Chương 9. ĐỔI CHIỀU DÒNG ĐIỆN TRONG M.Đ.1.C

9.1 Dai cương

Đổi chiều là toàn bộ các hiện tượng xảy ra của dòng điện trong phần tử dây quấn phần ứng, khi nó dịch chuyển từ vị trí bị chổi than nối ngắn mạch qua ranh giới tiếp theo. Xét 1 dây quấn xếp đơn giản, hình 5.1

Khi t = 0, Chổi than phủ hoàn toàn lên phiến 1. Lúc đó nếu dòng điện chạy trong phần tử b là $(+i_u)$, thì tại thời điểm $t = T_{dc}$ Chổi than rời khỏi phiến 1 và phủ hoàn toàn lên phiến 2, lúc này phần tử (b) đã chuyển sang một nhánh khác và dòng điện trong nó đổi chiều $(-i_u)$.

Vị trí trung gian khi 0 < t $< T_{dc}$ phần tử (b) bị nối ngắn mạch, dòng điện chạy trong phần tử (b) lúc này biến thiên theo những quy luật rất phức

Hình 5.1 Quá trình đổi chiều trong dây quấn

tạp, phụ thuộc vào quá trình quá độ trong phần tử (b) và các phần tử cùng đổi chiều ở các nhánh khác.

Thường $T_{dc} < 0.001$ (s) nên $f_{dc} = 1000 - 3000$ (Hz).

5.2 Quá trình đổi chiều.

Viết phương trình định luật K1 và K2 cho nút (1), (2) và mạch vòng của phần tử (b) ta có:

$$i_u + i - i_1 = 0 5.1$$

$$i_{u} - i - i_{2} = 0 5.2$$

$$r_{pr}.i + (r_d + r_{tx}).i_1 - (r_d + r_{tx}).i_2 = \sum e$$
5.3

Trong đó:

i là dòng điện chạy trong phần tử (b) bị nối ngắn mạch;

 i_1 và i_2 là dòng điện chạy trong dây nối với phiến đổi chiều 1 và 2;

 r_{pt} là điện trở của phần tử dây quấn;

 r_d là điện trở dây nối;

 r_{tx1} và r_{tx2} là điện trở tiếp xúc giữa chổi than với phiến 1 và 2;

 Σe là tổng các s.đ.đ cảm ứng được trong phần tử đổi chiều (b), nó gồm:

- a) S.đ.đ tự cảm e_L , do sự biến thiên của dòng điện trong phần tử đổi chiều sinh ra.
- b) S.đ.đ hổ cảm e_M , do các dòng điện đổi chiều trong các phần tử khác hổ cảm qua.
- c) S.đ.đ đổi chiều e_{dc} , do phần tử đổi chiều chuyển động trong vùng trung tính hình học có $B \neq 0$.

$$V_{ay}^{2} \sum e = e_{L} + e_{M} + e_{dc} = e_{pk} + e_{dc}.$$
 5.4

Giải 3 phương trình trên, khi bỏ qua r_{pt} và r_d (vì chúng rất bé), ta được:

$$i = \frac{r_{tx2} - r_{tx1}}{r_{tx1} + r_{tx2}}.i_u + \frac{\sum e}{r_{tx1} + r_{tx2}}$$
5.5

Giả thiết r_{txl} và r_{tx2} tỷ lệ nghịch với bề mặt tiếp xúc S_{txl} và S_{tx2} giữa chổi than và phiến góp 1 và 2. Nếu coi quá trình đổi chiều từ t = 0 đến $t = T_{dc}$, nghĩa là $b_c = b_G$ thì:

$$S_{txI} = \frac{T_{dc} - t}{T_{dc}} S \qquad \text{và} \qquad S_{tx2} = \frac{t}{T_{dc}} S \qquad 5.6$$

Trong đó: S là mặt tiếp xúc toàn phần giữa chổi than và phiến đổi chiều, thì r_{tx} là điện trở tiếp xúc toàn phần. Từ đây ta có:

$$r_{tx1} = \frac{S}{S_{tx1}} r_{tx} = \frac{T_{dc}}{T_{dc} - t} r_{tx} \qquad r_{tx2} = \frac{S}{S_{tx2}} r_{tx} = \frac{T_{dc}}{t} r_{tx}$$
 5.7

Thay các giá trị trên vào (4) ta có:

$$i = (1 - \frac{2t}{T_{dc}}).i_u + \frac{\sum e}{r_n} \qquad \text{v\'oi} \qquad r_n = r_{tx}.\frac{T_{dc}^2}{t(T_{dc} - t)}$$

$$5.8$$

1. Đổi chiều đường thẳng.

