```
In [20]: import pandas as pd
         import statsmodels.api as sm
         import matplotlib.pyplot as plt
         path = r"C:\Users\soo18\OneDrive\Desktop\Data Science\homework-8-asherkim169\time_s
         df = pd.read csv(path)
         country = "Korea, South"
         country df = df[df['Country/Region'] == country].drop(columns=['Province/State', 'L
         country_df = country_df.groupby('Country/Region').sum()
         country ts = country df.T
         country_ts.index = pd.to_datetime(country_ts.index)
         country ts.columns = ['cases']
         first_nonzero_idx = (country_ts['cases'] > 0).idxmax()
         country ts = country ts.loc[first nonzero idx:].copy()
         country_ts['t'] = range(len(country_ts))
         k = 5
         for lag in range(1, k + 1):
             country_ts[f'Y_lag{lag}'] = country_ts['cases'].shift(lag)
         df_model = country_ts.dropna().reset_index(drop=True)
         X = df_model[[f'Y_lag{lag}' for lag in range(1, k + 1)]]
         X = sm.add constant(X)
         y = df model['cases']
         model = sm.OLS(y, X).fit()
         print("Lag Model Analysis")
         print(model.summary())
         plt.figure(figsize=(10, 5))
         plt.plot(country_ts['t'], country_ts['cases'], label='Daily cases (cumulative)')
         plt.title(f"COVID-19 Cases in {country}")
         plt.xlabel("Days since first case")
         plt.ylabel("Cumulative cases")
         plt.legend()
         plt.tight_layout()
         plt.show()
         coefs = model.params
         print("\n=== INTERPRETATION ===")
         for i in range(1, k + 1):
             beta = coefs[f'Y_lag{i}']
             print(f''\beta\{i\} = \{beta:.4f\}: a 1-case increase \{i\} day(s) ago "
                   f"is associated with {beta:.4f} more cases today (holding others constant
```

```
total_effect = sum(coefs[f'Y_lag{i}'] for i in range(1, k + 1))
print(f"\nCumulative 5-day lag effect: {total_effect:.4f}")
```

Lag Model Analysis

OLS Regression Results

cases	R-squared:	1.000					
0LS	Adj. R-squared:	1.000					
Least Squares	F-statistic:	6.917e+07					
Tue, 21 Oct 2025	Prob (F-statistic):	0.00					
19:18:32	Log-Likelihood:	-12877.					
1138	AIC:	2.577e+04					
1132	BIC:	2.580e+04					
5							
	OLS Least Squares Tue, 21 Oct 2025 19:18:32 1138 1132	OLS Adj. R-squared: Least Squares F-statistic: Tue, 21 Oct 2025 Prob (F-statistic): 19:18:32 Log-Likelihood: 1138 AIC: 1132 BIC:					

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const Y_lag1 Y_lag2 Y_lag3 Y_lag4 Y_lag5	880.8861 1.6046 -0.5625 0.1915 -0.1411 -0.0925	725.279 0.030 0.056 0.058 0.056 0.030	1.215 54.217 -10.050 3.294 -2.520 -3.118	0.225 0.000 0.000 0.001 0.012 0.002	-542.155 1.546 -0.672 0.077 -0.251 -0.151	2303.928 1.663 -0.453 0.306 -0.031 -0.034
Omnibus: Prob(Omnibus) Skew: Kurtosis:	us):	2.):	2.036 93909.733 0.00 3.62e+07

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spe cified.
- [2] The condition number is large, 3.62e+07. This might indicate that there are strong multicollinearity or other numerical problems.

C:\Users\soo18\AppData\Local\Temp\ipykernel_6376\4031411247.py:15: UserWarning: Coul
d not infer format, so each element will be parsed individually, falling back to `da
teutil`. To ensure parsing is consistent and as-expected, please specify a format.
 country_ts.index = pd.to_datetime(country_ts.index)


```
=== INTERPRETATION ===
```

 β 1 = 1.6046: a 1-case increase 1 day(s) ago is associated with 1.6046 more cases tod ay (holding others constant).

 β 2 = -0.5625: a 1-case increase 2 day(s) ago is associated with -0.5625 more cases t oday (holding others constant).

 β 3 = 0.1915: a 1-case increase 3 day(s) ago is associated with 0.1915 more cases tod ay (holding others constant).

 β 4 = -0.1411: a 1-case increase 4 day(s) ago is associated with -0.1411 more cases t oday (holding others constant).

 β 5 = -0.0925: a 1-case increase 5 day(s) ago is associated with -0.0925 more cases t oday (holding others constant).

