New York University, CIMS, CS, Course CSCI-GA.3140-001, Spring 2024 "Abstract Interpretation"

Ch. 3, Syntax, Semantics, Properties, and Static Analysis of Expressions

Patrick Cousot

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Class 1, Monday, January 22nd, 2024, 4:55-6:55 PM, WWH, Room CIWW 202

These slides are available at

Chapter 3

Ch. 3, Syntax, Semantics, Properties, and Static Analysis of Expressions

The objective of this chapter 3, "Syntax, Semantics, Properties, and Static Analysis of Expressions" is to introduce abstract interpretation using an extremely simple example: the rule of signs

Product of two integers

In words, we have:

- · Minus times Minus gives Plus
- Minus times Plus gives Minus
- Plus times Minus gives Minus
- Plus times Plus gives Plus

en.wikipedia.org/wiki/Product_(mathematics)

Brahmagupta

- Brahmagupta (born c. 598 CE¹, died after 665 CE) was an Indian mathematician and astronomer;
- Invented the rule of signs for integers (including to compute with zero);
- Probably the very first recorded historical example of abstract interpretation:)
- We apply the rule of signs abstraction to arithmetic expressions

en.wikipedia.org/wiki/Brahmagupta

¹Common Fra

Syntax of expressions

Syntax of expressions

This is an example of *context-free grammar*.

Binary operators are left associative and arithmetic operators have priority over boolean operators (so 1 - 1 < 1 - 1 - 1 is ((1 - 1) < ((1 - 1) - 1)) i.e. false ff).

```
en.wikipedia.org/wiki/Syntax_(programming_languages)
en.wikipedia.org/wiki/Context-free_grammar
```

Semantics of expressions

Environment

The value of an expression depends on the value of the free variables e.g.

$$x - 1$$
 is 2 when $x = 3$, $x - 1$ is 42 when $x = 43$, etc.;

- · We cannot enumerate the infinitely many cases;
- The computer uses values of variables stored in memory;
- The evaluation of expressions by the computer can be explained independently of the memory content;
- We formalize the memory by environments assigning values to variables (assignments in logic);
- An environment

$$\rho \in V \to \mathbb{Z}$$

is a total function ρ mapping a variable $x \in V$ to its integer value $\rho(x) \in \mathbb{Z}$;

```
en.wikipedia.org/wiki/Typing_environment
en.wikipedia.org/wiki/Valuation_(logic)
```

Semantics of expressions

$$\mathscr{A}\llbracket 1 \rrbracket \rho \triangleq 1 \tag{3.4}$$

$$\mathscr{A}\llbracket x \rrbracket \rho \triangleq \rho(x)$$

$$\mathscr{A}\llbracket A_1 - A_2 \rrbracket \rho \triangleq \mathscr{A}\llbracket A_1 \rrbracket \rho - \mathscr{A}\llbracket A_2 \rrbracket \rho$$

$$\mathscr{B}\llbracket A_1 < A_2 \rrbracket \rho \triangleq \mathscr{A}\llbracket A_1 \rrbracket \rho \wedge \mathscr{A}\llbracket A_2 \rrbracket \rho$$

$$\mathscr{B}\llbracket B_1 \text{ nand } B_2 \rrbracket \rho \triangleq \mathscr{B}\llbracket B_1 \rrbracket \rho \uparrow \mathscr{B}\llbracket B_2 \rrbracket \rho$$

$$\mathscr{S}\llbracket E \rrbracket \triangleq \mathscr{A}\llbracket E \rrbracket \qquad \text{when} \qquad E \in \mathcal{A}$$

$$\mathscr{S}\llbracket E \rrbracket \triangleq \mathscr{B}\llbracket E \rrbracket \qquad \text{when} \qquad E \in \mathcal{B}$$

- This is an example of well-defined structural definition.
- $\mathscr{A}[\![A]\!]$ and $\mathscr{B}[\![B]\!]$ are total functions (in \mathbb{Z}), proof by structural induction.

en.wikipedia.org/wiki/Semantics_(computer_science)

Semantic properties of expressions

- 10/45 -

Properties

- We represent a property by the set of elements that have this property.
- For example
 - "x is an even natural" is " $x \in \{0, 2, 4, ...\}$ ".
 - "x is constant equal to 1" is " $x \in \{1\}$ ".

