

Task History

Initiating Search

February 21, 2025, 5:40 PM

Substances:

Filtered By:

Structure Match: Substructure

Search Tasks

Task		Search Type	View
Returned Substance Results + Filters (12,935) Exported: Retrieved Related Reaction Results + Filters (910)		Substances Reactions	View Results View Results
Substance Role: Catalyst:	Reactant, Reagent, Solvent		
	Bis(diphenylphosphino)ferrocene]dichloropalladium, [1,3-Bis[2,6-bis(1-ethylpropyl)phenyl]-1,3-dihydro-2 <i>H</i> -imidazol-2-ylidene]chloro(η ³ -2-propen-1-yl)palladium, [1,3-Bis[2,6-bis(1-methylethyl)phenyl]-1,3-dihydro-2 <i>H</i> -imidazol-2-ylidene]chloro[(1,2,3-η)-1-phenyl-2-propen-1-yl]palladium, [1,3-Bis[2,6-bis(1-methylethyl)phenyl]-2-imidazolidinylidene] (tricyclohexylphosphine)palladium, [1,3-Dihydro-1,3-bis(2,4,6-trimethylphenyl)-2 <i>H</i> -imidazol-2-ylidene]bis[(3,4-η)-2,5-furandione]palladium, [2'-(Amino-κ <i>M</i>)[1,1'-biphenyl]-2-yl-κ <i>C</i>][1'-[bis(1,1-dimethylethyl)phosphino]-1,2,3,4,5-pentaphenylferrocene](methanesulfonato-κ <i>O</i>)palladium, [2'-(Amino-κ <i>M</i>)[1,1'-biphenyl]-2-yl-κ <i>C</i>]chloro[tris(1,1-dimethylethyl)phosphine]palladium, (η ⁵ -2,4-Cyclopentadien-1-yl)(η ³ -2-propen-1-yl)palladium, Bis(2'-(amino-κ <i>M</i>)[1,1'-biphenyl]-2-yl-κ <i>C</i>]bis[μ-(methanesulfonato-κ <i>O</i> :κ <i>O</i>)]dipalladium, Bis(acetonitrile)bis(4-methylbenzenesulfonato-κ <i>O</i>)palladium, Bis(benzonitrile)dichloropalladium, Bis(dibenzylideneacetone)palladium, Bis(tri- <i>tert</i> -butylphosphine)palladium, Copper, compd. with palladium (0.6:1), Chloro(η ³ -2-propen-1-yl)		

[tricyclohexyl[1-(dicyclohexylphosphinoκP)ethylidene]phosphorane]palladium, Dichloro[1,1'bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct, Dichloro[(1,2,5,6-η)-1,5cyclooctadiene]palladium, Di-μ-chlorobis(η³-2propenyl)dipalladium, Dichlorobis(triphenylphosphine)palladium, Palladium, Palladium(1+), [2'-(amino-κ/)[1,1'biphenyl]-2-yl-κC][[3,6-dimethoxy-2',4',6'-tris(1methylethyl)[1,1'-biphenyl]-2-yl-κC¹']bis(1,1dimethylethyl)phosphine-κPJ-, (SP-4-2)-, methanesulfonate (1:1), Palladium(1+), bis(acetonitrile)[(1,2,3-η)-1-phenyl-2-propen-1-yl]-, tetrafluoroborate(1-) (1:1), Palladium(1+), hydro-d-(methan-d₃-ol-d)[1,1'-(1,3-propanediyl)bis[1,1bis(1,1-dimethylethyl)phosphine-κP]]-, (SP-4-3)-, 1,1,1-trifluoromethanesulfonate (1:1), Palladium(2+), (acetonitrile)tris(triphenylphosphine)-, (SP-4-2)-, tetrafluoroborate(1-) (1:2), Palladium(2+), bis[1,1'-(1R)-[1,1'-binaphthalene]-2,2'-diylbis[1,1diphenylphosphine-κP]]di-μ-hydroxydi-, tetrafluoroborate(1-) (1:2), Palladium(2+), bis[1,1'-(15)-[1,1'-binaphthalene]-2,2'-diylbis[1,1diphenylphosphine-κP]]di-μ-hydroxydi-, tetrafluoroborate(1-) (1:2), Palladium(2+), bis[µ-(acetato-κO:κO')]bis(2,9-dimethyl-1,10phenanthroline- κN^1 , κN^{10})di-, 1,1,1trifluoromethanesulfonate (1:2), Palladium(2+), bis[N,N'-(1,2-dimethyl-1,2-ethanediylidene)bis[3,5bis(1,1-dimethylethyl)benzenamine-κ//]]di-μhydroxydi-, Palladium(2+), diaqua[1,1'-(1,3propanediyl)bis[1,1-diphenylphosphine-κP]]-, (SP-4-2)-, tetrafluoroborate(1-) (1:2), Palladium(2+), tetrakis(acetonitrile)-, (SP-4-1)-, tetrafluoroborate(1-) (1:2), Palladium acetylacetonate, Palladium chloride, Palladium, compd. with titanium (1:1), Palladium diacetate, Palladium dihydroxide, Palladium hydroxide, Palladium, [N,N'-1,2acenaphthylenediylidenebis[2,4-bis(diphenylmethyl)-6-methylbenzenamine-κ/N]dichloro-, (SP-4-2)-, Palladium oxide (PdO), Palladium titanium oxide, Palladium trifluoroacetate, Palladium, tris[μ-[(1,2η:4,5-η)-(1 E,4E)-1,5-diphenyl-1,4-pentadien-3one]]di-, compd. with trichloromethane (1:1), (SP-4-1)-[1,3-Bis[2,6-bis(1-methylethyl)phenyl]-1,3-dihydro-2H-imidazol-2-ylidene]dichloro(3-chloropyridineкМ)palladium, (SP-4-1)-(Acetato-к O)[2,6bis[(diphenylphosphino-κP)methyl]-3,5dimethylphenyl-kC]palladium, (SP-4-1)-Chloro[rel-4methoxy-2,6-bis[[(R)-(4-methoxyphenyl)selenoκSe]methyl]phenyl-κC]palladium, (SP-4-1)-Chloro[rel-4-methoxy-2,6-bis[[(R)-phenylselenoκSe]methyl]phenyl-κC]palladium, (SP-4-2)-[1,1'-Bis[bis(1,1-dimethylethyl)phosphinoκP]ferrocene]dichloropalladium, (SP-4-2)-(1,2-Ethanediamine- κN^1 , κN^2) bis(1,1,1trifluoromethanesulfonato-κO)palladium, (SP-4-2)-(1,2-Ethanediamine- κN^1 , κN^2)bis(nitratoκO)palladium, (SP-4-2)-(1,2-Ethanediamine- κN^1 , κN^2) bis (perchlorato- κO) palladium, (SP-4-2)-(1,2-Ethanediamine- κN^1 , κN^2) bis [tetrafluoroborato(1-)к-F]palladium, (SP-4-2)-Bis(acetato-к O)(2,9-dimethyl-1,10-phenanthroline- κN^1 , κN^{10})palladium, (*SP*-4-2)-

