DIGITAL LOGIC DESIGN LAB (EET1211)

LAB V: DESIGN AND TEST VARIOUS CODE CONVERTER CIRCUITS

Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar

Branch: උප	E_		Section: M
S. No.	Name	Registration No.	Signature
1.	BISWARANJAN SAHOO	2141019075	Biswaranjan

Marks:	/10

Remarks:

Teacher's Signature

I. OBJECTIVE:

 Design a combinational circuit with four input lines that represent a decimal digit in BCD and four output lines that generate the 9's complement of the input digit.

The transfer of the first terms and the first terms are the first

- 2. Design a combinational circuit with four inputs and four outputs that converts a 4bit binary number into the equivalent 4bit Gray code.
- 3. Design a combinational circuit that accepts a 2-bit number and generate output binary number equal to the square of the input number.

II. PRE-LAB

For Obj. 1:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for each output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

For Obj. 2:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for each output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

For Obj. 3:

- a. Write the truth table for the circuit.
- b. Derive the Minimized Boolean expression for each output of the circuit.
- c. Draw the logic diagram for the circuit.
- d. Write HDL code.

are] nolun

0

	V =	5 m(2,3,6	,7)
B CD	00	2 m(Ш	10
00			1	1
01			1	1
11	×	×	×	×
10			×	×

W

OBJECTIVE - 2

0>

BA	B2	Bi	Bo	Cu	Giz	Oti	Gio
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	1	1	'
0	1	0	0		0	1	0
0	1		0	0	- 1	1	0
0		0	1	0	1	1	1
0	1.	!	0	0	1	0	1
1		1	1	0	1	0	0
'	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	i	1	Ι',
1	0	1	1		i	1	1
1	1	0	0		0		0
1	1	0	1	1	1	1	1
	1.	1	0	1 !	0	1	1 '
		1'	0	!	0	0	1
1	11	1	1	1	0	0	0

of HDL Cade

module $abj2(B_3,B_2,B_1,B_0,M_3,M_2,G_1,G_0);$ author G_3 , G_2 , G_1 , G_0 ; infant B_3 , B_2 , B_1 , B_0 ; assign $G_3 = B_3;$ assign $G_2 = B_2 \wedge B_3;$ assign $G_1 = B_1 \wedge B_2;$ assign $G_0 = B_0 \wedge B_1;$ endinadule.

d) HDL Coole

madele abj I(A, B, C, D, W, X, Y, Z); outfired W, X, Y, Z; infined A, B, C, D; where W_1, W_2, W_3 ; assign W = ((!A) dd(!B) dd(!C)); assign $X = B^c$; assign Y = C; assign Z = (!0); enotmodule

5.5		•
4	A	3
-	4	1
	1	Ţ

A	B	W	×	Y	7
0	0	0	0	0	0
0	1	0	0	0	,
1	٥	0	1	0	0
1	1	1	0	0	1

9

d> 1+DL Code

madule abj3(A,B,W,X,Y,Z);

einfaut A, B;

antfut w, x, Y, Z;

andinadule.