Лекция 8. ПРОТОКОЛ DNS

Основные положения

1. Назначение сервиса Domain Name System

Сервис DNS, работающий по одноимённому протоколу, это сервис прикладного уровня, поддерживающий пространство символьных имен хостов, которое удобнее для пользователей, чем пространство IP адресов.

К задачам DNS относятся:

- а. отображение двух пространств имен друг на друга,
- b. обнаружение сервисов в IP сети,
- с. хранение конфигурационных данных приложений.

DNS была описана Полом Мокапетрисом (Paul Mockapetris) в 1984 в двух документах RFC-882 и RFC-883, которые позже эти документы были заменены на RFC-1034 и RFC-1035.

В настоящее время работа DNS описывается RFC-4032, -4034, -4035, -2137, -2052, -2136, -1996, -1918, -1793, -1712-13, -1706, -1664, -1611-12, -1536-37, -1401, -1383, -1183, -1101, -1034-35 и др.

К основным принципам работы DNS относятся:

- а. Иерархическая древовидная структура
- b. Распределённость администрирования
- с. Распределённость хранения информации
- d. Резервирование
- е. Кеширование информации

2. Номера портов и формат пакета

Сообщения DNS инкапсулируются или в сообщения UDP или в сегменты TCP. В любом случае DNS сервер работает по порту №53. Если используется DNS поверх TLS то номер порта меняется на 853. Клиенты с серверами взаимодействуют по UDP, сервера при передаче конфигурационной информации между друг-другом — TCP. Формат заголовка DNS представлен на рис.

Идентификатор (16 бит)	Флаги (16 бит)
Число запросов (16 бит)	Число откликов (16 бит)
	Число записей в секции
	доп.информации
Секция запроса	
Секция отклика	
Секция сервера имен	
Секция доп информации	

Сообщение DNS

Позволяет связать между собой запрос и отклик. Поле флаги определяет характер запрашиваемой процедуры, а также кодировку отклика. Поля Число откликов определяют число записей соответствующего типа, содержащихся в сообщении. Так число запросов задает число записей в секции запросов, где записаны запросы, требующие ответов. Каждый вопрос состоит из символьного имени домена, за

которым следует тип запроса и класс запроса. Перечислим по порядку значения флагов:

- 1 бит, операция: 0 Запрос или 1 Отклик,
- 4 бита Тип запроса: 0 стандартный, 1 инверсный, 2 запрос состояния сервера,
- 1 бит (AA): 1 при отклике от сервера (RR), в ведении которого находится домен, упомянутый в запросе.
- 1 бит (TC): 1 при укорочении сообщения. Для UDP это означает, что ответ содержал более 512 октетов, но прислано только первые 512.
- 1 бит (RD): 1, если для получения ответа желательна рекурсия.
- 1 бит (RA): 1, если рекурсия для запрашиваемого сервера доступна.
- 3 бита зарезервировано на будущее. Должны равняться нулю.
- 4 бита тип отклика (rcode): 0 нет ошибки, 1 ошибка в формате запроса, 2 сбой в сервере, 3 имени не существует.

3. Основные понятия

Домен (доменное имя) — область пространства иерархических имён сети Интернет, которая обозначается уникальным доменным именем, обслуживается набором серверов доменных имён (DNS) и централизованно администрируется.

DNS-клиент – программа-клиент, которая по запросу приложений обращается к DN-серверу за разрешением имени.

DNS-сервер - программа-сервер предназначенная для:

- а. Хранения данных о доменных именах
- b. Разрешения доменных имен (определение IP адреса) по запросу клиентов DNS сервера бывают:
 - а. Основными и резервными
 - b. Рекурсивными и не рекурсивными
 - с. Кэширующими

Зона — файл, в котором описано соответствие хостов домена и их IP-адресов. В Интернет за каждую зону DNS должно отвечает не менее двух серверов.

Ресурсная запись — единица хранения и передачи информации в DNS. Каждая ресурсная запись имеет имя (то есть привязана к определённому доменному имени, узлу в дереве имён), тип и поле данных, формат и содержание которого зависит от типа.

Разрешение имени — процесс определение IP адреса по доменному имени (или наоборот), осуществляемы DNS-сервером в ответ на запрос DNS-клиента.

4. Пространство имен

Пространство имен DNS строится исходя из следующих принципов:

- а. Пространство имен дерево в корне которого находится домен точка.
- b. Названия доменов верхнего уровня регламентируются ICANN и могут быть национальными (ru, uk) и тематическими (org, net, com, home).
- с. Лист дерева домена ресурсная запись.
- d. Имена двух соседних доменов или ресурсной записи и домена, ее содержащего не могут совпадать.
- e. Максимальный размер FQDN 255 байт включая корневой домен «.», с ограничением в 63 байта на каждое имя домена.
- f. Поддерживаются национальные кодировки.
- g. Существуют зарезервированные имена доменов test, invalid и др.

По этому дереву определяются IP адреса по доменному имени. Эти зоны называются зонами прямого просмотра.

