Chaîne-Cycle-Chemin-Circuit

son ne tient pas compte de l'cerientation des accs

Une chaîne c de longueur p est une liste du type :

$$c = (s_0, s_1, s_2, ..., s_{p-1}, s_p) \text{ si } p > 0$$
;

$$c = (s_0) \text{ si } p = 0$$
;

telle que pour tout k = 1,2,...,p les sommets s_{k-1} et s_k sont les deux extrémités de l'arc a_k .

Soit $c=(s_0,s_1,s_2,....,s_{p-1},s_p)$ une chaîne. Si $a_k=(s_{k-1},s_k)$, alors a_k est direct pour c; Si $a_k=(s_k,s_{k-1})$, alors a_k est inverse pour c.

Une chaîne c est élémentaire si les sommets empruntés par c sont distincts.

graphe G

mas d'acco

17

c = (a,i,h,c,b,i,f) est une chaîne (non élémentaire) de longueur 6 de a à f.

c=(a,i,f,h,i) est un chemin (non élémentaire) de longueur 4.

c=(i,f,h,i) est un circuit élémentaire de longueur 3.

on retient por wayte de

Une chaîne $c=(s_0,s_1,s_2,....,s_{p-1},s_p)$ est un cycle si $s_0=s_p$. An pure Un cycle est élémentaire si :

- soit p = 0;
- soit p > 0 et (s₀,s₁,s₂,...,s_{p-1}) est une chaîne élémentaire.

Une chaîne $c=(s_0,s_1,s_2,....,s_{p-1},s_p)$ est un chemin si tous les arcs empruntés sont directs. On note alors $c=(s_0,s_1,s_2,....,s_{p-1},s_p)$

Un chemin $c=(s_0, s_1, ..., s_p)$ est un circuit si $s_0 = s_p$. Un circuit est élémentaire si :

- soit p = 0;
- soit p > 0 et $(s_0, s_1, s_2, s_3, \dots, s_{n-1})$ est un chemin élémentaire.

Connexité simple

Soit G=(S,A) un graphe.

Le sommet s est (simplement) relié au sommet t (notation s - t) s'il existe une chaîne de G de s à t.

La relation - est:

- réflexive (chaîne de longueur nulle)
- symétrique (chaîne miroir)
- transitive (concaténation des 2 chaînes)

Les classes d'équivalence sont les composantes connexes de G.

Un graphe G est dit « connexe » s'il ne possède qu'une seule composante connexe.

18

Composantes connexes

Composante connexe = sous-graphe induit maximal connexe.

G comporte 3 composantes connexes.

Graphe réduit d'un graphe G=(S,A).

Sommets: composantes fortement connexes

{C₁, C₂,, C_n} de G

Arcs: (C,C) est un arc si

a)i≠iet

b) il existe $a \in A$ tel que $a^- \in C_i$ et $a^+ \in C_i$

graphe G: e

graphe réduit de G:

Propriété : Un graphe réduit est sans circuit.

Preuve:

S'il existait un circuit dans le graphe réduit, les composantes fortement connexes du circuit appartiendraient à une même composante fortement connexe. Contradiction.

Connexité forte

Soit G=(S,A) un graphe orienté.

Le sommet s est (fortement) relié au sommet t (notation s↔t) s'il existe dans G un chemin de s à t et un chemin de t à s.

La relation ↔ est :

- réflexive (chemin de longueur nulle)
- symétrique (définition)
- transitive (concaténation des 2 chemins dans chaque sens)

Les classes d'équivalence de → sont les composantes fortement connexes de G.

Un graphe G est dit « fortement connexe » s'il ne possède qu'une seule composante fortement connexe.

21

23

Quiz : Composantes fortement connexes

Quel est le nombre de composantes fortement connexes dans le graphe ?

- A) 1
- B) 2
- C) 3 3 composantes fartement corneres: (A4, 1E4, 1B, C, D4.

D) 5

22

Quiz : Graphe réduit

Soit G un graphe fortement connexe et soit G_R le graphe réduit de G. Laquelle de ces propositions est fausse ?

A) G_R ne contient pas de circuit.

- B) Le nombre de sommets de G_R dépend du nombre de sommets de G.
- C) G_R contient un seul sommet.
- D) G_R a autant de composantes fortement connexes que de sommets.

Bonnet, quel que ce soit le nombre de sommets dans G

25

Arbre

Remarque:

Le sous-graphe induit par chaque composante connexe d'un graphe sans cycle est connexe et sans cycle* (arbre).

* sans cycle élémentaire de taille supérieure ou égale à 3.

