WEEK 7: MACHINE LEARNING 1 SECU0057 BENNETT KLEINBERG 27 FEB 2020

Applied Data Science

WEEK 7: MACHINE LEARNING 1

MACHINE LEARNING?

- core idea: a system learns from experience
- no precise instructions

TODAY

- supervised learning
- performance metrics

SUPERVISED LEARNING

- who is the supervisor?
- supervised = labelled data
- i.e. you know the outcome
- flipped logic

SIMULATED DATA

account	tweet_freq
bot	33.7960
bot	34.5973
bot	34.2955
bot	32.2615
real	19.1904
real	14.4237
real	37.6143
real	29.0793

HOW TO BEST SEPARATE THE DATA INTO TWO GROUPS?

CORE IDEA

- learn relationship between
 - outcome (target) variable
 - features (predictors)
- "learning" is done through an algorithm
 - simplest algorithm: if A then B

IDEA 1: MEAN THRESHOLDS

HIGHER DIMENSIONAL DATA

IDEA 2: HAND-CRAFTED RULES

BUT THIS IS NOT LEARNING

- often we have no idea about the relationships
- too many predictors
- too diverse a problem
- simply unknown

STEPWISE SUPERVISED ML

- clarify what outcome and features are
- determine which classification algorithm to use
- train the model

CLASSES OF SUPERVISED LEARNING

- classification (e.g. death/alive, fake/real)
- regression (e.g. income, number of deaths)

CORE AIM OF SUPERVISED LEARNING

Learning from data to make predictions about the future.

CARET IN PRACTICE

We have trained a model.

= you have taught an algorithm to learn to predict real vs bot accounts based on followers and tweet frequency

EXPLANATORY VS PREDICTIVE MODELLING

- this is where you would stop in explanatory modelling
- e.g. interpreting the coefficients
- predictive modelling focuses on the use of that model

PUTTING YOUR MODEL TO USE

```
data2$model_predictions = predict(my_first_model, data2, type = 'response
data2$model_1 = ifelse(data2$model_predictions >= .5, 'real', 'bot')
```

	bot	real
bot	90	10
real	14	86

THE KEY CHALLENGE?

Think about what we did

PROBLEM OF INDUCTIVE BIAS

- remember: we learn from the data
- but what we really want to know is: how does it work on "unseen" data
- this is needed to estimate how good real predictions would be

How to solve this?

SPLITTING THE DATA

- split the data (e.g. 80%/20%, 60%/40%)
- use one part as TRAINING SET
- use the other as TEST SET

ENTER: CARET

library(caret)

- excellent package for ML in R
- well-documented website
- common interface for 200+ models

CARET: DATA PARTITIONING

CREATING A TRAINING AND TEST SET

```
training_data = data3[ in_training,]
test_data = data3[-in_training,]
```

SUPERVISED ML STEPS REVISED

- define outcome
- define features
- build model on the TRAINING SET
- evaluate model on the TEST SET

BUILDING AN SVM MODEL

FIT/TEST THE SVM:

model_predictions = predict(my_second_model, test_data)

	bot real		
bot	19	1	
real	4	16	

BUT!

- our model might be really dependent on the training data
- we want to be more careful

Can we do some kind of safeguarding in the training data?

CROSS-VALIDATION

K-fold cross-validation

Iteration 1	Test	Train	Train	Train	Train
Iteration 2	Train	Test	Train	Train	Train
Iteration 3	Train	Train	Test	Train	Train
Iteration 4	Train	Train	Train	Test	Train
Iteration 5	Train	Train	Train	Train	Test

SPECIFYING CV IN CARET

```
my_third_model
```

```
## Support Vector Machines with Linear Kernel
##
## 160 samples
## 2 predictor
## 2 classes: 'bot', 'real'
## No pre-processing
## Resampling: Cross-Validated (4 fold)
## Summary of sample sizes: 120, 120, 120
## Resampling results:
##
##
    Accuracy Kappa
##
    0.85
              0.7
## Tuning parameter 'C' was held constant at a value of 1
```

ASSESS THE CVED MODEL

model_predictions = predict(my_third_model, test_data)

	bot	real
bot	19	1
real	4	16

PERFORMANCE METRICS

SUPPOSE WE HAVE TWO MODELS

TEST SET RESULTS

SVM model

	bot	real
bot	96	104
real	102	98

NB model

	bot	real
bot	124	76
real	140	60

THE CONFUSION MATRIX

	Bot	Real
Bot	True positives	False negatives
Real	False positives	True negatives

FALSE (TRUE) POSITIVES (NEGATIVES)

- true positives (TP): correctly identified bots
- true negatives (TN): correctly identified real accounts
- false positives (FP): false accusations
- false negatives (FN): missed bots

MOST INTUITIVE: ACCURACY

$$acc = \frac{(TP+TN)}{N}$$
 $acc_{svm} = \frac{(111+86)}{400} = 0.49$
 $acc_{nb} = \frac{(124+60)}{400} = 0.47$

Any problems with that?

ACCURACY

Model 1

	Bot	Real
Bot	100	100
Real	5	195

Model 2

	Bot	Real
Bot	150	50
Real	55	145

PROBLEM WITH ACCURACY

- same accuracy, different confusion matrix
- relies on thresholding idea
- not suitable for comparing models (don't be fooled by the literature!!)

