

Virtual, October 10-21, 2020

CRAM: Collocated SRAM and DRAM with In-Memory Computing Based Denoising and Filling for Neuromorphic Vision Sensors in 65 nm CMOS

Xueyong Zhang, Vivek Mohan, Arindam Basu

Nanyang Technological University

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

- Introduction
- CRAM structure
 - Memory mode
 - In-memory computing (IMC) mode
- Results and discussion
- Conclusion
- Future Work

- Introduction
- CRAM structure
 - Memory mode
 - In-memory computing (IMC) mode
- Results and discussion
- Conclusion
- Future Work

Introduction: Computer Vision

Using AI/ML in computer vision is a trend

Smart car Autopilot

Smart UVA
Object Tracking

Smart camera Active Surveillance

The system of a typical computer vision application

Introduction: Computer Vision

Trends:

(1) Bigger Data

Source: Cisco VNI Global IP Traffic Forecast, 2017-2022

(3) More Sensors (IoT)

CMOS Image Sensor Growth Continues into Next Decade

(2) Larger Model

ImageNet Classification top-5 error (%)

(4) More Mobiles

Introduction: Computer Vision

Challenges:

Low latency

(5) Real-time interaction

Goal of this work

Develop novel low-energy solutions for **Internet of Video Things** (IoVT) application like <u>traffic monitoring</u> by innovations at the sensor and processor.

- Sensor: Event driven
 - ✓ Event driven neuromorphic sensor → Advantage of reduced data but processing may be problem since data format is different
- **Processor: Processing Circuit + Memory**
 - Memory access is dominant for image processing & neural networks
 - → In-memory computing as a solution

Deep Neural Network, Recognition etc

Trigger to wakeup

Always ON Object detection (denoise, RP)

Focus of this work

Goal of this work

Solutions:

1. Data

Simplify data by using <u>event based</u> sensor. Only dynamic pixels are recorded

Asynchronous change detecting pixels —Simulating human retina!!

- High dynamic range
- Data reduction
- Fast reaction

2. Computing

By reducing or even eliminating the data movement to improve energy efficiency

Digital Computing	Near-Memory Computing	In-Memory Computing
FlexibilityFull digital accuracy	 Higher on-chip BW Localized computation	 Highest on-chip BW Better energy efficiency
Limited by on-chip BWComputation efficiencyLarge area and energy overhead	 Less flexible Area efficiency	

Processing pipeline

D. Singla et al., "HyNNA: Improved Performance for Neuromorphic Vision Sensor...." ISCAS, 2020.

Literature review: Denoise operations

Traditional method

(1) Nearest neighbour (NNb) filtering

We can define a set of indices for past events in the Nearest Neighbourhood, N_{NN} , of event e_i as

$$N_{NN}(e_i) = \{j \mid j < i, \ D_{i,j} <= \sqrt{2}\} \qquad e_i = \{x_i, y_i, p_i, t_i\}, \quad i \in \mathbb{N}$$

$$D_{i,j} = \left\| \begin{pmatrix} x_i \\ y_i \end{pmatrix} - \begin{pmatrix} x_j \\ y_j \end{pmatrix} \right\|$$

The set of events, F_{NN} , passed through the nearest neighbour filter will then be

$$F_{NN} = \{e_i \mid t_i - \max(t_{N_{NN}(e_i)}) < T\}$$
 $\downarrow \quad \text{threshold}$

(2) Refractory filtering

Czech, et al., "Evaluating noise filtering for event-based asynchronous change detection image sensors," BioRob, 2016.

Literature review: Denoise operations

Recent method – Hybrid event + frame approach

- -- Event based binary image (EBBI) + Median filtering
- -- Still need to read through entire image 🕾

NN filt + Refractory

$$C_{NN-filt} = (2(p^2 - 1) + B_t) \times \overline{n}$$

 $M_{NN-filt} = B_t \times A \times B$

EBBI+ Median filt

$$C_{EBBI} \approx (\alpha p^2 + 2) \times A \times B(\because p << A, B)$$

 $M_{EBBI} = 2 \times A \times B$

 $\overline{n} = \beta$

Can we do In-memory Computing (IMC) based EBBI?

