1 Grundlagen

 ${f S}$ 1.1.2 ${\Bbb R}$ ist ein kommutativer, angeordneter Körper, der ordnungsvollständig ist

1.1 Infimum und Supremum

D 1.1.12 Sei $A \subset \mathbb{R}$ eine Teilmenge.

- 1) $c \in \mathbb{R}$ ist **obere Schranke** if $\forall a \in A : a \leq c$
- 2) $c \in \mathbb{R}$ ist untere Schranke if $\forall a \in A : c \leq a$
- 3) $m \in \mathbb{R}$ heisst ein **Maximum** von A if $m \in A$ und m eine obere Schranke von A ist.
- 4) $m \in \mathbb{R}$ heisst ein **Minimum** von A if $m \in A$ und m eine untere Schranke von A ist.

S 1.1.15 . Sei $A \subset \mathbb{R}, A \neq \emptyset$ und beschränkt

- 1) Kleinste obere Schranke: $\sup A$ (Supremum)
- 2) Grösste untere Schranke: inf A (Infimum)

Eigenschaften von Supremum und Infimum

- $\sup(A \cup B) = \max(\sup A, \sup B)$
- $\sup(A+B) = \sup A + \sup B$
- $\inf(A \cup B) = \min(\inf A, \inf B)$
- $\inf(A+B) = \inf A + \inf B$

2 Folgen und Reihen

D 2.1.1 Eine Folge a_n in \mathbb{R} ist eine Abbildung

 $a:\mathbb{N}\longrightarrow\mathbb{R}$

2.1 Konvergenz von Folgen

D 2.1.4 Eine Folge a_n heisst **konvergent**, falls es $a \in \mathbb{R}$ gibt, so dass $\forall \epsilon > 0$ die Menge $\{n \in \mathbb{N} : a_n \notin] \ a - \epsilon, a + \epsilon[\}$ endlich ist. **L 2.1.3** Dieses a ist **eindeutig**.

L 2.1.5 Jede konvergente Folge ist **beschränkt**. **Achtung:** a_n beschränkt $\Rightarrow a_n$ konvergent!

L 2.1.6 Eine Folge a_n konvergiert gegen $a = \lim_{n \to \infty} a_n$, falls $\forall \epsilon > 0 \ \exists N \ge 0$ so dass $\forall n \ge N$

$$|a_n - a| < \epsilon$$
.

S 2.1.8 Seien a_n und b_n konvergente Folgen mit $a = \lim_{n \to \infty} a_n$ und $b = \lim_{n \to \infty} b_n$

- 1) Dann ist $\lim_{n\to\infty} (a_n + b_n) = a + b$
- 2) Dann ist $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b$
- 3) Dann ist $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b} \ (b_n \neq 0 \ \forall n \geq 0)$
- 4) $\exists K \ge 0 \ \forall n \ge K \ a_n \le b_n \implies a \le b$

S Sandwich Satz Sei $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \alpha$

 $a_n \le c_n \le b_n \ \forall n \ge K \implies \lim_{n \to \infty} c_n = \alpha$

Die Folge a_n ist divergent, falls sie nicht konvergiert.

2.2 Weierstrass und Anwendungen

D 2.2.1 Falls a_n ist

- 1) monoton wachsend falls $a_n \leq a_{n+1} \ \forall n \geq 0$
- 2) monoton fallend falls $a_n \ge a_{n+1} \ \forall n \ge 0$

S 2.2.2 (Weierstrass) Genau dann, wenn a_n

1) monoton wachsend und nach oben beschränkt ist, dann konvergiert a_n mit Grenzwert

$$\lim_{n \to \infty} a_n = \sup\{a_n \ n \ge 0\}$$

2) monoton fallend und nach unten beschränkt ist, dann $konvergiert a_n$ mit Grenzwert

$$\lim_{n \to \infty} a_n = \inf\{a_n \ n \ge 0\}$$

L 2.2.7 (Bernoulli Ungleichung)

$$(1+x)^{n+1} \ge 1 + n \cdot x \quad \forall n \in \mathbb{N}, x > -1$$

${\bf 2.3}\quad {\bf Limes\ superior\ und\ inferior}$

D 2.3.0

 $\liminf_{n \to \infty} a_n = \lim_{n \to \infty} b_n, \quad (b_n = \inf\{a_k : k \ge n\})$

 $\limsup_{n \to \infty} a_n = \lim_{n \to \infty} c_n, \quad (c_n = \sup\{a_k : k \ge n\})$

L 2.4.1 Die Folge a_n konvergiert genau dann, falls

- 1. a_n beschränkt ist
- $2. \lim_{n \to \infty} \sup a_n = \lim_{n \to \infty} \inf a_n$

2.4 Cauchy Kriterium

S 2.4.2 (Cauchy Kriterium) Die Folge a_n ist genau dann konvergent und heisst Cauchy-Folge

 $\forall \epsilon > 0 \ \exists N \ge 0 \text{ so dass } |a_n - a_m| < \epsilon \ \forall n, m \ge N$

2.5 Bolzano-Weierstrass

D 2.5.1 Ein abgeschlossenes Intervall $I \subset \mathbb{R}$

- 1) $[a, b], a < b, a, b \in \mathbb{R}$
- 2) $[a, +\infty[, a \in \mathbb{R}]$
- 3) $]-\infty, a], a \in \mathbb{R}$
- 4) $]-\infty, +\infty] = \mathbb{R}$

Die Länge eines $\mathcal{L}(I)$ ist definiert als:

• $\mathcal{L}(I) = b - a$ im ersten Fall

• $\mathcal{L}(I) = \infty$ in (2), (3), (4)

S 2.5.5 (Cauchy-Cantor)

Sei $I_1 \subseteq I_2 \subseteq \cdots I_n \subseteq \cdots$ eine Folge abgeschlossener Intervall mit $\mathcal{L}(I_1) < +\infty$. Dann gilt

$$\bigcap_{n\geq 1} I_n \neq \emptyset$$

$$\lim_{n \to \infty} \mathcal{L}(I_n) = 0 \implies \left| \bigcap_{n \ge 1} I_n \right| = 1$$

S 2.5.6 R ist nicht abzählbar.

