1. Sistema de raíces afínes

Observación 1.1. Sea Φ un sistema de raíces reducido irreducible y $\Psi = \Psi_{\Phi} = \{a_1, \ldots, a_{\ell}\}$ el sistema de raíces afín asociado. Si a_1, \ldots, a_{ℓ} es una base para Φ , a_0 es la raíz más larga, y definimos $\psi_1 = a_1, \ldots, \psi_{\ell} = a_{\ell}$ y $\psi_0 = 1$, entonces $\psi_v, \ldots, \psi_{\ell}$ es una base para Ψ .

1.1. Puntos especiales.

2. Edificios de Bruhat-Tits: general

Sea F un cuerpo henseliano de valuación discreta, k el cuerpo residual (perfecto) y $K = F^u$. Además sea G un grupo reductivo sobre F.

Hay una acción de $\Gamma = \operatorname{Gal}(K/F)$ en B(G/K), y todas las orbitas son finitas.

$$B(G/F) = B(G/K)^{\Gamma}$$
.

Es no vacio, cerrado y convexo.

Definición 2.1. Definimos

- (1) una Γ -faceta de B es una faceta Γ invariante.
- (2) Una Γ -alcoba es un Γ -faceta maximal.
- (3) Una Γ-vértice es una Γ-faceta minimal.

Definición 2.2. Una faceta de B(G/F) es Ω^{Γ} , para una Γ-faceta Ω de B(G/K). Es una alcoba o vértice si Ω es una Γ-alcoba o vertices, respectivamente.

Hasta ahora no queda claro si de esta manera tenemos propiedades similar como en el caso de cuasi escindido.

Grupos esquemáticos.

Subgrupos parahoricos.

3. Aplicaciones

Referencias

References

- [1] N. Bourbaki, Groupes et algèbres de Lie Chapitres 4, 5 et 6, Springer 2007
- [2] T. Kaletha, G. Prasad, Bruhat–Tits theory: a new approach New Mathematical Monographs, 44. Cambridge University Press.
- [3] J.S. Milne. Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field
- [4] B. Conrad. Algebraic groups I and II, disponible en https://www.ams.org/open-math-notes/omn-view-listing?listingId=110662 y https://www.ams.org/open-math-notes/omn-view-listing?listingId=110663