Miroirs sphériques et lentilles minces dans l'approximation de Gauss

Expériences et simulations permettent de conclure que les miroirs et les lentilles sphériques ne donnent d'un point A une unique image A' que dans certaines conditions appelées conditions de Gauss :

Les rayons lumineux sont proches de l'axe et peu inclinés par rapport à l'axe.

Table des matières

1	\mathbf{Mir}	oirs sphériques	1
	1.1	Miroir concave (convergent) ou convexe (divergent)	1
	1.2	Stigmatisme approché dans les conditions de Gauss	1
	1.3	Points particuliers - Distance focale - Vergence	2
	1.4	Aplanétisme approché dans les conditions de Gauss - Plan focal	2
	1.5	Modélisation du miroir sphérique et constructions géométriques	2
		1.5.1 Modélisation	2
		1.5.2 Construction de l'image A' d'un point A sur l'axe	3
		1.5.3 Construction d'un rayon réfléchi	3
	1.6	Relations de conjugaison et grandissement	4
	1.7	Le miroir plan (vu comme un limite du miroir sphérique)	4
2			
2	Len	tilles minces	4
2	Len 2.1	tilles minces Définition	4
2			_
2	2.1	Définition	4
2	2.1 2.2	Définition	$\frac{1}{4}$
2	2.1 2.2 2.3	Définition	4 5 5 5
2	2.1 2.2 2.3 2.4	Définition	4 5 5 5 5
2	2.1 2.2 2.3 2.4 2.5	Définition	4 5 5 5 5 6
2	2.1 2.2 2.3 2.4 2.5	Définition	4 5
2	2.1 2.2 2.3 2.4 2.5	Définition	4 5 5 5 6 6

1 Miroirs sphériques

1.1 Miroir concave (convergent) ou convexe (divergent)

Miroir concave:

Miroir convexe:

1.2 Stigmatisme approché dans les conditions de Gauss

$$i = \beta - \alpha = \alpha' - \beta \Rightarrow \alpha + \alpha' = 2\beta$$

Dans les conditions de Gauss où les rayons sont proches de l'axe et peu inclinés par rapport à l'axe :

$$\alpha \simeq -\frac{\overline{HI}}{\overline{SA}} \quad \alpha' \simeq -\frac{\overline{HI}}{\overline{SA'}} \quad \beta \simeq -\frac{\overline{HI}}{\overline{SC}}$$

d'où la **relation de conjugaison** (indépendante du rayon considéré)

$$\boxed{\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}}}$$

On parle de stigmatisme approché

$$A \xrightarrow{miroir spherique} A'$$

On dit que A' est le conjugué de A ou encore que A et A' sont conjugués.

1.3 Points particuliers - Distance focale - Vergence

Si
$$A = C$$
 alors $A' = C$

$$C \xrightarrow{miroir spherique} C$$

Si $A = A_{\infty}$ alors A' = F'

$$A_{\infty} \xrightarrow{miroir \ spherique} F'$$

F' foyer image tel que

$$\overline{SF'} = \frac{\overline{SC}}{2} = f' = \frac{1}{V}$$

f' distance focale image et V vergence

Si
$$A' = A'_{\infty}$$
 alors $A = F$

$$F \xrightarrow{miroir spherique} A'_{\infty}$$

F foyer objet tel que

$$\overline{SF} = \frac{\overline{SC}}{2} = f$$

f distance focale objet

Un rayon parallèle à l'axe optique (issu d'un point à l' ∞ sur l'axe) est réfléchi en passant par F'.

Un rayon passant par F est réfléchi parallèlement à l'axe optique (« convergeant » vers un point à l' ∞ sur l'axe).

1.4 Aplanétisme approché dans les conditions de Gauss - Plan focal

Voir simulation.

Stigmatisme dans les conditions de Gauss :

$$A \xrightarrow{miroir spherique} A'$$

$$B \xrightarrow{miroir spherique} B'$$

Aplanétisme dans les conditions de Gauss : B' est dans le plan perpendiculaire à l'axe passant pas A'.

De même

$$A_{\infty} \xrightarrow{miroir\ spherique} F$$

$$B_{\infty} \xrightarrow{miroir\ spherique}$$

le conjugué de B_{∞} est dans le plan perpendiculaire à l'axe passant par F' appelé plan focal.

