SESSION DE 2005

concours externe de recrutement de professeurs agrégés

section: mathématiques

composition d'analyse et probabilités

durée: 6 heures

Les calculatrices électroniques de poche sont autorisées, conformément à la circulaire 99-186 du 16 novembre 1999.

La qualité de la rédaction et de la présentation, la clarté et la précision des raisonnements constitueront un élément important pour l'appréciation des copies.

NOTATIONS

• Soient I un ensemble non vide et $(a_i)_{i\in I}$ une famille de nombres réels positifs. On appelle somme de cette famille et l'on note $\sum_{i\in I} a_i$ la borne supérieure dans $\mathbb{R}_+ \cup \{+\infty\}$ des sommes

 $\sum_{i \in J} a_i \text{ lorsque } J \text{ décrit les parties finies de } I.$

- On pose $(+\infty)^{1/2} = +\infty$.
- Notons $\mathbb{C}^{\mathbb{Z}^2}$ l'espace vectoriel complexe des familles $(a_{m,n})_{(m,n)\in\mathbb{Z}^2}$ de nombres complexes.
- Le support d'un élément $\mathbf{a} = (a_{m,n})_{(m,n) \in \mathbb{Z}^2} \in \mathbb{C}^{\mathbb{Z}^2}$ est le sous-ensemble $\{(m,n) \in \mathbb{Z}^2 \mid a_{m,n} \neq 0\}$ de \mathbb{Z}^2 .
- \bullet On note $\mathcal A$ le sous-espace vectoriel de $\mathbb C^{\mathbb Z^2}$ formé des familles de support fini.
- Pour $(m,n) \in \mathbb{Z}^2$, on note $W_{m,n} \in \mathcal{A}$ la famille $(a_{p,q})_{(p,q)\in\mathbb{Z}^2}$ telle que $a_{m,n}=1$ et $a_{p,q}=0$ si $(p,q) \neq (m,n)$.
- Pour $\mathbf{a} = (a_{m,n})_{(m,n) \in \mathbb{Z}^2} \in \mathbb{C}^{\mathbb{Z}^2}$, on pose

$$\|\mathbf{a}\|_1 = \sum_{(m,n)\in\mathbb{Z}^2} |a_{m,n}|$$
 et $\|\mathbf{a}\|_2 = \left(\sum_{(m,n)\in\mathbb{Z}^2} |a_{m,n}|^2\right)^{1/2}$.

- On pose $A_1 = \{ \mathbf{a} \mid \|\mathbf{a}\|_1 \neq +\infty \}$ et $A_2 = \{ \mathbf{a} \mid \|\mathbf{a}\|_2 \neq +\infty \}$.
- Dans tout le problème on fixe un nombre complexe λ de module 1.

Les parties I.B, II et III sont indépendantes

I. Algèbres de convolution « tordue »

A. La convolution tordue

- 1. (a) Montrer que l'on a $\sum_{(m,n)\in J} |a_{m,n}|^2 \leqslant \left(\sum_{(m,n)\in J} |a_{m,n}|\right)^2$ pour tout $\mathbf{a}\in\mathbb{C}^{\mathbb{Z}^2}$ et toute partie finie J de \mathbb{Z}^2 .
 - (b) Montrer que, pour tout $\mathbf{a} \in \mathbb{C}^{\mathbb{Z}^2}$, on a $\|\mathbf{a}\|_2 \leqslant \|\mathbf{a}\|_1$. En déduire que $A_1 \subset A_2$.

Les ensembles A_1 et A_2 sont des sous-espaces vectoriels de $\mathbb{C}^{\mathbb{Z}^2}$. On munit dorénavant A_1 de la norme $\| \|_1$ et A_2 de la norme $\| \|_2$. Alors A_1 est un espace de Banach et A_2 est un espace de Hilbert. De plus, \mathcal{A} est dense dans l'espace de Banach A_1 et dans l'espace de Hilbert A_2 . On ne demande pas de justifier ces faits.

2. Montrer qu'il existe une unique forme linéaire continue $\sigma: A_1 \to \mathbb{C}$ telle que $\sigma(W_{m,n}) = 1$ pour tout $(m,n) \in \mathbb{Z}^2$.

