Water trail: from molecular clouds to protoplanetary disks

古家健次

筑波大・計算科学研究センター

Follow the water trail

(Greene 2001)

Where did our water come from?

Credit: Jack Cook (Woods Hole Oceanographic Institution) & Howard Perlman (USGS)

Origin of Earth's ocean

Potential sources of Earth's ocean: asteroids and comets

Follow the water trail

(Greene 2001)

Where did our water come from?

Contents

- Water chemistry in star-forming regions
- (Water) ice formation in molecular clouds and cores
- Water delivery from cores to disks
- Water deuteration as a probe to follow the water trail

Chemical processes in star-forming regions

Water chemistry: well studied

(van Dishoeck et al. 2013)

(Original ref. Jensen+2000; Miyauchi+2008; Ioppolo+2008; Oba+2012 and many others)

The formation of water on interstellar dust particles

prof. Ewine F. van Dishoeck, PhD, A.L.M. "Thanja" Lamberts, MSc

Discover the world at Leiden University

光脱離

Kick-out

$$H_2O(ice) + hv \rightarrow H^* + OH,$$

 $H^* + H_2O(ice) \rightarrow H + H_2O(gas).$

Recombination

$$H_2O(ice) + hv \rightarrow H^* + OH,$$

 $H + OH \rightarrow H_2O(gas)$

MD計算; Andersson & van Dishoeck (2008)

Contents

- Water chemistry in star-forming regions
- (Water) ice formation in molecular clouds and cores
- Water delivery from cores to disks
- Water deuteration as a probe to follow the water trail

Water in prestellar stages

- 分子雲に既にダストを覆う氷として豊富に存在 (Whittet+1983) (1 M_{sun}の分子雲コア → ~1000 M_{earth}の水)
- ➤ 酸素の主要な形態 (~40 % of volatile oxygen, Whittet 2007)

反応ネットワークモデル

• 基礎方程式

$$\dot{n}_i^{(x)} = \underline{P_i^{(x)} - L_i^{(x)}}$$
化学反応

- 多層モデル(e.g., Taquet+2012)
 - 気相 氷表面 ^{相互作用} 非一様な氷マントル

 n_i :化学種 i の数密度

x: 気相、氷表面、氷マントル

- 単層モデル(Hasegawa & Herbst 1992)

 - 「 気相 ¬ 一様な氷マントル−

Molecular cloud formation

Accumulation of HI gas by accretion flows

→ molecular cloud formation

(e.g., Hartmann+2001; Inoue&inutsuka 2012)

Atomic-to-molecular transitions

- 1D流体 + heating/cooling + gas-phase chemistry (Bergin+04)
- Post-processing gas-ice chemistry
- 柱密度増加→星間紫外線の遮蔽→原子から分子へ

Ice layered structure

Layered ice structure in the ISM ice

(Pontoppidan+ 2008; Ehrenfreund+1997)

(Oberg 2016; Pontoppidan 2006)

Pseudo-time dependent model of dense clouds

(see e.g., Garrod & Pauly 2011)

Intermediate summary

- Water is formed before the stellar birth as ice
- Chemical (and Isotopic) compositions in the ISM ice are inhomogeneous
 - preserves memory of the physical and chemical evolution

 H_2O

NH₃

CH₃OF

CO

CO

Contents

- Water chemistry in star-forming regions
- (Water) ice formation in molecular clouds and cores
- Water delivery from cores to disks
- Water deuteration as a probe to follow the water trail

Hot water near protostars

(Greene 2001)

Open question:
Where do the water emissions originate from?
Envelope, disk, or both?

Ice delivery from cores to disks

(Herbst & van Dishoeck 2009)

2-D collapsing core model to the disk formation (Visser+2009, 2011)

- Density & velocity
 -semi analytical models
 (Terebey+1984; Cassen&Moosman
 1981; α-disk model)
- Temperature & UV field
 radiative transfer
 (RADMC-3D;
 Dullemond&Dominik 2004)
- Chemistry is solved along trajectories of in-falling materials

Physical evolution

Bulk-disk averaged H₂O ice abundance

 $0.01~M_{sun}~disk \rightarrow several~M_{earth}~water~ice,~being~inherited$ from the prestellar stages

Intermediate summary

- Forming disks contain lots of interstellar H₂O ice
- → favorable for the formation of icy planetesimals (and planets)

Contents

- Water chemistry in star-forming regions
- Water formation in molecular clouds and cores
- Water delivery from cores to disks
- Water deuteration as a probe to follow the water trail

Follow the water trail

(Greene 2001)

Where did our water come from?

