Group Theory

Definitions

- [Equivalence Relation] An <u>equivalence relation</u> ~ on *X* satisfies:
 - o Reflexivity: $x \sim x$
 - o Symmetry: $x \sim y \Rightarrow y \sim x$
 - o Transitivity: $x \sim y, y \sim z \Rightarrow x \sim z$
- [Group] A group G is a set with a binary operation $: G \times G \to G$ which obeys:
 - Associativity: $\forall g_1, g_2, g_3 \in G, g_1(g_2g_3) = (g_1g_2)g_3$
 - Identity: $\exists e \in G \text{ s.t. } ge = g = g$
 - o Inverse: $\forall g \in G$, $\exists g^{-1} \in G$ s.t. $gg^{-1} = g^{-1}g = e$.
- [Subgroup] Say H is a <u>subgroup</u> of G if $H \subseteq G$ and H is a group given the operation inherited from G. Notation: $H \leq G$.
- [Cyclic Group] Say a group G is <u>cyclic</u> if it is generated by a single element $g \in G$ i.e. $G = \langle g \rangle$.
- [Subgroup Generated by S] Let $S \subset G$. Then the <u>subgroup generated by S</u>, denoted as $\langle S \rangle$, is the intersection of all subgroups H containing S i.e. $\langle S \rangle = \bigcap_{S \subset G} H$.
- [Centralizer] Let G be a group and $a \in G$. The <u>centralizer of a in G is the set of all elements in G that commutes with a i.e. $C(a) = \{g \in G | ag = ga\}$. It is a subgroup of G.</u>
- [Center] Let G be a group. Then the <u>center of G</u> is the set of elements that commutes with all element in G i.e. $Z(G) = \{z \in G | zg = gz \ \forall g \in G\}$. It is a subgroup of G.
- [Left Coset] Let $H \le G$, then a <u>left coset</u> of H is $gH = \{gh | h \in H\}$ where $g \in G$. The set of left cosets of H in G is $S = \{gH | g \in G\}$
- [Right Coset] Let $H \le G$, then a <u>right coset</u> of H is $Hg = \{hg | h \in H\}$ where $g \in G$. The set of right cosets of H in G is $S = \{Hg | g \in G\}$
- [Set of Cosets] Denote by *G/H* the set of cosets of *H* in *G*.
- [Index] The index of H in G is |G/H|.
- [Representative of Coset] Any element of gH is a <u>representative</u> of coset gH. If g_1 and g_2 are representatives of the same coset, then $g_1H = g_2H$.
- [Simple] Say a group G is simple if it is a non-trivial group and its normal subgroups are only $\{e\}$ and G itself.
- [Normal] Say a subgroup N of G is a normal subgroup of G if $\forall g \in G, \forall n \in N, gng^{-1} \in N$.
 - o N is a normal subgroup of G if and only if $gNg^{-1} = N \ \forall g \in G$.
 - o N is a normal subgroup of G if and only if $\forall g \in G, n \in N, gng^{-1} \in N$
 - o N is a normal subgroup of G if and only if $gNg^{-1} \subseteq N \ \forall g \in G$.
 - o N is a normal subgroup of G if and only if $\forall g \in G$, gN = Ng.
 - o N is a normal subgroup of G if and only if the product of any two right cosets of N is still a right coset of N, specifically (Nx)(Ny) = Nxy.
- [Homomorphism] Let G, H be groups. A function $\phi: G \to H$ is a <u>homomorphism</u> if $\forall g_1, g_2 \in G, \phi(g_1g_2) = \phi(g_1)\phi(g_2)$
- [Isomorphism] Say a homomorphism $\phi: G \to H$ is an <u>isomorphism</u> if ϕ is both injective and surjective.
- [Automorphism] An automorphism is an isomorphism of *G* onto itself.
- [Commutator] If $g, h \in G$, the commutator of g and h is $[g, h] = ghg^{-1}h^{-1} \in G$. If g, h commutes, [g, h] = e.
- [Commutator Subgroups] The commutator subgroup of G is $[G,G] = \langle [g,h] | g,h \in G \rangle$ i.e. the subgroup generated by all the commutators in G.
- [Endomorphism] An endomorphism is a homomorphism from an object to itself. The set of endomorphisms of M is denoted as $\operatorname{End}(M) = \{\phi \colon M \to M\}$ where ϕ is a group homomorphism.

