Connectedness (Section 22)

Definition (22.1)

Suppose (S,d) is a metric space. $E \subset S$ is called disconnected if \exists open $U_1, U_2 \subset S$ s.t.: (i) $E \subset U_1 \cup U_2$; (ii) $(E \cap U_1) \cap (E \cap U_2) = \emptyset$; (iii) $E \cap U_1 \neq \emptyset$, $E \cap U_2 \neq \emptyset$.

Proposition

An open set E is disconnected if and only if $E = E_1 \cup E_2$, where E_1, E_2 are disjoint non-empty open sets.

Proof. (1) Suppose E is disconnected. Take U_1, U_2 as in the definition. Then $E_i = E \cap U_i$ have the desired properties.

(2) If E_1 , E_2 exist, take $U_i = E_i$ (i = 1, 2). Then U_1 , U_2 are as in the definition of disconnectedness.

Proposition (Definition 22.1 + remark following it)

E is disconnected iff $\exists A, B \subset E$ s.t. $E = A \cup B$, $A \neq \emptyset$, $B \neq \emptyset$, $A \cap B^- = \emptyset = A^- \cap B$.

A continuous image of a connected set is connected

Theorem (22.2)

Suppose (S,d) and (S^*,d^*) are metric spaces, $E \subset S$ is connected, and $f:S \to S^*$ is continuous. Then f(E) is connected.

Proof of the contrapositive. Suppose $E \subset S$, and $f(E) \subset S^*$ is disconnected. We show that E is disconnected.

Write
$$f(E) = C \cup D$$
, where C and D are non-void, $C^- \cap D = \emptyset = C \cap D^-$.
Thus, $f^{-1}(C^-) \cap f^{-1}(D) = \emptyset = f^{-1}(C) \cap f^{-1}(D^-)$.

Let
$$A = f^{-1}(C) \cap E$$
, $B = f^{-1}(D) \cap E$. $E = A \cup B$, A and B are non-void.

$$f^{-1}(C^-)$$
 is closed, and $A \subset f^{-1}(C) \subset f^{-1}(C^-)$. Thus, $A^- \subset f^{-1}(C^-)$.

$$f^{-1}(C^-) \cap f^{-1}(D) = \emptyset$$
, hence $A^- \cap B = \emptyset$.

Similarly,
$$A \cap B^- = \emptyset$$
. So, E is disconnected.

Path connected sets

Definition (P. 165)

A path is a continuous function $\gamma:[0,1]\to S$, where (S,d) is a metric space.

Definition (22.4)

A set E is path connected if $\forall a,b\in E$ \exists path $\gamma:[0,1]\to E$ s.t. $\gamma(0)=a$, $\gamma(1)=b$.

Theorem (22.5)

Every path connected set is connected.

Remark. A connected set need not be path connected (Exercise 22.4).

Path connected sets are connected

Theorem (22.5)

Every path connected set is connected.

Proof. We show that, if E is disconnected, then it is not path connected. Find open U_1, U_2 so that $E \subset U_1 \cup U_2$, $E \cap U_1 \neq \emptyset$, $E \cap U_2 \neq \emptyset$, $E \cap U_1 \cap U_2 = \emptyset$. Pick $a \in E \cap U_1$, $b \in E \cap U_2$. We show that a and b cannot be linked by a path.

Suppose, for the sake of contradiction, that there exists a continuous function $\gamma:[0,1]\to E$, with $\gamma(0)=a,\gamma(1)=b$. Let $F=\gamma([0,1])$. Then $a\in F\cap U_1,b\in F\cap U_2$, so $F\cap U_1\neq\emptyset$ and $F\cap U_2\neq\emptyset$. Further, $F\cap U_1\cap U_2\subset E\cap U_1\cap U_2=\emptyset$. Thus, F is disconnected. This is impossible: intervals are connected, and so are continuous images of connected sets.

Path connected sets are connected

Theorem (22.5)

Every path connected set is connected.

