Algorytmy zachłanne

Wybieranie lokalnie najlepszych działań w nadziei, że doprowadzi to do globalnie optymalnego rozwiązania. Odpowiednie problemy:

własność wyboru zachłannego: za pomocą lokalnie optymalnych (zachłannych) wyborów można uzyskać globalnie optymalne rozwiązanie

optymalna podstruktura: optymalne rozwiązanie jest funkcją optymalnych rozwiązań podproblemów

Problem wyboru zajęć

Dane: zbiór zajęć $S = \{1 \dots n\}$, do których przydzielamy zasoby (n.p. sala). Dla $i = 1 \dots n$, s_i – czas rozpoczęcia, f_i – czas zakończenia. Zadanie i zajmuje zasób przez przedział czasu $[s_i, f_i)$.

Wynik: Największy podzbiór nie zachodzących na siebie zajęć

Rozwiązanie – Wybór zachłanny: W każdym kroku: spośród tych zadań, które można jeszcze wybrać, dobieramy zadanie, które najwcześniej się kończy (pozostawia najwięcej swobody przy doborze pozostałych zadań)

Greedy-Activity-Selector

Zakładamy, że zajęcia są posortowane ze wzgl. na czas zakończenia:

```
f_1 \leq f_2 \leq \ldots \leq f_n
Greedy-Activity-Selector(s, f)
1 n \leftarrow length[s]
2 A \leftarrow \{1\}
3 \quad j \leftarrow 1
4 for i \leftarrow 2 to n do
5 if s_i \geq f_j then
6 A \leftarrow A \cup \{i\}
       i \leftarrow i
8 return A
Czas: \Theta(n)
```

Poprawność

Tw. Algorytm Greedy-Activity-Selector generuje rozwiązanie problemu wyboru zajęć o największym rozmiarze.

D-d. Istnieje optymalne rozwiązanie, które zawiera 1: Niech $A \subseteq S$ - optymalne rozwiązanie. Niech $k = \min A$. Jeśli k > 1, to $B = A \setminus \{k\} \cup \{1\}$ ma tyle samo elementów co A. Ponadto B jest rozwiązaniem, bo $f_1 \le f_k$. Optymalna podstruktura: Niech A – optymalne rozwiązanie dla S zawierające 1. Wtedy $A' = A \setminus \{1\}$ jest optymalnym rozwiązaniem dla $S' = \{i \in S : s_i \ge f_1\}$. (Gdyby istniało rozwiązanie B' dla S', takie że |B'| > |A'|, to zbiór $\{1\} \cup B'$ byłby większym od A rozwiązaniem dla S – sprzeczność, bo A – optymalny). \square

ciągły i dyskretny problem plecakowy

dyskretny: Dane n przedmotów; i-ty przedmiot wart c_i i waży w_i . Zapakować jak najcenniejszy ładunek do plecaka o nośności W.

ciągły: Można zabierać ułamkowe części przedmiotów ("substancji").

Wersja ciągła – algorytm zachłanny wg ceny jednostkowej: Tyle ile można najcenniejszej substancji, jeśli zostanie miejsce – tyle ile można kolejnej co do wartości, itd...

Wersja dyskretna – kontrprzykład: W=50, $c_1=60$, $w_1=10$, $(c_1/w_1=6)$, $c_2=100$, $w_2=20$, $(c_2/w_2=5)$, $c_3=120$, $w_3=30$, $(c_3/w_3=4)$,

Strategia zachłanna daje: $\{1,2\}$ ($w_1+w_2=30$ przedmiot 3 się już nie zmieści). $c_1+c_2=160$.

Optymalny wybór: $\{2,3\}$ ($c_2 + c_3 = 220$).

Kody Huffmana

Kody prefiksowe – kod każdego znaku $c \in C$ jest ciągiem bitów, który nie jest prefiksem kodu innego znaku. Wtedy: kod ciągu znaków – ciąg kodów znaków, może być jednoznacznie rozkodowany.

