INFINITE SERIES

Sequence:

If a set of real numbers u_1, u_2, \dots, u_n occur according to some definite rule, then it is called a sequence denoted by $\{S_n\} = \{u_1, u_2, \dots, u_n\}$ if n is finite

Or
$$\{S_n\} = \{u_1, u_2, \dots, u_n, \dots \}$$
 if n is infinite.

Series:

 $u_1 + u_2 + \dots + u_n$ is called a series and is denoted by $S_n = \sum_{k=1}^n u_k$

Infinite Series:

If the number of terms in the series is infinitely large, then it is called infinite series and is denoted by $\sum u_n = u_1 + u_2 + \dots + u_n + \dots$ and the sum of its first n terms be denoted by $S_n = \sum_{k=1}^n u_k = u_1 + u_2 + \dots + u_n$.

Convergence:

An infinite series $\sum u_n$ is said to be convergent if $\lim_{n\to\infty} S_n = k$, a definite unique number.

Example:
$$1 + \frac{1}{2} + \frac{1}{4} + \dots$$

$$S_n = 1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} = \frac{\left(1 - \frac{1}{2^n}\right)}{\left(1 - \frac{1}{2}\right)} = 2$$
, finite.

Therefore given series is convergent.

Divergence:

 $\lim_{n\to\infty} S_n$ tends to either ∞ or $-\infty$ then the infinite series $\sum u_n$ is said to be divergent.

Example:
$$\sum u_n = 1 + 2 + 3 + \dots$$

$$S_n = \frac{n(n+1)}{2}$$

$$\lim_{n\to\infty} S_n = \infty$$

Therefore $\sum u_n$ is divergent.

Oscillatory Series:

If $\lim_{n\to\infty} S_n$ tends to more than one limit either finite or infinite, then the infinite series $\sum u_n$ is said to be oscillatory series.

Example: 1.
$$\sum u_n = 1 - 1 + 1 - 1 + \dots$$
:

$$S_n = \begin{cases} 1, & n \text{ is odd} \\ 0, & n \text{ is even} \end{cases}$$

Therefore series is oscillatory.

2.
$$\sum u_n = 1 + (-3) + (-3)^2 + \dots$$

$$S_n = \frac{1 - (-1)^n 3^n}{1 + 3}$$

$$\lim_{n\to\infty}S_n=\left\{\begin{matrix} \infty, & n \ is \ odd \\ -\infty, & n \ is \ even \end{matrix}\right.$$

Properties of infinite series:

- 1. The convergence or divergence of an infinite series remains unaltered on multiplication of each term by $c \neq o$.
- 2. The convergence or divergence of an infinite series remains unaltered by addition or removal of a finite number of its terms.

Positive term series:

An infinite series in which all the terms after some particular term are positive is called a positive term series.

Geometric Series test:

The series $\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \dots + r^n + \dots$

- a. Converges if |r| < 1
- b. Diverges if $r \ge 1$
- c. Oscillates finitely if r = -1 and oscillates infinitely if r < -1

Note: If a series in which all the terms are positive is convergent, the series remains convergent even when some or all of its terms are negative.

Integral Test:

A positive term series $f(1) + f(2) + \dots + f(n) + \dots$ Where f(n) decreases as n increases, converges or diverges according as the integral $\int_{1}^{\infty} f(x)dx$ is finite or infinite.

p-series or Harmonic series test:

A positive term series $\sum u_n = \sum \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$ is

- i) Convergent if p > 1
- ii) Divergent if $p \le 1$

Theorem:

Let $\sum u_n$ be a positive term series. If $\sum u_n$ is convergent then $\lim_{n\to\infty} u_n = 0$.

Note:

Converse need not be always true. i.e. Even if $\lim_{n\to\infty}u_n=0$, then $\sum u_n$ need not be convergent.

Example 1:
$$\sum u_n = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$
.....

$$\sum u_n = \frac{1}{n}$$
 is divergent by integral test. But $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{n} = 0$

Hence $\lim_{n\to\infty}u_n=0$ is a necessary condition but not a sufficient condition for convergence of $\sum u_n$.

