Lemma 1. Linear approximation of spiking nodes

$$X_j(t) = E[Y_j(t)]$$

where j is the j^{th} neuron

Proof by induction. Let $t, k \in \mathbb{Z}$. Given $X_j(1) = 1$ or 0.

Show for k = 1.

If
$$X_j(1) = 1$$
, then $Y_j(1) = 1$ and $E[Y_j(1)] = 1 = X_j(1)$.

If $X_j(1) = 0$, then $Y_j(1) = 0$ and $E[Y_j(1)] = 0 = X_j(1)$. Show that $k \to k + 1$. Assume $X_j(k) = E[Y_j(k)]$

$$\begin{split} X_j(k+1) &= E[Y_j(k+1)] \\ &= E[\sum_{i \to j} \sum_{Y_i(k)} R(A_{ij})] & \text{By definition,} \\ &= \sum_{i \to j} E[\sum_{Y_i(k)} R(A_{ij})] \\ &= \sum_{i \to j} E[Y_i(k)]A_{ij} & \text{Bernoulli process, R} \\ &= \sum_{i \to j} X_j(k)A_{ij} & \text{Assumption} \\ &= X_j(k+1) & \Box \end{split}$$