Claims

- 1. Use of perfluoroalkyl-containing metal complexes that have a critical micelle formation concentration $< 10^{-3}$ mol/l, a hydrodynamic micelle diameter (2 Rh) > 1 nm and a proton relaxivity in plasma (R¹) > 10 l/mmol's as contrast media in MR imaging for visualization of intravascular thrombi.
- 2. Use according to claim 1, characterized in that the metal complexes are used as MRI contrast media for visualization of venous thrombi.
- 3. Use according to claim 1 or 2, wherein the metal complexes are used as MRI contrast media for visualization of arterial thrombi.
- 4. Use according to one of claims 1 to 3, wherein the metal complexes are used as MRI contrast media for early determination of a thrombotic occlusive vascular disease.
- 5. Use according to claim 1, wherein metal complexes whose micelle formation concentration is $< 10^{-4}$ mol/l are used.
- 6. Use according to claim 1, wherein metal complexes whose hydrodynamic micelle diameter is ≥ 3 nm, preferably > 4 nm, are used.
- 7. Use according to claim 1, wherein metal complexes that have a proton relaxivity in plasma of > 13 l/mmol's, preferably > 15 l/mmol's, are used.
- 8. Use according to one of claims 1 to 7, wherein as perfluoroalkyl-containing metal complexes, the compounds of general formula I

 R^{F} -L-K

in which

- R^F is a perfluorinated, straight-chain or branched carbon chain with formula $-C_nF_{2n}E$, in which
 - E represents a terminal fluorine, chlorine, bromine, iodine or hydrogen atom and n stands for numbers 4-30,
- L means a direct bond, a methylene group, an -NHCO group, a group

$$\frac{\mathbb{R}^{a}}{-\left[\left(\mathrm{CH_{2}}\right)_{\mathrm{u}}\text{-NHCOCH}_{2}\text{-}\left(\mathrm{CH_{2}}\right)_{\mathrm{p}}\right]_{\mathrm{q}}^{\mathrm{N}}\text{-SO}_{2}\text{-}$$

whereby p means the numbers 0 to 10, and q and n, independently of one another, mean numbers 0 or 1, and

R^a is a hydrogen atom, a methyl group, a benzyl group, a phenyl group, a - CH₂-OH group, a CH₂OCH₃ group, a -CH₂-CO₂H group or a C₂-C₁₅ chain, which optionally is interrupted by 1 to 3 oxygen atoms, 1 to 2 > CO groups or an optionally substituted aryl group and/or is substituted with 1 to 4 hydroxyl groups, 1 to 2 C₁-C₄ alkoxy groups, 1 to 2 carboxy groups, a group -SO₃H-,

or is a straight-chain, branched, saturated or unsaturated C₂-C₃₀ carbon chain, which optionally contains 1 to 10 oxygen atoms, 1 to 3 -NR^a groups, 1 to 2 sulfur atoms, a piperazine, a -CONR^a group, one to six -NR^aCO groups, an -SO₂ group, an -NR^a-CO₂ group, 1 to 2 CO groups, a group

-CO-N-T-N(R^a)-SO₂-R^F, or 1 to 2 optionally substituted aryls and/or is interrupted

by these groups and/or is optionally substituted with 1 to 3 -OR^a groups, 1 to 2 oxo groups, 1 to 2 -NH-COR^a groups, 1 to 2 -CONHR^a groups, 1 to 2 -(CH₂)_p-CO₂H groups, 1 to 2 groups -(CH₂)_p-(O)_q-CH₂CH₂-R^F, whereby

R^a, R^F and p and q have the above-indicated meanings, and

T means a C₂-C₁₀ chain, which optionally is interrupted by 1 to 2 oxygen atoms or 1 to 2 -NHCO groups,

K stands for a complexing agent or metal complex or their salts of organic and/or inorganic bases or amino acids or amino acid amides, specifically for a complexing agent or complex of general formula II

in which R^c, R¹ and B are independent of one another, and

- R^c has the meaning of R^a or means -(CH₂)m-L- R^F , whereby m is 0, 1 or 2, and L and R^F have the above-mentioned meaning,
- R¹, independently of one another, mean a hydrogen atom or a metal ion equivalent of atomic numbers 22-29, 42-46 or 58-70,
- B means -OR¹ or

$$-N$$
 R^3
 $-N$
 $N-SO_2-L-R^F$
or

whereby R^1 , L, R^F and R^c have the above-mentioned meanings, or stands for a complexing agent or complex of general formula III

$$R^{c}$$
 R^{b}
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$

in which R^c and R¹ have the above-mentioned meanings,

 R^b has the meaning of R^a , and

or

K

stands for a complexing agent or complex of general formula IV

$$R^{1}O_{2}C$$
 N
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$

in which R¹ has the above-mentioned meaning

or

K stands for a complexing agent or complex of general formula V

$$CO_2R^1$$
 R^1O_2C
 N
 CO_2R^1
 CO_2R^1

in which R1 has the above-mentioned meaning, and o and q stand for numbers 0

or

1, and yields the sum o + q = 1,

or

K stands for a complexing agent or complex of general formula VI

$$R^{1}O_{2}C$$
 N
 N
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$

in which R1 has the above-mentioned meaning

or

K stands for a complexing agent or complex of general formula VII

$$R^{1}O_{2}C$$
 N
 N
 $CO_{2}R^{1}$
 $CO_{3}R^{1}$
 $CO_{2}R^{1}$
 $CO_{3}R^{1}$
 $CO_{4}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$
 $CO_{5}R^{1}$

in which R^{I} and B have the above-mentioned meanings or

K stands for a complexing agent or complex of general formula VIII

$$R^{1}O_{2}C$$
 N
 N
 N
 $CO_{2}R^{1}$
 N
 $CH_{2}CH_{2}$
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 R^{b}
 R^{c}
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 R^{b}
 R^{c}
 $CO_{2}R^{1}$
 R^{c}

in which R^c , and R^1 have the above-mentioned meanings, and R^b has the above-mentioned meaning of R^a

or

K stands for a complexing agent or complex of general formula IX

$$R^{1}O_{2}C$$
 N
 N
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$

in which R^c and R^l have the above-mentioned meanings, or

K stands for a complexing agent or complex of general formula X

$$R^{1}O_{2}C$$
 N
 N
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$
 R^{c}
 $CO_{2}R^{1}$
 $CO_{2}R^{1}$

in which R^c and R^1 have the above-mentioned meanings, or

K stands for a complexing agent or complex of general formula XI

$$R^{1}O_{2}C \xrightarrow{N} N \xrightarrow{CO_{2}R^{1}} (XI)$$

$$= \begin{bmatrix} N & N & O \\ CO_{2}R^{1} & & & \\$$

in which R1, p and q have the above-mentioned meanings, and Rb has the meaning

of R^a,

or

K stands for a complexing agent or complex of general formula XII

$$\begin{array}{c|c} & & & \\ & & &$$

in which $L,\,R^F$ and Z^1 have the above-mentioned meanings, or

K stands for a complexing agent or complex of general formula XIII

$$\begin{array}{c|c}
 & CO_2R^1 \\
 & CO_2R^1 \\
 & N & CO-N & N-SO_2 \\
 & N & CO_2R^1 \\
 & CO_2R^1 & (XIII)
\end{array}$$

in which R1 has the above-mentioned meaning,

are used.

