5.625.8:

Study CSPs definable by a sentence of a fixed logic Given PEFO/ESO/SNP/MMSNP we write

IOI = [ME FINREI: MEO]

When CSP(B) = IPI we say that the CSP is described by P.

- · What can we say about B when CSP(B)= [[]]?
- What choice of B implies that IP with CSP(B1=IP)?
 5.6.1: FO

Recall: Every CSP is equal to Forbton(F), where F contains finite connected structures.

Moreover, if F is finite then $\Phi := \bigwedge \neg \psi_M$

in which case the problem is described by a 4 sentence.

The converse is also true.

Theorem (B. Rossman) - Finite Hamamarphism Preservation

Let τ be a fin. relational signature, and Φ an Fo-sentence Then Φ is equivalent to an Ξ^+ sentence over FinReI(c) iff [PII is closed under homomorphisms.

Theorem (5.6.2) Let T be finite

Let T be finite relational and CSFin Rel(T). TFAE:

1) C=CSP(B) and JPEFO st. C=IFOI

2) e = ForbHam (F) for a finite set F of finite convected r-structures:

£: 1⇒2:

The class $D = \{ \mathcal{M} \in \text{FinRel}(\tau) : \mathcal{M} \Rightarrow B \}$ is closed under homomorphisms. Since $D = [\mathcal{T} \Rightarrow D]$, it follows by FHP that $\neg \Phi$ is equiv. over FinRel(τ) to some \exists^{\dagger} sentence. So there is a \forall sentence (in CNF) \forall s.t.

 $\mathcal{I} \mathcal{V} \mathcal{I} = \mathcal{S}$

Pick such Ψ of minimal size. Let $F = \{ \mathcal{M} \text{ is the can dotaborse of a conjunct of } \Psi \}$

Clearly F is finite and $C = Forb^{hom}(F)$. We argue that each $C \in F$ is connected. If not, then since $C \Rightarrow B$ some c.c. C' of C satisfies $C' \Rightarrow B$. But then V was not minimal since the corresponding conjunct could have been by the conj. open of C'. X'

 $2\Rightarrow 3$: Apply Theorem 4.3.8 to obtain an w-categorical t-structure B (wout algebraicity) s.t. C=CSP(B). Letting

 $\Psi := \bigwedge_{C \in \mathcal{F}} \neg \psi_{C}$

we see that $C = \mathbb{I} \Psi \mathbb{I}$.

3 ⇒ 1: triviou.

\sim			
	00	a	11
3		J.	"

CMASND:

JPI ... PN XXI ... XK Y Peach T-literal

each T-literal
is negotive
+ each clowse
is connected

Recall (Corollary 1.4.19): A formula $P \in MSNP$ is such that IPJI = CSP(B) for some $B \Leftrightarrow P \equiv \Psi \in CMMSNP$.

Umary

Theorem (5.6,3)

Fix finite rel. signature τ , and $C \in Rel(\tau)$. If CSP(C)=IPJ for some <u>manadic</u> SNP sentence P, then J w-categorical B s.t. CSP(B)=CSP(C).

 \underline{H} : By Corollary 1.4.19 we way assume why that P is in CMMSNP. Let P_1,\dots,P_K be the Ξ -quantified predicates in P, and

T'= TU [P,...,P&JU [P,',...,P&J

Consider P' where we replace positive literous of the form P(x) by P(x). Then for every clause y of P', the formula Ty is q(x), P(y).

Consider

F=[canonical database] bf each ty (as a t'-structure)]

Then:

- · P connected => every CEF is connected.
- $\forall \ C'$ -structure A', and clause ψ of Φ' : $A' \models \psi \iff D_{\eta\psi} \leftrightarrow A'$.

We then obtain (Th. 4.3.8) an F-free w-categorical T'-structure that is universal for all F-free structures. Call this B. Let $d(x) = \bigwedge (P_i(x) \oplus P_i(x))$ Then the t-reduct B of B on the domain d(B) is w-categorical. We claim that IPI = CSP(B). · (SP(B) = [[4]: Take A finite with A B. Expand A into a t'-structure A so that tielk], taeA: $A' \models P_i(a) \iff B' \models P_i(N(a))$ $A \models P_i'(a) \iff B \models P_i'(N(a))$. Then h extends to a nanomorphism $A' \rightarrow B'$. → A E FORBYOW (F) \Rightarrow A' $\models \psi$. for each clause of Φ' (by *) · TOIS CSP(B): Take A finite with A = Q. Then there exist a t-exp. A of A that satisfies the fo part of P and such that for every are A exactly one of Pi(a) or Pi'(a) holds. ⇒ A' = \upsilon for every clause of \upsilon' => + CEF: C +> A' ⇒ A' < B' by universality of B' wit Forbhow (F) ⇒ A ≤ B as A = +x d(x) => A < CSP(B) The assumption that Φ is movadic is necessary.

φ P := JE, S, T tx, x1, y, Z [E is an eq. relation 1 S extends Succ 1 T is transitive + irreflexive + extends 5 $\begin{array}{c} \Lambda \left(S(x_{1}y) \Lambda S(x_{1}z) \rightarrow E(y_{1}z) \right) \\ \Lambda \left(S(x_{1}y) \Lambda E(x_{1}x') \rightarrow S(x'_{1}y) \right) \end{array}$ We claim that IPI = (SP(Z, Succ). · CSP(II, Succ) = IPI: If $(G, Succ^G) \xrightarrow{N} (Z, Succ)$ then expand G to a [Succ, E, S, T] - structure G' so that txmed' · G' = E(x,y) (=) N(x)=N(y) · (1 = 5(x,y) = 7 = SUCC(N(x),N(y)) · G' = T(x,y) =) N(x) < N(y) Then trivially $G^{\dagger} \models \psi \Rightarrow G \models \Phi$. · [P] = CSP(I, Succ): Let G' be a [succ, E15, T3-structure satisfying (). Then it's [succ3-reduct, G, is a DAG. (since T is a transitive tirreflexive extension of succ). I forward edges NTS: For every Succ-cycle C in G, # C = 0 STS: For every {Succ, S, E}-cycle C in G, #C=0 Assume for it that there is such C with #C =0. Take SUCH C of minimal length s.t. #C>0. Consequently 6 → (I, Succ)

<u>Proposition</u> (5.8.2) CSP(7/1, Succ) cannot be formulated by
an w-categorical template
$\underline{Pf}: \text{ For every } N \in \mathbb{N} \text{ HAR formula}$ $V_{N}(x_{0}, x_{N}) := \exists x_{1} x_{N-1} \bigwedge_{i=1}^{N} \text{ Succ}(x_{i-1}, x_{i})$
is in a different pp 2-type.
$ S_2^{PP}(\mathcal{I}_1 \otimes cc) = \mathcal{N}_0$
We conclude by Corollary 4.6.2.
5.6.3: Granded MSNP $\exists R_1R_k \ \forall x_1 \ \forall x_e \ V$ $\exists R_1R_k \ \forall x_e \ V$ $\exists R_1.$
atomic (TUP) atomic p-formulas formulas "head atoms" body atoms" + for every head atom B; there a body
atom of s.t. of contains all variables from Bi.
Prop: Every $P \in GMSNP$ is equivalent to a finite disjunction $Q_1 V \dots V Q_k$ of connected $GMSNP$ formulas
Theorem (5.6.6): For every Φ in connected GMSNP there exists a reduct C of a finitely bounded homogeneous structure s.t. $I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!$