Государственная итоговая аттестация по образовательным программам основного общего образования в форме основного государственного экзамена (ОГЭ)

Демонстрационный вариант

контрольных измерительных материалов основного государственного экзамена 2024 года по ФИЗИКЕ

подготовлен федеральным государственным бюджетным научным учреждением «ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Демонстрационный вариант ОГЭ 2024 г.

Основной государственный экзамен по ФИЗИКЕ

ФИЗИКА, 9 класс. 2/32

Пояснения к демонстрационному варианту контрольных измерительных материалов основного государственного экзамена 2024 года по ФИЗИКЕ

При ознакомлении с демонстрационным вариантом 2024 г. следует иметь в виду, что задания, включённые в демонстрационный вариант, не отражают всех элементов содержания, которые будут проверяться с помощью вариантов КИМ в 2024 г. Полный перечень элементов содержания, которые могут контролироваться на экзамене 2024 г., приведён в кодификаторе проверяемых требований к результатам освоения основной образовательной программы основного общего образования и элементов содержания для проведения основного государственного экзамена по физике, размещённом на сайте: www.fipi.ru.

В демонстрационном варианте представлены конкретные примеры заданий, не исчерпывающие всего многообразия возможных формулировок заданий на каждой позиции варианта экзаменационной работы.

Все задания, используемые для составления экзаменационных вариантов, размещены в открытом банке заданий ОГЭ на сайте fipi.ru.

Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику экзамена и широкой общественности составить представление о структуре будущей экзаменационной работы, количестве и форме заданий, об уровне их сложности. Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, позволят составить представление о требованиях к полноте и правильности записи развёрнутого ответа.

Эти сведения дают будущим участникам экзамена возможность выработать стратегию подготовки к сдаче экзамена по физике в 2024 г.

Демонстрационный вариант контрольных измерительных материалов основного государственного экзамена 2024 года по ФИЗИКЕ

ФИЗИКА, 9 класс. 3 / 32

Инструкция по выполнению работы

На выполнение экзаменационной работы по физике отводится 3 часа (180 минут). Экзаменационная работа включает в себя 25 заданий.

Ответы к заданиям 1, 2, 4, 11-14, 16, 18 и 19 записываются в виде последовательности цифр. Ответом к заданиям 3 и 15 является одна цифра, которая соответствует номеру правильного ответа. Ответы к заданиям 5-10 записываются в виде целого числа или конечной десятичной дроби с учётом указанных в ответе единиц. Ответ запишите в поле ответа в тексте работы, а затем перенесите в бланк ответов № 1. Единицы измерения в ответе указывать не надо.

К заданиям 17, 20-25 следует дать развёрнутый ответ. Задания выполняются на бланке ответов № 2. Запишите сначала номер задания, а затем ответ на него. Ответы записывайте чётко и разборчиво. Задание 17 экспериментальное, и для его выполнения необходимо воспользоваться лабораторным оборудованием.

вычислениях разрешается При использовать линейку и непрограммируемый калькулятор.

Все бланки заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов № 1 и № 2 был записан под правильным номером.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки		
Наименование	Обозначение	Множитель
гига	Γ	109
мега	M	106
кило	К	10^{3}
гекто	Γ	102
санти	С	10-2
милли	M	10^{-3}
микро	МК	10 ⁻⁶
нано	Н	10 ⁻⁹

Константы	
ускорение свободного падения на Земле	$g = 10 \frac{M}{c^2}$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \frac{\text{H} \cdot \text{m}^2}{\text{K}^2}$
скорость света в вакууме	$c = 3 \cdot 10^8 \frac{\mathrm{M}}{\mathrm{c}}$
элементарный электрический заряд	$e = 1,6 \cdot 10^{-19} $ Кл

Плотность				
бензин	$710 \frac{\kappa \Gamma}{M^3}$	древесина (сосна)	$400 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	
спирт	$800\frac{\kappa\Gamma}{M^3}$	парафин	$900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	
керосин	$800 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	лёд	$900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	
масло машинное	$900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	алюминий	$2700 \frac{\kappa \Gamma}{M^3}$	
вода	$1000 \frac{\kappa \Gamma}{M^3}$	мрамор	$2700 \frac{\kappa \Gamma}{M^3}$	
молоко цельное	$1030 \frac{\kappa \Gamma}{M^3}$	цинк	$7100 \frac{\mathrm{K}\Gamma}{\mathrm{m}^3}$	
вода морская	$1030 \frac{\kappa \Gamma}{M^3}$	сталь, железо	$7800 \frac{\mathrm{K}\Gamma}{\mathrm{m}^3}$	
глицерин	$1260 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	медь	$8900 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	
ртуть	$13 600 \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	свинец	$11\ 350\ \frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$	

