## ∽ Baccalauréat S Métropole 21 juin 2012 ∾

EXERCICE 1 4 points

## Commun à tous les candidats

Le plan est muni d'un repère orthonormé  $(O, \vec{\iota}, \vec{j})$ . On considère une fonction f dérivable sur l'intervalle [-3; 2]. On dispose des informations suivantes :

- f(0) = -1.
- la dérivée f' de la fonction f admet la courbe représentative  $\mathscr{C}'$  ci -dessous.



Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse et justifier la réponse.

- **1.** Pour tout réel x de l'intervalle [-3,-1],  $f'(x) \le 0$ .
- **2.** La fonction f est croissante sur l'intervalle [-1; 2].
- **3.** Pour tout réel x de l'intervalle [-3; 2],  $f(x) \ge -1$ .
- **4.** Soit  $\mathscr{C}$  la courbe représentative de la fonction f. La tangente à la courbe  $\mathscr{C}$  au point d'abscisse 0 passe par le point de coordonnées (1;0).

EXERCICE 2 5 points
Commun à tous les candidats

Pour embaucher ses cadres une entreprise fait appel à un cabinet de recrutement. La procédure retenue est la suivante. Le cabinet effectue une première sélection de candidats sur dossier. 40 % des dossiers reçus sont validés et transmis à l'entreprise. Les candidats ainsi sélectionnés passent un premier entretien à l'issue duquel 70 % d'entre eux sont retenus. Ces derniers sont convoqués à un ultime entretien avec le directeur des ressources humaines qui recrutera 25 % des candidats rencontrés.

1. On choisit au hasard le dossier d'un candidat.

On considère les évènements suivants :

- D: « Le candidat est retenu sur dossier »,
- $E_1$ : « Le candidat est retenu à l'issue du premier entretien »,
- $E_2$ : « Le candidat est recruté ».
- a. Reproduire et compléter l'arbre pondéré ci-dessous.



- **b.** Calculer la probabilité de l'évènement  $E_1$ .
- ${\bf c.} \ \ {\rm On\ note}\ F\ {\rm l'\'ev\`enement}\ {\rm ``Le\ candidat\ n'est\ pas\ recrut\'e''.}$  Démontrer que la probabilité de l'évènement F est égale à 0,93.

Baccalauréat S A. P. M. E. P.

2. Cinq amis postulent à un emploi de cadre dans cette entreprise. Les études de leur dossier sont faites indépendamment les unes des autres. On admet que la probabilité que chacun d'eux soit recruté est égale à 0,07.

On désigne par X la variable aléatoire donnant le nombre de personnes recrutées parmi ces cinq candidats.

- **a.** Justifier que *X* suit une loi binomiale et préciser les paramètres de cette loi.
- **b.** Calculer la probabilité que deux exactement des cinq amis soient recrutés. On arrondira à  $10^{-3}$ .
- **3.** Quel est le nombre minimum de dossiers que le cabinet de recrutement doit traiter pour que la probabilité d'embaucher au moins un candidat soit supérieure à 0,999?

EXERCICE 3 6 points

#### Commun à tous les candidats

Il est possible de traiter la partie C sans avoir traité la partie B.

#### Partie A

On désigne par f la fonction définie sur l'intervalle [1;  $+\infty$ [ par

$$f(x) = \frac{1}{x+1} + \ln\left(\frac{x}{x+1}\right).$$

- 1. Déterminer la limite de la fonction f en  $+\infty$ .
- **2.** Démontrer que pour tout réel x de l'intervalle  $[1; +\infty[, f'(x) = \frac{1}{x(x+1)^2}]$ . Dresser le tableau de variation de la fonction f.
- **3.** En déduire le signe de la fonction f sur l'intervalle  $[1; +\infty[$ .

#### Partie B

Soit  $(u_n)$  la suite définie pour tout entier strictement positif par

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n.$$

1. On considère l'algorithme suivant :

Variables : i et n sont des entiers naturels. u est un réel.

