Gene Expression Data Analysis and Visualization in RStudio, Libraries:

```
library(edgeR)
biocLite (GEOquery)
library (GEOquery)
library(Biobase)
library(plyr)
library(gplots)
library(limma)
library(impute)
library(fpc)
library(gplots)
library(Biobase)
library(annotate)
library(multtest)
library (MASS)
library(lda)
library(EMV)
Library (grepl)
library(gdata)
library(matrixStats)
library(plyr) library(class)
library(kernlab)
GSE data <-
read.delim("~/Documents/FinalHW/GSE174443 gene counts matrix with Blanks.txt",
row.names=1,header=T)
dim(GSE data)
[1] 27744
#Reorder the Columns in the File
GSEreorder <- GSE data[, order(names(GSE data))]</pre>
dim(GSEreorder)
[1] 27744
colnames (GSEreorder)
[1] "Control 011"
                                             "Control 013"
                                                                                    "Control 018"
                                                                                                                           "Control 022"
                                                                               "Control_018" "Control_vzz control_vz "Sarcoidosis_001" "Sarcoidosis_005" "Sarcoidosis_007" "Sarcoidosis_007" "Sarcoidosis_026" "Sarcoidos
[6] "Control 027"
                                             "Control 031"
[11] "Sarcoidosis_014" "Sarcoidosis_017" "Sarcoidosis_020" "Sarcoidosis_023" "Sarcoidosis_026" [16] "Sarcoidosis_029" "Sarcoidosis_032" "TB_006" "TB_008" "TB_012" [21] "TB_015" "TB_021" "TB_025" "TB_030"
View(GSEreorder)
            Filter
                                                                                                                                                                                                             0
                                                                                                                                                                                           Control_022
                                                           Control_011 Control_013 Control_018
                                                            65.550236
                                                                                                          32.1730124
                                                                                                                                                        100.7923407
                                                                                                                                                                                                       48.8314546
                                         A1CF
                                                                            2.621931
                                                                                                                     11.2054612
                                                                                                                                                                      2.6515764
                                                                                                                                                                                                                     1.7414190
                                          A2M
                                                                    3589.100443
                                                                                                                  852.3659730
                                                                                                                                                             5701.4038200
                                                                                                                                                                                                            1481.4245740
                                                                                                          45.0940567
                                                                                                                                                         75.1124064
                                                                         25.419226
                                                                                                                                                                                                                  44.2517309
                                     A2ML1
```

1.1367500

NA

18.7487699

1. First, we test for **outlier samples** and provide visual proof.

g 1 to 6 of 27,744 entries, 24 total columns

15.219934

#Average Correlation Plot

A2MP1

A3GALT2

```
dat.cor <- cor(GSEreorder, use="pairwise.complete.obs")
dat.cor
dat.avg <- apply(dat.cor,1,mean)</pre>
```

```
par(oma=c(6,0.1,0.1,0.1))
plot(c(1,length(dat.avg)),range(dat.avg),type="n",xlab="",ylab="Avg
R",main="Average Correlation of SC, TB, and Normal Samples",axes=F)
points(dat.avg,bg="red",col=1,pch=21,cex=1.5)
axis(1,at=c(1:length(dat.avg)),labels=dimnames(GSEreorder)[[2]],las=2,cex=0.5)
axis(2)
abline(v=seg(0.5,25,1),col="grey")
```


#Hierarchical Clustering Dendrogram

```
dat.t <- t(GSEreorder)
dat.dist <- dist(dat.t, method="euclidean")
dat.clust <- hclust(dat.dist,method="single")
plot(hclust(dat.dist), labels=dimnames(GSEreorder)[[2]],main="Hierarchical
Clustering Dendrogram of SC, TB, and Normal Samples",cex.main=0.75)</pre>
```


#CV vs. Mean Plot

```
dat.mean <- apply(GSEreorder,2,mean, na.rm=TRUE)
dat.sd <- apply(GSEreorder,2,sd, na.rm=TRUE)
dat.cv <- dat.sd/dat.mean

plot(dat.mean,dat.cv,main="Coefficient Correlation vs Mean\n for SC, TB, and
Normal Samples",xlab="Mean",ylab="CV",col="blue",cex=1.5,type="n")
points(dat.mean,dat.cv,bg="lightblue",col=1,pch=21)
text(dat.mean,dat.cv,label=dimnames(GSEreorder)[[2]],pos=1,cex=0.5)</pre>
```


#Correlation Plot (Heatmap)

```
dat.cor <- cor(GSEreorder, use="pairwise.complete.obs")
dat.cor

layout(matrix(c(1,1,1,1,1,1,1,1,2,2), 5, 2, byrow = TRUE))
par(oma=c(2,2,1,1))
cx<- rev(colorpanel(25,"blue", "white", "red"))
leg <- seq(min(dat.cor,na.rm=T),max(dat.cor,na.rm=T),length=10)

image(dat.cor,main="Correlation Matrix Heatmap of SC, TB, and Normal Samples",
axes=F, col=cx)
axis(1,at=seq(0,1,length=ncol(dat.cor)),label=dimnames(dat.cor)[[2]],
cex.axis=0.9, las=2)
axis(2,at=seq(0,1,length=ncol(dat.cor)),label=dimnames(dat.cor)[[2]],
cex.axis=0.9, las=2)

image(as.matrix(leg),col=cx, axes=F)
tmp <- round(leg,2)
axis(1,at=seq(0,1,length=length(leg)),labels=tmp,cex.axis=1)</pre>
```


see presentation

Remove these outliers.

```
dim(GSEreorder)
[1] 27744
colnames (GSEreorder)
[1] "Control_011"
[6] "Control_027"
                      "Control_013"
"Control_031"
                                        "Control 018"
                                                           "Control 022"
                                                                             "Control 024"
                                        "Sarcoidosis_001" "Sarcoidosis_005" "Sarcoidosis_007"
[11] "Sarcoidosis_014" "Sarcoidosis_017" "Sarcoidosis_020" "Sarcoidosis_023" "Sarcoidosis_026"
[16] "Sarcoidosis_029" "Sarcoidosis_032" "TB_006"
                                                           "TB 008"
                                                                              "TB 012"
[21] "TB 015"
                       "TB 021"
                                         "TB 025"
                                                            "TB 030"
Sample Control 013 is the outlier sample.
```

#Remove Outlier Control 13

```
datout <- GSEreorder[, !(colnames(GSEreorder) %in% c("Control 013"))]</pre>
dim(datout)
[1] 27744
                   23
colnames(datout)
[1] "Control_011"
                      "Control 018"
                                         "Control 022"
                                                            "Control 024"
                      "Sarcoidosis 001" "Sarcoidosis 005" "Sarcoidosis 007" "Sarcoidosis 014"
[6] "Control 031"
[11] "Sarcoidosis_017" "Sarcoidosis_020" "Sarcoidosis_023" "Sarcoidosis_026" "Sarcoidosis_029" [16] "Sarcoidosis_032" "TB_006" "TB_008" "TB_012" "TB_015"
[16] "Sarcoidosis_032" "TB_006"
[21] "TB 021"
                       "TB 025"
                                          "TB 030"
```

Log2 transform the data and filter out transcripts that have **low expression** values or missing.

#Log2 Transform the Data

```
datout.log <- log2(datout)
dim(datout.log)
[1] 27744 23
#Remove Missing Values (NAs, Blanks, 0) from the log2 transformed data
datout.log.No.NA <- na.omit(datout.log)</pre>
```

```
datout.log.No.NA <- na.omit(datout.log)
dim(datout.log.No.NA)
[1] 10331 23</pre>
```

Output: Dataset is now composed of 23 samples and 10331 transcripts.

Method of feature selection with a statistical test. For two conditions comparisons, a two-sample test is used, for three group comparison conditions - ANOVA tests is used.

#ANOVA (Analysis of Variance, p-value reported)

```
aov.all.genes <- function(x,s1,s2,s3) {
    x1 <- as.numeric(x[s1])
    x2 <- as.numeric(x[s2])
        x3 <- as.numeric(x[s3])
fac <- c(rep("A",length(x1)), rep("B",length(x2)), rep("C",length(x3)))
a.dat <- data.frame(as.factor(fac),c(x1,x2,x3))
names(a.dat) <- c("factor","express")
p.out <- summary(aov(express~factor, a.dat))[[1]][1,5]
return(p.out)
aov.run <- apply(datout.log.No.NA,1,
    aov.all.genes,s1=c(1:6),s2=c(7:16),s3=c(17:23))
aov.run</pre>
```

#Number of Statistically Significant Transcripts at different p-value thresholds

```
sum(aov.run<.05)
[1] 1846
sum(aov.run<.01)
[1] 683
sum(aov.run<(.05/10331))
[1] 20</pre>
```

#Obtain the List of Transcripts with P-value < 0.05

```
pv <-as.data.frame(aov.run)
pvA <- subset(pv, pv<0.05)
pvA</pre>
```

```
dim(pvA)
[1] 1846
#ANOVA (F-statistic reported)
#this is an Extra Code
aov.all.genes <- function(x, s1, s2, s3) {
      x1 <- as.numeric(x[s1])
      x2 <- as.numeric(x[s2])
      x3 \leftarrow as.numeric(x[s3])
fac <- c(rep("A", length(x1)), rep("B", length(x2)), rep("C", length(x3)))
a.dat <- data.frame(as.factor(fac),c(x1,x2,x3))</pre>
names(a.dat) <- c("factor", "express")</pre>
      p.outF <- summary(aov(express~factor, a.dat))[[1]][1,4]</pre>
      return(p.outF)
}
aov.runF <- apply(datout.log.No.NA,1,</pre>
aov.all.genes, s1=c(1:6), s2=c(7:16), s3=c(17:23))
aov.runF
```

Adjust for multiplicity.

