CS7301: Advanced Topics in Optimization for Machine Learning

Lecture 1.2: Convex Sets and Convex Functions

Rishabh Iyer

Department of Computer Science
University of Texas, Dallas
https://github.com/rishabhk108/AdvancedOptML

January 22, 2020

Outline

- Basics of Convexity: <u>Convex Sets</u> and Convex Functions
- Properties and Examples of Convex functions
- Basic Subgradient Calculus: Subgradients for non-differentiable convex functions
- Understanding the Convexity of Machine Learning Loss Functions
- Convex Optimization Problems

Convex Sets

A set C is a **convex set** if the line segment between any two points of C lies in C, i.e. if for any $x, y \in C$ and for any $0 < \lambda < 1$, we have that $\lambda x + (1 - \lambda)y \in C$.

Source: Boyd's Textbook

Properties of Convex Sets

- ullet Intersections of Convex Sets are Convex. Let C_1, \cdots, C_k be convex sets, then $\bigcap_{i=1}^k C_i$ is convex.
- Is the union of convex sets convex?

• Projections onto convex sets are unique (and often efficient to

(complite)

$$P_C(x) = \operatorname{argmin}_{y \in C} ||y - x||$$

- Examples of Convex Sets:
 - $C = \{x \in \mathbb{R}^n : ||x|| \le k\}$

 - Given a convex function f, the associated set $C_f = \{x \in \mathbb{R}^n : f(x) < \mu\}$

 $C_f = \{x \in \mathbb{R}^n : f(x) \le k\}$ is convex.

Convex combination and convex hull

• Convex combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\begin{aligned} \mathbf{x} &= & \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \ldots + \theta_k \mathbf{x}_k = \underbrace{conv(\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_k\})}_{} \end{aligned}$$
 with
$$\underbrace{\theta_1 + \theta_2 + \ldots + \theta_k = 1, \theta_i \geq 0}_{}.$$

• Convex hull or conv(S) is the set of all convex combinations of point in the set S.

- Should S be always convex?
- What about the convexity of conv(S)?

Convex combination and convex hull

• Convex combination of points $x_1, x_2, ..., x_k$ is any point x of the form

$$\begin{aligned} & \mathsf{x} = & \; \theta_1 \mathsf{x}_1 + \theta_2 \mathsf{x}_2 + ... + \theta_k \mathsf{x}_k = \mathit{conv}(\{\mathsf{x}_1, \mathsf{x}_2, ..., \mathsf{x}_k\}) \\ & \text{with} & \; \theta_1 + \theta_2 + ... + \theta_k = 1, \theta_i \geq 0. \end{aligned}$$

 Convex hull or conv(S) is the set of all convex combinations of point in the set S.

- Should S be always convex? No.
- What about the convexity of conv(S)? It's always convex.

Euclidean balls and ellipsoids

• Euclidean ball with center x_c and radius r is given by:

$$B(x_c, r) = \{x : ||x - x_c||_2 \le r\}$$

• Ellipsoid is a set of form:

$$\{x - (x - x_c)^T P^{-1}(x - x_c) \le 1 \}$$
, where $P \in S_{++}^n$ i.e. P is SPD matrix.

• Other representation: $\{x_c + A u - ||u||_2 \le 1\}$ with A square and non-singular(i.e. A^{-1} exists).

Norm balls

- **Recap Norm:** A function 1 ||.|| that satisfies:
 - **1** $\|x\| \ge 0$, and $\|x\| = 0$ iff x = 0.

 - **3** $||x_1 + x_2|| \le ||x_1|| + ||x_2||$ for any vectors x_1 and x_2 .
- Norm ball with center x_c and radius r: $\{x | \|x x_c\| \le r\}$ is a convex set. Why?

