Теоретическая информатика - 1

Булевы функции

Определение

Булевой функцией называется функция вида

$$f: \{0,1\}^n \to \{0,1\}.$$

(Иначе говоря, булева функция сопоставляет каждому кортежу длины n из 0 и 1 одно из двух значений, 0 или 1.) Интерпретация в логике: 0 — ложь, 1 — истина.

Основные функции:

- ightharpoonup Конъюнкция (логическое "и") $x \wedge y$ (также обозн. x@y, xy): $x \wedge y = 1 \Leftrightarrow$ оба x = 1 и y = 1
- lacktriangle Дизъюнкция (логическое "или") $x \lor y$: $x \lor y = 1 \Leftrightarrow$ хотя бы один из аргументов $= 1 \; (x = 1 \;$ или y = 1)
- lackbox Импликация (логическое "следует") x o y: $x o y = 1 \Leftrightarrow$ верно хотя бы одно из x = 0 или y = 1
- ightharpoonup Симметрическая разность (сумма по модулю 2) $x\oplus y$: $x\oplus y=1\Leftrightarrow x
 eq y$
- lackвox Отрицание $\neg x$ (также обозн. \overline{x}): $\neg x = 1 \Leftrightarrow x = 0$

Сколько всего булевых функций от n переменных?

Сколько всего булевых функций от n переменных? 2^{2^n}

Сколько всего булевых функций от n переменных? 2^{2^n}

Булеву функцию можно задать таблицей истинности:

		Χ	у	$x \wedge y$	$x \vee y$	$x \rightarrow y$	$x \oplus y$
Х	$\neg x$	0	0	0	0	1	0
0	1 0	0	1	0	1	1	1
1	0	1	0	0	1	0	1
	'	1	1	1	1	1	0

Сколько всего булевых функций от n переменных? 2^{2^n}

Булеву функцию можно задать таблицей истинности:

		Х	У	$x \wedge y$	$x \vee y$	$x \rightarrow y$	$x \oplus y$
Х	$\neg x$	0	0	0	0	1	0
0	1	0	1	0	1	1	1
1	0	1	0	0	1	0	1
		1	1	1	1	1	0

Или же вектором истинности:

- упорядочим все 2ⁿ кортежей в лексикографическом порядке
- ▶ *i*-я компонента вектора истинности равна значению функции на *i*-м кортеже
- **>** какой номер у кортежа $(\sigma_1, \ldots, \sigma_n)$?

Сколько всего булевых функций от n переменных? 2^{2^n}

Булеву функцию можно задать таблицей истинности:

		Χ	у	$x \wedge y$	$x \vee y$	$x \rightarrow y$	$x \oplus y$
Х	$\neg x$	0	0	0	0	1	0
0	1 0	0	1	0	1	1	1
1	0	1	0	0	1	0	1
	'	1	1	1	1	1	0

Или же вектором истинности:

- упорядочим все 2ⁿ кортежей в лексикографическом порядке
- ▶ *i*-я компонента вектора истинности равна значению функции на *i*-м кортеже
- **>** какой номер у кортежа $(\sigma_1, ..., \sigma_n)$?

$$\sum_{i=1}^{n} \sigma_i 2^{n-i}$$

Hапример, $x \wedge y = (0001)$.

Основные эквивалентности

Следующие функции тождественно равны (т.е. совпадают на любом значении):

- 1. $\neg \neg x \equiv x$
- 2. $x \rightarrow y \equiv \neg x \lor y$
- 3. $x \rightarrow y \equiv \neg y \rightarrow \neg x$
- 4. $x \lor y \equiv y \lor x$ коммутативность
- 5. $x \wedge y \equiv y \wedge x$
- 6. $(x \lor y) \lor z \equiv x \lor (y \lor z)$ ассоциативность
- 7. $(x \wedge y) \wedge z \equiv x \wedge (y \wedge z)$
- 8. $x \lor (y \land z) \equiv (x \lor y) \land (x \lor z)$ дистрибутивность
- 9. $x \wedge (y \vee z) \equiv (x \wedge y) \vee (x \wedge z)$
- 10. $\neg(x \lor y) \equiv \neg x \land \neg y$ закон Моргана
- 11. $\neg(x \land y) \equiv \neg x \lor \neg y$

Формулы

Базис \mathcal{F} — некоторое подмножество булевых функций

Определение

 $oldsymbol{\Phi}$ ормула над базисом ${\mathcal F}$ определяется по индукции.

