Signali i sustavi - Zadaci za vježbu

X. tjedan

1. Odredite je li zadani diskretan sustav vremenski stalan, linearan, memorijski, kauzalan i BIBO stabilan. Možete li mu naći inverzni sustav?

$$y(n) = 2^{u(n)}.$$

Rješenje:

Kako y(n) ovisi samo o u(n) sustav nije **memorijski**. Iz istog razloga je i **kauzalan**.

Vremensku promjenjivost provjeravamo tako da prvo zakasnimo ulazni signal za neki M

$$u_1(n) = u(n - M),$$

te taj signal propustimo kroz sustav. Na izlazu iz sustava će biti

$$y_1(n) = 2^{u_1(n)} = 2^{u(n-M)}$$
.

S druge strane, kada bi ulazni signal propustili kroz sustav dobili bi

$$y(n) = 2^{u(n)}.$$

Ako sada taj izlaz zakasnimo za onaj isti M, dobit ćemo

$$y(n-M)=2^{u(n-M)}.$$

Kako su $y_1(n) = y(n - M)$ ovaj sustav je vremenski stalan.

Linearnost se provjerava tako da se na ulaz sustava dovedu dva različita ulazna signala $u_1(n)$ i $u_2(n)$ pomnožena sa različitim konstantama (homogenost), te zbrojena (aditivnost)

$$u(n) = \alpha u_1(n) + \beta u_2(n).$$

Na izlazu iz sustava će biti $y(n) = 2^{\alpha u_1(n) + \beta u_2(n)}$.

S druge strane ako je na ulazu u sustav $u_1(n)$ na izlazu će biti $y_1(n)=2^{u_1(n)}$, a ako je na ulazu $u_2(n)$ na izlazu će biti $y_2(n)=2^{u_2(n)}$. Ovi izlazi pomnoženi sa konstantama i zbrojeni daju $y(n)=\alpha y_1(n)+\beta y_2(n)=\alpha \cdot 2^{u_1(n)}+\beta \cdot 2^{u_2(n)}$.

Kako ova dva izlaza nisu jednaka, sustav nije linearan.

Sustav je **BIBO stabilan** ako na ograničenu pobudu daje ograničeni odziv. Zadani sustav je BIBO stabilan.

Inverz sustava: $y(n) = \log_2 u(n)$.

2. Odredite je li zadani kontinuirani sustav vremenski stalan, linearan, memorijski i kauzalan.

$$y(t) = u(t^2).$$

Rješenje:

Memorija: sustav u nekom trenutku t ovisi o onome što je na ulazu u trenutku t^2 , pa je prema tome sustav memorijski.

Kauzalnost: Kako sustav ovisi i o onome što će se dogoditi u budućnosti, sustav nije kauzalan.

Vremensku promjenjivost provjeravamo tako da prvo zakasnimo ulazni signal za neki M

$$u_1(t) = u(t - M),$$

te taj signal propustimo kroz sustav. Na izlazu iz sustava će biti

$$y_1(t) = u_1(t^2) = u(t^2 - M).$$

S druge strane, kada bi ulazni signal propustili kroz sustav dobili bi

$$y(t) = u(t^2).$$

Ako sada taj izlaz zakasnimo za onaj isti M, dobit ćemo

$$y(t - M) = u((t - M)^{2}) = u(t^{2} - 2tM + M^{2}).$$

Kako je $y_1(t) \neq y(t-M)$ ovaj sustav je vremenski promjenjiv.

Linearnost se provjerava tako da se na ulaz sustava dovedu dva različita ulazna signala $u_1(t)$ i $u_2(t)$ pomnožena sa različitim konstantama (homogenost), te zbrojena (aditivnost)

$$u(t) = \alpha u_1(t) + \beta u_2(t).$$

Na izlazu iz sustava će biti $y(t) = \alpha u_1(t^2) + \beta u_2(t^2)$.

S druge strane ako je na ulazu u sustav $u_1(t)$ na izlazu će biti $y_1(t)=u_1(t^2)$, a ako je na ulazu $u_2(t)$ na izlazu će biti $y_2(t)=u_2(t^2)$. Ovi izlazi pomnoženi sa konstantama i zbrojeni daju $y(t)=\alpha y_1(t)+\beta y_2(t)=\alpha u_1(t^2)+\beta u_2(t^2)$.

Kako su ova dva izlaza jednaka, sustav je linearan.

