Un modello Agent-Based per studiare la diffusione del virus SARS-CoV-2

G. Pescarmona¹ P. Terna² A. Acquadro¹ P. Pescarmona³ G. Russo⁴ S. Terna⁵

¹ University of Torino, Italy

²University of Torino, Italy, retired & Fondazione Collegio Carlo Alberto, Honorary Fellow, Italy

³University of Groningen, The Netherlands

⁴Centro Einaudi, Torino, Italy

5_{tomorrowdata.io}

IRES Piemonte - 23 Febbraio 2021

Outline

Introduction

The model

Overview Details

Contagions

The proposed technique An introductory example A significant sequence

Exploring cases

Simulation batches
Epidemics without and with control
Actual data
Second wave

New use cases of the model

A new model

Final remarks

Objectives of the model

- We propose an agent-based model to simulate the Covid-19 epidemic diffusion, with Susceptible, Infected, symptomatic, asymptomatic, and Recovered people: hence the name S.I.s.a.R. The scheme comes from S.I.R. models, with (i) infected agents categorized as symptomatic and asymptomatic and (ii) the places of contagion specified in a detailed way, thanks to agent-based modeling capabilities.
- The infection transmission is related to three factors: the infected person's characteristics and those of the susceptible one, plus those of the space in which contact occurs.
- The model includes the structural data of Piedmont, but it can be readily calibrated for other areas. The model manages a realistic calendar (e.g., national or local government decisions), via a script interpreter.

Tool and links

- We use NetLogo, at https://ccl.northwestern.edu/netlogo/.
- S.I.s.a.R. is at https://terna.to.it/simul/SIsaR.html with information on model construction, the draft of a paper also reporting results, and an online executable version of the simulation program, built using NetLogo.
- A short paper related to this presentation is at https://rofasss.org/2020/10/20/sisar/
 G. Pescarmona, P. Terna, A. Acquadro, P. Pescarmona, G. Russo, and S. Terna. How Can ABM Models Become Part of the Policy-Making Process in Times of Emergencies—The SISAR Epidemic Model. *RofASSS*, 2020.

The scale and the items

- 1:1000.
- Houses.
- Schools.
- Hospitals.
- Nursing homes,
- Factories.

The interface and the information sheet

Figure 1: The interface

The interface and the information sheet

Figure 2: The information sheet, about 20 pages

The world

Figure 3: The world

The world 3D

Figure 4: The world 3D

The agents

Figure 5: Probes to different agents

Contagion representation

- The model allows analyzing the sequences of contagions in simulated epidemics, reporting the places where the contagion occur.
- We represent each infecting agent as a horizontal segment with a vertical connections to another agent receiving the infection. We represent the infected agents via further segments at an upper layer.
- With colors, line thickness, and styles, we display multiple information.
- This enables understanding at a glance how an epidemic episode is developing.
 In this way, it is easier to reason about countermeasures and, thus, to develop intervention policies.

An example (1/2)

Figure 6: A case with containment measures, first 40 infections: workplaces (brown) and nursing homes (orange) strictly interweaving

An example (2/2), more contagions

Figure 7: A Case with containment measures, the whole epidemics: workplaces (brown) and nursing homes (orange) and then houses (cyan), with a bridge connecting two waves

Other examples (i) on the left, an epidemic without containment measures; (ii) on the right, an epidemic with basic non-pharmaceutical containment measures

Figure 8: Two cases with initial and full periods

A contagion sequence suggesting policies: in Fig. 9 we can look both at the places where contagions occur and at the dynamics emerging with different levels of intervention

Figure 9: (top left) an epidemic with regular containment measures, showing a highly significant effect of workplaces (brown); (top right) the effects of stopping fragile workers at day 20, with a positive result, but home contagions (cyan) keep alive the pandemic, exploding again in workplaces (brown); (bottom left) the same analyzing the first 200 infections with evidence of the event around day 110 with the new phase due to a unique asymptomatic worker, and (bottom right) stopping fragile workers and any case of fragility at day 15. also isolating nursing homes

Simulation batches

- We explore systematically the introduction of factual, counterfactual, and prospective interventions to control the spread of the contagions.
- Each simulation run—whose length coincides with the disappearance of symptomatic or asymptomatic contagion cases—is a datum in a wide scenario of variability in time and effects.
- Consequently, we need to represent compactly the results emerging from batches
 of simulation repetitions, to compare the consequences of the basic assumptions
 adopted for each specific batch.
- We use blocs of ten thousand repetitions. Besides summarizing the results with the usual statistical indicators, we adopt the technique of the heatmaps.
- Each heatmap reports the duration of each simulated epidemic in the *x* axis and the number of the symptomatic, asymptomatic, and deceased agents in the *y* axis. The *z* axis is represented by the colors, in logarithmic scale.
- In our batches we have 10.000 runs.

Ten thousand epidemics without control in Piedmont

	symptomatic	totalInfected&Deceased	duration
count	10000.00	10000.00	10000.00
mean	969.46	2500.45	303.10
std	308.80	802.88	93.50

Figure 10: Without non-pharmaceutical containment measures

Ten thousand epidemics with basic control in Piedmont

	symptomatic	totalInfected&Deceased	duration
count	10000.00	10000.00	10000.00
mean	344.22	851.64	277.93
std	368.49	916.41	213.48

Figure 11: First wave with non-pharmaceutical containment measures

Actual data

00000

Figure 12: Data in Piedmont

Selecting realistic spontaneous second waves

•0000

	symptomatic Dec20	totalInfected&Deceased Dec20	duration
count	140.00	140.00	170.00
mean	605.79	1528.31	535.19
std	264.29	644.34	167.42

170 epidemics out of 10,000 stable in Summer 2020, with: at 6.1.20 select sym. (10, 70] actual v. 33.3 & at 9.20.20 select sym. (20, 90] actual value 37.5. 140 residual epidemics at 12.15.20 (actual symptomatic + asymptomatic people: 200.0).

