If G is a finite soluble group with $|G| = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$, the primes p_1, p_2, \dots, p_r being pairwise distinct and e_1, \dots, e_r being positive integers, then the order of Out G divides the number $\prod_{i=1}^r m_i p_i^{d_i(e_i-d_i)}$, where d_i is the minimum number of generators of a Sylow p_i -subgroup of G and $m_i = |GL(d_i, p_i)|$.

Since G is finite soluble, a result of P. Hall guarantees the existence of a Sylow basis for G. Pick one, say $\mathcal{S} = \{P_1, P_2, \dots, P_r\}$. So for all $i, j \in \{1, 2, \dots, r\}, P_i$ is a Sylow p_i -subgroup of G and they permute: $P_iP_j=P_jP_i$. Consider the set of those elements $(\theta_1, \dots, \theta_r)$ of $L = \operatorname{Aut}(P_1) \times \operatorname{Aut}(P_2) \times \dots \times \operatorname{Aut}(P_r)$ for which there exists an automorphism $\beta \in \operatorname{Aut} G$ such that $P_i^{\beta} = P_i$ and $\beta|_{P_i} = \theta_i$. Because \mathcal{S} is a Sylow basis, there exists at most one such automorphism: every element of G can be expressed in one, and only one, way as a product of an element of P_1 , by an element of P_2 , and so on. Clearly, these elements form a subgroup H of L. For an element $g \in G$, we shall denote by the same symbol the element of Inn G induced by conjugation by g. If $N(\mathscr{S})$ is the normalizer of \mathscr{S} , that is, $N(\mathscr{S}) = \bigcap_{i=1}^r N_G(P_i)$, we have a homomorphism $N(\mathscr{S}) \to H$ given by $x \mapsto (x|_{P_1}, x|_{P_2}, \dots, x|_{P_r})$; let its image be $K \leq H$. Now choose a right transversal $\{\gamma_1, \gamma_2, \dots, \gamma_s\}$ for Inn G in Aut G. We have \mathscr{S}^{γ_j} a Sylow basis for G, hence, by the same result of P. Hall, there is an element of G conjugating each member of \mathscr{S} into its counterpart in \mathscr{S}^{γ_j} . For each $j \in \{1, 2, \dots, s\}$, choose a $g_j \in G$ such that $P_1^{\gamma_j} = P_1^{g_j^{-1}}, P_2^{\gamma_j} = P_2^{g_j^{-1}}, \dots, P_r^{\gamma_j} = P_r^{g_j^{-1}},$ so that $\gamma_j g_j \in \text{Aut } G$ leaves invariant each subgroup in \mathscr{S} . We thus have $u_j :=$ $((\gamma_j g_j)|_{P_1}, (\gamma_j g_j)|_{P_2}, \dots, (\gamma_j g_j)|_{P_r}) \in H$. Let the space of right cosets of K in H be $K \backslash H$. Define a function $\alpha : \text{Out } G \to K \backslash H$ by $\gamma_j^{\alpha} = \overline{u_j}$. If $\overline{u_j} = \overline{u_k}$, then $\gamma_j g_j = a \gamma_k g_k$ for some $a \in N(\mathscr{S})$, so $\gamma_j \gamma_k^{-1} = a g_k^{\gamma_k} \left(g_j^{-1}\right)^{\gamma_k^{-1}} \in \operatorname{Inn} G$, hence $\gamma_k = \gamma_j$, so α is one-to-one. Now let $(\theta_1, \dots, \theta_r) \in H$ and let $\delta \in \operatorname{Aut} G$ be the automorphism restricting to θ_i in P_i . Write $\delta = \gamma_\ell w = (\gamma_\ell g_\ell)(g_\ell^{-1} w)$ for some $w \in \operatorname{Inn} G$ and some ℓ . (Recall that $\operatorname{Inn} G \lhd \operatorname{Aut} G$) We have $g_\ell^{-1} w \in N(\mathscr{S})$, so $(g_{\ell}^{-1}w)^{(\gamma_{\ell}g_{\ell})^{-1}} \in N(\mathscr{S})$, thus $\delta = b(\gamma_{\ell}g_{\ell})$ for some $b \in N(\mathscr{S})$, so $(\theta_1, \dots, \theta_r) = 0$ $(b|_{P_1}, b|_{P_2}, \ldots, b|_{P_r})u_\ell$, therefore \overline{y} lies in the image of α for every $y \in H$, i.e., α is onto. Conclusion: $|\operatorname{Out} G| = [H:K]$. Therefore, $|\operatorname{Out} G|$ divides $|L| = |\operatorname{Out} G|$ $\prod_{i=1}^{r} |\operatorname{Aut} P_i|$. By a well-known result of Burnside, if P is a finite p-group with order p^m , p prime, then $C_{\operatorname{Aut} P}(P/\operatorname{Frat} P)$, which coincides with $\operatorname{Ker}(\operatorname{Aut} P \to \operatorname{Aut} P)$ $\operatorname{Aut}(P/\operatorname{Frat} P)$), has order dividing $p^{r(m-r)}$, where $r = \dim_{\operatorname{GF}(p)}(P/\operatorname{Frat} P)$, the minimum number of generators of P. Since $\operatorname{Aut}(P/\operatorname{Frat} P) \cong \operatorname{GL}(r,p)$, it follows that |Aut P| divides $|GL(r,p)|p^{r(m-r)}$.