9. Use according to claim 8, wherein the compounds of general formula I, in which L stands for

```
α-СΗ2-β
              \alpha-CH<sub>2</sub>CH<sub>2</sub>-\beta
              \alpha-(CH<sub>2</sub>)<sub>s</sub>-\beta s = 3 - 15
              \alpha-CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
             \alpha-CH<sub>2</sub>-(O-CH<sub>2</sub>-CH<sub>2</sub>-)<sub>t</sub>-\beta
                                                                                           t = 2 - 6
             α-CH<sub>2</sub>-NH-CO-β
             \alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(CH<sub>2</sub>COOH)-SO<sub>2</sub>-\beta
             \alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(C<sub>2</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
             \text{$\alpha$-CH$_2$-NH-CO-CH$_2$-N(C$_{10}$H$_{21})$-SO$_2$-$\beta$}
            \alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(C<sub>6</sub>H<sub>13</sub>)-SO<sub>2</sub>-\beta
             \alpha-CH<sub>2</sub>-NH-CO-(CH<sub>2</sub>)<sub>10</sub>-N(C<sub>2</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
            \alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(-CH<sub>2</sub>-C<sub>6</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
            \text{$\alpha$-CH$_2$-NH-CO-CH$_2$-N(-CH$_2$-CH$_2$-OH)$SO$_2$-$\beta$}
            \alpha-CH<sub>2</sub>-NHCO-(CH<sub>2</sub>)<sub>10</sub>-S-CH<sub>2</sub>CH<sub>2</sub>-\beta
            \alpha-CH<sub>2</sub>NHCOCH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
            \alpha-CH<sub>2</sub>NHCO(CH<sub>2</sub>)<sub>10</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
            \alpha-CH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
            \alpha-CH<sub>2</sub>-O-CH<sub>2</sub>-C(CH<sub>2</sub>-OCH<sub>2</sub>CH<sub>2</sub>-C<sub>6</sub>F<sub>13</sub>)<sub>2</sub>-CH<sub>2</sub>-OCH<sub>2</sub>-CH<sub>2</sub>-\beta
\alpha-CH<sub>2</sub>-NHCOCH<sub>2</sub>CH<sub>2</sub>CON-CH<sub>2</sub>CH<sub>2</sub>NHCOCH<sub>2</sub>N(C<sub>2</sub>H<sub>5</sub>)SO<sub>2</sub>C<sub>8</sub>F<sub>17</sub>
                                                          \mathsf{CH}_2\text{-}\mathsf{CH}_2\mathsf{NHCOCH}_2\mathsf{N}(\mathsf{C}_2\mathsf{H}_5)\text{-}\mathsf{SO}_2\text{-}\beta
           \text{$\alpha$-CH$_2$-O-CH$_2$-CH(OC$_{10}$H$_{21})$-CH$_2$-O-CH$_2$CH$_2$-$\beta}
           α-(CH2NHCO)4-CH2O-CH2CH2-B
           \alpha-(CH<sub>2</sub>NHCO)<sub>3</sub>-CH<sub>2</sub>O-CH<sub>2</sub>CH<sub>2</sub>-\beta
           \alpha-CH<sub>2</sub>-OCH<sub>2</sub>C(CH<sub>2</sub>OH)<sub>2</sub>-CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
```

 α -CH₂NHCOCH₂N(C₆H₅)-SO₂- β

 α -NHCO-CH₂-O-CH₂CH₂- β

α-NHCO-CH₂-CH₂-β

```
α-NH-CO-B
α-NH-CO-CH2-N(CH2COOH)-SO2-β
α-NH-CO-CH2-N(C2H5)-SO2-β
\alpha-NH-CO-CH<sub>2</sub>-N(C<sub>10</sub>H<sub>21</sub>)-SO<sub>2</sub>-\beta
\alpha-NH-CO-CH<sub>2</sub>-N(C<sub>6</sub>H<sub>13</sub>)-SO<sub>2</sub>-\beta
\alpha-NH-CO-(CH<sub>2</sub>)<sub>10</sub>-N(C<sub>2</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
α-NH-CO-CH2-N(-CH2-C6H5)-SO2-β
\alpha-NH-CO-CH<sub>2</sub>-N(-CH<sub>2</sub>-CH<sub>2</sub>-OH)SO<sub>2</sub>-\beta
α-NH-CO-CH<sub>2</sub>-β
α-CH2-O-C6H4-O-CH2-CH2-β
 \alpha-CH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>-O-CH<sub>2</sub>-CH<sub>2</sub>-\beta
 α-N(C2H5)-SO2-β
 \alpha-N(C<sub>6</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
 \alpha-N(C<sub>10</sub>H<sub>21</sub>)-SO<sub>2</sub>-\beta
 \alpha-N(C<sub>6</sub>H<sub>13</sub>)-SO<sub>2</sub>-\beta
 \alpha-N(C<sub>2</sub>H<sub>4</sub>OH)-SO<sub>2</sub>-\beta
  \alpha-N(CH<sub>2</sub>COOH)-SO<sub>2</sub>-\beta
 \alpha-N(CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
 \alpha-N-[CH(CH<sub>2</sub>OH)<sub>2</sub>]-SO<sub>2</sub>-\beta
  \alpha-N-[CH(CH<sub>2</sub>OH)CH(CH<sub>2</sub>OH)]-SO<sub>2</sub>-\beta
```

and in which α represents the binding site to the complexing agent or metal complex K, and β represents the binding site to the fluorine radical, are used.

