

st ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Qui

1. Основные определения

Определение 3.1. n-арным (или n-местным) отношением на множествах A_1, \ldots, A_n называется произвольное подмножество ρ декартова произведения $A_1 \times \ldots \times A_n$:

$$\rho \subseteq A_1 \times \ldots \times A_n$$
.

В частности, при $\rho = \varnothing$ получаем **пустое отношение**, а при ρ , совпадающем со всем указанным декартовым произведением — **универсальное отношение**.

Важный частный случай получаем при n=2: тогда говорят о соответствии из множества A_1 в множество A_2 .

Если $A_1 = A_2 = \ldots = A_n = A$, то ρ называют n-арным отношением на множестве A; при n=2 получаем бинарное отношение на множестве A.

Рассмотрим более подробно соответствия и бинарные отношения. Пюбое соответствие — это множество упорядоченных пар. Например, если $A = \mathbb{R}^1$ (множество действительных чисел), то бинарное отношение на \mathbb{R}^1 — это некоторое множество точек плоскости \mathbb{R}^2 .

Определение 3.2. Область определения соответствия из множества A_1 в множество A_2 $\rho \subseteq A_1 \times A_2$ — есть множество

$$\mathcal{D}(\rho) = \{x \mid (\exists y \in A_2)(x, y) \in \rho\}.$$

Область значения соответствия ρ — это множество

$$\mathcal{R}(\rho) = \{ y \mid (\exists x \in A_1)(x, y) \in \rho \}.$$

Из определения вытекает, что $\mathcal{D}(\rho) \subseteq A_1$, $\mathcal{R}(rho) \subseteq A_2$.

Соответствие называют **всюду определенным**, если $\mathcal{D}(\rho) = A_1$.

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

Определение 3.3. Сечением соответствия ρ для фиксированного $x \in A_1$ называют множество

$$\rho(x) = \{ y \mid (x, y) \in \rho \}.$$

Пример 1.

Пусть $\rho = \{(x,y) \mid x>y+1\} \subseteq \{1,2,3,4\}^2$. Имеем $\rho = \{(3,1),(4,1),(4,2)\}$. Область определения отношения $\mathcal{D}(\rho) = \{3,4\}$, область значений — $\mathcal{R}(\rho) = \{1,2\}$.

Задание. Построить график и граф отношения ρ .

irst ● Prev ● Next ● Last ● Go Back ● Full Screen ● Close ● Quit

3.1. Построить графики и графы следующих бинарных отношений, заданных на множестве $X = \{1, 2, 3, 4, 5, 6\}$:

- (a) $x_1 \varphi x_2$, если $x_1 < x_2$;
- (б) $x_1 \tau x_2$, если $x_1 \leq x_2$;
- (в) $x_1 \rho x_2$, если $(x_1 x_2) \ge 2$;
- $(\Gamma) \{(a,b)| a+b$ четное $\};$
- **3.2.** Определить, по какому принципу построено отношение, заданное графиком Φ на $M \times M$, где $M = \{a, o, c, m\}$, а $\Phi = \{(o, a), (c, a), (m, a), (c, o), (m, o), (c, m)\}$.

irst • Prev • Next • Last • Go Back • Full Sc

2. Операции над соответствиями

Поскольку соответствия являются множествами, то все операции над множествами (пересечение, объединение, разность, дополнение и т.д.) применимы и к соответствиям. Однако для соответствий можно определить специальные операции: композицию соответствий и получение обратного соответствия.

1) Композиция соответствий.

Если $\rho\subseteq A_1\times A_2$, $\sigma\subseteq A_2\times A_3$, то композиция (произведение) соответствий ρ и σ есть соответствие $\rho\circ\sigma$, определяемое как

$$\rho \circ \sigma = \{(x,z) \mid (\exists y)((x,y) \in \rho) \land ((y,z) \in \sigma)\}.$$

Пример 2. Соответствие ρ берем из предыдущего примера, а соответствие $\sigma \subseteq \{1,2,3,4\}^2$ зададим непосредственно как множество пар $\sigma = \{(1,2),(1,3),(3,4)\}$.

Задание. Построить граф композиции $\rho \circ \sigma$.

Композицию отношения с самим собой называют **квадратом отно**шения.

Определение 3.4. Отношение $\mathrm{id}_A = \{(x,x) \mid \in A\}$ называют диагональю множества A .

Свойства композиции:

(1)
$$\rho \circ (\sigma \circ \tau) = (\rho \circ \sigma) \circ \tau$$
;

(2)
$$\rho \circ \emptyset = \emptyset \circ \rho = \emptyset$$
;

(3)
$$\rho \circ (\sigma \cup \tau) = \rho \circ \sigma \cup \rho \circ \tau$$
;

$$(4) \ \rho \circ (\sigma \cap \tau) \subseteq \rho \circ \sigma \cap \rho \circ \tau;$$

(равенство в общем случае не имеет места!).

$$(5)$$
 $\rho \circ \mathrm{id}_A = \mathrm{id}_A \circ \rho = \rho$, где $\rho \subseteq A^2$ — бинарное отношение на A .

rst • Prev • Next • Last • Go Back • Full Screen • Close • Quit

Рассмотрим доказательство свойства (1). Используем метод двух включений.

