Week 5: Graph Algorithms

Directed Graphs

Directed Graphs (Digraphs)

7/87

In our previous discussion of graphs:

- an edge indicates a relationship between two vertices
- an edge indicates nothing more than a relationship

In many real-world applications of graphs:

• edges are directional $(v \rightarrow w \neq w \rightarrow v)$

• edges have a *weight* (cost to go from $v \rightarrow w$)

... Directed Graphs (Digraphs)

8/87

Example digraph and adjacency matrix representation:

	а	b	С	d	9	f	g
а	1	0	0	1	0	0	0
b	1	0	1	0	0	0	0
С	0	1	0	1	0	0	1
d	0	1	0	0	0	1	1
е	0	0	0	1	0	0	0
f	1	0	0	1	0	0	1
g	0	0	0	0	0	0	1

Undirectional ⇒ symmetric matrix Directional ⇒ non-symmetric matrix

Maximum #edges in a digraph with V vertices: V²

... Directed Graphs (Digraphs)

9/87

Terminology for digraphs ...

Directed path: sequence of $n \ge 2$ vertices $v_1 \rightarrow v_2 \rightarrow ... \rightarrow v_n$

- where $(v_i, v_{i+1}) \in edges(G)$ for all v_i, v_{i+1} in sequence
- if $v_1 = v_{n_1}$ we have a directed cycle

Digraph Applications

10/87

Potential application areas:

Domain	Vertex	Edge
Web	web page	hyperlink
scheduling	task	precedence
chess	board position	legal move
science	journal article	citation
dynamic data	malloc'd object	pointer
programs	function	function call
make	file	dependency

... Digraph Applications

11/87

Problems to solve on digraphs:

- is there a directed path from s to t? (transitive closure)
- what is the shortest path from s to t? (shortest path)
- are all vertices mutually reachable? (strong connectivity)
- how to organise a set of tasks? (topological sort)
- which web pages are "important"? (PageRank)
- how to build a web crawler? (graph traversal)

Digraph Representation

12/87

Similar set of choices as for undirectional graphs:

- array of edges (directed)
- vertex-indexed adjacency matrix (non-symmetric)
- vertex-indexed adjacency lists

V vertices identified by 0 .. V-1

Reachability

Transitive Closure

14/87

Given a digraph G it is potentially useful to know

• is vertex t reachable from vertex s?

Example applications:

- can I complete a schedule from the current state?
- is a malloc'd object being referenced by any pointer?

How to compute transitive closure?

... Transitive Closure

15/87

One possibility:

- implement it via hasPath(G, s, t) (itself implemented by DFS or BFS algorithm)
- feasible if *reachable(G,s,t)* is infrequent operation

What if we have an algorithm that frequently needs to check reachability?

Would be very convenient/efficient to have:

```
reachable(G, s, t):
    return G.tc[s][t]  // transitive closure matrix
```

Of course, if V is very large, then this is not feasible.

Exercise #1: Transitive Closure Matrix

16/87

Which reachable *s* .. *t* exist in the following graph?


```
a b c d e f g
a 1 0 0 1 0 0 0
b 1 0 1 0 0 0 0
c 0 1 0 1 0 0 0 1
d 0 1 0 0 0 1 0 0
f 1 0 0 1 0 0 0 1
q 0 0 0 0 0 0 0 1
```

Transitive closure of example graph:

... Transitive Closure

Goal: produce a matrix of reachability values

- if *tc[s][t]* is 1, then *t* is reachable from *s*
- if tc[s][t] is 0, then t is not reachable from s

So, how to create this matrix?

Observation:

```
\forall i,s,t \in \text{vertices}(G):

(s,i) \in \text{edges}(G) \text{ and } (i,t) \in \text{edges}(G) \Rightarrow tc[s][t] = 1

tc[s][t]=1 if there is a path from s to t of length 2 (s \rightarrow i \rightarrow t)
```

... Transitive Closure

If we implement the above as:

```
make tc[][] a copy of edges[][]
for all i \(\infty\) vertices(G) do
    for all t \(\infty\) vertices(G) do
        if tc[s][i]=1 and tc[i][t]=1 then
             tc[s][t]=1
        end if
    end for
    end for
```

then we get an algorithm to convert edges into a tc

This is known as Warshall's algorithm

... Transitive Closure

20/87

How it works ...