So a property of a natural is an element of $\wp(\mathbb{N})$.

For example

- The property {0, 2, 4, ...} is "to be even".
- The property $\{1\}$ is "to be one".

Powerset

• If S is a set then $\wp(S)$ is the *powerset* of S,

$$\wp(S) \triangleq \{X \mid X \subseteq S\}$$

- Example: $\wp(\{0,1\}) \triangleq \{\emptyset, \{0\}, \{1\}, \{0,1\}\}$
- Hasse diagram:

$$\wp(\{0,1\}) \triangleq \{0\}$$

en.wikipedia.org/wiki/Power_set
en.wikipedia.org/wiki/Hasse_diagram

Implication, weaker and stronger properties

- When considering properties as sets, logical implication is subset inclusion ⊆.
- For example "to be greater that 42 implies to be positive" is $\{x \in \mathbb{Z} \mid x > 42\} \subseteq \{x \in \mathbb{Z} \mid x \geqslant 0\}$.
- If P ⊆ Q then P is said to be stronger/more precise than Q and Q is said to be weaker/less
 precise that P.
- Stronger/more precise properties are satisfied by less elements while weaker/less precise properties are satisfied by more elements.
- False ff i.e. Ø is the strongest property while true tf i.e. Z is the weakest property of integers.
- conjunction \wedge is intersection \cap and disjunction \vee is union \cup .

```
en.wikipedia.org/wiki/Logical_consequence
en.wikipedia.org/wiki/Subset
```

Semantics properties of expressions

- By property of an expression, we mean a semantic property, that is a property of its semantics;
- The semantic belongs to $(V \to \mathbb{Z}) \to \mathbb{Z}$;
- So a semantic property is an element of $\wp((V \to \mathbb{Z}) \to \mathbb{Z})$;
- Arithmetic expression A is said to have semantic property $P \in \wp((V \to \mathbb{Z}) \to \mathbb{Z})$ if and only if $\mathscr{A}[A] \in P$;
- Semantic properties P of expressions are just a particular case of property of expressions i.e. the property $\{A \in \mathbb{E} \mid \mathscr{A}[A] \in P\}^2$.

²This will be discussed in greater details in chapter 9, "Undecidability and Rice Theorem"

Collecting semantics of expressions

Collecting semantics of expressions

• The collecting semantics of expressions is the strongest property of an expression.

$$\mathcal{S}^{\mathbb{C}}[\![A]\!] \triangleq \{\mathcal{A}[\![A]\!]\} \in \wp((\mathbb{V} \to \mathbb{Z}) \to \mathbb{Z}) \tag{3.13}$$

- Arithmetic expression A is said to have semantic property $P \in \wp((V \to \mathbb{Z}) \to \mathbb{Z})$ if and only if $\mathscr{A}[\![A]\!] \in P$
- Equivalently $S^{\mathbb{C}}[A] \subseteq P$ (so we don't need to use \in)
- $S^{c}[A]$ is the strongest property of A.

• The collecting semantics of boolean expressions is

$$\mathcal{S}^{\complement}\llbracket \mathsf{B} \rrbracket \quad \triangleq \quad \{ \mathscr{B}\llbracket \mathsf{B} \rrbracket \} \quad \in \quad \wp((V \to \mathbb{Z}) \to \mathbb{B})$$

Structural collecting semantics

$$\begin{split} \boldsymbol{\mathcal{S}}^{\mathbb{C}} [\![\mathbf{1}]\!] &= \{ \rho \in (\mathcal{V} \to \mathbb{Z}) \mapsto 1 \} \\ \boldsymbol{\mathcal{S}}^{\mathbb{C}} [\![\mathbf{x}]\!] &= \{ \rho \in (\mathcal{V} \to \mathbb{Z}) \mapsto \rho(\mathbf{x}) \} \\ \boldsymbol{\mathcal{S}}^{\mathbb{C}} [\![\mathbf{A}_1 - \mathbf{A}_2]\!] &= \{ \rho \in (\mathcal{V} \to \mathbb{Z}) \mapsto f_1(\rho) - f_2(\rho) \mid f_1 \in \boldsymbol{\mathcal{S}}^{\mathbb{C}} [\![\mathbf{A}_1]\!] \land f_2 \in \boldsymbol{\mathcal{S}}^{\mathbb{C}} [\![\mathbf{A}_2]\!] \} \end{split}$$

 $x \mapsto t$ is the function f such that for parameter x, the value f(x) of f at x is equal to the value of the term t (depending upon x). $x \in X \mapsto t$ states that f is undefined when $x \notin X$.

