

Feature Selection

Anomaly Detection

Classification

Models

Comparative Analysis

Conclusion

Understanding the Data & Problem Statement

12227 songs

Each song has several parameters like acousticness, duration, year etc

Each Song ranked on a scale of 1 to 5 according to popularity

Predict the popularity of each song

INSIGHTS

Release-Date and Year column are highly correlated

Imbalance in Dataset
The very high popularity
constituted 3% of the total
dataset

Random oversampling was used to treat the imbalance in dataset. This method randomly duplicate examples in the minority class.

Feature Selection

Anomaly Detection

Classification Models

Comparative Analysis

Conclusion

Understanding the Data & Problem Statement

DATA SUMMARY

Feature/Stat	Mean	Std	Min	25%	50%	75%	Max
Acousticness	0.430578	0.366893	0.000001	0.05895	0.354000	0.80500	0.996
Danceability	0.556353	0.175373	0.000000	0.43800	0.569000	0.68500	0.980
Energy	0.522129	0.262482	0.000020	0.30300	0.534000	0.73900	1.000
Instrumentalness	0.149321	0.297954	0.000000	0.00000	0.000115	0.05565	1.000
Key	5.205202	3.526954	0.000000	2.00000	5.000000	8.00000	11.000
Liveness	0.201365	0.173987	0.014700	0.09620	0.132000	0.25200	0.997
Loudness	-10.6686	5.506888	-43.738	-13.6560	-9.5840	-6.57150	1.006
Speechiness	0.097680	0.155895	0.000000	0.03470	0.045600	0.07890	0.968
Tempo	118.1674	30.200	0.000000	95.05050	116.9150	136.1085	216.843
Valence	0.525300	0.258205	0.000000	0.32100	0.532000	0.73700	1.000
Year	1984.517	25.9119	1920.00	1966.00	1987.00	2008.00	2021.000
DurationMin	3.888133	2.383133	0.200000	2.90000	3.600000	4.40000	2021.000

Feature Selection

Anomaly Detection

Classification

Models

Comparative Analysis

Conclusion

Data Visualization and insights

CORRELATION MATRIX

Loudness and Energy of a song are highly positively correlated.

Acousticness is highly negatively correlated with the energy and loudness of the song

_																	
acousticness	- 1	-0.28	-0.75	-0.23	0.27	-0.017	-0.025	-0.58	0.06	-0.028	-0.2	-0.17	-0.074	-0.2	-0.18	-0.56	-0.41
danceability	-0.28	1	0.21	0.25	-0.26	0.029	-0.12	0.29	-0.065	0.22	-0.021	0.49	-0.1	0.12	0.073	0.21	0.22
」 energy	0.75	0.21	1	0.13	-0.22	0.033	0.13	0.78	-0.058	-0.078	0.23	0.33	0.049	0.2	0.17	0.49	0.33
explicit	- 0.23	0.25	0.13	1	-0.15	0.01	0.023	0.18	-0.081	0.34	0.034	-0.055	-0.037	0.12	0.089	0.27	0.26
САРПСІС																	
instrumentalness	0.27	-0.26	-0.22	-0.15	1	-0.018	-0.019	-0.38	-0.047	-0.11	-0.088	-0.2	0.086	-0.065	-0.06	-0.2	-0.32
key	-0.017	0.029	0.033	0.01	-0.018	1	-0.0092	0.026	-0.14	0.017	0.017	0.031	-0.0079	0.0069	-0.002	0.014	0.014
liveness	0.025	-0.12	0.13	0.023	-0.019	-0.0092	1	0.047	0.0093	0.11	0.015	0.0012	0.029	0.0098	0.041	-0.046	-0.1
loudness	0.58	0.29	0.78	0.18	-0.38	0.026	0.047	1	-0.034	-0.15	0.2	0.28	0.012	0.22		0.5	0.41
mode	0.06	-0.065	-0.058	-0.081	-0.047	-0.14	0.0093	-0.034	1	-0.037	0.0069	0.0092	-0.028	-0.055	-0.046	-0.066	-0.039
speechiness	-0.028	0.22	-0.078	0.34	-0.11	0.017	0.11	-0.15	-0.037	1	-0.008	0.042	-0.089	0.024	0.008	-0.16	-0.12
tempo	-0.2	-0.021	0.23	0.034	-0.088	0.017	0.015	0.2	0.0069	-0.008	1	0.14	-0.021	0.05	0.043	0.12	0.077
valence	-0.17	0.49	0.33	-0.055	-0.2	0.031	0.0012	0.28	0.0092	0.042	0.14	1	-0.15	-0.00036	-0.02	-0.091	-0.0053
duration-min	0.074	-0.1	0.049	-0.037	0.086	-0.0079	0.029	0.012	-0.028	-0.089	-0.021	-0.15	i	-0.0087	-0.019	0.053	-0.0094
release_day	-0.2	0.12	0.2	0.12	-0.065	0.0069	0.0098	0.22	-0.055	0.024	0.05	-0.00036	-0.0087	1	0.54	0.31	0.2
release_month	-0.18	0.073	0.17	0.089	-0.06	-0.002	0.041	0.2	-0.046	0.008	0.043	-0.02	-0.019	0.54	1	0.27	0.17
release_year	0.56	0.21	0.49	0.27	-0.2	0.014	-0.046	0.5	-0.066	-0.16	0.12	-0.091	0.053	0.31	0.27	1	0.64
popularity	-0.41	0.22	0.33	0.26	-0.32	0.014	-0.1	0.41	-0.039	-0.12	0.077	-0.0053	-0.0094	0.2	0.17	0.64	1
	acousticness -	danceability -	energy -	explicit -	rumentalness -	key -	liveness -	loudness -	- mode -	speechiness -	- odwat	valence -	duration-min -	release_day -	elease_month -	release_year -	popularity -

Feature Selection

Anomaly Detection

Classification

Models

Comparative Analysis

Conclusion

Data Visualization and insights

Acousticness in songs **decreased** over the years.

