Math 1410 Assignment #2 University of Lethbridge, Spring 2017

Sean Fitzpatrick

January 26, 2017

Due date: Tuesday, February 14th, by 4 pm.

Please review the **Guidelines for preparing your assignments** before submitting your work. You can find these guidelines, along with the required cover page, in the Assignments section on our Moodle site.

Assigned problems

- 1. Consider the triangle $\triangle PQR$ with vertices P = (2, 0, -3), Q = (5, -2, 1), and R = (7, 5, 3).
 - (a) Show that $\triangle PQR$ is a right-angled triangle. (Hint: this is a question about dot products.)
 - (b) Compute the lengths of the three sides of $\triangle PQR$ and verify that the Pythagorean Theorem holds.
 - (c) Determine the equation of the plane containing ΔPQR .
- 2. Let \vec{u} and \vec{v} be any two vectors in \mathbb{R}^3 .
 - (a) Show that $\|\vec{u} + \vec{v}\|^2 + \|\vec{u} \vec{v}\|^2 = 2(\|\vec{u}\|^2 + \|\vec{v}\|^2)$.
 - (b) What does part (b) tell you about parallelograms?

Note: For parts (a) and (b) in Problem 2, it is **not** necessary (nor desirable) to write out \vec{u} and \vec{v} in terms of their components. Instead, work with the properties of the dot product given in Section 3.3 of the textbook.

- 3. Let ℓ be a line through the origin in \mathbb{R}^3 , and let \vec{p} and \vec{q} be the position vectors for any two points on ℓ .
 - (a) Show that the point with position vector $\vec{p} + \vec{q}$ also lies on the line ℓ .
 - (b) Show that for any scalar c, the point with position vector $c\vec{p}$ also lies on the line ℓ .
 - (c) Repeat parts (a) and (b) with ℓ replaced by a *plane* through the origin.