Practice (Integrals (second part))

Exercise 1. Find the derivative of the functions:

a)
$$h(x) = \int_1^{e^x} \ln t \ dt$$

b)
$$g(x) = \int_{1}^{\sqrt{x}} \frac{z^2}{z^4 + 1} dz$$

c)
$$F(x) = \int_{1-2x}^{1+2x} t \sin t \ dt, \ 0 < x.$$

Exercise 2. Evaluate the integrals using integration by parts

a)
$$\int x^2 e^x dx$$

b)
$$\int e^x \cos x \ dx$$

c)
$$\int x \sin \frac{x}{2} dx$$

d)
$$\int_{1}^{2} x \ln x \ dx$$

e)
$$\int_{1}^{e} x^{3} \ln x \ dx$$

f)
$$\int xe^{3x} dx$$

g)
$$\int (x^2 - 2x + 1)e^{2x} dx$$

h)
$$\int_{0}^{\frac{\pi}{2}} \sin(2x) \cos(4x) dx$$

Exercise 3. Evaluate the integrals:

a)
$$\int_0^1 \sqrt[3]{1+7x} \ dx$$

b)
$$\int_0^{\frac{\pi}{6}} \frac{\sin t}{\cos^2 t} dt$$

c)
$$\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^{2}} dx$$

d)
$$\int_0^{\frac{\pi}{2}} \cos x \sin(\sin x) \ dx$$

e)
$$\int_{e}^{e^4} \frac{dx}{x\sqrt{\ln x}}$$

f)
$$\int_0^1 \frac{e^z + 1}{e^z + z} dz$$

Exercise 4. You and a companion are about to drive a twisty stretch of dirt road in a car whose speedometer works but whose odometer (kilometer counter) is broken. To find out how long this particular stretch of road is, you record the car's velocity at 10-sec intervals, with the results shown in the accompaning table. Estimate the length of the road using a) left-endpoint values; b) right-endpoint values.

Time (sec)	0	10	20	30	40	50	60	70	80	90	100	110	120
Velocity (converted to m/sec)	0	13	5	11	9	13	11	5	7	11	13	9	11

Exercise 5. The speed of a runner increased steadily during the first three seconds of a race. Her speed at half-second intervals is given in the table. Find lower and upper estimates for the distance that she traveled during these three seconds.

<i>t</i> (s)	0	0.5	1.0	1.5	2.0	2.5	3.0
v (ft/s)	0	6.2	10.8	14.9	18.1	19.4	20.2

Exercise 6. Find the area of the shaded regions.

Exercise 7. Sketch the region enclosed by the given curves and find its area.

a)
$$y = 12 - x^2$$
, $y = x^2 - 6$

b)
$$y = \cos x$$
, $y = 2 - \cos x$, $0 \le x \le 2\pi$

c)
$$y = \sqrt{x-1}, \quad x-y = 1$$

d)
$$y = \frac{1}{x}$$
, $y = x$, $y = \frac{1}{4}x$, $x > 0$

e)
$$x = y^2$$
, $x = y + 2$

Exercise 8. Find the area of the region between the curve $y = 3 - x^2$ and the line y = -1 by integrating with respect to a) x and b) y.