CHUONG II

CÁC PHÉP TOÁN MA TRẬN MA TRẬN VUÔNG KHẢ NGHỊCH

I. CÁC PHÉP TOÁN TRÊN MA TRẬN:

1.1/ PHÉP CHUYỂN VỊ MA TRẬN:

Cho
$$A = (a_{ij})_{1 \le i \le m} \in M_{m \times n}(\mathbf{R}).$$

Đặt $B = (b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le m}} \in M_{n \times m}(\mathbf{R})$ sao cho $b_{ij} = a_{ji}$ ($1 \le i \le n, 1 \le j \le m$), nghĩa là ma

trận B được suy từ ma trận A bằng cách viết các dòng (hay các cột) của A

lần lượt thành các cột (hay các dòng) của B.

Ta nói B là ma trận chuyển vị của A và ký hiệu $B = A^t$ (t = transposition).

$$D\hat{e} \circ (A^t)^t = B^t = A$$
. Nếu $C \in M_n(\mathbf{R})$ thì $C^t \in M_n(\mathbf{R})$.

Ví dụ:

a)
$$A = \begin{pmatrix} -2 & 7 & 8 & -5 \\ 1 & 0 & -4 & 9 \\ 5 & -3 & 2 & -6 \end{pmatrix} \in M_{3 \times 4}(\mathbf{R}) \text{ có } B = A^{t} = \begin{pmatrix} -2 & 1 & 5 \\ 7 & 0 & -3 \\ 8 & -4 & 2 \\ -5 & 9 & -6 \end{pmatrix} \in M_{4 \times 3}(\mathbf{R}).$$

Ta có
$$b_{13} = a_{31} = 5$$
, $b_{22} = a_{22} = 0$ và $b_{41} = a_{14} = -5$. Để ý $(A^t)^t = B^t = A$.

b)
$$C = \begin{pmatrix} 9 & -2 & 5 \\ -7 & 8 & -1 \\ 4 & 6 & -3 \end{pmatrix} \in M_3(\mathbf{R}) \text{ có } D = C^t = \begin{pmatrix} 9 & -7 & 4 \\ -2 & 8 & 6 \\ 5 & -1 & -3 \end{pmatrix} \in M_3(\mathbf{R}).$$

Ta có
$$d_{12} = c_{21} = -7$$
, $d_{33} = c_{33} = -3$ và $d_{23} = c_{32} = 6$. Để ý $(C^t)^t = D^t = C$.

1.2/ PHÉP NHÂN SỐ THỰC VỚI MA TRẬN:

Cho
$$A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in M_{m \times n}(\mathbf{R}) \text{ và } \mathbf{c} \in \mathbf{R}. \text{ Dặt } \mathbf{c}.A = (\mathbf{c}a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in M_{m \times n}(\mathbf{R}).$$

Ta có
$$1.A = A$$
, $0.A = O_{m \times n}$ và $(-1).A = (-a_{ij})_{1 \le i \le m}$.

Đặt
$$-A = (-1)$$
. A và gọi $-A$ là ma trận đối của A.

Ví dụ:

$$A = \begin{pmatrix} -2 & 7 & 8 & -5 \\ 1 & 0 & -4 & 9 \\ 5 & -3 & 2 & -6 \end{pmatrix} \in M_{3 \times 4}(\mathbf{R}) \quad \text{c\'o} \quad -\frac{4}{3} . A = \begin{pmatrix} 8/3 & -28/3 & -32/3 & 20/3 \\ -4/3 & 0 & 16/3 & -12 \\ -20/3 & 4 & -8/3 & 8 \end{pmatrix}.$$

1.3/ PHÉP CỘNG MA TRẬN:

Cho
$$A = (a_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \text{ và } B = (b_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in M_{m \times n}(\mathbf{R}).$$

Đặt
$$A + B = (a_{ij} + b_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}}$$
 và $A - B = A + (-B) = (a_{ij} - b_{ij})_{\substack{1 \le i \le m \\ 1 \le j \le n}} \in M_{m \times n}(\mathbf{R}).$

Ví dụ:

$$\mathbf{A} = \begin{pmatrix} -2 & 7 & 8 & -5 \\ 1 & 0 & -4 & 9 \\ 5 & -3 & 2 & -6 \end{pmatrix} \text{ và } \mathbf{B} = \begin{pmatrix} 8 & -1 & 9 & 0 \\ -3 & 6 & -2 & 7 \\ -4 & -5 & 3 & 2 \end{pmatrix} \in \mathbf{M}_{3 \times 4}(\mathbf{R}).$$

$$\text{Ta c\'o } A+B = \begin{pmatrix} 6 & 6 & 17 & -5 \\ -2 & 6 & -6 & 16 \\ 1 & -8 & 5 & -4 \end{pmatrix} \quad \text{v\`a} \quad A-B = \begin{pmatrix} -10 & 8 & -1 & -5 \\ 4 & -6 & -2 & 2 \\ 9 & 2 & -1 & -8 \end{pmatrix} \in M_{3\times 4}(\mathbf{R}).$$

1.4/ **TÍNH CHÁT:** Cho A, B, C \in M_{m×n}(**R**) và c, d \in **R**. Khi đó:

a)
$$c.(d.A) = (c.d).A$$

$$(\mathbf{c}.\mathbf{A})^{\mathsf{t}} = \mathbf{c}.\mathbf{A}^{\mathsf{t}}$$

$$(A \pm B)^t = A^t \pm B^t$$
.

b) Phép cộng ma trận giao hoán và kết hợp:

$$B + A = A + B$$

$$(A + B) + C = A + (B + C) = A + B + C.$$

c)
$$\mathbf{O}_{\mathbf{m} \times \mathbf{n}} + \mathbf{A} = \mathbf{A} + \mathbf{O}_{\mathbf{m} \times \mathbf{n}} = \mathbf{A}$$

$$(-A) + A = A + (-A) = \mathbf{O}_{\mathbf{m} \times \mathbf{n}}.$$

d)
$$(c \pm d).A = c.A \pm d.A$$

$$c.(A \pm B) = c.A \pm c.B$$

 $\underline{\text{V\'i du:}}$ Cho A, B $\in M_{m \times n}(\textbf{R})$. Ta có

$$(-4A)^t = -4A^t$$
.

$$(-7)(6A) = [(-7)6]A = -42A.$$

$$(5+8)A = 5A + 8A = 13A.$$

$$(-9)(A + B) = (-9)A + (-9)B.$$

1.5/ <u>TÍCH VÔ HƯỚNG CỦA DÒNG VỚI CỘT:</u>

Cho dòng
$$U = (u_1 \quad u_2 \quad \dots \quad u_n) \in M_{1 \times n}(\mathbf{R}) \quad \text{và } c\hat{\rho}t \quad V = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} \in M_{n \times 1}(\mathbf{R}).$$

Đặt
$$\mathbf{U}.\mathbf{V} = (\mathbf{u}_1\mathbf{v}_1 + \mathbf{u}_2\mathbf{v}_2 + \dots + \mathbf{u}_n\mathbf{v}_n) = \sum_{i=1}^n \mathbf{u}_i\mathbf{v}_i$$
 thì $\mathbf{U}.\mathbf{V} \in \mathbf{R}$.

Ví dụ:

$$\mathbf{U} = (-3 \ 8 \ -6 \ 9 \ 2) \in \mathbf{M}_{1 \times 5}(\mathbf{R}) \ \text{và} \ \mathbf{V} = \begin{pmatrix} 7 \\ 0 \\ -5 \\ 1 \\ -4 \end{pmatrix} \in \mathbf{M}_{5 \times 1}(\mathbf{R}).$$

Ta có
$$U.V = (-3)7 + 8.0 + (-6)(-5) + 9.1 + 2(-4) = 10 \in \mathbb{R}$$
.

