Отчет по лабораторной работе№6

Модель 'хищник-жертва'

Надежда Александровна Рогожина

Содержание

1	Задание	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	7
4	Выводы	13
Сг	писок литературы	14

Список иллюстраций

3.1	Коэффициенты a,b,c,d	7
3.2	Время моделирования = 30с	8
3.3	Модель xcos	8
3.4	Визуализация результатов моделирования	9
3.5	Фазовый портрет	9
3.6	Настройка блока	0
3.7	Код Modelica	1
3.8	Диаграмма с кодом	1
3.9	График	2
3.10	Фазовый портрет	2

Список таблиц

1 Задание

Реализуйте модель «хищник – жертва» в OpenModelica. Постройте графики изменения численности популяций и фазовый портрет.

2 Теоретическое введение

Модель «хищник-жертва» (модель Лотки — Вольтерры) представляет собой модель межвидовой конкуренции. В математической форме модель состоит из 2 уравнений:

- 1. $\dot{x} = ax bxy;$
- 2. y = cxy dy,

где - х — количество жертв; - у — количество хищников; - а, b, c, d — коэффициенты, отражающие взаимодействия между видами: - а — коэффициент рождаемости жертв; - b — коэффициент убыли жертв; - с — коэффициент рождения хищников; - d — коэффициент убыли хищников.

3 Выполнение лабораторной работы

В первую очередь, зададим переменные окружения (рис. 3.1).

Рис. 3.1: Коэффициенты a,b,c,d

Также, сразу установим параметры моделирования (рис. 3.2).

Рис. 3.2: Время моделирования = 30с

Следующий шаг - реализация схемы модели "Хищник-жертва" (рис. 3.3).

Рис. 3.3: Модель хсоѕ

Визуализировав результаты моделирования мы получили две кривые: 1. Зеленая - количество хищников (акул) 2. Черная - количество жертв (сардин) (рис. 3.4).

Рис. 3.4: Визуализация результатов моделирования

Также, фазовый портрет (рис. 3.5):

Рис. 3.5: Фазовый портрет

Вторым этапом была реализация с помощью блока кода Modelica. Для этого установим у блока Modelica необходимые входные и выходные параметры (рис. 3.6).

Рис. 3.6: Настройка блока

И укажем код, который будет описывать популяцию хищников и жертв (рис. 3.7).

Рис. 3.7: Код Modelica

Диаграмма с блоком кода выглядит следующим образом (рис. 3.8):

Рис. 3.8: Диаграмма с кодом

Как мы видим, результаты мы получили те же (рис. 3.9, рис. 3.10).

Рис. 3.9: График

Рис. 3.10: Фазовый портрет

4 Выводы

В ходе работы мы изучили модель "Хищник-жертва" и получили результаты моделирования двумя способами - интегрирование и блок кода Modelica.

Список литературы