เอกสารที่เกี่ยวข้อง

รูปที่ 1 ภาพของ กุสทาฟ โรแบร์ท คีร์ชฮอฟฟ์ อ้างอิง: https://th.wikipedia.org/wiki/กุสตาฟ เคอร์ชอฟฟ์

ประวัติ ของกุสทาฟ โรแบร์ท คีร์ชฮอฟฟ์

กุสทาฟ โรแบร์ท คีร์ชฮอฟฟ์ (เยอรมัน: Gustav Robert Kirchhoff; 12 มีนาคม ค.ศ. 1824-17 ตุลาคม ค.ศ. 1887) เป็นนักฟิสิกส์ชาวเยอรมันผู้มีส่วนร่วมในการทำความเข้าใจพื้นฐาน เกี่ยวกับวงจรไฟฟ้า สเปกโทรสโกปี และการแผ่รังสีของวัตถุดำจากวัตถุที่ได้รับความร้อน เขาเป็นผู้ กำหนดคำว่า การแผ่รังสีของ "วัตถุดำ" เมื่อปี ค.ศ. 1862 และหลักการสองประการในทฤษฎีวงจรและ การแผ่รังสีความร้อน เรียกชื่อว่า กฎของคีร์ชฮอฟฟ์ ซึ่งตั้งชื่อตามนามสกุลของเขา รางวัลบุนเซนคีร์ช ฮอฟฟ์ ในสาขาสเปกโทรสโกปีตั้งชื่อตามเขาและเพื่อนร่วมงาน คือ โรเบิร์ต บุนเซน

กฎของเคอร์ชอฟฟ์

กฎของเคอร์ชอฟฟ์นั้น เป็นการตั้งชื่อเพื่อให้เกียรติแก่รักฟิสิกส์ชาวเยอรมัน กูสตาฟ โรเบิร์ท เคอร์ชอฟฟ์(Gustav Robert Kirchhoff)

ก่อนจะพิจารณาเรื่องวิเคราะห์วงจร เรามารู้จัก คำจำกัดความของคำต่อไปนี้

- 1. Node คือ จุดต่อขององค์ประกอบ 2 ตัวหรือมากกว่านั้น
- 2. **Loop** คือ เส้นทางปิด (closed path) ซึ่ง Node แต่ละตัวจะต้องพบได้ไม่เกินหนึ่งครั้งวนไป จนกระทั่งกลับมาที่เดิม

หรือ การเชื่อมต่อกันเป็นวงปิดโดยเส้นทางการต่อจะผ่าน node ใดๆ เพียงครั้งเดียว

3. **Branch** คือ ส่วนหนึ่งของวงจรประกอบด้วย ชิ้นส่วนตัวหนึ่งของวงจร (Circuit element) และ Node ที่ปลายขององค์ประกอบทั้งสองข้าง

รูปที่ 2 ภาพของวงจรไฟฟ้า และการนับ Node

อ้างอิง: www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

จากรูปที่2 แสดงให้เห็นว่า Node ทั้ง 5 แห่งอยู่ที่ใดบ้าง ซึ่งในรูป (b) จะแสดงให้เห็น Node อย่างชัดเจน และจากรูปนี้ จะมีทั้งหมด 8 branches

กฎกระแสของเคอร์ชอฟฟ์ (Kirchhoff's Current Law หรือ KCL)

กล่าวไว้ว่า "ผลรวมทางพีชคณิตของกระแสที่ไหลเข้า Node ใดๆ ก็ตามมีค่าเป็นศูนย์" (The algebraic sum of the currents entering any node is zero) ซึ่งสามารถเขียนเป็นสมการได้คือ

$$\sum_{j=1}^{N} i_j(t) = 0$$

ซึ่ง $i_j(t)$ เป็นกระแสที่ j ซึ่งไหลเข้าสู่ node ที่ branch jN เป็นจำนวนของ branch ซึ่งต่อกับ node

รูปที่3 ภาพของวงจรไฟฟ้า และเขียนทิศทางของกระแส อ้างอิง: www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

โดยกำหนด ให้กระแสที่ไหลเข้า Node มีค่าเป็นบวกและ

ให้กระแสที่ไหลออกจาก Node มีค่าเป็นลบ

ถ้านำมาประยุกต์กฎทางไฟฟ้าของเคอร์ชอฟฟ์ จะได้ว่า

$$\sum_{j=1}^{N} i_j(t) = 0$$

$$i_1(t) + [-i_2(t)] + i_3(t) + i_4(t) + [-i_5(t)] = 0$$

ซึ่งเราสามารถเขียนกฎกระแสไฟฟ้าของเคอร์ชอฟฟ์ได้อีกสองรูปแบบคือ

"ผลรวมทางพีชคณิตของกระแสที่ใหลออกจาก node ใดๆ ก็ตามมีค่าเป็นศูนย์"
 (The algebraic sum of the currents leaving a node is zero) จากรูปข้างบนเรา สามารถเขียนสมการโดยใช้กฎกระแสของเคอร์ชอฟฟ์นี้ได้คือ

$$-i_1(t) + [i_2(t)] - i_3(t) - i_4(t) + [i_5(t)] = 0$$

2. "ผลรวมของกระแสที่ไหลเข้า node จะเท่ากับผลรวมของกระแสที่ไหลออกจาก node" (The sum of the currents entering a node is equal to the sum of the currents leaving the node)

จากรูปที่3 ข้างต้นเราสามารถเขียนสมการโดยใช้กฎกระแสของเคอร์ชอฟฟ์นี้ได้คือ

$$i_1(t) + i_3(t) + i_4(t) = i_2(t) + i_5(t)$$

ในการหาค่า I_1 จะได้ ใช้กฎกระแสของเคอร์ชอฟฟ์ (KCL)ที่ node $\sum_{j=1}^N i_j(t) = 0$

$$I_1 + 5 - 2 - 1 = 0$$

$$I_1 = -2A$$

(เครื่องหมายลบของคำตอบที่ได้ หมายถึงว่าทิศที่กำหนดให้ในคำถามจะเป็นทิศตรงกันข้าม ซึ่งในที่นี้ คือไหลออกจาก Node)

กฎแรงดันของเคอร์ชอฟฟ์ (Kirchhoff's Voltage Law หรือ KVL)

