

WACHTER Johannes und ZANGERLE Michael

Modelierung, Simulation und Optimierung komplexer und lernfähiger Systeme

Aufgabe 7-12

University of Applied Sciences: Vorarlberg

Department of Computer Science Prof. Dr. rer. nat. habil. Hans-Georg Beyer

Dornbirn, 2014

Abstract

In diesem Report werden die Aufgaben 7-12 von den Aufgaben in der Lehrveranstaltung S2 Einführung in Modellierung, Analyse und Optimierung komplexer Systeme behandelt.

Inhaltsverzeichnis

Ab	ostract	iii
7	$(\mu/\mu_I,10)-\sigma SA-ES$ am Kugelmodell	1
8	$(3/3_I,10)-\sigma SA-ES$ am Kugelmodell	3
9	Performance Vergleich	5
10	$(\mu/\mu_I,20)-\sigma SA-ES$ am verrauschen Kugelmodell	7
11	$(\mu/\mu_I,\lambda)-\sigma SA-ES$ an der Rastrigin-Funktion	9
12	CMSA-ES für Linsenoptimierung	11
13	Zusammenfassung	13

Todo list

ref: Aufgabe 10	7
Abbildung (Aufgabe 10): Dynamik des Restzielabstandes $ y^{(g)} $	7
Aufgabe 10	7
Aufgabe 11	9
ref: Aufgabe 12	1
Abbildung (Aufgabe 12): Dynamiken des CMSA-ES mit dem $(\mu/\mu_I, \lambda) - \sigma SA - ES$	
am Linsenproblem	1
Aufgabe 12	1
summary	13

7 $(\mu/\mu_I, 10) - \sigma SA - ES$ am Kugelmodell

In diesem Beispiel wird der Einfluss des μ in dem Algorithmus betrachtet. Hierfür wird die F-Dynamik in der Abbildung 7.1 dargestellt. Als Testfunktion wird das Kugelmodell mit N=100 und $\mu=1...10$.

Abbildung 7.1: F-Dynamik $(\mu/\mu_I, 10) - \sigma SA - ES$ am Kugelmodell

Die Abbildung zeigt, dass bei $\mu=10$ das Verfahren nicht mehr Terminiert. Begrenzt wird die Linie durch die Iterationsgrenze von 20.000.

8 $(3/3_I, 10) - \sigma SA - ES$ am Kugelmodell

Diese Aufgabe betrachtet den Einfluss von T auf den $(3/3_I, 10) - \sigma SA - ES$ Algorithmus am Kugelmodell mit N = 100, $\sigma = 0.1$ und $y_{init} = (1, ..., 1)^T$. Auch in dieser Aufgabe wird die F-Dynamik in der Abbildung 8.1 dargestellt.

Abbildung 8.1: F-Dynamik $(3/3_I, 10) - \sigma SA - ES$ am Kugelmodell

Bei $\tau=0$ kann beobachtet werden, dass aufgrund der fehlenden $\sigma-Adaption,$ der Wert konvergiert.

Auch die Abbildung 8.2 zeigt, dass bei $\tau = 0$ der Wert stagniert.

9 Performance Vergleich

Verglichen wird der Algorithmus (1+1)-ES mit 1/5 Regel mit dem Algorithmus $(3/3_I, 10) - \sigma SA - ES$. Als Testfunktion wird das Kugelmodell mit N=100 verwendet. Der Vergleich erfolgt auf Basis der Generationen und aufgrund der Anzahl an Funktionsauswertungen.

	(1+1)-ES	$(3/3_I, 10) - \sigma SA - ES$
Generationen	7301	986
Funktionsauswertungen	7301	10846

Tabelle 9.1: Ergebnisse der Ausführung

Aus diesen Ergebnissen kann ermittelt werden, dass die Dauer der Funktionsauswertung für die Auswahl des Algorithmus ausschlaggebend ist. Ist diese Dauer klein, ist der $(3/3_I, 10) - \sigma SA - ES$ Algorithmus insgesamt schneller, da weniger generationen benötigt werden. Ist die Dauer der Funktionsauswertung hoch, ist der (1+1) - ES Algorithmus aufgrund der kleineren Zahl der Funktionsauswertungen schneller.

10 $(\mu/\mu_I, 20) - \sigma SA - ES$ am verrauschen Kugelmodell

Diese Aufgabe beschäftigt sich mit der Performance des Algorithmus $(\mu/\mu_I, 20) - \sigma SA - ES$ am verrauschten Kugelmodell. Hierfür wird $F(y) = ||y||^2 + \mathcal{N}(0, 1), N = 100,$ $y_{init} = (10, ..., 10)^T$ und $\sigma_{init} = 1$. Der Algorithmus wurde über 3000 Generationen durchgeführt. In der Abbildung wird die Dynamik des Restzielabstandes $||y^{(g)}||$ des elterlichen Restkombinanten dargestellt.

ref: Aufgal

Abbildung gabe 10): I mik des Reabstandes

Aufgabe 1

11 $(\mu/\mu_I, \lambda) - \sigma SA - ES$ an der Rastrigin-Funktion

In dieser Aufgabe wird das Verhalten des $(\mu/\mu_I, \lambda) - \sigma SA - ES$ Algorithmus an der Rastrigin-Funktion (Abbildung 11.1) untersucht.

$$F(y) = \sum_{i=1}^{N} (a - a * cos(2\pi y_i) + y_i^2), a = 2$$

Abbildung 11.1: Rastrigin Funktion

Als initial werte wurde $N=30,\,\sigma_{init}=1$ und $y_{init}=10,...,10^T$ verwendet.

Aufgabe

12 CMSA-ES für Linsenoptimierung

Diese Aufgabe soll zeigen, dass die Kovarianzmatrix-Adaption wichtig für die perfomante Optimierung des ES ist. Diese Annahme bestätigt die Abbildung . Diese Abbildung zeigt die Dynamiken des CMSA-ES mit dem $(\mu/\mu_I, \lambda) - \sigma SA - ES$ am Linsenproblem.

ref: Aufgal

Als initialwerte wurde N = 30, $\sigma_{init} = 1$ und $y_{init} = 10, ..., 10^T$ verwendet.

Abbildung gabe 12): I namiken de CMSA-ES dem (μ/μ_I) $\sigma SA - ES$ Linsenprob

Aufgabe 1

13 Zusammenfassung

summary