Homework #3

Date: Oct 29

(Due: Nov 12)

Task 1. [25 Points] Construct CFGs

Construct CFG for each of the following languages.

(a) [**5 Points**] $L = \{a^i b^j c^k | i \ge 0, j \ge 0, k = 2i + 3j\}, \Sigma = \{a, b, c\}$

Solution:

 $G = (V, \Sigma, R, S)$ where:

The set of variables is $V = \{S, B\}$

The set of terminals is $\Sigma = \{a, b\}$

The set of rules is R =

$$S \to aScc \mid B \mid \epsilon$$

$$B \rightarrow bBccc \mid \epsilon$$

The start variable is S

(b) [**5 Points**] $L = \{a^i b^j c^k | i \neq j \text{ or } j \neq k\}, \Sigma = \{a, b, c\}$

Solution:

 $G = (V, \Sigma, R, S)$ where:

The set of variables is $V = \{S, S_1, S_2, A, B, C, D, E\}$

The set of terminals is $\Sigma = \{a, b, c\}$

The set of rules is R =

$$S \to S_1 \mid S_2$$

$$S_1 \rightarrow S_1 c \mid A$$

$$A \to aAb \mid D \mid E$$

$$D \to aD \mid a$$

$$E \to bE \mid b$$

$$S_2 \to aS_2 \mid B$$
$$B \to bBc \mid E \mid C$$
$$C \to cC \mid c$$

The start variable is S

(c) [5 Points] $L=\{a^ib^jc^kd^l|\ i+j=k+l\},\ \Sigma=\{a,b,c,d\}$ Solution:

 $G = (V, \Sigma, R, S)$ where:

The set of variables is $V = \{S, S_1, S_2, A, B, C\}$

The set of terminals is $\Sigma = \{a, b, c\}$

The set of rules is R =

6

$$S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow aS_1d \mid A$$

$$A \rightarrow bAd \mid B$$

$$B \rightarrow bBc \mid \epsilon$$

$$S_2 \rightarrow aS_2d \mid C$$

$$C \rightarrow aCc \mid B$$

The start variable is S

 $(d) \ [\ \mathbf{5}\ \mathbf{Points}\]\ L=\{ucv|\ u^R\in\{a,b\}^*\ \mathbf{is\ a\ substring\ of}\ v\},\ \Sigma=\{a,b,c\}$ Solution:

 $G = (V, \Sigma, R, S)$ where:

The set of variables is $V = \{S, M, N\}$

The set of terminals is $\Sigma = \{a, b, c\}$

The set of rules is R =

$$S \rightarrow MN$$

$$M \rightarrow aMa \mid bMb \mid cN$$

$$N \rightarrow Na \mid Nb \mid Nc \mid \epsilon$$

The start variable is S

(e) [5 Points] $L = \{ucv | u^R \in \{a,b\}^* \text{ is a subsequence of } v\}, \Sigma = \{a,b,c\}$ Solution:

$$G = (V, \Sigma, R, S)$$
 where:

The set of variables is $V = \{S, M, N\}$

The set of terminals is $\Sigma = \{a, b, c\}$

The set of rules is R =

$$S \rightarrow MN$$

$$M \rightarrow aMNa \mid bMNb \mid cN$$

$$N \rightarrow Na \mid Nb \mid Nc \mid \epsilon$$

The start variable is S

Task 2. [25 Points] Construct CFGs from DFAs

You constructed a DFA for each of the following languages in HW1. This task asks you to convert each of those DFAs to an equivalent CFG. Assume that $\Sigma = \{a, b\}$ unless specified otherwise.

(a) [**5 Points**]
$$L = \{w | n_a(w) \ge 2\}$$

Solution:

DFA Diagram:

$$G = (V, \Sigma, R, S)$$
 where:

The set of variables is $V = \{S_0, S_1, S_2\}$

The set of terminals is $\Sigma = \{a, b\}$

The set of rules is R =

$$S_0 \rightarrow aS_1 \mid bS_0$$

$$S_1 \rightarrow aS_2 \mid bS_1$$

$$S_2 \rightarrow aS_2 \mid bS_2 \mid \epsilon$$

The start variable is S_0

 $(b) \ [\ \mathbf{5}\ \mathbf{Points}\]\ L = \{w|\ w\ \mathbf{starts}\ \mathbf{with}\ ab\}$

Solution:

DFA Diagram:

 $G = (V, \Sigma, R, S)$ where:

The set of variables is $V = \{S_0, S_1, S_2\}$

The set of terminals is $\Sigma = \{a, b\}$

The set of rules is R =

$$S_0 \to aS_1$$

$$S_1 \to bS_2$$

$$S_2 \to aS_2 \mid bS_2 \mid \epsilon$$

The start variable is S_0

(c) [5 Points] $L=\{w|\ w \ {\rm starts \ and \ ends \ with \ the \ same \ symbol}\}$ for $\Sigma=\{a,b,c\}$ Solution:

DFA Diagram:

 $G = (V, \Sigma, R, S)$ where:

The set of variables is $V = \{S_0, S_1, S_2, S_3, S_4, S_5, S_6\}$

The set of terminals is $\Sigma = \{a,b,c\}$

The set of rules is R =

$$S_{0} \rightarrow aS_{1} \mid bS_{2} \mid cS_{3}$$

$$S_{1} \rightarrow aS_{1} \mid bS_{4} \mid cS_{4} \mid \epsilon$$

$$S_{2} \rightarrow aS_{5} \mid bS_{2} \mid cS_{5} \mid \epsilon$$

$$S_{3} \rightarrow aS_{6} \mid bS_{6} \mid cS_{3} \mid \epsilon$$

$$S_{4} \rightarrow aS_{1} \mid bS_{4} \mid cS_{4}$$

$$S_{5} \rightarrow aS_{5} \mid bS_{2} \mid cS_{5}$$

$$S_{6} \rightarrow aS_{6} \mid bS_{6} \mid cS_{3}$$

The start variable is S_0

(d) [5 Points] $L = \{w | n_a(w) \mod 3 = 1 \text{ or } w \text{ contains } ba\}$ Solution: DFA Diagram:

 $G = (V, \Sigma, R, S)$ where:

The set of variables is $V = \{S, S_1, S_2, A, B, C, D\}$

The set of terminals is $\Sigma = \{a,b\}$

The set of rules is R =

$$S \rightarrow S_1 \mid S_2$$

$$S_1 \rightarrow aA \mid bS_1$$

$$A \rightarrow aB \mid bA \mid \epsilon$$

$$B \rightarrow aS_1 \mid bB$$

$$S_2 \rightarrow aS_2 \mid bC$$

$$C \rightarrow aD \mid bC$$

$$D \rightarrow aD \mid bD \mid \epsilon$$

The start variable is S

Another Solution: DFA Diagram:

 $G = (V, \Sigma, R, S)$ where :

The set of variables is $V = \{S_{00}, S_{10}, S_{20}, S_{01}, S_{11}, S_{21}, S_{02}, S_{12}, S_{22}\}$

The set of terminals is $\Sigma = \{a, b\}$

The set of rules is R =

$$S_{00}
ightarrow aS_{10} \mid bS_{01}$$
 $S_{10}
ightarrow aS_{20} \mid bS_{11} \mid \epsilon$
 $S_{20}
ightarrow aS_{00} \mid bS_{21}$
 $S_{01}
ightarrow aS_{12} \mid bS_{01}$
 $S_{11}
ightarrow aS_{22} \mid bS_{11} \mid \epsilon$
 $S_{21}
ightarrow aS_{02} \mid bS_{21}$
 $S_{02}
ightarrow aS_{12} \mid bS_{02} \mid \epsilon$
 $S_{12}
ightarrow aS_{22} \mid bS_{12} \mid \epsilon$
 $S_{22}
ightarrow aS_{02} \mid bS_{22} \mid \epsilon$

The start variable is S_{00}

(e) [5 Points] $L=\{w|\ \mbox{binary number}\ w\ \mbox{is divisible by}\ 7\}$ for $\Sigma=\{0,1\}$

Solution:

DFA Diagram:

 $G = (V, \Sigma, R, S)$ where:

The set of variables is $V = \{S_i, S_0, S_1, S_2, S_3, S_4, S_5, S_6\}$

The set of terminals is $\Sigma = \{0, 1\}$

The set of rules is R =

$$S_i o 0S_0 \mid 1S_1$$

 $S_0 o 0S_0 \mid 1S_1 \mid \epsilon$
 $S_1 o 0S_2 \mid 1S_3$
 $S_2 o 0S_4 \mid 1S_5$
 $S_3 o 0S_6 \mid 1S_0$
 $S_4 o 0S_1 \mid 1S_2$
 $S_5 o 0S_3 \mid 1S_4$
 $S_6 o 0S_5 \mid 1S_6$

The start variable is S_i

Task 3. [20 Points] Regular expressions to CFGs

For each of the following regular expressions construct a CFG to accept the language it represents.

