Model_Scratch 02 - No data augmentation

Name: Alberto Pingo

Email: 2202145 @my.ipleiria.pt

Validation dataset: train5

Directories

This section sets up the directory paths used for training, validation, and test datasets based on the repository structure.

```
In [ ]: import os
        current dir = os.getcwd()
        # TWO FOLDERS UP
        data dir = os.path.abspath(os.path.join(current dir, os.pardir, os.pardir
        test dir = os.path.join(data dir, 'test')
        train_dir = os.path.join(data_dir, 'train')
        train dirs = []
        for i in range(1, 5):
            train_dirs.append(os.path.join(train_dir, 'train' + str(i)))
        validation dir = os.path.join(data dir, 'train', 'train5')
        print(current dir)
        print(data dir)
        print(test dir)
        print(train dir)
        print(validation dir)
       /home/pws/code/IA-image-classification/notebooks/models-S
```

/home/pws/code/IA-image-classification/notebooks/models-S/home/pws/code/IA-image-classification/data/home/pws/code/IA-image-classification/data/test/home/pws/code/IA-image-classification/data/train/home/pws/code/IA-image-classification/data/train/train5

Preprocessing

Load the datasets and perform initial preprocessing. Images are resized to 32x32 pixels and batched.

```
In []: from keras.utils import image_dataset_from_directory
import tensorflow as tf

# Load training datasets from train1 to train4
train_datasets = []
```

```
IMG SIZE = 32
        BATCH SIZE = 64
        for i in range(1, 5):
            dataset = image dataset from directory(train dirs[i-1], image size=(I
            train datasets.append(dataset)
        train dataset = train datasets[0]
        for dataset in train datasets[1:]:
            train dataset = train dataset.concatenate(dataset)
        validation dataset = image dataset from directory(validation dir, image s
        test dataset = image dataset from directory(test dir, image size=(IMG SIZ
        class names = validation dataset.class names
        class names = [class name.split(' ')[-1] for class name in class names]
        print(class names)
       Found 10000 files belonging to 10 classes.
       ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',
       'ship', 'truck']
        Configure the dataset for performance
In [ ]: AUTOTUNE = tf.data.AUTOTUNE
        train dataset = train dataset.cache().shuffle(1000).prefetch(buffer size=
        validation dataset = validation dataset.cache().prefetch(buffer size=AUTO
        test dataset = test dataset.cache().prefetch(buffer size=AUTOTUNE)
In [ ]: import matplotlib.pyplot as plt
        for data, in train dataset.take(1):
            for i in range(9):
                plt.imshow(data[i].numpy().astype('uint8'))
            break
```


MODEL ARCHITECTURE

Build a Convolutional Neural Network (CNN) model.

Architecture:

Input -> Conv2D - BN -> MaxPooling2D -> Conv2D - BN-> MaxPooling2D -> Conv2D - BN-> MaxPooling2D -> Flatten -> Dense - BN -> Dropout -> Dense - BN -> Dropout -> Output

1. Input Layer

- The input layer expects images of size 32x32 pixels with 3 color channels (RGB).
- No data augmentation is applied to the input images.
- The Rescaling layer, rescales the pixel values from the range [0, 255] to [0, 1].

2. Convolutional Layers

- The model consists of 3 convolutional layers with 32, 64 and 128 filters respectively.
- Use padding='same' to preserve the spatial dimensions of the feature maps.

3. Max Pooling Layers

- Max pooling layers are used after each convolutional layer to reduce the spatial dimensions of the feature maps.
- A pooling size of 2x2 is used.

4. Fully connected layers

- A dense layer with 512 units and ReLU activation function.
- A dense layer with 256 units and ReLU activation function.

5. Output Layer

- The output layer consists of 10 units (one for each class) with a softmax activation function.
- The softmax function outputs the probability distribution over the classes.

Overfitting measures

• Dropout layers are used after each Convolutional and Dense layer to prevent overfitting.

