

Syllabus

Honours Programme in Cyber Security & Forensics

(Offered by Department of Computer Engineering)

From Academic Year 2021-22 Revision 1

(Approved in Academic Council meeting dated)

K J Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Honours' Degree Programme in Cyber Security and Forensics

Offered by Department of Computer Engineering

Introduction:

Security is a critical issue in all the computing systems due to increasing number of security related breaches and incidents. The need of security professionals is ever increasing due to most of the services being made available online.

With the information sharing and processing going from centralized to distributed to the entire internet and due to inherent vulnerabilities and weaknesses of hardware, software and protocols there are constant risks and threats on compromising of data and information. This led to the need of Security in the form of controls, algorithms, procedures, policies and laws for securing information in the cyber space.

This programme will focus on basics of security starting security goals, vulnerabilities, threats & controls to advanced topics like blockchain, cyber forensics and cyber laws etc. There will be topics on applied cryptography, cyber security, forensics, secure coding and vulnerability assessment & penetrative testing.

Objectives: The offered programme aims to give the understanding of:

- (1) Security goals, vulnerabilities, threats & controls.
- (2) Implementation of various control mechanisms related to various security services.
- (3) Understand cybercrime, its prevention and cyber laws.
- (4) Carrying out the various information security-related tasks such as Penetration Testing and Vulnerability Analysis.
- (5) Understand Digital forensics and Advanced Offensive Security techniques.

Learning Outcomes of the Honours' Degree Programme:

At the successful completion of this programme, an Engineering Graduate will be able to:

- Design and develop secure applications and systems.
- Classify the types of cybercrimes their prevention and applicability of various cyber laws.
- Implement penetration testing, vulnerability analysis and offensive security techniques for applications and systems.
- Apply and use various digital forensic tools for cybercrime investigation.

Assessment Methods: Evaluation will done by a variety of tools including Open book tests, MCQs (multiple choice questions), Study of research papers, Internal Assessment tools and End Semester Examinations etc. Mini-Projects are offered in courses also to encourage project based learning among students.

Acrony	Acronyms used in syllabus document							
Acronym	Definition							
CA	Continuous Assessment							
ESE	End Semester Exam							
IA	Internal Assessment							
0	Oral							
P	Practical							
P&O	Practical and Oral							
TH	Theory							
TUT	Tutorial							
TW	Term work							
ISE	In-semester Examination							
CO	Course Outcome							

Acronyms used in Course code e.g. 116h55C301

Position of Digit	Acronym	Definition
1	1	First revision SUV KJSCE 2020
2	16	KJSCE
3	h	Honour Degree Program
4	55	Cyber Security & Forensics
5	C	Core Course
	L	Laboratory Course
	${f T}$	Tutorial
	P	Project Based Course
6	1/2/3/4	Semester Number
7	01/02/03	Course Number

Credit Scheme

Course Code	Course Name	Teaching Scheme (Hrs.) TH – P – TUT	Total (Hrs.)	Credits Assigned TH – P – TUT	Total Credits	Suggested semester of Major degree
116h55C301	Applied Cryptography	3 - 0 - 0	03	3 -0 - 0	03	III
116h55L301	Applied Cryptography	0 - 2 - 0	02	0-1-0	01	III
116h55C401	Cyber Security, Forensics and Cyber Law	3-0-0	03	3-0-0	03	IV
116h55C501	Block Chain Technology	3 - 0 - 0	03	3 -0 - 0	03	V
116h55L501	Block Chain Technology	0 - 2 - 0	02	0-1-0	01	V
116h55C601	Vulnerability Assessment and Penetrative Testing	3-0-0	03	3 -0 - 0	03	VI
116h55L601	Vulnerability Assessment and Penetrative Testing	0-2-0	02	0-1-0	01	VI
116h55C701	Secure Coding	3-0-0	03	3-0-0	03	VII
116h55P801	Applied Project / Internship	0 - 4 - 0	04	0 - 2 - 0	02	VII or VIII
	Total	15 - 10 - 0	25	15 - 5 - 0	20	

