# Bak-Sneppenモデル

オブジェクト指向プログラミング特論

2016年度

只木進一:工学系研究科

### モデルの背景

- ●進化
  - ■適応度の高い種は生き残る
  - ■適応度の低い種は死に絶える
  - ▶食物連鎖などを通じて、絶滅は連鎖する
- ▶化石から分かること
  - ▶進化は直線的ではない
  - ▶爆発的進化、大絶滅、停滞

#### **Original Model**

- ▶一次元格子の各点に「種」
  - ■各種iは適応度 $f_i$ (0 ≤  $f_i$  < 1)を持つ
- 各時刻で最低の適応度の種jが絶滅し、 影響を受けて隣接種j±1も絶滅
  - ▶ランダムな適応度の新しい種に入れ替わる
- Per Bak and Kim Sneppen, Punctuated equilibrium and criticality in a simple model of evolution, Phys. Rev. Lett. 71 (1993) 4083.



#### 何を調べるか

- ■適応度は向上するのか
  - 過去に起こった絶滅において、適応度の 最低値「閾値」の変化
  - ●適応度が低いと、絶滅する頻度は高いの か
- ■閾値B(t)(初期値は0)
  - ■各時刻t での最低適応度f
  - $B(t) = \max(f, B(t-1))$

# 閾値の時間変化



▶最後に生き残った種の適応度の分布

■最低適応度として絶滅した種の適応度 の分布



- ■連鎖的に起こる絶滅の規模
  - ●絶滅が隣接種に広がる規模(継続時間 T)の分布
  - ●時刻tにおける最低適応度の種j(t)
    - $-if(j(t+1) == j(t) \pm 1)T ++ else T = 0$

# 絶滅連鎖の規模



### モデル拡張の方向性

■1次元鎖だけでなく、多様なネットワーク構造へ

- ■頂点と種の対応関係
- ■指定した頂点の隣接頂点

#### クラス設計

- ■modelパッケージ
  - ■Species:一つの種
  - ■Structure:種間の構造
  - ■BaseDynamics:系の動作
  - Dynamics:計測課程を含む系の動作
- ■systemパッケージ
  - ■OneDSystem:一次元鎖構造の定義

#### その他必要なもの

- ■最小の適応度を持つ種を探し出す
  - ■二分木ヒープ
- ■ヒストグラム

# クラス設計 modelパッケージ



# クラス設計 modelパッケージ

- model.Species
  - ▶一つの種を表現
  - ■フィールド:適応度と生存時間
  - ■Comparableを実装
    - ■適応度を比較
  - ▶絶滅したら、初期化

#### model.Structure

- ■インターフェース
- ▶種の連結関係
- ▶指定した種の隣接種を返すメソッド

- model.BaseDynamics
  - ■系の初期化
  - ▶状態更新
- model.Dynamics
  - ■BaseDynamicsを拡張
  - ■必要な観測量を記録する
    - ■閾値の変化など

# クラス設計 systemパッケージ

- ■具体的な種の関係
  - ■model.Structureを実装
  - OneDSystem
    - ▶一次元周期系
    - ▶隣接サイト
  - TwoDSystem
    - ■二次元周期系
    - ■Neuman近傍

## クラス設計 simulationパッケージ

■実際にシミュレーションを実行し、各種結果を出力する