Chloro[rel-4-methoxy-2-[[(R)-(4methoxyphenyl)seleno-κSe]methyl]-6-[[(S)-(4methoxyphenyl)seleno-κSe]methyl]phenylκC]palladium, (SP-4-2)-Chloro[rel-4-methoxy-2-[[(R)phenylseleno-κ*Se*]methyl]-6-[[(*S*)-phenylselenoκSe]methyl]phenyl-κC]palladium, (SP-4-3)-[[2',6'-Bis(1-methylethoxy)[1,1'-biphenyl]-2yl]dicyclohexylphosphine-κ*P*l(methanesulfonato-κ*O*) [2'-(methylamino-κ/)[1,1'-biphenyl]-2-ylκC]palladium, (SP-4-3)-Chlorohydrobis[tris(1,1dimethylethyl)phosphine]palladium, (SP-4-3)-Dichloro[(5*S*,7*S*,7a*S*,12*S*,14*S*,14a*S*)-dodecahydro-7,14-methano-2*H*,6*H*-dipyrido[1,2-*a*:1',2'-*e*] [1,5]diazocine- κN^5 , κN^{12}]palladium, stereoisomer of $(\eta^{5}-2,4-Cyclopentadien-1-yl)[(1,2,3-\eta)-1-phenyl-2$ propen-1-yl]palladium, Stereoisomer of chloro[η³-2,4-dimethyl-6-methylene-1-[(8-quinolinyl-κΛ)(2,4,6trimethylphenyl)boryl-ĸB]-2,4-cyclohexadien-1-ylκC]palladium, Stereoisomer of dichloro[1,1'tricyclo[8.2.2.2^{4,7}]hexadeca-4,6,10,12,13,15-hexaene-5,11-diylbis[1,1-bis(3,5-dimethylphenyl)phosphineκP]]palladium, (7-4)-Tetrakis(triphenyl phosphiteκP)palladium, Tetrakis(triphenylphosphine)palladium,

Tris(dipenzylideneacetone)dipalladium

Document Type:

Language:

English

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (70)

View in CAS SciFinder

Steps: 1 Yield: 100%

Steps: 1 Yield: 100%

Scheme 1 (1 Reaction)

31-614-CAS-38487677

Steps: 1 Yield: 100%

1.1 Reagents: Silver carbonate, 2-Propan-*1,1,1,2,3,3,3-d*₇-ol-*d*Catalysts: Palladium diacetate, (+)-Pyroglutamic acid; 18 h, 80
°C

Experimental Protocols

Palladium-Catalyzed Enantioselective C-H Olefination to Access Planar-Chiral Cyclophanes by Dynamic Kinetic Resolution

By: Dong, Ziyang; et al

Angewandte Chemie, International Edition (2023), 62(51), e202315603.

Scheme 2 (2 Reactions)

31-614-CAS-38487684

Steps: 1 Yield: 100%

Reagents: Silver carbonate, 2-Propan-1,1,1,2,3,3,3-d₇-ol-d
 Catalysts: Palladium diacetate, (+)-Pyroglutamic acid; 18 h, 80
 °C

Experimental Protocols

Palladium-Catalyzed Enantioselective C-H Olefination to Access Planar-Chiral Cyclophanes by Dynamic Kinetic Resolution

By: Dong, Ziyang; et al

Angewandte Chemie, International Edition (2023), 62(51), e202315603.

31-614-CAS-38487683

Steps: 1 Yield: 100%

1.1 **Reagents:** Silver carbonate, 2-Propan-*1*, *1*, *1*, *2*, *3*, *3*, *4*₇-ol-*d* **Catalysts:** DL-Pyrrolidonecarboxylic acid, Palladium diacetate; 18 h, 80 °C

Experimental Protocols

Palladium-Catalyzed Enantioselective C-H Olefination to Access Planar-Chiral Cyclophanes by Dynamic Kinetic Resolution

By: Dong, Ziyang; et al

Angewandte Chemie, International Edition (2023), 62(51), e202315603.

Scheme 3 (1 Reaction)

Steps: 1 Yield: 99%

31-614-CAS-24633317

Steps: 1 Yield: 99%

Reagents: Sodium dodecyl sulfate

Catalysts: Palladium chloride, (α *S*,α' *S*)-α,α'-Bis(1,1-dimethy

lethyl)[2,2'-bipyridine]-6,6'-dimethanol Solvents: Methanol-d₄; 18 h, rt

Experimental Protocols

Hydrogen-Bonding-Assisted Cationic Aqua Palladium(II) Complex Enables Highly Efficient Asymmetric Reactions in Water

By: Kitanosono, Taku; et al

Angewandte Chemie, International Edition (2021), 60(7), 3407-3411.

Scheme 4 (1 Reaction)

31-491-CAS-18113143

Steps: 1 Yield: 98%

Reagents: lodobenzene diacetate Catalysts: Palladium diacetate Solvents: m-Xylene; 24 h, 90 °C

Experimental Protocols

Pd(II)-catalyzed alkoxylation of unactivated C(sp³)-H and C (sp²)-H bonds using a removable directing group: efficient synthesis of alkyl ethers

Steps: 1 Yield: 95%

By: Chen, Fa-Jie; et al

Chemical Science (2013), 4(11), 4187-4192.

Scheme 5 (1 Reaction)

31-116-CAS-1276990

Steps: 1 Yield: 95%

New formation of 4,5,6,7-tetrahydroisoindoles

Reagents: Formic-d acid, ammonium salt

Catalysts: Palladium dihydroxide Solvents: Methanol-d₄; 14 h, reflux By: Hou, Duen-Ren; et al

Tetrahedron Letters (2005), 46(35), 5927-5929.

