Симетричні многочлени

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

16 листопада 2022

Многочлени від багатьох змінних

Нехай F — деяке поле.

 $F[x_1,\ldots,x_n]$ — кільце многочленів від змінних x_1,\ldots,x_n з коефіцієнтами з поля F.

$$f(x_1,\ldots,x_n)=\sum a_{i_1\ldots i_n}x_1^{i_1}\ldots x_n^{i_n}$$

— многочлен від змінних x_1, \ldots, x_n .

Приклад

Кільце
$$\mathbb{R}[x_1, x_2, x_3]$$

 $f(x_1, x_2, x_3) = x_1^3 x_2 + 2x_1 x_2 x_3 + 3x_2^2 x_3^2$

Многочлени від багатьох змінних

Степінь одночлена $a_{i_1...i_n} x_1^{i_1} ... x_n^{i_n}$ — це число $i_1 + \cdots + i_n$.

Приклад

$$\deg(x_1^3x_2x_3^2) = 6$$

Степінь многочлена — це найбільший зі степенів одночленів, що входять у многочлен $f(x_1, \dots x_n)$.

Приклад

Степінь многочлена

$$f(x_1, x_2, x_3) = x_1^3 x_2 + 2x_1 x_2 x_3 + 3x_2^2 x_3^2$$

дорівнює 4.

Лексикографічний порядок

Що є старшим членом многочлена

$$f(x_1, x_2, x_3) = x_1^3 x_2 + 2x_1 x_2 x_3 + 3x_2^2 x_3^2$$
?

Впорядкування у лексикографічному порядку:

- ullet спочатку порівнюють показники степенів при x_1 ;
- ullet якщо вони однакові, то порівнюють показники степенів при x_2 ;
- іт. д.

Тому

$$x_1^3 x_2 \ge 2x_1 x_2 x_3 \ge 3x_2^2 x_3^2.$$

Старший член многочлена — найвищий член у лексикографічному порядку.

Симетричні многочлени

Задамо дію групи S_n на $F[x_1, \ldots, x_n]$.

Підстановка $\sigma \in \mathcal{S}_n$ діє на многочлен $f(x_1, \dots, x_n)$ за правилом:

$$f^{\sigma}(x_1,\ldots,x_n)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Приклад

Нехай $\sigma = (12)$. Тоді для

$$f(x_1,x_2,x_3) = x_1^3x_2 + 2x_1x_2x_3 + 3x_2^2x_3^2$$

маємо

$$f^{\sigma}(x_1, x_2, x_3) = x_2^3 x_1 + 2x_2 x_1 x_3 + 3x_1^2 x_3^2.$$

Симетричні многочлени

Многочлен $f(x_1,\ldots,x_n)$ називається симетричним, якщо для довільної $\sigma\in\mathcal{S}_n$

$$f^{\sigma} = f$$
.

Приклад

- $\bullet f(x_1, x_2, x_3) = x_1x_2x_3;$
- $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 3x_1x_2x_3;$
- $f(x_1, x_2, x_3) = (x_3 x_1)(x_3 x_2)(x_2 x_1)$.

Антиприклад

- $f(x_1, x_2, x_3) = x_1^3 x_2 + 2x_1 x_2 x_3 + 3x_2^2 x_3^2;$
- $f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 + 3x_1^2x_2x_3$;
- $\bullet f(x_1, x_2, x_3) = (x_3 x_1)(x_3 x_2).$

 $SF[x_1,\ldots,x_n]$ — множина всіх симетричних многочленів від змінних x_1,\ldots,x_n .

Теорема

Множина $SF[x_1, \ldots, x_n]$ всіх симетричних многочленів утворює кільце.