Drzewo T kodu prefiksowego

> a - 0 b - 101 c - 100 d - 111 e - 1101 f - 1100

Długość zakodowanego tekstu: $B(T) = \sum_{c \in C} f(c) d_T(c)$, gdzie f(c) – liczba wystąpień c, $d_T(c)$ – długość kodu c.

Huffman

C - alfabet — zbiór znaków — liści drzewa. Każdy znak c ma atrybut — klucz f[c] — liczba wystąpień.

```
Huffman(C)
1 n \leftarrow |C|
2 Q \leftarrow C
3 for i \leftarrow 1 to n-1 do
     z \leftarrow \text{Allocate-Node()}
      x \leftarrow \mathit{left}[z] \leftarrow \texttt{Extract-Min}(Q)
6 y \leftarrow \textit{right}[z] \leftarrow \texttt{Extract-Min}(Q)
7 f[z] \leftarrow f[x] + f[y]
      Insert(Q,z)
  return Extract-Min(Q)
Petla for – wykonywana |C|-1 razy. Jeśli kolejka
priorytetowa Q – kopiec, to czas: O(n \lg n).
```

Własność wyboru zachłannego

Lemat 1. Niech x i y – znaki o najmniejszej liczbie wystąpień. (Niech np. $f(x) \le f(y)$.) Istnieje optymalny kod prefiksowy, w którym kody x i y różnią się tylko na ostatnim bicie.

D-d. Niech T – drzewo kodu optymalnego. Niech b i c – bliźniacze znaki – liście o największej głębokości w T, takie że $f(b) \leq f(c)$. Niech T' drzewo powstałe z T po zamianie pozycji x i b. Wtedy:

$$B(T) - B(T') = \sum_{c \in C} f(c) d_T(c) - \sum_{c \in C} f(c) d_{T'}(c)$$

$$= f(x) d_T(x) + f(b) d_T(b) - f(x) d_{T'}(x) - f(b) d_{T'}(b)$$

$$= f(x) d_T(x) + f(b) d_T(b) - f(x) d_T(b) - f(b) d_T(x)$$

$$= (f(b) - f(x)) (d_T(b) - d_T(x)) \ge 0.$$
Niech T'' – drzewo T' po zamianie pozycji c i y . Wtedy $B(T') - B(T'') \ge 0$. Stąd $B(T'') \le B(T)$, czyli T'' – optymalne. \square

Optymalna podstruktura

```
Lemat 2. Niech T – drzewo optymalne dla alfabetu C. Niech
x i y – bliźniacze liście w drzewie T. Niech z – ojciec x i y w
T. Wtedy, traktując z jako znak o liczbie wystąpień
f(z) = f(x) + f(y), T' = T \setminus \{x, y\} reprezentuje kod
optymalny dla alfabetu C' = C \setminus \{x, y\} \cup \{z\}.
D-d. Dla c \in C \setminus \{x,y\} mamy d_T(c) = d_{T'}(c), czyli
f(c)d_{T}(c) = f(c)d_{T'}(c). Ponieważ d_{T}(x) = d_{T}(y) = d_{T'}(z) + 1,
zachodzi: f(x)d_T(x) + f(y)d_T(y) = (f(x) + f(y))(d_{T'}(z) + 1)
= f(z)d_{T'}(z) + (f(x) + f(y)). Stad:
B(T) = B(T') + f(x) + f(y). Gdyby istniało T'' o liściach C',
takie że B(T'') < B(T'), to podczepiając x i y pod z w T''
otrzymamy drzewo dla C o koszcie
B(T'') + f(x) + f(y) < B(T).(Sprzeczność.)
Tw. Huffman generuje optymalny kod prefiksowy.
```

Matroid para $M = (S, \mathcal{N})$, taka że:

- 1. S jest skończonym zbiorem
- 2. \mathcal{N} niepusta rodzina (*niezależnych*) podzbiorów S, taka że jeśli $B \in \mathcal{N}$ oraz $A \subseteq B$, to $A \in \mathcal{N}$ (\mathcal{N} *dziedziczne*)
- 3. Jeśli $A \in \mathcal{N}$, $B \in \mathcal{N}$ i |A| < |B|, to istnieje $x \in B \setminus A$, taki że $A \cup \{x\} \in \mathcal{N}$ (własność wymiany)

Przykład: Matroidy macierzowe

S – wiersze macierzy,

zbiór niezależny — liniowo niezależny podzbiór S.

