BUNDESREPUBLIK DEUTSCHLAND

REC'D **0 4 FEB 2004**WIPO PCT

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 21 396.1

Anmeldetag:

12. Mai 2003

Anmelder/Inhaber:

BASF Aktiengesellschaft,

Ludwigshafen/DE

Bezeichnung:

Verwendung von Copolymerisaten als

Hilfsmittel für die Textilfärberei

IPC:

D 06 M, D 06 P, C 11 D

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 11. September 2003

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

Stanschus

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

A 9161

Patentansprüche

5

10

20

30

- Verfahren zum Nachreinigen von bedrucktem Textil, dadurch gekennzeichnet, dass man mindestens ein Copolymerisat einsetzt, das mindestens 2 monoethylenisch ungesättigte Monomere B1 und B2 einpolymerisiert enthält, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten.
 - 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei mindestens einem Copolymerisat um ein Pfropfcopolymerisat handelt.
 - 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, das mindestens ein Pfropfcopolymerisat aufgebaut ist aus
- einer polymeren Pfropfgrundlage A, die keine monoethylenisch ungesättigten
 Einheiten aufweist, und
 - polymeren Seitenketten B, gebildet aus Copolymeren von mindestens zwei monoethylenisch ungesättigten Monomeren B1 und B2, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten, und optional weiteren Comonomeren B3.
 - 4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Anteil der Seitenketten B am Propfcopolymerisat größer ist als 35 Gew.-%.
- 25 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass es sich bei der polymeren Pfropfgrundlage A um einen Polyether handelt.
 - Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man zusätzlich mindestens eine weitere Komponente einsetzt, ausgewählt aus Komplexbildnern und nicht-ionischen Tensiden.
 - 7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man bei schwach sauren bis neutralen pH-Wert arbeitet.
- 8. Nachseifmittel, enthaltend mindestens ein Copolymerisat, das mindestens 2 monoethylenisch ungesättigte Monomere B1 und B2 einpolymerisiert enthält, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten.
- Nachseifmittel nach Anspruch 8, dadurch gekennzeichnet, dass es sich bei mindestens einem Copolymerisat um ein Pfropfcopolymerisat handelt.

317/03 Sue/sm 12.05.2003

20

- Nachseifmittel nach Anspruch 9, dadurch gekennzeichnet, dass mindestens ein Propfcopolymerisat aufgebaut ist aus
- einer polymeren Pfropfgrundlage A, die keine monoethylenisch ungesättigten
 Einheiten aufweist, und
 - polymeren Seitenketten B, gebildet aus Copolymeren von mindestens zwei monoethylenisch ungesättigten Monomeren B1 und B2, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten, und optional weiteren Comonomeren B3.
 - Nachseifmittel nach Anspruch 10, dadurch gekennzeichnet, dass der Anteil der Seitenketten B am Pfropfcopolymeriat größer ist als 35 Gew.-%.
- 15 12. Nachseifmittel nach einem der Ansprüche 8 bis 11, enthaltend mindestens eine weitere Komponente, ausgewählt aus Komplexbildnern und nicht-ionischen Tensiden.
 - 13. Wässrige Formulierung von Nachseifmitteln nach einem der Ansprüche 8 bis 12.
 - Verwendung von Nachseifmitteln nach einem der Ansprüche 8 bis 12 oder wässrigen Formulierungen nach Anspruch 13 zur Nachreinigung von bedrucktem Textil.

Verwendung von Copolymerisaten als Hilfsmittel für die Textilfärberei

Beschreibung

25

30

- Die vorliegende Erfindung betrifft ein Verfahren zum Nachreinigen von bedrucktem Textil, dadurch gekennzeichnet, dass man ein oder mehrere Copolymerisate einsetzt, die mindestens 2 monoethylenisch ungesättigte Monomere B1 und B2 einpolymerisiert enthalten, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten.
- Zum Abschluss des Textildruckprozesses und vor der Vermarktung werden mit Hilfe 10 von Reaktivfarbstoffen, Direktfarbstoffen oder Küpenfarbstoffen bedruckte Textilien üblicherweise nachgereinigt, um auf der Faser verbliebenen, nicht fixierten Farbstoff zu entfernen, um ein ausreichendes Echtheitsniveau zu erreichen. Üblicherweise werden dazu mindestens ein Seifbad und mehrere Spül- und Neutralisationsbäder verwendet. Das Ergebnis der Nachreinigung wird dabei von den im Textildruck eingesetzten Che-15 mikalien beeinflusst, insbesondere der Salzfracht. Im Seifbad setzt man zur Nachreinigung eine Verbindung ein, die den Farbstoff oder Zersetzungsprodukte des Farbstoffs dispergiert und die allgemein als Nachseifmittel bezeichnet wird. Die bekannten Nachseifmittel zeigen Nachteile, bei vielen bekannten Nachseifmitten stellt man eine unge-20 nügende Wirkung insbesondere in Gegenwart von Salzen wie z.B. Glaubersalz und/oder Natriumchlorid im Seifbad fest. Weiterhin müssen die bekannten Nachseifmittel bei hohen Temperaturen, d.h. um 98°C, eingesetzt werden. Auch die Wirkung der als Nachseifmittel eingesetzten Polyacrylsäuren und Polyvinylpyrrolidone lässt sich noch verbessern.

Es bestand also die Aufgabe, ein verbessertes Verfahren zur Nachreinigung von mit Reaktivfarbstoffen, Direktfarbstoffen oder Küpenfarbstoffen bedruckten Textilien, die im Folgenden auch als bedruckte Textilien bezeichnet werden, bereit zu stellen. Weiterhin bestand die Aufgabe, Nachseifmittel mit verbesserter Wirkung bei der Nachreinigung von bedruckten Textilien bereit zu stellen, die speziell bei erhöhter Konzentration von Salzen im Seifbad wirken.

Demgemäß wurde die eingangs definierten Nachseifmittel gefunden.

Unter Textil bzw. Textilien sind im Rahmen der vorliegenden Erfindung Textilfasern, textile Halb- und Fertigfabrikate und daraus hergestellte Fertigwaren zu verstehen, die neben Textilien für die Bekleidungsindustrie beispielsweise auch Teppiche und andere Heimtextilien sowie technischen Zwecken dienende textile Gebilde umfassen. Dazu gehören auch ungeformte Gebilde wie beispielsweise Flocken, linienförmige Gebilde wie Bindfäden, Fäden, Garne, Leinen, Schnüre, Seile, Zwirne sowie Körpergebilde wie beispielsweise Filze, Gewebe, Vliesstoffe und Watten. Die Textilien können natürlichen

Ursprungs sein, beispielsweise Baumwolle, Wolle oder Flachs, oder synthetisch, beispielsweise Polyamid.

In einer Ausführungsform der vorliegenden Erfindung sind in den erfindungsgemäßen Hilfsmitteln für die Textilfärberei verwendeten Copolymerisate, die im Folgenden auch als erfindungsgemäß verwendete Copolymerisate bezeichnet werden, dadurch gekennzeichnet, dass sie mindestens 2 monoethylenisch ungesättigte Monomere B1 und B2 einpolymerisiert enthalten, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten.

10

5

Bei den erfindungsgemäß verwendeten Copolymeren kann es sich um statistische Copolymere, Blockcopolymere oder Pfropfcopolymerisate handeln.

15

In einer Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäß verwendeten Copolymerisate als Monomer B1 vorzugsweise mindestens ein cyclisches Amid der allgemeinen Formel I

einpolymerisiert, wobei in Formel I die Variablen folgende Bedeutung haben:

20

25

x ist eine ganze Zahl im Bereich von 1 bis 6

R¹ Wasserstoff oder C₁-C₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl.

Im einzelnen seien als einpolymerisiertes Monomer B1 beispielsweise N-Vinylpyrrolidon, N-Vinyl- δ -valerolactam und N-Vinyl- ϵ -caprolactam genannt, wobei N-Vinylpyrrolidon bevorzugt ist.

