

cap

cap

cap

Figure 2-25

Figure 3-21

cap cap

cap

Figure 4-17 (continued)

Figure 4-26

Example 6-2 Solution

Italicize variables.

Example 6-3 Solution

Figure 6-17 ******************** % Design script for three-stage transresistance amplifier % Compute drain currents ID1 = IDtot*ID1_IDtot; % Process technology parameters $\begin{aligned} k_{P} & n = 50\text{-}6\text{;} \\ k_{P} & n = 50\text{-}6\text{;} \\ \text{Cox} & = 2.3\text{e}-3\text{;} \\ m_u & = k_{P} & n/\text{Cox;} \\ \text{Cov} & = 0.5\text{e}-9\text{;} \\ \text{gmb_gm} & = 0.2\text{;} \end{aligned}$ ID3 = IDtot*ID3 IDtot; ID2 = IDtot - ID1 - ID3; % Calculations for M1 W1 = 2*ID1/(kp_n/L1*VOV1^2); Cgs1 = 2/3*W1*L1*Cox + W1*Cov; % Design specifications $R_{\rm B} = 2 {\rm e} 3j$ $CD = 5 {\rm e} - 12j$ $CL = 10 {\rm e} 12j$ $IDtot = 3 {\rm e} - 3j$ tau_in = (Cgs1+CD)/(gml*(1+gmb_gm)); % Calculations for M3 gm3 = 2*ID3/VOV3; Cgs3 = 2/3*W3*L3*Cox + W3*Cov; Cgd3 = W3*Cov; % Design choices VOV1 = 0.3; VOV2 = 0.3; VOV3 = 0.3; L1 = 1e-6; L2 = 1e-6; L3 = 1e-6; Av30 = 1-gmb_gm; tau_out = (CL+Cgs3)/(gm3*(1+gmb_gm)); % Calculations for M2 W2 = 2*ID2/(kp_n/L2*VOV2^2); Cgs2 = 2/3*W2*L2*Cox + W2*Cov; % optimization parameters ID1_IDtot = 0.25; ID3_IDtot = 0.25; Av20 = 10; RD1 = Rm/Av20/Av30; tau core = RD1*(Cgs2 + (1+Av20)*Cgd2) + RD2*(Cgd3+(1-Av30)*Cqs3); $\ensuremath{\text{\upshape}}$ Total time constant and bandwidth estimate tau_tot = tau_il + tau_core + tau_out f3dB = 1/2/pi/tau_tot