- lacktriangle База: всякая функция $f\in\mathcal{F}$ является формулой над \mathcal{F} ;
- ▶ Индуктивный переход: Если $f(x_1, ..., x_n)$ формула над базисом \mathcal{F} , а $\Phi_1, ..., \Phi_n$ либо формулы над \mathcal{F} , либо переменные, то тогда $f(\Phi_1, ..., \Phi_n)$ формула над базисом \mathcal{F} .

Пример

$$(x \lor y) \land (z \lor x)$$
 — формула над базисом $\{\lor, \land\}$

ДНФ

Обозначение для переменной x или ее отрицания $\neg x$:

$$x^{\sigma} = egin{cases} x, & ext{ если } \sigma = 1, \
eta x, & ext{ если } \sigma = 0. \end{cases}$$

Простой конъюнкцией называется конъюнкция одной или нескольких переменных или их отрицаний, причем каждая переменная встречается не более одного раза.

Дизъюнктивная нормальная форма (ДНФ) — представление БФ в виде дизъюнкции простых конъюнкций.

Пример:
$$(x \land \neg y) \lor z$$

Если в каждой конъюнкции участвуют все переменные, это совершенная ДНФ (СДНФ).

▶ В таблице истинности отмечаем все наборы переменных, на которых функция равна 1.

- ▶ В таблице истинности отмечаем все наборы переменных, на которых функция равна 1.
- ightharpoonup Для каждого такого набора $(\sigma_1,\ldots,\sigma_n)$ берем конъюнкцию $(x_1^{\sigma_1}\wedge\cdots\wedge x_n^{\sigma_n})$

- ▶ В таблице истинности отмечаем все наборы переменных, на которых функция равна 1.
- ightharpoonup Для каждого такого набора $(\sigma_1,\ldots,\sigma_n)$ берем конъюнкцию $(x_1^{\sigma_1}\wedge\cdots\wedge x_n^{\sigma_n})$
- Включаем в СДНФ все полученные конъюнкции:

$$f(x_1,\ldots,x_n) = \bigvee_{f(\sigma_1,\ldots,\sigma_n)=1} (x_1^{\sigma_1} \wedge \cdots \wedge x_n^{\sigma_n})$$

- ▶ В таблице истинности отмечаем все наборы переменных, на которых функция равна 1.
- ightharpoonup Для каждого такого набора $(\sigma_1,\ldots,\sigma_n)$ берем конъюнкцию $(x_1^{\sigma_1}\wedge\cdots\wedge x_n^{\sigma_n})$
- Включаем в СДНФ все полученные конъюнкции:

$$f(x_1,\ldots,x_n)=\bigvee_{f(\sigma_1,\ldots,\sigma_n)=1}(x_1^{\sigma_1}\wedge\cdots\wedge x_n^{\sigma_n})$$

По построению: выражение справа принимает значение $1 \Leftrightarrow f = 1.$

- ▶ В таблице истинности отмечаем все наборы переменных, на которых функция равна 1.
- ightharpoonup Для каждого такого набора $(\sigma_1,\ldots,\sigma_n)$ берем конъюнкцию $(x_1^{\sigma_1}\wedge\cdots\wedge x_n^{\sigma_n})$
- Включаем в СДНФ все полученные конъюнкции:

$$f(x_1,\ldots,x_n)=\bigvee_{f(\sigma_1,\ldots,\sigma_n)=1}(x_1^{\sigma_1}\wedge\cdots\wedge x_n^{\sigma_n})$$

По построению: выражение справа принимает значение $1 \Leftrightarrow f=1$. Мы доказали:

Теорема

Для любой булевой функции, не равной тождественно нулю, существует СДНФ, ее задающая.

КНФ и СКНФ

Аналогично определяется и строится СКНФ:

Простой дизъюнкцией называется дизъюнкция одной или нескольких переменных или их отрицаний, причем каждая переменная встречается не более одного раза.

Конъюнктивная нормальная форма (КНФ) — представление БФ в виде конъюнкции простых дизъюнкций.

