Comparaisons locales

1. Propriétés locales

On note $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$, et on appelle :

- voisinage de $a \in \mathbb{R}$ tout intervalle de la forme $\mathcal{V} = [a \alpha, a + \alpha]$, où $\alpha > 0$.
- voisinage de $+\infty$ tout intervalle de la forme $\mathcal{V} = [A, +\infty[$, où $A \in \mathbb{R}$.
- voisinage de $-\infty$ intervalle de la forme $\mathcal{V} =]-\infty, A]$, où $A \in \mathbb{R}$.

Ainsi, on dira qu'une propriété P(x) est vraie **au voisinage de** $a \in \overline{\mathbb{R}}$ lorsque il existe un voisinage \mathcal{V} telle que

$$\forall x \in \mathcal{V}, P(x)$$
 est vraie

Exemple 1: $f: \mathbb{R} \to \mathbb{R}$ est bornée au voisinage de $+\infty$ lorsque signifie :

Exemple 2: f admet un **maximum local** en $a \in \mathbb{R}$ signifie:

Propriété: si $a \in \mathbb{R}$ alors l'intersection de deux voisinages de a est un voisinage de a.

2. Equivalence locale

a) **Définition :** soit $a \in \mathbb{R}$, f et g des fonctions définies au voisinage de a

On dit que f est équivalente à φ en a lorsque $\lim_{a} \frac{f}{g} = 1$. On note $f \underset{a}{\sim} g$ ou $f\left(x\right) \underset{x \rightarrow a}{\sim} g\left(x\right)$.

Remarque: on peut écrire au voisinage de a: $f(x) = (1 + \varepsilon(x)) g(x)$ avec $\lim_{x \to a} \varepsilon(x) = 0$.

Attention: $f \sim 0$ N A AUCUN SENS.

Exemples: $x^2-2x\underset{x\to +\infty}{\sim} x^2; \quad x^2-2x\underset{x\to 0}{\sim} 2x; \quad x^2-2x\underset{x\to -1}{\sim} 3.$

Propriété : deux fonctions équivalentes en a ont même signe au voisinage de a

b) Lien avec les limites :

(i) Si
$$f \sim_a g$$
 et $\lim_a g = \ell \in \overline{\mathbb{R}}$, alors $\lim_a f = \ell$

La réciproque est évidemment fausse (x et x^2 ont même limite en $+\infty$, mais ne sont pas équivalentes!).

(ii) $\boxed{f \underset{a}{\sim} \ell \in \mathbb{R}^* \Longleftrightarrow \lim_a f = \ell} : \text{très utile pour les calculs de limites}.$

Remarque: si $\lim_{a} \frac{f}{g} = \alpha \neq 0$, alors $f \sim \alpha g$.

Attention : $f \sim g$ ne signifie en aucun cas que $\lim_{a} (f - g) = 0$.

Contre exemple : $f: x \mapsto x^2 + x$ et $g: x \mapsto x^2$ au voisinage de $+\infty$.

c) Equivalents usuels:

(i) Equivalents en $0: \heartsuit \heartsuit \heartsuit$

$$\begin{array}{c|c}
\sin x \underset{x \to 0}{\sim} x \\
\end{array}
\qquad \boxed{\tan x \underset{x \to 0}{\sim} x} \\
\end{array}
\qquad \boxed{\ln (1+x) \underset{x \to 0}{\sim} x} \\
\boxed{\ln (1+x) \underset{x \to 0}{\sim} x} \\$$

On a aussi

$$e^x \underset{x \to 0}{\sim} 1$$
 mais $e^x - 1 \underset{x \to 0}{\sim} x$

et de même si $\alpha \in \mathbb{C}$,

$$(1+x)^{\alpha} \underset{x\to 0}{\sim} 1$$
 mais $(1+x)^{\alpha} - 1 \underset{x\to 0}{\sim} \alpha x$

