Regularization for Deep Learning

Changyou Chen

Department of Computer Science and Engineering Universitpy at Buffalo, SUNY changyou@buffalo.edu

Feburary 26, 2019

Example: Regularization in FNN Forward Propagation Graph

Definition

Regularization is any modification we make to a learning algorithm that is intended to reduce its generalization error but not its training error.

Importance of Regularization

- Overly complex family does not necessarily include the target function, true data generating process, or even an approximation.
- Most deep learning applications are where true data generating process is outside the model family:
 - complex domains of images, audio sequences and text generation process may involve entire universe, can not be fully described by our model.
 - need to choose a model that best approximates the data.

Regularization Techniques

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout.
- Batch normalization.

Regularization Techniques

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout
- Batch normalization.

Norm Penalty

Regularized objective function:

$$\tilde{J}(\theta; \mathbf{X}, \mathbf{y}) = J(\theta; \mathbf{X}, \mathbf{y}) + \alpha \Omega(\theta)$$
,

where θ denotes both weights **W** and biases **b**.

- ② Different choices of the parameter norm Ω can result in different solutions preferred.
- Typically no penalty for biases:
 - each bias controls only a single variable without data interaction, we do not induce too much variance on it.
- Reasonable to use the same α for all weights to avoid expensive tuning.

L² parameter Regularization

$$\Omega(\boldsymbol{\theta}) = \frac{1}{2} \|\mathbf{W}\|_2^2$$

- Simplest and most common used.
- 2 Drives weights closer to the origin.
- Called weight decay; some communities also called ridge regression or Tikhonov regularization.
- Gradient:

$$abla_{\mathsf{W}} \widetilde{J}(\mathsf{W}; \mathsf{X}, \mathsf{y}) = \frac{\alpha}{\mathsf{W}} + \nabla_{\mathsf{W}} J(\mathsf{W}; \mathsf{X}, \mathsf{y})$$

 Equivalent to MAP Bayesian estimation with Gaussian prior.

Figure: Choose the one that has the smallest L^2 -norm.

L¹ parameter Regularization

$$\Omega(\boldsymbol{\theta}) = \|\mathbf{W}\|_1 = \sum_i |W_i|$$

Encourages sparsity, equivalent to MAP Bayesian estimation with a Laplace prior.

Laplace Distribution

A random variable x has a Laplace distribution with parameters (μ, b) if its probability density function is

$$\begin{split} p(x|\mu,b) &= \frac{1}{2b} \exp\left(-\frac{|x-\mu|}{b}\right) \\ &= \frac{1}{2b} \left\{ \exp\left(-\frac{x-\mu}{b}\right), & \text{if } x \leq \mu \\ \exp\left(-\frac{\mu-x}{b}\right), & \text{if } x > \mu \end{array} \right. \end{split}$$

Why is L^1 Sparse?

 L^1 regularizer has a better chance to touch the objective function at zero!

Regularization Techniques

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout
- Batch normalization.

More data is better

- Best way to make an ML model to generalize better is to train it on more data.
- In practice, the amount of data is limited.
- Get around the problem by creating fake data.
- For some ML tasks it is straightforward to create fake data:
 - For classification: generate new samples (x, y) just by transforming inputs x.
 - This approach is not easily generalized to other problems such as density estimation problem, because it is not possible to generate new data without solving density estimation.
 - Generative adversarial net (GAN) is also an effective way for data augmentation.

Injecting noise

- Injecting noise into the input of a neural network can be seen as data augmentation.
- 2 To improve robustness of neural networks, train them with random noise applied to their inputs, *e.g.*, denoising autoencoder.
- Noise can also be applied to hidden units, e.g., Dropout.

Regularization Techniques

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout
- Batch normalization.

Sharing Parameters over Tasks

- Multi-task learning is a way to improve generalization by pooling the examples out of several tasks:
 - can be seen as some kind of data augmentation.

Example of Multi-task Learning

- Common input but different target random variables:
 - task-specific parameters h⁽¹⁾ and h⁽²⁾ can be learned on top of those yielding a shared representation h^(shared).
- 2 In the unsupervised learning context, some of the top level factors are associated with no outputs, *e.g.*, $h^{(3)}$.
- These are factors that explain some of the input variations but not relevant for predicting $h^{(1)}$, $h^{(2)}$.

Regularization Techniques

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout.
- Batch normalization.

Learning Curves

Shows how negative log-likelihood loss changes over time (indicated as no. of Training iterations over the data set, or epochs).

In this example, we train a maxout network on MNIST.

