NAVAL POSTGRADUATE SCHOOL Monterey, California

HYDROGRAPHIC AND ACOUSTIC DOPPLER CURRENT PROFILER (ADCP) DATA FROM THE ONR EASTERN BOUNDARY CURRENT ACCELERATED RESEARCH INIATIVE - JUNE 9-16, 1992

by

Paul F. Jessen Steven R.Ramp

November 1993

Approved for Public Release; Distribution Unlimited

Prepared for: Office of Naval Research

800 North Quincy Street Arlington, VA 22217-5660

FedDocs D 208.14/2 NPS-0C-93-006 Feddors L 208, 14/2: L=-00-=3-000

NAVAL POSTGRADUATE SCHOOL Monterey, California 93943

RADM Thomas A. Mercer Superintendent

Harrison Shull Provost

This report was prepared for and funded by the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

COSATI CODES			18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
ELD	GROUP	SUB-GROUP	Eastern Boundary Current, CTD data, Hydrographic
			data, ADCP data, Coastal eddies

; data report presents hydrographic (CTD) and Acoustic Doppler Current Filer (ADCP) data from a cruise to the continental slope region near it Arena, California during 9-16 June 1992. The study area encompassed egion from about 38° 0.0' N. to 39° 0.0' N. from 20 to 90 km offshore. sampling grid consisted of five along-shore transects 15 km apart, with 2 CTD stations 15 km apart in each transect. A total of 28 CTD casts

STRACT (Continue on reverse if necessary and identify by block number)

made. ADCP data were collected throughout the cruise. The data are sented as vertical sections, property distributions on horizontal sures, and waterfall plots.

STRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CLASSIFICAT	TION
JNCLASSIFIED/UNLIMITED SAME AS RPT. DTIC USERS	Unclassified	
AME OF RESPONSIBLE INDIVIDUAL	22b TELEPHONE (Include Area Code)	22c. OFFICE SYMBOL
Steven R. Ramp	(703) 696-4112	322PO

DRM 1473, 84 MAR

83 APR edition may be used until exhausted All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

DATA REPORT

Hydrographic and Acoustic Doppler Current Profiler (ADCP)
Data from the ONR Eastern Boundary Current Accelerated
Research Initiative

R/V POINT SUR, June 9 - 16, 1992

by

Paul F. Jessen and Steven R. Ramp

Chief Scientist: Steven R. Ramp

TABLE OF CONTENTS

List of Tables	ii
List of Figures	iii
Introduction	1
Hydrographic Data Acquisition and Calibration	8
Hydrographic Data Processing	15
ADCP Data Acquisition and Calibration	15
ADCP Data Processing	16
Data Presentation	18
Acknowledgements	19
Appendix A - CTD Data Listings	100
References	143
Initial Distribution List	144

LIST OF TABLES

Table	Caption	Pag
1.	List of current meter moorings and sound sources deployed during the Eastern Boundary Current Accelerated Research Initiative Cruise of June 9-16, 1992 aboard the R/V POINT SUR.	6
2.	CTD station positions for Eastern Boundary Current Accelerated Research Initiative Cruise of June 9-16, 1992 aboard the R/V POINT SUR. Wind speed and direction and air temperature are also shown.	7
3.	Differences between salinities (psu) calculated using the corrected CTD pressure, temperature, and conductivity readings and those of the water samples from the same depth measured by the AGE Minisal laboratory salinometer.	11
4.	Final calibration coefficients (slope and intercept) applied to stations 8-12 to adjust CTD salinity to the bottle sample salinities of each station.	14
5.	Data listings at selected pressures of temperature (T), salinity (S), density anomaly (γ_{θ}) , specific volume anomaly (δ) , summation of dynamic height $(\Sigma\Delta D)$, and spiciness (π) for CTD stations occupied during the Farallones Shelf and Slope cruise of February 7-17, 1992 aboard the R/V POINT SUR.	100

LIST OF FIGURES

igure	Caption	Page
1.	Locations for current meter moorings and sound sources deployed during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	2
2.	CTD station locations and numbers for the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	5
3.	Hourly averaged wind vectors measured at 17 m height from the R/V POINT SUR during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992.	20
4.	Map of sea surface temperature (T) during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	21
5.	Map of sea surface salinity (S) during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	22
6.	Map of sea surface density anomaly (γ_{θ}) during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	23
7.	Map of sea surface spiciness (π) during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	24
8.	Map of temperature (T) at 20 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	25
9.	Map of salinity (S) at 20 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	26
10.	Map of density anomaly (γ_{θ}) at 20 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	27

11.	Map of spiciness (π) at 20 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	28
12.	5 km averaged ADCP current vectors (cm s ⁻¹) from 15-23 m during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	29
13.	Map of temperature (T) at 75 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	30
14.	Map of salinity (S) at 75 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	31
15.	Map of density anomaly (γ_θ) at 75 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	32
16.	Map of spiciness (π) at 75 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	33
17.	5 km averaged ADCP current vectors (cm s ⁻¹) from 71-79 m during the the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	34
18.	Map of temperature (T) at 200 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	35
19.	Map of salinity (S) at 200 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	36
20.	Map of density anomaly (γ_{θ}) at 200 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.	37

- Map of spiciness (π) at 200 m depth during the 21. 38 Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 5 km averaged ADCP current vectors (cm s⁻¹) from 39 22. 199-207 m during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 5 km averaged ADCP current vectors (cm s⁻¹) from 23. 40 295-303 m during the occupation of the CTD stations of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 24. Map of temperature (T) at 500 m depth during the 41 Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. Map of salinity (S) at 500 m depth during the 25. 42 Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 26. Map of density anomaly (γ_{θ}) at 500 m depth during 43 the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 27. Map of spiciness (π) at 500 m depth during the 44 Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 28. Vertical sections of a) temperature (T), b) 45 salinity (S), c) density anomaly (γ_A) , and d) spiciness (π) for section A (CTD stations 1 - 5) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.
- 29. Vertical sections of a) temperature (T), b) 49 salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) for section B (CTD stations 6 10) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

30. Vertical sections of a) temperature (T), b) 53 salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) for section C (CTD stations 11 - 15) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 57 31. Vertical sections of a) temperature (T), b) salinity (S), and c) density anomaly (γ_{θ}) , and d) spiciness (π) for section D (CTD stations 16 - 20) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 61 32. Vertical sections of a) temperature (T), b) salinity (S), and c) density anomaly (γ_{θ}) , and d) spiciness (π) for section E (CTD stations 21 - 25) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. Vertical sections of 5 km averaged a) across-65 33. transect and b) along-transect ADCP velocity (cm s') for section A of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 34. Vertical sections of 5 km averaged a) across-67 transect and b) along-transect ADCP velocity (cm s') for section B of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. Vertical sections of 5 km averaged a) across-69 35. transect and b) along-transect ADCP velocity (cm s') for section C of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. 36. Vertical sections of 5 km averaged a) across-71 transect and b) along-transect ADCP velocity (cm s') for section D of the Eastern Boundary Current Accelerated Research Initiative cruise of

vi

73

June 9-16, 1992 aboard the R/V POINT SUR.

June 9-16, 1992 aboard the R/V POINT SUR.

37.

Vertical sections of 5 km averaged a) across-

transect and b) along-transect ADCP velocity (cm s⁻¹) for section E of the Eastern Boundary Current Accelerated Research Initiative cruise of

- 38. Waterfall plots from 0-500 m of a) temperature (T), 75 b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) from CTD stations 101 and 1 5 of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.
- 39. Waterfall plots from 0-500 m of a) temperature (T), 79 b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) from CTD stations 6 10 of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.
- 40. Waterfall plots from 0-500 m of a) temperature (T), 83 b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) from CTD stations 11 15 of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.
- Waterfall plots from 0-500 m of a) temperature (T), 87 b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) from CTD stations 16 20 of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.
- Waterfall plots from 0-500 m of a) temperature (T), 91 b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) from CTD stations 21 25, 26 and 27 of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.
- 43. Waterfall plots from 500-3500 m of a) temperature 95 (T), b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) for all CTD stations deeper than 500 m of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.
- 44. T/S diagram which includes data from all CTD stations 99 completed during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. The data included in this diagram consists of all data listed in Appendix A.

INTRODUCTION

The data included in this report were collected as part of the mesoscale variability in weakly nonlinear systems Accelerated Research Initiative (ARI) funded by the Office of Naval Research. The purpose of this ARI is to study the eddy-mean flow interactions in an Eastern Boundary Current along the Northern California coast.

The specific goals of this cruise were to; 1) deploy subsurface current meter moorings on the continental slope just south of Point Arena, 2) conduct a hydrographic (CTD) survey in the vicinity of the moorings, 3) collect Acoustic Doppler Current Meter (ADCP) data throughout the cruise, 4) deploy a moored sound source on the axis of the sound channel off Cape Mendocino, and 5) make CTD observations along the 2000 m isobath during the return trip from the Point Arena vicinity to Moss Landing as time permitted.

During this cruise a total of 19 Aanderaa RCM-8 current meters were deployed on 5 moorings, 28 CTD casts were made, and 2 subsurface sound sources were deployed, one on a current meter mooring and one on its own mooring.

The ship departed Moss Landing at 1807 Universal Time (UT) on June 9, 1992 enroute to site SS2 (Fig. 1) where the subsurface sound source was to be deployed. An ADCP calibration run was performed off Point Ano Nuevo during the steam to site SS2 between 2350 UT on June 9 and 0130 UT on June 10.

The ship arrived in the vicinity of the sound source deployment

Figure 1. Locations for current meter moorings and sound sources deployed during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

site SS2 at approximately 1000 UT on June 11. Between 1000 UT and 1415 UT a detailed bathymetry survey was conducted for the purpose of finding a position with the correct depth. Following the bathymetry survey a CTD cast (station 101, not shown) was made at the deployment site between 1430 and 1520 UT on June 11. After the completion of the CTD cast, the sound source deployment was started. This operation was completed at 1653 UT on June 11 with the deployment of the sound source at 40° 24.67' N., 126° 23.37' W. in 1695 meters of water. The sound source itself was located at a depth of 516 meters.

Departing this area, the ship steamed southeast toward mooring site MS (Fig. 1) arriving there at 1100 UT on June 12. Following the completion of a bathymetry survey at 1330 UT, current meter mooring MS was deployed. This mooring consisted of three Aanderaa RCM-8 current meters at depths of 100, 150, and 300 meters.

Additionally, there was a sound source placed in this mooring at a depth of 586 meters. Mooring work at this site was completed by 1615 UT.

The ship then proceeded to site MW (Fig. 1) arriving there to begin mooring work at 1840 UT on June 12. The mooring at this site consisted of four Aanderaa RCM-8 current meters at depths of 100, 150, 300, and 600 meters. Mooring operations were completed at this site by 2015 UT.

Mooring deployment operations continued with the ship next arriving at site MC (Fig. 1) at 2200 UT on June 12. Five Aanderaa RCM-8 current meters were placed in the mooring at this site at

depths of 100, 150, 300, 600, and 1800 meters. Deployment operations were completed at site MC by 2315 UT on June 12.

The ship next steamed to site MN where a mooring consisting of four Aanderaa RCM-8 current meters at depths of 100, 150, 300, and 600 meters was to be deployed. Mooring operations at this site commenced at 0145 UT on June 13 and were completed at approximately 0300 UT of that day. The ship then steamed to site ME (Fig. 1) where operations were suspended for the night.

A bathymetry survey at site ME (Fig. 1) was conducted between 1410 UT and 1530 UT on June 13. Subsequently mooring ME was deployed. This completed mooring operations for the cruise.

The remainder of the cruise was dedicated to hydrographic operations. CTD station 1 (Fig. 2) was started at 1800 UT on June 13. Following the completion of CTD station 1 the ship proceeded northwest occupying stations 2-5 between 1920 UT and 2345 UT on June 13. CTD stations 6-25 (Fig. 2) were occupied sequentially between 0050 UT on June 14 and 2230 UT on June 15. The ship then started the steam back toward Moss Landing occupying CTD stations 26-27 (Fig. 2) along the 2000 m isobath during the return trip. The ship arrived back at Moss Landing at 1950 UT on June 16, 1992. CTD stations 101, 1-13,18,and 23 were made to the bottom. Stations 14 and 15 were made to 2600 m, 16,17,19-22,24, and 25 were made to 1000 m. Listings of all mooring and CTD stations occupied during the cruise are presented in Tables 1 and 2 respectively. The personnel on this cruise included; Dr. Steven Ramp, Naval Postgraduate School (NPS); Mr. Paul Jessen, NPS; Mr.

Figure 2. CTD station locations and and numbers for the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Table 1. List of current meter moorings and sound sources deployed during the Eastern Boundary Current Accelerated Research Initiative Cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Mooring number	Latitude	Longitude	Depth(m)
MS	38°35.122'N	123°54.543'W	1980
MC	38°40.191'N	123°59.088'W	1975
MN	38°46.571'N	124° 4.729'W	1972
MW	38°35.761'N	124° 6.252'W	2602
ME	38°44.634'N	123°51.354'W	410
SS-2	40°24.670'N	126°23.371'W	1695

Table 2. CTD station positions for the Eastern Boundary Current Accelerated Research Initiative Cruise of June 9-16, 1992 aboard the R/V POINT SUR. Wind speed and direction and air temperature are also shown.

Date		Time (UT)	Sta No.	Latitude	Longitude	Wind Dir (ms ⁻¹)	Air Temp (°C)
June June			101 1 2 3 4 5	40 24.5 38 32.8 38 38.6 38 44.9 38 51.4 38 58.3	126 23.2 123 41.7 123 46.9 123 52.8 123 57.0 124 1.6	252 5.7 324 7.4 288 3.4 299 7.9 298 7.5 296 7.8	13.7 13.3 13.3 13.8 14.1 14.1
June	14		6 7 8 9	38 53.3 38 46.7 38 40.3 38 34.5 38 28.7	124 10.4 124 5.9 124 0.3 123 55.8 123 48.5	304 8.8 309 10.8 308 9.6 308 9.2 308 9.2	14.1 14.0 13.7 13.3
		1146 1413 1710 1957 2248	11 12 13 14	38 23.8 38 29.5 38 35.4 38 42.0 38 48.5	123 56.4 124 1.6 124 7.5 124 12.8 124 18.6	303 12.3 315 12.1 306 8.9 302 12.1 305 11.3	13.3 13.3 13.2 13.6 13.9
June	15	0245 0440 0629 0939 1106 1327 1519 1657 1955	16 17 18 19 20 21 22 23 24	38 42.2 38 36.4 38 30.6 38 24.8 38 19.1 38 14.4 38 19.8 38 25.5 38 31.5	124 27.3 124 20.6 124 14.3 124 8.0 124 1.7 124 8.8 124 15.3 124 21.5 124 28.1	308 10.8 306 8.8 301 9.9 304 9.9 309 10.6 311 8.9 322 9.8 295 9.4 318 10.2	13.9 13.5 13.5 13.6 13.4 13.4 13.6 13.9
June	16	2147 0355 0731	25 26 27	38 37.2 38 10.0 37 50.0	124 34.3 123 40.7 123 30.6	323 9.1 311 11.4 297 11.3	13.9 13.7 13.4

Todd Anderson, NPS; Ms. Marla Stone, NPS; Mr. Tarry Rago, NPS; Mr. Andy Anderson, NPS; and LT Kevin Hays, NPS.

HYDROGRAPHIC DATA ACQUISITION AND CALIBRATION

Hydrographic data were acquired using a Neil Brown Mark III-B CTD. A General Oceanics rosette sampler was attached to the CTD and was equipped with twelve 5-liter Niskin bottles for in situ water sampling. At most stations a minimum of two water samples were collected during the upcast for salinity calibration; one at the deepest depth of the cast and one near the surface. The CTD sampling rate was 32 Hz, and raw data were collected using a software package developed by EG&G Marine Instruments. CTD data were acquired only on the downcast with a winch speed of approximately 30 m min⁻¹ to 150 m then 60 m min⁻¹ to the bottom. The data were acquired using an HP Vectra computer and stored on the computer's hard disk as well as backed up to a rewritable optical disk.

