ACTIVIDAD DE AGUA

El agua de los alimentos influye en múltiples aspectos como reología, textura, estabilidad microbiana y reacciones químicas/enzimáticas. La influencia proviene principalmente del agua libre, ya que el agua ligada no está disponible o permanece inmóvil. La actividad del agua (Aa) se refiere a la disponibilidad del agua libre en un alimento, siendo crucial para predecir estabilidad y vida útil, más que el contenido total de agua.

$$a_a = \frac{f}{f^{\circ}} = \frac{P}{Po} = \frac{HR}{100} = \frac{Ma}{Ma + Ms}$$

donde:

f = fugacidad del disolvente de la solución

 f^{o} = fugacidad del disolvente puro

HR = humedad relativa

P =presión de vapor del agua del alimento

Po = presión de vapor del agua pura

Ms = moles de soluto (g/pm)

Ma = moles de agua (g/18)

P/Po = presión de vapor relativa

- Varía desde 1.0 para agua pura hasta 0 para productos completamente secos.
- No hay una correspondencia lineal entre el contenido de agua y la Aa. Ejemplo: queso fresco (Aa = 0.90) vs. mermelada (Aa = 0.86) con igual contenido de agua.
- La Aa se relaciona no linealmente con el contenido de humedad a través de isotermas de adsorción y desorción.
- Isotermas de adsorción: transferencia de masa del gas al sólido en humedad relativa elevada.
- Isotermas de desorción: deshidratación del sólido en humedad relativa baja en el ambiente.

- La actividad del agua es menor durante la desorción que en la adsorción para un contenido de humedad dado.
- Procesos opuestos que no son reversibles por un camino común, esto es conocido como histéresis. Ejemplo: Proteína hidratada seca a 10% de humedad en desorción, pero solo alcanza 7% en adsorción cuando se hidrata a 35% de humedad relativa.
- Las isotermas de adsorción reflejan la cinética de adsorción e hidratación, importante para la higroscopicidad de los deshidratados almacenados en atmósferas húmedas.
- Isotermas de desorción equivalen al proceso de deshidratación.
- Ambas isotermas son útiles para diseñar sistemas de almacenamiento, secado y rehidratación.

CUADRO 1.4 Porcentaje de humedad de equilibrio a varias humedades relativas						
Humedad relativa (%)						
	10	30	50	70	90	
Pan blanco	0.5	3.1	6.2	11.1	19.0	
Galletas	2.1	3.3	5.0	8.3	14.9	
Pastas	5.1	8.8	11.7	16.2	22.1	
Harinas	2.6	5.3	8.0	12.4	19.1	
Almidón	2.2	5.2	7.4	9.2	12.7	
Gelatina	0.7	2.8	4.9	7.6	11.4	

- La actividad del agua aumenta con la temperatura, reflejando el incremento en la presión de vapor.
- Pequeñas fluctuaciones de temperatura pueden ocasionar grandes cambios en la actividad del agua, dependiendo del alimento.

- La Aa también depende de los sólidos presentes en un alimento, demostrado mediante relaciones matemáticas lineales. Ejemplo: Para el suero de leche, la concentración de sólidos (C) está relacionada con Aa por la ecuación: Aa = 0.999 0.000558 C.
- El abatimiento de la temperatura de congelamiento, Δt, causa una reducción de la presión de vapor y, en consecuencia, en la actividad del agua, de acuerdo con la siguiente expresión:

$$a_a = \frac{1}{1 + 0.0097\Delta t}$$

De manera teórica, la Aa puede calcularse con diversos modelos matemáticos, como los representados por las ecuaciones de Langmuir, de BET, de Anderson-Guggenheim, de Chung y Pfost, de Iglesias y Chirife, de Bradley, de Smith, de Henderson, etcétera.

