#### LEVEL-I

The locus of the point, which moves such that its distance from 
$$(1, -2, 2)$$
 is unity, is (A)  $x^2 + y^2 + z^2 - 2x + 4y - 4z + 8 = 0$  (B)  $x^2 + y^2 + z^2 - 2x - 4y - 4z + 8 = 0$  (C)  $x^2 + y^2 + z^2 + 2x + 4y - 4z + 8 = 0$  (D)  $x^2 + y^2 + z^2 - 2x + 4y + 4z + 8 = 0$ 

(A) 
$$x^2 + y^2 + z^2 - 2x + 4y - 4z + 8 = 0$$

(B) 
$$x^2 + y^2 + z^2 - 2x - 4y - 4z + 8 = 0$$

(C) 
$$x^2 + y^2 + z^2 + 2x + 4y - 4z + 8 = 0$$

(D) 
$$x^2 + y^2 + z^2 - 2x + 4y + 4z + 8 = 0$$

\*2 The angle between the lines whose direction ratios are 1, 1, 2; 
$$\sqrt{3}$$
 – 1, –  $\sqrt{3}$  – 1, 4 is

(A) 
$$\cos^{-1}\left(\frac{1}{65}\right)$$

(B) 
$$\frac{\pi}{6}$$

(C) 
$$\frac{\pi}{3}$$

(D) 
$$\frac{\pi}{4}$$

\*3. The plane passing through the point (a, b, c) and parallel to the plane 
$$x + y + z = 0$$
 is

(A) 
$$x + y + z = a + b + c$$

(B) 
$$x + y + z + (a + b + c) = 0$$

(C) 
$$x + y + z + abc = 0$$

(D) 
$$ax + by + cz = 0$$

4. The equation of line through the point (1, 2, 3) parallel to line 
$$\frac{x-4}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$$
 are

(A) 
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{8}$$

(B) 
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$

(C) 
$$\frac{x-4}{1} = \frac{y+1}{2} = \frac{z+10}{3}$$

5. The value of k, so that the lines 
$$\frac{x-1}{-3} = \frac{y-2}{2k} = \frac{z-3}{2}$$
,  $\frac{x-1}{3k} = \frac{y-5}{1} = \frac{z-6}{-5}$  are perpendicular to each other, is

$$(A) - \frac{10}{7}$$

(B) 
$$-\frac{8}{7}$$

$$(C) - \frac{6}{7}$$

(A) 
$$\cos^{-1}\left(\frac{2}{3}\right)$$

(B) 
$$\cos^{-1}\left(\frac{3}{2}\right)$$

(C) 
$$\tan^{-1}\left(\frac{2}{3}\right)$$

7. The equation of a plane which passes through 
$$(2, -3, 1)$$
 and is normal to the line joining the points  $(3, 4, -1)$  and  $(2, -1, 5)$  is given by

(A) 
$$x + 5y - 6z + 19 = 0$$

(B) 
$$x - 5y + 6z - 19 = 0$$

(C) 
$$x + 5y + 6z + 19 = 0$$

(B) 
$$x - 5y + 6z - 19 = 0$$
  
(D)  $x - 5y - 6z - 19 = 0$ 

(A) 
$$\frac{1}{\sqrt{2}}$$
,  $\frac{1}{\sqrt{2}}$ ,  $\frac{1}{\sqrt{2}}$ 

(C) 
$$\frac{1}{\sqrt{3}}$$
,  $\frac{1}{\sqrt{3}}$ ,  $\frac{1}{\sqrt{3}}$ 



(A) 
$$6x + 3y + 2z = 6$$

(B) 
$$6x + 3y + 2z = 12$$

(C) 
$$6x + 3y + 2z = 1$$

(D) 
$$6x + 3y + 2z = 18$$

21. The direction cosines of a normal to the plane 2x - 3y - 6z + 14 = 0 are

$$(A)\bigg(\frac{2}{7},\frac{-3}{7},\frac{-6}{7}\bigg)$$

$$(\mathsf{B})\left(\frac{-2}{7},\frac{3}{7},\frac{6}{7}\right)$$

$$(C)\left(\frac{-2}{7}, \frac{-3}{7}, \frac{-6}{7}\right)$$

(D) None of these

\*22. The equation of the plane whose intercept on the axes are thrice as long as those made by the plane 2x - 3y + 6z - 11 = 0 is

