Lecture 12: Artificial Neural Networks (Mitchell Chapter 4)

CS 167: Machine Learning

Reminder: Perceptron Unit

$$o(x_1,\ldots,x_n) = \begin{cases} 1 & \text{if } w_0 + w_1x_1 + \cdots + w_nx_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Sometimes we'll use simpler vector notation:

$$o(\vec{x}) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x} > 0 \\ -1 & \text{otherwise.} \end{cases}$$

Extra Credit Opportunity

Prof. Tianbao Yang, University of Iowa

Deep Learning with Big and Small Data

Deep learning has brought tremendous success in many areas with the help of big data and super computing. In this talk, I will present the state of art results of deep learning for image classification. I will also talk about our recent research on how to learn a deep convolutional neural network for fine-grained image classification where big labeled data is difficult to be obtained.

Friday, October 21, in Meredith 106 at 2:00pm.

Earn 3 extra credit (homework) points for

- attend the talk
- write up a paragraph on something you learned

CS 167: Machine Learning L12: ANN 2 / 15

Multilayer Networks

input layer \rightarrow hidden layer \rightarrow output layer

CS 167: Machine Learning L12: ANN 3 / 15 CS 167: Machine Learning L12: ANN 4 / 15

Expressiveness of Multilayer Networks

Single perceptron decision surface

2 opposite thresholds: ridge

2 opposite ridges: bump

CS 167: Machine Learning

L12: ANN

5 / 15

Multilayer Perceptron Classification Example

Classify the following four examples (on two attributes A_1 and A_2) using the given multilayer perceptron artificial neural network.

example #	A_1	A_2
1	3	5
2	2	7
3	1	1
4	2	3

Exercise: Do examples 2-4.

CS 167: Machine Learning L12: ANN 6 / 15

Sigmoid Unit

 $\sigma(x)$ is the sigmoid function

$$\frac{1}{1+e^{-x}}$$

Nice property: $\frac{d\sigma(x)}{dx} = \sigma(x)(1 - \sigma(x))$

We can derive gradient decent rules to train

- One sigmoid unit
- \bullet *Multilayer networks* of sigmoid units \to Backpropagation
- Read textbook for derivation of training rule

Backpropagation Algorithm

Initialize all weights to small random numbers.

Until satisfied, Do

- For each training example, Do
 - ① Input the training example to the network and compute the network outputs $(o_u \text{ for unit } u)$
 - 2 For each output unit k

$$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$$

For each hidden unit h

$$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$$

Update each network weight w_{i,j}

$$w_{i,j} \leftarrow w_{i,j} + \Delta w_{i,j}$$

where

$$\Delta w_{i,j} = \eta \delta_j x_{i,j}$$

CS 167: Machine Learning L12: ANN 7 / 15 CS 167: Machine Learning L12: ANN 8 / 15

Backpropagation of the error

The error function in the Perceptron/SGD training rule was $(t_k - o_k)$:

$$w_i \leftarrow w_i + \Delta w_i$$

$$\Delta w_i = \eta(t - o)x_i$$

The Backpropagation training rule is more complex: $o_k(1-o_k)(t_k-o_k)$

Why? $o_k(1-o_k)$ is the derivative of the sigmoid squashing function, important for deriving the training rule.

Both rules scale based on the learning rate, η and the input value x_{ij}

For hidden units, the error at the output unit is divided up among the units feeding into it based on their weight - how much each is responsible for the error at the output unit

CS 167: Machine Learning L12: ANN 9 / 15

Expressive Capabilities of ANNs

Boolean functions:

- Every boolean function can be represented by network with single hidden layer
- but might require exponential (in number of inputs) hidden units

Continuous functions:

- Every bounded continuous function can be approximated with arbitrarily small error, by network with one hidden layer
- Any function can be approximated to arbitrary accuracy by a network with two hidden layers

Discussion Questions

How many times do you do each training example?

What should η be? Can/should it change during training?

How long does training take?

How long does it take to classify a new example?

Can we get unlucky with initial random weights?

Can we do regression?

CS 167: Machine Learning L12: ANN 10 / 15

Overfitting in ANNs

CS 167: Machine Learning L12: ANN 11 / 15 CS 167: Machine Learning L12: ANN 12 / 15

Recurrent Networks

(a) Feedforward network

(b) Recurrent network

L12: ANN 13 / 15

unfolded in time

It seems that there's a lot of good stuff in scikit-learn 0.18, so let's update it if you haven't already: 1 In Anaconda Navigator, select *Environments* on the left-hand side

- 2 Click the *Update Index* button across the top of the window

Let's update your version of scikit-learn

- 3 Scroll to find scikit-learn in the list of packages (or search for it)
- 4 Look under the version column, hopefully it's blue with an up-right arrow. That mean an upgrade is available.
- 6 If so, right/crtl-click the package and select mark for update.
- 6 Click the Apply button near the bottom right of the window.

Exercise

CS 167: Machine Learning

Determine the answer to these questions:

- Does scikit-learn have a neural network for either classification or regression?
- If so, what is the default network structure it uses (how many layers?, how many nodes in each layer?)? How can I change it?
- If so, does it use the sigmoid squashing (activation) function? If not, can I set it to use it?
- If so, what is the default learning rate and number of epochs? How can you change them?

Exercises:

- What's the smallest network that performs well on the Iris data?
- Can you make an ANN that beats the SGDRegressor performance on the MPG data?

CS 167: Machine Learning L12: ANN 14 / 15

CS 167: Machine Learning L12: ANN 15 / 15