第一章 数制和码制

主要内容

- 数制与码制的基本概念
- ❖ 数字电路中常用的数制与码制
- * 数制间的转换
- ❖ 二进制算数计算
- ❖ 几种常用编码

1.1 概述

数字量和模拟量

- ※数字量:变化在时间上和数量上都是不连续的。 (存在一个最小数量单位△)
- ❖模拟量:数字量以外的物理量。

数字信号和数字电路

- ❖数字信号:表示数字量的信号
- ❖数字电路:工作在数字信号下的电子电路。

模拟信号和模拟电路

❖数字电路和模拟电路:工作信号,研究的对象, 分析/设计方法以及所用的数学工具都有显著的不同

- ❖数字电路的作用:处理信息
- ❖模拟电路:用连续的模拟电压/电流值来表示信息

数码

❖ 数字信号通常都是用数码形式给出。

数制

❖ 把多位数码中每一位的构成方法以及从低位到高位的进位规则称 为数制。

算数运算

❖ 数量间的加、减、乘、除等运算。

代码

❖ 当数码表示不同事物时,它们已经不再具有表示数量大小的含义, 只是不同事物的代号,因此称为代码。

码制

❖ 为了便于记忆和查找,在编制代码时总要遵循一定的规则,这些规则叫码制。如美国信息交换标准代码(ASCII码)

数字电子技术基础

1.2 几种常用的数制

$$D = \sum K_i \times N^i$$
 任意进制数按十进制展开式

An octal digit has 8 possibilities
0 1 2 3 4 5 6 7

逢八进一

◆ A decimal digit has 10 possibilities
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

逢十进一

◆ A hexadecimal (hex) digital has 16 possibilities

0 1 2 3 4 5 6 7 8 9 A B C D E

逢十六进一

不同进制数的对照表

十进制数	二进制	八进制	十六进制
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	A
11	1011	13	В
12	1100	14	С
13	1101	15	D
14	1110	16	E
15	1111	17	F

1.3 不同数制间的转换

***二一十转换**

$$D = \sum_{i} K_{i} 2^{i} \qquad K \in (0,1)$$

❖例

$$(1011.01)_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2}$$
$$= (11.25)_{10}$$

故 $(197)_{10} = (11000101)_2$

❖十一二转换

例

```
2 | 197……余数=1=k<sub>0</sub>
2 98……余数=0=k<sub>1</sub>
2 49······余数=1=k<sub>2</sub>
```

- 2 24……余数=0=k3
- 2 12……余数=0=k₄
- 2 | 6……余数=0=k5
- 2 | 3……余数=1=k。 $1\cdots$ 余数=1= k_7

整数部分

$$(S)_{10} = k_n 2^n + k_{n-1} 2^{n-1} + k_{n-2} 2^{n-2} + \dots + k_1 2^1 + k_0 2^0$$

= $2(k_n 2^{n-1} + k_{n-1} 2^{n-2} + \dots + k_1) + k_0$

同理

$$k_n 2^{n-1} + k_{n-1} 2^{n-2} + \dots + k_1 = 2(k_n 2^{n-2} + k_{n-1} 2^{n-3} + \dots + k_2) + k_1$$

$$\frac{\times 2}{1.6250}$$
整数部分= $1 = k_{-1}$ 0.6250

$$\frac{\times}{1.2500}$$
 ……整数部分= 1 = k_{-2}

$$\frac{\times}{0.5000}$$
整数部分= 0 = k_{-3}

0.2500

$$\frac{\times 2}{1.000}$$
整数部分= 1 = k_{-4}

故 $(0.8125)_{10} = (0.1101)_{2}$

小数部分
$$(S)_{10} = k_{-1}2^{-1} + k_{-2}2^{-2} + \dots + k_{-m}2^{-m}$$

左右同乘以2

$$2(S)_{10} = k_{-1} + (k_{-2}2^{-1} + k_{-3}2^{-2} + \dots + k_{-m}2^{-m+1})$$

同理

$$2(\mathbf{k}_{-2}2^{-1} + \mathbf{k}_{-3}2^{-2} + \dots + \mathbf{k}_{-m}2^{-m+1}) = \mathbf{k}_{-2} + (\mathbf{k}_{-3}2^{-1} + \dots + \mathbf{k}_{-m}2^{-m+2})$$

