第1页

系别	班号	姓名	同组姓名	_
实验日期			教师评定	

【实验名称】静态法测量软磁材料的磁滞回线 和示波器观测动态磁滞回线

【目的要求】

- i)了解电子积分器的工作原理和使用方法;
- ii)用静态磁参数测试仪测量软磁材料的磁化曲线和静态磁滞回线.
- iii)用示波器观测软磁材料的磁滞回线
- iv)学习标定磁场强度、磁感应强度,测定样品的参数(Bs, Br, Hc)

【仪器用具】

JCC- II 型静态磁参数测试仪,磁参量实验测试板,测试连接线,低压电源,变压器,示波器,电阻(2Ω),电感(0.05H),等等等等

【实验原理】

i)铁磁材料的磁化规律

第2页

系别	班号	姓名	同组姓名
实验日期			教师评定

如图所示,曲线OA为起始磁化曲线.开始时,H和B均为0,随着H的增加,B开始增加较为缓慢,然后经过一段急剧增加的过程后又缓慢下来.再继续增大H时,B几乎不变,即达到磁饱和.我们把闭合曲线Arc'A'r'A叫做磁滞回线,Bs叫做饱和磁感应强度,Br叫做剩余磁感应强度,rc'和r'c称为退磁曲线,Hc称为矫顽力.

为了让材料达到稳定状态,本实验选择在饱和电流Is条件下,重复按测试仪上的"换向"键,使材料在达到稳定磁化.只有经过"磁锻炼"后的磁滞回线才能代表该材料的磁滞性质.

- ii)测量原理和方法
- (1)计算磁化场的磁场强度H

$$H = \frac{N_1 I}{\pi (R_1 + R_2)} \tag{0.1}$$

其中N1为励磁线圈匝数, R1, R2为环的内外半径, I为励磁电流.

(2)通过探测线圈的磁通量Φ与该处的磁感应强度B的关系为:

$$\Phi = N_2 B S \tag{0.2}$$

励磁电流反向引起的磁通量变化为:

$$\Delta \Phi = 2\Phi = 2N_2 BS \tag{0.3}$$

探测线圈两端的感生电动势为:

$$e_i = -\frac{d\Phi}{dt} \tag{0.4}$$

即:

$$\Delta \Phi = -\int e_i dt \tag{0.5}$$

本实验利用运算放大器实现积分运算, 其输出电压Uo与输入电压ei的关系为:

$$U_0 \approx -\frac{1}{RC} \int e_i dt \tag{0.6}$$

所以有:

$$B = \frac{RC}{2N_2S}U_0 \tag{0.7}$$

通过测量积分电压U₀, 可以计算出磁感应强度B, 各个数值在仪器上有标定:

第3页

系别	_ 班号	姓名	同组姓名
分於日 期		粉冊	还完

N1 (厘)	N ₂ (<u>师</u>)	$S(mm^2)$	R1 (mm)	R2 (mm)	RC (s)
560 ± 20	400 ± 10	26±1	22	25	0.102

iii)示波器观察的原理:

示波器两个通道分别接在标准电阻和积分电容上,这样他们的读数分别正比于H和B. 关系为:

$$H = \frac{N1}{1}i1 = \frac{N1Uch1}{1R0} = k1Uch1$$

$$B = \frac{R2C}{N2S}UCh2 = k2Uch2$$

R2C不好算,我们用标准电感来测量,测量标准电感时候的图线斜率k,那么我们有:

$$R2C = \frac{M}{kR0}$$

$$k1 = \frac{N1}{1R0}$$
, $k2 = \frac{M}{kR0N2S}$

【实验内容】

i)测软磁材料的起始磁化曲线

先消磁, 然后将励磁电流由小到大逐渐改变, 直到电流基本达到饱和, 测量电流相对应的积分电压 U_0 , 根据公式(0.1)和(0.7)求出相应的H和B.

- ii)测量软磁材料的静态磁滞回线
- (1)测饱和磁感应强度Bs

饱和时进行磁锻炼, 积分清零, 电流换向, 测得积分电压Us, 于是有:

$$B_{S} = \frac{RC}{2N_{2}S}U_{S} \tag{0.8}$$

此后保持测试仪的电流输出的大小.

(2)测剩余磁感应强度Br

数字表清零,撤去励磁电流.数字表上给出的积分电压记录为 U_r ,与之对应的磁感应强度的变化 ΔB_r 为:

第4页

系别	班号	姓名	同组姓名	
实验日期			教师评定	

$$\Delta B_r = \frac{RC}{N_2 S} U_r \tag{0.9}$$

因此, 剩余磁感应强度Br为:

$$B_r = B_s - \Delta B_r \tag{0.10}$$

- (3)测磁滞回线上第I, III, III象限的点
- (a)接通测试板上的分流支路,调节电位器,使通过线圈的电流由Is减小到需要的I₁.
- (b)断开分流支路, 再饱和电压下对材料磁锻炼.
- (c) 再次接通分流支路,将数字表清零,然后断开开关S₂撤去线圈上的电流,此时数字表上给出的积分电压记录为U₁. U₁对应的是磁感应强度从B₁到B₁的改变,即:

$$\Delta B_1 = B_1 - B_r = \frac{RC}{N_2 S} U_1 \tag{0.11}$$

因而有:

$$B_1 = B_r + \Delta B_1 \tag{0.12}$$

(d)数字表清零. 再将开关S₂打向另一方,即使线圈上的电流方向反向,数字表上给出的积分电压记录为Uí,Uí对应的是磁感应强度从B_r到Bí的改变,即有:

$$\Delta B_1' = B_r - B_1' = \frac{RC}{N_2 S} U_1' \tag{0.13}$$

因而有:

$$B_{1}' = B_{r} - \Delta B_{1}' \tag{0.14}$$

(e)重复上述步骤.

