Assignment 4

Indian Institute of Science Education and Research

CHM202: Energetics and dynamics of chemical reactions

Instructor: Dr. Arijit K. De

Ques. 1 Calculate the change in entropy when 1 kg ice at 0^{0} C and 1 atm is heated to 373 K and 2 atm pressure. Given ΔH_{fus} (273 K) = 1440 cal. mol⁻¹, ΔH_{vap} (373 K) = 9720 cal. mol⁻¹, C_{P} (liquid) = 18 cal. K⁻¹ mol⁻¹, C_{P} (vapour) = 8 cal. K⁻¹ mol⁻¹.

Ques.2 Calculate the $\triangle G$ for the process $H_2O(l, -10^0C) \longrightarrow H_2O(s, -10^0C)$.

Given \overline{C}_P (liquid) = 18 cal. K^{-1} mol⁻¹, \overline{C}_P (solid) = 9 cal. K^{-1} mol⁻¹, ΔH_{fus} (273 K) = 1440 cal. mol⁻¹. Predict whether the change is spontaneous or not.

Ques.3 A 2 kilowatt Carnot engine working between 400 K and 300 K runs a refrigerator which works between 0^{0} C and 27.3^{0} C. If the refrigerator produces 3 kg of ice per minute from water at 0^{0} C. Calculate the rate of heat leakage to the refrigerator. Also calculate the amount of heat needed for the engine per minute. $\Delta H_{\text{fus}} = 334.72 \text{ J g}^{-1}$.

Ques.4 Two empirical equations of state of a real gas are as follows:

Van der waals:
$$P = (RT/V_m-b) - (a/V_m^2)$$

Dieterici:
$$P = (RTe^{-a/RTVm}) / (V_m-b)$$

Evaluate (dS/dV)_T for each gas. For an isothermal expansion, for which kind of gas (also consider a perfect gas) will ΔS be greatest? Explain your conclusion.

Ques.5 For a first-order phase transition, to which the clapeyron equation does apply, prove the relation

$$C_s = C_p - (\propto V \Delta_{trs} H / \Delta_{trs} V)$$

Where $C_s = (\delta q/\delta T)_S$ is the heat capacity along the coexistence curve of two phases.

Ques.6 The normal boiling point of hexane is 69° C. Estimate (i) its enthalpy of vapourization and (ii) its vapour pressure at 25° C and 60° C.