Mixture Models and GMM (Contd.)

Piyush Rai

Probabilistic Machine Learning (CS772A)

Aug 31, 2017

- A model for data clustering and density estimation
- ullet Assumes data generated from a mixture of K Gaussians with mixing proportions π_1,\ldots,π_K

- A model for data clustering and density estimation
- ullet Assumes data generated from a mixture of K Gaussians with mixing proportions π_1,\ldots,π_K

• The prior probability of observation x_n generated from the k-th Gaussian

$$p(\boldsymbol{z}_n = k|\pi) = \pi_k$$

- A model for data clustering and density estimation
- ullet Assumes data generated from a mixture of K Gaussians with mixing proportions π_1,\ldots,π_K

ullet The prior probability of observation $oldsymbol{x}_n$ generated from the k-th Gaussian

$$p(\boldsymbol{z}_n = k|\pi) = \pi_k$$

• Same as a multinoulli prior on z, i.e., $p(z_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$

- A model for data clustering and density estimation
- ullet Assumes data generated from a mixture of K Gaussians with mixing proportions π_1,\ldots,π_K

• The prior probability of observation x_n generated from the k-th Gaussian

$$p(\mathbf{z}_n = k|\pi) = \pi_k$$

• Same as a multinoulli prior on z, i.e., $p(z_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$ (note $z_{nk} = 1$ if $z_n = k$; 0 otherwise)

- A model for data clustering and density estimation
- ullet Assumes data generated from a mixture of K Gaussians with mixing proportions π_1,\ldots,π_K

• The prior probability of observation x_n generated from the k-th Gaussian

$$p(\mathbf{z}_n = k|\pi) = \pi_k$$

- Same as a multinoulli prior on z, i.e., $p(z_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$ (note $z_{nk} = 1$ if $z_n = k$; 0 otherwise)
- If $z_n = k$, we generate x_n from the k-th Gaussian.

- A model for data clustering and density estimation
- ullet Assumes data generated from a mixture of K Gaussians with mixing proportions π_1,\ldots,π_K

• The prior probability of observation x_n generated from the k-th Gaussian

$$p(\boldsymbol{z}_n = k|\pi) = \pi_k$$

- Same as a multinoulli prior on z, i.e., $p(z_n|\pi) = \prod_{k=1}^K \pi_k^{z_{nk}}$ (note $z_{nk} = 1$ if $z_n = k$; 0 otherwise)
- If $z_n = k$, we generate x_n from the k-th Gaussian. Thus

$$p(\mathbf{x}_n|\mathbf{z}_n=k)=\mathcal{N}(\mathbf{x}_n|\mu_k,\Sigma_k)$$

• The marginal distribution of x_n (requires summing over all possibilities of z_n)

$$p(oldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(oldsymbol{x}_n|\mu_k, \Sigma_k)$$

• The marginal distribution of x_n (requires summing over all possibilities of z_n)

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

where
$$\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$$

• The marginal distribution of x_n (requires summing over all possibilities of z_n)

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

• The MLE objective for the GMM will be

where $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

$$\sum_{n=1}^{N} \log p(\mathbf{x}_n | \Theta) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \mu_k, \Sigma_k)$$

• The marginal distribution of x_n (requires summing over all possibilities of z_n)

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

• The MLE objective for the GMM will be

where $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

$$\sum_{n=1}^{N} \log p(\boldsymbol{x}_n | \Theta) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n | \mu_k, \Sigma_k)$$

ullet Doing MLE on this objective is tricky due to the "log \sum " term

• The marginal distribution of x_n (requires summing over all possibilities of z_n)

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

where $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

The MLE objective for the GMM will be

$$\sum_{n=1}^{N} \log p(\boldsymbol{x}_n | \Theta) = \sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\boldsymbol{x}_n | \mu_k, \Sigma_k)$$

- Doing MLE on this objective is tricky due to the " $\log \Sigma$ " term
 - Parameters get coupled; no closed form solution (iterative methods needed, slow convergence)