Example 2

Test the series for convergence, $\sum_{n=2}^{\infty} \frac{1}{n \log n}$

Solution: Consider $\int_2^\infty \frac{1}{n \log n} dn = [\log(\log n)]_2^\infty = \infty$

Therefore $\sum u_n$ is divergent by Integral test.

Example 3

Test the series for convergence, $\sum ne^{-n^2}$

Solution: Let $x^2 = t$. Then 2x dx = dt

$$\int_{1}^{\infty} xe^{-x^{2}} dx = \int_{1}^{\infty} \frac{e^{-t}}{2} dt = \left[\frac{e^{-t}}{-2} \right]_{1}^{\infty} = \frac{1}{2e}$$

Therefore $\sum u_n$ is convergent.

Comparison test:

- 1. Let $\sum u_n$ and $\sum v_n$ be two positive term series. If
 - a. $\sum v_n$ is convergent
 - b. $u_n \leq v_n$, $\forall n$

Then $\sum u_n$ is also convergent.

That is if a larger series converges then smaller also converge.

- 2. Let $\sum u_n$ and $\sum v_n$ be two positive term series. If
 - c. $\sum v_n$ is divergent
 - d. $u_n \ge v_n$, $\forall n$

Then $\sum u_n$ is also divergent.

That is if a smaller series diverges then larger also diverges.

Example 2

Test the series for convergence, $\sum_{n=2}^{\infty} \frac{1}{\log n}$

Solution:

Let
$$u_n = \frac{1}{\log n}$$
 and $v_n = \frac{1}{n}$

$$\frac{\log n < n}{1 > \frac{1}{n}}$$

$$u_n > v_n$$

But $\sum v_n = \sum \frac{1}{n}$ is a p-series with p = 1.

Therefore $\sum v_n$ is divergent.

By comparison test $\sum u_n$ is also divergent.

Example 2

Test the series for convergence, \sum

$$\sum \frac{1}{2^n+1}$$

Solution:

Let $u_n = \frac{1}{2^n + 1}$ and $v_n = \frac{1}{2^n}$

$$2^{n} < 2^{n} + 1$$
 $\frac{1}{2^{n}} > \frac{1}{2^{n} + 1}$
 $v_{n} > u_{n}$

But $\sum v_n = \sum \frac{1}{2^n}$ is a geometric series with $r = \frac{1}{2} < 1$.

Therefore $\sum v_n$ is convergent.

By comparision test $\sum u_n$ is also convergent.

Another form of comparison test is

Limit test

Statement: If $\sum u_n$ and $\sum v_n$ be two positive term series such that $\lim_{n\to\infty}\frac{u_n}{v_n}=k\ (\neq 0)$. Then $\sum u_n$ and $\sum v_n$ behave alike.

That is if $\sum u_n$ converges then $\sum v_n$ also converge.

If $\sum u_n$ diverges then $\sum v_n$ also diverge.

Examples 3.

Test the series for convergence,

$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \cdots$$
 ...

Solution:

$$u_n = \frac{2n - 1}{n(n+1)(n+2)}$$

$$v_n = \frac{1}{n^2}$$
 then $\lim_{n \to \infty} \frac{u_n}{v_n} = 2$

But
$$\sum v_n = \sum \frac{1}{n^2}$$
 with $p = 2 > 1$.

Therefore $\sum v_n$ is convergent. By limit test $\sum u_n$ is also convergent.

Examples 4.

Test the series for convergence,

$$\sum_{n=1}^{\infty} \left(\sqrt{n^2 + 1} - n \right)$$

Solution:

$$u_n = \left(\sqrt{n^2 + 1} - n\right) \frac{\left(\sqrt{n^2 + 1} + n\right)}{\left(\sqrt{n^2 + 1} + n\right)}$$
$$= \frac{n^2 + 1 - n^2}{\sqrt{n^2 + 1} + n}$$
$$= \frac{1}{n(\sqrt{1 + n^2} + 1)}$$

Let
$$\sum v_n = \sum \frac{1}{n}(p=1)$$

$$\lim_{n\to\infty}\frac{u_n}{v_n}=\frac{1}{2}$$

But $\sum v_n$ is divergent. By limit test $\sum u_n$ is also divergent.