Batch Normalization

- Batch normalization is used after each Convolutional layer to normalize the activations of the previous layer at each batch.
- This helps to stabilize and speed up the training process.

```
In [ ]: | from tensorflow import keras
        from keras import layers
        inputs = keras.Input(shape=(IMG SIZE, IMG SIZE, 3))
        x = layers.Rescaling(1./255)(inputs)
        ## First Convolutional Block
        x = layers.Conv2D(filters=32, kernel size=3, padding='same', activation="
        x = layers.BatchNormalization()(x) # Standardize the inputs to the next l
        x = layers.MaxPooling2D(pool size=2)(x)
        # Second Convolutional Block
        x = layers.Conv2D(filters=64, kernel size=3, padding='same', activation="
        x = layers.BatchNormalization()(x)
        x = layers.MaxPooling2D(pool size=2)(x)
        # Third Convolutional Block
        x = layers.Conv2D(filters=128, kernel size=3, padding='same', activation=
        x = layers.BatchNormalization()(x)
        x = layers.MaxPooling2D(pool size=2)(x)
        x = layers.Flatten()(x)
        x = layers.Dense(512, activation="relu")(x) # Fully connected layer
        x = layers.BatchNormalization()(x)
        x = layers.Dense(256, activation="relu")(x)
        x = layers.BatchNormalization()(x)
        x = layers.Dropout(0.5)(x)
        outputs = layers.Dense(10, activation="softmax")(x) # Softmax for multi-
        model = keras.Model(inputs=inputs, outputs=outputs)
        model.summary()
```

Model: "model_1"

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 32, 32, 3)]	0
rescaling_1 (Rescaling)	(None, 32, 32, 3)	0
conv2d_3 (Conv2D)	(None, 32, 32, 32)	896
<pre>batch_normalization_5 (Bat chNormalization)</pre>	(None, 32, 32, 32)	128
<pre>max_pooling2d_3 (MaxPoolin g2D)</pre>	(None, 16, 16, 32)	0
conv2d_4 (Conv2D)	(None, 16, 16, 64)	18496
<pre>batch_normalization_6 (Bat chNormalization)</pre>	(None, 16, 16, 64)	256
<pre>max_pooling2d_4 (MaxPoolin g2D)</pre>	(None, 8, 8, 64)	0
conv2d_5 (Conv2D)	(None, 8, 8, 128)	73856
<pre>batch_normalization_7 (Bat chNormalization)</pre>	(None, 8, 8, 128)	512
<pre>max_pooling2d_5 (MaxPoolin g2D)</pre>	(None, 4, 4, 128)	0
flatten_1 (Flatten)	(None, 2048)	0
dense_3 (Dense)	(None, 512)	1049088
<pre>batch_normalization_8 (Bat chNormalization)</pre>	(None, 512)	2048
Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 32, 32, 3)]	 0
rescaling_1 (Rescaling)	(None, 32, 32, 3)	0
conv2d_3 (Conv2D)	(None, 32, 32, 32)	896
<pre>batch_normalization_5 (Bat chNormalization)</pre>	(None, 32, 32, 32)	128
<pre>max_pooling2d_3 (MaxPoolin g2D)</pre>	(None, 16, 16, 32)	0
conv2d_4 (Conv2D)	(None, 16, 16, 64)	18496
<pre>batch_normalization_6 (Bat chNormalization)</pre>	(None, 16, 16, 64)	256
<pre>max_pooling2d_4 (MaxPoolin g2D)</pre>	(None, 8, 8, 64)	0

conv2d_5 (Conv2D)	(None, 8, 8, 128)	73856
<pre>batch_normalization_7 (Bat chNormalization)</pre>	(None, 8, 8, 128)	512
<pre>max_pooling2d_5 (MaxPoolin g2D)</pre>	(None, 4, 4, 128)	0
flatten_1 (Flatten)	(None, 2048)	0
dense_3 (Dense)	(None, 512)	1049088
<pre>batch_normalization_8 (Bat chNormalization)</pre>	(None, 512)	2048
dense_4 (Dense)	(None, 256)	131328
<pre>batch_normalization_9 (Bat chNormalization)</pre>	(None, 256)	1024
dropout_1 (Dropout)	(None, 256)	0
dense_5 (Dense)	(None, 10)	2570

Total params: 1280202 (4.88 MB) Trainable params: 1278218 (4.88 MB) Non-trainable params: 1984 (7.75 KB)

Compile Model

Loss function:

Use the Sparse Categorical Crossentropy loss function because it is a multi-class classification problem.

