Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Pa	ge 2		Mark Scheme: Teachers' version	Syllabus	Paper
				GCE A/AS LEVEL – May/June 2009	9702	21
1	(a)	(i)	micr	ometer (screw gauge) / travelling microscope	B1	[1]
		(ii)		er ohm-meter or voltmeter and ammeter oultimeter/avo on ohm setting	B1	[1]
		(iii)	eithe	er (calibrated) c.r.o. or a.c. voltmeter and $\times \sqrt{2}$	B1	[1]
	(b)	den	sity	= mass / volume = 580 / 6 ³ = 2.685 g cm ⁻³ (<i>allow 2.68, 2.69, 2.7</i>)	C1 A1	
		% u	incer	tainty in mass = $(10 / 580) \times 100 = 1.7\%$ tainty in volume = $3 \times (0.1 / 6) \times 100 = 5.0\%$ tainty in density = 0.18 g cm^{-3}		
		den	sity =	$= 2.7 \pm 0.2 \text{ g cm}^{-3}$	A1	[5]
2	(a)	ball	mov	ing in opposite direction (after collision)	B1	[1]
	(b)	(i)		nge in momentum = 1.2 (4.0 + 0.8)rect values, 1 mark; correct sign {values added}, 1 mar	·k)	ro1
				= 5.76 N s(allow 5.8)	A1	[3]
		(ii)	force	$e = \Delta p / \Delta t$ or $m\Delta v / \Delta t$		
				= 5.76 / 0.08 or 1.2 × 4.8 / 0.08 = 72 N		[3]
	(c)	5 76	3 = 3	6 × <i>V</i>	C1	
	(-)			n s ⁻¹		[2]
	(d)	eith	er s	peed of approach = 4.0 m s ⁻¹ and		
	` ,			peed of separation = 2.4 m s ⁻¹ ot equal and so inelastic		
		or		inetic energy before = 9.6 J and		
				inetic energy after collision = 4.99 J		[0]
			K	inetic energy after is less / not conserved so inelastic	A1	[2]
3	(a)			of (magnitude of one) force and distance between force to either perpendicular distance between forces		
				or line of action of forces and perpendicular distan	ce A1	[2]
	(b)	(i)	90°		B1	[1]
		(ii)		= F × 0.45 (allow e.c.f. for angle in (i))		
				290 Nw 1 mark only if angle stated in (i) is not used in (ii))	A1	[2]

	Pa	ge 3	Mark Scheme: Teachers' version	Syllabus	Paper
			GCE A/AS LEVEL – May/June 2009	9702	21
_	, ,	<i>(</i> 1)			_
4	(a)	(i)	change of shape / size / length / dimensionwhen (deforming) force is removed, returns to original shape /		[2]
			when (deforming) <u>force is removed</u> , returns to original shape /	SIZE AT	[2]
		(ii)	L = ke	B1	[1]
		` '			
	/L\	0 -		D4	
	(D)	2e	(allow e.c.f. from extension)		
		/2/1	(unow c.c.r. nom extension)		
		½e	and 2k	B1	
		•			
		$\frac{3}{2}$ e	(allow e.c.f. from extension in part 2)	B1	
		$\frac{2}{2}k$	(allow e.c.f. from extension)	B1	[5]
		3			
5	(a)		<i>er</i> phase difference is π rad / 180°		
			path difference (between waves from S_1 and S_2) is $\frac{1}{2}\lambda/(n+\frac{1}{2})\lambda$	≀ . B1	
			<i>er</i> same amplitude / intensity at M atio of amplitudes is 1.28 / ratio of intensities is 1.28 ²	B1	[2]
		OI I		וט	[2]
	(b)		n difference between waves from S_1 and $S_2 = 28$ cm		
			velength changes from 33 cm to 8.25 cm		
			imum when λ = (56 cm,) 18.7 cm, 11.2 cm, (8.0 cm)wo minima		[4]
		30 1	wo minima	01	נייו
6	(a)	(i)	E = V / d	C1	
			= $350 / (2.5 \times 10^{-2})$ = $1.4 \times 10^{4} \text{ N C}^{-1}$	A1	[2]
			- 1.4 ^ 10 N O	71	[2]
		(ii)	force = Eq = 1.4 × 10 ⁴ × 1.6 × 10 ⁻¹⁹	C1	
			$= 1.4 \times 10^4 \times 1.6 \times 10^{-19}$	M1	
			$= 2.24 \times 10^{-15}$	A0	[2]
	(b)	(i)	F = ma	C1	
			$F = ma$ $a = (2.24 \times 10^{-15}) / (9.1 \times 10^{-31})$		
			$= 0.46 \times 10^{10} \text{ ms} \text{ s}^{-2} = (810.0.9 \text{ F} \times 10^{3})$		
			= $2.\dot{4}6 \times 10^{15} \text{ m/s}^{-2}$ (allow 2.5×10^{5})	A1	[2]
		(ii)	,	A1	[2]
		(ii)	$s = \frac{1}{2}at^2 \qquad$	A1	[2]
		(ii)	,	A1 C1	[2]
		(ii)	$s = \frac{1}{2}at^2$	A1 C1	
	(6)		$s = \frac{1}{2}at^2$ 2.5 × 10 ⁻² = $\frac{1}{2}$ × 2.46 × 10 ¹⁵ × t^2 $t = 4.5 \times 10^{-9}$ s	A1 C1	
	(c)		$s = \frac{1}{2}at^{2}$ $2.5 \times 10^{-2} = \frac{1}{2} \times 2.46 \times 10^{15} \times t^{2}$ $t = 4.5 \times 10^{-9} \text{ s}$ er gravitational force is normal to electric force	A1 C1 A1	[2]
	(c)	eith or spe	$s = \frac{1}{2}at^2$ 2.5 × 10 ⁻² = $\frac{1}{2}$ × 2.46 × 10 ¹⁵ × t^2 $t = 4.5 \times 10^{-9}$ s	A1 C1 A1	