Entrée : Demander à l'utilisateur la valeur de n.

Initialisation : Affecter à u la valeur 0.

Traitement : Pour i variant de 1 à n.

Affecter à u la valeur  $u + \frac{1}{i}$ Sortie : Afficher u.

Donner la valeur exacte affichée par cet algorithme lorsque l'utilisateur entre la valeur n = 3.

- **2.** Recopier et compléter l'algorithme précédent afin qu'il affiche la valeur de  $u_n$  lorsque l'utilisateur entre la valeur de n.
- 3. Voici les résultats fournis par l'algorithme modifié, arrondis à  $10^{-3}$ .

| n     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 100   | 1 000 | 1 500 | 2 000 |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $u_n$ | 0,697 | 0,674 | 0,658 | 0,647 | 0,638 | 0,632 | 0,626 | 0,582 | 0,578 | 0,578 | 0,577 |

À l'aide de ce tableau, formuler des conjectures sur le sens de variation de la suite  $(u_n)$  et son éventuelle convergence.

Baccalauréat S A. P. M. E. P.

#### Partie C

Cette partie peut être traitée indépendamment de la partie B.

Elle permet de démontrer les conjectures formulées à propos de la suite  $(u_n)$  telle que pour tout entier strictement positif n,

$$u_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln n.$$

1. Démontrer que pour tout entier strictement positif n,

$$u_{n+1} - u_n = f(n)$$

où f est la fonction définie dans la partie A.

En déduire le sens de variation de la suite  $(u_n)$ .

**2. a.** Soit *k* un entier strictement positif.

Justifier l'inégalité 
$$\int_{k}^{k+1} \left(\frac{1}{k} - \frac{1}{x}\right) dx \ge 0$$
.  
En déduire que  $\int_{k}^{k+1} \frac{1}{x} dx \le \frac{1}{k}$ .

Démontrer l'inégalité  $\ln(k+1) - \ln k \leqslant \frac{1}{k}$  (1).

**b.** Écrire l'inégalité (1) en remplaçant successivement k par 1, 2, ..., n et démontrer que pour tout entier strictement positif n,

$$\ln(n+1) \leqslant 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
.

- **c.** En déduire que pour tout entier strictement positif  $n, u_n \ge 0$ .
- **3.** Prouver que la suite  $(u_n)$  est convergente. On ne demande pas de calculer sa limite.

EXERCICE 4 5 points

## Candidats n'ayant pas suivi l'enseignement de spécialité

Le plan complexe est muni d'un repère orthonormé direct  $(0, \vec{u}, \vec{v})$ .

On appelle f l'application qui à tout point M d'affixe z différente de -1, fait correspondre le point M' d'affixe  $\frac{1}{z+1}$ .

Le but de l'exercice est de déterminer l'image par f de la droite  $\mathscr{D}$  d'équation  $x = -\frac{1}{2}$ .

1. Soient A, B et C les points d'affixes respectives

$$z_{A} = -\frac{1}{2}$$
,  $z_{B} = -\frac{1}{2} + i$  et  $z_{C} = -\frac{1}{2} - \frac{1}{2}i$ .

- **a.** Placer les trois points A, B et C sur une figure que l'on fera sur la copie en prenant 2 cm pour unité graphique.
- **b.** Calculer les affixes des points A' = f(A), B' = f(B) et C' = f(C) et placer les points A', B'et C' sur la figure.
- **c.** Démontrer que les points A', B' et C' ne sont pas alignés.
- **2.** Soit g la transformation du plan qui, à tout point M d'affixe z, fait correspondre le point  $M_1$  d'affixe z+1.
  - ${\bf a.}\;\;$  Déterminer la nature et les éléments caractéristiques de la transformation  $g.\;$
  - **b.** Sans donner d'explication, placer les points  $A_1$ ,  $B_1$  et  $C_1$ , images respectives par g de A, B et C et tracer la droite  $\mathcal{D}_1$ , image de la droite  $\mathcal{D}$  par g.
  - **c.** Démontrer que  $\mathcal{D}_1$  est l'ensemble des points M d'affixe z telle que |z-1|=|z|.

