Задачи к лекции 10

Пусть F — произвольный конечный алфавит, состоящий из q символов.

- **1.** Пусть имеется код $C \subseteq F^n$ с минимальным расстоянием d. Докажите, что этот код может обнаружить d-1 ошибку.
- **2.** Пусть $C \subseteq F^n$ наибольший по мощности код, исправляющий t ошибок. Докажите, что

$$\frac{q^n}{1 + C_n^1(q-1) + C_n^2(q-1)^2 + \ldots + C_n^{2t}(q-1)^{2t}} \leqslant |C| \leqslant \frac{q^n}{1 + C_n^1(q-1) + C_n^2(q-1)^2 + \ldots + C_n^{t}(q-1)^{t}}.$$

Везде далее предполагается, что $F=\mathbb{F}_q$ — конечное поле из q элементов.

- **3.** (Код с проверкой на чётность) Пусть q=2 и функция кодирования $\mathbb{F}_2^k \to \mathbb{F}_2^{k+1}$ имеет вид $(a_1,\ldots,a_k)\mapsto (a_1,\ldots,a_k,a_1\oplus\ldots\oplus a_k)$, где \oplus обозначает сумму по модулю 2.
 - (а) Определите все кодовые слова и укажите проверочную матрицу для этого кода.
 - (б) Сколько ошибок этот код может обнаружить? А сколько исправить?
- 4. Пусть $k\geqslant 2,\, n=2^k-1$ и $C_k\subseteq \mathbb{F}_2^n$ бинарный (n,n-k)-код Хэмминга.
- (a) Докажите, что этот код является совершенным, то есть пространство \mathbb{F}_2^n покрывается шарами радиуса 1 с центрами в кодовых словах.
- (б) Предположим, что при передаче кодового слова по каналу связи произошла одна ошибка. Как узнать номер ошибочного символа?

Линейный код $C \subseteq \mathbb{F}_q^n$ называется *циклическим*, если из условия $(c_0, c_1, \dots, c_{n-1}) \in C$ следует $(c_1, c_2, \dots, c_{n-1}, c_0) \in C$. В этой ситуации \mathbb{F}_q^n отождествляется с множеством многочленов степени не выше n-1, рассматриваемых как элементы факторкольца $\mathbb{F}_q[x]/(x^n-1)$.

- **5.** Докажите, что линейный код $C \subseteq \mathbb{F}_q^n$ является циклическим тогда и только тогда, когда он является идеалом в кольце $\mathbb{F}_q[x]/(x^n-1)$.
- **6.** Докажите, что всякого циклического кода $C \subseteq \mathbb{F}_q[x]/(x^n-1)$ существует многочлен $g(x) \in \mathbb{F}_q[x]$, делящий x^n-1 , такой что все элементы из C кратны g.
- 7. Рассмотрим бинарный циклический (7,4)-код, порождённый многочленом $(1+x+x^3)$. Докажите, что кодовое расстояние этого кода равно 3.
- 8. При $m\geqslant 2$ рассмотрим расширение $\mathbb{F}_q\subseteq \mathbb{F}_{q^m}$. Пусть $\alpha\in \mathbb{F}_{q^m}$ некоторый элемент.
- (а) Докажите, что если α является корнем некоторого многочлена $f(x) \in \mathbb{F}_q[x]$, то α^q тоже является корнем этого многочлена.
- (б) Пусть множество $\{\alpha,\alpha^q,\alpha^{q^2},\ldots\}$ содержит k элементов. Докажите, что минимальный многочлен элемента α над \mathbb{F}_q равен $\prod_{i=0}^{k-1}(x-\alpha^{q^i})$.
- 9. Укажите размерности всех бинарных БЧХ-кодов длины 15 и 31.