Integral Calculus Formula Sheet

Derivative Rules:

$\frac{d}{dx}(c)=0$	$\frac{d}{dx}(x^n) = nx^{n-1}$	
$\frac{d}{dx}(\sin x) = \cos x$	$\frac{d}{dx}(\cos x) = -\sin x$	$\frac{d}{dx}(a^x) = a^x \ln a$
$\frac{d}{dx}(\sec x) = \sec x \tan x$	$\frac{d}{dx}(\csc x) = -\csc x \cot x$	$\frac{d}{dx}(a) = a \ln a$ $\frac{d}{dx}(e^x) = e^x$
$\frac{d}{dx}(\tan x) = \sec^2 x$	$\frac{d}{dx}(\cot x) = -\csc^2 x$	$\int \frac{dx}{dx} (e^{x}) - e^{x}$
$\frac{d}{dx}(cf(x)) = c\frac{d}{dx}(f(x))$	$\frac{d}{dx}(f(x)\pm g(x)) = \frac{d}{dx}(f(x))\pm \frac{d}{dx}(g(x))$	
$(f \cdot g)' = f' \cdot g + f \cdot g'$	$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$	$\frac{d}{dx}(f(g(x))) = f'(g(x))g'(x)$

Properties of Integrals:

$\int kf(u)du = k \int f(u)du$	$\int [f(u) \pm g(u)] du = \int f(u) du \pm \int g(u) du$
$\int_{a}^{a} f(x)dx = 0$	$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$
$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$	$f_{ave} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$
$\int_{-a}^{a} f(x)dx = 2\int_{0}^{a} f(x)dx \text{ if f(x) is even}$	$\int_{-a}^{a} f(x)dx = 0 \text{ if f(x) is odd}$
$\int_{a}^{b} g(f(x))f'(x)dx = \int_{f(a)}^{f(b)} g(u)du$	$\int u dv = uv - \int v du$

Integration Rules:

Fundamental Theorem of Calculus:

$$F'(x) = \frac{d}{dx} \int_{a}^{x} f(t) dt = f(x) \text{ where } f(t) \text{ is a continuous function on } [a, x].$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where } F(x) \text{ is } \underline{\text{any}} \text{ antiderivative of } f(x).$$

$$\int_{a}^{b} f(x) dx = F(b) - F(a), \text{ where F(x) is } \underline{any} \text{ antiderivative of f(x)}.$$

Riemann Sums:

$\sum_{i=1}^{n} c a_{i} = c \sum_{i=1}^{n} a_{i}$ $\sum_{i=1}^{n} a_{i} + b_{i} = \sum_{i=1}^{n} a_{i} + \sum_{i=1}^{n} b_{i}$	$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(a+i\Delta x)\Delta x$ $\Delta x = \frac{b-a}{n}$
$\sum_{i=1}^{n} 1 = n$ $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ $\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$ $\sum_{i=1}^{n} i^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$	$\sum_{i} (\text{height of } i \text{th rectangle}) \cdot (\text{width of } i \text{th rectangle})$ $\frac{\text{Right Endpoint Rule:}}{\sum_{i=1}^{n} f(a+i\Delta x)(\Delta x)} = \sum_{i=1}^{n} (\frac{(b-a)}{n}) f(a+i\frac{(b-a)}{n})$ $\frac{\text{Left Endpoint Rule:}}{\sum_{i=1}^{n} f(a+(i-1)\Delta x)(\Delta x)} = \sum_{i=1}^{n} (\frac{(b-a)}{n}) f(a+(i-1)\frac{(b-a)}{n})$ $\frac{\text{Midpoint Rule:}}{\sum_{i=1}^{n} f(a+(\frac{(i-1)+i}{2})\Delta x)(\Delta x)} = \sum_{i=1}^{n} (\frac{(b-a)}{n}) f(a+(\frac{(i-1)+i}{2})\frac{(b-a)}{n})$

