	VANSH KALRA				
	CST	DAA	2017576	Date	
	25				
	Tutotal-?				
91.	What is the time void fun (int n) &	2 complexity	of below co	de and how?	
	int j=1- i=0; while (i <n) ?<="" th=""><th></th><th></th><th></th></n)>				
•	i=itj;		·		
A1 .	Jalues after erec	1	e loop		
	2^{nd} time $i=1$ 3^{nd} time $i=1$ 4^{nd} time $i=1$				
	let folz ith time i				
		$\frac{2}{\sin^2 (n)}$	11134 - E171		
	T = O(sq/zt n).				
§2.	White kecukkence phints fibonacci get complexity of complexity of this	series. Solve the Orogham	the recurry	ince helation to	
M2.	fib(n) = fib(n-1) +	fib(n-z)			
	int fib (int n)				
	if (n < = 1)	- o(1)			

-

	DATE
	Page
	hetula n',
	return fib(n-1) + fib(n-2), - T(n-1) + T(n-2)
	3
	T(n) = T(n-1) + T(n-2) + 1
	fib(n)
	fib(n-1) fib(n-2)
	$T(n) = 2T(n-2)+1$ [let $T(n-1) \approx T(n-2)$].
	T(n-2) = 2 * (2 + (n-2-2) +) + 1
	= 2* (2F (n)
	fib(n) — 1
	. /
	fib(n-1) fib(n-2) 2
	fib(n-2) $fib(n-3)$ $fib(n-3)$ $fib(n-4)$ — 4
	1+2+4+8+
	a=1 $h=2$
	=> a (ktehns - 1)
	72-1
	= 2tehrns - 1
	$=2^{n+1}-1$
1	· antl

T= 0 (2n)

	Date Page
	There is one entry in stack at every function call and it remains inside stack till it returns the value. Maximum
	entry at any instance Z=n: Space Complexity = O(n)
93.	White phograms which have complexity - nlogn n3 log (logn).
-	2 1092
	for (i=1, i <= 1).
	for (j=1; j<=n; j++)
	3 SUM = SUM + i'
	1 0
	2 n 4 n
	logn
	T= O(nlogn)

DATE _ PAGE -

n3

for (i=0; i<n; i++)

for (j=0; j<n;j++)

for(k=0; kin; k++)

Sum + = k;

log logn

for (j=1; j<n; j*=2)

foh (k=j; k>=1, k/=2)

84. Solve the following recurrence relation T(n)=T(n/4)+T(n/2)

 $M4. T(n) = 2T(n/2) + cn^2$

 $T(n/2) \geqslant T(n/4)$

Using masters method

T(n)= aT(n/b) + f(n)

a>1 b>1 c=log,a

Compaking no & f(n) we get

 $C = \log_2 2 = 1$ $f(n) > n^c$

T(n)= & (f(n))

DATE		
PAGE		

T= 8 (n2)

What is the time complexity of following function fun()? int for (int n) {

Solint 1=1; [= n; i++) } forlint j=1; j<n; j+=i) ?

// Some O(1) task

333

for i=2 j=13,5... (run for n times).

for i=2 j=13,5... (run for n/2 times).

for i=3 j=1,4,7... (run for n/3 times)

 $T(n) = n + n/2 + n/3 + n/4 + \dots$

= n (1+ 1/2 + 1/3 + 1/4+ ...)

 $= n \frac{1}{\sqrt{x}}$ $= n \log x / \frac{1}{x}$

= nlogn

T(n) = O(nlogn)

96

What should be the time complexity of for (int i= 2; i = n; i= pow (i, k))

//some O(1) exphessions

where k is a constant

DATE	_		
PAGE	_		

16. Ist iteration i= 2

Ind iteration i= 2k

Ind iteration i= 2k2

nth iteration i = 2ki

n = 2ki

logn = log 2ki

logn = kilog2

log logn = ilogk

i = log klogn

T = logx logn

27. White a hecokhence helation when quick soft hepeatedly divides the akkay into two pakets of 99% & 1%. Derive the time complexity in this case. Show the hecoksion thee while deriving time complexity & find the difference in heights of both the extreme pakes. What do you understand by this analysis?

M.

$$T(n) = T(n-1) + O(1)$$

DatePage
$T(n) = \left[T(n-1) + T(n-2) + \dots + T(1) + O(1)\right] \times n$ folimphying.
$T(n) = n \times n$ $[: T(n) = O(n^2)]$
Lowest height = 2 Highest height = n
Différence blu highest & lowest heights = n-2 n>1
Analysis - The given algorithm provides linear result in the form of sorted array.

	Page
98.	Arrange the following in increasing student of rate of growth.
α).	n, n! logn loglogn koot(n) log(n!) nlogn log^2(n), 2^n, 2^(2^n), 4^n, n^2, 100
b).	2(2 ⁿ n), 4n, 2n, 1, logn, log(log(n)), Jiogn, log2n, 2logn, n, log(n!), n!, n2, n logn.
c).	8^(2n) log_n, nlog_n, nlog_n, log(n!), n!, log_e(n), 46, 2n2, 7n3, Sn.
۸٥ ،	
(18.9)	$\frac{100 < \log(\log n) < \log n < \log^2 n < koot(n) < n < n\log n < n^2}{< 2^n < 4^n < 2^{2^n} < \log(n!) < n!}$
b).	$1 < \log(\log(n)) < \log n < \log n < \log 2n < 2\log n < n < 2n < 4n$ $< n \log n < n^2 < \log(n!) < n! < 2(2n).$
c).	96 < logen < logen < Sn < nlogen < nlogen < n! < logn! < 920
	Total 2 Total quality
1 1 1 2 2 2	