Scale = MatchLowercase, Ligatures = TeX Source Sans Pro Source Serif Pro Source Code Pro

Fira Math STIX Two Text[BoldFeatures = Color = cornellred] Fira Math[range=it/greek,Greek-

=> we're after this!!

— Let $\mathbf{q}_{j+1} = \widehat{\mathbf{u}}_{j+1} | =>$ we have \mathbf{next}

 $\mathsf{ONB} \langle \mathbf{q}_1, \dots, \mathbf{q}_{j+1} \rangle | \mathsf{for} \ U_{j+1} |$

; up, Colour=darkmagenta| STIX Two Math[range=:, :] FiraMath[range=]

 $U \perp W$ i.e. the image and kernel of π are

— infact they are eachother's **orthogonal**

orthogonal subspaces

Basic identities of matrix/vector • An orthogonal projection further satisfies

 $(A+B)^T = A^T + B^T$

 $(AB)^T = B^T A^T$

```
* \mathbf{b} = \mathbf{b}_i + \mathbf{b}_k | where \mathbf{b}_i \in \mathrm{C}(A) |
                                                                           i.e. U^{\perp} = W, W^{\perp} = U (because finite-dimensional vectorspaces)
(A^{-1})^T = (A^T)^{-1}
                                                                                                                                                       \mathbf{u}_{j+1} = \left(\mathbf{I}_m - Q_j Q_j^T\right) \mathbf{a}_{j+1} = \mathbf{a}_{j-1} \mathbf{f}_1 \mathbf{f}^{-1} | resists (i.e. its bijective and
                                                                                                                                                                                                                                                                                                    and \mathbf{b}_k \in \ker(A^T)
(AB)^{-1} = B^{-1}A^{-}
                                                                          — so we have
                                                                                                                                                                                                                                                                                                  *\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k where \mathbf{b}_i \in \mathrm{R}(A)
                                                                                                                                                                                                                    T \mid \overline{(\mathbf{F}_{CB})}^{-1} = \mathbf{F}^{-1}_{BC} \mid \text{(where)}
                                                                             \pi(x)\cdot y = \pi(x)\cdot \pi(y) = x\cdot \pi(y)|
                                                                                                                                                       \mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]
                                                                                                                                                                                                                                                                                                    and \mathbf{b}_k \in \ker(A)
For \underline{A \in R^{m \times n}}, A_{ij} is the \underline{i} th ROW
                                                                             \pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0
then j th {\bf COLUMN}
                                                                                                                                                                                                                                                                                          Back-to-basics: revise a-levels
                                                                                                                                                      \frac{1}{Q_j}\mathbf{c}_j = \sum_{j=1}^{j} (\mathbf{q}_i \cdot \mathbf{a}_{j+1})\mathbf{q}_i = \sum_{j=1}^{j} \Pr_{\mathbf{M} \in \mathcal{M}} \frac{o(f-1)_j}{f^{\mathbf{M} \cap \mathbf{M}}}
(A^T)_{i\underline{j}} = A_{ji}
                                                                                                                                                                                                                                                                                          trigenometry
                                                                                                                                                                                                                                                                                                                                                                    subordinate matrix norm | | · | | on
                                                                       Projection properties
                                                                                                                                                                                                                                                                                           • a^2 + b^2 = c^2 | (Pythagorean theorem)
                                                                        By Cauchy-Schwarz inequality we have
                                                                                                                                                                                                                       map is called change-in-basis matrix
(AB)_{ij} = A_{i*} \cdot B_{*j} = \sum_{i} A_{ik} B_{kj}
                                                                         \|\pi(x)\| \le \|x\|
                                                                                                                                                                                                                      — The identity matrix \mathbf{I}_m | represents
                                                                                                                                                                                                                                                                                           • c = \sqrt{a^2 + b^2 - 2ab \cdot \cos \gamma} (law of
                                                                                                                                                                                                                         = \underbrace{\frac{\operatorname{id}_{R}m}{\operatorname{E}_{m}}}_{\text{E}_{m}} \underbrace{\begin{bmatrix} \text{w.n.} & \text{the standard basis} \\ \text{proj}_{\mathbf{q}_{i}} & \mathbf{a}_{j+1} \\ \text{e}_{1}, \dots, \mathbf{e}_{m} \rangle}_{\text{e}_{1}} = >
                                                                        The orthogonal projection onto the line
                                                                                                                                                                                                                                                                                                                                                                    — Alternative expressions:
                                                                                                                                                       \mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{n} (\mathbf{q}_i \cdot \mathbf{a}_{j+1}) \mathbf{q}_i =
                                                                                                                                                                                                                                                                                            cosines)
                                                                         containing vector \underline{u} is \operatorname{proj}_u = \hat{u}\hat{u}^T
                                                                                                                                                                                                                                                                                             \sin A \quad \sin B \quad \sin C
                                                                        which can also be written as
                                                                                                                                                                                                                          i.e. I_m = I_{EE}
                                                                                                                                             • Let \mathbf{a}_1, \dots, \mathbf{a}_n \in R^m \mid (\underline{m \geq n}) be linearly independent, i.e. basis of \underline{n}-dim
                                                                         \operatorname{proj}_{u}(v) = \frac{u \cdot v}{u}
    Ty = y^T x = x \cdot y = \sum x_i y_i
                                                                                                                                                                                                                       - If B = \langle \mathbf{b}_1, \dots, \mathbf{b}_m \rangle is a basis of
                                                                                    u \cdot u
                                                                                                                                                                                                                          \underline{R^m} then \underline{\mathbf{I}}_{EB} = [\mathbf{b}_1| \dots |\mathbf{b}_m]
                                                                                                                                               subspace U_n = \operatorname{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\}
— We apply Gram-Schmidt to build ONB
                                                                         -\hat{\underline{u}} = \frac{\overline{u}}{\|\underline{u}\|} so \hat{\underline{u}} a unit vector on the

    TODO: angles, triangles, identities, etc.

\overline{x^T A x} = \sum \sum A_{ij} x_i x_j
                                                                                                                                                                                                                          is the transformation matrix from B to
                                                                                                                                                   \langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle \in \mathbb{R}^m for
                                                                                                                                                                                                                                                                                           Vector norms (beyond euclidean)
                                                                            line containing \hat{u}
                                                                                                                                                   U_n \subset R^m
                                                                                                                                                                                                                        -\underline{\mathbf{I}_{BE} = (\mathbf{I}_{EB})^{-1}}, so =>
                                                                                                                                                                                                                                                                                           vector norms are such that:
                                                                         - So we get
                                                                                                                                                  \overline{j=1} = \mathbf{u}_1 = \mathbf{a}_1 \text{ and } \mathbf{q}_1 = \widehat{\mathbf{u}}_1
                                                                                                                                                                                                                                                                                             ||x|| = 0 \iff x = 0
                                                                                                                                                                                                                          \mathbf{F}_{CB} = \mathbf{I}_{CE} \mathbf{F}_{EE} \mathbf{I}_{EB}
                                                                            \operatorname{proj}_{u}\left(v\right) = \hat{u}\,\hat{u}^{\,T}\,v =
                                                                                                                                               v \stackrel{\text{i.e. start. of (teration...}}{= 2} u_2 = \mathbf{a}_2 - (\mathbf{q}_1 \cdot \mathbf{a}_2)\mathbf{q}_1
                                                                                                                                                                                                                                                                                            ||x|| = 0 ||x|| ||x|| ||x + y|| \le ||x|| + ||y||
column-blocks =>
                                                                                                                                                                                                                      Dot-product uniquely determines a vector
                                                                                                                    ||u|||u||
   \underline{\lambda A} = \lambda [A_1 | A_2 | \dots] = [\lambda A_1 | \lambda A_2
                                                                                                                                                                                                                       w.r.t. to basis
                                                                           - A special case of
                                                                                                                                                 and \mathbf{q}_2 = \widehat{\mathbf{u}}_2 and so on...

— Linear independence guarantees that
                                                                                                                                                                                                                       - If a_i = x \cdot \mathbf{b}_i | then x = \sum a_i \mathbf{b}_i
                                                                                                                                                                                                                                                                                                                                                                   (and thus compatible with)
  \lambda A = \lambda [A_1; A_2; \dots] = [\lambda A_1; \lambda A_2;
                                                                        ...\pi(x) \cdot (y - \pi(y)) = 0 is
                                                                                                                                                                                                                                                                                            \|\mathbf{x}\|_p = \left(\sum_{i=1}^n |x_i|^p\right)
                                                                             \underline{u \cdot (v - \operatorname{proj}_{u} v)} = 0 since
                                                                                                                                                   \mathbf{a}_{j+1} \not\in U_j
Consider A, B \in \mathbb{R}^{m \times n} partitioned
                                                                                                                                                                                                                          we call \underline{a} the coordinate-vector of \underline{x}
                                                                             proj_u(u) = u
                                                                                                                                                  For exams: more efficient to compute as
column/row-wise in the same way = ¿
                                                                                                                                                                                                                          w.r.t. to B
                                                                       • If \overline{U \subseteq R^n \mid \text{is a } \underline{k} \mid }-dimensional subspace
                                                                                                                                                   \mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j |
matrix-addition distributes over:
                                                                                                                                                                                                                      Rank-nullity theorem
                                                                                                                                                                                                                                                                                          +\operatorname{di} \underline{p} = 1 \underline{\mathfrak{r}} (\|\boldsymbol{x}\|_1 = \sum_{i=1}^{n} |x_i|_1
                                                                                                                                                                                                                       \dim(\operatorname{im}(f)) + \dim(\ker(f)) = \operatorname{rk}(A)
                                                                         with orthonormal basis (ONB)
                                                                                                                                                   1) Gather
 column-blocks =:
                                                                         \langle \mathbf{u}_1, \dots, \underline{\mathbf{u}_k} \rangle \in R^m
                                                                                                                                                                                                                       i.e. properties of
  A + B = [A_1 | A_2 | \dots] + [B_1 | B_2 |
                                                                                                                                                       Q_j = [\mathbf{q}_1 | \dots | \mathbf{q}_j] \in \mathbb{R}^{m \times j}
                                                                       \frac{-\det \mathbf{U} = [\mathbf{u}_1 | \dots | \mathbf{u}_k] \in R^m \times k}{-\det \mathbf{u}_{\text{the matrix of corrunns}} \mathbf{u}_1, \dots, \mathbf{u}_k}
                                                                                                                                                                                                                       transformation-matrices/liner maps
                                                                                                                                                                                                                                                                                              -\underline{p}=2
 row-blocks
                                                                                                                                                       all-at-once
   A + B = [A_1; A_2; \dots] + [B_1; B_2;
                                                                                                                                                                                                                                                                                                                                                                a function of \underline{M} -

    f | is injective/monomorphism iff

Consider A = [A_1; A_2, \dots] \in \mathbb{R}^{m \times k}, B = [B_1 | \overline{B}_2] \dots \in \mathbb{R}^{m \times k} by operation onto the
                                                                                                                                                       \mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \underbrace{\ker(f) = \{\mathbf{0}\}}_{\text{iff } \underline{A} \text{ jis full-rank}}^{\text{HIII}}
                                                                              subspace \underline{U} is \pi_U = \mathbf{U}\mathbf{U}^T
                                                                                                                                                                                                                                                                                                                                                                prove x_M \cdot A_{M*} = \|A_{M*}\|_1
                                                                                                                                                       all-at-once
                                                                                                                                                                                                                    Orthogonality concepts
                                                                                                                                                   3) Compute Q_j \mathbf{c}_j \in \mathbb{R}^m and
                                                                                                                                                                                                                                                                                                \frac{\mathbf{r}}{\|\mathbf{x}\|_{\infty}} = \lim_{p \to \infty} \|\mathbf{x}\|_p = \max_{1 \le i \le n}
 • column-blocks =>
                                                                         - Can be rewritten as
                                                                                                                                                                                                                     • \underline{u \perp v} \iff \underline{u \cdot v} = 0, i.e. \underline{u} and \underline{v} are
   AB = A[B_1 | B_2 | \dots] = [AB_1 | AB_2 | \dots \pi_U(v) = \sum (\mathbf{u}_i \cdot v) \mathbf{u}_i
                                                                                                                                                      subtract from \mathbf{a}_{j+1} | all-at-once
                                                                                                                                                                                                                                                                                            Any two norms in R^n are equivalent,
                                                                                                                                                                                                                     \underline{u} and \underline{v} are orthonormal iff
  AB = [A_1; A_2; \dots] B = [A_1B; A_2] B; \quad \text{if } \langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle \text{ is not orthonormal,}
                                                                                                                                                                                                                                                                                            meaning there exist r > 0, s > 0 such
                                                                                                                                            Properties of dot product & (in-
                                                                                                                                                                                                                       u \perp v, ||u|| = 1 = ||v||
                                                                            then "normalizing factor" (\mathbf{U}^T\mathbf{U})^{-1}
A = [A_1 | \dots | A_p] \in \mathbb{R}^{m \times k}, B = [B]
                                                                                                                                                                                                                      A \in \mathbb{R}^{n \times n} is orthogonal iff
                                                                                                                                                                                                                                                                                                                                                               Properties of matrices
                                                                                                                                           duced) norm
                                                                                                                                                                                                                                                                                             \forall \mathbf{x} \in \mathbb{R}^n, r \|\mathbf{x}\|_a \leq \|\mathbf{x}\|_b \leq s \|\mathbf{x}\|_a
                                                                                                                                                                                                                      A^{-1} = A^{T}
                                                                                                                                                                                                                                                                                                                                                                 • Consider A \in R^{m \times n}
                                                                                                                                                                                                                                                                                             - Equivalence of \ell_1 , \ell_2 and \ell_{\infty} =>
=¿ outer-product sum equivalence:
                                                                              \pi_U = \mathbf{U}(\mathbf{U}^T \mathbf{U})^{-1} \mathbf{U}^T |
                                                                                                                                             \bullet x^T y = y^T x = x \cdot y = \sum x_i y_i
                                                                                                                                                                                                                          Columns of A = [\mathbf{a}_1 | \dots | \mathbf{a}_n] are
                                                                                                                                                                                                                                                                                                                                                                 • If Ax = x for all x then A = I

    If partition-sizes match =>

                                                                                                                                                                                                                                                                                                \|x\|_{\infty} \le \|x\|_{2} \le \|x\|_{1}
                                                                              * For line subspaces U = \operatorname{span}\{u\},
