EE290 Course Notes

Feynman Liang* Department of Statistics, UC Berkeley

Last updated: October 8, 2019

Contents

1	9/5/2019 1.1 Results from random matrix theory	1 1 2	
2	9/10/2019	4	
3	9/12/2019 3.1 Planted cliques and semidefinite programming	8 8	
4	9/17/2019 4.1 Logistics 4.2 Primal method for SDP 4.2.1 SDP Advantage: Robust to monotone adversary 4.3 Second SDP formulation: primal analysis	10 10 10 12 12	
5	9/17/2019 5.1 Planted partition model	13 14 15	
6	9/24/2019 6.1 Exact recovery of stochastic block model	16 16	
7	9/26/2019 7.1 Spectral method for exact recovery of SSBM	19 19	
8	10/3/2019	22	
9	10/8/2019 9.1 Correlated recover of SSBM	25 25	
Bi	Bibliography 28		

$1 \quad 9/5/2019$

1.1 Results from random matrix theory

Today we consider random matrices $Z=(Z_{ij})\in\mathbb{R}^{n\times n}$. IID matrix ensemble is when $Z_{ij}\sim P$ are drawn IID, and the Gaussian Orthogonal Ensemble (GOE) has $Z_{ii}\sim N(0,2)$ and $Z_{ij}=Z_{ji}\sim N(0,1)$ for $i\neq j$.

^{*}feynman@berkeley.edu

By convention, normalize and center so $\mathbb{E}Z_{ij} = 0$ and $\mathbb{E}Z_{ij}^2 = 1$.

Intuition: $||Z||_{op} \leq C\sqrt{n}$ with high probability.

Consider Gaussian orthogonal ensemble matrix: $Z_{ij} \sim N(0,1)$ and $Z_{ii} \sim N(0,2)$. View $Z = [Z_1, \ldots, Z_n]$ with $Z_i \sim N(0, I_n)$. Then

$$\mathbb{E}||Z_1||_2^2 = \mathbb{E}\left[\sum_{i=1}^n Z_{i1}^2\right] = n \tag{1}$$

$$Z_1^{\top} Z_2 = \sum_{i=1}^n Z_{i1} Z_{i2} \tag{2}$$

$$\mathbb{E}Z_1^{\top} Z_2 = 0 \tag{3}$$

$$\mathbb{E}(Z_1^{\top} Z_2)^2 = n \tag{4}$$

$$|Z_1^\top Z_2| \sim \sqrt{n} \tag{5}$$

$$\frac{Z_1^{\top} Z_2}{\|Z_1\| \|Z_2\|} \sim \frac{1}{\sqrt{n}} \tag{6}$$

Theorem 1 (Latala et al. (2006))

$$\sup_{i} \sum_{j=1}^{n} \mathbb{E}|Z_{ij}|^2 \le k^2 n \tag{7}$$

$$\sup_{j} \sum_{i=1}^{n} \mathbb{E}|Z_{ij}|^2 \le k^2 n \tag{8}$$

Fourth moment bound

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}|Z_{ij}|^{4} \le k^{4} n^{2} \tag{9}$$

Then $\mathbb{E}||Z||_{op} = O(k\sqrt{n})$

Gaussian Orthogonal Ensemble

 $\|Z\|_{op} = \sigma_{max} = \max_{\|v\|=1} v^{\top} Z v$ For any fixed $v \in S^{n-1}$, we have a Gaussian tail bound

$$v^{\top} Z v = \sum_{i} Z_{ii} v_i + \sum_{i < j} 2Z_{ij} v_i v_j \tag{10}$$

$$= N(0, \sum_{i} v_i^4 + \sum_{i < j} 4v_i^2 v_j^2)$$
(11)

$$\Pr(|v^{\top} Z v| > t) \le 2e^{-t^2/4} \tag{12}$$

Using an ϵ -net, can find a set of vectors V_{ϵ} such that

$$\max_{v \in V_{\epsilon}} |v^{\top} Z v| \ge (1 - 2\epsilon) \max_{|v| = 1} |z^{\top} Z v| \ge (1 - 2\epsilon)t \tag{13}$$

Then by a union bound

$$\Pr[\|Z\|_{op} \ge t] \le \Pr[\max_{v \in V_{\epsilon}} |v^{\top} Z v| \ge (1 - 2\epsilon)t]$$
(14)

$$\leq \sum_{v \in V_{\epsilon}} \Pr[|v^{\top} Z v| \geq (1 - 2\epsilon)t] \tag{15}$$

$$\leq 2|V|e^{-\frac{1}{4}(1-2\epsilon)^2t^2} \leq \delta \tag{16}$$

If $|V| \leq c^n$, then

$$e^{c(n-ct^2)} < e^{\log \delta} \tag{17}$$

$$\log \frac{1}{\delta} \le ct^2 - n \implies t \ge \sqrt{n + \log \frac{1}{\delta}} \tag{18}$$

Intuition: when dealing with infinite dimensional maximization (Rayleigh quotient for eigenvalue problem), can pass to ϵ -net for cardinality bloud.

Definition 2 (Covering)

 $V \subset S^{n-1}$ is called an ϵ -net if $\forall u \in S^{n-1}$, $\exists v \in V$ such that $||u-v||_2 \leq \epsilon$.

Theorem 3

 ϵ -net yields Eq. (13)

Definition 4 (Packing)

For $A \subset \mathbb{R}^d$, $V = \{v_i\}_{i=1}^n \subset A$ is an ϵ -packing if $\forall i \neq jJ$, $||v_i - v_j||_2 \geq \epsilon$.

Theorem 5

Maximal ϵ -packing is an ϵ -net.

Hence, we can lower bound the packing number (size of largest packing) by the covering number (size of the smallest covering). The following result gives an (obvious?) upper bound:

Lemma 6 (Volume ratio)

For any ϵ -packing $V \subset A$,

$$|V| \le \frac{Vol(A + \frac{\epsilon}{2}B)}{Vol(\frac{\epsilon}{2}B)} \tag{19}$$

where $B = \{x : ||x||_2 \le 1\}.$

Why is the diagonal not important? Let A = diag(Z). Then we have

$$||Z - A||_{op} \le ||Z||_{op} + ||A||_{op} \tag{20}$$

$$\max_{x \in S^{n-1}} ||Ax|| = \max_{i} |Z_{ii}| = O(\sqrt{2\log n})$$
(21)

So the diagonal term $||A||_{op}$ is an order of magnitude smaller that $||Z||_{op}$.

Example 7 (Planted clique)

Let $G \sim G(1/2, n, k)$. In other words, generate an Erdös-Renyi random graph from G(n, 1/2) and then randomly choose a set $K \subset [n]$ connect together to form a clique.

Goal: find K given G.

Theorem 8 (Alon et al. (1998))

For any $c, k = c\sqrt{n}$, then exists polytime algorithm such that it returns \hat{K} with $P(\hat{K} = K) \to 1$.

Let the adjacency matrix $A_{ij} = \begin{cases} 1 & (i,j) \in K \\ \operatorname{Bern}(1/2) & i \notin K \text{ or } j \notin K, i \neq j \text{ and define } W_{ij} = \begin{cases} 2A_{ij} - 1 & i \neq j \\ 0 & i = j \end{cases}$

- 1. Find top eigenvector u of W
- 2. Let \tilde{K} index the k largest coordinates $|u_i|$

3. Thresholding

$$\hat{K} = \left\{ v \in [n] : d_{\tilde{K}}(v) \ge \frac{3k}{4} \right\} \tag{22}$$

$$d_{\tilde{K}}(v) = \sum_{j \in \tilde{K}} \mathbb{1}\{(j, v) \text{ connected}\}$$
(23)

Goal: show $|\tilde{K} \cap K| \ge (1 - \epsilon)k$ whp. Note that $\mathbb{E}[W] =: 1_k 1_k^\top - \operatorname{diag}(1_k)$ consists of 1s in $K \times K$ and 0 everywhere else. Let

$$W^* = 1_k 1_k^{\top} \tag{24}$$

$$v = \frac{1}{\sqrt{k}} 1_k \tag{25}$$

(26)

Notice thresholding over v exactly recovers K, so we want the top eigenvector u of W to be close to v. By Davis-Kahan,

$$\min_{s \in \{\pm 1\}} \|u + sv\|_2 \le \frac{\|W - W^*\|_{op}}{\lambda_1(W^*) - \lambda_2(W^*)} \tag{27}$$

Note $\lambda_1(W^*) = k$. Suppose extrema attained at s = -1, then

$$||W - W^*||_{op} \le ||W - \mathbb{E}W|| + \underbrace{||\mathbb{E}W - W^*||}_{=||\operatorname{diag} 1_k||=1} \le c\sqrt{n} + 1$$
(28)

By Weyl's inequality

$$|\lambda_2(W)| = |\lambda_2(W^*) - \lambda_2(W)| \le ||W^* - W||_{op} \le c\sqrt{n} + 1$$
(29)

Finally

$$||u - v||_2 \le \frac{c\sqrt{n} + 1}{c\sqrt{n} - (c\sqrt{n} + 1)} \le \epsilon \tag{30}$$

NOTE: when you have bounded fourth moments, the rate is always $n^{-1/2}$! Deep result.

9/10/2019 2

Recall the planted clique from Alon et al. (1998): $G \sim G(1/2, n, k)$ is a random graph on V = [n] with some fully connected clique $K \subset [n]$ of cardinality |K| = k.

The adjacency matrix

$$A_{ij} = \begin{cases} 1 & \text{if } i, j \in K \\ \text{Bern}(1/2) & i \neq j \text{ ow} \end{cases}$$
 (31)

Let

$$W_{ij} = \begin{cases} 2A_{ij} & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$
 (32)

Algorithm 1 of Alon et al. (1998):

1. Find top eigenvector of W, say u

- 2. Let \tilde{K} index the largest k coordinates $|u_i|$
- 3. Define $\hat{K} = \{v \in V : d_{\tilde{K}}(v) \geq \frac{3k}{4}\}$

Theorem 9 (Alon et al. (1998))

Algorithm 1 finds \hat{K} such that $\Pr[\hat{K} = K] \to 1$ as $n \to \infty$ if $k \ge c\sqrt{n}$ for sufficiently large c.

Proof. Note that $\mathbb{E}A$ is:

Figure 1: $\mathbb{E}A$ has ones in the upper $k \times k$ block, 0 on the diagonal, and 1/2 everywhere else

From this, we can easily see that the $\mathbb{E}W$ is:

Figure 2: $\mathbb{E}W$ differs from $W^* = 1_k 1_k^{\top}$ only in the upper k diagonal

Note $\mathbb{E}W = 1_K 1_K^{\top} - \operatorname{diag}(1_K) \approx 1_K 1_K^{\top} = W^*$, which is good because we have seen that "difference in the diagonal are asymptotically negligible.'

Goal: show $|\tilde{K} \cap K| \ge (1 - \varepsilon)k$ whp, $\varepsilon = \varepsilon(c)$.