In einer Ausführungsform der vorliegenden Erfindung enthalten die erfindungsgemäß verwendeten Copolymere mindestens ein Monomer B2 einpolymerisiert, das einen stickstoffhaltigen Heterocyclus, ausgewählt aus der Gruppe der Pyrrole, Pyrrolidine, Pyridine, Chinoline, Isochinoline, Purine, Pyrazole, Imidazole, Triazole, Tetrazole, Indolizine, Pyridazine, Pyrimidine, Pyrazine, Indole, Isoindole, Oxazole, Oxazolidone, Oxazolidine, Morpholine, Piperazine, Piperidine, Isoxazole, Thiazole, Isothiazole, Indoxyle,

10

15

3

Isatine, Dioxindole und Hydanthoine und deren Derivaten, z.B. Barbitursäure und Uracil und deren Derivate, enthält.

Bevorzugte Heterocyclen sind dabei Imidazole, Pyridine und Pyridin-N-oxide, wobei Imidazole besonders bevorzugt sind.

Beispiele für besonders geeignete Comonomere B2 sind N-Vinylimidazole, Alkylvinylimidazole, insbesondere Methylvinylimidazole wie 1-Vinyl-2-methylimidazol, 3-Vinylimidazol-N-oxid, 2- und 4-Vinylpyridine, 2- und 4-Vinylpyridin-N-oxide sowie betainische Derivate und Quaternisierungsprodukte dieser Monomere.

Ganz besonders bevorzugte einpolymerisierte Comonomere B2 sind N-Vinylimidazole der allgemeinen Formel II a, betainische N-Vinylimidazole der allgemeinen Formel II b, 2- und 4-Vinylpyridine der allgemeinen Formel II c und II d sowie betainische 2- und 4-Vinylpyridine der allgemeinen Formel II e und II f

in denen die Variablen folgende Bedeutung haben:

20 R², R³, R⁴, R⁶ unabhängig voneinander Wasserstoff, C₁-C₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl und tert.-Butyl; oder Phenyl, vorzugsweise Wasserstoff;

 R^5

10

15

25

30

40

4

A¹ C_1 - C_{20} -Alkylen, beispielsweise - CH_2 -, - $CH(CH_3)$ -, - $(CH_2)_2$ -, - CH_2 - $CH(CH_3)$ -, - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_5$ -, - $(CH_2)_6$ -, vorzugsweise C_1 - C_3 -Alkylen; insbesondere - CH_2 -, - $(CH_2)_2$ - oder - $(CH_2)_3$ -.

5 X⁻ -SO₃⁻, -OSO₃⁻, -COO⁻, -OPO(OH)O⁻, -OPO(OR⁵)O⁻ oder -PO(OH)O⁻;

C₁-C₂₄-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, neo-Pentyl, 1,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec.-Hexyl, n-Heptyl, n-Octyl, n-Nonyl, n-Decyl; besonders bevorzugt C₁-C₄-Alkyl wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec.-Butyl

und tert.-Butyl.

Beispiele für insbesondere bevorzugte betainische einpolymerisierte Monomere B2 sind Monomere der Formeln II b, II e und II f, in denen die Gruppierung $A^1 - X^-$ für -CH₂-COO⁻, -(CH₂)₂-SO₃⁻ oder -(CH₂)₃-SO₃⁻ steht und die übrigen Variablen jeweils für Wasserstoff.

Es eignen sich auch Vinylimidazole und Vinylpyridine als einpolymerisierte Monomere 20 B2, die vor oder nach der Polymerisation quaternisiert wurden.

Die Quaternisierung kann insbesondere mit Alkylierungsmitteln wie Alkylhalogeniden, die in der Regel 1 bis 24 C-Atome im Alkylrest aufweisen, oder Dialkylsulfaten, die im allgemeinen Alkylreste mit 1 bis 10 C-Atomen enthalten, vorgenommen werden. Beispiele für geeignete Alkylierungsmittel aus diesen Gruppen sind Methylchlorid, Methylbromid, Methyliodid, Ethylchlorid, Ethylbromid, Propylchlorid, Hexylchlorid, Dodecylchlorid und Laurylchlorid sowie Dimethylsulfat und Diethylsulfat. Weitere geeignete Alkylierungsmittel sind z.B.: Benzylhalogenide, insbesondere Benzylchlorid und Benzylbromid; Chloressigsäure; Fluorschwefelsäuremethylester; Diazomethan; Oxoniumverbindungen, wie Trimethyloxoniumtetrafluoroborat; Alkylenoxide, wie Ethylenoxid, Propylenoxid und Glycidol, die in Gegenwart von Säuren zum Einsatz kommen; kationische Epichlorhydrine. Bevorzugte Quaternisierungsmittel sind Methylchlorid, Dimethylsulfat und Diethylsulfat.

Beispiele für besonders geeignete einpolymerisierte quaternisierte Monomere B2 sind 1-Methyl-3-vinylimidazoliummethosulfat und -methoclorid.

Das Gewichtsverhältnis der einpolymerisierten Monomere B1 und B2 beträgt in der Regel 99:1 bis 1:99, bevorzugt 90:10 bis 30:70, besonders bevorzugt 90:10 bis 50:50, ganz besonders bevorzugt 80:20 bis 50:50 und insbesondere 80:20 bis 60:40.

15

5

Die erfindungsgemäß verwendeten Copolymerisate können ein oder mehrere weitere Monomere B3 einpolymerisiert enthalten, beispielsweise carboxylgruppenhaltige monoethylenisch ungesättigte Monomere, beispielsweise C₂-C₁₀-ungesättigte Mono- oder Dicarbonsäuren und deren Derivate wie Salze, Ester, Amide und Anhydride. Beispielhaft seien genannt:

Säuren und ihre Salze wie beispielsweise (Meth)-acrylsäure, Fumarsäure, Maleinsäure und die jeweiligen Alkali- oder Ammoniumsalze; Anhydride wie beispielsweise Maleinsäureanhydrid;

- 10 Ester wie beispielsweise (Meth)-acrylsäuremethylester, (Meth)-acrylsäureethylester, (Meth)-acrylsäure-n-butylester, Dimethylmaleat, Diethylmaleat, Dimethylfumarat, Diethylfumarat, Di-n-butylfumarat,
 - Weitere Beispiele für B3 sind Vinylacetat und Vinylpropionat sowie ethylenisch ungesättigte Verbindungen der allgemeinen Formel III a bis III d,

$$R^1$$
 $CH_2)_y$
 CH_2
 C

wobei die Formeln wie folgt definiert sind:

- 20 R¹ ist wie oben definiert,
 - Y¹ ist gewählt aus Sauerstoff oder NH,
- y ist eine ganze Zahl, gewählt aus 1 oder 0,
- 25 Y^2 $[A^2-O]_s-[A^3-O]_u-[A^4-O]_v-R^8$
 - A² bis A⁴ gleich oder verschieden und unabhängig voneinander - $(CH_2)_2$ -, - $(CH_2)_3$ -, - $(CH_2)_4$ -, - $(CH_2)_4$

15

25

30

40

6

	ь
R ⁸	Wasserstoff, Amino-C ₁ -C ₆ -alkyl, wobei es sich um eine primäre, sekundäre oder tertiäre Aminogruppe handeln kann, beispielsweise -CH ₂ -NH ₂ , -(CH ₂) ₂ -NH ₂ , -CH ₂ -CH(CH ₃)-NH ₂ , -CH ₂ -NHCH ₃ , -CH ₂ -N(CH ₃) ₂ , -N(CH ₃) ₂ , -N(C ₃ -NHCH ₃ , -N(C ₂ H ₅) ₂ ; C ₁ -C ₂₄ -Alkyl; R ⁹ -CO-, R ⁹ -NH-CO-;
R ⁹	C ₁ -C ₂₄ -Alkyl;
R ¹⁰	Wasserstoff CCAlkyl P ⁹ .CO.

10 wasserston, C₁-C₂₄-Aikyi, H²-CO-;

s ganze Zahlen im Bereich von 0 bis 500;

u gleich oder verschieden und ganze Zahlen im Bereich von jeweils1 bis 5000;

v gleich oder verschieden und ganze Zahlen im Bereich von jeweils 0 bis 5000;

w gleich oder verschieden und ganze Zahlen im Bereich von jeweils
20 0 bis 5000.

