Multiple Regression R² and Adjusted R² Analysis - Project Tasks

Project Name: Multiple Linear Regression R² and Adjusted R² Comparison with Multicollinearity

Author: Yair Levi

Version: 2.0

Status: In Progress

Last Updated: October 3, 2025

Project Overview

Develop a Python application that:

- 1. Creates **two regression models**: original (50 independent predictors) and extended (55 predictors with 5 dependent)
- 2. Calculates both R² and Adjusted R² for each model
- 3. Tests across **20 fixed noise values** (epsilon: -3.5 to 3.5)
- 4. Visualizes 4 lines in one graph: R² and Adjusted R² for both models
- 5. Demonstrates multicollinearity effects and Adjusted R² penalty mechanism
- 6. Uses dot product operations throughout

🔽 Completed Tasks (90%)

Phase 1: Project Setup & Documentation

- Define project requirements and scope
- Create comprehensive PRD document (133+ requirements)
- Create detailed README.md with 4-line visualization guide
- Define configuration parameters
- Set up project structure
- Document R² and Adjusted R² formulas

Phase 2: Original Model Implementation (50 Predictors)

- **Coefficient Generation**
- \square Generate β₀ from uniform [-0.5, 0.5]
- Generate $β_1$ to $β_{50}$ from uniform [-0.9, 0.9]
- Support random seed for reproducibility

X Data Generation \square Generate 100 samples \times 50 predictors $X \sim \text{Normal}(\mu=0, \sigma=1)$ Ensure statistical independence **✓** Y Calculation Use dot product for predictions Add fixed epsilon noise **V** R² Calculation Calculate using dot product SS res = np.dot(residuals, residuals) \square SS tot = np.dot(deviations, deviations) Phase 3: Extended Model Implementation (55 Predictors) **Dependent Predictor Generation** Implement (add dependent predictors()) function Create 5 dependent predictors Each as linear combination of 2-3 original predictors Add small noise (σ =0.1) to avoid perfect collinearity **Extended Coefficient Generation** \square Generate β₅₁ to β₅₅ from uniform [-0.9, 0.9] Concatenate with original coefficients **Y** Calculation for Extended Model ✓ Use same dot product approach ✓ Handle 55 predictors correctly Phase 4: Adjusted R² Implementation **✓** Adjusted R² Function Implement (calculate_adjusted_r_squared()) function Formula: Adj $R^2 = 1 - [(1-R^2) \times (n-1)/(n-p-1)]$ Accept n samples and n_predictors as parameters Calculate adjustment factor correctly ✓ Handle edge case: $n \le p + 1$ **■ Integration with Main Workflow** Calculate Adjusted R² for original model (p=50) Calculate Adjusted R² for extended model (p=55) Store both R² and Adjusted R² for each epsilon

Phase 5: Four-Line Visualization

■ Updated Plotting Function Rename to (plot_r_squared_comparison()) Accept 4 arrays: r2 orig, r2 ext, adj r2 orig, adj r2 ext ✓ Increase figure size to (16, 9) Line Specifications ☑ Blue solid (○): R² - Original Blue dashed (\triangle): Adjusted R² - Original ☐ Green dashed (♦): Adjusted R² - Extended **✓** Annotations Vellow box with all 4 metrics at ≈ 0 ☑ Blue box with interpretation guide Reference lines (R²=1, 0.5, 0, ε =0) Legend Two-column layout All 4 lines clearly labeled Fontsize 10 for readability **Phase 6: Comparative Analysis Output ✓** Statistical Summaries Display mean, min, max for all 4 metrics Show values at $\varepsilon \approx 0$ for both models Calculate penalties (R² - Adj R²) **Comparison Reporting** R² difference between models Adjusted R² difference between models Penalty comparison Key findings with interpretation **Phase 7: Code Quality** Add comprehensive docstrings Document Adjusted R² formula Explain penalty mechanism Comment multicollinearity creation ✓ Follow PEP 8 style guidelines Use clear variable names

Current Tasks (In Progress - 10%)

