Algebra WiSe 17/18 Definitionen

Prof. Scheithauer Mitschrift von Daniel Kallendorf Danke an Sandra Kühne für ihre Mitschriften

Version vom 21. März 2018

Inhaltsverzeichnis

1 Wiederholung

Bemerkung. Insbesondere ist jedes maximale ideal prim.

Definition 1.2. Sei $A \neq \emptyset$. Eine **Relation** auf A ist eine Teilmenge $R \subset A \times A$. R heißt **partielle Ordnung** wenn

- a) $\forall a \in A \text{ gilt } (a, a) \in R \text{ (Reflexivität)}$
- b) $\forall a,b,c \in A$ gilt $(a,b) \in R$ und $(b,c) \in R$, so gilt auch $(a,c \in R)$ (Transitivität)
- c) $\forall a, b \in A \text{ mit } (a, b \in R) \text{ und } (b, a) \in \mathbb{R}, \text{ dann gilt } a = b. \text{ (Antisymmetrie)}$

Ist R eine partielle Ordnungn auf A so schrieben wir für $(a,b) \in R$ auch $a \leq b$.

Zwei Elemente $a, b \in A$ heißen **vergleichbar**, wenn $a \leq b$ oder $b \leq a$ ist. Eine Teilmenge $B \subset A$ heißt **Kette**, wenn für alle $a, b \in B$ gilt, dass $a \leq b$ oder

 $b \leq a$.

1.1 Lokale Ringe

Definition 1.7. Ein Ring A mit nur eine maximalen Ideal \mathfrak{m} heißt lokaler Ring und A/\mathfrak{m} heißt Restklassenkörper von A.

1.2 Radikale

Definition 1.12. Das Ideal $N = \{a \in A \mid a \text{ ist Nilpotent}\}$ heißt das **Nilikal** von A.

Definition 1.13. Sei A ein Ring dann nennt man $J = \{x \in A \mid \forall y \in A : 1 - xy \text{ ist Einheit}\}$ das **Jacobsonradikal**.

Definition 1.15. Sei A ein Ring und $\mathfrak{a} \subset A$ ein Ideal in A. Dann wird

$$r(a) := \{ x \in A \mid x^n \in \mathfrak{a} \text{ für ein } n > 0 \}$$

als **Radikal** von \mathfrak{a} bezeichnet. (auch $\operatorname{Rad}(\mathfrak{a}), \sqrt{\mathfrak{a}}$)

1.2.1 Operationen auf Radikalen

Definition 1.17. Sein A ein Ring.

a) Seien $\mathfrak{a}, \mathfrak{b} \subset A$ Ideale in A.

Dann ist

$$a+b=:\{x+y\mid x\in\mathfrak{a},y\in\mathfrak{b}\}$$

ein Ideal in A.

b) Analog: Sei $(\mathfrak{a}_i)_{i\in I}$ eine Familie von Idealen in A, für eine Indexmenge I. Dann ist

$$\sum_{i \in I} \mathfrak{a}_i =: \left\{ \sum_{i \in I} x_i \mid x_i \in \mathfrak{a}_i \text{ und fast alle } x_i = 0 \right\}$$

ein Ideal in A.

c) Sei $(\mathfrak{a}_i)_{i\in I}$ eine Familie von Idealen in A, für eine Indexmenge I. Dann ist der Schnitt

$$\bigcap_{i\in I} \mathfrak{a}_i$$

ein Ideal in A.

d) Seien $\mathfrak{a}, \mathfrak{b} \subset A$ Ideal in A. Dann ist

$$\mathfrak{ab} = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b}, n \in \mathbb{N} \right\}$$

ein Ideal in A.

Definition 1.19. Sei A ein Ring. Zwei Ideale $\mathfrak{a}, \mathfrak{b} \subseteq A$ heißen **teilerfremd**, wenn $\mathfrak{a} + \mathfrak{b} = A = (1)$.

Definition 1.22. Sei A ein Ring und seinen $\mathfrak{a}_i,...,\mathfrak{a}_n$ Ideale in A. Wir definieren die Abbildung

$$\phi: A \to \prod_{i=1}^{n} (A/\mathfrak{a}_{i})$$
$$a \mapsto (a+\mathfrak{a}_{1},...,a+\mathfrak{a}_{n})$$

1.3 Ringe von Brüchen

Definition 1.24. Sei A ein Ring. Eine Teilmenge $S \subset A$ heißt **multiplikativ** abgeschlossen, wenn

- a) Für alle $s, t \in S$ gilt, dass $st \in S$
- b) $1 \in S$.

Definition 1.26. Seien $a/s, b/t \in S^{-1}A$. Man definiert

- a/s + b/t := (at + bs)/st
- $a/s \cdot b/t := ab/st$

Definition 1.27. Diese Verknüpfungen sind wohldefiniert und versehen $S^{-1}A$ mit einer Ringstruktur.

 $S^{-1}A$ wird als der Ring der Brüche von A bezüglich S bezeichnet.

Definition 1.31. Sei A ein Integritätsbereich und $S = A \setminus \{0\}$. Dann nennt man $S^{-1}A$ den **Quotientenkörper**

Definition 1.33. Sei A ein Ring. Sei \mathfrak{p} ein Primideal in A. Man schreibt $A_{\mathfrak{p}}$ für $S^{-1}A$ und nennt $A_{\mathfrak{p}}$ die **Lokalisierung** von A bezüglich \mathfrak{p} .