Пример:
$$(x \lor \neg y) \land z$$

Если в каждой дизъюнкции участвуют все переменные, это совершенная $KH\Phi$ ($CKH\Phi$).

Строится аналогично по таблице истинности:

$$f(x_1,\ldots,x_n)=\bigwedge_{f(\sigma_1,\ldots,\sigma_n)=0}(x_1^{\neg\sigma_1}\vee\cdots\vee x_n^{\neg\sigma_n})$$

Многочлен Жегалкина: сумма по модулю 2 конъюнкций переменных (также допускается слагаемое-единица) без повторений слагаемых, а также константа 0.

Например, $f(x, y, z) = 1 \oplus x \oplus x \wedge y \wedge z$.

Многочлен Жегалкина: сумма по модулю 2 конъюнкций переменных (также допускается слагаемое-единица) без повторений слагаемых, а также константа 0.

Например, $f(x, y, z) = 1 \oplus x \oplus x \wedge y \wedge z$.

Общий вид:

$$f(x_1,\ldots,x_n) = a \oplus \bigoplus_{\substack{1 \leq i_1 < \cdots < i_k \leq n \\ k \in \{1,\ldots,n\}}} a_{i_1\ldots i_k} \wedge x_{i_1} \wedge \cdots \wedge x_{i_k},$$

где
$$a, a_{i_1...i_k} \in \{0, 1\}.$$

Многочлен Жегалкина: сумма по модулю 2 конъюнкций переменных (также допускается слагаемое-единица) без повторений слагаемых, а также константа 0.

Например, $f(x, y, z) = 1 \oplus x \oplus x \wedge y \wedge z$.

Общий вид:

$$f(x_1,\ldots,x_n) = a \oplus \bigoplus_{\substack{1 \leq i_1 < \cdots < i_k \leq n \\ k \in \{1,\ldots,n\}}} a_{i_1\ldots i_k} \wedge x_{i_1} \wedge \cdots \wedge x_{i_k},$$

где $a, a_{i_1...i_k} \in \{0, 1\}.$

Или, что то же самое: $f(x_1,\ldots,x_n)=$

$$a \oplus a_1 x_1 \oplus \ldots a_n \wedge x_n \oplus a_{12} \wedge x_1 \wedge x_2 \oplus \ldots a_{1\ldots n} \wedge x_1 \wedge \cdots \wedge x_n$$

Многочлен Жегалкина: сумма по модулю 2 конъюнкций переменных (также допускается слагаемое-единица) без повторений слагаемых, а также константа 0.

Например, $f(x, y, z) = 1 \oplus x \oplus x \wedge y \wedge z$.

Общий вид:

$$f(x_1,\ldots,x_n) = a \oplus \bigoplus_{\substack{1 \leq i_1 < \cdots < i_k \leq n \\ k \in \{1,\ldots,n\}}} a_{i_1\ldots i_k} \wedge x_{i_1} \wedge \cdots \wedge x_{i_k},$$

где $a, a_{i_1...i_k} \in \{0,1\}.$

Или, что то же самое: $f(x_1,\ldots,x_n)=$

$$a \oplus a_1 x_1 \oplus \dots a_n \wedge x_n \oplus a_{12} \wedge x_1 \wedge x_2 \oplus \dots a_{1\dots n} \wedge x_1 \wedge \dots \wedge x_n$$

Примечание: Зачастую константу 0 не считают полиномом Жегалкина, то есть в выражении допускаются только конъюнкции, сложения и константа $1_{\text{востанть}}$

Теорема

Для каждой функции существует единственное представление многочленом Жегалкина.

Теорема

Для каждой функции существует единственное представление многочленом Жегалкина.

Доказательство. Существование. Преобразуем ДНФ:

ightharpoonup замена дизъюнкции: $x \lor y = x \oplus y \oplus x \land y \ (\square/3)$

Теорема

Для каждой функции существует единственное представление многочленом Жегалкина.

Доказательство. Существование. Преобразуем ДНФ:

- ightharpoonup замена дизъюнкции: $x \lor y = x \oplus y \oplus x \land y \ (\square/3)$
- ightharpoonup замена отрицаний: $\neg x = x \oplus 1$

Теорема

Для каждой функции существует единственное представление многочленом Жегалкина.

