1)
$$g(x,y) = e^{x^2+y}$$

a) The tangent plane at the point (0,0,1) is given

$$\frac{1}{z} = f(0,0) + f_{x}(0,0)(x-0) + f_{y}(0,0)(y-0) \\
= 1 + f_{x}(0,0) x + f_{y}(0,0) y \\
\text{We need to find } f_{x}(0,0) \text{ and } f_{y}(0,0) \\
f_{x}(x,y) = 2xe^{x^{2}+y} \text{ and } f_{y}(x,y) = e^{x^{2}+y}$$

$$f_{x}(0,0) = 0 \qquad 0 \qquad 0 \qquad 0 = 1$$

$$f_{x}(x,y) = 2xe^{x^{2}+y}$$
 and $f_{y}(x,y) = e^{x^{2}+y}$
 $f_{x}(0,0) = 0$ $f_{y}(0,0) = 1$

: The tangent plane at (0,0,1) is

(Db) There will be no Taylor's expansion on our exam

2) Let $g(u, v) = (\cos u, v + \sin u)$

and $g(x,y,z) = (x^2 + \pi y^2, xz)$

a) $Dg(x, y, z) =$	$\int \partial(x^2 + \pi y^2)$	$\partial(\chi^2 + \pi y^2)$	3(x2+ Ty2)
	7x	ду	DZ
	D(XZ)	$\mathcal{I}(x\bar{x})$	∂(x z)
	dx	d	Z

4) Let
$$D^* = \{(u,v): 0 \le u \le 1, 0 \le v \le 1\}$$

$$T : \mathbb{R}^2 \to \mathbb{R}^2 \quad \text{given by } T(u,v) = (u^*_{1}v_{1}uv^{2}).$$

Recall that

$$Area(D) = \iint dx dy = \iint d(x) du dv.$$

$$Since D = T(O^*), \text{ we can use change of variables.}$$

$$Area(O) = \iint dx dy = \iint d(x) du dv.$$

$$= \iint \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial u} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} du dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$

$$= \iint \frac{\partial x}{\partial v} \frac{\partial x}{\partial v} dv.$$