1.4 Integritätsbereiche und Hauptidealringe

Definition 1.37. Sei A ein Ring. Ein Ideal der Form (a) = Aa heißt **Hauptideal**.

Definition 1.38. Ein Ring A heißt **Hauptidealring**, wenn jede Ideal in A Hauptideal ist.

Definition 1.39. Ein Ring A heißt **euklidisch**, wenn es eine Abbildung

$$\lambda: A \setminus \{0\} \to \mathbb{N}_0$$

gibt, sodass zu je zwei Elementen $a,b\in A$ mit $b\neq 0$ Elemente $q,r\in A$ existieren mit a=qb+r wobei $\lambda(r)<\lambda(b)$ oder r=0.

Definition 1.42. Sei A ein Ring und seinen $a, b \in A$. $d \in A$ heißt **Größter gemeinsamer Teiler** von a und b, wenn gilt

- a) d|a und d|b.
- b) Wenn es $g \in A$ gibt mit g|a und g|b, dann muss g|d.

Wir schreiben $d = \gcd(a, b) = (a, b)$

Definition 1.43. Sei A ein Ring und seinen $a, b \in A$. $d \in A$ heißt kleinstes gemeinsames Vielfaches von a und b, wenn gilt

- a) a|v und b|v.
- b) Wenn es $g \in A$ gibt mit a|g und b|g, dann muss v|v.

Wir schreiben v = lcm(a, b) = (a, b)

Definition 1.45. Sei A in Integritätsbereich. Zwei Elemente $a,b\in A$ heißen assoziiert, wenn

- a|b und b|a.
- (äquivalent) a = bu für ein $u \in A^*$.
- (äquivalent) (a) = (b).

Man schreibt dann $a \sim b$.

Definition 1.46. Sei A in Integritätsbereich. Ein Element $p \in A$ heißt **prim**, **Primelement**, wenn

- $p \notin A^*$, $p \neq 0$ und aus p|ab folgt p|a oder p|b.
- (äquivalent) $p \neq 0$ und (p) ist Primideal.

Definition 1.47. Sei A in Integritätsbereich. $c \in A$ heißt **irreduzibel** oder **unzerlegbar**, wenn

- a) für $c \notin A^*$ und $c \neq 0$ aus c = ab folgt, dass $a \in A^*$ oder $b \in A^*$.
- b) (äquivalent) für $c \neq 0$ für alle $a \in A$ gilt, dass aus $(c) \subset (a)$ folgt, dass (a) = A oder (a) = (c).

Definition 1.50. Ein Integritätsbereich heißt faktoriell, wenn

- a) Jedes $a \in A \backslash A^*, \, a \neq 0$ zerfällt in ein Produkt von irreduziblen Elementen.
- b) Die Zerlegung ist bis auf Reihenfolge und Einheiten eindeutig. D.h.

D.h. wenn $a = c_1 \cdot ... \cdot c_m = d_1 \cdot ... \cdot d_n$ mit c_1, d_1 irreduzibel, so folgt m = n und es gibt $\pi \in S_n$ mit $c_1 \sim d_{\pi(i)}$ für alle i = 1, ..., n.

1.5 Inverse und direkte Limiten

Definition 1.54. Man nennt I eine unter \leq **partiell geordnete Menge**, wenn für alle $x, y, z \in I$ gilt

- a) $x \leq x$.
- b) Aus $x \leq y$ und $y \leq z$ folgt $x \leq z$.
- c) Aus $x \leq y$ und $y \leq x$ folgt x = y.

Definition 1.55. Für jedes $i \in I$ sei A_i ein Ring und sei für jedes Paar $i, j \in I$ mit $i \leq j$ die Abbildung $f_{ij} : A_j \to A_i$ ein Ringhomomorphismus, sodass

a) $f_{ii} = \mathrm{id}_{A_i}$ für alle $i \in I$

b) $f_{ik} = f_{ij} \circ f_{jk}$ falls $i \leq j \leq k$.

Dann nennt man das System $(A_i, f_{ij})_{i,j \in I}$ projektives System von Ringen.

Definition 1.56. Ein Ring A zusammen mit dem Homomorphismus $f_i:A\to A_i$, sodass $f_i=f_{ij}\circ f_j$ für $i\leq j$ heißt **projektiver Limes** oder **inverser Limes** des Systems (A_i,f_{ij}) , wenn folgende universelle Eingenschaft erfüllt ist: Sind $h_u:B\to A_i$ für alle $i\in I$ Ringhomomorphismen mit $h_i=f_{ij}\circ h_j$ für $i\leq j$, so existiert genau ein Ringhomomorphismus $h:B\to A$ mit $h_i=f_i\circ h$ für alle $i\in I$.

Definition 1.60. Sei $x \in \mathbb{Z}_p$, $x \neq 0$. Schreibe $x = p^n u$ mit $u \in \mathbb{Z}_p^*$. Dann heißt

$$n = \nu_p(x)$$

die p-adische Bewertung von x.

Man setzt $\nu_p(0) = \infty$.

Man bezeichnet $|x|_p = p^{-\nu_p(x)}$ als den p-adischen Betrag.

