

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 03241539 A

(43) Date of publication of application: 28.10.91

(51) Int. CI

G11B 7/24

(21) Application number: 02037605

(22) Date of filing: 19.02.90

(71) Applicant:

MATSUSHITA ELECTRIC IND CO

(72) Inventor:

UCHIDA MASAMI OTA TAKEO

YOSHIOKA KAZUMI KAWAHARA KATSUMI

(54) OPTICAL INFORMATION RECORDING. REPRODUCING AND ERASING MEMBER

(57) Abstract:

PURPOSE: To make improvement in C/N and the erasing rate of overwriting by forming a 1st dielectric layer of a material having the thermal conductivity higher than the thermal conductivity of a 2nd dielectric layer and forming the 2nd dielectric layer to the film thickness smaller than the film thickness of the 1st dielectric layer.

CONSTITUTION: The 1st dielectric layer 2 is provided between a disk substrate 1 and a recording thin film 3 and the 2nd dielectric layer 4 is provided on the opposite side of the film 3. A reflecting film 5, a protective film 6 and an adhesive plate 7 are provided thereon. The layer 2 consists of tantalum oxide having excellent heat resistance and 2.0x10 3cal/cm°CS thermal conductivity and the film thickness thereof is 150nm. The layer 4 consists of the material having 1.6x10-3 cal/cm°CS thermal conductivity and essentially consisting of small zinc sulfide and the film thickness thereof is about 20nm. The heat of the film 3 is rapidly transmitted to the layer 5 by reducing the thickness of the layer 4. The film 3 has a rapid cooling effect. The cooling rate of the film 3 is increased by using the material having the high thermal conductivity of the layer 4 for the layer 2. Consequently, 55dB is obtd. as the C/N of recording signals and 330dB erasing rate of overwriting is obtd. as the erasing characteristic.

COPYRIGHT: (C)1991, JPO& Japio

⑩ 日本国特許庁(JP)

⑪特許出願公開

⑫ 公 開 特 許 公 報 (A)

平3-241539

@Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成3年(1991)10月28日

G 11 B 7/24

В 7215-5D

審査請求 未請求 請求項の数 4 (全4頁)

製発明の名称

⑦出 -願

個代 理

光学情報記録再生消去部材

②特 頤 平2-37605

願 平2(1990)2月19日

個発 明 者 内 \blacksquare @発 明 太 \mathbf{H}

Œ 美 威 夫

大阪府門真市大字門真1006番地 松下電器産業株式会社内 大阪府門真市大字門真1006番地 松下電器産業株式会社内

大阪府門真市大字門真1006番地 松下電器産業株式会社内

⑫発 明 到 ⑫発 明

2 克 E

大阪府門真市大字門真1006番地 松下電器産業株式会社内

松下電器産業株式会社 弁理士 栗野 重孝

大阪府門真市大字門真1006番地

外1名

頂

1、発明の名称

光学情報記錄再生消去部材

- 2、特許請求の範囲
- (1) 透明基板の一方の面に、第1の誘電体層,レ ーザ光の照射により、そのエネルギーを吸収し て昇温し、溶融し、急冷し、非晶質化する性質 と、非晶質の状態を昇温することにより、結晶 化する性質を有する記録薄膜、第2の誘電体層。 反射層を順次形成した光学情報記録再生消去部 材であって、第1の誘電体層の熱伝導率を第2 の誘電体層の熱伝導率より大きい材質にし、第 2の誘電体層の膜厚を第1の誘電体層より薄く することを特徴とする光学情報記録再生消去部
- (2) 第2の誘電体層の膜厚を3〇nm以下にするこ とを特徴とする請求項1記載の光学情報記録再 生消去部材。
- (3) 第1の誘電体層として酸化タンタルを用い、 第2の誘電体層として硫化亜鉛を主成分とする

膜を用いることを特徴とする請求項1記載の光 学情報記録再生消去部材。

- (4) 記録薄膜としてTo,Go,Sb からなる材料 を用いることを特徴とする請求項 1 記載の光学 情報記錄再生消去部材。
- 3. 発明の許細な説明

産業上の利用分野

本発明はレーザービーム等により、情報を高密 度,大容量で記録再生及び消去できる光学情報記 録再生消去部材に関するものである。

従来の技術

光ディスクメモリに関しては、ToとToO2を 主成分とするT 0 0 x (O < x < 2.0)薄膜を用い た追記型のディスクがある。また繰り返し記録・ 消去が可能な消去ディスクが実用化されつつある。 この消去ディスクはレーザ光により記録薄膜を加 熱し、溶融し、急冷することにより、非晶質化し て情報を記録し、またこれを加熱し徐冷すること により結晶化して消去することができるものであ るが、この記録薄膜の材料としてはS.R.