D 2.5.7 b_n ist eine Teilfoge von a_n , falls $b_n = a_{l(n)}, \quad l: \mathbb{N} \to \mathbb{N} \text{ und } l(n) > l(n+1)$

S 2.5.9 (Bolzano-Weierstrass) Für jede beschränkte Folge existiert eine konvergente Teilfolge.

2.6 Folgen in R^d und C

D 2.6.1 Eine Folge a_n in $\mathbf{R}^{\mathbf{d}}$ ist eine Abbildung

$$a: \mathbb{N} \longrightarrow \mathbf{R}^{\mathbf{d}}$$

D 2.6.2 Eine Folge a_n in $\mathbf{R}^{\mathbf{d}}$ konvergiert gegen $a = \lim_{n \to \infty} a_n$, falls $\forall \epsilon > 0 \ \exists N \ge 0$ so dass $\forall n \ge N$

$$||a_n - a|| < \epsilon.$$

2.7 Reihen

D 2.7.0 Eine Reihe ist eine unendliche Summe

$$S_n := a_1 + \dots + a_n = \sum_{k=1}^n a_k$$

D 2.7.1 Die Reihe $\sum_{k=1}^{n} a_k$ ist **konvergent**, falls die Folge der Partialsummen konvergiert.

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} S_n$$

S 2.7.4 Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ konvergent

- (1) $\sum_{k=1}^{\infty} (a_k + b_k) = \sum_{k=1}^{\infty} a_k + \sum_{k=1}^{\infty} a_k$
- (2) $\sum_{k=1}^{\infty} \alpha \cdot a_k = \alpha \cdot \sum_{k=1}^{\infty} a_k$

S 2.7.5 (Cauchy Kriterium) $\sum_{k=1}^{\infty} a_k$ ist genau dann konvergent, falls

$$\forall \epsilon > 0 \ \exists N \ge 0 \ \mathrm{mit} \ \left| \sum_{k=n}^m a_k \right| < \epsilon \quad \forall m \ge n \ge N$$

Bem: $\sum_{k=1}^{\infty} a_k$ konvergent $\implies \lim_{n \to \infty} a_n = 0$

S 2.7.6 Sei $\sum_{k=1}^{\infty} a_k$ mit $a_k \geq 0 \ \forall k \in \mathbb{N}$. Dann konvergiert $\sum_{k=1}^{\infty} a_k$ genau dann, falls die Folge $S_n = \sum_{k=1}^n a_k$ nach oben beschränkt ist

K 2.7.7 (Vergleichssatz) Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ Reihen mit: $0 \le a_k \le b_k$ $\forall k \ge 1$.

$$\sum_{k=1}^{\infty} b_k \text{ konvergent } \Longrightarrow \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent } \Longrightarrow \sum_{k=1}^{\infty} b_k \text{ divergent}$$

S 2.7.9 $\sum_{k=1}^{\infty} a_k$ heisst absolut konvergent,

falls
$$\sum_{k=1}^{\infty} |a_k|$$
 konvergiert

S 2.7.10 Eine absolut konvergente Reihe $\sum_{k=1}^{\infty} a_k$ ist auch konvergent und es gilt:

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|$$

S 2.7.12 Leibniz Sei a_n monoton fallend mit $a_n \ge 0 \ \forall n \ge 0$, $\lim_{n \to \infty} a_n = 0$. Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k \text{ und } a_1 - a_2 \le S \le a_1$$

D 2.7.14 Eine Reihe $\sum_{k=1}^{\infty} a'_n$ ist eine Umordung der Reihe $\sum_{k=1}^{\infty} a_n$, falls es eine bijektive Abbildung $\phi: \mathbb{N}^* \to \mathbb{N}^*$ mit $a'_n = a_{\phi(n)}$

S 2.7.16 Dirichlet Falls $\sum_{k=1}^{\infty} a_k$ absolut konvergiert, dann konvergiert jede Umordnung der Reihe und hat denselben Grenzwert.

S Riemann Sei $\sum_{k=1}^{\infty} a_n$ eine konvergente, aber nicht absolut konvergente Reihe, dann gibt es zu jedem $A \in \mathbb{R} \cup \{\pm \infty\}$ eine Umordnung der Reihe, die gegen A konvergiert.

S Quotientenkriterium Sei $a_n \neq 0 \ \forall n \geq 0$

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1 \implies \sum_{n=0}^{\infty} a_n \text{ konvergiert absolut}$$

$$\limsup_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1 \implies \sum_{n=0}^{\infty} a_n \text{ divergiert}$$

S Wurzelkriterium

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{n=0}^{\infty} a_n \text{ konvergient absolut}$$

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1 \implies \sum_{n=0}^{\infty} a_n \text{ divergient}$$

K 2.7.21 Die Potenzreihe $\sum_{k=1}^{\infty} c_k (x-x_0)^k$

- · konvergiert für alle $|x-x_0| < \rho$
- · divergiert für alle $|x x_0| > \rho$

$$\rho = \begin{cases} \limsup_{n \to \infty} \frac{|c_n|}{|c_{n+1}|} & \text{für } n!, \alpha^n \text{ oder Polynom} \\ \frac{1}{\limsup_{n \to \infty} \sqrt[k]{|c_k|}} & \text{für } (b_n)^n \end{cases}$$

D 2.7.22 $\sum_{k=1}^{\infty} b_k$ ist eine lineare Anordnung der Doppelreihe $\sum_{i,j\geq 0} a_{ij}$, falls es eine Bijektion $\sigma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ gibt mit $b_k = a_{\epsilon(k)}$.

