

# Tutorial 7: Advanced Sorting Algorithms

**CAB301 - Algorithms and Complexity** 

School of Computer Science, Faculty of Science

### Agenda

- 1. Lecture Recap: Advanced Sorting Algorithms
  - Merge Sort
  - Quick Sort
  - Heap Sort
- 2. Tutorial Questions + Q&A



#### **Merge Sort**

<div style="display: flex"> <div style="flex: 0.5">

**Divide and Conquer** algorithm, relies on a **merge** operation:

How to combine two sorted arrays into a single sorted array?

ALGORITHM 
$$MergeSort(A[i..j])$$
 if  $i < j$  
$$m \leftarrow \lfloor (i+j)/2 \rfloor$$
 
$$MergeSort(A[i..m])$$
 
$$MergeSort(A[m+1..j])$$
 
$$Merge(A[i..j], m)$$

TEQSA Provided Adjusting the style = "flex: 0.5; width: 500px">



## **Quick Sort**

<div style="display: flex"> <div style="flex: 0.5">

**Divide and Conquer** algorithm, relies on a **partition** operation that, given a pivot, divides the array into two parts:

• Left part contains elements less than the pivot, and right part greater.

ALGORITHM 
$$QuickSort(A[l..r])$$
if  $l < r$ 

$$s \leftarrow Partition(A[l..r])$$

$$QuickSort(A[l..s-1])$$

$$QuickSort(A[s+1..r])$$

div style="flex: 0.5; display: flex; flex-direction: column; justify-content: center;



#### **Heap Sort**

<div style="display: flex"> <div style="flex: 0.5">

**Heap Sort** keeps the array as a **max-heap**:

- Complete binary tree
- Each node is no less than its children.

Repeatedly perform **Maximum Key Deletion**:

- 1. Exchange the root's key with the last key.
- 2. Decrease the heap size by 1.
- 3. **Heapify** the complete binary tree.

div style="flex: 0.4; display: flex; flex-direction: column; justify-content: center;

