Marks:

Q1:

/26

Q2:

/20

Q3:

/14

TOTAL:

ECE259: Electromagnetism

Term test 2 - Thursday March 16, 2017 Instructor: Prof. Piero Triverio

Last name: SOLUTION					
First name:					
Student number:					
Tutorial section number:					
Section	Day	Time	Room	TA name	7
TUT0101	Wednesday	13:00-14:00	WB 144	Ayman	
TUT0102	Wednesday	13:00-14:00	BA 2159	Antoine	
TUT0103	Wednesday	13:00-14:00	BA 3008	Utkarsh	
TUT0104	Wednesday	13:00-14:00	BA 3012	Neeraj	
TUT0105	Monday	15:00-16:00	BA 2159	Ayman	
TUT0106	Monday	15:00-16:00	BA 3008	Antoine	
TUT0107	Monday	15:00-16:00	BA 3012	Utkarsh	
TUT0108	Monday	15:00-16:00	BA 3116	Neeraj	
	on: 1 hour 30 r	ninutes (9:10 to			
• Exam l	aper Type: A.	Closed book.	Only the aid	sheet provid	ed at the end of this booklet is permitted.
 Calculator Type: 2. All non-programmable electronic calculators are allowed. 					
 Answers written in pen are typically eligible for remarking. Answers written in pencil are typically not eligible for remarking. 					
 Only answers that are fully justified will be given full credit! 					

/60

Question 1

Consider the spherical capacitor shown in the figure above. The capacitor consists of two perfect conductors of radii α and β separated by an imperfect dielectric with absolute permittivity

$$\varepsilon(R) = \varepsilon_0 \frac{\beta}{R} \,,$$

and conductivity

$$\sigma(R) = \sigma_0 \frac{\beta}{R} \,.$$

The inner conductor is held at potential $V = V_0$. The outer conductor is taken as reference for potentials.

1. Use Poisson's equation to find the potential V(R) for $R \in [\alpha, \beta]$. You can assume $\rho_v = 0$ for $\alpha < R < \beta$ [8 points].

Poisson's equation
$$\nabla \cdot (E \nabla V) = 0$$

$$\frac{1}{R^2} \frac{\partial}{\partial R} \left[R^2 \frac{\partial V}{\partial R} \frac{\partial V}{\partial R} \right] = 0$$

$$\frac{\partial}{\partial R} \left[R \frac{\partial V}{\partial R} \right] = 0$$

$$\left[3pt \right]$$

$$R \frac{\partial V}{\partial R} = C_1$$
; $\frac{\partial V}{\partial R} = \frac{C_1}{R}$

Boundary conditions:

$$\begin{cases} V(\alpha) = V_0 \\ V(\beta) = 0 \end{cases} \begin{cases} C_1 \ln \alpha + C_2 = V_0 \\ C_1 \ln \beta + C_2 = 0 \end{cases}$$

$$C_1 \ln \frac{\alpha}{\beta} = V_0$$
, $C_1 = \frac{V_0}{\ln \alpha/\beta}$

$$V(R) = \frac{V_0}{\ln^2\beta} \ln R - \frac{V_0}{\ln^2\beta} \ln \beta = \frac{V_0}{\ln^2\beta} \ln R/\beta = \frac{V_$$

2. Calculate the resistance R between the conductors [8 points].

$$\begin{split}
\overline{E} &= -\nabla V = -\frac{\partial}{\partial R} \left[V_0 \frac{\ln \beta_R}{\ln \beta_A} \right] \overline{a}_R = \\
&= -\frac{V_0}{\ln \beta_A} \frac{\partial}{\partial R} \left[\ln \beta - \ln R \right] \overline{a}_R = +\frac{V_0}{\ln \beta_A} \frac{1}{R} \overline{a}_R
\end{split}$$
[2pt]

$$\overline{J} = \sigma \overline{E} = \frac{V_0 r_0 \beta}{u \beta a} \frac{1}{R^2} \overline{a}_R$$
 [2pt]

$$T = \int_{S} \overline{J} \cdot d\overline{S} = J \cdot 4TR^{2} = \frac{\sqrt{0.50 \beta}}{4\pi} 4T \qquad [2pt]$$
since $J/d\overline{S}$

$$R = \frac{V_0}{I} = \frac{\ln \beta/\alpha}{4\pi \sigma_0 \beta} \qquad (2pt)$$