- 10. Use according to claim 8 or 9, wherein the compounds of formula I in which n in formula -C_nF_{2n}E stands for numbers 4-15 and/or E in this formula means a fluorine atom are used.
 - 11. Use according to one of claims 8 to 10, wherein the following compounds are used:
 - -- Gadolinium complex of 10-[1-methyl-2-oxo-3-aza-5-oxo-{4-perfluorooctylsulfonyl-piperazin-1-yl}-pentyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
 - -- Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-7-oxa-10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17-heptadecafluoroheptadecyl]-

- 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
- Gadolinium complex of 10-[2-hydroxy-4-aza-5,9-dioxo-9-{4-perfluorooctyl}-piperazin-1-yl}-nonyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
- Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-7-aza-7-(perfluorooctyl-sulfonyl)-nonyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
- -- Gadolinium complex of 10-[2-hydroxy-4-oxa-1H,1H,2H,3H,3H,5H,5H,6H,6H-perfluorotetradecyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
- -- Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-7-oxa-10,10,11,11,12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19-henicosafluoro-nonadecyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
- -- Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-11-aza-11- (perfluorooctylsulfonyl)-tridecyl]-1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane,
- -- Gadolinium complex of 10-[2-hydroxy-4-aza-5-oxo-7-aza-7- (perfluorooctylsulfonyl)-8-phenyl-octyl]-1-4-7-tris(carboxymethyl)-1,4,7,10-tetraaza-cyclododecane.
- 12. Use according to one of claims 1-7, wherein as perfluoroalkyl-containing metal complexes, the compounds of general formula Ia

$$A-R^F$$
 (Ia)

in which

- A is a molecule part that contains 2 to 6 metal complexes, which are bonded directly or via a linker to a nitrogen atom of an annular skeleton chain,
 and
- R^F is a perfluorinated, straight-chain or branched carbon chain with formula $-C_nF_{2n}E$, in which
 - E represents a terminal fluorine, chlorine, bromine, iodine or hydrogen atom, and n stands for numbers 4-30,

whereby

- q¹ is a number 0, 1, 2 or 3,
- K stands for a complexing agent or metal complex or their salts of organic and/or inorganic bases or amino acids or amino acid amides,
- X is a direct bond to the perfluoroalkyl group, a phenylene group or a C₁-C₁₀-alkylene chain, which optionally contains 1-15 oxygen atoms, 1-5 sulfur atoms, 1-10 carbonyl groups, 10-10 (NR^d) groups, 1-2 NR^dSO₂ groups, 1-10 CONR^d groups, 1 piperidine group, 1-3 SO₂ groups and 1-2 phenylene groups or optionally is substituted by 1-3 radicals R^F, in which R^d stands for a hydrogen atom, a phenyl group, benzyl group or a C₁-C₁₅ alkyl group, which optionally contains 1-2 NHCO groups, 1-2 CO groups, or 1-5 oxygen atoms and optionally is substituted by 1-5 hydroxy, 1-5 methoxy, 1-3 carboxy, or 1-3 R^F radicals,
- V is a direct bond or a chain of general formula IIa or IIIa:

$$\beta - NH_{2}(CH_{2})_{k} - (W)_{l} - (CH_{2})_{m} - C - \alpha$$

$$R^{e}$$
(IIa)

in which

- R^e is a hydrogen atom, a phenyl group, a benzyl group or a C₁-C₇-alkyl group, which optionally is substituted with a carboxy group, a methoxy group or a hydroxy group,
- W is a direct bond, a polyglycol ether group with up to 5 glycol units, or a molecule part of general formula IVa

$$-CH(R^h)$$
- (IVa)

in which R^h is a C_1 - C_7 carboxylic acid, a phenyl group, a benzyl group or a - $(CH_2)_{1-5}$ -NH-K group,

- α represents the binding to the nitrogen atom of the skeleton chain, β represents the binding to complexing agents or metal complex K,
- and in which variables k and m stand for natural numbers between 0 and 10, and 1 stands for 0 or 1

and whereby

D is a CO or SO₂ group,

are used.

- 13. Use according to claim 12, wherein the compounds of general formula Ia in which q is the number 1 are used.
- 14. Use according to claim 12, wherein the compounds of general formula Ia are used, in which molecule part X is an alkylene chain, which contains 1-10 CH₂CH₂O groups or 1-5 COCH₂NH groups, a direct bond or one of the following structures

$$\begin{array}{c} \gamma - CH_{2} - O - (CH_{2})_{2} - \delta & , \quad \gamma - CH_{2} - N - SO_{2} - \delta & , \quad \gamma - (CH_{2})_{10} - N - C - CH_{2} - N - SO_{2} - \delta \\ C_{2}H_{5} & H \\ \end{array}$$

$$\begin{array}{c} O & C_{2}H_{5} \\ \gamma - (CH_{2})_{10} - N - C - CH_{2} - N - SO_{2} - \delta \\ C_{2}H_{5} & H \\ \end{array}$$

$$\begin{array}{c} C_{2}H_{5} \\ \gamma - CH_{2} - N - SO_{2} - \delta \\ C_{10}H_{21} & C_{10}H_{21} \\ \end{array}$$

whereby

 γ binds to D, and δ binds to R^F.

15. Use according to claim 12, wherein the compounds of general formula Ia, in which V is a molecule part with one of the following structures

$$\alpha$$
—C-CH₂-NH- β , α —C-CH₂-N- β
CH₂COOH

$$\alpha$$
 - C - CH - NH - β , α - C - CH - NH - β CH(CH₃)₂

are used.

16. Use according to claim 12, wherein the compounds of general formula Ia, in which K represents a complex of general formula Va, VIa, VIIa or VIIIa,

$$R^6$$
 $COOR^4$
 R^6 N N N OH
 R^6 $COOR^4$
 (VIa)

$$COOR^4$$
 $COOR^4$
 $COOR^4$

$$R^4OOC$$
 N
 N
 N
 $COOR^4$

(VIIIa)

are used,

whereby

- R⁴, independently of one another, are a hydrogen atom or a metal ion equivalent of the elements of atomic numbers 23-29, 42-46 or 58-70,
- R⁵ is a hydrogen atom or a straight-chain, branched, saturated or unsaturated C₁-C₃₀ alkyl chain, which optionally is substituted by 1-5 hydroxy, 1-3 carboxy or 1 phenyl group(s) and/or optionally is interrupted by 1-10 oxygen atoms, 1 phenylene group or 1 phenylenoxy group,
- R⁶ is a hydrogen atom, a straight-chain or branched C₁-C₇ alkyl radical, a phenyl radical or benzyl radical,
- R⁷ is a hydrogen atom, a methyl group or ethyl group, which optionally is substituted by a hydroxy group or carboxy group,
- optionally containing 1-5 imino groups, 1-3 phenylene groups, 1-3 phenylenoxy groups, 1-3 phenylenimino groups, 1-5 amide groups, 1-2 hydrazide groups, 1-5 carbonyl groups, 1-5 ethylenoxy groups, 1 urea group, 1 thiourea group, 1-2 carboxyalkylimino groups, 1-2 ester groups, 1-10 oxygen atoms, 1-5 sulfur atoms and/or 1-5 nitrogen atoms, and/or optionally substituted by 1-5 hydroxy groups, 1-2 mercapto groups, 1-5 oxo groups, 1-5 thioxo groups, 1-3 carboxy groups, 1-5 carboxyalkyl groups, 1-5 ester groups and/or 1-3 amino groups, whereby the optionally contained phenylene groups can be substituted by 1-2 carboxy groups, 1-2 sulfone groups or 1-2 hydroxy groups
- T^1 stands for a -CO- β , -NHCO- β or -NHCS- β group, whereby β represents the binding site to V.
- 17. Use according to claim 16, wherein the C₁-C₂₀-alkylene chain that stands for U³ contains the groups -CH₂NHCO-, -NHCOCH₂O-, -NHCOCH₂OC₆H₄-, -N(CH₂CO₂H)-, -CH₂OCH₂-, -NHCOCH₂C₆H₄-, -NHCSNHC₆H₄-, -CH₂OC₆H₄-, -CH₂CH₂O- and/or is substituted by the groups -COOH and -CH₂COOH.

