PAGE: 1 of 5

TIME: 70 minutes EXAMINER: G.I. Moghaddam

DATE: March 10, 2011 COURSE: MATH 2130

[10] 1. Evaluate each of these limits or explain why it does not exist.

(a)
$$\lim_{(x,y)\to(1,-1)} \frac{(x^2-y)(1+y)}{x^4-y^2}$$

(b)
$$\lim_{(x,y)\to(0,-1)} \frac{\sin(\sqrt{x^2+y^2}-1)}{x^4+y^4+2x^2y^2-1}$$

[10] 2. Let $u(x,y) = f(x^2 + y) + g(x^2 + y)$ where f and g are twice differentiable functions. Show that

$$\frac{\partial^2 u}{\partial x^2} - 4x^2 \frac{\partial^2 u}{\partial y^2} - 2 \frac{\partial u}{\partial y} = 0$$

[9] 3. Find $\frac{dz}{dx}$ if

$$xy + xz + yz = 1$$
 , $2xy - 2y^2 - \frac{1}{2}x^2 = 0$.

Simplify your answer.

[8] 4. Let $f(x, y, z) = x^2 + y + z$ and $g(x, y, z) = xz + \frac{1}{4}z^2$. Find the directional derivative of f + g, at the origin, along the curve

$$C \ : \ x = t^2 \, , \quad y = 2t \, , \quad z = -2t \, .$$

- [13] 5. Let S_1 be the surface $z = x^3 y^2$ and also let S_2 be the surface x + y = xz.
 - (a) Find the equation of the tangent plane to the surface S₁ at the point (2, 2, 4).
 - (b) Find a tangent vector for the curve of intersection of the two surfaces S₁ and S₂ at the point (1, −1, 0).
 - (c) Find the point(s) on the surface S_2 at which the tangent plane is parallel to the plane 2x + y 3z = 0.