Definition 1.63. Man nennt I eine unter \leq **gerichtete Menge**, wenn für alle $x, yz \in I$ gilt

- a) $x \leq x$
- b) Aus $x \leq y$ und $y \leq z$ folgt $x \leq z$
- c) Für alle x, y exitsiert ein $z \in I$ mit $x \le z, y \le z$

Definition 1.64. Für jedes $i \in I$ sei ein Ring A_i und für jedes Paar $i, j \in I$ mit $i \leq j$ sei ein Ringhomomorphismus $f_{ij} : A_i \to A_j$ gegeben, mit

- a) $f_{ii} = \mathrm{id}_{A_i}$ für alle $i \in I$
- b) $f_{ik} = f_{jk} \circ f_{ij}$ für alle $i \leq j \leq k$

$$A_i \xrightarrow{f_{ij}} A_j \xrightarrow{f_{jk}} A_k$$

Ein solches System (A_j, f_{ij}) heißt induktives System von Ringen.

Definition 1.65. Ein Ring A zusammen mit dem einem Homomorphismus $f_i: A_i \to A$, sodass gilt $f_i = f_j \circ f_{ij}$ für $i \leq j$ heißt **induktiver Limes** oder **direkter Limes** des Systems (A_i, f_{ij}) , wenn folgende Universelle Eigenschaft erfüllt ist:

Ist B ein Ring, und sind $h_i:A_i\to B,\ i\in I$ Ringhomomorphismen mit $h_i=h_j\circ f_{ij}$ für $i\le j$, so existiert genau ein Ringhomomorphismus $h:A\to B$ mit $h_i=h\circ f_i$ für alle $i\in I$.

2 Polynomringe

2.1 Polynome mit einer Variable

Sei in diesem Abschnitt A ein Ring.

Definition 2.1. Sei A[X] die Menge der Folgen $(a_0, a_1, ...,)$ mit $a_i \in A$ und $a_i = 0$ für fast alle $i \in \mathbb{N}$.

Die Elemente dieser Menge heißen Polynome.

Definition 2.2. A[X] ist ein Ring mit

$$(a_0, a_1, ...,) + (b_0, b_1, ...) = (a_0 + b_0, a_1 + b_1, ...)$$

 $(a_0, a_1, ...,) \cdot (b_0, b_1, ...) = (c_0, c_1, ...)$

mit $c_n = \sum_{k=0}^n a_{n-k} b_k$.

Das Nullelement ist $0=(0,0,\ldots)$ und $1=(1,0,0,\ldots)$ ist das Neutrale Element der Multiplikation.

Definition 2.3. A[X] wird als der **Polynomring** in der **Variablen** X bezeichnet

Definition 2.5. a) Für ein Polynom $f = \sum_k a_k X^k$ heißt a_k der k-te Koeffizient von f.

b) Für $f \neq 0$ heißt

$$\deg(f) = \max\{i \mid a_i \neq 0\}$$

der **Grad** von f. (Falls f = 0, dann ist $\deg f := -\infty$)

- c) Der Koeffizient a_n mit $n = \deg(f)$ heißt **Führender Koeffizient** von f.
- d) Ist der führende Koeffizient $a_n = 1$, so heißt f normiert

2.2 Nullstellen von Polynomen

Definition 2.14. Sei $f \in A[X]$, $f \neq 0$. $a \in A$ heißt **Nullstelle** von f, wenn f(a) = 0.

Definition 2.17. Lässt sich $f \in A[X]$, $f \neq 0$ schreiben als

$$f = c \prod_{i=1}^{m} (x - a_i)^{n_i}$$

mit $c, a_1, ..., a_m \in A$ und $n_1, ..., n_m \in \mathbb{N}$, dann sag man f zerfällt in Linearfaktoren.

Definition 2.25. Sei $f \in A[X]$, $f \neq 0$. Ist $a \in A$ eine Nullstelle von f, so gibt es ein $n \in \mathbb{N}$ mit

$$(x-a)^n|f$$
$$(x-a)^{n-1} \not f$$

Dann heißt n die Vielfachheit oder Multiplizität von a und man nennt a eine n-fache Nullstelle von f.

Definition 2.26. Die Abbildung

$$D: A[X] \to A[X]$$

$$\sum_{j=0}^{n} a_j X^j \mapsto \sum_{j=1}^{n} j a_j X^{j-1}$$

Man schreibt f' := D(f).

Definition 2.29. Die Abbildung

$$\chi: \mathbb{Z} \to A$$
$$n \mapsto n \cdot 1$$

Ist ein Ringhomomorphismus und

$$Kern(\chi) = (n) = n\mathbb{Z}$$

für ein $n \in \mathbb{Z}$, $n \ge 0$.

n heißt die **Charakteristik** von A und man schreibt n = char(A).

2.3 Polynome mehrerer Veränderlicher

Definition 2.32. Sei A ein Ring. Dann ist der <u>Polynomring in mehreren Variablen</u> $A[X_1,...,X_n]$ induktiv definiert als

$$\begin{split} A[X_1,X_2] &:= A[X_1][X_2] \\ A[X_1,...,X_n] &:= A[X_1,...,X_{n-1}][X_n] \end{split}$$

und ein Polynom $f \in A[X_1,...,X_n]$ lässt sich schrieben als

$$f = \sum_{i_1, \dots, i_n} \underbrace{a_{i_1 \dots i_n}}_{\in A} X_1^{i_1} \dots X_n^{i_n}$$

Definition 2.33. Die Elemente $X_1^{i_1}...X_n^{i_n} \in A[X_1,...,X_n]$ heißen primitve Monome.