1.6/ PHÉP NHÂN MA TRÂN:

Cho
$$\mathbf{A} = (a_{ij})_{\substack{1 \le j \le m \\ 1 \le j \le n}} \in \mathbf{M}_{m \times n}(\mathbf{R}) \text{ và } \mathbf{B} = (b_{jk})_{\substack{1 \le j \le n \\ 1 \le k \le p}} \in \mathbf{M}_{n \times p}(\mathbf{R}) \text{ thỏa điều kiện}$$

$$(s\acute{o} c\acute{o}t \, \text{của A}) = n = (s\acute{o} \, d\grave{o}ng \, \text{của B}).$$

Ta thực hiện *phép nhân ma trận* $\mathbf{A} \in \mathrm{M}_{\mathrm{m} \times \mathrm{n}}(\mathbf{R})$ với $\mathbf{B} \in \mathrm{M}_{\mathrm{n} \times \mathrm{p}}(\mathbf{R})$ bằng cách *nhân vô hướng mỗi dòng của* \mathbf{A} với *mỗi cột của* \mathbf{B} để được *ma trận tích* $\mathbf{C} = (c_{ik})_{\substack{1 \le i \le m \\ 1 \le k \le p}} \in \mathrm{M}_{\mathrm{m} \times \mathrm{p}}(\mathbf{R}) \text{ như sau:}$

$$\mathbf{C} = \mathbf{A.B} = \begin{pmatrix} \frac{A_1}{\overline{A_2}} \\ \vdots \\ \underline{A_m} \end{pmatrix} \begin{pmatrix} B_1 & B_2 & \cdots & B_p \end{pmatrix} = \begin{pmatrix} A_1 B_1 & A_1 B_2 & \cdots & A_1 B_p \\ A_2 B_1 & A_2 B_2 & \cdots & A_2 B_p \\ \vdots & \vdots & \cdots & \vdots \\ A_m B_1 & A_m B_2 & \cdots & A_m B_p \end{pmatrix} = \begin{pmatrix} c_{ik} \end{pmatrix}_{\substack{1 \le i \le m \\ 1 \le k \le p}} \in \mathbf{M}_{m \times p}(\mathbf{R})$$

với
$$c_{ik} = (d\hat{o}ng \ A_i)(c\hat{o}t \ B_k) = (a_{i1} \ a_{i2} \ \dots \ a_{in}) \begin{pmatrix} b_{1k} \\ b_{2k} \\ \vdots \\ b_{nk} \end{pmatrix} = (a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk})$$

Như vậy
$$C = A.B = AB = (c_{ik})_{\substack{1 \le i \le m \\ 1 \le k \le p}} \text{ với } c_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk} (1 \le i \le m, 1 \le k \le p).$$

Ví dụ:

Cho
$$A = \begin{pmatrix} -2 & 1 & 3 & -4 \\ 5 & 0 & -6 & 2 \\ -1 & 4 & 8 & -3 \end{pmatrix} \in M_{3 \times 4}(\mathbf{R}) \text{ và } B = \begin{pmatrix} 9 & -1 & -5 \\ 7 & 4 & 6 \\ -3 & -2 & 1 \\ 2 & 0 & 8 \end{pmatrix} \in M_{4 \times 3}(\mathbf{R}).$$

$$Ta \ c\'o \ C \ = \ AB \ = \ \begin{pmatrix} -2 & 1 & 3 & -4 \\ \hline 5 & 0 & -6 & 2 \\ \hline -1 & 4 & 8 & -3 \end{pmatrix} \begin{pmatrix} 9 & -1 & -5 \\ 7 & 4 & 6 \\ -3 & -2 & 1 \\ 2 & 0 & 8 \end{pmatrix} = \begin{pmatrix} -28 & 0 & -13 \\ 67 & 7 & -15 \\ -11 & 1 & 13 \end{pmatrix} \in M_3(\mathbf{R}) \ v\`a$$

$$\mathbf{D} \ = \ \mathbf{B}\mathbf{A} \ = \ \begin{pmatrix} 9 & -1 & -5 \\ \hline 7 & 4 & 6 \\ \hline -3 & -2 & 1 \\ \hline 2 & 0 & 8 \end{pmatrix} \begin{pmatrix} -2 & 1 & 3 & -4 \\ 5 & 0 & -6 & 2 \\ -1 & 4 & 8 & -3 \end{pmatrix} = \begin{pmatrix} -18 & -11 & -7 & -23 \\ 0 & 31 & 45 & -38 \\ -5 & 1 & 11 & 5 \\ -12 & 34 & 70 & -32 \end{pmatrix} \in \mathbf{M}_4(\mathbf{R}).$$

Như vậy $C = AB \neq D = BA$ vì $C \in M_3(\mathbf{R})$ và $D \in M_4(\mathbf{R})$.

1.7/ MA TRÂN ĐƠN VỊ:

Ma trận đơn vị cấp n là ma trận vuông cấp n có dạng như sau:

$$\begin{split} I_n = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} = (\ a_{ij} \)_{1 \, \leq \, i, \, j \, \leq \, n} \ \ v \acute{\sigma} i \ \ a_{ii} = 1 \ v \grave{a} \ a_{ij} = 0 \ (\ 1 \leq i \neq j \leq n \). \end{split}$$

(các hệ số trên đường chéo chính đều bằng 1 và các hệ số bên ngoài đều bằng 0).

Ví dụ:

$$\mathbf{I_1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{I_3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{I_4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

1.8/ <u>TÍNH CHẤT:</u>

 $Cho \ \ \textbf{A} \in M_{m \times n}(\textbf{R}), \ \ \textbf{B}, \ \ \textbf{C} \in M_{n \times p}(\textbf{R}), \ \ \textbf{D} \in M_{p \times q}(\textbf{R}) \ \ v\grave{\textbf{a}} \ \ \textbf{c} \in \textbf{R}. \ Khi \ \textbf{đ\acute{o}} :$

a) (AB)D = A(BD) = ABD (phép nhân ma trận có tính kết hợp).

b)
$$(AB)^t = B^t A^t$$
 (thứ tự bị đảo ngược). $(cA)B = A(cB) = c(AB)$.

c)
$$A(B \pm C) = AB \pm AC$$
.

$$(B \pm C)D = BD \pm CD$$
.

(phép nhân ma trận phân phối trái và phải với các phép cộng trừ ma trận).

d)
$$O_{k \times m} A = O_{k \times n}$$
 và $AO_{n \times k} = O_{m \times k}$.

$$I_m A = A$$
 và $AI_n = A$.

Ví dụ:

Cho A =
$$\begin{pmatrix} -5 & 8 & 1 \\ 0 & -4 & -9 \end{pmatrix} \in M_{2 \times 3}(\mathbf{R}).$$

$$\mathbf{I_2} \mathbf{A} = \begin{pmatrix} 1 & 0 \\ \hline 0 & 1 \end{pmatrix} \begin{pmatrix} -5 & 8 & 1 \\ 0 & -4 & -9 \end{pmatrix} = \begin{pmatrix} -5 & 8 & 1 \\ 0 & -4 & -9 \end{pmatrix} = \mathbf{A}$$

$$v\grave{a} \qquad A \textbf{I}_{3} = \begin{pmatrix} -5 & 8 & 1 \\ \hline 0 & -4 & -9 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -5 & 8 & 1 \\ 0 & -4 & -9 \end{pmatrix} = A.$$

1.9/ GHI CHÚ:

a) Phép nhân ma trận không giao hoán.

Nếu AB và BA cùng xác định thì không nhất thiết BA = AB.

Nếu AB = BA thì A và B là hai ma trận vuông có cùng kích thước.