S 2.7.23 Falls
$$\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \leq B$$
, $\forall m \geq 0$

dann konvergiert
$$S_i := \sum_{j=0}^{\infty} a_{ij} \quad \forall i \geq 0$$

dann konvergiert
$$U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geq 0$$

und es gilt
$$\sum_{i=0}^{m} S_i = \sum_{j=0}^{m} U_j$$

S 2.7.24 Das Cauchy Produkt der Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ ist die Reihe

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = a_0 b_0 + (a_0 b_1 + a_1 b_0) + \cdots$$

S 2.7.26 Falls die Reihen $\sum_{i=0}^{\infty} a_i$, $\sum_{i=0}^{\infty} b_i$ absolut konvergieren, so knovergiert ihr Cauchy Produkt und es gilt:

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = \left(\sum_{i=0}^{\infty} a_i \right) \left(\sum_{j=0}^{\infty} b_j \right)$$

S 2.7.28 Sei $f_n: \mathbb{N} \to \mathbb{R}$ eine Folge, für die gilt:

- (1) $f(j) := \lim_{n \to \infty} f_n(j)$ existiert $\forall j \in \mathbb{N}$
- (2) Es gibt eine Funktion $q: \mathbb{N} \to [0, \infty[$, so dass
 - $(2.1) |f_n(j)| \le g(j) \quad \forall j \ge 0, \ \forall n \ge 0$
 - (2.2) $\sum_{i=0}^{\infty} g(i)$ konvergiert

Dann folgt $\sum_{j=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j)$

K 2.7.29 Für jedes $z \in \mathbb{C}$ gilt

$$\lim_{n \to \infty} \left(1 + \frac{z}{n} \right)^n = \exp(z)$$

3 Stetige Funktionen

3.1 Reelwertige Funktionen

D 3.1.1 Sei $f \in \mathbb{R}^D$

- (1) f ist **nach oben beschränkt**, falls $f(D) \subset \mathbb{R}$ nach oben beschränkt ist.
- (2) f ist nach unten beschränkt, falls $f(D) \subset \mathbb{R}$ nach unten ebschränkt ist.
- (3) f ist **beschränkt**, falls $f(D) \subset \mathbb{R}$ beschränkt ist

D 3.1.2 Eine Funktion $f: D \to \mathbb{R}$ ist

(1) monoton wachsend, falls $\forall x, y \in D$

$$x \leqslant y \Longrightarrow f(x) \leqslant f(y)$$

(2) streng monoton wachsend, falls $\forall x, y \in D$ $x < y \Longrightarrow f(x) < f(y)$

(3) monoton fallend, falls $\forall x, y \in D$

$$x \leqslant y \Longrightarrow f(x) \geqslant f(y)$$

(4) streng monoton fallend, falls $\forall x,y \in D$

$$x < y \Longrightarrow f(x) > f(y)$$

- (5) **monoton**, falls f monoton wachsend oder monoton fallend
- (6) **streng monoton**, falls f streng monoton wachsend oder streng monoton fallend ist.

3.2 Stetigkeit an einem Punkt

D 3.2.1 Sei $x_0 \in D \subseteq \mathbb{R}$. Die Funktion $f: D \to \mathbb{R}$ ist in \boldsymbol{x}_0 stetig, falls $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in D$

$$|x - x_0| < \delta \Longrightarrow |f(x) - f(x_0)| < \varepsilon$$

D 3.2.2 Die Funktion $f: D \to \mathbb{R}$ ist genau dann stetig, falls sie in jedem Punkt von D stetig ist.

S 3.2.4 Die Funktion $f: D \to \mathbb{R}$ ist genau dann in x0 stetig, falls für jede Folge a_n

$$\lim_{n \to \infty} a_n = x_0 \Longrightarrow \lim_{n \to \infty} f(a_n) = f(x_0)$$

K 3.2.5 Seien $f: D \to \mathbb{R}$ und $g: D \to \mathbb{R}$ beides Funktionen, welche in x_0 sind, dann gilt

- 1) f + g, $\lambda \cdot f$, $f \cdot g$ stetig in x_0
- 2) falls $g(x_0) \neq 0, \frac{f}{g}$ stetig in x_0

D 3.2.6 Polynomiale Funktion $P: \mathbb{R} \to \mathbb{R}$:

$$P(x) = a_n x^n + \dots + a_0$$

wobei $a_n, \dots, a_0 \in \mathbb{R}$ und Grad ist n, falls $a_n \neq 0$ **K 2.3.7** P(x) ist auf ganz \mathbb{R} stetig

3.3 Zwischenwertsatz

S 3.3.1 $I \subset \mathbb{R}$, $f: I \to \mathbb{R}$ stetig und $a, b \in I$ Für jedes c zwischen f(a) und f(b) gibt es ein z zwischen a und b mit f(z) = c.

K 3.3.2 Ein Polynom n-ten grades mit n ungerade, hat mindestens eine Nullstelle in n.

3.4 Min-Max Satz

D 3.4.2 $D \subset \mathbb{R}, f: D \to \mathbb{R}, g: D \to \mathbb{R}$

- $D = [a, b], a \le b$ ist in dieser Form kompakt
- $max(f, q)(x) := max(f(x), q(x)) \quad \forall x \in D$
- $min(f,g)(x) := min(f(x),g(x)) \quad \forall x \in D$
- |f|(x) := |f(x)|

L 3.4.3 Sei $x_0 \in D$ und f, g stetig in x_0 . Dann sind |f|, max(f,g), min(f,g) stetig in x_0

L 3.4.4 $\{x_n : n \geq 1\} \subset [a,b] \Rightarrow \lim_{n \to \infty} x_n \in [a,b]$

S 3.4.5 $f: I = [a, b] \to \mathbb{R}$ stetig, dann $\exists u, v \in I$ so dass $f(u) \le f(x) \le (v) \ \forall x \in I$ (f ist beschränkt)

3.5 Umkehrabbildungen

S 3.5.1 $D_1, D_2 \subset \mathbb{R}, x_0 \in D_1, f : D_1 \to D_2$ in x_0 stetig, $f(x_0) \in D_2, g : D_2 \to \mathbb{R}$ in $f(x_0)$ stetig $\implies g \circ f : D_1 \to \mathbb{R}$ stetig in x_0

S 3.5.3 $f \to \mathbb{R}$ stetig, streng monoton, dann ist $J := f(I) \subset \mathbb{R}$ ein Intervall und $f^{-1} : J \to I$ stetig, streng monoton wachsend

3.6 Exponentialfunktion

S 3.6.1 exp : $\mathbb{R} \to]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv.

