The Cramér-Rao Inequality on Singular Statistical Models

Hông Vân Lê^{1(⊠)}, Jürgen Jost², and Lorenz Schwachhöfer³

¹ Mathematical Institute of ASCR, Zitna 25, 11567 Praha, Czech Republic hvle@math.cas.cz

Max-Planck-Institut Für Mathematik in den Naturwissenschaften, Inselstrasse 22, 04103 Leipzig, Germany jost@mis.mpg.de

³ Technische Universität Dortmund, Vogelpothsweg 87, 44221 Dortmund, Germany Lorenz.Schwachhoefer@math.uni-dortmund.de

Abstract. We introduce the notions of essential tangent space and reduced Fisher metric and extend the classical Cramér-Rao inequality to 2-integrable (possibly singular) statistical models for general φ -estimators, where φ is a V-valued feature function and V is a topological vector space. We show the existence of a φ -efficient estimator on strictly singular statistical models associated with a finite sample space and on a class of infinite dimensional exponential models that have been discovered by Fukumizu. We conclude that our general Cramér-Rao inequality is optimal.

1 k-integrable Parametrized Measure Models and the Reduced Fisher Metric

In this section we recall the notion of a k-integrable parametrized measure model (Definitions 1, 3). Then we give a characterization of k-integrability (Theorem 1), which is important for later deriving the classical Cramér-Rao inequalities from our general Cramér-Rao inequality. Finally we introduce the notion of essential tangent space of a 2-integrable parametrized measure model (Definition 4) and the related notion of reduced Fisher metric.

Notations. For a measurable space Ω and a finite measure μ_0 on Ω we denote

$$\begin{split} \mathcal{P}(\Omega) &:= \{ \mu \ : \ \mu \ \text{a probability measure on } \Omega \}, \\ \mathcal{M}(\Omega) &:= \{ \mu \ : \ \mu \ \text{a finite measure on } \Omega \}, \\ \mathcal{S}(\Omega) &:= \{ \mu \ : \ \mu \ \text{a signed finite measure on } \Omega \}, \\ \mathcal{S}(\Omega, \mu_0) &= \{ \mu = \phi \, \mu_0 \ : \ \phi \in L^1(\Omega, \mu_0) \}. \end{split}$$

Hông Vân Lê—Speaker, partially supported by RVO: 6798584.

[©] Springer International Publishing AG 2017 F. Nielsen and F. Barbaresco (Eds.): GSI 2017, LNCS 10589, pp. 552–560, 2017. https://doi.org/10.1007/978-3-319-68445-1_64

Definition 1 ([AJLS2016b, Definition 4.1]). Let Ω be a measurable space.

- 1. A parametrized measure model is a triple (M, Ω, \mathbf{p}) where M is a (finite or infinite dimensional) Banach manifold and $\mathbf{p}: M \to \mathcal{M}(\Omega) \subset \mathcal{S}(\Omega)$ is a Frechét- C^1 -map, which we shall call simply a C^1 -map.
- 2. The triple (M, Ω, \mathbf{p}) is called a statistical model if it consists only of probability measures, i.e., such that the image of \mathbf{p} is contained in $\mathcal{P}(\Omega)$.
- 3. We call such a model dominated by μ_0 if the image of \mathbf{p} is contained in $\mathcal{S}(\Omega, \mu_0)$. In this case, we use the notation $(M, \Omega, \mu_0, \mathbf{p})$ for this model.

