<u>Área personal</u> / Mis cursos / <u>LFAyC - II</u> / <u>General</u> / <u>examen primer parcial octubre 2020-00</u>

Comenzado el martes, 27 de octubre de 2020, 15:00

Estado Finalizado

Finalizado en martes, 27 de octubre de 2020, 15:59

Tiempo 58 minutos 22 segundos

empleado

Calificación 7.50 de 10.00 (**75**%)

Pregunta 1

Correcto

Calificado con 0.50 sobre 0.50 ¿Cuál de las siguientes afirmaciones es correcta?

Seleccione una opción:

Cardinal(∅) = 0 y Cardinal ($\{\lambda\}$) =1 ✓

O Cardinal(\emptyset) = 1 y Cardinal ($\{\lambda\}$) =0

O Cardinal(\emptyset) = 1 y Cardinal ($\{\lambda\}$) =1

O Cardinal(\emptyset) = 0 y Cardinal($\{\lambda\}$) =0

La respuesta correcta es: Cardinal(\varnothing) = 0 y Cardinal ($\{\lambda\}$) =1

Pregunta **2**

Correcto

Calificado con 0.50 sobre 0.50 Siendo Lⁱ la potencia "i-ésima" de un lenguaje que representa a la operación que consiste en concatenarlo consigo mismo i veces. ¿Cuál de las siguientes notaciones y expresiones representan el cierre de un lenguaje o Estrella de Kleene?

Seleccione una opción:

 $L* = \bigcup_{i=1}^{\infty} L^i$

 $L+ = \bigcup_{i=1}^{\infty} L^i$

 $\bigcirc \quad L+=\bigcup_{i=0}^{\infty}L^{i}$

La respuesta correcta es: $L*=\bigcup_{i=0}^{\infty}L^{i}$

Incorrecto

Calificado con 0.00 sobre 0.50 ¿Cuál de las siguientes expresiones NO es correcta?

Seleccione una opción:

- L⁺ = L*L X

La respuesta correcta es: L^+ = $L^* \cup \{\lambda\}$

Pregunta **4**

Incorrecto

Calificado con 0.00 sobre 0.50 ¿Cuál de las siguientes producciones no está en estructura de frases?

Siendo:

$$\Sigma_{\mathsf{T}} = \{\infty, \, \heartsuit\}$$

$$\Sigma_N = \{X, Y, Z\}$$

Seleccione una opción:

- XY ::= Y X
- XY ::= Y∞∞♥
- Y ::= Y∞∞♥

La respuesta correcta es: XY ::= Y∞∞♥

Pregunta **5**

Correcto

Calificado con 0.50 sobre 0.50 ¿En qué tipo de gramática se pueden encontrar reglas de producción del tipo que se muestra a continuación?

u ::= **v** donde

- u∈∑⁺
- ν∈Σ*
- u = xAy
- x,y ∈∑*
- $A \in \Sigma_N$

Seleccione una opción:

- O Gramáticas de tipo 2
- O Gramáticas de tipo 3
- Gramáticas de tipo 0
- Gramáticas de tipo 1

La respuesta correcta es: Gramáticas de tipo 0

Correcto

Calificado con 0.50 sobre 0.50 Chomsky clasificó las gramáticas en cuatro grandes grupos. ¿Cuál es la jerarquía de Chomsky correcta?

Seleccione una opción:

- $G_3 > G_2 > G_1 > G_0$
- $\bigcirc \qquad G_4 \subset G_3 \subset G_2 \subset G_1$

La respuesta correcta es: $G_3\subset G_2\subset G_1\subset G_0$

Pregunta **7**

Correcto

Calificado con 0.50 sobre 0.50 Las gramáticas lineales son de tipo

Seleccione una opción:

- Tipo 2
- Tipo 1
- Tipo 0
- Tipo 3

La respuesta correcta es: Tipo 3

Pregunta 8

Correcto

Calificado con 0.50 sobre 0.50 Una Autómata Finito Determinista consta de los elementos

Seleccione una opción:

- alfabeto de entrada (Σ), conjunto de estados (Q), función de transición (f), estado inicial (q_0), conjunto de estados finales o estados de aceptación (F) y conjunto de λ transiciones (T)
- alfabeto de entrada (Σ), conjunto de estados (Q), función de transición (f), axioma (S) y conjunto de producciones (P)
- alfabeto de símbolos terminales (Σ_T), alfabeto de símbolos no terminales (Σ_N), función de transición (f), estado inicial (q_0)
- alfabeto de entrada (Σ), conjunto de estados (Q), función de transición (f), estado inicial (q_0) y conjunto de estados finales o estados de aceptación (F) \checkmark