5. Зоны обратного просмотра

Существуют зоны обратного просмотра. Они позволяют по IP адресу найти доменное имя.

Для этого служат специальные домены в зоне arpa.

Для IPv4-адрес 192.168.0.1 превращается в 1.0.168.192.in-addr.arpa., а для IPv6-адрес 2001:db8::567:89ab превратится в адрес:

b.a.9.8.7.6.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.ip6.arpa.

Эти зоны содержат записи PTR, которые содержат ссылку на обычные записи в зонах прямого просмотра.

6. Ресурсные записи

Существуют множество типов ресурсных записей:

- a. SOA (Start of Authority/начальная запись зоны) конфигурационная запись домена, управляющая кэшированием и синхронизацией копии зоны,
- b. A (address record/запись адреса) запись адреса в протоколе IPv4,
- с. AAAA (IPv6 address record) аналогична записи A, но для IPv6,
- d. CNAME (canonical name record/каноническая запись имени (псевдоним)), например WWW,
- e. MX (mail exchange) конфигурация почтовых серверов,
- f. NS (name server/сервер имён) записи о доменных серверов в доменах,
- g. PTR (pointer) указатели на DNS имена в зонах обратного просмотра,
- h. SRV (server selection) записи, указывающие на службы, например LDAP
- i. TXT текстовые записи, например SPF и DKIM, которые защищают от подделки домена при отправке писем

7. Корневые сервера

Корневые серверы DNS — DNS-серверы, обеспечивающие работу корневой зоны DNS в сети Интернет. Позволяют получить список DNS-серверов для любого домена верхнего уровня.

Корневые серверы DNS управляются двенадцатью организациями. Их уполномочивает ICANN (Корпорация по управлению доменными именами и IP-адресами -Internet Corporation for Assigned Names and Numbers).

IP адреса корневых серверов содержатся как параметр конфигурации любого DNS сервера.

8. Разрешение имен

У клиента в качестве параметра есть IP адрес DNS сервера. Разрешение имени проходит в следующие этапы:

- а. Клиент дает запрос своему DNS серверу
- b. Пусть DNS сервер рекурсивный и он должен вернуть клиенту уже IP адрес, тогда он:
- с. Обращается к корневому серверу, тот ему возвращает IP адрес DNS сервера домена первого уровня,
- d. После этого DNS сервер обращается к домену первого уровня, а тот возвращает IP адрес домена второго уровня и т.д.

- е. Когда достигнут домен, который содержит ресурсную запись, он вернет нашему DNS серверу значение IP адрес искомого доменного имени.
- f. A наш DNS сервер вернет DNS клиенту ответ.

9. Регистрация имени

В доменах первого уровня и некоторых доменах второго уровня (например spb) недостаточно прописать ссылки на NS сервера дочернего домена, нужно получить на это право.

Процесс занятия доменного имени называется Регистрацией имени.

Регистрация доменного имени — занесение регистратором в реестр информации о доменном имени и его администраторе. Реестр — центральная база данных домена, содержащая информацию о зарегистрированных доменных именах, Администраторах доменов, иную информацию, необходимую для регистрации доменов. В реестр записи о домене заносятся Регистратором доменных имён — уполномоченым юридическим лицом. Для доменов ru, su, PФ — 38 регистраторов уполномочены АНО «Координационный центр национального домена сети Интернет».

Основные термины

- 1. Домен (доменное имя) область пространства иерархических имён сети Интернет, которая обозначается уникальным доменным именем, обслуживается набором серверов доменных имён (DNS) и централизованно администрируется.
- 2. DNS-клиент программа-клиент, которая по запросу приложений обращается к DN-серверу за разрешением имени.
- 3. DNS-сервер программа-сервер предназначенная для:
- 4. Хранения данных о доменных именах
- 5. Разрешения доменных имен (определение IP адреса) по запросу клиентов
- 6. Рекурсивный сервер DNS сервер, который возвращает клиенту IP адрес хоста.
- 7. Не рекурсивный сервер DNS сервер, который возвращает клиенту IP адрес следующего DNS сервер.
- 8. Зона файл, в котором описано соответствие хостов домена и их IP-адресов. В Интернет за каждую зону DNS должно отвечает не менее двух серверов.
- 9. Ресурсная запись единица хранения и передачи информации в DNS. Каждая ресурсная запись имеет имя (то есть привязана к определённому доменному имени, узлу в дереве имён), тип и поле данных, формат и содержание которого зависит от типа.
- 10. Разрешение имени процесс определение IP адреса по доменному имени (или наоборот), осуществляемы

Дополнительная литература

- 1. https://www.rfc-editor.org
- 2. http://rfc.com.ru
- 3. http://book.itep.ru/4/44/dns_4412.htm
- 4. Олифер В., Олифер Н. Компьютерные сети. Принципы, технологии, протоколы. Юбилейное издание. СПб.: Питер, 2020 г.
- 5. Таненбаум Э., Уэзеролл Д. Компьютерные сети. СПб.: Питер, 2019 г.