After iteration 1, tc[s][t] is 1 if

• either $s \rightarrow t$ exists or $s \rightarrow 0 \rightarrow t$ exists

After iteration 2, tc[s][t] is 1 if any of the following exist

• $s \rightarrow t$ or $s \rightarrow 0 \rightarrow t$ or $s \rightarrow 1 \rightarrow t$ or $s \rightarrow 0 \rightarrow 1 \rightarrow t$ or $s \rightarrow 1 \rightarrow 0 \rightarrow t$

Etc. ... so after the V^{th} iteration, tc[s][t] is 1 if

• there is any directed path in the graph from s to t

Exercise #2: Transitive Closure

21/87

Trace Warshall's algorithm on the following graph:

1st iteration i=0:

tc	[0]	[1]	[2]	[3]
[0]	0	1	1	1
[1]	1	1	1	1
[2]	0	1	0	0
[3]	0	0	0	0

2nd iteration i=1:

tc	[0]	[1]	[2]	[3]
[0]	1	1	1	1
[1]	1	1	1	1
[2]	1	1	1	1
[3]	0	0	0	0

3rd iteration i=2: unchanged

4th iteration i=3: unchanged

... Transitive Closure

23/87

Cost analysis:

- storage: additional V^2 items (each item may be 1 bit)
- computation of transitive closure: $O(V^3)$
- computation of reachable(): O(1) after having generated tc[][]

Amortisation: would need many calls to reachable() to justify other costs

Alternative: use DFS in each call to reachable() Cost analysis:

- storage: cost of queue and set during reachable
- computation of reachable (): cost of DFS = $O(V^2)$ (for adjacency matrix)

Digraph Traversal

breadth-first(v):

24/87

Same algorithms as for undirected graphs:

```
depthFirst(v):

1. mark v as visited
2. for each (v, w) ∈ edges(G) do
    if w has not been visited then
        depthFirst(w)
```

```
    enqueue v
    while queue not empty do
        dequeue v
        if v not already visited then
        mark v as visited
```

Example: Web Crawling

25/87

Goal: visit every page on the web

Solution: breadth-first search with "implicit" graph

enqueue each vertex w adjacent to v

```
webCrawl(startingURL):
    mark startingURL as alreadySeen
    enqueue(Q, startingURL)
    while Q is not empty do
        | nextPage=dequeue(Q)
        | visit nextPage
        | for each hyperLink on nextPage do
        | if hyperLink not alreadySeen then
        | mark hyperLink as alreadySeen
        | enqueue(Q, hyperLink)
        | end if
        | end for
        | end while
```

visit scans page and collects e.g. keywords and links

Weighted Graphs

Weighted Graphs

27/87

Graphs so far have considered

- edge = an association between two vertices/nodes
- may be a precedence in the association (directed)

Some applications require us to consider

- a *cost* or *weight* of an association
- modelled by assigning values to edges (e.g. positive reals)

Weights can be used in both directed and undirected graphs.

... Weighted Graphs

28/87

Example: major airline flight routes in Australia

Representation: edge = direct flight; weight = approx flying time (hours)

... Weighted Graphs

29/87

Weights lead to minimisation-type questions, e.g.

- 1. Cheapest way to connect all vertices?
 - a.k.a. minimum spanning tree problem
 - assumes: edges are weighted and undirected
- 2. Cheapest way to get from A to B?
 - a.k.a shortest path problem
 - assumes: edge weights positive, directed or undirected

Exercise #3: Implementing a Route Finder

30/87

If we represent a street map as a graph

- what are the vertices?
- what are the edges?
- are edges directional?
- what are the weights?
- are the weights fixed?