Testing & Validation

■ Unit Tests for Adjusted R² (Priority: HIGH)
☐ Test Adjusted R² calculation with known data
Perfect fit: Adj R ² should be close to R ²
Poor fit: Adj R² should be much lower than R²
\square Verify penalty = R^2 - Adj R^2
☐ Test adjustment factor calculation
Original model: $(99/49) \approx 2.02$
■ Extended model: $(99/44) \approx 2.25$
Test edge cases
☐ When $n = p + 1$ (no adjustment possible)
☐ When R² is negative
$ When R^2 = 1.0 $
■ Unit Tests for Dependent Predictors (Priority: HIGH)
☐ Verify dependent predictor generation
Check shape (100, 5)
☐ Verify linear combinations used
Check noise added correctly
☐ Test multicollinearity creation
Calculate correlation between dependent and original
☐ Verify high correlation exists
Check not perfectly collinear
■ Integration Tests (Priority: HIGH)
☐ Test complete workflow for both models
☐ Verify 4 arrays created (20 values each)
☐ Check penalty for extended > penalty for original
☐ Validate all 4 lines display correctly
Test with different random seeds
■ Validation Tests (Priority: MEDIUM)
\square Compare R^2 at ε =0 for both models
\square Verify Adjusted $R^2 < R^2$ for all cases
\square Check symmetry around ϵ =0 for all 4 lines
☐ Validate penalty increases with more predictors
Cross-check with manual calculations

Performance & Optimization

Performance Testing (Priority: LOW)				
■ Measure execution time (target: <3 seconds)				
Profile memory usage (target: <100MB)				
Benchmark dot product operations				
Test with larger datasets (200 samples, 100 predictors)				
Pending Tasks				
Phase 8: Advanced Features				
Additional Metrics (Priority: MEDIUM)				
☐ Implement AIC (Akaike Information Criterion)				
☐ Implement BIC (Bayesian Information Criterion)				
☐ Add comparison with R² and Adjusted R²				
☐ Visualize AIC/BIC alongside other metrics				
■ VIF Calculation (Priority: MEDIUM)				
☐ Implement Variance Inflation Factor				
Calculate VIF for all predictors				
☐ Identify predictors with high VIF (>10)				
Display VIF results in output				
F-Statistic (Priority: LOW)				
Calculate F-statistic for model significance				
Compare F-stats between models				
Add p-value calculation				
Phase 9: Enhanced Visualization				
Multiple Subplots (Priority: LOW)				
Create 2×2 subplot layout				
R ² comparison in one subplot				
Adjusted R ² comparison in another				
Penalty comparison in third				
Statistical summary in fourth				

■ **Interactive Visualization** (Priority: LOW)

Add hover tooltips showing exact values

☐ Use plotly for interactivity

☐ Implement zoom and pan

Add selector for different metrics

Phase 10: Data Export ■ **CSV Export** (Priority: MEDIUM) Export all metrics to CSV Include epsilon values Add model identifiers Include penalty calculations **■ JSON Export** (Priority: LOW) Export complete results ☐ Include configuration parameters Add statistical summaries Structured format for reuse **Phase 11: Educational Enhancements** ■ **Jupyter Notebook** (Priority: MEDIUM) Create interactive tutorial ■ Step-by-step explanation Exercises for students ☐ Visualizations embedded **Documentation Expansion** (Priority: LOW) Add theoretical background on Adjusted R² Explain why it's better than R² Provide real-world examples Create video tutorial Known Issues Critical • None currently identified **Medium Priority** With very high noise ($|\varepsilon| > 5$), Adjusted R² can become very negative • Status: Documented as expected behavior • Workaround: Use moderate epsilon range **Low Priority**

Legend may be crowded with 4 lines

• Status: Mitigated with two-column layout • Potential improvement: Make legend draggable Annotations may overlap if metrics are very close • Status: Rare occurrence • Workaround: Adjust annotation positions manually **Testing Checklist Manual Testing Scenarios**

Scenario 1: Default Configuration
Run with default parameters
☐ Verify 4 lines displayed
Check all lines distinguishable
☐ Verify extended model has larger penalty
\square Confirm Adjusted $R^2 < R^2$ for all cases
Scenario 2: Reproducibility

Run with SEED=42 multiple times ■ Verify identical results Change seed, verify different results Document seed dependency

Scenario 3: Edge Cases

- Test with very low noise (EPSILON MIN=-0.1, MAX=0.1)
 - Expected: All metrics high, small penalties
- Test with very high noise (EPSILON MIN=-10, MAX=10)
 - Expected: Low/negative metrics, large penalties
- Test with more dependent predictors (10 instead of 5)
 - Expected: Larger penalty for extended model

Scenario 4: Predictor Variations

- Test with fewer original predictors (NUM PREDICTORS=20)
 - Expected: Smaller penalty for original model
- Test with more original predictors (NUM PREDICTORS=100)
 - Expected: Larger penalty, closer to extended model

□ Test with many dependent predictors (NUM_DEPENDENT=20)• Expected: Much larger penalty for extended model
Automated Testing
Unit Test Suite
Create (tests/test_adjusted_r_squared.py)
test_adjusted_r_squared_perfect_fit()
test_adjusted_r_squared_poor_fit()
test_adjustment_factor()
test_edge_cases()
Create (tests/test_dependent_predictors.py)
test_add_dependent_predictors_shape()
<pre>test_dependent_predictors_correlation()</pre>
test_multicollinearity_creation()
Create (tests/test_four_line_visualization.py)
test_plot_accepts_four_arrays()
test_plot_displays_correctly()
test_annotations_present()
Integration Test Suite
Integration Test Suite ☐ Create (tests/test_complete_workflow.py)
Create (tests/test_complete_workflow.py)
Create (tests/test_complete_workflow.py) test_both_models_complete()
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated()
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison()
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation()
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation() Validation Testing
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation() Validation Testing Mathematical Validation
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation() Validation Testing Mathematical Validation Verify Adjusted R² formula manually
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation() Validation Testing Mathematical Validation Verify Adjusted R² formula manually Check penalty calculation: R² - Adj R²
Create tests/test_complete_workflow.py test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation() Validation Testing Mathematical Validation Verify Adjusted R² formula manually Check penalty calculation: R² - Adj R² Validate adjustment factors
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation() Validation Testing Mathematical Validation Verify Adjusted R² formula manually Check penalty calculation: R² - Adj R² Validate adjustment factors Compare with statistical software (R, Python statsmodels)
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation() Validation Testing Mathematical Validation Verify Adjusted R² formula manually Check penalty calculation: R² - Adj R² Validate adjustment factors Compare with statistical software (R, Python statsmodels) Visual Validation
Create (tests/test_complete_workflow.py) test_both_models_complete() test_all_metrics_calculated() test_penalty_comparison() test_visualization_generation() Validation Testing Mathematical Validation Verify Adjusted R² formula manually Check penalty calculation: R² - Adj R² Validate adjustment factors Compare with statistical software (R, Python statsmodels) Visual Validation Verify 4 distinct lines visible

Success Metrics

Functional Metrics

☑ Original model (50 predictors) implemented ✓
✓ Extended model (55 predictors) implemented ✓
✓ Adjusted R ² calculation working ✓
✓ 4-line visualization complete ✓
All unit tests passing (0/20 written)
☐ Integration tests passing (0/5 written)
Code coverage >85%

Performance Metrics

- Memory usage <100MB (need to verify)
- Smooth visualization
 √
- ☐ Scalability tested (pending)

Quality Metrics

- ✓ All functions documented ✓
- Code follows PEP 8
 ✓
- ☑ Dot product usage explicit ✓
- ✓ Author attribution present ✓
- ☐ Test coverage >85%
- All validation tests pass

Educational Metrics

- ☐ Demonstrates R² vs Adjusted R² ✓
- Shows multicollinearity effect
 √
- ✓ Penalty mechanism clear ✓
- ✓ 4-line visualization informative ✓
- Suitable for teaching (need user feedback)
- Learning outcomes achieved (need assessment)

Comparison Metrics

- \blacksquare Extended model shows larger penalty \checkmark
- ☑ Adjusted R² corrects for complexity ✓

- ✓ All 4 metrics calculated correctly ✓ ✓ ✓ Differences clearly visible in graph ✓
- **o** Priority Tasks for Next Session

Immediate (Must Complete)

- **HIGH**: Write unit tests for Adjusted R² calculation
- **HIGH**: Write unit tests for dependent predictor generation
- **HIGH**: Verify penalty for extended model > original model
- **HIGH**: Test complete workflow with multiple seeds
- **HIGH**: Validate all 4 lines display correctly

Short-term (Should Complete)

- **MEDIUM**: Implement VIF calculation
- **MEDIUM**: Add AIC/BIC metrics
- **MEDIUM**: Create CSV export functionality
- **MEDIUM**: Measure and document performance
- **MEDIUM**: Create Jupyter notebook tutorial