(A) 
$$6x - 9y + 18z - 11 = 0$$

(B) 
$$2x - 3y + 6z + 33 = 0$$

(C) 
$$2x - 3y + 6z = 33$$

(D) None of these

23. The angle between the planes 2x - y + z = 6 and x + y + 2z = 7 is

(A) 
$$\pi/4$$

(B) 
$$\pi/6$$

(C) 
$$\pi/3$$

(D) 
$$\pi/2$$

\*24. The angle between the lines x = 1, y = 2 and y + 1 = 0 and z = 0 is

(A) 
$$0^{0}$$

(B) 
$$\pi/4$$

(C) 
$$\pi/3$$

(D) 
$$\pi/2$$

### LEVEL-II

1. The three lines drawn from O with direction ratios [1, -1, k], [2, -3, 0] and [1, 0, 3] are coplanar. Then k =

2. A plane meets the coordinates axes at A, B, C such that the centroid of the triangle is (3, 3, 3). The equation of the plane is

(A) 
$$x + y + z = 3$$

(B) 
$$x + y + z = 9$$

(C) 
$$3x + 3y + 3z = 1$$

(D) 
$$9x + 9y + 9z = 1$$

3. The equation of the plane through the intersection of the planes x - 2y + 3z - 4 = 0, 2x - 3y + 4z - 5 = 0 and perpendicular to the plane x + y + z - 1 = 0 is

(A) 
$$x - y + 2 = 0$$

(B) 
$$x - z + 2 = 0$$

(C) 
$$y - z + 2 = 0$$

(D) 
$$z - x + 2 = 0$$

4. The coordinates of the point of intersection of the line  $\frac{x+1}{1} = \frac{y+3}{3} = \frac{z+2}{-2}$  with the plane