Sign abstraction

Sign property (of an individual variable)

The Hasse diagram for partial order \subseteq , \cup is the join, \cap is the meet, etc.

Encoding of sign properties (of an individual variable)

Concretization function:

$$\begin{array}{lllll} \gamma_{\pm}(\bot_{\pm}) & \triangleq & \varnothing & & \gamma_{\pm}(\leqslant 0) & \triangleq & \{z \mid z \leqslant 0\} \\ \gamma_{\pm}(<0) & \triangleq & \{z \mid z < 0\} & & \gamma_{\pm}(\neq 0) & \triangleq & \{z \mid z \neq 0\} \\ \gamma_{\pm}(=0) & \triangleq & \{0\} & & \gamma_{\pm}(\geqslant 0) & \triangleq & \{z \mid z \geqslant 0\} \\ \gamma_{\pm}(>0) & \triangleq & \{z \mid z > 0\} & & \gamma_{\pm}(\top_{+}) & \triangleq & \mathbb{Z} \end{array}$$

The lattice of abstract properties

The Hasse diagram for partial order \sqsubseteq , \sqcup is the join, \sqcap is the meet, etc.

e.g.
$$\prod \{ \leq 0, \neq 0 \} = \langle 0, \prod \emptyset = T_{\pm} \rangle$$

Encoding of sign properties (of an individual variable)

Abstraction function:
$$\alpha_{\pm}(P) \triangleq (P \subseteq \varnothing \ ? \perp_{\pm})$$

$$|P \subseteq \{z \mid z < 0\} \ ? < 0$$

$$|P \subseteq \{0\} \ ? = 0$$

$$|P \subseteq \{z \mid z > 0\} \ ? < 0$$

$$|P \subseteq \{z \mid z \neq 0\} \ ? \in 0$$

$$|P \subseteq \{z \mid z \neq 0\} \ ? \neq 0$$

$$|P \subseteq \{z \mid z \geq 0\} \ ? \neq 0$$

$$|P \subseteq \{z \mid z \geq 0\} \ ? \geq 0$$

° T₊)

(3.32)

Galois connection

- The pair $\langle \alpha_{\pm}, \gamma_{\pm} \rangle$ of functions satisfies $\alpha_{\pm}(P) \sqsubseteq Q \Leftrightarrow P \subseteq \gamma_{\pm}(Q)$
- For example,

$$\left(\alpha_{\scriptscriptstyle\pm}(\{-2,-1\}) \quad \triangleq \quad <0 \quad \sqsubseteq \quad \neq 0\right) \quad \Longleftrightarrow \quad \left(\{-2,-1\} \quad \subseteq \quad \{z \mid z \neq 0\} \quad \triangleq \quad \gamma_{\scriptscriptstyle\pm}(\neq 0)\right)$$

• Let us prove that we have a Galois connection between concrete and abstract properties

Galois connection

• The pair $\langle \alpha_{\pm}, \gamma_{\pm} \rangle$ of functions satisfies $\alpha_{\pm}(P) \sqsubseteq Q \Leftrightarrow P \subseteq \gamma_{\pm}(Q)$

$$\alpha_{\scriptscriptstyle \pm}(P) \sqsubseteq Q$$

$$\Leftrightarrow \alpha_{\scriptscriptstyle \pm}(P) \sqsubseteq \neq 0$$

in case $Q = \neq 0$, other cases are similar

$$\Leftrightarrow \alpha_{\pm}(P) \in \{\bot_{\pm}, <0, \neq 0, >0\}$$

 $\{ def. \sqsubseteq \}$ $\{ def. \alpha_+ \}$

$$\Leftrightarrow P \subseteq \emptyset \lor P \subseteq \{z \mid z < 0\} \lor P \subseteq \{z \mid z > 0\} \lor P \subseteq \{z \mid z \neq 0\}$$

