Содержание

\mathbf{A}	Аннотация			
Основные термины, определения и сокращения				3
1	Введение			4
	1.1	Поста	новка задачи	4
	1.2	Цель	и задачи	4
	1.3	Стать	и и материалы	5
2	Изучение геометрических свойств имеющихся данных			5
	2.1	Построение матрицы расширенных аккордов по музыкальному произведению		5
	2.2	2 Предварительный анализ		5
	2.3	Прост	ранственное представление расширенных аккордов	7
		2.3.1	Использование SVD	7
		2.3.2	Анализ длительностей расширенных аккордов	8
		2.3.3	Анализ громкости звучания нот расширенных аккордов	14
		2.3.4	Анализ используемых нот в расширенных аккордов	16
	2.4	Результаты кластеризации		20
3	Алгоритмический подход			20
	3.1	Описание алгоритма		
	3.2	Использование результатов кластеризации		21
4	Вероятностный подход			22
	4.1	Описа	ние алгоритма	22
	4.2	Испол	взование результатов кластеризации	22
5	Рез	Результаты		
Cı	Список литературы			

Аннотация

Еще Леонард Эйлер в XVIII-ом веке обратил внимание на диаграмму, которую он назвал «tonnetz». Диаграмма позволяет описать структуру музыкального произведения. Современные технологии позволяют использовать подобные геометрические структуры для генерации музыки. В рамках проекта я предложу два метода генерации музыкальных произведений, основывающиеся на их геометрическом представлении. Первый подход — алгоритмический (результат генерации детерминированный), генерация происходит на основе одного имеющегося музыкального произведения; второй — вероятностный (результат генерации случайный), генерация происходит на основе большого количества музыкальных произведений.

Основные термины, определения и сокращения

- Гармония объединение звуков в созвучия и их слаженное закономерное последование с точки зрения человеческого восприятия.
- $\Omega = \{\omega_1 \dots \omega_{128}\}$ множество всех музыкальных нот в рассматриваемом представлении аудиофайлов в midi-формате.
- $v_t \in \mathbb{Z}^{128}$ вектор-аккорд, для $i \in \{1 \dots 128\}$ i-ая компонента отвечает громкости ноты w_i в момент t музыкального произведения.
- $V = \{v_{t_1} \dots v_{t_n}\}$ последовательность аккордов данного музыкального произведения, где моменты времени $t_1 \dots t_n$ отвечают смене аккорда.
- $v^+ \in \mathbb{Z}^{129}$ расширенный вектор-аккорд, для $i \in \{1...128\}$ i-ая компонента отвечает громкости ноты w_i ; для $i \in \{129\}$ i-ая компонента отвечает длине временного промежутка, в течение которого играл соответствующий аккорд до очередной смены в музыкальном произведении.
- $V^+ = [v_1^+ \dots v_n^+] \in \mathbb{Z}^{129 \times n}$ матрица музыкального произведения, состоящего из n расширенных аккордов.

1 Введение

1.1 Постановка задачи

В рамках этой работы будем рассматривать музыку, созданную человеком на фортепиано. Благодаря представлению аудиофайлов в midi-формате в любой момент времени нам доступна информация об используемых в произведении нотах и их громкости. Имея доступ к большому количеству произведений, хотелось бы выяснить, есть ли зависимости между порядком нот, их громкостями и временными промежутками, в течение которого они играют. Для изучения этих зависимостей необходимо предложить объекты, которыми можно описать имеющиеся музыкальные произведения. С одной стороны, для анализа зависимостей эти объекты должны содержать значительную информацию о произведении или его части, с другой – их количество должно быть ограничено, чтобы на основе небольшого количества имеющихся произведений восстановить зависимости.