Let (M, Ω, \mathbf{p}) be a parametrized measure model. It follows from [AJLS2016b, Proposition 2.1] that for all $\xi \in M$ the differential $d_{\xi}\mathbf{p}(V)$ is dominated by $\mathbf{p}(\xi)$. Hence the logarithmic derivative of \mathbf{p} at ξ in direction V [AJLS2016b, (4.2)]

$$\partial_V \log \mathbf{p}(\xi) := \frac{d\{d_{\xi} \mathbf{p}(V)\}}{d\mathbf{p}(\xi)} \tag{1}$$

is an element in $L^1(\Omega, \mathbf{p}(\xi))$. If measures $\mathbf{p}(\xi)$, $\xi \in M$, are dominated by μ_0 , we also write

$$\mathbf{p}(\xi) = p(\xi) \cdot \mu_0 \text{ for some } p(\xi) \in L^1(\Omega, \mathbf{p}_0). \tag{2}$$

Definition 2 ([AJLS2016b, Definition 4.2]). We say that a parametrized model $(M, \Omega, \mu_0, \mathbf{p})$ has a regular density function if the density function $p: \Omega \times M \to \mathbb{R}$ satisfying (2) can be chosen such that for all $V \in T_{\xi}M$ the partial derivative $\partial_V p(.; \xi)$ exists and lies in $L^1(\Omega, \mu_0)$ for some fixed μ_0 .

If the model has a positive regular density function, we have

$$\partial_V \log \mathbf{p}(\xi) = \partial_V \log p. \tag{3}$$

Next we recall the notion of k-integrability. On the set $\mathcal{M}(\Omega)$ we define the preordering $\mu_1 \leq \mu_2$ if μ_2 dominates μ_1 . Then $(\mathcal{M}(\Omega), \leq)$ is a directed set, meaning that for any pair $\mu_1, \mu_2 \in \mathcal{M}(\Omega)$ there is a $\mu_0 \in \mathcal{M}(\Omega)$ dominating both of them (e.g. $\mu_0 := \mu_1 + \mu_2$).

For fixed $r \in (0,1]$ and measures $\mu_1 \leq \mu_2$ on Ω we define the linear embedding

$$\imath_{\mu_2}^{\mu_1}:L^{1/r}(\varOmega,\mu_1)\longrightarrow L^{1/r}(\varOmega,\mu_2), \qquad \phi\longmapsto \phi\ \left(\frac{d\mu_1}{d\mu_2}\right)^r.$$

Observe that

$$||i_{\mu_{2}}^{\mu_{1}}(\phi)||_{1/r} = \left| \int_{\Omega} |i_{\mu_{2}}^{\mu_{1}}(\phi)|^{1/r} d\mu_{2} \right|^{r} = \left| \int_{\Omega} |\phi|^{1/r} \frac{d\mu_{1}}{d\mu_{2}} d\mu_{2} \right|^{r}$$
$$= \left| \int_{\Omega} |\phi|^{1/r} d\mu_{1} \right|^{r} = ||\phi||_{1/r}. \tag{4}$$

It has been proved that $i_{\mu_2}^{\mu_1}$ is an isometry [AJLS2016b, (2.6)]. Moreover, $i_{\mu_2}^{\mu_1}i_{\mu_3}^{\mu_2} = i_{\mu_3}^{\mu_1}$ whenever $\mu_1 \leq \mu_2 \leq \mu_3$. Then we define the space of r-th roots of measures on Ω to be the directed limit over the directed set $(\mathcal{M}(\Omega), \leq)$

$$S^{r}(\Omega) := \lim_{n \to \infty} L^{1/r}(\Omega, \mu). \tag{5}$$

By [AJLS2016b, (2.9)] the space $S^r(\Omega)$ is a Banach space provided with the norm $||\phi||_{1/r}$ defined in (4).

Denote the equivalence class of $\phi \in L^{1/r}(\Omega, \mu)$ by $\phi \mu^r$, so that $\mu^r \in \mathcal{S}^r(\Omega)$ is the equivalence class represented by $1 \in L^{1/r}(\Omega, \mu)$.