Die C_1 - C_{24} -Alkylreste in Formel III a bis III d können verzweigte oder unverzweigte C_1 - C_{24} -Alkylreste sein, wobei C_1 - C_{12} -Alkylreste bevorzugt und C_1 - C_6 -Alkylreste besonders bevorzugt sind. Als Beispiele seien Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 2-Ethylhexyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl und n-Eicosyl genannt.

In einer speziellen Ausführungsform ist das erfindungsgemäße Verfahren dadurch gekennzeichnet, dass man als Copolymer im erfindungsgemäßen Verfahren ein oder mehrere Pfropfcopolymerisate einsetzt.

Bevorzugt verwendete Pfropfcopolymerisate sind beispielsweise solche, die neben den Monomeren B1 und B2 auch solche Comonomere B3 einpolymerisiert enthalten, die den Formeln III a bis III d entsprechen.

In einer bevorzugten Ausführungsform verwendet man solche Pfropfcopolymerisate, welche aufgebaut sind aus

einer polymeren Pfropfgrundlage A, die keine monoethylenisch ungesättigten Einheiten aufweist, und

polymeren Seitenketten B, gebildet aus Copolymeren von mindestens zwei monoethylenisch ungesättigten Monomeren B1 und B2, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten, und optional weiteren Comonomeren B3.

10

5

Die in der im Folgenden beschriebenen Ausführungsform des erfindungsgemäßen Verfahrens verwendeten Pfropfcopolymerisate, die kammartig aufgebaut sein können, können durch ihr Verhältnis von Seitenketten B zu polymerer Pfropfgrundlage A charakterisiert werden. Der Anteil der Seitenketten B an den Pfropfcopolymerisaten ist vorteilhaft größer als 35 Gew.-%, bezogen auf das Gesamt-Pfropfcopolymerisat. Bevorzugt beträgt der Anteil 55 bis 95 Gew.-%, besonders bevorzugt 70 bis 90 Gew.-%.

15

Die Seitenketten B der Pfropfcopolymerisate enthalten als Monomer B1 vorzugsweise mindestens ein cyclisches Amid der allgemeinen Formel I

20

einpolymerisiert, wobei in Formel I die Variablen wie oben definiert sind.

25

Im einzelnen seien als einpolymerisiertes Monomer B1 beispielsweise N-Vinylpyrrolidon, N-Vinyl- δ -valerolactam und N-Vinyl- ϵ -caprolactam genannt, wobei N-Vinylpyrrolidon bevorzugt ist.

In einer Ausführungsform der vorliegenden Erfindung enthalten die Seitenketten B vorzugsweise mindestens ein monoethylenisch ungesättigtes Monomer B2 einpolymerisiert, das einen stickstoffhaltigen Heterocyclus, ausgewählt aus der Gruppe der Pyrrole, Pyrrolidine, Pyridine, Chinoline, Isochinoline, Purine, Pyrazole, Imidazole, Triazole, Tetrazole, Indolizine, Pyridazine, Pyrimidine, Pyrazine, Indole, Isoindole, Oxazole, Oxazolidone, Oxazolidine, Morpholine, Piperazine, Piperidine, Isoxazole, Thiazole, Isothiazole, Indoxyle, Isatine, Dioxindole und Hydanthoine und deren Derivaten, z.B.

35 Barbitursäure und Uracil und deren Derivate, enthält.

15

Я

Bevorzugte Heterocyclen sind dabei Imidazole, Pyridine und Pyridin-N-oxide, wobei Imidazole besonders bevorzugt sind.

Beispiele für besonders geeignete Comonomere B2 sind N-Vinylimidazole, Alkylvinylimidazole, insbesondere Methylvinylimidazole wie 1-Vinyl-2-methylimidazol, 3-Vinylimidazol-N-oxid, 2- und 4-Vinylpyridine, 2- und 4-Vinylpyridin-N-oxide sowie betainische Derivate und Quaternisierungsprodukte dieser Monomere.

Ganz besonders bevorzugte einpolymerisierte Comonomere B2 sind N-Vinylimidazole der allgemeinen Formel II a, betainische N-Vinylimidazole der allgemeinen Formel II b, 2- und 4-Vinylpyridine der allgemeinen Formel II c und II d sowie betainische 2- und 4-Vinylpyridine der allgemeinen Formel II e und II f.

Beispiele für ganz besonders bevorzugte betainische einpolymerisierte Monomere B2 sind Monomere der Formeln II b, II e und II f, in denen die Gruppierung $A^1 - X^1$ für $-CH_2-COO^1$, $-(CH_2)_2-SO_3^1$ oder $-(CH_2)_3-SO_3^1$ steht und die übrigen Variablen jeweils für Wasserstoff.

Es eignen sich auch Vinylimidazole und Vinylpyridine als einpolymerisierte Monomere B2, die vor oder nach der Polymerisation quaternisiert wurden.

Die Quaternisierung kann insbesondere wie oben beschrieben vorgenommen werden.

Beispiele für besonders geeignete einpolymerisierte quaternisierte Monomere B2 sind 1-Methyl-3-vinylimidazoliummethosulfat und -methoclorid.

Das Gewichtsverhältnis der einpolymerisierten Monomere B1 und B2 beträgt in der Regel 99:1 bis 1:99, bevorzugt 90:10 bis 30:70, besonders bevorzugt 90:10 bis 50:50, ganz besonders bevorzugt 80:20 bis 50:50 und insbesondere 80:20 bis 60:40.

Die erfindungsgemäß verwendeten Pfropfcopolymerisate können ein oder mehrere weitere Monomere B3 in den Seitenketten einpolymerisiert enthalten, z.B. carboxylgruppenhaltige monoethylenisch ungesättigte Monomere, beispielsweise C₂-C₁₀-ungesättigte Mono- oder Dicarbonsäuren und deren Derivate wie Salze, Ester, Anhydride und die wie oben stehend definiert sind.

Die polymere Pfropfgrundlage A der erfindungsgemäß verwendeten Pfropfcopolymerisate ist bevorzugt ein Polyether. Der Begriff "polymer" soll dabei auch oligomere Verbindungen mit umfassen.

30

Besonders bevorzugte polymere Pfropfgrundlagen A haben ein mittleres Molekulargewicht M_n von mindestens 300 g.

Besonders bevorzugte polymere Pfropfgrundlagen A weisen die allgemeine 5 Formel IV a

IV a

auf oder IV b

$$\begin{bmatrix} O & A^2 & J_u & J_v & J_v$$

IV_b

10 auf, in denen die Variablen folgende Bedeutung haben:

Hydroxy, Amino, C₁-C₂₄-Alkoxy wie beispielsweise Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, n-Butoxy, iso-Butoxy, sec.-Butoxy, tert.-Butoxy, n-Pentoxy, iso-Pentoxy, n-Hexoxy iso-Hexoxy, R⁹-COO-, R⁹-NH-COO-, Polyalkoholrest wie beispielsweise Gylcerinyl;

A² bis A⁴ gleich oder verschieden und jeweils - $(CH_2)_2$ -, - $(CH_2)_3$ -, - $(CH_2)_4$ -, - CH_2 - $CH(CH_3)$ -, - CH_2 - $CH(CH_2$ - $CH_3)$ -, - CH_2 - $CHOR^{10}$ - CH_2 -;

Wasserstoff, Amino- C_1 - C_6 -alkyl, wobei es sich um eine primäre, sekundäre oder tertiäre Aminogruppe handeln kann, beispielsweise CH_2 - NH_2 , - $(CH_2)_2$ - NH_2 , - CH_2 - $CH(CH_3)$ - NH_2 , - CH_2 - $NHCH_3$, - CH_2 - $N(CH_3)_2$, - $N(CH_3)_2$, - $N(CH_3)_2$;

5 C₁-C₂₄-Alkyl; R⁹-CO-, R⁹-NH-CO-;

15

25

30

A⁵ -CO-O-, -CO-B-CO-O-, -CO-NH-B-NH-CO-O-;

10 A⁶ C₁-C₂₀-Alkylen, dessen Kohlenstoffkette durch 1 bis 10 Sauerstoffatome als Etherfunktionen unterbrochen sein kann;

B -(CH₂)_t-, Arylen, beispielsweise para-Phenylen, meta-Phenylen, ortho-Phenylen, 1,8-Naphthylen, 2,7-Naphthylen, substituiert oder unsubstituiert;

n 1 oder, wenn R⁷ einen Polyalkoholrest bedeutet, 1 bis 8;

t ganze Zahlen im Bereich von 1 bis 12;

20 und die übrigen Variablen wie oben stehend definiert sind.

