s Interprete Camp e un nisolatore di espressioni let consente di definire momi ambiente di associazioni none-velore con let posso définire funtioni cle finiscomo nell'ansionTe # Pet f x = 2 *x; f: int -) int = (fun) $1 \times 7 = 120$ 0i = 101 1×100 1×100 AMB funcion con più di un parametro I M000 USO UNA COPPIA (O UNA EMMPLA) # Pet Somma (x,4) = x+y; Somme: int * int - int = (fu) PRODOTIO CANTESIANO

+	(7 5) Som	$\sim \lambda(x,y).(x+y)$
H Somme	(3,5);, Som	
-: inT = 8	3	
	5-200000 (35)	AL MOMENTO
	38,11,112	OECUA CLIANDIA
	Somme $(3,5)$ (x,7).x+1=	2 15 - 7
	X(x,7).x+1=	3+3=0

furzione cle si aspetta un intero e de un intero come risultato 2 (3+5) Tipo int sint QUILIDI LA FUNZONE SOMME LA COMETICO int > (int > int) 9 9 9 nisocrato QUESTO MODO DI PASSARE CLI ARGOMENTI A UNA FUNZIONE VIENE DETTO PASSACCIO "Corryed" NOME DI UN MATEMATICO CAE UN STUDIATO QUESTE COIE QUESTO METODO CONSENTE DI FARE "APPCICAZIONE PARTACE DI FUNTIONE" PASSO SOCO UNA PARTE DECCI ARCOMENT ALLA FUNTIONE

i: 1a -> 1a = (fun) VARIABLE DI TIPO 1a IL TIPO DELL'ARGONENTO PUO ESSENC QUALUNGUE _s IL RISULIATO AUNA COME TIPO LO STEIDO DELL ARCOMENTO (STESSA VARIABILE DI TIPO)

ALTRO ESEMPIO:

un 500 C

Pot massione x y = x > y;
massione: la > la > bool = cfun)

prende due arsonati di Tipo qualunque

(ma la stesso per entransi) e restituisce

let megaTivo = maggiore 0;;
megaTivo: int + bool = (fin)

applicatione particle di massine
Ua Tipo int à bool (e non 'a) bool
pade applicando massine a O
si specifica cle la deve essee int!

ANCORD UN ESEMPIO

let finst (x,y) = x;; finst: 'ax'b >> 'a = (fun) (analogo a fit gic-visio)

PRENDE UNA COPPIA DI
NALORI CLE POSSONO
AJERE TIPO DIVERSO

(USA DUE NARIABICI DI TIPO
'A E 15 PER DIRE

QUESTO)

IL RISULIOTO
LO LO STESSO
TIPO DEL PRIMO
ELEMENTO DELLA
COPPIA

finst (10,4);- : imt = 10;Somo

entronsi int

+ finst (10,4.3);- : int = 10; = 1a = int = 1a = int

PASSAGGIO DI FUNZIONI A FUNZONI

Abbiamo visto che in Came Ce

funtioni sono valoni (possono, ad esempio,

essee associate a un nome e memorization

nell'ambiente assieme ai valori interi, flat, ecc..)

POSSIAMO PASIANE UNA FUNCIONE COME ACCOMENTO AD UN'ALTRA FUNTONE

ESEMPIO:

let apply f x = f x ;;

apply: ('a > 'b) -> 'a -> 'b = (fun)

La funcione apply prevede due parametri

fex. Quind: il suo Tipo sonce

..... -) -) TIPO 01 + TIPO OEL KINULTAPO

Guardando il corpo di apply ucdiamo de

fe applicats ed x (cisé f viene

nichiamota possandole x come argoneros)

quindi f e une funtione (he Tipo >) (.... >) ->-> TIPO 01 TIPO DEL
RISULTATO IL corpo di apply non fo mient'altro, quindi non possi amo dedune altro nisuado f. 18 suo tipo sant genericamente (il nisultais potresse aue Tipo diverso nispetto al panametro) $(a \rightarrow b) \rightarrow ... \rightarrow ...$ P A RISURIETE ma se f ha Tipo a > b, allena x ha Tipo la e il nisultato di apply evactil Tipo de nisultão di f (a > b) > a -> b Quindi apply prende una funcione quelunque e la applica...

