Stat 291 - Recitation 11

Orçun Oltulu

07 / 01 / 2022

Simple Linear Regression

Exercise 1:

Part A:

Import 'Auto' data set from 'ISLR' package.

```
library(ISLR)
data(Auto)
```

Part B:

Check the structure of the variables, and convert 'cylinders' and 'origin' to factors, and drop 'year' and 'name' variables.

```
str(Auto)
```

```
## 'data.frame':
                    392 obs. of 9 variables:
   $ mpg
                 : num 18 15 18 16 17 15 14 14 14 15 ...
##
   $ cylinders
                : num 888888888 ...
   $ displacement: num
                        307 350 318 304 302 429 454 440 455 390 ...
##
   $ horsepower : num
                        130 165 150 150 140 198 220 215 225 190 ...
                        3504 3693 3436 3433 3449 ...
   $ weight
                 : num
##
   $ acceleration: num
                        12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
                        70 70 70 70 70 70 70 70 70 70 ...
   $ year
##
                 : num
##
   $ origin
                 : num 1 1 1 1 1 1 1 1 1 1 ...
##
   $ name
                  : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161
Auto$cylinders <- factor(Auto$cylinders)</pre>
Auto$origin <- factor(Auto$origin)
Auto$name <- NULL
Auto$year <- NULL
```

Part C:

By using only the numeric variables, construct scatter plots for MPG vs X. Use par() function to plot them at the same time. Comment on your findings.

```
numeric_variables <- names(Auto)[sapply(Auto,is.numeric)]

par(mfrow = c(2,2))
for(i in 1:4){
   variable_index <- setdiff(numeric_variables,"mpg")[i]
   plot(Auto$mpg~Auto[,variable_index],
        main = paste("MPG vs ", variable_index),
        xlab = variable_index, ylab = "MPG",
        col = i, pch = i)
}</pre>
```


Part D:

Obtain a correlation matrix to see the correlation between variables. Comment on your findings.

```
cor(Auto[,numeric_variables])
```

```
##
                      mpg displacement horsepower
                                                      weight acceleration
                            -0.8051269 -0.7784268 -0.8322442
## mpg
                1.0000000
                                                                0.4233285
## displacement -0.8051269
                             1.0000000 0.8972570 0.9329944
                                                               -0.5438005
## horsepower
               -0.7784268
                             0.8972570
                                        1.0000000 0.8645377
                                                               -0.6891955
## weight
               -0.8322442
                             0.9329944 0.8645377 1.0000000
                                                               -0.4168392
## acceleration 0.4233285
                            -0.5438005 -0.6891955 -0.4168392
                                                                1.0000000
```

Part E:

Fit a Linear Model to estimate 'mpg', using only 'weight' variable as an explanatory variable. Write down the estimated regression model and comment on it.

```
fit1 <- lm(mpg ~ weight, data = Auto)
fit1

##
## Call:
## lm(formula = mpg ~ weight, data = Auto)
##
## Coefficients:
## (Intercept) weight
## 46.216525 -0.007647</pre>
```

Part F:

Use summary function to get more information about your regression model. Comment on this output.

```
summary(fit1)
```

```
##
## Call:
## lm(formula = mpg ~ weight, data = Auto)
##
## Residuals:
##
        Min
                       Median
                  1Q
                                    3Q
                                            Max
## -11.9736 -2.7556 -0.3358
                                2.1379 16.5194
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 46.216524
                           0.798673
                                      57.87
                                               <2e-16 ***
## weight
               -0.007647
                           0.000258 -29.64
                                               <2e-16 ***
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 4.333 on 390 degrees of freedom
```

```
## Multiple R-squared: 0.6926, Adjusted R-squared: 0.6918
## F-statistic: 878.8 on 1 and 390 DF, p-value: < 2.2e-16</pre>
```

Part G:

Construct a 95% Confidence Interval for β coefficients for your model.

```
confint(fit1, level = 0.95)

## 2.5 % 97.5 %

## (Intercept) 44.646282308 47.78676679

## weight -0.008154515 -0.00714017
```

Part H:

Now assume that you want to buy a brand new car. When you go to the dealer the salesman suggests you to buy 2 different cars. One of them (Car A) has 17 mpg value and the other one (Car B) has 15. This information that salesman gave you immediately raises a doubt and you wanted to use your model.

You know that Car A weighs 2513 lb and Car B weighs 3120 lb. According to your model, what are the predicted MPG values for these cars?

