Le robot explorateur

2. En fonction de la demande exprimée par le gestionnaire du collège, compléter l'extrait du cahier des charges ci-dessous.

	Contraintes	Critères d'appréciation	Niveau d'exigence
FP1	Le robot doit permettre à l'utilisateur d'explorer des lieux inaccessibles.	Vitesse de déplacement Type d'exploration Mesure d'une image	150 mm/s maximum Visionnage en temps réel Approche automatique de l'obstacle
FC1	Le robot doit être commandé par l'utilisateur	Mise en service du robot Ergonomie	Manuelle Commandes simples avec visionnage des déplacements
FC2	Le robot doit évoluer dans les lieux	Espace accessible Inclinaison Luminosité Etat du terrain	Section jusqu'à 900 cm2. Jusqu'à 20% Inférieur à 3 lux Lisse ou accidenté
FC3	Le robot doit résister à l'environnement	Etanchéité Conditions atmosphériques Températures	Faible écoulement de l'eau Gaz toxiques Entre –10°C et +80°C
FC4	Le robot doit être accessible financièrement.	Prix	Inférieur à 200 €
FC5	Le robot doit être autonome en énergie.	Temps d'autonomie	30 min
FC6	Le robot doit être sans danger pour l'utilisateur.	Tension batterie.	Très basse tension.

3. Compléter le diagramme pieuvre du robot explorateur en s'appuyant sur le cahier des charges établi à la question précédente.

4. Analyse du fonctionnement du robot explorateur

Pilotage du robot explorateur

Télécommandé par l'utilisateur à l'aide d'une télécommande infrarouge (1), le robot prélève des images cibles qu'il rencontre grâce à sa camera embarquée (12).

Prise de vue de la cible

A l'approche d'une cible, un capteur à ultrasons (8) mesure la distance et envoie un signal à un microcontrôleur (3) qui traite les informations et commande, par l'intermédiaire d'un circuit de puissance (4), l'arrêt des moteurs (7).

Rep	Désignation	Rep	Désignation
1	Télécommande infrarouge	7	Moteur
2	Circuit imprimé de prototypage	8	Capteur à ultrasons
3	Microcontrôleur	9	Récepteur infrarouge
4	Circuit de puissance (commande moteur)	10	Roue
5	Accumulateurs	11	Chenille
6	Interrupteur	12	Caméra

Compléter la représentation fonctionnelle ci-dessous en indiquant le nom des éléments du robot explorateur qui réalisent les fonctions techniques.

- 5. Un robot se déplace à une vitesse « V » grâce à un capteur ultrasons :
 - si le capteur ultrasons détecte un obstacle à moins de 10 cm, le robot recule pendant 0,5 seconde;
 - si le capteur ultrasons détecte un obstacle entre 10 et 20 cm, le robot tourne à gauche;
- si le capteur ultrasons détecte un obstacle à plus de 20 cm, le robot continue à avancer.

Parmi les deux programmes qui suivent, un seul permet au robot de se déplacer de manière autonome.

- 5a. Préciser à quelle valeur est initialisée la variable « V » qui paramètre la vitesse : 50
- **5b.** Déterminer lequel des deux programmes A ou B est **faux** et justifier votre réponse.

Le programme A est faux car si la distance est plus petite de 10, le robot avance alors qu'il devrait reculer.

```
mBot - générer le code
mettre Distance à 0
mettre V à 50
répéter indéfiniment
mettre Distance à distance mesurée par le capteur ultrasons
si Distance < 20 alors
si Distance < 10 alors
avancer à la vitesse V
attendre 0.5 secondes
sinon
tourner à gauche à la vitesse V
attendre 0.5 secondes
sinon
reculer à la vitesse V
```

```
mBot - générer le code
mettre Distance  à 0
mettre V à 50
répéter indéfiniment
mettre Distance  à distance mesurée par le capteur ultrasons
si Distance  < 20 alors
si Distance  < 10 alors
reculer  à la vitesse V
attendre 0.5 secondes
sinon
tourner à gauche  à la vitesse V
attendre 0.5 secondes
```