Examination Scheme

Course	Course Name	Examination Sch					neme						
Code						Marks							
		CA		ESE	TW	O*	P	P& O	Total				
		ISE	IA					U					
116h55C301	Applied Cryptography	30	20	50	-	-	-	-	100				
116h55L301	Applied Cryptography	-	-	-	25	25	-	-	50				
116h55C401	Cyber Security, Forensics and Cyber Law	30	20	50	-	-	-	-	100				
116h55C501	Block Chain Technology	30	20	50	-	-	-	-	100				
116h55L501	Block Chain Technology	-	-	_	25	25	-	-	50				
116h55C601	Vulnerability Assessment and Penetrative Testing	30	20	50	-	-	-	-	100				
116h55L601	Vulnerability Assessment and Penetrative Testing	-	-	-	25	25	_	-	50				
116h55C701	Secure Coding	30	20	50	-	-	-	-	100				
116h55P801	Applied Project / Internship	-	-	-	50	50	-	-	100				
Total		150	100	250	125	125			750				

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title										
116h55C301		Applied Cryptography									
	Γ	ГH		P	•	r	TUT	Total			
Teaching Scheme(Hrs.)							03				
Credits Assigned		03						03			
	Marks										
Examination	CA	CA		TXX	0	D	P&O	Total			
Scheme	ISE	IA	ESE	TW	U	P	rau	1 Otal			
	30	20	50	-				100			

Course prerequisites (if any):

Some mathematical maturity, in terms of understanding and working with mathematical definitions, concepts, and proofs, and elementary notions of logic, set theory, number theory, probability and statistics;

Course Objectives

In the era of Digital Computers and internet ensuring confidentiality, authentication, integrity of data during communication is very critical. This course impart students the knowledge of cryptographic algorithms and techniques to achieve same. It also introduces students to the advances in the area of cryptography

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Explain fundamentals of Information Security and cryptography
CO2	Demonstrate various Cryptographic Algorithms for securing systems
CO3	Comprehend cryptographic hash functions, Message Authentication Codes
	and Digital Signatures for Authentication
CO4	Realize advances in the field of cryptography
-	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Introd	luction to Information Security & Cryptography	05	CO 1
	1.1	Information Security and its goals, Vulnerability Threats		
		and Attacks		
	1.2	Encryption and Decryption, Symmetric and Asymmetric		
		Key Cryptography, Cryptanalysis		
	1.3	Substitution Techniques, Transposition Techniques		
2	Symn	netric Key Cryptography	09	CO2
	2.1	DES Structure, DES Analysis: Properties, Design		
		Criteria, DES Weaknesses, DES Security, Multiple DES, 3DES		
	2.2	AES Structure, Key Expansion, Analysis of AES:		
		Security, Implementation, Simplicity and Cost		
		IDEA, RC4		
		#Self Learning - RC5, Block Cipher Modes		
3	Asym	metric Key Cryptography	10	CO3
	3.1	Public key cryptography: Principles of public key		
		cryptosystems, The RSA algorithm, attacks on RSA		
	3.2	Key management: Diffie Hellman Key exchange, Man-in		
		Middle attack		
	3.3	Elliptic Curve Cryptography: Elliptic curves, The		
		Addition Law, Elliptic curve Mod p, Factoring with		
		Elliptic Curves, Elliptic Curve Cryptosystems		
4	M	#Self Learning: Rabin Cryptosystem		000
4		ge Authentication and Digital Signatures	11	CO3
	4.1	Message Authentication Approaches. Hash Function,		
		Cryptographic Hash Function Requirements,		
		Cryptographic Hash Function Security, Cryptographic		
		Hash Function Structure, SHA, HMAC, MD5.		
	4.2	Using Symmetric Encryption for Message		
		Authentication, Message Authentication Code (MAC),		
	4.2	Digital Authentication Algorithm (DAA)		
	4.3	Using Public Key for Authentication, Digital Signatures,		
		Properties of Digital Signatures beyond Message Authentication, DSS, Authentication Applications:		
		Authentication, DSS, Authentication Applications: Kerberos, X.509 Authentication Service		
		#Self Learning: RSA and Schnorr Digital Signature		
5	Intro	duction to Advances in Cryptography	10	CO4
J	5.1	Quantum Cryptography, Quantum key distribution-QKD	10	
	5.2	Homomorphic Encryption		
	5.3	Secure Multi-Party Computation (MPC) In particular,		
	3.3	Zero-Knowledge Proofs		
	<i>5 1</i>	<u> </u>		
	5.4	Cryptographic Obfuscation		
		Total	45	

Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Behrouz A. Forouzan	Cryptography and Network Security	Mc Graw Hill	3 rd Edition, 2017
2.	William Stallings	Computer Security Principles and Practice	Pearson Education	2016. 5 th Edition
3.	Mark stamp	Information Security Principal and Practice	Wiley	2008, 3 rd Edition
4.	Bruce Schneier	Applied Cryptography	Wiley	2015, Second Edition
5.	Jaydip Sen	Theory and practice of cryptography and network security protocols and technologies	Intech Publishers, Croatia, Europe	2013. First Edition
6.	Oded Goldreich	Foundations of Cryptography – A Primer	Foundations and Trends® in Theoretical Computer Science: Vol. 1: No. 1, pp 1-116	2005

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116h55L301		Applied Cryptography								
	T	TH		P	•	,	TUT	Total		
Teaching		_		02				02		
Scheme(Hrs.)								02		
Credits Assigned		_		01				01		
	Marks									
Examination	CA		FOR	/DXX/		D	De C. T. (
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total		
	1	-	-	25	25	-		50		

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course 'Applied Cryptography'. Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116h55C401		Cyber Security, Forensics & Cyber Law								
		TH		P)	TUT		Total		
Teaching Scheme(Hrs.)		03						03		
Credits Assigned		03		•			03			
	Marks									
Examination Scheme	(CA		TX7	0	D	P&O	Total		
Examination Scheme	ISE	IA	ESE	TW	J	P	1 & O	Total		
	30	20	50					100		

Course prerequisites (if any): Computer Organization & Architecture, Cryptography & System Security, Computer Networks.

Course Objectives: The objective of the course is to enable students to understand the basic principles of information security, computer crimes and methods of defence. The course introduces the process of digital forensic investigation, extraction of evidence using appropriate tools. It covers the techniques of data hiding, recovery, disk analysis, volatile data extraction. Further, it explores different network based attacks, tools to monitor/mitigate such attacks. Tools such as metasploit, interfaces to dark web and deep web explore the conducive environment for attackers. Cyber laws, IT Acts enable the student to understand the legal aspects of various cyber-crimes.

Course Outcomes:

At the end of successful completion of the course the student will be able to:

CO1	Identify various security goals, computer crimes & methods of defence.
CO2	Understand the fundamentals of digital forensics.
CO3	Analyze and interprete the results of disk forensic operations.
CO4	Apply forensic tools to extract and investigate the evidences from network.
CO5	Relate the corresponding computer security acts with the crimes.

Module No.	Unit No.	Details	Hrs.	CO
1		luction to Security Architecture	03	CO
_	1.1	Introduction to information security, security goals, security services, attacks & its types, security mechanism.		
	1.2	Introduction to cyber security, cyber crimes, its origins, classification of cyber crimes, cyberspace and cyber profiling.		
2	Data 1	Privacy and Theft	10	CO
	2.1	Data theft - Adwares, malwares, ransomwares, trojans, spywares, keyloggers, phishing & its types, SQL injection attacks.		
		#Self Learning - Data privacy law in India.		
	2.2	Identity theft, its types, prevention techniques, software piracy.		
		#Self Learning – Case study on identity theft.		
	2.3	Data privacy, issues surrounding data privacy, guidelines for data privacy, data privacy vs data security, data privacy mechanisms, legislations on data privacy - local and global. #Self Learning - GDPR Compliance		
3	Digita	ll Forensics Fundamentals	10	CO
	3.1	Introduction, six A's of digital forensics, digital evidence, digital investigations, incident response, incident response methodology.		
	3.2	Classification of digital evidence - volatile and non-volatile, rules and guidelines for extraction of digital evidence, forensic duplicates, establishing chain of custody, admissibility of evidence in the court of law.		
		#Self Learning – CERT and its role in digital investigation.		
	3.3	Information retrieval and recovery, cloning techniques, password cracking, data recovery from file systems and mobile devices, forensics audit, tools for forensic investigation, anti-forensics.		
4	Netwo	ork Forensics	12	CO
	4.1	Network based attacks – MITM, OWASP, ARP spoofing, IP and MAC spoofing, DNS attacks, SYN flooding attacks, port scanning, DOS, DDOS. Sources of Digital Evidence from Emails, Web usage, Network Traffic, Email forensic and investigations.		
		Network Forensic Tools & Applications – Browser forensics, Nmap, Nessus, Wireshark, Metasploit, Kali-Linux, Deep-Web, Dark-Web.		
		#Self Learning : Criminal cases strongly based on digital evidences		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