CUADRO	1.5	Actividad	del	agua (de a	lgunos	alimentos

	aa
Frutas frescas y enlatadas	0.97
Verduras	0.97
Jugos	0.97
Huevos	0.97
Carne	0.97
Queso	0.95
Pan	0.94
Mermeladas	0.86
Frutas secas	0.73
Miel	0.70
Huevo en polvo 5% humedad	0.40
Galletas, cereales	0.35
Azúcar	0.10

• Los métodos de conservación de alimentos se basan en el control de variables como la actividad del agua, temperatura, pH, disponibilidad de nutrientes y reactivos, potencial de oxidorreducción y presencia de conservadores. La actividad del agua es fundamental para conocer el comportamiento de un producto.

Figura 1.10 Influencia de la aa v del pH en la estabilidad de los alimentos.

- Una Aa más alta, acercándose a 1.0, indica mayor inestabilidad del alimento, requiriendo refrigeración para preservar productos como carnes, frutas y vegetales frescos.
- La velocidad del oscurecimiento no enzimático se ve afectada por la Aa; la energía de activación y la temperatura requeridas se reducen con el aumento de la Aa.
- La concentración de alimentos reduce la Aa y favorece las reacciones al aumentar el contacto entre los reactivos, pero una disminución extrema de agua puede inhibir las reacciones.

Figura 1.7 Cambios que ocurren en los alimentos en función de la actividad del agua. a) Oxidación de lípidos; b) reacciones hidrolíticas; c) oscurecimiento no enzimático; d) isoterma de adsorción; e) actividad enzimática; f) crecimiento de hongos; g) crecimiento de levaduras, y h) crecimiento de bacterias.

- •La oxidación de aceites insaturados, vitaminas y pigmentos está influenciada por la Aa, con un fuerte incremento por debajo de la monocapa de agua, luego disminuye al formarse una capa protectora y aumenta nuevamente por la movilidad de los metales que catalizan la reacción.
- •Las vitaminas hidrosolubles se degradan poco a valores de 0.2-0.3 de Aa, aumentando su degradación con el aumento de la Aa. En productos muy secos, la falta de agua como filtro del oxígeno facilita la oxidación, especialmente de la vitamina C.
- •En las enzimas, el agua facilita la integración del centro activo, la difusión de reactivos y actúa en las reacciones de hidrólisis, con cada enzima requiriendo una Aa específica para su función.

Figura 1.7 Cambios que ocurren en los alimentos en función de la actividad del agua. a) Oxidación de lípidos; b) reacciones hidrolíticas; c) oscurecimiento no enzimático; d) isoterma de adsorción; e) actividad enzimática; f) crecimiento de hongos; g) crecimiento de levaduras, y h) crecimiento de bacterias.

- •Microorganismos necesitan condiciones óptimas de pH, nutrientes, oxígeno, temperatura y Aa para su crecimiento, con una relación inversa entre la Aa y otros parámetros. Por cada aumento de 0.1 en Aa, el crecimiento microbiano puede aumentar hasta un 100%.
- •Bacterias, levaduras y hongos tienen diferentes requerimientos de Aa, con patógenos necesitando más para su desarrollo que las levaduras osmófilas.
- •La reducción de agua inhibe el crecimiento microbiano pero aumenta la resistencia térmica de los microorganismos, favoreciendo el calor húmedo sobre el calor seco para su destrucción.

Figura 1.7 Cambios que ocurren en los alimentos en función de la actividad del agua. a) Oxidación de lípidos; b) reacciones hidrolíticas; c) oscurecimiento no enzimático; d) isoterma de adsorción; e) actividad enzimática; f) crecimiento de hongos; g) crecimiento de levaduras, y h) crecimiento de bacterias.

CUADRO 1.6 Valores mínimos de la actividad del agua para el crecimiento de microorganismos de importancia en alimentos

Organismo	Mínima	
Mayoría de bacterias dañinas	0.91	
Mayoría de levaduras dañinas	0.88	
Mayoría de hongos dañinos	0.80	
Bacteria halófila	0.75	
Levadura osmófila	0.60	
Salmonella	0.95	
Clostridium botulinum	0.95	
Escherichia coli	0.96	
Staphylococcus aureus	0.86	
Bacillus subtilis	0.95	