Елементарні симетричні многочлени

Елементарні симетричні многочлени:

$$\sigma_1(x_1, \dots, x_n) = x_1 + \dots + x_n,$$

$$\sigma_k(x_1, \dots, x_n) = \sum_{1 \le i_1 < \dots < i_k \le n} x_{i_1} \dots x_{i_K},$$

$$\dots$$

$$\sigma_n(x_1, \dots, x_n) = x_1 \dots x_n.$$

Елементарні симетричні многочлени

Елементарні симетричні многочлени з $SF[x_1, x_2, x_3]$:

$$\sigma_1 = x_1 + x_2 + x_3,$$

 $\sigma_2 = x_1x_2 + x_1x_3 + x_2x_3,$
 $\sigma_3 = x_1x_2x_3.$

Основна теорема про симетричні многочлени

Теорема

Для кожного симетричного многочлена $f(x_1,...,x_n) \in SF[x_1,...,x_n]$ існує єдиний такий многочлен $F(x_1,...,x_n) \in F[x_1,...,x_n]$, що

$$f(x_1,\ldots,x_n)=F(\sigma_1(x_1,\ldots,x_n),\ldots,\sigma_n(x_1,\ldots,x_n)).$$

Лема 1

Лема

Нехай $u = ax_1^{k_1} \dots x_n^{k_n}$ — старший член многочлена $f(x_1, \dots, x_n)$. Тоді $k_1 \ge \dots \ge k_n$.

Доведення.

Припустимо, що $k_i < k_{i+1}$. Разом з u має містити одночлен, у якому x_i та x_{i+1} помінялися місцями. Але тоді u не є старшим.

16 листопада 2022

Лема 2

Лема

Для довільного одночлена $u = \alpha x_1^{k_1} \dots x_n^{k_n}$, у якого $k_1 \ge \dots \ge k_n$, існує єдиний такий набір невід'ємних чисел l_1,\ldots,l_n , що старший член многочлена $\sigma_1^{l_1}\ldots\sigma_n^{l_n}$ збігається з u.

Доведення.

Старшим членом $\sigma_k \in x_1 \dots x_k$.Тоді старшим членом $\sigma_1^{l_1} \dots \sigma_n^{l_n} \in \mathcal{C}_n^{l_n}$

$$x_1^{l_1}(x_1x_2)^{l_2}\dots(x_1\dots x_n)^{l_n}=x_1^{l_1+\dots+l_n}x_2^{l_2+\dots+l_n}\dots x_n^{l_n}.$$

Порівняємо з u:

$$l_1 + \dots + l_n = k_1$$

$$l_2 + \dots + l_n = k_2 \implies$$

$$l_i = k_i - k_{i+1} \ge 0, i = 1, \dots, n-1$$

 $l_n = k_n$

 $l_n = k_n \geq 0$

Доведення теореми. Існування

```
Нехай f(x_1,\ldots,x_n)\in SF[x_1,\ldots,x_n] — довільний. 
Якщо f=0, то F=0. 
Нехай f\neq 0, а u_1=ax_1^{k_1}\ldots x_n^{k_n} — його старший член. 
За лемою 1: k_1\geq \cdots \geq k_n. 
За лемою 2: Існує такий F_1\in F[x_1,\ldots,x_n], що старший член F_1(\sigma_1,\ldots,\sigma_n) дорівнює u_1=ax_1^{k_1}\ldots x_n^{k_n}. 
Розглянемо симетричний многочлен f_1=f-F_1(\sigma_1,\ldots,\sigma_n). 
Якщо f_1=0, то F=F_1.
```

Доведення теореми. Існування

Якщо $f_1 \neq 0$, то нехай u_2 — його старший член.

Лексикографічно: $u_1 \ge u_2$.

Тому існує такий $F_2 \in F[x_1, ..., x_n]$, що старший член $F_2(\sigma_1, ..., \sigma_n)$ дорівнює u_2 .

Розглянемо симетричний многочлен $f_2 = f_1 - F_2(\sigma_1, ..., \sigma_n)$.

Якщо $f_2 = 0$, то $F = F_1 + F_2$.

Якщо $f_2 \neq 0$, то продовжуємо і т. д.

За лемою 1 через скінченну кількість кроків процес обірветься.

Отже, для деякого $m: f_m = 0$ та

$$F = F_1 + \cdots + F_m$$
.

Доведення теореми. Єдиність

Припустимо, що є два зображення:

$$f = F(\sigma_1, \ldots, \sigma_n) = G(\sigma_1, \ldots, \sigma_n).$$

Покладемо $H = F - G \neq 0$, але $H(\sigma_1, \ldots, \sigma_n) = 0$.