- b) Có thể nhân liên tiếp nhiều ma trận nếu số cột của ma trận đi trước bằng số dòng của ma trận đi ngay liền sau.
- c) Có thể xảy ra khả năng

$$A \in M_{m \times n}(\mathbf{R}), B \in M_{n \times p}(\mathbf{R}), A \neq \mathbf{O} \neq B \text{ nhung } AB = \mathbf{O}_{m \times p}.$$

Ví dụ:

- a) Trong Ví dụ của (1.7), $C = AB \neq D = BA$ vì $C \in M_3(\mathbf{R})$ và $D \in M_4(\mathbf{R})$.
- b) Cho $A \in M_{3 \times 7}(\mathbf{R}), B \in M_{7 \times 4}(\mathbf{R}), C \in M_{4 \times 1}(\mathbf{R}) \text{ và } D \in M_{1 \times 8}(\mathbf{R}).$

Đặt E = ABCD thì $E \in M_{3 \times 8}(\mathbf{R})$.

c) Cho A =
$$\begin{pmatrix} 1 & -1 \\ -4 & 4 \\ 0 & 0 \end{pmatrix} \neq \mathbf{O}_{3 \times 2} \text{ và } \mathbf{B} = \begin{pmatrix} 2 & 0 & -3 \\ 2 & 0 & -3 \end{pmatrix} \neq \mathbf{O}_{2 \times 3} \text{ c\'o}$$

$$\mathbf{AB} = \begin{pmatrix} \frac{1}{-4} & -1 \\ \frac{1}{0} & 0 \end{pmatrix} \begin{pmatrix} 2 & 0 & -3 \\ 2 & 0 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{O_3}.$$

II. CÁC PHÉP TOÁN TRÊN MA TRÂN VUÔNG:

- 2.1/ PHÉP NHÂN VÀ LŨY THÙ'A: Cho A, B \in M_n(R).
 - a) Ta có $AB \in M_n(\mathbf{R})$, $BA \in M_n(\mathbf{R})$ và không nhất thiết AB = BA.
 - b) Đặt $A^o = I_n$, $A^1 = A$, $A^2 = AA$, ..., $A^{k+1} = AA^k = A^kA$, $\forall k \in \mathbb{N}$.

Ta có $\forall k \in \mathbb{N}, A^k \in M_n(\mathbb{R}).$

Ví dụ:

a) Cho
$$H = \begin{pmatrix} 3 & -1 \\ 5 & -2 \end{pmatrix}$$
 và $K = \begin{pmatrix} -4 & 6 \\ 5 & -7 \end{pmatrix} \in M_2(\mathbf{R})$.

Ta có
$$HK = \begin{pmatrix} -17 & 25 \\ -30 & 44 \end{pmatrix} \in M_2(\mathbf{R}), KH = \begin{pmatrix} 18 & -8 \\ -20 & 9 \end{pmatrix} \in M_2(\mathbf{R}) \text{ và } HK \neq KH.$$

b) Cho
$$A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \in M_2(\textbf{R})$$
. Tính $A^{\textbf{k}}$, $\forall \textbf{k} \in \textbf{N}$. Ta có $A^{\textbf{o}} = I_2 = \begin{pmatrix} 1 & \textbf{0} \\ 0 & 1 \end{pmatrix}$,

$$A^{1} = A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, A^{2} = AA = \begin{pmatrix} 1 & -4 \\ 0 & 1 \end{pmatrix} \text{ và } A^{3} = AA^{2} = \begin{pmatrix} 1 & -6 \\ 0 & 1 \end{pmatrix}.$$

Dự đoán $\forall \mathbf{k} \in \mathbf{N}$, $\mathbf{A}^{\mathbf{k}} = \begin{pmatrix} 1 & -2\mathbf{k} \\ 0 & 1 \end{pmatrix}$ và kiểm chứng bằng *phép qui nạp* theo \mathbf{k} .

- **2.2**/ $\underline{\mathbf{TÍNH CHÂT:}}$ Cho $A \in M_n(\mathbf{R})$.
 - a) $\forall \mathbf{k}$ nguyên ≥ 1 , $O_n^k = O_n$ và $I_n^k = I_n$.

- b) $\forall r, s \in \mathbb{N}, A^r A^s = A^{r+s} \text{ và } (A^r)^s = A^{rs}.$
- c) $O_n A = AO_n = O_n$ và $I_n A = AI_n = A$.
- d) Có thể xảy ra khả năng ($A \neq O_n$ nhưng $\exists r \text{ nguyên} \geq 2$ thỏa $A^r = O_n$).

Ví dụ:

- a) $O_n^{2000} = O_n$ và $I_n^{3000} = I_n$.
- b) $\forall A \in M_n(\mathbf{R}), A^9 A^{16} = A^{9+16} = A^{25}$ và $(A^9)^{16} = A^{9 \times 16} = A^{144}$

c)
$$A = \begin{pmatrix} 0 & -2 & 3 \\ 0 & 0 & -5 \\ 0 & 0 & 0 \end{pmatrix} \in M_3(\mathbf{R}) \text{ và } A \neq \mathbf{O_3}. \text{ Ta có } A^2 = \begin{pmatrix} 0 & 0 & 10 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq \mathbf{O_3} = A^3.$$

2.3/ CÁC MA TRẬN VUÔNG ĐẶC BIỆT:

Cho
$$A = (a_{ij})_{1 \le i, j \le n} \in M_n(\mathbf{R}).$$

Đường chéo (chính) của A bao gồm các hệ số a_{ii} ($1 \le i \le n$).

a) A là ma trận (đường) chéo nếu các hệ số ở ngoài đường chéo đều là 0 (nghĩa là $a_{ij} = 0$ khi $1 \le i \ne j \le n$) và các hệ số trên đường chéo thì tùy ý.

$$\mathbf{A} = \begin{pmatrix} a_{11}^* & 0 & \cdots & 0 \\ 0 & a_{22}^* & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn}^* \end{pmatrix}$$

b) A là ma trận tam giác trên nếu các hệ số ở phía dưới đường chéo đều là 0 (nghĩa là $a_{ij} = 0$ khi $1 \le j \le i \le n$) và các hệ số khác thì tùy ý.

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1(n-1)} & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2(n-1)} & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3(n-1)} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{(n-1)(n-1)} & a_{(n-1)n} \\ 0 & 0 & 0 & \cdots & 0 & a_{nn} \end{pmatrix}$$

c) A là *ma trận tam giác dưới* nếu *các hệ số ở phía trên đường chéo đều là* 0 (nghĩa là $a_{ij} = 0$ khi $1 \le i < j \le n$) và *các hệ số khác* thì *tùy ý* .

$$\mathbf{A} = \begin{pmatrix} a_{11} & 0 & 0 & \cdots & 0 & 0 \\ a_{21} & a_{22} & 0 & \cdots & 0 & 0 \\ a_{31} & a_{32} & a_{33} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{(n-1)1} & a_{(n-1)2} & a_{(n-1)3} & \cdots & a_{(n-1)(n-1)} & 0 \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{n(n-1)} & a_{nn} \end{pmatrix}$$

d) A là ma trận tam giác trên ngặt nếu A là ma trận tam giác trên có đường chéo gồm toàn các hệ số 0 (nghĩa là $a_{ij} = 0$ khi $1 \le j \le i \le n$).

$$\mathbf{A} = \begin{pmatrix} 0^* & a_{12} & a_{13} & \cdots & a_{1(n-1)} & a_{1n} \\ 0 & 0^* & a_{23} & \cdots & a_{2(n-1)} & a_{2n} \\ 0 & 0 & 0^* & \cdots & a_{3(n-1)} & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0^* & a_{(n-1)n} \\ 0 & 0 & 0 & \cdots & 0 & 0^* \end{pmatrix}$$

e) A là ma trận tam giác dưới ngặt nếu A là ma trận tam giác dưới có đường chéo gồm toàn các hệ số 0 (nghĩa là $a_{ij} = 0$ khi $1 \le i \le j \le n$).

$$\mathbf{A} = \begin{pmatrix} 0^* & 0 & 0 & \cdots & 0 & 0 \\ a_{21} & 0^* & 0 & \cdots & 0 & 0 \\ a_{31} & a_{32} & 0^* & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{(n-1)1} & a_{(n-1)2} & a_{(n-1)3} & \cdots & 0^* & 0 \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{n(n-1)} & 0^* \end{pmatrix}$$