Weighted Graph Representation

31/87

Weights can easily be added to:

- adjacency matrix representation (0/1 → int or float)
- adjacency lists representation (add int/float to list node)

Both representations work whether edges are directed or not.

... Weighted Graph Representation

32/87

Adjacency matrix representation with weights:

Weighted Digraph

Adjacency Matrix

Note: need distinguished value to indicate "no edge".

... Weighted Graph Representation

33/87

Adjacency lists representation with weights:

Note: if undirected, each edge appears twice with same weight

... Weighted Graph Representation

34/87

Sample adjacency matrix implementation in C requires minimal changes to previous Graph ADT:

```
WGraph.h
// edges are pairs of vertices (end-points) plus positive weight
typedef struct Edge {
   Vertex v;
```

```
Vertex w;
int weight;
} Edge;

// returns weight, or 0 if vertices not adjacent
int adjacent(Graph, Vertex, Vertex);
```

... Weighted Graph Representation

35/87

```
WGraph.c
typedef struct GraphRep {
   int **edges; // adjacency matrix storing positive weights
                  // 0 if nodes not adjacent
                  // #vertices
   int
         nV:
                 // #edges
   int
        nE:
} GraphRep:
void insertEdge(Graph g, Edge e) {
   assert(g != NULL && validV(g, e.v) && validV(g, e.w));
   if (g\rightarrow edges[e.v][e.w] == 0) { // edge e not in graph
      g\rightarrow edges[e. v][e. w] = e. weight;
      g->nE++;
}
int adjacent(Graph g, Vertex v, Vertex w) {
   assert(g != NULL && validV(g, v) && validV(g, w));
   return g->edges[v][w];
```

Minimum Spanning Trees

Exercise #4: Minimising Wires in Circuits

37/87

Electronic circuit designs often need to make the pins of several components electrically equivalent by wiring them together.

To interconnect a set of n pins we can use an arrangement of n-1 wires each connecting two pins.

What kind of algorithm would ...

help us find the arrangement with the least amount of wire?

Minimum Spanning Trees

38/87

Reminder: Spanning tree ST of graph G=(V,E)

- spanning = all vertices, tree = no cycles
 - o ST is a subgraph of G (G'=(V,E')) where $E'\subseteq E$
 - ST is connected and acyclic

Minimum spanning tree MST of graph G

- *MST* is a spanning tree of *G*
- sum of edge weights is no larger than any other ST

Applications: Computer networks, Electrical grids, Transportation networks ...

Problem: how to (efficiently) find MST for graph G?

NB: MST may not be unique (e.g. all edges have same weight ⇒ every ST is MST)

... Minimum Spanning Trees

39/87

Example:

An MST ...

... Minimum Spanning Trees

40/87

Brute force solution:

```
findMST(G):
    Input graph G
    Output a minimum spanning tree of G
    bestCost=∞
    for all spanning trees t of G do
        if cost(t) < bestCost then
            bestTree=t
            bestCost=cost(t)
            end if
        end for
        return bestTree</pre>
```

Example of *generate-and-test* algorithm.

Not useful because #spanning trees is potentially large (e.g. nⁿ⁻² for a complete graph with n vertices)

... Minimum Spanning Trees

41/87

Simplifying assumption:

• edges in G are not directed (MST for digraphs is harder)

Kruskal's Algorithm

42/87

One approach to computing MST for graph *G* with *V* nodes:

- 1. start with empty MST
- 2. consider edges in increasing weight order
 - o add edge if it does not form a cycle in MST
- 3. repeat until *V-1* edges are added

Critical operations:

- iterating over edges in weight order
- · checking for cycles in a graph

Execution trace of Kruskal's algorithm:

Exercise #5: Kruskal's Algorithm

44/87

Show how Kruskal's algorithm produces an MST on:

After 3rd iteration:

After 6th iteration:

After 7th iteration:

After 8th iteration (*V*-1=8 edges added):

... Kruskal's Algorithm

46/87

Pseudocode:

... Kruskal's Algorithm

47/87

Time complexity analysis ...

