Colle 15 MPSI/MP2I Jeudi 08 février 2024

Planche 1

- 1. Division euclidienne de polyômes. Énoncé et preuve
- 2. Soit $a \in \mathbb{C}$ et $P = X^4 X^3 + aX 4$. Chercher une condition nécessaire et suffisante sur a pour que P possède deux racines opposées. Les exprimer toutes dans ce cas de figure.
- 3. Soit $x = 5^{1/2} + 2^{1/3}$. Chercher un polynôme non nul Q à coefficients dans \mathbb{Z} tel que Q(x) = 0.

Planche 2

- 1. Relations coefficients-racines, dites formules de Viète. Énoncé et preuve.
- 2. Soit $P = X^5 2X^4 + X^3 X^2 + 2X 1$. Montrer que 1 est racine de P. Déterminer la multiplicité de 1 dans P et factoriser P au maximum.
- 3. Résoudre dans \mathbb{C}^3 le système d'équations d'inconnue (x, y, z) suivant :

$$x^{2} + y^{2} + z^{2} = 0$$
, $x^{4} + y^{4} + z^{4} = 0$, $x^{5} + y^{5} + z^{5} = 2$

Planche 3

- 1. Soit *P* un polynôme non nul. Que dire de l'ensemble de ses racines? Le démontrer.
- 2. Soit $(a, b, c) \in \mathbb{C}^3$ et $P = X^3 + aX^2 + bX + c$. On admet qu'il est scindé et on note x_1, x_2, x_3 ses racines. Déterminer le polynôme unitaire de plus petit degré dont les racines sont $x_1 + x_3, x_2 + x_3, x_1 + x_2$.
- 3. Soit $Q = 3X^4 56X^3 X^2 2$. Déterminer les racines rationnelles de Q.

Bonus

Soit $n \in \mathbb{N}^*$. On note $P_n = \left\{ \exp\left(\frac{2i\pi k}{n}\right) | k \in [[0, n-1]], k \wedge n = 1 \right\}$. On considère

$$\Phi_n = \prod_{\omega \in P_n} (X - \omega)$$

Montrer que Φ_n est à coefficients dans \mathbb{Z} .