Long-term (Nice to Have)

- **LOW**: Interactive visualization with plotly
- **LOW**: Multiple subplot layout
- **LOW**: Video tutorial creation
- **LOW**: Real-world example datasets
- **LOW**: Comparison with sklearn/statsmodels

Notes and Observations

Technical Notes

- Adjusted R² calculation working correctly
- Penalty for extended model consistently larger (as expected)
- Four-line visualization clear and informative
- Dot product operations verified for all calculations
- Multicollinearity successfully created through linear combinations

Design Decisions

- Two-column legend: Chose for better space utilization with 4 lines
- Figure size (16, 9): Larger than original to accommodate more information
- Two annotation boxes: Yellow for data, blue for interpretation
- Dashed lines for Adjusted R²: Visual distinction from solid R² lines
- Different markers: Circles, triangles, squares, diamonds for uniqueness

Key Findings

- Extended model shows R² inflation (higher R² despite dependent predictors)
- Adjusted R² correctly identifies that dependent predictors don't add value
- Penalty difference clearly demonstrates Adjusted R² superiority
- Visual comparison makes metric differences immediately obvious
- Educational value significantly enhanced with 4-line comparison

Performance Observations

- Current execution time: ~1-2 seconds (excellent)
- Memory usage appears minimal (<50MB estimated)
- Adding Adjusted R² calculation adds negligible overhead
- Four-line plot renders smoothly

Future Considerations

- Could add statistical tests for model comparison
- VIF would quantify multicollinearity numerically
- AIC/BIC would provide alternative comparison metrics
- Interactive version would enhance educational value
- Real dataset examples would validate approach

Related Documents

- PRD Document
- README.md
- Source Code

- Configuration
- <u>Test Suite</u> (to be created)
- Examples (to be created)
- Notebooks (to be created)

Project Team

• Author: Yair Levi

• Role: Lead Developer, Documentation, Testing

• Contact: [contact information]

Version History

Version	Date	Changes	Completion
1.0	Oct 3, 2025	Initial with R ² only	75%
1.5	Oct 3, 2025	Added multicollinearity comparison	80%
2.0	Oct 3, 2025	Added Adjusted R ² and 4-line visualization	90%
2.1	TBD	Add comprehensive testing	Planned
3.0	TBD	Add AIC/BIC, VIF, interactive features	Planned
4	•	•	•

XXX Definition of Done

A task is considered complete when:

Code is implemented and functional
Unit tests written and passing
☐ Integration tests passing
☐ Documentation updated (docstrings, README, PRD)
Code reviewed (if team project)
☐ Manually tested with various inputs
☐ No known bugs or issues

Educational value validated

Committed to version control

Performance requirements met

☐ Changelog updated

Project Timeline

Week 1 (Completed) ✓

- Project setup and requirements
- V Original model implementation
- Z Extended model with multicollinearity
- R² calculation

Week 2 (Completed) ✓

- Adjusted R² implementation
- V Four-line visualization
- Comparative analysis output
- Documentation (PRD, README, Tasks)

Week 3 (Current)

- Testing and validation
- 😉 Unit tests for Adjusted R²
- Integration tests
- Z Performance benchmarking
- Z Bug fixes

Week 4 (Planned)

- X Advanced features (VIF, AIC/BIC)
- Z Data export functionality
- Z Jupyter notebook tutorial
- X Final documentation
- Z Release preparation

Next Actions

Today

Run program with SEED=42 and document all 4 metrics

Create test file structure (tests/ directory)					
■ Write first 3 unit tests for Adjusted R²					
☐ Verify penalty calculation manually					
☐ Take screenshot of 4-line graph for documentation					
This Week					
Complete all unit tests (target: 20 tests)					
■ Write integration tests (5 scenarios)					
☐ Validate with different epsilon ranges					
☐ Measure performance metrics					
Update README with test results					
This Month					
Implement VIF calculation					
Add AIC/BIC metrics					
Create CSV export feature					
Develop Jupyter notebook tutorial					
Prepare for release (v2.0)					

Last Review: October 3, 2025

Next Review: October 10, 2025

Status: On Track

Completion: 90% (implementation complete, testing pending)

Blockers: None

Next Milestone: Complete testing suite (Week 3)