$$3x + 4y + 5z = 5$$
 are

(C) 
$$(1, 3, -2)$$

$$(D)$$
  $(3, 12, -10)$ 

5. The angle between the line  $\frac{x+1}{3} = \frac{y-1}{2} = \frac{z-2}{4}$  and the plane 2x + y - 3z + 4 = 0 is

(A) 
$$\cos^{-1} \left( \frac{-4}{\sqrt{406}} \right)$$

(B) 
$$\sin^{-1}\left(\frac{-4}{\sqrt{406}}\right)$$

$$(C) 30^{\circ}$$

| *6. | The angle between the lines whose direction cosines satisfy the equations $I + mI^2 + m^2 - n^2 = 0$ is given by                                                                                                        |                                                                                            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
|     | (A) $\frac{2\pi}{3}$                                                                                                                                                                                                    | (B) $\frac{\pi}{6}$                                                                        |
|     | (C) $\frac{5\pi}{6}$                                                                                                                                                                                                    | (D) $\frac{\pi}{3}$                                                                        |
| *7. | The angle between the line $\frac{x-2}{2} = \frac{y+1}{-1} = \frac{z}{2}$                                                                                                                                               | <b>_</b>                                                                                   |
|     |                                                                                                                                                                                                                         | (B) $\sin^{-1}\left(-\frac{4}{21}\right)$                                                  |
|     | (C) $\sin^{-1}\left(\frac{6}{21}\right)$                                                                                                                                                                                | (D) $\sin^{-1}\left(\frac{4}{21}\right)$                                                   |
| *8. | Shortest distance between lines $\frac{x-6}{1} = \frac{y-6}{-2}$ (A) 108                                                                                                                                                | $\frac{2}{2} = \frac{z-2}{2}$ and $\frac{x+4}{3} = \frac{y}{-2} = \frac{z+1}{-2}$ is (B) 9 |
|     | (A) 108<br>(C) 27 (D)                                                                                                                                                                                                   | None of these                                                                              |
| 9.  | The acute angle between the plane $5x - 4y$<br>(A) $\sin^{-1} \left( \frac{5}{\sqrt{90}} \right)$                                                                                                                       | + $7z - 13 = 0$ and the y-axis is given by                                                 |
|     |                                                                                                                                                                                                                         |                                                                                            |
|     | $(C) \sin^{-1}\left(\frac{7}{\sqrt{90}}\right)$                                                                                                                                                                         | (D) $\sin^{-1}\left(\frac{4}{\sqrt{90}}\right)$                                            |
| 10. | The planes $x + y - z = 0$ , $y + z - x = 0$ , $z + x - y = 0$ meet<br>(A) in a line                                                                                                                                    |                                                                                            |
|     | (B) taken two at a time in parallel lines (C) in a unique point                                                                                                                                                         | (D) none of these                                                                          |
| 11. | The graph of the equation $x^2 + y^2 = 0$ in the three dimensional space is                                                                                                                                             |                                                                                            |
|     | (A) z – axis<br>(C) y – z plane                                                                                                                                                                                         | (B) (0, 0) point<br>(D) x – y plane                                                        |
| 12. | A line making angles $45^{\circ}$ and $60^{\circ}$ with the positive directions of the x – axis and y – axis respectively, makes with the positive direction of z – axis an angle of (A) $60^{\circ}$ (B) $120^{\circ}$ |                                                                                            |
|     | (C) both (A) and (B)                                                                                                                                                                                                    | (D) Neither (A) nor (B)                                                                    |
| 13. | The angle between two diagonals of a cube                                                                                                                                                                               |                                                                                            |
|     | $(A) \cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$                                                                                                                                                                          | (B) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$                                             |
|     | (C) $\cos^{-1}\left(\frac{1}{3}\right)$                                                                                                                                                                                 | (D) $\cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$                                             |
| 14. | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                 |                                                                                            |
|     | (A) – 1<br>(C) 2                                                                                                                                                                                                        | (B) 1<br>(D) – 2                                                                           |

- 15. The equation (x - 1). (x - 2) = 0 in three dimensional space is represented by
  - (A) a pair of straight line

- (B) a pair of parallel planes
- (C) a pair of intersecting planes
- (D) a sphere
- \*16. The equation of the plane containing the line 2x + z - 4 = 0 and 2y + z = 0 and passing through the point (2, 1, -1) is
  - (A) x + y z = 4

(C) x + y + z + 2 = 0

- (B) x y z = 2(D) x + y + z = 2
- \*17. The locus of xy + yz = 0 is, in 3 - D;
  - (A) a pair of straight lines

- (B) a pair of parallel lines
- (C) a pair of parallel planes
- (D) a pair of intersecting planes
- The lines 6x = 3y = 2z and  $\frac{x-1}{-2} = \frac{y-2}{-4} = \frac{z-3}{-6}$  are 18.
  - (A) parallel

(B) skew

(D) intersecting

- (D) coincident
- The line  $\frac{x-x_1}{0} = \frac{y-y_1}{1} = \frac{z-z_1}{2}$  is \*19.
  - (A) parallel to x axis

- (B) perpendicular to x axis
- (C) perpendicular to YOZ plane
- (D) None of these
- For the line I:  $\frac{x-1}{3} = \frac{y+1}{2} = \frac{z-3}{-1}$  and plane P: x-2y-z=0; of the following assertions, 20.

the one/s which is/are true :-

(A) I lies on P

(B) I is parallel to P

(C) I is perpendicular to P

- (D) None of these
- The co-ordinates of the point of intersection of the line  $\frac{x-6}{-1} = \frac{y+1}{0} = \frac{z+3}{4}$  and the plane 21.

$$x + y - z = 3$$
 are

(A)(2, 1, 0)

(B) (7, -1, -7)

(C)(1, 2, -6)

- (D) (5, -1, 1)
- The Cartesian equation of the plane perpendicular to the line,  $\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-4}{2}$  and \*22.