                                                                                                                                                                                                                          \begin{array}{l} \text{orthonormal basis (ONB)} \\ C = \langle \mathbf{a}_1, \, \dots, \, \mathbf{a}_n \rangle \in R^n \\ A = \mathbf{I}_{EC} \text{ is change-in-basis matrix} \end{array}
                                                                                                                                                                                                                                                                                                                                                                 • A is symmetric iff A = A^T
                                                                                                                                              x \cdot y = ||a|| ||b|| \cos \widehat{xy}|
                                                                                                                                                                                                                                                                                                \|\mathbf{x}\|_2 \le \sqrt{n} \|\mathbf{x}\|_{\infty}
                                                                               we have (\mathbf{U}^T\mathbf{U})^{-1} = (u^T\underline{u})^{-1} = 1/(2u^T\underline{u})^{-1}
   AB = \sum A_i B_i
                                                                                                                                            \bullet_{\mu} x \cdot y = y \cdot x
              i=1
                                                                                                                                                                                                                                                                                                \|\boldsymbol{x}\|_1 \leq \sqrt{n} \|\boldsymbol{x}\|_2
                                                                                                                                                                                                                          Orthogonal transformations preserve
 \bullet e.g. for A = [\mathbf{a}_1 | \dots | \mathbf{a}_n]
                                                                       Gram-Schmidt method to gener- \bullet \alpha x \cdot y = \alpha(x \cdot y)
                                                                                                                                                                                                                                                                                            Induce metric d(x, y) = \|y - x\| has
                                                                                                                                                                                                                           lengths/angles/distances =>
  \frac{B = [\mathbf{b}_1; \dots; \mathbf{b}_n]| =>}{AB = \sum_i \mathbf{a}_i \mathbf{b}_i|}
                                                                      ate orthonormal basis from any
                                                                                                                                            \bullet \ x \cdot x = \|x\|^2 = 0 \iff x = 0
                                                                                                                                                                                                                                                                                             additional properties:
                                                                                                                                                                                                                           linearly independent vectors
                                                                                                                                             • for x \neq 0, we have
                                                                                                                                                                                                                                                                                             - Translation invariance:
                                                                                                                                                                                                                                                                                                                                                                      are equivalent conditions
                                                                                                                                                                                                                                                                                             \begin{array}{l} d(x+w,\,y+w) = d(x,\,y) \big| \\ -\overline{\text{Scaling: }} d(\lambda x,\,\lambda y) = |\lambda| d(x,\,y)| \end{array} 
                                                                       • Gram-Schmidt is iterative [[#What is a
                                                                                                                                               x \cdot y = x \cdot z \implies x \cdot (y - z) = 0
                                                                                                                                                                                                                             of reflections and planar rotations
What is a projection
                                                                         projection|projection]] => we use current
                                                                                                                                              • |x \cdot y| \le ||x|| ||y|| (Cauchy-Schwartz
                                                                                                                                                                                                                          \det(A)=1 or \det(A)=-1, and all eigenvalues of A are s.t. |\lambda|=1
ullet A projection \underline{\pi:V	o V} is a
                                                                          j \mid dim subspace, to get next (j+1) \mid dim
                                                                                                                                                                                                                                                                                          Matrix norms
   endomorphism such that \pi \circ \pi = \pi, i.e. it
                                                                                                                                               \|u+v\|^2+\|u-v\|^2=2\|u\|^2+2\|v\|^2A\in R^{m\times n} is semi-orthogonal iff
                                                                                                                                                                                                                                                                                           • Matrix norms are such that:
                                                                          - Assume orthonormal basis (ONB) \langle \mathbf{q}_1, \dots, \mathbf{q}_j \rangle \in R^m for \underline{j} dim
   leaves its image unchanged (its idempotent)
                                                                                                                                                                                                                       \overrightarrow{A^T A} = I or AA^T = I
                                                                                                                                                                                                                                                                                             ||A|| = 0 \iff A = 0
 • A square matrix P such that P^2 = P is
                                                                                                                                                                                                                                                                                              |\lambda A| = |\lambda| ||A||
                                                                                                                                               ||u+v|| \le ||u|| + ||v|| (triangle
                                                                                                                                                                                                                       -\operatorname{If}\ n>m | then all m | rows are
  called a projection matrix
                                                                             subspace U_j \subset R^m
                                                                                                                                                                                                                                                                                              ||A + B|| \le ||A|| + ||B|||
                                                                                                                                                                                                                                                                                                                                                                   orthogonal, i.e. \mathbf{x}_1 \perp \overline{\mathbf{x}_2}
A is triangular iff all entries above
                                                                                                                                                                                                                          orthonormal vectors
   - It is called an orthogonal projection
                                                                                                                                                                                                                                                                                              - Matrices F^{m \times n} are a vector space so

    If <u>m > n</u> then all <u>n</u> columns are
orthonormal vectors

      matrix if P^2 = P = P^{\dagger}
                                                                                Q_j = [\mathbf{q}_1 | \dots | \mathbf{q}_j] \in \mathbb{R}^{m \times j}
                                                                                                                                                 u \perp v \iff ||u + v||^2 = ||u||^2 + ||v||^2
                                                                                                                                                                                                                                                                                                                                                                    (lower-triangular) or below
                                                                                                                                                                                                                                                                                                matrix norms are vector norms, all
      (conjugate-transpose)
                                                                                                                                                                                                                      \underbrace{U \perp V \subset R^n \iff \mathbf{u} \cdot \mathbf{v} = 0}_{\mathbf{u} \in U, \ \mathbf{v} \in V \ | \ \text{i.e. they are orthogonal}} 
                                                                                                                                                (pythagorean theorem)
                                                                                                                                                                                                                                                                                                 results apply
                                                                                be the matrix of columns

    Eigenvalues of a projection matrix must

                                                                                                                                                                                                                                                                                             Sub-multiplicative matrix norm (assumed
                                                                                                                                               \|c\|^2 = \|a\|^2 + \|b\|^2 - 2\|a\|\|b\|\cos \widehat{b} os \|\mathbf{u} \in U, \mathbf{v}
                                                                                \mathbf{q}_1, \ldots, \mathbf{q}_j
                                                                                                                                                                                                                                                                                                                                                                    - Triangular matrices =>
                                                                                                                                                                                                                                                                                             by default) is also such that
  Because \underline{\pi:V \to V} is a linear map, its
                                                                              * P_j = Q_j Q_j^T is [[#Projection
                                                                                                                                                                                                                                                                                             \begin{array}{c|c} |AB\| \leq \|A\| \|B\| \\ \hline \text{Common matrix norms, for some} \\ = A \in R^{m \times n} \\ v \in R^n \\ \hline \end{array}   \begin{array}{c|c} |x| \leq \|x+y\| \\ \hline \\ A \text{ is diagonal elements} \\ \hline \end{array}  i.e. if
                                                                                                                                                                                                                     • Orthogonal compliment of U \subset \mathbb{R}^n is
   image space U = \operatorname{im}(\pi) and null space
                                                                                                                                                                                                                       the subspace
                                                                                properties orthogonal projection]] onto
   W = \ker(\pi) are subspaces of V
                                                                                                                                            Properties of linear indepen-
                                                                                                                                                                                                                       U^{\perp} = \left\{ \ x \in R^n \ \middle| \ \forall y \in R^n : x \perp y \right.
    -\pi is the identity operator on U
   - The linear map \pi^* = I_V - \pi is also a
                                                                                                                                                                                                                       -R^n = U \oplus U^{\perp} \mid \text{and } (U^{\perp})^{\perp} = U
                                                                              * P_{\perp j} = \mathbf{I}_m - Q_j Q_j^T |  is
                                                                                                                                             ullet Let \mathbf{v}_1,\ldots,\mathbf{v}_k\in R^m | be linearly
                                                                                                                                                                                                                                                                                                                                                                   all off-diagonal entries are zero
       projection with
                                                                                                                                                                                                                           (because finite dimensional
                                                                                                                                                                                                                                                                                                \|A\|_2 = \sigma_1(A) i.e. largest singular
       W = \operatorname{im}(\pi^*) = \ker(\pi) and
                                                                                [[#Projection properties|orthogonal
                                                                                                                                               independent
                                                                                                                                                                                                                       -\underline{U\perp V} \iff \underline{U^{\perp}} = \underline{V} and
                                                                                                                                              • \mathbf{v}_i \neq 0 (proof by contradiction)
                                                                                                                                                                                                                                                                                                 value of A (square-root of [[tutorial
       U = \ker(\pi^*) = \operatorname{im}(\pi), i.e. they
                                                                                projection]] onto (U_j)^{\perp}
                                                                                                                                                                                                                           vice-versa (because finite dimensional)
                                                                                                                                                                                                                                                                                                 3#Singular Value Decomposition (SVD)
                                                                                (orthogonal compliment)
                                                                                                                                                                                                                                                                                                & Singular Values | largest eigenvalue]] of
                                                                                                                                             Transformation matrix of linear
                                                                                                                                                                                                                       -Y\subseteq X\Longrightarrow X^{\perp}\subseteq Y^{\perp} and
    * \pi j is a projection along \underline{W} onto \underline{U} * \pi^* is a projection along \underline{U} onto \underline{W} * \pi^* is the identity operator on \underline{W} - \underline{V} can be decomposed as \underline{V} = \underline{U} \oplus \underline{W}
                                                                                                                                                                                                                                                                                                 A^T A or AA^T
                                                                          – Assume \mathbf{a}_{j+1} \not\in U_j | = > unique
                                                                                                                                             map w.r.t. bases
                                                                                                                                                                                                                           X \cap X^{\perp} = \{0\}
                                                                                                                                                                                                                                                                                              -\overline{\|oldsymbol{A}\|_{\infty}}=\overline{\max_{i}}\|oldsymbol{A}_{ist}\|_{1} , note that
                                                                                                                                              ullet For linear map \underline{f}:R^n	o R^m ordered
                                                                             decomposition
                                                                                                                                                                                                                       - Any \mathbf{x} \in \mathbb{R}^n \mid \mathsf{can} be uniquely
                                                                                                                                                                                                                                                                                                                                                                     diagonal entries of \underline{A} – For x \in \mathbb{R}^n ,
                                                                                                                                               bases \langle \mathbf{b}_1, \dots, \mathbf{b}_n \rangle \in \mathbb{R}^n and
                                                                             \mathbf{a}_{j+1} = \mathbf{v}_{j+1} + \mathbf{u}_{j+1}
                                                                                                                                                                                                                          decomposed into \mathbf{x} = \mathbf{x}_i + \mathbf{x}_k , where
                                                                                                                                                                                                                                                                                                \|\boldsymbol{A}\|_1 = \|\boldsymbol{A}^T\|
       meaning every vector x \in \overline{V \mid \mathsf{can} \mathsf{\ be}}
                                                                                                                                                \langle \mathbf{c}_1, \dots, \mathbf{c}_m \rangle \in \mathbb{R}^m
                                                                              * \mathbf{v}_{i+1} = P_i (\mathbf{a}_{i+1}) \in U_i = >
      uniquely written as x = u + w
                                                                                                                                                                                                                          \mathbf{x}_i \in U \mid \text{and } \mathbf{x}_k \in U^{\perp} \mid
                                                                                                                                                                                                                                                                                                                                                                       Ax = \operatorname{diag}_{m \times n}(a_1, \dots, a_p)[x_1
                                                                                                                                                                                                                                                                                             - Frobenius norm:
                                                                                                                                               \overline{-\underline{A}=\mathbf{F}_{CB}\in R}^{m	imes n} is the
       *\underline{u \in U} and u = \pi(x)
                                                                                discard it!!
                                                                                                                                                                                                                     For matrix A \in R^{m \times n} and for
                                                                                                                                                                                                                                                                                                                                                                      (if p = m | those tail-zeros don't exist)
                                                                                                                                                                                                                                                                                                \|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n \left|\mathbf{A}_{ij}\right|^2}
       *\ w \in W and
                                                                                                                                                                                                                                                                                                                                                                    -\operatorname{\mathsf{Consider\ diag}}_{m \, 	imes \, n}(\mathbf{b}) , then
                                                                                                                                                  transformation-matrix of f w.r.t to
                                                                                                                                                                                                                       row-space R(A), column-space C(A)
          \frac{w \in \mathcal{N}}{w = x - \pi(x)} = (I_V - \pi)(x) = \pi^*(x) \Big|_{\mathbf{U}_{i+1} = \mathbf{P}_{+,i}} \left( \mathbf{a}_{i+1} \right) \in \left( U_i \right)^{\perp \mid i \mid}
                                                                                                                                                  bases B1 and C1
                                                                                                                                                                                                                                                                                                                                                                       \operatorname{diag}_{m} \vee_{n} (\mathbf{a}) + \operatorname{diag}_{m} \vee_{n} (\mathbf{b}) =
                                                                                                                                                                                                                       and null space \ker(A)
```

