Introduction to Algorithms 6.046J/18.401J

LECTURE 14

Competitive Analysis

- Self-organizing lists
- Move-to-front heuristic
- Competitive analysis of MTF

Prof. Charles E. Leiserson

List *L* of *n* elements

- The operation Access(x) costs $rank_L(x) =$ distance of x from the head of L.
- •L can be reordered by transposing adjacent elements at a cost of 1.

List L of n elements

- The operation Access(x) costs $rank_L(x) =$ distance of x from the head of L.
- •L can be reordered by transposing adjacent elements at a cost of 1.

Example:

List *L* of *n* elements

- The operation Access(x) costs $rank_L(x) =$ distance of x from the head of L.
- •L can be reordered by transposing adjacent elements at a cost of 1.

Example:

Accessing the element with key 14 costs 4.

List L of n elements

- The operation Access(x) costs $rank_L(x) =$ distance of x from the head of L.
- •L can be reordered by transposing adjacent elements at a cost of 1.

Example:

Transposing 3 and 50 costs 1.

On-line and off-line problems

Definition. A sequence *S* of operations is provided one at a time. For each operation, an *on-line* algorithm *A* must execute the operation immediately without any knowledge of future operations (e.g., *Tetris*).

An *off-line* algorithm may see the whole sequence *S* in advance.

The game of Tetris

Goal: Minimize the total cost $C_A(S)$.

Worst-case analysis of selforganizing lists

An adversary always accesses the tail (nth) element of L. Then, for any on-line algorithm A, we have

$$C_A(S) = \Omega(|S| \cdot n)$$

in the worst case.

Average-case analysis of selforganizing lists

Suppose that element x is accessed with probability p(x). Then, we have

$$E[C_A(S)] = \sum_{x \in L} p(x) \cdot \operatorname{rank}_L(x),$$

which is minimized when L is sorted in decreasing order with respect to p.

Heuristic: Keep a count of the number of times each element is accessed, and maintain *L* in order of decreasing count.

The move-to-front heuristic

Practice: Implementers discovered that the *move-to-front (MTF)* heuristic empirically yields good results.

IDEA: After accessing x, move x to the head of L using transposes:

$$cost = 2 \cdot rank_L(x)$$
.

The MTF heuristic responds well to locality in the access sequence S.

Competitive analysis

Definition. An on-line algorithm A is α -competitive if there exists a constant k such that for any sequence S of operations,

$$C_A(S) \le \alpha \cdot C_{OPT}(S) + k$$
,

where OPT is the optimal off-line algorithm ("God's algorithm").

MTF is O(1)-competitive

Theorem. MTF is 4-competitive for self-organizing lists.

MTF is O(1)-competitive

Theorem. MTF is 4-competitive for self-organizing lists.

Proof. Let L_i be MTF's list after the *i*th access, and let L_i * be OPT's list after the *i*th access.

Let $c_i = \text{MTF's cost for the } i \text{th operation}$ $= 2 \cdot \text{rank}_{L_{i-1}}(x) \text{ if it accesses } x;$ $c_i^* = \text{MTF's cost for the } i \text{th operation}$ $= \text{rank}_{L_{i-1}}(x) + t_i$,

where t_i is the number of transposes that OPT performs.

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 · # *inversions*.

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

$$= 2 \cdot \# \text{ inversions}.$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

$$= 2 \cdot \# \text{ inversions}.$$

$$\Phi(L_i) = 2 \cdot |\{\ldots\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

$$= 2 \cdot \# \text{ inversions}.$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow D \longrightarrow B$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow B \longrightarrow D \longrightarrow E$$

$$\Phi(L_i) = 2 \cdot |\{(E,C), ...\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

$$= 2 \cdot \# \text{ inversions}.$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow D \longrightarrow B$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow D \longrightarrow E$$

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), ...\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow D \longrightarrow B$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow D \longrightarrow E$$

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), (E,D), \ldots\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

$$= 2 \cdot \# \text{ inversions}.$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow D \longrightarrow E$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow B \longrightarrow D \longrightarrow E$$

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), (E,D), (E,B), \ldots\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

$$= 2 \cdot \# \text{ inversions}.$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow D \longrightarrow B$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow B \longrightarrow D \longrightarrow E$$

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), (E,D), (E,B), (D,B)\}|$$

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

$$= 2 \cdot \# \text{ inversions}.$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow D \longrightarrow B$$

$$L_{i} * \longrightarrow C \longrightarrow A \longrightarrow B \longrightarrow D \longrightarrow E$$

$$\Phi(L_i) = 2 \cdot |\{(E,C), (E,A), (E,D), (E,B), (D,B)\}|$$

= 10.

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 · # *inversions*.

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Note that

- $\Phi(L_i) \ge 0$ for i = 0, 1, ...,
- $\Phi(L_0) = 0$ if MTF and OPT start with the same list.

Define the potential function $\Phi:\{L_i\} \to \mathbb{R}$ by

$$\Phi(L_i) = 2 \cdot |\{(x, y) : x \prec_{L_i} y \text{ and } y \prec_{L_i^*} x\}|$$

= 2 \cdot # inversions.

Note that

- $\Phi(L_i) \ge 0$ for i = 0, 1, ...,
- $\Phi(L_0) = 0$ if MTF and OPT start with the same list.

How much does Φ change from 1 transpose?

- A transpose creates/destroys 1 inversion.
- $\Delta \Phi = \pm 2$.

What happens on an access?

