Lecture #5. Implementation of Aluent AST construction, Q. apply (Math. sqrf)..... filter (f) Adjust for call chaining Q. Lilter(f) apply (9) Nent Q has a type of ASTNocle (subtype IdNocle)

Optimization.
ineliticiency of 'q.filter(f).count(1'

1). Stores the doctor 10 two iterations.

Then Node (Thon Node (x, filter Node(f)), count)
-> Thenblade (x, countf(f))
11 tree recorite rule 11.
Optimization traversal order.
· Bosson up / Top down?
· post-order optimization
1 -> left child 2 -> right child 3 -> this made
3 -> this made
(Lecture #5)
Global Optimization,
- control Apw.
- multiple execution paths
- Control Flow Graph.
=> · Global How Analysis
· Constant propagation
· Liveness analysis (eleminate reclandant struts)
Local Optimization.
· Basic block: code sequence with no jumps.
· Busic block optimization:
- Constant propagation,
- Dead code elimination.

To Replace a use of x by a constant k. \Rightarrow every path to the use of xthe last assignment to x is x:=k.

Global Analysis

. The optimization depends on the property Prop at a particular point in program execution.

Shop is definitely true

I don't know whether Prop is free.