Steps: 1 Yield: 94%

Steps: 1 Yield: 12%

Steps: 1 Yield: 94%

Steps: 1 Yield: 12-92%

Scheme 6 (1 Reaction)

31-614-CAS-24225313

Reagents: Methanol- d_4 , (-)-Camphorsulfonic acid Catalysts: Palladium trifluoroacetate, 1,1'-(1 R)-[1,1'-Binapht halene]-2,2'-diylbis[bis(4-methylphenyl)phosphine Solvents: Acetone; 30 min, rt

1.2 **Reagents:** *p*-Toluenesulfonic acid Solvents: Benzene; 5 min, rt

Suppliers (58)

Reagents: Hydrogen 1.3

Solvents: Dichloromethane; 24 h, 1000 psi, 80 °C; 80 °C → rt

Reagents: Sodium bicarbonate Solvents: Water; 10 - 15 min, rt

Experimental Protocols

Synthesis of chiral piperazin-2-ones through palladiumcatalyzed asymmetric hydrogenation of pyrazin-2-ols

By: Feng, Guang-Shou; et al

Organic Chemistry Frontiers (2021), 8(22), 6273-6278.

Scheme 7 (2 Reactions)

31-614-CAS-37287851

Steps: 1 Yield: 92% Reagents: Acetic acid, Iodobenzene diacetate Catalysts: Palladium diacetate, 6-[1-Methyl-1-(2-quinolinyl)

ethyl]-2(1H)-pyridinone

Solvents: 2-Propan-2-d-ol-d, 1,1,1,3,3,3-hexafluoro-; 24 h, 100

Experimental Protocols

Enhancing Substrate-Metal Catalyst Affinity via Hydrogen Bonding: Pd(II)-Catalyzed β-C(sp³)-H Bromination of Free Carboxylic Acids

By: Hu, Liang; et al

Journal of the American Chemical Society (2023), 145(30), 16297-16304.

31-614-CAS-37287844

Reagents: Acetic acid, N-Bromosuccinimide, Iodobenzene diacetate

Catalysts: N-Acetylalanine, Palladium diacetate

Solvents: 2-Propan-2-d-ol-d, 1,1,1,3,3,3-hexafluoro-; 24 h, 100

Experimental Protocols

Enhancing Substrate-Metal Catalyst Affinity via Hydrogen Bonding: Pd(II)-Catalyzed β-C(sp³)-H Bromination of Free Carboxylic Acids

By: Hu, Liang; et al

Journal of the American Chemical Society (2023), 145(30), 16297-16304.

Steps: 1 Yield: 92%

Steps: 1 Yield: 91%

Scheme 8 (1 Reaction)

➤ Suppliers (90)

Supplier (1)

Steps: 1 Yield: 92%

31-116-CAS-5663328

Reagents: Sodium carbonate, Methanol- d4

Catalysts: Palladium diacetate

Solvents: Dimethyl sulfoxide; 5 h, 120 °C

Palladium-Catalyzed Dehydrogenative β-Arylation of Simple Saturated Carbonyls by Aryl Halides

By: Gandeepan, Parthasarathy; et al

ACS Catalysis (2014), 4(12), 4485-4489.

Scheme 9 (1 Reaction)

31-116-CAS-22933181

Steps: 1 Yield: 91%

Reagents: Ethanol-d

Supplier (1)

Catalysts: Di-µ-chlorobis(η³-2-propenyl)dipalladium, 1,1'-(9,9-Dimethyl-9H-xanthene-4,5-diyl)bis[1,1-diphenylphosphine];

24 h, 100 °C

Divergent Syntheses of Indoles and Quinolines Involving N1-C2-C3 Bond Formation through Two Distinct Pd Catalyses

By: San Jang, Su; et al

Organic Letters (2020), 22(23), 9151-9157.

Scheme 10 (1 Reaction)

31-614-CAS-40822170

Steps: 1 Yield: 91%

Reagents: Methanol-d

Catalysts: Cupric acetate, Palladium diacetate

Solvents: Toluene; 1 h, 120 °C

Experimental Protocols

Synthesis of 1,2'-Spirobi[indene]-1,3-diones by Pd(II)-Catalyzed C-H Activation and Alkynes Annulation Reaction

By: Xu, Xuefeng; et al

Advanced Synthesis & Catalysis (2024), 366(13), 2926-2932.

Steps: 1 Yield: 90%

Scheme 11 (1 Reaction)

Suppliers (26)

31-116-CAS-18990978

Reagents: Cesium carbonate, Methanol-d4, 4-Bromo-N,Ndimethylbenzamide

Catalysts: Lithium tert-butoxide, Palladium trifluoroacetate Solvents: Dimethylformamide; 20 min, 1 atm, 140 °C

Experimental Protocols

Catalytic Lactonization of Unactivated Aryl C-H Bonds with C O₂: Experimental and Computational Investigation

By: Song, Lei; et al

Organic Letters (2018), 20(13), 3776-3779.

Scheme 12 (1 Reaction)

31-614-CAS-37050871

Reagents: Silver carbonate, Methanol-d4

Catalysts: Palladium diacetate

Solvents: (Trifluoromethyl)benzene; 12 h, 120 °C

Experimental Protocols

Catalyst-controlled regiodivergent C-H bond alkenylation of 2pyridylthiophenes

By: Zhang, Qiang; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(57), 8842-8845.

Scheme 13 (1 Reaction)

31-116-CAS-4563156

Steps: 1 Yield: 90%

Reagents: Deuterium chloride, Deuterium

Catalysts: Palladium

Solvents: Methanol-d, Water-d₂; 6 h, 3 bar, 60 °C

Reagents: Sodium hydroxide

Solvents: Water

Convenient methods for the synthesis of d₄, d₂ and d₆ isotop omers of 4-(4-fluorobenzyl)piperidine

By: Proszenyak, Agnes; et al

Journal of Labelled Compounds & Radiopharmaceuticals (2005), 48(6), 421-427.

Steps: 1 Yield: 90%

Steps: 1 Yield: 89%

Steps: 1 Yield: 85%

Scheme 14 (1 Reaction)

$$\xrightarrow{\text{HN}} \xrightarrow{\text{F}} \xrightarrow{\text{D}} \xrightarrow{\text{D}} \xrightarrow{\text{D}}$$

➤ Suppliers (79)

31-116-CAS-11564808

1.1 Reagents: Deuterium chloride, Deuterium

Catalysts: Palladium

Solvents: Methanol-d, Water-d₂; 6 h, 3 bar, 60 °C

1.2 Reagents: Sodium hydroxide

Solvents: Water

Convenient methods for the synthesis of d_4 , d_2 and d_6 isotop omers of 4-(4-fluorobenzyl)piperidine

By: Proszenyak, Agnes; et al

Journal of Labelled Compounds & Radiopharmaceuticals

(2005), 48(6), 421-427.

