PMATH 365: Suggested problems for the final

To prepare for the final exam, I recommend reviewing Quizzes 1-10. I also recommend going through the following list of questions.

A. Differentiable maps, immersions, embeddings and submanifolds.

- 1. Define the following:
 - (a) A k-dimensional topological submanifold of \mathbb{R}^n .

Solution. A set $M \subset \mathbb{R}^n$ such that for all $p \in M$, there exists an open neighbourhood V of p, an open set $U \subset \mathbb{R}^k$, and a homeomorphism $\alpha : U \subset \mathbb{R}^k \to V \subset M \subset \mathbb{R}^n$.

(b) An immersion of class C^r , $r \ge 1$.

Solution. A map $\alpha: U \subset \mathbb{R}^k \to \mathbb{R}^n$ such that α is of class C^r and $D\alpha$ has maximal rank k everywhere on U.

(c) An embedding of class C^r , $r \ge 1$.

Solution. An immersion that is homeomorphic onto its image.

(d) A k-dimensional submanifold of \mathbb{R}^n of class C^r , $r \geq 1$.

Solution. A set $M \subset \mathbb{R}^n$ such that for all $p \in M$, there exists an open neighbourhood V of p, an open set $U \subset \mathbb{R}^k$, and a homeomorphism $\alpha : U \subset \mathbb{R}^k \to V \subset M \subset \mathbb{R}^n$ satisfying the following properties:

- (i) α is of class C^r :
- (ii) $D\alpha(x)$ has rank k for all $x \in U$.
- (e) A coordinate chart (of class C^r) of a k-dimensional submanifold of \mathbb{R}^n (of class C^r , $r \geq 1$).

Solution. This is a homeomorphism as in (d).

(f) An atlas (of class C^r) of a k-dimensional submanifold of \mathbb{R}^n (of class C^r , $r \geq 1$).

Solution. A set of coordinate charts $\{\alpha_i : U_i \subset \mathbb{R}^k \to V_i \subset M \subset \mathbb{R}^n\}_{i \in I}$ of class C^r for M (where I is some index set) such that $\bigcup_{i \in I} V_i = M$.

2. What is the difference between an immersion and an embedding? Give an example of both. In particular, give an example of an immersion that is *not* an embedding.

Solution. An embedding has the requirement that it is homeomorphic onto its image. The canonical immersion is the inclusion map $\iota: \mathbb{R}^k \to \mathbb{R}^n$ defined by $(x_1, \ldots, x_k) \mapsto (x_1, \ldots, x_k, 0, \ldots, 0)$. This is an immersion of class C^{∞} since ι is smooth with

$$D\iota = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \\ \hline 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}$$

so that $D\iota$ has rank k everywhere. It is also an embedding as it is homeomorphic onto its image with inverse $\iota^{-1}:\iota(\mathbb{R}^k)\subset\mathbb{R}^n\to\mathbb{R}^k$ given by $(x_1,\ldots,x_k,0,\ldots,0)\mapsto(x_1,\ldots,x_k)$.

For an example of an immersion that is not an embedding, consider the parametrization $\alpha(t)=(t^2-1,t(t^2-1))$ of the α -curve, where $t\in\mathbb{R}$. We see that α is smooth with derivative matrix $D\alpha(t)=(2t,3t^2-1)\neq(0,0)$ for all $t\in\mathbb{R}$, so α is an immersion of class C^{∞} . However, it is not homeomorphic onto its image since it is not injective. Indeed, we have $\alpha(1)=\alpha(-1)=(0,0)$.

3. Give an example of a subset of \mathbb{R}^n that is not a topological submanifold of \mathbb{R}^n . Explain!

Solution. We again consider the α -curve $C = \{(x,y) \in \mathbb{R}^2 : y^2 = x^2(x+1)\} \subset \mathbb{R}^2$, which can be parametrized by the map $\alpha : \mathbb{R} \to C \subset \mathbb{R}^2$ given by $t \mapsto (t^2 - 1, t(t^2 - 1))$. Note that if we remove the points $t = \pm 1$, we see that α has inverse

$$\alpha^{-1}: C \setminus \{(0,0)\} \to \mathbb{R} \setminus \{\pm 1\}$$
$$(x,y) \mapsto 1/x.$$

That is, C is a 1-dimensional topological submanifold of \mathbb{R}^2 away from the point (0,0).

Now, suppose that C were a topological submanifold of \mathbb{R}^2 . Our discussion above means that C must be 1-dimensional. Since $(0,0) \in C$, there exists an open neighbourhood V of (0,0), an open set $U \subset \mathbb{R}^1$, and a homeomorphism $\alpha: U \subset \mathbb{R}^1 \to V \subset C \subset \mathbb{R}^2$. Since α is a homeomorphism, there exists a unique point $t_0 \in U$ such that $\alpha(t_0) = (0,0)$. Since U is open, we can pick $\varepsilon > 0$ such that $B_{\varepsilon}(t_0) = (t_0 - \varepsilon, t_0 + \varepsilon) \subset U$. Write $U' = B_{\varepsilon}(t_0)$ and let $V' = \alpha(U')$ so that $\alpha|_{U'}: U' \to V'$ is also a homeomorphism.

Observe that $V' \setminus \{(0,0)\}$ consists of three or four connected components depending on how large V' is: one on the bottom right quadrant, one on the top right quadrant, and one or two on the left of the y-axis. On the other hand, $U' \setminus \{t_0\}$ has two components, which is a contradiction since homeomorphisms preserve the number of connected components. Therefore, C is not a topological submanifold of \mathbb{R}^2 .

4. Give an example of a subset of \mathbb{R}^n that is a topological submanifold but *not* a submanifold of class C^r for any $r \geq 1$. Explain!

Solution. Let $M = \{(x, |x|) : x \in \mathbb{R}\} \subset \mathbb{R}^2$, which is the graph of f(x) = |x| over $x \in \mathbb{R}$. In particular, since f(x) = |x| is continuous, it follows that M is a 1-dimensional topological submanifold of \mathbb{R}^2 . Note that f is smooth away from x = 0, so $M \setminus \{(0,0)\}$ is a 1-dimensional submanifold of class C^{∞} .

However, we claim that M is not a submanifold of class C^r for some $r \geq 1$. Suppose otherwise, so at the point $(0,0) \in M$, there exists an open neighbourhood V of (0,0), an open set $U \subset \mathbb{R}$, and a homeomorphism $\alpha: U \subset \mathbb{R} \to V \subset M \subset \mathbb{R}^2$ such that α is of class C^r and $D\alpha$ has maximal rank 1 everywhere on U. In particular, this means that $D\alpha(t) = \alpha'(t) \neq (0,0)$ for all $t \in U$. But $\alpha'(t)$ is tangent to M at $\alpha(t)$, which gives two possibilities:

• If $\alpha(t)$ is on the line y = x, then $\alpha'(t)$ is a direction vector of y = x. This means that for some $c: I \subset \mathbb{R} \to \mathbb{R}$, we have

$$\alpha'(t) = c(t) \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

Since α is of class C^r where $r \geq 1$, this means $\alpha'(t)$ is continuous, so $c: I \to \mathbb{R}$ is continuous.

• If $\alpha(t)$ is on the line y = -x, then $\alpha'(t)$ is a direction vector of y = -x. Then for some $d: I' \subset \mathbb{R} \to \mathbb{R}$, we have

$$\alpha'(t) = d(t) \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

The same argument shows that $d: I' \to \mathbb{R}$ is continuous.

But α is a bijection, so $(0,0) = \alpha(t_0)$ for some $t_0 \in U$. By the continuity of $\alpha'(t)$, we obtain

$$\lim_{t\to t_0^-}\alpha'(t)=\lim_{t\to t_0^+}\alpha'(t).$$

Without loss of generality, suppose that $\alpha(t)$ is moving along M from left to right. (We can parametrize in the other direction otherwise.) Then if $t < t_0$, then we are in the second case above, whereas if $t > t_0$, then we are in the first case. This implies that

$$\lim_{t\to t_0^-}\alpha'(t)=\lim_{t\to t_0^-}d(t)\begin{pmatrix}1\\-1\end{pmatrix}=\lim_{t\to t_0^+}c(t)\begin{pmatrix}1\\1\end{pmatrix}=\lim_{t\to t_0^+}\alpha'(t).$$

But these vectors are not parallel to each other, so $\lim_{t\to t_0^-} d(t) = \lim_{t\to t_0^+} c(t) = 0$. This implies that $\alpha'(t_0) = (0,0)$, which contradicts the fact that $D\alpha(t) = \alpha'(t)$ has rank 1 for all $t \in U$.

5. True of false?

- (a) Every topological submanifold of \mathbb{R}^n is also a submanifold of \mathbb{R}^n of class C^r for some $r \geq 1$. Solution. False, take the graph of f(x) = |x|.
- (b) Every submanifold of \mathbb{R}^n of class C^r for some $r \geq 1$ is also a topological submanifold of \mathbb{R}^n . Solution. True.
- (c) A subset of \mathbb{R}^n that is not a topological submanifold may be a submanifold of class C^r for some $r \geq 1$.

Solution. False; consider the contrapositive of (b).

(d) Every topological submanifold of \mathbb{R}^n admits an atlas of class C^r for some $r \geq 1$.

Solution. False. If a topological submanifold of \mathbb{R}^n admits an atlas of class C^r for some $r \geq 1$, then it is a submanifold of \mathbb{R}^n of class C^r , but this is not true of all topological submanifolds by (a).

(e) Every coordinate chart of class C^r , $r \ge 1$, of a submanifold is a homeomorphism.

Solution. True.

(f) Every coordinate chart of class C^r , $r \ge 1$, of a submanifold is an embedding.

Solution. True.

(g) Let $\alpha: U \subset \mathbb{R}^k \to V \subset M \subset \mathbb{R}^n$ be a coordinate chart of class C^r , $r \geq 1$, of a k-dimensional submanifold M of \mathbb{R}^n . Then, $\alpha^{-1}: V \subset \mathbb{R}^n \to U \subset \mathbb{R}^k$ is also of class C^r .

Solution. True.

(h) Every immersion is a homeomorphism.

Solution. False; take the parametrization $\alpha(t) = (t^2 - 1, t(t^2 - 1))$ of the α -curve.

(i) Every embedding is a homeomorphism.

Solution. True.

(j) Every submanifold of \mathbb{R}^n is also an immersed submanifold of \mathbb{R}^n of class C^r .

Solution. True; the coordinate charts are embeddings and therefore immersions.

(k) The n-sphere admits an atlas that consists of a single chart.

Solution. False. The *n*-sphere is compact, and hence closed and bounded by Heine-Borel. The domain of a coordinate chart is an open set. Since homeomorphisms send closed sets to closed sets and the only open and closed set in \mathbb{R}^{n+1} is \emptyset , it is impossible to use a single chart

(l) Every k-dimensional submanifold of \mathbb{R}^n of class C^r , $r \geq 1$, is locally the graph of a function $f: U \subset \mathbb{R}^r \to \mathbb{R}^{n-k}$ of class C^r .

Solution. True.

(m) Every submanifold of \mathbb{R}^n of class C^r , $r \geq 1$, is locally the zero set a function $F: U \subset \mathbb{R}^n \to \mathbb{R}^{n-k}$ of class C^r of maximal rank (that is, DF has maximal rank n-k on $F^{-1}(0)$).

Solution. True.

- 6. Determine whether the following sets are topological submanifolds of \mathbb{R}^n or submanifolds of \mathbb{R}^n of class C^r for some $r \geq 1$. Justify your answers!
 - (a) \mathbb{R}^n .

Solution. \mathbb{R}^n is a submanifold of \mathbb{R}^n of class C^{∞} since we can choose the identity map on \mathbb{R}^n as the coordinate chart.

(b) An open subset U of \mathbb{R}^n .

Solution. This is a submanifold of \mathbb{R}^n of class C^{∞} ; take the identity map on U as the coordinate chart.

(c) The graph of a continuous function $f: U \subset \mathbb{R}^k \to \mathbb{R}^{n-k}$.

Solution. This is a k-dimensional topological submanifold of \mathbb{R}^n . If $M = \{(x, f(x)) \in \mathbb{R}^k \times \mathbb{R}^{n-k} : x \in U\}$ is the graph, then $\alpha : U \subset \mathbb{R}^k \to M \subset \mathbb{R}^n$ given by $x \mapsto (x, f(x))$ is a homeomorphism with inverse $(x_1, \ldots, x_n) \mapsto (x_1, \ldots, x_k)$.