 $-f(\mathbf{b}_j) = \sum_{i=1}^{m} A_{ij} \mathbf{c}_i$ -> each \mathbf{b}_j

basis gets mapped to a linear

combination of $\sum a_i \mathbf{c}_i$ bases

 $-R(A)^{\perp} = \ker(A)$ and

 $C(A)^{\perp} = \ker(A^T)$

decomposed into

-Any $\mathbf{b} \in \mathbb{R}^m$ can be uniquely

```
\det(A) = \lambda \det \big( [a_1 | \ldots | x_i | \ldots |
                                                                                                                                                                                               \operatorname{diag}_{n \times k}(c_1, \ldots, c_q), \, q = \min(n, \, E) And the exact same linearity property for
          on \underline{R^n} and \|\cdot\|_{\underline{b}} on \underline{R^m} if
                                                                                                                                                                                                                                                                                                                                                                        rows A = [a_1; \ldots; a_n]
                                                                                                                                                                                               \operatorname{diag}_{m \times n}(a_1, \dots, a_p)\operatorname{diag}_{n \times k}(c_1, \operatorname{Immediate}) \operatorname{Tediag}_{m \times n}|A| = |A^T|
            - for all \mathbf{A} \in \mathbb{R}^{m \times n} and \mathbf{x} \in \mathbb{R}^n
             =>\|\overline{Ax}\|_b\leq \|A\|\|x\|_a
                                                                                                                                                                                                                                                                                                                                                                         \begin{vmatrix} \lambda A \end{vmatrix} = \lambda^n |A|  and \begin{vmatrix} AB \end{vmatrix} = \begin{vmatrix} BA \end{vmatrix} = |A| |B|  (for any
                                                                                                                                                                                                     r = \min(p, q) = \min(m, n, k)
            - If a = b, \|\cdot\| is compatible with
                                                                                                                                                                                                       and \mathbf{s} \in R^S, s = \min(m, k)
         \frac{\|\cdot\|_a}{-\text{Frobenius norm is consistent with }\ell_2}
                                                                                                                                                                                                                                                                                                                                                                        B \in \overline{R^n \times n \mid }
                                                                                                                                                                                       — Inverse of square-diagonals =>
                                                                                                                                                                                                                                                                                                                                                          • Alternating: if any two columns of A are
                                                                                                                                                                                             \operatorname{diag}(a_1,\ldots,a_n)^{-1} = \operatorname{diag}(a_1^-
                  norm => ||Av||_2 \le ||A||_F ||v||_2
                                                                                                                                                                                                                                                                                                                                                             equal (top,an) two rows of A are equal),
                                                                                                                                                                                            i.e. diagonals cannot be zero (division by
                                                                                                                                                                                                                                                                                                                                                                 then |A| = 0 (its singular)
       • For a vector norm \|\cdot\| on \underline{R}^n, the
                                                                                                                                                                                                                                                                                                                                                                  - Immediately from this (and
                                                                                                                                                                                             zero undefined)
                                                                                                                                                                                                                                                                                                                                                                       multi-linearity) => if columns (or rows)
                                                                                                                                                                                       — Determinant of square-diagonals =>
                                                                                                                                                                                                                                                                                                                                                                        are linearly-dependent (some are linear
               |A| = \max \{ ||Ax|| : x \in \mathbb{R}^n, ||x|| \neq 1 \} ||\operatorname{diag}(a_1, \dots, a_n)| = \prod a_i
                                                                                                                                                                                                                                                                                                                                                                        combinations of others) then |A| = 0
                                                                                                                                                                                                                                                                                                                                                                     - Stated in other terms =>
                                                                                                                                                                            |=1
(Fince they are technically triangular hatrices)
                  ||A|| = \max \{||Ax|| : x \in \mathbb{R}^n, ||x||\}
                                                                                                                                                                                                                                                                                                                                                                        \operatorname{rk}(A) < n \iff |A| = 0 |<=>
                                                                                                                                                                                                                                                                                                                                                                        RREF(A) \neq I_n \iff |A| = 0
                                         = \max \left\{ \frac{\|\boldsymbol{A}\boldsymbol{x}\|}{\|\boldsymbol{x}\|} : \boldsymbol{x} \in \boldsymbol{R}^n, \, \boldsymbol{x} \neq \underbrace{\text{the diagonals, i.e. } \operatorname{tr}(\boldsymbol{A})}_{\bullet \text{ The (column) rank of } \boldsymbol{A}} \right\} \text{ is number of } \boldsymbol{x} \neq \boldsymbol{x}
                                                                                                                                                                               \bullet For square \underline{A}, the trace of \underline{A} is the sum if
                                                                                                                                                                                                                                                                                                                                                                        (reduced row-echelon-form) <=
                                                                                                                                                                                                                                                                                                                                                                          C(A) \neq R^n \iff |A| = 0
                                                                                                                                                                                                                                                                                                                                                                        (column-space)
                                                                                                                                                                               linearly independent columns, i.e. rk(A) \leq 1 its the number of pivots in
                                                                                                                                                                                                                                                                                                                                                                     - For more equivalence to the above, see
                                          = \max \left\{ \|\boldsymbol{A}\boldsymbol{x}\| : \boldsymbol{x} \in R^n, \|\boldsymbol{x}\| \right\}
                                                                                                                                                                                                                                                                                                                                                                       invertible matrix theorem
       • Vector norms are compatible with their
                                                                                                                                                                                                row-echelon-form
                                                                                                                                                                                                                                                                                                                                                            Interaction with EROs/ECOs:
                                                                                                                                                                                               * I.e. its the dimension of the
                                                                                                                                                                                                                                                                                                                                                                 - Swapping rows/columns flips the sign,
       • For p=1,\,2,\,\infty matrix norm \|\cdot\|_p is
                                                                                                                                                                                                \begin{array}{l} \text{column-space} \\ \frac{\operatorname{rk}(A) = \dim(\operatorname{C}(A))}{\text{l.e.}} \text{ its the dimension of the} \end{array}
                                                                                                                                                                                                                                                                                                                                                                       e.g. \det ([a_1 | \dots | a_i | \dots | a_j |
          subordinate to the vector norm \|\cdot\|_p
                                                                                                                                                                                                                                                                                                                                                                  - Scaling a row/column by \lambda \neq 0 | will
                                                                                                                                                                                                                                                                                                                                                                        scale the determinant by \frac{\lambda}{\lambda} (by
                                                                                                                                                                                                     image-space
                                                                                                                                                                                                     \operatorname{rk}(A) = \operatorname{dim}(\operatorname{im}(f_A)) of linear
                                                                                                                                                                                                                                                                                                                                                                         multi-linearity)
    Trick for proofs: "picking a vec-
                                                                                                                                                                                                       \mathsf{map}\ f_A(x) = Ax
                                                                                                                                                                                                                                                                                                                                                                        * Remember to scale by \lambda^{-1} to
                                                                                                                                                                                        - The (row) rank of A | is number of
                                                                                                                                                                                                                                                                                                                                                                                maintain equality,
  Often times you might want to pick a vector
                                                                                                                                                                                             linearly independent rows
                                                                                                                                                                                                                                                                                                                                                                               i.e. \det(A) = \lambda^{-1} \det([a_1] \dots
  to prove a bound: say the index \underline{M} is special
                                                                                                                                                                                          - The row/column ranks are always the
                                                                                                                                                                                                                                                                                                                                                                   - Addition of rows/columns does not
  (e.g. maybe \| \boldsymbol{A}_{M*} \|_1 = \max_i \| \boldsymbol{A}_{i*} \|_1
                                                                                                                                                                                                                                                                                                                                                       change determinant A^T

change determinant A^T

A^T
      Then you could pick a vector x_{M} | based or
                                                                                                                                                                                             rk(A) = dim(C(A)) = dim(R(A))
                                                                                                                                                                                        A Lis full-rank iff
                                                                                                                                                                                          \overrightarrow{\operatorname{rk}}(A) = \min(m,n) i.e. its as linearly independent as possible
  e.g. (x_M)_j = \operatorname{sgn}(\mathbf{A}_{Mj}) can help
                                                                                                                                                                                                                                                                                                                                                               division by zero undefined), i.e. singular
                                                                                                                                                                                  Two matrices A, \widetilde{A} \in R^{m \times n} are
                                                                                                                                                                                                                                                                                                                                                              matrices are not invertible
 \begin{bmatrix} x_i \mid \\ \text{e.g.} \end{bmatrix} (x_M)_j = \begin{bmatrix} 1 & j = M, \\ 0 & j \neq M \end{bmatrix}  \text{can help}  
                                                                                                                                                                                     equivalent if there exist two invertible

    For block-matrices

                                                                                                                                                                                     matrices \underline{P} \in \underline{R^m \times m} and
                                                                                                                                                                                     Q \in R^{n \times n} such that
                                                                                                                                                                                      \overline{A = P\widetilde{A}Q^{-1}}
                                                                                                                                                                                                                                                                                                                                                                                                             \begin{pmatrix} B \\ D \end{pmatrix} = \det(A) \det(D - A)
                                                                                                                                                                                  Two matrices A, \widetilde{A} \in \mathbb{R}^{n \times n} are
                                                                                                                                                                                     similar if there exists an invertible matrix P \in |R^{n \times n}| such that
                                                                                                                                                                                                                                                                                                                                                                        if A \mid \text{or } D \mid \text{are invertible, } respectively
                                                                                                                                                                                      A = P\widetilde{A}P^{-1}

    Sylvester's determinant theorem.

                                                                                                                                                                                                                                                                                                                                                          \det (I_m + AB) = \det (I_n + BA)
• Matrix determinant lemma:
          -\underline{A} is Hermitian, iff \underline{A}=A^{\dagger} , i.e. its
                                                                                                                                                                                          - Similar matrices are equivalent, with
                   equal to its conjugate-transpose
                                                                                                                                                                                               Q = P
          -\underline{A}\underline{A}^{T} and \underline{A}^{T}\underline{A} are symmetric (and positive semi-definite)
                                                                                                                                                                                 \underline{A} is diagonalisable iff \underline{A} is similar to
                                                                                                                                                                                                                                                                                                                                                                       \det (\mathbf{A} + \mathbf{u}\mathbf{v}^T) = (1 + \mathbf{v}^T \mathbf{A}^{-1}\mathbf{v}^T)
                                                                                                                                                                                      some diagonal matrix D

    For real matrices, Hermitian/symmetric

                                                                                                                                                                                                                                                                                                                                                                        \det (\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det (\mathbf{I}_m + \mathbf{V}^T)
                                                                                                                                                                               Properties of determinants
            - Every eigenvalue \underline{\lambda_i} of Hermitian
                                                                                                                                                                                ullet Consider A \in R^{n 	imes n} , then
                                                                                                                                                                                                                                                                                                                                                                        \det (\mathbf{A} + \mathbf{U}\mathbf{W}\mathbf{V}^T) = \det (\mathbf{W}^{-1})
                                                                                                                                                                                    A_{ij}' \in \overline{R^{(n-1)\times(n-1)}} the
                          geometric multiplicity of \lambda_i = \text{geome}
                                                                                                                                                                                      (i,j) minor matrix of A, obtained by
                                                                                                                                                                                                                                                                                                                                                         Tricks for computing determi-
                    * and eigenvectors \mathbf{x}_1 , \mathbf{x}_2 associated
                                                                                                                                                                                     deleting \underline{i}-th row and j-th column from
                           to distinct eigenvalues \lambda_1,\lambda_2 are

    If block-triangular matrix then apply

                                                                                                                                                                                  Then we define determinant of A
                                                                                                                                                                                                                                                                                                                                                              \det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)
                                                                                                                                                                                  i.e. \det(A) = |A|, as
                                                                                                                                                                                                                                                                                                                                                          • If close to triangular matrix apply
            (upper-triangular) the main diagonal are
                                                                                                                                                                                            \det(A) = \sum_{i=1}^{n} (-1)^{i+k} A_{ik} \det(A_{ik} \text{ det}(A_{ik} \text{ ROS/ECOs to get it there, then its just})
                                                                                                                                                                                                                                                                                                                                                              product of diagonals
                                                                                                                                                                                                                                                                                                                                                          If Cholesky/LU/QR is possible and cheap
                                                                                                                                                                                            i.e. expansion along i th row *(for any
                                                                                                                                                                                                                                                                                                                                                         then do it, then apply |AB| = |A| |B|

• If all else fails, try to find row/column with
                                                                                                                                                                                                                                                                                                                                                              MOST zeros
                                                                                                                                                                                           \det(A) = \sum_{i=1}^{n} (-1)^{i+j} A_{kj} \det(A_{kj}) Perform minimal EROs/ECOs to get that
                                                                                                                                                                                                                                                                                                                                                                       row/column to be all-but-one zeros

    Sometimes refers to rectangular matrice

                                                                                                                                                                                                                                                                                                                                                                           * Don't forget to keep track of
                                                                                                                                                                                               i.e. expansion along j \mid \mathbf{th} column (for
                  but most often square matrices
                                                                                                                                                                                                                                                                                                                                                                                sign-flipping & scaling-factors
                                                                                                                                                                                 any j)

• When \det(A) = 0 | we call \underline{A} a singular matrix \underline{P} = \min(n, n)

    Do Laplace expansion along that

                  \operatorname{diag}_{\,m\,\times\,n}\left(\mathbf{a}\right)=\operatorname{diag}_{\,m\,\times\,n}\left(a_{\,1}\,,\right.
                                                                                                                                                                                                                                                                                                                                                                       row/column => notice all-but-one
                                                                                                                                                                                                                                                                                                                                                                       minor matrix determinants go to zero

    Common determinants

                   where \mathbf{a} = [a_1, \dots, a_p]^T \in \mathbb{R}^p
                                                                                                                                                                                      - \text{ For } \underline{n = 1} \text{ J}, \det(A) = A_{11} \text{ }
                                                                                                                                                                                                                                                                                                                                                         Representing EROs/ECOs as
                                                                                                                                                                                 -\operatorname{For} \frac{\overline{n \equiv 2}}{\det(A) = A_{11}A_{22} - A_{12}A_{21}} \\ - \det(\overline{I_n}) = 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\ - 1 \\
```

• Multi-linearity in columns/rows: if

 $athen_{\sim n}(a+b)$

 $A = [a_1 | \dots | a_j | \dots | a_n] = [a_1 |$

 $= \det(A) \det(B)$:

transformation matrices

• For $A \in \mathbb{R}^{m \times n}$, suppose a sequence of:

there is matrix $R \mid s.t.$ RA = A'