Нехай $H_1, \ldots, H_s \longrightarrow \emptyset$ одночлени многочлена $H(x_1, \ldots, x_n)$, w_i — старші члени $H_i(\sigma_1, \ldots, \sigma_n)$, $i = 1, \ldots, s$.

За лемою 2 серед w_1, \ldots, w_s немає пропорційних.

Оберемо серед них старший: w_1 (без обмеження загальності).

Але тоді w_1 старший за усі члени $H_1(\sigma_1, \ldots, \sigma_n)$, а також за всі члени $H_i(\sigma_1, \ldots, \sigma_n)$, $i = 1, \ldots, s$.

Тому у сумі

$$H_1(\sigma_1,\ldots,\sigma_n)+\cdots+H_s(\sigma_1,\ldots,\sigma_n)$$

навіть після зведення подібних збережеться доданок w_1 !

Отже,
$$H(\sigma_1, \ldots, \sigma_n) \neq 0$$
.

Приклад

Задача

Зобразити симетричний многочлен $f(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$ у вигляді многочлена від елементарних симетричних многочленів.

m	u _m	F _m	f_{m}
1	x_1^3	$F_1 = \sigma_1^3 = (x_1 + x_2 + x_3)^3$	$f_1 = f - F_1 =$
			$=-3\sum_{i\neq j}x_i^2x_j-6x_1x_2x_3$
2	$-3x_1^2x_2$	$F_2 = -3\sigma_1\sigma_2 =$	
	_	$=-3(x_1+x_2+x_3)(x_1x_2+x_1x_3+x_2x_3)$	$f_2 = f_1 - F_2 = 3x_1x_2x_3$
3	$3x_1x_2x_3$		$f_3 = f_2 - F_3 = 0$

$$f = F_1 + F_2 + F_3 = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3.$$

Спосіб II. Однорідні симетричні многочлени

Задача

Зобразити симетричний многочлен $f(x_1, x_2, x_3) = x_1^3 + x_2^3 + x_3^3$ у вигляді многочлена від елементарних симетричних многочленів.

Потрібно обрати старший член u_1 та врахувати:

- сума показників степенів стала;
- усі можливі показники степенів старшого члена задовольняють лему 1;
- всі вони менші u₁.

Спосіб II. Однорідні симетричні многочлени

$$f(x_1,x_2,x_3) = x_1^3 + x_2^3 + x_3^3, u_1 = x_1^3 x_2^0 x_3^0$$

$k_1 \ge k_2 \ge k_3$	l_1, l_2, l_3	$\sigma_1^{l_1}\sigma_2^{l_2}\sigma_3^{l_3}$
3, 0, 0	3, 0, 0	σ_1^3
2, 1, 0	1, 1, 0	$\sigma_1\sigma_2$
1, 1, 1	0, 0, 1	σ_3

$$F = \sigma_1^3 + A\sigma_1\sigma_2 + B\sigma_3.$$

<i>x</i> ₁	x ₂	X 3	σ_1	σ_2	σ_3	f	Рівняння
1	1	0	2	1	0	2	$8 + 2A = 2 \Rightarrow A = -3$
1	1	1	3	3	1	3	$27 - 27 + B = 3 \Rightarrow B = 3$

$$f = \sigma_1^3 - 3\sigma_1\sigma_2 + 3\sigma_3.$$

Формула Вієта для квадратного рівняння

$$x^2 + a_1 x + a_2 = 0$$

$$SF[x_1, x_2]$$
:
 $\sigma_1 = x_1 + x_2$
 $\sigma_2 = x_1x_2$

19/24

Якщо x_1, x_2 — корені цього рівняння, то

$$(x-x_1)(x-x_2) = x^2 + a_1x + a_2,$$

$$x^2 - (x_1 + x_2)x + x_1x_2 = x^2 + a_1x + a_2.$$

Звідси
$$x_1 + x_2 = -a_1$$
, $x_1x_2 = a_2$.

$$a_1 = -\sigma_1(x_1, x_2), \quad a_2 = \sigma_2(x_1, x_2).$$

$$a_0x^2 + a_1x + a_2 = 0 \Rightarrow x^2 + \frac{a_1}{a_0}x + \frac{a_2}{a_0} = 0.$$

