

Exercise 5A

Question 27:

Given: ABCD is a sqaure and P is a point inside it such that PB =PD

To Prove: CPA is a straight line.

Proof: In AAPD and AAPB

DA= AB [:: ABCD is a square]

AP =AP [Common] and, PB =PD [Given]

Thus by Side-Side-Side criterion of congruence, we have

ΔAPD ≅ ΔAPB

The corresponding parts of the congruent triangles are equal.

∠APD =∠APB(i)

Now consider the triangles, Δ CPD and Δ CPB.

CD = CB [:: ABCD is a square]

Thus by Side-Side-Side criterion of congruence, we have $\Delta CPD \cong \Delta CPB$

The corresponding parts of the congruent triangles are equal. Hence we have

∠CPD =∠CPB(ii)

Adding both sides of (i) and (ii) we get

 $\angle APD + \angle CPD = \angle APB + \angle CPB \dots (iii)$

Angles around the point P add upto 360°,

 \Rightarrow \angle APD + \angle CPD+ \angle APB + \angle CPB = 360°

 \Rightarrow \angle APB + \angle CPB= 360° - (\angle APD + \angle CPD) ...(iv)

Substituting (iv) in (iii) we get,

$$\angle APD + \angle CPD = 360^{\circ} - (\angle APD + \angle CPD)$$

i.e $2(\angle APD + \angle CPD) = 360^{\circ}$

$$\angle APD + \angle CPD = \frac{360}{2} = 180^{\circ}$$

This proves that CPA is a straight line.

******* END ******