• The marginal distribution of x_n (requires summing over all possibilities of z_n)

$$p(\boldsymbol{x}_n|\Theta) = \sum_{k=1}^K \pi_k \mathcal{N}(\boldsymbol{x}_n|\mu_k, \Sigma_k)$$

where $\Theta = (\pi, \{\mu_k, \Sigma_k\}_{k=1}^K)$

The MLE objective for the GMM will be

$$\sum_{n=1}^{N}\log p(\boldsymbol{x}_{n}|\Theta) = \sum_{n=1}^{N}\log \sum_{k=1}^{K}\pi_{k}\mathcal{N}(\boldsymbol{x}_{n}|\mu_{k},\Sigma_{k})$$

- Doing MLE on this objective is tricky due to the " $\log \Sigma$ " term
 - Parameters get coupled; no closed form solution (iterative methods needed, slow convergence)
- An alternating "guess, re-estimate, and repeat until converge" algorithm helps solve such problems in a clean, simple, and efficient way; basically, the Expectation Maximization (EM) algorithm

• MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n

- ullet MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n
- Reason: If z_n is known (suppose $z_n = k$), then the summation over z_n isn't required

$$\sum_{n=1}^{N} \log \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- ullet MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n
- Reason: If z_n is known (suppose $z_n = k$), then the summation over z_n isn't required

$$\sum_{n=1}^{N}\log\sum_{k=1}^{K}\pi_{k}\mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})$$

• With z_n known, can treat (x_n, z_n) as our "data" and do MLE on $p(x_n, z_n|\Theta)$, instead of $p(x_n|\Theta)$

- ullet MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n
- Reason: If z_n is known (suppose $z_n = k$), then the summation over z_n isn't required

$$\sum_{n=1}^{N}\log\left(x_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\right)$$

- With z_n known, can treat (x_n, z_n) as our "data" and do MLE on $p(x_n, z_n|\Theta)$, instead of $p(x_n|\Theta)$
 - $p(x_n, z_n | \Theta)$ is known as "complete data likelihood" (CLL) z_n makes x_n "complete"

- ullet MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n
- Reason: If z_n is known (suppose $z_n = k$), then the summation over z_n isn't required

$$\sum_{n=1}^{N}\log \sum_{k=1}^{K} \pi_{k} \mathcal{N}(\mathbf{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})$$

- With z_n known, can treat (x_n, z_n) as our "data" and do MLE on $p(x_n, z_n|\Theta)$, instead of $p(x_n|\Theta)$
 - $p(x_n, z_n | \Theta)$ is known as "complete data likelihood" (CLL) z_n makes x_n "complete"
 - $p(x_n|\Theta)$ is known as "incomplete data likelihood" (ILL)

- ullet MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n
- Reason: If z_n is known (suppose $z_n = k$), then the summation over z_n isn't required

$$\sum_{n=1}^{N}\log\left(x_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k}\right)$$

- With z_n known, can treat (x_n, z_n) as our "data" and do MLE on $p(x_n, z_n|\Theta)$, instead of $p(x_n|\Theta)$
 - $p(x_n, z_n | \Theta)$ is known as "complete data likelihood" (CLL) z_n makes x_n "complete"
 - $p(x_n|\Theta)$ is known as "incomplete data likelihood" (ILL)
- Notation: $\boldsymbol{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}]$ has a one-hot representation (note: only a single z_{nk} will be 1)

- MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n
- Reason: If z_n is known (suppose $z_n = k$), then the summation over z_n isn't required

$$\sum_{n=1}^{N}\log\sum_{k=1}^{K}\pi_{k}\mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})$$

- With z_n known, can treat (x_n, z_n) as our "data" and do MLE on $p(x_n, z_n|\Theta)$, instead of $p(x_n|\Theta)$
 - $p(x_n, z_n | \Theta)$ is known as "complete data likelihood" (CLL) z_n makes x_n "complete"
 - $p(x_n|\Theta)$ is known as "incomplete data likelihood" (ILL)
- Notation: $\mathbf{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}]$ has a one-hot representation (note: only a single z_{nk} will be 1)
- Denoting all the GMM parameters by Θ , the complete data log-likelihood will be

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \log p(\mathbf{x}_n, \mathbf{z}_n | \Theta)$$

- MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n
- Reason: If z_n is known (suppose $z_n = k$), then the summation over z_n isn't required

$$\sum_{n=1}^{N}\log\sum_{k=1}^{K}\pi_{k}\mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})$$

