Лекция 7

Динамическое программирование

Динамическое программирование

в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.

Будут рассмотрены задачи

- о путевом графе;
- о рюкзаке;
- о выравнивании последовательностей.

Задача на путевом графе

• G=(V, E). Независимое множество графа G – это подмножество взаимнонесмежных вершин.

Пример:

4 независимых подмножества \emptyset , $\{1\}$, $\{2\}$, $\{3\}$

5 независимых подмножеств Ø, {1}, {2}, {3}, {1,3}

Каждая вершина v_i имеет вес $w_i \geq 0$.

Задача MWIS (Max Weighted Independent Set): найти в гафе G независимое множество с максимальным суммарным весом входящих в него вершин.

Путевой граф (простейший случай)

$$n = |V| = 4, \qquad m = |E| = 3$$

8 независимых множеств: \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{1,3\}$, $\{2,4\}$, $\{1,4\}$ Количество подмножеств растет экспоненциально!!!

- Жадная стратегия выбрать самую тяжелую вершину. Тогда $W_{max} = 5 + 1 = 6$. Не оптимально! Эта жадная стратегия не подходит.
- Рекурсивно делить пополам и потом соединять («Разделяй и властвуй») тоже не подойдет.

Рассмотрим G=(V,E) – путевой граф с ребрами $(v_1,v_2),(v_2,v_3),\dots$, (v_{n-1},v_n) и весами w_i для каждой v_i . Пусть $n\geq 2$.

Пусть уже найдено S – MWIS и W – его вес. Тогда

Случай 1: $v_n \notin S \Rightarrow S$ для G совпадает с S для G_{n-1} и W_n = W_{n-1} ;

Случай 2: $v_n \in S \Rightarrow v_{n-1} \notin S$, S для G совпадает с S для $(G_{n-2} \cup v_n)$ и $W_n = W_{n-2} + w_n$

Лемма 1

(оптимальная подструктура взвешенного независимого мно-

жества). Пусть S равно независимому множеству с максимальным весом (MWIS) путевого графа G с не менее чем 2 вершинами. Пусть G_i обозначает подграф графа G, содержащий его первые і вершин и і — 1 ребер. Тогда S является либо:

- (i) независимым множеством с максимальным весом (MWIS) G_{n-1} , либо
- (ii) независимым множеством с максимальным весом (MWIS) G_{n-2} , дополненным конечной вершиной v_n графа G.

Следствие. (рекуррентное соотношение взвешеннго независимого множества)

C допущениями и обозначением леммы 1 пусть W_i обозначает суммарный вес независимого множества с максимальным весом (MWIS) графа G_i . При i=0 интерпретируем W_i как 0. Тогда

$$W_n = \max \left\{ \underbrace{W_{n-1}}_{Caywaii}, \underbrace{W_{n-2} + w_n}_{Caywaii} \right\}.$$

В более общем случае для каждого i = 2, 3, ..., n

$$W_i = \max\{W_{i-1}, W_{i-2} + w_i\}.$$

Алгоритм нахождения суммарного веса независимого множества максимального веса (восходящая реализация)

ВЗВЕШЕННОЕ НЕЗАВИСИМОЕ МНОЖЕСТВО (WIS)

Вход: путевой граф G с множеством вершин $\{v_1, v_2, ..., v_n\}$ и неотрицательным весом для каждой вершины v_i .

Выход: суммарный вес независимого множества с максимальным весом графа *G*.

```
A:= массив длиной (n+1) // решения подзадач A[0]:=0 // базовый случай #1 A[1]:=w_1 // базовый случай #2 \mathbf{for}\ i=2\ \mathrm{to}\ n\ \mathbf{do} // использовать рекуррентное соотношение // из следствия \mathbf{16.2} A[i]:=\max\{\underbrace{A[i-1]}_{\mathrm{Случай}\ i},\underbrace{A[i-2]+w_i}_{\mathrm{Случай}\ i}\} return A[n] // решение наибольшей подзадачи
```

Используем кеш.

Будем вычислять последовательно W_i , сохраняя результаты в глобальном массиве A.

Алгоритм реконструкции WIS (получение MWIS)

WIS_RECONSTRUCTION

Вход: массив A, вычисленный алгоритмом WIS для путевого графа G с множеством вершин $\{v_1, v_2, ..., v_n\}$, и неотрицательный вес w_i для каждой вершины v_i .

Выход: независимое множество с максимальным весом графа G.

```
S := \emptyset
                                   // вершины в множестве MWIS
i := n
                                                                                                                        4
                                                                   веса
while i \ge 2 do
                                                                                                                                 значения
  if A[i-1] \ge A[i-2] + w_i then // Случай 1 побеждает
                                                                                                                                  W_i
                                                                                                         6
     i := i - 1
                                  // исключить V_i
  else
                                   // Случай 2 побеждает
                                                                    i=0
     S := S \cup \{v_i\}
                                   // включить V_i
     i := i - 2
                                   // исключить V_{i-1}
if i = 1 then
                                   // базовый случай #2
                                                                             Таким образом, S = \{2, 4\}
    S := S \cup \{v_1\}
return S
```

Парадигма динамического программирования

• Определить относительно малую коллекцию подзадач

$$(n+1)$$
 подзадач MWIS для G_i

• Показать, как быстро и правильно решать «более крупные» подзадачи с учетом решения «более мелких»

$$W_n = \max\{W_{i-1}, W_{i-2} + w_i\}$$

• Показать, как быстро и правильно выводить окончательное решение из решений всех подзадач

