- Noi) Av $dn \xrightarrow{n\to\infty} \alpha$ Kal $K \in \mathbb{N}$, tota $K \vee dn \xrightarrow{n\to\infty} K \vee \alpha$.

 Nii) Av $dn \xrightarrow{n\to\infty} \alpha$ Kal $(B_n)_n (Ppaypévy)_n$ tota $dn \cdot Bn \xrightarrow{n\to\infty} \alpha$.

 ($Npo60\chi q$, to $(B_n)_n \in (Na)$ anapairy $\alpha \cdot N \cdot \chi \cdot (dn)_n = \left(\frac{n}{n}\right)_n \text{Kdl}(B_n)_n = (n^2)_n$)
- viii) AV an & Bn, the IN, xai an -> d Kai Bn -> B,
 - ($np060\chi\dot{\gamma}: \lambda V \ dn \xrightarrow{n\to\infty} d$, $\beta n \xrightarrow{n\to\infty} \beta$, $\kappa \alpha i \ dn \angle \beta n$, $\forall n \in \mathbb{N}$) $\Delta \in \mathbb{N}$ $6 w \epsilon n \acute{\alpha} \chi \epsilon \tau d i \ \acute{\alpha} \tau i \ d \angle \beta \ (\mu \acute{\alpha} v \circ \delta \tau i \ d \leq \beta)$ $n.\chi_{\circ} (dn)_{n} = (\frac{-1}{n})_{n} \kappa d i (\beta n)_{n} = (\frac{1}{n})_{n} i \ \tau \circ \tau \epsilon \ \epsilon \chi \circ \iota \mu \epsilon \ d n \angle \beta n i$ $\forall n \in \mathbb{N}$, $\alpha A d \acute{\alpha} \ lim d n = lim \beta n = 0$).
- ix) AV m \(\lambda n \(\lambda m \) \(\lambda \) \(\lambda \) \(\lambda m \) \(\lambda m \) \(\lambda m \) \(\lambda \) \(\lambda m \) \(\

§ 5 Kánord Babiká ópid

1) $\overline{2}\nu\mu n\epsilon \rho_1 \mathcal{L}\rho \rho \dot{\alpha} \quad \tau_{MS} \quad (d_n)_n = (d^n)_n \quad \delta nov \quad d>0$.

Av d=1, $\tau \delta \tau \epsilon \quad d^n \xrightarrow{n \to \infty} 1$,

Av $0 < \varkappa < 1$, $\tau \delta \tau \epsilon \quad d^n \xrightarrow{n \to \infty} 0$,

Av d > 1, $\tau \delta \tau \epsilon \quad d^n \xrightarrow{n \to \infty} + \infty$.

2) AV
$$\alpha > 0$$
, $\tau \circ \tau \in \mathbb{N}$ $n \vee \alpha \xrightarrow{n \to \infty} 1$

Napadeignata; i)
$$1+\frac{1}{n} \xrightarrow{n\to\infty} 1+0=1$$

ii)
$$\frac{n^2 - n}{n^2 + n} = \frac{1 - \frac{1}{n}}{1 + \frac{1}{n}} \xrightarrow{n \to \infty} \frac{1}{1} = 1$$

$$\bar{u}i)$$
 $d_n = (1 - \sqrt{5})(7 + (-1)^n 3)$

$$E_{61}\omega (\beta_n)_n = (1-\sqrt{5}) \text{ Kai } (\gamma_n)_n = [7+(-1)^n,3)_n,$$

$$\overline{N}$$
 $(\alpha_n)_n = (2-\frac{1}{n})^n)_n$. Napatypriets of $1 + n \ge 2$, $\overline{z} \times 00 \mu z$

\$6 Kpitypix Eugkaloys

- · Νρόταδη (Κριτήριο Λόγου) Έστω (Δη) η ακολουθία μη μη δενικών όρων (Syd dy to itnEN)

