Séquence 5 : suite numérique

Lycée Sonnenberg, M.BEYER, classe de Terminale ST2S

Les objectifs de la séquence :

- Prouver que trois nombres sont ou ne sont pas les termes consécutifs d'une suite arithmétique.
- Déterminer la raison d'une suite arithmétique ou géométrique modélisant une évolution.
- Exprimer en fonction de n le terme général d'une suite arithmétique ou géométrique.
- Calculer la somme des n premiers termes d'une suite arithmétique ou géométrique.

I Les suites arithmétiques

I.1 Définition par récurrence

Définition 1:

Une suite est dite **arithmétique** lorsqu'on passe d'un terme au suivant en ajoutant à chaque fois un même nombre r appelé **raison** de la suite.

Une suite arithmétique est définie par la donnée de son premier terme (généralement u_0 ou u_1) et la relation de récurrence :

$$\begin{cases} u_0 = k \text{ avec } k \in \mathbb{R} \\ u_{n+1} = u_n + r \end{cases}$$

Exemple 1:

Une chaîne de supermarché avait 200 points de vente en 2010. Chaque année elle en a ouvert 6 de plus.

On note u_n le nombre de points de vente de la chaîne au bout de n année. Le premier terme de la suite (u_n) est $u_0 = 200$.

On passe d'un terme au suivant en ajoutant 6, c'est-à-dire : $u_{n+1} = u_n + 6$. (u_n) est donc une suite arithmétique de raison 6.

Méthode 1 : montrer qu'une suite est arithmétique

Pour démontrer qu'une suite est arithmétique, on calcule la différence entre deux termes consécutifs.

Si cette différence est constante, quelles que soient les valeurs de n, c'est a dire que sa valeur ne dépend pas de n, on peut en conclure que la suite (u_n) est arithmétique.

Exemple 2:

Soit la suite (w_n) définie par $w_n = 3n + 7$ pour tout entier naturel n.

$$w_{n+1} - w_n = 3 \times (n+1) + 7 - (3n+7) = 3n+3+7-3n-7 = 3$$

Donc (w_n) est une suite arithmétique de raison r=3

I.2 Définition explicite

I.2.1 Activité

Soit la suite arithmétique (u_n) de premier terme $u_0 = -2$ définie pour tout entier naturel n par $u_{n+1} = u_n + 3$.

1. Compléter la figure ci-dessous :

- 2. Combien de fois doit-on ajouter la raison pour calculer u_8 à partir de u_0 .
- 3. Compléter $u_8 = u_0 + \times 3$.
- 4. Calculer u_{21} à partir de u_0 .
- 5. Combien de fois doit-on ajouter la raison pour calculer u_8 en fonction de u_1 .
- 6. Calculer u_{21} en fonction de u_1 .

Propriété 1:

 $Soit(u_n)$ une suite arithmétique de raison r et de premier terme u_0 .

- Pour tout entier natureln, on a :

$$u_n = u_0 + n \times r$$

- Pour tout entiers naturels n et p, on a :

$$u_n = u_p + (n - p) \times r$$

Exemples 3:

Soit (u_n) la suite arithmétique définie sur telle que $u_5 = 7$ et r = 3 1. Calculer u_9 .

$$u_9 = u_5 + (9-5) \times r$$
, donc $u_9 = 7 + 4 \times 3 = 19$

Soit (v_n) la suite arithmétique définie sur telle que $v_1 = 10$ et r = -2

1. Exprimer v_{n+1} en fonction de v_n .

$$v_{n+1} = v_n + r = v_n - 2.$$

2. Pour tout entier $n \neq 0$, exprimer v_n en fonction de n.

$$v_n = v_1 + (n-1)r \text{ donc } v_n = 10 - 2(n-1)$$

3. Donner la valeur de v_9 .

$$v_9 = v_1 + (9-1)r = 10 - 2 \times 8 = 10 - 16 = -6$$

I.3 Propriétés des suites arithmétiques

I.3.1 Sens de variation

Propriété 2:

Soit (u_n) une suite arithmétique de raison r alors :

- Si r > 0 alors (u_n) est strictement croissante.
- Si r = 0 alors (u_n) est **constante**.
- Si r < 0 alors (u_n) est strictement décroissante.

