Groups Formulary

Raúl Ultralaser

Semigroups and groups

The simplest algebraic structure to recognize is a semigroup, which is defined as a nonempty set S with an associative binary operation.

Definition 1.1. Let (S, \cdot) be a semigroup. If there is an element e, in S such that

$$ex = x = xe$$
 for all $x \in S$,

then e is called the identity of the semigroup (S, \cdot) .

Definition 1.2. Let (S, \cdot) be a semigroup with identity e. Let $a \in S$. If there exist an element b in S such that

$$ab = e = ba$$

then b is called the inverse of a, and a is said to be invertible

Definition 1.3. A nonempty set G with a binary operation \cdot on G is called a group if the following axioms hold:

- (i) $a(bc) = (ab)c \text{ for all } a, b, c \in G.$
- (ii) There exist $e \in G$ such that ea = a for all $a \in G$.
- (iii) For every $a \in G$ there exist $a' \in G$ such that a'a = e

Theorem 1.1. A semigroup G is a group if and only if for all a, b in G, each of the equations ax = b and ya = b has a solution.

Theorem 1.2. A finite semigroup G is a group if and only if the cancelation laws hold for all elements in G; that is,

$$ab = ac \Rightarrow b = c$$
 and $ba = ca \Rightarrow b = c$

for all $a, b, c \in G$

Homomorphism

Definition 1.4. Let G, H be groups. A mapping

$$\phi:G\to H$$

is called a homomorphism if for all $x, y \in G$

$$\phi(xy) = \phi(x)\phi(y)$$

Furthermore, if ϕ is bijective, then ϕ is called an isomorphism of G onto H, and we write $G \simeq H$. If ϕ is just injective, that is, 1-1, then we say that ϕ is an isomorphism (or monomorphism) of G into H. if ϕ is surjective, that is, onto, then ϕ is called an epimorphism, A homomorphism of G into itself is called an endomorphism of G that is both G and onto is called an automorphism of G.

If $\phi: G \to H$ is called an intro homomorphism, then H is called a homomorphic image of G; also, G is said to be homomorphic to H. If $\phi: G \to H$ is a 1-1 homomorphism, then G is said to be embeddable in H, and we write $G \circlearrowleft H$.

Theorem 1.3. Let G and H be groups with identities e and e', respectively, and let $\phi: G \to H$ be a homomorphism. Then

- (i) $\phi(e) = e'$
- (ii) $\phi(x^{-1}) = (\phi(x))^{-1}$ for each $x \in G$.

Definition 1.5. Let G and H be groups, and let ϕ : $G \to H$ be a homomorphism. The kernel of ϕ is defined to be the set

$$Ker\phi = \{x \in G | \phi(x) = e'\}$$

where e' is the identity in H

Theorem 1.4. A homomorphism $\phi: G \to H$ is injective if and only if $Ker\phi = \{e\}$

Subgroups and cosets