2023 北京丰台初三二模

数学

2023.05

老

1. 本试卷共 8 页, 共三道大题, 28 道小题. 满分 100 分. 考试时间 120 分钟.

١.

2. 在试卷和答题卡上认真填写学校名称、班级、姓名和考号.

स

知

3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效.

4. 选择题和作图题用 2B 铅笔作答,其他试题用黑色字迹签字笔作答.

5. 考试结束,将本试卷和答题卡一并交回.

第一部分 选择题

一、选择题(共16分,每题2分)

第 1-8 题均有四个选项,符合题意的选项只有一个.

- 1. 右图是某几何体的展开图,该几何体是
 - (A) 圆柱

(B) 三棱柱

(C) 圆锥

(D) 球

2. 如图, AB//CD, 点 E 为 CD 上一点, $AE \perp BE$,

若 $\angle B=55^{\circ}$,则 $\angle 1$ 的度数为

 $(A) 35^{\circ}$

 $(B) 45^{\circ}$

(C) 55°

(D) 65°

- 3. 实数 a, b, c 在数轴上的对应点的位置如图所示,则正确的结论是
 - (A) a > c
- (B) |b| > 1
- (C) -b < c
- (D) ac > 0
- 4. 以下图形绕点 O旋转一定角度后都能与原图形重合,其中旋转角最小的是

(B)

(C)

- 5. 已知 3.5^2 =12.25, 3.6^2 =12.96, 3.7^2 =13.69, 3.8^2 =14.44,那么 $\sqrt{13}$ 精确到 0.1 的近似值是
 - (A) 3.5
- (B) 3.6
- (C) 3.7
- (D) 3.8
- 6. 掷一枚质地均匀的硬币 m 次,正面向上 n 次,则 $\frac{n}{m}$ 的值

$$(A)$$
 一定是 $\frac{1}{2}$

$$(B)$$
 一定不是 $\frac{1}{2}$

- (C) 随着 m 的增大, 越来越接近 $\frac{1}{2}$ (D) 随着 m 的增大, 在 $\frac{1}{2}$ 附近摆动, 呈现一定的稳定

- 7. 我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索 子来量竿,却比竿子短一托,索和竿子各几何? (1 托为 5 尺)其大意为:现有一根竿和一条绳索, 如果用绳索去量竿,绳索比竿长5尺,如果将绳索对折后再去量竿,就比竿短5尺,那么绳索和竿 各长几尺?设绳索长为x尺,竿长为y尺,根据题意列方程组,正确的是
 - (A) $\begin{cases} x y = 5, \\ y \frac{1}{2}x = 5 \end{cases}$ (B) $\begin{cases} x y = 5, \\ \frac{1}{2}x y = 5 \end{cases}$ (C) $\begin{cases} y x = 5, \\ x 2y = 5 \end{cases}$ (D) $\begin{cases} x y = 5, \\ y 2x = 5 \end{cases}$

- 8. 下面三个问题中都有两个变量:
 - ①如图 1,货车匀速通过隧道(隧道长大于货车长),货车在隧道内的长度 y 与从车头进入隧道至 车尾离开隧道的时间 x:
 - ②如图 2,实线是王大爷从家出发匀速散步行走的路线(圆心 O 表示王大爷家的位置),他离家的 距离y与散步的时间x;
 - ③如图 3,往空杯中匀速倒水,倒满后停止,一段时间后,再匀速倒出杯中的水,杯中水的体积 v 与所用时间 x

图 2

图 3

其中, 变量 v 与 x 之间的函数关系大致符合右图的是

(A) (1)(2)

(B) (1)(3)

(C) (2)(3)

(D) (1)(2)(3)

第二部分 非选择题

- 二、填空题(共16分,每题2分)
- 9. 若 $\sqrt{x-5}$ 在实数范围内有意义,则实数 x 的取值范围是 .
- 10. 分解因式: $3x^2 3y^2 =$ _____.
- 11. 正十边形的外角和为。.

12. 如图所示,正方形网格中,三个正方形 A, B, C 的顶点都在格点上,用等式表示三个正方形的面积 S_A , S_B , S_C

之间的关系 .

13. 在平面直角坐标系 xOy 中,反比例函数 $y_1 = \frac{1}{x} (x>0)$ 和 $y_2 = \frac{k}{x} (x>0)$ 的图象如图所示,k 的值可以是 (写出一个即可).