#Multiple testing correction procedures: Holm and Bonferroni.

```
#Holm Multiple Testing Correction Method.
```

```
aov.run.holm <- p.adjust(aov.run, method="holm")</pre>
aov.run.holm
sum(aov.run.holm<.05)</pre>
[1] 20
pvh <-as.data.frame(aov.run.holm)</pre>
pvH <- subset(pvh, pvh<0.05)</pre>
pvH
         aov.run.holm
ALAS1
         2.700519e-02
C15orf48 1.361710e-05
       8.518631e-03
CCL21
        6.379488e-04
CHI3L1 5.786055e-06
CLEC4E 3.988156e-02
CXCL9
         1.340064e-02
CYP27B1 4.673795e-03
DNAJC5B 1.330780e-02
       1.337230e-03
DSP
FCGR2A 6.095653e-03
FTH1
         1.301722e-02
FTH1P11 1.387408e-02
FTH1P2
         3.384643e-03
FTH1P23 4.031312e-03
         7.403439e-03
GBP1
         5.184531e-03
MYOF
SNX10 1.877543e-03
TFEC
         2.592348e-03
         2.877153e-03
TLR8
```

#Subset Data With statistically significant Transcripts from the Holm Test.

```
dim(datout.log.No.NA.sub.Holm)
[1] 20 23
datout.log.No.NA.sub.Holm
summary(datout.log.No.NA.sub.Holm)
#Bonferroni Multiple Testing Correction Method.
aov.run.bonferroni <- p.adjust(aov.run, method="bonferroni")</pre>
aov.run.bonferroni
sum(aov.run.bonferroni<.05)</pre>
[1] 20
pvb <-as.data.frame(aov.run.bonferroni)</pre>
pvB <- subset(pvb, pvb<0.05)</pre>
pvB
        aov.run.bonferroni
ALAS1
            2.705232e-02
C15orf48
              1.361842e-05
              8.529364e-03
C7
CCL21
              6.380724e-04
CHI3L1
              5.786055e-06
              3.995504e-02
CLEC4E
CXCL9
              1.342143e-02
              4.677870e-03
CYP27B1
DNAJC5B
              1.332715e-02
              1.337618e-03
DSP
              6.102150e-03
FCGR2A
              1.303489e-02
FTH1
              1.389695e-02
FTH1P11
               3.386938e-03
FTH1P2
FTH1P23
              4.034436e-03
               7.412049e-03
GBP1
              5.189554e-03
MYOF
              1.878271e-03
SNX10
               2.593603e-03
TFEC
               2.878825e-03
TLR8
#Subset Data with statistically significant Transcripts from the Bonferroni Test
datout.log.No.NA.sub.Bonferroni <- datout.log.No.NA[rownames(pvB),]</pre>
dim(datout.log.No.NA.sub.Bonferroni)
[1] 20 23
```

datout.log.No.NA.sub.Holm <- datout.log.No.NA[rownames(pvH),]</pre>

Provide the number of genes retained with the associated score (p-value, weight, test statistic, etc.) and threshold value that is used.

1846 transcripts are identified to be significantly differently expressed with p-value < 0.05 threshold; and **683** - with p-value threshold < 0.01.

#See the final table in the power point presentation.

When Holm's multiple testing correction method was applied, 20 genes were found to be statistically significant at p < 0.5 threshold.

When Bonferroni's multiple testing correction method was applied, 20 genes were found to be statistically significant at p < 0.5 threshold.

#Calculate Mean Gene Expression of Transcripts for 3 Groups:

#Subset Data with statistically significant genes from Holm Test.

datout.log.No.NA.sub.Holm <- datout.log.No.NA[rownames(pvH),]
dim(datout.log.No.NA.sub.Holm)
[1] 20 23</pre>

View(datout.log.No.NA.sub.Holm)

_	Control_011 ÷	Control_018 ÷	Control_022 ÷	Control_024 ÷	Control_027
ALAS1	9.488019	9.625796	8.23670240	8.492510	8.957351
C15orf48	6.206223	5.981261	6.08358463	6.098518	5.320281
C7	9.928106	10.363578	8.45453702	8.453027	10.032477
CCL21	14.030219	15.640148	14.80891844	13.605963	14.160617

datout.log.No.NA.sub.HolmC <- datout.log.No.NA[rownames(pvH),c(1:6)]</pre>

datout.log.No.NA.sub.HolmC.t <-t(datout.log.No.NA.sub.HolmC)
summary(datout.log.No.NA.sub.HolmC.t)</pre>

ALAS1	C15orf48	C7	CCL21	CHI3L1
Min. :8.237	Min. :5.320	Min. : 8.453	Min. :13.61	Min. :5.763
1st Qu.:8.495	1st Qu.:6.007	1st Qu.: 8.718	1st Qu.:13.88	1st Qu.:7.062
Median :8.730	Median :6.091	Median : 9.718	Median :14.10	Median :7.740
Mean :8.884	Mean :5.980	Mean : 9.457	Mean :14.35	Mean :7.550
3rd Qu.:9.355	3rd Qu.:6.166	3rd Qu.:10.006	3rd Qu.:14.65	3rd Qu.:8.000
Max. :9.626	Max. :6.206	Max. :10.364	Max. :15.64	Max. :9.133
CLEC4E	CXCL9	CYP27B1	DNAJC51	B DSP
Min. :2.976	Min. : 8.310	Min. :-0.0204	6 Min. :3.72	22 Min. :6.733
1st Qu.:5.156	1st Qu.: 8.675	1st Qu.: 4.0925	4 1st Qu.:3.88	30 1st Qu.:7.757
Median :6.799	Median : 9.438	Median : 5.3930	2 Median :4.5	48 Median :8.068
Mean :6.493	Mean : 9.282	Mean : 4.3189	7 Mean :4.84	17 Mean :8.034
3rd Qu.:7.722	3rd Qu.: 9.505	3rd Qu.: 5.5130	9 3rd Qu.:5.33	31 3rd Qu.:8.310
Max. :9.750	Max. :10.558	Max. : 5.9361	.0 Max. :7.01	16 Max. :9.291
FCGR2A	FTH1	FTH1P11	FTH1P2	FTH1P23
LCGNZH	LIII	FILLETT	1111112	I IIIII 25
Min. :5.501	Min. :15.01		Min. :5.170	_
		Min. :4.942		Min. :3.641
Min. :5.501	Min. :15.01	Min. :4.942 1st Qu.:5.700	Min. :5.170	Min. :3.641
Min. :5.501 1st Qu.:6.060	Min. :15.01 1st Qu.:15.19	Min. :4.942 1st Qu.:5.700 Median :6.099	Min. :5.170 1st Qu.:5.310 Median :5.736	Min. :3.641 1st Qu.:4.010
Min. :5.501 1st Qu.:6.060 Median :7.014	Min. :15.01 1st Qu.:15.19 Median :15.50	Min. :4.942 1st Qu.:5.700 Median :6.099 Mean :6.061	Min. :5.170 1st Qu.:5.310 Median :5.736	Min. :3.641 1st Qu.:4.010 Median :4.675
Min. :5.501 1st Qu.:6.060 Median :7.014 Mean :6.824	Min. :15.01 1st Qu.:15.19 Median :15.50 Mean :15.57	Min. :4.942 1st Qu.:5.700 Median :6.099 Mean :6.061 3rd Qu.:6.624	Min. :5.170 1st Qu.:5.310 Median :5.736 Mean :5.726	Min. :3.641 1st Qu.:4.010 Median :4.675 Mean :4.503
Min. :5.501 1st Qu.:6.060 Median :7.014 Mean :6.824 3rd Qu.:7.635	Min. :15.01 1st Qu:15.19 Median :15.50 Mean :15.57 3rd Qu:15.71	Min. :4.942 1st Qu.:5.700 Median :6.099 Mean :6.061 3rd Qu.:6.624	Min. :5.170 1st Qu.:5.310 Median :5.736 Mean :5.726 3rd Qu.:5.878	Min. :3.641 1st Qu.:4.010 Median :4.675 Mean :4.503 3rd Qu.:4.939
Min. :5.501 1st Qu.:6.060 Median :7.014 Mean :6.824 3rd Qu.:7.635 Max. :7.829	Min. :15.01 1st Qu:15.19 Median :15.50 Mean :15.57 3rd Qu:15.71 Max. :16.52	Min. :4.942 1st Qu.:5.700 Median :6.099 Mean :6.061 3rd Qu.:6.624 Max. :6.860 SNX10	Min. :5.170 1st Qu.:5.310 Median :5.736 Mean :5.726 3rd Qu.:5.878 Max. :6.621	Min. :3.641 1st Qu:4.010 Median :4.675 Mean :4.503 3rd Qu:4.939 Max. :5.211 TLR8
Min. :5.501 1st Qu::6.060 Median :7.014 Mean :6.824 3rd Qu::7.635 Max. :7.829 GBP1	Min. :15.01 1st Qu:15.19 Median :15.50 Mean :15.57 3rd Qu:15.71 Max. :16.52 MYOF	Min. :4.942 1st Qu.:5.700 Median :6.099 Mean :6.061 3rd Qu.:6.624 Max. :6.860 SNX10 Min. :4.145	Min. :5.170 1st Qu.:5.310 Median :5.736 Mean :5.726 3rd Qu.:5.878 Max. :6.621 TFEC	Min. :3.641 1st Qu:4.010 Median :4.675 Mean :4.503 3rd Qu:4.939 Max. :5.211 TLR8
Min. :5.501 1st Qu::6.060 Median :7.014 Mean :6.824 3rd Qu::7.635 Max. :7.829 GBP1 Min. : 9.288	Min. :15.01 1st Qu:15.19 Median :15.50 Mean :15.57 3rd Qu:15.71 Max. :16.52 MYOF Min. :7.732	Min. :4.942 1st Qu.:5.700 Median :6.099 Mean :6.061 3rd Qu.:6.624 Max. :6.860 SNX10 Min. :4.145	Min. :5.170 1st Qu.:5.310 Median :5.736 Mean :5.726 3rd Qu.:5.878 Max. :6.621 TFEC Min. :6.379	Min. :3.641 1st Qu:4.010 Median :4.675 Mean :4.503 3rd Qu:4.939 Max. :5.211 TLR8 Min. :5.637
Min. :5.501 1st Qu::6.060 Median :7.014 Mean :6.824 3rd Qu::7.635 Max. :7.829 GBP1 Min. : 9.288 1st Qu:: 9.314	Min. :15.01 1st Qu:15.19 Median :15.50 Mean :15.57 3rd Qu:15.71 Max. :16.52 MYOF Min. :7.732 1st Qu:8.053	Min. :4.942 1st Qu.:5.700 Median :6.099 Mean :6.061 3rd Qu.:6.624 Max. :6.860 SNX10 Min. :4.145 1st Qu.:4.370	Min. :5.170 1st Qu.:5.310 Median :5.736 Mean :5.726 3rd Qu.:5.878 Max. :6.621 TFEC Min. :6.379 1st Qu.:6.645	Min. :3.641 1st Qu.:4.010 Median :4.675 Mean :4.503 3rd Qu.:4.939 Max. :5.211 TLR8 Min. :5.637 1st Qu.:5.830
Min. :5.501 1st Qu:6.060 Median :7.014 Mean :6.824 3rd Qu:7.635 Max. :7.829 GBP1 Min. : 9.288 1st Qu: 9.314 Median : 9.363	Min. :15.01 1st Qu:15.19 Median :15.50 Mean :15.57 3rd Qu:15.71 Max. :16.52 MYOF Min. :7.732 1st Qu::8.053 Median :8.364	Min. :4.942 1st Qu.:5.700 Median :6.099 Mean :6.061 3rd Qu.:6.624 Max. :6.860 SNX10 Min. :4.145 1st Qu.:4.370 Median :4.416	Min. :5.170 1st Qu.:5.310 Median :5.736 Mean :5.726 3rd Qu.:5.878 Max. :6.621 TFEC Min. :6.379 1st Qu.:6.645 Median :7.084	Min. :3.641 1st Qu.:4.010 Median :4.675 Mean :4.503 3rd Qu.:4.939 Max. :5.211 TLR8 Min. :5.637 1st Qu.:5.830 Median :6.194 Mean :6.124

datout.log.No.NA.sub.HolmS <- datout.log.No.NA[rownames(pvH),c(7:16)]</pre>

datout.log.No.NA.sub.HolmS.t <-t(datout.log.No.NA.sub.HolmS)
summary(datout.log.No.NA.sub.HolmS.t)</pre>

