

(9) BUNDESREPUBLIK **DEUTSCHLAND**

Offenlegungsschrift

[®] DE 196 12 846 A 1

(51) Int. Cl.6: G 02 B 21/00 G 02 B 21/24

Aktenzeichen: 196 12 846.3 Anmeldetag:

30. 3.96 2. 10. 97

Offenlegungstag:

(71) Anmelder:

Carl Zeiss Jena GmbH, 07745 Jena, DE

② Erfinder:

Erfinder wird später genannt werden

56 Entgegenhaltungen:

DE 44 19 940 A1 US 51 61 052

Prüfungsantrag gem. § 44 PatG ist gestellt

Anordnung zur Erzeugung eines definierten Farblängsfehlers in einem konfokalen mikroskopischen Strahlengang

Beschreibung

Optische Systeme, die Linsen enthalten, weisen Bildfehler auf, die je nach Korrektionszustand mehr oder

weniger gut korrigiert sind.

Es gibt aber auch Anwendungen, bei denen ein optisches System zumindest in Teilbereichen einen vorgegebenen Farblängsfehler aufweisen muß, ohne andere Bildfehler, besonders auch ohne Farbquerfehler im Bildfeld, zu erzeugen, z. B. in Geräten, die verschieden tief liegende Objektstrukturen in unterschiedlichen Farben in einer festen Bildebene abbilden sollen.

In WO 92/01965 ist zu diesem Zweck in einer Anordnung zur simultanen konfokalen Bilderzeugung ein Objektiv mit hoher chromatischer Aberration vorgesehen. Dies ist auch Gegenstand der DE-A1 44 19 940.

Für diese Anordnungen müßten spezielle Objektive, die im übrigen bildfehlerfrei sein müssen, entwickelt

Im "Handbook of Confocal Microscopy", Plenum Press, New York, London 1995, S. 263, 264 sind gleichfalls eigens konstruierte Objektive vorgesehen, die aber bezüglich ihrer numerischen Apertur nicht optimal sein können

Derartige eigens konstruierte Objektive haben den Nachteil, nur für diesen einen Zweck verwendet werden zu können.

Für verschiedene "Flächenprofiltiefen" müßten jeweils spezielle Objektive entwickelt werden.

Aufgabe der Erfindung war es daher, in einer mikroskopischen Anordnung mit geringem Aufwand einen vorgegebenen Farblängsfehler zu erzeugen, ohne andere Bildfehler hervorzurufen.

Diese Aufgabe wird mittels einer die Merkmale des Anspruchs 1 aufweisenden Anordnung gelöst.

Bevorzugte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.

Vorteilhaft wird die Zusatzoptik zwischen dem Objektiv und einer Tubuslinse zur Erzeugung eines Zwischenbildes angeordnet, wobei das Objekt durch das Objektiv ins Unendliche abgebildet wird.

Eine erfindungsgemäße Zusatzoptik kann jedoch ebenso einem das Objekt direkt in eine konfokale Blendene-

bene abbildenden Objektiv nachgeordnet werden.

So treten die Strahlen jedes Objektpunktes einer mittleren Wellenlänge parallel in die Zusatzoptik ein und verlassen sie wieder parallel, wobei die Strahlen tiefer liegender Objektstellen einer längeren Wellenlänge und höher liegender Objektstellen einer kürzeren Wellenlänge ebenfalls die Zusatzoptik parallel verlassen und im Bild somit alle scharf abgebildet werden.

Auf diese Weise sieht der Beobachter gleichzeitig und scharf Objektpunkte in verschiedenen Ebenen in

verschiedenen Farben und erhält damit eine wesentlich vergrößerte Tiefenschärfe.

Daß die nicht parallel austretenden Strahlen anderer Wellenlängen anderer Objekttiefen nicht zur Abbildung beitragen, liegt am Wesen der konfokalen Abbildung, die durch einen geeigneten Aufbau, wie durch das Lochsystem einer Nipkowscheibe im Zwischenbild oder durch ein Linsenarray, das nur Bildpunkte geringen Durchmessers aus dem Zwischenbild durch eine gemeinsame Lochblende abbildet, charakterisiert ist.

