Übungen zur Vorlesung "Algebra und Zahlentheorie"

WS 2011/2012

A. Schmitt

Übungsblatt 6

Abgabe: Bis Dienstag, den 6.12.2011, 10Uhr

Aufgabe 1 (Die additive Gruppe von Q; 10 Punkte).

Beweisen Sie, dass $\mathbb Q$ nicht endlich erzeugt ist, d.h. für jede **endliche** Teilmenge $M \subset \mathbb Q$ gilt

$$\langle M \rangle \subsetneq \mathbb{Q}$$
.

Aufgabe 2 (Zykelzerlegungen; 3+4+3 Punkte).

Es sei $n \ge 1$. Zwei Zykel $c_1 = (i_1 \cdots i_k)$ und $c_2 = (j_1 \cdots j_l)$ in S_n heißen disjunkt, falls

$$\forall \mu = 1, ..., k, \ \nu = 1, ..., l: \ i_{\mu} \neq j_{\nu}.$$

- a) Es seien c_1 und c_2 zwei disjunkte Zykel in S_n . Zu zeigen ist $c_1 \cdot c_2 = c_2 \cdot c_1$.
- b) Beweisen Sie folgende Aussage:

Satz. Es seien c_1 , ..., c_s und d_1 , ..., d_t Zykel, so dass c_i und c_j für $1 \le i < j \le s$ und d_k und d_l für $1 \le k < l \le t$ disjunkt sind. Aus

$$c_1 \cdot \cdot \cdot \cdot \cdot c_s = d_1 \cdot \cdot \cdot \cdot \cdot d_t$$

folgt

$$\{c_1,...,c_s\}=\{d_1,...,d_t\},$$

d.h. s = t und die Zykel $c_1, ..., c_s$ stimmen mit den Zykeln $d_1, ..., d_s$ bis auf die Reihenfolge überein.

c) Leiten Sie das folgende Ergebnis ab:

Folgerung. *Jede Permutation* $\sigma \in S_n \setminus \{e\}$ *besitzt eine bis auf die Reihenfolge eindeutige Darstellung*

$$\sigma = c_1 \cdot \cdot \cdot \cdot \cdot c_s$$

als Produkt paarweise disjunkter Zykel.

Aufgabe 3 (Rechnen in der symmetrischen Gruppe; 5+5+5 Punkte).

a) Schreiben Sie die Permutation

als Produkt disjunkter Zykel.

b) Stellen Sie die Permutation

als Produkt von Transpositionen dar.

c) Geben Sie das Vorzeichen der Permutation

an.

Aufgabe 4 (Gruppenwirkungen; 2+2+1 Punkte).

Für die folgenden Beispiele einer Gruppe G, einer Menge M, eines Elements $g \in G$ und eines Elements $x \in M$ ist das Element $g \cdot x$ anzugeben. Dabei sei die Gruppenwirkung $\sigma: G \times M \longrightarrow M$ die in der Vorlesung eingeführte.

a)
$$G := S_7, M := \{1, ..., 7\}, g := (1 \ 3 \ 6) \cdot (3 \ 5), x := 5.$$

b)
$$G := O_2(\mathbb{R}), M := \mathbb{R}^2, g$$
 die Drehung um den Winkel $\pi/4, x := \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

c)
$$G = GL_2(\mathbb{R}), M := \mathbb{R}^2, g := \begin{pmatrix} 3 & -5 \\ 2 & 11 \end{pmatrix}, x := \begin{pmatrix} 4 \\ -3 \end{pmatrix}.$$