Solution to Q2 in W1D1 and W1D2

Let F(n) denote the nth Fibonacci number. Prove $F(n) > (4/3)^n$ for n > 4.

Proof.

Induction Basis:

Let n = 5. Then
$$F(5) = 5 > 1024/243 = (4/3)^5$$
.

Let n = 6. Then
$$F(6) = 8 > 4096/729 = (4/3)^6$$

Induction Hypothesis:

Assume the result is true for all n in the in the interval [5, k] In particular, the result is true for n = k and n = k - 1.

$$F(k) > (4/3)^k$$
 and $F(k-1) > (4/3)^{(k-1)}$.

Induction Step: We need to prove the result for n = k+1.

Now
$$F(k + 1) = F(k) + F(k - 1) > (4/3)^k + (4/3)^{(k-1)} = (4/3)^{(k-1)}[(4/3) + 1]$$

= $(4/3)^{(k-1)}[(7/3)] = (4/3)^{(k-1)}[(21/9)] > (4/3)^{(k-1)}[(16/9)] = (4/3)^{(k-1)}[(4/3)^2] = (4/3)^{(k+1)}$

1, 10	Θ(1)
log(log n)	Θ(log(log n))
log n, ln n	Θ(log n)
n ^{1/k} (k>3) n ^{1/3}	$\Theta(n^{1/k})$ (k>3)
	Θ(n ^{1/3})
n ^{1/3} log n	Θ(n ^{1/3} log n)
n ^{1/2}	Θ(n ^{1/2})
n ^{1/2} log n	Θ(n ^{1/2} log n)
log n ⁿ , n log n	Θ(n log n)
n ²	Θ(n²)
n ³	Θ(n³)
n ^k (k>3)	Θ(n ^k) (k>3)
2 ⁿ	Θ(2 ⁿ)
3 ⁿ	Θ(3 ⁿ)
n!	Θ(n!)
n ⁿ	Θ(n ⁿ)