In [AJLS2016b, Proposition 2.2], for $r \in (0,1]$ and $0 < k \le 1/r$ we defined a map

$$\tilde{\pi}^k : \mathcal{S}^r(\Omega) \to \mathcal{S}^{rk}(\Omega), \ \phi \cdot \mu^r \mapsto \operatorname{sign}(\phi) |\phi|^k \mu^{rk}.$$

For $1 \le k \le 1/r$ the map $\tilde{\pi}^k$ is a C^1 -map between Banach spaces [AJLS2016b, (2.13)]. Using the same analogy, we set [AJLS2016b, (4.3)]

$$\mathbf{p}^{1/k} := \tilde{\pi}^{1/k} \circ \mathbf{p} : M \to \mathcal{S}^{1/k}(\Omega)$$
 (6)

and

$$d_{\xi} \mathbf{p}^{1/k}(V) := \frac{1}{k} \partial_{V} \log \mathbf{p}(\xi) \ \mathbf{p}^{1/k}(\xi) \in \mathcal{S}^{1/k}(\Omega, \mathbf{p}(\xi)). \tag{7}$$

Definition 3 ([JLS2017a, Definition 2.6]). A parametrized measure model (M, Ω, \mathbf{p}) is called k-integrable, if the map $\mathbf{p}^{1/k}$ from (6) is a Fréchet-C¹-map.

The k-integrability of parametrized measure models can be characterized in different ways.

Theorem 1 ([JLS2017a, Theorem 2.7]). Let (M, Ω, \mathbf{p}) be a parametrized measure model. Then the model is k-integrable if and only if the map

$$V \longmapsto \|d\mathbf{p}^{1/k}(V)\|_k < \infty \tag{8}$$

defined on TM is continuous.

Thus, (M, Ω, \mathbf{p}) is k-integrable if and only if the map $d\mathbf{p}^{1/k}: M \to \mathcal{S}^{1/k}(\Omega)$ from (7) is well defined (i.e., $\partial_V \log \mathbf{p}(\xi) \in L^k(\Omega, \mathbf{p}(\xi))$) and continuous. In particular, the definition of k-integrability in Definition 3 above is equivalent to that in [AJLS2016b, Definition 4.4] and [AJLS2015, Definition 2.4].

Remark 1. 1. The Fisher metric \mathfrak{g} on a 2-integrable parametrized measure model (M, Ω, \mathbf{p}) is defined as follows for $v, w \in T_{\xi}M$

$$\mathfrak{g}_{\xi}(v,w) := \langle \partial_v \log \mathbf{p}; \partial_w \log \mathbf{p} \rangle_{L^2(\Omega,\mathbf{p}(\xi))} = \langle d\mathbf{p}^{1/2}(v); d\mathbf{p}^{1/2}(w) \rangle_{\mathcal{S}^{1/2}(\Omega)}$$
(9)

2. The standard notion of a statistical model always assumes that it is dominated by some measure and has a positive regular density function (e.g. [Borovkov1998, p. 140, 147], [BKRW1998, p. 23], [AN2000, Sect. 2.1], [AJLS2015, Definition 2.4]). In fact, the definition of a parametrized measure model or statistical model in [AJLS2015, Definition 2.4] is equivalent to a parametrized measure model or statistical model with a positive regular density function in the sense of Definition 2, see also [AJLS2016] for detailed discussion.

Let (M, Ω, \mathbf{p}) be a 2-integrable parametrized measure model. Formula (9) shows that the kernel of the Fisher metric \mathfrak{g} at $\xi \in M$ coincides with the kernel of the map $\Lambda_{\xi}: T_{\xi}M \to L^2(\Omega, \mathbf{p}(\xi)), V \mapsto \partial_V(\log \mathbf{p})$. In other words, the degeneracy of the Fisher metric \mathfrak{g} is caused by the non-effectiveness of the parametrisation of the family $\mathbf{p}(\xi)$ by the map \mathbf{p} . The tangent cone $T_{\mathbf{p}(\xi)}\mathbf{p}(M)$ of the image $\mathbf{p}(M) \subset \mathcal{S}(\Omega)$ is isomorphic to the quotient $T_{\xi}M/\ker \Lambda_x$. This motivates the following

Definition 4. ([JLS2017a, Definition 2.9]). The quotient $\hat{T}_{\xi}M := T_{\xi}M/\ker \Lambda_{\xi}$ will be called the essential tangent space of M at ξ .

