DM n^o6

Premier exercice

Soit $(a_n)_{n\in\mathbb{N}}$ une suite de réels non nuls. On pose pour tout entier naturel $n, P_n := \prod_{k=0}^n a_k$.

Nous dirons que le produit infini associé, noté $\prod a_n$ converge si la suite $(P_n)_{n \in \mathbb{N}}$ converge vers une limite non nulle.

1. Montrer que si $\prod a_n$ converge alors la suite $(a_n)_{n \in \mathbb{N}}$ converge vers 1.

On suppose dans la suite cette condition réalisée.

Pour tout entier naturel n, on pose $u_n = a_n - 1$.

2. Montrer qu'il existe un entier naturel n_0 , tel que pour tout entier $n \geq n_0$, la quantité $\ln(1+u_n)$ soit définie. Montrer que le produit $\prod a_n$ converge si et seulement si la série $\sum_{n \geq n} \ln(1+u_n)$ converge.

Nous attirons l'attention sur le fait que des expressions du type $\ln (\prod a_n)$ ou $\exp (\sum \ln (1+u_n))$ sont dépourvues de sens. On travaillera avec des produit et des somme partiels.

- 3. On suppose en plus que la suite $(u_n)_{n\in\mathbb{N}}$ est positive à partir d'un certain rang. Montrer que le produit $\prod a_n$ et la série $\sum u_n$ sont de même nature. Étudier la nature du produit $\prod \left(1 + \frac{1}{n+1}\right)$ et retrouver la nature de la série harmonique.
- 4. On ne suppose plus la suite $(u_n)_{n\in\mathbb{N}}$ positive à partir d'un certain rang, mais que la série $\sum u_n$ converge. Montrer que $\prod a_n$ converge si et seulemement si la série $\sum u_n^2$ converge.

Deuxième exercice

Fonctions convexes

Soit Ω une partie de \mathbb{R}^n convexe et ouverte et non vide.

Définition. Une application f de C dans \mathbf{R} est dite convexe si pour tout couple (x, y) de points de C et tout élément t de]0,1[,

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y).$$

 $Si\ de\ plus\ l'inégalité\ est\ stricte\ on\ dit\ que\ f\ est\ strictement\ convexe.$

1. Soit f une application de Ω de \mathbf{R}^n . Pour tout a point de Ω et tout vecteur \vec{x} de \mathbf{R}^n on note $I_{a,\vec{x}}$ l'ensemble des réels t tels que $a + t\vec{x} \in \Omega$, et $g_{a,\vec{x}}$ l'application

$$g_{a,\vec{x}}: I_{a,\vec{x}} \to \mathbf{R}; t \mapsto f(a+t\vec{x}).$$

- (a) Montrer que pour tout a point de Ω et tout vecteur \vec{x} de \mathbf{R}^n , $I_{a,\vec{x}}$ est un intervalle ouvert contenant 0.
- (b) Montrer que f est convexe si et seulement si, pour tout $a \in \Omega$ et tout $\vec{x} \in \mathbf{R}^n$, $g_{a,\vec{x}}$ l'est.
- (c) On suppose de plus f différentiable. Montrer que les trois propositions suivantes sont équivalentes.
 - i. f est convexe;

- ii. Pour tout $(x, y) \in \Omega^2$, $df(x) \cdot (y x) \le df(y) \cdot (y x)$;
- iii. Pour tout $(x, y) \in \Omega^2$, $f(y) f(x) \ge df(x) \cdot (y x)$.
- (d) On suppose f deux fois différentiable (i.e. df est différentiable). Montrer que f est convexe si et seulement si : Pour tout $x \in \Omega$ et tout $\vec{h} \in \mathbf{R}^n$,

$$(d^2 f(\chi(t)) \cdot \vec{h}) \cdot \vec{h} \ge 0.$$

- 2. Soient f une application d'un ouvert U de \mathbf{R}^n différentiable, et C une partie convexe de U
 - (a) Montrer que si $f_{|C|}$ admet en un point c de C un minimum local, alors pour tout d élément de C,

$$df(c) \cdot (d-c) \ge 0.$$

- (b) On suppose de plus que $f_{|C|}$ est convexe. Soit u un point de C. Montrer que les assertions suivantes sont équivalentes :
 - i. $f_{|C|}$ atteint en un point u de C son minimum.
 - ii. Pour tout $v \in C$, $df(u) \cdot (v u) \ge 0$.
- 3. Soit f une application strictement convexe de \mathbb{R}^n dans \mathbb{R}^n de classe \mathcal{C}^1 . On désigne par $\|\cdot\|$ la norme euclidienne canonique sur \mathbb{R}^n .
 - (a) Montrer que f atteint en un point u de \mathbb{R}^n son minimum si et seulement si $\mathrm{d}f(u)$ est nulle.
 - (b) On suppose que $\frac{\|f(x)\|}{\|x\|} \to +\infty$, lorsque $\|x\| \to \infty$. Montrer que ∇f est une bijection de \mathbf{R}^n sur \mathbf{R}^n .

