MACHINE LEARNING PROJECT

Done By Hariharan Manickam

Problem 1

1.1) Read the dataset. Describe the data briefly. Interpret the inferences for each. Initial steps like head() .info(), Data Types, etc . Null value check, Summary stats, Skewness must be discussed.

	Unnamed: 0	vote	age	economic.cond.national	economic.cond.household	Blair	Hague	Europe	political.knowledge	gender
0	1	Labour	43	3	3	4	1	2	2	female
1	2	Labour	36	4	4	4	4	5	2	male
2	3	Labour	35	4	4	5	2	3	2	male
3	4	Labour	24	4	2	2	1	4	0	female
4	5	Labour	41	2	2	1	1	6	2	male

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1525 entries, 0 to 1524
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	vote	1525 non-null	object
1	age	1525 non-null	int64
2	economic.cond.national	1525 non-null	int64
3	economic.cond.household	1525 non-null	int64
4	Blair	1525 non-null	int64
5	Hague	1525 non-null	int64
6	Europe	1525 non-null	int64
7	political.knowledge	1525 non-null	int64
8	gender	1525 non-null	object

dtypes: int64(7), object(2)
memory usage: 107.4+ KB

Out[9]:

	count	mean	std	min	25%	50%	75%	max
age	1525.0	54.182295	15.711209	24.0	41.0	53.0	67.0	93.0
economic.cond.national	1525.0	3.245902	0.880969	1.0	3.0	3.0	4.0	5.0
economic.cond.household	1525.0	3.140328	0.929951	1.0	3.0	3.0	4.0	5.0
Blair	1525.0	3.334426	1.174824	1.0	2.0	4.0	4.0	5.0
Hague	1525.0	2.746885	1.230703	1.0	2.0	2.0	4.0	5.0
Europe	1525.0	6.728525	3.297538	1.0	4.0	6.0	10.0	11.0
political.knowledge	1525.0	1.542295	1.083315	0.0	0.0	2.0	2.0	3.0

1.2) Perform EDA (Check the null values, Data types, shape, Univariate, bivariate analysis). Also check for outliers (4 pts). Interpret the inferences for each (3 pts) Distribution plots(histogram) or similar plots for the continuous columns. Box plots, Correlation plots. Appropriate plots for categorical variables. Inferences on each plot. Outliers proportion should be discussed, and inferences from above used plots should be there. There is no restriction on how the learner wishes to implement this but the code should be able to represent the correct output and inferences should be logical and correct.

```
Shape:
```

```
Out[6]: (1525, 9)
```

Null Values:

```
Out[8]: vote
                                   0
                                   0
        economic.cond.national
                                   0
        economic.cond.household
                                   0
        Blair
                                   0
        Hague
                                   0
        Europe
                                   0
        political.knowledge
                                   0
                                   0
        gender
        dtype: int64
```

Data Type before categorising:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1525 entries, 0 to 1524
Data columns (total 9 columns):
```

		/ -	
#	Column	Non-Null Count	Dtype
0	vote	1525 non-null	object
1	age	1525 non-null	int64
2	economic.cond.national	1525 non-null	int64
3	economic.cond.household	1525 non-null	int64
4	Blair	1525 non-null	int64
5	Hague	1525 non-null	int64
6	Europe	1525 non-null	int64
7	political.knowledge	1525 non-null	int64
8	gender	1525 non-null	object
4.0	1 104/31 11 1/01		_

dtypes: int64(7), object(2)
memory usage: 107.4+ KB

Data type after categorising:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1525 entries, 0 to 1524
Data columns (total 9 columns):
```

#	Column	Non-Null Count	Dtype
0	vote	1525 non-null	int8
1	age	1525 non-null	int64
2	economic.cond.national	1525 non-null	int64
3	economic.cond.household	1525 non-null	int64
4	Blair	1525 non-null	int64
5	Hague	1525 non-null	int64
6	Europe	1525 non-null	int64
7	political.knowledge	1525 non-null	int64
8	gender	1525 non-null	int8

dtypes: int64(7), int8(2) memory usage: 86.5 KB

Out[16]: vote -0.858449 age 0.144621 economic.cond.national -0.240453 economic.cond.household -0.149552 Blair -0.535419 Hague 0.152100 Europe -0.135947 political.knowledge -0.426838 0.130239 gender

dtype: float64

Histograms

Voters (yes -1, no -0)

