This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(3)

②

Int. Cl.:

F 23 l, 17/16

BUNDESREPUBLIK DEUTSCHLAND

PATENTAMT

Deutsche Kl.:

24 i, 5/01

2201803 Offenlegungsschrift 1

Aktenzeichen:

P 22 01 803.7

Anmeldetag:

14. Januar 1972

Offenlegungstag: 20. Juli 1972

Ausstellungspriorität:

Unionspriorität

Datum:

15. Januar 1971

Land:

Frankreich

1 Aktenzeichen:

7101252

Bezeichnung:

Verfahren zum Hochtreiben der von einem Schornstein ausgeblasenen

Rauchfahne

(61)

Zusatz zu:

Anmelder:

❷ 1

Ausscheidung aus:

Agence Nationale de Valorisation de la Recherche,

Courbevoie (Frankreich)

Vertreter gem. § 16 PatG:

Müller-Bore, W., Dr.; Manitz, G., Dipl.-Phys. Dr. rer. nat.; Deufel, P., Dipl.-Chem. Dipl.-Wirtsch.-Ing. Dr.;

Finsterwald, M., Dipl.-Ing.; Grämkow, W., Dipl.-Ing.; Patentanwälte.

3300 Braunschweig und 8000 München und 7000 Stuttgart

@

Als Erfinder benannt:

Chassaing, Patrick; Claria, Albert; Sananes, Fabien;

Toulouse, Haute-Garonne (Frankreich)

DR. MÜLLER-BORÉ DIPL-PHYS. DR. MANITZ DIPL.-CHEM. DR. DEUFEL DIPL.-ING. FINSTERWALD DIPL.-ING. GRÄMKOW PATENTANWÄLTE

2201803

München, 14. JAN. 1971 Hl/U - A 2202

AGENCE NATIONALE DE VALORISATION DE LA RECHERCHE, Tour Aurore PARIS-DEFENSE, COURBEVOIE, Hauts-de-Seine / FRANKREICH

Verfahren zum Hochtreiben der von einem Schornstein ausgeblasenen Rauchfahne

Die Erfindung bezieht sich auf ein Verfahren, das das Hochtreiben der Rauchfahne (oder Abgassahne mit schädlicher Eigenschaft) gestattet, die von einem Schornstein oder jeder anderen Abführeinrichtung abgeblasen wird, zur Bekämpfung der Verschmutzung der Atmosphäre.

Die Vielzahl selbst der Ursachen der Atmosphärenverschmutzung bewirkt, dass das Vorgehen diese Effekte nur in in abwechslungsreich gestalteter Weise erfolgen kann. So kann unter anderem für die Industrie und die Verschmutzungsquellen die vorbeugende Massnahme auf

209830/0817

Dr. Müller-Boré 10 Browneshweig, Am Bürgerperk 8

1

Dr. Menitz - Dr. Deufel - Dipl.-Ing. Finsterwald 8 Münuhen 21, Robert-Koch-Straße 1 Telefon (8811) 29:38:46, Telex 5-22:000 mbpst Dipl.-Ing. Grämkow 7 Stuttgart-Bad Connetatt, Marktstraße 3 Telefon (0711) 587281

Back: Zentralkesse Bever, Volksbenken, München, Kto.-Nr. 8822 Postscheck: München 8548

zwei Niveaus bzw. an zwei Stellen erfolgen: Reinigung der Abgangsstoffe und Verbesserung der Ausstossbedingungen. Ziel der Erfindung ist gerade die Verbesserung dieser Ausstossbedingungen.

Das Ausstossen der Abgase erfolgt in sehr verbreiteter und bekannter Weise mittels Schornsteinen, deren Aufgabe darin besteht, für die Abgasfahne eine genügende Höhe zu gewährleisten, damit deren Diffusion in der Atmosphäre genügend intensiv ist und so gewährleistet ist, dass Niederschläge auf den Boden in zulässigen Grenzen liegen. Die Verwirklichung dieser Bedingung unter Berücksichtigung der dominierenden meteorologischen Gegebenheiten ebenso wie der Eigenschaften der Lage und der Betriebsweise der Fabriken oder der Räume und/Schmutzstoffe abgebenden Quellen zieht beachtliche Höhen für die Schornsteine und somit erhöhte Kosten für diese nach sich. Andererseits bilden niedrigere Schornsteine den Ursprung einer gefährlichen Verschmutzung.

Ziel der Erfindung ist es insbesondere:

- die Niederschläge auf den Boden und in geringem Abstand von der abgebenden Quelle Niederschläge hoher Konzentration bei ungünstigen meteorologischen Bedingungen oder einer ungünstigen Betriebsweise zu vermeiden und dabei vernünftige Schornsteinhöhen beizubehalten.
- in einer allgemeinen Weise den Prozentsatz der Verschmutzung in geringem oder grossem Abstand von dem Ort des Abblasens zu vermindern, indem eine dynamische Überhöhe für die Fahne gewährleistet und deren Diffusion begünstigt wird, und
- gegebenenfalls die Abmessungen gebauter Einrichtungen

bzw. Gebäude zu vermindern, wobei die Überhöhe für die Fahne und die Druckverminderung am Kopf des Schornsteins erfindungsgemäss realisiert werden, wobei diese Verminderung kompensiert wird.

Zu diesem Zweck ist erfindungsgemäss ein Verfahren vorgesehen, gemäss dem Luft oder irgend ein anderes Gas, das das Abgas selbst sein kann, an der Spitze der Abführleibzw. des Schornsteins tung/um dessen Umfang oder nur einen Teil von dessen Umfang von aussen in den Schmutzstoffstrahl geblasen wird.

Bevorzugt ist erfindungsgemäss weiterhin vorgesehen:

- dass die Gasgeschwindigkeit der Luft zumindest gleich der Geschwindigkeit des Abgases am Ausgang des Schornsteines ist,
- dass vorteilhafterweise die Geschwindigkeit der Gebläseluft höher als die Geschwindigkeit des Abgases am Austritt des Schornsteins ist, und
- dass in Abhängigkeit von der Windgeschwindigkeit v und der Geschwindigkeit U1 des Abgases am Ausgang des Schornsteins, die Geschwindigkeit U2 der Gebläseluft in der Weise geregelt wird, dass das Verhältnis U2/v zumindest gleich dem und bevorzugt grösser als das Verhältnis U1/v ist.

Gemäss einer vorteilhaften Ausführungsform erfolgt das Blasen der Luft durch eine zylindrische Hülse, die koaxial um die Hauptleitung des Schornsteins vorgesehen ist und einen Durchmesser aufweist, der grösser als der Durchmesser des letzteren ist.

Gemass einer Variante wird Luft nur in zumindest einen Abschnitt der Hülse eingeblasen, der bevorzugt zum Wind gelegen ist. 209830/0817

Schliesslich erfolgt gemäss einer weiteren Variante das Blasen der Luft durch jedes geeignete Mittel des Typs ausserhalb des Abgasstrahles vorgesehener und in einem Kranz um diesen verteilter zylindrischer Strahlen.

Die Erfindung bezieht sich gleichfalls auf die Verwendung der Einrichtungen zur Durchführung des oben definierten Verfahrens.

Die Erfindung wird im folgenden an Hand der Zeichnung beispielsweise beschrieben; in dieser zeigt:

- Fig. 1 eine schematische Schnittansicht im Aufriss des oberen Teils eines Schornsteins, der erfindungsgemäss mit einer zylindrischen Hülse ausgerüstet ist,
- Fig. 2 eine entsprechende Draufsicht,
- Fig. 3 eine schematische Ansicht zur Erläuterung des erfindungsgemässen Verfahrens und des erhaltenen Ergebnisses, wobei die Geometrie des Gebläseluft-Zuführkreises in keiner Weise eine Besonderheit des Verfahrens darstellt.
- Fig. 4 eine geschnittene Draufsicht einer Variante zur Verwirklichung des erfindungsgemässen Verfahrens und
- Fig. 5-13 Kurven, die die Ergebnisse darstellen, die durch die Realisierung des erfindungsgemässen Verfahrens in dem Fall eines ringförmigen Blasspaltes von 2,25 mm mit U1/v = 0,5, U1/v = 1, bzw. U1/v = 2

209830/0817

gemäss den Figuren 5-10 und einem ringförmigen Blasspalt von 5 mm mit U1/v = 1, U1/v = 2 bzw. U1/v = 4 für die Figuren 11-13 erhalten werden.

