MR COMPATIBLE WRIST LOADING DEVICE

JOINT EFFORT

KELLY HAO, MICHAEL BEALS, CATHERINE TSANG

4B MECHANICAL ENGINEERING

FACULTY ADVISOR: PROFESSOR STEWART MCLACHLIN

UNIVERSITY OF WATERLOO

March 31, 2021

THE TEAM

Kelly Hao (and Milo)

Catherine Tsang

AGENDA

Motivation/Introduction

Design

Manufacturing

Verification

Recommendations

Project Management

Future Plans

Q&A

MOTIVATION

MOTIVATION

BACKGROUND

BORE

MRI

Accessory coil for limbs

BACKGROUND

Weight-bearing MRI (axial loading)

- Reproduce loading due to gravity
- Proven on spine and knee
- Potential to detect pathology of degenerative diseases
 - Osteoarthritis (OA)

Imaging of Spine (non-weight bearing)

Imaging of Spine (weight-bearing)

NEEDS STATEMENT

There is a need to detect wrist degenerative diseases earlier.

OBJECTIVE

The objective of this project is to design an MR-compatible wrist loading device that can fit within a typical accessory coil for high quality imaging results

Accessory Coil by ScanMed

FUNCTIONAL REQUIREMENTS

- Bilateral design
- Limit wrist & forearm range of motion
- Compressive wrist loading (2-5 lbs)

NON-FUNCTIONAL REQUIREMENTS

- Adjustable sizing
 - Healthy adults (15 59 y/o)
 - 5% 95% percentile males and females
- Comfort
 - No significant pain after 15 minutes with device on

CONSTRAINTS

- Total MRI scan time < 45 min
- MR compatible materials < non-ferromagnetic
- Device size arm < device < accessory coil
- Medical grade materials

QUESTIONS SO FAR?

AGENDA

Motivation/Introduction

Design

Manufacturing

Verification

Recommendations

Project Management

Future Plans

ENVIRONMENT & EQUIPMENT

▶ Set up

- 1. Patient lies on MRI bed, face down
- 2. Patient wears our MRI device
- 3. Patient's arm with MRI device enters the MRI accessory coil (superior imaging)
- 4. MRI technologist applies appropriate padding for comfort
- 5. Patient enters MRI bore for scanning

▶ Functional Requirements

- Bilateral design
- Variable sizing (healthy adults circumferential upper extremity size)
- ► Apply compressive load to wrist
- ▶ MRI compatible

▶ Key Constraints

 Internal and external dimensions of device size

OVERVIEW OF DESIGN

- ► Removable piece
 - ► Enables bilaterality

KEY DESIGN FEATURES

- ▶ J-Hooks
 - ► Attachment point for resistance band
- ▶ Puzzle Joint
 - Restrain movement in all directions
- ► Angle at Elbow
 - Reactionary backing force for resistance band

ACCESSORY COIL

- Contact with ScanMed (medical equipment manufacturer)
- Wrist/elbow coil dimensions too small.
 - 4" ID does not fit most people!
- Knee coil dimensions.
 - 7" ID fits!

Q: Is there a solution within our design space?

Figure 8-1: Side profile view of device

Figure 8-2: Top view of device

Q: Is there a solution within our design space?

Figure 8-1: Side profile view of device

External forces on arm

Internal forces + torques

Coil boundary

Values change with arm size

Constraints:

$$10^{\circ} < \theta < 30^{\circ}$$

$$M_{wrist} < 2 Nm$$

$$2 lbs < F_{arm} < 5 lbs$$

Work for 5% female, 95% male

Q: Is there a solution within our design space?

Figure 8-1: Side profile view of device

External forces on arm

Internal forces + torques

Coil boundary

Values change with arm size

Constraints:

$$10^{\circ} < \theta < 30^{\circ}$$

$$M_{wrist} < 2 Nm$$

$$2 lbs < F_{arm} < 5 lbs$$

Work for 5% female, 95% male

Q: Is there a solution within our design space?

Figure 8-1: Side profile view of device

External forces on arm

Internal forces + torques

Coil boundary

Values change with arm size

Constraints:

$$10^{\circ} < \theta < 30^{\circ}$$

$$M_{wrist} < 2 Nm$$

$$2 lbs < F_{arm} < 5 lbs$$

Work for 5% female, 95% male

Lay out design space + constraints

Q: Is there a solution within our design space?

System of Equations

Visualize solution space using contour plots

A: Yes, there exist solutions for both 5% female and 95% male, using different values of F_{band}

SAFETY, SUSTAINABILITY, REGULATION

SAFETY

- Hypoallergenic materials
- Patient comfort
- Designed to avoid pinch points, sharp edges, etc.

SUSTAINABILITY

- Device is at least 75%
 recyclable by mass
- Iterative prototype made from wood (MDF)

REGULATION

- Class 1 Medical Device
 - marketability
- Medical grade materials
 - USP Class VI/ISO 10993-1
 - Standards for plastic healthcare devices in contact with human body

AGENDA

Motivation/Introduction

Design

Manufacturing

Verification

Recommendations

Project Management

Future Plans

Design

- Stiff member material: Polypropylene
 - Common plastic used in MR equipment
 - X Not ideal for prototyping

Prototyping

- Stiff member material: MDF
 - Free source
 - **Rigid**
 - Z Easy to work with

Polypropylene MR Cart

MDF

Stiff Member

- Cut shape out of MDF
- CNC Routing for puzzle joint

Additional Layers

- Polyurethane foam for comfort
- Velcro + arm straps for attachment
- 3D printed hooks and bar