Matroid grafowy

Dla grafu nieskierowanego G = (V, E) definiujemy $M_G = (S_G, \mathcal{N}_G)$ następująco:

- $S_G = E \text{krawędzie } G$
- $A \in \mathcal{N}_G$ wtedy i tylko wtedy gdy A acykliczny (las)

Tw. $M_G(S_G, \mathcal{N}_G)$ jest matroidem.

D-d. $S_G = E$ – skończony. \mathcal{N}_G – dziedziczny (usunięcie krawędzi nie stworzy cyklu).

Własność wymiany:

Las, w którym jest 0 krawędzi ma |V| drzew (izolowane wierzchołki). Dodanie do lasu krawędzi, która nie tworzy cyklu łączy dwa drzewa w jedno. Stąd las o k krawędziach ma |V|-k drzew.

. . .

. . .

Niech $A, B \in \mathcal{N}_G$, |A| < |B|. Las B ma mniej drzew niż las A. Istn. drzewo T w lesie B, które zawiera wierzchołki z różnych drzew lasu A. Istnieje krawędź (u,v) w T, taka że u i v w różnych drzewach lasu A (bo T spójne). Można (u,v) dodać do A nie tworząc cyklu. \square

. . .

Niech $A, B \in \mathcal{N}_G$, |A| < |B|. Las B ma mniej drzew niż las A. Istn. drzewo T w lesie B, które zawiera wierzchołki z różnych drzew lasu A. Istnieje krawędź (u,v) w T, taka że u i v w różnych drzewach lasu A (bo T spójne). Można (u,v) dodać do A nie tworząc cyklu. \square Dla matroidu $M = (S, \mathcal{N})$, x – rozszerzenie A jeśli $x \notin A$ i wierzchołki $A \cup \{x\} \in \mathcal{N}$.

A jest maksymalny jeśli nie ma rozszerzeń.

Tw. Wszystkie maksymalne podzbiory niezależne mają ten sam rozmiar.

D-d. Nie wprost: Niech $A, B \in \mathcal{N}$, A, B – maksymalne i |A| < |B|. Z własności wymiany istn. $x \in B \setminus A$, takie że $A \cup \{x\} \in \mathcal{N}$. Ale wtedy x – rozszerzenie A (sprzeczność).

Matroid ważony $M=(S,\mathcal{N})$, jeśli istnieje funkcja $w:S\to R^+$. Rozszerzenie w na podzbiory S: $w(A)=\sum_{x\in A}w(x)$. Optymalny – niezależny podzbiór S o największej wadze. (wystarczy rozpatrywać maksymalne podzbiory, bo w – dodatnie.)

```
Greedy (M, w)

1 A \leftarrow \emptyset

2 posortuj S[M] nierosnąco wg w

3 for x \in S[M] brane kolejno do

4 if A \cup \{x\} \in \mathcal{N}[M] then

5 A \leftarrow A \cup \{x\}

6 return A

Czas: O(n \lg n + nf(n)), gdzie O(n \lg n) – sortowanie, O(f(n)) – sprawdzenie A \cup \{x\} \in \mathcal{N}[M]
```

