Series numériques

Mohamed Gaied

1. Convergence d'une serie numerique

Définition 1.1. Soit $(u_n)_{n\geq 0}$ une suite numerique.

Pour
$$n \in \mathbb{N}$$
, on pose, $S_n = u_0 + u_1 + ... + u_n = \sum_{k=0}^n u_k$.

 S_n est appelé somme partielle d'ordre n de u_n .

La suite numérique $(\hat{S}_n)_{n\geq 0}$ est appelée serie numerique de terme general u_n et on la note $\sum_{n>0} u_n$

1.1. convergence

Définition 1.2. Soit $\sum_{n\geq 0} u_n$ une serie numerique.

ullet On dit que la serie numerique $\sum_{n\geq 0} u_n$ converge si la suite somme partielle $(S_n)_{n\geq 0}$

converge et on note
$$\lim_{n \to +\infty} S_n = \sum_{n=0}^{+\infty} u_n$$

ullet On dit que la serie numerique $\sum_{n>0}^{\infty}u_n$ diverge si la suite somme partielle $(S_n)_{n\geq 0}$ diverge.

1) Nature de
$$\sum_{n\geq 0} 1$$
? Dans ce cas $u_n=1 \forall n\in \mathbb{N}.$

Dans ce cas
$$u_n=1 \forall n \in \mathbb{N}$$
.
$$S_n=\sum_{k=0}^n u_k=\sum_{k=0}^n 1=n+1 \text{ et } \lim_{n\to +\infty} S_n=\lim_{n\to +\infty}(n+1)=+\infty$$
 donc la serie $\sum_{n\geq 0} 1$ diverge.

2) Somme d'une suite arithmétique:

Soit $(u_n)_{n>0}$ la suite arithmétique de premier terme $u_0=1$ et de raison r=2: $u_n = u_0 + nr = 1 + 2n$

Etudier la nature de la serie $\sum u_n$

$$S_n = \sum_{k=0}^n u_k = \sum_{k=0}^n (1+2k) = \sum_{k=0}^n 1 + 2 \sum_{k=0}^n k = (n+1) + 2 \frac{n(n+1)}{2} = (n+1)^2$$
 par suite $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} (n+1)^2 = +\infty$ donc la serie $\sum_{n \ge 0} (1+2n)$ diverge.

3) Somme d'une suite géometrique:

Soit $a \in \mathbb{C} - \{1\}$ et $(u_n)_{n \geq 0}$ la suite géometrique de premier terme $u_0 = 1$ et de raison a: $u_n = a^n$

Etudier la nature de la serie $\sum_{n > 0} u_n$

$$S_n = \sum_{k=0}^n u_k = 1 + a + a^2 + \dots + a^n = \frac{1 - a^{n+1}}{1 - a}$$

$$\lim_{n\to +\infty} a^{n+1} = \left\{ \begin{array}{l} 0 \text{ si } |a|<1 \\ \text{n'existe pas ou infinie si } |a|>1 \end{array} \right.$$

par suite
$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \frac{1 - a^{n+1}}{1 - a} = \begin{cases} \frac{1}{1 - a} & \text{si } |a| < 1 \\ +\infty & \text{si } a > 1 \\ & \text{n'existe pas ou infinie si } |a| > 1 \end{cases}$$

Conclusion: la serie $\sum_{n\geq 0} a^n$ converge ssi |a|<1 et on a dans ce cas

$$\sum_{n=0}^{+\infty} a^n = \frac{1}{1-a}.$$

Cas particulier:
$$a=\frac{e^{i\theta}}{2}, \, |a|=|\frac{e^{i\theta}}{2}|=\frac{1}{2}<1$$
 donc $\sum_{n\geq 0}\frac{e^{in\theta}}{2^n}$ converge et on a $\sum_{n=0}^{+\infty}\frac{e^{in\theta}}{2^n}=\frac{1}{1-\frac{e^{i\theta}}{2}}=\frac{1-\frac{e^{-i\theta}}{2}}{(1-\frac{e^{i\theta}}{2})(1-\frac{e^{-i\theta}}{2})}$

