Communicate Without Errors

Zifan Hua

November 14, 2022

Definition 0.1 (graph). A graph G is a set of vertices with a set of edges connecting pairs of vertices.

Figure 1: An example of a graph.

Definition 0.2 $(\alpha(G))$. Given a graph G. Given a subgraph of G, H, such that every vertex of H is not connected in G. Then $\alpha(G)$ is the maximum number of vertices of H.

Figure 2: Example of $\alpha(G)$. Here $\alpha(G) = 3$.

Definition 0.3 (graph product). Given two graph G and H. The graph product $G \times H$ is the graph with vertices $V(G \times H) = V(G) \times V(H)$ in which (x, y) is adjacent to (x', y') in $G \times H$ if and only if x is adjacent to x' in G and y is adjacent to y' in H.

A graph G product itself for n times will always be denoted by G^n .

Lemma 0.1. Given graph G and H.

$$\alpha(G \times H) \ge \alpha(G)\alpha(H) \tag{1}$$

Proof. Given graph G and H. Let G' and H' be subgraph of G and H such that no vertex of G' or H' is adjacent in G or H, respectively. Then $G' \times H'$ is a subgraph of $G \times H$ such that no vertex of $G' \times H'$ is adjacent in $G \times H$.

Definition 0.4 (Shannon capacity). Given a graph G, the Shannon capacity $\Theta(G)$ is defined by

$$\Theta(G) = \lim_{n \to \infty} \sqrt[n]{\alpha(G^n)}$$
 (2)

We will see that this sequence is monotonically increasing and has an upper bound later. So, this sequence will always converge.

Definition 0.5 (adjacency matrix). Given a graph G, the adjacency matrix A is defined by

$$A_{ij} = \begin{cases} 1 & \text{if } i \text{ and } j \text{ are adjacent in } G \\ 0 & \text{otherwise} \end{cases}$$
 (3)

Definition 0.6 (orthonormal representation). Given a graph G with vertices 1, 2, ..., n, the orthonormal representation of G is a set of unit vectors $\{v_1, v_2, ..., v_n\}$ such that if i and j are not adjacent in G, then v_i and v_j are orthogonal.

Lemma 0.2 (existence of orthonormal representation). Given a graph G with vertices $1, 2, \ldots, n$, there exists an orthonormal representation of G.

Proof. Any orthonormal basis of \mathbb{R}^n can be used as an orthonormal representation of G.

Definition 0.7 (tensor product). Given two vectors $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$, the tensor product $v \circ w$ is defined by

$$v \circ w = (v_1 w_1, \dots, v_1 w_n, v_2 w_1, \dots, v_2 w_n, \dots, v_n w_1, \dots, v_n w_n)$$
(4)

Lemma 0.3 (inner product of tensor product). Given two vectors $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$, the inner product of $v \circ w$ is defined by

$$\langle v \circ w, v' \circ w' \rangle = \langle v, v' \rangle \langle w, w' \rangle \tag{5}$$

Lemma 0.4 (product of orthonormal representation). Given a graph G with vertices $1, 2, \ldots, n$, and a graph H with vertices $1, 2, \ldots, m$. Then vectors $\{v_i \circ w_j\}$ is an orthonormal representation of $G \times H$.

Definition 0.8 (value of a orthonormal representation). Given an orthonormal representation $\{v_1, v_2, \ldots, v_n\}$ of a graph G the value of the representation is defined by

$$value(\lbrace v_1, v_2, \dots, v_n \rbrace) = \inf_{c} \max_{i} \frac{1}{\langle c, v_i \rangle^2}$$
 (6)

which i = 1, 2, ..., n and c is any vector does not orthogonal to v_i .

Definition 0.9 $(\theta(G))$. Given a graph G, the $\theta(G)$ is defined by

$$\theta(G) = \inf_{\{v_1, v_2, \dots, v_n\}} value(\{v_1, v_2, \dots, v_n\})$$
(7)

where $\{v_1, v_2, \dots, v_n\}$ is an orthonormal representation of G.