Si $\mathbf{a} = (a_{m,n})_{(m,n)\in\mathbb{Z}^2}$ est un élément de A_1 , on note $\sum_{(m,n)\in\mathbb{Z}^2} a_{m,n}$ le nombre $\sigma(\mathbf{a})$.

2

3. Soient $\mathbf{a} = (a_{m,n})_{(m,n) \in \mathbb{Z}^2}$ et $\mathbf{b} = (b_{m,n})_{(m,n) \in \mathbb{Z}^2}$ des éléments de A_2 .

- (a) Soient $(m,n) \in \mathbb{Z}^2$. Montrer que la famille $\left(\lambda^{q(m-p)}a_{p,q}b_{m-p,n-q}\right)_{(p,q)\in\mathbb{Z}^2}$ élément de A_1 .
- (b) On pose $c_{m,n} = \sum_{(p,q) \in \mathbb{Z}^2} \lambda^{q(m-p)} a_{p,q} b_{m-p,n-q}$.

Montrer que $|c_{m,n}| \leq \|\mathbf{a}\|_2 \|\mathbf{b}\|_2$ et que, pour tout $\varepsilon \in \mathbb{R}_+^*$, il existe $A \in \mathbb{N}$, tel que, $\forall (m,n) \in \mathbb{Z}^2$, on ait $|m| + |n| \geqslant A \Rightarrow |c_{m,n}| \leqslant \varepsilon$ (étudier d'abord le cas où $\mathbf{a} \in \mathcal{A}$ et $\mathbf{b} \in \mathcal{A}$).

On pose $\mathbf{a} \star \mathbf{b} = (c_{m,n})_{(m,n) \in \mathbb{Z}^2}$. Si m, m', n, n' sont des entiers relatifs, on a $W_{m,n} \star W_{m',n'} = \lambda^{nm'} W_{m+m',n+n'}$; pour tout $\mathbf{a} \in A_2$, on a $W_{0,0} \star \mathbf{a} = \mathbf{a} \star W_{0,0} = \mathbf{a}$. On ne demande pas de justifier

- (c) Montrer que, pour $\mathbf{a}, \mathbf{b} \in A_1$ on a $\|\mathbf{a} \star \mathbf{b}\|_1 \leq \|\mathbf{a}\|_1 \|\mathbf{b}\|_1$.
- (d) Montrer que le « produit » \star est associatif sur A_1 .

Dans la suite du problème, on pose $\mathbf{1} = W_{0,0}, U = W_{1,0}$ et $V = W_{0,1}$. Pour $\mathbf{a} \in A_1$, on définit \mathbf{a}^n pour $n \in \mathbb{N}$, en posant $\mathbf{a}^0 = \mathbf{1}$, et $\mathbf{a}^{n+1} = \mathbf{a}^n \star \mathbf{a}$. S'il existe un élément $\mathbf{b} \in A_1$ (nécessairement unique) tel que $\mathbf{a} \star \mathbf{b} = \mathbf{b} \star \mathbf{a} = \mathbf{1}$, on dira que \mathbf{a} est inversible et on posera $\mathbf{b} = \mathbf{a}^{-1}$. Pour $n \in \mathbb{N}$, on pose alors $\mathbf{a}^{-n} = (\mathbf{a}^{-1})^n = (\mathbf{a}^n)^{-1}$. On remarque que $V \star U = \lambda(U \star V)$ et que, pour tout $m, n \in \mathbb{Z}$, on a $W_{m,n} = U^m \star V^n$.

B. Fonctions périodiques de classe C^1 .

On note B l'espace vectoriel des fonctions de $\mathbb{R} \to \mathbb{C}$ de classe C^1 périodiques de période 1, muni de la norme $N: f \mapsto \sup\{|f(t)| + |f'(t)| \mid t \in \mathbb{R}\}$. On note $z \in B$ l'application $t \mapsto e^{2i\pi t}$. Pour $n \in \mathbb{Z}$, on note $z^n \in B$ l'application $t \mapsto e^{2i\pi nt}$.

