

Fixed Line Broadband Services

A Cloud Native Approach

Raja Kolagatla, Product Manager, MiG Gurpreet Dhaliwal, Technical Marketing Engineer, MiG BRKSPG-2025

A New Era For Subscriber Services is Here

Agenda

- Chapter 1
 - Wireline Transition
 - Control and User Plane Separation
- Chapter 2
 - Cloud Native BNG Solution
 - Simplified Subscriber Monitoring
- Chapter 3
 - Wireless Wireline Convergence
 - Summary

Chapter - 1

Agenda

- Chapter 1
 - Wireline Transition
 - Control and User Plane Separation
- Chapter 2
 - Cloud Native BNG Solution
 - Simplified Subscriber Monitoring
- Chapter 3
 - Wireless Wireline Convergence
 - Summary

The New Era is here

Source: Cisco VNI Global IP 2018-2023

Business Challenges at Mass Scale Traditional economics are beginning to break

Fixed Line Network Design Challenges

Growth Planning

Faster Time To Market

TCO Reduction

OSS/BSS Integration

New Architecture Drivers

Services closer to subscriber

Independent CP and UP scaling and ease of integration

Common infrastructure for different access technologies

Control and User Plane Separation (CUPS)

cisco Live!

Control and User Plane Separation

Standardization of CUPS BNG

- TR-459 is a CUPS Disaggregated BNG standard defined by Broadband forum
- State Control interface (SCi)
 - To install traffic forwarding rules and states on UP
 - Flexible Packet Match rules with actions to be programmed
- Control Packet Redirect Interface (CPRi)
 - In-band signaling channel to trigger subscriber authentication
- Management Interface (Mi)
 - Pushing configuration and retrieving operational state and status from the UPs

SCi: PFCP CPRi: GTP-u

Cisco and CUPS

- Initial proprietary solution demonstrated in 2016 with mobility CUPS
- Adoption of Sx and N4
- Adoption of PFCP for cnBNG CUPS protocol
- PFCP is a 3GPP protocol for CUPS
 - Standardized since rel14 (TS29.244)
 - BBF Selected protocol for CUPS DBNG (TR-459)
 - BBF and 3GPP continue to develop PFCP

PFCP Overview

- Message Types:
 - · Node Messages: Association Setup, Update, Release and Heartbeat
 - · Session Messages: Establishment, Modification, Deletion, Report
- · IEs are added to exchange information
 - · Allows extension, flexibility
 - Defined by 3GPP and extended by BBF
- Rules are used in Session Messages to program forwarding state
 - Packet Detection Rule (PDR) contains a selection of the objects
 - Matching criterion is specified by Packet Detection Identifier (PDI)
 - Action (e.g. forward/drop/mirror) specified by Forward action Rule (FAR)
 - QoS Enforcement Rule (QER) specifies QoS
 - Usage Reporting Rule (URR) specifies usage reporting and charging

*source TR-459

BRKSPG-2025

cnBNG High Level Architecture

Architecture Highlights

- TR-459 aligned Architecture
- Clean slate CP architecture written from ground-up in GO
- Control and User Separation (CUPS) advantage
- · Common Infrastructure: BNG, 5GC, Cable
- IOS-XR user planes optimized for various deployment options
- Model driven Manageability
- Smooth migration of Policy interface and Platforms
- Simplified Northbound interface independent of the number of User Planes
- Simplified Subscriber Monitoring

Cloud Native Advantages

- Microservices deployed and managed on elastic infrastructure using Kubernetes
- Subscriber Management services packaged in containers
- · DevOps processes with CI/CD workflows
- · Smoother upgrades with no downtime
- · Each micro-service can be scaled up or down easily

CPRi: Control Packet Redirect Interface (GTP-u) SCi: State Control Interface (PFCP)

Chapter - 2

Agenda

- Chapter 1
 - Wireline Transition
 - Control and User Plane Separation
- Chapter 2
 - Cloud Native BNG Solution
 - Simplified Subscriber Monitoring
- Chapter 3
 - Wireless Wireline Convergence
 - Summary

cnBNG High Level Architecture

Architecture Highlights

- TR-459 aligned Architecture
- Clean slate CP architecture written from ground-up in GO
- Control and User Separation (CUPS) advantage
- · Common Infrastructure: BNG, 5GC, Cable
- IOS-XR user planes optimized for various deployment options
- Model driven Manageability
- Smooth migration of Policy interface and Platforms
- Simplified Northbound interface independent of the number of User Planes
- Simplified Subscriber Monitoring

