CS 460

Computer Graphics

Professor Richard Eckert

March 24, 2004

B-Spline Polynomials

B-Spline Polynomials

- ∠ Want local control
- - Segmented approximating curve
 - 4 control points affect each segment
 - Local control
 - Level-2 continuity everywhere
 - Very smooth

Cubic B-Spline Polynomial Curves

- ∠ Approximate m+1 control points Pi (i=0,1,2,...,m)
 with a curve consisting of m-2 cubic polynomial curve segments Q (i=3,4,...m), m>=3
- ∠ Each Q_i defined in terms of:
 - parameter t: $t_i \le t \le t_{i+1}$
 - and by four of the m+1 control points

- $\begin{tabular}{ll} \mathbb{Z} Segment Q_i determined by control points: P_{i-3}, P_{i-2}, P_{i-1}, P_i between t_i and t_{i+1} \\ \end{tabular}$
- $\angle Q_i$ begins at $t = t_i$ and ends at $t = t_{i+1}$
- ∠ Q_{i+1} joins Q_i at t_{i+1}
- ✓ Join point called a knot.
- - First segment is Q₃, begins at t₃, ends at t₄
 - Is determined by control points P0,P1,P2,P3
- Each segment is affected by only 4 control points
- Each control pt affects at most 4 curve segments

Uniform Cubic B-Splines

- ∠ A special case where we assume that:
- $t_{i+1} = t_i + 1$
- ∠ Polynomial equation for segment Qi:
- $\emptyset Qi(t) = a^*(t-ti)^3 + b^*(t-ti)^2 + c^*(t-ti) + d,$ ti < t < t + ti
- ∠ Take independent variable as t-ti
 - Will vary from 0 to 1 for any interval

- Need to get polynomial coefficients (a,b,c,d)
 - from control points
- ∠ Find a "B-Spline Basis Matrix"
 - as for Bezier curves
 - but must do computation for each interval

B-Spline Continuity Conditions

- ∠ Conditions on 1st & 2nd derivatives:
- 1. dQ_i/dt (at t=t_i) = slope of line segment joining P_{i-3} and P_{i-1}
- 2. dQ_i/dt (at $t=t_{i+1}$) = slope of line segment joining P_{i-2} and P_i
- 3. $(dQ_i/dt)'(t=t_i)$ = rate of change in slope at t_i : (slope of $[P_{i:3}-P_{i:2}]$ - slope of $[P_{i:2}-P_i]$) / ? t
- 4. (dQi/dt)' (t=t_{i+1}) = rate of change in slope at t_{i+1}: (slope of [P_{i-2}-P_{i-1}] - slope of [P_{i-1}-P_i]) / ? t

 $\begin{aligned} &\text{Qi} = a^*(t\text{-ti})^3 + b^*(t\text{-ti})^2 + c^*(t\text{-ti}) + d \\ &\text{dQi/dt} = 3^*a^*(t\text{-ti})^2 + 2^*b^*(t\text{-ti}) + c \\ &(\text{dQi/dt})' = 6a^*(t\text{-ti}) + 2^*b \\ & \text{Condition 1: } c = (P_{i\text{-}1} - P_{i\text{-}3})/2 \\ & \text{Condition 2: } 3^*a + 2^*b + c = (P_i - P_{i\text{-}2})/2 \\ & \text{Condition 3: } 2^*b = ((P_{i\text{-}1} - P_{i\text{-}2}) - (P_{i\text{-}2} - P_{i\text{-}3})) / 1 \\ & \text{Condition 4: } 6^*a + 2^*b = ((P_i - P_{i\text{-}1}) - (P_{i\text{-}1} - P_{i\text{-}2})) / 1 \\ & \text{These four equations are not independent} \\ & - \text{Solving gives only a, b, c, but not d} \end{aligned}$