Troisième exercice

Polynômes de Bernoulli

Nous considèrerons la série de Riemann $\sum_{n\geq 1} \frac{1}{n^3}$ nous noterons, S sa somme, et pour tout entier n, strictement positif, R_n le reste d'ordre n et S_n la somme partielle d'ordre n.

1. En comparant la série et une intégrale donner l'encadrement suivant :

$$\frac{1}{2\left(n+1\right)^2} \le R_n \le \frac{1}{2n^2}$$

2. Posons pour tout entier $n \geq 1$,

$$x_n = S_n + \frac{1}{2(n+1)^2}$$

Pour quelle valeurs de l'entier n a-t-on :

$$|S - x_n| \le 10^{-6}$$

- 3. Nous nous proposons de trouver une suite qui converge plus vite vers S que $(x_n)_{n\in\mathbb{N}}$.
- 4. (a) Montrer que les relations suivantes définissent une unique suite $(P_n)_{n \in \mathbb{N}}$ de polynômes à coefficients rationnels :

$$P_0 = 1; (1)$$

$$P'_{n}(X) = P_{n-1}(X)$$
, pour tout $n \in \mathbf{N}^{*}$; (2)

$$\int_{0}^{1} P_{n}(t) dt = 0, \text{ pour tout } n \in \mathbf{N}^{*}.$$
 (3)

(4)

Expliciter les polynômes P_1 , P_2 et P_3 . Montrer que $P_3(\frac{1}{2}) = 0$, en déduire que pour tout réel x élément de [0,1],

$$|P_3(x)| \le \frac{1}{24}.$$

(b) Soit f une application numérique, définie sur [0,1], de classe \mathcal{C}^3 . Montrer que :

$$\int_0^1 f(x) dx = \frac{1}{2} (f(0) + f(1)) - \frac{1}{12} (f'(1) - f'(0)) - \int_0^1 P_3(x) f^{(3)}(x) dx.$$
 (5)

(c) Soit n un entier supérieur ou égal à 1. En appliquant la formule précédente à l'application $f:[0,1]\to \mathbf{R}$; $x\mapsto \frac{1}{(k+x)^3}$, pour tout entier k supérieur ou égal à n, montrer que :

$$R_n = \frac{1}{2n^2} - \frac{1}{2n^3} + \frac{1}{4n^4} + \mathop{\rm O}_{n \to +\infty} \left(\frac{1}{n^5}\right).$$

Plus précisément, montrer que :

$$\left| S - \left(S_n + \frac{1}{2n^2} - \frac{1}{2n^3} + \frac{1}{4n^4} \right) \right| \le \frac{1}{2n^5}.$$

Donner une valeur approchée de S à $10^{-6}~\rm près.$

MP* Lycée Kerichen

2020-2021

Indication pour le DM n°6

Premier exercice

- 1. Considérer $\frac{P_{n+1}}{P_n} \xrightarrow[n \to +\infty]{} 1$.
- 2. Comme $a_n = 1 + u_n \underset{n \to +\infty}{\to} 1$, il existe $n_0 \in \mathbf{N}$ tel que pour $n \in \mathbf{N}$, si $n \ge n_0$, alors $a_n > 0$ et donc $\ln(1 + u_n)$ est bien défini.

Pour tout $n \in \mathbf{N}$,

$$\prod_{p=0}^{n} a_p = K \exp\left(\sum_{p=n_0}^{n} \ln(1+u_p)\right),\tag{6}$$

avec $K = \prod_{p=0}^{n_0-1} a_p$, ou de façon équivalente,

$$\ln\left(\prod_{p=0}^{n} a_p\right) - \ln(K) = \sum_{p=n_0}^{n} \ln(1 + u_p). \tag{7}$$

- Supposer que la série $\sum_{n>0} \ln(1+u_n)$ converge.
- Supposer ensuite que le produit $\prod_{n\geq 0} a_n$ converge.

3. • Supposer que le produit infini $\prod (a_n)$ converge. et utiliser

$$0 \le \ln(1 + u_n) \underset{n \to +\infty}{\sim} n u_n, \tag{8}$$

• Supposer ensuite que la série converge.

Calculer pour tout $n \in \mathbf{N}^*$, $\prod_{p=1}^n \left(1 + \frac{1}{p}\right)$

4. On a, puisque $(u_n)_{n \in \mathbb{N}}$ converge vers 0, $\ln(1+u_n) = u_n + \alpha_n$, où $\alpha_n \underset{n \to +\infty}{\sim} -\frac{1}{2}u_n^2...$

Deuxième exercice

Fonctions convexes

1. (a) Soient a point de Ω et un vecteur \vec{x} de \mathbb{R}^n .