- With z_n known, can treat (x_n, z_n) as our "data" and do MLE on $p(x_n, z_n|\Theta)$, instead of $p(x_n|\Theta)$
 - $p(x_n, z_n | \Theta)$ is known as "complete data likelihood" (CLL) z_n makes x_n "complete"
 - $p(x_n|\Theta)$ is known as "incomplete data likelihood" (ILL)
- Notation: $\mathbf{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}]$ has a one-hot representation (note: only a single z_{nk} will be 1)
- Denoting all the GMM parameters by Θ , the complete data log-likelihood will be

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \log p(x_n, z_n | \Theta) = \sum_{n=1}^{N} \log p(x_n | z_n) p(z_n)$$

- MLE for GMM (and LVMs in general) becomes simple if we knew (or "guess") the z_n for each x_n
- Reason: If z_n is known (suppose $z_n = k$), then the summation over z_n isn't required

$$\sum_{n=1}^{N}\log\sum_{k=1}^{K}\pi_{k}\mathcal{N}(\boldsymbol{x}_{n}|\boldsymbol{\mu}_{k},\boldsymbol{\Sigma}_{k})$$

- With z_n known, can treat (x_n, z_n) as our "data" and do MLE on $p(x_n, z_n|\Theta)$, instead of $p(x_n|\Theta)$
 - $p(x_n, z_n | \Theta)$ is known as "complete data likelihood" (CLL) z_n makes x_n "complete"
 - $p(x_n|\Theta)$ is known as "incomplete data likelihood" (ILL)
- Notation: $\boldsymbol{z}_n = [z_{n1}, z_{n2}, \dots, z_{nK}]$ has a one-hot representation (note: only a single z_{nk} will be 1)
- Denoting all the GMM parameters by Θ , the complete data log-likelihood will be

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \log p(x_n, z_n | \Theta) = \sum_{n=1}^{N} \log p(x_n | z_n) p(z_n) = \sum_{n=1}^{N} \log \prod_{k=1}^{K} [p(x_n | z_n = k) p(z_n = k)]^{z_{nk}}$$

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\boldsymbol{z}_{n} = k) p(\boldsymbol{x}_{n} | \boldsymbol{z}_{n} = k)$$

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• The CLL gets further simplified to

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.).

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\boldsymbol{z}_n = k) p(\boldsymbol{x}_n | \boldsymbol{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.
 - Idea: Use posterior expectation of z_{nk} as our guess

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.
 - Idea: Use posterior expectation of z_{nk} as our guess (seems reasonable; will see justification shortly)

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.
 - Idea: Use posterior expectation of z_{nk} as our guess (seems reasonable; will see justification shortly)

$$\mathbb{E}[z_{nk}] = 0 \times p(z_{nk} = 0|x_n) + 1 \times p(z_{nk} = 1|x_n)$$

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.
 - Idea: Use posterior expectation of z_{nk} as our guess (seems reasonable; will see justification shortly)

$$\mathbb{E}[z_{nk}] = 0 \times p(z_{nk} = 0 | x_n) + 1 \times p(z_{nk} = 1 | x_n)$$
$$= p(z_{nk} = 1 | x_n)$$

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\boldsymbol{z}_n = k) p(\boldsymbol{x}_n | \boldsymbol{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.
 - Idea: Use posterior expectation of z_{nk} as our guess (seems reasonable; will see justification shortly)

$$\begin{split} \mathbb{E}[z_{nk}] &= 0 \times p(z_{nk} = 0 | x_n) + 1 \times p(z_{nk} = 1 | x_n) \\ &= p(z_{nk} = 1 | x_n) \\ &\propto p(z_{nk} = 1) p(x_n | z_{nk} = 1) \end{split} \tag{from Bayes Rule}$$

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.
 - Idea: Use posterior expectation of z_{nk} as our guess (seems reasonable; will see justification shortly)

$$\begin{split} \mathbb{E}[z_{nk}] &= 0 \times p(z_{nk} = 0 | x_n) + 1 \times p(z_{nk} = 1 | x_n) \\ &= p(z_{nk} = 1 | x_n) \\ &\propto p(z_{nk} = 1) p(x_n | z_{nk} = 1) \qquad \text{(from Bayes Rule)} \end{split}$$
 Thus $\mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)$ (Posterior prob. that x_n is generated by k -th Gaussian)