Another proof. Suppose, for contradiction, that E is path connected, but not connected. Write $E = A \cup B$, A, B non-empty, $A^- \cap B = \emptyset = A \cap B^-$. Find $a \in A$, $b \in B$. Let $\gamma : [0,1] \to E$ be a path s.t. $\gamma(0) = a$, $\gamma(1) = b$. Let $T = \gamma^{-1}(A)$, $S = \gamma^{-1}(B)$. Then $0 \in T$, $1 \in S$, $T \cap S = \emptyset$, $T \cup S = [0,1]$. $T = \gamma^{-1}(A) \subset \gamma^{-1}(A^-)$; the latter set is closed, so $T^- \subset \gamma^{-1}(A^-)$. $\gamma^{-1}(A^-) \cap \gamma^{-1}(B) = \emptyset$, hence $T^- \cap S = \emptyset$. Similarly, $T \cap S^- = \emptyset$.

Note that $0 \in T$, and $1 \in S$, so $1 \notin T^-$. Let $c = \sup T$. If $c \in T$, then $c \notin S^-$, so $\exists \delta > 0$ s.t. $(c - \delta, c + \delta) \cap S = \emptyset$, so $\sup T > c$. If $c \in S$, then $\exists \delta > 0$ s.t. $(c - \delta, c + \delta) \cap T = \emptyset$, so $\sup T < c$.

Either way we get a contradiction!

Example: Connected set which is not path connected

Example. Consider $E \subset \mathbb{R}^2$, with $E = E_1 \cup E_2$, where $E_1 = \{0\} \times (0, 1]$, $E_2 = (0, 1] \times \{0\} \cup (\bigcup_{n \in \mathbb{N}} \{\frac{1}{n}\} \times (0, 1])$.

E is connected, but not path connected.

A connected set which is not path connected

Example. Consider $E \subset \mathbb{R}^2$, with $E = E_1 \cup E_2$, where $E_1 = \{0\} \times (0,1]$, $E_2 = (0,1] \times \{0\} \cup (\bigcup_{n \in \mathbb{N}} \{\frac{1}{n}\} \times (0,1])$. E is connected, but not path connected.

(1) E is connected.

Suppose, for the sake of contradiction, that E is not connected – that is, \exists open $U_1, U_2 \subset \mathbb{R}^2$ s.t.: (i) $E \subset U_1 \cup U_2$;

(ii)
$$(E \cap U_1) \cap (E \cap U_2) = \emptyset$$
; (iii) $E \cap U_1 \neq \emptyset$, $E \cap U_2 \neq \emptyset$.

 E_1, E_2 are path connected, hence connected. So $E_1 \subset U_1$, $E_2 \subset U_2$ (or vice versa). $\exists r > 0$ s.t. $\mathbf{B}_r^o((0,1)) \subset U_1 \subset \mathbb{R}^2 \backslash E_2$. But $(\frac{1}{n},1) \subset E_2 \cap \mathbf{B}_r^o((0,1))$ for $n > \frac{1}{r}$, contradiction!

A connected set which is not path connected, cont'd

Example. Consider $E \subset \mathbb{R}^2$, with $E = E_1 \cup E_2$, where $E_1 = \{0\} \times (0,1]$, $E_2 = (0,1] \times \{0\} \cup \left(\bigcup_{n \in \mathbb{N}} \left\{\frac{1}{n}\right\} \times (0,1]\right)$. E is connected, but not path connected.

(2) E is not path connected (optional).

Suppose, for the sake of contradiction, that \exists path $\gamma:[0,1]\to E$ s.t. $\gamma(0)=(0,1),\ \gamma(1)=(1,0).\ \gamma([0,1])$ is compact, $(0,0)\notin\gamma([0,1]).$ $\exists \varepsilon>0$ s.t. $[0,\varepsilon]\times[0,\varepsilon]\cap\gamma([0,1])=\emptyset.$

Write $\gamma(t)=\left(\gamma_1(t),\gamma_2(t)\right)$, where $\gamma_1,\gamma_2:[0,1]\to\mathbb{R}$ are continuous (see Proposition 21.2). $\gamma_1\bigl([0,1]\bigr)\in[0,1]$, $\gamma_1(0)=0$, $\gamma_1(1)=1$. \Rightarrow $\gamma_1\bigl([0,1]\bigr)=[0,1]$. Find $x\in(0,\varepsilon)\backslash\bigl\{\frac{1}{n}:n\in\mathbb{N}\bigr\}$, and $t\in(0,1)$ s.t. $\gamma_1(t)=x$. Then $\gamma_2(t)\geqslant\varepsilon$. This is impossible: if $(x,y)\in E$, then y=0.

Convex sets (Section 22 Example 3)

Definition

 $E \subset \mathbb{R}^n$ is convex if, $\forall \vec{x}, \vec{y} \in E$, $\{(1-t)\vec{x} + t\vec{y} : 0 \leqslant t \leqslant 1\} \subset E$.