Examples 5.

Test the series for convergence,

$$\sum \sqrt[3]{n^3 + 1} - n$$

Solution:

$$u_{n} = (n^{3} + 1)^{\frac{1}{3}} - n$$

$$a^{3} - b^{3} = (a - b)(a^{2} + ab + b^{2})$$

$$a - b = \frac{a^{3} - b^{3}}{a^{2} + ab + b^{2}}$$

$$u_{n} = (n^{3} + 1)^{\frac{1}{3}} - n = \frac{n^{3} + 1 - n^{3}}{(n^{3} + 1)^{\frac{2}{3}} + (n^{3} + 1)^{\frac{1}{3}}n + n^{2}}$$

$$= \frac{1}{n^{2} \left[\left(1 + \frac{1}{n^{3}}\right)^{\frac{2}{3}} + \left(1 + \frac{1}{n^{3}}\right)^{\frac{1}{3}} + 1 \right]}$$

$$\text{Let } \sum v_{n} = \sum \frac{1}{n^{2}} \text{ with } p = 2 > 1.$$

$$\lim_{n \to \infty} \frac{u_{n}}{v_{n}} = \frac{1}{3}$$

But $\sum v_n$ is convergent. By limit test $\sum u_n$ is also convergent.

Example 6.

Test the series for convergence, Solve $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \cdots \dots$

Solution:

$$u_{n} = \frac{\sqrt{n+1}-1}{(n+2)^{3}-1} = \frac{\sqrt{n}\left(\sqrt{1+\frac{1}{n}} - \frac{1}{\sqrt{n}}\right)}{n^{3}\left(\left(1+\frac{2}{n}\right)^{3} - \frac{1}{n^{3}}\right)}$$

Let
$$\sum v_n = \sum \frac{1}{n^{5/2}}$$
 with $p = \frac{5}{2} > 1$.
$$\lim_{n \to \infty} \frac{u_n}{v_n} = 1$$

But $\sum v_n$ is convergent. By limit test $\sum u_n$ is also convergent.

Example 7

Test the series for convergence, $\sum \frac{1}{n^3} \tan \frac{1}{n}$

Solution:
$$u_n = \frac{1}{n^3} \tan \frac{1}{n}$$

We know that
$$\lim_{n\to\infty} \frac{\tan\frac{1}{n}}{\frac{1}{n}} = 1$$

Let
$$\sum v_n = \sum \frac{1}{n^4}$$
. Then $\lim_{n \to \infty} \frac{u_n}{v_n} = 1$

But $\sum v_n$ is convergent. By limit test $\sum u_n$ is also convergent.

Example 8

Test the series for convergence, $\sum \frac{1}{n} - \log \left(\frac{n+1}{n} \right)$

Solution:
$$u_n = \frac{1}{n} - \log\left(1 + \frac{1}{n}\right)$$

$$= \frac{1}{n} - \left[\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{6n^3} - \dots \dots \right]$$
$$= \left[\frac{1}{2n^2} - \frac{1}{6n^3} + \dots \dots \right]$$

Let
$$\sum v_n = \sum \frac{1}{n^2}$$
. Then $\lim_{n \to \infty} \frac{u_n}{v_n} = \frac{1}{2}$

But $\sum v_n$ is convergent. By limit test $\sum u_n$ is also convergent.

Exercises

Test for convergence of the series

1.
$$\sum_{n=0}^{\infty} \frac{2n^3+1}{4n^5+1}$$

2.
$$1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^2}{4!} + \dots \infty$$

3.
$$\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$$

4.
$$\sum \sqrt{\frac{3^{n-1}}{2^{n+1}}}$$

5.
$$\sum \frac{n^n}{(n+1)^{n+1}}$$

6.
$$\frac{1}{1^2} + \frac{1+2}{1^2+2^2} + \frac{1+2+3}{1^2+2^2+3^2} + \dots \infty$$

D'Alembert's Ratio Test: If $\sum u_n$ is a series of positive terms, and $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} =$

l(a finite value)

then the series is convergent if l < 1, is divergent if l > 1 and the test fails if l = 1.