7 def. ⊆ \

$$\Leftrightarrow P \subseteq \{z \mid z \neq 0\}$$

$$\Leftrightarrow P \subseteq \gamma_{\pm}(\neq 0)$$

7 def. v_+ \

$$\Leftrightarrow P \subseteq \gamma_+(Q)$$

$$\{ case Q = \neq 0 \}$$

- This is the definition of a Galois connection
- We write $\langle \wp(\mathbb{Z}), \subseteq \rangle \xrightarrow{\gamma_{\pm}} \langle \mathbb{P}^{\pm}, \sqsubseteq \rangle$
- This will be further generalized.

en.wikipedia.org/wiki/Galois_connection en.wikipedia.org/wiki/Évariste Galois

Sign abstract semantics

$$\mathcal{S}\llbracket \mathsf{A} \rrbracket \quad \in \quad (\mathbb{V} \to \mathbb{P}^{\pm}) \to \mathbb{P}^{\pm}$$

$$\mathcal{S}\llbracket 1 \rrbracket P \quad \triangleq \quad > 0$$

$$\mathcal{S}\llbracket \mathsf{x} \rrbracket P \quad \triangleq \quad P(\mathsf{x})$$

$$\mathcal{S}\llbracket \mathsf{A}_1 - \mathsf{A}_2 \rrbracket P \quad \triangleq \quad \mathcal{S}\llbracket \mathsf{A}_1 \rrbracket P_{-\pm} \mathcal{S}\llbracket \mathsf{A}_2 \rrbracket P$$

$$(3.23)$$

	<i>x</i> − _± <i>y</i>				y				
		±±	<0	=0	>0	≤0	≠ 0	≥0	T _±
	±±	⊥±	\perp_{\pm}	\perp_{\pm}	\perp_{\pm}	\perp_{\pm}	\perp_{\pm}	\perp_{\pm}	\perp_{\pm}
	<0	\perp_{\pm}	$T_{\!_{\pm}}$	<0	<0	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\scriptscriptstyle{\pm}}$	<0	$T_{\!\scriptscriptstyle \pm}$
	=0	\perp_{\pm}	>0	=0	<0	≥0	≠ 0	≤0	$T_{\!\scriptscriptstyle \pm}$
\boldsymbol{x}	>0	⊥±	>0	>0	$T_{\!\scriptscriptstyle{\pm}}$	>0	$T_{\!\!\!\!\pm}$	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\scriptscriptstyle \pm}$
	≤0	\perp_{\pm}	>0	≤0	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\pm}$	≤0	$T_{\!\scriptscriptstyle{\pm}}$
	≠0	\perp_{\pm}	$T_{\!_{\pm}}$	≠ 0	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\scriptscriptstyle{\pm}}$
	≥0	⊥±	>0	≥0	$T_{\!\scriptscriptstyle{\pm}}$	≥0	$T_{\!\pm}$	$T_{\!\scriptscriptstyle{\pm}}$	$T_{\!\scriptscriptstyle{\pm}}$
	T,		T,	T.	T,	T,	T.	T,	T.

This is a specification of an abstract interpreter I

```
type aexpr = One | Var of string | Minus of aexpr * aexpr;;
let bot = 0 and neg = 1 and is0 = 2 and pos = 3 and
   neg0 = 4 and not0 = 5 and pos0 = 6 and top = 7;
let print s = match s with
    0 -> "bot" | 1 -> "neg" | 2 -> "is0" | 3 -> "pos" |
    4 -> "neg0" | 5 -> "not0" | 6 -> "pos0" | 7 -> "top" |
    _ -> failwith "incorrect sign";;
let minus= [|[|bot; bot; bot; bot; bot;
                                               bot; bot[];
            Γlbot:
                   top;
                         neg; neg; top;
                                          top:
                                                neg; top[];
            Γlbot:
                        is0: neg:
                                    pos0: not0: neg0: top|]:
                   pos:
            [|bot;
                   pos:
                        pos; top; pos; top;
                                               top; top[];
            [|bot;
                   pos;
                        neg0; top; top; top;
                                               neg0; top|];
            Γlbot:
                   top:
                        not0; top; top;
                                          top:
                                               top: topll:
            Γlbot:
                   pos:
                        pos0; top; pos0; top;
                                                top; top[];
            [|bot;
                                                top: topll:
                   top: top: top: top:
          |];;
```

