Übungsblatt 9

Prof. F. Bigiel Besprechung: 11. Jan–13. Jan.

Zum Aufwärmen: Wahr oder Falsch?

- 1. Der Vollmond geht in Mitteleuropa stets um Mitternacht auf.
- 2. Die schmale Sichel des abnehmenden Mondes kann man in Europa zur Winterzeit besonders gut abends kurz nach Sonnenuntergang im Westen sehen.
- 3. Steht man auf dem Mond an dessen Äquator, so sieht man wie sich die Erde am Himmel in \sim 14 Tagen von Osten nach Westen bewegt.

Aufgabe 1: Gezeitenkräfte im Mond-Erde System

- 1. Skizziere und beschreibe, weswegen es zur Verlangsamung der Rotation der Erde durch die Gezeitenkräfte des Mondes kommt.
- 2. Weisen Erde und Mond eines Tages eine gebundene Rotation auf, so wird ein Erdtag ca. $T=47.5\,\mathrm{d}$ lange dauern. Bestimmen Sie aus dieser Angabe die resultierende Erde–Mond Distanz.
 - Momentan hat der Mond eine Umlaufzeit von $27.3\,\mathrm{d}$ und einen Abstand von $d=383\,400\,\mathrm{km}$.

Aufgabe 2: Distanz zu den Hyaden

Der Stern in den Hyaden mit den Koordianten $\alpha=57.57^\circ$ und $\delta=17.18^\circ$ (im Bild unten markiert) zeigt die folgende Bewegungen: $v_{\rm r}=31.6\,{\rm km\,s^{-1}}$, $\mu=0.151''\,{\rm yr^{-1}}$. Der Winkelabstand vom Stern zum Fluchtpunkt beträgt $\theta=34.57^\circ$. Bestimmen Sie die Distanz zum Stern (in pc).

Übungsblatt 9

Prof. F. Bigiel Besprechung: 11. Jan–13. Jan.

Figure 1: (Oben) Das *HRD* von Sternen des Kugelsternhaufens M3 (Unten) Das *HRD* von Sternen in Erdnähe. (Quelle: "Astrophysics for Physicists", Choudhuri).

Aufgabe 3: Distanz zum Kugelsternhaufen M3

Mit dem Hertzsprung-Russel Diagramm eines Sternhaufens ist es möglich die Distanz zu bestimmen. Benutze Abbildung 1 um eine Schätzung der Distanz zwischen Erde und dem Kugelstenhaufen Messier 3 (M3) zu bekommen.