Clearly the Fisher metric \mathfrak{g} descends to a non-degenerated metric $\hat{\mathfrak{g}}$ on $\hat{T}M$, which we shall call the *reduced Fisher metric*.

Denote by $\hat{T}^{\hat{\mathfrak{g}}}M$ the fiberwise completion of $\hat{T}M$ wrt the reduced Fisher metric $\hat{\mathfrak{g}}$. Its inverse $\hat{\mathfrak{g}}^{-1}$ is a well-defined quadratic form on the fibers of the dual bundle $\hat{T}^{*,\hat{\mathfrak{g}}^{-1}}M$, which we can therefore identify with $\hat{T}^{\hat{\mathfrak{g}}}M$.

2 The General Cramér-Rao Inequality

In this section we assume that (M, Ω, \mathbf{p}) is a 2-integrable measure model. We introduce the notion of a regular function on a measure space Ω (Definition 5), state a rule of differentiation under integral sign (Proposition 1) and derive a general Cramér-Rao inequality (Theorem 2).

We set for $k \in \mathbb{N}^+$

$$L_M^k(\Omega) := \{ f \in L^k(\Omega, \mathbf{p}(\xi)) \text{ for all } \xi \in M \}.$$

Definition 5. Let (M, Ω, \mathbf{p}) be a parametrized measure model. We call an element $f \in L_M^k(\Omega)$ regular if the function $\xi \mapsto ||f||_{L^k(\Omega, \mathbf{p}(\xi))}$ is locally bounded, i.e. if for all $\xi_0 \in M$

$$\limsup_{\xi \to \xi_0} \|f\|_{L^k(\Omega, \mathbf{p}(\xi))} < \infty.$$

The regularity of a function f is important for the validity of differentiation under the integral sign.

Proposition 1. Let k, k' > 1 be dual indices, i.e. $k^{-1} + k'^{-1} = 1$, and let (M, Ω, \mathbf{p}) be a k'-integrable parametrized measure model. If $f \in L_M^k(\Omega)$ is regular, then the map

$$M \longrightarrow \mathbb{R}, \qquad \xi \longmapsto \mathbb{E}_{\mathbf{p}(\xi)}(f) = \int_{\Omega} f \ d\mathbf{p}(\xi)$$
 (10)

is $Gat\hat{e}aux$ -differentiable, and for $X \in TM$ the $G\hat{a}teaux$ -derivative is

$$\partial_X \mathbb{E}_{\mathbf{p}(\xi)}(f) = \mathbb{E}_{\mathbf{p}(\xi)}(f \ \partial_X \log \mathbf{p}(\xi)) = \int_{\Omega} f \ \partial_X \log \mathbf{p}(\xi) \ d\mathbf{p}(\xi). \tag{11}$$

Let V be a topological vector space over the real field \mathbb{R} , possibly infinite dimensional. We denote by V^M the vector space of all V-valued functions on M. A V-valued function φ will stand for the coordinate functions on M, or in general, a feature of M (cf. [BKRW1998]). Let V^* denote the dual space of V. Later, for $l \in V^*$ we denote the composition $l \circ \varphi$ by φ^l . This should be considered as the l-th coordinate of φ .

Assume that (M, Ω, \mathbf{p}) is a 2-integrable parametrized measure model. A Gateaux-differentiable function f on M whose differential df vanishes on $\ker d\mathbf{p} \subset TP$ will be called a visible function.

Recall that an *estimator* is a map $\hat{\sigma}: \Omega \to M$. If k, k' > 1 are dual indices, i.e., $k^{-1} + k'^{-1} = 1$, and given a k'-integrable parametrized measure model (M, Ω, \mathbf{p}) and a function $\varphi \in V^M$, we define

$$L^k_\varphi(M,\varOmega):=\{\hat\sigma:\varOmega\to M\mid \varphi^l\circ\hat\sigma\in L^k_M(\varOmega)\text{ for all }l\in V^*\}.$$

We call an estimator $\hat{\sigma} \in L^k_{\varphi}(M,\Omega)$ φ -regular if $\varphi^l \circ \hat{\sigma} \in L^k_M(\Omega)$ is regular for all $l \in V^*$.