• The CLL gets further simplified to

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.
 - Idea: Use posterior expectation of z_{nk} as our guess (seems reasonable; will see justification shortly)

$$\begin{split} \mathbb{E}[z_{nk}] &= 0 \times p(z_{nk} = 0 | x_n) + 1 \times p(z_{nk} = 1 | x_n) \\ &= p(z_{nk} = 1 | x_n) \\ &\propto p(z_{nk} = 1) p(x_n | z_{nk} = 1) \qquad \text{(from Bayes Rule)} \end{split}$$
 Thus $\mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)$ (Posterior prob. that x_n is generated by k -th Gaussian)

• Note: We can finally normalize $\mathbb{E}[z_{nk}]$ as $\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$ since $\sum_{k=1}^K \mathbb{E}[z_{nk}] = 1$

$$\mathrm{CLL}(\Theta) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \log p(\mathbf{z}_n = k) p(\mathbf{x}_n | \mathbf{z}_n = k) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

- Simple algebraic form. MLE easy by taking (partial) derivatives w.r.t. each parameter
- However, to do so, we need the z_{nk} 's (each a binary r.v.). This is where we'll make a guess.
 - Idea: Use posterior expectation of z_{nk} as our guess (seems reasonable; will see justification shortly)

$$\begin{split} \mathbb{E}[z_{nk}] &= 0 \times p(z_{nk} = 0 | x_n) + 1 \times p(z_{nk} = 1 | x_n) \\ &= p(z_{nk} = 1 | x_n) \\ &\propto p(z_{nk} = 1) p(x_n | z_{nk} = 1) \qquad \text{(from Bayes Rule)} \end{split}$$
 Thus $\mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)$ (Posterior prob. that x_n is generated by k -th Gaussian)

- Note: We can finally normalize $\mathbb{E}[z_{nk}]$ as $\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}$ since $\sum_{k=1}^K \mathbb{E}[z_{nk}] = 1$
- Wait! Computing $\mathbb{E}[z_{nk}]$ requires knowing $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ (chicken-and-egg problem \odot)

GMM Parameter Estimation: The Alternating Approach

Can solve the chicken-and-egg problem by taking an alternating approach

Can solve the chicken-and-egg problem by taking an alternating approach

Can solve the chicken-and-egg problem by taking an alternating approach

• Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}]$$

Can solve the chicken-and-egg problem by taking an alternating approach

1 Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$$

Can solve the chicken-and-egg problem by taking an alternating approach

1 Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)} \qquad \text{(for } n = 1, \dots, N, \ k = 1, \dots, K)$$

Can solve the chicken-and-egg problem by taking an alternating approach

1 Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)} \qquad \text{(for } n = 1, \dots, N, \ k = 1, \dots, K)$$

② Using $\mathbb{E}[z_{nk}]$ computed in step 1, maximize the expected CLL objective w.r.t. $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$

Can solve the chicken-and-egg problem by taking an alternating approach

• Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)} \qquad \text{(for } n = 1, \dots, N, \ k = 1, \dots, K)$$

3 Using $\mathbb{E}[z_{nk}]$ computed in step 1, maximize the expected CLL objective w.r.t. $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[\mathbf{z}_{nk}] [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

Can solve the chicken-and-egg problem by taking an alternating approach

1 Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)} \qquad \text{(for } n = 1, \dots, N, \ k = 1, \dots, K)$$

② Using $\mathbb{E}[z_{nk}]$ computed in step 1, maximize the expected CLL objective w.r.t. $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[\mathbf{z}_{nk}][\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

.. this will give ML estimates for parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$. Details on the next slides.

Can solve the chicken-and-egg problem by taking an alternating approach

1 Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)} \qquad \text{(for } n = 1, \dots, N, \ k = 1, \dots, K)$$

 $ext{@}$ Using $\mathbb{E}[z_{nk}]$ computed in step 1, maximize the expected CLL objective w.r.t. $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[\mathbf{z}_{nk}][\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

.. this will give ML estimates for parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$. Details on the next slides.

The algorithm alternates between step 1 and 2 until convergence

Can solve the chicken-and-egg problem by taking an alternating approach

• Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)} \qquad \text{(for } n = 1, \dots, N, \ k = 1, \dots, K)$$

② Using $\mathbb{E}[z_{nk}]$ computed in step 1, maximize the expected CLL objective w.r.t. $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[\mathbf{z}_{nk}][\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

.. this will give ML estimates for parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$. Details on the next slides.

