

SEQUENCE LISTING

<110> OLSON, ERIC
FREY, NORBERT

<120> METHODS AND COMPOSITIONS RELATING TO MUSCLE SPECIFIC
CALCINEURIN ASSOCIATED PROTEIN (CAP)

<130> UTSD:729US

<140> 10/045,594
<141> 2001-11-07

<150> 60/246,629
<151> 2000-11-07

<160> 12

<170> PatentIn Ver. 2.1

<210> 1
<211> 2531
<212> DNA
<213> Homo sapiens

<400> 1
gtcccaagggtt caaggataaa aaccatcagg cccaagtggcc atccatagtc catctccaga 60
gtcttcctcc acaaactggg attcatcccc gctaaaaag cacaatctaa cagcaaggga 120
acaaaaaaaaac catgttatca cataatacta ttagtgaagca gagaaaaacag caagcaacag 180
ccatcatgaa ggaagtccat gggaaatgtat ttgtatggcat ggacctgggc aaaaagggtca 240
gcatccccag agacatcatg ttggagaata tatccccatct cagtaaccgt ggtgccaggc 300
tatattaatgt gcgtaaaga agatctgaca aatacacatt tgaaaatttc cagttatcaat 360
cttagagcaca aataaatc acgtattgtat tgccaaatgg gaaagtggat ggaagtaact 420
tggaaagggtgg ttgcgagcac gccccttgc ctccctccaa cacccccat ccacgaagcc 480
ctccaaatcc agacacattatgt gtcctcaggat attctggacc actgaaggaa attcccttgc 540
aaaaattcaa caccacagct gtccttaatgt actatcaatc tccctggag caagccatta 600
gcaatgtatcc ggagctttta gaggctttat atccatcaaact tttcaagcct gaaggaaagg 660
cagaactgcc tgattacagg agctttaaca ggggttgcac accatggat ggtttgaaa 720
aagcatcaag aatggtaaa tttaaaatgttccat cagatttgtat gttttttttt ctaacagatc 780
ccagggtttat gtcccttgc aatccccctt ctggcagacg gtcctttaat aggactctta 840
aggatgtat atctggaaat attcttataatgt gttttttttt cttttttttt cttttttttt 900
ctgttaccaggc atcagaagac ctatggaaatggaaatggatgtat ttgttccatcaaaatctgtt 960
tataaaatgtt gctgttctatc tattttactt actggcaaaatggatgtat ttgttccatcaaaatctgtt 1020
agcaacaataa gcaatttatgtt gattttgcattt ttctgttccatcaaaatctgtt 1080
ataactaataaa acaatttagaa atcttactttt aaaaaacttta taactcaactt gtcttcattt 1140
ataattttgtt ttccacttgg tttaaaatgtt ccagatattttt tactggcaaaatggatgtt 1200
aaaatgttattt gacagcttca cctttgttccatcaaaatctgtt atttttatttttca gttttttttt 1260
ttcaagtgaa atcttacttca aaatttcaattt cagtttattttt atttttatttttca gttttttttt 1320
tctggggatgtt aaagctatggt aagatgtatgtt acaaaatgttta ttgtatggaga aatgttgg 1380
tgtgttccatcaaaatctgtt ccaggatgtt aatgttccatcaaaatctgtt ttgttccatcaaaatctgtt 1440
actctttagaa ttctttaatgtt ctttgcattt ttcaatatgtt ttgttccatcaaaatctgtt 1500
attctgttccatcaaaatctgtt ctttgcattt ttcaatatgtt ttgttccatcaaaatctgtt 1560
aggagactgtt aatgttccatcaaaatctgtt ccaggatgtt aatgttccatcaaaatctgtt 1620
cccagaatccatcaaaatctgtt ccaggatgtt aatgttccatcaaaatctgtt ttgttccatcaaaatctgtt 1680
ttgttccatcaaaatctgtt ccaggatgtt aatgttccatcaaaatctgtt ttgttccatcaaaatctgtt 1740

