8005 Qual Problems

Defn A/B is normal iff every lift of idB is an A-automorphism.

Suppose K/F is normal, then if $\sigma \in Gal(E/F)$, then $\sigma|_{F} = id_{F}$, so σ is a lift of id_{F} and thus $\sigma(K) = K$. But by the fundamental theorem of Galois theory, we have

$$K \longleftrightarrow Gal(E/K)$$

$$\sigma(K) \longleftrightarrow \tau Gal(E/K) \tau^{-1} \text{ for some } \tau \in Gal(E/F)$$

So if
$$\sigma(K)=K$$
 for every σ , then $\Upsilon Gal(E/K) \Upsilon^{-1}=Gal(E/K)$
 $\forall \Upsilon \in Gal(E/F)$, so $Gal(E/K) \triangleq Gal(E/F)$

← : Running this argument backwards shows

⇒ Every lift of id is a K-automorphism

 \Rightarrow K/F is normal.

So writing $D_4 = \langle \tau, \gamma | \sigma^4 = \gamma^2 = e$, $\tau \sigma \tau' = \sigma^{-1} \rangle$ we can take $H_1 = \langle \sigma^2, \gamma \rangle = \langle e, \gamma, \sigma^2, \gamma \sigma^2 \rangle$, then $[D_4: H_1] = 2$ so $H_1 \triangleq D_4$. We can then take $H_2 = \langle \gamma \rangle = \langle e, \gamma \rangle \leq H_1$. We have $H_1 \not\triangleq D_4$, since e.g. if we write $\sigma = (1234), \gamma = (24) \in S_n$, $\sigma \tau \sigma^{-1} = (13) \not\in \langle \gamma \rangle$.

But H, 4 H2, since H, = {e, 7, 02, 70}={(), (24), (13)(24), (13)}, while

$$\cdot \Upsilon \Upsilon \Upsilon^{-1} = \Upsilon \in H_1$$

$$\cdot \gamma \sigma^2 \gamma (\gamma \sigma^2)^{-1} = (13)(24)(13) = (24) = \gamma \in H_1$$

So hH2h = H2 WheH, and thus H2 = H1. So taking

$$H_1 = \langle \sigma^2, \gamma \rangle$$

$$H_2 = \langle \Upsilon \rangle$$

suffices.

9 If $f(x)=x^3-7$, the splitting field of f is $\mathcal{Q}(7^3, \zeta_3)$ where $\zeta_3=e^{2\pi i/3}$.

1) Since $\min(7^{\frac{1}{3}}, \Omega) = x^3 - 7$, $\min(z_3, \Omega(7^{\frac{1}{3}})) = \frac{x^3 - 1}{x - 1} = x^2 + x + 1$, we have $[\Omega(7^{\frac{1}{3}}, z_3)] = 0$.

Since $Q(7^3, Z_3)$ is a splitting field, and separable since char Q = 0. Thus $|Gal(Q(7^3, Z_3)/Q)| = 6$ as well, so $|Gal(Q(7^3, Z_3)) \cong \mathbb{Z}_6$ or S_3 . Since $Q(7^3)/Q$ is not a normal extension, the galois group can not be abelian, so $|Gal(Q(7^3, Z_3)/Q) \cong S_3$.

We have the correspondence $\sigma = \begin{cases} 7^{1/3} \mapsto 7_{3}^{1/3} \\ 7_{3} \mapsto 7_{3} \end{cases}$, $\tau = \begin{cases} 7^{1/3} \mapsto 7^{1/3} \\ 7_{3} \mapsto 7_{3}^{1/3} \end{cases}$ we have $7(123) \in S_n$

Noting that A3 = S3 is the only normal subgroup, the green extensions are not galois over Q.

- 2) Since $7^{V_3} \in \mathbb{R}$, $L = \mathcal{D}(\zeta_3) \Rightarrow |Gal(\mathcal{D}(\zeta_3)/\mathcal{D})| = \deg \min(\zeta_3, \mathbb{R}) = 2 \Rightarrow |Gal(\mathcal{D}(\zeta_3)/\mathbb{R}) \cong \mathbb{Z}_2$ generated by $\gamma = \{\zeta_3 \mapsto \overline{\zeta_3} = \zeta_3^2\}$.
 - 3) Since f(x) is irreducible over \mathbb{Z} , it is irreducible over \mathbb{F}_p for all p. So the splitting field is $\mathbb{F}_{13}(7^{13}, \mathbb{Z}_3) := \mathbb{F}_{13}[x]$ which is a finite extension & separable since \mathbb{F}_{13} is a finite field, and is thus separable. So the galois group is order 6, and by the same argument used in (1), $\mathbb{G}_{al}(\mathbb{F}_{3}(7^{13},\mathbb{Z}_{3})/\mathbb{F}_{13}) \cong \mathbb{S}_{3}$.