Lista de ejercicios Nº3: Relaciones

- 1. Si $U = \mathbb{N}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 5\}$ y $C = \{3, 4, 7\}$, determinar los siguientes conjuntos, graficarlos como subconjuntos del plano y hallar dominio e imagen:
 - a) $A \times B$

- $\begin{array}{l} c) \ (A \times A) \cup (B \times C) \\ d) \ (A \cup B) \times C \end{array}$
- $e) (A \times C) \cup (B \times C)$

b) $B \times A$

- 2. Sean $U=\mathbb{R},\,A=[1,2),\,B=[2,3],\,C=(\frac{3}{2},3)\subseteq\mathbb{R}.$ Determinar gráficamente en \mathbb{R}^2 :
 - a) $A \times C$

- c) $(A \cup B) \times C$
- e) $(A \cap C) \times C$

b) $B \times C$

 $d) (A \times C) \cup (B \times C)$

En cada caso determinar un punto del plano que pertenezca al conjunto dado y uno que no.

- 3. Sean A, B, C, D subconjuntos no vacíos de un universo U. Demostrar que
 - a) $A \times (B C) = (A \times B) (A \times C)$.
 - b) $A \times B \subseteq C \times D$ si y sólo si $A \subseteq C$ y $B \subseteq D$.
- 4. a) ¿Para qué conjuntos $A, B \subseteq U$ se verifica $A \times B = B \times A$?
 - b) ¿Existe alguna relación entre $P(A \times B)$ y $P(A) \times P(B)$?
- 5. Si $A = \{1, 2, 3\}, B = \{2, 4, 5\}$ dar ejemplos de:
 - a) Tres relaciones binarias no vacías de A en B. Graficar $A \times B$ y las tres relaciones como subconjuntos del plano.
 - b) Tres relaciones binarias no vacías en A. Graficar $A^2 = A \times A$ y las tres relaciones como subconjuntos
- 6. Sean $A = \{0, 1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$, expresar por extensión el subconjunto R de $A \times B$ definido por:
 - a) $(x,y) \in R$ si y sólo si x+y es múltiplo de 3. b) xRy si y sólo si y-x es primo.
- 7. Sea $A = \{1, 2, 3, 4, 5\}$. Expresar por extensión el subconjunto R de $A \times A$ definido por las relaciones siguientes:
 - a) $(x, y) \in R \text{ si } x + y \le 6.$

- b) x R y si x = y 1.
- 8. Esbozar la gráfica de cada una de las relaciones siguientes de A en B y determinar su imagen.
 - a) $\{(x,y)/x < y < 0\}$ $A = \mathbb{R}$ $B = \mathbb{R}$
 - b) $\{(2,1),(3,4),(1,4),(2,1),(4,4)\}\ A = \{1,2,3,4,5\}\ B = \{1,2,3,4\}$
 - c) $\{(x,y)/0 \le x < 1, y \ge x\}$ $A = \mathbb{R}$ $B = \mathbb{R}$
 - d) $\{(x,y)/x \in \mathbb{N}, y=\sqrt{x}\}\ A=\mathbb{R}\ B=\mathbb{R}$
 - e) $\{(x,y)/x \in \mathbb{N}, y = \sqrt{x}\}\ A = \mathbb{N}\ B = \mathbb{R}$
 - $f) \{(x, \sqrt{x}), x \in \mathbb{R}\} A = \mathbb{R} B = \mathbb{R}_0^+$
- 9. Para cada una de las relaciones de los ejercicios 6 y 7 determinar R(1), R(3), $R^{-1}(4)$, $R^{-1}(5)$.

10. Con referencia a las relaciones del ejercicio 8, hallar:

- a) En (a), $R((-1,\frac{1}{2}))$, R([-3,5]), $R(\mathbb{Z})$, $R^{-1}([-4,2])$, $R^{-1}(\{-7\})$, $R^{-1}(\mathbb{N})$
- b) En (b), $R(\{5\})$, $R(\{2,3,5\})$, R(), $R^{-1}(\{1,3\})$, $R^{-1}(\{1\})$, $R^{-1}()$
- c) En (d), R((5,6)), R([3,5]), R((3,5)), $R^{-1}(\mathbb{R}_0^+)$, $R^{-1}((-4,4])$, $R^{-1}((1,\frac{12}{10}))$

