Week 4

4.1 PSet 5

- 7/14: 1. For a permutation $\sigma \in \mathbb{S}_n$, we denote by $\text{Inv}(\sigma)$ the number of inversions in σ , namely the number of pairs $1 \leq i < j \leq n$ such that $\sigma(i) > \sigma(j)$.
 - (a) Find permutations in \mathbb{S}_n with the smallest number of inversions and with the biggest number of inversions.

Proof.
$$\operatorname{Inv}(\sigma) = 0$$
 for $\sigma = (1 \ 2 \ 3 \ \dots \ n)$. $\operatorname{Inv}(\sigma) = (n-1)!$ for $\sigma = (n \ (n-1) \ (n-2) \ \dots \ 1)$. \square

(b) Prove that

$$\sum_{\pi \in \mathbb{S}_n} x^{\text{Inv}(\pi)} = (1+x)(1+x+x^2)\cdots(1+x+x^2+\cdots+x^{n-1})$$

- (c) Prove that numbers $Inv(\sigma)$ and $Inv(\sigma^{-1})$ have the same parity.
- 2. A bijection $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that there exists k > 0 satisfying |f(A)f(B)| = k|AB| is called a similarity.
 - (a) Prove that similarities form a group. Prove that this group is a subgroup of $Aff(\mathbb{R}^2)$ and contains a subgroup $Isom(\mathbb{R}^2)$.
 - (b) Prove that similarities send lines to lines, circles to circles, and preserve angles.
 - (c) Prove that homothety H_O^{λ} is a similarity.
 - (d) Prove that every similarity is a composition of a homothety and an isometry.
- 3. (a) Prove that the homothety H_O^{λ} is a similarity.
 - (b) Prove that a composition of two homotheties with coefficients $\lambda_1, \lambda_2 \neq 1$ is a homothety with coefficient $\lambda_1 \lambda_2$.
 - (c) Prove that if a composition of three homotheties is the identity map, then their centers lie on the same line.
 - (d) Monge's theorem

Outer tangent lines to the circles S_1 and S_2 , S_2 and S_3 , S_3 and S_1 intersect in the points A, B, and C, respectively. Prove that points A, B, and C lie on the same line.

4. Let R_n denote a set of fixed-point-free permutations in \mathbb{S}_n (i.e., $R_n = \{ \sigma \in \mathbb{S}_n \mid \sigma(i) \neq i \ \forall \ 1 \leq i \leq n \}$). Prove that

$$\lim_{n \to \infty} \frac{|R_n|}{n!} = \frac{1}{e}$$