CARLINGFORD HIGH SCHOOL

DEPARTMENT OF MATHEMATICS

Year 12

Extension 2 Mathematics

Term 2

ASSESSMENT TASK 3

2017

Time anowed. 172 nours	
Name:	Teacher: Ms Strilakos

Instructions:

- All questions should be attempted on your own paper.
- Show ALL necessary working.
- Marks may not be awarded for careless or badly arranged work.
- Only board-approved calculators may be used.
- Please write on one side of each sheet of paper only, and do not use multiple columns on the page.

TOPIC	Polynomials	Integration	TOTAL
MARKS	/26	/30	/56

Question 1

(a) If α , β and γ are the roots of $2x^3 + 3x^2 - x - 1 = 0$, form the equation whose roots are $\alpha + 2$, $\beta + 2$, $\gamma + 2$.

[3 marks]

- (b) A polynomial P(x) is given by $P(x) = 4x^3 2x^2 + x + 5$.
 - (i) Find the remainder and the quotient when P(x) is divided by $x^2 + 2x 5$.

A second polynomial is given by $Q(x) = 4x^3 - 2x^2 + ax + b$.

(ii) Find the value of the constants a and b so that when Q(x) is divided by $x^2 + 2x - 5$ there is no remainder.

[5 marks]

- (c) Given $f(x) = x^3 + 3x^2 24x + 20, x \in R$
 - (i) Show that (x-1) is a factor of f(x).
 - (ii) Hence factorise f(x) as the product of a linear and a quadratic factor.
 - (iii) Find, in exact form, the solutions of f(x) = 0.

The line with equation y=-8 touches the graph of f(x) at the point Q(2,-8) and crosses the graph of f(x) at another point P.

(iv) Determine the coordinates of P.

[5 marks]

(d) Resolve the following into partial fractions:

$$\frac{5}{(y^2+1)(y-2)}$$

[3 marks]

(e) One zero of the polynomial $P(x) = ax^3 + (a+1)x^2 + 10x + 15$, $a \in R$, is purely imaginary.

Find a and the zeros of the polynomial.

[5 marks]

(f) A real polynomial has the form $P(x) = 3x^4 - 12x^3 + cx^2 + dx + e$. The graph of y = P(x) has y-intercept 180. It cuts the x-axis at 2 and 6, and does not meet the x-axis anywhere else.

Given that the other two zeros are $m\pm ni$, n>0, find m and n.

[5 marks]

Question 2

- (a) Test to find if $\frac{x^3-2x}{\sqrt{x^4+1}}$ is an odd or an even function.
 - (ii) Evaluate the integral $\int_{-1}^{1} \frac{x^3 2x}{\sqrt{x^4 + 1}} dx$

[2 marks]

(b) Find the following integrals:

$$(i) \qquad \int \frac{2x}{x^2 + 2x + 1} \, dx$$

(ii)
$$\int \frac{1}{1+\sin x} dx$$

(iii)
$$\int \frac{1}{(1+x^2)^2} dx$$
, using $x = \tan u$

[3+3+5=11 marks]

(c) (i) Find
$$\int \frac{1}{x^2+x} dx$$

(ii) Hence find, by taking limits
$$\int_{1}^{\infty} \frac{1}{x^2+x} dx$$

[5 marks]

(d) Find
$$\int \frac{1}{2+\cos x} dx$$

[5 marks]

(e) Given
$$I_n = \int_0^1 x^n \sqrt{1-x^2} \ dx$$
 , $n \in N$

(i) Show clearly that
$$(n+2)I_n=(n-1)I_{n-2}, \quad n\geq 2$$

(ii) Hence show that
$$\int_0^1 x^7 \sqrt{1-x^2} \, dx = \frac{16}{315}$$

[7 marks]

END OF TEST

2016 HIGHER SCHOOL CERTIFICATE EXAMINATION

REFERENCE SHEET

- Mathematics -
- Mathematics Extension 1 -
- Mathematics Extension 2 -

Mathematics

Factorisation

$$a^{2}-b^{2} = (a+b)(a-b)$$

$$a^{3}+b^{3} = (a+b)(a^{2}-ab+b^{2})$$

$$a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$$

Angle sum of a polygon

$$S = (n-2) \times 180^{\circ}$$

Equation of a circle

$$(x-h)^2 + (y-k)^2 = r^2$$

Trigonometric ratios and identities

$$\sin \theta = \frac{\text{opposite side}}{\text{hypotenuse}}$$
 $\cos \theta = \frac{\text{adjacent side}}{\text{hypotenuse}}$
 $\tan \theta = \frac{\text{opposite side}}{\text{adjacent side}}$
 $\cot \theta = \frac{\sin \theta}{\cos \theta}$
 $\cot \theta = \frac{\cos \theta}{\sin \theta}$
 $\sin^2 \theta + \cos^2 \theta = 1$