We first show the top eigenvector of W^* is close to u (the top eigenvector of W). Let $v = \frac{1}{\sqrt{k}} 1_K$ be the top eigenvector of W^* . Note $\lambda_1(W^*)=k$. By Davis-Kahan

(33)

reference for

this? 9-5

$$\min_{s \in \{\pm 1\}} \|u + sv\|_2 \le \frac{\|W - W^*\|_2}{\lambda_1(w^*) - \lambda_2(w)}$$
(33)

Note

$$||W - W^*|| \le ||W - \mathbb{E}W|| + ||\mathbb{E}W - W^*|| \le c\sqrt{n} + 1 \tag{34}$$

Also $\lambda_1(W^*) = k$ and

$$|\lambda_2(W)| \le |\lambda_2(W^*) - \lambda_2(W) \le ||W^* - W||$$
 (35)

So by Weyl's inequality

$$\min_{s \in \{\pm 1\}} \|u + sv\|_2 \le \frac{c\sqrt{n} + 1}{k - (c\sqrt{n} + 1)}$$
(36)

$$\leq \frac{c\sqrt{n}+1}{c\sqrt{n}-c\sqrt{n}+1} \leq \varepsilon \tag{37}$$

Aside: Davis-Kahan to get bound between difference of eigenvectors in 2-norm. Open problem to control others.

Next, if $|K| = k = |\tilde{K}|$ then $|K \setminus \tilde{K}| = |\tilde{K} \setminus K|$.

Figure 3: $|K| = |\tilde{K}| \implies |K \setminus \tilde{K}| = |\tilde{K} \setminus K|$ follows from elementary set theory

By definition of v

$$\varepsilon^{2} \ge \|u - v\|_{2}^{2} = \sum_{i \in K} (u_{i} - \frac{1}{\sqrt{k}})^{2} + \sum_{i \notin K} u_{i}^{2}$$
(38)

Lemma 10

If all $|u_i| \leq \frac{1}{2\sqrt{k}}$ for $i \notin \tilde{K}$, then

$$\varepsilon^2 \ge \sum_{i \in K \setminus \tilde{K}} \left(\frac{1}{\sqrt{k}} - u_i\right)^2 \ge \sum_{i \in K \setminus \tilde{K}} \frac{1}{4k} \tag{39}$$

This implies $|K \setminus \tilde{K}| \le 4\varepsilon^2 k$.

Lemma 11

If the condition of the previous lemma does not hold, then $\exists i \in \tilde{K}$ with $|u_i| \geq \frac{1}{2\sqrt{k}}$. Then in fact $|u_i| \geq \frac{1}{2\sqrt{k}}$ for all $i \in \tilde{K}$ since

$$\varepsilon^2 \ge \sum_{i \in \tilde{K} \setminus K} u_i^2 \ge \sum_{i \in \tilde{K} \setminus K} \left(\frac{1}{2\sqrt{k}}\right)^2 = \sum_{i \in \tilde{K} \setminus K} \frac{1}{4k} \tag{40}$$

Hence $|\tilde{K} \setminus K| \le 4\varepsilon^2 k$

So we have achieved our goal.

To finish the proof, first assume $||u-v||_2 \le \varepsilon$. For $a \in K$,

$$d_{\tilde{K}}(a) \ge d_{\tilde{K} \cap K}(a) = |\tilde{K} \cap K| - 1 \ge (1 - \varepsilon')k \tag{41}$$

so for $a \in K$, we will get $a \in \hat{K}$.

Now if $a \notin K$,

$$d_{\tilde{K}}(a) \le \underbrace{d_{K}(a)}_{\sim \text{Binom}(k,1/2)} + \underbrace{|\tilde{K} \setminus K|}_{\le \varepsilon' k} \approx \frac{k}{2} \pm c\sqrt{k}$$

$$\tag{42}$$

where \approx means concentration. To be concrete,

$$\Pr[\hat{K} \neq K] \le \Pr[\|u - v\|_2 \ge t] + \Pr[\exists a \notin K : d_K(a) \ge (\frac{3}{4} - \varepsilon')k]$$
(43)

$$\leq \Pr[\|W - \mathbb{E}W\| \geq c\sqrt{n}] + (n-k)\Pr[B(k, 1/2) \geq (\frac{3}{4} - \varepsilon)k] \tag{44}$$

$$\leq ce^{-c'n} + (n-k) \tag{45}$$

Where above we used the multiplicative version of Chernoff bound (useful in combinatorial statistics):

Lemma 12 (Multiplicative Chernoff Bound)

{lem:mult-che

$$\Pr[X \ge (1+\delta)\mu] \le \begin{cases} e^{-\delta^2\mu/3} & \delta \in [0,1] \\ e^{-\delta\mu/3} & \delta \ge 1 \end{cases}$$

$$\tag{46}$$

$$\Pr[X \le (1 - \delta)\mu] \le e^{-\delta^2 \mu/2} \tag{47}$$

As $n \to \infty$, we see that $\Pr[\hat{K} = K] \to 1$.

Lemma 12 is self-normalizing: let $X = \sum_{i=1}^{n} X_i$ with X_i independent binary and $\mu = \mathbb{E}X$. Note that after applying, the RHS does not depend on n

Verify

AKS Algorithm 2: This algorithm is designed to handle the case when k is not big enough (recall algorithm 1 requires $k \ge c\sqrt{n}$). Search over all S with $|S| = C(c) = 2\log_2\frac{10}{c} + 2$. For each S:

- 1. Define $N^*(S) = \{v \in V : v \sim a, \forall a \in S\} \setminus S$
- 2. Run Algorithm 1 on the induced subgraph (which has distribution $G(1/2, N^*(S), K S)$), return $Q_S \cup S$
- 3. Output if $Q_S \cup S$ is a k-clique

Intuition: Suppose k=0 so there's no clique. Then $|N^*(S)| \sim B(n-s,2^{-s}) \approx \frac{n-s}{2^s}$ so the total number of nodes is much smaller (by order of 2^{-s}). However, the number of clique nodes in $N^*(S)$ is still relatively large, $\geq k-s$. Solving the critical equation (also for algorithm 1)

Track htis down

$$k - s \ge C\sqrt{\frac{n}{2^s}} \tag{48}$$

yields the expression for C(c).

Theorem 13

As long as $k \geq (2 + \varepsilon) \log_2 n$, then exhaustive search finds k with probability $\rightarrow 1$.

Proof. Exhaustive search will always find the clique, but it may return a clique that we didn't plant. So we need to guarantee there is no clique of size $(2 + \varepsilon) \log_2 n$ in G whp.

For $S \subset [n]$, |S| = k,

$$\Pr[S \text{ is clique}] = \frac{1}{2\binom{k}{2}} \tag{49}$$

$$\Pr[\exists S \subset [n] : S \text{ is clique}] \le \binom{n}{k} \frac{1}{2\binom{k}{2}} \le (n2^{-(k-1)/2})^k \to 0$$
 (50)

(51)

as
$$n \to \infty$$
 $(k = (2 + \varepsilon) \log_2 n)$.

3 9/12/2019

3.1 Planted cliques and semidefinite programming

Recall the matrix W from before, which has 1s in the top $k \times k$ block, zero on the diagonal, and Rad(1/2) RVs elsewhere.

Recall the spectral method:

$$\hat{u}_{spec} = \underset{\|u\|^2 = k}{\operatorname{argmax}} u \in \mathbb{R}^n \quad u^\top W u \tag{52}$$

This needs a cleaning step, which we analyzed previously.

How did they come up with this algorithm? Can we get more insight by analyzing htis method in a more principled framework? Yes, through maximum likelihood!

Consider an alterantive model where within clique we have connection probability p (instead of 1) and other connections with probability q (instead of 1/2), where $p \gg q$.

$$\hat{u}_{MLE} = \underset{\sum_{i} u_{i} = k}{\operatorname{argmax}}_{u \in \{0,1\}^{n}} u^{\top} W u$$
(53)

From this, we see that the spectral method is a continuous relaxation of the MLE integer program. To make this more precise, consider the SDP

$$\hat{X}_{spec} = \underset{\text{Tr } \bar{X} = k}{\operatorname{argmax}} \underset{\text{Tr } \bar{X} = k}{X \succeq 0} \langle W, X \rangle \tag{54}$$

If we let $X = uu^{\top}$, then we automatically have $X \succeq 0$ and additionally we have $\operatorname{Tr} X = ||u||_2^2$. Thus, the feasible set of Eq. (52) is the same as Eq. (54).

How do we know the optima of Eq. (54) is attained at a rank 1 matrix $X = uu^{\top}$? Since $X = \sum_{i} \lambda_{i} u_{i} u_{i}^{\top}$ ($\lambda_{i} \geq 0$) and optima are attained at extremal points, by linearity of $\langle W, X \rangle$ we can put all of the weight on a single λ_{i} corresponding to the top eigenvector of W.

How can we get Eq. (54) closer to Eq. (53)? Since Eq. (53) is more constrained, we can consider adding more constraints:

$$\tilde{X}_{MLE} = \operatorname{argmax}_{X} \langle W, X \rangle \tag{55}$$

s.t.
$$X \succeq 0$$
 (56)

$$\operatorname{Tr} X = k \tag{57}$$

$$0 \le X \le J$$
 entrywise (58)

$$\langle X, J \rangle = k^2 \tag{59}$$

$$rank(X) = 1 (60)$$

where $J = 11^{\top}$.

The solution $X = uu^{\top}$ where $u \in \{0,1\}^n$, where u indexes the clique.

Conversely, we need to show that the feasible set coincides with Eq. (53). If $X \succeq 0$ and rank X = 1, then we can always write $X = uu^{\top}$. The trace constraint now reads $k = \operatorname{Tr} X = \sum_i u_i^2$. The third constraint becomes $\langle X, J \rangle = k^2 \implies (\sum_i u_i)^2 = k^2$.

Proposition 14

The optima of Eq. (55) must satisfy: $u_i \in [-1,1]$, $\sum u_i^2 = k$, $(\sum_i u_i)^2 = k^2$, $\{u_i\} \in \{0,1\}^n$ or $\{u_i\} \in \{0,-1\}^n$.

In fact, the solution is $u = 1_k$ or $u = -1_k$.

The linear constraints in Eq. (55) are fine, but the rank constraints are difficult. Here is an easier

candidate SDP:

$$\hat{X}_{SDP} = \operatorname{argmax}_{X} \langle W, X \rangle \tag{61}$$

s.t.
$$X \leq 0$$
 (62)

$$X \ge 0 \tag{63}$$

$$\operatorname{Tr} X = k \tag{64}$$

$$\langle X, J \rangle = k^2 \tag{65}$$

Notice we have dropped the rank constraint as well as the upper entrywise bound.

Theorem 15

 $\exists c > 0$ such that for $k \geq c\sqrt{n}$, Eq. (61) has unique maximizer $X^* = 1_k 1_k^{\top}$ with high probability.

