R mlr3 w/ ChatGPT

feat. mlr3

Yeonhoon Jang

Contents

- Introduction
- Syntax
- Basic modeling
- Resampling
- Benchmarking

Introduction

Who am I?

- Graduate School of Public Health, SNU (2019.03 ~ 2021.02)
- Seoul National University Bundang Hospital (2021.06 \sim)
- Data (NHIS, MIMIC-IV, Registry data, KNHNAES ...)
- Comento mentor (R for healthcare) (2022.07 \sim)

ML framework in R

What is mlr3?

mlr3: Machine Learning in R 3

I want to learn `mlr3` in R. I would like you to introduce the package in detail.

`mlr3` is a versatile machine learning framework in R. It provides a coherent interface to a large number of classification, regression, multilabel, and survival analysis methods. The `mlr3` package, along with its associated ecosystem of packages, is intended to be a successor to the `mlr' package, offering improved design, more efficient operations, and

greater flexibility.

0 4 7

Figure 1: source: https://mlr3.mlr-org.com

mlr3 & mlr3verse

Why mlr3?

- National Health Insurance System Data (NHIS-HEALS, NHIS-NSC)
- $dplyr \rightarrow data.table$
- Python: scikit-learn = R: ??
- mlr3: data.table based package

Syntax

mlr3 vs tidymodels

- 2. Syntax and Usage:
 - `mlr3`: mlr3 uses a more traditional R object-oriented programming approach Its syntax and structure are quite different from the tidyverse style and could be more difficult to grasp for beginners or those used to tidyverse-style workflows.
 - 'tidymodels': tidymodels is designed to work seamlessly with the rest of the tidyverse, using consistent, "tidy" syntax. If you are already familiar with tidyverse packages like 'dplyr' or 'ggplot2', you will likely find 'tidymodels' more intuitive and easier to use.

Core 1. R6

Object Oriented Programming (OOP)

- Objects: foo = bar\$new()
- Methods: \$new()
- Fields: \$baz

```
task = TaskClassif$new("xxx") # Objects
task$new() # Methods
task$feature_names # Fields
```



```
DT[i >= 10] # filter rows
DT[, .(X,Y)] # select columns
DT[, mean(X), by=Y] # aggregate by group
```

Utils 1. Dictionary

```
# Getting a specific object with `$get(key)`
mlr_learners$get("regr.rpart")

<LearnerRegrRpart:regr.rpart>: Regression Tree
* Model: -
* Parameters: xval=0
* Packages: mlr3, rpart
* Predict Types: [response]
* Feature Types: logical, integer, numeric, factor, ordered
* Properties: importance, missings, selected_features, weights
```

Utils 1. Dictionary

Utils 1. Dictionary

```
# OR with `as.data.table()`
as.data.table(mlr_learners) |> head()
```

key	label	task_fempere_types	packages	properties	predict_types
classi	f.c <u>N A</u> glmnet	classifogical, integer, numeric	mlr3, mlr3learne glmnet	multiclass, rselected_features, two class , weights	response, prob
classi	f.d.Dahgig Learner for Clas- sification	classifogical , integer , numeric , character, factor , ordered	mlr3	hotstart_forward, missings , multiclass , two class	response, prob
classi	f.fe Acture less Classifi- cation Learner	classifogical , integer , numeric , character, factor , ordered , POSIXct	mlr3	featureless , importance , missings , multiclass , selected_features, two lass	response, prob
classi	f.g N nAnet	classifogical, integer, numeric	mlr3, mlr3learne glmnet	multiclass, two class , arsyeights	response, prob
classi	f.k N iAn	classifogical, integer, numeric, factor, ordered	_	multiclass, two class	response, prob
classi	f.ldNA	classifogical, integer, numeric, factor , ordered	mlr3 , mlr3learne MASS	multiclass, two class , rsyeights	response, prob

Utils 2. Sugar functions

 \bullet R6 class \rightarrow S3 type functions

```
# No sugar
LearnerClassifLogReg$new()

# Sugar
Irn("classif.log_reg")
```

Utils 3. mlr3viz

• autoplot() visualization

```
autoplot(pred)
autoplot(pred, type="roc")
```


Basic modeling

Ask ChatGPT!