กล่าวไว้ว่า "ในทางเดินวงรอบปิด (Loop) ใดๆ ของข่ายงาน ผลรวมทางพีชคณิตของแรงดัน มีค่าเป็นศูนย์" (The algebraic sum of the voltages around any loop is zero) แรงดันบางค่า จะเป็นของแหล่งจ่าย ในขณะที่บางค่าจะเป็นผลมาจากกระแสที่ไหลผ่านชิ้นส่วนแพสสีฟ ที่ทำให้เกิด แรงดันขึ้นซึ่งบางครั้งเราจะเรียกพวกค่าแรงดันเหล่านี้ว่า แรงดันลด ซึ่งสามารถเขียนเป็นสมการได้คือ

$$\sum_{j=1}^{N} V_j(t) = 0$$

ซึ่ง $V_j(\mathbf{t})$ คือ ค่าแรงดันที่ ตกคร่อม branch ที่ j

N คือ จำนวนแรงดัน

การใช้สัญลักษณ์ V_{ab} หมายถึง แรงดันของจุด a เทียบจุด b ซึ่งจุด a จะมีค่าเป็นบวกเมื่อ เทียบกับจุด b (จุด b มีค่าเป็นลบ) และถ้าเขียนด้วยตัวลูกศรนั้น หัวลูกศรจะชี้ไปทางขั้วที่เป็นบวก หรือเขียนสรุปได้ดังว่า

หรือเขียนในรูปแบบฟอร์มได้คือ

รูป (d) เป็นการแสดงถึงแรงดันแบบต่างๆ

(แบบ a,b,และ c รวมกัน)

สมมติว่า $V_{ab}=30~V$

เพราะฉะนั้น $V_{\mathrm{ba}} = -30V$

วงจรที่มีลูปเดียว (Single-Loop Circuits)

เป็นวงจรที่มีกระแสเท่ากันวิ่งวนตลอดทั้งวงจร หรืออาจกล่าวได้ว่าองค์ประกอบของวงจร (Circuit element) ต่ออนุกรมกัน ดังแสดงในรูปข้างล่างนี้

รูปที่3 ภาพของวงจรไฟฟ้าที่มีลูปเดียว (Single-Loop Circuits)

อ้างอิง:www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

ทิศทางของกระแส สมมุติกำหนดให้วิ่งวนตามเข้มนาฬิกา ถ้ากำหนดทิศทางถูก ค่าของ กระแสที่ได้จะมีค่าเป็นบวก ถ้ากำหนดทิศทางขึ้นมาแล้ว ค่าของกระแสที่ได้มีค่าเป็นลบ แสดงว่า จริงๆแล้วกระแสไหลกลับทิศทางกัน (โดยทั่วไปแล้วการกำหนดให้กระแสวิ่ง จะกำหนดกระแสวิ่ง ออกจากขั้วบวก)

ใช้กฎ KVL กับวงจร ($\sum V=0$) เราจะได้

$$+\,v(t)-V_{\!\!\!R1}-V_{\!\!\!R2}=0$$
 หรือ $\,v(t)=V_{\!\!\!R1}+V_{\!\!\!\!R2}$

จากกฎของโอห์ม เราทราบว่า

$$V_{R1} = R_1 i(t)$$
(1)

$$V_{R2} = R_2 i(t)$$
(2)

ดังนั้น
$$v(t) = R_1 i(t) + R_2 i(t)$$

จากสมการข้างบน เราสามารถหาค่า i(t) ได้จาก $i(t) = \frac{v(t)}{R_1 + R_2}$

เมื่อเราทราบค่ากระแสในวงจร และนำไปแทนค่าในสมการ (1),(2) เราก็จะทราบแรงดันตก คร่อมแรงดันตัวต้านทานแต่ละตัว ได้จากสมการข้างล่างนี้

$$V_{R1}=R_1 i\left(t
ight)=rac{R_1}{R_1+R_2}v(t)$$
(3)
$$V_{R2}=R_2 i\left(t
ight)=rac{R_2}{R_1+R_2}v(t)$$
(4)

สมการ (3),(4) เราเรียกว่า<mark>ตัวหารแรงดัน (Voltage divider)</mark> กล่าวคือ แรงดันจะถูกแบ่ง ระหว่างตัวต้านทาน R_1 และตัวต้านทาน R_2 ในสัดส่วนที่ขึ้นอยู่กับตัวต้านทานนั้นๆ

จากกำลังงานชั่วขณะ (Instantaneous power) ที่จ่ายโดยแหล่งจ่ายแรงดัน

$$P(t) = v(t) \cdot i(t)$$

เราจะได้กำลังงานชั่วครู่ที่ถูกดูดโดยตัวต้านทาน R_1 และ R_2 คือ

$$P_{1}(t)=rac{v^{2}_{R1}(t)}{R_{1}}$$

$$V_{R1}=rac{R_{1}}{R_{1}+R_{2}}v(t)$$

เพราะฉะนั้น
$$P_1(t) = \frac{\left[\frac{R_1 v(t)}{R_1 + R_2}\right]^2}{R_1} = \frac{R_1 v^2(t)}{\left(R_1 + R_2\right)^2} \dots (5)$$

คิดในทำนองเดียวกันเราจะได้
$$P_2(t) = \frac{R_2 v^2(t)}{\left(R_1 + R_2\right)^2}$$
....(6)

วงจรที่มีแหล่งจ่ายกระแสและมีตัวต้านทานหลายตัวต่อขนานกัน

รูปที่4 ภาพของวงจรที่มีแหล่งจ่ายกระแสและมีตัวต้านทานหลายตัวต่อขนานกัน อ้างอิง:www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

จากรูป (a) เรากำหนดให้ Node **บน** มีความต่างศักย์มากกว่า Node **ล่าง** จากกฎ KCL (ดูที่โนดบน) เราจะได้

$$\begin{split} i_1(t)-i_2(t)-i_3(t)+i_4(t)-i_5(t)-i_6(t)&=0\\ \text{หรือ} \qquad \qquad i_1(t)-i_3(t)+i_4(t)-i_6(t)&=i_2(t)+i_5(t)\\ \text{ดังนั้น ถ้าให้} \quad i_0(t)&=i_1(t)-i_3(t)+i_4(t)-i_6(t) \quad (คือผลรวมของแหล่งจ่ายกระแสทั้งหมด)\\ เราก็สามารถใช้กฎ KVL ได้ว่า \quad $i_0(t)=\left(rac{1}{R_1}+rac{1}{R_2}
ight)\!v(t)=\left(rac{R_1+R_2}{R_1R_2}
ight)\!v(t) \end{split}$$$