Удельная 2,3⋅10⁶ Дж теплота теплоёмкость воды кг·°С парообразования воды теплота 9,0⋅10⁵ Дж теплоёмкость парообразования спирта спирта 2100 Дж 2,5·10⁴ Дж теплота теплоёмкость льда плавления свинца Дж теплоёмкость 7,8·10⁴ Дж теплота плавления кг·° С алюминия стали 500 Дж 5,9·10⁴ Дж теплота плавления теплоёмкость стали кг·°С олова ΚГ 400 _Дж теплота плавления льда $3.3 \cdot 10^5 \frac{Дж}{}$ теплоёмкость цинка $\kappa \Gamma \cdot {}^{\circ} C$ 400 _Дж 2,9·10⁷ <u>Дж</u> теплота сгорания теплоёмкость мели спирта 230 Дж теплота сгорания 4,6·10⁷ <u>Дж</u> теплоёмкость олова кг·°С керосина 130 —Дж теплота сгорания теплоёмкость 4,6·10⁷ Дж бензина кг·°С свинпа 420 Дж теплоёмкость бронзы

ФИЗИКА, 9 класс. 5 / 32

Температур	а плавления	Температура кипен атмосферно	ия при нормальном м давлении
свинца	327 °C	воды	100 °C
олова	232 °C	спирта	78 °C
льда	0 °C		

Удельно	е электрическое со	противление, $\frac{O_{M} \cdot M}{M}$	<u>им²</u> (при 20 °C)
серебро	0,016	никелин	0,4
медь	0,017	нихром (сплав)	1,1
алюминий	0,028	фехраль	1,2
железо	0,10		

Нормальные условия: давление 10⁵ Па, температура 0 °C

Ответом к заданиям 1, 2, 4, 11–14, 16, 18 и 19 является последовательность цифр. Последовательность цифр записывайте без пробелов, запятых и других дополнительных символов. Ответом к заданиям 3 и 15 является одна цифра, которая соответствует номеру правильного ответа. Ответом к заданиям 5-10 является число. Единицы измерения в ответе указывать не надо. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Ответы на задания 17, 20–25 запишите на БЛАНКЕ ОТВЕТОВ № 2.

Установите соответствие между физическими понятиями и примерами. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ

- А) физическая величина
- Б) единица физической величины
- В) прибор для измерения физической величины

ПРИМЕРЫ

- 1) барометр
- 2) гектопаскаль
- 3) невесомость
- 4) удельная теплота плавления
- 5) хаотичность движения молекул

A	Б	В

2

Сплошной кубик, имеющий плотность ρ_{κ} и длину ребра a, опустили в цилиндрический сосуд с жидкостью, плотность которой равна ρ_{κ} (см. рисунок).

Установите соответствие между формулами и физическими величинами. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФОРМУЛЫ

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

A) $ρ_{x}gh_{1}a^{2}$ B) $ρ_{x}a^{3}$

- 1) сила тяжести, действующая на кубик
- 2) масса кубика
- 3) сила давления жидкости на нижнюю грань кубика
- 4) сила давления жидкости на верхнюю грань кубика

Ответ:

Α	Б

- Балалайку настроили в тёплом помещении, а затем вынесли на улицу в морозный день. Звучание балалайки изменилось. Благодаря какому явлению наблюдалось изменение звучания?
 - 1) малая сжимаемость твёрдых тел
 - 2) тепловое расширение/сжатие твёрдых тел
 - 3) тепловое равновесие твёрдых тел
 - 4) передача давления твёрдыми телами

Ответ:

4 Прочитайте текст и вставьте на места пропусков слова (словосочетания) из приведённого списка.

Одно из колен U-образного манометра соединили с сосудом, наполненным газом (см. рисунок). В качестве жидкости в манометре используется ртуть.

U-образный	манометр	позволяет	измерить	(A)	
В показанном	эксперимент	е давление	газа в сосуде	(Б)	
атмосферного	давления на	(B)	. Пр	и замене в	манометре
ртути на вод	цу разность	в уровнях	жидкости в	трубках	манометра
(Γ)					

Список слов и словосочетаний:

- 1) давление газа в сосуде
- 2) разность давления газа и атмосферного давления
- 3) меньше
- 4) больше
- 5) 400 мм рт. ст.
- 6) 40 мм рт. ст.
- 7) увеличится
- 8) уменьшится

Запишите в таблицу выбранные цифры под соответствующими буквами.

A	Б	В	Γ

Радиус окружности, по которой движется тело, увеличили в 4 раза, линейную скорость тела увеличили в $\sqrt{2}$ раза. Во сколько раз уменьшилось центростремительное ускорение тела?

Ответ: в _______ раз(а).

6 На рисунке показан профиль волны.

Какова длина волны?

Ответ: _____ см.

7 Стальная деталь при охлаждении на 200 °C отдаёт количество теплоты, равное 1 МДж. Чему равна её масса?

Ответ: _____ кг.

8 По проводнику течёт постоянный электрический ток. На графике изображена зависимость величины заряда q, проходящего через поперечное сечение проводника, от времени t.

Чему равна сила электрического тока в проводнике?

Ответ: ______ А.

© 2024 Федеральная служба по надзору в сфере образования и науки

9 На рисунке изображён ход луча, падающего на тонкую линзу с фокусным расстоянием F.

