Simulations HW 4

Let Y = ``% final grade in Intro to Stats (0 to 100)" at a certain university. Suppose Y is associated with X = ``grade on diagnostic test for this course (0 to 40)" for the entire population of students who take this class as follows:

 $Y = 5 + 2X + \varepsilon$ where ε is normal with $\mu = 0$ and $\sigma = 3$ (thus $\sigma^2 = 9$)

Suppose a researcher cannon access this info, and therefore, he/she decides to use linear regression to estimate the parameters of this model. Suppose the researcher decides to poll 1 student from each subpopulations of students who got the following scores in the diagnostic test: 20, 25, 30, 35 and 40 (that is decides to get Y for n = 5 students). Simulate the samples that 1000 researchers could get as follows:

- 1. Create a 1000 x 5 matrix whose first column are random numbers from a normal random variable with parameters μ = 5 + 2(20) and standard deviation σ = 3; whose second column are random numbers from a normal random variable with parameters μ = 5 + 2(25) and standard deviation σ = 3, etc.
- 2. Create functions to obtain $\hat{\beta}_0$ and $\hat{\beta}_1$ (formulas on p. 416 of the textbook), and $\hat{\sigma}^2$ = MSE= SSE/(n-2) (formula for SSE on p. 418).
- 3. Create a matrix 1000 x 3 matrix that has as columns \hat{eta}_0 , \hat{eta}_1 and $\hat{\sigma}^2$.
- a. Obtain the histograms for your $\hat{\beta}_0$'s and $\hat{\beta}_1$'s. Is the shape of the histogram an indication that $\hat{\beta}_0$ and $\hat{\beta}_1$ are normally distributed? Why?
- b. Obtain the mean values of your $\hat{\beta}_0$'s, $\hat{\beta}_1$'s and $\hat{\sigma}^2$'s. Compare these means with the true β_0 , β_1 , and σ , and articulate sentences on whether this empirically shows that $\hat{\beta}_0$, $\hat{\beta}_1$ and $\hat{\sigma}^2$ are unbiased estimators of β_0 and β_1 and σ , respectively.
- 4. a If you constructed (don't do it for this homework assignment!) a 1000 x 2 matrix with the following columns, $\frac{\widehat{\beta}_0 \beta_0}{\sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{S_{XX}}\right)\sigma^2}}$ and $\frac{\widehat{\beta}_0 \beta_0}{\sqrt{\left(\frac{1}{n} + \frac{\overline{x}^2}{S_{XX}}\right)MSE}}$, what would the histograms of this columns

indicate? That is, what the difference be between these histograms? Hint: state the theoretical distribution of the population of these values.

b. a If you constructed (don't do it for this homework assignment!) a 1000 x 2 matrix with the following columns, $\frac{\widehat{\beta}_1 - \beta_1}{\sigma/\sqrt{S_{xx}}}$ and $\frac{\widehat{\beta}_1 - \beta_1}{\sigma/\sqrt{S_{xx}}}$, what would the histograms of this columns indicate? That is, what the difference be between these histograms? Hint: state the theoretical distribution of the population of these values.

- c. Construct a 1000 x 4 matrix (or two 1000 x 2 matrices) containing the lower and upper bounds of 95% confidence intervals for β_0 and β_1 (formulas on p. 426).
- d. What proportion of your intervals contain the true (population) β_0 ?
- e. What proportion of your intervals contain the true (population) β_1 ?