

第十章: 群与环

第一节: 群的定义及其性质

第二节:子群

第三节:循环群与置换群

第十章: 群与环

第一节: 群的定义及其性质

第二节: 子群

第三节: 循环群与置换群

定义 设<G,*>是一个代数系统,*是G上的二元运算,如果*在G上成立结合律,a*(b*c)=(a*b)*c 则称<G,*>为半群。

例

- (1)<Z+,+>,<Z,+>,<N,+>,< Z+,*>,<N,*>,<Q,*>等是半群。R+表 示正实数集合,<R+,+>,<R+,*>是半群。
- (2)<M_n(R),+>是半群, M_n(R) n阶矩阵的 全体,+为矩阵加法
- **-(3)<P(A),⊕>是半群。**

定义 对于*运算,拥有幺元的半群称为独异点。

例: <N,+,0>,<N,*,1>均为独异点。

例:设S为非空集合,P(S)是S的幂集,则<P(S),

U,Ø>,<P(S), ∩,S>均为独异点。

而<Z,max>,其中max(x,y)取二者之大值

; <Z,min>,其中min(x,y)取二者之小值。

均不为独异点(不存在幺元)。

<N,max,0>

为独异点,其中幺元为0。

例:设集合 N_n ={0,1,...,n-1}在 N_n 上定义运算+n。

$$(a+_nb)+_nc=(a+b+c) \pmod{n}$$

 $a+_n(b+_nc)=(a+b+c) \pmod{n}$

因此 $_{n}$ + $_{n}$ 在 N_{n} 上运算封闭且成立结合律因而 $<N_{n}$ + $_{n}$ >是半群。

<N_n,+_n,0>是独异点。

定义 设<G,*>是半群,且二元运算*还满足。

- (1) 存在**e**∈**G**, ∀**x**∈**G**, **e*****x**=**x*****e**=**x**,即**G** 中存在幺元。
- (2) ∀x∈G,∃x⁻¹∈G,使x*x⁻¹=x⁻¹*x=e,即每个元素均存在逆元。则称<G,*>是群。

即群<G,*>要求

- ①运算*满足确定性,封闭性。
- ②*满足结合律。
- ③G中存在幺元。
- ④G中每个元素存在逆元。

例1:〈Z,+〉是群,幺元是0,逆元是相反数。 同样〈Q,+〉,〈R,+〉也是群。

例2: $\langle M_n(R), \bullet \rangle$, • 为矩阵乘法运算

不是群,存在幺元是单位矩阵I_n,逆元是逆矩阵, 但有的矩阵不存在逆矩阵。

如果 $M_n(R)$ 的子集 $S_n(R)$ =所有可逆矩阵的全体 $\langle S_n(R), \bullet \rangle$ 是群,其运算封闭,且每个矩阵均 存在逆矩阵。

- 例3: $<N_6$, $+_6>$,其中 N_6 = $\{0,1,2,3,4,5\}$, 幺元是0, $1+_65$ =0, $2+_64$ =0, $3+_63$ =0
- ::1,5互为逆元,2,4互为逆元,3的逆元是3,0的逆元是0,
- ∴<N₆,+₆>是群。

例4:<P(A),⊕>,P(A)是A的幂集

母是环和运算,满足结合律。

因 $\forall B \in P(A), B \oplus \emptyset = \emptyset \oplus B = B, B \oplus B = \emptyset$

所以幺元是Ø,每个元素的逆元就是其本身。

定义

- 1)若群G是有穷集,则称G是有限群,否则称 为无限群。群G的基数称为群G的阶。
- 2) 只含单位元的群称为平凡群。
- 3) 若群**G**中的二元运算是可交换的,则称**G**为交换群或阿贝尔群。

群中元素的幂次

定义 设<G,*>是一个群,且a∈G,n∈N

,则

$$a^{0} = \ell, a^{1} = a^{0} * a, \dots, a^{n+1} = a^{n} * a$$

定义 设<G,*>是一个群,且a∈G,若存在一个正整数n,能使aⁿ=e,则称元素a的阶是有限的,而最小的n称为元素a的阶。若不存在这样的元素n,则称元素a拥有无限阶。

幺元的阶为1,

∵e¹=e.

