Mean-Field Approximation

Chapter 3

Mean-Field Approximation

Chapter 3

Plan: Lecture 1: Mean-Field Approximation: Ex. of the Ising model

Lecture 2: Landau Theory

Tutorial: more on Mean-Field approximation

During the coming weeks, we will use the mean-field approximation to solve various problems (TASEP, simple epidemic model, Voter model).

Questions: homework: Is there anyone still looking for a group to work with?

Any question?

Information Quiz 2: will include 2 questions from Quiz 1 (Quiz 1 available as a "training quiz" on Canvas)

When: just after the holidays: Monday 11h, fine?

Mean-Field (MF) approximation Application to the Ising model

Chapter III — Lecture 1

Plan: 1) Introduction to MF approximation

- a) General idea
- b) Ex. Mean-Field Ising Model
- c) Summary
- 2) Computing the Order Parameter (m)
 - a) Self-Consistency Relation for m
 - b) Solving the Self-Consistency Relation
 - c) Stability of the solutions
 - d) Phase transitions

3) MF Critical exponents

- a) Reminder Critical Exponents
- b) Exercise
- c) Critical exponents and universality

Expectations: Participate in the discussions, take notes, try to do the analytical derivations

References: Book "Complexity and Criticality", K. Christensen, N. Moloney, Chapter 2: the Ising model (mean-field part)

Introduction to Mean-Field (MF) approximation

MF approximation: General idea

Mean-field approximation: Weiss (1907): Simplest approximation to try when studying a phase transition Not restricted to the Ising model

In the context of Ising model: Qualitatively good insight in the phase transition for d > 1

For d = 1: the theory predict a phase transition at a finite temperature Tc > 0 for H = 0 —> not correct, even qualitatively

MF approximation: General idea

Mean-field approximation: Weiss (1907): Simplest approximation to try when studying a phase transition

Not restricted to the Ising model

In the context of Ising model: Qualitatively good insight in the phase transition for d > 1

For d = 1: the theory predict a phase transition at a finite temperature Tc > 0 for H=0 —> not correct, even qualitatively

$$s_i = \langle s_i \rangle + \epsilon_i \qquad |\epsilon_i| \ll |\langle s_i \rangle|$$

$$s_i = \langle s_i \rangle + \epsilon_i$$
 $|\epsilon_i| \ll |\langle s_i \rangle|$
 $\epsilon_i = s_i - \langle s_i \rangle$

$$s_i = \langle s_i \rangle + (s_i - \langle s_i \rangle)$$

$$|\epsilon_i| \ll |\langle s_i
angle|$$

$$E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} s_i \, s_j$$

$$E_{int}(\vec{s}) =$$

$$s_i = \langle s_i \rangle + \epsilon_i \qquad |\epsilon_i| \ll |\langle s_i \rangle|$$

$$\epsilon_i = s_i - \langle s_i \rangle$$

$$s_i = \langle s_i \rangle + (s_i - \langle s_i \rangle)$$
 $|\epsilon_i| \ll |\langle s_i \rangle|$ $E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} s_i s_j$

$$E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} [\langle s_i \rangle + (s_i - \langle s_i \rangle)] [\langle s_j \rangle + (s_j - \langle s_j \rangle)]$$

$$s_i = \langle s_i \rangle + \epsilon_i \qquad |\epsilon_i| \ll |\langle s_i \rangle|$$

$$\epsilon_i = s_i - \langle s_i \rangle$$

$$s_{i} = \langle s_{i} \rangle + (s_{i} - \langle s_{i} \rangle) \qquad |\epsilon_{i}| \ll |\langle s_{i} \rangle| \qquad E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} s_{i} s_{j}$$

$$E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} [\langle s_{i} \rangle + (s_{i} - \langle s_{i} \rangle)] [\langle s_{j} \rangle + (s_{j} - \langle s_{j} \rangle)] \qquad \text{neglected}$$

$$= -J \sum_{\langle i,j \rangle} [\langle s_{i} \rangle \langle s_{j} \rangle + \langle s_{i} \rangle s_{j} + \langle s_{j} \rangle s_{i} - 2\langle s_{i} \rangle \langle s_{j} \rangle + (s_{i} - \langle s_{i} \rangle)(s_{j} - \langle s_{j} \rangle)]$$