Gender (Male – 0, Female – 1)

Bivariate Analysis

Correlation

Multivariate Analysis

- 1.3) Encode the data (having string values) for Modelling. Is Scaling necessary here or not?(2 pts), Data Split: Split the data into train and test (70:30) (2 pts). The learner is expected to check and comment about the difference in scale of different features on the bases of appropriate measure for example std dev, variance, etc. Should justify whether there is a necessity for scaling. Object data should be converted into categorical/numerical data to fit in the models. (pd.categorical().codes(), pd.get_dummies(drop_first=True)) Data split, ratio defined for the split, train-test split should be discussed.
 - Scaling is not necessary for logistic regression, LDA and Naive Bayes models.
- It should be done for KNN model and Random forest algorithm.
- 1.4) Apply Logistic Regression and LDA (Linear Discriminant Analysis) (2 pts). Interpret the inferences of both model s (2 pts). Successful implementation of each model. Logical reason behind the selection of different values for the parameters involved in each model. Calculate Train and Test Accuracies for each model. Comment on the validness of models (over fitting or under fitting)

Logistic Regression

```
Out[30]: LogisticRegression(C=1, intercept_scaling=1.0, penalty='l1', solver='liblinear')
```

Training Score, Confusion Matrix & Classification Report

0.8406747891283973

	precision	recall	f1-score	support
0	0.77	0.69	0.73	332
1	0.87	0.91	0.89	735
accuracy			0.84	1067
macro avg	0.82	0.80	0.81	1067
weighted avg	0.84	0.84	0.84	1067

Testing Score, Confusion Matrix & Classification Report

0.8231441048034934

	precision	recall	f1-score	support
0	0.70	0.65	0.68	130
1	0.87	0.89	0.88	328
accuracy			0.82	458
macro avg	0.78	0.77	0.78	458
weighted avg	0.82	0.82	0.82	458

Hence, Linear Regression is decently fitted

LDA

Out[33]: LinearDiscriminantAnalysis(shrinkage=0.01, solver='lsqr')

Training Score, Confusion Matrix & Classification Report

0.8425492033739457

[[226 106] [62 673]]

	precision	recall	f1-score	support
0	0.78	0.68	0.73	332
1	0.86	0.92	0.89	735
accuracy			0.84	1067
macro avg	0.82	0.80	0.81	1067
weighted avg	0.84	0.84	0.84	1067

Testing Score, Confusion Matrix & Classification Report

0.8275109170305677

[[85 45] [34 294]]

	precision	recall	f1-score	support
0	0.71	0.65	0.68	130
1	0.87	0.90	0.88	328
accuracy			0.83	458
macro avg	0.79	0.78	0.78	458
weighted avg	0.82	0.83	0.83	458

Hence, LDA is decently fitted.

1.5) Apply KNN Model and Naïve Bayes Model (2pts). Interpret the inferences of each model (2 pts).

Successful implementation of each model. Logical reason behind the selection of different values for the parameters involved in each model. Calculate Train and Test Accuracies for each model. Comment on the validness of models (over fitting or under fitting)

KNN Model

```
Out[41]: KNeighborsClassifier()
```

Training Score, Confusion Matrix & Classification Report

0.8631677600749765

[[248 84] [62 673]]

	precision	recall	f1-score	support
0	0.80	0.75	0.77	332
1	0.89	0.92	0.90	735
accuracy			0.86	1067
macro avg	0.84	0.83	0.84	1067
weighted avg	0.86	0.86	0.86	1067

Testing Score, Confusion Matrix & Classification Report

0.8253275109170306

[[92 38] [42 286]]

	precision	recall	f1-score	support
0	0.69	0.71	0.70	130
1	0.88	0.87	0.88	328
accuracy			0.83	458
macro avg	0.78	0.79	0.79	458
weighted avg	0.83	0.83	0.83	458

Hence KNN Model seems like a good fit.

