Programming Web Services ID2208

Project

Mihhail Matskin (<u>misha@kth.se</u>) Hooman Peiro Sajjad (<u>shps@kth.se</u>) KTH – ICT School VT 2017

Web Services Match-Making

 The idea is to automatically match output of an operation of a Web service with inputs of an operation of another Web service.

Web Service Matching

- The matching can be Syntactically or Semantically.
- By matching we mean, finding the following pairs:
 - <Region, Area>
 - <Price, Cost>
 - <Color, Colour>
- Only Consider basic elements (those with built-in types such as int, double, string, date, ...) for matching
- For the time being, we are looking only at Syntactic matching.
- Then, we extend this to Semantic Matching, where we use ontology.

Syntactic Matching

- So how to do syntactic matching?
 - Use <u>Edit-Distance</u> (Given two strings s_1 and s_2 , the edit distance between s_1 and s_2 is the minimum number of operations required to convert string s_1 to s_2 .)
 - http://www.algorithmist.com/index.php/Edit_Distance

- Use <u>WordNet</u>: is a lexical database which is available online, and provides a large repository of English lexical items.
 - http://wordnet.princeton.edu/

WordNet

WordNet Search - 3.1

WordNet home page - Glossary - Help

Word to search fo	r: Country	Search WordNet
Display Options: [(Select option to change)	Change
Kev: "S:" = Show	Synset (semantic) relati	ons "W-" = Show Word (lexical) relation

Display options for sense: (gloss) "an example sentence"

Noun

- S: (n) state, nation, country, land, commonwealth, res publica, body politic (a politically organized body of people under a single government) "the state has elected a new president"; "African nations"; "students who had come to the nation's capitol"; "the country's largest manufacturer"; "an industrialized land"
- S: (n) country, state, land (the territory occupied by a nation) "he returned to the land of his birth"; "he visited several European countries"
- S: (n) nation, land, country (the people who live in a nation or country) "a statement that sums up the nation's mood"; "the news was announced to the nation"; "the whole country worshipped him"
- S: (n) country, rural area (an area outside of cities and towns) "his poetry celebrated the slower pace of life in the country"
- S: (n) area, country (a particular geographical region of indefinite boundary (usually serving some special purpose or distinguished by its people or culture or geography))
 "it was a mountainous area"; "Bible country"

Your Task - 1

- Develop a program, which takes two Web services (WSDL documents) WS₁ and WS₂ as inputs and measure syntactic matching between outputs of operations of the first Web service with the inputs of operations of the second Web service.
- Put results in the format shown in Output.XML,
- We provide you the WSDL files that you need to match

Your Task - 2

- You need also the compute matching score between of operations, OP_i from WS₁ and OP_i from WS₂,
- Element Score = Edit Distance
- Operation Score = Average of all element matching scores
- Service Score = Average of all its operation scores
- Only takes into account element matching with : score > 0.8

Output format

```
<?xml version="1.0" encoding="UTF-8"?>
<tns:WSMatching xmlns:tns="http://www.kth.se/ict/id2208/Matching" xml</pre>
  <tns:Macthing>
    <tns:OutputServiceName>WS A</tns:OutputServiceName>
    <tns:InputServiceName>WS B</tns:InputServiceName>
    <tns:MacthedOperation>
      <tns:OutputOperationName>getDrink</tns:OutputOperationName>
      <tns:InputOperationName>getWine</tns:InputOperationName>
      <tns:OpScore>0.9375</tns:OpScore>
      <tns:MacthedElement>
        <tns:OutputElement>Country</tns:OutputElement>
        <tns:InputElement>Country</tns:InputElement>
        <tns:Score>1.0</tns:Score>
      </tns:MacthedElement>
      <tns:MacthedElement>
        <tns:OutputElement>Price</tns:OutputElement>
        <tns:InputElement>Cost</tns:InputElement>
        <tns:Score>0.9</tns:Score>
      </tns:MacthedElement>
      <tns:MacthedElement>
        <tns:OutputElement>Region</tns:OutputElement>
        <tns:InputElement>Area</tns:InputElement>
        <tns:Score>0.85</tns:Score>
      </tns:MacthedElement>
```

We provide Java code for :

- Edit-Distance
- WSDL files to match
- XML Schema for Output file

Matching: Syntactic AND Semantic

Syntactic Matching

Matching is computed between based on linguistic similarity

Semantic Matching

Matching is computed based on structural properties of concepts in their ontology

Web Services Match-Making

• The idea is to automatically match output of a Web service operation with inputs of operation of another Web service based on their semantic annotation.

