Lecture A1. Math Review

Sim, Min Kyu, Ph.D., mksim@seoultech.ac.kr

- I. Differentiation and Integration
- II. Numerical Methods
- III. Matrix Algebra
- IV. Series and Others

I. Differentiation and Integration

Differentiation

Definition 1 (differentiation)

Differentiation is the action of computing a derivative.

Definition 2 (derivative)

The derivative of a function y = f(x) of a variable x is a measure of the rate at which the value y of the function changes with respect to (wrt., hereafter) the change of the variable x. It is notated as f'(x) and called derivative of f wrt. x.

Remark 1

If x and y are real numbers, and if the graph of f is plotted against x, the derivative is the slope of this graph at each point.

Definition 3 (differentiable)

If $\lim_{h\to 0} \frac{f(x+h/2)-f(x-h/2)}{h}$ exists for a function f at x, we say the function f is differentiable at x. That is, $f'(x) = \lim_{h \to 0} \frac{f(x+h/2) - f(x-h/2)}{h}$. If f is differentiable for all x, then we say f is differentiable (everywhere).

Remark 2

The followings are popular derivatives.

- $f(x) = x^p \Rightarrow f'(x) = px^{p-1}$ (polyomial)
- $f(x) = e^x \Rightarrow f'(x) = e^x$ (exponential)
- $f(x) = log(x) \Rightarrow f'(x) = 1/x$ (log function; not differentiable at x = 0)

Theorem 1

Differentiation is linear. That is, h(x) = f(x) + g(x) implies h'(x) = f'(x) + g'(x).

Theorem 2 (differentiation of product)

If
$$h(x) = f(x)g(x)$$
, then $h'(x) = f'(x)g(x) + f(x)g'(x)$.

Exercise 1

Suppose
$$f(x) = xe^x$$
, find $f'(x)$.

Theorem 3 (differentiation of fraction)

If
$$h(x)=rac{f(x)}{g(x)}$$
, then $h'(x)=rac{f'(x)g(x)-f(x)g'(x)}{(g(x))^2}$.

Theorem 4 (composite function)

If
$$h(x) = f(g(x))$$
, then $h'(x) = f'(g(x)) \cdot g'(x)$.

Exercise 2

Suppose
$$f(x) = e^{2x}$$
, find $f'(x)$.

Integration

Definition 4 (integration)

Integration is the computation of an integral, which is a reverse operation of differentiation up to an additive constant.

Definition 5 (antiderivative)

Let's say a function f is a derivative of g, or g'(x) = f(x), then we say g is an antiderivative of f, written as $g(x) = \int f(x)dx + C$, where C is a integration constant.

Remark 3

The followings are popular antiderivatives.

- For $p \neq 1$, $f(x) = x^p \Rightarrow \int f(x) dx = \frac{1}{p+1} x^{p+1} + C$ (polyomial)
- $f(x) = \frac{1}{x} \Rightarrow \int f(x)dx = log(x) + C$ (fraction)
- $f(x) = e^x \Rightarrow \int f(x) dx = e^x + C$ (exponential)
- $f(x) = \frac{g'(x)}{g(x)} \Rightarrow \int f(x)dx = \log(g(x)) + C$ (See Theorem 4 above)

Exercise 3

Derive $\int f'(x)g(x) dx = f(x)g(x) - \int f(x)g(x)' dx$. (Hint: Use Theorem 2) above.)

$$(\int f'(x) x g(x) dx) = (\int f(x) g(x) - \int f(x) x g(x))$$

$$\int f'(x) g(x) = \int f'(x) g(x) + g'(x) f'(x) - \int f(x) g(x)$$

$$\int f'(x) g(x) = \int f'(x) g(x) + g'(x) f'(x)$$

Exercise 4

Find $\int xe^x dx$, and evaluate $\int_0^1 xe^x dx$. (Hint: Use Exercise 3 above.)

$$\int xe^{x} = e^{x}(x+1) \notin (e^{x} - Je^{x})'$$

$$= xe^{x} - e^{x}$$

$$= [(x-1)e^{x}]!$$

$$= -e^{x} = -|x-1| = 1$$

II. Numerical Methods

Differentiation

 Oftentimes, finding analytic derivative is hard, but finding numerical derivative is often possible.

