WERYFIKACJA HIPOTEZ STATYSTYCZNYCH **TESTY PARAMETRYCZNE**

UWAGI OGÓLNE DO ZESTAWU WZORÓW:

- 1) Wzory zostały podane w formie przystosowanej do funkcji pakietu scipy, w przypadku korzystania z innych funkcji lub tablic statystycznych poprawna forma wzorów może być inna.
- Na potrzeby ćwiczeń zawarto w zestawie wzorów jedynie wybrane modele weryfikacyjne, w pewnych przypadkach do weryfikacji hipotez należy stosować inne modele niż te zawarte poniżej.
- Przedstawione wzory w wielu przypadkach zostały wyprowadzone przy licznych założeniach odnoście postaci rozkładu wartości badanego parametru w populacji, z której została pobrana próba losowa, liczebności próby losowej itd.

WARTOŚĆ PRZECIĘTNA (MODEL DLA NIEZNANEGO ODCHYLENIA STANDRADOWEGO POPULACJI)

WARIANCJA

(MODEL DLA MAŁEJ PRÓBY LOSOWEJ)

WSKAŹNIK STRUKTURY (PROPORCJA)

(MODEL DLA DUŻEJ PRÓBY LOSOWEJ)

Etap 1: Sformułowanie hipotezy zerowej H₀ i hipotezy alternatywnej H₁

$$\begin{split} H_0 &: \mu = \mu_0 \\ H_1 &: \mu \neq \mu_0, \, H_1 \colon \mu < \mu_0, \\ H_1 &: \mu > \mu_0 \end{split}$$

$$H_0: \sigma^2 = \sigma_0^2$$

 $H_1: \sigma^2 \neq \sigma_0^2, H_1: \sigma^2 < \sigma_0^2,$
 $H_1: \sigma^2 > \sigma_0^2$

$$H_0: p = p_0$$

 $H_1: p \neq p_0, H_1: p < p_0,$
 $H_1: p > p_0$

Etap 2: Wybór odpowiedniej statystyki testowej związanej z hipotezą zerową

$$t = \frac{\bar{x} - \mu_0}{s} \sqrt{n - 1} = \frac{\bar{x} - \mu_0}{\hat{s}} \sqrt{n}$$

$$\chi^2 = \frac{ns^2}{\sigma_0^2} = \frac{(n - 1)\hat{s}^2}{\sigma_0^2}$$

$$\chi^2 = \frac{ns^2}{\sigma_0^2} = \frac{(n-1)\hat{s}^2}{\sigma_0^2}$$

$$u = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

Etap 3: Obliczenie wartości wybranej statystyki testowej na podstawie wyników uzyskanych z próby

Etap 4: Ustalenie poziomu istotności α

 α – z treści zadania

Etap 5: Wyznaczenie obszaru krytycznego testu istotności

Obszar dwustronny:

$$t_{\alpha} = t_{1 - \frac{\alpha}{2}, n - 1}$$

Obszar lewostronny:

$$t_{\alpha} = t_{\alpha, n-1}$$

Obszar prawostronny:

$$t_{\alpha} = t_{1-\alpha,n-1}$$

Obszar dwustronny:

$$\chi_{\alpha 1}^2 = \chi_{\frac{\alpha}{2}, n-1}^2$$
 $\chi_{\alpha 2}^2 = \chi_{1-\frac{\alpha}{2}, n-1}^2$

Obszar lewostronny:

$$\chi_{\alpha}^2 = \chi_{\alpha,n-1}^2$$

$$\chi_{\alpha}^{2} = \chi_{\alpha,n-1}^{2}$$
Obszar prawostronny:
$$\chi_{\alpha}^{2} = \chi_{1-\alpha,n-1}^{2}$$

Obszar dwustronny:

$$u_{\alpha}=u_{1-\frac{\alpha}{2}}$$

Obszar lewostronny:

$$u_{\alpha} = u_{\alpha}$$

Obszar prawostronny:

$$u_\alpha=u_{1-\alpha}$$

Etap 6: Podjęcie decyzji weryfikującej

Odrzucenie H₀ na rzecz H₁ następuje gdy:

Obszar dwustronny: $|t| \ge t_{\alpha}$ Obszar lewostronny: $t \le t_{\alpha}$ Obszar prawostronny: $t \ge t_{\alpha}$

Obszar dwustronny:

$$\chi^2 \le \chi^2_{\alpha 1}$$
 lub $\chi^2 \ge \chi^2_{\alpha 2}$
Obszar lewostronny: $\chi^2 \le \chi^2_{\alpha}$

Obszar prawostronny: $\chi^2 \ge \chi_\alpha^2$

Obszar dwustronny: $|u| \ge u_{\alpha}$ Obszar lewostronny: $u \le u_{\alpha}$

Obszar prawostronny: $u \ge u_{\alpha}$

Wynik testu istotności nie daje podstaw do odrzucenia H₀ gdy:

Obszar dwustronny: $|t| < t_{\alpha}$ Obszar lewostronny: $t > t_{\alpha}$ Obszar prawostronny: $t < t_{\alpha}$ Obszar dwustronny:

$$\chi_{\alpha 1}^2 < \chi^2 < \chi_{\alpha 2}^2$$
Obszar lewostronny: $\chi^2 > \chi_{\alpha}^2$

Obszar prawostronny: $\chi^2 < \chi_{\alpha}^2$

Obszar dwustronny: $|u| < u_{\alpha}$ Obszar lewostronny: $u > u_{\alpha}$ Obszar prawostronny: $u < u_{\alpha}$

JEDNOCZYNNIKOWA ANALIZA WARIANCJI

Etap 1: Sformułowanie hipotezy zerowej H₀ i hipotezy alternatywnej H₁

H0: Wszystkie wartości przeciętne nie różnią się od siebie w sposób istotny statystycznie H1: Co najmniej dwie wartości przeciętne różnią się od siebie w sposób istotny statystycznie

Etap 2: Wybór odpowiedniej statystyki testowej związanej z hipotezą zerową

gdzie:

$$F = \frac{q_G}{k-1} \div \frac{q_R}{n-k}$$

$$q_G = \sum_{i=1}^{k} n_i (\bar{x}_i - \bar{x})^2$$

$$q_R = \sum_{i=1}^{k} \sum_{i=1}^{n_i} (x_{ij} - \bar{x}_i)^2$$

Etap 3: Obliczenie wartości wybranej statystyki testowej na podstawie wyników uzyskanych z próby

Etap 4: Ustalenie poziomu istotności α

α – z treści zadania

Etap 5: Wyznaczenie obszaru krytycznego testu istotności

Obszar prawostronny: $F_{\alpha} = F_{1-\alpha,k-1,n-k}$

Etap 6: Podjęcie decyzji weryfikującej

Odrzucenie H₀ na rzecz H₁ następuje gdy:

Obszar prawostronny: $F \ge F_{\alpha}$

Wynik testu istotności nie daje podstaw do odrzucenia H₀ gdy:

Obszar prawostronny: $F < F_{\alpha}$