K 3.6.2 $\exp(\mathbf{x}) > 0 \quad \forall x \in \mathbb{R}$

K 3.6.3 $\exp(z) > \exp(y) \ \forall z > y$

K 3.6.4 $\exp(\mathbf{x}) \geq 1 + x \quad \forall x \in \mathbb{R}$

K 3.6.5 ln :]0, $+\infty$ [$\rightarrow \mathbb{R}$ ist streng monoton wachsend, stetig und bijektiv.

Es gilt $\ln(a \cdot b) = \ln a + \ln b \quad \forall a, b \in]0, +\infty[$

K 3.6.6 $f: [0, +\infty[\to]0, +\infty[$

- 1. Für a > 0 ist $f(x) = x^a$ eine stetige, streng monoton wachsende Bijektion
- 2. Für a < 0 ist $f(x) = x^a$ eine stetige, streng monoton fallende Bijektion
- 3. $\ln(x^a) = a \ln(x) \quad \forall a \in \mathbb{R}, \ \forall x > 0$
- 4. $x^a \cdot x^b = x^{a+b} \quad \forall a, b \in \mathbb{R}, \ \forall x > 0$
- 5. $(x^a)^b = x^{a \cdot b} \quad \forall a, b \in \mathbb{R}, \ \forall x > 0$

3.7 Konvergenz v. Funktionenfolgen

D 3.7.1 f_n konvergiert punktweise gegen $f: D \to \mathbb{R}$, falls für alle $x \in D$:

$$f(x) = \lim_{n \to \infty} f_n(x)$$

D 3.7.3 $f_n: D \to \mathbb{R}$ konvergiert gleichmässig in D gegen $f: D \to R$, falls $\forall \epsilon \geq 0, \exists N > 1$, so dass

$$\forall n \ge N, \ \forall x \in D : |f_n(x) - f(x)| < \epsilon$$

S 3.7.4 Falls $f_n: D \to \mathbb{R}$ gegen $f: D \to \mathbb{R}$ gleichmässig konvergiert, dann ist f stetig.

S 3.7.5 $f_n: D \to \mathbb{R}$ ist gleichmässig konvergent, falls für alle x $f(x) = \lim_{n \to \infty} f_n(x)$ existiert und f_n gleichmässig gegen f konvergiert.

K 3.7.6 $f_n: D \to \mathbb{R}$ konvergiert genau dann gleichmässig in D, falls $\forall \epsilon > 0, \exists N > 1$, so dass

$$\forall n, m \geq N \text{ und } \forall x \in D |f_n(x) - f_m(x)| < \epsilon$$

D 3.7.8 Eine Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert gleichmässig, falls die durch $S_n = \sum_{k=0}^n f_k(x)$ gegebene Funktionenfolge gleichmässig konvergiert

D 3.7.9 $f_n: D \to \mathbb{R}$ eine Folge stetiger Funktionen, wobei $|f_n(x)| \le c_n \quad \forall x \in D \text{ und } \sum_{n=0}^{\infty} c_n$ konvergiert.

Dann konvergiert die Reihe $f(x) := \sum_{n=0}^{\infty} f_n(x)$, wobei f(x) eine stetige Funktion ist.

3.8 Trigonometrische Funktionen

$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$$

$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

S 3.8.1 $\sin : \mathbb{R} \to \mathbb{R}$, $\cos : \mathbb{R} \to \mathbb{R}$ sind stetig

S 3.8.2 Eigenschaften von sin und cos

- 1. $\cos z = \cos(-z)$ und $\sin(-z) = -\sin(z)$
- 2. $\exp(i \cdot z) = \cos(z) + i \cdot \sin(z)$
- 3. $\cos(z)^2 + \sin(z)^2 = 1$
- 4. $\sin(z+w) = \sin(z) \cdot \cos(w) + \sin(w) \cdot \cos(z)$ $\cos(z+w) = \cos(z) \cdot \cos(w) - \sin(w) \cdot \sin(z)$
- 5. $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$, $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$

K 3.8.3

 $\sin(2 \cdot z) = 2\sin(z) \cdot \cos(z)$ $\cos(2 \cdot z) = \cos(z)^2 \cdot \sin(z)^2$

4 Differenzierbare Funktionen

D 4.1.1 f ist in x_0 differenzierbar, falls

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$
 existiert

Bem:
$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0+h) - f(x_0)}{h}$$

4.1 Die Ableitung

S 4.1.3 $f: D \to \mathbb{R}, x_0 \in D$ ein Häufungspunkt

- 1. f ist in x_0 differenzierbar
- 2. Es git $c \in \mathbb{R}$ und $r: D \to \mathbb{R}$ mit $f(x) = f(x_0) + c(x x_0) + r(x) \cdot (x x_0)$ $r(x_0) = 0$ und r ist stetig in x_0

Dann ist $c = f'(x_0)$ eindeutig bestimmt.