Démonstration: On considère une suite arithmétique de raison r. On a donc pour tout $n \in \mathbb{N}$

$$u_{n+1} = u_n + r \Longleftrightarrow u_{n+1} - u_n = r$$

On observe trois cas possible:

- Si r > 0 alors pour tout $n \in u_{n+1} u_n > 0$ donc (u_n) est strictement croissante.
- Si r=0 alors pour tout $n \in u_{n+1}-u_n=0$ donc (u_n) est constante.
- Si r < 0 alors pour tout $n \in u_{n+1} u_n < 0$ donc (u_n) est strictement décroissante.

Exemple 4:

Soit la suite (w_n) définie par $w_n = 3n + 7$ pour tout entier naturel n.

On a vu ci-dessus que (w_n) est une suite arithmétique de raison r=3.

Donc (w_n) est une suite strictement croissante car r > 0

On peut retrouver ce résultat grâce à la définition du sens de variation :

$$w_{n+1} - w_n = 3 \times (n+1) + 7 - (3n+7)$$

= $3n+3+7-3n-7$
= $3 > 0$

Donc (w_n) est une suite arithmétique croissante.

I.4 Représentation graphique

Propriété 3:

Soit (u_n) une suite arithmétique de raison r, alors les points de sa représentation graphique dans un repère du plan sont alignés.

Exemple 5:

Soit la suite (v_n) définie par $v_0 = 350$ et la relation de récurrence $v_{n+1} = v_n - 50$, pour tout entier naturel n. On calcul les premiers termes de cette suite :

n	0	1	2	3	4	5
v_n	350	300	250	200	150	100

Sur le graphique ci dessous, les points B_n correspondent à la suite (v_n) .

On voit que les points représentant la suite (v_n) sont alignés. Cette suite semble donc arithmétique de raison r = -50.

I.5 Lien avec la moyenne arithmétique

Définition 2 :

La moyenne arithmétique de deux réels a et b est égale à $\frac{a+b}{2}$

Propriété 4:

Pour que trois réels x, y et z soient les termes consécutifs d'une suite arithmétique, il faut et il suffit que le réel y soit égal à la moyenne arithmétique des réels x et z.

Exemple 6:

Puisque $\frac{1+9}{2} = 5$, alors 1, 5 et 9 sont les termes consécutifs d'une suite arithmétique.

I.6 Somme de termes consécutifs d'une suite arithmétique

Propriété 5:

La somme S des n termes consécutifs d'une suite arithmétique est égale à :

$$S = n \, \times \, \frac{premier \,\, terme \,\, + \,\, dernier \,\, terme}{2}$$

Méthode 2 : calculer la somme d'une suite arithmétique

On considère pour tout entier naturel n la suite arithmétique (u_n) .

$$S = u_0 + u_1 + u_2 + \dots + u_n = \sum_{k=0}^n u_k = (n+1) \times \frac{u_0 + u_n}{2}$$

Exemple 7:

Soit (u_n) la suite arithmétique de premier terme $u_0 = 19$ et de raison r = 5.

1. Calculer $S_{10} = \sum_{k=0}^{10} u_k$.

Le premier terme est $u_0 = 19$.

La somme comporte 11 termes.

Le dernier terme est
$$u_{10} = u_0 + 10 \times 5 = 69$$
.
Donc $S_{10} = 11 \times \frac{u_0 + u_{10}}{2} = 11 \times \frac{19 + 69}{2} = 484$

\mathbf{II} Suites géométriques

II.1 **Définition**

Définition 3:

Une suite est dite géométrique si l'on passe d'un terme au suivant en multipliant toujours par le même nombre q, appelé ici aussi raison de la suite. Autrement dit, une suite est géométrique si sa formule de récurrence est du type :

$$u_{n+1} = u_n \times q$$
 pour tout $n \ge 0$.

Exemple 8:

La suite des puissances de dix : $1 - 10 - 100 - 1000 - 10000 - \dots$ est géométrique de raison 10.

Remarque:

Une suite pour laquelle on passe d'un terme au suivant en divisant toujours par le même nombre est également géométrique, puisque diviser par un nombre revient à multiplier par son inverse.

Méthode 3:

Pour démontrer qu'une suite est géométrique :

- soit on transcrit le texte de l'énoncé sous forme de formule de récurrence ;
- soit on calcule le **quotient** $\frac{u_{n+1}}{u_n}$ entre deux termes consécutifs et on montre que ce quotient est constant et ne dépend pas de n.

