- 64 Let A be the region bounded by the positive x- and y-axes and the line 3x + 4y = 10. Compute $\iint_A (x^2 + y^2) dx dy$, taking the integrals in both orders and checking that your answers agree.
- 65 *In the following integrals sketch the integration regions and then evaluate the integrals.*Next interchange the order of integrations and re-evaluate.
 - (a) $\int_0^1 \left(\int_x^1 xy \, dy \right) dx,$
 - (b) $\int_0^{\pi/2} \left(\int_0^{\cos \theta} \cos \theta \, dr \right) d\theta,$
 - (c) $\int_0^1 \left(\int_1^{2-y} (x+y)^2 \, dx \right) dy.$
- 66 Exam question 2010 (Section A) Q4: Calculate the double integral

$$\iint_A (|x| + |y|) \, dx \, dy.$$

where A is the region defined by $|x| + |y| \le 1$.

67 Exam question 2011 (Section A) Q4: Change the order of integration in the double integral

$$\int_0^2 \int_x^{2x} f(x,y) \, dy \, dx.$$

68 Exam question May 2017 (Section A): A solid cylinder C of radius 1 and height 1 is defined by

$$C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \le 1, \ 0 \le z \le 1\}.$$

Show that the paraboloid $P = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2\}$ cuts C into two pieces of equal volume.

69 Compute the iterated integral

$$\int_0^1 \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \, dx \, .$$

Now reverse the order of integrations and re-evaluate. Why doesn't your answer contradict Fubini's theorem? (Hints: for the first integral, with respect to y, it might help to aim at something that can be integrated by parts using $\frac{d}{dy}\left(\frac{1}{x^2+y^2}\right) = -\frac{2y}{(x^2+y^2)^2}$; and in answering to the last part of the question, the fact that $\int_0^1 \left|\frac{x^2-y^2}{(x^2+y^2)^2}\right| dy \geq \int_0^x \frac{x^2-y^2}{(x^2+y^2)^2} dy$ could be useful.)

- 70 Let B be the region bounded by the five planes x = 0, y = 0, z = 0, x + y = 1, and z = x + y.
 - (a) Find the volume of B.
 - (b) Evaluate $\int_B x \, dV$.
 - (c) Evaluate $\int_B y \, dV$.

71 A function f(x, y) is defined by

$$f(x,y) = \begin{cases} 1 & \text{if } -1 < x - y < 0 \\ -1 & \text{if } 0 < x - y < 1 \\ 0 & \text{otherwise} \,. \end{cases}$$

Compute $\int_0^\infty \left(\int_{-\infty}^\infty f(x,y) \, dx \right) dy$ and also $\int_{-\infty}^\infty \left(\int_0^\infty f(x,y) \, dy \right) dx$ (for the second case it might help to draw a picture). Comment on your two answers – does this contradict Fubini's theorem?

72 A function f(x, y) is defined by

$$f(x,y) = \begin{cases} 2^{2(n+1)} & \text{if } 2^{-(n+1)} < x < 2^{-n}, \quad 2^{-(n+1)} < y < 2^{-n} \\ -2^{2n+3} & \text{if } 2^{-(n+1)} < x < 2^{-n}, \quad 2^{-(n+2)} < y < 2^{-(n+1)} \\ 0 & \text{otherwise} \,, \end{cases}$$

for $n \in \mathbb{Z}_{\geq 0} = \{0, 1, 2, \ldots\}.$

Compute $\int_0^1 \int_0^1 f(x,y) dx dy$, and $\int_0^1 \int_0^1 f(x,y) dy dx$. Does this contradict Fubini's theorem?

73 Write the line integral

$$\int_C xdx + ydy + (xz - y)dz$$

in the form $\int_C \mathbf{v} \cdot d\mathbf{x}$ for a suitable vector field $\mathbf{v}(\mathbf{x})$, and compute its value when C is the curve given by $\mathbf{x}(t) = t^2 \mathbf{e_1} + 2t \mathbf{e_2} + 4t^3 \mathbf{e_3}$ with $0 \le t \le 1$.

- 74 Evaluate $\int_{\sigma} \mathbf{F} \cdot d\mathbf{x}$, where $\mathbf{F} = y \mathbf{e_1} + 2x \mathbf{e_2} + y \mathbf{e_3}$ and the path σ is given by $\mathbf{x}(t) = t \mathbf{e_1} + t^2 \mathbf{e_2} + t^3 \mathbf{e_3}$, $0 \le t \le 1$.
- 75 Let $\underline{A}(\underline{x})$ be the vector field $\underline{A}(x,y,z)=x\,\underline{e}_1+y\,\underline{e}_2+z\,\underline{e}_3$.
 - (a) Compute the line integral $\int_C \underline{A} \cdot d\underline{x}$ where C is the straight line from the origin to the point (1,1,1).
 - (b) Show (by finding f) that the vector field \underline{A} from part (a) is equal to $\nabla f(\underline{x})$ for some scalar field f, and that your answer to part (a) is equal to f(1,1,1) f(0,0,0).
- 76 Show that the result from question 75 applies in general: if the vector field $\underline{v}(\underline{x})$ in \mathbb{R}^n is the gradient of a scalar field $f(\underline{x})$, so that $\underline{v} = \nabla f$, and if C is a curve in \mathbb{R}^n running from $\underline{x} = \underline{a}$ to $\underline{x} = \underline{b}$, then $\int_C \underline{v} \cdot d\underline{x} = f(\underline{b}) f(\underline{a})$. (Hint: use the chain rule.)
- 77 Use the result from question 76 to evaluate $\int_C 2xyzdx + x^2zdy + x^2ydz$, where C is any regular curve connecting (1,1,1) to (1,2,4).
- 78 Compute the surface integral, $\int_S \mathbf{F} \cdot d\mathbf{A}$, of the vector field $\mathbf{F} = (3x^2, -2yx, 8)$ over the surface given by the plane z = 2x y with $0 \le x \le 2$, $0 \le y \le 2$,
 - (a) using method 2 from lectures,

- (b) using method 1 from lectures.
- 79 Let $\mathbf{F}(x,y,z)=(z,x,y)$, and S be the part of the surface of the sphere $x^2+y^2+(z-1)^2=r^2$ above the plane z=0. Assume that r>1 so that the boundary C of S, where S intersects the plane z=0, is non-empty.
 - (a) Compute the line integral $\oint_C \mathbf{F} \cdot d\mathbf{x}$.
 - (b) By parameterising the surface S with spherical coordinates centred on the point (0,0,1), compute the surface integral of the curl of \mathbf{F} , $\int_S \nabla \times \mathbf{F} \cdot d\mathbf{A}$.
- 80 Let $\underline{A}(\underline{x})$ be the vector field $\underline{A}(x,y,z) = z\,\underline{e}_1 + x\,\underline{e}_2 + y\,\underline{e}_3$, C be the circle in the x,y-plane of radius r centred on the origin, and S the disk in the x,y-plane whose boundary is C.
 - (a) Compute the line integral $\oint_C \underline{A} \cdot d\underline{x}$.
 - (b) Compute the surface integral of the curl of \underline{A} , $\int_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{A}$.
- 81 Let $\underline{A}(\underline{x})$ be the vector field $\underline{A}(x,y,z) = z\,\underline{e}_1 + x\,\underline{e}_2 + y\,\underline{e}_3$, C be the a by a square \underline{abcd} in the y,z-plane with vertices $\underline{a}=\underline{0}$, $\underline{b}=a\,\underline{e}_2$, $\underline{c}=a\,\underline{e}_2+a\,\underline{e}_3$ and $\underline{d}=a\,\underline{e}_3$, and S be the region of the y,z-plane bounded by C.
 - (a) Compute the line integral $\oint_C \underline{A} \cdot d\underline{x}$.
 - (b) Compute the surface integral of the curl of \underline{A} , $\int_S (\nabla \times \mathbf{A}) \cdot d\mathbf{A}$.
- 82 Based on exam question May 2015 (Section A) Q5 (which didn't contain part (b)):
 - (a) Calculate $\int_V (\underline{\nabla} \cdot \underline{U}) dV$ where V is the solid cube with faces $x=\pm 1$, $y=\pm 1$ and $z=\pm 1$ and

$$\underline{U}(x,y,z) = (xy^2, yx^2, z).$$

(b) Calculate $\int_S \underline{U} \cdot d\underline{A}$, where S is the surface of V.