chewBBACA

IGC 2018 Mickael Silva

7 housekeeping genes

	Locus 1	Locus 2	Locus 3	Locus 4	Locus 5	Locus 6	ST
Strain A	1	1	1	1	1	1	1
Strain B	2	2	1	2	2	2	10
Strain C	1	3	2	2	1	3	20

Task 1 - Organizing and fetching the data

- Get chewBBACA
- Create Folders
- Download necessary genomes

Create Schema

Traditional MLST schemas relied in 7 loci that were internal fragments of housekeeping genes and each locus was defined by its amplification by a pair of primers yielding a fragment of a defined size.

In chewBBACA, schemas are composed of **loci defined by CDSs** and all the called **alleles of a given locus are CDSs as defined by Prodigal software**. The use of Prodigal, instead of simply ensuring the presence of start and stop codons, **adds an extra layer of confidence in identifying the most probable CDS** for each allele.

Task 2 - Create a schema based on the downloaded complete genomes

chewBBACA.py CreateSchema -i complete_genomes/ -o schema_seed --cpu 6 --ptf /home/participant/oneida_tools/prodigal_training_files/Streptococcus_agalactiae.trn

How does it work?

Create Schema - getting the Coding Sequences (CDS)

Prodigal - (http://prodigal.ornl.gov/) (Hyatt D et al BMC Bioinformatics 2010)

Create Schema - getting the unique CDS between two sets

Create Schema - pairwise comparison until unique set of CDS

Create Schema - getting the Coding Sequences (CDS)

chewBBACA.py CreateSchema -i complete_genomes/ -o schema_seed --cpu 8 --ptf /home/participant/oneida_tools/prodigal_training_files/Streptococcus_agalactiae.trn

Create Schema - training file

ATGCCAATATTTTCATGATTTTTCTGATTGTTTGTGTGCTCCTATTGGTGATAGTCACA CTGAGTACAGTTTATGTGGTTCGTCAGCAGTCGGTGGCGATTATTGAACGCTTTGGG AAATACCAAAAGGTTGCTAATAGCGGTATTCATATTCGCTTGCCTTTTGGGATTGACTC GATTGCAGCACGGATTCAGTTGCGCTTGTTGCAAAGTGATATTGTGGTTGAGAC GACCAAGGACAATGTGTTCGTTATGATGAATGTAGCGACTCAGTACCGTGTCAACGA GCAGAGCGTGACAGATGCTTACTATAAACTCATACGTCCAGAATCTCAGAT ATATCGAAGATGCTCTTCGCTCTTCTGTTCCAAAATTAACCTTGGATGAATTGTTTGAG AAAAAAGATGAGATTGCCCTTGAAGTTCAACACCAAGTAGCAGAAGAAATGACCACTT ACGGCTACATTATCGTGAAAACCTTGATTACCAAGGTCGAACCGGATGCAGAAGT GCAATCCATGAATGAAATCAATGCGGCGCAACGTAAGCGGGTCGCAGCACAAGAATT GGCGGAAGCTGACAAGATTAAAATTGTCACTGCAGCTGAAGCCGAAGCAGAAAAAG GCAGAGTCTATCACCGAACTCAAGGAAGCCAATGTTGGCATGACAGAAGAACAAATC ATGTCTATCCTCTTGACCAACCAGTATTTGGATACCTTGAATACCTTTGCCTCTAAAGG AAATCAAACCATCTTTTTACCAAATACGCCAAATGGTGTGGATGATATCCGAACACAAA TCTTGTCAGCCCTTCGCGCTGAGAAGAAATAA

S.pneumoniae protease http://www.ncbi.nlm.nih.gov/protein/44 6886697 Frame 1: Start, Stop Frame 2: Start Frame 3: Start, Stop

High number of initiator codons, in different frames (reversed ORF's not being taken in account)

Using your own prodigal file

prodigal -i referenceGenome.fasta -t tfName.trn -p single

chewBBACA.py CreateSchema -i genomes/ -o schema_seed --cpu 6 --ptf tfName.trn

Create Schema - output

 One fasta per unique CDS where all allele sequences will be stored when calling the alleles

 A folder "short" with a fasta per unique CDS where only the most variable alleles will be stored

 A file with the necessary information to traceback the name of each CDS to its origin (assembly, contig and position)

Create Schema - other arguments

--bsr 0.6

Minimum BSR for locus similarity.