Доказательство. Существование. Преобразуем ДНФ:

- ightharpoonup замена дизъюнкции: $x \lor y = x \oplus y \oplus x \land y \ (\square/3)$
- ightharpoonup замена отрицаний: $\neg x = x \oplus 1$
- ▶ раскрываем скобки по тождеству: $(x \oplus y) \land z = (x \land z) \oplus (y \land z) \ (\frac{\Pi}{3})$

Теорема

Для каждой функции существует единственное представление многочленом Жегалкина.

Доказательство. Существование. Преобразуем ДНФ:

- ▶ замена дизъюнкции: $x \lor y = x \oplus y \oplus x \land y \ (\square / 3)$
- ightharpoonup замена отрицаний: $\neg x = x \oplus 1$
- ▶ раскрываем скобки по тождеству: $(x \oplus y) \land z = (x \land z) \oplus (y \land z) \ (\frac{\Pi}{3})$
- lacktriangle сокращаются одинаковые слагаемые: $x\oplus x=0$.

Теорема

Для каждой функции существует единственное представление многочленом Жегалкина.

Доказательство. Существование. Преобразуем ДНФ:

- ightharpoonup замена дизъюнкции: $x \lor y = x \oplus y \oplus x \land y \ (\square/3)$
- ightharpoonup замена отрицаний: $\neg x = x \oplus 1$
- ▶ раскрываем скобки по тождеству: $(x \oplus y) \land z = (x \land z) \oplus (y \land z) (\frac{1}{2})$
- lacktriangle сокращаются одинаковые слагаемые: $x\oplus x=0$.

Единственность: всего многочленов Жегалкина 2^{2^n} ; функций столько же — следовательно, представление единственно.

 ${\cal F}$ — множество булевых функций замыкание $[{\cal F}]$ (относительно суперпозиции) — это множество всех булевых функций, представимых формулой над ${\cal F}$.

 ${\cal F}$ — множество булевых функций замыкание $[{\cal F}]$ (относительно суперпозиции) — это множество всех булевых функций, представимых формулой над ${\cal F}$.

Примеры:

$$[\emptyset] = \{\emptyset\},\$$

$$[\neg x] = \{x, \neg x\},\$$

$$[x \lor y] = \{x_1 \lor \dots \lor x_n | n > 1\}.$$

 ${\cal F}$ — множество булевых функций замыкание $[{\cal F}]$ (относительно суперпозиции) — это множество всех булевых функций, представимых формулой над ${\cal F}$.

Примеры:

$$[\emptyset] = \{\emptyset\}, [\neg x] = \{x, \neg x\}, [x \lor y] = \{x_1 \lor \dots \lor x_n | n > 1\}.$$

Замкнутый класс — равный своему замыканию.

 T_0 : класс функций, сохраняющих ноль: $T_0 = \{f | f(0,\dots,0) = 0\}$ T_1 : класс функций, сохраняющих единицу: $T_1 = \{f | f(1,\dots,1) = 1\}$

 T_0 : класс функций, сохраняющих ноль: $T_0 = \{f | f(0, ..., 0) = 0\}$

 T_1 : класс функций, сохраняющих единицу:

$$T_1 = \{f | f(1, \dots, 1) = 1\}$$

Примеры:

- ▶ ∨ и ∧ сохраняют как ноль, так и единицу
- ▶ ⊕ сохраняет ноль, но не сохраняет единицу
- lacktriangle ightarrow сохраняет ноль
- ¬ не сохраняет ни единицу, ни ноль

 T_0 : класс функций, сохраняющих ноль:

$$T_0 = \{f | f(0, \dots, 0) = 0\}$$

 T_1 : класс функций, сохраняющих единицу:

$$T_1 = \{f | f(1, \dots, 1) = 1\}$$

Примеры:

- ▶ ∨ и ∧ сохраняют как ноль, так и единицу
- ⊕ сохраняет ноль, но не сохраняет единицу
- lacktriangle ightarrow сохраняет ноль
- ¬ не сохраняет ни единицу, ни ноль

Предложение

Классы функций T_0 и T_1 замкнуты.

