

SEQUENCE LISTING

RECEIVED

SEP 1 6 2002

<110> Wang, Huaming van Gastel, Frans Aehle, Wolfgang Rodrigues, Ana Topozada, Amr TECH CENTER 1600/2900

<120> Phenol Oxidizing Enzyme Variants

<130> GC584-2

<140> US 09/656,640

<141> 2000-09-07

<160> 8

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1958

<212> DNA

<213> Stachybotrys chartarum

<400> 1

ggatccatca	acatgatcag	ccaagctatc	ggagccgtgg	ctctgggcct	tgctgtgatc	60
	ctġtcgatgc					120
ctcaccaaga	ggcagacgca	gctgagtcct	cccctggcct	tgtacgaagt	gcctctgccg	180
atccctcctc	tgaaggcgcc	caagtagtaa	gtacattcta	taggctagca	gagccaacgt	240
	tgcagtaccg					300
gatggagatt	aggcccttct	cccaccagat	ctaccctgat	ctggagccgg	ccaacatggt	360
tggatacgat	ggcatgtccc	caggacctac	catcatcgtt	cctcgtggca	ctgagagtgt	420
tgtccgcttc	gtgaacagcg	gagagaacac	ctctcccaac	agcgtccact	tgcacggctc	480
	gctccctttg					540
ggattactac	taccccaaca	ggcaggctgc	ccgcatgctt	tggtaccatg	accatgccat	600
	gccgagaacg					660
ggctgaggat	gccctgaacc	tccccagcgg	ctacggcgag	tttgatatcc	ccttggttct	720
gactgccaag	cgatacaacg	cagacggcac	tctcttctcc	accaatggag	aggtttccag	780
cttctggggt	gacgttattc	aagtggtaag	ttgagcccat	tgagatgctt	cagatcctag	840
aagtatcgat	gtatgaaatt	gtgcatgctc	taaccagtgc	tatcacagaa	cggtcagcct	900
tggcctatgc	tcaacgtgca	gccgcgcaag	taccgcttcc	gcttcctcaa	cgctgccgtc	960
tcacgctctt	tcgctctgta	tcttgctacc	tctgaggatt	cagagaccag	acttcccttc	1020
caggtcattg	ccgctgacgg	tggtctgctt	gagggccctg	ttgacactga	cactctgtac	1080
atctctatgg	ccgagcgctg	ggaggttgtt	atcgacttct	ccaccttcgc	tggccagtcc	1140
atcgatatcc	gcaaccttcc	tggtgctgac	ggtctcggtg	ttgagcctga	gtttgataac	1200
actgacaagg	tcatgcgatt	cgtcgttgat	gaagtccttg	agtcgcccga	cacttctgag	1260
gtgcctgcca	acctccgaga	tgttcctttc	cccgagggcg	gcaactggga	ccccgcaaac	1320
cccactgatg	acgagacttt	caccttcggc	cgtgctaatg	gacagtggac	aatcaacgga	1380
gttaccttct	cggatgtcga	gaaccgtctg	ctccgcaatg	tgccccgcga	cactgttgag	1440
atctggcgac	ttgagaacaa	ctccaacggt	tggactcacc	ctgttcacat	tcacctcgtt	1500
gacttccgag	tcctttctcg	ttccactgcc	cgtggagtcg	agccttatga	ggctgctggt	1560
ctcaaggatg	ttgtctggct	ggctcgtcgt	gaggttgtct	atgttgaggc	ccactacgct	1620
cctttcccgt	aagttctcgc	cttttaccta	actggttttc	actcatgcta	acatctacaa	1680
gtggtgtcta	catgttgcac	tgccacaacc	tgatccacga	ggaccacgac	atgatggctg	1740
ctttcaatgt	cactgttctc	ggtgactatg	gctacaacta	caccgagttc	attgacccca	1800

tggagcctct ctggaggccc cgcccttcc tcctcggaga gttcgagaat ggctcgggtg acttcagcga gcttgccatc actgaccgca ttcaggagat ggctagcttc aacccctacg cccaggctga tgatgatgcc gctgaggagt agaccggt