四元群中,e的阶为1; a,b,c的阶都为2。

*	e	a	b	c
e	e	a	b	c
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

定理 设G为群,则G中的幂运算满足:

1)
$$\forall a \in G, (a^{-1})^{-1} = a$$

2)
$$\forall a,b \in G,(ab)^{-1} = b^{-1}a^{-1}$$

3)
$$\forall a \in G, a^n a^m = a^{n+m}, n, m \in Z$$

$$4)\forall a \in G, (a^n)^m = a^{nm}, n, m \in \mathbb{Z}$$

5)若G为交换群,则
$$(ab)^n = a^n b^n$$

2)证明:

(a*b)*(b⁻¹ *a⁻¹)=a*(b*b⁻¹)*a⁻¹=a*e*a⁻¹=e
(b⁻¹ *a⁻¹) * (a*b) = b⁻¹*(a⁻¹*a)*b = b⁻¹*b = e
所以(a*b)⁻¹=b⁻¹*a⁻¹成立。
推广到一般形式有:
$$(a_1*a_2*\cdots*a_n)^{-1}=a_n^{-1}*\cdots*a_2^{-1}*a_1^{-1}$$

定理 <G,*>是群,∀a,b∈G,方程a*x=b 和y*a=b,在G中存在唯一解。

说明:

因为群未必成立交换律

- ∴ a⁻¹*b和b*a⁻¹未必相等
- ::a*x=b和y*a=b的解未必相等

例:代数系统**G**=<**P**({a,b}),⊕>是群。解下列方程:

$$\{a\} \oplus x = \emptyset, y \oplus \{a,b\} = \{b\}$$

解:
$$x=\{a\}^{-1} \oplus \emptyset = \{a\} \oplus \emptyset = \{a\}$$

 $y=\{b\} \oplus \{a,b\}^{-1} = \{b\} \oplus \{a,b\} = \{a\}$

定理 设<G,*>是群,则∀a,b,c∈G

- (1) 如a*b=a*c 则b=c。
 - (2) 如b*a=c*a 则b=c。

证明:因为群中的每一个元素都有逆元,因此 只要两边同左乘a⁻¹,即可得(1)

(2)也同理

问题:如果a*b=c*a,是否可以得到b=c?

例:设G为群,a,b∈G,且 (ab)²=a² b²

证明ab=ba。

证: $(ab)^2=(ab)(ab)=abab$

 $=a^2 b^2=aabb$

因为群的运算满足消去律,所以有

ab=ba 。

定理 若群 < G, * > 的元素 a 拥有有限阶 n,则

- 1)a^k=e,当且仅当k是n的整数倍。
- 2) 群中的元素和它的逆元具有相同的阶, $|a^{-1}|$ = $|a^{1}|$ 。

证明: 1)

同儿 目 **一** 的 散 粉 分

- □充分性,由于k是n的整数倍,必存在整数m使得k=mn, 所以有a^k= a^{mn}= (aⁿ)^m= e。
- □必要性,存在整数m和i,使得k=mn+i, 从而有e= a^{mn+i}= a^{mn} aⁱ= aⁱ,因为a的阶 是n,并且0≤i≤n-1,所以i=0。

2) 由于 $(a^{-1})^n = (a^{-n})^1 = e^{-1} = e$ 。

可知a⁻¹的阶是存在的。令 | a⁻¹ | =t,根据上面的证明有n是t的整数倍。这说明a的逆元的阶是a的阶的因子。而a又是a⁻¹的逆元,所以a的阶也是a⁻¹的阶的因子,故有t是n的整数倍。从而证明了n=t,即 | a⁻¹ | = | a¹ | 。

《定理》一个群中,除了幺元e之外,不存在 其它等幂元素。

证明: 若任一a∈G,有a*a=a的话,则a=e。

 $e = a * a^{-1} = (a * a) * a^{-1} = a * (a * a^{-1}) = a * e = a$

《定理》 群<G,*>的运算表中的每一行或每一一一列都是G中元素的一个置换。

根据群的以上性质,可得出下列结论:

一阶群只有一个:

二阶群也仅有一个:

$$\begin{array}{c|cccc} * & \ell & a \\ \hline \ell & \ell & a \\ \hline a & a & \ell \end{array}$$

三阶群也为一个:

*	ℓ	a	b
$\overline{\ell}$	ℓ	а	b
a	a	b	ℓ
b	b	ℓ	a

四阶群有二个:

*	α	-h	C	-d	*	-a	-b	-c	<u>-</u> d
					\overline{a}				_
					b				
					C				
					d				

五阶群仅有一个:

*	a	b	\mathcal{C}	d	e
\overline{a}	a	b	C	d	\overline{e}
b	a b c d e	\mathcal{C}	d	e	a
C	c	d	e	a	b
d	d	e	a	b	C
e	$\mid e \mid$	a	b	\mathcal{C}	d

六阶群有二个:

*	e	а	b	\mathcal{C}	d	f	*	e	а	b	\mathcal{C}	d	f
	e						\overline{e}	e	а	b	С	d	\overline{f}
a	a	b	\mathcal{C}	d	f	e	a	а	e	d	f	b	\mathcal{C}
b	b	С	d	f	e	а	b	b	f	e	d	C	a
С	\mathcal{C}	d	f	e	а	b	С	\mathcal{C}	d	f	e	a	b
d	d	f	e	а	b	c	d	d	С	а	b	f	e
f	$\int f$	e	а	b	\mathcal{C}	d	f	f	b	С	а	е	d

七阶群有一个	\ .
	•

*	e	а	b	$\boldsymbol{\mathcal{C}}$	d	f	g
\overline{e}	e e	a	b	С	d	f	g
a	a	b	\mathcal{C}	d	f	g	e
b	b	C	d	f	g	e	a
\mathcal{C}	а b с	d	f	g	e	a	b
d	d	f	g	e	a	b	C
f	f	g	e	a	g	$\boldsymbol{\mathcal{C}}$	d
g	g	e	a	b	c	d	f

证明可根据群的定义。任何一阶,二阶,, 七阶群均和以上的群同构。

例,设有代数系统<Z,*>运算*的定义如下: a,b∈Z,a*b=a+b-2,试证<Z,*>是群。

证明:

- *满足确定性,唯一性,是**Z**上代数运算。
- *满足结合律: a,b,c∈Z,(a*b)*c=(a+b-2)*c= a+b+c-4
- a*(b*c)=a*(b+c-2)=a+b+c-4 ∴*满足结合律
- *有幺元: a∈Z,a*2=a+2-2=a, 2*a=a ∴幺元 是2
- Z中每个元素有逆元: a∈Z,(4-a)*a = a*(4-a)= (4-a)+a-2=2
- ∴a的逆元是4-a
- ∴<Z,*>是群。

第十章: 群与环

第一节: 群的定义及其性质

第二节: 子群

第三节:循环群与置换群

□子群

- ❖<G,*>是群,H是G的(非空)子集,如果 H关于G的运算*构成群,则称H为G子群
- ❖记作H≤G

说明:

- (1)<H,*>是子群,要求
 - ①H对于运算*是封闭的
 - ②G的幺元e在H内
 - ③H的每个元素的逆元仍在H内(对逆运算封闭) 至于运算的确定性和结合律,由于在G中成立,对 于H必然成立。
- (2)如H构成子群,必然是非空的,至少有幺元e。
- (3)<G,*>有两个平凡子群, H'={e},<H',*>是子群,还有是G本身。

例:<R,+>是群,<Z,+>是子群。<N,+>不 是子群。

例:<N₆,+₆>是群。H₁={0,2,4} 则<H₁,+₆>是子群, 因2+₆2=4∈H₁,4+₆4=2∈H₁,2,4互为逆 元等等。

但 H_2 ={0,1,5},< H_2 ,+ $_6$ >不是子群 1+ $_6$ 1=2 \notin H_2 ,5+ $_6$ 5=4 \notin H_2 , H_2 对运算+ $_6$ 不封闭。

可以验证<{0,3},+6>也是子群。

- □子群的判定定理一
- 设<G,*>是群,H⊆G,<H,*>是子群的充要 条件是以下三条同时成立
 - (1) H非空
 - (2) 如果a∈H,b∈H,则a*b∈H
 - (3) 若a∈H,则a⁻¹∈H