Considérer $\phi: \mathbf{R} \to \mathbf{R}^n$; $t \mapsto a + t\vec{x}$, de sorte que

$$I_{a,\vec{x}} = \phi^{-1}(\Omega).$$

Noter que ϕ , affine, est continue et qu'elle induit une bijection affine de \mathbf{R} sur $a + \mathbf{R}\vec{x}$, donc un homéomorphisme; par ψ nous désignerons l'homéomorphisem réciproque.

- $0 \in I_{a,\vec{x}}$ puisque $\phi(0) = a$.
- $I_{a,\vec{x}}$ est un ouvert de **R** comme image réciproque de l'ouvert Ω , par ϕ continue.
- l'intersection de la droite $a + \mathbf{R}\vec{x}$ et de Ω est convexe comme intersection de deux convexes....
- (b) HYPOTHÈSE : pour tout $a \in \Omega$ et tout $\vec{x} \in \mathbf{R}^n$, $g_{a,\vec{x}}$ est convexe. Soient p et q des points de Ω et $\lambda \in [0,1]$.

$$f(\lambda p + (1 - \lambda)q) = f(q + \lambda(p - q)) = g_{q,\overrightarrow{qp}}(\lambda) = \dots$$

Doù la convexité de f.

ullet Hypothèse : $Supposons\ f\ convexe$.

Soient a un point quelconque de \mathbf{R}^n et \vec{x} un vecteur quelconque de \mathbf{R}^n .

Prenons t_1 et t_2 des éléments de $I_{a,\vec{x}}$ et λ un élément de [0,1].

$$g_{a,\overrightarrow{x}}(\lambda t_1 + (1-\lambda)t_2) = f(\lambda(a+t_1\overrightarrow{x}) + (1-\lambda)(a+t_2\overrightarrow{x})).$$

.....

Donc $g_{a,\overrightarrow{x}}$ est convexe.

(c) • Supposons i.

Soit $(x,y) \in \Omega^2$. Par convexité de Ω , $g_{x,\vec{xy}}$ est définie sur [0,1] et par (b), on sait que cette application est convexe. Mais $g_{x,\vec{xy}}$ est de classe \mathcal{C}^1 car

Pour tout $t \in [0, 1]$

$$g'_{x,\overrightarrow{xy}}(t) = df(x + ty - x) \cdot y - x.$$

La convexité de $g_{x,\overrightarrow{xy}}$ donne ii.

• Supposons ii. Soit $(x, y) \in \Omega^2$.

$$f(y) - f(x) = g_{x,\overrightarrow{xy}}(1) - g_{x,\overrightarrow{xy}}(0) = \int_0^1 g'_{x,\overrightarrow{xy}}(t)dt = \dots$$

D'où iii.

• Supposons iii.

Prenons a un point de Ω et \vec{x} un vecteur de \mathbf{R}^n . Soient t_1 et t_2 des éléments de $I_{a,\vec{x}}$ tels que $t_1 < t_2$. Par iii,

$$f(a + t_2\vec{x}) - f(a + t_1\vec{x}) \ge df(a + t_1\vec{x}) \cdot ((t_2 - t_1)\vec{x}),$$

soit en divisant par la quantité strictement positive t_2-t_1

$$\frac{g_{a,\vec{x}}(t_2) - g_{a,\vec{x}}(t_1)}{t_2 - t_1} = \frac{f(a + t_2\vec{x}) - f(a + t_1\vec{x})}{t_2 - t_1} \ge df(a + t_1\vec{x}) \cdot (\vec{x}) = g'_{a,\vec{x}}(t_1)$$

En inversant les rôles on peut montrer

$$g'_{a,\vec{x}}(t_1) \le \frac{g_{a,\vec{x}}(t_2) - g_{a,\vec{x}}(t_1)}{t_2 - t_1} \le g'_{a,\vec{x}}(t_2)$$

Donc $g'_{a,\vec{x}}$ croît, et donc $g_{a,\vec{x}}$ est convexe ... Voilà i. prouvée.

Les propositions i., ii. et iii. sont équivalentes.

(d) On suppose f deux fois différentiable (i.e. $\mathrm{d}f$ est différentiable).

