ГЛАВА 1. «Выражение и множество его значений» §1. МНОЖЕСТВА

Основные теоретические сведения

Для обозначения совокупностей предметов в математике применяется термин «множество». Объекты или предметы, составляющие множество, называют элементами множества. Если а — элемент множества М, то пишут $a \in M$ (читают: «а принадлежит М»). Если а не является элементом множества M, то пишут $a \notin M$ (читают: «а не принадлежит M»). Множество, не содержащее ни одного элемента, называется пустым множеством (обозначение \emptyset). Запись $a \in \emptyset$ не просто бессмысленна, а ошибочка, поскольку ничто не может принадлежать пустому множеству! Множества бывают конечными и бесконечными. Если множество конечное, то его можно задать перечислением элементов, если бесконечное, то его характеристическим свойством. В курсе математики задают рассматриваются, в основном, числовые множества.

Множество натуральных чисел обозначается буквой N, множество целых чисел — буквой Z, множество рациональных чисел — буквой Q.

Множество В называется *подмножеством* множества A, если каждый элемент множества B является элементом множества A. Записывают: $B \subset A$ (В является подмножеством A).

Если $A \subset B$ и $B \subset A$, то множества A и B *совпадают (т. е. равны)*. Записывают: A = B.

Если ${}^{B\,\subset\,A}$, причем ${}^{B\,\neq\,\varnothing}$ и ${}^{B\,\neq\,A}$, то множество В называют собственным подмножеством множества А.

Основные практические задания по данной теме

- 1. Задайте перечислением элементов множество X, состоящее из букв, использующихся при записи слова «абракадабра». Принадлежит ли множеству X буква с? буква а? Ответ запишите с помощью знаков \in и \notin .
- 2. Задайте перечислением элементов множество натуральных делителей числа 70. Принадлежит ли этому множеству число 14? число 15?
- **3**. Составьте все подмножества множества $P = \{0; 3; 7\}$.
- 4. Дано множество $A = \left\{-2; \ 0; \ \frac{2}{7}; \ 1; \ 1\frac{2}{13}; \ 4; \ 6; \ 7; \ 11\right\}$. Известно, что $B \subseteq A$, $C \subseteq A$ и $B = \{x \mid x \in N, \ x \in A\}$, $C = \{x \mid x \in Z, \ x \in A\}$. Задайте множества B и C перечислением элементов. Является ли одно из множеств (B или C) подмножеством другого? Запишите ответ с помощью символа \subseteq и проиллюстрируйте его с помощью кругов Эйлера.
- 5. Задайте перечислением элементов множества $M = \{x \mid x \in \mathbb{Z}, |x| \leq 3\}$ и $K = \{x \mid x \in \mathbb{Z}, x^2 \leq 9\}$. Равны ли эти множества?
- 6. Задайте с помощью характеристического свойства множество: а) $A = \{0; 1; 4; 9; 16; 25\};$ б) $B = \{1; 5; 9; 13; 17; 21\}.$
- 7. Имеется два водных раствора кислоты. Первый раствор содержит 20% кислоты, второй 60%. Смешали 5 литров первого раствора, 10 литров воды и некоторое количество второго раствора, получив 40-процентный раствор кислоты. Сколько литров второго раствора было взято?

§2. ЧИСЛОВЫЕ ВЫРАЖЕНИЯ И ВЫРАЖЕНИЯ С ПЕРЕМЕННЫМИ Основные теоретические сведения

Выражения, составленные из чисел, знаков действий и скобок, называются *числовыми выражениями*. Число, являющееся результатом выполнения всех действий в числовом выражении, называют *значением* числового выражения. О числовых выражениях, которые не имеют значения, говорят что они *не имеют смысла*. Для сравнения чисел используют знаки =, <, >, \le , \ge , \ne . При этом могут использоваться двойные неравенства вида: $a \le x < b$ и т. п. Неравенства, в которых используются знаки < u >, называются *строгими*, в которых используются знаки \le , - *нестрогими*.

Выражения, составленные из чисел, букв, знаков действий и скобок, называются *буквенными* выражениями, или *выражениями* с переменной или с переменными. Множество значений переменной, при которых выражение с переменной имеет числовое значение (имеет смысл), называют *областью допустимых значений переменной* данного выражения.

Выражение с переменными используются для записи чисел определенного вида. Например, запись \overline{abc} означает любое трехзначное число, у которого a сотен, b десятков и c единиц, т. е. $\overline{abc} = 100a + 10b + c$.

ЭЛЕМЕНТЫ СТАТИСТИКИ

Ряд чисел, полученных в результате статистического исследования, называется статистической выборкой или просто выборкой, а каждое число этого ряда - вариантой выборки. Количество чисел в ряду называют объемом выборки. Запись выборки, когда последующая варианта не меньше предыдущей, называется упорядоченным рядом данных (или вариационным рядом).

Средним арифметическим выборки называется частное суммы всех вариант выборки и количества вариант (т. е. частное суммы всех вариант и объема выборки). Количество появлений одной и той же варианты в выборке называют частотой этой варианты. Варианта выборки, имеющая наибольшую частоту, называется модой выборки. Разность наибольшей и наименьшей вариант выборки называют размахом выборки. Если в упорядоченном ряду данных нечетное число вариант, то средняя по счету варианта называется медианой. Если в упорядоченном ряду четное число вариант, то среднее арифметическое двух средних по счету вариант называется медианой.

Основные практические задания по данной теме

Подготовительный вариант

- 1. Используя характеристическое свойство, запишите:
 - а) множество A натуральных чисел, кратных 11;
 - б) множество B натуральных чисел, которые при делении на 7 дают в остатке 3.
- 2. Найдите значение выражения $\frac{3x}{2x+1} + \frac{5x-1}{3x-1}$ при $x = \frac{1}{2}$.
- 3. При каких значениях переменной выражение $\frac{2a-1}{2+a}$ имеет смысл?
- 4. При каком значении переменной выражение $\frac{2a+1}{|a|-1}$ не имеет смысла?
- 5. Составьте уравнение для решения задачи. Моторный катер, собственная скорость которого 8 км/ч, прошел вниз по течению реки 15 км и такое же расстояние вверх по течению. Найдите скорость течения реки, если время, затраченное на весь путь, равно 4 ч.
- 6. Для ряда данных 3; 4; 4; 5 найдите:
 - а) размах;

г) моду;

б) объем;

- д) медиану.
- в) среднее арифметическое;
- 7. Заполните таблицу значений выражения $\frac{4x-x^2}{x-1}$ с шагом 1 для $|x| \le 4$.
- 8. Известно, что $\frac{b}{a} = 2$. Чему равно значение выражения:

a)
$$\frac{2b}{a}$$
; 6) $\frac{3a}{b}$; B) $\frac{3a-b}{a+b}$?

Полезные ссылки для ЭОР учащихся:

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112072/?interface=catalog&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112073/?interface=catalog&subject=17

ГЛАВА 2 «Олночлены»

83. СТЕПЕНЬ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

Основные теоретические сведения

Степенью числа а с натуральным показателем п, большим 1, называют а) выражение а, равное произведению и множителей, каждый из которых равен а. Степенью числа а с показателем 1 называют выражение а , равное

Число $a - \underline{ochoвahue}$ степени, число $n - \underline{nokasameлb}$ степени, где n - N а) $a^{n+1} \cdot a \cdot a^{2n-1}$; число.

<u>Степенью</u> числа а, где а \neq 0, с <u>нулевым</u> показателем называется выражение при x=−2. a = 1. ВАЖНО 0 не имеет смысла!

Вторая степень числа – квадрат, третья степень – куб.

Нахождение п-й степени числа а называют возведением в степень.

СВОЙСТВА СТЕПЕНИ С НАТУРАЛЬНЫМ ПОКАЗАТЕЛЕМ

Очевидно, при $n \in \mathbb{N}$ $0^n = 0$.

Если a > 0, $n \in N$ или n = 0, то $a^n > 0$.

Если a < 0 и n = 2k, где $k \in N$ или k = 0, то $a^n > 0$.

Если a < 0 и n = 2k + 1, где $k \in N$ или k = 0, то $a^n < 0$.

Если a — произвольное число, m, n — натуральные числа, то $a^m \cdot a^n = a^{m+n}.$

Если a — произвольное число, m, n — натуральные числа, причем m > n, то $a^m : a^n = a^{m-n}$.

Если a и b — произвольные числа, n — натуральное число, то $(ab)^n=a^n\quad b^n.$

Если a — произвольное число, m и n — натуральные числа, TO $(a^m)^n = a^{mn}$.

Если a и b — произвольные числа, где $b \neq 0$, n — натуральное число, то $\left(\frac{a}{h}\right)^n = \frac{a^n}{h^n}$.

Основные практические задания по данной теме

1. Вычислите:

 $-2^4 \cdot \frac{1}{24} + \left(-\frac{2}{7}\right)^0$

2. Упростите выражение при всех $n \in N$:

6) x^{2n+2} : x^3 .

