Anelisi LCS

Siemo X: < x, ... xm > l y: < y, ... yn>
due sequente e E: < \(\x_1 \ldots \x_2 \x_3 \ldots \x_4 \x_5 \right) le sotosequente comune

(1) Se xm = yn => \(\xi_K = \text{xm} = \text{yn} \ e \(\xi_{K-1} \) \(\xi \) une \(\xi_{S} \) \(\xi_{M-1} \) \(\xi_{M-1} \)

(2) Se xm + yn e Ex + xm => Zè une LCS per Xm-seg

(3) Se yn ≠ xm e ZK ≠ yn ⇒ & è une LCS per X e yn-1

Le 1 si dimostre che se xm = ym ellote possions appendere il carettere in ¿ creando una LCS di lunghette K+1 e dimostriamo che Xm-1 e ym-1 henno une LCS di lunghette K-1 per assurdo

2 e 3 si dimostre che se FW 2cs di BiH S K ollore serebbe 2cs di Xm e yn contreddieundo

auesto ci dice che per coratteri ugusti dobiamo trovore une LCS e appendere il corettere oppure trovore il MAX TRA (X, ym-1) e (Xm-1, y)