Définitions équivalentes d'un arbre:

D_o: graphe connexe sans cycle

D₁: graphe connexe à n-1 arêtes

D₂: graphe sans cycle à n-1arêtes

D₃: graphe t.q. il existe une chaîne unique entre toute paire de sommets

 $\mathrm{D_4}$: graphe connexe, qui devient non connexe par suppression d'une arête quelconque

D₅: graphe sans cycle, création d'un cycle unique par ajout d'une arête quelconque

Graphes particuliers

Graphe sans circuit

Propriété (liste topologique des sommets) : Soit G=(S,A) un graphe sans circuit.

II existe une liste (s_1, s_2, \dots, s_n) des sommets de G telle que

pour tout arc (s,s): i < j - s'il y a un arc (s, , s;), alors s. appount

graphe G sans circuit

26

Quiz : Choix d'un algorithme

Soit A et B deux algorithmes résolvant le même problème pour un graphe non-orienté G. A est en O(n+m) et B est en O(n log n). Soit G₁ un arbre et G₂ un graphe complet. Quel est le meilleur choix parmi les suivants ?

- A)Utiliser A sur G₁ et utiliser B sur G₂.
- B) Utiliser B sur G₁ et utiliser A sur G₂.
- C) Utiliser A sur G₁ et utiliser A sur G₂.
- D) Utiliser B sur G₁ et utiliser B sur G₂.

on estem O(n) avec l'algo A, mexternana O(nlog Cn1) ovec B

(A) con un aubre contient exactement n-1 audtes

et un greuplie complet n(n-1) arettes son sociéen 0 (n²) avec

l'algorithme A; qui est mains

bien aux 0 (n log(n)) 28

Arbre couvrant

Soit G=(S,A) un graphe. Un arbre couvrant de G est un graphe partiel de G qui est un arbre.

Arcs rouges: arbre couvrant H

Arcs noirs: co-arbre de H

29

Propriété 1:

Un graphe G possède un arbre couvrant si et seulement si il est connexe.

Preuve:

Si G possède un arbre couvrant, alors G est connexe. Si G est connexe, on construit un graphe partiel par l'algorithme suivant :

H:=G:

Tant qu'il existe un cycle dans H faire Supprimer de H une arête quelconque du cycle Fin Tant que:

Lors de la terminaison, le graphe partiel H est connexe et sans cycle. C'est un arbre couvrant de G.

Des arbres particuliers : les arborescences

Arborescence:

Arbre tel que :

- un sommet r est distingué (la racine)
- pour tout sommet x de l'arbre, la chaîne de r à x est un chemin.

Une arborescence

Arborescence couvrante

- Une arborescence couvrante de G est un graphe partiel de G qui est une arborescence

- Le sommet s est une racine de G
- si pour tout sommet x de G,
- · il existe un chemin de s à x.

Propriété:

Le graphe G=(S,A) possède une arborescence couvrante si et seulement si G possède une racine.

Preuve : analogue à celle de l'existence d'un arbre couvrant.

Graphe biparti

Définition. Un graphe est dit biparti si il existe une partition de son ensemble de sommets en deux sous-ensembles U et V telle que chaque arête ait une extrémité dans U et l'autre dans V.

Algorithme de reconnaissance de graphe biparti vu en TD.

Retour sur les ponts de Koenigsberg

Théorème. Un graphe **non-orienté** est eulérien ssi il est connexe et tous ses sommets sont de degré pair.

Les sommets étant de degré impair, le graphe n'est pas Eulérien, et il n'existe donc pas de promenade passant une fois et une seule par chaque pont.

Graphe Eulérien

Définition. Un cycle eulérien est un cycle passant <u>une et une seule fois</u> par chaque arête du graphe. Un graphe est dit Eulérien si il admet un cycle eulérien.

Théorème. Un graphe **non-orienté** est Eulérien ssi il est connexe et tous ses sommets sont de degré pair.

Exchaque dons que j'anive à un commet, il jour

Preuve

Condition nécessaire. Considérons un sommet x du carête du parcours du cycle, à chaque fois que nous passons par x, nous y arrivons et nous en repartons par 2 arêtes non encore parcourues. Le sommet x est donc de degré pair.

Condition suffisante. Preuve constructive par l'algorithme donné dans la suite.

34

Un problème voisin

Question Est-il possible de dessiner cette maison sans lever le crayon, et bien sûr sans repasser par le même trait ?

Chaîne eulérienne

Définition. Une chaîne eulérienne est une chaîne passant une et une seule fois par chaque arête du graphe.

Le problème précédent revient à tester l'existence d'une chaîne eulérienne dans le graphe non-orienté suivant.