Scheme 15 (1 Reaction)

31-243-CAS-21421505

Steps: 1 Yield: 89%

Steps: 1 Yield: 90%

1.1 **Catalysts:** Palladium trifluoroacetate, (2*R*)-1-[(1*S*)-1-[Bis(1,1-dimethylethyl)phosphino]ethyl]-2-(diphenylphosphino) ferrocene

Solvents: Acetone; 30 min, rt

1.2 Catalysts: Benzoic acid

Solvents: 2,2,2-Trifluoroethan-1,1-d₂-ol-d; 1 min, rt

1.3 Reagents: Hydrogen

Solvents: 2,2,2-Trifluoroethan-*1*,*1*-*d*₂-ol-*d*; 24 h, 1000 psi, 80

۰ر

1.4 Reagents: Sodium bicarbonate Solvents: Water; 10 - 15 min, 80 °C

Experimental Protocols

Facile Synthesis of Chiral Cyclic Ureas through Hydroge nation of 2-Hydroxypyrimidine/Pyrimidin-2(1H)-one Tautomers

By: Feng, Guang-Shou; et al

Angewandte Chemie, International Edition (2018), 57(20), 5853-5857.

Scheme 16 (1 Reaction)

➤ Suppliers (3)

31-116-CAS-16366004 Steps: 1 Yield: 85% Facile Hydrogenolysis of C(sp³)-C(sp³) σ Bonds By: Fillion, Eric; et al Advanced Synthesis & Catalysis (2016), 358(21), 3422-3434. Experimental Protocols

31-116-CAS-2385686

Steps: 1 Yield: 84%

Synthesis of deuterated dihydrochalcones

By: Comeskey, Daniel J.; et al

Reagents: Sodium formate, Methanol-d

Catalysts: Palladium; 4 h, reflux

Solvents: Water; acidified

Reagents: Hydrochloric acid 1.2

Journal of Labelled Compounds and Radiopharmaceuticals (2006), 49(6), 479-487.

Scheme 20 (1 Reaction)

Steps: 1 Yield: 80%

$$\rightarrow \bigvee_{O} \bigvee_{D} \bigvee_{D}$$

📜 Suppliers (8)

31-116-CAS-24683939

Steps: 1 Yield: 80%

Palladium-catalyzed oxidative annulation of N-(8-quinolinyl) aryl carboxamides with 1-aryl-2-tosyloxy ethanones 1.1 **Reagents:** Methanol- d_4 , Tripotassium phosphate, Oxygen

Catalysts: Palladium diacetate By: Long, Qinghuang; et al

Solvents: Methanol-d₄; 8 h, 120 °C Synthetic Communications (2021), 51(18), 2796-2807.

Scheme 21 (1 Reaction)

Steps: 1 Yield: 74%

Steps: 1 Yield: 74%

> Supplier (1)

31-116-CAS-22890742

Steps: 1 Yield: 74%

Reagents: Silver carbonate, Methanol-d4, Trifluoromethane

sulfonic acid, Silver triflate Catalysts: Palladium chloride

Solvents: Dimethylformamide; 16 h, 100 °C

Palladium-Catalyzed Distal C-H Selenylation of 2-Aryl Acetamides with Diselenides and Selenyl Chlorides

By: He, Meicui; et al

Advanced Synthesis & Catalysis (2020), 362(24), 5708-5715.

Scheme 22 (1 Reaction)

Suppliers (88)

📜 Supplier (1)

Steps: 1 Yield: 74%

Steps: 1 Yield: 73%

Steps: 1 Yield: 73%

31-116-CAS-17238853

.1 Reagents: Deuterium Catalysts: Palladium

Solvents: Methanol-d₄; 20 h, rt

Steps: **1** Yield: **74%**

Steps: 1 Yield: 74%

Cobalt-Porphyrin-Catalysed Intramolecular Ring-Closing C-H Amination of Aliphatic Azides: A Nitrene-Radical Approach to Saturated Heterocycles

By: Kuijpers, Petrus F.; et al

Chemistry - A European Journal (2017), 23(33), 7945-7952.

Scheme 23 (1 Reaction)

31-614-CAS-36908143

1.1 Reagents: Trifluoroacetic acid, Silver acetate

Catalysts: Palladium trifluoroacetate
Solvents: (Trifluoromethyl)benzene, Methanol-*d*; 12 h, 120 °C

1.2 Solvents: Water; rt

Reagents: Sodium hydroxideSolvents: Ethanol; 12 h, 80 °C

1.4 Solvents: Water; rt

Experimental Protocols

Palladium-catalyzed distal selective C-H chalcogenation of biphenyl amines

By: Zhou, Yunhao; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(53), 8262-8265.

Scheme 24 (1 Reaction)

31-614-CAS-41279979

Steps: 1 Yield: 73%

.1 Reagents: Pivalic acid, Silver carbonate, Potassium carbonate, Methanol- d_4

Catalysts: Palladium diacetate, 2-(Di-tert-butylphosphino)

biphenyl

Solvents: Toluene; 16 h, 120 °C

Experimental Protocols

Regiodivergent Metal-Catalyzed Oxidative Alkynylation of 2-Arylthiazoles with Terminal Alkynes under Air Conditions

By: Zhou, Pengfei; et al

Journal of Organic Chemistry (2024), 89(15), 10953-10964.

Scheme 25 (1 Reaction)

Supplier (1)

Steps: 1 Yield: 72%

Steps: 1 Yield: 72%

Steps: 1 Yield: 71%

31-614-CAS-39746341 Steps: 1 Yield: 73%

Reagents: Methanol-d, Oxygen, Water-d2 Catalysts: Palladium diacetate; 14 h, 1 atm, 100 °C

Experimental Protocols

Palladium-Catalyzed C-H Olefination of Imidazo[1,2a] pyridine Carboxamide in Aqueous Ethanol under Oxygen

By: Balaso Mohite, Sachin; et al

Chemistry - A European Journal (2024), 30(23), e202304239.

