

		Si	imple	ex D	UAL	Max	$z = 10x_1 + 9x_2$
Vamos	ver um		$-4x_2 + x_3 = 200$ $-6x_2 + x_4 = 230$				
C	o <u>luna pi</u> vo	ot				$2x_I +$	$-x_2 + x_5 = 70$
	x_I	x_2	x_3	X_{4}	x_5	<i>x_i,</i> ≥	0, i=1,,5
x_3	5	4	1	0	0	200	(200/5)
x_4	4	6	0	1	0	230	(230/4)
x_5	2	1	0	0	1	70	(70/2)
z	<u>-10</u>	-9	0	0	0	0	VAMOS ERRAR!
	ntra na bas		Sai x ₄				
	ntra na bas	se	แเงษรแบูล	çau Operacı	Ullal		3

Reiniciar a partir do quadro original?

Desfazer o erro?

-sair x_1 e entrar x_4

E se fosse possível continuar, apesar da asneira 12!?

	x_{l}	x_2	x_3	$X_{\mathcal{J}}$	x_5	
x_3	0	- 7/2	1	- 5/4	0	_175/2
x_I	1	$\frac{3}{2}$	0	$\frac{1}{4}$	0	115/2
x_5	0	-2	0	$-\frac{1}{2}$	1	-45
Z	0	2 4	0	$\frac{5}{2}$	0	5 7 5

Universidade do Minho

Simplex DUAL

Quadro válido !!!

Falta Optimizar, resolução pelo Simplex PRIMAL

	x_I	x_2	x_3	X_4	x_5	
x_4	0	0	- 8/3	1	14/3	$\overline{70}_{3}$
x_I	1	0	$-\frac{1}{3}$	0	4/3	$80/_{3}$
x_2	0	1	+ $\frac{2}{3}$	0	$-\frac{5}{3}$	50/3
Z	0	0	+ 8/5	0	- 5/3	$\overline{1250}_{3}$

Universidade do Minho

Investigação Operacional

Simplex DUAL

Solução Óptima

	x_{I}	x_2	x_3	X_4	x_5	
x_5	0	0	- 4/7	3/14	1	5
x_I	1	0	$\frac{3}{7}$	$-\frac{2}{7}$	0	20
x_2	0	1	$-\frac{2}{7}$	5/14	0	25
Z	0	0	12/7	5/14	0	425

Universidade do Minho

Só mudou a ordem das linhas

	x_I	x_2	$X_{\mathfrak{Z}}$	$X_{\mathcal{J}}$	X_5	
<i>x</i> ₅	0	0	- 4/7	3/14	1	5
x_I	1	0	$\frac{3}{7}$	$-\frac{2}{7}$	0	2 0
x_2	0	1	$-\frac{2}{7}$	$\frac{5}{14}$	0	2 5
z	0	0	12/7	5/14	0	425

	x_I	x_2	x_3	X_4	x_5	
x_2	0	1	-6/21	5/14	0	25
x_5	0	0	-4/7	3/14	1	5
x_{l}	1	0	3/7	-2/7	0	20
z	0	0	12/7	5/14	0	425

Investigação Operacional

Simplex DUAL

Exemplo

Min
$$z = 2x_1 + x_3$$
 Max $-z = -2x_1 - x_3$ Max $-z = -2x_1 - x_3$ s.a: s.a: s.a:

$$s.a:$$
 $-r - r + r < -5$

$$x_1 + x_2 - x_3 \ge 5$$
 $-x_1 - x_2 + x_3 \le -5$ $-x_1 - x_2 + x_3 + s_1 = -5$
 $x - 2x + 4x \ge 8$ $-x + 2x - 4x \le -8$ $-x + 2x - 4x + s_1 = -5$

$$-x_1 - x_2 + x_3 \le -3$$
$$-x_1 + 2x_2 - 4x_3 \le -3$$

$$x_1 - 2x_2 + 4x_3 \ge 0$$

 $x_1 > 0$ $i = 1, 2, 3$

$$-x_1 + 2x_2 - 4x_3 \le -x_1 = -x_1 + 2x_2 - 4x_3 \le -x_2 = -x_1 + 2x_2 = -x_1 = -x_1 = -x_2 = -x_2 = -x_1 = -x_1 = -x_2 =$$

$$x_1 - 2x_2 + 4x_3 \ge 8$$
 $-x_1 + 2x_2 - 4x_3 \le -8$ $-x_1 + 2x_2 - 4x_3 + s_2 = -8$

$$x_j \ge 0, j = 1, 2, 3$$
 $x_j \ge 0, j = 1, 2, 3$ $x_j \ge 0, j = 1, 2, 3$

	x_I	x_2	x_3	s_I	s_2	
s_I	-1	-1	1	1	0	_5 solução básica
s_2	-1	2	-4	0	1	8 não admissível
-z	2	0	1	0	0	0