Ví dụ: Các ma trận dạng đặc biệt:

$$A = \begin{pmatrix} 3^* & 0 & 0 & 0 \\ 0 & -2^* & 0 & 0 \\ 0 & 0 & 0^* & 0 \\ 0 & 0 & 0 & -7^* \end{pmatrix} \qquad B = \begin{pmatrix} -4^* & 2 & 0 & -5 \\ 0 & 1^* & -8 & 3 \\ 0 & 0 & 9^* & 7 \\ 0 & 0 & 0 & -6^* \end{pmatrix} \qquad C = \begin{pmatrix} 1^* & 0 & 0 & 0 \\ -2 & 0^* & 0 & 0 \\ 7 & -3 & -8^* & 0 \\ -9 & 6 & 0 & 5^* \end{pmatrix}$$
ma trận đường chéo ma trận tam giác trên ma trận tam giác dưới

$$D = \begin{pmatrix} 0^* & 2 & 9 & -5 \\ 0 & 0^* & -8 & 3 \\ 0 & 0 & 0^* & 4 \\ 0 & 0 & 0 & 0^* \end{pmatrix} \qquad E = \begin{pmatrix} 0^* & 0 & 0 & 0 \\ -9 & 0^* & 0 & 0 \\ 2 & 5 & 0^* & 0 \\ 0 & -6 & 1 & 0^* \end{pmatrix}.$$

ma trận *tam giác trên ngặt* ma trận *tam giác dưới ngặt*

2.4/ MỆNH ĐỀ:

- a) Tổng, hiệu, tích và lũy thừa nguyên dương các ma trận đường chéo cũng là ma trận đường chéo. Các phép toán được thực hiện tự nhiên trên đường chéo.
- b) Tổng, hiệu, tích và lũy thừa nguyên dương các ma trận tam giác cùng loại cũng là ma trận tam giác cùng loại.

Ví dụ:

$$A = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 6 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & -3 & 0 \\ 0 & 8 & 4 \\ 0 & 0 & -2 \end{pmatrix} \quad \text{và} \quad D = \begin{pmatrix} -2 & -3 & 1 \\ 0 & 9 & 4 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$Ta có \quad A + B = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 10 \end{pmatrix} \quad A - B = \begin{pmatrix} 8 & 0 & 0 \\ 0 & -9 & 0 \\ 0 & 0 & -2 \end{pmatrix} \quad AB = \begin{pmatrix} -15 & 0 & 0 \\ 0 & -14 & 0 \\ 0 & 0 & 24 \end{pmatrix}.$$

$$A^{10} = \begin{pmatrix} 5^{10} & 0 & 0 \\ 0 & (-2)^{10} & 0 \\ 0 & 0 & 4^{10} \end{pmatrix} \quad C + D = \begin{pmatrix} -1 & -6 & 1 \\ 0 & 17 & 8 \\ 0 & 0 & -2 \end{pmatrix} \quad C - D = \begin{pmatrix} 3 & 0 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

$$CD = \begin{pmatrix} -2 & -30 & -11 \\ 0 & 72 & 32 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{và} \quad C^{3} = \begin{pmatrix} 1 & -219 & -84 \\ 0 & 512 & 208 \\ 0 & 0 & -8 \end{pmatrix}.$$

2.5/ MÊNH ĐÈ: Cho A, B \in M_n(R) thỏa AB = BA (A và B giao hoán với nhau)

Ta có các hằng đẳng thức trong **R** vẫn có hiệu lực đối với **A** và B.

$$\forall k \ge 2, (AB)^k = A^k B^k, \quad (A+B)^k = \sum_{i=0}^k C_k^i A^i B^{k-i} \quad v\grave{a}$$
$$A^k - B^k = (A-B)(A^{k-1} + A^{k-2}B + \dots + AB^{k-2} + B^{k-1}).$$

<u>Ví dụ:</u> Cho A, $B \in M_n(R)$ thỏa AB = BA. Khi đó

$$(AB)^4 = (AB)(AB)(AB)(AB) = ABABABAB = AAAABBBB = A^4B^4$$
.

$$A^5 + B^5 = A^5 - (-B)^5 = (A + B)(A^4 - A^3B + A^2B^2 - AB^3 + B^4).$$

$$(4A - 5I_n)^3 = (4A)^3 - 3(4A)^2(5I_n) + 3(4A)(5I_n)^2 - (5I_n)^3$$
$$= 64A^3 - 240A^2 + 300A - 125I_n.$$

2.6/ GHI CHÚ: Nếu A, B ∈ M_n(R) thỏa AB ≠ BA thì các hằng đẳng thức trong
R không thể áp dụng cho A và B. Các phép tính phải dùng định nghĩa, các tính chất phân phối và kết hợp.

III. <u>SỰ KHẢ NGHỊCH CỦA MA TRẬN VUÔNG:</u>

3.1/ VÁN ĐÈ:

- a) Trong (**R**,.):
 - * $\forall a \in \mathbf{R}$, ta có 1.a = a.1 = a.
 - * Cho trước $a \in \mathbf{R}$. Có hay không $a' \in \mathbf{R}$ thỏa a'.a = a.a' = 1? Nếu có thì a' được tính ra sao ?

Trả lời: Nếu $a = 0 \in \mathbf{R}$ thì *không có* $a' \in \mathbf{R}$ thỏa a'.a = a.a' = 1 và ta nói a = 0 là *số không khả nghịch*. Nếu $a \in \mathbf{R} \setminus \{0\}$ thì có $a' = \frac{1}{a} \in \mathbf{R}$ thỏa a'.a = a.a' = 1 và ta nói a là *số khả nghịch* cũng như ký hiệu $a' = a^{-1}$ là *số nghịch đảo của số* a. Để ý $\mathbf{R} = \mathbf{M}_1(\mathbf{R})$.

- b) Trong $(M_n(\mathbf{R}), .)$ với $n \ge 2$:
 - * $\forall A \in M_n(\mathbf{R})$, ta có $I_n.A = A.I_n = A$.
 - * Cho trước $A \in M_n(\mathbf{R})$. Có hay không $A' \in M_n(\mathbf{R})$ thỏa $A' \cdot A = A \cdot A' = \mathbf{I_n}$? Nếu có thì A' được xác định ra sao ? Ta sẽ trả lời câu hỏi trên trong phần \mathbf{III} này.

3.2/ $\underline{\textbf{DINH NGHIA:}}$ Cho $A \in M_n(R)$.

- a) Ta nói A là ma trận khả nghịch nếu có $A' \in M_n(\mathbf{R})$ thỏa $A'A = AA' = I_n$.
- b) A' (nếu có) thì duy nhất và lúc đó ta ký hiệu A' = A⁻¹ là ma trận nghịch
 đảo của ma trận A.
- c) Nếu A khả nghịch (có A^{-1}) thì ta định nghĩa thêm các lũy thừa nguyên âm cho A như sau: $A^{-2} = (A^{-1})^2$, $A^{-3} = (A^{-1})^3$, ..., $A^{-k} = (A^{-1})^k$, $\forall k \in \mathbf{N}^*$. Ta có $A^m \in M_n(\mathbf{R})$, $\forall m \in \mathbf{Z}$. Hơn nữa $\forall r, s \in \mathbf{Z}$, $A^r A^s = A^{r+s}$, $(A^r)^s = A^{rs}$.

Ví dụ:

Cho
$$A = \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix}$$
 và $B = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix} \in M_3(\mathbf{R}).$

$$Ta\ c\'o\ AB = \begin{pmatrix} -3 & 4 & 6 \\ \hline 0 & 1 & 1 \\ \hline 2 & -3 & -4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \ I_3.$$

$$v\grave{a} \qquad BA = \begin{pmatrix} \frac{1}{2} & \frac{2}{2} & \frac{2}{2} \\ \frac{-2}{2} & \frac{0}{2} & \frac{-3}{2} \\ \end{pmatrix} \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \mathbf{I}_3.$$

Do $AB = BA = I_3$ nên A *khả nghịch* và $A^{-1} = B$. Tương tự, do vai trò của A và B là *đối xứng* nên ta cũng nói B *khả nghịch* và $B^{-1} = A$.

Hơn nữa
$$\forall k \in \mathbb{N}^*$$
, $A^{-k} = (A^{-1})^k = B^k$ và $\forall m \in \mathbb{Z}$, $A^m \in M_3(\mathbb{R})$. Ta có
$$A^7 A^{-12} = A^{7+(-12)} = A^{-5} = (A^{-1})^5 \text{ và } (A^7)^{-12} = A^{7(-12)} = A^{-84} = (A^{-1})^{84}.$$

3.3/ ĐỊNH LÝ: (nhận diện ma trận khả nghịch).

Cho $A \in M_n(\mathbf{R})$. Ta đã có S_A , R_A và $\mathbf{r}(A) \leq n$ từ $(\mathbf{4.1})$ và $(\mathbf{4.2})$, Chương \mathbf{I} . Các phát biểu sau đây là *tương đương với nhau*:

- a) A khả nghịch.
- b) S_A có các hệ số trên đường chéo đều $\neq 0$.
- c) $R_A = I_n$. d) r(A) = n.

3.4/ HÊ QUĂ: (nhận diện ma trận không khả nghịch).

Cho $A \in M_n(\mathbf{R})$. Ta đã có S_A , R_A và $\mathbf{r}(A) \leq n$ từ $(\mathbf{4.1})$ và $(\mathbf{4.2})$, Chương \mathbf{I} . Các phát biểu sau đây là *tương đương với nhau*:

- a) A không khả nghịch.
- b) S_A có it nhất một hệ số 0 trên đường chéo.

c) $R_A \neq I_n$.

d) r(A) < n.

Ví du:

Cho
$$A = \begin{pmatrix} 3 & -1 & 4 \\ -3 & 0 & -2 \\ 2 & -2 & 1 \end{pmatrix}$$
 và $B = \begin{pmatrix} 3 & 4 & 6 \\ -5 & 2 & 16 \\ 2 & 1 & -1 \end{pmatrix} \in M_3(\mathbf{R}).$

$$A \to \begin{pmatrix} 1^* & 1 & 3 \\ 0 & -1 & 2 \\ 0 & -4 & -5 \end{pmatrix} \to S_A = \begin{pmatrix} 1^* & 1 & 3 \\ 0 & -1^* & 2 \\ 0 & 0 & -13^* \end{pmatrix} \to \begin{pmatrix} 1^* & 0 & 5 \\ 0 & 1^* & -2 \\ 0 & 0 & -13 \end{pmatrix} \to R_A = \begin{pmatrix} 1^* & 0 & 0 \\ 0 & 1^* & 0 \\ 0 & 0 & 1^* \end{pmatrix} = I_3$$

Bång 1: (2)
$$\rightarrow$$
 [(2) + (1)], (1) \rightarrow [(1) - (3)], (3) \rightarrow [(3) - 2(1)].

Bång 2:
$$(3) \rightarrow [(3) - 4(2)]$$
.

Bång 3: (1)
$$\rightarrow$$
 [(1) + (2)], (2) \rightarrow - (2).

Bång 4: (3)
$$\rightarrow -13^{-1}(3)$$
, (1) $\rightarrow [(1) - 5(3)]$, (2) $\rightarrow [(2) + 2(3)]$.

$$\mathbf{B} \to \begin{pmatrix} \mathbf{1}^* & 3 & 7 \\ 0 & 17 & 51 \\ 0 & -5 & -15 \end{pmatrix} \to \mathbf{S}_{\mathrm{B}} = \begin{pmatrix} \mathbf{1}^* & 3 & 7 \\ 0 & 17^* & 51 \\ 0 & 0 & 0 \end{pmatrix} \to \mathbf{R}_{\mathrm{B}} = \begin{pmatrix} \mathbf{1}^* & 0 & -2 \\ 0 & \mathbf{1}^* & 3 \\ 0 & 0 & 0 \end{pmatrix} \neq \mathbf{I}_{3}.$$

Bång 1: (1)
$$\rightarrow$$
 [(1) - (3)], (2) \rightarrow [(2) + 5(1)], (3) \rightarrow [(3) - 2(1)].

Bång 2: (3)
$$\rightarrow$$
 [(3) + 17⁻¹.5(2)], Bång 3: (2) \rightarrow 17⁻¹(2), (1) \rightarrow [(1) - 3(2)].

Ta thấy A khả nghịch [để ý các hệ số trên đường chéo của S_A đều $\neq 0$,

 $R_A = I_3$ và r(A) = 3] và B *không khả nghịch* [để ý có *hệ số* 0 *trên đường chéo* của S_B , $R_B \neq I_3$ và r(B) = 2 < 3].

3.5/ ĐỊNH LÝ: (tìm ma trận nghịch đảo của ma trận khả nghịch)

Cho A khả nghịch $\in M_n(\mathbf{R})$ [nghĩa là $R_A = I_n$].

Nếu các phép biến đổi sơ cấp trên dòng $\varphi_1, \varphi_2, \dots, \varphi_k$ biến A thành $R_A = I_n$

thì chính các phép biến đổi đó, theo đúng thứ tự đã có, sẽ biến I_n thành A^{-1} . Cụ thể như sau:

Nếu $A \to A_1 \to A_2 \to \cdots \to A_k = R_A = I_n$ (dùng các phép biến đổi $\phi_1, \phi_2, \ldots, \phi_k$) thì $I_n \to B_1 \to B_2 \to \cdots \to B_k = A^{-1}$ (cũng dùng các phép biến đổi $\phi_1, \phi_2, \ldots, \phi_k$).

3.6/ PHƯƠNG PHÁP GAUSS – JORDAN TÌM MA TRẬN NGHỊCH ĐẢO:

Cho $A \in M_n(\mathbf{R})$. Ta thường kiểm tra A khả nghịch và tìm A^{-1} cùng một lúc theo sơ đồ sau (phương pháp Gauss – Jordan):

$$(A \mid \underline{\textbf{I}_n}) \rightarrow (A_1 \mid B_1) \rightarrow (A_2 \mid B_2) \rightarrow \ldots \rightarrow (A_k \mid B_k) \ \text{trong d\'o} \ A_k = \underline{\textbf{R}_A}.$$

(dùng các phép biến đổi sơ cấp trên dòng $\varphi_1, \varphi_2, \dots, \varphi_k$ biến A thành R_A).

Nếu $R_A \neq I_n$ thì A không khả nghịch.

Nếu $R_A = I_n$ thì A khả nghịch và $A^{-1} = B_k$.

Ví dụ:

Xét tính khả nghịch và tìm ma trận nghịch đảo (nếu có) của các ma trận sau:

$$\mathbf{B} = \begin{pmatrix} 1 & 2 & 4 \\ -2 & -3 & -11 \\ 3 & 5 & 15 \end{pmatrix} \text{ và } \mathbf{A} = \begin{pmatrix} 3 & 4 & 9 \\ 2 & 1 & 2 \\ -7 & 1 & 4 \end{pmatrix} \in \mathbf{M}_3(\mathbf{R}).$$

$$(B \mid \mathbf{I_3}) = \begin{pmatrix} 1 & 2 & 4 & \begin{vmatrix} 1 & 0 & 0 \\ -2 & -3 & -11 & \begin{vmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 3 & 5 & 15 & \begin{vmatrix} 0 & 0 & 1 \end{vmatrix} \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 2 & 4 & \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 & \begin{vmatrix} 2 & 1 & 0 \\ 0 & -1 & 3 & \begin{vmatrix} -3 & 0 & 1 \end{vmatrix} \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 10 & \begin{vmatrix} -3 & -2 & 0 \\ 0 & 1^* & -3 & \begin{vmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 & \begin{vmatrix} -1 & 1 & 1 \end{vmatrix} \end{pmatrix}.$$

Bång 1: (2)
$$\rightarrow$$
 [(2) + 2(1)], (3) \rightarrow [(3) - 3(1)].

Bång 2: (1)
$$\rightarrow$$
 [(1) $-$ 2(2)], (3) \rightarrow [(3) $+$ (2)].

Ta thấy $R_B \neq I_3$ nên B không khả nghịch $(\forall B' \in M_3(\mathbf{R}), B'B \neq I_3 \neq BB')$

$$(A \mid \mathbf{I_3}) = \begin{pmatrix} 3 & 4 & 9 & 1^* & 0 & 0 \\ 2 & 1 & 2 & 0 & 1^* & 0 \\ -7 & 1 & 4 & 0 & 0 & 1^* \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 3 & 7 & 1 & -1 & 0 \\ 0 & -5 & -12 & -2 & 3 & 0 \\ 0 & 22 & 53 & 7 & -7 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 3 & 7 & 1 & -1 & 0 \\ 0 & 1^* & 3 & -5 & 18 & 3 \\ 0 & 2 & 5 & -1 & 5 & 1 \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & -2 & | 16 & -55 & -9 \\ 0 & 1^* & 3 & | -5 & 18 & 3 \\ 0 & 0 & -1 & | 9 & -31 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 0 & | -2 & 7 & 1 \\ 0 & 1^* & 0 & | 22 & -75 & -12 \\ 0 & 0 & 1^* & | -9 & 31 & 5 \end{pmatrix}.$$

Bång 1: (1)
$$\rightarrow$$
 [(1) - (2)], (2) \rightarrow [(2) - 2(1)], (3) \rightarrow [(3) + 7(1)].

Bång 2: (3)
$$\rightarrow$$
 [(3) + 4(2)], (2) \rightarrow [(2) + 3(3)].

Bång 3: (1)
$$\rightarrow$$
 [(1) - 3(2)], (3) \rightarrow [(3) - 2(2)].

Bång 4: (1)
$$\rightarrow$$
 [(1) - 2(3)], (2) \rightarrow [(2) + 3(3)], (3) \rightarrow - (3).

Do
$$R_A = I_3$$
 nên A khả nghịch và $A^{-1} = \begin{pmatrix} -2 & 7 & 1 \\ 22 & -75 & -12 \\ -9 & 31 & 5 \end{pmatrix}$.

Kiểm chứng lại, ta thấy $A^{-1}A = I_3$ (hay kiểm chứng $AA^{-1} = I_3$).

- 3.7/ MÊNH ĐÈ: Cho A, B, $A_1,\,A_2,\,\dots$, $A_k\in M_n(\boldsymbol{R}).$ Khi đó
 - a) Nếu A khả nghịch thì
 - * A^{-1} cũng khả nghịch và $(A^{-1})^{-1} = A$.
 - * A^t cũng khả nghịch và $(A^t)^{-1} = (A^{-1})^t$.
 - * cA ($c \in \mathbb{R} \setminus \{0\}$) cũng khả nghịch và $(cA)^{-1} = c^{-1}A^{-1}$.
 - * $A^{r}(r \in \mathbb{Z})$ cũng khả nghịch và $(A^{r})^{-1} = A^{-r}$.
 - b) AB khả nghịch \Leftrightarrow (A và B đều khả nghịch). Lúc đó $(AB)^{-1} = B^{-1}A^{-1}$.

AB $không khả nghịch \Leftrightarrow (A hay B không khả nghịch).$

c) ($A_1A_2 \dots A_k$) khả nghịch \Leftrightarrow (A_1, A_2, \dots, A_k đều khả nghịch).

Lúc đó
$$(A_1A_2 ... A_k)^{-1} = A_k^{-1} A_{k-1}^{-1} ... A_2^{-1} A_1^{-1}$$
 (thứ tự bị đảo ngược).

 $(A_1A_2 \ldots A_k) \ \textit{không khả nghịch} \ \Leftrightarrow \ \exists \ j \in \{1,2,\ldots,k\}, \ A_j \ \textit{không khả nghịch}.$

Ví dụ:

a)
$$A = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix}$$
 khả nghịch và $A^{-1} = \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix}$. Suy ra

*
$$A^{-1}$$
 cũng khả nghịch và $(A^{-1})^{-1} = A$.

*
$$A^{t} = \begin{pmatrix} 1 & -2 & 2 \\ 2 & 0 & 1 \\ 2 & -3 & 3 \end{pmatrix}$$
 cũng khả nghịch và $(A^{t})^{-1} = (A^{-1})^{t} = \begin{pmatrix} -3 & 0 & 2 \\ 4 & 1 & -3 \\ 6 & 1 & -4 \end{pmatrix}$.

*
$$-\frac{5}{2}$$
A cũng khả nghịch và $(-\frac{5}{2}A)^{-1} = -\frac{2}{5}A^{-1}$.

* A^{-4} cũng khả nghịch và $(A^{-4})^{-1} = A^4$.

b)
$$H = \begin{pmatrix} 5 & -2 \\ -7 & 3 \end{pmatrix}$$
 và $K = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$ khả nghịch có $H^{-1} = \begin{pmatrix} 3 & 2 \\ 7 & 5 \end{pmatrix}$ và $K^{-1} = \begin{pmatrix} -2 & 3 \\ 3 & -4 \end{pmatrix}$

$$L = \begin{pmatrix} 4 & -1 \\ -8 & 2 \end{pmatrix} không khả nghịch [để ý $R_H = R_K = I_2 \text{ và } R_L = \begin{pmatrix} 1^* & -1/4 \\ 0 & 0 \end{pmatrix} \neq I_2]$$$

Ta có
$$HK = \begin{pmatrix} 14 & 11 \\ -19 & -15 \end{pmatrix}$$
 khả nghịch và $(HK)^{-1} = K^{-1}H^{-1} = \begin{pmatrix} 15 & 11 \\ -19 & -14 \end{pmatrix}$.

Ta có $KH = \begin{pmatrix} -1 & 1 \\ 1 & 0 \end{pmatrix}$ khả nghịch và $(KH)^{-1} = H^{-1}K^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Các ma trận HKL, KHL, HLK, KLH, LHK và LKH đều không khả nghịch.

3.8/ MÊNH ĐÈ: (nhận diện 2 ma trận đều khả nghịch và là nghịch đảo của nhau)

Cho A, B \in M_n(**R**). Các phát biểu sau là *tương đương với nhau*:

a) A khả nghich và
$$A^{-1} = B$$
.

b) B khả nghịch và $B^{-1} = A$.

c)
$$AB = I_n$$
.

d) $BA = I_n$.

<u>Ví dụ:</u>

a) Cho $P \in M_n(\mathbf{R})$ thỏa $P^5 = \mathbf{O_n}$.

Đặt
$$A = (I_n - P)$$
 và $B = (I_n + P + P^2 + P^3 + P^4)$. Chứng minh

A khả nghịch và $A^{-1} = B$ (lúc đó B cũng khả nghịch và $B^{-1} = A$).

Theo 3.8, ta chỉ cần chứng minh $AB = I_n$ là xong. Ta có

$$A_{B} = (I_{n} - P)(I_{n} + P + P^{2} + P^{3} + P^{4})$$

$$= I_n + P + P^2 + P^3 + P^4 - (P + P^2 + P^3 + P^4 + P^5) = I_n - P^5 = I_n - O_n = I_n.$$

b) Cho H, $K \in M_n(\mathbf{R})$ sao cho $C = (\mathbf{I}_n + HK)$ khả nghịch. Chứng minh

$$D = (I_n + KH)$$
 cũng khả nghịch và $D^{-1} = E$ trong đó $E = (I_n - KC^{-1}H)$.

Theo 3.8, ta chỉ cần chứng minh $DE = I_n$ là xong. Ta có

$$\begin{aligned} \mathbf{DE} &= (\mathbf{I}_{n} + \mathbf{KH})(\mathbf{I}_{n} - \mathbf{KC}^{-1}\mathbf{H}) = \mathbf{I}_{n} + \mathbf{KH} - \mathbf{KC}^{-1}\mathbf{H} - \mathbf{KHKC}^{-1}\mathbf{H} \\ &= \mathbf{I}_{n} + \mathbf{KH} - \mathbf{K}(\mathbf{I}_{n} + \mathbf{HK})\mathbf{C}^{-1}\mathbf{H} = \mathbf{I}_{n} + \mathbf{KH} - \mathbf{KCC}^{-1}\mathbf{H} = \mathbf{I}_{n} + \mathbf{KH} - \mathbf{KH} = \mathbf{I}_{n}. \end{aligned}$$

3.9/ <u>LIÊN HỆ GIỮA TÍNH KHẢ NGHỊCH CỦA MA TRẬN VUÔNG VÀ</u> NGHIỆM CỦA HỆ PHƯƠNG TRÌNH TUYẾN TÍNH:

Cho hệ phương trình tuyến tính AX = B với $A \in M_n(\mathbf{R})$ và $B \in M_{n \times 1}(\mathbf{R})$ [hệ có số phương trình bằng với số ẩn là n].

a) Nếu A khả nghịch thì hệ trên có nghiệm duy nhất.