1.2 Цель и задачи

Цель моей работы заключается в создании детерминированного и вероятностного алгоритмов, позволяющих генерировать музыку. Для достижения цели поставлены следующие задачи:

- изучение работ, посвященных созданию музыки.
- изучение геометрических свойств имеющихся данных.
- кластеризация данных на основе выделенных свойств.
- создание детерминированного алгоритма, генерирующего музыкальные произведения на основе выделенных кластеров и одного имеющегося произведения.
- создание вероятностного алгоритма, генерирующего музыкальные произведения на основе выделенных кластеров и большого количества имеющихся произведений.
- программная реализация предложенных алгоритмов.
- сравнение результатов работы алгоритмов с музыкальными произведениями, созданными человеком.

1.3 Статьи и материалы

Заметные продвижения в области алгоритмического создания музыки были достигнуты авторами статьи [3]. Новизна подхода заключается в рассмотрении музыкального произведения, как последовательности токенов, отвечающих сразу нескольким изменениям звука или ритма, тогда как ранее изменения обрабатывались по одному.

Автор программы [1] визуализировал представление музыкальных произведений на графах.

После изучения статьи и программы я попробовал объединить плюсы обоих подходов в своей работе.

2 Изучение геометрических свойств имеющихся данных

2.1 Построение матрицы расширенных аккордов по музыкальному произведению

Рассмотрим множество всех нот $\Omega = \{\omega_1 \dots \omega_{128}\}$ в представлении аудиофайлов в midi-формате. В каждый момент времени t выделим информацию о играющих нотах и их громкости, после чего построим вектор-аккорд $v_t \in \mathbb{Z}^{128}$, i-ая компонента отвечает громкости ноты w_i в момент t музыкального произведения. Теперь любое произведение можно однозначно представлить в виде последовательности $V = \{v_{t_1} \dots v_{t_n}\}$, где моменты времени $t_1 \dots t_n$ отвечают смене аккорда. На основании имеющейся последовательности сформируем матрицу музыкального произведения $V^+ \in \mathbb{Z}^{129 \times n}$: верхний блок матрицы с размерами $128 \times n$ будет описывать последовательные аккорды в музыкальном произведении, 129-ая строка матрицы будет описывать продолжительности соответствующих аккордов. Столбцы матрицы V^+ будем называть расширенными аккордами музыкального произведения.

2.2 Предварительный анализ

Среди рассматриваемых произведений выберем N=500 случайных. Проанализируем количество уникальных расширенных аккордов и количество расширенных аккордов с повторениями для рассматриваемых музыкальных произведениях:

В рассматриваемом представлении аудиофайлов в midi-формате значения громкости нот и продолжительности аккордов описываются целыми числами, поэтому при подсчете уникальных аккордов не возникает операций с плавающей точкой и результат в точности отражает действительность. Таким образом, из полученных зависимостей становится понятно, что почти все расширенные аккорды являются уникальными, а значит они не подходят в качестве объектов, на основании которых можно выявлять зависимости в музыкальных произведениях.

Предложим несколько вариантов упрощения модели, позволяющих сократить количество уникальных рассматриваемых объектов:

- не будем учитывать громкость нот: если нота присутствовала в аккорде, положим ее громкость равной 1, иначе 0 в этом случае верхний блок матрицы V^+ музыкального произведения с размерами $128 \times n$ будет состоять из 1 и 0.
- не будем учитывать продолжительность аккордов в этом случае от матрицы V^+ останется лишь верхний блок с размерами $128 \times n$.
- не будем учитывать как громкость нот, так и продолжительность аккордов.

Таким образом, даже в самой примитивной модели, теряющей большую часть данных о музыкальном произведении, отношение количества уникальных объектов по сравнению с общим количеством объектов довольно большое.

В рамках этой работы я предложу метод кластеризации расширенных аккордов на основании их геометрической структуры, благодаря которому удастся сохранить данные о громкости и продолжительности аккордов, а также об используемых нотах. После применения этого метода станет возможным исследование зависимостей между полученными объектами.

