Sinyal & Sistem

Week 3 - 4: Representasi, Sifat-sifat dasar, Interkoneksi, Linear/Non-Linear, LTI

"if you show persistence, failure is impossible"

- S.B. Anthony

@btatmaja

Based on "Sistem Linear" by D. Prananto

Representasi Sistem

SISTEM WAKTU-KONTINU

Representasi matematis

$$x(t) \to y(t)$$

SISTEM WAKTU-DISKRIT

Representasi matematis

$$x[n] \to y[n]$$

Representasi Sistem

Contoh:

$$i(t)R + v_c(t) - v_s(t) = 0$$
$$i(t) = \frac{v_s(t) - v_c(t)}{R}$$

dimana

$$i(t) = C \frac{dv_c(t)}{dt}$$

$$C\frac{dv_c(t)}{dt} = \frac{v_s(t) - v_c(t)}{R}$$
$$\frac{dv_c(t)}{dt} = \frac{v_s(t)}{RC} - \frac{v_c(t)}{RC}$$
$$\frac{dv_c(t)}{dt} + \frac{v_c(t)}{RC} = \frac{v_s(t)}{RC}$$

Hub. masukan keluaran $v_s(t) \rightarrow v_c(t)$

Interkoneksi Sistem

• Interkoneksi seri (Cascade)

• Interkoneksi paralel

Interkoneksi Sistem

• Interkoneksi seri-paralel

• Interkoneksi umpan balik

Interkoneksi Sistem

Contoh:

Representasi Matematis

$$i(t) = \frac{v_s(t) - v_c(t)}{R}$$

$$i(t) = C \frac{dv_c(t)}{dt} \rightarrow v_c(t) = \frac{1}{C} \int i(t)dt$$

Diagram Blok

1. Sistem dengan dan tanpa memori

Sistem tanpa memori

Keluaran pada waktu/saat ini hanya bergantung pada masukan pada waktu/saat ini saja

Contoh:
$$y[n] = (2x[n] - x^2[n])^2$$
 (1)
 $v(t) = Ri(t)$ (2)
 $y(t) = x(t)$ (3)
 $y[n] = x[n]$ (4)

1. Sistem dengan dan tanpa memori

Sistem dengan memori

Keluaran bergantung pada masukan pada waktu saat ini dan waktu sebelum.

Sistem menahan atau menyimpan informasi mengenai harga masukan yang bukan hanya harga masukan saat ini

$$y[n] = \sum_{k = -\infty} x[n] \tag{1}$$

$$y[n] = x[n-1] \tag{2}$$

$$v(t) = \frac{1}{C} \int_{-\infty}^{t} i(t)d\tau \tag{3}$$

2. Invertibilitas dan Sistem Inversi

Sistem invertibel

Invertibel jika meghasilkan keluaran yang sama dengan sinyal masukan setelah melalui pembalik (*inverter*)

Contoh:

$$y(t) = Ri(t) \rightarrow \text{sistem invertibel}$$

 $w(t) = \frac{1}{R}y(t) \rightarrow \text{sistem balikan}$
sehingga $w(t) = x(t)$

3. Kausalitas

Kausal jika keluaran pada waktu t hanya bergantung pada masukan pada waktu t dan waktu sebelum t

Contoh:

$$y[n] = x[n-1] \rightarrow y[5]$$
 bergantung pada $x[4]$
 $y(t) = x^2(t-1) \rightarrow y(5)$ bergantung pada $x(4)$

Semua sistem tanpa memori adalah sistem kausal

4. Invariansi Waktu (tak ubah waktu)

Tanggapan terhadap input tidak berubah dengan perubahan waktu

Contoh:

$$x(t) \to y(t) \Rightarrow x(t - t_0) \to y(t - t_0) \tag{1}$$

$$x[n] \to y[n] \Rightarrow x[n - n_0] \to y[n - n_0] \tag{2}$$

$$y(t) = \sin x(t) \tag{3}$$

Buktikan no (3) adalah sistem tak ubah waktu!

5. Linieritas

Sistem linier → memiliki sifat superposisi:

1. Aditivitas
$$x_1(t) + x_2(t) \to y_1(t) + y_2(t)$$

2. Homogenitas
$$ax_1(t) \rightarrow ay_1(t)$$

Gabungan kedua sifat menghasilkan kombinasi linier:

$$ax_1(t) + bx_2(t) \to ay_1(t) + by_2(t)$$
 (1)

$$ax_1[n] + bx_2[n] \to ay_1[n] + by_2[n]$$
 (2)

Buktikan bahwa y(t) = tx(t) adalah sistem linier!

Referensi

- A. V. Oppenheim, A. S. Willsky, S. H. H. Nawab, Sinyal dan Sistem jilid 1, (Penerbit Erlangga, Jakarta, 2000)
- Plot grafik dibuat dengan bantuan program iPython dan Inkscape

Referensi pemrograman Python:

- (1) Python Scientific Lecture Notes, http://scipy-lectures.github.io/index.html
- (2) The Python Tutorial, https://docs.python.org/2/tutorial/index.html
- (3) Matplotlib, http://matplotlib.org/index.html