Toward Fast and Deterministic Clone Detection for Large Anonymous RFID Systems

Kai Bu, Mingjie Xu, Zhejiang University Xuan Liu, HK PolyU; Jiaqing Luo, UESTC; Shigeng Zhang, CSU

Anonymous RFID

unknown tag identifiers (IDs)

Anonymous RFID Clone Tag Detection

unknown tag identifiers (IDs) any clone tags?

Cloning Attack

Cloning Attack

Compromise tags & Produce Replicas/Clones; Clone tags = Genuine tags.

Solution Goals

Anonymity Preservation

Deterministic Detection

Fast Detection

Design Choices

- Anonymity Preservation isolate ID from protocol design
- Deterministic Detection
 verify the existence of clones
- Fast Detection
 minimize time and comm. cost

BASE

Cardinality Contradiction: $N_{\text{tag}} \ge 1 + 2 + 1 + 2 = 6 > 5 = N_{\text{id}}$

DeClone

BASE

using cardinality contradiction

Cardinality Contradiction: $N_{\text{tag}} \ge 1 + 2 + 1 + 2 = 6 > 5 = N_{\text{id}}$

Clone Tag Detected

DeClone

using unreconciled collision

BASE

using cardinality contradiction

Cardinality Contradiction: $N_{\text{tag}} \ge 1 + 2 + 1 + 2 = 6 > 5 = N_{\text{id}}$

Clone Tag Detected

DeClone

using unreconciled collision

Motivation
 clone tags make
 tag cardinality > ID cardinality

Motivation
 clone tags make
 tag cardinality > ID cardinality

$$N_{id} = 5$$

Motivation
 clone tags make
 tag cardinality > ID cardinality

Tags with ID Indices

id1

id2

id3

id4

id5

id5

Cardinality Contradiction: $N_{\text{tag}} \ge 1 + 2 + 1 + 2 = 6 > 5 = N_{\text{id}}$

clone detected

 Limitation not that fast for large systems

Cardinality Contradiction: $N_{\text{tag}} \ge 1 + 2 + 1 + 2 = 6 > 5 = N_{\text{id}}$

detect clones when almost all tags are counted; but clone tags may respond earlier.

BASE

using cardinality contradiction

Cardinality Contradiction: $N_{\text{tag}} \ge 1 + 2 + 1 + 2 = 6 > 5 = N_{\text{id}}$

DeClone

using unreconciled collision

DeClone

Motivation
 clone tags induce collisions that
 cannot be reconciled via re-arbitration

unreconciled collision

DeClone

 Challenge verify unreconciled collision without tag IDs known a priori?

unreconciled collision due to two same-ID tags?

DeClone

Design
 marry up slotted Aloha and tree traversal

BASE

using cardinality contradiction

Cardinality Contradiction: $N_{\text{tag}} \ge 1 + 2 + 1 + 2 = 6 > 5 = N_{\text{id}}$

Clone Tag Detected

DeClone

using unreconciled collision

Evaluation

BASE is faster for small systems DeClone is faster for large ones

Evaluation

DeClone is faster as clone ratio increases BASE is nearly constant

CONCLUSION

Two Fast & Deterministic Protocols

BASE

using cardinality contradiction faster for small systems

Cardinality Contradiction: $N_{\text{tag}} \ge 1 + 2 + 1 + 2 = 6 > 5 = N_{\text{id}}$

Unreconciled Collision

Clone Tag Detected

111

DeClone

using unreconciled collision faster for large systems esp when clone ratio f

Thank You

kaibu@zju.edu.cn

http://list.zju.edu.cn/kaibu

kaibu@zju.edu.cn http://list.zju.edu.cn/kaibu