- (a) Montrer que pour tout $f,g \in B$, on a $N(fg) \leq N(f)N(g)$, où l'on a noté fg la function $t \mapsto f(t)g(t)$.
 - (b) Montrer que le sous-espace de B engendré par la famille $(z^n)_{n\in\mathbb{Z}}$ est dense dans B.
- 2. (a) Montrer que, pour tout $f \in B$, la famille $\psi(f)$ définie par

$$\psi(f)_{m,n} = \begin{cases} 0 & \text{si } n \neq 0\\ \int_0^1 f(t)e^{-2i\pi mt} dt & \text{si } n = 0 \end{cases}$$

est un élément de A_1 . Montrer que l'application $\psi: B \to A_1$ ainsi définie est continue et vérifie $\psi(fg) = \psi(f) \star \psi(g)$ pour tout $f, g \in B$.

Remarquons que l'on a $\psi(z) = U$.

(b) Soit θ un nombre réel tel que $e^{2i\pi\theta} = \lambda$. Montrer que pour tout $f \in B$ on a l'égalité $V \star \psi(f) = \psi(g) \star V$ où g est la fonction $t \mapsto f(t + \theta)$.

II. Un calcul d'image et de noyau

A. Approximation des réels par des rationnels

Pour $x \in \mathbb{R}$, on note $\delta(x) = \inf\{|x - n| \mid n \in \mathbb{Z}\}$ sa distance à \mathbb{Z} .

- 1. Soit $n \in \mathbb{N}^*$.
 - (a) Soient $s_0, \ldots, s_{n+1} \in [0, 1]$. Montrer qu'il existe des nombres entiers i et j satisfaisant $0 \le i < j \le n+1$ et $|s_i s_j| \le \frac{1}{n+1}$.
 - (b) Soient $t_0, \ldots, t_n \in \mathbb{R}$. Montrer qu'il existe des nombres entiers i et j satisfaisant $0 \le i < j \le n$ et $\delta(t_i t_j) \le \frac{1}{n+1}$.
 - (c) Montrer que pour tout $t \in \mathbb{R}$, il existe $k \in \mathbb{N}$ satisfaisant $1 \leqslant k \leqslant n$ et $\delta(kt) \leqslant \frac{1}{n+1}$.
- 2. Soit $\alpha \in \mathbb{R}_+$. Pour $q \in \mathbb{N}^*$, posons $U_{\alpha}(q) = \{t \in \mathbb{R} \mid \delta(qt) < q^{-\alpha}\}$ et notons $Y_{\alpha} = \limsup_{q \to \infty} U_{\alpha}(q)$ l'ensemble des t qui appartiennent à une infinité de $U_{\alpha}(q)$.
 - (a) Montrer que $Y_1 = \mathbb{R}$.
 - (b) Calculer la mesure de Lebesgue de $U_{\alpha}(q) \cap [0,1]$.
 - (c) Montrer que pour $\alpha > 1$, l'ensemble Y_{α} est de mesure nulle pour la mesure de Lebesgue sur \mathbb{R} . En déduire que $Y = \bigcup_{\alpha > 1} Y_{\alpha}$ est de mesure nulle (pour la mesure de Lebesgue).
- 3. (a) Montrer que pour tout $\alpha \in \mathbb{R}_+$, l'ensemble Y_α est une intersection dénombrable d'ouverts de \mathbb{R} . Montrer que l'ensemble $X = \bigcap_{\alpha \in \mathbb{R}_+^*} Y_\alpha$ est dense dans \mathbb{R} et que c'est une intersection dénombrable d'ouverts de \mathbb{R} .
 - (b) Soit $t \in \mathbb{R}$. Montrer que $t \notin X$ si et seulement s'il existe un polynôme P à coefficients réels tel que $P(n)\delta(nt) \geqslant 1$ pour tout $n \in \mathbb{N}^*$.

B. Un calcul d'image et de noyau

Pour $\mathbf{a} = (a_{m,n})_{(m,n) \in \mathbb{Z}^2} \in \mathbb{C}^{\mathbb{Z}^2}$, on pose $\tau(\mathbf{a}) = a_{0,0}$.

Pour tout $\mathbf{a}, \mathbf{b} \in A_2$, on a $\tau(\mathbf{a} \star \mathbf{b}) = \tau(\mathbf{b} \star \mathbf{a})$. On ne demande pas la vérification de cette formule.

