TAs for Computer Vision I 2023 - 2024 Fall Semester

王若宇

- E-mail:
 - wangry3@shanghaitech.edu.cn
- SIST 1A-306
- Office Hour: Thu. 20:00 21:00
- Research Interest:
 - Depth Estimation
- About Me:
 - I am a senior graduated student at ShanghaiTech University.

王晨宇

E-mail: wangchy8@shanghaitech.edu

• SIST 1A-306

Office Hour: Tue. 20:00 - 21:00

Research Interest:

Multi-modal Large Language Models

About Me:

I am a senior graduated student at ShanghaiTech University.

赵逸群

- E-mail: zhaoyq12022@shanghaitech.edu
- SIST 1A-306
- Office Hour: Mon. 21:00 22:00
- Research Interest:
 - Generative models & Neural Rendering
- About me:
 - I am a second-year graduated student at ShanghaiTech University.

王硕

- E-mail: wangshuo2022@shangha
- SIST 1A-306
- Office Hour: Fri. 20:00 21:00
- Research Interest:
 - NeRF and Beyond
- About Me:
 - I am a second-year graduated student at S

刘世宇

- E-mail: liushy2023@shanghaitech.
- SIST 1A-306
- Office Hour: Fri. 20:00 21:00
- Research Interest:
 - Diffusion Models & Neural Rendering
- About Me:
 - I am a first-year graduated student at ShanghaiTech.

徐京伟

E-mail: xujw2023@shanghaitech.edu.

• SIST 1A-306

Office Hour: Wed. 20:00 - 21:00

Research Interest:

Neural Rendering & Geometry in both Graphics

Course Evaluation

- 期末考试 (60%)
- 作业: 10%
- 随堂测验: 10%
- 项目设计: 20%

Overview of next two lectures

The pinhole projection model

- Qualitative properties
- Perspective projection matrix

Cameras with lenses

- Depth of focus
- Field of view
- Lens aberrations

Digital cameras

- Sensors
- Color
- Artifacts

Let's design a camera

Idea 1: put a piece of film in front of an object Do we get a reasonable image?

Image formation

Let's design a camera

- Idea 1: put a piece of film in front of an object
- Do we get a reasonable image?

Slide source: Seitz

Pinhole camera

Idea 2: add a barrier to block off most of the rays

- This reduces blurring
- The opening known as the aperture

Pinhole camera

f = focal length
c = center of the camera

Camera obscura

Gemma Frisius, 1558

- Basic principle known to Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Turning a room into a camera obscura

My hotel room, contrast enhanced.

The view from my window

Accidental pinholes produce images that are unnoticed or misinterpreted as shadows

Dimensionality reduction: from 3D to 2D

3D world

Point of observation

2D image

Single-view Geometry

Projection can be tricky...

Projection can be tricky...

Projective Geometry

What is lost?

Length

Length is not preserved

Projective Geometry

What is lost?

Length

Angles

Projective Geometry

What is preserved?

• Straight lines are still straight

Vanishing points

- All parallel lines converge to a vanishing point
 - Each direction in space is associated with its own vanishing point
 - Exception: directions parallel to the image plane

Vanishing points and lines

- The projections of parallel 3D lines intersect at a vanishing point
- The projection of parallel 3D planes intersect at a vanishing line
- Not all lines that intersect are parallel

Vanishing points and lines

Vanishing objects

Perspective distortion

- Are the widths of the projected columns equal?
 - The exterior columns are wider
 - This is not an optical illusion, and is not due to

Perspective distortion

What is the shape of the projection of a

sphere?

Image source: F. Durand

Perspective distortion

• What is the shape of the projection of a sphere?

Perspective distortion: People

Modeling projection

- To compute the projection P' of a scene point P, form the visual ray connecting P to the camera center O and find where it intersects the image plane
 - All scene points that lie on this visual ray have the same projection in the image
 - Are there scene points for which this projection is undefined?

