

## 17827 - ANALYSIS OF ALGORITHMS

## Information of the subject

Code - Course title: 17827 - ANALYSIS OF ALGORITHMS

**Degree:** 473 - Graduado/a en Ingeniería Informática 474 - Graduado/a en Ingeniería Informática y Matemáticas

722 - Graduado/a en Ingeniería Informática

734 - Graduado/a en Ingeniería Informática y Matemáticas (2019)

Faculty: 350 - Escuela Politécnica Superior

Academic year: 2020/21

#### 1. Course details

#### 1.1. Content area

Programación y estructuras de datos

1.2. Course nature

Compulsory

1.3. Course level

Grado (EQF/MECU 6)

1.4. Year of study

2

1.5. Semester

First semester

1.6. ECTS Credit allotment

6.0

1.7. Language of instruction

Español

1.8. Prerequisites

None.

## 1.11. Subject coordinator/s

| Secure Verification Code: | Da                                                                     | ate: | 14/01/2021 |
|---------------------------|------------------------------------------------------------------------|------|------------|
| Signed by:                | This teaching guide is not SVC signed because is not the final version |      |            |
|                           |                                                                        |      |            |
| URL Verification          | Pa                                                                     | age. | 1/3        |

### 1.12. Competences and learning outcomes

#### 1.12.1. Competences

CC3 Capacidad para evaluar la complejidad computacional de un problema, conocer estrategias algorítmicas que puedan conducir a su resolución y recomendar, desarrollar e implementar aquella que garantice el mejor rendimiento de acuerdo con los requisitos establecidos.

#### 1.13. Course contents

### 1. Analysis of the efficiency of algorithms

- 1. Types of analysis. Efficiency metrics.
- 2. Mathematical tools: o, O, etc. notations.
- 3. Sums and integrals growth.
- 4. Worst, best and average cases

## 2. Basic sorting algorithms

- 1. Selection and Bubble algorithms.
- 2. Insertion algorithm: pseudocode, efficiency.
- 3. Local algorithms: definition, lower bounds for the worst and average cases.

## 3. Advanced sorting algorithms

- 1. Divide and conquer methods.
- 2. Recurrent inequalities. Growth estimation.
- 3. Mergesort Algorithm: pseudocode, worst case.
- 4. Quicksort Algorithm: pseudocode, worst case, average case.
- 5. Heapsort Algorithm: pseudocode, worst case.

## 4. Decision trees for sorting algorithms

- 1. Decision trees: concept and construction.
- 2. Lower bounds for key comparison sorting algorithms.

### 5. Basic searching algorithms

- 1. Linear and binary search.
- 2. Dictionary ADT. Binary trees as DS for dictionaries.
- 3. Worst and average cases for binary tree search.
- 4. AVL trees: construction and maximum depth.

### 6. Hash tables

- 1. Design of hash functions and collision resolution.
- 2. Hash tables with chaining.
- 3. Hash tables with open addressing: linear, quadratic and random probing.

### 1.14. Course bibliography

There is no a single manual that meets in full the course contents. Anyway, the following references are a good complement to follow the course.

#### Basic references:

• Weiss, Data structures and algorithm analysis in C, Benjamin Cummings.

## Supplementary references:

- · Cormen, Leiserson, Rivest, Introduction to algorithms, The MIT Press--Mc Graw Hill,
- Baase, Computer algorithms, Addison-Wesley.

| Secure Verification Code: |                                                                        | Date: | 14/01/2021 |
|---------------------------|------------------------------------------------------------------------|-------|------------|
| Signed by:                | This teaching guide is not SVC signed because is not the final version |       |            |
|                           |                                                                        |       |            |
| URL Verification:         |                                                                        | Page: | 2/3        |

# Programming references:

• Kernighan, Ritchie, The C programming language, Prentice hall.

# 2. Teaching-and-learning methodologies and student workload

## 2.1. Contact hours

|                             | #horas |
|-----------------------------|--------|
| Contact hours (minimum 33%) |        |
| Independent study time      |        |

## 2.2. List of training activities

| Activity              | # hours |
|-----------------------|---------|
| Lectures              |         |
| Seminars              |         |
| Practical sessions    |         |
| Clinical sessions     |         |
| Computer lab          |         |
|                       |         |
| Laboratory            |         |
| Work placement        |         |
| Supervised study      |         |
| Tutorials             |         |
| Assessment activities |         |
| Other                 |         |

# 3. Evaluation procedures and weight of components in the final grade

## 3.1.1. List of evaluation activities

| Evaluatory activity   | % |
|-----------------------|---|
| Final exam            |   |
| Continuous assessment |   |

## 3.2.1. List of evaluation activities

| Evaluatory activity   | % |
|-----------------------|---|
| Final exam            |   |
| Continuous assessment |   |

| Secure Verification Code: |                                                                        | Date: | 14/01/2021 |
|---------------------------|------------------------------------------------------------------------|-------|------------|
| Signed by:                | This teaching guide is not SVC signed because is not the final version |       |            |
|                           |                                                                        |       |            |
| URL Verification:         |                                                                        | Page: | 3/3        |