Undecidability of the Halting Problem

Deepak D'Souza

Department of Computer Science and Automation Indian Institute of Science, Bangalore.

14 March 2024

Outline

- Universal Turing machine
- 2 Halting Problem

Universal Turing machine

- We can construct a TM U that takes the encoding of a TM M and its input x, and "interprets" M on the input x.
- U accepts if M accepts x, rejects if M rejects x, and loops if M loops on x.

 $0^n 10^m 10^k 10^s 10^t 10^r 10^u 10^v \ 1 \ 0^p 10^a 10^q 10^b 10 \ 1 \ 0^{p'} 10^{a'} 10^{q'} 10^{b'} 100 \ \cdots 1 \ 0^{p''} 10^{a''} 10^{q''} 10^{b''} 10.$

represents a TM M with

- states $\{1, 2, ..., n\}$.
- Tape alphabet $\{1, 2, \ldots, m\}$.
- Input alphabet $\{1, 2, \dots, k\}$ (with k < m).
- Start state $s \in \{1, 2, ..., n\}$.
- Accept state $t \in \{1, 2, \ldots, n\}$.
- Reject state $r \in \{1, 2, \dots, n\}$.
- Left-end marker symbol $u \in \{k+1, \ldots, m\}$.
- Blank symbol $v \in \{k+1,\ldots,m\}$.
- Each string $0^p 10^a 10^q 10^b 10$ represents the transition $(p, a) \rightarrow (q, b, L)$.

Example encoding of TM and its input

Input is encoded as $0^a 10^b 10^c$ etc.

Exercise: What does the following TM do on input 001010?

Example encoding of a TM

[Assume accept and reject states are sink states]

Example encoding of TM and its input

Input is encoded as $0^a 10^b 10^c$ etc.

Exercise: What does the following TM do on input 001010?

Example encoding of a TM

[Assume accept and reject states are sink states]

How the Universal Turing machine works

- Use 3 tapes: for input M#x, for current configuration, and for current state and position of head.
- Repeat:
 - \bullet Execute the transition of M applicable in the current config.
- Accept if M gets into t state, Reject if M gets into r state.

Halting Problem for Turing machines

- Fix an encoding *enc* of TMs as above.
- Define the language

$$HP = \{enc(M) \# enc(x) \mid M \text{ halts on } x\}.$$

• What can we say about the language HP?

Halting Problem for Turing machines

- Fix an encoding enc of TMs as above.
- Define the language

$$HP = \{enc(M) \# enc(x) \mid M \text{ halts on } x\}.$$

- What can we say about the language HP?
 - It is recursively enumerable, since we can use the Universal TM to accept it.

Undecidability of HP

Theorem (Turing 1936)

The language HP is not recursive.

Proving undecidability of HP

Assume that we have a Turing machine M which decides HP. Then we can compute each entry of the table below:

	ϵ	0	1	00	01	10	11	000	001	010	011	111	
M_{ϵ}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_0	L	L	L	L	L	L	L	L	L	L	L	L	
M_1	Н	Н	L	Н	L	Н	Н	L	L	Н	L	Н	
M_{00}	L	L	L	L	L	L	L	L	L	L	L	L	
M_{01}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_{10}	Н	Н	L	Н	L	Н	Н	L	L	Н	L	Н	
M_{11}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_{000}	L	L	L	L	L	L	Н	L	L	L	Н	L	

- For each $x \in \{0,1\}^*$ let M_x denote the TM
 - M, if x is the encoding of a TM M.
 - M_{loop} otherwise, where M_{loop} is a one-state Turing machine that loops on all its inputs.
- Table entry (x, y) tells whether TM M_x halts on the encoded input y. If y is not a valid encoding of an input to M_x , M_x is deemed to loop on y.

- Let us assume we have a TM N that decides HP.
- Then we can define a TM N' as follows: Given input $x \in \{0,1\}^*$, it
 - checks if x is valid encoding of a TM and x is a valid encoding of an input to it; if not, accept.
 - runs as N on x # x.
 - If N accepts (i.e. M_x halts on $enc^{-1}(x)$), goes to a new "looping" state I' and loops there.
 - If N rejects (i.e. M_x loops on $enc^{-1}(x)$), goes to the accept state t'.

A TM N' that behaves differently from all TM's

- N' essentially "complements the diagonal" of the table: Given input $x \in \{0,1\}^*$ it halts iff M_x loops on x.
- Consider y = enc(N'). Then y cannot occur as any row of the table since the behaviour of N' differs from all rows in the table. This is a contradiction.

How N behaves

	ϵ	0	1	00	01	10	11	000	001	010	011	111	
M_{ϵ}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_0	L	L	L	L	L	L	L	L	L	L	L	L	
M_1	H	Н	L	Н	L	Н	Н	L	L	Н	L	Н	
M_{00}	L	L	L	L	L	L	L	L	L	L	L	L	
M_{01}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_{10}	Н	Н	L	Н	L	Н	Н	L	L	Н	L	Н	
M_{11}	L	Н	L	L	L	Н	Н	L	L	L	L	L	
M_{000}	L	L	L	L	L	L	Н	L	L	L	Н	L	
:													
-													
N	Н	Н	Н	Н	Н	L	L	Н					
:													
	1												

The constructed TM *N* complements the diagonal of the table, and hence does not occur as any of the TM's listed. This is not possible!

Complement of HP is not r.e.

Fact 1: If L and \overline{L} are both r.e. then L (and \overline{L}) must be recursive.

- Let M accept L and M' accept L.
- We can construct a total TM that simulates M and M' on given input, one step at a time.
- Accept if M accepts, Reject if M' accepts.

Fact 2: HP is recursively enumerable.

• Just run the universal TM U on input M#x; accept iff Uhalts (i.e. M accepts or rejects x).

Corollary

The language ¬HP is not even recursively enumerable.

Where HP lies