- sorting edge list is O(E·log E)
- min V, max E iterations over sorted edges
- on each iteration ...
 - getting next lowest cost edge is *O*(1)
 - checking whether adding it forms a cycle: cost = ??
 - use DFS ... too expensive?
 - could use *Union-Find data structure* (see Sedgewick Ch.1) to maintain sets of connected components
 - \Rightarrow loop is $O(E \cdot log V)$
- overall complexity O(E·log E) = O(E·log V)

Exercise #6: Kruskal's Algorithm

48/87

Why is $O(E \cdot log E) = O(E \cdot log V)$ in this case?

```
1. at most E = V^2 edges \Rightarrow log E = 2 \cdot log V = O(log V)
2. if V > E+1 \Rightarrow can ignore all unconnected vertices
```

Prim's Algorithm

Another approach to computing MST for graph G=(V,E):

- 1. start from any vertex ν and empty MST
- 2. choose edge not already in MST to add to MST
 - must be incident on a vertex s already connected to v in MST
 - must be incident on a vertex t not already connected to v in MST
 - must have minimal weight of all such edges
- 3. repeat until MST covers all vertices

Critical operations:

- checking for vertex being connected in a graph
- finding min weight edge in a set of edges

... Prim's Algorithm

51/87

Execution trace of Prim's algorithm (starting at s=0):

Exercise #7: Prim's Algorithm

52/87

Show how Prim's algorithm produces an MST on:

Start from vertex 0

After 1st iteration:

After 2nd iteration:

After 3rd iteration:

After 4th iteration:

After 8th iteration (all vertices covered):

... Prim's Algorithm

54/87

Pseudocode:

```
PrimMST(G):

Input graph G with n nodes
Output a minimum spanning tree of G

MST=empty graph
usedV={0}
unusedE=edges(g)
while |usedV| < n do
| find e=(s,t,w) ∈ unusedE such that {
| s∈usedV, t∉usedV and w is min weight of all such edges
| }

| MST = MST ∪ {e}
| usedV = usedV ∪ {t}
| unusedE = unusedE \ {e}
| end while
| return MST
```

Critical operation: finding best edge

... Prim's Algorithm

55/87

- Viterations of outer loop
- in each iteration ...
 - find min edge with set of edges is $O(E) \Rightarrow O(V \cdot E)$ overall
 - find min edge with *priority queue* is $O(log E) \Rightarrow O(V \cdot log E)$ overall

Sidetrack: Priority Queues

56/87

Some applications of queues require

- items processed in order of "priority"
- rather than in order of entry (FIFO first in, first out)

Priority Queues (PQueues) provide this via:

- join: insert item into PQueue with an associated priority (replacing enqueue)
- 1eave: remove item with highest priority (replacing dequeue)

Time complexity for naive implementation of a PQueue containing N items ...

• O(1) for join O(N) for leave

Most efficient implementation ("heap") ...

• O(log N) for join, leave

57/87

Other MST Algorithms

Boruvka's algorithm ... complexity O(E·log V)

- the oldest MST algorithm
- start with V separate components
- join components using min cost links
- continue until only a single component

Karger, Klein, and Tarjan ... complexity O(E)

- based on Boruvka, but non-deterministic
- randomly selects subset of edges to consider
- for the keen, here's the paper describing the algorithm

Shortest Path

Shortest Path 59/87

Path = sequence of edges in graph G $p = (v_0, v_1), (v_1, v_2), ..., (v_{m-1}, v_m)$

cost(path) = sum of edge weights along path

Shortest path between vertices s and t

- a simple path p(s,t) where s = first(p), t = last(p)
- no other simple path q(s,t) has cost(q) < cost(p)

Assumptions: weighted digraph, no negative weights.

Finding shortest path between two given nodes known as source-target SP problem

Variations: single-source SP, all-pairs SP

Applications: navigation, routing in data networks, ...