4) Nnature de la serie
$$\sum_{n>1} \frac{1}{n(n+1)}$$

$$\begin{split} &\frac{1}{n(n+1)} = \frac{a}{n} + \frac{b}{n+1} \text{ avec } a = 1 \text{ et } b = -1 \\ &S_n = \sum_{k=0}^n u_k = \sum_{k=1}^n (\frac{1}{k} - \frac{1}{k+1}) = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n \frac{1}{k+1} \\ &= \sum_{k=0}^n \frac{1}{k} - \sum_{k=1}^{n+1} \frac{1}{k} = 1 - \frac{1}{n+1} \end{split}$$

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \left(1 - \frac{1}{n+1}\right) = 1$$

Conclusion: la serie $\sum_{n\geq 1}\frac{1}{n(n+1)}$ converge et on a $\sum_{n=1}^{+\infty}\frac{1}{n(n+1)}=1$

Proposition 1.3. Soit $\sum_{n>0} u_n$ une serie numerique.

<u>Si</u> la serie $\sum_{n>0} u_n$ converge, <u>alors</u> la suite $(u_n)_{n\geq 0}$ converge vers 0.

Démonstration: Soit
$$S_n=u_0+u_1+\ldots+u_n$$
. On a $u_n=S_n-S_{n-1}$ et $\lim_{n\to+\infty}S_n=l\Rightarrow\lim_{n\to+\infty}S_{n-1}=l$ donc $\lim_{n\to+\infty}u_n=0$.

Remarques 1.4. .

1) Si $(u_n)_n$ ne converge pas vers 0, alors la serie $\sum_{n\geq 0}u_n$ diverge.

Exemple: Nature de
$$\sum_{n\geq 0} \frac{n^2-1}{2n^2+3n+1}$$

$$u_n = \sum_{n>0} \frac{n^2 - 1}{2n^2 + 3n + 1} \to_{n \to +\infty} \frac{1}{2} \neq 0$$

donc
$$\sum_{n\geq 0} \frac{n^2-1}{2n^2+3n+1}$$
 diverge.

2) Si $\lim_{n \to +\infty} u_n = 0$, on n'a pas necessairement la convergence de la serie $\sum_{n \geq 0} u_n$.

Exemple: Nature de
$$\sum_{n>1} ln(1+\frac{1}{n})$$

$$u_n=ln(1+\frac{1}{n})\sim_{+\infty}\frac{1}{n}\to_{n\to+\infty}0$$
 mais $\sum_{n\geq 1}ln(1+\frac{1}{n})$ diverge, en effet

$$S_n = \sum_{k=1}^n \ln(1 + \frac{1}{k}) = \sum_{k=1}^n \ln(\frac{k+1}{k}) = \sum_{k=1}^n (\ln(k+1) - \ln(k))$$
$$= \sum_{k=1}^n \ln(k+1) - \sum_{k=1}^n \ln(k) = \sum_{k=2}^{n+1} \ln(k) - \sum_{k=1}^n \ln(k)$$
$$= \ln(n+1).$$

Donc
$$\lim_{n\to +\infty} S_n = \lim_{n\to +\infty} \ln(n+1) = +\infty$$
 d'ou $\sum_{n\ge 1} \ln(1+\frac{1}{n})$ diverge.

1.2. Operations sur les series

Soit
$$\sum_{n>0}^{\infty} u_n$$
 et $\sum_{n>0} v_n$ deux series numeriques et $\lambda \in \mathbb{K}$.

Si
$$\sum_{n\geq 0}^- u_n$$
 et $\sum_{n\geq 0}^- v_n$ converge, alors $\sum_{n\geq 0} (u_n+\lambda v_n)$ converge et on a

$$\sum_{n=0}^{+\infty} (u_n + \lambda v_n) = \sum_{n=0}^{+\infty} u_n + \lambda \sum_{n=0}^{+\infty} v_n$$

Remaraues 1.5.