Considérons les applications $S: x \mapsto U \star x \star U^{-1} - x$ et $T: x \mapsto V \star x \star V^{-1} - x$ de A_1 dans lui même. Notons $L: A_1 \to A_1 \times A_1$ et $M: A_1 \times A_1 \to A_1$ les applications linéaires définies par L(x) = (S(x), T(x)) et M(x, y) = S(y) - T(x) (pour $x, y \in A_1$).

- 1. Montrer que $\operatorname{Im} L \subset \operatorname{Ker} M$. On suppose jusqu'à la fin du II que λ n'est pas une racine de 1. On écrira $\lambda = e^{2i\pi\theta}$ avec $\theta \in \mathbb{R} \setminus \mathbb{Q}$.
- 2. Quel est le noyau de L?
- 3. Montrer que l'adhérence de ImM est $\text{Ker}\tau$. On munit l'espace vectoriel $A_1 \times A_1$ de la norme $(\mathbf{a}, \mathbf{b}) \mapsto \|\mathbf{a}\|_1 + \|\mathbf{b}\|_1$. Quelle est l'adhérence de ImL?

- 4. Pour $n \in \mathbb{N}^*$, montrer que inf $\{\|T(U^k)\|_1 \mid 1 \leqslant k \leqslant n\} \leqslant 2\sin\frac{\pi}{n+1}$. En déduire que l'image de L n'est pas fermée.
- 5. On note $\mathcal{E} \subset A_1$ le sous-espace vectoriel formé des $\mathbf{a} = (a_{m,n})_{(m,n) \in \mathbb{Z}^2} \in A_1$ tels que $a_{0,0}=0$ et pour tout $k\in\mathbb{N}$, la famille $(m,n)\mapsto (1+m^2+n^2)^k a_{m,n}$ appartienne à A_1 . Les applications L et M induisent des applications linéaires $L': \mathcal{E} \to \mathcal{E} \times \mathcal{E}$ et $M': \mathcal{E} \times \mathcal{E} \to \mathcal{E}$. A quelle condition sur θ a-t-on Im L' = Ker M' et $\text{Im} M' = \mathcal{E}$?

III. Calcul de normes - stabilité par l'inverse

- Soit (E, N) un espace vectoriel (complexe) normé. On note $\mathcal{L}(E)$ l'espace vectoriel normé des applications linéaires continues de E dans lui-même. Rappelons que la norme d'un élément $T \in \mathcal{L}(E)$ est le nombre réel positif $||T|| = \sup \{N(T(x)) \mid x \in E, N(x) \leq 1\}.$
- Soit E un espace de Hilbert (complexe). Notons $\langle \mid \rangle$ son produit scalaire. Soit $T \in \mathcal{L}(E)$; il existe un unique élément $T^* \in \mathcal{L}(E)$ appelé adjoint de T tel que pour tout $x, y \in E$ on ait $\langle T(x)|y\rangle = \langle x|T^*(y)\rangle$. On a $|||T^*||| = |||T|||$. On ne demande pas de justifier ces faits. On dit que T est unitaire si T est bijectif et $T^{-1} = T^*$.

A. La représentation régulière.

1. Montrer que pour tout $\mathbf{a} \in A_1$ et tout $\mathbf{b} \in A_2$, on a $\|\mathbf{a} \star \mathbf{b}\|_2 \leq \|\mathbf{a}\|_1 \|\mathbf{b}\|_2$.

A l'aide de 1., on définit une application linéaire continue $\pi: A_1 \to \mathcal{L}(A_2)$ satisfaisant $\pi(\mathbf{a})(x) = \mathbf{a} \star x$ et $||\pi(\mathbf{a})|| \leq ||\mathbf{a}||_1$ pour $\mathbf{a} \in A_1$ et $x \in A_2$.

- 2. Montrer que $\pi(\mathbf{a} \star \mathbf{b}) = \pi(\mathbf{a}) \circ \pi(\mathbf{b})$. Montrer que $\pi(U)$ et $\pi(V)$ sont unitaires.
- 3. Montrer que $\|\mathbf{a}\|_2 \leq \|\pi(\mathbf{a})\|$ pour tout $\mathbf{a} \in A_1$.

$$b_{m,n} = \lambda^{mn} \, \overline{a_{-m,-n}} \, .$$

Pour $\mathbf{a} \in \mathbb{C}^{\mathbb{Z}^2}$, on note $\mathbf{a}^* \in \mathbb{C}^{\mathbb{Z}^2}$ la famille $(b_{m,n})_{(m,n)\in\mathbb{Z}^2}$ définie par : $b_{m,n} = \lambda^{mn} \, \overline{a_{-m,-n}} \,.$ Pour tout $\mathbf{a} \in A_1$ l'adjoint $\pi(\mathbf{a})^*$ de $\pi(\mathbf{a})$ est $\pi(\mathbf{a}^*)$. On ne demande pas de justifier cette formule.