Properties

• $(\mathbb{Z}/n\mathbb{Z}, +)$ is a cyclic group $\forall n$

- If $\{H_i\}_i$ is a collection of subgroups of G, then the intersection $\bigcap_i H_i$ is also a subgroup of G
- Function composition is associative.
- All cyclic groups are either \mathbb{Z} or $\mathbb{Z}/m\mathbb{Z}$ with addition for some $m \in \mathbb{Z}$.
- [Properties of Group Homomorphism] Let $\phi: G \to H$ be a homomorphism:
 - $\circ \phi(e_G) = e_H$
 - $\phi(g^{-1}) = \phi(g)^{-1}$
 - image(ϕ) ≤ H
 - o $\ker \phi$ is a normal subgroup in G
- Group isomorphism is an equivalence relation i.e.:
 - \circ $G \approx G$
 - $\circ \quad G \approx H \Rightarrow H \approx G$
 - o $G_1 \approx G_2$, $G_2 \approx G_3 \Rightarrow G_1 \approx G_3$
- Let g(G) denote the group of inner automorphisms of G, then $g(G) \approx G/Z_G$.
- Let ϕ be an automorphism of group G. If $a \in G$ s.t. o(a) > 0, then $o(\phi(a)) = o(a)$.
- $N(a) \leq G$
- Each coset *gH* has *H* elements.
- Action of G on cosets of $H \le G$: $\alpha(g, xH) = (gx)H$.
- [Factor Groups] If N is a normal subgroup of G, then G/N is a group.
- [G, G] is a normal subgroup of G
- If N is a normal subgroup of G, then G/N is abelian if and only if $[G,G] \subset N$.
- G/[G, G] is the largest abelian quotient of G.
- For an abelian group M, End(M) is a ring with addition as pointwise addition (group operation) and multiplication as function composition.

Actions and Orbits

- [Action] An <u>action</u> of group G on set X is a homomorphism $\phi: G \to \operatorname{Sym}(X)$
 - It can also be characterized by action map
 - [Left Action Map] A left action map $a: G \times X \to X$ of an action ϕ corresponds to $a(g,x) = \phi(g)(x)$. It must satisfy:
 - a(e,x)=x
 - $a(g, a(h, x)) = a(gh, x) \forall g, h \in G, x \in X$
 - [Right Action Map] A right action map $a: X \times G \rightarrow X$ satisfies:
 - a(x,e) = x
 - $a(a(x,g),h) = a(x,gh) \forall g,h \in G, x \in X$
 - o $a(g,x) = xg^{-1}$ is a left action where $a: G \times G \to G$
 - o a(x,g) = xg is a right action where $a: G \times G \rightarrow G$
- [Orbits] Let G act on X. The <u>orbit</u> of $x \in X$ is $Gx = \{gx | g \in G\}$. Denote $[x] = \{y | y \in X, y \sim x\} = Gx$ the orbits of the group actions. Note that gx here means g acting on x, not multiplication.
 - o Orbits form an equivalence relation i.e. $x \sim y$ if $y \in Gx$
 - Orbits of the action of $\langle g \rangle \leq \operatorname{Sym}_n$ on $\{1,2,\ldots,n\}$ are the same as the cycles of g i.e. if $g=(1\ 2)(3\ 4\ 5)$, then the action has one orbit of length 2 ($\{1,2\}$) and one orbit of length 3 ($\{3,4,5\}$)
 - $\sigma, \tau \in \text{Sym}_n$ are conjugated if and only if their orbits have the same length
 - o If $f \in \operatorname{Sym}_n$ is of order p prime, then the orbits of any element under f has either 1 or p elements.
- [Action of Group on Itself] $a: G \times G \to G$
- [Conjugate] Let G be a group and $a, b \in G$. Say b is the <u>conjugate</u> of a in G if $\exists c \in G$ s.t. $b = c^{-1}ac$.
- [Conjugation] Conjugation is the action of G on itself given by $a(g,x) = gxg^{-1}$
 - o $a(g,\cdot)$ is a bijection in addition to being a homomorphism.
 - o If *g* is abelian, then conjugation is just the identity action.