3. Calculate the capacitance C between the conductors [6 points].

Need charge 2 on imer conductor

From boundary condution on PECs:

$$(2pt) \begin{cases} D_m = P_s \\ P_s = D_n(R=\alpha) = \mathcal{E}(\alpha) E_n(\alpha) = \mathcal{E}_0 \frac{B}{\alpha} \frac{V_0}{euB/a} \frac{1}{\alpha} = \frac{\mathcal{E}_0}{\alpha^2} \frac{BV_0}{euB/a} \end{cases}$$

4. The dielectric between the conductors has a dielectric strength of $E_{br}=20\,\mathrm{kV/mm}$. Find the maximum voltage $V_{0,max}$ that the capacitor can sustain without suffering any damage. Express the result in kV using $\alpha=1\,\mathrm{mm}$ and $\beta=3\,\mathrm{mm}$ [4 points].

$$V_0 < E_{br} < u = 20.1 \cdot lu^3 / = 21.97 kV$$
 [2pt]

A point charge q is travelling with velocity ${\bf u}$ when it enters a region where a magnetic flux density ${\bf B}$ is present. The magnetic flux density can change:

- 1. neither the magnitude nor the direction of u;
- 2. only the magnitude of u, but not the direction of u;
- 3. only the direction of u, but not the magnitude of u;

4. both the magnitude and the direction of u.

Briefly justify your answer [4 points].

[Right answ: 2pt]

Fm always I to u by obfinition of cross product

=> can steen the change's trajectory

=> can't aculerate/olecelerate the change

Expl: 2pt

We have a parallel plate capacitor connected to a voltage source. In the initial state κ the dielectric between the plates is air, and the energy stored in the capacitor is W_e . The voltage source is disconnected, and then the capacitor is filled with a dielectric with relative permittivity $\varepsilon_r=3$. What is the energy W_e' stored in the capacitor in its final state?

- 1. $W'_e = W_e$;
- 2. $W'_e = 3W_e$;
- 3. $W'_e = 9W_e;$ 4. $W'_e = \frac{1}{3}W_e;$

5. $W'_e = \frac{1}{9}W_e$;

Briefly justify your answer [4 points].

$$We = \frac{1}{2} CV^2 = \frac{1}{2} \frac{Q^2}{C}$$

Q remains constant since source disconnected

$$We' = \frac{1}{2} \frac{\partial^2}{\partial C} = \frac{1}{3} We$$

A positive point charge q>0 and a negative point charge -2q are placed above an infinitely wide PEC plane (PEC: perfect electric conductor). Point P is on the boundary of the PEC plane, as shown in the figure. The electric field ${\bf E}$ at P is in the direction of

- 1. $+a_x$;
- $3. +a_{u}$;
- [2pt]
- 4. $-a_y$;
- 5. $2\mathbf{a}_{x} \mathbf{a}_{y}$;
- 6. $-2\mathbf{a}_x + \mathbf{a}_y$.

Briefly justify your answer [4 points].