3. Найдите значение выражения $16 - \frac{1}{2} \cdot x^5$

4. При каком значении х верно равенство:

$$a)x^2 = 1,96$$

$$\mathcal{O}(x^3) = \frac{27}{64}$$

$$e)7^{x} = 1$$

5. Найдите множество значений выражения при $n \in N$:

$$(-1)^n \bullet (-1)^{n+1} \bullet (-1)^{2n+2} - 1^0$$

6. Заполните таблицу значений выражения

$$(-1)^m \bullet (2m-1) - 1$$
 при всех $m \in \mathbb{Z}$, $-1 < m < 4$.

7*. Пусть $a=2^5\cdot 3^6\cdot 7^{11}$, $b=3^5\cdot 5\cdot 7^{13}$. Найдите НОД и НОК чисел а и b.

Полезные ссылки ЭОР для учащихся:

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112094/?interface=catalog&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112095/?interface=catalog&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112096/?interface=catalog&subject=17

ГЛАВА 2 «Олночлены» §4. ОДНОЧЛЕН И ЕГО СТАНДАРТНЫЙ ВИД

Основные теоретические сведения

<u>Одночлен</u> – выражения, представляющие собой произведения чисел, переменных и их степеней (натуральных). Числа, переменные и их степени а) также считаются одночленами. Стандартный вид – произведение числового множителя, записанного на первом месте, и степеней различных $6) 5^2 - (-3)^2 - (-1)^0$

переменных. $\underline{\textit{Числовой}}$ $\underline{\textit{множитель}}$ — коэффициент одночлена. - $10a^2b^4$ пример одночлена в стандартном виде.

Степень одночлена стандартного вида – сумма показателей степеней входящих в него переменных. Если одночлен – это число, отличное от 0, то его степень считается равной 0.

BAЖНО: Число 0 – это одночлен, степень которого не определена.

Тождества

Тождество – равенство, верное при любых допустимых значениях переменных. Соответственные значения выражений – значения при одинаковом х. Выражения, соответственные значения которых равны при любых допустимых значениях переменных, называются тождественно равными. Тождественное преобразование – замена одного выражения другим, тождественно равным ему.

Примеры тождеств: а+с=с+а;

a+0=a:

 $a \cdot 1 = a$:

 $\mathbf{x} = \mathbf{x} \cdot \mathbf{x}$.

Основные практические задания по данной теме

1. Вычислите:

$$\left(-\frac{2}{3}\right)^3 + \frac{2^3}{3} - \frac{2}{\left(-3\right)^3}$$

- 2. Выполните умножение степеней:
- а) $a^{17} \cdot a^{21}$ б) $a^{17} \cdot a$ в) $a \cdot a^n \cdot a^{12}$, $n \in \mathbb{Z}$, $n \ge 0$.
- 3. Выполните деление степеней:
- a) a^{21} : a^{17} 6) a^{21} : a B) a^{21} : a^{17} : a^n , $n \in \mathbb{Z}$, $0 \le n \le 4$
- 4. Возведите степень в степень:
- a) $(a^{11})^{23}$ 6) $((a^{11})^{23})^n$, $n \in \mathbb{Z}$, $n \ge 0$
- 5. Найдите значение выражения:

$$\frac{12^6}{3^5 \cdot 2^{11}}$$
 a)

$$\frac{5^8 \cdot 125}{25^5}$$

- 6. Упростите выражение:
- a) $(-(-x^3)^4)^5$ 6) $(2x^ny^3)^4 \cdot (-x^3y^n)^3$, $n \in \mathbb{Z}$, $n \ge 0$
- 7. Укажите все натуральные значения переменных m и n, при которых степень одночлена $-6^{3}v^{2m}v^{n}$ равна 5.
- 8. При каких значениях х верно равенство:
- a) $(-3)^{2x-1} = 1$
- 6) $(-3)^{|x|-1} = -3$
- 9. Докажите, что значение выражения $91^{10} + 42^{10} 85^{10}$ делится на 10.

Полезные ссылки ЭОР для учащихся:

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112098/?interface=catalog&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112099/?interface=catalog&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112100/?interface=catalog&subject=17

ГЛАВА 3. «Многочлены» §5. МНОГОЧЛЕН И ЕГО СТАНДАРТНЫЙ ВИД Основные теоретические сведения

<u>Многочлен</u> – сумма одночленов. Одночлены, из которых составлен многочлен, называют <u>членами</u> многочлена. Многочлен, состоящий из двух членов – двучлен, из трех одночленов – трехчлен. Двучлены – биномы, многочлены – полиномы.