Deuterium fractionation

Probe of the formation environments of molecules

- \rightarrow The [D/H] elemental ratio in the local ISM $\sim 10^{-5}$ (Linsky 2003)
- ➤ Molecules formed at low temperatures, XD/XH >> 10⁻⁵

$$H_3^+ + HD \implies H_2D^+ + H_2 + 230 \text{ K}$$

$$\rightarrow$$
 H₂D⁺/H₃⁺>> 10⁻⁵

$$H_2D^+ + e \rightarrow D + H_2$$

- High atomic D/H
- High D/H in Icy molecules

(e.g., Watson+1976; Tielens 1983)

- Reaction cordinate
- > CO freeze-out, higher density, lower H₂ o/p
 - enhanced deuterium fractionation

HDO/H₂O measurements

Water is enriched in deuterium → formed at low temperatures → In molecular clouds? Or in disks?

HDO/H₂O measurements

Hot gas (>100 K) around protostars (~ISM ice)

(Mumma & Charnley 2011; Altwegg+2015; Persson+ 2014)

 The ISM and cometary water have the similar HDO/H₂O > prestellar inheritance? BUT...

Prestellar inheritance of water?

BUT

- Variations of HDO/H₂O in pristine materials
 in the solar system -> how?
- In-situ formation in disks can also explain the cometary HDO/H₂O ratios

(e.g., Furuya+2013; Albertsson+2014)

Yet inconclusive

(e.g., Geiss & Reeves 1981; Aikawa & Herbst 1999)

Heavy water (D₂O)

- In the hot inner regions around a protostar
 → D₂O/HDO = 7*HDO/H₂O (Coutens+ 2014)
- The ratio of D₂O/HDO to HDO/H₂O reflects
 the ice layered structure
 (i.e., preserves memory of the physical and chemical evolution)
- The ratio is a better probe to distinguish between the two cases (inheritance vs. in-situ formation in disks)
 - → D₂O observations toward comets are crucial

(Furuya+ in prep.)

Constant atomic D/H case

i.e., assumes quasi-steady state

contradicts with the observational relation $\frac{D_2O}{HDO} \sim 7 \frac{HDO}{H_2O}$

→ time-dependency of the atomic D/H

Consider chemical evolution

R(HDO) \propto R(H₂O)*(atomic D/H) R(D₂O) \propto R(H₂O)*(atomic D/H)²

→ Production rates of HDO and D₂O do not necessarily follow that of H₂O

If the production of HDO and D₂O are dominated in late times

 D_2O/HDO in the whole ice ~ atomic D/H in late times HDO/H_2O in the whole ice << atomic D/H in late times

$$\frac{D_2O}{HDO} \gg \frac{HDO}{H_2O}$$

Consider chemical evolution

If the production of HDO and D₂O are dominated in late times

 D_2O/HDO in the whole ice ~ atomic D/H in late times HDO/H_2O in the whole ice << atomic D/H in late times

$$\frac{D_2O}{HDO} \gg \frac{HDO}{H_2O}$$

Required conditions for reproducing the observations

- (i) drop of $R(H_2O)$ by a factor of >10
- (ii) enhancement of the atomic D/H by a factor of >100
 - → very inhomogeneous

Ratio of D₂O/HDO to HDO/H₂O

- The high ratio likely characterizes the ISM ice
 - → D₂O observations toward comets are crucial for studying the origin of cometary water

(Mumma & Charnley 2011; Altwegg+2015; Persson+ 2014)

Summary

- Water is formed before the stellar birth
- Our model suggests that forming disks contain lots of interstellar H₂O ice
 - → favorable for the formation of icy planetesimals (and planets)
- D₂O observations toward comets are crucial for testing the model prediction