(d) The graph of a function $f: U \subset \mathbb{R}^k \to \mathbb{R}^{n-k}$ of class C^r for some $r \geq 1$.

Solution. This is a k-dimensional submanifold of class C^r . Take the same homeomorphism $\alpha: U \subset \mathbb{R}^k \to M \subset \mathbb{R}^n$ defined by $x \mapsto (x, f(x))$ as above. This is of class C^r since f is of class C^r and $D\alpha(x)$ has rank k for all $x \in U$ since the upper part of $D\alpha(x)$ is the $k \times k$ identity matrix.

(e) The zero set of a continuous function $F: U \subset \mathbb{R}^n \to \mathbb{R}^{n-k}$.

Solution. This is not a topological submanifold of \mathbb{R}^n in general. Consider the α -curve, which is the zero set of $f(x,y) = y^2 - x^2(x+1)$ but is not a topological submanifold of \mathbb{R}^2 .

(f) The zero set of a function $F: U \subset \mathbb{R}^n \to \mathbb{R}^{n-k}$ of class C^r , $r \geq 1$, of maximal rank.

Solution. This is a k-dimensional submanifold of class C^r ; in fact, this is an equivalent characterization.

(g) $\{(x,y) \in \mathbb{R}^2 : y = x^2, -1 \le x \le 1\} \cup \{(x,y) \in \mathbb{R}^2 : y = 1, -1 \le x \le 1\} \subset \mathbb{R}^2$.

Solution. This is a 1-dimensional topological submanifold of \mathbb{R}^2 , but not a submanifold of \mathbb{R}^2 of class C^r by considering the points $(\pm 1, 1)$, which lie on both curves.

(h) The α -curve $\{(x,y) \in \mathbb{R}^2 : y^2 = x^2(x+1)\} \subset \mathbb{R}^2$. For a picture, see (second picture).

Solution. Not a topological submanifold of \mathbb{R}^2 .

(i) $\{(x,y) \in \mathbb{R}^2 : xy = 1\} \subset \mathbb{R}^2$.

Solution. This is a smooth submanifold of \mathbb{R}^2 since it is the graph of the smooth function f(x) = 1/x on $x \in \mathbb{R} \setminus \{0\}$.

(j) The cylinder $\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1\} \subset \mathbb{R}^3$.

Solution. Smooth submanifold of \mathbb{R}^3 since it is the graph of the smooth function $f(x) = x^2 + y^2 - 1$ on $x \in \mathbb{R}$.

(k) The cone $\{(x, y, z) \in \mathbb{R}^3 : z = \sqrt{x^2 + y^2}\} \subset \mathbb{R}^3$.

Solution. Topological submanifold of \mathbb{R}^3 since it is the graph of the continuous function $f(x,y) = \sqrt{x^2 + y^2}$, but not a submanifold of \mathbb{R}^3 of class C^r for some $r \geq 1$ by considering the point (0,0,0) in the cone.

(1) The double cone $\{(x,y,z) \in \mathbb{R}^3 : z^2 = x^2 + y^2\} \subset \mathbb{R}^3$.

Solution. Not a topological submanifold of \mathbb{R}^3 by considering (0,0,0).

(m) The twisted cubic $\{(x, y, z) \in \mathbb{R}^3 : y = x^2, z = x^3\} \subset \mathbb{R}^3$.

Solution. Smooth submanifold of \mathbb{R}^3 , since it is the graph of $f(x) = (x^2, x^3)$.

(n) $\{(x,y,z) \in \mathbb{R}^3 : y = -1\} \cup \{(x,y,z) \in \mathbb{R}^3 : x = y = 0\} \subset \mathbb{R}^3$.

Solution. Neither; one of the sets is 2-dimensional while the other is 1-dimensional.

(o) The *n*-sphere $S^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + \dots + x_{n+1}^2 = 1\} \subset \mathbb{R}^{n+1}$.

Solution. Smooth submanifold of \mathbb{R}^{n+1} since it is the zero set of the function $f(x_1,\ldots,x_{n+1})=x_1^2+\cdots+x_{n+1}^2-1$.

(p) The general linear group $GL(n,\mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) : \det A \neq 0\} \subset M_{n \times n} = \mathbb{R}^{n^2}$.

Solution. Note that det is a smooth function as it is a polynomial of the matrix entries. Then $\mathbb{R}\setminus\{0\}$ is open, and therefore $\mathrm{GL}(n,\mathbb{R})$ being the preimage of det under $\mathbb{R}\setminus\{0\}$ is also open. Therefore, $\mathrm{GL}(n,\mathbb{R})$ is a smooth submanifold of $M_{n\times n}(\mathbb{R})$.

(q) The special linear group $SL(2,\mathbb{R}) = \{A \in M_{2\times 2}(\mathbb{R}) : \det A = 1\} \subset M_{2\times 2} = \mathbb{R}^4$.

Solution. Note that det $A = a_1a_4 - a_2a_3$ and so $SL(2, \mathbb{R})$ is the zero set of the function $F(a_1, a_2, a_3, a_4) = a_1a_4 - a_2a_3 - 1$. Then $SL(2, \mathbb{R})$ is a smooth submanifold of \mathbb{R}^4 : we see that F is smooth and for any $A \in SL(2, \mathbb{R})$, we have

$$DF(A) = (a_4, -a_3, -a_2, a_1).$$

Note that A is not the zero matrix since det A = 1, so DF(A) has rank 1 for all $A \in SL(2, \mathbb{R})$.

- 7. Construct a smooth atlas for the following smooth submanifolds.
 - (a) \mathbb{R}^n .

Solution. The identity map on \mathbb{R}^n .

(b) An open subset U of \mathbb{R}^n .

Solution. The identity map on U.

(c) The general linear group $GL(n,\mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) : \det A \neq 0\} \subset M_{n \times n} = \mathbb{R}^{n^2}$.

Solution. The identity map on $GL(n, \mathbb{R})$ since it is open.

(d) The graph of a function $F: U \subset \mathbb{R}^k \to \mathbb{R}^{n-k}$ of class C^r for some r > 1.

Solution. The map $U \subset \mathbb{R}^k \to \mathbb{R}^n$ defined by $x \mapsto (x, F(x))$.

(e) The cubic $\{(x,y) \in \mathbb{R}^2 : x = y^3\} \subset \mathbb{R}^2$.

Solution. The map $\mathbb{R} \to \mathbb{R}^2$ defined by $x \mapsto (x, x^{1/3})$.

(f) The hyperbola $\{(x,y) \in \mathbb{R}^2 : xy = 1\} \subset \mathbb{R}^2$.

Solution. The map $\mathbb{R}\setminus\{0\}\to\mathbb{R}^2$ defined by $x\mapsto(x,1/x)$.

(g) The unit circle $S^1 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\} \subset \mathbb{R}^2$.

Solution. The maps $\alpha_1:(0,2\pi)\subset\mathbb{R}\to S^1\setminus\{(1,0)\}$ and $\alpha_2:(-\pi,\pi)\subset\mathbb{R}\to S^1\setminus\{(-1,0)\}$, both defined by $t\mapsto(\cos t,\sin t)$.

(h) The twisted cubic $\{(x,y,z) \in \mathbb{R}^3 : y = x^2, z = x^3\} \subset \mathbb{R}^3$.

Solution. The map $t \mapsto (t, t^2, t^3)$.

(i) The plane $\{(x,y,z)\in\mathbb{R}^3: x+y+z=1\}\subset\mathbb{R}^3.$

Solution. This is the graph of the function f(x,y) = 1 - x - y, so we can take the chart $(x,y) \mapsto (x,y,1-x-y)$.

(j) The paraboloid $\{(x, y, z) \in \mathbb{R}^3 : y = x^2 + z^2 + 1\} \subset \mathbb{R}^3$.

Solution. This is the graph of the function $f(x,z) = x^2 + z^2 + 1$, so we can take the chart $(x,z) \mapsto (x,x^2+z^2+1,z)$.

(k) The open unit ball $\{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 < 1\} \subset \mathbb{R}^3$.

Solution. Note that $B_1((0,0,0)) \subset \mathbb{R}^3$ is open, so we can take the identity map.

- 8. One version of the *Invariance of Dimension Theorem* states that if m > n and U is an open subset of \mathbb{R}^m , then there exists no continuous injective mapping from U to \mathbb{R}^n . Use this to prove the following:
 - (a) \mathbb{R}^m is homeomorphic to \mathbb{R}^n if and only if m=n.

Solution. We see that m=n implies $\mathbb{R}^m=\mathbb{R}^n$, so there is nothing to prove. Conversely, suppose that \mathbb{R}^m is homeomorphic to \mathbb{R}^n . Then there is a continuous injective mapping $f:\mathbb{R}^m\to\mathbb{R}^n$, so $m\leq n$ by the Invariance of Dimension Theorem. Similarly, we see that $f^{-1}:\mathbb{R}^n\to\mathbb{R}^m$ is a continuous injective mapping, so $n\leq m$ and hence m=n.

(b) If $M \subset \mathbb{R}^n$ is a k-dimensional submanifold of \mathbb{R}^n , then $k \leq n$.

Solution. Let $M \subset \mathbb{R}^n$ be a k-dimensional submanifold of \mathbb{R}^n . Then for all $p \in M$, there exists a neighbourhood V of p, an open set $U \subset \mathbb{R}^k$, and a homeomorphism $\alpha : U \subset \mathbb{R}^k \to V \subset M \subset \mathbb{R}^n$. In particular, we have that α is a continuous injective mapping from U to \mathbb{R}^n , so we must have $k \leq n$ by the Invariance of Dimension Theorem.

B. Velocity vectors, pushforwards, and tangents spaces.

- 1. Define the following:
 - (a) The velocity vector of a parametrised curve $\gamma:(\alpha,\beta)\to\mathbb{R}^n$ of class $C^r, r\geq 1$.

Solution. The velocity vector is $\gamma'(t)$.

(b) The tangent space $T_{\vec{x}}(\mathbb{R}^n)$ to \mathbb{R}^n at $\vec{x} \in \mathbb{R}^n$.

Solution. The tangent space $T_{\vec{x}}(\mathbb{R}^n)$ to \mathbb{R}^n at $\vec{x} \in \mathbb{R}^n$ is

$$T_{\vec{x}}(\mathbb{R}^n) = \{ (\vec{x}; \vec{v}) : \vec{v} \in \mathbb{R}^n \}.$$

(c) The pushforward α_* of a map $\alpha: U \to \mathbb{R}^n$ of class C^r , $r \geq 1$, where U is an open subset of \mathbb{R}^k .

Solution. The pushward α_* of the map $\alpha: U \to \mathbb{R}^n$ is defined by

$$\alpha_*: T_{\vec{x}} \mathbb{R}^k \to T_p \mathbb{R}^n$$

 $(\vec{x}; \vec{v}) \mapsto (p; D\alpha(\vec{x})\vec{v}),$

where $\vec{x} \in U$ and $p = \alpha(\vec{x})$.

(d) The tangent space of T_pM to a k-submanifold of \mathbb{R}^n of class C^r at $p \in M$.

Solution. Let $\alpha: U \subset \mathbb{R}^k \to V \subset M \subset \mathbb{R}^n$ be a coordinate chart about p. The tangent space of M at p is defined as

$$T_pM := \alpha_*(T_{x_0} \mathbb{R}^k) \subset T_p \mathbb{R}^n,$$

where $x_0 \in U$ is the unique point such that $p = \alpha(x_0)$.

2. Prove that, for all $\vec{x} \in \mathbb{R}^n$,

 $T_{\vec{x}}\mathbb{R}^n = \{(\vec{x}; \vec{v}) : \vec{v} \text{ is the velocity vector at } \vec{x} \text{ of a parametrised curve } \gamma \text{ passing through } \vec{x}\}.$

Solution. Let $\vec{x} \in \mathbb{R}^n$. For all $\vec{v} \in \mathbb{R}^n$, consider the parametrized curve $\gamma(t) = \vec{x} + t\vec{v}$, where $t \in \mathbb{R}$. Observe that $\gamma'(t) = \vec{v}$. In particular, at t = 0, we have $\gamma(0) = \vec{x}$ and $\gamma'(0) = \vec{v}$, so \vec{v} is the velocity vector at \vec{x} .

3. Let M be a k-dimensional submanifold of \mathbb{R}^n of class C^r , $r \geq 1$. Show that $\dim_{\mathbb{R}} T_p M = k$ for all $p \in M$.

Solution. Let $p \in M$. Note that $T_pM = \alpha_*(T_{x_0} \mathbb{R}^k)$ where $x_0 \in U$ is the unique point such that $\alpha(x_0) = p$. We see that $D\alpha$ has rank k everywhere, so the image of the map

$$\alpha_*(x_0; \vec{v}) = (p; D\alpha(x_0)\vec{v}),$$

namely T_pM , must be of dimension k.

- 4. Compute the tangent space at the given point.
 - (a) T_pU for any point p in the open set $U \subset \mathbb{R}^n$.

Solution. The identity map $\alpha: U \to U$ has $D\alpha(x) = I_{n \times n}$ for all $x \in U$. By definition, we have $T_pU = \alpha_*(T_p\mathbb{R}^n)$ for all $p \in U$ since p is the unique point for which $\alpha(p) = p$. Then for all $(p; v) \in T_p\mathbb{R}^n$, we see that

$$\alpha_*(p; \vec{v}) = (p; D\alpha(p)\vec{v}) = (p; \vec{v}),$$

which implies that $T_pU = T_p \mathbb{R}^n$.

(b) The graph of a function $f: U \subset \mathbb{R}^k \to \mathbb{R}^{n-k}$ of class C^r , where U is an open subset of \mathbb{R}^k . Take any $p \in M$.

Solution. Consider the C^r map $\alpha: U \subset \mathbb{R}^k \to \mathbb{R}^{n-k}$ given by $\vec{x} \mapsto (\vec{x}, f(\vec{x}))$. We have that

$$D\alpha(\vec{x}) = \left[\frac{I_{k \times k}}{Df(\vec{x})} \right],$$

where $Df(\vec{x})$ is an $(n-k) \times k$ matrix for all $\vec{x} \in U$. Now, let $p \in M$ so that $p = \alpha(\vec{x}_0) = (\vec{x}_0, f(\vec{x}_0))$ for some $\vec{x}_0 \in U$. Then we find that

$$T_p M = \operatorname{span}_{\mathbb{R}} \left\{ \left[\frac{\vec{e_i}}{\partial f(\vec{x_0})/\partial x_i} \right] : i = 1, \dots, k \right\},$$

where $\vec{e}_1, \ldots, \vec{e}_k$ is the standard basis for \mathbb{R}^k . In particular, these are the columns of $D\alpha(\vec{x}_0)$.

(c) The zero set M of a function $F: U \subset \mathbb{R}^n \to \mathbb{R}^{n-k}$ of class C^r , where U is an open set in \mathbb{R}^n , such that DF(p) has rank n-k for all $p \in M$. Take any $p \in M$.

Solution. Here, we use Problem 1 of Assignment 3. Let M be a k-dimensional submanifold of \mathbb{R}^n of class C^r with $r \geq 1$ and let $p \in M$. Then $(p; \vec{v})$ is a tangent vector to M at p if and only if there exists a parametrized curve $\gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ of class C^r whose image lies in M and is such that $(p; \vec{v}) = (\gamma(0); \gamma'(0))$.

We now show that $T_pM = \{(p; \vec{v}) \in M \times \mathbb{R}^n : DF(p)\vec{v} = \vec{0}\} = \ker(DF(p))$. Let $(p; \vec{v}) \in T_pM$. Then there exists a curve $\gamma : (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ of class C^r on M such that $(p; \vec{v}) = (\gamma(0); \gamma'(0))$. We have $F(\gamma(t)) = \vec{0}$ for all $t \in (-\varepsilon, \varepsilon)$, so by the chain rule, we have

$$DF(p)\vec{v} = DF(\gamma(0))\gamma'(0) = \frac{\mathrm{d}}{\mathrm{d}t}F(\gamma(t))\Big|_{t=0} = 0.$$

Then $T_pM \subset \ker(DF(p))$. But T_pM has dimension k. Since DF(p) has rank n-k for all $p \in M$, we see that $\ker(DF(p))$ is a k-dimensional subspace of \mathbb{R}^n . Since T_pM is a subspace of $\ker(DF(p))$ with both of dimension k, this implies that they are equal, as desired.

(d) The sphere S^n in \mathbb{R}^{n+1} at any point in S^n .

Solution. Note that S^n is the zero set of the function $F(x_1, \ldots, x_{n+1}) = x_1^2 + \cdots + x_{n+1}^2 - 1$ with $DF(x_1, \ldots, x_{n+1}) = (2x_1, \ldots, 2x_{n+1})$. Let $\vec{x} = (x_1, \ldots, x_{n+1}) \in S^1$. Then we have

$$T_{\vec{x}}S^n = \ker(DF(\vec{x}))$$

$$= \{ \vec{v} \in \mathbb{R}^{n+1} : (2x_1, \dots, 2x_{n+1}) \cdot \vec{v} = 0 \}$$

$$= \{ \vec{v} \in \mathbb{R}^{n+1} : x_1v_1 + \dots + x_{n+1}v_{n+1} = 0 \}.$$

(e) $T_IGL(n, \mathbb{R})$ where I is the identity $n \times n$ matrix.

Solution. We recall that $GL(n,\mathbb{R})$ is open in $M_{n\times n}(\mathbb{R})$, so using (a), we have that

$$T_I GL(n, \mathbb{R}) = T_I M_{n \times n}(\mathbb{R}) \simeq M_{n \times n}(\mathbb{R}).$$

(f) $T_I SL(2,\mathbb{R})$ where I is the identity 2×2 matrix.

Solution. We see that $SL(2,\mathbb{R})$ is the zero set of the map $F(a_1, a_2, a_3, a_4) = a_1a_4 - a_2a_3 - 1$. Then $DF(a_1, a_2, a_3, a_4) = (a_4, -a_3, -a_2, a_1)$ with DF(I) = (1, 0, 0, 1). Applying (c) yields

$$T_{I}SL(2,\mathbb{R}) = \ker(DF(I))$$

$$= \{B \in M_{2\times 2}(\mathbb{R}) : (1,0,0,1) \cdot (b_{1},b_{2},b_{3},b_{4}) = 0\}$$

$$= \{B \in M_{2\times 2}(\mathbb{R}) : b_{1} + b_{4} = 0\}$$

$$= \{B \in M_{2\times 2}(\mathbb{R}) : \operatorname{tr} B = 0\}.$$

C. Curves.

- 1. Let $\gamma:(\alpha,\beta)\to\mathbb{R}$ be a parametrised curve of class C^r , $r\geq 3$. Define the following:
 - (a) The velocity, speed and acceleration of γ at $t \in (\alpha, \beta)$.

Solution. The velocity of γ at $t \in (\alpha, \beta)$ is $\gamma'(t)$. The speed is $\|\gamma'(t)\|$ and the acceleration is $\gamma''(t)$.

(b) The arclength of γ starting that the point $\gamma(t_0)$ for any $t_0 \in (\alpha, \beta)$.

Solution. The arclength of γ starting at the point $\gamma(t_0)$ is

$$s(t) := \int_{t_0}^t \|\gamma'(t)\| dt.$$

(c) The curve γ is regular.

Solution. A curve γ is regular if $\gamma'(t) \neq \vec{0}$ for all $t \in (\alpha, \beta)$.

(d) The curve γ is unit-speed.

Solution. A curve γ is unit-speed if $\|\gamma'(t)\| = 1$ for all $t \in (\alpha, \beta)$.

(e) The curvature $\kappa(t)$ of γ at $\gamma(t)$ for all $t \in (\alpha, \beta)$ (whether the parametrisation is unit-speed or just regular).

Solution. When γ is unit-speed, we have $\kappa(t) = \|\gamma''(t)\|$. If γ is regular, we have

$$\kappa(t) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3}.$$

(f) The torsion $\tau(t)$ at points where $\kappa(t) > 0$ (whether the parametrisation is unit-speed or just regular).

Solution. When γ is unit-speed, we define $\tau:(\alpha,\beta)\to\mathbb{R}$ to be the scalar function such that $\frac{\mathrm{d}}{\mathrm{d}t}B(t)=-\tau(t)N(t)$. In the general case where γ is regular, we have

$$\tau(t) = \frac{(\gamma'(t) \times \gamma''(t)) \cdot \gamma'''(t)}{\|\gamma'(t) \times \gamma''(t)\|^2}.$$

(g) The Frenet frame of γ (whether the parametrisation is unit-speed or just regular).

Solution. We define the Frenet frame of γ to be $\{T, N, B\}$, where T is the unit tangent vector, N is the principal unit normal, and B is the unit binormal. When γ is unit-speed, we have $T(t) = \gamma'(t), N(t) = \gamma''(t)/\kappa(t) = \gamma''(t)/\|\gamma''(t)\|$, and $B(t) = T(t) \times N(t)$. When γ is regular, we have

$$T(t) = \frac{\gamma'(t)}{\|\gamma'(t)\|},$$

$$B(t) = \frac{\gamma'(t) \times \gamma''(t)}{\|\gamma'(t) \times \gamma''(t)\|},$$

$$N(t) = B(t) \times T(t).$$

(h) Frenet-Serret equations for unit-speed curves.

Solution. The Frenet-Serret equations are $\frac{dT}{ds} = \kappa T$, $\frac{dN}{ds} = -\kappa T + \tau B$, and $\frac{dB}{ds} = -\tau N$. More compactly, they can be written as the matrix equation

$$\begin{bmatrix} \frac{\mathrm{d}T}{\mathrm{d}s} \\ \frac{\mathrm{d}N}{\mathrm{d}s} \\ \frac{\mathrm{d}B}{\mathrm{d}s} \end{bmatrix} = \begin{bmatrix} 0 & \kappa & 0 \\ -\kappa & 0 & \tau \\ 0 & -\tau & 0 \end{bmatrix} \begin{bmatrix} T \\ N \\ B \end{bmatrix}.$$

2. Let $u:(\alpha,\beta)\to\mathbb{R}^n, t\mapsto u(t)$, be a vector-valued function of class $C^r, r\geq 1$, such that ||u(t)||=c for all $t\in(\alpha,\beta)$, for some fixed $c\in\mathbb{R}^{>0}$. Show that $u(t)\cdot\dot{u}(t)=0$ for all $t\in(\alpha,\beta)$. In particular, if γ is a unit-speed curve, then $\gamma''(t)$ is either zero or perpendicular to $\gamma'(t)$ for all $t\in(\alpha,\beta)$.

Solution. Note that $u(t) \cdot u(t) = ||u(t)||^2 = c^2$ for all $t \in (\alpha, \beta)$. Then

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}(u(t) \cdot u(t)) = u'(t) \cdot u(t) + u(t) \cdot u'(t) = 2u(t) \cdot u'(t),$$

and therefore $u(t) \cdot u'(t) = 0$ for all $t \in (\alpha, \beta)$. For a unit-speed curve γ , we can set $u(t) = \gamma'(t)$ so that $\gamma'(t) \cdot \gamma''(t) = 0$ for all $t \in (\alpha, \beta)$. This implies that $\gamma''(t)$ is either zero or perpendicular to $\gamma'(t)$ for all $t \in (\alpha, \beta)$.

3. Prove that any regular curve $\gamma:(\alpha,\beta)\to\mathbb{R}$ of class $C^r,\,r\geq 1$, can be reparametrised in terms of arclength.

Solution. Note that the arclength function s of γ is smooth with $\frac{\mathrm{d}s}{\mathrm{d}t} = \|\gamma'(t)\| > 0$ for all $t \in (\alpha, \beta)$ since γ is regular. Then s is strictly increasing on (α, β) and its inverse is smooth by the Inverse Function Theorem. Then s = s(t) and t = t(s) (where $t = s^{-1}$) are both smooth on their domains, and one can parametrize s in terms of arclength via

$$\gamma(t) = \gamma(t(s)) = \tilde{\gamma}(s),$$

where we define $\tilde{\gamma} = \gamma \circ t$.

4. Compute the curvature and torsion of the circular helix $\gamma(t) = (4\cos t, 4\sin t, 3t), t \in \mathbb{R}$.

Solution. Note that $\gamma'(t) = (-4\sin t, 4\cos t, 3)$ with $\|\gamma'(t)\| = 5$, so γ is regular but not unit-speed. Next, we have $\gamma''(t) = (-4\cos t, -4\sin t, 0)$ so that

$$\gamma'(t) \times \gamma''(t) = (-4\sin t, 4\cos t, 3) \times (-4\cos t, -4\sin t, 0) = (12\sin t, -12\cos t, 16).$$

This gives us $\|\gamma'(t) \times \gamma''(t)\| = 20$, so the curvature of γ at $\gamma(t)$ is

$$\kappa(t) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3} = \frac{20}{5^3} = \frac{4}{25}.$$

Next, we have $\gamma'''(t) = (4\sin t, -4\cos t, 0)$ so that

$$(\gamma'(t) \times \gamma''(t)) \cdot \gamma'''(t) = (12\sin t, -12\cos t, 16) \cdot (4\sin t, -4\cos t, 0) = 48.$$

It follows that the torsion of γ at $\gamma(t)$ is

$$\tau(t) = \frac{(\gamma'(t) \times \gamma''(t)) \cdot \gamma'''(t)}{\|\gamma'(t) \times \gamma''(t)\|^2} = \frac{48}{20^2} = \frac{3}{25}.$$

5. Consider the following unit-speed curve

$$\gamma(s) = \left(\frac{1}{3}(1+s)^{3/2}, \frac{1}{3}(1-s)^{3/2}, \frac{s}{\sqrt{2}}\right), s \in (-1, 1).$$

Find the Frenet frame $\{T, N, B\}$ and the compute the curvature and the torsion at a general point on the curve.

Solution. First, the unit tangent vector to γ at $\gamma(s)$ is

$$T(s) = \gamma'(s) = \left(\frac{1}{2}(1+s)^{1/2}, -\frac{1}{2}(1-s)^{1/2}, \frac{1}{\sqrt{2}}\right).$$

Next, we see that

$$\gamma''(s) = \left(\frac{1}{4}(1+s)^{-1/2}, \frac{1}{4}(1-s)^{1/2}, 0\right),\,$$

so the curvature is

$$\kappa(s) = \|\gamma''(s)\| = \frac{1}{\sqrt{8(1-s^2)}} > 0.$$

Then the principal unit normal is

$$N(s) = \frac{\gamma''(s)}{\kappa(s)} = \frac{1}{\sqrt{2}} \left((1-s)^{1/2}, (1+s)^{1/2}, 0 \right).$$

The unit binormal is then

$$B(s) = T(s) \times N(s) = \left(-\frac{1}{2}(1+s)^{1/2}, \frac{1}{2}(1-s)^{1/2}, \frac{1}{\sqrt{2}}\right).$$

Note that

$$\frac{\mathrm{d}}{\mathrm{d}s}B(s) = \left(-\frac{1}{4}(1+s)^{-1/2}, -\frac{1}{4}(1+s)^{-1/2}, 0\right) = -\gamma''(s) = -\kappa(s)N(s),$$

which implies that the torsion is

$$\tau(s) = \kappa(s) = \frac{1}{\sqrt{8(1-s^2)}}.$$

6. Let $\gamma(t)$, $t \in (\alpha, \beta)$, be a smooth regular curve in \mathbb{R}^3 . Prove that γ parametrises a straight line if and only if $\kappa(t) = 0$ for all $t \in (\alpha, \beta)$.

Solution. Without loss of generality, we assume that γ is parametrized using arclength so that it is unit-speed. Suppose that $\gamma(t) = \vec{x} + t\vec{v}$ is a straight line in \mathbb{R}^3 . Then we have $\gamma'(t) = \vec{v}$ and $\gamma''(t) = \vec{0}$ so that $\kappa(t) = \|\gamma''(t)\| = 0$ for all $t \in (\alpha, \beta)$. All of these steps are in fact reversible, so we are done.

7. Let $\gamma(t)$ be a smooth regular curve in \mathbb{R}^3 . Prove that $\gamma'(t)$ and $\gamma''(t)$ are linearly dependent (that is, $\gamma''(t) = c(t)\gamma'(t)$ for some smooth function c) if and only if $\gamma(t)$ parametrises a straight line.

Solution. Suppose that $\gamma''(t) = c(t)\gamma'(t)$ for some smooth scalar function c. Then $\gamma'(t) \times \gamma''(t) = \vec{0}$ for all $t \in (\alpha, \beta)$ (since they are parallel), which implies that

$$\kappa(t) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3} = \frac{0}{\|\gamma'(t)\|^3} = 0$$

for all $t \in (\alpha, \beta)$. Applying the previous problem, this means that γ parametrizes a straight line. These steps are reversible and thus the converse holds.

8. Let $\gamma(t)$, $t \in (\alpha, \beta)$, be a smooth regular curve in \mathbb{R}^3 such that $\kappa(t) > 0$ for all $t \in (\alpha, \beta)$. Prove that $\gamma(t)$ is a plane curve if and only if its torsion $\tau(t)$ is equal to 0 at every $t \in (\alpha, \beta)$. Moreover, if it is a plane curve, then it is contained in the plane passing through $\gamma(t_0)$ with normal vector $B(t_0)$ for any $t_0 \in (\alpha, \beta)$.

Solution. (\Rightarrow) Suppose that $\gamma(t)$ is a plane curve. Let $t_0 \in (\alpha, \beta)$. Note that γ is a plane curve if and only if every point $\gamma(t)$ is contained in some fixed plane Π in \mathbb{R}^3 . Then $\gamma(t_0) \in \Pi$. If \mathbf{n}_0 is a unit normal to Π , then for any $t \in (\alpha, \beta)$, the vector going from $\gamma(t_0)$ to $\gamma(t)$ is parallel to Π and thus perpendicular to \mathbf{n}_0 . This implies that $\mathbf{n}_0 \cdot (\gamma(t) - \gamma(t_0)) = 0$, or equivalently $\mathbf{n}_0 \cdot \gamma(t) = \mathbf{n}_0 \cdot \gamma(t_0)$ for all $t \in (\alpha, \beta)$. The right-hand side is a constant, so we have

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{n}_0 \cdot \gamma(t)) = \frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{n}_0) \cdot \gamma(t) + \mathbf{n}_0 \cdot \gamma'(t) = \mathbf{n}_0 \cdot T(t).$$

Similarly, we have $\mathbf{n}_0 \cdot \gamma''(t) = 0$ with $\gamma''(t) = \kappa(t)N(t)$ for all $t \in (\alpha, \beta)$, so

$$\mathbf{n}_0 \cdot N(t) = 0.$$

Then $\mathbf{n}_0 \perp T(t)$ and $\mathbf{n}_0 \perp N(t)$ implies that $\mathbf{n}_0 = \pm T(t) \times N(t) = \pm B(t)$. In particular, we have

$$\frac{\mathrm{d}B}{\mathrm{d}t}(t) = \vec{0}$$

for all $t \in (\alpha, \beta)$, which implies that $\tau(t) = 0$ for all $t \in (\alpha, \beta)$ since $\frac{dB}{dt}(t) = -\tau(t)N(t)$ by the Frenet-Serret equations with $N(t) \neq \vec{0}$ for all $t \in (\alpha, \beta)$.

(\Leftarrow) Suppose that $\tau(t) = 0$ for all $t \in (\alpha, \beta)$. Then $\frac{dB}{dt}(t) = \vec{0}$ and hence $B(t) = \mathbf{n}_0$ for all $t \in (\alpha, \beta)$ for some fixed $\mathbf{n}_0 \in \mathbb{R}^3$. We have $T(t) \perp \mathbf{n}_0$ for all $t \in (\alpha, \beta)$, which implies that $T(t) \cdot \mathbf{n}_0 = 0$. But $T(t) = \gamma'(t)$, and the product rule gives

$$\frac{\mathrm{d}}{\mathrm{d}t}(\gamma(t)\cdot\mathbf{n}_0) = \gamma'(t)\cdot\mathbf{n}_0 + \gamma(t)\cdot\frac{\mathrm{d}}{\mathrm{d}t}(\mathbf{n}_0) = T(t)\cdot\mathbf{n}_0 = 0$$

since $\frac{d}{dt}(\mathbf{n}_0) = \vec{0}$ and $T(t) \cdot \mathbf{n}_0 = 0$. It follows that $\gamma(t) \cdot \mathbf{n}_0 = c$ for some constant $c \in \mathbb{R}$. Fixing $t_0 \in (\alpha, \beta)$, we observe that

$$(\gamma(t) - \gamma(t_0)) \cdot \mathbf{n}_0 = \gamma(t) \cdot \mathbf{n}_0 - \gamma(t_0) \cdot \mathbf{n}_0 = c - c = 0$$

for all $t \in (\alpha, \beta)$. This means that γ is contained in the plane passing through $\gamma(t_0)$ normal to $B(t_0) = \mathbf{n}_0$, and γ is a plane curve.

9. Show that $\gamma(t) = (t, 1 + t^{-1}, t^{-1} - t), t > 0$, is a plane curve and find the equation of the plane in which it lies.

Solution. By the previous problem, it is enough to show that $\tau(t) = 0$ for all t > 0. We have $\gamma'(t) = (1, -t^{-2}, -t^{-2} - 1)$, $\gamma''(t) = 2t^{-3}(0, 1, 1)$, and $\gamma'''(t) = -6t^{-4}(0, 1, 1)$. This gives us $\gamma'(t) \times \gamma''(t) = 2t^{-3}(1, -1, 1)$ and $(\gamma'(t) \times \gamma''(t)) \cdot \gamma'''(t) = 0$, which implies that $\tau(t) = 0$ for all t > 0. Therefore, γ is a plane curve.

To determine the equation of the plane, we solve for $a, b, c, d \in \mathbb{R}$ such that

$$at + b(1 + t^{-1}) + c(t^{-1} - t) = d.$$

This gives us $(b-d)+(a-c)t+(b+c)t^{-1}=0$, so we have b=d, a=c, and b=-c. Setting c=1, we have that a=1 and b=d=-1. Then γ is contained in the plane x-y+z=-1.

Alternatively, the unit binormal vector is

$$B(t) = \frac{\gamma'(t) \times \gamma''(t)}{\|\gamma'(t) \times \gamma''(t)\|} = \frac{1}{\sqrt{3}}(1, -1, 1)$$

for all $t \in (\alpha, \beta)$, which is a normal vector to the plane that γ lies in. Since $\gamma(1) = (1, 2, 0)$ is a point on the curve and therefore the plane, we have that

$$(x-1, y-2, z) \cdot (1, -1, 1) = 0.$$

This gives the same plane x - y + z = -1.

10. State the Fundamental Theorem of Space Curves.

Solution. A rigid motion of \mathbb{R}^3 is a rotation followed by a translation. That is, a rigid motion of \mathbb{R}^3 is an affine map $M: \mathbb{R}^3 \to \mathbb{R}^3$ of the form M(v) = Av + b where A is an element of the special orthogonal group $SO(3) = \{C \in M_{3\times 3}(\mathbb{R}) : C^TC = I_{3\times 3}, \det C = 1\}.$

The Fundamental Theorem of Space Curves states that given two unit-speed curves γ_1 and γ_2 with the same curvature $\kappa(s)$ and the same torsion $\tau(s)$ for all $s \in (\alpha, \beta)$, there exists a rigid motion M of \mathbb{R}^3 such that $\gamma_2(s) = M(\gamma_1(s))$ for all $s \in (\alpha, \beta)$. Moreover, if k and t are functions of class C^3 with k > 0 everywhere, then there exists a unit-speed curve in \mathbb{R}^3 whose curvature is k and whose torsion is t.

11. Show that $\gamma(t) = (2 + \sqrt{2}\cos t, 1 - \sin t, 3 + \sin t), t \in \mathbb{R}$, is a circle.

Solution. By the Fundamental Theorem of Space Curves, every circle has constant (positive) curvature and zero torsion. We verify that this is true for γ . Note that $\gamma'(t) = (-\sqrt{2}\sin t, -\cos t, \cos t)$, $\gamma''(t) = (-\sqrt{2}\cos t, \sin t, -\sin t)$, and $\gamma'''(t) = (\sqrt{2}\sin t, \cos t, -\cos t)$. We have that $\|\gamma'(t)\| = \sqrt{2}$ and $\gamma'(t) \times \gamma''(t) = (0, -\sqrt{2}, -\sqrt{2})$ so that $\|\gamma'(t) \times \gamma''(t)\| = 2$ and $(\gamma'(t) \times \gamma''(t)) \cdot \gamma'''(t) = 0$. This implies that the curvature is

$$\kappa(t) = \frac{\|\gamma'(t) \times \gamma''(t)\|}{\|\gamma'(t)\|^3} = \frac{2}{(\sqrt{2})^3} = \frac{1}{\sqrt{2}} > 0,$$

which is constant, and the torsion is

$$\tau(t) = \frac{(\gamma'(t) \times \gamma''(t)) \times \gamma'''(t)}{\|\gamma'(t) \times \gamma''(t)\|^2} = 0.$$

D. Surfaces.

- 1. Let S be a smooth surface in \mathbb{R}^3 and $\sigma: U \subset \mathbb{R}^2 \to V \subset S$ be a smooth coordinate chart. Define the following:
 - (a) The standard unit normal, first and second fundamental forms of σ .

Solution. Let $p_0 = \sigma(u_0, v_0)$ for some $(u_0, v_0) \in U$. The standard unit normal is

$$N_{\sigma}(u_0, v_0) = \frac{\sigma_u(u_0, v_0) \times \sigma_v(u_0, v_0)}{\|\sigma_u(u_0, v_0) \times \sigma_v(u_0, v_0)\|}.$$

The first fundamental form of σ is

$$\mathcal{F}_{\mathrm{I}} = egin{bmatrix} \sigma_u \cdot \sigma_u & \sigma_u \cdot \sigma_v \ \sigma_v \cdot \sigma_u & \sigma_v \cdot \sigma_v \end{bmatrix},$$

and the second fundamental form of σ is

$$\mathcal{F}_{\rm II} = \begin{bmatrix} \sigma_{uu} \cdot N_{\sigma} & \sigma_{uv} \cdot N_{\sigma} \\ \sigma_{vu} \cdot N_{\sigma} & \sigma_{vv} \cdot N_{\sigma} \end{bmatrix}.$$

(b) The principal, normal and geodesic curvatures of σ .

Solution. The principal curvatures of σ are the eigenvalues κ_1 and κ_2 of the shape operator $\mathcal{W} := \mathcal{F}_{\mathrm{I}}^{-1} \mathcal{F}_{\mathrm{II}}$. For a unit-speed curve $\gamma : (\alpha, \beta) \to V \subset S$ contained in the coordinate patch σ and a point $p_0 = \gamma(t_0)$, the normal curvature is

$$\kappa_n := \gamma''(t_0) \cdot N_{\sigma},$$

whereas the geodesic curvature is

$$\kappa_q := \gamma''(t_0) \cdot (N_\sigma \times \gamma'(t_0)).$$

(c) The Gaussian and mean curvatures of σ .

Solution. For the shape operator $W = \mathcal{F}_{\mathrm{I}}^{-1}\mathcal{F}_{\mathrm{II}}$, the Gaussian curvature of σ is $K := \det W$ and the mean curvature of σ is $H := \frac{1}{2}\operatorname{tr} W$.

(d) The geodesics of σ .

Solution. We call a unit-speed curve $\gamma:(\alpha,\beta)\to V\subset S$ that is contained in the coordinate patch σ a geodesic if $\kappa_g=0$ everywhere. Equivalently, we have that $\gamma''(t)=\vec{0}$ or $\gamma''(t)\parallel N_{\sigma}$ for all $t\in(\alpha,\beta)$.

- 2. Let $\sigma: U \subset \mathbb{R}^2 \to V \subset S$ and $\tilde{\sigma}: \tilde{U} \subset \mathbb{R}^2 \to \tilde{V} \subset S$ be smooth coordinate charts of a surface S with $V \cap \tilde{V}$. Set $\Phi := \sigma^{-1} \circ \tilde{\sigma}: \tilde{\sigma}^{-1}(V \cap \tilde{V}) \to \sigma^{-1}(V \cap \tilde{V})$ so that $\tilde{\sigma} = \sigma \circ \Phi$.
 - (a) Show that $N_{\tilde{\sigma}} = \pm N_{\sigma}$, where \pm is the sign of $\det(D\Phi)$.

Solution. Note that Φ is a smooth diffeomorphism with components

$$(\tilde{u}, \tilde{v}) \mapsto (u(\tilde{u}, \tilde{v}), v(\tilde{u}, \tilde{v})).$$

By the chain rule, we have $D\tilde{\sigma} = D\sigma D\Phi$, or more explicitly

$$\left[\tilde{\sigma}_{\tilde{u}} \mid \tilde{\sigma}_{\tilde{v}}\right] = \left[\sigma_u \mid \sigma_v\right] D\Phi.$$

Here, $D\Phi$ is the change of basis matrix of T_pS . Note that

$$D\Phi = \begin{bmatrix} \partial u/\partial \tilde{u} & \partial u/\partial \tilde{v} \\ \partial v/\partial \tilde{u} & \partial v/\partial \tilde{v} \end{bmatrix}.$$

Moreover, we have

$$\tilde{\sigma}_{\tilde{u}} = \sigma_u \cdot \frac{\partial u}{\partial \tilde{u}} + \sigma_v \cdot \frac{\partial v}{\partial \tilde{u}},$$
$$\tilde{\sigma}_{\tilde{v}} = \sigma_u \cdot \frac{\partial u}{\partial \tilde{v}} + \sigma_v \cdot \frac{\partial v}{\partial \tilde{v}},$$

which implies that

$$\begin{split} \tilde{\sigma}_{\tilde{u}} \times \tilde{\sigma}_{\tilde{v}} &= \left(\sigma_{u} \cdot \frac{\partial u}{\partial \tilde{u}} + \sigma_{v} \cdot \frac{\partial v}{\partial \tilde{u}} \right) \times \left(\sigma_{u} \cdot \frac{\partial u}{\partial \tilde{v}} + \sigma_{v} \cdot \frac{\partial v}{\partial \tilde{v}} \right) \\ &= \left(\sigma_{u} \times \sigma_{u} \right) \left(\frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}} \right) + \left(\sigma_{u} \times \sigma_{v} \right) \left(\frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}} - \frac{\partial v}{\partial \tilde{u}} \frac{\partial u}{\partial \tilde{v}} \right) + \left(\sigma_{v} \times \sigma_{v} \right) \left(\frac{\partial v}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}} \right) \\ &= \left(\frac{\partial u}{\partial \tilde{u}} \frac{\partial v}{\partial \tilde{v}} - \frac{\partial v}{\partial \tilde{u}} \frac{\partial u}{\partial \tilde{v}} \right) \left(\sigma_{u} \times \sigma_{v} \right) = (\det D\Phi) (\sigma_{u} \times \sigma_{v}), \end{split}$$

where we used the fact that $\sigma_u \times \sigma_u = \sigma_v \times \sigma_v = \vec{0}$. It follows that

$$N_{\tilde{\sigma}} = \frac{\tilde{\sigma}_{\tilde{u}} \times \tilde{\sigma}_{\tilde{v}}}{\|\tilde{\sigma}_{\tilde{u}} \times \tilde{\sigma}_{\tilde{v}}\|} = \frac{\det D\Phi}{|\det D\Phi|} \frac{\sigma_{u} \times \sigma_{v}}{\|\sigma_{u} \times \sigma_{v}\|} = \pm N_{\sigma},$$

where \pm is the sign of det $D\Phi$.

(b) Recall that if $\mathcal{F}_I, \mathcal{F}_{II}$ and $\widetilde{\mathcal{F}}_I, \widetilde{\mathcal{F}}_{II}$ are the first and second fundamental forms of σ and $\widetilde{\sigma}$, respectively, then

$$\widetilde{\mathcal{F}}_I = (D\Phi)^T \mathcal{F}_I (D\Phi)$$

and

$$\widetilde{\mathcal{F}}_{II} = \pm (D\Phi)^T \mathcal{F}_{II}(D\Phi)$$

where \pm is the sign of $\det(D\Phi)$.

i. Let W and \tilde{W} be the shape operators associated to σ and $\tilde{\sigma}$ respectively. Show that $\tilde{W} = \pm (D\Phi)^{-1}W(D\Phi)$, where \pm is the sign of $\det(D\Phi)$.

Solution. Observe that

$$\begin{split} \tilde{\mathcal{W}} &= \tilde{\mathcal{F}}_{\mathrm{I}}^{-1} \tilde{\mathcal{F}}_{\mathrm{II}} = \pm [(D\Phi)^T \mathcal{F}_{\mathrm{I}}(D\Phi)]^{-1} [(D\Phi)^T \mathcal{F}_{\mathrm{II}}(D\Phi)] \\ &= \pm (D\Phi)^{-1} \mathcal{F}_{\mathrm{I}}^{-1} ((D\Phi)^T)^{-1} (D\Phi)^T \mathcal{F}_{\mathrm{II}}(D\Phi) \\ &= \pm (D\Phi)^{-1} \mathcal{F}_{\mathrm{I}}^{-1} \mathcal{F}_{\mathrm{II}}(D\Phi) \\ &= \pm (D\Phi)^{-1} \mathcal{W}(D\Phi), \end{split}$$

where \pm is the sign of det $D\Phi$.

ii. Show that $\tilde{K}=K$ and $\tilde{H}=\pm H$, i.e., Gaussian curvature is invariant under reparametrisations, whereas mean curvature may change sign under reparametrisations. Moreover, show that the principal curvatures change as follows under reparametrisations: $\tilde{\kappa}_1=\pm \kappa_1$ and $\tilde{\kappa}_2=\pm \kappa_2$.

Solution. Using the previous part and noting that we are working with 2×2 matrices, we have by the multiplicativity of determinant that

$$\tilde{K} = \det \tilde{\mathcal{W}} = (\pm 1)^2 \det((D\Phi)^{-1} \mathcal{W}(D\Phi)) = \det \mathcal{W} = K.$$

Similarly, we know that similar matrices have the same trace, so

$$\tilde{H} = \frac{1}{2}\operatorname{tr}\tilde{\mathcal{W}} = \frac{1}{2}\operatorname{tr}(\pm(D\Phi)^{-1}\mathcal{W}(D\Phi)) = \pm\frac{1}{2}\operatorname{tr}\mathcal{W} = H.$$

Next, we use the fact that similar matrices have the same eigenvalues. The principal curvatures are the eigenvalues of the shape operator, so κ_1 and κ_2 are the eigenvalues of \mathcal{W} whereas $\tilde{\kappa}_1$ and $\tilde{\kappa}_2$ are the eigenvalues of $\tilde{\mathcal{W}}$. If $\tilde{\mathcal{W}} = (D\Phi)^{-1}\mathcal{W}(D\Phi)$, then $\tilde{\mathcal{W}}$ has the same eigenvalues as \mathcal{W} so that (up to reordering) $\tilde{\kappa}_1 = \kappa_1$ and $\tilde{\kappa}_2 = \kappa_2$. If we had $\tilde{\mathcal{W}} = -(D\Phi)^{-1}\mathcal{W}(D\Phi)$, then this means that $\tilde{\mathcal{W}}$ and $-\mathcal{W}$ are similar and have the same eigenvalues. This implies that $\tilde{\kappa}_1 = -\kappa_1$ and $\tilde{\kappa}_2 = -\kappa_2$.

(c) A smooth surface is called *flat* if its Gaussian curvature is everywhere zero. Use (b) to show that the notion of flat surface is independent of the atlas chosen.

Solution. Consider the two coordinate charts σ and $\tilde{\sigma}$ with $V \cap \tilde{V} \neq \emptyset$. By part (b), we know that $K = \tilde{K}$. Then the Gaussian curvature is independent of the choice of coordinate chart, and therefore the notion of flatness is independent of the choice of atlas.

(d) A smooth surface is called *minimal* if its mean curvature is everywhere zero. Use (b) to show that the notion of minimal surface is independent of the atlas chosen.

Solution. By part (b), we have $H = \tilde{H}$. In particular, if H = 0 everywhere, then $\tilde{H} = 0$ everywhere as well. This means that the notion of minimal surface is independent of the choice of atlas.

(e) Show that the Gaussian curvature of a minimal surface is ≤ 0 everywhere.

Solution. By part (d), the notion of minimal surface is independent of the choice of atlas. Therefore, take any atlas and let σ be a coordinate chart in the atlas. Let κ_1 and κ_2 be the principal curvatures of σ . For a minimal surface, we have that $H = \frac{1}{2}(\kappa_1 + \kappa_2) = 0$, which implies that $\kappa_1 = -\kappa_2$. This implies that $K = \kappa_1 \kappa_2 = -\kappa_1^2 \leq 0$.

(f) Show that if a unit-speed curve on a smooth surface has zero normal *and* geodesic curvatures everywhere, it is part of a straight line.

Solution. We know that $\kappa^2 = \kappa_n^2 + \kappa_g^2$ for a unit-speed curve, so if $\kappa_n = \kappa_g = 0$ everywhere, then $\kappa = 0$ everywhere. By Problem C.6, the curve parametrizes a straight line.

3. Let S be the graph of a smooth function $f: U \subset \mathbb{R}^2 \to \mathbb{R}$ with U an open subset of \mathbb{R}^2 . Show that at a critical point $(x_0, y_0) \in U$ of f, the Gaussian curvature of S is equal to the determinant of the Hessian matrix $H(f)(x_0, y_0)$ of f at (x_0, y_0) .

Solution. Note that a coordinate chart for S is $\sigma: U \subset \mathbb{R}^2 \to S \subset \mathbb{R}^3$ defined by

$$(u, v) \mapsto (u, v, f(u, v)).$$

We have that $\sigma_u = (1, 0, f_u)$ and $\sigma_v = (0, 1, f_v)$, so the first fundamental form of σ is

$$\mathcal{F}_{\mathrm{I}} = \begin{bmatrix} 1 + (f_u)^2 & f_u f_v \\ f_u f_v & 1 + (f_v)^2 \end{bmatrix}.$$

Next, we see that $\sigma_u \times \sigma_v = (-f_u, -f_v, 1)$ and $\|\sigma_u \times \sigma_v\| = \sqrt{1 + (f_u)^2 + (f_v)^2}$, so

$$N_{\sigma} = \frac{1}{\sqrt{1 + (f_u)^2 + (f_v)^2}} (-f_u, -f_v, 1).$$

Moreover, we have $\sigma_{uu} = (0, 0, f_{uu}), \ \sigma_{uv} = (0, 0, f_{uv})$ and $\sigma_{vv} = (0, 0, f_{vv})$ so that

$$\mathcal{F}_{\text{II}} = \frac{1}{\sqrt{1 + (f_u)^2 + (f_v)^2}} \begin{bmatrix} f_{uu} & f_{uv} \\ f_{vu} & f_{vv} \end{bmatrix} = \frac{1}{\sqrt{1 + (f_u)^2 + (f_v)^2}} H(f).$$

At a critical point $(u_0, v_0) \in U$ of f, we have that

$$f_u(u_0, v_0) = f_v(u_0, v_0) = 0.$$

At such a point, we have $\mathcal{F}_{I} = I_{2\times 2}$ and $\mathcal{F}_{II} = H(f)$ so that the Gaussian curvature is

$$K = \det \mathcal{W} = \det H(f).$$

- 4. Let S be the smooth surface given by $z = ax^2 + by^2$, $a, b \in \mathbb{R}$. Show that:
 - (a) Every point on S is elliptic if and only if ab > 0, in which case S is an elliptic paraboloid.
 - (b) Every point on S is hyperbolic if and only if ab < 0, in which case S is a hyperbolic paraboloid (that is, a saddle surface).
 - (c) Every point on S is parabolic if and only if ab = 0 and $a \neq 0$ or $b \neq 0$, in which case S is a parabolic cylinder.
 - (d) Every point on S is planar if and only if a = b = 0, in which case S is the xy-plane (z = 0).

Solution. We first compute the shape operator. Note that $\sigma(u, v) = (u, v, au^2 + bv^2)$ is a smooth coordinate chart for S, so we have $\sigma_u = (1, 0, 2au)$ and $\sigma_v = (0, 1, 2bv)$. This implies that

$$\mathcal{F}_{I} = \begin{bmatrix} 1 + 4a^{2}u^{2} & 4abuv \\ 4abuv & 1 + 4b^{2}v^{2} \end{bmatrix}.$$

Note that $\det \mathcal{F}_{I} = (1 + 4a^{2}u^{2})(1 + 4b^{2}v^{2}) - (4abuv)^{2} = 1 + 4a^{2}u^{2} + 4b^{2}v^{2}$, so we have

$$\mathcal{F}_{\rm I}^{-1} = \frac{1}{1+4a^2u^2+4b^2v^2} \begin{bmatrix} 1+4a^2u^2 & -4abuv \\ -4abuv & 1+4b^2v^2 \end{bmatrix}.$$

Next, we have $\sigma_u \times \sigma_v = (-2au, -2bv, 1)$, so $\|\sigma_u \times \sigma_v\| = \sqrt{1 + 4a^2u^2 + 4b^2v^2}$ and

$$N_{\sigma} = \frac{1}{\sqrt{1 + 4a^2u^2 + 4b^2v^2}} (-2au, -2bv, 1).$$

Then $\sigma_{uu}=(0,0,2a),\,\sigma_{uv}=(0,0,0)$ and $\sigma_{vv}=(0,0,2b),$ giving us

$$\mathcal{F}_{II} = \frac{2}{\sqrt{1 + 4a^2u^2 + 4b^2v^2}} \begin{bmatrix} a & 0\\ 0 & b \end{bmatrix}.$$

Therefore, the shape operator is

$$W = \mathcal{F}_{I}^{-1} \mathcal{F}_{II} = \frac{2}{(1 + 4a^{2}u^{2} + 4b^{2}v^{2})^{3/2}} \begin{bmatrix} a(1 + 4a^{2}u^{2}) & -4ab^{2}uv \\ -4a^{2}buv & b(1 + 4b^{2}v^{2}) \end{bmatrix}.$$

The Gaussian curvature is

$$K = \det \mathcal{W} = \frac{4}{(1 + 4a^2u^2 + 4b^2v^2)^3} [ab(1 + 4a^2u^2)(1 + 4b^2v^2) - (-4ab^2uv)(-4a^2buv)]$$

$$= \frac{4ab}{(1 + 4a^2u^2 + 4b^2v^2)^3} [(1 + 4a^2u^2)(1 + 4b^2v^2) - (4abuv)^2]$$

$$= \frac{4ab}{(1 + 4a^2u^2 + 4b^2v^2)^2},$$

and the mean curvature is

$$H = \frac{1}{2} \operatorname{tr} \mathcal{W} = \frac{a(1 + 4a^2u^2) + b(1 + 4b^2v^2)}{(1 + 4a^2u^2 + 4b^2v^2)^{3/2}}.$$

- (a) Observe that K > 0 if and only if ab > 0, with points on S being elliptic there.
- (b) We have K < 0 if and only if ab < 0, in which we have hyperbolic points.
- (c) Suppose every point on S is parabolic so that K=0 but $H\neq 0$. Then ab=0 since K=0, and we must have $a\neq 0$ or $b\neq 0$ for otherwise H=0. Conversely, if ab=0 with $a\neq 0$ or $b\neq 0$, then $H\neq 0$ and K=0.
- (d) Note that K = H = 0 if and only if a = b = 0.
- 5. Classify all the points on the regular surface patch $\sigma(u, v) = (u, v, u^3 + v^2)$, $(u, v) \in \mathbb{R}^2$, as to being elliptic, hyperbolic, parabolic, or planar.

Solution. We will use Problem D.3 to simplify computations a little. Note that σ corresponds to the graph of the function $f(u,v) = u^3 + v^2$ with $f_u = 3u^2$ and $f_v = 2v$, as well as $f_{uu} = 6u$, $f_{uv} = 0$, and $f_{vv} = 2$. This tells us that

$$\mathcal{F}_{I} = \begin{bmatrix} 1 + (f_{u})^{2} & f_{u}f_{v} \\ f_{u}f_{v} & 1 + (f_{v})^{2} \end{bmatrix} = \begin{bmatrix} 1 + 9u^{4} & 6u^{2}v \\ 6u^{2}v & 1 + 4v^{2} \end{bmatrix}$$

and we also saw in that problem that

$$\mathcal{F}_{\text{II}} = \frac{1}{\sqrt{1 + (f_u)^2 + (f_v)^2}} \begin{bmatrix} f_{uu} & f_{uv} \\ f_{vu} & f_{vv} \end{bmatrix} = \frac{1}{\sqrt{1 + 9u^4 + 4v^2}} \begin{bmatrix} 6u & 0 \\ 0 & 2 \end{bmatrix}.$$

Now, observe that det $\mathcal{F}_{I} = (1 + 9u^{4})(1 + 4v^{2}) - (6u^{2}v)^{2} = 1 + 9u^{4} + 4v^{2}$, which implies that

$$\mathcal{F}_{\rm I}^{-1} = \frac{1}{1 + 9u^4 + 4v^2} \begin{bmatrix} 1 + 9u^4 & -6u^2v \\ -6u^2v & 1 + 4v^2 \end{bmatrix}.$$

Then the shape operator is

$$\mathcal{W} = \mathcal{F}_{\rm I}^{-1} \mathcal{F}_{\rm II} = \frac{1}{(1 + 9u^4 + 4v^2)^{3/2}} \begin{bmatrix} 6u(1 + 9u^4) & -12u^2v \\ -36u^3v & 2(1 + 4v^2) \end{bmatrix}.$$

The Gaussian curvature is

$$K = \det \mathcal{W} = \frac{1}{(1 + 9u^4 + 4v^2)^3} [12u(1 + 9u^4)(1 + 4v^2) - (-12u^2v)(-36u^3v)]$$

$$= \frac{12u}{(1 + 9u^4 + 4v^2)^3} [(1 + 9u^4)(1 + 4v^2) - 36u^4v^2]$$

$$= \frac{12u}{(1 + 9u^4 + 4v^2)^2},$$

and the mean curvature is

$$H = \frac{1}{2} \operatorname{tr} \mathcal{W} = \frac{3u(1+9u^4) + (1+4v^2)}{(1+9u^4+4v^2)^{3/2}}.$$

Let $(u, v) \in \mathbb{R}^2$. We see that $\sigma(u, v)$ is elliptic for points where u > 0 and hyperbolic for points where u < 0. When u = 0, note that H > 0 for all $v \in \mathbb{R}$, so $\sigma(u, v)$ is parabolic there.

6. Let S be the circular cylinder $x^2 + y^2 = 1$. Consider the atlas $\{(S_i, \sigma_i)\}_{i=1}^2$ of S, where each S_i is the image in \mathbb{R}^3 of the smooth coordinate charts

$$\sigma_i(u, v) = (\cos u, \sin u, v),$$

with $(u, v) \in (0, 2\pi) \times \mathbb{R}$ when i = 1, and $(u, v) \in (-\pi, \pi) \times \mathbb{R}$ when i = 2.

(a) Find the principal curvatures κ_1, κ_2 of S at every point.

Solution. We first compute the shape operator. Since σ_1 and σ_2 are described using the same function but over different domains, we will denote them simply by σ for now. We have $\sigma_u = (-\sin u, \cos u, 0)$ and $\sigma_v = (0, 0, 1)$ so that

$$\mathcal{F}_{\mathrm{I}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Next, we see that $N_{\sigma} = \sigma_u \times \sigma_v = (\cos u, \sin u, 0)$ with $\sigma_{uu} = (-\cos u, -\sin u, 0)$ and $\sigma_{uv} = \sigma_{vv} = (0, 0, 0)$, so

$$\mathcal{F}_{II} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}.$$

It follows that the shape operator is

$$\mathcal{W} = \mathcal{F}_{\mathrm{I}}^{-1} \mathcal{F}_{\mathrm{II}} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}.$$

The principal curvatures are the eigenvalues of W, namely $\kappa_1 = 0$ and $\kappa_2 = -1$.

(b) Show that the normal curvature κ_n of any unit-speed curve γ on S is such that

$$-1 \le \kappa_n \le 0.$$

Solution. We recall that the principal curvatures κ_1 and κ_2 are the maximum and minimum values of the normal curvature κ_n . This implies that $-1 \le \kappa_n \le 0$.

(c) Is the cylinder S a flat surface? a minimal surface? Justify your answer. (See problem 2 for a definition of flat and minimal.)

Solution. For convenience, we restate the definitions here. A smooth surface is flat if its Gaussian curvature is everywhere zero, and minimal if its mean curvature is everywhere zero. In this case, we have $K = \det \mathcal{W} = 0$ and $H = \frac{1}{2} \operatorname{tr} \mathcal{W} = -\frac{1}{2}$, so the cylinder S is a flat surface but not minimal.

7. Let $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ be a smooth unit-speed curve whose curvature is everywhere non-zero, and is such that the map

$$\sigma(v,s) = \gamma(s) + v\gamma'(s), s \in (\alpha, \beta), v > 0,$$

is a homeomorphism.

(a) Show that σ is a smooth embedding.

Solution. Since γ is smooth, we know that σ is smooth. Note that

$$D\sigma(v,s) = (\gamma'(s), \gamma'(s) + v\gamma''(s)).$$

This is nonzero everywhere since γ is unit-speed. Moreover, we know that $\gamma'(s) \cdot \gamma''(s) = 0$. Since the curvature of γ is everywhere nonzero, this implies that $\gamma'(s) \neq \vec{0}$ for all $s \in (\alpha, \beta)$ and therefore $\gamma'(s) \perp \gamma''(s)$. In particular, we know that $\gamma'(s)$ and $\gamma'(s) + v\gamma''(s)$ are linearly independent since v > 0, so $D\sigma$ has maximal rank 2 everywhere. Finally, it is given that σ is a homeomorphism, so σ is an embedding.

(b) Show that the smooth surface determined by σ is flat. (See problem 2 for a definition of flat.) Hint: Start by showing that L = M = 0 everywhere. Conclude that K = 0 everywhere.

19

Solution. Since $K = \det \mathcal{W} = (\det \mathcal{F}_{I})^{-1} \det \mathcal{F}_{II}$ by the multiplicativity of the determinant, it is enough to show that $\det \mathcal{F}_{II} = 0$. We first compute

$$\mathcal{F}_{\mathrm{II}} = \begin{bmatrix} \sigma_{vv} \cdot N_{\sigma} & \sigma_{vs} \cdot N_{\sigma} \\ \sigma_{sv} \cdot N_{\sigma} & \sigma_{ss} \cdot N_{\sigma} \end{bmatrix} = \begin{bmatrix} L & M \\ M & N \end{bmatrix}.$$

We have $\sigma_v = \gamma'(s)$ and $\sigma_s = \gamma'(s) + v\gamma''(s)$. Note that $T(s) = \gamma'(s)$ and $N(s) = \gamma''(s)/\|\gamma''(s)\|$, and moreover, we know that

$$B(s) = T(s) \times N(s) = \frac{\gamma'(s) \times \gamma''(s)}{\|\gamma''(s)\|}$$

with $||B(s)|| = 1/||\gamma''(s)||$ since ||T(s)|| = ||N(s)|| = 1. In particular, we have

$$\sigma_v \times \sigma_s = \gamma'(s) \times (\gamma'(s) + v\gamma''(s)) = v\gamma'(s) \times \gamma''(s) = v\frac{B(s)}{\|B(s)\|} = vB(s)$$

and therefore $N_{\sigma} = B(s)$ since ||B(s)|| = 1 and $||\sigma_v \times \sigma_s|| = v$. Finally, we compute that $\sigma_{vv} = \vec{0}$ and $\sigma_{vs} = \gamma''(s) = \kappa(s)N(s)$. Observe that $L = \sigma_{vv} \cdot N_{\sigma} = 0$ and $M = \sigma_{vs} \cdot N_{\sigma} = \gamma''(s) \cdot B(s) = \kappa(s)N(s) \cdot B(s) = 0$, so it follows that det $\mathcal{F}_{\text{II}} = 0$.

8. Let $\gamma:(\alpha,\beta)\to\mathbb{R}^3$ be a smooth whose curvature is everywhere non-zero, and let $\{T,N,B\}$ be its Frenet frame. Suppose that the map

$$\sigma(v,s) = \gamma(s) + vB(s),$$

 $s \in (\alpha, \beta), v \in (-\epsilon, \epsilon)$, is a homeomorphism for small enough $\epsilon > 0$. Let S be image of σ in \mathbb{R}^3 .

(a) Show that S is a smooth surface.

Solution. Since σ is a smooth homeomorphism with S as its image, it is enough to show that $D\sigma$ has maximal rank everywhere. Note that

$$D\sigma(v,s) = \left(B(s), \gamma'(s) + v\frac{\mathrm{d}}{\mathrm{d}s}B(s)\right) = (B(s), T(s) - v\tau(s)N(s)),$$

where we used the Frenet-Serret equations. To show that $\sigma_v = B(s)$ and $\sigma_s = T(s) - v\tau(s)N(s)$ are linearly independent, we can show that the area of the parallelogram spanned by them is nonzero. Indeed, we have that

$$\sigma_v \times \sigma_s = B(s) \times T(s) - v\tau(s)B(s) \times N(s)$$
$$= N(s) + v\tau(s)N(s) \times B(s)$$
$$= N(s) + v\tau(s)T(s).$$

Since $N(s) \perp T(s)$, this implies that

$$\|\sigma_v \times \sigma_s\| = 1 + v^2 \tau(s)^2 > 0.$$

Therefore, σ is a smooth embedding and S is a smooth surface.

(b) Show that γ is a geodesic of σ and that every point on γ is either hyperbolic or parabolic.

Solution. Note that $\gamma(s) = \sigma(0, s)$ with $\gamma''(s) = \kappa(s)N(s) = \kappa(s)N_{\sigma}(0, s)$, so γ is a geodesic of σ . Next, we have $\sigma_v = B(s)$ and $\sigma_s = T(s)$ on γ , which implies that $\sigma_v \cdot \sigma_v = \sigma_s \cdot \sigma_s = 1$ and $\sigma_v \cdot \sigma_s = 0$. Thus, the first fundamental form is

$$\mathcal{F}_{\mathrm{I}} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Recall that $N_{\sigma}(0,s) = N(s)$. Moreover, we have $\sigma_{vv} = \vec{0}$. The Frenet-Serret equations imply that $\sigma_{vs} = \frac{d}{ds}B(s) = -\tau(s)N(s)$ and $\sigma_{ss} = \frac{d}{ds}T(s) = \kappa(s)N(s)$. Then

$$\mathcal{W} = \mathcal{F}_{\mathrm{II}} = \begin{bmatrix} 0 & -\tau(s) \\ -\tau(s) & \kappa(s) \end{bmatrix}$$

since $\mathcal{F}_{\rm I}=I_{2\times 2}$. Notice that $K=\det\mathcal{W}=-\tau(s)^2\leq 0$ and $H=\frac{1}{2}\operatorname{tr}\mathcal{W}=\frac{1}{2}\kappa(s)>0$ since the curvature is everywhere nonzero. In particular, we either have H<0 so that the point on γ is hyperbolic, or H=0 and $K\neq 0$ so that the point is parabolic.

9. (a) Let γ be a unit-speed curve on a smooth surface S. Show that γ is a geodesic if and only if $\kappa_q = 0$.

Solution. By definition, γ is a geodesic if for all $s \in (\alpha, \beta)$, we have $\gamma''(s) = \vec{0}$ or $\gamma''(s) \parallel N_{\sigma}$. This implies that $\kappa_g = \gamma''(s) \cdot (N_{\sigma} \times \gamma'(s)) = 0$. In the case that $\gamma''(s) = \vec{0}$, this is clear. Otherwise, we have $\gamma''(s) \parallel N_{\sigma}$. Since $N_{\sigma} \perp N_{\sigma} \times \gamma'(s)$ by the definition of the cross product, we have $\gamma''(s) \perp (N_{\sigma} \times \gamma'(s))$ as well.

- (b) Prove or disprove (by giving a counterexample) the following statements:
 - i. If the unit-speed curve γ is a plane curve, then $\kappa_q = \pm \kappa$.

Solution. False. The great circles on a sphere are geodesics, but are also plane curves as they are obtained by intersecting the sphere with a plane passing through the origin. By (a), we have $\kappa_g = 0$ everywhere. However, we have seen that the curvature of a sphere of radius a is $\kappa = 1/a$, so $\kappa_g \neq \pm \kappa$.

ii. If the unit-speed curve γ is a geodesic, then $\kappa_n = \pm \kappa$.

Solution. True. We have that $\kappa^2 = \kappa_n^2 + \kappa_g^2$. Since γ is a geodesic, we have by (a) that $\kappa_g = 0$, so $\kappa^2 = \kappa_n^2$ and $\kappa_n = \pm \kappa$.

iii. Let p and q be two points on a smooth surface S, and let γ be a geodesic joining p and q. Then, γ is the path of shortest length from p to q.

Solution. False. Pick two points p and q on a great circle of a sphere which are not antipodal. Then there are two arcs from p to q which are both geodesics, but one has greater length than the other.

(c) Give an example of an isometry which is not a translation, rotation, or reflection.

Solution. Let $S_1 = \{(x, y, z) \in \mathbb{R}^3 : z = 0, 0 < x < 2\pi\}$ be a subset of the xy-plane and $S_2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = 1, x \neq 1\}$ be the cylinder of radius 1 minus the line x = 1. Consider the diffeomorphism

$$\Phi: S_1 \to S_2$$
$$(x, y, 0) \mapsto (\cos x, \sin x, y).$$

Define $\sigma: \mathbb{R}^2 \to S_1$ by $(u, v) \mapsto (u, v, 0)$ and let

$$\tilde{\sigma} = \Phi \circ \sigma : \mathbb{R}^2 \to S_2$$

$$(u, v) \mapsto (\cos u, \sin u, v).$$

Then $\tilde{\sigma}$ is the usual parametrization of the cylinder. We have seen in class that $\mathcal{F}_{I} = \tilde{\mathcal{F}}_{I} = I_{2\times 2}$, so Φ is an isometry.

(d) Describe all geodesics on a plane, a sphere and a cylinder.

Solution. The geodesics on a plane with coordinate $\sigma(u,v) = p_0 + uw_1 + vw_2$ are the lines

$$\gamma(t) = \sigma(at + b, ct + d).$$

The geodesics on a sphere are the great circles. To find the geodesics of a cylinder, one can use the isometry we gave in part (c), which gives a one-to-one correspondence between geodesics on the plane and geodesics on the cylinder. Here, the geodesics on the cylinder are the images of the lines in the plane under the isometry Φ , so we have

$$\gamma(t) = \Phi(at+b,ct+d,0) = (\cos(at+b),\sin(at+b),ct+d).$$

This is a line if a = 0, a circle of c = 0, and a helix if a and c are both nonzero.

E. Integration.

- 1. Let M be a smooth k-dimensional submanifold of \mathbb{R}^n and $\alpha: U \subset \mathbb{R}^k \to V \subset M$ be a smooth coordinate chart of M. Assume that V is bounded. Define the following:
 - (a) The first fundamental form of α .

Solution. The first fundamental form of α is defined to be

$$\mathcal{F}_{\mathbf{I}} := D\alpha^T D\alpha.$$

(b) The scalar integral of a smooth function f on V.

Solution. The scalar integral of a smooth function f on V is

$$\int_{V} f \, dVol := \int_{U} f(\alpha(u)) \sqrt{\det \mathcal{F}_{I}} \, du_{1} \cdots du_{k}.$$

(c) The line integral of a smooth vector field on a smooth curve.

Solution. Let $\gamma:[a,b]\to\mathbb{R}^n$ be a smooth regular curve contained in \mathbb{R}^n , and $F:U\to\mathbb{R}^n$ be a smooth vector field defined on an open set $U\subset\mathbb{R}^n$ containing γ . The line integral of F on γ is defined to be

$$\int_{\gamma} F \cdot dr := \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt.$$

(d) A hypersurface in \mathbb{R}^n .

Solution. A hypersurface is a smooth (n-1)-dimensional submanifold of \mathbb{R}^n , where n>3.

(e) An orientation of a hypersurface in \mathbb{R}^n .

Solution. A hypersurface M in \mathbb{R}^n is orientable if it admits a smooth unit normal vector N. There are two possible choices for the smooth unit normal vector N; such a choice of N is called an orientation of M.

(f) The integral of a smooth vector field on a hypersurface in \mathbb{R}^n .

Solution. Let $F: V \to \mathbb{R}^n$ be a smooth vector field, and let B be a bounded subset of V. Let N be a unit normal vector to M (i.e. an orientation). Then we define

$$\int_{B} F \cdot dVol = \int_{B} (F \cdot N) dVol,$$

where the latter integral is the scalar integral of the smooth function $F \cdot N$ as defined in (b).

2. Let $\gamma:(\alpha,\beta)\to\mathbb{R}^n$ be a smooth regular curve. Verify that the formula for the integral of a scalar function on γ is equivalent to

$$\int_{\gamma} f \ ds = \int_{\alpha}^{\beta} f(\gamma(t)) \|\gamma'(t)\| dt$$

for any smooth scalar function $f:(\alpha,\beta)\to\mathbb{R}$.

Solution. Note that $D\gamma(t) = \gamma'(t)$, so \mathcal{F}_{I} is a 1×1 matrix with

$$\mathcal{F}_{\mathrm{I}} = D\gamma(t)^{T}D\gamma(t) = \gamma'(t)^{T}\gamma'(t) = \gamma'(t)\cdot\gamma'(t) = \|\gamma'(t)\|^{2}.$$

It follows that det $\mathcal{F}_{I} = \mathcal{F}_{I} = ||\gamma'(t)||^2$, and therefore

$$\int_{\gamma} f \, \mathrm{d}s = \int_{\alpha}^{\beta} f(\gamma(t)) \sqrt{\det \mathcal{F}_{\mathrm{I}}} \, \mathrm{d}t = \int_{\alpha}^{\beta} f(\gamma(t)) \|\gamma'(t)\| \, \mathrm{d}t.$$

- 3. Let S be a surface in \mathbb{R}^3 and $\sigma: U \subset \mathbb{R}^2 \to V \subset S$ be a smooth coordinate chart with V bounded. Show that the formulas for the integrals of a scalar function or a vector field on V can be expressed in terms of σ as:
 - (a) $\int_V f \ dVol = \int_U f(\sigma(u,v)) \|\sigma_u \times \sigma_v\| dudv$ for any smooth scalar function $f: V \to \mathbb{R}$.

Solution. From our study of surfaces, we have $\det \mathcal{F}_{I} = \|\sigma_{u} \times \sigma_{v}\|^{2}$, so $\sqrt{\det \mathcal{F}_{I}} = \|\sigma_{u} \times \sigma_{v}\|$ and the formula follows by definition.

(b) $\int_V F \cdot dVol = \int_U F(\sigma(u,v)) \cdot (\sigma_u \times \sigma_v) dudv$ with respect to the orientation N_σ on V.

Solution. Using the definition and part (a), we have that

$$\begin{split} \int_{V} F \cdot d\text{Vol} &= \int_{V} (F \cdot N_{\sigma}) \, dA \\ &= \int_{U} F(\sigma(u, v)) \cdot N_{\sigma} \| \sigma_{u} \times \sigma_{v} \| \, du \, dv \\ &= \int_{U} F(\sigma(u, v)) \cdot \frac{\sigma_{u} \times \sigma_{v}}{\| \sigma_{u} \times \sigma_{v} \|} \| \sigma_{u} \times \sigma_{v} \| \, du \, dv \\ &= \int_{U} F(\sigma(u, v)) \cdot (\sigma_{u} \times \sigma_{v}) \, du \, dv. \end{split}$$

4. Prove that any smooth hypersurface M in \mathbb{R}^n is locally orientable. That is, for any point $p \in M$, there exists an open neighbourhood V of p in M such that V is an orientable hypersurface.

Solution. The zero set of a smooth scalar function $G: V \subset \mathbb{R}^n \to \mathbb{R}$ with ∇G of maximal rank everywhere on an open set $V \subset \mathbb{R}^n$ is orientable with possible orientations $\pm \nabla G/\|\nabla G\|$. Since any smooth hypersurface M in \mathbb{R}^n is locally the zero set of such a function, it follows that M is locally orientable.

5. Prove that if M be a smooth bounded n-dimensional submanifold of \mathbb{R}^n , then $\int_M f dV ol$ is just the standard multiple integral $\int_M f(x_1, \dots, x_n) dx_1 dx_2 \cdots dx_n$ for any smooth scalar function f on M.

Solution. We know that the definition of the scalar integral is independent of the choice of coordinate chart. Let M be a smooth bounded n-dimensional submanifold of \mathbb{R}^n . Then M is an open set in \mathbb{R}^n , and we can simply take $\alpha = \operatorname{Id}_M$ as the coordinate chart which has $D\alpha = I_{n \times n}$ and therefore $\mathcal{F}_I = D\alpha^T D\alpha = I_{n \times n}$. Then $\sqrt{\det \mathcal{F}_I} = 1$, so

$$\int_{M} f \, dVol = \int_{M} f(\alpha(x_1, \dots, x_n)) \sqrt{\det \mathcal{F}_I} \, dx_1 \cdots dx_n = \int_{M} f(x_1, \dots, x_n) \, dx_1 \cdots dx_n.$$

6. (a) Evaluate the line integral $\int_{\gamma} x^3 y ds$ along part of the line $\gamma(t) = (t, -t), t \in [-1, 2], \text{ in } \mathbb{R}^2$.

Solution. Let $f(x,y) = x^3y$. We have $f(\gamma(t)) = -t^4$ and $\gamma'(t) = (1,-1)$ so that $\|\gamma'(t)\| = \sqrt{2}$. Therefore, using the result from Problem E.2, we obtain

$$\int_{\gamma} x^3 y \, ds = \int_{-1}^2 f(\gamma(t)) \|\gamma'(t)\| \, dt$$

$$= -\sqrt{2} \int_{-1}^2 t^4 \, dt$$

$$= -\sqrt{2} \left[\frac{t^5}{5} \right]_{-1}^2 = -\sqrt{2} \left(\frac{32}{5} - \frac{1}{5} \right) = -\frac{31\sqrt{2}}{5}.$$

(b) Evaluate the line integral $\int_{\gamma} F \cdot dr$ of the vector field F(x, y, z) = (yz, xz, xy) along part of the twisted cubic $\gamma(t) = (t, t^2, t^3), t \in [0, 1]$, in \mathbb{R}^3 .

Solution. We have $F(\gamma(t)) = (t^5, t^4, t^3)$ and $\gamma'(t) = (1, 2t, 3t^2)$ so that

$$F(\gamma(t)) \cdot \gamma'(t) = (t^5, t^4, t^3) \cdot (1, 2t, 3t^2) = 6t^5.$$

From this, we obtain

$$\int_{\gamma} F \cdot dr = \int_{0}^{1} F(\gamma(t)) \cdot \gamma'(t) dt = \int_{0}^{1} 6t^{5} dt = 1^{6} - 0^{6} = 1.$$

(c) Evaluate the surface integral $\int_{S} 6xzdA$ where

$$S = \{(x, y, z) \in \mathbb{R}^3 : -1 \le x \le 3, 0 \le y \le 4, z = 1 - x - y\}$$

is the portion of the plane x+y+z=1 lying above the rectangle $[-1,3]\times[0,4]$ in the xy-plane.

Solution. We can parametrize the surface S with the coordinate chart

$$\sigma(u,v) = (u,v,1-u-v),$$

where $(u, v) \in U = [-1, 3] \times [0, 4]$. Note that $\sigma_u = (1, 0, -1)$ and $\sigma_v = (0, 1, -1)$, so $\sigma_u \times \sigma_v = (1, 1, 1)$ and $\|\sigma_u \times \sigma_v\| = \sqrt{3}$. Next, for the smooth scalar function f(x, y, z) = 6xz, we have

$$f(\sigma(u,v)) = 6u(1 - u - v).$$

Applying part (a) of Problem E.3 gives

$$\int_{S} 6xz \, dA = \int_{0}^{4} \int_{-1}^{3} f(\sigma(u, v)) \|\sigma_{u} \times \sigma_{v}\| \, du \, dv$$

$$= 6\sqrt{3} \int_{0}^{4} \int_{-1}^{3} (u - u^{2} - uv) \, du \, dv$$

$$= 6\sqrt{3} \int_{0}^{4} \left[\frac{u^{2}}{2} - \frac{u^{3}}{3} - \frac{u^{2}v}{2} \right]_{-1}^{3} \, dv$$

$$= 6\sqrt{3} \int_{0}^{4} \left[\left(\frac{9}{2} - 9 - \frac{9v}{2} \right) - \left(\frac{1}{2} + \frac{1}{3} - \frac{v}{2} \right) \right] \, dv$$

$$= 6\sqrt{3} \int_{0}^{4} \left(-\frac{16}{3} - 4v \right) \, dv$$

$$= 6\sqrt{3} \left[-\frac{16}{3}v - 2v^{2} \right]_{0}^{4} = -320\sqrt{3}.$$

(d) Evaluate the surface integral $\int_S y dA$ where S is the portion of the cylinder $x^2 + y^2 = 3$ that lies between z = 0 and z = 6.

Solution. Here, we can parametrize S using the chart

$$\sigma(u, v) = (\sqrt{3}\cos u, \sqrt{3}\sin u, v)$$

where $(u,v) \in U = [0,2\pi] \times [0,6]$. We have $\sigma_u = (-\sqrt{3}\sin u, \sqrt{3}\cos u, 0)$ and $\sigma_v = (0,0,1)$ so that $\sigma_u \times \sigma_v = (\sqrt{3}\cos u, \sqrt{3}\sin u, 0)$ with $\|\sigma_u \times \sigma_v\| = \sqrt{3}$. Moreover, we have the scalar function f(x,y,z) = y and $f(\sigma(u,v)) = \sqrt{3}\sin u$. Putting everything together, we have

$$\int_{S} y \, dA = \int_{0}^{6} \int_{0}^{2\pi} f(\sigma(u, v)) \|\sigma_{u} \times \sigma_{v}\| \, du \, dv = 3 \int_{0}^{6} \int_{0}^{2\pi} \sin u \, du \, dv$$
$$= 3 \int_{0}^{6} (-\cos 2\pi + \cos 0) \, dv = 3 \int_{0}^{6} 0 \, dv = 0.$$

(e) Evaluate the integral $\int_R z dV$ where R is the rectangular box $[-1,4] \times [0,3] \times [-2,5]$ in \mathbb{R}^3 .

Solution. Since R is a 3-dimensional smooth submanifold of \mathbb{R}^3 , we can perform a standard triple integral by Problem E.5. Then we have

$$\int_{R} z \, dV = \int_{-2}^{5} \int_{0}^{3} \int_{-1}^{4} z \, dx \, dy \, dz = 5 \int_{-2}^{5} \int_{0}^{3} z \, dy \, dz$$
$$= 15 \int_{-2}^{5} z \, dz = 15 \left[\frac{z^{2}}{2} \right]_{-2}^{5} = 15 \left(\frac{25}{2} - 2 \right) = \frac{315}{2}.$$

(f) Evaluate the integral of the vector field F(x,y,z)=(-y,x,z) on the piece of paraboloid S in \mathbb{R}^3 parametrised by $\sigma(u,v)=(u,v,u^2+v^2),\ (u,v)\in[0,1]\times[0,3],$ with respect to the orientation N_{σ} .

Solution. First, we have that $F(\sigma(u,v)) = (-v, u, u^2 + v^2)$. Next, we have $\sigma_u = (1,0,2u)$ and $\sigma_v = (0,1,2v)$, so $\sigma_u \times \sigma_v = (-2u,-2v,1)$. Then

$$F(\sigma(u,v)) \cdot (\sigma_u \times \sigma_v) = (-v, u, u^2 + v^2) \cdot (-2u, -2v, 1) = u^2 + v^2.$$

Note that S is bounded, and applying part (b) of Problem E.3 gives

$$\int_{S} F \cdot dVol = \int_{0}^{3} \int_{0}^{1} F(\sigma(u, v)) \cdot (\sigma_{u} \times \sigma_{v}) du dv$$

$$= \int_{0}^{3} \int_{0}^{1} (u^{2} + v^{2}) du dv$$

$$= \int_{0}^{3} \left[\frac{u^{3}}{3} + uv^{2} \right]_{0}^{1} dv$$

$$= \int_{0}^{3} \left(\frac{1}{3} + v^{2} \right) dv$$

$$= \left[\frac{v}{3} + \frac{v^{3}}{3} \right]_{0}^{3} = 1 + 9 = 10.$$

(g) Evaluate the integral of the vector field F(x,y,z)=(xy,2,z-1) on the half-cylinder C in \mathbb{R}^3 parametrised by $\sigma(u,v)=(\cos u,\sin u,v),\,(u,v)\in[0,\pi]\times[2,4],$ with respect to the orientation N_{σ} .

Solution. We have $F(x, y, z) = (\cos u \sin u, 2, v - 1)$. Moreover, we see that $\sigma_u = (-\sin u, \cos u, 0)$ and $\sigma_v = (0, 0, 1)$, so $\sigma_u \times \sigma_v = (\cos u, \sin u, 0)$ and

$$F(\sigma(u,v)) \cdot (\sigma_u \times \sigma_v) = (\cos u \sin u, 2, v - 1) \cdot (\cos u, \sin u, 0) = \cos^2 u \sin u + 2\sin u.$$

Moreover, C is bounded. Therefore, we can apply part (b) of Problem E.3 to obtain

$$\int_C F \cdot dVol = \int_2^4 \int_0^\pi (\cos^2 u \sin u + 2 \sin u) du dv$$

$$= \int_2^4 \left[-\frac{1}{3} \cos^3 u - 2 \cos u \right]_0^\pi dv$$

$$= \int_2^4 \left[\left(\frac{1}{3} + 2 \right) - \left(-\frac{1}{3} - 2 \right) \right] dv$$

$$= \int_2^4 \frac{14}{3} dv = \frac{28}{3}.$$