Scheme 26 (1 Reaction)

Steps: 1 Yield: 72%

Steps: 1 Yield: 72%

31-116-CAS-16366005

Reagents: Hydrogen Catalysts: Palladium

Solvents: Methanol-d₄; 24 h, rt

Experimental Protocols

Facile Hydrogenolysis of C(sp³)-C(sp³) σ Bonds

By: Fillion, Eric; et al

Advanced Synthesis & Catalysis (2016), 358(21), 3422-3434.

Scheme 27 (1 Reaction)

31-614-CAS-39746348

Reagents: Methanol-d, Oxygen, Water-d2

Catalysts: Palladium diacetate; 14 h, 1 atm, 100 °C

Suppliers (2)

Experimental Protocols

Palladium-Catalyzed C-H Olefination of Imidazo[1,2a] pyridine Carboxamide in Aqueous Ethanol under Oxygen

By: Balaso Mohite, Sachin; et al

Chemistry - A European Journal (2024), 30(23), e202304239.

Scheme 28 (1 Reaction)

$$F \longrightarrow CI \longrightarrow N$$

31-614-CAS-39746344

Steps: 1 Yield: 71% Reagents: Methanol-d, Oxygen, Water-d2

Catalysts: Palladium diacetate; 14 h, 1 atm, 100 °C

Experimental Protocols

Palladium-Catalyzed C-H Olefination of Imidazo[1,2a] pyridine

By: Balaso Mohite, Sachin; et al

Chemistry - A European Journal (2024), 30(23), e202304239.

Carboxamide in Aqueous Ethanol under Oxygen

Steps: 1 Yield: 71%

Steps: 1 Yield: 70%

Steps: 1 Yield: 70%

Scheme 29 (1 Reaction)

📜 Supplier (1)

Suppliers (104)

Steps: 1 Yield: 71%

31-614-CAS-42237067

1.1 Reagents: Ethanol-*d*, Tripotassium phosphate Catalysts: Palladium diacetate; 8 h, 100 °C

1.2 Solvents: Ethyl acetate

Experimental Protocols

Palladium-catalyzed δ -selective reductive Heck reaction of alkenyl carbonyl compounds with aryl iodides and bromides

By: Li, Yang; et al

Organic Chemistry Frontiers (2020), 7(16), 2216-2223.

Scheme 30 (1 Reaction)

$$\bigcap_{N} \bigcap_{H} \bigcap_{N} \bigcap_{N$$

31-614-CAS-39746346

1.1 Reagents: Methanol-*d*, Oxygen, Water-*d*₂ Catalysts: Palladium diacetate; 14 h, 1 atm, 100 °C

📜 Supplier (1)

Experimental Protocols

Steps: 1 Yield: 70%

Palladium-Catalyzed C-H Olefination of Imidazo[1,2a] pyridine Carboxamide in Aqueous Ethanol under Oxygen

By: Balaso Mohite, Sachin; et al

Chemistry - A European Journal (2024), 30(23), e202304239.

Scheme 31 (1 Reaction)

31-614-CAS-39746347

1.1 **Reagents:** Methanol-*d*, Oxygen, Water-*d*₂ **Catalysts:** Palladium diacetate; 14 h, 1 atm, 100 °C

Experimental Protocols

Steps: **1** Yield: **70%**

Palladium-Catalyzed C-H Olefination of Imidazo[1,2a] pyridine Carboxamide in Aqueous Ethanol under Oxygen

By: Balaso Mohite, Sachin; et al

Chemistry - A European Journal (2024), 30(23), e202304239.

Steps: 1 Yield: 62%

Steps: 1 Yield: 49%

Steps: 1 Yield: 48%

Scheme 32 (1 Reaction)

Supplier (1)

` Suppliers (3)

Steps: 1 Yield: 62%

31-113-CAS-20248524

1.1 Reagents: Sodium *tert*-butoxide

Catalysts: Tetrakis(triphenylphosphine)palladium

Solvents: 2-Propan-*1,1,1,2,3,3,3-d*₇-ol-*d*; rt

Visible-light-mediated hydrodehalogenation and Br/D exchange of inactivated aryl and alkyl halides with a palladium complex

By: Zhou, Zhao-Zhao; et al

Organic Chemistry Frontiers (2019), 6(10), 1649-1654.

Scheme 33 (1 Reaction)

> Suppliers (94)

31-614-CAS-25934962

Steps: **1** Yield: **49%**

1.1 **Reagents:** Methanol-*d*₄, Acetic acid, 2,2,2-trifluoro-, copper(1+)

salt (1:1)

Catalysts: Palladium diacetate

Solvents: Tetrahydrofuran; 24 h, 120 °C

Experimental Protocols

 α -Iminonitrile: a new cyanating agent for the palladium catalyzed C-H cyanation of arenes

By: Chen, Zhen-Bang; et al

RSC Advances (2016), 6(69), 64234-64238.

Scheme 34 (1 Reaction)

➤ Suppliers (94)

Suppliers (6)

31-614-CAS-39339113

Steps: 1 Yield: 48%

.1 **Reagents:** 2-Ethylbutanoic acid, Styrene oxide, Methanol- d_4 ,

Sodium iodide

Catalysts: Dichlorobis(triphenylphosphine)palladium

Solvents: 1,4-Dioxane; 8 h, 70 °C

Experimental Protocols

Unlocking regioselective meta-alkylation with epoxides and oxetanes via dynamic kinetic catalyst control

By: Bai, Peng-Bo; et al

Nature Communications (2024), 15(1), 31.

Steps: 1 Yield: 45%

Steps: 1 Yield: 41%

Steps: 1 Yield: 37%

Scheme 35 (1 Reaction)

Double bond geometry shown

■ Suppliers (14)

` Suppliers (80)

Steps: 1 Yield: 45%

31-614-CAS-31286269

1.1 Reagents: Ethanol-d

Catalysts: Ethanol, Bis(benzonitrile)dichloropalladium; 24 h,

100 °C

Divergent Syntheses of Indoles and Quinolines Involving N1-C2-C3 Bond Formation through Two Distinct Pd Catalyses

By: San Jang, Su; et al

Organic Letters (2020), 22(23), 9151-9157.

Scheme 36 (1 Reaction)

31-116-CAS-16838541

Reagents: Deuterium Catalysts: Palladium

Solvents: Methanol-d₄; 5 h, rt

Experimental Protocols

Steps: 1 Yield: 41%

Isotope labelling by reduction of nitriles: applic ation to the synthesis of isotopologues of tolmetin and celecoxib

By: Ellis-Sawyer, Kate; et al

Journal of Labelled Compounds and Radiopharmaceuticals (2017), 60(4), 213-220.