Proof. We first show X^* is a maximizer.

$$\langle W, X^* \rangle = \mathbf{1}_k^\top W \mathbf{1}_k = k^2 - k \tag{66}$$

$$\langle W, X \rangle = \langle W + I, X \rangle - \operatorname{Tr} X$$
 (67)

$$\operatorname{Tr}(I - X) = \operatorname{Tr} X \le \langle J, X \rangle - \operatorname{Tr}(X)$$
 (68)

$$\underbrace{W+I \leq J}_{X>0} \implies \langle J, X \rangle \geq \langle W+I, X \rangle \tag{69}$$

$$\therefore \operatorname{Tr}(I - X) = \operatorname{Tr} X \le k^2 - k \tag{70}$$

The harder part is uniqueness. We will develop a general technique called dual certificate / KKT condition. Write the Lagrangian for the optimization problem. Introduce dual variables $S \succeq 0, \ B \geq 0, \ \eta \in \mathbb{R}$, $\lambda \in \mathbb{R}$ and

$$\mathcal{L}(X, S, B, \eta, \lambda) = \langle W, X \rangle + \langle S, X \rangle + \langle B, X \rangle + \eta \left(k \operatorname{Tr}(X) + \lambda (k^2 - \langle X, J \rangle) \right)$$
(71)

Notice

$$\max_{X \text{ feas}} \langle W, X \rangle = \max_{X} \min_{S, B, \eta, \lambda} \mathcal{L}$$
(72)

as desired. Since \mathcal{L} is linear, by Sion's minimax theorem we have

$$\max_{X} \min_{S,B,\eta,\lambda} \mathcal{L} = \min_{S,B,\eta,\lambda} \max_{X} \mathcal{L}$$
 (73)

Note $\langle S, X \rangle = \text{Tr}(S^{1/2}XS^{1/2}) \ge 0$ is non-negative. $\langle B, X \rangle$ is also trivially non-negative.

Lemma 16

The following conditions imply X^* is the unique maximizer:

{lem:x-star-u

- 1. Stationarity: $W + S + B \eta I \lambda J = 0$ (can't improve any more)
- 2. Primal/dual feasibility
- 3. Complementary slackness: $\langle S, X^* \rangle = 0$ and $\langle B, X^* \rangle = 0$.
- 4. Uniqueness: $\lambda_{n-1}(S) > 0$ (second smallest eigenvalue of S)

The first three conditions are the "KKT conditions." Together, they guarantee X is a maximizer.

Proof of Lemma 16. X^* is a maximizer: for feasible variables

$$\langle W, X \rangle \le \mathcal{L}(X, S, B, \eta, \lambda)$$
 feasible (74)

$$= \mathcal{L}(X^*, S, B, \eta, \lambda)$$
 stationarity (75)

$$=\langle W, X^* \rangle$$
 comp. slackness (76)

Uniqueness: Suppose X' satisfies $\langle W, X' \rangle = \langle W, X^* \rangle$. Then $\langle S, X' \rangle = 0$, and $\langle S, X^* \rangle = 0 \implies 1_k^\top S 1_k = 0 \implies S 1_k = 0$. In other words, 1_k is an eignevector with eigenvalue 0 for S. But condition (4) means that 1_k is the only eigenvector with eigenvalue 0, hence $X' = cX^*$ for some $c \in \mathbb{R}$. But by the constrant $\operatorname{Tr} X = k$, we must have $X' = X^*$.

Hence, if we can find (S, B, η, λ) satisfying Lemma 16, then we have a certificate that X^* is the unique maximizer.

But how can we find this certificate? It's hard in general, but in this case we have an explicit construction.

$$B \ge 0, \quad \eta \in \mathbb{R}, \quad \lambda \in \mathbb{R}$$
 (77)

$$S = \eta I + \lambda J - B - W \succeq 0 \tag{78}$$

$$S1_k = 0, \quad \langle B, X^* \rangle = 0, \quad \lambda_{n-1}(S) > 0$$
 (79)

$$S1_k = 0 \implies \eta I_k + \lambda k 1 = B1_k + W1_k \tag{80}$$

 $X^* = 1_k 1_k^{\mathsf{T}}$. Since we want $\langle B, X^* \rangle = 0$, we want $B_{ij} = 0$ for $(i, j) \in K \times K$. This implies that $(B1_k)i = 0$ for $i \in K$. Let $y = W1_k$.

ith entry, $i \in K$, of Eq. (79) implies $\eta + k\lambda = (B1_k)_i + y_i = k - 1$. Then, choose $\eta = k - 1 - k\lambda$

Now for $i \notin K$, Eq. (79) implies $\lambda k = (B1_k)_i + y_i$. Construct $B = 1_k b^{\top} + b1_k^{\top}$ for some $b \in \mathbb{R}^n$ such that $b_i = 0$ for $i \in K$. Then $B1_k = kb$.

 $\mathrm{Fig}\ 9.12.1$

 $b_i = \lambda - \frac{y_i}{k}$ for all $i \notin k$. Check $B \ge 0 \implies b_i \ge 0$. Since $\lambda \ge \frac{y_i}{k}$ for all $i \in K$, $\lambda \ge \max_{i \notin K} \frac{y_i}{k}$. $y_i = W1_k$ which is a sum of Rad(1/2) RVs, so by concentration for some $\lambda \ge c$ this is satisfied whp.

For the last part, we need to show $x^{\top}Sx > 0$ for all x such that $x^{\top}1_k = 0$. The exact formula for S is

$$S = \eta + \underbrace{\lambda x^{\top} J x}_{\geq O(\sqrt{n})} - \underbrace{x^{\top} B x}_{=0} - \underbrace{x^{\top} W x}_{\geq O(\sqrt{n})}$$

$$\tag{81}$$

$$\geq \frac{k}{2} - 1 - x^{\top} \mathbb{E}[W] x - \|W - \mathbb{E}W\|_{op}$$
(82)

$$\geq 0$$
 for suff large k (83)

4 9/17/2019

4.1 Logistics

HW1 releasted

4.2 Primal method for SDP

Planted Clique model G(1/2, n, k).

$$\hat{X}_{SDP} = \operatorname{argmax}_{X} \langle W, X \rangle \tag{84}$$

$$st \ X \succeq 0 \tag{85}$$

$$X \ge 0 \tag{86}$$

$$Tr(X) = k (87)$$

$$\langle X, J \rangle = k^2 \tag{88}$$

where $J = 11^{\top}$ and $W_{ij} = \mathbb{1}\{i = j\}2A_{ij} - 1$. Last time we proved (using a dual certificate approach)

Theorem 17

If $k \geq c\sqrt{n}$ for a large enough c, then $X^* = 1_k 1_k^{\top}$ is the unique maximizer.

Today we will consider a primal approach.

Round up suffices: Suppose we find X such that $\langle W, X \rangle \geq (1 - \varepsilon) \langle W, X^* \rangle$. Let $\hat{X}_{ij} = \mathbb{1}\{X_{ij} > 1/2\}$.

Theorem 18

If
$$\varepsilon \lesssim \frac{c_0\sqrt{n}}{k^3}$$
 for sufficiently small $c_0 < 0$, then $\hat{X} = X^*$ whp.

Proof. Suppose $\hat{X} \neq X^*$. Then either:

 $\exists (i_0, j_0) \in K \times K \text{ such that } X_{i_0, j_0}^* = 1 \text{ and } X_{i_0, j_0} \leq \frac{1}{2}, \text{ or }$

$$\exists (i_1, j_1) \notin K \times K \text{ such that } X_{i_1, j_1}^* = 0 \text{ and } X_{i_1, j_1} > \frac{1}{2}.$$

In both acses, $||X - X^*||_F \ge \frac{1}{2}$.

Also, we previously showed that the global optimum $\langle W, X^* \rangle = k^2 - k$ because even though W is random, inner product with X^* grabs the upper left $K \times K$ corner where W is deterministic.

Recall the KKT condition: $S \succeq 0$, $S1_K = 0$, $B \geq 0$, $\eta, \lambda \in \mathbb{R}$, $\lambda_{n-1}(S) \geq c_2 \sqrt{n}$. Also

$$\langle W, X^* \rangle - \langle W, X \rangle = \langle S, X \rangle + \langle B, X \rangle =: \delta$$
 (89)

because last class we had

$$\langle W, X \rangle \le L(X, S, B, \eta, \lambda)$$
 (90)

$$= \langle W, X \rangle + \langle S, X \rangle + \langle B, X \rangle + \eta(k - \operatorname{Tr} X) + \lambda(k^2 - \langle X, J \rangle) \tag{91}$$

$$= \langle W, X^* \rangle \tag{92}$$

We already knew $u = \frac{1}{\sqrt{k}} 1_k$ eigenvector of S corresponding to $\lambda_n(S) = 0$ (KKT complementary slackness tells us that Su = 0). This gives the matrix inequality

$$S \succeq \lambda_{n-1}(S)(I - UU^{\top}) \tag{93}$$

Since we previously have a bound on $\langle S, X \rangle$, to look for a sandwich inequality we consider taking an inner product with X

$$\langle S, X \rangle \ge c_2 \sqrt{n} \langle X, I - X^*/k \rangle = c_2 \sqrt{n} \langle X, I \rangle - c_2 \frac{\sqrt{n}}{k} \langle X, X^* \rangle$$
 (94)

$$\langle X, X^* \rangle \ge k^2 - \frac{k\delta}{c_2 \sqrt{n}} \tag{95}$$

Where we used the upper bound

$$\delta \ge \langle S, X \rangle \tag{96}$$

This gives a bound on a cross term in the Frobenius norm expansion

$$||X - X^*||_F^2 = ||X||_F^2 + ||X^*||_F^2 - 2\langle X, X^* \rangle$$
(97)

$$||X^*||_F^2 = ||1_k 1_k^\top||_F^2 = k^2 \tag{98}$$

$$||X||_F^2 \le ||X||_*^2 = k^2 \tag{99}$$

$$\therefore \|X - X^*\|_F^2 \le k^2 + k^2 - 2\left(k^2 - \frac{k\delta}{c_2\sqrt{n}}\right)$$
 (100)

$$=\frac{2k\delta}{c_2\sqrt{n}} \le \frac{1}{4} \tag{101}$$

So we we how to use approximate KKT conditions. But we need quantitative result of the maximizer (i.e. the second eigenvector $\lambda_{n-1}(S)$) to show the uniqueness of the maximizer.

4.2.1 SDP Advantage: Robust to monotone adversary

Given adjacency matrix A, allow adversary to delete edges **not** in the clique.

Failure of spectral methods: they depend too much on edges not in the clique, that by deleting them in a certain way (see Figure) results in their failure.

Figure 9.17.1: spectral methods will fail because there will be two large eigenvalues $\lambda_1 \approx \lambda_2 \approx \frac{n-k}{4}$ corresponding to the ER random blocks and the k-clique will be missed.

