NOME:_____TURMA

Departamento de Engenharia Electrotécnica e de Computadores

Sistemas Digitais (2001/2002)

1^a chamada – 7/Janeiro/2002

Duração: 2horas, sem consulta.

Antes de iniciar a prova, tenha em atenção as seguintes recomendações:

- Leia atentamente toda a prova antes de a iniciar.
- Mostre e justifique adequadamente todos os passos das suas respostas.
- · A prova deverá ser resolvida no enunciado. Se necessário, utilize o verso para continuar a sua resolução.
- · Assine todas as folhas que entregar, indicando em cada uma o número de páginas/folhas que entregou.
- **1** Pretende-se codificar as coordenadas de latitude e longitude de determinados locais usando o sistema binário em complemento para 2. As latitudes variam entre –90 (90° Sul) e +90 (90° Norte). As longitudes variam entre –180 (180° Oeste) e +180 (180° Este).
- a) Indique o número mínimo de bits necessários à codificação da latitude e longitude.

b) Tendo-se optado por codificar a latitude e longitude com 8 e 10 bits respectivamente, indique as coordenadas da cidade de Melbourne: 38° Sul (-38), 145° Este (+145).

c) Admitindo a representação referida em b), calcule em binário a diferença de latitudes das ilhas de Spitzbergen (78° Norte = 4E₁₆) e Falkland (52° Sul = CC₁₆). Comente o resultado.

 $\bf 2$ - O circuito da figura é um multiplexador de 2 entradas. Na saída Y surge o valor lógico da entrada $\bf I_0$ caso a entrada de selecção S seja 0, ou surge o valor lógico da entrada $\bf I_1$ se S=1. Note que este funcionamento só ocorre se a entrada de enable estiver activa (EN = 1) caso contrário a saída será 0.

a) Obtenha a expressão simplificada da saída Y na forma de produto de somas.

b) Implemente a função obtida em a) usando apenas NORs de duas entradas e inversores.

- c) Recorrendo a um destes multiplexadores e eventuais inversores implemente (<u>utilize o verso da folha</u>):
 - i) um XOR de 2 entradas: $A \oplus B$
 - ii) um AND de três entradas: $A \cdot B \cdot C$

NOME: TURMA

3 - Pretende-se projectar o sistema de controlo de temperatura de um cilindro de aquecimento de água. O sistema tem uma saída LIGA que quando é activada (nível alto) liga a resistência eléctrica de aquecimento e uma saída ESCAPE que quando activada (nível lógico alto) abre uma válvula de escape de água, sempre que a temperatura da água ultrapassar um limite crítico. Para controlar a temperatura da água no interior do cilindro dispõe-se de 3 entradas TMAX, TMIN e TCRI, que são activadas (nível lógico alto) quando a temperatura da água no interior do cilindro se torna, respectivamente, maior do que o limite máximo Tmax, menor do que o

limite mínimo Tmin ou maior do que a temperatura máxima admissível no interior do cilindro, Tcritica. O sistema dispõe ainda de duas entradas ligadas a um botão de arranque (**START**) para iniciar a operação e a um botão de paragem (**STOP**) para desligar. Estas entradas tomam o valor lógico alto quando os botões respectivos são pressionados.

Para controlar a temperatura da água no interior do cilindro, a resistência eléctrica deve ser ligada sempre que T for menor do que o valor mínimo Tmin, e deve ser desligada quando for ultrapassado o valor máximo Tmax. Se, por motivo de avaria, a temperatura ultrapassar o limite crítico (activando a saída **TCRI** do sensor de temperatura), deve ser parado o sistema, aberta a válvula de escape e desligada a resistência.

Desenhe o diagrama de transição de estados do sistema descrito, utilizando nomes simbólicos para os estados.

NOME:_____TURMA

4 — Considere a máquina sequencial cuja tabela de transições de estados se mostra. Os estados A, B e C são codificados respectivamente na forma $Q_1Q_0 = 00$, 01 e 10.

		K	
S	0	1	Z
A	В	С	0
В	C	A	0
C	A	В	1
	S	*	•

- a) Identifique as entrada e saídas da máquina e diga, justificando, se se trata de uma máquina de Moore ou Mealy.
- b) Obtenha o circuito respectivo utilizando flip-flops JK e um critério de custo mínimo (utilize o verso da folha)
- c) Supondo que a máquina arranca no estado não definido (em que $Q_1Q_0 = 11$), indique qual o estado seguinte se a entrada X for igual a 0, tendo por base a solução encontrada.

NOME: TURMA

5 — Considere o circuito da figura construído com base em contadores 74x163, onde o bloco comparador detecta a igualdade entre as saídas dos dois contadores. Supondo que o estado inicial dos dois contadores é $Q_DQ_CQ_BQ_A$ =0000, diga justificando qual a sequência de valores obtida nas saídas $S_3S_2S_1S_0$.

NOME: TURMA

6 − O circuito seguinte baseado no registo de deslocamento 74x194 é um detector de uma dada sequência binária na entrada X.

- a) Determine o modo de funcionamento do registo de deslocamento quando S=0.
- b) Considerando S=0, $Q_DQ_CQ_BQ_A$ =1111 e a sequência na entrada X indicada, complete a tabela seguinte com os valores apresentados na saída Z e diga qual é a sequência detectada pelo circuito.

X	1	0	0	1	0	0	0	0	1	1	0	1	1	1	0	0	0	1
Z																		

c) Considerando agora S=1, Q_DQ_CQ_BQ_A=1111 e a sequência na entrada X indicada (que é a mesma da alínea anterior), complete a tabela seguinte com os valores apresentados na saída Z e explique quais as alterações verificadas em relação ao circuito anterior.

X	1	0	0	1	0	0	0	0	1	1	0	1	1	1	0	0	0	1
Z																		

- FIM -