Different Matching Degrees

```
    Match C<sub>output</sub> with C<sub>input</sub>:

       if Coutput isSameAs Cinput then
                       return Exact
       else if C<sub>input</sub> isSubClassOf C<sub>ouput</sub> then
               return Subsumption
       else if Coutput is SubClass Of Cinput then
               return Plug-in
       else if Coutput has Relation With Cinput then
               return Structural
       else
               return NotMatched
       end if
```

Using SAWSDL annotations: http://www.w3.org/TR/sawsdl/#Using

author_booktaxfreeprice_service.wsdl

```
-<wsdl:message name=|get_BOOK_TAXFREEPRICEResponse">
    <wsdl:part name=" BOOK" type="BookType"> </wsdl:part>
    <wsdl:part name=" TAXFREEPRICE" type="TaxFreePriceType"> </wsdl:part>
 </wsdl:message>
-<wsdl:portType name="AuthorBooktaxfreepriceSoap">
  -<wsdl:operation name="get BOOK TAXFREEPRICE">
      <wsdl:input message="get_BOOK_TAXFREEPRICERequest"> </wsdl:input>
      <wsdl:output message="get BOOK TAXFREEPRICEResponse"> </wsdl:output>
    </wsdl:operation>
 </wsdl:portType>
-<wsdl:binding name="AuthorBooktaxfreepriceSoapBinding" type="AuthorBooktaxfreepriceSoap">
   <wsdlsoap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
  -<wsdl:operation name="get BOOK TAXFREEPRICE">
      <wsdlsoap:operation soapAction=""/>
    -<wsdl:input>
        <wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding</p>
      </wsdl:input>
    -<wsdl:output>
        <wsdlsoap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding</p>
      </wsdl:output>
    </wsdl:operation>
```

 BookType is annotated with #Book semantic class in ontology "books.owl"

 Sometimes, constituting elements of a complex type are also annotated, see next slide.

 Using provided SAWSDL annotations: look at author_booktaxfreeprice_service.wsdl

- In above example semantic classes are: Title,
 Publisher, Book-type and Author
- Classes are located in "SUMO.owl" ontology

Extracting Semantic Classes annotating input and output elements

 Trace from operation messages to respective input outputs elements which are annotated

 If both complex-type and constituting elements are annotated only consider the higher level annotated complex type!

Matching Degrees:

 No Standard rule for degrees, so for the time being simply assume:

- Exact = 1.0
- Subsumption = 0.8
- Plug-in = 0.6
- Structural = 0.5
- Not matched = 0.0

How to find relationships: isSameAs, subClassOf, hasStructuralRelation

- Of course, using ontology!
- We provide some Java code to play with, but feel free to extend it or improve it to fit your requirements,
- Use Protégé 4.0 tool to see the ontology. http://protege.stanford.edu/download/protege/4.0/
- We also provide some SAWSDL annotated web services
- We also unified all ontologies used in those SAWSDL services into one Ontology(SUMO.OWL), so you can just ignore the specified ontology in the SAWSDL file, and use the unified one.

Your Task 3

- Extend the matching in the first part of the project to do semantic matching
- Find pair of Web services where the output of first matches semantically the input of another one
- Use the similar output format as you used for for Tasks 1 and 2
- Use matching threshold = 0.5

Deliverables and Deadline

- Textual report describing what did you do
- Send source code+ Instructions how to install, and run your system
- Email Subject: PWS17-Project
- Submit your deliverables in Canvas (one submission per group is fine)
- Deadline: 6 March 2017
- Presentation: TBA