In contrast, SDPs enjoy better robust. Consider modification $W \mapsto W$. For any $X \neq X^*$, will show

4.3 Second SDP formulation: primal analysis

This gives another formulation of the same problem, but presents new techniques.

Recall Tr $X = k = \sum_i \lambda_i(X) = ||X||_*$ the nuclear norm. We have the SDP formulation

$$\hat{X}_{cvx} = \operatorname{argmax}_{X} \langle X, W \rangle \tag{102}$$

$$st ||X||_* \le k \tag{103}$$

$$0 \le X \le J \tag{104}$$

$$\langle X, J \rangle = k^2 \tag{105}$$

Lemma 19

For any matrix $X \in \mathbb{R}^{m \times n}$, $\|X\|_* \le 1$ iff $\exists W_1 \in \mathbb{R}^{m \times n}$ and $W_2 \in \mathbb{R}^{n \times n}$ such that $\operatorname{Tr}(W_1) + \operatorname{Tr}(W_2) \le 2$.

$$\begin{bmatrix} W_1 & X \\ X^\top & W_2 \end{bmatrix} \succeq 0 \tag{106}$$

After this lemmma, we know we can solve the nuclear norm into a PSD constraint and can hence solve this problem with a SDP solver.

Proof. We need the following result:

Lemma 20 (lSub-differential of nuclear norm)

 $X \neq 0, X = U\Sigma V^{\top}$ and the subgradient for nuclear norm

$$\partial \|\cdot\|_*(X) = \{UV^\top + p^\perp(Y) : \|Y\|_{op} \le 1\}$$
(107)

where
$$p^{\perp}(Y) = (I - UU^{\top})(I - VV^{\top})$$
 (108)

We will show the sufficient condition that for any $X \neq X^*$,

$$\langle W, X^* \rangle - \langle W, X \rangle \gtrsim \|X - X^*\|_{\ell_1} \tag{109}$$

We have $X^* = 1_k 1_k^{\top}$, with top eigenvector $u = \frac{1}{\sqrt{k}} 1_k$. Analogously, $X^* = kuu^{\top}$. Letting $E = UU^{\top}$,

$$p^{\perp}(Y) = (I - E)Y(I - E) \tag{110}$$

$$p(Y) = Y - P^{\perp}(Y) = EY + YE - EYE$$
 (111)

We can decompose

$$\langle W, X^* - X \rangle = \langle X^* - X, X^* \rangle + \langle X^* - X, P^{\perp}(W - X^*) \rangle + \langle X^* - X, P(W - X^*) \rangle$$
 (112)

(a)

$$\langle X^* - X \rangle = \sum_{(i,j) \in K \times K} (1 - X_{ij}) = \frac{1}{2} ||X - X^*||_{\ell_1}$$
(113)

$$= \sum_{(i,j) \notin K \times K} (X_{ij} - v) \tag{114}$$

(b)

$$0 \ge \|X\|_* - \|X^*\|_* \tag{115}$$

$$\geq \langle X - X^*, \underbrace{E + p^{\perp}(Y)}_{\partial \|\cdot\|_*(X^*), \|Y\|_{op} \leq 1}$$
(116)

$$\partial \|\cdot\|_*(X^*), \|Y\|_{op} \le 1$$

$$= \langle X - X^*, E \rangle + \langle X - X^*, p^{\perp}(y) \rangle \tag{117}$$

For the last term, just use Hölder's inequality

$$|\langle X^* - X, P(W - X^*) \rangle| \le ||P(W - X^*)||_{\ell_{\infty}} ||X - X^*||_{\ell_1}$$
(118)

Altogether (remember this, building on this next lecture)

$$\langle X^* - X, W \rangle \ge \left(\frac{1}{2} - \frac{\|W - X^*\|_{op}}{2k} - \|P(W - X^*)\|_{\ell_{\infty}}\right) \|X - X^*\|_{\ell_{1}}$$
(119)

9/17/20195

Recall the SDP relaxation

$$\hat{X}_{cvx} = \operatorname{argmax}_{X} \langle W, X \rangle \tag{120}$$

$$st ||X||_* \le k \tag{121}$$

$$0 \le X \le J = 11^{\top} \tag{122}$$

$$\langle X, J \rangle = k^2 \tag{123}$$

Theorem 21

If $k \geq c\sqrt{n}$, c sufficiently large, then X^* is the unique maximizer.

Proof. For any feasible X,

$$\langle W, X^* \rangle - \langle W, X \rangle \gtrsim \|X - X^*\|_{\ell_1}$$
 (124)

Last time, defined

$$u = \frac{1}{\sqrt{k}} 1_k \tag{125}$$

$$X^* = 1_k 1_k^{\top} = k \underbrace{uu^{\top}}_{=:E} \tag{126}$$

$$P^{\perp}(Y) = (I - E)Y(I - E) \tag{127}$$

$$P(Y) = Y - P^{\perp}(Y) = EY + YE - EYE$$
 (128)

 P^{\perp} is the projection to the orthogonal complement of E, and P is the projection onto E. We proved last time

$$\langle X - X^*, W \rangle \ge \left(\frac{1}{2} - \frac{\|W - X^*\|_{op}}{2k} - \|P(W - X^*)\|_{\ell_{\infty}}\right) \|X - X^*\|_{\ell_{1}}$$
(129)

Today, we consider

$$||W - X^*||_{op} \le \underbrace{||W - EW||_{op}}_{\le \sqrt{n}} + \underbrace{||EW - X^*||_{op}}_{\le 1}$$
 (130)

Indeed

$$W - X^* = W - EW - I_k (131)$$

$$||P(W - X^*)||_{\ell_{\infty}} \le ||P(W - EW)||_{\ell_{\infty}} + ||P(I_k)||_{\ell_{\infty}}$$
(132)

$$P(I_k) = EI_k + I_k E - EI_k E = E \tag{133}$$

Also

$$||P(Y)||_{\ell_{\infty}} = ||EY + YE - EYE||_{\ell_{\infty}}$$
(134)

$$\leq \|EY\|_{\ell_{\infty}} + \|YE\|_{\infty} + \|EYE\|_{\infty}$$
 (135)

The last term is complicated, but notice $||EYE||_{\infty} \leq ||EY||_{\infty} ||E||_{\ell_{\infty} \to \ell_{\infty}} \leq ||EY||_{\infty}$ hence

$$||P(Y)||_{\ell_{\infty}} \le 3||EY||_{\ell_{\infty}} \tag{136}$$

Doing the calculation for $||EY||_{\infty}$

$$EY = \frac{1}{k} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & \text{Rad} \\ \text{Rad} & 0 \end{pmatrix}$$
 (137)

So $||EY||_{\infty} = \frac{1}{k} \max_{j \notin K} \sum_{i \in K} Y_{ij}$. n - k sub-Gaussian rv with variance 1/k.

Lemma 22

If X_i satisfies $\mathbb{E}e^{-x_i^2/\sigma^2} \leq 2$ for some σ , then

$$\mathbb{E} \max_{i=1}^{n} \lesssim \sigma \sqrt{\log n} \tag{138}$$

5.1 Planted partition model

Let
$$A_{ij} \sim \begin{cases} P, & \text{if } \sigma_i = \sigma_j \\ Q, & \text{ow} \end{cases}$$
 with $\sigma = (\sigma_1, \dots, \sigma_n) \in \{\pm 1\}^n$.

Goal: Recover σ .

Stochastic block model: P = Bern(p) and Q = Bern(q). If p > q we call it **associative** and p < q is called disassociative.

IID model: $\sigma_i \stackrel{\text{iid}}{\sim} \text{Rad}$

Bisection: $\sum \mathbb{1}\{\sigma_i = +1\} = \sum \mathbb{1}\{\sigma_i = -1\}$

Some problems we are interested in solving include *detection*:

$$\mathcal{H}_0: A_{ij} \stackrel{\text{iid}}{\sim} \frac{P+Q}{2} \tag{139}$$

$$\mathcal{H}_1$$
: Planted partition model (140)

Lemma 23

$$(X,Y)$$
 with $Y \in \{\pm 1\}$.

$$P_{X|Y=1} = P \text{ and } P_{X|Y=-1} = Q.$$
 $P_{Y}(1) = P_{Y}(-1) = \frac{1}{2}.$
Observe X, infer Y?

$$P_Y(1) = P_Y(-1) = \frac{1}{2}$$
.

$$\min_{\hat{Y}(X)} \mathbb{E}1\{\hat{Y} \neq Y\} = \frac{1}{2}(1 - \text{TV}(P, Q))$$
(141)

Another problem is correlated recovery

$$\ell(\sigma, \hat{\sigma}) = \min_{s \in \{\pm 1\}} \|\sigma + s\hat{\sigma}\|_1 \tag{142}$$

If I beat random guess, I win.

Yet another is almost exact recovery

$$\frac{\mathbb{E}\ell(\sigma,\hat{\sigma})}{n} \to 0 \tag{143}$$

Finally in exact recovery

$$\Pr[\sigma \neq \hat{\sigma}] \to 0 \tag{144}$$

Computing TV is not easy usually. Ingster- $Suslina\ Trick$ lets us upper bound it with chi squared divergence:

$$\chi^{2}(P \mid\mid Q) = \left(\int \frac{p^{2}}{q}\right) - 1 \ge 0 \tag{145}$$

$$TV(P,Q) \lesssim \sqrt{KL(P \parallel Q)} \le \sqrt{\chi^2(P \parallel Q)} \tag{146}$$

Mixture vs single: suppose $\{P_{\theta}: \theta \in \Theta\}$ family of models, prior Π on Θ ,

$$P_{\Pi}(x) = \int P_{\theta}(x)\Pi(d\theta) \tag{147}$$

Then sometimes it's easy to write down

$$\chi^2(P_{\Pi} \mid\mid Q) = \mathbb{E}_{\theta,\hat{\theta},\Pi}G(\theta,\hat{\theta}) - 1 \tag{148}$$

$$G(\theta, \hat{\theta}) = \int \frac{P_{\theta} P_{\tilde{\theta}}}{Q} \tag{149}$$

Proof. By Fubini

$$\int \frac{P_{\Pi}^2}{Q} = \int \frac{\int p_{\theta}(x)\pi(d\theta) \int p_{\hat{\theta}}(x)\pi(d\hat{\theta})}{Q(x)} dx$$
 (150)

$$= \int \pi(d\theta)\pi(d\hat{\theta}) \left(\frac{P_{\theta}(x)P_{\hat{\theta}}(x)}{Q(x)}\right) dx \tag{151}$$

5.2 Contiguity between probability measures

Introduced by LeCun in the asymptotic statistics literature.

