1.5 1) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice A + B vaut par définition $a_{ij} + b_{ij}$.

Or $a_{ij} + b_{ij} = b_{ij} + a_{ij}$, car l'addition des nombres réels est commutative. Vu que $b_{ij} + a_{ij}$ correspond à l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice B + A, on a établi l'égalité A + B = B + A.

2) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice A + B vaut $a_{ij} + b_{ij}$ et celui de la matrice C vaut c_{ij} .

Par conséquent, l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice (A + B) + C vaut $(a_{ij} + b_{ij}) + c_{ij}$.

Mais $(a_{ij} + b_{ij}) + c_{ij} = a_{ij} + (b_{ij} + c_{ij})$, vu que l'addition des nombres réels est associative.

Il correspond donc à la somme de l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice A avec celui de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice B + C.

On obtient ainsi l'égalité (A + B) + C = A + (B + C).

3) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice A+0 vaut $a_{ij}+0=a_{ij}$. Il coïncide ainsi avec l'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice A.

En d'autres termes, on constate que A + 0 = A.

4) L'élément de la $i^{\text{ème}}$ ligne et de la $j^{\text{ième}}$ colonne de la matrice A + (-A) vaut $a_{ij} + (-a_{ij}) = 0$.

C'est pourquoi, on obtient l'égalité A + (-A) = 0.