Sea-Bird Scientific 13431 NE 20th Street Bellevue, WA 98005 USA +1 425-643-9866 seabird@seabird.com www.seabird.com

SENSOR SERIAL NUMBER: 1860 CALIBRATION DATE: 25-Apr-19 SBE 37 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 3.850567e - 005

BATH TEMP (° C)	BATH SAL (PSU)	BATH COND (S/m)	INSTRUMENT OUTPUT (Hz)	INSTRUMENT COND (S/m)	RESIDUAL (S/m)
22.0000	0.0000	0.0000	2678.05	0.0000	0.00000
1.0000	34.8762	2.98060	5260.04	2.98062	0.00002
4.5000	34.8562	3.28812	5456.62	3.28811	-0.00001
15.0000	34.8131	4.27126	6041.49	4.27120	-0.00006
18.5000	34.8035	4.61685	6233.79	4.61686	0.00001
24.0000	34.7920	5.17541	6532.29	5.17549	0.00008
29.0000	34.7826	5.69742	6798.95	5.69738	-0.00004
32.5001	34.7723	6.06920	6982.52	6.06920	0.0000

f = Instrument Output(Hz) * sqrt(1.0 + WBOTC * t) / 1000.0

t = temperature (°C); p = pressure (decibars); δ = CTcor; ϵ = CPcor;

Conductivity (S/m) = $(g + h * f^2 + i * f^3 + j * f^4) / (1 + \delta * t + \epsilon * p)$

Residual (Siemens/meter) = instrument conductivity - bath conductivity

