Optics

Yichao Yu

Journal Club

Oct. 18, 2022

Useful for > 90% of calculation.

Useful for > 90% of calculation.

Exceptions

- Focus
- Long propagation
- Diffraction optical elements e.g. gratings.

Useful for > 90% of calculation.

Exceptions

- Focus
- Long propagation
- Diffraction optical elements e.g. gratings.

Useful for > 90% of calculation.

Exceptions

- Focus
- Long propagation
- Diffraction optical elements e.g. gratings.

3/7

$$x_1x_2 = f^2$$

$$M = \frac{f}{x_1} = \frac{x_2}{f} = \sqrt{\frac{x_2}{x_1}}$$

Conjugate plane: Perfect image under ray optics

3/7

Conjugate plane: Perfect image under ray optics Principal planes: Conjugate plane where M=1

3/7

4/7

Aspherical lens

Aspherical lens

Use cases

- Collimation
- Fiber coupling

5/7

Other lens types

Reflective

- No chromatic shift
- Can be aspherical
- More difficult beam path layout

Other lens types

Reflective

- No chromatic shift
- Can be aspherical
- More difficult beam path layout

Lens set

- Could fix chromatic shift
- Could fix monochromatic aberration
- Better surface quality
- May not be UV compatible

6/7

Collimation

Collimation

7/7

Collimation

 $d \approx 2f \tan \theta$

7/7

Alignment

Alignment

Alignment

Alignment