- 14. 若 a-b=2,则代数式 $\frac{a^2}{a-b} + \frac{b^2 2ab}{a-b}$ 的值为_____.
- 15. 右图是某书店 2022 年 7 月至 12 月教育类图书销售额占当月全部图书销售额的百分比折线统计图. 小华认为, 8 月份教育类图书销售额比 7 月份减少了. 他的结论____(填"正确"或"错误"),理由是_____.

16. 甲地组织 20 辆汽车装运食品、药品、生活用品三种物资共 100 吨到乙地. 每辆汽车可装运物资的运载量和每吨所需运费如下表.

物资种类	食品	药品	生活用品	
每辆汽车运载量/吨	6	5	4	
每吨所需运费/元	120	160	100	

如果 20 辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满,每种物资至少装运 1 辆车,那么总运费最少的车辆安排方案为:装运食品、药品、生活用品的汽车辆数依次是_____,此时总运费为____元.

三、解答题(共 68 分, 第 17-21, 23 题, 每题 5 分, 第 22, 24-26 题, 每题 6 分, 第 27-28 题, 每题 7 分)

解答应写出文字说明、演算步骤或证明过程.

17. 计算:
$$2\sin 30^{\circ} + (-1)^3 - \sqrt{8} + (\frac{1}{2})^{-1}$$
.

18. 解方程:
$$\frac{x}{x-1} + \frac{1}{x+1} = 1$$
.

19. 下面是过直线外一点,作已知直线的平行线的两种方法. 请选择一种作法,使用直尺和圆规,补全图形(保留作图痕迹),并完成证明.

已知:如图,直线l及直线l外一点P.

求作: 直线 PO, 使得 PO//1.

作法一:如图,

- ①在直线 l 上取一点 A,作射线 PA,以 点 A 为圆心, AP 长为半径画弧, $\overline{\Sigma}$ PA 的延长线于点 B;
- ②在直线 l 上取一点 C (不与点 A 重合),作射线 BC,以点 C 为圆心,CB 长为半径画弧,交 BC 的延长线于点 Q;
- ③作直线 PQ.

所以直线 PQ 就是所求作的直线.

作法二:如图,

- ①在直线 l上取两点 A, B, 连接 AP;
- ②分别以点P,点B为圆心,AB,AP的长为半径画弧,两弧在l上方交于点Q;
- ③作直线 PQ.

所以直线 PQ 就是所求作的直线.

证明: :: AB =____, CB =____,

∴PQ//l (____)

(填推理的依据).

证明: 连接 BQ.

 $AP = __, AB = __,$

∴四边形 APQB 是平行四边形

(____)(填推理的依据).

∴PQ//l (____)

(填推理的依据).

- 20. 已知关于 x 的一元二次方程 $x^2 2mx + m^2 4 = 0$.
 - (1) 求证:该方程总有两个不相等的实数根;
 - (2) 选择一个 m 的值, 使得方程至少有一个正整数根, 并求出此时方程的根.

- 21. 如图,在 $\triangle ABC$ 中, $\angle ABC$ =90°,点 D为 AC 的中点,连接 DB,过点 C作 $CE/\!\!/ DB$,且 CE=DB,连接 BE,DE.
 - (1) 求证: 四边形 BECD 是菱形;
 - (2) 连接 AE, 当∠ACB=30°, AB=2时, 求 AE 的长.

22. 某校兴趣小组在学科实践活动中,从市场上销售的 A,B 两个品种的花生仁中各随机抽取 30 粒,

测量其长轴长度,然后对测量数据进行了收集、整理和分析.下面是部分信息.

a. 两种花生仁的长轴长度统计表:

花生仁长轴长度(mm)	12	13	14	15	16	17	18	19	20	21
A品种花生仁粒数	5	10	6	7	2	0	0	0	0	0
B品种花生仁粒数	0	0	2	3	6	4	5	4	4	2

长如长度

b. 两种花生仁的长轴长度的平均数、中位数、众数、方差如下:

	平均数	中位数	众数	方差
A品种花生仁	а	13.5	С	1.4
B品种花生仁	17.5	b	16	3.9

根据以上信息,回答下列问题:

- (1) 兴趣小组的同学在进行抽样时,以下操作正确的是 (填序号);
 - ①从数量足够多的两种花生仁中挑取颗粒大的各30粒;
 - ②将数量足够多的两种花生仁分别放在两个不透明的袋子中,摇匀后从中各取出30粒;
- (2) 写出 *a*, *b*, *c* 的值;
- (3) 学校食堂准备从 A, B 两个品种的花生仁中选购一批做配菜食材,根据菜品质量要求,花生仁大小要均匀,那么兴趣小组应向食堂推荐选购____(填 "A"或 "B")品种花生仁,理由是
- 23. 在平面直角坐标系 xOy 中,一次函数 y = kx + b 的图象经过点 (2, 0), (3, 1).
 - (1) 求这个一次函数的表达式:
 - (2) 当 x > m时,对于 x 的每一个值,正比例函数 y = mx 的值大于一次函数 y = kx + b 的值,直接写出 m 的取值范围.