J Hooks Cushioning Foam Velcro

Resistance Band

Straps

Handle

Final Prototype

AGENDA

Motivation/Introduction

Design

Manufacturing

Verification

Recommendations

Project Management

Future Plans

VERIFICATION

- Modified to not overload the one member with the physical prototype
- Previously: 11 verification tests, some requiring 41 volunteers each
- Key verifications:
 - Variable sizing: fit 5th percentile female, 95th percentile male
 - Size constraint: fit within accessory coil
 - Force applied: within 2-5 lbs
 - Comfort: can be worn for 15 minutes loaded without pain

VERIFICATION: VARIABLE SIZING

Requirement: Device must fit 5th percentile female to 95th percentile male

Approach: Create dummy limbs with appropriate anatomical sizing, check fit within device

Result: Both sizes fit within device as intended

VERIFICATION: SIZE CONSTRAINT

Requirement: Device must fit within typical accessory coil

Approach: Create dummy coil with dimensions provided by ScanMed, make sure device fits with 95th percentile male arm

Result: Device fits within coil with the largest arm

VERIFICATION: FORCE APPLIED

Requirement: Device must apply between 2-5 lbs of force

Approach: Calculate band stiffness, k, using dead weight test. Calculate Δx for smallest and largest arms. Using $F_{elastic} = k\Delta x$, calculate force. Ensure range is within 2-5 lbs

Result: Device applies 2.3 lbs to smallest arm, 4.5 lbs to largest arm

Future Refinement: Use force gauge for better accuracy

VERIFICATION: COMFORT

Requirement: Can be worn for 15 minutes without pain (time recommended by research expert)

Approach: Load volunteer (me) into device in correct position. Hold position for 15 minutes. Record and rate any discomforts

Result: Slight numbness (arm fell asleep), but no pain

Future Refinement: More volunteers (avoid designer bias)

AGENDA

Motivation/Introduction

Design

Manufacturing

Verification

Recommendations

Project Management

Future Plans

RECOMMENDATIONS TO IMPROVE DEVICE

Design improvements

- Ensure consistency of wrist position in between scans
- Reconsider arm position to have accessory coil in line with MR coil
- Develop simple table that tells MR technologist force based on wrist position and band being used
- Replace wrist strap with a slot design to avoid any resistance in X direction

Verifications (post-COVID)

- Clinical testing with MRI equipment
- Greater volunteer sample size

MDR FEEDBACK

Concern/Comment	Our actions
The introduction and need for the device was not clearly presented	Rewrote introduction. Dedicated slides to background, needs statement, & objective
Force Analysis explanation could use refinement	Rewrote force analysis section, focused on key takeaways
Is there a way to measure force on the fly?	Not with the current design, but We have brainstormed a potential solution (lookup table)
Does the arm coil need to be parallel to the MR bore?	While it's not necessary, it could affect image quality. This is a desired refinement for future designs
What is the rationale for a puzzle joint?	Previous design required a locking pin. Puzzle joint removes need for locking pin easy to work with
Application of ScanMed	Prevalence of knee coils over wrist coils were confirmed.

Table MDR Feedback

MDR FEEDBACK

Concern/Comment	Our actions
The introduction and need for the device was not clearly presented	Rewrote introduction. Dedicated slides to background, needs statement, & objective
Force Analysis explanation could use refinement	Rewrote force analysis section, focused on key takeaways
Is there a way to measure force on the fly?	Not with the current design, but We have brainstormed a potential solution (lookup table)
Does the arm coil need to be parallel to the MR bore?	While it's not necessary, it could affect image quality. This is a desired refinement for future designs
What is the rationale for a puzzle joint?	Previous design required a locking pin. Puzzle joint removes need for locking pin easy to work with
Application of ScanMed	Prevalence of knee coils over wrist coils were confirmed.

Table MDR Feedback

AGENDA

Motivation/Introduction

Design

Manufacturing

Verification

Recommendations

Project Management

Future Plans

Q&A

EXPENSES

Table 1: Expense Breakdown

No.	Category	(\$) MDR	(\$) FDR
1	Materials	\$70	
2	Shipping	\$21	
3	Equipment	\$96	\$133
4	Manufacturing Services	\$o	
	Budget	\$375	
	Expenses	\$237	\$2 74
	Budget Remaining	\$138	\$101

RISKS ENCOUNTERED

- Finding volunteers to perform validation tests !!!
 - Problem: COVID19 guidelines prevented us from running trials on volunteers
 - Solution: Adjusted verification plan to focus on key requirements for 1 member

Validating CAD Design !!

- Problem: CAD measurements were sized too small for arms after manufacturing
 - Change CAD dimensions, iterate
- Solution:
 - Proactively budgeted extra time for manufacturing
 - Opted for quick prototyping methods (MDF, cardboard, personal 3D printer)

Remote collaboration!

- Problem: Remotely collaborating in 2 different time zones, 3 different cities
- Solution: Proactively setup: Teams, OneDrive, OneNote, PowerPoint, Excel & GrabCAD

WORK BREAKDOWN

* Total Hours:

198

* Avg. hours spent/ member:

66

Estimated hours left:

45

Work distribution by task per member

Timeline (thus far)

IDR MDR FDR DPR

- Improve design
- Source all parts
- Manufacture first prototype
- Iterative redesign
- Prepare verification plan

- Finish final prototype
- Complete verifications
- Work on FDR and DPR

FinishSymposiumVideo

SYMPOSIUM

Complete Design Project Report (DPR)

Timeline: Next Steps

Figure: Gantt chart section of FDR to last deliverable

AGENDA

Motivation/Introduction

Design

Manufacturing

Verification

Recommendations

Project Management

Future Plans

FUTURE OF THE DEVICE

- Proven industry interest via communications with expert researchers
 - Compressive MRI loading is a highly pursued topic at the moment
- Open source design, BOM, CAD, and all other relevant files for future researchers to pursue further

Thank you for listening! Any questions?