If the test fails, one should apply comparison test or the Raabe's test, as given below:

Raabe's Test: If $\sum u_n$ is a series of positive terms, and

 $\lim_{n\to\infty} n\left(\frac{u_n}{u_{n+1}}-1\right) = l(finite), \text{ then the series is convergent if } l>1 \text{ , is divergent if } l<1$ and the test fails if l=1.

Remark: Ratio test can be applied when (i) v_n does not have the form $\frac{1}{n^p}$

- (ii) n^{th} term has x^n , x^{2n} etc.
- (iii) n^{th} term has n!, (n + 1)!, $(n!)^2$ ect.
- (iv) the number of factors in numerator and denominator increase steadily, ex: $(\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \cdots)$

Example: Test for convergence the series

$$1 + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^2}{4!} + \dots$$

>> The given series is of the form
$$\frac{1^2}{1!} + \frac{2^2}{2!} + \frac{3^2}{3!} + \frac{4^3}{4!} + \dots$$
 whose nth term is $u_n = \frac{n^2}{n!}$.

Therefore
$$u_{n+1} = \frac{(n+1)^2}{n+1!}$$

$$\frac{u_{n+1}}{u_n} = \frac{(n+1)^2}{n+1!} \frac{n!}{n^2} = \frac{(n+1)^2}{n^2} \cdot \frac{n!}{(n+1)(n!)} = \frac{n+1}{n^2}$$

Therefore
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \left(\frac{n+1}{n^2}\right) = \lim_{n\to\infty} \left(\frac{1}{n} + \frac{1}{n^2}\right) = 0 < 1$$

Therefore by ratio test, Σ u_n is convergent.

Example: Discuss the nature of the series

$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$$

$$>> u_n = \frac{x^n}{n(n+1)}$$

Therefore
$$u_{n+1} = \frac{x^{n+1}}{(n+1)(n+1+1)} = \frac{x^{n+1}}{(n+1)(n+2)}$$

Now
$$\frac{u_{n+1}}{u_n} = \frac{x^{n+1}}{(n+1)(n+2)} \cdot \frac{n(n+1)}{x^n} = \frac{n}{n+2} x$$

Therefore
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{n}{n+2} x = \lim_{n\to\infty} \frac{1}{(1+2/n)} x = x$$

Therefore by D'Alembert's ratio test Σ u_n is $\begin{cases} \textit{convergent} \text{ if } x < 1 \\ \textit{divergent} & \textit{if } x > 1 \end{cases}$

And the test fails if x = 1

But when
$$x = 1$$
, $u_n = \frac{1^n}{n(n+1)} = \frac{1}{n(n+1)} = \frac{1}{n^2 + n}$

 u_n is of order $1/n^2$ (p=2>1) and hence Σ u_n is convergent (when x=1). Hence we conclude that Σ u_n is convergent $x \le 1$ and divergent if x > 1

Example: Find the nature of series $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots$

>> Omitting the first term, the given series can be written in the form

$$\frac{x^1}{1^2+1} + \frac{x^2}{2^2+1} + \frac{x^3}{3^2+1} + \dots$$
 so that $u_n = \frac{x^n}{n^2+1}$

Therefore
$$u_{n+1} = \frac{x^{n+1}}{n^2 + 2n + 2}$$
. $\frac{n^2 + 1}{n^2 + 2n + 2} x = \lim_{n \to \infty} \frac{n^2 (1 + 1/n^2)}{n^2 (1 + 2/n + 2/n^2)}$.x

That is,
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = x$$

Hence by ratio test Σ u_n is $\begin{cases} \textit{convergent} \text{ if } x < 1 \\ \textit{divergent} & \textit{if } x > 1 \end{cases}$

and the test fails if x = 1.

But when
$$x = 1$$
, $u_n = \frac{1^n}{n^2 + 1} = \frac{1}{n^2 + 1}$ is of order $\frac{1}{n^2}$ $(p = 2 > 1)$

Therefore Σ u_n is convergent if $x \le 1$ and divergent if x > 1.

