TITLE PAGE

Class	:	BE – 8
Roll. No		42428
Assignment No.		В. 1а
Assignment Name	:	CMOS Inverter and Analysis
Date Of Performance	:	03-11-2020 & 21-11-2020

Theory:

Iruth Table		
VIN	Vout = VIN	
0	STRONG-1	
1	STRONG-0	

	0/p	Value of Vout (Y)
0	STRONG-1	+VDD
(۲	WEAK-1	<+ VDD
3)	STRONG-0	-Vss (0)
4)	WEAK-0	>0

5chematics

$$P = \frac{W_P}{L_P} = \left(\frac{500}{100}\right) \text{nm} = 5$$

$$N = \frac{W_N}{L_N} = \left(\frac{500}{100}\right) \text{nm} = 5$$

$$\frac{P}{D} = 1$$

Nominal values-

$$C_{L} = 0.01 \text{ pF}$$
 $f = 2.5 \text{ GHz}$
 $C_{L}' = 0.005 \text{ pF}$
 $C_{L}'' = 0.02 \text{ pF}$
 $f' = 1.25 \text{ GHz}$
 $f'' = 5 \text{ GHz}$

$$P = \frac{W_P}{L_P} = \left(\frac{1000}{200}\right) nm = 5$$

$$n = \frac{W_n}{L_n} = \left(\frac{1000}{200}\right) nm = 5$$

$$\frac{P}{n} = 1$$

Nominal Values

LAYOUT

a) CMOS Inverter with 90 nm Foundry

Waveforms

a) Vin, Vout

b) Vout, lout Current F Show Idd F Show Iss Available I I(N1 10 x 2. Scale I | Iog Evaluate | min/max/av | Frequency | Yout | | In | FFT | In | | In | Step(ps) | O100 **Print** P=6.1144/W Close More More Reset iddwr=0.212mA | Iddwr=0.005mA | Iddwr=0.005mA | Iddwr=0.107 | Iddwr=0.541mA | Vdd=1.21.20 Vout Vin 0.200ns 5.016— 0.7 0.200ns 5.01G— 9.0 0.199ns 5.026— Voltage vs. time λ Voltages and currents λ Voltage vs. voltage λ Frequency vs. time λ Eye diagram λ Analog simulation of D:\Study\Practical Work\4th year\VLS\\Part B\cmos_inv_90nm.MSK 0.198ns - 5.04G— 0.162ns 6.16G— 1.00 (mA) Iss in green Idd in red (Volt) 1.20 09.0 0.40 0.20 9 0.80 0.00.0 0.20 0.80 09.0 0.40

f) $f_{clk} = 2.5 \text{ GHz}$, $C_L = 0.005 \text{ pF}$, $V_{DD} = 1.2 \text{ V}$

PERFORMANCE ANALYSIS

CL (PF)	Payn(UW)
0.005	20.759
0.01	38.025
0.02	71.913

fork (GHZ)	Payn (MW)
1.25	21.279
2.5	38.025
5	65.701

Y44 (Y)	Payn (MW)
1.2	38.035
2	108

$$\frac{P_{dyn2}}{P_{dyn1}} = \left[\frac{V_{dd2}}{V_{dd1}}\right]^2 = \left[\frac{2}{1.2}\right]^2 = 2.78$$

Conclusion:

Thus we have:

- 1) Drawn the LAYOUT for CMOS Inverter using 90 nm & 180 nm Foundry.
- 2) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 3) Noted the values of P_{dynamic} for floating Load.
- 4) Appreciated the validity of the mathematical model : $P_{dyynamic} = C_L * (Vdd)^2 * f_{clk}$; by Doubling & Halving the values of $C_L \& f_{clk}$
- 5) Found a reduction in P_{dynamic} by using a better Foundry i.e. 90 nm instead of 180 nm.
- 6) Learnt that the presence of spikes in O/P waveform at Switching instants indicate the inability of the MOSFETs to switch at GHz frequencies.
- 7) Learnt that the using a better Foundry enables the MOSFETs the inability of the MOSFETS to switch at Higher GHz frequencies, as proved by the removal of Spikes at the O/P.