Bei der erfindungsgemäßen Zusatzoptik wird eine Brennweite von unendlich für eine mittlere Wellenlänge, z. B. 546 nm realisiert, für längere Wellenlängen eine negative Brennweite und für kürzere Wellenlängen eine positive Brennweite, jeweils im Meterbereich für den oben angegebeben Fall der Farb-Höhen-Zuordnung am

Mikroskopobjekt (bzw. umgekehrt für entgegengesetzte Zuordnung).

Damit würde im Falle eines konfokalen Mikroskops die Objekt-Tiefendiskriminierung mittels Farben nicht dem Zufall farblich nicht voll auskorrigierter Objektive überlassen sein, sondern es können höchstkorrigierte Epiplan-Apochromate eingesetzt werden, mit denen dann erstens eine exakte Zuordnung von Farben zu Objektdetail-Tiefen wie bei Gelände-Höhenschnitten mittels Farben, z. B. blau — Bergspitzen, grün — Tallagen, rot — unter Meeresboden, erfolgen kann und zweitens die Farben als Spektralfarben gut differenzierbar sind und nicht Mischfarben zufälliger Rest-Farblängsfehler sind. Beim erfindungsgemäßen optischen System zur Erzeugung eines vorgegebenen Farblängsfehlers sind die anderen Bildfehler, besonders auch Farbquerfehler bzw. die chromatische Vergrößerungsdifferenz, Wölbung, Koma, Astigmatismus und Verzeichnung gut korrigiert.

Für den optimalen Einsatz im Mikroskop soll die Länge der Zusatzoptik 30 mm nicht überschreiten, um z. B. als Tubuslinsen-Wechselsystem einsetzbar zu sein.

Weitere Vorteile und Wirkungen der Erfindung werden im Folgenden anhand der dargestellten Ausführungsbeispiele näher erläutert.

Es zeigen:

55

Fig. 1 Die Gesamtanordnung eines erfindungsgemäßen konfokalen Direktsichtmikroskopes.

Fig. 2 Den Aufbau einer erfindungsgemäßen Zusatzoptik.

Fig. 3 Den Aufbau einer weiteren erfindungsgemäßen Zusatzoptik.

Fig. 4 Eine eingliedrige Zusatzoptik.

In Fig. 1 ist eine Beleuchtungsoptik 1 vorgesehen, die eine Lichtquelle 2, eine Leuchtfeldblende 3 und eine Aperturblende 4 beinhaltet und über einen Strahlenteiler 5 in Richtung einer im Strahlengang geneigt angeordneten Lochmaske 6 nach Art einer Nipkowscheibe so geführt wird, daß auf der Oberseite der Lochmaske 6 ein Bild der Leuchtfeldblende 3 entsteht.

Lochmaske 6 und Leuchtfeldblende 3 werden durch eine Tubuslinse 7 und ein Objektiv 8 in die Ebene eines betrachteten Objektes 9 abgebildet, das wiederum auf die Lochmaske zurück abgebildet wird (konfokale

5 Abbildung).

Die Lochmaske 6 wird durch einen Motor 10 in eine Drehbewegung versetzt, so daß das auf ihr befindliche Lochmuster sich über die Objektebene bewegt.

Die vom Objekt 9 reflektierten Strahlen treten wiederum durch die Löcher der Lochmaske 6 hindurch und

passieren den Strahlteiler 5.

Die Ebene der Lochmaske wird mit dem Bild des Objektes 9 über eine Linse 11 sowie ein Bauernfeindprisma 12 in ein Okular 13 abgebildet.

Im Strahlengang vor und hinter der Lochmaske 6 sind entgegengesetzt orientierte keilförmige Prismen 14, 15 vorgesehen, die die Lochmaske 6 im Strahlengang optisch aufrichten.

Eine eingliedrige Zusatzoptik 16 oder eine zweigliedrige Zusatzoptik 17 wird zwischen Objektiv 8 und Tubuslinse 7 auswechsel- und einschiebbar angeordnet, wo das Objekt 9 durch das Objektiv 8 ins Unendliche abgebildet wird.