- 18. Use according to claim 16, wherein U^3 stands for a -CH₂-, -CH₂CH₂-, -CH₂CH₂-, -C₆H₄-, -C₆H₁₀-, -CH₂CH₄-, -CH₂NHCOCH₂CH(CH₂CO₂H)-C₆H₄-, -CH₂NHCOCH₂OCH₂-, or -CH₂NHCOCH₂C₆H₄- group.
- 19. Use according to claim 12, wherein the compounds of general formula Ia in which K has one of the following structures:

are used.

- 20: Use according to one of claims 12 to 19, wherein the compounds of general formula Ia in which the perfluoroalkyl chain R^F is $-C_6F_{13}$, $-C_8F_{17}$, $-C_{10}F_{21}$ or $-C_{12}F_{25}$ are used.
- 21. Use according to one of claims 12 to 20, wherein the gadolinium complex of 1,4,7-tris{1,4,7-tris(N-(carboxylatomethyl)-10-[N-1-methyl-3,6-diaza-2,5,8-trioxooctane-1,8-diyl)]-1,4,7,10-tetraazacyclododecane, Gd complex}-10-[N-2H,2H,4H,4H,5H,5H-3-oxa-perfluorotridecanoyl]-1,4,7,10-tetraazacyclododecane is used.
- 22. Use according to one of claims 1 to 7, wherein as perfluoroalkyl-containing metal complexes, the compounds of general formula Ib

in which

K means a complexing agent or a metal complex of general formula IIb

(IIb)

whereby

R¹ stands for a hydrogen atom or a metal ion equivalent of atomic numbers 23-29, 42-46 or 58-70,

R² and R³ stand for a hydrogen atom, a C₁-C₇-alkyl group, a benzyl group,

- U^2 stands for radical L^1 , whereby L^1 and U^2 , independently of one another, can be the same or different, however,
- A¹ means a hydrogen atom, a straight-chain or branched C₁-C₃₀ alkyl group, which optionally is interrupted by 1-15 oxygen atoms, and/or optionally is substituted with 1-10 hydroxy groups, 1-2 COOH groups, a phenyl group, a benzyl group and/or 1-5 -OR⁹ groups, with R⁹ in the meaning of a hydrogen atom or a C₁-C₇ alkyl radical, or -L¹-R^F,
- L¹ means a straight-chain or branched C_1 - C_{30} -alkylene group, which optionally is interrupted by 1-10 oxygen atoms, 1-5 -NH-CO groups, 1-5 -CO-NH groups, by a phenylene group optionally substituted by a COOH- group, 1-3 sulfur atoms, 1-2 -N(B¹)-SO₂ groups and/or 1-2 -SO₂-N(B¹)-groups with B¹ in the meaning of A¹, and/or optionally is substituted with radical R^F, and
- R^F means a straight-chain or branched perfluorinated alkyl radical of formula $C_nF_{2n}E$, whereby n stands for numbers 4-30, and
 - E stands for a terminal fluorine atom, chlorine atom, bromine atom, iodine atom or a hydrogen atom,

and optionally present acid groups optionally can be present as salts of organic and/or inorganic bases or amino acids or amino acid amides, are used.

- 23. Use according to claim 22, wherein the compounds of general formula Ib, in which R^2 , R^3 and R^9 , independently of one another, mean hydrogen or a C_1 - C_4 alkyl group, are used.
- 24. Use according to claim 22, wherein the compounds of general formula Ib, in which A^{1} means hydrogen, a C_{1} - C_{15} alkyl radical,

the radicals

 $C_2H_4-O-CH_3$, $C_3H_6-O-CH_3$,

$$\begin{split} &C_2H_4-O-(C_2H_4-O)_{t^-}C_2H_4-OH,\\ &C_2H_4-O-(C_2H_4-O)_{t^-}C_2H_4-OCH_3,\\ &C_2H_4OH,\ C_3H_6OH,\ C_4H_8OH,\ C_5H_{10}OH,\ C_6H_{12}OH,\ C_7H_{14}OH,\\ &CH(OH)CH_2OH,\\ &CH(OH)CH(OH)CH_2OH,\ CH_2[CH(OH)]_u^1CH_2OH,\\ &CH[CH_2(OH)]CH(OH)CH_2OH,\\ &CH[CH_2(OH)]CH(OH)CH_2OH,\\ &C_2H_4CH(OH)CH_2OH,\\ &(CH_2)_sCOOH,\\ &C_2H_4-O-(C_2H_4-O)_{t^-}CH_2COOH\ oder\\ &C_2H_4-O-(C_2H_4-O)_{t^-}C_2H_4-C_nF_{2n}E \end{split}$$

or

whereby

- s stands for integers 1 to 15,
- t stands for integers 0 to 13,
- u¹ stands for integers 1 to 10,
- n stands for integers 4 to 20, and
- E stands for hydrogen, fluorine, chlorine, bromine or iodine atoms, and if necessary, their branched isomers,

are used.

25. Use according to claim 22, wherein the compounds of general formula Ib, in which A^1 means hydrogen, C_1 - C_{10} alkyl,

 $C_2H_4-O-CH_3$, $C_3H_6-O-CH_3$, $C_2H_4-O-(C_2H_4-O)_x-C_2H_4-OH$, $C_2H_4-O-(C_2H_4-O)_x-C_2H_4-OCH_3$, C_2H_4OH , C_3H_6OH , $CH_2[CH(OH)]_yCH_2OH$, $CH[CH_2(OH)]CH(OH)CH_2OH$, $(CH_2)_wCOOH$, $C_2H_4-O-(C_2H_4-O)_x-CH_2COOH$, $C_2H_4-O-(C_2H_4-O)_x-C_2H_4-C_nF_{2n}E$

whereby

- x stands for integers 0 to 5,
- y stands for integers 1 to 6,
- w stands for integers 1 to 10,
- n stands for integers 4 to 15, and
- E stands for a fluorine atom, and, if necessary, their branched isomers

are used.