11. Sean A, B y C conjuntos, R una relación de A en B y S una relación de B en C. Hallar, en cada caso $S \circ R \ y \ R^{-1} \circ S^{-1}$ sus dominios e imágenes.

```
a) A = \{1, 2, 3\}, B = \{1, 2, 3, 4\} \text{ y } C = \{0, 1, 2\}.
R = \{(1,1), (1,4), (2,3), (3,1), (3,4)\}, S = \{(1,0), (2,0), (3,1), (3,2), (4,1)\}
```

b) $A = \{1, 2, 3\}, B = \{2, 4, 6, 8\} \text{ y } C = \{s, t, u\}.$

 $R = \{(1,2), (1,6), (2,4), (3,4), (3,6), (3,8)\}, S = \{(2,u), (4,s), (4,t), (6,t), (8,u)\}$

c) $A = \{a, b, c, d\}, B = \{s, t, u, v\} \ y \ C = \{1, 2, 3, 4, 5\}.$ $R = \{(a, s), (a, t), (c, v), (d, u)\}, S = \{(s, 2), (t, 1), (t, 4), (u, 3)\}$

12. Sean $A = \{1, 2, 4\}, B = \{1, 3, 4\}$ y sean $R = \{(1, 3), (1, 4), (4, 4)\}$ una relación de A en B y $S = \{1, 3, 4\}$ $\{(1,1),(3,4),(3,2)\}$ una relación de B en A. Hallar:

a) $S \circ R$ d) $Dom(R \circ S)$

b) $R \circ S$ e) $Im(S \circ R)$

c) $Dom(S \circ R)$ f) $Im(R \circ S)$

Relaciones en un conjunto

13. En cada uno de los siguientes casos, determinar si la relación R definida en $\mathbb Z$ es reflexiva, simétrica, transitiva o antisimétrica. Para los casos a, b, c, d y e determinar R(1) y $R^{-1}(1)$.

c) $(x,y) \in R$ si $x \ge y$; e) $(x,y) \in R$ si x - y es impar; d) $(x,y) \in R$ si x + y es par; f) $(x,y) \in R$ si $x^3 + y^3$ es par. a) $(x, y) \in R \text{ si } x = y^2$;

b) $(x,y) \in R \text{ si } x > y$;

14. Sea $A = \{1, 2, 3, 4\}$. Proporcionar ejemplos de relaciones en A que tengan las propiedades especificadas en cada caso.

a) Reflexiva, simétrica y no transitiva. c) Reflexiva, antisimétrica y no transitiva.

b) Reflexiva, no simétrica y no antisimétrica. d) No reflexiva, simétrica y transitiva.

15. Sean R_1 y R_2 relaciones reflexivas en un conjunto A. Determinar si cada una de las siguientes proposiciones son verdaderas o falsas justificando adecuadamente la respuesta:

a) $R_1 \cup R_2$ es reflexiva; c) $R_1 \circ R_2$ es reflexiva. b) $R_1 \cap R_2$ es reflexiva;

16. Repetir el ejercicio anterior cambiando "reflexiva" por simétrica, antisimétrica o transitiva.

17. Sea A un conjunto finito no vacío con |A| = n. Determinar si las siguientes afirmaciones son verdaderas o falsas justificando adecuadamente la respuesta.

a) Si R es una relación reflexiva sobra A, entonces $|R| \geq n$.

- b) Si R_1 y R_2 son relaciones en A y $R_1 \subseteq R_2$ entonces, si R_1 es reflexiva (simétrica, antisimétria o transitiva), entonces R_2 es reflexiva (resp. simétrica, antisimétria o transitiva).
- c) Si R_1 y R_2 son relaciones en A y $R_1 \subseteq R_2$ entonces, si R_2 es reflexiva (simétrica, antisimétria o transitiva), entonces R_1 es reflexiva (resp. simétrica, antisimétria o transitiva).