Single-source Shortest Path (SSSP)

60/87

Given: weighted digraph G, source vertex s

Result: shortest paths from s to all other vertices

- dist[] V-indexed array of cost of shortest path from s
- pred[] V-indexed array of predecessor in shortest path from s

Example:

Edge Relaxation

61/87

Assume: dist[] and pred[] as above (but containing data for shortest paths discovered so far)

dist[v] is length of shortest known path from s to v dist[w] is length of shortest known path from s to w

Relaxation updates data for w if we find a shorter path from s to w.

Relaxation along edge e=(v, w, weight):

• if dist[v]+weight < dist[w] then update dist[w]:=dist[v]+weight and pred[w]:=v

Dijkstra's Algorithm

One approach to solving single-source shortest path problem ...

Data: G, s, dist[], pred[] and

• *vSet*: set of vertices whose shortest path from *s* is unknown

Algorithm:

Exercise #8: Dijkstra's Algorithm

63/87

Show how Dijkstra's algorithm runs on (source node = 0):

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞ ∞		∞ ∞		∞
pred	_	_	_	_	_	_

	[0]	[1]	[2]	[3]	[4]	[5]
dist	0	∞	∞	∞	∞	∞
pred	_	_	_	_	_	_

	dist	0	14	9	7	∞	∞
-1							

pred	_	0	0	0	_	_
dist	0	14	9	7	∞	22
pred	_	0	0	0	_	3
dist	0	13	9	7	∞	12
pred	_	2	0	0	_	2
dist	0	13	9	7	20	12
pred	_	2	0	0	5	2
dist	0	13	9	7	18	12
pred	_	2	0	0	1	2

... Dijkstra's Algorithm

65/87

Why Dijkstra's algorithm is correct:

Hypothesis.

- (a) For visited s ... dist[s] is shortest distance from source
- (b) For unvisited t ... dist[t] is shortest distance from source via visited nodes

Proof.

Base case: no visited nodes, dist[source] = 0, $dist[s] = \infty$ for all other nodes

Induction step:

- 1. If *s* is unvisited node with minimum *dist[s]*, then *dist[s]* is shortest distance from source to *s*:
 - o if ∃ shorter path via only visited nodes, then *dist[s]* would have been updated when processing the predecessor of *s* on this path
 - o if ∃ shorter path via an unvisited node *u*, then *dist[u]* < *dist[s]*, which is impossible if *s* has min distance of all unvisited nodes
- 2. This implies that (a) holds for s after processing s
- 3. (b) still holds for all unvisited nodes t after processing s.
 - o if ∃ shorter path via s we would have just updated dist[t]
 - o if ∃ shorter path without s we would have found it previously

... Dijkstra's Algorithm

66/87

Time complexity analysis ...

Each edge needs to be considered once \Rightarrow O(E).

Outer loop has O(V) iterations.

Implementing "find $s \in vSet$ with minimum dist[s]"

- 1. try all $s \in vSet \Rightarrow cost = O(V) \Rightarrow overall cost = O(E + V^2) = O(V^2)$
- 2. using a PQueue to implement extracting minimum
 - \circ can improve overall cost to $O(E + V \cdot log V)$ (for best-known implementation)

Network Flow

Exercise #9: Merchandise Distribution

68/87

Lucky Cricket Company ...

- produces cricket balls in Fairfield
- has a warehouse in Rozelle that stocks them
- ships them from factory to warehouse by leasing space on trucks with limited capacity:

What kind of algorithm would ...

• help us find the maximum number of crates that can be shipped from Fairfield to Rozelle per day?

Flow Networks 69/87

Flow network ...

