## AFRE 835: Introductory Econometrics

Chapter 6: Multiple Regression Analysis: Further Issues

Spring 2017

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

1 / 32

#### Introduction

- This chapter reviews a variety of topics related to multiple regression analysis, many of which have already been touched on in earlier chapters, including:
  - the role of data scaling;
  - interpretation of models that are nonlinear in the independent variables; and
  - the choice of variables to include in a model.

#### Outline

- Effects of Data Scaling on OLS Statistics
- 2 More on Functional Form
- 3 More on Goodness-of-Fit and Selection of Regressors
- 4 Prediction

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

3 / 32

Effects of Data Scaling on OLS Statistics

#### Units of Measurement

- As we saw in ch. 2, changes in the units for either the dependent or explanatory variables will impact the corresponding coefficients,
   but it will not impact the corresponding t- or F-statistics
- Suppose we use the dataset smoke.dta to model cigarette consumption (cigs) as a function of age, income and education (educ); i.e.,

$$\widehat{cigs}_i = \hat{\beta}_0 + \hat{\beta}_1 age_i + \hat{\beta}_2 income_i + \hat{\beta}_3 educ_i$$

#### Units of Measurement

The following set of results emerge from Stata

| . reg    | cigs age   | income edu | с;         |        |           |      |           |
|----------|------------|------------|------------|--------|-----------|------|-----------|
| Source   | SS         | df         | MS         | Numb   | er of obs | =    | 807       |
|          |            |            |            | - F(3, | 803)      | =    | 2.81      |
| Model    | 1578.01597 | 3          | 526.005322 | 2 Prob | > F       | =    | 0.0384    |
| Residual | 150175.667 | 803        | 187.018265 | R-sq   | uared     | =    | 0.0104    |
|          |            |            |            | – Adj  | R-squared | =    | 0.0067    |
| Total    | 151753.683 | 806        | 188.280003 | 3 Root | MSE       | =    | 13.675    |
| cigs     | Coef.      | Std. Err.  | t          | P> t   | [95% C    | onf. | Interval] |
| age      | 0416932    | .0287628   | -1.45      | 0.148  | 09815     | 24   | .0147659  |
| income   | .0001171   | .0000559   | 2.09       | 0.036  | 7.38e-    | 06   | .0002268  |
|          | 3775954    | .1696335   | -2.23      | 0.026  | 71057     | 28   | 044618    |
| educ     |            |            |            |        |           |      |           |

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

5 / 32

#### Effects of Data Scaling on OLS Statistics

## Units of Measurement - Dependent Variable

• If we instead measure cigarette consumption in packs (packs), the corresponding model would become

$$\widehat{packs}_{i} = \frac{\widehat{cigs}_{i}}{20} = \frac{\hat{\beta}_{0} + \hat{\beta}_{1}age_{i} + \hat{\beta}_{2}income_{i} + \hat{\beta}_{3}educ_{i}}{20} 
= \frac{\hat{\beta}_{0}}{20} + \frac{\hat{\beta}_{1}}{20}age_{i} + \frac{\hat{\beta}_{2}}{20}income_{i} + \frac{\hat{\beta}_{3}}{20}educ_{i}$$
(1)

• Effectively, all of the coefficients are shrunk by a factor of 20, but all the *t*- and *F*-statistics will remain unchanged.