In addition to the CTD data, an underway data acquisition loop recorded 30 second averages of 2 m temperature and salinity, wind speed and direction, air temperature, and visible and infrared radiation. The sensors used to acquire this data included Seabird temperature and conductivity sensors for the 2 m temperature and salinity, an R. M. Young anemometer for the wind speed and direction, and Epply pyranometers for the visible and infrared radiation. The underway data were acquired on an HP310 computer and recorded on the computer's hard disk. The underway data were transferred to 5.25 inch diskettes upon return and processed on

an IBM PC compatible computer.

The temperature, conductivity, and pressure sensors on the CTD were calibrated prior to the cruise in the NPS calibration laboratory. The pressure calibration was carried out using a Chandler Engineering dead weight tester as a standard. At 20 approximately equally spaced pressures from 50 to 6000 dbar, indicated pressures from the standard and the CTD sensor were recorded. A regression was then performed fitting the CTD pressures to the standard. The result yielded a linear fit with a slope of 0.9994735. The CTD pressure offset at the beginning of each cast was used as the intercept.

The temperature calibration was done using a model 162CE Rosemount Platinum Resistance Temperature Standard (PRTS) in conjunction with an EG&G Automatic Temperature Bridge (Model ATB-1250). The standard (PRTS) sensor was calibrated using a triple point cell. A temperature bath of 70 - 80 liters of fresh water in an insulated tub was used to compare the PRTS and the CTD sensor at 1 °C increments from 0 - 20 °C. Thirty data points were collected at each temperature and then averaged to yield a single value for each step. A regression was run on the 21 data points and a 2^{nd} order polynomial ($y = ax^2 + bx + c$) was found to yield the best fit of the CTD sensor values to the temperature standard. The coefficients for correction were a = 1.0778572E-5, b = 0.9994981, and c = 0.0025016.

The conductivity calibration was carried out using an AGE Minisal as a standard. A constant conductivity bath was used to

Todd Anderson, NPS; Ms. Marla Stone, NPS; Mr. Tarry Rago, NPS; Mr. Andy Anderson, NPS; and LT Kevin Hays, NPS.

HYDROGRAPHIC DATA ACQUISITION AND CALIBRATION

Hydrographic data were acquired using a Neil Brown Mark III-B CTD. A General Oceanics rosette sampler was attached to the CTD and was equipped with twelve 5-liter Niskin bottles for in situ water sampling. At most stations a minimum of two water samples were collected during the upcast for salinity calibration; one at the deepest depth of the cast and one near the surface. The CTD sampling rate was 32 Hz, and raw data were collected using a software package developed by EG&G Marine Instruments. CTD data were acquired only on the downcast with a winch speed of approximately 30 m min⁻¹ to 150 m then 60 m min⁻¹ to the bottom. The data were acquired using an HP Vectra computer and stored on the computer's hard disk as well as backed up to a rewritable optical disk.

In addition to the CTD data, an underway data acquisition loop recorded 30 second averages of 2 m temperature and salinity, wind speed and direction, air temperature, and visible and infrared radiation. The sensors used to acquire this data included Seabird temperature and conductivity sensors for the 2 m temperature and salinity, an R. M. Young anemometer for the wind speed and direction, and Epply pyranometers for the visible and infrared radiation. The underway data were acquired on an HP310 computer and recorded on the computer's hard disk. The underway data were transferred to 5.25 inch diskettes upon return and processed on

an IBM PC compatible computer.

The temperature, conductivity, and pressure sensors on the CTD were calibrated prior to the cruise in the NPS calibration laboratory. The pressure calibration was carried out using a Chandler Engineering dead weight tester as a standard. At 20 approximately equally spaced pressures from 50 to 6000 dbar, indicated pressures from the standard and the CTD sensor were recorded. A regression was then performed fitting the CTD pressures to the standard. The result yielded a linear fit with a slope of 0.9994735. The CTD pressure offset at the beginning of each cast was used as the intercept.

The temperature calibration was done using a model 162CE Rosemount Platinum Resistance Temperature Standard (PRTS) in conjunction with an EG&G Automatic Temperature Bridge (Model ATB-1250). The standard (PRTS) sensor was calibrated using a triple point cell. A temperature bath of 70 - 80 liters of fresh water in an insulated tub was used to compare the PRTS and the CTD sensor at 1 °C increments from 0 - 20 °C. Thirty data points were collected at each temperature and then averaged to yield a single value for each step. A regression was run on the 21 data points and a 2^{nd} order polynomial ($y = ax^2 + bx + c$) was found to yield the best fit of the CTD sensor values to the temperature standard. The coefficients for correction were a = 1.0778572E-5, b = 0.9994981, and c = 0.0025016.

The conductivity calibration was carried out using an AGE Minisal as a standard. A constant conductivity bath was used to

compare the standard and sample sensor conductivities at five different conductivity levels. Regression analysis was used to compare the sample cell conductivities with the standard sensor conductivities (Minisal). A linear correction was found for the CTD sensor with coefficients of 1.0005409 (slope) and +0.0083415 (intercept).

The Seabird temperature and conductivity probes used in the underway sampling system were calibrated by the Seabird Corporation approximately four months prior to the cruise and the calibration coefficients were applied within the acquisition software.

A total of 59 water samples were taken at the 29 CTD stations for further calibration of the CTD salinity data. The CTD pressure, conductivity and temperature were recorded as each sample was taken. These numbers, after applying the appropriate calibration coefficients, were used to calculate CTD salinity and the results compared with the water sample salinities calculated using an AGE Minisal in the laboratory. The station, depth of sample, CTD salinity calculated using the appropriate calibrations, sample salinity from the minisal, and difference between CTD and minisal salinities are listed in Table 3.

Differences between CTD and sample salinities for stations 101, 1-7, and 13-28, were very consistent, but a significant and variable shift in the differences for stations 8 - 12 was observed. For this reason the data of Table 2 were divided into several groups for calculation of the final salinity

Table 3. Differences between salinities (psu) calculated using the corrected CTD pressure, temperature, and conductivity readings and those of the water samples from the same depth measured by the AGE Minisal laboratory salinometer.

STA	P (dbar)	CTD SAL	BOTTLE SAL	DIFFERENCE
101	1678.2	34.634	34.580	+0.054
101	2.1	32.693	32.642	+0.051
1	473.6	34.237	34.185	+0.052
1	1.8	33.149	33.103	+0.046
2	485.2	34.236	34.186	+0.050
2	1.8	33.309	33.256	+0.053
2 2 3 3	726.2	34.353	34.301	+0.052
3	2.4	33.184	33.131	+0.053
4	449.7	34.204	34.149	+0.055
4	2.2	33.124	33.071	+0.053
5	510.3	34.256	34.205	+0.051
5 5 6	2.0	33.453	33.402	+0.051
6	2453.8	34.696	34.644	+0.052
6	0.9	33.080	33.027	+0.053
7	2204.3	34.680	34.627	+0.053
7	1.6	33.105	33.052	+0.053
8	2086.8	34.668	34.615	+0.053
8	1.7	33.195	33.224	-0.029
9	2024.1	34.618	34.613	+0.002
9	2.2	33.099	33.080	+0.019
10	1618.0	34.602	34.567	+0.035
10	1.2	33.138	33.120	+0.018
11	2326.0	34.664	34.640	+0.024
11	0.9	33.130	33.114	+0.016
12	3150.0	34.699	34.667	+0.032
12	2.0	33.151	33.118	+0.033
13	2665.6	34.711	34.656	+0.055
13	1.8	33.110	33.055	+0.055
14	2642.0	34.707	34.654	+0.053
14	2.1	33.110	33.056	+0.054
15	2636.2	34.706	34.653	+0.053
15	2.5	33.061	33.007	+0.054
16	1013.9	34.501	34.444	+0.057
16	1.4	33.080	33.026	+0.054
17	1006.7	34.500	34.447	+0.053
17	2.3	33.045	32.991	+0.054
18	3457.9	34.728	34.672	+0.056
18	3.0	33.166	33.111	+0.055
19	1013.9	34.508	34.455	+0.053
19	3.3	33.185	33.130	+0.055
20	1012.4	34.512	34.457	+0.055
20	1.3	33.164	33.109	+0.055
21	1012.0	34.505	34.452	+0.053
21	2.1	33.067	33.013	+0.054

Table 2. (continued)

STA	P (dbar)	CTD SAL	BOTTLE SAL	DIFFERENCE
22 22	1025.6	34.502 33.124	34.448 33.070	+0.054 +0.054
23	3581.4	34.733	34.676	+0.057
23	2.8	33.062	33.005	+0.057
24 24	1010.9	34.502 33.143	34.446 33.089	+0.056 +0.054
25	1013.2	34.491	34.439	+0.052
25	1.9	33.044	32.990	+0.054
26	1765.6	34.641	34.587	+0.054
26	3.2	33.278	33.225	+0.053
27 27	1723.5 2.5	34.634 33.360	34.580 33.306	+0.054 +0.054

calibrations.

The data from stations 101, 1-7, and 13-28, consisting of 49 points, made up the main group of data. The mean and standard deviation of the differences between the CTD salinities and sample salinities of this group were calculated and points further than two standard deviations from the mean were discarded. A regression analysis was then run on the remaining data points to calculate final calibration coefficients. The mean and standard deviation of the original differences were 0.054 and 0.0021 respectively. Two data points were further than two standard deviations from the mean difference (the 1.8 dbar data point at station 1 and the 3043.8 dbar point at station 28), were assumed to be in error, and were eliminated from further consideration. Regression analysis of the remaining 47 points yielded a linear best fit with a slope of 1.0001012 and intercept of -0.05728. Following the application of this correction to the CTD salinities, the standard deviation of the difference between the bottle salinities and the corrected CTD salinity was reduced to 0.0016. This was the final adjustment to the CTD salinities of stations 101, 1-7, and 13-28.

For stations 8-12 differences between CTD and bottle salinities were inconsistent. Because these data were inconsistent both within this subgroup of stations as well as with the main group of data (stations 101, 1-7, and 13-28), it was decided that individual corrections for each station would be made. A simple linear correction was applied to the data of each station based

Table 4. Final calibration coefficients (slope and intercept) applied to stations 8-12 to adjust CTD salinity to the bottle sample salinities of each station.

STATION	SLOPE	INTERCEPT
8	0.9438379	1.8937158
9	1.0094691	-0.3325396
10	0.9885230	0.3620868
11	0.9947265	0.1591283
12	1.0009887	-0.0665075

on the two sample points at that station. These correction coefficients are listed in Table 4. The reasons for the shift in the differences and the inconsistent nature of these differences remains unclear, but is possibly due to sensor fouling that gradually cleared.

HYDROGRAPHIC DATA PROCESSING

The raw CTD data were processed on an PC compatible computer using an EG&G Marine Instruments software package specifically designed for the processing of data collected with EG&G CTD systems. It flags suspicious pressure, conductivity, and temperature points based on user specified first difference criteria, allowing the user to examine and interpolate across flagged points if necessary. Once any bad points were eliminated through interpolation, salinity was calculated from corrected values of temperature, pressure, and conductivity according to the algorithm of Lewis and Perkin (1981) and utilizing a dual time lag filter to remove time lag spikes. The data were then averaged to 2 dbar pressure intervals. The final salinity correction (as described above) was then applied.

ADCP DATA ACQUISITION AND CALIBRATION

The Acoustic Doppler Current Profiler (ADCP) data were collected using an RD Instruments vessel mounted ADCP (VM-ADCP) operating on a nominal frequency of 150 kHz. Data were collected using an 80286 based PC and the Data Acquisition Software (DAS) provided by RD Instruments in up to 60 eight meter bins over a three minute sampling ensemble. Navigation information was

supplied to the DAS from a Trimble Model 10X GPS receiver. The data were collected on 1.2M 5.25 inch floppy disks. Approximately 21 hours of data were collected on each disk.

A calibration run was made at the beginning of the cruise to quantify rotation and sensitivity errors in the ADCP data. Rotation error (α) is made up of two components. The first is any alignment error between the centerline of the ship and the mounting of the instrument and the second is gyro compass error. The sensitivity error (B) is generally very small and is due to errors in beam geometry. A thorough description of these errors and the methods used to quantify them may be found in Joyce, (1989). Our calibration run consisted of two transects; from 37° 8.5' N., 122° 43.9' W. to 37° 13.2' N., 122° 50.0' W. and back to the first point. The calibration run was made with the bottom tracking feature of the ADCP switched on. Following the methods of Joyce (1989) the resulting calibration coefficients were: α = 2.071 and $1+\beta = 1.000$ (no correction). Raw doppler velocity data were rotated by α and multiplied by 1+B before further processing of the data.

ADCP DATA PROCESSING

ADCP data were processed one disk (approximately 21 hours) at a time. Once the raw ADCP data had been corrected for rotation and sensitivity errors as described above, the first step of processing the data was to quality control the navigation data and calculate ship's velocity. Geographic positions as recorded by the DAS at the end of each three-minute ensemble were checked

for obviously bad points and replaced using linear interpolation if necessary. Once edited these data were used to calculate the u (eastward) and v (northward) components of ship's velocity.

The next step in processing was the determination of the depth (bin number) to which the data remained reliable for each three minute ensemble. This depth is a function of either the bottom depth or the Percent Good Return (PGR). The PGR is the percentage of pings for a particular ensemble having good solutions based on a signal to noise threshold or on error velocity. If the PGR fell below 50% for a particular bin, the data of that bin and all deeper bins for that ensemble were eliminated from further consideration.

The bottom depth provided another limit for the deepest bin of good data if the bottom was shallower than about 500m. Bottom depth was determined directly when the bottom tracking option was turned on and by a sharp subsurface increase in the AGC signal when the bottom tracking was off. The shallowest bin as determined by PGR or bottom depth was defined as the bin to which data remained reliable for a particular ensemble.

The next step in processing the ADCP data was the calculation of a reference layer velocity. A reference layer two bins wide (16m) was used for these data. Choosing the depth of the reference layer is somewhat arbitrary, but the general criteria used was to choose one deep enough that the velocity within the reference layer was nearly constant but shallow enough that all or nearly all the ensembles being processed had good data down to

the depth of the reference layer. The bins used to define a reference layer were not necessarily the same for each disk of ADCP data.

An absolute reference layer velocity was calculated by subtracting the u and v components of ship's velocity from the u and v components of the raw reference layer velocity. The absolute reference layer velocity was then smoothed by applying a low pass filter with a cutoff period of 25 minutes.

Once a smoothed absolute reference layer velocity was obtained the raw velocity profiles of each ensemble were adjusted to the filtered reference layer velocity to yield the final (3 minute) absolute water velocity profiles. As a final check each ensemble was examined visually for any remaining bad profiles.

DATA PRESENTATION

The sound source and current meter mooring locations are shown in Fig. 1 and the CTD station positions and numbers are shown in Fig. 2. Hourly averaged wind vectors during the cruise are shown in Fig. 3. Hydrographic data are presented in the form of horizontal maps, vertical sections, waterfall plots, a T/S plot, and data listings. ADCP data are presented in the form of horizontal maps and vertical sections. Maps of temperature (T), salinity (S), density anomaly (γ_{θ}) , spiciness (π) , and ADCP velocity at selected pressures are presented in Figs. 4 - 27.

Density anomaly (γ_{θ}) was calculated according to the algorithms found in Volume 4 of the International Oceanographic Tables (UNESCO, 1987) using potential temperature, atmospheric pressure,

and in-situ salinity. Spiciness (π) was calculated according to the algorithm of Flament (unpublished manuscript, 1986).

Vertical sections of temperature, salinity, density anomaly, and spiciness from 0 - 500 dbar for sections A - E are shown in Figs. 28 - 32. In these sections station positions are indicated by diamond symbols along the top of the plot. Vertical sections of along-transect and across-transect ADCP velocity for sections A - E are presented in Figs. 33 - 37. In these vertical sections the ADCP velocities have been rotated 59° to correspond with section headings. Waterfall plots of temperature, salinity, density anomaly, and spiciness from 0 - 500 dbar are shown in Figs. 38 - 42. For stations deeper than 500 dbar, waterfall plots of temperature, salinity, density anomaly and spiciness from 500 - 3500 dbar are shown in Fig. 43. In all waterfall plots the leftmost profile is plotted as true values while the data values for each profile to the right are successively offset by the amount indicated on the figure. Figure 44 is a T/S diagram which includes data from all CTD stations completed during the cruise. Data from each CTD cast are presented in Appendix A. The data have been subsampled vertically to preserve the shape of the profile while minimizing the amount of data required for presentation.