Soit $x \in \Omega$ et $\vec{h} \in \mathbf{R}^n$. On considère l'application

$$\chi : I_{x,\vec{h}} \to \mathbf{R}^n; t \mapsto x + t\vec{h}.$$

Ainsi : $g_{x,\vec{h}} = f \circ \chi$. Par composition g est dérivable et pour tout $t \in I_{a,\vec{h}}$,

$$g'_{x,\vec{h}}(t) = \mathrm{d}f(\chi(t)) \cdot \vec{h},$$

Soit en notant B l'application bilinéaire

$$B : \mathcal{L}(\mathbf{R}^n, \mathbf{R}) \times \mathbf{R}^n ; (\ell, \vec{x}) \mapsto \ell(\vec{x})$$

$$g'_{\vec{h}}(t) = B(\mathrm{d}f(\chi(t)), \vec{h}).$$

Or df est différentiable et χ aussi, donc d $f \circ \chi$ est différentiable, c'est-à-dire dérivable et pour tout $t \in I_{a,\vec{h}}$:

$$(\mathrm{d} f \circ \chi)'(t) = \mathrm{d}(\mathrm{d} f)(\chi(t)) \cdot \chi'(t) = \mathrm{d}^2 f(\chi(t)) \cdot \vec{h}.$$

L'application constante égale à \vec{h} est aussi trivialement dérivable. Donc, d'après le cours, $g_{x\vec{h}}$ est deux fois dérivable de dérivée en $t \in I_{x\vec{h}}$:

$$g_{x,\vec{h}}''(t) = B(\mathrm{d}^2 f(\chi(t)) \cdot \vec{h}, \vec{h}) + B(\mathrm{d} f(\chi(t)), \vec{0}) = \underbrace{(\mathrm{d}^2 f(\chi(t))}_{\in \mathcal{L}(\mathbf{R}^n, \mathcal{L}(\mathbf{R}^n, \mathbf{R}))} \cdot \vec{h}) \cdot \vec{h} \dots \dots \dots \underbrace{f(\mathbf{R}^n, \mathbf{R})}_{\in \mathcal{L}(\mathbf{R}^n, \mathbf{R})}$$

On en déduit que f est convexe si et seulement si, pour tout $x \in \Omega$ et tout $\vec{h} \in \mathbf{R}^n$,

$$d^2(f(x) \cdot \vec{h}) \cdot \vec{h}) \ge 0.$$

2. Soient f une application d'un ouvert U de \mathbf{R}^n différentiable, et C une partie convexe de U.

(a) Supposons que $f_{|C|}$ admette en $c \in C$ un minimum local. Soit d élément de C, Pour tout $t \in [0,1]$, par convexité de C, est défini f(c+t(d-c)) et pour t suffisamment petit, cette quantité est supérieure à f(c), si bien que :

$$\frac{f(c+t(c-d))-f(c)}{t} \ge 0.$$

En laissant tendre t vers 0 par valeur strictement supérieures on a le résultat.....

- (b) On suppose de plus que $f_{|C|}$ est convexe. Soit u un point de C.
 - Supposons que $f_{|C}$ atteigne en u son minimum. Elle atteint a fortiori en u un minimum local et la question précédente nous assure que pour tout $v \in C$, $df(u) \cdot (v-u) \geq 0$.
 - Réciproquement supposons que pour tout $v \in C$, $df(u) \cdot (v u) \ge 0$. Utiliser iii. dont la preuve n'a pas utilisé le fait que dans question 1. (c)
- 3. (a) Si f atteint en un point u de \mathbb{R}^n son minimum, comme \mathbb{R}^n est ouvert, d'après le cours $\mathrm{d} f(u)$ est nulle. (on aurait pu aussi utiliser 2.(a)...).
 - Réciproquement si df(u) est nulle alors par 1.(c) iii. f atteint en u son minimum.
 - (b) D'abord comme $\frac{\|f(x)\|}{\|x\|} \to +\infty$, lorsque $\|x\| \to \infty$, a fortiori $\|f(x)\| \to +\infty$, lorsque $\|x\| \to \infty$. Donc on dispose de $R \in \mathbf{R}_+^*$ tel que $\|f\|$ soit strictement supérieur à $f(0_n)$ sur le complémentaire de la boule B de centre 0 et de rayon R. Mais $f_{|B|}$ étant continue, elle atteind en un point x_0 du compact B son minimum, qui est aussi le minimum de f par définition de B.

Par (a), $df(x_0)$ est nul donc $\vec{\nabla} f(x_0) = \vec{0}$.

Supposons que ∇f s'annule en un autre point x_1 de \mathbf{R}^n montrer que la strict convexié conduit à une absurdité!

• A présent prenons \vec{h} vecteur de \mathbf{R}^n . et posons $f_{\vec{h}} = f - \frac{1}{2} \langle \vec{h} | \cdot \rangle$. l'application $f_{\vec{h}}$ vérifie les même hypothèses que f..... (ch. exercice sur les fonctions convexes).

Correction du DM nº6

Premier exercice

1. Supposons que $\prod u_n$ converge. Il existe un réel non nul L tel que $P_n \underset{n \to +\infty}{\to} L$. En particulier $(P_n)_{n \in \mathbb{N}}$ ne s'annule pas. Alors $P_{n+1} \underset{n \to +\infty}{\to} L$ et donc

$$u_{n+1} = \frac{P_{n+1}}{P_n} \underset{n \to +\infty}{\to} 1.$$

Donc $u_n \to 1$.