Norm balls

- (1) Norm f(n) Convex (2) Convex Fns >> Convex Certs
- **Recap Norm:** A function 1 ||.|| that satisfies:
 - **1** $||x|| \ge 0$, and ||x|| = 0 iff x = 0.
- Norm ball with center x_c and radius r: $\{x | \|x x_c\| \le r\}$ is a convex set. Why?
 - Eg 1: **Ellipsoid** is defined using $\|\mathbf{x}\|_P^2 = \mathbf{x}^T P \mathbf{x}$.
 - Eg 2: **Euclidean ball** is defined using $\|x\|_2$.

$$\|\theta_{i}\eta_{i}+\theta_{2}\eta_{2}\|\leq \|\theta_{i}\eta_{i}\|+\|\theta_{2}\eta_{2}\|$$

$$= \|\theta_{i}\|\eta_{i}\|+\theta_{2}\|\eta_{2}\|$$

||ni|| < K ||nz|| < K. ||Dr||ni|| + Ozlind| | < K.

¹(∥.∥ is a general (unspecified) norm; ∥.∥_{symb} is particular⊃norm.) ← ▮ ▶

Convex and Strictly Convex Functions

- A Function $f: \mathbb{R}^d \to \mathbb{R}$ is convex if:
 - dom(f) is a convex set
- < Octor=1 • for all $x, y \in dom(f)$ and $\lambda : 0 < \lambda < 1$, we have: $f(\lambda x + (1-\lambda)y) \le \lambda f(x) + (1-\lambda)f(y)$

f(Ock+ Ozy)

• Geometrically, the line segment between (x, f(x)) and (y, f(y)) lies above the graph of $f \sim$

• f is strictly convex if for all $x, y \in dom(f)$ and $\lambda : 0 < \lambda < 1$, we have: $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$

$$f(n) + (1-\lambda)f(n) = f(\lambda n + (1-\lambda)\delta)$$

Intuition of Convexity

The following conditions are equivalent (in one dimension) when dom(f) is a convex set:

• f is convex iff for all $x, y \in dom(f)$ and $\lambda : 0 < \lambda < 1$, we have: $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

The following conditions are equivalent (in one dimension) when dom(f) is a convex set:

- f is convex iff for all $x, y \in dom(f)$ and $\lambda : 0 < \lambda < 1$, we have: $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
- ② f is convex iff $\forall x_1, x_2, x_3$ such that $x_1 < x_2 < x_3$ it holds that

The following conditions are equivalent (in one dimension) when dom(f) is a convex set:

- f is convex iff for all $x, y \in dom(f)$ and $\lambda : 0 < \lambda < 1$, we have: $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
- ② f is convex iff $\forall x_1, x_2, x_3$ such that $x_1 < x_2 < x_3$ it holds that $\frac{f(x_2) f(x_1)}{x_2 x_1} \le \frac{f(x_3) f(x_2)}{x_3 x_2}$
- f is convex iff f'(x) is a monotonic function of x. In other words, $f'(x_2) \ge f'(x_1)$ if $x_2 \ge x_1$.

The following conditions are equivalent (in one dimension) when dom(f) is a convex set:

- f is convex iff for all $x, y \in dom(f)$ and $\lambda : 0 < \lambda < 1$, we have: $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
- ② f is convex iff $\forall x_1, x_2, x_3$ such that $x_1 < x_2 < x_3$ it holds that $\frac{f(x_2) f(x_1)}{x_2 x_1} \le \frac{f(x_3) f(x_2)}{x_3 x_2}$
- **3** f is convex iff f'(x) is a monotonic function of x. In other words, $f'(x_2) \ge f'(x_1)$ if $x_2 \ge x_1$.
- f is convex iff $f''(x) \ge 0$

Are the following functions convex?

•
$$f(x) = \exp(x) \rightarrow \checkmark$$

•
$$f(x) = \exp(-x)$$

•
$$f(x) = \log x$$

•
$$f(x) = \sin x$$

•
$$f(x) = \log(1 + \exp(-x))$$

•
$$f(x) = x^2$$

•
$$f(x) = x^{2n}$$
 where n is an integer \sqrt{n} \sqrt{n}

•
$$f(x) = \max\{x, 0\}$$

•
$$f(x) = \sqrt{x}$$

From 1 dimensions to *n* dimensions

- Conditions for convexity in 1 dimensions is eas(ier)
- In the rest of this lecture, we shall understand how to extend this to n dimensions.
- Note that the basic definition of convexity still holds: f is convex iff for all $x, y \in dom(f)$ and $\lambda : 0 < \lambda < 1$, we have: $f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
- We shall look at some results which will help us prove some functions are convex!

