Robust exploration in linear quadratic reinforcement learning

Jack Umenberger, Mina Ferizbegovic, Håkan Hjalmarsson and Thomas B. Schön

Summary and contributions

This work is concerned with the problem of minimizing the worst-case quadratic cost for an uncertain linear dynamical system. We derive:

- a high-probability bound on the **spectral norm** of the system parameter estimation error
- exact convex formulation of worst-case infinite-horizon LQR
- a (convex) algorithm that balances the exploration/exploitation tradeoff by performing robust, targeted exploration.

Problem statement

We are concerned with control of linear time-invariant systems

$$x_{t+1} = Ax_t + Bu_t + w_t, \quad w_t \sim \mathcal{N}(0, \sigma_w^2 I), \quad x_0 = 0.$$
 (1)

The true parameters $\{A_{tr}, B_{tr}\}$ are unknown, and must be inferred from data, $\mathcal{D}_n := \{x_t, u_t\}_{t=1}^n$. We assume: i) that σ_w is known, and ii) we have access to initial data \mathcal{D}_0 , obtained, e.g. during a preliminary experiment.

The posterior distribution $p(\theta|\mathcal{D}_n)$ is given by $\mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$, for $\theta =$ $\text{vec}([A\ B])$ and a uniform prior $p(\theta) \propto 1$. This gives a high-probability elliptical credibility region:

$$\Theta_e(\mathcal{D}_n) := \{ \theta : (\theta - \mu_\theta)^\top \Sigma_\theta^{-1} \theta - \mu_\theta \} \le c_\delta \}.$$
 (2)

Static-gain policies: $u_t = Kx_t + \Sigma^{1/2}e_t$, where $e_t \sim \mathcal{N}(0, I)$.

'Robust reinforcement learning' (RRL) problem:

$$\min_{\{\mathcal{K}_i\}_{i=1}^N} \mathbb{E}\left[\sum_{t=0}^T \sup_{\{A_t, B_t\} \in \Theta_e(\mathcal{D}_t)} c(x_t, u_t)\right], \text{ s.t. } x_{t+1} = A_t x_t + B_t u_t + w_t,$$
(3)

Modeling uncertainty

We will work with models of the form $\mathcal{M}(\mathcal{D}) := \{\hat{A}, \hat{B}, D\}$ where $D \in$ $\mathbb{S}^{n_x+n_u}$ specifies the following region centered about $\{\hat{A}, \hat{B}\}$:

$$\Theta_m(\mathcal{M}) := \{ A, B : X^{\top} DX \leq I, X = [\hat{A} - A, \hat{B} - B]^{\top} \}$$
 (4)

The following lemma suggests a specific means of constructing D_i , so as to ensure that Θ_m defines a high probability credibility region:

Lemma 1. Given data
$$\mathcal{D}_n$$
 from (1), and $0 < \delta < 1$, let $D = \frac{1}{\sigma_w^2 c_\delta} \sum_{t=1}^{n-1} \begin{bmatrix} x_t \\ u_t \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^\top$, with $c_\delta = \chi_{n_x^2 + n_x n_u}^2(\delta)$.
Then $[A_{tr}, B_{tr}] \in \Theta_m(\mathcal{M})$ w.p. $1 - \delta$.

Approximate robust reinforcement learning problem

Consider the following approximation of (3),

$$\sum_{i=1}^{N} \sup_{\substack{\{A,B\} \in \\ \Theta_m(\mathcal{M}(\mathcal{D}_{t_i}))}} \mathbb{E}\left[\sum_{t=t_{i-1}}^{t_i} c(x_t, u_t)\right], \text{ s.t. } x_{t+1} = \mathbf{A}x_t + \mathbf{B}u_t + w_t, \ u_t = \mathcal{K}_i(x_t).$$
 (5)

- update the 'worst-case' model at the beginning of each epoch, when we deploy a new policy, rather than at each time step.
- select the worst-case model from Θ_m rather than Θ_e .

We approximate the above with the infinite-horizon cost, appropriately scaled:

$$\mathbb{E}\left[\sum_{i=1}^{N} T_i \times J_{\infty}\left(\mathcal{K}_i, \Theta_m(\mathcal{M}(\mathcal{D}_{t_i}))\right)\right]. \tag{6}$$

Convex optimization of infinite horizon cost

The infinite horizon cost can be expressed as

$$\lim_{\tau \to \infty} \frac{1}{\tau} \mathbb{E} \left[\sum_{t=1}^{\tau} x_t^{\top} Q x_t + u_t^{\top} R u_t \right] = \operatorname{tr} \left(\begin{bmatrix} Q & 0 \\ 0 & R \end{bmatrix} \lim_{\tau \to \infty} \frac{1}{\tau} \sum_{t=1}^{\tau} \mathbb{E} \left[\begin{bmatrix} x_t \\ u_t \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^{\top} \right] \right). \tag{7}$$

