《电子电路与系统基础Ⅱ》期中考试试题

2014.12.6 学号:

姓名:

本考卷卷面满分 108 分,卷面分超过 100 分按 100 分计。

- 一、 填空题(55分,填空题答案直接填写到试题纸空位中):
 - 1、对于如图 1a/b 所示运放电路,请在图 1c/d 位置画出其输入电压输出电压转移特性 曲线,在其上标注清楚关键点的坐标,并在图 1e/f 位置给出其转移特性曲线的数学 描述。其中运放的饱和电压为±10V,其线性区模型则被抽象为理想运放。

图 1a 运放电路 1

图 1b 运放电路 2

图 1a/b 运放电路图

图 1c 运放电路 1

图 1d 运放电路 2

图 1c/d 输入电压输出电压转移特性曲线

图 1e 运放电路 1

图 1f 运放电路 2

图 1e/f 输入电压输出电压转移特性曲线数学表述

2、	如图 2a 所示,这是一个一阶 RL 电路	,以电感电流为	为状态变量,	列写该电路的状态
	方程为 $\frac{d}{dt}i_L(t)=($)。根据	该状态方程	在图 2b 位置画出该
	一阶动态系统的相图和相轨迹,标注	平衡点,该平衡	5点是() <稳定、
	不稳定>平衡点。画相轨迹时,假设电	旦源电压 $v_s(t)$ =	V _{so} > 0 为直	流电压源。
	R			
	$\bigvee v_{S}(t)$ $\bigg\{L$			
	图 2a 一阶 RL 电路	图 2b	相图和相邻	軌迹
3、	对于图 2a 所示一阶 RL 电路,如果激励	的电压源为 $v_s(t)$	$)=V_{S0}U(t)$, $ otin$	」感电流初始值为 I_0
	电感电流的时域表达式则为 $i_L(t)=$ ()。
	在该表达式中,零输入响应为 $i_{L,ZIR}(t)$	= (),零状态响
	应为 $i_{L,ZSR}(t) = $ (), 稳	态响应为 $i_{L,SSR}(t)$ =
			بار ر بار بار بار بار بار بار بار بار بار بار	L,SSR (°)
	(),瞬态响应为 <i>i_{L,TR}</i> (i	t)= ()。
4、	对于图 2a 电路,如果正弦波激励源在	E t=0 时刻加载	, $V_S(t) = V_{S0}$	$\cos \omega t \cdot U(t)$ 且电感电
	流初始值为0,那么电感电流的时域和	表达式为 $i_L(t)$ =	: (
)。
5、	考察某一阶线性时不变动态电路系统	中的某电量 x,	其时域分析	行可采用三要素法,
	这三个要素分别为(/)(中文名称//	符号表述),(/)
	和 (/),从而时域响	向应表达式可用	这三个要素	表述为 $x(t)=$ (
)。
6、	对于如图 3a 所示一阶电路,请定性证	说明它是一个個	氐通系统:(

第2页,共6页,共五大题

)。定量分析,

该低通系统的频域传递函数为 $H(j\omega) = \frac{\dot{V}_o(j\omega)}{\dot{V}_i(j\omega)} = ($) (用电阻

 R_1 、 R_2 、C 等表述)。如果取 R_1 =2k Ω , R_2 =8k Ω ,C=0.1 μ F,该低通滤波器的 3dB 频点 f_0 = ()(表达式) = () Hz (具体数值)。请在图 3b d 位置分 别画出其幅频特性和相频特性的伯特图,图上标注清楚折线斜率及关键频点。该一 阶低通系统的时间常数为τ=() s, 在图 3c 位置画出它在阶跃 信号 $v_i(t)=V_0\cdot U(t)$ 激励下的阶跃响应波形示意图($V_0>0$),在该示意图上标注其传播 延时 τ_P 和上升沿时间 T_{rise} 的定义,并说明这两个参数和时间常数 τ 的关系分别为 τ_P =

() τ = () s, T_{rise} = () τ = () s.

