HW2

Kelly Li

2/22/2022

Bayesian Probit Regression

1)

Let's compute our target distribution:

$$p(\vec{\beta}|\vec{y}) \propto p(\vec{y}|\vec{\beta})p(\vec{\beta})$$

$$= \prod_{i=1}^{n} (p_i^{y_i} (1 - p_i)^{1 - y_i}) \exp[-\frac{1}{2} \vec{\beta}^T (100(X^T X)^{-1})^{-1} \vec{\beta}]$$

Our MCMC generates symmetric proposals about the current β :

$$\hat{\beta}_{i+1} \sim N(\beta_i, 10^2 (X^T X)^{-1})$$

With acceptance criteria:

$$u \sim U(0, 1)$$

$$\alpha = \frac{p(\hat{\beta}_{i+1}|\vec{y})}{p(\beta_i|\vec{y})}$$

$$\beta_{i+1} = \begin{cases} \hat{\beta}_{i+1} & u \leq \alpha \\ \beta_i & u > \alpha \end{cases}$$

```
#chain information
  n.total \leftarrow n.sim*(1.0 + burn)
  n.burn <- n.sim*burn
  #initialize chain
  beta.out <- matrix(NA, nrow = n.sim, ncol = p)</pre>
  beta <- beta0
  for(i in 1:n.total){
    beta_new <- rmvnorm(1, mean = beta,</pre>
                          sigma = xtx.inv) %>% t()
    loglik_new <- getLogLik(y, x, xtx, beta_new)</pre>
    loglik_old <- getLogLik(y, x, xtx, beta)</pre>
    logdiff <- loglik_new - loglik_old</pre>
    #accept-reject
    if(log(runif(1)) < logdiff){</pre>
      beta <- beta_new
    }
    if(i > n.burn){
      i1 <- i - n.burn
      beta.out[i1, ] <- beta</pre>
    }
  }
  colnames(beta.out) <- c("intercept", "age", "parity",</pre>
                             "education", "spontaneous", "induced")
  return(beta.out)
beta0 <- solve(t(x) %*% x) %*% t(x) %*% y
mh.out <- adaptive.mh(10000, 0.1, x, y, beta0)
mean <- colMeans(mh.out)</pre>
sd <- apply(mh.out, 2, sd)</pre>
cbind(mean, sd) %>% kable(linesep = "")
```

	mean	sd
intercept	-0.6029083	0.8039954
age	0.0205784	0.0172019
parity	-0.4315151	0.1056423
education	-0.2911854	0.1697412
spontaneous	1.1494598	0.1674838
induced	0.7048107	0.1599721

spontaneous

0.0 0.0 4000 6000 8000 10000 iteration

induced

2)

Let $z_i \sim^{iid} N(\vec{x_i}^T \vec{\beta}, 1)$. Now: $P(y_i = 1 | \vec{x_i}, \vec{\beta}) = P(\mathbf{1}(z_i > 0) = 1) = P(z_i = 0)$ $P(\vec{\beta} | \vec{z}, \vec{y}) \propto p(\vec{y}, \vec{z} | \vec{\beta}) p(\vec{\beta})$ $\propto p(z | \vec{\beta}) p(\vec{\beta})$ $= N(X\vec{\beta}, I) N(0, 100(X^T X)^{-1})$ $\propto \exp[-\frac{1}{2}(\vec{z} - X\vec{\beta})^T (\vec{z} - X\vec{\beta})] \exp[-\frac{1}{2}\vec{\beta}^T (100(X^T X)^{-1})^{-1}\vec{\beta}]$ $\propto \exp[-\frac{1}{2}(\vec{\beta}(\frac{100}{101}(X^T X)^{-1})^{-1}\vec{\beta} - 2\vec{\beta}^T X^T \vec{z})]$