2.3 Пространственное представление расширенных аккордов

2.3.1 Использование SVD

Объединим матрицы рассматриваемых музыкальных произведений в матрицу $W=[V_1^+\dots V_N^+]$, после чего рассмотрим SVD разложение [4] матрицы $W=USV^T$. Согласно теореме Эккарта-Янга [4], $W_r=U_rS_rV_r^T$ (матрицы U_r,S_r,V_r составляют первые r столбцов матриц U,S,V соответственно) – лучшее приближение ранга r матрицы W в евклидовой норме. Для

r=3 матрица $S_rV_r^T$ будет соответствовать проекции расширенных аккордов на трехмерное пространство. В этом случае расположенные в трехмерном пространстве точки, соответствующие столбцам матрицы $S_rV_r^T$, будем называть пространственным представлением матрицы W.

Отметим также, что на практике ограничения по памяти и времени могут не позволить хранить или эффективно выполнять операции над рассматриваемой матрицей $W_{129\times[n_1+...+n_N]}$, где $n_1+...+n_N\sim 10^6$. Будем дополнительно учитывать разреженность матрицы и использовать модуль scipy.sparse 1 из библиотеки SciPy. Хранение матрицы в формате Compressed Sparse Column matrix позволяет эффективно обращаться к столбцам матрицы W и строить SVD разложение.

2.3.2 Анализ длительностей расширенных аккордов

Рассмотрим значения первых трех сингулярных чисел матрицы W и компоненты матрицы $S_3V_3^T$:

Первое сингулярное значение на порядки превосходит остальные, в силу ортонормированности столбцов V в пространственном представлении также заметен этот эффект.

¹https://docs.scipy.org/doc/scipy/reference/sparse.html, дата обр. 25.05.2023

Тут и далее пространственное представление матрицы W будем строить следующим образом: расположим точки в трехмерном пространстве так, чтобы координаты по осям отвечали компонентам столбцов матрицы $S_3V_3^T$. Расположение получившейся фигуры значительно смещено по оси, соответствующей первому сингулярному вектору u_1 :

При рассмотрении проекции на ось видно, что точки распределились по нескольким кластерам, каждый из которых характеризует координата, соответствующая u_1 :

Рассмотрим компоненты сингулярных векторов матрицы U_3 :

Из графика становится понятно, что вектор u_1 отвечает за длительность аккордов, u_2 и u_3 — за звучание. Разделение признаков может быть связано с тем, что некоторые значения длительностей аккордов существенно превышают значения громкостей нот.

Действительно, распределение длин временных промежутков показывает, что некоторые аккорды звучат аномально долго, причем количество таких аккордов крайне мало:

Попробуем далее отказаться от рассмотрения аккордов, длительность звучания которых в разы превышает длительности звучания остальных. В рамках предложенной модели значения временных промежутков отражают не суммарную длительность определенного аккорда, а время до очередной смены, то есть описанные аккорды соответствуют произведениям, в которых долго не происходит смена звука. Описанные аккорды будут соответствовать выделенной группе точек:

Нормируем длительности оставшихся аккордов так, чтобы значения попали в тот же отрезок, что и значения громкости нот – то есть [0, 127] и снова рассмотрим SVD разложение. В пространственном представлении аккордов теперь не выделены кластеры:

Однако даже после фильтрации и нормировки длительностей аккордов среди компонент первого вектора выделяется отвечающая за продолжительность, а остальные распределены в соответствии с частотой используемых нот. Этот эффект можно интерпретировать

следующим образом: между длительностью аккорда и используемыми в нем нотами нет зависимости — этот результат вполне согласуется с предполагаемой действительностью.

Таким образом, после пространственного анализа длительностей аккордов можно предложить вывод: продолжительность аккорда можно выделить, как самостоятельный признак, характеризующий аккорды, так как длительность не связана с используемыми в нём нотами. При этом SVD разложение матрицы W позволяет выделить кластеры длительностей аккордов.