1.5 Modélisation du miroir sphérique et constructions géométriques

1.5.1 Modélisation

Cette modélisation concerne le miroir sphérique utilisé dans les conditions de Gauss

On dilate les schémas perpendiculairement à l'axe optique.

Miroir concave:

Miroir convexe:

Attention, les lois de la réflexion ne sont plus vérifiées sur le schéma (sauf en S)!

1.5.2 Construction de l'image A' d'un point A sur l'axe

$$A \to B \xrightarrow{stigmatisme} B' \xrightarrow{aplanetisme} A'$$

L'image d'un point étant un point, deux rayons suffisent pour trouver B' à choisir parmi les 3 rayons remarquables suivants :

- Le rayon parallèle à l'axe (issu d'un point à l'infini sur l'axe) et passant par B est réfléchi en passant par $F'\,;$
- Le rayon passant par B et par F est réfléchi parallèlement à l'axe;
- Le rayon passant par B et par C est réfléchi en repassant par C.

1.5.3 Construction d'un rayon réfléchi

$$B_{\infty} \to A_{\infty} \xrightarrow{stigmatisme} F' \xrightarrow{aplanetisme} B'$$

On fait comme si le rayon parvenait d'un point à l'infini en dehors de l'axe; le rayon parallèle passant par C (provenant aussi de B_{∞}) coupe le plan focal en B' conjugué de B_{∞} ; Tous les rayons issus de B_{∞} convergent en B' après réflexion (stigmatisme), le rayon est donc réfléchi en passant par B'

1.6 Relations de conjugaison et grandissement

Dans les triangles ABS et A'B'S

$$\frac{\overline{AB}}{\overline{SA}} = -\frac{\overline{A'B'}}{\overline{SA'}}$$

Dans les triangles ABC et A'B'C

$$\frac{\overline{AB}}{\overline{CA}} = \frac{\overline{A'B'}}{\overline{CA'}}$$

Dans les triangles ABF et SJF

$$-\frac{\overline{AB}}{\overline{FA}} = \frac{\overline{A'B'}}{\overline{SF}}$$

Dans les triangles A'B'F et SIF

$$-\frac{\overline{A'B'}}{\overline{FA'}} = \frac{\overline{AB}}{\overline{SF}}$$

On en déduit la relation de conjugaison avec origine au sommet ou encore **formule** de **Descartes** (déjà vu)

$$\boxed{\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = \frac{2}{\overline{SC}}}$$

avec origine au centre

$$\boxed{\frac{1}{\overline{CA}} + \frac{1}{\overline{CA'}} = \frac{2}{\overline{CS}}}$$

avec origine aux foyers ou encore formule de Newton

$$\overline{FA} \cdot \overline{FA'} = \overline{SF}^2 = f^2 = \frac{\overline{SC}^2}{4}$$

Le grandissement

$$\gamma = \frac{\overline{A'B'}}{\overline{AB}} = -\frac{\overline{SA'}}{\overline{SA}} = \frac{\overline{CA'}}{\overline{CA}} = -\frac{\overline{SF}}{\overline{FA}} = -\frac{\overline{FA'}}{\overline{SF}}$$

1.7 Le miroir plan (vu comme un limite du miroir sphérique)

 $\overline{SC} \rightarrow \infty \Rightarrow V = 0,$ le miroir plan est **afocal**

$$\frac{1}{\overline{SA}} + \frac{1}{\overline{SA'}} = 0 \Rightarrow \overline{SA'} = -\overline{SA} \ et \ \gamma = +1$$

2 Lentilles minces

2.1 Définition

La lentille mince est constituée de deux dioptres sphériques qui vérifient :

$$e = S_1 S_2 \ll C_1 S_1$$
$$e \ll C_2 S_2$$
$$e \ll C_1 C_2$$

alors $S_1 \simeq S_2 \simeq O$ centre de la lentille.

2.2 Lentille mince convergente ou divergente

Lentille mince convergente:

Lentille mince divergente:

2.3 Stigmatisme approché dans les conditions de Gauss - Vergence

Voir simulation.

