北京航空航天大学 2008-2009 学年第一学期期末

考试统一用答题册

考试课程	高等数学	\times , \times	
班级	学号		

题目	~	a	=	目	五	*	4	^	短分
得分									

填空题(本题 20分)

$$1.\lim_{x\to 0}\frac{x(e^{3x}-1)}{\ln(1+x^2)} = 3$$

4.
$$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} (2 + \sin^3 x) \sec^2 x \, dx = \underline{\qquad 4 \qquad}.$$

5. 直线 z = 1 - y 绕 z 轴旋转而成的旋转曲面的方程是 $x^2 + y^2 - (z - 1)^2 = 0$.

二. 选择题(本题 20分)

1. 设
$$f(x) = \begin{cases} \frac{1 - \cos x}{\sqrt{x}}, & x > 0 \\ x^2, & x \le 0 \end{cases}$$
 则 $f(x)$ 在 $x = 0$ 处 D.

- (A) 极限不存在
- (B) 极限存在, 但不连续

2.已知方程
$$xe^{-x} = a (a > 0)$$
 有唯一的实根,则 $a = A$

(A)
$$a = e^{-1}$$
 (B) $a > e^{-1}$ (C) $a < e^{-1}$ (D) $a \neq e^{-1}$.

3. 设函数 f(x) 在x = a 的某个邻域内连续,且 f(a) 为其极小值,则 存在 $\delta > 0$, 当 $x \in (a - \delta, a + \delta)$ 时, 必有 D.

$$(A) (x-a)[f(x)-f(a)] \ge 0$$

$$(A) (x-a)[f(x)-f(a)] \ge 0. (B) (x-a)[f(x)-f(a)] \le 0.$$

$$(C)\lim_{t\to a} \frac{f(t) - f(x)}{(t-x)^2} \ge 0, (x \ne a) \quad (D) \lim_{t\to a} \frac{f(t) - f(x)}{(t-x)^2} \le 0, (x \ne a)$$

4. 下列广义积分中,发散的为 B

(A)
$$\int_0^1 \frac{\arcsin\sqrt{x}}{x} dx$$
 (B) $\int_2^{+\infty} \frac{dx}{x \ln x \ln(\ln x)}$ (C) $\int_0^{+\infty} \frac{\ln x}{1+x^2} dx$ (D) $\int_0^1 \frac{dx}{\sqrt{1-x^4}}$

5. 下面结论错误的是 C

- (A) 若 f(x) 在 [a,b] 上可积,则 f(x) 在 [a,b] 上必有界
- (B) 若 f(x) 在 [a,b] 上可积,则|f(x)| 在 [a,b] 上也必可积
- (C) 若 f(x) 在 [a,b] 上可积,则 $\int_a^x f(t)dt$ 在 [a,b] 上必可导
- (D) 若 f(x) 在 [a,b] 上单调有界,则 f(x) 在 [a,b] 上必可积

三. (本题 10分)

$$1. \qquad \lim_{n \to +\infty} \left(\frac{1 + \sqrt[n]{2}}{2} \right)^n$$

$$= \lim_{n \to +\infty} \left(1 + \frac{\sqrt[n]{2} - 1}{2} \right)^n = \lim_{n \to +\infty} \left(1 + \frac{\sqrt[n]{2} - 1}{2} \right)^{\frac{2}{\sqrt[n]{2} - 1}} = e^{\frac{1 + \frac{n}{\sqrt{2} - 1}}{2}} = e^{\frac{\ln 2}{2}} = e^{\frac{\ln 2}{2}} = \sqrt{2}.$$

2.
$$\lim_{x \to 0} \frac{\int_0^x \left(\int_0^u \sin(u - t)^2 dt \right) du}{x^2 \sin x^2}$$

$$\therefore \int_0^u \sin(u-t)^2 dt \ \underline{w=u-t} \int_0^u \sin(w)^2 dw,$$

$$\therefore \lim_{x \to 0} \frac{\int_0^x \left(\int_0^u \sin(u - t)^2 dt \right) du}{x^2 \sin x^2} = \lim_{x \to 0} \frac{\int_0^x \left(\int_0^u \sin(u - t)^2 dt \right) du}{x^4}$$

$$= \lim_{x \to 0} \frac{\int_0^x \sin w^2 \, dw}{4x^3} = \lim_{x \to 0} \frac{\sin x^2}{12x^2} = \frac{1}{12}$$

四. (本题 10分)

1. 设
$$f(x)$$
 在 $x = 0$ 处二阶可导, 且 $\lim_{x \to 0} \frac{f(x) - x \sin 2x}{x^2} = 0$, 求 $f(0)$, $f'(0)$, $f''(0)$.

$$f(x) = f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 + o(x^2),$$

$$x \sin 2x = 2x^2 + o(x^2),$$

$$\therefore \lim_{x \to 0} \frac{f(x) - x \sin 2x}{x^2} = \lim_{x \to 0} \frac{f(0) + f'(0)x + \frac{1}{2}f''(0)x^2 - 2x^2 + o(x^2)}{x^2},$$

故
$$f(0) = 0$$
, $f'(0) = 0$, $f''(0) = 4$.