- weighted graph G=(V,E)
- distinct nodes $s \in V$ (source), $t \in V$ (sink)

Edge weights denote capacities Applications:

- Distribution networks, e.g.
 - o source: oil field
 - o sink: refinery
 - o edges: pipes
- Traffic flow

... Flow Networks 70/87

Flow in a network G=(V,E) ... nonnegative f(v,w) for all vertices $v,w \in V$ such that

- $f(v,w) \le capacity$ for each edge $e=(v,w,capacity) \in E$
- f(v,w)=0 if no edge between v and w

• total flow *into* a vertex = total flow *out of* a vertex:

$$\sum_{x \in V} f(x,v) = \sum_{y \in V} f(v,y)$$
 for all $v \in \mathit{V} \setminus \mathit{\{s,t\}}$

Maximum flow ... no other flow from *s* to *t* has larger value

... Flow Networks 71/87

Example:

A (maximum) flow ...

Augmenting Paths

72/87

Assume ... f(v,w) contains current flow

Augmenting path: any path from source s to sink t that can currently take more flow

Example:

Residual Network

73/87

Assume ... flow network G=(V,E) and flow f(v,w)

Residual network (V,E'):

- same vertex set V
- for each edge $v \rightarrow^{C} w \in E \dots$
 - $\circ f(v,w) < c \Rightarrow \text{add edge } (v \rightarrow^{C-f(v,w)} w) \text{ to } E'$
 - ∘ f(v,w) > 0 ⇒ add edge $(v \leftarrow^{f(v,w)} w)$ to E'

Example:

Exercise #10: Augmenting Paths and Residual Networks

74/87

Find an augmenting path in:

and show the residual network after augmenting the flow

1. Augmenting path:

maximum additional flow = 1

2. Residual network:

Can you find a further augmenting path in the new residual network?

Edmonds-Karp Algorithm

76/87

One approach to solving maximum flow problem ...

 $\max flow(G)$:

- 1. Find a shortest augmenting path
- 2. Update flow[][] so as to represent residual graph
- 3. Repeat until no augmenting path can be found

... Edmonds-Karp Algorithm

Algorithm:

```
flow[][] // V×V array of current flow
visited[] /* array of predecessor nodes on shortest path
             from source to sink in residual network */
\max flow(G):
   Input flow network G with source s and sink t
   Output maximum flow value
   initialise flow[v][w]=0 for all vertices v, w
   maxflow=0
   while ∃shortest augmenting path visited[] from s to t do
      df = maximum additional flow via visited[]
      // adjust flow so as to represent residual graph
      v=t
      while v≠s do
         flow[visited[v]][v] = flow[visited[v]][v] + df;
         flow[v][visited[v]] = flow[v][visited[v]] - df;
         v=visited[v]
      end while
      maxflow=maxflow+df
   end while
   return maxflow
```

Shortest augmenting path can be found by standard BFS

... Edmonds-Karp Algorithm

78/87

Time complexity analysis ...

- Theorem. The number of augmenting paths needed is at most $V \cdot E/2$. \Rightarrow Outer loop has $O(V \cdot E)$ iterations.
- Finding augmenting path \Rightarrow O(E) (consider only vertices connected to source and sink \Rightarrow O(V+E)=O(E))

Overall cost of Edmonds-Karp algorithm: O(V·E²)

Note: Edmonds-Karp algorithm is an implementation of general Ford-Fulkerson method

Exercise #11: Edmonds-Karp Algorithm

79/87

Show how Edmonds-Karp algorithm runs on:

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[[0]	ניז	[-]		ניין		[0]		2	3			
[1]							[1]				3	1	
[2]							[2]				1	1	
[3]							[3]						2
[4]							[4]						3
[5]							[5]						

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	0	0	0	0	0	[0]	_	2	3	_	_	_
[1]	0	0	0	0	0	0	[1]	_	_	_	3	1	_
[2]	0	0	0	0	0	0	[2]	_	_	_	1	1	_
[3]	0	0	0	0	0	0	[3]	_	_	_	_	_	2
[4]	0	0	0	0	0	0	[4]	_	_	_	_	_	3
[5]	0	0	0	0	0	0	[5]	_	_	_	_	_	_

