Lecture 16: PGM Representation

PGM

- Mariage of graph theory and probability theory
- Tool of choice for Bayesian statistical learning

Bayesian statistical learning v.s. PGM (aka. "Bayes Nets")

- Bayesian Statistical learning
 - \circ Model joint distribution of X's, Y, and parameters r.v.'s
 - o Priors: marginals on parameters
 - o Training:
 - update prior to posterior using observed data
 - Prediction:
 - output posterior, or some function of it (MAP)
- PGM ("Bayes Nets")
 - Efficient joint representation
 - Independence made explicit
 - Trade-off between expressiveness and need for data, easy to make
 - Easy for Practitioners to model
 - o Algorithms to fit parameters, compute marginals, posterior

Joint distribution

- ullet All joint distributions on discrete r.v.'s can be represented as table
 - Table assign probability per row
- We can make probabilistic inference from joint on r.v.'s
 - \circ Compute any other distributions involving our r.v.'s
 - o Bayes rule + marginalisation
 - Example: Naive Bayes
- Bad: Computational complexity
 - \circ Tables have exponential number of rows in number of r.v.'s
 - Therefore -> poor space & time to marginalise
- Ugly: Model complexity
 - Way too flexible
 - Way too many parameters to fit
 - Need lots of data OR will overfit

Independence

- If assume S, T independent, model need 6 params
 - $\circ \ P(S,T)$ factors to P(S), P(T) -> 2 params
 - $\circ P(L|T,S)$ modelled in full -> 4 params
- For assumption-free model, need 7 params
 - P(L,T,S) modelled in full -> $2^3 1 = 7$ params
- Independence assumptions

- Can be reasonable in light of domain expertise
- Allow us to **factor** -> Key to tractable models

Factoring Joint Distributions

• Chain Rule: For **any ordering** of r.v.'s can always factor:

$$\circ \ P(X_1, X_2, ..., X_k) = \prod_{i=1}^k P(X_i | X_{i+1}, ..., X_k)$$

- Model's independence assumptions correspond to:
 - \circ Dropping conditioning r.v.'s in the factors
 - $\circ~$ E.g. Unconditional independence: $P(X_1|X_2)=P(X_1)$
 - $\circ \;\;$ E.g. Conditional independence: $P(X_1|X_2,X_3)=P(X_1|X_2)$
 - lacksquare Given X_2 , X_1 and X_3 independent
- Simpler factors: speed up inference and avoid overfitting

Directed PGM

- Nodes -> Random variables
- Edges -> Conditional independence
 - \circ Node table: P(child|parents)
 - o Child directly depends on parents
- Joint factorisation

$$\circ \ P(X_1,...,X_k) = \prod_{i=1}^k P(X_i|X_j \in parents(X_i))$$

Plate notation

- Short-hand for repeats
- Simplifying growing complicated PGM

PGM: frequentist v.s. Bayesian

- PGM -> joints
- Bayesian add: node per param

Undirected PGMs

- Parameterised by arbitrary positive valued functions of the variables and global normalisation
 - o Aka. Markov Random Field
- Undirected v.s. Directed PGM
 - Undirected:
 - Graph with undirected edges
 - Probability:
 - Each node a r.v.
 - Each clique C has "factor":
 - ullet $\psi_C(X_j:j\in C)\geq 0$
 - Joint

 product of factors
 - Directed:
 - Graph with directed edges
 - Probability:
 - Each node a r.v.
 - Each node has conditional probability:
 - $lacksquare p(X_i|X_j \in parents(X_i))$
 - Joint = product of conditional probabilities
 - Key difference = normalisation
 - ullet \propto in undirected PGM

Undirected PGM formulation

- · Based on notion of:
 - Clique: a set of fully connected nodes
 - Maximal clique: largest cliques in graph
- Joint probability defined as:
 - o (Product of all the cliques)
 - $P(a,b,c,d,e,f) = \frac{1}{Z}\psi_1(a,b)\psi_2(b,c)\psi_3(a,d)\psi_4(d,c,f)\psi_5(d,e)$
 - \circ where ψ is a **positive function**
 - \circ and Z is the **normalising** "partition" function
 - $lacksquare Z = \sum_{a,b,c,d,e,f} \psi_1(a,b) \psi_2(b,c) \psi_3(a,d) \psi_4(d,c,f) \psi_5(d,e)$