passing through the origin is

(A) 2x - y + 2z - 7 = 0

(B) 2x + y + 2z = 0

(C) 2x - y + 2z = 0

(D) 2x - y - z = 0

### Level - III

\*1. The length of projection of the segment joining  $(x_1, y_1, z_1)$  and  $(x_2, y_2, z_2)$  on the line

$$\frac{x-\alpha}{l} = \frac{y-\beta}{m} = \frac{z-\gamma}{n}$$
 is

(A) 
$$||(x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)||$$

(A) 
$$||(x_2 - x_1) + m(y_2 - y_1) + n(z_2 - z_1)||$$
 (B)  $||\alpha(x_2 - x_1) + \beta(y_2 - y_1) + \gamma(z_2 - z_1)||$ 

(C) 
$$\left| \frac{x_2 - x_1}{l} + \frac{y_2 - y_1}{m} + \frac{z_2 - z_1}{n} \right|$$

(D) None of these

The shortest distance between the lines  $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$  and  $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-5}{5}$  is 2.

$$(A)\frac{1}{6}$$

(B) 
$$\frac{1}{\sqrt{6}}$$

(C) 
$$\frac{1}{\sqrt{3}}$$

(D) 
$$\frac{1}{3}$$

The equation of the plane through the point (-1, 2, 0) and parallel to the lines 3.

$$\frac{x}{3} = \frac{y+1}{0} = \frac{z-2}{-1}$$
 and  $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$  is

(A) 
$$2x + 3y + 6z - 4 = 0$$

(B) 
$$x - 2y + 3z + 5 = 0$$

(C) 
$$x + y - 3z + 1 = 0$$

(D) 
$$x + y + 3z = 1$$

The distance of the plane through (1, 1, 1) and perpendicular to the line  $\frac{x-1}{3} = \frac{y-1}{0} = \frac{z-1}{4}$ \*4. from the origin is

$$(A)\frac{3}{4}$$

(B) 
$$\frac{4}{3}$$

(C)
$$\frac{7}{5}$$

\*5. The reflection of the point (2, -1, 3) in the plane 3x - 2y - z = 9 is

$$(A)\left(\frac{26}{7}, \frac{15}{7}, \frac{17}{7}\right)$$

(B) 
$$\left(\frac{26}{7}, \frac{-15}{7}, \frac{17}{7}\right)$$

$$(C)\left(\frac{15}{7},\frac{26}{7},\frac{-17}{7}\right)$$

(D) 
$$\left(\frac{26}{7}, \frac{17}{7}, \frac{-15}{7}\right)$$

- 6. The co-ordinates of the foot of perpendicular from the point A (1, 1, 1) on the line joining the points B (1, 4, 6) and C (5, 4, 4) are
  - (A)(3,4,5)

(B) (4, 5, 3)

(C)(3, -4, 5)

- (D)(-3, -4, 5)
- The equation of the right bisecting plane of the segment joining the points (a, a, a) and 7. (-a, -a, -a);  $a \ne 0$  is
  - (A) x + y + z = a

(C) x + y + z = 0

- (B) x + y + z = 3a(D) x + y + z + a = 0
- The angle between the plane 3x + 4y = 0 and the line  $x^2 + y^2 = 0$  is 8.
  - $(A) 0^{\circ}$