 $m = \langle s_i \rangle = \langle s_j \rangle$

Idea: We neglect the fluctuations around the average magnetization:

$$s_i = \langle s_i \rangle + \epsilon_i$$
 $|\epsilon_i| \ll |\langle s_i \rangle|$
 $\epsilon_i = s_i - \langle s_i \rangle$

= number of nearest neighbors

$$s_{i} = \langle s_{i} \rangle + (s_{i} - \langle s_{i} \rangle) \qquad |\epsilon_{i}| \ll |\langle s_{i} \rangle| \qquad E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} s_{i} s_{j}$$

$$E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} [\langle s_{i} \rangle + (s_{i} - \langle s_{i} \rangle)] [\langle s_{j} \rangle + (s_{j} - \langle s_{j} \rangle)] \qquad \text{neglected}$$

$$= -J \sum_{\langle i,j \rangle} [\langle s_{i} \rangle \langle s_{j} \rangle + \langle s_{i} \rangle s_{j} + \langle s_{j} \rangle s_{i} - 2 \langle s_{i} \rangle \langle s_{j} \rangle + (s_{i} - \langle s_{i} \rangle)(s_{j} - \langle s_{j} \rangle)]$$

$$= J \sum_{\langle i,j \rangle} \langle s_{i} \rangle \langle s_{j} \rangle - 2J \sum_{\langle i,j \rangle} \langle s_{j} \rangle s_{i}$$

$$s_i = \langle s_i \rangle + \epsilon_i$$
 $|\epsilon_i| \ll |\langle s_i \rangle|$
 $\epsilon_i = s_i - \langle s_i \rangle$

$$\begin{split} s_i &= \langle s_i \rangle + \underbrace{(s_i - \langle s_i \rangle)}_{\epsilon_i} \qquad |\epsilon_i| \ll |\langle s_i \rangle| & E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} s_i \, s_j \\ E_{int}(\vec{s}) &= -J \sum_{\langle i,j \rangle} [\langle s_i \rangle + (s_i - \langle s_i \rangle)] [\langle s_j \rangle + (s_j - \langle s_j \rangle)] \\ &= -J \sum_{\langle i,j \rangle} [\langle s_i \rangle \langle s_j \rangle + \langle s_i \rangle s_j + \langle s_j \rangle s_i - 2 \langle s_i \rangle \langle s_j \rangle + \underbrace{(s_i - \langle s_i \rangle)(s_j - \langle s_j \rangle)}_{\langle i,j \rangle}] \\ &= J \sum_{\langle i,j \rangle} \langle s_i \rangle \langle s_j \rangle - 2J \sum_{\langle i,j \rangle} \langle s_j \rangle s_i \\ E_{int}(\vec{s}) &= N \frac{Jm^2q}{2} - qJm \sum_{i=1}^{N} s_i \end{split} \qquad m = \langle s_i \rangle = \langle s_j \rangle \qquad q \quad \text{= number of nearest neighbors} \end{split}$$

$$s_i = \langle s_i \rangle + \epsilon_i$$
 $|\epsilon_i| \ll |\langle s_i \rangle|$
 $\epsilon_i = s_i - \langle s_i \rangle$

$$\begin{split} s_i &= \langle s_i \rangle + \underbrace{(s_i - \langle s_i \rangle)}_{\epsilon_i} \qquad |\epsilon_i| \ll |\langle s_i \rangle| & E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} s_i \, s_j \\ E_{int}(\vec{s}) &= -J \sum_{\langle i,j \rangle} [\langle s_i \rangle + (s_i - \langle s_i \rangle)] [\langle s_j \rangle + (s_j - \langle s_j \rangle)] \\ &= -J \sum_{\langle i,j \rangle} [\langle s_i \rangle \langle s_j \rangle + \langle s_i \rangle s_j + \langle s_j \rangle s_i - 2 \langle s_i \rangle \langle s_j \rangle + (s_i - \langle s_i \rangle) (s_j - \langle s_j \rangle)] \\ &= J \sum_{\langle i,j \rangle} \langle s_i \rangle \langle s_j \rangle - 2J \sum_{\langle i,j \rangle} \langle s_j \rangle s_i \\ &= J \sum_{\langle i,j \rangle} \langle s_i \rangle \langle s_j \rangle - 2J \sum_{\langle i,j \rangle} \langle s_j \rangle s_i \\ &= W = \langle s_i \rangle = \langle s_j \rangle \qquad q \quad \text{s number of nearest neighbors} \\ &= E_{int}(\vec{s}) = N \frac{Jm^2q}{2} - qJm \sum_{i=1}^{N} s_i \end{split}$$

