

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

5129/22

Paper 2

May/June 2018

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 Flowers are the reproductive organs of plants.

Fig. 1.1 shows a section through a flower.

Fig. 1.1

(a)	(i)	On Fig. 1.1, draw a line from each box to show the position of an anther and a petal. [2]
	(ii)	State one function of an anther and one of a petal.
		anther
		petal
		[2]
(b)	Flov	vers produce seeds.
	See	ds need a suitable temperature to germinate.
	Stat	te two other conditions that affect germination.
		and[2]
(c)	Rep	production can be asexual or sexual.
		cribe an investigation and the result of the investigation that shows that seeds are duced by sexual reproduction.

2

Sodium reacts with oxygen to produce sodium oxide.
The equation for the reaction is
4Na + O ₂
[A _r : O, 16; Na, 23]
(a) (i) Calculate the relative molecular mass of sodium oxide.
relative molecular mass =[1]
(ii) Complete the following sentences.
92g of sodium reacts with g of oxygen and produces g of sodium oxide.
4.6 g of sodium produces g of sodium oxide. [3]
(b) Sodium oxide dissolves in water.
A solution of sodium oxide turns Universal Indicator purple.
Suggest the pH of the solution[1]
(c) State the type of bonding in sodium oxide and give a reason for your answer.
type of bonding
reason

[2]

3 A partly completed circuit containing a lamp is shown in Fig. 3.1.

Fig. 3.1

- (a) Complete the circuit in Fig. 3.1 to show the symbol for an ammeter and the symbol for a voltmeter, connected so that the resistance of the lamp may be calculated. [2]
- (b) (i) State the current and the potential difference shown on the meters in Fig. 3.2.

Fig. 3.2

(ii) Use your answers to (b)(i) to calculate the resistance of the lamp. State the unit.

resistance = unit [3]

4 Specialised cells carry out different processes in living organisms.

On Fig. 4.1, draw a straight line from each process to the cell where the process takes place.

processes removal of urea from the blood kidney cell production of glycogen liver cell breakdown of alcohol mesophyll cell light energy transferred to chemical energy root hair cell absorption of ions

Fig. 4.1

[6]

5 W, X, Y and Z are elements in the Periodic Table.

The atomic structures of an isotope of each of these elements are shown in Table 5.1.

The letters are **not** the chemical symbols of the elements.

Table 5.1

	number of protons	number of neutrons	electronic structure
²⁴ W	12		2,8,2
²⁸ X	14	14	
34ү		18	2,8,6
³⁷ Z	17	20	

6

Methane	and ethane are the first two members of a homologous series.
(a) (i)	State the name of the homologous series to which they belong.
	[1]
(ii)	State the general formula of this homologous series.
	[1]
(iii)	State how the melting point of this homologous series changes as the relative molecular mass increases.
	[1]
(b) Met	hane burns in excess oxygen to release energy.
(i)	State the name given to reactions that release energy.
	[1]
(ii)	Name the products of the reaction when methane burns in excess oxygen.
	and

7 Vernier calipers are used to measure lengths.

Calipers are used to measure the external diameter of the boiling tube as shown in Fig. 7.1.

Fig. 7.1

- (a) The glass boiling tube has an internal diameter of 24 mm.
 - (i) Determine the external diameter *d* of the boiling tube.

d =mm [1]

(ii) Calculate the thickness *t* of the glass wall of the boiling tube.

t =mm [2]

(b) A measuring cylinder contains water as shown in Fig. 7.2. The boiling tube is then placed in the measuring cylinder as shown in Fig. 7.3.

(i) Determine the volume V of glass used to make the boiling tube.

V =	cm ³ [1]
-----	---------------------

(ii) The mass of the boiling tube is 33.5 g.

Calculate the density *D* of the glass used to make the boiling tube.

 $D = \dots g/cm^3 [2]$

						10						
8 (a)	All cells i	n the boo	dy carry o	out aero	bic res	piratio	n.					
	Write the	word eq	uation fo	r aerobi	c resp	iration.						
		+ .				—			+			[2]
(b)	Respirati	on releas	ses ener	αV								
(=)					energy	/ requi	rement	s of dif	ferent	age gro	oups of I	males and
						Key			7			
						itoy	males	L fema	_ les			
	175	00										
	450											
	150	00										
average	e 125	00										
energy require	ment/											
kJ per o		00										
	75	00										
	50	00										
	00											
	25	00										
		0+	age 5	6	age 11		age 1		adult-a	active a	adult-ver	y active
						8	age gro	ups				
					Fig	g. 8.1						
	(i) State	e the ave	erage ene	ergy req	uireme	ent of a	5 year	old fe	male.			
											kJ p	per day [1]