B. Un calcul de norme

- 1. Soient H un espace hilbertien complexe et $T \in \mathcal{L}(H)$. Rappelons que la suite $n \mapsto \||T^n\||^{1/n}$ est convergente. On ne demande pas de justifier ce fait. Montrer que $||T^* \circ T|| = ||T||^2$. En déduire que $||T|| = \lim_{n \to \infty} |||(T^* \circ T)^n)||^{1/2n}$.
- 2. Soit $\mathbf{a} \in \mathcal{A}$. Pour $n \in \mathbb{N}^*$, on note k_n le nombre d'éléments du support de \mathbf{a}^n .
 - (a) Montrer que $\|\mathbf{a}^n\|_1 \leqslant \|\mathbf{a}^n\|_2 \sqrt{k_n}$.

 - (b) Montrer qu'il existe $r \in \mathbb{R}_+^*$ tel que, pour $n \in \mathbb{N}^*$, on ait $k_n \leqslant r^2 n^2$. (c) Montrer que l'on a $\lim_{n \to \infty} \|\mathbf{a}^n\|_2^{1/n} = \lim_{n \to \infty} \|\pi(\mathbf{a}^n)\|^{1/n} = \lim_{n \to \infty} \|\mathbf{a}^n\|_1^{1/n}$. (d) Montrer que $\|\pi(\mathbf{a})\| = \lim_{n \to \infty} \|(\mathbf{a}^* \star \mathbf{a})^n\|_1^{1/2n} = \lim_{n \to \infty} \left(\tau((\mathbf{a}^* \star \mathbf{a})^{2n})\right)^{1/4n}$.

C. Deux applications

- 1. Soient H un espace hilbertien complexe et $u, v \in \mathcal{L}(H)$ des endomorphismes unitaires tels que $vu = \lambda uv$.
 - (a) Montrer qu'il existe un unique homomorphisme continu $\sigma_{u,v}: A_1 \to \mathcal{L}(H)$ d'algèbres (*i.e.* une application continue qui soit à la fois linéaire et un homomorphisme d'anneaux) satisfaisant $\sigma_{u,v}(U) = u$, $\sigma_{u,v}(V) = v$. Montrer que, pour tout $\mathbf{a} \in A_1$, on a $\||\sigma_{u,v}(\mathbf{a})\|| \leq \|\mathbf{a}\|_1$.
 - (b) Montrer que, pour tout $\mathbf{a} \in A_1$, on a $\||\sigma_{u,v}(\mathbf{a})|\| \leq \||\pi(\mathbf{a})|\|$.
- 2. On note A l'adhérence de $\pi(A_1)$ dans $\mathcal{L}(A_2)$. Soit $\mathbf{a} \in \mathcal{A}$. On suppose que $\pi(\mathbf{a})$ est inversible dans A.
 - (a) Montrer qu'il existe $\mathbf{b} \in \mathcal{A}$ tel que $\|\pi(\mathbf{1} \mathbf{a} \star \mathbf{b})\| < 1$ et $\|\pi(\mathbf{1} \mathbf{b} \star \mathbf{a})\| < 1$.
 - (b) Montrer que **a** est inversible dans A_1 .

D. Idéaux bilatères et représentations

On suppose que λ n'est pas une racine de 1.

