Existence of parabolic minimizers to the total variation flow on metric measure spaces

Cintia Pacchiano Camacho

Vito Buffa, Michael Collins (University of Erlangen)

AGENT Forum 2021

October 27th, 2021

Setting

Definition of Variational Solutions

We assume Ω to be open and bounded, Ω^* open and bounded with $\Omega \Subset \Omega^*$ and

$$u_0 \in L^2(\Omega^*) \cap \mathrm{BV}(\Omega^*).$$
 (0.1)

Definition 1

Assume that the Cauchy-Dirichlet datum u_0 fulfills (0.1). A map $u:\Omega_T^*\to\mathbb{R}$, $T\in(0,\infty)$ in the class

$$L_w^1(0, T; BV_{u_0}(\Omega)) \cap C^0([0, T]; L^2(\Omega^*))$$

will be referred to as a *variational solution* on Ω_T to the Cauchy-Dirichlet problem for the total variation flow if and only if the variational inequality

$$\int_{0}^{T} \|Du(t)\|(\Omega^{*}) dt \leq \int_{0}^{T} \left[\int_{\Omega^{*}} \partial_{t} v(v-u) d\mu + \|Dv(t)\|(\Omega^{*}) \right] dt - \frac{1}{2} \|(v-u)(T)\|_{L^{2}(\Omega^{*})}^{2} + \frac{1}{2} \|v(0) - u_{0}\|_{L^{2}(\Omega^{*})}^{2}$$
(0.2)

holds true for any $v \in L^1_w\left(0,T;\mathrm{BV}_{u_0}(\Omega)\right)$ with $\partial_t v \in L^2(\Omega_T^*)$ and $v(0) \in L^2(\Omega^*)$.

Main results

Theorem 2

Suppose that the Cauchy-Dirichlet datum u_0 fulfills the requirements of (0.1). Then, there exists a unique global variation solution in the sense of Definition 1.

Theorem 3

Suppose that the Cauchy-Dirichlet datum u_0 fulfills the requirements of (0.1). Then, any variational solution in the sense of Definition 1 on Ω_T with $T \in (0, \infty]$ satisfies

$$\partial_t u \in L^2(\Omega^*) \text{ and } u \in C^{0,\frac{1}{2}}\left([0,\tau];L^2(\Omega^*)\right) \text{ for all } \tau \in \mathbb{R} \cap (0,T].$$

Furthermore, for the time derivative $\partial_t u$ there holds the quantitative bound

$$\int_0^T \int_{\Omega^*} |\partial_t u|^2 \, \mathrm{d}\mu \, \mathrm{d}t \le ||Du_0||(\Omega^*).$$

Finally, for any $t_1, t_2 \in \mathbb{R}$ with $0 \le t_1 < t_2 \le T$ one has the energy estimate

$$\frac{1}{t_2 - t_1} \int_{t_1}^{t_2} \|Du(t)\|(\Omega^*) \, \mathrm{d}t \le \|Du_0\|(\Omega^*). \tag{0.3}$$

What's next?