Net Change:

Displacement: $\int_{a}^{b} v(x)dx$	Distance Traveled: $\int_{a}^{b} v(x) dx$	$s(t) = s(0) + \int_{0}^{t} v(x)dx$	$Q(t) = Q(0) + \int_{0}^{t} Q'(x)dx$
a	a	0	0

Trig Formulas:

$\sin^2(x) = \frac{1}{2} \left(1 - \cos(2x) \right)$	$\tan x = \frac{\sin x}{\cos x}$	$\sec x = \frac{1}{\cos x}$	$\cos(-x) = \cos(x)$	$\sin^2(x) + \cos^2(x) = 1$
$\cos^2(x) = \frac{1}{2} \left(1 + \cos(2x) \right)$	$\cot x = \frac{\cos x}{\sin x}$	$\csc x = \frac{1}{\sin x}$	$\sin(-x) = -\sin(x)$	$\tan^2(x) + 1 = \sec^2(x)$

Geometry Fomulas:

Area of a Square:	Area of a Triangle:	Area of an	Area of a Circle:	Area of a
$A = s^2$	$A = \frac{1}{2}bh$	Equilateral Trangle:	$A = \pi r^2$	Rectangle:
	_	$A = \frac{\sqrt{3}}{4} s^2$		A = bh

Areas and Volumes:

Area in terms of x (vertical rectangles):	Area in terms of y (horizontal rectangles):
$\int_{a}^{b} (top - bottom) dx$	$\int_{c}^{d} (right - left) dy$
General Volumes by Slicing:	Disk Method:
Given: Base and shape of Cross-sections	For volumes of revolution laying on the axis with
$V = \int_{a}^{b} A(x)dx \text{ if slices are vertical}$ $V = \int_{c}^{d} A(y)dy \text{ if slices are horizontal}$	slices perpendicular to the axis $V = \int_a^b \pi \big[R(x) \big]^2 dx \text{if slices are vertical}$ $V = \int_a^d \pi \big[R(y) \big]^2 dy \text{if slices are horizontal}$
Washer Method:	Shell Method:
For volumes of revolution not laying on the axis with slices perpendicular to the axis	For volumes of revolution with slices parallel to the axis
$V = \int_{a}^{b} \pi \left[R(x) \right]^{2} - \pi \left[r(x) \right]^{2} dx \text{ if slices are vertical}$	$V = \int_{a}^{b} 2\pi r h dx$ if slices are vertical
$V = \int_{c}^{d} \pi \left[R(y) \right]^{2} - \pi \left[r(y) \right]^{2} dy \text{ if slices are horizontal}$	$V = \int_{c}^{d} 2\pi r h dy$ if slices are horizontal

Physical Applications:

Physics Formulas	Associated Calculus Problems
Mass: Mass = Density * Volume (for 3-D objects) Mass = Density * Area (for 2-D objects) Mass = Density * Length (for 1-D objects)	Mass of a one-dimensional object with variable linear density: $Mass = \int_{a}^{b} (linear \ density) \ dx = \int_{a}^{b} \rho(x) dx$
Work: Work = Force * Distance Work = Mass * Gravity * Distance Work = Volume * Density * Gravity * Distance	Work to stretch or compress a spring (force varies): $Work = \int_{a}^{b} (force) dx = \int_{a}^{b} F(x) dx = \int_{a}^{b} \underbrace{kx}_{Hooke's\ Law} dx$ $Work to lift liquid:$ $Work = \int_{c}^{d} (gravity)(density)(distance) \underbrace{(area\ of\ a\ slice) dy}_{volume}$ $W = \int_{c}^{d} 9.8* \rho* A(y)* (a-y) dy (in\ metric)$
Force/Pressure: Force = Pressure * Area Pressure = Density * Gravity * Depth	Force of water pressure on a vertical surface: Force = $\int_{c}^{d} (gravity)(density)(depth)\underbrace{(width)dy}_{area}$ $F = \int_{c}^{d} 9.8* \rho*(a-y)*w(y)dy (in metric)$

