Vysoké učení technické v Brně

Fakulta informačních technologií

TEORIE OBVODŮ

Semestrálny projekt

Zadanie: Zistite napätie U_{R5} a prúd I_{R5}. Použite metódu postupného zjednodušovania obvodu.

U [V]	$R_1[\Omega]$	R ₂ [Ω]	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]	R ₆ [Ω]	R ₇ [Ω]	R ₈ [Ω]
115	510	500	550	250	300	800	330	250

V danom obvode je vidieť, že rezistory R₅,R₇ a R₈ sú zapojené v trojuholníku a teda ich zapojenie môžeme pretransformovať na hviezdu:

$$R_A = \frac{R_7 \cdot R_5}{R_5 + R_7 + R_8} = \frac{330 \cdot 300}{300 + 330 + 250} = 112,5 \,\Omega$$

$$R_{B} = \frac{R_{8} \cdot R_{5}}{R_{5} + R_{7} + R_{8}} = \frac{250 \cdot 300}{300 + 330 + 250} = 85,2272 \Omega$$

$$R_C = \frac{R_7 \cdot R_8}{R_5 + R_7 + R_8} = \frac{330 \cdot 250}{300 + 330 + 250} = 93,75\Omega$$

Ďalej obvod zjednodušíme tak, že sčítame odpory R2 a RA a takisto odpory R4 a RB pretože sú zapojené v sérii.

$$R_{2\mathrm{A}} = R_2 + R_A = 500 + 112, 5 = 612, 5\,\Omega$$

$$R_{4\mathrm{B}} = R_4 + R_B = 250 + 85, 2272 = 335, 2272\,\Omega$$

Z obrázka je vidieť, že aj odpory medzi uzlami D,E,F sú zapojené v trojuholníku a teda môžeme znova transformovať na hviezdu.

$$R_D = \frac{R_{2A} \cdot R_3}{R_{2A} + R_3 + R_{4B}} = \frac{612, 5 \cdot 550}{612, 5 + 550 + 335, 2272} = 224,9241 \Omega$$

$$R_{E} = \frac{R_{3} \cdot R_{4B}}{R_{2A} + R_{3} + R_{4B}} = \frac{550 \cdot 335,2272}{612,5 + 550 + 335,2272} = 123,1031\Omega$$

$$R_{F} = \frac{R_{2A} \cdot R_{4B}}{R_{2A} + R_{3} + R_{4B}} = \frac{612, 5 \cdot 335, 2272}{612, 5 + 550 + 335, 2272} = 137,0921 \,\Omega$$

Spojíme odpory v sérii a zjednodušíme paralelné zapojenie:

Pre celkový odpor teda platí:

$$R = R_{1D} + R_{FCE6} = R_1 + R_D + \frac{R_{FC} + R_{E6}}{R_{FC} + R_{E6}} = 510 + 224,9241 + \frac{(137,0921 + 93,75) \cdot (123,1031 + 800)}{(137,0921 + 93,75) + (123,1031 + 800)}$$

$$R = 919,5872 \Omega$$

a pre celkový prúd:

$$I = \frac{U}{R} = \frac{135}{919,5872} = 0,1359 A$$

Keďže sme si vypočítali potrebné hodnoty, môžeme obvod spätne prepočítavať. V tomto prípade oboma rezistormi prechádza rovnaký prúd. Stačí vypočítať iba napätie.

$$U_{1D} = R_{1D} \cdot I = 734,9241 \cdot 0,1359 = 99,8761V$$

 $U_{ECE6} = R_{ECE6} \cdot I = 184,6630 \cdot 0,1359 = 25,0957V$

V tomto prípade vidíme, že sa nám obvod rozdelil na viac vetiev a teda sa delí aj prúd.