The algorithm alternates between step 1 and 2 until convergence

This is an example of the more general **Expectation Maximization** (EM) algorithm.

Can solve the chicken-and-egg problem by taking an alternating approach

• Assume $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$ is known. Estimate the required expectations of the latent variables

$$\mathbb{E}[z_{nk}] = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)} \qquad \text{(for } n = 1, \dots, N, \ k = 1, \dots, K)$$

② Using $\mathbb{E}[z_{nk}]$ computed in step 1, maximize the expected CLL objective w.r.t. $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \mathbb{E}[\mathbf{z}_{nk}][\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

.. this will give ML estimates for parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}$. Details on the next slides.

The algorithm alternates between step 1 and 2 until convergence

This is an example of the more general **Expectation Maximization** (EM) algorithm. EM can be used for MLE/MAP in probabilistic models **that contain latent variables** making standard MLE/MAP hard

• Given $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$, the expected complete data log-lik.

• Given $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$, the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• Given $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{\ell=1}^K \pi_\ell \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_\ell, \boldsymbol{\Sigma}_\ell)}$, the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

ullet Taking derivatives w.r.t. $oldsymbol{\mu}_k$ and $oldsymbol{\Sigma}_k$, $orall k=1,\ldots,K$

• Given $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$, the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\pmb{x}_n | \pmb{\mu}_k, \pmb{\Sigma}_k)]$$

• Taking derivatives w.r.t. μ_k and Σ_k , $\forall k = 1, ..., K$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\mu}_k \text{ can be ignored)}$$

• Given $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$, the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\pmb{x}_n | \pmb{\mu}_k, \pmb{\Sigma}_k)]$$

• Taking derivatives w.r.t. μ_k and Σ_k , $\forall k = 1, ..., K$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\mu}_k \text{ can be ignored)}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k} = \frac{\partial}{\partial \mathbf{\Sigma}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mathbf{\Sigma}_k \text{ can be ignored)}$$

• Given $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$, the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• Taking derivatives w.r.t. μ_k and Σ_k , $\forall k = 1, ..., K$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\mu}_k \text{ can be ignored)}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k} = \frac{\partial}{\partial \mathbf{\Sigma}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mathbf{\Sigma}_k \text{ can be ignored)}$$

ullet For each k, it's a "weighted" version of the MLE for the multivar. Gaussian $\mathcal{N}(x|\mu_k, \Sigma_k)$

• Given $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$, the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\pmb{x}_n | \pmb{\mu}_k, \pmb{\Sigma}_k)]$$

• Taking derivatives w.r.t. μ_k and Σ_k , $\forall k = 1, ..., K$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\mu}_k \text{ can be ignored)}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k} = \frac{\partial}{\partial \mathbf{\Sigma}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mathbf{\Sigma}_k \text{ can be ignored)}$$

- ullet For each k, it's a "weighted" version of the MLE for the multivar. Gaussian $\mathcal{N}(\pmb{x}|\pmb{\mu}_k, \pmb{\Sigma}_k)$
- Can also solve for π_k likewise (subject to contraint $\sum_{k=1}^K \pi_k = 1$)

• Given $\mathbb{E}[z_{nk}] = \gamma_{nk} = \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$, the expected complete data log-lik.

$$\mathcal{L} = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma_{nk} [\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]$$

• Taking derivatives w.r.t. μ_k and Σ_k , $\forall k = 1, ..., K$

$$\frac{\partial \mathcal{L}}{\partial \boldsymbol{\mu}_k} = \frac{\partial}{\partial \boldsymbol{\mu}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \boldsymbol{\mu}_k \text{ can be ignored)}$$

$$\frac{\partial \mathcal{L}}{\partial \mathbf{\Sigma}_k} = \frac{\partial}{\partial \mathbf{\Sigma}_k} \sum_{n=1}^N \gamma_{nk} \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{\Sigma}_k) = 0 \qquad \text{(note: constants w.r.t. } \mathbf{\Sigma}_k \text{ can be ignored)}$$

- For each k, it's a "weighted" version of the MLE for the multivar. Gaussian $\mathcal{N}(x|\mu_k, \Sigma_k)$
- Can also solve for π_k likewise (subject to contraint $\sum_{k=1}^K \pi_k = 1$)
- Derivations are a bit tedious (but straightforward). I will provide a note.