Any $\hat{\sigma} \in L^k_{\varphi}(M,\Omega)$ induces a V^{**} -valued function $\varphi_{\hat{\sigma}}$ on M by computing the expectation of the composition $\varphi \circ \hat{\sigma}$ as follows

$$\langle \varphi_{\hat{\sigma}}(\xi), l \rangle := \mathbb{E}_{\mathbf{p}(\xi)}(\varphi^l \circ \hat{\sigma}) = \int_{\Omega} \varphi^l \circ \hat{\sigma} \, d\mathbf{p}(\xi)$$
 (12)

for any $l \in V^*$. If $\hat{\sigma} \in L^k_{\varphi}(M,\Omega)$ is φ -regular, then Proposition 1 immediately implies that $\varphi_{\hat{\sigma}}: M \to V^{**}$ is visible with Gâteaux-derivative

$$\langle \partial_X \varphi_{\hat{\sigma}}(\xi), l \rangle = \int_{\Omega} \varphi^l \circ \hat{\sigma} \cdot \partial_X \log \mathbf{p}(\xi) \mathbf{p}(\xi). \tag{13}$$

Let $pr: TM \to \hat{T}M$ denote the natural projection.

Definition 6. ([JLS2017a, Definition 3.8]). A section $\xi \mapsto \nabla_{\hat{\mathfrak{g}}} f(\xi) \in \hat{T}_{\xi}^{\hat{\mathfrak{g}}} M$ will be called the generalized Fisher gradient of a visible function f, if for all $X \in T_{\xi} M$ we have

$$df(X) = \hat{\mathfrak{g}}(pr(X), \nabla_{\hat{\mathfrak{g}}}f).$$

If the generalized gradient belongs to $\hat{T}M$ we will call it the Fisher gradient.

We set (cf. [Le2016])

$$\mathcal{L}_1^k(\Omega) := \{ (f, \mu) | \mu \in \mathcal{M}(\Omega) \text{ and } f \in L^k(\Omega, \mu) \}.$$

For a map $\mathbf{p}: P \to \mathcal{M}(\Omega)$ we denote by $\mathbf{p}^*(\mathcal{L}_1^k(\Omega))$ the pull-back "fibration" (also called the fiber product) $P \times_{\mathcal{M}(\Omega)} \mathcal{L}_1^k(\Omega)$.

Definition 7. ([JLS2017a, Definition 3.10]). Let h be a visible function on M. A section

$$M \to \mathbf{p}^*(\mathcal{L}_1^2(\Omega)), \, \xi \mapsto \nabla h_{\xi} \in L^2(\Omega, \mathbf{p}(\xi)),$$

is called a pre-gradient of h, if for all $\xi \in M$ and $X \in T_{\xi}M$ we have

$$dh(X) = \mathbb{E}_{\mathbf{p}(\xi)}((\partial_X \log \mathbf{p}) \cdot \nabla h_{\xi}).$$

Proposition 2. ([JLS2017a, Proposition 3.12]).

1. Let (M, Ω, \mathbf{p}) be a 2-integrable measure model and $f \in L^2_M(\Omega, V)$ is a regular function. Then the section of the pullback fibration $\mathbf{p}^*(\mathcal{L}^2_1(\Omega))$ defined by $\xi \mapsto f \in L^2(\Omega, \mathbf{p}(\xi))$ is a pre-gradient of the visible function $E_{\mathbf{p}(\xi)}(f)$.

2. Let (P, Ω, \mathbf{p}) be a 2-integrable statistical model and $f \in L_P^2(\Omega, V)$. Then the section of the pullback fibration $\mathbf{p}^*(\mathcal{L}_1^2(\Omega))$ defined by $\xi \mapsto f - \mathbb{E}_{\mathbf{p}(\xi)}(f) \in L^2(\Omega, \mathbf{p}(\xi))$ is a pre-gradient of the visible function $E_{\mathbf{p}(\xi)}(f)$.

