12. Counter

7조 20191649 정준서 20201961 ATAR DOGUKAN 20221590 이다영

목차

- 1. 순차 논리 회로 분석과 설계
- 2. 동기식 카운터와 비동기식 카운터
- 3. 2 진 Counter
- 4. Decade Counter 설명
- 5. 비동기식 Decade Counter
- 6. 동기식 Decade Counter
- 7. 동기식 2421 Decade Counter

순차 논리 회로

조합 논리 회로: 입력 값에 따라 출력 값이 결정되는 논리 회로

순차 논리 회로

: 입력 값과 현재 상태에 의해 출력 값이 결정되는 논리 회로

상태(state): 기억 회로에 저장되어 있는 2진 정보

Ex. Counter, Flip-Flop, Register

순차 회로 분석 절차

[단계 1] 회로 입력과 출력에 대한 변수 명칭 부여

[단계 2] 조합논리회로가 있으면 조합논리회로의 부울대수식 유도

[단계 3] 플립플롭의 다음 상태 값과 출력을 구하여 상태 방적식 유도

[단계 4] 상태표를 이용하여 상태도 작성

[단계 5] 상태표와 상태도를 분석하여 회로의 동작 설명

*[*단계 1]

위쪽 플립플롭: FA

아래쪽 플립플롭 : FB

입력변수: x

출력변수: y

FA 플립플롭의 출력: A

FB 플립플롭의 출력: B

FA 플립플롭의 입력: JA, KA

FB 플립플롭의 입력: JB, KB

*[*단계 2]

FA 플립플롭의 입력 : JA = ~Ax, KA = B

FB 플립플롭의 입력 : **JB = A+x**, **KB = ~x**

출력 : **y = Bx**

 $\mathbf{I} \mathbf{J} \mathbf{D} = \mathbf{A} + \mathbf{X}, \quad \mathbf{N} \mathbf{D}$

*[*단계 3]

- x=0, A=0, B=0이면 FA=0, FB=0, y=0이 된다.
- x=0, A=0, B=1이면 FA=0, FB=0, y=0이 된다.
- x=0, A=1, B=0이면 FA=1, FB=1, y=0이 된다.
- x=0, A=1, B=1이면 FA=0, FB=0, y=0이 된다.
- x=1, A=0, B=0이면 FA=1, FB=1, y=0이 된다.
- x=1, A=0, B=1이면 FA=1, FB=1, y=1이 된다.
- x=1, A=1, B=0이면 FA=1, FB=1, y=0이 된다.
- x=1, A=1, B=1이면 FA=0, FB=1, y=1이 된다.

$$A(t+1) = \overline{B}A + \overline{A}x\overline{A} = \overline{B}A + x\overline{A}$$

$$B(t+1) = \overline{x}B + (A+x)\overline{B} = \overline{x}B + A\overline{B} + x\overline{B} = x \oplus B + A\overline{B}$$

*[*단계 *4]*

처대사대			다음	출력			
언제	현재상태		x = 0		x = 1		x = 1
A	В	A	В	A	В	\boldsymbol{y}	y
0	0	0	0	1	1	0	0
0	1	0	0	1	1	0	1
1	0	1	1	1	1	0	0
1	1	0	0	0	1	0	1

*[*단계 *5]*

상태도(state diagram) :

순차 논리회로에 클럭 펄스가 입력될 때마다 상태가 바뀌는 내용을 이해하 기 쉽도록 그림 형태로 나타낸 것

- -원은 내부에 2진수 순차 논리회로의 상태를 표시
- -화살표는 각 상태의 변화를 표시

순차 회로 설계 절차

- 1. 회로의 동작에 관하여 구문 설명을 상세히 분석 후 상태도와 상태표를 구한다.
- 2. 상태표를 최소화한다.
- 3. 사용하려는 플립-플롭의 종류를 결정하고 각각 상태에 binary값을 지정하여 준다.
- 4. 플립-플롭의 입력 여기표와 출력 함수를 구한다.
- 5. 회로를 구성한다.
- 6. 실험하여 위의 1의 구문 설명에 맞게 작동하는지 확인한다.