2. 设函数
$$y = y(x)$$
由方程 $e^{xy} = 2x + y$ 所确定,求 $\frac{dy}{dx}$ 及 $\frac{dy}{dx}|_{x=0}$.

解 当 x=0 时, y=1.

方程 $e^{xy} = 2x + y$ 两端对x求导得

$$e^{xy}(y + xy') = 2 + y',$$

$$\therefore \frac{dy}{dx} = \frac{2 - ye^{xy}}{xe^{xy} - 1}, \quad \frac{dy}{dx}|_{x=0} = -1.$$

五. (本题 10分)

1. $\int (\arcsin x)^2 dx$

$$\Re \int (\operatorname{arc} \operatorname{sxi}) \hat{\mathbf{n}} dx = x(\operatorname{arc} \operatorname{sxi}) \hat{\mathbf{n}} - \int \frac{2x}{\sqrt{1 - x^2}} \operatorname{arc} \operatorname{sxi} dx$$

$$= x(\arcsin x)^2 + 2 \int \arcsin x d\sqrt{1 - x^2}$$

$$= x(\arcsin x)^2 + 2 \arcsin x \sqrt{1 - x^2} - 2 \int dx$$

$$= x(\arcsin x)^2 + 2 \arcsin x \sqrt{1 - x^2} - 2x + C$$

2. 计算
$$\int_0^1 \frac{x^3 + 1}{(\sqrt{1 + x^2})^3} dx$$

解

$$\int_0^1 \frac{x^3 + 1}{(\sqrt{1 + x^2})^3} dx \, \underline{x} = \tan t \int_0^{\frac{\pi}{4}} \frac{\tan^3 t + 1}{\sec^3 t} d \tan t$$

$$= \int_0^{\frac{\pi}{4}} \left(\frac{\sin^3 t}{\cos^2 t} + \cos t \right) dt = \sin t \Big]_0^{\frac{\pi}{4}} + \int_0^{\frac{\pi}{4}} \frac{\cos^2 t - 1}{\cos^2 t} d \cos t$$

$$= 2\sqrt{2} - 2$$

六. (本题 10分)

设曲线 $y = x^2$ 与直线 y = ax(0 < a < 2)围成的平面图形的面积为 S_1 ,曲线 $y = x^2$ 与直线 y = ax(0 < a < 2)及 x = 2围成的平面图形的面积为 S_2 .

(1) 求 S_1, S_2 ,

(2) 求a的值使 $S_1 + S_2$ 最小.

解 (1)
$$S_1 = \int_0^a (ax - x^2) dx = \frac{a^3}{6}$$
.

$$S_2 = \int_a^2 (x^2 - ax) dx = \frac{8}{3} - 2a + \frac{a^3}{6}.$$

(2)
$$S_1 + S_2 = \frac{8}{3} - 2a + \frac{a^3}{3}$$
.

设
$$f(x) = \frac{8}{3} - 2x + \frac{x^3}{3}, 0 < x < 2,$$

$$f'(x) = 0 \Rightarrow x = \sqrt{2}$$

$$\lim_{x \to 0+0} f(x) = \frac{8}{3}, \lim_{x \to 2} f(x) = \frac{4}{3}, f(\sqrt{2}) = \frac{8 - 4\sqrt{2}}{3},$$

$$\therefore$$
 当 $a = \sqrt{2}$ 时, $S_1 + S_2$ 最小.

七. (本题 10分)

试证明两条直线 L_1 : $\begin{cases} x+y-z+4=0\\ 2x+3y-z-4=0 \end{cases}$ 与 L_2 : $\frac{x-1}{2} = \frac{y}{-1} = \frac{z-2}{1}$ 是共面的,并写出它们所在的平面方程.

解

 $\ddot{s_1}/\ddot{s_2}$, $\ddot{s_1}$, $\ddot{s_2}$, $\ddot{s_2}$, $\ddot{s_1}$, $\ddot{s_2}$

八. (本题 10分)

设 f(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 f(0)=f(1)=0. 证明对于任意实数 λ ,至少存在一点 $\xi \in (0,1)$,使得 $f'(1-\xi)=\lambda f(1-\xi)$

设 $F(x) = e^{\lambda x} f(1-x)$,则 F(x) 在 [0,1] 上连续,在 (0,1) 内可导,且 F(0) = F(1) = 0. 由罗尔定理,至少存在一点 $\xi \in (0,1)$,使得 $F'(\xi) = 0$, 即对于任意实数 λ ,至少存在一点 $\xi \in (0,1)$,使得 $f'(1-\xi) = \lambda f(1-\xi)$