Paradigmas de computação paralela

Caso de estudo

- O algoritmo desenvolvido foi a Multiplicação Vector-matriz esparsa: y = Ax
- Matrizes esparsa s\(\tilde{a}\) o caracterizadas pela grande quantidade de valores nulos que possuem
- ▶ Para a sua representação foi usado o formato COO(Coordinate List Format)

Sparse Format

Feature 1	Feature 2	Feature 3	Feature 4	Feature 5		
0	0	0	0	0		
0	0	0	0	0		
0	0	7	0	0		
3	0	0	0	0		
0	0	0	0	1	Α.	

Coordinate List (COO) Format

Algoritmo Sequencial

```
for (int i = 0; i < t; i++){
   result[rows[i]] += v[cols[i]] * val[i];
}</pre>
```

Problemas ao paralelizar?

OPENMP: Paradigma de memória partilhada

```
#pragma omp parallel
int result_aux[N];
for (i = 0; i < N; i++){}
    result [i] = 0;
    result_aux[i] = 0;
#pragma omp for
    for (i = 0; i < t; i++){}
    result_aux[rows[i]] += v[cols[i]] * val[i];
    for(i=0;i<N;i++){</pre>
        #pragma omp atomic
        result[i] += result_aux[i];
```

Ganho

MPI: Paradigma de memória distribuída

- Baseado no modelo Foster (metodologia PCAM)
 - Partição: dos dados (blocos de linhas)
 - Comunicação: master-slave
 - Aglomeração: linhas da matriz a enviar ao slave
 - Mapeamento : map by node

Exemplo

Row Col Vals

0	0	1	1	2	3	4	5
0	3	1	5	4	3	1	3
47	1	7	3	34	80	61	81

47	0	0	1	0	0
0	7	0	0	0	3
0	0	0	0	34	0
0	0	0	80	0	0
0	61	0	0	0	0
0	0	0	81	0	0

Ganho

À espera dos resultados do search...

Paradigmas de computação paralela