For an estimator $\hat{\sigma} \in L^2_{\varphi}(P,\Omega)$ we define the variance of $\hat{\sigma}$ w.r.t. φ to be the quadratic form $V^{\varphi}_{\mathbf{p}(\xi)}[\hat{\sigma}]$ on V^* such that for all $l,k \in V^*$ we have [JLS2017a, (4.3)]

$$V_{\mathbf{p}(\xi)}^{\varphi}[\hat{\sigma}](l,k) := E_{\mathbf{p}(\xi)}[(\varphi^{l} \circ \hat{\sigma} - E_{\mathbf{p}(\xi)}(\varphi^{l} \circ \hat{\sigma})) \cdot (\varphi^{k} \circ \hat{\sigma} - E_{\mathbf{p}(\xi)}(\varphi^{k} \circ \hat{\sigma}))]. \quad (14)$$

We regard $||d\varphi_{\hat{\sigma}}^l||_{\hat{\mathfrak{g}}^{-1}}^2(\xi)$ as a quadratic form on V^* and denote the latter one by $(\hat{\mathfrak{g}}_{\hat{\sigma}}^{\varphi})^{-1}(\xi)$, i.e.

$$(\hat{\mathfrak{g}}_{\hat{\sigma}}^{\varphi})^{-1}(\xi)(l,k) := \langle d\varphi_{\hat{\sigma}}^{l}, d\varphi_{\hat{\sigma}}^{k} \rangle_{\hat{\mathfrak{g}}^{-1}}(\xi).$$

Theorem 2 (General Cramér-Rao inequality) ([JLS2017a, Theorem 4.4]). Let (P, Ω, \mathbf{p}) be a 2-integrable statistical model, φ a V-valued function on P and $\hat{\sigma} \in L^2_{\varphi}(P,\Omega)$ a φ -regular estimator. Then the difference $V^{\varphi}_{\mathbf{p}(\xi)}[\hat{\sigma}] - (\hat{\mathfrak{g}}^{\varphi}_{\hat{\sigma}})^{-1}(\xi)$ is a positive semi-definite quadratic form on V^* for any $\xi \in P$.

Remark 2. Assume that V is finite dimensional and φ is a coordinate mapping. Then $\mathfrak{g} = \hat{\mathfrak{g}}$, $d\varphi^l = d\xi^l$, and abbreviating $b_{\hat{\sigma}}^{\varphi}$ as b, we write

$$(\mathfrak{g}_{\hat{\sigma}}^{\varphi})^{-1}(\xi)(l,k) = \langle \sum_{i} (\frac{\partial \xi^{l}}{\partial \xi^{i}} + \frac{\partial b^{l}}{\partial \xi^{i}}) d\xi^{i}, \sum_{i} (\frac{\partial \xi^{k}}{\partial \xi^{j}} + \frac{\partial b^{k}}{\partial \xi^{j}}) d\xi^{j} \rangle_{\mathfrak{g}^{-1}}(\xi). \tag{15}$$

Let $D(\xi)$ be the linear transformation of V whose matrix coordinates are

$$D(\xi)_k^l := \frac{\partial b^l}{\partial \xi^k}.$$

Using (15) we rewrite the Cramér-Rao inequality in Theorem 2 as follows

$$V_{\xi}[\hat{\sigma}] \ge (E + D(\xi))\mathfrak{g}^{-1}(\xi)(E + D(\xi))^{T}.$$
 (16)

The inequality (16) coincides with the Cramér-Rao inequality in [Borovkov1998, Theorem 1.A, p. 147]. By Theorem 1, the condition (R) in [Borovkov1998, p. 140, 147] for the validity of the Cramér-Rao inequality is essentially equivalent to the 2-integrability of the (finite dimensional) statistical model with positive density function under consideration, more precisely Borokov ignores/excludes the points $x \in \Omega$ where the density function vanishes for computing the Fisher metric. Borovkov also uses the φ -regularity assumption, written as $\mathbb{E}_{\theta}((\theta^*)^2) < c < \infty$ for $\theta \in \Theta$, see also [Borovkov1998, Lemma 1, p. 141] for a more precise formulation. Classical versions of Cramér-Rao inequalities, as in e.g. [CT2006], [AN2000], are special cases of the Cramér-Rao inequality in [Borovkov1998]. We refer the reader to [JLS2017a] for comparison of our Cramér-Rao inequality with more recent Cramér-Rao inequalities in parametric statistics.