Training objective decreases consistently over time, but validation set average Loss eventually begins to increase again for ming an asymmetric U shape

Early Stopping: Saving Parameters

- We can thus obtain a model with better validation set error (and typically better test error) by saving the one at the point of time with the lowest validation set error.
- Every time the error on the validation set improves, we store a copy of the model parameters.
- When the training algorithm terminates, we return these parameters, rather than the latest one.

Very often used in practice in deep learning!

Early Stopping vs. L^2 Regularization

Two weights, Solid contour lines: contours of negative log-likelihood Left: dashed lines indicates trajectory of SGD. Rather than stopping at point $\boldsymbol{w^*}$ that minimizes cost, early stopping results in an earlier point in trajectory Right: dashed circles indicate contours of L^2 penalty which causes the minimum of the total cost to lie nearer the origin than the minimum of the the unregularized cost

Regularization Techniques

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout.
- Batch normalization.

Parameter Dependency

- We want to model dependencies between model parameters:
 - Parameter tying: certain parameters should be close to one another, e.g., two models map the input to two different but related outputs, we want the two models close.
 - Parameter sharing: forces sets of parameters to be equal
 - ★ In an CNN, significant reduction in the memory footprint of a model.
- L² penalty for parameter tying:
 - just add an additional regularized term for two model parameters
 w^A and w^B:

$$\Omega\left(\mathbf{w}^{A},\mathbf{w}^{B}
ight)=\left\|\mathbf{w}^{A}-\mathbf{w}^{B}
ight\|^{2}$$

Represent the loss with the same parameter for parameter sharing.

Regularization Techniques

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout
- Batch normalization.

What is Bagging?

- Short form of "bootstrap aggregrating".
- A technique for reducing generalization error by combining several models:
 - Different models are trained separately.
 - All the models vote on the output for test examples.
- This strategy for machine learning is referred to as model averaging.
 - Techniques employing this strategy are known as ensemble methods.

Why does Bagging Work?

- **1** Train k regression models separately, each with squared error ϵ_i .
- **2** Assume $\mathbb{E}[\epsilon_i^2] = v$, $\mathbb{E}[\epsilon_i \epsilon_j] = c$.
- It can be shown that the variance of the average error, assuming independence (c=0) and $\mathbb{E}[\epsilon_i]=0$, decreases linearly with ensemble size.

Why does Bagging Work?

- **1** Train k regression models separately, each with squared error ϵ_i .
- 2 Assume $\mathbb{E}[\epsilon_i^2] = v$, $\mathbb{E}[\epsilon_i \epsilon_j] = c$.
- It can be shown that the variance of the average error, assuming independence (c=0) and $\mathbb{E}[\epsilon_i]=0$, decreases linearly with ensemble size.

$$\operatorname{Var}\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right) = \mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] - \left(\mathbb{E}\left[\frac{1}{k}\sum_{i}\epsilon_{i}\right]\right)^{2}$$

$$= \mathbb{E}\left[\left(\frac{1}{k}\sum_{i}\epsilon_{i}\right)^{2}\right] = \frac{1}{k^{2}}\mathbb{E}\left[\sum_{i}\left(\epsilon_{i}^{2} + \sum_{j\neq i}\epsilon_{i}\epsilon_{j}\right)\right]$$

$$= \frac{1}{k}v + \frac{k-1}{k}c = \frac{1}{k}v$$

Bagging

 To ensure independence, we resample data sets independently for each model for training.

Regularization Techniques

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout.
- Batch normalization.

What is Dropout?

- An inexpensive but powerful method of regularizing a broad family of models:
 - ► A practical way of bagging applied to neural networks with weights sharing.
 - Practical to apply bagging to very many large neural networks.
- 2 It trains an ensemble of all subnetworks formed by removing non-output units from an underlying base network.

Dropout

Figure 7.6

- Resulting in many networks with no path from input to output.
- Problem insignificant with large networks.
- All subnetworks share the weights.

Ensemble of subnetworks

Dropout Training

- Use minibatch based learning algorithm that takes small steps such as SGD.
- 2 At each step, randomly sample a binary mask μ :
 - probability of including a unit is a hyperparameter, e.g., 0.5 for hidden units and 0.8 for input units.
- Node-wise multiplication of the binary mask with the original network.
- Run forward and backward propagation as usual on the resulting network.

BP with Dropout: Implemented as Additional Layers

BP with Dropout: Implemented as Additional Layers

How to backpropagate gradients in the Dropout layer?