3. Odredite je li zadani diskretan sustav vremenski stalan, linearan, memorijski i kauzalan.

$$y(n) = \sum_{k=-\infty}^{n} \frac{u(k)}{n-k} .$$

Rješenje:

Raspišimo zadani sustav

$$y(n) = \sum_{k=-\infty}^{n} \frac{u(k)}{n-k} = \dots + \frac{u(-1)}{n+1} + \frac{u(0)}{n} + \frac{u(1)}{n-1} + \dots + \frac{u(n-1)}{1} + \frac{u(n)}{0}.$$

Memorija: sustav u nekom trenutku n ovisi o onome što je na ulazu u svim trenutcima prije toga, pa je prema tome sustav memorijski.

Kauzalnost: Kako sustav ovisi samo o onome što se dogodilo u prošlosti (i sadašnjosti), sustav je kauzalan.

Vremensku promjenjivost provjeravamo tako da prvo zakasnimo ulazni signal za neki M

$$u_1(n) = u(n - M),$$

te taj signal propustimo kroz sustav. Na izlazu iz sustava će biti

$$y_1(n) = \sum_{k=-\infty}^{n} \frac{u(k-M)}{n-k} = \begin{vmatrix} k-M=a \\ \operatorname{za} k = -\infty \to a = -\infty \\ \operatorname{za} k = n \to a = n-M \end{vmatrix} = \sum_{a=-\infty}^{n-M} \frac{u(a)}{n-a-M}.$$

S druge strane, kada bi ulazni signal propustili kroz sustav dobili bi

$$y(n) = \sum_{k=-\infty}^{n} \frac{u(k)}{n-k}.$$

Ako sada taj izlaz zakasnimo za onaj isti M, dobit ćemo

$$y(n-M) = \sum_{k=-\infty}^{n-M} \frac{u(k)}{n-M-k}.$$

Kako je $y_1(n)=y(n-M)$ (razlika samo po imenu varijable po kojoj sumiramo) ovaj sustav je vremenski stalan.

Linearnost se provjerava tako da se na ulaz sustava dovedu dva različita ulazna signala $u_1(n)$ i $u_2(n)$ pomnožena sa različitim konstantama (homogenost), te zbrojena (aditivnost)

$$u(n) = \alpha u_1(n) + \beta u_2(n).$$

Na izlazu iz sustava će biti

$$y(n) = \sum_{k=-\infty}^{n} \frac{\alpha u_1(k) + \beta u_2(k)}{n-k} = \sum_{k=-\infty}^{n} \frac{\alpha u_1(k)}{n-k} + \sum_{k=-\infty}^{n} \frac{\beta u_2(k)}{n-k}$$
$$= \alpha \sum_{k=-\infty}^{n} \frac{u_1(k)}{n-k} + \beta \sum_{k=-\infty}^{n} \frac{u_2(k)}{n-k}$$

S druge strane ako je na ulazu u sustav $u_1(n)$ na izlazu će biti $y_1(n)=\sum_{k=-\infty}^n\frac{u_1(k)}{n-k}$, a ako je na ulazu $u_2(n)$ na izlazu će biti $y_2(n)=\sum_{k=-\infty}^n\frac{u_2(k)}{n-k}$. Ovi izlazi pomnoženi sa konstantama i zbrojeni daju

$$y(n) = \alpha y_1(n) + \beta y_2(n) = \alpha \sum_{k=-\infty}^{n} \frac{u_1(k)}{n-k} + \beta \sum_{k=-\infty}^{n} \frac{u_2(k)}{n-k}$$

Kako su ova dva izlaza jednaka, sustav je linearan.

4. Odredite je li zadani kontinuirani sustav vremenski stalan, linearan, memorijski i kauzalan.

$$y(t) = \int_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u(t-\tau) d\tau.$$

Rješenje:

Memorija: zadani sustav možemo napisati u obliku

$$y(t) = \int_{-\infty}^{0} e^{\tau} u(t-\tau) d\tau.$$

Vidi se da sustav u nekom trenutku t ovisi o onome što je na ulazu u budućim trenucima, pa je prema tome sustav memorijski.

Kauzalnost: Kako sustav ovisi o onome što će se dogoditi u budućnosti, sustav nije kauzalan.

