Лабораторная работа 3.2.3

Резонанс токов в параллельном контуре

Выполнил: Тимонин Андрей

1 Цель работы

Исследование резонанса токов в параллельном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

2 В работе используются:

- генератор сигналов
- источник напряжения, нагруженный на параллельный колебательный контур с переменной ёмкостью
- двухканальный осциллограф
- цифровые вольтметры

3 Схема установки

Схема экспериментального стенда для изучения резонанса токов в параллельном колебательном контуре показана на рис. 1. Синусоидальный сигнал от генератора GFG-8255A поступает на вход источника тока. Представлен резистор, переменное напряжение, на котором в используемой схеме равно напряжению на входе «+» операционного усилителя.

Рис. 1: Схема экспериментального стенда

Напряжение $E=E_0cos(\omega t+\phi_0)$ поступает на вход «+» операционного усилителя от генератора через согласующую RC-цепочку. Это же напряжение через разъём «U1» подаётся одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Переменное напряжение на резисторе R1, как отмечалось выше, при этом также равно E. Напряжение на контуре U, совпадающее с напряжением на конденсаторе, подаётся со знаком «-» через разъём «U2» на канал 2 осциллографа и вход 2-го цифрового вольтметра GDM-8245. Показанные на схеме установки ещё два конденсатора без наименований (помимо входящего в RC-цепочку) играют вспомогательную роль и не влияют на характеристики контура. Символ «->+» отмечает наличие источника питания полевого транзистора. Ток затвора «з» полевого транзистора ничтожно мал, так что токи истока «и» и стока «с» практически совпадают и равны току во внешней цепи контура. Как видно из схемы,

$$I = \frac{E}{R_1} = I_0 cos(\omega t + \phi_0), \quad I_0 = \frac{E_0}{R_1}$$

4 Ход работы

$$L = \frac{1}{C(2\pi f)^2} \tag{1}$$

$$\rho = \frac{1}{2\pi fC} \tag{2}$$

$$Z_{\text{pe3}} = \frac{U}{E_0} R_1 \tag{3}$$

$$Q = \frac{UR_1}{E_0} 2\pi f C \tag{4}$$

$$R_{\sum} = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} \tag{5}$$

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C} \tag{6}$$

$$R_L = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$
 (7)

АЧХ при n=3 и n=5

Таблица 1: Результаты расчетов для пункта 11

$C_n, H\Phi$	f_{0n} , к Γ ц	U_{0n} , B	E, B	L , мк Γ н	ρ , Om
25.1	32.13 ± 0.01	1.1927 ± 0.0001	0.2062 ± 0.0001	978.434 ± 49.531	197.437 ± 9.933
33.2	27.81 ± 0.01	0.7473 ± 0.0001	0.2060 ± 0.0001	987.579 ± 50.089	172.471 ± 8.686
47.3	23.13 ± 0.01	0.6656 ± 0.0001	0.2062 ± 0.0001	1002.435 ± 50.989	145.579 ± 7.342
57.4	21.23 ± 0.01	0.5729 ± 0.0001	0.2062 ± 0.0001	979.727 ± 49.909	130.646 ± 6.594
67.5	19.56 ± 0.01	0.4503 ± 0.0001	0.2060 ± 0.0001	981.435 ± 50.075	120.581 ± 6.091
82.7	17.70 ± 0.01	0.3886 ± 0.0001	0.2060 ± 0.0001	978.653 ± 50.038	108.783 ± 5.501
101.6	15.99 ± 0.01	0.3364 ± 0.0001	0.2059 ± 0.0001	976.457 ± 50.044	98.035 ± 4.963

Таблица 2: Результаты расчетов для пункта 11

Z_{pes} , Om	Q	R_{Σ} , Om	R_{Sm} , Om	R_L , Om
1	•		,	
5830.464 ± 586.363	29.531 ± 4.456	6.686 ± 1.345	0.197 ± 0.010	2.988 ± 1.705
3656.691 ± 367.934	21.202 ± 3.201	8.135 ± 1.638	0.172 ± 0.009	4.462 ± 1.997
3253.758 ± 327.443	22.351 ± 3.376	6.513 ± 1.312	0.146 ± 0.007	2.868 ± 1.670
2800.597 ± 281.907	21.437 ± 3.240	6.095 ± 1.229	0.131 ± 0.007	2.464 ± 1.585
2203.410 ± 221.900	18.273 ± 2.763	6.599 ± 1.331	0.121 ± 0.006	2.978 ± 1.687
1901.499 ± 191.562	17.480 ± 2.645	6.223 ± 1.256	0.109 ± 0.006	2.615 ± 1.612
1646.873 ± 165.977	16.799 ± 2.543	5.836 ± 1.179	0.098 ± 0.005	2.238 ± 1.534