Definition 2.34. Der Grad des Polynoms $f \in A[X_1,...,X_n]$ ist definiert als

$$\deg(f) = \max \left\{ \sum_{j=1}^{n} i_j \mid a_{i_1 \dots i_n} \neq 0 \right\}$$

falls $f \neq 0$ und sonst $= -\infty$.

Definition 2.35. Ein Polynom $f \in A[X_1,...,X_n]$ heißt homogen vom Grad m, falls alle Monome in f Grad m haben.

Definition 2.40. Ist $\varphi: A[X_1,...,X_n] \to B$ mit $\varphi(X_j) = b_j$ injektiv, so nennt man die b_j algebraisch unabhängig.

Ist φ nicht injektiv, so heißen die b_i algebraisch abhängig.

Definition 2.44. Sei $I \neq \emptyset$ ein Indexmenge. Dann bezeichnet $\mathbb{N}^{(I)}$ die Menge der Form $(a_i)_{i\in I}$ mit $a\in \mathbb{N}_0$ und $a_i=0$ für fast alle $i\in I$. Die Addition auf $\mathbb{N}^{(I)}$ ist definiert durch

$$(a_i)_{i \in I} + (b_i)_{i \in I} = (a_i + b_i)_{i \in I}$$

mit neutralem Element $0 = (0)_{i \in I}$.

Definition 2.45. Für Indexmengen I ist $A[(X_i)_{i\in I}]$ definiert als die Menge der Abbildungen $\varphi: \mathbb{N}^{(I)} \to A$ mit $\varphi(\alpha) = 0$ für fast alle $\alpha \in \mathbb{N}^{(I)}$, mit Addition und Multiplikation

$$(f+g)(\alpha) = f(\alpha) + g(\alpha)$$

$$(fg)(\alpha) = \sum_{\substack{\beta + \gamma = \alpha \\ \beta, \gamma \in N(I)}} f(\beta)g(\gamma)$$

Dann ist $A[(X_i)_{i\in I}]$ ein Ring mit neutralem Element der Addition $0=0(\alpha)$ und der Multiplikation $e(\alpha) = 1$ falls $\alpha = 0$ und $e(\alpha) = 0$ sonst.

Bemerkung. Einem Element $a \in A$ ordnen wir die Abbildung ζ mit

$$\zeta(\alpha) \begin{cases} a &= \alpha = 0 \\ 0\alpha \neq 0 \end{cases}$$

Dies liefert eine Einbettung von A in $A[(X_i)_{i \in I}]$ mit

$$X^{\alpha}(\beta) = \begin{cases} 0 & \beta \neq \alpha \\ 1 & \beta = \alpha \end{cases}$$

Für ein beliebiges $f \in A[(X_i)_{i \in I}]$ ist dann

$$\zeta = \sum_{\alpha \in \mathbb{N}^{(I)}} f(\alpha) X^{\alpha}$$

und es gilt $X^{\alpha}X^{\beta}=X^{\alpha+\beta}$ und für $f=\sum f(\alpha)X^{\alpha}$ $g=\sum g(\alpha)X^{\alpha}$ ist

$$f + g = \sum (f(\alpha) + g(\alpha))X^{\alpha}$$
 (1)

$$f + g = \sum (f(\alpha) + g(\alpha))X^{\alpha}$$

$$f \cdot g = \sum h(\alpha)X^{\alpha} \text{mit } h(\alpha)$$

$$= \sum_{\beta + \gamma = \alpha} f(\beta)g(\gamma)$$
(2)

2.4 Bewertungen

Definition 2.47. Sei K ein Körper. Ein **Betrag** auf K ist eine Abbildung

$$|\cdot|:K\to\mathbb{R}$$

mit

- a) $|x| \ge 0$ und $|x| = 0 \Leftrightarrow x = 0$
- b) |xy| = |x||y|
- c) $|x + y| \le |x| |y|$

Definition 2.48. Ein Betrag $|\cdot|$ heißt **Archimedisch**, wenn es $x,y\in K$ gibt, sodass

$$|x+y| > \max\{|x|\,|y|\}$$

bzw **nicht-archimedisch**, wenn für alle x, y gilt, $dass|x + y| \le max\{|x|, |y|\}$.

Definition 2.50. Sei A ein Integritätsbereich. Eine **Bewertung** auf A ist eine Abbildung

$$\nu: A \to \mathbb{R} \cup \{\infty\}$$

mit

- a) $\nu(a) = \infty \Leftrightarrow a = 0$
- b) $\nu(ab) = \nu(a) + \nu(b)$
- c) $\nu(a+b) \ge \min{\{\nu(a), \nu(b)\}}$

2.5 Der Satz von Gauß

Definition 2.54. Sei A ein faktorieller Integritätsbereich mit Quotientenkörper K.

Ein Polynom

$$f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_o \in A_{\lceil X \rceil}$$

heißt **primitiv**, wenn für seine Koeffizienten gilt: $gcd(a_0,...,a_n) = 1$.