และมี R อยู่ n ตัว ต่อขนานกัน อย่างในรูปที่4 เราจะได้

$$i_0(t) = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}\right) v(t)$$
 หรือ
$$i_0(t) = \frac{v(t)}{R_P}$$
 โดยที่
$$\frac{1}{R_P} = \sum_{i=1}^N \frac{1}{R_i}$$

และสามารถเขียนลดรูปได้ดังรูปที่ 4(b)

การหากระแสแต่ละ branch ก็จะใช้กฎของโอห์มได้ โดยกระแสใน branch ที่ j คือ

$$i_j = \frac{v(t)}{R_i}$$

 R_i คือความต้านทานใน branch ที่ j

ดังนั้น
$$i_{j} = \frac{i_{0}(t) \cdot R_{P}}{R_{j}}$$

ตัวอย่างที่ 1 จากรูปวงจรข้างล่าง จงหาค่าแรงดัน V_0 , ค่ากระแส I ของตัวต้านทานแต่ละตัวและจง เขียนวงจรสมมูล (Equivalent circuit)

รูปที่ 5 วงจรไฟฟ้าตัวอย่างที่1

อ้างอิง:www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

ใช้กฎ KCL ที่โนดบนเราจะได้

$$-I_{1}+12-6-I_{2}-I_{3}+18=0$$

$$I_{1}+I_{2}+I_{3}=12-6+18$$

$$\frac{V_{0}}{R_{1}}+\frac{V_{0}}{R_{2}}+\frac{V_{0}}{R_{3}}=24$$

$$\left(\frac{1}{8}+\frac{1}{24}+\frac{1}{3}\right)V_{0}=24$$

$$V_0 = 48 V$$

กระแสที่ไหลผ่านตัวต้านทาน 8Ω คือ

$$I_1 = \frac{V_0}{8} = \frac{48}{8} = 6 \text{ A}$$

กระแสที่ไหลผ่านตัวต้านทาน 24 Ω คือ

$$I_2 = \frac{V_0}{24} = \frac{48}{24} = 2 \text{ A}$$

กระแสที่ไหลผ่านตัวต้านทาน 3 Ω คือ

$$I_3 = \frac{V_0}{3} = \frac{48}{3} = 16 \text{ A}$$

วงจรสมมูล (Equivalent circuit) สามารถเขียนได้คือ

ตัวต้านทานที่ต่อผสมกันทั้งอนุกรมและขนาน (Series and Parallel Resistor Combinations)

จากตัวต้านทาน n ตัวต่ออนุกรมกัน ความต้านทานรวมที่ได้คือ

$$R_S = R_1 + R_2 + R_3 + \dots + R_N$$

จากตัวต้านทาน n ตัวต่อขนานกัน ความต้านทานรวมที่ได้คือ

$$\frac{1}{R_{P}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \dots + \frac{1}{R_{N}}$$

ตัวอย่างที่ 2 จงหาความต้านทานที่ terminal A-B ของรูปโครงข่าย (Network) ข้างล่างนี้

รูปที่6 วงจรไฟฟ้าตัวอย่างที่ 2

อ้างอิง:www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

ในการหาความต้านทานสมมูล (Equivalent resistance) เราจะยุบตัวต้านทานจาก ทางขวามือก่อนและยุบลงมาเรื่อยๆ จนเหลือตัวต้านทานตัวเดียว พิจารณา 6 กับ 12Ω ซึ่งต่อขนานกัน

$$\frac{1}{R} = \frac{1}{6} + \frac{1}{12} = \frac{1}{4}$$
R = 4 \Omega

พิจารณา $1\Omega,4\Omega,1\Omega$ ซึ่งต่ออนุกรมกัน R = 1+4+1 =6 Ω

พิจารณา 6Ω กับ 3Ω ซึ่งต่อขนานกัน

$$\frac{1}{R} = \frac{1}{6} + \frac{1}{3} = \frac{1}{2}$$

 $R = 2\Omega$

ดังนั้น ความต้านทานที่ ขั้ว A-B (R_{AB}) คือ 14Ω

รูปที่ 7 วงจรไฟฟ้าที่ยุบความต้านทานมารวมกัน

อ้างอิง:www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

วงจรที่มีตัวต้านทานต่อทั้งอนุกรมและขนาน

(Circuits with Series – Parallel Combination of Resistors)

หลังจากที่เราได้เรียนเทคนิคต่างๆ ของ กฎของโอห์ม, กฎของเคอร์ชอฟฟ์, การหารแรงดัน, การหารกระแส, วงจรลูปเดี่ยว, วงจรโนดคู่เดียว, การรวมตัวต้านทานแบบอนุกรมและขนาน แล้ว ต่อไปเราจะนำทฤษฎีต่างๆ เหล่านั้นมาประยุกต์ใช้หาค่าต่างๆ กับวงจร ไฟฟ้า

<u>ตัวอย่างที่ 2</u> จงหาค่ากระแสและแรงดันทั้งหมดที่เกิดขึ้นในโครงข่ายตามรูปข้างล่างนี้

รูปที่ 9 วงจรไฟฟ้าตัวอย่างที่ 3 ที่ยุบรวมความต้านทานมารวมกัน

อ้างอิง:www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

ทำการยุบวงจรจนเหลือลูปเดียวเพื่อหาค่า ${\sf I}_1$

รูปที่9 วงจรไฟฟ้าตัวอย่างที่ 3 ที่ยุบรวมความต้านทานมารวมกัน อ้างอิง:www.rtna.ac.th/departments/elect/Data/EE202/Resistive%20circuit.doc

จากรูป (c) ใช้กฎ KVL เราจะได้Va สามารถคำนวณโดยกฎของโอห์ม หรือใช้กฎ KVL จะได้ 64-5II - Va =0