This is a specification of an abstract interpreter II

```
type environment = (string * int) list;;
let rec sign a r = match a with
   | One -> pos
   | Var x -> List.assoc x r
   | Minus (a1, a2) -> minus.(sign a1 r).(sign a2 r);;
let r = [("x",pos); ("y",neg)];;
print (sign (Minus ((Var "x"),(Var "y"))) r);;
- : string = "pos"
```

Calculational design of the rule of signs

$$>0 -_{\pm} \leqslant 0$$

$$\triangleq \alpha_{\pm}(\{x-y \mid x \in \gamma_{\pm}(>0) \land y \in \gamma_{\pm}(\leqslant 0)\}$$

$$= \alpha_{\pm}(\{x-y \mid x > 0 \land y \leqslant 0\})$$

$$= \alpha_{\pm}(\{z \mid z > 0\})$$

$$\text{ (for } \subseteq, x > 0 \land y \leqslant 0 \Rightarrow x-y > 0;$$

$$\text{ for } \supseteq \text{ if } z > 0 \text{ then take } x = z \text{ and } y = 0 \text{ so } z \in \{x-y \mid x > 0 \land -y \geqslant 0\} \text{)}$$

$$= >0$$

Same calculus for all other cases (can be automated with a theorem prover).

Soundness

Sign concretization

• Sign

$$\begin{array}{llll} \gamma_{\pm}(\bot_{\pm}) & \triangleq & \varnothing & \gamma_{\pm}(\leqslant 0) & \triangleq & \{z \in \mathbb{Z} \mid z \leqslant 0\} \\ \gamma_{\pm}(<0) & \triangleq & \{z \in \mathbb{Z} \mid z < 0\} & \gamma_{\pm}(\neq 0) & \triangleq & \{z \in \mathbb{Z} \mid z \neq 0\} \\ \gamma_{\pm}(=0) & \triangleq & \{0\} & \gamma_{\pm}(\geqslant 0) & \triangleq & \{z \in \mathbb{Z} \mid z \geqslant 0\} \\ \gamma_{\pm}(>0) & \triangleq & \{z \in \mathbb{Z} \mid z > 0\} & \gamma_{\pm}(\top_{\pm}) & \triangleq & \mathbb{Z} \end{array}$$

$$(3.25)$$

Sign environment

$$\dot{\gamma}_{\pm}(\dot{\bar{\rho}}) \triangleq \{ \rho \in \mathbb{V} \to \mathbb{Z} \mid \forall x \in \mathbb{V} . \, \rho(x) \in \gamma_{\pm}(\dot{\bar{\rho}}(x)) \}$$
 (3.26)

Sign abstract property

$$\ddot{\gamma}_{\pm}(\overline{P}) \triangleq \{ \mathbf{S} \in (V \to \mathbb{Z}) \to \mathbb{Z} \mid \forall \dot{\rho} \in V \to \mathbb{P}^{\pm} : \forall \rho \in \dot{\gamma}_{\pm}(\dot{\rho}) : \mathbf{S}(\rho) \in \gamma_{\pm}(\overline{P}(\dot{\rho})) \}$$
(3.27)

Sign abstraction

Value property

$$\alpha_{\pm}(P) \triangleq \{P \subseteq \emptyset \ ? \perp_{\pm} \}$$

$$\|P \subseteq \{z \mid z < 0\} \ ? < 0 \}$$

$$\|P \subseteq \{0\} \ ? = 0 \}$$

$$\|P \subseteq \{z \mid z > 0\} \ ? > 0 \}$$

$$\|P \subseteq \{z \mid z \leq 0\} \ ? \leq 0 \}$$

$$\|P \subseteq \{z \mid z \neq 0\} \ ? \neq 0 \}$$

$$\|P \subseteq \{z \mid z \geq 0\} \ ? \geq 0 \}$$

$$\|P \subseteq \{z \mid z \geq 0\} \ ? \geq 0 \}$$

$$\|P \subseteq \{z \mid z \geq 0\} \ ? \geq 0 \}$$

Environment property

$$\dot{\alpha}_{\pm}(P) \triangleq \mathbf{x} \in V \mapsto \alpha_{\pm}(\{\rho(\mathbf{x}) \mid \rho \in P\}) \tag{3.35}$$