L'image d'un point est un point?

Oui si les rayons sont proches de l'axe et peu inclinés par rapport à l'axe :

$$A \xrightarrow{lentille \ mince} A'$$

La **relation de conjugaison** donne alors la relation entre la position de A et de son conjugué A':

$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = V$$

en fonction de la **vergence** V > 0 pour une lentille mince convergente et V < 0 pour une lentille mince divergente.

2.4 Points particulier - Distance focale

Les rayons passant par le **centre** O ne sont pas déviés (on considère qu'au voisinage de O, on a une lame à faces parallèles).

$$A_{\infty} \xrightarrow{lentille \ mince} F'$$

F' foyer image de la lentille tel que

$$\overline{OF'} = \frac{1}{V} = f'$$

distance focale image de la lentille.

$$F \xrightarrow{lentille \ mince} A'_{\infty}$$

F foyer objet de la lentille tel que

$$\overline{OF} = -\frac{1}{V} = f$$

distance focale objet de la lentille.

Les foyers objet et image sont donc symétriques par rapport à O.

2.5 Aplanétisme approché dans les conditions de Gauss - Plan focaux

Voir expérience ou simulation.

Si

$$A_{\infty} \xrightarrow{lentille \ mince} F'$$

alors

$$B_{\infty} \xrightarrow{lentille \ mince} B'$$

B' appartenant au plan perpendiculaire à l'axe optique et passant par F', plan appelé **plan focal image**.

De même le conjugué de B'_{∞} appartient au plan perpendiculaire à l'axe optique et passant par F, plan appelé **plan focal objet**.

2.6 Modélisation de la lentille mince et constructions géométriques

2.6.1 Modélisation

Cette modélisation concerne la lentille mince utilisée dans les conditions de Gauss. On dilate les schémas perpendiculairement à l'axe optique.

Lentille mince convergente:

Lentille mince divergente:

Attention, les lois de la réfraction ne sont plus vérifiées sur le schéma!

2.6.2 Construction de l'image A' d'un point A sur l'axe

$$A \to B \xrightarrow{stigmatisme} B' \xrightarrow{aplanetisme} A'$$

L'image d'un point étant un point, deux rayons suffisent pour trouver B' à choisir parmi les 3 rayons remarquables suivants :

- Le rayon parallèle à l'axe (issu d'un point à l'infini sur l'axe) et passant par B est transmis en passant par F';
- Le rayon passant par B et par F est transmis parallèlement à l'axe;
- Le rayon passant par B et par ${\cal O}$ n'est pas dévié.

2.6.3 Construction d'un rayon transmis

$$B_{\infty} \to A_{\infty} \xrightarrow{stigmatisme} F' \xrightarrow{aplanetisme} B'$$

On fait comme si le rayon parvenait d'un point à l'infini en dehors de l'axe; le rayon parallèle passant par O (provenant aussi de B_{∞}) coupe le plan focal en B' conjugué de B_{∞} ; Tous les rayons issus de B_{∞} convergent en B' après transmission (stigmatisme), le rayon est donc transmis en passant par B'

2.7 Relations de conjugaison et grandissement

Dans les triangles ABO et A'B'O

$$\frac{\overline{AB}}{\overline{OA}} = \frac{\overline{A'B'}}{\overline{OA'}}$$

Dans les triangles ABF et OJF

$$\frac{\overline{AB}}{\overline{FA}} = -\frac{\overline{A'B'}}{\overline{OF}}$$

Dans les triangles A'B'F' et OIF'

$$\frac{\overline{A'B'}}{\overline{F'A'}} = -\frac{\overline{AB}}{\overline{OF'}}$$

On en déduit la relation de conjugaison avec origine au centre ou encore **formule de Descartes** (déjà vu)

$$\boxed{\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}}$$

avec origine aux foyers ou encore formule de Newton

$$\overline{FA} \cdot \overline{F'A'} = \overline{OF} \cdot \overline{OF'} = -f'^2$$

Le grandissement

$$\boxed{\gamma = \frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{OA'}}{\overline{OA}} = -\frac{\overline{OF}}{\overline{FA}} = -\frac{\overline{F'A'}}{\overline{OF'}}}$$