S 4.1.4 $f: D \to \mathbb{R}$ ist in x_0 differenzierbar, genau dann, wenn $\phi: D \to \mathbb{R}$ stetig in x_0 ist und

$$f(x) = f(x_0) + \phi(x) \cdot (x - x_0)$$
, wobei $\phi(x_0) = f'(x_0)$

K 4.1.5 f differenzierbar in $x_0 \Rightarrow f$ stetig in x_0

D 4.1.7 $f: D \to \mathbb{R}$ ist in D differenzierbar, falls $\forall x_0 \in D$, f in x_0 differenzierbar ist

S 4.1.9 Sei $f, g: D \to \mathbb{R}$ in x_0 differenzierbar

1. f + g ist in x_0 differenzierbar und

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

2. $f \cdot g$ ist in x_0 differenzierbar und

$$(f \cdot g)(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$$

3. Falls $g(x_0) \neq 0$ ist $\frac{f}{g}$ in x_0 differencies ar

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0) \cdot g(x_0) - f(x_0) \cdot g'(x_0)}{g(x_0)^2}$$

S 4.1.11 $f: D \to E$ in x_0 und $g: E \to \mathbb{R}$ in $f(x_0)$ differenzierbar, so ist $(g \circ f)$ in x_0 differenzierbar

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$$

K 4.1.12 $f: D \to E$ bijektiv

 $\implies f^{-1}$ differenzierbar, $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

4.2 Erste Ableitung

D 4.2.1 $f: D \to \mathbb{R} \text{ und } x_0 \in D$

- 1. f hat lokales Maximum in x_0 , falls $\delta > 0$ gibt $f(x) < f(x_0) \quad \forall x \in]x_0 \delta, x_0 + \delta[\cap D]$
- 2. f hat lokales Minimum in x_0 , falls $\delta > 0$ gibt $f(x) > f(x_0)$ $\forall x \in [x_0 \delta, x_0 + \delta] \cap D$

3. Maximums und Minimums sind Extremums

S 4.2.2 $f:]a, b[\to \mathbb{R}, f \text{ in } x_0 \text{ differenzierbar}$

- 1. Falls f'(x) > 0 gibt es $\delta > 0$ $f(x) > f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$ $f(x) < f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$
- 2. Falls f'(x) < 0 gibt es $\delta > 0$ $f(x) < f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$ $f(x) > f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$
- 3. x_0 ist lokales Extremum $\implies f'(x) = 0$

S 4.2.3 $f:[a,b] \to \mathbb{R}$ stetig, in]a,b[differenzierbar, so gibt es $\xi \in]a,b[$ mit

$$f'(\xi) = 0$$

S 4.2.5 $f:[a,b] \to \mathbb{R}$ stetig, in]a,b[differenzierbar, so gibt es $\xi \in]a,b[$ mit

$$f(b) - f(a) = f'(\xi)(b - a)$$

K 4.2.5 $f, g: [a, b] \to \mathbb{R}$ stetig, in]a, b[differenzierbar und $\forall \xi \in]a, b[$

- 1. $f'(\xi) = 0, \Rightarrow f \text{ konstant}$
- 2. $f'(\xi) \geq 0$, $\Rightarrow f$ monoton wachsend
- 3. $f'(\xi) > 0$, $\Rightarrow f$ streng monoton wachsend
- 4. $f'(\xi) < 0$, $\Rightarrow f$ monoton fallend
- 5. $f'(\xi) < 0$, $\Rightarrow f$ streng monoton fallend
- 6. $f'(\xi) = g'(\xi), \Rightarrow \exists c \in \mathbb{R} \text{ mit } f(x) = g(x) + c$
- 7. $|f'(\xi)| \le M \Rightarrow |f(x_1) f(x_2)| \le M |x_1 x_2|$

S 4.2.9 $f, g : [a, b] \to \mathbb{R}$ stetig, differenzierbar in [a, b], falls $g'(x) \neq 0 \quad \forall x \in [a, b]$ folgt

$$g(a) \neq g(b) \text{ und } \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

S 4.2.10 l'Hospital $f, g : [a, b] \to \mathbb{R}$ differenzierbar mit $g'(x) \neq 0 \quad \forall x \in [a, b]$

$$\lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} g(x) = 0 \quad \wedge \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = \lambda$$

$$\implies \lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} = \lambda$$

Bem: Gilt auch für $b = +\infty, \lambda = +\infty, x \to a^+$

D 4.2.13 $f: I \to \mathbb{R}, x \le y, \text{ bzw. } x < y$

- 1. f ist **konvex** falls $\forall x, y \in \land \forall \lambda \in [0, 1]$ $f(\lambda \cdot x + (1 - \lambda) \cdot y) \leq \lambda \cdot f(x) + (1 - \lambda) \cdot f(y)$
- 2. f ist **streng konvex** falls $\forall x, y \in \land \forall \lambda \in]0, 1[$ $f(\lambda \cdot x + (1 \lambda) \cdot y) < \lambda \cdot f(x) + (1 \lambda) \cdot f(y)$

Bem: f(x) ist **konkav**, falls -f(x) konvex ist

L 4.2.15 f ist konvex \Leftrightarrow für alle $x_0 < x < x_1 \in I$

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}$$

Bem: f streng konvex \Leftrightarrow strikte Ungleichung gilt

S 4.2.16 Sei $f:]a, b[\to \mathbb{R}$ differenzierbar

f (streng) konvex $\Leftrightarrow f'(x)$ (streng) monoton wachs.

