

Прикладная статистика и анализ данных _{Съезд VI}

0. Про задачи

Одна выборка

 $X_1,...,X_n$ — выборка из неизвестного распределения.

- 1. Подобрать класс распределений Критерии согласия
- Высказать суждение о параметре распределения
 Точечные оценки
 Доверительные интервалы
 Гипотезы о значении параметра
- 3. Оценить распределение непараметрически Ядерные оценки плотности

(P) (P)

Две выборки

 $X_1,...,X_n$ и $Y_1,...,Y_m$ — две выборки из неизвестных распределений.

- 1. Что-либо про одну из выборок см. пред.
- 2. Исследовать зависимость выборок (n = m) Анализ зависимостей
- 3. Сравнить распределения выборок *Дисперсионный анализ*
- Восстановить зависимость (n = m)
 Регрессионный анализ
 Классификация

6.0

Две выборки

 $X_1,...,X_n$ и $Y_1,...,Y_m$ — две выборки из неизвестных распределений.

- 1. Что-либо про одну из выборок см. пред.
- 2. Исследовать зависимость выборок (n=m)Анализ зависимостей \longleftarrow повестка съезда
- 3. Сравнить распределения выборок *Дисперсионный анализ*
- 4. Восстановить зависимость (n = m)
 Регрессионный анализ
 Классификация

Даны парные выборки:

$$X = (X_1, ..., X_n)$$

$$Y=(Y_1,...,Y_n)$$

- Зависимы ли выборки?
 - H_0 : выборки независимы vs. H_1 : выборки зависимы
- Количественная оценка степени
 неслучайности их совместного изменения.

1. Коэффициенты корреляции

Коэффициент корреляции

Пусть ξ , η — случайные величины.

$$corr(\xi,\eta) = rac{cov(\xi,\eta)}{\sqrt{\mathsf{D}\xi\mathsf{D}\eta}}$$
 — коэффициент корреляции

Свойства:

- $|corr(\xi,\eta)| \leq 1;$
- $ightharpoonup |\mathit{corr}(\xi,\eta)| = 1 \Leftrightarrow \xi$ и η линейно зависимы п.н.;
- \blacktriangleright ξ и η независимы $\to corr(\xi,\eta)=0$. Обратное не верно;
- Является мерой линейной зависимости.

Коэффициент корреляции Пирсона

Метод подстановки: подставим в $corr(X_1, Y_1)$ эмпир. распр.

$$\widehat{\rho} = \frac{cov_{P^{*}}(X_{1}, Y_{1})}{\sqrt{D_{P^{*}}X_{1}D_{P^{*}}Y_{1}}} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X}) (Y_{i} - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}}}$$

Н₀: выборки независимы

Если H_0 верна и выборки нормальные, то

$$T(X,Y) = \frac{\widehat{\rho}\sqrt{n-2}}{\sqrt{1-\widehat{\rho}^2}} \sim T_{n-2}.$$

Критерий $\{|T(X,Y)| > t_{n-2,1-\alpha/2}\}.$

Коэффициент корреляции Пирсона

Свойства:

- $|\widehat{\rho}| \leqslant 1;$
- $ightharpoonup |\widehat{
 ho}| = 1 \Leftrightarrow$ точки лежат на одной прямой;
- Работает только для нормальных выборок для линейной зависимости;
- Не устойчив к выбросам.

Коэффициент корреляции Спирмена

Пусть R_i — ранг наблюдения X_i в выборке X, то есть $X_{(R_i)} = X_i$.

Пусть S_i — ранг наблюдения Y_i в выборке Y, то есть $Y_{(S_i)} = Y_i$.

Пример X_i : 7.3, 2.2, 0.3, 6.2, 1.6, 6.2, 9.6

 R_i : 6, 3, 1, 4.5, 2, 4.5, 7

К.к. Спирмена = к.к. Пирсона по выборкам $(R_1, ..., R_n)$ и $(S_1, ..., S_n)$.

$$\rho_{S} = \frac{\sum_{i=1}^{n} (R_{i} - \overline{R}) (S_{i} - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_{i} - \overline{R})^{2} \sum_{i=1}^{n} (S_{i} - \overline{S})^{2}}} = 1 - \frac{6}{n^{3} - n} \sum_{i=1}^{n} (R_{i} - S_{i})^{2}$$

Коэффициент корреляции Спирмена

Свойства:

- $|\rho_S| \leq 1$;
- ▶ $|\rho_S| = 1 \Leftrightarrow$ точки лежат на монотонной кривой;
- ► Если H_0 верна, то $E\rho_S = 0, D\rho_S = \frac{1}{n-1};$
- ► Если H_0 верна, то $\rho_S/\sqrt{\mathsf{D}\rho_S} \stackrel{d_0}{\to} \mathcal{N}(0,1)$. Критерий $\{|\rho_S/\sqrt{D\rho_S}| > z_{1-\alpha/2}\};$
- Устойчив к выбросам.