Двойственные функции

Двойственная функция к f

$$f^*(x_1,\ldots,x_n) = \neg f(\neg x_1,\ldots,\neg x_n).$$

Самодвойственная функция: $f^* = f$.

Двойственные функции

Двойственная функция к f:

$$f^*(x_1,\ldots,x_n) = \neg f(\neg x_1,\ldots,\neg x_n).$$

Самодвойственная функция: $f^* = f$.

Примеры:

- ▶ ∨ и ∧ двойственны друг другу
- ¬ двойственно самому себе (самодвойственно)

Двойственные функции

Двойственная функция к f:

$$f^*(x_1,\ldots,x_n) = \neg f(\neg x_1,\ldots,\neg x_n).$$

Самодвойственная функция: $f^* = f$.

Примеры:

- ▶ ∨ и ∧ двойственны друг другу
- ¬ двойственно самому себе (самодвойственно)

Предложение

$$(f^*)^* = f.$$

S: класс самодвойственных функций.

Предложение

Класс функций S замкнут.

Монотонные функции

 $(b_1, \ldots, b_n) \leq (c_1, \ldots, c_n),$ если $b_i \leq c_i$ для всех i.

Монотонные функции

Частичный порядок на множестве двоичных наборов: $(b_1, \ldots, b_n) \leq (c_1, \ldots, c_n)$, если $b_i \leq c_i$ для всех i.

f — монотонная функция, если $f(\alpha) \leq f(\beta)$, если $\alpha \leq \beta$.

М: класс монотонных функций.

Монотонные функции

Частичный порядок на множестве двоичных наборов: $(b_1, \ldots, b_n) \leq (c_1, \ldots, c_n)$, если $b_i \leq c_i$ для всех i.

f — монотонная функция, если $f(\alpha) \leq f(\beta)$, если $\alpha \leq \beta$.

М: класс монотонных функций.

Примеры:

- ▶ ∨ и ∧ монотонны
- ightharpoonup \lnot , \oplus , \rightarrow немонотонны

Монотонные функции

Частичный порядок на множестве двоичных наборов: $(b_1, \ldots, b_n) \leq (c_1, \ldots, c_n)$, если $b_i \leq c_i$ для всех i.

f — монотонная функция, если $f(\alpha) \leq f(\beta)$, если $\alpha \leq \beta$.

М: класс монотонных функций.

Примеры:

- ▶ ∨ и ∧ монотонны
- ightharpoonup \lnot , \oplus , \rightarrow немонотонны

Предложение

Класс М замкнут.

Линейные функции

Линейные функции — такие, многочлен Жегалкина которых не использует конъюнкции; а также константа 0.

Линейные функции

Линейные функции — такие, многочлен Жегалкина которых не использует конъюнкции; а также константа 0.

L: класс линейных функций:

$$L = \{x_{i_1} \oplus \cdots \oplus x_{i_m} \oplus c | m > 0, 1 \le i_1 < \cdots < i_m \le n, c \in \{0, 1\}\}$$

Линейные функции

Линейные функции — такие, многочлен Жегалкина которых не использует конъюнкции; а также константа 0.

L: класс линейных функций:

$$L = \{x_{i_1} \oplus \cdots \oplus x_{i_m} \oplus c \mid m > 0, 1 \leq i_1 < \cdots < i_m \leq n, c \in \{0, 1\}\}$$

Предложение

Класс L замкнут.

Примеры:

- ▶ ⊕, ¬ линейны
- ▶ ∨, ∧ нелинейны

Критерий полноты системы функций

Множество булевых функций $\mathcal F$ называется полной системой, если все булевы функции выразимы формулами над этим базисом.

Критерий полноты системы функций

Множество булевых функций \mathcal{F} называется полной системой, если все булевы функции выразимы формулами над этим базисом.

Теорема (Пост, 1921)

Множество булевых функций $\mathcal F$ является полным тогда и только тогда, когда $\mathcal F$ не содержится ни в одном из пяти классов T_0 , T_1 , S, M, L.

 \Rightarrow : Если содержится, то его замыкание $[\mathcal{F}]$ также содержится в этом классе.

 \Rightarrow : Если содержится, то его замыкание $[\mathcal{F}]$ также содержится в этом классе.

