1. Let U be a set and let \mathcal{F}_1 and \mathcal{F}_2 be nonempty families of subsets of U such that $\mathcal{F}_1 \subseteq \mathcal{F}_2$. Show (=prove) that the following inclusions hold:

(a)
$$\bigcup \mathcal{F}_1 \subseteq \bigcup \mathcal{F}_2$$

(b)
$$\bigcap \mathcal{F}_2 \subseteq \bigcap \mathcal{F}_1$$

Solution. (a) Let $x \in \bigcup \mathcal{F}_1$. This means that there is $A \in \mathcal{F}_1$ such that $x \in A$. Because $\mathcal{F}_1 \subseteq \mathcal{F}_2$, there exists $A \in \mathcal{F}_2$ such that $x \in A$. Therefore, $x \in \bigcup \mathcal{F}_2$ and the claim is proved.

- (b) We prove $(\bigcap \mathcal{F}_1)^c \subseteq (\bigcap \mathcal{F}_2)^c$. This is equivalent to the original claim, but is easier to prove. As it is written is the lecture notes: " $A \subseteq B$ can be sometimes shown easier by showing that $B^c \subseteq A^c$ ". Assume that $x \in (\bigcap \mathcal{F}_1)^c$. This means that $x \notin \bigcap \mathcal{F}_1$. So, there is $A \in \mathcal{F}_1$ such that $x \notin A$. Since $\mathcal{F}_1 \subseteq \mathcal{F}_2$, there is $A \in \mathcal{F}_2$ such that $x \notin A$. Therefore, $x \notin \bigcap \mathcal{F}_1$ and $x \in (\bigcap \mathcal{F}_2)^c$. The claim is proved.
- **2.** Let U be a set and let $\emptyset \neq \mathcal{F} \subseteq \wp(U)$ be a nonempty family of subsets of U. Prove the following equalities:

(a)
$$(\bigcap \mathcal{F})^c = \bigcup \{A^c \mid A \in \mathcal{F}\}\$$

(b) $(\bigcup \mathcal{F})^c = \bigcap \{A^c \mid A \in \mathcal{F}\}\$

(b)
$$(\bigcup \mathcal{F})^c = \bigcap \{A^c \mid A \in \mathcal{F}\}\$$

Recall that the complement of any $X \subseteq U$ is defined by $X^c = U \setminus X$.

Solution. Let $x \in U$.

$$x \in \left(\bigcap \mathcal{F}\right)^c \iff x \notin \bigcap \mathcal{F} \iff (\exists A \in \mathcal{F}) \, x \notin A \iff (\exists A \in \mathcal{F}) x \in A^c \iff x \in \bigcup \{A^c \mid A \in \mathcal{F}\}.$$

This proves (a). Case (b) is rather similar:

$$x \in \left(\bigcup \mathcal{F}\right)^c \iff x \notin \bigcup \mathcal{F} \iff (\forall A \in \mathcal{F}) \, x \notin A \iff (\forall A \in \mathcal{F}) x \in A^c \iff x \in \bigcap \{A^c \mid A \in \mathcal{F}\}.$$

3. The courses taken by John, Mary, Paul, and Sally are listed below:

John: MATH 211, CSIT 121, MATH 220 Mary: MATH 230, CSIT 121, MATH 212 Paul: CSIT 120, MATH 230, MATH 220

Sally: MATH 211, CSIT 120

Give a graphical representation of the relation R defined as a R b if student a is taking course b. Solution.

4. Write the set of ordered pairs for the relation represented by the following directed graph:

Solution.

$$\{(1,3),(2,1),(2,4),(2,5),(3,2),(4,2),(5,5)\}$$

5. Let R be a binary relation on the set $\wp(\{a,b\})$ defined so that $(A,B) \in R$ holds if $A \cap B = \emptyset$. Write out the relation R.

Solution.

$$R = \{(\emptyset, \emptyset), (\emptyset, \{a\}), (\emptyset, \{b\}), (\emptyset, \{a, b\}), (\{a\}, \emptyset), (\{b\}, \emptyset), (\{a, b\}, \emptyset), (\{a\}, \{b\}), (\{b\}, \{a\})\}\}$$

6. Let A, B, C be sets. Prove the following equalities:

(a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

Solution. We show that the elements in left-hand side are the same as the elements in the right-hand side.

$$(a,b) \in A \times (B \cap C) \iff a \in A \text{ and } b \in (B \cap C) \iff a \in A \text{ and } (b \in B \text{ and } b \in C)$$

 $\iff (a \in A \text{ and } b \in B) \text{ and } (a \in A \text{ and } b \in C) \iff (a,b) \in A \times B \text{ and } (a,b) \in A \times C$
 $\iff (a,b) \in (A \times B) \cap (A \times C).$

This proves (a). The proof for (b) is similar:

$$(a,b) \in A \times (B \cup C) \iff a \in A \text{ and } b \in (B \cup C) \iff a \in A \text{ and } (b \in B \text{ or } b \in C)$$

 $\iff (a \in A \text{ and } b \in B) \text{ or } (a \in A \text{ and } b \in C) \iff (a,b) \in A \times B \text{ or } (a,b) \in A \times C$
 $\iff (a,b) \in (A \times B) \cup (A \times C).$