Wzory ze statystyki RPiESM

Podstawowe statystyki próbkowe i funkcje w R wyliczające te statystyki

Oznaczenia podstawow	ych kwantyli i funkcje	w R wyliczające te kwantyle
dla rozkładu normalnego	dla rozkładu t-Studenta	dla rozkładu chi-kwadrat
u_{α}	$t_{lpha,n}$	$\chi^2_{lpha,n}$
$> \operatorname{qnorm}(\alpha)$	$> \operatorname{qt}(\alpha, n)$	$> qchisq(\alpha, n)$

Przedziały ufności na	poziomie ufności $1-\alpha$
dla wartości średniej μ	dla wariancji σ^2 (odchylenia standardowego σ)
Model I. Cecha $X \sim N(\mu, \sigma^2), \mu$ - nieznane, σ - znar	ne
$\overline{x} - u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + u_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$	
Model II. Cecha $X \sim N(\mu, \sigma^2), \mu$ - nieznane, σ - nie	znane
$\overline{x} - t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}} < \mu < \overline{x} + t_{1-\alpha/2, n-1} \frac{s}{\sqrt{n}}$	$\frac{\frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}}{\zeta^2_{1-\alpha/2,n-1}} < \sigma^2 < \frac{\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}}{\zeta^2_{\alpha/2,n-1}}$
> t.test(x,conf.level)\$conf.int	
gdzie: x określa wektor z danymi,	
conf.level określa poziom ufności	
$\mathbf{Model\ III.}\ \mathrm{Cecha}\ X$ ma rozkład dowolny o skończor	iej wariancji, próba jest duża $(n \ge 100)$
$\overline{x} - u_{1-\alpha/2} \frac{s}{\sqrt{n}} < \mu < \overline{x} + u_{1-\alpha/2} \frac{s}{\sqrt{n}}$	
Model IV. Cecha X ma rozkład dwupunktowy $P(X)$	=1) = p, P(X = 0) = q = 1 - p, p - nieznane
$\hat{p} = \frac{k}{n} = \frac{\text{ilość sukcesów}}{\text{ilość prób}}, \hat{q} = 1 - \hat{p}$	
<pre>> binom.test(x,n,conf.level)\$conf.int</pre>	
gdzie: x i n określają liczbę sukcesów i liczbę prób,	
conf.level określa poziom ufności.	
Jeśli n jest duże i $n\hat{p} > 5$ i $n\hat{q} > 5$, to można wyzna-	
czyć przybliżony przedział asymptotyczny używając:	

Wyznaczanie niezbędnej ilości pomiarów do próby do oszcowania wartości średniej μ z maksymalnym błędem d na poziomie ufności $(1-\alpha)$

Model I. Cecha
$$X \sim N(\mu, \sigma^2), \mu$$
 - nieznane, σ - znane

> prop.test(x,n,conf.level)\$conf.int

$$n \geqslant \left(u_{1-\alpha/2}\frac{\sigma}{d}\right)^2$$

Model I. Cecha $X \sim N(\mu, \sigma^2), \mu$ - nieznane, σ - znane $n \geqslant \left(u_{1-\alpha/2} \frac{\sigma}{d}\right)^2$ Model II. Cecha $X \sim N(\mu, \sigma^2), \mu$ - nieznane, σ - nieznane

 $n \ge \left(t_{1-\alpha/2,n_0-1} \frac{s_0}{d}\right)^2$ gdzie n_0 i s_0 to liczność i odchylenie standardowe pobranej próby wstępnej **Model III.** Cecha X ma rozkład dowolny o skończonej wariancji, próba jest duża $(n \ge 100)$

 $n \ge \left(u_{1-\alpha/2} \frac{s_0}{d}\right)^2$ gdzie s_0 jest odchyleniem standardowym pobranej próby wstępnej **Model IV.** Cecha X ma rozkład dwupunktowy P(X=1)=p, P(X=0)=q=1-p, p - nieznane $n \geqslant u_{1-\alpha/2}^2 \frac{p_0 q_0}{d^2}$ jeżeli znany jest szacunkowy procent p_0 (wtedy $q_0 = 1 - p_0$) $n \geqslant u_{1-\alpha/2}^2 \frac{1}{4d^2}$ jeżeli nie jest znany szacunkowy procent p_0