La respuesta correcta es: alfabeto de entrada (Σ), conjunto de estados (Q), función de transición (f), estado inicial (q_0) y conjunto de estados finales o estados de aceptación (F)

Incorrecto

Calificado con 0.00 sobre 0.50 Cual de las siguientes sentencias NO es cierta:

Seleccione una opción:

- En los Autómatas Finitos Deterministas la entrada de un símbolo conduce unívocamente de un estado a otro perfectamente determinado.
- El conjunto de todas las palabras aceptadas por un autómata finito no determinista es el lenguaje aceptado por éste.
- Los Autómatas Finitos NO Deterministas son más potentes que los AFD porque pueden incluir λ
 transiciones e ir a varios estados para un símbolo de entrada dado, por lo que aceptan más lenguajes.
- Un AF NO Determinista es un autómata que tiene: ninguna, una o varias elecciones del próximo estado para un estrado dado y un símbolo de entrada, además acepta la transición para la palabra vacía.

La respuesta correcta es: Los Autómatas Finitos NO Deterministas son más potentes que los AFD porque pueden incluir λ transiciones e ir a varios estados para un símbolo de entrada dado, por lo que aceptan más lenguajes.

Pregunta 10

Correcto

Calificado con 0.50 sobre 0.50 Calcular la λ -clausura (E(q_x)) de todos los estados del siguiente autómata finito

Seleccione una opción:

- $E(q_0) = \{q_0, q_1\}$
- $E(q_1) = \{q_0, q_1\}$
- $E(q_2) = \{ q_1, q_2 \}$

- $E(q_0) = \{q_0, q_1, q_2\}$
- $E(q_1) = \{q_1, q_2\}$
- $E(q_2) = \{ q_1, q_2 \}$

- $E(q_0) = \{q_0, q_1\}$
- $E(q_1) = \{q_1\}$
- $E(q_2) = \{ q_1, q_2 \}$

~

- $E(q_0) = \{q_0, q_1\}$
- $E(q_1) = \{q_1\}$
- $E(q_2) = \{ q_1 \}$

La respuesta correcta es:

- $E(q_0) = \{q_0, q_1\}$
- $E(q_1) = \{q_1\}$
- $E(q_2) = \{ q_1, q_2 \}$

Correcto

Calificado con 0.50 sobre 0.50 ¿Cuál de los siguientes pasos **NO** se lleva a cabo para comprobar la equivalencia entre dos autómatas mediante la suma directa de los mismos?

Seleccione una opción:

- igcirc Se construye la suma directa de los mismos: $A_1 \oplus A_2$
- igcup Se obtiene el autómata cociente Q/E de la suma directa (Q₁ \cup Q₂)/E = P_E
- Se comprueba que un autómata se convierte en el otro renombrando los nodos
- \circ Se comprueba si q₀₁ y q₀₂ están en la misma clase Ci en P_E

La respuesta correcta es: Se comprueba que un autómata se convierte en el otro renombrando los nodos

Correcto

Calificado con 0.50 sobre 0.50 Dados los autómatas AF1 y AF2:

¿Cuál de las siguientes opciones es suma directa

de los mismos?

Seleccione una opción:

$$\bigcirc$$
 AF1 \bigoplus AF2 = $<\Sigma$ = {0, 1}, Q ={q1, q2, q3, q4, p1, p2, p3}, f, p1, F= {p2, q4}>

Con la siguiente f en forma de tabla de transición ("-->" indica el estado inicial y (x) indica que x es estado final)

	0	1
>p1	p2	p1
(p2)	p2	p1
рЗ	p2	p1
q1	q2	q1
q2	q3	q2
q3	q1	q1
(q4)	q2	q1

$$\bigcirc$$
 AF1 \bigoplus AF2 = $<\Sigma$ = {0, 1}, Q ={q1, q2, q3, q4, p1, p2, p3}, f, p1, F= {q1, p2}>

Con la siguiente f en forma de tabla de transición ("-->" indica el estado inicial y (x) indica que x es estado final)

	0	1
>p1	p2	p1
(p2)	p2	p1
p3	p2	p1
(q1)	q2	q1
q2	q4	q1
q3	q1	q1
q4	q2	q1

$$\bigcirc$$
 AF1 \bigoplus AF2 = $<\Sigma$ = {a, b}, Q ={q1, q2, q3, q4, p1, p2, p3}, f, q3, F= {q2, q4, p2}>

