Solutions to hw2 homework on Convex Optimization

https://web.stanford.edu/class/ee364a/homework.html

Andrei Keino

May 30, 2020

3.1

Suppose $f : R \to R$ is convex and $a, b \in \operatorname{dom} f$ with a < b.

(a) Show what
$$f(x) \leq \frac{b-x}{b-a} f(a) + \frac{x-a}{b-a} f(b)$$
 for all $x \in [a,b]$

Definition of function convexity:

A function $f: R^n \to R$ is convex if $\operatorname{\boldsymbol{dom}} f$ is a convex set and for all $x, y \in \operatorname{\boldsymbol{dom}} f$ and $0 \le \theta \le 1$ we have $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$

Solution:

Let
$$z = \theta x + (1 - \theta)y$$
, let $z, x, y \in [a, b]$, let $\theta = \frac{b-z}{b-a}$, then $1 - \theta = \frac{z-a}{b-a}$, therefore $\theta \in [0, 1]$.

Then by definition of convexity of f:

$$f(z) = f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) = \frac{b - z}{b - a}f(x) + \frac{z - a}{b - a}f(y)$$

and then for x = a, y = b we have:

$$f(z) \le \frac{b-z}{b-a}f(a) + \frac{z-a}{b-a}f(b)$$

(1) Proved. (b) Show what

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x}$$

Solution:

First we show what

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a}$$

Using the result from the inequality proved in (a), dividing the right and left parts of the inequality on (x-a) and subtracting from the left and right parts of the inequality $\frac{f(a)}{x-a}$ we get

$$\frac{f(x) - f(a)}{x - a} \le \frac{f(b) - f(a)}{b - a}$$

Now second part: Using the result from the inequality proved in (a), dividing the right and left parts of the inequality on (b-x) and subtracting from the left and right parts of the inequality $\frac{f(b)}{b-x}$ we get

$$\frac{f(b) - f(a)}{b - a} \le \frac{f(b) - f(x)}{b - x}$$

Proved.

Figure 1: A sketch.