Flaschenzugmodell in OpenModelica

Gruppe 2

Ziele

Simulationsfähiges variables Flaschenzugmodell Aufgebaut in Open Modelica Verwendung von eigenen bidirektionalen Konnektoren Erstellen einer geeigneten Visualsierug

Anforderungen an das Modell

Variable Anzahl an Rollen Variable Last **Einphasiger Motor** Drehrichtung Motor frei wählbar

Highlights

Seilaufwickelfunktion Sensorsteuerung zur Endlagenerkennung der Flaschen Vielseitge Biblothek mit zwei verschiedenen Seilzugrichtungen

Modelle

Spannungsquelle

- Kontinuierlicher Spannungsverlauf
- Diskontinuierlicher Spannungsverlauf

Motor

- Einphasiger permanent erregter Gleichstrommotorer
- Umwandlung von elektrischer in mechanische Energie
- Hoher Freiheitsgrad der Parametrierung

Getriebe

- Zweistufige Übersetzung
- Frei einstellbares Übersetzungsverhältnis

Bremse

- **Erzeugung eines Bremsmoments**
- Automatische Sicherung der Last bei Spannungsfreiheit
- Variable Auswahlmöglichkeit der Bremskonstante

Seilwinde

- Anpassen des Windendurchmessers ab der zweiten Seillage
- Bidirektionale Umwandlung von Moment und Kraft

Flaschenzug

- Freie Wahl der Anzahl der Rollen
- Endlagenerkennung der Flaschen

Masse

- Frei einstellbare Masse
- Auf- und Abwärtsbewegung

Decke

- Fester Ankerpunkt des Flaschenzugs

Ports mit den dazugehörigen Größen

Port	Flussgröße	Potenzialgröße
Moment	Moment M in Nm	Winkelgeschwindigkeit w in rad/s
F_s Kraft	Kraft F in N	Länge s in m
💴 Spannung	Strom I in A	Spannung U in V
Bool In	Boolsche Variable mit Wert 0 oder 1	
Bool Out	Boolsche Variable mit Wert 0 oder 1	

Veranschauchlichung verschiedene Wegfunktionen 6 **Boolsche Variable** 5 **E** 4 **Meg in** 2 0 12 14 16 10 Zeit in Sekunden

- Weg Heben-Halten Funktion
- Bremse aktiv (=1) Heben-Halten Funktion
- Weg Heben-Halten-Senken Funktion •
- Bremse aktiv (=1) Heben-Halten-Senken Funktion

verschiedenen Rolleanzahlen 600 6000 ⁵⁰⁰⁰ **≥** 500 **Kraft in N** 300 200 4000 .⊑ 3000 **E**

Benötigte Kraft bei 4 Rollen

100

Benötigte Motorleistung bei 2 Rollen

8

9

2000 5

1000

10

- Benötigte Kraft bei 2 Rollen Benötigte Motorleistung bei 4 Rollen

Veranschauchlichung **Aufwickelfunktion**

- Windenmoment ohne Anpassung des Windendurchmesser
- Windenmoment mit Anpassung des Windendurchmesser
- Motorstrom ohne Anpassung des Windendurchmessers
- Motorstrom mit Anpassung des Windendurchmessers
- Beginn zweite Seillage auf Seilwinde: Durchmesser wird linear größer
- Drehmoment und Motorstrom steigen, da Windendurchmesser größer wird
- Konstanter und approximierter Anstieg der beiden Parameter