Exact ratios

Sine rule

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$c^2 = a^2 + b^2 - 2ab\cos C$$

Area of a triangle

$$Area = \frac{1}{2}ab\sin C$$

Distance between two points

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Perpendicular distance of a point from a line

$$d = \frac{\left| ax_1 + by_1 + c \right|}{\sqrt{a^2 + b^2}}$$

Slope (gradient) of a line

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Point-gradient form of the equation of a line

$$y - y_1 = m(x - x_1)$$

nth term of an arithmetic series

$$T_n = a + (n-1)d$$

Sum to n terms of an arithmetic series

$$S_n = \frac{n}{2} [2a + (n-1)d]$$
 or $S_n = \frac{n}{2} (a+l)$

nth term of a geometric series

$$T_n = ar^{n-1}$$

Sum to n terms of a geometric series

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad \text{or} \quad S_n = \frac{a(1 - r^n)}{1 - r}$$

Limiting sum of a geometric series

$$S = \frac{a}{1 - r}$$

Compound interest

$$A_n = P\left(1 + \frac{r}{100}\right)^n$$

Mathematics (continued)

Differentiation from first principles

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivatives

If
$$y = x^n$$
, then $\frac{dy}{dx} = nx^{n-1}$

If
$$y = uv$$
, then $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

If
$$y = \frac{u}{v}$$
, then $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

If
$$y = F(u)$$
, then $\frac{dy}{dx} = F'(u)\frac{du}{dx}$

If
$$y = e^{f(x)}$$
, then $\frac{dy}{dx} = f'(x)e^{f(x)}$

If
$$y = \log_e f(x) = \ln f(x)$$
, then $\frac{dy}{dx} = \frac{f'(x)}{f(x)}$

If
$$y = \sin f(x)$$
, then $\frac{dy}{dx} = f'(x)\cos f(x)$

If
$$y = \cos f(x)$$
, then $\frac{dy}{dx} = -f'(x)\sin f(x)$

If
$$y = \tan f(x)$$
, then $\frac{dy}{dx} = f'(x) \sec^2 f(x)$

Solution of a quadratic equation

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Sum and product of roots of a quadratic equation

$$\alpha + \beta = -\frac{b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

Equation of a parabola

$$(x-h)^2 = \pm 4a(y-k)$$

Integrals

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$

$$\int e^{ax+b} dx = \frac{1}{a}e^{ax+b} + C$$

$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$

$$\int \sin(ax+b)dx = -\frac{1}{a}\cos(ax+b) + C$$

$$\int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + C$$

$$\int \sec^2(ax+b)dx = \frac{1}{a}\tan(ax+b) + C$$

Trapezoidal rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{2} \Big[f(a) + f(b) \Big]$$

Simpson's rule (one application)

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Logarithms - change of base

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Angle measure

 $180^{\circ} = \pi$ radians

Length of an arc

$$l = r\theta$$

Area of a sector

Area =
$$\frac{1}{2}r^2\theta$$

Mathematics Extension 1

Angle sum identities

$$\sin(\theta + \phi) = \sin\theta\cos\phi + \cos\theta\sin\phi$$

$$\cos(\theta + \phi) = \cos\theta\cos\phi - \sin\theta\sin\phi$$

$$\tan(\theta + \phi) = \frac{\tan\theta + \tan\phi}{1 - \tan\theta \tan\phi}$$

t formulae

If
$$t = \tan \frac{\theta}{2}$$
, then

$$\sin\theta = \frac{2t}{1+t^2}$$

$$\cos\theta = \frac{1-t^2}{1+t^2}$$

$$\tan\theta = \frac{2t}{1-t^2}$$

General solution of trigonometric equations

$$\sin \theta = a$$
,

$$\theta = n\pi + (-1)^n \sin^{-1} a$$

$$\cos\theta = a$$

$$\cos \theta = a$$
, $\theta = 2n\pi \pm \cos^{-1} a$

$$\tan \theta = a$$

$$\tan \theta = a$$
, $\theta = n\pi + \tan^{-1} a$

Division of an interval in a given ratio

$$\left(\frac{mx_2 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n}\right)$$