$$U_{1} = R_{1} \cdot I = 734,9241 \cdot 0,1359 = 69,309 V$$

$$U_{D} = R_{D} \cdot I = 224,9241 \cdot 0,1359 = 30,5671 V$$

$$I_{FC} = \frac{U_{FCE6}}{R_{FC}} = \frac{25,0957}{230,8422} = 0,1087 A$$

$$I_{E6} = \frac{U_{FCE6}}{R_{E6}} = \frac{25,0957}{923,1031} = 0,0271 A$$

$$U_{F} = R_{F} \cdot I_{FC} = 137,0921 \cdot 0,1087 = 14,9019 V$$

$$U_{C} = R_{C} \cdot I_{FC} = 93,75 \cdot 0,1087 = 10,1906 V$$

$$U_F = R_F \cdot I_{FC} = 137,0921 \cdot 0,1087 = 14,9019 V \qquad U_C = R_C \cdot I_{FC} = 93,75 \cdot 0,1087 = 10,1906 V$$

$$U_E = R_E \cdot I_{E6} = 123,1031 \cdot 0,0271 = 3,3360 V \qquad U_6 = R_6 \cdot I_{E6} = 800 \cdot 0,0271 = 21,68 V$$

$$\begin{split} &U_{2\mathrm{A}}\!=\!U_{D}\!+\!U_{F}\!=\!30,\!5671\!+\!14,\!9019\!=\!45,\!469\,V\\ &U_{4\mathrm{B}}\!=\!U_{F}\!-\!U_{E}\!=\!14,\!9019\!-\!3,\!3360\!=\!11,\!5659\,V\\ &I_{R2}\!=\!\frac{U_{2\mathrm{A}}}{R_{2\mathrm{A}}}\!=\!\frac{45,\!469}{612,\!5}\!=\!0,\!0742\,A\\ &I_{4\mathrm{B}}\!=\!\frac{U_{4\mathrm{B}}}{R_{4\mathrm{B}}}\!=\!\frac{11,\!5659}{335,\!2272}\!=\!0,\!0345\,A \end{split}$$

$$\begin{split} &U_{3}\!=\!U_{2\mathrm{A}}\!-\!U_{4\mathrm{B}}\!=\!33,\!9031\,V \qquad U_{2}\!=\!R_{2}\!\cdot\!I_{R2}\!=\!37,\!1\,V \qquad U_{4}\!=\!R_{4}\!\cdot\!I_{4\mathrm{B}}\!=\!8,\!625\,V \\ &U_{B}\!=\!R_{B}\!\cdot\!I_{4\mathrm{B}}\!=\!2,\!9403\,V \qquad U_{A}\!=\!R_{A}\!\cdot\!I_{R2}\!=\!8,\!3475\,V \end{split}$$

$$U_4 = R_4 \cdot I_{4B} = 8,625 V$$

$$\begin{aligned} &U_7 = U_A + U_C = 18,5381V \\ &U_8 = U_B + U_C = 13,1309V \end{aligned}$$

$$U_5 = U_7 - U_8 = 5,4147V \qquad I_5 = \frac{U_5}{R_5} = 0,0180A$$

Stanovte napätie U R3 a prúd I R3. Použite metódu Theveninovej vety.

U [V]	$R_1[\Omega]$	$R_2[\Omega]$	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]
50	525	620	210	230	130

Pomocou Theveninovej vety si môžeme daný obvod prekresliť na obvod ekvivalentný:

Pre prúd v tomto obvode platí:

$$I = I_3 = \frac{U_i}{R_i + R_3}$$

Vetvu s odpormi si môžeme prekresliť nasledovne:

Pre Ri teda platí:

$$R_{14} = \frac{R_1 \cdot R_4}{R_1 + R_4}$$
 $R_{25} = \frac{R_2 \cdot R_5}{R_2 + R_5}$

$$R_i = R_{14} + R_{25} = \frac{525 \cdot 230}{525 + 230} + \frac{620 \cdot 130}{620 + 130} = 267,4004 \,\Omega$$

Z daného obvodu vypočítame celkový odpor a prúd:

$$R = \frac{(R_1 + R_4) \cdot (R_2 + R_5)}{R_1 + R_4 + R_2 + R_5} = \frac{(525 + 230) \cdot (620 + 130)}{525 + 230 + 620 + 130} = 376,2458 \,\Omega$$

$$I = \frac{U}{R} = \frac{50}{376.2458} = 0,1328 A$$

Máme teda jednoduchý obvod v ktorom sú rezistory R_1 a R_4 a zároveň R_2 a R_5 zapojené v sérii, ale navzájom sú tieto dvojice zapojené paralelne. Napätie U_i je tzv. napätie naprázdno, to znamená, že medzi bodmi A a B neprechádza žiaden prúd.

