MOwNiT – Aproksymacja średniokwadratowa trygonometryczna

Przygotował: Szymon Budziak

Problem:

Dla poniższej funkcji:

$$f(x) = x^2 - m \cdot \cos\left(\frac{\pi x}{k}\right)$$

k=1, m=10, [-7, 7]

wyznaczyć jej wartości w n dyskretnych punktach. Następnie w oparciu o te punkty wyznaczyć przybliżenie funkcji wykorzystując aproksymację średniokwadratową trygonometryczną. Wykonać eksperymenty numeryczne dla różnej liczby punktów dyskretyzacji oraz układów funkcji bazowych zawierających różną liczbę funkcji. Oszacować błędy przybliżenia. Graficznie zilustrować interesujące przypadki.

Wykres funkcji

Wykres 1: Wykres funkcji podanej w problemie

Aproksymacja średniokwadratowa trygonometryczna

Do aproksymacji średniokwadratowej trygonometrycznej zostały użyte wzory:

$$a_{j} = \frac{2}{n} \sum_{i=0}^{n-1} f(x_{i}) \cdot \cos(j \cdot x_{i})$$

$$b_{j} = \frac{2}{n} \sum_{i=0}^{n-1} f(x_{i}) \cdot \sin(j \cdot x_{i})$$

$$F_{m}(x) = \frac{1}{2} \cdot a_{0} + \sum_{i=1}^{m} (a_{j} \cdot \cos(j \cdot x) + b_{j} \cdot \sin(j \cdot x))$$

Wielomianami trygonometrycznymi można aproksymować dowolną funkcję okresową, co wynika pośrednio z twierdzenia Weierstrassa dla funkcji okresowych. Zasady doboru stopnia wielomianu aproksymacyjnego różnia się od tych wykorzystanych w przypadku wielomianów algebraicznych. W przypadku wielomianów trygonometrycznych możemy od razu przyjąć najwyższy dopuszczalny stopień, równy $m = \lfloor \frac{n-1}{2} \rfloor$ (podłoga z $\frac{n-1}{2}$). Próba przyjęcia wyższego stopnia sprawia, że problem staje się źle uwarunkowany. Dodatkowo przypadku aproksymacji W średniokwadratowei wielomianami trygonometrycznymi przeskalować każdy punkt aby był na przedziale -π do π. Następnie po

przeskalowaniu wyliczamy nasze a_j oraz b_j . Kolejnym krokiem, jest ponowne przeskalowanie punktów jednak tym razem do wyjściowych wartości a następnie na tak przeskalowanych punktach wyliczamy funkcję E.

Przykładowe wykresy dla aproksymacji średniokwadratowej trygonometrycznej

Wykres 2: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 10 węzłów i stopnia wielomianu 4

Wykres 3: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 15 węzłów i stopnia wielomianu 5

Wykres 4: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 15 węzłów i stopnia wielomianu 7

Wykres 5: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 20 węzłów i stopnia wielomianu 9

Wykres 6: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 25 węzłów i stopnia wielomianu 12

Wykres 7: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 30 węzłów i stopnia wielomianu 8

Wykres 8: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 30 węzłów i stopnia wielomianu 14

Wykres 9: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 50 węzłów i stopnia wielomianu 24

Wykres 10: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 100 węzłów i stopnia wielomianu 37

Błędy obliczeniowe

Błędy obliczeniowe zostały wykonane dla błędu maksymalnego punktów (maksymalny błąd z wartości bezwzględnej różnicy pomiędzy kolejnymi punktami) oraz dla błędu sumy kwadratów punktów (suma kwadratów różnic kolejnych punktów). Liczby węzłów jakie zostały wzięte pod uwagę to: 5, 7, 10, 20, 30, 50, 80, 100 oraz m (stopień wielomianu): 2, 3, 5, 10, 14, 20, 24.

n	m	trig approximation max error	trig approximation sum square error
5	2	69,280	1058389,857
5	3	-	-
5	5	-	-
5	10	-	-
5	14	-	-
5	20	-	-
5	24	-	-
7	2	52,005	563388,500
7	3	62,720	749160,920
7	5	-	-
7	10	-	-
7	14	-	-
7	20	-	-
7	24	-	-
10	2	39,250	357846,461
10	3	45,893	434183,625
10	5	-	-
10	10	-	-
10	14	-	-
10	20	-	-
10	24	-	-
20	2	21,751	92699,656
20	3	24,115	108061,905
20	5	24,607	143746,283
20	10	-	-
20	14	-	-
20	20	-	-
20	24	-	-
30	2	18,200	73091,548
30	3	19,764	78324,173
30	5	18,485	93088,575
30	10	38,653	79072,369
30	14	55,177	113261,352
30	20	-	-

30	24	-	-
50	2	15,439	63406,988
50	3	16,468	63621,300
50	5	14,804	68067,661
50	10	22,470	27926,532
50	14	32,289	39829,204
50	20	46,926	58154,935
50	24	56,640	70692,256
80	2	14,644	60185,225
80	3	14,684	58720,599
80	5	13,166	59717,652
80	10	13,626	10821,531
80	14	19,723	15397,224
80	20	28,870	22446,255
80	24	34,913	27247,599
100	2	15,288	59456,504
100	3	14,103	57609,981
100	5	12,683	57822,325
100	10	10,745	6917,472
100	14	15,587	9823,158
100	20	22,901	14312,981
100	24	27,758	17371,916

Tabela 1: Błąd obliczeniowy dla aproksymacji średniokwadratowej trygonometrycznej

Z tabeli 1 możemy zauważyć, że minimalny błąd jest dla liczby węzłów 100 oraz stopnia wielomianu 10.

