Master Thesis

Statistical Properties of Particle Spreading in Quenched Random Media

Shiraz University

Navid Mousavi September 2019

Motivation

Anomalous is Normal

Klafter and I. M. Sokolov, Anomalous diffusion spreads its wings, Physics world, vol. 18, no. 8, p. 29, 2005

CTRW

fBm

Levy flight

Disordered Media Shows Anomaly

Porous Media

Cell Environment

Complex Networks

5

Manhattan Grid

Diffusion in Quenched Manhattan Grid

$$x(t + \Delta t) = x(t) + \eta(t)\mathcal{U}(y(t))\Delta t$$
$$y(t + \Delta t) = y(t) + [1 - \eta(t)]\mathcal{V}(x(t))\Delta t$$

The motion is Super-diffusive with

$$\alpha = 1.33 \pm 0.01$$

Moments of Diffusion

$$\beta(q) \sim q\beta$$

Self affinity exists in the process

$$\beta = 0.6667 \pm 0.0005$$

Gaussian or Non-Gaussian

We expect
$$\mathcal{P}(x,t) \sim \frac{1}{t^{\beta}} \mathcal{F}(\frac{x}{t^{\beta}})$$

$$\mathcal{K} = \frac{\langle |x(t)|^4 \rangle}{\langle |x(t)|^2 \rangle^2} = 3.54 \pm 0.01$$

we choose GGD: $\mathcal{F}(u) \propto exp(-|u|^p)$

$$\mathcal{K} = \frac{\Gamma(5/p)\Gamma(1/p)}{\Gamma^2(3/p)} \Longrightarrow p = 1.607 \pm 0.006$$

DEA

$$S(t) = \beta \log t - \int \mathcal{F}(u) \log \mathcal{F}(u) du = \beta \log t + cnst.$$

$$\beta = 0.6629 \pm 0.0001$$

Weak Ergodicity Breaking and Aging

First Exit Time

$$\tau_c = \inf\{t > 0 : |\overrightarrow{r}(t)| \ge R\}$$

$$\langle \tau_c \rangle \sim R^{d_f}$$

 $d_f = 1.522 \pm 0.005$ $d_f = 1.998 \pm 0.005$

Random Dance

$$x(t + \Delta t) = x(t) + \left[\phi(\tau_n)\xi(t) + \left(1 - \phi(\tau_n)\right)\left\{\eta(t)U(y(t))\right\}\right] \Delta t$$

$$y(t + \Delta t) = y(t) + \left[\phi(\tau_n)\xi(t) + \left(1 - \phi(\tau_n)\right)\left\{\left(1 - \eta(t)\right)V(x(t))\right\}\right] \Delta t$$

$$\sum_{n} \tau_n = T \qquad P(\phi(\tau_n) = 1) = \lambda$$

$$P(\phi(\tau_n) = 0) = 1 - \lambda$$

Correlation Effect

Previous Projects

- Synchronization
- Variable Star Photometry
- Internship as Data Scientist

Current Project

WikipediA

