1. Conceitos de Álgebra Booleana

2. Portas Lógicas e Inversores

Álgebra Booleana

• George Boole (1815-1864)

1848: The Calculus of Logic

Aplicação da matemática às operações mentais do raciocínio humano - definição da "álgebra booleana"

• Claude Shannon (1916-2001)

±1938: Tese de mestrado: A Symbolic Analysis of Relay and Switching Circuits

Aplicação da álgebra booleana ao estudo e projeto de circuitos

Álgebra Booleana

• Conjunto de valores:

```
{Falso, Verdadeiro} - raciocínio humano
{Desligado, Ligado} - circuitos de chaveamento
{0, 1} - sistema binário
{0V, +5V} - eletrônica digital
```

• Conjunto de Operações:

- complementação
- multiplicação lógica
- adição lógica

Complementação (NOT)

X	X'
0	1
1	0

Componente: inversor ou porta NOT (inverter)

Multiplicação Lógica (E, AND)

Α	В	A.B
0	0	0
0	1	0
1	0	0
1	1	1

Componente: porta E (AND gate)

Adição Lógica (OU, OR)

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

Componente: porta OU (OR gate)

Precedência das Operações

1		1
		•
-	1	

2 - NOT

3 - AND

4 - OR

Exemplos:

$$A.B+C'$$

$$(A.B+C)'$$

$$A.(B+C)'$$

$$A.(B + C')$$

Expressões Booleanas x Circuitos

 $A + B \cdot C'$

Exercício: desenhar o circuito

Construção da tabela-verdade - considerar a precedência!

Α	В	С	C'	B.C'	A+B.C'
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 - ()

2 - NOT

3 - AND

4 - OR

Exemplos:

 $A \cdot B + C'$

(A . B + C)'

 $A \cdot (B + C)'$

 $A \cdot (B + C')$

Α	В	С	C'	A.B	A.B+C'
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

2 - NOT

3 - AND

4 - OR

Exemplos:

$$A \cdot B + C'$$

$$(A . B + C)'$$

$$A \cdot (B + C)'$$

$$A \cdot (B + C')$$

Α	В	С	A.B	A.B+C	(A.B+C)'
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

2 - NOT

3 - AND

4 - OR

Exemplos:

$$(A . B + C)'$$

$$A \cdot (B + C)'$$

$$A \cdot (B + C')$$

Α	В	С	B+C	(B+C)'	A.(B+C)'
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 - ()

2 - NOT

3 - AND

4 - OR

Exemplos:

 $A \cdot B + C'$

(A . B + C)'

 $A \cdot (B + C)'$

 $A \cdot (B + C')$

Α	В	С	C'	B+C'	A.(B+C')
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

1 - ()

2 - NOT

3 - AND

4 - OR

Comparando as saídas dos quatro circuitos:

Exemplos:

A.B+C'

(A . B + C)'

 $A \cdot (B + C)'$

 $A \cdot (B + C')$

Α	В	С	A.B+C'	(A.B+C)'	A.(B+C)'	A.(B+C')
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	1	0	1	1	0	0
0	1	1	0	0	0	0
1	0	0	1	1	1	1
1	0	1	0	0	0	0
1	1	0	1	0	0	1
1	1	1	1	0	0	1

Expressões Booleanas x Circuitos

$$A + B \cdot (A' + B')$$

Exercício: desenhar o circuito

Α	В	A'	B'	A'+B'	B.(A'+B')	A+B.(A'+B')
0	0					
0	1					
1	0					
1	1					

Conclusão: o mesmo resultado pode ser obtido apenas com A+B Conceito importante: "minimizar" a expressão booleana

Portas mais complexas (1)

Porta XOR (2 entradas)

Α	В	$A \oplus B$
0	0	0
0	1	1
1	0	1
1	1	0

- ou exclusivo
- função "não iguais"

Porta XOR (mais de 2 entradas)

Α	В	С	(A ⊕ B ⊕ C)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- função "impar"

Portas mais complexas (2)

Porta XNOR (2 entradas)

Α	В	(A ⊕ B)'
0	0	1
0	1	0
1	0	0
1	1	1

- não ou exclusivo
- função "iguais"

Porta XNOR (mais de 2 entradas)

Α	В	С	(A ⊕ B ⊕ C)'
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

- função "par"

Portas mais complexas (3)