Vremensku promjenjivost provjeravamo tako da prvo zakasnimo ulazni signal za neki M

$$u_1(t) = u(t - M),$$

te taj signal propustimo kroz sustav. Na izlazu iz sustava će biti

$$y_1(t) = \int_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u_1(t-\tau) d\tau = \int_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u(t-\tau-M) d\tau.$$

S druge strane, kada bi ulazni signal propustili kroz sustav dobili bi

$$y(t) = \int_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u(t-\tau) d\tau.$$

Ako sada taj izlaz zakasnimo za onaj isti M, dobit ćemo

$$y(t-M) = \int_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u(t-M-\tau) d\tau.$$

Kako je $y_1(t) = y(t - M)$ ovaj sustav je vremenski stalan.

Linearnost se provjerava tako da se na ulaz sustava dovedu dva različita ulazna signala $u_1(t)$ i $u_2(t)$ pomnožena sa različitim konstantama (homogenost), te zbrojena (aditivnost)

$$u(t) = \alpha u_1(t) + \beta u_2(t).$$

Na izlazu iz sustava će biti

$$\begin{split} y(t) &= \int\limits_{-\infty}^{\infty} e^{\tau} \mu(-\tau) \big(\alpha u_1(t-\tau) + \beta u_2(t-\tau)\big) d\tau \\ &= \alpha \int\limits_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u_1(t-\tau) d\tau \, + \beta \int\limits_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u_2(t-\tau) d\tau \, . \end{split}$$

S druge strane ako je na ulazu u sustav $u_1(t)$ na izlazu će biti $y_1(t)=\int_{-\infty}^\infty e^\tau \mu(-\tau)u_1(t-\tau)d\tau$, a ako je na ulazu $u_2(t)$ na izlazu će biti $y_2(t)=\int_{-\infty}^\infty e^\tau \mu(-\tau)u_2(t-\tau)d\tau$. Ovi izlazi pomnoženi sa konstantama i zbrojeni daju

$$y(t) = \alpha y_1(t) + \beta y_2(t) = \alpha \int_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u_1(t-\tau) d\tau + \beta \int_{-\infty}^{\infty} e^{\tau} \mu(-\tau) u_2(t-\tau) d\tau.$$

Kako su ova dva izlaza jednaka, sustav je linearan.

- 5. Promatraju se dva diskretna sustava S_1 i S_2 spojena u kaskadni spoj. Odredite jesu li sljedeće tvrdnje istinite. Ukoliko nisu istinite navedite primjer koji to potvrđuje.
 - a. Ako su oba sustava S_1 i S_2 linearna, vremenski stalna, hoće li i njihov kaskadni spoj biti linearan i vremenski stalan?
 - b. Ako su oba sustava S_1 i S_2 nelinearna, je li i njihov kaskadni spoj nužno nelinearan?
 - c. Ako su oba sustava S_1 i S_2 vremenski promjenjiva, je li i njihov kaskadni spoj nužno vremenski promjenjiv?

Rješenje:

a. **Linearnost:** Ako je ulaz u prvi sustav S_1 : $u(n) = \alpha u_1(n) + \beta u_2(n)$, izlaz iz njega je $w(n) = \alpha w_1(n) + \beta w_2(n)$, uzevši u obzir svojstvo linearnosti. Ovaj izlaz je automatski ulaz u sljedeći sustav S_2 . Uzevši u obzir da je i taj sustav linearan, izlaz je: $y(n) = \alpha y_1(n) + \beta y_2(n)$. Znači, ako je svaki podsustav linearan, i njihov kaskadni spoj je linearan.

Vremenska stalnost: Ako je u(n-M) ulaz u vremenski nepromjenjiv sustav S_1 , izlaz će biti w(n-M). Odziv vremenski nepromjenjivog sustava S_2 na ovaj ulaz će biti y(n-M). Znači, ako je svaki podsustav vremenski nepromjenjiv, i njihov kaskadni spoj će biti vremenski nepromjenjiv.

b. Ako su S_1 i S_2 nelinearni sustavi nije nužno da će i njihov kaskadni spoj biti nelinearan, nelinearnost drugog sustava može poništiti nelinearnost prvog. Dovoljno je pokazati primjer:

$$w(n) = e^{u(n)}$$

$$y(n) = \ln(w(n))$$

Svaki od sustava je nelinearan, ali njihova kaskada je linearna:

$$y(n) = \ln(e^{u(n)}) = u(n).$$

c. Ako su S_1 i S_2 vremenski promjenjivi sustavi nije nužno da će i njihov kaskadni spoj biti vremenski promjenjiv. Dovoljno je pokazati primjer koji to potvrđuje:

$$w(n) = u(n)e^{jn\omega_0}$$

$$y(n) = w(n)e^{-jn\omega_0}$$

Oba sustava su vremenski promjenjiva, ali njihov kaskadni spoj nije:

$$y(n) = u(n)e^{jn\omega_0} \cdot e^{-jn\omega_0} = u(n)$$

- 6. Promatraju se dva kontinuirana sustava S_1 i S_2 spojena u paralelu. Odredite jesu li sljedeće tvrdnje istinite, te obrazložite svoj odgovor. Ukoliko nisu istinite navedite primjer koji to potvrđuje.
 - a. Ako su oba sustava S_1 i S_2 linearna i vremenski stalna, hoće li i njihov paralelan spoj biti linearan i vremenski stalan?
 - b. Ako su oba sustava S₁ i S₂ nelinearna, je li i njihov paralelni spoj nužno nelinearan?
 - c. Ako su oba sustava S_1 i S_2 vremenski promjenjiva, je li i njihov paralelni spoj nužno vremenski promjenjiv?

Rješenje:

a. <u>Linearnost</u>: Ako je ulaz u paralelu sustava $u(t) = \alpha u_1(t) + \beta u_2(t)$, taj isti ulaz ulazi u svaki od podsustava. Na njihovim izlazima su $w_1(t) = \alpha w_{11}(t) + \beta w_{12}(t)$ i $w_2(t) = \alpha w_{21}(t) + \beta w_{22}(t)$. Izlaz iz cijelog sustava je zbroj

$$y(t) = w_1(t) + w_2(t) = \alpha w_{11}(t) + \beta w_{12}(t) + \alpha w_{21}(t) + \beta w_{22}(t)$$

= $\alpha (w_{11}(t) + w_{21}(t)) + \beta (w_{12}(t) + w_{22}(t)).$

S druge strane, ako u svaki od sustava uđe $u_1(t)$ ($w_{11}(t)$ izlaz prvoga, $w_{21}(t)$ izlaz drugoga) i $u_2(t)$ ($w_{12}(t)$ izlaz prvoga, $w_{22}(t)$ izlaz drugoga), te se izlazi pomnože s konstantama i zbroje dobit ćemo:

$$y(t) = \alpha w_{11}(t) + \beta w_{12}(t) + \alpha w_{21}(t) + \beta w_{22}(t)$$

= $\alpha (w_{11}(t) + w_{21}(t)) + \beta (w_{12}(t) + w_{22}(t)).$

Kako su ova dva izraza jednaka, paralela linearnih sustava je linearan sustav.

Vremenska nepromjenjivost: Ako je u(t-M) ulaz u vremenski stalan sustav S_1 , izlaz će biti $w_1(t-M)$, a ako je to ulaz u vremenski stalan sustav S_2 , izlaz će biti $w_2(t-M)$. Izlaz iz paralele je $y_1(t) = w_1(t-M) + w_2(t-M)$. U drugom slučaju imamo na ulazu u(t), a na izlazu iz svakog podsustava $w_1(t)$ i $w_2(t)$. Zakašnjeli izlazi su $w_1(t-M)$ i $w_2(t-M)$. Ukupni izlaz iz sustava je $w_1(t-M) + w_2(t-M)$. Kako su ova dva izlaza jednaka, sustav je vremenski stalan.

Znači, ako je svaki podsustav vremenski nepromjenjiv, i njihov kaskadni spoj će biti vremenski nepromjenjiv.

b. Ako su S_1 i S_2 nelinearni sustavi nije nužno da će i njihov paralelni spoj biti nelinearan, nelinearnost drugog sustava može poništiti nelinearnost prvog. Dovoljno je pokazati primjer:

$$w_1(t) = u(t) + 2^t$$

$$w_2(t) = u(t) - 2^t$$

Svaki od sustava je nelinearan, ali njihova paralela je linearna:

$$y(t) = w_1(t) + w_2(t) = 2u(t).$$

c. Ako su S_1 i S_2 vremenski promjenjivi sustavi nije nužno da će i njihov paralelni spoj biti vremenski promjenjiv. Dovoljno je pokazati primjer koji to potvrđuje:

$$w_1(t) = tu(t)$$

$$w_2(t) = (1 - t)u(t)$$

Oba sustava su vremenski promjenjiva, ali njihov paralelni spoj nije:

$$y(t) = w_1(t) + w_2(t) = u(t).$$

7. Zadan je diskretan sustav A s jednim ulazom i jednim izlazom (SISO). Ukoliko na ulaz ovog sustava dođe signal $u_1(n)$, pripadajući izlaz poprima vrijednost $y_1(n)$, a ako je na ulazu $u_2(n)$, izlaz je $y_2(n)$:

$$u_1(n) = (-1)^n \to y_1(n) = 1$$
, za svaki n ,

$$u_2(n)=(-1)^{n+1}\to y_2(n)=1$$
, za svaki $n.$

Zadan je i diskretan SISO sustav B. Ukoliko na taj sustav dođu signali na ulaz $u_3(n)$ i $u_4(n)$, pripadajući izlazi $y_3(n)$ i $y_4(n)$ dani su s:

$$u_3(n) = (-1)^n \to y_3(n) = 1$$
, za svaki n ,

$$u_4(n) = (-1)^{n+1} \to y_4(n) = -1$$
, za svaki n.

Odredite mogu li sustavi A i B biti linearni i vremenski stalni.

Rješenje:

Linearnost diskretnog sustava A: iz zadanih ulaza je vidljivo da vrijedi $u_2(n)=-u_1(n)$. Ako je sustav linearan, isto mora vrijediti i za izlaze. No ovdje je $y_1(n)=y_2(n)=1$, pa je sustav nelinearan. (svojstvo homogenosti)

Vremenska stalnost diskretnog sustava A: sustav A može biti vremenski stalan jer vrijedi $u_2(n)=-u_1(n)=u_1(n-n_0)$, za svaki neparan n_0 . Tada je $y_2(n)=y_1(n-n_0)=1$.

Linearnost diskretnog sustava B: iz zadanih ulaza je vidljivo da vrijedi $u_4(n) = -u_3(n)$. Ako je sustav linearan, isto mora vrijediti i za izlaze. Ovdje je $y_4(n) = -y_3(n) = -1$, pa je sustav linearan. (svojstvo homogenosti)

Vremenska stalnost diskretnog sustava B: sustav B ne može biti vremenski stalan jer vrijedi $u_4(n)=u_3(n-n_0)$ i $y_4(n)\neq y_3(n-n_0)$.

8. Odziv na jedinični skok, $u(t)=\mu(t)$, linearnog vremenski stalnog sustava glasi $y(t)=\left(1-e^{-2t}\right)\!\mu(t)$. Nađite odziv ovog sustava na ulaz $u(t)=4\mu(t)-4\mu(t-1)$.

Rješenje:

Zadani sustav je vremenski stalan, pa ako pomaknemo ulaz za neki M (ovdje je to za 1: $\mu(t-1)$), pomaknut će se i izlaz $(1-e^{-2(t-1)})\mu(t-1)$.

Kako je zadani sustav linearan, vrijedi homogenost, pa odziv na $4\mu(t)$ iznosi $4(1-e^{-2t})\mu(t)$, a odziv na $4\mu(t-1)$ iznosi $4(1-e^{-2(t-1)})\mu(t-1)$.

Zbog linearnosti (aditivnosti) vrijedi da je za ulaz $u(t)=4\mu(t)-4\mu(t-1)$ izlaz $y(t)=4(1-e^{-2t})\mu(t)-4\left(1-e^{-2(t-1)}\right)\mu(t-1).$

DODATNI ZADACI

Provjerite jesu li zadani sustavi linearni, vremenski stalni, memorijski i kauzalni.

- 1. $y(t) = \int_{-\infty}^{t} u(\tau) d\tau$
- $2. \quad y(t) = \int_0^t u(\tau) d\tau$
- 3. $y(n) = \left(\frac{1}{2}\right)^n u(3n+2)$
- 4. $y(t) = \frac{u(t)}{1+u(t-1)}$

Provjerite jesu li zadani sustavi linearni, vremenski stalni, memorijski i kauzalni. Ukoliko im možete naći inverzni sustav, nađite ga.

- 5. $y(t) = u^2(t)$
- 6. $y(n) = \sum_{k=-\infty}^{n} u(k)$
- 7. $y(n) = n \cdot u(n)$

Rješenja:

- 1. linearno, vremenski stalno, ima memoriju, kauzalno
- 2. linearno, vremenski promjenjivo, ima memoriju, kauzalno
- 3. linearno, vremenski promjenjivo, ima memoriju, nekauzalno
- 4. nelinearno, vremenski stalno, ima memoriju, kauzalno
- 5. nelinearno, vremenski stalno, bez memorije, kauzalno, nema inverz
- 6. linearno, vremenski stalno, ima memoriju, kauzalno, inverz: u(n) = y(n) y(n-1)
- 7. linearno, vremenski promjenjivo, bez memorije, kauzalno, nema inverz