Изучение кинетики реакции азосочетания методом спектрофотометрии дата выполнения - 8.11.2021 г.

Аксенова Светлана Гарина Ольга

15 ноября 2021 г.

1 Теоретические сведения

В данной работе проводится изучение кинетики реакции, механизм которой показан на рис. 1., более компактная схема реакции представлена на рис. 2. В

$$SO_3^- H$$
 O^- + $Ph^-N_2^+$ K_1 $O_3^- H$ $N=N-Ph$ $N_2^+ M_1$ $N=N-Ph$ $N_2^+ M_2^- M_2^$

$$SO_3^-H$$
 N=N-Ph
 SO_3^- N=N-Ph
 SO_3^- N=N-Ph
 SO_3^- N=N-Ph
 SO_3^- N=N-Ph
 SO_3^- N=N-Ph
 SO_3^- N=N-Ph

Рисунок 1 – Механизм изучемой реакции

случае, если реакционная смесь содержит два основания (вода и 2,6-лутидин), суммарная скорость образования продукта в стадиях (2) и (3) равна:

$$W = \frac{d[Ar_1N = NAr_2^-]}{dt} = k_3[H_20][\sigma]$$
 (1)

$$\frac{d[Ar_1N = NAr_2^-]}{dt} = \left(\frac{k_1k_3}{k_{-1}}[H_2O] + \frac{k_1k_2}{k_{-1}}[B]\right) \cdot [Ar_1H^-][Ar_2N_2^+] \tag{2}$$

Выражение (2) можно переписать как

$$\frac{d[Ar_1N = NAr_2^-]}{dt} = (k_3' + \frac{k_1k_2}{k_{-1}}[B]) \cdot [Ar_1H^-][Ar_2N_2^+]$$

$$\frac{d[Ar_1N = NAr_2^-]}{dt} = k_{eff}[Ar_1H^-][Ar_2N_2^+],$$
(3)

где k_{eff} - эффективная константа скорости реакции, которую предстоит определить из эксперимента. Учтено, что концентрация воды постоянна, а концентрацию [B] можно считать постоянной на начальных участках кинетических

(1)
$$Ar_1H^- + Ar_2N_2^+ \xrightarrow{k_1} \sigma$$
-комплекс (быстро)

(2)
$$\sigma$$
-комплекс + В $\xrightarrow{k_2}$ Ar₁N=NAr₂ + ВН⁺ (медленно)

(3) о-комплекс +
$$H_2O$$
 $\xrightarrow{k_3}$ $Ar_1N=NAr_2^- + H_3O^+$ (медленно)

Рисунок 2 – Схема изучаемой реакции

кривых при небольших степенях превращения:

$$k_{eff} = k_3' + \frac{k_1 k_2}{k_{-1}} [B] = k_3' + k_2' [B].$$
 (4)

Кинетику реакции изучают спектрофотометрически по скорости образования продукта $Ar_1N = NAr_2^-$, имеющего жёлтую окраску.

Пусть x - текущая концентрация $Ar_1N = NAr_2^-$, a - начальная концентрация соли 2-нафтол-6,8-дисульфокислоты $[Ar_1H^-]$, c - начальная концентрация диазосоли $[Ar_2N_2]$. Тогда уравнение (3) примет вид

$$dx/dt = k_{eff}(a-x)(c-x)$$

Решая уравнение, получаем

$$\frac{1}{a-c} \cdot \ln \frac{1-x/a}{1-x/c} = k_{eff}t. \tag{5}$$

Построив зависимость (4) константы k_{eff} от начальной концентрации основания, из наклона прямой легко найти константу k'_2 , а из отрезка, отсекаемого на оси Y, константу k'_3 .

Из литературный данных известно, что отношение констант скорости $k_2/k_{-1}=2,5\,\,\mathrm{M}^{-1}$. Используя эту информацию, можно рассчитать значение константы скорости k_1 .

Целью работы является расчёт эффективной константы скорости суммарной реакции k_{eff} , расчёт эффективных констант скорости образования продукта по реакции с 2,6-лутидин k'_2 и с водой k'_3 , а также оценка константы скорости k_1 .

2 Экспериментальная часть

Необходимое оборудование и материалы:

- 1. мерные колбы на 25 мл 6 шт.;
- 2. стаканчики на 50 мл -3 шт.;
- 3. автоматические пипетки на 0,1-1,0 и 1,0-5,0 мл;
- 4. аналитические весы, секундомер;
- 5. спектрофотометр, кювета толщиной 1 см;
- 6. 2-нафтол-6,8-дисульфокислоты дикалиевая соль (торговое название Гсоль);
- 7. анилин;
- 8. нитрит натрия;

- 9. 2,6-лутидин;
- 10. 1 M раствор HCl;
- 11. буферный раствор (pH = 7.0);
- 12. ёмкость с мокрым снегом или тающим мелким льдом.

В работе используют следующие готовые растворы.

