Contrôle Continu nº1

Durée : 1h45 Documents, téléphones et appareils électroniques interdits

Exercice 1 (Question de cours)

- 1. Donner la définition d'une suite de Cauchy dans \mathbb{R} .
- 2. Montrer que toute suite de Cauchy dans \mathbb{R} est bornée.

Exercice 2 Pour $x, y \in \mathbb{R}$, on pose

$$I(x,y) = \begin{cases} [x,y] & \text{si } x \le y \\ [y,x] & \text{si } y \le x. \end{cases}$$

Soit U un ouvert non vide de \mathbb{R} . On définit sur U la relation \mathcal{R} par : pour tout $x, y \in U$, $x\mathcal{R}y$ si et seulement si $I(x,y) \subseteq U$.

1. Montrer que \mathcal{R} définie une relation d'équivalence sur U.

Pour $x \in U$ on note C(x) la classe d'équivalence de x pour la relation \mathcal{R} .

- 2. Montrer que pour tout $x \in U$, C(x) est un intervalle ouvert.
- 3. Montrer que le nombre de classes d'équivalence de \mathcal{R} est au plus dénombrable.
- 4. En déduire que tout ouvert de \mathbb{R} est une réunion (au plus) dénombrable d'intervalles ouverts disjoints.

Exercice 3

- 1. Montrer que l'ensemble $\mathbb{Z}[X]$ des polynômes à coefficients entiers est dénombrable.
- 2. Montrer que l'ensemble

$$A = \{ z \in \mathbb{C} \mid \exists P \in \mathbb{Z}[X], P(z) = 0 \}$$

est dénombrable.

Exercice 4 (Topologie et pré-ordre) Soit X un ensemble. Un pré-ordre sur X est une relation réflexive et transitive.

Topologie vers pré-ordre

- 1. Soit \mathcal{T} une topologie sur X. On définit la relation $\leq_{\mathcal{T}}$ sur X par : pour tout $x, y \in X$, $y \leq_{\mathcal{T}} x$ si et seulement si tout ouvert contenant x contient aussi y.
 - (a) Montrer que $\leq_{\mathcal{T}}$ est un pré-ordre sur X.
 - (b) Déterminer la relation $\leq_{\mathcal{T}}$ pour $\mathcal{T} = \mathcal{P}(X)$ puis pour $\mathcal{T} = \{\emptyset, X\}$.
 - (c) Déterminer la relation $\leq_{\mathcal{T}}$ pour $X = \mathbb{R}$ muni de la topologie \mathcal{T} engendrée par

$$\{]-\infty,a] \mid a \in \mathbb{R}\}.$$

Pré-ordre vers topologie

2. Soit \leq un pré-ordre sur X. Pour tout $x \in X$, on définit

$$V_{<}(x) = \{ y \in X \mid y \le x \}$$

et on note $\mathcal{T}(\leq)$ l'ensemble des unions quelconques de parties du type $V_{\leq}(x)$.

- (a) Montrer que $\mathcal{T}(\leq)$ est une topologie sur X.
- (b) Trouver un préordre \leq sur X tel que $\mathcal{T}(\leq) = \{\emptyset, X\}$ puis tel que $\mathcal{T}(\leq) = \mathcal{P}(X)$.

Et vice et versa

- 3. (a) Montrer que $\leq_{\mathcal{T}(\leq)} = \leq$, c'est-à-dire que pour tout $x, y \in X$, $x \leq_{\mathcal{T}(\leq)} y$ si et seulement si $x \leq y$.
 - (b) Montrer que $\mathcal{T} \subseteq \mathcal{T}(\leq_{\mathcal{T}})$.
 - (c) Montrer que si X est fini alors $\mathcal{T} = \mathcal{T}(\leq_{\mathcal{T}})$.
- 4. En déduire qu'il y a, sur un ensemble fini, autant de pré-ordres que de topologies.
- 5. Donner un exemple d'espace topologique (X, \mathcal{T}) tel que $\mathcal{T} \neq \mathcal{T}(\leq_{\mathcal{T}})$.