ETH zürich

Diannao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning

Presenter: Jiawei Liao

What is Diannao

- Diannao as a word Electric Brain (from Mandarin)
- Diannao Accelerator for Neural Networks
- Features: High throughput; Energy efficiency; Small area

Sarcasm from TPU

In-Datacenter Performance Analysis of a Tensor Processing UnitTM

Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon

Google, Inc., Mountain View, CA USA Email: {jouppi, cliffy, nishantpatil, davidpatterson} @google.com

To appear at the 44th International Symposium on Computer Architecture (ISCA), Toronto, Canada, June 26, 2017.

[Che16a]. All use 16-bit integer operations and all designs dove down to layout, but no chips were fabricated. The original

No tape-out for Diannao family !!?

The successor of Diannao in Huawei SoC

What algorithm to accelerate

• Two Requirements:

Efficiency

Throughput, energy, area

Flexibility

Can be applied to more scenarios

CNN & DNN

What are the challenges

- Trend towards large neural networks.
 - VGG-16: over 100 million parameters.
 - also example from 1 billion to 10 billion parameters.

Challenges:

Scalability:

How to do the computation for large NN?

• Memory:

How to reduce memory access?

HADP 2017

Why do we say scalability is a problem?

One traditional accelerator for NN:

All the neurons and synapses (parameters) laid out in hardware.

Neuron

logic circuits

Synapses(parameters)

latches or RAMs

Memory

Only store input and output of the whole NN.

Advantages of traditional design

A high-throughput and energy efficient design:

- 1. Less memory access
 Intermediate values don't need to be stored in the memory.
- 2. Faster computation
 Neurons fully mapped to hardware

Scalability of full-hardware implementation

Critical Path, area and energy of one layer

With thousands of neurons, area can be hundreds or thousands mm^2 per layer

Not realistic for large scale NN

Reuse hardware within each layer

In full-hardware implementation:
All neurons calculated in parallel

Reuse hardware within each layer

- Share the limited resources
- Step by step execution to calculate partial result

Decomposition for different layers

Three main layers in CNN:

- Convolution
- Pooling
- Fully connected

Executing different layers in the same architecture

NFU (Neural Functional Unit)

- Three-stage pipeline
 - Stage1: Multiplication
 - Stage2: Add, Max operation
 - Stage3: Transfer function (sigmoid or other non-liner function)

Decomposition for different layer

High memory bandwidth requirement for NN

• For their NFU, processing 16 input neurons and 16 output neurons per cycle at 0.98 GHz. The peak bandwidth is 467.30 GB/s.

 To understand the source of the high memory traffic of NN and to conduct optimization, they analyzed the memory bandwidth on a simulator for processor-based implementation.

Memory traffic analyzation result

Memory traffic optimization — Tiling

Memory traffic – Difference

- CONV3 convolution layer using shared kernel
 - Shift window is inherently reusing data
- CONV5 convolution layer using private kernel
 - Parameters have to be loaded for every new input
- POOL3 pooling layer
 - No parameters need to be loaded

HADP 2017

Mapping optimization to hardware

NBin: Input data

SB: Parameters

NBout: output data

Mapping optimization to hardware

How to solve control problem?

Control instruction format

CP	SB	NBin	NBout NFU
END	READ OP REUSE ADDRESS SIZE	READ OP REUSE STRIDE STRIDE BEGIN STRIDE END ADDRESS ASIZE	

Experiment

Base line

SIMD:GEM5(simulator) + McPAT (integrated power, area, and timing modeling frame work for multicore architecture.)

Accelerator

a custom cycle-accurate, bit-accurate C++ simulator

Bench Mark

Layer	N_{x}	$N_{m{y}}$	K_x	K_y	N_i	N_o	Description
CONV1	500	375	9	9	32	48	Street scene parsing
POOL1	492	367	2	2	12	-	(CNN) [13], (e.g.,
CLASS1	-	-	-	-	960	20	identifying "building",
							"vehicle", etc)
CONV2*	200	200	18	18	8	8	Detection of faces in
							YouTube videos (DNN)
							[26], largest NN to date
							(Google)
CONV3	32	32	4	4	108	200	Traffic sign
POOL3	32	32	4	4	100	-	identification for car
CLASS3	-	-	-	-	200	100	navigation (CNN) [36]
CONV4	32	32	7	7	16	512	Google Street View
							house numbers (CNN)
							[35]
CONV5*	256	256	11	11	256	384	Multi-Object
POOL5	256	256	2	2	256	-	recognition in natural
							images (DNN) [16],
							winner 2012 ImageNet
							competition

Result: Layout after P&R

Components	Area(in %)	Power(in %)
RAM	56	60
NFU	28	27

Result: Speedup

Comparison:

- Diannao over SIMD
- Ideal model over Diannao

Ideal model: no off-chip fetching.

Analysis of the speedup

Diannao outperforms SIMD

- More operators
- Preload the data
- Simpler control logic

Diannao far from ideal

Memory access

Result: Energy

The Diannao outperforms the SIMD model 18~28X

However, other similar structure can achieve an energy ratio of 500

Result: Energy Decomposition

Most of energy consumed by memory access

Reduce the memory access energy is the future work

Conclusions

Major idea:

- Reuse hardware to save area
- Reuse data to save memory traffic

Limitations of results:

- no tape out for this design. All comparisons are based on simulation results
- No comparison to GPU(they can't beat GPU!), or other state-of-the-art accelerator

Limitations of design:

- Memory traffic still too large.
- Not flexible enough

Follow-up work —saving memory access energy cost in Dadiannao

Parameter fetching accounts for most of memory access for Fully-connected layer and convolution layers.

Solution: Store parameters locally.

Saving memory access energy cost in Dadiannao

Design principles:

- Store parameters near NFU in eDRAM (denser than SRAM)
- Break down local storage into tiles to enable high internal bandwidth.
- Supporting multi-chip system for even larger NN (up to tens of GB corresponds to billions of parameters)

Speedup of Dadiannao over GPU

Continuation of the Story

- DaDiannao (Big Diannao)
- ShiDiannao (Vision Diannao)
- PuDiannao (General Diannao)
- Diannaoyu (Diannao Language)
- Cambricon (ISA; more like general purpose processor)

Comments on the paper itself

Cons:

- Annotations not explained immediately
- Using pseudocode but not easy to read
- In the result section, the comparisons are not convincing

Pros:

- Relatively comprehensive consideration when solving problem
- Relatively comprehensive analysis of their results
- The starter of a direction

Thanks for your attention

Back up slides

Figure 2. Classifier layer tiling.

Figure 3. Convolutional layer tiling.

Figure 4. Pooling layer tiling.

CP		S	В	NBin NBin						NBout NFU						U						
NOP	LOAD	0	0	32768	LOAD	I	0	0	0	4194304	2048	NOP	WRITE	0	0	MULT	ADD	RESET	NBOUT	SIGMOID	1	0
NOP	LOAD	0	32768	32768	READ	1	0	0	0	0	0	NOP	WRITE	0	0	MULT	ADD	RESET	NBOUT	GIOMSIS	0	0
NOP	LOAD	0	7864320	32768	LOAD	1	0	0	0	4225024	2048	READ	STORE	8388608	512	MULT	ADD	NBOUT	NFU3	SIGMOID	1	0

Table 4. Subset of classifier/perceptron code ($N_i = 8192$ $N_o = 256$, $T_n = 16$, 64-entry buffers).