Nếu
$$\Sigma e = 0$$
 ta có $i = (1 - \frac{2t}{T_{dc}}).i_u$

Quan hệ giữa i = f(t) là đường thẳng, trên hình vẻ ta có mật độ dòng điện:

Phía ra
$$j_1 = \frac{i_1}{S_{txl}} = \frac{T_{dc}}{S} \cdot \frac{i_1}{T_{dc} - t} = \frac{T_{dc}}{S} \cdot tg\alpha_1$$

Phía vào
$$j_2 = \frac{i_2}{S_{tr2}} = \frac{T_{dc}}{S} \cdot \frac{i_2}{t} = \frac{T_{dc}}{S} . tg\alpha_2$$

Vì $\alpha_1 = \alpha_2$ nên $j_1 = j_2$ nghĩa là mật độ dòng điện ở phía phiến góp đi ra bằng phía phiến góp đi vào, điều này rất thuận lợi cho quá trình đổi chiều.

2. Đổi chiều đường cong.

Thực tế $\sum e \neq 0$, nên ngoài dòng điện ở trên còn có dòng điện phụ:

$$i_f = \frac{\sum e}{r_n} \neq 0$$
 5.9

Đường biểu diễn r_n và i_f như hình 5.3.

a) Đổi chiều trì hoãn ($\sum e > 0$)

Lúc này $i = i_{cb} + i_f$ và dòng điện đổi chiều đi qua giá trị zéro chậm hơn đổi chiều đường thẳng $(a \rightarrow a')$, hình

Hình 5.2 Đổi chiều đường

Hình 5.3 Dòng

5.4. Khi đổi chiều trì hoãn $\alpha_1 > \alpha_2$ nên $j_1 > j_2$ tia lửa xuất hiện ở phía chổi than đi ra. Điều này giống như tia lửa khi ta mở cầu dao có tải.

b) Đổi chiều vượt trước $(\sum e < 0)$

Lúc này $i = i_{cb}$ - i_f và dòng điện đổi chiều đi qua giá trị zéro sớm hơn đổi chiều đường thẳng $(a \rightarrow a'')$, hình 5.5. Khi đổi chiều vượt trước $\alpha_1 < \alpha_2$ nên $j_1 < j_2$ tia lửa xuất hiện ở phía chổi than đi vào. Điều này giống như tia lửa khi ta đóng cầu dao có tải.

9.3 Nguyên nhân sinh tia lửa và biện pháp khắc phục.

1. Nguyên nhân.

- a) Nguyên nhân về cơ
- Vành góp không đồng tâm với trục
- Sự cân bằng phần quay không tốt gây dao động hướng kính
- Cổ góp không tròn, lực ép chổi than không đủ.
 - b) Nguyên nhân về điện
- Sức điện động đổi chiều không triệt tiêu được s.đ.đ phản khánh $\sum e \neq 0$

Hình 5.4 Đổi chiều trì hoãn Hình 5.5 Đổi chiều

- Sự phân bố không đều của mật độ dòng điện trên bề mặt tiếp xúc
 - Tác dụng nhiệt, hóa...

2. Biện pháp khắc phục.

- a) Giải quyết các tồn tại cơ khí
- a) Bố trí cực từ phụ.

Sức từ động của cực từ phụ F_f ngoài việc phải cân bằng được F_{uq} còn phải tạo nên được e_{dc} đủ lớn làm triệt tiêu e_{pk} .

c) Xê dịch chổi than khỏi đường trung tính hình học

Hình 5.6 Xê dịch chổi than để

Những máy nhỏ không bố trí cực từ phụ, để cải thiện đổi chiều ta có thể xê dịch chổi than khỏi đường trung tính hình học.

Trường hợp máy phát ta xê dịch chổi than theo chiều quay một góc $\beta = \alpha + \gamma$

Trong đó: ứng với góc α là đường trung tính vật lý, thêm một góc γ để tạo nên s.đ.đ đổi chiều đủ triệt tiêu s.đ.đ phản kháng e_{pk} . Hình 5.6

d) Dây quấn bù.

Tạo nên từ trường làm triệt tiêu từ trường phần ứng dưới bề mặt cực từ nhờ vậy mà từ trường khe hở sẽ phân bố đều đặn, thuận lợi cho quá trình đổi chiều.