atgtttgtga gagaaggaaa gagtaagtaa tttgaattgg cagcttctt tgctaaatct 1800
ttaaatctg ttaagatcct caagtaactg gggagtacat gctttaggac acaaacaaaa 1860
acaaaggcca taaaagtatac taaaagcaat gtacacata tctatcgtaa tatatgtaat 1920
atattgacat aaaagacaca aactaatata aagttagtataat tatatcttaa aatataattg 1980
aagaagcata tgacatataa cttagatgaa tcagtatcaa ttcccccatttcaattcag 2040
ttaagactct gtgatagatg ttatagcag agaagaaatg ttcattcatat aggaaaacta 2100
tcagataaag ttttaggatg aggaagaagg actgtgtgt aatgtaaaa taccaagttg 2160
caacattaca tggttacaaa aaaaatctgt gtttgtagtgg tggaaagtgg tgactgtttt 2220
aatcatcatc tagacttgtt aagttagaaaa atttaaaaaa ttgcattatg aaaaatataac 2280
ccccagaaag taacaatgac aaagtattat atttatatat attattgttag agaattgt 2340
tatattttaaa gatgtcttaa gatatcttaa ttttatattt aagttttgtt gtttacctgt 2400
ttttaaatgaa taatgttggc atctgtgata aactatcaat gaggctccca tcattgcatt 2460
ttttgttcat tttatcttt aaaaataaa aattaggcat attaaaaaaaaaaaaaaa 2520
aaaaaaaaaaa a 2531

<210> 2

<211> 264

<212> PRT

<213> Homo sapiens

<400> 2

Met Leu Ser His Asn Thr Met Met Lys Gln Arg Lys Gln Gln Ala Thr
1 5 10 15

Ala Ile Met Lys Glu Val His Gly Asn Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Leu Glu Glu Leu Ser
35 40 45

His Leu Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Gln Ser Arg Ala Gln
65 70 75 80

Ile Asn His Ser Ile Ala Met Gln Asn Gly Lys Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Gly Ser Gln Gln Ala Pro Leu Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Asp Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Lys Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Gln Ser Pro Trp Glu Gln Ala Ile Ser Asn Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Pro Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Arg Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Met Ser Phe Val Asn
210 215 220

Pro Leu Ser Gly Arg Arg Ser Phe Asn Arg Thr Pro Lys Gly Trp Ile
225 230 235 240

Ser Glu Asn Ile Pro Ile Val Ile Thr Thr Glu Pro Thr Asp Asp Thr
245 250 255

Thr Val Pro Glu Ser Glu Asp Leu
260

<210> 3
<211> 1207
<212> DNA
<213> *Mus musculus*

<210> 4
<211> 296
<212> PRT
<213> Mus musculus

<400> 4
Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Arg Arg Lys Ser Ser

1

5

10

15

Lys Leu Ile Met Glu Leu Thr Gly Gly Gly Arg Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
35 40 45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95

Gln Leu Glu Thr Ala Gly Gln Gly Phe Ser Tyr Gly Lys Gly Ser Ser
100 105 110

Gly Gly Gln Ala Gly Ser Ser Gly Ser Ala Gly Gln Tyr Gly Ser Asp
115 120 125

Arg His Gln Gln Gly Ser Gly Phe Gly Ala Gly Gly Ser Gly Gly Pro
130 135 140

Gly Gly Gln Ala Gly Gly Gly Ala Pro Gly Thr Val Gly Leu Gly
145 150 155 160

Glu Pro Gly Ser Gly Asp Gln Ala Gly Gly Asp Gly Lys His Val Thr
165 170 175

Val Phe Lys Thr Tyr Ile Ser Pro Trp Asp Arg Ala Met Gly Val Asp
180 185 190

Pro Gln Gln Lys Val Glu Leu Gly Ile Asp Leu Leu Ala Tyr Gly Ala
195 200 205

Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr Ala Met Pro
210 215 220

Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe Gln Met Pro
225 230 235 240

Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val Leu Tyr Asn
245 250 255

Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro Ile Pro Trp
260 265 270

Leu Ser Ser Gly Glu His Val Asp Tyr Asn Val Asp Val Gly Ile Pro
275 280 285

Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 5
<211> 1261
<212> DNA
<213> Homo sapiens