และจากกฎ KCL จะได้ I1 - I2 - I3 = 0

ใช้กฎ KVL จะได้ Va - I3(3) - Vb = 0
$$24 - (4)(3) - Vb = 0$$
Vb = 12V

ใช้กฎของโอห์มหาค่า 14 ที่ตัวต้าน 4 Ω

$$Vb = 14(4)$$

 $14 = 3A$

ใช้กฎ KCL ที่ โนด 2 นั่นคือ

$$|3 - |4 - |5 = 0$$

 $|4 - |3 - |5 = 0$
 $|5 = 1|A$

ใช้กฎของโอห์มหาค่า Vc ที่ตัวต้าน 3Ω

$$Vc = 15(3)$$

 $Vc = 1(3) = 3V$

อุปกรณ์ที่ใช้ในการทดลอง

แหล่งจ่ายไฟฟ้ากระแสตรง (VDC) f ถึง 2f [V]	1 เครื่อง
ตัวต้านทาน 0.25 [W] ค่า 1 [kΩ]	3 ตัว
ตัวต้านทาน 0.25 [W] ค่า 1.5 [kΩ]และ 2 [kΩ]อย่างล ต ู	1 ตัว
เครื่องดิจิทัลมัลติมิเตอร์	2 เครื่อง
สายต่อวงจรทดลอง	1 ชุด

การทดลองที่ 1.1: พิสูจน์กฎกระแสไฟฟ้าของเคอร์ชอฟฟ์

4.1 วิธีการทดลอง

- 4.1.1 ต่อวงจรทดลองดังรูปที่ 10 ขณะปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงาน
- 4.1.2 ปรับตั้งยานวัดแอมมิเตอร์ที่ A_{DC}ให้เหมาะสม
- 4.1.3 เปิดสวิตช์เพื่อให้แหล่งจ่ายไฟฟ้าทำงานและทดลองวัดค่ากระแส I กระแส I_1 กระแส I_2 กระแส I_3 กระแส I_4 กระแส I_5 และกระแส I_6 บันทึกผลการทดลองลงในตารางที่ 1
- 4.1.4 ปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงาน
- 4.1.5 คำนวณค่ากระแสไฟฟ้า I, I1, I2, I3, I4, I5และ I6 ที่ไหลภายใน วงจรโดยการใช้กฎของโอห์มพร้อมทั้งบันทึกผลการคำนวณลงในตารางที่2

รูปที่10.1 วงจรความต้านทานต่อแบบผสม

ตารางที่ 1ผลการทดลองที่ 1.1

กระแสที่จุดเชื่อม A [mA]				กระ	ะแสที่จุด	เชื่อม E	3 [mA]	กระแสที่จุดเชื่อม C [mA]			
ใหลเข้า		ไหลออก		ไหลเข้า			ไหลออก	ไหล	เข้า	ไหลออก	
I	I ₁	l ₂	l ₃	I ₁	l ₂	l ₃	I	I ₄	l ₅	I	
19.9	8.2	8.1	4.0	8.2	8.1	4.0	19.9	12.2	7.7	19.9	

ตารางที่ 2ผลการคำนวณสำหรับการทดลองที่ 1.1

กระแสที่จุดเชื่อม A [mA]			กระแสที่จุดเชื่อม B [mA]				กระแสที่จุดเชื่อม C [mA]			
ไหลเข้า	,	ไหลออก		ไหลเข้า		ไหลออก	ใหลเข้า		ไหลออก	
I	l ₁	l ₂	l ₃	l ₁	l ₂	l ₃	I	I ₄	l ₅	T:
20	8	8	4	8	8	4	20	12	8	20

<u>วิธีคำนวณ</u>

จากโจทย์ R
$$_1$$
 = 1 [k Ω], R $_2$ = 1[k Ω], R $_3$ = 1.5[k Ω],R $_4$ = 1[k Ω] R $_5$ = 1.5[k Ω] E = 20 [V]

หาความต้านทาน R₁₂₃

$$1/R_{123} = (1/1000) + (1/1000) + (1/2000)$$

$$= (2+2+1)/2000$$

$$= 5/2000$$

$$= 1/400$$

$$R_{123} = 400 [\Omega]$$

หาความต้านทาน R₄₅

$$1 / R_{45} = (1/1000) + (1/1500)$$
$$= (3+2)/3000$$
$$= 5/3000$$
$$= 1/600$$
$$R_{45} = 600 [\Omega]$$

หาความต้านทาน R_{รวม}

$$R_{933} = R_{123} + R_{45}$$

= 400 + 600
= 1 [K\O]

หากระแสไฟฟ้าที่ไหลทั้งวงจร

$$I = 20 [mA]$$

แรงดันไฟฟ้าที่ตกคร่อม R₁₂₃

แรงดันไฟฟ้าที่ตกคร่อม R₄₅

$$V_{45} = 20 \times 10^{-3} \times 600$$

หากระแสไฟฟ้าที่ไหล $I_1 I_2 I_3 I_4$ และ I_5 จากกฎโอห์ม V = IR

$$I_1 = V_{123} / R_1 = 8 / 1000 = 8 [mA]$$

$$I_2 = V_{123} / R_2 = 8 / 1000 = 8 \text{ [mA]}$$

$$I_3 = V_{123} / R_3 = 8 / 2000 = 4 [mA]$$

$$I_4 = V_{45}/R_4 = 12 / 1000 = 12 [mA]$$

$$I_5 = V_{45}/R_5 = 12 / 1500 = 8 [mA]$$

สูตรหาความคลาดเคลื่อน = | (ผลการวัด –ผลการคำนวณ)/ผลการคำนวณ | \times 100 %

ตารางที่ 3.1ความคลาดเคลื่อน

<u>ความคลาดเคลื่อนกระแสที่จุดเชื่อม A</u>						
ความคลาดเคลื่อนไหลเข้า	0.5%					
ความคลาดเคลื่อนไหลออก I ₁	2.5%					
ความคลาดเคลื่อนไหลออก I ₂	1.25%					
ความคลาดเคลื่อนไหลออก I ₃	0%					

<u>ความคลาดเคลื่อนกระแสที่จุดเชื่อม B</u>						
ความคลาดเคลื่อนไหลเข้า I ₁	2.5%					
ความคลาดเคลื่อนไหลเข้า I ₂	1.25%					
ความคลาดเคลื่อนไหลเข้า I ₃	0%					
ความคลาดเคลื่อนไหลออก	0.5%					

<u>ความคลาดเคลื่อนกระแสที่จุดเชื่อม C</u>						
ความคลาดเคลื่อนไหลเข้า I ₄	1.66%					
ความคลาดเคลื่อนไหลเข้า I ₅	3.75%					
ความคลาดเคลื่อนไหลออก	0.5%					

