МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра физики

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Физика»

Тема: ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ИСПОЛЬЗОВАНИЕМ БИПРИЗМЫ

Студент гр. 1302	Новиков Г.В.
Преподаватель	Лоскутников В.С.

Санкт-Петербург

2022

Лабораторная работа 2. ОПРЕДЕЛЕНИЕ ДЛИНЫ СВЕТОВОЙ ВОЛНЫ С ИСПОЛЬЗОВАНИЕМ БИПРИЗМЫ

Цель работы: определение длины световой волны интерференционным методом.

Экспериментальная установка состоит из оптической скамьи с мерной линейкой; бипризмы Френеля, закреплённой в держателе; источника света со светофильтром; раздвижной щели; окуляра со шкалой. Взаимное расположение элементов установки соответствует схеме, приведенной на рис. 2.1. Источником света служит лампа накаливания. Светофильтр, расположенный перед лампой, пропускает определенную часть спектра излучения лампы, которую и надлежит изучить.

На оптической скамье, снабженной линейкой с миллиметровой шкалой, помещены укрепленные на держателях вертикальная щель S, бипризма P и окуляр О. Ширину щели можно изменять с помощью винта, находящегося в верхней части его оправы. Щель и бипризма могут быть повернуты вокруг горизонтальной оси, а бипризма также и вокруг вертикальной оси. Для получения отчетливых интерференционных полос необходимо, чтобы плоскости щели и основания бипризмы были параллельны. Это достигается соответствующим поворотом бипризмы и/или щели. Окуляр О служит для наблюдения интерференционной картины. Для измерения расстояния между полосами он снабжен шкалой, цена малого деления которой составляет 0.1 мм.

Общие сведения

Один из способов наблюдения интерференции световых волн основан на использовании бипризмы Френеля. Бипризма Френеля представляет собой две призмы с очень малым преломляющим углом θ , сложенные основаниями. Схема наблюдения интерференционной картины с помощью бипризмы показана на рис. 2.1. От источника света S (щели) лучи падают на обе половины бипризмы P, преломляются в ней и за призмой распространяются так, как если бы исходили из двух мнимых источников S_1 и S_2 . Действительно, если смотреть через верхнюю половину бипризмы, то светящаяся щель S будет казаться расположенной в точке S_1 , а если смотреть через нижнюю половину бипризмы, то расположенной в точке S_2 . За призмой имеется область пространства, в которой световые волны, преломлённые верхней и нижней половинами бипризмы, перекрываются (на рис. 2.1 эта область заштрихована).

 $Puc.\ 2.1.$ Получение интерференционной картины с использованием бипризмы Френеля В этой области пространства сводятся воедино две части *каждого цуга волн* от источника S, прошедшие разные оптические пути, способные при выполнении условия $\Delta < l_{\text{KO}\Gamma} \approx \lambda^2 / \Delta \lambda$ интерферировать, где Δ — оптическая разность хода лучей, $l_{\text{KO}\Gamma}$ — длина когерентности, λ — средняя длина волны излучения, $\Delta \lambda$ — интервал длин волн, представленных в данной волне. При этом колебания в точках, удалённых на расстояние большее $l_{\text{KO}\Gamma}$ вдоль распространения волны, оказываются некогерентными. Для обычных источников в оптике длина когерентности составляет 3—30 см.

Интерференционная картина, получающаяся при этом, соответствует интерференции волн, исходящих из двух когерентных источников, расположенных в точках S_1 и S_2 , и на экране Э в области AB наблюдается тогда ряд светлых и тёмных полос, параллельных ребру бипризмы. Светлые полосы лежат в тех местах экрана, куда приходят волны от источников S_1 и S_2 с разностью хода, равному чётному числу длин полуволн, тёмные — в тех местах, куда приходят волны с разностью хода, равной нечётному числу полуволн. Расстояние Δx между светлыми (или тёмными) полосами интерференционной картины составляет

$$\Delta x = (a+b)\lambda_0/d = l\lambda_0/d, \qquad (2.1)$$

где a и b — соответственно расстояния от щели до бипризмы и от бипризмы до экрана; l=a+b; λ_0 — длина волны излучения источника в вакууме; d — расстояние между мнимыми источниками, равное (см. рис. 2.1) d=2atg $\phi\cong 2a$ ϕ . Докажите, что в случае, когда преломляющий угол θ призмы мал, и углы падения на грань призмы не очень велики, все лучи отклоняются каждой из половин бипризмы на практически одинаковый угол ϕ , равный $\phi=\theta(n-1)$ (n — показатель преломления материала призмы (стекла)). Тогда для расстояния d получаем

$$d = 2a\theta(n-1). \tag{2.2}$$

С учётом этого соотношения вместо выражения (2.1) имеем

$$\Delta x = l\lambda_0/2a\theta(n-1),\tag{2.3}$$

или

$$\lambda_0 = 2a\theta(n-1)\Delta x/l. \tag{2.4}$$

Выражения (2.3) или (2.4) устанавливают связь между длиной световой волны и геометрическими размерами системы (т. е. источник света – бипризма Френеля – экран), в которой реализуется явление интерференции.

