

MergeSort Part 2 Quiz

Score: _____

1.	al	=	[1,	2,	3,	4]			
Wh	at	is	the	r	es	ult	of	al[:2]?)

- (A) [1, 2]
- (B) [1, 2, 3]
- (c) [] (list with no elements)
- D None of the above

2. If al = [1, 2, 3, 4], then al[2:] is equal to

- (A) [2, 1]
- (B) [3, 4]
- (c) [2, 3, 4]
- D [2]
- (E) None of the above

3. The value of **mid** in the given code snippet is

- (A) 0
- (B) 1
- (c) 2
- (D) 1.5
- 4. If you replace Line 3 with mid = int(len(al)/2), the value of mid will remain the same.
- (A) True
- B False

2 al = [1, 2, 3, 4]
3 mid = len(al) // 2
4 newlist = al[:mid] + al[mid:]
5 assert newlist == al

2 al = [1, 2, 3, 4] 3 mid = len(al) // 2

4 newlist = al[:mid] + al[mid:]
5 assert newlist == al

- 5. **newlist** will **not** contain the same number of elements as **al**.
- (A) True
- (B) False

- 2 al = [1, 2, 3, 4]
 3 mid = len(al) // 2
 4 newlist = al[:mid] + al[mid:]
 5 assert newlist == al
- 6. The assertion in Line 5 will not produce an error.
- (A) True
- B False

7.	Line number 14 will produce what output?		
A	[1, 2], [1, 2]	11 12	al = [1, 2, 3, 4, 5] mid = len(al) // 2
B	[1, 2], [4, 5]	13 14	<pre>left, right = al[:mid], al[mid:] print(left, right)</pre>
$\overline{(c)}$	[1, 2], [3, 4, 5]		
D	None of the above		
8. A B C D	The list al is an example of nested list. It has a length of 5 2 1 4	al	= [1, [2, [3, [4, [5, None]]]]]
9.	The printRec is a valid recursive function and it has one	teri	minal case.
A B	True False	13 14 15 16 17 18 19 20 21 22	<pre>al = [1, [2, [3, [4, [5, None]]]]] def printRec (alist): if not alist[1]: print(alist[0], end=".\n") return print(alist[0], end=", ") printRec(alist[1])</pre>
10	. The line number 22 will produce what output?		
A B C	1, 2, 3, 4, 5. 5, 4, 3, 2, 1. None of the above.	13 14 15 16 17 18 19 20 21 22	<pre>al = [1, [2, [3, [4, [5, None]]]]] def printRec (alist): if not alist[1]: print(alist[0], end=".\n") return print(alist[0], end=", ") printRec(alist[1]) printRec(al)</pre>
11	. The sum function is		
A B C D	a recursive function but not a fruitful function a recursive and fruitful function non-recursive function none of the above	16 17 18 19 20 21 22 23 24 25	<pre>def sum(alist): if not alist: return 0 if len(alist) == 1: return alist[0] remaining = alist[1:] return alist[0] + sum(remaining) print(sum([1, 2, 3, 4, 5]))</pre>
12	. The sum function has one terminal case.		
A B	True False	16 17 18 19 20 21 22 23 24 25	<pre>def sum(alist): if not alist: return 0 if len(alist) == 1: return alist[0] remaining = alist[1:] return alist[0] + sum(remaining) print(sum([1, 2, 3, 4, 5]))</pre>

The output from Line 48 will be [5, 4, 3, 2, 1, 0] def merge(A, B): True return [| (A if A[0] < B[0] else B).pop(0) 28 29 for _ in A+B if A and B
] + A + B 30 False 32 def some_func(ulist):
 if len(ulist) < 2:</pre> 35 return ulist mid = len(ulist)//2 left = ulist[:mid]
right = ulist[mid:] sorted_left = some_func(left) sorted_right = some_func(right)
print(sorted_left, sorted_right) slist = merge(sorted_left, sorted_right) 48 print(some_func([5, 0, 2, 1, 3, 4])) The recursive **some_func** has only one terminal case. def merge(A, B): True return [

(A if A[0] < B[0] else B).pop(0)

for _ in A+B if A and B

] + A + B 30 False 33 def some_func(ulist): if len(ulist) < 2: return ulist left = ulist[:mid] right = ulist[mid:] sorted left = some_func(left) sorted_right = some_func(right)
print(sorted_left, sorted_right) slist = merge(sorted_left, sorted_right) return slist 48 print(some func([5, 0, 2, 1, 3, 4])) The intermediary output caused by Line 43 will be as shown here. True **False** 5] [1, 3, 4]

The most appropriate name that can replace **some_func()** is

16.

48 print(some_func([5, 0, 2, 1, 3, 4]))

If a	= [4, 5, 6, 1, 2, 1, 2, 3], then after the sorting is complete the result must be 1, 2, 3, 4, 5, 6].
	Modify the mergesort algorithm to eliminate duplicate elements during the process on an arrange of the process of the proces
im	illustrative example can be a source for inspiration to ove the merge algorithm so that it can be very efficient dealing with almost sorted lists. What will you do?
	isual examination, it is obvious all that needs to be done is ge the sublists to get the sorted list.
Aft	Assume al = [2, 1, 4, 3, 6, 5, 8, 7] and we want to mergesort it. the first conquer step, we will have [1, 2], [3, 4], and [5, 6], [7, 8].