证明: 必要性是显然成立。

充分性,因H非空,取a∈H,知a⁻¹∈H,

由条件(2)有a*a⁻¹∈H

.:.e∈H,从而<H,*>是子群。

□子群的判定定理二

<G,*>是群,**H**⊆**G**,**<**H,*>是子群的充要条件是**(1)**H非空**(2)**∀x,y∈**H**,均有x*y⁻¹∈**H**

证明:必要性。

任取x,y∈H.由于H是G的子群,必有y⁻¹∈H ,从 而x*y⁻¹∈H 。

充分性。因为H非空,必存在x∈H,根据给定条件 得 $x*x^{-1}$ ∈H,即e∈H 。

设a是H的任一元素,即a∈H ,由e,a∈H得e*a⁻¹∈H,即a⁻¹∈H。任取a,b∈H,由刚才的证明知b⁻¹∈H。根据给定条件知a*(b⁻¹)⁻¹∈H,即a*b∈H

根据上一定理可知<H,*>是<G,*>的子群。

子群的判定定理三

<G,*>是群,H⊆G,如果H是有穷集,<H,*>是子群的充要条件是

(1)H非空 (2)∀x,y∈H,均有x*y∈H

证明:设a是H的任一元素,即a \in H ,据判断定理一,只需证明a $^{-1}\in$ H。

若a=e,则a-1= e-1 = e ∈H。

若a≠e, 令 S={a,a²,...}

则S ⊆H。由于H是有穷集,必有aⁱ= a^j (i<j) 。根据消去律得a^{j-i}= e,由a≠e可知j-i>1,由此得a^{j-i-1}*a =e和a*a^{j-i-1} =e

从而证明了a⁻¹=a^{j-i-1}∈H。

例:设G为群,a∈G,令 H={a^k |k ∈Z}

即a的所有的幂构成的集合,证明H是G是子群

,称为由a生成的子群,记作<a>。

证明: 首先由a∈<a>知道<a>不为空,任取a^m,a^l∈<a>,则a^m(a^l) -1 = a^m a -1 = a^{m-l}∈<a>

根据判断定理二可知。

例如整数加群,由2生成的子群是

$$<2>={2k|k \in Z}=2Z$$

例:设G为群,已知 $a^{-1}=a$,证明G中与a可交换的元素构成G的子群.

任取 $x, y \in H$,有

$$(xy^{-1}) a = x(y^{-1}a) = x(a^{-1}y)^{-1} = x(ay)^{-1}$$

 $= x(ya)^{-1} = xa^{-1}y^{-1} = xay^{-1} = axy^{-1} = a(xy^{-1})$

因此 xy^{-1} 属于H. 由判定定理二命题得证.

- □ 分析:
- □ 证明子群可以用判定定理,特别是判定定理二.
- □ 证明的步骤是:
- □ 验证 # 非空
- □ 任取 $x, y \in H$, 证明 $xy^{-1} \in H$

拉格朗日定理 一个有限群的阶一定能被它子 群的阶所整除。即 $_{k=|G|/H|}$ $k \in I_{+}$

此定理可以确定子群的可能的阶数,但不能确定子群的元素,且同样阶的子群(除平凡子群外)的个数可能很多。

推论

- 1)质数阶的群没有非平凡子群(<{e},*>和<G,*>叫做群<G,*>的平凡子群)
- 2) 在有限群<G,*>中,任何元素的阶必是|G|的一个因子。因为如果a∈G是r阶的,则<{e,a,a²,...,a^{r-1}},*>是<G,*>的子群,r必整除|G|。

例:设群G的运算表如表所示,找出群G所有的子群。

	a	b	С	\overline{d}	e f
a	a	b	c	d	e f
b	b	С	d	e	f a
c	c	d	e	f	a b
d	d	e	f	a	b c
e	e	f	a	b	c d
f	\int	а	b	C	d e

第十章: 群与环

第一节: 群的定义及其性质

第二节: 子群

第三节:循环群与置换群

- □循环群
 - **❖**群中存在一个元素a∈G,使G中的元素可用{ a^k | $k \in Z$ } 表示
 - ❖记作G=<a>
- □无限循环群
 - ❖循环群中不存在一个非零整数n,使得aⁿ=e,则
 G={e,a,a²,...aⁿ...}
- □例如<**Z**,+>是循环群,其中**1**或-**1**是生成元(生成元可以不唯一),任意正整数 $n=1^n$,负整数 $-n=1^{-n}$ 。