Lemat 1. (własność zachłannego wyboru) Niech Sposortowany nierosnąco wg w. Niech x pierwszy w S, taki $\dot{z}e \{x\} \in \mathcal{N}$. Jeśli takie x istnieje, to istnieje optymalny A, taki że $x \in A$. Jeśli takie x nie istnieje, to $\mathcal{N} = \{\emptyset\}$. W p.p., niech B – optymalny, $B \neq \emptyset$. Jeśli $x \in B$, to wybieramy A = B. W p.p. zaden element B nie ma wagi > w(x): gdyby $y \in B$ i w(y) > w(x), to $\{y\} \in \mathcal{N}$ (bo \mathcal{N} – dziedziczne) – sprzeczność z wyborem x. Konstrukcja A: Zaczynamy od $A = \{x\}$. Korzystając z własności wymiany dodajemy do A elementy z B aż |A| = |B| zachowując $A \in \mathcal{N}$. Po zakończeniu $A = B \setminus \{y\} \cup \{x\}$ dla pewnego $y \in B$ i $w(A) = w(B) - w(y) + w(x) \ge w(B)$. Stad A optymalny. \square

Lemat 2. Jeśli $x \in S$ nie jest rozszerzeniem \emptyset , to x nie jest roszerzeniem żadnego niezależnego zbioru. D-d. Nie wprost: Niech x – rozszerzenie A, i nie-rozszerzenie \emptyset . Wtedy $A \cup \{x\}$ niezależny. Z dziedziczności: $\{x\}$ – niezależny. Sprzeczność z tym, że x nie jest roszerzeniem \emptyset . \square Wniosek: Elementy pominięte przez Greedy przed wybraniem pierwszego elementu są i tak "bezużyteczne".

Lemat 3. (Optymalna podstruktura) Niech x – pierwszy wybrany element do zbioru. Niech $M' = (S', \mathcal{N}')$ (kontrakcja), taki że:

- $S' = \{ y \in S \setminus \{x\} : \{x, y\} \in \mathcal{N} \}$
- waga M' ograniczenie w do S'.

Wtedy, A' jest optymalny dla M' wtedy i tylko wtedy gdy $A' \cup \{x\}$ jest optymalny dla M.

Jeśli $A \in \mathcal{N}, x \in A$, to $A' = A \setminus \{x\} \in \mathcal{N}'$. I na odwrót: jeśli $A' \in \mathcal{N}'$ to $A = A' \cup \{x\} \in \mathcal{N}$. W obu przypadkach w(A) = w(A') + w(x). Zatem aby wybrać "najcięższe" A zawierające x niezależne w M potrzeba i wystarczy wybrać najcięższe A' w M'. \square

Tw. (Porawność Greedy) Wywołanie Greedy (M, w) wyznacza optymalny podzbiór.

Z lematu 2: każdy początkowo pominięty element może być pominięty.

Z lematu 1: pierwszy wybrany element należy do pewnego zbioru optymalnego dla M.

Z lematu 3: po wyborze pierwszego elementu x, problem polega na znalezieniu optymalnego podzbioru M'.

I tak się dzieje: Dalsze działanie Greedy można traktować jak wywołanie Greedy na M', (gdzie B – podzbiór niezależny, jeśli $B \cup \{x\} \in \mathcal{N}$, a więc B niezależny w M'), w efekcie którego wyznaczony zbiór jest postaci $\{x\} \cup A'$, gdzie A' – optymalny dla M'. \square

Szeregowanie zadań

Dane:

- $S = \{1 \dots n\}$ zbiór zadań o jednostkowym czasie wykonania
- ciąg: $d_1 \dots d_n$, gdzie d_i termin dla i-tego zadania.
- ciąg: $w_1 \dots w_n$, gdzie w_i kara za przekroczenie terminu

Wynik: Uszeregowanie, w którym płacimy najmniejszą karę. W uszeregowaniu: zadania *terminowe* i *spóźnione*.

Postać normalna – zadania terminowe poprzedzają spóźnione. Postać kanoniczna – normalna, w której terminowe zadania posortowane rosnąco ze wzgl. na termin.

Każde uszeregowanie można sprowadzić do postaci kanonicznej nie zwiększając zbioru zadań spóźnionych.