ACKNOWLEDGEMENTS

This work was funded by the Office of Naval Research. The able assistance of the officers and crew of the R/V POINT SUR is much appreciated.

Figure 3. Hourly averaged wind vectors measured at 17 m height from the R/V POINT SUR during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992.

Figure 4. Map of sea surface temperature (T) during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 5. Map of sea surface salinity (S) during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 6. Map of sea surface density anomaly (γ_{θ}) during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 7. Map of sea surface spiciness (π) during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 8. Map of temperature (T) at 20 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 9. Map of salinity (S) at 20 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 10. Map of density anomaly (γ_{θ}) at 20 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 11. Map of spiciness (π) at 20 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 12. 5 km averaged ADCP current vectors (cm s⁻¹) from 15-23 m during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 13. Map of temperature (T) at 75 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 14. Map of salinity (S) at 75 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 15. Map of density anomaly (γ_{θ}) at 75 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 16. Map of spiciness (π) at 75 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 17. 5 km averaged ADCP current vectors (cm s⁻¹) from 71-79 m during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 18. Map of temperature (T) at 200 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 19. Map of salinity (S) at 200 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 20. Map of density anomaly (γ_{θ}) at 200 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 21. Map of spiciness (π) at 200 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 22. 5 km averaged ADCP current vectors (cm s⁻¹) from 199-207 m during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 23. 5 km averaged ADCP current vectors (cm s⁻¹) from 295-303 m during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 24. Map of temperature (T) at 500 m depth during the

Eastern Boundary Current Accelerated Research

Initiative cruise of June 9-16, 1992 aboard the R/V

POINT SUR.

Figure 25. Map of salinity (S) at 500 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 26. Map of density anomaly (γ_{θ}) at 500 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 27. Map of spiciness (π) at 500 m depth during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 28. Vertical sections of a) temperature (T), b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) for section A (CTD stations 1 - 5) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 28b.

Figure 28c.

Figure 28d.

Figure 29. Vertical sections of a) temperature (T), b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) for section B (CTD stations 6 - 10) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 29b.

Figure 29c.

Figure 29d.

Figure 30. Vertical sections of a) temperature (T), b) salinity (S), c) density anomaly (γ_{θ}) , and d) spiciness (π) for section C (CTD stations 11 - 15) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 30b.

Figure 30c.

Figure 30d.

Figure 31. Vertical sections of a) temperature (T), b) salinity (S), and c) density anomaly (γ_{θ}) , and d) spiciness (π) for section D (CTD stations 16 - 20) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 31b.

Figure 31c.

Figure 31d.

Figure 32. Vertical sections of a) temperature (T), b) salinity (S), and c) density anomaly (γ_{θ}) , and d) spiciness (π) for section E (CTD stations 21 - 25) of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 32b.

Figure 32c.

Figure 32d.

rigure 33. Vertical sections of 5 km averaged a) across-transect and b) along-transect ADCP velocity (cm s⁻¹) for section A of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 33b.

Figure 34. Vertical sections of 5 km averaged a) across-transect and b) along-transect ADCP velocity (cm s) for section B of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 34b.

Figure 35. Vertical sections of 5 km averaged a) across-transect and b) along-transect ADCP velocity (cm s⁻¹) for section C of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 35b.

rigure 36. Vertical sections of 5 km averaged a) across-transect and b) along-transect ADCP velocity (cm s') for section D of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 36b.

Figure 37. Vertical sections of 5 km averaged a) across-transect and b) along-transect ADCP velocity (cm s⁻¹) for section E of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

Figure 37b.

Figure 38b.

Figure 38d.

Figure 39c.

Figure 40b.

84

Figure 40c.

Figure 40d.

Figure 41c.

Figure 42b.

Figure 42c.

Figure 43. Waterfall plots from 500-3500 m of a) temperature (T), spiciness (π) for all CTD stations deeper than 500 m of the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V b) salinity (S), c) density anomaly (γ_{θ}) , and d)

POINT SUR.

Figure 43b.

Figure 44. T/S diagram which includes data from all CTD stations completed during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR. The data included in this diagram consists of all data listed in Appendix A.

APPENDIX A

CTD DATA LISTINGS

In the following table, station data are listed in chronological order. The specific volume anomaly (δ) is calculated using the algorithms found in Volume 4 of the International Oceanographic Tables (UNESCO, 1987). The summations of dynamic height ($\Sigma\Delta D$) is made from the surface.

Table 3. Data listings at selected pressures of temperature (T), salinity (S), density anomaly (γ_{θ}), specific volume anomaly (δ), summation of dynamic height ($\Sigma\Delta D$), and spiciness (π), for CTD stations occupied during the Eastern Boundary Current Accelerated Research Initiative cruise of June 9-16, 1992 aboard the R/V POINT SUR.

STATION: 101 DATE: 6/11/92 1430 GMT

LAT: 40° 24.5' N. LON: 126° 23.3' W.

P (dbar)	T (°C)	S	Υ _θ -3	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{2}^{\Delta} D$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0	14.101	32.528	24.257	365.57	0.007	03
5.0	14.095	32.528	24.259	365.52	0.018	03
10.0	14.062	32.570	24.298	361.91	0.036	0.00
15.0	13.484	32.597	24.437	348.82	0.054	10
20.0	12.620	32.673	24.666	327.10	0.071	22
25.0	12.511	32.716	24.720	322.02	0.087	21
30.0	12.155	32.761	24.823	312.38	0.103	24
35.0	11.949	32.781	24.877	307.30	0.119	27
40.0	11.887	32.819	24.918	303.53	0.134	- .25
45.0	11.780	32.826	24.944	301.20	0.149	26
50.0	11.625	32.860	24.998	296.10	0.164	27
60.0	11.690	32.929	25.040	292.36	0.193	20
70.0	11.625	32.959	25.076	289.22	0.223	19
80.0	10.986	32.989	25.214	276.17	0.251	28
90.0	10.678	33.030	25.301	268.16	0.278	31
100.0	10.276	33.072	25.403	258.61	0.305	34
125.0	8.941	33.225	25.740	226.73	0.365	45
150.0	8.692	33.526	26.015	201.11	0.418	25
175.0	8.472	33.691	26.178	186.02	0.466	- .15
200.0	8.113	33.796	26.315	173.39	0.511	12
225.0	7.988	33.881	26.400	165.68	0.553	07
250.0	7.757	33.939	26.480	158.46	0.594	06
275.0	7.319	33.964	26.562	150.85	0.632	10
300.0	7.172	34.000	26.611	146.51	0.670	10

STATION: 101 (cont)

P (335 222)	T (°C)	S	Υ _θ -3	$(10^{-8} \text{m}^{\frac{6}{3}} \text{kg}^{-1})$	$\Sigma\Delta D$ (m^2s^{-2})	π (kg m ⁻³)
(dbar)	(C)		(Kg m)	(10 m kg)	(ms)	(kg m)
325.0	6.806	34.006	26.667	141.41	0.705	14
350.0	6.659	34.058	26.727	135.97	0.740	12
375.0	6.477	34.065	26.757	133.35	0.774	14
400.0	6.287	34.070	26.786	130.84	0.807	16
425.0	6.058	34.065	26.812	128.53	0.839	19
450.0	5.978	34.091	26.842	125.92	0.871	18
475.0	5.670	34.085	26.876	122.73	0.902	23
500.0	5.216	34.066	26.915	118.85	0.932	30
550.0	4.879	34.097	26.978	113.03	0.991	31
600.0	4.683	34.131	27.027	108.68	1.046	30
650.0	4.547	34.179	27.081	103.99	1.099	28
700.0	4.342	34.226	27.140	98.56	1.149	27
750.0	4.242	34.271	27.187	94.50	1.198	24
800.0	4.155	34.304	27.223	91.48	1.244	23
850.0	4.026	34.327	27.255	88.69	1.289	22
900.0	3.890	34.363	27.298	84.86	1.332	21
950.0	3.793	34.383	27.324	82.65	1.374	20
1000.0	3.652	34.412	27.361	79.26	1.415	19
1100.0	3.412	34.448	27.413	74.56	1.491	19
1200.0	3.207	34.473	27.453	71.03	1.564	1 9
1300.0	2.991	34.497	27.493	67.40	1.633	19
1400.0	2.813	34.516	27.524	64.54	1.699	- .19
1500.0	2.644	34.534	27.554	61.82	1.762	19
1600.0	2.347	34.563	27.602	56.74	1.821	19
1680.0	2.149	34.581	27.633	53.49	1.865	19

STATION: 1 DATE: 6/13/92 1800 GMT

LAT: 38° 32.8' N. LON: 123° 41.7' W.

P (dbar)	T (°C)	S	γ _θ 3	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{n=0}^{\infty} D$ (m ² s ⁻²)	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 100.0 125.0 150.0	13.320 13.011 12.356 11.977 11.667 11.397 11.008 11.036 10.809 10.871 10.210 10.572 9.742 9.700 9.573 9.481 8.307 8.446 8.530	32.855 32.892 32.950 32.959 33.028 33.067 33.083 33.220 33.286 33.339 33.231 33.418 33.379 33.497 33.563 33.652 33.652 33.652	24.669 24.759 24.931 25.009 25.121 25.201 25.283 25.384 25.476 25.507 25.537 25.621 25.731 25.830 25.903 25.903 26.203 26.300 26.388	326.36 317.86 301.61 294.24 283.77 276.28 268.56 259.02 250.39 247.59 244.78 237.08 226.70 217.48 210.78 202.92 182.72 174.00 166.14	0.007 0.016 0.032 0.046 0.061 0.075 0.089 0.102 0.115 0.127 0.139 0.163 0.186 0.209 0.230 0.251 0.298 0.343 0.385	0.07 0.03 05 12 12 14 20 09 08 02 23 01 19 10 07 02 17 03 0.08
200.0 225.0 250.0 275.0	8.425 8.108 7.816 7.506	34.019 34.053 34.076 34.073	26.443 26.518 26.579 26.622	161.41 154.62 149.14 145.32	0.426 0.466 0.504 0.541	0.10 0.08 0.06 0.01
	7.269 7.074 6.864 6.648 6.354 6.049 5.934 5.685	34.092 34.100 34.113 34.128 34.141 34.157 34.164 34.182	26.670 26.704 26.743 26.784 26.833 26.885 26.905 26.951	141.02 138.07 134.64 130.97 126.44 121.61 119.93 115.73	0.577 0.611 0.645 0.679 0.711 0.742 0.772	01 03 05 07 10 12 13

STATION: 2 DATE: 6/13/92 1918 GMT

LAT: 38° 38.6' N. LON: 123° 46.9' W.

P (dbar)	T (°C)	S	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\Sigma\Delta D$ (m^2s^{-2})	π (kg m ⁻³)
2.0	13.386	33.219	24.937	300.81	0.006	0.37
5.0	13.374	33.218	24.939	300.70	0.015	0.37
10.0	13.322	33.227	24.956	299.20	0.030	0.36
15.0	12.749	33.186	25.038	291.53	0.045	0.21
20.0	12.139	33.238	25.196	276.66	0.059	0.13
25.0	12.031	33.295	25.260	270.63	0.073	0.16
30.0	11.894	33.291	25.283	268.58	0.086	0.13
35.0 40.0	11.501	33.267	25.337	263.51 257.56	0.100	0.04
45.0	10.901	33.210 33.176	25.401 25.488	249.35	0.113 0.125	12 26
50.0	9.811	33.176	25.641	234.83	0.123	26
60.0	9.565	33.466	25.828	217.28	0.160	15
70.0	9.327	33.564	25.943	206.50	0.181	11
80.0	9.127	33.614	26.014	199.90	0.201	10
90.0	9.189	33.721	26.088	193.09	0.221	01
100.0	9.089	33.789	26.158	186.70	0.240	0.03
125.0	8.907	33.883	26.261	177.41	0.286	0.07
150.0	8.724	33.940	26.334	170.86	0.329	0.09
175.0	8.588	33.962	26.373	167.60	0.371	0.08
200.0	8.405	33.998	26.429	162.67	0.412	0.08
225.0	7.923	34.068	26.557	150.86	0.452	0.07
250.0	7.726	34.083	26.598	147.33	0.489	0.05
275.0	7.534	34.086	26.628	144.75	0.525	0.02
300.0	7.472	34.092	26.642	143.85	0.561	0.02
325.0	7.277	34.093	26.670	141.43	0.597	01
350.0	7.062	34.104	26.709	138.01	0.632	03
375.0	6.679	34.121	26.775	131.87	0.666	07
400.0	6.556	34.132	26.800	129.79	0.699	08
425.0 450.0	6.480	34.139	26.816	128.56	0.731 0.763	08 10
475.0	6.220 5.858	34.156 34.171	26.863 26.921	124.23 118.72		
486.0	5.676	34.171	26.953	115.61	0.806	15 15
400.0	3.070	24.104	20.755	110.01	3.000	• 10

STATION: 3 DATE: 6/13/92 2041 GMT

LAT: 38° 44.9' N. LON: 123° 52.8' W.

P (dbar)	T (°C)	S	(kg m^{-3})	$(10^{-8} \text{m}^{\frac{6}{3}} \text{kg}^{-1})$	$\sum_{m=1}^{\infty} \sum_{m=1}^{\infty} D_{m}$	π (kg m ⁻³)
2.0	13.527	32.991	24.732	320.31	0.006	0.22
5.0	13.500	33.139	24.852	308.97	0.016	0.33
10.0	12.618	33.164	25.046	290.62	0.031	0.17
15.0	12.125	33.200	25.169	279.11	0.045	0.10
20.0	11.921	33.233	25.233	273.12	0.059	0.09
25.0	11.873	33.265	25.267	270.01	0.072	0.10
30.0	11.768	33.256	25.279	268.93		
35.0	11.814	33.276	25.286	268.39	0.099	0.10
40.0	11.764	33.286	25.304	266.86	0.113	0.10
45.0	11.476	33.287	25.357	261.84	0.126	0.05
50.0	11.095	33.256	25.402	257.66	0.139	05
	9.959	33.331	25.657	233.52	0.164	19
	9.386	33.361	25.775	222.47	0.186	
80.0	9.138	33.611	26.010	200.29	0.207	11
90.0	9.264 9.220	33.754 33.829	26.102	101 00	\wedge \sim \sim \sim	0.03
100.0	9.220	33.829	26.168	185.74	0.246	0.08
	8.984	33.887	26.252	1/8.25	0.291	0.09
	8.697	33.927				
	8.540	33.968		166.48	0.377	0.08
	8.381	34.008	26.441	161.58	0.418	0.09
225.0	8.204	34.041	26.494	156.95	0.458	0.09
250.0	7.974	34.053	26.538	153.12	0.497	0.06
275.0	7.690	34.068	26.591	148.33		
300.0	7.455	34.083	26.637	144.28		
325.0	7.228	34.089		141.05	0.607	
350.0	7.070	34.118	26.719	137.08	0.642	02
375.0	6.653	34.121	26.778	131.52	0.675	07
400.0	6.525	34.160	26.826	127.29	0.707	06
	6.422	34.155		126.61		
	6.201	34.162		123.54		
475.0	5.994	34.163	26.898	121.06		12
500.0	5.793	34.172	26.930	118.16		14
550.0	5.585	34.190	26.970	114.78	0.889	15
600.0	5.101	34.233	27.061	106.12	0.944	18
	4.893 4.724	34.253 34.275		102.62		
700.0	4.724	34.275	27.138 27.175	99.45 95.99	1.047 1.074	19 18
120.0	4.0/4	34.3UI	21.113	20.22	1.0/4	10

STATION: 4 DATE: 6/13/92 2206 GMT

LAT: 38° 51.4' N. LON: 123° 57.0' W.

