Mathematics is the art of giving the same name to different things.²

All rings in this note are commutative.

Proposition. The set \Re of all nilpotent elements in a ring A is an ideal, and A/\Re has no nonzero nilpotent elements

Proof. If $x \in \mathfrak{R}$, clearly $ax \in \mathfrak{R}$ for all $a \in A$. For $x, y \in \mathfrak{R}$ where $x^m = 0$, $y^n = 0$, $(x+y)^{m+n-1} = \sum_{k=0}^{m+n-1} {m+n-1 \choose k} x^{m+n-1-k} y^k$. Observe that m+n-1-k < m and k < n cannot happen at the same time, so every term in the expansion is in fact 0. Therefore $x + y \in \mathfrak{R}$ and \mathfrak{R} is an ideal.

Let $\bar{x} \in A/\mathfrak{R}$ be represented by x. Then \bar{x}^n is represented by x^n , and $\bar{x}^n = 0$ implies $x^n \in \mathfrak{R}$, $(x^n)^k = 0$ for some k > 0. x is nilpotent and $x \in \mathfrak{R}$ means $\bar{x} = 0$.

Definition. \Re is the *nilradical* of A.

Proposition. The nilradical of A is the intersection of all the prime ideals of A.

Definition. Let \mathfrak{a} be an ideal of A. The *radical* of \mathfrak{a} , denoted $\sqrt{\mathfrak{a}}$, is $\sqrt{\mathfrak{a}} = \{x \in A \mid x^n \in \mathfrak{a} \text{ for some } n > 0\}.$

Proposition. The radical of an ideal \mathfrak{a} is the intersection of the prime ideals containing \mathfrak{a} .

Proof. The quotient map is surjective, so the prime ideals of A/\mathfrak{a} are in bijection with prime ideals containing \mathfrak{a} .

Definition. An ideal \mathfrak{q} in a ring A is *primary* if $\mathfrak{q} \neq A$ and $xy \in \mathfrak{q}$ implies either $x \in \mathfrak{q}$ or $y^n \in \mathfrak{q}$ for some n > 0.

Remark. Rephrasing the definition in a more symmetric way, we can say an ideal \mathfrak{a} is primary if, for every $xy \in \mathfrak{a}$, we have $x \in \mathfrak{a}$ or $y \in \mathfrak{a}$, or $x, y \in \sqrt{\mathfrak{a}}$.

Another equivalent definition: \mathfrak{q} is primary iff $A/\mathfrak{q} \neq 0$ and every zero-divisor in $A/\mathfrak{q} \neq 0$ is nilpotent.

Lemma. The contraction of a primary ideal is primary.

Proof. Let $f: A \to B$ be a ring homomorphism, and $\mathfrak{q} \subset B$ a primary ideal. f(A) is a subring of B, so A/\mathfrak{q}^c is isomorphic to a subring of B/\mathfrak{q} .

¹Reference: Atiyah, MacDonald, Introduction to Commutative Algebra

 $^{^2 {\}rm Henri~Poincar\acute{e}}$

Proposition. Let \mathfrak{q} be a primary ideal in a ring A. Then $\sqrt{\mathfrak{q}}$ is the smallest prime ideal containing \mathfrak{q} .

Proof. Since $\sqrt{\mathfrak{q}}$ is the intersection of all prime ideals containing \mathfrak{q} , we need only prove that it is prime. Let $xy \in \mathfrak{q}$, then $(xy)^m \in \mathfrak{q}$ for some m > 0, and therefore $x^m \in \mathfrak{q}$ or $y^{mn} \in \mathfrak{q}$ for some n > 0, i.e., $x \in \sqrt{\mathfrak{q}}$ or $y \in \sqrt{\mathfrak{q}}$.

Definition. If $\mathfrak{p} = \sqrt{\mathfrak{q}}$, then \mathfrak{q} is said to be \mathfrak{p} -primary.

- **Example.** 1. The primary ideals in \mathbf{Z} are (0) and (p^n) , where p is prime. For these are the only ideals in \mathbf{Z} with prime radical (what are the radical ideals in \mathbf{Z} ?), and they are indeed primary.
 - 2. Let A = K[x,y], and $\mathfrak{q} = (x,y^2)$. Then $A/\mathfrak{q} \cong K[y]/(y^2)$, in which the zero-divisors are precisely all the multiples of y, which are nilpotent. Hence \mathfrak{q} is primary, and its radical \mathfrak{p} is (x,y). $\mathfrak{p}^2 \subsetneq \mathfrak{q} \subsetneq \mathfrak{p}$. This example shows that a primary ideal need not be a prime power.
 - 3. Let $A=K[x,y,z]/(xy-z^2)$ and let \bar{x},\bar{y},\bar{z} denote the image of x,y,z in A respectively. $\mathfrak{p}=(\bar{x},\bar{z})$ is prime since $A/\mathfrak{p}\cong K[y]$ is an integral domain. We have $\bar{x}\bar{y}=\bar{z}^2\in\mathfrak{p}^2$, but $\bar{x}\not\in\mathfrak{p}^2$ and $\bar{y}\not\in\sqrt{\mathfrak{p}^2}=\mathfrak{p}$, hence \mathfrak{p}^2 is not primary. This example shows that a prime power need not be primary.