Пусть, например, $\alpha_1 = 0$. Тогда это будет означать запись $\frac{\beta_1}{0} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{\alpha_3}$?

Запишем по-другому:
$$\begin{cases} \beta_1 = \alpha \cdot 0 \\ \beta_2 = \alpha \alpha_2 \\ \beta_3 = \alpha \alpha_3 \end{cases}$$

Запишем по-другому: $\begin{cases} \beta_1 = \alpha \cdot 0 \\ \beta_2 = \alpha \alpha_2 \\ \beta_3 = \alpha \alpha_3 \end{cases}$ Таким образом, $\beta_1 = 0$ и из записи: $\frac{\beta_1}{0} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{\alpha_3}$ следует, что $\beta_1 = 0$, т.е. получаем правило, если в «знаменателе» $\alpha_1 = 0$, то и «числитель» $\beta_1 = 0$. Аналогично: $\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{0} = \frac{\beta_3}{\alpha_3} \Rightarrow \beta_2 = 0$ и $\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{0} \Rightarrow \beta_3 = 0$. Легко проверить, что если два «знаменателя» нулевые, то соответствующие «числители»

$$\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{0} = \frac{\beta_3}{\alpha_3} \Rightarrow \beta_2 = 0$$
 и $\frac{\beta_1}{\alpha_1} = \frac{\beta_2}{\alpha_2} = \frac{\beta_3}{0} \Rightarrow \beta_3 = 0$.

Легко проверить, что если два «знаменателя» нулевые, то соответствующие «числители» равны нулю.

Суть замечания в том, что условие пропорциональности это НЕ равенство дробей. Поэтому слова «знаменатель» и «числитель» берем в кавычки. В отличие от обычных дробей здесь «знаменатели» могут быть равными нулю и соответствующие «числители» надо также брать равными нулю.

В заключении данного параграфа подчеркием, что введение базисов в V^1, V^2, V^3 позволяет задавать векторы не геометрические (вектор-стрелки) а набором чисел – координат вектора. В координатной форме можно выполнять линейные операции (I), (II) и не только их (см. далее), судить о коллинеарности векторов и т.п. Тем самым геометрическое задание векторов и операций над ними базис «переведет» на алгебраический язык, что можно изобразить условной схемой:

ВЕКТОРНАЯ АЛГЕБРА

Геометрическое определение векторов и операций над ними

базис

Алгебраический подход: "работа" в координатной форме

Базисы (алгебраическая точка зрения) 1.3

Рассмотрим векторные пространства $V = V^1, V^2, V^3$ и остановимся еще раз на определении базисов, введенных в предыдущем параграфе.

- (1) В пространстве V^1 (прямая) базис $E_1 = \{\bar{e}_1\}$ есть вектор (вектор-стрелка) ненулевой длины: $|\bar{e}_1| \neq 0 \Rightarrow \bar{e}_1 \neq \bar{0}$.
- (2) В пространстве V^2 (планиметрия) базис $E_2 = \{\bar{e}_1, \bar{e}_2\}$ есть пара не коллинеарных векторов, $\bar{e}_1 \not | \bar{e}_2$, т.е. пара векторов не лежащих на одной или параллельных прямых.
- (3) В пространстве V^3 (стереометрия) базис $E_3 = \{\bar{e}_1, \bar{e}_2, \bar{e}_3\}$ есть тройка не компланарных векторов, т.е. тройка векторов, которые нельзя разместить на одной плоскости.

Обратите внимание(!): определение базисных систем E_1 , E_2 , E_3 в V^1 , V^2 , V^3 дано в наивной, геометрической форме – это векторы ненулевые, неколлинеарные, некомпланарные.

В данном параграфе мы «уйдем» от геометрических характеристик в описании базисных систем E_1, E_2, E_3 , но будем определять их с иной, АЛГЕБРАИЧЕСКОЙ точки зрения. Первым шагом на этом пути является определение ЛИНЕЙНО НЕЗАВИСИМЫХ и ЛИНЕЙНО ЗАВИСИМЫХ систем векторов.

Рассмотрим в векторном пространстве V некоторую систему векторов A:

$$A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$$
 (где $\bar{a}_i \in V, i = 1, 2, \dots, n$)

Пусть $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \ldots + \lambda_n \bar{a}_n$ есть линейная комбинация векторов этой системы. Говорят, что линейная комбинация НУЛЕВАЯ или ТРИВИАЛЬНАЯ, если все коэффициенты равны нулю: $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$. Далее будет удобно использовать очевидный факт: $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0 \Leftrightarrow \lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 = 0$.

$$\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0 \Leftrightarrow \lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 = 0.$$

Тогда запись $\lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 \neq 0$ означает, что среди n чисел $\lambda_1, \lambda_2, \ldots, \lambda_n$ есть хотя бы одно отличное от нуля.