<210> 2 <211> 583 <212> PRT <213> Stachybotrys chartarum <400> 2 Met Ile Ser Gln Ala Ile Gly Ala Val Ala Leu Gly Leu Ala Val Ile Gly Gly Ser Ser Val Asp Ala Arg Ser Val Ala Gly Arg Ser Thr Asp Met Pro Ser Gly Leu Thr Lys Arg Gln Thr Gln Leu Ser Pro Pro Leu Ala Leu Tyr Glu Val Pro Leu Pro Ile Pro Pro Leu Lys Ala Pro Asn 55 Thr Val Pro Asn Pro Asn Thr Gly Glu Asp Ile Leu Tyr Tyr Glu Met 70 75 Glu Ile Arq Pro Phe Ser His Gln Ile Tyr Pro Asp Leu Glu Pro Ala 85 90 Asn Met Val Gly Tyr Asp Gly Met Ser Pro Gly Pro Thr Ile Ile Val 105 100 Pro Arg Gly Thr Glu Ser Val Val Arg Phe Val Asn Ser Gly Glu Asn 120 Thr Ser Pro Asn Ser Val His Leu His Gly Ser Phe Ser Arg Ala Pro 135 140 Phe Asp Gly Trp Ala Glu Asp Thr Thr Gln Pro Gly Glu Tyr Lys Asp 150 Tyr Tyr Tyr Pro Asn Arg Gln Ala Ala Arg Met Leu Trp Tyr His Asp 170 165 His Ala Met Ser Ile Thr Ala Glu Asn Ala Tyr Met Gly Gln Ala Gly 180 185 Val Tyr Met Ile Gln Asp Pro Ala Glu Asp Ala Leu Asn Leu Pro Ser 200 205 Gly Tyr Gly Glu Phe Asp Ile Pro Leu Val Leu Thr Ala Lys Arg Tyr 215 220 Asn Ala Asp Gly Thr Leu Phe Ser Thr Asn Gly Glu Val Ser Ser Phe 235 230 Trp Gly Asp Val Ile Gln Val Asn Gly Gln Pro Trp Pro Met Leu Asn 250 245 Val Gln Pro Arg Lys Tyr Arg Phe Arg Phe Leu Asn Ala Ala Val Ser 265 Arg Ser Phe Ala Leu Tyr Leu Ala Thr Ser Glu Asp Ser Glu Thr Arg 280 285 Leu Pro Phe Gln Val Ile Ala Ala Asp Gly Gly Leu Leu Glu Gly Pro 300 295 Val Asp Thr Asp Thr Leu Tyr Ile Ser Met Ala Glu Arg Trp Glu Val 315 Val Ile Asp Phe Ser Thr Phe Ala Gly Gln Ser Ile Asp Ile Arg Asn 330 325 Leu Pro Gly Ala Asp Gly Leu Gly Val Glu Pro Glu Phe Asp Asn Thr

