Comparative analysis of morphological and ecological traits between sexual and parthenogenetic chalcid wasps.

Cyril Matthey-Doret

Supervised by Casper Van Der Kooi

The study

 Gather data on different ecological and morphological variables for species in Chalcidoidea.

 Compare those variables between parthenogenetic and sexual species.

Why Chalcidoidea?

Many parthenogenetic species

 Lots of studies, many species relevant for biocontrol.

Great database available!

Chalcidoidea has many parthenogens **Xyeloidea** Tenthredinoidea Pamphilioidea Cephoidea Siricoidea Stephanoidea Evanioidea Trigonaloidea Apoidea Chrisidoidea Vespoidea Ceraphronoidea Ichneumonoidea Cynipoidea Platygastroidea Proctotrupoidea Diaprioidea Chalcidoidea 50 200 250 0.00 0.01 0.02 0.03 0.04 0.05 100 150 count proportion

From Casper's review on parthenogenesis

NHM database

- Information for about 31'000 species of Chalcidoidea
- Records of host species and distribution

Two separate studies

- "Manual dataset"
 - Gathered by hand in literature
 - More variables
 - Fewer species
 - Using asex/sex pairs for comparison

- "Automated dataset"
 - All data from the same database.
 - Only distribution and host range
 - Much more species
 - Using genera for comparison

Manual dataset: Pairs

 Comparison sex vs asex between the most closely related species.

Manual dataset: flowchart

Data

Species used for comparisons:

Manual dataset:

- In total: 133 species (50 asexual, 83 sexual)
- Reparted into 32 pairs.

Family	Genus	Asex	Sex	Total
Aphelinidae	Aphelinus	2	9	11
	Aphytis	20	35	55
	Encarsia	7	8	15
	Eretmocerus	2	3	5
Torymidae	Megastigmus	7	11	18
	Torymus	1	2	3
Trichogrammatidae	Megaphragma	1	1	2
	Trichogramma	10	12	22
	Trichogrammatoidea	0	2	2

Automated dataset: flowchart

 Only genera with at least one known parthenogen were used.

Data:

Automated dataset:

- In total: 8357 species (136 asexual, 8221 sexual) from 66 genera in 11 families.
- No pairs, using genera instead.

Family	Asexual	Sexual	Total
Aphelinidae	46	1006	1052
Chalcididae	1	304	305
Encyrtidae	22	1314	1336
Eulophidae	22	2148	2170
Eupelmidae	1	481	482
Eurytomidae	3	879	882
Leucospidae	1	117	118
Mymaridae	12	528	540
Pteromalidae	6	680	686
Torymidae	8	517	525
Trichogrammatidae	14	247	261

Variables studied

- Do asexuals differ from sexuals in size ?
 - Many parthenogens are small (i.e. whiteflies, thrips)
 - → Body length

- Do asexuals tend to have more host species?
 - Successful asexuals are often generalist.
 - Number of host species

Variables studied

- Do asexuals tend to occupy different /larger regions than sexuals?
 - → Number of countries/states
 - → Latitude, (longitude): Median, absolute, range

Do asexuals differ from sexuals in length?

Manual dataset

Body length by Reproductive mode: Overall

Ratio of body length per pair: asex/sex

--> No significant difference

Do asexuals have more host species?

Manual dataset

Do asexuals have more host species?

Are asex found in more countries?

Manual dataset

Are asex found in more countries?

Number of countries by reproductive mode: Overall

Auto dataset

--> The effect looks much stronger.

Manual dataset

Manual dataset

Auto dataset

Auto dataset

Results: pairwise (or per genera) statistical analysis

Using a generalized linear mixed model:

• Manual: y ~mode + (1| genus / pair)

• Automated: y ~ mode + (1| genus)

Variable	Asex vs sex manual	Manual (pairs)	Asex vs sex automated	Automated (genera)
Number of countries	21.9 vs 10.2	p=0.01	17.0 vs 1.8	p<0.001
Number of hosts	20.8 vs 7.9	p=0.01	14.0 vs 2.3	p<0.001
Max distance from equator	45.1 vs 39.8	p=0.01	45.2 vs 33.8	p<0.001
Median latitude	25.1 vs 17.48	p=0.03	28.4 vs 22.9	p<0.001
Latitude range	53.1 vs 42.1	p=0.3	47.8 vs 20.8	p<0.001
Body length	1.3 vs 1.2	p=0.42	-	-

Study bias in the automated dataset?

Log number of countries: automated dataset

Log number of host species: manual dataset

Log number of host species: automated dataset

Study bias

- Species are considered asexual only if we know they are.
- unknown biology considered sexual
- There are many poorly studied species on the database, those have been sampled fewer times.
- Many of these species may be asexual.
 - → High number of locations biased towards asexual species (more studied).

Results: biased variables

- Variables which depend on the number of observations arr probably biased in the automated dataset.
- For these variables, one should consider only the manual dataset

Variable	Asex vs sex manual	Manual (pairs)	Asex vs sex automated	Automated (genera)	
Number of countries	21.9 vs 10.2	p=0.01	17.0 vs 1.8	p<0.001	
Number of hosts	20.8 vs 7.9	p=0.01	14.0 vs 2.3	p<0.001	
Max distance from equator	45.1 vs 39.8	p=0.01	45.2 vs 33.8	p<0.001	
Median latitude	25.1 vs 17.48	p=0.03	28.4 vs 22.9	p<0.001	
Latitude range	53.1 vs 42.1	p=0.3	47.8 vs 20.8	p<0.001	_
Body length	1.3 vs 1.2	p=0.42	-	-	

Extra slides

What's next: distribution area

Latitude range

Reproductive mode is masked by genera

(Each point corresponds to the median coordinates of a species)

Zooming into genera

(Each point corresponds to the median coordinates of a species)

Zooming into genera

Zooming into genera

Note: estimation methods used

- Manual:
 - Ncountries: MCMC
 - Nhosts: Laplace
 - Body length: Laplace
 - Median latitude: MCMC
 - Max dist eq: PQL
 - Latitude range: Laplace

- Automated:
 - Ncountries: MCMC
 - Nhosts: MCMC
 - Body length: ---
 - Median latitude: MCMC
 - Max dist eq: PQL
 - Latitude range: PQL