Esercitazione 4 - 3/04

1. P.4.1 dell'eserciziario

2. Una pallina di massa m viene collegata dapprima ad una fune ideale ed in seguito ad un'asta rigida entrambe di lunghezza L. In entrambi i casi viene posta in un piano verticale e viene lanciata con velocità v_{θ} diretta orizzontalmente. Dire quale valore minimo deve avere la velocità v_{θ} in ciascuno dei due casi affinché la pallina compia un giro intero. Confrontare i due valori ottenuti.

$$[v_{0min}=(5gL)^{1/2}; v_{0min}=2(gL)^{1/2}]$$

- 3. Come indicato nella figura, una particella di massa m si muove lungo una guida circolare verticale di raggio R. La sua velocità nel punto più basso è v_0 .
 - **a.** Qual è il minimo valore v_m di v_0 che consente alla palla di percorrere l'intera circonferenza senza perdere contatto con la guida?
 - **b.** Si supponga che v_0 sia uguale a $0.775~v_m$. La particella si muove sulla guida fino alla posizione P in cui perde contatto e prosegue lungo la linea tratteggiata. Si determini l'angolo θ .

$$[v_m = (5gR)^{1/2}; 0.775 \ v_m \approx (3Rg)^{1/2} \ \theta = \arcsin(1/3) = 19.47^{\circ}]$$

4. P.4.19 dell'eserciziario

5. Un vagone delle montagne russe di massa m=500kg parte da fermo da una altezza $y_1=40m$ (A) rispetto al suolo. Calcolare la velocità con cui il vagone giunge nel punto più basso del percorso, $y_2=10m$ (B). Determinare, inoltre modulo, direzione e verso della reazione vincolare dei binari nel punto C ($y_3=20m$), necessaria per mantenere il vagone vincolato al percorso, sapendo che il raggio di curvatura in quel punto vale R=30m. Si assumano i binari come un vincolo liscio e bilatero.

$$[N=mg(1-2(y_1-y_3)/R)=-1635N]$$

6. Un blocco di 1.93 kg è posto contro una molla compressa situata su un piano scabro inclinato di α =27° e con un coefficiente d'attrito dinamico μ_D =0.4. La molla, che ha una costante elastica k=20.8N/cm, viene compressa di 18.7cm e quindi lasciata andare. Quanta strada percorre il blocco lungo il piano inclinato prima di fermarsi? Si misuri la posizione finale del blocco rispetto a quella iniziale.

$$[l=k\Delta x^2/(2mg(\sin \alpha + \mu_D\cos \alpha))=2.37m; 2.183m]$$

7. Una particella può muoversi lungo una guida fissa costituita da due tratti rettilinei inclinati di $\alpha=60^{\circ}$ e $\beta=30^{\circ}$ rispetto al piano orizzontale ed uniti in A da un raccordo di lunghezza trascurabile. I coefficienti di attrito dinamico sono $\mu_I=0.04$ e $\mu_2=0.03$. La particella viene lasciata libera ad una distanza l=2m da A. Si calcoli:

- a. la lunghezza complessiva del percorso compiuto
- **b.** il lavoro totale compiuto dalla forza di attrito.

$$[l'=l(\sin\alpha-\mu_1\cos\alpha)/(\sin\beta+\mu_2\cos\beta)=3.22m]$$

8. P.4.13 dell'eserciziario

9. Due blocchi sono collegati da una fune di massa trascurabile che scorre su una puleggia priva di attrito. Il blocco di massa m_1 poggia su una superficie orizzontale scabra ed è connesso ad una molla di costante elastica k. inizialmente il sistema è in quiete e la molla è a riposo. Sapendo che la massa m_2 scende di un tratto h prima di fermarsi calcolare il valore del coefficiente di attrito dinamico tra m_1 e la superficie.

$$[\mu_D = (m_2 g - 0.5 kh)/m_1 g]$$

10. Un pendolo è costituito da un corpo puntiforme di massa m=4kg appeso ad un filo inestensibile e di massa trascurabile. Sapendo che la massima ampiezza delle oscillazioni che il pendolo può compiere senza che il filo si spezzi e di $\theta_{max}=77^{\circ}$ calcolare il valore della tensione di rottura del filo.

$$[T_{max} = mg(1 + 2(1 - cos\theta_{max})) = 100N]$$

11. Un blocco di massa m scivola lungo un piano inclinato di un angolo ϑ rispetto all'orizzontale, e di altezza complessiva h; il coefficiente di attrito dinamico tra la massa ed il piano è μ_d . Calcolare il lavoro compiuto dalle forze attive in funzione dell'angolo ϑ . Calcolare poi il valore di μ_d per cui il blocco si muove con velocità costante, ed il lavoro compiuto da tutte le forze in questo caso.

$$[L_{Tot}=mgh(1-\mu_d cotg\vartheta); \mu_d=tg\vartheta; L_{Tot}=0]$$

12. P.4.14 dell'eserciziario

13. Uno sciatore di massa m=80 kg, partendo da fermo, scende lungo un pendio con un dislivello pari ad h=110 m, e giunge al termine con velocità $v_f=20$ m/s. Mostrare che le forze in gioco non sono tutte conservative e calcolare il lavoro compiuto dalle forze di attrito.

$$[L_{nc}=m(v_f^2/2-gh)=-70.33 \text{ kJ}]$$

14. P.4.20 dell'eserciziario

15. Una pallina si muove su un piano orizzontale liscio con velocità $v_0 = 3$ m/s costante fino a raggiungere un tratto di superficie circolare di raggio R = 5 m. Si determini il valore dell'angolo ϑ indicato in figura in corrispondenza del quale la pallina perde il contatto con la superficie.

16. P.4.5 dell'eserciziario

17. Un blocco di massa m, partendo da fermo, scivola lungo un piano inclinato di altezza h e di inclinazione α sul quale il coefficiente di attrito dinamico vale μ_d ; poi prosegue in orizzontale per un tratto liscio, e quindi va a comprimere una molla di costante elastica k per un certo tratto Δx incognito. Infine la molla respinge il blocco e lo fa risalire sul piano inclinato fino ad una certa quota incognita h_f , inferiore ad h. Calcolare Δx ed h_f in funzione delle altre grandezze.

$$\left[\Delta x = \sqrt{2mgh(1-\mu_d\cot\alpha)/k} \ ; \ h_f = (1-\mu_d\cot\alpha)h/(1+\mu_d\cot\alpha)\right]$$