Коэффициент корреляции Кендалла

Пары
$$(X_i,Y_i)$$
 и (X_j,Y_j) согласованы, если $\mathrm{sign}(X_i-X_j)\,\mathrm{sign}(Y_i-Y_j)=1.$

Пусть S — число согласованных пар, R — число несогласованных.

$$\tau = \frac{S - R}{S + R} = 1 - \frac{4}{n(n-1)}R$$

Коэффициент корреляции Кендалла

Свойства:

- $|\tau| \leqslant 1$;
- $|\tau|=1\Leftrightarrow$ точки лежат на монотонной кривой;
- ► Если H_0 верна, то $E\tau = 0$, $D\tau = \frac{2(2n+5)}{9n(n-1)}$;
- ► Если H_0 верна, то $\tau/\sqrt{D\tau} \stackrel{d_0}{\rightarrow} \mathcal{N}(0,1)$. Критерий $\{|\tau/\sqrt{D\tau}| > z_{1-\alpha/2}\};$
- **Е**сли H_0 верна, то $corr(\rho_S, \tau) = \frac{2n+2}{\sqrt{4n^2+10n}}$;
- Менее чувствителен к большим различиям между рангами, чем ρ_S ;
- Точнее оценивается по выборкам малых размеров.

Еще раз формулы

Пирсон:

$$\widehat{\rho} = \frac{\sum_{i=1}^{n} (X_i - \overline{X}) (Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

Спирмен: R и S — ранги наблюдений в выборках X и Y

$$\rho_{S} = \frac{\sum_{i=1}^{n} (R_{i} - \overline{R}) (S_{i} - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_{i} - \overline{R})^{2} \sum_{i=1}^{n} (S_{i} - \overline{S})^{2}}} = 1 - \frac{6}{n^{3} - n} \sum_{i=1}^{n} (R_{i} - S_{i})^{2}$$

Кендалл: S — число соглас. пар, а R — число несоглас.

$$\tau = \frac{S - R}{S + R} = 1 - \frac{4}{n(n-1)}R$$

pearsonr — коэффициент корреляции Пирсона spearmanr — коэффициент корреляции Спримена kendalltau — коэффициент корреляции Кендалла

Общий принцип: $f(x_1, x_2) = (correlation, pvalue)$

2. Таблицы сопряженности 2×2

o o

Результаты решения задачи 7 из ДЗ-12:

Семинарист	Никита	Оля	Лена	Настя
Справились	0	5	3	2
Не справились	8	2	4	5

Факты:

- 1. Случайное разбиение на группы;
- 3. На первом семинаре задача была разобрана.

Хотим воспользоваться методом проверки статистических гипотез.

Какие взять H_0 и H_1 ?

Презумпция невиновности: не виновны пока нет доказательств.

 H_0 : решаемость задачи не зависит от семинара

 H_1 : решаемость задачи зависит от семинара

Упростим данные

Разбиралась ли задача до семинара?			Да
Сп	0	10	
Не с	правились	8	11

Математическая формулировка

Даны парные выборки

$$X = (X_1, ..., X_n) \sim Bern(p_1)$$

$$Y = (Y_1, ..., Y_n) \sim Bern(p_2)$$

	$Y_i = 0$	$Y_i = 1$	Σ
$X_i = 0$	а	Ь	a+b
$X_i = 1$	С	d	c+d
Σ	a+c	b+d	n

 H_0 : выборки X и Y независимы

 H_1 : выборки X и Y зависимы

Вероятность таблицы с фиксированными суммами задается гипергеометрическим распределением:

$$\mathsf{P}(\textit{table}) = \frac{C_{a+b}^{a}C_{c+d}^{c}}{C_{n}^{a+c}} = \frac{(a+b)!(c+d)!(a+c)!(b+d)!}{n!a!b!c!d!}.$$

Точный тест Фишера

p-value = сумма вероятностей по всем возможным вариантам таблицы с такими же суммами по строкам и столбцам, имеющим вероятность не больше, чем у полученной таблицы.

scipy.stats.fisher_exact(table)

Особенности:

- 1. Критерий является точным (неасимптотическим);
- 2. Вычислительно затратный \Rightarrow используется для малых выборок;
- 3. Что в сложных случаях? ⇒ Увидим далее!

Разбиралась ли задача до семинара?	Нет	Да
Справились	0	10
Не справились	8	11

scipy.stats.fisher_exact([[0, 8], [10, 11]]) вернет p-value = 0.0265.

Вывод: гипотеза о независимости отвергается.