Figure 13: First wave with non-pharmaceutical containment measures, spontaneous second wave, without specific measures

Selecting realistic second waves, with new infections from outside

00000

	symptomatic Dec20	totalInfected&Deceased Dec20	duration
count	1044.00	1044.00	1407.00
mean	588.67	1474.10	527.85
std	251.96	618.87	184.76

1,407 epidemics out of 10,000 stable in Summer 2020, with: at 6.1.20 select sym. (10, 70] actual v. 33.3 & at 9.20.20 select sym. (20, 90] actual value 37.5. 1,044 residual epidemics at 12.15.20 (actual symptomatic + asymptomatic people: 200.0).

Figure 14: First wave with non-pharmaceutical containment measures, forcing the second wave, without specific measures

Selecting realistic second waves, with new infections from outside

00000

	symptomatic Dec20	totalInfected&Deceased Dec20	duration
count	874.00	874.00	1407.00
mean std	223.61 138.52	594.97 372.63	404.36 137.51

1,407 epidemics out of 10,000 stable in Summer 2020, with: at 6.1.20 select sym. (10, 70] actual v. 33.3 & at 9.20.20 select sym. (20, 90] actual value 37.5. 874 residual epidemics at 12.15.20 (actual symptomatic + asymptomatic people: 200.0).

Figure 15: First wave with non-pharmaceutical containment measures, forcing the second wave, with new specific non-pharmaceutical containment measures

Selecting realistic second waves, with new infections from outside

00000

	symptomatic Dec20	totalInfected&Deceased Dec20	duration
count	987.00	987.00	1407.00
mean std	286.09 164.33	753.06 424.90	443.05 151.25

1,407 epidemics out of 10,000 stable in Summer 2020, with: at 6.1.20 select sym. (10, 70] actual v. 33.3 & at 9.20.20 select sym. (20, 90] actual value 37.5. 987 residual epidemics at 12.15.20 (actual symptomatic + asymptomatic people: 200.0).

Figure 16: First wave with non-pharmaceutical containment measures, forcing the second wave; in second wave, uniquely stop to fragile people of any kind (including workers)

To recap

0000

Scenarios		total sym.	total sym., asympt., deceased	duration
no control in first wave				
	count	10000.00	10000.00	10000.00
	mean	969.46	2500.45	303.10
	std	308.80	802.88	93.50
basic controls in first wave				
	count	10000.00	10000.00	10000.00
	mean	344.22	851.64	277.93
	std	368.49	916.41	213.48
basic controls in first wave				
forcing realistic second	count	1044.00	1044.00	1407.00
wave, without new controls	mean	588.67	1474.10	527.85
	std	251.96	618.87	184.76
basic controls in first wave				
forcing realistic second	count	874.00	874.00	1407.00
wave, with new controls	mean	223.61	594.97	404.36
	std	138.52	372.63	137.51
basic controls in first wave				
forcing realistic second	count	987.00	987.00	1407.00
wave, with stop to frag.	mean	286.09	753.06	443.05
people (incl. workers)	std	164.33	424.90	151.25

Table 1: Report of the key results, with count, mean, and std

Exploring vaccinations

Exploring vaccination sequences (using genetic algorithms or reinforcement learning).

A new model: the map

Figure 17: 3D Piedmont

A new model: the scale and the items

- 1:100.
- Infection engine, https://terna.to.it/simul/InfectionEngine.pdf.
- Houses.
- · Schools.
- Hospitals.
- Nursing homes,
- · Factories.
- Transportations.
- Aggregation places: happy hours, night life, sport stadiums, discotheques, ...

The tool: S.L.A.P.P.

Scientific advertising: https://terna.github.io/SLAPP/

SLAPP

Swarm-Like Agent Protocol in Python

View the Project on GitHub terna/SLAPP

What version of Python do you use?

SLAPP3 uses Python 3

SLAPP2 uses Python 2

Swarm-Like Agent Protocol in Python

At SLAPP 3, you have SLAPP running in Python 3 (in the SLAPP repository you have a lot related material and a large set of old versions; the 2.0.x version is the last one related to Python 2).

We have here also a **Reference Handbook** (it is still a draft and has to be improved).

Five chapters of the book of Boero, R., Morini, M., Sonnessa, M., and Terna, P., Agent-based Models of the Economy - From Theories to Applications, are related to SLAPP.

This project is maintained by terna

Hosted on GitHub Pages — Theme by orderedlist

The new book of Mazzoli, M., Morini, M., and Terna, P., Rethinking Macroeconomics with Endogenous Market Structure, is deeply based on SLAPP.

Figure 18: Swarm-Like Agent Protocol in Python

A few considerations:

- The importance of High Performance Computing.
- From S.I.s.a.R. to a model of the society and of the economy of Piedmont.
- The S.I.s.a.R. model is a tool for comparative analyses, not for forecasting (the enormous standard deviation values are intrinsic to the problem).
- The model is highly parametric and more it will be.
- New crisis calling for immediate simulation could take a substantial advantage from the parametric structure of the model.

The slides are at https://terna.to.it/simul/TernaIRES20210223.pdf.

My homepage https://terna.to.it and my address pietro.terna@unito.it.

The image, elaborating Fig. 17, is dedicated to Pietro Greco (Barano d'Ischia, April 20th, 1955—Ischia, December 18th, 2020)