LINEAR 7 - Data set: BIKE SHARING

INTRODUZIONE

Il data set è composto da 731 osservazioni raccolte con cadenza giornaliera riguardanti il numero di biciclette affittate a Washington. Le variabili raccolte sono le seguenti:

- 1. DATE: giorno della rilevazione
- 2. SEASON, YEAR, MONTH, WEEKDAY: stagione, anno, mese e giorno della settimana della rilevazione
- 3. HOLIDAY: dummy per indicare se il giorno è festivo oppure no
- 4. WORKINGDAY: dummy per indicare se il giorno considerato è lavorativo o meno
- 5. WEATHERSIT: condizioni climatiche con 4 modalità (cielo chiaro, nebbia o nuvoloso, pioggia, temporale)
- 6. TEMP: temperatura media
- 7. ATEMP: temperatura media percepita
- 8. HUM: valore dell'unidità normalizzato
- 9. WINDSPEED: velocità massima del vento normalizzata

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione lineare

```
#-- R CODE
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2</pre>
  y <- fitted(lmod)
 Ru2 <- summary(lm(u2 \sim y + I(y^2)))$r.squared
 LM <- nrow(data)*Ru2
 p.value <- 1-pchisq(LM, 2)
  data.frame("Test statistic"=LM,"P value"=p.value)
}
#-- funzione per ottenere osservazioni outlier univariate
FIND EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x>mean(x)+sd_factor*sd(x) | x<mean(x)-sd_factor*sd(x))</pre>
}
#-- import dei dati
ABSOLUTE_PATH <- "C:\\Users\\sbarberis\\Dropbox\\MODELLI STATISTICI"
d <- read.csv(paste0(ABSOLUTE PATH,"\\F. Esercizi(22) copia\\4.tutto(4)\\1.tutto\\Day.csv"),sep=",")
#-- vettore di variabili numeriche presenti nei dati
```

```
VAR_NUMERIC <- c("temp", "atemp", "hum", "windspeed", "cnt")
#-- print delle prime 6 righe del dataset
pander(head(d), big.mark=",")</pre>
```

Table 1: Table continues below

instant	dteday	season	yr	mnth	holiday	weekday	workingday
1	2011-01-01	1	0	1	0	6	0
2	2011-01-02	1	0	1	0	0	0
3	2011-01-03	1	0	1	0	1	1
4	2011-01-04	1	0	1	0	2	1
5	2011-01-05	1	0	1	0	3	1
6	2011-01-06	1	0	1	0	4	1

weathersit	temp	atemp	hum	windspeed	casual	registered	cnt
2	0.3442	0.3636	0.8058	0.1604	331	654	985
2	0.3635	0.3537	0.6961	0.2485	131	670	801
1	0.1964	0.1894	0.4373	0.2483	120	1,229	1,349
1	0.2	0.2121	0.5904	0.1603	108	1,454	1,562
1	0.227	0.2293	0.437	0.1869	82	1,518	1,600
1	0.2043	0.2332	0.5183	0.08957	88	1,518	1,606

STATISTICHE DESCRITTIVE

Si propongono la matrice di correlazione tra le variabili e alcune descrittive di base. Si analizza l'influenza delle variabili climatiche sull'affitto di biciclette a Washington nel periodo 2011-2012.

```
#-- R CODE
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive
```

Table 3: Table continues below

atemp	hum	windspeed
Min. :0.07907	Min. :0.0000	Min. :0.02239
1st Qu.:0.33784	1st Qu.:0.5200	1st Qu.:0.13495
Median: 0.48673	Median: 0.6267	Median $: 0.18097$
Mean $:0.47435$	Mean $:0.6279$	Mean $:0.19049$
3rd Qu.:0.60860	3rd Qu.:0.7302	3rd Qu.:0.23321
Max. $:0.84090$	Max. $:0.9725$	Max. $:0.50746$
	Min. :0.07907 1st Qu.:0.33784 Median :0.48673 Mean :0.47435 3rd Qu.:0.60860	Min. :0.07907 Min. :0.0000 1st Qu.:0.33784 1st Qu.:0.5200 Median :0.48673 Median :0.6267 Mean :0.47435 Mean :0.6279 3rd Qu.:0.60860 3rd Qu.:0.7302

