			1
1 (i)	$11^{-2} = \frac{1}{121}$	B1 1	$\frac{1}{121}$ $(\frac{1}{11^2} = B0)$
(ii)	$100^{\frac{3}{2}} = 1000$	M1 A1 2	Square rooting or cubing soi
(iii)	$\sqrt{50} + \frac{6}{\sqrt{3}}$	B1	$5\sqrt{2}$ (allow \pm)
	$\sqrt{50} + \frac{6}{\sqrt{3}}$ $= 5\sqrt{2} + \frac{6\sqrt{3}}{3}$ $= 5\sqrt{2} + 2\sqrt{3}$	M1	Attempt to rationalise $\frac{6}{\sqrt{3}}$
	$=5\sqrt{2}+2\sqrt{3}$	A1 3	cao
		<u>6</u>	
2	q=2 r=3	B1	(allow embedded values)
	r=3	B1	
		M1	$qr^2 + 10 = p$ or other correct method
	p=28	A1√4	4
		4	4
3(i)	$y = 5\sqrt{2x}$	M1	$\sqrt{2x}$ or $\sqrt{\frac{x}{2}}$ seen $y = 5\sqrt{2x}$
		A1 2	$y = 5\sqrt{2x}$
(ii)	Translation $\begin{pmatrix} 0 \\ -3 \end{pmatrix}$	B1	Translation
		B1 2	$\begin{pmatrix} 0 \\ -3 \end{pmatrix}$ o.e.

	I		
4	Either $y = 2x + 1$ or $y = \frac{x^2 + 11}{3}$	M1	Substitute for x/y or attempt to get an equation in 1 variable only
	$x^2 - 6x + 8 = 0$	A1	Obtain correct 3 term quadratic
	(x-2)(x-4)=0	M1	Correct method to solve 3 term quadratic
	x = 2 $x = 4$	A1	or one correct pair of values B1
	x = 2 x = 4 $y = 5 y = 9$	A1	second correct pair of values B1 c.a.o
	OR $x = \frac{y-1}{2}$ $\frac{(y-1)^2}{4} - 3y + 11 = 0$ $y^2 - 14y + 45 = 0$ $(y-5)(y-9) = 0$ $y = 5 y = 9$ $x = 2 x = 4$		SR If solution by graphical methods: setting out to draw a parabola and a line M1 both correct A1 reading off of coordinates at intersection point(s) M1 one correct pair A1 second correct pair A1 OR No working shown: one correct pair B1 second correct pair B1 full justification that these are the only solutions B3

5 (i)		B1		rrect curve Fve quadrant
		B1 2	in -	-ve quadrant
(ii)		M1	Po	sitive cubic with clearly en max and min points
		A1	Ar	1,0) (0,0) (1,0) ny one point stated or arked on sketch
-	(-1,0) (0,0) (1,0)	A1 3	סמ	urve passes through all 3 bints and no extras stated marked on sketch
(iii)		B1	G	raph <u>only</u> in bottom right and quadrant
		B1 2		orrect graph, passing nrough origin
		7		
6 (i)	$49 - 4 \times -2 \times 3 = 73$	M1		Uses $b^2 - 4ac$
	2 real roots	A1		73
		B1√	3	2 real roots (ft from their value)
(ii)	$(p+1)^{2} - 64 = 0$ or $2[(x + \frac{p+1}{4})^{2} - \frac{(p+1)^{2}}{16} + 4] =$	M1	,	Attempts $b^2 - 4ac = 0$ (involving p) or attempts to complete square (involving p)
	$2[(x+\frac{1}{4}) - \frac{1}{16} + 4] -$	A1		$(p+1)^2 - 64 = 0$ aef
	p= -9,7	B1		p= -9 p= 7
		B1	4	p= 7
			7	

