DATA SCIENCE

AULA 4 - ESTATÍSTICA

PROF^a. ANA CAROLINA B. ALBERTON

AULA PASSADA - DISTRIBUIÇÃO NORMAL

AULA PASSADA - DISTRIBUIÇÃO NORMAL

 $\mu = 90$

 $\sigma = 30$

320

AULA PASSADA - DISTRIBUIÇÃO NORMAL PADRÃO (Z)

- Distribuição de Referência para outras Distribuições Normais
- Média Zero e Desvio Padrão
 =1

AULA PASSADA - DISTRIBUIÇÃO NORMAL PADRÃO (Z) E PROBABILIDADE

Para encontrar a probabilidade, utiliza-se a Tabela Z para facilitar.

Com a fórmula abaixo você transforma a probabilidade da sua distribuição na probabilidade da tabela Z

Então você olha a probabilidade na tabela!

$$Z = \frac{X - \mu}{\sigma}$$

onde X = seu valor μ = média σ = desvio padrão

Uso de amostras:

- Possui um 'custo': erro padrão / nível de confiança
- Possui Riscos: dados ruins, enviesamento

Como estamos utilizando amostra..

....devemos esperar variação.

- A primeira amostra pode variar com relação a segunda...
- A segunda com relação a terceira etc..

Mas devemos poder "medir" o quanto pode ser esta variação

- Intervalo de Confiança: O parâmetro mais ou menos a margem de erro estimada
- Parâmetro: valor a ser estimado
- Margem de erro: variabilidade, para mais ou para menos
- Nível de Confiança: de 80 a 99%
- Tamanho da Amostra (n)

Nível de Confiança: z*

	Percentual de Confiança	Valor de Z*
	80	1,28
De	90	1,64
	95	1,96
	98	2,33
	99	2,58

Em números...

 Entre 63 e 67% dos entrevistados pretendem votar em Maria, com um nível de confiança de 95%

- Parâmetro: Intenção de Voto (proporção)
- Nível de Confiança: 95%
- Intervalo de Confiança:
 Entre 63 e 67%
- Erro padrão: 1,96
- Entrevistados (n): 1000
- Margem de Erro: +-2%

• Entre 63 e 67% dos entrevistados pretendem votar em Maria, com um nível de confiança de 95%

Parâmetro: Intenção de Voto (proporção)

Nível de Confiança: 95%

Entrevistados (n): 1000

✓ Margem de Erro: +-2%

COMPENSAÇÃO

TIPOS DE INTERVALOS DE CONFIANÇA

- Intervalo de Confiança para a média
- Intervalo de Confiança para a proporção

INTERVALOS DE CONFIANÇA PARA MÉDIA

- Queremos estimar o salário médio de um cientista de dados
- · 100 pesquisados (n)
- Intervalo de confiança: 95%
- O desvio padrão é 1100,00
- A média é de R\$ 5.800,00
- Valor de z* = 1,96
- Margem de erro: ± 215,60
- O salário médio de um cientista de dados é entre 5.584,40 e 6.015,60 com um nível de confiança de 95%

$$\bar{X} \pm Z * \left(\frac{\sigma}{\sqrt{n}}\right)$$

$$\bar{X} \pm 1,96 \left(\frac{1100}{\sqrt{100}}\right)$$

$$\bar{X} \pm 1,96 * 110$$

$$\bar{X} \pm 215,60$$

AUMENTANDO O INTERVALO DE CONFIANÇA

- 100 pesquisados (n)
- Intervalo de confiança: 99%
- O desvio padrão é 1100,00
- A média é de R\$ 5.800,00

AUMENTANDO O INTERVALO DE CONFIANÇA

- 100 pesquisados (n)
- Intervalo de confiança: 99%
- O desvio padrão é 1100,00
- A média é de R\$ 5.800,00
- Valor de z* = 2,58 (era 1,96)

Margem de erro: ± 283,8

O salário médio de um cientista de dados é entre 5516,20 e 6083,80 com um nível de confiança de 99%

$$\bar{X} \pm Z * \left(\frac{\sigma}{\sqrt{n}}\right)$$

$$\bar{X} \pm 2,58 \left(\frac{1100}{\sqrt{100}}\right)$$

$$\bar{X} \pm 2,58 * 110$$

$$\bar{X} \pm 283,8$$

Aumentando a margem de erro, é natural que as chances da minha amostra estarem dentro do intervalo, por isso eu tenho um intervalo de confiança maior

Da mesma forma, aumentando n, reduz a chance do efeito acaso, por isso minha margem de erro reduz