 cnt

Min.: 22 1st Qu.:3152 Median:4548 cnt

Mean :4504 3rd Qu.:5956 Max. :8714

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

	temp	atemp	hum	windspeed	cnt
temp	1	0.9917	0.127	-0.1579	0.6275
atemp	0.9917	1	0.14	-0.1836	0.6311
\mathbf{hum}	0.127	0.14	1	-0.2485	-0.1007
windspeed	-0.1579	-0.1836	-0.2485	1	-0.2345
\mathbf{cnt}	0.6275	0.6311	-0.1007	-0.2345	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(2,3))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
par(mfrow=c(2,3))
```



```
for(i in VAR_NUMERIC){
   hist(d[,i],main=i,col="lightblue",xlab=i,freq=F)
}

d$dteday <- as.Date(paste(d$dteday))

aggr <- aggregate(d$cnt,list(day=d$dteday),sum)
aggr$day <- as.Date(aggr$day)
par(mfrow=c(1,1))</pre>
```


plot(aggr[,1],aggr[,2],type="1",xlab="Date",ylab="QTY",col="yellow")
lines(aggr[,1],lowess(aggr[,2],f = .3)\$y,col="blue",lwd=3)

La serie storica denota dei picchi nei mesi estivi e quindi stagionalità e un trend crescente. Sarebbe da verificare anche la omoschedastictà degli errori ma analizziamo solo la multicollinerità e gli outlier. Prima di impostare il modello lineare si analizza la correlazione far le variabili esplicative.

Le variabili esplicative inizialmente utilizzate sono "temp", "atemp", "hum", "windspeed". Si nota la fortissima collinearità fra "temp" e "atemp", come è naturale essendo una la temperatura registrata e l'altra la temperatura percepita. Entrambe sono correlate positivamente con "cnt": la gente usa più la bicicletta tanto più fa caldo.

A questo punto si propone un primo modello lineare

REGRESSIONE

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3,860	355.4	10.86	1.427e-25
temp	2,112	2,282	0.9253	0.3551
atemp	5,139	2,577	1.994	0.0465
\mathbf{hum}	-3,149	384	-8.201	1.082e-15
$\mathbf{windspeed}$	-4,529	721.1	-6.28	5.815e-10

Table 7: Fitting linear model: cnt \sim temp + atemp + hum + windspeed

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
731	1422	0.4638	0.4609

pander(anova(mod1),big.mark=",")

Table 8: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
temp	1	1.079e + 09	1.079e + 09	533.2	7.049e-89
atemp	1	12,774,317	12,774,317	6.314	0.0122
\mathbf{hum}	1	99,420,281	99,420,281	49.14	5.457e-12
${f windspeed}$	1	79,801,308	79,801,308	39.44	5.815e-10
Residuals	726	1.469e + 09	2,023,211	NA	NA

pander(white.test(mod1),big.mark=",")

Test.statistic	P.value
30.55	2.32 e-07

pander(dwtest(mod1),big.mark=",")

Table 10: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
0.4098	9.24e-104 * * *	true autocorrelation is greater than 0

Dall'F value si verifica che è respinta l'ipotesi nulla che il modello nel suo complesso non spieghi per nulla la variabile esplicativa affitto delle biciclette. Il valore dell' R^2 che si colloca su valori medi ci dice che la capacità di spiegazione non è elevatissima ma neanche scarsa. I parametri significativi per cui l'ipotesi nulla viene respinta sono "hum" e "windspeed" e in parte "atemp". Considerando il segno le biciclette sono affittate tanto più quanto più si percepisce un' alta temperatura e quanto meno è umido e c'e vento.