K 4.2.17 $f: a, b \to \mathbb{R}$ differenzierbar

$$f \text{ konvex} \Leftrightarrow f''(x) \ge 0$$

f streng konvex $\Leftrightarrow f''(x) > 0$

4.3 Höhere Ableitungen

D 4.3.1 Sei $f: D \to \mathbb{R}$ differenzierbar

- 1. f ist **n-mal differenzierbar**, falls $f^{(n-1)}$ in D differenzierbar ist. $f^{(n)} := (f^{(n-1)})'$
- 2. f ist **n-mal stetig differenzierbar**, falls f n-mal differenzierbar und $f^{(n)}$ stetig ist
- 3. f ist **glatt**, falls $\forall n \geq 1$ f n-mal differenzierbar

S 4.3.3 $f, g: D \to \mathbb{R}$ n-mal differenzierbar

1. f + g ist n-mal differenzierbar

$$(f+g)^{(n)} = f^{(n)} + g^{(n)}$$

2. $f \cdot q$ ist n-mal differenzierbar

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

S 4.3.5 $f, g: D \to \mathbb{R}$ n-mal differenzierbar

Falls $g(x) \neq 0 \ \forall x \in D, \frac{f}{g}$ ist n-mal differenzierbar

S 4.3.6 $f, g: D \to \mathbb{R}$ n-mal differenzierbar

$$(g \circ f)^{(n)}(x) = \sum_{k=1}^{n} A_{n,k}(x)(g^{(k)} \circ f)(x)$$

Bem: $A_{n,k}$ ist Polynom in $f', f^{(2)}, \cdots, f^{(n+1-k)}$

4.4 Potenzreihen & Taylor Approx.

S 4.4.1 $f_n:]a, b[\to \mathbb{R}$, wobei f_n einmal stetig differenzierbar ist, f_n und f'_n gleichmässig konvergieren. Dann ist f stetig differenzierbar.

$$\lim_{n \to \infty} f_n = f \text{ und } \lim_{n \to \infty} f'_n = f'$$

S 4.4.2 $\sum_{k=0}^{\infty} c_k x^k$ eine Potenzreihe

$$f(x) = \sum_{k=0}^{\infty} c_k x^k$$
 ist differenzierbar

$$f'(x) = \sum_{k=0}^{\infty} k c_k x^k$$

K 4.4.3 $f(x) = \sum_{k=0}^{\infty} c_k x^k$ ist glatt

S 4.4.5 $f:[a,b] \to \mathbb{R}$ (n+1)-mal differenzierbar Für jedes $a < x \le b$ gibt es $\xi \in [a,x[$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

K 4.4.6 $f:[c,d] \to \mathbb{R}$ (n+1)-mal differenzierbar Sei c < a < d, so folgt für alle $x \in [c,d]$ $x \le \xi \le a$

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$$

K 4.4.7 $n \ge 0, a < x_0 < b \text{ und } f : D \to \mathbb{R} (n+1)$ -mal stetig differenzierbar

Annahme:
$$f'(x_0) = f^{(2)}(x_0) = \dots = f^{(n)}(x_0) = 0$$

- 1. Falls n gerade und x_0 lokale Extremalstelle folgt $f^{(n+1)}(x_0) = 0$
- 2. Falls n ungerade und $f^{(n+1)}(x_0) > 0$, so ist x_0 eine strikte lokale Minimalstelle
- 3. Falls n ungerade und $f^{(n+1)}(x_0) < 0$, so ist x_0 eine strikte lokale Maximalstelle

K 4.4.8 Sei $f: D \to \mathbb{R}$ zweimal stetig differenzierbar. Sei $a < x_0 < b$. Annahme $f'(x_0) = 0$.

- 1. Falls $f^{(2)}(x_0) > 0$ so folgt daraus, dass x_0 strikte lokale Minimalstelle ist.
- 2. Falls $f^{(2)}(x_0) < 0$ so folgt daraus, dass x_0 strikte lokale Maximalstelle ist.
- 3. Falls $f^{(2)}(x_0) = 0$ und $f^{(3)}(x_0) \neq 0$, so ist x_0 ein Sattelpunkt

Bem: Falls $f^{(2)}(x_0) = 0$ und $f^{(3)}(x_0) \neq 0$, so ist x_0 ein Wendepunkt (hier ist f'(x) beliebig)

5 Das Riemann Integral

5.1 Integrabilitätskriterien

D 5.1.1 Eine Partition ist eine endliche Teilmenge $P \subset [a, b]$, wobei $a, b \in P$

D Untersumme

$$s(f, P) := \sum_{i=1}^{n} f_i \delta_i, \qquad f_i = \inf_{x_{i-1} \le x \le x_i} f(x)$$
$$s(f) := \sup_{P \in \mathcal{P}(I)} s(f, P)$$

D Obersumme

$$S(f,P) := \sum_{i=1}^{n} F_i \delta_i, \qquad F_i = \sup_{x_{i-1} \le x \le x_i} f(x)$$

$$S(f) := \inf_{P \in \mathcal{P}(I)} S(f, P)$$

L 5.1.2 Sei P' Verfeinerung von P

$$s(f,P) \le s(f,P') \le S(f,P') \le S(f,P)$$

D 5.1.3 Eine beschränkte Funktion $f:[a,b] \to \mathbb{R}$ ist integrierbar falls

$$s(f) = S(f) \quad := \int_a^b f(x)dx$$

S 5.1.4 Eine beschränkte Funktion $f:[a,b] \to \mathbb{R}$ ist integrierbar falls

$$\forall \varepsilon > 0 \quad \exists P \in \mathcal{P}(I) \quad \text{mit} \quad S(f, P) - s(f, P) < \varepsilon$$

S 5.1.8 Eine beschränkte Funktion $f : [a, b] \to \mathbb{R}$ ist genau dann integrierbar, falls $\forall \epsilon > 0 \; \exists \delta > 0$

$$\forall P \in P_{\delta}(I), \ S(f,P) - s(f,P) < \epsilon$$

5.2 Integrierbare Funktionen

S 5.2.1 $f, g: [a, b] \to \mathbb{R}$ beschränkt, integrierbar Dann sind $f + g, \lambda \cdot f, f \cdot g, |f|, \min(f, g), \frac{f}{g}$ (falls g(x) > 0) integrierbar

K 5.2.3 P, Q Polynom und $Q(x) \neq 0 \ \forall x \in [a, b]$

$$\frac{P(x)}{Q(x)}$$
 ist integrierbar

S 5.2.4 $f: D \to \mathbb{R}$ ist gleichmässig stetig, falls $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x, y \in D$

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

S 5.2.6 Falls $f:[a,b] \to \text{stetig in } [a,b]$ ist. Dann ist f in [a,b] gleichmässig stetig.

