2ª Lista de Exercícios de Lógica Matemática - LMA Professores: Jeferson L. R. S. e Kariston P.

Monitor: Miguel A. Nunes Joinville, 8 de maio de 2019

- 1. Prove por Demonstração Direta os seguintes argumentos.
 - (a) $\{r \to t, t \to \sim s, (r \to \sim s) \to q, p\} \vdash p \land q$
 - (b) $\{ \sim p \lor \sim s, q \to \sim r, t \to (r \land s), t \} \vdash \sim (p \lor q)$
 - (c) $\{q \to p, t \lor s, q \lor \sim s, \sim (p \lor r)\} \vdash t$
 - (d) $\{p \lor q \to r, s \to \sim r \land \sim t, s \lor u\} \vdash p \to u$
 - (e) $\{p \to q, r \to t, s \to r, p \lor s\} \vdash \sim q \to t$
 - (f) $\{p \lor \sim q, \sim p, \sim (p \land r) \to q\} \vdash r$
 - (g) $\{ \sim (p \lor q), \sim p \land \sim q \to r \land s, s \to r \} \vdash r$
 - (h) $\{p \lor q, q \to r, \sim r \lor s, \sim p\} \vdash s$
 - (i) $\{p \to q, p \lor (\sim r \land \sim q), s \to \sim r, \sim (p \land q)\} \vdash \sim (s \land q)$
 - (j) $\{p \to q, \sim r \to (s \to t), r \lor (p \lor s), \sim r\} \vdash q \lor t$
 - (k) $\{p \to q, q \to r, r \to s, \sim s, p \lor t\} \vdash t$
 - (l) $\{p \to q, q \to r, p \lor s, s \to t, \sim t\} \vdash r$
 - (m) $\{p \lor q, q \to r, p \to s, \sim s\} \vdash r \land (p \lor q)$
 - (n) $\{p \land q, p \rightarrow r, r \land s \rightarrow \sim t, q \rightarrow s\} \vdash \sim t$
 - (o) $\{p \land \sim q, r \to q, r \lor s, p \lor s \to t\} \vdash t$
- 2. Prove por Demonstração Condicional os seguintes argumentos.
 - (a) $\{(p \lor \sim q), q, r \to \sim s, p \to (\sim s \to t)\} \vdash \sim t \to \sim r$
 - (b) $\{r \lor s, \sim t \to \sim p, r \to \sim q\} \vdash p \land q \to (s \land t)$
 - (c) $\{q \to p, t \lor s, q \lor \sim s\} \vdash \sim (p \lor r) \to t$
 - (d) $\{(p \to q) \lor r, (s \lor t) \to \sim r, s \lor (t \land u)\} \vdash p \to q$
 - (e) $\{(p \to q) \land \sim (r \land \sim s), s \to (t \lor u), \sim u\} \vdash r \to t$
 - $\text{(f) } \{(p \vee \sim q), q, r \to \sim s, p \to (\sim s \to t)\} \vdash \sim t \to \sim r$
 - (g) $\{p \land q \rightarrow \sim r, r \lor (s \land t), p \leftrightarrow q\} \vdash p \rightarrow s$
 - (h) $\{r \to t, t \to \sim s, (r \to \sim s) \to q\} \vdash p \to (p \land q)$
 - (i) $\{p \to q, q \leftrightarrow s, t \lor (r \land \sim s)\} \vdash p \to t$
 - (j) $\{r \lor s, \sim t \to \sim p, r \to \sim q\} \vdash \sim (p \land q) \to (s \land t)$
 - (k) $\{q \to p, t \lor s, q \lor \sim s\} \vdash \sim (p \lor r) \to t$

(1)
$$\{p \lor q \to r, s \to \sim r \land \sim t, s \lor u\} \vdash p \to u$$

(m)
$$\{p \to q, r \to t, s \to r, p \lor s\} \vdash \sim q \to t$$

(n)
$$\{r \to s, s \to q, r \lor (s \land p)\} \vdash \sim q \to p \land s$$

(o)
$$\{ \sim p, \sim r \to q, \sim s \to p \} \vdash \sim (r \land s) \to q$$

3. Prove por Demonstração Indireta os seguintes argumentos.

(a)
$$\{ \sim (p \to q) \lor (s \to \sim r), q \lor s, p \to \sim s \} \vdash \sim r \lor \sim s \}$$

(b)
$$\{ \sim (p \to \sim q) \to ((r \leftrightarrow s) \lor t), p, q, \sim t, r \} \vdash s$$

(c)
$$\{(p \land q) \leftrightarrow \sim r, \sim r \rightarrow \sim p, \sim q \rightarrow \sim r\} \vdash q$$

(d)
$$\{(p \to q) \land r, q \lor s \to t \land u, v \to s, v \lor p\} \vdash t \lor x$$

(e)
$$\{\sim (p \to q) \lor (s \to \sim r), q \lor s, p \to \sim s\} \vdash \sim r \lor \sim s$$

(f)
$$\{ \sim p \rightarrow \sim q \lor r, s \lor (r \rightarrow t), p \rightarrow s, \sim s \} \vdash q \rightarrow t$$

(g)
$$\{ \sim p \lor \sim q, r \lor s \to p, q \lor \sim s, \sim r \vdash \sim (r \lor s) \}$$

(h)
$$\{p \lor q \to r, s \to \sim r \land \sim t, s \lor u, p\} \vdash p \to u$$