INTERVALO DE CONFIANÇA - AUMENTANDO N

- Queremos estimar o salário médio dos cientistas de dados
- 1000 pesquisados (n)
- Intervalo de confiança: 95%
- O desvio padrão é 1100,00
- A média é de R\$ 5.800,00
- Valor de z* = 1,96

INTERVALO DE CONFIANÇA PARA MÉDIA - AUMENTANDO N

- Queremos estimar o salário médio dos cientistas de dados
- 1000 pesquisados (n)
- Intervalo de confiança: 95%
- O desvio padrão é 1100,00
- A média é de R\$ 5.800,00
- Valor de z* = 1,96
- Margem de erro: +- 68,18
- O salário médio de um cientista de dados é entre 5.731,82 e 5.868,18 com um nível de confiança de 95%

$$\bar{X} \pm Z * \left(\frac{\sigma}{\sqrt{n}}\right)$$

$$\bar{X} \pm 1,96 \left(\frac{1100}{\sqrt{1000}}\right)$$

$$\bar{X} \pm 1,96 * 31,62$$

$$\bar{X} \pm 68,18$$

INTERVALO DE CONFIANÇA PARA PROPORÇÃO

Queremos estimar a proporção de eleitores que pretendem votar em Maria para prefeita

- 1000 pesquisados (n)
- Intervalo de confiança: 95%
- 650 Responde Maria.
- 330 Responde João.
- 20 Não sabe /Nenhum.
- Valor de $z^* = 1,96$

INTERVALO DE CONFIANÇA PARA PROPORÇÃO

Queremos estimar a proporção de eleitores que pretendem votar em Maria para prefeita

- 1000 pesquisados (n)
- Intervalo de confiança: 95%
- 650 Responde Maria.
- 330 Responde João.
- 20 Não sabe /Nenhum.
- Valor de $z^* = 1,96$

Entre 62 e 68% dos entrevistados pretendem votar em Maria, com um nível de confiança de 95%

$$\hat{p} \pm z * \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\hat{p} \pm 1,96 * \sqrt{\frac{0,65 (1-0,65)}{1000}}$$

$$\hat{p} \pm 0.029$$

$$\hat{p} \pm 0.03$$

TESTE DE HIPÓTESE

- Confirmar ou negar uma premissa usando uma amostra
 - Seu objetivo é averiguar se um determinado valor hipotético representa bem ou não uma determinada ocasião.

- Esta premissa usa um parâmetro, por exemplo:
 - 56 % dos brasileiros não gostam de estatística
- Encontrar diferença não é tudo, é preciso saber se esta diferença é **estatisticamente significante**

TESTE DE HIPÓTESE

- $H_0 = hip \acute{o}tese \, nula$: Alegação que se quer testar
 - Presume-se que é verdadeira, a não ser que existam evidências para provar que não
- Exemplo: $H_0 = \mu = 100$
- $H_a = hip ext{o}tese$ alternativa
 - Exemplos: $H_a \neq 100$, $H_a > 100$, $H_a < 100$

TESTE DE HIPÓTESE - ERROS

- Erro do tipo I: rejeitar H_0 quando não deveria
 - Chance de ocorrer igual a Alfa
- Erro do tipo 2: não rejeitar H_0 quando deveria ter rejeitado
 - Depende do tamanho da amostra
 - Ocorrem devido ao acaso

TESTE DE HIPÓTESE - ERROS

TESTE DE HIPÓTESE

- Score padrão: erros padrão que seus dados estão abaixo ou acima da média
- A versão padronizada de sua estatística é chamada de "estatística de teste"
- Olha na versão padronizada de Z. Se sua estatística de teste estiver próxima de zero ou num intervalo onde os resultados devem estar, então não se pode rejeitar H_0
- lacktriangle Se estive próximo a cauda, então podemos rejeitar H_0

TESTE DE HIPÓTESE

- Alfa e valor p
- Níveis de ∝ (alfa) :
 - 0,05 (normalmente usado)
 - ou 0,01
- Interpretar valor –p
 - -p \geq alfa : não rejeita H_0
 - -p < alfa : rejeita H_0

TESTE DE HIPÓTESE - ETAPAS

- I. Definir o tamanho da sua amostra
- 2. Coletar dados
- 3. Calcular a média e o desvio padrão
- 4. Definir as duas hipóteses:
- 5. Definir seu ∝
- 6. Padronizar seus dados gerando a estatística de teste
- 7. Encontrar o valor -p na tabela Z
- 8. Comparar com seu ∝
- 9. Emitir seu veredito