Definition 24

A sequence of probability measures (p_n) is **contiguous to** (Q_n) if for any events E_{∞} ,

$$Q_n(E_n) \to 0 \implies P_n(E_n) \to 0$$
 (152)

This can be thought of as an asymptotic version of absolute continuity: $P \ll Q$ if for all events E

$$Q(E) = 0 \implies P(E) = 0 \tag{153}$$

To interpret contiguity, let E_n be set X lies in to declare p_n sequence.

$$P_n(E_n) = \mathbb{E}_{Q_n} \left(\frac{P_n}{Q_n} \mathbb{1}(E_n) \right) \tag{154}$$

$$\leq \sqrt{\mathbb{E}_{Q_n} \left(\frac{P_n^2}{Q_n^2}\right) \mathbb{E}_{Q_n} [\mathbb{1}(E_n)]} \tag{155}$$

SBM: Fix label σ .

$$P_{\sigma}(A) = \prod_{i < j} \left(P \mathbb{1}_{\sigma_i = \sigma_j} + Q \mathbb{1}_{\sigma_i \neq \sigma_j} \right)$$
(156)

$$= \prod_{i \le j} \left(\frac{P+Q}{2} + \frac{P-Q}{2} \sigma_i \sigma_j \right) \tag{157}$$

$$G(\sigma, \hat{\sigma}) = \int \frac{P_{\sigma}(A)P_{\hat{\sigma}}(A)}{P_0(A)} dA \tag{158}$$

$$P_0(A) = \prod_{i < j} \frac{P + Q}{2} \tag{159}$$

$$= \prod_{i < j} \left(\int \frac{P+Q}{2} + \int \frac{P-Q}{2} \sigma_i \sigma_j + \int \frac{P-Q}{2} \hat{\sigma}_i \hat{\sigma}_j + \int \underbrace{\frac{(P-Q)^2}{2(P+Q)}}_{=:o} \sigma_i \sigma_j \hat{\sigma}_i \hat{\sigma}_j \right)$$
(160)

$$= \prod_{i < j} (1 + \rho \sigma_i \sigma_j \hat{\sigma}_i \hat{\sigma}_j) \tag{161}$$

$$\leq \exp(\rho \sum_{i < j} \sigma_i \sigma_j \hat{\sigma}_i \hat{\sigma}_j) \tag{162}$$

$$\leq \exp(\frac{\rho}{2} \left\langle \sigma, \hat{\sigma} \right\rangle^2) \tag{163}$$

But we know the last term very well. Since $\sigma, \hat{\sigma} \stackrel{\text{iid}}{\sim} \text{Rad}^n$, we have $\frac{1}{\sqrt{n}} \langle \sigma, \hat{\sigma} \rangle \Rightarrow \mathcal{N}(0, 1)$ so

$$\mathbb{E}e^{\frac{\rho}{2}\langle\sigma,\hat{\sigma}\rangle^2} \to \mathbb{E}e^{\frac{\rho}{2}(\sqrt{n}z)^2} = \mathbb{E}e^{\frac{\rho n}{2}z^2} < \infty \tag{164}$$

whenever $\rho_n < 1$. So we have the lower bound

$$\rho = \frac{\tau + o(1)}{n} \quad \tau = \frac{(a-b)^2}{2(a+b)} \tag{165}$$

When $\tau < 1$, then it is impossible to detect.

$6 \quad 9/24/2019$

6.1 Exact recovery of stochastic block model

Definition 25 $(Symmetric\ stochastic\ block\ model)$

The *symmetric stochastic block model*, denoted by $SSBM(n, 2, p_{in} = \frac{a \log n}{n}, p_{out} = \frac{b \log n}{n} \mid \sigma)$, is a probability distribution over graphs (V, E) on n vertices where:

- Each vertex $v \in V$ belongs to one of 2 communities, denoted by $\sigma_v \in \{1, 2\}$
- \bullet Symmetric: exactly n/2 vertices in each community
- The probability of an edge between two vertices in the same community is $p_{in} = \frac{a \log n}{n}$

• The edge probability between different communities is p_{out} .

Notice that we have chosen to parameterize $p_{in} = \frac{a \log n}{n}$ and $p_{out} = \frac{b \log n}{n}$. Some intuition for the log is to recall that $G(n, c \log n/n)$ is connected whp iff c > 1. For SSBM, we have a similar threshold where G is connected whp iff the average of the edge probability coefficients $\frac{a+b}{2} > 1$.

We are interested in **exact recovery in SSBM**: let $G = (V, \tilde{E}) \sim SSBM(n, 2, p_{in}, p_{out} \mid \sigma^*)$, can we construct an estimator $\hat{\sigma}(G)$ such that as $n \to \infty$

$$\Pr[\sigma^* \neq \hat{\sigma}] \to 0 \tag{166}$$

The goal over the next lectures will be to establish the following phase transition regarding the hardness of exact recovery in SSBM:

Theorem 26

Exact recovery in $SSBM(n, 2, \frac{a \log n}{n}, \frac{b \log n}{n})$ is efficiently solvable if $|\sqrt{a} - \sqrt{b}| > \sqrt{2}$ and unsolvable if $|\sqrt{a} - \sqrt{b}| < \sqrt{2}$.

Remark 27. We can rewrite $|\sqrt{a}-\sqrt{b}| > \sqrt{2}$ as $\frac{a+b}{2} > 1 + \sqrt{ab}$ and compare against the $\frac{a+b}{2} > 1$ connectivity threshold for SSBM. As expected, exact recovery implies connectivity. Furthermore, exact recovery requires a \sqrt{ab} over-sampling factor.

Remark 28. For $|\sqrt{a} - \sqrt{b}| = \sqrt{2}$, exact recovery is efficiently solvable if a, b > 0.

Proof of unsolvable. Consider the one dimensional problem of oracle-aided hypothesis testing problem where the oracle reveals the true communities σ_v of all vertices except for one, say σ_0 , and we test $\mathcal{H}_0 = {\sigma_0 = 1}$ against $\mathcal{H}_a = {\sigma_0 = 2}$.

The probability of error is minimized by the MAP estimator, which picks $\sigma_0 = u$ maximizing the posterior probability

$$\Pr[\sigma_0 = u \mid G = g, \sigma_{\setminus 0} = \sigma_{\setminus 0}] \tag{167}$$

Since $P(\sigma_0 = u) = 1/2$ for $u \in \{1, 2\}$, the posterior probability is

$$\Pr[\sigma_0 = u \mid G = g, \sigma_{\setminus 0} = \sigma_{\setminus 0}] = \underbrace{\frac{\Pr[\sigma_0 = u]}{\Pr[G = g, \sigma_{\setminus 0} = \sigma_{\setminus 0} \mid \sigma_0 = u]}}_{\Pr[G = g, X_{\setminus 0} = x_{\setminus 0}]}$$
(168)

$$\propto \Pr[G = g, \sigma_{\setminus 0} = \sigma_{\setminus 0} \mid \sigma_0 = u] \tag{169}$$

which depends only on the number of edges between vertex 0 and the two communities.

Let $T = \#\{v \in V \setminus \{0\} : \sigma_v = 1 \text{ and } (0, v) \in E\}$ count the number of edges between vertex 0 and all the vertices in community 1 (provided by the oracle through $\sigma_{\setminus 0}$). Notice $T \mid \sigma_0 = 1 \sim B(n/2, p_{in})$ and $T \mid \sigma_0 = 2 \sim B(n/2, q_{out})$, so the error probability for a hypothesis test using T is bounded as

$$p_e \le P(B(n/2, p_{in}) \le B(n/2, p_{out}))$$
 (170)

$$= n^{-\left(\frac{\sqrt{a}-\sqrt{b}}{\sqrt{2}}\right)^2 + o(1)} \tag{171}$$

We will spend the remainder of this lecture showing that exact recovery is not solvable if $np_e \to \infty$. \square

Important intuition: Let $X = (X_1, ..., X_n) \stackrel{\text{iid}}{\sim} P$ or Q, \mathcal{H}_0 be the hypothesis that the samples are from P, and \mathcal{H}_1 that they are from Q. The minimum probability of error (under an equally probable prior) is

$$\frac{1}{2} \left(1 - \text{TV}(p^{\otimes n}, q^{\otimes n}) \right) \tag{172}$$

To bound this quantity, there is a (not commonly used) Chernoff bound of

$$TV(p^{\otimes n}, q^{\otimes n}) = 1 - e^{-nc(P,Q) + o(n)}$$
 (173)

where $c(P,Q) = -\log \inf_{\alpha \in [0,1]} \int p^{\alpha} q^{1-\alpha}$.

We will instead be concerned with bounds involving a different discrepancy metric.

Definition 29 (Squared hellinger distance)

The squared Hellinger distance

$$H^{2}(P,Q) = \mathbb{E}_{Q}\left[\left(1 - \sqrt{\frac{P}{Q}}\right)^{2}\right] \ge 0 \tag{174}$$

$$= \mathbb{E}_Q \left[1 + \frac{P}{Q} - 2\sqrt{\frac{P}{Q}} \right] \tag{175}$$

$$= 1 + 1 - 2 \int \sqrt{PQ} = 2 \left(1 - \int \sqrt{PQ} \right) \tag{176}$$

It sandwiches total variation distance in the following sense:

$$0 \le \frac{1}{2}H^2(P,Q) \le \text{TV}(P,Q) \le H(P,Q)\sqrt{1 - \frac{H^2}{4}} \le 1$$
(177)

Lemma 30

For any sequence $\{p_n\}$, $\{q_n\}$, as $n \to \infty$

$$TV(p_n^{\otimes n}, q_n^{\otimes n}) \to 0 \iff H^2(p_n, q_n) = o(1/n) \tag{178}$$

$$TV(p_n^{\otimes n}, q_n^{\otimes n}) \to 1 \iff H^2(p_n, q_n) = \omega(1/n) \tag{179}$$

So H^2 provides us with

Without loss of generality, let $C_1 = [1:n/2] = \{v: (\sigma_0)_v = 1\}$ and $C_2 = [n/2+1:n] = \{v: (\sigma_0)_v = 2\}$ where σ_0 are the true labels. Let $G \sim P_{G|\sigma}(\cdot \mid \sigma_0)$ be the SSBM graph generated from this community assignment.

Definition 31 (Bad pairs)

For a community assignment $\sigma \in \{0,1\}^n$, let $\sigma[u \leftrightarrow v]$ denote σ except with the community assignments for u and v swapped.

The **bad pairs** of vertices are

$$\mathcal{B}(G) = \{(u, v) : u \in C_1, v \in C_2, \Pr_{G \mid \sigma}[G \mid \sigma_0] \le \Pr_{G \mid \sigma}[G \mid \sigma_0[u \leftrightarrow v]]$$

$$\tag{180}$$

The reason why these pairs are bad is because if $(u, v) \in \mathcal{B}(G)$ then the MAP estimator would assign greater probability to the incorrectly swapped $\sigma_0[u \leftrightarrow v]$ labels than the true σ_0 labels, therefore:

Corollary 32

If $\mathcal{B}(G)$ is non-empty with non-vanishing probability, then exact recovery is not possible.

