Structura sistemelor de calcul

Prof. Zoltan Francisc Baruch
Departamentul de Calculatoare
Universitatea Tehnică din Cluj-Napoca

Informații despre disciplina SSC (1)

Obiectivul general

Cunoașterea structurii și proiectarea unor componente ale sistemelor de calcul

Obiective teoretice

- Cunoașterea unor indicatori de performanță
- Cunoașterea diferitelor metode de implementare a operațiilor aritmetice
- Cunoașterea diferitelor tehnologii și tipuri de memorii: asociativă, cache, virtuală
- Cunoașterea unor arhitecturi paralele

Informații despre disciplina SSC (2)

Obiective practice

- Proiectarea și implementarea prin hardware a unor operații aritmetice
- Proiectarea unor sisteme ierarhice de memorie și memorii cache
- Proiectarea și implementarea unor module hardware utilizând limbajul VHDL și mediul de dezvoltare Xilinx Vivado Design Suite
- Simularea funcțională a unor module hardware

Informații despre disciplina SSC (3)

- Notare
 - 25% Laborator

 teste scrise; colocviu
 - 25% Proiect -> raport scris şi susţinere
 - 50% Examen

 examen parţial; examen final
 - Nota minimă pentru fiecare activitate: 5
- Pagini web
 - <u>http://users.utcluj.ro/~baruch/ro/</u>
 Cursuri → Structura sistemelor de calcul

Informații despre disciplina SSC (4)

Curs

- Prezența la cursuri este obligatorie
- Număr maxim de absențe admise: 6
- Studenții care au un număr mai mare de 6 absențe nu vor fi admiși la examenul final din sesiunea normală

Examen final

- Condiții de acceptare: prezența la cursuri; promovarea laboratorului și a proiectului
- Schemele și diagramele trebuie explicate

Informații despre disciplina SSC (5)

- Examen parțial
 - Se va susține din materialul primelor două capitole
 - Se poate susține o singură dată, în ziua stabilită, în timpul semestrului
 - Promovarea este foarte importantă
 - Va fi recunoscut în sesiunea normală de vară și în sesiunea de restanțe din luna iulie
 - Punctajul minim pentru promovare: 40% din punctajul total

Informații despre disciplina SSC (6)

Laborator

- Prezența este obligatorie la toate lucrările
- Condiția de acceptare: răspunsuri scrise la întrebările de la sfârșitul lucrării curente
- Teste scrise: 5 teste anunțate; media minimă pentru acceptarea la colocviu: 5
- Nota: 40% teste scrise; 60% colocviu
- Recuperări: maxim 4 lucrări
 - Max. 2 lucrări în timpul semestrului (fără plată)
 - Max. 2 lucrări la sfârșitul semestrului (cu plată)

Bibliografie (1)

Baruch, Z. F., Structura sistemelor de calcul, Editura Albastră, Cluj-Napoca, 2005, ISBN 973-650-143-4

Bibliografie (2)

Baruch, Z. F., Structure of Computer Systems, Editura U.T.PRES, Cluj-Napoca, 2002, ISBN 973-8335-44-2

Cuprinsul cursului

- 1. Introducere
- 2. Unitatea aritmetică și logică
- 3. Sisteme de memorie
- 4. Arhitecturi RISC
- 5. Introducere în arhitecturi paralele

1. Introducere

- Indicatori de performanță
 - Timpul de execuţie
 - Timpul UCP
 - MIPS
 - MFLOPS
- Programe de evaluare a performanțelor
- Legea lui Amdahl

Timpul de execuție (1)

- Performanța unui calculator se referă la:
 - Viteza
 - Fiabilitatea hardware şi software
- Măsura performanței: timpul de execuție (t_E)
- Timpul de răspuns: timpul necesar terminării unui task
 - Include accesele la memorie, operațiile de I/E și operațiile executate de sistemul de operare

Timpul de execuție (2)

- UCP: unitatea centrală de prelucrare
- Timpul UCP: timpul în care UCP execută efectiv un program
 - Nu cuprinde timpul de așteptare pentru operațiile de I/E
 - Nu include nici timpul în care UCP execută alte programe
 - Poate fi divizat în:
 - Timpul UCP al utilizatorului
 - Timpul UCP al sistemului

Timpul de execuție (3)

- Compararea performanțelor a două calculatoare, de ex., X și Y
 - Calculatorul X este mai rapid decât Y dacă timpul de execuție al lui X este mai redus decât cel al lui Y pentru taskul dat
 - Calculatorul X este cu n% mai rapid decât Y înseamnă că:

$$\frac{t_E(Y)}{t_E(X)} = 1 + \frac{n}{100}$$

Timpul de execuție (4)

ightharpoonup Deoarece t_F este inversul performanței P:

$$\frac{t_E(Y)}{t_E(X)} = \frac{P(X)}{P(Y)} = 1 + \frac{n}{100}$$

Creșterea performanței (n) va fi:

$$n = \frac{P(X) - P(Y)}{P(Y)} \times 100 = \frac{t_E(Y) - t_E(X)}{t_E(X)} \times 100$$

