14.381: Statistics

Problem Set 1

due Tuesday, September 17, 2019, at lecture

You should hand in the solution for problem 3 to our TA(David). Problems 1-2 and 4-6 are for practice. They will be discussed at recitation.

- 1. Let X and Y be random variables with finite variances.
 - (i) Show that

$$\min_{g(\cdot)} E(Y - g(X))^{2} = E(Y - E(Y \mid X))^{2},$$

where $g(\cdot)$ ranges over all functions.

- (ii) Assume m(X) = E(Y|X) and write Y = m(X) + e. Show that Var(Y) = Var(m(X)) + Var(e).
- (iii) If E(Y|X=x)=a+bx find E(YX) as a function of moments of X.
- 2. Show that if a sequence of random variables ξ_i converges in distribution to a constant c, then $\xi_i \stackrel{p}{\to} c$.
- 3. (The required problem) Let $\{X_i\}$ be independent Bernoulli (p). Then $EX_i = p$, $Var(X_i) = p(1-p)$. Let $Y_n = \frac{1}{n} \sum_{i=1}^n X_i$.
 - (a) Describe the asymptotic behavior of Y_n .
 - (b) Show that for $p \neq \frac{1}{2}$ the estimated variance $Y_n(1 Y_n)$ has the following limit behavior

$$\sqrt{n}(Y_n(1-Y_n)-p(1-p)) \Rightarrow N(0,(1-2p)^2p(1-p)).$$

(c) Prove that if (i) $\frac{\sqrt{n}}{\sigma}(\xi_n - \mu) \Rightarrow N(0, 1)$ (ii) g is twice continuously differentiable: $g'(\mu) = 0$, $g''(\mu) \neq 0$, then

$$n(g(\xi_n) - g(\mu)) \Rightarrow \sigma^2 \frac{g''(\mu)}{2} \chi_1^2.$$

Note. You may assume that g has more derivatives, if it simplifies your life. Use O_p and o_p notation wherever possible.

Note: χ_1^2 is a chi-square distribution with 1 degree of freedom. Let ξ_1, \ldots, ξ_p be i.i.d. N(0,1), then $\chi_p^2 = \sum_{i=1}^p \xi_i^2$.

(d) Show that for $p = \frac{1}{2}$

$$n\left[Y_n(1-Y_n) - \frac{1}{4}\right] \Rightarrow -\frac{1}{4}\chi_1^2$$

Curious fact: Note that $Y_n(1-Y_n) \leq \frac{1}{4}$, that is, we always underestimate the variance for $p = \frac{1}{2}$.

- 4. Prove the following statements:
 - (a) If $X_n = O_p(n^{-\delta})$ for some $\delta > 0$ then $X_n = o_p(1)$;
 - (b) If $X_n = o_p(b_n)$ then $X_n = O_p(b_n)$;
 - (c) If $X_n = O_p(n^{\alpha})$ and $Y_n = o_p(n^{\beta})$, then $X_n Y_n = o_p(n^{\alpha+\beta})$.
- 5. (Computer experiment) Let $X_1, ..., X_n$ be i.i.d. N(0,1) random variables and let $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. Plot \bar{X}_n versus n for n=1,...,10000. Repeat for $X_1, X_2, ... X_n$ distributed i.i.d. Cauchy $(f(x) = \frac{1}{\pi(1+x^2)})$ for $x \in \mathbb{R}$. Explain why there is such a difference.
- 6. (Computer experiment) This experiment is intended to support your derivations in problem 3. First, fix n = 100 and perform the following simulation
 - (i) Simulate X_i , i = 1, ..., n from a Bernoulli distribution with parameter p.
 - (ii) Calculate the statistic $Z = \widehat{p}(1-\widehat{p})$, where $\widehat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$.
 - (iii) Store the value of Z, then repeat steps (i) and (ii) for B = 1000 times.
 - (iv) Draw the histogram of Z, along with the expected asymptotic distribution.

Repeat the experiment above for p = 0.5, 0.48, and 0.4. Repeat each of the three cases for n = 1000. Comment on how well the approximation works in each case, and try to explain the simulation results.