计量经济学第 2 次作业

Karry

1 多元线性回归

(a) 根据所给结果,判断年龄(age)与教育水平(eduy)之间的相关性答:

根据所给结果可以判断出年龄(age)与教育水平(eduy)之间的线性相关性并不高

原因如下:

多元回归中在MLR. 1~MLR. 5之下,以自变量的样本值为条件,均有:

$$Var(\hat{eta}_i) = rac{\sigma^2}{SST_j(1-R_j^2)}$$

由所给结果可以发现:工资水平只对教育水平回归时 $\hat{\beta}_{eduy}$ 的标准差 (0.000788) 与工资水平对年龄和教育水平同时回归时 $\hat{\beta}_{eduy}$ 的标准差 (0.000765) 差别不大。可以推得 R_{eduy} 并不大也就是说年龄和教育书评 之间的线性相关性并不高。

当然我们也对这一结论进行了验证,即将年龄 (age) 对教育水平 (eduy) 做回归得到下图1. 中的结果:可以看到二者之间进行回归的 R^2 很小,即线性相关度很小。

Source	SS	df	MS	1	Number of obs	=	31, 237
				- 1	F(1, 31235)	=	1595. 72
Model	11016. 0209	1	11016. 020)9	Prob > F	=	0.0000
Residual	215630. 588	31, 235	6. 9034924	18	R-squared	=	0. 0486
				— <u> </u>	Adj R-squared	=	0. 0486
Total	226646. 609	31, 236	7. 2559421	4	Root MSE	=	2. 6274
eduy	Coef.	Std. Err.	t	P>	t [95% Co	nf.	Interval]
age	0698232	. 0017479	-39. 95	0.0	00 073249	2	0663972
_cons	14. 61384	. 0654539	223. 27	0.0	00 14, 4855	4	14, 74213

图 1. 教育水平对年龄回归结果

(b) 使用数据emp2007.dta重复以上的回归结果,并说明age的系数含义。

答:

复现结果如图2. 图3. 所示

eduy cons	. 0528497 1. 602484	. 000788	67. 07 164. 48	0. 000 0. 000	. 051305 1. 58338		. 0543941 1. 62158
lnw	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
Total	5028. 37194	31, 236	. 16098002	-		=	. 37512
Residual	4395. 32671	31, 235	. 140717999		ared -squared	=	0. 1259 0. 1259
Model	633. 045232	1	633. 045232			=	0.0000
Source	SS	df	MS		r of obs 31235)	=	31, 237 4498. 68

图2. 工资水平对数对教育水平进行回归的结果

Source	SS	df	MS	Number of ob	s =	31, 237
				F(2, 31234)	=	4299.80
Model	1085. 56489	2	542. 782447	Prob > F	=	0.0000
Residual	3942. 80705	31, 234	. 126234458	R-squared	=	0. 2159
				Adj R-square	d =	0. 2158
Total	5028. 37194	31, 236	. 160980021	Root MSE	=	. 35529
lnw	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
l nw eduy	Coef.	Std. Err.		P> t [95% 0.000 .0614		Interval]
			82. 27		496	

图3. 工资水平对教育水平和年龄进行回归的结果

age 的系数含义: age 每增加一单位(一岁),工资提高 1.451%

(c) 估计多元线性模型 $ln(w) = \beta_0 + \beta_1 e duy + \beta_2 a g e + \beta_3 a g e^2 + \mu$ 说明age量的边际效应是什么?分别计算当年龄等于20与50时,年龄的边际效应大小。

答:

多元线性模型的回归结果如下图 4. 所示:

Source	SS	df	MS	Numbe	r of obs	=	31, 237
				F(3,	31233)	=	2965. 09
Model	1114. 64492	3	371. 548308	Prob	> F	=	0.0000
Residual	3913. 72702	31, 233	. 125307432	R-squ	ared	=	0. 2217
				Adj R	-squared	=	0. 2216
Total	5028. 37194	31, 236	. 160980021	Root	MSE	=	. 35399
Inw	Coef.	Std. Err.	t F)> t	[95% C	onf.	Interval]
lnw	Coef.	Std. Err.		P> t	[95% C		Interval]
			80. 82			14	
eduy	. 0618749	. 0007656	80. 82 0 21. 84 0	0. 000	. 06037	44 22	. 0633754