Naïve Bees Model

Out[36]: GaussianNB()

Training Score, Confusion Matrix & Classification Report

0.8331771321462043

[[240 92] [86 649]]

	precision	recall	f1-score	support
0	0.74	0.72	0.73	332
1	0.88	0.88	0.88	735
accuracy			0.83	1067
macro avg	0.81	0.80	0.80	1067
weighted avg	0.83	0.83	0.83	1067

Testing Score, Confusion Matrix & Classification Report

0.8253275109170306

[[94 36] [44 284]]

	precision	recall	f1-score	support
0	0.68	0.72	0.70	130
1	0.89	0.87	0.88	328
accuracy			0.83	458
macro avg	0.78	0.79	0.79	458
weighted avg	0.83	0.83	0.83	458

This model is a good fit.

1.6) Model Tuning (4 pts), Bagging (1.5 pts) and Boosting (1.5 pts). Apply grid search on each model (include all models) and make models on best_params. Define a logic behind choosing particular values for different hyper-parameters for grid search. Compare and comment on performances of all. Comment on feature importance if applicable. Successful implementation of both algorithms along with inferences and comments on the model performances.

Decision Tree Classifier

```
Out[44]: DecisionTreeClassifier()
```

Training Score, Confusion Matrix, Classification Report

0.9990627928772259

	precision	recall	f1-score	support
0	1.00	1.00	1.00	332
1	1.00	1.00	1.00	735
accuracy			1.00	1067
macro avg	1.00	1.00	1.00	1067
weighted avg	1.00	1.00	1.00	1067

Testing Score, Confusion Matrix, Classification Report

0.7532751091703057

	precision	recall	f1-score	support
0	0.56	0.62	0.59	130
1	0.84	0.80	0.82	328
accuracy			0.75	458
macro avg	0.70	0.71	0.71	458
weighted avg	0.76	0.75	0.76	458

This model is overfitted.

Random Forest Model

Out[47]: RandomForestClassifier(random_state=1)

Training Score, Confusion Matrix, Classification Report

0.9990627928772259

[[331 1] [0 735]]

	precision	recall	f1-score	support
0	1.00	1.00	1.00	332
1	1.00	1.00	1.00	735
accuracy			1.00	1067
macro avg	1.00	1.00	1.00	1067
weighted avg	1.00	1.00	1.00	1067

Testing Score, Confusion Matrix, Classification Report

0.8187772925764192

[[90 40] [43 285]]

	precision	recall	f1-score	support
0	0.68	0.69	0.68	130
1	0.88	0.87	0.87	328
accuracy			0.82	458
macro avg	0.78	0.78	0.78	458
weighted avg	0.82	0.82	0.82	458

This model is overfitted

Bagging Classifier

Training Score, Confusion Matrix, Classification Report

0.9653233364573571

[[304 28] [9 726]]

	precision	recall	f1-score	support
0	0.97	0.92	0.94	332
1	0.96	0.99	0.98	735
accuracy			0.97	1067
macro avg	0.97	0.95	0.96	1067
weighted avg	0.97	0.97	0.97	1067

Testing Score, Confusion Matrix, Classification Report

0.8362445414847162

[[92 38] [37 291]]

	precision	recall	f1-score	support
0	0.71	0.71	0.71	130
1	0.88	0.89	0.89	328
accuracy			0.84	458
macro avg	0.80	0.80	0.80	458
weighted avg	0.84	0.84	0.84	458

This model is overfitted

Adaboosting

Training Score, Confusion Matrix, Classification Report

0.8472352389878163 [[238 94] [69 666]] precision recall f1-score support 0.78 0.72 0.74 332 1 0.88 0.89 0.91 735 0.85 0.82 0.85 accuracy 1067 0.83 0.81 0.84 0.85 macro avg 1067 weighted avg 1067

Testing Score, Confusion Matrix, Classification Report

0.81877729257 [[90 40] [43 285]]	64192			
-	precision	recall	f1-score	support
0	0.71	0.71	0.71	130
1	0.88	0.89	0.89	328
accuracy			0.84	458
macro avg	0.80	0.80	0.80	458
weighted avg	0.84	0.84	0.84	458

This model has a good fit.