Численные характеристики взаимосвязи

$$Q = rac{ad-bc}{ad+bc}$$
 — коэффициент ассоциации

$$V=rac{ad-bc}{\sqrt{(a+b)(a+c)(b+d)(c+d)}}$$
 — коэффициент контингенции

В обоих случаях:

 $0\Longrightarrow$ полное отсутствие взаимосвязи

 $\pm 1\Longrightarrow$ полная связь

Ô

Определение числа наблюдений (при a+b=c+d)

Задаем:

$$lpha$$
 — ур. значимости

$$\beta$$
 — мощность

$$\left. egin{aligned} p_1 &= a/b \ p_2 &= c/d \end{aligned}
ight\}$$
 значимый эффект

$$egin{array}{c|cccc} Y_i = 0 & Y_i = 1 & \sum \ X_i = 0 & a & b & a+b \ X_i = 1 & c & d & c+d \ \sum & a+c & b+d & n \ \end{array}$$

Тогда необходимое число наблюдений в каждой строке равно

$$K / (\arcsin \sqrt{p_1} - \arcsin \sqrt{p_2})^2$$

K	$\beta = 0.8$	$\beta = 0.9$	$\beta = 0.99$		
$\alpha = 0.05$	12885	17250	30161		
$\alpha = 0.01$	= 0.01 16474		35537		
$\alpha = 0.001$	19172	24426	43945		

3. Таблицы сопряженности (общий случай)

Даны парные выборки

$$X = (X_1,...,X_n)$$
, причем $X_i \in \{1,...,k_1\}$

$$Y = (Y_1, ..., Y_n)$$
, причем $Y_i \in \{1, ..., k_2\}$

Таблица сопряженности:

	1	 j	 k ₂	Σ
1	n ₁₁	 n_{1j}	 n_{1k_2}	n _{1•}
i	n _{i1}	 n _{ij}	 n _{ik2}	n _i •
k_1	n_{k_1} 1	 n_{k_1j}	 $n_{k_{1}k_{2}}$	n _{k1} •
Σ	<i>n</i> _{●1}	 n∙j	 n _{●k2}	n

Элементы таблицы:

$$n_{ij} = \#\{s \mid X_s = i, Y_s = j\}$$

$$n_{i \bullet} = \#\{s \mid X_s = i\}$$

$$n_{\bullet i} = \#\{s \mid Y_s = j\}$$

Вероятностные модели

Случай 1: X и Y случайны.

$$\pi_{ij} = \mathsf{P}(X_1 = i, Y_1 = j) \implies \{\pi_{ij}\}_{ij}$$
 — совместное распределение; $\pi_{i \bullet} = \mathsf{P}(X_1 = i) \implies \mathsf{P} = \{\pi_{i \bullet}\}_i$ — распределение X ; $\pi_{\bullet j} = \mathsf{P}(Y_1 = j) \implies \mathsf{Q} = \{\pi_{\bullet j}\}_j$ — распределение Y ; Определение: X и Y независимы, если $\pi_{ij} = \pi_{i \bullet} \pi_{\bullet j} \ \forall i, j$.

Случай 2: X неслучаен, Y случаен.

 \Longrightarrow суммы по строкам n_{iullet} фиксированы.

$$\pi_{j|i} = \mathsf{P}_i(Y_1 = j)$$
 — вероятность события $Y_1 = j$ если $X_1 = i$;

$$\mathsf{P}_i = \left\{\pi_{j|i}
ight\}_i$$
 — распределение Y если $X_1 = i$, т.е. X — параметр.

Определение: X и Y независимы, если $P_1 = ... = P_{k_1}$.

Критерий хи-квадрат (обе вер. модели)

 H_0 : выборки X и Y независимы

$$\chi^{2}(X,Y) = \sum_{j=1}^{k_{1}} \sum_{j=1}^{k_{2}} \frac{\left(n_{jj} - \frac{n_{i \bullet} n_{\bullet j}}{n}\right)^{2}}{\frac{n_{i \bullet} n_{\bullet j}}{n}}$$

Если
$$H_0$$
 верна, то $\chi^2(X,Y) \stackrel{d}{\longrightarrow} \chi^2_{(k_1-1)(k_2-1)}$ \Longrightarrow критерий $\Big\{\chi^2(X,Y) > \chi^2_{(k_1-1)(k_2-1),1-lpha}\Big\}.$

Условия применимости:

1.
$$n \ge 40$$
;

$$2. \frac{n_{i\bullet}n_{\bullet j}}{n} < 5$$

Коэффициент корреляции Крамера

 $0 \Longrightarrow$ полное отсутствие взаимосвязи;

 $1 \Longrightarrow$ совпадение переменных.