Bei polymere Pfropfgrundlagen A der Formel IV a handelt es sich vorzugsweise um Polyether aus der Gruppe der Polyalkylenoxide auf Basis von Ethylenoxid, Propylenoxid und Butylenoxiden, Polytetrahydrofuran sowie Polyglycerin. Je nach Art der Monomerbausteine ergeben sich Polymerisate mit folgenden Struktureinheiten:

-(CH₂)₂-O-, -(CH₂)₃-O-, -(CH₂)₄-O-, -CH₂-CH(CH₃)-O-, -CH₂-CH(CH₂-CH₃)-O-, -CH₂-CHOR⁸-CH₂-O-

Geeignet sind sowohl Homopolymerisate als auch Copolymerisate, wobei es sich bei den Copolymerisaten um statistische Copolymerisate oder um Blockcopolymerisate handeln kann.

Die endständigen primären Hydroxylgruppen der auf Basis von Alkylenoxiden oder

Glycerin hergestellten Polyether sowie die sekundären OH-Gruppen von Polyglycerin können frei vorliegen oder auch mit C₁-C₂₄-Alkoholen verethert, mit C₁-C₂₄-Carbonsäuren verestert oder mit Isocyanaten zu Urethanen umgesetzt sein. Für diesen Zweck geeignete Alkohole sind z.B.: primäre aliphatische Alkohole, wie Methanol, Ethanol, Propanol und Butanol, primäre aromatische Alkohole, wie Phenol, Isopropylphenol, tert.-Butylphenol, Octylphenol, Nonylphenol und Naphthol, sekundäre aliphatische Al-

10

15

20

25

30

35

40

11

kohole, wie Isopropanol, tertiäre aliphatische Alkohole, wie tert.-Butanol und mehrwertige Alkohole, z.B. Diole, wie Ethylenglykol, Diethylenglykol, Propylenglykol, 1,3-Propandiol und Butandiol, und Triole, wie Glycerin und Trimethylolpropan. Die Hydroxylgruppen können jedoch auch durch reduktive Aminierung mit Wasserstoff-Ammoniak-Gemischen unter Druck gegen primäre Aminogruppen ausgetauscht oder durch Cyanethylierung mit Acrylinitril und Hydrierung in Aminopropylenendgruppen umgewandelt sein. Die Umwandlung der Hydroxyl-Endgruppen kann dabei nicht nur nachträglich durch Umsetzung mit Alkoholen oder mit Alkalimetallaugen, Aminen und Hydroxylaminen erfolgen, sondern diese Verbindungen können wie Lewis-Säuren, z.B. Bortrifluorid, auch zu Beginn der Polymerisation als Starter verwendet werden. Schließlich können die Hydroxyl-Endgruppen auch durch Umsetzung mit Alkylierungsmitteln, wie Dimethylsulfat, verethert werden.

Die C₁-C₂₄-Alkylreste in Formel IV a und IV b können verzweigte oder unverzweigte C₁-C₂₄-Alkylreste sein, wobei C₁-C₁₂-Alkylreste bevorzugt und C₁-C₆-Alkylreste besonders bevorzugt sind. Als Beispiele seien Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethylethyl, n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1,1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl, 1-Ethyl-2-methylpropyl, n-Heptyl, 2-Ethylhexyl, n-Octyl, n-Nonyl, n-Decyl, n-Undecyl, n-Dodecyl, n-Tridecyl, n-Tetradecyl, n-Pentadecyl, n-Hexadecyl, n-Heptadecyl, n-Octadecyl, n-Nonadecyl und n-Eicosyl genannt.

Das mittlere Molekulargewicht M_n der Polyether der allgemeinen Formel IV a beträgt mindestens 300 g/mol und ist in der Regel \leq 100.000 g/mol. Es beträgt bevorzugt 500 g/mol bis 50.000 g/mol, besonders bevorzugt bis 10.000/mol g und ganz besonders bevorzugt bis 2000 g/mol. Die Polydispersität der Polyether der allgemeinen Formel IV a ist in den meisten Fällen gering, beispielsweise im Bereich von 1,1 bis 1,8.

Man kann Homo- und Copolymerisate von Ethylenoxid, Propylenoxid, Butylenoxid und Isobutylenoxid, die linear oder verzweigt sein können, als polymere Pfropfgrundlage A verwenden. Der Begriff Homopolymerisate umfasst im Rahmen der vorliegenden Erfindung auch solche Polymerisate, die außer der polymerisierten Alkylenoxideinheit noch die reaktiven Moleküle enthalten, die zur Initiierung der Polymerisation der cyclischen Ether bzw. zur Endgruppenverschließung des Polymerisats verwendet wurden.

Verzweigte Polymerisate können hergestellt werden, indem man beispielsweise an niedrigmolekulare Polyalkohole (Reste R⁷ in Formel IV a und IV b), z.B. Pentaerythrit,

35

12

Glycerin und Zucker bzw. Zuckeralkohole, wie Saccharose, D-Sorbit und D-Mannit, Disaccharide, Ethylenoxid und gewünschtenfalls Propylenoxid und/oder Butylenoxide oder auch Polyglycerin anlagert.

- Dabei können Polymerisate gebildet werden, bei denen mindestens eine, bevorzugt eine bis acht, besonders bevorzugt eine bis fünf der in dem Polyalkoholmolekül vorhandenen Hydroxylgruppen in Form einer Etherbindung mit dem Polyetherrest gemäß Formel IVa bzw. IVb verknüpft sein können.
- 10 Vierarmige Polymerisate können erhalten werden, indem man die Alkylenoxide an Diamine, vorzugsweise Ethylendiamin, anlagert.
 - Weitere verzweigte Polymerisate können hergestellt werden, indem man Alkylenoxide mit höherwertigen Aminen, z.B. Triaminen, oder insbesondere Polyethyleniminen umsetzt. Hierfür geeignete Polyethylenimine haben in der Regel mittlere Molekulargewichte M_n von 300 bis 20000 g, bevorzugt 500 bis 10000 g und besonders bevorzugt 500 bis 5000 g. Das Gewichtsverhältnis von Alkylenoxid zu Polyethylenimin beträgt üblicherweise im Bereich von 100:1 bis 0,1:1, vorzugsweise im Bereich von 20:1 bis 0,5:1.
- Es ist auch möglich, Polyester von Polyalkylenoxiden und aliphatischen C₁-C₁₂-, bevorzugt C₁-C₆-Dicarbonsäuren oder aromatischen Dicarbonsäuren, z.B. Oxalsäure, Bernsteinsäure, Adipinsäure oder Terephthalsäure, mit mittleren Molekulargewichten M_n von 1500 bis 25000 g/mol als polymere Pfropfgrundlage A zu verwenden.
- Es ist weiterhin möglich, anstatt IV a und IV b durch Phosgenierung hergestellte Polycarbonate von Polyalkylenoxiden oder auch Polyurethane von Polyalkylenoxiden und aliphatischen C₁-C₁₂-, bevorzugt C₁-C₆-Diisocyanaten oder aromatischen Diisocyanaten, z.B. Hexamethylendiisocyanat oder Phenylendiisocyanat, als polymere Pfropfgrundlage A zu verwenden.
 - Diese Polyester, Polycarbonate oder Polyurethane können bis zu 500, bevorzugt bis zu 100 Polyalkylenoxideinheiten enthalten, wobei die Polyalkylenoxideinheiten sowohl aus Homopolymerisaten als auch aus Copolymerisaten unterschiedlicher Alkylenoxide bestehen können.
 - Besonders bevorzugt werden Homo- und Copolymerisate von Ethylenoxid und/oder Propylenoxid als polymere Pfropfgrundlage A für das erfindungsgemäße Verfahren verwendet, die einseitig oder beidseitig endgruppenverschlossen sein können.

15

20

25

30

35

40

13

Ein Effekt von Polypropylenoxid und copolymeren Alkylenoxiden mit hohem Propylenoxidanteil liegt darin, dass die Pfropfung leicht erfolgt.