<400> 5

cggtcacacgc agtcagtc tccaaagctg ctggacccca gggagagctg accactgcc 60
gagcagccgg ctgaatccac ctccacaatg ccgcctctcag gaaccccccgc ccctaataag 120
aagagaaaat ccagcaagct gatcatggaa ctcactggag gtggacagga gagctcaggc 180
ttgaacctgg gcaaaaagat cagtgtccca agggatgtga tggtggagga actgtcgctg 240
tttacccaacc gggctccaa gatgttcaa ctgcggcaga tgagggttggaa gaagtttatt 300
tatgagaac accctgtat ttctctgc agctcaatgg atcacttcca gaagttcctt 360
ccaacagtgg gggcacagct ggcacatgg ggtcaggat tctcatacag caagagcaac 420
ggcagaggcg gcagccaggc aggggggcagt ggctgcgcg gacagtatgg ctctgatcg 480
cagcaccatc tgggtctgg gtcgtggatc ggggttacag gtggccccc gggccaggct 540
ggcaaaggag gagctgtgg cacaacaggg gtttgtgaga caggatcagg agaccaggca 600
ggcggagaag gaaaacatat cactgtgttc aagacctata ttccccatg ggagcggacc 660
atgggggttg acccccagca aaaaatggaa cttggatttgc acctgtggc ctagggggcc 720
aaagctgaac ttcccaaata taagtccctt aacagggacgg caatgccta tggtggatat 780
gagaaggcct ccaaacgcat gacccttccag atgccaagt ttgaccttggg gcccttgctg 840
agtgaacccc tggctctcta caacccaaac ctctccaaca ggccttctt caatcgaacc 900
cctattccct ggctgagctc tggggagcct gttagactaca acgtggatatt tggatcccc 960
ttggatggag aaacagagga gctgtggatgt gtttccctt ctgatttgc tcattttccc 1020
tctctggctc caatttggag agggaatgtc gagcagatag ccccccattgt taatccagta 1080
tccttatggg aatggaggga aaaaggagag attacacctt ccattccctt ctccaaatcc 1140
ccactccacg catcccttcc caccaactca gagctccct tctacttgc ccataatggaa 1200
cctgctcggt tatggaattt ntctgccacc agtaacagtc aataaaatcc aaggaaaatg 1260
a 1261