Strongly Convex Functions I

- A Function $f: \mathbb{R}^d \to \mathbb{R}$ is strongly convex if there exists a $\mu > 0$ such that the function $g(x) = f(x) - \mu/2||x||^2$ is convex
- The parameter μ is the strong convexity parameter
- Geometrically, strong convexity means that there exists a quadratic lower bound on the growth of the function.
- Its easy to see that Strong Convexity implies Strict Convexity!

Strongly Convex Functions II

- Strong Convexity doesn't imply the function is differentiable!
- If a function f is strongly convex and g is convex (not necessarily strongly convex), f + g is strongly convex.
- $||x||^2$ is strongly convex!
- Hence for any convex function f, the function $f(x) + \lambda/2||x||^2$ is strongly convex!
- To summarize: Strong Convexity ⇒ Strict Convexity ⇒ Convexity!
 (The converse does not hold)

Examples of Convex Functions

• Linear Functions: $f(x) = a^T x$

Examples of Convex Functions

- Linear Functions: $f(x) = a^T x$
- Affine Functions: $f(x) = a^T x + b$

Examples of Convex Functions

- Linear Functions: $f(x) = a^T x$
- Affine Functions: $f(x) = a^T x + b$
- Exponential: $f(x) = exp(\alpha x)$

Examples of Convex Functions

- Linear Functions: $f(x) = a^T x$
- Affine Functions: $f(x) = a^T x + b$
- Exponential: $f(x) = exp(\alpha x)$
- Every Norm is Convex. Why?
 - By Triangle Inequality: $\underline{f}(x+y) \le f(x) + f(y)$, and homogeneity of norm: $f(\alpha x) = \alpha f(x)$ for a scalar α
 - It follows that

$$\underbrace{f(\lambda x + (1-\lambda)y)}_{} \leq \underbrace{f(\lambda x) + f((1-\lambda)y)}_{} = \lambda f(x) + (1-\lambda)f(y)$$

• Non-negative weighted sum: $f = \sum_{i=1}^{n} \alpha_i f_i$ is convex if each f_i for $1 \le i \le n$ is convex and $\alpha_i \ge 0, 1 \le i \le n$.

- Non-negative weighted sum: $f = \sum_{i=1}^{n} \alpha_i f_i$ is convex if each f_i for 1 < i < n is convex and $\alpha_i > 0, 1 < i < n$.
- Composition with Affine function: f(Ax + b) is convex if f is convex. For example:

- Non-negative weighted sum: $f = \sum_{i=1}^{n} \alpha_i f_i$ is convex if each f_i for 1 < i < n is convex and $\alpha_i > 0, 1 < i < n$.
- Composition with Affine function: f(Ax + b) is convex if f is convex. For example:
 - The log barrier for linear inequalities, $f(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$, is convex since $-\log(x)$ is convex.

- Non-negative weighted sum: $f = \sum_{i=1}^{n} \alpha_i f_i$ is convex if each f_i for 1 < i < n is convex and $\alpha_i > 0, 1 < i < n$.
- Composition with Affine function: f(Ax + b) is convex if f is convex. For example:
 - The log barrier for linear inequalities, $f(x) = -\sum_{i=1}^{m} \log(b_i a_i^T x)$, is convex since $-\log(x)$ is convex.
 - Any norm of an affine function, f(x) = ||Ax + b||, is convex.

Composition with Scalar Functions

• Composition of $g: \mathbb{R}^n \to \mathbb{R}$ and $h: \mathbb{R} \to \mathbb{R}$.

$$f(x) = h(g(x))$$

- f is convex if a) g convex, h convex and non-decreasing or b) g concave, h convex and non-increasing
- Proof idea: Take double derivative and try to show that $\nabla^2 f \geq 0$ (easier to prove this for m=1).
- Examples:
 - $f(x) = \exp(f(x))$ is convex if f is convex
 - 1/g(x) is convex if g is concave.