2. Comme $a_n = 1 + u_n \underset{n \to +\infty}{\to} 1$, il existe $n_0 \in \mathbf{N}$ tel que pour $n \in \mathbf{N}$, si $n \ge n_0$, alors $a_n > 0$ et donc $\ln(1 + u_n)$ est bien défini.

Pour tout $n \in \mathbb{N}$,

$$\prod_{p=0}^{n} a_p = K \exp\left(\sum_{p=n_0}^{n} \ln(1+u_p)\right),\tag{9}$$

avec $K = \prod_{p=0}^{n_0-1} a_p$, ou de façon équivalente,

$$\ln\left(\prod_{p=0}^{n} a_p\right) - \ln(K) = \sum_{p=n_0}^{n} \ln(1 + u_p). \tag{10}$$

• Supposons que la série $\sum_{n>0} \ln(1+u_n)$ converge.

L'égalité (9) et la continuité de la fonction exponentielle en $\sum_{n=n_0}^{+\infty} \ln(1+u_p)$ assurent la convergence de la suite $\left(\prod_{p=0}^{n} a_p\right)_{n\in\mathbb{N}}$ vers $K\exp\left(\sum_{n=n_0}^{\infty} \ln(1+u_n)\right)$, réel non nul puisque $K\neq 0$ (les a_n , ne sont pas nuls). Donc $\prod a_n$ converge.

• Supposons que le produit $\prod_{n\geq 0} a_n$ converge.

Alors d'après (10) et la continuité du logarithme en $\prod_{n=0}^{+\infty} a_n$, réel non nul, on déduit que la série $\sum_{n\geq n_0} \ln(1+u_n)$ converge de somme $\ln\left(\prod_{n=0}^{+\infty} a_n\right) - \ln(K)$.

D'où le résultat.

3. • Supposons que le produit infini $\prod (a_n)$ converge. Comme pour tout $n \in \mathbb{N}$, $1+u_n>0$, la question 2. dit que $\sum_{n\geq 0} \ln(1+u_n)$ converge. Par ailleurs la convergence du produit assure que $u_n \underset{n\to +\infty}{\to} 0$ (cf. 1.) ce qui du reste est supposé réalisé par l'énoncé, donc

$$0 \le \ln(1 + u_n) \underset{n \to +\infty}{\sim} n u_n, \tag{11}$$

Donc d'après le théorème de comparaison des séries à termes positifs, la série $\sum u_n$ converge.

• Supposons que la série $\sum_{n\geq 0} u_n$ converge. On a donc $u_n \to 0$, donc (11) est vérifiée et donc, d'après le théorème de comparaison des séries à termes positifs, la série $\sum_{n\geq 0} \ln(1+u_n)$ converge. La question 2 assure donc que le produit $\prod a_n$ converge.

Conclusion:

le produit infini $\prod a_n$ converge si et seulement si la série $\sum_{n\geq 0} u_n$ converge.

Pour tout $n \in \mathbf{N}^*$,

$$\prod_{p=1}^{n} \left(1 + \frac{1}{p} \right) = \prod_{p=1}^{n} \frac{p+1}{p} = \frac{2 \times 3 \times 4 \times \dots \times n \times (n+1)}{1 \times 2 \times 3 \times \dots \times n} = n+1,$$

donc

$$\prod_{n=1}^{n} \left(1 + \frac{1}{p} \right) \underset{n \to +\infty}{\to} +\infty,$$

Autrement dit le produit $\prod \left(1 + \frac{1}{n+1}\right)$ diverge, et donc la série $\sum_{n \ge 1} \frac{1}{n}$ diverge.

4. On a, puisque $(u_n)_{n \in \mathbb{N}}$ converge vers 0, $\ln(1+u_n) = u_n + a_n$, où $a_n \underset{n \to +\infty}{\sim} n - \frac{1}{2}u_n^2$. Comme $\sum u_n$ converge $\sum _{n \geq n_0} \ln(1+u_n)$ converge si et seulement si converge $\sum a_n$, c'est-à-dire si et seulement si converge $\sum u_n^2$. Donc par la question 2, $\prod a_n$ converge si et seulemement si la série $\sum u_n^2$ converge.

Deuxième exercice

Fonctions convexes

1. (a) Soient a point de Ω et un vecteur \vec{x} de \mathbb{R}^n .

Posons $\phi: \mathbf{R} \to \mathbf{R}^n; t \mapsto a + t\vec{x}$, de sorte que

$$I_{a,\vec{x}} = \phi^{-1}(\Omega).$$

Notons que ϕ , affine, est continue et qu'elle induit une bijection affine de \mathbf{R} sur $a+\mathbf{R}\vec{x}$, donc un homéomorphisme; par ψ nous désignerons l'homéomorphisem réciproque.

