ADVANCES IN LASER DIODES

FOR

PYROTECHINIC APPLICATIONS

Richard R. Craig

Spectra Diode Laboratories

Approved for public release; distribution is unlimited.

OUTLINE

BACKGROUND ON LASER DIODES
DAMAGE LIMITS
TEMPERATURE STABILITY
FIBER COUPLING ISSUES

SMALL FIBER RESULTS (100 MICRON)
PACKAGE GEOMETRY
ELECTRO-OPTICAL PROPERTIES
TEMPERATURE STABILITY

LARGE FIBER RESULTS (400 MICRON)
LASER BAR PERFORMANCE
PACKAGE GEOMETRY
ELECTRO-OPTICAL PROPERTIES

POWER LIMITS FOR LASER DIODES

FOR OPTICAL PULSES LONGER THAN 1 MICROSECOND FACET DAMAGE DEPENDS ON OPTICAL POWER NOT OPTICAL ENERGY.

FOR WELL "PASSIVATED" LASERS DAMAGE LIMIT APPROXIMATELY 10 MW/cm .

WELL "PASSIVATED" AlGaAs LASERS HAVE SAME DAMAGE LIMIT AS InGaAs LASERS.

LOW EFFICIENCY OR POOR HEATSINKING CAN CAUSE LASER TO "ROLL-OVER" BEFORE DAMAGE LIMIT IS REACHED.

Pulsed Laser

Short Pulse Power Curve

High Brightness Multimode Lasers

AlGaAs SQW Characteristics (795 - 860 nm)

Damage Limits of Diode Lasers

AlGaAs vs. InGaAs (Both are single mode lasers of similar structure)

DAMAGE LEVEL NOT SIGNIFICANTLY DIFFERENT

High T_o Quasi-cw 200 μ m Aperture Laser

Temperature Dependence of Laser Threshold:

$$\frac{I_{TH_1}}{I_{TH_2}} = e^{(T_1 - T_2)/T_0}$$

Temperature Variations

FIBER COUPLING OF LASER DIODES

IN SIMPLE COUPLING SCHEMES THE LASER APERTURE IS SMALLER THAN THE FIBER DIAMETER.

TAPERED FIBERS OR OTHER LENS APPROACHES CAN ACHIEVE COUPLING OF LASERS WITH APERTURES GREATER THAN TWICE THE FIBER DIAMETER.

COMMON BASIS FOR COMPARISON OF LASER SYSTEM CAN BE BRIGHTNESS FROM THE FIBER

BRIGHTNESS = POWER/(AREA x SOLID ANGLE)

RELAXING BRIGHTNESS REQUIREMENT CAN REDUCE MANUFACTURING COSTS.

Tapered Fiber Couple

 $50 \mu m$ Diameter, 0.4 NA

2 Watt Quasi-cw (10 msec) Fiber Coupled to 100 μ m Fiber

1 Watt Quasi-cw from 100 μm Fiber Meets Present Sandia Detonator Requirements

Package Specifications [Dimensions in inches (mm)]

\$9140 SOT-148 Fiber Pigtail Package

100 µm Fiber Results

SPECTRA DIODE LABS, INC.

OPERATOR'S MANUAL _

Power Characteristics of S9140

Total Width	W	S
2400 µm	170 µm	700 mm
4800 µm	100 µm	200 µm
mu 0009	mµ 08	125 μm
7200 μm	un 96	125 μm

20 W CW (4800 μm Total Aperture)

Projected Lives of 4,000, 7000, and 15,000 hours @ 25 °C (3 bars, 20% increase in operating current)

High Heat Load Fiber Coupled Package (P5)

PACKAGE IS ANODE

SDL-3450-P5 Light vs. Current

High Power Fiber Coupled Laser for Pyrotechnics

Test Conditions: 10 ms pulse, 10 Hz $20 \, ^{\circ}\text{C}$

Fiber: 400 µm, 0.4 NA

This page intentionally left blank.