P (dbar)	T (°C)	S	γ _θ (kg m ³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0	14.045	33.037	24.662	327.02	0.007	0.36
5.0	13.936	33.041	24.688	324.66	0.016	0.34
10.0	12.834	33.064	24.927	302.00	0.032	0.13
15.0	12.350	33.074	25.029	292.43	0.047	0.05
20.0	12.381	33.138	25.072	288.42	0.061	0.10
25.0	12.277	33.136	25.091	286.76	0.076	0.08
30.0	11.548	33.089	25.190	277.40	0.090	10
35.0	11.119	33.071	25.254	271.42	0.104	19
40.0	10.040	33.187	25.531	245.11	0.117	29
45.0	9.910	33.327	25.662	232.75	0.128	20
50.0	9.962	33.422	25.728	226.63	0.140	12
60.0	9.569	33.523	25.872	213.11	0.162	10
70.0	9.128	33.575	25.984	202.63	0.183	14
80.0	9.177	33.675	26.054	196.14	0.203	05
90.0	9.117	33.734	26.110	191.02	0.222	01
100.0	9.064	33.793	26.165	186.02	0.241	0.03
125.0	8.993	33.878	26.243	179.05	0.287	0.08
150.0	8.804	33.923	26.308	173.33	0.331	0.09
175.0	8.602	33.951	26.362	168.66	0.374	0.08
200.0	8.460	33.992	26.416	163.94	0.415	0.09 0.08
225.0 250.0	8.140 7.769	34.038 34.069	26.501 26.580	156.24 148.98	0.455 0.493	0.08
275.0	7.769	34.009	26.580	145.98	0.493	0.04
300.0	7.234	34.079	26.670	141.05	0.566	02
325.0	6.990	34.108	26.722	136.37	0.600	04
350.0	6.796	34.110	26.750	133.94	0.634	06
375.0	6.600	34.116	26.782	131.18	0.667	08
400.0	6.353	34.110	26.825	127.25	0.700	10
425.0	6.262	34.130	26.845	125.64	0.731	11
450.0	6.159	34.146	26.863	124.18	0.762	12

STATION: 5 DATE: 6/13/92 2323 GMT

LAT: 38° 58.3' N. LON: 124° 1.6' W.

P (dbar)	T (°C)	S	γ _θ -3	(10 ⁻⁸ m ³ kg ⁻¹)	$\Sigma\Delta D$ (m^2s^{-2})	π (kg m ⁻³)
2.0	14.531	33.365	24.813	312.62	0.006	0.73
5.0	14.435	33.358	24.828	311.28	0.016	0.70
10.0	13.438	33.335	25.017	293.47	0.031	0.47
15.0	12.485	33.330	25.201	276.03	0.045	0.28
20.0	11.908	33.326	25.307	266.02	0.058	0.16
25.0	11.656	33.316	25.347	262.37	0.072	0.10
30.0	11.464	33.321	25.386	258.79	0.085	0.07
35.0	11.321	33.308	25.402	257.39	0.098	0.03
40.0	11.092	33.319	25.452	252.74	0.110	0.00
45.0	10.308	33.325	25.593	239.36	0.123	13
50.0	9.528	33.309	25.711	228.17	0.134	28
	9.218	33.380	25.817	218.30	0.157	28
	9.377	33.481	25.870	213.43	0.178	17
	8.979	33.555	25.992	202.03	0.199	18
	8.854	33.643	26.080	193.80	0.219	13
100.0	8.559	33.678	26.153	186.98	0.238	14
125.0	8.882	33.902	26.279	175.63	0.284	0.08
150.0	8.577	33.982	26.390	165.55	0.326	0.10
175.0	8.314	34.016	26.457	159.57	0.367	0.08
200.0 225.0	8.019 7.752	34.043 34.053	26.523 26.570	153.69 149.49	0.406 0.444	0.06
250.0	7.752	34.053	26.610	149.49	0.444	0.03
275.0	7.418	34.077	26.639	143.71	0.481	0.03
300.0	7.321	34.078	26.659	142.11	0.553	01
325.0	6.982	34.098	26.715	137.00	0.588	04
350.0	6.790	34.105	26.747	134.23	0.621	07
375.0	6.526	34.113	26.789	130.43	0.655	09
400.0	6.334	34.121	26.820	127.67	0.687	11
425.0	6.172	34.132	26.850	125.06	0.718	13
450.0	5.892	34.154	26.903	120.14	0.749	14
475.0	5.697	34.175	26.943	116.42	0.779	15
500.0	5.505	34.193	26.981	112.96	0.808	16
510.0	5.387	34.202	27.002	110.94	0.819	17

STATION: 6 DATE: 6/14/92 0048 GMT

LAT: 38° 53.3' N. LON: 124° 10.4' W.

P (dbar)	T (°C)	s	γ _θ 3	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0	14.224 14.273	33.237 33.235	24.779 24.768		0.006 0.016	0.56 0.57
10.0	13.484	33.235	24.768		0.016	0.37
15.0	12.662	33.308	25.149		0.032	0.33
20.0	12.064	33.301	25.259		0.060	0.17
25.0	11.714	33.291	25.317		0.073	0.10
30.0	11.532	33.321	25.373		0.086	0.08
35.0	11.172	33.310	25.430		0.099	0.01
40.0	11.066	33.312	25.451		0.112	01
45.0	11.054	33.345	25.479		0.124	
50.0 60.0	10.755	33.386	25.564		0.137	01
70.0	10.302 9.837	33.402 33.419	25.655 25.746		0.161 0.184	08 14
80.0	9.366	33.460	25.856		0.104	19
90.0	8.730	33.481	25.973		0.227	27
100.0	8.600	33.554	26.050	196.80	0.247	24
125.0	8.842	33.819	26.221	181.18	0.294	0.01
150.0	8.342	33.873	26.340	170.17	0.338	02
175.0	8.278	34.004	26.453	159.89	0.379	0.07
200.0	7.994	34.034	26.519		0.418	0.05
225.0	7.795	34.059	26.569		0.456	0.04
250.0	7.491	34.072	26.623	144.83	0.493	0.01
275.0	7.284	34.104	26.678	139.92	0.528	0.00
300.0 325.0	7.028 6.808	34.104 34.114	26.713 26.751	136.81 133.46	0.563 0.597	03 06
350.0	6.674	34.114	26.798	129.33	0.630	05
375.0	6.402	34.146	26.831	126.33	0.662	08
		34.163	26.868	123.02	0.693	10
		34.167	26.894		0.723	12
		34.180	26.925			
475.0	5.746	34.187	26.947	116.14	0.782	14
		34.200			0.811	14
550.0					0.867	17
		34.259				
		34.282				
		34.305				
		34.330 34.350	27.217 27.250			
		34.374				
900.0		34.397				
950.0		34.419				
	3.655	34.436	27.380	77.51		
1100.0	3.358	34.471	27.437	72.23	1.351	
1200.0	3.147	34.490	27.472	69.08	1.422	18

STATION: 6 (cont)

P (dbar)	T (°C)	S	$(kg m^{-3})$	$(10^{-8} \text{m}^{\frac{6}{3}} \text{kg}^{-1})$	$\sum \Delta D$ $(m^2 s^{-2})$	π (kg m ⁻³)
1300.0 1400.0 1500.0 1600.0 1700.0 1800.0 1900.0 2100.0 2200.0 2300.0 2400.0	2.951 2.843 2.655 2.451 2.291 2.157 2.082 2.001 1.948 1.883 1.866 1.824 1.771	34.513 34.528 34.535 34.556 34.572 34.586 34.599 34.607 34.615 34.623 34.623 34.633 34.633	27.509 27.531 27.554 27.588 27.615 27.637 27.667 27.669 27.690 27.696 27.704 27.716	65.76 64.01 61.87 58.47 55.90 53.75 52.33 51.18 50.34 49.34 49.21 48.60 47.49	1.489 1.554 1.617 1.677 1.734 1.789 1.842 1.893 1.944 1.994 2.044 2.092 2.123	18 19 19 19 19 19 19 19 18 18

STATION: 7 **DATE:** 6/14/92 0306 **GMT**

LAT: 38° 46.7' N. LON: 124° 5.9' W.

P (dbar)	T (°C)	S	γ _θ -3)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m} D$	π (kg m ⁻³)
2.0 5.0 10.0	13.717 13.633 12.820	33.021 33.021 32.958	24.717 24.734 24.847	320.23	0.006 0.016 0.032	0.28 0.26 0.05
15.0	12.576	32.981	24.913	303.43	0.047	0.02
20.0 25.0	12.202	32.976 32.999			0.062 0.077	06 08
30.0	11.835	32.997	25.066	289.24	0.091	12
35.0	11.472	32.994	25.130		0.106	19
40.0 45.0	11.122 10.987	33.056 3 3. 094	25.242 25.296		0.120 0.133	20 20
50.0	10.285	33.048	25.381	259.56	0.146	36
60.0	10.112	33.186	25.518		0.172	28
70.0 80.0	9.579 9. 157	33.308 33.392	25.702 25.836		0.195 0.218	27 28
90.0	8.741	33.494	25.981		0.218	26
100.0	8.431	33.567	26.086		0.259	25
125.0 150.0	8.127 8.227	33.752 33.928	26.277		0.304 0.347	15 0.00
175.0	8.143	34.037	26.401 26.499	164.40 155.48	0.347	0.00
200.0	7.890	34.064	26.558		0.425	0.06
225.0	7.662	34.073	26.599	146.73	0.462	0.03
250.0 275.0	7.437 7.197	34.084 34.095	26.640 26.683	143.18 139.38	0.498 0.534	0.01 02
300.0	6.937	34.099	26.722	135.95	0.568	05
325.0	6.784	34.115	26.756	133.02	0.602	06
350.0	6.631 6.461	34.127	26.785	130.47	0.635	07
375.0 400.0	6.210	34.139 34.159	26.817 26.866	127.67 123.22	0.667 0.698	08 10
		34.169	26.893		0.729	11
		34.185	26.923		0.759	12
		34.191 34.209		115.77 112.42		13 14
		34.220			0.872	17
600.0	4.972	34.246	27.086	103.58		
				99.18		
		34.309		95.63 92.59		
		34.353				
		34.380				
900.0 950.0		34.395 34.422				
		34.422				
1100.0	3.385	34.470	27.434	72.61	1.357	17
1200.0	3.164	34.491	27.472	69.20	1.428	18

STATION: 7 (cont)

1300.0 2.951 34.512 27.508 65.83 1.495 18 1400.0 2.772 34.526 27.536 63.33 1.560 19 1500.0 2.538 34.553 27.578 59.18 1.621 18 1600.0 2.404 34.566 27.600 57.18 1.679 19 1700.0 2.263 34.579 27.623 55.06 1.735 19 1800.0 2.140 34.592 27.643 53.10 1.789 19 1900.0 2.065 34.600 27.656 52.05 1.842 19 2000.0 1.983 34.611 27.672 50.67 1.893 19 2100.0 1.911 34.621 27.686 49.45 1.943 18 2200.0 1.885 34.626 27.693 49.14 1.992 18	P (dbar)	T (°C)	S	γ _θ 3	$(10^{-8} \text{m}^{\frac{6}{3}} \text{kg}^{-1})$	$\sum_{n=2}^{\infty} D$ $(m^2 s^{-2})$	π (kg m ⁻³)
2212.0 1.879 34.624 27.692 49.26 1.99818	1400.0 1500.0 1600.0 1700.0 1800.0 1900.0 2000.0 2100.0	2.772 2.538 2.404 2.263 2.140 2.065 1.983 1.911 1.885	34.526 34.553 34.566 34.579 34.592 34.600 34.611 34.621 34.626	27.536 27.578 27.600 27.623 27.643 27.656 27.672 27.686 27.693	63.33 59.18 57.18 55.06 53.10 52.05 50.67 49.45 49.14	1.560 1.621 1.679 1.735 1.789 1.842 1.893 1.943	19 18 19 19 19 19 19 18 18

STATION: 8 DATE: 6/14/92 0523 GMT

LAT: 38° 40.3' N. LON: 124° 0.3' W.

P (dbar)	T (°C)	s	γ _θ 3)	$(10^{-8} \text{m}^{\frac{\delta}{3}} \text{kg}^{-1})$	$\sum_{m}^{\Delta} D$ (m ² s ⁻²)	π (kg m ⁻³)
2.0	13.521	33.208	24.901	304.22	0.006	0.39
5.0	13.357	33.208	24.934	301.16	0.015	0.36
10.0	12.973	33.166	24.979	297.08	0.030	0.24
15.0	12.739	33.135	25.000	295.13	0.045	0.17
20.0	12.064	33.067	25.077	287.93	0.059	02
25.0	11.939	33.091	25.120	284.00	0.074	02
30.0 35.0	11.825 11.538	33.100 33.128	25.148	281.46	0.088	04 07
40.0	11.338	33.120	25.222 25.265	274.46 270.49	0.102 0.115	07
45.0	11.261	33.176	25.310	266.28	0.119	08
50.0	10.741	33.128	25.365	261.15	0.142	22
60.0	10.251	33.260	25.553	243.50	0.167	20
70.0	9.793	33.340	25.692	230.40	0.191	21
80.0	9.347	33.405	25.816	218.79	0.213	24
90.0	9.069	33.489	25.926	208.48	0.235	21
	8.762	33.534	26.009	200.69		23
	8.857	33.778		184.44		02
	8.508	33.930	26.360	168.38		0.05
	8.145 7.880	33.987 34.037	26.460	159.22		0.04
	7.614	34.037		152.13 145.83		
	7.276	34.070	26.652	141.91	0.500	
275.0	7.005	34.082				05
	6.837	34.106		134.08		06
325.0	6.615	34.114	26.777	130.87	0.602	08
350.0	6.472	34.130	26.809	128.14	0.635	09
375.0	6.414	34.164	26.843	125.19	0.666	07
400.0	6.241	34.179	26.878	122.14	0.697	08
425.0	6.160	34.200	26.905	119.86	0.728	07
450.0	5.954	34.198	26.930	117.66	0.757	10
475.0 500.0	5.826 5.641	34.208 34.230	26.954 26.994	115.56 111.92	0.786 0.815	11 12
550.0	5.404	34.230	27.055	106.48	0.869	12
600.0	4.943	34.265	27.105	101.82	0.921	17
650.0	4.792	34.289	27.141	98.73	0.972	17
700.0	4.628	34.327	27.190	94.44	1.020	16
750.0	4.441	34.349	27.228	91.05	1.066	16
800.0	4.266	34.373	27.266	87.66	1.111	16
850.0	4.106	34.395	27.301	84.59	1.154	16
900.0	3.928	34.413	27.334	81.59	1.195	16
950.0	3.784	34.432	27.363	78.92	1.235	16
1000.0	3.639	34.451	27.393	76.22	1.274	1 6
1100.0	3.386	34.476	27.438	72.18 69.29	1.349	17 - 17
1200.0	3.197	34.495	27.472	03.23	1.419	17

STATION: 8 (cont)

1300.0 2.972 34.516 27.510 65.78 1.487 1400.0 2.795 34.532 27.539 63.15 1.551 1500.0 2.662 34.545 27.561 61.22 1.614 1600.0 2.447 34.564 27.595 57.83 1.673 1700.0 2.233 34.583 27.628 54.41 1.729 1800.0 2.113 34.595 27.648 52.57 1.783 1900.0 2.075 34.601 27.656 52.10 1.835 2000.0 1.985 34.613 27.673 50.55 1.886 2088.0 1.969 34.615 27.677 50.56 1.931	18 18 18 19 19 19 19

STATION: 9 DATE: 6/14/92 0736 GMT

LAT: 38° 34.5' N. LON: 123° 55.8' W.