 \Leftarrow : Пусть не содержится, т.е., есть функции $f_0, f_1, f_S, f_M, f_L \in \mathcal{F}$, где $f_0 \notin T_0$, $f_1 \notin T_1$, $f_S \notin S$, $f_M \notin M$, $f_L \notin L$ (эти функции не обязательно различны).

 \Rightarrow : Если содержится, то его замыкание $[\mathcal{F}]$ также содержится в этом классе.

 \Leftarrow : Пусть не содержится, т.е., есть функции $f_0, f_1, f_S, f_M, f_L \in \mathcal{F}$, где $f_0 \notin T_0, f_1 \notin T_1, f_S \notin S$, $f_M \notin M$, $f_L \notin L$ (эти функции не обязательно различны).

План доказательства:

1. Сперва из f_0 и f_1 выражается или отрицание, или обе константы, или и то и другое (как получится).

 \Rightarrow : Если содержится, то его замыкание $[\mathcal{F}]$ также содержится в этом классе.

 \Leftarrow : Пусть не содержится, т.е., есть функции $f_0, f_1, f_S, f_M, f_L \in \mathcal{F}$, где $f_0 \notin T_0, f_1 \notin T_1, f_S \notin S$, $f_M \notin M$, $f_L \notin L$ (эти функции не обязательно различны).

План доказательства:

- 1. Сперва из f_0 и f_1 выражается или отрицание, или обе константы, или и то и другое (как получится).
- 2. Выразим отрицание и константы следующим образом:

 \Rightarrow : Если содержится, то его замыкание $[\mathcal{F}]$ также содержится в этом классе.

 \Leftarrow : Пусть не содержится, т.е., есть функции $f_0, f_1, f_S, f_M, f_L \in \mathcal{F}$, где $f_0 \notin T_0$, $f_1 \notin T_1$, $f_S \notin S$, $f_M \notin M$, $f_L \notin L$ (эти функции не обязательно различны).

План доказательства:

- 1. Сперва из f_0 и f_1 выражается или отрицание, или обе константы, или и то и другое (как получится).
- 2. Выразим отрицание и константы следующим образом:
 - 2.1 Если получилось отрицание, то из f_S выражаются константы;
 - 2.2 Если же вышли обе константы, то отрицание выражается из f_M .

 \Rightarrow : Если содержится, то его замыкание $[\mathcal{F}]$ также содержится в этом классе.

 \Leftarrow : Пусть не содержится, т.е., есть функции $f_0, f_1, f_S, f_M, f_L \in \mathcal{F}$, где $f_0 \notin T_0$, $f_1 \notin T_1$, $f_S \notin S$, $f_M \notin M$, $f_L \notin L$ (эти функции не обязательно различны).

План доказательства:

- 1. Сперва из f_0 и f_1 выражается или отрицание, или обе константы, или и то и другое (как получится).
- 2. Выразим отрицание и константы следующим образом:
 - 2.1 Если получилось отрицание, то из f_S выражаются константы;
 - 2.2 Если же вышли обе константы, то отрицание выражается из f_M .
- 3. из f_L выражается конъюнкция.

(1) Так как $f_0
otin T_0$, то по определению T_0 имеем $f_0(0,\dots,0)=1$.

- (1) Так как $f_0 \notin T_0$, то по определению T_0 имеем $f_0(0,\ldots,0)=1$.
 - 1. Если при этом $f_0(1,\ldots,1)=1$, то получена константа 1 в виде $\varphi_1(x)=f_0(x,\ldots,x)=1$.

- (1) Так как $f_0 \notin T_0$, то по определению T_0 имеем $f_0(0,\ldots,0)=1$.
 - 1. Если при этом $f_0(1,\ldots,1)=1$, то получена константа 1 в виде $\varphi_1(x)=f_0(x,\ldots,x)=1$.
 - 2. Если же $f_0(1,\dots,1)=0$, то в таком же виде получено отрицание, $\overline{\varphi}(x)=\neg x=f_0(x,\dots,x)$

- (1) Так как $f_0
 otin T_0$, то по определению T_0 имеем $f_0(0,\ldots,0)=1$.
 - 1. Если при этом $f_0(1,\ldots,1)=1$, то получена константа 1 в виде $\varphi_1(x)=f_0(x,\ldots,x)=1$.
 - 2. Если же $f_0(1,\ldots,1)=0$, то в таком же виде получено отрицание, $\overline{\varphi}(x)=\neg x=f_0(x,\ldots,x)$

Аналогично, для $f_1 \notin T_1$: известно, что $f_1(1,\dots,1)=0$, и рассматривая значение $f_1(0,\dots,0)$, получаем или константу 0, или отрицание.