Wzory ze statystyki RPiESM

Weryfikacje hipotez dotyczących	wartości średniej na p	oziomie istotności α
UWAGA: jeżeli wyznaczone wartości statysty	yk testowych $(U \text{ lub } T)$ n	ależą do W , to H_0 odrzucamy.
Model I. $X \sim N(\mu, \sigma^2), \mu$ - nieznane, σ - zn	ane.	
Hipoteza zerowa $H_0: \mu = \mu_0$. Statystyka testo	wa $U = \frac{\overline{X} - \mu_0}{\sigma} \sqrt{n}$.	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = \left(-\infty; -u_{1-\alpha/2}\right) \cup \left\langle u_{1-\alpha/2}; +\infty\right\rangle$	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -u_{1-\alpha})$
Model II (t.test). $X \sim N(\mu, \sigma^2), \mu$ - nieznar	_	
Hipoteza zerowa $H_0: \mu = \mu_0$. Statystyka testo		
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -t_{1-\alpha/2, n-1}) \cup \langle t_{1-\alpha/2, n-1}; +\infty \rangle$ Model III. X ma rozkład dowolny (próba d	$W = \langle t_{1-\alpha,n-1}; +\infty \rangle$	$W = (-\infty; -t_{1-\alpha, n-1})$
Hipoteza zerowa $H_0: \mu = \mu_0$. Statystyka testo	wa $U = \frac{\overline{X} - \mu_0}{s} \sqrt{n}$.	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: \mu \neq \mu_0$	$H_1: \mu > \mu_0$	$H_1: \mu < \mu_0$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Model IV (prop.test). X ma rozkład dwup	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -u_{1-\alpha})$
Model IV (prop.test). X ma rozkład dwup	unktowy P(X=1) = p, H	P(X=0) = q = 1 - p,
p - nieznane, $n\hat{p} \geqslant 5$ i $n\hat{q} \geqslant 5$, gdzie $\hat{p} = \frac{k}{n} = \frac{1}{2}$	$\frac{\text{lość sukcesów}}{\text{ilość prób}}, \hat{q} = 1 - \hat{p}.$	
Hipoteza zerowa $H_0: p = p_0$. Statystyka testov	wa $U = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0 (1 - p_0)}{n}}}.$	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1: p \neq p_0$	$H_1: p > p_0$	$H_1 : p < p_0$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle$ Jeśli w modelu IV nie jest spełnione założen	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -u_{1-\alpha})$
	nie, że $n\hat{p} \geqslant 5$ i $n\hat{q} \geqslant 5$, to	zamiast prop.test
używamy testu dokładnego binom.test.		

WAŻNA UWAGA: W momencie, gdy stwierdzimy, że do rozważanego problemu pasuje nam model III z tabeli Weryfikacje hipotez dotyczących wartości średniej to, tak samo jak dla modelu II, możemy używać funkcji t.test() i power.t.test(). Wynika to stąd, że dla dużych n mamy $t_{\alpha,n} \approx u_{\alpha}$.

Weryfikacja hipotezy dotyczącej	jednej wariancji na po	oziomie istotności α
Model. $X \sim N(\mu, \sigma^2), \mu$ - nieznane, σ - 1	nieznane.	
Hipoteza zerowa $H_0: \sigma^2 = \sigma_0^2$. Statystyka	testowa $\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$.	
Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna
$H_1:\sigma^2\neq\sigma_0^2$	$H_1: \sigma^2 > \sigma_0^2$	$H_1: \sigma^2 < \sigma_0^2$
Zbiór krytyczny	Zbiór krytyczny	Zbiór krytyczny
$W = \left(0, \chi^2_{\alpha/2; n-1}\right) \cup \left\langle \chi^2_{1-\alpha/2; n-1}; +\infty \right)$		
UWAGA : jeżeli wyznaczona wartość sta	tystyki testowej χ^2 należy	do W , to H_0 odrzucamy.

Wzory ze statystyki RPiESM

Weryfikacja hipotezy dotyczącej równości dwóch wariancji na poziomie istotności α

Hipoteza alternatywna $H_1: \sigma_X^2 > \sigma_Y^2$ Statystyka testowa $F = s_X^2/s_Y^2$

 $W = \langle F(1 - \alpha, n_X - 1, n_Y - 1); +\infty \rangle$

Zbiór krytyczny

Model I. (test F: var.test)

 $X \sim N(\mu_X, \sigma_X^2),\, Y \sim N(\mu_Y, \sigma_Y^2),\, \mu_X, \mu_Y,\, \sigma_X, \sigma_Y$ - nieznane,

dysponujemy niezależnymi próbami losowymi z tych populacji.

Hipoteza zerowa $H_0: \sigma_X^2 = \sigma_Y^2$. Hipoteza alternatywna $H_1: \sigma_X^2 \neq \sigma_Y^2$

Statystyka testowa $F = s_1^2/s_2^2$ (w liczniku jest większa z wariancji).

Zbiór krytyczny

 $W = \langle F(1 - \alpha/2, n_1 - 1, n_2 - 1); +\infty \rangle,$

gdzie n_1 oznacza liczność próby o większej wariancji próbkowej.

