1. (i) (10 points) Let a and b be unspecified integers. Find, in terms of a and b, all integers x which satisfy $x \equiv a \mod 2$ and $x \equiv b \mod 3$.

Solution. This is problem 5 from pset 7 with n = 2 and m = 3. The solution set consists of all x congruent to $a + 4(b - a) \mod 6$.

(ii) (10 points) Let a, b, and c be unspecified integers. Find, in terms of a, b, and c, all integers x which satisfy $x \equiv a \mod 2$, $x \equiv b \mod 3$, and $x \equiv c \mod 7$. You may use your result from part (i).

Solution. This is problem 5 from pset 7 with n=6 and m=7. The solution set consists of all x congruent to 4b-3a+36(c-(4b-3a)) mod 42. This can be simplified to 105a-140b+36c mod 42. Note that other integer linear combinations of a, b, and c work.

2. Determine whether each of the following sets is finite. Assume that \mathbb{N} and \mathbb{Z} exist, and are infinite. You needn't prove well-definedness or any properties of functions that you display, but you must clearly state any properties of such functions and how they are used.

(i) (10 points)
$$\{(x,y) \in \mathbb{N} \times \mathbb{N} : x + y = 100\}$$

Solution. Let $f: \{(x,y) \in \mathbb{N} \times \mathbb{N} : x+y=100\} \to [101]$ via f(a,b)=a+1. Since f is an injection and [101] is finite, the domain is finite.

(ii) (10 points)
$$\{(x,y) \in \mathbb{N} \times \mathbb{Z} : x+y=1\}$$

Solution. Let $g:\{(x,y)\in\mathbb{N}\times\mathbb{Z}:x+y=1\}\to\mathbb{N}$ via g(a,b)=a. Since g is a bijection and \mathbb{N} is infinite, the domain is infinite. Note: One could go further and assume that the set in question is finite, and that $h:[n]\to\{(x,y)\in\mathbb{N}\times\mathbb{Z}:x+y=1\}$ is a bijection for some natural number n. This yields the contradiction that \mathbb{N} is finite by considering h composed with g.

3. (20 points) Determine the remainder when $(20!)^{2201}$ is divided by 23.

Solution.

$$(20!)^{2201}$$

$$\equiv_{23}(20!)(20!)^{2200}$$

$$\equiv_{23}(20!)((20!)^{100})^{22}$$

$$\equiv_{23}20!$$

$$\equiv_{23}(22*21)^{-1}*(22*21)*20!$$

$$\equiv_{23}(-1*-2)^{-1}*22!$$

$$\equiv_{23}2^{-1}*22!$$

$$\equiv_{23}12*(-1)$$
Wilson's Theorem
$$\equiv_{23}11$$

4. (i) Count the number of 4 card hands with exactly 2 suits.

Solution. First, we choose 2 suits $\binom{4}{2}$, then we partition based on AABB or AAAB.

- In the first case, we choose 2 cards from the higher alphabetical suit then the 2 cards for the second suit. by MP this yields $\binom{13}{2}\binom{13}{2}$
- In the second case, we choose which suit has 3 cards $\binom{2}{1}$, then pick cards for each suit: by MP, this yields $2\binom{13}{3}\binom{13}{1}$

by AP This yields $\binom{4}{2}\left(\binom{13}{2}\binom{13}{2}+2\binom{13}{3}\binom{13}{1}\right)$

(ii) Count the number of 2 card hands with **more** red cards than face cards.

Solution. We partition on the number of red cards. If we have 1 red card, we cannot have a face card. If we have 2 red cards, we must have either no face cards or only 1 face card (which must be red).

• In the first case, we pick a red non face card, then a black non face card. By MP:

$$\binom{20}{1}\binom{20}{1}$$

• In the next case, we pick 2 red cards that are not face cards:

$$\binom{20}{2}$$

• Finally, in the last case we pick 1 red face card then 1 red non face card. By MP:

$$\binom{6}{1}\binom{20}{1}$$

In total by AP, we have $\binom{20}{1}\binom{20}{1} + [\binom{20}{2} + \binom{6}{1}\binom{20}{1}]$

5. Count the number of **injections** $f:[20] \to [40]$ s.t. $\forall x \in [20], x \equiv f(x) \mod 5.$

Solution. Every value in the image of f will either be $0, 1, 2, 3, 4 \mod 5$. So suppose we want to count the number of ways we can map all $x \in [20]$ that satisfy $x \equiv 0 \mod 5$. In this case, we have 5, 10, 15, 20, which then each have to map to a different value in 5, 10, 15, 20, 25, 30, 35, 40. We define a process as follows:

- Choose where the lowest element maps to (8 choices)
- Choose where the second lowest element maps to (7 choices)
- \bullet Choose where the third lowest element maps to (6 choices)
- \bullet Choose where the last element maps to (5 choices)

Thus, by MP we have 8*7*6*5 choices. We consider the same process for numbers mod 1, 2, 3, and 4. Then by MP we have a final solution of $(8*7*6*5)^5$.

Another way to think of this problem is that each set of 4 domain elements equivalent mod 5 form their own injection to a set of 8 elements in the codomain.

Bonus. compute $7^{11!} \mod 23$ (simplify to a value between 0 and 22) *Solution:*

$$7^{11!}$$

$$\equiv_{23} (7^{3*4*5*6*7*8*9*10})^{2*11}$$

$$\equiv_{23} (7^{3*4*5*6*7*8*9*10})^{22}$$

$$\equiv_{23} 1$$
FLT, $7^k \perp 23 \forall k \in \mathbb{N}$