Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application.

1. (Currently amended) A haloalkyl carboxamide of the formula (I)

$$A \xrightarrow{Q} M \qquad R^2 R \qquad (I)$$

in which

R stands for hydrogen or halogen,

R1 stands for hydrogen or methyl,

R² stands for methyl, ethyl or C₁-C₄ haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms.

R³ stands for halogen or C₁-C₄ haloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms,

R⁴ stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkylsulfinyl, C₁-C₆ alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₄ haloalkylthio, C₁-C₄ haloalkylsulfinyl, C₁-C₄ haloalkylsulfinyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl; halo-(C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, halo-(C₁-C₃ alkoxy)carbonyl-C₁-C₃-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; (C₁-C₈ alkyl)carbonyl, (C₁-C₈ alkoxy)carbonyl, (C₁-C₈ alkoxy)carbonyl, (C₂-C₈-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-alkoxy-C₁-C₄-alkyl)carbonyl, (C₃-C₈-alkyl)carbonyl, (C₃-C₈-alky

cycloalkyl)carbonyl; $(C_1\text{-}C_6 \text{ haloalkyl})\text{carbonyl}$, $(C_1\text{-}C_6 \text{ haloalkoxy})\text{carbonyl}$, $(\text{halo-}C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl})\text{carbonyl}$, $(C_3\text{-}C_8 \text{ halocycloalkyl})\text{carbonyl}$ with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or $\text{-}C(=0)C(=0)R^5$, $\text{-}CONR^6R^7$ or $\text{-}CH_2NR^8R^9$,

R⁵ stands for hydrogen, C₁-C₈ alkyl, C₁-C₆ alkoxy, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₃-C₈ cycloalkyl; C₁-C₆ haloalkyl, C₁-C₆ haloalkoxy, halo-C₁-C₄-alkoxyl-C₁-C₄-alkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

 R^6 and R^7 stand independently of one another in each case for hydrogen, C_1 - C_8 alkyl, C_1 - C_4 -alkoxyl- C_1 - C_4 -alkyl, C_3 - C_8 cycloalkyl; C_1 - C_8 haloalkyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁶ and R⁷, together with the nitrogen atom to which they are bound, form a substituted, saturated heterocycle with 5 to 8 ring atoms, with single or multiple, the same or different substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains 1 or 2 additional, non-adjacent hetero atoms constituted of oxygen, sulfur or NR¹⁰.

R⁸ and R⁹ stand independently of one another for hydrogen, C₁-C₈-alkyl, C₃-C₈ cycloalkyl; C₁-C₈ haloalkyl, C₃-C₈ halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁸ and R⁹, together with the nitrogen atom to which they are bound, form a substituted, saturated heterocycle with 5 to 8 ring atoms, with single or multiple, the same or different substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle

- 4 -

optionally contains 1 or 2 additional, non-adjacent hetero atoms constituted of oxygen, sulfur or NR¹⁰,

R10 stands for hydrogen or C1-C6 alkyl,

M stands in each case for a phenyl,—pyridine or—pyrimidine, pyridazine—or

pyrazine ring with a single substitution by R^{11} , or stands for a thiazole ring substituted by R^{11} , R^{11} .

R¹¹ stands for hydrogen, fluorine, chlorine, methyl, isopropyl, methylthio or trifluoromethyl,

R++-A stands for hydrogen, methyl, methylthio or trifluoromethyl,

A stands for the group of the formula (Al)

 R^{12} stands for hydrogen, cyano, halogen, nitro, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 alkylthio, C_3 - C_6 cycloalkyl, C_1 - C_4 haloalkyl, C_1 - C_4 haloalkoxy or C_1 - C_4 haloalkylthio, in each case with 1 to 5 halogen atoms, aminocarbonyl or aminocarbonyl- C_1 - C_4 -alkyl,