Asp Lys Val Met Arg Phe Val Val Asp Glu Val Leu Glu Ser Pro Asp 355 360 365

Thr Ser Glu Val Pro Ala Asn Leu Arg Asp Val Pro Phe Pro Glu Gly

```
375
                                             380
    370
Gly Asn Trp Asp Pro Ala Asn Pro Thr Asp Asp Glu Thr Phe Thr Phe
                                        395
                    390
Gly Arg Ala Asn Gly Gln Trp Thr Ile Asn Gly Val Thr Phe Ser Asp
                405
                                     410
Val Glu Asn Arg Leu Leu Arg Asn Val Pro Arg Asp Thr Val Glu Ile
                                 425
                                                     430
Trp Arg Leu Glu Asn Asn Ser Asn Gly Trp Thr His Pro Val His Ile
                            440
His Leu Val Asp Phe Arg Val Leu Ser Arg Ser Thr Ala Arg Gly Val
                        455
Glu Pro Tyr Glu Ala Ala Gly Leu Lys Asp Val Val Trp Leu Ala Arg
                    470
                                         475
Arg Glu Val Val Tyr Val Glu Ala His Tyr Ala Pro Phe Pro Gly Val
                485
                                     490
Tyr Met Leu His Cys His Asn Leu Ile His Glu Asp His Asp Met Met
                                505
                                                     510
Ala Ala Phe Asn Val Thr Val Leu Gly Asp Tyr Gly Tyr Asn Tyr Thr
                            520
                                                 525
Glu Phe Ile Asp Pro Met Glu Pro Leu Trp Arg Pro Arg Pro Phe Leu
                        535
                                             540
Leu Gly Glu Phe Glu Asn Gly Ser Gly Asp Phe Ser Glu Leu Ala Ile
                    550
                                         555
Thr Asp Arg Ile Gln Glu Met Ala Ser Phe Asn Pro Tyr Ala Gln Ala
                565
                                    570
Asp Asp Asp Ala Ala Glu Glu
            580
<210> 3
<211> 2095
<212> DNA
<213> Stachybotrys chartarum
<400> 3
cageteggte tactactete gettetettt gacaaateaa atetaceaat egtteettea
atttcaaacg atcaacatga tcagccaagc tatcggagcc gtggctctgg gccttgctgt
gateggegge agetetgteg atgecagate egttgetggt egategaeag acatgeette
eggteteace aagaggeaga egeagetgag tecteecetg geettgtaeg aagtgeetet
geogateeet eetetgaagg egeocaagta gtaagtaeat tetatagget ageagageea
acgttgctaa tcattgcagt accgtcccca accccaacac tggagaggac atcttgtact
acgagatgga gattaggccc ttctcccacc agatctaccc tgatctggag ccggccaaca
```

tggttggata cgatggcatg tccccaggac ctaccatcat cgttcctcgt ggcactgaga

gtgttgtccg cttcgtgaac agcggagaga acacctctcc caacagcgtc cacttgcacg

qctctttctc tcgagctccc tttgatggtt gggctgagga cactacccag cctggcgagt

acaaggatta ctactacccc aacaggcagg ctgcccgcat gctttggtac catgaccatg

ccatgtccat caccgccgag aacgcctaca tgggtcaggc tggtgtctac atgatccagg

accoggetga ggatgccctg aacctcccca gcggctacgg cgagtttgat atccccttgg

ttctgactgc caagcgatac aacgcagacg gcactctctt ctccaccaat ggagaggttt

ccagettetg gggtgaegtt atteaagtgg taagttgage ccattgagat getteagate

ctagaagtat cgatgtatga aattgtgcat gctctaacca gtgctatcac agaacggtca gccttggcct atgctcaacg tgcagccgcg caagtaccgc ttccgcttcc tcaacgctgc

egteteaege tetttegete tgtatettge tacetetgag gatteagaga ceagaettee etteeaggte attgeegetg aeggtggtet gettgaggge cetgttgaea etgaeaetet

