

WILDFIRE RECOGNITION AND IMPACT ASSESSMENT DATA MINING & MACHINE LEARNING

Adil Alizada, Aditi Singh, Johan Thomas, Nazeem Ahmed, Rachael Dias

WORKING WITH OUR DATASETS

NUMERICAL DATASET BEFORE LOG TRANSFORMATION

AFTER LOG TRANSFORMATION

INTERFACE FOR IMAGE RECLASSIFICATION

NUMERICAL DATASET DECISIONS

- REMOVED DAY FEATURE (DID NOT CORRESPOND TO TARGET VARIABLE)
- LABEL ENCODING FOR MONTH FEATURE

UNDERSAMPLED TO THE MINORITY CLASS BEFORE ONLINE AUGMENTATION

IMAGE AUGMENTATION EXAMPLES

CLUSTERING

t-SNE VISUALISATION

ELBOW PLOT

CLUSTERING DENDOGRAM

REGRESSION AND CLASSIFICATION MODELS

Model	MSE
Linear Regression	2.06
kNN Regression	1.914
Random Forest	1.919
MLP	2.10
SVM	2.16

Model (Without Area class 0)	Accuracu	Precision	Recall	
SVM	2.16			
MLP	2.10			
Random Forest	1.919			
kNN Regression	1.914			
Linear Regression	2.06			

Model (Without Area class 0)	Ассигасу	Precision	Recall
Multinomial NB	51.85%	26.89	51.85%
Gaussian NB	18.5%	0.03%	18.5%
Categorical NB	41.98%	40.39%	41.98%
Bernoulli NB	51.85%	39.83	51.85%

DECISION TREES

- HYPER-PARAMETER TUNING USING OPTUNA
- TRAIN-TEST SPLIT WITH DIFFERENT RATIOS

CONVOLUTIONAL NEURAL NEWORKS

ACCURACY OF 10 UNIQUE ARCHITECTURES

10 FOLD VALIDATION ON BEST MODEL

CONFUSION MATRIX FOR BEST MODEL

10 UNIQUE ARCHITECTURES WERE MADE, EACH VARYING IN:

- IN THE NUMBER OF CONVOLUTIONAL LAYERS (1-4)
- NUMBER OF FILTERS (32-256)
- KERNEL SIZE (3,5)
- FULLY CONNECTED UNITS (64-256)
- AND DROPOUT RATE (0.2-0.5)

- HYPERPARAMETER TUNING WAS CONDUCTED VARYING THE LEARNING RATE, DROPOUT RATE AND BATCH SIZES.
- INCLUDING KFOLD VALIDATION AND HYPERPARAMETER TUNING, A TOTAL OF 35 CNN MODELS WERE TRAINED.