TESTE DE HIPÓTESE

Fórmula para Estatística de Teste

Média:

$$Z = \frac{\bar{X} - \mu_o}{\frac{\sigma}{\sqrt{n}}}$$

Proporção:

$$P = \frac{\hat{p} - p_0}{\sqrt{\frac{p_{0(1-p_0)}}{n}}}$$

TESTE DE HIPÓTESE

- O teste de hipóteses pode ser
 - Unilateral
 - Bilateral

Vamos ver como usar cada caso nos próximos exemplos

TESTE DE HIPÓTESE UNILATERAL

■ Exemplo: Uma companhia de cigarros anuncia que o índice médio de nicotina dos cigarros que fabrica apresenta-se abaixo de 23 mg por cigarro. Um laboratório realiza seis análises desse índice, obtendo uma media de 24,17 e um desvio padrão de 8,87. Pode-se aceitar a afirmação do fabricante?

TESTE DE HIPÓTESE BILATERAL

■ Exemplo: um fabricante afirma que suas lâmpadas duram em média 1000 horas. Você deseja testar se a média de duração real é diferente de 1000 horas.

Você coleta uma amostra de 30 lâmpadas e encontra que a média amostral é 980 horas com um desvio padrão de 50 horas.

EXEMPLO PROPORÇÃO

Um instituto aponta que 75% dos entrevistados pretendem votar em Maria. Sabendo que p=77 e n=100

Hipóteses

$$Ho = p = 0.75$$

$$Ha = p < 0.75$$

$$P = \frac{\hat{p} - p_0}{\sqrt{\frac{p_{0(1-p_0)}}{n}}}$$

$$P = \frac{0,77 - 0,75}{\sqrt{\frac{0,75 * 0,25}{100}}}$$

$$P = \frac{0,02}{0,0433}$$

$$P = 0.461$$

EXEMPLO PROPORÇÃO

Um instituto aponta que 75% dos entrevistados pretendem votar em Maria. Sabendo que p=77 e n=100

Hipóteses

$$Ho = p = 0.75$$

$$Ha = p < 0.75$$

Valor - P

Buscar 0,46 na tabela Z

Z = 0,6772

Valor-P = 0,6772

Valor-P ~ Alfa 0,6772 > 0,05

Ho não é rejeitado

De acordo com o estudo, não foi possível rejeitar a hipótese de 75% dos eleitores tem intenção de votar em Maria.

CONSEQUENCIA DAS ESCOLHAS DE ALFA

Ideal é: amostra grande e alfa pequeno

EXEMPLO

■ Em estudo afirma que, em média crianças de 6 anos pesam 22 Kg. Uma escola pesou seus alunos de 6 anos e obteve uma média de 23Kg, com um desvio padrão de 4. A escola possui 100 alunos . A escola quer descobrir se a o estudo é correto.

- Previsão de valores numéricos (reais, inteiros)
- Métricas diferentes da previsão de categorias
- Uso:
 - Regressão linear
 - Regressão ML
 - Series Temporais
 - Etc.

Quando uma previsão é feita...

- Existe uma diferença entre a previsão e o que ocorreu...
- Temos que medir esta diferença
 - Para saber a qualidade do nosso modelo
 - Para podermos melhora-lo
 - Para podermos fazer benchmarks

DIFERENÇA:

Previsto	Realizado	
3,34	3,00	*
4,18	4,00	
3,00	3,00	
2,99	3,00	
4,51	4,50	
5,18	4,00	
8,18	4,50	
		_

MÉTRICAS DE ERROS - Mean Erro (ME)

Dependente de Escala

É a média da diferença entre realizado e previsto

Previsto	Realizado	Dif.
3,34	3,00	-0,34
4,18	4,00	-0,18
3,00	3,00	0
2,99	3,00	0,01
4,51	4,50	-0,01
5,18	4,00	-1,18
8,18	4,50	-3,68
		-5,38

$$ME = \frac{\sum_{i=1}^{n} y_i - x_i}{n}.$$

$$ME = \frac{-5,38}{7} = -0,76$$

MÉTRICAS DE ERROS - Mean Absolute Error (MAE)

É a média da diferença absoluta entre o realizado e o previsto

Previsto	Realizado	Dif. Absoluta
3,34	3,00	0,34
4,18	4,00	0,18
3,00	3,00	[0]
2,99	3,00	0,01
4,51	4,50	0,01
5,18	4,00	1,18
8,18	4,50	[3,68]
		5,4

$$MAE = \frac{\sum_{i=1}^{n} |y_i - x_i|}{n}$$

MAE =
$$\frac{5.4}{7}$$
 = 0.77

MÉTRICAS DE ERROS - Root Mean Squared Error (RMSE)