<210> 6
<211> 299
<212> PRT
<213> Homo sapiens

<400> 6

Met Pro Leu Ser Gly Thr Pro Ala Pro Asn Lys Lys Arg Lys Ser Ser
1 5 10 15

Lys Leu Ile Met Glu Leu Thr Gly Gly Gln Glu Ser Ser Gly Leu
20 25 30

Asn Leu Gly Lys Lys Ile Ser Val Pro Arg Asp Val Met Leu Glu Glu
35 40 45

Leu Ser Leu Leu Thr Asn Arg Gly Ser Lys Met Phe Lys Leu Arg Gln
50 55 60

Met Arg Val Glu Lys Phe Ile Tyr Glu Asn His Pro Asp Val Phe Ser
65 70 75 80

Asp Ser Ser Met Asp His Phe Gln Lys Phe Leu Pro Thr Val Gly Gly
85 90 95

Gln Leu Gly Thr Ala Gly Gln Gly Phe Ser Tyr Ser Lys Ser Asn Gly
100 105 110

Arg Gly Gly Ser Gln Ala Gly Gly Ser Gly Ser Ala Gly Gln Tyr Gly
115 120 125

Ser Asp Gln Gln His His Leu Gly Ser Gly Ser Gly Ala Gly Gly Thr
130 135 140

Gly Gly Pro Ala Gly Gln Ala Gly Lys Gly Gly Ala Ala Gly Thr Thr
145 150 155 160

Gly Val Gly Glu Thr Gly Ser Gly Asp Gln Ala Gly Gly Glu Gly Lys
165 170 175

His Ile Thr Val Phe Lys Thr Tyr Ile Ser Pro Trp Glu Arg Ala Met
180 185 190

Gly Val Asp Pro Gln Gln Lys Met Glu Leu Gly Ile Asp Leu Leu Ala
195 200 205

Tyr Gly Ala Lys Ala Glu Leu Pro Lys Tyr Lys Ser Phe Asn Arg Thr
210 215 220

Ala Met Pro Tyr Gly Gly Tyr Glu Lys Ala Ser Lys Arg Met Thr Phe
225 230 235 240

Gln Met Pro Lys Phe Asp Leu Gly Pro Leu Leu Ser Glu Pro Leu Val
245 250 255

Leu Tyr Asn Gln Asn Leu Ser Asn Arg Pro Ser Phe Asn Arg Thr Pro
260 265 270

Ile Pro Trp Leu Ser Ser Gly Glu Pro Val Asp Tyr Asn Val Asp Ile
275 280 285

Gly Ile Pro Leu Asp Gly Glu Thr Glu Glu Leu
290 295

<210> 7
<211> 982
<212> DNA
<213> Mus musculus

<400> 7
atccggcaca tgggatcgag ggaccatgcc gttccaggtt caaggataaa acccattggg 60
ccatagtgcc gtcatattcc accttcagtg cttccctcca caattggat tcacccctgc 120
tgaaaagcgc acgctgacag caagggaca aaaaactatg ctatcacata gtgccatgg 180
gaagcaaaagg aaacacgcaag catcagccat cacgaaggaa atccatggac atgatgtta 240
cggcatggac ctggcaaaa aagtttagcat ccccaagagac atcatgatag aagaattgtc 300
ccatttcagt aatcggtttt ccgagctgtt aatagtgctt ccaaagaatg ctgacaaata 360
caccttqaa aattttcagt atgaatctag agcacaattt aatcacaata tcggccatgca 420
gaatgggaga gttgatggaa gcaaacctgga aggtggctca cagcaaggcc cctcaactcc 480

gccccaacacc cccgatccac gaagcccccc aaatccagag aacatcgac caggatattc 540
tggaccactg aaggaaattc ctccctgaaag gtttaacacg acggccgttc ctaagtacta 600
ccggctctcca tggggcagg cgattggcag cgatccggag ctccctggagg ctttgatccc 660
aaaactttc aaggctgaag gaaaagcaga actgcgggat tacaggagct ttaacagggt 720
tgccactcca ttggagggtt ttgaaaaagc atcaaaaatg gtcaaattca aagttccaga 780
tttggacta ctgctgctga cagatcccg gttcttggcc ttggccatc ctctttcggg 840
cagacatgc tttaacaggg cgccaaaggg gtgggtatct gagaataatcc ccgtcgat 900
cacaactgag cctacagaag accggactgt accggaatca gatgacctgt gagagggaaag 960
ctggggatgc cacaggaagt tc 982

<210> 8
<211> 264
<212> PRT
<213> Mus musculus

<400> 8
Met Leu Ser His Ser Ala Met Val Lys Gln Arg Lys Gln Gln Ala Ser
1 5 10 15

