Задачи по Теории вероятностей и математической статистике

Артамонов Н.В.

6 декабря 2024 г.

Содержание

1	Дискретные случайные величины				1
	1.1	Одномерные распред	целения		. 1
	1.2	Двумерные распреде	ления		. 2
2	Непрерывные распределения				2
	2.1	Плотность, функция	распределения, м	математическое ожи-	
		дание, дисперсия			. 2
	2.2	Стандартные распре	деления		. 4
	2.3	Критические значени			. 4
1	Т	Ц искретные сл	viiogiii to bo		
1	/	цискретные сл	учаиные ве	личины	
1.	1	Одномерные рас	пределения		
№	1 . B	урне содержится 3 бе.	лых и 3 черных г	пара. Случайным обр	оазом
из	влека	аются 2 шара. Пусть с	лучайная величиі	на X – число белых п	арог
ср	еди в	выбранных.			
	1. Найдите таблицу распределения X 2. Вычислите $E(X), Var(X), \sigma(X)$ и моду распределения				
	3. B	ычислите вероятности	:		
		P(X < 2)	$P(X \ge 1)$	P(0 < X < 3)	

4. Нарисуйте график функции распределения *F*.

Замечание: $X \sim Hypergeom(6,3,2)$

- №2. В урне содержится 4 белых и 2 черных шара. Случайным образом извлекаются 3 шара. Пусть случайная величина X число белых шаров среди выбранных.
 - 1. Найдите таблицу распределения X
 - 2. Вычислите E(X), Var(X), $\sigma(X)$ и моду распределения
 - 3. Вычислите вероятности

$$P(X < 3)$$
 $P(X > 1)$ $P(1 < X < 3)$

4. Нарисуйте график функции распределения *F*.

Замечание: $X \sim Hypergeom(6,4,2)$

- №3. В урне содержится 3 белых и 4 черных шара. Случайным образом извлекаются 4 шара. Пусть случайная величина X число белых шаров среди выбранных.
 - 1. Найдите таблицу распределения X
 - 2. Вычислите $\mathsf{E}(X)$, $\mathrm{Var}(X)$, $\sigma(X)$ и моду распределения
 - 3. Вычислите вероятности

$$\mathsf{P}(X < 3) \qquad \qquad \mathsf{P}(X > 0) \qquad \qquad \mathsf{P}(0 < X < 3)$$

4. Нарисуйте график функции распределения F.

Замечание: $X \sim Hypergeom(7,2,4)$

1.2 Двумерные распределения

2 Непрерывные распределения

2.1 Плотность, функция распределения, математическое ожидание, дисперсия

№1. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx, & x \in [0, 1] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X > 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-1 < X < 0.5)$

- 3. Вычислите E(X) и Var(X)
- 4. Найдите функцию распределения F(x) и нарисуйте её график

№2. Пусть случайная величина X имеет плотность

$$f(x) = \begin{cases} cx^{\lambda - 1}, & x \in [0, 1] \\ 0, & \text{иначе} \end{cases}$$

 $(\lambda > 0 -$ параметр распределения)

- 1. Найдите нормировочный множитель c и нарисуйте график плотности f
- 2. Вычислите вероятности

$$P(X > 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-1 < X < 0.5)$

- 3. Вычислите $\mathsf{E}(X)$ и $\mathrm{Var}(X)$
- 4. Найдите функцию распределения F и нарисуйте её график

3 aмечание: графики f и F нарисуйте при $0 < \lambda < 1$ и при $\lambda \geq 1$

$$f(x) = \begin{cases} cx(1-x), & x \in [0,1] \\ 0, & \text{иначе} \end{cases}$$

- 1. Найдите нормировочный множитель c и нарисуйте график плотности
- 2. Вычислите вероятности

$$P(X < 0.5)$$
 $P(0.25 < X < 0.75)$ $P(-5 < X < 0.25)$

- 3. Вычислите $\mathsf{E}(X)$ и $\mathrm{Var}(X)$
- 4. Найдите функцию распределения F(x) и нарисуйте её график

2.2 Стандартные распределения

№1. Для распределения $\mathcal{N}(0,1)$ вычислите

$$\phi(1)$$
 $\phi(2)$ $\phi(-0.5)$ $\phi(-1.5)$ $\Phi(1)$ $\Phi(2)$ $\Phi(-1)$ $\Phi(-2)$

№2. Для распределения $\mathcal{N}(1,0.5^2)$ вычислите значение функции распределения и плотности в точках

$$x\{-3, -2, -1.5, -1, -0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3\}$$

№3. Пусть $X \sim \mathcal{N}(0,1)$. Вычислите следующие вероятности

$$P(X \le 1)$$
 $P(X > -0.5)$ $P(-1 \le X \le 0.5)$ $P(0 < X < 2)$

№4. Пусть $X \sim \mathcal{N}(1, 1.5^2)$. Вычислите следующие вероятности

$$P(X \le 2)$$
 $P(X > 0.5)$ $P(-0.5 \le X \le 1.5)$ $P(0 < X < 3)$

2.3 Критические значения

Замечание: все вычисления необходимо сделать в MS Excel/Python

№1. Для уровней значимости: 1%, 5%, 10% вычислите (двусторонние) критические значения распределения $\mathcal{N}(0,1)$

№2. Для уровней значимости: 1%, 5%, 10% вычислите (двусторонние) критические значения следующих распределений

$$t_{10}$$
 t_{100} t_{250} t_{500}

№3. Для уровней значимости: 1%, 5%, 10% вычислите критические значения следующих распределений

$$\chi^2_2$$
 χ^2_5 χ^2_{10} χ^2_{20}

№4. Для уровней значимости: 1%, 5%, 10% вычислите критические значения следующих распределений

$$F_{2,100}$$
 $F_{5,300}$ $F_{10,1000}$ $F_{20,1500}$