ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ & ΣΤΑΤΙΣΤΙΚΗ

Σ.Η.Μ.Μ.Υ. ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ VI

Άσκηση 1 Έστω τυχαία μεταβλητή X, η οποία έχει συνάρτηση πυκνότητας πιθανότητας

$$f(x) = ce^{-4|x|}, \quad x \in \mathbb{R},$$

με c > 0.

- (α') Ποια είναι η τιμή της c;
- (β') Ποια είναι η μέση τιμή $\mathbb{E}(X)$;
- (γ') Ποια είναι η διασπορά Var(X);
- (δ') Να υπολογιστεί η πιθανότητα $\mathbb{P}(|X| > \frac{1}{2})$.

Άσκηση 2 Στο χρηματιστήριο, κάθε μέρα η τιμή μιας μετοχής αυξάνεται κατά 1€ με πιθανότητα 14%, αλλιώς μένει σταθερή, και οι αλλαγές αυτές είναι ανεξάρτητες από τη μια μέρα στην άλλη. Έστω ότι το πρωί της πρώτης μέρας η τιμή είναι 100 € και έστω Y_i η μεταβολή της τιμής κατά την i ημέρα.

- (α') Ποια είναι η κατανομή των τυχαίων μεταβλητών Y_i ;
- (β΄) Έστω Χ η συνολική διαφορά της τιμής μετά από ένα μήνα. Ποια είναι η κατανομή της τυχαίας μεταβλητής Χ;
- (γ') Ποια η πιθανότητα του ενδεχομένου E ότι μετά από ένα μήνα η τιμή θα είναι μεταξύ 110 και $112 \in (συμπεριλαμβανομένων);$
- (δ') Αν Z είναι η τιμή της μετοχής μετά απο 60 μέρες, να βρεθεί η μέση τιμή και η διασπορά της.
- (ε΄) Αν αντί για 1€ η τιμή αυξανόταν κατά 2€ ή έμενε σταθερή (με τις ίδιες πιθανότητες), να βρεθεί η μέση τιμή και η διασπορά της τιμής της μετοχής μετά από 60 μέρες.

Άσκηση 3 Έστω X συνεχής τ.μ. με σύνολο τιμών το $S=[2,+\infty)$ και πυκνότητα $f(x)=c/x^2$, για $x\in S$.

- (α') Να υπολογίσετε την τιμή της σταθεράς c.
- (β') Να αποδείξετε πως η μέση τιμή είναι άπειρη, $\mathbb{E}(X) = +\infty$.

Άσκηση 4 Το μέτρο X της ταχύτητας ενός μορίου αερίου μάζας m σε απόλυτη θερμοκρασία T είναι μια τ.μ. με κατανομή Maxwell-Boltzmann. Συγκεκριμένα η σ.π.π. της δίνεται από την

$$f(x) = \begin{cases} \alpha x^2 e^{-\beta x^2} & \text{ για } x > 0 \\ 0 & \text{ διαφορετικά,} \end{cases}$$

όπου $\beta=\frac{m}{2KT}$ και α είναι μια σταθερά κανονικοποίησης (K είναι η σταθερά του Boltzmann.)

- α) Υπολογίστε τη σταθερά α.
- β) Υπολογίστε την αναμενόμενη τιμή της X.
- γ) Υπολογίστε την αναμενόμενη τιμή της χινητιχής ενέργειας $E = \frac{1}{2}mX^2$.

Άσκηση 5 Η διάρχεια ζωής (σε ώρες) ενός προϊόντος είναι τ.μ. με συνάρτηση πυχνότητας πιθανότητας

$$f(x) = \frac{1}{1200}e^{-\frac{x}{1200}}, \ x > 0.$$

Κάθε μονάδα του προϊόντος έχει κόστος κατασκευής \leq 5.000, πωλείται προς \leq 7.000, και συνοδεύεται από εγγύηση για τη διάρκεια ζωής της. Συγκεκριμένα, αν αυτή είναι μικρότερη από 1000 ώρες το αντίτιμο της αγοράς επιστρέφεται στον αγοραστή, ενώ το προϊόν πωλείται προς \leq 500 ως παλαιό υλικό.

- (α') Υπολογίστε το αναμενόμενο χέρδος ανά μονάδα προϊόντος.
- (β΄) Ποια διάρχεια ζωής πρέπει να προβλέπει η εγγύηση ώστε το αναμενόμενο χέρδος ανά μονάδα προϊόντος να είναι τουλάχιστον €800;

- Άσκηση ${\bf 6}$ (α΄) Αν $X\sim \mathcal{N}(0,1)$ βρείτε την σ.π.π. f_Y της τ.μ. $Y=X^2$. Στη συνέχεια, υπολογίστε την $\mathbb{E}\big[Y\big]$ με δύο τρόπους: (i) με τον ορισμό, χρησιμοποιώντας τη σ.π.π. f_Y και (ii) με τον τύπο (10.10) στο βιβλίο των Κοντογιάννη-Τουμπή για τη μέση τιμή μιας συνάρτησης της τ.μ. X.
- (β') Αν $X \sim \mathcal{N}(0,1)$ βρείτε την σ.π.π. της τ.μ. $Y = e^X$ (log-normal distribution).

Άσκηση 7 (α΄) Αν η X είναι μια τ.μ. με τιμές στο $\{0,1,2,\ldots\}$, να αποδείζετε ότι

$$\mathbb{E}[X] = \sum_{k=0}^{\infty} \mathbb{P}[X > k] = \int_{0}^{\infty} \mathbb{P}[X > t] dt.$$

(β΄) Αν η X είναι μια μη αρνητική συνεχής τ.μ., να αποδείξετε ότι $\mathbb{E}[X]=\int_0^\infty \mathbb{P}[X>t]dt$. Στη συνέχεια, να συμπεράνετε ότι για μια (γενική) συνεχή τ.μ. X, ισχύει ότι

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}[X > t] dt - \int_0^\infty \mathbb{P}[X < -t] dt$$

Άσκηση 8 Έστω X μια συνεχής τ.μ. με σ.κ.π. F. Δείξτε ότι η $H(c)=\mathbb{E}\big[\,|X-c|\,\big]$ ελαχιστοποιείται αν και μόνο αν F(c)=1/2. Ένα τέτοιο c το ονομάζουμε διάμεσο τιμή της X.

Άσκηση 9 Σε ένα ντουλάπι υπάρχουν 32 διαφορετικά ζευγάρια παπούτσια. Αν βγάλουμε από το ντουλάπι 20 παπούτσια τυχαία, ποιο είναι το αναμενόμενο πλήθος ζευγαριών που θα απομείνουν;

Άσκηση 10 Ο κατάλογος ενός εστιατορίου έχει N πιάτα. Κάθε φορά που επισκέπτεστε το εστιατόριο επιλέγετε ένα από αυτά στην τύχη. Ποιος είναι ο αναμενόμενος αριθμός v_N των επισκέψεων που πρέπει να κάνετε μέχρι να δοκιμάσετε όλα τα πιάτα; Συμπεράνετε ότι $v_N \sim N \log N$, καθώς $N \to \infty$.