En particulier ($\alpha = 1/2$)

$$\boxed{\sqrt{x+1} - 1 \underset{x \to 0}{\sim} \frac{x}{2}}$$

Enfin

$$\cos x \underset{x \to 0}{\sim} 1 \quad \text{mais} \quad \boxed{\cos x - 1 \underset{x \to 0}{\sim} -\frac{x^2}{2}}$$

- (ii) Un équivalent en 1 : $\ln x \sim_{x \to 1} x 1$
- (iii) <u>Cas général</u>: si f est dérivable en a et $f'(a) \neq 0$, alors $f(x) f(a) \underset{x \to a}{\sim} f'(a)(x a)$

Exemple: équivalent en 1 de $\arctan x - 1$

(iv) Equivalents en $+\infty$: $un polynôme est équivalent en <math>\pm\infty$ à son terme de plus haut degré

si
$$a_n \neq 0$$
, $a_n x^n + a_{n-1} x^{n-1} \dots + a_1 x + a_0 \sim a_n x^n$

- d) Opérations sur les équivalents :
 - (i) Transitivité : si $f \sim g$ et $g \sim h$ alors $f \sim h$
 - (ii) Produits, quotients, puissances: $\boxed{ \text{si } f_1 \underset{a}{\sim} g_1 \text{ et } f_2 \underset{a}{\sim} g_2, \text{ alors } f_1 f_2 \underset{a}{\sim} g_1 g_2, \ \frac{f_1}{f_2} \underset{a}{\sim} \frac{g_1}{g_2} \text{ et } \forall \alpha \in \mathbb{R}, \ f_1^{\alpha} \underset{a}{\sim} g_1^{\alpha} }$

Remarque : avec $\alpha=\frac{1}{2},$ cela donne $f\underset{a}{\sim}g\Rightarrow\sqrt{f}\underset{a}{\sim}\sqrt{g}$

Exemple : calcul de $\lim_{x \to 0} \frac{x \sin x}{\cos x - 1}$, $\lim_{x \to +\infty} \frac{\sqrt{x^2 + 5x + 2}}{\sqrt[3]{x^3 + 2x - 1}}$ et d'un équivalent en $+\infty$ de $\frac{2x^5 + 2x^4 - 3x^2 - 1}{-x^6 + x^3 + 1}$

 $\text{(iii)}\ \underline{\text{Changement de variable}}: \boxed{\text{si}\ f\left(y\right)\underset{y\to a}{\sim}g\left(y\right) \text{ et}\ \underset{x\to b}{\lim}\ u\left(x\right) = a, \text{ alors}\ f\left(u\left(x\right)\right)\underset{x\to b}{\sim}g\left(u\left(x\right)\right)}$

Exemple: équivalents de $e^{\sin x} - 1$ en 0, de $\ln \cos x$ en 0 et de $\sin \ln x$ en 1

- e) Hérésies classiques : dans le doute, toujours revenir à la définition (le quotient tend vers 1)
 - (i) On n'ajoute ni ne retranche jamais des équivalents

Contre exemple :
$$f\left(x\right)=x-x^2\underset{x\rightarrow+\infty}{\sim}-x^2$$
 et $g\left(x\right)=x+x^2\underset{x\rightarrow+\infty}{\sim}x^2$. Mais $f\left(x\right)+g\left(x\right)$?

Remarque: on ne peut pas non plus "passer dans l'autre membre":

$$1+x^2 \underset{x \to 0}{\sim} 1+x$$
, mais en retranchant 1? Que dire de $\cos x \underset{x \to 0}{\sim} 1-\frac{x^2}{7}$

Deux cas particuliers : \bigstar Si $g \sim \alpha f$, $h \sim \beta f$ et $\alpha + \beta \neq 0$, alors $g + h \sim (\alpha + \beta) f$ $\bigstar \left[\text{Si } f = o\left(g\right) \text{ alors } f + g \underset{a}{\sim} f \right] \quad \text{(voir plus loin)}$

(ii) On ne compose jamais des équivalents (on n'"applique" pas h à $f(x) \sim g(x)$)

Contre exemple: $f: x \mapsto x + x^2$ et $g: x \mapsto x^2$. On a $f \underset{+\infty}{\sim} g$. A-t-on $e^f \underset{+\infty}{\sim} e^g$?