Ein Effekt von Polyethylenoxid und copolymeren Alkylenoxiden mit hohem Ethylenoxidanteil besteht darin, dass bei erfolgter Pfropfung und gleicher Pfropfdichte wie bei Polypropylenoxid das Gewichtsverhältnis von Seitenkette zu polymere Pfropfgrundlage größer ist.

Die K-Werte der erfindungsgemäß verwendeten Pfropfcopolymerisate betragen üblicherweise 10 bis 150, bevorzugt 10 bis 80 und besonders bevorzugt 15 bis 60 (bestimmt nach H. Fikentscher, Cellulose-Chemie, Bd. 13, S. 58 bis 64 und 71 bis 74 (1932) in Wasser bzw. 3 Gew.-% wässrigen Natriumchloridlösungen bei 25°C und Polymerkonzentrationen, die je nach K-Wert-Bereich bei 0,1 Gew.-% bis 5 Gew.-% liegen). Der jeweils gewünschte K-Wert lässt sich durch die Zusammensetzung der Einsatzstoffe einstellen. Bei 100% theoretischem Pfropfgrad wird das Molekulargewicht der Produkte gegeben durch Molekulargewicht der Pfropfbasis und dem Anteil der Comonomere, die als Seitenketten abreagieren. Je mehr Moleküle man als Pfropfbasis einsetzt, desto mehr Endmoleküle hat man und umgekehrt. Die Seitenkettendichte ist durch die Startermenge und die Reaktionsbedingungen einstellbar.

Bei einem weiteren Verfahren zur Herstellung der erfindungsgemäß verwendeten Pfropfcopolymerisate werden die Monomere B1 und B2 und gegebenenfalls weitere Comonomere B3 in Gegenwart der polymeren Pfropfgrundlage A radikalisch polymerisiert.

Die Polymerisation kann beispielsweise im Sinne einer Lösungspolymerisation, Polymerisation in Substanz, Emulsionspolymerisation, umgekehrten Emulsionspolymerisation, Suspensionspolymerisation, umgekehrten Suspensionspolymerisation oder Fällungspolymerisation geführt werden. Bevorzugt sind die Polymerisation in Substanz und vor allem die Lösungspolymerisation, die insbesondere in Gegenwart von Wasser durchgeführt wird.

Bei der Polymerisation in Substanz kann man so vorgehen, dass man die Monomere B1 und B2 in der polymeren Pfropfgrundlage A löst, die Mischung auf die Polymerisationstemperatur erhitzt und nach Zugabe eines Radikalstarters auspolymerisiert. Die Polymerisation kann auch halbkontinuierlich durchgeführt werden, indem man zunächst einen Teil, z.B. 10 Gew.-%, der Mischung aus polymerer Pfropfgrundlage A, Monomer B1 und B2 und Radikalstarter vorlegt und auf Polymerisationstemperatur erhitzt und nach dem Anspringen der Polymerisation den Rest der zu polymerisierenden Mischung nach Fortschritt der Polymerisation zugibt. Man kann jedoch auch die

polymere Pfropfgrundlage A in einem Reaktor vorlegen und auf Polymerisationstemperatur erhitzen und Monomer B1 und B2 (getrennt oder als Mischung) und den Radikalstarter entweder auf einmal, absatzweise oder vorzugsweise kontinuierlich zufügen und polymerisieren.

5

10

15

20

Die oben beschriebene Pfropfcopolymerisation kann in einem oder mehreren Lösungsmittel durchgeführt werden. Geeignete organische Lösungsmittel sind beispielsweise aliphatische und cycloaliphatische einwertige Alkohole, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sek.-Butanol, tert.-Butanol, n-Hexanol und Cyclohexanol, mehrwertige Alkohole, z.B. Glykole, wie Ethylenglykol, Propylenglykol und Butylenglykol, und Glycerin, Alkylether mehrwertiger Alkohole, z.B. Methylund Ethylether der genannten zweiwertigen Alkohole, sowie Etheralkohole, wie Diethylenglykol und Triethylenglykol, sowie cyclische Ether, wie Dioxan.

Bevorzugt wird die Pfropfcopolymerisation in Wasser als Lösungsmittel durchgeführt. Hierbei sind A, B1 und B2 und gegebenenfalls weitere Comonomere B3 in Abhängigkeit von der verwendeten Wassermenge mehr oder weniger gut gelöst. Das Wasser kann - teilweise oder ganz - auch im Laufe der Polymerisation zugegeben werden. Selbstverständlich können auch Mischungen von Wasser und den oben genannten organischen Lösungsmitteln zum Einsatz kommen.

Üblicherweise verwendet man 5 bis 250 Gew.-%, vorzugsweise 10 bis 150 Gew.-%, organisches Lösungsmittel, Wasser oder Gemisch aus Wasser und organischem Lösungsmittel, bezogen auf das Pfropfcopolymerisat.

25

Bei der Polymerisation in Wasser werden in der Regel 10 bis 70 Gew.-%, bevorzugt 20 bis 50 Gew.-% Lösungen bzw. Dispersionen der erfindungsgemäßen Pfropfcopolymerisate erhalten, die mit Hilfe verschiedener Trocknungsverfahren, z.B. Sprühtrocknung, Fluidized Sprühtrocknung, Walzentrocknung oder Gefriertrocknung, in Pulverform überführt werden können. Durch Eintragen in Wasser kann dann zum gewünschten Zeitpunkt leicht wieder eine wässrige Lösung bzw. Dispersion hergestellt werden.

30

Als Radikalstarter eignen sich vor allem Peroxoverbindungen, Azoverbindungen, Redoxinitiatorsysteme und reduzierende Verbindungen. Selbstverständlich kann man auch Mischungen von Radikalstartern verwenden.

35

40

Beispiele für geeignete Radikalstarter sind im einzelnen: Alkalimetallperoxodisulfate, z.B. Natriumperoxodisulfat, Ammoniumperoxodisulfat, Wasserstoffperoxid, organische Peroxide, wie Diacetylperoxid, Di-tert.-butylperoxid, Diamylperoxid, Dioctanoylperoxid, Didecanoylperoxid, Dilauroylperoxid, Dibenzoylperoxid, Bis-(o-toloyl)peroxid, Succinyl-

peroxid, tert.-Butylperacetat, tert.-Butylpermaleinat, tert.-Butylperisobutyrat, tert.-Butylperpivalat, tert.-Butylperoctoat, tert.-Butylperocedat, tert.-Butylperbenzoat, tert.-Butylperoxid, tert.-Butylhydroperoxid, Cumolhydroperoxid, tert.-Butylperoxi-2-ethylhexanoat und Diisopropylperoxidicarbamat; Azobisisobutyronitril, Azobis(2-amidopropan)dihydrochlorid und 2,2'-Azobis(2-methylbutyronitril); Natriumsulfit, Natriumbisulfit, Natriumformaldehydsulfoxilat und Hydrazin und Kombinationen der vorgenannten Verbindungen mit Wasserstoffperoxid; Ascorbinsäure/Eisen(II)sulfat/Na₂S₂O₈, tert.-Butylhydroperoxid/Natriumdisulfit und tert.-Butylhydroperoxid/Natriumhydroxymethansulfinat.

10

5

Bevorzugte Radikalstarter sind z.B. tert.-Butylperpivalat, tert.-Butylperoctoat, tert.-Butylper-neodecanoat, tert.-Butylperoxid, tert.-Butylhydroperoxid, Azobis(2-methylpropion-amidin)dihydrochlorid, 2,2'-Azobis(2-methylbutyronitril), Wasserstoffperoxid und Natriumperoxodisulfat, denen Redoxmetallsalze, z.B. Eisensalze, in geringen Mengen zugesetzt werden können.

15

Üblicherweise werden, bezogen auf die Monomere B1 und B2, 0,01 bis 10 Gew.-%, vorzugsweise 0,1 bis 5 Gew.-%, Radikalstarter eingesetzt.

20 Gewünschtenfalls können auch Polymerisationsregler zum Einsatz kommen. Geeignet sind die dem Fachmann bekannten Verbindungen, z.B. Schwefelverbindungen, wie Mercaptoethanol, 2-Ethylhexylthioglykolat, Thioglykolsäure und Dodecylmercaptan, aber auch andere Reglertypen wir z.B. Bisulfit und Hypophosphit. Wenn Polymerisationsregler verwendet werden, beträgt ihre Einsatzmenge in der Regel 0.1 bis 25 15 Gew.-%, bevorzugt 0,1 bis 5 Gew.-% und besonders bevorzugt 0,1 bis 2,5 Gew.-%, bezogen auf Monomere B1 und B2.