Lemma 0.5. Given graph G and H, then

$$\theta(G \times H) \le \theta(G)\theta(H) \tag{8}$$

Proof. Let $\{v_1, v_2, \dots, v_n\}$ and $\{w_1, w_2, \dots, w_m\}$ be orthonormal representation of G and H and c_v and c_w such that

$$\max \left\{ \frac{1}{\langle c_v, v_i \rangle^2} : i = 1, 2, \dots, n \right\} = \theta(G)$$

$$(9)$$

and

$$\max \left\{ \frac{1}{\langle c_w, w_i \rangle^2} : i = 1, 2, \dots, m \right\} = \theta(H)$$
 (10)

Then

$$\theta(G \times H) \leq \max \left\{ \frac{1}{\langle c_v \circ c_w, v_i \circ w_j \rangle^2} \right\}$$
 (11)

$$= \max \left\{ \frac{1}{\langle c_v, v_i \rangle^2 \langle c_w, w_j \rangle^2} \right\}$$
 (12)

$$= \max \left\{ \frac{1}{\langle c_v, v_i \rangle^2} \right\} \max \left\{ \frac{1}{\langle c_w, w_j \rangle^2} \right\}$$
 (13)

$$= \theta(G)\theta(H) \tag{14}$$

(15)

Lemma 0.6.

$$\theta(G) \ge \alpha(G) \tag{16}$$

Proof. Let $\{1, 2, ..., k\}$ be the set of vertices of G such that every point is not adjacency in G. And $k = \alpha(G)$

Let $\{v_1, v_2, \dots, v_n\}$ be an orthonormal representation of G and c such that

$$\max\left\{\frac{1}{\langle c, v_i \rangle^2}\right\} = \theta(G) \tag{17}$$

Then

$$1 = c^2 (18)$$

$$\geq \sum_{i=1}^{k} \langle c, v_i \rangle^2 \tag{19}$$

$$\geq \frac{k}{\theta(G)} \tag{20}$$

Theorem 0.1. Given a graph G, then

$$\theta(G) \ge \Theta(G) \tag{21}$$

Proof.

$$\Theta(G) = \lim_{n} \sqrt[n]{\alpha(G^{n})}$$

$$\leq \lim_{n} \sqrt[n]{\theta(G^{n})}$$

$$\leq \lim_{n} \sqrt[n]{\theta(G)^{n}}$$

$$= \theta(G)$$
(22)
$$(23)$$

$$(24)$$

$$\leq \lim_{n} \sqrt[n]{\theta(G^n)}$$
 (23)

$$\leq \lim_{n} \sqrt[n]{\theta(G)^n} \tag{24}$$

$$= \theta(G) \tag{25}$$

Theorem 0.2. For odd n,

$$\theta(C_n) \ge \frac{n\cos(\pi/n)}{\cos(\pi/n) + 1} \tag{26}$$

Proof. Consider an umbrella that has a handle and n ribs that all have unit length.

Hear, angles between two consecutive ribs are same. Let v be a rib. And let w be one of the rib that have the largest angle with v. Then, we let the angle between v and w be $\pi/2$.

Then, the n ribs of such an umbrella form an orthonormal representation of \bar{C}_n .

Let d be the vector represent the handle, and v_1, v_2, \ldots, v_n be the n ribs. And let γ be the angle between the handle and any rib.

So, by some calculation, we get

$$\theta(C_n) = \max \sum_{i=1}^n (d^T v_i)^2$$

$$\geq n (\cos(\gamma))^2$$

$$= n \left(\sqrt{1 - \frac{1}{1 + \cos(\pi/n)}}\right)^2$$

$$= n \cos(\pi/n)$$
(27)
$$(28)$$

$$\geq n\left(\cos(\gamma)\right)^2 \tag{28}$$

$$= n\left(\sqrt{1 - \frac{1}{1 + \cos(\pi/n)}}\right)^2 \tag{29}$$

$$= \frac{n\cos(\pi/n)}{\cos(\pi/n) + 1} \tag{30}$$