Zo slučkového napätia vypočítame U_i

$$R_{1}I_{1} + U_{i} - R_{2}I_{2} = 0 \qquad U_{i} = R_{2}I_{2} - R_{1}I_{1}$$

$$U_{i} = R_{2} \cdot \frac{U}{R_{2} + R_{5}} - R_{1} \cdot \frac{U}{R_{1} + R_{4}} = 620 \cdot \frac{50}{620 + 130} - 525 \cdot \frac{50}{525 + 230} = 6,5651V$$

Teraz už poznáme všetky potrebné veličiny, vďaka ktorým môžeme vypočítať I_{R3} a U_{R3}.

$$I_3 = \frac{U_i}{R_i + R_3} = \frac{6,5651}{267,4004 + 210} = 0,0138 A$$
 $U_3 = R_3 \cdot I_3 = 210 \cdot 0,0138 = 2,898 V$

Zistite napätie U_{R2} a prúd I_{R2} . Použite metódu uzlových napätí (U_A , U_B , U_C).

U [V]	Ι ₁ [Ω]	Ι ₂ [Ω]	$R_1[\Omega]$	R ₂ [Ω]	R ₃ [Ω]	R ₄ [Ω]	R ₅ [Ω]	R ₆ [Ω]
150	0,4	0,8	490	450	610	340	340	270

V obvode si vyznačíme smery prúdov a slučky.

Taktiež môžeme zjednodušiť paralelné zapojenie rezistorov R₃ a R₄.

$$R_{34} = \frac{R_3 \cdot R_4}{R_3 + R_4} = \frac{610 \cdot 340}{610 + 340} = 218,3157 \,\Omega$$

Zostavíme si rovnice pre prúdy tečúce z/do uzlov A,B,C:

$$A: I_{R1} - I_{R2} - I_{R34} - I_{1} = 0$$

$$B: I_{R34} + I_1 - I_{R6} - I_2 = 0$$

$$C: I_{R6} + I_2 - I_{R5} = 0$$

a rovnice pre jednotlivé slučky a vyjadríme z nich jednotlivé prúdy:

$$\begin{split} U_{a} + R_{1} \cdot I_{RI} - U &= 0 & I_{RI} = \frac{U - U_{A}}{R_{1}} \\ I_{R34} \cdot R_{34} + U_{B} - U_{A} &= 0 & I_{RI} = \frac{U - U_{A}}{R_{1}} \\ I_{R6} \cdot R_{6} + U_{C} - U_{B} &= 0 & I_{R6} = \frac{U_{B} - U_{C}}{R_{6}} \\ I_{R2} \cdot R_{2} - U_{A} &= 0 & I_{R2} = \frac{U_{A}}{R_{2}} \end{split}$$

Tieto prúdy dosadíme do rovníc pre jednotlivé uzly a riešime sústavu 3 rovníc o 3 neznámych.

 $I_{R5} = \frac{U_C}{R_5}$

Výsledné hodnoty sú:

 $I_{R5} \cdot R_5 - U_C = 0$

$$U_{C} = 119,999 V$$
 $U_{B} = -0,7075 V$ $U_{A} = U_{R2} = -10,9818 V$

Vypočítame hľadaný prúd I_{R2:}

$$I_{R2} = \frac{U_A}{R_2} = \frac{-10,9818}{450} = -0,0244 A$$

Pre napájacie napätie platí: $u=U\cdot\sin(2\pi f\,t)$. Vo vzťahu pre napätie na kondenzátore: $u_{C1}=U_{C1}\cdot\sin(2\pi f\,t+\varphi_{C1})$ určte $|U_{C1}|$ a φ_{C1} . Použite metódu zjednodušovania obvodu. Pozn: Pomocný "smer šípky napájacieho zdroja platí pre špeciálny časový okamih $t=\frac{\pi}{2\omega}$."