Proposition

Any convex set is path connected.

Example. $\mathbf{B}_r(\vec{x}_0) \subset \mathbb{R}^n$ is convex.

We handle the case of $\vec{x}_0 = \vec{0}$, r = 1. Need to show: if $||\vec{x}||, ||\vec{y}|| \le 1$ and 0 < t < 1, then $||(1 - t)\vec{x} + t\vec{y}|| \le 1$.

$$||(1-t)\vec{x} + t\vec{y}||^2 = \langle (1-t)\vec{x} + t\vec{y}, (1-t)\vec{x} + t\vec{y} \rangle = (1-t)^2 ||\vec{x}||^2 + t^2 ||\vec{y}||^2 + 2t(1-t)\langle \vec{x}, \vec{y} \rangle.$$
Bunyakovsky-Cauchy-Schwarz: $|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| ||\vec{y}||$

Bunyakovsky-Cauchy-Schwarz:
$$|\langle \vec{x}, \vec{y} \rangle| \le ||\vec{x}|| ||\vec{y}||$$
. $||(1-t)\vec{x}+t\vec{y}||^2 \le (1-t)^2 ||\vec{x}||^2 + t^2 ||\vec{y}||^2 + 2t(1-t) ||\vec{x}|| ||\vec{y}|| =$

$$((1-t)\|\vec{x}\| + t\|\vec{y}\|)^2 \le 1.$$

Graphs of functions and path connectedness

The graph of a function $f: I \to \mathbb{R}$ ($I \subset \mathbb{R}$ is an interval): $G(f) = \{(x, f(x)) : x \in I\}.$

Proposition (Example 4 from Section 22)

 $\mathbf{G}(f)$ is path connected iff f is continuous on interval I.

Remark. Exercise 22.4: a discontinuous f s.t. $\mathbf{G}(f)$ is connected.

Proposition 21.2. The function $f: S \to \mathbb{R}^n : x \mapsto (f_1(x), \dots, f_n(x))$ is continuous iff $f_i: S \to \mathbb{R}$ is continuous, for $1 \le i \le n$.

Proof: f is continuous on $I \Rightarrow \mathbf{G}(f)$ is path connected.

Suppose $\vec{x} = (a, f(a)), \vec{y} = (b, f(b)) \in \mathbf{G}(f)$. A path between \vec{x} and \vec{y} :

$$\gamma(t) = \left((1-t)a + tb, f\left((1-t)a + tb\right)\right) (t \in [0,1]).$$

f is continuous on $I \leftarrow \mathbf{G}(f)$ is path connected. See textbook.

A connected set which is not path connected

Consider
$$f:[0,\infty)\to\mathbb{R}:x\mapsto\left\{egin{array}{ll} \sin1/x & x
eq0\\ 0 & x=0 \end{array}
ight.$$

f is discontinuous at 0, hence $\mathbf{G}(f)$ is not path connected.

We shall show that that $\mathbf{G}(f)$ is connected.

Suppose, for the sake of contradiction, that $\mathbf{G}(f)$ is disconnected. Then \exists open $U_1, U_2 \subset \mathbb{R}^2$ so that $\mathbf{G}(f) \subset U_1 \cup U_2$, $\mathbf{G}(f) \cap U_1 \cap U_2 = \emptyset$, while $\mathbf{G}(f) \cap U_1 \neq \emptyset$ and $\mathbf{G}(f) \cap U_2 \neq \emptyset$.

Write $\mathbf{G}(f) = E_1 \cup E_2$, where $E_1 = \{(0,0)\}$ and $E_2\{(x,\sin 1/x) : x > 0\}$. Both E_1 and E_2 are path connected, hence connected. Thus, by relabeling, we assume $E_1 \subset U_1, E_2 \subset U_2$.

Find r > 0 so hat $\mathbf{B}_r^o(0,0) \subset U_1$. But $\forall n \in \mathbb{N} \ (1/(n\pi),0) \in E_2$. Pick n so that $1/(n\pi) > r$, then $(1/(n\pi),0)$ belongs to both $E_2 \subset U_2$ and to $\mathbf{B}_r^o(0,0) \subset U_1$. Thus, $(1/(n\pi),0) \in E \cap U_1 \cap U_2$, a contradiction.