Какая из линий -1, 2, 3 или 4 — соответствует ходу прошедшего через линзу луча?

Ответ:

10 Сколько α-частиц возникнет в реакции ${}_{1}^{1}p + {}_{3}^{7}\text{Li} = \boxed{?}_{2}^{4}\text{He}$?

Математический маятник совершает незатухающие гармонические колебания (см. рисунок). Как изменяются полная механическая энергия и потенциальная энергия маятника при переходе из точки А в точку Б?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Полная механическая	Потенциальная энергия
энергия маятника	маятника

В процессе трения о шёлк стеклянная палочка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на палочке и шёлке при условии, что обмен атомами во время трения не происходил? Для каждой величины определите соответствующий характер изменения:

- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Количество электронов	Количество электронов
на шёлке	на палочке

13

На рисунке приведены графики зависимости проекции скоростей движения v_x от времени t для двух тел, движущихся вдоль оси Ox.

Из приведённых ниже утверждений выберите $\partial \epsilon a$ правильных и запишите их номера.

- 1) Оба тела движутся с отличным от нуля постоянным ускорением.
- 2) В момент времени t_1 скорость тел одинакова.

Демонстрационный вариант ОГЭ 2024 г.

- 3) К моменту времени t_1 тела прошли одинаковые пути.
- 4) В момент времени t_2 тело 2 меняет направление движения на противоположное.
- 5) Проекция a_x ускорения тела 2 положительна.

14

В справочнике физических свойств различных материалов представлена следующая таблица.

Вещество	Плотность в твёрдом состоянии, $\frac{\Gamma}{\text{см}^3}$	Удельное электрическое сопротивление (при 20 °C), $\frac{O \cdot \text{M} \cdot \text{M}^2}{\text{M}}$
Железо	7,8	0,1
Константан (сплав)	8,8	0,5
Латунь	8,4	0,07
Никелин (сплав)	8,8	0,4
Нихром (сплав)	8,4	1,1
Серебро	10,5	0,016

Используя данные таблицы, выберите из предложенного перечня ∂sa верных утверждения. Укажите их номера.

- 1) При равных размерах самым лёгким является проводник из серебра.
- 2) При равных размерах самое маленькое электрическое сопротивление имеет проводник из серебра.
- 3) Проводники из латуни и нихрома одинакового размера имеют одинаковую массу, но разное электрическое сопротивление.
- 4) Чтобы при равной длине проводник из железа имел одинаковое электрическое сопротивление с проводником из никелина, он должен иметь в 4 раза большую площадь поперечного сечения.
- 5) При равной площади поперечного сечения проводник из константана длиной 5 м имеет такое же электрическое сопротивление, как и проводник из никелина длиной 4 м.

3апишите результат измерения электрического напряжения (см. рисунок), учитывая, что погрешность измерения равна цене деления вольтметра.

- 1) $(2,4 \pm 0,2)$ B
- 2) $(2,4 \pm 0,1)$ B
- 3) (4.4 ± 0.1) B
- 4) (4.8 ± 0.2) B

16 D arrangement markets arranged arranged arranged

В стеклянную трубку, нижнее отверстие которой закрыто тонкой резиновой плёнкой, по очереди наливают разные объёмы воды (см. рисунок). В результате резиновое дно прогибается.

Выберите из предложенного перечня **два** утверждения, которые соответствуют результатам проведённых экспериментальных наблюдений. Укажите их номера.

- 1) Жидкость оказывает давление на дно сосуда.
- 2) Давление на дно сосуда, создаваемое жидкостью, зависит от вида жидкости.
- Давление на дно сосуда, создаваемое жидкостью, не зависит от формы сосуда.
- 4) Давление на дно сосуда, создаваемое жидкостью, зависит от высоты столба жидкости.
- 5) Давление внутри жидкости на одном и том же уровне одинаково по всем направлениям.

Ответ:	

Для ответа на задание 17 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания, а затем ответ к нему.

Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода и резистор, обозначенный R2, соберите экспериментальную установку для определения работы электрического тока на резисторе R2. При помощи реостата установите в цепи силу тока 0,5 А. Определите работу электрического тока за 8 мин. Абсолютная погрешность измерения силы тока равна $\pm 0,02$ А, абсолютная погрешность измерения напряжения равна $\pm 0,2$ В.

В бланке ответов № 2:

Демонстрационный вариант ОГЭ 2024 г.

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта работы электрического тока;
- 3) укажите результаты измерения напряжения и силы тока с учётом абсолютных погрешностей измерений;
- 4) запишите значение работы электрического тока.
- 8 Установите соответствие между техническими устройствами и физическими закономерностями, лежащими в основе принципа их действия. К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под

ТЕХНИЧЕСКИЕ УСТРОЙСТВА

- А) U-образный манометр
- Б) пружинный динамометр

соответствующими буквами.

ФИЗИЧЕСКИЕ ЗАКОНОМЕРНОСТИ

- 1) зависимость гидростатического давления от высоты столба жилкости
- 2) условие равновесия рычага
- 3) зависимость силы упругости от степени деформации тела
- 4) изменение атмосферного давления при подъёме в горы

	A	Б
Ответ:		

Прочитайте текст и выполните задания 19 и 20.