Äuf diese Weise treten die Strahlen jedes Objektpunktes einer mittleren Wellenlänge parallel in die Zusatzoptik 16 oder 17 ein und verlassen sie wieder parallel, wobei entsprechend die Strahlen tiefer liegender Objektstellen einer längeren Wellenlänge und höher liegender Objektstellen einer kürzeren Wellenlänge ebenfalls das Zusatzsystem parallel verlassen und im Bild somit alle scharf abgebildet werden.

Daß die nicht parallel austretenden Strahlen anderer Wellenlängen anderer Objekttiefen nicht zur Abbildung beitragen, liegt am Wesen der konfokalen Abbildung, die durch einen geeigneten Aufbau, wie durch das Lochsystem einer Nipkowscheibe im Zwischenbild oder durch ein Linsenarray, das nur Bildpunkte geringen 15 Durchmessers aus dem Zwischenbild durch eine gemeinsame Lochblende abbildet, charakterisiert ist.

Die in Fig. 2 und Tabelle 1 sowie Fig. 3 und Tabelle 2 dargestellten Zusatzoptiken bestehen aus zwei Gliedern mit einem Abstand voneinander, der mit den Linsendicken zusammen kleiner gleich 30 mm beträgt.

In Fig. 2—4 sind jeweils aus der Bildmitte kommende Strahlen sb sowie vom Bildrand stammende Strahlen sr dargestellt.

Es können auch eingliedrige Zusatzoptiken eingesetzt werden, die aus einer Kittlinse bestehen und einen vorgegebenen Farbfehler erzeugen, aber Restfehler der chromatischen Vergrößerungsdifferenz und in der Feldkorrektion aufweisen.

Ein Beispiel für eine eingliedrige Zusatzoptik ist in Tab. 4 sowie Fig. 4 angegeben. Während bei einer eingliedrigen Zusatzoptik, beispielsweise gemäß Fig. 4, die Farben im Luftraum nach der Zusatzoptik etwas 25 auseinanderlaufen, was zu einem außeraxial andersfarbigen Bild führen kann, werden in den Ausführungen gemäß Fig. 2 und 3 die durch das zweite optische Glied die Farben wieder zusammengeführt, so daß für jede Bildtiefe nur eine Farbe auftritt.

Die 2 Glieder gemäß Fig. 2 und 3 weisen nahezu (± 5%) gleiche Brennweite unterschiedlichen Vorzeichens auf und sind "spiegelentgegengesetzt" aufgebaut, d. h. wie beispielsweise dargestellt, aus je einer Sammel- und 30 Zerstreuungslinse, die in ihrer Gestaltung spiegelsymmetrisch um eine gemeinsame Mitte angeordnet sind, jedoch aus entgegengesetzten Glastypen bestehen, d. h. die Sammellinse des einen Gliedes besteht aus dem gleichen oder ähnlichen Glas wie die Zerstreuungslinse des anderen Gliedes und hat die gleiche oder ähnliche Brennweite, jedoch entgegengesetztes Vorzeichen.

Dabei sind vorteilhaft die Linsen jedes Gliedes aus mindest je einem Kron- und einem Flintglas aufgebaut, d. h. 35 mit großer und kleiner Abbe-Zahl der Farbzerstreuung, was bedeutet, daß jeweils Glas mit hoher Abbescher Zahl v größer 40 und Glas mit niedriger Abbescher Zahl v kleiner 40 eingesetzt wird.

Für die prinzipielle Wirkung und damit für den prinzipiellen Aufbau ist es gleichwertig, in welcher Reihenfolge die einzelnen Linsen eines Gliedes angeordnet sind, auch müssen die Glassorten, Dicken und Radien nicht identisch sein, was zur Anpassung an unterschiedliche Aufgaben ausgenutzt werden kann.

In Fig. 3 und Tabelle 2 ist ein solches System angegeben, bei dem die Reihenfolge von Kron- und Flintglas vertauscht ist vertauscht sind, die Glieder aus unterschiedlichen Gläsern bestehen und andere Durchbiegungen der Linsen aufweisen.

Die optische Wirkung dieser Anordnung ist in Tabelle 3 dargestellt. Durch den spiegelsymmetrischen Aufbau kompensiert immer die zerstreuende Linse des einen Gliedes die Wirkung der sammelnden Linse des anderen 45 Gliedes, wodurch Restfehler betreffs Koma und Astigmatismus einer einfachen Kittlinse aufgehoben werden, weiterhin werden die Wölbung bzw. die Petzvalsumme null durch die Gesamtbrennweite unendlich.