Relaciones de equivalencia

- 18. Determinar si cada una de las colecciones dadas a continuación es o no una partición del conjunto A dado. Justificar por qué.
 - a) $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, A_1 = \{4, 5, 6\}, A_2 = \{1, 8\}, A_3 = \{2, 3, 7\}.$
 - b) $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, A_1 = \{1, 3, 4, 7\}, A_2 = \{2, 6\}, A_3 = \{5, 8\}.$
 - c) $A = \mathbb{Z}, A_n = \{-n, n\}, n \in \mathbb{Z}.$
 - d) $A = \mathbb{Z}, A_n = \{-n, n\}, n \in \mathbb{N}_0.$
 - e) $A = \mathbb{R}, A_n = (n, n^2), n \in \mathbb{Z}.$
 - $(f) \ A = \mathbb{R}, \ B = \mathbb{Z}, \ A_n = (n, n+1), \ n \in \mathbb{Z}, \ \mathcal{P} = \{B\} \cup \{A_n\}_{n \in \mathbb{Z}}.$
 - g) $A = \mathbb{C}, A_n = \{z \in \mathbb{C} : n 1 < z \le n\}, n \in \mathbb{N}.$
- 19. Analizar, en cada caso, si la relación dada en el conjunto A indicado es de equivalencia. En caso de serlo, describir su conjunto cociente.
 - a) $A = \mathbb{R}, xRy \Leftrightarrow x y \in \mathbb{Q}.$
 - b) $A = \mathbb{Z}$, $xRy \Leftrightarrow x y$ es un entero par.
 - c) $A = \mathbb{Z}, p \in \mathbb{N}$ fijo, $xRy \Leftrightarrow \exists k \in \mathbb{Z}/x y = kp$.
 - d) $A = \mathbb{R}, xRy \Leftrightarrow xy > 0.$
 - e) $A = \mathbb{R}, xRy \Leftrightarrow xy \geq 0.$
 - f) $A = \{1, 2, 3, 4, 5, 6\}, xRy \Leftrightarrow x = y \circ x + y = 5.$
- 20. Sea $A = \{1, 2, 3, 4, 5\}$, y R la relación de equivalencia en A que induce la partición
 - $A = \{1, 2\} \cup \{3, 4\} \cup \{5\}$. Dar R por extensión y determinar $R(1), R^{-1}(1)$.
- 21. En $A = \{1, 2, 3, 4, 5, 6\}$ tenemos la relación de equivalencia

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5), (6,6)\}.$$

- a) Determinar [1], [2] y [3].
- b) Determinar la partición de A que induce R.
- c) Determinar R(1) y $R^{-1}(2)$.
- 22. Mostrar que para una relación de equivalencia R en A, para cada $x \in A$ $R(x) = R^{-1}(x) = [x]$.
- 23. Si $A = A_1 \cup A_2 \cup A_3$, donde $A_1 = \{1, 2\}$, $A_2 = \{2, 3, 4\}$ y $A_3 = \{5\}$, definimos la relación R en A por x R y si están en el mismo subconjunto A_i , para algún $i \in \{1, 2, 3\}$.

Es R una relación de equivalencia?

- 24. Para $A = \mathbb{R}^2$ definimos R en A por (x_1, y_1) R (x_2, y_2) si $x_1 = x_2$.
 - a) Verificar que R es una relación de equivalencia en A.
 - b) Describir geométricamente las clases de equivalencia y la partición de A inducida por R.
- 25. Definimos la relación R en N por x R y si $x/y = 2^n$ para algún $n \in \mathbb{Z}$.
 - a) Verificar que R es una relación de equivalencia.
 - b) ¿Cuántas clases distintas encontramos entre [1], [2], [3] y [4]?
- 26. Considerar en \mathbb{Z} la relación de congruencia módulo n, esto es, x R y si x y es múltiplo de n.
 - a) Mostrar que R es una relación de equivalencia.
 - b) Mostrar que R induce la partición $\mathbb{Z} = [0] \cup [1] \cup \cdots \cup [n-1] = \bigcup_{i=0}^{n-1} [i]$.

Relaciones de orden

- 27. Determinar el diagrama de Hasse para el conjunto parcialmente ordenado $(P(X), \subseteq)$, con $X = \{1, 2, 3, 4\}$.
- 28. Sea $A = \{1, 2, 3, 6, 9, 18\}$ y R la relación en A dada por x R y si x divide a y. Mostrar que es una relación de orden y trazar el diagrama de Hasse correspondiente.
- 29. Los siguientes son diagramas de Hasse correspondientes a un conjunto parcialmente ordenado (A, R). Determinar A y R en cada caso.

- 30. Definimos en \mathbb{C} la relación z_1Rz_2 si $|z_1| \leq |z_2|$. ¿Es una relación de orden? Determinar sus propiedades. Dado z_0 fijo, determinar geométricamente el conjunto $B_1 = \{z \in \mathbb{C} : z \ R \ z_0\}$ y $B_2 = \{z \in \mathbb{C} : z_0 \ R \ z\}$.
- 31. Determinar los elementos maximales, minimales, máximos y mínimos de cada una de las relaciones de los ejercicios 27, 28 y 29.
- 32. Sea $X = \{1, 2, 3, 4\}$ y consideremos el conjunto parcialmente ordenado (A, \subseteq) , con $A = \mathcal{P}(X)$. Para cada uno de los siguientes subconjuntos B de A, determine el ínfimo y el supremo de B.
 - $\begin{array}{ll} a) \ B = \{\{1\},\{2\}\}; & d) \ B = \{\{1\},\{1,2\},\{1,3\},\{1,2,3\}\}; \\ b) \ B = \{\{1\},\{2\},\{3\},\{1,2\}\}; & e) \ B = \{\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}; \\ c) \ B = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\}\}. \end{array}$
- 33. Definimos en \mathbb{Z} la relación \mathbb{R} por x R y si x y es un entero par no negativo. Probar que R es un orden parcial en \mathbb{Z} . ¿Es un orden total?
- 34. Dados dos conjuntos X_1 y X_2 , sean R_1 un orden parcial en X_1 y R_2 un orden parcial sobre X_2 . Probar que R es un orden parcial en $X_1 \times X_2$, donde