1) Si
$$\begin{cases} \sum_{n\geq 0} u_n \text{ converge} \\ \sum_{n\geq 0} v_n \text{ diverge} \end{cases}$$
 alors $\sum_{n\geq 0} (u_n + v_n)$ diverge

Exemple: Nature de $\sum_{n \ge 0} ((\frac{1}{2})^n + 2^n)$.

On a
$$\sum_{n>0} (\frac{1}{2})^n$$
 converge et $\sum_{n>0} 2^n$ diverge

ce qui implique que $\sum_{n>0}((\frac{1}{2})^n+2^n)$ diverge.

2) si
$$\begin{cases} \sum_{n\geq 0} u_n \text{ diverge} \\ \sum_{n>0} v_n \text{ diverge} \end{cases}$$
, alors on ne peut pas conclure la nature de
$$\sum_{n\geq 0} (u_n + v_n).$$

2. series positives

Théorème 2.1. Soit $\sum_{n\geq 0} u_n$ une serie positive $(u_n\geq 0 \forall n)$.

alors

- (i) La suite somme partielle (S_n)_n est croissante.
 (ii) la serie ∑ u_n converge <u>ssi</u> la suite (S_n)_n est majorée.

Exercice: Etudier la nature de la serie $\sum_{n>1} \frac{1}{n}$.

Pour
$$k \in \mathbb{N}^*$$
, $\forall t \in [k, k+1]$, $\frac{1}{k+1} \le \frac{1}{t} \le \frac{1}{k}$
donc $\int_{k}^{k+1} \frac{1}{k+1} dt = \frac{1}{k+1} \le \int_{k}^{k+1} \frac{1}{t} dt \le \int_{k}^{k+1} \frac{1}{k} dt = \frac{1}{k}$
et par suite
$$\sum_{k=1}^{n} \frac{1}{k+1} \le \sum_{k=1}^{n} \int_{k}^{k+1} \frac{1}{t} dt = \int_{1}^{n+1} \frac{1}{t} dt = \ln(n+1) \le \sum_{k=1}^{n} \frac{1}{k}$$

d'ou
$$ln(n+1) \le S_n$$
 et $\lim_{n \to +\infty} ln(n+1) = +\infty$.

Conclusion:
$$\sum_{n>1} \frac{1}{n}$$
 diverge.

2.1. critère de comparaison

Théorème 2.2. Soit $\sum_{n>0} u_n$ et $\sum_{n>0} v_n$ deux series a termes positives.

1.
$$\underline{Si} \left\{ \begin{array}{l} 0 \leq u_n \leq v_n \\ \displaystyle \sum_{n \geq 0} v_n \ converge \ , \quad \underline{alors} \sum_{n \geq 0} u_n \ converge \end{array} \right.$$

2.
$$\underline{Si}$$
 $\begin{cases} 0 \le u_n \le v_n \\ \sum_{n\ge 0}^{-} u_n \text{ diverge }, & \underline{alors} \sum_{n\ge 0} v_n \text{ diverge.} \end{cases}$

Application: Déterminer la nature de la serie $\sum_{n\geq 0} u_n$ dans les cas suivants.

(a)
$$u_n = \frac{1}{(n+1).3^n}$$

(b)
$$u_n = \frac{1}{\sqrt{n}}$$

(c)
$$u_n = \frac{arctg(n)}{n(n+1)}$$

(a) On a
$$0 \le \frac{1}{(n+1) \cdot 3^n} \le \frac{1}{3^n} = (\frac{1}{3})^n$$
 et $\sum_{n \ge 0} (\frac{1}{3})^n$ converge,

donc, d'après le critère de comparaison, $\sum_{n>0} u_n$ converge.

(b) On a
$$0 \le \frac{1}{n} \le \frac{1}{\sqrt{n}}$$
 et $\sum_{n>0} \frac{1}{n}$ diverge,

donc, d'après le critère de comparaison, $\sum_{n\geq 0} u_n$ diverge.