特開平3-241539(2)

Ovshinsky (エス・アール・オプシンスキー) 氏等のカルコゲン材料 Ge,5Te8,Sb, S2等が知ら れている。また、As, S, ヤAs, So, あるいは Sb₂So₃ 等カルコゲン元素と周期律表第『族あ るいはGo 等の第IV 族元素等の組み合せからなる 薄膜等が広く知られているこれらの薄膜をレーザ 光ガイド用の溝を設けた基板に形成し、光ディス クとして用いることができる。これらのディスク にレーザ光で情報を記録し、その情報を消去する 方法としてはあらかじめ薄膜を結晶化させておき、 とれに約1 μm に絞ったレーザ光を情報に対応さ せて強度変調を施し、例えば円盤状の記録ディス クを回転せしめて照射した場合、このピークパワ ーレーザ光照射部位は、薄膜の融点以上に昇温し、 かつ急冷し、非晶質化したマークとして情報の記 録がおこなえる。またこの変調パイアスパワーレ ーザー光照射部位は、薄膜の結晶化温度以上に昇. 温し、既記録信号情報を消去する働きがありオー パライトできる。このように記録薄膜はレーザ光 によって融点以上に昇温し、また結晶化温度以上

その部分は溶融し急冷し、再び非晶質化してマー クが形成できる。記録マークとして非晶質化を選 ぶと、このマークは、記録薄膜が溶融し急冷され て形成されるものであるから、冷却速度が速いほ ど非晶質状態の均一なものが得られ信号振幅が向 上する。冷却速度が遅い場合はマークの中心と周 辺で非晶質化の程度に差が発生する。次に結晶化 消去に際しては、レーザ光の照射により、既に記 録が行われている非晶質マーク部を結晶化温度以 上に昇温し、結晶化させてとのマークを消去する。 との時、マークが均一に結晶化するときは消去特 性が向上する。しかしながら、記録マークが不均 ーな場合は結晶化消去の状態が不均一となり、消 去特性が低下するという課題があった。また記録 消去のサイクル特性については急速な加熱、冷却 の多数回の繰り返しによるディスク基板あるいは 誘電体層の熱的な損傷がある。ディスク基板ある いは誘電体層が熱的な損傷を受けた場合、記録再 生・消去のサイクルにおいて、ノイズの増大を生 じサイクル特性の劣化が発生するという課題があ

に昇温される。とのため記録薄膜の下面および上面に、耐熱性のすぐれた誘電体層を基板および接着層に対する保護層として設けるのが一般的である。これら誘電体層の熱伝導性特性により、昇温および急冷、徐冷の特性が変わるものであるから、誘電体層の材質を選ぶことによって記録および消去の特性を決めることができるものである。

発明が解決しようとする課題

薄膜を加熱昇温し、溶融急冷非晶質化および加熱昇温結晶化の手段を用いる情報記録および消去可能なオーバライト記録媒体における第1の課題は消去特性、第2の課題は記録消去のサイクル特性である。

消去特性についてはT・を含む非晶質膜は、その融点は代表的をもので400℃からBOOこと 広い温度範囲にあるこれらの薄膜にレーザ光を照射し、昇温徐冷することにより結晶化が行える。 この温度は一般的に融点より低い結晶化温度領域 である。またこの結晶化した膜に高いパワーレベ ルのレーザ光をあて、その融点以上に加熱すると

った。本発明の目的は記録消去特性に優れ、サイ クル特性の安定な光ディスクを提供することであ る。

課題を解決するための手段

本発明は透明基板の一方の面に、第1の誘電体層、記録膜、第2の誘電体層、反射層を順次形成し、レーザ光等の照射により熱的に記録薄膜の光学的な状態を変化させて情報を記録および消去する部材において、第1の誘電体層の熱伝導率を第2の誘電体層の熱伝導率より大きい材質にし、第2の誘電体層の膜厚を第1の誘電体層より薄くするものである。

作用

すなわち第1の誘電体層として第2の誘電体層 より熱伝導率の大きな材質を選び、第2の誘電体 層の膜厚を第1の誘電体層より薄くすることによって、加熱された記録薄膜の熱を逃がす上で、一 般的に金属層からなり、熱伝導率の大きな反射層 に接して、熱の逃げやすい第2の誘電体層と、熱 伝導率の小さな基板に接し、膜厚が厚いために熱

特開平3-241539 (3)

の逃げにくい第1の誘電体層の熱の逃げかたの差が小さくなって、記録・消去時の冷却速度を速くすると同時に、記録薄膜の膜厚方向の冷却速度の差を小さくできるものである。このことによってがおいた。記録ですったがいた。記録マークが不り、記録マークが不り、記録マークが不り、記録マークが不り、記録マークが不り、消去特性を向上するととができて、消去特性を向上するととによるをある。また冷却速度を速くするととによるものである。また冷却速度を速くするととによって記録・消去の繰り返しによる熱衝撃を小さくでき、サイクル特性を改善できるものである。