Modeling projection

The coordinate system

- The optical center (O) is at the origin
- The image plane is parallel to xy-plane or perpendicular to the z-axis, which is the optical axis

Projection equations

• Derived using similar triangles $(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$

Fronto-parallel planes

- What happens to the projection of a pattern on a plane parallel to the image plane?
 - All points on that plane are at a fixed depth z
 - The pattern gets scaled by a factor of f / z, but angles and ratios of lengths/areas are preserved

$$(x, y, z) \rightarrow (f \frac{x}{z}, f \frac{y}{z})$$

Fronto-parallel planes

- What happens to the projection of a pattern on a plane parallel to the image plane?
 - All points on that plane are at a fixed depth z
 - The pattern gets scaled by a factor of f / z, but angles and ratios of lengths/areas are preserved

Piero della Francesca, Flagellation of Christ, 1455-1460

Jan Vermeer, The Music Lesson, 1662-1665

Perspective Projection (pinhole projection)

FIGURE 1.4: The perspective projection equations are derived in this section from the collinearity of the point P, its image p, and the pinhole O.

$$\begin{cases} x = \lambda X \\ y = \lambda Y \\ d = \lambda Z \end{cases} \iff \lambda = \frac{x}{X} = \frac{y}{Y} = \frac{d}{Z},$$

$$\begin{cases} x = d\frac{X}{Z}, \\ y = d\frac{Y}{Z}. \end{cases}$$

Weak Perspective

FIGURE 1.5: Weak-perspective projection. All line segments in the plane Π₀ are projected with the same magnification.

$$\begin{cases} x = -mX, \\ y = -mY, \end{cases} \text{ where } m = -\frac{d}{Z_0}.$$

Non-homogenous Coordinates

A point P in some coordinate frame (F) = (O, *i, j, k*) is represented as:

$$\overrightarrow{OP} = Xi + Yj + Zk.$$

The same point P in different coordinate systems (A) and (B):

$$^{A}\mathbf{P}=\mathcal{R}^{B}\mathbf{P}+\mathbf{t},$$

Here **R** is a rotation matrix, **t** is a translation vector.

$$\mathcal{R} \stackrel{ ext{def}}{=} egin{pmatrix} (^A oldsymbol{i}_B, ^A oldsymbol{j}_B, ^A oldsymbol{k}_B) = egin{pmatrix} oldsymbol{i}_A \cdot oldsymbol{i}_B & oldsymbol{j}_A \cdot oldsymbol{i}_B & oldsymbol{k}_A \cdot oldsymbol{i}_B \ oldsymbol{i}_A \cdot oldsymbol{k}_B & oldsymbol{j}_A \cdot oldsymbol{k}_B & oldsymbol{k}_A \cdot oldsymbol{j}_B \ oldsymbol{i}_A \cdot oldsymbol{k}_B & oldsymbol{j}_A \cdot oldsymbol{k}_B & oldsymbol{k}_A \cdot oldsymbol{k}_B \end{pmatrix}$$

Homogenous Coordinates

Add one more coordinate:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
 $(x,y,z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$

homogeneous image coordinates

homogeneous scene coordinates

By introducing homogenous coordinates, we have

$${}^{A}\mathbf{P} = \mathcal{T}^{B}\mathbf{P}, \text{ where } \mathcal{T} = \begin{pmatrix} \mathcal{R} & \mathbf{t} \\ \mathbf{0}^{T} & 1 \end{pmatrix},$$

Projection Equation in Homogenous Coordinates

For a point **P** in some fixed world coordinate $P=(X, Y, Z, 1)^T$, and its image **p** in the camera's reference frame (normalized image plane) $hat\{p\}=(x,y,1)^T$, the projection equation is represented as:

$$p = \frac{1}{Z} \mathcal{M} P.$$

Intrinsic Parameters

FIGURE 1.14: Physical and normalized image coordinate systems.

Point at normalized image plan

$$\begin{cases} \hat{x} = \frac{X}{Z} \\ \hat{y} = \frac{Y}{Z} \end{cases} \iff \hat{p} = \frac{1}{Z} (\text{Id} \quad \mathbf{0}) \mathbf{P}$$

Color Sensing: Bayer Grid

Estimate RGB at each cell from neighboring values

Intrinsic Parameters

- The coordinates (x, y) of the image point p are expressed in pixel units (not meters).
- Pixels may be rectangular instead of square(skewed).

$$\begin{cases} x = kf\frac{X}{Z} = kf\hat{x}, \\ y = lf\frac{Y}{Z} = lf\hat{y}. \end{cases} \qquad \alpha = kf \text{ and } \beta = lf$$