3 Optimality of the General Cramér-Rao Inequality

To investigate the optimality of our general Cramér-Rao inequality we introduce the following

Definition 8 ([JLS2017b]). Assume that φ is a V-valued function on P, where (P, Ω, \mathbf{p}) is a 2-integrable statistical model. A φ -regular estimator $\hat{\sigma} \in L^2_{\varphi}(P, \Omega)$ will be called φ -efficient, if $V_{\mathbf{p}(\xi)}^{\varphi} = (\hat{\mathfrak{g}}_{\hat{\sigma}}^{\varphi})^{-1}(\xi)$ for all $\xi \in P$.

If a statistical model (P, Ω, \mathbf{p}) admits a φ -efficient estimator, the Cramér-Rao inequality is optimal on (P, Ω, \mathbf{p}) .

Example 1. Assume that $(P \subset \mathbb{R}^n, \Omega \subset \mathbb{R}^n, \mathbf{p})$ is a minimal full regular exponential family, $\varphi: P \to \mathbb{R}^n$ - the canonical embedding $P \to \mathbb{R}^n$, and $\hat{\sigma}: \Omega \to P$ - the mean value parametrization. Then it is well known that $\hat{\sigma}$ is an unbiased φ -efficient estimator, see e.g. [Brown1986, Theorem 3.6, p. 74]. Let S be a submanifold in P and $f: P' \to P$ is a blowing-up of P along S, i.e. f is a smooth surjective map such that $\ker df$ is non-trivial exactly at $f^{-1}(S)$. Then $(P', \Omega, \mathbf{p} \circ f)$ is a strictly singular statistical model which admits an unbiased φ -efficient estimator, since (P, Ω, \mathbf{p}) admits unbiased φ -efficient estimator.

Example 2. Let Ω_n be a finite set of n elements. Let $A: \Omega_n \to \mathbb{R}^d_+$ be a map, where $d \leq m-1$. We define an exponential family $P^A(\cdot|\theta) \subset \mathcal{M}(\Omega_m)$ with parameter θ in \mathbb{R}^d as follows.

$$P^{A}(x|\theta) = Z_{A}(\theta) \cdot \exp\langle \theta, A(x) \rangle, \text{ for } \theta \in \mathbb{R}^{d}, \text{ and } x \in \Omega_{m}.$$
 (17)

Here $Z_A(\theta)$ is the normalizing factor such that $P^A(\cdot|\theta) \cdot \mu_0$ is a probability measure, where μ_0 is the counting measure on Ω_m : $\mu_0(x_i) = 1$ for $x_i \in \Omega_m$.

Denote
$$A^l(x) := \langle l, A(x) \rangle$$
 for $l \in (\mathbb{R}^d)^*$. We set
$$\hat{\sigma} : \Omega_n \to \mathbb{R}^d, \ x \mapsto \log A(x) := (\log A^1(x), \cdots, \log A^d(x)),$$
$$\varphi : \mathbb{R}^d \to \mathbb{R}^d_+ \subset \mathbb{R}^d, \ \theta \mapsto \exp \theta.$$

Then $\hat{\sigma}$ is a (possibly biased) φ -efficient estimator [JLS2017b]. Using blowingup, we obtain strictly singular statistical models admitting (possibly biased) φ -efficient estimators.