Exemplul 1.1

1. Introducere

- Indicatori de performanță
 - Timpul de execuție
 - Timpul UCP
 - MIPS
 - MFLOPS
- Programe de evaluare a performanțelor
- Legea lui Amdahl

Timpul UCP (1)

Arr Timpul UCP (t_{UCP}) poate fi exprimat prin:

$$t_{UCP} = C_{UCP} \times t_C$$

- C_{UCP} numărul ciclurilor de ceas ale UCP necesare pentru execuția programului
- t_c durata ciclului de ceas
- O altă exprimare:

$$t_{UCP} = \frac{C_{UCP}}{f}$$

f – frecvenţa semnalului de ceas

Timpul UCP (2)

- Se poate considera numărul de instrucțiuni executate → contorul de instrucțiuni N
- Numărul mediu al ciclurilor de ceas pe instrucțiune (CPI):

$$CPI = \frac{C_{UCP}}{N}$$

Timpul UCP poate fi definit ca:

$$t_{UCP} = C_{UCP} \times t_C = N \times \text{CPI} \times t_C$$

Timpul UCP (3)

sau:

$$t_{UCP} = \frac{N \times \text{CPI}}{f}$$

Numărul total al ciclurilor de ceas ale UCP:

$$C_{UCP} = \sum_{i=1}^{n} (CPI_i \times I_i)$$

- CPI_i numărul ciclurilor de ceas pentru instrucțiunea i
- I_i numărul de execuții ale instrucțiunii i

Timpul UCP (4)

Rezultă pentru timpul UCP:

$$t_{UCP} = C_{UCP} \times t_C = t_C \times \sum_{i=1}^{n} (CPI_i \times I_i)$$

Numărul total al ciclurilor pe instrucțiune:

$$CPI = \frac{C_{UCP}}{N} = \frac{\sum_{i=1}^{n} (CPI_i \times I_i)}{N} = \sum_{i=1}^{n} \left(CPI_i \times \frac{I_i}{N} \right) = \sum_{i=1}^{n} \left(CPI_i \times F_i \right)$$

- F_i frecvenţa instrucţiunii i
- Exemplul 1.2

1. Introducere

- Indicatori de performanță
 - Timpul de execuție
 - Timpul UCP
 - MIPS
 - MFLOPS
- Programe de evaluare a performanțelor
- Legea lui Amdahl

MIPS (1)

- Cel mai important indicator de performanță: timpul de execuție al programelor reale
- Totuși, s-au adoptat diferiți indicatori populari de performanță
- Unul din indicatori este numit MIPS (Millions of Instructions Per Second)
- Indică numărul de "instrucțiuni medii" pe care un calculator le poate executa pe secundă

MIPS (2)

Pentru un program dat, MIPS este:

$$MIPS = \frac{N}{t_E \times 10^6}$$

- N contorul de instrucțiuni
- ightharpoonup Considerând că $t_E = t_{UCP}$,

$$t_E = \frac{N \times \text{CPI}}{f}$$

Rezultă:

$$MIPS = \frac{f}{CPI \times 10^6}$$

MIPS (3)

Timpul de execuție exprimat în funcție de indicatorul MIPS:

$$t_E = \frac{N}{\text{MIPS} \times 10^6}$$

- Un indicator similar: BIPS (Billions of Instructions Per Second) sau GIPS
- Avantajul indicatorului MIPS: este ușor de înțeles, mai ales de către utilizatori
- Există anumite probleme atunci când MIPS este utilizat ca o măsură pentru comparație:

MIPS (4)

- MIPS este dependent de setul de instrucțiuni
- MIPS variază pentru programe diferite ale aceluiași calculator
- MIPS poate varia invers proporțional cu performanța
- Exemplu pentru ultimul caz: calculator cu un coprocesor pentru calcule în virgulă mobilă
 - Programele care utilizează coprocesorul necesită un timp mai redus pentru execuție, dar au o valoare MIPS mai redusă
- Exemplul 1.3

1. Introducere

- Indicatori de performanță
 - Timpul de execuţie
 - Timpul UCP
 - MIPS
 - MFLOPS
- Programe de evaluare a performanțelor
- Legea lui Amdahl

MFLOPS (1)

- MIPS nu reprezintă o metrică adecvată pentru calculatoarele care execută calcule științifice și inginerești
 - Este important să se măsoare numărul operațiilor de calcul în virgulă mobilă (VM)
- MFLOPS (Millions of Floating-point Operations Per Second), GFLOPS, TFLOPS, PFLOPS
- Formula de calcul:

$$MFLOPS = \frac{N_{VM}}{t_E \times 10^6}$$

MFLOPS (2)