Composition with Vector Functions

• Composition of $g: \mathbb{R}^n \to \mathbb{R}^k$ and $h: \mathbb{R}^k \to \mathbb{R}$.

$$f(x) = h(g(x)) = h(g_1(x), \cdots, g_k(x))$$

- f is convex if a) g_i 's convex, h convex and non-decreasing in each argument or b) g_i concave, h convex and non-increasing in each argument
- Examples:
 - $f(x) = \sum_{i} \log(g(x))$ is concave if g is concave and positive
 - $\log \sum_{i=1}^{k} \exp(g_i(x))$ is convex if g_i is convex.

Following functions are convex, but may not be differentiable everywhere.

• **Pointwise maximum:** If $f_1, f_2, ..., f_m$ are convex, then $f(x) = max \{f_1(x), f_2(x), ..., f_m(x)\}$ is also convex. For example:

Following functions are convex, but may not be differentiable everywhere.

- Pointwise maximum: If $f_1, f_2, ..., f_m$ are convex, then $f(x) = max \{f_1(x), f_2(x), ..., f_m(x)\}$ is also convex. For example:
 - Sum of r largest components of $x \in \Re^n f(x) = x_{[1]} + x_{[2]} + \ldots + x_{[r]}$, where $x_{[1]}$ is the i^{th} largest component of x, is a convex function.

Following functions are convex, but may not be differentiable everywhere.

- Pointwise maximum: If $f_1, f_2, ..., f_m$ are convex, then $f(x) = max \{f_1(x), f_2(x), ..., f_m(x)\}$ is also convex. For example:
 - Sum of r largest components of $x \in \Re^n f(x) = x_{[1]} + x_{[2]} + \ldots + x_{[r]}$, where $x_{[1]}$ is the i^{th} largest component of x, is a convex function.
- **Pointwise supremum:** If f(x,y) is convex in x for every $y \in \mathcal{S}$, then $g(x) = \sup_{y \in \mathcal{S}} f(x,y)$ is convex. For example:

Following functions are convex, but may not be differentiable everywhere.

- Pointwise maximum: If $f_1, f_2, ..., f_m$ are convex, then $f(x) = max \{f_1(x), f_2(x), ..., f_m(x)\}$ is also convex. For example:
 - Sum of r largest components of $x \in \Re^n f(x) = x_{[1]} + x_{[2]} + \ldots + x_{[r]}$, where $x_{[1]}$ is the i^{th} largest component of x, is a convex function.
- Pointwise supremum: If f(x,y) is convex in x for every $y \in \mathcal{S}$, then $g(x) = \sup_{y \in \mathcal{S}} f(x,y)$ is convex. For example:
 - The function that returns the maximum eigenvalue of a symmetric matrix X, viz., $\lambda_{max}(X) = \sup_{\mathbf{y} \in \mathcal{S}} \frac{\|X\mathbf{y}\|_2}{\|\mathbf{y}\|_2}$ is a convex function of the symmetrix matrix X.

Which of the Following Loss Functions are Convex?

- L1/L2 Reg Logistic Regression: $L(\theta) = \sum_{i=1}^{n} \log(1 + \exp(-y_i \theta^T x_i)) + \lambda \|\theta\|$
- L1/L2 Reg SVMs: $L(\theta) = \sum_{i=1}^{n} \max\{0, 1 y_i \theta^T x_i\} + \lambda \|\theta\|$
- L1/L2 Reg Multi-class Logistic Regression: $L(\theta_1, \dots, \theta_k) =$ $\sum_{i=1}^{n} -\theta_{v_{i}}^{T} x_{i} + \log(\sum_{c=1}^{k} \exp(\theta_{c}^{T} x_{i}))) + \sum_{i=1}^{c} \lambda \sum_{i=1}^{m} \|\theta_{i}\|$
- L1/L2 Reg Least Squares (Lasso): $L(\theta) = \sum_{i=1}^{n} (\theta^T x_i y_i)^2 + \lambda \|\theta\|$
- Matrix Completion: $L(X) = \sum_{i=1}^{n} ||y_i A_i(X)||_2^2 + ||X||_*$
- Soft-Max Contextual Bandits: $L(\theta) = \sum_{i=1}^{n} \frac{r_i}{p_i} \frac{\exp(\theta^T x_i^{q_i})}{\sum_{i=1}^{k} \exp(\theta^T x_i^{j_i})} + \lambda \|\theta\|$