Cas du logarithme : si $\lim_a g \neq 1$, et $f \sim g$, alors $\ln |f| \sim \ln (|g|)$

f) Exemples: calcul des limites suivantes:

(i)
$$\lim_{x \to 0} \frac{\sin(3x)}{\sin(5x)}$$

(ii)
$$\lim_{x \to 0} \frac{\operatorname{sh}(x/2) \tan 3x}{e^x (1 - \cos x)}$$

(iii)
$$\lim_{x\to 0} \frac{1}{x^3} \ln(\cos x) \sqrt{\sin x}$$
 (iv) $\lim_{x\to 0} (\cos x)^{1/x^2}$

(iv)
$$\lim_{x\to 0} (\cos x)^{1/x}$$

3. Prépondérance

a) <u>Définition</u>: soit $a \in \overline{\mathbb{R}}$, f et g des fonctions définies au voisinage de a

On dit que f est négligeable devant g en a lorsque $\lim_{a} \frac{f}{g} = 0$. On note $f \ll g$ ou $f(x) \ll g$ ou $g(x) \ll g$

Remarque : on peut écrire au voisinage de a : $\underline{f\left(x\right)=g\left(x\right)\varepsilon\left(x\right)}$ avec $\lim_{x\to a}\varepsilon\left(x\right)=0$

Notation de Landau : $f \ll g$ se note aussi f = o(g). Notation des développements limités.

Exemples: $\ln x \underset{x \to +\infty}{\ll} x$ et $x^2 \underset{x \to 0}{=} o(x)$, $x^3 + x^2 = \underset{x \to 0}{o}(x)$

Remarque importante : $f\left(x\right) \ll 1 \text{ (ou } f\left(x\right) = \underset{x \to a}{o} (1)) \text{ équivaut à } \lim_{a} f = 0$

On dit alors que f est un **infiniment petit** au voisinage de a

b) Lien avec l'équivalence :

(i)
$$\boxed{f \underset{a}{\sim} g \Longleftrightarrow f - g \underset{a}{\ll} g \Longleftrightarrow f = g + o\left(g\right)}. \text{ Par exemple } \sin x \underset{x \rightarrow 0}{\sim} x \text{ s'\'ecrit } \underline{\sin x = x + o\left(x\right)}$$

(ii) Si $g \ll f$, alors $f + g \sim f$: on peut négliger l'influence de g dans le comportement local de f + g

c) Propriétés:

(i)
$$\underline{\text{Transitivit\'e}}$$
 : $\boxed{\text{si } f \ll g \text{ et } g \ll h \text{ alors } f \ll h} \text{ et} \boxed{\text{si } f \sim g \text{ et } g \ll h \text{ alors } f \ll h}$

(ii) Sommes, produits, puissances, inverses:

-
$$\left[\operatorname{Si} f_1 \underset{a}{\ll} g \operatorname{et} f_2 \underset{a}{\ll} g, \operatorname{alors} f_1 + f_2 \underset{a}{\ll} g\right] \left(\operatorname{soit} \circ (g) + o(g) = o(g)\right)$$

-
$$\left[\operatorname{Si} f_1 \underset{a}{\ll} g_1 \text{ et } f_2 \underset{a}{\ll} g_2, \operatorname{alors} f_1 f_2 \underset{a}{\ll} g_1 g_2\right] (\operatorname{soit"} o\left(g_1\right) o\left(g_2\right) = o\left(g_1 g_2\right)")$$