Optimizer: RMSprop

Exploring the RMSprop optimizer.

```
In [ ]: from keras import optimizers
        model.compile(
            loss='sparse_categorical_crossentropy',
            optimizer=optimizers.RMSprop(learning rate=0.001),
            metrics=['acc'])
```

Train Model

Train the model with Early stopping, Model checkpoint, and Learning rate reduction callbacks.

```
In [ ]: from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPla
        learning rate reduction = ReduceLROnPlateau(
```

monitor='val acc',

```
patience=3,
   verbose=1,
   factor=0.5,
   min lr=1e-5)
early stop = EarlyStopping(monitor='val acc',
                  patience=3,
                  restore best weights=True)
model checkpoint = ModelCheckpoint('models/S02/checkpoints/S02-cp.h5', sa
history = model.fit(
   train dataset,
   epochs=100,
   validation data=validation dataset,
   callbacks=[early stop, model checkpoint, learning rate reduction])
Epoch 1/100
c: 0.5026 - val loss: 1.3383 - val_acc: 0.5427 - lr: 0.0010
Epoch 2/100
 6/628 [.....] - ETA: 6s - loss: 1.1421 - acc: 0
.6250
/home/pws/miniconda3/envs/tensorflow/lib/python3.11/site-packages/keras/sr
c/engine/training.py:3103: UserWarning: You are saving your model as an HD
F5 file via `model.save()`. This file format is considered legacy. We reco
mmend using instead the native Keras format, e.g. `model.save('my model.ke
ras')`.
 saving api.save model(
c: 0.6764 - val loss: 0.9298 - val acc: 0.6768 - lr: 0.0010
Epoch 3/100
c: 0.7510 - val loss: 0.9715 - val acc: 0.6770 - lr: 0.0010
Epoch 4/100
c: 0.8069 - val loss: 0.8793 - val acc: 0.7212 - lr: 0.0010
c: 0.8552 - val_loss: 1.1924 - val_acc: 0.6894 - lr: 0.0010
Epoch 6/100
c: 0.8959 - val loss: 0.8939 - val acc: 0.7559 - lr: 0.0010
Epoch 7/100
c: 0.9242 - val_loss: 1.0023 - val_acc: 0.7341 - lr: 0.0010
Epoch 8/100
c: 0.9402 - val loss: 1.5092 - val acc: 0.6651 - lr: 0.0010
Epoch 9/100
Epoch 9: ReduceLROnPlateau reducing learning rate to 0.000500000023748725
c: 0.9530 - val loss: 1.2263 - val acc: 0.7216 - lr: 0.0010
```

Save Model

```
In [ ]: keras.models.save_model(model, 'models/S02/S02-model.h5')

/tmp/ipykernel_127701/2816346251.py:1: UserWarning: You are saving your mo
del as an HDF5 file via `model.save()`. This file format is considered leg
acy. We recommend using instead the native Keras format, e.g. `model.save
    ('my_model.keras')`.
    keras.models.save_model(model, 'models/S02/S02-model.h5')
```

Load Model

```
In [ ]: keras.models.load_model('models/S02/S02-model.h5')
Out[ ]: <keras.src.engine.functional.Functional at 0x7082600e6690>
```

EVALUATION

Evaluate the model on the validation dataset.