2.3.3 Анализ громкости звучания нот расширенных аккордов

Перейдем к рассмотрению громкостей нот в аккордах, для этого снова построим SVD, но теперь для верхнего блока размеров $128 \times [n_1 + \ldots + n_N]$ матрицы W. Разница в значения первых трех сингулярных чисел существенно сократилась:

Каждый из векторов матрицы U_3 отвечает громкости звучания нот, причем их компоненты распределены похожим образом:

Компоненты первого сингулярного вектора u_1 можно интерпретировать как средние значения громкостей нот, взвешенных с учетом частоты их использования. Рассмотрим признаки, отвечающие громкостям и частотам нот отдельно:

Получаем следующий результат: большинство используемых нот сосредоточено на отрезке [50, 80], при этом для нот на первой половине этого отрезка характерно менее громкое звучание, чем для нот второй половины. Вероятно, это связно с тем, что более высокие ноты используются для задания основного мотива, а более низкие – для поддержания фоновой мелодии. В силу наблюдаемых закономерностей в рамках задачи кластеризации признаков оправдано использование средних значений громкостей для нот.

Номер ноты

2.3.4 Анализ используемых нот в расширенных аккордов

Перейдем к рассмотрению зависимостей между играющими нотами в аккордах, для этого снова построим SVD, для верхнего блока размеров $128 \times [n_1 + \ldots + n_N]$ матрицы W. Также не будем учитывать громкость нот: если нота присутствовала в аккорде, положим ее громкость равной 1, иначе 0.

Теперь рассмотрим полное SVD разложение для описанной матрицы. Сингулярные числа с номерами i>80 имеют значения, близкие к нулю. Это объясняется тем, что в рассматриваемых произведениях используется порядка 80 различных нот – это значение определяет ранг рассматриваемой матрицы.

Компоненты левых сингулярных векторов, отвечающих младшим сингулярным числам, соответствуют наиболее редко встречающимся нотам:

При этом распределение компонент старшего сингулярного вектора напоминает распределение частот используемых нот. Примечательно, что значения компонент на полуинтервалах [55, 67) и [67, 79) почти в точности совпадают:

Этот же эффект наблюдается для второго и третьего левых сингулярных векторов u_2, u_3 , но уже для трех полуинтервалов: [43, 55), [55, 67) и [67, 79):

Для каждого из рассматриваемых произведений выясним, какой из полуинтервалов [43, 55), [55, 67), [67, 79), [79, 91) содержал большее количество нот:

Произведения разделились на две основные группы: в первой из них большинство нот содержится в полуинтервале [55, 67), во второй – в полуинтервале [67, 79). Теперь становится понятно, почему среди компонент первого сингулярного вектора u_1 удалось выделить два почти совпадающих полуинтервала, а не три: компоненты u_1 взвешены с учетом частот соответствующих нот. Этот эффект в меньше степени сказался на векторах u_2 и u_3 . Компоненты старших сингулярных векторов описывают закономерности в использовании нот в различных полуинтервалах длины 12, при этом наблюдаемые закономерности совпадают. То есть можно сделать следующее предположение: при смещении всех нот на 12 структура произведений и их звучание не должно существенно поменяться. Действительно, это соображение согласуется с музыкальной теорией: октава состоит в точности из 12 нот, при этом исполнение одно и того же музыкального произведения допускается в разных октавах – меняется только тон звучания.

Таким образом, мы получили обоснование возможности смещать ноты всего произведения на кратное 12 число нот. Воспользуемся этим в поставленной задаче кластеризации: для каждого музыкального произведения за счет смещений добьемся того, чтобы большинство нот содержалось в полуинтервале [55, 79). Если после смещения остались ноты вне описанного полуинтервала, дополнительно сместим их в него независимо от остальных.

2.4 Результаты кластеризации

Сравним количество уникальных объектов для описанной ранее примитивной модели, не учитывающей как громкость нот, так и продолжительность аккордов, с количеством уникальных образов расширенных аккордов, полученных после кластеризации:

После кластеризации количество образов уникальных расширенных аккордов на основании их геометрической структуры позволяет анализировать зависимости между ними, кроме того предложенный метод кластеризации сохраняет данные о громкости и продолжительности аккордов, а также об используемых нотах.