图 4. 多元线性回归结果

age 量的边际效应就是对 lnw 对 age 求导, 由回归结果可知

边际效应
$$=rac{\partial lnw}{\partial age}=eta_2+2eta_3age=0.0473-0.0004588 imes2$$
 age

这个结果说明年龄 (age) 对工资水平具有递减影响

- age = 20 时代入上式可求得 边际效应 = 0.0289
- age = 50 时代入上式可求得 边际效应 = 0.00142
- (d) 使用两步法估计(c) 中 β_1 ,将其与(c)中的结果比较。

答:

根据提示, 我首先将 eduy 对 age 以及 age^2 进行回归并计算回归残差 x_1 然后将 lnw 对残差 x_1 进行回归, 得到如图 5. 所示的结果

Residual	4209. 83518	31, 235	. 1347794		uared R-squared	=	0 020
Total	5028. 37194	31, 236	. 16098002	-		=	
Inw	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
x_1	. 0618749	. 000794	77. 93	0. 000	. 060318	37	. 0634311
			1078, 50	0.000	2, 23617		2, 244321

图5. 两步法估计

与(c)中结果相比较可以发现

- β₁ 的估计值完全相同
- 但是 β_1 的方差有所差别,我们目前的猜测是因为本次回归较比 (c) 中回归忽略了残差。
- (e) 构建一个新的变量 exp = age eduy 6,来表示工作经验(你的工作经验大约等于年龄去掉上学的年限和学前年限)。估计多元线性模型

$$ln(w) = \beta_0 + \beta_1 e duy + \beta_2 a g e + \beta_3 a g e^2 + \beta_4 e x p + \mu$$
 报告其结果,发生了什么异常?请做出解释。

答:

我们在图 7. 中报告了该多元线性模型的回归结果

Source	SS	df	MS	Number of ob-	s =	31, 23
Source	33	u i	INIO .	F(3, 31233)	=	,
Model	1114, 64492	3	371, 548308		=	
Residual	3913. 72702	31, 233	. 125307432		=	
				Adj R-square	= b	0. 2216
Total	5028. 37194	31, 236	. 160980021	Root MSE	=	. 35399
	0.5	Std. Err.	t	P> t [95% (Canf	Interval
Inw	Coef.	otu. Err.	·	F/[L] [93%	Joni .	intervar]
l nw eduy	. 1091838	. 0022489		0.000 .1047		
eduy	. 1091838	. 0022489	48. 55		757	. 1135918
eduy age	. 1091838	. 0022489 (omitted)	48. 55 -15. 23	0. 000 . 1047	757 178	. 1135918 0003997 . 0515555

图 7. 加入工作经验后的回归结果

在图 7. 所报告的回归结果中我们发现: age 的系数估计量为0,标准差为 无穷大。

解释如下:构建新变量 exp = age - eduy-6 直接导致了高斯马尔可夫假设中的 MLR. 3即不存在完全共线性假设无法满足,因为自变量 exp, age, eduy 之间存在严格的线性关系,模型遇到了完全共线性的问题,不能由 OLS 来估计。

age 的系数估计量为 0 这一点可以在其他条件不变的模式下解释。正常情况下 age的系数表示在其他条件 (eduy, exp) 不变的情况下, age 的增加对工工资水平的影响。但是 eduy, exp 不变的话 age 根本就不会改变, 所以毫无意义。

age 标准差为无穷大这一点,可以由 $Var(\hat{eta}_i)=rac{\sigma^2}{SST_j(1-R_j^2)}$ 来解释,因为 $R_{age}=1$

2 高管 CEO 薪水

考虑企业高管CEO的薪水(salary)与企业销售收入、股权回报率(return on equity, roe)以及企业股票的收益率(return on firm's stock, ros)之间的关系,建立以下的多元线性方程:

$$ln(salary) = \beta_0 + \beta_1 ln(sales) + \beta_2 roe + \beta_3 ros + \mu$$

(a) 基于模型参数,建立原假设H0: 在控制sales和roe的条件下, ros 对 CEO的薪水没有关系; 备选假设H1为: 企业股票表现越好,企业CEO的薪水越高。

(b) 基于以上模型, OLS估计结果如下(括号里面是标准差)

 $\log(salary) = 4.32 + 2.80\log(sales) + 0.174roe + 0.00024ros$ (0.32) (0.035) (0.0041) (0.00054)

n=209, $R^2=0.283$.