Total energy:
$$E(\vec{s}) = E_{int}(\vec{s}) - H \sum_{i=1}^{N} s_i$$

Idea: We neglect the fluctuations around the average magnetization:

$$s_i = \langle s_i \rangle + \epsilon_i$$
 $|\epsilon_i| \ll |\langle s_i \rangle|$
 $\epsilon_i = s_i - \langle s_i \rangle$

$$\begin{split} s_i &= \langle s_i \rangle + \underbrace{(s_i - \langle s_i \rangle)}_{\epsilon_i} \qquad |\epsilon_i| \ll |\langle s_i \rangle| \qquad E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} s_i \, s_j \\ E_{int}(\vec{s}) &= -J \sum_{\langle i,j \rangle} [\langle s_i \rangle + (s_i - \langle s_i \rangle)] [\langle s_j \rangle + (s_j - \langle s_j \rangle)] \\ &= -J \sum_{\langle i,j \rangle} [\langle s_i \rangle \langle s_j \rangle + \langle s_i \rangle s_j + \langle s_j \rangle s_i - 2 \langle s_i \rangle \langle s_j \rangle + \underbrace{(s_i - \langle s_i \rangle)(s_j - \langle s_j \rangle)]}_{\langle i,j \rangle} \\ &= J \sum_{\langle i,j \rangle} \langle s_i \rangle \langle s_j \rangle - 2J \sum_{\langle i,j \rangle} \langle s_j \rangle s_i \\ &= J \sum_{\langle i,j \rangle} \langle s_i \rangle \langle s_j \rangle - 2J \sum_{\langle i,j \rangle} \langle s_j \rangle s_i \\ &= (s_i) = \langle s_j \rangle \qquad q \quad \text{= number of nearest neighbors} \\ &= E_{int}(\vec{s}) = N \frac{Jm^2q}{2} - qJm \sum_{i=1}^{N} s_i \end{split}$$

Total energy:
$$E(\vec{s}) = E_{int}(\vec{s}) - H\sum_{i=1}^N s_i = E_0 - H_{eff}\sum_{i=1}^N s_i$$

 $H_{eff} = qJm + H$ where

Idea: We neglect the fluctuations around the average magnetization:

$$s_i = \langle s_i \rangle + \epsilon_i$$
 $|\epsilon_i| \ll |\langle s_i \rangle|$
 $\epsilon_i = s_i - \langle s_i \rangle$

$$s_{i} = \langle s_{i} \rangle + \underbrace{(s_{i} - \langle s_{i} \rangle)}_{\epsilon_{i}} \qquad |\epsilon_{i}| \ll |\langle s_{i} \rangle| \qquad E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} s_{i} s_{j}$$

$$E_{int}(\vec{s}) = -J \sum_{\langle i,j \rangle} [\langle s_{i} \rangle + (s_{i} - \langle s_{i} \rangle)] [\langle s_{j} \rangle + (s_{j} - \langle s_{j} \rangle)] \qquad \text{neglected}$$

$$= -J \sum_{\langle i,j \rangle} [\langle s_i \rangle \langle s_j \rangle + \langle s_i \rangle s_j + \langle s_j \rangle s_i - 2 \langle s_i \rangle \langle s_j \rangle + (s_i - \langle s_i \rangle)(s_j - \langle s_j \rangle)]$$

$$= J \sum_{\langle i,j \rangle} \langle s_i \rangle \langle s_j \rangle - 2J \sum_{\langle i,j \rangle} \langle s_j \rangle s_i$$

$$m = \langle s_i \rangle = \langle s_j \rangle$$

$$m = \langle s_i \rangle = \langle s_j \rangle$$

= number of nearest neighbors

$$E_{int}(\vec{s}) = N \frac{Jm^2q}{2} - qJm \sum_{i=1}^{N} s_i$$

Local effective field

 $H_{eff} = qJm + H$ where

Total energy:
$$E(\vec{s}) = E_{int}(\vec{s}) - H\sum_{i=1}^N s_i = E_0 - H_{eff}\sum_{i=1}^N s_i$$