Die Polymerisationstemperatur liegt in der Regel bei 30 bis 200°C, bevorzugt bei 50 bis 150°C und besonders bevorzugt bei 75 bis 110°C.

30

Die Polymerisation wird üblicherweise unter atmosphärischem Druck durchgeführt, kann jedoch auch unter vermindertem oder erhöhtem Druck, z.B. bei 0,5 oder 5 bar, ablaufen.

35

40

Das erfindungsgemäße Nachreinigungsverfahren wird unter Verwendung eines oder mehrerer erfindungsgemäßen Nachseifmittel in einer üblicherweise wässrigen Flotte ausgeübt. Die Flotte kann dabei Fremdsalze enthalten, beispielsweise NaCl oder Glaubersalz, in Mengen von bis zu 15 Gew.-%, bezogen auf die Flotte. Das zur Herstellung der wässrigen Flotte eingesetzte Wasser muss nicht enthärtet werden: Wasserhärten von bis zu 30 ° dH (deutscher Härte) sind denkbar.

20

25

30

Das erfindungsgemäße Nachreinigungsverfahren kann bei Normaldruck ausgeübt werden, jedoch sind auch erhöhte Drücke wie beispielsweise 1,1 bis 5 bar denkbar.

Zur Ausübung des erfindungsgemäßen Nachreinigungsverfahrens kann man bedruckte Textilien in einem oder mehreren Seifbädern behandeln, wobei Temperatur-, Druck- und pH-Bedingungen in den Seifbädern gleich oder verschieden gewählt werden können. Vorzugsweise verwendet man ein bis drei, besonders bevorzugt ein oder zwei Seifbäder. Vorzugsweise sind Druck- und Temperaturbedingungen in den jeweils unterschiedlichen Seifbädern gleich.

Wenn man mehrere Seifbäder einzusetzen wünscht, so entsorgt man üblicherweise die gebrauchten Seifbäder zwischen den einzelnen Seifbädern und setzt jeweils neue Seifbäder an. Dabei ist es möglich, Seifbäder mit gleicher oder auch Seifbäder mit unterschiedlicher Zusammensetzung zu verwenden. Mindestens ein Seifbad muss jedoch eines oder mehrere der erfindungsgemäßen Nachseifmittel enthalten.

Die Konzentration der erfindungsgemäß verwendeten Nachseifmittel in dem oder den Seifbädern beträgt üblicherweise 1 bis 8 g/l, vorzugsweise 1 bis 4 g/l.

Der pH-Wert des oder der im erfindungsgemäßen Nachreinigungsverfahren verwendeten Seifbäder liegt im Bereich von 4 bis 12, bevorzugt 5 bis 11. Besonders bevorzugt ist der pH-Wert neutral oder leicht sauer. Zur Einstellung des pH-Werts verwendet man üblicherweise organische Carbonsäuren wie z.B. aliphatische Monocarbonsäuren wie Essigsäure, Ameisensäure, Propionsäure, weiterhin aliphatische Dicarbonsäuren wie beispielsweise Adipinsäure, Bernsteinsäure, Zitronensäure, oder Polycarbonsäuren. Ganz besonders bevorzugt sind dabei Carbonsäuren, die nur einen sehr geringen Dampfdruck bei Raumtemperatur aufweisen. Demgemäß sind aliphatische Dicarbonsäuren, Zitronensäure und Polycarbonsäuren bevorzugt..

Bevorzugt eingesetzte aliphatische Dicarbonsäuren weisen die allgemeine Formel

$$HO_2C-(CH_2)_i-(O-(CH_2)_j)_k-CO_2H$$

35 auf, in denen die Variablen i, j, k unabhängig voneinander 0 bis 9 bedeuten können. Besonders bevorzugt sind Carbonsäuren, in denen k 0 oder 1 und i und j unabhängig voneinander 1 bis 6 beträgt. Ganz besonders bevorzugt sind Carbonsäuren, in denen i und j unabhängig voneinander 1 bis 4 und k 0 oder 1 bedeuten. Insbesondere bevorzugt sind Gemische dieser Carbonsäuren beziehungsweise Gemische dieser Carbonsäuren mit Zitronensäure.

30

35

17

Bevorzugt eingesetzte aliphatische Dicarbonsäuren sind Bernsteinsäure, Glutarsäure, Adipinsäure, 2-Methylbernsteinsäure, 2 Methylglutarsäure, 3-Methylglutarsäure.

- 5 Bevorzugt eingesetzte Polycarbonsäuren stammen aus der Klasse der Polyacrylsäuren bzw. deren Copolymeren mit Maleinsäuren. Sie weisen ein mittleres Molekulargewicht M_n im Bereich von 1000 bis 150000 g/mol, bevorzugt 2000 bis 70000 g/mol auf.
- Das erfindungsgemäße Nachreinigungsverfahren wird üblicherweise bei erhöhten
 Temperaturen durchgeführt. Möglich sind Temperaturen von 50 bis 100°C und unter
 Druck sogar höhere Temperaturen. Bevorzugt sind Temperaturen von 60 bis 98°C.
 - Das Massenverhältnis von Flotte zu nachzureinigendem bedruckten Textil beträgt üblicherweise 1:4 bis 1:40, bevorzugt 1:6 bis 1:20. Während der Nachreinigung kann man die Flotte mit dem Textil bewegen. Die Einwirkdauer pro Seifbad ist an sich unkritisch, üblich sind 5 Minuten bis 10 Stunden, bevorzugt 10 bis 30 Minuten.
- Im Anschluss an das Nachseifen spült man üblicherweise die Textilien mit Wasser nach. Üblich sind ein bis 6, bevorzugt 2 bis 4 Spülgänge. Das Nachspülen erfolgt in dem oder den ersten Spülbädern üblicherweise mit warmem Wasser, d.h. Wasser von einer Temperatur von 35 bis 70°C. Die letzten Spülvorgänge erfolgen oft bei Raumtemperatur bis 40°C.
- Zur Ausübung des erfindungsgemäßen Nachreinigungsverfahrens kann man mindestens eine weitere Komponente einsetzen, durch welche die Nachreinigung der Textilien weiter verbessert werden kann.
 - Als weitere Komponenten sind beispielsweise nichtionische Tenside geeignet, beispielsweise mehrfach alkoxylierte Fettalkohole. Zur Alkoxylierung ist beispielsweise Ethylenoxid, Propylenoxid oder Butylenoxid geeignet oder Mischungen der vorgenannten Epoxide; bevorzugt ist Ethylenoxid. Geeignete Alkohole sind C₁₀-C₂₄-Alkohole, insbesondere C₁₂-C₁₈-Alkohole. Als Alkoxylierungsgrade sind 10 bis 40 Äquivalente Alkoxid pro Äquivalent Fettalkohol, insbesondere 15 bis 30 Äquivalente Alkoxid pro Äquivalent Fettalkohol und insbesondere 20 bis 25 Äquivalente Alkoxid pro Äquivalent Fettalkohol zu nennen. Dabei ist der Alkoxylierungsgrad jeweils als Durchschnittswert zu verstehen.
- Weitere in dem erfindungsgemäßen Nachreinigungsverfahren einsetzbare Komponenten sind Komplexbildner, beispielsweise phosphorhaltige Verbindungen wie Polyphosphate oder Alkyliden-Bisphosphonsäureverbindungen wie Hydroxymethyliden-Bisphosphosphora

phonsäure. Weiterhin geeignet sind Aminoessigsäurederivate wie beispielsweise Nitrilotriessigsäure oder Ethylendiamintetraessigsäure und die jeweiligen korrespondierenden Alkalimetallsalze.

Die Mengenverhältnisse der verschiedenen Komponenten im erfindungsgemäßen Nachreinigungsverfahren ist an sich unkritisch.

Man erhält durch das erfindungsgemäße Nachreinigungsverfahren sehr gut nachgereinigte Textilien, die äußerst geringe Mengen nichtfixierten Farbstoffs mehr enthalten und damit ein sehr gutes Wasch- und Kontaktechtheitsniveau aufweisen.