Определение 1.13. Система $A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$ называется линейно независимой системой, если из равенства $\bar{0}$ ее линейной комбинации следует, что она тривиальна, т.е.

$$\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \ldots + \lambda_n \bar{a}_n = \bar{0} \Rightarrow \lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 = 0.$$

Отрицанием этого определения является определение линейно зависимой системы.

Определение 1.14. Система $A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$ называется линейно зависимой системой, если существует нетривиальная линейная комбинация равная $\bar{0}$, т.е.

$$\exists \ \lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 \neq 0$$
 такая, что $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \ldots + \lambda_n \bar{a}_n = \bar{0}$.

Теорема 1.9 (Критерий линейной зависимости системы векторов). Система векторов A, $A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$ – линейно зависимая тогда и только тогда, когда хотя бы один из векторов этой системы можно разложить по векторам этой системы.

Доказательство. 1. <u>Необходимость</u>. Пусть A есть линейно зависимая система. Тогда существует нетривиальная линейная комбинация равная $\bar{0}$. Не нарушая общность будем считать,

что
$$\lambda_1 \neq 0$$
. Тогда $\lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \ldots + \lambda_n \bar{a}_n = \bar{0} \Rightarrow \bar{a}_1 = \left(-\frac{\lambda_2}{\lambda_1}\right) \bar{a}_2 + \ldots + \left(-\frac{\lambda_n}{\lambda_1}\right) \bar{a}_n$, т.е. вектор

 \bar{a}_1 разложен по остальным векторам системы A: $\bar{a}_1 = \mu_2 \bar{a}_2 + \ldots + \mu_n \bar{a}_n$ (здесь $\mu_2 = -\frac{\lambda_2}{\lambda_1}, \ldots,$

$$\mu_n = -\frac{\lambda_n}{\lambda_1} \bigg).$$

2. Достаточность. Пусть один из векторов системы A разложен по остальным векторам этой системы. Пусть этим вектором будет $\bar{a}_1 = \mu_2 \bar{a}_2 + \ldots + \mu_n \bar{a}_n \Rightarrow -\bar{a}_1 + \mu_2 \bar{a}_2 + \ldots + \mu_n \bar{a}_n = \bar{0}$, т.е. найдена нетривиальная ($\mu_1 = -1 \neq 0$) линейная комбинация равная $\bar{0}$. Таким образом, A есть линейно зависимая система.

Теорема 1.10 (Критерий линейной независимости системы векторов). Система векторов $A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$ – линейно независимая тогда и только тогда, когда ни один из векторов этой системы нельзя разложить по векторам этой системы.

Теорема 1.11. Системы базисных векторов E_1 , E_2 , E_3 есть линейно независимые системы в пространствах V^1, V^2, V^3 соответственно.

Доказательство. От противного.

- (1) Для V^1 . Предположим $E_1 = \{\bar{e}_1\}$, где $\bar{e}_1 \neq 0$ есть линейно зависимая система. По определению линейной зависимости существует $\lambda \neq 0$ такое, что линейная комбинация $\lambda \bar{e}_1$ нулевая: $\lambda \bar{e}_1 = \bar{0}$. Т.к. $\bar{e}_1 \neq 0$, то из утверждения следует, что $\lambda = 0$. Противоречие.
- (2) Для V^2 . Предположим $E_2 = \{\bar{e}_1, \bar{e}_2\}$, где $\bar{e}_1 \not\parallel \bar{e}_2$ есть линейно зависимая система, т.е. существует нетривиальная линейная комбинация равная $\bar{0}$: $\lambda_1 \bar{e}_1 + \lambda_2 \bar{e}_2 = \bar{0}$. Пусть один из коэффициентов, например λ_1 , не равен нулю. Тогда: $\lambda_1 \bar{e}_1 + \lambda_2 \bar{e}_2 = \bar{0} \Rightarrow \bar{e}_1 = -\frac{\lambda_2}{\lambda_1} \bar{e}_2$. Из критерия коллинеарности векторов следует, что $\bar{e}_1 \parallel \bar{e}_2$. Противоречие.
- (3) Для V^3 . Предположим $E_3=\{\bar{e}_1,\bar{e}_2,\bar{e}_3\}$ где $\bar{e}_1,\bar{e}_2,\bar{e}_3$ тройка некомпланарных векторов есть линейно зависимая, т.е. $\lambda_1\bar{e}_1+\lambda_2\bar{e}_2+\lambda_3\bar{e}_3=\bar{0}$. Пусть один из коэффициентов, например λ_1 , не равен нулю. Тогда: $\lambda_1\bar{e}_1+\lambda_2\bar{e}_2+\lambda_3\bar{e}_3=\bar{0}\Rightarrow \bar{e}_1=\left(-\frac{\lambda_2}{\lambda_1}\right)\bar{e}_2+\left(-\frac{\lambda_3}{\lambda_1}\right)\bar{e}_3$, откуда следует, что \bar{e}_1 диагональ параллелограмма, построенного на векторах $\left(-\frac{\lambda_2}{\lambda_1}\right)\bar{e}_2$ и $\left(-\frac{\lambda_3}{\lambda_1}\right)\bar{e}_3$, т.е.