~ System of non-interacting spins in the effective field created by the nearest neighbors

Mean-Field Ising model Mean-Field Ising model Mean-Field Ising model Mean-Field Ising model

Mean-field Ising model: Correspond to a system of non-interacting spins, immersed in an effective field of strength H+Jqm

where
$$m = \langle s_i \rangle$$

where $m = \langle s_i \rangle$ q = number of nearest neighbors

Total energy:
$$E(\vec{s}) = E_0 - H_{eff} \sum_{i=1}^N s_i$$
 where $H_{eff} = qJm + H$

Mean-Field Ising model Mean-Field Ising model Mean-Field Ising model Mean-Field Ising model

Mean-field Ising model: Correspond to a system of non-interacting spins, immersed in an effective field of strength H+Jqm

where
$$m = \langle s_i \rangle$$

Total energy:
$$E(ec{s}) = E_0 - H_{eff} \sum_{i=1}^N s_i$$
 where $H_{eff} = qJm + H$

$$H_{eff} = qJm + H$$

$$P(\vec{s}) = \prod_{i=1}^{N} P(s_i)$$
 where $P(s_i) = \frac{\mathrm{e}^{-\beta E(s_i)}}{Z_i}$ $Z_i = 2\cosh[\beta \, H_{eff}]$ $E(s_i) = -H_{eff} \, s_i$

$$P(s_i) = \frac{e^{-\beta E(s_i)}}{Z_i}$$

$$E(s_i) = -H_{eff} s_i$$

$$Z_i = 2 \cosh[\beta H_{eff}]$$

Replace the joint probability distribution by a product of the probability distribution for each spin

Mean-field Ising model:

As if spins are independent

Each spin is immersed in the average local field created by its nearest neighbors: $H_{loc} = q \times Jm$

Mean-field approximation for Ising Model Summary

Mean-field approximation: Weiss (1907): Simplest approximation to try when studying a phase transition

Not restricted to the Ising model

Qualitatively good insight in the phase transition for d > 1 In the context of Ising model:

For d = 1: the theory predict a phase transition at a finite temperature Tc > 0 for H = 0 —> not correct, even qualitatively

 $s_i = \langle s_i \rangle + \epsilon_i$ Idea: We neglect the fluctuations around the average magnetization:

$$|\epsilon_i| \ll |\langle s_i \rangle|$$

$$\epsilon_i = s_i - \langle s_i \rangle$$

Mean-field Ising model: Correspond to a system of non-interacting spin, immerse in an effective field of strength H + Jqm

where
$$m = \langle s_i \rangle$$

$$q$$
 = number of nearest neighbors

$$H_{eff} = qJm + H$$

— spins are independent

— each spin is immersed in the average local field created by its nearest neighbors: $H_{loc} = q \times Jm$

Computing the order parameter (magnetisation per spin)

|Self-Consistency equation|

Self-consistency relation

$$P(\vec{s}) = \prod_{i=1}^{N} P(s_i)$$
 where $P(s_i) = \frac{e^{-\beta E(s_i)}}{Z_i}$ $Z_i = 2\cosh[\beta(qJ\mathbf{m} + H)]$
$$E(s_i) = -(qJ\mathbf{m} + H)s_i$$

Average magnetization per spin: $m=\langle s_i \rangle$

$$m = \langle s_i \rangle = \mathbb{P}(s_i = 1) - \mathbb{P}(s_i = -1)$$

Self-Consistency equation

Self-consistency relation

$$P(\vec{s}) = \prod_{i=1}^{N} P(s_i)$$
 where $P(s_i) = \frac{e^{-\beta E(s_i)}}{Z_i}$ $Z_i = 2\cosh[\beta(qJm + H)]$
$$E(s_i) = -(qJm + H)s_i$$