Cumulative 5-day lag effect: 1.0000

```
In [21]: import pandas as pd
         import numpy as np
         import statsmodels.api as sm
         import matplotlib.pyplot as plt
         from sklearn.metrics import mean_squared_error
         path = r"C:\Users\soo18\OneDrive\Desktop\Data Science\homework-8-asherkim169\time_s
         df = pd.read_csv(path)
         def prepare_country_data(df, country, k=5):
             country_df = df[df['Country/Region'] == country].drop(columns=['Province/State'
             country_df = country_df.groupby('Country/Region').sum()
             ts = country_df.T
             ts.index = pd.to_datetime(ts.index)
             ts.columns = ['cases']
             first_nonzero_idx = (ts['cases'] > 0).idxmax()
             ts = ts.loc[first_nonzero_idx:].copy()
             ts['t'] = np.arange(len(ts))
             for lag in range(1, k+1):
                 ts[f'Y_lag{lag}'] = ts['cases'].shift(lag)
             ts = ts.dropna().reset index(drop=True)
```

```
return ts
 def fit distributed lag(ts, k=5):
     X = ts[[f'Y_lag{i}' for i in range(1, k+1)]]
     X = sm.add constant(X)
     y = ts['cases']
     model = sm.OLS(y, X).fit()
     ts['y_pred'] = model.predict(X)
     ts['error'] = y - ts['y pred']
     return model, ts
 country_A = "Korea, South"
 k = 5
 A data = prepare country data(df, country A, k)
 model A all, A all pred = fit distributed lag(A data, k)
 mse A all = mean squared error(A all pred['cases'], A all pred['y pred'])
 print(f"(a) MSE (South Korea, all data) = {mse_A_all:.4f}")
 split = len(A data) // 2
 train A = A data.iloc[:split].copy()
 test_A = A_data.iloc[split:].copy()
 X_train = sm.add_constant(train_A[[f'Y_lag{i}' for i in range(1, k+1)]])
 y_train = train_A['cases']
 model_half = sm.OLS(y_train, X_train).fit()
 X_test = sm.add_constant(test_A[[f'Y_lag{i}' for i in range(1, k+1)]])
 test_A['y_pred'] = model_half.predict(X_test)
 test_A['error'] = test_A['cases'] - test_A['y_pred']
 mse_A_half = mean_squared_error(test_A['cases'], test_A['y_pred'])
 print(f"(b) MSE (South Korea, fit first half and then MSE second half) = {mse_A_hal
 plt.figure(figsize=(10,6))
 plt.plot(A_all_pred['t'], A_all_pred['error'], label=f"{country_A}: Fit all (a)")
 plt.plot(test_A['t'], test_A['error'], label=f"{country_A}: fit 1st half, MSE in 2n
 plt.axhline(0, color='black', linewidth=0.8)
 plt.title("Prediction Error Over Time")
 plt.xlabel("Days elapsed")
 plt.ylabel("Prediction Error")
 plt.legend()
(a) MSE (South Korea, all data) = 394552870.4008
(b) MSE (South Korea, fit first half and then MSE second half) = 860172140.4005
C:\Users\soo18\AppData\Local\Temp\ipykernel_6376\89969348.py:14: UserWarning: Could
not infer format, so each element will be parsed individually, falling back to `date
util`. To ensure parsing is consistent and as-expected, please specify a format.
 ts.index = pd.to_datetime(ts.index)
```

Out[21]: <matplotlib.legend.Legend at 0x2446d452720>


```
In [22]:
         import pandas as pd
         import numpy as np
         import statsmodels.api as sm
         import matplotlib.pyplot as plt
         from sklearn.metrics import mean_squared_error
         path = r"C:\Users\soo18\OneDrive\Desktop\Data Science\homework-8-asherkim169\time s
         df = pd.read_csv(path)
         def prepare_country_data(df, country, k=5):
             country_df = df[df['Country/Region'] == country].drop(columns=['Province/State'
             country_df = country_df.groupby('Country/Region').sum()
             ts = country df.T
             ts.index = pd.to_datetime(ts.index)
             ts.columns = ['cases']
             first_nonzero_idx = (ts['cases'] > 0).idxmax()
             ts = ts.loc[first_nonzero_idx:].copy()
             ts['t'] = np.arange(len(ts))
             for lag in range(1, k + 1):
                 ts[f'Y_lag{lag}'] = ts['cases'].shift(lag)
             ts = ts.dropna().reset_index(drop=True)
             return ts
         country_A = "Korea, South"
         country B = "China"
         k = 5
```

```
A_data = prepare_country_data(df, country_A, k)
B_data = prepare_country_data(df, country_B, k)
X_A = sm.add_constant(A_data[[f'Y_lag{i}' for i in range(1, k + 1)]])
y A = A data['cases']
model A = sm.OLS(y A, X A).fit()
X_B = sm.add_constant(B_data[[f'Y_lag{i}' for i in range(1, k + 1)]], has_constant=
y B = B data['cases']
B_data['y_pred_from_A'] = model_A.predict(X_B)
B_data['error'] = y_B - B_data['y_pred_from_A']
mse_B = mean_squared_error(y_B, B_data['y_pred_from_A'])
print(f"MSE for applying South Korea model to China: {mse B:.4f}")
plt.figure(figsize=(10,6))
plt.plot(B data['t'], B data['error'], label='Prediction error (B - predicted from
plt.axhline(0, color='black', linestyle='--', linewidth=0.8)
plt.title("Prediction Error Over Time\nModel fitted on South Korea, applied to Chin
plt.xlabel("Days elapsed in China")
plt.ylabel("Prediction Error (Observed - Predicted)")
plt.legend()
plt.show()
```