 $R^{13} \ stands \ for \ hydrogen, \ halogen, \ cyano, \ C_1\text{-}C_4 \ alkyl, \ C_1\text{-}C_4 \ alkoxy \ or \ C_1\text{-}C_4$ alkylthio, and

R^{1d} stands for hydrogen, C₁-C₄ alkyl, hydroxy-C₁-C₄ alkyl, C₂-C₆ alkenyl, C₃-C₆ cycloalkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄ haloalkyl, C₁-C₄-haloalkylthio-C₁-C₄-alkyl, C₁-C₄-haloalkoxy-C₁-C₄-alkyl in each case with 1 to 5 halogen atoms, or phenyl[[,1]].

A stands for the group of the formula (A2)

- 5 -

R¹⁵-and R¹⁶-stand-independently of one-another for hydrogen, halogen, C₄-C₄-alkyl or C₄-C₄-haloakyl with 1 to 5 halogen atoms,

R¹⁷-stands-for halogen, cyano or C₄-C₄-alkyl, or C₄-kaloalkyl or C₄-C₄-haloalkyl or C₄-haloalkyl or C₄-C₄-haloalkyl or C₄-C₄-haloalkyl or C₄-haloalkyl or C₄-haloalkyl

or

A stands for the group of the formula (A3)

 $R^{18} - and - R^{19} - stand - independently - of - one - another - for - hydrogen, - halogen, - C_4 - C_4 - alkyl - or - C_4 - C_4 - haloglekyl - with - 1 to - 5 - halogen - atoms, - alkyl - or - C_4 - haloglekyl - with - 1 to - 5 - halogen - atoms, - alkyl - or - c_4 - haloglekyl - with - 1 to - 5 - halogen - atoms, - alkyl - or - c_4 - haloglekyl - with - 1 to - 5 - halogen - atoms, - alkyl - or - c_4 - haloglekyl - with - 1 to - 5 - halogen - atoms, - alkyl - or - c_4 - haloglekyl - or - c_4 - haloglekyl - c_4 - haloglekyl - or - c_4 - c_4$

R²⁰-stands-for-hydrogen, halogen, C₄-C₄-alkyl or C₄-G₄-haloalkyl with 1 to 5 halogen atoms;

ΘF

A stands for the group of the formula (A4)

R²⁺-stands-or-hydrogen, halogen, hydroxy, eyano, C₄-C₆-alkyl, C₄-C₄-haloalkyl,
C₄-C₄-haloalkoxy-or-C₄-C₄-haloalkylthio-in-each case-with 1-to-5-halogen atoms;

- 6 -

or

A stands for the group of the formula (A5)

R³²-stands-for-halogen, hydroxy, eyano, C₁-C₄-alkyl, C₄-C₄-alkoxy, C₁-C₄
alkylthio, C₁-C₄-haloalkyl, C₄-C₄-haloalkylthio or C₄-C₄-haloalkoxy in each case with 1
to 5-halogen atoms.

 R^{33} -stands-for-hydrogen, halogen, eyano, C_1 - C_4 -alkyl, C_4 - C_4 -alkoxy, C_4 - C_4 -alkylthio, C_1 - C_4 -haloalkyl, C_4 - C_4 -haloalkoxy in each case with 1 to 5 halogen atoms, C_4 - C_4 -alkylsulfinyl or C_4 - C_4 -alkylsulfinyl,

or

A stands for the group of the formula (A6)

$$\mathbb{R}^{25}$$
 (A6), in which

R24-stands for C4-C4-alkyl or C4-C4-haloalkyl with 1 to 5 halogen atoms,

R25 stands for C1-C4-alkyl,

Q4-stands for S (sulfur), O (oxygen), SO, SO2 or CH25

p stands for 0, 1 or 2, whereby R25 stands for identical or different groups if p is

or

A stands for the group of the formula (A7)

R26-stands for C4-C4-alkyl or C4-C4-haloalkyl with 1-to 5 halogen atoms,

ΘF

A stands for the group of the formula (A8)