S 5.2.7 f stetig $\implies f$ integrierbar

S 5.2.8 f monoton $\implies f$ integrierbar

S 5.2.10 $f_1, f_2 : [a, b] \rightarrow \text{integrierbar}$

$$\int_{a}^{b} (f_1(x) + f_2(x))dx = \int_{a}^{b} f_1(x)dx + \int_{a}^{b} f_2(x)dx$$

$$\int_{a}^{b} (\lambda f(x))dx = \lambda \int_{a}^{b} f(x)dx$$

5.3 Ungleich. & Mittelwertsatz

S 5.3.1 $f, g : [a, b] \to \mathbb{R}$ beschränkt, integrierbar Sei $f(x) \le g(x) \ \forall x \in [a, b]$, dann folgt

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx$$

K 5.3.2 $f:[a,b]\to\mathbb{R}$ beschränkt, integrierbar

$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

S 5.3.3 $f, g : [a, b] \to \mathbb{R}$ beschränkt, integrierbar

$$\left| \int_a^b f(x)g(x)dx \right| \leq \sqrt{\int_a^b f^2(x)dx} \sqrt{\int_a^b g^2(x)dx}$$

S 5.3.4 $f:[a.b] \to \mathbb{R}$ stetig

$$\exists \xi \in [a, b] \quad \text{mit} \quad \int_a^b f(x) dx = f(\xi)(b - a)$$

S 5.3.6 $f:[a,b]\to\mathbb{R}$, wobei f stetig, g beschränkt, integrierbar mit $g(x)\geq 0 \quad \forall x\in[a,b]$

$$\exists \xi \in [a, b] \quad \text{mit} \quad \int_a^b f(x)g(x)dx = f(\xi) \int_a^b g(x)dx$$

5.4 Fundamentalsatz

S 5.4.1 a < b und $f : [a, b] \to \mathbb{R}$ stetig

$$F(x) = \int_{a}^{x} f(t)dt, \quad a \le x \le b$$

F(x) ist stetig differenzierbar und F'(x) = f(x)

D 5.4.2 F(x) ist die Stammfunktion von f

S 5.4.3 Fundamentalsatz $f:[a,b] \to \mathbb{R}$ stetig

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

S 5.4.5 Partielle Integration $f, g : [a, b] \to \mathbb{R}$ stetig differenzierbar und a < b.

$$\int_a^b f(x)g'(x)dx = \left[f(x)g(x)\right]_a^b - \int_a^b f'(x)g(x)dx$$

S 5.4.6 Substitution $\phi:[a,b]\to\mathbb{R}$ stetig differenzierbar, $\phi([a,b])\subset I$, $f:I\to\mathbb{R}$ stetig.

$$\int_{\phi(a)}^{\phi(b)} f(x)dx = \int_{a}^{b} f(\phi(t))\phi'(t)dt$$

K 5.4.8 $f: I \to \mathbb{R}$ stetig, $a, b, c \in \mathbb{R}$

$$\int_{a+c}^{b+c} f(x)dx = \int_{a}^{b} f(t+c)dt$$

$$\int_{a}^{b} f(ct)dt = \frac{1}{c} \int_{ac}^{bc} f(x)dx$$

5.5 Integration konv. Reihen

S 5.5.1 Sei $f_n:[a,b]\to\mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen, die gleichmässig gegen $f:[a,b]\to\mathbb{R}$ konvergiert. Dann ist f beschränkt und integrierbar

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x)dx = \int_{a}^{b} f(x)dx$$

K 5.5.2 Sei f_n ist eine Folge beschränkter inte-

grierbarer Funktion, so dass $\sum_{n=0}^{\infty} f_n$ gleichmässig konvergiert

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \left(\sum_{n=0}^{\infty} f_n(x) \right) dx$$

K 5.5.3 Potenzreihe ist integrierbar $\forall x \in]-p,p[$

$$\int_0^x \sum_{n=0}^\infty c_n x^n = \sum_{n=0}^\infty \frac{c_n}{n+1} x^{n+1}$$

5.6 Uneigentliche Integrale

D 5.8.1 Sei $f: [a, \infty] \to \mathbb{R}$ beschränkt und integrierbar auf [a, b] $\forall b \geq a$, wir definieren

$$\int_{a}^{\infty} f(x)dx := \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$

Grenzwert existiert $\implies f$ auf $[a, +\infty]$ integrierbar

K 5.8.2 $f: [a, \infty] \to \mathbb{R}$ beschränkt, integrierbar

- 1. Falls $|f(x)| \le g(x) \quad \forall x \ge \text{und } g(x) \text{ ist auf } [a, +\infty[\text{ integrierbar, so ist } f \text{ auf } [a, +\infty[\text{ integrierbar}]$
- 2. Falls $0 \le g(x) \le f(x)$ und $\int_a^\infty g(x)dx$ divergiert, so divergiert auch $\int_a^\infty f(x)dx$

S 5.8.5 Sei $f:[1,\infty[\to [0,\infty[$ monoton fallend

$$\displaystyle \sum_{n=1}^{\infty} \text{ konvergiert} \Longleftrightarrow \int_{1}^{\infty} f(x) dx \text{ konvergiert}$$

D 5.8.8 Falls f auf $[a + \epsilon, b]$, $\epsilon > 0$ beschränkt, integrierbar ist, aber nicht beschränkt auf [a, b]

$$\int_{a}^{b} f(x)dx := \lim_{\epsilon \to 0} \int_{a+\epsilon}^{b} f(x)dx$$

Grenzwert existiert $\implies f$ auf [a,b] integrierbar

D 5.8.11 Gamma Funktion Für s > 0

$$\Gamma(x) := \int_0^\infty e^{-x} x^{s-1} dx$$

S 5.8.12

- 1. Die Gamma Funktion erfüllt die Relationen
 - (a) $\Gamma(1) = 1$
 - (b) $\Gamma(s+1) = s\Gamma(s) \quad \forall s > 0$
 - (c) Γ ist logarithmisch konvex für $0 \le \lambda \le 1$ $\Gamma(\lambda x + (1-\lambda)y) \le \Gamma(x)^{\lambda} \lambda(y)^{1-\lambda} \ \forall x,y > 0$
 - (d) $\Gamma(n+1) = n!$