To characterize the bad vertices involved in bad pairs, notice that swapping vertices u and v flips the edge probabilities $p_{out} \leftrightarrow p_{in}$ for all the edges containing u and v except for the (u, v) edge (if it exists). When $p_{in} > p_{out}$, we have

$$\Pr_{G|\sigma}[G \mid \sigma_0] \le \Pr_{G|\sigma}[G \mid \sigma_0[u \leftrightarrow v]] \iff d_+(u) + d_+(v) \le d_-(u \setminus v) + d_-(v \setminus u) \tag{181}$$

This motivates the following definition:

Definition 33 (Bad vertices for each community)

For $i \in \{1, 2\}$, the **bad vertices within community** i are

$$\mathcal{B}_i(G) = \{ u \in C_i : d_+(u) \le d_-(u) - 1 \}$$
(182)

where $d_{+}(u) = \#\{\text{edges } u \text{ has in its own comunity}\}\$ and $d_{-}(u) \text{ similarly but with the other community.}$

Notice if $u \in \mathcal{B}_1(G)$ and $v \in \mathcal{B}_2(G)$, then

$$d_{+}(u) + d_{+}(v) \le d_{-}(u) + d_{-}(v) - 2 \le d_{-}(u \setminus v) + d_{-}(v \setminus u)$$
(183)

and therefore $(u, v) \in \mathcal{B}(G)$ and exact recovery fails.

Lemma 34

$$\sqrt{a} - \sqrt{b} < \sqrt{2} \implies \Pr[\exists u \in \mathcal{B}_1(G)] = 1 - o(1)$$

Let $\mathcal{B}_u = \mathbb{1}(d_+(u) \le d_-(u) - 1)$.

$$\Pr[\forall u \in c_I, u \notin \mathcal{B}_1(G)] = \Pr[\sum_{u=1}^{n/2} \mathcal{B}_u = 0] \le ?$$
(184)

Theorem 35 (Paley-Zygmund Inequality)

Let $X \geq 0$, $0 < \mathbb{E}X^2 < \infty$. For any $c \in [0, 1]$

$$\Pr[X > c\mathbb{E}[X] \ge (1 - c)^2 \frac{(\mathbb{E}X)^2}{\mathbb{E}X^2}$$
(185)

Some intuition for Paley-Zgymund: Figure 9.24.1

Applying Paley-Zygmund on the complement event with c = 0.

$$\Pr[\forall u \in c_I, u \notin \mathcal{B}_1(G)] = \Pr[\sum_{u=1}^{n/2} \mathcal{B}_u = 0] \le \frac{\operatorname{Var}(\sum \mathcal{B}_u)}{\mathbb{E}(\sum \mathcal{B}_u)^2}$$
(186)

$$nP(B_1 = 1) + \frac{n(n-1)}{2}P(B_1 = 1, B_2 = 1) + \frac{n^2}{2}P(B_1 = 1, B_{n/2+1} = 1)$$
(187)

$$P(B_1 = 1 \mid B_2 = 1) = P(d_+(1) \le d_-(1) - 1 \mid d_+(2) \le d_-(2) - 1)$$
(188)

$$= P(B(n/2 - 2, q_{in}) + B_{1,2} \le B(n/2, q_{out}) - 1$$
(189)

$$|B'(n/2 - 2, q_{in}) + B_{12} \le B'(n/2, q_{out}) - 1|$$
 (190)

7 9/26/2019

7.1 Spectral method for exact recovery of SSBM

Last time we showed regime for non-solvability of SSBM. Today we will see how a spectral method can be used to show solvability of exact recovery in SSBM.

Theorem 36

Exact recovery in $SSBM(n, 2, p = a \log n/n, q = b \log n/n)$ is efficiently solvable if $|\sqrt{a} - \sqrt{b}| > \sqrt{2}$ using a spectral method.

Algorithm:

• Form the modified adjacency matrix A' by adding self loops with probability p to the original adjacency matrix. Then $\mathbb{E}A' = n\frac{p+q}{2}\bar{\phi}_1\bar{\phi}_1^\top + n\frac{p-q}{2}\bar{\phi}_2\bar{\phi}_2^\top$ where

$$\bar{\phi}_{1} = \frac{1}{\sqrt{n}} \mathbf{1} \qquad \bar{\phi}_{2} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1\\1\\\vdots\\1\\-1\\-1\\\vdots\\-1 \end{bmatrix}$$

$$(191)$$

- Define $A = A' n \frac{p+q}{2} \bar{\phi}_1 \bar{\phi}_1^{\mathsf{T}}$
- Solve largest eigenvector problem: $A\phi = \lambda \phi$.
- Return labels $X_{spec}(i) = 11\{\phi(i) \ge 0\} + 21\{\phi(i) < 0\}.$

Define $\bar{\phi}$ and $\bar{\lambda}$ by

$$\mathbb{E}A = n \frac{p - q}{2} \bar{\phi}_2 \bar{\phi}_2^\top := \bar{\lambda} \bar{\phi} \bar{\phi}^\top \tag{192}$$

Lemma 37

 $\Pr[\|A - \bar{A}\|_2 \ge c_1 \sqrt{\log n}] \le c_2 n^{-3}$, where c_1 and c_2 depend on a and b.

Lemma 38 (General version of above)

Let A be a symmetric zero-diagonal matrix with $\{A_{ij}: i < j\}$ independent, [0,1]-valued, $\mathbb{E}A_{ij} \leq p$, $\frac{c_0 \log n}{n} \le p \le 1 - c_1.$ Then, for any c > 0, $\exists c' > 0$ such that

$$\Pr[\|A - \mathbb{E}A\|_2 \le c'\sqrt{np}] \ge 1 - n^{-c} \tag{193}$$

Remark 39. The above result is different than what we have seen before. Davis-Kahan gives $\langle \phi, \bar{\phi} \rangle = 1 - o(1)$, Latala gives weaker bound beacuse of 4th moment requirement.

Instead, we will compare ϕ with $A\bar{\phi}/\bar{\lambda}$ instead of $\bar{\phi} = \bar{A}\bar{\phi}/\bar{\lambda}$.

Lemma 40

 \exists constant C(a,b) such that as $n \to \infty$

$$\Pr\left[\min_{s \in \{\pm 1\}} \|s\phi - A\bar{\phi}/\bar{\lambda}\|_{\infty} \le \frac{c}{\sqrt{n}\log\log n}\right] \ge 1 - \frac{c}{n^2}$$
(194)

Proof assuming lemma. Define events

$$\mathcal{E}_1 = \left\{ \min_{i \in [1:n/2]} (A\bar{\phi}/\bar{\lambda})_i \ge \frac{2\varepsilon}{(a-b)\sqrt{n}}, \max_{i \in [n/2+1:n]} (A\bar{\phi}/\bar{\lambda})_i \le \frac{-2\varepsilon}{(a-b)\sqrt{n}} \right\}$$
(195)

$$\mathcal{E}_2 = \left\{ \min_{s \in \{\pm 1\}} \|s\phi - A\bar{\phi}/\bar{\lambda}\|_{\infty} \le \frac{c}{\sqrt{n} \log \log n} \right\}$$
(196)

Claim: if $\Pr[\mathcal{E}_1 \cap \mathcal{E}_2] \to 1$, then problem solved.

 $(A\bar{\phi}/\bar{\lambda})_i \sim B(n/2, p) - B(n/2, q)$ because $\bar{\phi}$ has its first n/2 entries +1 and second n/2 entries -1. Furthermore, since (see last time)

$$\Pr[B(n/2, p) - B(n/2, q) \ge O(1)] = n^{-\left(\frac{\sqrt{a} - \sqrt{b}}{\sqrt{2}}\right)^2 - o(1)}$$
(197)

Since we are in regime $\sqrt{a} - \sqrt{b} > \sqrt{2}$, by union bound

$$\Pr\left[\exists i: (A\bar{\phi}/\bar{\lambda})_i \le \frac{2\varepsilon}{(a-b)\sqrt{n}}\right] \le nn^{-1-\Omega(1)} = n^{-\Omega(1)}$$
(198)

A similar argument handles the $i \in [n/2 + 1 : n]$ to conclude $\Pr[\mathcal{E}_1] \to 1$. The lemma handles \mathcal{E}_2 .

Proof of lemma. Choose ϕ such that $\phi^{\top}\bar{\phi} \geq 0$.

$$\|\phi - A\bar{\phi}/\bar{\lambda}\|_{\infty} \le \|\phi - A\phi/\bar{\lambda}\|_{\infty} + \|A\phi/\bar{\lambda} - A\bar{\phi}/\bar{\lambda}\|_{\infty} \tag{199}$$

$$= \|\phi - \lambda/\bar{\lambda} \cdot \phi\|_{\infty} + \|\frac{A}{\bar{\lambda}}(\phi - \bar{\phi})\|_{\infty}$$
 (200)

$$= \frac{|\lambda - \bar{\lambda}|}{\bar{\lambda}} \|\phi\|_{\infty} + \frac{1}{\bar{\lambda}} \|A(\phi - \bar{\phi})\|_{\infty}$$
 (201)

Condition on event $||A - \bar{A}||_2 \lesssim \sqrt{\log n}$, by Davis-Kahan $|\lambda - \bar{\lambda}| \leq ||A - \mathbb{E}A||_2 \lesssim \sqrt{\log n}$, and by definition $\bar{\lambda} \approx \log n$, so the first term is bounded like $\frac{||\phi||_{\infty}}{\sqrt{\log n}}$.

