Ethan Marx

847-917-1148 | $\underline{\text{emarx@mit.edu}}$ | github.com/ethanmarx

EDUCATION

Massachusetts Institute of Technology

PhD in Physics, Statistics, and Data Science

Northwestern University

BA in Physics and Mathematics

Cambridge, MA
Expected November 2025
Evanston, IL
June 2019

EXPERIENCE

PhD Candidate, IAIFI and A3D3 Junior Investigator

September 2019 – Present

Cambridge, MA

Massachusetts Institute of Technology

- Built robust end to end pipeline for training deep neural networks to detect gravitational waves from binary black hole mergers with an emphasis on scalability, embedding physics, and low-latency detection.
- Reduced latency to detection compared with traditional methods by > 5 seconds, enabling rapid electro-magnetic followup of events, and increasing likelihood of a multi-messenger detection.
- Developed deep-learning based likelihood free inference framework for low-latency sky localization and parameter estimation of gravitational wave source properties, reducing analysis latency to ~ 1 second, compared to \sim days timescale for traditional Bayesian Monte-Carlo methods.
- Deployed ensemble of neural-network models into production for real-time detection and parameter estimation of gravitational wave sources.
- Leader of a group of graduate and undergraduate students, developing novel research directions for them to explore; Guiding them to become competent contributors to complex shared code bases on github; Helping them become high functioning independent researchers, with significant contributions to published papers.

Undergraduate Researcher

Summers 2016 - 2018

Northwestern University

Evanston, IL

- Curated datasets of anomalous noise sources present in gravitational wave detectors to improve deep-learning based noise identification models.
- Developed Python tools for deriving informative features from photometric supernovae light curve timeseries data in service of classification tasks.

Additional Projects

ml4gw | Python, PyTorch

Open-source Python library containing PyTorch implementations of common gravitational wave signal processing techniques, enabling real-time, GPU accelerated data augmentations for training machine learning models.

$\mathbf{mldatafind} \mid \mathit{Python}, \; \mathit{HTCondor}, \; \mathit{Slurm}$

Modular Python tool kit for scaling gravitational wave data generation tasks to 100's of nodes across high performance computing clusters using HTCondor or Slurm schedulers.

hermes | Python, TensorRT, NVIDIA Triton

Python library consisting of tools for exporting, accelerating and deploying trained neural network models with NVIDIA's Triton inference server.

SELECTED PUBLICATIONS

- 1. **E. Marx**, W. Benoit, A. Gunny et al. *Machine-learning pipeline for real-time detection of gravitational waves from compact binary coalescence's*, Phys. Rev. D 111, 042010 (2024), arXiv:2403.18661
- 2. **E. Marx**, W. Benoit, et al. Machine learning-enabled search for binary black hole mergers in LIGO-Virgo-KAGRA's third observing run, Phys. Rev. D 112, 043007 (2025), arXiv:2505.21261
- 3. **E. Marx**, D. Chatterjee, M. Desai et. al *Likelihood-free inference for gravitational-wave data analysis and public alerts*, , submitted to Phys. Rev. D
- 4. D. Chatterjee, **E. Marx** et al. Rapid Likelihood Free Inference of Compact Binary Coalescences using Accelerated Hardware, Mach. Learn.: Sci. Technol. 5 045030 (2024), arXiv:2407.19048

TECHNICAL SKILLS

Languages and Tools: Python, Conda, Poetry, Bash, Git, Github CI/CD, Docker, Apptainer, Kubernetes, HTCondor Libraries: pytorch, numpy, scipy, pandas, scikit-learn, bokeh, matplotlib