Also, find prediction interval and confidence interval for these cars.

Remark The prediction interval predicts in what range a future individual observation will fall, while a confidence interval shows the likely range of values associated with some statistical parameter of the data, such as the population mean.

Part I:

Construct a Scatter-Plot 'mpg' vs 'weight', draw the regression line, also add Confidence interval and prediction interval for regression model.

```
pi.band <- predict(fit1, newdata = x,</pre>
                   interval="prediction",level=0.95)
plot(Auto$weight, Auto$mpg,
     xlim = c(min(Auto$weight), max(Auto$weight)),
     ylim = c(min(Auto$mpg), max(Auto$mpg)),
     main = "MPG vs Weight", xlab = "Weight", ylab = "MPG")
abline(fit1, lwd=2, col = "Red")
points(newcars[,1],ci newcars[,1],pch=2)
segments(x0=c(2513,3120), y0=c(pi newcars[1,2], pi newcars[2,2]),
         x1=c(2513,3120), y1=c(pi newcars[1,3], pi newcars[2,3]), col="orange", lwd=3)
segments(x0=c(2513,3120),y0=c(ci newcars[1,2],ci newcars[2,2]),
         x1=c(2513,3120), y1=c(ci newcars[1,3], ci newcars[2,3]), lwd=2)
lines(x[,1], ci.band[,2], lty=2, col="blue")
lines(x[,1], ci.band[,3], lty=2, col="blue")
lines(x[,1], pi.band[,2], lty=2, col="purple")
lines(x[,1], pi.band[,3], lty=2, col="purple")
legend("topright",legend=c("Fit","95% CI","95% PI"),lty=c(1,2,2),
       col=c("black","blue","purple"),lwd=c(2,1,1))
```

MPG vs Weight

Linear Regression with Categorical Predictors:

Exercise 2:

Again use the same Auto data set for this exercise.

Part A:

Construct Box-Plots for both 'mpg' vs 'origin' and 'mpg' vs 'cylinders' at the same time using par() function.

Distribution of MPG

Distribution of MPG

Part B:

Construct a model where 'Cylinders' is an explanatory variable. Write down the estimated regression model and comment on it.

```
fit2 <- lm(mpg ~ cylinders, data = Auto)</pre>
fit2
##
## Call:
## lm(formula = mpg ~ cylinders, data = Auto)
## Coefficients:
## (Intercept)
                                                           cylinders8
                  cylinders4
                               cylinders5
                                             cylinders6
       20.5500
                                    6.8167
##
                      8.7339
                                                 -0.5765
                                                               -5.5869
```

Part C:

Use summary function to get more information about your regression model. Comment on this output.

```
summary(fit2)
```

```
##
## Call:
## lm(formula = mpg ~ cylinders, data = Auto)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                    3Q
                                           Max
## -11.2839 -2.9037 -0.9631
                               2.3437
                                       18.0265
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.5500
                           2.3494 8.747 < 2e-16 ***
## cylinders4
                8.7339
                           2.3729
                                    3.681 0.000266 ***
                           3.5888
## cylinders5
                6.8167
                                    1.899 0.058250 .
## cylinders6
              -0.5765
                           2.4053 -0.240 0.810708
               -5.5869
## cylinders8
                           2.3946 -2.333 0.020153 *
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 4.699 on 387 degrees of freedom
## Multiple R-squared: 0.6413, Adjusted R-squared: 0.6376
## F-statistic: 173 on 4 and 387 DF, p-value: < 2.2e-16
```

Part D:

Using your estimated model in part c, make predictions for each level of 'cylinders' variable.

Part F:

Obtain prediction and confidence intervals for each level of 'cylinders' variable.

```
predict(fit2,newdata = newcylinders,
        interval = "predict",level=0.95)
##
          fit
                    lwr
                             upr
## 1 20.55000 10.221175 30.87883
## 2 29.28392 20.022354 38.54548
## 3 27.36667 16.699102 38.03423
## 4 19.97349 10.679625 29.26736
## 5 14.96311 5.679986 24.24623
predict(fit2, newdata = newcylinders,
        interval = "confidence",level=0.95)
##
          fit
                   lwr
                            upr
## 1 20.55000 15.93081 25.16919
## 2 29.28392 28.62903 29.93881
## 3 27.36667 22.03288 32.70045
## 4 19.97349 18.95945 20.98754
## 5 14.96311 14.05282 15.87339
```

Exercise 3:

Conduct every step in the second exercise for 'origin' variable and comment on each step.