Training and Validation Curves

Plot the training and validation accuracy and loss curves.

```
In [ ]: import matplotlib.pyplot as plt
        # Extract the history from the training process
        acc = history.history['acc']
        val acc = history.history['val acc']
        loss = history.history['loss']
        val loss = history.history['val loss']
        epochs = range(1, len(acc) + 1)
        # Plot the training and validation accuracy
        plt.plot(epochs, acc, 'bo', label='Training acc')
        plt.plot(epochs, val acc, 'b', label='Validation acc')
        plt.title('Training and validation accuracy')
        plt.legend()
        # Plot the training and validation loss
        plt.figure()
        plt.plot(epochs, loss, 'bo', label='Training loss')
        plt.plot(epochs, val_loss, 'b', label='Validation loss')
        plt.title('Training and validation loss')
        plt.legend()
        plt.show()
```


Confusion Matrix

```
In [ ]: import numpy as np
    import matplotlib.pyplot as plt
    import seaborn as sns
    from sklearn.metrics import confusion_matrix
```

```
y_{true} = []
y_pred = []
for features, labels in validation_dataset:
    predictions = model.predict(features)
    y_true.extend(labels.numpy())
    y_pred.extend(np.argmax(predictions, axis=1))
y_true = np.array(y_true)
y_pred = np.array(y_pred)
cm = confusion_matrix(y_true, y_pred)
# Plot the confusion matrix
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, cmap='Blues', fmt='g')
plt.xlabel('Predicted')
plt.ylabel('True')
plt.title('Confusion Matrix')
plt.show()
```

2 (2			^	26 / 1
•	[======================================			26ms/step
2/2	[========]	-	0s	9ms/step
2/2	[==========]	-	0s	3ms/step
2/2	[=========]	-	0s	2ms/step
2/2	[=========]	-	0s	2ms/step
2/2	[==========]	-	0s	3ms/step
2/2	[======================================	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[===========]	-	0s	3ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[===========]	-	0s	3ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[==========]	-	0s	3ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	4ms/step
2/2	[===========]	-	0s	2ms/step
2/2	- [===========]	-	0s	2ms/step
2/2	- [===========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	3ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[==========]	-	0s	3ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[===========]	-	0s	3ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[===========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	3ms/step
2/2	[==========]	-	0s	3ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[==========]	-	0s	2ms/step
2/2	[=========]	-	0s	3ms/step
2/2	[==========]	-	0s	2ms/step
	[========]			•
2/2	[========]	-	0s	2ms/step
	[========]			
2/2	[========]	-	0s	2ms/step
2/2	[========]	-	0s	2ms/step
•	[========]		0s	3ms/step
2/2	[========]	-	0s	2ms/step
•	[=========]			2ms/step
2/2	[=========]	-	0s	2ms/step
2/2	[=========]	-	0s	4ms/step

2/2	[======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[=======]	-	0s	4ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[=======]	_	0s	3ms/step
2/2	[=======]	_	0s	2ms/step
2/2	[=======]	_	0s	2ms/step
2/2	[=======]	_	0s	4ms/step
2/2	[=======]	_	0s	2ms/step
2/2	-	_	0s	2ms/step
2/2	-			2ms/step
2/2	-		0s	3ms/step
2/2	-		0s	2ms/step
2/2	1		0s	2ms/step
2/2	[=======]		0s	2ms/step
2/2	[=======]		0s	2ms/step
2/2	[=======]		0s	2ms/step 2ms/step
2/2	[=======]		0s	
-, -	-			2ms/step
2/2	[========]		0s	2ms/step
2/2	[========]		0s	3ms/step
2/2	[========]		0s	2ms/step
2/2	-		0s	2ms/step
2/2	[=======]		0s	2ms/step
2/2	[========]		0s	3ms/step
2/2	[========]		0s	2ms/step
2/2	-		0s	2ms/step
2/2	-		0s	2ms/step
2/2	-		0s	3ms/step
2/2			0s	2ms/step
2/2	[======]		0s	2ms/step
2/2	[=======]		0s	4ms/step
2/2			0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
	[=======]		0s	4ms/step
2/2	[========]	-	0s	2ms/step
2/2	[========]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[========]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[========]	-	0s	3ms/step
2/2	[=======]	-		2ms/step
2/2	[=======]		0s	
	[========]		0s	
	[========]			2ms/step
	[========]			2ms/step
	[========]			2ms/step
	[========]			3ms/step
2/2				2ms/step
2/2	[========]		0s	
2/2				2ms/step
_, _				э, стор