(c) On a
$$0 \le \frac{arctg(n)}{n(n+1)} \le \frac{\frac{\pi}{2}}{n(n+1)}$$
 car $0 \le arctg(x) \le \frac{\pi}{2} \ \forall x \ge 0$ et $\sum_{n \ge 0} (\frac{1}{n(n+1)}$ converge,

donc, d'après le critère de comparaison, $\sum_{n>0} u_n$ converge.

2.2. critère d'équivalence

Théorème 2.3. Soit $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux series a termes positives.

Si $u_n \sim_{+\infty} v_n$, alors, les deux series sont de même nature.

Exemples. 1) Nature de
$$\sum_{n\geq 1} ln(1+\frac{1}{n})$$
?

On a $ln(1+\frac{1}{n})\sim_{+\infty}\frac{1}{n}$ et $\sum_{n\geq 1}\frac{1}{n}$ diverge, donc, daprès le critère d'équivalence, $\sum_{n\geq 1} ln(1+\frac{1}{n})$ diverge.

2.3. series de Riemann

On appelle serie de Riemann toute serie de la forme $\sum_{n\geq 1}\frac{1}{n^{\alpha}}, \alpha\in\mathbb{R}$

Théorème 2.4. La serie de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge ssi $\alpha>1$

Démonstration:

- Si $\alpha < 0$, $\lim_{n \to +\infty} \frac{1}{n^{\alpha}} = +\infty$ donc $\sum_{n \geq 1} \frac{1}{n^{\alpha}}$ diverge.
- Si $\alpha = 1, \sum_{n \ge 1} \frac{1}{n^{\alpha}}$ diverge
- Si $0 < \alpha < 1$, $n^{\alpha} < n$ et par suite $0 \le \frac{1}{n} \le \frac{1}{n^{\alpha}}$ et $\sum_{n \ge 1} \frac{1}{n}$ diverge, donc, daprès le critère d'équivalence, $\sum_{n \ge 1} \frac{1}{n^{\alpha}}$ diverge.

$$\begin{split} \bullet & \text{ Si } \alpha > 1 \\ & \text{ Pour } k \in \mathbb{N}^*, \forall t \in [k, k+1], \frac{1}{(k+1)^{\alpha}} \leq \frac{1}{t^{\alpha}} \leq \frac{1}{k^{\alpha}} \\ & \text{ donc } \int_{k}^{k+1} \frac{1}{(k+1)^{\alpha}} dt = \frac{1}{(k+1)^{\alpha}} \leq \int_{k}^{k+1} \frac{1}{t^{\alpha}} dt \leq \int_{k}^{k+1} \frac{1}{k^{\alpha}} dt = \frac{1}{k^{\alpha}} \\ & \text{ et par suite } \\ & \sum_{k=1}^{n-1} \frac{1}{(k+1)^{\alpha}} \leq \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{1}{t^{\alpha}} dt = \int_{1}^{n} \frac{1}{t^{\alpha}} dt \leq \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}} \\ & \text{ d'ou } \sum_{k=2}^{n} \frac{1}{k^{\alpha}} \leq \frac{1}{1-\alpha} [\frac{1}{n^{\alpha-1}} - 1] = \frac{1}{\alpha-1} [1 - \frac{1}{n^{\alpha-1}}] \leq \frac{1}{\alpha-1} \ (\alpha > 1) \\ & \text{ donc } \sum_{k=1}^{n} \frac{1}{n^{\alpha}} \text{ converge.} \end{split}$$

Exemples:

les series
$$\sum_{n\geq 1} \frac{1}{n^2}$$
 $(\alpha=2)$, $\sum_{n\geq 1} \frac{1}{n^5}$ $(\alpha=5)$ et $\sum_{n\geq 1} \frac{1}{n\sqrt{n}}$ $(\alpha=\frac{3}{2})$ convergent. les series $\sum_{n>1} \frac{1}{n}$ $(\alpha=1)$, $\sum_{n>1} n$ $(\alpha=-1)$ et $\sum_{n>1} \frac{1}{\sqrt{n}}$ $(\alpha=\frac{1}{2})$ divergent.