 $|\lambda E R Q s \mu g g f f o r m. A_{EROs} A'| =>$

$-$ ECOs transform $A_{\mathrm{ECOs}}A' =>$	of $\underline{R^n}$ consisting of $\mathbf{x}_1,\ldots,\mathbf{x}_n$	_	Singular Value Decomposition	1#Gram-Schmidt method to generate	principal axes and principal components	and substitute up	_ Notice:
there is matrix C s.t. $AC = A'$	$-\underline{A}$ is diagonalisable iff $r_i = g_i$ where	$A = [f_1(\mathbf{t}) \dots f_n(\mathbf{t})] \in \mathbb{R}^{m \times n}$	(SVD) & Singular Values	orthonormal basis from any linearly	- Data compression: If $\sigma_1 \gg \sigma_2$ then compress \underline{A} by projecting in direction of	— Then solve the second-to-last row	$ \begin{array}{c} - \text{ Notice:} \\ QQ^T = \mathbf{I}_m = Q_1Q_1^T + Q_2Q_2^T \end{array} $
- Both transform $A_{\mathrm{EROs+ECOs}}A'$	$r_i = \text{geometric multiplicity of } \lambda_i$ and $g_i = \text{geometric multiplicity of } \lambda_i$	is a matrix of columns $-\mathbf{z} = [s_1, \dots, s_n]^T$ is vector of	Singular Value Decomposition of	independent vectors (tweaked) GS]]: — Choose candidate vector: just work	compress A by projecting in direction of principal component =>	$u_{n-1,n-1}x_{n-1}+u_{n-1,n}x_n$	changing transpose to conjugate-trafspose 1
=> there are matrices R, C s.t. $RAC = A'$	- Eigenvalues of A^k are $\lambda_1, \ldots, \lambda_n$		$A \in \mathbb{R}^{m \times n}$ is any decomposition of the form $A = USV^T$, where		$A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T$	and substitute up	- Inner product $x^T y = x^\dagger y$
• FORWARD: to compute these	$ullet$ Let $P = [\mathbf{x}_1 \dots \mathbf{x}_n]$, then	minimizing $ A\mathbf{z} - \mathbf{y} _2$ is the solution to	 — [[tutorial 1#Orthogonality 	starting from $e_1 =>$ denote the current candidate e_k	Generalised Eigenvectors	$-\dots$ and so on until all $\underline{x_i}$ are solved	- Orthogonal matrix $U^{-1} = U^{T} = >$
transformation matrices: — Start with $[I_m \mid A \mid I_n]$, i.e. \underline{A} and	$AP = [\lambda_1 \mathbf{x}_1 \dots \lambda_n \mathbf{x}_n] = [\mathbf{x}_1 \dots$	$\begin{array}{c c} . & \mathbf{x}_{n}^{\text{ineas}} \text{Reg}(\text{ession}, \lambda_{n}) = PD \\ \hline -\text{So applying LSM to } A\mathbf{z} = \mathbf{y} \text{is precisely} \end{array}$	concepts Orthogonal]]	- Orthogonalize: Starting from $\underline{j=r}$ going to $\underline{j=m}$ with each iteration =>	TODO: this seems low-priority, do when have time	Thin QR Decomposition w/	unitary matrix $\underline{U^{-1}} = \underline{U^{\dagger}}$
identity matrices	$=>$ if $\underline{P^{-1}}$ exists then $-\underline{A} = PDP^{-1}$, i.e. \underline{A} is	what Linear Regression is	$\frac{U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in R^{m \times m}}{\text{and } V = [\mathbf{v}_1 \dots \mathbf{v}_n] \in R^{n \times n}}$	with current orthonormal vectors	gen-eigenvectors	Gram-Schmidt (GS)	* For orthogonal $U = [\mathbf{u}_1 \dots \mathbf{u}_k] \in \mathbb{R}^{m \times k}$
— For every ERO on A do the same to LHS (i.e. I_{m})	diagonalisable	- We can use normal equations for this => $\ A\mathbf{z} - \mathbf{y}\ _2$ is minimized $\iff A^T A$:	$\mathbf{z} = \mathcal{S} = \frac{\mathbf{v} = [\mathbf{v}_1 \dots \mathbf{v}_n] \in \mathbf{K}}{\operatorname{diag}_{m \times n} (\sigma_1, \dots, \sigma_n)}$	u ₁ ,,u _j	igrdan chains (common cases) https://www.youtube.com/watch?v=aTh6ne	$ullet$ Consider full-rank UfA $\underline{A} = [\mathbf{a}_1 \mid \dots \mid \mathbf{a}_n] \in R^{m imes n}$ kcMpo5 $[\mathbf{a}_1 \mid \dots \mid \mathbf{a}_n]$	
LHS (i.e. I_m) — For every $\overline{\text{ECO}}$ on \underline{A} , do the same to	$-P = \mathbf{I}_{EB}$ is change-in-basis matrix for	 Solution to normal equations unique iff A 	where $p = \min(m, n)$ and	$\overline{*}$ Notice $\langle \mathbf{u}_1, \ldots, \mathbf{u}_j \rangle$ is $\overline{*}$ Compute	gQURVV5&Index=3	$(m \ge n]$, i.e. $\mathbf{a}_1, \dots, \mathbf{a}_n \in R^m$ are	C(U)
RHS (i.e. <u>In</u>) — Once done, you should get	basis $B = \langle \mathbf{x}_1, \dots, \mathbf{x}_n \rangle$ of eigenvectors	is full-rank, i.e. it has linearly-independent columns	$\sigma_1 \ge \cdots \ge \sigma_p \ge 0$		JNF, form some tips on how to solve common cases		* For unitary
$[I_m \mid A \mid I_n][R \mid A' \mid C]$ with	- If $A = \mathbf{F}_{EE}$ is transformation-matrix of linear map f , then	Back to basics: multinomial	$-\frac{\sigma_1,\ldots,\sigma_p}{A}$ are singular values of	i=1	some tips on how to solve common cases JNF decomposition and basis of generalized eigenvectors	to generate orthonormal basis	†1 .
RAC = A' • If the sequences of EROs and ECOs were	$\mathbf{F}_{EE} = \mathbf{I}_{EB} \mathbf{F}_{BB} \mathbf{I}_{BE}$	expansion + manipulations on	* (Positive) singular values are (positive)	*	General: visualizing transforma-	from any linearly independent vectors [GS]] $\mathbf{q}_1, \dots, \mathbf{q}_n \leftarrow GS(\mathbf{a}_1, \dots, \mathbf{a}_n)$	
R_1,\ldots,R_{λ} and C_1,\ldots,C_{μ}	• Spectral theorem: if A is Hermitian then	\sum / \prod	square-roots of eigenvalues of $\underline{A}\underline{A}^T$ or $\underline{A}^T\underline{A}$	* NOTE: $\mathbf{e}_{k} \cdot \mathbf{u}_{i} = (\mathbf{u}_{i})_{k}$ i.e. \underline{k} th component of \mathbf{u}_{i}	tions of matrices	to build ONB	- And so on
respectively $-R = R_{\lambda} \cdot \cdot \cdot \cdot R_1$ and	$\frac{P^{-1}}{-\operatorname{If} \mathbf{x}_i, \mathbf{x}_j}$ exists, so:	•	* i.e. σ_1^2 , , σ_2^2 are eigenvalues of	· Can rewrite as	TODO: do when have time -> where	$\langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle \in R^m$ for $C(A)$ - For example 11 - For example 12 - For example 13 - For example 13 - For example 14 - For example 15 - For example 1	Lines and hyperplanes in Eu-
$C = C_1 \cdots C_{\mu}$, so	eigenvalues then $\mathbf{x}_i \perp \mathbf{x}_j$	$(x_1 + x_2 + \dots + x_m)^n =$	$\sum_{x_1 = x_2 = x_3 = x_4 = x_4} x_1 ^{x_1}$	$\mathbf{z}_{2}^{k2} \cdots \mathbf{z}_{j+1} = \mathbf{e}_{k} - U_{j}[(\mathbf{u}_{1})_{k}, \cdots]$ The above matrix form can be more	(\mathbf{u} ta) ndard basis vectors map to $ \mathbf{u}_j [(\mathbf{u}_1)_k]$ • TODO: rotations, reflections, scaling,	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	chucun space D (=1t)
$\overline{(R_{\lambda}\cdots R_{1})A(C_{1}\cdots C_{\mu})}=A'$	— If associated to same eigenvalue λ then	$k_{1} + k_{2} + k_{1}, k_{2}, \cdot$	$,k_m^* A _2 = \sigma_1$ (link to [[tutorial]	convenient to calculate with	shearing, etc	1) Gather	• Consider standard Euclidean space $E^n(=R^n)$
$-R^{-1}=R_1^{-1}\cdot\cdot\cdot R_{\lambda}^{-1}$ and	eigenspace E_{λ} has spanning-set $\{\mathbf{x}_{\lambda_i}, \dots \}$	• where	1#Matrix norms matrix norms]]) • Let $r = rk(A)$, then number of strictly	* If $\mathbf{w}_{j+1} = 0$ then	Cholesky Decomposition	$Q_j = [\mathbf{q}_1 \dots \mathbf{q}_j] \in R^{m \times j}$ all-at-once	$-$ with standard basis $\langle \mathbf{e}_1, \dots, \mathbf{e}_n \rangle \in \mathbb{R}^n$
$C^{-1} = C_{\mu}^{-1} \cdot \cdot \cdot C_{1}^{-1}$, where	$*\mathbf{x}_1,\ldots,\mathbf{x}_n$ are linearly	1 1 -	positive singular values is \underline{r} i.e. $\sigma_1 \geq \cdots \geq \sigma_r > 0$ and	$\frac{\mathbf{e}_k \in \operatorname{span}\{\mathbf{u}_1, \dots, \mathbf{u}_j\}}{\operatorname{discard} \mathbf{w}_{j+1} \mid \operatorname{choose \ next}} = >$	$ullet$ Consider positive (semi-)definite $A \in R^{n \times n}$	2) Compute	with the best dead entire of C DN
$\frac{\mu}{R_i^{-1}, C_j^{-1}}$ are inverse EROs/ECOs	independent => apply Gram-Schmidt	TODO: figure out with going on here	$\sigma_{r+1} = \cdots = \sigma_{p} = 0$ and	candidate \mathbf{e}_{k+1} , try this step again	• Cholesky Decomposition is $\underline{A} = LL^T$	$\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]$	[I]
respectively	$ \underbrace{ \frac{\mathbf{q}_{\lambda_i} , \cdots \leftarrow \mathbf{x}_{\lambda_i} , \cdots}_{\text{Then} \left\{ \mathbf{q}_{\lambda_i} , \cdots \right\} \text{is orthonormal} } $![[Pasted image 20250414122252.png 500]] in 2nd tutorial	r	- Normalize: $\mathbf{w}_{j+1} \neq 0$ so compute	where <u>L</u> is lower-triangular — For positive semi-definite => always	all-at-once 3) Compute $Q_j \mathbf{c}_j \in \mathbb{R}^m$, and	direction $\mathbf{n} \in R^n$ $(\mathbf{n} \neq 0)$ and offset from origin $\mathbf{c} \in L$
$ullet$ BACKWARD: once $\underline{R_1,\ldots,R_{\lambda}}$ and	basis (\overline{ONB}) of E_{λ}		$-A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$	unit vector $\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}$	exists, but non-unique	subtract from \mathbf{a}_{j+1} all-at-once	- It is customary that: * n is a unit vector,
C_1, \ldots, C_{μ} for which $RAC = A'$	$-Q = \langle \mathbf{q}_1, \dots, \overline{\mathbf{q}_n} \rangle$ is an ONB of	Express recursive sequence as non-recursive using eigenvalues	SVD is similar to [[tutorial	Repeat: keep repeating the above steps, now with new orthonormal vectors	 For positive-definite => always uniquely exists s.t. diagonals of L are positive 	- Can now rewrite	i.e. $\ \mathbf{n}\ = \ \hat{\mathbf{n}}\ = 1$
are known , starting with $[I_m \mid A \mid I_n]$ - For $\underline{i=1 \rightarrow \lambda}$ perform R_i on \underline{A} .	$ R^n => \mathbf{Q} = [\mathbf{q}_1 \dots \mathbf{q}_n] $ is	• For x_n recursive	1#Eigen-values/vectors spectral decomposition]], except it always exists	$ \mathbf{u}_1,\dots,\mathbf{u}_{j+1} $	Finding a Cholesky Decomposition:	$\mathbf{a}_j = \sum_{j}^{j} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = \mathbf{Q}_j \mathbf{c}_j$	* $\mathbf{c} \in L$ is closest point to origin, i.e. $\mathbf{c} \perp \mathbf{n}$
perform R_{λ}^{-1} on LHS (i.e. I_{m_i})	orthogonal matrix i.e. $\mathbf{Q}^{-1} = \mathbf{Q}^{T}$	(e.g. $x_{n+1} = x_n + x_{n-1} \mid x_0 = 0$)	$-\operatorname{If} \underline{n \leq m}$ then work with	SVD Application: Principal Com-	- Compute LL^{T} and solve $A = LL^{T}$ by matching terms	i=1	$-\operatorname{lf} \mathbf{c} \neq \lambda \mathbf{n} = \sum \underline{L} \operatorname{not} \operatorname{vector-subspace}$
$-$ For $j = 1 → μ perform C_j on \underline{A} ,$	$-\mathbf{q}_1, \dots, \mathbf{q}_n$ are still eigenvectors of $\underline{A} = A = \mathbf{Q} D \mathbf{Q}^T$ (spectral	$x_1 = 1$) — Find A] such that	$A^T A \in \mathbb{R}^{n \times n}$ * Obtain eigenvalues	ponent Analysis (PCA)	- For square roots always pick positive	• Choose $\mathbf{Q} = Q_n = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$	of R^n * i.e. $0 \not\in L$, i.e. L doesn't go through
perform C^{-1} on RHS (i.e. I_n)	decomposition)	$\begin{bmatrix} x_{n+1}, x_n, \dots \end{bmatrix}^T = A[x_n, x_{n-1}]$	$\sigma_1, \dots, \sigma_1^2 \ge \dots \ge \sigma_n^2 \ge 0$ of $A^T A$	· · · · · · · · · · · · · · · · · · ·	 If there is exact solution then positive-definite 	notice its [[tutorial 1#Orthogonality	the origin
perform $C_{\mu-j+1}^{-1}$ on RHS (i.e. I_n)	$-\underline{A} = \mathbf{Q}D\mathbf{Q}^T$ can be interpreted as	$(e.g. [x_{n+1}, x_n]^T = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} [x_n]$	* Obtain orthonormal eigenvectors	• Assume $\underline{A_{\text{uncentered}}} \in R^{m \times n}$ represent \underline{m} samples of \underline{n} dimensional	If there are free variables at the end, then positive semi-definite	concepts semi-orthogonal] since $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}_n$	* \underline{L} is affine-subspace of \underline{R}^n \\ - If $\underline{\mathbf{c}} = \lambda \mathbf{n}$, i.e. $\underline{L} = R \mathbf{n}$ \ $= > L$ is
$[I_m \mid A \mid I_n][R^{-1} \mid A' \mid C^{-1}]$	scaling in direction of its eigenvectors: 1) Perform a succession of		x_{n-1} \mathbf{v}_{1} ,, $\mathbf{v}_{n} \in R^{n}$ of $A^{T}A$		* i.e. the decomposition is a solution-set	Nation >	vector-subspace of R ⁿ
with $\underline{A} = R^{-1} A' C^{-1}$	reflections/planar rotations to change coordinate-system	- Find initial vector $ \underline{\mathcal{I} = [\dots, x_1, x_0]^T} $ such that	e.g. Gram-Schmidt!!!! to eigenspaces	column from that column's elements	parameterized on free variables $ \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} $	$\mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j, \dots, \mathbf{q}_j]$	\mathbf{a}_j , 0^* i.e. $0 \in L$, i.e. \mathbf{L} goes through the \mathbf{a}_j , 0^* origin 0 $=$ $\mathbf{Q}\mathbf{r}_j$
You can mix-and-match the forward/backward modes	2) Apply scaling by λ_i to each	$[x_{n+1}, x_n, \dots]^T = A^n \mathcal{I}$	E_{σ_i}	- Let the resulting matrix be $A \in \mathbb{R}^{m \times n} \text{ who's columns have}$	* e.g. $\begin{vmatrix} 1 & 1 & 1 \end{vmatrix} = LL^T$ where	$-\operatorname{Let} R = [\mathbf{r}_1 \dots \mathbf{r}_n] \in R^{n \times n}$	* \underline{L} has $\underline{\dim(L)} = 1$ and orthonormal basis (ONB) $\{ \hat{\mathbf{n}} \}$
 i.e. inverse operations in inverse order for one, and operations in normal order for 	dimension \mathbf{q}_i	$*(0.5 [m] \cdot 1.0]^T = A^{n_{[1]}} \cdot 0]^T$	* $V = [\mathbf{v}_1 \dots \mathbf{v}_n] \in \mathbb{R}^{n \times n}$ is [[tutorial 1#Orthogonality]	mean zero	$ \begin{array}{c cccc} $	$ = \rangle$ $ \mathbf{q}_1^T \mathbf{a}_1 \dots \mathbf{q}_n^T \mathbf{a}_n \dots \mathbf{q}_n^T \mathbf{a}_n^T \mathbf{a}_n \dots \mathbf{q}_n^T \mathbf{a}_n^T $	To A hyperplane , is characterized by normal
the other	3) Undo those reflections/planar rotations	 Find eigenvalues/eigenvectors of A , and 	concepts orthogonal]] so	 PCA is done on centered data-matrices like A: 		$\begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_1 & \cdots & \mathbf{q}_n \end{bmatrix}$ $A = \mathbf{Q}R = \mathbf{Q}$	$\begin{bmatrix} \mathbf{n} \in R^n \\ \mathbf{c} \in P \end{bmatrix}$ $(\mathbf{n} \neq 0)$ and offset from origin