如果ros增加 50, CEO的薪水增加多少? 你认为ros对高管薪金的影响大吗?

答: 在其他条件不变时 ros 增加 50, CEO 的薪水增加1.2 %

我认为 ros 对高管薪金的影响相对不大, 因为 ros 的取值为[0, 100] 也就是说 ros 最大能增加 100, 此时在其他条件不变的情况下, CEO 薪水增加不过 2.4%。当然如果一个 CEO 年入千万的话, 这一部分也将近几十万了, 但是仍然占比依然很小。

(c) 检验原假设: ros对薪金没有影响, 其备择假设为: ros对薪金有正的影响。10%的显著水平下, 临界值为 1.282.

答:

由回归结果可知: $t(ros) = \frac{0.00024}{0.00054} = 0.444 < 1.282$

也就是说在为 10% 的显著性水下, 我们不能拒绝原假设。

(d)基于以上的分析,你认为ros是解释CES薪金的重要因素?是否应该将其从模型中删除?

答:由(b)(c)中的分析我认为 ros 并不是解释 CES 薪金的重要因素。

- ros 的**经济显著性**并不高,这一点体现在回归结果中 ros 的系数 的绝对大小,这一点在 (c) 中有所说明
- ros 统计学上并不显著。

但是我们不能将其从模型中剔除。因为统计学上显著与否并不是我们判断是否要加入变量的标准,因为不能拒绝原假设也并不意味着可以接受,同时我们怀疑roe和ros之间存在一定的线性相关性导致了不显著的结果。但是:我们重点关注的还是 ros 前面的系数所带来的因果关系。

3 房价预测

基于数据hprice1.dta,我们将通过考察实际房价水平与评估(预期)房价之间的关系来检验房价预期是否理性。具体模型如下:

$$Price = \beta_0 + \beta_1 assess + u$$

(a) 基于OLS估计该模型。如果预期是理性的,那么 $\beta_0 = 0$ 且 $\beta_1 = 1$ 。接下来首先检验假设H0: $\beta_0 = 0$ (备选假设 $\beta \neq 0$); 然后检验H1: $\beta_1 = 1$ (备选假设 $\beta_1 \neq 1$)。以上检验的显著性水平要求均为 5%。你的结论是什么?

答:

基于 OLS 估计该模型的结果如图8. 所示

Source	SS	df	MS		Number of ob	s =	88
				_	F(1, 86)	=	390. 54
Model	752209. 994	1	752209.99	4	Prob > F	=	0.0000
Residual	165644. 511	86	1926. 0989	7	R-squared	=	0. 8195
				_	Adj R-square	d =	0. 8174
Total	917854. 506	87	10550. 051	8	Root MSE	=	43. 887
price	Coef.	Std. Err.	t	P>	t [95%	Conf.	Interval]
assess	. 9755538	. 0493652	19. 76	0.0	00 . 8774	191	1. 073689
cons	-14, 47179	16, 27339	-0.89	0. 3	76 -46, 82	221	17, 87863

图8. 基于 OLS 估计模型的结果

注意到本模型的自由度为 88 - 2 = 86 由于此自由度已经很大,足以使用标准正态作为近似,所以显著性水平为 5% 的临界值约为 1.96。

首先检验假设H0: $\beta_0 = 0$

可以由回归结果中看到: $\hat{\beta}_0 = -14.47$ $se(\hat{\beta}_0) = 16.27$ t = -0.89 > -1.96

因此:在 5%的显著性水平上无法拒绝 HO,即在显著性水平为 5%时截距项并不显著异于 0

然后检验假设 $H1: \beta_1 = 1$

不同于HO,此时的
$$t=rac{\hat{eta}_1-1}{se(\hat{eta}_1)}=rac{0.98-1}{0.049}=-0.41>-1.96$$

因此: 在 5% 的显著水平上无法拒绝 H1, 即在显著性水平为 5% 时 β_1 并不显著异于 1

(b) 对联合假设H0: $\beta_0 = 0$ 且 $\beta_1 = 1$ 进行 F 统计检验。你是否可以在5%的显著性水平下拒绝原假设?如果是在1%的显著性水平下呢?(提示:需要通过计算不受约束与受约束条件下的均方和来获得统计值)

