第三章 函数极限

3.1 函数极限的概念

一、函数在无穷远处的极限

设
$$f(x) = \frac{1}{x}(x>0)$$
.

当
$$x \to +\infty$$
时, $f(x) \to 0$.

定义1: 设 f(x) 定义在 $[a,+\infty)$ 上, A 为常数.若 $\forall \varepsilon > 0$, 存在 M > 0, 当x > M 时, 有

$$|f(x)-A|<\varepsilon$$
,

则称函数 f(x)当 $x \to +\infty$ 时以 A 为极限,

记作
$$\lim_{x \to +\infty} f(x) = A$$
或 $f(x) \to A(x \to +\infty)$.

 $\lim_{x\to +\infty} f(x) = A$ 的几何意义: $\forall \varepsilon > 0$, $\exists M > 0$,当

x > M时, y = f(x)图形落在 $y = A \pm \varepsilon$ 之间.

例1、证明
$$\lim_{x\to +\infty} \frac{1}{x} = 0$$
.

例2、证明
$$\lim_{x\to +\infty} \arctan x = \frac{\pi}{2}$$
.

定义2: $\lim_{x \to -\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists M > 0, \exists x < -M 时,$ 有 $|f(x) - A| < \varepsilon$.

 $\lim_{x\to\infty} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists M > 0, \dot{\exists} |x| > M 时,$ $\dot{f} |f(x) - A| < \varepsilon.$

 $\lim_{x\to\infty} f(x) = A$ 的几何意义: $\forall \varepsilon > 0$, $\exists M > 0$, 当

|x| > M时, y = f(x)图形落在 $y = A \pm \varepsilon$ 之间.

y = A 称为y = f(x) 的 水平渐近线。

例3、证明
$$\lim_{x\to\infty}\frac{\sin x}{x}=0$$
.

定理1:
$$\lim_{x \to \infty} f(x) = A \Leftrightarrow \lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x) = A$$
.

函数在有限点处的极限

引例: 讨论当 $x \to 1$ 时, f(x)的极限.
(1) f(x) = 2x + 1; (2) $f(x) = \frac{x^2 - 1}{x - 1}$.

$$(1) f(x) = 2x + 1;$$

(2)
$$f(x) = \frac{x^2-1}{x-1}$$
.

共同点: x 趋于 x_0 时,对应的函数值 f(x) 无限接近某一确定的常数 A.

称当 $x \to x_0$ 时,函数 f(x) 的极限为 A.

设 ε , δ > 0,

$$x \to x_0: \quad 0 < |x - x_0| < \delta;$$

$$f(x)$$
接近 A : $|f(x)-A|<\varepsilon$.

当 $x \to x_0$ 时, f(x)无限接近A:

* 不论你要求 |f(x)-A| 多么小,

$$\forall \varepsilon > 0$$
,要使 $|f(x) - A| < \varepsilon$;

* 只要 $|x-x_0|$ 足够小 $(x \neq x_0)$,

$$\exists \delta > 0, \mathbf{m} 0 < |x - x_0| < \delta;$$

* |f(x)-A|就能那么小,

所对应的 f(x) 就满足 $|f(x)-A| < \varepsilon$.

定义1: 若存在常数 A,使得 $\forall \varepsilon > 0$, $\exists \delta > 0$,当x满足 $0 < |x - x_0| < \delta$ 时,

对应的函数值 f(x) 就满足

$$|f(x)-A|<\varepsilon,$$

则称 A为 f(x)当 $x \to x_0$ 时的极限,记为:

$$\lim_{x\to x_0} f(x) = A \quad \text{if} \quad (f(x)\to A(\stackrel{\text{dist}}{=} x\to x_0)).$$

注: 定义1 称为函数极限的 $\varepsilon - \delta$ 定义.

几何意义:

 ε 越小,

 δ 越小.

注: $(1) f(x) 在 x_0$ 可以无定义;

(2) A与 $f(x_0)$ 可以不相等.

例4、证明: (1) $\lim_{x\to x_0} c = c(c)$ 为常数);

(2)
$$\lim_{x\to 1} \frac{x-1}{\sqrt{x-1}} = 2$$
;

(3)
$$\lim_{x\to 2} (x^2 - 6x + 10) = 2$$
.

证明的关键:

由
$$|f(x)-A| < \varepsilon$$
解出 $|x-x_0| < \delta(\varepsilon)$.

例5、证明:
$$\forall x_0 \in R$$
,有 $\lim_{x \to x_0} a^x = a^{x_0} (a > 0, a \neq 1)$.

例6、证明

- (1) $\lim \sin x = \sin x_0$; $x \rightarrow x_0$
- $(2) \lim \cos x = \cos x_0.$ $x \rightarrow x_0$

 $|\sin x| \leq |x|$

单侧极限

$$\lim_{x \to x_0} f(x) = A 是双侧极限。$$

考虑
$$sgn(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \leq x \to 0 \end{cases}$$
 时的极限.

限制 x 从左侧 趋于 x_0

左极限:
$$f(x_0 - 0) = \lim_{x \to x_0^-} f(x) = A \Leftrightarrow \forall \varepsilon > 0, \exists \delta > 0,$$

$$\exists x \in (x_0 - \delta, x_0) \text{时}, \boxed{f} |f(x) - A| < \varepsilon;$$

限制 x 从右侧 趋于 x_0

定理2:
$$\lim_{x\to x_0} f(x) = A \Leftrightarrow \lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) = A$$
.

注: 由定理2得, $\lim_{x\to x_0} f(x)$ 不存在的情形:

$$(1) f(x_0 - 0)$$
与 $f(x_0 + 0)$ 都存在但不相等;

 $(2) f(x_0 - 0)$ 与 $f(x_0 + 0)$ 至少有一个不存在。

例7、(1) 设
$$f(x) = |x|$$
, 求 $\lim_{x\to 0} f(x)$;

(2) 设
$$f(x) = [x]$$
, 求 $\lim_{x\to 2} f(x)$.

作业

习 题 3.1:1(3)(5)、6(3)