– On suppose
$$f>0$$
 et $g>0$ au voisinage de $a.$ Si $f\underset{a}{\ll}g$ et $\alpha>0,$ alors $f^{\alpha}\underset{a}{\ll}g^{\alpha}$

- On suppose
$$f>0$$
 et $g>0$ au voisinage de a . Si $f \ll g$, alors $\frac{1}{g} \ll \frac{1}{f}$

$$\text{(iii)}\ \underline{\text{Changement de variable}}: \boxed{\text{si }f\ (y) \ll g\ (y) \text{ et }\lim_{x \to b} u\left(x\right) = a, \text{ alors }f\left(u\left(x\right)\right) \ll g\left(u\left(x\right)\right)}$$

Comparaisons de référence en $+\infty$:

(i) Puissances : si
$$a < b$$
, alors $x^a \ll x^b$. En particulier

$$\underbrace{\frac{1}{x^n} \underset{x \to +\infty}{\ll} \cdots \underset{x \to +\infty}{\ll} \frac{1}{x^2} \underset{x \to +\infty}{\ll} \frac{1}{x} \underset{x \to +\infty}{\ll} \frac{1}{\sqrt{x}}}_{\text{infiniments petits}} \underset{x \to +\infty}{\ll} 1 \underset{x \to +\infty}{\ll} \underbrace{\sqrt{x} \underset{x \to +\infty}{\ll} x \underset{x \to +\infty}{\ll} x^2 \underset{x \to +\infty}{\ll} \cdots \underset{x \to +\infty}{\ll} x^n}_{\text{infiniments grands}}$$

(ii) Exponentielles : si
$$a < b$$
, alors $e^{ax} \underset{x \to +\infty}{\ll} e^{bx}$

$$\text{(iii)}\ \underline{\text{Logarithmes/puissances/exponentielles}}: \forall \left(a,b,c\right) \in \left]0,+\infty\right[^3, \boxed{\left(\ln x\right)^a \ll x^b \ll e^{cx}}$$

Remarque 1: en passant aux inverses, on a
$$\forall (b,c) \in]0, +\infty[^2, \boxed{e^{-cx} \underset{x \to +\infty}{\ll} \frac{1}{x^b}}]$$

Remarque 2: en posant
$$y=-x$$
, on obtient aussi $\forall \lambda>0, \ \forall n\in\mathbb{N}, \ e^{\lambda x}\ll \frac{1}{x^{\lambda}}$ (à refaire!)

Comparaisons de référence en 0 :

(i) Puissances:
$$si \ a > b$$
, alors $x^a \ll x^b = x^b$. En particulier

$$\underbrace{x^n \ll \cdots \ll x^2 \ll x \ll \sqrt{x}}_{\text{infiniments petits}} \ll 1 \ll \underbrace{\frac{1}{\sqrt{x}} \ll \frac{1}{x \to 0} \frac{1}{x \times 0} \ll \frac{1}{x^2} \ll \cdots \ll \frac{1}{x^n}}_{\text{infiniments grands}}$$

$$\text{(ii)}\ \underline{\text{Logarithmes et puissances}}: \forall \left(a,b\right) \in \left]0,+\infty\right[^2, \boxed{\left|\ln x\right|^a \underset{x \to 0+}{\ll} \frac{1}{x^b}}$$

Remarque: on a donc
$$\lim_{x\to 0+} x^b |\ln x|^a = 0$$

Exemple 1 : calculer les limites suivantes

$$\begin{array}{ll} \text{(i)} \lim_{x \to +\infty} \frac{\sqrt{81x^4 + 5x^3 - 5x + 2}}{\sqrt[3]{8x^6 - 7x^4 + x^3 - x + \pi}} & \text{(ii)} \lim_{x \to +\infty} \frac{x^{10^{12}}}{e^{0.000000001x}} \\ \text{(iii)} \lim_{x \to +\infty} \frac{\operatorname{ch} x + 2^x}{e^x + x^7 + \ln^3 x} & \text{(iv)} \lim_{x \to +\infty} \left(\frac{\operatorname{ch} x}{1 + \operatorname{sh} x}\right)^x \end{array}$$

