Inverse Trigonometric Functions

- $\cot^{-1}(\sqrt{\cos\alpha}) \tan^{-1}(\sqrt{\cos\alpha}) = x,$ then $\sin x = -1$ [2002] then $\sin x =$

 - (a) $\tan^2\left(\frac{\alpha}{2}\right)$ (b) $\cot^2\left(\frac{\alpha}{2}\right)$
- 2.
- The trigonometric equation $\sin^{-1} x = 2 \sin^{-1} a$ has a solution for [2003] 3.
 - (a) $|a| \le \frac{1}{\sqrt{2}}$
- on $\sin^{-1} x = 2 \sin^{-1} a$ [2003] (a) $\frac{6}{17}$ (b) $\frac{1}{2} < |a| < \frac{1}{\sqrt{2}}$ (c) $\frac{4}{17}$ (d) $\frac{5}{17}$
- (c) all real values of a
- (d) $|a| < \frac{1}{2}$
- The domain of the function

$$f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$$
 is

- (a) [1,2] (b) [2,3) [2004] (c) [1,2] (d) [2,3] If $\cos^{-1} x \cos^{-1} \frac{y}{2} = \alpha$, then $4x^2 4xy$
 - $\cos \alpha + y^2$ is equal to

[2005]

- (a) $2\sin 2\alpha$
- (c) $4\sin^2\alpha$
- If $\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$, then the values of x is
 - (a) 4 (c) 1
- (b) 5
- The largest interval lying in $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ for which 7. the function,

- $f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} 1\right) + \log(\cos x)$, is defined, is
 - (a) $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$ (b) $\left[0, \frac{\pi}{2}\right]$

[2007]

- (c) $\tan \alpha$ (d) $\cot \left(\frac{\alpha}{2}\right)$ (c) $\tan \alpha$ (d) $\cot \left(\frac{\alpha}{2}\right)$ (e) $[0,\pi]$ (for $[0,\pi]$ (for $[0,\pi]$) (for $[0,\pi]$ (for $[0,\pi]$) (

- 9. Let $\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1 x^2} \right)$, where or
 - $|x| < \frac{1}{\sqrt{3}}$. Then a value of y is:
 - (a) $\frac{3x x^3}{1 + 3x^2}$ (b) $\frac{3x + x^3}{1 + 3x^2}$ (c) $\frac{3x x^3}{1 3x^2}$ (d) $\frac{3x + x^3}{1 3x^2}$
- (b) 4 (d) $-4\sin^2\alpha$ 10. If for $x \in \left(0, \frac{1}{4}\right)$, the derivative of
 - $\tan^{-1}\left(\frac{6x\sqrt{x}}{1-9x^3}\right)$ is $\sqrt{x}.g(x)$, then g(x) equals:

- (a) $\frac{3}{1+9x^3}$ (b) $\frac{9}{1+9x^3}$
- (d) $\frac{3x}{1-9x^3}$

www.crackjee.xyz

Inverse Trigonometric Functions

	Answer Key														
1	2	3	4	5	6	7	8	9	10						
(a)	(a)	(a)	(b)	(c)	(d)	(b)	(a)	(c)	(b)						

LUTION

1. (a)
$$\cot^{-1}(\sqrt{\cos \alpha}) - \tan^{-1}(\sqrt{\cos \alpha}) = x$$

$$\tan^{-1}\left(\frac{1}{\sqrt{\cos \alpha}}\right) - \tan^{-1}(\sqrt{\cos \alpha}) = x$$

$$\tan^{-1}\left(\frac{1}{\sqrt{\cos \alpha}}\right) - \tan^{-1}(\sqrt{\cos \alpha}) = x$$

$$\tan^{-1}\left(\frac{1}{\sqrt{\cos \alpha}}\right) - \tan^{-1}(\sqrt{\cos \alpha}) = x$$

$$\tan^{-1}\frac{1}{\sqrt{\cos \alpha}} - \sqrt{\cos \alpha}$$

$$\Rightarrow \tan^{-1}\frac{1}{\sqrt{\cos \alpha}} - \sqrt{\cos \alpha}$$

$$\Rightarrow \tan^{-1}\frac{1 - \cos \alpha}{2\sqrt{\cos \alpha}} = x$$

$$\Rightarrow \tan x = \frac{1 - \cos \alpha}{2\sqrt{\cos \alpha}} \text{ OR } \cot x = \frac{2\sqrt{\cos \alpha}}{1 - \cos \alpha}$$
[Considering a Δ with perpendicular
$$= (1 - \cos \alpha) \text{ and base} = 2\sqrt{\cos \alpha}$$
]
$$\Rightarrow \sin x = \frac{1 - \cos \alpha}{1 + \cos \alpha} = \frac{1 - (1 - 2\sin^2 \alpha/2)}{1 + 2\cos^2 \alpha/2 - 1}$$

$$\cot^{-1}\left(\frac{xy}{\sqrt{3}} + \sqrt{(1 - x^2)}\right) \left(1 - \frac{y^2}{\sqrt{4}}\right)$$

$$\cos^{-1}\left(\frac{xy}{\sqrt{4} - y^2 - 4x^2 + x^2}\right)$$

$$\cos^{-1}\left(\frac{xy + \sqrt{4} - y^2 - 4x^2 + x^2}{2}\right)$$

2. **(a)**
$$f(x)=\sin^{-1}\left(\log_3\left(\frac{x}{3}\right)\right)$$
 exists
if $-1 \le \log_3\left(\frac{x}{3}\right) \le 1 \Leftrightarrow 3^{-1} \le \frac{x}{3} \le 3^1$
 $\Leftrightarrow 1 \le x \le 9 \text{ or } x \in [1, 9]$
3. **(a)** $\sin^{-1} x = 2\sin^{-1} a$

or $\sin x = \tan^2 \frac{\alpha}{2}$

3.