R27 stands for C1-C4-alkyl or C1-C4 haloalkyl with 1 to 5 halogen atoms,

θF

A stands for the group of the formula (A9)

R²⁸-and R²⁹-stand independently of one another for hydrogen, halogen, amino, C₁-C₄-alkyl or C₂-C₄-haloalkyl with 1 to 5 halogen atoms;

 $R^{30}\hbox{-}stands\hbox{-}for\hbox{-}hydrogen,\hbox{-}halogen,\hbox{-}C_4\hbox{-}G_4\hbox{-}alkyl\hbox{-}or\hbox{-}C_4\hbox{-}G_4\hbox{-}haloalkyl\hbox{-}with\hbox{-}1\hbox{-}to-5} \\ halogen atoms,$

or

A stands for the group of the formula (Al0)

 $R^{34}\text{-and-}R^{32}\text{-stand-independently-of-one-another-for-hydrogen, halogen, amino,} \\ \\ \text{nitro}_{T}G_{1}\text{-}G_{4}\text{-alkyl-or-}G_{1}\text{-}G_{4}\text{-haloalkyl-with-}1\text{ to-}5\text{-halogen atoms,} \\ \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{3} \\ \text{1} \\ \text{3} \\ \text{4} \\ \text{3} \\ \text{4} \\ \text{4} \\ \text{4} \\ \text{5} \\ \text{4} \\ \text{6} \\ \text{6} \\ \text{6} \\ \text{7} \\ \text{7} \\ \text{6} \\ \text{7} \\ \text{7} \\ \text{6} \\ \text{7} \\ \text{7} \\ \text{7} \\ \text{7} \\ \text{7} \\ \text{8} \\ \text{7} \\ \text{7} \\ \text{8} \\ \text{7} \\ \text{8} \\ \text{7} \\ \text{8} \\ \text{8} \\ \text{8} \\ \text{8} \\ \text{8} \\ \text{9} \\ \text{1} \\ \text{8} \\ \text{8} \\ \text{9} \\ \text{1} \\ \text{8} \\ \text{9} \\ \text{1} \\ \text{1} \\ \text{9} \\ \text{1} \\ \text{9} \\ \text{1} \\ \text{9} \\ \text{1} \\ \text{1} \\ \text{9} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{9} \\ \text{1} \\$

 $R^{33} - stands - for - hydrogen, - halogen, - C_4 - C_4 - alkyl - or - C_4 - C_4 - haloalkyl - with - 1 - to - 5 - halogen - atoms;$

ΘĒ

A stands for the group of the formula (Al1)

R³⁴ stands for hydrogen, halogen, amino, C₁-C₄ alkylamino, di (C₁-C₄ alkylamino, cyano, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

R35-stands for halogen, C1-C4-alkyl or C1-C4 haloalkyl with 1 to 5 halogen atoms,

ΘF

A stands for the group of the formula (A12)

 $R^{36}-stands-for-hydrogen,-halogen,-amino,-C_4-C_4-alkylamino,-di-(C_4-C_4-alkyl) amino,-eyano, C_4-C_4-alkyl-or-C_4-C_4-haloalkyl-with 1-to-5-halogen atoms,$

R³⁷ stands for halogen, C₁-C₄ alkyl or C₁-C₄ haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A13)

-9-

R38 stands for halogen, C1-C4-alkyl or C1-C4 haloalkyl with 1 to 5 halogen atoms,

ΘF

A stands for the group of the formula (A14)

R39 stands for hydrogen or C1-C4 alkyl.