Semantics property

$$\ddot{\alpha}_{\scriptscriptstyle \pm}(P) \quad \triangleq \quad \dot{\bar{\rho}} \in \mathbb{V} \to \mathbb{P}^{\scriptscriptstyle \pm} \mapsto \alpha_{\scriptscriptstyle \pm}(\{\boldsymbol{S}(\rho) \mid \boldsymbol{S} \in P \land \rho \in \dot{\gamma}_{\scriptscriptstyle \pm}(\dot{\bar{\rho}})\})$$

(3.36)

Example of environment property abstraction

• The property of environments such that x is equal to 1:

$$\{\rho \in V \to \mathbb{Z} \mid \rho(\mathsf{x}) = 1\}$$

• Sign abstraction:

$$\begin{split} &\dot{\alpha}_{\pm}(\{\rho\in \mathbb{V}\to\mathbb{Z}\mid \rho(\mathsf{x})=1\})\\ &\triangleq \mathsf{y}\in \mathbb{V}\mapsto \alpha_{\pm}(\{\rho(\mathsf{y})\mid \rho\in \{\rho\in \mathbb{V}\to\mathbb{Z}\mid \rho(\mathsf{x})=1\}\})\\ &= \mathsf{y}\in \mathbb{V}\mapsto (\!(\mathsf{y}=\mathsf{x}\otimes \alpha_{\pm}(\{1\})\otimes \alpha_{\pm}(\mathbb{Z}))\!)\\ &= \mathsf{y}\in \mathbb{V}\mapsto (\!(\mathsf{y}=\mathsf{x}\otimes \mathsf{x}\otimes \mathsf{x})\otimes \mathsf{x}_{\pm})\!) \end{split}$$

Sign concretization:

$$\begin{split} \dot{\gamma}_{\scriptscriptstyle \pm}(\mathbf{y} \in \mathbb{V} &\mapsto (\![\mathbf{y} = \mathbf{x} ? > 0 : \mathsf{T}_{\scriptscriptstyle \pm}]\!)) \\ &\triangleq \{ \rho \in \mathbb{V} \to \mathbb{Z} \mid \forall \mathbf{z} \in \mathbb{V} : \rho(\mathbf{z}) \in \gamma_{\scriptscriptstyle \pm}(\mathbf{y} \in \mathbb{V} \mapsto (\![\mathbf{y} = \mathbf{x} ? > 0 : \mathsf{T}_{\scriptscriptstyle \pm}]\!)(\mathbf{z})) \} \\ &= \{ \rho \in \mathbb{V} \to \mathbb{Z} \mid \rho(\mathbf{x}) > 0 \} \end{split}$$

Galois connections

Value to sign

$$\langle \wp(\mathbb{Z}), \subseteq \rangle \xrightarrow{\gamma_{\pm}} \langle \mathbb{P}^{\pm}, \sqsubseteq \rangle$$

· Value environment to sign environment

$$\langle \wp(V o \mathbb{Z}), \subseteq \rangle \xrightarrow{\dot{\gamma}_{\pm}} \langle V o \mathbb{P}^{\pm}, \, \dot{\sqsubseteq}_{\pm} \rangle$$

• Semantic to sign abstract semantic property

$$\langle\wp((V o\mathbb{Z}) o\mathbb{Z}),\,\subseteq
angle \stackrel{\ddot{\gamma}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\alpha}}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\dot{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}}{\stackrel{\check{\alpha}_\pm}}}\stackrel{\check{\alpha}}{\stackrel{\check{\alpha}_\star}}}{\stackrel{\check{\alpha}_\star}}\stackrel{\check{\alpha}}}{\stackrel{\check{\alpha}_\star}}\stackrel{\check{\alpha}}}{\stackrel{\check{\alpha}_\star}}}\stackrel{\check{\alpha}}{\stackrel{\check{\alpha}}}}\stackrel{\check{\alpha}}{\stackrel{\alpha}}}\stackrel{\check{\alpha}}}{\stackrel{\check{\alpha}}}}\stackrel{\check{\alpha}}}{\stackrel{\check{\alpha}}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}}\stackrel{\check{\alpha}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}}\stackrel{\check{\alpha}}\stackrel{\check{\alpha}$$

Soundness of the abstract sign semantics

The abstract sign semantics is an abstraction of the collecting property

$$\mathbf{S}^{\mathbb{C}}[\![A]\!] \subseteq \ddot{\gamma}_{\pm}(\mathbf{S}^{\pm}[\![A]\!])$$

$$\Leftrightarrow \ddot{\alpha}_{\pm}(\mathbf{S}^{\mathbb{C}}[\![A]\!]) \stackrel{\square}{\sqsubseteq} \mathbf{S}^{\pm}[\![A]\!]$$

- Precision loss: if the sign of x is ≤ 0 then the sign of x x is T_{\pm} not = 0
- The absolute value is abstracted away
- No precision loss for multiplication ×

en.wikipedia.org/wiki/Soundness

Next objective ...

Now that we have defined the collecting semantics $S^{\mathbb{C}}[A] \in \wp((V \to \mathbb{Z}) \to \mathbb{Z})$

$$\begin{split} \boldsymbol{\mathcal{S}}^{\mathbb{C}} \llbracket \boldsymbol{1} \rrbracket &= \{ \rho \in (\mathcal{V} \to \mathbb{Z}) \mapsto \boldsymbol{1} \} \\ \boldsymbol{\mathcal{S}}^{\mathbb{C}} \llbracket \boldsymbol{x} \rrbracket &= \{ \rho \in (\mathcal{V} \to \mathbb{Z}) \mapsto \rho(\boldsymbol{x}) \} \\ \boldsymbol{\mathcal{S}}^{\mathbb{C}} \llbracket \boldsymbol{A}_{1} - \boldsymbol{A}_{2} \rrbracket &= \{ \rho \in (\mathcal{V} \to \mathbb{Z}) \mapsto f_{1}(\rho) - f_{2}(\rho) \mid f_{1} \in \boldsymbol{\mathcal{S}}^{\mathbb{C}} \llbracket \boldsymbol{A}_{1} \rrbracket \wedge f_{2} \in \boldsymbol{\mathcal{S}}^{\mathbb{C}} \llbracket \boldsymbol{A}_{2} \rrbracket \} \end{split}$$

and the sign abstraction

$$\begin{split} \langle \wp(\mathbb{Z}), \subseteq \rangle & \xleftarrow{\gamma_{\pm}} \langle \mathbb{P}^{\pm}, \sqsubseteq \rangle & \text{value properties} \\ \langle \wp(\mathbb{V} \to \mathbb{Z}), \subseteq \rangle & \xleftarrow{\dot{\gamma}_{\pm}} \langle \mathbb{V} \to \mathbb{P}^{\pm}, \dot{\sqsubseteq}_{\pm} \rangle & \text{environment properties} \\ \langle \wp((\mathbb{V} \to \mathbb{Z}) \to \mathbb{Z}), \subseteq \rangle & \xleftarrow{\ddot{\gamma}_{\pm}} \langle (\mathbb{V} \to \mathbb{P}^{\pm}) \to \mathbb{P}^{\pm}, \dot{\sqsubseteq}_{\pm} \rangle & \text{semantic properties} \end{split}$$

we are ready to calculate the sign abstract semantics $S^{\pm}[\![A]\!] \in (V \to \mathbb{P}^{\pm}) \to \mathbb{P}^{\pm}$ by over approximation of the collecting semantics

$$\ddot{\alpha}_{\scriptscriptstyle{\pm}}(\mathbf{S}^{\scriptscriptstyle{\mathbb{C}}}\llbracket \mathsf{A} \rrbracket) \quad \ddot{\sqsubseteq} \quad \mathbf{S}^{\scriptscriptstyle{\pm}}\llbracket \mathsf{A} \rrbracket$$

This sign abstract semantics is a specification of the sign static analyzer.

