Examenul de bacalaureat național 2019 Proba E. c)

Matematică *M_tehnologic*

BAREM DE EVALUARE ȘI DE NOTARE

Model

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$N = 16 + 24i + 9i^2 + 9 - 24i + 16i^2 =$	2p
	=16-9+9-16=0, care este număr natural	3 p
2.	$f(a) = a \Leftrightarrow 2 - a^2 = a \Leftrightarrow a^2 + a - 2 = 0$	3p
	a = -2 sau $a = 1$	2p
3.	$5^x (1+5) = 30 \Leftrightarrow 5^x = 5$	3 p
	x=1	2p
4.	Mulțimea M are 49 de elemente, deci sunt 49 de cazuri posibile	1p
	În mulțimea M sunt 7 numere naturale, deci sunt 7 cazuri favorabile	2p
	nr. cazuri favorabile 7 1	
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{7}{49} = \frac{1}{7}$	2p
5.	Mijlocul segmentului AC este punctul $M(2,3)$	2p
	$BM = \sqrt{(3-2)^2 + (5-3)^2} = \sqrt{5}$	3 p
6.	$(\sin x + \cos x)^2 + (\sin x - \cos x)^2 = \sin^2 x + 2\sin x \cos x + \cos^2 x + \sin^2 x - 2\sin x \cos x + \cos^2 x =$	2p
	= $2(\sin^2 x + \cos^2 x)$ = $2 \cdot 1$ = 2, pentru orice număr real x	3 p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(1,1) = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \Rightarrow \det(A(1,1)) = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot (-1) =$	3p
	=1+1=2	2p
b)	$ \binom{n-1}{0} \binom{0}{n-1} + \binom{n+1}{0} \binom{0}{n+1} = \binom{2018}{0} \binom{0}{2018} \Leftrightarrow \binom{2n}{0} \binom{0}{2n} = \binom{2018}{0} \binom{0}{2018} $	3 p
	n = 1009	2p
c)	$ \begin{pmatrix} x & -1 \\ 1 & x \end{pmatrix} \begin{pmatrix} x & -1 \\ 1 & x \end{pmatrix} = \begin{pmatrix} a & 2 \\ -2 & a \end{pmatrix} \Leftrightarrow \begin{pmatrix} x^2 - 1 & -2x \\ 2x & x^2 - 1 \end{pmatrix} = \begin{pmatrix} a & 2 \\ -2 & a \end{pmatrix} $	3 p
	x = -1, de unde obținem $a = 0$	2p
2.a)	$f(-1) = (-1)^3 - 7 \cdot (-1)^2 + m \cdot (-1) - 8 = -m - 16$	2p
	$f(1) = 1^3 - 7 \cdot 1^2 + m \cdot 1 - 8 = m - 14 \Rightarrow f(-1) + f(1) = -m - 16 + m - 14 = -30$, pentru orice număr real m	3 p
b)	$f(2) = 0 \Rightarrow m = 14$, deci $f = X^3 - 7X^2 + 14X - 8$	2p
	Câtul este $X-4$ și restul este $X-4$	3 p
c)	$x_1 x_3 = x_2^2 \Rightarrow x_1 x_2 x_3 = x_2^3$ şi, cum $x_1 x_2 x_3 = 8$, obținem $x_2 = 2$	2p
	Polinomul f are rădăcinile 1, 2 și 4, deci $m=14$	3p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Model

SUBIECTUL al III-lea (30 de puncte)

(50 de puncte			
1.a)	$f'(x) = \frac{(2x+2)(x+2) - (x^2 + 2x + 1) \cdot 1}{(x+2)^2} =$	3р	
	$= \frac{x^2 + 4x + 3}{\left(x + 2\right)^2} = \frac{\left(x + 1\right)\left(x + 3\right)}{\left(x + 2\right)^2}, \ x \in \left(-2, +\infty\right)$	2p	
b)	$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{x^2 + 2x + 1}{x(x+2)} = 1$	2 p	
	$\lim_{x \to +\infty} (f(x) - x) = \lim_{x \to +\infty} \frac{1}{x + 2} = 0$, deci dreapta de ecuație $y = x$ este asimptotă oblică spre $+\infty$ la graficul funcției f	3р	
c)	$f''(x) = \frac{2}{(x+2)^3}, x \in (-2, +\infty)$	2p	
	$f''(x) > 0$, pentru orice $x \in (-2, +\infty)$, deci funcția f este convexă pe $(-2, +\infty)$	3 p	
2.a)	$F:(0,+\infty) \to \mathbb{R}, \ F(x) = \frac{x^3}{3} + \ln x + c, \text{ unde } c \in \mathbb{R}$	3p	
	Cum $F(1) = \frac{1}{3} + c$, obținem $F(1) = 0 \Leftrightarrow c = -\frac{1}{3}$, deci $F(x) = \frac{x^3}{3} + \ln x - \frac{1}{3}$	2 p	
b)	$g(x) = x^{2} + \frac{1}{x} \Rightarrow V = \pi \int_{1}^{2} g^{2}(x) dx = \pi \int_{1}^{2} \left(x^{4} + 2x + \frac{1}{x^{2}} \right) dx = \pi \cdot \left(\frac{x^{5}}{5} + x^{2} - \frac{1}{x} \right) \Big _{1}^{2} =$	3 p	
	$=\pi\left(\frac{32}{5}+4-\frac{1}{2}-\frac{1}{5}-1+1\right)=\frac{97\pi}{10}$	2 p	
c)	$\int_{1}^{m} (f(x) - x^{2}) \ln x dx = \int_{1}^{m} \frac{1}{x} \ln x dx = \frac{1}{2} \ln^{2} x \Big _{1}^{m} = \frac{1}{2} \ln^{2} m$	3p	
	$\frac{1}{2}\ln^2 m = \frac{1}{2} \iff \ln m = -1 \text{ sau } \ln m = 1, \text{ deci } m = \frac{1}{e}, \text{ care nu convine sau } m = e, \text{ care convine}$	2p	