Powyżej $F(\alpha, n, m)$ oznacza kwantyl rozkładu F-Snedecora: $\langle qf(\alpha, n, m) \rangle$

UWAGA: jeżeli wyznaczona wartość statystyki testowej F należy do W, to H_0 odrzucamy.

Test zgodności χ^2 -Pearsona na poziomie istotności α

 H_0 : badana próba losowa pochodzi z zadanego rozkładu (lub rodziny rozkładów)

 H_1 : badana próba losowa nie pochodzi z zadanego rozkładu (lub rodziny rozkładów)

Statystyka testowa $\chi^2 = \sum_{j=1}^k \frac{(n_j - n\,p_j^0)^2}{n\,p_j^0}$, gdzie k - liczba klas, n_j - liczba obserwacji, które znalazły się w j-tej klasie, n - liczność próby, p_j^0 - prawdopodobieństwo wpadnięcia obserwacji do j-tej klasy przy założeniu prawdziwości H_0 (jeśli H_0 nie jest hipotezą prostą, to brakujące parametry rozkładu z H_0 wyznaczamy metodą NW)

Zbiór krytyczny

 $W = \left\langle \chi_{1-\alpha,k-1-r}^2; +\infty \right\rangle$, r jest ilością parametrów szacowanych z próby **UWAGA**: jeżeli $\chi^2 \in W$ to hipotezę zerową H_0 odrzucamy.

Test zgodności χ^2 -Pearsona jest zaimplementowany w R, niestety jedynie dla prostych hipotez H_0 : > chisq.test(x, p) gdzie

- x to wektor z licznościami poszczególnych klas,
- p to wektor z prawdopodobieństwami teoretycznymi p_i^0 poszczególnych klas.

rozkładzie hipergeometrycznym.

