CMPSCI 240: Reasoning Under Uncertainty First Midterm Exam

February 17, 2016.

Name:	ID:	D:		
Instructions:				

- Answer the questions directly on the exam pages.
- Show all your work for each question. Providing more detail including comments and explanations can help with assignment of partial credit.
- If the answer to a question is a number, unless the problem says otherwise, you may give your answer using arithmetic operations, such as addition, multiplication, "choose" notation and factorials (e.g., " $9 \times 35! + 2$ " or " $0.5 \times 0.3/(0.2 \times 0.5 + 0.9 \times 0.1)$ " is fine).
- If you need extra space, use the back of a page.
- No books, notes, calculators or other electronic devices are allowed. Any cheating will result in a grade of 0.
- If you have questions during the exam, raise your hand.

Question	Value	Points Earned
1	10	
2	10	
3	10	
4	8+2 (Extra Credit)	
5	10	
6	10	
Total	58+2 (Extra Credit)	

Question 1. $(10 \ points)$ Indicate whether each of the following statements is TRUE or FALSE. No justification is required.

1.1 (2 points): For any event A, $P(A \cup A^c) = 1$.

1.2 (2 points): If A and B are any two disjoint events then $P(A \cap B) = P(A)P(B)$.

1.3 (2 points): $10^{10} \ge 10!$.

1.4 (2 points): For any two events A and B where $A \subseteq B$ then $P(A) \leq P(B)$.

1.5 (2 points): $\binom{20}{8} = \binom{20}{12}$.

Question 2. (10 points) Suppose you perform an experiment where the sample space is

$$\Omega = \{o_1, o_2, o_3, o_4, o_5\}$$

and the probability rule satisfies:

$$P(\{o_1\}) = 1/2 \ , \ P(\{o_2\}) = 1/3 \ , \ P(\{o_3\}) = 1/18 \ , \ P(\{o_4\}) = 1/18 \ , \ P(\{o_5\}) = 1/18$$

Define the events $A = \{o_1, o_2\}, B = \{o_2, o_3\}, \text{ and } C = \{o_4, o_5\}.$

2.1 (2 points): What is the value of P(A)?

2.2 (2 points): What is the value of $P(A \cup B)$?

2.3 (2 points): What is the value of $P(A \cap B)$?

2.4 (2 points): What is the value of $P(A \cup B^c)$?

2.5 (2 points): What is the value of $P(A \cap B|C)$?

Question 3. (10 points) Suppose you have spent the entire day studying in a windowless room in the library and it is now 7pm. When you left your house this morning, the forecast said there was a 20% chance it would be snowing at 7pm. Your friend is about to show up to help you study. You know from past experience that he wears a wooly hat with probability 0.9 when it is snowing but only wears a wooly hat with probability 0.3 when it is not snowing. Let H be the event that your friend is wearing the hat when he shows up and let S be the event that it is snowing outside.

3.1 (4 points): Enter values for the following probabilities:

$$P(S) = P(H|S^c) = P(H^c|S) = P(H^c|S^c) =$$

3.2 (2 points): What's the probability it is snowing and your friend is wearing his hat?

3.3 (2 points): What's the probability your friend is wearing his hat?

3.4 (2 points): If your friend arrives and is not wearing his hat, what's the probability that it is snowing outside?

Question 4. (10 points) A branch of the sandwich shop Subsetway opens on campus. There are six sandwich fillings available:

{avocado, bacon, cheese, deli meat, egg, falafel}.

A popular option is to order the "Subsetway Special" which is a sandwich with three random different fillings and each subset of three fillings is equally likely. For example, you could get the set of fillings {avocado, bacon, cheese} or {bacon, egg, falafel} or {avocado, bacon, egg} etc.

- **4.1** (2 points): How many different combinations of three fillings are there?
- **4.2** (2 points): How many different combinations of three fillings are there that include avocado?
- **4.3** (4 points): Let A be the event that your three fillings includes avocado and let B be the event that your three fillings include bacon. What are the values for the following probabilities:

$$P(A) =$$

$$P(B) =$$

$$P(A \cap B) =$$

Are A and B independent?

4.4 (2 points): **Extra Credit:** Another option that you could order is the "Subsetway Super Special" in which you get three fillings but this could be a triple helping of the same filling; or two of one filling and one of another; or three different fillings. If each possible sandwich is equally likely, what's the probability you get a triple helping of one fillings?

Question 5.	(10 points)	You are bored.	However, yo	ou have a	six-sided	dice and	decide to
solve some probab	ility problems	s. Suppose you re	oll the dice fiv	ve times.	The set of	possible	outcomes
Ω includes, for exa	ample, the sec	quences 11611, 1	2345, 13254 €	etc.			

5.1 (2 points): What is the size of the sample space?

$$|\Omega| =$$

5.2 (2 points): Write out the outcomes in the event corresponding to getting the same value on each of the five rolls of the dice.

5.3 (2 points): What is the probability that you see five different values when you roll the dice five times?

5.4 (2 points): What is the probability that every value you observe during the five rolls is either 1 or 2? For example, seeing the sequence 12122 would be one outcome where every value is either 1 or 2.

5.5 (2 points): Which has a higher probability, the event that every value is 6 or the event that every number other than 6 appears exactly once during the 5 rolls. Justify your answer.

Question 6. (10 points) Suppose you pick two cards randomly without replacement from a standard deck of cards. Recall that there are 52 cards and each card has one of four suits. There are 13 hearts, 13 clubs, 13 spaces, and 13 diamonds.

6.1 (1 points): What's the probability that the cards are both clubs?

6.2 (2 points): What's the probability that neither card is clubs?

6.3 (2 points): What's the probability that the cards have different suits?

6.4 (2 points): Let S be the event that exactly one card is spades and let C be the event that exactly one card is clubs. What are the values of the following probabilities.

$$P(C) =$$

$$P(S) =$$

$$P(C \cap S) =$$

6.5 (3 points): Let D be the event that the cards have different suits. What are the values of the following probabilities. For full marks you should simplify your answers fully.

$$P(C|D) =$$

$$P(S|D) =$$

$$P(C \cap S|D) =$$

Are C and S independent conditioned on D?