augmenting path: 0-1-3-5, df: 2

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	0	0	0	0	[0]	_	0	3	_	_	_
[1]	-2	0	0	2	0	0	[1]	2	_	_	1	1	_
[2]	0	0	0	0	0	0	[2]	_	_	_	1	1	_
[3]	0	-2	0	0	0	2	[3]	_	2	_	_	_	0
[4]	0	0	0	0	0	0	[4]	_	_	_	_	_	3
[5]	0	0	0	-2	0	0	[5]	_	_	_	2	_	_

augmenting path: 0-2-4-5, df: 1

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	1	0	0	0	[0]	_	0	2	_	_	_
[1]	-2	0	0	2	0	0	[1]	2	_	_	1	1	_
[2]	-1	0	0	0	1	0	[2]	1	_	_	1	0	_
[3]	0	-2	0	0	0	2	[3]	_	2	_	_	_	0
[4]	0	0	-1	0	0	1	[4]	_	_	1	_	_	2

augmenting path: 0-2-3-1-4-5, df: 1

flow	[0]	[1]	[2]	[3]	[4]	[5]	c-f	[0]	[1]	[2]	[3]	[4]	[5]
[0]	0	2	2	0	0	0	[0]	_	0	1	_	_	_
[1]	-2	0	0	1	1	0	[1]	2	_	_	2	0	_
[2]	-2	0	0	1	1	0	[2]	2	_	_	0	0	_
[3]	0	-1	-1	0	0	2	[3]	_	1	1	_	_	0
[4]	0	-1	-1	0	0	2	[4]	_	1	1	_	_	1
[5]	0	0	0	-2	-2	0	[5]	_	_	_	2	2	_

Digraph Applications

PageRank 82/87

Goal: determine which Web pages are "important"

Approach: ignore page contents; focus on hyperlinks

- treat Web as graph: page = vertex, hyperlink = directed edge
- pages with many incoming hyperlinks are important
- need to compute "incoming degree" for vertices

Problem: the Web is a very large graph

• approx. 10¹⁴ pages, 10¹⁵ hyperlinks

Assume for the moment that we could build a graph ...

Most frequent operation in algorithm "Does edge (v,w) exist?"

... PageRank 83/87

Simple PageRank algorithm:

```
PageRank (myPage):
    rank=0
    for each page in the Web do
        if linkExists (page, myPage) then
        rank=rank+1
        end if
    end for
```

Note: requires inbound link check

... PageRank 84/87

V = # pages in Web, E = # hyperlinks in Web

Costs for computing PageRank for each representation:

Representation	linkExists(v,w)	Cost		
Adjacency <i>matrix</i>	edge[v][w]	1		
Adjacency <i>lists</i>	inLL(list[v],w)	≅ <i>E/V</i>		

Not feasible ...

- adjacency matrix ... $V \cong 10^{14} \Rightarrow$ matrix has 10^{28} cells
- adjacency list ... V lists, each with ≈ 10 hyperlinks $\Rightarrow 10^{15}$ list nodes

So how to really do it?

... PageRank 85/87

Approach: the random web surfer

- if we randomly follow links in the web ...
- ... more likely to re-discover pages with many inbound links

Could be accomplished while we crawl web to build search index

Exercise #12: Implementing Facebook

86/87

Facebook could be considered as a giant "social graph"

- what are the vertices?
- what are the edges?
- are edges directional?

What kind of algorithm would ...

• help us find people that you might like to "befriend"?

Summary 87/87

- Digraphs, weighted graphs: representations, applications
- Reachability
 - Warshall
- Minimum Spanning Tree (MST)
 - o Kruskal, Prim
- Shortest path problems
 - Dijkstra (single source SPP)
- Flow networks
 - Edmonds-Karp (maximum flow)
- Suggested reading (Sedgewick):
 - o digraphs ... Ch. 19.1-19.3
 - o weighted graphs ... Ch. 20-20.1
 - o MST ... Ch. 20.2-20.4
 - o SSP ... Ch. 21-21.3
 - o network flows ... Ch. 22.1-22.2

Produced: 10 Oct 2022