- 24. 如图, \bigcirc O 是 \triangle ABC 的外接圆,AB 是 \bigcirc O 的直径,点 D 是 BC 的中点,点 E 是 AB 的延长线上的一点, \angle BCE= \angle BOD,OD 的延长线交 CE 于点 F.
 - (1) 求证: CE 是 $\bigcirc O$ 的切线;
 - (2) 若 $\sin E = \frac{2}{3}$, AC = 5, 求 DF 的长.

25. 学校新建的体育器材室的一面外墙如图 1 所示,它的轮廓由抛物线和矩形 ABCD 构成.数学兴趣小组要为器材室设计一个矩形标牌 EFGH,要求矩形 EFGH的顶点 E,H 在抛物线上,顶点 F,G 在矩形 ABCD 的边 AD 上.为了设计面积最大的矩形 EFGH,兴趣小组对矩形 EFGH 的面积与它的一边 FG 的长之间的关系进行研究.

具体研究过程如下,请补充完整.

(1) 建立模型:

以 FG 的中点为坐标原点,建立如图 2 所示的平面直角坐标系 xOy,通过研究发现,抛物线满足函数关系 $y = -\frac{1}{4}x^2 + 1$ ($-2 \le x \le 2$). 设矩形 EFGH 的 面积为 S m^2 ,FG 的长为 a m,则另一边 HG 的长为 ______ m (用含 a 的代数式表示),得到 S 与 a 的关系式为: ______ (0 < a < 4);

(2) 探究函数:

列出S与a的几组对应值:

<i>a</i> / m		0.5	1.0	1.5	2.0	2.5	3.0	3.5	•••
S/m^2	•••	0.49	0.94	1.29	1.50	1.52	1.31	0.82	•••

在下面的平面直角坐标系中,描出表中各组数值对应的点,并画出该函数的图象;

(3) 解决问题:

结合函数图象得到, FG的长约为_____m时,矩形面积最大.

- 26. 在平面直角坐标系 xOy 中,点(4, 3)在抛物线 $y = ax^2 + bx + 3$ ($a \neq 0$)上.
 - (1) 求抛物线的对称轴;
 - (2) 若点 $(x_1, 5)$, $(x_2, -3)$ 在抛物线上,求 a 的取值范围;
 - (3) 若点 (m, y_1) , $(m+1, y_2)$ 在抛物线上,对于任意的 $m \ge 3$, 都有 $|y_2 y_1| \ge 3$, 直接写出 a 的取值范围.

- 27. 如图,在等边 $\triangle ABC$ 中,点D,E分别在CB,AC的延长线上,且BD=CE, EB的延长线交 AD于点F.
 - (1) 求 ZAFE 的度数;
 - (2) 延长 EF 至点 G,使 FG=AF,连接 CG 交 AD 于点 H. 依题意补全图形, 猜想线段 CH 与 GH 的数量关系,并证明.

- 28. 对于 \odot *W*和 \odot *W*的弦 *PQ*,以 *PQ* 为边的正方形为 *PQ* 关于 \odot *W*的"关联正方形". 在平面直角坐标系 xOy 中,已知点 T(m,0),点 M(m,-1),以点 T为圆心,TM的长为半径作 \odot T,点 N为 \odot T上的任意一点(不与点 M 重合).
 - (1) 当 m=0 时,若直线 y=x+t 上存在点在 MN 关于 $\odot T$ 的 "关联正方形"上,求 t 的取值范围;
 - (2) 若点 A 在 MN 关于 \odot T 的 "关联正方形"上,点 B ($\neg m+2$, 3) 与点 A 的最大距离为 d,当 d 取最小值时,直接写出此时 m 和 d 的值.

