Метод распознавания летательных аппаратов с аэрофотоснимков с использованием нейронных сетей

Студент: Мицевич Максим Дмитриевич Научный руководитель: Тассов Кирилл Леонидович

Актуальность

• Распознавание самолетов с аэрофотоснимков позволяет в автоматическом режиме получить информацию о том, какие самолеты и в каком количестве находятся на аэродроме

Цель работы

Разработка метода распознавания летательных аппаратов с аэрофотоснимков

Задачи

- Провести анализ и сравнение существующих методов распознавания летательных объектов с аэрофотоснимков
- Разработать метод распознавания летательных аппаратов с использованием нейронных сетей
- Разработать программное обеспечение, реализующее метод распознавания летательных аппаратов
- Исследовать характеристики разработанного метода и влияние на них различных подходов к обучению

Постановка задачи

Ограничения:

- Изображение сделано в дневное время суток
- Размер изображения 800 на 800 пикселей
- Размер рамок самолетов больше чем 70 на 70 пикселей
- Изображение сделано под углом 90 градусов к поверхности Земли
- Формат PNG или JPEG

Анализ существующих решений

	Pix4Dmapper	ImageJ
Классификация моделей самолетов	-	-
Распознавание самолетов	+	+
Распознавание иных объектов	+	+
Возможность загрузить свою базу самолетов	-	-

Анализ существующих подходов

Подход	Устойчивость к шуму	Инвариантность к сдвигу, повороту, масштабированию
Детерминированный	-	+, но нужен эталон
Дерево решений	-	-
Искусственные нейронные сети	+	+

Метод распознавания самолетов с аэрофотоснимков

Нейронные сети, используемые для задач детектирования и классификации

	Перцептроны	Сверточные сети	Капсульные сети
Число обучаемых параметров	больше всего	меньше всего	среднее
Необходимость предобработки	есть	нет	нет
Устойчивость к шумам	устойчив	устойчивы	не устойчивы

Сравнение сверточных сетей

	GoogLeNet	AlexNet	SimpleNet	Yolo
Классификация	+	+	+	+
Детектирование	-	-	-	+
Число обучаемых параметров, млн	6,8	64	5.5	35

Yolo v3

Используется для детектирования объектов на изображении

$$x = \sigma(t_{x}) + c_{x}$$
 $y = \sigma(t_{y}) + c_{y}$ $w = a_{w}e^{t_{w}}$ $h = a_{h}e^{t_{h}}$ $p = \sigma(t_{p})$

х, у – координаты центра рамки

w, h – ширина и высота рамки

р – вероятность нахождения объекта в рамке

а – размеры якоря

t – выходы из нейронной сети

SimpLeNet

- 13 сверточных слоев с ядром размера 3 на 3 пикселя
- функция активации: ReLU
- пакетная нормализация
- 5 слоев max pooling с ядром 2 на 2 пикселя

Модификация сети

До модификации число обучаемых

параметров: 5500948

После модификации число обучаемых

параметров: 4910356

Алгоритм обучения

Структура программного обеспечения

Обучающая выборка

- 3842 аэрофотоснимка аэропортов
- 22341 самолет
- 20 различных моделей
- 80% обучающих данных 20% тестовых

	Yolo v3	SimpLeNet
Размер пакета	8	100
Алгоритм минимизации функции потерь	Adam	Adam

Сравнение способов обучения

Градиентный спуск:

$$w_{\rm t} = w_{\rm t-1} - \eta g$$

w – обучаемый параметр

 η_- скорость обучения

g – градиент функции потерь при текущем значении параметров

RMSProps:

$$w_{\mathrm{t}} = w_{\mathrm{t-1}} - \frac{\eta}{\sqrt{E_{\mathrm{t}}}} g$$

Е – экспоненциальное скользящее среднее квадрата градиента

Adam:

$$w_{\mathrm{t}} = w_{\mathrm{t-1}} - \eta \frac{\hat{m}_{\mathrm{t}}}{\sqrt{\hat{v}_{\mathrm{t}}} + \epsilon}$$

m и v – первый и второй моменты градиента соответственно

Целевая функция:

$$F = -\sum_{i=1}^{N} t_i \log p_i$$

t и p – ожидаемое и полученное значение нейрона выходного слоя

Полученные результаты

	Yolo v3	SimpLeNet
Точность на тестовой	90%	85%
Вероятность ложного срабатывания	0.1	-
Точность на тренировочной	95%	99%
Число эпох	42	15
Время обучения	4 часа 27 минут	1 час 16 минут

Классификация

Детектирование

Заключение

- Проведен анализ и сравнение существующих методов распознавания летательных объектов с аэрофотоснимков
- Спроектирован метод распознавания летательных аппаратов
- Разработан спроектированный метод
- Разработан программный комплекс, реализующий интерфейс для взаимодействия с разработанным методом
- Исследованы характеристики разработанного метода и влияние на них различных подходов к обучению

Цель работы достигнута, поставленные задачи выполнены

Дальнейшее развитие

- Использование ансамблевых методов для повышения точности моделей
- Разработка метода при различных разрешениях и условиях освещенности