

Travaux dirigés d'optique géométrique Série N°2 : Miroir Sphérique

Exercice 1 : Construction géométrique

Pour faire la construction de l'image, on utilise les rayons caractéristiques suivants :

- Un rayon qui passe par le centre ne change pas de direction mais change de sens,
- Un rayon issu de B et parallèle à l'axe optique son image passe par F (F joue le rôle du foyer objet principal)

1- Miroir concave

1-a-

Image réelle renversée et de taille plus petite que celle de l'objet AB.

Image virtuelle droite et de taille plus grande que celle de l'objet AB.

1-c-

Image réelle droite et de taille plus petite que celle de l'objet AB (objet virtuel).

2- Miroir Convexe

En utilisant le centre C

En utilisant le foyer F

Année universitaire **2019-2020** Faculté poly disciplinaire de Khouribga

Cor. Exercice 2:

Relation de conjugaison avec origine au sommet

$$\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{2}{\overline{SC}} = \frac{1}{\overline{SF}}$$

$$\frac{\overline{SA}}{\overline{SA'}} + \frac{\overline{SA'}}{\overline{SA}} = \frac{1}{\overline{SF}}$$

$$\overline{SF}(\overline{SA} + \overline{SA'}) = \overline{SA'}.\overline{SA}$$

$$\overline{SF}(\overline{SF} + \overline{FA} + \overline{SF} + \overline{FA'}) = \overline{(SF} + \overline{FA}).(\overline{SF} + \overline{FA'})$$

Un développement nous donne la relation suivante :

$$\overline{FA'}.\overline{FA} = \overline{SF}^2 = f^2$$

C'est la relation de conjugaison avec origine au foyer ou relation de Newton.

Cor. Exercice 3: Miroir sphérique concave.

1- Relation de conjugaison : (notation algébrique)

$$1/q'+1/q=-2/R$$

2- L'écran se trouve à une distance D, dons la distance entre le sommet et l'image est égale à celle entre l'écran et le sommet. Applicons la relation de conjugaison avec origine au sommet :

$$1/p'+1/p=2/R$$

La position de l'image p=D-d

Equation deuxième ordre : D²-(d+r)D+dR/2=0

3- Grandissement transversal et angulaire :

a/ grandissement transversal:

A'B'/AB=-SA'/SA. Avec origine au sommet

SA=D-d=-1m

SA'=-3m

Alors: Γ =-3

b/ Grandissement angulaire G

 $G=\alpha'/\alpha$

Phénomène d'aplatissement Obejt et image ayant des dimensions très petites, alors on peut considérer les angles comme des angles négligeables.

Alors $\sin \alpha$.AB= - $\sin \alpha$ 'A'B'

Alors G=1/3

Cor. Exercice 4 : Système à deux miroirs sphériques coaxiaux.

Relation de conjugaison avec origine au sommet

$$\frac{1}{\overline{SA'}} + \frac{1}{\overline{SA}} = \frac{2}{\overline{SC}} = \frac{1}{\overline{SF}}$$

1-

 A^{∞} donne A à travers M_1 A donne S1 à travers M_2

R.C.O.S pour M₁:

$$1/S_1A+1/S_1A = 2/S_1O_1(1)$$

R.C.O.S pour M₂:

$$1/S_2A+1/S_2S_1=2/S_2O_2(2)$$

D'après (1), A est confendu avec le foyer principal F.

$$1/S_1A=2/S_1O_1=2/R_1$$

Sachant que la distance algébrique entre les sommets des deux miroirs est a, Donc (2) devient:

$$1/a+1/(a-R/2)=-2/R2$$

Le grandissement correspondant à M₂

 $\Gamma = -S_2S_1/S_2F$ (F est confondu avec A)

Alors:

$$R_1=2a$$
. (1+ Γ)/ Γ =0.6m $R_2=2a$./(Γ -1)

2-

R.C.O.S pour M₁:

$$1/S_1F_2+1/S_1F=2/S_1O_1$$
 (1)

Filière SMIA (S2)

Année universitaire **2019-2020** Faculté poly disciplinaire de Khouribga

R.C.O.S pour M_2 :

$$1/S_2F+1/\infty=2/S_2O_2$$
 (1)

$$\begin{split} S_1F_2 = & S_1S_2 + S_2F = a + \ S_2F \\ \text{Alors} \qquad & S_1F = (R_1/2).(2a + R_2)/(R_1 - R_2 - 2a), \ S_1F = -120m \end{split}$$

Schéma de l'exercice:

