L'opérade Swiss-Cheese et le centre de Drinfeld

Najib Idrissi

13 octobre 2017 @ SIC Calais

Opérades des petits disques et tresses

Opérades des petits disques

Les opérades topologiques des petits disques D_n [Boardmann–Vogt, May] gouvernent les algèbres associatives et commutatives à homotopie près :

1

Groupes de tresses

Rappel: groupes des tresses pures

$$P_r = \ker(B_r \to \Sigma_r)$$

Groupes de tresses

Rappel: groupes des tresses pures

$$P_r = \ker(B_r \to \Sigma_r)$$

Proposition

$$D_2(r) \simeq \operatorname{Conf}_r(\mathbb{R}^2) \simeq K(P_r, 1)$$

Groupes de tresses

Rappel: groupes des tresses pures

$$P_r = \ker(B_r \to \Sigma_r)$$

Proposition

$$\mathsf{D}_2(r) \simeq \mathrm{Conf}_r(\mathbb{R}^2) \simeq \mathsf{K}(\mathsf{P}_r\,,1) \implies \mathsf{D}_2 \simeq \mathrm{B}(\pi\mathsf{D}_2)$$

Groupoïdes de tresses

« Extension » de P_r : groupoïde des tresses colorées CoB(r)

ob
$$CoB(r) = \Sigma_r$$
, $End_{CoB(r)}(\sigma) \cong P_r$

Câblage

« Câblage » : insertion d'une tresse dans un brin

Câblage

« Câblage » : insertion d'une tresse dans un brin

 $\implies \{\operatorname{CoB}(r)\}_{r\geq 1}$ est une opérade symétrique en groupoïdes :

$$\circ_i : \mathsf{CoB}(k) \times \mathsf{CoB}(l) \to \mathsf{CoB}(k+l-1), \ 1 \le i \le k$$

Petits disques et tresses

 $\mathsf{CoB}(r) \cong \mathsf{sous}\text{-groupo\"ide} \ \mathsf{of} \ \pi \mathsf{D}_2(r)$

Petits disques et tresses

 $\mathsf{CoB}(r) \cong \mathsf{sous}\text{-}\mathsf{groupo\"ide} \ \mathsf{of} \ \pi \mathsf{D}_2(r)$

Problème

Inclusion incompatible avec la structure d'opérade

Petits disques et tresses (2)

Solution

Tresses parenthésées PaB

Petits disques et tresses (2)

Solution

Tresses parenthésées PaB

Théorème (Fresse; voir aussi Fiedorowicz, Tamarkin...)

Équivalence faible d'opérades $\pi D_2 \overset{\sim}{\leftarrow} PaB \overset{\sim}{\rightarrow} CoB$.

Algèbres sur une opérade catégorique

 $P \in CatOp \implies une P-algèbre est la donnée de :$

- · une catégorie C;
- Pour un objet $x \in ob P(r)$, un foncteur $\bar{x} : C^{\times r} \to C$;
- Pour un morphisme $f \in \operatorname{Hom}_{\mathsf{P}(r)}(x,y)$, une transformation naturelle

• + compatibilité avec les actions des groupes symétriques et la structure d'opérade.

 $P = CoB \implies$ une algèbre est la donnée de :

· Une catégorie C;

 $P = CoB \implies$ une algèbre est la donnée de :

- · Une catégorie C;
- $\sigma \in \operatorname{ob} \mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_\sigma : \mathsf{C}^{\times r} \to \mathsf{C} \text{ t.q. } \otimes_{\operatorname{id}_1} = \operatorname{id}_\mathsf{C};$

 $P = CoB \implies$ une algèbre est la donnée de :

- Une catégorie C;
- $\sigma \in \mathrm{ob}\,\mathsf{CoB}(r) = \Sigma_r \,\leadsto\, \otimes_\sigma : \mathsf{C}^{ imes r} o \mathsf{C} \; \mathrm{t.q.} \, \otimes_{\mathrm{id}_1} = \mathrm{id}_\mathsf{C}$;
- $\cdot \otimes_{\sigma}(X_1, \ldots, X_n) = \otimes_{\operatorname{id}_r}(X_{\sigma(1)}, \ldots, X_{\sigma(n)});$

P = CoB ⇒ une algèbre est la donnée de :

- Une catégorie C;
- $\sigma \in \operatorname{ob} \mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_{\sigma} : \mathsf{C}^{\times r} \to \mathsf{C} \operatorname{t.q.} \otimes_{\operatorname{id}_1} = \operatorname{id}_{\mathsf{C}};$
- $\cdot \otimes_{\sigma}(X_1,\ldots,X_n) = \otimes_{\mathrm{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\cdot \, \otimes_{\mathrm{id}_2}(\otimes_{\mathrm{id}_2}(X\,,Y)\,,Z) = \otimes_{\mathrm{id}_3}(X\,,Y\,,Z) = \otimes_{\mathrm{id}_2}(X\,,\otimes_{\mathrm{id}_2}(Y\,,Z))...$

 $P = CoB \implies$ une algèbre est la donnée de :

- Une catégorie C;
- $\sigma \in \operatorname{ob} \mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_\sigma : \mathsf{C}^{\times r} \to \mathsf{C} \text{ t.q. } \otimes_{\operatorname{id}_1} = \operatorname{id}_\mathsf{C};$
- $\cdot \otimes_{\sigma}(X_1,\ldots,X_n) = \otimes_{\mathrm{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\boldsymbol{\cdot} \ \otimes_{\mathrm{id}_2}(\otimes_{\mathrm{id}_2}(X\,,Y)\,,Z) = \otimes_{\mathrm{id}_3}(X\,,Y\,,Z) = \otimes_{\mathrm{id}_2}(X\,,\otimes_{\mathrm{id}_2}(Y\,,Z))...$
- $\beta \in \operatorname{Hom}_{\mathsf{CoB}(r)}(\sigma, \sigma')$ tresse colorée \leadsto transformation naturelle $\beta_* : \otimes_{\sigma} \to \otimes_{\sigma'}$. Par exemple :

 $P = CoB \implies$ une algèbre est la donnée de :

- Une catégorie C;
- $\sigma \in \operatorname{ob} \mathsf{CoB}(r) = \Sigma_r \leadsto \otimes_\sigma : \mathsf{C}^{\times r} \to \mathsf{C} \text{ t.q. } \otimes_{\operatorname{id}_1} = \operatorname{id}_\mathsf{C};$
- $\cdot \otimes_{\sigma}(X_1,\ldots,X_n) = \otimes_{\mathrm{id}_r}(X_{\sigma(1)},\ldots,X_{\sigma(n)});$
- $\boldsymbol{\cdot} \ \otimes_{\mathrm{id}_2}(\otimes_{\mathrm{id}_2}(X\,,Y)\,,Z) = \otimes_{\mathrm{id}_3}(X\,,Y\,,Z) = \otimes_{\mathrm{id}_2}(X\,,\otimes_{\mathrm{id}_2}(Y\,,Z))...$
- $\beta \in \operatorname{Hom}_{\operatorname{CoB}(r)}(\sigma, \sigma')$ tresse colorée \rightsquigarrow transformation naturelle $\beta_* : \otimes_{\sigma} \to \otimes_{\sigma'}$. Par exemple :

Théorème (MacLane, Joyal-Street)

Une algèbre sur CoB est une catégorie monoïdale tressée (stricte, sans unité).

Remarques

Extension aux tresses parenthésées :

Théorème

Une algèbre sur PaB est une catégorie monoïdale tressée (sans unité).

Remarques

Extension aux tresses parenthésées :

Théorème

Une algèbre sur PaB est une catégorie monoïdale tressée (sans unité).

Versions unitaires CoB₊ et PaB₊:

Théorème

Une algèbre sur CoB_+ (resp. PaB_+) est une catégorie monoïdale tressée stricte (resp. non-stricte) avec une unité stricte (dans les deux cas).

9

Remarques

Extension aux tresses parenthésées :

Théorème

Une algèbre sur PaB est une catégorie monoïdale tressée (sans unité).

Versions unitaires CoB₊ et PaB₊:

Théorème

Une algèbre sur CoB_+ (resp. PaB_+) est une catégorie monoïdale tressée stricte (resp. non-stricte) avec une unité stricte (dans les deux cas).

 $PaP \subset PaB$ où on ne garde que les tresses triviales :

Théorème

 $\pi D_1 \simeq PaP$, les algèbres sur PaP sont les catégories monoïdales.

L'opérade Swiss-Cheese

Définition

L'opérade Swiss-Cheese SC [Voronov, 1999] :

- \cdot gouverne les D_2 -algèbres agissant sur les D_1 -algèbres;
- opérade *colorée*, avec deux couleurs $\mathfrak{c} \leftrightarrow \mathsf{D}_2$ et $\mathfrak{o} \leftrightarrow \mathsf{D}_1$.

Définition

L'opérade Swiss-Cheese SC [Voronov, 1999] :

- gouverne les D₂-algèbres agissant sur les D₁-algèbres;
- opérade colorée, avec deux couleurs $\mathfrak{c} \leftrightarrow \mathsf{D}_2$ et $\mathfrak{o} \leftrightarrow \mathsf{D}_1$.

Définition

L'opérade Swiss-Cheese SC [Voronov, 1999] :

- gouverne les D₂-algèbres agissant sur les D₁-algèbres;
- opérade colorée, avec deux couleurs $\mathfrak{c} \leftrightarrow \mathsf{D}_2$ et $\mathfrak{o} \leftrightarrow \mathsf{D}_1$.

L'opérade CoPB

Idée

Étendre CoB pour construire une opérade équivalente à π SC.

 $\mathsf{CoPB}(2,3)$

L'opérade CoPB

Idée

Étendre CoB pour construire une opérade équivalente à π SC.

Théorème (I.)

Tressages et semi-tressages

D₂ / CoB : tressage = commutativité à homotopie près

Tressages et semi-tressages

D₂ / CoB : tressage = commutativité à homotopie près

SC / CoPB : semi-tressage = morphisme « central »

Centre de Drinfeld

C: catégorie monoïdale $\leadsto \Sigma C$ bicatégorie à un objet $\leadsto Centre\ de\ Drinfeld\ \mathcal{Z}(C) := \operatorname{End}(\operatorname{id}_{\Sigma C})$

- ob $\mathcal{Z}(\mathsf{C}) = \{(\mathsf{X}, \Phi) \mid \mathsf{X} \in \mathsf{C}, \ \Phi : (\mathsf{X} \otimes -) \xrightarrow{\cong} (- \otimes \mathsf{X})\}$
- $\cdot \ \operatorname{Hom}_{\mathcal{Z}(\mathbb{C})} \big((\mathsf{X}, \Phi) \, , (\mathsf{Y}, \Psi) \big) \{ f : \mathsf{X} \to \mathsf{Y} \mid \text{ compatible with } \Phi \text{ and } \Psi \}$

Théorème (Drinfeld, Joyal-Street 1991, Majid 1991)

 $\mathcal{Z}(C)$ est une catégorie monoïdale tressée avec

$$(X, \Phi) \otimes (Y, \Psi) = (X \otimes Y, (\Psi \otimes 1) \circ (1 \otimes \Phi)),$$

$$\tau_{(X,\Phi),(Y,\Psi)} = \Phi_{Y}.$$

Théorème de Voronov & algèbres sur CoPB

Théorème (Voronov, Hoefel)

Une algèbre sur $H_*(SC)$ est donnée par :

- · une algèbre associative A;
- une algèbre de Gerstenhaber
 B;
- un morphisme central d'algèbres f : B → Z(A).

(Dans la version de Voronov : $B \otimes A \rightarrow A$ au lieu de $B \rightarrow A$)

Théorème de Voronov & algèbres sur CoPB

Théorème (Voronov, Hoefel)

Une algèbre sur $H_*(SC)$ est donnée par :

- une algèbre associative A;
- une algèbre de Gerstenhaber
 B;
- un morphisme central d'algèbres f : B → Z(A).

(Dans la version de Voronov : $B \otimes A \rightarrow A$ au lieu de $B \rightarrow A$)

Théorème (I.)

Une algèbre sur CoPB est donnée par :

- Une catégorie monoïdale N;
- Une catégorie monoïdale tressée M;
- Un foncteur monoïdal tressé $F: M \to \mathcal{Z}(N)$.

Modèle rationel en passant par les associateurs de

Drinfeld

Opérade des diagrammes de cordes

Algèbre de Lie de Drinfeld-Kohno (« version infinitésimale » des tresses pures) :

$$\mathfrak{p}(r) \coloneqq \mathbb{L}(t_{ij})_{1 \le i \ne j \le r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

Opérade des diagrammes de cordes

Algèbre de Lie de Drinfeld-Kohno (« version infinitésimale » des tresses pures) :

$$\mathfrak{p}(r) \coloneqq \mathbb{L}(t_{ij})_{1 \leq i \neq j \leq r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

 \rightarrow opérade :

$$t_{13}t_{12}t_{12}\circ_3t_{12}\in\mathbb{U}\mathfrak{p}(4)$$

Opérade des diagrammes de cordes

Algèbre de Lie de Drinfeld–Kohno (« version infinitésimale » des tresses pures) :

$$\mathfrak{p}(r) \coloneqq \mathbb{L}(t_{ij})_{1 \le i \ne j \le r} / \langle t_{ij} - t_{ji}, [t_{ij}, t_{kl}], [t_{ik}, t_{ij} + t_{jk}] \rangle.$$

 \rightarrow opérade :

$$t_{13}t_{12}t_{12}\circ_3t_{12}\in\mathbb{U}\mathfrak{p}(4)$$

Complétion de Mal'cev \rightarrow opérade en group(oïd)es complets

$$\widehat{\mathsf{CD}} = \mathbb{G}\widehat{\mathbb{U}}\widehat{\mathfrak{p}} \ (= \{ e^{\mathsf{X}} \mid \mathsf{X} \in \mathfrak{p} \})$$

Associateurs de Drinfeld

Associateurs de Drinfeld ($\mu \in \mathbb{Q}^{\times}$):

$$\operatorname{Ass}^{\mu}(\mathbb{Q}) \coloneqq \{\phi: \operatorname{PaB}_{+} \to \widehat{\operatorname{CD}}_{+} \mid \phi(\tau) = e^{\mu t_{12}/2}\}$$

Associateurs de Drinfeld

Associateurs de Drinfeld ($\mu \in \mathbb{Q}^{\times}$):

$$\mathrm{Ass}^{\mu}(\mathbb{Q}) \coloneqq \{\phi : \mathsf{PaB}_{+} \to \widehat{\mathsf{CD}}_{+} \mid \phi(\tau) = e^{\mu t_{12}/2} \}$$

$$\phi \in \mathrm{Ass}^{\mu}(\mathbb{Q}) \iff \Phi(t_{12}, t_{23}) := \phi(\alpha) \in \mathbb{G}(\mathbb{Q}[[t_{12}, t_{23}]])$$

satisfying the usual equations

Associateurs de Drinfeld

Associateurs de Drinfeld ($\mu \in \mathbb{Q}^{\times}$):

$$\mathrm{Ass}^{\mu}(\mathbb{Q}) \coloneqq \{\phi : \mathsf{PaB}_{+} \to \widehat{\mathsf{CD}}_{+} \mid \phi(\tau) = e^{\mu t_{12}/2}\}$$

$$\phi \in \mathrm{Ass}^{\mu}(\mathbb{Q}) \iff \Phi(t_{12}, t_{23}) := \phi(\alpha) \in \mathbb{G}(\mathbb{Q}[[t_{12}, t_{23}]])$$

satisfying the usual equations

Théorème (Drinfeld)

$$\operatorname{Ass}^{\mu}(\mathbb{Q}) \neq \emptyset$$

 ϕ induit une équivalence rationnelle $\pi(D_2)_+ \simeq PaB_+ \xrightarrow{\sim Q} \widehat{CD}_+$

Modèle rationnel πSC_+

Nouvelle opérade $\operatorname{PaPCD}_{+}^{\phi}$ (avec $\phi \in \operatorname{Ass}^{\mu}(\mathbb{Q})$ fixé).

Théorème (I.)

$$\pi \mathsf{SC}_+ \simeq_{\mathbb{Q}} \mathsf{PaP}\widehat{\mathsf{CD}}_+^\phi.$$

Théorème (Voronov, Hoefel (v2))

 $H_*(SC)$ est le « produit de Voronov » $H_*(D_2) \otimes H_*(D_1)$

Théorème (Voronov, Hoefel (v2))

 $H_*(SC)$ est le « produit de Voronov » $H_*(D_2) \otimes H_*(D_1)$

Corollaire

$$H_*(SC; \mathbb{Q}) \cong H_*(B(PaP) \times B(\widehat{CD}); \mathbb{Q})$$

Théorème (Voronov, Hoefel (v2))

 $H_*(SC)$ est le « produit de Voronov » $H_*(D_2) \otimes H_*(D_1)$

Corollaire

$$H_*(SC; \mathbb{Q}) \cong H_*(B(PaP) \times B(\widehat{CD}); \mathbb{Q})$$

Théorème

- D_n est formelle $\implies \langle H^*(D_n) \rangle^{\mathbb{L}} \simeq_{\mathbb{Q}} D_n$ [Kontsevich, Tamarkin, Lambrechts–Volić, Fresse–Willwacher]
- SC n'est pas formelle \implies SC $\not\simeq \langle H^*(D_2) \rangle^{\mathbb{L}} \times \langle H^*(D_1) \rangle^{\mathbb{L}}$ [Livernet]

Théorème (Voronov, Hoefel (v2))

 $H_*(SC)$ est le « produit de Voronov » $H_*(D_2) \otimes H_*(D_1)$

Corollaire

$$H_*(SC; \mathbb{Q}) \cong H_*(B(PaP) \times B(\widehat{CD}); \mathbb{Q})$$

Théorème

- D_n est formelle $\implies \langle H^*(D_n) \rangle^{\mathbb{L}} \simeq_{\mathbb{Q}} D_n$ [Kontsevich, Tamarkin, Lambrechts–Volić, Fresse–Willwacher]
- SC n'est pas formelle \implies SC $\not\simeq \langle H^*(D_2) \rangle^{\mathbb{L}} \times \langle H^*(D_1) \rangle^{\mathbb{L}}$ [Livernet]

Résultat

 $\operatorname{PaP}\widehat{\operatorname{CD}}_+^\phi = \operatorname{``PaP} \rtimes_\varphi \widehat{\operatorname{CD}}$ `` `` corrige `` le défaut de formalité.

Merci de votre attention!

Diapos: https://operad.fr/talk/sic2017/

arXiv:1507.06844