In [Fukumizu2009] Fukumizu constructed a large class of infinite dimensional exponential families using reproducing kernel Hilbert spaces (RKHS). Assume that Ω is a topological space and μ is a Borel probability measure such that $sppt(\mu) = \Omega$. Let $k: \Omega \times \Omega \to \mathbb{R}$ be a continuous positive definite kernel on Ω . It is known that for a positive definite kernel k on Ω there exists a unique RKHS \mathcal{H}_k such that

- 1. \mathcal{H}_k consists of functions on Ω , 2. Functions of the form $\sum_{i=1}^m a_i k(\cdot, x_i)$ are dense in \mathcal{H}_k , 3. For all $f \in \mathcal{H}_k$ we have $\langle f, k(\cdot, x) \rangle = f(x)$ for all $x \in \Omega$,
- 4. \mathcal{H}_k contains the constant functions $c_{|\Omega}$, $c \in \mathbb{R}$.

For a given positive definite kernel k on Ω we set

$$\hat{k}: \Omega \to \mathcal{H}_k, \ \hat{k}(x) := k(\cdot, x).$$

Theorem 3 ([JLS2017b]). Assume that Ω is a complete topological space and μ is a Borel probability measure with $sppt(\mu) = \Omega$. Suppose that a kernel k on Ω is bounded and satisfies the following relation whenever $x, y \in \Omega$

$$\hat{k}(x) - \hat{k}(y) = c_{|\Omega} \in \mathcal{H}_k \Longrightarrow c_{|\Omega} = 0 \in \mathcal{H}_k.$$
(18)

Let

$$\mathcal{P}_{\mu} := \{ f \in L^1(\Omega, \mu) \cap C^0(\Omega) | f > 0 \text{ and } \int_{\Omega} f d\mu = 1 \}.$$

Set

$$\mathbf{p}: \mathcal{P}_{\mu} \to \mathcal{M}(\Omega), \ f \mapsto f \cdot \mu_0.$$

Then there exists a map $\varphi: \mathcal{P}_{\mu} \to \mathcal{H}_k$ such that $(\mathcal{P}_{\mu}, \Omega, \mathbf{p})$ admits a φ -efficient estimator.

References

[AJLS2015] Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information geometry and sufficient statistics. Probab. Theory Relat. Fields 162, 327–364 (2015)

[AJLS2016] Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Information Geometry. Springer (2017). Ergebnisse der Mathematik und ihrer Grenzgebiete

- [AJLS2016b] Ay, N., Jost, J., Lê, H.V., Schwachhöfer, L.: Parametrized measure models. (accepted for Bernoulli Journal). arXiv:1510.07305
 - [AN2000] Amari, S., Nagaoka, H.: Methods of Information Geometry. Translations of Mathematical Monographs, vol. 191. American Mathematical Society (2000)
- [BKRW1998] Bickel, P., Klaassen, C.A.J., Ritov, Y., Wellner, J.A.: Efficient and Adaptive Estimation for Semiparametric Models. Springer, New York (1998)
- [Borovkov1998] Borovkov, A.A.: Mathematical Statistics. Gordon and Breach Science Publishers (1998)
 - [Brown1986] Brown, L.D.: Fundamentals of Statistical Families with Applications in Statistical Decision Theory, Lecture Notes-Monograph Series, vol. 9. IMS (1986)
 - [CT2006] Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)
- [Fukumizu2009] Fukumizu, K.: Exponential manifold by reproducing kernel Hilbert spaces. In: Gibilisco, P., Riccomagno, E., Rogantin, M.-P., Winn, H. (eds.) Algebraic and Geometric methods in Statistics, pp. 291–306. Cambridge University Press (2009)
 - [JLS2017a] Jost, J., Lê, H.V., Schwachhöfer, L.: The Cramér-Rao inequality on singular statistical models I. arXiv:1703.09403
 - [JLS2017b] Jost, J., Lê, H.V., Schwachhöfer, L.: The Cramér-Rao inequality on singular statistical models II (2017, preprint)
 - [Le2016] Lê, H.V.: The uniqueness of the Fisher metric as information metric. AISM 69, 879–896 (2017)