Applications: Nature de $\sum_{n} u_n$ dans les cas suivants.

a)
$$u_n = \frac{1}{n(n+1)}, n \in \mathbb{N}^*$$

On a
$$\frac{1}{n(n+1)} \sim_{+\infty} \frac{1}{n^2}$$
 et $\sum_{n\geq 1} \frac{1}{n^2}$ converge (série de Riemann avec $\alpha=2>1$)

donc, d'après le critére d'equivalence, $\sum \frac{1}{n(n+1)}$ converge.

b)
$$u_n = \frac{2n^2 - 5n + 8}{2n^3 + n^2 + 2n + 1}, \ n \in \mathbb{N}^*$$

b)
$$u_n = \frac{2n^2 - 5n + 8}{3n^3 + n^2 + 2n + 1}, \ n \in \mathbb{N}^*$$

On a $\frac{2n^2 - 5n + 8}{3n^3 + n^2 + 2n + 1} \sim_{+\infty} \frac{2n^2}{3n^3} = \frac{2}{3} \frac{n^2}{n^3} = \frac{2}{3} \frac{1}{n} \text{ et } \sum_{n \ge 1} \frac{1}{n} \text{ diverge (série de } \mathbb{R}^n)$

Riemann avec $\alpha = 1 \le 1$)

donc, d'après le critére d'equivalence, $\sum \frac{2n^2-5n+8}{3n^3+n^2+2n+1}$ diverge.

c)
$$u_n = \frac{\sin^2(n)}{n^3}, n \in \mathbb{N}^*$$

On a
$$0 \le \frac{\sin^2(n)}{n^3} \le \frac{1}{n^3}$$
 et $\sum_{n \ge 1} \frac{1}{n^3}$ converge (série de Riemann avec $\alpha = 3 > 1$)

donc, d'après le critére de comparaison, $\sum \frac{sin^2(n)}{n^3}$ converge.

2.4. Critère de Riemann

Soit $\sum u_n$ une série à terme positive.

- S'il existe $\alpha>1$ tel que $\lim_{n\to+\infty}n^{\alpha}u_n=l\in[0,+\infty[$, alors \sum_nu_n converge.
- S'il existe $\alpha \leq 1$ tel que $\lim_{n \to +\infty} n^{\alpha} u_n = l \in]0, +\infty[\cup \{+\infty\}, \text{ alors } \sum_{n = 0}^{\infty} u_n]$ diverge.

1. Nature de $\sum_{n>0} e^{-n}$

$$\lim_{n \to +\infty} n^2 e^{-n} = 0$$

donc, d'après le critère de Riemann, $\sum_{n>0} e^{-n}$ converge

2. Nature de $\sum e^{-\sqrt{n}}$

$$\lim_{n \to +\infty} n^2 e^{-\sqrt{n}} = 0$$

donc, d'après le critère de Riemann, $\sum_{n=0}^{\infty} e^{-\sqrt{n}}$ converge

3. Nature de
$$\sum_{n\geq 2} \frac{1}{\sqrt{n}ln(n)}$$

$$\lim_{n\to +\infty} n^{\frac{2}{3}} \frac{1}{\sqrt{n}ln(n)} = \lim_{n\to +\infty} \frac{n^{\frac{1}{6}}}{ln(n)} = +\infty$$
donc, d'après le critère de Riemann,
$$\sum_{n\geq 2} \frac{1}{\sqrt{n}ln(n)}$$
 diverge.

2.5. critère d'Alembert

Soit $\sum_n u_n$ une série à terme positive, $(u_n \ge 0 \forall n \in \mathbb{N})$ telle que $\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = l$.

- Si l < 1, alors $\sum u_n$ converge.
- Si l > 1, alors $\sum_{n=1}^{\infty} u_n$ diverge.