Image throng

4. \(\overline{E_1 + \overline{E_2}} \) -29
\(\overline{E_1} \) \(\overline{E_2} \) -29
\(\overline{E_1} \) \(\overline{E_2} \) -29
\(\overline{Anage} \) \(\overline{Anage} \) \(\overline{E_2} \) -29
\(\overline{Anage} \) \(\overline{E_2} \) -29
\(\overline{Anage} \) \(\overline{E_2} \) -29
\(\overline{Anage} \) \(\overline{Anage} \) \(\overline{E_2} \) -29
\(\overline{Anage} \) \(\overline{E_2} \) -29
\(\overline{Anage} \) \(\overline{Anage} \) \(\overline{E_2} \) -29
\(\overline{Anage} \) \(\overline{Anage} \) \(\overline{E_2} \) -29
\(\overline{Anage} \) \(\overline{Anage

The figure shows two systems. System A (left panel) consists of two parallel conducting plates separated by a material with conductivity σ . The plates are held at voltage V_0 . System B (right panel) is like system A, but the following parameters are doubled: distance between the plates and voltage applied.

What is the correct relation between the total power dissipated in system A and in system B?

1.
$$P_A = P_B$$
;

2.
$$P_A = 2P_B$$
;

3.
$$P_A = \frac{1}{2}P_B$$
;
4. $P_A = 4P_B$;

$$=4P_B;$$

5.
$$P_A = \frac{1}{4}P_B$$
;

Briefly justify your answer [4 points].

The resistance of system B is twice the resistance of A

[2pt]

$$P_B = \frac{(2V_0)^2}{2R_A} = 2\frac{V_0^2}{R_A} = 2P_A$$

The figure shows the interface between two conductive materials. Which material is a better conductor?

- 2. Material 2;
- 3. The two materials have the same conductivity;
- 4. More information is needed to answer this question.

Briefly justify your answer [4 points].

Boundary conditions Br J

62 Ji,t= 0, J2,t

since Jz,t < Ji,t

[2pt]

Question 3

The semi-circular contour shown in the figure above is part of a closed circuit where a DC current I flows. The contour has radius α and is in the xy plane.

1. Find the magnetic flux density B produced by the current in the semi-circular contour at a point z = h > 0 on the positive z axis [14 points].

Bist-Savant Row

Cylinduical coordinates [Ipt]

contour:
$$r' = \alpha$$
 $\varphi' \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ $z' = 0$ [Ipt]

$$\bar{R} = h \bar{a}_z$$
 [1pt]

$$R' = \alpha \overline{\alpha}r'$$

$$R' = h \overline{\alpha}_{z} - \alpha \overline{\alpha}r' \quad (1pt)$$

$$R - R' = h \overline{\alpha}_{z} - \alpha \overline{\alpha}r' \quad (1pt)$$

$$R - R' = h \overline{\alpha}_{z} - \alpha \overline{\alpha}r' \quad (1pt)$$

$$R - R' = h \overline{\alpha}_{z} - \alpha \overline{\alpha}r' \quad (1pt)$$

$$R - R' = h \overline{\alpha}_{z} - \alpha \overline{\alpha}r' \quad (1pt)$$

$$R - R' = h \overline{\alpha}_{z} - \alpha \overline{\alpha}r' \quad (1pt)$$

$$R - R' = h \overline{\alpha}_{z} - \alpha \overline{\alpha}r' \quad (1pt)$$

$$= \alpha h \alpha r' \quad (1pt)$$

$$=$$

$$B = \frac{\mu_0 I}{4\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{dh \cos \varphi d\varphi \bar{a}x + \alpha^2 d\varphi \bar{a}_z}{\left(\sqrt{d^2 + h^2}\right)^3} =$$

=
$$\frac{\mu_0 I}{4\pi} \frac{\alpha h}{(\sqrt{\alpha^2 + h^2})^3} \cdot \frac{1}{2} \frac{1}{\alpha x} + \frac{\mu_0 I}{4\pi} \frac{\alpha^2 \overline{\alpha_z}}{(\sqrt{\alpha^2 + h^2})^3} = \frac{1}{2} \frac{3pt}{(\sqrt{\alpha^2 + h^2})^3}$$

$$= \frac{\mu_0 I \alpha}{2 \left[\alpha^2 + h^2 \right]^{3/2}} \cdot \left[\frac{h}{\pi} \bar{a} x + \frac{\alpha}{2} \bar{a}_z \right]$$