The Direction Vector

- Consider a function f(x), with $x \in \Re^n$.
- We start with the concept of the direction at a point $x \in \Re^n$.
- We will represent a vector by x and the k^{th} component of x by x_k .
- Let u^k be a unit vector pointing along the k^{th} coordinate axis in \Re^n ;
- $u_k^k = 1$ and $u_j^k = 0$, $\forall j \neq k$
- An arbitrary direction vector v at x is a vector in \Re^n with unit norm (i.e., $||\mathbf{v}|| = 1$) and component v_k in the direction of \mathbf{u}^k .

Directional derivative and the gradient vector

Let $f: \mathcal{D} \to \Re$, $\mathcal{D} \subseteq \Re^n$ be a function.

Definition

[Directional derivative]: The directional derivative of f(x) at x in the direction of the unit vector y is

Directional derivative and the gradient vector

Let $f: \mathcal{D} \to \Re$, $\mathcal{D} \subseteq \Re^n$ be a function.

Definition

[Directional derivative]: The directional derivative of f(x) at x in the direction of the unit vector v is

$$D_{\mathsf{v}}f(\mathsf{x}) = \lim_{h \to 0} \frac{f(\mathsf{x} + h\mathsf{v}) - f(\mathsf{x})}{h} \tag{1}$$

provided the limit exists.

Directional Derivative

As a special case, when $v = u^k$ the directional derivative reduces to the partial derivative of f with respect to x_k .

$$D_{\mathsf{u}^k}f(\mathsf{x}) = \frac{\partial f(\mathsf{x})}{\partial x_k}$$

If f(x) is a differentiable function of $x \in \Re^n$, then f has a directional derivative in the direction of any unit vector v, and

$$D_{\mathbf{v}}f(\mathbf{x}) = \sum_{k=1}^{n} \frac{\partial f(\mathbf{x})}{\partial x_{k}} v_{k} = \nabla f^{T} \mathbf{v}$$
 (2)

Sublevel Sets of Convex Functions

• Lets define *sub-level sets* of a convex function as follows:

Definition

[Sublevel Sets]: Let $\mathcal{D} \subseteq \Re^n$ be a nonempty set and $f : \mathcal{D} \to \Re$. The set

$$L_{\alpha}(f) = \{x | x \in \mathcal{D}, f(x) \le \alpha\}$$

is called the α -sub-level set of f.

Now if a function f is convex,

Sublevel Sets of Convex Functions

• Lets define *sub-level sets* of a convex function as follows:

Definition

[Sublevel Sets]: Let $\mathcal{D} \subseteq \Re^n$ be a nonempty set and $f : \mathcal{D} \to \Re$. The set

$$L_{\alpha}(f) = \{x | x \in \mathcal{D}, f(x) \le \alpha\}$$

is called the α -sub-level set of f.

Now if a function f is convex, its α -sub-level set is a convex set.

Convex Function \Rightarrow Convex Sub-level sets

Theorem

Let $\mathcal{D} \subseteq \mathbb{R}^n$ be a nonempty convex set, and $f : \mathcal{D} \to \mathbb{R}$ be a convex function. Then $L_{\alpha}(f)$ is a convex set for any $\alpha \in \mathbb{R}$.

Proof: Consider $x_1, x_2 \in L_{\alpha}(f)$. Then by definition of the level set, $x_1, x_2 \in \mathcal{D}$, $f(x_1) \leq \alpha$ and $f(x_2) \leq \alpha$. From convexity of \mathcal{D} it follows that for all $\theta \in (0,1)$, $x = \theta x_1 + (1-\theta)x_2 \in \mathcal{D}$. Moreover, since f is also convex,

$$f(x) \le \theta f(x_1) + (1 - \theta)f(x_2) \le \theta \alpha + (1 - \theta)\alpha = \alpha$$

which implies that $x \in L_{\alpha}(f)$. Thus, $L_{\alpha}(f)$ is a convex set.

Convex Function \Rightarrow Convex Sub-level sets

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f : \mathcal{D} \to \Re$ be a convex function. Then $L_{\alpha}(f)$ is a convex set for any $\alpha \in \Re$.