• [Conjugacy Class] The <u>conjugacy class</u> of $x \in G$ is the set $C(x) = \{g \in G | g \sim x\} = \{g^{-1}xg | g \in G\}$. It is just the orbit of x under conjugation.

- [Transitive] Say an action is transitive if there is only one orbit for the action of G on X.
- [Stabilizer] The stabilizer of $x \in X$ is $stab_G(x) = \{g \in G | gx = x\}$ i.e. a(g,x) = x.
 - \circ stab_G $(x) \leq G$
- [Orbit Stabilizer Relation] If G acts on set X and $x \in X$, then $|G| = |Gx| |\operatorname{stab}_G(x)|$.
- [Conjugacy Class Equation] Let G be a finite group.
 - o For any $x \in G$, the elements in the conjugacy class C(x) are in one-to-one correspondence with the cosets of the centralizer $C_G(x)$.
 - $\circ |C(x)| = [G/C_G(x)]$
 - $|G| = |Z(G)| + \sum_i [G/C_G(x_i)]$ where the sum is over a representative element from each conjugacy class that is not in the center.

Theorems

- [Subgroup Criterion] A **nonempty** subset $H \subseteq G$ is a subgroup of G if and only if $x, y \in H \Rightarrow xy^{-1} \in H$.
- If $H \le G$ and S is the set of right cosets of H in G, then there is a homomorphism $\theta: G \to \operatorname{Sym}(S)$ with $\ker \theta$ being the largest normal subgroup of G contained in H.
- If G is a finite group and $H \leq G$ with $H \neq G$ such that $o(G) \nmid i(H)!$, then H must contain a nontrivial normal subgroup of G. In particular, G cannot be simple.
- If G is a finite group, then $|C(a)| = \frac{|G|}{|N(a)|}$
- [Lagrange's Theorem] If $H \le G$, then |H| ||G|.
 - o A group G with prime order is cyclic.
 - If G is finite and $a \in G$, then o(a)||G|
 - o If G is finite, then $a^{|G|} = e \ \forall a \in G$
- [Cauchy's Theorem] If G is a finite group and p prime s.t. p||G|, then G contains a subgroup that is cyclic with p elements.
- [Burnside Lemma] Let G be a finite group that acts on set X. Denote by X^g the set of elements of X fixed by g i.e. $g \cdot x = x$. Then $|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g| = \frac{1}{|G|} \sum_{x \in X} |\operatorname{stab}_G(x)|$ i.e. the number of orbits is equal to the average number of points fixed by an element of G.
- [First Homomorphism Theorem] If $\phi: G \to H$ is a homomorphism, then $G / \ker \phi \cong \operatorname{im}(\phi)$
 - The isomorphism can be written as ψ : $G/\ker\phi\to\operatorname{im}(\phi)$ via $\psi(a\ker\phi)=\phi(a)$
 - o If N is a normal subgroup of G, then one can define a homomorphism $\phi: G \to G/N$ with $\phi(g) = [g] = gN$ with $\ker \phi = N$.
- [Correspondence Theorem] Let $\phi: G \to H$ be a homomorphism with kernel K. If $H' \leq \operatorname{im}(\phi)$ and $H = \{a \in G | \phi(a) \in H'\}$, then $H \leq G$, $\ker \phi \subset H$ and $H/K \cong H'$. If H' is a normal subgroup of $\operatorname{im}(\phi)$, then H is also a normal subgroup of G.
- [Second Homomorphism Theorem] Let $H \leq G$ and $N \leq G$, then $H/(H \cap N) \cong HN/N$.
 - \circ $H \cap N \subseteq H$
 - \circ HN < G
 - \circ $N \leq HN$
 - ψ : $H \to HN/N$ such that $\psi(h) = hN$
- [Third Homomorphism Theorem] Let $\phi: G \to H$ be a homomorphism with $\ker \phi = K$. If $N' \le \operatorname{im}(G)$ and $N = \{g \in G | \phi(g) \in N'\}$, then $(G/K)/(N/K) \cong G/N$.
 - \circ $G/K \cong im(G)$
 - \circ $N/K \cong N'$
 - ψ : $G/K \to G/N$ such that $\psi(gK) = gN$
- [Jordan Hölder Theorem] Any two composition series of the same group have the same length and the same composition factors (up to permutation).

