TERMOMETRO M-BIT

Il termometro prende in input N bit e restituisce in output 2^N-1 bit. I bit in output partono da tutti 0 e vanno crescendo fino a tutti 1.

Prendiamo un esempio della tabella della verità di un termometro 3 input e 7 output

A^2	A^1	A^0	<i>Y</i> ⁶	Y^5	<i>Y</i> ⁴	Y^3	Y^2	Y^1	Y^0
0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	0	1	
0	1	1	0	0	0	0	1	1	1
1	0	0	0	0	0	1	1	1	1
1	0	1	0	0	1	1	1	1	1
1	1	0	0	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1	1

Le relative funzioni per ogni Y:

$$Y^{0} = A^{0} + A^{1} + A^{2}$$

$$Y^{1} = A^{1} + A^{2}$$

$$Y^{2} = A^{0} \times (A^{1} + A^{2})$$

$$Y^{3} = A^{2}$$

$$Y^{4} = (A^{0} + A^{1}) \times A^{2}$$

$$Y^{5} = A^{1}A^{2}$$

$$Y^{6} = A^{0}A^{1}A^{2}$$

BUBBLE PUSHING

MULTI PLEXER

Un multiplexer si può fare anche con 2 buffer tristate :

Si possono realizzare funzioni logiche usando solamente i MUX piuttosto che AND o OR.

ESEMPIO:

Prendiamo la tabella della verità dell'OR, e spezziamola in 2, per i valori di A=0

Α	В	Υ	Α	В	Υ
0	0	0	0	0	0
0	1	1	0	1	1
1	0	1	1	0	1
1	1	1	1	1	1

Notiamo che se A vale 0, Y vale B, se A vale 1, Y vale 1, quindi possiamo rappresentarlo con un multiplexer in questo modo :

Α	Υ
0	В
1	1

TEOREMA DI SHANNON

Data una funzione booleana da N variabili, vale la seguente uguaglianza:

$$f(x_1, x_2 ..., x_N) = x_1 \times f(1, x_2, x_3 ..., x_N) + \overline{x_1} \times f(0, x_2, x_3 ..., x_N)$$

Con questo teorema, realizziamo un $1, x_2, x_3 \dots, x_N$ a funzione di N variabili usando un MUX e 2 funzioni da N-1 variabili.

TIMING

L'evoluzione temporale avviene con dei ritardi.

Il ritardo è l'intervallo di tempo da quando l'ingresso raggiunge metà dell'aumento/curva, a quando lo raggiunge l'uscita.

Propagation delay (TPD): l'intervallo massimo che intercorre da quando cambia l'ingresso

Contamination delay(TCD): : l'intervallo minimo che intercorre da quando cambia l'ingresso

La finestra di tempo in cui al cambio dell'input, l'output non cambia è il TCD

Il percorso più lungo è il *critical path*, in questo case perché la corrente passa per 3 gate, il più corto, lo *short path* vede la corrente passare per un solo gate.

Critical path = TPD = 2*(TPD del gate AND) + (TPD del gate OR)

Short path = (TCD del gate AND)