Example: Find the nature of the series $\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \dots$

>> omitting the first term, the general term of the series is given by $u_n = \frac{x^{2n}}{(n+2)\sqrt{n+1}}$

Therefore
$$u_{n+1} = \frac{x^2(n+1)}{(n+1+2)\sqrt{(n+1)+1}} = \frac{x^{2n+2}}{(n+3)\sqrt{n+2}}$$

$$\frac{u_{n+1}}{u_n} = \frac{x^{2n+2}}{(n+3)\sqrt{n+2}} \frac{(n+2)\sqrt{n+1}}{x^{2n}}$$

$$= \frac{n+2}{n+3} \sqrt{\frac{n+1}{n+2}} x^2 = \frac{\sqrt{(n+2)(n+1)}}{(n+3)} x^2$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{\sqrt{n(1+2/n)n(1+1/n)}}{n(1+3/n)} \cdot x^2 = x^2$$

Hence by ratio test Σ u_n is $\begin{cases} \textit{convergent} \text{ if } x^2 < 1 \\ \textit{divergent} \quad \text{if } x^2 > 1 \end{cases}$

and the fails if $x^2 = 1$.

When
$$x^2 = 1$$
, $u_n = \frac{(1)^n}{(n+2)\sqrt{n+1}} = \frac{1}{(n+2)\sqrt{n+1}}$

 u_n is of order $1/n^{3/2}$ (p = 3/2 > 1) and hence Σ u_n is convergent.

Therefore Σ u_n is convergent if $x^2 \le 1$ and divergent if $x^2 > 1$.

Example: Discus the convergence of the series

$$x + \frac{x^3}{2.3} + \frac{3}{2.4} + \frac{x^5}{5} + \frac{3.5}{2.4.6} \cdot \frac{x^7}{7} + \dots (x > 0)$$

>> We shall write the given series in the form

$$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1.3}{2.4} \cdot \frac{x^5}{5} + \frac{1.3.5}{2.4.6} \cdot \frac{x^7}{7} + \dots$$

Now, omitting the first term we have

$$u_n = \frac{1.3.5...(2n-1)}{2.4.6...2n} \cdot \frac{x^{2n+1}}{2n+1}$$

$$\mathbf{u}_{n+1} = \frac{1.3.5...[2(n+1)-1]}{2.4.6...2(n+1)} \cdot \frac{x^{2(n+1)+1}}{2(n+1)+1}$$

That is,
$$u_{n+1} = \frac{1.3.5...(2n+1)}{2.4.6....(2n+1)} \cdot \frac{x^{2n+3}}{2n+3}$$

That is,
$$u_{n+1} = \frac{1 \cdot 3 \cdot 5 \cdot ... (2n-1)(2n+1)}{2 \cdot 4 \cdot 6 \cdot ... (2n)(2n+2)} \cdot \frac{x^{2n+3}}{2n+3}$$

Therefore
$$\frac{u_{n+1}}{u_n} = \frac{1.3.5...(2n-1)(2n+1)}{2.4.6....(2n)(2n+2)} \cdot \frac{x^{2n+3}}{2n+3} \times \frac{2.4.6...2n}{1.3.5...(2n-1)} \cdot \frac{2n+1}{x^{2n+1}}$$

That is,
$$\frac{u_{n+1}}{u_n} = \frac{(2n+1)(2n+1)x^2}{(2n+2)(2n+3)}$$

Therefore
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \lim_{n\to\infty} \frac{n(2+1/n)n(2+1/n)x^2}{n(2+2/n)n(2+3/n)} = x^2$$

Hence by ratio test,
$$\Sigma$$
 u_n is
$$\begin{cases} \textit{convergent} \text{ if } x^2 < 1 \\ \textit{divergent} \quad \text{if } x^2 > 1 \end{cases}$$

And the test fails if $x^2 = 1$

When
$$x^2 = 1$$
, $\frac{u_{n+1}}{u_n} = \frac{(2n+1)(2n+1)}{(2n+2)(2n+3)}$ and we shall apply Raabe's test.