Ala Ile Thr Lys Glu Ile His Gly His Asp Val Asp Gly Met Asp Leu
20 25 30

Gly Lys Lys Val Ser Ile Pro Arg Asp Ile Met Ile Glu Glu Leu Ser
35 40 45

His Phe Ser Asn Arg Gly Ala Arg Leu Phe Lys Met Arg Gln Arg Arg
50 55 60

Ser Asp Lys Tyr Thr Phe Glu Asn Phe Gln Tyr Glu Ser Arg Ala Gln
65 70 75 80

Ile Asn His Asn Ile Ala Met Gln Asn Gly Arg Val Asp Gly Ser Asn
85 90 95

Leu Glu Gly Ser Gln Gln Gly Pro Ser Thr Pro Pro Asn Thr Pro
100 105 110

Asp Pro Arg Ser Pro Pro Asn Pro Glu Asn Ile Ala Pro Gly Tyr Ser
115 120 125

Gly Pro Leu Lys Glu Ile Pro Pro Glu Arg Phe Asn Thr Thr Ala Val
130 135 140

Pro Lys Tyr Tyr Arg Ser Pro Trp Glu Gln Ala Ile Gly Ser Asp Pro
145 150 155 160

Glu Leu Leu Glu Ala Leu Tyr Pro Lys Leu Phe Lys Pro Glu Gly Lys
165 170 175

Ala Glu Leu Arg Asp Tyr Arg Ser Phe Asn Arg Val Ala Thr Pro Phe
180 185 190

Gly Gly Phe Glu Lys Ala Ser Lys Met Val Lys Phe Lys Val Pro Asp
195 200 205

Phe Glu Leu Leu Leu Leu Thr Asp Pro Arg Phe Leu Ala Phe Ala Asn
210 215 220

Pro Leu Ser Gly Arg Arg Cys Phe Asn Arg Ala Pro Lys Gly Trp Val
225 230 235 240

Ser Glu Asn Ile Pro Val Val Ile Thr Thr Glu Pro Thr Glu Asp Ala
245 250 255

Thr Val Pro Glu Ser Asp Asp Leu
260

<210> 9

<211> 3330

<212> DNA

<213> Homo sapiens

<400> 9

gggacgcccac gcaactctca gcttcccgac agagggttta atcttgaggg tctaagattc 60
cctctgcct attgagggtcc ctcactctca ggatgatccc caaggagcc aaggggccag 120
tgatggctgc catgggggac ctcactgaac cagtcctac gctggacctg ggcaagaagc 180
tgagcgtgcc ccaggaccctg atgatggagg agctgtcact acgcaacaac agagggtccc 240
tcctcttcca gaagaggcag cggcgtgtgc agaagttcac ttgcaggtta gcagccagcc 300
agcggggecat gtcggccggaa agcggccagga ggaaggtgac tggAACAGCG gagtcgggga 360
cggttgc当地 ctcactatggc ctcgggggac cgaactaccg ctcggagctc cacatcttc 420
cggcctcacc cggggcctca ctggggggc ccaggggcgc ccacccctgca gcccgcctcg 480
ctgggtgcgt ccccaagcccc agcgcctctgg cgccaggctca tgccggagcc ctgaaggcg 540
tcccggccaga gaagttcaac cacacccca tcccccaagggtt ctaccctgtc cttggcagg 600
agttcgtagc ctaccgggac taccagagcg atggccgaag tcacaccccc agcccaacg 660
actacggaaa ttcaacaag accccgggtc catttggagg accccctcg 720
ttcccaaggcc agggcacccttc ttcatcccg agccctctcg tggcttgaa ctccctcg 780
tcagaccctcg cttcaacaga gtggcccaagg gtcgggtccca taaccccca gagtccgagg 840
agctgttagcc ctggcgtcaa ttctcgttc cccagtcg gggcccttgtt aacatccgga 900
gccaagactt gtggacagca cttcacagtt gaagaaggcc cttcacacac aaaaactgtat 960
tgcaaatggc ttccagagggtc accaacttca gtcgtcccaa aacatgggtg tgtttcaaaaa 1020
ttacctgggg atgttgttcc aaatccagac aactggactg tcccagactt gcagcatcag 1080
agtcctctga gtcgaggaaat ctgttatttt aatagcaacc agggccgggt gtcgtgctc 1140
acgcctgtca tcccgact ttggggggcc gaggcaggag gatcacccgaa ggtcaggagt 1200
tttggagccaa gtcggcccaa aatagtggaa cccctcgact actaaaaata caaaaatgg 1260
tcggacatgg tgggtgcattc ctgttaatccc agtacttgg gaggtggaga caggagaatc 1320
acttgaacta ggaggccagag gtggcgttgca gcccggatttgc ccccgccctg 1380
gacaacagag tgagactct tctcaaaagt aaataaataa atagcaacca gtactccagg 1440
tgattccagc ataacttatac catggtttgcgtt gtcatttagga gtcccacatcc acacccatgc 1500
tcttcctgt tcctgttagt tacactcccc cgggtgacagg gtgtcactg gcacccatc 1560
ttccctgtgaa taactcaaat aataggaaaa tggccctttt actgagatgc agttgggttt 1620
catcttattca tgctctaaac agttccatag cgctgacttg ggcctagaca ctggccaggcc 1680
cggggccctgca ggaggaaaaag acatggggaa agcattataa gaggcatggaa tgaccataat 1740
tttccctaaa gcatgttttgcgtt tgacaaatttgaa ggaacaaagt gttggggacca gaagaaggag 1800
tccctcaccctt taggtgtgag atgggattct ggaagcttcc tgaaggattt gagggtggacc 1860
ttgtgggggg cgtgagatgc catgaaggggg gtgtgaggggg gagggttattt ctggaaaatgt 1920
gaccagcatg tgcaaaaata tggacttgac caccgggtgc ggggtttctg cagaaggag 1980
aaggctgtgc tagaggagcc agtggggcc acatgggggtt gggcttactt aaggaaatgg 2040
ggaagggtttt agtgtatgggtt ctgtgtgggtt ggtgtgtggg ggcattattt gagaaggta 2100