Calculational design of the sign semantics

Case of a variable x

$$\ddot{\alpha}_{\pm}(\boldsymbol{S}^{\mathbb{C}}[\![\boldsymbol{x}]\!])\dot{\bar{\rho}}$$

$$= \alpha_{\pm}(\{\boldsymbol{S}(\rho) \mid \boldsymbol{S} \in \boldsymbol{S}^{\mathbb{C}}[\![\boldsymbol{x}]\!] \land \rho \in \dot{\gamma}_{\pm}(\dot{\bar{\rho}})\})$$

$$= \alpha_{\pm}(\{\boldsymbol{\mathcal{M}}[\![\boldsymbol{x}]\!](\rho) \mid \rho \in \dot{\gamma}_{\pm}(\dot{\bar{\rho}})\})$$

$$= \alpha_{\pm}(\{\rho(x) \mid \rho \in \dot{\gamma}_{\pm}(\dot{\bar{\rho}})\})$$

$$= \alpha_{\pm}(\{\rho(x) \mid \forall y \in \boldsymbol{V} : \rho(y) \in \gamma_{\pm}(\dot{\bar{\rho}}(y))\})$$

$$\subseteq \alpha_{\pm}(\{\rho(x) \mid \gamma \in \boldsymbol{\gamma}_{\pm}(\dot{\bar{\rho}}(x))\})$$

$$(\text{def. (3.4) of } \boldsymbol{\mathcal{M}}[\![\boldsymbol{x}]\!])$$

$$= \alpha_{\pm}(\{\rho(x) \mid \rho(x) \in \gamma_{\pm}(\dot{\bar{\rho}}(x))\})$$

$$(\text{if } y = x, \text{ the condition } \rho(x) \in \gamma_{\pm}(\dot{\bar{\rho}}(x)) \text{ is the same;}$$

$$\text{if } y \neq x \text{ the condition } \rho(y) \in \gamma_{\pm}(\dot{\bar{\rho}}(y)) \text{ is disgarded;}$$

$$\text{So the set } \{\rho(x) \mid \rho(x) \in \gamma_{\pm}(\dot{\bar{\rho}}(x))\} \text{ is larger and } \alpha_{\pm} \text{ is increasing})$$

$$= \alpha_{\pm}(\{x \mid x \in \gamma_{\pm}(\dot{\bar{\rho}}(x))\})$$

$$= \alpha_{\pm}(\{x \mid x \in \gamma_{\pm}(\dot{\bar{\rho}}(x))\})$$

$$(\text{since } S = \{x \mid z \in S\} \text{ for any set } S\})$$

$$= \dot{\bar{\rho}}(x)$$

$$\hat{S}^{\pm}[\![x]\!]\dot{\bar{\rho}}$$

$$(\text{in accordance with (3.23)})$$

Other cases

- similar for $\ddot{\alpha}_{\scriptscriptstyle{\pm}}(\boldsymbol{\mathcal{S}}^{\scriptscriptstyle{\mathbb{C}}}\llbracket \mathbf{1} \rrbracket) \overset{\scriptscriptstyle{\pm}}{\rho}$
- by structural induction for $\ddot{\alpha}_{\pm}(\mathbf{S}^{\mathbb{C}}[\![\mathbf{A}_1 \mathbf{A}_2]\!])$
- See the book Patrick Cousot, 2021] for more details.

Extension to programs

Automatic static sign program analysis

```
#include <stdio.h>
      int main () {
      int x;
      scanf("%d",&x);
1:
      while 2: (x>0) {
3:
        x = x-1;
4:
5:
      printf("%d\n",x);
      return x;
```

What is the sign of x when printing?

Conclusion I

- We have formally defined the semantics of expressions, their properties, their collecting semantics, the sign abstraction, and designed, by calculus, a sign analysis that we have implemented.
- Of course the rule of signs looks trivial, but one can get is wrong! [Sintzoff, 1972]
- The sign analysis is not very precise, but section 34.11 shows that it is always possible to use infinite abstractions to guarantee more precise results³.
- For another informal introduction to abstract interpretation, you can read [P. Cousot and R. Cousot, 2010]

³e.g. chapter 33. "Static Interval Analysis" for signs.

Bibliography

Bibliography

Patrick Cousot (2021). Principles of Abstract Interpretation. 1st ed. MIT Press.

Cousot, Patrick and Radhia Cousot (2010). "A Gentle Introduction to Formal Verification of Computer Systems by Abstract Interpretation.". In *Logics and Languages for Reliability and Security*. Edited by J. Esparza, O. Grumberg, and M. Broy. NATO Science Series III: Computer and Systems Sciences. IOS Press, pp. 1–29.

Sintzoff, Michel (1972). "Calculating Properties of Programs by Valuations on Specific Models.". In *Proceedings of ACM Conference on Proving Assertions About Programs*. ACM, pp. 203–207.

The End, Thank you