

On considère une deux variables: "Months" et "MonthlyCharges":

Quelle serait la fonction paramétrée g la plus simple ici?

 $f(\mathbf{x}) =$

 $1_{g(\mathbf{x}) \geq 0}$

 $g(\mathbf{x}) = \alpha + \beta_1 \mathbf{x}^1 + \beta_2 \mathbf{x}^2, \quad \alpha, \beta_1, \beta_2 \in \mathbb{R}$

 $g(\mathbf{x}) = \alpha + \langle \beta, \mathbf{x} \rangle, \quad \alpha \in \mathbb{R}, \beta \in \mathbb{R}^2$

À quoi ressemble l'ensemble des fonctions g?

 $g(\mathbf{x}) = \alpha + \beta^{\mathsf{T}} \mathbf{x}, \quad \alpha \in \mathbb{R}, \beta \in \mathbb{R}^2$

$$\min_{\alpha \in \mathbb{R}, \beta \in \mathbb{R}^2} \sum_{i=1}^n (\mathbb{1}_{\{\alpha + \beta^\top \mathbf{x}_i \ge 0\}} - y_i)^2$$

On considère $g: \mathbf{x} \mapsto \beta^{\top} \mathbf{x}$. Étudions ses courbes de niveaux, c-à-d pour $\mathbf{c} \in \mathbb{R}$ les ensembles: $\{\mathbf{x} | g(\mathbf{x}) = \mathbf{c}\}$.

Machine learning classique: zero-to-hero

séparateur linéaire en dimension 2

Machine learning classique: zero-to-hero

séparateur linéaire en dimension 2

On considère une deux variables: "Months" et "MonthlyCharges":

$$\mathbf{x} = (\mathbf{x}^1, \mathbf{x}^2) \qquad f(\mathbf{x}) = \mathbb{1}_{g(\mathbf{x}) \ge 0}$$

Quelle serait la fonction paramétrée g la plus simple ici?

$$g(\mathbf{x}) = \alpha + \beta_1 \mathbf{x}^1 + \beta_2 \mathbf{x}^2, \quad \alpha, \beta_1, \beta_2 \in \mathbb{R}$$

$$g(\mathbf{x}) = \alpha + \langle \beta, \mathbf{x} \rangle, \quad \alpha \in \mathbb{R}, \beta \in \mathbb{R}^2$$

$$g(\mathbf{x}) = \alpha + \beta^\top \mathbf{x}, \quad \alpha \in \mathbb{R}, \beta \in \mathbb{R}^2$$

$$\min_{\alpha \in \mathbb{R}, \beta \in \mathbb{R}^2} \sum_{i=1}^{n} (\mathbb{1}_{\{\alpha + \beta^\top \mathbf{x}_i \ge 0\}} - y_i)^2$$

À quoi ressemble l'ensemble des fonctions g?

On considère $g: \mathbf{x} \mapsto \beta^{\top} \mathbf{x}$. Étudions ses courbes de niveaux, c-à-d pour $\mathbf{c} \in \mathbb{R}$ les ensembles: $\{\mathbf{x} | g(\mathbf{x}) = \mathbf{c}\}$.

On considère $g: \mathbf{x} \mapsto \beta^{\top} \mathbf{x}$. Étudions ses courbes de niveaux, c-à-d pour $\mathbf{c} \in \mathbb{R}$ les ensembles: $\{\mathbf{x} | g(\mathbf{x}) = \mathbf{c}\}$.