Integration by Parts:

Knowing which function to call u and which to call dv takes some practice. Here is a general guide:

u Inverse Trig Function $(\sin^{-1} x, \arccos x, \text{etc})$ Logarithmic Functions $(\log 3x, \ln(x+1), \text{etc})$ Algebraic Functions $(x^3, x+5, 1/x, \text{etc})$ Trig Functions $(\sin(5x), \tan(x), \text{etc})$ dv Exponential Functions $(e^{3x}, 5^{3x}, \text{etc})$

Functions that appear at the top of the list are more like to be *u*, functions at the bottom of the list are more like to be *dv*.

Trig Integrals:

Integrals involving sin(x) and cos(x):	Integrals involving sec(x) and tan(x):
1. If the power of the sine is odd and positive: Goal: $u = \cos x$ i. Save a $du = \sin(x)dx$ ii. Convert the remaining factors to $\cos(x)$ (using $\sin^2 x = 1 - \cos^2 x$.)	1. If the power of $\sec(x)$ is even and positive: Goal: $u = \tan x$ i. Save a $du = \sec^2(x)dx$ ii. Convert the remaining factors to $\tan(x)$ (using $\sec^2 x = 1 + \tan^2 x$.)
2. If the power of the cosine is odd and positive: Goal: $u = \sin x$ i. Save a $du = \cos(x)dx$ ii. Convert the remaining factors to $\sin(x)$ (using $\cos^2 x = 1 - \sin^2 x$.)	2. If the power of $tan(x)$ is odd and positive: Goal: $u = sec(x)$ i. Save a $du = sec(x) tan(x) dx$ ii. Convert the remaining factors to $sec(x)$ (using $sec^2 x - 1 = tan^2 x$.)
3. If both $\sin(x)$ and $\cos(x)$ have even powers: Use the half angle identities: i. $\sin^2(x) = \frac{1}{2} \left(1 - \cos(2x) \right)$ ii. $\cos^2(x) = \frac{1}{2} \left(1 + \cos(2x) \right)$	 If there are no sec(x) factors and the power of tan(x) is even and positive, use sec² x -1 = tan² x to convert one tan² x to sec² x Rules for sec(x) and tan(x) also work for csc(x) and cot(x) with appropriate negative signs wert everything to sines and cosines.

Trig Substitution:

Expression	Substitution	Domain	Simplification	
$\sqrt{a^2-u^2}$	$u = a \sin \theta$	$-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$	$\sqrt{a^2 - u^2} = a\cos\theta$	
$\sqrt{a^2+u^2}$	$u = a \tan \theta$	$-\frac{\pi}{2} < \theta < \frac{\pi}{2}$	$\sqrt{a^2 + u^2} = a \sec \theta$	
$\sqrt{u^2-a^2}$	$u = a \sec \theta$	$0 \le \theta \le \pi, \theta \ne \frac{\pi}{2}$	$\sqrt{u^2 - a^2} = a \tan \theta$	

Partial Fractions:

Linear factors:		Irreducible quadratic factors:						
$\frac{P(x)}{\left(x-r_1\right)^m} =$	$= \frac{A}{(x-r_1)} + \frac{B}{(x-r_1)^2} + \dots$	$+\frac{Y}{(x-r_1)^{m-1}}+\frac{x}{(x-r_1)^{m-1}}$	$\frac{Z}{(r_1)^m}$	$\frac{P(x)}{\left(x^2+r_1\right)^m} =$	_	$+\frac{Cx+D}{\left(x^2+r_1\right)^2}+$	+ $\frac{Wx + X}{(x^2 + r_1)^{m-1}}$ +	$-\frac{Yx+Z}{\left(x^2+r_1\right)^m}$
If the fraction has multiple factors in t			he denominato	or, we just a	dd the decomp	ositions.		