TOWARDS HIGH-THRESHOLD DECODING OF THE GAUGE COLOR CODE

Will Zeng - Rigetti Computing

Benjamin Brown - Niels Bohr Institute, University of Copenhagen

Fault-tolerant quantum computing with low overhead

Ex. Surface Code (2D):

- > 3.3% Threshold (optimal phenomenological noise) [1]
- > Non-universal Encoded Gates
- > w/ Magic State distillation for T gates

> 4,000 logical qubits for Shor's factoring algorithm

1 billion physical qubits (2)

94% are for magic state distillation

(1) Ohno, Takuya, et al. *Nuclear physics B* 697.3 (2004): 462-480.

[2] Fowler, Austin G., et al. *Physical Review A* 86.3 (2012): 032324.

Fault-tolerant quantum computing with low overhead

Ex. Surface Code (2D):

- > 3.3% Threshold (optimal phenomenological noise) [1]
- > Non-universal Encoded Gates
- > w/ Magic State distillation for T gates

> 4,000 logical qubits for Shor's factoring algorithm

1 billion physical qubits (2)

94% are for magic state distillation

- (1) Ohno, Takuya, et al. *Nuclear physics B* 697.3 (2004): 462-480.
- [2] Fowler, Austin G., et al. *Physical Review A* 86.3 (2012): 032324.

Gauge Color Code (3D):

- > Universal Encoded Gates via gauge fixing [3]
- > 0.31% Threshold (phenomenological noise) [4]
- > Optimal Threshold ???

- (3) H. Bombin, New J. Phys. 17 (2015) 083002
- [4] Brown, Nickerson, Browne arXiv:1503.08217 (2015)

Fault-tolerant quantum computing with low overhead

Gauge Color Code (3D):

- > Universal Encoded Gates via gauge fixing [3]
- > 0.31% Threshold (phenomenological noise) [4]
- > Optimal Threshold ???

Ex. Surface Code (2D):

>

>

Present Goal: Push the gauge color code threshold higher with:

- (i) A different lattice
- (ii) A higher threshold decoder (efficient but computationally challenging)

> 4,000 logical qubits for Shor's factoring algorithm 1 billion physical qubits (2)

94% are for magic state distillation

- (1) Ohno, Takuya, et al. *Nuclear physics B* 697.3 (2004): 462-480.
- [2] Fowler, Austin G., et al. *Physical Review A* 86.3 (2012): 032324.

- (3) H. Bombin, New J. Phys. 17 (2015) 083002
- (4) Brown, Nickerson, Browne arXiv:1503.08217 (2015)

GAUGE COLOR CODES

- H. Bombin, New J. Phys. 17 (2015) 083002
- > Four valent, four colorable lattice
- > Can be implemented with only weight 4 & 6 check operators

Simplex	Represents
O-simplex (vertex)	Qubit
1-simplex (edge)	Qubit coupling
2-simplex (face)	Gauge operator
3-simplex (cell)	Stabilizer

Bulk lattice

Distance 3 (primal)

... like in the toric code – A. Kubica et al. arXiv:1503:02065 (2015)

Bulk (primal)

DECODING GAUGE COLOR CODES

Anyons are removed by either:

Matching to the boundary of their color

Matching r+b+y+g to the same cell

Brown, Nickerson, Browne arXiv:1503.08217 (2015):

- > 0.31% threshold for phenomenological noise (just Pauli X errors)
- > Used an adapted clustering decoder

GAUGE COLOR CODE LATTICES

2D Color Codes

Weight 8 & 32 stabilizers

6 & 18 gauges per stabilizer

Weight 4 & 6 gauge operators

Brown, Nickerson, Browne arXiv:1503.08217 (2015)

6.6.6

Landahl, et al. *arXiv preprint arXiv:1108.5738*(2011).

Weight 24 stabilizers

14 gauges per stabilizer

Weight 4 & 6 gauge operators

GAUGE COLOR CODE LATTICES

2D Color Codes

3D Color Codes

Weight 8 & 32 stabilizers

6 & 18 gauges per stabilizer

Weight 4 & 6 gauge operators

Brown, Nickerson, Browne arXiv:1503.08217 (2015)

6.6.6

Landahl, et al. *arXiv preprint arXiv:1108.5738*(2011).

Weight 24 stabilizers

14 gauges per stabilizer

Weight 4 & 6 gauge operators

We choose this lattice

- > MCMC decoders for the surface code:
 - Wootton & Loss Phys. Rev. Lett, 106(16), 16053 (2012)
 - Hutter et al. Phys. Rev. A 89, 022326 (2014)
 - Their MCMC decoder achieves surface code threshold of 18.5% (upper bound is 18.9%; Masayuki. *Phys. Rev. A* 85.6 (2012): 060301.)

LOOKING FOR A THRESHOLD WITH MCMC DECODING

- > Perfect Measurements; X errors
- > Compare to 0.45% from Brown et al. arXiv:1503.08217 (2015)
- > L(c) = weight of correction c

 $ChainLength = 10 \times d^6$

$$T(c_i, c') = 100 \left(\frac{1 - \frac{p}{3}}{p}\right)^{L(c_i) - L(c')}$$

Physical error rate ρ

LOOKING FOR A THRESHOLD WITH MCMC DECODING

- > Perfect Measurements; X errors
- > Compare to 0.45% from Brown et al. arXiv:1503.08217 (2015)
- > L(c) = weight of correction c

 $ChainLength = 10 \times d^6$

$$T(c_i, c') = 100 \left(\frac{1 - \frac{p}{3}}{p}\right)^{L(c_i) - L(c')}$$

Physical error rate ρ

 $ChainLength = 100 \times d^6$

$$T(c_i, c') = \frac{1}{p} \left(\frac{1 - \frac{p}{3}}{p} \right)^{L(c_i) - L(c')}$$

20k samples per point (except d=11 at 2k)

CONCLUSION

FUTURE WORK

Evidence towards a GCC threshold > 1.2%*

* perfect measurements

- 1) More evidence:
 - Markov chain parallelization: $O(L^4) \rightarrow O(L^2)$ in 2D case
 - Larger lattices (d ≈ 41)
 - Is this really efficient?
 - What are the optimal parameters?

- 2) New error models:
 - Single-shot decoding makes GCC able to easily detect measurement errors

APPENDIX

LOOKING FOR A THRESHOLD WITH MCMC DECODING

ChainLength = $\alpha \times d^6$

$$T(c_i, c') = 100 \left(\frac{1 - \frac{p}{3}}{p}\right)^{L(c_i) - L(c')}$$

Logical accuracy vs. chainlength at different physical error rates

 $ChainLength = 30 \times d^6$

$$T(c_i, c') = \gamma \left(\frac{1 - \frac{p}{3}}{p}\right)^{L(c_i) - L(c')}$$

Logical accuracy vs. pseudo-temperature at different physical error rates

GAUGE COLOR CODES

- H. Bombin, New J. Phys. 17 (2015) 083002
- > A topological quantum error correcting code (3D)
- > Four valent, four colorable lattice
- > Admits universal transversal encoded gates via gauge fixing
- > Can be implemented with only weight 4 & 6 check operators

Distance 3 (primal + dual)

Distance 15 (dual): - 671 qubits

LARGER BOMBIN LATTICES

Distance 5 (primal)

Distance 5 (dual)

65 qubits

Distance 7 (dual)

175 qubits

671 qubits