Symmetric and Alternating Groups

• The symmetric group on set X, denoted as $\mathrm{Sym}(X)$, is the group of bijections from $X \to X$ with function composition.

- If $f: X \to Y$ is a bijection, then $\phi: \mathrm{Sym}(X) \to \mathrm{Sym}(Y)$ is an isomorphism, where $\phi(g) = f \circ g \circ f^{-1}$.
- Cycles with disjoint entries commute i.e. if $A=(a_1,\ldots,a_n)$ and $B=(b_1,\ldots,b_m)$ with $\{a_1,\ldots,a_n\}\cap\{b_1,\ldots,b_m\}=\phi$, then AB=BA.
- A transposition is a two-cycle e.g. (2 4) = (4 2)
- A l-cycle can be written as the product of l-1 transpositions.
- Transpositions generate Sym_n
- An element $\sigma \in \operatorname{Sym}_n$ is even if it can be written as a product of an even number of transpositions and odd otherwise.
 - o A l-cycle is even if and only if l is odd.
- A permutation matrix is a $n \times n$ matrix M such that $M_{ij} = 0$ for all i, j except for one entry in each row and column where $M_{ij} = 1$.
 - o Bijection $M_{ij} = \begin{cases} 1, & i = \sigma(j) \\ 0, & i \neq \sigma(j) \end{cases}$
- ullet Two elements are conjugate in Sym_n if and only if they consist of the same number of disjoint cycles of the same length
- For conjugation in symmetric groups, $g((a \ b)(c \ d))g^{-1} = ((g(a) \ g(b))(g(c) \ g(d)))$
- ϵ : Sym_n \rightarrow {1, -1} is a sign homomorphism.
 - $\circ \quad \epsilon : \operatorname{Sym}_n \cong \{M_{ij}\} \xrightarrow{\det} \{\pm 1\}$
 - \circ $\epsilon(g) = -1$ if and only if g has an odd number of transpositions
 - \circ ker $\epsilon = A_n$
- ullet A_n is the subgroup of Sym_n consisting of even permutations
- $|A_n| = \begin{cases} 1, & n = 1 \\ \frac{n!}{2}, & n \ge 2 \end{cases}$
- A_n is generated by 3-cycles.
- [Cayley's Theorem] Any group G is isomorphic to a subgroup of Sym(G).

Examples

- $GL_n(\mathbb{C})$: general linear group i.e. invertible $n \times n$ matrices with components in \mathbb{C}
- [Dihedral Group] The dihedral group D_n is the group of symmetries of a regular n-gon.
 - \circ $|D_n| = 2n$
 - o $D_n = \{e, r, r^2, \dots, r^{n-1}, z, rz, r^2z, \dots, r^{n-1}z\} = \langle \{r, z\} \rangle$
 - $rzr = z^{-1}$
- K_4 : Klein-4 group; product of two non-identity elements maps to the third element.
- C_n : cyclic group of order $n = \{e, g, g^2, ..., g^{n-1}\}$
- Sym_n: symmetric group; the set of bijections from [n] to [n] with function composition
 - \circ {e, (12)} is a subgroup, but not a normal subgroup, in Sym₃
 - o Sym₃ is not abelian
- A_n : alternating group; group of even permutations of a finite set.
 - o A_n is abelian if and only if $n \le 3$
 - o A_n is simple if and only if n = 3 or $n \ge 5$
 - \circ A_5 is the smallest non-abelian simple group, with order 60
 - o K_4 is a proper normal subgroup of A_4

