Minimum Broadcast Time

Pedro Fiorio e Rafael Zardo

Contexto

O Minimum Broadcast Time(MBT) é um problema clássico de disseminação de dados em rede. Ele é apresentado no livro Computers and Intractability (Garey and Johnson, 1979) como NP-Difícil.

Aplicações:

- Redes de sensores sem fio
- Comunicação entre multiagentes
- Redes de satélites
- Direct memory access

Objetivo

O problema pode ser exposto da seguinte maneira, imagine que um ou alguns dispositivos possuem uma mensagem a ser transferida aos demais dispositivos. Todos os dispositivos pertencem à mesma rede e devem receber a mensagem no menor tempo possível. No entanto, há algumas limitações. Cada dispositivo só pode realizar uma transferência por vez aos seus vizinhos imediatos. Quando um dispositivo recebe a mensagem, ele também fica responsável por enviar a mensagem para seus respectivos vizinhos imediatos.

Exemplo

Exemplo - Solução Viável

Exemplo - Solução Ótima

Restrições

O MBT tem como objetivo diminuir o tempo de transmissão de uma mensagem que será "transmitida" a partir do conjunto V_0 para V. Ou seja, encontrar uma sequência V_0 , E_1 , V_1 , E_2 E_T , V_T , minimizando T e garantindo que V_T = V.

Além disso, para cada t tem-se que:

- Cada aresta em E_t possui exatamente um extremo em V_{t-1}
- Nenhum par de arestas em E₁ compartilha um vértice comum
- $\bullet \quad V_t = V_{t-1} \cup \{ v : (u,v) \in E_t \}$

Definições: T - tempo de transmissão; t - discretização do tempo $0 \le t \le T$; V_t - vértices que detém informação no instante t; E_t transmissões no instante t

Trabalhos Relacionados

$$\min \ T \tag{1}$$

s. a
$$K_i + \sum_{i \in N(i)} \sum_{t=1}^{T_{max}} x_{ji}^t = 1$$
 $\forall i \in V$ (2)

$$\sum_{j \in N(i)} x_{ij}^t \le 1 \qquad \forall i \in V, \forall t \in \{1, \dots, T_{max}\}$$
 (3)

$$x_{ij}^{t} \leq K_{i} + \sum_{i=1}^{t-1} \sum_{k=1}^{T_{max}} x_{ki}^{\tau} \qquad \forall (i,j) \in E, \forall t \in \{1, \cdots, T_{max}\}$$
 (4)

$$\sum_{i=1}^{T_{max}} t \cdot x_{ij}^t \le T \qquad \qquad \forall (i,j) \in E \qquad (5)$$

$$T \in \mathbb{N}$$
 (6)

$$x_{ij}^t \in \mathbb{B} \qquad \forall (i,j) \in E, \, \forall t \in \{1,\dots,T_{max}\}. \tag{7}$$

Trabalhos Relacionados

- 1. A equação apresenta a função objetivo, que é minimizar o valor de T
- Limitam que cada nó só receba uma mensagem por vez ou que inicie com ela.
- 3. Impõem que o nó envie até uma mensagem aos vizinhos em cada t
- Estabelecem que o nó só pode transmitir se recebeu a mensagem anteriormente
- Condicionam que o valor de T deve ser maior ou igual ao tempo de qualquer transmissão.
- Define o domínio de T
- 7. Definem o domínio de cada x^t_{ii}

Instâncias

O grafo de Harary H(k,n) é um exemplo particular de grafo k-conexo com n vértices de grafo tendo o menor número possível de arestas. Um grafo é k-conectado caso não fique desconexo removendo-se menos que k vértices.

Resultados das Instâncias

N	k	n	ILP
17	2	17	9
17	3	17	5
17	5	17	5
17	6	17	5
17	7	17	5
30	2	30	15
30	3	30	9
30	8	30	5
30	9	30	5
30	10	30	5
50	2	50	25
50	3	50	14
50	11	50	4
50	20	50	75
50	21	50	2
100	2	100	50

Resultados do modelo ILP de Sousa et al. (2018)

Ideias de Metaheurística - Scatter Search

- Determinístico!
- A diversificação de soluções ajuda a explorar diferentes partes do espaço de solução e pode ser útil pois diferentes configurações de transmissão podem levar a soluções eficientes. A diversificação ajuda a evitar a convergência prematura em soluções subótimas.
- Incorporação de conhecimento especializado do problema por meio de técnicas de combinação e criação de vizinhança. Isso pode incluir heurísticas específicas, restrições do problema ou informações prévias sobre a rede e os atrasos de transmissão. Ao utilizar esse conhecimento, o Scatter Search pode direcionar a busca para soluções mais promissoras e melhorar a eficiência do processo de otimização.

Fim!

Referências

- Heuristics for the Minimum Broadcast Time, Amaro de Sousa
- Algoritmo Genético de Chaves Aleatórias Viciadas para o Problema do Tempo de Transmissão Mínimo, Alfredo Lima Moura Silva, Rian Gabriel Santos Pinheiro, Bruno Costa e Silva Nogueira, e Rodrigo Jose Sarmento Peixoto