Цифровая обработка звука

Исполнитель: студент группы 221 факультета КНиИТ В. Д. Карасев

Руководитель НИР: старший преподаватель М. В. Белоконь

Саратовский государственный университет

Саратов, 2024

Удаление артефактов и выравнивание баланса

Удаление шумов и артефактов Использование инструментов шумоподавления и удаления нежелательных звуков для очистки записи.

Выравнивание баланса: Регулировка уровней громкости различных элементов аудиозаписи для достижения сбалансированного звучания.

Восприятие звука и рекомендации по цифровой обработке

Восприятие Звука Понимание того, как человеческое ухо воспринимает различные частоты и динамические диапазоны звука.

Рекомендации по Обработке Применение знаний о восприятии звука для оптимизации цифровой обработки и достижения желаемого звучания.

Характеристики областей звукового диапазона для восприятия

Низкие Частоты: Область от 20 Гц до 300 Гц, отвечающая за глубину и фундамент звука.

Средние Частоты: Область от 300 Гц до 3 кГц, ответственная за разборчивость и присутствие звука.

Высокие Частоты: Область от 3 кГц до 20 кГц, придающая яркость и детализацию звучанию.

Эквалайзер

Определение: Звуковой эквалайзер — это устройство или программный инструмент, который позволяет изменять уровни (громкость) различных частотных диапазонов звука.

Цели: Эквалайзер используется для коррекции тональности, устранения проблемных частот и улучшения общего звучания.

Принцип Работы: Эквалайзер разделяет аудиосигнал на отдельные частотные полосы, которыми можно управлять независимо.

Обработка голоса

Рекомендации: Использование эквалайзера для улучшения разборчивости и устранения проблемных частот в голосе.

Диапазоны Голоса: Мужские голоса обычно находятся в диапазоне 85-180 Гц, женские - 165-255 Гц.

Сжатие Цифрового Звука

Форматы: Использование форматов сжатия, таких как MP3, WAV и FLAC, для оптимизации размера файлов.

Качество: Нахождение баланса между качеством звука и размером файла при выборе параметров сжатия.

Битрейт: Более высокий битрейт обеспечивает лучшее качество, но и больший размер файла.

Заключение

Цифровая обработка звука - это мощный инструмент для достижения профессионального и полноценного звучания. Применяя техники очистки, обработки голоса и управления частотным диапазоном, мы можем создавать высококачественные аудиозаписи.

Список использованных источников

- Опенгейм А. В., Шафер Р. В. Цифровая обработка сигналов.
 Мир, 1979.
- Дмитриев В. А. Цифровая обработка сигналов: Учебное пособие. Лаборатория знаний, 2013.
- Мюллер M. Fundamentals of Music Processing: Audio, Analysis, Algorithms, Applications. Springer, 2015.
- Рэбинар Л., Голд Б. Теория и применение цифровой обработки сигналов. Мир, 1978.

Спасибо за внимание!