Prediction

- Submodel defined by mask vector μ defines a probability distribution $p(y|\mathbf{x}, \mu)$.
- ② Arithmetic mean over all masks is: $\sum_{\mu} p(y|\mathbf{x}, \mu)p(\mu)$, where $p(\mu)$ is the probability of generating the sample mask μ .
- Intractable to evaluate due to an exponential number of masks.
- Use geometric mean rather than arithmetic mean for prediction:

$$\left(\prod_{\mu} p(y|\mathbf{x},\mu)\right)^{1/2^d}$$
.

Prediction: Geometric Mean Approximation

Geometric mean inequality

$$\left(\prod_{i=1}^n x_i\right)^{\frac{1}{n}} \leq \frac{\sum_{i=1}^n x_i}{n}$$

- Given two numbers, x and y, their geometric mean is \sqrt{xy} .
- Approximate it as the mean of the coefficients and the mean of the exponents:

Example

Let $x = 4 \times 10^2$, $y = 7 \times 10^6$. Then approximate \sqrt{xy} as:

$$\sqrt{xy} = 5.29 \times 10^4 \approx \frac{4+7}{2} \times 10^{(2+6)/2} = 5.5 \times 10^4 \; .$$

Prediction: Geometric Mean Approximation

- Approximate the geometric mean of Dropout by evaluating $p(y|\mathbf{x},\mu)$ in one model: the model without dropout, but with the weights going out of unit i multiplied by the probability of including unit i:
 - motivation is to capture the right expected value of the output from that unit.

Batch Normalization

- Norm regularization.
- Data augmentation.
- Multi-task learning.
- Early stopping.
- Parameter sharing.
- Bagging.
- Dropout.
- Batch normalization.

Internal Covariance Shift

- Change of distributions in activation across layers.
- Change in optimal learning rate ⇒ need really small steps.

Covariate Shift

- Training and test input follow different distributions.
- But functional relation remains the same.

Solution 1: Decorrelation and Whitening

Benefit:

Transform training and testing onto a space where they have same distribution.

Issues:

- Computationally expensive to calculate covariance matrices for every layer.
- Not work for stochastic algorithms.

Solution 2: Batch Normalization

- Normalize distribution in each layer across each minibatch to N(0, 1).
- Learn the scale and shift parameter.
- Parameters are differentiable via chain rule.

$$\mu_{\mathcal{B}} o rac{1}{m} \sum_{i} \mathbf{x}_{i},$$
 //mini-batch mean $\sigma_{\mathcal{B}}^{2} o rac{1}{m} \sum_{i} (\mathbf{x}_{i} - \mu_{\mathcal{B}})^{2},$ //mini-batch variance $\hat{\mathbf{x}}_{i} o rac{\mathbf{x}_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$ //normalization $\mathbf{y}_{i} o \gamma \hat{\mathbf{x}}_{i} + \beta \triangleq \mathsf{BN}_{\gamma,\beta}(\mathbf{x}_{i}),$ //scale and shift

Solution 2: Batch Normalization

- Normalize distribution in each layer across each minibatch to N(0, 1).
- Learn the scale and shift parameter.
- Parameters are differentiable via chain rule.

$$\mu_{\mathcal{B}} o rac{1}{m} \sum_{i} \mathbf{x}_{i},$$
 //mini-batch mean $\sigma_{\mathcal{B}}^{2} o rac{1}{m} \sum_{i} (\mathbf{x}_{i} - \mu_{\mathcal{B}})^{2},$ //mini-batch variance $\hat{\mathbf{x}}_{i} o rac{\mathbf{x}_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$ //normalization $\mathbf{y}_{i} o \gamma \hat{\mathbf{x}}_{i} + \beta \triangleq \mathsf{BN}_{\gamma,\beta}(\mathbf{x}_{i}),$ //scale and shift

• At test time, $\mu_{\mathcal{B}}$ and $\sigma_{\mathcal{B}}$ are running average of values seen during training.

Inception Net on ImageNet

- Faster convergence (30X).
- Similar accuracies.

Model	Steps to 72.2%	Max accuracy
Inception	$31.0 \cdot 10^{6}$	72.2%
BN-Baseline	$13.3 \cdot 10^{6}$	72.7%
BN-x5	$2.1 \cdot 10^{6}$	73.0%
BN-x30	$2.7 \cdot 10^{6}$	74.8%
BN-x5-Sigmoid		69.8%

Quiz: Why does Bagging Work?

- **1** Train k regression models separately, each with squared error ϵ_i .
- ② Assume $\mathbb{E}[\epsilon_i^2] = v$, $\mathbb{E}[\epsilon_i \epsilon_i] = c$.
- **Prove**: The variance of the average error, assuming independence (c = 0) and $\mathbb{E}[\epsilon_i] = 0$, decreases linearly with ensemble size k.