Nếu A không khả nghịch thì hệ trên vô nghiệm hoặc có vô số nghiệm.

b) Suy ra: Nếu A khả nghịch thì hệ $AX = \mathbf{0}$ có nghiệm duy nhất là $X = \mathbf{0}$. Nếu A không khả nghịch thì hệ $AX = \mathbf{0}$ có vô số nghiệm.

Ví dụ: Cho các ma trận

$$A = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix}, C = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 2 & 2 \\ -1 & -3 & 1 \end{pmatrix} \in M_{3}(\mathbf{R}) \text{ và } X = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}, B = \begin{pmatrix} u \\ v \\ w \end{pmatrix} \in M_{3 \times 1}(\mathbf{R}).$$

$$AX = B \iff \begin{pmatrix} 1 & 2 & 2 & u \\ -2 & 0 & -3 & v \\ 2 & 1 & 3 & w \end{pmatrix} \rightarrow \begin{pmatrix} 1^{*} & 2 & 2 & u \\ 0 & 1 & 0 & v+w \\ 0 & -3 & -1 & w-2u \end{pmatrix} \rightarrow \begin{pmatrix} 1^{*} & 0 & 2 & u-2v-2w \\ 0 & 1^{*} & 0 & v+w \\ 0 & 0 & -1 & 3v+4w-2u \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} 1^* & 0 & 0 & 4v + 6w - 3u \\ 0 & 1^* & 0 & v + w \\ 0 & 0 & 1^* & 2u - 3v - 4w \end{pmatrix}.$$

Bång 1:
$$(2) \rightarrow [(2) + (3)], (3) \rightarrow [(3) - 2(1)].$$

Bång 2: (1)
$$\rightarrow$$
 [(1) - 2(2)], (3) \rightarrow [(3) + 3(2)].

Bång 3: (1)
$$\rightarrow$$
 [(1) + 2(3)], (3) \rightarrow - (3).

Do $R_A = I_3$ nên A khả nghịch và hệ AX = B có nghiệm duy nhất

$$(x_1 = 4v + 6w - 3u, x_2 = v + w, x_3 = 2u - 3v - 4w), \forall u, v, w \in \mathbb{R}.$$

Suy ra hệ AX = 0 (u = v = w = 0) có nghiệm duy nhất ($x_1 = x_2 = x_3 = 0$).

$$CX = B \iff \begin{pmatrix} 1 & -1 & 3 & u \\ 2 & 2 & 2 & v \\ -1 & -3 & 1 & w \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & -1 & 3 & u \\ 0 & 4 & -4 & v - 2u \\ 0 & -4 & 4 & u + w \end{pmatrix} \rightarrow \begin{pmatrix} 1^* & 0 & 2 & \frac{v + 2u}{4} \\ 0 & 1^* & -1 & \frac{v - 2u}{4} \\ 0 & 0 & 0 & v + w - u \end{pmatrix}.$$

Bång 1:
$$(2) \rightarrow [(2) - 2(1)], (3) \rightarrow [(3) + (1)].$$

Bång 2: (3)
$$\rightarrow$$
 [(3) + (2)], (2) \rightarrow 4⁻¹(2), (1) \rightarrow [(1) + (2)].

Do $R_C \neq I_3$ nên C không khả nghịch.

Nếu $v + w - u \neq 0$ thì hệ CX = B vô nghiệm.

Nếu v + w - u = 0 thì hệ CX = B có $v\hat{o}$ số nghiệm với một ẩn tự do

$$[\mathbf{x}_3 = \mathbf{a} (\mathbf{a} \in \mathbf{R}), \ \mathbf{x}_1 = -2\mathbf{a} + \frac{v + 2u}{4}, \ \mathbf{x}_2 = \mathbf{a} + \frac{v - 2u}{4}], \ \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbf{R}.$$

Suy ra hệ $CX = \mathbf{O}$ (u = v = w = 0) có vô số nghiệm với *một ẩn tự do*

$$[x_3 = a (a \in \mathbf{R}), x_1 = -2a, x_2 = a].$$

IV. GIẢI PHƯƠNG TRÌNH MA TRẬN:

4.1/ **MÊNH ĐÈ:** Cho $\mathbf{A} \in M_n(\mathbf{R})$, $P, Q \in M_{n \times p}(\mathbf{R})$ và $S, T \in M_{p \times n}(\mathbf{R})$. Khi đó:

a) [
$$P = Q \Rightarrow AP = AQ$$
] và [$S = T \Rightarrow SA = TA$] (không có chiều đảo).

b) Nếu A khả nghịch thì

* (
$$P = Q \Leftrightarrow AP = AQ$$
) và ($S = T \Leftrightarrow SA = TA$).

* (AP = Q
$$\Leftrightarrow$$
 P = $A^{-1}Q$) và (SA = T \Leftrightarrow S = TA^{-1}).

Thật vậy,

$$AP = AQ \Leftrightarrow (A^{-1}A)P = (A^{-1}A)Q \Leftrightarrow I_nP = I_nQ \Leftrightarrow P = Q.$$

$$\begin{split} SA &= TA \iff S(AA^{-1}) = T(AA^{-1}) \iff SI_n = TI_n \iff S = T. \\ AP &= Q \iff (A^{-1}A)P = A^{-1}Q \iff I_nP = A^{-1}Q \iff P = A^{-1}Q. \\ SA &= T \iff S(AA^{-1}) = TA^{-1} \iff SI_n = TA^{-1} \iff S = TA^{-1}. \end{split}$$

4.2/ CÁC PHƯƠNG TRÌNH ỨNG DỤNG MA TRẬN KHẢ NGHỊCH:

Cho các ma trận khả nghịch $A \in M_n(\mathbf{R})$ và $C \in M_m(\mathbf{R})$.

a) Phương trình $A_{\mathbf{X}} = B [B \in M_{n \times m}(\mathbf{R}) \text{ và ma trận ẩn } \mathbf{X} \in M_{n \times m}(\mathbf{R})].$

Ta có $AX = B \iff X = A^{-1}B$ (nghiệm duy nhất).

Đặc biệt $AX = O \Leftrightarrow X = A^{-1}O = O$ (nghiệm duy nhất tầm thường).

b) Phương trình $\mathbf{X}\mathbf{A} = \mathbf{B} \; [\; \mathbf{B} \in \mathbf{M}_{m \times n}(\mathbf{R}) \; \; \text{và ma trận ẩn} \; \; \mathbf{X} \in \mathbf{M}_{m \times n}(\mathbf{R}) \;].$

Ta có $XA = B \Leftrightarrow X = BA^{-1}$ (nghiệm duy nhất).

Đặc biệt $XA = O \Leftrightarrow X = OA^{-1} = O$ (nghiệm duy nhất tầm thường).

c) Phương trình $A_{\mathbf{X}C} = \mathbf{B} \left[\mathbf{B} \in \mathbf{M}_{n \times m}(\mathbf{R}) \text{ và ma trận ẩn } \mathbf{X} \in \mathbf{M}_{n \times m}(\mathbf{R}) \right].$

Ta có $AXC = B \Leftrightarrow X = A^{-1}BC^{-1}(nghiệm duy nhất)$.

Đặc biệt $AXC = O \Leftrightarrow X = A^{-1}OC^{-1} = O$ (nghiệm duy nhất tầm thường).