Con la siguiente f en forma de tabla de transición ("-->" indica el estado inicial y (x) indica que x es estado final)

ililai <i>)</i>		
	a	b
р1	p2	p1
(p2)	p2	p1
рЗ	p2	p1
q1	q2	q1
(q2)	q4	q1
 >q3	q1	q1
(q4)	q2	q1

 \bigcirc AF1 \bigoplus AF2 = <Σ = {0, 1}, Q ={q1, q2, q3, q4, p1, p2, p3}, f, p1, F= {q2, q4, p2}>

Con la siguiente f en forma de tabla de transición ("-->" indica el estado inicial y (x) indica que x es estado final)

	0	1
>p1	p2	p1
(p2)	p2	p1
p3	p2	p1
q1	q2	q1
(q2)	q4	q1
q3	q1	q1
(q4)	q2	q1
→		

La respuesta correcta es: AF1 \oplus AF2 = $<\Sigma$ = {0, 1}, Q ={q1, q2, q3, q4, p1, p2, p3}, f, p1, F= {q2, q4, p2}>

Con la siguiente f en forma de tabla de transición ("-->" indica el estado inicial y (x) indica que x es estado final)

	0	1
>p1	p2	p1
(p2)	p2	p1

p3	p2	p1
q1	q2	q1
(q2)	q4	q1
q3	q1	q1
(q4)	q2	q1

Correcto

Calificado con 0.50 sobre 0.50 Para calcular la suma directa \oplus de AF1 y AF2 hay que calcular los conjuntos de clases de equivalencia. ¿Cuáles son los conjuntos de equivalencia de longitud 0 (denotado por P_0)?

Seleccione una opción:

- $P_0 = \{A_1 = [q1, p1]; A_2 = [p2, q2, q4]; A_3 = [p3, q3]\}$
- \bigcirc P₀ = { A₁ = [p2, q2, q3, q4]; A₂ = [p1, p3, q1]}
- \bullet P₀ = {A₁ = [p2, q2, q4]; A₂ = [p1, p3, q1, q3]} \checkmark
- $P_0 = \{ A_1 = [q1, p1]; A_2 = [p2, p3, q2, q3, q4] \}$

La respuesta correcta es: $P_0 = \{A_1 = [p2, q2, q4]; A_2 = [p1, p3, q1, q3]\}$

Pregunta **14**

Correcto

Calificado con 0.50 sobre 0.50 Para calcular la suma directa \oplus de AF1 y AF2 hay que calcular los conjuntos de clases de equivalencia. ¿Cuáles son los conjuntos de equivalencia P_E y en qué iteración se alcanzan?

Seleccione una opción:

- \bigcirc $P_E = \{ B_1 = [p1, q1], B_2 = [p2, q2, q4], B_3 = [p3] \}$ siendo igual a P_2 ya que $P_2 = P_1$
- $P_E = \{ B_1 = [p2, q2], B_2 = [p3, q3, q4], B_3 = [q1, p1] \}$ siendo igual a P_1 ya que $P_2 = P_1$
- $P_E = \{ B_1 = [p2, q2, q4], B_2 = [p1, p3, q1], B_3 = [q3] \}$ siendo igual a P_1 ya que $P_2 = P_1$
- \bigcirc $P_E = \{ B_1 = [p2, q2, q4], B_2 = [p1, p3, q1], B_3 = [q3] \}$ siendo igual a P_0 ya que $P_0 = P_1$

La respuesta correcta es: $P_E = \{ B_1 = [p2, q2, q4], B_2 = [p1, p3, q1], B_3 = [q3] \}$ siendo igual a P_1 ya que $P_2 = P_1$

Correcto

Calificado con 0.50 sobre 0.50 ¿Son equivalentes AF1 y AF2? Seleccione la respuesta correcta incluyendo la explicación de por qué (en caso de ser necesario).