□如果存在一个最小的正整数n,使得aⁿ=e,则 G有n个元素,G={e,a,a²,...aⁿ⁻¹}, 称<G,*>的周期为n。n阶循环群。

例: $\langle N_4, +_4 \rangle$ 是循环群, 运算表为:

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

幺元为0,1或3是生成元。

$$1^4 = 1 + 41 + 41 + 41 = 0$$
,周期为4。

$$1^3 = 1 + 4 + 4 = 3$$

$$1^2 = 1 + 4 = 2$$

- □循环群必然是交换群
- □交换群未必是循环群
 - ❖例如四阶群不是循环群,但是它是交换群,在四 阶群G={a,b,c,d},b²=c²=d²=a,G不是 由某个元素生成的。

*	a	b	\mathcal{C}	d
\overline{a}	а	b	С	\overline{d}
b	a b c d	a	d	c
C	C	d	a	b
d	d	$\boldsymbol{\mathcal{C}}$	b	a

例,设有代数系统<Z,*>运算*的定义如下:

a,b∈Z,a*b=a+b-2,试证<Z,*>是循环群。

证明: *满足确定性,唯一性,是Z上代数运算。

$$a \in Z,(4-a)*a = a*(4-a)=(4-a)+a-2=2$$

∴a的逆元是4-a

∴<**Z**,*>是群。

因为, 1^{-2} = $(1*1)^{-1}$ =4, 1^{-1} =3, 1^{0} =2, 1^{1} =1, 1^{2} =1*1=1+1-2=0, 1^{3} =1*1*1=0+1-2=-1,...,

∴1是生成元。3也是生成元。

定理 设G=<a>是循环群

- 1)若G是无限循环群,则G只有两个生成元,即a和a⁻¹。
- 2) 若G是n阶循环群,则G含有h(n)(欧拉函数) 个生成元,对于任意小于等于n且与n互素的正 整数r, a^r是G的生成元。

例

证明:

1)显然<a⁻¹> ⊆ G 。为证明G ⊆ <a⁻¹> ,只需证明对任意a^k∈G, a^k都可以表示成a⁻¹的幂。由定理11.1有 a^k=(a⁻¹) -k

从而得到 $G=<a^{-1}>$, a^{-1} 是G的生成元。

再证明G只有a和 a^{-1} 这两个生成元。假设b也是G的生成元,则G=,由a \in G可知存在整数t使得a= b^t 。又由b \in G=<a>知存在整数m使得b= a^m 。

从而得到 $a=b^t=(a^m)^t=a^{mt}$

由G中消去律得a^{mt-1} = e , 因为G是无限群, 必有mt-1=0。从而证明了m=t=1 或m=t=-1,即b=a或b= a⁻¹。

- 2) 只需证明:对任意正整数r(r≤n), a^r是G的生成元当且仅当n与r互素。
- 充分性,设r与n互素,且r≤n,那么存在整数 u和v使得ur+vn=1
- 因此由定理11.1和拉格朗日定理的推论有

 $a = a^{ur+vn} = (a^r)^u(a^n)^v = (a^r)^u$

这就推出对任意 $a^k \in G$, $a^k = (a^r)^{uk} \in \langle a^r \rangle$,即 $G \subseteq \langle a^r \rangle$ 。另一方面,显然有 $\langle a^r \rangle \subseteq G$ 。所以 $a^r \notin G$ 的生成元。

必要性: ar是G的生成元→ n与r互素

ar是G的生成元,则| ar|=n。令r与n的最大公约数为d,则存在正整数t使得r=dt。因此有

 $(a^r)^{n/d} = (a^{dt})^{n/d} = (a^n)^t = e$

根据定理11.4知 $| a^r|$ 是n/d的因子,即n整除n/d。从而证明了d=1。

例: $\langle N_4, +_4 \rangle$ 是循环群, 运算表为:

+4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

幺元为0,已知1为生成元。小于等于4且与4互素的数有1,3。所以1³=3也是生成元。

- □例: 设 $G=\{e, a, ..., a^{11}\}$ 是12阶循环群, 小于12且与12互素的数是1, 5, 7, 11, 可知 a, a^5, a^7 和 a^{11} 是G的生成元
- □例: 设 $G=3Z=\{3z \mid z \in Z\}$, G上的运算 是普通加法。那么G只有两个生成元: 3和-3