U	[V]	$R_1[\Omega]$	R ₂ [Ω]	L ₁ [mH]	L ₂ [mH]	C ₁ [μF]	C ₂ [μF]	f [Hz]
7	'5	165	150	380	430	310	235	95

Vypočítame si ulhovú rýchlosť ω:

$$\omega = 2\pi f = 2.3,1416.95 = 596,904 \, rad. sec^{-1}$$

Vypočítame najskôr jednotlivé impedancie (odpory) a z nich následne celkovú impedanciu

$$Z_{1} = j\omega L_{1} + \frac{1}{j\omega C_{1}} = j\frac{\omega^{2}C_{1}L_{1} - 1}{\omega C_{1}} = \frac{596,904^{2} \cdot 310 \cdot 10^{-6} \cdot 0,38 - 1}{596,904 \cdot 310 \cdot 10^{-6}} = 221,4192 j\Omega$$

$$Z_2\!=\!R_2\!+\!j\omega L_2\!=\!150+j596,\!904\cdot\!0,\!43\!=\!150+256,\!6687\,j\Omega$$

$$Z_3 = R_1 + \frac{1}{j\omega C_2} = R_1 - j\frac{1}{\omega C_2} = 165 - j\frac{1}{596.904 \cdot 235 \cdot 10^{-6}} = 165 - 7,1289 j \Omega$$

$$Z_{23} = \frac{Z_2 \cdot Z_3}{Z_2 + Z_3} = \frac{(150 + 256,6687 j) \cdot (165 - 7,1289 j)}{(150 + 256,6687 j) + (165 - 7,1289 j)} = 115,631 + 39,4489 j\Omega$$

$$Z = Z_1 + Z_{23} = 221,4192j + (115,631 + 39,4489j) = 115,631 + 260,8681j\Omega$$

$$I = \frac{U}{Z} = \frac{75}{(115,631 + 260,8681j)} = 0,1065 - 0,2402jA$$

$$|U_{CI}| = \frac{I}{j\omega C_1} = -j\frac{I}{\omega C_1} = -j\frac{(0,1065 - 0,2402 \ j)}{(596,904 \cdot 310 \cdot 10^{-6})} = \sqrt{1,2981^2 + 0,5755^2} = 1,4199 \ V$$

$$\sin \varphi = \frac{\Im_{UCI}}{|U_{CI}|} = \frac{0,5755}{1,4199} = 0,4053$$

$$\varphi = \sin^{-1}(0,4053) + 180^{\circ} = 203^{\circ}54'35''$$

Pre napájacie napätie platí: $u_1=U\cdot\sin(2\,\pi f\,t)$. Vo vzťahu pre napätie na kondenzátore C2: $u_{C2}=U_{C2}\cdot\sin(2\,\pi f\,t+\varphi_{C2})$ určte $|U_{C2}|$ a φ_{C2} . Použite metódu smyčkových prúdov. Pozn: Pomocný "smer šípky napájacieho zdroja platí pre špeciálny časový okamih $t=\frac{\pi}{2\omega}$."

U ₁ [V]	U ₂ [V]	$R_1[\Omega]$	R ₂ [Ω]	R ₃ [Ω]	L ₁ [mH]	C ₁ [μF]	C ₂ [μF]	f [Hz]
35	55	125	140	120	100	200	105	70

Vypočítame si ulhovú rýchlosť ω:

$$\omega = 2\pi f = 2.3,1416.70 = 439,824 \, rad. \, sec^{-1}$$

$$X_L = j \cdot \omega \cdot L$$

$$X_{C1} = \frac{1}{j \cdot \omega \cdot C_1}$$

$$X_{C2} = \frac{1}{j \cdot \omega \cdot C_2}$$

Zostavíme si sústavu rovníc pre jednotlivé smyčky:

$$\begin{split} &-U_{1}+R_{1}\cdot I_{A}+R_{2}(I_{A}-I_{C})+X_{L}(I_{A}-I_{B})+X_{CI}(I_{A}-I_{B})=0\\ &X_{CI}(I_{B}-I_{A})+X_{L}(I_{B}-I_{A})+X_{C2}(I_{B}-I_{C})+R_{3}\cdot I_{B}=0\\ &R_{2}(I_{C}-I_{A})-U_{2}+X_{C2}(I_{C}-I_{B})=0 \end{split}$$

