IC Design Flows

- The MOS Transistor
- Analog and Circuit Design
- Digital Logic Families
- Productivity Gap
- Digital Design Flows

Growing Design-Productivity Gap

Moore's Law:

Standard cell density and speed

Design Productivity Crisis

Potential Design Complexity and Designer Productivity

Source: (SRC 1997)

Designs do not only get more complex, but also much more expensive!

Trends that Shape the Gap

Design Productivity

Design productivity gap:

- Productivity grew at an impressive rate over the past decades
- Yet, the rate of improvement has not kept pace with chip capacity

VLSI Design, Fall 2021

Design Productivity

- 1981 leading edge chip required 100 designer months
 - 10,000 transistors / 100 transistors/month
- 2002 leading edge chip requires 30,000 designer months
 - 150,000,000 / 5000 transistors/month

Design Productivity

The situation is even worse:

- In theory, adding designers reduces project completion time
- In reality, productivity per designer decreases due to complexities of team management and communication
- At some point, can actually lengthen project completion time! ("Too many cooks")

- 1 designer produces 5000 trans/month
- 2 designers produce 4900 trans/month each
- 3 designers produce 4800 trans/month each
- Etc.

Obvious system design goal:

 Construct an implementation of an electronic system with desired functionality

Key design challenge:

Simultaneously optimize numerous design metrics

Design metric

- A measurable feature of a system's implementation
- Optimizing design metrics is a key challenge

- Common metrics
 - Size: the physical space required by the system (Area)
 - Performance: the execution time or throughput of the system
 - Power: the amount of power consumed by the system
 - NRE (Non-Recurring Engineering) cost:
 The one-time monetary cost of designing the system

- Unit cost: the monetary cost of manufacturing each copy of the system, excluding NRE cost
- Flexibility: the ability to change the functionality of the system without incurring heavy NRE cost
- Time-to-prototype: the time needed to build a working version of the system
- Time-to-market: the time required to develop a system to the point that it can be released and sold to customers

- Maintainability: the ability to modify the system after its initial release
- Correctness
- Safety
- Many more...

VLSI Design, Fall 2021

- Performance: typically refers to speed
 - Increasing the speed of a circuit is equivalent to reducing signal delays
- Widely-used measure of a system, widelyabused
 - Clock frequency, instructions per second not good measures
 - Digital camera example: a user cares about how fast it processes images, not clock speed or instructions per second

Other measures of performance:

- Latency (response time)
 - Time between task start and end
 - e.g. Cameras A and B process images in 0.25 seconds
- Throughput
 - Tasks per second
 - e.g. Camera A processes 4 images per second
 - Throughput can be more than latency (seems to imply concurrency)
 - e.g. Camera B may process 8 images per second (by capturing a new image while previous image is being stored)

Power Consumption:

- Increasingly important as more transistors fit on a chip
- Power not scaling down at same rate as size
 - Means more heat per unit area – cooling is difficult
 - Batteries are not improving at the same rate

- NRE cost (Non-Recurring Engineering cost):
 - The one-time monetary cost of designing the system
 - Includes:
 - Design cost (CAD tools + designers)
 - Masks
 - Any other one time cost (prototyping, false runs, ...)

Design cost:

 Can reach \$10s to \$100s of million for highperformance ICs

Mask costs:

- Before 0.65 μ m, mask costs were stable at around \$18K/set
- Since then they have approximately doubled every process node
 - Caused by sub wavelength feature sizes,
 - more metal layers due to interconnect dominance,
 - reduced mask yields, mask inspection and repair costs,

. . .

Mask cost per process:

Process(μ)	2.0	 8.0	0.6	0.35	0.25	0.18	0.13	0.09
Single Mask cost (\$K)	1.5	1.5	2.5	4.5	7.5	12	40	60
# of Masks	12	12	12	16	20	26	30	34
Mask Set cost (\$K)	18	18	30	72	150	312	1,000	2,000

Unit cost:

- The monetary cost of manufacturing each copy of the system, excluding NRE cost
- Includes:
 - Fabrication
 - Packaging
 - Testing
 - Total cost = NRE cost + unit cost X # of units
 - Per-product cost = total cost / # of units
 = (NRE cost / # of units) + unit cost

- Compare technologies by costs best depends on quantity
 - Technology A: NRE=\$2,000, unit=\$100
 - Technology B: NRE=\$30,000, unit=\$30
 - Technology C: NRE=\$100,000, unit=\$2

Time-to-market:

- Time required to develop a product to the point it can be sold to customers
- Very demanding design metric
- Market window
 - Period during which the product would have highest sales
- Delays can be costly

VLSI Design, Fall 2021

Simplified revenue model

- Product life = 2W, peak at W
- Triangle area equals revenue

Loss

 The difference between the on-time and delayed triangle areas

Area:

- On-time = 1/2 * 2W * W
- Delayed = 1/2 * (W-D+W)*(W-D)
- Percentage revenue loss = (D(3W-D)/2W²)*100%

Some examples:

- Lifetime = 52 wks, delay = 4 wks
 (4*(3*26 -4)/2*26^2)*100% = 22%
- Lifetime = 52 wks, delay = 10 wks

Delays are costly!

Optimization vs. Tradeoffs

 We obviously prefer optimizations, but often must accept tradeoffs