The Nanvix Operating System

Process Scheduling

Pedro H. Penna

pedrohenriquepenna@gmail.com

January 18, 2017

Barebones

- ▶ Process compete for processor time
- Process scheduler chooses which process to run

Figure: Process states.

Rules of Thumb

- All systems
 - Fairness
 - Policy enforcement
 - Load balancing

Rules of Thumb

- All systems
 - Fairness
 - Policy enforcement
 - Load balancing
- Batch systems
 - ► Throughput
 - Turnaround time

Rules of Thumb

- All systems
 - Fairness
 - Policy enforcement
 - Load balancing
- Batch systems
 - ► Throughput
 - ► Turnaround time
- Interactive systems
 - Response time
 - Proportionality

Classical Algorithms

- Batch systems
 - First-Come First-Served
 - Shortest-Job First
 - ► Shortest Remaining Time Next

Classical Algorithms

- Batch systems
 - First-Come First-Served
 - Shortest-Job First
 - Shortest Remaining Time Next
- Interactive systems
 - Round-Robin Scheduling
 - Priority Scheduling
 - Multiple Queues Scheduling
 - Lottery Scheduling
 - Fair-Share Scheduling

Process States

Figure: States of a process in Nanvix.

- ▶ Process table entry struct process
 - ▶ include/nanvix/pm.h

- ▶ Process table entry struct process
 - ▶ include/nanvix/pm.h
- Process scheduler yield()
 - ▶ src/kernel/pm/sched.c

- Process table entry struct process
 - ▶ include/nanvix/pm.h
- Process scheduler yield()
 - ▶ src/kernel/pm/sched.c
- Round-robin scheduling
 - Schedule ready process that is waiting longer
 - ▶ Give each process a same processor quantum

- Process table entry struct process
 - ▶ include/nanvix/pm.h
- Process scheduler yield()
 - ▶ src/kernel/pm/sched.c
- Round-robin scheduling
 - Schedule ready process that is waiting longer
 - Give each process a same processor quantum
- Support for priority scheduling (unused)
 - Static priority (priority)
 - Dynamic priority (counter)
 - User priority (nice)