60016 OPERATIONS RESEARCH

Game Theory
Mixed Strategies

16 November 2020

Two-Person Zero-Sum Games

Two-person zero-sum games:

- m row strategies and n column strategies
- ▶ RP tries to maximise payoff, CP tries to minimise loss
- Dominated strategies are never played
- In a Nash equilibrium, players do not unilatarelly change their strategy when told what the opponent would do
- Equilibrium exists if

$$\max_{i=1,\dots,m} \alpha_i = \min_{j=1,\dots,n} \beta_j$$

 α_i and β_j being payoffs for row strategy i, column strategy j.

Example 1: Election Game (with different payoffs)

- No Nash equilibrium in pure strategies
- ► CP would switch to strategy B if told RP's strategy

Example 2: Odds-and-Evens

Example 2: Odds-and-Evens

$$\begin{array}{c|cccc}
CP & & & & & \\
& & 1 & 2 & \alpha_{i} \\
& & 1 & -1 & 1 & -1 \\
2 & 1 & -1 & -1 & -1 \\
\beta_{j} & 1 & 1 & & \end{array}$$

- No Nash equilibrium in pure strategies
- ► For any strategy pair, the losing player can always improve if told the strategy chosen by the winning player

Example: Odds-and-Evens (towards mixed strategies)

- Players randomly pick strategy with equal probabilities
- Each strategy pair is played with probability 0.25
- Expected value of the game is 0 for both players
 - No reason to unilaterally change probabilities
 - Example of Nash equilibrium in mixed strategies

Mixed Strategies

- ► In a mixed strategy $(p_1, \ldots, p_m; q_1, \ldots, q_n)$:

 RP plays strategy i with probability $p_i^{q_0}, \sum_{i=1}^m p_i = 1$.
 - ► CP plays strategy j with probability $q_{i}^{\gamma, \bullet} \sum_{i=1}^{n} q_{i} = 1$.
- ▶ If $p_k = 1$ or $q_k = 1$, then k is a pure strategy
- ▶ The payoff of the mixed strategy (p, q) will be

$$V(p,q) = \sum_{i=1}^{m} \sum_{j=1}^{n} p_{i}q_{j}\hat{g}_{i}$$

$$EXPECTED PATOFF (DITT)$$

- ▶ RP seeks probabilities that maximise payoff (p_1^*, \ldots, p_m^*)
- CP seeks probabilities that minimise loss (q_1^*, \ldots, q_n^*)

Definition

A mixed Nash equilibrium is a pair of mixed strategies (p^*, q^*) such that $V(p,q^*) \leq V(p^*,q^*) \leq V(p^*,q)$ for all other mixed strategies (p,q) [i.e., no agent has any incentive in unilaterally deviating].

Example: Election Game (revised in mixed strategies)

- ► The strategy pair (S,B) is played with probability $p_S q_B$
- \triangleright (S,B) contributes $p_Sq_B \cdot 3$ to the mixed strategy payoff
- How can player find their optimal probabilities?

Column Player's Perspective

- Remember the Assumption: "Each player chooses a strategy that enables him/her to do best, reasoning in face of the worst-case opponent"
- ► CP expects RP to respond with optimal p_i 's for any choice of q_i 's. How should CP choose the q_i 's?

Column Player's Perspective (inner program)

Goal: reduce optimisation problem to linear program

Let us rewrite and focus on the inner problem

$$V_{CP} = \min_{q_1, \dots, q_n} V_{CP}^{in}(q_1, \dots, q_n)$$

subject to

$$\sum_{j=1}^{n} rac{m{q}_{j}}{m{q}_{j}} = 1,$$
 $m{q}_{j} \geq 0,$

Column Player's Perspective (inner program is trivial!)

- ▶ For any choice of q_i 's, let $\alpha_i = \sum_{i=1}^n q_i a_{ij}$ be row payoffs
- ► Then the inner maximisation problem is:

$$V_{CP}^{in}(q_1,\ldots,q_n)=\max_{p_1,\ldots,p_m}\sum_{i=1}^m p_i\alpha_i$$

subject to

$$\sum_{i=1}^{m} p_i = 1,$$
 $p_i \geq 0$
 $p_1 = 1$
 $p_2 = 1$
 $p_2 = 1$

- ▶ The solution is $p_i = 1$ for the largest α_i , $p_k = 0$ for $k \neq i$.
- Example: maximise $3p_1 + 2p_2 + 5p_3 \Rightarrow p_3 = 1$.

