08 Relations.

08_03_Equivalence Relations and Partitions

<u>Definition</u>. Let R be an equivalent relation on a set A. For each $a \in A$, $R[a] = \{x: x \in A, (a, x) \in R\}$ is called <u>the equivalent class</u> represented by a. Note that $a \in R[a]$ for each $a \in A \neq \emptyset$.

Example. Suppose $A = \{-2, -1, 0, 1, 2\}$. Define a relation $R = \{(a, b) : a \in A, b \in A, \text{ and } (a = b \text{ or } a = -b)\}$ on A. Then R is an equivalent relation on A. We further have

$$R[-2] = \{-2, 2\} = R[2],$$

 $R[-1] = \{-1, 1\} = R[1],$
 $R[0] = \{0\}.$

Theorem 1. Let R be an equivalent class on a set A. Then the following statements are equivalent.

[1]
$$(a, b) \in R$$
.
[2] $R[a] = R[b]$.
[3] $R[a] \cap R[b] \neq \emptyset$.

[Proof]. [1] => [2] For each $x \in R[a]$, we have $(a, x) \in R$. Since R is symmetric, we have $(x, a) \in R$. we have $(x, b) \in R$ since R is transitive, $(x, a) \in R$, and $(a, b) \in R$, Since R is symmetric, $(b, x) \in R$. Thus $x \in R[b]$. Hence $R[a] \subseteq R[b]$. Similarly, we can prove that $R[b] \subseteq R[a]$. Therefore R[a] = R[b].

[2] => [3]. Since $a \in R[a] = R[b]$, $a \in R[a] \cap R[b] \neq \emptyset$. [3] => [1]. Choose $x \in R[a] \cap R[b] \neq \emptyset$. Then $x \in R[a]$ and $x \in R[b]$. Thus $(a, x) \in R$ and $(b, x) \in R$. Since R is symmetric, we have $(a, x) \in R$ and $(x, b) \in R$. Since R is transitive, we have $(a, b) \in R$.

From Theorem 1, we have that the following statements are equivalent.

$$[1](a, b) \notin R$$
.

[2]
$$R[a] \neq R[b]$$
.

[3]
$$R[a] \cap R[b] = \emptyset$$
.

<u>Definition</u>. A collection of disjoint nonempty subsets S_i , where $i \in I$ and I is an index set, of a set S is a partition of S if $S = U_i \in I$ S_i . When $I = \{1, 2, 3, ..., n\}$, we write $S = S_1 \cup S_2 \cup ... \cup S_n$.

Example. Suppose $A = \{-2, -1, 0, 1, 2\}$. Then $\{-2, 2\}$, $\{-1, 1\}$, and $\{0\}$ form a partition of A.

Example. Suppose $A = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$. Namely, A is the set of integers. Then

$$A_0 = \{0\},\$$

$$A_1 = \{-1, 1\},\$$

$$A_2 = \{-2, 2\},\$$

.

$$A_n = \{-n, n\},\$$

.

form a partition of A.

Example. Suppose $A = \{0, 1, 2, 3, ...\}$. Namely, A is the set of nonnegative integers. Then

$$A_0 = \{0, 7, 14, 21, \dots \},$$

$$A_1 = \{1, 8, 15, 22, \dots \},$$

$$A_2 = \{2, 9, 16, 23, \dots \},$$

$$A_3 = \{3, 10, 17, 24, \dots \},$$

$$A_4 = \{4, 11, 18, 25, \dots \},$$

$$A_5 = \{5, 12, 19, 26, \dots \},$$

$$A_6 = \{6, 13, 20, 27, \dots \},$$

form a partition of A.

Theorem 2. Let R be an equivalent class on a set A. Then the distinct equivalent classes based on R form a partition of A. **[Proof]** Note first that each equivalent class is nonempty. By Theorem 1, $U_a \in_A R[a] =$ the union of distinct equivalent classes based on R. It is obvious that $A \subseteq U_a \in_A R[a]$ and $U_a \in_A R[a] \subseteq A$. Note that the distinct equivalent classes are also disjoint. Thus A = the disjoint union of distinct equivalent classes based on R. Hence the distinct equivalent classes based on R form a partition of A.

Example. Suppose $A = \{-2, -1, 0, 1, 2\}$. Define a relation $R = \{(a, b) : a \in A, b \in A, and (a = b \text{ or } a = -b)\}$ on A. Then R

is an equivalent relation on A. The partition of A based on R can be found as follows.

$$R[-1] = \{x: x \in A, (-1, x) \in R\} = \{-1, 1\} = R[1],$$

$$R[0] = \{x: x \in A, (0, x) \in R\} = \{0\},$$

$$R[-2] = \{x: x \in A, (-2, x) \in R\} = \{-2, 2\} = R[2].$$
 Clearly,
$$R[-1] = \{-1, 1\}, R[0] = \{0\}, \text{ and } R[-2] = \{-2, 2\} \text{ form a partition of } A.$$

Example. Suppose A be the set of nonnegative integers. Define a relation $R = \{(a, b) : a \in A, b \in A, and a \mod 7 = b \mod 7\}$ on A. Prove that R is an equivalent relation on A and find the partition of A based on R.

[Proof] Note that a mod $7 = a \mod 7$. So $(a, a) \in R$ and R is reflexive.

Note that $(a, b) \in R$ if and only if a mod $7 = b \mod 7$ if and only if $b \mod 7 = a \mod 7$ if and only if $(b, a) \in R$. So R is symmetric.