Auch die Verzeichnung kompensiert sich durch die entgegengesetzten Vorzeichen der Brennweiten der beiden Glieder, während Farbfehler, wie Farbkoma und besonders chromatische Vergrößerungsdifferenz oder Farbverzeichnung durch den Luftabstand zwischen den beiden Gliedern behoben werden, indem die einzelnen Glieder jedes für sich eine entgegengesetzte und größere chromatische Abberration als die gewünschte Gesamtabberration aufweisen.

Durch unterschiedliche Glastypen der spiegelsymmetrischen Linsen und unterschiedliche geometrische Gestaltung kann der gewünschte Farbfehler bei einer optimalen Feldkorrektion eingestellt werden.

Das Beispiel in Tabelle 1 besteht aus einem Glied G1 positiver Brennweite mit einer ersten Sammellinse L1 55 und einer ersten Zerstreuungslinse L2, denen ein Glied G2 negativer Brennweite mit einer zweiten Zerstreuungslinse L3, der eine zweite Sammellinse L4 nachgeordnet ist.

Der vorgegebene Farblängsfehler ergibt sich aus den unterschiedlichen Radien der Glieder.

Durch die vorteilhafte Bemessung der optischen Parameter sind die Bildfehler wie Farbkoma, Astigmatismus, Gaußfehler und chromatische Vergrößerungsdifferenz ausreichend korrigiert.

65

Tabelle 1

Brennweiten, Glastypen, Krümmungsradien der Flächen F1 – F6 und Dicken d1 – d5 für erstes und zweites optisches Glied G1, G2 der Zusatzoptik, die aus Linsen L1, L2 sowie L3, L4 besteht, gemäß Fig. 2

5	•	-			
5	Glied- Nr.	Brennweite	Linse - Nr.	Brennweite Glas	typ
	G 1	+ 988 mm	L 1	+44.6 mm	SFL6
10	G 2	- 1007 mm	L 2	-45 mm	FK5
			L 3	-60.8 mm	SFL6
			L 4	+68.6 mm	FK5
15					
	Flächen- Nr.	Radius	Dicke		
20	F1	49.3 mm			
	d1		2 mm		
	F2	-134.6 mm			
25	d2		1.6 mm		
	F3	26.4 mm			
	d3		22.6 mm		
30	F4	-27.0 mm			
	d4		1.6 mm		
	F5	-61.0 mm			
35	d5		2 mm		
	F6	-21.9 mm			

Die Zusatzoptik gemäß Fig. 3 besteht aus einem optischen Glied G3 negativer Brennweite und einem optischen Glied G4 positiver Brennweite, die aus Zerstreuungslinse L5, Sammellinse L6 sowie Zerstreuungslinse L7 sowie Sammellinse L8 aufgebaut sind. Hierbei entsteht der vorgegebene Farblängsfehler sowohl durch leicht unterschiedliche Gläser in den beiden Gliedern als auch durch verschiedene Radien.

45

50

55

60

Tabelle 2

Brennweiten, Glastypen, Krümmungsradien der Flächen F1-F6 und Dicken d1-d5 für erstes und zweites
optisches Glied G3, G4 der Zusatzoptik, die aus Linsen L5, L6 sowie L7, L8 besteht, gemäß Fig. 3

				•				
	Glied- Nr.	Brennweite	Linse -Nr. Brennweit Glastyp					
	G3	-213 mm	L 5 -36 mm BaK1					
	G4	+211 mm	L 6 +41 mm SFL6	10				
			L7 -41 mm SF10					
			L8 +32 mm Baf52					
				15				
	Flächen- Nr.	Radius	Dicke					
	F1	51.6 mm						
	d1		1.6 mm	20				
	F2	14.6 mm						
	d2		2.1 mm					
	F3	24.4 mm		25				
	d3		20.8 mm					
	F4	26.0 mm						
	d4		2.2 mm	30				
	F5	13.4 mm						
	d5		3.2 mm					
	F6	38.7 mm		35				
			Tabelle 3					
iff	fferenzen der Objektebenenlagen für 4 Wellenlängen bei verschiedenen Objektivvergrößerungen für das 40							

