Adaptive FEC for Congestion Control

Varun Singh, Marcin Nagy, Jörg Ott, Lars Eggert

IETF 90, Toronto, 24. July 2014

tools.ietf.org/html/draft-singh-rmcat-adaptive-fec-00

IPR

- Lars made a 3rd party disclosure:
 - https://datatracker.ietf.org/ipr/2394/
 - Also sent to the mailing list

Error Resilience

CONCEPT

CC Framework

RFC 6363: FEC Framework

State Machine

FEC Scheme

- Open Issue
 - Leave it open i.e., generic
 - Or, RF5109 (ULP), RFC6015 (1-d interleaved), parity, 1- or 2-d interleaved XOR, Reed-Solomon, ...

 There was discussion in RTCWEB on FEC Schemes.

RTCP Feedback

- RLE of Post-repair (RFC5725)
- RLE of loss packets (RFC3611)
- RLE of discarded packets (RFC7097)

- Packet count of lost and repaired packets
 - (draft-ietf-xrblock-post-loss-repair)

Applicability

- Implemented over a delay-based congestion control
 - See paper for details

- However would like to generalize it.
 - Apply to SCReAM, GCC, ...

Next steps

- Code: (coming soon)
 - https://github.com/protocols-comnet/rmcat-adaptive-fec-code
- Evaluation Paper:
 - Nagy M., Singh V., Ott J., Eggert L., Congestion Control using FEC for Conversational Multimedia Communication, Proc. of ACM Multimedia Systems, Singapore, SG, Mar, 2014,
- Initial comments received from Ingemar Johansson
 - More feedback is appreciated ©

Evaluation (1/3)

Ns-2 simulation, Variable link capacity, Single flow on the link

Evaluation (2/3)

Evaluation (3/3)

Compete with short TCPs

TESTBED Evaluation (1/2)

Two RTP flows on the link

• 1Mbit/s link capacity, 50ms one-way-delay,

TESTBED Evaluation (2/2)

1Mbit/s link capacity, 100ms one-way-delay,