|      | (C) 60°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (D) 90°                                                                                                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.   | If the points $(0, -1, -2)$ ; $(-3, -4, -5)$ ; $(-6, -6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6, -6)$ ; $(-6$ | 7, -8) and (x, x, x) are non-coplanar then x = (B) -1 (D) 0                                                                                                                |
| *10. | The equation of the plane through intersection and perpendicular to the plane $5x + 3y + 6z$<br>(A) $7x - 2y + 3z + 81$<br>(C) $23x + 14y - 9z + 48 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on of planes $x + 2y + 3z = 4$ and $2x + y - z = -5$<br>+ $8 = 0$ is<br>(B) $23y + 14x - 9z + 48 = 0$<br>(D) $51x + 15y - 50z + 173 = 0$                                   |
| 11.  | The equation of the plane passing through t<br>4x + 3y + 2z + 1 = 0 and the origin is<br>(A) $3x + 2y + z + 1 = 0$<br>(C) $2x + 3y + z = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | he intersection of planes $x + 2y + 3z + 4 = 0$ and<br>(B) $3x + 2y + z = 0$<br>(D) $x + y + z = 0$                                                                        |
| 12.  | If the plane $x + y - z = 4$ is rotated through $5x + y + 2z = 4$ then equation of the plane in $5x + y + 4z + 20 = 0$<br>(C) $x + 5y + 4z = 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $00^{0}$ about the line of intersection with the plane its new position is (B) $5x + y + 4z = 20$ (D) None of these                                                        |
| 13.  | The equation of the plane passing through t $4x - 5y - 4z = 1$ and $2x + y + 2z = 8$ and the (A) $32x - 5y + 8z = 83$ (C) $32x - 5y + 8z + 83 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |
| 14.  | The equation of the plane passing through t $x$ - axis is (A) $x + 2y = 4$ (C) $x + y + z = 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | he points $(2, 1, 2)$ and $(1, 3, -2)$ and parallel to  (B) $2y + x + z = 4$ (D) $2y + z = 4$                                                                              |
| 15.  | The equation of the plane passing through t joining the points $(2, 6, 1)$ and $(1, 3, 0)$ is $(A) x + 3y + z + 11 = 0$ $(C) 3x + y + z = 11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | he point $(-3, -3, 1)$ and is normal to the line<br>(B) $x + y + 3z + 11 = 0$<br>(D) None of these                                                                         |
| *16. | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tres of its distances from the six faces of a cube ts, then the distance of the point from (1,1, 1) is (B) a constant equal to 7 units.  (D) a constant equal to 49 units. |
| 17.  | Planes are drawn parallel to the co–ordinate planes through the points $(1, 2, 3)$ and $(3, -4, -5)$ . The length of the edges of the parallelepiped so found, are (A) 4, 6, 8 (B) 3, 4, 5 (C) 2, 4, 5 (D) 2, 6, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |
| 18.  | The length of a line segment whose projecti<br>(A) 7<br>(C) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ons on the co–ordinate axes are 6, –3, 2, is (B) 6 (D) 4                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |

- 19. The direction cosines of a line segment whose projections on the co–ordinate axes are 6, -3, 2, are
  - $(A)\left(\frac{6}{7},\frac{-3}{7},\frac{2}{7}\right)$

 $(\mathsf{B})\left(\frac{-6}{7},\frac{3}{7},\frac{2}{7}\right)$ 

 $(C)\left(\frac{6}{7},\frac{-3}{7},\frac{-2}{7}\right)$ 

- (D) None of these
- 20. If P, Q, R, S are (3, 6, 4), (2, 5, 2), (6, 4, 4), (0, 2, 1) respectively then the projection of PQ on RS is
  - (A) 2 units

(B) 4 uints

(C) 6 uints

- (D) 8 uints
- 21. Let f be a one–one function with domain (-2, 1, 0) and range (1, 2, 3) such that exactly one of the following statements is true. f(-2) = 1,  $f(1) \ne 1$ ,  $f(0) \ne 2$  and the remaining two are false. The distance between points (-2, 1, 0) and (f(-2), f(1), f(0)) is
  - (A) 2

(B) 3

(C) 4

(D) 5

### **ANSWERS**

# LEVEL -I

1. Α A D 5. 9.

2. С 6. Α 3 7. Α Α

A C 4. 8.

(D) (D) 10.

11.

12. 13. (B)

(B) (A) 14.

15. À

16. (A)

(A) 17.

(B) (A) 18. 19.

20. 21.

(D) (A) (C) (C) 22.

23. 24. (D)

## LEVEL -II

1. Α 5. В D 2. В 6. D 10. С 3. В 7. В

A B 4. 8.

9.

11. (D)

(C)12. 13. (B)

14.

(A) (B) 15.

16. (D)

17. (D)

18. (D) 19. (B)

20.

21. (D)

22. (C)

# Level - III

1. (A)

(B) 2.

3. (D)

(C) 4.

5. 6. (B) Α

7. (C)

(A) (A) 8.

9.

10. (D)

(B) (B) 11. 12.

13. 14. 15. 16. 17. 18. 19. 20. 21.

(A) (D) (A) (B) (D) (A) (A) (A) (D)