Äquivalent dazu $\nu_p(f) = 1$ für alle Primelemente $p \in A$.

Ein Polynom $f \in K[X]$, $f \neq 0$ lässt sich schreiben als $f = c\tilde{f}$ mit $\tilde{f} \in A[X]$ primitiv und $c \in K$.

Bemerkung. Sei A wie Oben, $f \in A[X]$, nicht zwingend Primitiv mit $\deg(f) \geq 1$ und f irreduzible in K[X], dann ist firreduzible in A[X].

2.6 Der Hilbertsche Basissatz

Damar gilt $\sum_{a_i X^i \in A[X]} \text{sei } b_n(f) = a_n.$

$$b_n(f+g) = n_b(f) + b_n(g)$$
$$b_n(af) = ab_n(f)$$

für alle $f, g \in A[X]$ und $a \in A$.

Die Menge $I(n) := b_n(I_n)$ ist ein Ideal in A und es gilt

$$I(0)\subset I(1)\subset \dots$$

den $f \in I_n$ impliziert $Xf \in I_{n+1}$. Dann ist $b_n(f) = b_{n+1}(Xf) \in I(n+1)$. Da A noethersch ist wird jede Folge stationär. Also gibt es $m \in \mathbb{N}$, mit

$$I(m) = I(m+1) = \dots$$

Für jedesn=0,1,... wähle Polynome f_{n_j} , sodass I(n) von den Koeffizienten $b_n(f_{n_j})$ erzeugt wird.

Dann wird I von den f_{n_j} über A[X] erzeugt:

Sei $f \in I$ vom Grad t.

• Ist $t \leq m$, so hat

$$f - \sum_{t} a_{t_j} f_{t_j} \in I$$

 $Grad \leq t - 1$.

Nach endlich vielen Schritten hat man f als Linearkombination der f_{n_j} dargestellt.

• Ist t > m, so reduziert man den Grad von f durch

$$f - \sum a_{t_j} X^{t-m} f_{m_j} \in I$$

2.7 Eigenschaften von Polynomringen

Sei A ein Ring.

- a) A Integritätsbereich $\Leftrightarrow A[X_1,...,X_n]$ Integritätsbereich. Dann gilt $A[X-1,...,X_n]^*=A^*$.
- b) (Gauss) A faktorieller Integritätsbereich $\Leftrightarrow A[X_1,...,X_n]$ faktorieller Integritätsbereich.
- c) (Hilbert) A noethersch $\Leftrightarrow A[X_1,...,X_n]$ noethersch.
- d) Sei A zusätzlich Integritätsbereich, dann ist A Körper $\Leftrightarrow A[X]$ Hauptidealring.

2.8 Irreduziblitätskriterien

2.9 Symmetrische Polynome

Definition 2.64. Für $f \in A[X_1,...,X_n]$ und $\sigma \in S_n$ sei

$$\sigma(f) = \sigma(f(X_1, ..., X_n)) := f(X_{\sigma(1)}, ..., X_{\sigma(n)})$$

Dies liefert eine Operation von S_n auf $A[X_1,...,X_n]$.

Definition 2.66. Die Polynome in $A[X_1,...,X_n]^{S_n}$ (invariant unter S_n) werden als **symmetrische Polynome** bezeichnet.

Definition 2.69. Sei $f \in [X - 1, ..., X_n][X]$, $\sigma \in S_n$. Dann bezeichnet man die s_j in

$$f = \sigma(f) = \sigma\left(X^n + \sum_{j=1}^n (-1)^j s_j X^{n-j}\right)$$

als elementarsymmetrische Polynome.

Definition 2.72. Das Monom $X_1^{i_1}...X_n^{i_n} \in A[X_1,...,X_n]$ hat Grad $i_1+...+i_n$. Für den **Grad** $\deg(f)$ für $f \in A[X_1,...,X_n]$ ist das Maximum über den Grad der Monome.

Definition 2.73. Das Monom $X_1^{i_1}...X_n^{i_n} \in A[X_1,...,X_n]$ hat Gewicht $i_1 + 2i_2 + ... + ni_n$.

Das Gewicht gew(f) für $f \in A[X_1,...,X_n]$ ist das Maximum über das Gewicht der Monome.

Definition 2.77. Sei $f \in A[X]$ ein normiertes Polynom vom Grad n. Dann ist die **Diskriminante** von f definiert als

$$D(f) := d_n(-c_1, c_2, -c_3, ..., (-1)^n c_n) \in A$$

Dabei ist $d_n \in \mathbb{Z}[X-1,...,X_n]$ mit

$$d_n(s_1, ..., s_n) := \prod_{i \le j} (X_i - X_j)^2$$

3 Körpererweiterungen

3.1 Grundbegriffe

Definition 3.1. Sei L ein Körper, $K \subset L$ heißt **Teilkörper** von L, wenn K abgeschlossen beglich Addition und Multiplikation ist und unter diesen Operationen selbst wieder Körper ist.

Definition 3.2. Sei K ein Körper. Sei $L \supset K$ selbst wieder Körper, dann bezeichnet man L als **Erweiterungskörper** von K und spricht von der **Körpererweiterung** L/K.

Definition 3.3. Sei L/K eine Körpererweiterung. Dann heißt der Körper M mit $K \subset M \subset L$ **Zwischenkörper** der Erweiterung L/K.