### Units of Measurement - Dependent Variable

Re-estimating the new model using Stata yields

| . reg    | packs age  | income ed | uc;        |        |           |       |           |
|----------|------------|-----------|------------|--------|-----------|-------|-----------|
| Source   | ss         | df        | MS         | Numb   | er of obs | s =   | 807       |
|          |            |           |            | - F(3, | , 803)    | =     | 2.81      |
| Model    | 3.94503993 | 3         | 1.31501331 | . Prob | ) > F     | =     | 0.0384    |
| Residual | 375.439167 | 803       | .467545662 | R-so   | quared    | =     | 0.0104    |
|          |            |           |            | - Adj  | R-squared | d =   | 0.0067    |
| Total    | 379.384207 | 806       | .470700008 | -      | MSE       | =     | .68377    |
|          |            |           |            |        |           |       |           |
| packs    | Coef.      | Std. Err. | t          | P> t   | [95% (    | Conf. | Interval] |
| age      | 0020847    | .0014381  | -1.45      | 0.148  | 00490     | 076   | .0007383  |
| income   | 5.86e-06   | 2.80e-06  | 2.09       | 0.036  | 3.69e-    | -07   | .0000113  |
| educ     | 0188798    | .0084817  | -2.23      | 0.026  | 03552     | 286   | 0022309   |
| _cons    | .6426972   | .1288045  | 4.99       | 0.000  | .3898     |       | .8955304  |
|          |            |           |            |        |           |       |           |

• Notice that all of the t-statistics, F-statistics, and  $R^2$  are unchanged.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

7 / 32

#### **Effects of Data Scaling on OLS Statistics**

# Units of Measurement Independent Variable

- Changes in the units of an explanatory variable only change the parameter on that explanatory variable.
- For example, measuring household income in thousands of dollars (*incthous*), the corresponding coefficient must increase by a factor of 1000.
- We would now have

$$\widehat{cigs}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}age_{i} + \hat{\beta}_{2}income_{i}\frac{1000}{1000} + \hat{\beta}_{3}educ_{i}$$

$$= \hat{\beta}_{0} + \hat{\beta}_{1}age_{i} + (1000 \cdot \hat{\beta}_{2})\frac{income_{i}}{1000} + \hat{\beta}_{3}educ_{i}$$

$$= \hat{\beta}_{0} + \hat{\beta}_{1}age_{i} + (1000 \cdot \hat{\beta}_{2})incthous_{i} + \hat{\beta}_{3}educ_{i}$$
(2)

## Units of Measurement - Independent Variable

• The following set of results emerge from Stata

| . reg    | cigs age   | incthous e | duc;       |                 |      |           |
|----------|------------|------------|------------|-----------------|------|-----------|
| Source   | SS         | df         | MS         | Number of obs   | =    | 807       |
|          |            |            |            | - F(3, 803)     | =    | 2.81      |
| Model    | 1578.01597 | 3          | 526.005322 | Prob > F        | =    | 0.0384    |
| Residual | 150175.667 | 803        | 187.018265 | R-squared       | =    | 0.0104    |
|          |            |            |            | - Adj R-squared | =    | 0.0067    |
| Total    | 151753.683 | 806        | 188.280003 | Root MSE        | =    | 13.675    |
|          |            |            |            |                 |      |           |
| cigs     | Coef.      | Std. Err.  | t          | P> t  [95% C    | onf. | Interval] |
| age      | 0416932    | .0287628   | -1.45      | 0.14809815      | 24   | .0147659  |
| incthous | .1171126   | .0559031   | 2.09       | 0.036 .00737    | 91   | .226846   |
| educ     | 3775954    | .1696335   | -2.23      | 0.02671057      | 28   | 044618    |
| _cons    | 12.85394   | 2.576089   | 4.99       | 0.000 7.797     | 28   | 17.91061  |

• Again, all our test statistics remain unchanged.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

9 / 32

#### Effects of Data Scaling on OLS Statistics

# Re-Centering

 In the standard multiple regression model specification, we usually write

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u \tag{3}$$

which, under the zero conditional mean assumption, yields

$$E(y|\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k \tag{4}$$

• In this setting, the intercept has a typically useless interpretation as

$$\beta_0 = E(y|x_1 = 0, \dots, x_k = 0)$$
 (5)

## Re-Centering (cont'd)

• An alternative is to re-center each of the regressors around a "type" of individual of interest (e.g.,  $x_1 = c_1, \ldots, x_k = c_k$ ), such as the mean individual.

