Homework 2

Aiden Kenny STAT GR5204: Statistical Inference Columbia University

November 26, 2020

Question 1

Question 9

If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ with unknown μ and σ^2 , then a γ % confidence interval for μ is given by

$$\mathcal{I} = \left(\bar{X} - t_{\gamma}(n) \cdot S / \sqrt{n} , \bar{X} + t_{\gamma}(n) \cdot S / \sqrt{n} \right),$$

where $t_{\gamma}(n) = T_{n-1}^{-1}((1+\gamma)/2)$ is the $(1+\gamma)/2$ th quantile of the t distribution with df = n-1 and S is the sample standard deviation. The length of this confidence interval is given by

$$\Delta = \max(\mathcal{I}) - \min(\mathcal{I}) = \left(\bar{X} + t_{\gamma}(n) \cdot S / \sqrt{n}\right) - \left(\bar{X} - t_{\gamma}(n) \cdot S / \sqrt{n}\right) = 2t_{\gamma}(n) \cdot S / \sqrt{n}.$$

The squared length is then given by $\Delta^2=4t_\gamma^2(n)\cdot S^2/n$. Because the sample variance is an unbiased estimator for σ^2 , we have $\mathbb{E}[\Delta^2]=\mathbb{E}\left[4t_\gamma^2(n)\cdot S^2/n\right]=4t_\gamma^2(n)\cdot \sigma^2/n$. We now set $\mathbb{E}[\Delta^2]<\sigma^2/2$, and after some cancellations, we see that we need $t_\gamma^2(n)/n<1/8$. There is no way to find a closed-form expression for this, so we will have to check the value of $t_\gamma^2(n)/n$ for increasing values of n. I set up a while loop in R to solve for it, and when $\gamma=0.9$, we find that n=24 is the smallest value of n such that $\mathbb{E}[\Delta^2]<\sigma^2/2$.