26. Use according to claim 22, wherein the compounds of general formula Ib, in which \mathbf{L}^1 means

```
\alpha-(CH<sub>2</sub>)<sub>s</sub>-\beta
\alpha-CH<sub>2</sub>-CH<sub>2</sub>-(O-CH<sub>2</sub>-CH<sub>2</sub>-)\sqrt{-\beta}
\alpha-CH<sub>2</sub>-(O-CH<sub>2</sub>-CH<sub>2</sub>-)_V-\beta,
\alpha-CH<sub>2</sub>-NH-CO-\beta
α-CH2-CH2-NH-SO2-β
α-CH2-NH-CO-CH2-N(CH2COOH)-SO2-β
α-CH2-NH-CO-CH2-N(C2H5)-SO2-β
α-CH2-NH-CO-CH2-N(C10H21)-SO2-β
α-CH2-NH-CO-CH2-N(C6H13)-SO2-β
α-CH2-NH-CO-(CH2)10-N(C2H5)-SO2-β
\alpha-CH<sub>2</sub>-NH-CO-CH<sub>2</sub>-N(-CH<sub>2</sub>-C<sub>6</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta
α-CH2-NH-CO-CH2-N(-CH2-CH2-OH)SO2-β
α-CH2-NHCO-(CH2)<sub>10</sub>-S-CH<sub>2</sub>CH<sub>2</sub>-β
α-CH2NHCOCH2-O-CH2CH2-β
α-CH2-CH2NHCOCH2-O-CH2CH2-β
\alpha-CH<sub>2</sub>-(CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>t</sub>-(CH<sub>2</sub>)<sub>3</sub>NHCO-CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-\beta
α-CH2NHCO(CH2)10-O-CH2CH2-β
α-CH2CH2NHCO(CH2)10-O-CH2CH2-β
α-CH2-C6H4-O-CH2CH2-B
```

whereby phenylene group 1,4 or 1,3 is linked

$$^{\circ}$$
 α -CH₂-O-CH₂-C(CH₂-OCH₂-CH₂-CGF₁₃)₂-CH₂-OCH₂-CH₂- β

 $\text{$\alpha$-CH$_2$-NHCOCH$_2CH_2$CON-CH$_2CH_2$NHCOCH$_2$N(C$_2H_5)SO_2C_8F_{17}$\beta}$

 α -CH₂-CH₂NHCOCH₂N(C₂H₅)-SO₂- β

 $\alpha\text{-CH}_2\text{-O-CH}_2\text{-CH}(\text{OC}_{10}\text{H}_{21})\text{-CH}_2\text{-O-CH}_2\text{CH}_2\text{-}\beta$

 α -(CH₂NHCO)₄-CH₂O-CH₂CH₂- β

 α -(CH₂NHCO)₃-CH₂O-CH₂CH₂- β

 α -CH₂-OCH₂C(CH₂OH)₂-CH₂-O-CH₂CH₂- β

$$^{\alpha}$$
 $O \longrightarrow CH_2 \longrightarrow O \longrightarrow \beta$

 α -CH₂NHCOCH₂N(C₆H₅)-SO₂- β

α-NHCO-CH₂-CH₂-β

 $\alpha\text{-NHCO-CH}_2\text{-O-CH}_2\text{CH}_2\text{-}\beta$

α-ΝΗ-СΟ-β

 $\alpha\text{-NH-CO-CH}_2\text{-N(CH}_2\text{COOH)-SO}_2\text{-}\beta$

 α -NH-CO-CH₂-N(C₂H₅)-SO₂- β

 $\alpha\text{-NH-CO-CH}_2\text{-N(C}_{10}\text{H}_{21})\text{-SO}_2\text{-}\beta$

 α -NH-CO-CH₂-N(C₆H₁₃)-SO₂- β

α-NH-CO-(CH₂)₁₀-N(C₂H₅)-SO₂-β

 α -NH-CO-CH₂-N(-CH₂-C₆H₅)-SO₂- β

 $\alpha\text{-NH-CO-CH}_2\text{-N(-CH}_2\text{-CH}_2\text{-OH)}\text{SO}_2\text{-}\beta$

 α -NH-CO-CH₂- β

 α -CH₂-O-C₆H₄-O-CH₂-CH₂- β

 α -CH₂-C₆H₄-O-CH₂-CH₂- β

 α -N(C₂H₅)-SO₂- β

 α -N(C₆H₅)-SO₂- β

```
\alpha-N(C<sub>10</sub>H<sub>21</sub>)-SO<sub>2</sub>-\beta

\alpha-N(C<sub>6</sub>H<sub>13</sub>)-SO<sub>2</sub>-\beta

\alpha-N(C<sub>2</sub>H<sub>4</sub>OH)-SO<sub>2</sub>-\beta

\alpha-N(CH<sub>2</sub>COOH)-SO<sub>2</sub>-\beta

\alpha-N(CH<sub>2</sub>C<sub>6</sub>H<sub>5</sub>)-SO<sub>2</sub>-\beta

\alpha-N-[CH(CH<sub>2</sub>OH)<sub>2</sub>]-SO<sub>2</sub>-\beta

\alpha-N-[CH(CH<sub>2</sub>OH)CH(OH)(CH<sub>2</sub>OH)]-SO<sub>2</sub>-\beta
```

whereby

- s stands for integers 1 to 15 and
- y stands for integers 1 to 6,

are used.

27. Use according to claim 22, wherein the compounds of general formula Ib, in which L^1 means

```
α-CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-β, α-CH<sub>2</sub>-CH<sub>2</sub>-(O-CH<sub>2</sub>-CH<sub>2</sub>-)<sub>y</sub>-β, α-CH<sub>2</sub>-(O-CH<sub>2</sub>-CH<sub>2</sub>-)<sub>y</sub>-β, α-CH<sub>2</sub>-CH<sub>2</sub>-NH-SO<sub>2</sub>-β, Bsp. 10 α-CH<sub>2</sub>-CH<sub>2</sub>-NHCOCH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-β, α-CH<sub>2</sub>-CH<sub>2</sub>NHCOCH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-β, α-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>y</sub>-(CH<sub>2</sub>)<sub>3</sub>NHCO-CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-β, α-CH<sub>2</sub>NHCO(CH<sub>2</sub>)<sub>10</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-β, α-CH<sub>2</sub>NHCO(CH<sub>2</sub>)<sub>10</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-β, α-CH<sub>2</sub>-O-CH<sub>2</sub>-CH(OC<sub>10</sub>H<sub>21</sub>)-CH<sub>2</sub>-O-CH<sub>2</sub>CH<sub>2</sub>-β, α-CH<sub>2</sub>-O-CH<sub>2</sub>-CH(OC<sub>10</sub>H<sub>21</sub>)-CH<sub>2</sub>-O-CH<sub>2</sub>-β, α-CH<sub>2</sub>-O-C<sub>6</sub>H<sub>4</sub>-O-CH<sub>2</sub>-CH<sub>2</sub>-β oder α-CH<sub>2</sub>-C<sub>6</sub>H<sub>4</sub>-O-CH<sub>2</sub>-CH<sub>2</sub>-β
```

or

whereby

y stands for integers 1 to 6,

are used.