$$\lim_{n \to \infty} n \left(\frac{u_n}{u_{n+1}} - 1 \right) = \lim_{n \to \infty} n \left[\frac{(2n+2)(2n+3)}{(2n+1)^2} - 1 \right]$$

$$= \lim_{n \to \infty} n \left[\frac{(4n^2 + 10n + 6) - (4n^2 + 4n + 1)}{(2n+1)^2} \right]$$

$$= \lim_{n \to \infty} n \left(\frac{6n+5}{(2n+1)^2} \right) = \lim_{n \to \infty} \frac{n^2 (6+5/n)}{n^2 (2+1/n)^2} \frac{6}{4} = \frac{3}{2} > 1$$

Therefore Σ u_n is convergent (when $x^2 = 1$) by Rabbe's test.

Hence we conclude that, Σ u_n is convergent if $x^2 \le 1$ and divergent if $x^2 > 1$.

Example: Examine the convergence of

$$1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{14}{17}x^3 + \dots + \frac{2^{n+1}-2}{2^{n+1}+1}x^n + \dots$$

$$>> u_n = \frac{2^{n+1} - 2}{2^{n+1} + 1} x^n.$$

Therefore
$$u_{n+1} = \frac{2^{n+2} - 2}{2^{n+2} + 1} \ x^{n+1}$$

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+2} - 2}{2^{n+2} + 1} x^{n+1} \times \frac{2^{n+1} + 1}{2^{n+1} - 2} \cdot \frac{1}{x^n}$$

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+2} (1 - 2/2^{n+2})}{2^{n+2} (1 + 1/2^{n+2})} .x. \frac{2^{n+1} (1 + 1/2^{n+1})}{2^{n+1} (1 - 2/2^{n+1})}$$

$$=\frac{(1-1/2^{n+1})}{(1+1/2^{n+2})}.x.\frac{(1+1/2^{n+1})}{(1-1/2^n)}$$

Therefore
$$\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \frac{(1-0)}{(1+0)} \cdot x \cdot \frac{(1+0)}{(1-0)} = x.$$

Therefore by ratio test Σ u_n is $\begin{cases} \text{convergent} \text{ if } x < 1 \\ \text{divergent} & \text{if } x > 1 \end{cases} \text{ and the test fails if } x = 1.$

When
$$x = 1$$
, $u_n = \frac{2^{n+1} - 2}{2^{n+1} + 1}$

Therefore
$$\lim_{n\to\infty} u_n = \lim_{n\to\infty} \frac{2^{n+1}(1-1/2^n)}{2^{n+1}(1+1/2^{n+1})} = 1$$

Since $\lim_{n\to\infty} u_n = 1 \neq 0$, Σu_n is divergent (when x=1)

Hence Σ u_n is convergent if x < 1 and divergent if $x \ge 1$.

Example: test for convergence of the infinite series

$$1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + \dots$$

>> the first term of the given series can be written as $1!/1^1$ so that we have,

$$u_n = \frac{n!}{n^n}$$
 and $u_{n+1} = \frac{(n+1)!}{(n+1)^{n+1}} = \frac{(n+1)(n!)}{(n+1)^{n+1}} = \frac{n!}{(n+1)^n}$

Therefore
$$\frac{u_{n+1}}{u_n} = \frac{n!}{(n+1)^n} \cdot \frac{n^n}{n!} = \frac{n^n}{(n+1)^n} = \frac{n^n}{n^n (1+1/n)^n}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{1}{(1+1/n)^n} = \frac{1}{e} < 1$$

Hence by ratio test Σ u_n is convergent.

Cauchy's Root Test: If $\sum u_n$ is a series of positive terms, and

$$\lim_{n\to\infty}(u_n)^{1/n}=l\ (finite),$$

then, the series converges if l < 1, diverges if l > 1 and fails if l = 1.

Remark: Root test is useful when the terms of the series are of the form $u_n = [f(n)]^{g(n)}$.

