Seat	
No.	.X

[5559]-133

S.E. (E & TC/Electronics) (I Sem.) EXAMINATION, 2019 ELECTRONIC DEVICES AND CIRCUITS (2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B. :— (i) Attempt Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6, Q. No. 7 or 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Use of Calculator is allowed.
 - (v) Assume suitable data, if necessary.
- 1. (a) Draw a neat circuit diagram of Self-bias circuit. Derive the expression for $V_{\rm CEO}$ and $I_{\rm CO}$. [6]
 - (b) The transistor is connected in CE amplifier with bypassed $R_{\rm E}$ has $R_1=50~{\rm k}\Omega$, $R_2=2~{\rm k}\Omega$, $R_{\rm C}=1~{\rm k}\Omega$, $R_{\rm S}=1~{\rm k}\Omega$, $R_{\rm L}=10~{\rm k}W$. Also h-parameters $h_{ie}=1.1~{\rm k}\Omega$, $h_{fe}=50$, $h_{oe}=24~{\rm \mu A/V}$, $h_{re}=2.5~{\rm \times}~10^{-4}$. Determine the value of A_v , A_v , A_l , R_i' .

0r

- **2.** (a) Explain in detail the three factors which contribute to thermal instability? [6]
 - (b) Define hybrid parameters of CE configuration of BJT with formulas. Draw its hybrid equivalent circuit for CE configuration. [6]
- **3.** (a) Define and derive expression for f_{α} , f_{β} and f_{T} . [6]
 - (b) Draw and explain the circuit diagram of Hartley Oscillator using BJT and give expression for frequency of oscillation. [6]

P.T.O.

4.	(a)	Draw and explain CE short circuit current gain using
		Hybrid- π model. [6]
	(<i>b</i>)	In Hartley Oscillator $L_1 = 15$ mH, $C = 50$ pF. Calculate L_2 ,
		for frequency of 168 kHz. [6]
5.	(a)	Explain the following parameters of power BJT: [6]
		(i) Safe operating area
		(ii) Thermal resistance.
	(<i>b</i>)	Draw circuit diagram of class B push pull amplifier and explain
		its operation with neat waveforms. [7]
		Or
6.	(a)	What is crossover distortion ? How is it reduced in
	(X)	complementary symmetry class AB amplifier ? [6]
	(<i>b</i>)	A class B push pull amplifier is supplied with $V_{CC} = 12 \text{ V}$
		and load resistance of 5Ω . If input is sinusoidal,
		calculate : (i) Maximum power output (ii) Power dissipation
		in both transistors, (iii) Power dissipation in each transistor,
		(iv) percentage efficiency. [7]
7.	(a)	Draw and explain Bi-CMOS inverter. [6]
	(<i>b</i>)	Explain various non-ideal current voltage characteristics of
		EMOSFET. [7]
		Or Or
8.	(a)	The parameters of NMOSFET are $k = 0.2$ mA/V ² , $\lambda = 0.01$
		V^{-1} , $V_T = 1.2$ V. Calculate output resistance for (i) $V_{GS} =$
		$2 \text{ V}, (ii) \text{ V}_{GS} = 4 \text{ V}.$ [6]
	(<i>b</i>)	Draw and explain constant current source biasing circuit for
		EMOSFET. [7]
[===0	1 100	&. · ·
[5559]]-133	2