In einer weiteren Ausführungsform der vorliegenden Erfindung setzt man im erfindungsgemäßen Nachreinigungsverfahren mindestens ein Pfropfcopolymer ein, das als Pfropfgrundlage ein Copolymer aufweist, das Monomere B1 und B2 einpolymerisiert enthält und optional weitere Comonomere B3, wobei die Monomere B1, B2 und B3 wie oben stehend definiert sind.

Ein weiterer Gegenstand der vorliegenden Erfindung sind Nachseifmittel, durch deren Einsatz sich das erfindungsgemäße Nachreinigungsverfahren besonders gut ausüben lässt. Die erfindungsgemäßen Nachseifmittel enthalten mindestens ein Copolymerisat, das mindestens 2 monoethylenisch ungesättigte Monomere B1 und B2 einpolymerisiert enthält, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten. Beispielhafte Copolymerisate sind oben stehend beschrieben.

- 25 Bevorzugt handelt es sich bei dem in den erfindungsgemäßen Nachseifmitteln enthaltenen Copolymerisat um ein Pfropfcopolymerisat. Beispielhafte Pfropfcopolymerisate sind oben stehend beschrieben.
 - Die erfindungsgemäßen Nachseifmittel enthalten besonders bevorzugt mindestens ein Pfropfcopolymerisat, welches aufgebaut ist aus

einer polymeren Pfropfgrundlage A, die keine monoethylenisch ungesättigten Einheiten aufweist, und polymeren Seitenketten B, gebildet aus Copolymeren von mindestens zwei monoethylenisch ungesättigten Monomeren B1 und B2, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten, und optional weiteren Comonomeren B3.

Bevorzugt ist der Anteil der Seitenketten B in den erfindungsgemäßen Nachseifmitteln größer als 35 Gew.-%.

30

35

10

Bevorzugte Nachseifmittel enthalten zusätzlich zu den oben beschriebenen Pfropfpolymeren noch weitere Komponenten, beispielsweise Phosphorverbindungen und nichtionische Tenside, wobei besonders geeignete Phosphorverbindungen und nichtionische Tenside oben beschrieben sind.

5

10

Die erfindungsgemäßen Nachseifmittel können als Pulver eingesetzt werden. Sie können aber auch als wässrige Formulierung eingesetzt werden, wobei der Wasseranteil im Bereich von 5 bis 95, bevorzugt 20 bis 90 Gew.-%, bezogen auf die Summe der Komponenten, liegen kann. Bevorzugt ist der Einsatz als flüssige Formulierung, deren Dosierung beispielsweise mittels einer automatischen Dosieranlage geschehen kann.

15

25

30

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung der erfindungsgemäßen Nachseifmittel zur Nachreinigung von Textilien, die mit Reaktivfarbstoffen, Direktfarbstoffen oder Küpenfarbstoffen bedruckt worden sind. Gleichfalls ist Gegenstand der vorliegenden Erfindung ein Verfahren zur Nachreinigung von mit Reaktivfarbstoffen, Direktfarbstoffen oder Küpenfarbstoffen bedruckten Textilien, wobei sich die Nachreinigung an die Färbung anschließt und zur Entfernung von nicht an dem Textil gebundenen Farbstoff dient.

20 Die Erfindung wird durch Arbeitsbeispiele erläutert.

Beispiele

- 1. Synthese von erfindungsgemäß verwendeten Pfropfcopolymerisaten
- 1.1. Synthese von Pfropfcopolymerisat 1

In einem Reaktor mit Stickstoffzuführung, Rückflusskühler, Rühr- und Dosiervorrichtung wurden 10 g Polyethylenglykol mit einem mittleren Molekulargewicht M_w von 600 g/mol (Pluriol ®E, BASF Aktiengesellschaft) und 56,2 g Wasser unter Stickstoffzufuhr auf ca. 85°C Innentemperatur erhitzt. Dann wurde eine Mischung von 27,5 g N-Vinylpyrrolidon und 12,5 g N-Vinylimidazol kontinuierlich innerhalb von 3¼ Stunden zugegeben. Gleichzeitig mit dieser Mischung wurden kontinuierlich innerhalb von 3¼ Stunden 0,8 g 2,2′-Azobis(2-methylpropionamidin)dihydrochlorid (V50®, Fa. Wako Chemicals) zugegeben. Nach Beendigung der Zugabe wurde auf 60°C abgekühlt. Nach Erreichen dieser Temperatur wurden 0,3 g tert.-Butylhydroperoxid in 1,72 ml Wasser zugegeben. Anschließend wurden 0,2 g Na₂S₂O₅ in 6,26 ml Wasser zugefügt. Es wurde eine klare, leicht gelbe Polymerlösung erhalten. Der Feststoffanteil betrug 42 Gew.-%.

Der K-Wert wurde nach H. Fikentscher, Cellulose-Chemie Bd. 13, S. 58-64 und 71-74 bei 25°C in 3 Gew.-% wässriger NaCl-Lösung bestimmt und betrug 40.

15

20

25

20

1.2 Synthese von Copolymerisat 1

Ein Gemisch von 125 g N-Vinylpyrrolidon, 125 g N-Vinylimidazol und 600 g Wasser wurden in einem Kolben vorgelegt und unter Rühren in einer Stickstoffatmosphäre auf 65°C erwärmt. Sobald diese Temperatur erreicht war, gab man 5 g 2,2'-Azobis(2-aminopropan)dihydrochlorid zu, gelöst in 30 ml Wasser. Anschließend dosierte man innerhalb von einer Stunde eine Lösung von 5 g Mercaptoessigsäure zu, gelöst in 30 ml Wasser. Nach beendeter Dosierung wurde das Reaktionsgemisch 2 Stunden bei 65°C gerührt, dann mit 1,25 g 2,2'-Azobis(2-aminopropan)dihydrochlorid versetzt und weitere 3 Stunden bei 65°C gerührt. Man erhielt eine gelbe, klare und geruchsarme Polymerlösung. Der K-Wert des Copolymers betrug 30. Das Molekulargewicht Mw betrug 50.000 g/mol. Die wässrige Lösung hatte einen Feststoffgehalt von 30 Gew.-%.

- 2. Anwendungstechnische Prüfung
- 2.1. Allgemeine Vorschrift zur Herstellung von hydrolysierten Reaktivfarbstoffen

Zur Herstellung der für den Druck benötigten hydrolysierten Reaktivfarbstoffe/Reaktivfarbstoffmischungen wurden Lösungen mit den in Tabelle 1 angegebenen Mengen der
betreffenden handelsüblichen Reaktivfarbstoffe mit 40 ml Natronlauge 38°Be versetzt,
mit Wasser auf 1 laufgefüllt und die Lösung mit CaCl₂ auf 20° DH (Deutsche Härte)
eingestellt. Anschließend wurde innerhalb von 30 min von Raumtemperatur auf 98°C
erhitzt. Die so erhältlichen Hydrolysate wurden über eine Zeit von 120 min bei dieser
Temperatur gehalten und dann innerhalb von 30 min auf Raumtemperatur abgekühlt.
Zur Aufbewahrung wurden die Hydrolysate in braune Glasflaschen abgefüllt. Die Einsatzmengen der verwendeten Farbstoffe für die Hydrolysate H1 bis H8 sind in der Tabelle 1 aufgeführt.

Die für die Ankersysteme verwendeten Abkürzungen haben folgende Bedeutung:

MCT Monochlortriazinanker, MFT Monofluortriazinanker,

DA-MCT Doppelanker-Monochlortriazin und

VS Vinylsulfonanker.

