

Álgoritmos basados en árboles.

by Saturdays.Al

Saturdays.AI LATAM Machine Learning

Semana 4

Agenda

Curso

Actividad

Referencias

Bueno... y qué es un árbol de decisión

Objetivo: Entender el concepto detrás de los algoritmos basados en árboles.

Contenido

- Arboles de decisión
- Criterios de Impuridad
- Ventajas y Desventajas

Árboles de decisión:

Modelo no-paramétrico:

- clasificación
- regresión.

Funciona con particiones recursivas de las instancias en el espacio de los datos.

El objetivo de un árbol de decisión es **predecir** el valor a través de un conjunto de **reglas simples** de decisión en su mayoría de casos binaria de las variables otorgadas.

Árboles de decisión:

- ¿Crear un árbol?
- 1) Elegir la variable con mayor calidad de la división a través de
- -Ganancia de información.
- -Impuridad Gini
- 2) Para la siguiente rama, hacer esto recursivamente.
- En cada nodos, la variable con mayor información será la que es elegida.

¡Criterios de impuridad!

¡Gini! Medida de la probabilidad por cada división.

¡Entropía! Medida de la aleatoriedad de la información.

ACTIVIDAD

Un poco de python...


```
--- feature 3 <= 0.80
   --- class: 0
--- feature 3 > 0.80
    --- feature 3 <= 1.75
        --- feature_2 <= 4.95
            --- feature 3 <= 1.65
               |--- class: 1
            --- feature 3 > 1.65
               --- class: 2
        --- feature 2 > 4.95
            --- feature_3 <= 1.55
               --- class: 2
            --- feature 3 > 1.55
                --- feature 0 <= 6.95
                   |--- class: 1
                --- feature 0 > 6.95
                   |--- class: 2
    --- feature_3 > 1.75
        --- feature_2 <= 4.85
            --- feature_0 <= 5.95
               |--- class: 1
            --- feature 0 > 5.95
               |--- class: 2
        --- feature 2 > 4.85
           |--- class: 2
```


Ventajas

- Abordar relaciones complejas (no lineales).
- Pueden trabajar bien con datos de alta dimensionalidad.
- Requieren mínimo preprocesamiento de datos.
- Robustos ante datos aberrantes
- No tienen sensibilidad ante transformaciones monótonas.
- -Métricas para determinar la importancia.

Desventajas

- Tienen un desempeño bajo.
- Poder predictivo está muy limitado.
- Árboles se ven altamente modificados a pequeñas perturbaciones en los datos.
- Pueden tornarse excesivamente complejos.
- Tienden a sobre-ajustar (overfitting).

Pero... ¿existe una solución alterna?

¡Métodos de Ensamble!

Referencias

- Singh, N. (2019) Decision Tree Algorithm Explained. Recuperado el 14 de septiembre del 2020 de: https://towardsdatascience.com/decision-tree-algorithm-explained-83beb6e78ef4
- Scikit Learn (2020) Decision Trees. Recuperado el 14 de septiembre del 2020 de: https://scikit-learn.org/stable/modules/tree.html
- Gupta, P. (2019) Decision Trees in Machine Learning. Recuperado el 14 de Agosto del 2020 de: https://towardsdatascience.com/decision-trees-in-machine-learning-641b9c4e8052
- Rokach, L. (n.d.) Decision Trees. Department of Industrial Engineering. Tel-Aviv University. Recupeado el 14 de septiembre del 2020 de: https://www.ise.bgu.ac.il/faculty/liorr/hbchap9.pdf
- Ertel, W. (2011) Introduction to Artificial Intelligence. Springer UTICS Undergraduate Topics in computer science.

Contacto

Daniel Hernández Mota:

<u>Daniel@saturdays.ai</u>

<u>www.linkedin.com/in/dhdzmota/</u>

1ra. Edición Remota