Teoria de Grupos: notas de estudo

Guilherme Philippi

18 de janeiro de $2021\,$

Sumário

1	Grupos	2
	1.1 Lei de composição	2
	Referências	

Capítulo 1

Grupos

1.1 Lei de composição

Definição 1.1.1 (Lei de Composição). Uma Lei de Composição sobre S é uma função $F: S \times S \longrightarrow S$.

Definição 1.1.2. Para $a,b,c \in S$, uma Lei de Composição F é dita

- Associativa se F(F(a,b),c) = F(a,F(b,c));
- Comutativa se F(a, b) = F(b, a).

Observação 1.1.1. Usaremos a notação F(a,b) = ab, para simplificar a escrita de propriedades.

Proposição 1.1.1. Seja uma lei associativa dada sobre o conjunto S. Há uma única forma de definir, para todo inteiro n, um produto de n elementos $a_1, \ldots, a_n \in S$ (diremos $[a_1 \cdots a_n]$) com as seguintes propriedades:

- 1. o produto $[a_1]$ de um elemento é o próprio elemento;
- 2. o produto $[a_1a_2]$ de dois elementos é dado pela lei de composição;
- 3. para todo inteiro $1 \le i \le n$, $[a_1 \cdots a_n] = [a_1 \cdots a_i][a_{i+1} \cdots a_n]$.

Demonstração. A demonstração dessa proposição é feita por indução em n.

Definição 1.1.3. Dizemos que $e \in S$ é identidade para uma lei de composição se ea = ae = a para todo $a \in S$.

Proposição 1.1.2. O elemento identidade é único.

Demonstração. Se e, e' são identidades, já que e é identidade, então ee' = e' e, como e' é uma identidade, ee' = e. Logo e = e', isto é, a identidade é única.

Observação 1.1.2. Usaremos $\vec{1}$ para representar a identidade multiplicativa e $\vec{0}$ para denotar a aditiva.

Definição 1.1.4 (Elemento inverso). Seja uma lei de composição que possua uma identidade. Um elemento $a \in S$ é chamado invertível se há um outro elemento $b \in S$ tal que ab = ba = 1. Desde que b exista, ela é única e a denotaremos por a^{-1} e a chamaremos inversa de a.

Proposição 1.1.3. Se $a, b \in S$ possuem inversa, então a composição $(ab)^{-1} = b^{-1}a^{-1}$.

Observação 1.1.3 (Potências). Usaremos as seguintes notações:

- $a^n = a^{n-1}a$ é a composição de $a \cdots a$ n vezes;
- a^{-n} é a inversa de a^n ;
- $a^0 = \vec{1}$.

Com isso, tem-se que $a^{r+s} = a^r a^s$ e $(a^r)^s = a^{rs}$. (Isso não induz uma notação de fração $\frac{b}{a}$ a menos que seja uma lei comutativa, visto que ba^{-1} pode ser diferente de $a^{-1}b$). Para falar de uma lei de composição aditiva, usaremos -a no lugar de a^{-1} e na no lugar de a^n .

Referências Bibliográficas