PEP 335 Observational Astrophysics

Week 1	Review of astrophysical propagation of information via photons
	and particles. Introduction to instrumentation techniques
Week 2	Earth's atmosphere: absorption, scattering, turbulence. Site
	selection for observatories. Near-Earth space: conditions and
	optimization of satellite orbits. Spacecraft launch.
Week 3	Review of radiation, luminosity, and magnitude. Space-time
	reference systems for observations.
Week 4	Overview of telescope optics across the electromagnetic
	spectrum, coherent and incoherent sources
Week 5	Diffraction and image formation, adaptive optics for ground-based
	telescopes
Week 6	Interferometry methods for optical and radio telescopes
Week 7	Quantum and thermal noise, individual photon detection with the
	photoelectric effect, Compton scattering, and pair creation
Week 8	Radio telescopes, observations, and analysis methods
Week 9	Millimeter and sub-millimeter telescopes, observations, and
	analysis methods
Week 10	Optical and infrared telescopes, observations, and analysis
	methods
Week 11	Ultraviolet and X-ray telescopes, observations, and analysis
	methods
Week 12	Gamma-ray telescopes, observations, and analysis methods
Week 13	Cosmic ray instruments and analysis methods
Week 14	Gravitational wave detection techniques and analysis methods

Prerequisites:

PEP 112, PEP 151

Corequisite:

PEP 336

Textbook:_ Observational Astrophysics (3rd ed) by Pierre Lena, Springer, 2012.

Course Description:

This course focuses on the detection principles and technology of modern telescopes and observatories. Data analysis and instrumentation projects are an essential component of the course. Topics covered include: propagation of astrophysical information via photons and particles, the Earth's atmosphere, spacecraft design and launch, telescope optics, interferometry techniques, and a systematic survey of detection techniques from radio to gamma-ray telescopes and astro-particle instruments.

Course Outcomes:

- 1. Describe the propagation of astrophysical information via photons and particles and the effects of Earth's atmosphere on ground-based detection.
- 2. Apply optical principles to design and characterize basic telescopes.
- 3. Carry out simple calculations for diffraction and identify the concept of coherent radiation, which is essential to forming images.
- 4. Build and design a simple telescope, demonstrating photon detection principles.
- 5. Explain the techniques applied over a range of telescope instrumentations to detect photons across the electromagnetic spectrum based on the photoelectric effect, Compton scattering, and pair production mechanisms.
- 6. Conduct basic astrophysical data analysis, utilizing tools provided by NASA and other astrophysical resources.
- 7. Present original astrophysical results in both written and oral forms.