- 1. Буферный раствор р
Н 7,0. Состав в г на 1 л воды: 0,78 $NaH_2PO_4+7,1$
 $Na_2HPO_4+3,73\ KCl.$
- 2. Раствор 2,6-лутидина: 0,05 М в буферном растворе.
- 3. Раствор анилин (0.96 г) в 1M соляной кислоте (30 мл). Были приготовлены следующие исходные растворы.
- 4. Раствор Γ -соли: 0,05 M в буферном растворе. Навеску Γ -соли 0,95 г растворяют в буферном растворе в мерной колбе на 50 мл.
- 5. Раствор нитрита натрия: 0,035 г NaNO2 в 10 мл воды в стаканчике (используется при приготовлении диазониевого раствора).
- 6. Диазониевый раствор 0.02 M в воде готовят при T = 0-5 °C.

 $1.5\,$ мл раствора анилина в соляной кислоте перенести в стаканчик, погруженный в ёмкость со снегом или мелко наколотым льдом. Медленно добавить $10\,$ мл охлаждённого раствора $NaNO_2$. Полученный раствор перенести в мерную колбу на $25\,$ мл, объём довести до $25\,$ мл добавлением охлаждённой воды. При выполнении лабораторной работы колбу с диазониевым раствором хранить при $0\,$ °C.

Работа проводилась на спектрофотометре SOLAR PB2201. Данная длина волны - 500 нм, время регистрации - 10 мин, интервал между точками - 5 с. Через 10 мин поставить в кюветное отделение кювету с буферным раствором и записать базовую линию, как описано в инструкции.

При выполнении работы проводят пять опытов с разной концентрацией основания в рабочих растворах. От момента приливания диазониевого раствора до начала регистрации кинетики должна проходила ровно одна минута, регистрировалась оптическая плотность как функцию времени (рис. 3-8). Вначале проводился опыт 5, чтобы потом определить значение D_{∞} , которое в результате получилось равным

$$D_{\infty} = 0.964.$$

Оптическая плотность реакционного раствора D на рабочей длине волны 425 или 500 нм определяется концентрацией продукта реакции: $D = \varepsilon lx$. Значение D после завершения реакции (D_{∞}) достигается при полном израсходовании $Ar_2N_2^+$. Очевидно, что при этом конечная концентрация продукта равна

Номер опыта	1	2	3	4	5
V p-ра №2 Г-соли (0.05 M), мл	1.0	1.0	1.0	1.0	1.0
a, M	0.002	0.002	0.002	0.002	0.002
V р-ра №3 основания (0,05 M), мл	1.0	1.5	2.0	2.5	3.0
$[B]_0, M$	0.002	0.003	0.004	0.005	0.006
V р-ра №5 диазониевой соли (0,02 M), мл	1.0	1.0	1.0	1.0	1.0
c, M	8.10^{-4}	8.10^{-4}	8.10^{-4}	8.10^{-4}	8.10^{-4}
Общий объем раствора, мл	25	25	25	25	25

Таблица 1 – Рабочие растворы для опытов

Рисунок 3 – Оптическая плотность как функция времени (опыт 5)

начальной концентрации диазосоли $Ar_2N_2^+$, т. е. $x_\infty=c$. Отсюда следует

$$D_{\infty} = \varepsilon lc; \varepsilon l = \frac{D_{\infty}}{c}; x = \frac{D}{D_{\infty}}c.$$

И выражение (5) можно переписать как

$$\frac{1}{a-c}\ln\frac{D_{\infty}-D(\frac{a}{c})}{D_{\infty}-D}=k_{eff}t,$$
(6)

a, c - начальные концентрации Γ -соли и диазосоли в рабочем растворе. Для всех опытов были перестроены графики в координатах уравнения (6) (рис. 8-12). Данные для расчёта k_{eff} представлены в таблице 2. Из наклона графиков была определена константа k_{eff} (таблица 3).

Тогда значение констант

$$k_2' = 5583.7214, k_3' = 83.7560, k_1 = 2233.0886.$$

Рисунок 4 – Оптическая плотность как функция времени (опыт 1)

a, моль/л	c, моль/л	(a-c), моль/л	c/a	D_{∞}
0.002	8.10^{-4}	$1.2 \cdot 10^{-3}$	0.4	0.964

Таблица 2 – Начальные данные для расчёта

3 Вывод

В результате работы были измерены зависимости оптической плотности от времени для 5 опытов с разной концентрацией основания, данные графики были перестроены в координатах уравнения (6), были определены константы k_{eff}, k_2', k_3', k_1 .

№опыта	$[B]_0, M$	$k_{eff}, \mathrm{M}^{-1} \mathrm{c}^{-1}$
1	0.002	95.7511
2	0.003	99.2596
3	0.004	117.4452
4	0.005	112.0844
5	0.006	63.6678

Таблица 3 – Данные для расчёта k_2^\prime и k_3^\prime

Рисунок 5 – Оптическая плотность как функция времени (опыт 2)

Рисунок 6 – Оптическая плотность как функция времени (опыт 3)

Рисунок 7 – Оптическая плотность как функция времени (опыт 4)

Рисунок 8 — График в координатах уравнения (6) для опыта 5

Рисунок 9 — График в координатах уравнения (6) для опыта 1

Рисунок 10 — График в координатах уравнения (6) для опыта 2

Рисунок 11 — График в координатах уравнения (6) для опыта 3

Рисунок 12 — График в координатах уравнения (6) для опыта 4