Definition 6

For a function f and small constant h,

- ullet $f'(x) pprox rac{f(x+h)-f(x)}{h}$ (forward difference formula)
- $f'(x) pprox rac{f(x) f(x-h)}{h}$ (backward difference formula)
- $f'(x) \approx \frac{f(x+h)-f(x-h)}{2h}$ (centered difference formula)

Solving an equation

• For the rest of this section, we consider a nonlinear and differentiable (thus, continuous) function $f: \mathbb{R} \to \mathbb{R}$, we aim to find a point $x^* \in \mathbb{R}$ such that $f(x^*) = 0$. We call such x^* as a *solution* or a *root*.

Bisection Method

- The bisection method aims to find a very short interval [a, b] in which f changes a sign.
- Why? Changing a sign from a to b means the function crosses the $\{y=0\}$ -axis, (a.k.a. x-axis), at least once. It means x^* such that $f(x^*) = 0$ is in this interval. Since [a, b] is a very short interval, We may simply say $x^* = \frac{a+b}{2}$.

Definition 7 (sign function)

 $sqn(\cdot)$ is called a sign function that returns 1 if the input is positive, -1 if negative, and 0 if zero.

Bisection algorithm

- ullet Let tol be the maximum allowable length of the *short interval* and an initial interval [a,b] be such that $sgn(f(a)) \neq sgn(f(b))$.
- The *bisection algorithm* is the following.

```
1: while ((b-a) > tol) do
       m = \frac{a+b}{2}
2:
       if sgn(f(a)) = sgn(f(m)) then
3:
4:
            a=m
5.
       else
            b=m
6:
7:
       end
8: end
```

At each *iteration*, the interval length is halved. As soon as the interval length becomes smaller than tol, then the algorithm stops.

- The bisection technique makes no used of the function values other than their signs, resulting in slow but sure convergence.
- More rapid convergence can be achieved by using the function values to obtain a more accurate approximation to the solution *at each iteration*.
- Newton method is a method that use both the function value and derivative value.

• Newton method approximates the function f near x_k by the tangent line at $f(x_k)$.

- 1: x_0 = initial guess
- 2: for k=0,1,2,...
- $x_{k+1} = x_k f(x_k) / f'(x_k)$ 3:
- break if $|x_{k+1} x_k| < tol$ 4:
- 5: end

- Root-finding numerical methods such as bisection method and newton method has a few common properties.
 - ① It is characterized as a *iterative process* (such as $x_0 \to x_1 \to x_2 \to \cdots$).
 - 2 In each *iteration*, the current candidate *gets closer* to the true value.
 - 1 It converges. That is, it is theoretically reach the *exact value* up to tolerance.
- Many iterative numerical methods share the properties above.
- The famous back propagation in deep neural network is also motivated by Newton method.
- Major algorithms for dynamic programming are called *policy iteration* and *value iteration* that also share the properties above.

Matrix multiplication

Exercise 5

Solve the followings.

$$(.6 \quad .4) \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix} = (0.622, -0.38)$$

III. Matrix Algebra ○●○○○○○○

Exercise 6

What is P^2 ?

$$P = \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix}$$

$$\begin{pmatrix} 0.9 & 0.3 \\ 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 0.90 & 0.3 \\ 0.5 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.69 & -0.36 \\ 0.6 & 0.4 \end{pmatrix}$$

Solution to system of linear equations

Exercise 7

Solve the followings.

$$(\pi_1 \quad \pi_2) \begin{pmatrix} .7 & .3 \\ .5 & .5 \end{pmatrix} = (\pi_1 \quad \pi_2)$$
$$\pi_1 + \pi_2 = 1$$

Exercise 8

Solve the following system of equations.

$$x = y$$

$$y = 0.5z$$

$$z = 0.6 + 0.4x$$

$$x + y + z = 1$$

- No · Answer

there are not equation but there are just in knowledge!