The second term is more complicated. Define n auxiliary matrices (A delete row/col m)

$$(A_{ij}^{(m)}) = A_{ij}\delta_{i \neq m, j \neq m} \tag{202}$$

Let $\phi^{(m)}$ be the leading eigenvector of $A^{(m)}$ and note $(\phi^{(m)})^{\top} \bar{\phi} \geq 0$. We defined it like this so

$$(A(\phi - \bar{\phi}))_m = A_m(\phi - \bar{\phi}) = A_m(\phi - \phi^{(m)}) + A_m(\phi^{(m)} - \bar{\phi})$$
(203)

where A_m is the mth row of A. Focusing on the first term for now:

$$|A_m(\phi - \phi^{(m)})| \le ||A_m||_2 ||\phi - \phi^{(m)}||_2 \tag{204}$$

$$\leq ||A||_{2\to\infty} ||\phi - \phi^{(m)}||_2$$
 (205)

We're going to show the following:

$$||A_m||_2 ||\phi - \phi^{(m)}||_2 \le \sqrt{\log n} ||\phi||_{\infty}$$
(206)

The intuition for this is that we want to first use Davis-Kahan for $\|\phi - \phi^{(m)}\|_2$,

$$||A_m||_2 = ||A - A^{(m)}||_2 \le ||A^{(m)} - A||_F \le \sqrt{2} ||A||_{2 \to \infty} =: \max_i ||A_i||_2 \le ||A||_2$$
(207)

$$||A||_{2\to\infty} \le ||A - \bar{A}||_{2\to\infty} + ||\bar{A}||_{2\to\infty}$$
 (208)

$$\lesssim \sqrt{\log n} + \frac{\log n}{\sqrt{n}} \lesssim \sqrt{\log n} \tag{209}$$

By Davis-Kahan

$$\min_{s \in \{\pm 1\}} \|s\phi - \phi^{(m)}\|_{2} \lesssim \frac{\|A^{(m)} - A\|_{2}}{\bar{\lambda}} \lesssim \frac{1}{\sqrt{\log n}}$$
 (210)

Here the maximum is attained at s = 1. To see this, recall old davis-kahan to see

$$\min_{s} \|su - v\|_{2} \lesssim \frac{\|A - B\|_{2}}{\max(\lambda_{1}(A) - \lambda_{2}(B), \lambda_{1}(B) - \lambda_{2}(A))}$$
(211)

$$\min_{s} \|su - v\|_{2} \lesssim \frac{\|(A - B)u\|}{\text{max eigengap}}$$
(212)

Here is a new version of it we will need

$$\|\phi^{(m)} - \phi\|_2 \lesssim \frac{\|(A^{(m)} - A)\phi\|_2}{\bar{\lambda}}$$
 (213)

$$\|(A^{(m)} - A)\phi\|_{2} = \sqrt{\lambda^{2}|\phi_{m}|^{2} + \sum_{i \neq m} A_{im}^{2}\phi_{m}^{2}} \le |\phi_{m}|\sqrt{\lambda^{2} + \|A\|_{2\to\infty}^{2}} \lesssim \bar{\lambda}|\phi_{m}|$$
(214)

$$\|\phi^{(m)} - \phi\|_{\infty} \lesssim |\phi_m| \lesssim \|\phi\|_{\infty}.$$

$8 \quad 10/3/2019$

Exact recovery for General SBM.

Adjacency matrix

$$A_{ij} \sim \begin{cases} P, & \text{if } \sigma_i = \sigma_j \\ Q, & \text{if } \sigma_i \neq \sigma_j \end{cases}$$
 (215)

 $1 \le i < j \le n$, A symmetric matrix with zero diagonal. Now P and Q are arbitrary (previously Bernoulli). Let $\sigma = (\sigma_1, \dots, \sigma_n) \in \{\pm 1\}^n$ be the true labels and $\hat{\sigma}$ our estimate.

We are in the bisection model: exactly half of σ_i is 1 and the other is -1.

Exact recovery means that

$$\Pr[\sigma = \hat{\sigma} \cup \sigma = -\hat{\sigma}] \to 1 \tag{216}$$

as $n \to \infty$. Sign errors are OK because of bisection model.

log likelihood ration matrix

$$\log \Pr[A \mid \sigma] = \sum_{1 \le i < j \le n} \log \Pr[A_{ij} \mid \sigma]$$
(217)

$$= \sum \log P(A_{ij}) \mathbb{1}\{\sigma_i = \sigma_j\} + \log Q(A_{ij}) \mathbb{1}\{\sigma_i \neq \sigma_j\}$$
(218)

$$= \sum \frac{\log P(A_{ij}) + \log Q(A_{ij})}{2} + \frac{\log P(A_{ij}) - \log Q(A_{ij})}{2} \sigma_i \sigma_j$$
 (219)

So dependence on σ is only on the latter term, which motivates us to define

$$W_{ij} = \begin{cases} \log \frac{P(A_{ij})}{Q(A_{ij})}, & \text{if } i \neq j \\ 0, & \text{if } i = j \end{cases}$$
 (220)

The MLE is

$$\max_{\sigma \in \{\pm 1\}^n} \sigma^\top W \sigma \tag{221}$$

To turn into computationally efficient algorithm, let $X = \sigma \sigma^{\top}$ so $\sigma^{\top} W \sigma = \langle W, X \rangle$. Relax the (rank one and $\{\pm 1\}$ entries) constraints on X to get min-bisection SDP

$$\max \langle W, X \rangle \tag{222}$$

st
$$X \succeq 0$$
 (223)

$$\operatorname{diag}(X) = I_n \tag{224}$$

$$\langle X, J \rangle = 0, J = 11^{\top} \tag{225}$$

The second inequality follows from $X_{ii} = \sigma_i^2 = 1$ and the last from bisection since $\langle X, J \rangle = 1^\top X 1 = 1^\top \sigma \sigma^\top 1 = (1^\top \sigma)^2 = 0$.

Theorem 41

Suppose $H^2(P,Q) \geq \frac{2(1+\varepsilon)\log n}{n}$, $\|W - \mathbb{E}W\|_{op} = o(\log n)$ for fixed $\varepsilon \in (0,1)$. Then whp the unique solution to the min-bisection SDP is $\sigma\sigma^{\top}$.

Example 42 (Bernoulli example)

 $P = \operatorname{Bern}(a \log n/n)$ and $Q = \operatorname{Bern}(b \log n/n)$.

$$H^{2}(P,Q) = \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx$$
 (226)

$$= (\sqrt{p} - \sqrt{q})^2 + (\sqrt{1-p} - \sqrt{1-q})^2 \tag{227}$$

$$= (\sqrt{a} - \sqrt{b})^2 \frac{\log n}{n} (1 + o(1)) \tag{228}$$

So comparing against the $H^2 \geq \frac{(1+\varepsilon)2\log n}{n}$ required by the theorem, we recover the thereshold from last time

$$(\sqrt{a} - \sqrt{b})^2 > 2 \tag{229}$$

But the theorem also has a requirement $||W - \mathbb{E}W||_{op} = o(\log n)$ which we can verify in this example. In this case

$$W_{ij} = \log \frac{p}{q} \mathbb{1}\{A_{ij} = 1\} + \log \frac{1-p}{1-q} \mathbb{1}\{A_{ij} = 0\}$$
(230)

$$= \log \frac{p(1-q)}{q(1-p)} A_{ij} + \log \frac{1-p}{1-q}$$
 (231)

Relate concentration of A with concentration of W:

$$W - \mathbb{E}W = \log \frac{p(1-q)}{q(1-p)} (A - \mathbb{E}A)$$
(232)

We know from last time $||A - \mathbb{E}A||_{op} \lesssim \sqrt{\log n}$, so the condition holds after checking $\log \frac{p(1-q)}{q(1-p)} = o(\sqrt{\log n})$.

Lemma 43 $(KKT\ condition\ +\ uniqueness)$

 $X^* = \sigma \sigma^{\top}$ is the unique maximizer of min-bisection SDP if the following holds:

{lem:kkt-plus

• Stationarity: $\exists D = \operatorname{diag}(d_1, \ldots, d_n) \ S \succeq 0$, and $\lambda \in \mathbb{R}$ such that

$$S = D - W + \lambda J \tag{233}$$

where $J = 11^{\top}$.

- Complementary slackness: $S\sigma = 0$.
- Uniqueness: $\lambda_{n-1}(S) > 0$ where λ_{n-1} is the second smallest eigenvalue.

Proof. We first show maximality. Write Lagrangian

$$L(X, D, S, \lambda) = \langle W, X \rangle + \langle S, X \rangle + \text{Tr}((I - X)D) - \lambda \langle J, X \rangle$$
(234)

(235)

Dual cone of PSD cone is PSD cone, so $S \succeq 0$. First-order stationarity condition is

$$0 = \frac{\partial L}{\partial X} = W + S - D - \lambda J \tag{236}$$

For any X feasible

$$\langle W, X \rangle \le L(X, D, S, \lambda) = L(X^*, D, S, \lambda) = \langle W, X^* \rangle$$
 (237)

where the first equality follows from $0 = \frac{\partial L}{\partial X}$ and the second from feasibility removing all the constraint terms of the Lagrangian and complementary slackness implying $\langle S, X^* \rangle = \sigma^\top S \sigma$.

Now we show uniqueness. Suppose $\langle W, X \rangle = \langle W, X^* \rangle$ for some feasible X. Then $\langle S, X \rangle = 0$, but the uniqueness condition of the lemma ensures that σ is the unique eigenvector of S with eigenvalue 0 so $X = cX^*$. But since $\operatorname{diag}(X) = I_n$, we have in fact c = 1.

$$\mathcal{S}\sigma = D\sigma - W\sigma + \lambda J\sigma^{-0} \tag{238}$$

$$D\sigma = W\sigma \tag{239}$$

$$(D\sigma)_i = d_i\sigma_i = (W\sigma)_i = \sum_j W_{ij}\sigma_j \tag{240}$$

$$d_i = \sum_j W_{ij} \sigma_j \sigma_i \tag{241}$$

so we have already found dual variable D directly from primal variables.

To use the last uniqueness condition:

$$\inf_{x \perp \sigma, ||x|| = 1} x^{\top} (D - W + \lambda J) x > 0 \tag{242}$$

W is a random matrix; we would like to replace it with deterministic $\mathbb{E}W$ without affecting solution too much.

$$|x^{\top}(W - \mathbb{E}W)x| \le ||W - \mathbb{E}W||_{op} = o(\log n)$$
(243)

so it suffices to show

$$\inf_{x \perp \sigma, \|x\|_2 = 1} x^{\top} (D - \mathbb{E}W + \lambda J) x \gtrsim \log n$$
 (244)

Let s = D(P||Q) and t = D(Q||P). Then

$$\mathbb{E}W = \frac{s-t}{2}J + \frac{s+t}{2}\sigma\sigma^{\top} - sI_n \tag{245}$$

So in fact it suffices to show

$$\inf_{x \perp \sigma, \|x\|_2 = 1} x^{\top} \left(D - \frac{s - t}{2}J + \lambda J\right) x \gtrsim \log n \tag{246}$$

Choose $\lambda \geq \frac{s-t}{2}$, so it suffices to show whp

$$\min_{i} d_{i} \ge \varepsilon (1 + \varepsilon) \log n \tag{247}$$

Recall

$$d_i = \sum_j W_{ij} \sigma_i \sigma_j \tag{248}$$

By assumption $H^2(P,Q) \geq \frac{2(1+\varepsilon)\log n}{n}$, so it suffices (after applying union bound) to show

$$\Pr[d_i \le c \log n] = o(1/n) \tag{249}$$

with $c = \frac{\varepsilon nH^2(P,Q)}{2\log n}$. Let $X \stackrel{d}{=} \log \frac{dP(Z)}{dQ(Z)}$ with $Z \sim P$ and Y similarly except with $Z \sim Q$. Then

$$d \stackrel{d}{=} \sum_{i=1}^{n/2} X_i - \sum_{i=1}^{n/2} Y_i \tag{250}$$

$$\mathbb{E}d = kD(P||Q) + (n-k)D(Q||P) \tag{251}$$

Recall cumulant generating functions:

$$\psi_p(\theta) = \log \mathbb{E}_{X \sim p} \exp(\theta X) = \log \int P^{1+\theta} Q^{-\theta}$$
 (252)

$$\psi_q(\theta) = \log \int P^{\theta} Q^{1-\theta} = \psi_p(\theta - 1) \tag{253}$$

To get the desired high probability bounds, we do Chernoff:

$$\Pr[d \le c \log n] = \Pr\left[\sum_{i=1}^{n/2} Y_i - \sum_{i=1}^{n/2} X_i \ge -c \log n\right]$$
(254)

$$= \Pr\left[\exp(\theta(\sum Y_i - \sum X_i)) \ge \exp(-\theta c \log n)\right]$$
 (255)

$$\leq \mathbb{E}\exp(\theta(\sum Y_i - \sum X_i) + \theta c \log n) \tag{256}$$

$$= \exp((n/2)\psi_n(\theta - 1) + (n/2)\psi_n(-\theta) + \theta c \log n)$$
 (257)

Choosing $\theta = -\frac{1}{2}$ connects this with H^2 , but why is this a good choice? CGF ψ is convex so Jensen's

$$\psi(\theta - 1) + \psi(-\theta) \ge 2\psi\left(\frac{\theta - 1 + (-\theta)}{2}\right) = 2\psi(-1/2)$$
 (258)

so in fact $\theta = 1/2$ makes Jensen's tight.