<u>Подобные</u> члены многочлена – члены многочлена, имеющие одинаковую буквенную часть. Слагаемые, не имеющие буквенной части, также считаются подобными. Замена суммы подобных членов многочлена называется приведением подобных членов или приведением подобных слагаемых.

<u>Стандартный вид многочлена</u> - это многочлен, в котором каждый член – одночлен стандартного вида, причем среди них нет подобных членов. <u>Степенью многочлена</u> стандартного вида называют наибольшую из степеней входящих в него одночленов. Если многочлен число, не равное 0, то его степень равна 0. Число 0 называют нуль-многочленом. Его степень считается не определенной.

Если a, b, c, l, m – числа (a не равно 0), а x – переменная, то многочлен

$$ax^{n} + bx^{n-1} + cx^{n-2} + \dots + lx + m$$

называется многочленом п-й степени (относительно х);

 ax^{n} , bx^{n-1} , cx^{n-2} , lx, $m - \underline{u}$ лены многочлена;

a, b, c, l, m - <u>коэффициенты</u>;

 $ax^{n} - \underline{cmapшu \overline{u}} \underline{uneh} \underline{mhoгouneha};$

 $a-\underline{\kappa o}$ равно свободный член при старшем члене, $m-\underline{c}$ вободный член многочлена. Значение многочлена с переменной х при х=0 равно свободному члену этого многочлена, а при х=1 — сумме его коэффициентов. <u>Корнем многочлена</u> P(x) называют такое значение х, при котором многочлен обращается в 0. Два многочлена тождественно равны, если в стандартном виде каждого из них содержатся одинаковые одночлены.

Основные практические задания по данной теме

- 1. Приведите подобные члены многочлена $3x^2 2x 3 4x^2 + x 2x^2$.
- 2. Найдите степень многочлена:
 - a) $8x^2 3x^7 + 6x^4 + 5x^5 + 10$;
 - 6) $a^2b + 6a^2 7b^2 + 14ab + 2$.
- 3. Запишите многочлен в стандартном виде:
 - a) $a \cdot ba^2 2a^2b^2a$;
 - 6) $(-b^2) \cdot (2a^2) \cdot (-c) + 6 2b \cdot (-a)^3$.
- 4. Замените выражение P одночленом так, чтобы получившийся после приведения подобных членов многочлен $2b^2y + 4y^3 + 2b^2 2 5yb^2 + y^3 7b^2 + 2y^3 + 3b^2y 4 + P$ не содержал переменной b.
- 5. Найдите значение многочлена $3a^2cb-9(-a)^2cb+13abc-3a^2(-b)(-c)-4-13abc$, предварительно упростив его, если $a=-\frac{1}{3},\ b=-3\frac{7}{8},\ c=-\frac{8}{31}.$
- 6. Даны многочлены $A = x^4 + x^2 + 1$ и $B = x^3 x^2 + x 1$. Составьте из них новые многочлены A_1 и B_1 , подставив вместо переменной x выражение (-x). Выберите из них то, которое после замены переменной не изменило своего значения.
- 7. Докажите, что число abaaba кратно 13.

Полезные ссылки ЭОР для учащихся:

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112106/?interface=catalog&class=49&subject=17

ГЛАВА 3. «Многочлены» §6. СУММА, РАЗНОСТЬ И ПРОИЗВЕДЕНИЕ МНОГОЧЛЕНОВ Основные теоретические сведения

Сумму, разность, произведение и степень многочленов можно представить в виде *многочлена*.

Правила:

Если перед скобками стоит знак «+», то скобки можно опустить, сохранив знак каждого слагаемого, заключенного в скобки.

Если перед скобками стоит знак «-», то скобки можно опустить, изменив знак каждого слагаемого на противоположный.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый член многочлена и полученные произведения сложить.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.

Основные практические задания по данной теме

- 1. Даны многочлены $A=a^2+ab-4b^2$ и $B=-2a^2-2ab+b^2$. Найдите:
 - a) A + B; 6) A B.
- 2. Упростите выражение:
 - a) $-3b \cdot (2a b)$; 6) $(-x^2 3xy + y^2) \cdot (-4x^2)$.
- 3. Представьте выражение $(a^2 + 2ab bx^2) (x^3 ax^2 b^2) bx^2 + x^3$ в виде суммы двух многочленов, один из которых содержит переменную x, а другой не содержит.
- **4.** Представьте многочлен $x + 2y 3x^2 4y^2$ в виде разности двух многочленов с положительными коэффициентами.
- 5. Вместо знака * запишите такой одночлен, чтобы многочлен, тождественно равный выражению $2x \cdot (2x^2 + * 3x) 3 \cdot (-2x^3 + x + 1)$, был многочленом 5-й степени, сумма коэффициентов которого равна 8.
- 6. Упростите выражение и найдите его значение:
 - а) 3(5a-2b)-5(3a-4b) при a=-217, b=-2;

б)
$$4a(3a^2-ab^2-b^3)-6aigg(2a^2+ab^2-rac{2}{3}b^3igg)$$
 при $a=-rac{12}{17}$, $b=1rac{5}{12}$.