Nach den Fig. 1 und 2 ist eine Hauptleitung 1 eines Schornsteins von einer zylindrischen Hülse 2 mit grösserem Durchmesser umgeben, wobei der so geschaffene Ringraum 3 dazu dient, Gebläseluft zur Spitze des Schornsteins zu führen, wie es in Fig. 3 dargestellt ist. Nach Fig. 3 weist die Leitung 1 einen Durchmesser d, die Hülse 2 einen Durchmesser D und der Ringraum 3 die Abmessung 1 auf. Bei 4 ist die Quelle des Gases oder des schmutzigen Rauches F und bei 5 und 5a die Quelle für die Gebläseluft in der Hülse 2 dargestellt. Mit v ist die Geschwindigkeiten des schmutzigen Gases und der Luft (die besonders variabel sind) sind mit U1 und U2 bezeichnet.

Die Strecke unter dem Wind ist mit x bezeichnet und sie ist ausgehend von dem Zentrum des Schornsteins berechnet. In ist die Höhe der Achse der Rauchfahne Ap nach der Strecke x gerechnet von der Spitze des Schornsteins in dem Fall, wenn das erfindungsgemässe Verfahren benutzt wird, d.h. mit Blasen; dabei gibt Aho die gleiche Höhe nach derselben Strecke ohne Blasen an.

Wenn vorausgesetzt wird:

Mark Company

The state of the s

1) dass das schmutzige Gas sich auf einer Temperatur gleich der der Gebläseluft befindet (wobei der thermische Effekt auf Grund der den Rauch erzeugenden Verbrennung vernachlässigbar ist), was dem am meisten bevorzugten Fall entspricht, in welchem die

209830/0817

thermische Überhöhung Null ist,

- 2) dass die Geschwindigkeit des Windes ebenso wie dessen Temperatur gleichförmig ist, was dem Fall einer isothermen Atmosphäre ohne vertikalen Geschwindigkeitsgradienten entspricht, und
- 3) dass die Achse der Rauchfahne Ap den Ort der äquidistanden Punkte der Enden von dieser bezeichnet,

dann zeigt die Reihe der Kurven der Fig. 5, 6 und 7, dass wenn der Wert Ah/D auf den Ordinaten und der Wert x/D auf den Abszissen aufgetragen wird, für einen Blas-ringspalt von 2,25 mm für U1/v = 0,5 (Fig. 5), U1/v = 1 (Fig. 6), U1/v = 2 (Fig. 7) und für von 0 (kein Blasen) bis 8 variierende Werte für das Blasen U2/v, ein sehr schwaches Blasen (U2/v im Bereich von 1 oder 2) eine mässige Überhöhung (surelevation; Ah/D) hervorruft, wobei es dagegen radikal die "Niederschläge" zum Fuss des Schornsteins eliminiert.

Ausgehend von den obigen Ergebnissen zeigen die unter den gleichen Bedingungen

$$\frac{\Delta h - \Delta ho}{D} = f (x/D)$$

liefernden Kuven (Fig. 8, 9 und 10) den Vorteil, der sich aus dem Blasen ergibt oder den "Gewinn" des Blasens. Eine Untersuchung der Kurven ergibt, dass dieser "Gewinn" umsomehr bemerkbar ist, je kleiner das Verhältnis U1/v ist, was den Bedingungen gefährdender Verschmutzungen entspricht.

Die Breite des Gebläsespaltes 1 ebenso wie der Anfangs-

Neigungswinkel des Gebläsestrahls sind Parameter von primärer Bedeutung und sind eine Füktion der betrachteten auszuführenden Arbeit/ Die Kurven in den Fig. 11, 12 und 13, die unter den gleichen Bedingungen, wie die in den Fig. 5, 6 und 7 (jedoch mit einem Spalt von 5 mm) für U1/v = 1, 2 und 4 mit einer Variation von U2/v zwischen 0 und 10 erhalten worden sind, zeigen durch Vergleich mit den Fig. 6 und 7, dass der Wirkungsgrad des Blasens mehr von der Austrittsgeschwindigkeit der Luft als deren Durchsatz abhängt.

Bei Ausführung des erfindungsgemässen Verfahrens ergeben sich die folgenden Vorteile:

- Der Blaskreis für die Luft ist unabhängig von dem für die Schmutzstoffe,
- bereits gebaute Schornsteine können ausgerüstet werden, da es genügt, die Spitzen in geeigneter Weise mit äusseren Leitungen auszurüsten, die beispielsweise die Luft zu einem Verteiler führen,
- die einmal montierte Gesmtheit umfasst kein bewegliches Teil, und
- das äussere Aussehen des Schornsteins wird vom "ästhetischen" Gesichtspunkt nur wenig modifiziert.