ALAS1 C15orf48 C7 CCL21 CHI3L1

```
:10.14
                                                                   :12.57
              Min. :10.39
                              Min. : 6.877
                                              Min. :11.01
                                                             Min.
Min.
1st Qu.:11.14
               1st Qu.:10.56
                              1st Qu.: 7.950
                                              1st Qu.:12.29
                                                              1st Qu.:14.06
                              Median : 8.297
Median :11.58
             Median :11.97
                                              Median :12.71
                                                             Median :14.38
Mean :11.50
               Mean :11.63
                              Mean : 8.425
                                              Mean :12.55
                                                              Mean :14.18
3rd Qu.:12.05
               3rd Qu.:12.42
                              3rd Qu.: 8.916
                                              3rd Qu.:13.11
                                                              3rd Qu.:14.55
              Max. :12.75
      :12.43
                              Max. :10.192
                                              Max. :13.80
                                                             Max. :14.83
Max.
      CLEC4E
                     CXCL9
                                     CYP27B1
                                                     DNAJC5B
                                                                       DSP
      :10.22
              Min.
                     : 9.963
                               Min. : 7.888
                                               Min. : 7.573
                                                               Min.
                                                                      :4.740
Min.
1st Qu.:10.76
               1st Qu.:12.439
                               1st Qu.: 9.163
                                               1st Qu.: 8.860
                                                               1st Qu.:5.243
                               Median :10.416
                                               Median : 9.843
Median :11.16
              Median :12.511
                                                               Median :5.834
Mean :11.19
               Mean :12.540
                               Mean :10.188
                                               Mean : 9.501
                                                               Mean :5.798
3rd Qu.:11.64
               3rd Qu.:13.078
                               3rd Qu.:11.290
                                               3rd Qu.:10.207
                                                                3rd Qu.:6.470
                                               Max. :10.265
                                                               Max. :6.668
Max.
      :12.46
              Max. :13.825
                               Max. :11.584
      FCGR2A
                       FTH1
                                     FTH1P11
                                                      FTH1P2
                                                                    FTH1P23
                      :17.38
                                     : 8.005
Min.
      : 8.859
               Min.
                               Min.
                                               Min.
                                                     :7.911
                                                              Min.
                                                                    :6.758
1st Qu.:10.341
                1st Qu.:18.21
                               1st Qu.: 8.754
                                               1st Qu.:8.279
                                                              1st Qu.:7.287
Median :10.685 Median :18.95
                               Median : 9.142
                                               Median :8.524
                                                              Median :7.920
Mean :10.437 Mean :18.77
                               Mean : 9.192
                                               Mean :8.650
                                                              Mean :7.843
3rd Qu.:10.975
                3rd Qu.:19.38
                               3rd Qu.: 9.617
                                               3rd Qu.:9.102
                                                               3rd Qu.:8.428
     :11.413
               Max. :19.86
                                               Max. :9.343
                               Max. :10.643
                                                              Max. :8.854
Max.
        GBP1
                       MYOF
                                     SNX10
                                                      TFEC
                                                                      TLR8
                                    :6.481
      :10.43
              Min.
                     :10.11
                              Min.
                                             Min.
                                                   : 9.027
                                                             Min.
                                                                    : 8.483
Min.
1st Qu.:11.52
               1st Qu.:10.95
                              1st Qu.:7.181
                                             1st Qu.: 9.554
                                                              1st Qu.: 9.239
Median :11.83
                              Median :7.875
                                             Median :10.112
                                                             Median : 9.617
              Median :11.66
Mean :11.91
               Mean :11.67
                              Mean :7.685
                                             Mean : 9.960
                                                              Mean : 9.649
3rd Qu.:12.34
               3rd Qu.:12.48
                              3rd Qu.:8.338
                                             3rd Qu.:10.367
                                                              3rd Qu.: 9.879
Max.
     :12.98
               Max. :13.17
                              Max.
                                   :8.449
                                             Max.
                                                  :10.582
                                                             Max.
                                                                   :11.508
```

datout.log.No.NA.sub.HolmT <- datout.log.No.NA[rownames(pvH),c(17:23)]</pre>

datout.log.No.NA.sub.HolmT.t <-t(datout.log.No.NA.sub.HolmT)
summary(datout.log.No.NA.sub.HolmT.t)</pre>

ALAS1	C15orf48	C7	CCL21	CHI3L1
Min. : 9.351	Min. : 9.542	Min. :3.250	Min. : 7.554	Min. :10.97
1st Qu.:10.792	1st Qu.:11.279	1st Qu.:4.258	1st Qu.: 8.519	1st Qu.:12.34
Median :11.037	Median :12.294	Median :5.946	Median : 9.427	Median :13.24
Mean :10.945	Mean :11.990	Mean :5.273	Mean : 9.278	Mean :13.06
3rd Qu.:11.408	3rd Qu.:12.760	3rd Qu.:6.282	3rd Qu.: 9.620	3rd Qu.:13.56
Max. :11.825	Max. :14.015	Max. :6.637	Max. :11.690	Max. :15.40
CLEC4E	CXCL9	CYP27B1	DNAJC5B	DSP
Min. : 9.28	Min. :11.77	Min. : 8.495	Min. :6.119	Min. :2.700
1st Qu.:10.72	1st Qu.:12.83	1st Qu.:10.000	1st Qu.:7.078	1st Qu.:3.807
Median :11.06	Median :13.64	Median :10.849	Median :8.257	Median :4.228
Mean :10.94	Mean :13.46	Mean :10.494	Mean :8.176	Mean :4.137
3rd Qu.:11.33	3rd Qu.:13.88	3rd Qu.:11.031	3rd Qu.:9.487	3rd Qu.:4.397
Max. :12.17	Max. :15.36	Max. :12.055	Max. :9.723	Max. :5.622
			1 DO	
FCGR2A	FTH1	FTH1P11	FTH1P2	FTH1P23
FCGR2A Min. : 8.146	Min. :16.54		Min. :6.653	Min. :5.769
	Min. :16.54			_
Min. : 8.146 1st Qu.:10.154 Median :10.297	Min. :16.54	Min. :7.054	Min. :6.653	Min. :5.769
Min. : 8.146 1st Qu.:10.154	Min. :16.54 1st Qu.:17.73	Min. :7.054 1st Qu.:8.456	Min. :6.653 1st Qu.:7.560	Min. :5.769 1st Qu.:6.701
Min. : 8.146 1st Qu.:10.154 Median :10.297	Min. :16.54 1st Qu.:17.73 Median :18.41	Min. :7.054 1st Qu.:8.456 Median :8.644	Min. :6.653 1st Qu.:7.560 Median :8.588	Min. :5.769 1st Qu.:6.701 Median :7.590
Min. : 8.146 1st Qu.:10.154 Median :10.297 Mean :10.214	Min. :16.54 1st Qu.:17.73 Median :18.41 Mean :18.21	Min. :7.054 1st Qu.:8.456 Median :8.644 Mean :8.635	Min. :6.653 1st Qu.:7.560 Median :8.588 Mean :8.212	Min. :5.769 1st Qu.:6.701 Median :7.590 Mean :7.223
Min. : 8.146 1st Qu::10.154 Median :10.297 Mean :10.214 3rd Qu::10.789	Min. :16.54 1st Qu:17.73 Median :18.41 Mean :18.21 3rd Qu:18.89	Min. :7.054 1st Qu.:8.456 Median :8.644 Mean :8.635 3rd Qu.:8.986 Max. :9.862	Min. :6.653 1st Qu:7.560 Median :8.588 Mean :8.212 3rd Qu:8.909	Min. :5.769 1st Qu.:6.701 Median :7.590 Mean :7.223 3rd Qu.:7.762
Min. : 8.146 1st Qu::10.154 Median :10.297 Mean :10.214 3rd Qu::10.789 Max. :11.165 GBP1	Min. :16.54 1st Qu::17.73 Median :18.41 Mean :18.21 3rd Qu::18.89 Max. :19.32	Min. :7.054 1st Qu.:8.456 Median :8.644 Mean :8.635 3rd Qu.:8.986 Max. :9.862	Min. :6.653 1st Qu:7.560 Median :8.588 Mean :8.212 3rd Qu:8.909 Max. :9.306	Min. :5.769 1st Qu.:6.701 Median :7.590 Mean :7.223 3rd Qu.:7.762 Max. :8.276
Min. : 8.146 1st Qu::10.154 Median :10.297 Mean :10.214 3rd Qu::10.789 Max. :11.165 GBP1	Min. :16.54 1st Qu::17.73 Median :18.41 Mean :18.21 3rd Qu::18.89 Max. :19.32 MYOF	Min. :7.054 1st Qu.:8.456 Median :8.644 Mean :8.635 3rd Qu.:8.986 Max. :9.862 SNX10	Min. :6.653 1st Qu:7.560 Median :8.588 Mean :8.212 3rd Qu:8.909 Max. :9.306 TFEC	Min. :5.769 1st Qu.:6.701 Median :7.590 Mean :7.223 3rd Qu.:7.762 Max. :8.276 TLR8
Min. : 8.146 1st Qu::10.154 Median :10.297 Mean :10.214 3rd Qu::10.789 Max. :11.165 GBP1 Min. :11.26	Min. :16.54 1st Qu::17.73 Median :18.41 Mean :18.21 3rd Qu::18.89 Max. :19.32 MYOF Min. :10.52	Min. :7.054 1st Qu.:8.456 Median :8.644 Mean :8.635 3rd Qu.:8.986 Max. :9.862 SNX10 Min. :6.106	Min. :6.653 1st Qu:7.560 Median :8.588 Mean :8.212 3rd Qu:8.909 Max. :9.306 TFEC Min. : 8.942	Min. :5.769 1st Qu.:6.701 Median :7.590 Mean :7.223 3rd Qu.:7.762 Max. :8.276 TLR8 Min. : 6.998
Min. : 8.146 1st Qu::10.154 Median :10.297 Mean :10.214 3rd Qu::10.789 Max. :11.165 GBP1 Min. :11.26 1st Qu::12.37	Min. :16.54 1st Qu::17.73 Median :18.41 Mean :18.21 3rd Qu::18.89 Max. :19.32 MYOF Min. :10.52 1st Qu::11.23	Min. :7.054 1st Qu.:8.456 Median :8.644 Mean :8.635 3rd Qu.:8.986 Max. :9.862 SNX10 Min. :6.106 1st Qu.:7.324 Median :7.619	Min. :6.653 1st Qu:7.560 Median :8.588 Mean :8.212 3rd Qu:8.909 Max. :9.306 TFEC Min. : 8.942 1st Qu: 9.455	Min. :5.769 1st Qu.:6.701 Median :7.590 Mean :7.223 3rd Qu.:7.762 Max. :8.276 TLR8 Min. : 6.998 1st Qu.: 8.688
Min. : 8.146 1st Qu:10.154 Median :10.297 Mean :10.214 3rd Qu:10.789 Max. :11.165 GBP1 Min. :11.26 1st Qu:12.37 Median :13.35 Mean :13.06	Min. :16.54 1st Qu::17.73 Median :18.41 Mean :18.21 3rd Qu::18.89 Max. :19.32 MYOF Min. :10.52 1st Qu::11.23 Median :11.72	Min. :7.054 1st Qu.:8.456 Median :8.644 Mean :8.635 3rd Qu.:8.986 Max. :9.862 SNX10 Min. :6.106 1st Qu.:7.324 Median :7.619	Min. :6.653 1st Qu:7.560 Median :8.588 Mean :8.212 3rd Qu:8.909 Max. :9.306 TFEC Min. : 8.942 1st Qu: 9.455 Median :10.055	Min. :5.769 1st Qu:6.701 Median :7.590 Mean :7.223 3rd Qu:7.762 Max. :8.276 TLR8 Min. : 6.998 1st Qu: 8.688 Median : 9.080