การทดลองที่ 2 : กฎกระแสไฟฟ้าของเคอร์ชอฟฟ์เมือเกิดลัดวงจร

วิธีการทดลอง

- 1. ต่อวงจรทดลองที่กำหนดให้ลัดวงจรที่ R₄ ดังรูป (ข) ขณะปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้า ทำงาน
- 2. ปรับตั้งย่านวัดแอมมิเตอร์ที่ A_{DC} ให้เหมาะสม
- 3. เปิดสวิตช์เพื่อให้แหล่งจ่ายไฟฟ้าทำงานและทดลองวัดค่ากระแส I_1 กระแส I_2 กระแส I_3 กระแส I_4 กระแส I_5 และกระแส I_6 บันทึกผลการทดลองลงในตาราง
- 4. ปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงาน
- 5. คำนวณค่ากระไฟฟ้า I, I₁, I₂, I₃, I₄, I₅, และ I₆ ที่ไหลภายในวงจรโดยการใช้กฎของโอห์ม พร้อมทั้งบันทึกผลการคำนวณลงในตาราง
- 6. คำนวณค่า RT, I, V_1 , V_2 , V_3 , V_4 และ I_1 , I_2 , I_3 , I_4 โดยใช้กฎของโอห์มและบันทึกผล การ คำนวณลงในตารางที . เปรียบเทียบกับผลการทดลองในตารางที .

รูป 10.2วงจรความต้านทานกรณีเกิดลัดวงจร

ผลการทดลองที่ 2

ตารางที่ 4.3 ผลการทดลองที่ 2 เมื่อเกิดลักวงจรที่ R_4

กระแสที่จุดเชื่อม A [mA]				กระแสที่จุดเชื่อม B [mA]				กระแสที่จุดเชื่อม C [mA]		
ไหลเข้า	ไหลออก				ไหนเข้า		ไหล ออก	ไหลเข้า		ไหล ออก
I	I ₁	l ₂	l ₃	I ₁	l ₂	l ₃	I	I ₄	l ₅	I ₆
50.9	20.2	20.6	10.1	20.5	20.4	10.3	50.1	48.5	0	50.1

ตารางที่ 4.4 ผลการคำนวณสำหรับการทดลองที่ 2 เมื่อเกิดลักวงจรที่ R_4

กระแสที่จุดเชื่อม A [mA]				กระแสที่จุดเชื่อม B [mA]				กระแสที่จุดเชื่อม C [mA]			
ไหลเข้า		ไหลออก		ไหนเข้า			ไหลออก	ไหลเข้า		ไหลออก	
I	I ₁	l ₂	l ₃	l ₁	l ₂	l ₃	I	I ₄	l ₅	I ₆	
50	20	20	10	20	20	10	50	50	0	50	

<u>วิธีคำนวณ</u>

จากโจทย์ R
$$_1$$
 = 1 [k Ω], R $_2$ = 1[k Ω], R $_3$ = 1.5[k Ω],R $_4$ = 1[k Ω] R $_5$ = 1.5[k Ω] E = 20 [V]

$$1/R_{123} = (1/1000) + (1/1000) + (1/2000)$$

$$= (2+2+1)/2000$$

$$= 5/2000$$

$$= 1/400$$

$$R_{123} = 400 [\Omega]$$

หาความต้านทาน R_{รวม}

เนื่องจากเกิดการลัดวงจรที่ R_{45} จึงทำให้ความต้านที่ R_{45} มีความที่น้อยมากซึ่งใกล้เคียง 0 แต่จะไม่ เท่ากับ0 $R_{523}=R_{123}+R_{45}=400+0=400\ [\Omega]$

หากระแสไฟฟ้าที่ไหลทั้งวงจร

I = 20 / 400.01

I = 50 [mA]

แรงดันไฟฟ้าที่ตกคร่อม R₁₂₃

$$V_{123} = 50 \times 10^{-3} \times 0$$

= 0 [V]

ค่าที่ได้จะใกล้เคียง 0 แต่จะไม่เท่ากับ 0

แรงดันไฟฟ้าที่ตกคร่อม R₄₅

$$V_{45} = 50 \times 10^{-3} \times 0.01$$

$$= 50 \times 10^{-5}$$
 [V]

หากระแสไฟฟ้าที่ไหล $I_1 I_2 I_3 I_4$ และ I_5 จากกฎโอห์ม V = IR

$$I_1 = V_{123} / R_1 = 20 / 1000 = 20 \text{ [mA]}$$

$$I_2 = V_{123} / R_2 = 20 / 1000 = 20 \text{ [mA]}$$

$$I_3 = V_{123} / R_3 = 20 / 2000 = 10 \text{ [mA]}$$

 $I_4=50~{
m [mA]}$ เนื่องจากมีความต้านทานที่น้อยมากๆ เมื่อ เทียบกับ R_5

 $I_5=0$ [mA] เนื่องจากมีความต้านทานที่สูงมากๆ เมื่อ เทียบกับ R_4

ตารางที่ 3.1ความคลาดเคลื่อน

<u>ความคลาดเคลื่อนกระแสที่จุดเชื่อม A</u>						
ความคลาดเคลื่อนไหลเข้า	1.8%					
ความคลาดเคลื่อนไหลออก I ₁	1%					
ความคลาดเคลื่อนไหลออก I ₂	3%					
ความคลาดเคลื่อนไหลออก I ₃	1%					

<u>ความคลาดเคลื่อนกระแสที่จุดเชื่อม B</u>						
ความคลาดเคลื่อนไหลเข้า I ₁	2.5%					
ความคลาดเคลื่อนไหลเข้า I ₂	2%					
ความคลาดเคลื่อนไหลเข้า I ₃	0.3%					
ความคลาดเคลื่อนไหลออก	0.2%					

<u>ความคลาดเคลื่อนกระแสที่จุดเชื่อม C</u>					
ความคลาดเคลื่อนไหลเข้า I ₄	1.6%				
ความคลาดเคลื่อนไหลเข้า I ₅	0%				
ความคลาดเคลื่อนไหลออก	0.2%				