Опыты Птолемея по преломлению света

Оптика — одна из древнейших наук, тесно связанная с потребностями практики на всех этапах своего развития. Прямолинейность распространения света была известна народам Месопотамии за 5 тыс. лет до н.э. и использовалась в Древнем Египте при строительных работах.

Два закона геометрической оптики — закон прямолинейного распространения света и закон отражения света — были описаны знаменитым греческим учёным Евклидом, жившим в III в. до н.э. С помощью этих законов Евклид объяснил целый ряд наблюдаемых явлений, и в частности, явлений отражения света от плоских и даже сферических зеркал. Ученые древности имели также представление о преломлении света и даже пытались установить закон преломления.

Греческий астроном Клавдий Птолемей (около 130 г. н.э.) — автор замечательной книги, которая в течение почти 15 столетий служила основным учебником по астрономии, — создал ещё книгу «Оптика», в которой описал, в частности, явление преломления света. С явлением преломления света Птолемей столкнулся, наблюдая звёзды. Он заметил, что луч света, переходя из одной среды в другую, «ломается». Поэтому звёздный луч, проходя через земную атмосферу, доходит до поверхности Земли не по прямой, а по кривой линии, то есть наблюдается рефракция. Искривление хода луча происходит из-за того, что плотность воздуха меняется с высотой.

Чтобы изучить закон преломления, Птолемей провёл следующий эксперимент. Он взял круг и укрепил на его оси линейки l_1 и l_2 так, чтобы они могли свободно вращаться вокруг неё (см. рисунок).

Птолемей погружал этот круг в воду до диаметра AB и, поворачивая нижнюю линейку, добивался того, чтобы линейки лежали для глаза на одной прямой (если смотреть вдоль верхней линейки). После этого он вынимал круг из воды и сравнивал углы падения α и преломления β . Он измерял углы с точностью до 0.5° . Числа, полученные Птолемеем, представлены в таблице.

№ опыта	1	2	3	4	5	6	7	8
Угол падения α, град.	10	20	30	40	50	60	70	80
Угол преломления в, град.	8	15,5	22,5	28	35	40,5	45	50

Эксперимент Птолемея был поставлен правильно, учёный получил достаточно хорошие численные значения для углов падения и преломления, однако закона он установить не сумел.

- Выберите *два* верных утверждения, которые соответствуют содержанию текста. Запишите в ответ их номера.
 - 1) Согласно опытам Птолемея с увеличением угла падения линейно увеличивается угол преломления.
 - 2) Все законы геометрической оптики были открыты в III в. до н.э.
 - Птолемей установил, что при переходе луча света из воздуха в воду угол преломления меньше угла падения.
 - 4) Под рефракцией в тексте понимается явление изменения направления распространения светового луча из-за преломления в атмосфере Земли.
 - 5) Рефракция проявляется в огибании световым лучом препятствий и, тем самым, в отклонении от прямолинейного распространения.

Для ответов на задания 20−25 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (20, 21 и т.д.), а затем ответ на него. Полный ответ на задания 20, 21 и 22 должен содержать не только ответ на вопрос, но и его развёрнутое, логически связанное обоснование.

В спокойной атмосфере наблюдают положение звёзд, не находящихся на перпендикуляре к поверхности Земли в точке А, где располагается наблюдатель. На рисунке схематично показаны истинное и видимое положения для одной из звёзд. Какое положение (S_1 или S_2) может соответствовать истинному положению звезды, а какое - видимому? Ответ поясните.

- Сравните величину выталкивающей силы, действующей на кусок дерева объёмом 100 см³ и на кусок железа такого же объёма при их полном погружении в воду. Рассмотрите случай, когда ни железо, ни дерево не лежат на лне.
- Теплее или холоднее воздуха кажется Вам вода в озере, когда, искупавшись в сухой жаркий день, Вы выходите из воды? Ответ поясните.

Для заданий 23-25 необходимо записать полное решение, включающее запись краткого условия задачи (Дано), запись формул, применение которых необходимо и достаточно для решения задачи, а также математические преобразования и расчёты, приводящие к числовому ответу.

Меняя электрическое напряжение на участке цепи, состоящем из никелинового проводника с площадью поперечного сечения 0,2 мм², ученик по полученным данным построил график зависимости силы тока от напряжения. Чему равна длина проводника?

- Шар массой 4 кг, движущийся с некоторой скоростью, соударяется с неподвижным шаром такой же массы, после чего шары движутся вместе. Определите, во сколько раз изменилась кинетическая энергия системы шаров в результате соударения.
- Электровоз, работающий при напряжении 3 кВ, развивает при скорости 12 м 25 силу тяги 340 кН. КПД двигателя электровоза равен 85%. Чему равна сила тока в обмотке электродвигателя?

He забудьте перенести все ответы в бланки ответов № 1 и № 2 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.