答:

题中给出的原模型为不受约束模型即 $Price = \beta_0 + \beta_1 assess + u$

注意到联合假设是 $\beta_0 = 0$ 且 $\beta_1 = 1$

因此针对假设检验设定得受约束模型为: Price = assess + u , 现在为了施加 $\beta_1 = 1$ 的约束我们选择估计如下模型:

$$Price - asess = u$$

构建F统计量

$$F = \frac{(SSR_r - SSR_{ur})/q}{SSR_{ur}/(n-k-1)}$$

其中:

- SSR_r 是受约束模型的残差平方和, SSR_{ur} 是不受约束的残差平方和
- 分子自由度 q=2, 分母自由度 n-k-1=86

reg tmp						
Source	SS	df	MS	Number of obs	s =	88
				F(0, 87)	=	0. 00
Model	0	0		Prob > F	=	
Residual	166116. 855	87	1909. 38913	R-squared	=	0.0000
				Adj R-squared	= 1	0.0000
Total	166116. 855	87	1909. 38913	Root MSE	=	43. 697
tmp	Coef.	Std. Err.	t F	P> t [95% (Conf.	Interval]
cons	-22. 19033	4. 658069	-4. 76	0. 000 -31. 448	374	-12. 93191

图 9. 受约束模型的回归结果

因此可得 F 统计量为:

$$F = \frac{(166116.86 - 165644.51)/2}{165644.51/86} = 0.123$$

而对于分子自由度为 2 分母自由度为 86

- 显著性水平为 5% 的临界值为 3.1
- 显著性水平为 1% 的临界值为 4.86 (均由 Excel 中的 FINV 函数求得)

可以看出显著性水平不论是 1% 还是 5% F 统计值都远小于临界值,故不能在 5% 或 1% 的显著性水平下拒绝原假设

(c)接下来估计模型(sqrft代表房间的总面积,lotsize代表房屋地皮的尺寸大小,bdrms代表卧室的数目):

 $Price = \beta_0 + \beta_1 assess + \beta_2 sqrft + \beta_3 lot size + \beta_4 bdrms + u$

计算基于 R^2 的 F 统计量来检验联合假设 H0: $\beta_2 = 0, \beta_3 = 0, \beta_4 = 0$ 。 P值 为多少?

答:本题思路和(b)题完全相同,只不过计算 F 统计量时是基于 R^2 来算,注意:本题计算 F 时分子的自由度为 3 ,分母的自由度为 83

$$F = rac{(R_{ur}^2 - R_r^2)/q}{(1 - R_{ur}^2)/(n - k - 1)}$$

此时不受约束模型变为了

 $Price = \beta_0 + \beta_1 assess + \beta_2 sqrft + \beta_3 lot size + \beta_4 bdrms + u$

而题中给出的 $Price = \beta_0 + \beta_1 assess + u$ 变成了受约束模型

基于 OLS 估计本不受约束模型的结果如图 10.

Source	SS	df	MS	Number of obs	; =	88
				F(4, 83)	=	100. 74
Model	761089. 801	4	190272. 45	Prob > F	=	0.0000
Residual	156764. 704	83	1888. 73138	R-squared	=	0. 8292
				Adj R-squared	=	0. 8210
Total	917854. 506	87	10550. 0518	Root MSE	=	43. 46
	0 6	0.1.5		D) 		
price	Coef.	Std. Err.	t	P> t [95% (Conf.	[nterval]
price	Coef.	Std. Err.		P> t [95% 0		
			8. 73		706	1. 115228
assess	. 9082991	. 1040386	8. 73 -0. 03	0. 000 . 70137	706 986	1. 115228 . 0334636
assess sqrft	. 9082991 0005175	. 1040386	8. 73 -0. 03 1. 18	0. 000 . 70137 0. 976 03449	706 786 004	1. 115228 . 0334636 . 0015738 24. 62921

图10. 不受约束模型估计结果

可以带入公式计算 F = 1.57, 结合分子的自由度为 3 , 分母的自由度为 83 可得

P = 0.203 (由 Excel 中的 FDIST 求得)

(d) 如果变量 price 的方差会随着 sqrft、lotsize 或者 bdrms 的变化而变化,是否会影响 F 检验的有效性?