3 Алгоритмический подход

3.1 Описание алгоритма

Прежде всего заметим, что в задаче генерации музыки на основе единственного произведения мы вынуждены в значительной степени опираться на существующую структуру и зависимости музыкального произведения. В силу этого замечания сформулируем дополнительное предположение, обоснование разумности которого приведем позже: пусть из всевозможных последовательностей аккордов $v_1 \dots v_n$ гармоничными кажутся музыкальные произведения, в которых смена звука происходит плавнее всего – то есть сумма $\sum_{i=1}^{n-1} \|v_{\sigma(i)} - v_{\sigma(i+1)}\|$ наименьшая для фиксированного набора $v_1 \dots v_n$ и всевозможных перестановок σ на элементах $1 \dots n$.

Рассмотрим неориентированный граф $G = \{V, E\}, E = \{(v_i, v_{i+1}) \mid i \in \{1 \dots n-1\}\}$. В текущей версии вес ребра (v_i, v_{i+1}) определяется евклидовой нормой разности $v_i - v_{i+1}$. Переформулируем предложенную ранее оптимизационную задачу для графа G. Задача заключается в поиске кратчайшего замкнутого пути или цикла, который проходит через каждое ребро связного взвешенного неориентированного графа. Если граф имеет эйлеров путь, тогда этот путь служит оптимальным решением. В противном случае задачей оптимизации является поиск подмножества рёбер с минимальным возможным общим весом, так что после их добавления получающийся мультиграф имел эйлеров путь.

Решение поставленной оптимизационной задачи сведем к случайным блужданиям по графу G: при этом будем отдавать предпочтение ранее непосещенным ребрам, не являющимся мостами – то есть использовать алгоритм Φ лери.

Рассмотренная задача является задачей китайского почтальона [2] и имеет оптимальное решение.

3.2 Использование результатов кластеризации

Заметим, что если все аккорды рассматриваемого музыкального произведения являются уникальными, граф G будет представлять собой последовательно соединенные вершины $v_1 \dots v_n$, а решение оптимизационной задачи совпадать с оригинальным произведением.

Таким образом, для эффективного применения описанного алгоритма в задаче генерации музыки необходимо сократить количество уникальных расширенных аккордов.

Переформулируем предложенный алгоритм: вместо уникальных расширенных аккордов будем рассматривать их образы, полученные при кластеризации — это позволит усложнить структуру графа G за счет отображение некоторых вершин в одну.

Напомним предположние, в рамках которого описывается этот алгоритм: из всевозможных последовательностей аккордов $v_1 \dots v_n$ гармоничными человеку кажутся музыкальные произведения, в которых сумма $\sum\limits_{i=1}^{n-1}\|v_{\sigma(i)}-v_{\sigma(i+1)}\|$ наименьшая для фиксированного набора $v_1\dots v_n$ и всевозможных перестановок σ на элементах $1\dots n$. Приведем обещанное

теоретическое обоснование его разумности. Рассмотрим образы $\{v_1 \dots v\}$ аккордов оригинального произведения, полученные после кластеризации. Построенная по ним последовательность также является решением задачи добавления ребер в граф G для существования эйлерова пути нем. Более того, такое решение оказывается близким к оптимальному на примере рассмотренных мной аудиофайлов. Если исходить из предположения о том, что изначальные музыкальные произведения звучат гармонично, то предположение соотносится с действительностью.