Система оценивания экзаменационной работы по физике

Правильное выполнение каждого из заданий 2, 3, 5–10, 15 оценивается 1 баллом. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, и полностью совпалает с эталоном ответа.

Правильное выполнение каждого из заданий 1, 4, 11, 12, 18 оценивается 2 баллами. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, и полностью совпадает с эталоном ответа: каждый символ в ответе стоит на своём месте, лишние символы в ответе отсутствуют. Выставляется 1 балл, если на любой одной позиции ответа записан не тот символ, который представлен в эталоне ответа. Во всех других случаях выставляется 0 баллов.

Правильное выполнение каждого из заданий 13, 14, 16, 19 оценивается 2 баллами. Задание считается выполненным верно, если ответ записан в той форме, которая указана в инструкции по выполнению задания, каждый символ присутствует в ответе, в ответе отсутствуют лишние символы. Порядок записи символов в ответе значения не имеет. Выставляется 1 балл, если только один из символов, указанных в ответе, не соответствует эталону или только один символ отсутствует; во всех других случаях выставляется 0 баллов.

Если количество символов в ответе больше требуемого, выставляется 0 баллов вне зависимости от того, были ли указаны все необходимые символы.

Помор запания	Проруку уууй отрот
Номер задания	Правильный ответ
1	421
2	42
3	2
4	2457
5	2
6	18
7	10
8	0,75
9	2
10	2
11	31
12	12
13	24<или>42
14	23<или>32
15	4
16	14<или>41
18	13
19	34<или>43

© 2024 Федеральная служба по надзору в сфере образования и науки

Критерии оценивания выполнения заданий с развёрнутым ответом

Используя источник тока, вольтметр, амперметр, ключ, реостат, соединительные провода и резистор, обозначенный R2, соберите экспериментальную установку для определения работы электрического тока на резисторе R2. При помощи реостата установите в цепи силу тока 0,5 А. Определите работу электрического тока за 8 мин. Абсолютная погрешность измерения силы тока равна $\pm 0,02$ А, абсолютная погрешность измерения напряжения равна $\pm 0,2$ В.

В бланке ответов № 2:

- 1) нарисуйте электрическую схему эксперимента;
- 2) запишите формулу для расчёта работы электрического тока;
- укажите результаты измерения напряжения и силы тока с учётом абсолютных погрешностей измерений;
- 4) запишите значение работы электрического тока.

Характеристика оборудования

При выполнении задания используется комплект оборудования № 3 в следующем составе.

Комп	лект № 3
элементы оборудования	рекомендуемые характеристики
• источник питания постоянного	выпрямитель с входным напряжением
тока	36÷42 В или батарейный блок
	1,5÷7,5 В с возможностью
	регулировки выходного напряжения
• вольтметр двухпредельный	предел измерения 3 B, $C = 0.1$ B;
	предел измерения 6 B, $C = 0.2$ B
• амперметр двухпредельный	предел измерения 3 A, $C = 0.1$ A;
	предел измерения $0.6 \text{ A}, C = 0.02 \text{ A}$
• резистор, обозначить <i>R</i> 1	сопротивление $(4,7 \pm 0,5)$ Ом
• резистор, обозначить <i>R</i> 2	сопротивление $(5,7 \pm 0,6)$ Ом
• резистор, обозначить R3	сопротивлением $(8,2\pm0,8)$ Ом
• набор проволочных резисторов	резисторы обеспечивают проведение
ρlS	исследования зависимости
	сопротивления от длины, площади
	поперечного сечения и удельного
	сопротивления проводника
• лампочка	номинальное напряжение 4,8 В,
	сила тока 0,5 А
• переменный резистор (реостат)	сопротивление 10 Ом
• соединительные провода, 10 шт.	
• ключ	

© 2024 Федеральная служба по надзору в сфере образования и науки

Внимание! При замене какого-либо элемента оборудования на аналогичное с другими характеристиками необходимо внести соответствующие изменения в образец выполнения задания.

Образец возможного выполнения

1. Схема экспериментальной установки:

- 2. $A = U \cdot I \cdot t$.
- 3. $I = (0.50 \pm 0.02)$ A.

 $U = (2.8 \pm 0.2) \text{ B};$

t = 8 мин. = 480 c.

4. $A = 0.50 \cdot 2.8 \cdot 480 = 672$ Дж.

Указание экспертам

Численное значение прямого измерения напряжения должно попасть в интервал $U = (2.8 \pm 0.3) \; \mathrm{B}$

в интервал $U = (2,8 \pm 0,3)$ в	
Содержание критерия	Баллы
Полностью правильное выполнение задания, включающее в себя:	3
1) рисунок экспериментальной установки;	
2) формулу для расчёта искомой величины (в данном случае: для	
работы электрического тока через напряжение, силу тока	
и время);	
3) правильно записанные результаты прямых измерений с учётом	
заданных абсолютных погрешностей измерений (в данном случае:	
результаты измерения силы тока и электрического напряжения);	
4) полученное правильное числовое значение искомой величины	
Записаны правильные результаты прямых измерений, но в одном	2
из элементов ответа (1, 2 или 4) присутствует ошибка.	
ИЛИ	
Записаны правильные результаты прямых измерений, но один из	
элементов ответа (1, 2 или 4) отсутствует	
Записаны правильные результаты прямых измерений, но	1
в элементах ответа 1, 2 и 4 присутствуют ошибки, или эти	
элементы отсутствуют	
Все случаи выполнения, которые не соответствуют	0
вышеуказанным критериям выставления 1, 2 или 3 баллов.	
Разрозненные записи. Отсутствие попыток выполнения задания	
Максимальный балл	3