First variant Mark Scheme

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A/AS LEVEL – May/June 2009	9702	21
7	(a) (i) R		B1	[1]
	(ii) 0.	5R	B1	[1]
	(iii) 2.5	5R(allow e.c.f. from (ii))	B1	[1]
	(b) (i) I_1	$+I_2=I_3$	B1	[1]
	(ii) <i>E</i> ₂	$= I_3R + I_2R \qquad$	B1	[1]
	(iii) <i>E</i> ₁	$-E_2 = 2I_1R - I_2R \qquad \dots$	B1	[1]
8	surrou (<i>If state</i>	decay / activity / decay (of nucleus) is not affected by ex ndingses specific factor(s), rather than giving general statement ated factors, but 1 mark only if one factor stated)	B2	[2]
	(b) (i) ga	ımma / γ	B1	[1]
	(ii) alp	oha / $lpha$	B1	[1]
	(iii) ga	ımma / γ	B1	[1]
	(iv) be	eta / β	B1	[1]

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9702	22

1	(a)	e.g. time (s), current (A), temperature (K), amount of substance (mol), luminous intensity (cdl)		
		1 each, max 3	В3	[3]
	(b)	density = mass / volume unit of density: kg m $^{-3}$ unit of acceleration: m s $^{-2}$ unit of pressure: kg m $^{-3}$ m s $^{-2}$ m kg m $^{-1}$ s $^{-2}$ (allow 4/5 for solution in terms of only dimensions)	C1 C1 C1 B1 B1	[5]
2	(a)	2.4s	A1	[1]
	(b)	in (b) and (c) , allow answers as (+) or (-) recognises distance travelled as area under graph line height = $(\frac{1}{2} \times 2.4 \times 9.0) - (\frac{1}{2} \times 1.6 \times 6.0)$ = 6.0 m (allow 6 m) (answer 15.6 scores 2 marks answer 10.8 or 4.8 scores 1 mark) alternative solution: $s = ut - \frac{1}{2}at^2$ = $(9 \times 4) - \frac{1}{2} \times (9 / 2.4) \times 4^2$ = 6.0 m (answer 66 scores 2 marks answer 36 or 30 scores 1 mark)	C1 C1 A1	[3]
	(c)	(i) change in momentum = 0.78 (9.0 + 4.2) (allow 4.2 ± 0.2)	C1 A1	[2]
		(ii) force = $\Delta p / \Delta t$ or $m\Delta v / \Delta t$	C1 A1	[2]
	(d)	(i) 2.9N	A1	[1]
		(ii) $g = \text{weight / mass}$	C1	
		= $2.9 / 0.78$ = $3.7 \mathrm{m s^{-2}}$	A1	[2]
3	(a)	product of (magnitude of one) force and distance between forces	M1	
		reference to either perpendicular distance between forces or line of action of forces & perpendicular distance	A1	[2]
	(b)	(i) 90°	B1	[1]
		(ii) $130 = F \times 0.45$ (allow e.c.f. for angle in (i))	C1 A1	[2]

Paç		Page 3 Mark Scheme: Teachers' version Syllabus		Paper			
			GCE A/AS LEVEL – May/June 2009 9702				
4	(a)		nge of shape / size / length / dimension n (deforming) <u>force is removed</u> , returns to original shape		C1 A1	[2]	
		(ii) <i>L</i> =	ke		B1	[1]	
	(b)		w e.c.f. from extension)		B1 B1		
		½e and	2k		B1		
		2	low e.c.f. from extension in part 2)		B1		
		$\frac{2}{3}k$ (allo	ow e.c.f. from extension)		B1	[5]	
5	(a)	constant	phase difference		B1	[1]	
	(b)		evelength estimate 750 nm \rightarrow 550 nm		C1 C1		
			= 1.8 mmmarks from inappropriate estimate if answer is in range 1		A1	[3]	
	(c)	amplitud	er complete destructive interference / les no longer completely cancel		M1 A1	[2]	
6	(a)	=	: V / d			. 01	
			$e = Eq$ $= 1.4 \times 10^{4} \times 1.6 \times 10^{-19}$ $= 2.24 \times 10^{-15}$		A1 C1 M1 A0	[2]	
	(b)	a =	: <i>ma</i>				
		=	2.46 × 10 ¹⁵ m s ⁻² (allow 2.5 × 10 ⁵)			[2]	
		2.5	7281 × $10^{-2} = \frac{1}{2} \times 2.46 \times 10^{15} \times t^2$ 4.5×10^{-9} s			[2]	
	(c)	or	gravitational force is normal to electric force electric force horizontal, gravitational force vertical case: force/acceleration due to electric field >> force/acc due to gravitational field, allow 1 mark		B2	[2]	

Second variant Mark Scheme

Page 4

		<u> </u>				
			GCE A/AS LEVEL – May/June 2009	9702	22	
7	(a)					[3]
	(b)	(i) I ₁ +	$I_3 = I_2 + I_4 \dots$		A1	[1]
		(ii) E ₂	$- E_1 = I_3 R \dots$		A1	[1]
		(iii) E ₂	$= I_3R + 2I_4R \dots$		A1	[1]
8	(a)	factors /	ecay / activity / decay (of nucleus) is not affected by ex environment / surroundings s specific factor(s), rather than giving general statemen		B2	[2]

Syllabus

Paper

[1]

Mark Scheme: Teachers' version

(iv) beta / β B1