1 , 1	Extension to C^n	use $\underline{A}\mathbf{u} = \lambda \mathbf{u} \Longrightarrow A^n \mathbf{u} = \lambda^{\overline{n}} \mathbf{u}$ to write $\underline{\mathcal{I}}$ as linear combination of	$V^T = V^{-1}$	$-$ SVD exists i.e. $\underline{A} = USV^T$ and	$\begin{bmatrix} 1 & c & \sqrt{1-c^2} \end{bmatrix}$		- It represents an $(n-1)$ -dimensional
$\frac{[Im \mid A \mid In][R \mid A \mid C]}{\text{get } AC = R^{-1}A' => \text{ useful for LU}}$	• Standard inner product: $\langle x, y \rangle = x^{\dagger} y = \sum_i \overline{x_i} y_i$	eigenvectors	$r = \operatorname{rk}(A) = \operatorname{no.} \text{ of strictly } + \operatorname{ve} \ \sigma_i$	$-\frac{r=\operatorname{rk}(A)}{\operatorname{Let}A=[\mathbf{r}_1;\;\ldots;\;\mathbf{r}_m]}$ be rows	• If $A = LL^T$ you can use	0 c	$n \stackrel{\text{def}}{=} n \stackrel{\text{def}}{=} \text{Points}$ are hyperplanes for $n = 1$
factorization	- Conjugate-symmetric:	- Substitute that linear combination to get x_n as function of \underline{n} alone	* Let $\mathbf{u}_i = \frac{1}{} A \mathbf{v}_i$ then	$ \mathbf{r}_1, \dots, \mathbf{r}_m \in \mathbb{R}^n = $ each row	[[#Forward/backward substitution forward/backward	notice its [[tutorial 1#Properties of matrices upper-triangular]]	* Lines are hyperplanes for $n = 2$] * Planes are hyperplanes for $n = 3$
Eigen-values/vectors	$\langle x, y \rangle = \overline{\langle y, x \rangle}$ • Standard (induced) norm:	_	σ_i	$corresponds to a sample$ $- \text{Let } A = [\mathbf{c}_1 \dots \mathbf{c}_n] \text{ be columns}$	substitution]] to solve equations	Full QR Decomposition	— It is customary that:
• Consider $A \in \mathbb{R}^{n \times n}$, non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector with	$ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	Positive (semi-)definite symmetric matrices	$\underline{\mathbf{u}_1, \dots, \mathbf{u}_r \in R^m}$ are orthonormal (therefore linearly	$ \mathbf{c}_1, \dots, \mathbf{c}_n \in \mathbb{R}^m = > \text{each}$	$ \begin{array}{l} -\operatorname{For} \ \underline{Ax=b} => \ \operatorname{let} \ \underline{y=L}^T x \\ -\operatorname{Solve} \ Ly=b \ \ \operatorname{by \ forward \ substitution \ to} \end{array} $	a Canaidan full monte	* $\underline{\mathbf{n}}_{\mathbf{j}}$ is a unit vector, i.e. $\ \mathbf{n}\ = \ \widehat{\mathbf{n}}\ = 1$
$\mathbf{x} \in C^n$ is an eigenvector with eigenvalue $\lambda \in C$ for A if $A\mathbf{x} = \lambda \mathbf{x}$	We can [[tutorial	• Consider symmetric $A \in \mathbb{R}^{n \times n}$,	independent)	column corresponds to one dimension of the data	find y	$A = [\mathbf{a}_1 \dots \mathbf{a}_n] \in R^{m \times n}$	* $\mathbf{c} \in P$ is closest point to origin, i.e. $\mathbf{c} = \lambda \mathbf{n}$
- If $A\mathbf{x} = \overline{\lambda \mathbf{x}}$ then $A(k\mathbf{x}) = \lambda(k\mathbf{x})$	1#Eigen-values/vectors diagonalise]] real matrices in <u>C</u>] which lets us diagonalise	i.e. $\underline{A} = \underline{A}^T$	The [[tutorial 1#Orthogonality concepts orthogonal compliment]] of	\bullet Let X_1, \ldots, X_n be random variables	- Solve $L^T x = y$ by backward substitution to find x_1	$(m \ge n)$, i.e. $\mathbf{a}_1, \dots, \mathbf{a}_n \in R^m$ are linearly independent	* With those =>
for $k \neq 0$, i.e. $k \mathbf{x}$ is also an eigenvector	more matrices than before	• \underline{A} is positive-definite iff $\underline{x}^T A x > 0$ for	$\operatorname{span}\{\mathbf{u}_1,\ldots,\mathbf{u}_r\} = >$	where each X_i corresponds to column \mathbf{c}_i	• For <u>n = 3</u>] =>	Apply [[#Thin QR Decomposition w/ Gram-Schmidt (GS) thin QR	$P = \{ x \in R^n \mid x \cdot \mathbf{n} = \lambda \} $ $-\operatorname{If} \mathbf{c} \cdot \mathbf{n} \neq 0 => P \operatorname{Inot}$
$-\underline{A}$ has at most \underline{n} distinct eigenvalues	Least Square Method	all $x \neq 0$ $-A$ is positive-definite iff all its	$\operatorname{span}\{\mathbf{u}_1,\ldots,\mathbf{u}_r\}^{\perp} = \operatorname{span}$	$\{\mathbf{u}_{r+1}^{-i.e.}, \underbrace{\overline{X_i}_{i}}_{conjouncit} \underbrace{conjesponds}_{opt} \text{ to } \underline{i} \} \text{th}$	$L = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \end{bmatrix},$	decomposition]] to obtain:	vector-subspace of R^n
■ The set of all eigenvectors associated with	• If we are solving $A\mathbf{x} = \mathbf{b}$ and	eigenvalues are strictly positive	· Solve for unit-vector \mathbf{u}_{r+1} s.t. it	- i.e. random vector $X = [X_1, \ldots, X_n]^T$ models the		$-ONB\ \langle \mathbf{q}_1,\ldots,\mathbf{q}_n\rangle\in R^m$ for	* i.e. $0 \notin P$, i.e. P doesn't go through the origin
<u>A</u>]	$\mathbf{b} \not\in \mathrm{C}(A)$, i.e. no solution, then Least Square Method is:	$-\underline{A}$ is positive-definite => all its diagonals are strictly positive	is orthogonal to $\mathbf{u}_1, \overline{\ldots, \mathbf{u}_r}$. Then solve for unit-vector \mathbf{u}_{r+2}	data $\mathbf{r}_1, \dots, \mathbf{r}_m$	$LL^{T} = \begin{bmatrix} l_{11}^{2} & l_{11}l_{21} \\ l_{11}l_{21} & l_{21}^{2} + l_{22}^{2} \end{bmatrix}$	$-\frac{C(A)}{Semi-orthogonal}$	* \underline{P} is affine-subspace of \underline{R}^n
$ -\frac{E_{\lambda} = \ker(A - \lambda I)}{-\text{The geometric multiplicity of } \lambda \text{ is} $	- Finding $\underline{\mathbf{x}}_{\mathbf{J}}$ which minimizes $\ A\mathbf{x} - \mathbf{b}\ _2$	$-\underline{A}$ is positive-definite =>	s.t. it is orthogonal to	— Co-variance matrix of X is	$LL^{T} = \begin{bmatrix} l_{11}l_{21} & l_{21}^{2} + l_{22}^{2} \\ l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{31} \end{bmatrix}$	$Q_1 = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$	$-\operatorname{lf} \underline{\mathbf{c} \cdot \mathbf{n} = 0}$ i.e. $P = (R\mathbf{n})^{\perp} = >$
$\dim(E_{\lambda}) = \dim(\ker(A - \lambda I))$	$-\frac{\ A\mathbf{X} - \mathbf{B}\ _2}{-\text{Recall for } A \in R^{m \times n}} $ [[tutorial	$\max(A_{ii}, A_{jj}) > A_{ij} $ i.e. strictly larger coefficient on the	$\underbrace{\mathbf{u}_1,\ldots,\mathbf{u}_{r+1}}_{\cdot And so on\ldots [[\#Tricks Computing]}$	$\operatorname{Cov}(A) = \frac{1}{m-1} A^T A = >$	Famound (baselinessed and adheritantian	and upper-triangular $R_1 \in R^n \wedge n$,	\underline{P} is vector-subspace of \underline{R}^n * i.e. $\underline{0} \in P$, i.e. \underline{P} goes through the
• The spectrum $Sp(A) = \{\lambda_1, \dots, \lambda_n\} \text{ of } A \text{ is the } $	1#Orthogonality concepts we have	diagonals	orthonormal vector-set	$(A^T A)_{ij} = (A^T A)_{ji} = \operatorname{Cov}(X_i)$	Forward/backward substitution • Forward substitution: for lower-triangular	$ \text{where } \underline{A = Q_1 R_1} \\ \bullet \text{ [[tutorial } \overline{3\# \text{Tricks Computing orthonormal}]} $	origin
$Sp(A) = \{\lambda_1, \dots, \lambda_n\}$ of \underline{A} is the set of all eigenvalues of \underline{A} .	unique decomposition for any $\mathbf{b} \in R^m []: \mathbf{b} = \mathbf{b}_i + \mathbf{b}_k [$	 A is positive-definite => all upper-left submatrices are also positive-definite 	extensions see this for better methods]]	$\bullet \mathbf{v}_1, \ldots, \mathbf{v}_r$ (columns of V) are		vector-set extensions Compute basis extension]] to obtain remaining	* \underline{P} has $\underline{\dim(P)} = n-1$ • Notice $\underline{L} = \underline{R}\mathbf{n}$ and $P = (R\mathbf{n})^{\perp}$ are
• The characteristic polynomial of \underline{A} is \underline{n}	st where $\mathbf{b}_i \in \mathrm{C}(A)$ and	 Sylvester's criterion: A is positive-definite iff all upper-left 	. "	principal axes of \underline{A} $ $ • Let $\underline{w} \in R^n$ be some unit-vector $=>$ let		$\mathbf{q}_{n+1},\ldots,\mathbf{q}_m\in R^m$, where	orthogonal compliments, so:
$P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	$\mathbf{b}_k \in \overline{\ker(A^T)}$	submatrices have strictly positive	$U = [\mathbf{u}_1 \dots \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ is [[tutorial 1#Orthogonality	$\alpha_j = \mathbf{r}_j \cdot \mathbf{w}$ be the		$\overline{\langle \mathbf{q}_1, \dots, \mathbf{q}_m angle}$ is ONB for $\underline{R^m}$	$-\operatorname{proj}_L = \widehat{\mathbf{n}}\widehat{\mathbf{n}}^T$ is orthogonal
$-a_0 = A $,	$\ A\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \ A\mathbf{x} - \mathbf{b}\ _2$	determinant • A]js positive semA-steffnike; iff	concepts orthogonal]] so	w_1 projection/coordinate of sample x_j onto	$\frac{\lfloor \ell_{n,1} & \dots & \ell_{n,n} \rfloor}{-\operatorname{For} \underline{Lx = b}, \text{ just solve the first row}}$	- Notice $\langle \mathbf{q}_{n+1}, \dots, \mathbf{q}_m \rangle$ is ONB	projection onto \underline{L} (along \underline{P})
$a_{n-1} = (-1)^{n-1} \operatorname{tr}(A)$	$\bullet \underline{A}^T A \mathbf{x} = \underline{A}^T \mathbf{b}$ is the normal equation	$x^T A x > 0$ for all x_1	$* S = \frac{U^T = U^{-1}}{\operatorname{diag}_{m \times n} (\sigma_1, \dots, \sigma_n)}$	- Variance (Bessel's correction) of	ℓ_1 1 $x_1 = b_1 \implies x_1 = \frac{b_1}{a_1}$ and	for $C(A)^{\perp} = \ker(A^T)$ $- \operatorname{Let}$	$\operatorname{proj}_P = \operatorname{id}_R n - \operatorname{proj}_L = \mathbf{I}_n - \widehat{\mathbf{n}}$
$\begin{array}{c} a_n = (-1)^n \\ -\lambda \in C \text{ is eigenvalue of } \underline{A} \text{ iff } \underline{\lambda} \text{ is a} \end{array}$	which gives solution to least square problem:	— A] is positive semi-definite iff all its eigen√alues are non-negative	AND DONE!!!	α_1,\ldots,α_m is	, ,,,		m-ni prthogonal projection onto P *(along
root of $P(\lambda)$	$\ A\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff A\mathbf{x} = \mathbf{b}$	A is positive semi-definite = > all its	$-\operatorname{lf} \underline{m < n}$ then let $\underline{B = A^T}$ * apply above method to \underline{B} =>	$\operatorname{Var}_{\boldsymbol{w}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \boldsymbol{w}$	T (substitute down 1 TAT Au	let $Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m}$ let	$-\overline{L} = \operatorname{im} (\operatorname{proj}_L) = \ker (\operatorname{proj}_P)$
	Linear Regression	diagonals are non-negative $-\underline{A}$ is positive semi-definite =>	$B = A^T = USV^T$	m-1 j $m-1$ $-$ First (principal) axis defined $=>$	$\ell_{2,1}x_1 + \ell_{2,2}x_2 = b_2 \implies x_2 = b_2$	$\frac{b_2 - R}{R} = [R_1; 0_{m-n}] \in R^{m \times n}$	and $P = \ker (\operatorname{proj}_L) = \operatorname{im} (\operatorname{proj}_P)$
B(X)	• Let $y = f(t) = \sum_{n=0}^{\infty} s_n(t) s_n(t) $	$\overline{\max}(A_{ii},A_{jj}) \geq A_{ij} $ i.e. no	$*\overline{A = B^T = VS^TU^T}$	= rirst (principal) axis defined => $m_{\text{col}} = \arg \max_{x \in \mathcal{X}} m_{\text{col}} T_{\text{col}} T$	$A oldsymbol{w} = rac{1}{a} r$	a The full Of decomposition is	$ P^n - P_n \cap (P_n)^{\perp} $ is all vectors
$ 1 \leq$ geometric multiplicity of $\lambda \leq$ algebra	$ullet$ Let $y=f(t)=\sum_{j=1}s_{j}f_{j}(t)$ be a ic mult	coefficient larger than on the diagonals $-A$ is positive semi-definite => all	Tricks: Computing orthonormal	$\frac{\boldsymbol{w}(1) = \arg \max_{\ \boldsymbol{w}\ = 1} \boldsymbol{w} A}{-\text{i.e. } \boldsymbol{w}(1) \mid \text{the direction that maximizes}}$	$\mathbf{w} = \mathbf{a} \cdot \mathbf{d} \cdot \mathbf{s} \cdot \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} \cdot \mathbf{w} = \mathbf{w} \cdot $		$1 R_1 = \frac{R \mathbf{n} \oplus (R \mathbf{n})}{\mathbf{v} \in R^n \text{uniquely decomposed into}}$ i.e. all vectors
• Let $\lambda_1, \ldots, \lambda_n \in C$ be (potentially	mathematical model, where f_j are basis	upper-left submatrices are also positive	vector-set extensions	variance Vary, i.e. maximizes variance	Backward substitution: for upper-triangular	$-Q$ is orthogonal, i.e. $Q^{-1} = Q^T$, so	
non-distinct) eigenvalues of \underline{A} , with $\mathbf{x}_1,\dots,\mathbf{x}_n\in C^n$ their eigenvectors	functions and s_j are parameters	semi-definite $-\underline{A}$ is positive semi-definite $=>$ it has a	• You have orthonormal vectors $\mathbf{u}_1, \dots, \mathbf{u}_r \in R^m => \text{ need to}$	of **projections on line $Rw_{(1)}$	1,1	its a basis transformation $-\operatorname{proj}_{\mathbf{C}(A)} = Q_1 Q_1^T$	Reflection w.r.t. hyperplanes
$-\operatorname{tr}(A) = \sum_{i} \lambda_{i} \text{ and }$	• Let (t_i, y_i) $1 \le i \le m, m \gg n$ be a set of observations, and $\mathbf{t}, \mathbf{y} \in \mathbb{R}^m$	[[tutorial 4#Cholesky Decomposition Cholesky Decomposition]]	extend to orthonormal vectors	• $\sigma_1 \mathbf{u}_1, \dots, \sigma_r \mathbf{u}_r$ (columns of US)	U =	$\frac{F^{*\circ J}C(A) - \mathscr{C} I \mathscr{C} I}{\cdot \cdot $	and Householder Mans
i	a set of observations , and $\underline{t}, \underline{y} \in R$ are vectors representing those observations		$\mathbf{u}_1, \dots, \mathbf{u}_m \in \mathbb{R}^m$ \bullet Special case => two 3D vectors => use	are principal components/scores of \underline{A}	$\begin{bmatrix} & & & & & & & & & & \\ & & & & & & & & $	$\operatorname{proj}_{\operatorname{C}(A)^{\perp}} = Q_2 Q_2^T$ are [[tutorial	• Two points $\mathbf{x}, \mathbf{y} \in E^n$ are reflections
$\det(A) = \prod_{i} \lambda_{ij}$	$f_j(\mathbf{t}) = [f_j(t_1), \dots, f_j(t_m)]^T$	M^TM are symmetric and positive	$cross\text{-product} = > a \times b \perp a, b $	- Recall: $A = \sum_{i=1}^{T} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with	- For $\underline{Ux = b}$ just solve the last row	1#Projection properties orthogonal projections]] onto $C(A)$,	w.r.t hyperplane $P = (R\mathbf{n})^{\perp} + \mathbf{c}$ if: 1) The translation $\overrightarrow{\mathbf{x}} \mathbf{y} = \mathbf{y} - \mathbf{x}$ is parallel
$-\frac{i}{A \mid \text{is diagonalisable iff there exist a basis}}$	is a vector transformed under f_i	semi-definite	• Extension via standard basis $\mathbf{I}_m = [\mathbf{e}_1 \mid \dots \mid \mathbf{e}_m] \text{ using [[tutorial]}$	$\frac{i=1}{\sigma_1 > \cdots > \sigma_r > 0}$, so that relates	$u_{n,n} x_n = b_n \implies x_n = \frac{b_n}{a_n}$	$C(A)^{\perp} = \ker(A^T)$ respectively	to normal \mathbf{n}_{\parallel} i.e. $\overrightarrow{\mathbf{x}} \mathbf{y} = \mathbf{y} - \mathbf{x}$ is parallel