Proof: Consider $x_1, x_2 \in L_{\alpha}(f)$. Then by definition of the level set, $x_1, x_2 \in \mathcal{D}$, $f(x_1) \leq \alpha$ and $f(x_2) \leq \alpha$. From convexity of \mathcal{D} it follows that for all $\theta \in (0,1)$, $x = \theta x_1 + (1-\theta)x_2 \in \mathcal{D}$. Moreover, since f is also convex,

$$f(x) \le \theta f(x_1) + (1 - \theta)f(x_2) \le \theta \alpha + (1 - \theta)\alpha = \alpha$$

which implies that $x \in L_{\alpha}(f)$. Thus, $L_{\alpha}(f)$ is a convex set. \Box The converse of this theorem does not hold. To illustrate this, consider the function $f(x) = \frac{x_2}{1+2x_1^2}$. The 0-sublevel set of this function is $\{(x_1,x_2) \mid x_2 \leq 0\}$, which is convex. However, the function f(x) itself is not convex.

Convex Function \Rightarrow Convex Sub-level sets

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f: \mathcal{D} \to \Re$ be a convex function. Then $L_{\alpha}(f)$ is a convex set for any $\alpha \in \Re$.

Proof: Consider $x_1, x_2 \in L_{\alpha}(f)$. Then by definition of the level set, $x_1, x_2 \in \mathcal{D}$, $f(x_1) \leq \alpha$ and $f(x_2) \leq \alpha$. From convexity of \mathcal{D} it follows that for all $\theta \in (0,1)$, $x = \theta x_1 + (1-\theta)x_2 \in \mathcal{D}$. Moreover, since f is also convex,

$$f(x) \le \theta f(x_1) + (1 - \theta)f(x_2) \le \theta \alpha + (1 - \theta)\alpha = \alpha$$

which implies that $x \in L_{\alpha}(f)$. Thus, $L_{\alpha}(f)$ is a convex set. The converse of this theorem does not hold. To illustrate this, consider the function $f(x) = \frac{x_2}{1+2x_1^2}$. The 0-sublevel set of this function is $\{(x_1,x_2)\mid x_2\leq 0\}$, which is convex. However, the function f(x) itself is not convex.

A function is called quasi-convex if all its sub-level sets are convex 25/30

Convex Sub-level sets ⇒ Convex Function

A function is called quasi-convex if all its sub-level sets are convex sets. Every quasi-convex function is not convex!

Consider the Negative of the normal distribution $-\frac{1}{\sigma\sqrt{2\pi}}exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$.

This function is quasi-convex but not convex.

Consider the simpler function $f(x) = -exp(-(x - \mu)^2)$.

- Then $f'(x) = 2(x \mu)exp(-(x \mu)^2)$
- And $f''(x) = 2exp(-(x-\mu)^2) 4(x-\mu)^2exp(-(x-\mu)^2) = (2-4(x-\mu)^2)exp(-(x-\mu)^2)$ which is < 0 if $(x-\mu)^2 > \frac{1}{2}$,
- Thus, the second derivative is negative if $x > \mu + \frac{1}{\sqrt{2}}$ or $x < -\mu \frac{1}{\sqrt{2}}$.
- Recall from discussion of convexity of $f: \Re \to \Re$ if the derivative is not non-decreasing everywhere \implies function is not convex everywhere.

To prove that this function is quasi-convex, we can

Proof that the function is Quasi-Convex

- **1** Inspect the $L_{\alpha}(f)$ sublevel sets of this function: $L_{\alpha}(f) = \{x \mid -\exp(-(x-\mu)^2) \le \alpha\} = \{x \mid \exp(-(x-\mu)^2) \ge -\alpha\}.$
- 2 Since $exp(-(x-\mu)^2)$ is monotonically increasing for $x < \mu$ and monotonically decreasing for $x > \mu$, the set $\{x|exp(-(x-\mu)^2) \ge -\alpha\}$ will be a contiguous closed interval around μ and therefore a convex set.
- Thus, $f(x) = -exp(-(x \mu)^2)$ is quasi-convex (and so is its generalization - the negative of the normal density function).
- One can similarly prove that the negative of the multivariate normal density function is also quasi-convex, by inspecting its sub-level sets, which are nothing but ellipsoids.