Le résultat de ce calcul est alors la **raison** q de la suite.

Exemple 9:

On souhaite démontrer que la suite définie par $u_n = 5 \times 3^n$ pour tout n0 est géométrique.

— on calcule $u_{n+1}: u_{n+1} = 5 \times 3^{n+1} = 5 \times 3^n \times 3$; — puis le quotient $\frac{u_{n+1}}{u_n} = \frac{5 \times 3^n \times 3}{5 \times 3^n} = 3$. Le résultat ne dépend plus de n, donc la suite est **géométrique** de raison q = 3.

II.2 Formule explicite

Propriété 5:

Soit une suite **géométrique** de raison q et de premier terme u_0 .

Alors on a:

$$u_n = u_0 \times q^n$$
 pour tout $n \in \mathbb{N}$.

Remarque:

Si le premier terme de la suite n'est pas u_0 mais u_1 , on a la propriété :

$$u_n = u_1 \times q^{n-1}$$
 pour tout $n \ge 1$

et, pour n'importe quel rang p:

$$u_n = u_p \times q^{n-p}$$
 pour tout $n \ge p$.

Exemple 10:

Je place en banque une somme de 350 €. Au 1er janvier de chaque année, je perçois sur mon compte des intérêts qui s'élèvent à 3 % de la somme placée pendant l'année écoulée. Quelle somme sera disponible sur mon compte au bout de 5 ans?

- Au bout d'un an, il y aura $350 + \frac{3}{100} \times 350 = 350 + 10,5 = 360,5 €$. Au bout de deux ans, il y aura $306,5 + \frac{3}{100} \times 360,5 = 360,5 + 10,815 \approx 371,31 €$.
- La suite (c_n)] où c_n est la somme placée à la fin de la n-ième année est une suite géométrique de raison q = 1.03 et de premier terme $c_0 = 350$.
 - En effet, $c_{n+1} = c_n + \frac{3}{100} \times c_n = c_n + 0.03c_n = 1.03c_n$.
- Au bout de 5 ans, il y aura donc sur le compte $c_5=c_0\times q^5=350\times 1{,}03^5\approx 405{,}75$ €.

II.3 Sens de variation

Propriété 6:

- Si 0 < q < 1 alors (u_n) est strictement décroissante.
- Si q = 1 alors (u_n) est constante.
- Si q > 1 alors (u_n) est strictement croissante

QCM : rappel de première

Cocher la bonne réponse :

	1 : Les nombres 0 ; 1 ; 3 ; 4 sont dans l'ordre, des termes successifs d'une suite arithmétique.
_	VRAI
\sim	FAUX 2 : Soit (u_n) la suite définie, pour tout entier naturel n , par $u_n = 2n^2 + 3$.
	$u_3=21$
_	$u_3 = 3$
	$u_3 = 3u_1$
	$u_3 = 9$
	3 : Soit (u_n) la suite arithmétique de premier terme $u_0 = 5$ et de raison $r = 8$. La valeur de
u_1 est :	
\bigcirc	-3
\bigcirc	3
\bigcirc	40
\bigcirc	13
$\operatorname{Question}$	4 : Soit (u_n) la suite géométrique de premier terme $u_0=5$ et de raison $q=2$. La valeur de
u_1 est:	
\bigcirc	10
\bigcirc	7
\bigcirc	2,5
\bigcirc	25
Question	5 : Soit (u_n) la suite arithmétique telle que $u_3=7$ et de raison $r=8$. La valeur de u_2 est :
\bigcirc	13
\bigcirc	1
\bigcirc	-1
\circ	2
Question	6 : Soit (u_n) la suite arithmétique telle que $u_3=7$ et de raison $r=8$. La valeur de u_2 est :
\bigcirc	13
\bigcirc	1
\bigcirc	-1
\bigcirc	2
Question	7 : Soit (u_n) la suite géométrique telle que $u_2=-2$ et de raison $q=3$. La valeur de u_5 est :
\bigcirc	-54
\bigcirc	54
\bigcirc	-18
\bigcirc	7
Question	8 : Soit (u_n) la suite arithmétique de premier terme $u_1=10$ et de raison $r=4$. On a :
\bigcirc	$u_4 = 18$
\bigcirc	$u_4 = 20$
\bigcirc	$u_4 = 30$
\bigcirc	$u_4 = 26$