การทดลองที่ 3 : พิสูจน์แรงดันไฟฟ้าของเคอร์ชอฟฟ์

วิธีการทดลอง

- 1. ต่อวงจรทดลองดังรูป (ค) ขณะปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงาน
- 2. ปรับตั้งย่านวัดโวลต์มิเตอร์ที่ V_{DC} ให้เหมาะสม
- 3. เปิดสวิตช์เพื่อให้แหล่งจ่ายไฟฟ้าทำงานและทดลองวัดค่าแรงดัน V แรงดัน V_1 แรงดัน V_2 แรงดัน V_3 แรงดัน V_4 แรงดัน V_5 และแรงดัน V_6 โดยให้ขั้วของมิเตอร์เปิดไปตามที่กำหนดไว้ ในวงจรดังรูป (ค) (ถ้าแรงดันไฟฟ้าใดเข็มมิเตอร์กลับขั้วให้กำหนดเครื่องหมายของแรงดันนั้น เป็นลบ)
- 4. บันทึกผลการทดลองลงแถวแรกของตาราง
- 5. ปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงาน
- 6. คำนวณค่าแรงดันไฟฟ้า V, V_1 , V_2 , V_3 , V_4 , V_5 และ , V_6 ที่ไหลภายในวงจรโดยการใช้กฎของ โอห์มพร้อมทั้งบันทึกผลการคำนวณลงแถวสองของตาราง

รูป 10.3 วงจรความต้านต่อแบบอนุกรม

ผลการทดลองที่ 3

ตารางที่ 4.5 ผลการทดลองและผลการคำนวณสำหรับการทดลองที่ 3

แรงดันไฟฟ้า [V]	V_1	V_2	V_3	V_4	V_5	V_6
ผลการวัด	22.20	5.0	3.51	5.32	3.56	2.36
ผลการคำนวณ	20	5	3.6	5.4	3.6	2.4

<u>วิธีคำนวณ</u>

จากโจทย์ R
$$_1$$
 = 2 [k Ω], R $_2$ = 1[k Ω], R $_3$ = 1[k Ω], R $_4$ = 1.5[k Ω] R $_5$ = 1[k Ω] E1 = 20 [V] E= 5 [V]

หาความต้านทาน R_{รวม}

$$R_{9333} = R_{12} + R_3 + R_4$$

= $(1/1000+1/2000) +1000 +1500 +1000$
= $(3/2000) + 1000 + 1500 + 1000$
= $666.67 + 1000 + 1500 + 1000$
= $4166.67 [\Omega]$

หากระแสไฟฟ้าที่ไหลทั้งวงจร

จากกฎเคอร์ซอฟฟ์

$$0 = E_1 + IR_{12} + IR_3 + IR_4 - E_2$$

$$E_1 - E_2 = IR_{12} + IR_3 + IR_4$$

$$15 = I (R_{12} + R_3 + R_4)$$

$$I = 15 / 4166.67$$

$$I = 35.99 [mA]$$

แรงดันไฟฟ้าที่ตกคร่อม E_1 หรือ $V_1=20V$ แรงดันไฟฟ้าที่ตกคร่อม E_2 หรือ $V_2=-5V$

แรงดันไฟฟ้าที่ตกคร่อม R₅ หรือV₃

แรงดันไฟฟ้าที่ตกคร่อม R₄ หรือV₄

แรงดันไฟฟ้าที่ตกคร่อม R_3 หรือ V_5

แรงดันไฟฟ้าที่ตกคร่อม R₁₂ หรือV₆

ตารางผลการคำนวณความคลาดเคลื่อน								
V1 V2 V3 V4 V5								
1.00%	0.00%	2.30%	1.48%	1.11%	1.67%			

การทดลองที่ 4 : กฎแรงดันไฟฟ้าของเคอร์ชอฟฟ์เมื่อเกิดลัดวงจร

- 1. ต่อวงจรทดลองดังรูป (ง) ขณะปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงาน
- 2. ปรับตั้งย่านวัดโวลต์มิเตอร์ที่ V_{DC} ให้เหมาะสม
- 3. เปิดสวิตช์เพื่อให้แหล่งจ่ายไฟฟ้าทำงานและทดลองวัดค่าแรงดัน \vee แรงดัน \vee_1 แรงดัน \vee_2 แรงดัน \vee_3 แรงดัน \vee_4 แรงดัน \vee_5 และแรงดัน \vee_6 โดยให้ขั้วของมิเตอร์เป็นไปตามที่กำหนดไว้ ในวงจรดังรูป (ง) (ถ้าแรงดันไฟฟ้าใดเข็มมิเตอร์กลับขั้วให้กำหนดเครื่องหมายของแรงดันนั้น เป็นลบ) บันทึกผลการทดลองลงแถวแรกของตาราง
- 4. ปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงาน
- 5. คำนวณค่าแรงดันไฟฟ้า V, V_1 , V_2 , V_3 , V_4 , V_5 และ , V_6 ที่ไหลภายในวงจรโดยการใช้กฎของ โอห์มพร้อมทั้งบันทึกผลการคำนวณลงแถวสองของตาราง

รูป 10.4 วงจรความต้านทานต่อแบบอนุกรมกรณีเกิดลัดวงจร

ผลการทดลองที่ 4

ตารางที่ 4.5 ผลการทดลองและผลการคำนวณสำหรับการทดลองที่ 4 เมื่อเกิดลักวงจรที่ R_{5}

แรงดันไฟฟ้า [V]	V_1	V_2	V_3	V ₄	V_5	V ₆
ผลการวัด	20.20	5.08	4.72	7.1	0	3.17
ผลการคำนวณ	20	5	4.7	7.05	0	3.13

<u>วิธีคำนวณ</u>

จากโจทย์ R
$$_1$$
 = 2 [k Ω], R $_2$ = 1[k Ω], R $_3$ = 1[k Ω],R $_4$ = 1.5[k Ω] R $_5$ = 1[k Ω] E1 = 20 [V] E= 5 [V]

หาความต้านทาน R_{รวม}

$$R_{373J} = R_{12} + R_3 + R_4$$

= $(1/1000+1/2000) + 0 + 1500 + 1000$
= $(3/2000) + 0 + 1500 + 1000$
= $666.67 + 0 + 1500 + 1000$
= $3166.67 [\Omega]$

หากระแสไฟฟ้าที่ไหลทั้งวงจร

จากกฎเคอร์ซอฟฟ์จะได้ว่า

$$0 = E_1 + IR_{12} + IR_3 + IR_4 - E_2$$

$$E_1 - E_2 = IR_{12} + IR_3 + IR_4$$

$$15 = I (R_{12} + R_3 + R_4)$$

$$I = 15 / 3166.67$$

$$I = 47 [mA]$$

จากนั้นหาค่า V จากกฏของโอห์ม V=IR

$$V1 = E1 = 20 [v]$$

$$V3 = 4.7 \times 10^{-3} \times 1000 = 4.7 \text{ [v]}$$

$$V4 = 4.7 \times 10^{-3} 1500 = 7.05 [v]$$

$$V5 = 0$$

$$V6 = 4.7 \times 10^{-3} \times 666.67 = 3.13 [v]$$

ตารางผลการคำนวณความคลาดเคลื่อน								
V1 V2 V3 V4 V5								
1.00%	1.60%	0.43%	0.71%	0%	1.27%			