参考答案

一、选择题(本题共16分,每小题2分)

题号	1	2	3	4	5	6	7	8
答案	С	A	С	D	В	D	A	D

- 二、填空题(本题共16分,每小题2分)
- 9. $x \ge 5$ 10. 3 (x+y) (x-y)
- 11. 360
- 12. $S_A + S_B = S_C$ (答案不唯一, 其他形式相应给分) 13. 2 (答案不唯一, k > 1即可)

- 15. 错误; 理由合理即可 16. 9, 2, 9; 11680.
- 三、解答题(共68分,第17-21,23题,每题5分,第22,24-26题,每题6分,第27-28题,每题7 分)
- 17.解:原式=1-1-2√2 +2.4 分
 - $=2-2\sqrt{2}$5 分

18.解:

去分母, 得 x(x+1) + (x-1) = (x+1) (x-1).

去括号, 得 x²+x+x-1=x²-1.

移项,得 2x=0.

系数化为 1, 得 x=0.4 分

检验:当 x=0 时, (x+1) (x-1) ≠0.

∴原分式方程的解为 x=0.5 分

19.解:选择作法一:

正确补全图形;2分

证明: : AB= AP , CB= CQ ,

∴PQ//1(三角形的中位线定理). 5分

选择作法二:

正确补全图形;2 分

证明: :: AP=<u>BO</u>, AB=<u>PO</u>,

∴四边形 APQB 是平行四边形

(两组对边分别相等的四边形是平行四边形).

:.PQ//1(平行四边形的对边平行).

.....5分

20. (1) 证明:

 $\Delta = b^2 - 4ac = 4m^2 - 4 \ (m^2 - 4) = 16 > 0.$

∴该方程总有两个不相等的实数根. ...3 分

(2) 取 m=0,

原方程可化为 $x^2-4=0$

解得 $x_1=2$, $x_2=-2$5 分

(答案不唯一, 取符合题意的 m 值相应给分)

21. (1)

证明: :: CE // DB, 且 CE = DB,

∴四边形 BECD 是平行四边形.

.....1分

 $\because \angle ABC = 90^{\circ}$,点D是AC边中点,

$$\therefore BD = \frac{1}{2}AC = CD.$$

∴四边形 BECD 是菱形.2 分

(2) 证明: : 四边形 BECD 是菱形,

 \therefore AC // BE, CD=BE.

:点D是AC中点,

 $\therefore AD = CD = BE$.

AD //BE, AD = BE.

∴四边形 ABED 是平行四边形.

 $\therefore \angle ACB=30^{\circ}$, $\angle ABC=90^{\circ}$,

$$\therefore AB = \frac{1}{2}AC = AD.$$

∴四边形 ABED 是菱形.

 $\therefore AE \perp BD$, AE=2AO.

- ∴∠*AOB*=90°.
- $\therefore \angle ACB = 30^{\circ}$,
- $\therefore \angle CAB = 60^{\circ}$.
- $\therefore \angle EAB = \frac{1}{2} \angle CAB = 30^{\circ}$.
- $\therefore AO = \frac{\sqrt{3}}{2} AB = \sqrt{3} .$
- $\therefore AE=2AO=2\sqrt{3} . \qquad \dots 5 \ \%$
- 22.解: (1)②;1分
 - (2) a=13.7, b=17.5, c=13;4分
 - (3) A, A 品种花生仁长轴长度方差小,说明该品种花生仁大小更均匀. 6分
- 23.解: (1) ::一次函数 y = kx + b 的图象经过点 (2, 0), (3, 1),

$$\vdots \begin{cases} 2k+b=0, & \text{解得} \\ 3k+b=1 \end{cases}$$
 $k=1, \\ b=-2.$

- ∴一次函数表达式为 y = x 2. ...3 分
- (2) *m*≥1.5分
- 24. (1) 证明: 连接 OC.

- $:D \in BC$ 的中点,
- $\therefore OD \perp BC$.

.....1 分

- : OC = OB,
- $\therefore \angle OBC = \angle OCB$.
- $\therefore \angle BOD = \angle BCF$,
- $\therefore \angle BOD + \angle OBC = \angle BCF + \angle OCB$.
- ∴ ∠BCF+∠OCB=90°.2 分
- 即∠ $OCE=90^{\circ}$. ∴ $OC\bot CE$.
- ∵*OC* ⊙*O* 的半径,
- *∴CE* 是⊙*O* 的切线.3 分
- (2) 解: \checkmark $\angle OCE = 90^{\circ}$, $\sin E = \frac{2}{3}$,
 - $\therefore \frac{OC}{OE} = \frac{2}{3}.$

设 OC=2k, OE=3k,则 BE=OE-OB=k.