For known A and B the covariance $W = \mathbb{E}[x_t x_t^{\top}]$ satisfies:

$$W \succeq [A B] \begin{bmatrix} W & WK^{\top} \\ KW & KWK^{\top} + \Sigma \end{bmatrix} [A B]^{\top} + \sigma_w^2 I.$$
 (8)

We introduce the change of variables $Z = WK^{\top}$ and $Y = KWK^{\top} + \Sigma$, collated in the variable $\Xi = \begin{bmatrix} W & Z \\ Z^{\top} & Y \end{bmatrix}$. With this change of variables, minimizing (7) subject to (8) is a **convex program**. To ensure that (8) holds for all $\{A, B\} \in \Theta_m(\mathcal{M})$ we have:

$$S(\lambda, \Xi, \hat{A}, \hat{B}, D) := \begin{bmatrix} I & \sigma_w I & 0 \\ \sigma_w I & W - [\hat{A} \hat{B}] \Xi [\hat{A} \hat{B}]^\top - \lambda I & [\hat{A} \hat{B}] \Xi^\top \\ 0 & \Xi [\hat{A} \hat{B}]^\top & \lambda D - \Xi \end{bmatrix} \succeq 0.$$
 (9)

Theorem 1. The problem $\min_{\mathcal{K}} J_{\infty}(\mathcal{K}, \Theta_m(\mathcal{M}))$ can be solved by the convex SDP:

$$\min_{\lambda,\Xi} \text{ tr } (\text{blkdiag}(Q,R)\Xi) \,, \text{ s.t. } S(\lambda,\Xi,\hat{A},\hat{B},D) \succeq 0, \; \lambda \geq 0, \tag{10}$$

with the optimal policy given by $K = \{Z^{\top}W^{-1}, Y - Z^{\top}W^{-1}Z\}.$

Propagating uncertainty

Define the approximate model, at time $t = t_i$ given data \mathcal{D}_{t_i} , by

$$\tilde{\mathcal{M}}_{j}(\mathcal{D}_{t_{i}}) := \{\tilde{A}_{j|i}, \tilde{B}_{j|i}, \tilde{D}_{j|i}\} \approx \mathbb{E}\left[\mathcal{M}(\mathcal{D}_{t_{j}})|\mathcal{D}_{t_{i}}\right].$$

Recall that: $D_{i+1} = D_i + \frac{1}{\sigma_w^2 c_\delta} \sum_{t=t_i}^{t_{i+1}} \begin{bmatrix} x_t \\ u_t \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^{\top}$. We use the approximation:

$$\mathbb{E}\left[\sum_{t=t_i}^{t_{i+1}} \begin{bmatrix} x_t \\ u_t \end{bmatrix} \begin{bmatrix} x_t \\ u_t \end{bmatrix}^{\top}\right] \approx T_{i+1} \begin{bmatrix} W_i & W_i K_i^{\top} \\ K_i^{\top} W_i & K_i W_i K_i^{\top} + \Sigma_i \end{bmatrix} = T_{i+1} \Xi_i. \tag{11}$$

To preserve convexity in our formulation, we approximate future nominal parameter estimates with the current estimates: given data \mathcal{D}_{t_i} we set $\tilde{A}_{i|i} = \hat{A}_i$ and $\tilde{B}_{i|i} = \hat{B}_i$.

Algorithm

Algorithm 1 Receding horizon application to true system

- 1: Input: initial data \mathcal{D}_0 , confidence δ , LQR cost matrices Q and R, epochs $\{t_i\}_{i=1}^N$.
- 2: **for** i = 1 : N **do**
- Compute/update nominal model $\mathcal{M}(\mathcal{D}_{t_{i-1}})$.
- Solve convex program.
- Recover policy K_i : $K_i = Z_i^{\top} W_i^{-1}$ and $\Sigma_i = Y_i Z_i^{\top} W_i^{-1} Z_i$. Apply policy to true system for $t_{i-1} < t \le t_i$, which evolves according to (1) with $u_t = K_i x_t + \sum_{i=1}^{1/2} e_t$.
- Form $\mathcal{D}_{t_i} = \mathcal{D}_{t_{i-1}} \cup \{x_{t_{i-1}:t_i}, u_{t_{i-1}:t_i}\}$ based on newly observed data.

Numerical simulations

$$A_{\rm tr} = \left[\begin{array}{ccc} 1.1 & 0.5 & 0 \\ 0 & 0.9 & 0.1 \\ 0 & -0.2 & 0.8 \end{array} \right], \ B_{\rm tr} = \left[\begin{array}{ccc} 0 & 1 \\ 0.1 & 0 \\ 0 & 2 \end{array} \right], \ \sigma_w = 0.5.$$

Information is defined as $1/\lambda_{\max}(D_i^{-1})$, at the *i*th epoch, which is the (inverse) of the 2-norm of parameter error, cf. (4). The larger the information, the more certain the system (in an absolute sense).

Hardware-in-the-loop experiment

Interconnection of:

- a physical servo-mechanism (Quanser Qube)
- a synthetic (simulated) LTI system.

Paper on arxiv: Robust exploration in linear quadratic reinforcement learning.