Puc. 2.2. Определение апертуры и угла схождения лучей в опыте с бипризмой Френеля

Видимость интерференционной картины зависит от размеров источника света, в чём нетрудно убедиться, изменяя ширину щели. Существенным являются, однако, не сами по себе размеры щели, а угол 2α (рис. 2.2). Угол 2α между соответствующими лучами, идущими от S через каждую из двух ветвей интерферометра к O, представляет собой угол раскрытия лучей, определяющий интерференционный эффект в точке O. Практически то же значение

имеет этот угол и для любой другой точки интерференционного поля. Этот угол называется *апертурой интерференции*. Ему соответствует в поле интерференции *угол схождения лучей* 2β, величина которого связана с углом 2α правилами построения изображений. При неизменном расстоянии до экрана 2β тем больше, чем больше 2α.

Из рис. 2.2 видно, что

$$2\beta \cong d/(a+b). \tag{2.5}$$

Подставляя выражение (2.5) в (2.1), получаем для расстояния между интерференционными полосами

$$\Delta x = \lambda/(2\beta). \tag{2.6}$$

Из рис. 2.2 видно также, что

$$\alpha + \beta = \varphi = \theta(n-1) \tag{2.7}$$

и, кроме того, $h/a \cong \alpha$, $h/b \cong \beta$. Исключая из двух последних выражений величину h, получаем

$$\beta = \alpha a/b. \tag{2.8}$$

Из совместного рассмотрения выражений (2.7) и (2.8) для углов α и β находим

$$\alpha = \theta(n-1)b/(a+b), \tag{2.9}$$

$$\beta = \theta(n-1)a/(a+b). \tag{2.10}$$

Эти соотношения используются в последующем для расчётов.

Величина апертуры интерференции 2α тесно связана с допустимыми размерами источника. Теория и опыт показывают, что с увеличением апертуры интерференции уменьшаются допустимые размеры ширины источника, при которых ещё имеет место отчётливая интерференционная картина. Условие хорошего наблюдения интерференции от протяжённого источника ширины s можно записать в виде:

$$stg\alpha \le \lambda/4$$
. (2.11)

Это условие, несмотря на его приближенный характер, можно положить в основу расчётов допустимых размеров монохроматического источника.

В данной работе монохроматизация света осуществляется с помощью светофильтра. Нетрудно найти связь между порядком интерференции m и шириной спектрального интервала $\Delta\lambda$, пропускаемого светофильтром. Действительно, интерференция не будет наблюдаться, если максимум m-го по-

рядка для $(\lambda + \Delta \lambda)$ совпадёт с максимумом (m + 1)-го порядка для λ : (m + 1) $\lambda = m(\lambda + \Delta \lambda)$, т. е. $\Delta \lambda = \lambda/m$. Для того, чтобы интерференционная картина при данных значениях $\Delta \lambda$ и λ обладала высокой видимостью, приходится ограничиваться наблюдением интерференционных полос, порядок которых много меньше предельного m_{max} , определяемого условием

$$m_{\text{max}} \approx \lambda/\Delta\lambda$$
. (2.12)

Экспериментально определяемая ширина полос рассчитывается по формуле

$$\Delta x = \frac{(N_2 - N_1)c}{m - 1},\tag{2.13}$$

где m— число полос, которые по яркости хорошо видны на экране, N_1 и N_2 — положения первой и последней полосы этого набора в делениях шкалы окуляра, c=0.1 мм/дел — масштабный множитель.

Ширина области перекрытия волн на экране (рис. 2.1) имеет протяженность $AB = 2b \text{tg} \phi = 2b \phi = 2b(n-1)\theta$. Тогда максимальное число интерференционных полос, которое можно наблюдать на экране с учетом формулы (2.13) равно

$$N_{\text{max}} = \frac{AB}{\Lambda x} = \frac{2b(n-1)\theta}{\Lambda x}.$$
 (2.14)

Подставляя выражение для Δx из формулы (2.13), получим

$$N_{\text{max}} = \frac{4ab(n-1)^2 \theta^2}{\hbar \lambda_0}.$$
 (2.15)