Plot the scores of those genes retained in a histogram.

```
#Histogram for Retained Genes (Holm Test)
```

```
pvh <-as.data.frame(aov.run.holm)
pvH <- subset(pvh, pvh<0.05)
pvH</pre>
```

#Remove Row Names from the Subset of Genes Identified by Holm's Test

#Histogram for Retained Genes (from Bonferroni Test)

```
pvb <-as.data.frame(aov.run.bonferroni)
pvB <- subset(pvb, pvb<0.05)
pvB</pre>
```

#Remove Row Names from the Subset of Genes Identified by Bonferroni's Test

```
dat.f.sub.B <- pvB[rownames(pvB),]

par(oma=c(1,1,1,1))
hist(dat.f.sub.B, main="Histogram of Transcripts Identified by the Bonferroni
Test",xlab="p-values",col="blue")</pre>
```


#Histogram for ANOVA p-values for All Expressed Genes (for comparison)

```
dat.f.sub.A <- pvA[rownames(pvA),]
hist(dat.f.sub.A, main="Histogram of Transcripts Identified by the ANOVA
Test", xlab="p-values", col="yellow")
abline(v=.01, col=2, lwd=2)</pre>
```


Subset data by the genes identified above. Perform **clustering** and **dimensionality** reduction methods to visualize the samples in two-dimensional space (xy scatter plot, dendrogram).

#Obtain the List of Transcripts with P-value < 0.05 from ANOVA on Log2-Transformed Data

```
pv<-as.data.frame(aov.run)</pre>
pvA <- subset(pv, pv<0.05)</pre>
pvA
```

#Number of Statistically Significant Transcripts

```
sum(aov.run<.05)</pre>
[1] 1846
```

#Subset Data with Genes That Have P-value < 0.05 from ANOVA, 23 samples.

```
datout.log.No.NA.subA <- datout.log.No.NA[rownames(pvA),].</pre>
dim(datout.log.No.NA.subA)
[1] 1846
           23
```

View(datout.log.	.No.NA.subA)
_	Control_011	Control_018	

_	Control_011 ÷	Control_018 ÷	Control_022	Control_024	Control_027	Control_031 ÷	Sarcoidosis_001
A2M	11.809407	12.477101	10.532769	10.010271	10.831902	10.799529	13.457847
A2ML1	4.667848	6.230979	5.467662	5.152338	4.297682	4.778384	3.751900
AAK1	8.004322	8.488579	7.396583	8.267713	6.999145	7.433171	8.295180
ABAT	6.870629	7.502427	7.919306	6.249471	7.365509	4.901415	6.790291
ABCA8	7.692852	9.330889	8.275876	7.321939	6.809839	6.620989	5.300421
ABCB11	8.438146	6.147477	8.582570	6.700805	8.300537	7.533668	7.978083

#Calculate kmeans PCA on the samples and retain the first two component vectors, k=3.

```
dat.pca <- prcomp(t(datout.log.No.NA.subA))</pre>
dat.loadingsA <- dat.pca$x[,1:2]</pre>
```


#Plot K-means Clustering (from ANOVA set)

```
groupsA <- factor(substr(names(datout.log.No.NA.subA),1,1))</pre>
groupsA
```

```
Levels: C S T
par (oma=c(1,1,1,1))
plot(dat.loadingsA, col=clA$cluster,cex=1, main="PCA Scatter Plot of K-
means Classification\n(1,846 Transcripts from the ANOVA Test)", xlab='PC1',
ylab='PC2')
points(clA$centers, col =1:3, pch ="*",cex=2.5)
text(dat.loadingsA, labels=groupsA, pos=4)
      PCA Scatter Plot of K-means Classification (1,846 Transcripts from the ANOVA Test)
      o C
 20
          o S
8
         os *s
 -50
          ٥S
        οS
              PC1
                               *, centroid. PC, Principal Component.
```

#Plot a Hierarchical Clustering Dendrogram (from ANOVA set)

```
datout.log.No.NA.subA <- datout.log.No.NA[rownames(pvA),]
dim(datout.log.No.NA.subA)
[1] 1846    23
groupsA <- factor(substr(names(datout.log.No.NA.subA),1,1))
par(oma=c(1,1,1,1))</pre>
```

hcA <- hclust(dist(t(datout.log.No.NA.subA), method="manhattan"), "median")
plot(hcA, main="Hierarchical Clustering Dendrogram\n(1,846 Transcripts from
the ANOVA Test)", labels=groupsA)</pre>

Multiple Testing Corrections, MTC (Holm and Bonferroni Tests on Log2-transformed data)

#Obtain the List of Transcripts with P-values < 0.05 from Holm Test

```
aov.run.holm <- p.adjust(aov.run, method="holm")</pre>
aov.run.holm
pvh <-as.data.frame(aov.run.holm)</pre>
pvH <- subset(pvh, pvh<0.05)</pre>
pvH
#Number of Statistically Significant Transcripts from Holm Test
sum(aov.run.holm<.05)</pre>
[1] 20
#Subset Data with Genes That Have P-value < 0.05 from Holm Test
datout.log.No.NA.sub.Holm <- datout.log.No.NA[rownames(pvH),]</pre>
dim(datout.log.No.NA.sub.Holm)
[1] 20 23
\#Calculate PCA on the samples and retain the first two component vectors, k=3
dat.pca.Holm <- prcomp(t(datout.log.No.NA.sub.Holm))</pre>
dat.loadings.Holm <- dat.pca.Holm$x[,1:2]</pre>
clH <- kmeans(dat.loadings.Holm, centers=3, iter.max=20)</pre>
#Plot K-means PCA Scatter Plot from Holm Test.
groupsH <- factor(substr(names(datout.log.No.NA.sub.Holm),1,1))</pre>
par (oma=c(1,1,1,1))
plot(dat.loadings.Holm, col = clH$cluster,cex=1, main="PCA Scatter Plot of K-means
Classification\n(20 Transcripts from the Holm Test)", xlab='PC1', ylab='PC2')
points(clH$centers, col = 1:3, pch = "*",cex=2.5)
text(dat.loadings.Holm, labels=groupsH, pos=4)
       PCA Scatter Plot of K-means Classification
(20 Transcripts from the Holm Test)
```


*, centroid

#Plot a Hierarchical Clustering Dendrogram from Holm Test.

```
datout.log.No.NA.Holm <- datout.log.No.NA[rownames(pvH),]
dim(datout.log.No.NA.Holm)
[1] 20 23
groupsH <- factor(substr(names(datout.log.No.NA.sub.Holm),1,1))</pre>
```

hch <- hclust(dist(t(datout.log.No.NA.Holm), method="manhattan"), "median")
plot(hch, main="Hierarchical Clustering Dendrogram\n(20 Transcripts from
the Holm Test)", labels=groupsH)</pre>

(not shown in presentation)

Using linear projections of the original data (i.e. cluster centroids, latent variables), classify the samples into their respective classes.

```
#Subset Data with Genes that Have P-value < 0.05 from ANOVA.
datout.log.No.NA.subA <- datout.log.No.NA[rownames(pvA),]
dim(datout.log.No.NA.subA)
[1] 1846 23</pre>
```

#Rename rows creating new column and add new header

```
#Create factor groups with 3 levels
```

d.groups <- data.frame(groupsA, t(datout.log.No.NA.subA))</pre>

dim(d.groups)
[1] 23 1847

View(d.groups)

_	groupsA	A2M =	A2ML1 =	AAK1 =	ABAT =	ABCA8
Control_011	C	11.809407	4.667848	8.004322	6.870629	7.692852
Control_018	C	12.477101	6.230979	8.488579	7.502427	9.330889
Control_022	C	10.532769	5.467662	7.396583	7.919306	8.275876
Control_024	C	10.010271	5.152338	8.267713	6.249471	7.321939
Control_027	C	10.831902	4.297682	6.999145	7.365509	6.809839
Control_031	C	10.799529	4.778384	7.433171	4.901415	6.620989
Sarcoidosis_001	s	13.457847	3.751900	8.295180	6.790291	5.300421

#Make first row names from column 1.

```
rownames(d.groups) <- d.groups[,1]
rownames(d.groups) <-NULL
View(d.groups)</pre>
```

	groupsA	A2M	A2ML1	AAK1	ABAT
1	C	11.809407	4.667848	8.004322	6.870629
2	C	12.477101	6.230979	8.488579	7.502427
3	C	10.532769	5.467662	7.396583	7.919306
4	C	10.010271	5.152338	8.267713	6.24947
5	C	10.831902	4.297682	6.999145	7.365509
6	C	10.799529	4.778384	7.433171	4.90141
7	s	13.457847	3.751900	8.295180	6.79029

Visualization and Comparisons of Train-Test Data via Classification Methods

#Linear Discriminant Analysis of original dataset.