寒 施 例

以下、本発明の一実施例を図面に基づいて説明 する。

図において1はディスク基板でポリカーボネイト等の樹脂基板からなっている。このディスク基板1はあらかじめレーザ光案内用の溝を形成した 樹脂基板あるいは2P法で溝を形成したガラス板、ガラス板に直接溝を形成した基板であってもよい。 2は第1の誘電体層で耐熱性に優れ熱伝導率が

ものである。また第1の誘電体層2の膜厚を約 1 5 0 n m にしているが、この第1 の誘電体層 2 は樹脂材料からなるディスク基板1に接しており、 レーザ光が直接照射される側でもあるため、第2 の誘键体層4と比較して熱負荷が大きいものであ る。例えば第2の誘電体層4と同程度の膜厚にし た場合、機械的な強度が小さく熱負荷は大きいた め、記録・消去の繰り返しによる熱衝撃によって クラック等が発生しやすくなるものである。この ため一般的には100 nm 以上で光学的な干渉効 果を考慮して設定している。また第1の誘電体層 2は前述したように、熱伝導率が小さたディスク **基板に接しており膜厚を薄くした場合、記録薄膜** 3の熱が逃げにくくなって、記録薄膜3を急冷す る上では逆効果になるものである。この点からも 第1の誘電体層2の膜厚はある程度厚くする必要 がある。しかしながら第1,第2の誘電体層を本 実施例の膜厚構成にしたとしても、記録薄膜3の 熱の逃げ方は第1の誘電体層2の側と第2の誘電 体層4の側で大きく異なり、記録薄膜3の膜厚方

The same of the same of the same

2.0 · 1 O⁻³ cal/m· t· Sの酸化タンタルからなっており、膜厚は約160nm である。3は記録薄膜でTo - Ge - Sb からなる合金 薄膜であり、膜厚は約30nm である。4は第2の誘電体が、 無伝導率が1.6・10⁻⁵ cal/m· t· Sと小さを硫化亜鉛を主成分とする材料からなっており、膜厚は約20nm である。5は A l からなる反射層で膜厚は約60nm である。これらの薄りの形成方法としては、真空蒸着あるいはスパッタ法が使用できる。6は保護板で接着材でによってディスク基板1に貼り合わせている。

図の構成において記録・消去及び再生は矢印8の方向より、情報に応じて強度変調を施したレーザ光を照射して、また反射光を検出して行うものである。

ことで第2の誘電体暦4の膜厚を約20nmと 薄くしているが、これによって熱拡散層となる反 射層5と記録薄膜3が近くなり、記録・消去時の 記録薄膜3の熱が急速に反射層5に伝達されるこ とになり、記録薄膜3を急冷する上で効果がある

向に冷却速度のアンパランスが生じるものである。 本実施例のように第1の誘電体層2に第2の誘電 体層4よりも熱伝導率の大きな材料を用いること によって、冷却速度のアンパランスを小さくでき るものである。このことと記録薄膜3の冷却速度 を速くすることによって、より均一な記録マーク を得ることができるものである。

本実施例のディスク構成で、外径130mm、1800spm回転でよ1=3.43MHzの信号、
「2=1.0MHzの信号のオーバーライト特性を測定した。オーバーライトは、1個のサークルスポットで約1μmのレーザ光により、高いパワーレベルの間で、高いパワーレベルで非晶質化マークを結晶化して消去する同時消録の方法で行った。この結果、記録信号のC/N比として、オーバライト消去率30は別上が得られた。オーパライトのサイクル特性については、特にビットエラーレイトの特性を

特開平3-241539 (4)

剛定した結果、100000サイクル以上劣化が見られをかった。

発明の効果

以上説明したようにディスク基板と記録薄膜の間の第1の誘電体層を、記録薄膜の反対面にある第2の誘電体層よりも熱伝導率の大きな材料を選び、第2の誘電体層の膜厚を第1の誘電体層よりも薄くすることによって以下の効果を得られるものである。

- (1) 記録信号振幅が増大し、C / N 比は 5 5 d B 以上に向上する。
- (2) 記録マークが均一化し、オーバライト消去率 が300B以上に向上する。
- (3) 記録・消去時の冷却速度を速くできるととによって、多サイクル時の熱衝撃を小さくできサイクル特性が向上する。
- 4、図面の簡単な説明

図は本発明の一実施例における光学情報記録再 生消去部材の断面図である。

1 ……ディスク基板、2……第1の誘電体層、

3……記録薄膜、4……第2の誘電体層、5…… 反射 Mi

代理人の氏名 弁理士 粟 野 重 孝 ほか1名

1…ディスク基版 2…第一の籐電体層

3…記録薄膜

4…第二の路電体層

5 … 反 射 層·

6…保護板

7…接着板

THIS PAGE BLANK (USPTO)