# Phase 5 Capstone

**Diabetes Classification** 

Heath Rittler

## Business Problem

6.7%

**Diabetes Prevalence** 

**Description:** According to the International Diabetes Federation, in 2021, an estimated **537 million** people worldwide had **diabetes**, and this number is projected to rise to 642 million by 2040.

**Goal:** Create a classification system to help identify individuals with diabetic risk within a given population.

## Data

#### 100k individuals

**8** independent variables + our diabetes flag

Roughly 8.5% with Diabetes



https://www.kaggle.com/datasets/iammustafatz/diabetes-pre diction-dataset

## Approach & Goals

**Classification** model to determine Diabetes diagnoses

Evaluate multiple methodologies, and pick the best one (Logistic Regression, Random Forest, Decision Tree, **XGBoost**, Neural network)

Correct predictions **89**% of the time



### Final Model

Minimize false positives -

#### **Precision**

Decision Tree & Random
Forest had better precision
metrics but sacrificed recall

**Best XGBoost** chosen for consistency & overall performance

| Model                                                                                                                | Train Precision Score                                         | Test Precision Score                                     | Train F1 Score                                           | Test F1 Score                                           |
|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|
| 3   Best Decision Tree   5   Best Random Forest                                                                      | 1                                                             | 1<br>1                                                   | 0.801026                                                 | 0.803713                                                |
| 7   Best XGBoost                                                                                                     | 0.884868                                                      | 0.89547                                                  | 0.784971                                                 | 0.788142                                                |
| 6   Baseline XGBoost 4   Baseline Random Forest   2   Baseline Decision Tree   1   Best Logreg   0   Baseline Logreg | 0.93223<br>0.994138  <br>0.996498  <br>0.430175  <br>0.419432 | 0.883058<br>0.753302<br>0.699173<br>0.442249<br>0.432226 | 0.836596<br>0.994374<br>0.994441<br>0.558478<br>0.551109 | 0.78499<br>0.740895<br>0.715686<br>0.568822<br>0.561701 |

## Insights

HbA1c and blood glucose highly **correlated** with Diabetes

Age, BMI, and Smoking also risk factors for Diabetics



## Feature Importance

**Lifestyle factors** for intervention - HbA1c, Blood Glucose, BMI, Smoking

Similar impact to correlation matrix



### Recommendations

Run the algorithm on new data.

Continually evolve the datasets that are being used for prediction.

Try to understand time, and impact of additional metrics in #2 and early diagnosis.

Evaluate impact of interventions on classified population vs those that were not classified for programming.

Load data into centralized repository for sharing into operational systems.

# Thank you!

Email: hrittler@gmail.com

Github: @heathlikethecandybar

LinkedIn: <a href="linkedin.com/in/heathrittler">linkedIn: <a href="linkedin.com/in/heathrittler">linkedIn: <a href="linkedin.com/in/heathrittler">linkedIn: <a href="linkedin.com/in/heathrittler">linkedin.com/in/heathrittler</a></a>