Average magnetization per spin:

$$m = \langle s_i \rangle = \mathbb{P}(s_i = 1) - \mathbb{P}(s_i = -1) = \frac{e^{-\beta E(1)} - e^{-\beta E(-1)}}{e^{-\beta E(1)} + e^{-\beta E(-1)}}$$

Self-consistency relation: *m* is solution of:

$$m = \tanh[\beta(qJm + H)]$$

Self-consistency equation Self-consistency equation: Solution:

$$P(\vec{s}) = \prod_{i=1}^{N} P(s_i)$$
 where $P(s_i) = \frac{e^{-\beta E(s_i)}}{Z_i}$ $Z_i = 2\cosh[\beta(qJm + H)]$

 $E(s_i) = -(qJm + H)s_i$

Average magnetization per spin:

$$m = \langle s_i \rangle = \mathbb{P}(s_i = 1) - \mathbb{P}(s_i = -1) = \frac{e^{-\beta E(1)} - e^{-\beta E(-1)}}{e^{-\beta E(1)} + e^{-\beta E(-1)}}$$

Self-consistency relation: *m* is solution of:

$$m = \tanh[\beta(qJm + H)]$$

Self-consistency equation Self-consistency equation: Solution:

$$P(\vec{s}) = \prod_{i=1}^{N} P(s_i) \qquad \text{where} \qquad P(s_i) = \frac{e^{-\beta E(s_i)}}{Z_i} \qquad Z_i = 2\cosh[\beta(qJm + H)]$$

$$E(s_i) = -(qJm + H)s_i$$

Average magnetization per spin:

$$m = \langle s_i \rangle = \mathbb{P}(s_i = 1) - \mathbb{P}(s_i = -1) = \frac{e^{-\beta E(1)} - e^{-\beta E(-1)}}{e^{-\beta E(1)} + e^{-\beta E(-1)}}$$

Self-consistency relation: *m* is solution of:

$$m = \tanh[\beta(qJm + H)]$$

Self-consistency equation Solving the self-consistency equation

$$P(\vec{s}) = \prod_{i=1}^{N} P(s_i)$$

$$P(\vec{s}) = \prod_{i=1}^{N} P(s_i)$$
 where $P(s_i) = \frac{e^{-\beta E(s_i)}}{Z_i}$

$$Z_i = 2\cosh[\beta(qJm + H)]$$

$$E(s_i) = -(qJm + H)s_i$$

Average magnetization per spin:

$$m = \langle s_i \rangle = \mathbb{P}(s_i = 1) - \mathbb{P}(s_i = -1) = \frac{e^{-\beta E(1)} - e^{-\beta E(-1)}}{e^{-\beta E(1)} + e^{-\beta E(-1)}}$$

Self-consistency relation: *m* is solution of:

$$m = \tanh[\beta(qJm + H)]$$

Self-consistency equation Self-consistency equation: Solution:

Self-consistency relation: *m* is solution of:

$$m = \tanh[\beta(qJm + H)]$$

solutions

Stables?

Self-consistency equation Self-consistency equation: Solution:

Self-consistency relation: *m* is solution of:

$$m = \tanh[\beta(qJm + H)]$$

Slope:
$$\frac{qJ}{k_BT}$$

 $T < T_c$

Are all three solutions Stables?

$$T_c = \frac{Q}{k}$$

Self-consistency relation: *m* is solution of:

$$m = \tanh[\beta(qJm + H)]$$

To check which solutions are stable:

$$F = -k_B T \log Z$$

$$Z = \exp\left(-\frac{\beta N J m^2 q}{2}\right) \prod_{i=1}^{N} \left[2\cosh[\beta(qJm + H)]\right]$$

To check which solutions are stable:

$$F = -k_B T \log Z$$

$$Z = \exp\left(-\frac{\beta N J m^2 q}{2}\right) \prod_{i=1}^{N} \left[2\cosh[\beta(q J m + H)]\right]$$

