ModuloII Sesion1 - Breves anotaciones/Comentarios (Este archivo también está en tutor)

* sobre read : devuelve 0 cuando encuentra fin de archivo (EOF)

* macro en C

```
#define MITAD(X) (X/2)
...
main (int argc, char *argv[])
{ ....printf ("mitad de 8 es %d\n", MITAD(8)); }
```

* Sobre los atributos de un archivo; llamada al sistema stat

Estructura stat: campo St_mode: (del libro de Kerrisk, información completa en la bibliografía de la asignatura)

The *st_mode* field is a bit mask serving the dual purpose of identifying the file type and specifying the file permissions. The bits of this field are laid out as shown in Figure 15-1.

Figure 15-1: Layout of *st_mode* bit mask

The file type can be extracted from this field by ANDing (&) with the constant S_IFMT. (On Linux, 4 bits are used for the file-type component of the *st_mode* field.

```
if ((atributos.st_mode & 0170000) == 0100000) /// archivo regular
/////// S_IFMT S_IFREG
.....
```

Because this is a common operation, standard macros are provided to simplify the above to the following:

```
if (S_ISREG(statbuf.st_mode))
    printf("regular file\n");
```

En st_mode, además de los permisos de usuario, grupo y otros, están los siguientes bits, denotados en la figura anterior como U, G y T:

set-user-ID (bit 04000)

cuando un archivo ejecutable tiene este bit establecido, al ejecutarse el proceso resultante tiene como **usuario efectivo** al propietario del archivo ejecutable (en lugar del usuario que lanza el proceso como es lo usual)

set-group-ID (bit 02000)

cuando un archivo ejecutable tiene este bit establecido, al ejecutarse el proceso resultante tiene como **grupo efectivo** al grupo al que pertenece el propietario del archivo ejecutable (en lugar del grupo al que pertenece el usuario que lanza el proceso como es lo usual)

sticky (bit 01000)

(Ver libro de Kerrisk)