(2.1) Пусть получено отрицание.

Для функции $f_S \notin S$ известно, что существует набор $(\sigma_1,\ldots,\sigma_n)$, на котором

$$f_{S}(\sigma_{1},\ldots,\sigma_{n})\neq \neg f_{S}(\neg\sigma_{1},\ldots,\neg\sigma_{n}),$$

т.е.

$$f_{S}(\sigma_{1},\ldots,\sigma_{n})=f_{S}(\neg\sigma_{1},\ldots,\neg\sigma_{n}).$$

(2.1) Пусть получено отрицание.

Для функции $f_S \notin S$ известно, что существует набор $(\sigma_1,\ldots,\sigma_n)$, на котором

$$f_{S}(\sigma_{1},\ldots,\sigma_{n})\neq \neg f_{S}(\neg\sigma_{1},\ldots,\neg\sigma_{n}),$$

т.е.

$$f_{S}(\sigma_{1},\ldots,\sigma_{n})=f_{S}(\neg\sigma_{1},\ldots,\neg\sigma_{n}).$$

Тогда формула $f_S(x^{\sigma_1},\ldots,x^{\sigma_n})$, построенная из f_S и из отрицания, выражает одну из констант.

(2.1) Пусть получено отрицание.

Для функции $f_S \notin S$ известно, что существует набор $(\sigma_1,\ldots,\sigma_n)$, на котором

$$f_{S}(\sigma_{1},\ldots,\sigma_{n})\neq \neg f_{S}(\neg\sigma_{1},\ldots,\neg\sigma_{n}),$$

т.е.

$$f_S(\sigma_1,\ldots,\sigma_n)=f_S(\neg\sigma_1,\ldots,\neg\sigma_n).$$

Тогда формула $f_S(x^{\sigma_1},\ldots,x^{\sigma_n})$, построенная из f_S и из отрицания, выражает одну из констант.

С помощью отрицания выражается вторая константа.

(2.2) Пусть на шаге (1) получены обе константы.

Для функции $f_M \notin M$ существуют два набора α и β , для которых $\alpha < \beta$, но $f_M(\alpha) = 1$ и $f_M(\beta) = 0$.

(2.2) Пусть на шаге (1) получены обе константы.

Для функции $f_M \notin M$ существуют два набора α и β , для которых $\alpha < \beta$, но $f_M(\alpha) = 1$ и $f_M(\beta) = 0$.

Пусть i_1,\ldots,i_k — номера всех координат, в которых α и β отличаются друг от друга. Соответственно, в α там 0, в β — 1, а остальные координаты общие, σ_i , где $i \notin \{i_1,\ldots,i_k\}$:

$$f_{M}(\sigma_{1}, \ldots, \sigma_{i_{1}-1}, 0, \sigma_{i_{1}+1}, \ldots, \sigma_{i_{k}-1}, 0, \sigma_{i_{k}+1}, \ldots, \sigma_{n}) = 1$$

$$f_{M}(\sigma_{1}, \ldots, \sigma_{i_{1}-1}, 1, \sigma_{i_{1}+1}, \ldots, \sigma_{i_{k}-1}, 1, \sigma_{i_{k}+1}, \ldots, \sigma_{n}) = 0$$

(2.2) Пусть на шаге (1) получены обе константы.

Для функции $f_M \notin M$ существуют два набора α и β , для которых $\alpha < \beta$, но $f_M(\alpha) = 1$ и $f_M(\beta) = 0$.