Seleccione una opción:

- Sí, porque lo estados finales (p2, q2, q4) pertenecen a la misma clase o conjunto de equivalencia en P_E
- Sí, porque lo estados iniciales (p1 y q1) pertenecen a la misma clase o conjunto de equivalencia en P_E
 - **~**
- O No
- Sí, porque son isoformos

La respuesta correcta es: Sí, porque lo estados iniciales (p1 y q1) pertenecen a la misma clase o conjunto de equivalencia en $P_{\rm E}$

Pregunta 16

Correcto

Calificado con 0.50 sobre 0.50 Dada la expresión regular R = a(b + a*b)* obtener $D_a(R)$ y $D_b(R)$

Seleccione una opción:

•
$$D_a(R) = (b + a*b)*$$

•
$$D_b(R) = \lambda$$

•
$$D_b(R) = (b + a*b)*$$

•
$$D_a(R) = a*b(b + a*b)*$$

•
$$D_b(R) = \emptyset$$

•
$$D_a(R) = (b + a*b)*$$

•
$$D_b(R) = \emptyset$$

~

La respuesta correcta es:

•
$$D_a(R) = (b + a*b)*$$

Correcto

Calificado con 0.50 sobre 0.50 Dada la expresión regular R = a(b + a*b)* obtener $D_a(D_a(R))$ y $D_b(D_a(R))$

Seleccione una opción:

 \bigcirc

- $D_a(D_a(R)) = a(ba)*b$
- $D_b(D_a(R)) = a*b(b + a*b)*$

- $D_a(D_a(R)) = (b + a*b)*$
- $D_b(D_a(R)) = \lambda$

- $D_a(D_a(R)) = a*b(b + a*b)*$
- $D_b(D_a(R)) = (b + a*b)*$

~

- $D_a(D_a(R)) = a*b(b + a*b)*$
- $D_b(D_a(R)) = \emptyset$

La respuesta correcta es:

- $D_a(D_a(R)) = a*b(b + a*b)*$
- $D_b(D_a(R)) = (b + a*b)*$

Pregunta 18

Incorrecto

Calificado con 0.00 sobre 0.50 Dada la expresión regular R = a(b + a*b)* obtener $D_a(D_a(D_a(R)))$ y $D_b(D_a(D_a(R)))$

Seleccione una opción:

- $D_a(D_a(R)) = a*b(b + a*b)*$
- $D_b(Da(D_a(R))) = (b + a*b)*$

- $D_a(D_a(D_a(R))) = (b + a*b)*$
- $D_b(D_a(D_a(R))) = a*b(b + a*b)*$

- $D_a(D_a(D_a(R))) = a*b(b + a*b)*$
- $D_b(D_a(D_a(R))) = \emptyset$

- $D_a(D_a(D_a(R))) = a*b(b + a*b)*$
- $D_b(D_a(D_a(R))) = \lambda$

×

La respuesta correcta es:

- $D_a(D_a(R)) = a*b(b + a*b)*$
- $D_b(Da(D_a(R))) = (b + a*b)*$

Correcto

Calificado con 0.50 sobre 0.50 Dada la expresión regular **R= a(b + a*b)*** obtener mediante derivadas la Gramática Lineal Derecha que genera el lenguaje descrito por R.

Seleccione una opción:

```
GLD = (\Sigma_T = \{a, b\}, \Sigma_N = \{R, S, T\}, R, P)
    P = {R ::= aS | a
           S ::= aT | bS | b
           T ::= aS | bT | b }
• GLD = (\Sigma_T = \{a, b\}, \Sigma_N = \{R, S, T\}, R, P)
   P = {R ::= aS | a
           S ::= aT | bS | b
            T ::= aT | bS | b } 	
   \mathsf{GLD} = (\Sigma_\mathsf{T} = \{\mathsf{a},\,\mathsf{b}\},\,\Sigma_\mathsf{N} = \{\,\mathsf{R},\,\mathsf{S},\,\mathsf{T}\},\,\mathsf{R},\,\mathsf{P})
    P = {R ::= aS | a
           S ::= aT | b
           T ::= aT | bS }
    GLD = (\Sigma_T = \{a, b\}, \Sigma_N = \{R, S, T\}, R, P)
   P = {R ::= aS | a
           S ::= aT | bS | b
            T ::= aT | bS }
```

```
La respuesta correcta es: GLD = (\Sigma_T = \{a, b\}, \Sigma_N = \{R, S, T\}, R, P)

P = \{R ::= aS \mid a

S ::= aT \mid bS \mid b

T ::= aT \mid bS \mid b
```

Pregunta **20**Incorrecto

Calificado con 0.00 sobre 0.50 Dada la expresión regular R = a(b + a*b)* obtener mediante derivadas el Autómata Finito que acepta el lenguaje descrito por R.

Seleccione una opción:

La respuesta correcta es:

◆ Grupos 3S1M, 3S1M-B, 3S2M,3S2M-B y 5S1M-ADE (accede para despliegue de horarios)

Ir a...

Material de apoyo tema 1 ▶