 The center of the CCD matrix usually does not coincide with the image center c₀

$$\begin{cases} x = \alpha \hat{x} + x_0, \\ y = \beta \hat{y} + y_0. \end{cases}$$

 Due to manufacturing error, the angle between two image axes is not 90 degrees.

$$\begin{cases} x = \alpha \hat{x} - \alpha \cot \theta \hat{y} + x_0, \\ y = \frac{\beta}{\sin \theta} \hat{y} + y_0. \end{cases}$$

Intrinsic Parameters

Putting all equations together, we get

$$p = \mathcal{K}\hat{p}$$
, where $p = \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$ and $\mathcal{K} \stackrel{\text{def}}{=} \begin{pmatrix} \alpha & -\alpha \cot \theta & x_0 \\ 0 & \frac{\beta}{\sin \theta} & y_0 \\ 0 & 0 & 1 \end{pmatrix}$.

Here κ is called (Internal) calibration matrix of the camera.

$$p = \frac{1}{Z} \mathcal{K}(\text{Id} \ \mathbf{0}) P = \frac{1}{Z} \mathcal{M} P$$
, where $\mathcal{M} \stackrel{\text{def}}{=} (\mathcal{K} \ \mathbf{0})$.

Intrinsic parameters: α , β , θ , x_0 , and y_0

Extrinsic Parameters:

Camera coordinate frame:C

$$p = \frac{1}{Z} \mathcal{M}^C P$$

World coordinate frame:W

$$^{C}P = \begin{pmatrix} \mathcal{R} & t \\ \mathbf{0}^{T} & 1 \end{pmatrix} ^{W}P,$$

Taking P = WP

$$p = \frac{1}{Z} \mathcal{M} P$$
, where $\mathcal{M} = \mathcal{K}(\mathcal{R} \ t)$.

A revisit of 3D reconstruction

A Revisit of 3D Reconstruction

- Correct point matching is important.
- 3D reconstruction is an optimization problem.
- Objective function of reprojection.

$$\min_{X_i C_j} \sum_{ij} ||X_{ij} - P(X_i, C_j)||$$

San Marco Square, 14,079 images, 4,515,157 points

Building Rome in a Day. Sameer Agarwal, Noah Snavely, Ian Simon, Steven M. Seitz and Richard Szeliski. Communications of the ACM, 2011.

Extrinsic Parameters

Extrinsic Parameters: 3 independent parameters in rotation matrix *R* and 3 parameters in translation vector *t*.

Denote the columns in M as m_1^T , m_2^T and m_3^T . Then we have $\begin{cases} x = \frac{m_1 \cdot P}{m_3 \cdot P}, \\ y = \frac{m_2 \cdot P}{m_3 \cdot P}. \end{cases}$

the three rows r_1^T , r_2^T , and r_3^T of the matrix \mathcal{R} , three coordinates t_1 , t_2 , and t_3 of the vector \boldsymbol{t} ,

$$\mathcal{M} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + x_0 \boldsymbol{r}_3^T & \alpha t_1 - \alpha \cot \theta t_2 + x_0 t_3 \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + y_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_2 + y_0 t_3 \\ \boldsymbol{r}_3^T & t_3 \end{pmatrix}.$$

Projection matrix

FIGURE 1.4: The perspective projection equations are derived in this section from the collinearity of the point P, its image p, and the pinhole O.

- Unit aspect ratio
- Optical center at (0,0)
- No skew

$$\rho = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{P} \Rightarrow$$

- No rotation
- Camera at (0,0,0)

$$\mathbf{p} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{P} \Rightarrow \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 & 0 \\ 0 & f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: known optical center

- Unit aspect ratio
- No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\mathbf{p} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \mathbf{p} \implies \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & u_0 & 0 \\ 0 & f & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: square pixels

No skew

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\boldsymbol{\rho} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \boldsymbol{\rho} \implies w \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & 0 & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Remove assumption: non-skewed pixels

Intrinsic Assumptions Extrinsic Assumptions

- No rotation
- Camera at (0,0,0)

$$\boldsymbol{\rho} = \mathbf{K} \begin{bmatrix} \mathbf{I} & \mathbf{0} \end{bmatrix} \boldsymbol{\rho} \longrightarrow \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha & s & u_0 & 0 \\ 0 & \beta & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Note: different books use different notation for parameters

Degrees of freedom