

A High-Performance Tensor Computation Framework with Automatic Differentiation and MLIR Compilation

→ From Interpreted to Compiled: 450× Performance Boost

Contributors

杨润东•杨淳瑜•王海天

Tensor Module Implementation

A High-Performance Foundation for Deep Learning

- Unified abstraction across CPU and CUDA devices
- NumPy-compatible broadcasting semantics
- **Zero-copy** Python integration
- Optimized parallelization strategies

Architecture Overview

Core Design Principles

Device-Aware Dispatch

```
static Tensor add(const Tensor &a, const Tensor &b) {
   if (a.device == Device::CUDA && b.device == Device::CUDA) {
      return cuda_add(a, b);
   } else if (a.device == Device::CPU && b.device == Device::CPU) {
      return cpu_add(a, b);
   } else {
      throw std::invalid_argument("Device mismatch");
   }
}
```

Transparent Migration

```
void Tensor::to(Device device) {
    if (this->device == device) {
        return; // No need to transfer if already on the same device
    if (device == Device::CPU) {
        size_t buf_size = num_elements * sizeof(float);
        float * host_data = static_cast<float*>(malloc(buf_size));
        cudaMemcpy(host data, data, num elements * sizeof(float), cudaMemcpyDeviceToHost);
        cudaFree(data);
        data = host data;
        // Allocate CPU memory and copy data back to CPU (not shown here)
    } else if (device == Device::CUDA) {
        // Allocate GPU memory and copy data to GPU (not shown here)
        float * gpu_data;
        cudaMalloc(&gpu_data, num_elements * sizeof(float));
        cudaMemcpy(gpu_data, data, num_elements * sizeof(float), cudaMemcpyHostToDevice);
        free(data); // Free the old CPU data
        data = gpu_data;
    this->device = device;
```

Broadcasting Mechanism

NumPy-Compatible Shape Inference

```
// Compare shapes from right to left
static bool can_broadcast(const std::vector<int> &a,
                         const std::vector<int> &b) {
    int i1 = a.size() - 1, i2 = b.size() - 1;
    while (i1 >= 0 && i2 >= 0) {
        if (a[i1] != b[i2] && a[i1] != 1 && b[i2] != 1) {
            return false;
        i1--; i2--;
    return true;
```

View-Based Implementation

- The view mechanism allows a tensor to be accessed as if it had a different (broadcasted) shape, without copying data.
- **Index mapping**: For each broadcasted index, map back to the original tensor's index, ignoring broadcasted (size-1) dimensions.

Core CPU logic:

```
// Map broadcasted indices to original tensor
const float *Tensor::view(const std::vector<int> &asshape, const std::vector<int> &indices) const {
    ...
    for (size_t i = 0; i < shape.size(); i++) {
        if (shape[i] == 1) continue; // broadcast dim
        const int idx = indices[i + diff];
        ... // map to flat offset
    }
    return ret;
}</pre>
```

In elementwise ops:

```
#pragma omp parallel for
for (int i = 0; i < result.num_elements; i++) {
   result.data[i] = (*a.view(shape, i)) + (*b.view(shape, i));
}</pre>
```

CUDA kernel:

```
// Each thread computes its own broadcasted index
for (int i = result_ndim - 1; i >= 0; i--) {
   indices[i] = remaining % result_shape[i];
   remaining /= result_shape[i];
}
// Map to a_idx, b_idx with broadcasting rules
```

CPU Parallelization Strategies

Adaptive Threading Approach

Tensor Size	Strategy	Rationale
≤8 elements	Sequential	Avoid thread overhead
Small-Medium	Manual threading	Predictable distribution
Large	OpenMP	Automatic work balancing

Map-Reduce Pattern

CUDA Kernel Design

Template-Based Generic Broadcasting

```
template <typename Op>
 _global__ void broadcastOpKernel(const float *a, const float *b,
                                  float *result, Op op) {
    int idx = blockIdx.x * blockDim.x + threadIdx.x;
    if (idx < num elements) {</pre>
        // Convert flat index to multi-dimensional
        int indices[8] = compute_indices(idx);
        // Map with broadcasting rules
        int a_idx = map_index(indices, a_shape);
        int b_idx = map_index(indices, b_shape);
        result[idx] = op(a[a_idx], b[b_idx]);
```

Memory Model & Python Integration

Zero-Copy Buffer Protocol

Key Takeaways

Design Achievements

- Unified API Same code works on CPU/CUDA
- **Compatibility** NumPy broadcasting semantics
- **Element-wise ops**: Near-memory bandwidth limited
- Broadcasting: Zero-copy on CPU, efficient on CUDA

Foundation for Higher Layers

- Automatic differentiation builds on tensor operations
- Compiler can optimize across abstraction boundaries

Automatic Differentiation System

Dynamic Computation Graphs for Deep Learning

Core Features

- DataNode abstraction wraps tensors with gradient tracking
- Operator overloading builds graphs automatically
- Static topological ordering for efficient backpropagation

Design Philosophy

```
# User writes natural Python code
y = DataNode.matmul(x, w) + b
loss = (y - y_true) ** 2
# Gradients computed automatically
loss.backward()
print(w.grad) # ∂loss/∂w computed!
```

Key Components

Innovation: Static topological ordering eliminates graph traversal

- Nodes recorded in creation order
- Implicit dependency tracking
- Efficient gradient accumulation

Graph Construction via Operator Overloading

Automatic Graph Building

```
def __add__(self, other):
    # Forward computation
    t = self.tensor + other.tensor
    ret = DataNode(t, requires_grad=False)

# Record graph structure
    ret.op = Operator.ADD
    ret.inputs = [self, other]
    ret.requires_grad = self.requires_grad or other.requires_grad
    return ret
```