(ii) Identify the type of person who has an average daily energy requirement of 12000 kJ per

(iii)	Calculate the difference between the daily energy requirements of an 11 year old female and a 17 year old female.
	kJ per day [1]
(iv)	State two conclusions that can be drawn from the information given in Fig. 8.1.
	1
	2
	ro.
	[2]

9 The inside of an electrical plug is shown in Fig. 9.1.

Fig. 9.1

(a)	Stat	te the name o						
(b)		the live lead.	on of the live	e lead.				
(c)	(i)	When plugge	ed into a soc	cket, the plu	g supplies m	ains electrici	ty at 230 V to a	a hairdryer.
		The power p	roduced in t	he hairdryer	is 700 W.			
		Calculate the	e current I in	the fuse.				
					I = .			A [2]
	(ii)	Draw a circle	around the	value of a s	suitable fuse	rating for the	e fuse in (c)(i) .	
		3 A	5 A	3 V	5 V	3Ω	5Ω	[1]

Iron is extracted from iron ore in a blast furnace. (a) State the name of an ore of iron. (b) Iron ore, limestone (calcium carbonate) and carbon are added at the top and hot air is passed in at the bottom. Complete the sentences about the reactions that take place in the blast if At the bottom of the blast furnace the carbon is	r a period of several
Iron is extracted from iron ore in a blast furnace. (a) State the name of an ore of iron. (b) Iron ore, limestone (calcium carbonate) and carbon are added at the top and hot air is passed in at the bottom. Complete the sentences about the reactions that take place in the blast if At the bottom of the blast furnace the carbon is	
Iron is extracted from iron ore in a blast furnace. (a) State the name of an ore of iron. (b) Iron ore, limestone (calcium carbonate) and carbon are added at the top and hot air is passed in at the bottom. Complete the sentences about the reactions that take place in the blast At the bottom of the blast furnace the carbon is	
 Iron is extracted from iron ore in a blast furnace. (a) State the name of an ore of iron. (b) Iron ore, limestone (calcium carbonate) and carbon are added at the top and hot air is passed in at the bottom. Complete the sentences about the reactions that take place in the blast furnace the carbon is	
11 Iron is extracted from iron ore in a blast furnace. (a) State the name of an ore of iron. (b) Iron ore, limestone (calcium carbonate) and carbon are added at the top and hot air is passed in at the bottom. Complete the sentences about the reactions that take place in the blast of the bottom of the blast furnace the carbon is	
 (a) State the name of an ore of iron. (b) Iron ore, limestone (calcium carbonate) and carbon are added at the top and hot air is passed in at the bottom. Complete the sentences about the reactions that take place in the blast to At the bottom of the blast furnace the carbon is carbon dioxide. Carbon dioxide reacts with more carbon to form a gas called	[3]
 (b) Iron ore, limestone (calcium carbonate) and carbon are added at the top and hot air is passed in at the bottom. Complete the sentences about the reactions that take place in the blast the bottom of the blast furnace the carbon is	
and hot air is passed in at the bottom. Complete the sentences about the reactions that take place in the blast of the bottom of the blast furnace the carbon is	[1]
At the bottom of the blast furnace the carbon is	of the blast furnace
carbon dioxide. Carbon dioxide reacts with more carbon to form a gas called This gas the iron ore to iron.	urnace.
Carbon dioxide reacts with more carbon to form a gas called This gas the iron ore to iron.	to form
This gas the iron ore to iron.	
The calcium carbonate decomposes to form calcium oxide, which reacts	
	with the
impurities in the ore to form	 [5]

12 Fig. 12.1 shows a plane mirror **A**, a lens **B** and a glass block **C**.

Fig. 12.1

Some of the objects in Fig. 12.1 are placed in the path of parallel rays of light.

The objects are hidden behind screens. Each screen covers one object only.

State the letters of the hidden objects $\bf A$, $\bf B$ or $\bf C$, that give rise to the ray diagrams shown in Fig. 12.2.

Fig. 12.2

[4]

13 Fig. 13.1 shows a section through the heart.

Fig. 13.1

(a) Complete the labels on Fig. 13.1 by using words from the following list.

	aorta	atrium	capillary	muscular wal	I
	pulmonary artery	pulmonary	vein	vena cava	ventricle [4]
(b)	Describe and explain wrelaxes.	hat happens to	the valve labe	lled in Fig. 13.1 who	en the heart muscle
					[2]

- 14 Hydrogen and chlorine react together to form hydrogen chloride, a covalent compound.
 - (a) Complete Fig. 14.1 to show the outer electrons in a molecule of hydrogen chloride.

