Universidad de Guadalajara

Segunda Feria de Posgrados

Clasificación de Imágenes con Deep Learning

https://github.com/Dr-Carlos-Villasenor/Taller_CNN

Dr. Carlos Villaseñor

Contenido

- ¿Qué es Aprendizaje Automático?
- Introducción a redes neuronales densas
- Aprendizaje automático vs Aprendizaje profundo
- Introducción a redes neuronales convolucionales
- Transferencia de aprendizaje
- Búsqueda de hiperparámetros
- Poda neuronal

¿Qué es el aprendizaje automático?

¿Qué es el aprendizaje?

Según Tom Mitchell:

"Decimos que un programa de computadora aprende de la experiencia E con respecto a la tarea T y medida de desempeño D, si su desempeño D sobre la tarea T aumenta con la experiencia E"

Aprendizaje supervisado

Nota: Existen otros dos paradigmas llamados Aprendizaje no supervisado y aprendizaje reforzado, estos están fuera del alcance de esta clase

Problemas prototípicos

		Salida deseada		
		Discreta	Continua	
Paradigma	Supervisado	Clasificación	Regresión	
	No supervisado	Agrupamiento	Reducción de la dimensionalidad	

Introducción a las redes neuronales

- En 1906, Santiago Ramón y
 Cajal ganó el premio novel en
 medicina en reconocimiento de
 su trabajo sobre la estructura
 del sistema nervioso.
- Describió las neuronas como unidades de procesamiento de la información que se conectan y forman redes dinámicas para cumplir todas las funciones necesarias.

La neurona biológica

La neurona artificial

• En 1943, McCulluch y Pitts elaboraron el primer modelo matemático de una neurona

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*, *5*(4), 115-133.

La neurona artificial

$$w = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} \qquad x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$z = w^{T} x + b$$
$$\hat{y} = \varphi(z)$$

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. *The bulletin of mathematical biophysics*, 5(4), 115-133.

El Perceptrón

Data:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(p)}, y^{(p)})\}$$

$$x^{(i)} \in \mathbb{R}^{n}, y^{(i)} \in \{0,1\}$$
For $e \in \{1,2,\cdots,epochs\}$
For $i \in \{1,2,\cdots,p\}$

$$\hat{y} = \varphi(w^{T}x^{(i)} + b)$$

$$w \leftarrow w + \eta(y^{(i)} - \hat{y})x^{(i)}$$

$$b \leftarrow b + \eta(y^{(i)} - \hat{y})$$

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.

Demo 1

El Perceptrón

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.

Red neuronal densa

Red neuronal densa

Demo 2

Backpropagation

Backpropagation

Backpropagation

MLP with Softmax

MLP with Softmax

MLP with Softmax

Aprendizaje prodfungo

Deep Learning

Profunda (Deep)

Superficial (Shallow)

Deep Learning vs Machine Learning

28

Visión con una Red Neuronal

Si / No

Para una imagen de 626x417 el número de pixeles que hay es de 261,042, multiplicando por 3 capas de color, obtenemos 783,126. Si en la primer capa oculta hay 5 neuronas, el total de parámetros en la primer capa es de 3,915,635

Red Convolucional

En 1989, Yann LeCun presentó una red que entrenaba filtros convolucionales con back-propagation.

Convoluciones

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$6 \times 6$$

$$n_h \times n_w * f \times f \longrightarrow n_h - f + 1 \times n_w - f_2 + 1$$

Convoluciones

9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

1	0	-1
1	0	-1
1	0	-1

*

0	27	27	0
0	27	27	0
0	27	27	0
0	27	27	0

Múltiples filtros

 $8 \times 8 \times 3$

$$3 \times 3 \times 3$$
Filtros=4

Capa convolucional

 $8 \times 8 \times 3$

ReLU(
$$+b_3$$
)

ReLU(
$$+b_4$$
)

Capa convolucional

$$n_h \times n_w \times n_c$$

$$f \times f \times n_c$$

$$S$$

$$p$$

$$n_f$$

$$\left\lfloor \frac{n_h + 2p - f}{s} + 1 \right\rfloor \times \left\lfloor \frac{n_w + 2p - f}{s} + 1 \right\rfloor \times n_f$$

Conteo de parámetros

Para una imagen RGB de 626x417 y si suponemos 5 filtros convolucionales de (3, 3) se tienen los siguientes parámetros:

$$5(3 \times 3 \times 3) + 5 = 140$$

Pooling

Max-Pooling:

5	3	2	6
7	4	2	1
5	7	8	1
9	5	4	1

Red Neuronal Convolucional (CNN)

Demo 3

- Dificultades de Deep Learning
 - Entrenar una red neuronal profunda puede durar semanas y requiere múltiples GPUs.
 - Se necesita una cantidad enorme de datos para lograr un buen desempeño en una arquitectura profunda.

Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding convolutional networks. In *European conference on computer vision* (pp. 818-833). Springer, Cham.

https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/

TRAINING FROM SCRATCH

TRANSFER LEARNING

Demo 4

Búsqueda de hiperparámetros

Random Search

Hyperband

(a) Configuration Selection

(b) Configuration Evaluation

Demo 5

¿Para qué podar la red artificial?

Poda neuronal

• Normalmente tenemos

arg min L(x;W) cuándo hacemos poda suponemos

- $\underset{W_p}{\operatorname{arg.min}} L(x; W_p)$ el podado $\|W_p\|_0 \leq N$
 - 1. Granularidad
 - 2. Criterio de poda
 - 3. Radio de poda
 - 4. Entrenamiento fino de red podada

Criterio de poda

Existen muchos criterios de poda, a continuación veremos los más importantes

Basados en la magnitud (Magnitud-based prunning)

Pruning Scheduling

- Existen dos métodos populares
 - ConstantSparsity
 - La dispersión se mantiene constante durante el entrenamiento

Args		
target_sparsity		
begin_step		
end_step		
frequency		

- PolynomialDecay
 - Las dispersión va aumentando junto con el ent

Destilación del conocimiento

Red evaluada en otros sistemas

numéricos

Cuantización de una red

Demo 6

Fin del curso