2) Midpoint $m = 1/2(\mathbf{x} + \mathbf{y}) \in P$ lies on P i.e. $m \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}$	and next residual $\mathbf{u}_{j+1}^{(j)},\dots,\mathbf{u}_{n}^{(j)}$ $ $ - NOTE: for $j=1$ $ $ ->	have $f(\mathbf{x}_{\mathrm{loc}}) \leq f(\mathbf{x})$ $-f$ has global minimum $\mathbf{x}_{\mathrm{glob}}$ if	$-\frac{\tilde{f}}{\tilde{f}}$ is computer implementation , so inputs/outputs are FP	$=> \text{if } g_1=g=g_2 \text{ then } \\ f_1+f_2=O(g) $	$ \begin{array}{c c} \underline{\mathbf{e}_{j}} & \text{in } \underline{\mathbf{I}_{n}} \mid (\text{same for rows/columns}) \\ -\text{Applying } P_{ij} \mid \text{from left will switch rows,} \end{array} $	$\begin{array}{c} \text{backwards stable if } \underline{\rho} = O(1) \\ \bullet \text{ Full pivoting is } PAQ = LU \text{ finds largest} \end{array}$	For metric spaces, mix-and-match these infinite/finite limit definitions:
$ullet$ Suppose $P_{oldsymbol{u}} = (Roldsymbol{u})^{oldsymbol{\perp}}$ goes through	$\mathbf{q}_1, \dots, \mathbf{q}_{j-1} = \emptyset$ i.e. we don't	$\forall \mathbf{x} \in \mathbb{R}^n$ we have	- Input $\underline{x \in X}$ is first rounded to $\underline{fl(x)}$	$-\frac{31+32-(37)}{O(k \cdot g)=O(g)}$	from right will swap columns	entry in bottom-right submatrix — Makes it pivot with row/column swaps	$ \lim_{x \to \infty} f(x) = \pm \infty \iff \forall x \in F$
the origin with unit normal $oldsymbol{u} \in R^n$	have any yet	$\overline{f(\mathbf{x}_{\mathrm{glob}})} \le f(\mathbf{x})$	i.e. $\tilde{f}(x) = \tilde{f}(\operatorname{fl}(x))$ $-\tilde{f} _{cannot}$ be continuous (for the most	Floating-point numbers	$-P_{ij}=P_{ij}^T=P_{ij}^{-1}$, i.e. applying	before normal elimination	$\lim_{x \to +\infty} f(x) = +\infty \iff \forall r \in F$
- Householder matrix $H oldsymbol{u} = \mathbf{I}_n - 2 oldsymbol{u} oldsymbol{u}^T$ is reflection w.r.t.	$ullet$ By end of iteration $\underline{j=n}$, we have ONB $\langle \mathbf{q}_1,\ldots,\mathbf{q}_n \rangle \in \overline{R}^m$ of \underline{n} -dim	 A local minimum satisfies optimality conditions: 	part)	• Consider base/radix $\beta \ge 2$ (typically 2)	twice will undo it	- Very expensive $O(m^3)$ search-ops,	$\lim_{x \to p} f(x) = L \iff \forall \varepsilon > 0, \exists \delta > 0$
hyperplane $P_{oldsymbol{u}}$ - Recall: let $L_{oldsymbol{u}}=Roldsymbol{u}$	$\frac{\langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle \in \mathcal{H}}{subspace \ U_n = \mathrm{span}\{\mathbf{a}_1, \dots, \mathbf{a}_n\} $	* $\nabla f(\mathbf{x}) = 0$, e.g. for $\underline{n=1}$ its	- Absolute error => $\ \tilde{f}(x) - f(x)\ $	and precision $t \ge 1$ (24 or 53 for IEEE single/double precisions)	$ \begin{array}{c c} \bullet \ Row/column \ scaling: \ \underline{D_i(\lambda)} \ obtained \ by \\ scaling \ \underline{\mathbf{e}_i} \ by \ \underline{\lambda} j \ in \ \underline{\mathbf{I}_n} \ (same \ for \\ \end{array} $		- Cauchy sequences.
* $\operatorname{proj}_{L_{\boldsymbol{u}}} = u u^T$ and		f'(x) = 0	relative error $=> \frac{\ \hat{f}(x) - f(x)\ }{\ \hat{f}(x) - f(x)\ }$	• Floating-point numbers are discrete subset	scaling e _i by A in 1n (same for fows/columns)	Systems of Equations: Iterative	i.e. $\forall \varepsilon > 0, \exists N \in N, \forall m, n \geq N$:
$\star \underline{\operatorname{proj}_{L_{oldsymbol{u}}} - u u}$ and T		r_{11} $\sqrt{\frac{\nabla^2 f(\mathbf{x})}{\nabla^2 f(\mathbf{x})}}$ is positive-definite, e.g. for		$\mathbf{F} = \left\{ \left. (-1)^s \left(m \middle/ \beta^t \right) \beta^e \right 1 \le m \le n \right\}$	$\beta \stackrel{pows/columns)}{\to} P_{ij}$ from left will scale rows,	Techniques	converge in complete spaces • You can manipulate matrix limits much like
$\frac{\operatorname{proj}_{P_{\boldsymbol{u}}} = \mathbf{I}_{n} - \boldsymbol{u}\boldsymbol{u}^{T}}{H_{\boldsymbol{u}} = \operatorname{proj}_{P_{\boldsymbol{u}}} - \operatorname{proj}_{L_{\boldsymbol{u}}}} = >$	$A = [\mathbf{a}_1 \dots \mathbf{a}_n] = [\mathbf{q}_1 \dots \mathbf{q}_n]$	n=2 its $f''(x)>0$ R	• \tilde{f} is accurate if $\forall x \in X$.	$-\underline{s}$ is sign-bit, m/β^t is mantissa, \underline{e} is	from right will scale columns	• Let $A, R, G \in \mathbb{R}^{n \times n}$ where G^{-1} exists $=>$ splitting $A=G+R$ helps	in real analysis,
* $\frac{H_{\boldsymbol{u}} = \operatorname{proj}_{P_{\boldsymbol{u}}} - \operatorname{proj}_{L_{\boldsymbol{u}}}}{\text{Visualize as preserving component in}}$		Interpret $F: \mathbb{R}^n \to \mathbb{R}^m$ as m functions $F_i: \mathbb{R}^n \to \mathbb{R}$ (one per	$\frac{\ \tilde{f}(x) - f(x)\ }{\ f(x)\ } = O\left(\epsilon_{\text{mach}}\right)$	exponent (8)-bit for single, 11-bit for double)	$-\frac{D_i(\lambda) = \operatorname{diag}(1, \dots, \lambda, \dots, 1)}{\text{so all diagonal properties apply,}}$	iteration	e.g. $\lim_{n \to \infty} (A^n B + C) = \left(\lim_{n \to \infty} A\right)$
$P_{oldsymbol{u}}$, then flipping component in $L_{oldsymbol{u}}$	corresponds to [[tutorial 5#Thin QR Decomposition w/ Gram-Schmidt	output-component)	illiant illian	— Equivalently, can restrict to	e.g. $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$	$-\underline{A}\mathbf{x} = \mathbf{b}$ rewritten as $\underline{\mathbf{x}} = M\mathbf{x} + \mathbf{c}$ where	• Turn metric limit $\lim_{n\to\infty} x_n = L$ into
- Hu is involutory, orthogonal and	(GS) thin QR decomposition]]	$-\mathbf{J}(F) = \left[\nabla^T F_1; \ldots; \nabla^T F_m \right]$	$\ \tilde{f}(x) - f(\tilde{x})\ $	$\beta^{t-1} \leq m \leq \beta^t - 1$ for unique m	• Row addition: $L_{ij}(\lambda) = \mathbf{I}_n + \lambda \mathbf{e}_i \mathbf{e}_i^T$	$M = -G^{-1}R; \ \mathbf{c} = -G^{-1}\mathbf{b}$	real limit $\lim_{n \to \infty} d(x_n, I_n) = 0$ to
symmetric, i.e. $H_{oldsymbol{u}} = H_{oldsymbol{u}}^{-1} = H_{oldsymbol{u}}^T$	- Where $A \in R^{m \times n}$ is full-rank,	is Jacobian matrix of $F = >$	$\frac{\ \tilde{f}(x) - f(\tilde{x})\ }{\ f(\tilde{x})\ } = O\left(\epsilon_{\mathrm{mach}}\right) \text{ and }$	$-\mathbf{F} \subset R$ is idealized (ignores	performs $R_i \leftarrow R_i + \lambda R_j$ when	$-\overline{\text{Define } f(\mathbf{x}) = M\mathbf{x} + \mathbf{c}} \text{ and sequence}$ $\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}$	leverage real analysis
Modified Gram-Schmidt	$\mathbf{Q} \in R^{m \times n}$ is semi-orthogonal, and	$\mathbf{J}(F)_{ij} = \frac{\partial F_i}{\partial \mathbf{x}_i}$		$\overline{over/underflow}$), so is countably infinite and self-similar (i.e. $\mathbf{F} = \beta \mathbf{F}$)	applying from left		 Bounded monotone sequences converge in R
Go check [[tutorial 1#Gram-Schmidt	$R \in R^{n \times n}$ is upper-triangular	$\underline{}$	$\frac{\ \tilde{x} - x\ }{\ x\ } = O\left(\epsilon_{\text{mach}}\right)$	- For all $x \in R$ there exists $fl(x) \in F$	$-\lambda \mathbf{e}_i \mathbf{e}_j^T$ is zeros except for $\underline{\lambda}$ in	with starting point $\underline{\mathbf{x}}^{(0)}$ — Limit of $\langle \mathbf{x}_k \rangle$ is fixed point of $\underline{f} = >$	- Sandwich theorem for limits in $R = >$
any inearly independent vectors classical	Classical vs. Modified Gram-	Conditioning	 i.e. nearly the right answer to nearly the 	s.t. $ x - \operatorname{fl}(x) \le \epsilon_{\operatorname{mach}} x $ * Equivalently	(i,j)-th entry	unique fixed point of f is solution to	pick easy upper/lower bounds $-\lim_{n\to\infty}r^n=0\iff r <1$ and
GM]] first, as this is just an alternative	Schmidt (for thin QR)	ullet A problem is some $f:X o Y$ where	right question — outer-product is stable	$fl(x) = x(1+\delta), \delta \le \epsilon_{mach}$	$-\underbrace{L_{ij}(\lambda)^{-1}}_{\text{triangular matrices}} = \underbrace{L_{ij}(-\lambda)}_{\text{both}} \text{both}$	$ \begin{array}{c c} A\mathbf{x} = \mathbf{b} \\ - & \text{If } \ -\ & \text{is consistent norm and} \end{array} $	
	These algorithms both compute [[tutorial 5#Thin QR Decomposition w/	X, Y are normed vector-spaces A problem instance is f with fixed input	$ullet$ is backwards stable if $\forall x \in X$,	Machine epsilon	triangular matrices	$\ M\ < 1$ then $\langle \mathbf{x}_k \rangle$ converges for	$\lim_{n \to \infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r $
• Let $\mathbf{P}_{\perp \mathbf{q}_j} = \mathbf{I}_m - \mathbf{q}_j \mathbf{q}_j^T$ be	Gram-Schmidt (GS) thin QR	$x \in X$, shortened to \overline{just} "problem"	$\exists \tilde{x} \in X$ s.t. $\tilde{f}(x) = f(\tilde{x})$ and	$\epsilon_{\text{machine}} = \epsilon_{\text{mach}} = \frac{1}{2}\beta^{1-t}$ is	LU factorization w/ Gaussian	any $\mathbf{x}^{(0)}$ (because	$\underbrace{n \rightarrow \infty}_{i=0} \underbrace{1-r}$
projector onto [[tutorial 5#Lines and hyperplanes in Euclidean space \$	decomposition]] ![[Pasted image 20250418034701.png 400]] ![[Pasted image	*(with $\underline{x} \in X$ implied) $- \delta x \text{ is small perturbation of } x_1 =>$	$\frac{\ \tilde{x} - x\ }{\ x\ } = O\left(\epsilon_{\text{mach}}\right)$	maximum relative gap between FPs — Half the gap between 1 and next largest	elimination	Cauchy-completeness)	Eigenvalue Problems: Iterative
$mathbb\{E\} \{n\}(\{=\} mathbb\{R\}$	20250418034855.png 400]]	$\delta f = f(x + \delta x) - f(x)$	x - i.e. exactly the right answer to nearly the	ED	• [[tutorial 1#Representing EROs/ECOs as	* For splitting, we want $ M < 1$ and easy to compute M ; $ M < 1$	Techniques
(ii) sperplane (req _j)	• Computes at j -th step: • Classical GS => j -th column of Q	- A problem (instance) is: * Well-conditioned if all small δx lead	right question, a subset of stability	$-\frac{2^{-24} \approx 5.96 \times 10^{-8}}{2^{53} \approx 10^{-16}}$ for single/double	transformation matrices Recall that]] you	* Stopping criterion usually the relative	
i.e. [[tutorial 5#Lines and hyperplanes in Euclidean space \mathbf{S} mathbb $\{E\}$ $\{n\}$ $\{\{e\}$	and the j th column of R $-$ Modified $GS => j$ th column of Q	to small δf l. i.e. if κ_1 is small $(e.g. 1)$.	- ⊕, ⊕, ⊗, ⊘ , inner-product, back-substitution w/ triangular systems,	• FP arithmetic: let *, be real and floating	can represent EROs and ECOs as transformation matrices R, C respectively	residual $\left\ \mathbf{b} - A\mathbf{x}^{(k)}\right\ < \epsilon$	matrices diagonalizable]] then [[tutorial
mathbb{R} {n})\$ orthogonal	and the j th row of R	10 102	are backwards stable	counterparts of arithmetic operation	• LU factorization => $\overline{\text{finds } A} = LU$	b -	1#Eigen-values/vectors eigen- decomposition]] $A = X \Lambda X^{-1}$
	 Both have flop (floating-point operation) 	* III-conditioned if some small $\underline{\delta x}$ lead to large δf , i.e. if $\underline{\kappa}$ is large	- If backwards stable \tilde{f} and f has condition number $\kappa(x)$ then relative	$-\operatorname{For} \underbrace{x, y \in \mathbf{F}}_{xy} \text{we have}$ $xy = \operatorname{fl}(x * y) = (x * y)(1 + \epsilon), \delta $	where L, U are lower/upper triangular $< \epsilon_{espectively}$	 Assume <u>A</u>'s diagonal is non-zero (w.l.o.g. permute/change basis if isn't) then 	- Dominant λ_1 ; \mathbf{x}_1 are such that $ \lambda_1 $
- Notice:	count of $O(2mn^2)$ — NOTE: Høuseholder method has	*(e.g. 10 ⁶ , 10 ¹⁶)		11.11.6 51 32 32	Respectively Naive Gaussian Elimination performs	A = D + L + U	is strictly largest for which $A\mathbf{x} = \lambda \mathbf{x}$ - Rayleigh quotient for Hermitian
$\mathbf{P}_{\perp j} = \mathbf{I}_m - Q_j Q_j^T = \prod_{j=1}^{J} \left(\mathbf{I}_m - \mathbf{I}_m - \mathbf{I}_m \right)$	$\mathbf{q}_{i}\mathbf{q}_{2}\left(mn^{2}-n^{3}/3\right)$ flop count, but	• Absolute condition number $\operatorname{cond}(x) = \hat{\kappa}(x) = \hat{\kappa} \text{ of } f \text{ at } \underline{x} \text{ is }$	$\frac{\ \tilde{f}(x) - f(x)\ }{\ f(x)\ } = O\left(\kappa(x)\epsilon_{\text{mach}}\right)$	$ \begin{array}{c} = \bigoplus, \bigoplus, \bigotimes, \bigotimes \\ - \text{Complex floats implemented pairs of real} \end{array} $	$[I_m \mid A \mid I_n][R^{-1} \mid U \mid I_n]$ to	—Where \underline{D} is diagonal of \underline{A} , \underline{L} , \underline{U} are strict lower/upper triangular parts of \underline{A}	
	better numerical properties	$\frac{\operatorname{cond}(x) = \kappa(x) = \kappa}{\ \delta f\ }$		iloats, so above applies complex ops	$ \begin{array}{c c} \text{get } AI_n = R^{-1}U \text{ using only row} \\ \text{addition} \end{array} $	• Jacobi Method: $G = D$; $R = L + U$	$\underline{A = A^{\dagger}} \text{ is } R_A(\mathbf{x}) = \frac{\mathbf{x}^{\dagger} A \mathbf{x}}{\mathbf{x}^{\dagger} \mathbf{x}}$
* [[tutorial 1#Column-wise & row-wise matrix/vector ops Outer-product sum	$ullet$ Recall: $Q^\dagger Q = \mathbf{I}_n$ $=>$ check for loss of	$-\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ } = for$	• Accuracy, stability, backwards stability are norm-independent for fin-dim X, Y	as-well $* \ {\it Caveat:} \ \epsilon_{{\it mach}} = \frac{1}{2} \beta^{1-t} \ \ {\it must}$	$-\frac{R^{-1}}{N}$, i.e. inverse EROs in reversed	$M = -D^{-1}(L+U); \mathbf{c} = D^{-1}\mathbf{b}$	* Eigenvectors are stationary points of
equivalence]] =>	orthogonality with $\ \mathbf{I}_n - Q^{\dagger}Q\ = \mathrm{loss}$	most problems simplified to	Big-O meaning for numerical		order, is lower-triangular so $\underline{L=R^{-1}}$	=	$\frac{R_A}{R_A}$
$Q_j Q_j^T = [\mathbf{q}_1 \dots \mathbf{q}_j][\mathbf{q}_1^T; \dots]$	Classical GS = $\geqslant $ $q_j^T \ \mathbf{I}_n - Q^{\dagger} Q \ \approx \operatorname{Cond}(A)^2 \epsilon_{\text{mach}} $	$\hat{\kappa} = \sup_{\delta x} \frac{\ \delta f\ }{\ \delta x\ }$	analysis	$2^{3/2}, 2^{5/2}$ for \otimes, \oslash respectively	- ![[Pasted image 20250419051217.png 400]]	$\mathbf{x}^{(k+1)} = \frac{1}{k} \left(\mathbf{b} \cdot - \sum_{k=1}^{k} A \cdot \cdot \mathbf{x} \right)$	(k) * $\frac{\overline{R_A(\mathbf{x})}}{\text{eigenvalue of } \mathbf{x_j}}$ is closest to being like
	$-\frac{\ \mathbf{I}_n - Q \cdot Q\ \approx \operatorname{Cond}(A) \cdot \epsilon_{\text{mach}}}{-\operatorname{Modified GS}} = \ge$	$\frac{\kappa - \sup_{\delta x} \frac{1}{\ \delta x\ }}{\ \delta x\ }$	• In complexity analysis $f(n) = O(g(n))$	_	The pivot element is simply diagonal	$\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j \neq i} A_{ij} \mathbf{x} \right)$	i.e. $R_A(\mathbf{x}) = \operatorname{argmin} A\mathbf{x} - \alpha\mathbf{x} $
$*$ For $i \neq k$, $=>$	$\ \mathbf{I}_{-} = O^{\dagger}O\ \approx \operatorname{Cond}(A)_{\epsilon}$	$-\overline{IfJacobian\mathbf{J}_f(x)}$ exists then	as $\underline{n \to \infty}$] • But in numerical analysis	$ (x_1 \oplus \cdots \oplus x_n) \approx (x_1 + \cdots + x_n) $	u_{kk}	$\begin{array}{c} \text{ch} \\ = > \frac{\mathbf{x}_i^{(k+1)}}{\mathbf{x}_i^{(k)}} \text{ Jonly needs} \\ \mathbf{b}_{i;} \frac{\mathbf{x}^{(k)}}{\mathbf{x}^{(k)}}; A_{i*} = > \text{row-wise} \\ \text{parallelization} \end{array}$	*
$\prod_{i=1}^{j} \left(\mathbf{I}_{m} - \mathbf{q}_{i} \mathbf{q}_{i}^{T}\right) = \mathbf{I}_{m} - \sum_{i=1}^{j} \mathbf{q}_{i}^{T}$	-NOTE: Householder method has	$\hat{\kappa} = \ \mathbf{J}_f(\overline{x})\ $ where matrix norm	$f(\epsilon) = O(g(\epsilon)) \text{as } \epsilon \to 0 $	$(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_r)$	$(1-\tilde{L}\tilde{U} = A + \delta A n - 1)\epsilon_{\text{mach}}$		$\frac{R_A(\mathbf{x}) - R_A(\nu) = O(\ \mathbf{x} - \nu\)}{\text{as } \mathbf{x} \to \nu_{\text{J}} \text{ where } \nu_{\text{J}} \text{ is eigenvector}}$