- $0 \in I_{a,\vec{x}}$ puisque $\phi(0) = a$.
- $I_{a,\vec{x}}$ est un ouvert de **R** comme image réciproque de l'ouvert Ω , par ϕ continue.
- l'intersection de la droite $a + \mathbf{R}\vec{x}$ et de Ω est convexe comme intersection de deux convexes, donc a fortiori connexe par arcs, mais $I_{a,\vec{x}}$ est l'image direct par ψ , application continue, de $a + \mathbf{R}\vec{x} \cap \Omega$, donc lui-même connexe par arcs, donc un intervalle $de \mathbf{R}$.

Nous avons prouvé : $I_{a,\vec{x}}$ est un intervalle ouvert contenant 0.

(b) • HYPOTHÈSE : pour tout $a \in \Omega$ et tout $\vec{x} \in \mathbf{R}^n$, $g_{a,\vec{x}}$ est convexe. Soient p et q des points de Ω et $\lambda \in [0, 1]$.

$$f(\lambda p + (1 - \lambda)q) = f(q + \lambda(p - q)) = g_{q,\overrightarrow{qp}}(\lambda) = g_{q,\overrightarrow{qp}}(\lambda \times 1 + (1 - \lambda) \times 0).$$

Donc par convexité de $g_{q,\overrightarrow{qp}}$ voila que :

$$f(\lambda p + (1 - \lambda)q) \le \lambda g_{a,\overrightarrow{ap}}(1) + (1 - \lambda)g_{a,\overrightarrow{ap}}(0) \le \lambda f(p) + (1 - \lambda)f(q).$$

Doù la convexité de f.

• Hypothèse : $Supposons \ f \ convexe$.

Soient a un point quelconque de \mathbb{R}^n et \vec{x} un vecteur quelconque de \mathbb{R}^n .

Prenons t_1 et t_2 des éléments de $I_{a,\vec{x}}$ et λ un élément de [0,1].

$$g_{a,\vec{x}}(\lambda t_1 + (1-\lambda)t_2) = f(\lambda(a+t_1\vec{x}) + (1-\lambda)(a+t_2\vec{x})).$$

La convexité de f nous assure que :

$$g_{a,\overrightarrow{x}}(\lambda t_1 + (1-\lambda)t_2) \leq \lambda f(a+t_1\overrightarrow{x}) + (1-\lambda)f(a+t_2\overrightarrow{x}) = \lambda g_{a,\overrightarrow{x}}(t_1) + (1-\lambda)g_{a,\overrightarrow{x}}(t_2).$$

Donc $g_{a,\overrightarrow{x}}$ est convexe.

Donc f est convexe si et seulement si, pour tout $a \in \Omega$ et tout $\vec{x} \in \mathbb{R}^n$, $g_{a,\vec{x}}$ l'est.

(c) • Supposons i.

Soit $(x,y) \in \Omega^2$. Par convexité de Ω , $g_{x,xy}$ est définie sur [0,1] et par (b), on sait que cette application est convexe. Mais $g_{x,xy}$ composée de f différentiable et de l'application affine donc dérivable,

$$\mathbf{R} \to \mathbf{R}^n$$
; $t \mapsto x + t \overrightarrow{xy}$

est dérivable et pour tout $t \in [0, 1]$

$$g'_{x,\overrightarrow{xy}}(t) = \mathrm{d}f(x + ty - x) \cdot y - x.$$

Donc

$$df(x) \cdot (y - x) = g'_{x, \overrightarrow{xy}}(0) \le g'_{x, \overrightarrow{xy}}(1) = df(y) \cdot (y - x).$$

D'où ii.

• Supposons ii. Soit $(x, y) \in \Omega^2$.

$$f(y) - f(x) = g_{x,\overrightarrow{xy}}(1) - g_{x,\overrightarrow{xy}}(0) = \int_0^1 g'_{x,\overrightarrow{xy}}(t)dt = \int_0^1 df(x + t(y - x) \cdot (y - x)dt.$$

mais par ii., pour tout $t \in [0, 1]$,

$$df(x) \cdot (t(y-x)) \le df(x + t(y-x)) \cdot (t(y-x)),$$

donc

$$f(y) - f(x) \ge \int_0^1 \mathrm{d}f(x) \cdot (y - x) \mathrm{d}t = \mathrm{d}f(x) \cdot (y - x).$$

D'où iii.

• Supposons iii.