Ring Theory

Definitions

- [Ring] A <u>ring</u> is a set R with two operations addition $+: R \times R \to R$ and multiplication $: R \times R \to R$ such that
 - \circ (R,+) is an abelian group: associative, has an identity, closed under inverse, commutative
 - Associativity of multiplication: (ab)c = a(bc)
 - O Distributivity: a(b+c) = ab + ac, $(a+b)c = ac + bc \forall a, b, c \in R$
 - Identity 1 for multiplication exists (and belong to the ring)
- [Commutative Ring] Say a ring R is commutative if its multiplication is commutative.
- [Polynomial] Let R be a ring. Then R[x] is the set of polynomials with coefficients in R.
 - \circ R[x] is a ring
 - $\circ \quad (f+g)(n) = f(n) + g(n)$
 - $\circ (fg)(n) = \sum_{i=0}^{n} f(i)g(n-i)$
- [Matrices] Let R be a ring. Then $Mat_n(R)$ is the set of $n \times n$ matrices with entries in R.
 - o $Mat_n(R)$ is a ring.
- [Zero Divisor] A <u>zero-divisor</u> in a commutative ring R is a nonzero element $a \in R$ s.t. ab = 0 for some nonzero $b \in R$
- [Integral Domain] An integral domain is a commutative ring with no zero divisors.
 - o If ab = ac, then either a = 0 or b = c
- [Subring] Say S is a subring of R if:
 - o (S, +) is a subgroup of (R, +)
 - Multiplication is associative in S (inherited from R)
 - Distributivity (inherited from R)
 - o $1_R \in S$ and 1_R must be the multiplicative identity in S
 - o S is closed under multiplication
- [Ring Homomorphism] Let R and S be rings. Say $\phi: R \to S$ is a ring homomorphism if:
 - o $\phi(r_1 + r_2) = \phi(r_1) + \phi(r_2)$ (group homomorphism)
 - $\phi(r_1r_2) = \phi(r_1)\phi(r_2)$
 - $\phi(1_R) = 1_S$
- [Kernel] Let $\phi: R \to S$ be a ring homomorphism, then the <u>kernel</u> of ϕ is $\ker \phi = \{r \in R | \phi(r) = 0\}$.
- [Ideal] Let R be a ring and I a subset of R s.t. $(I, +) \le (R, +)$
 - Say *I* is a left ideal if $\forall r \in R, \forall x \in I, rx \in I$
 - Say *I* is a right ideal if $\forall r \in R, \forall x \in I, xr \in I$
 - Say I is a two-sided ideal if it is both a left ideal and a right ideal.
- [Principal Ideal] Let R be a ring, then the <u>principal ideal generated by $a \in R$ </u> is $Ra = \{ra | r \in R\}$.
- [Ideal Generated] Let $(r_i)_i$ be a family of elements of R (i.e. $r_i \in R \ \forall i$), then the ideal generated by r_i is $\bigcap_{r_i \in I, I \text{ an ideal of } R} J$.
- [Quotient] Let R be a ring and I be an ideal of R. Then, define the <u>quotient group</u> as $R/I = \{r + I | r \in R\}$. R/I is also a ring in addition to being an abelian group.
- [Prime Ideal] An ideal P of a ring R prime if $P \neq R$ and $\forall a, b \in R$, $ab \in P \Rightarrow a \in P$ or $b \in P$.
- [Maximal Ideal] An ideal $I \neq R$ in ring R is <u>maximal</u> if for any ideal J such that $I \subseteq J \subseteq R$, either J = I or J = R.
- [Principal Ideal Domain] A <u>principal ideal domain</u> is an integral domain in which every ideal is principal i.e. of the form $\{ra|r \in R\}$ for some $a \in R$.
- [Divides] Let R be an integral domain and $a, b \in R$. Say a divides b if $\exists d \in R$ s.t. da = b.
- [Unit] Say a nonzero element $a \in R$ is a unit if \exists nonzero element $b \in R$ s.t. ab = 1.
- [Group of Units] Denote by $R^{\times} = \{a | \exists b \text{ s. t. } ab = 1\}$ the group of units. It forms a group under multiplication.

