NamePersonal No.....

535/2PHYSICS
PAPER 1 $2\frac{1}{4}$ Hours

MATIGO MOCK EXAMINATIONS UGANDA CERTIFICATE OF EDUCATION PHYSICS PAPER 1

TIME: 2 HOURS 15 MINUTES

Instructions:

Answer all questions in section A, using the table given below and section B in the spaces provided on the question paper. Where necessary assume the following:

- Acceleration due to gravity = 10m/s^2
- Speed of sound in air = 330 m/s
- Specific heat capacity of water = $4200 \text{ Jkg}^{-1} \text{ k}^{-1}$
- Specific heat capacity of ice $= 2100 \text{ Jkg}^{-1} \text{ k}^{-1}$
- Density of mercury = 13600 kg m^{-3}

SECTION A:

1.	Which of the	~				~
	A: x-rays rays	B: v1s1ble	e light	C: Rad	10 waves	D: Gamma
2.	An echo is pro		ound wa			1 1:
	A: Absorbed b C: transmitted objects	• /				corners by
	Objects					
3.		ic object may f at is added to the er surface slipp	ne water,			
	B: lowering th C: Reducing th	e surface tension ne density of wathe adhesive fo	on of wa ater		metal and	d water
4.	A machine of 200N. The eff machine?	ort required is				_
	A: 50%	B: 75%	C: 80	0%	D: 1	25%
5		H			Gas supply	
5.					acm	
		${ m M}\epsilon$	ercury			

The diagram above shows a mercury manometer. H is the atmospheric pressure and h is the difference in height between the

A: <u>h</u> x 13600 x 10

B: <u>H</u> x 13600 x 10

C: $(H + h) \times 13600 \times 10$

D: $\underline{H - h}$ x 13600 x10

Three forces act on a body as shown above. If the forces are in equilibrium, then the value of F is

A: 2N

B: 5

C: 10N

D: 80N

7. An object weighs 200N and 120N when in air and when totally submerged in a liquid of density 800kgm⁻³ respectively. The weight of the liquid displaced is

A: 8N

B: 40N

C: 80N

D: 120N

8. Which of the following are vector quantities?

A: Density, velocity and force

B: velocity, time and displacement

C: magnetic field, weight and velocity

D: magnetic field, mass and acceleration

9. Isotopes are nuclides with the same number of

A: protons but different number of electrons

B: protons but different number of neutrons

C: electrons and the same number of neutrons

D: neutrons but different number of protons

applied is made A: Facilitate the B: obtain a press C: transmit press	smaller in order movement of the sure as large as parse thro	to: e piston downwa	
11. A mass of 50 force that would A: 2.0N B: 3.3N	cause an extens		d by 4cm. The
		naterial is 20 years	s. Find the initial
mass of the mate A: 4g B	~	C: 16g	D: 32g
13.	510 m		
A	В		
\mathcal{C}	erval between th	once and a boy and two sounds being	
A: 255m	B: 330m	C: 345m	D: 510m
14. A stone of m velocity with wh A: 3.2ms ⁻¹ B: 4.5ms ⁻¹ C: 7.1ms ⁻¹ D: 10 ms ⁻¹	~	ly from a height o ound.	of 5m. Find the

A: X-plates

B: Y – plates

C: The grid	D: The anode.
20. The particles of the medium throtravels	ough which a longitudinal wave
A: Vibrate parallel to the direction of B: Move along with the wave	of the propagation of the wave
C: move in opposite direction to the	e wave
D: vibrate perpendicular to the direction	ction of the propagation of the
wave.	
21. Which of the choices below best formed by convex mirror	describes nature of images
A: Real, virtual, magnified	
B: Diminished, real, erect	
C: Diminished, magnified, virtual D: virtual, diminished, erect.	
22. A beam of white light is to be pa 2 filters. Which combination would A: Blue and Red filters	9
B: Cyan and Red filters	
C: yellow and magenta D: cyan and magenta	
23. An image of an object 5cm is for the magnification is ½, find the hei A: 2.0cm B: 20cm C: 1.25cm	ght of the object.
24 For a parson who is short sighter	d the wave of light from
24. For a person who is short sighted A: Distant objects are focussed in fa	•
B: near objects are focussed behind	
C: Distant objects are focussed behi	
D: Near objects are focussed in from	nt of the retina.
25. Which of the choices represents petrol engine	the firing order of a four stroke
A: Exhaust, induction, compression	and power
B: induction, power, compression a	nd exhaust

C: power, compression, exhaust and induction

	D:	induction,	compressi	ion, exh	aust and po	wer.	
	me	etal from 20	°C to 30°C	C. If the		of a certain n specific heat	
	A:	1kg	B: 10kg		C: 0.01kg	D: 0.1k	g
	A: B: C:	A sensitive is sensitive can record can record has a large	to heat big change small chan	es in ten			
	ter by at	nperature c	of 50°C has temperatur tessure.	s its volu e to 100	ame increaso O°C. Determ	oressure of 10 ed to a new vi ine the new v	olume V2
	a c	•	A flow thr	oughou	rge pass thro t it for 100s D: 25		ctor while
30		Permanent	maonets a	are made	e from		
		diamagneti	0			romagnetic n	naterials
		paramagne				electric mater	
	In be co. A: B: C:	each of the correct. Re	e questions ead each que er A, B, C, y are correct are correct	s 31 to 3 uestion of and D a ect	carefully and	ore answers g I then indicat the following	e
31.		0			on the coil d	lepends on:	
		the strengt		\sim			
		the numbe the current			O11		
		the mass o	_				
	• •			777			

1. 2. 3.	Resistance length of the cross section material of colour of the	he conducto on area of co the conduc	or onductor tor	ough a conductor d	lepends on
1. 2. 3.	The p.d act	offered by tross its terms of force in a	the cell to fl ninals on a c cell that dri	ow of charge closed circuit ves a current terminals on an o	pen circuit.
1. 2. 3.	In which on a current-celectric belowing contelephone of the electric mo	carrying coil l il galvanomo receiver	in a magne	ces is use made of tic field?	the forces
2. 3.	Advantages its internal it can be re it produces No chemic	echarged s a steady e.r	s low m.f for a lor		
re e.ı	•	10 Ω . If the $\mathfrak p$		Ω is connected too the $10Ω$ resistor is D: 7.2V	
	When a 2k the plug is : 1A		ire is conne	cted to a 240V ma D: 7A	ins, the fuse

38. P and Q are two parallel circular coils each carrying shown	a current as
P Q	
A: P and Q repel each other B: P moves, Q stays still C: P and Q attract each other D: Q moves, P stays still.	
39. In a simple electric motor, the commutatorA: connects the brushes togetherB: reverses the magnetic fieldC: changes the current strength in the coilD: changes the current direction in the coil	
 40. In a house wiring system, all connections to power parallel so as to A: supply the same current B: operate at the same voltage C: minimise cost of electricity D: consume the same amount of energy 	points are in
SECTION B:	
41. (a) What is meant by thermionic emission?	(1 mark)

(b) State two properties of cathode rays	(1 mark)
••••••	••••••
	• • • • • • • • • • • • • • • • • • • •
(c) Describe briefly the action of a thermionic diode	,
••••••	• • • • • • • • • • • • • • • • • • • •
	•••••
	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
42. (a) A ticker tape-timer vibrates at a frequency of	40Hz. The
distance between two consecutive dots is 4cm. Find	
(i) the time that elapses between two consecutive $(1\frac{1}{2}marks)$	e dots
2	
•••••••••••••••••••••••••••••••••••••••	••••••
	• • • • • • • • • • • • • • • • • • • •

(ii) the average speed of the tape.	(2mark)
(b) Using the ticker-timer in (a), the tape d obtained	ots shown below were
$\stackrel{\textstyle \longleftarrow}{\leftarrow} \stackrel{\scriptstyle \longleftarrow}{\rightarrow} \stackrel{\scriptstyle \longleftarrow}{\leftarrow}$	•
$\begin{array}{ccc} & & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\$	→ i 2.1 cm
Calculate the acceleration of the tape. (Ass	_
led at a constant acceleration).	$(1\frac{1}{2}marks)$
• • • • • • • • • • • • • • • • • • • •	

`	b) How are heat losses by conduction, convection and ninimised?	(2 marks)
	•••••	•••••
		•••••
44.	(a) Define specific heat capacity	(1mark)
• •		•••••
• •		
• •		•••••
		• • • • • • • • • • • • • • • • • • • •
(1	o) An immersion heater rated 1000W, 250V, supplies of liquid in a tank. If the temperature of the liquid 125°C to 65°C in 48 minutes. Determine the specific capacity of the liquid.	rises from
		• • • • • • • • • • • • • • • • • • • •

hydro-	am at a height of 550m above sea level s electric generating power station which i sea level. 2000kg of water pass through t	is at a height of 50m
(a) calc	ulate:	
(i)	the potential energy per second.	$(1\frac{1}{2}marks)$
••••		
••••		
(ii)	The maximum electrical power output	4
	whole system is 80% efficient?	$(1\frac{1}{2}marks)$
••••		
(b) Eins	1 the arrelegiter of the arrest on reds on it made	
stati	I the velocity of the water when it reache on	(1mark)
••••		
` '	Define each of the following terms as ap	plied to wave
motion (i)	wave front	(1mark)
••••		

	(1mark)
(c) A tuning fork of frequency 440Hz prod length of a resonance tube above the wa and again when its 575 mm. Calculate the	ater surface is 200mm
•••••	
(a) Explain the meaning of the following eference to light	g terms when used in
(i) Refractive index of an optical med	,

(ii) Critical angle of an optical r		(Imark)
	•••••	••••••
		• • • • • • • • • • • • • • • • • • • •
	5 0 D ' 1	1 .
b) The refractive index of glass is 1 ght in glass	.50. Determine the	e velocity o (2marks)
		• • • • • • • • • • • • • • • • • • • •
(a) (i) Distinguish between a cond	uctor and an insul	ator
(a) (i) Distinguish between a cond	actor and an moun	(1mark)
		• • • • • • • • • • • • • • • • • • • •
(') ()	A) (i) above.	(1mark)

mucuoi	n using a p	ositively	charge	d cellu	lose ac	etate.	(2mar	ks)
• • • • • •	• • • • • • • • • • • • •	• • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • •	• • • • • •
				• • • • • • •				
•••••							• • • • • •	
• • • • • •	· • • • • • • • • • • • • • • • • • • •	• • • • • • • • •	• • • • • • • • •	•••••	• • • • • • • •	• • • • • •	• • • • • •	• • • • •
•••••						• • • • • • •		
ınstrume Rheostat	ents would t, switch.	be conf	nected: 2	dry c	ells, An	nmete	r, Vol	tmet
(b)			6V					
(b)		3Ω	6V		6Ω			
(b)		3Ω	6V	9Ω	6Ω			
	nd the p.d		—— I—					
			—— I—			ks)		
			—— I—			ks)		
			—— I—			ks)		
			—— I—			ks)		

(ii)	Find the power dissipated in the 3Ω resistor. (2 marks)
50.	(a) State Faraday's law of electromagnetic induction (1 mark)
(b	b) ——B ———
	N S
	Magnet A D
	BCD is a copper coil being rotated in a magnetic field. Indicate n the diagram the direction of the induced current.
(c)	e) How are eddy current losses reduced in motors and generators

END