Rechtfertigung der Staatstätigkeit, Hausaufgaben 1

HENRY HAUSTEIN

Aufgabe 1

- (a) Wenn $\bar{x} = 0$, dann offensichtlich $x_1 = x_2 = 0$ und somit $u_1 = u_2 = 0$. Dies ist auch die einzig mögliche Allokation, also auch die optimale Allokation.
- (b) Die Wohlfahrtsfunktion ist "symmetrisch", das heißt der Tausch von $u_1 \Leftrightarrow u_2$ ändert die Gesamtwohlfahrt nicht, also muss $u_1 = u_2$ gelten. Dies impliziert $x_1 = x_2 = \frac{\bar{x}}{2}$.

Aufgabe 3

(a) Das Budget ist $p_1x_1 + p_2x_2 = 2p_1 + 2p_2 = 2(p_1 + p_2)$.

(b) Wenn p_1 steigt, so verschieben sich die Achsenabschnitte und damit die Budgetgerade. So wird der Achsenabschnitt $\frac{2(p_1+p_2)}{p_2}$ größer werden, während $\frac{2(p_1+p_2)}{p_1}$ kleiner wird. Die Budgetgerade dreht sich also.

(c) Maximiere den Nutzen $U = \ln(x_1) + \ln(x_2)$ unter der Nebenbedingung $p_1x_1 + p_2x_2 \le 2(p_1 + p_2)$. Der Lagrange-Ansatz ist $L = \ln(x_1) + \ln(x_2) - \lambda(p_1x_1 + p_2x_2 - 2(p_1 + p_2))$.

$$\begin{split} \frac{\partial L}{\partial x_1} &= \frac{1}{x_1} - \lambda p_1 = 0 \\ \frac{\partial L}{\partial x_2} &= \frac{1}{x_2} - \lambda p_2 = 0 \\ \frac{\partial L}{\partial \lambda} &= p_1 x_1 + p_2 x_2 - 2(p_1 + p_2) = 0 \end{split}$$

Aus den ersten beiden Gleichungen erhält man $\frac{x_2}{x_1} = \frac{p_1}{p_2}$, also $x_2 = \frac{p_1}{p_2}x_1$ bzw. $x_1 = \frac{p_2}{p_1}x_2$. Setzt man dies in die 3. Gleichung ein, so erhält man die Nachfrage für x_1

$$p_1 x_1 + p_2 \left(\frac{p_1}{p_2} x_1\right) = 2(p_1 + p_2)$$
$$2p_1 x_1 = 2(p_1 + p_2)$$
$$x_1 = \frac{p_1 + p_2}{p_1}$$

Bzw. die Nachfrage für x_2

$$p_1\left(\frac{p_2}{p_1}x_2\right) + p_2x_2 = 2(p_1 + p_2)$$
$$2p_2x_2 = 2(p_1 + p_2)$$
$$x_2 = \frac{p_1 + p_2}{p_2}$$

(d) Die Erstausstattung von Gut 1 steigt um Δ auf $2+\Delta$. Damit steigt auch das Budget auf $2(p_1+p_2)+p_1\Delta$. Der Lagrange-Ansatz ist $L=\ln(x_1)+\ln(x_2)-\lambda(p_1x_1+p_2x_2-2(p_1+p_2)-p_1\Delta)$.

$$\begin{split} \frac{\partial L}{\partial x_1} &= \frac{1}{x_1} - \lambda p_1 = 0 \\ \frac{\partial L}{\partial x_2} &= \frac{1}{x_2} - \lambda p_2 = 0 \\ \frac{\partial L}{\partial \lambda} &= p_1 x_1 + p_2 x_2 - 2(p_1 + p_2) - p_1 \Delta = 0 \end{split}$$

Die ersten zwei Gleichungen sind die selben wie bei (c), wir können also die Ergebnisse direkt für die Nachfragen nach x_1 und x_2 benutzen:

$$p_1x_1 + p_2x_2 = 2(p_1 + p_2) + p_1\Delta$$
$$2p_1x_1 = 2(p_1 + p_2) + p_1\Delta$$
$$x_1 = \frac{p_1 + p_2}{p_1} + \frac{\Delta}{2}$$

Die Nachfrage nach x_1 steigt also um $\frac{\Delta}{2}$. Für x_2 sieht es ähnlich aus:

$$p_1x_1 + p_2x_2 = 2(p_1 + p_2) + p_1\Delta$$
$$2p_2x_2 = 2(p_1 + p_2) + p_1\Delta$$
$$x_2 = \frac{p_1 + p_2}{p_2} + \frac{p_1}{p_2}\frac{\Delta}{2}$$

Die Nachfrage nach x_2 steigt also um das Preisverhältnis mal $\frac{\Delta}{2}$.