--b /path/to/blastp

blastp full path (default: blastp)

-v --verbose

Increase output verbosity

-h, --help

BSR? BLAST SCORE RATIO

BSR - BLASTp Score Ratio (David A Rasko et al BMC Bioinformatics 2005)

Allele Calling

Task 3 - Run an allele call using the created schema and the genomes available

chewBBACA.py AlleleCall -i listgenomes.txt -g schema_seed/ -o results --cpu 6 --ptf /home/participant/oneida_tools/prodigal_training_files/Streptococcus_agalactiae.trn

chewBBACA allele calling

Query genome

results_statistics.tsv

Genome	EXC	INF	LNF	PLOT	NIPH	ALM	ASM
NC_017162.fna	892	2319	1909	0	104	5	37
NC_011586.fna	1563	1697	1809	0	116	6	75

PLOT

NIPH/NIPHEM

ALM

ALLELE 1

ALLELE 2

ALLELE 3

ASM

results_contigsInfo.tsv

935.1_ASM169493v1_genomic.fna

945.1_ASM169494v1_genomic.fna

FILE	GCA-000007265-protein3.fasta	GCA-000007265- protein25.fasta	
905.1_ASM169490v1_genomic.fna	MBKW01000002.1&16193-14782&-	LNF	

MBKS01000045.1&108321-109730&+

MBKR01000042.1&116556-117965&+

ASM

LNF

RepeatedLoci.tsv

gene	PC	NDC
GCA-000007265-protein46.fasta	1	0
GCA-000007265-protein128.fasta	1	0

PARALOG DETECTION

PARALOG DETECTION

Allele Calling - other arguments

--ptf

Provide your own prodigal training file

--bsr 0.6

Minimum BSR for locus similarity (default: 0.6)

--fc

Force continue

--fr

Force reset

-v --verbose

cgMLST definition

cgMLST schemas are defined as the **set of loci** that are **present in all strains under analysis** or, due to sequencing/assembly limitations, **> 95% of strains** analyzed

cgMLST schema definition is based on pre-defined thresholds, only when a sufficient number of strains have been analyzed can the cgMLST schema be considered stable

The quality of draft genomes can impact profoundly the MLST schema definition. Therefore, chewBBACA offers a way to test the impact of each genome on the number of loci selected for inclusion in the final MLST schema, based on the number of missing loci when considering the original schema being tested.

	Locus 1	Locus 2	Locus 3	
Genome 1	2	4	ALM	
Genome 2	1	PLOT	1	
Genome 3	LNF	1	2	

	Locus 1	Locus 2	Locus 3	
Genome 1	2	4	ALM	
Genome 2	1	PLOT	1	
Genome 3	LNF	1	2	

X X X

	Locus 1	Locus 2	Locus 3	
Genome 1	2	4	1	
Genome 2	1	3	1	
Genome 3	2	1	2	
Genome 4	PLOT	LNF	LNF	

	Locus 1	Locus 2	Locus 3	
Genome 1	2	4	1	
Genome 2	1	3	1	
Genome 3	2	1	2	
Genome 4	PLOT	LNF	LNF	

X

X

X

<u>example</u>

Task 4 - test genome allele call quality

chewBBACA.py TestGenomeQuality -i results/<results_20171207T150515>/results_alleles.tsv -o testcq -n 12 -s 5 -t 300

Task 5 - Extract the profile for phyloviz

chewBBACA.py ExtractCgMLST -i results/<results_20171207T150515>/results_alleles.tsv -o my_cgMLST -r results/results_20171207T150515/RepeatedLoci.txt -p 0.95

-p 0.95

Minimum percentage of genomes each included locus must be present in (e.g., set 0.95 to get a matrix with the loci that are present in at least 95% of the genomes). (default: 1)

-g genomes2remove.txt

-r loci2remove.txt

Output

cgMLST.tsv - profile output

cgMLSTschema.txt - list of loci that are considered for the cgMLST.tsv file

Presence_Abscence.tsv - presence/abscence from the input file

Schema eval

<u>example</u>

Task 6 - schema eval

chewBBACA.py SchemaEvaluator -o rms/Myschema.html --cpu 6

mickaelsilva@medicina.ulisboa.pt

https://github.com/B-UMMI/chewBBACA/wiki