5

10

15

Tabelle 1: Hydrolysate H1 bis H8

Farbstoff / Hydrolysat	H1	H2	НЗ	H4	H5	H6	H7	H8
Procion Orange H-ER	12,5							
Procion Rot 7B	12,5							
Procion Blau H-ERD	12,5		İ	; 		 		
Cibacron Gelb LS-R		12,5						
Cibacron Rot LS-6G		12,5		ŀ				
Cibacron Blau LS-3R	1	12,5		 	i	ľ		
Levafix Brilliant Rot E-RN			12,5					
Procion Türkis H-EXL				12,5				
Procion Karminrot H-EXL					12,5			
Procion Smaragd H-EXL						12,5		
Remazol Gelb GR							12,5	
Remazol Brillant Orange 3R				1			12,5	! !
Remazol Bril. Blau BB							12,5	
Procion Gelb H-EXL								12,5
Procion Karminrot H-EXL					•	İ		12,5
Procion Marine H-EXL								12,5
Ankersystem	мст	DA-	MFT	DA-	DA-	DA-	vs	DA-
		MCT		MCT	MCT	MCT		мст

Anschließend wurde Druckpasten D1 bis D8 hergestellt, indem 80 g des Aliginates Manutex F 700), 10 g p-Nitrosulfonsäure Na-Salz, 100 g Harnstoff und 25 g Na₂CO₃ und 5 g Natriumhexametaphosphat zur Wasserenthärtung und 20 g Farbstoffhydrolysat nach Tabelle 1 zu einer Druckpaste verrührt wurden. Die so erhältlichen Druckpasten D1 bis D8 wiesen eine dynamische Viskosität von 3 Pa·s auf.

2.2. Textildruck

5

15

20

25

30

35

Jeweils eine Druckpaste D1 bis D8 wurde auf einem MBK Flachfilmdrucktisch mit Magnetrakelsystem (Rakeldurchmesser 10 mm; 12 m/min; Zug 6) mittels einer Flachschablone (Gaze E50-55) auf 100%igem Baumwollgewebe abgedruckt. Anschließend wurde in einem Umluftschrank (Fa. Mathis) bei 80°C bis zur vollständigen Trockenheit des Druckes getrocknet.

Die Drucke wurden danach in einem Labordämpfer (Fa. Mathis, Labor HT-Dämpfer Mathis GD) bei 102°C während 10 min in mit Wasserdampf gesättigter Atmosphäre fixiert. Nach den Dämpfen wurden die Druckmuster der Nachseifung zugeführt.

2.3. Nachseifversuche

Die in Tabelle 3 angegebene Menge Nachseifmittel aus Tabelle 2 wurden mit 50 g Kochsalz in 1 I Wasser gelöst und mit CaCl₂ auf 10° DH eingestellt. 200 ml der so erhaltenen Flotte wurden auf 60°C temperiert. Mit Hilfe von Zitronensäure wurde gegebenenfalls der pH-Wert auf den in Tabelle 3 angegebenen Wert eingestellt. 10 g eines bedruckten Textils wurden in die Flotte gegeben und innerhalb von 10 min auf die in Tabelle 3 angegebene Temperatur aufgeheizt. Man ließ pro Seifbad 15 min einwirken und kühlte dann auf 60°C ab, wobei in den Beispielen, in denen mehrere Seifbäder verwendet wurden, jeweils die Flotte nach dem ersten Seifbad entsorgt und ein neues Seifbad angesetzt wurde. In den Experimenten wurde dazu das jeweils zweite Seifbad mit identischer Zusammensetzung eingesetzt. Das Textil wurde entnommen und mit der Hand ausgedrückt. Anschließend wurde zwei mal mit je 200 ml kaltem Wasser für jeweils 5 Minuten gespült. Anschließend wurde geschleudert und die Probe bei Raumtemperatur getrocknet.

Die Auswertung des Nachreinigungseffektes erfolgte wie folgt.

Zur Auswertung wurde von dem bedruckten, getrockneten Textil als Referenz und anschließend dem unbehandelten Textil das Remissionsspektrum mit einem Spektrometer (X-rite CA22) aufgenommen. Für beide wurden die K/S-Werte nach Kubelka-Munk berechnet. Anschließend wurden die K/S-Werte des unbehandelten Textils von dem bedruckten, getrockneten Textil abgezogen, um den reinen Farbstoffanteil des K/S-Werts des bedruckten, getrockneten Textils zu erhalten.

Analog wurde mit der nachgereinigten Probe vorgegangen. Man erhielt den reinen Farbstoffanteil des K/S-Werts des nachgereinigten Textils.

Die erhaltenen reinen Farbstoffanteile der K/S-Werte wurden dann im Bereich des Maximums der wellenlängenabhängigen Darstellung der K/S-Werte des bedruckten, getrockneten Textils ins Verhältnis gesetzt. Hierbei wurde der K/S-Wert des bedruckten, getrockneten Textils gleich 100% gesetzt. Je höher der K/S-Wert des nachgereinigten Textils im Vergleich zum nicht nachgereinigten bedruckten, getrockneten Textil war, desto schlechter wurde der Nachseifeffekt bewertet.

Als Nachseifmittel wurden die in der folgenden Tabelle 2 angegeben Substanzen bzw. Mischungen S1 bis S8 verwendet.

10

5

Tabelle 2: Zusammensetzung der erfindungsgemäßen Nachseifmittel S2 bis S7 und des Vergleichs-Nachseifmittels S1

Nachseifmittel	S1	S2	S3	S4	S5	S6	S7
Polyacrylsäure	100	<u> </u>	1	1			
1-Hydroxy- methylidenbisphosphon- säure		1	25	10	31,5		
Copolymerisat 1		100					
Pfropfcopolymerisat 1			25	10	35	35	100
n-C ₁₆ H ₃₃ -(OCH ₂ CH ₂) ₂₅ -OH			2,5	2,5	3,5		
Wasser			47,5	77,5	30	65	

Bei der für das in Vergleichsbeispielen verwendete Nachseifmittel S1 eingesetzten Polyacrylsäure handelt es sich um mit NaOH neutralisierte Polyacrylsäure mit einem Mw von 70.000 g, bestimmt durch Gelpermeationschromatographie; pH-Wert 8,5, als 45 Gew.-% wässrige Lösung.

20

25

30

Bei n-C₁₆H₃₃-(OCH₂CH₂)₂₅-OH handelt es sich um mit Ethylenoxid ethoxyliertes Hexadekanol, hergestellt nach der folgenden Vorschrift:

242 g Stearylalkohol und 0,1 mol KOH Schuppen wurden bei einer Temperatur von 100°C und einem Druck von 1 mbar in einer Zeit von 2 Stunden im Autoklaven entwässert, mit Stickstoff anschließend entspannt und 3 mal mit Stickstoff gespült und anschließend auf 130°C im Autoklaven erhitzt. Nach Erreichen der Temperatur wurden innerhalb von 3 h 20 min 1100 g Ethylenoxid kontinuierlich zudosiert bei einem Druck von bis zu 6,1 bar. Nach vollständiger Zugabe ließ man abreagieren, bis Druckkonstanz erreicht war. Anschließend wurde auf 100°C abgekühlt und im Autoklaven bei 1 mbar 60 min entgast und das Reaktionsprodukt bei 70°C ausgefüllt. Die Ausbeute betrug 1337 g.

Tabelle 3: Erfindungsgemäße Nachreinigungsbeispiele und Vergleichsbeispiele

	V61	V62	V63	64 ·	65	66	67
Hydrolysat Nr	H5	H5	H5	H5	H5	H5	H5
Einsatzmenge	20	20	20	20	20	20	20
Hydrolysat [g/l]					į		
Farbtiefe bedruck-	100	100	100	100	100	100	100
tes Textil %						l II	
Nachseifmittel		S1	S1	S7	S5	S5	S5
Anzahl Seifbäder	1	1	1	1	1	1	1
Temperatur Seif-	98	98	98	98	98	98	98
bad / Seifbäder							
[°C]							
Einsatzmenge		1	2	1	1	2	1
Seifmittel [g/l]					Ì		
pH-Wert	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Einwirkzeit [min]	10	10	10	10	10	10	10
NaCl-Gehalt Seif-	_	-	-	-	-	-	15
bad [g/l]							
K/S-Wert nachge-	0,38	0,43	0,50	0,02	0,04	0,02	0,05
reinigte Probe							

Verwendung von Copolymerisaten als Hilfsmittel für die Textilfärberei

Zusammenfassung

Verfahren zum Nachreinigen von bedrucktem Textil, dadurch gekennzeichnet, dass man mindestens ein Copolymer einsetzt, das mindestens 2 monoethylenisch ungesättigte Monomere B1 und B2 einpolymerisiert enthält, die jeweils mindestens einen stickstoffhaltigen Heterocyclus enthalten.