Suppose that operation i accesses element x, and define

$$A = \{ y \in L_{i-1} : y \prec_{L_{i-1}} x \text{ and } y \prec_{L_{i-1}} * x \},$$

$$B = \{ y \in L_{i-1} : y \prec_{L_{i-1}} x \text{ and } y \succ_{L_{i-1}} * x \},$$

$$C = \{ y \in L_{i-1} : y \succ_{L_{i-1}} x \text{ and } y \prec_{L_{i-1}} * x \},$$

$$D = \{ y \in L_{i-1} : y \succ_{L_{i-1}} x \text{ and } y \succ_{L_{i-1}} * x \}.$$

What happens on an access?

$$L_{i-1} \qquad \qquad A \cup B \qquad \qquad x \qquad C \cup D$$

$$r = \operatorname{rank}_{L_{i-1}}(x)$$

$$L_{i-1} * \qquad A \cup C \qquad x \qquad B \cup D$$

$$r^* = \operatorname{rank}_{L_{i-1} *}(x)$$

We have
$$r = |A| + |B| + 1$$
 and $r^* = |A| + |C| + 1$.

What happens on an access?

$$L_{i-1} \qquad \qquad A \cup B \qquad \qquad x \qquad C \cup D$$

$$r = \operatorname{rank}_{L_{i-1}}(x)$$

$$L_{i-1} * \qquad A \cup C \qquad x \qquad B \cup D$$

$$r^* = \operatorname{rank}_{L_{i-1} *}(x)$$

We have
$$r = |A| + |B| + 1$$
 and $r^* = |A| + |C| + 1$.

When MTF moves x to the front, it creates |A| inversions and destroys |B| inversions. Each transpose by OPT creates ≤ 1 inversion. Thus, we have

$$\Phi(L_i) - \Phi(L_{i-1}) \le 2(|A| - |B| + t_i)$$
.

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})$$

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})$$

$$\leq 2r + 2(|A| - |B| + t_i)$$

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})$$

$$\leq 2r + 2(|A| - |B| + t_i)$$

$$= 2r + 2(|A| - (r - 1 - |A|) + t_i)$$
(since $r = |A| + |B| + 1$)

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})$$

$$\leq 2r + 2(|A| - |B| + t_i)$$

$$= 2r + 2(|A| - (r - 1 - |A|) + t_i)$$

$$= 2r + 4|A| - 2r + 2 + 2t_i$$

$$\hat{c}_i = c_i + \Phi(L_i) - \Phi(L_{i-1})$$

$$\leq 2r + 2(|A| - |B| + t_i)$$

$$= 2r + 2(|A| - (r - 1 - |A|) + t_i)$$

$$= 2r + 4|A| - 2r + 2 + 2t_i$$

$$= 4|A| + 2 + 2t_i$$

$$\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1})$$

$$\leq 2r + 2(|A| - |B| + t_{i})$$

$$= 2r + 2(|A| - (r - 1 - |A|) + t_{i})$$

$$= 2r + 4|A| - 2r + 2 + 2t_{i}$$

$$= 4|A| + 2 + 2t_{i}$$

$$\leq 4(r^{*} + t_{i})$$
(since $r^{*} = |A| + |C| + 1 \geq |A| + 1$)

$$\hat{c}_{i} = c_{i} + \Phi(L_{i}) - \Phi(L_{i-1})
\leq 2r + 2(|A| - |B| + t_{i})
= 2r + 2(|A| - (r - 1 - |A|) + t_{i})
= 2r + 4|A| - 2r + 2 + 2t_{i}
= 4|A| + 2 + 2t_{i}
\leq 4(r^{*} + t_{i})
= 4c_{i}^{*}.$$

$$C_{\text{MTF}}(S) = \sum_{i=1}^{|S|} c_i$$

$$C_{\text{MTF}}(S) = \sum_{i=1}^{|S|} c_i$$

$$= \sum_{i=1}^{|S|} (\hat{c}_i + \Phi(L_{i-1}) - \Phi(L_i))$$

$$C_{\text{MTF}}(S) = \sum_{i=1}^{|S|} c_i$$

$$= \sum_{i=1}^{|S|} (\hat{c}_i + \Phi(L_{i-1}) - \Phi(L_i))$$

$$\leq \left(\sum_{i=1}^{|S|} 4c_i^*\right) + \Phi(L_0) - \Phi(L_{|S|})$$

$$C_{\text{MTF}}(S) = \sum_{i=1}^{|S|} c_i$$

$$= \sum_{i=1}^{|S|} (\hat{c}_i + \Phi(L_{i-1}) - \Phi(L_i))$$

$$\leq \left(\sum_{i=1}^{|S|} 4c_i^*\right) + \Phi(L_0) - \Phi(L_{|S|})$$

$$\leq 4 \cdot C_{\text{OPT}}(S),$$

since
$$\Phi(L_0) = 0$$
 and $\Phi(L_{|S|}) \ge 0$.

Addendum

If we count transpositions that move x toward the front as "free" (models splicing x in and out of L in constant time), then MTF is 2-competitive.

Addendum

If we count transpositions that move x toward the front as "free" (models splicing x in and out of L in constant time), then MTF is 2-competitive.

What if $L_0 \neq L_0$ *?

- Then, $\Phi(L_0)$ might be $\Theta(n^2)$ in the worst case.
- Thus, $C_{\text{MTF}}(S) \leq 4 \cdot C_{\text{OPT}}(S) + \Theta(n^2)$, which is still 4-competitive, since n^2 is constant as $|S| \to \infty$.