Problem set 3

Rui He 10/25/2019

Data Munging

1 & 2. Data loaded and munged.

```
library('tidyverse')
library('skimr')
library('seriation')

load("~/Documents/UML/legprof-components.v1.0.RData")
x_sub <- x %>%
    dplyr::select(stateabv,t_slength,sessid,slength,salary_real,expend) %>%
    filter(sessid=='2009/10')%>%
    drop_na()

x_con <-subset(x_sub,select =c(t_slength,slength,salary_real,expend))
x_scale <-scale(x_con)
state <- subset(x_sub,select = c(stateabv))</pre>
```

EDA

3 Mean and distribution of four variables are calculated. Cluster plot shows that there are correlations between the expenditure and salary, and between total session length and length. A couple outliers are salient in this case, for example, new york and california are higher in expenditure, salary and session length.

```
summary(x_con)
##
      t_slength
                        slength
                                       salary_real
                                                           expend
##
   Min.
          : 40.00
                     Min.
                            : 40.0
                                      Min.
                                            : 0.00
                                                              : 70.43
                                                       Min.
                                      1st Qu.: 19.69
##
   1st Qu.: 97.42
                     1st Qu.: 93.0
                                                       1st Qu.: 277.08
  Median :127.77
                     Median :123.0
                                      Median : 40.33
                                                       Median: 535.14
##
           :147.80
                            :138.5
                                             : 54.99
                                                               : 744.47
  Mean
                     Mean
                                      Mean
                                                       Mean
   3rd Qu.:159.00
                     3rd Qu.:151.2
                                      3rd Qu.: 77.43
                                                       3rd Qu.: 724.91
           :458.15
                            :427.1
                                             :213.41
                                                               :5523.10
   Max.
                     Max.
                                      Max.
                                                       Max.
ggplot(x_con,aes(x=expend,y=salary_real))+
  geom_point()+
  geom_smooth(method=lm)
```



```
ggplot(x_con,aes(x=t_slength,y=slength))+
  geom_point()+
  geom_smooth(method=lm)
```


Diagnosing clusterability

4. Using ODI shows that the data may be cluster as seen in the upper left, there is a small lighter square. In the lower right, the square is darker, suggesting there may be some clusterability in the observations.

```
x_dist <- dist(x_scale,method = "euclidean")
dissplot(x_dist)</pre>
```


K-mean

5. k-mean: The algorithm was initiated at k=2 and there are two clusters. The summary of centers showed the separation of two clusters and cluster 1 are higher in session length, expenditure, and salary. We can further investigate the states in the first cluster as displayed below.

```
library(cluster)
# fit k-mean, k = 2
set.seed(335)
kmeans <- kmeans(x_scale, center= 2,nstart = 15)</pre>
x_con$Cluster_km <- as.factor(kmeans$cluster)</pre>
kmeans$cluster
                        8
                           9 10 11 12 13 14 15 16 17 18
                     2
                        2
                          2
                             2
                                2 2 2
                                          2
## 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 50
              2 2 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2
```

```
kmeans$centers
```

```
## t_slength slength salary_real expend
## 1 2.1000302 2.1014710 2.0307585 1.4677087
## 2 -0.2930275 -0.2932285 -0.2833616 -0.2047966
```

kmeans\$size

```
## [1] 6 43
```

```
# find states within cluster 1
state[which(x_con$Cluster_km==1),]
```

GMM Model

[1] "CA" "MA" "MI" "NY" "OH" "PA"

6. The Gaussian Mixture models shows two distributions one centered around ~0 with narrower variance whereas one with much wider variance.

```
library(mixtools) # fitting GMMs via EM
library(plotGMM) # customizing GMM plot
gmm <- normalmixEM(x_scale, k = 2)</pre>
summary(gmm)
posterior <- data.frame(cbind(gmm$x, gmm$posterior))</pre>
t_gmm<-data.frame(as.table(ifelse(posterior$comp.1>0.3,1,2)))
colnames(t_gmm)[colnames(t_gmm)=='Freq'] <- 'cluster'</pre>
state_ind <- which(t_gmm$cluster==1)</pre>
x_con$cluster_gmm <- t_gmm$cluster[1:49]</pre>
state[state_ind[1:9],]
ggplot(data.frame(x = gmm$x)) +
  geom_histogram(aes(x, ..density..), fill = "darkgray") +
  stat_function(geom = "line", fun = plot_mix_comps,
                args = list(gmm$mu[1], gmm$sigma[1], lam = gmm$lambda[1]),
                colour = "darkred") +
  stat_function(geom = "line", fun = plot_mix_comps,
                args = list(gmm$mu[2], gmm$sigma[2], lam = gmm$lambda[2]),
                colour = "darkblue") +
  xlab("Legislative Professionalism")
```



```
ylab("Density") +
theme_bw()
```

PAM

7. For the additional method, I used parition around medoids (PAM), which instead using the mediud instead of centroid in K-means.

```
pam <- pam(x_scale, 2)
x_con$Cluster_pam <- pam$clustering
state[which(pam$clustering==2),]
## [1] "CA" "IL" "MA" "MI" "NY" "OH" "PA"</pre>
```

8. Visualization of results

```
kmeans_plot <-x_con %>%
  ggplot(aes(x=expend, y = salary_real, color = as.factor(Cluster_km))) +
  geom_point() +
  labs(x = 'Legislator expenditures',
        y = 'Legislator Salary',
        title = 'K-Means model')
```

```
theme_bw()
gmm_plot <-x_con %>%
  ggplot(aes(x=expend, y = salary_real, color = as.factor(cluster_gmm))) +
  geom_point() +
  labs(x = 'Legislator expenditures',
      y = 'Legislator Salary',
      title = 'Gaussian Mixture model')
  theme_bw()
pam_plot <-x_con %>%
  ggplot(aes(x=expend, y = salary_real, color = as.factor(Cluster_pam))) +
  geom point() +
  labs(x = 'Legislator expenditures',
      y = 'Legislator Salary',
      title = 'PAM model')
  theme_bw()
  library(gridExtra)
grid.arrange(kmeans_plot,gmm_plot,pam_plot,ncol=2)
```

K-Means model

as.factor(Cluster_km) 150 100 1 200 100 1 2 Legislator expenditures

Gaussian Mixture model

PAM model

9. Validation of methods

10. Disucssion of validation output

Validation measures looked at the connectivity, Dunn's index and average silhouette width. Based on the result, it seems that GMM yield highest number of connectivity when k=2. For K-means, k=2 or 3 generate a similar average silhouette width but the dunn's index is higher for k=3, which may suggests that when k=3 the result may be optimal. Whereas for GMM and PAM, k=2 has higher dunn's index and silhouette width, suggesting that the two-cluster configuration is more valid with these two methods.

It may sugguest that the GMM model serve as a optimal approach for this data set according to the connectivity. The sub-optimal partitioning method gives comparable results with the other methods, and in this case of looking at legislator professionalism, some states are consistently clustered together (CA, NY, NJ, MI), showing a coherent result from the three methods.