2/2	[======]	_	0s	4ms/step
2/2	[========]	_	0s	2ms/step
2/2	[=======]	_	0s	2ms/step
2/2	[=======]	_	0s	2ms/step
2/2	[=======]	_	0 s	2ms/step
2/2	[=======]	_	0 s	2ms/step
2/2	[========]	_	0s	2ms/step
2/2	[========]	_	0s	2ms/step
2/2	[========]	-	0s	2ms/step
2/2	[=======]	-	0s	3ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	3ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[=======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	3ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
2/2	[======]	-	0s	3ms/step
2/2	[=====]	-	0s	3ms/step
2/2	[=====]	-	0s	2ms/step
2/2	[=====]	-	0s	2ms/step
2/2	[======]	-	0s	2ms/step
1/1	[======]	-	0s	101ms/step


```
In [ ]:
        # Display the confusion matrix
         print("Confusion Matrix:")
         print(cm)
        Confusion Matrix:
        [[788
               18
                    26
                          8
                             21
                                  11
                                       1
                                          11
                                               80
                                                   50]
         [ 12 899
                     3
                                       1
                                                    661
                          5
                              3
                                   5
                                           6
                                               14
         [ 70
                 4 612
                             95
                                 48
                                      28
                                          35
                                                9
                                                    9]
                        42
         [ 35
                 4
                    53 571
                             55 155
                                      55
                                          45
                                               14
                                                   29]
                                                     3]
           20
                 1
                    38
                        39 779
                                 43
                                      14
                                          45
                                               15
         [ 15
                 4
                    49 165
                             39 667
                                      16
                                          62
                                                1
                                                    7]
                 6
                    35
                             75
                                                    8]
           7
                        60
                                 33 739
                                          11
                                                6
         [ 11
                 3
                    23
                        26
                             68
                                  50
                                       2 775
                                                   18]
                                                1
         [ 34
                39
                     9
                          3
                             12
                                  0
                                       7
                                            3 878
                                                   18]
         [ 14
               91
                     5
                          7
                                  11
                                               26 851]]
                              6
                                       2
                                            9
```

```
In [ ]: from sklearn.metrics import classification_report
    report = classification_report(y_true, y_pred, target_names=class_names)
    print(report)
```

	precision	recall	f1-score	support
airplane	0.78	0.78	0.78	1014
automobile	0.84	0.89	0.86	1014
bird	0.72	0.64	0.68	952
cat	0.62	0.56	0.59	1016
deer	0.68	0.78	0.72	997
dog	0.65	0.65	0.65	1025
frog	0.85	0.75	0.80	980
horse	0.77	0.79	0.78	977
ship	0.84	0.88	0.86	1003
truck	0.80	0.83	0.82	1022
accuracy			0.76	10000
macro avg	0.76	0.76	0.75	10000
weighted avg	0.76	0.76	0.75	10000

Predictions

Predict and visualize the results for a sample image.

```
In []: import tensorflow as tf
    import matplotlib.pyplot as plt
    from keras.preprocessing import image

# Load an image
    img = tf.keras.preprocessing.image.load_img(train_dirs[0] + '/006_frog/al
    # img = tf.keras.preprocessing.image.load_img(train_dirs[0] + '/000_airpl

# Preprocess the image
    img_array = image.img_to_array(img)
    img_array = tf.expand_dims(img_array, 0)

plt.imshow(img)
    plt.show()

print(img_array.shape)
    result = model.predict(img_array)
    print("Result: ", result.round())
```


20 of 20