Differenzen der Objektebenenlagen für 4 Wellenlängen bei verschiedenen Objektivvergrößerungen für das	40
Beispiel gemäß Fig. 3 und Tabelle 2	

Vergrößerung	Wellenlänge	436 nm	480 nm	546 nm	644 nm	45
10x		0.067mm	0.037mm	0	-0.034 mm	45
20x		0.017mm	0.0093 mm	0	- ₋ 0084mm	
50x		0.0027mm	0.0015mm	0	0013mm	
100x		0.00067mm	0.00037mm	0	-00034mm	50
150x		0.00030mm	0.00016mm	0	-00015mm	

Tabelle 4

Aufbau aus zwei Linsen L9, L10

5	Gesamtbren	nw. Linsen -	Nr. Brennw.	Glastyp	Abbesche Zahl
	44581 mm	L 9	- 21,52	BaF52	46,1
		L 10	21,98	F5	37,8
10					
	Fläche Nr.	Radius	Dicke		
	F1 -	110.593			
15	d1		2,5		
	F2	15,070			
	d2		3,6		
20	F3	- 105,929			

Die Erfindung ist nicht an die dargestellten Ausführungsformen gebunden. Insbesondere können anders aufgebaute Zusatzoptiken, beispielsweise diffraktive Elemente oder Glasplatten eingesetzt werden.

Patentansprüche

- Anordnung zur Erzeugung eines definierten Farblängsfehlers in einem konfokalen mikroskopischen
 Strahlengang mit einem Mikroskopobjektiv, bestehend aus einer im Abbildungsstrahlengang dem Mikroskopobjektiv nachgeordneten Zusatzoptik, die diesen Farblängsfehler aufweist.
 - 2. Anordnung nach Anspruch 1, wobei das Mikroskopobjektiv das Objekt ins Unendliche abbildet.
 - 3. Anordnung nach Anspruch 2, wobei die Zusatzoptik im parallelen Strahlengang zwischen dem Mikroskopobjektiv und einer ein Zwischenbild erzeugenden Linse angeordnet ist.
 - 4. Anordnung nach Anspruch 1, wobei das Mikroskopobjektiv das Objekt in eine Blendenebene abbildet.

35

- 5. Anordnung nach einem der Ansprüche 1-4, wobei die Zusatzoptik in den Strahlengang ein- und ausgeschwenkt wird.
- 6. Anordnung nach Anspruch 5, wobei mehrere Zusatzoptiken wahlweise in den Strahlengang einschwenkbar sind.
- 7. Anordnung nach einem der Ansprüche 1-6, wobei die Zusatzoptik aus mindestens einer Linse oder mindestens einer Glasplatte oder mindestens einem diffraktiven Elemente besteht.
 - 8. Anordnung nach einem der Ansprüche 1-7, wobei die Zusatzoptik aus einem optischen Glied besteht.
 - 9. Anordnung nach Anspruch 8, gekennzeichnet durch folgenden Aufbau aus zwei verkitteten Linsen L9, L10:

45			_	
	Gesamtbrennw.	Linsen - Nr.	Brennw. Glasty	p Abbesche Zahl
	44581 mm	L 9	- 21,52 BaF52	46,1
50		L 10	21,98 F5	37,8
	Fläche Nr. Radi	us Dick	ke	
55	F1 -110.	593		
		2,	5	
	F2 15,	070		
60		3,	6	
	F3 - 10!	5,929		

- 10. Anordnung nach einem der Ansprüche 1-7, dadurch gekennzeichnet, daß die Zusatzoptik aus zwei optischen Gliedern besteht.
 - 11. Anordnung nach Anspruch 10, wobei die optischen Glieder jeweils eine Sammel- und eine Zerstreuungslinse unterschiedlichen Materials aufweisen.