gtacatetet atggeegage getgggaggt tgttategae ttetecaeet tegetggeea

gtccatcgat atccgcaacc ttcctggtgc tgacggtctc ggtgttgagc ctgagtttga

taacactgac aaggtcatgc gattcgtcgt tgatgaagtc cttgagtcgc ccgacacttc

tgaggtgcct gccaacctcc gagatgttcc tttccccgag ggcggcaact gggaccccgc

60

120

180

240

300

360

420

480 540

600

660

720

780

840

900

960

1020 1080

1140

1200 1260

1320

1380

```
aaaccccact gatgacgaga ctttcacctt cggccgtgct aatggacagt ggacaatcaa
                                                                     1440
cggagttacc ttctcggatg tcgagaaccg tctgctccgc aatgtgcccc gcgacactgt
                                                                     1500
tgagatctgg cgacttgaga acaactccaa cggttggact caccctgttc acattcacct
                                                                     1560
cgttgacttc cgagtccttt ctcgttccac tgcccgtgga gtcgagcctt atgaggctgc
                                                                     1620
tggtctcaag gatgttgtct ggctggctcg tcgtgaggtt gtctatgttg aggcccacta ·
                                                                     1680
cgctcctttc ccgtaagttc tcgcctttta cctaactggt tttcactcat gctaacatct
                                                                     1740
acaagtggtg totacatgtt gcactgccac aacctgatcc acgaggacca cgacatgatg
                                                                     1800
gctgctttca atgtcactgt tctcggtgac tatggctaca actacaccga gttcattgac
                                                                     1860
cccatggagc ctctctggag gccccgcccc ttcctcctcg gagagttcga gaatggctcg
                                                                     1920
ggtgacttca gcgagcttgc catcactgac cgcattcagg agatggctag cttcaacccc
                                                                     1980
tacgcccagg ctgatgatga tgccgctgag gagtaaatat gatgatcgtc gaatgattta
                                                                     2040
tggacagcag tatatagcta ttttaggaaa tacttgaata agttgtggtg cttaa
                                                                     2095
```