UNXGA, joid by grown was around the state of the state o	UWAGA : jeżeli wyznaczone wartości statystyk testowy Model I. $X \sim N(\mu_1, \sigma_1^2)$. $Y \sim N(\mu_2, \sigma_2^2)$. μ_1, μ_2 - nie:	ch $(U \text{ lub } T)$ należą do ocznane: σ_1 , σ_2 - znane: dvsr	dpowiednich zbiorów krytycznych, to H_0 odrzucamy.	
Model I. $X \sim N(y_1, y_1^2)$, $Y \sim N(y_2, y_2^2)$, $y_1, y_2 \rightarrow \text{integrate}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow \text{randing}$, $y_2, y_2 \rightarrow \text{randing}$, $y_1, y_2 \rightarrow ran$	Model I. $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, μ_1, μ_2 - nie;	znane. 🐠 - znane: dvsr		
Hipotean alternatywan $H_0: \mu_1 = \mu_2$. Statystyka testons $U = \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{2}$. Hipotean alternatywan $H_1: \mu_1 \neq \mu_2$ Statystyka testons $U = \frac{1}{2} \frac{1}{4} \frac{1}{4} \frac{1}{2} \frac{1}{2}$. Hipotean alternatywan $H_1: \mu_1 \neq \mu_2$ Statystyka testons $U = \frac{1}{2} \frac{1}{4} 1$		10 (armore 70 (10 (armore) and 10 (10 (armore) and 10 (armore) armore and 10 (armore) armore and 10 (armore) armore armor	ponujemy niezaleznymi próbami losowymi z tych populacji.	
Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ Ekidr Krytezay $H_2: \mu_1 \neq \mu_2$ Ekidr Krytezay $H_2: \mu_1 \neq \mu_2$ Ekidr Krytezay $H_1: \mu_1 \neq \mu_2$ Ekidratic alternative $H_1: \mu_1 \neq \mu_2$ Ekidratic alternative $H_1: \mu_1 \neq \mu_2$ Ekidratic $H_1: \mu_1 \neq \mu_2$ Ekidratic alternative $H_1: \mu_1 \neq \mu_2$ Ekidratic Ekidratic $H_1: \mu_1 \neq \mu_2$ Ekidratic Ekidr	Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $U = -$	$\frac{x-y}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2^2}}}.$		y ze s
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Hipoteza alternatywna	Hipoteza alternatywna	
$ \begin{aligned} & \text{Nodel II.} (\text{unpaired betates test (,paired = PALSE, var. equal = TRUE)} \\ & \text{Nodel II.} (\text{unpaired betates test (,paired = PALSE, var. equal = TRUE)} \\ & \text{Nodel II.} (\text{unpaired betates test (,paired = PALSE, var. equal = TRUE)} \\ & \text{Nodel II.} (\text{unpaired betates test (,paired = PALSE, var. equal = TRUE)} \\ & \text{Nodel II.} (\text{unpaired betates test (,paired = PALSE, var. equal = TRUE)} \\ & \text{Hopoteza atrowa } H_{1:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atrowa } H_{2:} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atromatywn} \\ & \text{Hi} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atromatywn} \\ & \text{Hi} ; \mu_{1:} \neq \mu_{2} \\ & \text{Hopoteza atromatywn} \\ & \text{Hi} ; \mu_{2:} \neq \mu_{2} \\ & \text{Hopoteza atromatywn} \\ & \text{Hi} ; \mu_{2:} \neq \mu_{2} \\ & \text{Hopoteza atromatywn} \\ & \text{Hi} ; \mu_{2:} \neq \mu_{2} \\ & \text{Hi} ; \mu_{2:} \neq \mu_{2:} \\ & \text{Hi} ; \mu_{2:} \neq \mu_{2$	$: \mu_1 \neq \mu_2$	$H_1:\mu_1>\mu_2$		
$ \begin{aligned} & \text{Model } W = (-\infty; -\iota_{1n_{-n}} \otimes \gamma) V(\mu_{n-n} \otimes \gamma) + \lambda V \\ & \text{Model } W = (-\infty; -\iota_{1n_{-n}} \otimes \gamma) V(\mu_{n-n} \otimes \gamma) V \\ & \text{Model } V \\ &$		Zbiór krytyczny		
Model II. (Impaired FALSE), where qual=TRRE)) Hoolesa alternatywna $H_1: \mu_1 = \mu_2$. Statystyka testorar $T = \frac{\sqrt{(x_1 + x_2 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_2 + x_4)}} = \frac{\sqrt{(x_1 + x_2 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_2 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_3)}} = \frac{\sqrt{(x_1 + x_2 + x_3)}}{\sqrt{(x_1 + x_3)}} = \frac{\sqrt{(x_1 + x_3)}}{\sqrt{(x_1 + x_3)}} = \sqrt{(x_1 + x_3$	$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty)$	$W = \langle u_{1-\alpha}; +\infty \rangle$	M	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Model II. (unpaired t -test: t .test(,paired=FALS)	E, var.equal=TRUE))		