- 12. Anordnung nach Anspruch 10 oder 11, wobei die optischen Glieder mit einer Abweichung von \pm 5% gleiche Brennweiten unterschiedlichen Vorzeichens aufweisen.
- 13. Anordnung nach Anspruch 11 oder 12, mit zwei optischen Gliedern, die jeweils eine Sammel- und eine Zerstreuungslinse unterschiedlichen Materials aufweisen, wobei die unterschiedlichen Materialien jeweils Glas mit hoher Abbescher Zahl v größer 40 und Glas mit niedriger Abbescher Zahl v kleiner 40 sind.
- 14. Anordnung nach mindestens einem der Ansprüche 11-13, wobei der Glastyp der Sammellinse im ersten optischen Glied dem Glastyp der Zerstreuungslinse im zweiten optischen Glied entspricht und sich die Glastypen der Zerstreuungslinse im ersten und der Sammellinse im zweiten optischen Glied entsprechen.
- 15. Anordnung nach mindestens einem der Ansprüche 1-14, dadurch gekennzeichnet, daß als Glastypen Kronglas und Flintglas eingesetzt werden.
- 16. Anordnung nach mindestens einem der Ansprüche 10-15, wobei als Glastypen für die optischen Glieder jeweils unterschiedliche Krongläser und Flintgläser eingesetzt werden.
- 17. Anordnung nach mindestens einem der Ansprüche 10—16, wobei die zwei optischen Glieder einen zueinander spiegelsymmetrischen Aufbau aus Sammel- und Zerstreuungslinsen aufweisen.
- 18. Anordnung nach mindestens einem der Ansprüche 11-17, wobei die Reihenfolge von Sammel- und 15 Zerstreuungslinsen im ersten und zweiten optischen Glied entgegengesetzt ist.
- 19. Anordnung nach mindestens einem der Ansprüche 10-18, wobei der Abstand zwischen der ersten und der letzten Linse der Zusatzoptik weniger als 30 mm beträgt.
- 20. Anordnung nach mindestens einem der Ansprüche 10—19, gekennzeichnet durch folgende Brennweiten, Glastypen, Krümmungsradien der Flächen F und Dicken d für erstes und zweites optisches Glied G1, G2 20 der Zusatzoptik, die aus Linsen L1, L2 sowie L3, L4 bestehen:

Glied- Nr.	Brennweite		Linse - Nr.	Brennweite	Glastyp	
G 1	+ 988 mi	m	L 1	+44.6 m	m SFL6	2 5
G 2	- 1007 mi	m	L 2	-45 m	m FK5	
			L 3	-60.8 m	m SFL6	
			L 4	+68.6 m	m FK5	30
Flächen- Nr.	Radius	Dicke	e			
						35
F1	49.3 mm					
		2	mm			
F2	-134.6 mm					40
		1.6	mm			
F3	26.4 mm					
		22.6	5 mm			45
F4	-27.0 mm					
		1.6	mm			
F5	-61.0 mm					50
		2	mm			
F6	-21.9 mm					
						55

21. Anordnung nach einem der Ansprüche 10—19, mit folgenden Angaben für Brennweiten, Glastypen, Krümmungsradien der Flächen F und Dicken d für erstes und zweites optisches Glied G3, G4 der Zusatzoptik, die aus Linsen L5, L6 sowie L7, L8 besteht:

60

10

5	Glied- Nr. G3 G4	Brennweite -213 mm +211 mm	Linse -Nr. L 5 L 6 L7	Brennweite -36 mm +41 mm -41 mm	Glastyp BaK1 SFL6 SF10
			L8	+32 mm	Baf52
10					
		Flächen- Nr.	Radius	Dicke	
		F1	51.6 mm		
15				1.6 mm	
		F2	14.6 mm		
20				2.1 mm	
20		F3	24.4 mm	20.0	
		5 4	26.0	20.8 mm	
25		F4	26.0 mm	2.2 mm	
		F5	13.4 mm	2.2 (1111)	
		.5		3.2 mm	
30		F6	38.7 mm		
				_	
		Hierzu	2 Seite(n) Zeichnunger	<u>1</u>	

Nummer: Int. Cl.6: Offenlegungstag:

G 02 B 21/00 2. Oktober 1997

DE 196 12 846 A1

Nummer: Int. Cl.⁶: DE 196 12 846 A1 G 02 B 21/00

Offenlegungstag:

2. Oktober 1997