(2) (1/4)

Síntese:

Sai da base a variável com o valor mais negativo (que é "menos admissível").

Entra na base a variável que tem menor razão em módulo entre o coeficiente da linha da função objectivo e o coeficiente da linha pivot, considerando apenas as que têm coeficientes negativos na linha pivot.

Universidade do Minho

Investigação Operacional

13

Simplex DUAL

	x_{I}	x_2	x_3	s_I	s_2	
s_I	- 5 4	- 1/2	0	1	$\frac{1}{4}$	- 7
x_3	$\frac{1}{4}$	- 1/2	1	0	_ 1 4	2
- z	$\frac{7}{4}$	1 2	0	0	$\frac{1}{4}$	- 2

	x_1	x_2	x_3	s_{I}	s_2	
x_2	5/2	1	0	-2	-1/2	14
x_3	3/2				-1/2	9
—z	1/2	0	0	1	1/2	-9

Solução Óptima

Universidade do Minho

Investigação Operacional

4

Resumo da Iteração do algoritmo simplex dual:

- 1. Teste de optimalidade (a solução básica actual é óptima se todos os termos independentes são não negativos e todos os coeficientes da linha da função objectivo são não negativos). Se a solução é óptima, parar. Se não, prosseguir com o passo 2.
- 2. Decidir qual a variável que sai da base (é aquela que tem o valor mais negativo em caso de empate decidir arbitrariamente). Prosseguir com o passo 3.
- 3. Decidir qual a variável não básica que entra na base (é aquela que tem a menor razão em módulo do critério de entrada excluindo as variáveis que têm coeficiente positivo ou nulo na linha pivot; em caso de empate, escolher maior pivot em módulo). Se não houver nenhuma variável com coeficiente negativo na linha pivot, o problema é impossível, parar. Se não, prosseguir para 4.
- 4. Actualizar o quadro simplex para a base actual e passar à iteração seguinte (passo 1).

Universidade do Minho

Investigação Operacional

15

Simplex

- ·Como obter um quadro simplex válido para um problema que tenha restrições de igualdade e/ou de maior ou igual?
 - Note-se que, se o problema só tiver restrições de "menor ou igual", temos sempre uma base "à mão": a constituída pelas variáveis de folga, i.e.
 - O ponto de solução nula pertence ao espaço de soluções válidas, e forma-se a base com as variáveis de folga.

(a)
$$Max z = 2x_1 + x_2$$

s.a:
 $x_1 + x_2 \ge 2$

(b)
$$Max z = 2x_1 + x_2$$

s.a:

$$x_1 + x_2 - t = 2$$
$$x_1 + x_2 + s = 4$$

$$x_1$$
, x_2 , s , $t \ge 0$

·Modelos (a) e (b) são equivalentes.

- O modelo (b) está na forma estandardizada e inclui uma variável de excesso (primeira restrição) e uma variável de folga (segunda restrição).
- Para a segunda linha é fácil encontrar uma variável básica inicial (tem coeficiente 1 na própria linha e 0 nas restantes).
- Qual a variável básica a associar à primeira linha? Não é claro. Não há nenhuma variável que tenha coeficiente 1 na própria linha e 0 nas