Первое включение.

$$(x,z) \in \rho \circ (\sigma \circ \tau) \Rightarrow \blacksquare \exists y) (((x,y) \in \rho) \land ((y,z) \in \sigma \circ \tau)) \Rightarrow \blacksquare$$

$$\Rightarrow (\exists y) (\exists t) (((x,y) \in \rho) \land (((y,t) \in \sigma) \land ((t,z) \in \tau))) \Rightarrow \blacksquare$$

$$\Rightarrow (\exists y) (\exists t) ((((x,y) \in \rho) \land ((y,t) \in \sigma)) \land ((t,z) \in \tau)) \Rightarrow \blacksquare$$

$$\Rightarrow (\exists t) (((x,t) \in \rho \circ \sigma) \land ((t,z) \in \tau)) \Rightarrow \blacksquare$$

$$\Rightarrow (x,z) \in (\rho \circ \sigma) \circ \tau.$$

Второе включение.

$$\begin{split} (x,z) \in &(\rho \circ \sigma) \circ \tau \Rightarrow \blacksquare \exists t) (((x,t) \in \rho \circ \sigma) \land ((t,z) \in \tau)) \Rightarrow \blacksquare \\ \Rightarrow &(\exists y) (\exists t) ((((x,y) \in \rho) \land ((y,t) \in \sigma)) \land ((t,z) \in \tau)) \Rightarrow \blacksquare \\ \Rightarrow &(\exists y) (\exists t) (((x,y) \in \rho) \land (((y,t) \in \sigma) \land ((t,z) \in \tau))) \Rightarrow \blacksquare \\ \Rightarrow &(\exists y) (((x,y) \in \rho) \land ((y,z) \in \sigma \circ \tau)) \Rightarrow \blacksquare \\ \Rightarrow &(x,z) \in \rho \circ (\sigma \circ \tau). \end{split}$$

rst • Prev • Next • Last • Go Back • Full Screen • Close • Quit

2) Обратное соответствие

Соответствие, обратное соответствию $\rho \subseteq A_1 \times A_2$, есть соответствие из A_2 в A_1 , обозначаемое ρ^{-1} и равное по определению

$$\rho^{-1} = \{ (y, x) \, | \, (x, y) \in \rho \}.$$

Для соответствия $\rho = \{(3,1), (4,1), (4,2)\}$

$$\rho^{-1} = \{(1,3), (1,4), (2,4)\}.$$

Обратное соответствие обладает следующими свойствами:

(6)
$$(\rho^{-1})^{-1} = \rho$$

(7)
$$(\rho \circ \sigma)^{-1} = \sigma^{-1} \circ \rho^{-1}$$

Для фиксированного $y \in A_2$ положим $\rho^{-1}(y) = \{x \mid y \in \rho(x)\}$.

Задачи

3.1. Найти $\mathcal{D}(\rho)$, $\mathcal{R}(\rho)$, ρ^{-1} , $\rho \circ \rho$, $\rho^{-1} \circ \rho$, $\rho \circ \rho^{-1}$ для отношения:

$$\rho = \{(x, y) \mid x, y \in [0, 1], \ 2x \ge 3y\}.$$

- **3.2.** Доказать, что для любых бинарных отношений ρ_1 , ρ_2 , $\rho_3 \in A \times A$:
- (a) $\rho_1 \cap \rho_1 = \rho_1 \cup \rho_1 = \rho_1$;
- (6) $\rho_1 \circ (\rho_2 \circ \rho_3) = (\rho_1 \circ \rho_2) \circ \rho_3$;
- (B) $\rho_1 \circ id_A = id_A \circ \rho_1 = \rho_1$.

Домашнее задание

- **3.1.** Найти $\mathcal{D}(\rho)$, $\mathcal{R}(\rho)$, ρ^{-1} , $\rho \circ \rho$, $\rho^{-1} \circ \rho$, $\rho \circ \rho^{-1}$ для отношений:
- (a) $\rho = \{(x, y) \mid x, y \in \mathbb{N}, x = 0 \text{ (mod y)}\};$
- (6) $\rho = \{(x, y) \mid x, y \in [0, 1], x + y \le 1\}.$
- **3.2.** Доказать, что для любого бинарного отношения $\rho \subseteq A \times A$:
- (a) $\mathcal{D}(\rho^{-1}) = \mathcal{R}(\rho)$;
- (6) $\mathcal{R}(\rho^{-1}) = \mathcal{D}(\rho)$;
- (B) $\mathcal{D}(\rho_1 \circ \rho_2) = \rho_1^{-1}(\mathcal{R}(\rho_1) \cap \mathcal{D}(\rho_2));$
- (Γ) $\mathcal{R}(\rho_1 \circ \rho_2) = \rho_2(\mathcal{R}(\rho_1) \cap \mathcal{D}(\rho_2))$
- (д) $(\overline{\rho})^{-1} = \overline{(\rho^{-1})}$.
- **3.3.** Доказать, что для любых бинарных отношений ρ_1 , $\rho_2 \in A \times A$:
- (a) $(\rho_1 \cap \rho_2)^{-1} = \rho_1^{-1} \cap \rho_2^{-1}$;
- (6) $(\rho_1 \cup \rho_2)^{-1} = \rho_1^{-1} \cup \rho_2^{-1}$;
- (B) $(\rho_1 \circ \rho_2)^{-1} = \rho_2^{-1} \circ \rho_1^{-1}$.