View(d.groups.all)

^	groupsall 🗦	A1BG =	A1CF =	A2M ÷	A2ML1 =
Control_011	С	65.55024	2.621931	3589.1004	25.419226
Control_018	С	100.79234	2.651576	5701.4038	75.112406
Control_022	С	48.83145	1.741419	1481.4246	44.251731
Control_024	С	29.59242	1.732562	1031.3160	35.563810
Control_027	С	30.98524	NA	1822.7509	19.666680
Control_031	С	14.54406	NA	1782.3058	27.443337

ving 1 to 6 of 23 entries, 27745 total columns

```
trainall <- d.groups.all[c(1:4,7:13,17:21),]
testall <- d.groups.all[c(5:6,14:16,22:23),]
output <- testall[,1]
testall <- testall[,-1]
  lda.train.all <- lda(groupsall ~ ., data=trainall)
  lda.test.all <- predict(lda.train.all, testall)</pre>
```

table(lda.test.all\$class, output)

output

C S T

C 0 0 0

S 2 2 2

T 0 1 0

par (oma=c(1,1,1,1))

```
plot(lda.test1$x,col=as.numeric(labs1),cex=1.5,pch=15,main="Linear Discriminant
Plot\n(Using 27,744 Transcripts from Original Data)", ylab="LD2", xlab="LD1")
legend(0.4,0.8,pch=15,col=
unique(as.numeric(output)),unique(as.character(output)))
```


Conclusion: 5 test samples got misclassified.

#Linear Discriminant Analysis on ANOVA (1846 transcripts).

```
train <- d.groups[c(1:4,7:13,17:21),]</pre>
test <- d.groups[c(5:6,14:16,22:23),]
labs <- test[,1]</pre>
test <- test[,-1]</pre>
lda.trainA <- lda(groupsA ~ ., data=train)</pre>
lda.testA <- predict(lda.trainA, test)</pre>
   table(lda.testA$class, labs)
   labs
    CST
  C 2 0 0
  S 0 2 1
  T 0 1 1
       par (oma=c(1,1,1,1))
   plot(lda.testA$x,col=as.numeric(labs),cex=1.5,pch=15,main="Linear
    Discriminant Plot\n(Using 1,846 Transcripts from the ANOVA Test,\n log2-
    Transformed Data)", ylab="LD2", xlab="LD1")
    legend(-2.0,0.5,pch=15,col=
    unique(as.numeric(labs)), unique(as.character(labs)))
```


Conclusion: 2 samples from test set were classified incorrectly.

#Subset Data with Genes from the Holm Test(20).

```
datout.log.No.NA.Holm <- datout.log.No.NA[rownames(pvH),]</pre>
   dim(datout.log.No.NA.Holm)
   [1] 20 23
   View(datout.log.No.NA.Holm)
                                            01_018

0.625706

5.981261

10.363578

15.640148

9.133276

9.392033

9.392033

5.550991

5.397410
   ALASI
CISOFFAB
CZZ
CHIBLI
CLECAE
CXCLE
CYPZZBI
DNAJCSE
   groupsH <- factor(substr(names(datout.log.No.NA.Holm),1,1))</pre>
   d.groupsH <- data.frame(groupsH,t(datout.log.No.NA.Holm))</pre>
   View(d.groupsH)
                                                                                        7.552528
9.133276
                                    ALAS1
                                                C15orf48
                                                                            CCL21
                                     9.488019
9.625796
8.236702
         Control_011
                                                    6.206223
                                                                 9.928106
                                                                            14.030219
15.640148
                                                    5.981261
                                                                10.363578
         Control 022
                                                    6.083585
                                                                 8.454537
                                                                            14.808918
                                                                                          6.898893
         Control_027
                                     8.957351
                                                    5.320281
                                                                10.032477
                                                                            14.160617
                                                                                          5.763376
         Control 031
                                     8.503534
                                                    6.188508
                                                                 9.508168
                                                                            13.825192
                                                                                          8.024509
                                                                10.191503
     Sarcoidosis_005
                                    12.132968
11.459151
                                                   10.415717
                                                               8.274248
                                                                            12.707869
                                                                                         14.237976
   train <- d.groupsH[c(1:4,7:13,17:21),]</pre>
   test <- d.groupsH[c(5:6,14:16,22:23),]
   labs <- test[,1]</pre>
   test <- test[,-1]
   lda.train <- lda(groups ~ ., data=train)</pre>
   lda.test <- predict(lda.train,test)</pre>
   table(lda.test$class,labs)
     labs
         Co Sa TB
     Co
          2
               0
           0
               3
                   0
     Sa
     TΒ
           0
               0
                   2
   par (oma=c(1,1,1,1))
plot(lda.test$x,col=as.numeric(labs),cex=1.5,pch=15,main="Linear Discriminant
Plot\n(Using 20 Transcripts from the Holm Test,\n log2-Transformed Data)",
ylab="LD2", xlab="LD1")
legend(-5.0,-0.5,pch=15,col= unique(as.numeric(labs)), unique(as.character(labs)))
         Linear Discriminant Plot (Using 20 Transcripts from the Holm Test,
              log2-Transformed Data)
LD2
   0
                 ■ C
■ S
■ T
   ņ
     -10
```

Test sample set was classified correctly.

#Support vector machine algorithm (SVM)
library(kernlab)

datout.log.No.NA.Holm <- datout.log.No.NA[rownames(pvH),]</pre> View(datout.log.No.NA.Holm) ups × d.groups1 × datout.log.No.NA.Holm × d.group:>>> _____ Control_011 Control_018 Control_022 9.488019 ALAS1 9.625796 8.23670240 8.49251 C15orf48 6.206223 5.981261 6.08358463 6.09851 **C**7 9.928106 10.363578 8.45453702 8.45302 CCL21 14.030219 15.640148 14.80891844 13.60596 CHI3L1 7.552528 9.133276 6.89889277 7.92758 CLEC4E 9.749784 2.975636 6.13889759 7.45844 groupsH <- factor(substr(names(datout.log.No.NA.Holm),1,1))</pre> d.groupsH <- data.frame(groupsH,t(datout.log.No.NA.Holm))</pre> View(d.groupsH) og.No.NA.Holm × d.groupsH × GSEreorder × d.grc Filter ALAS1 C15orf48 groupsH Control_011 C 9.488019 6.206223 9.928106 Control_018 C 9.625796 5.981261 10.363578 Control_022 C 8.236702 6.083585 8.454537 Control 024 C 8.492510 6.098518 8.453027 Control_027 C 8.957351 5.320281 10.032477 Control_031 C 8.503534 6.188508 9.508168 owing 1 to 6 of 23 entries, 21 total columns dat.f.sub.H <- pvH[rownames(pvH),]</pre> > View(dat.f.sub.H) > dat.f.sub.H [1] 2.700519e-02 1.361710e-05 8.518631e-03 6.379488e-04 [5] 5.786055e-06 3.988156e-02 1.340064e-02 4.673795e-03 [9] 1.330780e-02 1.337230e-03 6.095653e-03 1.301722e-02 [13] 1.387408e-02 3.384643e-03 4.031312e-03 7.403439e-03 [17] 5.184531e-03 1.877543e-03 2.592348e-03 2.877153e-03 svp <- ksvm(t (datout.log.No.NA.Holm), d.groupsH\$groupsH, type="C-svc")</pre> svp > svp Support Vector Machine object of class "ksvm" SV type: C-svc (classification)
parameter : cost C = 1 Gaussian Radial Basis kernel function. Hyperparameter : sigma = 0.115666823818562 Number of Support Vectors : 21 Objective Function Value : -2.4094 -2.5351 -5.8004 Training error : 0.043478 fit <- fitted(svp)</pre> par (oma=c (0.2, 0.1, 0.2, 0.1), xpd=NA) plot(svp@coef[[1]], type="n", ylab="Coefficient*data", xlab="", axes=F, main="SVM using Holm-adjusted dataset") text(c(1:23), svp@coef[[1]], fit, col=as.numeric(factor(fit))) axis(1, at=c(1:23), labels=dimnames(d.groupsH)[[1]], cex.axis=1.0, las=3,cex=0.3) table(d.groupsH\$groupsH, fit) > table(d.groupsH\$groupsH, fit) fit

C S T

```
C 6 0 0
S 0 10 0
T 0 1 6
```


got misclassified.