1. Tasks

• Objects with data and metadata

• Default datasets

Dictionary: mlr_tasksSugar function: tsk()

Okay, I would like to make a classification model of random forest with the `titanic` dataset, which predicts survival of passenger. I need you to write the R codes of the `mlr3` way and `tidymodels` way.

1. Tasks

Or External data as task

2. Learners

- ML algorithms
- Dictionary: mlr_learners
- Sugar function: lrn()
- regression (regr.~), classification(classif.~), and clustering (clust.~)

• library(mlr3learners)

i Extra learners

- only for github not CRAN
- e.g., lightGBM

```
# remotes::install_github("mlr-org/mlr3extralearners@*release")
library(mlr3extralearners)
```

2. Learners

• \$train(), \$predict()

```
task = tsk("german_credit")
learner_dt = lrn("classif.rpart", predict_type="prob")
split = partition(task, ratio=.7)
learner_dt$train(task, row_ids = split$train)
prediction = learner_dt$predict(task, row_ids = split$test)
```


Figure 2: source: mlr3books

2. Learners

confusion matrix

```
prediction$confusion
```

truth response good bad

```
good 184 45
bad 26 45
```

2. Learners

Or with mlr3viz

```
autoplot(prediction)
```


Hyperparameter

```
# with learner
learner = lrn("classif.rpart", maxdepth = 1)

# Or
learner$param_set$set_values(xval = 2, maxdepth=3, cp=.5)

learner$param_set$values
```

\$xval

[1] 2

\$maxdepth

[1] 3

\$cp

[1] 0.5

Hyperparameter

i Setting hyperparameters

- \$param_set of learners
- setting class, lower, upper

```
as.data.table(learner$param_set) |> head()
```

id class lowe	r uppe	erlevels	nlevel	sis_boun spe cial_	_valesfault	$storage_$	_ttyage
cp ParamDh 1	1	NULL	Inf	TRUE NULL	0.01	numeric	train
keep_moRelramI\&A	NA	TRUE,	2	TRUE NULL	FALSE	logical	train
		FALSE					
maxcomp letac amInt0	Inf	NULL	Inf	FALSE NULL	4	integer	train
maxdeptlParamIntl	30	NULL	30	TRUE NULL	30	integer	train
maxsurro gate mInt0	Inf	NULL	Inf	FALSE NULL	5	integer	train
minbuckeParamInt1	Inf	NULL	Inf	FALSE NULL	<pre><environment:< pre=""></environment:<></pre>	integer	train
					0x134ede100>		

3. Measures

- Evaluation of performances
- Dictionary: mlr_measures
- Sugar function: msr(), msrs()
- classif.~, regr.~
- \$score()

```
as.data.table(mlr_measures) |> head()
```

key	label	$task_typ$ ϕ ackages		$\operatorname{predict}_{-1}$	predict_typtask_properties	
aic	Akaike Information Criterion	NA	mlr3	NA		
bic	Bayesian Information Criterion	NA	mlr3	NA		
classif.acc	Classification Accuracy	classif	mlr3, $mlr3measures$	response		
classif.auc	Area Under the ROC Curve	classif	mlr3, $mlr3measures$	prob	twoclass	
classif.bacc	Balanced Accuracy	classif	mlr3, $mlr3measures$	response		
classif.bbrier	r Binary Brier Score	classif	mlr3, $mlr3measures$	prob	twoclass	

3. Measures

```
msr(): a single performance
```

```
measure = msr("classif.acc")
prediction$score(measure)
```

classif.acc 0.7633333

3. Measures

msrs(): multiple performances

```
# Multiple measurements
measures = msrs(c("classif.acc","classif.ppv","classif.npv","classif.auc"))
prediction$score(measures)
```

```
classif.acc classif.ppv classif.npv classif.auc
  0.7633333    0.8034934    0.6338028    0.7558730
```