การทดลองที่ 5 : กฎแรงดันไฟฟ้าของเคอร์ชอฟฟ์เมื่อเกิดลัดวงจร วิธีการทดลอง

- 1. ปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงานและต่อวงจรทดลองดังรูป (จ) ปรับตั้งย่านวัดความ ต้านทานของมัลติมิเตอร์ให้เหมาะสม ต่อมา วัดค่าตัวต้านทาน R_{T,} R_{1,} R₂ กับ R₃ และบันทึก ผลการวัดลงในตาราง
- 2. ปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงานและต่อวงจรใหม่ดังรูป (ฉ) ปรับตั้งย่านวัด กระแสไฟฟ้า I, I_2 , และ I_3 ให้เหมาะสมของมัลติมิเตอร์ตัวที่ 1 พร้อมทั้งปรับตั้งย่านวัด แรงดันไฟฟ้า V_1 , V_2 และ V_3 ให้เหมาะสมของมัลติมิเตอร์ตัวที่ 2
- 3. เปิดสวิตช์แหล่งจ่ายไฟฟ้าทำงาน ปรับค่าแรงดัน E ให้มีค่าเท่ากับ 15[V]
- 4. ทำการทดลองวัด บันทึกค่ากระแส I, I_1 , I_2 , I_3 และแรงดัน $\ V_{1,} \ V_{2,} \ V_{3}$ ลงในตาราง
- 5. ปิดสวิตช์เพื่อไม่ให้แหล่งจ่ายไฟฟ้าทำงาน
- 6. คำนวณค่า R_T , I, $V_{1,}$ $V_{2,}$ V_{3} และ I_1 , I_2 , I_3 โดยใช้กฎของโอห์มและบันทึกผลการคำนวณลงใน ตาราง เปรียบเทียบกับผลการทดลองในตาราง

รูป 10.5 วงจรความต้านทานสำหรับการทดลองที่ 5

ผลการทดลองที่ 5

ตารางที่ 4.7 ผลการทดลองวงจรตัวต้านทานต่อขนาน

	ผลการทดลอง												
R_1	R_2	R_3	$R_{_{T}}$	I_1	I_2	I_3	I	V_1	V_2	V_3	E		
$[k\Omega]$	[kΩ]	$[k\Omega]$	$[k\Omega]$	[mA]	[mA]	[mA]	[mA]	[V]	[V]	[V]	[V]		
985	1981	982	398.2	15.3	7.45	14.8	36.9	14.95	14.95	14.95	14.95		

ตารางที่ 4.8 ผลการคำนวณวงจรตัวต้านทานต่อขนาน

	ผลการคำนวณ												
R_1	R_2	R_3	R_{T}	I_1	I_2	I_3	I	V_1	V_2	V_3	Е		
$[\mathbf{k}\Omega]$	[kΩ]	$[k\Omega]$	$[k\Omega]$	[mA]	[mA]	[mA]	[mA]	[V]	[V]	[V]	[V]		
1000	2000	1000	400	15	7.5	15	37.5	15	15	15	15		

วิเคราะห์การทดลองที่ 5

ความคลาดเคลื่อน = | (ผลการวัด -ผลการคำนวณ)/ผลการคำนวณ | × 100 %

	ตารางค่าความคลาดเคลื่อน												
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$										Е		
$[k\Omega]$	$[k\Omega]$	$[{\bf k}\Omega]$	$[k\Omega]$	[mA]	[mA]	[mA]	[mA]	[V]	[V]	[V]	[V]		
1.25%	1.25%	1.25%	1.25%	1.98%	0.66%	1.98%	2.42%	0.46%	1.13%	0.6%	0%		

จากการทดลองพบว่าค่าแรงดันไฟฟ้าของ V1 , V2 และ V3 มีค่าเท่ากัน แต่ค่ากระแสของแต่ ละตัวมี ค่าต่างกัน เพราะกระแสจะไหลผ่านตัวต้านทานที่น้อยกว่าโดยค่ากระแส I คิดได้จากกฏของ โอห์มและกฏของเคอร์ชอฟฟ์

หากระแสไฟฟ้าจากกฏของเคอร์ชอฟฟ์

 $I=V_1/R_1+V_2/R_2+V_3/R_3$;เนื่องจากเป็นวงจรความต้านทานขนานจะได้ \lor เท่ากันทั้ง

$$I = 15/1 + 15/2 + 15/1 = 37.5 [mA]$$

หาความต้านทานรวม

$$R_t = (1/R_1) + (1/R_2) + (1/R_3)$$

$$= (1/1000) + (1/2000) + (1/1000)$$

= (5/2000)

 $= 400 [\Omega]$

หาแรงดันไฟฟ้าจากกฏโอห์ม

$$V = 34.5 \times 400$$

$$= 15 [V]$$

วิเคราะห์ผลการทดลอง

การทดลอง1;พิสูจน์กฎกระแสไฟฟ้าของเคอร์ชอฟฟ์

เปิดสวิตช์เพื่อให้แหล่งจ่ายไฟฟ้าเข้าวงจร กระแสไฟฟ้าผ่านจุด A B และ C โดยทั้งแต่ละจุดจะมี การต่อความต้านทานแบบขนานกัน โดยกระแสที่ไหลเข้าจุดA เท่ากับกระแสที่ไหลออกที่จุด B และ จุด C เป็นไปตามกฎเคอร์ชอฟฟ์กระแสไฟฟ้าที่ไหลผ่านจุดจะมีผลลัพธ์รวมเท่ากับ 0