atgcggcagaag	ccaggaagcc	tgcaagggtt	gaggccatgg	aatggagag	aaggggccac	2160
ccactggcga	cctaacagga	caggtcaaa	gtggggtgtct	tattaagatt	ccttctttcc	2220
actccattt	gaggcgctg	cttaaagtgg	tggtgatgt	gatgtatgt	atggcagtt	2280
tatatacgat	gcctcgtgc	ttggctgtt	agtatgttc	ctacatatct	tatttctaatt	2340
tctcagaaca	accctgagag	aaagatattt	tttgccccac	tttacagatg	tggatattta	2400
ggccaaaagg	aggaagtac	tttcagggg	cagcaccaa	atgggatct	gattccagt	2460
gatgtctctt	ttcagtgcac	tgggtgtca	atgcccactc	gctctgaat	catctgact	2520
tgatgccctg	ccttggagtt	tagaagtta	gtcagggtt	gggactcaga	ctggatgggg	2580
taggttctaa	ctctgcact	gctagccgga	tgaactttag	caagtcat	cacatctccg	2640
agcctctgtt	tctccaaatg	taaagatgagg	acaagtataa	accctccctt	atgggtttgt	2700
tgtgaacaca	gtgcaggca	catttataat	aagagcttag	tcaatggtag	gtttcatgca	2760
actgtgcctc	taggtctggaa	aagtgttct	tgactgttg	gcaaggatcg	aagctggctg	2820
ctaagatgtc	actgggggctc	actaaagctg	aaggcttgaag	gaaaggctct	cattgtctga	2880
gagctctccc	tgcctcttc	tctggggcg	atggggaaagg	tcaggatcc	gcggcattcc	2940
cagggtgtgt	gggatagcga	ttgcatttc	ctttgtctct	ggagttcac	tccccttctg	3000
ggtcccaagg	gccccatggc	ctgactttta	gaattgtctg	caattgggt	tttcttcttg	3060
atttgggggc	tgccatttaa	agccagggtt	ccatgagctg	aagaccagcc	attcaagaat	3120
ctgaaaaagta	gacaagagga	ctccaggatgc	ctcagggtgg	ttctgtgtg	ctctggaaag	3180
taactgcgc	caccaggat	gaaaaggagc	ctggggggaa	gaccactgca	ccccaaaaacaa	3240
atcccttctt	cttctggagaa	tgtactttt	tctgggtgtt	taaaaaaagaa	aaaaaaaaaag	3300
aatgctcatt	gtaaaaaaaaa	aaaaaaaaaa				3330

<210> 10
<211> 251
<212> PRT
<213> Homo sapiens

<400> 10
Met Ile Pro Lys Glu Gln Lys Gly Pro Val Met Ala Ala Met Gly Asp
1 5 10 15

Leu Thr Glu Pro Val Pro Thr Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Met Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ala Ala Ser Gln Arg Ala Met Leu Ala Gly Ser Ala Arg Arg
65 70 75 80

Lys Val Thr Gly Thr Ala Glu Ser Gly Thr Val Ala Asn Ala Asn Gly
85 90 95

Pro Glu Gly Pro Asn Tyr Arg Ser Glu Leu His Ile Phe Pro Ala Ser
 100 105 110

Pro Gly Ala Ser Leu Gly Gly Pro Glu Gly Ala His Pro Ala Ala Ala
115 120 125

Pro Ala Gly Cys Val Pro Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala
130 135 140

