Practice Problems

CS 374 Problem Set 1

Practice #1

- 1. abab
- **2.** $h(L) = (ab)^*$
- 3.

Not guaranteed. Take $L_1, L_2 \in \{0, 1\}^*$. Let $L_1 = (0)^*$, $L_2 = (01)^*$. $h(L_1) = h(L_2)$, but $L_1 \neq L_2$.

Practice #2

1.

$$rev((0+1)^*1(0+1)) = rev(1(0+1))rev((0+1)^*)$$
$$= rev((0+1))rev(1)rev((0+1))^*$$
$$= (0+1)1(0+1)^*$$

2.

$$\begin{split} rev((0+1)^*011(0+1)^*) &= rev(011(0+1^*)rev((0+1)^*) \\ &= rev((0+1)^*)rev(011)rev((0+1))^* \\ &= rev((0+1))^*rev(11)rev(0)(0+1)^* \\ &= (0+1)^*rev(1)rev(1)0(0+1)^* \\ &= (0+1)^*110(0+1)^* \end{split}$$

3.

in r.

This is where it gets a little fuzzy

Let us first define two lemmas that we will need later.

Lemma #1: $(uv)^R = v^R u^R \ \forall \ u, v \in \Sigma^*$.

We will prove this by using induction over |u|.

Base: $u = \epsilon$. $(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R$. Base case holds.

Inductive: Assume that $\forall |u| = 0, \dots, n-1$, that $(uv)^R = v^R u^R$.

Let $u \in \Sigma^n$. Note that $u = a \cdot u'$, $a \in \Sigma$, $u' \in \Sigma^{n-1}$. Now we have $(uv)^R = ((au'v)^R)$ and by definition of w^R , we see that $(a(u'v))^R = (u'v)^R a$ and from the inductive assumption, it follows that $(u'v)^R a = v^R u'^R a = v^R u^R$ by definition of u'.

Lemma #2: $(w^k)^R = (w^R)^k$ Use induction on k.

Base: $k=0,\ (w^0)^R)=\epsilon^R=(\epsilon^R)^0.$ Base case holds. **Inductive:** Assume that for $k=0,\ldots,n-1,\ (w^k)^R=(w^R)^k.$ $w^n=w^{n-1}\cdot w\Rightarrow (w^n)^R=(w^{n-1}\cdot w)^R=(w)^R\cdot (w^{n-1})^R.$ by the inductive assumption, we now see that $(w)^R\cdot (w^{n-1})^R=(w)^R\cdot (w^R)^{k-1}=(w^R)^k.$

To prove that $L(rev(r)) = (L(r))^R$, we will use induction over the number of operations

Base: By definition of rev(r), we must prove 3 base cases: $r = \emptyset$, $r = \epsilon$, $r = a \in \Sigma$.

Inductive hypothesis: Let us assume that $L(rev(r)) = (L(r))^R$ for all regular expressions r with number of operations $(\#_{ops})$ less than n.

Inductive claim: For a regular expressions r with n operations, $L(rev(r)) = (L(r))^R$.

A regular expression r with n operations can be written as one of 3 cases:

- 1. $r_1 + r_2$, where r_1 is a regular expression with n-1 operations and r_2 is a regular expression with 1 operation.
- 2. r_1r_2 , where r_1 is a regular expression with n-1 operations and r_2 is a regular expression with 1 operation.
- 3. r_1^* , where r_1 is a regular expression with n-1 operations.

For each case, prove that $L(rev(r)) = (L(r))^R$.

Case $r_1 + r_2$:

 $L(r_1 + r_2) = \{ w \mid w \text{ is described by either regular expression } r_1 \text{ or } r_2 \}$

Because $\#_{ops}(r_1) = n - 1$ and $\#_{ops}(r_2) = 1$, they both fall under the inductive assumption so it follows that $\forall w \in L(r_1 + r_2), rev(w) = w^R \Rightarrow L(rev(r_1 + r_2)) = (L(r_1 + r_2))^R \Rightarrow L(rev(r)) = (L(r))^R$.

Case r_1r_2 :

By definition, $rev(r) = rev(r_1r_2) = rev(r_2)rev(r_1)$. Since $\#_{ops}(r_1) = n-1$ and $\#_{ops}(r_2) = 1$, by the inductive assumption,

$$L(rev(r_2))L(rev(r_1)) = (L(r_2))^R (L(r_1))^R$$

Note that $L(r_1) = \{w \mid w \text{ is defined by } r_1\} \Rightarrow (L(r_1))^R = \{w^R \mid w \text{ is defined by } r_1\}.$ $L(r_2)$ can be defined similarly. It follows that $(L(r_2))^R (L(r_1))^R = \{w_2^R w_1^R \mid w_1 \text{ is defined by } r_1, w_2 \text{ is defined by } r_2\}.$

 $L(r_1r_2) = \{w_1w_2 \mid w_1 \text{ is defined by } r_1 \text{ and } w_2 \text{ is defined by } w_2\}$. By use of Lemma #1, we can say that $L(r_1r_2)^R = \{w_2^Rw_1^R \mid w_1 \text{ is defined by } r_1 \text{ and } w_2 \text{ is defined by } r_2\}$.

$$L(r)^R = L(r_1r_2)^R = (L(r_2))^R (L(r_1))^R = L(rev(r_2))L(rev(r_1)) = L(rev(r_1r_2)) = L(rev(r_1))$$

Case $(r_1)^*$:

By the inductive assumption, we know that $rev((r_1)^*) = (rev(r_1))^* = \{(w^R)^k \mid w \text{ is defined by } r_1\}$. Also, note that $L((r_1)^*)^R = \{(w^k)^R \mid w \text{ is defined by } r_1\}$. By Lemma #2, we can see that these two sets are equal.