** Task 1** Considering the same example you solved in the previous assignment (radiative heat transfer between two parallel plates), how many shields with epsilon = 0.1 should you add in order to have the new heat transfer rate to be 1% of the case without shields?

First we look at the example of last week assignment:

The radiative heat transfer between surface 1 and 2. The area is 1.5 m^2 , ϵ 1 = 0.2, ϵ 2 = 0.7, T1 = 37 $^{\circ}$ C, T2 = 17 $^{\circ}$ C. The answer is:

Q12, no shields = A σ (T14- T14)/1/ ϵ 1+1/ ϵ 2-1 = 1.5*5.67*10-8 (3104-2904) /1/0.1+1/0.1-1 = 9.6789W

If we would like to have the new heat transfer which is the 1% of this case, then 1% * Q12, no shields = 0.096789W

According to the equation

Q1-2, N shields = $A\sigma(T14-T14)/(N+1)(1/\epsilon 1+1/\epsilon 2-1) = 1/N+1 * Q1-2$, no shields = 0.096789W Then

Q1-2, N shields = 1/N+1 * 9.96789 = 1/100 * 9.96789 = 0.096789W N=100-1=99

Therefore, we need 99 shields with epsilon = 0.1 to have the new heat transfer rate to be 1% of the case without shields.

1. Draw the outline and shape of the building in Sketchup.

2. Use "Creat spaces from diagram" creat a 3 floor building.

3. We can see the material information using the "Info tool".

4. Click"Surface matching".

5. Click"Set Window to Wall Ratio"to built the windows.

6. Check other directions besides the north.

7.Click"Add Overhanges by Projection Factor" to built overhangs.

8. Open the "Outliner"

9. Choose the space of each thermal zone.

10. Click "Set Attributes for Selected Space" to set parameters.

11. Save the model.

12. Run the Open studio.

13. Add the weather data.

14. Run the analysis.

