Experiment: Motion of a Particle under a Central

$$F = -\frac{K}{r^3} \left(1 - \frac{\alpha}{r}\right) \mathbf{r}$$

Aim

To study the motion of a particle under the central force

$$F = -\frac{K}{r^3} \left(1 - \frac{\alpha}{r} \right) \mathbf{r},$$

and to show that the resulting orbit is a **precessing ellipse**, depending on the constants K and α .

Apparatus Required

Computer or microprocessor system capable of numerical computation (Python with NumPy and Matplotlib recommended).

You don't need to write Theory in the Record

Theory-This is for your understanding. You can just skim it. No need to write

Consider a particle of mass m moving under a central potential V(r) which depends only on the distance r from a fixed center.

Potential Energy and Force Components

The given central force

$$\mathbf{F}(r) = -\frac{K}{r^3} \left(1 - \frac{\alpha}{r} \right) \mathbf{r}$$

corresponds to the potential energy function

$$V(r) = -\frac{K}{r} + \frac{K\alpha}{2r^2}.$$

1

Definitions of Constants:

- m: Mass of the particle (kg)
- K: Strength of the inverse-square (attractive) central force

- α : Small positive constant introducing deviation from the pure inverse-square law
- r: Radial distance from the center (m)
- r: Position vector of the particle

Since V depends only on r, the force is purely radial:

$$F_{\theta} = 0,$$
 $F_r = -\frac{dV}{dr} = -\frac{K}{r^2} + \frac{K\alpha}{r^3}.$

Equation of Motion in Polar Coordinates

The radial and angular equations of motion are

$$m\left(\ddot{r}-r\dot{\theta}^2\right)=F_r(r), \qquad m\left(r\ddot{\theta}+2\dot{r}\dot{\theta}\right)=0.$$

The second equation implies conservation of angular momentum:

$$L = mr^2 \dot{\theta} = \text{constant.}$$

Here L is the angular momentum of the particle about the center of force.

Substituting for $\dot{\theta}$ in the radial equation gives

$$\ddot{r} = \frac{L^2}{m^2 r^3} - \frac{K}{mr^2} + \frac{K\alpha}{mr^3}.$$

Reduction using u = 1/r

Let u = 1/r. Then

$$\frac{d^2u}{d\theta^2} + u = -\frac{m}{L^2u^2} F_r\left(\frac{1}{u}\right).$$

Substituting $F_r = -K(1 - \alpha u)u^2$ gives

$$\frac{d^2u}{d\theta^2} + \underbrace{\left(1 + \frac{mK\alpha}{L^2}\right)}_{\beta^2} u = \frac{mK}{L^2},$$

where

$$\beta = \sqrt{1 + \frac{mK\alpha}{L^2}}$$

is the precession parameter.

Solution of the Orbit Equation

The general solution of the above differential equation is

$$u(\theta) = \frac{mK/L^2}{1 + \frac{mK\alpha}{L^2}} \left[1 + e \cos(\beta(\theta - \theta_0)) \right],$$

where

- e: Eccentricity-like parameter that determines the shape of the orbit,
- θ_0 : Angular position of the periapsis (initial phase).

Hence the trajectory is

$$r(\theta) = \frac{p_{\text{eff}}}{1 + e \cos(\beta(\theta - \theta_0))}, \quad p_{\text{eff}} = \frac{L^2 + mK\alpha}{mK}.$$

When $\alpha = 0$, $\beta = 1$ and the orbit is a closed Keplerian ellipse. When $\alpha \neq 0$, $\beta \neq 1$ and the orbit precesses.

Precession of the Orbit

The radial distance repeats when the angle advances by $2\pi/\beta$, so the apsidal precession per revolution is

$$\Delta \varpi = 2\pi \left(1 - \frac{1}{\sqrt{1 + \frac{mK\alpha}{L^2}}} \right).$$

Thus, the orbit precesses in the direction of motion (prograde precession) for positive α .

Figure 1: Caption

Figure 2: Caption

Figure 3: Caption

Procedure

- 1. Set the values of m, K, L, α and the eccentricity e.
- 2. Using the formula

$$r(\theta) = \frac{p_{\text{eff}}}{1 + e \cos(\beta(\theta - \theta_0))},$$

compute r for a range of θ values (e.g. 0 to 12π).