AЧX при n=3

Таблица 3: Результаты расчетов для пункта 11

L_{sred}	983.531	RL_{sred}	2.945
$\triangle L_{sred}$	50.097	$\triangle RL_{sred}$	1.684
$S_{L_{\text{сред}}}$	3.077	$S_{RL_{\rm cpeg}}$	0.226
$\triangle_{\text{случ}} L_{sred}$	7.530	$\triangle_{\text{случ}} RL_{sred}$	0.553

№	f_{0n} , к Γ ц	U, B
1	18.79 ± 0.01	0.2680 ± 0.0001
2	20.10 ± 0.01	0.2940 ± 0.0001
3	20.20 ± 0.01	0.2760 ± 0.0001
4	18.90 ± 0.01	0.3100 ± 0.0001
5	19.26 ± 0.01	0.4300 ± 0.0001
6	19.05 ± 0.01	0.3500 ± 0.0001
7	18.95 ± 0.01	0.3100 ± 0.0001
8	18.96 ± 0.01	0.3200 ± 0.0001
9	19.45 ± 0.01	0.4650 ± 0.0001
10	19.33 ± 0.01	0.4440 ± 0.0001
11	19.26 ± 0.01	0.4240 ± 0.0001
12	19.23 ± 0.01	0.4180 ± 0.0001
13	19.15 ± 0.01	$0,3900 \pm 0.0001$
14	18.90 ± 0.01	0.3000 ± 0.0001
15	19.10 ± 0.01	0.3700 ± 0.0001
16	19.79 ± 0.01	0.4000 ± 0.0001
17	19.70 ± 0.01	0.4200 ± 0.0001
18	19.97 ± 0.01	0.3400 ± 0.0001
19	19.98 ± 0.01	0.3370 ± 0.0001
20	20.40 ± 0.01	0.2300 ± 0.0001

Таблица 4: Данные для пункта 9 при ${\rm n}=3$

No॒	f_{0n} , к Γ ц	U, B
1	22.65 ± 0.01	0.4400 ± 0.0001
2	22.55 ± 0.01	0.3900 ± 0.0001
3	22.57 ± 0.01	0.4050 ± 0.0001
4	23.86 ± 0.01	0.4150 ± 0.0001
5	23.46 ± 0.01	0.5950 ± 0.0001
6	22.85 ± 0.01	0.5350 ± 0.0001
7	23.24 ± 0.01	0.6660 ± 0.0001
8	23.78 ± 0.01	0.4440 ± 0.0001
9	23.91 ± 0.01	0.3900 ± 0.0001
10	23.37 ± 0.01	0.6350 ± 0.0001
11	23.65 ± 0.01	0.9100 ± 0.0001
12	23.78 ± 0.01	0.4440 ± 0.0001
13	22.60 ± 0.01	0.4170 ± 0.0001
14	22.62 ± 0.01	0.4260 ± 0.0001
15	22.13 ± 0.01	0.2740 ± 0.0001
16	23.85 ± 0.01	0.4140 ± 0.0001

