Introduction to transformers

Peyman Tahghighi

Learning objectives

Why do we need an attention mechanism?

How does attention work?

• What are encoders and decoders in transformers?

• Vision transformers.

Recurrent Neural Networks

Output vector

$$\hat{y}_t = W_{hy}^T h_t$$

Hidden state update

$$h_t = \tanh(W_{hh}^T h_{t-1} + W_{xh}^T x_t)$$

Recurrent Neural Networks

Many values > 1: Exploding gradients Many values < 1: Vanishing gradients

Recurrent Neural Networks

I grew up in France.... And I speak fluent....

Goal of Sequence Modeling

Limitations of RNN:

- Weak Long- Term Memory.
- Vanishing/Exploding Gradients.
- Not easy to parallelize.

Goal of Sequence Modeling

Feed Everything in a dense network:

No Recurrence

 x_0

- Not scalable
- No order

Attention, the core of transformers

- 1. Identify which parts to attend to
- 2. Extract the features with higher attention

What is attention?

similar each key is to the

query?

2.Extract values based on attention: Return a combination of values according to the mask.

Self-attention

1- Encode positional information

Self-attention

1- Encode positional information

2-Extract **Key**, **Query** and **Value**

Self-attention

1- Encode positional information

2-Extract Key, Query and Value

3-Compute attention weights

4-Extract features with high attention

Recap

1- Encode positional information

2-Extract **Key**, **Query** and **Value**

3-Compute attention weights

4-Extract features with high attention

Multiheaded attention

Multiple parallel attention computation

Helps with extracting diverse features

Encoder bigger picture

x + atten(x) is important for:

- Gradient flow
- Preserving information

Decoder bigger picture

Transformers

Q -> Input

K, V -> Conditional information

Transformers Decoder

Vision transformers

Vision transformers

Summary

How attention mechanism solve challenges of RNNs.

 What are key, query and value mean in attention and how to calculate attention masks.

• Encoder and decoder.

• Vision transformers.

Useful resources

- https://www.youtube.com/watch?v=ySEx Bqxvvo&ab channel=Alexa nderAmini
- https://www.youtube.com/watch?v=kCc8FmEb1nY&pp=ygUIa2FycGF 0aHk%3D
- https://www.youtube.com/watch?v=OyFJWRnt AY&t=3634s&pp=ygU
 OcGFzY2FsIHBvdXBhcnQ%3D