- 7. Упростите выражение x (2 + (x 1)) + (x (5 + 2x)) и найдите, при каком значении переменной x его значение равно нулю.
- 8. Сравните числа $\frac{2003}{2004} 1$ и $1 \frac{2004}{2003}$. Укажите какое-нибудь число (если оно существует), заключенное между этими числами.

Полезные ссылки для учащихся:

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112107/?interface=catalog&class=49&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112109/?interface=catalog&class=49&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112112/?interface=catalog&class=49&subject=17

ГЛАВА 4. «Уравнения» **§7.** УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Основные теоретические сведения

Равенство, содержащее переменную, называют уравнением с одной переменной или уравнением с одним неизвестным.

Корнем уравнения (решением уравнения) называется значение переменной, при котором уравнение обращается в верное равенство.

Решить уравнение – значит найти множество его корней или доказать, что их нет.

Областью определения уравнения (областью допустимых значений переменной в уравнении) называется множество значений переменной, при которых обе части уравнения имеют смысл.

Уравнения называются равносильными, если множества их корней совпадают (имеют одни и те же корни или не имеют корней).

Чтобы получить уравнение, равносильное данному, используют свойства уравнений:

- 1) Перенос слагаемых из одной части в другую, изменив его знак;
- 2) Обе части уравнения умножить или разделить на одно и то же число, отличное от 0;
- 3) Если в какой-либо части уравнения или обеих частях выполнить тождественное преобразование, не меняющее области определения уравнения.

Линейное уравнение с одной переменной.

<u>Уравнение</u> вида **ах=b**, где х – переменная, а (коэффициент при переменной) и b (свободный член) – некоторые числа, называется линейным уравнением с одной переменной.

Число а – коэффициент, число b – свободный член.

- 1. а≠0 и b любое число. Корень уравнения х=b/а единственный.
- 2. a=0 и $b\neq 0$ нет корней, так как равенство 0x=b ни при каком x не является верным.
- 3. a=0 и b=0 любое число корень, т.е. бесконечно много корней.

Основные практические задания по данной теме

- **1.** Является ли данное число a корнем уравнения:
 - a) $x^3 3x^2 + 4x 2 = 0$, a = 1;
 - 6) $2x^2 3x 2 = 0$, a = -0.5?
- 2. Даны уравнения: 7 4x = x 1 (A), 3(4x 7) = 3(1 x) (Б), $\frac{4x-7}{3} = \frac{1-x}{3}$ (В), 4x-x=1-7 (Г). Укажите те, которые равносильны уравнению 4x - 7 = 1 - x. Ответ объясните.
- 3. Решите уравнение:

 - a) -3x = 5; 6) 0.4y = -0.7; B) 0z = -3; r) 0t = 0.
- **4.** Найдите все целые значения параметра a, при которых уравнение ax = -6 имеет целый корень.
- 5. Найдите множество корней уравнения:

 - a) |4x| = 1,2; B) |4,08x| = 0;

 - 6) |-0.04y| = 2.8; r) |0.01y| = -0.1.
- **6.** При каких значениях параметра a уравнение $ax = a^2 4a$:
 - а) имеет единственный корень;
 - б) не имеет корней;
 - в) имеет бесконечное множество корней?
- 7. Решите уравнение $-2mn = x \ (m \neq 0 \ и \ n \neq 0)$ относительно переменной:
 - a) m; 6) n.
- **8.** Дано уравнение $x^4 2x^3 3x + 4 = 0$. Проверьте, являются ли его корнями числа:
 - a) 1:

- б) -1; в) 2; г) -2; д) 4; е) -4.

Полезные ссылки для учащихся:

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112080/?interface=catalog&class=49&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112081/?interface=catalog&class=49&subject=17

http://school-collection.edu.ru/catalog/rubr/820d62ae-6bce-41ea-923d-7184c1801fc9/112082/?interface=catalog&class=49&subject=17