	ion 9 : Soit (v_n) la suite définie pour tout entier n , par $v_0=5$ et la relation $v_{n+1}=3v_n$ $v_2=15$
\bigcirc	$v_2 = 45$
\bigcirc	$v_2 = 45$
Question	$v_10=3v_1$ 10 : Soit (v_n) une suite arithmétique de premier terme $u_0=-3$ et de raison 2. $u_4=-1$
\bigcirc	$u_4 = u_0 + 2$
\bigcirc	$u_4 = 3$
Question	$u_4=5$ 11 : La suite arithmétique de premier terme $u_0=-1$ et de raison -2 est : croissante
\bigcirc	décroissante
\bigcirc	ni croissante ni décroissante
Question	constante $12: \mbox{La suite géométrique de premier terme } u_0 = 3 \mbox{ et de raison } 0,\!25 \mbox{ est : croissante}$
\bigcirc	décroissante
\bigcirc	ni croissante ni décroissante
_	constante 13 : Soit (v_n) une suite arithmétique telle que $v_0=2$ et $v_2=8$. La raison vaut : 2
\bigcirc	6
\bigcirc	-3
\bigcirc	
Question \bigcirc	14 : Soit (v_n) une suite géométrique telle que $v_0=2$ et $v_2=8$. La raison vaut : 2
\bigcirc	4
\bigcirc	8
\bigcirc	1

Fiche 1 : suite arithmétique

Vous trouverez au dos de cette feuille une notice pour calculer les termes d'une suite à l'aide de la calculatrice.

Exercice 1:

Soit (u_n) la suite arithmétique de raison 3 et de premier terme $u_0 = 2$.

1. Calculer u_1, u_2, u_3, u_4 et u_6 .

Exercice 2:

Soit (u_n) la suite arithmétique de premier terme $u_0 = -3$ et de raison r = 2.

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Écrire une relation entre u_{n+1} et u_n .
- 3. À l'aide de la calculatrice :
 - (a) déterminer le treizième terme;
 - (b) déterminer u_{24} .

Exercice 3:

Au 1er janvier 2010, Chloé débute dans une entreprise avec un salaire mensuel de 1500 €.

Il est prévu dans son contrat une augmentation mensuelle de $7 \in a$ partir du deuxième mois. On note $a_0 = 1500$ son salaire d'embauche puis pour n supérieur ou égal à 1, a_n son salaire à la fin du (n+1)-ième mois.

- 1. Déterminer le salaire a_1 du deuxième mois.
- 2. Exprimer a_{n+1} en fonction de a_n , et en déduire la nature de la suite (a_n) .
- 3. À l'aide de la calculatrice :
 - (a) déterminer le salaire du 7^e mois;
 - (b) déterminer le rang du premier mois pour lequel son salaire dépassera 2 000 €.

Calculer les termes d'une suite arithmétique à l'aide de la calculatrice

Soit (u_n) une suite arithmétique de premier terme $u_0 = 17$ et de raison r = 11. A l'aide de la calculatrice calculer u_{10} .

Avec la Casio Graph 35+E:

Dans le menu RECUR, appuyer sur la touche F4 puis F2. On entre $a_{n+1} = a_n + 11$ puis on presse sur **EXE**. Modifier les valeurs Start et End pour indiquer les valeurs minimale et maximale dans le tableau, et celle de a_0 pour indiquer le premier terme de la suite. Ensuite, presser la touche F6 (TABL) pour afficher le tableau de valeur.

Avec la Ti 83 Premium:

Appuyer sur la touche **mode** et sur la troisième ligne, sélectionner SUITE (ou SEQ selon les modèles). Ensuite, presser la touche f(x) (ou Y = selon la version de la calculatrice). Modifier les valeurs de nMin pour déterminer le rang du premier terme (en général 0), de u(n) pour déterminer l'expression de u(n) en fonction de u(n-1), en utilisant les touches **2nde** et **7** pour taper u) et la touche $\mathbf{X}, \mathbf{T}, \boldsymbol{\theta}$, pour n, et de u(nMin) pour indiquer la valeur du premier terme. Ensuite, presser les touches **2nde** et **graphe(table)** pour afficher le tableau de valeurs. Presser les touches **2nde** puis **fenêtre** (déf table). Modifier les valeurs DebutTbl et Tbl pour indiquer la valeur minimale de n dans le tableau, et celle du pas. Ensuite, presser les touches **2nde** et **graphe** (table) pour afficher le tableau de valeurs.