$$-\frac{\pi}{2} \le \sin^{-1} x \le \frac{\pi}{2}; \quad \therefore -\frac{\pi}{2} \le 2\sin^{-1} a \le \frac{\pi}{2}$$
$$-\frac{\pi}{4} \le \sin^{-1} a \le \frac{\pi}{4} \text{ or } \frac{-1}{\sqrt{2}} \le a \le \frac{1}{\sqrt{2}}$$

$$|a| \le \frac{1}{\sqrt{2}}$$

4. **(b)**
$$f(x) = \frac{\sin^{-1}(x-3)}{\sqrt{9-x^2}}$$
 is defined
if (i) $-1 \le x - 3 \le 1 \Rightarrow 2 \le x \le 4$
and (ii) $9 - x^2 > 0 \Rightarrow -3 < x < 3$
Taking common solution of (i) and (ii),
we get $2 \le x < 3$ \therefore Domain = [2,3)

5. **(c)**
$$\cos^{-1} x - \cos^{-1} \frac{y}{2} = \alpha$$

$$\cos^{-1} \left(\frac{xy}{2} + \sqrt{(1 - x^2) \left(1 - \frac{y^2}{4} \right)} \right) = \alpha$$

$$\cos^{-1}\left(\frac{xy + \sqrt{4 - y^2 - 4x^2 + x^2y^2}}{2}\right) = \alpha$$

$$\Rightarrow 4 - y^2 - 4x^2 + x^2y^2$$

$$= 4\cos^2\alpha + x^2y^2 - 4xy\cos\alpha$$

$$\Rightarrow 4x^2 + y^2 - 4xy\cos\alpha = 4\sin^2\alpha$$

6. **(d)**
$$\sin^{-1}\left(\frac{x}{5}\right) + \csc^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$

$$\Rightarrow \sin^{-1}\left(\frac{x}{5}\right) = \frac{\pi}{2} - \csc^{-1}\left(\frac{5}{4}\right)$$

$$\Rightarrow \sin^{-1}\left(\frac{x}{5}\right) = \frac{\pi}{2} - \sin^{-1}\left(\frac{4}{5}\right)$$

$$\left[\because \sin^{-1}x + \cos^{-1}x = \pi/2\right]$$

$$\Rightarrow \sin^{-1}\left(\frac{x}{5}\right) = \cos^{-1}\left(\frac{4}{5}\right) \qquad \dots(i)$$
Let $\cos^{-1}\frac{4}{5} = A \Rightarrow \cos A = \frac{4}{5}$

www.crackjee.xyz

м-96 -Mathematics

$$\Rightarrow A = \cos^{-1}(4/5)$$

$$\Rightarrow \sin A = \frac{3}{5}$$

$$\Rightarrow A = \sin^{-1} \frac{3}{5}$$

$$\cos^{-1}(4/5) = \sin^{-1}(3/5)$$

equation (i) become,

$$\sin^{-1}\frac{x}{5} = \sin^{-1}\frac{3}{5} \quad \Rightarrow \quad \frac{x}{5} = \frac{3}{5} \Rightarrow x = \frac{3}{5}$$

7. **(b)**
$$f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)$$

f(x) is defined if $-1 \le \left(\frac{x}{2} - 1\right) \le 1$ and $\cos x > 0$

or
$$0 \le \frac{x}{2} \le 2$$
 and $-\frac{\pi}{2} < x < \frac{\pi}{2}$

or
$$0 \le x \le 4 \text{ and } -\frac{\pi}{2} < x < \frac{\pi}{2}$$

$$\therefore x \in \left[0, \frac{\pi}{2}\right)$$

8. (a)
$$\cot \left(\cos \operatorname{ec}^{-1} \frac{5}{3} + \tan^{-1} \frac{2}{3} \right) =$$

$$\cot \left[\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{2}{3} \right]$$

$$=\cot \left[\tan^{-1} \left(\frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \times \frac{2}{3}} \right) \right]$$

$$= \cot \left[\tan^{-1} \frac{17}{6} \right]$$
$$= \cot \left(\cot^{-1} \frac{6}{17} \right) = \frac{6}{17}$$

9. (c)
$$\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left[\frac{2x}{1 - x^2} \right]$$

$$= \tan^{-1} x + 2 \tan^{-1} x = 3 \tan^{-1} x$$

$$tan^{-1}y = tan^{-1} \left[\frac{3x - x^3}{1 - 3x^2} \right]$$

$$\Rightarrow y = \frac{3x - x^3}{1 - 3x^2}$$

7. **(b)**
$$f(x) = 4^{-x^2} + \cos^{-1}\left(\frac{x}{2} - 1\right) + \log(\cos x)$$
 10. (b) Let $F(x) = \tan^{-1}\left(\frac{6x\sqrt{x}}{1 - 9x^3}\right)$ where x

$$\in \left(0, \frac{1}{4}\right)$$
.

$$= \tan^{-1} \left(\frac{2.(3x^{3/2})}{1 - (3x^{3/2})^2} \right) = 2 \tan^{-1} (3x^{3/2})$$

As
$$3x^{3/2} \in \left(0, \frac{3}{8}\right)$$

$$\left[\because 0 < x < \frac{1}{4} \Rightarrow 0 < x^{3/2} < \frac{1}{8} \Rightarrow 0 < 3x^{3/2} < \frac{3}{8} \right]$$

So
$$\frac{dF(x)}{dx} = 2 \times \frac{1}{1 + 9x^3} \times 3 \times \frac{3}{2} \times x^{1/2}$$

$$=\frac{9}{1+9x^3}\sqrt{x}$$

On comparing

$$g(x) = \frac{9}{1 + 9x^3}$$