We can note: (i) $\lim_{n\to\infty} n^{1/n} = 1$

(ii)
$$\lim_{n \to \infty} (1 + \frac{1}{n})^{1/n} = e$$

(iii)
$$\lim_{n \to \infty} (1 + x/n)^{1/n} = e^x$$

Example: Test for convergence $\sum_{n=1}^{\infty} \left[1 + \frac{1}{\sqrt{n}} \right]^{-n^{3/2}}$

$$>> u_n = \left[1 + \frac{1}{\sqrt{n}}\right]^{-n^{3/2}}$$

Therefore
$$(u_n)^{1/n} = \left\{ \left[1 + \frac{1}{\sqrt{n}} \right]^{-n^{3/2}} \right\}^{1/n}$$

$$= \left[1 + \frac{1}{\sqrt{n}}\right]^{-n^{1/2}} = \left[1 + \frac{1}{\sqrt{n}}\right]^{-\sqrt{n}}$$

$$\lim_{n\to\infty} (\mathbf{u}_n)^{1/n} = \lim_{n\to\infty} \left[1 + \frac{1}{\sqrt{n}}\right]^{-\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}} = \frac{1}{e} < 1.$$

Therefore as $n \to \infty$, \sqrt{n} also $\to \infty$

Therefore by Cauchy's root test, Σu_n is convergent.

Example: Test for convergence $\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^{n^2}$

$$>> u_n = \left(1 - \frac{3}{n}\right)^{n^2}$$

Therefore
$$(u_n)^{1/n} = \left[\left(1 - \frac{3}{n} \right)^{n^2} \right]^{1/n} = \left(1 - \frac{3}{n} \right)^n$$

$$\lim_{n\to\infty}(u_n)^{1/n}=\lim_{n\to\infty}\left(1+\frac{-3}{4}\right)^n=e^{-3}.$$

Therefore
$$\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$$

That is,
$$\lim_{n\to\infty} (u_n)^{1/n} = \frac{1}{e^3} < 1$$
, therefore $e = 2.7$

Hence by Cauchy's root test, $\boldsymbol{\Sigma}$ \boldsymbol{u}_n is convergent.

Example: Find the nature of the series $\sum_{n=1}^{\infty} \left[1 + \frac{1}{\sqrt{n}} \right]^{-n^{3/2}}$

$$>> u_n = \left[1 + \frac{1}{\sqrt{n}}\right]^{-n^{3/2}}$$

Therefore
$$(u_n)^{1/n} = \left\{ \left[1 + \frac{1}{\sqrt{n}} \right]^{-n^{3/2}} \right\}^{1/n}$$

$$= \left\lceil 1 + \frac{1}{\sqrt{n}} \right\rceil^{-n^{1/2}} = \left\lceil 1 + \frac{1}{\sqrt{n}} \right\rceil^{-\sqrt{n}}$$

$$\lim_{n\to\infty} (u_n)^{1/n} = \lim_{n\to\infty} \left[1 + \frac{1}{\sqrt{n}}\right]^{-\sqrt{n}}$$

$$= \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{\sqrt{n}}\right)^{\sqrt{n}}} = \frac{1}{e} < 1, \text{ since as } n \to \infty, \sqrt{n} \text{ also } \to \infty$$

Therefore by Cauchy's root rest, Σ u_n is convergent.

Example: Test for convergence $\sum_{n=1}^{\infty} \left(1 - \frac{3}{n}\right)^{n^2}$

$$>> u_n = \left(1 - \frac{3}{n}\right)^{n^2}$$

Therefore
$$(u_n)^{1/n} = \left[\left(1 - \frac{3}{n} \right)^{n^2} \right]^{1/n} = \left(1 - \frac{3}{n} \right)^n$$

$$\lim_{n\to\infty} (\mathbf{u_n})^{1/n} = \lim_{n\to\infty} \left(1 + \frac{-3}{n}\right)^n = e^{-3}, \text{ since } \lim_{n\to\infty} \left(1 + \frac{x}{n}\right)^n = e^{x}$$

That is,
$$\lim_{n\to\infty} (u_n)^{1/n} = \frac{1}{e^3} < 1$$
, since $e = 2.7$.

Hence by Cauchy's root test, Σ u_n is convergent.