MATH 102: Ideas of Math

Day 11

Oct 2, 2023

Some proof strategies

- 1. Direct proof
- 2. Contradiction
- 3. Contrapositive (new)
- 4. Proofs with quantifiers

Direct proof

Based on definitions only.

Example

Prove that for a, b > 0, $a < b \implies a^2 < b^2$.

Proof by contradiction

To prove that P is true, suppose P is false then derive a contradiction.

Example

Prove that if a is irrational and r is rational, then a + r is irrational.

Proof by contrapositive

In order to prove $P \implies Q$, it is equivalent to prove $\neg Q \implies \neg P$.

Example

Let $m, n \in \mathbb{N}$. Prove that if mn > 64, then either m > 8 or n > 8.

Proof with quantifiers

To prove $\forall x \in X, P(x)$, pick an arbitrary $x \in X$ and try to deduce that P(x) is true. That is, just use the properties of x that are described in the description of X to deduce that P(x) is true.

Example

Prove that the square of every odd integer is odd.

Proof with quantifiers (cont.)

To prove $\exists x \in X, P(x)$, it is enough to find a particular $x_0 \in X$ so that $P(x_0)$ is true.

Example

Prove that there is a natural number that is a perfect square and is one more than a perfect cube.