Prenons a un point de Ω et \vec{x} un vecteur de \mathbf{R}^n . Soient t_1 et t_2 des éléments de $I_{a,\vec{x}}$ tels que $t_1 < t_2$. Par iii,

$$f(a + t_2 \vec{x}) - f(a + t_1 \vec{x}) \ge df(a + t_1 \vec{x}) \cdot ((t_2 - t_1)\vec{x}),$$

soit en divisant par la quantité strictement positive $t_2 - t_1$

$$\frac{g_{a,\vec{x}}(t_2) - g_{a,\vec{x}}(t_1)}{t_2 - t_1} = \frac{f(a + t_2\vec{x}) - f(a + t_1\vec{x})}{t_2 - t_1} \ge df(a + t_1\vec{x}) \cdot (\vec{x}) = g'_{a,\vec{x}}(t_1)$$

En inversant les rôles de t_2x et t_1 , on obtient :

$$f(a + t_1 \vec{x}) - f(a + t_2 \vec{x}) \ge df(a + t_2 \vec{x}) \cdot ((t_1 - t_2)\vec{x}),$$

soit puisque $t_1 - t_2 < 0$,

$$\frac{g_{a,\vec{x}}(t_1) - g_{a,\vec{x}}(t_2)}{t_1 - t_2} \le g'_{a,\vec{x}}(t_2).$$

Finalement

$$g'_{a,\vec{x}}(t_1) \le \frac{g_{a,\vec{x}}(t_2) - g_{a,\vec{x}}(t_1)}{t_2 - t_1} \le g'_{a,\vec{x}}(t_2)$$

Donc $g'_{a,\vec{x}}$ croît, et donc $g_{a,\vec{x}}$ est convexe. Comme a et \vec{x} sont quelconques f est convexe (cf. (b)). Voilà i. prouvée.

Les propositions i., ii. et iii. sont équivalentes.

(d) On suppose f deux fois différentiable (i.e. df est différentiable).

Soit $x \in \Omega$ et $\vec{h} \in \mathbf{R}^n$. On considère l'application

$$\chi : I_{x,\vec{h}} \to \mathbf{R}^n; t \mapsto x + t\vec{h}.$$

Ainsi : $g_{x,\vec{h}} = f \circ \chi$. Par composition g est dérivable et pour tout $t \in I_{a,\vec{h}}$,

$$g'_{r\vec{h}}(t) = \mathrm{d}f(\chi(t)) \cdot \vec{h},$$

Soit en notant B l'application bilinéaire

$$B : \mathcal{L}(\mathbf{R}^n, \mathbf{R}) \times \mathbf{R}^n; (\ell, \vec{x}) \mapsto \ell(\vec{x})$$

$$g'_{x,\vec{h}}(t) = B(\mathrm{d}f(\chi(t)), \vec{h}).$$

Or df est différentiable et χ aussi, donc d $f \circ \chi$ est différentiable, c'est-à-dire dérivable et pour tout $t \in I_{a,\vec{h}}$:

$$(\mathrm{d} f \circ \chi)'(t) = \mathrm{d}(\mathrm{d} f)(\chi(t)) \cdot \chi'(t) = \mathrm{d}^2 f(\chi(t)) \cdot \vec{h}.$$

L'application constante égale à \vec{h} est aussi trivialement dérivable. Donc, d'après le cours, $g_{x,\vec{h}}$ est deux fois dérivable de dérivée en $t \in I_{x,\vec{h}}$:

$$g_{x,\vec{h}}''(t) = B(\mathrm{d}^2 f(\chi(t)) \cdot \vec{h}, \vec{h}) + B(\mathrm{d} f(\chi(t)), \vec{0}) = \underbrace{(\mathrm{d}^2 f(\chi(t))}_{\in \mathcal{L}(\mathbf{R}^n, \mathcal{L}(\mathbf{R}^n, \mathbf{R}))} \cdot \vec{h}) \cdot \vec{h}}_{\in \mathcal{L}(\mathbf{R}^n, \mathbf{R})}$$

 \bullet Supposons f convexe, alors $g_{x,\vec{h}}$ l'est aussi et donc sa dérivée croît et donc pour tout $t \in I_{x,\vec{h}}$

$$(\mathrm{d}^2 f(x+t\vec{h}) \cdot \vec{h}) \cdot \vec{h} = g''_{a,\vec{h}}(t) \ge 0,$$

en particulier : $(d^2 f(x) \cdot \vec{h}) \cdot \vec{h} \ge 0$.

• Supposons $(d^2 f(a) \cdot \vec{k}) \cdot \vec{k} \ge 0$, pour tout $a \in \Omega$ et $\vec{h} \in \mathbf{R}^n$. Alors, d'après ce qui précède, pour tout $t \in I_{r\vec{h}}$:

$$g''_{x\vec{h}}(t) = (d^2 f(x + t\vec{h}) \cdot \vec{h}) \cdot \vec{h} \ge 0.$$

Donc $g'_{x,\vec{h}}$ croît et donc $g_{x,\vec{h}}$ est convexe et partant, comme x et \vec{h} sont quelconque, f est convexe.

