Summary of Calculus I

Dr Nicholas Sedlmayr

Contents

1 Limits 1

1 Limits

- Tangent: A tangent line is a line that touches a curve, and has the same slope as the curve at the point of contact.
- Average rate of change: The average rate of change of a function f(x) between x = a and x = b is

$$\frac{f(b) - f(a)}{b - a} \,.$$

• Limit: Let f be a function defined on some open interval that contains a but not necessarily at a itself. Then we say the limit of f(x) as x approaches a is L and we write

$$\lim_{x \to a} f(x) = L$$

if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that if

$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \epsilon$.

• Left-hand limit:

$$\lim_{x \to a^{-}} f(x) = L \,,$$

if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that if

$$a - \delta < x < a$$
 then $|f(x) - L| < \epsilon$.

• Right-hand limit:

$$\lim_{x \to a^+} f(x) = L \,,$$

if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that if

$$a < x < a + \delta$$
 then $|f(x) - L| < \epsilon$.

• Theorem 1:

$$\lim_{x\to a} f(x) = L \text{ if and only if } \lim_{x\to a^-} f(x) = L \text{ and } \lim_{x\to a^+} f(x) = L \,.$$

• Infinit limits: Let f be a function defined on some open interval that contains a but not necessarily at a itself. Then

$$\lim_{x \to a} f(x) = \infty$$

means that for every positive number M there is a positive number δ such that if

$$0 < |x - a| < \delta$$
 then $f(x) > M$.

Let f be a function defined on some open interval that contains a but not necessarily at a itself. Then

$$\lim_{x \to a} f(x) = -\infty$$

means that for every negative number N there is a positive number δ such that if

$$0 < |x - a| < \delta$$
 then $f(x) < N$.

• Vertical asymptote: The line x = a is called a vertical asymptote of the curve y = f(x) if at least one of the following is true:

$$\begin{split} &\lim_{x\to a} f(x) = \infty\,, & \lim_{x\to a} f(x) = -\infty\,, \\ &\lim_{x\to a^-} f(x) = \infty\,, & \lim_{x\to a^-} f(x) = -\infty\,, \\ &\lim_{x\to a^+} f(x) = \infty\,, & \text{or} &\lim_{x\to a^+} f(x) = -\infty\,. \end{split}$$

 \bullet Limit laws: Suppose that c is a constant and that the limits

$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$

exist. Then:

- 1. Sum law $\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$
- 2. Difference law $\lim_{x\to a} [f(x) g(x)] = \lim_{x\to a} f(x) \lim_{x\to a} g(x)$
- 3. Constant multiple law $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$
- 4. Product law $\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$
- 5. Quotient law $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$ if $\lim_{x \to a} g(x) \neq 0$
- 6. Power law $\lim_{x\to a} [f(x)]^n = \left[\lim_{x\to a} [f(x)]^n\right]^n$ where n is a positive integer
- 7. $\lim_{x \to a} c = c$
- 8. $\lim_{x \to a} x = a$
- 9. $\lim_{x\to a} x^n = a^n$ where n is a positive integer
- 10. $\lim_{x\to a} \sqrt[n]{x} = \sqrt[n]{a}$ where n is a positive integer and if n is even then we assume that a>0

- 11. Root law $\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$ where n is a positive integer and if n is even then we assume that $\lim_{x\to a} f(x) > 0$
- Direct substitution property: If f is a polynomial or a rational function and a is in the domain of f, then

$$\lim_{x \to a} f(x) = f(a).$$

Such functions are called continuous at a.

• Theorem 2: If $f(x) \le g(x)$ when x is near a (except possibly at a) and the limits of both f and g exist as x approaches a then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x) \,.$$

• Theorem 3: The squeeze theorem. If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x \to a} g(x) = L.$$

- Continuous function: A function f is said to be continuous at a if $\lim_{x\to a} f(x) = f(a)$.
 - A function f is continuous from the right at a number a if $\lim_{x\to a^+}f(x)=f(a).$
 - A function f is continuous from the left at a number a if $\lim_{x\to a^-} f(x) = f(a)$.
 - A function f is said to be continuous on an interval if it is continuous at every number in the interval.
- Theorem 4: If f and g are continuous at a and c is a constant, then teh following functions are also continuous at a:
 - 1.1. f + g,
 - 1.2. f g,
 - 1.3. cf,
 - 1.4. fg, and
 - 1.5. $\frac{f}{g}$ if $g(a) \neq 0$.
- Theorem 5:
 - (a) Any polynomial is continuous everywhere, that is, it is continuous on $\mathbb{R} = (-\infty, \infty)$.
 - (b) Any rational function is continuous wherever it is defined; that is, it is continuous on its domain.

- Lemma 6: $\lim_{\theta \to 0} \cos(\theta) = 1$ and $\lim_{\theta \to 0} \sin(\theta) = 0$.
- Theorem 7: Polynomials, rational functions, root functions, and trigonometric functions are all continuous at every number in their domains.
- Theorem 8: If f is continuous at b and $\lim_{x \to a} g(x) = b$ then $\lim_{x \to a} f(g(x)) = f(b)$. Equivalently $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$.
- Theorem 9: