06-20416 and 06-12412 (Intro to) Neural Computation

11 - Regularisation

Per Kristian Lehre

Last lecture

- Universal Approximation Theorem
- Evolution and Learning (guest lecture)

Outline

- Model capacity
- Underfitting, overfitting
- Regularisation techniques
 - Data augmentation
 - Early stopping
 - Parameter norm penalties
 - Dropout

Model Capacity

- Informally, a model's capacity to fit a wide variety of functions.
- In statistical learning theory, model capacity is quantified by VC-dimension: largest training set for which the model can classify the labels arbitrary into two classes
- By the universal approximation theorem, neural networks can have very high capacity.

Underfitting, Overfitting

Underfitting

Too high training error

Overfitting

Too large gap between training error and test error

Model Capacity vs Error

- Training and test error behave differently
- Training error often decreases with capacity
- Test error can increase beyond a certain capacity
- Capacity is optimal when model matches data generating process

Regularisation

- Three model regimes
 - 1) Model family excludes data-generating process (underfitting)
 - 2) Model family matches data-generating process
 - 3) Model family matches data-generating process, and possibly many other models (possible overfitting)
- Regularisation attempts to move a model from regime 3 to regime 2

Regularisation via data augmentation

- Many data sets can be augmented via transformations
- E.g, a data set for image classification can be augmented via image transformations
 - mirroring
 - translation
 - scaling
 - rotation
 - noise

Regularisation by Early Stopping

- Split data into a training, a validation, and a test set
- Train model on training set, evaluate with fixed intervals on validation set
- Stop training when validation error has increased
- Return model parameters when validation loss was the lowest, rather than the latest parameters

Parameter Norm Penalkes

Replace cost function by

$$C(\Theta; X, y) = C(\Theta; X, y) + \alpha\Omega(\Theta),$$

where

Conginal cost function

De model parameters

X,y training data

15 a regulizer, ri.e., a function which penalises complex models

a hyperparameter controlling degree of regularisation

Le parameter regularisation

Assuming parameters $\Theta = (\omega, b)$ (i.e., weights and biases)

$$\Omega(\Theta) := \frac{1}{2} \| \omega \|_{2}^{2}$$

Penalises large weights

Ensemble Methods

Combining different models often reduces generalisation error.

ldea

Train k neural networks on k subsets of the training data. Output the average (or majority) of the networks.

Disaduan tages

- usually requires more training data
- k times increase in training time (if sequential training)
- only feasible for small k.

Idea 2: Dropont

In each mini-batch, deachivate some randomly selected activation units (not in output layer).

Each selection of units corresponds to a subnetwork. With n input and nidden layer activation units, there are 2 subnetworks.

The subnetworks share the weights.

No dropout during testing, ri.e. implicit average ontput from all subnetworks.

(a) Standard Neural Net

(b) After applying dropout.

Implementation of Dropont

Replace each activation unit $a_j^l = \phi(z_j^l)$ in a hidden layer with a dropont activation unit

$$a_{j}^{l} = \frac{1}{1-p} \cdot d_{j}^{l} \cdot \phi(z_{j}^{l})$$
where
$$d_{j}^{l} \sim \text{Bernoulli}(1-p).$$

Kemack de is 0 with probability P, and 1 otherwise.

Where does the factor $\frac{1}{1-p}$ come from? Note that \tilde{a}_{j}^{l} is a random variable with expectation

$$E\left[\tilde{a}_{j}^{\ell}\right] = P \cdot \frac{1}{1-p} \cdot 0 \cdot \phi(z_{j}^{\ell}) + \left(1-p\right) \cdot \frac{1}{1-p} \cdot 1 \cdot \phi(z_{j})$$

$$= \phi(z_{j}^{\ell}) = a_{j}^{\ell}$$

Hence, choosing the factor $\frac{1}{1-p}$ makes the expected activation identical to the activation without dropont.

Backpropagation with Dropont

Given local gradient of, partial derivates are

$$\frac{\partial C}{\partial \omega_{jk}} = \frac{\partial C}{\partial z_{j}^{\ell}} \cdot \frac{\partial z_{j}^{\ell}}{\partial \omega_{jk}^{\ell}}$$

$$= \delta_{j}^{\ell} \cdot \tilde{\alpha}_{k}^{\ell-1}$$

$$\frac{\partial C}{\partial b_{i}^{2}} = \frac{\partial C}{\partial z_{j}^{2}} \cdot \frac{\partial z_{j}^{2}}{\partial b_{j}^{2}}$$

$$= \delta_{j}^{2}$$

Local Gradient for Hidden Lager

$$\tilde{a}_{j}^{\ell} = \frac{1}{1 - P} \cdot d_{j}^{\ell} \cdot \phi(z_{j}^{\ell})$$

$$S_{j}^{l} = \frac{\partial C}{\partial z_{j}^{l}}$$

$$= \frac{\partial C}{\partial a_{j}^{l}} \cdot \frac{\partial a_{j}^{l}}{\partial z_{j}^{l}}$$

$$= \left(\frac{\partial C}{\partial a_{j}^{l}} \cdot \frac{\partial a_{j}^{l}}{\partial z_{j}^{l}} \right) \cdot \left(\frac{1}{1-p} \right) d_{j}^{l} \cdot \phi'(z_{j}^{l})$$

$$= \left(\frac{\partial C}{\partial a_{j}^{l}} \cdot \frac{\partial a_{j}^{l}}{\partial a_{j}^{l}} \right) \cdot \left(\frac{1}{1-p} \right) d_{j}^{l} \cdot \phi'(z_{j}^{l})$$

$$= \left(\frac{\partial C}{\partial a_{j}^{l}} \cdot \frac{\partial a_{j}^{l}}{\partial a_{j}^{l}} \right) \cdot \left(\frac{1}{1-p} \right) \cdot d_{j}^{l} \cdot \phi'(z_{j}^{l})$$
by $d_{j}^{l} \cdot d_{j}^{l} \cdot d_{j}^{$

Matrix Form

$$S^{\ell} = \left(\frac{1}{1-p}\right) \left(\left(\omega^{\ell+1}\right)^{T} S^{\ell+1}\right) \odot d^{\ell} \odot \phi'(z^{\ell})$$

Backpropagation Algorithm with Droponts

Input: A training example (x,y) & R" x R"

- 1. Set the activation in the input layer $d_j^1 \sim \text{Bernoulli}(p)$ for j=1,...,m $\tilde{\alpha}^1 = \left(\frac{1}{1-p}\right) \cdot d^1 \circ x$
- 2. for each l=2 to L-1 feed forward $d_j^l \sim \text{Bernoulli}(p)$ for j=1,...,m $2^l = \omega^l \alpha^{l-1} + b^l$ $\alpha^l = (\frac{1}{1-p}) d^l \circ \phi(2^l)$
- 3. Set activations in output layer No droposet in $Z^{L} = \omega^{L} \tilde{a}^{L-1} + b^{L}$ $a^{L} = \phi(z^{L})$
- 4. compute local gradient for output layer $\delta^L := \nabla_{\!\!\!\! a} \, C \, \, o \, \, \varphi'(z^L)$
- 5. backpropagate local gradients for hidden layers, i.e. for each l=L-1 to 2 $S^{l}:=\frac{1}{1-p}\left(\left(\omega^{l+1}\right)^{T}S^{l+2}\right)\odot d^{l}\odot \varphi'(z^{l})$
- 6. <u>return</u> the partial derivatives

$$\frac{\partial C}{\partial w_{jk}} = S_{j}^{l} \frac{\partial l}{\partial k}$$

$$\frac{\partial C}{\partial k} = S_{j}^{l}$$

Summary

- Model capacity
- Underfitting, overfitting
- Regularisation techniques
 - Data augmentation
 - Early stopping
 - Choose model parameters when validation error was lowest
 - Parameter norm penalties
 - L²-parameter regularisation
 - Dropout
 - Often used in conjunction with L^2 -regularisation.
 - See also Ch 7 in Goodfellow et al. (2016)

Next week

Convolutional Networks