 \bar{e}_1 лежит в плоскости векторов \bar{e}_2, \bar{e}_3 из чего следует, что $\bar{e}_1, \bar{e}_2, \bar{e}_3$ – компланарная тройка векторов. Противоречие.

Введем еще определения:

Определение 1.15. Система векторов $A = \{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_n\}$ называется ПОЛНОЙ системой, если <u>любой</u> вектор $\bar{a} \in V$ можно разложить по системе $A: \bar{a} = \lambda_1 \bar{a}_1 + \lambda_2 \bar{a}_2 + \dots \lambda_n \bar{a}_n$.

Наконец, дадим (алгебраическое) определение базиса:

Определение 1.16. Система $E_n = \{\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n\}$ называется базисом пространства V, если она удовлетворяет двум условиям:

- 1° E_n есть линейно независимая система;
- 2° E_n есть полная система.

В последнем определении два предложения 1° и 2° иногда объединяют в одно: E_n есть МАКСИМАЛЬНАЯ линейно независимая система в V.

Если E_n – базис в V, то такое пространство также обозначают V^n : $V = V^n$.

Какая связь между «геометрическим» определением базисов E_1, E_2, E_3 в пространствах V^1, V^2, V^3 с алгебраическим определением базиса E_n в V^n ?

Теорема 1.12. Геометрическое определение базисов E_1 , E_2 , E_3 в V^1 , V^2 , V^3 совпадает с алгебраическим определением базиса E_n в V^n для случаев n = 1, 2, 3.

Доказательство. 1° E_1 , E_2 , E_3 есть полные системы в V^1, V^2, V^3 . Это следует из теорем 1.2, 1.3, 1.4 (стр. 8-9) или «объединенной» теоремы 1.5 (стр. 9).

 2° E_1 , E_2 , E_3 есть линейно независимые системы векторов, это следует теоремы 1.11 данного параграфа.

Выполнение этих двух условий и есть определение базиса с алгебраической точки зрения.

В отличие от пространств V^1, V^2, V^3 в пространстве V^n $(n \geqslant 4)$ базисы E_n геометрическим способом задать нельзя.

Определение 1.17. Число n векторов в базисе $E_n = \{\bar{e}_1, \bar{e}_2, \dots, \bar{e}_n\}$ называют размерностью пространства и обозначают $\dim V^n = n$.

Таким образом для:

 $n = 1, \dim V^1 = 1$ (прямая);

 $n = 2, \dim V^2 = 2$ (плоскость);

 $n=3, \dim V^3=3$ (пространство);

 $n \geqslant 4$, dim $V^n = n$ (наглядно-геометрического образца нет).

Именно алгебраическая точка зрения на базис позволяет сделать «переход» от геометрически ясных конфигураций пространств V^1, V^2, V^3 к пространствам больших размерностей.

Общая теория векторных пространств, как уже устоялось, будет построена в курсе АЛ-ГЕБРА. В данном курсе АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ мы рассматриваем и будем рассматривать пространства V^1,V^2,V^3 . Зачем же мы вообще упоминаем о пространствах больших размерностей? Только для того, чтобы посмотреть как здесь реализуется принцип «от простого к сложному» – переход от V^1,V^2,V^3 к пространствам V^n при n>3.

1.4 Скалярное произведение векторов

Наряду с линейными операциями (I) и (II) вводят еще третью операцию, которую называют скалярным произведением векторов. Операцию скалярного произведения будем также нумеровать римской цифрой (III). Предварительно сформулируем следующее определение: