

Database System Concept (CSE 3103)

Lecture 05-Day 01

Nazmus Sakib, Assistant Professor, Dept. of CSE, AUST

Basic Concepts

- Indexing mechanisms used to speed up access to desired data.
 - E.g., author catalog in library
- Search Key attribute to set of attributes used to look up records in a file.
- An index file consists of records (called index entries) of the form

- Index files are typically much smaller than the original file
- Two basic kinds of indices:
 - Ordered indices: search keys are stored in sorted order
 - Hash indices: search keys are distributed uniformly across "buckets" using a "hash function".

Index Evaluation Metrics

- Access types supported efficiently. E.g.,
 - records with a specified value in the attribute
 - or records with an attribute value falling in a specified range of values.
- Access time
- Insertion time
- Deletion time
- Space overhead

Ordered Indices

- In an **ordered index**, index entries are stored sorted on the search key value. E.g., author catalog in library.
- Primary index: in a sequentially ordered file, the index whose search key specifies the sequential order of the file.
 - Also called clustering index
 - The search key of a primary index is usually but not necessarily the primary key.
- Secondary index: an index whose search key specifies an order different from the sequential order of the file. Also called non-clustering index.
- Index-sequential file: ordered sequential file with a primary index.

Dense Index Files

- **Dense index** Index record appears for every search-key value in the file.
- E.g. index on *ID* attribute of *instructor* relation

10101	_		10101	Srinivasan	Comp. Sci.	65000	
12121	_		12121	Wu	Finance	90000	
15151	_		15151	Mozart	Music	40000	
22222	_		22222	Einstein	Physics	95000	
32343	_		32343	El Said	History	60000	
33456	_		33456	Gold	Physics	87000	
45565	-		45565	Katz	Comp. Sci.	75000	
58583	-		58583	Califieri	History	62000	
76543	_		76543	Singh	Finance	80000	
76766	_		76766	Crick	Biology	72000	
83821	_		83821	Brandt	Comp. Sci.	92000	
98345	_		98345	Kim	Elec. Eng.	80000	

8/5/2017

Dense Index Files (Cont.)

• Dense index on *dept_name*, with *instructor* file sorted on *dept_name*

Sparse Index Files

- Sparse Index: contains index records for only some search-key values.
 - Applicable when records are sequentially ordered on search-key
- To locate a record with search-key value K we:
 - Find index record with largest search-key value < K
 - Search file sequentially starting at the record to which the index record points

8/5/2017

Sparse Index Files (Cont.)

- Compared to dense indices:
 - Less space and less maintenance overhead for insertions and deletions.
 - Generally slower than dense index for locating records.
- Good tradeoff: sparse index with an index entry for every block in file, corresponding to least search-key value in the block.