Сложность:
$$\underbrace{f\left(n\right)}_{\text{# подзадачи}} \times \underbrace{g\left(n\right)}_{\text{время на подзадачу}} + \underbrace{h\left(n\right)}_{\text{постобработка}}.$$

$$W = W_n$$

$$\left. \begin{array}{l}
f(n) = O(n) \\
G(n) = O(1) \\
H(n) = O(n)
\end{array} \right\} \Rightarrow O(n)$$

Задача о рюкзаке

Имеется n предметов.

$$0 \le v_1, v_2, ..., v_n$$
 - стоимости

$$0 \le s_1, s_2, ..., s_n$$
 - размеры

С – емкость рюкзака

Найти
$$S\subseteq\{1,2,\ldots,n\}$$
: $\sum_{i\in S}v_i o max$ при $\sum_{i\in S}s_i\le C$

Пример: задача о рюкзаке с n=4 предметами и $\mathcal{C}=6$

Предмет	Значение	Размер
1	3	4
2	2	3
3	4	2
4	4	3

Каково суммарное значение оптимального решения?

- a) 6
- б) 7
- в) 8
- г) 10

Решение

Пусть уже имеется S – оптимальное решение. $V = \sum_{i \in S} v_i$. Тогда

Случай 1: $n \notin S$. \Rightarrow S — оптимальное решение для задачи с предметами $\{1,2,\dots,n-1\}$ и $V=\sum_{i\in S}v_i$

Случай 2: $n \in S$. $\Rightarrow S - \{n\}$ – оптимальное решение для меньшей подзадачи для емкости $C - s_n$ и $V' = V - v_n$

Лемма. Пусть S равно оптимальному решению задачи о рюкзаке с $n \geq 1$ с v_1, v_2, \dots, v_n - стоимостями, s_1, s_2, \dots, s_n - размерами и емкостью C. Обозначим $V_{i,c}$ — максимальное суммарная стоимость подмножества первых i предметов с размером рюкзака не более c.

При
$$i=0$$
 $V_{i,c}=0$, $\forall i=1,2,...,n$ и $c=0,1,...,C$

$$V_{i,c} = \begin{cases} \underbrace{V_{i-1,\,c}}_{\text{Случай 1}} & \text{если } s_i > c \\ \max{\{V_{i-1,\,c}, \underbrace{V_{i-1,\,c-s_i} + v_i}\}}_{\text{Случай 2}} & \text{если } s_i \leq c. \end{cases} \tag{**}$$

Поскольку и C, и размеры предметов являются целыми числами, остаточная емкость $c - s_i$ во втором случае также является целым числом.

Подзадачи задачи о рюкзаке

Вычислить $V_{i,c}$, суммарное значение оптимального решения задачи о рюкзаке с первыми i элементами и вместимостью рюкзака c.

Алгоритм

KNAPSACK

Вход: значения предметов $v_1, v_2, ..., v_n$, размеры предметов $s_1, s_2, ..., s_n$ и емкость ранца C (все положительные целые числа).

Выход: максимальное суммарное значение подмножества $S \subseteq \{1, 2, ..., n\}$, где $\Sigma_{i \in S} s_i \leq C$.

```
// решения подзадач (проиндексированы от 0) A:=(n+1)\times(C+1) двумерный массив // базовый случай (i=0) for c=0 to C do A[0][c]=0
```

Подзадач: (n+1)(C+1), O(1) — на каждую Имеем сложность $O(n\cdot C)$ Задача квазиполиномиальна.

 $\operatorname{return} A[n][C]$ // решение наибольшей подзадачи

Теорема (свойство рюкзака)

Для каждого экземпляра задачи о рюкзаке алгоритм KNAPSACK возвращает суммарное значение оптимального решения и выполняется за время $O(n \cdot C)$, где n – число предметов, C – емкость рюкзака.

Доказательство: индукция по числу предметов с использованием (**).

Продолжение примера. (C=6). Заполняем по столбцам.

	6	0				
C	5	0				
KOCT	4	0				
eM	3	0	0			
ная	2	0	0			
Остаточная емкость с	1	0	0	0	0	0
Ост	0	0	0	0	0	0
		0	1	2	3	4

префиксная длина і

	6	0	თ			
С	5	0	ന			
Остаточная емкость с	4	0	ന			
eM	3	0	0			
ная	2	0	0	0		
аточ	1	0	0	0	0	0
OCT	0	0	0	0	0	0
		0	1	2	3	4

префиксная длина *і*

						_
	6	0	3	3	7	8
<i>С</i>	5	0	3	3	6	8
KOCT	4	0	3	3	4	4
ewi	3	0	0	2	4	4
Остаточная емкость с	2	0	0	0	4	4
аточ	1	0	0	0	0	0
Ост	0	0	0	0	0	0
•		0	1	2	3	4

Размер

3

Предмет

2

префиксная длина *і*

Реконструкция (элементы множества S)

Предмет	Значение	Размер	
1	3	4	
2	2	3	
3	4	2	
4	4	3	

KNAPSACK_RECONSTRUCTION

Вход: массив A, вычисленный алгоритмом Кпарsack, со значениями предметов $v_1, v_2, ..., v_n$, размерами предметов $s_1, s_2, ..., s_n$ и емкостью ранца C.

Выход: оптимальное решение задачи о ранце.

```
S := \emptyset // предметы в оптимальном решении c := C // остаточная емкость for i = n downto 1 do if s_i \le c and A[i-1][c-s_i] + v_i \ge A[i-1][c] then S := S \cup \{i\} // случай 2 побеждает, включить і c := c - s_i // резервировать для него место // в противном случае пропустить і, емкость остается // прежней return S
```


Выбрали предметы $S=\{3, 4\}$