概率论: 期中考试(适用于2022级数学强基班)

- 1. 满分220分, 60 分及格; 2. 假设你卷面成绩是 ξ , 则你的期中成绩是 $\xi \wedge 100$ Nov. 24, 2023
- 1. (30') 设 (Ω, \mathcal{F}) 是一个可测空间, $P \in \mathcal{F}$ 上的非负函数且 $P(\Omega) = 1$, 证明下列命题等价:
 - (1) P 可列可加;
 - (2) P 有限可加且下连续(下连续指: 如果 $A_n \subset A_{n+1}$, 则 $\lim_{n\to\infty} P(A_n) = P(\bigcup_{n=1}^{\infty} A_n)$);
 - (3) P有限可加且次可列可加.
- 2. (70') 设 $(X_n, n \ge 1)$ 和 $(Y_n, n \ge 1)$ 都是取值于 $\{0, 1\}$ 的随机变量序列.
 - (1) 证明 X_1, Y_1 相互独立当且仅当 $E[X_1Y_1] = E[X_1]E[Y_1]$.
 - (2) 以下均假设 $(X_n, Y_m; n, m \ge 1)$ 相互独立, 且对于 $\forall n \ge 1$

$$P(X_n = 1) = p, \quad P(Y_n = 1) = q,$$

其中 0 < p, q < 1. 令 $Z_n = X_n Y_n, n \ge 1$. 证明: $\{Z_n : n \ge 1\}$ 独立同分布, 并计算出其分布.

- (3) 定义 $S_n = \sum_{m=1}^n X_m, T_n = \sum_{m=1}^n Z_m$. 求 S_n 和 T_n 的分布.
- (4) 定义 $\tau(\omega) = \inf\{n \ge 1 : T_n(\omega) = 1\}$, 并假定 $\inf(\emptyset) = \infty$. 记 S_τ 为 $S_{\tau(\omega)}(\omega)$. 证明 τ, S_τ 都是随机变量, 并求出 τ 的分布.
- (5) 证明对 $n \ge 2, 1 \le k \le n$:

$$P(X_k = 1 | \tau = n) = P(X_k = 1 | Z_k = 0) = \frac{p(1-q)}{1-pq}.$$

(6) 证明

$$P\left(\bigcap_{i=1}^{n} \{X_i = x_i\} | \tau = n\right) = \prod_{i=1}^{n} P(X_i = x_i | \tau = n),$$

并由此推出求出 $P(S_{\tau} = k | \tau = n)$.

(7) 计算 $E[S_{\tau}|\tau=n]$ 和 $E[S_{\tau}]$. 并证明

$$E[S_{\tau}] \neq E[\tau]E[X_1], \quad E[T_{\tau}] = E[\tau]E[Z_1].$$

- 3. (10') 设 ξ , X 相互独立, 且 $P(\xi = 1) = P(\xi = -1) = \frac{1}{2}$. 证明 ξX 与 ξ 相互独立当且仅当 X是对称随机变量, 即 X 与 -X 同分布.
- 4. (30') 设 X,Y 是取非负整数值的独立随机变量,且

$$P(X = k|X + Y = n) = \binom{n}{k} p^k (1-p)^{n-k}, \quad n \ge 0, 0 \le k \le n,$$

其中 0 为参数.

(1) 设 G_X , G_{X+Y} 分别是 X, X+Y 的母函数, 证明:

$$G_X(s) = G_{X+Y}(ps+1-p), \quad 0 \le s \le 1.$$

- (2) 若p = 1/2, 证明 $G_{X+Y}(s) = G_{X+Y}\left(\frac{1+s}{2}\right)^2$.
- (3) 若p = 1/2, 求证 X, X + Y 都服从泊松分布.
- 5. (20') 设 β 是一个取值于 [0,1] 的随机变量, γ 是一个非负随机变量, 他们的密度分别为

$$p_{\beta}(s) = bs(1-s) \quad (0 \le s \le 1), \quad p_{\gamma}(s) = cs^3 e^{-s} \quad (s \ge 0).$$

- (1) 求 b, c?
- (2) 假设 $\beta \perp \gamma$. 令

$$X = \beta \gamma, \quad Y = (1 - \beta)\gamma.$$

求 (X,Y) 的联合分布, 并证明 $X \perp Y$.

- 6. (50') 设 ξ , η 服从区域 D 均匀分布, 其中 $D = \{(x,y) | 0 < x < 1, x \le y \le 1\}$.
 - (1) 计算区域 D 的面积;
 - (2) 求 ξ 和 η 的边缘密度并判断二者是否独立;
 - (3) 求条件密度 $p_{\xi}(x|\eta=1/2)$;
 - (4) 求随机变量 $X = \sin^{-1} \xi$ 的密度函数;
 - (5) 求随机变量 $Y = [n\xi] + 1$ 的分布.
- 7. (10') n 个人随机的取自己存放的帽子, 设 ξ 表示正确拿到自己帽子的人数, 求 ξ 的期望与方差.