Gradient Boosting

Training Score, Confusion Matrix, Classification Report

0.8734770384254921

	precision	recall	f1-score	support
0	0.83	0.75	0.79	332
1	0.89	0.93	0.91	735
accuracy			0.87	1067
macro avg	0.86	0.84	0.85	1067
weighted avg	0.87	0.87	0.87	1067

Testing Score, Confusion Matrix, Classification Report

0.8362445414847162

	precision	recall	f1-score	support
0	0.71	0.71	0.71	130
1	0.88	0.89	0.89	328
accuracy			0.84	458
macro avg	0.80	0.80	0.80	458
weighted avg	0.84	0.84	0.84	458

This model has a good fit.

Naïve Bees with SMOTE

Out[64]: GaussianNB()

Training Score, Confusion Matrix, Classification Report

0.8231292517006803

[[597 138] [122 613]]

	precision	recall	f1-score	support
0	0.83	0.81	0.82	735
1	0.82	0.83	0.83	735
accuracy			0.82	1470
macro avg	0.82	0.82	0.82	1470
weighted avg	0.82	0.82	0.82	1470

Testing Score, Confusion Matrix, Classification Report

0.7947598253275109

	precision	recall	f1-score	support
0	0.61	0.79	0.69	130
1	0.91	0.80	0.85	328
accuracy			0.79	458
macro avg	0.76	0.79	0.77	458
weighted avg	0.82	0.79	0.80	458

This model has a good fit, but it is less accurate.

KNN with SMOTE

Out[67]: KNeighborsClassifier()

Training Score, Confusion Matrix, Classification Report

0.8863945578231293

[[688 47] [120 615]]

	precision	recall	f1-score	support
0	0.85	0.94	0.89	735
1	0.93	0.84	0.88	735
accuracy			0.89	1470
macro avg	0.89	0.89	0.89	1470
weighted avg	0.89	0.89	0.89	1470

Testing Score, Confusion Matrix, Classification Report

0.7794759825327511

[[106 24] [77 251]]

	precision	recall	f1-score	support
0	0.58	0.82	0.68	130
1	0.91	0.77	0.83	328
accuracy			0.78	458
macro avg	0.75	0.79	0.75	458
weighted avg	0.82	0.78	0.79	458

This model is underfitted.

1.7) Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model, classification report (4 pts) Final Model - Compare and comment on all models on the basis of the performance metrics in a structured tabular manner. Describe on which model is best/optimized, After comparison which model suits the best for the problem in hand on the basis of different measures. Comment on the final model.(3 pts)

Logistic Regression

AUC: 0.876

AUC: 0.874

LDA

AUC: 0.879

AUC: 0.883

Naïve Bees

AUC: 0.875

AUC: 0.873

KNN

AUC: 0.932

AUC: 0.871

RF Bagging

AUC: 0.997

AUC: 0.898

RF Adaboosting

AUC: 0.913

AUC: 0.879

Gradient Boosting

AUC: 0.936

AUC: 0.907

- 1.8) Based on your analysis and working on the business problem, detail out appropriate insights and recommendations to help the management solve the business objective. There should be at least 3-4 Recommendations and insights in total. Recommendations should be easily understandable and business specific, students should not give any technical suggestions. Full marks should only be allotted if the recommendations are correct and business specific.
 - · Random Forest Model has the highest accuracy
 - · Many models are underfitted and overfitted
 - Europe & Hague seem to be negatively correlated with getting votes
 - · Should focus more on countries with high economic conditions

Problem 2

2.1) Find the number of characters, words and sentences for the mentioned documents. (Hint: use .words(), .raw(), .sent() for extracting counts)

```
There were 68 sentences in President Roosevelt's speech.

There were 1536 words in President Roosevelt's speech.

There were 7571 characters in President Roosevelt's speech

There were 52 sentences in President Kennedy's speech.

There are 1546 words in President Kennedy's speech.

There are 7618 characters in President Kennedy's speech.

There were 69 sentences in President Nixon's speech.

There are 2028 words in President Nixon's speech.

There are 9991 characters in President Nixon's speech.
```

2.2) Remove all the stopwords from the three speeches. Show the word count before and after the removal of stopwords. Show a sample sentence after the removal of stopwords.