(i)
$$\{p \to q, r \to t, s \to r, p \lor s, \sim q\} \vdash t$$

(j)
$$\{(p \to q), q \leftrightarrow s, t \lor (r \land \sim s)\} \vdash p \to t$$

(k)
$$\{(p \to q) \lor r, s \lor t \to \sim r, s \lor (t \land u)\} \vdash p \to q$$

(1)
$$\{ \sim p \rightarrow \sim q, \sim p \lor r, r \rightarrow \sim s \} \vdash \sim q \lor \sim s$$

(m)
$$\{p \to q \lor r, q \to \sim p, s \to \sim r\} \vdash \sim (p \land s)$$

(n)
$$\{\sim (p \to \sim q) \to ((r \leftrightarrow s) \lor t), p, q, \sim t\} \vdash r \to s$$

(o)
$$\{(\sim p \to q) \land (r \to s), p \leftrightarrow t \lor \sim s, r, \sim t\} \vdash q$$

4. Encontre a Forma Normal Conjuntiva das seguintes proposições e então prove o argumento gerado usando o método pedido.

Lembrando que uma formula na FNC é do tipo: $P_1 \wedge P_2 \wedge P_3 \wedge P_4 \wedge ... \wedge P_n$, onde cada P_i é uma proposição simples ou composta.

Logo, é possível transformá-la em um argumento do tipo

 $P_1, P_2, P_3, ..., P_n \vdash Q$, onde Q é uma conclusão qualquer que pode ser provada a partir das premissas dadas.

(a)
$$(p \to q) \land (\sim p \land r)$$

Prove q Usando Demonstração Direta

(b)
$$(\sim r \lor \sim q) \leftrightarrow p$$

Prove $p \land r$ Usando Demonstração por Absurdo

(c)
$$(\sim r \lor \sim q) \leftrightarrow p$$

Prove $r \to (p \lor q)$ Usando Demonstração Condicional

Equivalências Notáveis:

$$P \vee \blacksquare \Leftrightarrow \blacksquare$$

Identidade (IDENT):
$$P \lor \Box \Leftrightarrow P$$

 $P \land \blacksquare \Leftrightarrow P$

$$P \wedge \square \Leftrightarrow \square$$

Idempotência (ID):
$$P \Leftrightarrow P \land P$$

 $P \Leftrightarrow P \lor P$

Comutação (COM):
$$P \land Q \Leftrightarrow Q \land P$$

 $P \lor Q \Leftrightarrow Q \lor P$

Associação (ASSOC):
$$\begin{array}{ll} P \wedge (Q \wedge R) \Leftrightarrow (P \wedge Q) \wedge R \\ P \vee (Q \vee R) \Leftrightarrow (P \vee Q) \vee R \end{array}$$

Distribuição (DIST):
$$\begin{array}{ll} P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R) \\ P \vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P \vee R) \end{array}$$

De Morgan (DM):
$$\sim (P \land Q) \Leftrightarrow \sim P \lor \sim Q$$

 $\sim (P \lor Q) \Leftrightarrow \sim P \land \sim Q$

Contradição:
$$P \land \sim P \Leftrightarrow \square$$

 $P \leftrightarrow \sim P \Leftrightarrow \square$

$$P \lor \sim P \Leftrightarrow \blacksquare$$

Tautologia:
$$P \to P \Leftrightarrow \blacksquare$$

$$P \leftrightarrow P \Leftrightarrow \blacksquare$$

$$\textbf{Absorção:} \quad \begin{array}{ll} P \wedge (P \vee Q) \Leftrightarrow P \\ P \vee (P \wedge Q) \Leftrightarrow P \end{array}$$

Conectivos de Scheffer
$$P \uparrow Q \Leftrightarrow \sim P \lor \sim Q$$

 $P \downarrow Q \Leftrightarrow \sim P \land \sim Q$

Dupla Negação (DN):
$$P \Leftrightarrow P$$

Condicional (COND):
$$P \to Q \Leftrightarrow \sim P \lor Q$$

Bicondicional (BICOND):
$$P \leftrightarrow Q \Leftrightarrow (P \to Q) \land (Q \to P)$$

Contraposição (CP):
$$P \to Q \Leftrightarrow \sim Q \to \sim P$$

Exportação-Importação (EI):
$$P \wedge Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$$

Ou-Exclusivo (X-or)
$$P \supseteq Q \Leftrightarrow (P \lor Q) \land \sim (P \land Q)$$

Regras de Inferência Válidas (Teoremas):

Adição (AD): $P \vdash P \lor Q$ $P \vdash Q \lor P$

Simplificação (SIMP): $P \land Q \vdash P$ $P \land Q \vdash Q$

Conjunção (CONJ) $\begin{array}{cc} P,Q \vdash P \land Q \\ P,Q \vdash Q \land P \end{array}$

Absorção (ABS): $P \to Q \vdash P \to (P \land Q)$

Modus Ponens (MP): $P \rightarrow Q, P \vdash Q$

Modus Tollens (MT): $P \rightarrow Q, \sim Q \vdash \sim P$

Silogismo Disjuntivo (SD): $P \lor Q, \sim P \vdash Q$ $P \lor Q, \sim Q \vdash P$

Silogismo Hipotético (SH): $P \rightarrow Q, Q \rightarrow R \vdash P \rightarrow R$

Dilema Construtivo (DC): $P \rightarrow Q, R \rightarrow S, P \lor R \vdash Q \lor S$

Dilema Destrutivo (DD): $P \to Q, R \to S, \sim Q \lor \sim S \vdash \sim P \lor \sim R$