Hipoteza alternatywna $H_1: \mu_1 = \mu_2$. Statystyka testowa $T = \frac{(\alpha_1 - \mu_1^2 + \alpha_2 - \mu_1^2 + \mu_2)}{(\alpha_1 - \mu_1^2 + \alpha_2 - \mu_1^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \alpha_2^2 + \mu_2^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \alpha_2^2 + \mu_2^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \mu_2^2 + \mu_2^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \mu_2^2 + \mu_2^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \mu_2^2 + \mu_2^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \mu_2^2 + \mu_2^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \mu_2^2 + \mu_2^2 + \mu_2^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \mu_2^2 + \mu_2^2 + \mu_2^2)} + \frac{Hipoteza alternatywna}{(\alpha_1 - \mu_1^2 + \mu_2^2 + \mu$	$\mid X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, μ_1, μ_2 - nieznane, σ_1, σ_2	- nieznane, ale takie, że <i>c</i>	$\sigma_1=\sigma_2$; dysponujemy niezależnymi próbami losowymi z tych populacji.	
Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ H_2 H_3 H_4 H	Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $T = -$	x-y		
Hipoteza alternatywna Hi : $\mu_1 \neq \mu_2$ Hipoteza alternatywna Hipoteza alternatywna Hi : $\mu_1 \neq \mu_2$ Hipoteza alternatywna Hi : $\mu_1 \neq \mu_2$ Hipoteza alternatywna Hi : $\mu_1 \neq \mu_2$ Hi : $\mu_1 \neq \mu_2$ Zbiór krytyczny $H = (-\infty, -t_{1-\alpha/2m+p_2-2})$ $H = (-1, t_{1-\alpha/2m+p_2-2})$ Zbiór krytyczny $H =$		$\sqrt{\frac{(n_1-1)^3 \frac{1}{3} + (n_2-1)^3 \frac{1}{2}}{n_1 + n_2 - 2}} \left(\frac{1}{n_1} + \frac{1}{n_2}\right)$		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Hipoteza alternatywna	Hipoteza alternatywna	
$ \begin{array}{c} \begin{tabular}{ll} \begin{tabular}{ll$		$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$	
$ \begin{aligned} W &= (-\infty, -t_1, -\varepsilon_{2n_1+n_2} - 2) \cup (t_1 - \varepsilon_{2n_1+n_2} - 2) \times W &= (t_1 - \varepsilon_{2n_1+n_2} - 2) \times W \\ &= (-\infty, -t_1, -\varepsilon_{2n_1+n_2} - 2) \cup (t_1 - \varepsilon_{2n_1+n_2} - 2) \times W \\ &= (-\infty, -t_2, -\varepsilon_{2n_1+n_2} - 2) \cup (t_1 - \varepsilon_{2n_1+n_2} - 2) \times W \\ &= (-\infty, -t_2, -$		Zbiór krytyczny		
Acid w modelu II nie jest spehione zalożenie, że $\sigma_1 = \sigma_2$, to zamiast t.test(paired=FALSE,var.equal=FRUE) należy użyć t.test(,paired=FALSE). Nodel II. (paired t.test: t.testetpaired=FALSE). var.equal=FALSE) Model II. (paired t.test: t.testetpaired=FALSE). var.equal=FALSE). Nodel III. (paired t.test: t.testetpaired=FALSE). var.equal=FALSE). Nodel III. (paired t.test: t.testetpaired=FALSE). var.equal=FALSE). Nodel III. (paired t.test: t.testetpaired=FALSE). var.equal=FALSE). Nodel IV. Character alternaty was a proper a diternaty was a proper a sternaty was a proper a diternaty was $(1 - i + i + i \neq p_2)$ and $(1 - i + i \neq p_2)$ and $(1 -$		$W = \langle t_{1-\alpha, n_1+n_2-2}; +\infty \rangle$	$W=(-\infty,-t_{1-\alpha,n_1+n_2-2})$	
Model III. (paired t-test: t.test(, paired=TRUE)) $X - Y \sim N(\mu_{Z_1} \circ \tilde{Z}_1), \; \mu_{Z_1} \circ z$ - nicznane Dysponujemy parami obserwacji gdzie $z_1 = x_i - y_i, i = 1, 2,, n$. Hipoteza alternatywna $X - Y \sim N(\mu_{Z_1} \circ \tilde{Z}_2), \; \mu_{Z_1} \circ z$ - nicznane Dysponujemy parami obserwacji gdzie $z_1 = x_i - y_i, i = 1, 2,, n$. Hipoteza alternatywna $X - Y \sim N(\mu_{Z_1} \circ \tilde{Z}_2), \; \mu_{Z_1} \circ z \sim z$ - nicznane Dysponujemy probami obserwacji gdzie $z_1 = x_i - y_i, i = 1, 2,, n$. Hipoteza alternatywna $X - Y \sim N(\mu_{Z_1} \circ \tilde{Z}_2), \; \mu_{Z_1} \circ z \sim z$ - nicznane Dysponujemy probami obserwacji gdzie $z_1 = x_i - y_i, i = 1, 