#Select Differentially Expressed Transcripts from Filtered DATA (10,331 Significantly Expressed Genes)

Calculate the Fold Change Between the Groups (data are already on a log2 scale).

```
foldCvsSC <- apply((datout.log.No.NA[,c(1:6)]),1,mean) - apply((datout.log.No.NA</pre>
[,c(7:16)]),1,mean)
summary(foldCvsSC)
Min. 1st Qu. Median
                    Mean 3rd Qu.
-6.6335 -0.1797 0.2553 0.1954 0.6534 7.2298
foldCvsTB <- apply((datout.log.No.NA[,c(1:6)]),1,mean) - apply((datout.log.No.NA</pre>
[,c(17:23)]),1,mean)
summary(foldCvsTB)
Min. 1st Qu. Median
                    Mean 3rd Qu.
-6.3287 0.2447 0.7672 0.7375 1.2672 6.4738
foldSCvsTB <- apply((datout.log.No.NA[,c(7:16)]),1,mean) - apply((datout.log.No.NA</pre>
[,c(17:23)]),1,mean)
summary(foldSCvsTB)
   Min. 1st Qu. Median
                       Mean 3rd Qu.
-6.1012 0.1959 0.5261 0.5421 0.8616 5.8939
#Groups Control vs Sarcoidosis, 10,331 genes.
#Student's t-test (Group C vs SC)
      t.test.all.genes <- function(x,s1,s2) {</pre>
      x1 < -x[s1]
      x2 < - x[s2]
      x1 <- as.numeric(x1)</pre>
      x2 <- as.numeric(x2)</pre>
      t.out <- t.test(x1,x2, alternative="two.sided", var.equal=T)</pre>
      out <- as.numeric(t.out$p.value)</pre>
      return(out) }
t.test.runCvsSC <- apply(datout.log.No.NA,1,t.test.all.genes,s1=c(1:6),s2=c(7:16))
#Transform pvs
      p.transCvsSC <- -1 * log10(t.test.runCvsSC)</pre>
#Volcano Plot for Groups C vs SC
```

x.line <- -log10(.05)

#p-value=0.05

```
#Fold change cut off =2
      y.line <- log2(4)
plot(range(p.transCvsSC), range(foldCvsSC), type="n", xlab=expression(paste("-
",log[10],"(p-value)")), ylab=expression(paste(log[2],"fold change")),
main="Volcano Plot for Groups: Control vs Sarcoidosis")
points (p.transCvsSC, foldCvsSC, col="black", pch=16)
points(p.transCvsSC[(p.transCvsSC>x.line&foldCvsSC>y.line)],
foldCvsSC[(p.transCvsSC>x.line&foldCvsSC>y.line)],col=1,pch=21,bg='red')
points(p.transCvsSC[(p.transCvsSC >x.line&foldCvsSC<(-1*y.line))],</pre>
foldCvsSC[(p.transCvsSC>x.line&foldCvsSC< (-1*y.line))], col=1, pch=21,</pre>
ba='areen')
abline(v=x.line)
abline(h=y.line)
abline (h= (-1*y.line))
text(p.transCvsSC [(p.transCvsSC >x.line&foldCvsSC>y.line)],
foldCvsSC[(p.transCvsSC >x.line&foldCvsSC>y.line)],
col='red',label=dimnames(datout.log.No.NA)[[1]][(p.transCvsSC
>x.line&foldCvsSC>y.line)], cex=0.3)
text(p.transCvsSC [(p.transCvsSC >x.line&foldCvsSC<(-1*y.line))],</pre>
foldCvsSC[(p.transCvsSC >x.line&foldCvsSC<(-1*y.line))],</pre>
col='green',label=dimnames(datout.log.No.NA)[[1]][(p.transCvsSC
>x.line&foldCvsSC<(-1*y.line))], cex=0.3)</pre>
      Volcano Plot for Groups: Control vs Sarcoidosis
probesCvsSC <- dimnames(datout.log.No.NA[(t.test.runCvsSC <(.05/10331) &</pre>
abs(foldCvsSC)>log2(4)),])[[1]]
summary(probesCvsSC)
Length
           Class
                       Mode
       31 character character
cbind(t.test.runCvsSC[probesCvsSC], foldCvsSC[probesCvsSC])
                [,1]
                          [,2]
ADAMDEC1 1.995667e-06 -2.970779
        2.682151e-06 -2.620558
ATP6V1B2 3.064140e-06 -2.299304
C15orf48 1.943733e-09 -5.648423
        1.455742e-06 -2.765726
CAPG
CHI3L1
        6.504628e-10 -6.633524
CLEC7A
        1.131246e-06 -4.127716
        1.510108e-06 -2.285517
CTSB
```

```
1.640562e-06 -2.136761
CTS7
DNAJC5B 6.914977e-07 -4.653297
       1.184003e-06 -2.456877
FCER1G
FCGR2A
        1.972683e-06 -3.613768
        7.874777e-07 -3.202373
FTH1
FTH1P10 4.590626e-06 -2.838834
FTH1P11 2.851928e-06 -3.131324
FTH1P2 2.349724e-08 -2.923592
FTH1P21 4.048606e-06 -3.514155
FTH1P23 2.908397e-07 -3.339674
HLA-DQB2 8.188807e-09 -3.725602
        1.390034e-06 -2.375212
LPCAT2 9.902832e-07 -2.979450
MYOF
        4.162601e-06 -3.323409
NUPR1 5.814264e-07 -3.780972
        4.101183e-06 -2.389976
PGD
SCPEP1 1.031069e-06 -2.390965
       9.278260e-08 -2.510986
SLAMF7
SNX10
        9.197458e-08 -3.190226
        1.447131e-06 -2.711974
TFEC
        1.458967e-06 -2.405256
TFRC
        2.794675e-07 -3.524701
TLR8
TYROBP 3.803220e-06 -2.383775
#Group SC vs TB (10,331 Significantly Expressed transcripts).
#Student's t-test (Group C vs TB)
t.test.all.genes <- function(x,s1,s2) {</pre>
      x1 < -x[s1]
      x2 < - x[s2]
      x1 <- as.numeric(x1)</pre>
      x2 <- as.numeric(x2)</pre>
      t.out <- t.test(x1,x2, alternative="two.sided", var.equal=T)</pre>
      out <- as.numeric(t.out$p.value)</pre>
      return(out) }
t.test.runSCvsTB <-</pre>
apply(datout.log.No.NA,1,t.test.all.genes,s1=c(7:16),s2=c(17:23))
#Transform pvs
p.transSCvsTB <- -1 * log10(t.test.runSCvsTB)</pre>
#Volcano Plot for Groups SC vs TB
\#p-value=0.05
      x.line < - -log10(.05)
#fold change cut off =2
      y.line <- log2(4)
plot(range(p.transSCvsTB),range(foldSCvsTB),type="n", xlab=expression(paste("-
",log[10],"(p-value)")), ylab=expression(paste(log[2],"fold change")),
main="Volcano Plot for Groups: Sarcoidosis vs Tuberculosis")
points (p.transSCvsTB, foldSCvsTB, col="black", pch=16)
points(p.transSCvsTB[(p.transSCvsTB>x.line&foldSCvsTB>y.line)],
foldSCvsTB[(p.transSCvsTB>x.line&foldSCvsTB>y.line)],col=1,pch=21,bg='red')
points(p.transSCvsTB[(p.transSCvsTB >x.line&foldSCvsTB<(-1*y.line))],</pre>
foldSCvsTB[(p.transSCvsTB>x.line&foldSCvsTB< (-1*y.line))], col=1, pch=21,</pre>
bg='green')
abline(v=x.line)
abline(h=y.line)
```

```
abline (h=(-1*y.line))
text(p.transSCvsTB [(p.transSCvsTB >x.line&foldSCvsTB>y.line)],
foldSCvsTB[(p.transSCvsTB >x.line&foldSCvsTB>y.line)],
col='red',label=dimnames(datout.log.No.NA)[[1]][(p.transSCvsTB
>x.line&foldSCvsTB>y.line)], cex=0.3)
text(p.transSCvsTB [(p.transSCvsTB >x.line&foldSCvsTB<(-1*y.line))],</pre>
foldSCvsTB((p.transSCvsTB >x.line&foldSCvsTB<(-1*y.line))],</pre>
col='green',label=dimnames(datout.log.No.NA)[[1]][(p.transSCvsTB
>x.line&foldSCvsTB<(-1*y.line))], cex=0.3)</pre>
    Volcano Plot for Groups: Sarcoidosis vs Tuberculosis
             -log<sub>10</sub>(p-value)
probesSCvsTB <- dimnames(datout.log.No.NA[(t.test.runSCvsTB <(.05/10331) &</pre>
abs(foldSCvsTB)>log2(4)),])[[1]]
summary(probesSCvsTB)
Length
           Class
                       Mode
        O character character
cbind(t.test.runSCvsTB[probesSCvsTB], foldSCvsTB[probesSCvsTB])
   [,1] [,2]
(you should get 69-genes column)
#Identify DEG in Data Subset from the Holm Test (20 transcripts).
# Calculate the Fold Change Between the Groups.
#Subset Data With Genes from the Holm Test
datout.log.No.NA.Holm <- datout.log.No.NA[rownames(pvH),]</pre>
datout.log.No.NA.Holm
dim(datout.log.No.NA.Holm)
foldCvsSC <- apply((datout.log.No.NA.Holm[,c(1:6)]),1,mean) -</pre>
apply((datout.log.No.NA.Holm[,c(7:16)]),1,mean)
summary(foldCvsSC)
 Min. 1st Qu. Median
                      Mean 3rd Qu.
                                    Max.
-6.634 -3.874 -3.230 -2.983 -2.689
                                    2.236
foldCvsTB <- apply((datout.log.No.NA.Holm [,c(1:6)]),1,mean) -</pre>
apply((datout.log.No.NA.Holm [,c(17:23)]),1,mean)
summary(foldCvsTB)
```

```
Min. 1st Qu. Median Mean 3rd Qu. -6.175 -3.693 -3.046 -2.404 -2.552
                                    Max.
                                    5.067
foldSCvsTB <- apply((datout.log.No.NA.Holm [,c(7:16)]),1,mean) -</pre>
apply((datout.log.No.NA.Holm [,c(17:23)]),1,mean)
summary(foldSCvsTB)
#Group C vs SC (from Holm Test)
#Student's t-test (Group C vs SC) and Volcano Plot
t.test.all.genes <- function(x,s1,s2) {</pre>
      x1 < - x[s1]
      x2 < -x[s2]
      x1 <- as.numeric(x1)</pre>
      x2 <- as.numeric(x2)</pre>
      t.out <- t.test(x1,x2, alternative="two.sided", var.equal=T)</pre>
      out <- as.numeric(t.out$p.value)</pre>
      return(out) }
t.test.runCvsSC <-
apply(datout.log.No.NA.Holm,1,t.test.all.genes,s1=c(1:6),s2=c(7:16))
#Transform pvs
p.transCvsSC <- -1 * log10(t.test.runCvsSC)</pre>
#Volcano Plot for Groups C vs SC
#p-value=0.05
x.line <- -log10(.05)
#log fold change comparaison >2, C vs SC
y.line <- log2(4)
plot(range(p.transCvsSC), range(foldCvsSC), type="n", xlab=expression(paste("-
",log[10],"(p-value)")), ylab=expression(paste(log[2],"fold change")),
main="Volcano Plot for Groups: Control vs Sarcoidosis \n 20 Transcripts from the
Holm Test")
points(p.transCvsSC, foldCvsSC, col="black",pch=16)
points(p.transCvsSC[(p.transCvsSC>x.line&foldCvsSC>y.line)],
foldCvsSC[(p.transCvsSC>x.line&foldCvsSC>y.line)],col=1,pch=21,bg='red')
points(p.transCvsSC[(p.transCvsSC >x.line&foldCvsSC<(-1*y.line))],</pre>
foldCvsSC[(p.transCvsSC>x.line&foldCvsSC< (-1*y.line))], col=1, pch=21,</pre>
bg='green')
abline(v=x.line)
abline(h=y.line)
abline (h=(-1*y.line))
text(p.transCvsSC [(p.transCvsSC >x.line&foldCvsSC>y.line)],
foldCvsSC[(p.transCvsSC >x.line&foldCvsSC>y.line)],
col='red', label=dimnames (datout.log.No.NA.Holm) [[1]] [(p.transCvsSC
>x.line&foldCvsSC>y.line)], cex=0.8)
text(p.transCvsSC [(p.transCvsSC >x.line&foldCvsSC<(-1*y.line))],</pre>
foldCvsSC[(p.transCvsSC >x.line&foldCvsSC<(-1*y.line))],</pre>
col='green', label=dimnames (datout.log.No.NA.Holm) [[1]] [(p.transCvsSC
>x.line&foldCvsSC<(-1*y.line))], cex=0.8)</pre>
```

```
Volcano Plot for Groups: Control vs Sarcoidosis
20 Transcripts from the Holm Test
  0
log<sub>2</sub>fold change
                CXGL9 MODE THOUSE
  9
                -log<sub>10</sub>(p-value)
probesCvsSC <- dimnames(datout.log.No.NA.Holm [(t.test.runCvsSC <(.05/20) &</pre>
abs(foldCvsSC)>log2(4)),])[[1]]
summary(probesCvsSC)
Length
             Class
                           Mode
        18 character character
cbind(t.test.runCvsSC[probesCvsSC], foldCvsSC[probesCvsSC])
                   [,1]
                              [,2]
          2.682151e-06 -2.620558
ALAS1
C15orf48 1.943733e-09 -5.648423
          6.504628e-10 -6.633524
CHI3L1
CLEC4E
          3.799928e-05 -4.698049
CXCL9
         1.784240e-05 -3.257872
CYP27B1 1.026112e-05 -5.868966
DNAJC5B 6.914977e-07 -4.653297
         5.272044e-05 2.236074
FCGR2A
         1.972683e-06 -3.613768
          7.874777e-07 -3.202373
FTH1
FTH1P11 2.851928e-06 -3.131324
FTH1P2
          2.349724e-08 -2.923592
FTH1P23
         2.908397e-07 -3.339674
GBP1
          6.899795e-06 -2.389508
MYOF
          4.162601e-06 -3.323409
          9.197458e-08 -3.190226
SNX10
          1.447131e-06 -2.711974
TEEC
TLR8
          2.794675e-07 -3.524701
## DEG Group C vs TB (from Holm Test)
#Student's t-test (Group C vs TB) and Volcano Plot
t.test.all.genes <- function(x,s1,s2) {</pre>
       x1 < -x[s1]
       x2 < - x[s2]
       x1 <- as.numeric(x1)</pre>
       x2 <- as.numeric(x2)</pre>
       t.out <- t.test(x1,x2, alternative="two.sided", var.equal=T)</pre>
       out <- as.numeric(t.out$p.value)</pre>
       return(out) }
t.test.runCvsTB <-
```

