Daipark_ch1

Baek, Jong min

2021-01-25

え	F	례
		''

Exercise 9.																	 		•			2
Exercise 10																	 					3

Exercise 9.

a) uniform distribution from 10 to 15 cameras a month. If 12 cameras are ordered at the beginning of a month, what are the expected overstock cost and the expected undercost or shortage cost? What is the expected total cost?

$$\begin{split} C_o &= cost - salvage \\ &= inventory \, holding \, cost + wholesale \, cost \\ &= 480 + 25 - 0 = 505 \\ C_u &= price - cost \\ &= retail \, price + special \, delivery \, charge - wholesale \, cost \\ &= 600 + 50 - 480 = 170 \end{split}$$

$$\begin{split} \mathbb{E}[(12-D)^+] &= \int_{10}^{12} (12-x)^+ \frac{1}{5} dx + \int_{12}^{15} (12-x)^+ \frac{1}{5} dx \\ &= \frac{14}{5} \\ \mathbb{E}[(D-12)^+] &= \int_{10}^{12} (x-12)^+ \frac{1}{5} dx + \int_{12}^{15} (x-12)^+ \frac{1}{5} dx \\ &= \frac{1}{2} \end{split}$$

Expected over cost = $505 \times \frac{14}{5}$ = 1414 Expected under cost = $170 \times \frac{1}{2}$ = 85 Expected total cost = 1414+85= 1499

b) What is optimal number of cameras to order to minimize the expected total cost?

$$y^* = \frac{x - 10}{15 - 10} = \frac{67}{125}$$
$$= 12.68 = 12$$

c) Assume that the demand can be approximated by a normal distribution with mean 1000 and standard deviation 100 cameras a month. What is the optimal number of cameras to order to minimize the expected total cost?

$$N(\mu,\sigma^2) = N(1000,100^2)$$

qnorm(0.25185,mean=1000,sd=100)

[1] 933.1321

Exercise 10

a) What is the optimal ordering quantity for each case when the demand is discrete with $Pr\{D=500\}=Pr\{D=800\}=1/8, Pr\{D=600\}=1/2 and Pr\{D=700\}=1/4?$

$$\begin{split} C_u &= 100 (shortage \, cost) \\ C_0 &= 50 (the \, solvent \, cost(40) + disposal \, charge(10)) \\ F(D) &\geq \frac{100}{100 + 50} (\frac{2}{3}) \end{split}$$

d	500	600	700	800
$\boxed{\mathbb{P}[D=d]}$	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$
$\mathbb{P}[D \leq d]$	$\frac{1}{8}$	$\frac{5}{8}$	$\frac{7}{8}$	<u>8</u> 8

$$F(500) = \frac{1}{8}(0.125) < \frac{2}{3}(0.66)$$

$$F(600) = \frac{1}{8} + \frac{1}{2} = \frac{5}{8}(0.625) < \frac{2}{3}(0.66)$$

$$F(700) = \frac{1}{8} + \frac{1}{2} + \frac{1}{4} = \frac{7}{8}(0.875) > \frac{2}{3}(0.66)$$

$$F(800) = \frac{1}{8} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{8}{8}(1.0) > \frac{2}{3}(0.66)$$

The optimal order quantity $y^* = 700$

b) What is the optimal ordering policy for arbitrary initial inventory level m? (You need to specify the critical value m^* in addition to the optimal order-up-to quantity y^* . When $m \leq m^*$, you make an order. Otherwise, do not order.)

m(prepared inventory) is 0, 100, 300, 500 and 700 d(demand) is 500, 600, 700, 800

d	500	600	700	800
$\mathbb{P}[D=d]$	$\frac{1}{8}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$
$\mathbb{P}[D \leq d]$	$\frac{1}{8}$	$\frac{1}{2}$ $\frac{5}{8}$	$\frac{7}{8}$	$\frac{1}{8}$ $\frac{8}{8}$
$(D-m)^+(m=0)$	500	600	700	800
$(D-m)^+(m=100)$	400	500	600	700
$(D-m)^{+}(m=300)$	200	300	400	500
$(D-m)^+(m=500)$	0	100	200	300
$(D-m)^{+}(m=700)$	0	0	0	100
$(m-d)^+(m=0)$	500	600	700	800
$(m-d)^+(m=100)$	0	0	0	0
$(m-d)^+(m=300)$	0	0	0	0
$(m-d)^+(m=500)$	0	0	0	0
$(m-d)^+(m=700)$	200	100	0	0

c) Assume optimal quantity will be orderd. What is the total expected cost when the initial inventory m = 0? what is the total expected cost when the initial inventory m = 700?

Daipark_ch1.Rmd

"Hello"

[1] "Hello"