5	Cyber	r Law	10	CO
	5.1	Fundamentals of Cyber Law-Legislative, Judicial, Quasi-		
		judicial, Investigative and International Cyber Law		
		Framework.		
		#Self learning : Cyber crime cases studies- sample list		
		but not limited to: Shreya Singhal v Union Of India, Syed		
		Asifuddin v The State of Andhra Pradesh, Chambers v.		
		Director of Public Prosecutions (UK), Riley v California (US),		
		US v Ross William Ulbricht Carpenter v US, Packingham v		
		North Carolina, Reno v ACLU, In Re: Nickelodeon Consumer Privacy Litigation, In Re: Google Inc. Cookie		
		Placement Consumer Privacy Litigation, Memorandum of		
		Decision - Google warrant case		
	5.2	Intellectual Property Issues & Cyberspace - Computer		
		Software & Copyright Law, Software Licenses,		
		Computer Databases & the Law, Domain Names & the		
		Law, Trademark issues in Cyberspace and		
		Semiconductor Layout & Design Law.		
	5.3	Cyber Crime Law in India- Cyber Frauds, Computer		
		Source Code, Cyber Pornography, Cyber Terrorism, Data		
		Privacy & confidentiality, Digital Signature, Freedom of		
		speech, Information & Traffic Data, Intermediaries,		
		Malware, Unauthorised Access and Violation of privacy.		
		#Self Learning- A Global Protocol on Cybersecurity		
		and Cybercrime		
	1	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Bill Nelson, Amelia Phillips, Christopher Steuart.	Guide to Computer Forensics and Investigations.	Cengage Learning, USA.	3rd Edition paperback, 2002.
2.	Jason T. Luttgens, Mathew Pepe, Kevin Mandia	Incident Response and Computer Forensics.	Tata McGraw Hill Education	3rd Edition, 2014.
3.	Marie-Helen Maras	Computer Forensics: Cybercriminals, Laws and Evidences	Jones and Bartlett Learning	2nd Edition, 2014
4.	Davidoff Ham	Network Forensics Tracking Hackers through Cyberspace	Pearson India	1st Edition, 2013.
5.	Adv. Prashant Mali Cyber Law and Cyber Crimes Simplified		Cyber Infomedia	January 2017.
6.	Asian School of Cyber	https://www.asianlaws.org/		

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h55C501	Block Chain Technology							
	7	TH P TUT Total						Total
Teaching Scheme(Hrs.)							03	
Credits Assigned	03							03
	Marks							
Examination	CA	CA		TW/	0	D	P&O	Total
Scheme	ISE	IA	ESE	TW		P	1 &0	Total
	30	20	50					100

Course prerequisites (if any):

Networking Concepts, Object Oriented Programming Skills, Cryptography and Network Security Concepts.

Course Objectives

The objective of the Course is to explore the Bitcoin protocol followed by the Ethereum protocol – to lay the foundation necessary for developing applications and programming. Course will give the idea about the decentralized peer-to-peer network, an immutable distributed ledger and the trust model that defines a blockchain.

This course explains basic components of a blockchain (transaction, block, block header, and the chain) its operations (verification, validation, and consensus model) underlying algorithms, and essentials of trust (hard fork and soft fork).

