

House Prices - Advanced Regression Techniques

POR JAVIER MARTÍNEZ Y JORGE LÓPEZ

Descripción del proyecto

Objetivo: Predecir el precio de venta para cada casa.

Métrica: La Raíz del Error Cuadrático Medio (RMSE)

Análisis de variables

Dataframes de train y test

79 variables explicativas, 37 numéricas y 43 categóricas.

Nuestra variable objetivo es el precio de venta

Usaremos las librerias ydata_profiling para agilizar el análisis.

Análisis de variables

OverallQual

Real number (R)

HIGH CORRELATION

Distinct	10
Distinct (%)	0.7%
Missing	0
Missing (%)	0.0%
Infinite	0
Infinite (%)	0.0%
Mean	6.0788211

Minimum	1
Maximum	10
Zeros	0
Zeros (%)	0.0%
Negative	0
Negative (%)	0.0%
Memory size	11.5 KiB

Statistics Histogram Common values Extreme values			
Quantile statistics		Descriptive statistics	
Minimum	1	Standard deviation	1.4368116
5-th percentile	4	Coefficient of variation (CV)	0.23636353
Q1	5	Kurtosis	0.037640747
median	6	Mean	6.0788211
Q3	7	Median Absolute Deviation (MAD)	1
95-th percentile	9	Skewness	0.18119602
Maximum	10	Sum	8869
Range	9	Variance	2.0644277
Interquartile range (IQR)	2	Monotonicity	Not monotonic

Análisis de variables

BsmtQual

Categorical

HIGH CORRELATION MISSING	
Distinct	4
Distinct (%)	0.3%
Missing	37
Missing (%)	2.5%
Memory size	11.5 KiB

More details

ength		Characters and Unic	ode	Unique		Sample	
Max length	2	Total characters	2846	Unique	0	1st row	Gd
Median length	2	Distinct characters	8	Unique (%)	0.0%	2nd row	Gd
Mean length	2	Distinct categories	2 ?			3rd row	Gd
Min length	2	Distinct scripts	1 ?			4th row	TA
		Distinct blocks	1 ?			5th row	Gd

be used to analyse textual variables.

Transformación de variables

Hacemos una primera transformación de variables que mantendremos durante todo el proyecto.

Rellenamos nulos para variables numéricas, por ejemplo, para aquellas casas con area de garage nula les asignamos el valor 0, puesto que esto significa que no tienen garage. Pero para otras como la distancia de la propiedad a la calle asignamos la media del dataset a los nulos.

Para las variables categóricas rellenamos los nulos con el valor respectivo que para cada campo hace referencia a la ausencia de valor para esa variable (NA, No_Garage, None...)

También eliminamos aquí los outliers.

Loop de trabajo

Selección de modelos

Usaremos Lazy Predict para obtener el major modelo para las variables seleccionadas

- 1. Selección automática de modelos de entre 30-40 modelos
- 2. Mínima configuración
- 3. Versatilidad
- 4. Informe completo de resultados

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
GradientBoostingRegressor	0.88	0.89	28263.66	0.39
ExtraTreesRegressor	0.88	0.89	28266.95	0.47
HistGradientBoostingRegressor	0.88	0.89	28304.96	0.31
LGBMRegressor	0.88	0.89	28393.12	0.10
PoissonRegressor	0.87	0.88	29090.16	0.54
RandomForestRegressor	0.86	0.87	30564.48	0.76
BaggingRegressor	0.85	0.87	31073.26	0.09
XGBRegressor	0.85	0.86	31442.68	0.25

Primera sumisión

Escogemos las 10 variables numéricas más correlacionadas.

- 1. Calidad general de la casa
- 2. Superficie de la propiedad en pies cuadrados
- 3. Número de plazas de garage
- 4. Área de garage
- 5. Área del sotano
- 6. Área de la primera planta
- 7. Número de baños
- 8. Número de habitaciones
- 9. Año de construcción
- 10. Año de remodelación

Primera sumisión

Lazy predict

XGBRegressor

Fine tunning de hiperparametros

RESULTADO

kaggle_submission.csv

Complete · 2mo ago · submission-01

0.15938

Segunda sumisión

Para la segunda sumisión cogemos las 30 variables numéricas más correlacionadas y las 10 categóricas más correlacionadas.

Normalizamos las variables numéricas usando la transformación logarítmica y hacemos un One-Hot-Encoding para las variables categóricas.

Segunda sumisión

Con lazy predict obtenemos que el major modelo es GradientBoostingRegressor.

RESULTADO

Tercera sumisión

Usamos las mismas variables y transformaciones que en la segunda sumisión.

Como modelo haremos un model blending de los 5 mejores.

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
GradientBoostingRegressor	0.88	0.89	28263.66	2.41
ExtraTreesRegressor	0.88	0.89	28266.95	1.35
HistGradientBoostingRegressor	0.88	0.89	28304.96	8.23
LGBMRegressor	0.88	0.89	28393.12	0.21
PoissonRegressor	0.87	0.88	29090.16	1.25

Tercera sumisión

El model blending con sus pesos.

```
modelos_name=['GradientBoostingRegressor','ExtraTreesRegressor', 'RandomForestRegressor', 'XGBRegressor','PoissonRegressor']
test['SalePrice']=weights[0]*y_models_list[0]+weights[1]*y_models_list[1]+weights[2]*y_models_list[2]+weights[3]*y_models_list[3]+weights[4]*y_models_list[4]]
```

weights=[0.40,0.20,0.2,0.1,0.1]

RESULTADO

0.14305

Complete · 2mo ago · submission-01

MUCHAS GRACIAS