© 2024 Федеральная служба по надзору в сфере образования и науки

Опыты Птолемея по преломлению света

Оптика — одна из древнейших наук, тесно связанная с потребностями практики на всех этапах своего развития. Прямолинейность распространения света была известна народам Месопотамии за 5 тыс. лет до н.э. и использовалась в Древнем Египте при строительных работах.

Два закона геометрической оптики — закон прямолинейного распространения света и закон отражения света — были описаны знаменитым греческим учёным Евклидом, жившим в III в. до н.э. С помощью этих законов Евклид объяснил целый ряд наблюдаемых явлений, и в частности, явлений отражения света от плоских и даже сферических зеркал. Ученые древности имели также представление о преломлении света и даже пытались установить закон преломления.

Греческий астроном Клавдий Птолемей (около 130 г. н.э.) — автор замечательной книги, которая в течение почти 15 столетий служила основным учебником по астрономии, — создал ещё книгу «Оптика», в которой описал, в частности, явление преломления света. С явлением преломления света Птолемей столкнулся, наблюдая звёзды. Он заметил, что луч света, переходя из одной среды в другую, «ломается». Поэтому звёздный луч, проходя через земную атмосферу, доходит до поверхности Земли не по прямой, а по кривой линии, то есть наблюдается рефракция. Искривление хода луча происходит из-за того, что плотность воздуха меняется с высотой.

Чтобы изучить закон преломления, Птолемей провёл следующий эксперимент. Он взял круг и укрепил на оси линейки l_1 и l_2 так, чтобы они могли свободно вращаться вокруг неё (см. рисунок).

Птолемей погружал этот круг в воду до диаметра AB и, поворачивая нижнюю линейку, добивался того, чтобы линейки лежали для глаза на одной прямой (если смотреть вдоль верхней линейки). После этого он вынимал круг из воды и сравнивал углы падения α и преломления β . Он измерял углы с точностью до 0.5° . Числа, полученные Птолемеем, представлены в таблице.

№ опыта	1	2	3	4	5	6	7	8
Угол падения α, град.	10	20	30	40	50	60	70	80
Угол преломления β, град.	8	15,5	22,5	28	35	40,5	45	50

Эксперимент Птолемея был поставлен правильно, учёный получил достаточно хорошие численные значения для углов падения и преломления, однако закона он установить не сумел.

В спокойной атмосфере наблюдают положение звёзд, не находящихся на перпендикуляре к поверхности Земли в точке A, где располагается наблюдатель. На рисунке схематично показаны истинное и видимое положения для одной из звёзд. Какое положение (S_1 или S_2) может соответствовать истинному положению звезды, а какое – видимому? Ответ поясните.

Образец возможного ответа

- 1. Истинному положению звезды соответствует положение S_1 , видимому S_2 .
- 2. Видимое положение строится на прямолинейном продолжении луча, приходящего от звезды в глаз наблюдателя (S2). Истинное положение звезды находится ниже видимого, так как луч, проходя неоднородную атмосферу, постоянно преломляется.

Примечание: обоснование является достаточным, если в ответе присутствует указание на то, как формируется видимое положение, и на то, что истинное положение звезды из-за преломления в атмосфере находится ниже видимого положения

Содержание критерия	Баллы
Представлен правильный ответ на вопрос, и приведено	2
достаточное обоснование, не содержащее ошибок	
Представлен правильный ответ на поставленный вопрос, но	1
его обоснование не является достаточным, хотя содержит	
указание на физические явления (законы), причастные	
к обсуждаемому вопросу.	
ИЛИ	
Представлены корректные рассуждения, приводящие	
к правильному ответу, но ответ явно не сформулирован	

© 2024 Федеральная служба по надзору в сфере образования и науки

Представлены общие рассуждения, не относящиеся к ответу	0
на поставленный вопрос.	
ИЛИ	
Ответ на вопрос неверен независимо от того, что рассуждения	
правильны, или неверны, или отсутствуют	
Максимальный балл	2

Сравните величину выталкивающей силы, действующей на кусок дерева объёмом 100 см³ и на кусок железа такого же объёма при их полном погружении в воду. Рассмотрите случай, когда ни железо, ни дерево не лежат на дне.

Образец	возможного	ответа
---------	------------	--------

1. Выталкивающие силы равны.

Демонстрационный вариант ОГЭ 2024 г.