Ausserdem ist festzustellen:

- dass keine bevorzugte Windrichtung vorhanden ist, da die Funktionsweise des erfindungsgemässen Systems nicht richtungsabhängig ist,
- die Benutzung einer erfindungsgemässen Anlage bleibt sehr anpassungsfähig, es braucht nur eingegriffen zu werden, wenn die Bedingungen nachteilig sind und die Benutzungskosten können somit auf ein absolutes Minimum gesenkt werden,
- dass das Verfahren verbessert werden kann, indem Warmluft
- bzw. des betrachtenden auszurüstenden Bauwerks

209830/0817

zugeführt wird,

- dass eine automatische Einrichtung für das Inbetriebsetzen und Regeln nach dem Wert des Verhältnisses U1/v vorgesehen werden kann und
- dass die einzige Modifikation, die durch das Ingangsetzen des Blasens hervorgerufen wird, die Steigerung des Unterdrucks an der Spitze des Schornsteins ist.

Es ergibt sich daraus die vorteilhafte Konsequenz für die folgenden zwei Punkte:

- Sie verbessert die Zugbedingungen und
- der Durchsatz der Luft ist konstant und der Unterdruck ist fixiert, was es gestattet, beispielsweise leichter die Funktionsweise von Brennern in dem Fall von Rauchschwaden zu stabilisieren, die von Müllverbrennungen kommen.

Gemäss einer Variante der Erfindung ist es möglich, den erforderlichen Energieverbrauch so weit wie möglich zu verringern, indem der Teil des Blasumfangs (Fig. 2 und 4) in 3,4 oder n unabhängige Abschnitte 6,7,8,9 oder n unterteilt wird und Luft nur in den oder die (8 und/oder 9 beispielsweise) bevorzugt zu dem Wind (v) hingeblasen wird.

- Patentansprüche -

Patentansprüche

- Verfahren zum Hochtreiben der Rauchfahne oder der Wolke verschiedener Schmutzstoffe, die durch einen Schornstein oder eine Abführleitung abgegeben wird, dadurch gekennzeichnet, dass Luft oder irgend ein anderes Gas, das das Abgas selber an seiner Spitze sein kann, von aussen in den Strahl der Schmutzstoffe geblasen wird.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Blasgeschwindigkeit für die Luft zumindest gleich der Geschwindigkeit des Abgases am Austritt des Schornsteins ist.
 - Verfahren nach Anspruch 1 oder 2, dadurch gekennzeich net, dass die Geschwindigkeit der Gebläseluft höher als die Geschwindigkeit des Abgases am Austritt des Schornsteines ist.

Trans.

14g. .

- 4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass in Abhängigkeit von der
 Windgeschwindigkeit v und der Geschwindigkeit U1
 des Abgases am Austritt des Schornsteins in die
 Geschwindigkeit U2 der geblasenen Luft so geregelt
 wird, dass das Verhältnis U2/v zumindest gleich und
 bevorzugt grösser als das Verhältnis U1/v ist.
- 5. Verfahren nach einem der Ansprüche 1 4, dadurch gekennzeichnet, dass das Blasen der Luft durch eine zylindrische Hülse erfolgt, die

koaxial zu der Hauptleitung des Schornsteins angeordnet ist und einen Durchmesser aufweist, der grösser als der Durchmesser des letzteren ist.

- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass Luft nur in zumindest einen
 Abschnitt der Hülse eingeblasen wird, der bevorzugt
 zum Wind gelegen ist.
- 7. Verfahren nach einem der Ansprüche 1-4, dadurch gekennzeichnet, dass das Blasen der Luft durch jedes geeignete Mittel des Typs ausserhalb des Abgasstrahles vorgesehener und kranzförmig um diesen verteilter zylindrischer Strahlen erfolgt.
- 8. Verwendung von Einrichtungen zur Durchführung des Verfahrens nach einem der Ansprüche 1-7.

44 Le<u>e</u>rseite

2.25mm

=1/10

2,25mm

1, 1 =2

209830/0817

209830/0817

5mm

.

THIS PAGE BLANK (USPTO)