President Roosevelt's Speech

```
After removing stopwords, the count is 1526

After removing stopwords the count is 626

Before removal:

['On', 'each', 'national', 'day', 'of', 'inauguration', 'since', '1789', ',', 'the', 'people', 'have', 'renewed', 'their', 's ense', 'of', 'dedication', 'to', 'the', 'United', 'States', '.', 'In', 'Washington', "'s", 'day', 'the', 'task', 'of', 'the', 'people', 'was', 'to', 'create', 'and', 'weld', 'together', 'a', 'nation', '.', 'In', 'Lincoln', "'s", 'day', 'the', 'task', 'of', 'the', 'people', 'was', 'to', 'preserve', 'that', 'Nation', 'from', 'disruption', 'from', 'within', '.', 'In', 'this', 'da y', 'the', 'task', 'of', 'the', 'people', 'is', 'to', 'save', 'that', 'Nation', 'and', 'its', 'institutions', 'from', 'disruption', 'from', 'without', '.', 'To', 'us', 'there', 'has', 'come', 'a', 'time', ',', 'in', 'the', 'midst', 'of', 'swift', 'happen ings', ',', 'to', 'pause', 'for', 'a', 'moment', 'and', 'take', 'stock', '--', 'to', 'recall', 'what', 'our', 'place', 'in', 'h

After removal:

['national', 'day', 'inauguration', 'since', 'people', 'renewed', 'sense', 'dedication', 'united', 'states', 'washington', "'s", 'day', 'task', 'people', 'renewed', 'save', 'nation', 'lincoln', "'s', 'day', 'task', 'people', 'preserve', 'n ation', 'disruption', 'without', 'us', 'com e', 'time', 'midst', 'swift', 'happenings', 'pause', 'moment', 'take', 'stock', 'recall', 'place', 'history', 'rediscover', 'ma e', 'time', 'midst', 'swift', 'happenings', 'pause', 'moment', 'take', 'stock', 'recall', 'place', 'history', 'rediscover', 'ma e', 'time', 'midst', 'swift', 'happenings', 'pause', 'moment', 'take', 'stock', 'recall', 'place', 'history', 'rediscover', 'ma e', 'time', 'midst', 'swift', 'happenings', 'pause', 'moment', 'take', 'stock', 'recall', 'place', 'history', 'rediscover', 'ma e', 'time', 'midst', 'swift', 'happenings', 'pause', 'moment', 'take', 'stock', 'recall', 'place', 'history', 'rediscover', 'ma e', 'time', 'midst', 'stock', 'recall', 'place', 'history', 'rediscover', 'ma e', 'time', 'maton', 'thee-score'
```

President Kennedy's Speech

Before removing stopwords, the count is 1543

After removing stopwords the count is 689

['Vice', 'President', 'Johnson', ',', 'Mr.', 'Speaker', ',', 'Mr.', 'Chief', 'Justice', ',', 'President', 'Eisenhower', ',', 'Vice', 'President', 'Nixon', ',', 'President', 'Truman', ',', 'reverend', 'clergy', ',', 'fellow', 'citizens', ',', 'we', 'obs erve', 'today', 'not', 'a', 'victory', 'of', 'party', ',', 'but', 'a', 'celebration', 'of', 'freedom', '--', 'symbolizing', 'a n', 'end', ',', 'as', 'well', 'as', 'change', '--', 'signifying', 'renewal', ',', 'as', 'well', 'as', 'change', '.', 'F or', 'I', 'have', 'sworn', 'I', 'before', 'you', 'and', 'Almighty', 'God', 'the', 'same', 'solemn', 'oath', 'our', 'forebears', 'l', 'prescribed', 'nearly', 'a', 'century', 'and', 'three', 'quarters', 'ago', '.', 'The', 'world', 'is', 'very', 'different',

After removal:

Before removal:

['vice', 'president', 'johnson', 'mr.', 'speaker', 'mr.', 'chief', 'justice', 'president', 'eisenhower', 'vice', 'president', 'nixon', 'president', 'truman', 'reverend', 'clergy', 'fellow', 'citizens', 'observe', 'today', 'victory', 'party', 'celebratio n', 'freedom', 'symbolizing', 'end', 'beginning', 'signifying', 'renewal', 'well', 'change', 'sworn', 'almighty', 'go d', 'solemn', 'oath', 'forebears', 'l', 'prescribed', 'nearly', 'century', 'three', 'quarters', 'ago', 'world', 'different', 'm an', 'holds', 'mortal', 'hands', 'power', 'abolish', 'forms', 'human', 'poverty', 'forms', 'human', 'life', 'yet', 'revolutionary', 'beliefs', 'forebears', 'fought', 'still', 'issue', 'around', 'globe', 'belief', 'rights', 'man', 'come', 'generosity', 's tate', 'hand', 'god', 'dare', 'forget', 'today', 'heirs', 'first', 'revolution', 'let', 'word', 'go', 'forth', 'time', 'place', 'friend', 'foe', 'alike', 'torch', 'passed', 'new', 'generation', 'americans', 'born', 'century', 'tempered', 'war', 'disciplin'

President Nixon's Speech

Before removing stopwords, the count is 2006

After removing stopwords the count is 845 Before removal:

['Mr.', 'Vice', 'President', ',', 'Mr.', 'Speaker', ',', 'Mr.', 'Chief', 'Justice', ',', 'Senator', 'Cook', ',', 'Mrs.', 'Eis enhower', ',', 'and', 'my', 'fellow', 'citizens', 'of', 'this', 'great', 'and', 'good', 'country', 'we', 'share', 'together', ':', 'When', 'we', 'met', 'here', 'four', 'years', 'ago', ',', 'America', 'was', 'bleak', 'in', 'spirit', ',', 'depressed', 'b y', 'the', 'prospect', 'of', 'seemingly', 'endless', 'war', 'abroad', 'and', 'of', 'destructive', 'conflict', 'at', 'home', '.', 'As', 'we', 'meet', 'here', 'today', ',', 'we', 'stand', 'on', 'the', 'threshold', 'of', 'a', 'new', 'era', 'of', 'peace', 'in', 'the', 'world', '.', 'The', 'central', 'question', 'before', 'us', 'is', ':', 'How', 'shall', 'we', 'use', 'that', 'peace', '?', 'Let', 'us', 'resolve', 'that', 'this', 'era', 'we', 'are', 'about', 'to', 'enter', 'will', 'not', 'be', 'what', 'othe

After removal:

['mr.', 'vice', 'president', 'mr.', 'speaker', 'mr.', 'chief', 'justice', 'senator', 'cook', 'mrs.', 'eisenhower', 'fellow', 'citizens', 'great', 'good', 'country', 'share', 'together', 'met', 'four', 'years', 'ago', 'america', 'bleak', 'spirit', 'depr essed', 'prospect', 'seemingly', 'endless', 'war', 'abroad', 'destructive', 'conflict', 'home', 'meet', 'today', 'stand', 'thre shold', 'new', 'era', 'peace', 'world', 'central', 'question', 'us', 'shall', 'use', 'peace', 'let', 'us', 'resolve', 'era', 'e nter', 'postwar', 'periods', 'often', 'time', 'retreat', 'isolation', 'leads', 'stagnation', 'home', 'invites', 'new', 'dange r', 'abroad', 'let', 'us', 'resolve', 'become', 'time', 'great', 'responsibilities', 'greatly', 'borne', 'renew', 'spirit', 'pr omise', 'america', 'enter', 'third', 'century', 'nation', 'past', 'year', 'saw', 'far-reaching', 'results', 'new', 'policies', 'peace', 'continuing', 'revitalize', 'traditional', 'friendships', 'missions', 'peking', 'moscow', 'able', 'establish', 'base',

2.3) Which word occurs the most number of times in his inaugural address for each president? Mention the top three words. (after removing the stopwords)

Top 3 frequent words for President Roosevelt are below

```
[('nation', 12), ('know', 10), ('spirit', 9)]
```

Top 3 frequent words for President Kennedy are below

Top 3 frequent words for President Nixon are below

```
[('us', 26), ('let', 22), ('america', 21)]
```

2.4) Plot the word cloud of each of the three speeches. (after removing the stopwords)

President Roosevelt's Speech

President Kennedy's Speech

President Nixon's Speech