循环群的结构图示

有限循环群

无限循环群

定义

- ❖f是非空集合A上的函数,称f为集合A上的变换
- ❖若f为一对一(双射)函数,则f称为一一变换(置换)
- ❖除一对一函数以外的函数f称为多一变换 讨论定义:
 - (1) A到A的变换个数为: |A||A| (个)
 - (2) A到A的一一变换个数为: |A|!(个)

例:设A={1,2},定义f:A→A,则有四个变 换,其中有二个置换,二个多一变换。

即:

$$f_1 = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$$

$$f_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
置換**2!=2** 个

$$f_{3} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$$

$$f_{4} = \begin{pmatrix} 1 & 2 \\ 1 & 2 \\ 2 & 2 \end{pmatrix}$$
多一变换2² -2!=2 个。

代数系统**<S**, ♦ >, **S**={**f**₁,**f**₂,**f**₃,**f**₄}, "♦"为复合运算 列出运算表:

\Diamond	f_1	f_2	f_3	f_4
f_1	f_1		f_3	f_4
f_2	f_2	f_1	f_3	f_4
f_3	f_3	f_4	f_3	f_4
f_4	$ f_4 $	f_3	f_3	f_4

定义

- 一个n个元素的有限集合上的全部置换的集合及 其复合运算所构成的群称为n元对称群。
- 一个有限集合上的若干个置换及其右合成运算所组成的群称为n元置换群。

置换群一定是对称群的子群。

例: 设 $A = \{1,2,3\}$ (有 $3^3 = 27$ 种变换,有 $3^3 = 27$ 种变换,有

!=6种置换),A上所有置换的集合

$$P = \{P_1, P_2, P_3, P_4, P_5, P_6\}$$

$$P_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} \qquad P_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} \qquad P_3 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

$$P_4 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} \qquad P_5 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \qquad P_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

$$S_1 = \{P_1, P_2\}, S_2 = \{P_1, P_3\},$$

$$S_3 = \{P_1, P_4\}, S_4 = \{P_1, P_5, P_6\}.$$

则
$$< S_{1\prime} \diamondsuit >$$
, $< S_{2\prime} \diamondsuit >$, $< S_{3\prime} \diamondsuit >$, $< S_{4\prime} \diamondsuit$

->均为置换群

- □设A={1,2}, B是A上的等价关系的集合。
 - ❖列出B的元素。
 - ❖给出代数系统V=<B, ∩>的运算表。
 - ❖求出V的单位元、零元和所有可逆元素的逆元。
 - ❖说明V是否为半群、独异点和群。

- □1)2个元素集合上只有两种划分,因此只有2个等价关系,即 $\mathbf{B} = \{\mathbf{I}_A, \mathbf{E}_A\}$ 。
- □2) V的运算表如下。
- \square 3)V的单位元是 E_A ,零元是 I_A ,可逆元素只有 E_A ,其逆元是 E_A 。
- □4) V为半群,独异点,不是群。

例:设 H_1,H_2 分别是群G的r,s阶子群,若r和s互素,证明 $H_1 \cap H_2 = \{e\}$.

证 $H_1 \cap H_2 \leq H_1$, $H_1 \cap H_2 \leq H_2$. 由Lagrange定理, $|H_1 \cap H_2|$ 整除r,也整除s. 从而 $|H_1 \cap H_2|$ 是整除 r与s 的最大公因子 . 因为r和s互素,从而 $|H_1 \cap H_2| = 1$. 即 $H_1 \cap H_2 = \{e\}$.

例:设群G的运算表如表所示,问G是否为循环群?如果是,求出它所有的生成元.

解

易见 a 为单位元. 由于|G|=6, |b|=6, 所以 b 为生成元. G=为循环群. |f|=6, 因而 f 也是生成元 |c|=3, |d|=2, |e|=3, 因此 c,d, e不是生成元.

	a b	c d	e f
a	a b	c d	e f
$\mid b \mid$	b c	d e	f a
c	c d	e f	a b
$\mid d \mid$	d e	f a	b c
e	e f a	a b	c d
f	$\int f a d$	b c	d e