R40 stands for halogen or C1-C4 alkyl-

ΘF

A stands for the group of the formula (A15)

R4+stands for C1-C4 alkyl or C1-C4 haloalkyl with 1 to 5 halogen atoms,

or

A stands for the group of the formula (A16)

Reply to Office Action of September 9, 2010

 R^{43} -stands-for-hydrogen, halogen, C_4 - C_4 -alkyl-or- C_4 - C_4 -haloalkyl-with-1-to-5 halogen-atoms;

OF

A stands for the group of the formula (A17)

R⁴³-stands-for-halogen, hydroxy, C₁-C₄-alkyl, C₄-C₄-alkoxy, C₁-C₄-alkylthio,
C₄-C₄-haloalkyl, C₁-C₄-haloalkylthio or C₄-C₄-haloalkoxy with 1 to 5 halogen atoms in each case.

or

A stands for the group of the formula (A18)

 $R^{44}-stands-for-hydrogen, eyano, C_1-C_4-alkyl, C_1-C_4-haloalkyl-with 1 to 5-halogen atoms, C_1-C_4-alkoxy-C_1-C_4-alkyl, hydroxy-C_1-C_4-alkyl, C_1-C_4-alkyl-gridenyl, di(C_1-C_4-alkyl-alkyl-aninosulfonyl, C_1-C_6-alkyl-arbonyl-or-in-each-ease-optionally-substituted phenyl-uf-benzovl,$

R⁴⁵-stands-for-hydrogen, halogen, C₄-C₄-alkyl-or-C₄-C₄-haloalkyl-with 1-to-5 halogen-atoms;

 R^{46} stands for hydrogen, halogen, eyano, C_4 - C_4 -alkyl or C_4 - C_4 -haloalkyl with 1 to 5-halogen atoms;

 $R^{47} - stands - for - hydrogen, - halogen, - C_4 - C_4 - alkyl - or - C_4 - C_4 - haloalkyl - with - 1 - to - 5 - halogen atoms;$

or

A stands for the group of the formula (A19)

R48-stands for C1-C4-alkyl.

(Currently amended) A haloalkyl carboxamide of the formula (I) according to
 Claim I. in which

R stands for hydrogen, fluorine, chlorine or bromine,

R1 stands for hydrogen or methyl,

R² stands for methyl, ethyl or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl with single or multiple, the same or different, substitution by fluorine, chlorine or bromine,

R³ stands for fluorine, chlorine, bromine, iodine or in each case for methyl, ethyl, n- or isopropyl, n-, iso-, sec- or tert-butyl with single or multiple, the same or different, substitution by fluorine, chlorine or bromine,

 $R^4 \ stands \ for \ hydrogen, \ C_1\text{-}C_4 \ alkyl, \ C_1\text{-}C_4 \ alkylsulfinyl, \ C_1\text{-}C_4 \ alkylsulfonyl,}$ $C_1\text{-}C_4\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl, \ C_3\text{-}C_6 \ cycloalkyl; \ C_1\text{-}C_4 \ haloalkyl, \ C_1\text{-}C_4 \ haloalkylsulfonyl,}$ $halo-C_1\text{-}C_3\text{-}alkoxy\text{-}C_1\text{-}C_3\text{-}alkyl, \ C_3\text{-}C_8$ $haloalkylsulfonyl, \ halo-C_1\text{-}C_3\text{-}alkoxy\text{-}C_1\text{-}C_3\text{-}alkyl,}$ $C_3\text{-}C_8$

halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl-C₁-C₃-alkyl, (C₁-C₃ alkyl)carbonyl-C₁-C₃-alkyl, (C₁-C₃ alkoxy)carbonyl-C₁-C₃alkyl; halo-(C1-C3 alkyl)carbonyl-C1-C3-alkyl, halo-(C1-C3 alkoxy)carbonyl-C1-C3-alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; (C₁-C₆ alkyl)carbonyl, (C1-C4 alkoxy)carbonyl, (C1-C3-alkoxy-C1-C3 alkyl)carbonyl, (C_3-C_6) cycloalkyl)carbonyl; (C1-C4 haloalkyl)carbonyl, (C1-C4 haloalkoxy)carbonyl, (halo-C1-C3-alkoxy-C1-C3-alkyl)carbonyl, (C3-C6 halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or -C(=O)C(=O)R5, -CONR6R7 or -CH2NR8R9,

