

-国防科大2020年高性能评测与优化课程小组讨论

报告人:龙健

组 员: 张树晓 龙 健

指导: 龚春叶、甘新标、杨傅

主要内容

- 1、需求分析
- 2、技术方案
- 3、效果(与CPU、GPU性能比较)
- 4、TPU可能的设计及对比分析
- 5、结论与思考

需求分析

- 神经网络的兴起对高性能计算的需求
- 必须通过特定领域的硬件来提高性价比

需求分析--神经网络 (NN) 介绍

- 神经网络的兴起
- 神经网络的目标
- 神经网络的两个阶段
- 三种神经网络:
 - 1. 多感知器(MLP)
 - 2. 卷积神经网络(CNN)
 - 3. 递归神经网络(RNN)

Name	LOC	Layers					Nonlinear	Waiahta	TPU Ops /	TPU Batch	% of Deployed	
		FC	Conv	Vector	Pool	Total	function	Weights	Weight Byte	Size	TPUs in July 2016	
MLP0	100	5				5	ReLU	20M	200	200	61%	
MLP1	1000	4				4	ReLU	5M	168	168	0170	
LSTM0	1000	24		34		58	sigmoid, tanh	52M	64	64	29%	
LSTM1	1500	37		19		56	sigmoid, tanh	34M	96	96	2970	
CNN0	1000		16	·		16	ReLU	8M	2888	8	5%	
CNN1	1000	4	72		13	89	ReLU	100M	1750	32	370	

需求分析--特定领域的硬件来提高性价比

· TPU的来源 定制ASIC芯片 性能提高10倍

协处理器

TPU设计的技术方案

• TPU的架构

TPU设计的技术方案

- TPU的指令
 - Read_Host_Memory
 - Read_Weights
 - MatrixMultiply/Convolve
 - Activate
 - Write_Host_Memory

TPU设计的技术方案

• TPU的数据流

- CPU、GPU和TPU平台
 - · TPU: 基准平台是2015年部署TPUs时可用的服务器级计算机
 - · CPU: CPU服务器由Intel的18核双插槽Haswell处理器
 - GPU: GPU加速器是Nvidia K80

•测试平台

		Die									Benchmarked Servers					
Model	mm²	nm M	MH_{7}	TDP	Measured		TOPS/s		GB/s	GB/s On-Chip	Dies	DRAM Size	TDP	Meas	Measured	
	mm		W1112	IDI	Idle	Busy	8b_	FP		Memory	Dies	DIMINI DIZE	101	Idle	Busy	
Haswell E5-2699 v3	662	22	2300	145W	41W	145W	2.6	1.3	51	51 MiB	2	256 GiB	504W	159W	455W	
NVIDIA K80 (2 dies/card)	561	28	560	150W	25W	98W		2.8	160	8 MiB	8	256 GiB (host) + 12 GiB x 8	1838W	357W	991W	
TPU	NA*	28	700	75W	28W	40W	92		34	28 MiB	4	256 GiB (host) + 8 GiB x 4	861W	290W	384W	

· 与CPU、GPU性能比较

· 与CPU、GPU性能比较

Type	Batch	99th% Response	Inf/s (IPS)	% Max IPS
CPU	16	7.2 ms	5,482	42%
CPU	64	21.3 ms	13,194	100%
GPU	16	6.7 ms	13,461	37%
GPU	64	8.3 ms	36,465	100%
TPU	200	7.0 ms	225,000	80%
TPU	250	10.0 ms	280,000	100%

Туре	MLP0	MLPI	LSTM0	LSTM1	CNN0	CNNI	GM	WM
GPU	2.5	0.3	0.4	1.2	1.6	2.7	1.1	1.9
TPU	41.0	18.5	3.5	1.2	40.3	71.0	14.5	29.2
Ratio	16.7	60.0	8.0	1.0	25.4	26.3	13.2	15.3

· 与CPU、GPU性能比较

Log-Log Scale

- · 性价比、TCO和性能/瓦特
- 能量比例

CNN0 Watts/Die (Total and Incremental)

TPU可能的设计及对比分析

• 评估可供选择的TPU设计

TPU可能的设计及对比分析

Chip	TPUv1	TPU√2	TPUv3
Announced	2016	May-17	May-18
Access	Internal-Only	Service Beta	Undisclosed
Introduction	2015	Feb 2018	Undisclosed
Process	28nm	20nm est.	16/12nm est.
Die Size	~300mm2	Undisclosed	Undisclosed
TOPS	92 / 23	45	90
Matrix Input	INT8 / INT16	bfloat16	bfloat16
Memory	8GB DDR3	16GB HBM	32GB HBM
CPU Interface	PCIe 3.0 x16	PCIe 3.0 x8	PCIe 3.0 x8 est.
Power Consumption	40W	200-250W est.	200W est.

结论与思考

结论

有五个架构因素可以解释TPU与CPU、GPU性能差距:

处理器: TPU只有一个处理器,而K80有13个,CPU有18个;单线程使系统更容易保持在固定的延迟限制内。

大型二维乘法单元: TPU有一个非常大的二维乘法单元,而CPU和GPU分别只有18个和13个较小的一维乘法单元;二维硬件在矩阵乘法中有很好的性能。

脉动阵列:二维组织支持脉动阵列,减少寄存器访问和能量消耗。

8位整型: TPU的应用使用 8 位整型而不是 32 位浮点运算来提高计算和内存效率。

弃掉的特征: TPU放弃了 CPU 和 GPU 需要但是 DNN 用不到的功能,这使得 TPU 更便宜,同时可以节约资源,并允许晶体管被重新用于特定领域的板载内存。

结论与思考

思考

关于TPU的发展以及性能提升等方面的一些思考

问题

TPU可选设计中, matrix增大为何性能反而略有下降?

谢 谢