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + u$$

$$+(\beta_1 c_1 + \dots + \beta_k c_k)$$

$$-(\beta_1 c_1 + \dots + \beta_k c_k)$$

$$y = (\beta_0 + \beta_1 c_1 + \dots + \beta_k c_k)$$

$$+ \beta_1 (x_1 - c_1) + \dots + \beta_k (x_k - c_k) + u$$

$$y = \theta_0 + \beta_1 \tilde{x}_1 + \dots + \beta_k \tilde{x}_k + u$$
(6)

where  $\tilde{x}_j \equiv (x_j - c_j)$ .

Now

$$\theta_0 = E(y|\tilde{x}_1 = 0, \dots, \tilde{x}_k = 0) = E(y|x_1 = c_1, \dots, x_k = c_k)$$
 (7)

Wooldridge (pp. 189-191) also talks about re-scaling.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

11 / 32

#### More on Functional Form

#### Linear in Parameters

- As noted before, when we talk about our regression model being linear, we mean *linear in parameters*.
- It is often convenient to use nonlinear transformations of the dependent and/or independent variables.
- In the case of a simple regression model, we might have

$$g(y) = \beta_0 + \beta_1 h(x) + u \tag{8}$$

so that

$$\beta_0 = E[g(y)|h(x) = 0] \tag{9}$$

and

$$\beta_1 = \frac{\partial E[g(y)|h(x)]}{\partial h(x)} \tag{10}$$

# The Level-Level Specification

• In the *level-level* specification, we have g(y) = y and h(x) = x so that

$$y = \beta_0 + \beta_1 x + u \tag{11}$$

In this case

$$\beta_0 = E[y|x=0] \tag{12}$$

and

$$\beta_1 = \frac{\partial E[y|x]}{\partial x} \tag{13}$$

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

13 / 32

#### More on Functional Form

## The Log-Log Specification

• In the log-log specification, we have g(y) = ln(y) and h(x) = ln(x) so that

$$ln(y) = \beta_0 + \beta_1 ln(x) + u \tag{14}$$

In this case

$$\beta_0 = E[\ln(y)|\ln(x) = 0] \tag{15}$$

and

$$\beta_1 = \frac{\partial E[\ln(y)|\ln(x)]}{\partial \ln(x)} \tag{16}$$

- $\beta_1$  has an *elasticity* interpretation, giving the percentage change in y for each percentage change in x.
- This percentage change interpretation holds best for small changes in *x*.
- Wooldridge (eq. 6.8, p. 192) provides the appropriate calculation for discrete shifts in *x*.

# Example of Log-Log Specification

 Suppose we wish to find out the elasticity of per capita net income with respect to per capita land base, with

$$ln(ynetpc) = \beta_0 + \beta_1 ln(apc) + u \tag{17}$$

where

- $ln(ynetpc) = ln(\frac{ynet}{hhsize})$  denotes the log of household net income per capita.
- $ln(apc) = ln(\frac{landcu}{hhsize})$  denotes household cultivated land per capita.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

15 / 32

#### More on Functional Form

# Example of Log-Log Specification

The following set of results emerge from Stata

reg lnynet lnapc df Number of obs =Source F( 1, 1823) = Prob > F = 20.9072029 20.9072029 Mode1 Residual 557.985632 1823 .306080983 R-squared Adj R-squared = Total 578.892835 1824 .317375458 Root MSE Std. Err. Inynetpc coef. [95% Conf. Interval] P> | t | .1439027 0.000 1napc .0174116 8.26 .1097539 .1780515 7.705952 .0133034 579.24 7.67986 0.000 \_cons

- The coefficient on *Inapc* (0.144) is the elasticity of per capita net income w.r.t. per capita land base.
- 0.144 implies that a 1% increase in rural households per capita land endowment would lead to an increase of 0.144% in per capita net income.