Supported Operations

Operation	Forward	Gradient Rule
Addition	a + b	$\partial L/\partial a = \partial L/\partial out$, $\partial L/\partial b = \partial L/\partial out$
Multiplication	a×b	$\partial L/\partial a = \partial L/\partial out \times b$, $\partial L/\partial b = \partial L/\partial out \times a$
MatMul	A @ B	$\partial L/\partial A = \partial L/\partial out @ B^T, \partial L/\partial B = A^T @ \partial L/\partial out$
ReLU	max(0, x)	$\partial L/\partial x = \partial L/\partial out \times (x > 0)$

Backpropagation Implementation

Reverse-Mode Differentiation

```
def backward(self, grad=None):
    # Initialize gradient for loss
    if grad is None:
        grad = Tensor.ones(self.shape())
    # Operation-specific gradient computation
    if self.op == Operator.MUL:
        # Product rule
        self.inputs[0]._add_grad(grad * self.inputs[1].tensor)
        self.inputs[1]._add_grad(grad * self.inputs[0].tensor)
    # Recurse to inputs (respecting topological order)
    for input in self.inputs:
        input.backward(input.grad)
```

Linear Regression in 10 Lines

```
# Initialize parameters
w = DataNode(Tensor.zeros((n_features, 1)))
b = DataNode(Tensor.zeros((1,)))
# Training loop
for _ in range(100):
    # Forward pass
    predictions = DataNode.matmul(X, w) + b
    loss = (predictions - Y) ** 2
    # Backward pass (computes all gradients)
    loss.backward()
    # Update parameters
    w.tensor -= w.grad * learning_rate
    b.tensor -= b.grad * learning_rate
    DataNode.zero_grad()
```

Benefits:

- No manual gradient formulas
- Automatic broadcasting handling
- Clean, readable code
- Easy debugging (inspect any gradient)

From Tensors to Machine Code: Compiler Infrastructure

System Architecture Overview

Why Compilation? The Performance Gap

• No cross-operation optimization: Each op is a black box

Solution: MLIR-Based Compilation

MLIR (Multi-Level Intermediate Representation)

- Designed for heterogeneous hardware
- Progressive lowering through dialects
- Reusable optimization infrastructure
- "Write once, optimize everywhere"

Recording Operations for Compilation

Context Manager Design

Key Components

Variable Tracking

```
class Variable:
    def __init__(self, shape):
        self.name = f'%v{Variable.count}'
        self.shape = shape
        CompilerContext.compiler.shapes[self.name] = shape
```

Shape Inference - Computed at compile time **Memory Planning** - Static allocation strategy

MLIR Code Generation : y = x @ w + b

```
func.func @forward(%v0: memref<10x10xf32>,
                                            // weights
                  %v1: memref<1x10xf32>, // bias
                  %v2: memref<16x10xf32>) // input
                   -> memref<16x10xf32> {
 %v3 = memref.alloc() : memref<16x10xf32>
  // Matrix multiplication: v3 = v2 @ v0
  affine.for \%i = 0 to 16 {
    affine.for \%j = 0 to 10 {
      %sum = arith.constant 0.0 : f32
      affine.for %k = 0 to 10 {
       %a = memref.load %v2[%i, %k]
       \%b = memref.load \%v0[\%k, \%j]
       %prod = arith.mulf %a, %b : f32
       %sum = arith.addf %sum, %prod : f32
      memref.store %sum, %v3[%i, %j]
  // Bias addition with broadcasting
  // ... similar loop structure ...
```

Compilation Results: Dramatic Performance Gains

Implementation	Time (ms)	Speedup
FDUAI Interpreted	333.23	1×
PyTorch	13.69	24×
FDUAI Compiled	0.74	450×

Experiments

- Basic Tensor Operations
- Automatic Differentiation Overhead
- Compilation Impact

Experimental Setup

Benchmark Configuration

- Tensor Dimensions
 - Basic operations: 1000×1000 matrices
 - AutoDiff: 100×100 matrices for matmul
 - Linear layer: 1024 inputs/outputs, batch size 1024

Basic Tensor Operations Performance

Comparing Variable, NumPy, and PyTorch

Operation	Variable	NumPy	Torch(CPU)	Torch(CUDA)
add	2 µs	359 µs	82 µs	22 µs
mul	1 µs	301 µs	73 µs	15 µs
matmul	1 µs	5820 μs	4805 µs	590 µs
transpose	1 µs	0 µs	1 µs	1 µs
relu	1 µs	205 μs	31 µs	17 µs
broadcast_add	1 µs	295 μs	46 µs	9 µs

Key Findings: Basic Operations

Performance Characteristics

- Variable Operations: ~1-2 μs (graph construction only)
- PyTorch vs NumPy: 4-5× speedup for element-wise ops
- CUDA Acceleration: Additional 3-5× over CPU
- Matrix Multiplication: 10× speedup with CUDA
- **Transpose**: Near-zero time (lazy evaluation)

Automatic Differentiation Overhead

Gradient Computation Performance

Case	FDUAI(CPU)	Torch(CPU)	Torch(CUDA)
matmul	1.56 ms	0.08 ms	0.35 ms
linear	1518.60 ms	12.59 ms	1.44 ms

Performance Gaps

- Matrix Multiplication: 19× overhead vs PyTorch CPU
- Linear Layer: 120× slower execution

Compilation Impact on Performance

Dramatic Speedup Through MLIR

Case	Time (ms)
FDUAI-MLIR	0.74
FDUAI-Autograd	333.23
PyTorch	13.69

Performance Gains

- 450× speedup over interpreted autograd
- 18× faster than PyTorch