i=1 $(m-1, 1, 1)$ $m-2$ $i=1$	$ \mathbf{I}_n - \mathbf{Q} \cdot \mathbf{Q} \approx \epsilon_{\text{mach}}$	$\ -\ $ induced by norms on X and Y \bullet Relative condition number $\kappa(x) = \kappa$ of	i.e. $\limsup_{\epsilon \to 0} f(\epsilon) / g(\epsilon) <$	$ \underbrace{\text{fl}\left(\sum x_i y_i\right) = \sum x_i y_i (1 + \epsilon_i)} $	$\frac{\ \delta A\ }{\ A\ \ \ A\ \ } = O\left(\epsilon_{\text{mach}}\right); \text{ only }$	parallelization	
- Re-state: $\mathbf{u}_{j+1} = \left(\mathbf{I}_m - Q_j Q_j^T\right) \mathbf{a}_{j+1}$ =>	Multivariate Calculus	flat xiis	$0 < \ \epsilon\ < \delta \longrightarrow \ f(\epsilon)\ < C\ g(\epsilon)$	MII where		Gauss-Seidel (G-S) Method:	• Power iteration: define sequence $\mathbf{b}^{(k+1)} = \frac{A\mathbf{b}^{(k)}}{\left\ A\mathbf{b}^{(k)}\right\ } \text{ with initial}$
$=>$ $\frac{a_{j+1}-(a_m-a_ja_j)a_{j+1}}{a_{j+1}}$	• Consider $\underline{f:R^n \to R} =>$ when clear write \underline{i} -th component of input as \underline{i} instead	$\kappa = \lim_{\kappa \to \infty} \sup_{s \to \infty} \left(\frac{\ \delta f\ }{\ \delta f\ } \right) \frac{\ \delta f\ }{\ \delta f\ }$	$ x = \begin{cases} O = \ f(\epsilon)\ \le C \ g(\epsilon)\ \\ O(g)\ \text{ is set of functions} \\ f : \lim \sup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ \end{cases}$	where $1 + \epsilon_i = (1 + \delta_i) \times (1 + \eta_i) \cdots (1 + \delta_i)$	$+ \eta_n$ backwards stable if	$\frac{G = D + L; R = U}{M = -(D + L)^{-1}U; \mathbf{c} = (D + L)^{-1}}$	$=\frac{1}{\ A\mathbf{b}^{(k)}\ }$ with initial
/ i \	of ac.	$\kappa = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ f(x)\ }{\ f(x)\ } \right) \ $	$x \notin S$ in all ness partial order $O(g_1) \preceq O(g_2)$	*	- Work required: $\sim \frac{2}{3} m^3$ flops		 (0) (0)
$\mathbf{u}_{j+1} = \left(\prod_{i=1}^{p} \mathbf{P}_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1} = \left(\mathbf{P}_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{j+1}$	S.t. $f(\mathbf{x}) = c$ is all points s.t. $f(\mathbf{x}) = c$	=> for most problems simplified to	defined by set-inclusion $O(g_1) \subseteq O(g_2)$	$1 + \epsilon_i \approx 1 + \delta_i + (\eta_i + \dots + \eta_n)$		$\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{i} \right)$	$(k+1) \text{ ssume to minar } \frac{\lambda_1; \mathbf{x}_1}{A} = 1 \text{ exist for } \underline{A} \text{ and that } \text{proj}_{\mathbf{x}_1} \cdot \left(\mathbf{b}^{(0)}\right) \neq 0$
- Projectors P⊥ q₁, , P⊥ qᵢ are	- Projecting level curves onto R^n gives	$\kappa = \sup \left(\frac{\ \delta f\ }{\ \delta x\ } / \frac{\ \delta x\ }{\ \delta x\ } \right)$	$0(g_1) \subseteq 0(g_2)$ - i.e. as $\epsilon \to 0$], $g_1(\epsilon)$ goes to zero	$ \operatorname{fl}(x^T y) - x^T y \le \sum x_i y_i \epsilon $	Solving $\underline{Ax = LUx}$ is $\frac{2}{3}m^3$ flops	$A_i = \frac{A_{ii}}{A_{ii}} \left(B_i - \sum_{j=1}^{N_{ij}} A_{ij} \right)$	and that $\operatorname{proj}_{\mathbf{X}_1} \left(\mathbf{b}^{(0)} \right) \neq 0$
iteratively applied to \mathbf{a}_{j+1} removing	$\begin{array}{c} \text{contour-map of } f \\ \bullet \ n_k \text{ th order partial derivative w.r.t } i_k \text{ } \end{array}$	$\delta x \setminus f(x) / x / $	faster than $g_2(\epsilon)$	* Assuming $n\epsilon_{\mathrm{mach}} \leq 0.1 =>$	(back substitution is $O(m^2)$)	$- {Computing \; \mathbf{x}_i^{(k+1)} \left \; needs \right }$	
its components along α_1 , then along	of, of n_1 th order partial derivative	- If Jacobian $J_f(x)$ exists then	 Roughly same hierarchy as complexity analysis but flipped (some break pattern) 	$ \operatorname{fl}(x^T y) - x^T y \le \phi(n) \epsilon_{\operatorname{mach}}$	(back substitution is $O(m^2)$) $ x ^T$ NOTE: Householder triangularisation 4 31	(k) $(k+1)$	$\mu_k = R_A \left(\mathbf{b}^{(k)} \right) = \frac{\mathbf{b}^{(k)} ^{\dagger} A \mathbf{b}^{(k)}}{\mathbf{b}^{(k)} ^{\dagger} \mathbf{b}^{(k)}}$
q ₂ , and so on	w.r.t i_1 of f is:	$\kappa = \frac{\ \mathbf{J}_{f}(x)\ }{\ \mathbf{J}_{f}(x)\ }$	* 2 2	where $ x _i = x_i $ is vector and	requires $\sim 5 m^{\circ}$	$\mathbf{b}_{i}; \ \mathbf{x}^{(k)}; \ A_{i*} $ and $\mathbf{x}_{j}^{(k+1)}$ for	$\mu_k = R_A \left(\mathbf{b}^{(k)} \right) = \frac{\mathbf{b}^{(k)} \mathbf{b}^{(k)}}{\mathbf{b}^{(k)}}$
$ullet$ Let $\mathbf{u}_k^{(j)} = \left(\prod_{i=1}^j \mathbf{P}_{\perp \mathbf{q}_i} \right) \mathbf{a}_k$	$-\frac{}{\partial^n k} + \cdots + n_1$		* e.g , $O(\epsilon^3) \prec O(\epsilon^2) \prec O(\epsilon)$: = Γ)Maximum:	$\prec O(1\phi(n))$ is small function of n . - Summing a series is more stable if terms	• Partial pivoting computes $PA = LU$	j < i => lower storage requirements • Successive over-relaxation (SOR):	converges to dominant λ_1
$\begin{bmatrix} k & \begin{pmatrix} 1 1 & \pm \mathbf{q}_i \end{pmatrix}^{-k} \end{bmatrix}$	$\frac{\partial}{\partial \mathbf{y}^{n_k} \cdots \partial \mathbf{y}^{n_1}} f = \partial_{i_k}^{n_k} \cdots \partial_{i_k}^{n_k}$	$\begin{array}{ll} 1 - \underset{1}{\text{More important, \mathfrak{h}_{k}}} \overset{\hat{E}}{\underset{1}{\text{more fixed}}}, n_{k} \\ 1 - \underset{1}{\text{more important, \mathfrak{h}_{k}}} \overset{\hat{E}}{\underset{1}{\text{more fixed}}}, n_{k} \\ \bullet \text{ Matrix condition number} \end{array}$	$O(\max(g_1 , g_2)) = O(g_2) \iff$	→ O (auddèd in Orden of increasing magnitude	where \underline{P} is a permutation matrix = > $\underline{PP^T = I}$, i.e. its orthogonal	$G = \omega^{-1}D + L; R = (1 - \omega^{-1})D$	$U \vdash \langle \mathbf{b}_k \rangle$ converges to some dominant \mathbf{x}_1
i.e. $\underbrace{\mathbf{a}_k}_{\text{C1}}$ without its components along	$\frac{\partial^{n_k+\cdots+n_1}}{\partial \mathbf{x}_{i_k}^{n_k}\cdots\partial \mathbf{x}_{i_1}^{n_1}}f=\partial^{n_k}_{i_k}\cdots\partial^{n_k}_{i_1}$ $-\text{Overall, its an }\underline{N}\text{-th order partial}$	Matrix condition number $Cond(A) = \kappa(A) = A A^{-1} $	$\frac{\mathbf{x} \cdot \mathbf{e} \cdot \mathbf{g}}{\mathbf{g}} \cdot \mathcal{O}(\max(\epsilon_1, \epsilon_2)) = \mathcal{O}(\epsilon_1)$	• For FP matrices, let $ M _{ij} = M_{ij} $	 For each column j finds largest entry 	$M = -(\omega^{-1}D + I_0)^{-1}((1 - \omega^{-1}))$	associated with $\Delta_1 = 1$ $D + I = 1$ $Ab^{(k)}$
$[\mathbf{q}_1, \dots, \mathbf{q}_j]$	derivative where $N = \sum_k n_k$	=> comes up so orten that has its own	• Using functions f_1, \ldots, f_n , let	i.e. matrix $ M $ of absolute values of M	and row-swaps to make it new pivot $=>$ P_i		
- Notice: $\mathbf{u}_j = \mathbf{u}_j^{(j-1)}$, thus	• $\nabla f = [\partial_1 f, \dots, \partial_n f]^T$ is gradient	name $-A \in C^{m \times m}$ is well-conditioned if	$\frac{\Phi(f_1,\ldots,f_n)}{some function}$ be formula defining	$fl(\lambda \mathbf{A}) = \lambda \mathbf{A} + E, E _{ij} \leq \lambda \mathbf{A} _{i}$	j ← mathen performs normal elimination on	$\mathbf{x}^{(k+1)} = \frac{\omega}{\mathbf{b}_{i}} \cdot \sum_{k=1}^{i-1} A_{i} \cdot \mathbf{x}$	$b = 0 \text{ then } -\omega$
$\mathbf{q}_j = \widehat{\mathbf{u}}_j = \left. \mathbf{u}_j^{(j-1)} \middle/ r_{jj} \right $ where	of $\underline{f} = > (\nabla f)_i = \frac{\partial f}{\partial f}$	$\kappa(A)$ is small, ill-conditioned if large	- Then $\Phi(O(g_1), \dots, O(g_n))$ is	$f((\Delta \perp B) - (\Delta \perp B) \perp E \mid E \mid \leq$	that column $= > L_j$	$A_{ii} \begin{pmatrix} -i & \sum_{j=1}^{n} A_{ij} \end{pmatrix}$	$\frac{\langle \mathbf{b}_k \rangle; \langle \mu_k \rangle}{\langle \mathbf{b}_k \rangle; \langle \mu_k \rangle} \frac{\langle \mathbf{b}_k \rangle; \langle \mu_k \rangle}{\langle \mathbf{converge to second}}$
	$\partial \mathbf{x}_i$	$-\kappa(A) = \kappa(A^{-1})$ and	$\{\Phi(f_1, \dots, f_n) : f_1 \in O(g_1)\}$,	Result 1s mach $L_2 P_2 L_1 P_1 A$ where	for relaxation factor $\omega > 1$	$\langle \mathbf{b}_k \rangle; \langle \mu_k \rangle$ converge to second dominant $\lambda_2; \mathbf{x}_2$ instead
$r_{jj} = \left\ \mathbf{u}_j^{(j-1)} \right\ $	$-\nabla^T f = (\nabla f)^T$ is transpose of ∇f	$\kappa(A) = \kappa(\gamma A)$	* O(1) , f(s)	$\operatorname{II}(\mathbf{AB}) = \mathbf{AB} + E, E _{ij} \le n\epsilon_{ms}$	where 22 221111	then Jacobi/Gauss-Seidel methods converge	- If no dominant λ (i.e. multiple
- Iterative step:	i.e. $\nabla^T f$ is row, vector	$-\operatorname{If} \underline{\ \cdot\ = \ \cdot\ _2} \operatorname{then} \kappa(A) = \frac{\sigma_1}{\sigma_m}$				L'_{m} A) is strictly Prow diagonally dominant if	eigenvalues of maximum λ) then
$\mathbf{u}_{k}^{(j)} = \left(\mathbf{P}_{\perp \mathbf{q}_{j}}\right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j)}$	$f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})$	• For $A \in C^{m \times n}$, the problem	$\Phi_1(O(f_1),\ldots,O(f_m)) = \Phi_2(O(f_m)) = \Phi_2(O$	$\Phi(\mathfrak{c}f(x)) = \sum_{n=1}^{\infty} \frac{1}{(x-a)^n} + O$	$(x_{-}$ Setting $L = (L'_{m-1} \dots L'_1)^{-1}$	$ A_{ii} > \sum A_{ij} $	⟨ b _k ⟩ will converge to linear combination of their corresponding
- i.e. each iteration j of MGS computes	$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} + \delta \mathbf{u}) - f(\mathbf{x})}{\delta}$	$f_A(x) = Ax$ has $\kappa = A \frac{ x }{ Ax }$	means $\Phi_1(O(f_1),\ldots,O(f_m))\subseteq\Phi_2(O(f_n))$		$P = P_{m-1} \cdot \cdot \cdot P_1 \text{gives}$	$j \neq i$ • If \overline{A} is positive-definite then G-S and SOR	eigenvectors
$\underbrace{\mathrm{P}_{\perp} \mathbf{q}_{j}}_{\text{one go}}$ (and projections under it) in	directional-derivative of f	21.1.	$\frac{1_{1}(\mathcal{O}(J_{1}), \dots, \mathcal{O}(J_{m})) \subseteq 1_{2}(J_{m})}{* \text{ e.g. } \epsilon^{O(1)} = O\left(k^{\epsilon}\right) \text{ means}}$			$(\omega \in (0, 2))$ converge	- Slow convergence if dominant λ_1 not "very dominant"
$ullet$ At start of iteration $j \in 1 \dots n$ we have	- It is rate-of-change in direction $\underline{\mathbf{u}}$, where $\mathbf{u} \in R^n$ is unit-vector	$=>\inf \underbrace{A^{-1}}_{-\operatorname{If}} \text{ exists then } \kappa \leq \operatorname{Cond}(A)$ $-\operatorname{If} \underbrace{Ax=b}_{-\operatorname{If}} \text{ problem of finding } \underline{x}_{\operatorname{J}} \text{ given}$	$\{\epsilon^{f(\epsilon)}: f \in O(1)\} \subseteq O(k^{\epsilon})$	$ \frac{f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + O\left(x^n\right)}{k!} $	- ![[Pasted image +1) 20250420092322.png 450]]	Break up matrices into (uneven	(1. 17-)
ONB $\mathbf{q}_1, \dots, \mathbf{q}_{i-1} \in R^m$ and		- If $\underline{Ax = b}$ problem of finding \underline{x} given	$\frac{\{\epsilon^{f(k)}: f \in O(1)\} \subseteq O(k^{c})\}}{\text{not necessarily true}}$	k=0 $k!$	Work required: $\sim \frac{2}{3} m^3 \text{flops}$	blocks)	$-\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left \frac{1}{\lambda_1}\right \right)$
residual $\mathbf{u}_{j}^{(j-1)},\ldots,\mathbf{u}_{n}^{(j-1)}\in R^{m}$	$ \begin{array}{l} - \\ D_{\mathbf{u}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{u} = \ \nabla f(\mathbf{x})\ \ \\ \hline = > D_{\mathbf{u}} f(\mathbf{x}) \ \text{maximized when} \end{array} $	$ \mathbf{u} \approx \$(\theta) $ $ \mathbf{J}_{A} - \mathbf{I}(\theta) = A \qquad \theta = 8$	— Special case:	as $\underline{x \to 0}$	$\sim O\left(m^3\right)$ results in $L_{ij} \leq 1$ so	$ullet$ e.g. symmetric $\underline{A} \in R^{n \times n}$ can become	
$\mathbf{u}_{j}^{(j-1)},\ldots,\mathbf{u}_{n}^{(j-1)}\in\mathbb{R}^{m}$	$\cos \theta = 1$	$\kappa = \ A^{-1}\ \frac{\ b\ }{\ x\ } \leq \operatorname{Cond}(A)$	$f = \Phi(O(g_1), \ldots, O(g_n))$ means	$(1+)^p \stackrel{n}{\sum} (p) k \cdot a $	n+1 $ L = O(1) p!$ $k = 0$	$A = \begin{bmatrix} a_{1,1} & b \\ \hline T & b \end{bmatrix}$, then perform	may alternate if $\overline{\lambda_1 < 0}$
$ \begin{array}{c c} \hline \\ -\operatorname{Compute} \ r_{jj} = \left\ \mathbf{u}_{j}^{(j-1)} \right\ => \\ \hline \\ \mathbf{q}_{j} = \left. \mathbf{u}_{j}^{(j-1)} \middle/ r_{jj} \right \\ -\operatorname{For each} \ \underline{k} \in (j+1) \ldots n \text{ compute} \end{array} $	- i.e. when \mathbf{x} , \mathbf{u} are parallel => hence $\nabla f(\mathbf{x})$ is direction of max.	• For $\mathbf{b} \in C^m$, the problem	means $f \in \Phi(O(g_1), \ldots, O(g_n))$	e.g. $(1+\epsilon)^{\nu} = \sum_{k=0}^{\infty} {k \choose k} \epsilon^{k} + O(\epsilon)$	$n+1$ $ L = O(1) p! - \frac{1}{\epsilon} \frac{1}{k} + O(\epsilon^{n+1}) - \frac{1}{\epsilon} \frac{1}{k} + O(\epsilon^{n+1})$	f = f + f	$* \alpha_k = \frac{(\lambda_1)^k c_1}{}$ where
	rate-of-change	$f_{\mathbf{b}}(A) = A^{-1}\mathbf{b}$ (i.e. finding \underline{x}) in	* e.g. $(\epsilon+1)^2 = \epsilon^2 + O(\epsilon)$ means	as $\epsilon \to 0$	$\max_{i,j} u_{i,j} $	proofs on that	$* \alpha_k = { \lambda_1 ^k c_1 } $ where
$\mathbf{q}_j = \mathbf{u}_j^{(j-1)} / r_{jj}$	\bullet $\mathbf{H}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^T$ is the	$Ax = \mathbf{b}$) has	$\epsilon \mapsto (\epsilon + 1)^2 \in \{\epsilon^2 + f(\epsilon) : f \in \{\epsilon^2 + f(\epsilon) $	Elementary Matrices	$\rho = \frac{1}{\max_{i,j} a_{i,j} } = \text{for partial}$	Catchup: metric spaces and lim-	$c_1 = \mathbf{x}_1^{\dagger} \mathbf{b}^{(0)}$ and assuming
$-$ For each $k \in (j+1) \dots n$ compute	Hessian of $\underline{f} = >$	$\kappa = A A^{-1} = \operatorname{Cond}(A) $	not necessarily true	Identity	pivoting $\rho \leq 2^{m-1}$	Metrics obey these axioms	$\mathbf{b}^{(k)};\mathbf{x}_1$ are normalized
$\frac{r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)}}{\mathbf{u}_k^{(j)} = \mathbf{u}_k^{(j-1)} - r_{jk}\mathbf{q}_j}$	$\mathbf{H}(f)_{ij} = \frac{\partial^2 f}{\partial \mathbf{r}_i \partial \mathbf{r}_j}$		• Let $f_1 = O(g_1), \ f_2 = O(g_2)$ and let $k \neq 0$ be a constant	$\mathbf{I}_n = [\mathbf{e}_1 \dots \mathbf{e}_n] = [\mathbf{e}_1 ; \dots ; \mathbf{e}_n]$ has elementary vectors $\mathbf{e}_1 , \dots , \mathbf{e}_n$ for	$- \ U\ = O(\rho \ A\) = >$	-d(x, x) = 0	$-(A - \sigma I)$ has eigenvalues $\lambda - \sigma = >$
$\mathbf{u}^{(j)} = \mathbf{u}^{(j-1)}$	$o_{\mathbf{x}_i} o_{\mathbf{x}_j}$	Stability	$-f_{1}f_{2} = O(g_{1}g_{2})$ and	rows/columns	$\tilde{L}\tilde{U} = \tilde{P}A + \delta A$	$ \begin{array}{c} -\overline{x \neq y} \Longrightarrow d(x,y) > 0 \\ -\overline{d(x,y)} = d(y,x) \end{array} $	power-iteration on $(A - \sigma I)$ has
$\mathbf{u}_{k}^{u'} = \mathbf{u}_{k}^{u'} - r_{jk} \mathbf{q}_{j}$ - We have next ONB $\langle \mathbf{q}_{1}, \dots, \mathbf{q}_{i} \rangle$	• f has local minimum at \mathbf{x}_{loc} if there's radius $r > 0$ s.t. $\forall \mathbf{x} \in B[r; \mathbf{x}_{loc}]$ we	 Given a problem f: X → Y an algorithm for f is f̄: X → Y 	$ \frac{f \cdot O(g) = O(fg)}{-f_1 + f_2 = O(\max(g_1 , g_2))} $	Row/column switching: permutation matrix $P_{i,i}$ obtained by switching \mathbf{e}_{i} and	$\frac{\ \delta A\ }{\ A\ } = O\left(\rho\epsilon_{machine}\right) = > only$	$ -\frac{d(x, y) = d(y, x)}{-d(x, z) \le d(x, y) + d(y, z)} $	$\frac{\lambda_2 - \sigma}{2}$