Proof that the function is Quasi-Convex

- **1** Inspect the $L_{\alpha}(f)$ sublevel sets of this function: $L_{\alpha}(f) = \{x \mid -\exp(-(x-\mu)^2) \le \alpha\} = \{x \mid \exp(-(x-\mu)^2) \ge -\alpha\}.$
- 2 Since $exp(-(x-\mu)^2)$ is monotonically increasing for $x < \mu$ and monotonically decreasing for $x > \mu$, the set $\{x|exp(-(x-\mu)^2) \ge -\alpha\}$ will be a contiguous closed interval around μ and therefore a convex set.
- Thus, $f(x) = -exp(-(x \mu)^2)$ is quasi-convex (and so is its generalization - the negative of the normal density function).
- One can similarly prove that the negative of the multivariate normal density function is also quasi-convex, by inspecting its sub-level sets, which are nothing but ellipsoids.

Convex Functions and Their Epigraphs

Let us further the connection between convex functions and sets by introducing the concept of the *epigraph* of a function.

Definition

[Epigraph]: Let $\mathcal{D} \subseteq \Re^n$ be a nonempty set and $f: \mathcal{D} \to \Re$. The set $\{(\mathsf{x}, f(\mathsf{x}) | \mathsf{x} \in \mathcal{D}\} \text{ is called graph of } f \text{ and lies in } \Re^{n+1}$. The epigraph of f is a subset of \Re^{n+1} and is defined as

$$epi(f) = \{(x, \alpha) | f(x) \le \alpha, x \in \mathcal{D}, \alpha \in \Re\}$$
 (3)

In some sense, the epigraph is the set of points lying above the graph of f.

Eg: Recall affine functions of vectors: $\mathbf{a}^T\mathbf{x} + b$ where $\mathbf{a} \in \Re^n$. Its epigraph is $\{(\mathbf{x},t)|\mathbf{a}^T\mathbf{x} + b \leq t\} \subseteq \Re^{n+1}$ which is a half-space (a convex set). DALLAS

There is a one to one correspondence between the convexity of function f and that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f : \mathcal{D} \to \Re$. Then

There is a one to one correspondence between the convexity of function f and that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f : \mathcal{D} \to \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\implies epi(f)$ convex set

There is a one to one correspondence between the convexity of function fand that of the set epi(f), as stated in the following result.

Theorem

Let $\mathcal{D} \subseteq \Re^n$ be a nonempty convex set, and $f: \mathcal{D} \to \Re$. Then f is convex if and only if epi(f) is a convex set.

Proof: f convex function $\implies epi(f)$ convex set

Let f be convex. For any $(x_1, \alpha_1) \in epi(f)$ and $(x_2, \alpha_2) \in epi(f)$ and any $\theta \in (0,1)$,

$$f(\theta \mathsf{x}_1 + (1-\theta)\mathsf{x}_2) \le \theta f(\mathsf{x}_1) + (1-\theta)f(\mathsf{x}_2)) \le \theta \alpha_1 + (1-\theta)\alpha_2$$

Since \mathcal{D} is convex, $\theta x_1 + (1 - \theta)x_2 \in \mathcal{D}$. Therefore, $(\theta \mathsf{x}_1 + (1-\theta)\mathsf{x}_2, \theta \alpha_1 + (1-\theta)\alpha_2) \in epi(f)$. Thus, epi(f) is convexities convex. This proves the necessity part.

epi(f) convex set $\implies f$ convex function

To prove sufficiency, assume that epi(f) is convex. Let $x_1, x_2 \in \mathcal{D}$. So, $(x_1, f(x_1)) \in epi(f)$ and $(x_2, f(x_2)) \in epi(f)$. Since epi(f) is convex, for $\theta \in (0, 1)$,

$$(\theta \mathsf{x}_1 + (1-\theta)\mathsf{x}_2, \theta\alpha_1 + (1-\theta)\alpha_2) \in epi(f)$$

which implies that $f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$ for any $\theta \in (0,1)$. This proves the sufficiency.