Théorème. Un graphe **non-orienté** admet une chaîne eulérienne ssi il est connexe et le nombre de sommets de degré impair est 0 ou 2.

on revient on the procedent of

4 départ et aniver

Seuls a et b sont de degré impair, donc il existe une chaîne eulérienne. 37

Chaîne eulérienne

OK, mais comment tracer le dessin en pratique? (autrement dit, déterminer une chaîne eulérienne)

La recherche d'une chaîne eulérienne revient à la recherche d'un cycle eulérien :

- · Si tous les sommets sont de degré pair, on recherche un cycle eulérien :
- · Si deux sommets sont de degré impair, on ajoute une arête entre ces deux sommets et on est ramené au cas précédent.

35

Algorithme

ALGORITHME Euler

ENTREES G=(V,E) un graphe dont tous les sommets sont de degré pair x un sommet de V SORTIE ϕ un cycle eulérien sur la composante connexe de x

 ϕ : LISTE des sommets du cycle dans l'ordre de parcours

Initialiser $\phi := (x)$

Base de la récursivité : X est isolé

Si x est un sommet isolé

Alors

Retourner ø

Sinon

// On construit un cycle contenant x

Initialiser y := x

Tant Que y n'est pas un sommet isolé

Choisir z l'un de ses voisins

Supprimer l'arête (y,z); y := z $\phi \leftarrow y$ // on ajoute le sommet au cycle

Fin TantQue

Il Appel récursif sur chacun des k sammets du cycle $oldsymbol{\phi}$ en concaténant les réponses

Retourner $Euler(G, \phi(1)) \circ ... \circ Euler(G, \phi(k))$

Fin Si

Exemple

La première phase construit par exemple le cycle (a,b,a,c,h,e,d,g,a) en partant du sommet a.

Récursivement l'algorithme est appelé sur chacun des sommets du cycle :

- Le sommet a étant isolé, l'algorithme retourne immédiatement (a).
- Pour le sommet b, l'algorithme construit récursivement le cycle (b,c,b).
- Le sommet c étant maintenant isolé, l'algorithme retourne (c).
- Pour le sommet h, l'algorithme construit le cycle (h,f,e,d,f,g,h).
- Les sommets restant à visiter sur le cycle, (e,d,g,a), sont désormais tous isolés.

Le cycle eulérien retourné est (a,b,c,b,a,c,h,f,e,d,f,g,h,e,d,g,a).

(A)

(2)

Preuve

ALGORITHME Buler ENTREES G=(V,E) un graphe dont tous les sommets sont de degré pair, x un sommet de VSORTIE de un cycle culérien sur la composante connexe de x φ : LISTE des sommets du cycle dans l'ordre de parcours Initialiser $\phi := (x)$ Si x est un sommet isolé Alors Retourner d If On construit un evele contenant s Initialiser y := xTent Oue valest pas un sommet isolé Choisir z l'un de ses voisins Supprimer l'arête (y,z); y := z♦ ← 9 # on about it sommet an evel li Assed récursé ser cisacun des k sammers du cerite 🗸 en consusénant les répenses Retourner Euler(G, d (1))o ... o Euler(G, d (k))

- Tout d'abord remarquons que la première phase de l'algorithme construit bien un cycle de x à x. En effet chaque fois que nous arrivons et repartons d'un sommet dans notre marche, nous supprimons 2 de ses arêtes incidentes. Tous les sommets étant de degré pair, seul le sommet de départ x peut être isolé en entrée de boucle tant que.
- Le fait que l'algorithme construit un cycle eulérien peut alors se montrer par induction sur le nombre d'arêtes du graphe. Les arêtes du graphe étant supprimées au fur et à mesure de la construction, elles apparaissent bien au plus une fois dans le cycle. Par connexité de G, elles apparaissent au moins une fois. Elles apparaissent donc exactement une fois dans le cycle final.

Un tour de cartes

- Un jeu de 32 cartes.
- Un spectateur coupe le jeu, prend la carte du dessus (qu'il consulte secrètement), passe le jeu à son voisin de droite, qui prend la carte du dessus, etc.
- Quand 5 cartes ont été tirées, on s'arrête.
- Le magicien demande aux personnes ayant tirée une carte noire de se lever et de se concentrer sur leur carte (toujours secrète). Le premier et le troisième spectateur se lèvent et se concentrent.
- Le magicien indique alors sans se tromper les cartes qui ont été tirées par les spectateurs : 10♠ a♥ a♣ 8♠ 9♥

