Université Mohamed Premier Faculté Pluridisciplinaire de Nador Département de Chimie

Année universitaire : 2023/2024

Filière : BCG-S1 Session Normale Pr. A. EL AATIAOUI

Examen d'Atomistique et Liaisons Chimiques Durée 1h30

	2 4. 00 20	
Nom et Prénom	N° d'examen	Note/20
2. Quelle est en eV, l'énergie d'i	gie ionisation d'un atome	de san état nean l'instime gène à partir de cet état excité?
AE = Eg = Eg	_ 0,544 ev	
Représentez sur un diagramm regroupez-les par série spectr		possibles à partir de ce niveau,
Paschen	Brackett $n=4$ $b n=3$ $b n=4$	
4. Quelle est la transition qui pu dégagée par cette transition?	how correspond	r d'onde, puis calculez l'énergie
5. Quelle est en nm, la longueu hydrogénoïde _Z Li ²⁺ (Z est l	ur d'onde qui correspond à la e numéro atomique du lithiu	même transition dans le cas de l'ion m à déterminer)?
On donne pour l'hydrogène E_n		Page 1 of 3 $R_h = 1,097 \times 10^7 m^{-1}.$

No d'examen:

Exercice 2

Soit un élément X qui appartient à la même période que le sodium (Z = 11) et au même groupe que le sélénium (VI_A).

1. Déterminez la configuration électronique et le numéro atomique de cet élément.

X & à la mipais de de sodium >> même n que le sodium.

Na = 15 25 2p 3 01 >> n = 3; Meme group de sélenium

(Tr) dre ille X à 6 électrons de mo la Cev (X 15 2 5 2 p 3 3 p 4

2. Représentez la couche de valence sous forme des quase quantiques et déduisez : la valence, le nombre d'électrons célibataires et les propriétés magnétiques de cet élément.

3,3,3,4 [Til MIT] Lavatence 2 (de-cel·batair)

Ex Propriet; magnétique ; xest-para magnétique

3. Donnez la valeur des nombres quantiques caractérisant l'électron(s) célibataire(s) de X.

P=1 (Souscouche p), + (m3+1 = m=-1,1,0; s=+1/2

Exercice 3

On propose d'étudier les molécules chlorées suivantes, dans lesquelles l'atome central est souligné.

 $\underline{\mathbf{A}}\mathbf{s}H_3$ et $\underline{\mathbf{N}}H_3$

Données: Numéro atomique Z(As) = 33; Z(N) = 7; Z(H) = 1

1. En se basant sur la configuration électronique de chaque élément, proposez la représentation de Lewis pour chaque molécule.

$\underline{\mathbf{A}}\underline{\mathbf{s}}H_3$	$\mathbf{\underline{N}}H_3$		
33 As: 15 25 25 35 35 45 30 45	2N: 15 25 203 [N] [TIMT		
1か2が2p63か3p63d10454p	1H: 151 [7)		
H: 10 [7]	H 10' [T]		
H 101 (T)	H 10' [7]		
H - AS - H	H — N — H		

2. Donner le type VSEPR, la figure de répulsion et la géométrie réelle des molécules précédentes :

$\underline{\mathbf{A}}\underline{\mathbf{s}}H_3$	$\underline{\mathbf{N}}H_3$		
Type AX_nE_m : AX_3 ELLLLLLLL	Type AX _n E _m :A.X3.E. La figure de répulsion :		
La géométrie réelle :	La géométrie réelle :	Page 2 of 3	
pyrami.d	P.ynamid		