P (dbar)	T (°C)	S	γ _θ -3)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$ $(m^{2}s^{-2})$	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 100.0 125.0 150.0 225.0 250.0 275.0 300.0 375.0 400.0	(°C) 13.121 13.113 13.074 12.710 12.354 12.172 12.010 11.878 11.651 11.496 11.378 10.634 10.603 10.009 9.453 9.378 9.072 8.863 8.481 8.253 7.671 7.501 7.149 7.043 6.857 6.703 6.594 6.375 6.240	33.003 33.006 33.009 33.015 33.099 33.144 33.177 33.192 33.222 33.245 33.259 33.259 33.259 33.531 33.531 33.589 33.758 33.758 33.969 34.017 33.987 34.030 34.044 34.059 34.075 34.113 34.123 34.133 34.146	24.827 24.837 24.913 25.047 25.117 25.173 25.210 25.275 25.321 25.354 25.515 25.766 25.897 25.955 26.137 26.280 26.467 26.530 26.588 26.649 26.676 26.765 26.788 26.788 26.824 26.852	311.68 311.35 310.55 303.40 290.81 284.27 279.07 275.69 269.60 265.30 262.31 247.14 240.68 223.60 211.27 205.99 189.17 176.00 165.53 159.02 153.24 148.09 142.56 140.36 137.01 132.47 130.58 127.31 124.92	0.006 0.016 0.031 0.047 0.061 0.076 0.090 0.104 0.117 0.131 0.144 0.169 0.194 0.217 0.238 0.259 0.309 0.354 0.397 0.437 0.437 0.477 0.551 0.551 0.654 0.654 0.654 0.654	0.14 0.15 0.14 0.07 0.07 0.07 0.06 0.05 0.03 0.02 0.01 10 04 06 12 08 0.00 0.08 0.07 0.08 03 03 03 06 07 08 07 08 07 08 07 08 07 08 07 08 07 08 07 08 07 08 07 08 09
450.0 475.0 500.0 550.0 600.0 650.0 700.0 750.0	5.910 5.923 5.691 5.431 5.146 4.784 4.657 4.487 4.234	34.130 34.176 34.185 34.226 34.253 34.271 34.290 34.326 34.347	26.881 26.917 26.952 27.017 27.072 27.128 27.157 27.205 27.249	122.15 119.18 115.89 110.16 105.18 99.97 97.53 93.31 89.21	0.782 0.812 0.841 0.898 0.952 1.003 1.052 1.100 1.146	16 12 14 14 16 18 18 17
850.0 900.0 950.0 1000.0 1100.0	4.234 4.080 3.964 3.839 3.690 3.373 3.162	34.373 34.394 34.413 34.434 34.463 34.487	27.249 27.286 27.315 27.343 27.375 27.429 27.469	85.91 83.42 80.97 78.07 72.99 69.47	1.140 1.190 1.232 1.273 1.313 1.388 1.459	18 18 17 17 18 18

STATION: 9 (cont)

P (dbar)	T (°C)	S	$(kg m^3)$ (10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$ $(m^2 s^{-2})$	π (kg m ⁻³)
1400.0 1500.0 1600.0 1700.0 1800.0 1900.0 2000.0	2.963 2.790 2.622 2.399 2.286 2.164 2.083 1.988	34.508 34.524 34.553 34.564 34.577 34.591 34.602 34.612 34.613	27.504 27.533 27.571 27.599 27.619 27.641 27.656 27.672 27.674	66.27 63.69 60.16 57.27 55.48 53.46 52.12 50.66	1.527 1.592 1.654 1.713 1.769 1.824 1.877 1.928	18 19 18 19 19 19 18 18

STATION: 10 DATE: 6/14/92 0948 GMT

LAT: 38° 28.7' N. LON: 123° 48.5' W.

P (dbar)	T (°C)	S	γ _θ 3)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m}^{\Delta} D$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0	13.619	33.102	24.799		0.006	0.33
5.0	13.621	33.097	24.796	314.37	0.016	0.32
10.0	13.623	33.093	24.792	314.85	0.031	0.32
15.0 20.0	13.600 13.464	33.107 33.153	24.808 24.871	313.46 307.61	0.047 0.063	0.33 0.33
25.0	12.994	33.206	25.005	294.91	0.078	0.33
30.0	12.192	33.217	25.170	279.39	0.092	0.13
35.0	11.297	33.273	25.379	259.58		0.00
40.0	10.706	33.314	25.516	246.59	0.118	07
45.0	10.546	33.324	25.552	243.30		
50.0	10.334	33.361		237.17	0.142	
60.0	9.983	33.443		225.61	0.166	
	9.705 9.503	33.540 33.617		214.18 205.49		
	9.455	33.666				
	9.348	33.716				
	8.986	33.854				
	8.769	33.925		172.65		
	8.561	33.998	26.406	164.53	0.381	0.11
	8.341	34.048				
	8.056	34.062				
	7.878	34.074				
275.0 300.0	7.732 7.462	34.099 34.118		146.59		
325.0	6.839	34.118		141.78 136.55		0.04 08
350.0	6.835	34.127		133.21	0.640	04
375.0	6.613	34.143	26.801	129.35	0.673	06
400.0	6.475	34.157	26.830	126.85	0.705	07
425.0	6.390	34.164	26.847	125.55	0.736	
450.0	6.107	34.172	26.890	121.57	0.767	10
475.0	6.072	34.192	26.910	119.96	0.797	09
500.0	5.783	34.189	26.944	116.76	0.827	13
550.0 600.0	5.470 5.293	34.207 34.238	26.997 27.043	112.06 108.12	0.884 0.939	15 15
650.0	5.062	34.236	27.043	103.12	0.992	15 16
700.0	4.740	34.283	27.143	99.05	1.043	18
750.0	4.551	34.335	27.205	93.41	1.091	16
800.0	4.273	34.362	27.257	88.56	1.137	17
850.0	4.135	34.370	27.278	86.78	1.180	18
900.0	4.014	34.398	27.313	83.72	1.223	17
950.0	3.919	34.414	27.336	81.83	1.264	16
1000.0	3.760	34.434	27.368	78.89	1.304	16
1100.0	3.391	34.477 34.496	27.439	72.17 68.61	1.379	17
1200.0	3.145	34.496	27.477	00.01	1.449	18

STATION: 10 (cont)

P (dbar)	T (°C)	S	$(kg^{\eta_{-3}})$	$(10^{-8} \text{m}^{\frac{6}{3}} \text{kg}^{-1})$	$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{n}$	π (kg m ⁻³)
1300.0	2.945	34.516	27.512	65.47	1.517	18
1400.0	2.761	34.531	27.541	62.83	1.581	18
1500.0	2.618	34.545	27.565	60.70	1.642	18
1600.0	2.414	34.564	27.598	57.45	1.701	19
1622.0	2.406	34.566	27.600	57.32	1.714	19

STATION: 11 DATE: 6/14/92 1141 GMT

LAT: 38° 23.8' N. LON: 123° 56.4' W.

P	Т	S	٧.	λ	ΣΛΩ	π
(dbar)	(°C)	, , ,	(kg m ⁻³)	$(10^{-8} \text{m}^{\frac{6}{3}} \text{kg}^{-1})$	$\sum_{m} \Delta D$ (m ² s ⁻²)	π (kg m ⁻³)
2 0	12.256	22 000				
2.0 5.0	13.356 13.351	33.098 33.100	24.850 24.853		0.006 0. 0 15	
10.0	13.357	33.101	24.852	309.14	0.013	0.27
15.0	13.321	33.102	24.860		0.046	0.26
20.0	12.899	33.146		297.40	0.062	0.21
25.0	11.698	33.305			0.075	
30.0	11.554	33.315			0.088	0.08
35.0	11.480	33.321			0.101	0.07
40.0	11.379	33.321	25.401	257.53	0.114	0.06
45.0	11.297	33.331			0.127	0.05
50.0	10.865	33.321			0.140	04
60.0	9.809	33.292			0.164	
70.0	9.930	33.453			0.187	10
	9.688	33.478			0.209	12
90.0	9.517	33.576	25.922	208.93	0.230	07
100.0	9.297	33.634			0.251 0.298	06
125.0 150.0	8.688 8.296	33.824 33.916	26.248 26.381	178.50 166.30	0.298	01 0.00
	8.081	33.918	26.478		0.341	0.04
200.0	7.892	34.034	26.534		0.420	0.04
225.0	7.626	34.052	26.587		0.458	0.01
250.0	7.454	34.067	26.624	144.68	0.495	0.00
275.0	7.173	34.085	26.678		0.530	03
300.0	6.935	34.104	26.726	135.55	0.565	05
325.0	6.843	34.143	26.769	131.77	0.598	03
350.0	6.557	34.140	26.805	128.52	0.631	07
375.0	6.378	34.136	26.826	126.80	0.663	10
400.0	6.379	34.179	26.860	123.95	0.694	06
425.0	6.164	34.191	26.898	120.54	0.725	08
450.0	5.999	34.194	26.921	118.54	0.754	10
475.0	5.819	34.202	26.950	115.96	0.784	12
500.0 550.0	5.631	34.202	26.973	113.87	0.812	14
600.0	5.322 5.058	34.238	27.039 27.089	107.92 103.44	0.868 0.920	15 16
650.0	4.754	34.262 34.292	27.089	98.05	0.920	17
700.0	4.526	34.326	27.200	93.29	1.019	17
750.0	4.333	34.345	27.236	90.07	1.064	17
800.0	4.224	34.380	27.276	86.64	1.109	16
850.0	4.070	34.392	27.302	84.39	1.151	17
900.0	3.977	34.418	27.333	81.80	1.193	16
950.0	3.847	34.431	27.356	79.73	1.233	16
1000.0	3.707	34.449	27.385	77.16	1.273	16
1100.0	3.468	34.482	27.435	72.69	1.347	16
1200.0	3.203	34.504	27.478	68.69	1.418	16

STATION: 11 (cont)

(dbar) (°C) (kg	
1400.0 2.812 34.539 27. 1500.0 2.598 34.561 27. 1600.0 2.441 34.574 27. 1700.0 2.278 34.591 27. 1800.0 2.139 34.603 27. 1900.0 2.054 34.611 27. 2000.0 1.976 34.621 27. 2100.0 1.927 34.632 27. 2200.0 1.861 34.634 27. 2300.0 1.806 34.648 27.	512 65.66 1.485 17 543 62.84 1.549 17 579 59.29 1.610 17 604 57.03 1.669 18 631 54.35 1.725 18 652 52.29 1.778 18 666 51.12 1.830 18 681 49.85 1.880 18 694 48.85 1.930 17 701 48.26 1.978 18 717 46.92 2.025 17 718 46.89 2.040 17

STATION: 12 DATE: 6/14/92 1411 GMT

LAT: 38° 29.5' N. LON: 124° 1.6' W.

P	Tr.	s	۸/		270	T
(dbar)	T (°C)	5	(kg m ³)	$(10^{-8} \text{m}^{\frac{\delta}{3}} \text{kg}^{-1})$	$\Sigma\Delta D$ (m ² s ⁻²)	π (kg m ⁻³)
2.0 5.0	13.844	33.105 33.109	24.756 24.759		0.006 0.016	0.38 0.38
10.0	13.846	33.109	24.759		0.018	0.38
15.0	13.788	33.120	24.779		0.032	
20.0	12.341	33.261	25.175		0.063	0.19
25.0	11.684	33.301	25.330		0.076	0.10
30.0	11.460	33.319			0.089	0.07
35.0	11.271	33.327	25.426	255.08	0.102	0.04
40.0	11.009	33.331	25.476		0.115	01
45.0	10.853	33.334	25.506		0.127	03
50.0	10.520	33.364			0.139	07
60.0	9.832	33.443	25.766	223.19	0.163	12
70.0 80.0	9.642 9.498	33.554 33.617	25.884 25.9 5 7		0.184 0.205	07 04
90.0	9.498	33.678	26.029		0.205	02
100.0	9.163	33.763	26.126		0.245	0.02
125.0	8.921	33.876	26.253		0.291	0.07
150.0	8.665	33.973	26.369		0.334	0.11
175.0	8.339	34.027	26.462	159.12	0.375	0.10
200.0	7.900	34.048	26.544	151.60	0.414	0.05
225.0	7.574	34.036	26.583	148.24	0.451	01
250.0	7.325	34.050	26.629	144.15	0.488	03
275.0	7.140	34.082	26.680	139.60	0.523	04
300.0	6.914	34.087	26.715	136.53	0.558	06
325.0	6.661 6.388	34.092	26.753	133.13	0.591	09
350.0 375.0	6.400	34.090 34.134	26.788 26.821	130.01 127.24	0.624 0.656	13 09
400.0	6.168	34.137	26.854	124.32	0.688	12
425.0	6.088	34.168	26.889	121.26	0.719	11
450.0	5.907	34.187	26.927	117.88	0.748	12
	5.754	34.194	26.952	115.69	0.778	13
500.0	5.597	34.210	26.984	112.85	0.806	14
550.0	5.234	34.223	27.037	107.95	0.862	17
600.0	5.076	34.267	27.091	103.28	0.914	15
650.0	4.866	34.288	27.132	99.70	0.965	16
700.0	4.621	34.308	27.175	95.76	1.014	17
750.0	4.397	34.333	27.220	91.72	1.061	18
800.0	4.264	34.374	27.267	87.56 84.84	1.106 1.149	16 17
850.0 9 0 0. 0	4.083 3.913	34.388 34.412	27.297 27.334	81.49	1.149	17
950.0	3.792	34.412	27.354	79.60	1.230	17
1000.0	3.663	34.448	27.389	76.72	1.269	16
1100.0	3.395	34.470	27.433	72.73	1.344	17
1200.0	3.152	34.495	27.476	68.77	1.415	18

STATION: 12 (cont)

P (dbar)	T (°C)	S	γ _{θ-3}	(10 ⁻⁸ m ³ kg ⁻¹)	$\Sigma\Delta D$ (m ² s ⁻²)	π (kg m ⁻³)
1300.0	2.965	34.514	27.509	65.85	1.483	18
	2.801	34.532	27.538	63.22	1.547	18
1500.0 1600.0	2.611	34.551 34.566	27.570 27.597	60.18 57.70	1.609	18 18
1700.0 1800.0	2.270	34.586 34.598	27.628 27.647	54.63 52.89	1.724	18 18
1900.0	2.017	34.609	27.667	50.82	1.829	18
2000.0	1.954	34.620	27.681	49.66	1.880	18
2100.0	1.911	34.629	27.693	48.87	1.929	18
2200.0	1.861	34.637	27.703	48.04	1.977	18
2300.0	1.808	34.645	27.714	47.16	2.025	17
2400.0	1.777	34.648	27.720	46.90	2.072	17
2500.0	1.745	34.654	27.727	46.40	2.119	17
2600.0	1.734	34.655	27.730	46.53	2.165	17
2700.0 2800.0	1.704	34.661	27.737 27.740	46.03	2.211 2.257	17 17
2900.0	1.671	34.666 34.667	27.745 27.747	45.87 45.97	2.303	17 17
3100.0	1.633	34.671	27.753	45.60	2.395	17
3150.0	1.625	34.665	27.749	46.07		18

STATION: 13 DATE: 6/14/92 1706 GMT

LAT: 38° 35.4' N. LON: 124° 7.5' W.

