TD n°1

Valeran MAYTIE

An isomorphism $f: A \to B$ such that there exists $g: B \to A$ such that $g \circ f = Id_A$ and $f \circ g = Id_B$.

- 1. Show that g is unique
- 2. Show that in the following situation

- 3. deduce in (*) that g is an isomorphism when f and $g \circ f$ are isomorphism
- 4. deduce in (*) that f is an isomorphism when g and $g \circ f$ are isomorphism
- 5. Suppose that in $A \xrightarrow{f} B \xrightarrow{g} A \xrightarrow{h} B$ one has $g \circ f = Id_A$ and $h \circ g = Id_B$ show that f = h in that case
- 6. Characterize the isomorphisms in the category **Set** of sets and function. **Top** of topological spaces and continuous functions

Correction:

1. Let $h: B \to A$ a morphism that $h \circ f = Id_A$ and $f \circ h = Id_B$

$$h = h \circ Id_B$$
 By neutrality
 $= h \circ (f \circ g)$
 $= (h \circ f) \circ g$ By associativity
 $= Id_A \circ g$
 $= g$ By neutrality

We can say that g is unique. We will make note f^{-1}

2. We have f^{-1} and g^{-1} the inverse of f and g (they are isomorphism)

We will show that $f^{-1} \circ g^{-1}$ is an inverse of $g \circ f$

$$(f^{-1}\circ g^{-1})\circ (g\circ f)=f^{-1}\circ (g^{-1}\circ g)\circ f$$
 By associativity
$$=f^{-1}\circ f$$

$$=Id_A$$

A similar reasoning can be used to show $(g \circ f) \circ (f^{-1} \circ g^{-1})$

3. Let $g' = f \circ (g \circ f)^{-1}$

$$g \circ g' = g \circ (f \circ (g \circ f)^{-1})$$

$$= (g \circ f) \circ (g \circ f)^{-1}$$

$$= Id_C$$

$$g' \circ g = (f \circ (g \circ f)^{-1}) \circ g$$

$$= f \circ (g \circ f)^{-1} \circ g \circ f \circ f^{-1}$$

$$= f \circ (g \circ f)^{-1} \circ (g \circ f) \circ f^{-1}$$

$$= f \circ f^{-1}$$

$$= Id_B$$

1

g is well an isomorphism.

- 4. Roughly the same proof.
- 5. We have:

$$f = (h \circ g) \circ f$$

$$h \circ g = Id_B$$

$$= h \circ (g \circ f)$$
 By associativity
$$g \circ f = Id_A$$

This question implies the first question.

6. Homomorphism (= A map between two structures, that preserves the operations of the structures $f(x \bullet y) = f(x) \bullet f(y)$)