- 1. Pour $n \in \mathbb{N}^*$ et $\mathbf{a} \in A_1$ on pose $\tau_n(\mathbf{a}) = n^{-2} \sum_{0 \le j,k < n} U^j \star V^k \star \mathbf{a} \star V^{-k} \star U^{-j}$.
 - (a) Montrer que pour tout $\mathbf{a} \in A_1$, la suite $\tau_n(\mathbf{a})$ converge dans A_1 vers $\tau(\mathbf{a})\mathbf{1}$ (on pourra commencer par traiter le cas où $\mathbf{a} \in \mathcal{A}$).
 - (b) Soit $\mathbf{a} \in A_1$ non nul. Montrer qu'il existe $n \in \mathbb{N}^*$ tel que $\tau_n(\mathbf{a}^* \star \mathbf{a})$ soit inversible dans A_1 .
- 2. Montrer que tout idéal bilatère non nul de A_1 est égal à A_1 .
- 3. Soient H un espace hilbertien complexe non nul et $u, v \in \mathcal{L}(H)$ des endomorphismes unitaires tels que $vu = \lambda uv$. On note $\sigma_{u,v} : A_1 \to \mathcal{L}(H)$ l'homomorphisme continu d'algèbres satisfaisant $\sigma_{u,v}(U) = u$ et $\sigma_{u,v}(V) = v$.
 - (a) Montrer que, pour tout $\mathbf{a} \in A_1$, on a $|\tau(a)| \leq |||\sigma_{u,v}(\mathbf{a})|||$.
 - (b) Montrer que, pour tout $\mathbf{a} \in A_1$, on a $\||\sigma_{u,v}(\mathbf{a})|\| = \|\pi(\mathbf{a})\||$.

IV. Une égalité de norme

Considérons les espaces hilbertiens suivants :

- $H_{\mathbb{R}}$ désigne l'espace $L^2(\mathbb{R})$ des classes de fonctions $\xi : \mathbb{R} \to \mathbb{C}$ mesurables et de carré intégrable pour la mesure de Lebesgue dans \mathbb{R} (modulo les fonctions négligeables), muni de la norme $\xi \mapsto \left(\int_{\mathbb{R}} |\xi(t)|^2 dt\right)^{1/2}$.
- $H_{\mathbb{U}}$ désigne l'espace des classes de fonctions $\xi : \mathbb{R} \to \mathbb{C}$ mesurables périodiques de période 1 telles que $\int_0^1 |\xi(t)|^2 dt < +\infty$ (modulo les fonctions négligeables), muni de la norme $\xi \mapsto \left(\int_0^1 |\xi(t)|^2 dt\right)^{1/2}$.

• $H_{\mathbb{Z}}$ désigne l'espace $\ell^2(\mathbb{Z})$ des fonctions $\xi: \mathbb{Z} \to \mathbb{C}$ telles que $\sum_{n \in \mathbb{Z}} |\xi(n)|^2 < +\infty$, muni de la

norme
$$\xi \mapsto \left(\sum_{n \in \mathbb{Z}} |\xi(n)|^2\right)^{1/2}$$
.

On ne demande pas de vérifier que ce sont des espaces hilbertiens.

Soit $\theta \in \mathbb{R} \setminus \mathbb{Q}$.

Soit $N \in \mathbb{N}$. Donnons-nous des fonctions $(f_k)_{-N \leqslant k \leqslant N}$ de classe C^1 sur \mathbb{R} à valeurs dans \mathbb{C} , périodiques de période 1.

Considérons les opérateurs $T_{\mathbb{R}} \in \mathcal{L}(H_{\mathbb{R}})$ et $T_{\mathbb{U}} \in \mathcal{L}(H_{\mathbb{U}})$ définis de la manière suivante : si $\tilde{\xi} \in H_{\mathbb{R}}$ (resp. $\tilde{\xi} \in H_{\mathbb{U}}$) est la classe d'une fonction mesurable $\xi : \mathbb{R} \to \mathbb{C}$, on note $T_{\mathbb{R}}\tilde{\xi}$ (resp.

 $T_{\mathbb{U}}\tilde{\xi}$) la classe dans $H_{\mathbb{R}}$ (resp. dans $H_{\mathbb{U}}$) de la fonction $t \mapsto \sum_{k=-N}^{N} f_k(t)\xi(t+k\theta)$.

Si
$$\xi \in H_{\mathbb{Z}}$$
, on pose $T_{\mathbb{Z}}\xi(n) = \sum_{k=-N}^{N} f_k\left(\frac{n}{\theta}\right)\xi(n+k)$.

Montrer que $|||T_{\mathbb{R}}||| = |||T_{\mathbb{U}}||| = |||T_{\mathbb{Z}}|||$.