iii)测量动态图线:

示波器调节到X-Y模式,DC耦合;连接线路之后,打开电源,然后把稳压电源的输出提高,直到在示波器上看到了图形,这个图形就是所谓动态磁化曲线,记录下曲线同示波器网格的所有交点;然后断开电源,把待测样品取下,换上标准电感,然后打开电源,测量得到的直线的斜率。

【实验数据】

i)测软磁材料的起始磁化曲线

第5页

系别 班号	姓名	同组姓名	
实验日期		教师评定	

软磁材料起始磁化曲线

I/A	H/Am^{-1}	U_0 / V	B / T
0.020	75.9	0.007	0.034
0.059	223.8	0.027	0.132
0.101	383.1	0.078	0.383
0.149	565.1	0.132	0.647
0.202	766.1	0.168	0.824
0.252	955.7	0.192	0.942
0.301	1141.6	0.212	1.040
0.350	1327.4	0.223	1.094
0.499	1892.5	0.235	1.152
0.451	1710.5	0.245	1.201
0.499	1892.5	0.254	1.246

1. 测软磁材料的静态磁滞回线

测得Us = $0.264 \,\mathrm{V}$, 根据公式(0.8), 有:

 $B_s = 1.246T$

测得 $U_r = 0.041 \, V$,根据公式(0.9)和(0.10),有:

 $B_r = 0.843T$

测软磁材料的静态磁滞回线

I/A	U_1/V	I'/A	U_1'/V	H/Am ⁻¹	B ₁ /T	H'/Am-1	B ₁ ′/T
0.40	0.037	-0.40	0.211	1517.0	1.206	-1517.0	-1.226
0.30	0.033	-0.30	0.191	1137.8	1.167	-1137.8	-1.030
0.20	0.027	-0.20	0.158	758.5	1.108	-758.5	-0.706
0.15	0.023	-0.15	0.136	568.9	1.069	-568.9	-0.490
0.10	0.017	-0.10	0.044	379.3	1.010	-379.3	0.412

第6页

系别	班号	姓名	同组姓名	
实验日期			教师评定	

静态磁滞回线

Hc=500A/m

2.动态法回线数据

$\Delta V_1/V$	$\Delta V_2/V$	$\Delta V_1/V$	$\Delta V_2/V$	
-0.622	-0.270	0.404	0.255	<u></u>
-0.600	-0.267	0.384	0.250	
-0.432	-0.250	0.212	0.200	
-0.404	-0.247	0.204	0.195	
-0.230	-0.200	0.086	0.100	
-0.200	-0.186	0.032	0.000	
-0.086	-0.099	0.000	-0.056	
-0.024	0.000	-0.026	-0.099	
0.000	0.055	-0.172	-0.200	
0.026	0.100	-0.200	-0.211	
0.158	0.200	-0.370	-0.250	
0.204	0.217	-0.404	-0.255	
0.326	0.250	-0.622	-0.270	
0.404	0.260			
0.630	0.277			

第7页

系别	_ 班号	姓名	同组姓名
实验日期			教师评定

示波器图形

示波器CH1单位200mV/cm, CH2单位100mV/cm 标准电感测量得到的k=-0.250V/1.002V=0.2495 根据前面的讨论,计算得到:

$$\begin{split} k_{1} &= \frac{N}{LR_{0}} = \frac{360}{7500 \times 0.02E - 3 + 16.9E - 2} = 564.26Am^{-1}/V \\ k_{2} &= \frac{M}{kR_{0}N_{2}S} = \frac{0.05}{0.2495 \times 2 \times 80 \times 2.0E - 4} = 6.263T/V \end{split}$$

折合到老师想要的那两个标定值就是:

 $H_0=0.2V\times k_1=112.9Am^{-1}/cm$

 $B_0=0.1V \times k_2=0.6263T/cm$

经过计算,Hc=k1(0.024+0.032)/2=13.54Am⁻¹

 $B_r=k_2(0.056+0.057)/2=0.36T$

 $B_s=k_2(0.630+0.622)/2=3.92T$

第8页

系别	班号	姓名	同组姓名 _	
实验日期			教师评定	

【分析讨论】

这个实验最后终于作完了。前半部分尚且顺利,后半部分就没那么顺利了。虽然动作进行的很快,但是却无法理解这些动作的目的,这是一个痛苦的过程。

后来经过仔细认真地思考和老师的指导,终于弄明白了,于是也就作完了。

前半个实验,测量出的数据比别人的小,有两个原因,一个是我每次读数之前都进行了清零操作;另外一个是我读的数据都不是刚按下键时候的数据,而是等它相对稳定后的数据,如果认为电容按照指数规律漏电,在实验数据范围内,我想是可以证明这样测得的数据是正比于实际数据的,而且相差不会太大。

后半个实验,实验过程中发现示波器的显示有些旋转,所以我调节了一下;这样李萨如图形才能更接近磁滞回线的形状。虽然经过认真调整,但是仍然看出李萨如图形不是那么居中,所以在计算Hc, Br的时候,我用的是同坐标轴交线的一半,这样一定程度上能够弥补。