Report-TORCS

Members:

Hassaan Anwar 22i-0890

Mishal Ali 22i-1291

Atif Abbasi 22i-1249

Comparison of Controller Design and Training Approaches

Introduction

This report compares two different implementations of a driver controller for an autonomous racing simulation. The first approach (Controller New) uses a manually controlled system with keyboard input and real-time logging, while the second approach (Controller Old) follows a more traditional algorithmic approach to steering, gear shifts, and acceleration.

Overview of Controller Implementation

Controller New (Manual Input and Logging)

- Uses keyboard inputs (W, A, S, D) for acceleration, braking, and steering.
- Implements manual gear shifting with up/down keys.
- Includes collision detection, adjusting gear upon sudden deceleration.
- Logs sensor data such as speed, track position, opponent distances, and track sensor readings.
- Implements a simple logic for acceleration and braking based on speed and gear ratios.
- Uses real-time human intervention for dynamic decision-making.

Controller Old (Algorithmic Decision Making)

- Uses a predefined steering function to adjust based on track position and angle.
- Implements an automated gear-shifting mechanism based on RPM values.
- Controls acceleration based on a maximum speed threshold.
- Implements a structured, rule-based approach to drive the car without direct human intervention.

Comparison Old controller and new controller

Feature	Controller New	Controller Old
Steering Control	Manually controlled using keyboard	Automated calculation based on track position and angle
Gear Shifting	Manual override using keys	Automatic shifting based on RPM values
Acceleration	Controlled via keyboard, manual adjustments	Dynamically adjusted based on speed thresholds
Collision Handling	Detects sudden deceleration and resets gear	No explicit collision handling implemented
Logging	Logs extensive data including track sensors and opponents	No logging implemented
Automation Level	Low, requires human intervention	High, fully autonomous

Chosen Design and Training Approach

Based on the analysis, Controller New is chosen for designing and training the controller due to the following reasons:

1. Data Collection for Machine Learning:

- The extensive logging mechanism in Controller New provides valuable data for training an autonomous agent in the future.
- Data such as speed, steering inputs, opponent proximity, and track sensors allow for reinforcement learning applications.

2. Flexibility and Adaptability:

- Manual control allows for fine-tuning of parameters such as acceleration, braking, and gear shifting.
- Logging provides insights into driving behavior, allowing iterative improvements.

3. Improved Collision Handling:

 Controller New actively detects sudden drops in speed and resets the gear accordingly, which helps prevent getting stuck after a crash.