Particle spectrograph

Wave operator and propagator

$f_{1^{-}}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#2}{}_{\alpha}f_{1^{-}}^{\#1}{}_{\alpha}f_{1^{-}}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{^{-}}\alpha}^{\#2}$	0	0	0	0	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-k^2 r_1$	0	0	0
$f_{1}^{\#1}{}_{\alpha\beta}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<i>i</i> kt2 3	$\frac{k^2t_2}{3}$	0	0	0	0
$\omega_1^{\#2}{}_+\alpha\beta$	$\frac{\sqrt{2} t_2}{3}$	2 2 ع	$-\frac{1}{3}$ \bar{I} kt_2	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1}^{#1} \dagger^{\alpha \beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} \dagger^{\alpha}$	$f_1^{#2} + \alpha$

		$\omega_{0}^{\#1}$	$f_{0+}^{\#1}$	$f_{0^{+}}^{#2}$	$\omega_0^{\sharp 1}$				ر _ا #1		$f^{#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$	
	$\omega_0^{\#1}$		0	0	0		$\omega_{2}^{\#1}$.	_					1
	$f_{0+}^{\#1}$	† 0	0	0	0				0		0	0	l
	$f_{0+}^{#2}$	† 0	0	0	0		$f_{2}^{#1}$		0		0	0	
	$\omega_0^{\#1}$	† 0	0	0 k	$r^2 r_2 + t$	2	υ ₂ -1 †	αβχ	0		0	$k^2 r_1$	
	α								1				
1	$\tau_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0		Sc	ource c	onstrai	n
	${\mathfrak r}_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0)(3) irr		
	$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	0	0	0	0		$\tau_0^{\#}$	² == 0		
	α				1.5					$\tau_0^{\#}$	¹ == 0		
	$\sigma_{1^{\bar{-}}}^{\#1}$	0	0	0	$-\frac{1}{k^2 r_1}$	0	0	0		σ_0^{\sharp}	^{‡1} == 0		
	$\tau_{1}^{\#1}{}_{\!$	$\frac{\sqrt{2} k}{3^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{2}{(2)^2}$	0		0			$ au_1^{\#}$	^{2α} == ()	
	${\tau_1^\#}_1^1$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)}$	$\frac{3k^2}{(3+k^2)^2t_2}$		0		0		$ au_1^{\#}$	±1α == ()	
	$\alpha \beta$	$\frac{\overline{5}}{2}$	² t ₂	$\frac{k}{3^2t_2}$						σ^{i}	#2α L == (0	
	$\sigma_{1}^{\#2}{}_{+}\alpha\beta$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0				$\bar{i} k \sigma_{1}^{\#1} \alpha_{i}$	β
	00		·	t ₂	1							$\sigma_{1+}^{\#2\alpha\beta}$	
	$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0			$\frac{1}{1} \frac{\alpha \beta}{\alpha \beta} = =$		
	ρ		-	ı									
		$+^{\alpha\beta}$	$+^{\alpha\beta}$	$+^{\alpha\beta}$	$\frac{1}{2} + \alpha$	-̄ ₂ +α	$\frac{\pi}{1} + \alpha$	-̄ ₂ +α			$^{\#1}_{2}^{\alpha\beta} =$		
		$\sigma_1^{\#1}$	$\sigma_{1}^{\#2}$ \dagger	${t_1^{\#1}}$	σ_1^*	$\sigma_1^{\#}$	${f t}_1^{\#}$	${\mathfrak l}_1^{\#}$		To	tal co	nstraint	S

0	0	بر 2,1	0.									
U	U	$k^2 r_1$	$\sigma_{0}^{\#1}$	+	0	0	0	$\frac{1}{k^2 r_2 + t_2}$				
				ı								
Sc	urce c	onstrair	nts/ga	auge generators								
SC)(3) irr	eps		Multiplicities								
$\tau_0^{\#}$	$\tau_{0+}^{\#2} == 0$					1						
$\tau_0^{\#}$	¹ ₊ == 0		1									
$\sigma_0^{\#}$	$\sigma_{0^{+}}^{\#1} == 0$					1						
$ au_1^{\#}$	$\tau_1^{\#2\alpha} == 0$					3						
$\overline{ au_1^{\#}}$	$\tau_{1}^{\#1\alpha} == 0$					3						
σ_1^{\dagger}	$\sigma_1^{\#2\alpha} == 0$				3							
$\overline{ au_1^{\#}}$	$\frac{1}{1}^{\alpha\beta} + i$	$i k \sigma_{1}^{\#1}$	³ == 0	3								
σ_1^*	$^{\sharp 1}_{\downarrow}^{\alpha\beta} ==$	$\sigma_{1}^{\#2\alpha\beta}$		3								
$ au_2^{\#}$	±1 αβ + ==	0		5				$\sigma_2^{\#_2}$				

28

0

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_2^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\lambda}$
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	0	0	0
$ au_2^{\#1} \dagger^{lphaeta}$	0	0	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{1}{k^2 r_1}$

0

0

0

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_2 > 0$