Baccalauréat S A. P. M. E. P.

- **3.** Soit *h* l'application qui, à tout point *M* d'affixe *z* non nulle, associe le point  $M_2$  d'affixe  $\frac{1}{z}$ .
  - **a.** Justifier que  $h(A_1) = A', h(B_1) = B'$  et  $h(C_1) = C'$ .
  - **b.** Démontrer que, pour tout nombre complexe non nul z, on a :

$$\left|\frac{1}{z} - 1\right| = 1 \iff |z - 1| = |z|.$$

- **c.** En déduire que l'image par h de la droite  $\mathcal{D}_1$  est incluse dans un cercle  $\mathscr{C}$  dont on précisera le centre et le rayon. Tracer ce cercle sur la figure.
  - On admet que l'image par h de la droite  $\mathcal{D}_1$  est le cercle  $\mathscr{C}$  privé de O.
- **4.** Déterminer l'image par l'application f de la droite  $\mathcal{D}$ .

# EXERCICE 4 5 points

## Candidats ayant suivi l'enseignement de spécialité

Le plan complexe est muni d'un repère orthonormé direct  $(O, \overrightarrow{u}, \overrightarrow{v})$ . On désigne par A, B et C les points d'affixes respectives

$$z_{A} = -1 + i$$
,  $z_{B} = 2i$  et  $z_{C} = 1 + 3i$ .

et  $\mathcal{D}$  la droite d'équation y = x + 2.

- Prouver que les points A, B et C appartiennent à la droite 𝒯.
   Sur une figure que l'on fera sur la copie en prenant 2 cm pour unité graphique, placer les points A, B, C et tracer la droite 𝒯.
- **2.** Résoudre l'équation (1+i)z+3-i=0 et vérifier que la solution de cette équation est l'affixe d'un point qui n'appartient pas à la droite  $\mathcal{D}$ .

Dans la suite de l'exercice, on appelle f l'application qui, à tout point M d'affixe z différente de -1+2i, fait correspondre le point M' d'affixe  $\frac{1}{(1+i)z+3-i}$ .

Le but de l'exercice est de déterminer l'image par f de la droite  $\mathcal{D}$ .

- **3.** Soit g la transformation du plan qui, à tout point M d'affixe z, fait correspondre le point  $M_1$  d'affixe (1+i)z+3-i.
  - a. Déterminer la nature et les éléments caractéristiques de la transformation g.
  - **b.** Calculer les affixes des points A<sub>1</sub>, B<sub>1</sub> et C<sub>1</sub>, images respectives par g des points A, B et C.
  - **c.** Déterminer l'image  $\mathcal{D}_1$  de la droite  $\mathcal{D}$  par la transformation g et la tracer sur la figure.
- **4.** Soit *h* l'application qui, à tout point *M* d'affixe *z* non nulle, fait correspondre le point  $M_2$  d'affixe  $\frac{1}{z}$ .
  - **a.** Déterminer les affixes des points  $h(A_1)$ ,  $h(B_1)$  et  $h(A_1)$  et placer ces points sur la figure.
  - **b.** Démontrer que, pour tout nombre complexe non nul z, on a :

$$\left|\frac{1}{z} - \frac{1}{2}\right| = \frac{1}{2} \iff |z - 2| = |z|.$$

- **c.** En déduire que l'image par h de la droite  $\mathcal{D}_1$  est incluse dans un cercle  $\mathscr{C}$  dont on précisera le centre et le rayon. Tracer ce cercle sur la figure.
- **d.** Démontrer que tout point du cercle  $\mathscr C$  qui est distinct de O est l'image par h d'un point de la droite  $\mathscr D_1$ .
- **5.** Déterminer l'image par l'application f de la droite  $\mathcal{D}$ .