答:会影响 F 检验的有效性。

如果被解释变量 Price 的方差会随着解释变量 sqrft、lotsize、bdrms 的变化而变化,那么也就意味着 D(u|x) 不再是一个常数,本线性回归模型就不再满足同方差性。这样的话,F 统计量便无法成为 F 统计量(因为在公式推导过程中有一步骤需要分子分母同时约去 D(u|x)),F 检验也就不再有效了。

(e) 估计以下的线性方程:

 $lnPrice = \beta_0 + \beta_1 sqrft + \beta_2 bdrms + u$

如果增加一个150-square-root的卧室,房价变动的百分比是多少? (提示:增加一个卧室,同时也会增加房间的整体面积)

答:基于 OLS 对本方程的估计结果如图 11.

Source	SS	df	MS		er of obs	=	88
				- F(2,	85)	=	60. 73
Model	4. 71671468	2	2. 3583573	4 Prob	> F	=	0. 0000
Residual	3. 30088884	85	. 03883398	6 R-sq	uared	=	0. 5883
				– Adj	R-squared	=	0. 5786
Total	8. 01760352	87	. 092156362	2 Root	MSE	=	. 19706
Iprice	Coef.	Std. Err.	t	P> t	[95% C	onf.	[nterval]
sqrft	. 0003794	. 0000432	8. 78	0. 000	. 00029	35	. 0004654
bdrms	. 0288844	. 0296433	0. 97	0. 333	03005	43	. 0878232
cons	4, 766027	. 0970445	49, 11	0.000	4, 5730	77	4, 958978

图11. 对该线性方程的估计结果

可以看出在其他条件不变的情况下,如果增加一个150-square-root的卧室也就意味着 bdrms 增加 1 同时 sqrft 增加 150,则房价变动的百分比应该为:

 $0.0003794 \times 150 + 0.0288844 \times 1 = 8.58\%$

(f)通过改写(e)中的模型,以便于你可以直接检验"增加一个150-square-root的卧室对房价的影响大小"。构造估计值95%的置信区间。

答: 设我们要估计的为 θ 则 $\theta = 150\beta_1 + \beta_2$ 那么我们用 θ 和 β_1 来表示 β_2 的话就有 $\beta_2 = \theta - 150\beta_1$ 将此代入(e)中的方程可得:

$$lnPrice = \beta_0 + \beta_1 sqrft + (\theta - 150\beta_1)bdrms + u$$

进而:

$$lnPrice = \beta_0 + \beta_1(sqrft - 150bdrms) + \theta bdrms + u$$

上式就是我们对 (e) 中的模型改写的结果,可以看到这其中的 θ 就表示其他条件不变时增加一个150-square-root的卧室对房价的影响大小。我们在图12. 中报告了对该模型的估计结果,可以看出在此估计出的 $\hat{\theta}$ 和上一题中的结果完全相同。

eg Iprice t	mp bdrms						
Source	SS	df	MS	Nu	mber of ob	ıs =	88
				- F(2, 85)	=	60. 73
Model	4. 71671468	2	2. 3583573	4 Pr	ob > F	=	0. 0000
Residual	3. 30088884	85	. 03883398	6 R-	squared	=	0. 5883
				– Ad	j R-square	ed =	0. 5786
Total	8. 01760352	87	. 09215636	2 Ro	ot MSE	=	. 19706
Iprice	Coef.	Std. Err.	t	P> t	[95%	Conf.	Interval]
tmp	. 0003794	. 0000432	8. 78	0. 000	. 0002	935	. 0004654
bdrms	. 0858013	. 0267675	3. 21	0.002	. 0325	804	. 1390223
_cons	4. 766027	. 0970445	49. 11	0.000	4, 573	077	4. 958978

图12. 该模型估计结果

由图12. 的报告我们可以直接得到 $\hat{\theta}$ 95% 的置信区间为 [0.0326, 0.1390]

当然我们也可以由置信区间的定义算得 $\hat{\theta}$ 95%的置信区间为

$$[\hat{\theta} \pm c * se(\hat{\theta})] = [0.0326, 0.1390]$$