Recall: Eigenvalues are the roots of the characteristic polynomial.

$$A\vec{r} = \lambda \vec{r}$$
 $A\vec{r} - \lambda \vec{r} = 0$ $(A - \lambda \cdot \mathbf{I}_{-})\vec{r} = 0$

Note that if it is an eigenvector of eigenvalue & them it is in Ker(A-X-In).

Viceverson, if it is in Ker(A-X·In) then it is an eigenvector of eigenvalue X.

The subspace $\ker(A-\lambda\cdot In)$ is called the eigenspaces of A of eigenvalue λ .

The eigenvalues of A are 1,0.

Eo = ker(A-0.I3) = ker(A), so we have to solve $A\vec{x} = \vec{0}$.

$$\begin{bmatrix} 2/3 & 1/3 & -1/3 \\ 1/3 & 2/3 & 1/3 \\ -1/3 & 1/3 & 2/3 \\ 0 \end{bmatrix} \xrightarrow{\text{cref}} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ 0 \end{bmatrix} \quad \text{So} \quad \overset{\rightarrow}{\times} = \begin{bmatrix} + \\ -+ \\ + \end{bmatrix} = + \cdot \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$

$$E_1 = \ker(A - 1 \cdot I_3)$$
, so we have to solve $\begin{bmatrix} -1/3 & 1/3 & -1/3 \\ 1/3 & -1/3 & 1/3 \\ -1/3 & 1/3 & -1/3 \end{bmatrix} \vec{x} = \vec{0}$.

 π_{-} by π_{-} by π_{-} by π_{-} by π_{-}

The geometric unitrolicity of an eigenvalue
$$\chi$$
 is dim $(E\chi) = genin (\chi)$.

$$qemu(\lambda) = dim(E_{\lambda}) = dim(ker(A-\lambda\cdot In)) = n - dim(im(A-\lambda\cdot In)) =$$

$$= n - comk(A-\lambda\cdot In).$$

Algebraie multiplicity and geometrie multiplicity alone do not give information

about the linear independence of eigenvectors.

Let A be an new matrix, an eigenbasis of A is a basis of IR" formed by eigenvectors of A.

Example:

(1)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
 has eigenhosis $H = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$.

(2)
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
 has eigenbasis $H = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

(5)
$$A = \frac{1}{3}\begin{bmatrix} 2 & 1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$
 has eigenbasis $H = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

(4)
$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 does unt luve our eigenbosis.

Let & be a matrix of size uxn. Let I be on eigenvalue of A. Then A

has an eigenbasis if and only if alun(h) = genu(h) for all h. (1) and
fuctors

fuctors

- O. Check that there exists our eigenbusis.
- 1. Compute eigenvalues (solve faix) =0, obtain $\lambda_1,...,\lambda_5$).
- 2. Compute eigenspaces (find E_{λ} , $dim(F_{\lambda}) = jemu(\lambda)$).
- 3. Find on basis of the eigenspaces.
- 4. Concentenate these busis:

this is uses on eigenbossis of IR".

Remark: We are using that eigenvectors with distinct eigenvalues are

linearly independent.

Also, Jemu(h) & almu(h) & u.

A lus cigamentes $\lambda_1,...,\lambda_s$.

faix) has degree u.

What is the sum of the algebraic multiplicaties?

 $alum(\lambda_1) + \cdots + alum(\lambda_5) \leq \kappa$.

If we have an eigenbasis them alma $(\lambda_1) + \cdots + alma(\lambda_5) = n$.

Also: $genu(h_1) = almu(h_1), ..., genu(h_s) = almu(h_s), so$

 $genn(\lambda_1) + \cdots + genn(\lambda_5) = u.$

the concentenation of the eigenspaces has a vectors

A matrix A of size uxu has an eigenbasis if and only if:

 $\int emn(\lambda_1) + \cdots + \int emn(\lambda_5) = u.$

Question: Let & be an uxu matrix with u distinct eigenvalues.

Does :t have our eigenbasis? What is this eigenbasis?

So
$$g_{A}(x) = (x-\lambda_1)\cdots(x-\lambda_n)$$
. eigenvectors

图=いず、…、まれ

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\begin{cases} A_{1}(x) = (x-1)(x-2)(x-3)(x-4)(x-5)\cdot(-1) \end{cases}$$

If A and B are similar them:

(1) $\int_{A} (x) = \int_{B} (x)$ so they have the same eigenvalues.

(3)
$$alum_A(\lambda) = alum_B(\lambda)$$

for all eigenvalues).

$$demr \forall (y) = demr B(y)$$

(4)
$$det(dr) = det(B)$$
 and $tr(Ar) = tr(B)$.

Let A be such that the sum of the geometric unlliplicities is the size of $\frac{1}{1}$

the matrix. We say that A is diagonalizable.

the untrix associated to T in the basis off is diagonal, and the diagonal

entries are eigenvalues of A.

Example: A= [1 1] is not diagonalizable.

 $\int_{A} (x) = (x-1)^2$ so almu(1) = 2.

But $E_1 = \ker \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ has dimension 1. So genu(1) = 1.

Example: $A = \begin{bmatrix} 8 & -9 \\ 4 & -4 \end{bmatrix}$, is it diagonalientle (does it have an eigenbasis)?

Eigenvalues : 2.

Algebraic multiplicity: 2.

Geometric multiplicity: 1.

Example: $A = \begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix}$ find an eigenbasis and find a diagonal matrix D

similar to A.