❖二一十六转换

例:将(01011110.10110010)2化为十六进制

 $(0101,1110.1011,0010)_2$

$$= (5 \qquad E \qquad B \qquad 2)_{16}$$

❖十六一二转换

例:将(8FAC6)₁₆化为二进制

❖八一二转换

例:将(52.43)。化为二进制

*十六一十转换

十六进制转换为十进制

$$\mathbf{D} = \sum \mathbf{K}_i 16^i \qquad \mathbf{K} \in (0, 1 \cdots 15)$$

十进制转换为十六进制:通过二进制转化

1.4 二进制算数运算

- 1.4.1 二进制算术运算的特点
- ❖ 算术运算:
 - 1: 和十进制算数运算的规则相同
 - 2: 逢二进一
- ❖特点:

加、减、乘、除全部可以用移位和相加这两种操作实现。简化了电路结构

❖ 所以数字电路中普遍采用二进制算数运算

1.4.2 反码、补码和补码运算

- ❖ 二进制数的正、负号也是用0/1表示的。
- * 数值位逐位求反就为反码。
- ❖ 在定点运算中,最高位为符号位(0为正,1为负)

如
$$+89 = (0 1011001)$$

 $-89 = (1 1011001)$

二进制数的补码:

- ❖ 最高位为符号位(0为正,1为负)
- * 正数的补码和它的原码相同
- ◆ 负数的补码 = 数值位逐位求反(反码) + 1
 如 +5 = (0 0101)
 −5 = (1 1011)
- ❖ 通过补码,将减一个数用加上该数的补码来实现

数字电子技术基础

$$10 - 5 = 5$$

7是-5对模数12的补码

数字电子技术基础

$$1011 - 0111 = 0100$$

$$(11 - 7 = 4)$$

0111 + 1001 =2⁴ 1001是- 0111对模2⁴(16)的补码

两个补码表示的二进制数相加时的符号位讨论

例:用二进制补码运算求出

$$13+10$$
 , $13-10$, $-13+10$, $-13-10$

解:

结论:将两个加数的符号位和来自最高位数字位的进位相加,结果就是和的符号。

1.5几种常用的编码

一、十进制代码

几种常用的十进制代码

十进制数	8421码	余3码	2421码	5211码	余3循环码
0	0000	0011	0000	0000	0010
1	0001	0100	0001	0001	0110
2	0010	0101	0010	0100	0111
3	0011	0110	0011	0101	0101
4	0100	0111	0100	0111	0100
5	0101	1000	1011	1000	1100
6	0110	1001	1100	1001	1101
7	0111	1010	1101	1100	1111
8	1000	1011	1110	1101	1110
9	1001	1100	1111	1111	1010
权	8421		2421	5211	

二、格雷码

特点: 1. 每一位的状态变化都按一定的顺序循环。

2. 编码顺序依次变化,按表中顺序变化时,相邻代码 只有一位改变状态。

应用:减少过渡噪声

编码顺序	二进制	格雷码	编码顺序	二进制码	格雷码
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
¥7.	0111	0100	15	1111	1000

和四十八总26页

三、美国信息交换标准代码(ASCII)

ASCII 是一组七位二进制代码,共128个

应用: 计算机和通讯领域

数字电子技术基础

									<u> </u>
		0	1	2	3	4	5	6	7
	$B_7B_6B_5$	0	0	0	0	1	1	1	1
	$B_4B_3B_2B_1$	0	0	1	1	0	0	1	1
		0	1	0	1	0	1	0	1
0	0000	NUL	DLE	Sp	0	@	P	١	р
1	0001	SOH	DC1	1	1	Α	Q	а	q
2	0010	STX	DC2	"	2	В	R	Ъ	r
3	0 0 1 1	ETX	DC3	#	3	С	s	С	s
4	0100	EOT	DC4	\$	4	D	T	d	t
5	0101	ENQ	NAK	%	5	E	U	e	น
6	0110	ACK	SYN	&	6	F	V	f	v
7	0111	BEL	ETB	,	7	G	w	g	w
8	1000	BS	CAN	(8	Н	X	h	x
9	1001	HT	EM)	9	I	Y	i	у
Α	1010	LF	SUB	*		J	Z	j	z
В	1011	VT	ESC	+	;	K	[k	{
C	1100	FF	FS	,	<	L	\	1	
D	1101	CR	GS	<u></u>	_	М]	m	}
E	1110	so	RS	•	>	N	~	n	~
F	1111	SI	US	/	?	0		0	DEL