(e)
$$\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\cdots(x+n)} \quad \forall x > 0$$

 Die Gamma Funktion ist die einzige Funktion |0,∞[, die (a), (b), (c) erfüllt

5.7 Das unbestimmte Integral

S 5.1.9 $R(x) = \frac{P(x)}{Q(x)}$ eine rationale Funktion und grad(P) < grad(Q), dann ist

$$Q(x) = x^{n} + a_{n-1}x'n - 1 + \dots$$
$$= \prod_{i=1}^{k} (x - \gamma_{i})^{n_{i}} \prod_{j=1}^{l} ((x - \alpha_{j})^{2} + \beta_{j}^{2})^{m_{j}}$$

und

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{C_{ij}}{(x - \gamma_i)^j} + \sum_{i=1}^{l} \sum_{j=1}^{m_i} \frac{(A_{ij} + B_{ij}x)}{((x - \alpha_i)^2 + \beta_i^2)^j}$$

6 Beispiele

6.1 Folgen

B 2.2.3 $\lim_{n\to\infty} n^a q^n = 0, \ 0 \le q < 1, \ a \in \mathbb{Z}$

B 2.2.5 $\lim_{n \to \infty} \sqrt[n]{n} = 1$

B 2.2.6 $\lim_{n\to\infty} (1+\frac{1}{n})^n = e$

6.2 Reihen

B 2.7.2 $\sum_{k=1}^{\infty} q^k = \frac{1}{1-q}$ für |q| < 1

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

 $\sum_{k=1}^{\infty} \frac{(-1)^k}{k^2} = \frac{-\pi^2}{12}$

B
$$\exp(z) := 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

 $\mathbf{B} \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{ns}$ konvergiert für s > 1

$$\mathbf{B} \sum_{k=1}^{\infty} kq^k = \frac{q}{(1-q)^2}$$

6.3 Ableitungen

B 4.1.10

$$\begin{array}{ll} (x_n)' = nx^{n-1} \text{ für } n \geq 1 & \forall x \in \mathbb{R} \\ \tan' x = \frac{1}{\cos^2(x)} \\ \cot' x = \frac{-1}{\sin^2(x)} & \cot x = \frac{\cos x}{\sin x} \end{array}$$

B 4.1.13

$$\ln'(x) = \frac{1}{x}$$
$$(x^a)' = ax^{a-1}$$

B 4.2.6

$$\arcsin'(y) = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - y^2}}$$

$$\arccos'(y) = \frac{-1}{\sqrt{1 - y^2}}$$

$$\arctan'(y) = \cos^2(x) = \frac{1}{1 + y^2}$$

$$\arccos'(y) = \frac{-1}{\sin^2(x)} = \frac{-1}{1 + y^2}$$

B 4.2.7

$$\cosh'(x) = \frac{e^x - e^{-x}}{2} = \sinh(x)$$

$$\sinh'(x) = \frac{e^x + e^{-x}}{2} = \cosh(x)$$

$$\tanh'(x) = \frac{1}{\cosh^2(x)}$$

$$\arcsinh'(x) = \frac{1}{\sqrt{1+y^2}}$$

$$\operatorname{arcsinh}'(x) = \frac{1}{\sqrt{y^2 - 1}}$$

$$\operatorname{arctanh}'(x) = \frac{1}{\sqrt{1-y^2}}$$

6.4 Integrale

B 5.9.0 Grundlegende Integrale

$$\int x^s dx = \begin{cases} \frac{x^2 + 1}{x + 1} \\ \ln x \end{cases}$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sinh x dx = \cosh x + C$$

$$\int \sinh x dx = \cosh x + C$$

$$\int \cosh x dx = \sin x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$\int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + C$$

$$\int \frac{1}{\sqrt{1 + x^2}} dx = \arcsin x + C$$

$$\int \frac{1}{\sqrt{1 + x^2}} dx = \operatorname{arcsin} x + C$$

$$\int \frac{1}{1 + x^2} dx = \arctan x + C$$

$$\int e^x dx = e^x + C$$

$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{arcsin} x + C$$

7 Beweise

7.1 Grundlagen

Beweis: $\sup(A+B) \le \sup A + \sup B$ Es gilt $a+b \le \sup A + b \le \sup A + \sup B$ $\Longrightarrow \sup(A+B) \le \sup A + \sup B$

Beweis: $\sup A + \sup B \le \sup(A+B)$ Es gilt $\forall \epsilon > 0$ $\sup A \le a - \frac{\epsilon}{2}$ und $\sup B \le b - \frac{\epsilon}{2}$ $\implies \sup A + \sup B - \epsilon \le a + b \le \sup(A+B)$

7.2 Folgen und Reihen

S Sandwich Satz Wir nehmen an, dass

1.
$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \alpha$$

2. $a_n \le c_n \le b_n \ \forall n \ge K$
Es gilt $|a_n - \alpha| < \epsilon \implies -\epsilon < a_n - \alpha$
Es gilt $|b_n - \alpha| < \epsilon \implies +\epsilon > b_n - \alpha$
 $\implies -\epsilon < a_n - \alpha \le c_n - \alpha \le b_n - \alpha < \epsilon$
 $\implies |c_n - \alpha| < \epsilon \implies \lim_{n \to \infty} c_n = \alpha$

8 Random, but useful stuff

8.1 Trigonometrie

8.1.1 Unit Circle $(\sin(x), \cos(x))$

8.1.2 Quadratic Formula for $ax^2 + bx + c = 0$

$$x = \frac{-b + \pm \sqrt{b^2 - 4ac}}{2a}$$