Taller de Lógica Digital

Organización del Computador 1

Primer Cuatrimestre 2021

3. Antes de Empezar

Completar la siguiente tabla indicando los resultados para Op1 + Op2

Operandos		Sin Signo					Complemento a 2				
Op1	Op2	Op1 ₁₀	Op2 ₁₀	Res(bits)	Res ₁₀	۷?	Op1 ₁₀	Op2 ₁₀	Res(bits)	Res ₁₀	V?
1111	0001	15	1	0000	0	1	-1	1	0000	0	0
0001	1111	1	15	0000	0	1	1	-1	0000	0	0
0101	0101	5	5	1010	10	0	5	5	1010	-6	1
1000	0111	8	7	1111	15	0	-8	7	1111	-1	0
0110	1010	6	10	0000	0	1	6	-6	0000	0	0

Completar la siguiente tabla indicando los resultados para Op1 - Op2

Operandos		Sin Signo					Complemento a 2				
Op1	Op2	Op1 ₁₀	Op2 ₁₀	Res(bits)	Res ₁₀	۷?	Op1 ₁₀	Op2 ₁₀	Res(bits)	Res ₁₀	V?
1000	0010	8	2	0110	6	0	-8	2	0110	6	1
0001	1111	1	15	0010	2	1	1	-1	0010	2	0
0101	0101	5	5	0000	0	0	5	5	0000	0	0
1000	0111	8	7	0001	1	0	-8	7	0001	1	1
0110	1010	6	10	1100	12	1	6	-6	1100	-4	1

4i). ALU sin signo

Esto no es posible, pues, el carry del 3er digito terminaria afectando al signo y devolviendo un resultado incorrecto. Por ejemplo (1011)+(0001) es equivalente a -3+1 = -2 en notacion sin signo. Sin embargo la ALU devuelve (1100) = -4 en notacion sin signo.

Veamos el caso del overflow, teniendo en cuenta que en notacion sin signo nuestro rango es [7,-7]. Por ejemplo sumar 4+4 deberia ser overflow en notacion sin signo pero la alu nos devuelve (1000) = -0. Asi en general la ALU nos devolvera 1 en N cuando la suma de overflow. Mismo caso seria con la resta, pues es el inverso de la suma.

5. Validación de los resultados

Completar la siguiente tabla indicando los resultados utilizando la ALU de 4 bits.

Operandos		Sumador					Restador				
Α	В	s	Z	С	V	N	S	Z	С	V	N
1111	0001	0000	1	1	0	0	1110	0	0	0	1
0001	1111	0000	1	1	0	0	0010	0	1	0	0
0101	0101	1010	0	0	0	1	0000	1	0	0	0
1000	0111	1111	0	0	1	1	0001	0	0	1	0
0110	1010	0000	1	1	0	0	1100	0	1	0	1