[Information Retrieval for Data Science]

Course Administrative Details

Course Title	Title Information Retrieval for Data Science			
Instructor(s)	Stanislav Protasov	Instructor's e-mail	s.protasov@innopolis.ru	
Course #	XXX	Course Type	Core	
Faculty	Computer Science and	Major	Data Science	
	Engineering			
Academic year	2019-2020	Semester Offered	Spring	
No. of Credits	6 ECTS	Total workload on	3 hours in auditory per week	
		average	3 hours homework per week	
			20 hours project	
Lecture Hours	2 per week	Lab Hours	2 per week	
Language	English	Frequency	Weekly	
Target Audience	Masters	Anticipated	30 students	
Studying year	1 (5)	Enrollment		
Grading Mode	A, B, C, Fail	Keywords	Information retrieval,	
			information search, search	
			engines, data mining	

Course outline

The course is designed to prepare students to understand and learn contemporary tools of information retrieval systems. The course will focus on applying mathematical and programming tools to building such systems. Throughout the course, students will be involved in discussions, readings and assignments to experience real world systems. The technologies and algorithms covered in class includes advanced algorithms, linear algebra, machine learning, data mining, natural language processing and so on.

Course Delivery

The course will be given weekly from January to April 2020. Every week, there will be a 2-hour lecture followed by a 2-hour lab session. Lab sessions are followed by homework. In the end of the semester students at the exam present their projects – information retrieval services.

Prerequisite courses

Machine learning, Python, algorithms and data structures

Required background knowledge

Solid knowledge of imperative and object-oriented programming concepts and good programming skills in Python are assumed. Good understanding of machine learning together with a skill to run models required. Basic probability theory and statistics understanding is also required.

Course structure

[IA - Individual Assignment]

Week# / Date	Торіс	Assignments
Week 1	Introduction to information retrieval	Non-graded introduction
		test
Week 2	Building inverted index. Language, tokenization, stemming,	Inverted index service with
	searching, scoring.	scoring
Week 3	Distributive semantics. Vector model. Dimension reduction.	Vector representation

Week 4	ML approaches to vector modelling.	ML for document
		representation
Week 5	Indexing for vector model. Kd-trees, quad trees, Annoy, FAISS,	Fast vector index.
	HNSW	Recommender system
Week 6	Web basics. Internet crawling. XML and HTML processing.	Dynamic site parsing and
	Dynamic documents processing.	robot ethics
Week 7	Spellchecking and query correction	Spellchecker
Week 8	Query expansion and suggest	Query expansion and
		suggest lab
Week 9	Language model. Topic model. Clustering and classification	Topic modeling
Week 10	On newsfeeds	Newsfeed
Week 11	Image and video processing. Understanding and enhancing	Image/Video to text
Week 12	Audio processing. Speech to text. Acoustic fingerprinting	Shazam
Week 13	Quality assessment. A/B testing, SBS, pFound, DGC, nDGC.	A/B test framework
Week 14	Web search specific topics. PageRank. Duplicates. CTR.	PageRank
Week 15	[Extension slot: selected topic]	

Textbook(s)

An Introduction to Information Retrieval by Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze, Cambridge University Press (any edition)

Reference Materials

TRD

Computer Resources

Students should have laptops with Anaconda installer.

Laboratory Exercises

Tutorial exercises will be set on weekly basis

Laboratory Resources

No laboratory resources are required for this course.

Grading criteria

Homework = 50%, Final Exam (project defense) = 50%

Late Submission Policy

No late submission allowed.

Cooperation Policy and Quotations

We encourage vigorous discussion and cooperation in this class. You should feel free to discuss any aspects of the class with any classmates. However, we insist that all assignments should be done by you alone. We will run automatic code comparison software on assignment submissions to compare solutions. Violations of this policy will be investigated and will result in zero scores on any assignments brought under suspicion.