Complexité

ALGORITHME Euler ENTREES G=(V,E) un graphe dont tous les sommets sont de degré pair, x un sommet de VSORTIE of un cycle culérien sur la composante connexe de x φ: LISTE des sommets du cycle dans l'ordre de parcours Initialiser & := (v) Il Base de la récursivité : X est isolé Si x est un sommet isolé Alors Il On construit un excle contenunt x Initialiser y := xTant Que y n'est pas un sommet isolé Choisir z l'un de ses voisins Supprimer l'arête (y,z); y := z\$\phi \mathbf{y} \tag{\psi} \tag{\psi} on a similar le s Il Aurel récursif sur chacan des le sommets du cycle den concaténant les répenses Retourner Euler(G, ϕ (1)) o... o Euler(G, ϕ (k)) Fin Si

Au cours des différents appels récursifs, la boucle Tant Que est lancée n fois au plus puisque le sommet x devient isolé au terme de la boucle. De plus, le corps de la boucle Tant Que est exécuté au plus m fois (une fois pour chaque of boucle arête car l'arête est supprimée dès qu'elle est visitée). Avec une représentation Tarque par listes d'adjacence, les opérations « Choisir » et « Supprimer » sont en O(1). Exercise La complexité est alors en O(n+m). Si le graphe est connexe, on a m ≥ n-1, et donc la complexité est en O(m).

Ly others : avec my matrice il famoliaritatia travan un vortin la c'artalitect avec La lista d'ajacence.

Les suites de Nicolaas de Bruijn

Une suite de de Bruijn pour les mots de longueur n sur un alphabet A est une suite cyclique dans laquelle apparaît une fois et une seule chaque mot de longueur n sur l'alphabet A. Une telle suite comporte nécessairement autant d'éléments que de mots de longueur n, autrement dit $|A|^n$ éléments.

Ce qui donne sur l'alphabet {R,N}:

> R = 0 N = 1

Le tableau du magicien

Si vous classez un jeu de 32 cartes dans l'ordre 8 • 9 V r V 7 V 10 • v d V 9 • v d V 9 • v d V 9 • r d d v 9 • v d V 9 • r d d v 9 • v d V 9 • r d d v d 10 • r d 10

Le tableau ci-dessous permet la réalisation pratique du tour. En fonction du quintuplet de N ou R (les 32 possibilités sont indiquées dans la colonne de gauche), il vous indique les cinq cartes dont il s'agit.

NNNN	9♠	r♣	d♣	r	10♣	
NNNR	r	d♣	rė	104	r	
NNNRN	7♠	a∳	8♣	v♦	10♠	
NNNRR	d♣	rė	104	r∳	8♥	
NNRNN	84	d♠	7♦	7♠	a♠	
NNRNR	a.	84	v.	10♠	a♥	
NNRRN	9.	7♣	d♦	10♥	9♠	
NNRRR	rė	10♣	r	8.	a♦	
NRNNN	d♠	7.	7♠	a♠	8♣	
NRNNR	V♠	v♥	9♣	7♣	d♦	
NRNRN	8 🌦	V.	10♠	a♥	a.	
NRNRR	10♠	a♥	a♣	84	9♥	
NRRNN	7.	d♦	10♥	9♠	r	
NRRNR	v♣	d♥	9♦	V♠	v♥	
NRRRN	104	rø	8₩	a♦	84	

Assemblage des génomes

- Les séquenceurs d'ADN produisent de nombreuses petites séquences extraites d'une longue séquence de quatre lettres A,G,C,T (codant un gène, un chromosome, etc.).

- Les petites séquences ont des parties communes qui déterminent leur assemblage correct.

 - Une petite séquence peut parfois s'assembler avec plusieurs, et on est donc face au problème suivant : assembler les petites séquences afin de ne déterminer qu'une seule grande séquence.

Graphes de de Bruijn

Un sommet : un mot de longueur n-1.

On trace un arc entre deux sommets si les *n*-2 derniers caractères du mot initial correspondent aux *n*-2 premiers caractères du mot terminal. L'arc est étiqueté par le dernier caractère du mot terminal.

Un circuit eulérien dans ce graphe correspond à une suite de de Bruijn.

Théorème. Un graphe **orienté** est eulérien ssi il est connexe et pour tout sommet s on vérifie $d^*(s) = d^*(s)$.

Pour un sommet donné, il y a autant d'arcs sortants que de mots de longueur n-1 dont les n-2 premiers caractères sont communs, soit |A| arcs sortants.

Pour un sommet donné, il y a autant d'arcs entrants que de mots de longueur n-1 dont les n-2 derniers caractères sont communs, soit [A] arcs entrants.

Les graphes de de Bruijn sont eulériens, dont il existe une suite de Bruijn pour tout alphabet A et pour tout n!

Quiz : Chaîne et cycle Eulérien

Le graphe ci-dessous comporte :

A) Un cycle Eulérien. x) de degai impair

(B) Un chaîne Eulérienne. > 6 et 8 sont de degré simpair et tous

C) Les deux.

les autres sont de degré pair

D) Aucun des deux.

