Three

Supplementary Materials

CHECKING INDEPENDENCE

We have a handy way to check independence.

X and *Y* are independent if and only if both of the following hold:

- (a) $R_{X,Y}$, the range where the probability function is positive, is a product space.
- (b) For any $(x,y) \in R_{X,Y}$, we have

$$f_{X,Y}(x,y) = C \times g_1(x) \times g_2(y).$$

That is, $f_{X,Y}(x,y)$ can be "factorized" as the product of two functions g_1 and g_2 , where g_1 **depends on** x **only**, g_2 **depends on** y **only**, and C is a constant not depending on both x and y.

Note: $g_1(x)$ and $g_2(y)$ on their own NEED NOT be probability functions.

EXAMPLE 3.1

Consider the joint probability function

$$f(x,y) = \frac{1}{36}xy$$
, for $x = 1,2,3$, $y = 1,2,3$.

Note that we can write

$$A_1 = \{1, 2, 3\}, A_2 = \{1, 2, 3\}.$$

So $R_{X,Y} = A_1 \times A_2$ is a product space.

We can also let

$$C = 1/36$$
, $g_1(x) = x$, $g_2(y) = y$.

Then $f_{X,Y}(x,y) = C \times g_1(x) \times g_2(y)$. Thus X and Y are independent.

The advantage of this method is that we do not need to find the marginal distributions $f_X(x)$ and $f_Y(y)$ and check if $f_{X,Y}(x,y) = f_X(x)f_Y(y)$.

EXAMPLE 3.2

The joint probability function of (X,Y) is given below.

$$f_{X,Y}(x,y) = \begin{cases} \frac{1}{3}x(1+y), & \text{for } 0 < x < 2, 0 < y < 1, \\ 0, & \text{elsewhere.} \end{cases}$$

Are *X* and *Y* independent?

Solution:

We can set $A_1 = (0,2)$ and $A_2 = (0,1)$. Then

$$R_{X,Y} = A_1 \times A_2$$

is a product space.

Notice that $f_{X,Y}(x,y)$ in $R_{X,Y}$ can be factorized by letting

$$C = \frac{1}{3}$$
, $g_1(x) = x$, $g_2(y) = 1 + y$.

Therefore, we conclude that *X* and *Y* are independent.