- [Associates] Say $a, b \in R$ are associates if any (and therefore all) of the following holds:
 - o a = ub for some $u \in R^{\times}$ (i.e. multiplicative inverse of u exists)
 - o a|b and b|a
 - \circ Ra = Rb
- [Group of Units] Let R be a ring, then the group of units of R is $R^{\times} = \{r \in R | \exists s \in R : rs = sr = 1\}$ (i.e. the set of elements in R with multiplicative inverses)
- [Greatest Common Divisor] Let R be a principle ideal domain. The greatest common divisor of $a, b \in R$ is any $d \in R$ s.t. Rd = Ra + Rb (d is defined up to associates).
- [Prime] Let $a \in R$ be a nonzero, non-unit element. Say $a \in R$ is <u>prime</u> if $\forall b, c \in R$, $a|bc \Rightarrow a|b$ or a|c
- [Irreducible] Let $a \in R$ be a nonzero, non-unit element. Say $a \in R$ is <u>irreducible</u> if $\forall b, c \in R$ $a = bc \implies$ either a, b are associates or a, c are associates (the other one must be a unit).
- [Unique Factorization Domain] An integral domain R is a <u>unique factorization domain</u> if any nonzero element can be written as $u \cdot x_1 \cdot x_2 \cdot ... \cdot x_n$ with $u \in R^{\times}$ and x_i irreducible. Given two such factorizations, we have m = n and x_i, y_i are associates (up to ordering).
- [Noetherian] A commutative ring R is <u>Noetherian</u> if for any nested sequence of ideals $I_1 \subseteq I_2 \subseteq \cdots$, there exists $N \in \mathbb{N}$ s.t. $I_n = I_N \ \forall n \geq N$ i.e. there is no infinite strictly increasing chain of ideals.
- [Nilradical] The <u>nilradical</u> of a ring R is the ideal containing nilpotent elements i.e. $N = \{r \in R | \exists n \in \mathbb{Z}^+ \text{ s.t. } r^n = 0\}$

Properties

- [Properties of Ring] $\forall a \in R$
 - o a0 = 0a = 0
 - \circ -a = (-1)a
 - \circ -(-a)=a
 - \circ (-a)b = -(ab) = a(-b)
 - \circ (-a)(-b) = ab
- [Subring Criterion]
 - \circ $a, b \in S \Rightarrow a b \in S$
 - \circ $a, b \in S \Rightarrow ab \in S$
 - \circ $1_R \in S$
- Let $\phi: R \to S$ be a ring homomorphism, then $\operatorname{im}(\phi)$ is a subring of S.
- Let $\phi: R \to S$ be a ring homomorphism, then ker ϕ is a two-sided ideal of R.
- Let I be an ideal inside ring R. If $1_R \in I$, then I = R.
- The sum of two ideals $I_1 + I_2 = \{x_1 + x_2 | x_1 \in I_1, x_2 \in I_2\}$ is an ideal.
- In a commutative ring, for any element $a \in R$, Ra is an ideal. (!!!)
- Let $(I_n)_n$ be a family of left/right/two-sided ideals of ring R. Then $\bigcap_n I_n$ is also a left/right/two-sided ideal of R.
- $a|b \Leftrightarrow Rb \subseteq Ra$ i.e. the smaller element generate the larger ideal.
- Let R be an integral domain. Then if $a \in R$ is prime, then a is also irreducible.

Theorems and Lemmas

- [Fundamental Homomorphism Theorem] If $\phi: R \to S$ is a ring homomorphism, then $R/\ker \phi \cong \operatorname{im}(\phi)$ and $R/\ker \phi$ and $\operatorname{im}(\phi)$ are both rings.
 - Use ψ : $R/\ker \phi \to \operatorname{im}(\phi)$ with $\psi(r + \ker \phi) = \phi(r)$
- A subring of an integral domain is still an integral domain
- Let R be a commutative ring and $I \neq R$ be an ideal. Then I is prime if and only if R/I is an integral domain.
- Let R be a commutative ring and I be an ideal. Then I is a maximal ideal if and only if R/I is a field.
- Any maximal ideal of a commutative ring is also a prime ideal.
- A commutative ring R is a field if and only if the only ideals of R are $\{0\}$ and R.