2. Выталкивающая сила, действующая на любое тело, находящееся в жидкости, зависит от плотности жидкости, объёма тела и ускорения свободного падения $(F = \rho_{**}gV)$, но не зависит от плотности вещества, из которого изготовлено тело. Следовательно, выталкивающие силы будут

равными	
Содержание критерия	Баллы
Представлен правильный ответ на вопрос, и приведено достаточное обоснование, не содержащее ошибок	2
Представлен правильный ответ на поставленный вопрос, но его обоснование некорректно или отсутствует.	1
ИЛИ	
Представлены корректные рассуждения, приводящие к правильному ответу, но ответ явно не сформулирован	
Представлены общие рассуждения, не относящиеся к ответу на	0
поставленный вопрос.	0
ИЛИ	
Ответ на вопрос неверен независимо от того, что рассуждения	
правильны, или неверны, или отсутствуют	
Максимальный балл	2

Теплее или холоднее воздуха кажется Вам вода в озере, когда, искупавшись в сухой жаркий день, Вы выходите из воды? Ответ поясните.

Образец возможного ответа	
1. Теплее.	
2. Капли воды, интенсивно испаряясь с поверхности мокрого тела, п	риводят
к охлаждению тела. Из-за этого воздух кажется холоднее	
Содержание критерия	Баллы
Представлен правильный ответ на вопрос, и приведено достаточное обоснование, не содержащее ошибок	2
Представлен правильный ответ на поставленный вопрос, но его	1
обоснование не является достаточным, хотя содержит указание	1
на физические явления (законы), причастные к обсуждаемому	
вопросу.	
ИЛИ	
Представлены корректные рассуждения, приводящие к правильному ответу, но ответ явно не сформулирован	
Представлены общие рассуждения, не относящиеся к ответу	0
на поставленный вопрос.	
ИЛИ	
Ответ на вопрос неверен независимо от того, что рассуждения	
правильны, или неверны, или отсутствуют	2
Максимальный балл	2

Меняя электрическое напряжение на участке цепи, состоящем из никелинового проводника с площадью поперечного сечения 0,2 мм², ученик по полученным данным построил график зависимости силы тока от напряжения. Чему равна длина проводника?

Демонстрационный вариант ОГЭ 2024 г.

	Возможный вариант решения	
<u>Дано</u> : I = 0.6 A U = 3 B $S = 0.2 \text{ mm}^2$ $\rho = 0.4 \text{ Om} \cdot \text{mm}^2/\text{m}$	$U = I \cdot R$ $R = \frac{\rho \cdot l}{S}$ $l = \frac{US}{\rho I} = \frac{3 \cdot 0.2}{0.4 \cdot 0.6} = 2.5 \text{ M}$	
l = ?	<i>Ответ:</i> $l = 2,5$ м	

Содержание критерия	Баллы
Приведено полное правильное решение, включающее следующие	3
элементы:	
1) верно записано краткое условие задачи;	
2) записаны уравнения и формулы, применение которых	
необходимо и достаточно для решения задачи выбранным	
способом (в данном решении: закон Ома для участка цепи,	
формула для удельного электрического сопротивления);	
3) выполнены необходимые математические преобразования	
и расчёты, приводящие к правильному числовому ответу	
с указанием единиц измерения величины, и представлен ответ. При	
этом допускается решение «по частям» (с промежуточными	
вычислениями)	
Правильно записаны необходимые формулы, проведены	2
вычисления и получен ответ (верный или неверный), но допущена	
ошибка в записи краткого условия или переводе единиц в СИ.	
ИЛИ	

Представлено правильное решение только в общем виде, без каких-	
либо числовых расчётов.	
ИЛИ	
Записаны уравнения и формулы, применение которых необходимо	
и достаточно для решения задачи выбранным способом, но	
в математических преобразованиях или вычислениях допущена	
ошибка	
Записано и использовано не менее половины исходных формул,	1
необходимых для решения задачи.	
ИЛИ	
Записаны все исходные формулы, но в одной из них допущена	
ошибка	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

Шар массой 4 кг, движущийся с некоторой скоростью, соударяется с неподвижным шаром такой же массы, после чего шары движутся вместе. Определите, во сколько раз изменилась кинетическая энергия системы шаров в результате соударения.

Возможный вариант решения	
$ \frac{\underline{\Pi}a\mu o}{m_1 = m_2 = m} = 4 \text{ к}\Gamma $	$m_1 v = (m_1 + m_2)u; \ u = \frac{m_1 v}{m_1 + m_2}$
	$E_{1} = \frac{mv^{2}}{2}; E_{2} = \frac{(m_{1} + m_{2})u^{2}}{2} = \frac{mv^{2}}{4}$ $\frac{E_{1}}{E_{2}} = 2$
$\frac{E_1}{E_2}$ -?	Omsem: $\frac{E_1}{E_2} = 2$

Содержание критерия	Баллы
Приведено полное правильное решение, включающее следующие	3
элементы:	
1) верно записано краткое условие задачи;	
2) записаны уравнения и формулы, применение которых	
необходимо и достаточно для решения задачи выбранным	
способом (в данном решении: закон сохранения импульса, формула	
для кинетической энергии до соударения шаров и после	
соударения);	
3) выполнены необходимые математические преобразования	