Fiche 2 : suite arithmétique et représentation graphique

Exercice 1:

On a représenter ci-dessous la suite (u_n) .

- 1. Montrer que cette suite est arithmétique.
- 2. Déterminer sa raison r et u_1 .
- 3. Donner l'expression de u_n en fonction de n.

Exercice 2:

On a représenté les premiers termes d'une suite (u_n) :

- 1. Déterminer u_0 , u_1 et u_2 .
- 2. Cette suite peut-elle être arithmétique?

Somme des termes d'une suite arithmétique

$$S = \text{nombre de termes} \times \left(\frac{1er \ terme \ de \ la \ somme + dernier \ terme \ de \ la \ somme}{2} \right)$$

Exercice 1:

Soit (u_n) une suite arithmétique de raison 3 et de premier terme $u_0 = -4$. Calculer la S_{10} somme des 10 premiers termes de la suite (u_n) .

- 1. Que vaut u_0 ?
- 2. Calculer u_9 ?
- 3. Déterminer S_{10} .

Exercice 2:

Soit (u_n) une suite arithmétique de raison 2 et de premier terme $u_0 = -1$. Calculer la S_{20} somme des 20 premiers termes de la suite (u_n) .

Exercice 3:

Soit (u_n) une suite arithmétique de raison -3 et de premier terme $u_1 = 4$. Calculer la somme des 30 premiers termes de la suite (u_n) .

Exercice 4:

Kenza s'intéresse au tarif d'une mutuelle. Le prix initial proposé est de 300 \in par an en 2023. L'assureur prévoit une augmentation de 10 \in par an. On note u_n le prix annuel de la mutuelle de l'assureur A en 2023 + n.

- 1. Déterminer la valeur de u_0 et de u_1 .
- 2. Exprimer u_{n+1} en fonction de u_n . Quelle est la nature de la suite (u_n) ?
- 3. En déduire l'expression de u_n en fonction de n.
- 4. Quel sera le prix de la mutuelle de l'assureur en 2033?
- 5. Combien Kenza aura-t-elle payé au total en 25 ans si elle choisit cette assureur.

Pixel-Art

Répondre en justifiant aux 16 questions ci-dessous. Chaque résultat vous permettra de colorier une partie de votre grille.

1	Pour tout entier naturel $n,u_n=2n^2+4.$ Déterminer $u_3.$
2	Soit (u_n) une suite arithmétique de premier terme $u_0 = 3.7$ et de raison -0.7 . Déterminer u_{10} .
3	Soit (u_n) une suite arithmétique de premier terme $u_1 = -4$ et de raison 2. Déterminer u_{10}
4	Soit (u_n) une suite arithmétique de raison $r = -6$ et telle que $u_3 = 25$. Calculer u_2 .
5	Soit (u_n) est la suite arithmétique de premier terme $u_0 = 6$ et de raison $r = 3$. Calculer $S = u_0 + u_1 + + u_9$
6	Les points de la représentation graphique d'une suite arithmétique sont
7	$u_1=10$; $u_2=5$; $u_3=2.5$ La suite est-elle arithmétique?
8	Soit (v_n) est la suite arithmétique de premier terme $v_1 = -2$ et de raison $r = -3$. Calculer v_{12} .
9	Soit (u_n) la suite arithmétique tel que $u_0=3$ et $u_7=17$ Calculer la raison de cette suite.
10	Soit (u_n) une suite arithmétique de raison 2. Exprimer u_{n+1} en fonction de u_n .
11	Soit (u_n) la suite arithmétique tel que $u_0 = 3$ et $r = -3$ Sens de variation de (u_n) :
12	$u_1 = 15$; $u_2 = 10$; $u_3 = 5$ Quelle est la raison de cette suite?
13	Soit (u_n) est la suite arithmétique de premier terme $u_1 = 10$ et de raison $r = 2$. Calculer S_{10} .
14	Soit (u_n) est la suite arithmétique de premier terme $u_1 = 10$ et de raison $r = -2$. Calculer S_9 .
15	Soit (u_n) une suite arithmétique de raison $r=6$ et telle que $u_3=25$. Calculer u_{12} .
16	$u_n = n+1.$ Calculer u_{n+1} - u_n

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16