Szeregowanie zadań

Podzbiór zadań A – niezależny jeśli można go uszeregować tak, że żadne zadanie A nie jest spóźnione.

Wniosek: wystarczy wyznaczyć niezależny zbiór zadań o największej sumie kar.

Dla zb. zadań A niech $N_t(A)$ – liczba zadań, których termin jest $\leq t$.

Lemat. Dla dowolnego zbioru zadań A następujące warunki są równoważne:

- 1. A jest niezależny
- **2.** dla t = 1 ... n, $N_t(A) \le t$
- 3. jeśli A posortowany niemalejąco wg terminu, to żadne zadanie nie jest spóźnione

D-d.

1.⇒2.: Jeśli $N_t(A) > t$ dla pewnego t, to nie jest możliwe terminowe wykonanie wszystkich zadań, bo więcej niż t trzeba wykonać przed terminem t.

2.⇒3.: Dla każdej chwili t zadań o terminie $\leq t$ jest $\leq t$ więc zdążą się wykonać w posortowanym uszeregowaniu.

3.⇒1.: z definicji. □

D-d.

- 1.⇒2.: Jeśli $N_t(A) > t$ dla pewnego t, to nie jest możliwe terminowe wykonanie wszystkich zadań, bo więcej niż t trzeba wykonać przed terminem t.
- 2.⇒3.: Dla każdej chwili t zadań o terminie $\leq t$ jest $\leq t$ więc zdążą się wykonać w posortowanym uszeregowaniu.
- 3.⇒1.: z definicji. □

Tw. Jeśli S jest zbiorem zadań a $\mathcal N$ jest rodziną niezależnych podzbiorów zadań, to $M=(S,\mathcal N)$ jest matroidem.

D-d. Dziedziczność – oczywista. Własność wymiany: Niech A,B – niezależne i |B| > |A|. Niech $k = \max\{t : N_t(B) \le N_t(A)\}$. Wiadomo, że $N_n(B) = |B| i N_n(A) = |A| i |B| > |A|$, wiec k < n oraz, dla $k < j \le n$, zachodzi $N_j(B) > N_j(A)$. Stąd B zawiera więcej zadań o terminie k+1 niż A. Niech $x \in B \setminus A$ zadanie o terminie k+1. Niech $A'=A\cup\{x\}$. Z własności 2. lematu: Dla $1 \le t \le k$ mamy $N_t(A') \le N_t(A) \le t$, bo A – niezależny. Dla $k < t \le n$ mamy $N_t(A') = N_t(A) + N_t(\{x\}) \le N_t(A) + 1 \le N_t(B) \le t$, bo B – niezależny. Stad A' – niezależny. \square

D-d. Dziedziczność – oczywista. Własność wymiany: Niech A,B – niezależne i |B| > |A|. Niech $k = \max\{t : N_t(B) \le N_t(A)\}$. Wiadomo, że $N_n(B) = |B| \text{ i } N_n(A) = |A| \text{ i } |B| > |A|, \text{ wiec } k < n \text{ oraz, dla}$ $k < j \le n$, zachodzi $N_j(B) > N_j(A)$. Stąd B zawiera więcej zadań o terminie k+1 niż A. Niech $x \in B \setminus A$ zadanie o terminie k+1. Niech $A'=A\cup\{x\}$. Z własności 2. lematu: Dla $1 \le t \le k$ mamy $N_t(A') \le N_t(A) \le t$, bo A – niezależny. Dla $k < t \le n$ mamy $N_t(A') = N_t(A) + N_t(\{x\}) \le N_t(A) + 1 \le N_t(B) \le t$, bo B niezależny. Stad A' – niezależny. \square Wniosek: Można zastosować algorytm Greedy. Wtedy

czas $O(n^2)$, bo sprawdzanie niezależności zajmuje O(n)

(korzystając z własności 2. lematu – ćw.).

M.Kik "AiSD 6" - p. 21