ГИДРОГЕЛЕВЫЕ МАТЕРИАЛЫ НА ОСНОВЕ КАРБОКСИАЛКИЛХИТОЗАНОВ ДЛЯ ЛЕЧЕНИЯ ОСТЕОАРТРИТА

Веретенникова Е.А.⁽¹⁾, Землякова Е.О.⁽¹⁾, Друкаренко Н.А.⁽²⁾, Пестов А.В.⁽¹⁾, Корякова О.В.⁽¹⁾, Жиляков А.В.⁽³⁾, Каманцев И.С.⁽²⁾, Чернядьев С.А.⁽³⁾, Кузнецов А.В.⁽²⁾

⁽¹⁾ Институт органического синтеза УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 22

⁽²⁾ Институт машиноведения УрО РАН 620219 Екатеринбург, ул. Комсомольская, д. 34

⁽³⁾ Уральский государственный медицинский университет 620028 Екатеринбург, ул. Репина, д. 3

Остеоартрит — это дегенеративное заболевание, вызывающее повреждение хрящей и окружающих их тканей, тем самым приводящее к болезненной реакции организма человека на совершаемую физическую работу поврежденными суставами. Гидрогели на основе полисахаридов и их производных являются перспективным средством для лечения остеоартрита благодаря своим уникальным свойствам имитировать механические свойства натурального хряща и обеспечивать высокую степень набухания, уменьшая трение и давление на суставную поверхность.

Карбоксиалкилхитозаны за счет присутствия карбоксильных групп обладают повышенной гидрофильностью по сравнению с нативным хитозаном, при этом также увеличивается возможность формирования большего количества межмолекулярных взаимодействий. данной работе N.O-В основе (карбоксиметил)хитозана, N-(1,2-дикарбоксиэтил)хитозана, N-(2карбоксиэтил)хитозана разработали методы получения гидрогелевых материалов путем приготовления гомогенного геля из полимеров с последующим сшиванием диглицидиловым эфиром бутандиола или без использования сшивающего агента. Для оценки механической прочности полимеров проводили сжатие гидрогелевых материалов на универсальной испытательной машине Zwick Z2.5. Гидрогели на основе N-(1,2-дикарбоксиэтил)хитозана со степенью функционализации 0.5 и 0.35, N,О-(карбоксиметил)хитозана со степенью функционализации 1 проявили жесткость и хрупкость, что привело к разрушению данных материалов.

Перспективными материалами для дальнейших исследований являются гидрогели на основе N-(2-карбоксиэтил)хитозана. Данное производное со степенью функционализации 1 обладает высокой прочностью и способно выдерживать максимальную нагрузку $2.14~\mathrm{M\Pi a},$ что соответствует модулю упругости натурального суставного хряща $-2.1~\mathrm{M\Pi a}.$