Name – Samrathpreet Singh Randhawa

Roll No.- 1801CS43

LAB-10

Q1)

a) Using T Flip Flop

A) Using T flip	0-1-			
C. C,	9, 00	Q* Q*	T, To	
0 0	0 0	0 0	0	0
0 0	0 1	0 1	0	0
0 0	1 0	1 0	0	0
0 0	1 1	1 1	0	0
0 1	0 0	0 1	0	1
01	0 1	10	1	1
0	10	1 1	0	1
01	11	00	1	-1
10	0 0	1.1	1	1
10	0	00	0	1
10	10	0 1	1	1
10	11	1 0	0	1
11:	00	10	1	0
	01	11	1	0
	10	00	1	0
11		01		D

b)Using D flip flop

(B) Using D fl	lip flop.		
C. C, O O O O O O O O O O O O O O O O O O	S, S. O O O O O O O O O O O O O O O O O O		D, D, O O O O O O O O O O O O O O O O O
1 T	VIV	0 0	0 0

Fig.2 used d flip flop

c)Using SR Flip flop

(C) Using S-F	Flip flop	6.			
C. C.	8 Q.	Q* Q*	S, R,	S.	R.
0 0	0 0	0 0	O X	D	×
0 0	0	0 1	0 X	×	0
0 0	1 0	1 0	× 0	0	*
0 0	0 0	1 1	× o	×	0
01	0 0	0 1	o ×	1	0
01	0	10	1 0	0	1
01	10	1 1	× o	1	0
0 1	1 (00	0	0	1
10	0 0	1 1	1 0	1	0
10	01	0 0	o x	0	1
10	10	0 1	0 1	1 3	0
10	1 1	10	x 0	0	1
11	00	1 0	10	0)	<
11	0 1	1 1	1 0	X 4	,
11	10	0 0	0 1	0 >	
11	1 3	01	0 1	× 0	1 To 1 197

Fig.3 used SR flip flop

d)Using JK Flip Flop

Fig.4 used JK flip flop

Q2) 8-bit adder using shift registers and a full adder.

An above circuit it will require 8 clock pulses for complete addition 4= A+B

If we use a FA which is capable of cadding more no of lits then cosequently no of clock pulses required will reduce proportionally

Q3) 4-bit counter using two 2-bit counters.

Fig 4 bit counter using two 2 bit counters

Just for the counter representing Most significant bits we have to reduce frequency to 1 of the other. This can be done if clock for the MSB counter is made by taking a NOR of two LSBS.