Таблица 5: Данные для пункта 9 при
 $n=5\,$

$N_{\overline{0}}$	f_{0n} , к Γ ц	x	$\triangle x$	$\triangle \varphi$
1	21.42 ± 0.01	8.0 ± 0.5	5.0 ± 1.0	$\frac{8}{13}$
2	21.88 ± 0.01	6.0 ± 0.5	4.5 ± 1.0	$\frac{6}{10.5}$
3	21.95 ± 0.01	6.0 ± 0.5	4.5 ± 1.0	$\frac{6}{10.5}$
4	22.12 ± 0.01	6.5 ± 0.5	4.0 ± 1.0	$\frac{6.5}{10.5}$
5	22.37 ± 0.01	7.0 ± 0.5	4.0 ± 1.0	$\frac{7}{11}$
6	22.54 ± 0.01	7.0 ± 0.5	3.5 ± 1.0	$\frac{\frac{7}{10.5}}{7.2}$
7	22.70 ± 0.01	7.2 ± 0.5	3.0 ± 1.0	$\frac{7.2}{10.2}$
8	22.83 ± 0.01	8.0 ± 0.5	2.8 ± 1.0	$\frac{8}{10.8}$
9	22.94 ± 0.01	16.0 ± 0.5	4.0 ± 1.0	$\frac{\frac{16}{20}}{21}$
10	23.33 ± 0.01	21.0 ± 0.5	1.0 ± 1.0	$\frac{\frac{21}{22}}{23}$
11	23.53 ± 0.01	23.0 ± 0.5	3.5 ± 1.0	$\frac{23}{26.5}$
12	23.80 ± 0.01	24.0 ± 0.5	5.0 ± 1.0	$\frac{\frac{24}{29}}{25}$
13	24.00 ± 0.01	25.0 ± 0.5	6.0 ± 1.0	31
14	24.28 ± 0.01	26.0 ± 0.5	7.0 ± 1.0	$\frac{26}{33}$
15	25.00 ± 0.01	26.0 ± 0.5	8.0 ± 1.0	$\frac{26}{34}$
16	24.70 ± 0.01	26.0 ± 0.5	8.0 ± 1.0	$\frac{26}{34}$

Таблица 6: Данные для пункта 10 при
 $n=3\,$

Nº	f_{0n} , к Γ ц	X	$\triangle x$	$\triangle \varphi$
1	17.90 ± 0.01	8.0 ± 0.5	5.5 ± 1.0	$\frac{8}{13.5}$
2	18.17 ± 0.01	8.0 ± 0.5	5.0 ± 1.0	$\frac{8}{13}$
3	18.37 ± 0.01	8.5 ± 0.5	5.0 ± 1.0	$\frac{8.5}{13.5}$
4	18.52 ± 0.01	9.0 ± 0.5	5.0 ± 1.0	$\frac{9}{14}$
5	18.60 ± 0.01	9.0 ± 0.5	4.8 ± 1.0	$\frac{9}{13.8}$
6	18.81 ± 0.01	9.0 ± 0.5	4.0 ± 1.0	$\frac{9}{13}$
7	19.10 ± 0.01	10.0 ± 0.5	4.0 ± 1.0	$\frac{10}{14}$
8	19.18 ± 0.01	10.8 ± 0.5	3.0 ± 1.0	$\frac{10.8}{13.8}$
9	19.26 ± 0.01	11.0 ± 0.5	2.0 ± 1.0	$\frac{11}{13}$
10	19.68 ± 0.01	14.0 ± 0.5	1.5 ± 1.0	$\frac{14}{15.5}$
11	19.78 ± 0.01	26.0 ± 0.5	1.5 ± 1.0	$\frac{26}{27.5}$
12	19.93 ± 0.01	26.0 ± 0.5	4.0 ± 1.0	$\frac{26}{30}$
13	20.12 ± 0.01	27.0 ± 0.5	5.0 ± 1.0	$\frac{27}{32}$
14	20.34 ± 0.01	26.0 ± 0.5	7.0 ± 1.0	$\frac{26}{33}$
15	20.50 ± 0.01	26.0 ± 0.5	8.5 ± 1.0	$\frac{26}{34.5}$
16	21.27 ± 0.01	28.0 ± 0.5	10.0 ± 1.0	$\frac{28}{38}$

Таблица 7: Данные для пункта 10 при
 $n=5\,$

 Φ ЧХ(относительный) при n = 5

Φ ЧХ(относительный) при n=3 и n=5

ВАЖНО: из графика видно f_0 другое! $f_0 \approx 19.45 \kappa \Gamma u$

$\mbox{AЧX}(\mbox{относительный})$ при
 n=5

ВАЖНО: из графика видно f_0 другое! $f_0 \approx 23.24 \kappa \Gamma$ и,

АЧХ(относительный) с учетом поправок в f_0 обоих контуров

$$Q = \frac{\frac{f}{f_0}}{\triangle \frac{f}{f_0}} \tag{8}$$

$$Q_{n=3} = 21.14 \pm 0.47 \tag{9}$$

$$Q_{n=5} = 20.57 \pm 0.37 \tag{10}$$

Векторная диаграмма при $\rm n=5$