1. Macierze.

Podstawowym typem zmiennej Matlaba jest macierz dwuwymiarowa. Szczególnymi odmianami macierzy są:

- skalar macierz o rozmiarach 1x1,
- wektor wierszowy macierz o jednym wierszu,
- wektor kolumnowy macierz o jednej kolumnie.

2. Definiowanie macierzy.

Definiowanie macierzy wymaga uwzględnienia następujących reguł:

- elementy w wierszu macierzy muszą być oddzielane spacją lub przecinkiem,
- średnik lub znak nowego wiersza kończy wiersz macierzy i powoduje przejście do następnego,
- cała lista elementów musi być ujęta w nawiasy kwadratowe.

Najprostszą metodą definiowania macierzy jest podanie jej wszystkich elementów wiersz po wierszu. W definicji liczba elementów w każdym wierszu <u>musi być jednakowa</u>, w przeciwnym wypadku zostanie wyświetlony komunikat o błędzie.

3. Generowanie i weryfikacja wektorów oraz tablic.

Podczas generowania wektorów stosowana jest często notacja dwukropkowa. Jej postać jest następująca: j:i:k określa wektor [j,j+i,j+2i,...,k], przy czym i jest krokiem, natomiast j, k są odpowiednio pierwszym i ostatnim elementem wektora.

Element macierzy znajdujący się w wierszu o indeksie i oraz kolumnie o indeksie j jest określony jako A(i,j). Elementem takim można się posługiwać jak każdą zmienną - zwracać jego wartość, i przypisywać nową. Do elementów macierzy można się też odwoływać przy użyciu tylko jednego indeksu, np. A(k). Jeśli zmienna A byłaby wektorem wierszowym lub kolumnowym, odwołanie takie oznaczałoby oczywiście k-ty element wektora. Natomiast, gdy A będzie macierzą dwuwymiarową, odwołanie takie zostanie zinterpretowane jako odwołanie do elementu macierzy uformowanej z kolejnych kolumn macierzy oryginalnej, umieszczonych jedna pod drugą.

Niżej przedstawiono sposób wyboru odpowiednich wierszy, kolumn oraz elementów macierzy:

```
    A(:,j) - wypisanie j-tej kolumny macierzy A,
    A(:,j:k) - wypisywanie kolumn od j do k,
    A(i,:) - wypisanie i-tego wiersza macierzy A,
    A(:) - wypisanie wszystkich elementów macierzy w jednej kolumnie; powstaje wektor zawierający elementy macierzy wypisywane kolumnami - od pierwszej do ostatniej,
    A(j:k) - wypisanie w jednym wierszu, elementów macierzy A począwszy od elementu o indeksie j aż do indeksu k.
```

Kolumny lub wiersze można też wskazać przez podanie ich numerów w nawiasach kwadratowych. Tak więc zapis A(:,[2,3]) jest równoważny zapisowi A(:,2:3).

Ćwiczenie 1.

Wykonaj polecenia pokazujące przykłady zastosowania notacji dwukropkowej.

```
>> d = 1:5
>> n = 9; 1:n % wektor, np. dla instrukcji iteracyjnych
>> y = 0:0.5:2
>> z = 5:-1:0
```

Ćwiczenie 2.

Wykonaj polecenia z użyciem notacji dwukropkowej w odniesieniu do macierzy.

```
>> M = [1:10; 1:2:20]
>> A = [1 2 3; 4 5 6; 7 8 9] % zdefiniowanie macierzy A
>> A(:,3) % wypisywanie 3-ciej kolumny macierzy A
```

```
>> A(:,2:3) % wypisywanie 2-giej i 3-ciej kolumny macierzy A
>> A(:,2:-1:1) % wypisanie 2-giej, a potem 1-szej kolumny
>> A(:,2:1) % taki zapis daje wektor pusty
>> A(2,:) % wypisanie 2-go wiersza macierzy A
>> A(2:3,:) % wypisanie 2-go i 3-ciego wiersza
>> A(:) % wszystkie elementy macierzy A jako wektor
```

>> A(4:8) % elementy macierzy od 4-go do 8-go

Wprowadzenie słowa kluczowego end umożliwia edycję ostatniego wiersza lub ostatniej kolumny macierzy.

```
>> A(end,:) % wypisanie ostatniego wiersza macierzy A
>> sum(A(:,end)) % suma elementów ostatniej kolumny macierzy A
```

Usuwanie wybranych wierszy i kolumn macierzy oraz pewnych sekwencji jej elementów wykonuje się z zastosowaniem pary nawiasów prostokątnych [].

```
>> X = A; X(2,:) = [] % usuniecie 2-go wiersza macierzy X
>> Y = A; Y(1:2:8) = [] % usuniecie sekwencji elementów Y
>> B = [.1 .2 .3 .4; .5 .6 .7 .8; .9 1 1.1 1.2] % zdefiniowanie macierzy B
>> A(:,[2,3]) = B(:,3:4) % wyjaśnij działanie tego polecenia
>> A(3,3) = A(1,1) + A(2,1)
```

4. Wyświetlanie macierzy i ich rozmiarów.

W tabeli 6 zestawione zostały funkcje wyświetlające zawartość i rozmiar macierzy.

Tabela 6. Funkcje wyświetlające macierze i ich rozmiary

Funkcja	Opis
disp(A)	wyświetla zawartość macierzy A w oknie poleceń
size(A)	wyświetla rozmiar dwuwymiarowej macierzy A (liczbę wierszy i kolumn) w postaci dwuelementowego wektora wierszowego [liczba wierszy liczba kolumn]
[n m]=size(A)	przypisuje zmiennej n liczbę wierszy, a zmiennej m - liczbę kolumn macierzy A
n = size(A,1)	przypisuje zmiennej n liczbę wierszy macierzy A
m = size(A, 2)	przypisuje zmiennej m liczbę kolumn macierzy A
length(x)	zwraca długość wektora x lub dłuższy z wymiarów macierzy

Ćwiczenie 3.

Wykonaj polecenia demonstrujące uzyskiwanie informacji o wymiarach macierzy.

- ♦ Zdefiniuj macierz D:
- >> D = [2 0 1; 1 5 0]
- Wyświetl rozmiar macierzy:
- >> size(D)
- Przypisz zmiennej ile_wierszy liczbę wierszy, a zmiennej ile_kolumn liczbę kolumn macierzy D:
- >> [ile_wierszy ile_kolumn] = size(D)
 lub
- >> ile_wierszy = size(D,1), ile_kolumn = size(D,2)
- ◆ Utwórz macierz D1 o rozmiarze macierzy D, składającą się z samych jedynek (użyta zostanie funkcja ones, opisana w tabeli 8):

>> D1 = ones(size(D))

5. Arytmetyka macierzowa i tablicowa.

W szczególnym przypadku, macierz można potraktować jako zwykłą prostokątną tablicę liczb. Operacje na macierzach dokonywane są zgodnie z algebrą macierzy, natomiast operacje na tablicach wykonywane są element po elemencie. Matlab dostarcza w tym celu odrębnych arytmetycznych operatorów macierzowych i tablicowych.

Niech
$$A = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 0 & -2 \end{bmatrix}$.

W tabeli 7 zestawiono wyniki operacji dla danych **A** i **B**, wykorzystując operatory macierzowe i tablicowe. Operatory tablicowe poprzedzone są zawsze kropką, np.:

- mnożenie macierzowe gwiazdka (*),
- mnożenie tablicowe kropka i gwiazdka (.*).

Tabela 7. Efekty działania operatorów macierzowych i tablicowych

Operator arytmetyczny	Operator macierzowy	Operator tablicowy
dodawanie	$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 2 & 0 \\ -2 & 1 \end{bmatrix}$	tak jak macierzowy
odejmowanie	$\mathbf{A} - \mathbf{B} = \begin{bmatrix} 0 & -2 \\ -2 & 5 \end{bmatrix}$	tak jak macierzowy
mnożenie	$\mathbf{A} * \mathbf{B} = \begin{bmatrix} 1 & 3 \\ -2 & -8 \end{bmatrix}$ $\mathbf{B} * \mathbf{A} = \begin{bmatrix} -1 & 2 \\ 4 & -6 \end{bmatrix}$ (brak przemienności mnożenia)	A. * B=B. * A= $\begin{bmatrix} 1 & -1 \\ 0 & -6 \end{bmatrix}$
dzielenie	C1=B/A= $\begin{bmatrix} 5 & 2 \\ -4 & -2 \end{bmatrix}$ - dzielenie prawostronne (B=C1*A) $C2=B A=\begin{bmatrix} 0 & 0.5 \\ 1 & -1.5 \end{bmatrix}$ - dzielenie lewostronne (B=A*C2)	B./A=A. \ B= $\begin{bmatrix} 1 & -1 \\ 0 & -\frac{2}{3} \end{bmatrix}$
potęgowanie	$\mathbf{A^2=A*A=} \begin{bmatrix} 3 & -4 \\ -8 & 11 \end{bmatrix}$	$\mathbf{A.^2} = \begin{bmatrix} 1 & 1 \\ 4 & 9 \end{bmatrix}$
transpozycja (zamiana wierszy na kolumny)	$\mathbf{A'} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$	tak jak macierzowy

Podczas mnożenia macierzowego A*B należy dopilnować, aby liczba wierszy macierzy A była <u>równa</u> liczbie kolumn macierzy B. Ponadto, w rachunku macierzowym nie jest spełnione prawo przemienności mnożenia.

Występuje zarówno prawostronny (/), jak i lewostronny (\) operator dzielenia macierzowego. Z operatorów tych należy korzystać ostrożnie, gdyż otrzymane wyniki są zupełnie różne. Problemu tego nie ma w przypadku operacji na tablicach.

3

Transpozycja macierzy o składnikach rzeczywistych daje takie same wyniki niezależnie od tego, czy wykorzystywany jest operator macierzowy, czy tablicowy. Różnice pojawiają się, gdy składniki macierzy są zespolone.

Ćwiczenie 4.

Wykonaj polecenia demonstrujące operacje macierzowe i tablicowe.

```
◆ Zdefiniuj macierze A i B:
>> A = [1 0; 3 2];
```

$$>> B = [1 \ 0; \ 3 \ 2];$$

 $>> B = [1 \ 2; \ 3 \ 4];$

♦ Oblicz iloczyny macierzy A i B macierzowo i tablicowo:

```
>> A*B, B*A % mnożenie macierzowe
```

```
>> A.*B, B.*A % mnożenie tablicowe
```

♦ Oblicz A³ macierzowo i tablicowo:

```
>> A^3 % mnożenie macierzy A*A*A
```

♦ Oblicz iloczyn (A·B) ⁻¹· (A·B):

$$>> G = (A*B) . ^(-1) * (A*B)$$

♦ Wyznacz macierz C= (A+B^T) /2, gdzie B^T - macierz transponowana

```
>> C = (A+B')./2
```

Ćwiczenie 5.

Wykonaj polecenia demonstrujące wybrane operacje na wektorze i macierzy.

◆ Zdefiniuj wektor wierszowy $x = \begin{bmatrix} 1 & 4 \end{bmatrix}$ i macierz $A = \begin{bmatrix} 4 & 1 \\ 7 & 2 \end{bmatrix}$:

```
>> x = [1 \ 4], A = [4 \ 1; 7 \ 2];
```

♦ Wykonaj mnożenie A·x:

```
>> A*x
```

Nie można zapisać iloczynu w ten sposób, ponieważ liczba kolumn macierzy **A** nie jest równa liczbie wierszy wektora **x**. W takim przypadku pojawi się komunikat o błędzie:

```
??? Error using ==> mtimes
Inner matrix dimensions must agree.
```

Prawidłowy zapis iloczynu:

```
>> A*x'
```

W powyższym zapisie \mathbf{x}' jest transpozycją wektora \mathbf{x} , czyli wektorem kolumnowym $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$

Ćwiczenie 6.

Przyjmując wektor
$$x = \begin{bmatrix} 0 & \frac{\pi}{2} & \pi & \frac{3\pi}{2} & 2\pi \end{bmatrix}$$
, oblicz wartości funkcji $y = 2x\sin(1+x^2)$.

$$>> x = 0:pi/2:2*pi;$$

$$y = 2*x.*sin(1+x.^2)$$

Operacje matematyczne zostały wykonane kolejno dla każdego elementu wektora \mathbf{x} . Otrzymany wektor \mathbf{y} ma tyle samo elementów, co wektor \mathbf{x} .

Mnożenie i dzielenie prawostronne wektora przez liczbę (lub liczby przez liczbę) daje takie same wyniki niezależnie od tego, czy użyto operatora macierzowego, czy tablicowego (w ćwiczeniu 6: pi/2, 2*x). Różnice pojawiają się przy mnożeniu i dzieleniu prawostronnym wektora przez wektor, np. wyrażenie x² może być poprawnie zapisane tylko jako x.*x (w przypadku zapisu x*x zostanie zwrócony błąd).

6. Macierze pełne.

Macierz pełna jest rozumiana jako dwuwymiarowa tablica, na elementach której wykonuje się operacje algebry liniowej. Jak wspomniano wcześniej, w pamięci wewnętrznej przechowuje się wartość każdego jej elementu. Zestawienie wybranych funkcji stosowanych do wykonywania operacji na macierzach podano w tabeli 8.

Tabela 8. Funkcje stosowane do wykonywania operacji na macierzach

Nazwa	stosowane do wykonywania operacji na macierzach Opis funkcji
Funkcje przezna	czone do konstruowania macierzy
magie	kwadrat magiczny
handamard	macierz Hadamarda
hankel	macierz Hankela
hilb	macierz Hilberta
ones	macierz o elementach równych jeden
pascal	macierz Pascala
company	macierz stowarzyszona wielomianu
toeplitz	macierz Toeplitza
vander	macierz Vandermonde'a
zeros	macierz z elementami równymi zero
eye	macierz z jedynkami na przekątnej
gallery	macierze testowe
randn	macierz losowa o rozkładzie normalnym
rand	macierz losowa o rozkładzie równomiernym
meshgrid	tablica dla wykresów trójwymiarowych
logspace	wektor o wartościach rozłożonych logarytmicznie
linspace	wektor o wartościach rozłożonych równomiernie
Rezultat zastoso	owania funkcji
diag	macierz diagonalna lub wektor elementów na przekątnej
triu	macierz trójkątna z elementami nad główną przekątną
tril	macierz trójkątna z elementami pod główną przekątną
rot90	obrót macierzy o 90°
flipud	zamiana kolejności wierszy macierzy góra/dół
fliplr	zamiana kolejności wierszy macierzy lewo/prawo
repmat	powielenie macierzy w pionie i poziomie
reshape	zmiana wymiaru macierzy
Elementarne fur	ıkcje macierzowe
expm	macierzowa funkcja wykładnicza
logm	macierzowa funkcja logarytmiczna
sqrtm	macierzowa funkcja pierwiastkowa
Funkcje analizy	macierzowej
inv	macierz odwrotna
norm	normy wektora i macierzy
lu	rozkład na macierze trójkątne LU
ploy	współczynniki wielomianu charakterystycznego
det	wyznacznik macierzy

<u>Ćwiczenie 7.</u>

Dla danych macierzy A i B z ćwiczenia nr 4 wyznacz macierz (A-B) -1.

```
>> D = inv(A*B) % macierz odwrotna do iloczynu macierzy A·B lub >> D = (A*B)^{(-1)}
```

<u>Ćwiczenie 8.</u>

Zdefiniuj macierz $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, a następnie wykonaj poniższe polecenia.

- ♦ Powiel macierz A dwa razy w pionie i trzy razy w poziomie:
- >> B = repmat(A, 2, 3)
- ♦ Zmień rozmiar macierzy B utworzonej w poprzednim punkcie na 2 wiersze i 12 kolumn:
- >> C = reshape(B,2,12)

7. Tablice wielowymiarowe.

Tablic wielowymiarowych używa się do przechowywania zestawów tablic o jednakowych wymiarach, które również mogą być wielowymiarowe. Elementy tablic wielowymiarowych wskazuje się przez podanie nazwy tablicy i indeksów w nawiasie okrągłym, na przykład AAA (2,3,5). Przyjmuje się, że indeksy oznaczają:

- pierwszy indeks wiersz macierzy (wymiar 1),
- drugi indeks kolumnę macierzy (wymiar 2),
- trzeci indeks stronę macierzy (wymiar 3 i następne).

Na poniższym rysunku widoczna jest macierz trójwymiarowa o rozmiarze 2x3x2 (2 wiersze i 3 kolumny na każdej stronie, 2 strony).

Ćwiczenie 9.

Zdefiniuj macierz o rozmiarze 2x3x2 przedstawioną na powyższym rysunku, a następnie odwołaj się do wybranego elementu tej macierzy.

- ♦ Macierz wielowymiarową taką definiuje się stronami:
- >> D(:,:,1) = [1 3 0; 5 7 2] % strona nr 1
- >> D(:,:,2) = [4 7 8; 1 0 5] % strona nr 2
- ♦ Odwołanie do elementu np. w pierwszym wierszu, drugiej kolumnie, na stronie drugiej ma postać
 >>> D(1,2,2)

Na tablicach wielowymiarowych wykonuje się pojedyncze operacje za pomocą funkcji i operatorów, które działają na pojedynczych elementach tablic. Własności takich tablic można uzyskać poleceniem nddemo.

Tablice wielowymiarowe umożliwiają organizowanie uporządkowanych zestawów danych dwuwymiarowych w postaci kolejnych stron tablicy trójwymiarowej.

Tabela 9. Funkcje operujące na strukturze macierzy

Nazwa	Opis funkcji
ipermute	odwraca efekt permutacji
ndims	podaje liczbę wymiarów, pomija wymiary nieistotne
cat	powiększa tablice przez doklejenie innych tablic
permute	przestawia wiersze, kolumny i warstwy tablicy
shiftdim	przesuwa indeksy tablicy (+/- w lewo lub prawo)
squeeze	usuwa nieistotne indeksy tablicy

Ćwiczenie 10.

Wykonaj polecenia demonstrujące operacje na tablicach wielowymiarowych. Jako przykład, utworzona zostanie tablica trójwymiarowa o wymiarze (5x4x2), której wybrane elementy zostaną wypełnione liczbami.

```
>> F(5,4,1) = 541; F(4,2,1) = 421;... % kontynuacja polecenia w następnym wierszu F(:,:,2) = 222; F(1,4,2) = 142; F(4,4,2) = 442
```

Tablicę tego typu można powiększyć, dopisując dodatkowy zerowy element w wymaganym punkcie przestrzeni n-wymiarowej, na przykład:

$$>> F(5,5,5,2) = 0;$$

Na podstawie dwóch zdefiniowanych tablic **A** i **B** utworzona zostanie trzecia tablica trójwymiarowa **C**, w wyniku warstwowego ułożenia tablic **A** i **B**.

```
>> A = [1,2,3; 21,22,23];
>> B = A + 100;
>> C = cat(3,A,B)
```

Możliwe jest także rozszerzenie istniejącej tablicy A do trzech wymiarów, na przykład:

$$>> A(:,:,2) = B$$

Dzięki takiej operacji uzyskuje się dwie takie same tablice A i C.

Ćwiczenie 11.

Wykonaj polecenia z użyciem operatorów relacji oraz wyrażeń logicznych w odniesieniu do dwóch macierzy.

```
>> A = [-1 2 0; 4 0 6; 7 8 -9]
>> B = [1 2 3; 1 2 3; 1 2 3]
>> A >= B
>> A & B % iloczyn logiczny macierzy A i B
>> ~A % negacja macierzy A
>> x = 5; x >= A
```

8. Zadania.

Zadanie 1.

Utwórz macierze A i B oraz wektor f określone jako:

$$A = \begin{bmatrix} 2 & -7 \\ 5 & 4 \end{bmatrix}, B = \begin{bmatrix} 6 & 1 \\ 4 & -3 \end{bmatrix}, f = \begin{bmatrix} 4 & 1 \end{bmatrix}.$$

Zadanie 2.

Wykonaj polecenia:

- a) wyświetl rozmiar macierzy A oraz wektora f z zadania nr 1,
- b) oblicz transpozycję macierzy B,
- c) oblicz wyrażenie (A+B) 2+2 (A-B),
- d) utwórz macierz C=[[A] [B]] i wektor h=[f f],
- d) oblicz iloczyn C·h.

Zadanie 3.

Wykonaj polecenia:

- a) utwórz 24-elementowy wektor x=[1 2 ... 24],
- b) za pomocą funkcji **reshape** utwórz z wektora **x** macierz **y** o postaci

$$Y = \begin{bmatrix} 1 & 7 & 13 & 19 \\ 2 & 8 & 14 & 20 \\ \dots & \dots & \dots & \dots \\ 6 & 12 & 18 & 24 \end{bmatrix}.$$

Zadanie 4.

Utwórz macierze o rozmiarze 3x4:

- a) o wszystkich elementach równych 1,
- b) o wszystkich elementach równych 0,
- c) wypełnioną liczbami pseudolosowymi.

Zadanie 5.

Wygeneruj dane do wykresu funkcji $y = x \cdot \sin(x)$ dla x = 0, 0, 1, 0, 2, ..., 10, 0 i uzyskane wyniki zapisz w pliku tekstowym na dysku.

Zadanie 6.

Rozwiąż niżej podany układ równań.

$$\begin{cases} 3x_1 + 2x_2 - x_3 = 5 \\ x_1 + x_2 + x_3 = 11 \\ 2x_1 - x_2 + 4x_3 = 8 \end{cases}$$