28. Use according to claim 22, wherein the compounds of general formula Ib, in which R^F means a straight-chain or branched perfluorinated alkyl radical of formula C_nF_{2n}E, whereby n

stands for numbers 4 to 15 and E stands for a terminal fluorine atom, are used.

- 29. Use according to one of claims 22 to 28, wherein the following compounds are used:
- -- 1,4,7-Tris(carboxylatomethyl)-10-(3-aza-4-oxo-hexan-5-ylic)-acid-(2,3-dihydroxypropyl)-N-(1H,1H,2H,2H,4H,4H,5H,5H-3-oxa)-perfluorotridecyl)-amide]-1,4,7,10-tetraazacyclododecane, gadolinium complex
- -- 1,4,7-Tris(carboxylatomethyl)-10-{(3-aza-4-oxo-hexan-5-ylic)acid-N-(3,6,9,12,15-pentaoxa)-hexadecyl)-(1H,1H,2H,2H,4H,4H,5H,5H-3-oxa)-perfluorotridecyl]-amide}-1,4,7,10-tetraazacyclododecane, gadolinium complex
- 1,4,7-Tris(carboxylatomethyl)-10-{(3-aza-4-oxo-hexan-5-ylic)-acid-N-5-hydroxy-3-oxa-pentyl)-N-(1H,1H,2H,2H,4H,4H,5H,5H-3-oxa)-perfluorotridecyl]-amide}-1,4,7,10-tetraazacyclododecane, gadolinium complex
- -- 1,4,7-Tris(carboxylatomethyl)-10-{(3-aza-4-oxo-hexan-5-ylic)-acid-[N-3,6,9,15-tetraoxa-12-aza-15-oxo-C₁₇-C₂₆-hepta-decafluor0)hexacosyl]-amide}-1,4,7,10-tetraazacyclododecane, gadolinium complex
- -- 1,4,7-Tris(carboxylatomethyl)-10-[(3-aza-4-oxo-hexan-5-ylic]-acid-N-(2-methoxyethyl)-N-(1H,1H,2H,2H,4H,4H,5H,5H-3-oxa)-perfluorotridecyl]-amide}-1,4,7,10-tetraazacyclododecane, gadolinium complex.
- 30. Use according to one of claims 1 to 7, wherein as perfluoroalkyl-containing metal complexes, the compounds with sugar radicals of general formula Ic

$$\begin{array}{ccc} (K)_1{}^1\text{-}G\text{-}(Z\text{-}R^F)_m{}^1 \\ & & \\ (Y\text{-}R)_p{}^1 \end{array} \qquad \qquad \text{(Ic)}$$

in which

R represents a mono-or oligosaccharide radical bonded by the 1-OH- or 1-SH-position,

- R^F is a perfluorinated, straight-chain or branched carbon chain with the formula $-C_nF_{2n}E$, in which E represents a terminal fluorine, chlorine, bromine, iodine or hydrogen atom, and n stands for numbers 4-30,
- K stands for a metal complex of general formula IIc,

in which

R¹ means a hydrogen atom or a metal ion equivalent of atomic numbers 23-29, 42-46 or 58-70,

provided that at least two R1 stand for metal ion equivalents,

- R² and R³, independently of one another, represent hydrogen, C₁-C₇-alkyl, benzyl, phenyl, -CH₂OH or -CH₂OCH₃, and
- U represents -C₆H₄-O-CH₂-ω, -(CH₂)₁₋₅-ω, a phenylene group, -CH₂-NHCO-CH₂-CH(CH₂COOH)-C₆H₄-ω, -C₆H₄-(OCH₂CH₂)₀₋₁-N(CH₂COOH)-CH₂-ω, or a C₁-C₁₂-alkylene group or C₇-C₁₂-C₆H₄-O group optionally interrupted by one or more oxygen atoms, 1 to 3 -NHCO groups or 1 to 3 -CONH groups and/or substituted with 1 to 3 -(CH₂)₀₋₅ COOH groups, whereby ω stands for the binding site to -CO-,

or

of general formula IIIc

. in which R^1 has the above-mentioned meaning, R^4 represents hydrogen or a metal ion equivalent mentioned under R^1 , and U^1 represents $-C_6H_4$ -O-CH₂- ω , whereby ω means the binding site to -CO-, or of general formula IVc

in which R^1 and R^2 have the above-mentioned meaning or of general formula VcA or VcB

(VcB)

in which R¹ has the above-mentioned meaning, or of general formula VIc

in which R^1 has the above-mentioned meaning, or of general formula VIIc

in which R1 has the above-mentioned meaning, and

 U^1 represents $-C_6H_4$ -O-CH₂- ω , whereby ω means the binding site to -CO-or of general formula VIIIc

in which R1 has the above-mentioned meaning,

(a2)

and in radical K, optionally present free acid groups optionally can be present as salts of organic and/or inorganic bases or amino acids or amino acid amides,

G for the case that K means metal complexes IIc to VIIc represents a radical that is functionalized in at least three places and is selected from the following radicals a) to j)

(a1)
$$\alpha \sim N - (CH_2)_4 - \frac{H}{C} - CO - \gamma$$

$$\gamma = \frac{1}{2}$$

$$\beta$$

(c)

(d)

(e)

(f)

(g)

$$\begin{array}{c} \beta \\ NH \\ -1 \\ NH - CO - CH - (CH_2)_4 - NH - M\beta \\ N - CO - CH - (CH_2)_4 - NH - M\alpha \\ NH \\ NH - CO - CH - (CH_2)_4 - NH - M\beta \\ NH \\ NH \\ M \\ \beta \end{array}$$

(h)

(i)

$$\beta \sim N - (CH_2)_{\frac{1}{1-4}} - CON N \sim \gamma$$

(j)

and

G for the case that K means metal complex VIIIc represents a radical that is functionalized in at least three places and is selected from k) or l),

(1)

$$\alpha$$
-CO-CH₂-CH-CH₂-CO--- γ
NH
 β

whereby α means the binding site of G to complex K, β is the binding site of G to radical Y, and γ represents the binding site of G to radical Z,

- y means -CH₂, δ -(CH₂)₍₁₋₅₎CO- β , β -(CH₂)₍₁₋₅₎CO- δ , δ -CH₂-CHOH-CO- β or δ -CH(CHOH-CH₂OH)-CHOH-CHOH-CO- β , whereby δ represents the binding site to sugar radical R and β is the binding site to radical G,
- Z stands for

$$\gamma - N = N - SO_2 - \epsilon$$

 γ -COCH₂-N(C₂H₅)-SO₂- ϵ ,

 γ -COCH₂-O-(CH₂)₂-SO₂- ϵ ,

 γ - NHCH₂CH₂-O-CH₂CH₂- ξ

whereby γ represents the binding site of Z to radical G, and ξ means the binding site of Z to perfluorinated radical R^F

and

1¹, m¹, independently of one another, mean integers 1 or 2, and

p¹ means integers 1 to 4,

are used.