Resampling

Resampling

- Split available data into multiple training and test sets
- Reliable performance
- Prevent Overfitting

tidymodels vs mlr3

Resampling

• Dictionary: mlr_resamplings

• Sugar function: rsmp()

as.data.table(mlr_resamplings)

key	label	params	iters
bootstrap	Bootstrap	ratio, repeats	30
custom	Custom Splits		NA
custom_cv	Custom Split Cross-Validation		NA
cv	Cross-Validation	folds	10
holdout	Holdout	ratio	1
insample	Insample Resampling		1
loo	Leave-One-Out		NA
repeated_cv	Repeated Cross-Validation	folds, repeats	100
subsampling	Subsampling	ratio, repeats	30

Okay, then I would like to resample the models by 10-fold cross validation. I need you to write the R codes of the `mlr3` way and `tidymodels` way.

```
Copy code
library(tidymodels)
                                                                               library(mlr3)
library(ranger)
                                                                                library(mlr3learners)
data("Titanic", package = "datasets")
                                                                               data("Titanic", package = "datasets")
titanic <- as.data.frame(Titanic)
                                                                                titanic <- as.data.frame(Titanic)
titanic$Survived <- as.factor(ifelse(titanic$Survived == "No", 0, 1))</pre>
                                                                               titanic$Survived <- as.factor(ifelse(titanic$Survived == "No", 0, 1))</pre>
model <- rand_forest(trees = 500) %>%
                                                                               task <- TaskClassif$new(id = "titanic", backend = titanic, target = "Survivo"
 set_engine("ranger") %>%
 set_mode("classification")
                                                                               learner <- lrn("classif.ranger", num.trees = 500)</pre>
rec <- recipe(Survived ~ ., data = titanic)</pre>
                                                                               resampling <- rsmp("cv", folds = 10)
# Create the workflow
                                                                               rr <- resample(task, learner, resampling) 2
workflow <- workflow() %>%
 add_model(model) %>%
 add_recipe(rec)
                                                                               rr$aggregate(measures = msr("classif.ce")) 3
folds <- vfold_cv(titanic, v = 10, strata = "Survived")</pre>
results <- workflow %>%
 fit_resamples(resamples = folds)
collect_metrics(results)
```

Resampling

```
• resample(): initiate resampling
• $aggregate(): aggregate resampling performance

task = tsk("german_credit")
learner = lrn("classif.ranger", predict_type="prob")
resample = rsmp("cv", folds=10)
rr = resample(task, learner, resample, store_model=T)
measures = msrs(c("classif.acc","classif.ppv","classif.npv","classif.auc"))
rr$aggregate(measures)

classif.acc classif.ppv classif.npv classif.auc
0.7710000 0.7890524 0.6956910 0.7979774
```

Resampling

```
autoplot(rr, type="boxplot", measure = msr("classif.acc"))
autoplot(rr, type="histogram", measure = msr("classif.acc"))

0.825
0.800
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.775
0.776
0.800
```

Benchmarking

tidymodels vs mlr3

Benchmarking

• Comparison of multiple learners on a single task (or multiple tasks).