3. Plot $r(\theta)$ as a parametric curve in Cartesian coordinates:

$$x = r\cos\theta, \quad y = r\sin\theta.$$

4. Observe the effect of varying α and K on the orbit.

Observations

Typical results obtained from simulation:

α	Nature of Orbit	Remarks
0.0	Closed ellipse	No precession (Keplerian)
0.02	Slightly precessing ellipse	Small prograde shift per orbit
0.05	Rosette-like orbit	Significant precession visible

Result

The motion of a particle under the central force

$$F = -\frac{K}{r^3} \left(1 - \frac{\alpha}{r} \right) \mathbf{r}$$

is a **precessing conic section**. The amount of precession per revolution is given by

$$\Delta \varpi = 2\pi \left(1 - \frac{1}{\sqrt{1 + \frac{mK\alpha}{L^2}}} \right).$$

The precession increases with K and α and decreases with larger angular momentum L.

Precautions

- 1. Use small step sizes in the computation for higher accuracy.
- 2. Ensure that the initial conditions correspond to a bound orbit (e < 1).
- 3. Avoid very large α values to prevent numerical divergence.
- 4. Check that angular momentum $L=mr^2\dot{\theta}$ remains constant throughout the computation.

Python Code for Conic Sections

Python Simulation Code: Central Force Motion

In the code avoid every that is in green. That is for your understanding

```
#Central Force Motion: F = -(K/r^3) * (1 - alpha/r) * r_vec
3
    #This program visualizes the motion of a particle under the
4
    #given central force. Instead of integrating with time, we
    #use the analytic form of the orbit:
6
        r(theta) = p_eff / [1 + e * cos(beta * (theta - theta0))]
8
    #where:
10
        p_eff = (L^2 + m*K*alpha) / (m*K)
        beta = sqrt(1 + (m*K*alpha)/(L^2))
         e = eccentricity-like parameter
         theta0 = phase angle (set to 0 here)
14
    #This gives a precessing conic (rosette-like orbit). When
    #alpha = 0, the orbit reduces to a perfect Keplerian ellipse.
17
18
    19
    # Import required packages
22
23
    import numpy as np
24
    import matplotlib.pyplot as plt
26
    # Define constants and parameters
28
                  # mass of the particle (arbitrary units)
30
                  # central force constant (attractive)
   K = 1.0
   alpha = 0.03  # small positive number --> precession occurs
   L = 1.0
                   # angular momentum (assumed constant)
33
   e = 0.25
                  \# eccentricity-like parameter (0 < e < 1)
34
                  # initial angular phase (r is max when theta =
   theta0 = 0.0
35
      0)
36
    # Derived quantities from the theory
38
39
   beta = np.sqrt(1 + (m * K * alpha) / (L ** 2))
40
   p_{eff} = (L ** 2 + m * K * alpha) / (m * K)
41
42
```

```
# Compute r(theta) for a range of theta values
44
    theta = np.linspace(0, 12 * np.pi, 2000)
    r = p_eff / (1 + e * np.cos(beta * (theta - theta0)))
    x = r * np.cos(theta)
49
    y = r * np.sin(theta)
      Plot in the xy-plane (spatial trajectory)
    plt.figure(figsize=(7, 6))
    plt.plot(x, y, linewidth=1.2)
    plt.scatter([0], [0], color='black', s=20, label='Center of
       Force')
    plt.axis('equal')
58
    plt.xlabel('x')
    plt.ylabel('y')
60
    plt.title('Orbit under
61
       F=-(K/r^3)(1-\lambda r)\lambda,\lambda f\{r\}')
    plt.grid(True)
62
    plt.legend()
63
    plt.show()
65
    # Plot r(theta) parametric curve (r vs theta)
    # -----
    plt.figure(figsize=(7, 4.5))
    plt.plot(theta, r, linewidth=1.2)
    plt.xlabel(r'$\theta$ (radians)')
71
    plt.ylabel(r'$r(\theta)$')
    plt.title('Parametric plot $r(\\theta)$ showing precession')
    plt.grid(True)
    plt.show()
76
77
    # Print theoretical precession per orbit
    Delta_varpi = 2 * np.pi * (1 - 1 / beta)
80
81
    print(f''beta (precession parameter): {beta:.6f}'')
82
    print(''Predicted apsidal advance per revolution (radians):
83
       {Delta_varpi:.6f}'')
    print(f''In degrees: {np.degrees(Delta_varpi):.3f}'')
84
```

Listing 1: Simulation of a particle under the central force $F = -(K/r^3)(1-\alpha/r)\mathbf{r}$ showing precessing orbit.