Divide and Conquer

What is the solution to the recurrence $T(n) = T(n/2) + \Theta(n)$? (Let T(1) = b, where b is a constant)

O(n)

Given the following recurrence relation:

In the recurrence tree for Merge-Sort algorithm, the work done at any level 'k' of the tree is equal to half the amount of work at level k-1.

Do you agree with the above statement? If Yes, prove it. If No, then explain why	 No	
Same work i.e. O(n) at each level.		

Solve the following recurrence relation to determine T(n).

```
T(1) = b_1
F(1) = b_2
F(n) = F(n-1) + c
T(n) = 3T(\frac{n}{2}) + F(n), where b_1, b_2 and c are constants.
    Solve F(n) first. F(n) = F(n-1) + C
= F(n-2) + 2C
= F(n-3) + 3C
                                  F(n) = F(n-K)+Kc Let K=n-1
                                  F(n) = F(1)+(n-1) = - b2+(n-1) =
   Since F(n) is O(n), we can simplify it as F(n) = c, n, where c,
   T(n) = 3T(=)+C,n
    T(n) = 3(3T(\frac{n}{4}) + c_{1}\frac{n}{2}) + c_{1}n
     T(n) = 32 T(2) + 30,2 + 0,0
     T(n) = 32 (3T(n) + c, 2) + 3 = 12 + c, n
      T(n) = 33 T(\frac{n}{2}3) + 32 G \frac{n}{3}2 + 3 G \frac{n}{2} + C, n
        T(n) = 3^{K} T(\frac{n}{2^{K}}) + (\frac{3}{2})^{K-1} + (\frac{3}{2})^{K-2} + \dots + \frac{3}{2} + 1) \in \mathbb{N}
         T(n) = 3^{\log_2(n)} T(1) + c_1 T(\frac{3}{3})^{k} - 1
\frac{n}{2^k} = 1 \quad k = \log_2(n)
         T(n) = 3^{\log_2(n)}, b_1 + 2c_1 n \left(\frac{3}{2}\right)^{\log_2(n)} - 1
= 3^{\log_2(n)} b_1 + (2c_1 n) \left(\frac{3 \log_2(n)}{n} - 1\right)
                  = 3 log2(n) (b,+2C,) - 2C,n
          3 log2(n) = n (Formula was given on the last page)
          T(n) is O(n log2(3))
```

Solve the following recurrence relation. You have to show all steps to get full marks.

$$T(1) = b$$

 $T(n) = 2T(\frac{n-1}{2}) + c$, where b and c are constants.

What is T(n) in Big-Oh notation? O(n)