(1) Develop a regression model to predict using: all variables; forward selection; backward selection; stepwise; the best subset procedure.

See the following result:

"Simple regression all variables",

"Simple regression forward selection",

"Simple regression backward selection",

"Simple regression stepwise selection",

"Simple regression best subset".

(2) What model do you recommend?

The result "Simple regression backward selection".

The variables are "male_fem" on "pct_u18" and "pct_o65". The model is male_fem = $161.08957 - 1.58719 \times \text{pct}_u18 - 2.24835 \times \text{pct}_o65$.

As shown in the following chart, the "Pr>F" is "<0.0001", and the "Pr>|t|" are both "<0.0001", which means they are significant. As a result, it is a good model.

Analysis of Variance										
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F					
Model	2	100106	50053	66.25	<.0001					
Error	787	594554	755.46851							
Corrected Total	789	694660								

Root MSE	27.48579	R-Square	0.1441
Dependent Mean	90.74734	Adj R-Sq	0.1419
Coeff Var	30.28826		

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Squared Partial Corr Type I	Variance Inflation		
Intercept	1	161.08957	6.91759	23.29	<.0001		0		
PCT_U18	1	-1.58719	0.21987	-7.22	<.0001	0.01659	1.11857		
PCT_065	1	-2.24835	0.20764	-10.83	<.0001	0.12967	1.11857		

(3) What is the conclusion regarding the overall significance of the regression model? Why?

The F-test considers the linear relationship between the target variable y and the set of predictors taken as a whole. As shown in the following chart, the "F value" is 66.25 and the "Pr>F" is "<0.0001", which means it is significant. As a result, it is a good model.

Analysis of Variance									
Source Sum of Mean Square F Value Pr >									
Model	2	100106	50053	66.25	<.0001				
Error	787	594554	755.46851						
Corrected Total	789	694660							

(4) What variables are included in your model?

"Pct_u18" and "pct_o65" variable.

(5) What is the average error in prediction?

average error =
$$\sqrt{MSE}$$
 = $\sqrt{\frac{SSE}{n-m-1}}$ = $\sqrt{\frac{594554}{790-2-1}}$ = $\sqrt{755.46851}$ = 27.486

(6) Which of the predictors belong or do not belong in the model?

"Pct_u18" and "pct_o65" variables belong in the model.

"Tot pop" and "pc 18 65" variables do not belong in the model.

(7) Suppose that we omit total population from the model and rerun the regression. Explain what will happen to the value of "Rsqr"?

The "R-Square" does not change a lot, because maybe there are correlation between "tot_pop" and some other variables. However, it decrease a little, because more variables might give higher multiple correlation, which means less variables might give lower multiple correlation. The "Adj R-Sq" increased a little, because the number of variables reduced. (The following charts are result "with 'tot pop' and without 'tot pop'")

Root MSE	27.49882	R-Square	0.1444	Root MSE	27.48582	R-Square	0.1441
Dependent Mean	90.74734	Adj R-Sq	0.1411	Dependent Mean	90.74734	Adj R-Sq	0.1419
Coeff Var	30.30261			Coeff Var	30.28829		

(8) Discuss the presence of multicollinearity. Does your model contain multicollinear variables? How do you know?

Yes, there are multi-collinear variables contained in my model. As shown in the following chart, the "condition index" are bigger than 10, and the "proportion of variation" for some variables are bigger than 0.5.

Parameter Estimates									
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Tolerance	Variance Inflation		
Intercept	1	161.08957	6.91759	23.29	<.0001		0		
PCT_U18	1	-1.58719	0.21987	-7.22	<.0001	0.89400	1.11857		
PCT_065	1	-2.24835	0.20764	-10.83	<.0001	0.89400	1.11857		

Collinearity Diagnostics								
		Condition	Proportion of Variation					
Number	Eigenvalue	Index	Intercept	PCT_U18	PCT_065			
1	2.88882	1.00000	0.00237	0.00383	0.01077			
2	0.09870	5.41006	0.00809	0.11234	0.60797			
3	0.01248	15.21505	0.98954	0.88384	0.38126			