<210> 4

<211> 572

<212> PRT

<213> Myrothecium verucaria

<400> 4

Met 1	Phe	Lys	His	Thr 5	Leu	Gly	Ala	Ala	Ala 10	Leu	Ser	Leu	Leu	Phe 15	Asn
Ser	Asn	Ala	Val 20	Gln	Ala	Ser	Pro	Val	Pro	Glu	Thr	Ser	Pro 30	Ala	Thr
Gly	His	Leu 35	Phe	Lys	Arg	Val	Ala 40	Gln	Ile	Ser	Pro	Gln 45	Tyr	Pro	Met
Phe	Thr 50	Val	Pro	Leu	Pro	Ile 55	Pro	Pro	Val	Lys	Gln 60	Pro	Arg	Leu	Thr
Val 65	Thr	Asn	Pro	Val	Asn 70	Gly	Gln	Glu	Ile	Trp 75	Tyr	Tyr	Glu	Val	Glu 80
Ile	Lys	Pro	Phe	Thr 85	His	Gln	Val	Tyr	Pro 90	Asp	Leu	Gly	Ser	Ala 95	Asp
Leu	Val	Gly	Tyr 100	Asp	Gly	Met	Ser	Pro 105	Gly	Pro	Thr	Phe	Gln 110	Val	Pro
Arg	Gly	Val 115	Glu	Thr	Val	Val	Arg 120	Phe	Ile	Asn	Asn	Ala 125	Glu	Ala	Pro
Asn	Ser 130	Val	His	Leu	His	Gly 135	Ser	Phe	Ser	Arg	Ala 140	Ala	Phe	Asp	Gly
Trp 145	Ala	Glu	Asp	Ile	Thr 150	Glu	Pro	Gly	Ser	Phe 155	Lys	Asp	Tyr	Tyr	Tyr 160
Pro	Asn	Arg	Gln	Ser 165	Ala	Arg	Thr	Leu	Trp 170	Tyr	His	Asp	His	Ala 175	Met
His	Ile	Thr	Ala 180	Glu	Asn	Ala	Tyr	Arg 185	Gly	Gln	Ala	Gly	Leu 190	Tyr	Met
Leu	Thr	Asp 195	Pro	Ala	Glu	Asp	Ala 200	Leu	Asn	Leu	Pro	Ser 205	Gly	Tyr	Gly
Glu	Phe 210	Asp	Ile	Pro	Met	Ile 215	Leu	Thr	Ser	Lys	Gln 220	Tyr	Thr	Ala	Asn
Gly 225	Asn	Leu	Val	Thr	Thr 230	Asn	Gly	Glu	Leu	Asn 235	Ser	Phe	Trp	Gly	Asp 240
Val	Ile	His	Val	Asn 245	Gly	Gln	Pro	Trp	Pro 250	Phe	Lys	Asn	Val	Glu 255	Pro
Arg	Lys	Tyr	Arg 260	Phe	Arg	Phe	Leu	Asp 265	Ala	Ala	Val	Ser	Arg 270	Ser	Phe
Gly	Leu	Tyr 275	Phe	Ala	Asp	Thr	Asp 280	Ala	Ile	Asp	Thr	Arg 285	Leu	Pro	Phe
Lys	Val 290	Ile	Ala	Ser	Asp	Ser 295	Gly	Leu	Leu	Glu	His 300	Pro	Ala	Asp	Thr

```
Ser Leu Leu Tyr Ile Ser Met Ala Glu Arg Tyr Glu Val Val Phe Asp
                                        315
                • 310
Phe Ser Asp Tyr Ala Gly Lys Thr Ile Glu Leu Arg Asn Leu Gly Gly
                                    330
Ser Ile Gly Gly Ile Gly Thr Asp Thr Asp Tyr Asp Asn Thr Asp Lys
                               345
Val Met Arg Phe Val Val Ala Asp Asp Thr Thr Gln Pro Asp Thr Ser
                                                365
                            360
Val Val Pro Ala Asn Leu Arg Asp Val Pro Phe Pro Ser Pro Thr Thr
                        375
Asn Thr Pro Arg Gln Phe Arg Phe Gly Arg Thr Gly Pro Thr Trp Thr
                                        395
                    390
Ile Asn Gly Val Ala Phe Ala Asp Val Gln Asn Arg Leu Leu Ala Asn
                                    410
Val Pro Val Gly Thr Val Glu Arg Trp Glu Leu Ile Asn Ala Gly Asn
                                425
Gly Trp Thr His Pro Ile His Ile His Leu Val Asp Phe Lys Val Ile
                            440
Ser Arg Thr Ser Gly Asn Asn Ala Arg Thr Val Met Pro Tyr Glu Ser
                        455
                                            460
Gly Leu Lys Asp Val Val Trp Leu Gly Arg Arg Glu Thr Val Val Val
                  470
                                        475
Glu Ala His Tyr Ala Pro Phe Pro Gly Val Tyr Met Phe His Cys His
                                    490
Asn Leu Ile His Glu Asp His Asp Met Met Ala Ala Phe Asn Ala Thr
                                505
Val Leu Pro Asp Tyr Gly Tyr Asn Ala Thr Val Phe Val Asp Pro Met
                            520
Glu Glu Leu Trp Gln Ala Arg Pro Tyr Glu Leu Gly Glu Phe Gln Ala
                       535
Gln Ser Gly Gln Phe Ser Val Gln Ala Val Thr Glu Arg Ile Gln Thr
                    550
                                        555
Met Ala Glu Tyr Arg Pro Tyr Ala Ala Ala Asp Glu
                565
<210> 5
<211> 21
<212> PRT
<213> Stachybotrys chartarum
<400> 5
Phe Val Asn Ser Gly Glu Asn Thr Ser Pro Asn Ser Val His Leu His
Gly Ser Phe Ser Arg
            20
<210> 6
<211> 18
<212> PRT
<213> Stachybotrys chartarum
<400> 6
Gly Val Glu Pro Tyr Glu Ala Ala Gly Leu Lys Asp Val Val Trp Leu
1
                 5
Ala Arg
```

```
<210> 7
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> primer
<221> misc_feature
 <222> (12)...(12)
 \langle 223 \rangle n = A,T,C or G
 <400> 7
                                                                             20
 gtcaacagtg gngaraayac
 <210> 8
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> primer
 <221> misc_feature
 <222> (12)...(18)
 <223> n = A,T,C or G
 <400> 8
                                                                             20
 gcggcctcat anggctcnac
```