Solution

$$a = (1/6) * (-P_{i\cdot3} + 3*P_{i\cdot2} - 3*P_{i\cdot1} + P_i)$$

$$b = (1/6) * (3*P_{i\cdot3} - 6*P_{i\cdot2} + 3*P_{i\cdot1})$$

$$c = (1/6) * (-3*P_{i\cdot3} + 3*P_{i\cdot1})$$

Need another condition to get d

Choose the following condition:

Q (at t=ti) =
$$(1/6)$$
 * (P _{i-3} + 4*P _{i-2} + P _{i-1})

- i.e., control point at ti (P_{i·2}) pulls 4 times as hard at t=ti as control points on either side of ti
- Substitute in polynomial equation -->

$$d = (1/6) * (P_{i-3} + 4*P_{i-2} + P_{i-1})$$

Uniform Cubic B-Spline Coefficient Matrix Equation

Could also be written in terms of blending functions

$$Q_{i}(t) = ? B_{i,j,4} (t) * P_{i,j}$$

$$B_{i-3,4} = 1/6 * (1-t)^{3}$$

$$B_{i-2,4} = 1/6 * (3t^{3} - 6t^{2} + 4)$$

$$B_{i-1,4} = 1/6 * (-3t^{3} + 3t^{2} - 3t + 1)$$

$$B_{i,4} = 1/6 * t^{3}$$
See Foley & Van Dam

Plotting Uniform Cubic B-Splines

- ∠ Given m+1 control points
 P0,P1,P2,...Pm
 - (Recall that each has an x and y coordinate)
 - i.e., P0 --> x0 and y0, etc.
- ∠ The following is a "brute force" algorithm to plot the curve
 - delta is a very small increment (e.g., 0.05)

Brute Force Algorithm

```
For (i=3 to m)

Compute ax,bx,cx,dx and ay,by,cy,dy from control points i-3, i-2, i-1, i

For (t=0; t<=1; t+=delta)

x = ax*t³ + bx*t² + cx*t + dx

y = ay*t³ + by*t² + cy*t + dy

If (t==0)

MoveTo(x,y)

Else

LineTo(x,y)
```


Forcing Interpolation

Reproduce a control point three times

Properties of Uniform B-Splines

- . Local Control
- Each segment determined by only 4 control points
- Approximates control points; doesn't interpolate
 (However it will interpolate triplicated control points)
- B. Lies inside convex hull of control points
 - Each segment lies inside convex hull of its 4 control points
- 4. Invariant under affine transformations
- 5. Very smooth
 - Level-2 continuity everywhere
- 6. More computations required than for "equivalent" Bezier

Non-uniform Cubic B-Splines

- ∠ Can have cusps and discontinuities
- $_{\it lpha}$ Knot values must be specified

 $t_0, t_1, t_2, t_3, t_4, ..., t_{m-2}$

Case A (Level-2 Continuity)

- - Just our friend the uniform B-spline
- Z Q3 determined by P0, P1, P2, P3
- Z Q4 determined by P1, P2, P3, P4
- ∠ Q3 and Q4 share control points P1,P2,P3
 - Three constraints ==> L0, L1, L2 continuity

Case B (Level-1 Continuity)

- ∠ Knot vector: (0,1,1,2,3,4,...)
- ∠ Segment Q4 becomes a point
 - (since t4 = t5)
- ∠ Q3 determined by P0, P1, P2, P3
- ∠ Q5 determined by P2, P3, P4, P5
- ✓ So Q4 must lie on line connecting P2 & P3
- - Two constraints ==> L0, L1 continuity

Case C (Level-0 continuity)

- - (since t4=t5=t6)
- Z Q3 determined by P0, P1, P2, P3
- ∠ Q6 determined by P3, P4, P5, P6
- So Q4/Q5 must lie on control Point P3
 - (interpolates it)
- - One constraint ==> L0 continuity

Case D (No Continuity)

- ∠ Q4, Q5, Q6 become points
 - (since t4=t5=t6=t7)
- Z Q3 determined by P0, P1, P2, P3
- Z Q7 determined by P4, P5, P6, P7
- ∠ Q3 and Q7 share no control points
 - No constraints ==> discontinuity