Parametric representation of a parabola

For
$$x^2 = 4ay$$
,

$$x = 2at$$
, $y = at^2$

At
$$(2at, at^2)$$
,

tangent:
$$y = tx - at^2$$

normal:
$$x + ty = at^3 + 2at$$

At
$$(x_1, y_1)$$
,

tangent:
$$xx_1 = 2a(y + y_1)$$

normal:
$$y - y_1 = -\frac{2a}{x_1}(x - x_1)$$

Chord of contact from
$$(x_0, y_0)$$
: $xx_0 = 2a(y + y_0)$

Acceleration

$$\frac{d^2x}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dx} = \frac{d}{dx}\left(\frac{1}{2}v^2\right)$$

Simple harmonic motion

$$x = b + a\cos(nt + \alpha)$$

$$\ddot{x} = -n^2 (x - b)$$

Further integrals

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} + C$$

Sum and product of roots of a cubic equation

$$\alpha + \beta + \gamma = -\frac{b}{a}$$

$$\alpha\beta + \alpha\gamma + \beta\gamma = \frac{c}{\alpha}$$

$$\alpha\beta\gamma = -\frac{d}{a}$$

Estimation of roots of a polynomial equation

Newton's method

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

Binomial theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

To Majorita distinction of the Control of the Contr
Q_{-1} . $2x^3 + 3x^2 - x - 1 = 0$.
$\int_{\Omega} dx = \chi + 2 \text{of} \chi = y - 2$
$= 2(y-2)^3 + 3(y-2)^2 - (y-2) - 1 = 0$
$2\left[y^3 - 3y^2 \cdot 2 + 3y \cdot 2^2 - 8\right] + 3\left[y^2 - 4y + 4\right] - y + 2 - 1 = 0$
$2y^3 - 12y^2 + 24y - 16 + 3y^2 - 12y + 12 - y + 1 = 0$
re 2y3-9y2+11y-3=0
ie. $2x^3 - 9x^2 + 11x - 3 = 0$ is alle seguise equation
$0.2.$ $P_{(0)} = 4x^3 - 2x^2 + x + 5$
$\frac{4x - 10}{x^2 + 2x - 5} = \frac{4x^3 - 2x^2 + x + 5}{4x^3 - 2x^2 + x + 5}$
$\frac{4x^3+8x^2-20x}{x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-x^2-$
$- 0\chi^2+2 \chi+5$
$\frac{-10x^2 - 20x + 50}{11}$
41x-45
$8 P(x) = (x^2 + 2x - 5)(4x - 10) + (41x - 45)$
$Q_{(\alpha)} = 4x^3 - 2x^2 + \alpha x + b \qquad -1$
Succe Obere is no rennemida, defactors of QEV ares
$\Theta(x) = (x^2 + 2x - 5)(4x + c)$

(lowither) S.D NOW 0 (0) = (x2+2x-5)(4x+c) -2 and Q(0) = -5c from Q $\theta(0) = b$ for $\theta(0)$ b=-5c -3 hon (1) &(2) Also Q(1) = 4-2+a+b = (1+2-5)(4+c) 2+a+b = -8-2cKŽ. a+b+2c = -10Q(2) = 32 - 8 + 2a+b = (4+4-5)(8+c)and 24 + 2a + b = 24 + 3c2a+b=3c -5 b=3c-2a Solving 3, 4 and 5 (3-5)' is -5c=3c-2a = -8c=-2a0° a=4c July. (3) x (6) into (4) to obtain: 4c-5c+2c=-10 => c=-10 b= 50 a=-40

$$\frac{5}{(y^2+1)(y-2)} = \frac{a}{y-2} + \frac{by+c}{y^2+1}$$

$$= 5 = a(y^2+1) + (by+c)(y-2)$$

$$\frac{5}{(y^2+1)(y-2)} = \frac{1}{y-2} - \frac{y+2}{y^2+1}$$

05.
$$P_{(0)} = ax^3 + (a+1)x^2 + 10x + 15$$
, asc.