R5 stands for hydrogen, C1-C6 alkyl, C1-C4 alkoxy, C1-C3-alkoxy-C1-C3-alkyl, C3-C6 cycloalkyl; C1-C4 haloalkyl, C1-C4 haloalkoxy, halo-C1-C3-alkoxy-C1-C3-alkyl, C3-C6 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case,

R⁶ and R⁷ stand independently of one another in each case for hydrogen, C₁-C₆ alkyl, C1-C3-alkoxy-C1-C3-alkyl, C3-C6 cycloalkyl; C1-C4 haloalkyl, halo-C1-C3-alkoxy-C1-C3-alkyl, C3-C6 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R6 and R7, together with the nitrogen atom to which they are bound, form a substituted, saturated heterocycle with 5 to 8 ring atoms, with single or multiple, the same or different substitution by halogen or C1-C4 alkyl, whereby the heterocycle optionally contains 1 or 2 additional, non-adjacent hetero atoms constituted of oxygen, sulfur or NR10

 R^8 and R^9 stand independently of one another for hydrogen, C_1 - C_6 alkyl, C_3 - C_6 cycloalkyl; C_1 - C_4 haloalkyl, C_3 - C_6 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case, or

R⁸ and R⁹, together with the nitrogen atom to which they are bound, form a substituted, saturated heterocycle with 5 to 8 ring atoms, with single or multiple, the same or different substitution by halogen or C₁-C₄ alkyl, whereby the heterocycle optionally contains 1 or 2 additional, non-adjacent hetero atoms constituted of oxygen, sulfur or NR¹⁰.

R¹⁰ stands for hydrogen or C₁-C₄ alkyl.

M stands for one of the following eyelies-cyclic

whereby the bond marked with an asterisk ("*") is a link with the amide, and the bond marked with "#" is a link with the haloalkyl group,

R11 stands for hydrogen, fluorine, chlorine, methyl or trifluoromethyl,

R^{+i-A}-stands for hydrogen, methyl or trifluoromethyl,

A stands for the group of the formula (Al)

 R^{12} stands for hydrogen, cyano, fluorine, chlorine, bromine, iodine, methyl, ethyl, isopropyl, methoxy, ethoxy, methylthio, ethylthio, cyclopropyl, C_1 - C_2 haloalkyl, C_1 - C_2 haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms, trifluoromethylthio, difluoromethylthio, aminocarbonyl, aminocarbonylmethyl or aminocarbonylethyl,

R¹³ stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl, methoxy, ethoxy, methylthio or ethylthio, and

 R^{14} stands for hydrogen, methyl, ethyl, n-propyl, isopropyl, C_1 - C_2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, hydroxymethyl, hydroxyethyl, cyclopropyl, cyclopentyl, cyclohexyl or phenyl[[,]].

ΘF

A stands for the group of the formula (A2)

R¹⁵-and R¹⁶-stand independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms.

R¹⁷ stands-for fluorine, chlorine, bromine, eyano, methyl, ethyl, C₂-C₂ haloalkyl or C₂-C₂ haloalkoxy in each ease with 1 to 5 fluorine, chlorine and/or bromine atoms;

ΘF

A stands for the group of the formula (A3)

- 15 -

R¹⁸-and-R¹⁰-stand-independently of one another for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or G₁-G₂ haloalkyl with 1 to 5 fluorine, chlorine and/or-bromine atoms.