Exemples. .

1. Nature de $\sum_{n} \frac{1}{n!}$.

$$\lim_{\substack{n \to +\infty \\ 0 < 1}} \frac{u_{n+1}}{u_n} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{\frac{1}{(n+1)!}}{\frac{1}{n!}} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{n!}{(n+1)!} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{n+1} = \lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac$$

donc, d'aprèe le critère d'Alembert, la série $\sum_{n} \frac{1}{n!}$ converge.

2. Soit $a \in \mathbb{R}_+$ Nature de $\sum_{n} \frac{a^n}{n!}$.

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{\frac{a^{n+1}}{(n+1)!}}{\frac{a^n}{n!}} = \lim_{n \to +\infty} \frac{a^{n+1}n!}{a^n(n+1)!}$$
$$= \lim_{n \to +\infty} \frac{a}{n+1} = 0 < 1$$

donc, d'aprèe le critère d'Alembert, la série $\sum \frac{a^n}{n!}$ converge.

3. Nature de $\sum_{n} \frac{2^n}{n}$.

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \lim_{n \to +\infty} \frac{\frac{2^{n+1}}{n+1}}{\frac{2^n}{n}}$$

$$= \lim_{n \to +\infty} \frac{2^{n+1}n}{2^n(n+1)} = \lim_{n \to +\infty} \frac{2n}{n+1} = 2 > 1$$

donc, d'aprèe le critère d'Alembert, la série $\sum_{n} \frac{2^{n}}{n} v$ diverge.

3. Série numériques:

Dans cette partie, $u_n \in \mathbb{K} = \mathbb{R}$ ou \mathbb{C}

3.1. Séries alternées

Définition 3.1. On appelle série altérnée toute série de la forme $\sum_{n} (-1)^n a_n$ avec $a_n \ge 0 \forall n \in \mathbb{N}$.

$$\sum_{n}^{\infty} (-1)^{n}, \sum_{n}^{\infty} (-1)^{n} n \text{ et } \sum_{n}^{\infty} (-1)^{n} e^{\sqrt{n}} \text{ sont des séries altérnées.}$$

Théorème 3.2 (Théorème special des séries altérnées (TSSA)). .

Soit
$$\sum_{n=0}^{\infty} (-1)^n a_n$$
 une série alternée.

$$Si \left\{ \begin{array}{l} (a_n)_n \ est \ décroissante \\ \lim\limits_{n \to +\infty} a_n = 0 \end{array} \right.$$
, alors $\sum\limits_n (-1)^n a_n \ converge.$

Exemples. 1. Nature de $\sum_{n=0}^{\infty} \frac{(-1)^n}{n}$

dans ce cas,
$$a_n = \frac{1}{n}$$

$$(a_n)_n$$
 est décroissante $(\frac{1}{n+1} < \frac{1}{n})$ et $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{1}{n} = 0$

donc, d'après le TSSA, $\sum_{n} \frac{(-1)^n}{n}$ converge.

- 2. Soit $\alpha \in \mathbb{R}$. Discuter, suivant la valeur de α , la nature de $\sum_{n} \frac{(-1)^n}{n^{\alpha}}$.
 - Si $\alpha \leq 0$, $\frac{(-1)^n}{n^{\alpha}}$ ne tend pas vers 0 (n'admet pas une limite), donc la série $\sum_n \frac{(-1)^n}{n^{\alpha}}$ diverge.

• Si
$$\alpha > 0$$
, $n^{\alpha} < (n+1)^{\alpha} \Rightarrow a_n \frac{1}{n^{\alpha}} > \frac{1}{(n+1)^{\alpha}} = a_{n+1}$ donc $(a_n)_n$ est décroissante et $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} \frac{1}{n^{\alpha}} = 0$ et d'après le TSSA, $\sum_n \frac{(-1)^n}{n^{\alpha}}$ converge.

Conclusion:
$$\sum_{n} \frac{(-1)^n}{n^{\alpha}}$$
 converge ssi $\alpha > 0$.

