

eXplainable AI (XAI)

Frameworks toward interpretable systems

N. Rich Nguyen, PhD **SYS 6016**

xkcd.com/1838

Black-box Al

- End-users vs. Al engineers (ie. "Can I trust this Al?" vs. "How to improve the performance?")
- Completeness vs. explainability (ie. "this image classifier uses a deep network" vs. "presenting the Inception paper as an explanation")
- Transparency vs. bias and discrimination (exist in both training data and human society)

(a) Husky classified as wolf

(b) Explanation

- Improve ML system (through human interactivity)
- Verify the model because wrong decision can be costly and dangerous (ie. self-drive car or medical diagnostic)
- Learn new intuition (ie. why AlphaZero makes such as move in Go?)
- Gain insight in science? (ie. which gene linked to cancer?)
- Address inherent bias in ML models (ie. face detection, loan approval)

Explainable AI (XAI)

Goal: Design trustworthy, reliable, and explainable AI models without sacrificing performance.

There are 3 ways to design explainability into the **training process** of a model:

- Pre-training explainability: understand and describe the data
- 2. **In-training** explainability: develop more inherently explainable models
- 3. **Post-training** explainability: extract explanation from trained models

1. Pre-training explainability

Exploratory data analysis and visualization

Merely relying on statistical properties which is often not good enough

An example of datasets with **identical** mean and standard deviation, and different graphs to demonstrate the importance of visualization in exploratory data analysis

Visualizing high dimensional data with parallel-coordinate plots, PCA, t-SNE

Dataset Summarization

To summarize a dataset often means to seek a minimal subset of representative samples (aka **prototypes**) that provide a condensed view of it.

Prototypes are usually not adequate, we need **criticisms** too. A criticism is an often (relatively) rare data point that is not well described by the set of prototypes.

2. In-training explainability

Inherently explainable models

Adopt model from a specific family:

- Generalized Linear Models
- Decision Trees
- Tree-based Ensemble Models
- Generalized Additive Models

It could mean **lower** predictive performance in large and complex dataset

Explainability should not (does not) mean lower performance.

Hybrid Architectures

- The deep-kNN approach proposes to use K-nearest neighbor (kNN) inference on the hidden representation of training dataset
- Interpretability of each layer outcome is provided by the nearest neighbors
- Robustness stems from detecting non-conformal predictions from nearest neighbor labels found for out-of-distribution inputs (e.g. an adversarial panda)
- Requires storing hidden representation of the entire training dataset

3. Post-training Explainability

Model-agnostic explanation: treat model as a black box and does not inspect internal model parameters

Given a trained model with *n* features and a validation set.

- Compute the baseline prediction score on the validation set
- For each feature:
 - Modify the validation set by shuffling the values of that feature
 - Compute the prediction score of the model on the modified set
 - Compute the decrease in model accuracy to the baseline
- The rank across the features according to the reduction of their score

LIME: Local Interpretable Model-Agnostic Explanations

LIME explains the predictions of any classifier by learning an interpretable model **locally** around the prediction.

Work by **perturbing** the original image and **learning** a linear **regression** on the received dataset, so we can understand how it behaves in a small local environment

DATA SCIENCE

Predicted: husky True: husky

RISE: Randomized Input Sampling for Explanation

In RISE, input image is element-wise multiplied with random masks, then the masked images are fed to the base model.

The heat map is a linear combination of the masks where the weights come from the score of the target class responding to the respective masked inputs.

(a) "A horse and carriage on a city street."

(b) "A horse..."

(c) "A horse and carriage..."

(d) "White..."

GAN Dissection

Given a pre-trained GAN model, first identify a set of interpretable units, whose featuremap is highly correlated to the region of an object class across different images.

(d) Activating units adds trees

16

Differentiable Physics Engine for Deep RL

- Differentiable physics engine that can be integrated as a module in deep neural networks for end-to-end learning
- Perform backpropagation analytically through a physical simulator defined via a linear problem.

Summary

- Users prefer explanation, explanations generate **trust!**
- Explainable AI (XAI) is of importance for trustworthy and reliable AI systems
- **Pre-training** explainability aims to understand and describe the data
- **In-training** explainability aims to develop more inherently explainable models
- **Post-training** explainability aims to extract explanations from trained models
- Promising approaches to develop XAI best practices

Acknowledgements

Slides contain figures from Bahador Khaleghi (Facebook), David Aha (Naval Research Lab), and various researchers reproduced only for educational purposes.