# The Log-Level (or Semi-Log) Specification

• In the *log-level* specification, we have g(y) = ln(y) and h(x) = x so that

$$ln(y) = \beta_0 + \beta_1 x + u \tag{18}$$

In this case

$$\beta_0 = E[\ln(y)|x=0] \tag{19}$$

and

$$\beta_1 = \frac{\partial E[\ln(y)|x]}{\partial x} \tag{20}$$

- $(100 \cdot \beta_1)$  gives the percentage change in y for each unit change in x.
- As in the case of the log-log specification, this percentage change interpretation holds best for small changes in x.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

17 / 32

#### More on Functional Form

# **Example of Log-Level Specification**

 Suppose we wish to use a log-level model of wages as a function of a individual's education level (Wooldridge, example 2.10), with

$$In(wage) = \beta_0 + \beta_1 educ + u \tag{21}$$

where

- wage denotes the individual's wage rate.
- educ denotes individual's years of education.

# Example of Log-Level Specification

• The following set of results emerge from Stata

| . reg lwage ed | luc        |           |           |         |         |       |           |
|----------------|------------|-----------|-----------|---------|---------|-------|-----------|
| Source         | ss         | df        | MS        | Numbe   | r of ob | s =   | 526       |
|                |            |           |           | – F(1,  | 524)    | =     | 119.58    |
| Model          | 27.5606296 | 1         | 27.560629 | 6 Prob  | > F     | =     | 0.0000    |
| Residual       | 120.769132 | 524       | .23047544 | 3 R−squ | ared    | =     | 0.1858    |
|                |            |           |           | – Adj R | -square | d =   | 0.1843    |
| Total          | 148.329762 | 525       | .2825328  | 8 Root  | MSE     | =     | .48008    |
|                |            |           |           |         |         |       |           |
| lwage          | Coef.      | Std. Err. | t         | P> t    | [95%    | Conf. | Interval] |
| educ           | .0827444   | .0075667  | 10.94     | 0.000   | .0678   | 796   | .0976092  |
| _cons          | .5837726   | .0973358  | 6.00      | 0.000   | .3925   | 562   | .774989   |
|                | l .        |           |           |         |         |       |           |

• The coefficient on *educ* (0.083) implies that an additional year of education would (on average) lead to an 8.3% increase in the individual's wage rate.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

19 / 32

#### More on Functional Form

# The Level-Log Specification

• In the *level-log* specification, we have g(y) = y and h(x) = ln(x) so that

$$y = \beta_0 + \beta_1 \ln(x) + u \tag{22}$$

In this case

$$\beta_0 = E[y|\ln(x) = 0] \tag{23}$$

and

$$\beta_1 = \frac{\partial E[y|\ln(x)]}{\partial \ln(x)} \tag{24}$$

- $\frac{\beta_1}{100}$  gives the change in y for each percentage change in x.
- As in the case of the log-log specification, this percentage change interpretation holds best for small changes in x.

# Example of Level-Log Specification

• Suppose we wish to use a level-log model of how food consumption changes with a given percentage change in income, with

$$xfdconpc = \beta_0 + \beta_1 ln(ynetpc) + u \tag{25}$$

#### where

- xfdconpc denotes food expenditure per capita (in Yuan).
- $ln(ynetpc) = ln(\frac{ynet}{hhsize})$  denotes the log of household net income per capita.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

21 / 32

#### More on Functional Form

# Example of Level-Log Specification

• The following set of results emerge from Stata

| . reg xfdconp     | c lnynet               |                |      |                  |                |                                                                   |  |  |  |
|-------------------|------------------------|----------------|------|------------------|----------------|-------------------------------------------------------------------|--|--|--|
| Source            | SS                     | df             |      | MS               |                | Number of obs = $1836$ F( 1, $1834$ ) = $1126.27$                 |  |  |  |
| Model<br>Residual | 194788218<br>317190209 | 1<br>1834      |      | 788218<br>949.95 |                | Prob > F = 0.0000<br>R-squared = 0.3805<br>Adj R-squared = 0.3801 |  |  |  |
| Total             | 511978427              | 1835           | 2790 | 07.317           |                | Root MSE = 415.87                                                 |  |  |  |
| xfdconpc          | Coef.                  | Std.           | Err. | t                | P> t           | [95% Conf. Interval]                                              |  |  |  |
| lnynetpc<br>_cons | 578.4513<br>-3271.21   | 17.23<br>133.6 |      | 33.56<br>-24.48  | 0.000<br>0.000 | 544.6464 612.2563<br>-3533.333 -3009.087                          |  |  |  |