Cas particulier:
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 ($\alpha = 1$), $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ ($\alpha = \frac{1}{2}$) et $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$

$$(\alpha = 2)$$
 convergent.
$$\sum_{n}^{n} (-1)^{n} (\alpha = 0) \text{ et } \sum_{n}^{n} (-1)^{n} n (\alpha = -1) \text{ divergent.}$$

3.2. Séries complexes

Définition 3.3.

Une série complexe est une série de la forme $\sum_{n>0} (a_n + ib_n), a_n, b_n \in \mathbb{R}$.

Proposition 3.4. .

Soit
$$\sum_{n\geq 0} u_n$$
 une série complexe: $(u_n=a_n+ib_n \text{ avec } a_n,\,b_n\in\mathbb{R}),$

alors on a

$$\sum_{n>0} u_n \ converge \quad ssi \quad \left\{ \begin{array}{l} \sum_{n\geq 0} a_n \ converge \\ \sum_{n\geq 0} b_n \ converge \end{array} \right.$$

et on a:

$$\sum_{n=+\infty} (a_n + ib_n) = \sum_{n=0}^{+\infty} a_n + i \sum_{n=0}^{+\infty} b_n$$

Exemple. Soit $x \in \mathbb{R}$ tel que |x| < 1 et $\theta \in \mathbb{R}$. Soit $u_n = x^n e^{in\theta}$, $n \in \mathbb{N}$.

Etudier la nature de la série $\sum_{n\geq 0} u_n$ et déduire $\sum_{n=0}^{+\infty} x^n \cos(n\theta)$ et $\sum_{n=0}^{+\infty} x^n \sin(n\theta)$.

 $u_n = x^n e^{in\theta} = (xe^{i\theta})^n$

donc $(u_n)_n$ est une suite géométrique de raison $xe^{i\theta}$ et $|xe^{i\theta}|=|x|<1$ et par suite $\sum_{n\geq 0}u_n$ converge et on a

$$\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} x^n e^{in\theta} = \frac{1}{1 - xe^{i\theta}} = \frac{1 - xe^{-i\theta}}{(1 - xe^{i\theta})(1 - xe^{-i\theta})}$$

$$= \frac{1 - x\cos(\theta) + ix\sin(\theta)}{1 - x(e^{i\theta} + e^{-i\theta}) + x^2} = \frac{1 - x\cos(\theta) + ix\sin(\theta)}{1 - 2x\cos(\theta) + x^2}$$

$$= \frac{1 - x\cos(\theta)}{1 - 2x\cos(\theta) + x^2} + i\frac{x\sin(\theta)}{1 - 2x\cos(\theta) + x^2}$$

$$\sum_{n=0}^{\text{or}} x^n e^{in\theta} = \sum_{n=0}^{+\infty} x^n (\cos(n\theta) + i\sin(n\theta)) = \sum_{n=0}^{+\infty} x^n \cos(n\theta) + i\sum_{n=0}^{+\infty} x^n \sin(n\theta)$$
donc

$$\sum_{n=0}^{+\infty} x^n \cos(n\theta) = \frac{1 - x \cos(\theta)}{1 - 2x \cos(\theta) + x^2}$$

et

$$\sum_{n=0}^{+\infty} x^n \sin(n\theta) = \frac{x \sin(\theta)}{1 - 2x \cos(\theta) + x^2}$$

3.3. Convergence absolue

Définition 3.5. Soit $\sum u_n$ une série numérique.

On dit que la série $\sum u_n$ converge absolument si la série $\sum u_n$ converge.

Proposition 3.6. Si $\sum_{n} u_n$ converge absolument alors $\sum_{n} u_n$ converge.

c.a.d.:

$$\sum_{n} |u_n| \ converge \ \Rightarrow \sum_{n} u_n \ converge.$$

Exemples. .