R²⁰-stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂
halcalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

OF

A stands for the group of the formula (A4)

R³⁴-stands for hydrogen, fluorine, chlorine, bromine, iodine, hydroxy, eyano, C₄-C₄-alkyl, C₄-C₂-haloalkyl, C₄-C₂-haloalkoxy or C₄-C₂-haloalkylthio in each case with 1 to 5-fluorine, chlorine and/or-bromine atoms;

ΘF

A stands for the group of the formula (A5)

R²²-stands-for-fluorine, chlorine, bromine, iodine, hydroxy, eyano, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C₁-C₂-haloalkyl-or-C₁-C₂-haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms.

R²³-stands for hydrogen, fluorine, chlorine, bromine, iodine, cyane, C₁-C₄-alkyl, methoxy, ethoxy, methylthio, C₁-C₂-haloalkyl or C₁-C₃-haloalkoxy-in-each ease with 1 to 5 fluorine, chlorine and/or bromine atoms, C₁-C₂-alkylsulfinyl or C₁-C₂ alkylsulfinyl.

or

A stands for the group of the formula (A6)

$$\mathbb{R}^{2\delta}$$
 (A6), in which

R²⁴-stands-for-methyl, ethyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or-bromine atoms.

R²⁵ stands for methyl or ethyl,

Q+stands for S (sulfur), SO2 or CH2,

p stands for 0 or 1,

or

A stands for the group of the formula (A7)

R²⁶ stands for methyl, ethyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms.

ΘF

A stands for the group of the formula (A8)

R27-stands for methyl, ethyl or C1-C2-haloalkyl with 1 to 5 fluorine, chlorine and/or-bromine-atoms,

or

A stands for the group of the formula (A9)

R²⁸ and R²⁹ stand independently of one another for hydrogen, fluorine, chlorine, bromine, amino, methyl, ethyl or C1-C2-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms.

R30-stands for hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C:-C: haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms, or

A stands for the group of the formula (A10)

R³⁴-and R³²-stand-independently-of-one-another for hydrogen, fluorine, chlorine, bromine, amino, nitro, methyl, ethyl-or-C₁-C₂-haloalkyl-with 1-to-5 fluorine, chlorine and/or bromine atoms;

 R^{33} -stands-for-hydrogen, fluorine, chlorine, bromine, iodine, methyl, ethyl or C_3 - C_2 -haloalkyl with 1 to 5-fluorine, chlorine and/or bromine atoms, or

A stands for the group of the formula (Al1)

R³⁴-stands-for-hydrogen, fluorine, chlorine, bromine, amine, C₄-C₄-alkylamine, di(C₄-C₄-alkyl)amine, eyane, methyl, ethyl or C₄-C₄-halealkyl with 1-to-5-fluorine, chlorine and/or bromine atoms:

R³⁵ stands for fluorine, ehlorine, bromine, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

or

A stands for the group of the formula (A12)

R³⁶-stands-for-hydrogen, fluorine, chlorine, bromine, amino, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, eyano, methyl, ethyl or C₁-C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

Reply to Office Action of September 9, 2010

R37-stands for fluorine, chlorine, bromine, methyl, ethyl or C1-C2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

- 19 -

or

A stands for the group of the formula (A13)

R38 stands for fluorine, chlorine, bromine, methyl, ethyl or C1-C2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms,

or

A stands for the group of the formula (A14)

R39 stands for hydrogen, methyl or ethyl,

R40-stands for fluorine, chlorine, bromine, methyl or ethyl,

or

A stands for the group of the formula (A15)

R44 stands for methyl, ethyl or C1-C2 haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms.