• The coefficient on *Inynetpc* (578) implies that a 1% increase in income would lead to an increase in food expenditures of 5.78 Yuan.

# Choosing Logs versus Levels

- Logs are typically used for variables measured in positive currency amounts, such as wages, salaries, sales, or firm market values.
- Rationales for doing so include
  - Doing so provides the convenient elasticity interpretation;
  - Currency metrics are often positively skewed (i.e., with long right-hand tails) and a logarithmic transformation creates a more symmetric distribution.
    - ... which is more consistent with the CLM's normality assumption.
- The log transformation is problematic if the variable can take on a zero value.
- One can use  $R^2$  to guide choosing between *level* vs. *log* versions of an independent variable.
  - ... but not between a *level* vs. *log* version of an independent variable.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

23 / 32

#### More on Functional Form

#### Models with Quadratics

- It is often desirable to incorporate quadtratic terms into a model to allow for increasing or decreasing effects of a variable.
- For example, while one might expect wage rates to increase with experience, the *marginal* impact of experience is likely to decrease with experience.
- In the case of a single independent variable, this would be captured by setting

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + u \tag{26}$$

• In this case the marginal effect of x becomes:

$$\frac{\partial E[y|x]}{\partial x} = \beta_1 + 2\beta_2 x \tag{27}$$

• In this case, the marginal (or partial) effect of x on y is no longer constant, but depends on the level of x.

# The Wage Example

 Wooldridge (eq. 6.12) presents an example using wages and experience, with

$$\widehat{wage} = 3.73 + 0.298 exper - 0.0061 exper^2$$

$$(0.35) (0.041) (0.009)$$
(28)

In this case,

$$\frac{\partial E[wage|exper]}{\partial exper} = 0.298 - 0.0122exper \tag{29}$$

with experience increasing expected wage at a diminishing rate.

• The turning point in this relationship occurs at:

$$x^* = -\frac{\hat{\beta}_1}{2\hat{\beta}_2} \tag{30}$$

• In the case of the wage example, this occurs at  $x^* = 24.4$ .

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

25 / 32

#### More on Functional Form



#### Interaction Terms

- It is often of interest to allow for **interaction** effects between two variables.
- With two independent variables, this would involve a model such as

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + u. \tag{31}$$

• In this case, the marginal effect of  $x_1$  now depends on the level of  $x_2$ ; i.e.,

$$\frac{\partial E[y|x_1]}{\partial x_1} = \beta_1 + \beta_3 x_2. \tag{32}$$

• Note that it is also the case that the marginal effect of  $x_2$  now depends on the level of  $x_1$ ; i.e.,

$$\frac{\partial E[y|x_2]}{\partial x_2} = \beta_2 + \beta_3 x_1. \tag{33}$$

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

27 / 32

#### More on Functional Form

## Housing Example of an Interaction Effect

- Suppose that we are modeling housing prices as a function of house size (sqft) in a log-log model, but we want the marginal effect of house size to depend on the age of the home.
- One specification would be

$$In(price) = \beta_0 + \beta_1 In(area) + \beta_2 age + \beta_3 [In(area) \cdot age] + u.$$
 (34)

where area denotes the house's square footage.