Since constant dem in P(i) is 15
$$b^{\circ} P(x) = (x^2 + b^2)(ax + 15)$$

product guies wags of x3.

$$ax^{3} + (a+1)x^{2} + 10x + 15 = ax^{3} + \frac{15}{12}x^{2} + ab^{2}x + 15$$

0,5 (cont.)
lequating powers of 21 grées:
$\frac{\chi^2: \alpha+1 = 15 -1}{h^2}$
$x: 10 = ab^2 \implies a = 10 -2$
b ²
Substitute @ wto() at obtain:
antenium B mali do agrame.
$\frac{10}{b^2} + 1 = 15 \implies 1 = 5 \text{o.b.}^2 = 5 b = \pm \sqrt{5}$
·
∘°, a = 2,
Substituting for a and b gives
$oldsymbol{Q}$
$ax + \frac{15}{b^2} = (2x+3)$
$e^{\frac{1}{2}} \left(x^{2} + b^{2} \right) \left(az + 15 \right)$
of tolution acc: ±15i and -3
<i>₩</i>
from (x2 +b2)
,

86. $P(x) = 3x^4 - 12x^3 + cx^2 + dx + e$ Y-unt. 180 00 e=180 X-uit at x=2, 6, 0° x-2 and x-6 are factors. $(x-2)(x-6) = x^2 - 8x + 16$ Other two metri mo. $P(x) = 3x^4 - 12x^3 + cx^2 + dx + 180$ $= (\chi^2 - 8\chi + 16)($ Now, $\leq noeh$: $2+6+(m+ni)+(m-ni)=\frac{12}{2}=4$ $k_{\perp} = 8 + 2m = 4$, 2m = -4, m = -2Product of Root: $2 \times 6 \times (m+ni)(m-ni) = 180 = 60$ $\frac{12}{12} (m^2 + n^2) = 60$ $M^2 + \Omega^2 = 5$, $\Omega^2 = 1$, $\Lambda = 1$ Space ny 0. 00 m = -2 n=1

$$\frac{\partial \mathcal{S}}{\partial x} = \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1} dx$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1} dx$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1} dx$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1} dx$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$\frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + \partial x + 1}$$

$$= \int \frac{\partial x}{\partial x^{2} + 1}$$

Q.10. (1)
$$\int \frac{1}{y^{2}+x} dx$$

$$= \int \frac{1}{y(x+1)} dx$$

$$= \int \frac{1}{y(x+1)} dx$$

$$= \int \frac{1}{y(x+1)} dx$$

$$= \int \frac{1}{x^{2}} dx$$

$$= \int \frac{1}{x^{2}}$$

= In 2

S. II
$$\int \frac{1}{24\cos x} dx$$

$$|\cot t|_{\frac{1}{2}} + |\cot \frac{x}{2}|$$

$$\frac{dt}{dx} = \frac{1}{2} \operatorname{sec}^{2} \frac{x}{2} = \frac{1}{1+t^{2}}$$

$$\frac{dt}{dx} = \frac{1}{2} \operatorname{sec}^{2} \frac{x}{2} = \frac{1}{1+t^{2}}$$

$$(5)x = \frac{1}{1+t^{2}} \cdot \frac{dx}{dt} \cdot \frac{dt}{dt}$$

$$= \int \frac{1}{2(1+t^{2})} \cdot \frac{1}{(1-t^{2})} \cdot \frac{2}{1+t^{2}} dt$$

$$= \int \frac{1}{2(1+t^{2})} \cdot \frac{2}{1+t^{2}} dt$$

$$= \int \frac{1}{3+t^{2}} \cdot \frac{1}{1+t^{2}} dt$$

$$= \int \frac{1}{3+t^{2}} \cdot \frac{1}{1+t^{2}} dt$$

$$= \frac{2}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} \cdot \frac{1}{\sqrt{3}} + c$$

2(8) TO Show $\frac{(n-1)}{3} \times \overline{I}_{n-2} - \frac{(n-1)}{3} \times \overline{I}_n$ ie (n+2) In = (n-1) In-2

(ii) Shan that
$$\sqrt{\frac{1}{2}7} + x^2 dx = \frac{16}{315}$$

From (i) $I_n = \frac{n-1}{n+2} + n-2$
 0° $I_7 = \frac{1}{2} + x^2 + x^2 dx$
 $= \frac{1}{2} + \frac{1}{3}$
 $= \frac{1}{2} + \frac{1}{3}$
 $= \frac{1}{2} + \frac{1}{3}$
 $= \frac{1}{2} + \frac{1}{3} + \frac{1}{$