- Okay, lastly I would like to benchmark model performances. Here's the conditions
 - algorithms: logistic regression, random forest, and XGBoost.
 - resample: 10-fold cross validations.
 - performance measurements: sensitivity, specificity, precision, f1-socre, and auroc.

```
library(tidymodels)
                                                                        library(mlr3)
library(parsnip)
                                                                        library(mlr3learners)
library(dials)
                                                                        library(mlr3extras)
library(workflows)
                                                                        library(mlr3measures)
library(xgboost)
                                                                        library(mlr3tuning)
                                                                        data("Titanic", package = "datasets")
data("Titanic", package = "datasets")
                                                                        titanic <- as.data.frame(Titanic)</pre>
titanic <- as.data.frame(Titanic)</pre>
                                                                        titanic$Survived <- as.factor(ifelse(titanic$Survived == "No", 0, 1))</pre>
titanic$Survived <- as.factor(ifelse(titanic$Survived == "No", 0, 1
                                                                        task <- TaskClassif$new(id = "titanic", backend = titanic, target = "Su
log_reg_model <- logistic_reg() %>%
 set_engine("glm") %>%
                                                                        learners <- lapply(
  set_mode("classification")
                                                                         c("classif.log_reg", "classif.ranger", "classif.xgboost").
                                                                         lrn, predict_type = "prob"
rand_forest_model <- rand_forest(trees = 500) %>%
  set_engine("ranger") %>%
  set_mode("classification")
                                                                        resampling <- rsmp("cv", folds = 10)</pre>
xgboost_model <- boost_tree() %>%
  set_engine("xgboost") %>%
  set_mode("classification")
                                                                        design <- benchmark_grid(
                                                                          tasks = task.
models <- list(log_reg = log_reg_model, rand_forest = rand_forest
                                                                         learners = learners,
                                                                          resamplings = resampling
rec <- recipe(Survived ~ ., data = titanic)</pre>
                                                                        bmr <- benchmark(design)
folds <- vfold_cv(titanic, v = 10, strata = "Survived")</pre>
                                                                       bmr$aggregate(msrs(c("classif.sensitivity", "classif.specificity", "
results <- map_dfr(models, ~ {
  workflow <- workflows::workflow() %>%
    add_recipe(rec) %>%
    add_model(.x)
  resamples <- fit_resamples(workflow, resamples = folds, metrics</pre>
  resamples %>%
   collect_metrics() %>%
    mutate(model = .y)
print(results)
```

• benchmark_grid(): design a benchmarking

Benchmarking

• benchmark(): execute benchmarking

```
bmr = benchmark(design)
measures = msrs(c("classif.acc","classif.ppv", "classif.npv", "classif.auc"))
as.data.table(bmr$aggregate(measures))[,-c("nr","resample_result","resampling_id","iters")
```

task_id	learner_id	classif.acc	classif.ppv	classif.npv	classif.auc
german_credit	LR	0.7540000	0.7959935	0.6128794	0.7682786
german_credit	DT	0.7220000	0.7720000	0.5715187	0.7009023
german_credit	RF	0.7670000	0.7866093	0.6820459	0.7916496
sonar	LR	0.7027875	0.7229497	0.6805154	0.7122449
sonar	DT	0.7262485	0.7250771	0.7382659	0.7524838
sonar	RF	0.8174216	0.8101012	0.8425397	0.9232502
breast_cancer	LR	0.9252791	0.9361270	0.9195608	0.9418515
$breast_cancer$	DT	0.9502362	0.9167371	0.9675106	0.9543396
$breast_cancer$	RF	0.9751181	0.9549859	0.9860113	0.9938067

Benchmarking result

```
task = tsk("german_credit")
learners = list(
    lrn("classif.log_reg", predict_type="prob"),
    lrn("classif.rpart", predict_type="prob"),
    lrn("classif.ranger", predict_type="prob")

cv10 = rsmp("cv", folds=10)
design = benchmark_grid(
    task = task,
    learners = learners,
    resamplings = cv10)
bmr = benchmark(design)
autoplot(bmr, measure = msr("classif.auc"))
```


Benchmarking result

```
autoplot(bmr, type = "roc")
autoplot(bmr, type = "prc")
```


More about mlr3

- Hyperparameter optimization
- Feature selection
- ML pipelines

Summary

mlr3

- R6, data.table based ML framework
- Sugar function + Dictionary
- Task, Learner, Measure
- Resampling
- Benchmarking
- Still in development (ver 0.16.0)
- A great textbook: mlr3book

Thank you for listening!