

Facial Keypoint Recognition

Initial Modelling

w207 03, Spring 2021

The Black Boxes

Modelling Overview

- Data explored, cleaned.
- 3 datasets to model:
 - Raw dataset use mean to fill missing values
 - Duplicates removed use mean to fill in missing values
 - Augmented dataset Linear regression to predict missing values
- This is a regression problem i.e. trained model predicts the x, y values of the keypoints given an image
- Models tried:
 - Linear regression: OLS, ridge, lasso
 - Decision tree regression
 - K-nearest neighbors regression (use 5 and 7 neighbors).

Linear Model Performance

Examples: OLS Predictions

Training Sample: 1	Training Sample: 2	Training Sample: 3	Training Sample: 4	Training Sample: 5
25				
Training Sample: 6	Training Sample: 7	Training Sample: 8	Training Sample: 9	Training Sample: 10
		a a	and the second	· ·
in the second				
•	•	• Training Sample: 13	•	•
Training Sample: 11	Training Sample: 12	Training Sample. 13	Training Sample: 14	Training Sample: 15
		1 37		
4	· ·	3/		
Training Sample: 16	Training Sample: 17	Training Sample: 18	Training Sample: 19	Training Sample: 20
	O.C.			

Examples: Lasso Predictions

Training Sample: 1

Training Sample: 6

Training Sample: 11

Training Sample: 16

Training Sample: 2

Training Sample: 7

Training Sample: 12

Training Sample: 17

Training Sample: 3

Training Sample: 8

Training Sample: 13

Training Sample: 18

Training Sample: 4

Training Sample: 14

Training Sample: 19

Training Sample: 5

Training Sample: 10

Training Sample: 15

Training Sample: 20

Decision Tree Regression Performance

Examples: Decision Tree Predictions (raw dataset)

Training Sample: 1

Training Sample: 6

Training Sample: 6

K-Nearest Neighbors Regression Performance

Random Forest Regression (5 estimators)

Summary of Modelling

- Standard SKL regression models do not offer very good performance for this task.
- KNN/RFR seem to offer the best performance out of all tested.
- The raw dataset (with mean fill) generally gives best performance.
- Eyeglasses, angled and childrens faces seem to pose challenges.
- Computationally intensive take long time to run, difficult to optimize.
- The impact of various data processing methods is variable and model dependent.

Next Steps

- Look into deep learning frameworks TensorFlow, PyTorch etc.
- See if any standard models (non-DL) can be optimized for this task e.g. ensemble methods.