HW 2 - Skyler Benjamin

Tuesday, September 14, 2021 5:37 PM

Collaborated with: Clark, Connor, Jack, Andrew

1. $T(n) = 3(n+5)^2 + n$

a. WTS: T(n) is $\Theta(N^2)$

b. def: WTS there exists c_1 , c_2 , $n_0 > 0$ such that

i. $C_1n^2 \le 3(n+5)^2 + n \le c_2n^2$ for all $n >= n_0$

c. Work:

i. $C_1n^2 \le (3(n+5)^2 + n) / n^2 \le c_2n^2$

ii. $(3(n+5)^2 + n) / n^2$

iii. $(3(n+5)(n+5) + n) / n^2$

iv. $(3(n^2 + 10n + 25) + n) / n^2$

v. $(3n^2 + 31n + 75) / n^2$

vi. $3 + (31/n) + (75/n^2)$

N	3 + (31/n) + (75/n ²)
1	109
2	37.5
3	21.66
4	15.43
	3

d. $C_1 \le 3 + (31/n) + (75/n^2) \le c2$ for all $n >= n_0$

- i. Where $c_1 = 3$, $c_2 = 109$, $n_0 = 1$
- ii. 1 is the lowest $n_0 > 0$, where this function reaches its peak at 109, so 109 is an upperbound
- iii. By inspection it is clear that as n increases, T(n) will decrease as it asymptotically approaches 3. It cannot go lower than 3 because 3 is a constant in T(n), so no matter how low the two second terms go, the function will always be >= 3 for n >= 1.
- 2. T(n) = Ig(n) + n
 - a. WTS: T(n) is $\Theta(n)$
 - b. Def: WTS there exists c_1 , c_2 , $n_0 > 0$ such that
 - i. $C_1 n \le \lg(n) + n \le c_2 n$ for all $n >= n_0$
 - c. Work:
 - i. $C_1 n \le (\lg(n) + n) / n \le c_2 n$
 - ii. $C_1 \le (Lg(n) / n) + 1 \le c_2$

d. $C_1 \le (Lg(n) / n) + 1 \le c_2$ for all $n >= n_0$

- i. Where $c_1 = 1$, $c_2 = 1.53$, $n_0 = 3$
- ii. 1 is the lower bound because of the constant1 which prevent the function value from ever dipping below 1.
- iii. 1.53 is the upper bound because there is a small tick up over 1.5 around n=3, but after this point the value only decreases. Since the smallest of $n_0 > 0$ appears to be an anomaly from the rest of the function, $n_0 = 3$ so we only look at the most relevant parts of the function.

n	(Lg(n) / n) + 1
1	1
2	1.5
3	1.528
4	1.5
5	1.46
6	1.43
7	1.40
	1

- 3. Suppose that $T_1(n)$ is O(f(n)) and $T_2(n)$ is also O(f(n)) for some function f(n). Is it true that $T_1(n)$ is $O(T_2(n))$?
 - a. It is NOT always true that a $T_1(n)$ which is O(f(n)) will be $O(T_2(n))$ if $T_2(n)$ is also O(f(n)) because the function f(n) which upper bounds both $T_1(n)$ and $T_2(n)$ does not have to be a "tight bound". As such, the order of both functions is not necessary captured by only a one-sided bound, in this case the upper bound represented by O(f(n)) only really captures the order of the higher order T(n), and the other is just \sim somewhere below. Because of this defining characteristic of an upper bound, many counter examples could be presented to disprove this claim, one of which is as follows:
 - i. $T_1(n) = n^3$, $T_2(n) = n$, $f(n) = n^3$
 - b. In the above case, both $T_1(n^3)$ and $T_2(n)$ are $O(n^3)$ with many constants, c that could be found to apply to f(n) to upper bound both functions. However, it is not true that $T_1(n^3)$ is $O(T_1(n))$, so the original claim is false.
- 4. Suppose that $T_1(n)$ is $\Theta(f(n))$ and $T_2(n)$ is also $\Theta(f(n))$ for some function f(n). Is it true that $T_1(n)$ is $\Theta(T_2(n))$?
 - a. Assuming $T_1(n)$ and $T_2(n)$ are both $\Theta(f(n))$ then the follows holds true
 - i. $C_1f(n) \le T_1(n) \le c_2f(n)$
 - ii. $C_3f(n) \le T_2(n) \le c_4f(n)$
 - b. Since both $T_1(n)$ and $T_2(n)$ are upper and lower bounded by a single function fn which is only modified via a constant per the definition of Θ , they must be of the same degree (both n^2 for example) because as n approaches infinity no constant would modify f(n) enough to be a proper bounding. For example if $T_1(n)$ was $\Theta(n^2)$ then approaching infinity it would cross any $\Theta(n)$ or $\Theta(n^3)$. If $T_1(n)$ and $T_2(n)$ are the same order, then they must be Θ of each other because a constant could always be found for a function to bound on either side of its own "pure form" (n^2 vs. $3n^2$)

5.

A.

- a. T(n) = n(n(n + s))
 - i. S is a constant equal to the number of ops needed to store into array B
- b. WTS: T(n) is $O(n^3)$
- c. Def: WTS there exists c , $n_0 > 0$ such that:
 - i. $n(n(n + s) \le cn^3)$
 - ii. $n(n^2 + ns)$
 - iii. $N^3 + sn^2 <= cn^3$
 - iv. $(n^3 / n^3) + (sn^2 / n^3)$
 - v. (s/n) <= c
- d. Since n is in the denominator, it is clear that as n approaches infinity (s/n) will approach 0 and the numerator is ultimately insignificant. Assuming this insignificance holds S could be replaced by any number, such as 1. In this case, that constant number would be the upper bound reached when n = 1. So c would be 1 and n_0 would also be 1.

C.

a. The current function operates under a wasteful paradigm that iterates the list a third time to find the sum, when the sum could be taken along the way. My redesigned paradigm for this problem is to simply take the prior entry in B and add the new j element from A to it, forming the sum so far for whatever A[i] through A[j] is at that time. This paradigm works so effectively specifically because the sum stored in B[i,j] is the sum from A[i] - A[j] and not the entire array A, so you only really need the prior sum to find the new sum.

```
For(i=1; i<=n; i++){
For(j=i+1; j<=n; j++)
B[i][j] = B[i][j-1] + A[j]
```

The data structures in this are an array (n) and a two-dimensional array ($n_x n$), and the two dimensional array is only ever accessed via a constant time operation so the functions main bounding comes from the nested looping used to aggregate the sums of array A. By changing the function to use a singly nested for loop instead of a doubly nested for loop I eliminated wasted operations and shaved the time complexity of this function from n^3 to n^2 .