4 Вероятностный подход

4.1 Описание алгоритма

Идея генерации основывается на применении марковских цепей — последовательностей случайных событий с конечным или счётным числом исходов, характеризующаяся тем, что при фиксированном настоящем будущее независимо от прошлого. Процесс в каждый момент времени находится в одном из состояний. В рамках предложенной модели марковские цепи могут быть применены для построения очередного аккорда на основе одного или нескольких предыдущих. При фиксированном параметре D, отвечающем размерности марковской цепи, построим тензор T размерности D с размерами $K \times \ldots \times K$, где K – количество уникальных расширенных аккордов среди всех произведений. Рассмотрим музыкальное произведение j, матрицей которого является $V_j^+ \in \mathbb{Z}^{129 \times n_j}$. Пусть $f_j: \{1 \dots n_j\} \to \{1 \dots K\}$ функция, сопоставляющая i-ому столбцу матрицы V_j^+ музыкального произведения его порядковый номер $f_i(i)$ среди уникальных расширенных аккордов. Далее из всех произведений выделим подпоследовательности $v_i^+ \dots v_{i+D}^+$ аккордов длины D. Для каждой выделенной подпоследовательности увеличим значение $T[f_i(i), \dots f_i(i+D)]$ на 1. Теперь, если в генерируемом музыкальном произведении последние D-1 расширенных аккордов имели порядковые номера $i_1 \dots i_{D-1}$ среди уникальных расширенных аккордов, выберем очередной аккорд с вероятностями, равными весам компонент столбца $T[i_1 \dots i_{D-1}]$ относительно суммы элементов этого столбца. Наконец, выберем случайным образом первый расширенный аккорд и длину музыкального произведения и повторим описанные шаги необходимое количество раз.

4.2 Использование результатов кластеризации

Для применения этого метода должно выполняться несколько условий:

ullet получившийся тензор не должен содержать большого числа столбцов $T[i_1 \dots i_{D-1}]$ с

единственной ненулевой компонентой, чтобы генерируемые последовательности расширенных аккордов не повторяли в точности последовательности оригинальных произведений.

- ограничения по памяти должны позволять хранить получившийся тензор.
- ограничения по времени должны позволять производить необходимые вычислительные операции над тензором.

Таким образом, для эффективного применения марковских цепей в задаче генерации музыки необходимо сократить количество уникальных расширенных аккордов.

Переформулируем продложенный алгоритм: вместо уникальных расширенных аккордов будем рассматривать их образы, полученные при кластеризации — это позволит сократить параметр K, а значит сократить размер тензора T. Более того, в силу фиксированного количества рассматриваемых произведений сокращение размеров тензора приведет к увеличению плотности его значений, то есть все перечисленные условия будут выполнены.

5 Результаты

Я реализовал предложенные алгоритмы и разместил материалы в открытом GitHub репозитории². Там же доступны примеры музыкальных произведений, к которым были применены описанные методы кластеризации и результаты работы алгоритмов. Рассмотрим некоторые из них. Визуализируем представления одного и того же музыкального произведения в midi-формате до и после кластеризации, для этого на временной шкале отложим используемые ноты и длительности их звучания.

• до кластеризации:

²GitHub репозиторий: https://github.com/vvauijij/music_generation, дата обр. 25.05.2023

• после кластеризации:

Количество различных используемых нот сократилось, их длительности изменились, однако общая структура произведения сохранилась.

Теперь рассмотрим несколько примеров генерируемых произведений, снова на временной шкале отложим используемые ноты и длительности их звучания:

• пример №1:

• пример №2:

• пример №3:

• пример №4:

Список литературы

- [1] Spicher A. Bigo L. *HexaChord*. Режим доступа: свободный. URL: https://louisbigo.com/hexachord (дата обр. 27.11.2022).
- [2] Johnson E.L. Edmonds J. Matching, Euler tours and the Chinese postman. 1973. DOI: https://doi.org/10.1007/BF01580113.
- [3] Wen-Yi Hsiao и др. Compound Word Transformer: Learning to Compose Full-Song Music over Dynamic Directed Hypergraphs. 2021. DOI: 10.48550/ARXIV.2101.02402. URL: https://arxiv.org/abs/2101.02402.
- [4] N. Kishore Kumar и Jan Shneider. Literature survey on low rank approximation of matrices. 2016. arXiv: 1606.06511 [math.NA].