1. How do we discover that there are bot users in the data?

Telling facts:

- a) We analysed 710637 tweets on 2016.6.21, which is 2 days before referendum
- b) users are more activate in 6.21 than average day (see mean values, median, 75% quantile)

In bot identifier file, find:

	twitter_count_160621	tweets_per_day
mean	42.407495	15.538318
Median (50% quantile)	7.000000	4.136082
75% quantile	13.157115	35.000000

Users were sends 3 times as many tweets as they were in their average.

- One user tweets 1417 tweets on that day. This is impossible for human to tweet. That's approximately 1 minute per tweet in 24 hours. (60 * 60 * 24) / 1417 = 60.9
- d) In 2016.6, 4215 new users have registered. This is above the value of registration of all month in 2014, 2015, and 2016.

In bot identifier file:

Data: created count (pandas dataframe with 3 columns: year, month, count)

```
created_count = pd.DataFrame({'count' : idf.groupby(['user_year', 'user_month']).size()}).reset_index()
created_count
```

	user_year	user_month	count
0	2006	7	5
1	2006	8	4
2	2006	9	8

Visualization: Heatmap

Conclusion: there are bots in the data, and they have distorted the data (in particular, the opinions that real-people have).

2. What is the number of tweets sent by bot and number of tweets sent by human on 6.21

In bot_analysis and human_analysis file:

Data: proportion (float)

Visualization: pie chart, "proportion: proportion"

3. Where are bots coming from?

In bot_analysis file:

Data: geo_list (list of tuple, [(country code, frequency)])

Visualization: World map (choropleth map)

- 4. What did the data say? What did the bots say? What did human say?
 - a) Content of tweets

We use most frequent (top 50) hashtags:

In bot_analysis/human_analysis/160621_analysis file:

Data:

hashtags_dist.most_common(50) (list of tuple)

leave_tags, remain_tags (list of string)

Visualization: word cloud or treemap. Font size or Area could match the frequency of the word, and leave, remain can map to different colour.

- b) Sentiment variation
 - i. Sentiment the intensity of the subjective opinion on Brexit (actually, we do not care about the sentiment value is positive or negative)

In bot_analysis/human_analysis/160621_analysis file:

Data: sentiment_hour (json like object, i.e. python dictionary, with hour as keys, sentiment outputs (average 5 minutes) as values)

Visualization: time series line graph

ii. the intensity of the subjective opinion in a single number

Data: sentiment_variation (float), standard deviation of the sentiment across 24 hours

Visualization: in text

5. How bots distort the opinion?

In bot_analysis/human_analysis file:

Data: num_leave, num_remain (float), leave_tags, remain_tags (list of string)

Visualization: interactive game – user input a hashtag in leave_tags or remain_tags to express his/her opinion. According to the ratio of num_leave, num_remain, other icons express their opinions (leave or remain) about referendum.

6. (optional) How do we identified tweets that were sent by bots?

- a) User who send tweets far more than human can do (> 35 tweets per day)
 (approximately 1.48 tweets per hour)
- b) User who sent tweets much more activate in 6.21 than their average tweet per day (difference > 20)