

Теорема 1.

Якщо перше число більше за друге, то друге менше від першого. І навпаки, якщо перше число менше від другого, то друге більше за перше.

Графічна інтерпретація 1

На числовій прямій більше число розташоване праворуч від меншого, а менше число ліворуч від більшого.

$$b < a \xrightarrow{b} a \xrightarrow{x} a > b$$

$$a < b \xrightarrow{a} b \xrightarrow{x} b > a$$

Якщо a > b, то b < a.

Теорема 2.

Якщо переш число менше від другого, а друге менше від третього, то перше число менше від третього.

Якщо a < b, b < c, то a < c.

 $(x+y)(x-y) = x^2 - y$

Якщо нерівності $a < b \ i \ b < c$ правильні, то їх можна записати у вигляді **подвійної нерівності** a < b < c.

Розглянемо приклад.

y = 1/x

105 0 00

Дві нерівності	Подвійна нерівність	Читаємо правильно
5 < x, x < 9	5 < x < 9	x більше за 5 і менше від 9
$5 \leqslant x, x < 9$	5≤x<9	x не менше від 5 і менше від 9
$5 < x, x \le 9$	$5 < x \le 9$	x більше за 5 і не більше за 9
$5 \leqslant x, x \leqslant 9$	$5 \le x \le 9$	x не менше від 5 і не більше за 9

РОЗМИНКА 1

- Запишіть у вигляді подвійної нерівності співвідношення:
- 1) x < 17 i x > 0; 2) x < 5 i $x \ge -4$; 3) $x \ge -0.1$ i $x \le 0.1$.
- Знайдіть цілі значення у, які задовольняють нерівність:
 - 1) -2 < y < 2;
- 2) $-1 < y \le 3$;
- 3) 3 < y < 4.

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Теорема 3.

Якщо до обох частин правильної нерівності додати або від обох частин правильної нерівності відняти одне й те саме число, то отримаємо правильну нерівність.

Якщо a < b, а c — будь-яке число, то a + c < c

b + c (a - c < b - c).

y = 1 / x y = 1 / x $\begin{array}{c} \frac{1}{2} 500 \\ \times 42 \\ + \frac{210}{84} \\ \hline 105000 \end{array}$

😰 РОЗМИНКА 2

- Додайте до обох частин нерівності:
 - 1) -17+x<12 число 17; 2) $x+8\le 13$ число -8.
- 2 Відніміть від обох частин нерівності:
 - 1) $15+x \ge -5$ число 15; 2) -23+x < -11 число -23.

Теорема 4.

Якщо обидві частини правильної нерівності помножити або поділити на одне й те саме додатне число, то отримаємо правильну нерівність.

Якщо обидві частини правильної нерівності помножити або поділити на одне й те саме від'ємне число і змінити знак нерівності на протилежний, то отримаємо правильну нерівність.

 $(x+y)(x-y) = x^2 - y^2$

 $\frac{a}{\sin B} = \frac{c}{\sin C}$

v = 1/x

105 0 00

sin 90°=1

РОЗМИНКА 3

- Виконайте множення або ділення обох частин нерівності відповідно до запису:
- 1) $\frac{1}{4}x < 48 \cdot 4$;

4) $-\frac{1}{7}x \ge -8 \cdot (-7);$

2) $-x \le 13 | \cdot (-1);$

- 5) $\frac{3+x}{2}-1 \ge -\frac{5x}{3}-x | \cdot 6;$
- 3) $15x \ge -4,5$:15;
- 6) $\frac{9+8x}{10} \ge -3x \frac{5x-11}{4} \cdot 20$.

Запишіть нерівність, яку отримаємо, якщо обидві частини нерівності 5 > -3помножимо на

- число 4
- число –2

Розв'язання:

- $5 \cdot 4 > -3 \cdot 4$, a 60 $\times 20 > -12$
- $5 \cdot (-2) < -3 \cdot (-2)$, a 60 ж -10 < 6

Як від нерівності 2 < 3 перейти до $1 - 3 \cdot 2 > 1 - 3^2$?

Розв'язання.

Помножимо обидві частини нерівності 2 < 3 на (-3). Оскільки (-3)від'ємне, то знак в нерівності зміниться на протилежний і ми отримає- $MO(-3) \cdot 2 > (-3) \cdot 3 = -3^2$

Тепер додамо до обох частин 1 і отримаємо шукану нерівність

$$1 - 3 \cdot 2 > 1 - 3^2$$

