Speicherbereich auf LEDs

Inhaltsverzeichnis

1	Produktanforderungen	2
	Softwaredesign	
	Speicher / Registerbelegung	
4	Berechnung der verwendeten Zeitschleife	4
5	Programmlisting	5
6	Testplan	6
7	Probleme	6
8	Erkenntnisse	7
9	Zeitaufwand	7
10	Lastenheft	

1 Produktanforderungen

Es ist ein mit Unterprogrammen strukturiertes Programm für den Zilog Z80 Mikroprozessor zu schreiben:

Auf der Adresse 1901 beginnt ein Speicherbereich, in dem abwechselnd auszugebende Bitmuster (Diese Werte werden vor Programmstart dort händisch eingegeben)

Die Länge des Speicherbereiches (Anzahl der nun folgenden Bytepaare) steht in 1900h.

Dauer Code: 1 – 8, d.h. das 1 bis 8 – fache der Grunddauer.

Grunddauer = 0,333 sec

Die Bitmuster sollen der jeweiligen Zeit entsprechend immer wieder an den LEDs angezeigt werden.

Das Programm soll als Endlosprogramm realisiert werden.

Schalter - Belegung:

S7	S6	S5	S4	S3	S2	S1	S0
Hauptschalter	-	-	-	-	-	-	-

LED - Belegung:

Es gibt keine LED – Belegung, da ein Bitmuster an die LEDs angezeigt wird.

Nach dem Einschalten des Hauptschalters soll die im Speicher 1901_H beginnenden Bitmuster mit der jeweiligen Dauer ausgegeben werden.

Falls der Hauptschalter während dem Programmablauf ausgeschaltet wird, soll das Programm den derzeitigen Ablauf fertigstellen und dann den Ablauf stoppen.

Dabei ist nur der Hauptschalter wichtig, alle anderen werden nicht berücksichtigt.

2 Softwaredesign

Jonas Berger Seite 2 von 5

3 Speicher / Registerbelegung

Der <u>RAM Speicher</u> wurde für den Programmcode und als Zwischenspeicher für B und C verwendet, da die Register für die Warteschleife benötigt wurden. (B auf der Adresse 18FF, C auf der Adresse 18FE)

Register:

Α	Ausgeben und Umladen von Registern					
В	Anzahl von auszugebenden Bitmustern					
С	Dauer der Ausgabe der Bitmuster					
D	Doppelregister (2 Byte): Zähler					
E						
Н	Deposition (2 Byte): Adressnummer					
L	Doppelregister (2 Byte): Adressnummer					

I/O Einheiten:

LED / Schalter: Die LEDs bzw. Schalter werden mit der Adresse C0_H angesprochen.

4 Berechnung der verwendeten Zeitschleife

	Programmcode	Taktzyklen	Anzahl Durchläufe
Wait			
	LD B, #05	7	1
loopB	LD A, #21	7	5
loopA	LD C, #00	7	5*33
loopC	DEC C	4	5*33*256
	JP NZ, loopC	10	5*33*256
	DEC A	4	5*33
	JP NZ, loopA	10	5*33
	DEC B	4	5
	JP NZ, loopB	10	5
	RET	10	1

1 Taktzyklus des Systems dauert 1 / 1,79MHz = $0,56\mu s$

Dauer Warteschleife:

0,56µs *

[7+(7*5)+(7*5*33)+(4*5*33*256)+(10*5*33*256)+(4*5*33)+(10*5*33)+(4*5)+(10*5)+10]

= 333ms

Jonas Berger Seite 3 von 5

5 Programmlisting

Speicherbereich auf LEDs		
Simulation des Z80		
Schalter: Lampen:		
7: Hauptschalter	7-0: Bitmuster	