Concluons: f est convexe si et seulement si, pour tout $x \in \Omega$ et tout $\vec{h} \in \mathbf{R}^n$,

$$d^2(f(x) \cdot \vec{h}) \cdot \vec{h}) \ge 0.$$

- 2. Soient f une application d'un ouvert U de \mathbf{R}^n différentiable, et C une partie convexe de U.
 - (a) Supposons que $f_{|C|}$ admette en $c \in C$ un minimum local. Soit d élément de C, Pour tout $t \in [0,1]$, par convexité de C, est défini f(c+t(d-c)) et pour t suffisamment petit, cette quantité est supérieure à f(c), si bien que :

$$\frac{f(c+t(c-d))-f(c)}{t} \ge 0.$$

En laissant tendre t vers 0 par valeur strictement supérieures on a : $D_{\overrightarrow{cd}}f(c) \geq 0$, ou, autrement dit

$$df(c) \cdot (d-c) \ge 0.$$

- (b) On suppose de plus que $f_{|C|}$ est convexe. Soit u un point de C. Montrer que les assertions suivantes sont équivalentes :
 - Supposons que $f_{|C}$ atteigne en u son minimum. Elle atteint a fortiori en u un minimum local et la question précédente nous assure que pour tout $v \in C$, $df(u) \cdot (v-u) \geq 0$.
 - Réciproquement supposons que pour tout $v \in C$, $df(u) \cdot (v u) \ge 0$. Alors la convexité de $f_{|C|}$ et 1.(c) iii. donne que pour tout $v \in C$,

$$f(v) - f(u) \ge \mathrm{d}f(u) \cdot (v - u) \ge 0,$$

en effet la preuve de iii. n'a pas utilisé le fait que dans question 1. (c) Ω était ouvert. Donc $f_{|C}$ atteind en u son minimum.

D'où l'équivalence demandée.

- 3. (a) Si f atteint en un point u de \mathbb{R}^n son minimum, comme \mathbb{R}^n est ouvert, d'après le cours df(u) est nulle. (on aurait pu aussi utiliser 2.(a)...).
 - Réciproquement si df(u) est nulle alors par 1.(c) iii. f atteint en u son minimum.
 - (b) D'abord comme $\frac{\|f(x)\|}{\|x\|} \to +\infty$, lorsque $\|x\| \to \infty$, a fortiori $\|f(x)\| \to +\infty$, lorsque $\|x\| \to \infty$. Donc on dispose de $R \in \mathbf{R}_+^*$ tel que $\|f\|$ soit strictement supérieure à $f(0_n)$ sur le complémentaire de la boule fermé B de centre 0 et de rayon R. Mais f_B étant continue, elle atteind en un point x_0 du compact B son minimum, qui est aussi le minimum de f par définition de B.

Par (a), $df(x_0)$ est nul donc $\vec{\nabla} f(x_0) = \vec{0}$.

Supposons que $\vec{\nabla} f$ s'annule en un autre point x_1 de \mathbf{R}^n , alors par (a)

$$f(x_1) = \min_{x \in \mathbf{R}^n} f(x) = f(x_0).$$

Mais la stricte convexité de f exigerait que $f\left(\frac{1}{2}(x_0+x_1)\right)$ fût strictement inférieur à

$$\frac{1}{2}f(x_0) + \frac{1}{2}f(x_1) = \min_{x \in \mathbf{R}^n} f(x),$$

ce qui est absurde.

Concluons : $\vec{\nabla} f$ s'annule en un et un seul point de \mathbf{R}^n .

• A présent prenons \vec{h} vecteur de \mathbf{R}^n . et posons $f_{\vec{h}} = f - \frac{1}{2} \langle \vec{h} | \cdot \rangle$. D'une part $f_{\vec{h}}$ est strictement convexe car f l'est et $-\frac{1}{2} \langle \vec{h} | \cdot \rangle$, lineaire, est convexe, d'autre part $\frac{\|f_{\vec{h}}(x)\|}{\|x\|} \to +\infty$, lorsque $\|x\| \to \infty$, en effet, pour tout $x \in \mathbf{R}^n$,

$$\left| \frac{\langle \vec{h} | x \rangle}{\|x\|} \right| \le \|\vec{h}\|,$$

par Cauchy-Schwarz. Enfin $f_{\vec{h}}$ est \mathcal{C}^1 comme somme de telles fonctions et :

$$\nabla f_{\vec{h}} = \vec{\nabla} f - \vec{h}.$$

Donc le premier point dit qu'il existe un et un seul point x de \mathbf{R}^n en lequel $\nabla f_{\vec{h}}$ s'annule donc il existe un seul point en lequel ∇f prend la valeur \vec{h} .

Donc ∇f est une bijection de \mathbf{R}^n sur \mathbf{R}^n .

Troisième exercice