Needed: more nuanced metrics

BEYOND ACCURACY

```
##
          prediction
   reality Bot Real Sum
##
           100
                100 200
      Bot
##
      Real
           5
               195 200
          105
                295 400
      Sum
##
          prediction
   reality Bot Real Sum
##
                 50 200
      Bot
           150
##
      Real 55
               145 200
##
           205
               195 400
      Sum
```

PRECISION

i.e. -> how often the prediction is correct when prediction class X

Note: we have two classes, so we get two precision values

Formally:

•
$$Pr_{bot} = \frac{TP}{(TP+FP)}$$

• $Pr_{real} = \frac{TN}{(TN+FN)}$

•
$$Pr_{real} = \frac{TN}{(TN+FN)}$$

PRECISION

```
##
          prediction
   reality Bot Real Sum
##
      Bot
           100
               100 200
##
      Real
                195 200
##
          105
                295 400
      Sum
```

•
$$Pr_{bot} = \frac{100}{105} = 0.95$$

• $Pr_{real} = \frac{195}{295} = 0.64$

•
$$Pr_{real} = \frac{195}{295} = 0.64$$

COMPARING THE MODELS

	Model 1	Model 2
асс	0.74	0.74
Pr_{bot}	0.95	0.73
Pr_{real}	0.64	0.74

RECALL

i.e. -> how many of class X is detected

Note: we have two classes, so we get two recall values

Also called sensitivity and specificity!

Formally:

•
$$R_{bot} = \frac{TP}{(TP+FN)}$$

• $R_{real} = \frac{TN}{(TN+FP)}$

•
$$R_{real} = \frac{TN}{(TN+FP)}$$

RECALL

```
##
          prediction
##
   reality Bot Real Sum
##
      Bot
           100
               100 200
##
                195 200
      Real
##
           105
                 295 400
      Sum
```

•
$$R_{bot} = \frac{100}{200} = 0.50$$

• $R_{real} = \frac{195}{200} = 0.98$

•
$$R_{real} = \frac{195}{200} = 0.98$$

COMPARING THE MODELS

	Model 1	Model 2
асс	0.74	0.74
Pr_{bot}	0.95	0.73
Pr_{real}	0.64	0.74
R_{bot}	0.50	0.75
R_{real}	0.98	0.73

COMBINING PR AND R

The F1 measure.

Note: we combine Pr and R for each class, so we get *two* F1 measures.

Formally:

•
$$F1_{bot} = 2 * \frac{Pr_{bot} * R_{bot}}{Pr_{bot} + R_{bot}}$$

• $F1_{real} = 2 * \frac{Pr_{real} * R_{real}}{Pr_{real} + R_{real}}$

F1 MEASURE

```
## prediction
## reality Bot Real Sum
## Bot 100 100 200
## Real 5 195 200
## Sum 105 295 400
```

•
$$F1_{bot} = 2 * \frac{0.95*0.50}{0.95+0.50} = 2 * \frac{0.475}{1.45} = 0.66$$

• $F1_{real} = 2 * \frac{0.64*0.98}{0.64+0.98} = 2 * \frac{0.63}{1.62} = 0.77$

COMPARING THE MODELS

	Model 1	Model 2
асс	0.74	0.74
Pr_{bot}	0.95	0.73
Pr_{real}	0.64	0.74
R_{bot}	0.50	0.75
R_{real}	0.98	0.73
$F1_{bot}$	0.66	•••
$F1_{real}$	0.77	•••

IN CARET

confusionMatrix(nb pred, as.factor(test data\$account))

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction bot real
##
         bot 124 140
##
         real 76 60
##
                  Accuracy: 0.46
##
                    95% CI: (0.4104, 0.5102)
##
       No Information Rate: 0.5
##
       P-Value [Acc > NIR] : 0.9506
##
##
                     Kappa : -0.08
##
    Mcnemar's Test P-Value: 1.814e-05
##
               Sensitivity: 0.6200
##
               Specificity: 0.3000
            Pos Pred Value • 0 4697
```

THERE'S MORE

What's behind the model's predictions?

CLASS PROBABILITIES

THE THRESHOLD PROBLEM

ISSUE!

- classification threshold little informative
- obscures certainty in judgment

Needed: a representation across all possible values

THE AREA UNDER THE CURVE (AUC)

- plot all observed values (here: class probs)
- y-axis: sensitivity
- x-axis: 1-specificity

AUC STEP-WISE

```
#for each class probability:
threshold_1 = probs[1]
threshold_1
```

```
## [1] 0.4822156
```

```
pred_threshold_1 = ifelse(probs >= threshold_1, 'bot', 'real')
```

	bot	real
bot	183	17
real	188	12

SENSITIVITY AND 1-SPECIFICITY

	bot	real
bot	183	17
real	188	12

$$Sens. = 183/200 = 0.92$$

$$Spec. = 12/200 = 0.06$$

$$Sens. = 183/200 = 0.92$$

 $Spec. = 12/200 = 0.06$

Threshold	Sens.	1-Spec
0.48	0.92	0.94

Do this for every threshold observed.

PLOT THE RESULTS:

QUANTIFY THIS PLOT

```
##
## Call:
## roc.default(response = test_data$account, predictor = probs, ci =
##
## Data: probs in 200 controls (test_data$account bot) < 200 cases (test_
## Area under the curve: 0.5534
## 95% CI: 0.4971-0.6098 (DeLong)</pre>
```

WHAT IF WE COMPARE OUR TWO MODELS?

WHAT'S NEXT?

 Today's tutorial + homework: text classification, performance metrics

Next week: Machine Learning 2