- N_{VM} numărul de operații în virgulă mobilă
- Valoarea MFLOPS este dependentă de calculator și de program
- Probleme legate de indicatorul MFLOPS:
 - Setul operațiilor de calcul în VM diferă de la un calculator la altul
 - Valoarea MFLOPS se modifică în funcție de:
 - Combinația operațiilor întregi și în VM
 - Combinația operațiilor în VM mai rapide și mai lente

MFLOPS (3)

- Soluția la ambele probleme: utilizarea operațiilor normalizate în VM
- Exemplu în care se calculează numărul de operații normalizate în VM pentru un program în funcție de operațiile reale din codul sursă

Operații reale în VM	Operații normalizate în VM
ADD, SUB, MULT	1
DIV, SQRT	4
EXP, SIN	8

MFLOPS (4)

- Operațiile reale în VM conduc la valoarea nativă pentru MFLOPS
- Operațiile normalizate în VM conduc la valoarea normalizată pentru MFLOPS
- Indicatorii MIPS şi MFLOPS sunt utili pentru compararea calculatoarelor din aceeaşi familie
 - Nu sunt potriviți pentru compararea calculatoarelor cu seturi diferite de instrucțiuni

MFLOPS (5)

- Totuși, MFLOPS este utilizat de anumite programe de evaluare a performanței supercalculatoarelor
- Exemplu: programul Linpack
 - Bibliotecă software pentru operații de algebră numerică liniară (vectorială sau matricială)
 - HPL (High Performance Linpack) implementare portabilă a programului Linpack utilizată pentru lista TOP500

MFLOPS (6)

- TOP500 ordonează primele 500 cele mai rapide calculatoare cunoscute public
 - http://www.top500.org/
- Lista actuală: publicată în noiembrie 2017
- Nr. 1 în listă: Sunway TaihuLight (China)
 - Dezvoltat de National Research Center of Parallel Computer Engineering and Technology (NRCPC)
 - Instalat la National Supercomputer Center din Wuxi, China

MFLOPS (7)

- Performanţa Linpack: 93 PFLOPS
- Performanţa maximă: 125,4 PFLOPS
- Numărul total de nuclee: 10.649.600
- Numărul nodurilor de calcul: 40.960
- Nod de calcul:
 - Un procesor Sunway SW26010 260C (procesor RISC; 1,45 GHz; 260 nuclee; peste 3 TFLOPS)
 - Memorie: bazată pe tehnologia DDR3, 32 GB
 - Pentru fiecare nucleu: memorie cache de instrucțiuni (12 KB); memorie locală (64 KB)

MFLOPS (8)

- Memorie internă totală: 1,3 PB
- Interconexiune: Sunway Network
 - Bazată pe tehnologia PCI Express 3.0
 - Lățime de bandă maximă de 16 GB/s între noduri
- Sistem de operare: Sunway Raise OS
 - Bazat pe Linux
 - Dezvoltat de NRCPC
- Consum de putere: 15,3 MW
- Eficiență energetică: 6 GFLOPS / W

MFLOPS (9)

MFLOPS (10)

Rezumat (1)

- Timpul de execuție este principalul indicator de performanță
- Pentru estimarea performanței UCP, timpul de execuție se poate aproxima prin timpul UCP
- Timpul UCP se poate exprima în funcție de numărul mediu al ciclurilor de ceas pe instrucțiune (CPI)
- MIPS este un indicator popular de performanță

Rezumat (2)

- Există diferite probleme atunci când MIPS se utilizează pentru compararea performanțelor
- Pentru aplicații care necesită operații în VM, ca metrică de performanță se poate utiliza MFLOPS (GFLOPS, TFLOPS, PFLOPS)
 - Pentru evitarea unor probleme legate de utilizarea indicatorului MFLOPS, se pot considera operații normalizate în VM
- Programul Linpack se utilizează pentru evaluarea performanței supercalculatoarelor

Noțiuni, cunoștințe

- Timpul de răspuns
- Timpul UCP
- Exprimarea timpului UCP
- Indicatorul MIPS
- Probleme legate de utilizarea indicatorului MIPS
- Indicatorul MFLOPS
- Probleme legate de utilizarea indicatorului MFLOPS

Întrebări

- 1. Care sunt deosebirile dintre timpul de răspuns și timpul UCP?
- 2. Cum se poate exprima timpul UCP în funcție de numărul mediu al ciclurilor de ceas pe instrucțiune?
- 3. Care sunt dezavantajele indicatorului MIPS?
- 4. Care sunt problemele legate de indicatorul MFLOPS?