Undirected PGM formulation

- Based on notion of (edges are 2-cliques)
 - * Clique: a set of fully connected nodes (e.g., A-D, C-D, <u>C-D-F</u>)
 - Maximal clique: largest cliques in graph (not C-D, due to C-D-F)
- · Joint probability defined as

$$P(a,b,c,d,e,f) = \frac{1}{Z} \underbrace{\psi_1(a,b)\psi_2(b,c)\psi_3(a,d)\psi_4(d,c,f)\psi_5(d,e)}_{\text{factions}}$$

 where ψ is a positive function and Z is the normalising (partition' function)

$$Z = \sum_{a,b,c,d,e,f} \psi_1(a,b)\psi_2(b,c)\psi_3(a,d)\psi_4(d,c,f)\psi_5(d,e)$$

Directed to undirected

- Directed PGM formulated as:
 - $\circ \ P(X_1,...,X_k) = \prod_{i=1}^k P(X_i|X_{\pi_i})$
 - \circ where π indexes parents
- Equivalent to U-PGM with
 - \circ each **conditional probability** term is **included** in one factor function, ψ_c :
 - clique structure links groups of variables
 - normalisation term trivial, Z = 1
- Turning D-PGM to U-PGM:

Why U-PGM

- Pros:
 - Generalisation of D-PGM
 - Simpler means of modelling without the need for per-factor normalisation
 - o General inference algorithms use U-PGM representation
 - (Support both types of PGM)
- Cons:
 - o (Slightly) weaker independence
 - o Calculating global normalisation term (Z) intractable in general

PGM examples

- Hidden Markov Model (HMM)
 - Directed
 - Sequential observed outputs from hidden states
 - o States: ejections & transitions
 - o 2 assumptions:
 - Markov assumption
 - Output independence assumption
 - Applications:
 - NLP
 - Speech recognition
 - Biological sequences
 - Computer vision
 - Fundamental tasks (corresponding):
 - HMM:
 - Evaluation: determine likelihood $P(O|\mu)$
 - *O*: observation sequence
 - μ: HMM
 - Decoding: determine most probable hidden state Q
 - Learning: learn parameters A, B, Π
 - PGM:

- Probabilistic inference
- MAP point estimate
- Statistical inference
- Kalman filter
 - \circ Same with continuous Gaussian r.v.'s
- Conditional Random Field (CRF)
 - Undirected
 - Same model applied to sequences
 - Observed outputs are words, speech, etc.
 - States are tags: part-of-speech, alignment, etc.
 - \circ Discriminative: model P(Q|O)
 - v.s. HMM's which are generative P(Q, O)
 - undirected PGM more general and expressive

Lecture 17: PGM Probabilistic and Statistical Inference

Probabilistic inference on PGMs

- Computing marginal and conditional distributions from the joint of a PGM
 - Using Bayes rule and marginalisation
- Joint + Bayes rule + marginalisation -> anything!
- Example:

$$\circ \ P(HT|AS=t) = \frac{P(HT,AS=t)}{P(AS=t)} = \frac{\Sigma_{FG,HG,FA}P(AS=t,FA,HG,FG,HT)}{\Sigma_{FG,HG,FA,HT'}P(AS=t,FA,HG,FG,HT')}$$

- $\circ \hspace{0.2cm} HT'$ means All values of HT
- \circ Numerator: $\Sigma_{FG,HG,FA}P(HT)P(HG|HT,FG)P(FG)P(AS=t|FA,HG)P(FA)$
 - \blacksquare Can distribute the sums as far down as possible: $P(HT)\Sigma_{FG}P(FG)\Sigma_{H}GP(HG|HT,FG)\Sigma_{F}AP(FA)P(AS=t|FA,HG)$

Elimination algorithm

Statistical inference on PGMs

- Learning (tables / params) from data
 - Fitting probability tables to observations
 - E.g. as a frequentist; a Bayesian would just use probabilistic inference to updat prior to posterior
- Probabilistic inference
 - Computing other distributions from joint
 - Elimination, sampling algorithms
- · Statistical inference
 - Learn parameters from data
- 1. Fully-observed case (easy)
 - MLE -> maximise full joint (likelihood)

$$lacksquare rg \max_{ heta \in \Theta} \prod_{i=1}^n \prod_j p(X^j = x_i^j | X^{parents(j)} = x_i^{parents(j)})$$

- Decomposes easily, leads to counts-based estimates
 - Maximise log-likelihood instead; become sum of logs
 - Big maximisation of all params together, decouples into small independent problems

- Example:
 - Training a naive bayes classifier
 - (Counting -> probabilities)
- 2. Presense of **unobserved** variables
 - Latent, or unobserved variables
 - o MLE:
 - Maximise likelihood of observed data only
 - Marginalise full joint to get desired "partial" joint
 - This won't decouple
 - Solution: Use **EM algorithm**!