Adresse	Op-Code (hex)	Symbol (Label)	Mnemonic	Kommentar
1800	DB C0	Anfang	IN A, (C0)	Einlesen der Schalterstellung (C0)
1802	E6 80		AND #80	Bits gezielt auf 0 setzen
1804	CA 00 18		JP Z, Anfang	S7 nicht gesetzt dann JP auf Anfang
1807	11 00 00		LD DE, #0000	Zähler DE auf 0 setzen
180A	21 00 19		LD HL, #1900	HL auf die Adr. Num. 1900 setzen
180D	3A 00 19		LD A, (1900)	Inhalt von 1900 in A speichern
1810	47		LD B, A	A umladen in B
1811	13	loop1	INC DE	Zähler DE um 1 erhöhen
1812	CD 2A 18		CALL Leucht	UP - Aufruf Leucht
1815	05		DEC B	B um 1 erniedrigen
1816	C2 12 18		JP NZ, loop1	B nicht 0 dann JP auf loop1
1819	C3 00 18		JP Anfang	unbedingt auf Anfang springen
	Adressluck	e (181A - 18	Leucht	
				Aktuelle Adresse um DE
182A	19	Leucht	ADD HL, DE	erhöhen
182B	7E		LD A, (HL)	Inhalt des Ergebnisses in A speichern
182C	23		INC HL	Aktuelle Adresse um 1 erhöhen
182D	4E		LD C, (HL)	Inhalt der Adresse in C speichern
182E	D3 C0		OUT (C0, A)	Ausgabe von A auf Anzeige C0
1830	78		LD A, B	B umladen in A
1831	32 FF 18		LD (18FF), A	A auf Adresse zwischenspeichern
1834	CD 5A 18	loop2	CALL Wait	UP - Aufruf Wait
1837			DEC C	Ausgabedauer um 1 erniedrigen
1838	C2 34 18		JP NZ, loop2	C nicht 0, dann JP auf loop2
	3A FF 18		LD A, (18FF)	A aus dem Zwischenspeicher holen
183E	47		LD B, A	A umladen in B
183F	C9		RET	Zurück ins HP springen

Jonas Berger Seite 4 von 5

	Adresslück			
185A	79	Wait	LD A, C	Ausgabedauer C in A umladen
185B	32 FE 18		LD (18FE), A	A auf Adresse zwischenspeichern
185E	06 05		LD B, #05	B auf 5 setzen
1860	3E 21	loopB	LD A, #21	A auf 33 setzen
1862	0E 00	loopA	LD C, #00	C auf 0 setzen
1864	0D	loopC	DEC C	C um 1 erniedrigen
1865	C2 64 18		JP NZ, loopC	C nicht 0, dann JP auf loopC
1868	3D		DEC A	A um 1 erniedrigen
1869	C2 62 18		JP NZ, loopA	A nicht 0, dann JP auf loopA
186C	05		DEC B	B um 1 erniedrigen
186D	C2 60 18		JP NZ, loopB	B nicht 0, dann JP auf loopB
1870	3A FE 18		LD A, (18FE)	A aus dem Zwischenspeicher holen
1873	4F		LD C, A	A in Ausgabedauer C umladen
1874	C9		RET	Zurück ins UP Leucht

6 Testplan

Schalter / Dauer - Code	Wirkung	Anmerkung
Hauptschalter (S7) ein	Bitmuster werden	Je nach angegebenen
	ausgegeben	Dauer – Code
Hauptschalter (S7) aus	Ablauf der Ausgabe der	Nach Ablauf der aktuellen
	Bitmuster wird gestoppt	Bitmusterreihe, hält die
		Anzeige beim letzten
		Bitmuster
Beliebiger Schalter an oder	Keine Wirkung	Schalterstellung wird nicht
aus		berücksichtigt
Dauer – Code: 0	0 * 0,333 = 0	Keine Wartezeit
Dauer – Code: 1	1 * 0,333 = 0,333	Wartezeit = 0,333s
Dauer – Code: 2	2 * 0,333 = 0,666	Wartezeit = 0,666s
Dauer – Code: 3	3 * 0,333 = 0,999	Wartezeit = 0,999s
Dauer – Code: 4	4 * 0,333 = 1,332	Wartezeit = 1,332s
Dauer – Code: 5	5 * 0,333 = 1,665	Wartezeit = 1,665s
Dauer – Code: 6	6 * 0,333 = 1,998	Wartezeit = 1,998s
Dauer – Code: 7	7 * 0,333 = 2,331	Wartezeit = 2,331s
Dauer – Code: 8	8 * 0,333 = 2,664	Wartezeit = 2,664s
Dauer – Code: Faktor k > 8	k * 0,333 = k * 0,333	Wartezeit = k * 0,333s

Jonas Berger Seite 5 von 5