_{3*BI* (kb)}

1.375

ory X8↓

p: neighbourhood size for noise filtering (p=3)

 α : the fraction of active pixels in a patch on average (α =0.5)

 β : average number of times an active pixel fires in frame duration (β =1)

Bt: timestamp bits (Bt=16)

A×B: image resolution (A=240, B=180)

Acharya, J., et al., "EBBIOT: A Low-complexity Tracking Algorithm for Surveillance in IoVT ..". SOCC, 2019

- Introduction
- CRAM structure
 - Memory mode
 - In-memory computing (IMC) mode
- Results and discussion
- Conclusion
- Future Work

Denoise operation in-memory

- We use CRAM to perform image denoising and filling
- What is CRAM
 - CRAM: Collocated SRAM and DRAM
 - We use SRAM-like to latch the storage data
 - no need fresh circuit in conventional DRAM
 - We use DRAM-like to redistribute/diffuse the stored charge
 - by charging/discharging to do averaging all over the array
 - Globally parallel computing
 - We use SRAM-like to detect and do ADC (based on its threshold voltage)
 - to remove noise and recover image data

CRAM

CRAM Cell & 320x240 Array

- Collocated SRAM and DRAM (9T bit cell)
- Memory mode + IMC mode

The 9T CRAM cell occupies $1.21 \times larger$ area, compared with the 9T bit-cell area in [1].

[1] M.-H. Tu, et al., "A single-ended disturb-free 9T subthreshold SRAM..." IEEE JSSC, 2012

MOS capacitor mismatch with different size

Analog blocks:

CRAM array

• **SA**

Driver

Digital blocks:

- Controller
- Decoder
- RP algorithm

CRAM

CRAM Operations

CRAM – in memory computing

CRAM equivalent 2D RC network

KCL,

$$\frac{v_T - v_c}{r_T} + \frac{v_B - v_c}{r_B} + \frac{v_L - v_c}{r_L} + \frac{v_R - v_c}{r_R} = C \frac{dv_c}{dt}.$$
 (1)

Assume: $r_T = r_B = r_L = r_R = R$

$$\frac{dv_c}{dt} + \frac{4}{RC}v_c - \frac{1}{RC}(v_T + v_B + v_L + v_R) = 0.$$
 (2)

$$v_c(t) = Ae^{-\frac{4t}{RC}} + \frac{v_T + v_B + v_L + v_R}{4}.$$
 (3)

$$A = v_c(0) - \frac{v_T(0) + v_B(0) + v_L(0) + v_R(0)}{4}.$$
 (4)

In IMC mode, charges redistribute all over the array

- Nearest Neighbour Filter (Median Filter)
- Edge Smoothing
- Filling (Image Recovery)

Output Low power consumption

Charge diffusion/redistribution happens naturally and consumes no extra energy

Output
Lower latency

No data access (R/W) required Globally parallel computing

CRAM – in memory computing

CRAM equivalent 2D RC network

Charge conservation:

$$Q_{tot} = \sum_{i=1}^{M \times N} C_i(t) \cdot v_i(t) = Constant \qquad (1)$$

$$\sum_{i=1}^{M \times N} v_i(t) = Constant \qquad (2)$$

- $v_i(t)$ is transient voltage of the i^{th} node
- C_i is the capacitor of the i^{th} node
- M*N is the size of the array

Charge diffusion time:

Denoising:
$$t_{diff} > \frac{C(VDD - V_{TR,min})}{4i_{discharge}}$$
 (3-1)

Filling:
$$t_{diff} > \frac{CV_{TR,max}}{4i_{charge}}$$
 (3-2)

Erosion:
$$t_{diff} < \frac{C(VDD - V_{TR,max})}{i_{discharge}}$$
 (3-3)

Dilation:
$$t_{diff} < \frac{CV_{TR,min}}{i_{charge}}$$
 (3-4)