(a) [5 Points] $(0 \cup 1(01*0)*1)*$

Solution:

$$G = (V, \Sigma, R, S)$$
 where:

The set of variables is $V = \{S, A, B, C, D, E\}$

The set of terminals is $\Sigma = \{0, 1\}$

The set of rules is R =

$$S \rightarrow SA \mid \epsilon$$

$$A \rightarrow B \mid 0$$

$$B \rightarrow 1C1$$

$$C \rightarrow CD \mid \epsilon$$

$$D \rightarrow 0E0$$

$$E \rightarrow E1 \mid \epsilon$$

The start variable is S

(b) [**5 Points**] $\epsilon \cup a^+ \cup a^+ bb^+ (abb^+)^*$

Solution:

$$G = (V, \Sigma, R, S)$$
 where:

The set of variables is $V = \{S, A, B, C, D, E\}$

The set of terminals is $\Sigma = \{a, b\}$

The set of rules is R =

$$S \rightarrow A \mid B \mid \epsilon$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow AbCD$$

$$C \rightarrow Cb \mid b$$

$$D \rightarrow DE \mid \epsilon$$

$$E \rightarrow abC$$

The start variable is S

(c) [5 Points] $a(\epsilon \cup a \cup b(a \cup b \cup \epsilon))$

Solution:

$$G = (V, \Sigma, R, S)$$
 where:

The set of variables is $V = \{S, A, B, C\}$

The set of terminals is $\Sigma = \{a, b\}$

The set of rules is R =

$$S \to aA$$

$$A \to B \mid a \mid \epsilon$$

$$B \to bC$$

$$C \to a \mid b \mid \epsilon$$

The start variable is S

(d) [**5 Points**] $((a \cup b)^6)^*(a \cup b)(a \cup b \cup \epsilon)^4$

Solution:

$$G = (V, \Sigma, R, S)$$
 where:

The set of variables is $V = \{S, A, B, C\}$

The set of terminals is $\Sigma = \{a,b\}$

The set of rules is R =

$$S \to ABCCCC$$

$$A \to ABBBBBB \mid \epsilon$$

$$B \to a \mid b$$

$$C \to a \mid b \mid \epsilon$$

The start variable is S

Task 4. [30 Points] Non-CFLs

Use the pumping lemma to show that the following languages are not context-free.

(a) [**10 Points**]
$$L = \{a^n b^{2n} a^n | n \ge 0\}, \Sigma = \{a, b\}$$

Solution:

- _ Assume L is CFL. Then it must satisfy the pumping property.
- $_{-}$ Let p = Pumping Length
- Let $w = a^p b^{2p} a^p$
- Let w = uvxyz, $u = a^p$, $v = b^p$, $x = \epsilon$, $y = \epsilon$, $z = b^p a^p$
- $|vy| = p \ge 1$ and |vxy| = p
- Then uv^ixy^iz must belong to L for all integer $i \geq 0$
- However $uvvxyyz = a^pb^{3p}a^p$, which is not in L

This is a contradiction to our assumption that L is CFL! Hence, L is not CFL.

(b) **[10 Points]**
$$L = \{a^i b^j c^k | k > i > 0, k > j > 0\}, \Sigma = \{a, b, c\}$$

Solution:

- Assume L is CFL. Then it must satisfy the pumping property.
- $_{-}$ Let p = Pumping Length
- Let $w = a^p b^p c^{p+1}$
- _ Let $w = uvxyz, u = a^p, v = b^r, x = b^{p-r}, y = \epsilon, z = c^{p+1}$ where $1 \le r \le p$
- $|vy| = r \ge 1$ and $|vxy| = p \le p$
- _ Then uv^ixy^iz must belong to L for all integer $i \geq 0$.
- However $uvvxyyz = a^p b^{p+r} c^{p+1}$, which is not in L

This is a contradiction to our assumption that L is CFL! Hence, L is not CFL.

(c) [10 Points]
$$L = \{a^{n!} | n \ge 0, n! = 1 \times 2 \times ... \times n, 0! = 1\}, \Sigma = \{a\}$$

Solution:

- _ Assume L is CFL. Then it must satisfy the pumping property.
- $_{-}$ Let s = Pumping Length
- Let $w = a^{s!}$
- Let w = uvxyz, $u = \epsilon$, $v = a^q$, $x = a^r$, $y = \epsilon$, $z = a^{s!-s}$, where q + r = s, $r \ge 0$, and q > 0.
- $|vy| = q \ge 1$ and $|vxy| = q + r = s \le s$
- Then $uv^i xy^i z$ must belong to L for all integer $i \geq 0$.
- However, $uvvxyyz = a^q a^q a^r b^{s!-s} = a^{s!+q}$, which is not in L because:

$$0 \le q \le s \le s!$$

$$\implies s! \le s! + q < s + s! < s! + s!$$

$$\implies s! \le s! + q < 2s! < (s + 1)s!$$

$$\implies s! < s! + q < (s + 1)!$$

Therefore, s! + q is between two consecutive factorials. This means that (s! + q) is not a factorial. Hence $uvvxyyz = a^{s!+q}$ is not in L.

This is a contradiction to our assumption that L is CFL! Hence, L is not CFL.