Definition 3.4. Sei L/K eine Körpererweiterung und $M \subset L$. Dann bezeichnet man mit K(M) den **kleinsten Teilkörper** von L, der $K \cup M$ enthält. Man sagt, dass K(M) durch Adjunktion von M zu K entsteht.

Definition 3.7. Sei K ein Körper. Sei

$$\mathbb{Z} \xrightarrow{\phi} K$$
$$n \mapsto n \cdot 1$$

Dann ist $\operatorname{Kern}(\phi) = (n)$ für ein eindeutiges $n \in \mathbb{N}$. n wird als **Charakteristik** von K bezeichnet.

Definition 3.11. Sei K ein Körper. Dann heißt

$$P := \bigcap_{L \text{ Teilk\"{o}rper von } K} L$$

der **Primkörper** von K.

Definition 3.13. Ist K ein Teilkörper von L, sokönnen wir L als Vektorraum über K auffassen.

Die Dimension diese Vektorrausm heißt \mathbf{Grad} von L über K.

$$[L:K] := \dim_K(L)$$

Definition 3.14. Die Erweiterung L/K heißt **endlich**, wenn $[L:K] < \infty$.

3.2 Algebraische Körpererweiterungen

Definition 3.17. Sei L/K eine Körpererweiterung. $\alpha \in L$ heißt **algebraische** über K, wenn es ein Polynom $g \in K[X] \setminus 0$ gibt, mit $g(\alpha) = 0$. Äquivalent:Der Homomorphismus $K[X] \to L, f \mapsto f\alpha$ hat nicht trivialen Kern.

Definition 3.18. Ist $\alpha \in L$ nicht algebraisch, so nennt man es transzendent.

Definition 3.19. Der Körper L heißt <u>algebraisch</u> über K, wenn alle $\alpha \in A$ algebraisch sind.

Definition 3.21. Sei L/K eine Körpererweiterung und $\alpha \in L$ algebraisch über K. Sei $m_{\alpha,K} \in K[X]$ normiert und erzeuge den Kern von $\varphi : K[X] \to L, f \mapsto f(\alpha)$.

Man nennt es das <u>Minimalpolynom</u> in α über K.

Definition 3.26. Eine Körpererweiterung heißt <u>einfach</u>, wenn es $\alpha \in L$ gibt mit $L = K(\alpha)$.

Definition 3.27. Eine Körpererweiterung heißt endlich erzeugt, wenn es endlich viele Element $\alpha_1, ..., \alpha_n$ gibt sodass $L = K(\alpha_1, ..., \alpha_n)$.

Definition 3.32. Sei L/K eine Körpererweiterung. Dann ist

$$L_{alg} := \{ a \in L \mid a \text{ algebraisch ""uber } K \}$$

der algebraische Abschluss von L in K.

3.3 Der algebraische Abschluss eines Körpers

Definition 3.36. Ein Körper K heißt **algebraisch abgeschlossen** wenn jedes Polynom $f \in K[X] \setminus K$ eine Nullstelle in K hat. (Äquivalent: f zerfällt in Linearfaktoren)

3.4 Zerfallskörper

Definition 3.46. Seien K/L und L'/K Körpererweiterungenund sien $\sigma:L\to L'$ ein Homomorphismus.

 σ wird als K-Homomorphismus ($\sigma|_K = \operatorname{id}|_K$) bezeichnet, wenn σ eine Fortsetzung der Identität auf K ist.

Definition 3.47. Sei L/K eine Körpererweiterung und $F \subset K[X] \setminus K$ eine Menge nicht-konstanter Polynome.

Eine Erweiterung L/K heißt **Zerfällungskörper** von F, über K, wenn

- a) Jedes $f \in K$ zerfällt in Linearfaktoren über L
- b) Die Körpererweiterung L/K wird con Nullstellen der $f \in F$ erzeugt.

Definition 3.52. Eine algebraische Körpererweiterung L/K die eine der Bedingungen von \ref{Matter} erfüllt heißt **normal**.

3.5 Separabel Körpererweiterungen

In diesem Abschnitt bezeichne K ein Körper.

Definition 3.55. Ein Polynom $f \in K[X]$ heißt **separabel**, wenn f nur einfache Nullstellen in einem algebraischen Abschluss \overline{K} von K hat. (Dies ist unabhängig von der Wahl von \overline{K})

Definition 3.57. Sei L/K eine algebraische Körpererweiterung. $a \in L$ heißt separabel über K, wenn $m_{a,K}$ separabel ist.

Definition 3.58. Sei L/K eine algebraische Körpererweiterung. L heißt separabel über K, wenn jedes $a \in L$ separabel über K ist

Definition 3.60. Sei L/K eine algebraische Körpererweiterung und \overline{K} der algebraische Abschluss von K.

Der **Separabilitätsgrad** $[L:K]_S$ von L über K ist definiert als

$$[L:K]_S := \left| \operatorname{Hom}_K(L, \overline{K}) \right|$$

Diese Definition ist unabhängig von \overline{K} .

3.6 Endliche Körper

Definition 3.69. Sei p eine positiv Primzahl. Dann ist $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ ein Körper mit p Elementen und $\operatorname{char}(\mathbb{F}_p) = p$.