- AE=AB+BE=5k.
- :AB 是 $\odot O$ 的直径,
- ∴ ∠*ACB*=90°
- $\therefore \angle ACB = \angle ODB$,
- $\therefore AC // OF$.
- **∴** △*EOF* ∽ △*EAC*.4 分
- $\therefore \frac{OF}{AC} = \frac{OE}{AE} = \frac{3}{5}.$
- $\therefore AC=5$,
- ∴ OF=3.5 分
- $\therefore CD=BD, AO=BO, \therefore OD=\frac{1}{2}AC=\frac{5}{2}.$
- $\therefore DF = OF OD = \frac{1}{2} . \qquad \dots 6 \ \text{?}$
- 25. $\Re: (1) (-\frac{a^2}{16}+1), S=-\frac{a^3}{16}+a; 2 \%$
 - (2) 正确画出该函数的图象; ...4分

- (3) 2.3.
-6分
- 26. 解: (1) 由题意得抛物线经过点(0,3)和点(4,3),
 - ∴ 抛物线的对称轴 $x = \frac{0+4}{2} = 2$1 分
- (2) : 抛物线的对称轴 $x = -\frac{b}{2a} = 2$,
 - $\therefore b = -4a$.
 - ∴ 抛物线顶点坐标为 2,3-4a .
 - ::点 $(x_1,5)$, $(x_2,-3)$ 在抛物线上,
 - ∴ $\pm a > 0$ 时, $3-4a \le -3$,解得 $a \ge \frac{3}{2}$;

综上所述, $a \ge \frac{3}{2}$ 或 $a \le -\frac{1}{2}$ 4 分

- (3) *a*≥1 或 *a*≤-1.6 分
- 27. (1) 解: **∵**等边△*ABC*,
 - $\therefore AB=BC, \angle ACB=\angle ABC=60^{\circ}$.
 - $\therefore \angle ABD = \angle BCE = 120^{\circ}$.
 - : CE = BD,
 - $\therefore \triangle ABD \cong \triangle BCE.$1 分
 - $\therefore \angle D = \angle E$.
 - $\therefore \angle DBF = \angle CBE$,
 - $\therefore \angle D + \angle DBF = \angle E + \angle CBE$.

即 ∠AFE=∠ACB=60°.2 分

(2) 正确补全图形;

.....3分

CH=GH;

.....4分

证明: 在 EF 上截取 FM=FA,连接 AM, CM.

- \therefore $\angle AFE = 60^{\circ}$,
- ∴ △AFM 是等边三角形.
- \therefore \angle FAM= \angle AFM=60°, AM=AF=MF.
- ∵△ABC是等边三角形,
- $\therefore \angle BAC = 60^{\circ}$, AB = AC.
- $\therefore \angle BAC \angle MAB = \angle FAM \angle MAB$.

 $\mathbb{U} \angle CAM = \angle BAF$.

-5 分 $\therefore \triangle ACM \cong \triangle ABF.$
- $\therefore \angle AMC = \angle AFE = 60^{\circ}$.
- $\therefore \angle CMF = \angle AMC + \angle AMB = 120^{\circ}$.
- $\therefore \angle CMF + \angle AFE = 180^{\circ}$.
- \therefore CM//HF.6分
- $\therefore \frac{GH}{CH} = \frac{GF}{MF}$

:FM=AF, AF=GF, :FM=GF.

28. 解: (1)

如图,MN关于 \odot T 的 "关联正方形" 上的所有点在以 C (\neg 1, 0) 和 D (1, 0) 为圆心, $\sqrt{2}$ 为半径,以 E (\neg 1, \neg 1),F (1, \neg 1) 和 O (0, 0) 为圆心,1 为半径的五个圆上及圆内.由直线 y=x+t 上存在点在 MN 关于 \odot T 的 "关联正方形"上,可知:当直线与 \odot C 相切时,设切点为 G,交 x 轴于点 H,交 y 轴于点 I,由 $CG=\sqrt{2}$,得 CH=2,

∴ OH=OI=3, 此时 t=3;

当直线与 $\odot F$ 相切时,设切点为J,交y轴于点K,由 $OJ=1+\sqrt{2}$, $OK=\sqrt{2}$ $OJ=\sqrt{2}+2$,

∴此时 $t=-\sqrt{2}-2$.

综上所述, $-\sqrt{2}-2 \le t \le 3$3 分

(2) m=1; $d=\sqrt{17}+1$7 \hat{T}