Wykres 11: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 100 węzłów i stopnia wielomianu 10

Przykłady zmiany błędów obliczeniowych dla ustalonej liczby węzłów i zmiennego stopnia wielomianu

Przykład dla liczby węzłów 10:

n\m	1	2	3	4
10	22,540	39,250	45,893	52,114

Tabela 2: Błąd obliczeniowy dla aproksymacji średniokwadratowej trygonometrycznej dla błędu maksymalnego punktów i liczby węzłów 10

n\m	1	2	3	4	
10	147367,072	357846,461	434183,625	516434,938	

Tabela 3: Błąd obliczeniowy dla aproksymacji średniokwadratowej trygonometrycznej dla błędu sumy kwadratów punktów i liczby węzłów 10

Możemy zauważyć, że dla liczby węzłów 10 najmniejsze błędy są dla stopnia wielomianu 1 i wynosi on 22,540 dla błędu maksymalnego punktów oraz 357846,461 dla błędu sumy kwadratów punktów..

Wykres 12: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 10 węzłów i stopnia wielomianu 1

Przykład dla liczby węzłów 200:

n\m	2	3	5	10	14	20	24	30	40	50	60	70	80
200	16,570	13,782	11,811	5,188	7,477	11,097	13,524	17,177	23,180	29,195	35,179	41,146	47,104

Tabela 4: Błąd obliczeniowy dla aproksymacji średniokwadratowej trygonometrycznej dla błędu maksymalnego punktów i liczby węzłów 200

n\m	2	3	5	10	14	20	24	30	40	50	60	70	80
200	58506,8	56158,4	55339,0	1752,95	2447,27	3551,36	4308,30	5467,85	7459,56	9522,98	11657,5	13863,2	16140,45
	25	34	90	6	3	7	7	0	8	6	52	92	0

Tabela 5: Błąd obliczeniowy dla aproksymacji średniokwadratowej trygonometrycznej dla błędu sumy kwadratów punktów i liczby węzłów 200

W przypadku liczby węzłów 200 możemy zauważyć, że najmniejsze błędy są dla stopnia wielomianu 10 i wynosi on 5,188 dla błędu maksymalnego punktów oraz 1752,956 dla błędu sumy kwadratów punktów.

Wykres 13: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 200 węzłów i stopnia wielomianu 10

Przykład dla liczby węzłów 500:

n\m	2	3	5	10	12	14	20	40	60	80	100	150	200	249
500	17,335	14,896	12,392	2,188	2,512	2,895	4,213	9,039	13,848	18,655	23,430	35,310	47,160	58,764

Tabela 6: Błąd obliczeniowy dla aproksymacji średniokwadratowej trygonometrycznej dla błędu maksymalnego punktów i liczby węzłów 500

n\m	2	3	5	10	12	14	20	40	60	80	100	150	200	249
500	58257,	55773,	54675,	324,60	358,55	404,34	567,81	1184,4	1852,4	2565,9	3324,1	5415,6	7787,1	10383,
ļ	612	713	341	0	3	9	7	51	99	01	62	76	36	390

Tabela 5: Błąd obliczeniowy dla aproksymacji średniokwadratowej trygonometrycznej dla błędu sumy kwadratów punktów i liczby węzłów 500

W przypadku liczby węzłów 200 możemy zauważyć z tabel, że najmniejsze błędy są dla stopnia wielomianu równego 10 i wynosi on 2,188 dla błędu maksymalnego punktów oraz 324,600 dla błędu sumy kwadratów punktów.

Wykres 14: Wykres aproksymacji średniokwadratowej trygonometrycznej dla 500 węzłów i stopnia wielomianu 10

Z powyższych tabel oraz wykresów możemy wywnioskować, że dla określonej liczby węzłów i dla zmiennego stopnia wielomianu zwiększanie stopnia wielomianu od pewnego przypadku nie zmniejsza błędu obliczeniowego.

Efekt Rungego

Możemy również zauważyć, że w przypadku aproksymacji średniokwadratowej trygonometrycznej nie występuje efekt Rungego.

Wnioski:

Po przeanalizowaniu różnych przypadków dla aproksymacji trygonometrycznej możemy zauważyć, że wzrost liczby węzłów aproksymacji oraz stopnia wielomianu aproksymacyjnego nie powoduje zwiększenia się błędów obliczeniowych. Ze względów wydajności i dokładności obliczeń należy starać się zminimalizować stopień wielomianu aproksymacyjnego. Możemy również zauważyć, że dla większej liczby węzłów najlepszym stopniem wielomianu jest stopień 10.

Literatura:

- Jacek Złydach (JW2) – Metody Numeryczne – Sprawozdanie IV – Wstęp Teoretyczny