• Let R be an integral domain. Then $\phi: R \to \operatorname{Frac}(R)$ given by $\phi(r) = \frac{r}{1}$ is a ring homomorphism.

- o If R is a field, then ϕ is an isomorphism i.e. $R \cong Frac(R)$.
- R is an integral domain $\Leftrightarrow R[x]$ is an integral domain
- If \mathbb{F} is a field, then $\mathbb{F}[x]$ is a principal ideal domain i.e. every ideal in $\mathbb{F}[x]$ is principal.
- Let R be an integral domain and $a, b \in R$, then the following are equivalent:
 - o a = ub for some $u \in R^{\times}$ (i.e. $\exists u^{-1}$)
 - \circ a|b and b|a
 - \circ Ra = Rb
- In a principal ideal domain R, Ra is a maximal ideal if and only if a is irreducible.
- In a principal ideal domain, irreducible elements are prime.
- Principal ideal domains are Noetherian.
- Principal ideal domains are unique factorization domains.
 - o If \mathbb{F} is a field, then $\mathbb{F}[x]$ is a unique factorization domain.
- Let R be an integral domain. If R is also a unique factorization domain, then so is R[x]
- Let R be a principal ideal domain.
 - o If $a \in R$ is not zero nor unit, then a is divisible by an irreducible element.
 - o If a is a nonzero element, we may write it as $a = u \cdot x_1 \cdot ... \cdot x_n$ where $u \in R^{\times}$ is a unit and x_i irreducible.

Examples

- $\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}$ is a ring
- \mathbb{Z} , $\mathbb{Q}[x]$ are integral domains
- \mathbb{Z} , $\mathbb{Q}[x]$, $\mathbb{R}[x]$, $\mathbb{C}[x]$ is a principle ideal domain and hence a unique factorization domain

Field Theory

Definitions

- [Field] A <u>field</u> is a commutative ring in which every non-zero element has a multiplicative inverse.
- [Field of Fractions] Let R be an integral domain. The <u>field of fractions of R</u> is $Frac(R) = \{(a,b) \in R \times (R\{0\})\}/\sim \text{ where } (a,b) \sim (c,d) \text{ if } ad = bc.$
 - \circ Frac(\mathbb{Z}) = \mathbb{Q}
 - Frac(R) is a field
- [Field Extension] Let K, L be fields with $K \subseteq L$, then say L is a <u>field extension</u> of K and write as L/K.
- [Degree] Let L/K be a field extension, then its <u>degree</u> is the dimension of L as a vector space over K.
- [Algebraic] Let L/K be a field extension and $t \in L$. If any (and therefore all) of the following conditions holds, say t is algebraic over K.
 - Powers of t span a finite dimensional subspace of L (over K)
 - o t obeys a nontrivial polynomial equation with coefficients in K
 - o ker ϕ_t is nontrivial (i.e. contains a nonzero element of K[x])
- [Transcendental] Say t is transcendental over K if it is not algebraic over K.
- [Algebraic Extension] Let L/K be a field extension. Say L/K is an <u>algebraic extension</u> if every element of L is algebraic over K.
- [Algebraically Closed] Say a field K is <u>algebraically closed</u> if every polynomial P(x) of degree ≥ 1 in K[x] has a zero in K (i.e. P(t) = 0 for some $t \in K$)
- [Minimal Polynomial] Let L/K be a field extension and $t \in L$. Define $\phi_t : K[x] \to L$ as the evaluation at t. Then the <u>minimal polynomial</u> of t is the element of K[x] that generates the ideal $\ker(\phi_t)$, usually taken to be monic.
- $[\mathbb{Q}[\alpha_1, ..., \alpha_r]]$ Let $\alpha_1, ..., \alpha_r \in \mathbb{C}$, then $\mathbb{Q}[\alpha_1, ..., \alpha_r]$ is the smallest subring of \mathbb{C} containing \mathbb{Q} and $\alpha_1, ..., \alpha_r$.
- $[\mathbb{Q}(\alpha_1, ..., \alpha_r)]$ Let $\alpha_1, ..., \alpha_r \in \mathbb{C}$, then $\mathbb{Q}(\alpha_1, ..., \alpha_r)$ is the smallest subfield of \mathbb{C} containing \mathbb{Q} and $\alpha_1, ..., \alpha_r$.
- [Characteristic] The <u>characteristic</u> of a ring R is the unique nonnegative integer m such that $\ker \psi = m\mathbb{Z}$ where $\psi \colon \mathbb{Z} \to R$ is the unique homomorphism for R.
- [Prime Subfield] The <u>prime subfield</u> of a field *K* is: (equivalent conditions)
 - The subfield generated by 1
 - The smallest subfield of K
 - The intersection of all subfields of *K*