Definition 3.76. Sei F_q mit $q=p^n$ ein endlicher Körper. Dann ist die Abbildung

$$\operatorname{Fr}: F_q \to F_q$$

 $x \mapsto x^p$

ein F_p -Automorphismus von F_q . Diese wir als **Frobenius-Automorphismus** bezeichnet.

4 Galois-Erweiterungen

Definition 4.1. Eine algebraische, normale, separabele Körpererweiterung L/K heißt **Galoiserweiterung**.

Definition 4.2. Man bezeichnet $\operatorname{Aut}_K(L)$ als **Galoisgruppen** von L/K und schreibt G(L/K) für $\operatorname{Aut}_K(L)$.

Definition 4.7. Sei L ein Körper und G eine Untergruppe von $\mathrm{Aut}_K(L)$. Dann ist

$$L^G := \{ x \in L \mid g(x) = x \forall g \in G \}$$

ein Teilkörper von L. Dieser wird als **Fixkörper** von G bezeichnet.

4.1 Die Galoisgruppe einer Gleichung

In diesem Abschnitt sei K ein Körper

Definition 4.16. Sei f ein separabeles Polynom und L ein Zerfällungskörper von f über K. Dann ist L/K einen endliche Galois-Erweiterung und G(L/K) eird in diesem Falls als **Galoisgruppe von** f **über** K bezeichnet.

Definition 4.22. Sei $L = K(X_1, ..., X_n)$ der Quotientenkörper von $K[X_1, ..., X_n]$. Die Element von L sin die rationalen Funktionen f/g mit $f, g \in K[X_1, ..., X_n]$ und $g \neq 0$.

 S_n operiert durch Permutationen der X_i auf L.

 $M = L^{S_n}$ wird als Körper der symetrischen rationalen Funktionen bezeichnet. Die Erweiterung L/M ist eine endliche Galois-Erweiterung mit Galoisgruppe S_n .

4.2 Kreisteilugspolynome

In diesem Abschnitt sei K ein Körper und \overline{K} ein algebraischer Abschluss von K.

Definition 4.24. Die Nullstellen des Polynom $X^n - 1$ $n \ge 0$ werden als n-te **Einheitswurzeln** in \overline{K} bezeichnet.

Definition 4.27. $\xi \in U_n$ heißt **primitive** n-te Einheitswurzel, wenn ξ die Gruppe U_n erzeugt.

Definition 4.29. Für $n \in \mathbb{Z}$, n > 0 definiert

$$\varphi(n) = |(Z/n\mathbb{Z})^*|$$

die Eulersche φ -Funktion.

Definition 4.35. Falls $K=\mathbb{Q}$ ist so heißt $\mathbb{Q}(\xi)$ der n-te Kreisteilungskörper.

Wir zeigen nun, dass sich jede endliche abelsche Gruppe als Galoisgruppe über $\mathbb Q$ realisieren lässt.

Definition 4.43. Sei $n \in \mathbb{Z}$, n > 0 und $\operatorname{char}(K) / n$. Seien $\xi_1, ..., \xi_m$ mit $m = \varphi(n)$ die primitiven n-ten Einheitswurzeln in \overline{K} . Dann heißt

$$\Phi_{n,K} = \prod_{i=1}^{m} (X - \xi_i)$$

das n-te **Kreisteilungspolynom** über K. Im Fall $K = \mathbb{Q}$ schreiben wir Φ_n für $\Phi_{n,K}$.

5 Moduln

5.1 Definitionen

Definition 5.1. Sei R ein Ring. Ein **Linksmodul** über R ist eine abelsche Gruppe M mit einer Abbildung

$$R \times M \to M$$

sodass

$$a(x + y) = ax + ay$$
$$(a + b)x = ax + bx$$
$$a(bx) = (ab)x$$
$$1x = x$$

für alle $a, b \in R$ und $x, y \in M$.

Definition 5.2. Seien M', M R-Moduln. Eine Abbildung

$$f: M \to M'$$

heißt R-linear oder Modulhomomorphismus, wenn

$$f(x+y) = f(x) + f(y)$$
$$f(ax) = af(x)$$

für alle $a \in R$ und $x, y \in M$.

Definition 5.4. Sei ; ein R-Modul. Ein Untermodul von M ist eine Untergruppe N von M, die Invariant unter Operstionen von R ist, d.h. $ax \in N$ für alle $a \in R$, $x \in N$.

5.2 Faktormoduln

Definition 5.6. Sei M ein R-Modul und $N \subset M$ ein Untermodul, so erhält man auf der **Faktorgruppe** M/N eine R-Modulstruktur. Mit a(x+N)=ax+N für $x \in M$, $a \in R$ wird M/N als **Faktormodul** bezeichnet.

Die Abbildung $\pi:M\to M/N,\,x\mapsto x+N$ ist ein Modulhomomorphismus.

5.3 Direkte Summen und Produkte

Definition 5.9. Sei $(M_i)_{i \in I}$ eine Familie von R-Moduln. Dann ist das **Modul-Produkt**

$$\prod_{i \in I} M_i = \{(x_i)_{i \in I} \mid x_i \in M_i\}$$

ein R-Modul und

$$\bigoplus_{i \in I} M_i = \{(x_i)_{i \in I} \mid x_i \in M_i \text{ und fast alle } x_i = 0\}$$

ein Untermodul. Dieser wird als direkte Summe bezeichnet.