Cloud Native Advantages

- Microservices deployed and managed on elastic infrastructure using Kubernetes
- Subscriber Management services packaged in containers
- · DevOps processes with CI/CD workflows
- · Smoother upgrades with no downtime
- · Each micro-service can be scaled up or down easily

CPRi: Control Packet Redirect Interface (GTP-u) SCi: State Control Interface (PFCP)

Cloud Native Tenets

Microservices

- Application is split in several discrete microservices
- Deployed, managed and scaled independently

Containers

- Virtualization of microservices
- Highly portable to deployment scenarios

DevOps

- Automation and management of rapid deployments
- Validate and deploy in production

Continuous Delivery

- Develop, build, test and release at rapid speed
- Automated continuous integration, validation and availability of containers

- · Easy to deploy; easy to scale
- Smaller impact domains

- Faster bring-up
- · Lower infrastructure restriction
- · Faster fallback and bug-fixes
- · Faster Feature rollout

- Lower Time to Market
- · Always on latest code-base

Cloud Native Architecture

OPS Center provides Common MGMT API:

- NETCONF/REST API
- CLI Interface
- YANG Model
- Config DB
- Operational Callback
- Security: NACM/AAA

Common Data Layer for stateless microservices:

- In-memory session store
- Geo-redundancy
- High Performance
- Low latency

Intelligent Service Mesh

Rollout Services Faster

Routing based on message contents i.e. apn, imsi, supi, line-id, circuit-info etc

cNF Scalability

Ops Center

endpoint dhcp replicas X exit endpoint pppoe replicas Y exit

Simplified scale up/down of each individual service

cNF Scalability

Ops Center

endpoint dhcp replicas X exit endpoint pppoe replicas Y exit

- Simplified scale up/down of each individual service
- Scale up when load is high

cNF Scalability

Ops Center

endpoint dhcp replicas X exit endpoint pppoe replicas Y

- Simplified scale up/down of each individual service
- Scale up when load is high
- Scale down when load is low

Maintains the steady state

- Maintains the steady state
- · Whenever a microservice fails

- Maintains the steady state
- · Whenever a microservice fails
 - It's started automatically

*by Orchestrator

· Whenever a node fails

- · Whenever a node fails
 - All microservices are automatically moved to other working nodes

CP and UP Redundancy Options

User Plane Redundancy User Plane Redundancy Control Plane Redundancy

1 : 1

M : N

Active

Standby

Hot Standby Warm Standby

CDL DB HA Only HA w/ Geo Redundancy

Deployment Options

Simplified Manageability

Simplified Monitoring

Collection

Visualization

Alert

- POD metric collection
- Model Driven Telemetry for UP stats collection
- 100s of subscriber metrics already available

- Metrics Visualization on Dashboard
- Telemetry integration with external visualization also supported

- Alert Manager for generating alerts
- Alerts via Email, Webhooks, SNMP or on dashboard
- YANG based alert setting

Integrated with cnBNG

Metrics Visualization: Inbuilt

Metrics Collection and Alert

- Uses pull/push model for metric collection
- Model based metrics monitoring using telemetry
- Can integrate with PIG stack
- Alert Manager

Unified Monitoring Framework

- Metrics monitoring from CP:
 - Node and PODs health
 - IPAM Allocation
 - · UP Binding and Health
 - · Session Scale
 - DS vs SS Sessions etc.
- Metrics from UP:
 - Alarms
 - Non BNG Services
 - · Anomaly detection
 - Consistency check between CP and UP etc.