P (dbar)	T (°C)	s	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{2}^{\Delta}D$ (m ² s ⁻²)	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0	13.741 13.741 13.709 13.514 11.928 11.772 11.513 11.404 11.076 10.887 10.666 10.865 9.582 9.149 8.966	33.027 33.027 33.029 33.027 32.948 32.976 32.984 33.011 33.017 33.065 33.085 33.225 33.219 33.262 33.390	24.717 24.725 24.763 25.010 25.061 25.115 25.156 25.219 25.291 25.345 25.419 25.632	321.80 321.87 321.23 317.73 294.29 289.58 284.55 280.73 274.81 268.12 263.08 256.26 236.06 226.37	(ms) 0.006 0.016 0.032 0.048 0.064 0.078 0.093 0.107 0.121 0.134 0.147 0.173 0.198 0.221 0.243	0.29 0.29 0.29 0.24 14 15 19 19
100.0 125.0 150.0 175.0 200.0 225.0 250.0 275.0 300.0 325.0 350.0 400.0	8.689 8.140 7.896 7.636 7.659 7.519 7.263 7.036 6.757 6.457 6.457 6.283 6.120	33.481 33.674 33.788 33.869 33.973 34.020 34.034 34.054 34.059 34.105 34.103 34.126 34.129	25.979 26.214 26.340 26.442 26.520 26.578 26.625 26.673 26.714 26.762 26.789 26.831 26.854	203.54 181.58 170.06 160.73 153.75	0.243 0.264 0.311 0.355 0.396 0.435 0.473 0.510 0.545 0.580 0.614 0.646 0.679 0.710 0.741	28211613050306071108111213
425.0 450.0 475.0 500.0 550.0 600.0 750.0 800.0 850.0 900.0 950.0 1000.0 1200.0	5.898 5.688 5.216 5.198 4.792 4.824 4.636 4.479 4.316 4.165 4.037 3.923 3.785 3.662 3.400 3.170	34.142 34.149 34.117 34.132 34.147 34.235 34.278 34.306 34.334 34.363 34.363 34.405 34.426 34.442 34.473 34.495	26.892 26.924 26.955 26.969 27.027 27.094 27.150 27.189 27.229 27.269 27.301 27.328 27.359 27.384 27.435 27.474	120.80 117.93 114.75 113.72 108.27 102.61 97.68 94.22 90.69 87.21 84.45 82.13 79.37 77.15 72.57 68.97	0.741 0.770 0.800 0.828 0.884 0.936 0.987 1.035 1.081 1.125 1.168 1.210 1.250 1.289 1.364 1.435	15 17 25 25 28 21 19 19 19 17 17 17

STATION: 13 (cont)

P T S γ_{θ}^{-3} (dbar) (°C) (kg m ⁻³) (10 ⁻⁸ m ³ kg ⁻¹)		(kg m ⁻³)
1300.0 2.988 34.510 27.503 66.41 1400.0 2.838 34.523 27.528 64.32 1500.0 2.680 34.542 27.557 61.65 1600.0 2.481 34.557 27.587 58.75 1700.0 2.276 34.578 27.621 55.28 1800.0 2.191 34.588 27.636 54.00 1900.0 2.098 34.597 27.651 52.67 2000.0 2.000 34.610 27.670 50.95 2100.0 1.932 34.620 27.684 49.78 2200.0 1.853 34.631 27.699 48.38 2300.0 1.816 34.639 27.709 47.70 2400.0 1.776 34.645 27.717 47.11 2500.0 1.748 34.650 27.724 46.73 2600.0 1.720 34.654 27.730 46.41 2666.0 1.691 34.657 27.735 46.03	1.502 1.568 1.631 1.691 1.748 1.802 1.856 1.907 1.958 2.007 2.055 2.102 2.149 2.196 2.226	18 18 19 19 19 19 19 18 18 18 18

STATION: 14 **DATE:** 6/14/92 1953 **GMT**

LAT: 38° 42.0' N. LON: 124° 12.8' W.

P (dbar)	T (°C)	S	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=0}^{\infty} \Delta_{m} D$	π (kg m ⁻³)
2.0	13.429 13.410	33.060 33.037	24.805 24.792	313.35 314.72	0.006 0.016	
10.0	13.330	33.011	24.788	315.26	0.031	0.19
15.0	13.191	33.003	24.809	313.32	0.047	0.16
20.0 25.0	12.799 12.119	32.974 33.089	24.864 25.084	308.21 287.38	0.063 0.078	0.05 0.01
30.0	11.511	33.089		280.60	0.078	15
35.0	11.578	33.083	25.180	278.49	0.106	10
40.0	11.637	33.126		276.44	0.120	05
45.0	11.435	33.157			0.133	06
50.0	11.241	33.217	25.346	263.05	0.147	05
60.0 7 0.0	9.917 10.044	33.094 33.168	25.479 25.516	250.42 247.16	0.172 0.197	39 31
		33.100			0.197	34
		33.364		217.00	0.244	32
		33.493		201.38	0.265	28
		33.727		177.76	0.312	17
	8.115	33.892	26.389		0.355	04
175.0 200.0	7.638 7.277	33.929 33.956	26.488 26.561	156.34 149.72	0.395 0.434	08 11
225.0	6.964	33.985	26.627	143.72	0.434	14
250.0	6.823	34.014	26.669	140.02	0.506	13
275.0	6.671	34.039	26.710	136.46	0.541	13
300.0	6.685	34.099	26.756	132.57	0.574	08
325.0	6.517	34.119	26.794	129.21	0.607	09
350.0 375.0	6.346 6.218	34.122 34.142	26.819 26.852	127.08 124.23	0.639 0.670	11 11
400.0	6.095	34.142	26.872	122.56	0.701	12
425.0	5.914	34.153	26.899	120.18	0.732	14
450.0	5.714	34.151	26.922	118.11	0.761	17
475.0	5.551	34.165	26.954	115.29	0.791	18
500.0	5.169	34.133	26.973	113.30	0.819	25
550.0	5.003	34.196	27.043	107.14	0.874	22
600.0 650.0	4.686 4.476	34.223 34.242	27.100 27.138	101.87 98.47	0.926 0.976	23 24
700.0	4.521	34.305	27.130	94.79	1.025	19
750.0	4.318	34.332	27.228	90.86	1.071	19
800.0	4.208	34.359	27.261	88.01	1.116	18
850.0	4.061	34.380	27.293	85.17	1.159	18
900.0	3.905	34.404	27.329	81.99	1.201	17 - 17
950.0 1000.0	3.783 3.600	34.427 34.446	27.360 27.393	79.27 76.14	1.241 1.280	17 17
1100.0	3.356	34.440	27.434	72.50	1.354	18
1200.0	3.172	34.493	27.472	69.15	1.425	18

STATION: 14 (cont)

1300.0 3.027 34.504 27.495 67.31 1.493 18 1400.0 2.783 34.524 27.533 63.60 1.559 19 1500.0 2.645 34.541 27.559 61.31 1.621 19 1600.0 2.451 34.557 27.589 58.39 1.681 19 1700.0 2.287 34.576 27.618 55.56 1.738 19 1800.0 2.180 34.589 27.638 53.80 1.793 19 1900.0 2.069 34.600 27.656 52.10 1.845 19 2000.0 1.994 34.608 27.669 51.02 1.897 19 2100.0 1.918 34.618 27.683 49.76 1.947 19 2200.0 1.857 34.626 27.695 48.80 1.997 18 2300.0 1.809 34.636 27.707 47.83 2.045 18 2500.0 1.754 34.646 27.720 47.10 2.140 18 <td< th=""><th>P (dbar)</th><th>T (°C)</th><th>S</th><th>(kg^{η}^{-3})</th><th>$(10^{-8} m^{\frac{6}{3}} kg^{-1})$</th><th>$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{n}$</th><th>$\pi$ (kg m⁻³)</th></td<>	P (dbar)	T (°C)	S	(kg^{η}^{-3})	$(10^{-8} m^{\frac{6}{3}} kg^{-1})$	$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{n}$	π (kg m ⁻³)
	1400.0 1500.0 1600.0 1700.0 1800.0 2000.0 2100.0 2200.0 2300.0 2400.0 2500.0	2.783 2.645 2.451 2.287 2.180 2.069 1.994 1.918 1.857 1.809 1.788 1.754 1.726	34.524 34.541 34.557 34.576 34.589 34.600 34.608 34.618 34.626 34.636 34.641 34.646 34.650	27.533 27.559 27.589 27.618 27.638 27.656 27.669 27.683 27.695 27.707 27.713 27.720 27.726	63.60 61.31 58.39 55.56 53.80 52.10 51.02 49.76 48.80 47.83 47.55 47.10 46.78	1.559 1.621 1.681 1.738 1.793 1.845 1.897 1.947 1.997 2.045 2.093 2.140 2.187	1919191919191918181818

STATION: 15 DATE: 6/14/92 2248 GMT

LAT: 38° 48.5' N. LON: 124° 18.6' W.

P (dbar)	T (°C)	S	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0	13.462	33.027	24.773	316.41	0.006	0.23
5.0	13.459	33.029	24.776	316.28	0.016	0.23
10.0	13.433	33.037	24.787	315.31	0.032	0.24
15.0	13.109	33.042	24.855	308.92	0.047	0.17
20.0 25.0	11.762	33.030	25.105	285.30	0.062	10 12
30.0	11.632 11.548	33.047 33.068	25.142 25.174	281.87 278.95	0.076 0.090	12
35.0	11.356	33.000	25.226	274.06	0.104	13
40.0	11.325	33.150	25.278	269.24	0.118	09
45.0	11.169	33.164	25.317	265.65	0.131	11
50.0	10.232	33.076	25.412	256.62	0.144	35
60.0	9.756	33.250	25.628	236.30	0.169	29
70.0	9.443	33.304	25.721	227.59		30
	9.197	33.383		218.12		28
	8.960	33.486		207.05		23 23
	8.605 8.284	33.575 33.73 5	26.066 26.241	195.31 179.11		22 14
	7.873	33.830		166.61		
	7.672	33.873		160.95		
200.0	7.590	33.980	26.536	152.27		
225.0	7.359	34.010	26.592	147.21	0.462	
250.0	7.293	34.044	26.629	144.16	0.499	04
275.0	7.053	34.061	26.676	139.95	0.534	06
300.0	6.875	34.071	26.708	137.19	0.569	08
325.0	6.460	34.052	26.748	133.45	0.603	15
350.0 375.0	6.143 5.903	34.048 34.049	26.786 26.817	129.97 127.16	0.636 0.668	20 23
400.0	5.796	34.049	26.845	124.78	0.699	23
425.0	5.803	34.110	26.879	121.98	0.730	19
450.0	5.599	34.113	26.906	119.50	0.760	21
475.0	5.396	34.122	26.938	116.57	0.790	23
500.0	5.302	34.141	26.964	114.32	0.819	23
550.0	4.996	34.166	27.020	109.29	0.874	24
600.0	4.903	34.223	27.076	104.45	0.928	21
650.0	4.686	34.250	27.122	100.35	0.979	21
700.0	4.545	34.302	27.179	95.30	1.028	19
750.0 800.0	4.328 4.187	34.319 34.356	27.216 27.261	91.94 87.99	1.075 1.120	20 18
850.0	4.167	34.356	27.201	84.88	1.120	18
900.0	3.952	34.405	27.325	82.47	1.204	17
950.0	3.855	34.417	27.344	80.86	1.245	17
1000.0	3.717	34.432	27.370	78.53	1.285	17
1100.0	3.391	34.460	27.425	73.42	1.361	18
1200.0	3.160	34.487	27.469	69.45	1.432	18

STATION: 15 (cont)

P T S γ_{θ} δ $\Sigma\Delta D$ (dbar) (°C) (kg m ⁻³) (10 ⁻⁸ m kg ⁻¹) (m ² s ⁻²)	
1300.0 2.979 34.508 27.503 66.45 1.500 1400.0 2.783 34.525 27.534 63.53 1.565 1500.0 2.662 34.538 27.556 61.73 1.628 1600.0 2.480 34.555 27.585 58.88 1.688 1700.0 2.294 34.571 27.614 56.01 1.745 1800.0 2.155 34.584 27.636 53.87 1.800 1900.0 2.070 34.596 27.653 52.41 1.853 2000.0 1.976 34.606 27.669 50.95 1.905 2100.0 1.905 34.617 27.683 49.67 1.955 2200.0 1.854 34.624 27.693 48.90 2.004 2300.0 1.834 34.632 27.702 48.44 2.053 2400.0 1.794 34.639 27.711 47.78 2.101 2500.0 1.759 34.645 27.719 47.24 2.149 2600.0 1.718 34.650 27.726 46.8	18 19 19 19 19 19 19 19 18 18 18

STATION: 16 DATE: 6/15/92 0241 GMT

LAT: 38° 42.2' N. LON: 124° 27.3' W.

P (dbar)	T (°C)	S	γ _θ 3)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum \Delta D$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 125.0 175.0 200.0 225.0 275.0 300.0 325.0 350.0 400.0	13.361 13.361 13.358 13.350 12.655 11.833 11.419 11.326 11.045 10.283 10.067 9.661 9.229 9.016 8.630 8.257 7.963 7.991 7.578 7.255 6.709 6.724 6.609 6.496 6.136 5.988 5.735 5.582 5.735 5.582 5.735 5.582 4.611 4.438 4.302 4.158 4.048	32.990 32.986 32.991 32.994 33.010 33.105 33.100 33.132 33.080 33.132 33.365 33.414 33.480 33.624 33.766 33.932 33.947 33.968 33.999 34.054 34.133 34.165 34.172 34.174 34.184 34.217 34.184 34.217 34.246 34.272 34.367 34.363 34.363 34.386	24.765 24.762 24.767 24.771 24.920 25.145 25.223 25.243 25.2407 25.545 25.803 25.803 25.876 25.987 26.158 26.313 26.631 26.6715 26.673 26.763 26.763 26.763 26.937 27.059 27.107 27.148 27.236 27.269 27.299	317.20 317.57 317.26 317.01 302.89 281.58 274.27 272.47 268.14 263.32 257.16 244.22 230.69 219.94 213.24 202.74 186.98 172.64 161.12 154.55 148.91 143.70 139.94 136.43 132.21 129.79 125.85 122.30 119.48 116.81 115.04	0.006 0.016 0.032 0.048 0.063 0.078 0.092 0.105 0.119 0.132 0.145 0.170 0.194 0.216 0.238 0.259 0.308 0.352 0.394 0.433 0.471 0.507 0.543 0.577 0.611 0.644 0.676 0.795 0.824 0.929 0.979 1.073 1.117 1.160	0.18 0.18 0.18 0.18
900.0 950.0 1000.0 1016.0	3.911 3.770 3.651 3.606	34.429 34.442 34.446	27.330 27.362 27.385 27.393	81.84 78.98 77.02 76.33	1.202 1.242 1.281 1.293	17 17 17 17

STATION: 17 DATE: 6/15/92 0436 GMT

LAT: 38° 36.4' N. LON: 124° 20.6' W.

P (dbar)	T (°C)	S	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m} D$	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 125.0 125.0 200.0 225.0 225.0 225.0 225.0 225.0 225.0 250.0 275.0 300.0 325.0	12.939 12.941 12.946 12.945 12.932 12.892 12.126 11.594 11.478 11.395 11.122 9.628 9.238 8.863 8.500 8.112 7.773 7.578 7.243 7.087 6.893 6.657 6.480 6.220 6.023 5.960 5.614 5.599 5.493 5.371 5.235 4.938 4.795 4.304 4.179	33.893 33.959 33.986 34.002 34.019 34.049 34.048 34.051 34.063 34.108 34.132 34.144 34.159 34.144 34.159 34.264 34.303 34.332 34.359	24.819 24.820 24.823 24.823 24.834 24.859 25.125 25.282 25.343 25.519 25.681 25.681 25.681 25.681 26.656 26.743 26.776 26.864 26.776 26.864 26.776 26.864 26.902 26.934 26.958 26.958 26.914 27.187 27.229 27.264	312.10 312.22 312.20 312.00 311.14 308.89 283.66 268.82 263.12 259.30 255.96 246.80 231.43 218.52 209.01 199.20 179.02 165.42 158.14 149.03 145.25 141.84 137.76 133.59 130.64 128.22 125.98 122.82 119.58 116.77 114.63 112.16 106.88 102.42 98.07 94.40 90.69 87.67	0.006 0.016 0.031 0.047 0.062 0.078 0.093 0.107 0.120 0.133 0.146 0.171 0.195 0.217 0.239 0.259 0.306 0.349 0.390 0.428 0.465 0.501 0.535 0.667 0.698 0.728 0.757 0.786 0.815 0.869 0.972 1.020 1.066 1.111	0.07 0.07 0.07 0.08 0.09 0.06 0.01 0.04 0.07 0.08 0.08 29 19 15 12 12 12 15 15 15 21 21 22 21 22 21 21 21 21 21 21 21 22 21
850.0 900.0 950.0 1000.0	3.995 3.866 3.706 3.554 3.538	34.389 34.407 34.431 34.441 34.445	27.307 27.335 27.370 27.394 27.398	83.73 81.32 78.08 75.97 75.57	1.154 1.195 1.235 1.273 1.281	18 17 17 18 18

STATION: 18 DATE: 6/15/92 0623 GMT

LAT: 38° 30.6' N. LON: 124° 14.3' W.