5.4 Erzeugendensysteme und Basen

Definition 5.10. Sei M ein R-Modul. Eine Familie $(x_i)_{i \in I}$ von Element in M heißt **Erzeugendensystem** von M über R, wenn

$$m = \sum_{i \in I} Rx_i$$

ist.

Besitzt M ein endliches Erzeugendensystem, so heißt M endliche erzeugt oder endlicher R-Modul.

Ein Familie $(x_i)_{i \in I}$ heißt **linear unabhängig**, wenn aus

$$\sum_{i \in I} a_i x_i = 0$$

(mit fast alle $a_i = 0$) folgt, dass alle $a_i = 0$ sind.

Definition 5.11. Ein linear unabhängiges Erzeugendensystem wird als **Basis** bezeichnet.

In diesem Falls lässt sich jedes $x \in M$ schreiben als

$$x = \sum_{i \in I} a_i x_i$$

mit eindeutig bestimmtem $a_i \in R$. In diesem Fall heißt M frei.

5.5 Exakte Sequenzen

Definition 5.13. Eine Folge von R-Moduln und R-linearen Abbildungen

$$\dots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \dots$$

heißt **exakt bei** M_i , wenn $Im(f_i) = Kern(f_{i+1})$.

Definition 5.14. Eine Sequenz heißt **exakte Sequenz**, wenn sie an jedem M_i exakt ist.

Definition 5.15. Ein kurze exakte Sequenz ist eine Sequenz der Form

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

Exakheit bedeuet hierbei, dass f injektiv, g surjektiv und Im(f) = Kern(g).

Definition 5.17. Sei

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

eine kurze exakte Sequenz von R-Moduln.

Die Sequenz spaltet, wenn es einen Untermodul $N\subset M$ mit $M=N\oplus \mathrm{Kern}(g)$ gibt.

5.6 Endlich erzeugbare Moduln

Definition 5.21. Ein R-Modul M heißt **endlich erzeugbar**, wenn M ein endliches Erzeugendensystem hat.

Äquivalent: Es gibt einen surjektiven Homomorphismus $\mathbb{R}^n \to M$.

Definition 5.25. Ein R-Modul heißt **noethersch**, wenn jeder Untermodul von M endlich erzeugbar ist.

6 Ganze Ringerweiterungen

6.1 Definitionen und Eigenschaften

Definition 6.1. Sei B ein Ring und $A \subset B$ ein Unterring. $x \in B$ heißt **ganz** über A, wenn es ein normiertes $f \in A[X]$ mit f(x) = 0 gibt.

Definition 6.4. Sei B ein Ring und $A \subset B$ ein Unterring. Dann nennt man

$$\overline{A} := \{x \in B \mid x \text{ ist ganz "über } A\}$$

die ganze Hülle von A in B.

Definition 6.6. Ist $\overline{A} = B$, so heißt B ganz über A.

Definition 6.8. Ein Integritätsbereich heißt ganz abgeschlossen, wenn er ganz abgeschlossen in seinem Quotientenkörper ist.

6.2 Dedekindringe

Definition 6.11. Ein Integritätsbereich A heißt **Dedekindring**, wenn

- a) A noethersch
- b) A ist ganz abgeschlossen
- c) Jedes Primideal $\neq 0$ ist maximal.

Definition 6.12. Ein algebraischer Zahlkörper K ist eine endliche Erweiterung von \mathbb{Q} .

Definition 6.13. Die ganze Hülle von \mathbb{Z} in K wird als **Ring der ganzen Zahlen** in K bezeichnet. Man schreibt diesen als

$$O_K := \{ a \in K | \exists f \in \mathbb{Z}[X] \text{ normiert mit } f(a) = 0 \}$$

6.3 Der Noethersche Normalisierungssatz

Der Noethersche Normalisierungssatz impliziert den Hilbertschen Nullstellensatz und ist daher für die algebraische Geometrie von großer Bedeutung.

6.4 Anfänge der algebraischen Geometrie

Definition 6.21. Sei K ein beliebiger Körper.

$$A^n = A_K^n := \{(a_1, ..., a_n) \mid a_i \in K\}$$

 A^n wird als n-dimensionaler affiner Raum bezeichnet.

Definition 6.22. Für $F \in K[x_1,...,x_n]$ definiert man

$$V(F) := \{ p \in A^n \mid F(p) = 0 \}$$

die V???-Menge.

Für $S\subset K[X_1,...,X_n]$ sei

$$V(S) := \{ p \in A^n \mid F(p) = 0 \forall_{F \in S} \} = \bigcap_{F \in S} V(F)$$

Definition 6.24. Eine Teilmenge $Y \subset A_n$ heißt algebraisch, wenn y = V(S) für ein $S \subset K[X_1, ..., X_n]$ ist.

Definition 6.26. Sei K ein Körper und $n \in \mathbb{N}$, dann ist \mathbb{A}^n_K die Menge der Algebraischen Mengen in K^n .

Definition 6.30. Sei eine Menge \mathbb{A}^n_K abgeschlossen wenn sie algebraisch ist und deren Komplemente offen.

Die erzeugte Topologie wird als **Zariski-Topologie** bezeichnet.