Example 1: inner program is trivial

 \triangleright CP evaluates a pure strategy $q_S = 1$

- ▶ if RP plays L, $\alpha_L = 0.0 \times 0 + 0.0 \times -1 + 1.0 \times 2 = 2$
- ▶ if RP plays B, $\alpha_B = 0.0 \times 5 + 0.0 \times 4 + 1.0 \times -3 = -3$
- ▶ if RP plays S, $\alpha_S = 0.0 \times 2 + 0.0 \times 3 + 1.0 \times -4 = -4$
- ▶ RP optimal response to CP is $p_L = 1 \Rightarrow V_{CP}^{in} = 2$

Example 2: inner program is trivial

CP changes guess and evaluates a mixed strategy

- ▶ if RP plays L, $\alpha_I = 0.7 \times 0 + 0.2 \times -1 + 0.1 \times 2 = 0$
- ▶ if RP plays B, $\alpha_B = 0.7 \times 5 + 0.2 \times 4 + 0.1 \times -3 = 4$
- ▶ if RP plays S, $\alpha_S = 0.7 \times 2 + 0.2 \times 3 + 0.1 \times -4 = 1.6$
- ▶ RP optimal response to CP is $p_B = 1 \Rightarrow V_{CP}^{in} = 4$

Column Player (substitute inner in outer program)

The inner maximisation optimal value is thus simply

$$V_{CP}^{in}(q_1,\ldots,q_n) = \max\{\alpha_1,\ldots,\alpha_m\}$$

Expanding the definitions of the α_i 's, we conclude that CP is in fact solving a min-max problem

$$V_{CP} = \min_{\substack{q_1,\ldots,q_n\\ q_j \geq 0}} \max \left\{ \sum_{j=1}^n q_j a_{1j},\ldots, \sum_{j=1}^n q_j a_{mj} \right\}$$
 subject to
$$\sum_{j=1}^n q_j = 1,$$

$$q_j \geq 0$$

Column Player (final LP)

► The min-max problem is equivalent to a linear program

- ► Election Game: $q_L^* = 0$, $q_B^* = \frac{1}{2}$, $q_S^* = \frac{1}{2} \Rightarrow V_{CP}^* = \frac{1}{2}$
- Note: the optimal q_i^* 's are independent of the p_i^* 's

Row Player's Perspective

A similar reasoning applies to the row player, who instead optimises

$$V_{RP} = \max_{p_1,...,p_m} \min_{q_1,...,q_n} \sum_{i=1}^{m} \sum_{j=1}^{n} p_i q_j a_{ij}$$

subject to

$$\sum_{i=1}^{m} p_i = 1,$$
 $\sum_{j=1}^{n} q_j = 1,$ $p_i \ge 0,$ $q_j \ge 0$

Row Player's Perspective

The max-min problem can be shown equivalent to a linear program

$$V_{RP} = \max_{ au, extstyle{p}_1, \dots, extstyle{p}_m} au$$

subject to

$$au \leq \sum_{i=1}^m p_i a_{ij}, \qquad orall j = 1, \ldots, n$$
 $\sum_{i=1}^m p_i = 1,$

► Election Game: $p_L^* = \frac{7}{10}, p_B^* = \frac{3}{10}, p_S^* = 0 \Rightarrow V_{RP}^* = \frac{1}{2}$

 $p_i \geq 0$,

Observation: p_i^* 's will be independent of the q_i^* 's.

Minimax Theorem

Theorem (Von Neumann, 1928). For every two-person zero-sum game, the RP and CP linear programs have the same optimal value, i.e.,

$$V_{RP} = \max_{p_1, \dots, p_m} \min_{q_1, \dots, q_n} \sum_{i=1}^m \sum_{j=1}^n p_i q_j a_{ij} = \min_{q_1, \dots, q_n} \max_{p_1, \dots, p_m} \sum_{i=1}^m \sum_{j=1}^n p_i q_j a_{ij} = V_{CP}$$

Proof: ideas?

Minimax Theorem

Theorem (Von Neumann, 1928). For every two-person zero-sum game, the RP and CP linear programs have the same optimal value, i.e.,

$$V_{RP} = \max_{p_1, \dots, p_m} \min_{q_1, \dots, q_n} \sum_{i=1}^m \sum_{j=1}^n p_i q_j a_{ij} = \min_{q_1, \dots, q_n} \max_{p_1, \dots, p_m} \sum_{i=1}^m \sum_{j=1}^n p_i q_j a_{ij} = V_{CP}$$

Proof: ideas? Result follows by strong duality since the two programs are the duals of each other.

Consequences:

- A Nash Equilibrium in mixed strategies always exists!!!
 - Players expect identical payoffs
 - Neither player has an incentive to change p_i or q_j
- ► Statement generalises to *M* players (Nash, 1949).

Historical Notes

BACK @ 11:04

In 1928, Von Neumann first proved the Minmax Theorem for zero-sum games. He later wrote:

"As far as I can see, there could be no theory of games
... without that theorem ... I thought there was nothing
worth publishing until the Minimax Theorem was proved."

In 1949, Nash gave a **one-page** proof (in 27-page thesis) that games with any number of players have a mixed equilibria.

▶ In 1994, Nash was awarded the Nobel Prize for this work