- · Mordby: Ester (an) n axolovDia
 - d) Av dn > 0, the EIN Koll under XEI M > 1 T.W. dn + 1 $\geq \mu dn$, the πN , Tota $dn \xrightarrow{n \to \infty} + \infty$
 - B) AV undexes OZMZ1 T.W. |dn+1| & m |dn|, thein, Tote dn ->0.
- $\frac{\int d\rho d\theta \int \frac{1}{2} \frac{1}{\rho} \frac{1}{\rho}$
 - 2) $(\beta_n)_n = \frac{(7+\frac{1}{n})^n}{n!}$. Tid káte $n \in \mathbb{N}$, Exoupe óti
 - $92Bn \leq \frac{8^n}{n!}$ kai $9 \leq 7 \leq 7 \leq 7 \leq 8 \leq n!$, rumpifours and 1) or $7 \leq n \to \infty$ 1 Apr , and kpity pio napem Boiling: Bu $n \to \infty$ 0.
- « Npótdón (κριτήριο ρίζας) Έστω βη)η ακολουθία τ.ω. an ≥0, th€ IN.
 - a) Av Nan -> p21, rote dn -> t
 - B) AV "Van -> P71, Tote du ->+00

AZK: E67W (dn) n ako Aov Did. D.o. dv dy ->+00, ToTE 1 n-100 Musy: Estw $\varepsilon > 0$ Kar $M = \frac{1}{\varepsilon} 70$. Ensity $d_n \rightarrow +\infty$, $\widetilde{\varepsilon} \times 00/MS$ $(\xi n_i \lambda \xi \gamma o v a \zeta) M = \frac{1}{\epsilon} 6 \pi o v o \rho_i (\rho_i \delta) = d_i > M$ yid Katz n 7 no Kai yid Kánolo no É IN apretá pregádo. ¡Apa 16xúel $0 < \frac{1}{\alpha_n} < \frac{1}{m} = \epsilon$ ylan znoj Kai Enigys - 22 du 22, th z no. Auto anoseikuver ou du nos. AZK: ¡EETW ldn)n, (By)n akoloveries Kal d, BEIR. D.O. du du mod Kai Bu mos B, Tote dut Bu mod dit B. Núcy: 1EBIN ETO, Allov or Idu) n Kar (Bu) n GUJKATOW, EXOUME 3m6N TW n7m > |dn-x| < = Jn2 € N T.W. n = n2 => |Bn-B| < € Ino = max fry, nz y EIN T.w. n zno => (dn+Bn)-(d+B) = |dn-d|+|Bn-B| Kdi duté doudeikvée éu dut Bu -> d+B

AZK: 'EGTW $d \in [0,1)$. $D \cdot 0 \cdot d^n \xrightarrow{n \to \infty} 0$. $N \cdot \frac{1}{2} = (1+B)^n = 1+nb = nb \Rightarrow 0 \cdot 2n \cdot 2n \cdot 2n \Rightarrow 0$ Another is a sermoulli

AZK: AV x>0, SEIZTE OTI Na hom 1. Núcy: 1) OTAV 2>1, EXOUPE NVa>1 pra Káte n EIN, apa unapxu On > 0 were nva = 1 + On Kai and Tyr avisoryta Bernoulli modunte oti a= (1+8n) = 1+n8n > n8n =) 0 < 8n < = > On moso (anó reprispro naperir Bodý) > nva moso 1 2) 'OTAV D \angle \angle \angle 1, \angle \langle \langle 1) \neq \langle \langle \langle \rangle \langle \langle \rangle \langle \langle \rangle \langle \rangle \langle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle \rangle \langle \rangle \rangle \rangle \rangle \langle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle Kai GWENWS mya noso 1. AZK: EGTW (dn)n pre dn >0, the GNV Kai dn+1 n >00 l>1.

AZN: E67W (dn)n pre dn >0, th 6NN xd, $\frac{d_{n+1}}{d_n} \xrightarrow{n \to \infty} l > 1$ $1 \to \infty$ $1 \to \infty$ 1