2,, n$. Hipoteza alternatywna $X - Y \sim N(\mu_{Z_1} \circ \tilde{Z}_2), \; \mu_{Z_1} \circ z \sim z$ Hipoteza alternatywna $X - Y \sim N(\mu_{Z_1} \circ \tilde{Z}_2), \; \mu_{Z_1} \circ z \sim z$ $X - Y \sim N(\mu_{Z_1} \circ \tilde{Z}_2), \; \mu_{Z_1} \circ z \sim z$ $X - Y \sim N(\mu_{Z_1} \circ z), \; \mu_{Z_2} \circ z \sim z$ $X - Y \sim N(\mu_{Z_1} \circ z), \; \mu_{Z_2} \circ z \sim z$ Hipoteza alternatywna $X - Y \sim N(\mu_{Z_1} \circ z), \; \mu_{Z_1} \circ z \sim z$ $X - Y \sim N(\mu_{Z_2} \circ z), \; \mu_{Z_1} \circ z \sim z$ $X - Y \sim N(\mu_{Z_2} \circ z), \; \mu_{Z_2} \circ z \sim z$ $X - Y \sim N(\mu_{Z_2} \circ z), \; \mu_{Z_1} \circ z \sim z$ $X - Y \sim N(\mu_{Z_2} \circ z), \; \mu_{Z_2} \circ z \sim z$ $X - Y \sim N(\mu_{Z_2} \circ z), \; \mu_{Z_2} \circ z \sim z$ $X - X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \circ z \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2} \sim z$ $X \sim N(\mu_{Z_2} \circ z), \; \lambda_{Z_2$	Jeśli w modelu II nie jest spełnione założenie, że $\sigma_1 = \sigma_1$	σ_2 , to zamiast t.test(,pa	aired=FALSE, var. equal=TRUE) nalezy uzyć t.test(,paired=FALSE, var. equa	FALSE)
$X - Y \sim N(\mu_{Z}, \sigma_{Z}^{2}), \ \mu_{Z}, \sigma_{Z} - \text{nicmane. Dyspounjeuny parami observacji gdzie pary są wzajemnie niezależne.}$ $\text{Hipoteza alternatywa H}_{1}: \mu_{1} \neq \mu_{2}$ $\text{Hipoteza alternatywa H}_{2}: \mu_{1} = \mu_{2}. \text{Statystyka testowa } T = \frac{z}{z} \sqrt{n}, \text{ gdzie } z_{1} = x_{1}, y_{1}, i = 1, 2, \dots, n.$ $\text{Hipoteza alternatywa B}_{1}: \mu_{1} \neq \mu_{2}$ $\text{Diór krytyczny } V = (-\infty; -t_{1} - \sigma_{Z}) = \sqrt{t_{1} - \sigma_{Z}} = \sqrt{t_{2} - \sigma_{Z}} = t_{$	Model III. (paired t-test: t.test(, paired=TRUE)			
Hipoteza alternatywna $H_1: \mu_1 = \mu_2$. Statystyka testowa $T = \frac{1}{3}\sqrt{n}$, gdzie $z_1 = x_1 - y_1$, $i = 1, 2, \dots, n$. Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ Zbiór krytyczny $H_1: \mu_1 \neq \mu_2$ Zbiór krytyczny $W = \langle -\infty; -t_{1-\alpha/2,n-1} \rangle \cup \langle t_{1-\alpha/2,n-1}; +\infty \rangle$ $W = \langle t_{1-\alpha,n-1}; +\infty \rangle$ $W = \langle t_{1-\alpha,n-1}; +\infty \rangle$ $W = \langle t_{1-\alpha,n-1}; +\infty \rangle$ Model W . $W = \langle t_{1-\alpha,n-1}; +\infty \rangle$ Hipoteza alternatywna $W = \langle t_{1-\alpha,n-1}; +\infty \rangle$ $W = \langle t$	$ X-Y \sim N(\mu_Z, \sigma_Z^2), \ \mu_Z, \sigma_Z$ - nieznane. Dysponujemy p	arami obserwacji, gdzie pa	oary są wzajemnie niezależne.	
Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}) \cup (t_{1-\alpha/2,n-1}; +\infty)$ Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2,n-1}; +\infty)$	Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $T = \frac{1}{s}$	$\frac{\overline{z}}{z}\sqrt{n}$, gdzie $z_i = x_i - y_i$, i	$(n=1,2,\ldots,n)$	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Hipoteza alternatywna	Hipoteza alternatywna	Hipoteza alternatywna	
Zbiór krytyczny $W = (-\infty; -t_{1-\alpha/2n-1}; +\infty)$ $W = (t_{1-\alpha,n-1}; +\infty)$ Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $U = \frac{\pi}{N} = \frac{\pi}{N} = \frac{\pi}{N} = \frac{\pi}{N} = \frac{\pi}{N}$ Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ $H_1: \mu_1 \neq \mu_2$ $H_2: \mu_1 \neq \mu_2$ $H_3: \mu_1 \neq \mu_2$ $H_4: \mu_1 \neq \mu_2$ H	$H_1:\mu_1 eq\mu_2$	$H_1:\mu_1>\mu_2$		
$ \begin{aligned} W &= (-\infty; -t_{1-a/2,n-1}) \cup \langle t_{1-a/2,n-1}; +\infty \rangle & W &= \langle t_{1-a,n-1}; +\infty \rangle & W &= \langle t_{1-a,n-1}$		Zbiór krytyczny		