9 10/8/2019

Correlated recover of SSBM 9.1

Consider now SSBM(n, 2, p = a/n, q = b/n). Notice that the scaling for p and q are no longer $\log n/n$, which we will see will make exact recovery impossible.

Let $\sigma = (\sigma_1, \ldots, \sigma_n) \in \{\pm 1\}^n$, where we consider two models:

iid sampling $\sigma_i \sim \text{Rad}$

exact bisection $\sum_{i=1}^{n} \mathbb{1}\{\sigma_i = 1\} = \frac{n}{2}$

Recall nodes i and j are connected with probability p if $\sigma_i = \sigma_j$ and q otherwise. Let $A_{ij} = \mathbb{1}\{i \sim j\}$ denote the adjacency matrix.

Definition 44 (Correlated Recovery)

$$\min_{s \in \{\pm 1\}} \|\sigma + s\hat{\sigma}\|_{1} = \min_{S} \sum_{i=1}^{n} |\sigma_{i} + s\hat{\sigma}_{i}| = n \left(1 - \underbrace{\frac{|\langle \sigma, \hat{\sigma} \rangle|}{n}}_{\text{empirical correlation}} \right) \tag{259}$$

wlog suppose s = 1, then

$$|\sigma_i + \hat{\sigma}_i| = \begin{cases} 0, & \text{if } \sigma_i \neq \hat{\sigma}_i \\ 2, & \text{if } \sigma_i = \hat{\sigma}_i \end{cases} = 2\mathbb{1}\{\sigma_i = \hat{\sigma}_i\}$$
 (260)

Theorem 45 (Mutual information characterization for correlated recovery)

Correlated recovery is possible iff $I(\sigma_1, \sigma_2; G) > 0$ as $n \to \infty$.

Recall

$$I(X;Y) = D(P_{XY}||P_XP_Y) = \mathbb{E}_{P_{XY}}\log\frac{P_{XY}(x,y)}{p_X(x)p_Y(y)} = \mathbb{E}_X[D(P_{Y|X}||P_Y)]$$
(261)

Note $I(\sigma_1, \sigma_2; G) = I(\sigma_1 \cdot \sigma_2; G)$ because condition on $\sigma_1 = \sigma_2$ or $\sigma_1 \neq \sigma_2$, G is independent of (σ_1, σ_2) . This is good because $\sigma_1 \sigma_2$ is a binary random variable.

A fundamental result we will use: if $X \sim \text{Rad}$ and we observe Y

$$\min_{\hat{X}(Y)} \Pr[X \neq \hat{X}(Y)] = \frac{1}{2} (1 - \text{TV}(P_+, P_-))$$
(262)

where $P_{+} = P_{Y|X=+1}$ and $P_{-} = P_{YX=-1}$.

Proposition 46

 $\mathrm{TV}(p_+,p_-)=o(1)\iff I(X;Y)\to 0$, so mutual information is a correct way to characterize correlated recovery.

To prove this, we will need Pinsker's inequality:

$$I(X;Y) = \mathbb{E}_X D(P_{Y|X}||P_Y) = \frac{1}{2}D(P_+||\bar{P}) + \frac{1}{2}D(P_-||\bar{P})$$
(263)

$$\geq \text{TV}^2(P_+, \bar{P}) + \text{TV}^2(P_-, \bar{P}) = \frac{1}{2} \text{TV}^2(P_+, P_-)$$
 (264)

Recall the relation between KL and chi-squared divergence

$$D(P||Q) = \mathbb{E}_p \log \frac{p(x)}{q(x)} \tag{265}$$

$$\chi^{2}(P||Q) = \int \frac{(p(x) - q(x))^{2}}{q(x)} dx$$
 (266)

$$D(P||Q) \le \log(1 + \chi^2(P||Q)) \le \chi^2(P||Q)$$
 (267)

Invoking this inequality to upper bound

$$I(X;Y) = \frac{1}{2}D(P_{+}||\bar{P}) + \frac{1}{2}D(P_{-}||\bar{P})$$
(268)

$$\leq \frac{1}{2} \int \frac{(p+\bar{p})^2}{\bar{p}} + \frac{1}{2} \int \frac{(p-\bar{p})^2}{\bar{p}} = \int \frac{(p_+ - p_-)^2}{2(p_+ + p_-)}$$
 (269)

$$\leq \int \frac{1}{2}(p_{+} - p_{-}) = \text{TV}(p_{+}, p_{-}) \tag{270}$$

Assume for all $i \neq j$, \exists test $\hat{T}_{ij}(G)$ such that

$$\Pr[\hat{T}_{ij} = \sigma_i \sigma_j =: T_{ij}] \ge \frac{1}{2} + \delta, \qquad \delta > 0$$
(271)

Define estimator $\hat{\sigma}_1 = +1$, $\hat{\sigma}_i = \hat{T}_{1i}$ for $i = 2, \dots, n$.

$$\max_{s \in \{\pm 1\}} \sum_{i} \Pr[\sigma_i = s\hat{\sigma}_i] \ge \sum_{i} \Pr[T_{1i} = \hat{T}_{1i}] \ge \left(\frac{1}{2} + \delta\right) n \tag{272}$$

To show equivalence between TV, mutual information, and correlated recovery, it remains to show: if $TV(p_+, p_-) = o(1)$ then correlated recover is impossible.

For any estimator $\hat{\sigma}$

Theorem 47

Let $\tau = \frac{(a-b)^2}{2(a+b)}$. Suffices to show $\mathrm{TV}(p_+,p_-) = o(1)$ if $\tau < 1$. Variational characterization of $\mathrm{TV}(P,Q)$:

$$TV(P,Q) = \frac{1}{2} \inf_{R} \sqrt{\int \frac{(P-Q)^2}{R}}$$
 (273)

because by Cauchy-Schwarz

$$\int \frac{(P-Q)^2}{R} = \int \left(\frac{P-Q}{\sqrt{R}}\right)^2 \int (\sqrt{R})^2 \ge \left(\int |P-Q|\right)^2 = 4 \operatorname{TV}^2(P,Q) \tag{274}$$

 $Pick R^* = \frac{|P-Q|}{S|P-Q|}$

$$\int \frac{(P_{+} - P_{-})^{2}}{R} = \int \frac{P_{+}^{2} + P_{-}^{2} - 2P_{+}P_{-}}{R} = \int \frac{p_{+}^{2}}{R} + \int \frac{p_{-}^{2}}{R} - 2\int \frac{p_{+}p_{-}}{R} \stackrel{todo}{=} o(1)$$
 (275)

Suffices to show $\int \frac{p_z p_{\tilde{z}}}{R} = C + o(1)$ for all $z, \tilde{z} \in \{\pm 1\}$.

Fubini: $\int \frac{p_z p_{\tilde{z}}}{R} = \int \frac{\int p_{z,\theta}(x) \pi(d\theta) \int p_{\tilde{z},\tilde{\theta}} \pi(d\tilde{\theta})}{R(X)} dx = \int \pi(d\theta) \pi(d\tilde{\theta}) \int \frac{p_{z,\theta}(x) p_{\tilde{z},\tilde{\theta}}(x)}{R(x)} dx$ We will take $\theta = \sigma$ and $\tilde{\theta} = \tilde{\sigma}$, with P = Bern(p) and Q = Bern(q).

$$\Pr[A \mid \sigma] = \prod_{i < j} (Q\mathbb{1}\{\sigma_i = \sigma_j\} + Q\mathbb{1}\{\sigma_i \neq \sigma_j\}) = \prod_{i < j} \left(\frac{P+Q}{2} + \frac{P-Q}{2}\sigma_i\sigma_j\right)$$
(276)

Pick R to be G(n, (a+b)/(2n))

$$\int \frac{P_{\sigma}P_{\tilde{\sigma}}}{R} = \prod_{i < j} (1 + \rho \sigma_i \sigma_j \hat{\sigma}_i \hat{\sigma}_j)$$
(277)

with $\rho = (\tau + o(1))/n$. Our goal is

$$\mathbb{E}\left[\prod_{i < j} (1 + \rho \sigma_i \sigma_j \hat{\sigma}_i \hat{\sigma}_j) \mid \sigma_1 \sigma_2 = z, \hat{\sigma}_1 \hat{\sigma}_2 = \tilde{z}\right]$$
(278)

$$P_Z(X) = P(A \mid \sigma_1 \sigma_2 = z) \tag{279}$$

$$= \mathbb{E}\left[\prod_{i < j} e^{\rho \sigma_i \sigma_j \hat{\sigma}_i \hat{\sigma}_j - \frac{\rho^2}{2} + O(\rho^3)} \mid \cdots\right]$$
(280)

$$=e^{\frac{n(n-1)}{2}(-\rho^2/2)}\mathbb{E}e^{\sum_{i< j}\rho\sigma_i\sigma_j\hat{\sigma}_i\hat{\sigma}_j+o(n^{-3})}\mid\cdots\rceil$$
(281)

$$=e^{-\frac{\tau^2}{4}-\frac{\tau}{2}}\mathbb{E}\left[\exp\left(\frac{\tau+o(1)}{2}\left(\frac{1}{n}\left(\sum_{i=1}^n\sigma_i\hat{\sigma}_i\right)^2\right)\right)\mid\sigma_1\sigma_2=z,\hat{\sigma}_{12}=\tilde{z}\right]$$
(282)

Note that by CLT $\frac{\sum_{i=1}^{n} \sigma_i \hat{\sigma}_i}{\sqrt{n}} \Rightarrow N(0,1)$.

BIBLIOGRAPHY
BIBLIOGRAPHY

Bibliography

Alon, N., M. Krivelevich, and B. Sudakov

1998. Finding a large hidden clique in a random graph. Random Structures & Algorithms, 13(3-4):457-466.

Latała, R. et al.

2006. Estimates of moments and tails of gaussian chaoses. The Annals of Probability, 34(6):2315–2331.