Synteza liczników synchronicznych

Załóżmy, iż mamy zaprojektować licznik synchroniczny liczący w kodzie 0123654. Ponieważ jest tutaj 7 wartości, więc do zakodowania potrzeba 3 bitów (które oznaczymy jako Q_2 , Q_1 , Q_0 . Narysujmy tabelę stanów. Na podstawie kodu wypełnimy Tab.1. Natomiast w Tab.2 jest zakodowaną tabelą Tab.1

Tab 1

t+1
1
2
236
6
0
4 5
5

Tab.2

	t		t+1		
Q_2	Q_1	Q_0	Q_2	\mathbf{Q}_1	Q_0
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	1	0
1	0	0	0	0	0
1	0	1	1	0	0
1	1	0	1	0	1

Interpretacja tabeli Tab.2 jest następująca: np. W stanie 0 (000) w chwili t przerzutnik Q_0 przechodzi ze stanu 0 (w chwili t) na 1 (w chwili t+1). Pozostałe przerzutniki (Q_1 i Q_2) przechodzą z 0 na 0. Analogiczna jest interpretacja pozostałych wierszy Tab.2. Aby przerzutnik przeszedł ze stanu 0 na 1 to należny na jego wejście informacyjne podać takie wartości aby zmienił stan na 1. Jakie to mają być wartości, to dostarcza tablica przejść przerzutnika. Dla przerzutników JK i D odpowiednie tablice przedstawiono w tabeli niżej (* oznacza symbol obojętny-dowolny). Wynika z nich, iż aby spowodować takie przejście, to w przypadku przerzutnika JK należy przed wystąpieniem chwili t+1 na wejście J podać 1, na wejście K sygnał dowolny (0 lub 1). W przypadku przerzutnika D należy podać 1.

(Q(t)	Q(t+1)	D(t)	J(t)	K(t)
	0	0	0	0	*
	0	1	1	1	*
	1	0	0	*	1
	1	1	1	*	0

Na podstawie tabeli przejść można dla tabeli Tab2 określić pobudzenia przedstawione w Tab.3

Tab.3

140						_									
	t			t+1											
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0		J_2	K ₂	J_1	K_1	J_0	K_0	D_2	\mathbf{D}_1	D_0
0	0	0	0	0	1	\rightarrow	0	*	0	*	1	*	0	0	1
0	0	1	0	1	0	\rightarrow	0	*	1	*	*	1	0	1	0
0	1	0	0	1	1	\rightarrow	0	*	*	0	1	*	0	1	1
0	1	1	1	1	0	\rightarrow	1	*	*	0	*	1	1	1	0
1	0	0	0	0	0	\rightarrow	*	1	0	*	0	*	0	0	0
1	0	1	1	0	0	\rightarrow	*	0	0	*	*	1	1	0	0
1	1	0	1	0	1	\rightarrow	*	0	*	1	1	*	1	0	1
	•	•			•	-				•			•		

Tabelę tą należy czytać następująco (np. wiersz 1): aby uzyskać przejście ze stanu 000 w chwili t na stan 001 w chwili t+1 należy podać :

dla przerzutnika $Q_2:0$ na J, stan dowolny na K dla przerzutnika $Q_1:0$ na J, stan dowolny na K dla przerzutnika $Q_0:1$ na J, stan dowolny na K

W przypadku realizacji na przerzutnikach typu D należy podać:

0 na wejście D przerzutnika Q2

0 na wejście D przerzutnika Q1

1 na wejście D przerzutnika Q₀

Podczas syntezy tabele 1 i 2 pomija się od razu przystępując do wypełnienia tabeli 3.

Aby w takim razie zsyntezować sygnał pobudzenia dla wejść informacyjnego należy potraktować stan $Q_2Q_1Q_0$ w chwili t jako dane wejściowe, a wymagane pobudzenie jako funkcję którą należy zsyntezować. Możemy to zrobić metoda formalną (np. przedstawiając funkcję w postaci sum iloczynów) lub korzystając z metody tablic Karnough. Np. dla wejścia D_0 uzyskamy następujące wyrażenie $D_0 = /Q_2/Q_1/Q_0 + /Q_2Q_1/Q_0 + Q_2/Q_1Q_0$ (symbol / przed zmienną oznacza jej negację). Analogicznie będzie dla pozostałych wejść. Te uzyskane wyrażenia można dalej minimalizować metodą formalną lub od razu zastosować inną metodą np. tablic Karnough. W przypadku układu zbudowanego z przerzutników D te tablice będą wyglądały następująco (w miejsce nieistniejącego stanu 111 w Tab.3 wpisano symbol obojętny) :

Tabela dla przerz. Q₀

	-	
Q_0	0	1
00		0
01		0
11	1	*
10	0	0

 $D_0 = /O_2/O_0 + O_1/O_0$

Tabela dla przerz. O₁

The sim with President & 1						
Q_2Q_1	0	1				
00	0	1				
01	1	1				
11	0	*				
10	0	0				

$$D_1 = /Q_2Q_0 + /Q_2Q_1$$

Tabela dla przerz. Q₂

rubbiu ulu przerz. Qz						
Q_0	0	1				
00	0	0				
01	0	1				
11	1	*				
10	0	1				

$$D_2 = Q_1Q_0 + Q_2Q_1 + Q_2Q_0$$

Na podstawie poniższych równań można narysować schemat.

W przypadku przerzutników JK tabel będzie dwa razy więcej (bo osobno dla J i K), ale równania częściej wychodzą prostsze niż w przypadku przerzutnika D.

Rys.1 Zsytezowany licznik na przerzutnikach typu D

Synteza liczników dwukierunkowych

Jest ona analogiczna do przedstawionej. Różnica polega na tym, iż nasza tabela 3 w stanie t zawiera dodatkowy sygnał kierunku - czyli stan bieżący określa stan wyjść $Q_2Q_1Q_0$ oraz kierunek. Ten sygnał pojawi się zatem w tabelach Karnough i w konsekwencji w równaniach po minimalizacji.