1. Nature de
$$\sum_{n\geq 1} \frac{\sin(n)}{n^2}$$
?

On a:
$$0 \le |\frac{\sin(n)}{n^2}| \le \frac{1}{n^2}$$

et
$$\sum_{n\geq 1} \frac{1}{n^2}$$
 converge (série de Riemann avec $\alpha=2>1$

donc, d'après le critère de comparaison, $\sum_{n\geq 1} |\frac{\sin(n)}{n^2}|$ converge

d'ou
$$\sum_{n\geq 1} \frac{\sin(n)}{n^2}$$
 converge.

2. Soit $x \in \mathbb{R}$ tel que |x| < 1 et $\theta \in \mathbb{R}$. Etudier la nature de $\sum_{n > 0} x^n \cos(n\theta)$?

$$|x^n \cos(n\theta)| \le |x|^n \text{ et } \sum_{n \ge 0} |x|^n \text{ converge}$$

donc, d'après le critère de comparaison, $\sum_{n=0}^{\infty} |x^n \cos(n\theta)|$ converge

d'ou
$$\sum_{n\geq 1} x^n \cos(n\theta)$$
 converge.

Exercice. Soit $u_n = ln(1 + \frac{(-1)^n}{\sqrt{n}}), n \ge 2$.

Etudier la convergence et la convergence absolue de $\sum_{n>2} u_n$.

• Convergence abso

On a
$$\begin{cases} ln(1+x) \sim_0 x \\ \lim_{n \to +\infty} \frac{(-1)^n}{\sqrt{n}} = 0 \end{cases} \Rightarrow ln(1 + \frac{(-1)^n}{\sqrt{n}}) \sim_{+\infty} \frac{(-1)^n}{\sqrt{n}}$$

donc $|ln(1+\frac{(-1)^n}{\sqrt{n}})| \sim_{+\infty} \frac{1}{\sqrt{n}}$ et $\sum_{n\geq 0} \frac{1}{\sqrt{n}}$ diverge (serie de Riemann avec

$$\alpha = \frac{1}{2} \le 1)$$

et , d'après le critère d'équivalence, $\sum_{n>2} |ln(1+\frac{(-1)^n}{\sqrt{n}})|$ diverge.

• Convergence:

$$ln(1+\frac{(-1)^n}{\sqrt{n}})\sim_{+\infty}\frac{(-1)^n}{\sqrt{n}}$$
 et $\sum_{n\geq 2}\frac{(-1)^n}{\sqrt{n}}$ converge d'après le TSSA

mais on ne peut pas appliquer le critère d'équivalence, car $\frac{(-1)^n}{\sqrt{n}}$ ne garde pas un signe constant.

Dans ce cas, au lieu d'utiliser le critère d'équivalence, on utilise le développement limité:

On a
$$ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$
 et $\lim_{n \to +\infty} \frac{(-1)^n}{\sqrt{n}} = 0$

donc

$$ln(1 + \frac{(-1)^n}{\sqrt{n}}) = \frac{(-1)^n}{\sqrt{n}} - \frac{(\frac{(-1)^n}{\sqrt{n}})^2}{2} + o(\frac{1}{n})$$
$$= \frac{(-1)^n}{\sqrt{n}} - \frac{1}{2n} + o(\frac{1}{n}) = \alpha_n + \beta_n$$

avec
$$\begin{cases} \alpha_n = \frac{(-1)^n}{\sqrt{n}} \\ \beta_n = -\frac{1}{2n} + o(\frac{1}{n}) \end{cases}$$

 $\sum_{n \ge 2} \frac{(-1)^n}{\sqrt{n}}$ converge d'après le TSSA.

$$\beta_n \sim_{+\infty} \frac{-1}{2} \frac{1}{n}$$
 et $\sum_{n \geq 2} \frac{1}{n}$ diverge (série de Riemann avec $\alpha = 1 \leq 1$)

donc, d'après le critère d'équivalence, $\sum_{n\geq 2}\beta_n$ diverge.

conclusion:
$$\sum_{n\geq 2} ln(1+\frac{(-1)^n}{\sqrt{n}})$$
 diverge.