 $\varphi_{\mathcal{C}}(X,Y) = \sqrt{\frac{\chi^2(X,Y)}{n(\min(k_1,k_2)-1)}}$

P O

Пример (влияние нового препарата на выздоровление)

Испытуемые делятся случайно на две группы:

- 1. Исследуемая группа принимает новый препарат;
- 2. Контрольная группа принимает плацебо.

	Выздоровели	Нет
Препарат	850	870
Плацебо	380	410

 H_0 : препарат не отличим от плацебо (т.е. связи нет);

Н₁: эффект препарата отличается от эффекта плацебо.

Критерий хи-квадрат: $\chi^2(X,Y) = 0.325$, pvalue = 0.569,

Численные характеристики: $\varphi_{\mathcal{C}}(X,Y)=0.008,\; Q=0.026,\; V=0.012$

4. Влияние признаков на таргет.

Важности признаков.

Наблюдается зашумленная зависимость

$$Y_i = f(X_{i1}, ..., X_{id}, \varepsilon_i),$$

где X_{ij} — значение j-признака;

 Y_i — целевая переменная;

 ε_i — шум.

Задача:

Оценить степень влияния каждого признака на целевую переменную.

Корреляционный метод

Посчитать $\widehat{corr}(Y, X_j)$ для всех j.

O O

1. Mean Decrease in Impurity (MDI)

Случай дерева.

Пусть m — узел дерева и X_m — подвыборка, дошедшая до m. H — выбранный критерий информативности.

При разбиении вершины m решается задача:

$$Q(X_m,j,t)=rac{|X_l|}{|X_m|}\cdot H(X_l)+rac{|X_r|}{|X_m|}\cdot H(X_r) o \min_{j,t}$$
 Уменьшение ошибки *относительно* вершины m составляет

 $H(X_m) - \frac{|X_I|}{|X_m|} \cdot H(X_I) - \frac{|X_r|}{|X_m|} \cdot H(X_r)$ Общее уменьшение ошибких ватапе разбиния вершины m по признаку j и порогу t по отношению ко всей выборке:

$$\Delta I_{j}^{m} = \frac{|X_{m}|}{|X|} H(X_{m}) - \frac{|X_{l}|}{|X|} \cdot H(X_{l}) - \frac{|X_{r}|}{|X|} \cdot H(X_{r})$$

1. Mean Decrease in Impurity (MDI)

⇒ При построении дерева можем посчитать, какой вклад каждый признак вносит в уменьшение ошибки:

$$\Delta \mathit{I}_{j} = \sum_{\mathit{m}} \Delta \mathit{I}_{j}^{\mathit{m}} \cdot \mathit{I} \left\{ egin{matrix} \mathsf{paзбиение} \ \mathit{в} \ \mathsf{в вершине} \ \mathit{m} \ \mathsf{pass} \ \mathsf{pas$$

Отнормируем данные значения:

$$\widetilde{\Delta I_j} = \frac{\Delta I_j}{\sum\limits_{j=1}^d \Delta I_j}$$

Случай леса.

Пусть \mathscr{T} — набор деревьев в лесу.

 $\Delta I_i(T)$ — важность признака j для дерева T.

$$\Delta \mathit{I}_{j} = \frac{1}{|\mathcal{T}|} \sum_{T \in \mathcal{T}} \Delta \mathit{I}_{j}(T)$$

1. Mean Decrease in Impurity (MDI)

Плюсы:

- ▶ Поле feature importances в sklearn
 - важности признаков, посчитанные этим методом.
- Быстро считается, обучение происходит один раз.

Минусы:

- Важность признаков смещена в сторону признаков с большим количеством значений.
- Считается при использовании лишь обучающей выборки.
 Не смотрит на полезность признака при предсказании теста.

6

2. Permutation feature importance

- 1. Обучим модель и измерим метрику на валидации/ООВ/прочее .
- 2. Для одного выбранного признака перемешаем все его значения в датасете, на котором до этого измерили метрику.
- 3. Измерим метрику на видоизмененном датасете.
- Посчитаем важность данного признака:
 Разница между исходным и новым значением метрики.
- 5. Сделаем пункты 2-4 для всех признаков.

2. Permutation feature importance

Плюсы:

- Подходит для любых моделей.
- Требует одного обучения модели.
- ▶ Использует тестовое множество и является более надежным, чем MDI.

Минусы:

- ▶ Более вычислительно затратно, чем MDI.
- Переоценивает важность для скоррелированных признаков. (Strobl et al (2008))

o o

3. Drop Column feature importance

Сравним 2 модели:

- Модель, обученная на датасете со всеми признаками
- Модель, обученная на данных без одного признака.

Важность этого признака — разница метрик на тесте/валидации/ООВ для этих моделей.

Плюсы:

- Самая точная важность признаков.
- Подходит для любых моделей.

Минусы:

Вычислительно сложно.
 Требует обучения многих разных моделей.