Пусть i_1,\ldots,i_k — номера всех координат, в которых α и β отличаются друг от друга. Соответственно, в α там 0, в β — 1, а остальные координаты общие, σ_i , где $i \notin \{i_1,\ldots,i_k\}$:

$$f_{\mathcal{M}}(\sigma_1,\ldots,\sigma_{i_1-1},0,\sigma_{i_1+1},\ldots,\sigma_{i_k-1},0,\sigma_{i_k+1}\ldots\sigma_n)=1$$

$$f_{\mathcal{M}}(\sigma_1,\ldots,\sigma_{i_1-1},1,\sigma_{i_1+1},\ldots,\sigma_{i_k-1},1,\sigma_{i_k+1}\ldots\sigma_n)=0$$

Чтобы получить отрицание, подставим:

- ▶ константы вместо всех общих координат
- ightharpoonup одной и той же переменной x во всех изменяющиеся координатах:

$$\neg x = f_{M}(\sigma_{1}, \dots, \sigma_{i_{1}-1}, x, \sigma_{i_{1}+1}, \dots, \sigma_{i_{k}-1}, x, \sigma_{i_{k}+1}, \dots, \sigma_{n})$$

Мы построили $0,1,\neg$; нужно \wedge :

Мы построили $0,1,\neg$; нужно \wedge :

(3) Так как функция f_L нелинейна, ее многочлен Жегалкина содержит хотя бы одну конъюнкцию.

Мы построили 0,1,¬; нужно ∧:

(3) Так как функция f_L нелинейна, ее многочлен Жегалкина содержит хотя бы одну конъюнкцию.

Пусть переменные x и y входят в состав этой конъюнкции.

Мы построили $0,1,\neg$; нужно \wedge :

(3) Так как функция f_L нелинейна, ее многочлен Жегалкина содержит хотя бы одну конъюнкцию.

Пусть переменные x и y входят в состав этой конъюнкции.

Тогда функцию можно представить в виде $f_L(x,y,z,...) = xyP(z,...) \oplus xQ(z,...) \oplus yR(z,...) \oplus S(z,...)$, где P, Q, R, S — многочлены Жегалкина (Q,R,S могут отсутствовать).

Мы построили $0,1,\neg$; нужно \wedge :

(3) Так как функция f_L нелинейна, ее многочлен Жегалкина содержит хотя бы одну конъюнкцию.

Пусть переменные x и y входят в состав этой конъюнкции.

Тогда функцию можно представить в виде $f_L(x,y,z,...) = xyP(z,...) \oplus xQ(z,...) \oplus yR(z,...) \oplus S(z,...)$, где P, Q, R, S — многочлены Жегалкина (Q,R,S могут отсутствовать).

Так как P — не константа 0, она равна единице на некотором наборе α .

```
Тогда g(x,y) = f_L(x,y,\alpha) =
= xyP(\alpha) \oplus xQ(\alpha) \oplus yR(\alpha) \oplus S(\alpha) =
= xy \oplus xb \oplus yc \oplus d, где b,c,d \in \{0,1\}.
```

Тогда
$$g(x,y) = f_L(x,y,\alpha) =$$

= $xyP(\alpha) \oplus xQ(\alpha) \oplus yR(\alpha) \oplus S(\alpha) =$
= $xy \oplus xb \oplus yc \oplus d$, где $b,c,d \in \{0,1\}$.

Подстановкой $g(x\oplus c,y\oplus b)$ получается следующая функция:

$$h(x,y) = g(x \oplus c, y \oplus b) = (x \oplus c)(y \oplus b) \oplus (x \oplus c)b \oplus (y \oplus b)c \oplus d = xy \oplus bc \oplus d$$

Тогда
$$g(x,y) = f_L(x,y,\alpha) =$$

= $xyP(\alpha) \oplus xQ(\alpha) \oplus yR(\alpha) \oplus S(\alpha) =$
= $xy \oplus xb \oplus yc \oplus d$, где $b,c,d \in \{0,1\}$.

Подстановкой $g(x\oplus c,y\oplus b)$ получается следующая функция:

$$h(x,y) = g(x \oplus c, y \oplus b) = (x \oplus c)(y \oplus b) \oplus (x \oplus c)b \oplus (y \oplus b)c \oplus d = xy \oplus bc \oplus d$$

В зависимости от значения константного слагаемого $bc \oplus d$, получилась или конъюнкция, или ее отрицание. В последнем случае можно применить к ней ранее выраженную операцию отрицания. ЧТД