- $V_{TR,min}$ is the minimum value of trip voltage V_{TR} due to devices mismatch.
- $V_{TR,max}$ is the maximum value of trip voltage V_{TR} due to devices mismatch.
- $i_{discharge}$ is the discharge current of the high pixel to one direction
- i_{charge} is the charge current of the high pixel to one direction

- Introduction
- CRAM structure
 - Memory mode
 - In-memory computing (IMC) mode
- Results and discussion
- Conclusion
- Future Work

Results and discussion

CRAM performance

SPICE simulation (65nm CMOS):

(1) Monte Carlo for MOS Res

The equivalent Res is programmable by gate voltage.

COMPARISON WITH DIFFERENT FILTER IMPLEMENTATIONS

Туре	Process	Area/Cell (um ²)	Latency (ns/bit)	Energy (pJ/bit)
Spatio-temporal Filter [12]	180nm	400	10	20
Median Filter	65nm	4.89	95	228
Proposed IMC-based Analog Natural Filter	65nm	3.54	0.11	0.02/ 0.001

(2) IMC for denoising

Lower equivalent Res, severer filtering

Results and discussion

• **CRAM** performance

Metric	This work	JSSC'18 MF [66]	ISSCC'18 Conv [68]	ISSCC'19 T8T [69]
Technology	65nm	65nm	65nm	55nm
Topology	CRAM, 9T	SRAM, 6T	SRAM, 10T	SRAM, T8T
Computation	in memory,	in memory,	in memory,	in memory,
mode	analog	digital	analog	digital
Algorithm	filter & filling	matched filter	CNN	CNN
Memory size	$90.75kb^{*}$	128kb	16kb	3.75kb
Core area	$0.315mm^{2*}$	$0.254mm^{2**}$	$0.067mm^{2}$	$0.045mm^{2**}$
Throughput (GOPS)	9293	10.2	10.7	-
Energy Efficient (TOPS/W)	233	1.94	28.1	18.37-72.1

include dummy memory rings

^{**} obtained from area of bit-cell times memory size

- Introduction
- CRAM structure
 - Memory mode
 - In-memory computing (IMC) mode
- Results and discussion
- Conclusion
- Future Work

Conclusion

- A novel CRAM based analog IMC architecture is presented to fulfil image denoising and filling tasks.
- Charge domain In-memory computing
 - Ultra low power
 - Parallel computing

- Introduction
- CRAM structure
 - Memory mode
 - In-memory computing (IMC) mode
- Results and discussion
- Conclusion
- Future Work

Future work

- Improve the robust of CRAM
 - Writability and read stability
- Reduce the distribution of diffusion resistor
 - Resistor mismatch degrades the uniformity of the RC network
- Region proposal algo
 - In/near-memory computing for region proposal

THANKS!

Q&A

Literature Review: In-memory computing

Analog IMC (6T SRAM)

Binary weights and analog feature inputs (through DAC)

- SRAM mode: like normal memory to store weights
- IMC mode: all wordlines (WLs) are driven at once to analog voltages corresponding to input feature vectors.

- **Write-disturb issue**
- **⊗** variation and nonlinearity => nonideal => weak classifier

J. Zhang, Z. Wang and N. Verma, "In-Memory Computation of a Machine-Learning Classifier in a Standard 6T SRAM Array," in IEEE Journal of Solid-State Circuits, vol. 52, no. 4, pp. 915-924, April 2017.

Literature Review: In-memory computing

Analog IMC (10T SRAM)

Binary weights and <u>signed</u> analog feature inputs (through DAC)

- SRAM mode: like normal memory to store weights
- IMC mode: phase1– input to DAC, precharge GRBL; phase2– active RWL, discharge LBLT/LLBF to 0, get ΔV_{LBL} , and obtain the average horizontally.

Va various widely due to Icell variation

Va has no variation due to Icell

A. Biswas and A. P. Chandrakasan, "CONV-SRAM: An Energy-Efficient SRAM With In-Memory Dot-Product Computation for Low-Power Convolutional Neural Networks," in IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 217-230, Jan. 2019.