• In this case:

$$\frac{\partial E[\ln(price)|\ln(area)]}{\partial \ln(area)} = \beta_1 + \beta_3 age. \tag{35}$$

• In the Stata results on the next page, we find that there is a significant interaction effect, with the elasticity of price with respect to square footage increasing with house age.

| . gen agexlare                     | ea=age∗larea                                |                                              |                                 |                                  |                                             |      |                                            |
|------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------|---------------------------------------------|------|--------------------------------------------|
| . reg lprice l                     | area age agex                               | larea                                        |                                 |                                  |                                             |      |                                            |
| Source                             | SS                                          | df                                           | MS                              |                                  | er of obs<br>317)                           | =    | 321<br>129.60                              |
| Model<br>Residual                  | 33.8450131<br>27.5939722                    | 3<br>317                                     | 11.281671<br>.087047231         | Prob                             |                                             | =    | 0.0000<br>0.5509                           |
| Total                              | 61.4389853                                  | 320                                          | .191996829                      | ,                                | R-squared<br>MSE                            | =    | 0.5466<br>.29504                           |
| lprice                             | Coef.                                       | Std. Err.                                    | t                               | P> t                             | [95% Con                                    | f. ] | [nterval]                                  |
| larea<br>age<br>agexlarea<br>_cons | .7204672<br>0261485<br>.0027749<br>5.998851 | .0614051<br>.0101517<br>.0013039<br>.4710447 | 11.73<br>-2.58<br>2.13<br>12.74 | 0.000<br>0.010<br>0.034<br>0.000 | .5996543<br>0461218<br>.0002094<br>5.072082 |      | .8412802<br>0061753<br>.0053403<br>6.92562 |

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

29 / 32

#### More on Goodness-of-Fit and Selection of Regressors

# Adjusted $R^2$

- One limitation of  $R^2$  as a measure of model fit is that there is no penalty for adding variables to a model, even if they provide relatively little explanatory power.
- The adjusted- $R^2$ , denoted  $\bar{R}^2$ , does such an adjustment, taking into account the loss of degrees of freedom by adding variables.
- Specifically,

$$\bar{R}^2 = \frac{\left(\frac{SSR}{n-k-1}\right)}{\left(\frac{SST}{n-1}\right)} \tag{36}$$

• Essentially, this adjustment argues for simpler models, all else equal.

# Including Too Many Factors in a Model

- As Wooldridge points out on pp. 205-206, one has to be careful not to include too many factors in a model.
- In particular, we want to be sure that we are not controlling for the very effect we want to capture.
- In modeling the impact of a change in liquor taxes on highway fatalities, we are trying to capture the fact that taxes discourage liquor consumption and, hence, liquor related road fatalities.
- We would not want to specific a model such as

$$fatalities = \beta_0 + \beta_1 tax + \beta_2 beercons + \cdots$$
 (37)

because then  $\beta_1$  would be measuring the effect of the beer tax on fatalities holding beer consumption constant.

• This is sometimes referred to as **over controlling**.

2017 Herriges (MSU)

Do not quote/distribute without permission

Spring 2017

31 / 32

#### Prediction

#### Prediction

- We are often interested in using our estimated model for prediction purposes.
- Specifically, we might want to estimate what the expected value of our dependent variable might be for a given "type" of individual, with say  $x_1 = c_1, \ldots, x_k = c_k$ .
- But we know that

$$\theta_0 \equiv E(y|x_1 = c_1, \dots, x_k = c_k) = \beta_0 + \beta_1 c_1 + \dots + \beta_k c_k$$
 (38)

A natural estimator would be

$$\hat{\theta}_0 = \hat{\beta}_0 + \hat{\beta}_1 c_1 + \dots + \hat{\beta}_k c_k \tag{39}$$

• But, if you recall from the earlier discussion in this chapter about re-centering,  $\hat{\theta}_0$  is just the OLS estimated intercept from the model:

$$y = \theta_0 + \beta_1 \tilde{x}_1 + \dots + \beta_k \tilde{x}_k + u \tag{40}$$

where  $\tilde{x}_j \equiv (x_j - c_j)$ , providing also  $se(\hat{\theta})$ .