Fig. 14.1

[2]

(b) Hydrogen chloride dissolves in water to produce hydrochloric acid.

Hydrochloric acid reacts with copper oxide.

Complete the equation for this reaction.

(c) Explain why hydrochloric acid does not react with copper metal.

 	 [1]

Question 15 begins over the page.

15 A stopwatch measures the time taken by a piece of modelling clay to fall through oil as shown in Fig. 15.1.

Fig. 15.1

(a)	The experiment is repeated using the same oil at a higher temperature.
	State a physical property of oil that varies with temperature.

.....[1]

(b) The freezing point of the oil is -11 °C.

As the temperature increases, the time taken for the modelling clay to fall through oil decreases.

On Fig. 15.2, sketch a graph to show the relationship between the temperature of the oil and the time taken for the clay to fall through the oil.

Label the axes on the graph.

Fig. 15.2

[3]

(c) In one experiment, modelling clay of weight 0.6 N falls a distance of 0.4 m through the oil in a time of 8.0 s.

Calculate the work done by gravity W as the modelling clay falls this distance.

 $W = \dots J[2]$

16 Fig. 16.1 shows a healthy plant and the same plant a few days later. The plant has wilted.

Fig. 16.1

(a)	Suggest one environmental cause of this wilting.
	[1
(b)	Describe the process of wilting.
	[2]

17 Fig. 17.1 shows representations of elements, compounds and mixtures.

Fig. 17.1

[4]

State the letter that represents

an element in Group VII of the Periodic Table,

an ionic compound,

a metallic element,

a mixture of two elements.

18	An e	elect	ric field exerts a force of $4.7 \times 10^{-14} \mathrm{N}$	on a stationary alpha-particle.
	The	alph	a-particle accelerates with an initial ac	oceleration of $7.08 \times 10^{12} \mathrm{m/s^2}$.
	(a)	Cal	culate the mass m of the alpha-particle	€.
				$m = \dots kg [2]$
	(b)	(i)	An alpha-particle has a positive charg	ge of 3.2 × 10 ⁻¹⁹ C.
			Calculate the charge on one proton.	
				charge = C [1]
		(ii)	Determine the charge on a beta-parti	cle.
				charge = C [1]

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

The Periodic Table of Elements

	≡>	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	86	格	radon			
	II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	Ą	astatine -			
	>			8	0	oxygen 16	16	ഗ	sulfur 32	8	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	moloulum -	116		livermorium -
	>			7	z	nitrogen 14	15	ட	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	:E	bismuth 209			
	≥			9	O	carbon 12	14	Si	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Ŀ	flerovium -
	≡			5	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	1L	thallium 204			
										30	Zu	zinc 65	48	ပ	cadmium 112	80	Ρ̈́	mercury 201	112	S	copernicium -
										29	D O	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium -
Group										28	Z	nickel 59	46	Pd	palladium 106	78	చ	platinum 195	110	Ds	darmstadtium -
Gre										27	ပိ	cobalt 59	45	R	rhodium 103	77	Ιr	iridium 192	109	Μ	meitnerium -
		- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	92	SO	osmium 190	108	Hs	hassium -
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	<u>a</u>	tantalum 181	105	Ср	dubnium —
					ato	rek				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	¥	rutherfordium —
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ва	barium 137	88	Ra	radium _
	_			3	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	В	rubidium 85	22	Cs	caesium 133	87	Ŧ	francium -

71	lutetium 175	103	۲	lawrencium	ı
۶ ۶	ytterbium 173	102	9 N	nobelium	1
69 L	thulium 169	101	Md	mendelevium	I
88 7	erbium 167	100	Fm	fermium	Ι
67 T	holmium 165	66	Es	einsteinium	_
99	dysprosium 163	86	ర్	californium	_
65 T	terbium 159	97	Æ	berkelium	_
45 C.	gadolinium 157	96	Cm	curium	_
63 -	europium 152	92	Am	americium	_
62	samarium 150	94	Pn	plutonium	_
61 Dn	promethium	93	Δ	neptunium	_
09 Z	neodymium 144	92	\supset	uranium	238
ي و	praseodymium 141	91	Ра	protactinium	231
85 Q	cerium 140	06	T	thorium	232
57	lanthanum 139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).