입력	현재	상태	다음	상태	풀립풀롭 입력				출력
x	Α	В	Α	В	JA	KA	J _B	K ₈	y
0	0	0	1	1	1	X	1	X	0
0	0	1	0	0	0	X	X	1	0
0	1	0	0	1	X	1	1	X	0
0	1	1	1	0	X	0	X	1	0
1	0	0	0	0	0	X	0	X	0
1	0	1	0	1	0	X	X	0	1
1	1	0	1	0	X	0	0	X	0
1	1	1	1	1	X	0	X	0	1

<JK 플립플롭을 이용한 순차 논리회로의 여기표>

JA = (
$$\sim$$
B)(\sim x), KA = (\sim B)(\sim x)
JB = \sim x, KB = \sim x
Y = Bx

<JK 플립플롭의 입력 함수와 순차 논리회로의 출력>

<JK 플립플롭을 이용한 순차 논리회로>

카운터 Counter

카운터(counter):

클럭 펄스가 입력될 때마다 플립-플롭의 상태가 변화하는 순차 논리 회로

비동기식 카운터(asynchronous counter) :

첫번째 플립-플롭에만 클럭 펄스가 인가되고, 다른 플립-플롭은 자신의 플립-플롭의 클럭 펄스를 이전 플립-플롭의 출력으로 하는 카운터

동기식 카운터(synchronous counter) :

모든 플립-플롭에 동시에 클럭 펄스가 인가되는 특성을 가지는 카운터

2 전 Counter

Binary Counter

that counts in binary digits (bits)

- * One flip-flop in the counter represents one bit
- * The combination of flip-flops determines the count.

2 전 Counter

* A 2-bit binary counter consists of two flip-flops, each representing one bit Q0 & Q1

* With 2 bits, the counter can represent values from 0 to 3 in binary (00, 01, 10, 11)

2 진 Counter (Components)

- * Flip-flops
- * Clock input
- * Clear Input

<u> 2 전 Counter (</u>실습)

* Clock, reset

* 2-bit output (Counter

value)

* Clock input

* Clear Input

Present	next state / output x/z				
state qi	input .x = 0	input $.x = 1$			
q0					
q1					
q2					
q3					

В

Decade Counter

Modulo 10 Counter: 0~9 총 10개

필요한 플립-플롭 개수: $2^3 < 10 < 2^4 \rightarrow 총 4$ 개

예시: 비동기식, 동기식 Decade Counter 동기식 2421 Decade Counter

일반 Counter

유효한 상태: 0~15 총 16개

Decade Counter

유효한 상태: 0~9 총 10개

유효하지 않은 상태 처리 방법

Full Sequence Counter → Truncated Counter

Present State								
Clock		Decimal						
Count	QD	QC	QB	QA	Value			
1	0	0	0	0	0			
2	0	0	0	1	1			
3	0	0	1	0	2			
4	0	0	1	1	3			
5	0	1	0	0	4			
6	0	1	0	1	5			
7	0	1	1	0	6			
8	0	1	1	1	7			
9	1	0	0	0	8			
10	1	0	0	1	9			
11	Соц	ınter Rese	ets its Out	outs back	to Zero			

NAND 게이트: 10으로 나누기

유효한 상태: 0(0000)~9(1001) 총 10개

유효하지 않은 상태: 10(1010)~15(1111) 총 6개 → Don't Care

State Diagram

→ 0부터 9까지 증가 후 9(1001)에서 0(0000)

State Table

Present State				Next State			
Q3	Q2	Q1	Q0	Q3(t+1)	Q2(t+1)	Q1(t+1)	Q0(t+1)
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	X	X	Χ	X
1	0	1	1	X	Χ	Χ	X
1	1	0	0	X	X	Χ	X
1	1	0	1	Х	Χ	Χ	X
1	1	1	0	Х	Χ	Χ	X
1	1	1	1	Х	Χ	Χ	X