apply (datout.log.No.NA.Holm, 1, t.test.all.genes, s1=c(1:6), $s2=c(\frac{17:23}{2})$)

#Transform pvs

```
p.transCvsTB <- -1 * log10(t.test.runCvsTB)</pre>
#Volcano Plot for Groups C vs TB
#p-value=0.05
x.line <- -log10(.05)
#fold change cut off =2
y.line <- log2(4)
plot(range(p.transCvsTB), range(foldCvsTB), type="n", xlab=expression(paste("-
",log[10],"(p-value)")), ylab=expression(paste(log[2],"fold change")),
main="Volcano Plot for Groups: Control vs Tuberculosis\n 20 Transcripts from the
Holm Test")
points(p.transCvsTB, foldCvsTB, col="black",pch=16)
points(p.transCvsTB[(p.transCvsTB>x.line&foldCvsTB>y.line)],
foldCvsTB[(p.transCvsTB>x.line&foldCvsTB>y.line)],col=1,pch=21,bq='red')
points(p.transCvsTB[(p.transCvsTB >x.line&foldCvsTB<(-1*y.line))],</pre>
foldCvsTB[(p.transCvsTB>x.line&foldCvsTB< (-1*y.line))], col=1, pch=21,</pre>
bg='green')
abline(v=x.line)
abline(h=y.line)
abline (h=(-1*y.line))
text(p.transCvsTB [(p.transCvsTB >x.line&foldCvsTB>y.line)],
foldCvsTB[(p.transCvsTB >x.line&foldCvsTB>y.line)],
col='red', label=dimnames (datout.log.No.NA.Holm) [[1]] [(p.transCvsTB
>x.line&foldCvsTB>y.line)], cex=0.8)
text(p.transCvsTB [(p.transCvsTB >x.line&foldCvsTB<(-1*y.line))],</pre>
foldCvsTB((p.transCvsTB >x.line&foldCvsTB<(-1*v.line))),</pre>
col='green',label=dimnames(datout.log.No.NA.Holm)[[1]][(p.transCvsTB
>x.line&foldCvsTB<(-1*y.line))], cex=0.8)</pre>
     Volcano Plot for Groups: Control vs Tuberculosis
20 Transcripts from the Holm Test
log<sub>2</sub>fold change
probesCvsTB <- dimnames(datout.log.No.NA.Holm[(t.test.runCvsTB < (.05/20) &</pre>
abs(foldCvsTB)>log2(4)),])[[1]]
summary(probesCvsTB)
Length
            Class
                        Mode
       20 character character
cbind(t.test.runCvsTB[probesCvsTB], foldCvsTB[probesCvsTB])
         2.747376e-04 -2.060521
C15orf48 1.009456e-06 -6.010223
          3.599599e-05 4.183338
        4.800004e-06 5.066724
CCL21
```

```
CHI3L1 1.237486e-05 -5.509020
CLEC4E 7.666812e-04 -4.450430
         1.276823e-05 -4.173201
CXCL9
CYP27B1 5.428212e-05 -6.175469
DNAJC5B 1.153625e-03 -3.328349
DSP
         5.690382e-06 3.897188
FCGR2A 7.118997e-05 -3.390011
FTH1
         1.521722e-04 -2.648333
FTH1P11 1.164838e-04 -2.573746
FTH1P2
         2.415613e-04 -2.486179
FTH1P23 1.277927e-04 -2.719947
GBP1
         1.352982e-05 -3.532579
         3.009921e-06 -3.395993
MYOF
         1.980435e-05 -3.282646
SNX10
TFEC
         6.314291e-05 -2.675928
TLR8
         4.474801e-05 -2.809198
##Select Differentially Expressed Transcripts from Data Subset = 1,846
transcripts from the ANOVA Test.
# Calculate the Fold Change Between the Groups.
#Subset Data with Genes that Have P-value < 0.05 from ANOVA
datout.log.No.NA.subA <- datout.log.No.NA[rownames(pvA),]</pre>
dim(datout.log.No.NA.subA)
[1] 1846 23
foldCvsSCa <- apply((datout.log.No.NA.subA [,c(1:6)]),1,mean) -</pre>
apply((datout.log.No.NA.subA [,c(7:16)]),1,mean)
summary(foldCvsSCa)
 Min. 1st Qu. Median
                     Mean 3rd Qu.
                                   Max.
-6.6335 -0.5814 0.5541 0.1300 0.9862 4.7626
foldCvsTBa <- apply((datout.log.No.NA.subA [,c(1:6)]),1,mean) -</pre>
apply((datout.log.No.NA.subA [,c(17:23)]),1,mean)
summary(foldCvsTBa)
Min. 1st Qu. Median Mean 3rd Qu. Max. -6.1755 0.7366 1.4060 1.0515 1.9422 6.4738
foldSCvsTBa <- apply((datout.log.No.NA.subA [,c(7:16)]),1,mean) -</pre>
apply((datout.log.No.NA.subA [,c(17:23)]),1,mean)
summary(foldSCvsTBa)
  Min. 1st Qu. Median
                      Mean 3rd Qu.
                                    Max.
-3.0265 0.5519 0.8633 0.9216 1.2527 5.8200
```

#Group comparison C vs SC (1,846 transcripts)
#Student's t-test (Group C vs SC) and Volcano Plot.

```
t.test.all.genes <- function(x,s1,s2) {
    x1 <- x[s1]
    x2 <- x[s2]
    x1 <- as.numeric(x1)
    x2 <- as.numeric(x2)
    t.out <- t.test(x1,x2, alternative="two.sided", var.equal=T)
    out <- as.numeric(t.out$p.value)</pre>
```

```
return(out) }
t.test.runCvsSCa <-</pre>
apply(datout.log.No.NA.subA,1,t.test.all.genes,s1=c(1:6),s2=c(7:16))
#Transform pvs
p.transCvsSCa <- -1 * log10(t.test.runCvsSCa)</pre>
#Volcano Plot for Groups C vs SC
#p-value=0.05
x.line < - -log10(.05)
#fold change=2
v.line <- log2(4)
plot(range(p.transCvsSCa),range(foldCvsSCa),type="n", xlab=expression(paste("-
",log[10],"(p-value)")), ylab=expression(paste(log[2],"fold change")),
main="Volcano Plot for Groups: Control vs Sarcoidosis\n 1,846 Transcripts from the
ANOVA Test")
points(p.transCvsSCa, foldCvsSCa, col="black",pch=16)
points(p.transCvsSCa[(p.transCvsSCa>x.line&foldCvsSCa>y.line)],
foldCvsSCa[(p.transCvsSCa>x.line&foldCvsSCa>y.line)],col=1,pch=21,bg='red')
points(p.transCvsSCa[(p.transCvsSCa >x.line&foldCvsSCa<(-1*y.line))],</pre>
foldCvsSCa[(p.transCvsSCa>x.line&foldCvsSCa< (-1*y.line))], col=1, pch=21,</pre>
bg='green')
abline(v=x.line)
abline(h=y.line)
abline (h=(-1*y.line))
text(p.transCvsSCa [(p.transCvsSCa >x.line&foldCvsSCa>y.line)],
foldCvsSCa[(p.transCvsSCa >x.line&foldCvsSCa>y.line)],
col='red', label=dimnames (datout.log.No.NA.subA) [[1]] [(p.transCvsSCa
>x.line&foldCvsSCa>y.line)], cex=0.8)
text(p.transCvsSCa [(p.transCvsSCa >x.line&foldCvsSCa<(-1*y.line))],</pre>
foldCvsSCa[(p.transCvsSCa >x.line&foldCvsSCa<(-1*y.line))],</pre>
col='green',label=dimnames(datout.log.No.NA.subA)[[1]][(p.transCvsSCa
>x.line&foldCvsSCa<(-1*y.line))], cex=0.8)</pre>
       Volcano Plot for Groups: Control vs Sarcoidosis
         1,846 Transcripts from the ANOVA Test
og<sub>2</sub>fold change
               -log<sub>10</sub>(p-value)
```

probesCvsSCa <- dimnames(datout.log.No.NA.subA [(t.test.runCvsSCa <(.05/1846) &

Gene Expression Data Analysis and Visualization

abs(foldCvsSCa)>log2(4)),])[[1]]

summary(probesCvsSCa)

