Cellpose + Trackmate

Wednesday, August 21, 2024 11:23 AM

Setting up cellpose ------

- 1. Install Anaconda or Miniconda
- 2. Install Visual Studio https://visualstudio.microsoft.com
- 3. Install Microsoft C++ Build Tools https://visualstudio.microsoft.com/visual-cpp-build-tools/
 - a. The package you want to install is this the one on the workloads tab called: "Desktop Development with C++
- 4. Update your graphics driver. We all have NVIDIA -> https://www.nvidia.com/en-us/drivers/
- 5. Install CUDA Toolkit 12.6: https://developer.nvidia.com/cuda-downloads
- 6. Make a new anaconda environment (name it as you please), BUT MAKE SURE IT'S PYTHON VERSION 3.8.XX

In the command prompt for your new python environment where you want to install cellpose AND cellprofiler, copy and paste <u>ONE</u> of these sets of commands (depending if you have a GPU to use with cellpose):

conda activate urenvironment

CPU VERSION: If running cellpose on the CPU use this chunk of code:

python -m pip install cellpose[gui] python -m pip install cellprofiler

OR

GPU VERSION: If using a GPU to run cellpose run these lines:

python -m pip install cellprofiler python -m pip install cellpose[gui] python -m pip install cuda-python python -m pip uninstall torch -y

python -m pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

Adding cellpose to TrackMate in Fiji -----

Install FIJI

Open Fiji and go to Help > Update

Once Fiji has updated, click on the bottom left of the new update window : Manage Update Sites

Check the TrackMate-Cellpose box:

Using TrackMate -----

From NIS:

File > Import/Export > ND export to TIFF

Output		
	G:\scope\2024-08-14_THP1_M0_optimization_BF_DAPI_2h\tiff\ Browse	
File prefix: 2024-08-14_thp1_m0_optin	2024-08-14_thp1_m0_optimi	
Index order Dimension: xy v v c v Multi-page: None TIF Compatibility Options • Keep bit depth • Scale 16 bit to 8 bit	Channels Mono image for each channel RGB image for each channel in channel color Merge channels to RGB image Apply LUTs Keep image as multichannel Save color channel data:	

I have 2 channels, the brightfield and the DAPI, they're gonna be saved as _c1 and _c2

From Fiji:

File > Import > Image Sequence

Your images should open as a video, frame by frame, brightfield only (I trained the model on brightfield exclusively).

Plugins > Track > TrackMate

 $Path \ to \ the \ cellpose/python \ executable \ if \ installed \ with \ an aconda: C:/Users/mhardy/AppData/Local/an aconda3/envs/cellpose/python. executable \ if \ installed \ with \ an aconda: C:/Users/mhardy/AppData/Local/an aconda3/envs/cellpose/python. executable \ installed \ with \ an aconda: C:/Users/mhardy/AppData/Local/an aconda3/envs/cellpose/python. executable \ installed \ with \ an aconda: C:/Users/mhardy/AppData/Local/an aconda3/envs/cellpose/python. executable \ installed \ with \ an aconda: C:/Users/mhardy/AppData/Local/an aconda3/envs/cellpose/python. executable \ installed \ with \ an aconda: C:/Users/mhardy/AppData/Local/an aconda3/envs/cellpose/python. executable \ installed \ with \ an aconda: C:/Users/mhardy/AppData/Local/an aconda3/envs/cellpose/python. executable \ installed \ with \ an aconda: C:/Users/mhardy/AppData/Local/an aconda3/envs/cellpose/python. executable \ installed \ with \ aconda \ installed \ with$

```
Configured detector Cellpose detector with settings:
- target channel: 0
- cellpose model: Custom
- cellpose model fliepath: G\scope\2024-08-
14_THP1_M0_optimization_BF_DAPI_2htifftraining\models\THP1_BF_2
- simplify contours: true
- use gpu: true
- use gpu: true
- use gpu: true
- use gpu: true
- optional channel 2: 3
- cell diameter: 60.0
- logger: LogPanelLogger
- cellpose python filepath: C:/Users/mhardy/AppData/Local/anaconda3/envs/cellpose/python.exe

Starting detection process using 20 threads.
Saving single time-points.
Running Cellpose with args:
C:/Users/mhardy/AppData/Local/Temp\TrackMate-Cellpose_fython.exe -m cellpose -dir C:
Users/mhardy/AppData/Local/Temp\TrackMate-Cellpose_f421205080791547441 -chan 0 --chan2 3 --use_gpu
-diameter 60.0 --pretrained_model G\scope\2024-08.

14_THP1_M0_optimization_BF_DAPI_2htifftraining\models\THP1_BF_2 --save_png --no_npy
Reading Cellpose masks.
Converting masks to spots.
Found 2307 spots.
Detection done in 473.7 s.
```

Then explore the options you want to use

- Coloring of edges and tracks
- Filtering of objects and tracks

To export data:

- Click Tracks or Spots
- The new window appears
- Export each to csv

Spots = the cells periphery (in pink)
Edges = the line of the tracks, frame by frame
Tracks = the tracks over time

Process in batches

- 1. Install the TrackMate Batcher plugin through the Help > Update button. Once Fiji has updated, click on the bottom left of the new update window: Manage Update Sites and scroll to TrackMate additional plugins
- $2. \ \ Run\ the\ Macro\ I\ wrote\ to\ turn\ your\ tiff\ frames\ into\ movies\ (it\ also\ takes\ care\ of\ switching\ z\ for\ t)$
- 3. Plugin > Tracking > TrackMate Batcher
 - a. Input file should be a .tiff with multiple \boldsymbol{t} and one \boldsymbol{z}
 - b. Top right panel, load in a .xml file you've used to process your data.
 - i. You might need to adapt the path to the python executable version in anaconda depending on your computer and where you installed it
 - ii. You might need to adapt the path to your pre-built cellpose model
 - c. Bottom left panel: Which outputs do you want
 - d. Console