1001→0000

1010~1111: Don't Care

State Table

Present State			Next Sta	Next State			T 플립-플롭 입력				
Q3	Q2	Q1	Q0	Q3(t+1)	Q2(t+1)	Q1(t+1)	Q0(t+1)	T3	T2	T1	T0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	1
0	1	0	1	0	1	1	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	1
0	1	1	1	1	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	1
1	0	0	1	0	0	0	0	1	0	0	1
1	0	1	0	Х	Х	Х	Х	Χ	X	Х	Х
1	0	1	1	Х	X	Х	Х	Χ	X	Х	Х
1	1	0	0	Х	Х	Х	Х	Χ	X	Х	Х
1	1	0	1	Х	Х	Х	Х	Х	X	Х	X
1	1	1	0	Х	X	Х	Х	Х	X	Х	X
1	1	1	1	Х	X	Х	Х	Χ	X	Х	X

카르노 맵 작성

T3

T1

$$Q1Q0 \\ Q3Q2 & 00 & 01 & 11 & 10 \\ \hline 00 & 0 & 1 & 1 & 1 \\ \hline 00 & 0 & 1 & 1 & 0 \\ \hline 01 & 0 & 1 & 1 & 0 \\ \hline 11 & X & X & X & X \\ \hline 10 & 0 & 0 & X & X \\ \hline \end{tabular}$$

 $T1 = \overline{Q3} \ Q0$

T2

\Q1Q		•		
Q3Q2	00	01	11	10
00	0	0	1	0
01	0	0	1	0
11	Х	Х	Х	Х
10	0	0	Х	Х

$$T2 = Q0 Q1$$

Clk이 1이 될 때 (rising edge) 값이 변경: Up Counter

2421 코드 복습

계산 방법: (2*A) + (4*B) + (2*C) + (1*D)

A, B, C, D: 0 또는 1

LSB부터 1씩 증가

State Diagram

State Table

Present Sta	ate			Next State				
Q3	Q2	Q1	Q0	Q3(t+1)	Q2(t+1)	Q1(t+1)	Q0(t+1)	
0	0	0	0	0	0	0	1	
0	0	0	1	0	0	1	0	
0	0	1	0	0	0	1	1	
0	0	1	1	0	1	0	0	
0	1	0	0	1	0	1	1	
1	0	1	1	1	1	0	0	
1	1	0	0	1	1	0	1	
1	1	0	1	1	1	1	0	
1	1	1	0	1	1	1	1	
1	1	1	1	0	0	0	0	

사용되지 않은 State들은 Don't Care

State Table

Present State				Next State			T 플립-플롭 입력				
Q3	Q2	Q1	Q0	Q3(t+1)	Q2(t+1)	Q1(t+1)	Q0(t+1)	T3	T2	T1	T0
0	0	0	0	0	0	0	1	0	0	0	1
0	0	0	1	0	0	1	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	1
0	0	1	1	0	1	0	0	0	1	1	1
0	1	0	0	1	0	1	1	1	1	1	1
1	0	1	1	1	1	0	0	0	1	1	1
1	1	0	0	1	1	0	1	0	0	0	1
1	1	0	1	1	1	1	0	0	0	1	1
1	1	1	0	1	1	1	1	0	0	0	1
1	1	1	1	0	0	0	0	1	1	1	1

카르노 맵 작성

T3

T1

T0

$$T3 = \overline{Q3} Q2 + Q0 Q1 Q2$$

$$T1 = \overline{Q3} Q2 + Q0$$

$$11$$

$$0$$

$$10$$

$$X$$

Q1Q Q3Q2	00	01	11	10
00	0	1	1	0
01	1	Х	Χ	Χ
11	0	1	1	0
10	Х	Х	1	Χ

T2

$$T2 = \overline{Q3} \ Q2 + Q0 \ Q1$$

Q1Q Q3Q2	0 00	01	11	10	
00	1	1	1	1	
01	1	Х	Х	7 0	= 1
11	1	1	1	1	
10	Х	Х	1	Х	

Clk이 1이 될 때 (rising edge) 값이 변경: Up Counter

 $0100(4) \rightarrow 1011(5)$

 $0100(4) \rightarrow 1011(5)$

출처 및 팀원 별 기여도

출처

- '디지털 논리회로 이해', 오창환 저, 한국학술정보(주)
- https://www.electronics-tutorials.ws/counter/count_2.html
- https://www.electronics-tutorials.ws/counter/count_3.html
- 서강대학교 12주차 자료

팀원 별 기여도