Model IV. Cechy X, Y mają rozkłady dowolne $(n_1 \geqslant 100, n_2 \geqslant 100), \ \mu_1, \mu_2, \sigma_1, \sigma_2$ - nieznane; dysponujemy niezależnymi próbami losowymi z tych populacji. Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ Statystyka testowa $U = \frac{\frac{x-y^2}{\sqrt{n_1^2 + n_2^2}}}{M + 1 + n_2}$ Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ Sbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ $W = (u_{1-\alpha/2}) \cup (u_$	$W = \left(-\infty; -t_{1-\alpha/2, n-1}\right) \cup \left\langle t_{1-\alpha/2, n-1}; +\infty\right)$	$W = \langle t_{1-\alpha, n-1}; +\infty \rangle$	$W = (-\infty; -t_{1-\alpha, n-1})$	
Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $U = \frac{x-y}{\sqrt{\frac{n_1^2}{n_1^2} + n_2^2}}$. Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Model V (prop.test). Čechy X , Y mają rozkłady dwupunktowe, $P(X = 1) = p_1 = 1 - P(X = 0)$, $P(Y = 1) = p_2 = 1 - P(Y = 0)$, p_1, p_2 - nieznane, $n_1\hat{p}_1 \geqslant 5$ i $n_2(1-\hat{p}_2) \geqslant 5$. Hipoteza zerowa $H_0: p_1 = p_2$. Statystyka testowa $U = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{n_2}{m_2}}}$, gdzie $\hat{p}_1 = \frac{k_1}{n_1}$, $\hat{p}_2 = \frac{k_2}{n_2}$, $\hat{p}_2 = 1 - P(Y = 0)$, p_1, p_2 - nieznane, $n_1\hat{p}_1 \geqslant 5$ i $n_2(1-\hat{p}_2) \geqslant 5$. Hipoteza alternatywna $H_1: p_1 \neq p_2$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Zbiór krytyczny	Model IV. Cechy X, Y mają rozkłady dowolne $(n_1 \geqslant 1$		σ_2 - nieznane; dysponujemy niezależnymi próbami losowymi z tych populacji.	
Hipoteza alternatywna $H_1: \mu_1 \neq \mu_2$ Zbiór krytyczny Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) > (\sqrt{u_{1-\alpha/2}}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) > (\sqrt{u_{1-\alpha/2}}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) > (\sqrt{u_{1-\alpha/2}}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) > (\sqrt{u_{1-\alpha/2}}; +\infty)$ Model V (prop.test). Cechy X , Y mają rozkłady dwupunktowe, $P(X = 1) = p_1 = 1 - P(X = 0)$, $P(Y = 1) = p_2 = 1 - P(Y = 0)$, p_1, p_2 - nieznane, $n_1 \hat{p}_1 \geqslant 5$ Hipoteza zerowa $H_0: p_1 = p_2$. Statystyka testowa $U = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{n}{m}}}$, gdzie $\hat{p}_1 = \frac{k_1}{n_1}$, $\hat{p}_2 = \frac{k_2}{n_2}$, $\hat{p} = \frac{k_1 + k_2}{n_1 + n_2}$, $\hat{q} = 1 - \hat{p}$, $n = \frac{n_1 n_2}{n_1 + n_2}$. Hipoteza alternatywna $H_1: p_1 > p_2$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup (u_{1-\alpha/2}; +\infty)$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha})$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha})$	Hipoteza zerowa $H_0: \mu_1 = \mu_2$. Statystyka testowa $U = -$	$\frac{x-y}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$.		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Hipoteza alternatywna	Hipoteza alternatywna	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$:\mu_1\neq\mu_2$	$H_1:\mu_1>\mu_2$	$H_1:\mu_1<\mu_2$	
$ \begin{aligned} W &= (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle & W &= \langle u_{1-\alpha}; +\infty \rangle \\ \mathbf{Model \ V \ (prop. test)} & V &= (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle \\ \mathbf{Model \ V \ (prop. test)} & V &= (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle \\ \mathbf{Model \ V \ (prop. test)} & V &= (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle \\ \mathbf{Model \ V \ (prop. test)} & V &= (-p), \ P(X = 1) = p_1 = 1 - P(X = 0), \ P(X = 1) = p_2 = 1 - P(Y = 0), \ p_1, p_2 - \text{nieznane}, n_1 \hat{p}_1 \geqslant 5 \\ \mathbf{n}_1(1 - \hat{p}_1) \geqslant 5 \text{ i } n_2 \hat{p}_2 \geqslant 5 \text{ i } n_2 (1 - \hat{p}_2) \geqslant 5. \end{aligned} $ $ \text{Hipoteza arenwa } H_0 : p_1 = p_2. \text{ Statystyka testowa } U = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{p_2}{n_2}}}, \text{ gdzie } \hat{p}_1 = \frac{k_1}{n_1}, \hat{p}_2 = \frac{k_2}{n_2}, \hat{p} = \frac{k_1 + k_2}{n_1 + n_2}, \hat{q} = 1 - \hat{p}, \ n = \frac{n_1 n_2}{n_1 + n_2}. \end{aligned} $ $ \text{Hipoteza alternatywna} $ $ \text{Hipoteza alternatywna} $ $ H_1 : p_1 \neq p_2 $ $ \text{Sbi\'or krytyczny} $ $ W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle $ $ W = \langle u_{1-\alpha}; +\infty \rangle $ $ \text{Sbi\'or krytyczny} $ $ W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle $		Zbiór krytyczny	Zbiór krytyczny	
