Solving Cimultaneous Equation vieng Parametric form of or line?
Parametric form of or line?
$x = tx_2 + (1-t)x_1$
$\chi = t \cdot \chi_2 + \chi_1 - \chi_1 t$ $t = 1$
$\chi = t \cdot \chi_2 + \chi_1 - \chi_1 t$ $\chi = \chi_1 + t(\chi_2 - \chi_1)$ $\chi = \chi_1 + t(\chi_2 - \chi_1)$
0 < t < 1
y = y, + t. Dy o < t<1
0< {<1
2 _{Wmip} ≤ α ≤ 2 wmax
Twomps & y & Twomass.
2wmin ≤ x1 + t bx ≤ xwmis
Twomin & y, + toy & ywmax
2, +tDx > 2Wmin.
$y_1 + t \Delta x \leq x w_{max}$ $y_1 + t \Delta y \geq y_{w_{min}}$
y, + t sy < ywmax
$t. Dx \ge 2Wmin - 21 - 0$ $t. Dx \le 2Wmax - 21 - 0$
t. By > ywmin -y) - 3
t. sy & ywnex y) (4)

There are the two different wordinales at particular time t=0 & t=1. boundanier i e (semin, smax, Jmin, mas) t. PK = 9K K= 1,21314. In order to convert these egrations in above form, we need to multiply egr ()
4 (3) with -1. XI - Nimin -tox < Bared upon these 2w mara - x1 t. DZ < 4 wonditions we need -t. By < Ji- ywmin to find out whether t. Dy & Twmas - y line lies & incide ex entide windrip bound 21 = 21-2 Wmin $\frac{P_1 = -\Delta x}{P_2 = \Delta x}$ $\frac{P_3 = -\Delta y}{P_4 = \Delta y}$ 92 = 2 mas - 21 23 = 71 - 7 wmin 94 = ywmax - 41 Line is parallel to winkow 1 1 K = 0 hne is incide partial within boundary partially. 9K < 0 2K >0 2K = 0

0.04	2 Wmin = 5 Twmin = 5 Line P. (4,12) 2 Wmin = 9 Vilmin = 9 P. (8,8)
gnu.	2 Wmax = 9 Ywmin = 9 P3 (8,8)
	(4/12)
	9 7
	(818)
	5
	5
	$P_1 = -\Delta x$ $Q_1 = \chi_1 - \chi w_{min}$
	$f_3 = 0x$ $f_3 = xw_{max} - x_1$ $f_3 = -0y$ $f_3 = y_1 - yw_{min}$
	P4 = By 94 = 7wmax - 4)
	$\Delta \chi = \chi_2 - \chi_1 = 8 - 4 = H$
	Dy = 72-71 = 8-12 = -4.
	$P_1 = -4 \qquad Q_1 = -1$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	P ₄ = -4 9 ₄ = -3
	Px < 0 (P1, P4)
	Mure, we need to find time interval (t)
	$t_1 = max(0, 9x)$
	$t_1 = max \left(0, \frac{9}{1}, \frac{9}{1} \right) = max \left(0, \frac{1}{1} + \frac{3}{1} \right) = t_7 = 3 y $

$$P_{k} > 0$$
 (P_{2}, P_{3})

 $t_{2}^{2} \min \left(1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right)$
 $t_{3} = 1$

for $t_{1} = 3|4$
 $2 = 21 + t_{1} \cdot \Delta x$
 $= 4 + (3|4) \cdot 4$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 7$
 $= 9$

Gnes.	Window A (20,20) B (90,20) C (90,70) D(20,70) Line Pi (10,30) P2 (80,90)
	the state of the s
	The state of the s
	and the second s