• Suppose
$$N_k = \sum_{n=1}^N \gamma_{nk}$$

• Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k

- Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k
 - Note that each x_n gets "soft" assignment $\gamma_{nk} \in (0,1)$ to the k-th Gaussian

- Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k
 - Note that each x_n gets "soft" assignment $\gamma_{nk} \in (0,1)$ to the k-th Gaussian (also $\sum_{k=1}^K \gamma_{nk} = 1$)

- Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k
 - Note that each x_n gets "soft" assignment $\gamma_{nk} \in (0,1)$ to the k-th Gaussian (also $\sum_{k=1}^K \gamma_{nk} = 1$)
- The final expressions for updates of $\{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$

- Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k
 - Note that each x_n gets "soft" assignment $\gamma_{nk} \in (0,1)$ to the k-th Gaussian (also $\sum_{k=1}^K \gamma_{nk} = 1$)
- ullet The final expressions for updates of $\{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

- Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k
 - Note that each x_n gets "soft" assignment $\gamma_{nk} \in (0,1)$ to the k-th Gaussian (also $\sum_{k=1}^K \gamma_{nk} = 1$)
- ullet The final expressions for updates of $\{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

$$\mathbf{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top}$$

- Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k
 - Note that each x_n gets "soft" assignment $\gamma_{nk} \in (0,1)$ to the k-th Gaussian (also $\sum_{k=1}^K \gamma_{nk} = 1$)
- ullet The final expressions for updates of $\{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k) (x_n - \mu_k)^\top$$

$$\pi_k = \frac{N_k}{N}$$

- Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k
 - Note that each x_n gets "soft" assignment $\gamma_{nk} \in (0,1)$ to the k-th Gaussian (also $\sum_{k=1}^K \gamma_{nk} = 1$)
- ullet The final expressions for updates of $\{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k) (x_n - \mu_k)^\top$$

$$\pi_k = \frac{N_k}{N}$$

• Note that μ_k, Σ_k updates are similar to multivar. Gaussian MLE equations

- Suppose $N_k = \sum_{n=1}^N \gamma_{nk}$ is the <u>effective number of observations</u> assigned to Gaussian k
 - Note that each x_n gets "soft" assignment $\gamma_{nk} \in (0,1)$ to the k-th Gaussian (also $\sum_{k=1}^K \gamma_{nk} = 1$)
- ullet The final expressions for updates of $\{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

$$\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (x_n - \mu_k) (x_n - \mu_k)^\top$$

$$\pi_k = \frac{N_k}{N}$$

- Note that μ_k, Σ_k updates are similar to multivar. Gaussian MLE equations
- Each $\mathbf{x}_n, n = 1, \dots, N$ contributes to each $\{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ update but fractionally (based on γ_{nk})

• Initialize the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ randomly, or using K-means

- ullet Initialize the parameters $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase or Θ doesn't change by much)

- ullet Initialize the parameters $\Theta = \{\pi_k, oldsymbol{\mu}_k, oldsymbol{\Sigma}_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase or Θ doesn't change by much)
 - Given Θ , compute each expectation z_{nk} (posterior probability of $z_{nk} = 1$), $\forall n, k$

- Initialize the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase or Θ doesn't change by much)
 - Given Θ , compute each expectation z_{nk} (posterior probability of $z_{nk} = 1$), $\forall n, k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t. $\sum_{k=1}^K \gamma_{nk} = 1$)

- Initialize the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(x|\Theta)$ ceases to increase or Θ doesn't change by much)
 - Given Θ , compute each expectation z_{nk} (posterior probability of $z_{nk} = 1$), $\forall n, k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
 (and re-normalize s.t. $\sum_{k=1}^K \gamma_{nk} = 1$)

• Given "responsibilities" $\gamma_{nk} = \mathbb{E}[z_{nk}]$, and $N_k = \sum_{n=1}^N \gamma_{nk}$, update $\Theta = \{\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k\}_{k=1}^K$ as

- Initialize the parameters $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ randomly, or using K-means
- Iterate until convergence (e.g., when $\log p(\mathbf{x}|\Theta)$ ceases to increase or Θ doesn't change by much)
 - Given Θ , compute each expectation z_{nk} (posterior probability of $z_{nk} = 1$), $\forall n, k$

$$\gamma_{nk} = \mathbb{E}[z_{nk}] \propto \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \mathbf{\Sigma}_k)$$
 (and re-normalize s.t. $\sum_{k=1}^K \gamma_{nk} = 1$)