By definition, $\vec{\beta}|\vec{z}, \vec{y} \sim N(\frac{100}{101}(X^TX)^{-1}X^T\vec{z}, \frac{100}{101}(X^TX)^{-1})$. Also:

$$z_{i}|\vec{\beta}, y_{i} \propto p(y_{i}|\vec{\beta}, z_{i})p(z_{i}|\vec{\beta})$$

$$= \begin{cases} N(\vec{x_{i}}^{T}\vec{\beta}, 1) * \mathbf{1}_{[0,\infty)}(z_{i}) & y_{i} = 1\\ N(\vec{x_{i}}^{T}\vec{\beta}, 1) * \mathbf{1}_{(-\infty,0]}(z_{i}) & y_{i} = 0 \end{cases}$$

Then, we can implement DA-MCMC by Gibbs sampling $p(\vec{\beta}, \vec{z}, \vec{y})$ and $p(\vec{z}|\vec{\beta}, \vec{y})$:

```
da.mcmc <- function(n.sim, burn, x, y, beta0){</pre>
  #matrix stuff
  n <- length(y)
  p \leftarrow ncol(x)
  xtx <- t(x) %*% x
  xtx.inv <- solve(xtx)</pre>
  var <- 100/101 * xtx.inv</pre>
  #chain information
  n.total <- n.sim*(1.0 + burn)
  n.burn <- n.sim*burn
  #initialize chain
  z \leftarrow rmvnorm(1, x%*\%beta0, diag(1, nrow = n))
  beta <- beta0
  beta.out <- matrix(NA, nrow = n.sim, ncol = p)
  #beta
  for(i in 1:n.total){
    beta <- rmvnorm(1, var %*% t(x) %*% t(z), var) %>% t()
    for(j in 1:n){
      if(y[j] == 1){
      z[j] \leftarrow rtruncnorm(1, a = 0, b = Inf, mean = x[j,] %*% beta, sd = 1)
      z[j] \leftarrow rtruncnorm(1, a = -Inf, b = 0, mean = x[j,] %*% beta, sd = 1)
  #store variables after burn
    if(i > n.burn){
```

	mean	sd
intercept	-0.6091844	0.8319951
age	0.0203811	0.0183088
parity	-0.4365080	0.1033902
education	-0.2840048	0.1711240
spontaneous	1.1528047	0.1626955
induced	0.7073339	0.1664085

spontaneous

induced

Let's introduce another parameter $\alpha^2 \sim \text{Inverse Gamma}(a,b)$. Let $W_i = \alpha Z_i$. We now sample from the following distributions using Gibbs:

$$\begin{split} \vec{\beta}|\vec{w},\alpha,\vec{y} \sim N(\frac{101}{100}(X^TX)^{-1}\frac{X^t\vec{w}}{\alpha},\frac{101}{100}(X^TX)^{-1})) \\ w_i|\vec{y}\vec{\beta}\alpha &= \begin{cases} N(\alpha\vec{x_i}^T\vec{\beta},\alpha^2) * \mathbf{1}_{[0,\infty)}(w_i) & y_i = 1\\ N(\alpha\vec{x_i}^T\vec{\beta},\alpha^2) * \mathbf{1}_{(-\infty,0]}(w_i) & y_i = 0 \end{cases} \\ p(\alpha^2|\vec{w},\vec{\beta},\vec{y}) \propto \exp[-\frac{1}{2}(\frac{\vec{w}^t\vec{w}}{\alpha^2} - \frac{2\vec{\beta}^TX^T\vec{w}}{\alpha})]\alpha^{2^{-a-1}}\exp[-\frac{b}{\alpha^2}] \\ \log p(\alpha^2|\vec{w},\vec{\beta},\vec{y}) \propto -\frac{1}{2}\frac{\vec{w}^T\vec{w}}{\alpha^2} + \frac{\vec{\beta}^TX^T\vec{w}}{\alpha} - (a+1)\log(\alpha^2) - \frac{b}{\alpha^2} \\ \log p(\alpha^2) \propto -(a+1)\log(\alpha^2) - \frac{b}{\alpha^2} \end{split}$$

To sample using Metropolis-Hastings for α^2 , we sample from the centered distribution with some tuning parameter c:

 $\alpha_{i+1} \sim \text{Inverse Gamma}(c, \alpha_i^2(c+1))$

```
getLogLikIG <- function(alpha2, a, b){</pre>
  loglik \leftarrow (-a + 1) * log(alpha2) - b/alpha2
  return(loglik)
getLogLikAlpha <- function(x, alpha2, w, beta, a, b){</pre>
  loglik = -1/2 * sum(w^2)/alpha2 + t(beta) ** t(x) ** w/sqrt(alpha2) - (a + 1)*log(alpha2) - b/alpha
  return(loglik)
px.da.mcmc <- function(n.sim, burn, x, y, a, b, beta0, c){</pre>
  #matrix stuff
  n <- length(y)
  p \leftarrow ncol(x)
  xtx <- t(x) %*% x
  xtx.inv <- solve(xtx)
  var <- 100/101 * xtx.inv</pre>
  #chain information
  n.total \leftarrow n.sim*(1.0 + burn)
  n.burn <- n.sim*burn
  #initialize chain
  beta <- beta0
  alpha2 <- 1/rgamma(1, shape = a, rate = b)
  w \leftarrow sqrt(alpha2) * rmvnorm(1, x\%*\%beta, diag(1, nrow = n)) \%>\% t()
  beta.out <- matrix(NA, nrow = n.sim, ncol = p)
  for(i in 1:n.total){
    #beta
    beta <- rmvnorm(1, (var%*% t(x) %*% w)/sqrt(alpha2), var) %>% t()
```

```
#alpha2
    alpha2.prop <- 1/rgamma(1, shape = c, rate = alpha2 * (c+1))</pre>
    p.alpha2.prop <- getLogLikAlpha(x, alpha2, w, beta, a, b) +</pre>
      getLogLikIG(alpha2, c, alpha2.prop * (c+1)) -
      getLogLikAlpha(x, alpha2.prop, w, beta, a, b) -
      getLogLikIG(alpha2.prop, c, alpha2*(c+1))
    if(log(runif(1)) <= p.alpha2.prop){</pre>
      alpha2 <- alpha2.prop</pre>
    } else{
      alpha2 <- alpha2
    for(j in 1:n){
      if(y[j] == 1){
      w[j] \leftarrow rtruncnorm(1, a = 0, b = Inf, mean = x[j,] %*% beta, sd = 1)
      w[j] \leftarrow rtruncnorm(1, a = -Inf, b = 0, mean = x[j,] %*% beta, sd = 1)
    }
    w <- sqrt(alpha2) * w
    #store variables after burn
    if(i > n.burn){
      i1 <- i - n.burn
      beta.out[i1, ] <- beta</pre>
    }
  colnames(beta.out) <- c("intercept", "age", "parity",</pre>
                            "education", "spontaneous", "induced")
  return(beta.out)
}
px.da.mcmc.out <- px.da.mcmc(10000, 0.1, x, y, 300, 1, beta0, 150)
mean <- colMeans(px.da.mcmc.out)</pre>
sd <- apply(px.da.mcmc.out, 2, sd)</pre>
cbind(mean, sd) %>% kable(linesep = "")
```

	mean	sd
intercept	-0.6119322	0.8375915
age	0.0205423	0.0180875
parity	-0.4346481	0.1016932
education	-0.2819179	0.1743392
spontaneous	1.1462038	0.1638907
induced	0.7032631	0.1622376

spontaneous

induced

4)

Function	Elapsed time (sec)	Total RAM used (MiB)	Peak RAM used (MiB)
AMH	3.55	0.6	32.5
DA-MCMC	22.64	0.5	37.1
PX-DA-MCMC	23.36	0.5	37.1

All three algorithms converged to similar coefficients with 10,000 simulations and 1,000 burn-in iterations. However, AMH had significantly worse mixture than the other two algorithms, based off the ACF plots. Regarding coding complexity, AMH was the simplest to implement, with the lowest efficiency, followed by DA-MCMC and then PX-DA-MCMC. On run-time and RAM usage, AMH had the lowest of both, with the other two algorithms very similar in both time and storage, but higher. In our case, all three algorithms still converged and DA-MCMC / PX-DA-MCMC did not have strong differences in mixture, DA-MCMC may be the "best of both worlds" in being relatively straightforward to implement, while giving us an idea of the entire posterior distribution for our parameters of interest.