$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$

$$T_c = \frac{qJ}{k_B}$$

To check which solutions are stable:

$$F = -k_B T \log Z$$

$$Z = \exp\left(-\frac{\beta N J m^2 q}{2}\right) \prod_{i=1}^{N} \left[2\cosh[\beta(qJm + H)]\right]$$

$$f_0$$

$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$

$$T_c = \frac{qJ}{k_B}$$

To check which solutions are stable:

$$F = -k_B T \log Z$$

$$Z = \exp\left(-\frac{\beta N J m^2 q}{2}\right) \prod_{i=1}^{N} \left[2\cosh[\beta(qJm + H)]\right]$$

$$H = 0 T > T_c$$

To check which solutions are stable:

$$F = -k_B T \log Z$$

$$Z = \exp\left(-\frac{\beta N J m^2 q}{2}\right) \prod_{i=1}^{N} \left[2\cosh[\beta(qJm + H)]\right]$$

$$H=0$$
 $T < T_c$

Continuous phase transition and Critical temperature

For H = 0: Continuous phase transition when varying the temperature T

 $T < T_c$

Critical temperature

$$T_c = \frac{qJ}{k_B}$$

$$T > T_c$$

$$m = \tanh[\beta(qJm + H)]$$

Critical temperature

$$T_c = \frac{qJ}{k_B}$$

Dimension: d = 1: transition at

Critical temperature

$$T_c = \frac{qJ}{k_B}$$

Dimension:
$$d = 1$$
: transition at $T_c = \frac{2J}{k_B}$

Critical temperature

$$T_c = \frac{qJ}{k_B}$$

Dimension:

$$d=1$$
: transition at $T_c=rac{2J}{k_B}$

—> Not good! In 1d Ising model, no transition at finite positive T

Critical temperature

$$T_c = \frac{qJ}{k_B}$$

Dimension:

$$d=1$$
: transition at $T_c=\frac{2J}{k_B}$

—> Not good! In 1d Ising model, no transition at finite positive T

d = 2:

Critical temperature

Critical temperature

$$T_c = \frac{qJ}{k_B}$$

Dimension:

$$d=1$$
: transition at $T_c=rac{2J}{k_B}$ —> Not good! In 1d Ising model, no transition at finite positive T

$$d=2$$
: $T_c=rac{4J}{k_B}$

Onsager:
$$k_B T_c = \frac{2J}{\log(1+\sqrt{2})}$$
 $T_c \simeq \frac{2.269J}{k_B}$

$$T_c \simeq rac{2.269J}{k_B}$$

Larger Tc ==>> neglecting the fluctuations, go against phase transition to paramagnetic

Discontinuous phase transition when varying H at T<Tc

For T < Tc: Discontinuous phase transition when varying the external field H

See online interactive demo: <u>here</u>

Jump at H = 0 from m_0 to $-m_0$

Mean-field Critical exponents

Reminder: 2D Ising model

Exact solution for H=0 by Onsager (1944):

proves the existence of a critical phase transition at

$$k_B T_c = \frac{2J}{\log(1+\sqrt{2})} \simeq 2.269 J$$

with a magnetization:
$$m(T) = \left(1 - \sinh^{-4}\left(\frac{2J}{k_BT}\right)\right)^{1/8}$$

Difficult to derive exact results with field and in larger dimensions

Paramagnetic **Ferromagnetic** $m(T) \neq 0$ -0.5

Different approaches:

Mean-field theory

Landau theory

Renormalisation group

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Exposant Champ moyen
$$\alpha$$
 β γ δ

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

$$(T < T_c)$$

for
$$H=0$$

• magnetization
$$m \sim H^{1/\delta}$$
 at $T=Tc$ and H small?

• Susceptibility per spin: $\chi \sim |T-T_c|^{-\gamma}$?

• Heat capacity: $C \sim |T - T_c|^{-\alpha}$?

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Exposant Champ moyen
$$\alpha$$
 β
 0.5
 γ
 δ

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T-T_c|^{-\gamma}$?

• Heat capacity: $C \sim |T - T_c|^{-\alpha}$?

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Exposant Champ moyen
$$\alpha$$
 β 0.5 γ δ

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T-T_c|^{-\gamma}$? $\chi = \lim_{H\to 0} \left(\frac{\partial m}{\partial H}\right)_{-\infty}$

$$\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H} \right)_T$$

• magnetization $m \sim H^{1/\delta}$ at T=Tc and H small?

• Heat capacity: $C \sim |T - T_c|^{-\alpha}$?

