Final - Fall 2024

ECON 4753 — University of Arkansas

- 1. In this course, we have described a set of methods that are very 'flexible' at modeling y=f(X). We have also learned about a simple linear regression model ($y=\alpha+X\beta$). Describe one advantage of each method (a flexible model and a linear model).
- 2. The following regression uses the "College Scorecard" which describes all U.S. colleges/universities. The outcome variable is the average annual earnings (\$) of students 10 years after they enroll. The explanatory variable is the median SAT Math score of the student body. I include both the variable itself and its square (quadratic in SAT math):

```
OLS estimation, Dep. Var.: mean_earnings_10yr_after
Observations: 935
Standard-errors: Heteroskedasticity-robust
                         Estimate
                                    Std. Error t value
                                                          Pr(>|t|)
(Intercept)
                    108369.503822 19595.243683 5.53040 4.1500e-08 ***
sat_math_median
                       -337.941666
                                     68.781472 -4.91327 1.0577e-06 ***
I(sat_math_median^2)
                         0.411678
                                      0.059815 6.88258 1.0783e-11 ***
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Signif. codes:
```

- i. What is the predicted earnings for a school with an average SAT math score of 500 (round to the nearest dollar)?
- ii. Say you take a school with an average SAT math score of 500. What is the predicted marginal change in Y for a school with a 1 unit increase in average SAT math score?

- 3. Say you have a sample of stores where you observe the average daily revenue and the number of employees on the sales floor. You regress the \log of average daily revenue on the number of employees and estimate a coefficient of $\hat{\beta}_1 = 0.03$ and a standard error of $SE(\hat{\beta}_1) = 0.005$.
 - i. Interpret this coefficient estimate in words.
 - ii. The company does not want to increase the number of staff if these results are not statistically significant. Perform a test of the null that $\beta_1=0$. The company is risk adverse and want you to use a level of significance of $\alpha=0.01$ (the z-score associated with this is 2.58).
- 4. For the following questions, we will look at daily bitcoin price data (see Figure 1).
 - Consider conducing inference on this time-series using a 30-day one-sided moving average.
 How do you think this method would perform on the bitcoin price data? Please explain why.
 - ii. Say, instead, you were to use a flexible piecewise linear function (say 10+ breaks) to forecast future bitcoin prices. Why might you be concerned about extrapolating your regression estimate into the future to predict bitcoin prices.

Figure 1 – Daily Closing Prices of Bitcoin

- 5. Say you take a sample of size 64 and estimate a sample mean of $\bar{X}=40.6$. Additionally, you know the variance of X, $\sigma^2=24$. Construct a 95% confidence interval for this sample mean.
- 6. The following regression uses the "College Scorecard" which describes all U.S. colleges/universities. The outcome variable is the average earnings of students 10 years after they enroll. There are two covariates including hbcu which is an indicator if the college is a historically-Black college or university and share_low_income which is the share of students considered 'low income' and takes values between 0 and 1.

```
OLS estimation, Dep. Var.: mean_earnings_10yr_after
Observations: 2,078

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65281.86 809.581 80.63656 < 2.2e-16 ***
hbcu::1 -6752.49 701.296 -9.62859 < 2.2e-16 ***
share_low_income -40604.40 1840.844 -22.05749 < 2.2e-16 ***
---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- i. Interpret in words the estimated coefficient on the hbcu indicator.
- ii. Interpret in words the estimated coefficient on the share_low_income variable. Is a 'one unit' increase a meaningful quantity in this case?