图 3a 一阶低通 RC 滤波器

图 3b 幅频特性伯特图

图 3c 阶跃响应示意图(传播延时、上升沿时间) 图 3d 相频特性伯特图

图 3 一阶低通滤波器的时频分析

- 7、对于某时间常数为τ的一阶动态系统,假设其瞬态响应幅值低于瞬态响应初值的 1%则被可认为是瞬态响应结束,那么瞬态响应结束所用时间为()。
- 8、10MHz 频率的 1nF 电容的电抗为 () Ω 。
- 9、一个线性时不变系统(二端口网络)的冲激响应指的是(

)。

10、 如图 4a 所示,这是一个嵌位器电路,图 4b 虚线给出了输入信号波形,请在图 4b 位置同时画出输出波形。假设二极管为理想整流二极管(正偏导通电阻为 0,反 偏截止则完全开路),t=0 时刻电容初始电压为 0。

图 4a 嵌位器电路

图 4b 输入输出波形

- 二、(22 分)人的血型有 4 种,A 型、B 型、AB 型和 O 型。一般情况下,应同型血输血,紧急情况下,可异型血输血。如图 5a 所示,图中实线箭头代表危险性低的同型血输血,虚线箭头代表危险性高的异型血输血。无论同型血输血,还是异型血输血,都应先进行交叉配血实验以确保输血安全。请设计一个血型匹配电路,其输入为授血者血型和受血者血型,血型编码如图 5b 所示。血型匹配器输出有三种情况,分别为'同型血可配(实线连接),异型血可配(虚线连接),异型血不可配(无线连接)',其输出编码如图 5c 定义。
 - a) (1分)要求将图 5d 的真值表补全,其中备注栏缺失可以不填。
 - b) (6分)画出血型匹配逻辑的卡诺图,由此给出血型匹配器组合逻辑表达式。
 - c) (15 分) 画出血型匹配器的 CMOS 标准(上 P 下 N) 实现方案。

血型	编码			
O	00			
A	10			
В	01			
AB	11			
图 5b 血型编码				

配血	编码	可配性
同型血可配	11	4

0*

授血者		受血者		配血器輸出		备注
D ₁	\mathbf{D}_2	R ₁	R ₂	Y	Z	(可不填)
0	0	0	0	1	1	0→0, √
0	0	0	1	1	0	O → B, ∨
0	0	1	0	1	0	0 → A, ∨
0	0	1	1	1	0	O→AB, ∨
0	1	0	0	0	*	B → O, ×
0	1	0	1	1	1	в → в, √
0	1	1	0	0	*	B → A, ×
0	1	1	1	1	0	B→AB, ∨
1	0	0	0	0	*	A → O, ×
1	0	0	1	0	*	A → B, ×
1	0	1	0	1	1	A → A, √
1	0	1	1	1	0	A→AB, ∨
1	1	0	0			
1	1	0	1			
1	1	1	0			
1	1	1	1			

图 5c 配血可行性

异型血可配 异型血不可配

图 5d 真值表

三、(10分)如图 6 所示, 开关在 v_{ct} 控制电压作用下, 在 t=0 时刻闭合, 1ms 后再次断开。 请给出被测端口 vout(t)的表达式,并画出其时域波形示意图。已知电容初始电压为 0V。

图 6 某阻容电路

1ms

四、(16分)如图7所示,这是一个张弛振荡器电路。

- (5分)分析并说明虚框1二端口网络的电路功能,画出其输入电压、输出电压转 a) 移特性曲线。
- (3分)分析说明虚框2二端口网络完成的电路功能。 b)
- (2.5分)文字说明该振荡器工作原理。 c)
- (4分)画出虚框 1、虚框 2 二端口网络输出端口电压波形示意图,标注波形幅度。 d)
- (1.5分)分析说明该振荡器振荡频率。 e)

图 7 某张弛振荡器电路

五、(5 分)如图 8a 所示运放非线性动态电路,其中的两个二极管 D_1 和 D_2 的伏安特性曲线 如图 8b 所示,请分析说明该运放电路完成什么功能?如果输入信号波形 $v_{tl}(t)$ 和开关控制信号波形 $v_{ctl}(t)$ 如图 8c 所示,请在图 8c 上的输入信号波形上同时画出输出信号波形,以此表述该电路完成的电路功能。

图 8a 某非线性动态电路

图 8b 两个二极管的伏安特性曲线