Energy increased over the years. Similarly, the **loudness** and the **tempo** of the songs **increased** over the years

We can see the majority of the songs having very **high popularity** are from **2015 onwards**

> Feature Selection

Anomaly Detection

Classification

Models

Comparative Analysis

Conclusion

Feature Selection

Variance threshold

Any feature having variance less than a threshold is removed from the dataset

SelectKBest

Select features according to the k highest scores where the scoring function was ANOVA

SelectFromModel

Selects a given number of features based on the importance weights

Greedy Feature Selection

Selects features greedily one by one on the basis of which feature the evaluation metric increases the most.

Top Features

- Year
- Danceability
- Instrumentalness
- Duration-min
- Valence
- Acousticness
- Liveness

> Feature Selection

Anomaly Detection

Classification

Models

Comparative Analysis

Conclusion

Anomaly Detection

The outliers constituted **50%** of the dataset so removing them wasn't an option.

Did **not treat** the outliers as decision tree models were trained and outliers wouldn't affect the model much.

> Feature Selection

Anomaly Detection

Classification Models

Comparative Analysis

Conclusion

XGBoost (eXtreme Gradient Boosting)

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.

It implements machine learning algorithms under the Gradient Boosting framework.

Test Accuracy	71.2
Training Accuracy	99.95
Bidding Value	7540
Revenue Collected	12488
F1-score	0.688

> Feature Selection

Anomaly Detection

Classification Models

Comparative Analysis

Conclusion

CatBoost

CatBoost grows oblivious trees, which means that the trees are grown by imposing the rule that all nodes at the same level, test the same predictor with the same condition, and hence an index of a leaf can be calculated with bitwise operations

Why Catboost?

Test Accuracy	68.00
Training Accuracy	77.05
Bidding Value	7539
Revenue Collected	13972
F1-score	0.656

> Feature Selection

Anomaly Detection

Classification Models

Comparative Analysis

Conclusion

Random Forest

Random Forest operates as an ensemble of a large number of decision trees. In this algorithm, all the trees spit out the prediction and the class with the most number of votes becomes the model's prediction.

Test Accuracy	71.35
Training Accuracy	99.95
Bidding Value	7538
Revenue Collected	14086
F1-score	0.704

> Feature Selection

Anomaly Detection

Classification Models

Comparative Analysis

Conclusion

LightGBM

LightGBM is called "Light" because of its computation power and giving results faster.

Light GBM grows tree vertically i.e leaf-wise. It takes less memory to run and is able to deal with large amounts of data

Why LightGBM?

Test Accuracy	70.05
Training Accuracy	89.95
Bidding Value	7538
Revenue Collected	14046
F1-score	0.686

> Feature Selection

Anomaly Detection

Classification Models

Comparative Analysis

Conclusion

Comparative Analysis

Since both XGBoost and Random Forest models are **overfitting**, and the score of CatBoost is less, we are going to choose **LightGBM** as our final model.

Feature Selection

Anomaly Detection

Classification

Models

Comparative Analysis

Conclusion

Conclusion

Bidding and Revenue Collected (in \$)

Class	Precision	Recall	F1-score
Very Low	0.56	0.68	0.62
Low	0.84	0.81	0.82
Average	0.47	0.46	0.47
High	0.67	0.47	0.55
Very High	0.90	0.98	0.97

The bidding total of the model on our validation set of size 3016 rows is \$7538, and the revenue collected is \$14046.

Our model has good predictions for **Very High and Low** popularity, which is visible in our classification report of the LightGBM model

Feature Engineering

> Anomaly Detection

Classification

Models

Comparative Analysis

Conclusion

XGBoost

Class	Precision	Recall	F1-score
Very Low	0.85	0.78	0.81
Low	0.56	0.67	0.61
Average	0.45	0.44	0.44
High	0.68	0.56	0.61
Very High	0.95	1.00	0.97

CatBoost

Class	Precision	Recall	F1-score
Very Low	0.84	0.81	0.82
Low	0.56	0.66	0.60
Average	0.46	0.47	0.46
High	0.63	0.40	0.49
Very High	0.85	0.98	0.91

LightGBM

Class	Precision	Recall	F1-score
Very Low	0.56	0.68	0.62
Low	0.84	0.81	0.82
Average	0.47	0.46	0.47
High	0.67	0.47	0.55
Very High	0.90	0.98	0.97

Random Forest

Class	Precision	Recall	F1-score
Very Low	0.86	0.79	0.83
Low	0.57	0.70	0.63
Average	0.47	0.48	0.48
High	0.70	0.54	0.61
Very High	0.95	1.00	0.97

Feature Engineering

> Anomaly Detection

Classification Models

Comparative Analysis

Conclusion

Feature Engineering

Anomaly Detection

Classification Models

Comparative Analysis

Conclusion

