Informe de Análisis de Fosfopeptidos - PEC1

Autor: Edna Rey Agudelo

Fecha: 6 de noviembre de 2024

Repositorio GitHub: https://github.com/apphotel/REY_AGUDELO_EDNA_PEC1_

1. Introducción

Este informe describe el análisis de datos fosfo-proteómicos, obtenido de un experimento en modelos de tumores en ratón (PDX) que se enfocó en fosfopeptidos. El propósito es identificar fosfopeptidos que diferencien entre dos subtipos tumorales (MSS y PD), lo cual podría facilitar la detección de biomarcadores y contribuir al entendimiento de las rutas de señalización celular en estos tumores.

2. Fuente de los Datos

Los datos utilizados en este estudio fueron descargados del repositorio de GitHub del proyecto metaboData, específicamente del conjunto "2018-Phosphoproteomics". Este dataset incluye abundancias normalizadas de fosfopeptidos obtenidas mediante espectrometría de masas (MS) en muestras de dos subtipos tumorales:

- Grupo MSS: que abarca las muestras M1, M5 y T49, con dos réplicas cada una.
- **Grupo PD**: compuesto por las muestras M42, M43 y M64, también con dos réplicas cada una.

3. Organización de Datos en SummarizedExperiment

Para organizar y manipular los datos, se empleó la clase SummarizedExperiment, que permite integrar la matriz de expresión de fosfopeptidos con los metadatos de cada muestra. Los pasos fueron:

- Matriz de expresión: Extracción y conversión de las columnas relevantes a una matriz numérica para facilitar el análisis.
- Metadatos de muestras: Se definió información de cada muestra, incluyendo a qué grupo pertenece (MSS o PD).
- **Metadatos de fosfopeptidos**: Se incorporaron detalles adicionales de cada fosfopeptido, como su secuencia y las modificaciones postraduccionales, para mejorar la interpretación biológica.

4. Exploración de Datos

Para tener una visión general de la estructura y características de los datos, se realizaron los siguientes análisis:

- Distribución de Abundancias: Las muestras del grupo MSS mostraron consistencia en las medianas, mientras que las del grupo PD presentaron una mayor variabilidad en sus abundancias.
- Transformación Logarítmica: Se aplicó una transformación logarítmica (log2) a los datos de abundancia para reducir la varianza, mejorar la comparabilidad entre los grupos y facilitar las visualizaciones.

5. Análisis de Componentes Principales

El PCA ayudó a explorar patrones de agrupamiento entre las muestras y mostró lo siguiente:

- Varianza Explicada: Los dos primeros componentes principales capturaron aproximadamente el 55% de la variación total en el dataset, lo cual es significativo para diferenciar los grupos.
- Agrupación de Muestras: El análisis mostró una separación clara entre los grupos MSS y PD. Las muestras MSS se agruparon de manera compacta, lo que indica homogeneidad, mientras que las muestras PD mostraron mayor dispersión, sugiriendo heterogeneidad.
- Posibles Biomarcadores: La separación observada entre MSS y PD en el PCA sugiere que existen fosfopeptidos específicos que podrían servir como biomarcadores moleculares para estos subtipos tumorales.

6. Análisis de Agrupamiento Jerárquico

Para complementar el PCA, se realizó un análisis de agrupamiento jerárquico que mostró una clara diferenciación entre los grupos MSS y PD:

 Agrupamiento por Subtipo Tumoral: Las muestras del grupo MSS se agruparon estrechamente, mientras que las del grupo PD formaron subgrupos, lo que refuerza la heterogeneidad observada en el PCA. Interpretación Biológica: La mayor variabilidad en el grupo PD podría asociarse a diferencias en la activación de rutas de señalización, lo cual podría influir en el comportamiento clínico de estos tumores.

7. Resultados y Discusión

El análisis sugiere diferencias significativas en los patrones de fosforilación entre los tumores MSS y PD, con los siguientes puntos clave:

- Heterogeneidad en el Grupo PD: La variabilidad sugiere que este grupo tumoral podría activar más rutas de señalización fosforiladas, lo cual podría asociarse con una mayor agresividad tumoral y resistencia a tratamientos.
- Identificación de Biomarcadores Potenciales: La separación clara observada entre MSS y PD en el PCA y el agrupamiento jerárquico sugiere que ciertos fosfopeptidos específicos podrían investigarse como biomarcadores para mejorar la clasificación de estos tumores y optimizar la estratificación de pacientes.

8. Repositorio en GitHub

Todos los datos, scripts y documentación necesarios para reproducir el análisis están disponibles en el repositorio de GitHub:

https://github.com/apphotel/REY AGUDELO EDNA PEC1.

9. Conclusión

Este análisis identificó diferencias relevantes en fosfopeptidos que pueden actuar como biomarcadores para distinguir entre MSS y PD, lo que podría tener un impacto significativo en la clasificación y tratamiento de tumores. La mayor heterogeneidad observada en el grupo PD destaca la necesidad de profundizar en el estudio de estas rutas para mejorar las estrategias terapéuticas personalizadas.

Este informe y el repositorio vinculado servirán como recurso para futuras investigaciones sobre patrones de fosforilación en estos subtipos tumorales y su relación con la biología del cáncer.