Password Strength Checker

DISCRETE PROJECT

WHAT IS A PASSWORD?

The measure of how difficult it is for an attacker to guess or crack a password.

IMPORTANCE OF PASSWORD STRENGTH

Enhances security by increasing the difficulty of brute-force attacks.

OUR GOAL TODAY

Using discrete mathematics principles to analyze and implement a password strength checker.

Password Strength Checker

likelihood chancs of guessing

How much are the total combinations in the password?

Definition, concepts, relevant theories, and examples.

Definition, concepts, relevant theories, and examples.

Combinations Of Passwords

FOR A PASSWORD OF LENGHT N

LOWERCASE LETTERS: (26)

W UPPERCASE LETTERS: (26)

B DIGITS: (10)

SPECIAL CHARACTERS: E.G WE ARE GETTING 10 . SO (10)

FOR EXAMPLE: IF WE ARE MAKING A PASSWORD OF 8 CHARACTERS THE TOTAL COMBINATIONS WILL BE

$$(26+26+10+10) = 728$$

TOTAL POSSIBLE PASSWORDS: 722,204,136,308,736

Password Strength Criteria Using Logical Operators

AND OPERATOR (~)

Password meets all requirements (e.g., uppercase and lowercase).

OR OPERATOR (~)

Password has at least one requirement (e.g., either uppercase or digits).

NOT OPERATOR(!)

Exclude easy sequences (e.g., "123456").

PASSWORD IS STRONG IF: LENGTH >> 8 AND CONTAINS UPPERCASE AND CONTAINS LOWERCASE

AND CONTAINS SPECIAL CHARACTER

Probability of Guessing a Password

RANDOM GUESSING ATTACK

IF someone is guessing in the first try the probability of it will be

1/Total

combinations

ENTROPY OF PASSWORD:

Measures uncertainty:
Entropy=log2(Total Combinations)

A high entropy indicates a lower probability of guessing.

Complexity Analysis and Big-O Notation (worst case)

FOR A PASSWORD OF LENGTH N, THE CHECKER RUNS IN O(N) AS IT EXAMINES EACH CHARACTER.

WORST CASE: ALL CRITERIA CHECKED WITHOUT MEETING, STILL O(N).

Password Strength Checker Algorithm

CHECK LENGTH: ENSURE PASSWORD HAS A MINIMUM LENGTH N.

UPPERCASE CHECK: ∃x∈PASSWORD | x∈UPPERCASE

LOWERCASE CHECK: BYEPASSWORD I YELOWERCASE

DIGITS CHECK: $\exists z \in PASSWORD \mid z \in DIGITS$

LOGICAL OUTPUT: PASSWORD PASSES IF IT MEETS ALL CRITERIA, INDICATING STRONG, MEDIUM, OR WEAK STATUS.

Real-World Applications and Future Considerations

APPLICATIONS IN CYBERSECURITY

ADAPTING TO MULTI-FACTOR AUTHENTICATION.

Conclusions

FOR ANALYZING PASSWORD STRENGTH.

AS PASSWORD STRENGTH CHECKING COMBINES COMBINATORICS, PROBABILITY, AND LOGICAL OPERATIONS.

STRONG PASSWORDS CAN BE SYSTEMATICALLY ENFORCED BY APPLYING DISCRETE MATHEMATICAL PRINCIPLES.

Thanks!