- 31. Use according to claim 30, wherein the compounds of general formula Ic, in which R represents a monosaccharide radical with 5 to 6 C atoms or its deoxy compound, preferably glucose, mannose or galactose, are used.
- 32. Use according to claim 30, wherein the compounds of general formula Ic, in which R^2 and R^3 , independently of one another, mean hydrogen or C_1 - C_4 alkyl and/or E in formula $C_nF_{2n}E$ means a fluorine atom, are used.
- 33. Use according to claim 30, wherein the compounds of general formula Ic, in which G represents lysine radical (a) or (b), are used.
- 34. Use according to claim 30, wherein the compounds of general formula Ic are used, in which Z means

$$\gamma - N \longrightarrow N - SO_2 - \epsilon$$

whereby γ represents the binding site of Z to radical G, and ξ means the binding site of Z to perfluorinated radical R^F, and/or Y means δ -CH₂CO- β , whereby δ represents the binding site to sugar radical R and β represents the binding site to radical G.

- 35. Use according to claim 30, wherein the compounds of general formula Ic are used, in which U in metal complex K represents -CH₂- or -C₆H₄-O-CH₂- ω , whereby ω stands for the binding site to -CO-.
 - 36. Use according to claim 30, wherein the gadolinium complex of 6-N-[1,4,7-

tris(carboxylatomethyl)-1,4,7,10-tetraazacyclododecane-10-N-(pentanoyl-3-aza-4-oxo-5-methyl-5-yl)]-2-N-[1-O-α-D-carbonylmethyl-mannopyranose]-L-lysine-[1-(4-perfluorooctylsulfonyl)-piperazine]-amide is used.

37. Use according to one of claims 1 to 7, wherein as perfluoroalkyl-containing metal complexes, the compounds with polar radicals of general formula Id

$$(K)_1^1$$
-G- $(Z-R^F)_m^1$
 $(R)_p^2$ (Id)

in which

R^F is a perfluorinated, straight-chain or branched carbon chain with formula -C_nF_{2n}E, in which E represents a terminal fluorine, chlorine, bromine, iodine or hydrogen atom, and n stands for numbers 4-30,

K stands for a metal complex of general formula IId,

(IId)

in which

R¹ means a hydrogen atom or a metal ion equivalent of atomic numbers 23-29, 42-46 or 58-70,

provided that at least two R1 stand for metal ion equivalents,

R² and R³, independently of one another, represent hydrogen, C₁-C₇ alkyl, benzyl, phenyl,

-CH2OH or -CH2OCH3, and

U represents -C₆H₄-O-CH₂-ω-, -(CH₂)₁₋₅-ω, a phenylene group, -CH₂-NHCO-CH₂-CH(CH₂COOH)-C₆H₄-ω-, -C₆H₄-(OCH₂CH₂)₀₋₁-N(CH₂COOH)-CH₂-ω, or a C₁-C₁₂ alkylene group or C₇-C₁₂-C₆H₄-O group optionally interrupted by one or more oxygen atoms, 1 to 3 -NHCO groups, 1 to 3 -CONH groups and/or substituted with 1 to 3 -(CH₂)₀₋₅COOH groups, whereby ω stands for the binding site to -CO-,

or of general formula IIId

in which R^1 has the above-mentioned meaning, R^4 represents hydrogen or a metal ion equivalent mentioned under R^1 , and U^1 represents -C₆H₄-O-CH₂- ω -, whereby ω means the binding site to -CO-,

or

of general formula IVd

(IVd)

in which R^1 and R^2 have the above-mentioned meaning, or of general formula VdA or VdB

in which R¹ has the above-mentioned meaning, or of general formula VId

in which R¹ has the above-mentioned meaning, or of general formula VIId

in which R1 has the above-mentioned meaning, and

 U^1 represents $-C_6H_4$ -O- CH_2 - ω -, whereby ω means the binding site to -CO-, and in radical K, optionally present free acid groups optionally can be present as salts of organic and/or inorganic bases or amino acids or amino acid amides,

G represents a radical that is functionalized in at least three places and is selected from the following radicals a) to g)

(a2)
$$\begin{array}{c} H \\ \alpha \text{---N-}(CH_2)_4\text{--C-CO-----}\beta \\ H & NH \\ I \\ \gamma \end{array}$$

(b)
$$\begin{array}{c} \gamma \sim CO - C - (CH_2)_4 - N \sim CO \\ NH \\ \frac{1}{2} \\ \alpha \end{array}$$

. .

(e)

(f)
$$\alpha \sim N - (CH_2)_4 - C - N - CO \cdot C - (CH_2)_4 N - \cdots \beta$$

$$\gamma \qquad \qquad \beta \qquad \qquad \beta$$

(g)

HN N NH

(h)
$$\gamma$$
 -CO-(CH₂)₂₋₃-CH-CO $\longrightarrow \beta$; (i) β \longrightarrow CO-(CH₂)₂₋₃-CH-CO $\longrightarrow \gamma$

whereby α means the binding site of G to complex K, β is the binding site of G to radical R, and γ represents the binding site of G to radical Z

Z stands for

$$\gamma - N \longrightarrow N - SO_2 - \varepsilon$$

whereby γ represents the binding site of Z to radical G and ξ means the binding site of Z to perfluorinated radical R_f ,

R represents a polar radical that is selected from complexes K of general formulas

IId to VIId, whereby R¹ here means a hydrogen atom or a metal ion equivalent of atomic numbers 20, 23-29, 42-46 or 58-70,

and radicals R², R³, R⁴, U and U¹ have the above-indicated meaning,

or

means the folic acid radical

or

means a carbon chain with 2-30 C atoms that is bonded to radical G via -CO- or SO₂- or a direct bond to radical G, and is straight or branched, saturated or unsaturated, optionally interrupted by 1-10 oxygen atoms, 1-5 -NHCO groups, 1-5 -CONH groups, 1-2 sulfur atoms, 1-5 -NH groups or 1-2 phenylene groups, which optionally can be substituted with 1-2 OH groups, 1-2 NH₂ groups, 1-2 -COOH groups, or 1-2 -SO₃H groups,

or

optionally substituted with 1-8 OH groups, 1-5 -COOH groups, 1-2 SO₃H groups, 1-5 NH₂ groups, or 1-5 C₁-C₄ alkoxy groups, and l^1 , m^1 , p^2 , independently of one another, mean integers 1 or 2,

are used.