การทดลอง2 :กฎกระแสไฟฟ้าของเคอร์ชอฟฟ์เมือเกิดลัดวงจร

เปิดสวิตช์เพื่อให้แหล่งจ่ายไฟฟ้าเข้าวงจร กระแสไฟฟ้าผ่านจุด A B และ C โดยทั้งแต่ละจุดจะมีการ ต่อความต้านทานแบบขนานกัน โดยกระแสที่ไหลเข้าจุดA เท่ากับกระแสที่ไหลออกที่จุด B และ จุด C เป็นไปตามกฎเคอร์ชอฟฟ์กระแสไฟฟ้าที่ไหลผ่านจุดจะมีผลลัพธ์รวมเท่ากับ 0 แต่กระแสที่ I_5 จะมี กระแสไฟฟ้าไหลน้อยมากเนื่องจากเกิดลัดวงจรที่ R_4 จึงทำให้มีกระแสไฟฟ้าไหลง่ายกว่าที่จะไป R_5 จึง ทำให้ I_5 มีกระไฟฟ้าที่มากขึ้น

การทดลองที่ 3 : พิสูจน์แรงดันไฟฟ้าของเคอร์ชอฟฟ์

จากผลการวิเคราะห์พบว่ากฎของเคอร์ชอฟฟ์สามารถนำมาคิดค่าความดันของวงจรได้โดยใช้ สมการ KVL และสามารถหาค่ากระแส I ได้จากสมการ KVL โดยจากผลการทดลองและผลการ คำนวณมีค่าความ คลาดเคลื่อนต่างกันเล็กน้อย

การทดลองที่ 4 : กฎแรงดันไฟฟ้าของเคอร์ชอฟฟ์เมือเกิดลัดวงจร

จากผลการวิเคราะห์พบว่ากฏของเคอร์ชอฟฟ์สามารถนำมาคิดค่าความดันของวงจรได้โดยใช้โดยที่ กระแสไฟฟ้าที่ไหลทั้งวงจรนั้นมีค่าที่มากขึ้น เนื่องจากมีการลัดวงจรที่ ความต้านทาน 1[KΩ] จึงให้ ความต้านทานรวมมีค่าน้อยลง จึงให้มีกระแสที่มีขึ้น และแรงดันตกคร่อมความต้านทานแต่และตัว มากขึ้น ยกเว้นตัวเกิดที่ลัดวงจร

การทดลองที่ 5 : การหาคุณลักษณะของวงจรตัวต้านทานต่อขนาน

จากการทดลองพบว่าค่าแรงดันไฟฟ้าของ V1 , V2 และ V3 มีค่าเท่ากัน แต่ค่ากระแสของแต่ ละตัวมี ค่าต่างกัน เพราะกระแสจะไหลผ่านตัวต้านทานที่น้อยกว่าโดยค่ากระแส I คิดได้จากกฏของ โอห์มและกฏของเคอร์ชอฟฟ์

สรุปผลการทดลอง

สรุปผลการทดลองที่ 1

จากการทดลองพบว่ามีการไหลของกระแสไฟฟ้า 20 mA เมื่อไหลผ่านจุด A กระแสไฟฟ้าได้ มีการแยกตัวไปยังตัวต้านทานที่มีค่าต่างกัน ทำให้กระแสนั้นมีค่าต่างกันในช่วงนี้ แต่เมื่อผ่าน มายังจุด B ได้มีการวัดปรากฏว่ากระแสมีค่าเท่ากับตอนที่ไหลเข้า นั้นแสดงว่ากระแสที่ไหลเข้ามีค่าเท่ากับ กระแสที่ไหลออก ซึ่งตรงกับกฎกระแสไฟฟ้าของเคอร์ชอฟฟ์ที่ได้กล่าวไว้

สรุปผลการทดลองที่ 2

จากการทดลองทำเหมือนการทดลองที่หนึ่งเลยแต่ต่างกันตรงที่การทดลองนี้มีการลัดวงจรที่ R4 นั้น หมายความมีค่าความต้านทานใกล้ศูนย์ เมื่อปล่อยกระแสไฟฟ้าเข้าไปในวงจร จากการวัดค่า ของ กระแสไฟฟ้าปรากฏว่าตรง I5 มีค่าเท่ากับน้อยมาก นั้นหมายความว่าจะมีกระแสไหลผ่านไหล ผ่านตรง I4 เกือบทั้งหมดเลย นั้นแสดงงว่า กระไฟฟ้าจะไหลผ่านตัวต้านทานที่มีค่าต่ำกว่าได้ดีเสมอ

สรุปผลการทดลองที่ 3

จากการทดลองพบว่าเราสามารถใช้กฎของเคอร์ชอฟฟ์ฟิสูจน์การไหลของวงจรโดยใช้สมการ
KVL และสามารถหาค่ากระแสและความดันจากสมการได้โดยใช้สมการ KVL และ กฎของโอห์มเข้า
มาช่วย โดยผลการทดลองได้มีความคลาดเคลื่อนจากการคำนวณเพียงเล็กน้อยซึ่งอาจเกิดจากอุปกรณ์
ที่ใช้มานาน

สรูปผลการทดลองที่ 4

จากผลการทดลองพบว่าการลัดวงจรที่ ความต้านที่ $1 \mathrm{K} \Omega$ ทำให้กระแสไหลไปในทิศทางที่ ลัดวงจรเมื่อเขียนสมการ KVL ของมาแล้วคำนวณก็พบว่าค่าของกระแส และ แรงดันในวงจรจากการ คำนวณและการทดลองมีค่า ต่างกันเพียงเล็กน้อยซึ่ง โดยการคำนวณนั้นใช้กฎของเคอร์ชอฟฟ์ และ กฎของโอห์มเข้ามาช่วยเป็นการใช้กฎของเคอร์ชอฟฟ์แบบประยุกต์ จึงสรุปได้ว่าเมื่อเกิดการลัดวงจร สมการกฎของเคอร์ชอฟฟ์ก็ยังเป็นจริง

สรุปผลการทดลองที่ 5

จากผลการทดลองพบว่าการหาคุณลักษณะของวงจรตัวต้านทานต่อขนานโดยการต่อวงจร ตามภาพ แล้ววัดค่าความต้านทานแต่ละตัวจากนั้นน ามาคิดค่ากระแส I จากนั้นนำค่ากระแส I ไป คำนวณหากระแส I1, I2, I3 และ แรงดัน V, V1, V2, V3 แต่เนื่องจากเป็นวงจรต่อขนานจึงได้ค่าความ ดัน V เท่ากันทั้งวงจร ของโอห์มสามารถหาค่า กระแส I1, I2, I3 ได้โดยค่าที่ได้จากการทดลองและค่า จากการคำนวณใกล้เคียงกับมาก จึงสรุปได้ว่าคุณลักษณะของวงจรตัวต้านทานต่อขนานเป็นไปตาม ทฤษฎี