Scheme 37 (1 Reaction)

📜 Suppliers (3)

31-116-CAS-16366002

Experimental Protocols

Steps: 1 Yield: 37%

Facile Hydrogenolysis of C(sp³)-C(sp³) σ Bonds

Reagents: Deuterium Catalysts: Palladium

Solvents: Methanol-d₄; 24 h, rt

By: Fillion, Eric; et al

Advanced Synthesis & Catalysis (2016), 358(21), 3422-3434.

Steps: 1 Yield: 29%

Steps: 1 Yield: 25%

Steps: 1 Yield: 20%

Scheme 38 (1 Reaction)

Absolute stereochemistry shown

➤ Suppliers (98)

Absolute stereochemistry shown

Steps: 1 Yield: 29%

Steps: 1 Yield: 25%

31-116-CAS-4525807

.1 Reagents: Sodium formate, Methanol-*d* Catalysts: Palladium; 30 min, reflux

1.2 Reagents: Hydrochloric acid Solvents: Water; acidified

Synthesis of deuterated dihydrochalcones

By: Comeskey, Daniel J.; et al

Journal of Labelled Compounds and Radiopharmaceuticals (2006), 49(6), 479-487.

Scheme 39 (1 Reaction)

Suppliers (24)

31-116-CAS-11777755

1.1 **Reagents:** Methanol-*d*₄, 1-Butanamine, *N*,*N*-dibutyl-, hydrob

romide (1:1)

Catalysts: Palladium diacetate Solvents: DMSO-*d*₆; 24 h, 100 °C

Experimental Protocols

Pd-Catalyzed [3+2] cycloaddition of ketoimines with alkynes via directed sp³ C-H bond activation

By: Xie, Ying; et al

Chemical Communications (Cambridge, United Kingdom) (2014), 50(73), 10699-10702.

Scheme 40 (1 Reaction)

Double bond geometry shown

Double bond geometry shown

Steps: 1 Yield: 20%

31-116-CAS-12876583

1.1 **Reagents:** Methanol-*d*₄, Oxygen **Catalysts:** Palladium diacetate

Solvents: Dimethylformamide; 24 h, 100 °C

Experimental Protocols

Pd-catalyzed carbonylative cycloamidation of ketoimines for the synthesis of pyrido[1,2-a]pyrimidin-4-ones

By: Xie, Ying; et al

Chemical Communications (Cambridge, United Kingdom) (2015), 51(45), 9377-9380.

Steps: 1

Steps: 1

Steps: 1

Scheme 41 (1 Reaction)

□ Suppliers (89)

31-614-CAS-32868031

Reagents: 2-Propan-2-d-ol-d, 1,1,1,3,3,3-hexafluoro-Catalysts: Palladium diacetate, 2-Methyl-2-[(2,3,4,5,6pentafluorophenyl)thio]propanoic acid; 18 h, 90 °C

Experimental Protocols

Steps: 1

S,O-Ligand Promoted meta-C-H Arylation of Anisole Deriva tives via Palladium/Norbornene Catalysis

By: Sukowski, Verena; et al

Angewandte Chemie, International Edition (2022), 61(31), e202201750.

Scheme 42 (1 Reaction)

31-116-CAS-20921908

Reagents: tert-Butyl hydroperoxide, Methanol-d4 Catalysts: Palladium diacetate

Solvents: Dichloromethane, Water; 24 h, 60 °C

Experimental Protocols

Steps: 1

Steps: 1

Palladium-Catalyzed Direct ortho-C-H Acylation of 2-Phenylp yridine N-oxides with Benzyl Alcohols/α-Oxocarboxylic Acids

By: Zhou, Ming-Dong; et al

ChemistrySelect (2019), 4(47), 13947-13951.

Scheme 43 (1 Reaction)

📜 Supplier (1)

31-614-CAS-28063072

Reagents: Sodium bicarbonate, Oxygen, Lithium fluoride, 2-Propan-2-d-ol-d, 1,1,1,3,3,3-hexafluoro-

Catalysts: 2,6-Dimethyl-1,4-benzoquinone, Palladium

diacetate

Solvents: 1,1,2,2-Tetrachloroethane; 18 h, 100 °C

Site-Selective Alkenylation of δ -C(sp³)-H Bonds with Alkynes via a Six-Membered Palladacycle

By: Xu, Jing-Wen; et al

Journal of the American Chemical Society (2016), 138(34), 10750-10753.

Steps: 1

Steps: 1

Steps: 1

Scheme 44 (1 Reaction)

Supplier (1)

31-614-CAS-42638841

Steps: 1

Reagents: Methanol- d_4 , Tetrabutylammonium bromide,

Oxygen

Catalysts: Palladium diacetate Solvents: Dimethylacetamide; 80 °C

Experimental Protocols

Pd(II)-catalyzed C-H annulation and lactonization of indole-2carboxamides with hydroxyalkynoates using air as an oxidant

By: Aswale, Kiran; et al

Tetrahedron Chem (2024), 12, 100104.

Scheme 45 (1 Reaction)

Suppliers (61)

31-116-CAS-7040040

Steps: 1

Reagents: Methanol- d_4 , Cupric chloride

Catalysts: Alumina, Palladium

Solvents: 1,2-Dichloroethane; 5 h, 80 °C

Experimental Protocols

Heterogeneously Catalyzed Direct C-H Thiolation of Hetero arenes

By: Vasquez-Cespedes, Suhelen; et al

Angewandte Chemie, International Edition (2015), 54(19), 5772-5776.

Scheme 46 (1 Reaction)

Rotation (+) Double bond geometry shown Absolute stereochemistry shown Double bond geometry shown

31-614-CAS-26566369

Steps: 1

Reagents: Sodium bicarbonate, Diphenylacetylene, Oxygen, Lithium fluoride, 2-Propan-2-d-ol-d, 1,1,1,3,3,3-hexafluoro-Catalysts: 2,6-Dimethyl-1,4-benzoquinone, Palladium

diacetate

Solvents: 1,1,2,2-Tetrachloroethane; 18 h, 100 °C

Site-Selective Alkenylation of δ-C(sp³)-H Bonds with Alkynes via a Six-Membered Palladacycle

By: Xu, Jing-Wen; et al

Journal of the American Chemical Society (2016), 138(34), 10750-10753.