(ii)
$$\lim_{x \to +\infty} \frac{x^{10^{12}}}{e^{0.0000000001x}}$$

(iii)
$$\lim_{x \to +\infty} \frac{\operatorname{ch} x + 2^x}{e^x + x^7 + \ln^3 x}$$

(iv)
$$\lim_{x \to +\infty} \left(\frac{\operatorname{ch} x}{1 + \operatorname{sh} x} \right)^x$$

Exemple 2 : équivalent simple en
$$+\infty$$
 de $\frac{2 \ln x + \sqrt{\ln x}}{\sqrt{x^2 + 1} + e^{3x}}$ et en 0 de $\frac{\ln(x) + 1/\sqrt{x}}{\sqrt{x} + \sin(x)}$

4. Relation de domination

a) <u>Définition</u>: sous les mêmes hypothèses que précédemment, on dit que f est dominée par g au voisinage de a et on note f = O(g), lorsque le quotient $\frac{f}{g}$ est borné au voisinage de a. Autrement dit

$$f=O\left(g
ight)\Longleftrightarrow f$$
 s'écrit $f\left(x
ight)=g\left(x
ight)\delta\left(x
ight)$ δ bornée au voisinage de a

Exemples:
$$x^2 \sin \frac{1}{x} = O(x^2); \quad \frac{2x^3}{x^4 + 1} = O(x^3):$$

Remarque 1 : $f = O(1) \iff f$ est bornée au voisinage de a

Remarque 2 : si f = o(g) alors f = O(g). Réciproque fausse.

b) Propriétés élémentaires :

(i) Si
$$f=O\left(g\right)$$
 et $g=O\left(h\right)$ alors $f=O\left(h\right)$ (ii) Si $f=O\left(g\right)$ et $\lim_{a}g=0,$ alors $\lim_{a}f=0$

(iii) Si
$$\left\{ \begin{array}{ll} f_{1}=O\left(g\right) \\ f_{2}=O\left(g\right) \end{array} \right. \text{ alors } f_{1}+f_{2}=O\left(g\right)$$

$$\text{(iv) Si } \left\{ \begin{array}{l} f_1 = O\left(g_1\right) \\ f_2 = O\left(g_2\right) \end{array} \right. \text{ alors } f_1 f_2 = O\left(g_1 g_2\right) \quad \text{(v) Si } \left\{ \begin{array}{l} f_1 = O\left(g_1\right) \\ f_2 = o\left(g_2\right) \end{array} \right. \text{ alors } f_1 f_2 = o\left(g_1 g_2\right) \right.$$

5. Le cas des suites

a) $\underline{\mathbf{D\'efinitions}}$: on suppose (v_n) non nulle à partir d'un certain rang n_0 . On définit :

(i)
$$\underline{(u_n)}$$
 est **équivalente** à $\underline{(v_n)}$: $u_n \sim v_n$ lorsque $\left(\frac{u_n}{v_n}\right)_{n\geqslant n_0}$ converge vers 1

Cela revient à l'écriture pour n suffisamment grand : $u_n = (1 + \varepsilon_n) v_n$, avec ε_n suite de limite nulle.

$$\text{(ii)}\ \underline{(u_n)}\ \text{ est } \mathbf{n\acute{e}gligeable\ devant}\ (v_n)\ \vdots \\ u_n \ll v_n\ \text{ou}\ u_n = o\left(v_n\right) \text{ lorsque}\ \left(\frac{u_n}{v_n}\right)_{n\geqslant n_0} \text{ converge vers } 0$$

Cela revient à l'écriture pour n suffisamment grand : $u_n=\varepsilon_n v_n$, avec ε_n suite de limite nulle.