© 2024 Федеральная служба по надзору в сфере образования и науки

и расчёты, приводящие к правильному числовому ответу,	
и представлен ответ. При этом допускается решение «по частям»	
(с промежуточными вычислениями)	
Правильно записаны необходимые формулы, проведены	2
вычисления и получен ответ (верный или неверный), но допущена	
ошибка в записи краткого условия или переводе единиц в СИ.	
ИЛИ	
Представлено правильное решение только в общем виде, без каких-	
либо числовых расчётов.	
ИЛИ	
Записаны уравнения и формулы, применение которых необходимо	X
и достаточно для решения задачи выбранным способом, но	X .
в математических преобразованиях или вычислениях допущена	
ошибка	
Записано и использовано не менее половины исходных формул,	1
необходимых для решения задачи.	
ИЛИ	
Записаны все исходные формулы, но в одной из них допущена	
ошибка	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

Электровоз, работающий при напряжении 3 кВ, развивает при скорости $12 \frac{M}{c}$ силу тяги 340 кН. КПД двигателя электровоза равен 85%. Чему равна сила тока в обмотке электродвигателя?

Возможные варианты решения	
	$ \eta = \frac{A_{\pi}}{A_{s}} \cdot 100\% $ $ A_{\pi} = P_{1} \cdot t $ $ A_{3} = P_{2} \cdot t $ $ \eta = \frac{P_{1}}{P_{2}} \cdot 100\% $ $ P_{1} = F v $ $ P_{2} = UI $ $ I = \frac{F v}{U \eta} \cdot 100\%; I = \frac{340000 \cdot 12 \cdot 100\%}{3000 \cdot 85} = 1600 \text{ A} $
I-?	Ответ: I = 1600 A

Содержание критерия	Баллы
Приведено полное правильное решение, включающее следующие	3
элементы:	
1) верно записано краткое условие задачи;	
2) записаны уравнения и формулы, применение которых	
необходимо и достаточно для решения задачи выбранным	
способом (в данном решении: формула для коэффициента	
полезного действия, формулы для расчёта механической	
мощности и мощности электрического тока);	
3) выполнены необходимые математические преобразования	
и расчёты, приводящие к правильному числовому ответу	
с указанием единиц измерения величины, и представлен ответ. При	X
этом допускается решение «по частям» (с промежуточными	
вычислениями)	
Правильно записаны необходимые формулы, проведены	2
вычисления и получен ответ (верный или неверный), но допущена	
ошибка в записи краткого условия или переводе единиц в СИ.	
ИЛИ	
Представлено правильное решение только в общем виде, без каких-	
либо числовых расчётов.	
ИЛИ	
Записаны уравнения и формулы, применение которых необходимо	
и достаточно для решения задачи выбранным способом, но	
в математических преобразованиях или вычислениях допущена	
ошибка	
Записано и использовано не менее половины исходных формул,	1
необходимых для решения задачи.	
ИЛИ	
Записаны все исходные формулы, но в одной из них допущена	
ошибка	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам основного общего образования (приказ Минпросвещения России и Рособрнадзора от 04.04.2023 № 232/551, зарегистрирован Минюстом России 12.05.2023 № 73292)

«72. Проверка экзаменационных работ включает в себя:

Демонстрационный вариант ОГЭ 2024 г.

1) проверку и оценивание предметными комиссиями развёрнутых ответов (в том числе устных) на задания КИМ в соответствии с критериями оценивания по соответствующему учебному предмету, разработка которых организуется Рособрнадзором $^1 < \ldots >$

По результатам первой и второй проверок эксперты независимо друг от друга выставляют первичные баллы за каждый развёрнутый ответ на задания KUM. <...>

В случае существенного расхождения в первичных баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в первичных баллах определено в критериях оценивания по соответствующему учебному предмету, разработка которых организуется Рособрнадзором.

Третий эксперт назначается по согласованию с председателем предметной комиссии из числа экспертов, ранее не проверявших экзаменационную работу.

Третьему эксперту предоставляется информация о первичных баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Существенными считаются следующие расхождения.

- 1. Расхождения между баллами, выставленными двумя экспертами за выполнение любого из заданий 17, 20–25, в 2 или более балла. В этом случае третий эксперт проверяет только те ответы на задания, которые вызвали столь существенное расхождение.
- 2. Расхождение в результатах оценивания двумя экспертами ответа на одно из заданий 17, 20–25 заключается в том, что один эксперт указал на отсутствие ответа на задание в экзаменационной работе, а другой эксперт выставил за выполнение этого задания ненулевой балл. В этом случае третий эксперт проверяет только ответы на задания, которые были оценены со столь существенным расхождением. Ситуации, в которых один эксперт указал на отсутствие ответа в экзаменационной работе, а второй эксперт выставил нулевой балл за выполнение этого задания, не являются ситуациями существенного расхождения в оценивании.

 $^{^1}$ Часть 14 статьи 59 Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации».

^{© 2024} Федеральная служба по надзору в сфере образования и науки