Scheme 47 (1 Reaction)

Steps: 1

31-614-CAS-37227551

Steps: 1

1.1 **Reagents:** Sodium acetate, Cupric acetate, Methanol- d_4 ,

Water-d₂

Catalysts: Palladium diacetate

Suppliers (11)

Solvents: Dimethylformamide; 2 h, 100 °C

Experimental Protocols

Pd-catalyzed regioselective rollover dual C-H annulation cascade: facile approach to phenanthrene derivatives

By: Kumar, Muniganti Naveen; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(64), 9714-9717.

Scheme 48 (1 Reaction)

Steps: 1

Double bond geometry shown

Double bond geometry shown

Double bond geometry shown

31-614-CAS-39507142

Steps: 1

1.1 Reagents: Pivalic acid, Ethanol-d, Manganese oxide (MnO₂) Catalysts: Quinone, Palladium diacetate; 8 h, rt → 40 °C

Experimental Protocols

Stereoselective Synthesis of Complex Polyenes through Sequential α -/ β -C H Functionalization of trans-Styrenes

By: Zhu, Yuhang; et al

Angewandte Chemie, International Edition (2024), 63(12), e202315273.

Scheme 49 (1 Reaction)

Steps: 1

Double bond geometry shown

Double bond geometry shown

31-614-CAS-40342218

Steps: 1

Palladium-catalysed α and β C-H allylation of aryl alkenes

.1 Reagents: Acetic acid, Ethanol-d

Catalysts: Palladium diacetate; 6 h, 80 °C

By: Liao, Yilei; et al

Experimental Protocols

Organic Chemistry Frontiers (2024), 11(12), 3341-3347.

Scheme 50 (1 Reaction)

Steps: 1

Double bond geometry shown

Double bond geometry shown

31-614-CAS-41178215

Steps: 1

Reagents: Pivalic acid, Ethanol-d, Manganese oxide (MnO₂) Catalysts: Quinone, Palladium diacetate; 6 h, 80 °C

Experimental Protocols

Stereo-selective synthesis of complex dienes and eneynes by sequential hydroarylation and olefinic C-H functionalization

By: Zhu, Yuhang; et al

Organic Chemistry Frontiers (2024), 11(16), 4456-4463.

Scheme 51 (1 Reaction)

Steps: 1

Suppliers (73)

Suppliers (11)

31-116-CAS-17186401

Steps: 1

Reagents: Methanol-d4

Catalysts: Palladium oxide (PdO); 24 h, 65 °C

DNA-supported palladium nanoparticles as a reusable catalyst for the copper- and ligand-free Sonogashira reaction

By: Camacho, Ana Silvia; et al

Catalysis Science & Technology (2017), 7(11), 2262-2273.

Scheme 52 (1 Reaction)

Steps: 1

Thioketone-Directed Palladium(II)-Catalyzed C-H Arylation of Ferrocenes with Aryl Boronic Acids

By: Cai, Zhong-Jian; et al

Angewandte Chemie, International Edition (2018), 57(5), 1296-1299.

Reagents: Methanol-d₄, Oxygen

Catalysts: Palladium trifluoroacetate; 65 °C

Scheme 53 (1 Reaction)

Steps: 1

📜 Suppliers (6)

31-116-CAS-10399235

Steps: 1

Reagents: Methanol-d

Catalysts: Palladium diacetate; 20 min, 25 °C

Regioselective Oxidative Arylation of Indoles Bearing N-Alkyl Protecting Groups: Dual C-H Functionalization via a Concerted Metalation-Deprotonation Mechanism

By: Potavathri, Shathaverdhan; et al

Journal of the American Chemical Society (2010), 132(41), 14676-14681.

Scheme 54 (1 Reaction)

Steps: 1

31-614-CAS-31961521

Steps: 1

Reagents: Methanol- d_4 , Iodobenzene diacetate Catalysts: Tris(dibenzylideneacetone)dipalladium

Solvents: 1,2-Dichloroethane; 30 min, rt

Experimental Protocols

Switchable, Reagent-Controlled C(sp³)-H Selective Iodination and Acetoxylation of 8-Methylquinolines

By: Zhang, Ming-Lu; et al

Journal of Organic Chemistry (2022), 87(9), 5730-5743.

Scheme 55 (1 Reaction)

Steps: 1

Suppliers (59)

31-116-CAS-17186402

Steps: 1

DNA-supported palladium nanoparticles as a reusable catalyst for the copper- and ligand-free Sonogashira reaction

By: Camacho, Ana Silvia; et al

Catalysis Science & Technology (2017), 7(11), 2262-2273.

Reagents: Methanol-d4

Catalysts: Palladium; 24 h, 65 °C

Steps: 1

Scheme 56 (1 Reaction)

Suppliers (102)

31-614-CAS-31288249

Reagents: Silver trifluoroacetate, Water-d2

Catalysts: Palladium diacetate

Solvents: Trifluoroacetic acid-d, 2-Propan-2-d-ol-d, 1,1,1,3,3,3-

hexafluoro-; 6 h, 100 °C

Experimental Protocols

Steps: 1

C4-arylation and domino C4-arylation/3,2-carbonyl migration of indoles by tuning Pd catalytic modes: Pd(I)-Pd(II) catalysis vs. Pd(II) catalysis

By: Cheng, Yaohang; et al

Chemical Science (2021), 12(9), 3216-3225.

Scheme 57 (1 Reaction)

31-614-CAS-37227561

Reagents: Sodium acetate, Cupric acetate, Methanol- d4 1.1

Catalysts: Palladium diacetate Solvents: Dimethylformamide

Reagents: Methanol- d_4 , Water- d_2 ; 2 h, 100 °C; 100 °C \rightarrow rt 1.2

Reagents: Water; cooled

Experimental Protocols

Steps: 1

Steps: 1

Pd-catalyzed regioselective rollover dual C-H annulation cascade: facile approach to phenanthrene derivatives

By: Kumar, Muniganti Naveen; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(64), 9714-9717.

Scheme 58 (1 Reaction)

31-116-CAS-1265684

Reagents: Methanol-d

Catalysts: Palladium diacetate; 30 min, 25 °C

Steps: 1

Regioselective Oxidative Arylation of Indoles Bearing N-Alkyl Protecting Groups: Dual C-H Functionalization via a Concerted Metalation-Deprotonation Mechanism

By: Potavathri, Shathaverdhan; et al

Journal of the American Chemical Society (2010), 132(41), 14676-14681.