III. Matrix Algebra ○○○○●○○○ *Solve the following system of equations.*

$$(\pi_0 \quad \pi_1 \quad \pi_2) \begin{pmatrix} -2 & 2 \\ 3 & -5 & 2 \\ 3 & -3 \end{pmatrix} = (0 \quad 0 \quad 0)$$

$$\pi_0 + \pi_1 + \pi_2 = 1$$

$$\frac{-2\pi + 2\pi (=0)}{\pi_0 + (-5)\pi_0 + 2\pi_2}$$

$$= \pi_0 + (-5)\pi_0 + 2\pi_2 = 0$$

$$= \pi_0 + \pi_0 = \pi_2$$

$$= \pi_0 + \pi_2 = 1$$

$$= \pi_0 = \pi_1 = \pi_2 = 1$$

$$= \pi_0 = \pi_1 = \pi_2 = 1$$

Exercise 10

Solve the following system of equations.

$$(\pi_1 \ \pi_2 \ \pi_3 \ \pi_4) \begin{pmatrix} .7 & .3 \\ .5 & .5 \\ & .6 & .4 \\ & .3 & .7 \end{pmatrix} = (\pi_1 \ \pi_2 \ \pi_3 \ \pi_4)$$

$$\pi_1 + \pi_2 + \pi_3 + \pi_4 = 1$$

Exercise 11

Solve following and express π_i for i = 0, 1, 2, ...

$$\pi_0 + \pi_1 + \pi_2 + \dots = 1$$

$$0.02\pi_0 + 0.02\pi_1 + 0.02\pi_2 + \dots = \pi_0$$

$$0.98\pi_0 = \pi_1$$

$$0.98\pi_1 = \pi_2$$

$$0.98\pi_2 = \pi_3$$

$$\dots = \dots$$

$$\frac{002(T_{0}+\cdots+T_{n})}{=T_{0}} + 0.98T_{0} + (0.98) \times T_{0} + 0.98t_{0} \cdots + 0.98t_{0} \cdots + T_{0})}{=T_{0} + 0.98(0.02(T_{0}+\cdots+T_{0}) + 0.98\times(T_{0}+\cdots+T_{0}))}$$

$$=\frac{T_{0} + 0.98(T_{0}+0.98) \times T_{0} + 0.98\times(T_{0}+\cdots+T_{0})}{T_{0} + 0.98T_{0} + 0.98} \times T_{0} + 0.98\times(T_{0}+\cdots+T_{0})$$

$$=\frac{T_{0} + 0.98T_{0} + 0.98}{T_{0} + 0.98} \times T_{0} + 0.98\times(T_{0}+\cdots+T_{0})$$

$$=\frac{T_{0} + 0.98}{T_{0} + 0.98} \times T_{0} + 0.98\times(T_{0}+\cdots+T_{0})$$

III. Matrix Algebra 0000000●

IV. Series and Others

Exercise 12 (Infinite geometric series)

Simplify the following. When
$$|r| < 1$$
, $S = a + ar + ar^2 + ar^3 + ...$

Exercise 13 (Finite geometric series)

Simplify the following. When
$$r \neq 1$$
, $S = a + ar + ar^2 + ar^3 + ... + ar^{n-1}$

Exercise 14 (Power series)

Simplify the following. When |r| < 1, $S = r + 2r^2 + 3r^3 + 4r^4 + \dots$

$$-\frac{1}{1-t}$$

$$\frac{1}{1-t}$$

Formulation of time varying function

Exercise 15

During the first hour $(0 \le t \le 1)$, $\lambda(t)$ increases linearly from 0 to 60. After the first hour, $\lambda(t)$ is constant at 60. Draw plot for $\lambda(t)$ and express the function in math form.

"Man can learn nothing unless he proceeds from the known to the unknown. - Claude Bernard"