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Exposant Champ moyen
$$\alpha$$
 β
 0.5
 γ
 δ

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T T_c|^{-\gamma}$? $\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H}\right)_{-\infty}$

$$\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H} \right)_T$$

- Start from Eq. (1) with H non 0
- Apply derivative on both sides of Eq.(1), then take the limit H=0
- Expand for small *m*
- Heat capacity: $C \sim |T T_c|^{-\alpha}$?

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Exposant	Champ moyen		
α			
$\boldsymbol{\beta}$	0.5		
γ	1		
δ			

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

$$(T < T_c)$$

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T T_c|^{-\gamma}$? $\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H}\right)_{-1}$

$$\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H} \right)_T$$

- Start from Eq. (1) with H non 0
- Apply derivative on both sides of Eq.(1), then take the limit H=0
- Expand for small *m*
- Heat capacity: $C \sim |T T_c|^{-\alpha}$?

$$C = -T \left(\frac{\partial^2 f}{\partial T^2} \right)_{H=0}$$

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Exposant Champ moyen
$$\alpha$$
 discont. β 0.5 γ 1

Free energy:
$$f = \frac{k_B T_c}{2}$$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$

•
$$m_0 \sim (T_c - T)^{\beta}$$
 $(T < T_c)$ for $H=0$?

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T T_c|^{-\gamma}$? $\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H}\right)_{-1}$
 - Start from Eq. (1) with H non 0
 - Apply derivative on both sides of Eq.(1), then take the limit H=0
 - Expand for small *m*

• Heat capacity:
$$C \sim |T - T_c|^{-\alpha}$$
 ?

$$C = -T \left(\frac{\partial^2 f}{\partial T^2} \right)_{H=0}$$

- Start from Eq. (2) with H=0
- Replace m by its expression m(T) for H=0. Treat T>Tc and T<Tc separately
- Derive twice by T — Expand for small *m*

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Exposant	Champ moyen
α	discont.
\boldsymbol{eta}	0.5
γ	1
δ	

- $m_0 \sim (T_c T)^{\beta}$ $(T < T_c)$ for H=0 ?
 - Start from Eq. (1) with H=0
 - Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T T_c|^{-\gamma}$? $\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H}\right)_{-1}$
 - Start from Eq. (1) with H non 0
 - Apply derivative on both sides of Eq.(1), then take the limit H=0
 - Expand for small *m*
- Heat capacity: $C \sim |T T_c|^{-\alpha}$?

$$C = -T \left(\frac{\partial^2 f}{\partial T^2} \right)_{H=0}$$

- Start from Eq. (2) with H=0
- Replace m by its expression m(T) for H=0. Treat T>Tc and T<Tc separately
- Derive twice by T — Expand for small *m*

Self-consistency relation:
$$m$$
 is solution of: $m = \tanh \left[\frac{T_c}{T} m + \frac{H}{k_B T} \right]$

Free energy:
$$f = \frac{k_B T_c}{2} m^2 - k_B T \log \left[2 \cosh \left(\frac{T_c}{T} m + \frac{H}{k_B T} \right) \right]$$
 (2)

Exposant	Champ moyen
α	discont.
$\boldsymbol{\beta}$	0.5
γ	1
δ	3

- $m_0 \sim (T_c T)^{\beta}$ $(T < T_c)$ for H=0 ?

- Start from Eq. (1) with H=0
- Expand for small m (as m is continuous and m=0 at Tc)
- Susceptibility per spin: $\chi \sim |T T_c|^{-\gamma}$? $\chi = \lim_{H \to 0} \left(\frac{\partial m}{\partial H}\right)_{-\infty}$

- Start from Eq. (1) with H non 0
- Apply derivative on both sides of Eq.(1), then take the limit H=0
- Expand for small *m*
- Heat capacity: $C \sim |T T_c|^{-\alpha}$?

$$C = -T \left(\frac{\partial^2 f}{\partial T^2} \right)_{H=0}$$

- Start from Eq. (2) with H=0
- Replace m by its expression m(T) for H=0. Treat T>Tc and T<Tc separately
- Derive twice by T
 - Expand for small m

- magnetization $m \sim H^{1/\delta}$ at T=Tc and H small?
 - Start from Eq. (1) with T=Tc
 - Expand for small *m* (as *m* is small, for T=Tc and H small)

Critical exponents and Universality

$$C \sim |T - T_c|^{-\alpha}$$
 $m_0 \sim (T_c - T)^{\beta}$ $(T < T_c)$
 $\chi \sim |T - T_c|^{-\gamma}$
 $m \sim H^{1/\delta}$ $(T = T_c)$

Exponents
$$d = 2$$
 $d = 3$
 α $\ln |T - T_c|$ 0.01 ± 0.01
 β 0.125 0.312 ± 0.003
 γ 1.75 1.250 ± 0.002
 δ $15 (*)$ 5.0 ± 0.05

Mean-field 0 (discont.)