<u>Ví dụ:</u>

$$\mathbf{A} = \begin{pmatrix} -3 & 4 & 6 \\ 0 & 1 & 1 \\ 2 & -3 & -4 \end{pmatrix} \in \mathbf{M}_3(\mathbf{R}) \text{ khả nghịch và ta có } \mathbf{A}^{-1} = \begin{pmatrix} 1 & 2 & 2 \\ -2 & 0 & -3 \\ 2 & 1 & 3 \end{pmatrix}.$$

$$\mathbf{C} = \begin{pmatrix} 2 & -1 \\ 5 & -2 \end{pmatrix} \in \mathbf{M}_2(\mathbf{R}) \text{ khả nghịch và ta có } \mathbf{C}^{-1} = \begin{pmatrix} -2 & 1 \\ -5 & 2 \end{pmatrix}.$$

Phương trình
$$AX = B = \begin{pmatrix} -2 \\ 3 \\ 5 \end{pmatrix}$$
 có nghiệm duy nhất $X = A^{-1}B = \begin{pmatrix} 14 \\ -11 \\ 14 \end{pmatrix}$.

Phương trình
$$\mathbf{AX} = \mathbf{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 có nghiệm duy nhất $\mathbf{X} = \mathbf{A}^{-1}\mathbf{O} = \mathbf{O} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

Phương trình
$$\mathbf{XC} = \mathbf{D} = \begin{pmatrix} 4 & 0 \\ 1 & -5 \\ -3 & 2 \end{pmatrix}$$
 có nghiệm duy nhất $\mathbf{X} = \mathbf{DC}^{-1} = \begin{pmatrix} -8 & 4 \\ 23 & -9 \\ -4 & 1 \end{pmatrix}$.

Phương trình
$$\mathbf{XC} = \mathbf{O} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$
 có nghiệm duy nhất $\mathbf{X} = \mathbf{OC}^{-1} = \mathbf{O} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$.

Phương trình CXA = E =
$$\begin{pmatrix} 7 & -1 & -2 \\ 0 & 6 & 3 \end{pmatrix}$$
 có nghiệm duy nhất

$$X = C^{-1}EA^{-1} = \begin{pmatrix} -14 & 8 & 7 \\ -35 & 17 & 16 \end{pmatrix}A^{-1} = \begin{pmatrix} -16 & -21 & -31 \\ -37 & -54 & -73 \end{pmatrix}.$$

Phương trình CXA =
$$\mathbf{O} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 có nghiệm duy nhất

$$\mathbf{X} = \mathbf{C}^{-1}\mathbf{O}\mathbf{A}^{-1} = \mathbf{O} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

4.3/ PHƯƠNG TRÌNH MA TRẬN TỔNG QUÁT:

Xét phương trình ma trận tổng quát $f(X) = \mathbf{O}$ với X là ma trận ẩn và f là một hàm theo X.

Ta xác định kích thước $(m \times n)$ của X và đặt

$$\mathbf{X} = \left(x_{ij}\right)_{1 \le i \le m} \text{ bao gồm mn } \hat{an} \text{ số thực } \mathbf{x}_{ij} \text{ (} 1 \le \mathbf{i} \le m, 1 \le \mathbf{j} \le n \text{)}.$$

Viết $f(X) = \mathbf{O}$ thành *một hệ phương trình thực* theo mn *ẩn số thực* \mathbf{x}_{ij} ($1 \le \mathbf{i} \le \mathbf{m}, 1 \le \mathbf{j} \le \mathbf{n}$). Nếu hệ này *giải được* (chẳng hạn nó là *một hệ phương* trình tuyến tính) thì ta tìm được *các ma trận* \mathbf{X} thỏa *phương trình ma trận* đã cho.

Ví dụ: Giải các phương trình ma trận sau:

a)
$$\begin{pmatrix} 2 & -3 & 5 \\ 3 & 1 & -4 \end{pmatrix} \mathbf{X}^t = \begin{pmatrix} 6 & -5 \\ -1 & 2 \end{pmatrix}$$
 (\mathbf{X}^t là ma trận chuyển vị của \mathbf{X}).

b)
$$\mathbf{Y}^2 = \mathbf{O_2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
.

Giải:

a)
$$\mathbf{X}^t \in \mathbf{M}_{3 \times 2}(\mathbf{R})$$
 nên $\mathbf{X} \in \mathbf{M}_{2 \times 3}(\mathbf{R})$. Đặt $\mathbf{X} = \begin{pmatrix} x & y & z \\ u & v & w \end{pmatrix}$ và $\mathbf{X}^t = \begin{pmatrix} x & u \\ y & v \\ z & w \end{pmatrix}$,

ta có
$$\begin{pmatrix} 2 & -3 & 5 \\ 3 & 1 & -4 \end{pmatrix} \begin{pmatrix} x & u \\ y & v \\ z & w \end{pmatrix} = \begin{pmatrix} 6 & -5 \\ -1 & 2 \end{pmatrix} \Leftrightarrow \begin{cases} 2x - 3y + 5z = 6 \\ 3x + y - 4z = -1 \\ 2u - 3v + 5w = -5 \\ 3u + v - 4w = 2 \end{cases}$$

Ta có hai hệ phương trình tuyến tính [hệ (I) theo các ẩn x, y, z và hệ (II) theo các ẩn u, v, w] và có thể giải chúng trong cùng một bảng ma trận như sau (vì các ma trận hệ số ở vế trái của hai hệ trùng nhau):

$$\begin{pmatrix} x & y & z & (I) & (II) \\ 3 & 1 & -4 & -1 & 2 \\ 2 & -3 & 5 & 6 & -5 \\ u & v & w & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x & y & z & (I) & (II) \\ 1^* & 4 & -9 & -7 & 7 \\ 0 & -11 & 23 & 20 & -19 \\ u & v & w & 0 \end{pmatrix} \rightarrow \begin{pmatrix} x & y & z & (I) & (II) \\ 1^* & 0 & -7/11 & 3/11 & 1/11 \\ 0 & 1^* & -23/11 & -20/11 & 19/11 \\ u & v & w & 0 \end{pmatrix} .$$

Bång 1: (1)
$$\rightarrow$$
 [(1) - (2)], (2) \rightarrow [(2) - 2(1)].

Bång 2:
$$(2) \rightarrow -11^{-1}(2)$$
, $(1) \rightarrow [(1) - 4(2)]$.

Hệ (I):
$$z \in \mathbb{R}$$
, $x = (7z + 3) / 11$, $y = (23z - 20) / 11$.

Hệ (II):
$$\mathbf{w} \in \mathbf{R}$$
, $\mathbf{u} = (7\mathbf{w} + 1) / 11$, $\mathbf{v} = (23\mathbf{w} + 19) / 11$.

Vậy phương trình ma trận có vô số nghiệm

$$X = \frac{1}{11} \begin{pmatrix} 7z+3 & 23z-20 & 11z \\ 7w+1 & 23w+19 & 11w \end{pmatrix} v \acute{o}i \ z, w \in \mathbf{R}.$$

b)

$$\mathbf{Y} = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \in \mathbf{M}_{2}(\mathbf{R}) \text{ và } \mathbf{Y}^{2} = \begin{pmatrix} x & y \\ z & t \end{pmatrix} \begin{pmatrix} x & y \\ z & t \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \iff \begin{cases} x^{2} + yz = 0(PT1) \\ y(x+t) = 0(PT2) \\ z(x+t) = 0(PT3) \\ t^{2} + yz = 0(PT4) \end{cases}$$

Từ (PT 2), ta xét

* Nếu y = 0: từ (PT1) và (PT4), ta có x = t = 0. Lúc này (PT3) $c\tilde{u}ng$

thỏa với mọi $z \in \mathbf{R}$.

* Nếu y thực tùy ý $\neq 0$: t = -x (PT 2), $z = -\frac{x^2}{y}$ (PT 1) với x thực tùy ý.

Lúc này (PT 3) và (PT 4) cũng thỏa.

Vậy phương trình ma trận có vô số nghiệm như sau:

$$\mathbf{Y} = \begin{pmatrix} 0 & 0 \\ z & 0 \end{pmatrix} \text{ và } \mathbf{Y} = \begin{pmatrix} x & y \\ -\frac{x^2}{y} & -x \end{pmatrix} \text{ với } \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{R} \text{ và } \mathbf{y} \neq \mathbf{0}.$$