$$(x_1, x_2) R (y_1, y_2) \text{ si } x_1 R_1 y_1 y x_2 R_2 y_2.$$

- 35. Probar que (\mathbb{R}, \leq) es totalmente ordenado. ¿Lo es (\mathbb{R}^2, R) , donde R es la relación definida en el ejercicio 34?
- 36. Sea (X,R) un conjunto parcialmente ordenado ordenado y $B\subseteq X$.
 - a) Mostrar que $R_B = (B \times B) \cap R$ define un orden parcial en B.
 - b) Mostrar que si (X, R) es totalmente ordenado, entonces (B, R_B) es totalmente ordenado.
 - c) Si (X,R) no es totalmente ordenado, ¿implica esto que (B,R_B) no es totalmente ordenado?
- 37. Sea (A, R) un conjunto parcialmente ordenado. Decimos que (A, R) es un retículo si dados $x, y \in A$ cualesquiera, sup $\{x, y\}$ e inf $\{x, y\}$ existen en A.
 - a) Mostrar que (\mathbb{R}, \leq) , (\mathbb{Q}, \leq) , (\mathbb{N}, \leq) son retículos.
 - b) Mostrar que si $X \neq \emptyset$, $(\mathcal{P}(X), \subseteq)$ es un retículo.
 - c) Determinar si los conjuntos parcialmente ordenados del ejercicio 29 son retículos.
 - d) Probar que todo orden total es un retículo. ¿Es un retículo un conjunto totalmente ordenado?
- 38. Sean (X_1, R_1) , (X_2, R_2) conjuntos parcialmente ordenados y consideremos el conjunto parcialmente ordenado $(X_1 \times X_2, R)$ definido en el ejercicio 34. Determinar si las siguientes afirmaciones son verdaderas o falsas justificando adecuadamente la respuesta.
 - a) Si x_0 es un elemento maximal (o minimal) para (X_1, R_1) e y_0 es un elemento maximal (o minimal) para (X_2, R_2) entonces (x_0, y_0) es un elemento maximal (o minimal) para $(X_1 \times X_2, R)$.
 - b) Si x_0 es máximo (o mínimo) para (X_1, R_1) e y_0 es un máximo (o mínimo) para (X_2, R_2) entonces (x_0, y_0) es un máximo (o mínimo) para $(X_1 \times X_2, R)$.
 - c) Si (X_1, R_1) y (X_2, R_2) son totalmente ordenados, entonces $(X_1 \times X_2, R)$ es totalmente ordenado.
 - d) Sean $B_1 \subset X_1$ y $B_2 \subset X_2$. Si b_1 es cota superior (o inferior) de B_1 y b_2 es cota superior (o inferior) de B_2 , entonces (b_1, b_2) es cota superior (o inferior) de $B_1 \times B_2$.
 - e) Sean $B_1 \subset X_1$ y $B_2 \subset X_2$. Si b_1 es supremo (o ínfimo) de B_1 y b_2 es supremo (o ínfimo) de B_2 , entonces (b_1, b_2) es supremo (o ínfimo) de $B_1 \times B_2$.
 - f) Si (X_1, R_1) y (X_2, R_2) son retículos, entonces $(X_1 \times X_2, R)$ es un retículo.
- 39. Sea (A, R) un conjunto totalmente ordenado. Se dice que (A, R) está bien ordenado si para todo $B \subseteq A$, con $B \neq \emptyset$, el conjunto totalmente ordenado (B, R_B) definido en el ejercicio 36 tiene un elemento mínimo. Determinar si los siguientes conjuntos totalmente ordenados están bien ordenados.
 - $a) (\mathbb{N}, \leq);$
 - $b) (\mathbb{Z}, \leq);$
 - $c) (\mathbb{Q}, \leq);$
 - d) (P, \leq) , donde P es el conjunto de todos los primos;
 - e) (A, \leq) , donde A es un subconjunto no vacío de N;
 - f) (A, \leq) , donde A es un subconjunto no vacío finito de \mathbb{Z} .