● 判别函数产生逐步分析

设初始势函数 $K_0(x) = 0$

第一步:加入第一个训练样本 x^1 ,则有

$$K_{1}(\mathbf{x}) = \begin{cases} K(\mathbf{x}, \mathbf{x}^{1}) & \text{if } \mathbf{x}^{1} \in \omega_{1} \\ -K(\mathbf{x}, \mathbf{x}^{1}) & \text{if } \mathbf{x}^{1} \in \omega_{2} \end{cases}$$

这里第一步积累势函数 $K_1(x)$ 描述了加入第一个样本时的边界划分。当样本属于 ω_1 时,势函数为正; 当样本属于 ω_2 时,势函数为负。第二步: 加入第二个训练样本 x^2 ,则有

- (i) 若 $x^2 \in \omega_1$ 且 $K_1(x^2) > 0$,或 $x^2 \in \omega_2$ 且 $K_1(x^2) < 0$,则分类正确,此时 $K_2(x) = K_1(x)$,即积累势函数不变。
- (ii) 若 $x^2 \in \omega_1 \perp K_1(x^2) < 0$,则 $K_2(x) = K_1(x) + K(x, x^2) = \pm K(x, x^1) + K(x, x^2)$
- (iii) 若 $x^2 \in \omega_2$ 且 $K_1(x^2) > 0$,则 $K_2(x) = K_1(x) K(x, x^2) = \pm K(x, x^1) K(x, x^2)$

以上(ii)、(iii)两种情况属于错分。假如 x^2 处于 $K_1(x)$ 定义的边界的错误一侧,则当 $x^2 \in \omega_1$ 时,积累位势 $K_2(x)$ 要加 $K(x,x^2)$,当 $x^2 \in \omega_2$ 时,积累位势 $K_2(x)$ 要减 $K(x,x^2)$ 。

第 K 步:设 $K_k(x)$ 为加入训练样本 x^1 , x^2 , ..., x^k 后的积累位势,则加入第(k+1)个样本时, $K_{k+1}(x)$ 决定如下:

- (i) 若 $x^{k+1} \in \omega_1$ 且 $K_k(x^{k+1}) > 0$,或 $x^{k+1} \in \omega_2$ 且 $K_k(x^{k+1}) < 0$,则分类正确,此时 $K_{k+1}(x) = K_k(x)$,即积累位势不变。
- (ii) 若 $x^{k+1} \in \omega_1$ 且 $K_k(x^{k+1}) < 0$,则 $K_{k+1}(x) = K_k(x) + K(x, x^{k+1})$
- (iii) 若 $x^{k+1} \in \omega_2$ 且 $K_k(x^{k+1}) > 0$,则 $K_{k+1}(x) = K_k(x) K(x, x^{k+1})$

因此,积累位势的迭代运算可写成: $K_{k+1}(x) = K_k(x) + r_{k+1}K(x,x^{k+1})$, r_{k+1} 为校正系数:

$$r_{k+1} = \begin{cases} 0 & \text{if } \mathbf{x}^{k+1} \in \omega_1 \text{ and } K_k(\mathbf{x}^{k+1}) > 0 \\ 0 & \text{if } \mathbf{x}^{k+1} \in \omega_2 \text{ and } K_k(\mathbf{x}^{k+1}) < 0 \\ 1 & \text{if } \mathbf{x}^{k+1} \in \omega_1 \text{ and } K_k(\mathbf{x}^{k+1}) < 0 \\ -1 & \text{if } \mathbf{x}^{k+1} \in \omega_2 \text{ and } K_k(\mathbf{x}^{k+1}) > 0 \end{cases}$$

若从给定的训练样本集 $\{x^1, x^2, ..., x^k, ...\}$ 中去除不使积累位势发生变化的样本,即使 $K_j(x^{j+1}) > 0$ 且 $x^{j+1} \in \omega_1$,或 $K_j(x^{j+1}) < 0$ 且 $x^{j+1} \in \omega_2$ 的那些样本,则可得一简化的样本序列 $\{\hat{x}^1, \hat{x}^2, ..., \hat{x}^j, ...\}$,它们完全是校正错误的样本。此时,上述迭代公式可归纳为:

$$K_{k+1}(\mathbf{x}) = \sum_{\hat{x}_j} a_j K(\mathbf{x}, \hat{\mathbf{x}}^j)$$

其中

$$a_{j} = \begin{cases} +1 & \text{for } \hat{\mathbf{x}}^{j} \in \omega_{1} \\ -1 & \text{for } \hat{\mathbf{x}}^{j} \in \omega_{2} \end{cases}$$

也就是说,由 k+1 个训练样本产生的积累位势,等于 ω_1 类和 ω_2 类两者中的校正错误样本的总位势之差。