CS561 - ARTIFICIAL INTELLIGENCE LAB

ASSIGNMENT-4: Hill Climb

(Read all the instructions carefully & adhere to them.)

Date: 28th August, 2023 Deadline:3rd September, 2023

Total Credit: 30

Instructions:

- 1. The assignment should be completed and uploaded by **3rd September**, **2023**, **11:59 PM IST**.
- 2. Markings will be based on the correctness and soundness of the outputs. Marks will be deducted in case of plagiarism.
- 3. Proper indentation and appropriate comments are mandatory.
- 4. You should zip all the required files and name the zip file as:
- 5. roll no of all group members .zip, eg. 1501cs11 1201cs03 1621cs05.zip.
- 6. Upload your assignment (**the zip file**) in the following link: https://www.dropbox.com/request/AWScViWcfkX00oQOXutS

For any queries regarding this assignment you can contact:
Aizan Zafar (aizanzafar@gmail.com)
Gitanjali Kumari (gitanjalisingh228@gmail.com)
Jitendra Solanki (solankijitendra032@gmail.com)
Questions

A local search algorithm tries to find the optimal solution by exploring the states in the local region. Hill climbing is a local search technique that always looks for a better solution in its neighborhood.

- A. Implement the Hill Climbing Search Algorithm for solving the 8-puzzle problem.
- B. Check the algorithm for the following heuristics: i. h1(n) = number of tiles displaced from their destined position. ii. h2(n) = sum of the Manhattan distance of each tile from the goal position.

Instructions:

1. Input is given in a file in the following format. Read the input and store the information in a matrix. Configuration of the start state and the goal state can be anything. For example, given below, T1, T2, ..., T8 are tile numbers, and B is blank space.

Initial state:

T6	Т7	Т3
T8	T4	T2
T1	В	T5

Goal State:

T1	T2	Т3
T4	T5	Т6
T7	Т8	В

- 2. The output should have the following information:
 - a. On success:
 - i. Success Message
 - ii. Start State / Goal State
 - iii. Total number of states explored
 - iv. Total number of states to the optimal path
 - v. Optimal Path
 - vi. Optimal Path Cost
 - vii. Time taken for execution
 - b. On failure:
 - i. Failure Message
 - ii. Start State / Goal State
 - iii. Total number of states explored before termination