Let Succ x = x + 1; Succ: int > int = (fur) # apply succ 10;; -: int = 11 # Pet doppio x = 2*x; doppio: int >int = (fu) #apply dopped 10 ii - : int = 20

PER ESERCITIO

Definire le seguenti funzioni cercando

di intuine le Tipo che sona inferito

Dell'interprete Came (Trie Anche un Po' Di prove con LE VARIE FUNZIONI!!

- 1) funzione che prende un intero e nestituisce la coppia formata del numero stesso e dal successivo
- 2) funzione che prende una coppia di voloni di quelunque Tipo (anche diversi Tra Cono) e nestituisce la Coppia in cui i due element hanno positione scambiata
 - 3) funtione double apply the prende una funtione f e un agomento x e applica due volte la fad x (ossia calcula f2(x))
 - (1) funtione pain apply cle prende une funtione f e une coppie

mercoledì 22 novembre 2017 17:28 DEFINITIONS DI FUNTURI PER CASI calcolo del value assoluto 26 × < 0 $abs(x) = \begin{cases} x \\ -x \end{cases}$ -s USO UNA ESPRESSIONE CONDIGIONALE IL MON UN COMANDO! if conditant Them EsmessionE else EsmessionE Ci JOLLIDAO ENTRANIB1 SEMPAE! # CeT abs x = if x >= 0 Then x = abs: int > int = cfon) QUESTE IMPCICA DUE Che x e-InT Esphession 0=V0/0 AUENT LO STESSO TIPO!

ALTRO Esempio nassimo Tra due valori # let max x y = if x > " Then x else y ii mex: 1a > 1a = (for)

mercoledì 22 novembre 2017 17:45

UN LET ALL'INTERNO DI UN ACTRO LET POOTESSERE USATO PER DEFINIRE UNA FUNZIONE

AUSILIARIA LOCALE (UTILIZZABILE SOLO

NELL'AMBITO DEL LET PIUT ESTERNO)

let f x = 2 + 2
in

 $(g \times) + \lambda j'$

f: int > int = (fun)

e come dine:

$$f(x) = g(x) + 1$$
 dove $g(z) = 2z$

g et locale ad f. Non viene creata un'associazione nell'ambiente per g!

9 4 j, EMONE: 5 mon definite

8) funzione soluzioni che prende

Tre valori a, b e c che

rappresentano i coefficienti di

una equazione di secondo grado

	axi-	t 5×+c=0		
e a	nestituisce	una coppia	in cui	
:6	primo elem	ento et un	bool che	
dice	se e (equa	azione ha	Soluzioni	
(3;5)	cnimimante >	o) e ie	56comps 6_	
a	sua volta u	ena Coppia	con le	
due	soluzioni	(possibicment	e coincidenti)	
€	'equatione	o Con ((D,O) se mon	~
C.	Sono Solu:	zioni neali.		
	inire un c			nizzane
91	discrimin	ante dell'	equatione.	
Pue	anche e	ssee conve	niente men	onizzane
e _e	Sue solu	zioni defin	end nomi	Cocali
ma	n solo dopo	ava contro	secto che	ie 9
9:20	niminante	sia > 0.		
	A: LA RADICE			7
FU,	JEIONE PRE	DEFINGA SO	9nt	
	SEMPI D'USO			
^)	a=1.0 b=4.	o c=3.0 =	=> (True, (.	-3.0,-1.0)
ι)	a=2.0 b=4	.o c = 2.o -	=> (True,	(-1.0,-1.0))
3)	a=2.0 b=2.0	o c=2.0 =	=> (false,	(0,6,0.0))
		9		