.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1	Build your own Blockchain businesses with acquired knowledge
CO2	Learn Solidity language & Multiple Technology-based developments.
CO3	Apply the algorithm and techniques used in Blockchain.
CO4	Grasp the in-depth understanding of Blockchain, Smart Contracts & how it works.
CO5	Describe the methods of mining.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.	1	00	
1		Chain Basics	09	1
	1.1	Introduction to Blockchain, what is Block? Registry of		
		Transaction, Blockchain Structure, Basic Operations, Blockchain & Distributed Ledger Technology (DLT),		
		Elements of Distributed Computing.		
	1.2	Elements of Cryptography, Elements of Game Theory,		CO
	1.4	Cryptocurrencies, Tokens, and ICOs.		
	1.3	Merkle Patricia Tree, Gas Limit, Transactions and Fee,		
	1.0	Anonymity, Reward, Chain Policy, Life of Blockchain		
		application, Soft & Hard Fork, Private and Public		
		blockchain.		
2	Minin	g and Distributed Consensus	12	
	2.1	Decentralized Consensus, Mining Node, The Coinbase		
		Transaction, Nakamoto consensus, Proof of Work, Proof		
		of Stake, Proof of Burn, Difficulty Level, Sybil Attack,		CO
		Energy utilization and alternate		
	2.2	Mining the Block, Validating New Block, Blockchain		
		Forks, and Mining Pool, Changing the consensus Rules,		
		Hard Fork and Soft Fork,		
3		ng Smart Contracts: Using Ethereum, Solidity	10	
	3.1	Smart Contract Basics: Why Smart Contracts? Smart		
		Contracts Defined, Processing Smart Contracts,		
		Deploying Smart Contracts.		1
	3.2	Solidity: Structure, Basic Data Types & Statements		CO
		(Bidder Data & Functions Demos), Specific Data Types,		
		Data Structures, Access Modifiers & Applications		
		#Self Learning – write your first Smart Contract?		
4	Crypto	ocurrency and Cryptocurrency Regulation:	7	
	4.1	History, Distributed Ledger, Bitcoin protocols - Mining		1
		strategy and rewards, Ethereum - Construction, DAO,		
		Smart Contract, GHOST, Vulnerability, Attacks,		CO
		Sidechain, Namecoin.		
	4.2	Stakeholders, Roots of Bit coin, Legal Aspects-Crypto		
		currency Exchange, Black Market and Global Economy		
5	Applic	cations and Case studies	8	
	5.1	Developing Smart Contracts, Time Elements, Validation		1
		& Test, Client Application.		
		#Self Learning – Limitations of Blockchain		
		Technology.		CO
	5.2	Case Studies: Government, Energy supply, Supply		
		Chain, Insurance, Border Control, Waste Management,		
		Shipping, Land Registry, HealthCare, Music, Real		
		Estate, Fishing, Tourism, National Security etc		
		Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1.	Andreas M. Antonopoulos	Mastering the Bitcoin: Programming the Open Blockchain	O' Reilly	2 nd Edition, 2017
2.	Melanie Swan	BlockChian	O'Reilly	2015
3.	Nitin Gaur, Luc Desrosiers, Petr Novotny, Venkatraman Ramakrishna	Hands-On Blockchain with Hyperledger: Building decentralized applications with Hyperledger Fabric and Composer	Packt	Kindle Edition, 2018
4.	Stephen Fleming business ecosystems	Blockchain Technology: Introduction to Blockchain Technology and its impact on	Stephen Fleming	2017
5.	Zeeshan-ul- hassan Usmani	Introduction to lockchain with Case Studies	Guhftgu Publication	2018

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h55L501		Block Chain Technology						
	T	TH P TUT Total						
Teaching			02				02	
Scheme(Hrs.)	_							02
Credits Assigned		-		01				01
	Marks							
Examination	CA	CA		TPXX7		D	D00 T (1	
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total
	-	_	_	25	25			50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course 'Block Chain Technology'. Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116h55C601	Vulner	Vulnerability Analysis and Penetration Testing							
	7	TH P TUT Total						Total	
Teaching Scheme(Hrs.)							03		
Credits Assigned		03						03	
	Marks								
Examination	CA	CA		TDXX/	0	P	P&O	Total	
Scheme	ISE	IA	ESE	TW		r	1 &0	1 Otal	
	30	20	50			-		100	

Course prerequisites (if any): Knowledge of Networking and System Programming

Course Objectives: The objective of this course is to impart knowledge about the principles and techniques associated with the information and cybersecurity practice known as penetration testing or ethical hacking. The topics covered in the course are the entire penetration testing process including planning, reconnaissance, scanning, exploitation, post-exploitation, and result reporting.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1	Understand penetration testing with scope of its ethical implications,
	documentation and reporting.
CO2	Perform Penetration testing and vulnerability assessment on various systems.
CO3	Comprehend post exploitation phase of penetration testing.
CO4	Apply unique techniques to gather exploitation intelligence, identify risk and
	demonstrate impact with Red Team and Blue Team strategies.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.		0.4	CO
1	1.1	ration Testing Introduction to Penetration testing, Ethics , Laws.	04	CO
	1.2	Types of Penetration Testing, Phases of Penetration		
	1.2	Testing.		
	1.3	Setting up a Penetration Lab.		
2	Collec	cting Information	12	СО
	2.1	Reconnaissance		
		Passive Information gathering with Foot printing		
		Active Information Gathering		
		Open Service Information Gathering		
	2.2	Network Scan		
		Passive and active Network Scan, Port Scanning, ARP		
		Spoofing, Network Traffic Scanning. #Self Learning: NMAP Network Mapper tool		
3	Tal on 45		12	CO
3	3.1	fication of Vulnerability and Exploits Understanding Vulnerabilities	12	CO
	3.2			
		Buffer Overflow Exploitation		
	3.3	Fuzzing		
	3.4	Searching for Exploits		
	3.5	Privilege Escalation Exploits		
	3.6	System Hacking		
	3.7	Port Redirection and Tunneling		
		#Self Study : Tools viz. QualysGuard vulnerability management		
4	Explo	itation and Professional Reporting	9	CO
	4.1	MITM and Session Hijacking		
	4.2	Shell Script Exploitation		
	4.3	Metasploit Framework		
		Metasploit User Interfaces, Setting up Metasploit		
		Framework, Exploring the Metasploit Framework		
	4.4	Preparing Report		
	4.5	Presenting Findings		
5	Secur	ity Landscape, Red Team and Blue Team	8	CO
	5.1	Incident Response Process		
	5.2	Red Team and Blue Team		
	5.3	Red Team Operations		
	5.4	Blue Team Defense		
	L	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Joseph Muniz	Web Penetration Testing	Packt	2013
	Aamir Lakhani	with Kali Linux	Publishing	
2.	George Kurtz, Joel	Hacking Exposed 7:	McGraw Hill	2012
	Scambray, and Stuart	Network Security Secrets		
	McClure	and Solutions		
3.	Sagar Rahalkar	Network Vulnerability	Packt	2018
		Assessment	Publishing	
4.	Micah Zenko	Red Team How to Succeed	Basic Books	2015
		By Thinking Like The		
		Enemy		
5.	Don Murdoch Gse	Blue Team Handbook: A	Createspace	2014
		Condensed Field Guide	Independent	
		for the Cyber Security	Publishing	
		Incident Responder	Platform	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h55L601	Vulnerability Analysis and Penetration Testing							
	T	TH P				,	TUT	Total
Teaching Scheme(Hrs.)	-			02				02
Credits Assigned	-			01				01
	Marks							
Examination	CA	CA		CENTAL C		D	Dec Titl	
Scheme	ISE	IA	ESE	TW	O	P	P&O	Total
	-	_	-	25	25			50

Term-Work:

Term work will consist of experiments/ tutorials covering entire syllabus of the course 'Vulnerability Analysis and Penetration Testing'. Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title							
116h55C701	Secure Coding							
	7		F	P		TUT	Total	
Teaching Scheme(Hrs.)	03			-				03
Credits Assigned		03						03
	Marks							
Examination	CA		ECE	TW	0	P	P&O	Total
Scheme	ISE	IA	ESE	1 77	J	ľ	100	1 Otal
	30	20	50			-		100

Course prerequisites (if any): Knowledge of programming languages

Course Objectives:

Understanding the Application Security, Threats and attacks. Learning the security coding practices, and architecture.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1	Incorporate S-SDLC			
CO ₂	Fix software security bugs using secure coding techniques			
CO ₃	Use appropriate techniques and tools to analyze and test software applications			
	for weaknesses and vulnerabilities			
CO4	Implement secure coding practices for cryptography			
CO5	Design and implement software applications using secure architecture			

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Intro	8	CO	
	1.1	Understanding secure SDLC model, Methodologies for		
		developing secure code: Risk analysis, threat modeling,		
		and guidelines for secure coding practice. SAST (Static		
		application security testing tools) Web application		
2	Comm	security, Mobile Application security.	14	CO
<u> </u>		e programming techniques	14	CO
	2.1	Worms and Other Malware, Buffer Overflows, Client-		
	2.2	State Manipulation		
	2.2	SQL Injection, Password Security		
		#Self Learning secure coding practices for c, c++, java		
_	~	and php		~ ~
3		Domain Security in Web Applications.	8	CO
	3.1	Interaction Between Web Pages from Different Domains,		
		Introduction to session management in web applications,		
	2.2	secure coding practices for error handling		
	3.2	Attack patterns, preventing XSRF attack, preventing XSSI		
4	Secur	e coding practices for Cryptography	5	CO
	4.1	Introduction to cryptography and guidelines for using		
		encryption		
	4.2	Symmetric cryptography, Asymmetric cryptography,		
		Hashing algorithms, verification test		
5		e architecture concepts and Principles and secure	10	CO
	design		10	
	5.1	What is security architecture?		
	5.2	Principles of security architecture, case study: Java		
		sandbox		
	5.3	Secure design steps		
	5.4	Secure deployment and maintenance		
	•	Total	45	

[#] Students should prepare all Self Learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in IA and Laboratory Experiments.

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and
No.			Publisher with	Year of
			country	Publication
1.	Robert seacord	Secure coding in C c++	Pearson	Second
				Edition
2.	Micheal Howard,	Writing secure code		Second
	David LeBlanc			edition
3.	Neil Daswani,	Foundations of Security		2007,First
	Christoph Kern, and			Edition
	Anita Kesavan.			

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title								
116h55P801		Applied Project / Internship							
		TH			P)	,	TUT	Total
Teaching Scheme (Hrs./Week)			-		04			-	04
Credits Assigned			-		02	1		-	02
		Marks							
Examination		CA		DOD	(E) X X /		_	De O	TD - 4 - 1
Scheme		ISE	IA	ESE	TW	O	P	P&O	Total
	•	-	-	-	50	50	-	-	100

Course prerequisites: Conceptual knowledge of Cyber Security & Forensics

Course Objectives: The objectives are to address a real-world problem, which includes identify and solve the problem by implementing the solution using the courses learned in earlier semesters. Recognize various hardware and software requirements for solving the problem. It will also inculcate qualities such as working in team, meeting deadlines, making and following work plan. The Project may include some software or techniques not covered in the courses taught to provide solution of the chosen problem.

Course Outcomes:

At the end of successful completion of the course the student will be able to

CO1	Define the problem statement and scope of problem.				
CO2	Identify various hardware and software requirements for problem solution				
CO3	Describe the design with the help of flowchart/block diagrams or any design Tool.				
CO4	Implement and test the design to meet the desired specifications.				
CO5	Analyze, interpret results and correspondingly modify the designed system to get the desired results.				
CO6	Prepare a technical report and technical paper based on the project.				

Term Work and Oral: This is an activity to be undertaken by the group of 2 or 3 students. Each group will be assigned one faculty member as a supervisor. There will be continuous assessment of the project and progress report of the project needs to be maintained by students. The final oral will be a presentation based on a demonstration of the project in front of a committee of examiners. Students are expected to publish technical paper based on the project.