Properties

- A field is an integral domain i.e. it has no zero divisors.
- A commutative ring R is a field if and only if its only ideals are {0} and R.
- Let K, L be fields and $\phi: K \to L$ be a ring homomorphism, then ϕ is injective.
- If $\deg L/K$ is finite i.e. L is finite dimensional over K, then L is algebraic over K. For any $t \in L$, span($\{1, t, t^2, ...\}$) is finite dimensional.
- Minimal polynomials are irreducible.
- If K is an algebraically closed field and L/K is an algebraic extension, then L=K.
- A commutative ring R is a field if and only if its only ideals are {0} and R.
- Let K be a field, then K[x] is a principal ideal domain.

Theorems

- [Wedderburn's Little Theorem] Every finite integral domain is a field.
- Let L/K be a field extension and $t \in L$. Let $\phi_t: K[x] \to L$ be evaluation at t. The following are equivalent:
 - Powers of t span a finite dimensional subspace of L (over K)

- \circ t obeys a nontrivial polynomial equation with coefficients in K
- o ker ϕ_t is nontrivial (i.e. contains a nonzero element of K[x])
- If $\deg(L/K)$ finite i.e. L finite dimensional over K, then L is algebraic over K. For any $t \in L$, $\operatorname{Span}\{1,t,t^2,...\}$ is a subspace of L and hence finite dimensional.
- Let K be a field and $p(x) \in K[x]$ be an irreducible polynomial.
 - o K[x]p(x) = (p(x)) is a maximal ideal
 - o K[x]/(p(x)) is a field
 - $\circ \deg((K[x]/p(x))/K) = \deg(p)$

Characteristics

- Let R be a ring, then there is a unique homomorphism $\psi: \mathbb{Z} \to R$.
- The characteristic of a field is either 0 or a prime number.
- There are no homomorphisms between fields of different characteristics.
- If \mathbb{F} is a finite field, then $char(\mathbb{F}) > 0$ i.e. all finite fields have positive characteristic.
- If char(K) > 0, then $ker \psi = p\mathbb{Z}$ for some prime p and $im(\psi) \cong \mathbb{Z}/char(K)\mathbb{Z}$
- If char(K) > 0, then its prime subfield is $\mathbb{Z}/char(K)\mathbb{Z}$ and it is a field extension of $\mathbb{Z}/char(K)\mathbb{Z}$. If char(K) = 0, then its prime subfield is \mathbb{Q} .
- If K is a finite field, its prime subfield is $\mathbb{Z}/\text{char}(K)\mathbb{Z}$ and it is a field extension of $\mathbb{Z}/\text{char}(K)\mathbb{Z}$.
- If \mathbb{F} is a finite field of characteristic p, then the size of \mathbb{F} is a power of p.

Examples

- $\mathbb{Z}/p\mathbb{Z}$ is a field for prime p.
- ℚ, ℝ, ℂ are fields.
- C is algebraically closed.
- $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$, \mathbb{C}/\mathbb{R} are algebraic field extension