Model V (prop.test). Čechy X , Y mają rozkłady dwupunktowe, $P(X=1)=p_1=1-P(X=0)$, $P(Y=1)=p_2=1-P(Y=0)$, p_1,p_2 - nieznane, $n_1\hat{p}_1\geqslant 5$ i $n_2(1-\hat{p}_2)\geqslant 5$. Hipoteza zerowa $H_0:p_1=p_2$. Statystyka testowa $U=\frac{\hat{p}_1-\hat{p}_2}{\sqrt{\frac{p_3}{n_1}}}$, gdzie $\hat{p}_1=\frac{k_1}{n_1}$, $\hat{p}_2=\frac{k_2}{n_2}$, $\bar{p}=\frac{k_1+k_2}{n_1+n_2}$, $\bar{q}=1-\bar{p}$, $n=\frac{n_1n_2}{n_1+n_2}$. Hipoteza alternatywna $H_1:p_1\neq p_2$ Zbiór krytyczny $H_1:p_1\neq p_2$ Zbiór krytyczny $W=(-\infty;-u_{1-\alpha/2})\cup \langle u_{1-\alpha/2};+\infty\rangle$ $W=\langle u_{1-\alpha};+\infty\rangle$ $W=\langle u_{1-\alpha};+\infty\rangle$	$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty)$	$W = \langle u_{1-\alpha}; +\infty)$	M = M	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Model V (prop.test). Čechy X, Y mają rozkłady dwi	$1 \text{ punktowe, } P(X=1) = p_1$	$= 1 - P(X = 0), P(Y = 1) = p_2 = 1 - P(Y = 1)$	
Hipoteza zerowa $H_0: p_1 = p_2$. Statystyka testowa $U = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\frac{p_1}{p_2}}}$, gdzie $\hat{p}_1 = \frac{k_1}{n_1}$, $\hat{p}_2 = \frac{k_2}{n_2}$, $\bar{p} = \frac{k_1 + k_2}{n_1 + n_2}$. Hipoteza alternatywna $H_1: p_1 \neq p_2$ Thioteza alternatywna $H_1: p_1 \neq p_2$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup \left\langle u_{1-\alpha/2}; +\infty \right\rangle$ $W = (-\infty; -u_{1-\alpha/2}) \cup \left\langle u_{1-\alpha/2}; +\infty \right\rangle$ Hipoteza alternatywna $H_1: p_1 \neq p_2$ Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup \left\langle u_{1-\alpha/2}; +\infty \right\rangle$ $W = (-\infty; -u_{1-\alpha/2}) \cup \left\langle u_{1-\alpha/2}; +\infty \right\rangle$ $W = (-\infty; -u_{1-\alpha/2}) \cup \left\langle u_{1-\alpha/2}; +\infty \right\rangle$	$ 1 n_1(1-p_1) \geqslant 5 1 n_2p_2 \geqslant 5 1 n_2(1-p_2) \geqslant 5.$			
Hipoteza alternatywna $H_1: p_1 \neq p_2$ Hipoteza alternatywna $H_1: p_1 \neq p_2$ $H_1: p_1 > p_2$ Zbiór krytyczny Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup \left\langle u_{1-\alpha/2}; +\infty \right\rangle$ $W = \langle u_{1-\alpha}; +\infty \rangle$ Hipoteza alternatywna $H_1: p_1 < p_2$ Zbiór krytyczny $H_1: p_1 > p_2$ Zbiór krytyczny $H_2: p_1 > p_2$ Zbiór krytyczny $H_3: p_1 > p_2$ Zbiór krytyczny $H_4: p_1 > p_2$ Zbiór krytyczny $H_2: p_1 > p_2$ Zbiór krytyczny $H_3: p_1 > p_2$ Zbiór krytyczny $H_4: p_1 > p_2$ Zbiór krytyczny $H_1: p_2 > p_$	Hipoteza zerowa $H_0: p_1 = p_2.$ Statystyka testowa $U = \frac{\hat{p}}{2}$	$\frac{1-\hat{p}_2}{\sqrt{rac{pq}{q}}}$, gdzie $\hat{p}_1=rac{k_1}{n_1}$, $\hat{p}_2=$	$\frac{k_2}{n_2}$, $\overline{p}=\frac{k_1+k_2}{n_1+n_2},$ $\overline{q}=1-\overline{p}$, $n=$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Hipoteza alternatywna	Hipoteza alternatywna	
Zbiór krytyczny $W = (-\infty; -u_{1-\alpha/2}) \cup \left\langle u_{1-\alpha/2}; +\infty \right\rangle \qquad W = \left\langle u_{1-\alpha}; +\infty \right\rangle \qquad Zbiór krytyczny W = (-\infty; -u_{1-\alpha}) \qquad W = (-\infty; -u_{1-\alpha})$		$H_1:p_1>p_2$		
$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty \rangle \qquad W = \langle u_{1-\alpha}; +\infty \rangle \qquad W = (-\infty; -u_{1-\alpha})$		Zbiór krytyczny		RP
	$W = (-\infty; -u_{1-\alpha/2}) \cup \langle u_{1-\alpha/2}; +\infty)$	$W = \langle u_{1-\alpha}; +\infty \rangle$	$W = (-\infty; -u_{1-\alpha})$	