(a)
$$Max z = 2x_1 + x_2$$

s.a:

$$x_1 + x_2 \ge 2$$

 $x_1 + x_2 \le 4$
 $x_1, x_2 \ge 0$

$$(b) Max z = 2x_1 + x_2$$

s.a:

$$x_1 + x_2 - t = 2$$

 $x_1 + x_2 + s = 4$
 $x_1 + x_2 + s = 4$

$$x_1$$
, x_2 , s , $t \ge 0$

·Modifica-se o modelo por inclusão de variáveis artificiais

Investigação Operacional

Grande M «» 2 Fases

(a)
$$Max z = 2x_1 + x_2$$

s.a:

$$x_1 + x_2 \ge 2$$

$$x_1 + x_2 \le 4$$

$$x_1, x_2 \ge 0$$

(a)
$$Max z = 2x_1 + x_2$$
 (b) $Max z = 2x_1 + x_2$

$$x_1 + x_2 - t = 2$$

$$x_1 + x_2 + s = 4$$

$$x_1, x_2, s, t \ge 0$$

(c)
$$Max z = 2x_1 + x_2 - Ma$$

$$x_1 + x_2 - t = 2$$
 $x_1 + x_2 - t + a = 2$
 $x_1 + x_2 + s = 4$ $x_1 + x_2 + s = 4$
 $x_1, x_2, s, t \ge 0$ $x_1, x_2, t, s, a \ge 0$

1ª FASE

Para obter uma base inicial, utiliza-se um problema auxiliar que consiste em minimizar soma das variáveis а artificiais.

s.a:

- Elimina-se a distância à zona de soluções válidas.

(d)
$$Min w = a$$

$$x_1 + x_2 - t + a = 2$$

 $x_1 + x_2 + s = 4$
 $x_1, x_2, s, t, a \ge 0$

Grande M «» 2 Fases

(a)
$$Max z = 2x_1 + x_2$$

s.a:

$$x_1 + x_2 \ge 2$$

$$x_1 + x_2 \le 4$$

(b)
$$Max z = 2x_1 + x_2$$

s.a:

$$x_1 + x_2 \ge 2$$
 $x_1 + x_2 - t = 2$
 $x_1 + x_2 \le 4$ $x_1 + x_2 + s = 4$
 $x_1, x_2 \ge 0$ $x_1, x_2, s, t \ge 0$

(a)
$$Max z = 2x_1 + x_2$$
 (b) $Max z = 2x_1 + x_2$ (c) $Max z = 2x_1 + x_2 - Ma$
s.a: s.a: s.a:

$$x_1 + x_2 \ge 2$$
 $x_1 + x_2 - t = 2$ $x_1 + x_2 - t + a = 2$
 $x_1 + x_2 \le 4$ $x_1 + x_2 + s = 4$ $x_1 + x_2 + s = 4$
 $x_1, x_2 \ge 0$ $x_1, x_2, s, t \ge 0$ $x_1, x_2, t, s, a \ge 0$

2° FASE

Se não houver variáveis artificias na procede-se com a função objectivo original

Senão, o problema é impossível!

- É necessário validar o quadro

(d) $Max z = 2x_1 + x_2$ s.a:

$$x_1 + x_2 - t = 2$$

 $x_1 + x_2 + s = 4$
 $x_1, x_2, s, t \ge 0$

Investigação Operacional

19

Grande M «» 2 Fases

Exemplo:

1ª Fase

	x_{I}	x_2	t	S	a	
а	1	1	1 0	0	1	2
S	1	1	0	1	0	4
-w	0	0	0	0	1	0

Validação do Quadro Simplex

	x_I	x_2	t	S	a	
а	1	1	-1	0	1	2
S	1	1	0	1	0	4
-w	-1	-1	1	0	0	-2

Grande M «» 2 Fases

Exemplo:

1ª Fase

	x_I	x_2	t	\boldsymbol{S}	a	
а	1	1	-1	0	1	2
S	1	1	0	1	0	4
-w	-1	-1	1	0	0	-2

nais pequenc

negativa (empate), entra na base

	x_I	<i>x</i> ₂	t	S	а	
x_1	1	1	-1	0	1	2
x_1	0	0	1	1	-1	2
-w	0	0	0	0	1	0

Não há artificiais na base, podem ser removidas do quadro e passa-se à 2ª fase...

