2 standard deviations from the mean is less than 25%.

Markov and Chebyshev's Inequality - Example

- Suppose an interactive computer is proposed for which it is estimated that the mean response time E[T] = 0.5 seconds.
- By Markov's inequality, the probability of the response time be more than 2 seconds would be $P[T > 2] \le \frac{0.5}{2}$ or 25%. This is very conservative.

- Suppose an interactive computer is proposed for which it is estimated that the mean response time E[T] = 0.5 seconds.
- By Markov's inequality, the probability of the response time be more than 2 seconds would be $P[T > 2] \le \frac{0.5}{2}$ or 25%. This is very conservative.
- If the estimated standard deviation is 0.1 seconds, then Chebyshev's inequality tells us $P[(T \le 0.25) \cup (T \ge 0.75)] = P[|T 0.5| \ge 0.25]$ which is $\le \frac{0.1^2}{0.25^2}$ or ≤ 016 .
- So, there's an 84% probabilty of the response time being between 0.25 and 0.75 seconds.

Markov and Chebyshev's Inequality - Example

- We'll see relations like $P[|T - 0.5| \ge 0.25]$ often. We expanded this to $P[(T \le 0.25) \cup (T \ge 0.75)]$ above.
- We're excluding the symmetric lower and upper portions of the event space.

Chebyshev's Inequality - One Sided

- It's also possible to derive one sided inequalities...
- $P[X \le t] \le \frac{\sigma^2}{\sigma^2 + (t E[X])^2}$ if $t < \overline{E[X]}$
- $P[X > t] \le \frac{\sigma^2}{\sigma^2 + (t E[X])^2}$ if $t \ge E[X]$
- but we won't go through derivation.