P (dbar)	T (°C)	S	γ _θ π ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$ $(m^{2}s^{-2})$	π (kg m ⁻³)
2.0	13.600 13.600	33.067	24.776 24.778	316.12 316.05	0.006 0.016	0.29 0.30
5.0 10.0	13.599	33.069 33.069	24.778	316.15	0.018	
15.0	13.601	33.069	24.778	316.28	0.032	
20.0	13.597	33.072		316.14	0.063	
25.0	13.432	33.085		312.10	0.079	
30.0	12.140	33.005	25.015	294.10	0.094	05
35.0	11.496	33.018			0.109	16
40.0	11.160	33.041			0.123	21
45.0	11.310	33.186			0.136	
50.0	11.370	33.212	25.319		0.149	
60.0 70.0	11.096 10.124	33.240 33.229		259.07	0.176 0.201	06 24
80.0	9.378	33.229		243.93 231.59	0.201	24 36
90.0	8.954	33.422		211.71	0.247	29
	8.599	33.487			0.267	29
125.0	8.304	33.681	26.195	183.42	0.316	18
150.0	8.155	33.842	26.344	169.75	0.360	08
175.0	7.983	33.947	26.452	159.88	0.401	02
200.0	7.707	34.002	26.536	152.27	0.440	02
225.0	7.379	34.018	26.596	146.86	0.478	05
250.0	7.038	34.035			0.514	09
275.0	6.828	34.045	26.693	138.13	0.549	11
300.0	6.563	34.042	26.727		0.583	15
325.0 350.0	6.452 6.524	34.058 34.116	26.755 26.791	132.85 129.86	0.616 0.649	15 09
375.0	6.384	34.116	26.824	126.99	0.681	10
400.0	5.982	34.115	26.860	123.56	0.712	16
425.0	5.795	34.132	26.897	120.21	0.743	17
450.0	5.614	34.148	26.932	117.08	0.773	18
475.0	5.408	34.152	26.960	114.53	0.802	20
500.0	5.260	34.163	26.986	112.17	0.830	21
550.0	4.872	34.176	27.042	107.06	0.884	25
600.0	4.629	34.209	27.095	102.24	0.937	25
650.0	4.529	34.245	27.135	98.87	0.987	23
700.0	4.359	34.288	27.188	94.15	1.035	22
750.0	4.077	34.304	27.230	90.13	1.081	- .23
800.0 850.0	3.973 3.911	34.332 34.374	27.264 27.304	87.28 83.87	1.126 1.168	22 20
900.0	3.878	34.374	27.336	81.23	1.210	17
950.0	3.766	34.429	27.363	78.93	1.250	17 17
1000.0	3.611	34.448	27.394	76.11	1.288	17
1100.0	3.332	34.473	27.441	71.78	1.362	18
1200.0	3.120	34.494	27.478	68.47	1.432	18

STATION: 18 (cont)

P (dbar)	T (°C)	S	$(kg m^3)$	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=0}^{\infty} \sum_{m=0}^{\infty} D_{m}$	π (kg m ⁻³)
1300.0 1400.0	2.973 2.805	34.512 34.525	27.506 27.532	66.09 63. 79	1.499 1.564	18 18
1500.0	2.634	34.525	27.560	61.18	1.627	19
1600.0	2.478	34.561	27.590	58.42	1.687	18
1700.0	2.340	34.574	27.612	56.33	1.744	19
1800.0	2.212	34.586	27.633		1.799	 19
1900.0	2.072	34.597	27.653	52.36	1.852	 19
2000.0	1.987	34.606	27.668	51.08	1.904	19
2100.0	1.940	34.619	27.682	49.95	1.955	18
2200.0	1.879	34.627	27.694	49.00	2.004	18
2300.0	1.815	34.636	27.707		2.052	18
2400.0	1.786	34.641	27.713		2.100	18
2500.0	1.757	34.647	27.721		2.147	18
2600.0	1.725	34.652	27.728	46.62	2.194	18
2700.0	1.699	34.656	27.734	46.32	2.241	18
2800.0	1.668	34.659	27.739		2.287	18
2900.0	1.646	34.663	27.744	45.74	2.333	17
3000.0	1.632	34.665	27.748	45.71	2.378	17
3100.0 3200.0	1.616	34.668	27.752 27.7 55	45.57 45.58	2.424 2.470	- .17
3300.0	1.600 1.587	34.669 34.672	27.755		2.470	18 17
3400.0	1.585	34.674	27.759	45.47	2.515	17
3458.0	1.579	34.674	27.761	45.67	2.587	17

STATION: 19 DATE: 6/15/92 0936 GMT

LAT: 38° 24.8' N. LON: 124° 8.0' W.

P (dbar)	T (°C)	S	γ _θ 3	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 125.0 150.0 175.0 200.0 225.0 275.0 300.0 325.0 375.0 400.0	(°C) 13.983 13.984 13.986 13.989 13.062 12.199 12.116 11.779 11.295 11.071 11.067 10.773 10.148 9.832 9.538 9.166 8.975 8.583 8.059 7.743 7.418 7.170 6.869 6.710 6.364 6.265 6.253 6.127 5.942 5.810 5.561 5.942 4.536 4.443 4.271 4.147	33.096 33.099 33.104 33.171 33.239 33.277 33.266 33.290 33.298 33.361 33.405 33.471 33.550 33.643 33.875 33.643 33.875 33.643 33.670 34.026 34.037 34.052 34.052 34.052 34.052 34.052 34.052 34.052 34.052 34.052 34.155 34.175 34.175 34.189 34.181 34.175 34.189 34.181 34.175 34.189 34.181 34.175 34.189 34.181 34.179 34.211 34.279 34.316 34.349 34.374	24.720 24.722 24.725 24.965 25.185 25.285 25.285 25.393 25.439 25.575 25.735 25.850 25.947 26.031 26.244 26.390 26.497 26.606 26.640 26.693 26.727 26.775 26.838 26.873 26.913 26.940	321.46 321.56 321.50 321.33 298.63 277.79 273.59 268.50 258.37 254.00 249.42 241.40 226.39	(m ² s ²) 0.006 0.016 0.032 0.048 0.064 0.078 0.092 0.106 0.119 0.131 0.144 0.169 0.192 0.214 0.235 0.302 0.345 0.385 0.424 0.461 0.497 0.532 0.566 0.599 0.632 0.664 0.695 0.725 0.754 0.783 0.811 0.866 0.918 0.967 1.015 1.060 1.104	0.40 0.40 0.41 0.27 0.15 0.16 0.09 0.01 02 0.03
850.0 900.0 950.0 1000.0	3.943 3.830 3.718 3.609	34.393 34.412 34.428 34.444	27.316 27.343 27.367 27.391	82.83 80.53 78.45 76.39	1.146 1.187 1.227 1.266	18 17 17 17
1016.0	3.607	34.454	27.399	75.75	1.278	16

STATION: 20 DATE: 6/15/92 1106 GMT

LAT: 38° 19.1' N. LON: 124° 1.7' W.

P (dbar)	r (°C)	S	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{2}^{\Delta}D$ (m^2s^{-2})	π (kg m ⁻³)
70.0 80.0 90.0 100.0 125.0 150.0 175.0 200.0	11.286 11.016 10.583 9.980 9.622 9.533 9.519 9.357 8.865	33.074 33.074 33.075 33.080 33.167 33.219 33.266 33.279 33.303 33.327 33.315 33.320 33.375 33.477 33.559 33.634 33.777 33.901 34.028 34.028 34.028 34.038 34.049 34.135 34.156 34.172 34.194 34.205 34.402 34.402 34.448 34.457 34.457	24.830 25.031 25.202 25.286 25.330 25.404 25.472 25.538 25.645 25.748 25.908 25.908 25.994 26.184 26.357	312.26 312.28 311.34 292.33 276.13 268.31 264.22 257.25 250.93 244.68 234.67 225.11 216.34 210.23 202.33 184.61 168.58 156.46 150.88 146.45 140.54 137.25 132.95 128.28 124.73 121.27 119.25 117.46	0.031 0.047 0.062 0.076 0.090 0.103 0.116 0.129 0.141 0.165 0.188 0.211 0.232 0.252 0.301 0.345 0.345 0.345 0.424 0.461 0.497 0.532 0.566 0.598 0.630 0.661 0.720 0.750 0.778	0.26 0.26 0.26 0.19 0.10 0.09 0.06 0.02 01 09 20 21 15 08 05 02 0.00 0.04 0.01 02 07 09

STATION: 21 DATE: 6/15/92 1323 GMT

LAT: 38° 14.4' N. LON: 124° 8.8' W.

P	T	S	Ye .	δ	$\Sigma\Delta D$	π
(dbar)	T (°C)		(kg m³)	$(10^{-8} \text{m}^{\frac{\delta}{3}} \text{kg}^{-1})$	$\Sigma\Delta D$ (m^2s^{-2})	π (kg m ⁻³)
2.0	13.487	32.973	24.727	320.86	0.006	0.20
5.0	13.487	32.973	24.726	320.95	0.016	0.20
10.0	13.489	32.973	24.726	321.10	0.032	0.20
15.0	13.423	32.971	24.738	320.07	0.048	0.18
20.0	12.5 55	32.969	24.908	304.07	0.064	0.00
25.0	12.363	32.982	24.954	299.73	0.079	03
30.0	11.729	32.950	25.049	290.84	0.094	17
35.0	11.453	32.968	25.114	284.77	0.108	21
40.0	11.294	32.994	25.163	280.23	0.122	22
45.0	10.840	33.018	25.262	270.87	0.136	29
50.0	10.358	33.027	25.353	262.30	0.149	36
60.0	9.686	33.141	25.554	243.29	0.174	39
70.0	9.272	33.242	25.700	229.5 5	0.198	38
80.0	8.724	33.271	25.809	219.33	0.221	44
90.0	8.542	33.373	25.917	209.23	0.242	39
100.0	7.976	33.424	26.041	197.47	0.262	44
125.0	8.559	33.793	26.244	178.88	0.309	05
150.0	8.349	33.876	26.341	170.05	0.352	02
175.0	8.116	33.961	26.443	160.76	0.393	0.01
200.0	7.824	34.009		153.41	0.433	0.01
225.0	7.494	34.026	26.586	147.86	0.470	03
250.0	7.311	34.040	26.623	144.70		04
275.0	6.858	34.031	26.678	139.58		11
300.0	6.588	34.034	26.717	136.12	0.577	- .15
325.0	6.564	34.091	26.765	131.91	0.611	11
350.0	6.105	34.081	26.817	127.03	0.643	17 21
375.0	5.876 5.784	34.070	26.837	125.26 122.40	0.675 0.706	21 20
400.0	5.784	34.097 34.082	26.870 26.891	120.55	0.706	25
450.0	5.466	34.119	26.927	117.40	0.766	22
475.0	5.288	34.131	26.957	114.62	0.795	24
500.0	5.210	34.151	26.983	112.45	0.823	23
550.0	4.787	34.173	27.049	106.28	0.878	26
600.0	4.591	34.206	27.097	102.01	0.930	26
650.0	4.474	34.247	27.142	98.07	0.980	24
700.0	4.389	34.293	27.189	94.13	1.028	21
750.0	4.231	34.315	27.223	91.10	1.074	21
800.0	4.193	34.365	27.267	87.39	1.119	17
850.0	4.051	34.385	27.298	84.68	1.162	17
900.0	3.947	34.419	27.336	81.37	1.203	16
950.0	3.795	34.427	27.358	79.41	1.243	17
1000.0	3.687	34.449	27.387	76.92	1.282	16
1014.0	3.660	34.452	27.392	76.50	1.293	16

STATION: 22 DATE: 6/15/92 1518 GMT

LAT: 38° 19.8' N. LON: 124° 15.3' W.

P (dbar)	T (°C)	S	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} D_{n}$	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 125.0 125.0 225.0 225.0 225.0 225.0 225.0 325.0 325.0 40.0 425.0	13.626 13.620 13.618 13.622 13.567 12.778 11.588 11.451 11.316 10.970 11.075 10.932 9.385 9.053 8.778 8.427 8.161 7.855 7.839 7.583 7.420 7.152 6.791 6.788 6.348 6.154 5.935 5.781 5.684 5.935 5.781 5.684 5.935 5.781 5.684 5.935 5.781 5.684 5.935 5.781 5.684 5.935 5.781 5.684 5.935 5.781 5.684 5.795 6.795	33.034 33.035 33.037 33.039 33.039 32.970 32.984 33.020 33.134 33.279 33.310 33.141 33.340 33.141 33.340 33.444 33.637 33.859 33.940 34.063 34.063 34.063 34.063 34.063 34.063 34.063 34.063 34.063 34.063 34.063 34.147 34.139 34.147 34.139 34.147 34.139 34.147 34.139 34.147 34.139 34.147 34.201 34.201 34.201 34.201 34.331 34.364	24.748 24.748 24.750 24.752 24.762 24.865 25.102 25.154 25.329 25.424 25.474 25.603 25.812 25.474 25.603 26.465 26.575 26.575 26.665 26.772 26.772 26.814 26.853 26.916 26.949 26.983 27.041 27.187 27.262 27.262 27.296	319.05 318.90 318.88 318.82 318.76 318.11 308.35 285.93 281.03 277.81 264.56 255.83 251.31 238.97 219.30 207.61 188.52 168.57 158.58 153.78 149.00 145.69 141.08 135.45 131.50 127.68 124.15 118.62 115.61 112.84 107.33 102.16 94.37 90.40 87.43 84.59	0.006 0.016 0.032 0.048 0.064 0.080 0.110 0.124 0.138 0.152 0.203 0.228 0.250 0.272 0.366 0.407 0.446 0.483 0.520 0.556 0.625 0.625 0.659 0.625 0.659 0.625 0.659 0.722 0.753 0.841 0.896 0.948 0.998 1.047 1.093 1.137 1.180	0.27 0.27 0.27 0.28 0.28 0.26 0.05 17 19 17 03 04 44 34 30 06 04 0.01 01 02 05 11 08 16 17 18 18 19 18 19 18 20 11 18 19 18 20 11 20 21 22
900.0 950.0 1000.0 1018.0	3.856 3.764 3.640 3.596	34.396 34.423 34.444 34.449	27.327 27.358 27.388 27.396	82.01 79.35 76.75 76.01	1.222 1.262 1.301 1.315	18 17 17 17

STATION: 23 DATE: 6/15/92 1653 GMT

LAT: 38° 25.5' N. LON: 124° 21.5' W.

P (dbar)	T (°C)	S	γ _θ -3)	(10 ⁻⁸ m ³ kg ⁻¹)	$\Sigma\Delta D$ (m^2s^{-2})	π (kg m ⁻³)
2.0	13.459	32.951	24.715	321.95	0.006	0.17
5.0	13.455	32.953	24.718	321.80	0.016	
10.0 15.0	13.458 13.425	32.953 32.954	24.717 24.725	321.98 321.40	0.032 0.048	
20.0	13.423	32.955	24.723	321.21	0.048	
25.0	12.236	33.105	25.073	288.42	0.080	
30.0	11.598	33.161		272.95	0.094	
35.0	11.327	33.171		267.57	0.107	
40.0	11.320	33.265				0.00
45.0		33.276		256.85		
50.0	11.046	33.291		254.24		
60.0	10.417	33.253				
70.0	10.117	33.372 33.419		233.22	0.195	13
90.0	9.672 8.721	33.419		222.82 209.57	0.218 0.240	17 34
	8.573	33.509		199.75	0.240	28
	8.187	33.645	26.184	184.44		23
	7.813	33.790		168.73	0.353	17
	7.727	33.921	26.469		0.393	08
200.0	7.629	33.991	26.539	151.99	0.432	04
225.0	7.418	34.031	26.600	146.47	0.469	04
250.0	7.149	34.033	26.640	143.00	0.506	07
275.0	6.766	34.017	26.680	139.40	0.541	14
300.0	6.702	34.054	26.718	136.14	0.575	12
325.0 350.0	6.474 6.310	34.066 34.088	26.758 26.797	132.55 129.14	0.609 0.642	14 14
375.0	6.154	34.000	26.823	126.90	0.674	14 16
400.0	5.867	34.095	26.859	123.59	0.705	19
425.0	5.636	34.103	26.893	120.41	0.735	22
450.0	5.410	34.110	26.926	117.39	0.765	24
475.0	5.342	34.136	26.955	114.90	0.794	23
500.0	5.130	34.148	26.990	111.71	0.822	24
550.0	5.031	34.189	27.034	108.00	0.877	22
600.0	4.844	34.223	27.082	103.75	0.930	21
650.0	4.584	34.261	27.142	98.33	0.981	21
700.0	4.478	34.306	27.189	94.21	1.029	19
750.0 800.0	4.284	34.336	27.234	90.16 87.11	1.075 1.119	19 19
850.0	4.105 3.973	34.355 34.379	27.268 27.301	84.22	1.119	19 19
900.0	3.823	34.399	27.333	81.41	1.203	 19
950.0	3.672	34.416	27.362	78.80	1.243	19
1000.0	3.568	34.436	27.388	76.51	1.282	18
1100.0	3.349	34.465	27.433	72.57	1.357	18
1200.0	3.102	34.490	27.476	68.56	1.427	18

STATION: 23 (cont)

P (dbar)	T (°C)	S	(kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	(m^2s^{-2})	π (kg m ⁻³)
1300.0	2.932	34.511	27.509	65.69	1.494	18
1400.0	2.778	34.523	27.533	63.62	1.559	19
1500.0	2.631	34.537	27.557	61.44	1.622	19
1600.0	2.478	34.561	27.590	58.42	1.682	18
1700.0	2.289	34.572	27.615	55.88	1.739	19
1800.0	2.160	34.587	27.638	53.71	1.793	19
1900.0	2.062	34.598	27.655	52.16	1.846	19
2000.0	1.976	34.606	27.669	50.95	1.898	19
2100.0	1.931	34.617	27.681	49.99	1.948	19
2200.0	1.879	34.625	27.692	49.14	1.998	18
2300.0	1.825	34.633	27.703	48.25	2.047	18
2400.0	1.791	34.639	27.711	47.74	2.095	18
2500.0	1.750	34.645	27.720	47.12	2.142	18
2600.0	1.713	34.650	27.727	46.61	2.189	18
2700.0	1.686	34.654	27.733	46.29	2.235	18
2800.0	1.664	34.659	27.739	45.96	2.281	18
2900.0	1.642	34.661	27.743	45.83	2.327	18
3000.0	1.624	34.663	27.747	45.74	2.373	18
3100.0	1.608	34.667	27.752	45.53	2.419	18
3200.0	1.590	34.669	27.755	45.43	2.464	18
3300.0	1.569	34.672	27.760	45.21	2.509	18
3400.0	1.550	34.674	27.763	45.07	2.555	18
3500.0	1.531	34.676	27.767	44.93	2.600	18
3588.0	1.522	34.679	27.771	44.83	2.639	18

STATION: 24 DATE: 6/15/92 1953 GMT

LAT: 38° 31.5' N. LON: 124° 28.1' W.