0.5

3

Critical exponents seem to get closer to MF for larger dimensions *d*

Critical exponents and Universality

$C \sim T - T_c ^{-\alpha}$		Exponents	d = 2	d = 3	<i>d</i> >= 4	Mean-field
$m_0 \sim (T_c - T)^{\beta}$	$(T < T_c)$	α	$\ln T-T_c $	0.01 ± 0.01	0	0 (discont.)
$\chi \sim T - T_c ^{-\gamma}$		$\boldsymbol{\beta}$	0.125	0.312 ± 0.003	0.5	0.5
		γ	1.75	1.250 ± 0.002	1	1
$m \sim H^{1/\delta}$	$(T = T_c)$	δ	15 (*)	5.0 ± 0.05	3	3

Critical exponents seem to get closer to MF for larger dimensions *d*

Mean-field approximation is exact in infinite dimension d!

Upper critical dimension = 4

Critical exponents for $d \ge 4$ remains unchanged

Exponents of Mean-field Ising are the same as for $d \ge 4$

Critical exponents and Universality

$$C \sim |T - T_c|^{-\alpha}$$
 $m_0 \sim (T_c - T)^{\beta}$ $(T < T_c)$
 $\chi \sim |T - T_c|^{-\gamma}$
 $m \sim H^{1/\delta}$ $(T = T_c)$

Exponents
$$d=2$$
 $d=3$
$$\alpha \ln |T-T_c| \quad 0.01 \pm 0.01$$

$$\beta \quad 0.125 \quad 0.312 \pm 0.003$$

$$\gamma \quad 1.75 \quad 1.250 \pm 0.002$$

$$\delta \quad 15 \ (*) \quad 5.0 \ \pm 0.05$$

<i>d</i> >= 4	Mean-field
0	0 (discont.)
0.5	0.5
1	1
3	3

Independent of the lattice type

Critical exponents are Universal

Critical Temperatures are Non-Universal:

Lattice	2	k_BT_c/J
d = 1 line	2	0
d = 1 had $d = 2$ hexagonal	3	$2/\ln(2+\sqrt{3})^a$
square	4	$2/\ln(1+\sqrt{2})^b \approx 2.269185$
triangular	6	4/ In 3ª
d = 3 diamond	4	2.70°
simple cubic	6	4.51152 ^d
body-centred cubic	8	6.40 ^e
face-centred cubic	12	9.79e
Mean-field	2	2

Mean-field Ising Summary

Mean-field Ising model: ~ System of non-interacting spins, immersed in the effective field

local effective field created by External field their direct neighbors H + Jqm

Stable

Unstable

Self-consistency relation: *m* is solution of:

$$m = \tanh[\beta(qJm + H)]$$

(a) $T \geq T_c$

H=0

Continuous PT at
$$T_c = \frac{qJ}{k_B}$$

Stability analysis using

Free energy: $F = -k_B T \log Z$

Universality of the critical exponents:

$$C \sim |T - T_c|^{-\alpha}$$

$$\chi \sim |T - T_c|^{-\gamma}$$

$$m_0 \sim (T_c - T)^{\beta} \qquad (T < T_c) \qquad m \sim H^{1/\delta} \qquad (T = T_c)$$

Exponents	d = 2	d = 3	<i>d</i> >= 4	Mean-field
α	$\ln T - T_c $	0.01 ± 0.01	0	0 (discont.)
$\boldsymbol{\beta}$	0.125	0.312 ± 0.003	0.5	0.5
γ	1.75	1.250 ± 0.002	1	1
δ	15 (*)	5.0 ± 0.05	3	3
			†	

Upper critical dimension = 4