Independente de Escala

É o desvio padrão da amostra da diferença entre o previsto e o teste

Previsto	Realizado	Dif. ao Quad.
3,34	3,00	0,1156
4,18	4,00	0,0324
3,00	3,00	0
2,99	3,00	1E-04
4,51	4,50	1E-04
5,18	4,00	1,3924
8,18	4,50	13,5424
		15,083

$$RMSE = \sqrt{\frac{\sum_{t=1}^{T}(\hat{y}_t - y_t)^2}{T}}$$

RMSE =
$$\sqrt{\frac{15,083}{7}}$$

$$RMSE = 1,46$$

MÉTRICAS DE ERROS - Mean Percentage Error (MPE)

Independente de Escala (%)

É a diferença percentual de erro

Previsto	Realizado	Егго %
3,34	3,00	-11,3333
4,18	4,00	-4,5
3,00	3,00	0
2,99	3,00	0,333333
4,51	4,50	-0,22222
5,18	4,00	-29,5
8,18	4,50	-81,7778
		-127

$$MPE = \frac{100\%}{n} \sum_{t=1}^{n} \frac{a_{t} - f_{t}}{a_{t}}$$

$$MPE = \frac{-127}{7}$$

$$MPE = -18,14$$

MÉTRICAS DE ERROS - Mean Absolute Percentage Error (MAPE)

Independente de Escala (%)

É a diferença absoluta percentual de erro

Previsto	risto Realizado Erro abs.		Erro % abs.	
3,34	3,00	0,1156	0,1133333	
4,18	4,00	0,0324	0,045	
3,00	3,00	0	0	
2,99	3,00	1E-04	0,0033333	
4,51	4,50	1E-04	0,0022222	
5,18	4,00	1,3924	0,295	
8,18	4,50	13,5424	0,8177778	
			1,2766667	

$$\mathsf{MAPE} = \left. \frac{100\%}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right| \right.$$

$$MAPE = \frac{1,2766667}{7}$$

$$MAPE = 0.18$$

Previsto	Realizado	Diferença	Dif. Abs.	Dif. Quad.	Erro %	Erro % abs
3,34	3	-0,34	0,34	0,1156	-11,3333	11,33333
4,18	4	-0,18	0,18	0,0324	-4,5	4,5
3	3	0	D	0	0	0
2,99	3	0,01	0,01	1E-04	0,33333	0,333333
4,51	4,5	-0,01	0,01	1E-04	-0,22222	0,222222
5,18	4	-1,18	1,18	1,3924	-29,5	29,5
8,18	4,5	-3,68	3,68	13,5424	-81,7778	81,77778

ME -0,76857 MAE 0,77143 RMSE 1,46789 MPE -18,1429 MAPE 18,2381

MÉTRICAS DE ERROS - EXEMPLO

Calcule o Root Mean Squared Error (RMSE) da seguinte análise:

Previsto	Realizado
3,12	3,00
6,18	7,20
12,30	11,00

REFERÊNCIAS

- FÁVERO, Luiz Paulo; BELFIORE, Patrícia. **Manual de Análise de Dados:** Estatística e Modelagem Multivariada com Excel, SPSS e Stata. Rio de Janeiro: Ltc, 2020.
- CIFERRI, Cristina Dutra de Aguiar; CIFERRI, Ricardo Rodrigues. **Modelagem Multidimensional.** São Paulo: Usp, 2020. 14 slides, color. Disponível em: http://wiki.icmc.usp.br/images/6/6a/SCC5911-02-ModelagemMultidimensional.pdf. Acesso em: 10 jan. 2020.
- RESENDE, Tânia. **Modelagem multidimensional conceitos básicos.** São Paulo: Slideshare, 2016. 28 slides, color. Disponível em: https://pt.slideshare.net/TANIARESENDE/modelagem-multidimensional-conceitos-bsicos. Acesso em: 18 fev. 2020.
- JARDIM, Edgar Silveira; OLIVEIRA, Marcus Vinícius Abreu de; MORAVIA, Rodrigo Vitorino. Diferença Entre Banco de Dados Relacional e Banco de Dados Dimensional. **Revista Pensar Tecnologia**, Belo Horizonte, v. 2, n. 4, p. 1-17, julho 2015. Mensal. Disponível em: http://revistapensar.com.br/tecnologia/pasta_upload/artigos/a122.pdf>. Acesso em: 18 fev. 2020.
- SERGENTI, Alexsandro. **Modelagem Relacional e Multidimensional:** uma análise envolvendo Sistemas de Apoio a decisão. 2015. Disponível em: https://www.linkedin.com/pulse/modelagem-relacional-e-multidimensional-uma-an%C3%A1lise-de-sergenti/. Acesso em: 18 fev. 2020.