Формула Вієта для кубічного рівняння

$$x^3 + a_1x^2 + a_2x + a_3 = 0$$

Якщо x_1, x_2, x_3 — корені цього рівняння, то

$$(x-x_1)(x-x_2)(x-x_3) = x^3 + a_1x^2 + a_2x + a_3,$$

$$x^3 - (x_1 + x_2 + x_3)x^2 + (x_1x_2 + x_2x_3 + x_1x_3)x - x_1x_2x_3 =$$

$$= x^3 + a_1x^2 + a_2x + a_3.$$

Звідси

$$a_1 = -(x_1 + x_2 + x_3) = -\sigma_1(x_1, x_2, x_3),$$

$$a_2 = x_1x_2 + x_2x_3 + x_1x_3 = \sigma_2(x_1, x_2, x_3),$$

$$a_3 = -x_1x_2x_3 = -\sigma_3(x_1, x_2, x_3).$$

Формула Вієта для рівняння *n*-го степеня

$$x^{n} + a_{1}x^{n-1} + \cdots + a_{n-1}x + a_{n} = 0$$

Якщо x_1, \ldots, x_n — корені цього рівняння, то

$$(x-x_1)\dots(x-x_n) = x^n + a_1x^{n-1} + \dots + a_{n-1}x + a_n$$

Звідси

$$a_{1} = -\sigma_{1}(x_{1}, ..., x_{n}),$$

$$a_{2} = \sigma_{2}(x_{1}, ..., x_{n}),$$

$$a_{3} = -\sigma_{3}(x_{1}, ..., x_{n})$$

$$...$$

$$a_{n-1} = (-1)^{n-1}\sigma_{n-1}(x_{1}, ..., x_{n}),$$

$$a_{n} = (-1)^{n}\sigma_{n}(x_{1}, ..., x_{n}).$$

Задача

Знайдіть суму квадратів коренів рівняння $x^3 + 3x^2 + 4x + 9 = 0$.

$$x_1,x_2,x_3$$
 — корені заданого рівняння. Потрібно: $x_1^2+x_2^2+x_3^2$.
$$x_1^2+x_2^2+x_3^2=(x_1+x_2+x_3)^2-2x_1x_2-2x_1x_3-2x_2x_3:$$

$$x_1^2+x_2^2+x_3^2=\sigma_1^2-2\sigma_2.$$

$$\sigma_1(x_1,x_2,x_3)=-3,$$

$$\sigma_2(x_1,x_2,x_3)=4$$

$$\Rightarrow x_1^2+x_2^2+x_3^2=(-3)^2-2\cdot 4=1.$$

Задача

Нехай x_1, x_2, x_3 — корені рівняння $x^3 + 3x^2 + 4x + 9 = 0$. Знайдіть значення виразу

$$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3}$$
.

$$\frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = \frac{x_1 x_2 + x_1 x_3 + x_2 x_3}{x_1 x_2 x_3} = \frac{\sigma_2}{\sigma_3}.$$

$$\sigma_2(x_1, x_2, x_3) = 4, \quad \sigma_3 = -9$$

$$\Rightarrow \frac{1}{x_1} + \frac{1}{x_2} + \frac{1}{x_3} = -\frac{4}{9}.$$

$$x^3 + 3x^2 + 4x + 9 = 0$$
:

$$x_1 = -1 - \sqrt[3]{\frac{2}{3(\sqrt{3981} - 63)}} + \frac{\sqrt[3]{\frac{1}{2}\sqrt{3981} - 63}}{3^{2/3}},$$

$$x_2 = -1 - \frac{(1+i\sqrt{3})\sqrt[3]{\frac{1}{2}\sqrt{3981} - 63}}{2\times 3^{2/3}} + \frac{1-i\sqrt{3}}{2^{2/3}\sqrt[3]{3\sqrt{3981} - 63}},$$

$$x_3 = -1 - \frac{(1 - i\sqrt{3})\sqrt[3]{\frac{1}{2}\sqrt{3981} - 63}}{2 \times 3^{2/3}} + \frac{1 + i\sqrt{3}}{2^{2/3}\sqrt[3]{3\sqrt{3981} - 63}}.$$