Metric Query Example

curl '10.36.0.24:9090/api/v1/query?query=IPAM chunk allocations current'

promQL

```
PPPoE_session_summary_current
DHCP_Session_total
Radius_requests_statistics
...
```



```
"status": "success",
"data": {
 "resultType": "vector",
      "metric": {
       " name ": "IPAM address allocations current",
       "addressType": "IPv4",
       "allocationType": "dynamic",
       "app name": "BNG",
       "component": "bng-nodemgr",
       "controller revision hash": "bng-nodemgr-n0-7c648fb7d8",
       "data center": "DC",
       "dnai": "NA",
       "dnn": "NA",
       "hostname": "smf-knode1",
       "instance": "10.36.0.12:8080",
       "instance id": "0",
       "job": "kubernetes-pods",
       "nID": "0",
       "namespace": "bng",
       "nssai": "NA",
       "pod": "bng-nodemgr-n0-0",
       "pool": "pool-ISP",
       "release": "bng-bng-nodemgr",
       "service name": "bng-nodemgr",
       "statefulset kubernetes io pod name": "bng-nodemgr-n0-0",
       "upf": "asr9k-1"
      "value": [
```


Advanced Monitoring with Cisco Matrix

Single Pane Of Glass for Fault & Performance Mngt. for Complete Vertical Stack with Ai and ML capabilities

2

Single Tool for all cnBNG Infrasructure and cnBNG Applications in the network

3

Single point of integration for Customer OSS Layer and Applications

Optimize with cnBNG

Design It Better With cnBNG

Reduced OpEx: 5x less OSS/BSS integration points Reduced CapEx: 50%+ savings vs traditional deployments

Offload Traffic Closer to Subscriber

Varying UP Choices Based on Requirements

Deploy Based on Today's Scale

BRKSPG-2025

Faster Service Rollout with Cloud Native CP

Converged Architecture

Chapter - 3

Agenda

- Chapter 1
 - Wireline Transition
 - Control and User Plane Separation
- Chapter 2
 - Cloud Native BNG Solution
 - Simplified Subscriber Monitoring
- Chapter 3
 - Wireless Wireline Convergence
 - Summary

WWC Standardization

Broadband forum-

- WT-456: AGF Functional Requirements
- WT-458: CUPS for 5G FMC
- WT-470: 5G FMC Architecture

3GPP Rel16-

TS23.316: Wireless and wireline convergence access support for the 5G System (5GS)

Converged Core

- 3GPP R16 and BBF are defining convergence
- 5GC Control Plane anchors
 Wireline and Wireless sessions
- Converged core strategies: standalone, integration, interworking, co-existence
- Common Access Edge drives wireline and wireless onto the same platforms
- Simplifies common billing and charging integration

WWC Scenarios

- Multi access
 - · Bandwidth Augmentation
 - · Active standby (Radio / Fixed network)
 - Seamless transition
 - Differentiated services
- Convergence
 - Application level
 - IT / Backend systems convergence (Policy layer, Service Assurance)
 - Network level convergence
 - Combined Transport network
 - · Combined Packet core, single breakout to internet
- Fixed Wireless Access

Converged Architecture

- Policy plane convergence for common billing and subscriber management
- · For 5G-RG steer to AGF-UP
- For FN-RG steer to BNG-UP or AGF-UP
- BNG-UP and AGF-UP can be a converged UP
- BNG-CP and AGF-CP can be a converged CP
- Migration from BNG to 5G Core possible through converged architecture

BRKSPG-2025

Summary

Let's recap

- · Chapter 1
 - Wireline Transition
 - Control and User Plane Separation
- · Chapter 2
 - Cloud Native BNG Solution
 - Simplified Subscriber Monitoring

- Chapter 3
 - Wireless Wireline Convergence
 - Architecture evolution

BRKSPG-2025

References

Explore and learn more

- Cloud Native BNG Config Guides
 - https://www.cisco.com/c/en/us/td/docs/routers/cnBNG/cnBNG-CP/2021-01-x/Config-Guide/b cnbng cp config guide.html
 - https://www.cisco.com/c/en/us/td/docs/routers/asr9000/software/asr9k -r7-3/cloud-native-bng/configuration/guide/b-cnbng-user-plane-cg-asr9000-73x/cloud-native-bng-overview.html
- ASR9k Routers: http://xrdocs.io/asr9k/
- NCS5500 Router: https://xrdocs.io/ncs5500/
- XRDocs Youtube Channel: https://youtube.com/xrdocs

Thank you