ΘF

A stands for the group of the formula (A16)

R⁴²-stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₄ C₂ haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

or

A stands for the group of the formula (A17)

 $R^{43} - stands - for fluorine, chlorine, bromine, iodine, hydroxy, C_1-C_4 - alkyl, methoxy, ethoxy, methylthio, ethylthio, difluoromethylthio, trifluoromethylthio, C_1-C_2 - haloalkyl-or C_1-C_2 - haloalkoxy in each case with 1 to 5 fluorine, chlorine and/or bromine atoms,$

or

A stands for the group of the formula (A18)

DUNKEL et al. Appl. No. 10/597,723

R⁴⁵-stands for hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₄ C₂
haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

R⁴⁶-stands-for hydrogen, fluorine, chlorine, bromine, iodine, cyano, methyl, ethyl, isopropyl or C₁-C₂-haloalkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

R⁴⁷-stands-for-hydrogen, fluorine, chlorine, bromine, methyl, ethyl or C₁-C₂
halealkyl with 1 to 5 fluorine, chlorine and/or bromine atoms;

ΘF

A stands for the group of the formula (A19)

R48-stands for methyl, ethyl, n propyl or isopropyl,

- (Currently amended) A process for synthesizing a haloalkyl carboxamide of the formula (I) according to Claim 1, comprising
 - a) reacting a carboxylic acid derivative of the formula (II)

in which

A has the meaning as defined above in Claim 1 and

X1 stands for halogen or hydroxy,

with an aniline derivative of the formula (III)

$$\begin{array}{c|c}
 & M \\
 & R^2 \\
 & R^3
\end{array}$$
(III)

- 22 -

in which

R, R¹, R², R³, R⁴ and M have the meanings as defined above in Claim 1,

optionally in the presence of a catalyst, optionally in the presence of a condensation agent, optionally in the presence of an acid binder and optionally in the presence of a diluent.

or

b) reacting a hexylearboxanilide haloalkylcarboxanilide of the formula (I-a)

$$\begin{array}{cccc}
O & M & R^2 & (I-a)
\end{array}$$

in which

 $R,\,R^1,\,R^2,\,R^3,\,M$ and A have the meanings as defined above in Claim 1, with a halide of the formula (IV)

$$R^{4-A} = X^2$$
 (IV)

in which

X2 stands for chlorine, bromine or iodine,

 haloalkylsulfinyl, C_1 - C_4 haloalkylsulfonyl, halo- C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, C_3 - C_8 halocycloalkyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; formyl, formyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 alkyl)carbonyl- C_1 - C_3 -alkyl, $(C_1$ - C_3 alkoxy)carbonyl- C_1 - C_3 -alkyl; halo- $(C_1$ - C_3 alkoxy)carbonyl- C_1 - C_3 -alkyl with 1 to 13 fluorine, chlorine and/or bromine atoms in each case; $(C_1$ - C_8 alkyl)carbonyl, $(C_1$ - C_8 alkoxy)carbonyl, $(C_1$ - C_8 alkoxy)carbonyl, $(C_3$ - C_8 cycloalkyl)carbonyl; $(C_1$ - C_6 haloalkyl)carbonyl, $(C_3$ - C_8 cycloalkyl)carbonyl; $(C_1$ - C_6 haloalkyl)carbonyl, $(C_3$ - C_8 cycloalkyl)carbonyl; $(C_1$ - C_8 -alkyl)carbonyl, $(C_3$ - C_8 halocycloalkyl)carbonyl with 1 to 9 fluorine, chlorine and/or bromine atoms in each case; or - $C(=0)C(=0)R^5$, - $CONR^6R^7$ or - $CH_2NR^8R^9$, whereby R^5 , R^6 , R^7 , R^8 and R^9 have the meanings as defined above in Claim 1,

in the presence of a base and a dilution medium.

4. (Previously presented) A composition for combating undesirable microorganisms, comprising at least one haloalkyl carboxamide of the formula (I) according to Claim 1 together with extenders and/or surface-active materials.

5. (Cancelled)

6. (Previously presented) A method for combating undesired microorganisms, comprising applying at least one haloalkyl carboxamide of the formula (I) according to Claim 1 to the microorganisms and/or their environment.

- 7. (Previously presented) A method for preparing a composition to combat undesired microorganisms, comprising mixing at least one haloalkyl carboxamide of the formula (I) according to Claim 1 with extenders and/or surface-active materials.
 - 8. (Cancelled)