C:\Users\soo18\AppData\Local\Temp\ipykernel_6376\3746527387.py:14: UserWarning: Coul
d not infer format, so each element will be parsed individually, falling back to `da
teutil`. To ensure parsing is consistent and as-expected, please specify a format.
 ts.index = pd.to_datetime(ts.index)
C:\Users\soo18\AppData\Local\Temp\ipykernel_6376\3746527387.py:14: UserWarning: Coul
d not infer format, so each element will be parsed individually, falling back to `da
teutil`. To ensure parsing is consistent and as-expected, please specify a format.
 ts.index = pd.to_datetime(ts.index)

MSE for applying South Korea model to China: 21184184.4143


```
In [23]:
         import pandas as pd
         import numpy as np
         import statsmodels.api as sm
         path = r"C:\Users\soo18\OneDrive\Desktop\Data Science\homework-8-asherkim169\time s
         df = pd.read_csv(path)
         country = "Korea, South"
         k = 5
         country_df = df[df['Country/Region'] == country].drop(columns=['Province/State','La
         cases = country_df.sum(axis=0)
         cases = cases[cases > 0]
         cases = pd.Series(cases.values, index=pd.to_datetime(cases.index))
         D = cases.diff().fillna(0)
         Z = (D > 0).astype(int)
         data = pd.DataFrame({'Z': Z})
         for lag in range(1, k+1):
             data[f'Z_lag{lag}'] = data['Z'].shift(lag)
         data = data.dropna()
         X = sm.add_constant(data[[f'Z_lag{i}' for i in range(1, k+1)]])
         y = data['Z']
         model = sm.Logit(y, X).fit(disp=False)
         print("Logistic regression summary")
```

```
print(model.summary())
print("\nInterpretation of coefficients (odds ratios):")
for lag in range(1, k+1):
    coef = model.params[f'Z_lag{lag}']
    orr = np.exp(coef)
    print(f"Z_lag{lag}: coef={coef:.3f}, odds ratio={orr:.2f}")
    print("Odds ratio >1: cases continue to increase. \nOdds ratio <1: no longer in</pre>
```

Logistic regression summary

Logit Regression Results

Dep. Variab	le:		Z No.	Observations:		1138	
Model:		Lo	git Df R	esiduals:		1132	
Method:			MLE Df M	odel:		5	
Date:	Tue	e, 21 Oct 2	.025 Pseu	do R-squ.:		0.2905	
Time:		19:18	:33 Log-	Likelihood:		-59.679	
converged:		Т	rue LL-N	ull:		-84.118	
Covariance	Type:	nonrob	ust LLR	p-value:		2.350e-09	
	coef	std err	Z	P> z	[0.025	0.975]	
const	-2.7987	1.071	-2.614	0.009	-4.898	-0.700	
Z_lag1	2.9511	0.766	3.851	0.000	1.449	4.453	
Z_lag2	0.6836	1.082	0.632	0.527	-1.437	2.804	
Z_lag3	-0.5207	1.185	-0.439	0.660	-2.843	1.802	
Z_lag4	2.0169	0.892	2.262	0.024	0.270	3.764	
Z_lag5	2.6846	0.738	3.637	0.000	1.238	4.131	

```
Interpretation of coefficients (odds ratios):
```

Z_lag1: coef=2.951, odds ratio=19.13

Odds ratio >1: cases continue to increase.

Odds ratio <1: no longer increases.

Z lag2: coef=0.684, odds ratio=1.98

Odds ratio >1: cases continue to increase.

Odds ratio <1: no longer increases.

Z_lag3: coef=-0.521, odds ratio=0.59

Odds ratio >1: cases continue to increase.

Odds ratio <1: no longer increases.

Z lag4: coef=2.017, odds ratio=7.52

Odds ratio >1: cases continue to increase.

Odds ratio <1: no longer increases.

Z_lag5: coef=2.685, odds ratio=14.65

Odds ratio >1: cases continue to increase.

Odds ratio <1: no longer increases.

C:\Users\soo18\AppData\Local\Temp\ipykernel_6376\3167305817.py:14: UserWarning: Coul d not infer format, so each element will be parsed individually, falling back to `da teutil`. To ensure parsing is consistent and as-expected, please specify a format. cases = pd.Series(cases.values, index=pd.to datetime(cases.index))