Vyriešením tejto sústavy sme zistili, že:

$$I_A = 0,6932 + 0,0051 A$$
 $I_B = 0,0278 - 0,0053 A$ $I_C = 1,0598 + 0,1647 j A$

Pre U_c si môžeme odvodiť vzťah:

$$U_{C} = X_{C2}(I_{B} - I_{C})$$

Dosadíme hodnoty a počítame:

$$U_C = \frac{-11,5733+70,2022 j}{3.14} = -3,6839+22,3460 jV$$

Vypočítame U_c:

$$|U_c|$$
 = 22,6477 V

a uhol φ:

$$\varphi = \arctan\left(\frac{3,6839}{22,3460}\right) + \frac{\pi}{2} = 0,1633 + \frac{\pi}{2} = 1,7341$$

$$\varphi = 99,3614 = 9921'41''$$

U [V]	L [H]	R [Ω]	i _∟ (0) [A]
6	10	20	3

Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie $i_{\rm L}={\rm f(t)}.$ Vykonajte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

Pre napätie v danom obvode platí:

$$U_R + U_L = U k de U_L = \frac{L \cdot di_L}{dt} = Li'_L \qquad Li'_L + Ri_L = U$$

Získali sme diferenciálnu rovnicu: $10\emph{i}_{L}+20\emph{i}_{L}=6$

1. Zostavíme charakteristickú rovnicu: $10\lambda+20=0$ z ktorej vyjadríme λ : $\lambda=-2$

2. Očakávaný tvar rovnice má tvar: $i_L = c(t) \cdot e^{\lambda t}$ po dosadení za λ dostaneme: $i_L = c(t) \cdot e^{-2}$

3. Dosadíme do zadania:
$$10\dot{c}(t)\cdot e^{-2t} + 10\dot{c}(t)\cdot (-2)\cdot e^{-2t} + 20\dot{c}(t)\cdot e^{-2t} = 6$$

4. počítame:

$$c'(t) \cdot e^{-2t} = \frac{6}{10}$$
 $c'(t) = \frac{3}{5} \cdot e^{2t}$

5. integrujeme

$$c(t) = \frac{3}{5} \cdot e^{2t} \cdot (\frac{1}{2})$$
 $c(t) = \frac{3}{10} \cdot e^{2t} + K$

6. dosadíme do očakávaného tvaru rovnice:

$$i_L = (\frac{3}{10} \cdot e^{2t} + K) \cdot e^{-2t}$$

$$i_L = \frac{3}{10} + K \cdot e^{-2t}$$

7. zo zadania dosadíme i L = 3

$$3 = \frac{3}{10} + K \cdot e^{-2.0}$$
 $3 = \frac{3}{10} + K$

$$K=3-\frac{3}{10}=\frac{27}{10}=2,7$$

8. na záver spätne dosadíme:

$$i_L = 2,7 \cdot e^{-2t} + 0,3$$

Vykonáme skúšku správnosti:

$$10i_{L}+20i_{L}=6$$

$$10(2,7\cdot(-2)\cdot e^{-2t})+20(2,7\cdot e^{-2t}+0,3)=6$$

$$-54e^{-2t}+54e^{-2t}+6=6$$

$$6=6 Výrok pravdivý$$

Výsledné hodnoty:

	1. (F)
U_{R5}	$U_{R5} = 5,4147 V$
I_{R5}	$I_{R5} = 0.018 A$

	2. (A)
U _{R3}	$U_{R3} = 2,898 V$
I _{R3}	$I_{R3} = 0,0138 A$

	3. (B)
U _{R2}	$U_{R2} = -10,9818 V$
I _{R2}	$I_{R2} = -0,0244 A$

	4. (F)
$ U_{C1} $	$ U_{C1} = 1,4199 V$
φ_{C1}	$\varphi_{C1} = 203°54'35'' = 0,4053 rad$

	5. (A)
$ U_{c2} $	$ U_{C2} $ =22,6477 V
φ_{C2}	$\varphi_{C2} = 99^{\circ}21'41'' = 1,7341 rad$

	6. (B)
rovnica	$i_L = 2.7 \cdot e^{-2t} + 0.3$