,_ 			
7 (i)	$\frac{\mathrm{d}y}{\mathrm{dx}} = 2x^3 - 3$	B1	1 term correct
		B1 2	Completely correct (+c is an error, but only penalise
(ii)	$y = 2x^3 + 2x^2 + 3x + 3$	M1	once) Attempt to expand brackets
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 + 4x + 3$	A1	$2x^3 + 2x^2 + 3x + 3$
		A1 A1 4	2 terms correct Completely correct
			SR Recognisable attempt at product rule M1 one part correct A1 second part correct A1 final simplified answer A1
(iii)	$y = x^{\frac{1}{5}}$ $\frac{\mathrm{d}y}{\mathrm{dx}} = \frac{1}{5}x^{-\frac{4}{5}}$	B1	$x^{\frac{1}{5}}$ soi
	$\frac{\mathrm{d}y}{\mathrm{dx}} = \frac{1}{5}x^{-\frac{4}{5}}$	B1	$\frac{1}{5}x^c$
		B1 3	$kx^{-\frac{4}{5}}$
		9	
8(i)	2[10+x+x] > 64	B1 1	20 + 4x > 64 o.e.
(ii)	$\begin{vmatrix} x(x+10) < 299 \\ x^2 + 10x - 299 < 0 \end{vmatrix}$	B1	x(x+10) < 299
	(x-13)(x+23) < 0	B1 2	Correctly shows $(x-13)(x+23) < 0$ AG
			SR Complete proof worked backward B2
(iii)	x > 11 (x-13)(x+23) < 0	B1√ M2	x > 11 ft from their (i) Correct method to solve (x-13)(x+23) < 0 eg graph
	-23 < x < 13	A1	$-23 < x < 13$ seen in this form or as number line \underline{SR} if seen with no working B1
	∴11 < <i>x</i> <13	B1 5	
		<u>8</u>	

9(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x$	B1	4x
	$\frac{dy}{dx} = 4x$ At x=3, $\frac{dy}{dx} = 12$	5. –	12
(ii)	Gradient of tangent = - 8	M1	$\frac{dy}{dx} = -8$ $x=-2$ $y=8$
	4x = -8 $x = -2$ $y = 8$	A1	x=-2
	y = 8	A1 3	<i>y</i> =8
(iii) Gradient = 6	B1 1	a di di annonches
(ir	$\frac{dy}{dx} = 2kx$ $x = 1$ $\frac{dy}{dx} = 2k$ $k = 3$	M1 M1	$\frac{dy}{dx} = 2kx$ $\frac{dy}{dx} = 2k$ $k = 3$ CWO
	$\frac{dy}{dx} = 2k$ $k = 3$	AIV	cwo
			9
1		Y	

10(i)	Gradient DE = $-\frac{1}{2}$	B1 1	$-\frac{1}{2}$ (any working seen must be correct)
(ii)	$y-3=-\frac{1}{2}(x-2)$	M1	Correct equation for straight line, any gradient, passing through F
		A1	$y-3 = -\frac{1}{2}(x-2)$ aef
	x+2y-8=0	A1 3	x+2y-8=0 (this form but can have fractional coefficients e.g. $\frac{1}{2}x+y-4=0$
(iii)	Gradient EF = $\frac{4}{2}$ =2	B1	Correct supporting working must be seen
	$-\frac{1}{2} \times 2 = -1$	B1 2	Attempt to show that product of their gradients = -1 o.e.
(iv)	$DF = \sqrt{4^2 + 3^2} = 5$	M1	$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ used
		A1 2	5
(v)	DF is a diameter as angle DEF is a right angle.	B1	Justification that DF is a diameter
	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$	B1	Mid-point of DF <u>or</u> centre of circle is $(0,1\frac{1}{2})$
	Radius = 2.5	B1	Radius = 2.5
	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$	B1√	$x^{2} + (y - \left(\frac{3}{2}\right)^{2}) = \left(\frac{5}{2}\right)^{2}$
	$x^2 + y^2 - 3y + \frac{9}{4} = \frac{25}{4}$		2 2 2 4 0
	$x^2 + y^2 - 3y - 4 = 0$	B1 5	obtained correctly with at least one line of intermediate working.
			For working that only shows $x^2 + y^2 - 3y - 4 = 0$ is equation for a circle with
			centre $(0,1\frac{1}{2})$ B1
			radius 2.5 B1
		13	3