• Given "responsibilities" $\gamma_{nk} = \mathbb{E}[z_{nk}]$, and $N_k = \sum_{n=1}^N \gamma_{nk}$, update $\Theta = \{\pi_k, \mu_k, \Sigma_k\}_{k=1}^K$ as

$$\mu_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} x_n$$

$$\mathbf{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N \gamma_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) (\mathbf{x}_n - \boldsymbol{\mu}_k)^{\top}$$

$$\pi_k = \frac{N_k}{N}$$

GMM: Some Important Aspects

• GMM learns a probabilitic ("soft") clustering as opposed to hard clustering (e.g., K-means)

GMM: Some Important Aspects

• GMM learns a probabilitic ("soft") clustering as opposed to hard clustering (e.g., K-means)

• GMM doesn't assume the clusters to be spherical and equi-sized as opposed to K-means (recall that each Gaussian has a specific covariance which can control the shape of that cluster)

• GMM, just like K-means, can be sensitive to initialization (EM only converges to a local optima)

ullet Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit.

• GMM, just like K-means, can be sensitive to initialization (EM only converges to a local optima)

ullet Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit. Some remedies

- ullet Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit. Some remedies
 - Assume the covariance matrix to be diagonal or spherical (but results might be poorer)

- ullet Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit. Some remedies
 - Assume the covariance matrix to be diagonal or spherical (but results might be poorer)
 - Use priors on the parameters and do MAP estimation for parameters in the M step of EM

- ullet Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit. Some remedies
 - Assume the covariance matrix to be diagonal or spherical (but results might be poorer)
 - Use priors on the parameters and do MAP estimation for parameters in the M step of EM
 - Can do fully Bayesian inference for GMM

- ullet Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit. Some remedies
 - Assume the covariance matrix to be diagonal or spherical (but results might be poorer)
 - Use priors on the parameters and do MAP estimation for parameters in the M step of EM
 - Can do fully Bayesian inference for GMM
 - Helps learn K using marginal likelihood or nonparametric Bayesian methods

- ullet Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit. Some remedies
 - Assume the covariance matrix to be diagonal or spherical (but results might be poorer)
 - Use priors on the parameters and do MAP estimation for parameters in the M step of EM
 - Can do fully Bayesian inference for GMM
 - ullet Helps learn K using marginal likelihood or nonparametric Bayesian methods
 - Helps learn the hyperparameters

- ullet Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit. Some remedies
 - Assume the covariance matrix to be diagonal or spherical (but results might be poorer)
 - Use priors on the parameters and do MAP estimation for parameters in the M step of EM
 - Can do fully Bayesian inference for GMM
 - Helps learn K using marginal likelihood or nonparametric Bayesian methods
 - Helps learn the hyperparameters
 - More on these aspects later..

- Learning full covariances can be tricky: $\mathcal{O}(D^2)$ params to learn and can overfit. Some remedies
 - Assume the covariance matrix to be diagonal or spherical (but results might be poorer)
 - Use priors on the parameters and do MAP estimation for parameters in the M step of EM
 - Can do fully Bayesian inference for GMM
 - Helps learn K using marginal likelihood or nonparametric Bayesian methods
 - Helps learn the hyperparameters
 - More on these aspects later..
 - Use low-rank Gaussians for each mixture component (mixture of factor analyzers)

Mixture Models: Applications beyond Clustering

• Mixture models is a general framework for modeling grouped data

Mixture Models: Applications beyond Clustering

- Mixture models is a general framework for modeling grouped data
- Not limited only to clustering or density estimation

Mixture Models: Applications beyond Clustering

- Mixture models is a general framework for modeling grouped data
- Not limited only to clustering or density estimation
- Mixture of Experts: Each "expert" is a probabilistic supervised learning model $p(y|x,\theta_k)$
 - Overall model is a convex combination of the experts

$$p(y|x) = \sum_{k=1}^{K} \pi_k(x) p(y|x, \theta_k)$$

• Enables learning rich models (e.g., nonlinear reg.) from simpler models (e.g., linear reg.)

Next Class: The General EM Algorithm