If $(a, b) \in R$ and $(b, c) \in R$, then a mod $7 = b \mod 7$ and $b \mod 7 = c \mod 7$. Thus a mod $7 = c \mod 7$ and $(a, c) \in R$. So R is transitive.

Hence R is an equivalent relation on A.

The partition of A based on R can be found as follows.

$$R[0] = \{x : x \in A \text{ and } (0, x) \in R\}$$

$$= \{x : x \in A \text{ and } 0 \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, 0 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = 0\}$$

$$= \{0, 7, 14, 21, \dots\},\$$

$$R[1] = \{x : x \in A \text{ and } (1, x) \in R\}$$

$$= \{x : x \in A, 1 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = 1\}$$

$$= \{1, 8, 15, 22, \dots\},\$$

$$R[2] = \{x : x \in A \text{ and } (2, x) \in R\}$$

$$= \{x : x \in A \text{ and } (2, x) \in R\}$$

$$= \{x : x \in A \text{ and } (2, x) \in R\}$$

$$= \{x : x \in A, 2 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = 2\}$$

$$= \{2, 9, 16, 23, \dots\},\$$

$$R[3] = \{x : x \in A \text{ and } (3, x) \in R\}$$

$$= \{x : x \in A \text{ and } 3 \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, 3 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = 3\}$$

$$= \{3, 10, 17, 24, \dots\},\$$

$$R[4] = \{x : x \in A \text{ and } (4, x) \in R\}$$

$$= \{x : x \in A \text{ and } 4 \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = 4\}$$

$$= \{4, 11, 18, 25, \dots\},\$$

$$R[5] = \{x : x \in A \text{ and } 5 \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod }$$

$$R[6] = \{x : x \in A \text{ and } (6, x) \in R\}$$

$$= \{x : x \in A \text{ and } 6 \text{ mod } 7 = x \text{ mod } 7\}$$

$$= \{x : x \in A, 6 = x \text{ mod } 7\}$$

$$= \{x : x \in A, x \text{ mod } 7 = 6\}$$

$$= \{6, 13, 20, 27, \dots \},$$

Clearly, R[0], R[1], R[2], R[3], R[4], R[5], and R[6] form a partition of A.

Theorem 3. Suppose $\{P_i, i \in I\}$ form a partition of A. Then $R = \bigcup_i \in I \ (P_i \times P_i) \text{ is an equivalent relation on A.}$

[Proof] Since $\{P_i, i \in I\}$ form a partition of A, for each $a \in A$, $a \in P_k$ for some $k \in I$. Thus $(a, a) \in P_k \times P_k \subseteq U_i \in I$ $(P_i \times P_i) = R$. Therefore R is reflexive.

If $(a, b) \in R$, then there exists an index $k \in I$ such that $(a, b) \in P_k \times P_k$. Thus $a \in P_k$ and $b \in P_k$. Hence $(b, a) \in P_k \times P_k \subseteq \bigcup_i \in I (P_i \times P_i) = R$.

If $(b, a) \in R$, then there exists an index $k \in I$ such that $(b, a) \in P_k \times P_k$. Thus $b \in P_k$ and $a \in P_k$. Hence $(a, b) \in P_k \times P_k \subseteq U_i \in I$ $(P_i \times P_i) = R$.

Therefore R is symmetric.

$$\begin{split} & \text{If } (a,b) \in R \text{ and } (b,c) \in R \text{ then there exists an} \\ & \text{index } k \in I \text{ and an index } j \in I \text{ such that } (a,b) \in P_k \times P_k \\ & \text{and } (b,c) \in P_j \times P_j. \text{ Thus } a \in P_k, b \in P_k \text{ and } b \in P_j, c \in P_j. \\ & \text{Thus } j = k. \text{ Hence } (a,c) \in P_k \times P_k \subseteq \bigcup_i \in_I (P_i \times P_i) = R. \end{split}$$

Therefore R is transitive.

So R is an equivalent relation on A.

When $I = \{1, 2, 3, ..., n\}$ in Theorem 3, we have that $(P_1 \times P_1) \cup (P_2 \times P_2) \cup ... \cup (P_n \times P_n)$ is an equivalent relation on A if $P_1, P_2, ..., P_n$ form a partition of A.

Note that
$$P_1 = \{-1, 1\}$$
, $P_2 = \{0\}$, and $P_3 = \{-2, 2\}$ form a partition of $A = \{-2, -1, 0, 1, 2\}$. Then, by Theorem 3, we have that $(P_1 \times P_1) \cup (P_2 \times P_2) \cup (P_3 \times P_3) = \{(-1, -1), (-1, 1) (1, -1), (1, 1), (0, 0), (-2, -2), (-2, 2) (2, -2), (2, 2)\}$

is an equivalent relation on A.

Note that we can use Theorem 3 to prove a given relation is an equivalent relation.

Example. Suppose
$$A = \{1, 2, 3, 4, 5\}$$
 and $R = \{(1, 1), (1, 4), (4, 1), (4, 4), (3, 3), (4, 4), (5, 5)\}$

Prove that R is an equivalent relation on A.

[Proof] Let $P_1 = \{1, 4\}$, $P_2 = \{3\}$, $P_3 = \{4\}$, and $P_4 = \{5\}$. Then P_1 , P_2 , P_3 , and P_4 form a partition of A and R = $(P_1 \times P_1) \cup (P_2 \times P_2) \cup (P_3 \times P_3) \cup (P_4 \times P_4)$. Hence, by Theorem 3, R is an equivalent relation on A.