Length Class Mode 68 character character

cbind(t.test.runCvsSCa[probesCvsSCa], foldCvsSCa[probesCvsSCa])

```
[,1]
                           [,2]
ABCA8 1.718201e-05 3.116552
         1.877782e-05 -2.304259
ACO1
ADAMDEC1 1.995667e-06 -2.970779
AK4
         1.728302e-05 -3.730563
         2.682151e-06 -2.620558
ALAS1
ATP6V1B2 3.064140e-06 -2.299304
C15orf48 1.943733e-09 -5.648423
         1.243881e-05 -2.333185
C1QB
         1.455742e-06 -2.765726
CAPG
CD68
         9.937159e-06 -2.074532
CHI3L1
         6.504628e-10 -6.633524
         1.131246e-06 -4.127716
CLEC7A
CTSB
         1.510108e-06 -2.285517
         2.306033e-05 -2.102741
CTSD
        1.640562e-06 -2.136761
CTSZ
        1.874852e-05 -2.836073
CXCL16
CXCL9
        1.784240e-05 -3.257872
CYP27B1 1.026112e-05 -5.868966
DNAJC5B 6.914977e-07 -4.653297
DOCK4
         9.785807e-06 -2.731029
         2.416273e-05 -2.498420
DRAM1
        1.184003e-06 -2.456877
FCER1G
         1.972683e-06 -3.613768
FCGR2A
         7.874777e-07 -3.202373
FTH1
FTH1P10 4.590626e-06 -2.838834
FTH1P11 2.851928e-06 -3.131324
FTH1P16 2.443195e-05 -3.408279
FTH1P2
        2.349724e-08 -2.923592
FTH1P21 4.048606e-06 -3.514155
FTH1P23 2.908397e-07 -3.339674
         6.899795e-06 -2.389508
GBP1
         6.694482e-06 -2.072059
GNS
         1.371907e-05 -2.374707
HEXB
HLA-DQB2 8.188807e-09 -3.725602
HTRA4
        1.381300e-05 -3.784227
         1.390034e-06 -2.375212
IFI27
        1.617719e-05 -2.877775
ITGB5
        4.857033e-06 -3.536005
LILRB3
LPCAT2
         9.902832e-07 -2.979450
         1.965911e-05 -2.962790
LYZ
MCTP1
         1.657141e-05 -2.403003
MMP14
         2.158014e-05 -2.544764
MOSPD1
        8.364913e-06 -2.155091
MREG
        1.215367e-05 -2.790176
MYOF
         4.162601e-06 -3.323409
         9.174493e-06 -2.748483
NCF2
NR1H3
         1.021327e-05 -2.011003
NRIP3
         1.588936e-05 -3.417022
NUPR1
         5.814264e-07 -3.780972
         4.101183e-06 -2.389976
PGD
PLA2G7
         6.685064e-06 -2.631595
PLAU
         1.884722e-05 -3.149676
```

```
PLBD1
         8.779794e-06 -3.288518
PLXDC2 1.702212e-05 -2.899976
        1.656208e-05 -2.761481
PTAFR
SCPEP1 1.031069e-06 -2.390965
        1.620093e-05 -2.340678
SIRPA
       9.278260e-08 -2.510986
SLAMF7
SLC1A3 1.180835e-05 -2.916421
SNX10 9.197458e-08 -3.190226
SOD2
       9.488609e-06 -2.248187
STEAP3 1.018094e-05 -3.944244
TFEC
         1.447131e-06 -2.711974
         1.458967e-06 -2.405256
TFRC
         2.794675e-07 -3.524701
TLR8
TYROBP
         3.803220e-06 -2.383775
UBE2D1 7.980097e-06 -2.075839
WARS
        1.529053e-05 -2.104042
#Group comparison C vs TB (1,846 transcripts).
#Student's t-test (Group C vs TB)
t.test.all.genes <- function(x,s1,s2) {</pre>
      x1 < - x[s1]
      x2 < - x[s2]
      x1 <- as.numeric(x1)</pre>
      x2 <- as.numeric(x2)
      t.out <- t.test(x1,x2, alternative="two.sided", var.equal=T)</pre>
      out <- as.numeric(t.out$p.value)</pre>
      return(out) }
t.test.runCvsTBa <-</pre>
apply (datout.log.No.NA.subA, 1, t.test.all.genes, s1=c(1:6), s2=c(\frac{17:23}{2}))
#Transform pvs
p.transCvsTBa <- -1 * log10(t.test.runCvsTBa)</pre>
#Volcano Plot for Groups C vs SC
#p-value=0.05
x.line <- -log10(.05)
#fold change=2
y.line <- log2(4)
plot(range(p.transCvsTBa),range(foldCvsTBa),type="n", xlab=expression(paste("-
",log[10],"(p-value)")), ylab=expression(paste(log[2],"fold change")),
main="Volcano Plot for Groups: Control vs Tuberculosis\n 1,846 Transcripts from
the ANOVA Test")
points(p.transCvsTBa, foldCvsTBa, col="black",pch=16)
points(p.transCvsTBa[(p.transCvsTBa>x.line&foldCvsTBa>y.line)],
foldCvsTBa[(p.transCvsTBa>x.line&foldCvsTBa>y.line)],col=1,pch=21,bg='red')
points(p.transCvsTBa[(p.transCvsTBa >x.line&foldCvsTBa<(-1*y.line))],</pre>
foldCvsTBa[(p.transCvsTBa>x.line&foldCvsTBa< (-1*y.line))], col=1, pch=21,</pre>
bg='green')
abline(v=x.line)
abline(h=y.line)
abline(h=(-1*y.line))
text(p.transCvsTBa [(p.transCvsTBa >x.line&foldCvsTBa>y.line)],
foldCvsTBa[(p.transCvsTBa >x.line&foldCvsTBa>y.line)],
```

```
col='red', label=dimnames (datout.log.No.NA.subA) [[1]][(p.transCvsTBa
>x.line&foldCvsTBa>y.line)], cex=0.8)
text(p.transCvsTBa [(p.transCvsTBa >x.line&foldCvsTBa<(-1*y.line))],</pre>
foldCvsTBa[(p.transCvsTBa >x.line&foldCvsTBa<(-1*y.line))],</pre>
col='green',label=dimnames(datout.log.No.NA.subA)[[1]][(p.transCvsTBa
>x.line&foldCvsTBa<(-1*y.line))], cex=0.8)</pre>
     Volcano Plot for Groups: Control vs Tuberculosis
1,846 Transcripts from the ANOVA Test
probesCvsTBa <- dimnames(datout.log.No.NA.subA [(t.test.runCvsTBa <(.05/1846) &
abs(foldCvsTBa)>log2(4)),])[[1]]
summary(probesCvsTBa)
  Length
               Class
                             Mode
        12 character character
cbind(t.test.runCvsTBa[probesCvsTBa], foldCvsTBa[probesCvsTBa])
                [,1]
                          [,2]
ADH1B 7.697494e-07
C15orf48 1.009456e-06 -6.010223
CCL21 4.800004e-06 5.066724
CHI3L1 1.237486e-05 -5.509020
CXCL9
        1.276823e-05 -4.173201
        5.690382e-06 3.897188
FCMR
        1.498026e-05 4.077411
GBP1
        1.352982e-05 -3.532579
MATN2
        1.839001e-05 3.136921
```

Using the top 5 discriminant gene names (positive and negative direction) and functional information (NCBI's DAVID associated pathways, GO terms) for top 10 genes.

3.009921e-06 -3.395993

SNX10 1.980435e-05 -3.282646 SYT15 6.986989e-06 4.363464

MYOF

GitHub DGE Project

Genes	CvsSC pvalue	CvsSC FC	CvsTB pvalue	CvsTB FC	GO, biological process	Cellular Pathway	name
CHI3L1	6.50E-10	-6.633524	1.24E-05	-5.509	inflammatory response	regulation of neutrophil chemotaxis	chitinase 3 like 1
C15orf48	1.94E-09	-5.648423			oxidation-reduction	ion transport	chromosome 15 open reading frame 48
HLA-DQB2	8.19E-09	-3.725602			innate immune response	antigen processing and presentation	Major Histocompatibility Complex, Class II, DQ Beta 2
CLEC7A	1.13E-06	-4.127716			innate immune response	pattern recognition receptor signaling	C-type lectin domain family 7 member A
NUPR1	5.81E-07	-3.780972			inflammatory response	regulation of transcription by RNA polymerase II	Nuclear protein 1, short sequence motif:Nuclear localization signal
DSP	5.27E-05	2.236074			Glycolysis / Gluconeogenesis	ethanol oxidation	Alcohol dehydrogenase 1B, chain
CCL21	5.27E-05	2.236074	4.80E-06	5.06672	immune response	Chemokine signaling	C-C motif chemokine ligand 21
ABCA8	1.72E-05	3.116552			xenobiotic transport	ABC transporter	ATP binding cassette subfamily A member 8
С7			3.60E-05	4.18334	innate immune response	complement activation signaling	complement C7
MATN2	1.84E-05	3.136921			calcium ion binding	cell migration	matrilin 2

See presentation.