P (dbar)	T (°C)	S	γ _θ 3)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 100.0 125.0 150.0	13.499 13.506 13.485 13.255 12.265 12.066 11.796 11.397 10.749 10.036 9.454 9.137 8.831 8.629 8.253 8.170 8.204 8.012 7.830 7.709 7.418 7.176 6.725 6.773 6.436 6.374 6.197 5.916 5.357 5.192 5.032 4.947 4.765 4.602 4.436 4.283 4.201 4.032 3.923	33.050 33.050 33.051 33.054 33.144 33.150 33.171 33.2257 33.279 33.375 33.436 33.477 33.569 33.757 33.857 33.857 33.857 33.964 34.016 34.039 34.048 34.058 34.058 34.058 34.058 34.115 34.117 34.077 34.093 34.125 34.117 34.077 34.093 34.125 3	24.784 24.782 24.787 24.836 25.099 25.142 25.208 25.308 25.436 25.587 25.699 25.825 25.921 25.985 26.076 26.127 26.270 26.377 26.488 26.547	315.43 315.63 315.28 310.75 285.87 281.92 275.70 266.32 254.20 239.92	0.006 0.016 0.032 0.047 0.062 0.076 0.090 0.104 0.117 0.129 0.141 0.164 0.185 0.205 0.225 0.225 0.244 0.290 0.333 0.373 0.411	0.26 0.26 0.26 0.21 0.08 0.05 0.01 03 14 24 32 29 29 29
950.0 1000.0 1014.0	3.735 3.595 3.553	34.420 34.445 34.450	27.359 27.393 27.401	79.24 76.15 75.40	1.222 1.260 1.271	18 17 17

STATION: 25 DATE: 6/15/92 2141 GMT

LAT: 38° 37.2' N. LON: 124° 34.3' W.

P	Т	S	Y _e ,	(10 ⁻⁸ m ³ kg ⁻¹)	$\Sigma\Delta D$ (m^2s^{-2})	π (kg m ⁻³)
(dbar)	(°C)		(kg m ³)	(10°m³kg¹)	(m²s²)	(kg m ⁻³)
2.0	13.030	32.946	24.797	314.17	0.006	0.08
5.0 10.0	13.022 13.004	32.946 32.946	24.798 24.802	314.10 313.87	0.016 0.031	0.08 0.07
15.0	12.962	32.940	24.802	312.99	0.031	0.07
20.0	12.894	32.960	24.835	311.02	0.063	0.06
25.0	11.953	33.069	25.099	285.95	0.078	04
30.0	11.534	33.139	25.231	273.46	0.092	06
35.0	11.729	33.248	25.281	268.90	0.105	0.06
40.0	11.247	33.166	25.305	266.71	0.118	09
45.0	10.823	33.127	25.350	262.47	0.132	20
50.0 60. 0	10.315 9.809	33.092 33.118	25.411 25.516	256.79 246.93	0.145 0.170	32 39
70.0	9.804	33.275	25.639	235.40	0.170	- .26
80.0	9.201	33.296	25.754	224.64	0.217	35
90.0	8.797	33.418	25.913	209.66	0.239	31
100.0	8.633	33.470	25.979	203.53	0.259	30
125.0	8.301	33.624	26.151	187.65	0.308	 23
150.0	8.096	33.806	26.324	171.57	0.353	11
175.0	8.063	33.903	26.406	164.27	0.395	04
200.0	7.810	33.979	26.503	155.44	0.435	02
225.0 250.0	7.671 7.418	34.016 34.061	26.553 26.624	151.09 144.62	0.473 0.510	01 01
275.0	7.192	34.080	26.671	144.02	0.546	03
300.0	6.981	34.112	26.726	135.58	0.580	03
325.0	6.653	34.122	26.779	130.75	0.613	07
350 .0	6.398	34.122	26.812	127.76	0.646	10
375.0	6.233	34.143	26.850	124.35	0.677	11
400.0	6.069	34.155	26.881	121.70	0.708	12
425.0	5.777	34.164	26.925	117.59	0.738	15
450.0	5.610	34.167	26.947	115.62 113.46	0.767	17 19
475.0 500.0	5.412 5.248	34.167 34.176	26.971 26.998	111.06	0.796 0.824	19 20
550.0	5.002	34.204	27.049	106.54	0.878	21
600.0	4.616	34.202	27.091	102.60	0.930	26
650.0	4.505	34.264	27.153	97.17	0.981	22
700.0	4.352	34.301	27.199	93.10	1.028	21
750.0	4.197	34.316	27.227	90.63	1.074	21
800.0	4.130	34.341	27.255	88.44	1.119	20
850.0	4.068	34.374	27.288	85.70	1.162	18
900.0	3.915	34.391	27.317	83.07	1.205	18
950.0 1000.0	3.798 3.673	34.419 34.434	27.352 27.376	80.04 77.87	1.245 1.285	17 17
1014.0	3.652	34.434	27.376	77.51	1.296	17
_011.0	3.352	5 1 + 4 5 7	2001		1.270	• = /

STATION: 26 DATE: 6/16/92 0353 GMT

LAT: 38° 10.0' N. LON: 123° 40.7' W.

P (dbar)	T (°C)	S	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m}^{\Delta} D$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 60.0 70.0 80.0 90.0 125.0 150.0 175.0 200.0 225.0 250.0 275.0 300.0 325.0 375.0 400.0 425.0 450.0 600.0 700.0	13.217 13.220 13.220 13.220 13.135 12.954 12.562 12.556 12.556 12.558 10.725 10.503 10.360 10.065 9.745 9.370 9.157 8.985 8.652 8.361 7.951 7.722 7.577 7.385 7.206 6.687 6.413 6.278 6.099 5.829 5.601 5.368 5.095 4.856 4.617	33.185 33.185 33.185 33.185 33.185 33.194 33.198 33.198 33.224 33.307 33.464 33.493 33.464 33.493 33.626 33.798 33.626 33.798 33.866 33.798 33.866 33.798 33.866 33.798 34.073 34.095 34.116 34.125	24.944 24.944 24.944 24.961 24.998 25.085 25.090 25.214 25.358 25.590 25.669 25.716 25.821 25.924 26.068 26.471 26.557 26.608 26.471 26.557 26.672 26.770 26.813 26.847 26.882 27.036 27.031 27.186	300.09 300.21 300.35 300.47 299.05 295.65 287.84 287.56 287.19 275.51 261.90 240.00 232.73 228.42 218.63 209.02 195.77 187.99 180.74 169.33 159.16 151.30 146.78 144.08 141.39 138.37 132.35 128.41 125.48 122.28 117.09 113.42 108.26 103.29 99.20 94.75	0.006 0.015 0.030 0.045 0.060 0.075 0.089 0.104 0.132 0.146 0.171 0.240 0.261 0.261 0.311 0.359 0.406 0.449 0.490 0.528 0.566 0.602 0.566 0.602 0.706 0.739 0.771 0.802 0.832 0.916 0.969 1.019	0.31 0.31 0.31 0.29 0.25 0.18 0.18 0.09 0.08 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.04 0.07 0.09 0.11 0.07 0.09 0.11 0.07 0.06 0.05 0.02 0.01 10 10 11 13 14 15 16 16
750.0 800.0 850.0 900.0 950.0 1000.0 1100.0	4.457 4.293 4.002 3.853 3.691 3.566 3.299 3.070	34.368 34.390 34.403 34.419 34.436 34.450 34.476 34.476	27.241 27.277 27.318 27.346 27.376 27.400 27.446 27.486	89.83 86.72 82.78 80.27 77.54 75.45 71.18 67.53	1.114 1.158 1.200 1.241 1.280 1.319 1.392 1.461	16 14 16 17 17 17 18 18

STATION: 26 (cont)

P (dbar)	T (°C)	S	(kg m^{-3})	(10 ⁻⁸ m ³ kg ⁻¹)	(m^2s^2)	π (kg m ⁻³)
1300.0 1400.0 1500.0 1600.0 1700.0	2.911 2.746 2.566 2.393 2.277 2.219	34.514 34.530 34.549 34.566 34.576 34.586	27.513 27.541 27.572 27.601 27.619 27.632	65.22 62.73 59.80 57.05 55.44 54.35	1.528 1.592 1.653 1.711 1.767 1.806	18 19 19 19 19

STATION: 27 DATE: 6/16/92 0730 GMT

LAT: 37° 50.0' N. LON: 123° 30.6' W.

P (dbar)	T (°C)	S	γ _θ (kg m ⁻³)	(10 ⁻⁸ m ³ kg ⁻¹)	$\sum_{m=1}^{\infty} \Delta_{m}$ $(m^2 s^{-2})$	π (kg m ⁻³)
2.0	12.292	33.272	25.193			
5.0	12.289	33.272	25.193			
10.0	12.278	33.275	25.198		0.028	
15.0 20.0	12.271	33.282 33.320			0.041 0.055	
25.0	11.443					
30.0	10.793					
35.0		33.421				
40.0		33.490				
		33.548				
50.0	9.804	33.584	25.880			
		33.623	25.933	207.35	0.147	01
		33.653				
		33.669				
		33.739				
		33.799		186.35		
		33.859		179.70		
		33.924 33.965		172.16		
		34.037				
	7.856	34.057	26.553			0.07
	7.825		26.594		0.475	0.04
	7.540	34.106	26.643			0.04
300.0	7.358	34.120	26.680		0.547	
325.0	7.189	34.124	26.707		0.582	0.00
350.0	6.676	34.127	26.779	131.07	0.616	06
375.0	6.548	34.133	26.802	129.23	0.648	08
400.0	6.303	34.157	26.853	124.59	0.680	09
425.0	6.106	34.169	26.887	121.46	0.711	11
450.0	6.000	34.178	26.908		0.741	11
475.0	5.843	34.189	26.937	117.23	0.770	12
500.0 550.0	5.676 5.336	34.203 34.239	26.968 27.038	114.36 108.02	0.799 0.855	13 15
600.0	5.078	34.259	27.038	103.61	0.833	15 16
650.0	4.864	34.289	27.133	99.60	0.959	16
700.0	4.659	34.317	27.178	95.55	1.007	16
750.0	4.519	34.332	27.206	93.25	1.055	17
800.0	4.291	34.363	27.255	88.70	1.100	17
850.0	4.211	34.383	27.280	86.72	1.144	16
900.0	4.058	34.411	27.319	83.27	1.186	15
950.0	3.880	34.429	27.352	80.26	1.227	16
1000.0	3.727	34.435	27.372	78.43	1.267	17
1100.0	3.343	34.477	27.443	71.61	1.341	17
1200.0	3.142	34.502	27.482	68.13	1.411	17

STATION: 27 (cont)

P (dbar)	T (°C)	S	γ _θ 3	$(10^{-8} \text{m}^{\frac{6}{3}} \text{kg}^{-1})$	$\sum_{n=0}^{\infty} D$ $(m^2 s^{-2})$	π (kg m ⁻³)
1300.0 1400.0 1500.0 1600.0 1700.0	2.952 2.836 2.625 2.485 2.353 2.324	34.518 34.533 34.548 34.563 34.577 34.580	27.513 27.536 27.567 27.591 27.614 27.619	65.40 63.56 60.56 58.35 56.27 55.83	1.478 1.542 1.604 1.664 1.721	18 17 18 18 18

REFERENCES

- Flament P., 1986. A Note on Seawater Spiciness and Diffusive Stability. Deep Sea Res., submitted
- Joyce, T. M., 1989. On In Situ "Calibration" of Shipboard ADCPs. J. Atmos. Oceanic Technol., Vol. 6, pp. 169-172.
- Lewis, E. L. and R. G. Perkin, 1981. The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res., Vol. 28A, pp. 307-328.
- UNESCO, 1987. International Oceanographic Tables, Vol. 4, National Institute of Oceanography of Great Britain; and UNESCO, Paris.

INITIAL DISTRIBUTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943	
	Dr. Curtis A. Collins, Code OC/Co Dr. Newell Garfield, Code OC/Gf Dr. Jeff Paduan, Code OC/Pd Mr. Paul F. Jessen, Code OC/Js	1 1 1 20
2.	Duddley Knox Library (Code 0142) Naval Postgraduate School Monterey, CA 93943	2
3.	Research Administration (Code 012) Naval Postgraduate School Monterey, CA 93943	1
4.	Monterey Bay Aquarium Research Institute 160 Central Ave. Pacific Grove, CA 93950	
	Dr. Leslie Rosenfeld	1
5.	Office of Naval Research (ONR) 800 Quincy St. Arlington, VA 22217-5660	
	Dr. Tom Kinder, Code 321CS Dr. Manny Fiadeiro, Code 1122PO Dr. Steven R. Ramp Code 322PO	1 1 3
6.	College of Oceanography Oregon State University Corvallis, OR 97331	
	Dr. Robert L. Smith Dr. Adriana Huyer Dr. P. Micheal Kosro Dr. Ted Strub Dr. Leonard Walstad Dr. Jack Barth	1 1 1 1 1

7.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Dr. Pearn P. Niiler Dr. Teresa Chereskin Library	1
8.	Woods Hole Oceanographic Institute Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. Kenneth H. Brink Dr. Robert C. Beardsley Dr. Kathryn Kelly Dr. Richard Limeburner	2 1 1 1
9.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Barbara Hickey	1
10.	University of California at Santa Barbara Santa Barbara, CA 93016	
	Dr. Libe Washburn	1
11.	Defense Technical Information Center Cameron Station Alexandria, VA 2314	1
12.	Department of Meteorology Naval Postgraduate School Monterey, CA 93943	
	Dr. Robert L. Haney	1
13.	E.G. & G. Oceanographic Services 77 Rumford Ave. Waltham, MA 02154	
	Dr. Bruce Magnell	1
14.	Moss Landing Marine Laboratory Moss Landing, CA 95039	
	Mr Andy Heard	7

15.	Fleet Numerical Oceanography Center Monterey, CA 93943	
	Dr. Doug McLain	1
16.	NOAA/NMFS Pacific Fisheries Environmental Group P.O. Box 831 Monterey, CA 93942	
	Dr. Franklin B. Schwing	1
17.	U.S. Geological Survey Mail stop 79 345 Middlefield Road Menlo Park, CA 93025	
	Dr. Marlene Noble	1

