Overview: Analytical Roadmap

Objective:

Summarize five connected stages in quantitative risk modeling.

Key Idea:

D29–D33 form a continuous pipeline — from recognizing market irregularities to developing, forecasting, and validating dynamic volatility models.

Flow:

Stylized Facts \rightarrow ARCH/GARCH \rightarrow EGARCH \rightarrow Volatility Forecasting \rightarrow VaR Backtesting.

Stylized Facts of Financial Returns

Goal: Empirically verify that market returns are not Normal.

Findings:

- Returns show **fat tails** and **skewness** (Kurtosis 8–28).
- Volatility is clustered, not constant.
- Negative skewness dominates indices; some stocks show positive skew.

Implication:

Traditional Gaussian models underestimate extreme risks — models must capture **non-normality** and **time-varying volatility**.

Introduction to ARCH/GARCH

Purpose:

Model volatility clustering and persistence seen in stylized facts.

Key Findings:

- GARCH(1,1) outperforms ARCH(1).
- Volatility persistence: α₁ + β₁ ≈ 0.97.
- **t-distribution errors** capture fat tails better than Normal.

Outcome:

GARCH makes volatility **forecastable**, not fixed — marking the first dynamic modeling step.

Advanced GARCH (EGARCH)

Focus:

Incorporate asymmetry (leverage effects) — negative shocks increase volatility more than positive ones.

Model: EGARCH(1,1)-t

Results:

- Lowest AIC/BIC: (6697.87 / 6727.28)
- Persistence β₁ ≈ 0.97, tail parameter v ≈ 6.3.
- Captures asymmetric risk reactions effectively.

Conclusion:

EGARCH(1,1)-t becomes the **optimal volatility model** for NIFTY 50.

Volatility Forecasting

Goal:

Use EGARCH(1,1)-t to forecast future volatility and risk metrics.

Results (30-day horizon):

• **Mean σ:** 0.7332% (≈11.6% annualized)

• **95% return range:** ±1.47%

• VaR₉₅%: -1.465%

Takeaway:

Volatility forecasts provide actionable **forward risk estimates**, guiding portfolio exposure and leverage control.

VaR Backtesting

Purpose:

Validate model reliability via statistical tests.

Models Tested: Historical, GARCH-norm, GARCH-t, EGARCH-t.

Tests: Kupiec (POF), Christoffersen Independence, Conditional Coverage.

Result @99% VaR:

Only **EGARCH-t passes all 3 tests**, confirming it captures dynamic tail behavior accurately.

Conclusion:

EGARCH-t offers statistically sound downside risk prediction.

Analytical Continuity

Framework Progression:

- 1. **Day 29:** Identify problem → Markets are non-Gaussian.
- 2. **Day 30–Day 31:** Build solution → GARCH & EGARCH model volatility dynamics.
- 3. **Day 32:** Apply solution \rightarrow Forecast risk metrics.
- 4. **Day 33:** Validate solution → Backtest reliability.

Outcome:

A **closed analytical loop** linking theory, modeling, forecasting, and validation.

Key Insights

1. Normality Fails:

Real-world returns are fat-tailed and asymmetric.

2. EGARCH(1,1)-t is Superior:

- Captures persistence $(\alpha_1 + \beta_1 \approx 0.97)$
- Models heavy tails (v ≈ 6.3)
- Handles asymmetry effectively

3. Strategic Use:

Transforms volatility into a **forecastable**, **controllable variable** for tactical risk management.

Strategic Conclusion

Core Insight:

Volatility is **not static risk**, but a **dynamic**, **forecastable strategic variable**.

Value for Investors:

- Anticipate risk regimes
- Optimize hedging and capital allocation
- Strengthen portfolio resilience

Validated Model:

EGARCH(1,1)-t — the **gold standard** for capturing real-world volatility, persistence, and asymmetry.