Glu Pro Leu Lys Gly Val Pro Pro Glu Lys Phe Asn His Thr Ala Ile
145 150 155 160

Pro Lys Gly Tyr Arg Cys Pro Trp Gln Glu Phe Val Ser Tyr Arg Asp
165 170 175

Tyr Gln Ser Asp Gly Arg Ser His Thr Pro Ser Pro Asn Asp Tyr Arg
180 185 190

Asn Phe Asn Lys Thr Pro Val Pro Phe Gly Gly Pro Leu Val Gly Gly
195 200 205

Thr Phe Pro Arg Pro Gly Thr Pro Phe Ile Pro Glu Pro Leu Ser Gly
210 215 220

Leu Glu Leu Leu Arg Leu Arg Pro Ser Phe Asn Arg Val Ala Gln Gly
225 230 235 240

Trp Val Arg Asn Leu Pro Glu Ser Glu Glu Leu
245 250

<210> 11

<211> 913

<212> DNA

<213> Mus musculus

<400> 11

gtcggactgc aatagacaca caggccataa aactccagct tccccactga agtgttaatc 60
ttgggggtct gacatttctt cccatctact gtggcccccac caggatgatc cccaaggagc 120
agaaggagcc agtgatggct gtcccggggg accttgcgtga accagtccct tcgctggacc 180
tggggaaagaa gctgagcgtg cctcaggacc taatgtataga ggagctgtct ctacgaaaca 240
accgcggatc ctcctctt cagaagggc acgcgcgggt gcagaaagttt acctttgagc 300
tatcagaaag ttgcaggcc atccgtggcga gtatgtcccg agggaaagtgc gctggcagag 360
cggcgcaggc aacggttccc aatggcttgg aggagcagaa ccaccaactcc gagacgcac 420
tggccaggc gtcaccccttgg gaccggggta tcacccatct gggagcagcg gggactgggt 480
cggtccgtat tccaagcgcc ctggcaccag gctatgcaga gcccctgaag ggcgtccac 540
cgagaaagt caaccacact gcacccatccca aaggctaccg gtcccttgg caggagtca 600
ccacgtatcca agactactcg atggcagcga aagtcacac tcccatcccc cgagactatc 660
gcaactcaa caagaaaaaaa gtgcatttg gaggacccca cgtgaggaggag gccattttcc 720
acgcaggcac cccctttgtc cggagttct tcagtggctt ggaacttctc cgcctcagac 780
ccaaatccaa cagggttgc tccggctggg tccggaaatctt cccggatctt gaggaaatgt 840
agcctcagcc tgaagctaca attccctggg ctcaagaaac atgcttgtct tgaaaaaaaaa 900
aaaaaaaaaaa aaa 913

<210> 12

<211> 245

<212> PRT

<213> Mus musculus

<400> 12

Met Ile Pro Lys Glu Gln Lys Glu Pro Val Met Ala Val Pro Gly Asp
1 5 10 15

Leu Ala Glu Pro Val Pro Ser Leu Asp Leu Gly Lys Lys Leu Ser Val
20 25 30

Pro Gln Asp Leu Met Ile Glu Glu Leu Ser Leu Arg Asn Asn Arg Gly
35 40 45

Ser Leu Leu Phe Gln Lys Arg Gln Arg Arg Val Gln Lys Phe Thr Phe
50 55 60

Glu Leu Ser Glu Ser Leu Gln Ala Ile Leu Ala Ser Ser Ala Arg Gly
65 70 75 80

Lys Val Ala Gly Arg Ala Ala Gln Ala Thr Val Pro Asn Gly Leu Glu
85 90 95

Glu Gln Asn His His Ser Glu Thr His Val Phe Gln Gly Ser Pro Gly
100 105 110

Asp Pro Gly Ile Thr His Leu Gly Ala Ala Gly Thr Gly Ser Val Arg
115 120 125

Ser Pro Ser Ala Leu Ala Pro Gly Tyr Ala Glu Pro Leu Lys Gly Val
130 135 140

Pro Pro Glu Lys Phe Asn His Thr Ala Ile Pro Lys Gly Tyr Arg Cys
145 150 155 160

Pro Trp Gln Glu Phe Thr Ser Tyr Gln Asp Tyr Ser Ser Gly Ser Arg
165 170 175

Ser His Thr Pro Ile Pro Arg Asp Tyr Arg Asn Phe Asn Lys Thr Pro
180 185 190

Val Pro Phe Gly Gly Pro His Val Arg Glu Ala Ile Phe His Ala Gly
195 200 205

Thr Pro Phe Val Pro Glu Ser Phe Ser Gly Leu Glu Leu Leu Arg Leu
210 215 220

Arg Pro Asn Phe Asn Arg Val Ala Gln Gly Trp Val Arg Lys Leu Pro
225 230 235 240

Glu Ser Glu Glu Leu
245