Universidade do Minho

Investigação Operacional

21

Grande M «» 2 Fases

Exemplo:

2ª Fase

	x_{I}	x_2	t	S	
x_I	1	1	-1	θ	2
S	0	0	1	1	2
Z	-2	-1	0	0	0

Validação do Quadro Simplex

	x_{I}	x_2	t	S	
x_I	1	1	-1	0	2
S	0	0	1	1	2
Z	0	1	-2	0	4

Universidade do Minho

Investigação Operacional

22

Simplex Matricial «» Revisto

Quadro Inicial

	x	S	
s	\boldsymbol{A}	I	b
z	- c	0	0

- A Matriz tecnológica (coeficientes das restrições)
- I Matriz Identidade
- b Termos independentes
- c Coeficientes na Função Objectivo
- X Variáveis de decisão
- S Variáveis de folga

Universidade do Minho

Investigação Operacional

25

Simplex Matricial «» Revisto

Max
$$z = 2x_1 + \frac{5}{4}x_2 + 3x_3$$

s.a:
 $2x_1 + x_2 + 2x_3 \le 7$
 $3x_1 + x_2 \le 6$
 $+x_2 + 6x_3 \le 9$
 $x_j \ge 0$, $j = 1, 2, 3$

$$A = \begin{bmatrix} 2 & 1 & 2 \\ 3 & 1 & 0 \\ 0 & 1 & 6 \end{bmatrix} \qquad b = \begin{bmatrix} 7 \\ 6 \\ 9 \end{bmatrix}$$

$$c = \begin{bmatrix} 2 & 5/4 & 3 \end{bmatrix}$$

$Max \ z = 2x_1 + \frac{3}{4}x_2 + 3$	$5x_3 + 0x_3$	$x_4 + 0x$	$c_5 + 0x_6$
s.a:			
$2x_1 + x_2 + 2x_3 + x_4$			= 7
$3x_1 + x_2$	$+x_{5}$		= 6
$+x_2 +6x_3$		$+x_6$	= 9
$x_i \ge 0$, $j = 1, 2, 3, 4, 5, 6$			

	<i>x</i> ₁	x_2		x_4		X_6	
X ₄	2	1				0	7
<i>x</i> ₅	3	1	0	0	1	0	9
X_6	0	1	6	0	0	1	6
	-2	- 5/4	-3	0	0	0	0

Universidade do Minho

Investigação Operacional

26

 $m{B}$ Matriz formada pelas colunas da Matriz $m{A}$ das variáveis básicas

 B^{-1} Matriz Inversa da Matriz B

CB Matriz dos coeficientes na Função Objectivo das variáveis básicas

 x_B Vector das variáveis básicas

Na Análise de Sensibilidade é esta forma matricial que se usa.

Quase Sempre a Matriz B^{-1} é dada.

Quadro numa qualquer iteração

	x	S	
x_B	$B^{-1}A$	B ⁻¹	<i>B</i> −1 <i>b</i>
z	$c_B B^{-1}A - c$	$c_B B^{-1}$	$c_B B^{-l} b$

Universidade do Minho

Investigação Operacional

27

Simplex Matricial «» Revisto

A Revisão do Simplex teve como objectivo a definição de uma metodologia mais eficiente para uso do cálculo automático.

Dantzig e Orchard-Hays desenvolveram para a RAND Corporation uma metodologia que visava tratar a informação estritamente necessária para o cálculo automático.

O Simplex revisto permite reduzir o número de operações a efectuar em cada iteração, o espaço de memória, e o tempo de computação.

No percurso para a solução óptima só importa conhecer os vectores (colunas) fora da base, em termos da base actual (colunas das variáveis básicas):

- calculo dos custos reduzidos:
- determinação do vector a sair da base
- obtenção da nova solução por mudança de base.

Não se actualiza todo o quadro simplex, somente interessa identificar o novo elemento pivot.

A forma revista explora o facto de se poder obter todo o quadro simplex respeitante a qualquer SBA a partir do conhecimento da matriz inversa da base B-1 dessa solução.

Universidade do Minho

Investigação Operacional

29

Simplex Matricial «» Revisto

Atendendo ao conceito de base de um espaço vectorial, qualquer vector P_i é dado por:

 $P_j = BX_j \qquad , \qquad j = 1, 2, \dots, n$ em que X_j é a representação do vector P_j em termos de base B. Donde

$$X_{i} = B^{-1}P_{i}$$

em que B^{-1} designa a matriz inversa da base actual.

Qualquer solução básica resulta de igualar a zero as variáveis não básicas.

$$BX_B = b$$
 \longrightarrow $X_B = B^{-1}b$

