	Tutorfal -2
Aus-1-	vord fun (Aut n)
	Put $p=1$; $i=0$;
	Put $j=1$; $i=0$; while $(i < n)$
	$\frac{1}{1}$ 0 1 23 - $\frac{1}{2}$ (n-1)
	J 9 1 3 5 7 n(n-1)
	0 = 0+9 1 2 34 ··· n
	1++;
	1
	l = 1, 3, 5, 7 n(n-1)
	T(0) d (1,2,3,4n) = O(n)
	sum of A.P. i.e. (i) = n (n+1)
	2
	⇒ u(u+l) + n (for j) < n
	2
	> n(n+1) + n (for j) < n
	2
	$\Rightarrow n^2 + n + 2n \leq 2n$
	$\Rightarrow n^2 < 2n \Rightarrow n^2 < n$
	-> n < \2
live	"No religion has mandated killing others as a requirement for its sustenance or promotion." -Dr.A.P.J. Abdul Kalam

Chitrá

T(c) = 0(5h) A

serfes program using Recurston: Aus 2 -

melude < bpts / stdc + + · h)

usting namespace stol.;

nt feb (put n)

networ ft (n-2) + ft (n-2);

count << flb (n); getcher (1);
return 0;

T(1) = T(n) t.e. lhear

(i)n (logn):for (i=0; i < n; i++)

for (j=1; j < n; j= j + 2) n x log n

-> n(logn)

n3 :- Floyd Warshall Algorithm
shortest path b/w vertices P.e, for k= 1 ton for l = 1 to n $\int_{A^{k}(l,j)}^{n} = \lim_{k \to \infty} \left(A^{k-0}\left(l,j\right), A^{k-1}\left(l,k\right)\right)$ 7 A (k,j?) return A for (i=1; E<n; i+i+2) (T(c) = log (log A)) $\begin{cases}
\text{for } (j=1;j \leq p;j=j*2)
\end{cases}$ $T(i) = T(n) = T(n/4) + T(n/2) + (n)^{2}$ assuming T(n/2) ? = T(n/4)On heworthy $T(n) < = 2T(n/2) + (n)^2$ Now applying Matter's shearen to RHS $T(n) < = O(n)^2 \Rightarrow T(n) = O(n^2)$

 $T(c) o \left(n + \frac{n}{2} + \frac{n}{3} + \cdots , \frac{n}{n} \right)$ $= 0 \left(\log n \right) + \frac{1}{2} + \cdots + \frac{1}{n}$

2	5 - What should be the complexity of
	for (nt i = 2; i <= h; i = pow(1,k))
	<u></u>
	1/ same O(1) expression / statement
	// some O(1) expression / statement
	where k = constant
Aug	e takes values $2, 2^k, (2^k)^k = 2^{k^2}$
	$\left(2^{\kappa^2}\right)^{\kappa} = 2^{\kappa^3} \text{o. o. } 2^{\kappa \log n \left(\log(w)\right)}$
	last term must <= n → 2 × rog, 2 (rog(n)) = 2 log(n) = n
	- 2 112 1000 = Z 1 = N
	east to lost team
	on there are log (log(n)) eq. v. to last term
	:. T(1) = 0 (log (log (n))) to
Q 3-	what do you understand by analyses?
. –	
Ay +=	T(n) = T(9n) + T(n) + O(n)
	Takky one branch 99% & other 1%
	$T(n) = T\left(\frac{99n}{100}\right) + T(n) + O(n)$
	1^{8+} level = n

	2^{nd} level = $99 + n = n$
	So, 3nd level remarks some for any which of
	So, 3nd level remakes same for any which of postfor larger branch = 0 (n log 100/99m)
	Fra donton branch
	For shorter branch (+) = 12 (A log n)
	ether base complexity of o (n (log n)) geneths
Q	
9	100 < In < log (logn) < log (n) < n < n log n
	$< \log n^2 < n^2 < n-1 < 2^m < 4^n < 2^{2n}$

b) k log (log n) < Slog n < log n < log 2n < n <

 $n \log = \langle 2n \langle 4n = 2(2^n) \langle n; 2n^2 \rangle$

96 < logen < logn) < n log n < shop n < 5n

< n < 8 n 2 < 7 n 3 < 8 n 2 n