- Eigenvector guess => estimated eigenvalue • Inverse (power-)iteration: perform power iteration on $(A - \sigma I)^{-1}$ to get $\lambda_{1,\sigma}$

closest to σ $-(A-\sigma I)^{-1}$ has eigenvalues $(\lambda - \sigma)^{-1}$ so power iteration will

yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$ - i.e. will yield smallest $\lambda_{1,\sigma} - \sigma$

i.e. will yield $\lambda_{1,\sigma}$ closest to $\underline{\sigma}$

20250420131643.png|300]] — Can reduce matrix inversion $O(m^3)$ to $O(m^2)$ by pre-factorization

- Efficiently compute eigenvectors for

known eigenvalues o

− Eigenvalue guess => estimated

eigenvector

- ![[Pasted image

 $\|\mathbf{b}^{(k)} - \alpha_k \mathbf{x}_{1,\sigma}\| = O\left(\begin{vmatrix} \lambda_{1,\sigma} - \mathbf{v} \\ \lambda_{2,\sigma} - \mathbf{v} \end{vmatrix}\right)$ in ear Systems of Equations: where $\mathbf{x}_{1,\sigma}$ corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ is 2nd-closest to σ that $\nabla f(\mathbf{x})$ is direction of \mathbf{max} . • Search for stationary point by gradient

descent: $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})$ for step length $\underline{\alpha}$]

• \underline{A} is positive-definite solving $\underline{A} \mathbf{x} = \mathbf{b}$ and

 $\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{\mathbf{x}} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b} |_{\text{are}}$ equivalent

- Get iterative methods

are orthogonal * k = 0 =>

for $i \neq j$

 $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for

step length $\underline{\alpha^{(k)}}$ and directions $\mathbf{p}^{(k)}$ • Conjugate gradient (CG) method: if $A \in \mathbb{R}^{n \times n}$ also symmetric then

 $\langle \mathbf{u}, \overline{\mathbf{v} \rangle_A = \mathbf{u}}^T A \mathbf{v} \big| \text{ is an inner-product}$

w.r.t. \underline{A} , i.e. $\langle \mathbf{p}^{(i)}, \mathbf{p}^{(j)} \rangle_A = 0$

 $\mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)}$

 $-\mathsf{GC}$ chooses $\mathbf{p}^{(k)}$ that are conjugate

- And chooses $\alpha^{(k)}$ s.t. **residuals**

 $\mathbf{p}^{(0)} = -\nabla f(\mathbf{x}^{(0)}) = \mathbf{r}^{(0)}$ * $\underline{k \ge 1} = >$

 $\mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i < k} \frac{\langle \mathbf{p}^{(i)}, \mathbf{r}^{(k)} \rangle_{A}}{\langle \mathbf{p}^{(i)}, \mathbf{p}^{(i)} \rangle_{A}} \mathbf{p}^{(i)} \frac{\langle \mathbf{p}^{(i)}, \cdots, \mathbf{p}^{(i)} \rangle_{A}}{\langle \mathbf{p}^{(i)}, \cdots, \cdots, \mathbf{p}^{(i)} \rangle_{A}} \mathbf{p}^{(i)}$

 $\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)})$ $\alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)})$ — Without rounding errors, \mathbf{CG} converges in

* Similar to to [[tutorial 1#Gram-Schmidt method to generate

orthonormal basis from any linearly independent vectors [Gram-Schmidt]]

(different inner-product) $*\langle \mathbf{p}^{(0)}, \dots, \mathbf{p}^{(n-1)} \rangle |$ and $A \mathbf{p}(i\langle \mathbf{r}^{(0)}, \dots, \mathbf{r}^{(n-1)} \rangle)$ are bases

decomposition $A = QUQ^{\dagger}$ -Q is unitary, i.e. $Q^{\dagger}=Q^{-1}$ and upper-triangular \underline{U} — Diagonal of \underline{U} contains **eigenvalues** of

ullet ![[Pasted image 20250420135506.png|300]] ullet We can **apply shift** $\mu^{(k)}$ at iteration \underline{k} $\begin{array}{l} \bullet \text{ For } \underline{A} \in R^{m \times m} \text{ each iteration} \\ \underline{A^{(k)}} = \underline{Q^{(k)}} \underline{R^{(k)}} \text{ produces} \\ \\ \text{orthogonal } \underline{Q^{(k)}}^T = \underline{Q^{(k)}}^{-1} \\ \end{array}$

means $A^{(k+1)}$ is similar to $A^{(k)}$ - Setting $\underline{A^{(0)}} = A$ we get $A^{(k)} = \bar{Q}^{(k)} T A \bar{Q}^{(k)}$ where

 $\frac{A^{(v)} = Q^{(v)} \cdot AQ^{(v)}}{\tilde{Q}^{(k)} = Q^{(0)} \cdot \cdot \cdot Q^{(k-1)}}$ • Under certain conditions **QR algorithm** converges to Schur decomposition

 $\begin{array}{l} = > \\ \underline{A^{(k)} - \mu^{(k)}} I = \underline{Q^{(k)}} R^{(k)}; \ \underline{A^{(k+1)}} \\ -\text{If shifts are good eigenvalue estimates} \\ \text{then last column of } \underline{\tilde{Q}^{(k)}} \text{ converges} \end{array}$

 $\begin{array}{l} \underbrace{\mathbf{a}_{k,m}}_{=>},\\ \mathbf{a}_{k}^{(k)} = (A_{k})_{mm} = \mathbf{\tilde{q}}_{m}^{(k)}{}^{T}A\mathbf{\tilde{q}}_{m}^{(k)}\\ \text{where } \underline{\mathbf{\tilde{q}}}_{m}^{(k)} \text{ is } \underline{m}_{\text{F}}\text{th column of } \underline{\tilde{Q}}^{(k)} \end{array}$