Scheme 59 (1 Reaction)

Steps: 1

31-116-CAS-12517950

Steps: 1

1.1 Reagents: Methanol-d

Catalysts: Palladium diacetate; 20 min, 25 °C

Regioselective Oxidative Arylation of Indoles Bearing N-Alkyl Protecting Groups: Dual C-H Functionalization via a Concerted Metalation-Deprotonation Mechanism

By: Potavathri, Shathaverdhan; et al

Journal of the American Chemical Society (2010), 132(41), 14676-14681.

Scheme 60 (1 Reaction)

➤ Suppliers (67)

📜 Suppliers (69)

Steps: 1 Yield: 72%

Supplier (1)

Steps: 1 Yield: 75%

1.1 **Reagents:** Methanol- d_4

Catalysts: Cupric acetate, (SP-4-2)-Bis(acetato- κ *O*)(2,9-dimethyl-1,10-phenanthroline- κ *N*¹, κ *N*¹⁰)palladium; 5 h, 80 °C

Experimental Protocols

31-116-CAS-8247822

Well-defined palladium(II) complexes for ligand-enabled C (sp³)-alkynylation

By: Landge, Vinod G.; et al

Dalton Transactions (2015), 44(35), 15382-15386.

Scheme 61 (1 Reaction)

Double bond geometry shown

Double bond geometry shown

Double bond geometry shown

31-116-CAS-20969825

Steps: 1 Yield: 72%

1.1 **Reagents:** Pivalic acid, DMSO-*d*₆ **Catalysts:** Palladium diacetate

Solvents: Methanol- d_4 ; rt \rightarrow 40 °C; 12 h, 40 °C

Bidentate auxiliary-directed alkenyl C-H allylation via exopalladacycles: synthesis of branched 1,4-dienes

By: Shen, Cong; et al

Chemical Communications (Cambridge, United Kingdom) (2019), 55(90), 13582-13585.

Scheme 62 (1 Reaction)

Steps: 1

Suppliers (10)

□ Suppliers (98)

31-614-CAS-28185993

Steps: 1

1.1 **Reagents:** Silver acetate, Acetic acid-*d*

Catalysts: Palladium diacetate

Solvents: 2-Propan-*2-d*-ol-*d*, 1,1,1,3,3,3-hexafluoro-; 18 h, 110

°C

Experimental Protocols

C-H Bond Arylation of Diamondoids Catalyzed by Palladium (II) Acetate

By: Larrosa, Marta; et al

Advanced Synthesis & Catalysis (2016), 358(13), 2163-2171.

Scheme 63 (1 Reaction)

➤ Supplier (1)

➤ Suppliers (248)

31-116-CAS-858232

Steps: 1

1.1 **Reagents:** 1-(Acetyloxy)-1,2-benziodoxol-3(1*H*)-one

Catalysts: Palladium diacetate **Solvents:** *p*-Xylene; 3 h, 60 °C

Experimental Protocols

An Efficient Palladium-Catalyzed C-H Alkoxylation of Unacti vated Methylene and Methyl Groups with Cyclic Hyperv alent lodine (I³⁺) Oxidants

By: Shan, Gang; et al

Angewandte Chemie, International Edition (2013), 52(51), 13606-13610.

Steps: 1

Steps: 1

Steps: 1

Scheme 64 (1 Reaction)

Supplier (1)

Suppliers (5)

31-614-CAS-29505657

Reagents: Quinone, Oxygen, 2-Propan-1,1,1,2,3,3,3-d₇-ol-d Catalysts: Dichlorobis(triphenylphosphine)palladium Solvents: 1,2-Dichloroethane; 24 h, reflux

Experimental Protocols

Steps: 1 Palladium-catalyzed synthesis of isoquinolinones via sequential cyclization and N-O bond cleavage of N-methoxyo-alkynylbenzamides

By: Jithunsa, Manita; et al

Synlett (2013), 24(4), 475-478.

Scheme 65 (1 Reaction)

Suppliers (7)

31-614-CAS-37661381

Reagents: Methanol-d

Catalysts: Palladium; 72 h, rt

Experimental Protocols

Steps: 1

Site selective gold(I)-catalysed benzylic C-H amination via an intermolecular hydride transfer to triazoli nediones

By: Bevernaege, Kevin; et al

Chemical Science (2023), 14(36), 9787-9794.

Scheme 66 (1 Reaction)

Suppliers (72)

Suppliers (14)

📜 Supplier (1)

31-116-CAS-12062555

Reagents: Sodium carbonate, Methanol- d4

Catalysts: Palladium diacetate

Solvents: Dimethyl sulfoxide; 5 h, 120 °C

Steps: 1

Palladium-Catalyzed Dehydrogenative β-Arylation of Simple Saturated Carbonyls by Aryl Halides

By: Gandeepan, Parthasarathy; et al

ACS Catalysis (2014), 4(12), 4485-4489.

Steps: 1

Steps: 1 Yield: 18%

Scheme 67 (1 Reaction)

H D

Double bond geometry shown

Cumplians (1.4)

₩ Suppliers (96)

Suppliers (14)

31-116-CAS-22930003

Steps: 1 Yield: 18%

Divergent Syntheses of Indoles and Quinolines Involving N1-C2-C3 Bond Formation through Two Distinct Pd Catalyses

1.1 **Reagents:** Ethanol-*d*

Catalysts: Di- μ -chlorobis(η^3 -2-propenyl)dipalladium, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]; 24 h, 120 °C

By: San Jang, Su; et al

Organic Letters (2020), 22(23), 9151-9157.

Scheme 68 (1 Reaction)

Double bond geometry shown

Suppliers (2)

D N

Double bond geometry shown

D N

Double bond geometry shown

Double bond geometry shown

Double bond geometry shown

Double bond geometry shown

CAS SciFinder®

31-614-CAS-24287075

Reagents: Potassium *tert*-butoxide Solvents: Methanol-*d*; 30 min, rt

1.2 **Catalysts:** Tetrakis(triphenylphosphine)palladium **Solvents:** Tetrahydrofuran; 30 min, 70 °C

Steps: 1

Media-Driven Pd-Catalyzed Reaction Cascades with 1,3-Diynamides Leading Selectively to Either Indoles or Quinolines

By: Lenko, Illia; et al

Angewandte Chemie, International Edition (2021), 60(42), 22729-22734.

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.