- 38. Use according to claim 37, wherein the compounds of general formula Id, in which K stands for a metal complex of general formula IId, IIId, VdB or VIId, are used.
- 39. Use according to claim 37, wherein the compounds of general formula Id, in which polar radical R has the meaning of complex K, preferably complex K of general formulas IId, IIId, VdA or VIId, are used.
- 40. Use according to claim 37, wherein the compounds of general formula Id, in which polar radical R has the following meanings:
 - -C(O)CH2CH2SO3H
 - -C(O)CH₂OCH₂CH₂OCH₂CH₂OH
 - -C(O)CH₂OCH₂CH₂OH
 - -C(O)CH₂OCH₂CH(OH)CH₂OH
 - -C(O)CH₂NH-C(O)CH₂COOH
 - -C(O)CH₂CH(OH)CH₂OH
 - -C(O)CH₂OCH₂COOH
 - -SO₂CH₂CH₂COOH
 - $-C(O)-C_6H_3-(m-COOH)_2$
 - $-C(O)CH_2O(CH_2)_2-C_6H_3-(m-COOH)_2$
 - -C(O)CH₂O-C₆H₄-m-SO₃H
 - -C(O)CH2NHC(O)CH2NHC(O)CH2OCH2COOH
 - -C(O)CH₂OCH₂CH₂OCH₂COOH
 - -C(O)CH₂OCH₂CH(OH)CH₂O-CH₂CH₂OH
 - -C(O)CH₂OCH₂CH(OH)CH₂OCH₂-CH(OH)-CH₂OH
 - -C(O)CH₂SO₃H
 - -C(O)CH₂CH₂COOH
 - -C(O)CH(OH)CH(OH)CH₂OH
 - $-C(O)CH_2O[(CH_2)_2O]_{1-9}-CH_3$
 - $-C(O)CH_2O[(CH_2)_2O]_{1-9}-H$
 - $-C(O)CH_2OCH(CH_2OH)_2$
 - -C(O)CH₂OCH(CH₂OCH₂COOH)₂

$$\begin{array}{l} -C(O) - C_6 H_3 - (m - OCH_2COOH)_2 \\ -CO - CH_2O - (CH_2)_2O(CH_2)_2O - (CH_2)_2O(CH_2)_2OCH_3 \end{array}$$

$$-C(O)CH_2O[(CH_2)_2O]_4-CH_3$$

preferably are used.

- 41. Use according to claim 37, wherein the compounds of general formula Id, in which polar radical R is the folic acid radical, are used.
- 42. Use according to claim 37, wherein the compounds of general formula Id, in which G represents lysine radical (a) or (b), are used.
- 43. Use according to claim 37, wherein the compounds of general formula Id, in which U represents group -CH₂- or -C₆H₄-O-CH₂- ω in metal complex K, whereby ω stands for the binding site to -CO-, are used.
- 44. Use according to one of claims 37-43, wherein the gadolinium complex of 2,6-N,N'-bis[1,4,7-tris(carboxylatomethyl)-1,4,7,10-tetraazacyclododecane-10-(pentanoyl-3-aza-4-oxo-5-methyl-5-yl)]-lysine-[1-(4-perfluorooctylsulfonyl-piperazine]-amide is used.
- 45. Use according to one of claims 1-7, wherein as perfluoroalkyl-containing metal complexes, galenical formulations that contain paramagnetic, perfluoroalkyl-containing metal complexes of general formulas I, Ia, Ib, Ic and/or Id and diamagnetic perfluoroalkyl-containing substances, preferably dissolved in an aqueous solvent, are used.
- 46. Use according to claim 45, wherein as diamagnetic perfluoroalkyl-containing substances, those of general formula XX

$$R^{F}-L^{2}-B^{2} \tag{XX}$$

in which R^F represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms. L² stands for a linker and B² stands for a hydrophilic group, are used.

47. Use according to claim 46, wherein linker L2 is a direct bond, an -SO2 group, or a

straight-chain or branched carbon chain with up to 20 carbon atoms, which can be substituted with one or more -OH, -COO-, or -SO₃ groups and/or optionally contains one or more -O-, -S-, -CO-, -CONH-, -NHCO-, -CONR⁹-, -NR⁹CO-, -SO₂-, -PO₄-, -NH- or -NR⁹ groups, an aryl ring or a piperazine, whereby R⁹ stands for a C₁-to C₂₀-alkyl radical, which in turn can contain one or more O atoms, and/or can be substituted with -COO or SO₃ groups.

- 48. Use according to claim 46, wherein hydrophilic group B² is a mono- or disaccharide, one or more adjacent -COO or -SO₃ groups, a dicarboxylic acid, an isophthalic acid, a picolinic acid, a benzenesulfonic acid, a tetrahydropyrandicarboxylic acid, a 2,6-pyridinedicarboxylic acid, a quaternary ammonium ion, an aminopolycarboxylic acid, an aminodipolyethylene glycolsulfonic acid, an aminopolyethylene glycol group, an SO₂-(CH₂)₂-OH group, a polyhydroxyalkyl chain with at least two hydroxyl groups or one or more polyethylene glycol chains with at least two glycol units, whereby the polyethylene glycol chains are terminated by an -OH or -OCH₃ group.
- 49. Use according to claim 45, wherein as diamagnetic perfluoroalkyl-containing substances, conjugates that consist of α -, β or γ -cyclodextrin and compounds of general formula XXII

$$A^{1}-L^{3}-R^{F} \tag{XXII}$$

in which A² stands for an adamantane, biphenyl or anthracene molecule, L³ stands for a linker, and R^F stands for a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon atoms, and whereby linker L³ is a straight-chain hydrocarbon chain with 1 to 20 carbon atoms, which can be interrupted by one or more oxygen atoms, one or more CO-, SO₂-, CONH-, NHCO-, CONR¹⁰-, NR¹⁰CO-, NH- or NR¹⁰ groups or a piperazine, whereby R¹⁰ is a C₁-C₅ alkyl radical, are used.

50. Use according to claim 45, wherein as diamagnetic perfluoroalkyl-containing substances, those of general formula XXI:

$$R^{F}-X^{I}$$
 (XXI)

in which RF represents a straight-chain or branched perfluoroalkyl radical with 4 to 30 carbon

atoms, and X^1 is a radical that is selected from the group of the following radicals (n in this case is a number between 1 and 10), are used:

HO HO
$$(\alpha+\beta)$$

$$\begin{array}{c|c}
 & COO^{-} & Ca^{2+} \\
 & N & COO^{-} \\
 & COO^{-} & COO^{-}
\end{array}$$