(iii)
$$\underline{(u_n)}$$
 est **dominée** par $\underline{(v_n)}$: $u_n = O(v_n)$ lorsque $\left(\frac{u_n}{v_n}\right)_{n\geqslant n_0}$ est bornée

Cela revient à l'écriture pour n suffisamment grand : $u_n = \delta_n v_n$, avec δ_n suite bornée.

Remarque 1: $u_n = o(1)$ signifie : (u_n) converge vers 0 et $u_n = O(1)$ signifie : (u_n) est bornée

Remarque 2: comme pour les fonctions,

$$- \quad u_n \sim \ell \in \mathbb{R}^* \Longleftrightarrow \lim u_n = \ell$$

- si
$$u_n \ll v_n$$
, alors $u_n + v_n \sim v_n$

-
$$u_n \sim v_n \iff u_n - v_n \ll v_n \iff u_n = v_n + o(v_n)$$

Exemples:
$$\frac{1}{n^3} + \frac{1}{n^2} = o\left(\frac{1}{n}\right), \quad \frac{\ln(n)}{n^2 + 2n + 3} \sim \frac{\ln n}{n}, \quad n^2 \sin n = O\left(n^2\right), \quad \sum_{n=0}^{\infty} \cos(\alpha k) \, 2^k = O\left(2^n\right).$$

Propriétés: ces trois relations de comparaisons sont **transitives**, et compatibles avec le **produit** et les **puissances positives**. Ce qui a été dit sur les fonctions s'adapte sans le moindre problème aux suites.

5

b) Equivalents usuels: on suppose que (u_n) converge vers a et $f(x) \underset{x \to a}{\sim} g(x)$; alors $f(u_n) \sim g(u_n)$

Par exemple, si (u_n) est de limite nulle, alors

 $\sin u_n \sim u_n$, $\arctan u_n \sim u_n$, $\ln (1+u_n) \sim u_n$, $\sin u_n \sim u_n$, $\cos u_n - 1 \sim -\frac{u_n^2}{2}$ etc. et si (v_n) converge vers 1, alors $\ln (v_n) \sim v_n - 1$.

Exemples: calcul des limites suivantes:

$$\text{(i) } \lim \frac{\sqrt{n^2+1}-n}{1-\cos\left(1/n\right)} \qquad \qquad \text{(ii) } \lim 2^n \sin\left(\frac{x}{2^n}\right) \qquad \qquad \text{(iii) } \lim \left(1+\frac{a}{n}\right)^n \qquad \text{(iv) } \lim n^3 \ln\left(\cos\frac{1}{n}\right) \sqrt{\sin\frac{1}{n}}$$

- c) Comparaisons de référence :
 - (i) Puissances : si a < b, alors $n^a = o\left(n^b\right)$ En particulier on a l'échelle

$$\underbrace{\frac{1}{n^p} \ll \cdots \ll \frac{1}{n^2} \ll \frac{1}{n} \ll \frac{1}{\sqrt{n}}}_{\text{infiniments petits}} \ll 1 \ll \underbrace{\sqrt{n} \ll n \ll n^2 \ll \cdots \ll n^p}_{\text{infiniments grands}}$$

- (ii) Suites géométriques : si 0 < a < b, alors $a^n \ll b^n$
- (iii) Théorème : si α et β sont strictement positifs et q > 1, on a

$$\boxed{\left(\ln n\right)^{\alpha}\ll n^{\beta}\ll q^n\ll n!\ll n^n}$$

Exemple 1: calculer les limites suivantes:

(i)
$$\lim \frac{n^n + n!}{(\ln 3)^n + n^5}$$
 (ii) $\lim \frac{n + (-1)^n}{n - (-1)^n}$ (iii) $\lim \frac{3^{n+2} - 5^{n+2}}{3^n - 5^n}$ (iv) $\lim \frac{(-10)^n + 3n!}{100^n + n!}$

Exemple 2 : comparer à l'infini les suites de terme général $(\ln n)^{10}\,n^2$ et $(\ln n)\,n^5$