

CST Análise e Desenvolvimento de Sistemas AOC786201 - Fundamentos de Arquitetura e Organização de Computadores

Memórias

Arquitetura de John von Neumann

- Os computadores possuem blocos e sistemas funcionais básicos interligados, permitindo a troca de dados sob o controle da CPU
 - Um sinal de clock determina a frequência de operação da CPU que busca uma instrução da memória, a decodifica, executa a operação correspondente, e então passa para a próxima instrução
 - Nesta material focaremos na memória

Memórias: Introdução

- As memórias servem como locais de armazenamento de informações essenciais para o processamento de dados.
- Armazenam informações codificadas digitalmente, as quais podem representar uma variedade de dados, incluindo números, letras, comandos, cores e endereços.
- São classificadas por acesso, volatilidade, troca de dados e tipos de armazenamento

Memórias - Exemplo de Representação: Códigos alfanuméricos, cores e comandos

Dec	Chr								
0	NUL	26	SUB	52	4	78	N	104	h
1	SOH	27	ESC	53	5	79	0	105	i
2	STX	28	FS	54	6	80	P	106	j
3	ETX	29	GS	55	7	81	Q	107	k
4	EOT	30	RS	56	8	82	R	108	1
5	ENQ	31	US	57	9	83	S	109	m
6	ACK	32		58		84	Т	110	n
7	BEL	33	1	59	;	85	U	111	0
8	BS	34	"	60	<	86	V	112	p
9	HT	35	#	61	=	87	W	113	q
10	LF	36	\$	62	>	88	X	114	r
11	VT	37	%	63	?	89	Y	115	s
12	FF	38	&	64	@	90	Z	116	t
13	CR	39		65	A	91	1	117	u
14	so	40	(66	В	92	1	118	V
15	SI	41)	67	C	93	1	119	w
16	DLE	42	*	68	D	94	٨	120	X
17	DC1	43	+	69	E	95	_	121	у
18	DC2	44	,	70	F	96	*	122	Z
19	DC3	45	_	71	G	97	a	123	{
20	DC4	46		72	H	98	b	124	1
21	NAK	47	1	73	1	99	C	125	}
22	SYN	48	0	74	J	100	d	126	~
23	ETB	49	1	75	K	101	е	127	DEL
24	CAN	50	2	76	L	102	f		
25	EM	51	3	77	M	103	g		

Memórias: Acesso

- No acesso sequencial, para se alcançar um endereço de uma determinada localidade deve-se passar pelas localidades intermediárias, ou seja, o tempo de acesso depende do endereço. Ex.: fitas, os discos rígidos magnéticos e CDs
- No acesso aleatório, é possível alcançar um endereço diretamente, sem que necessitemos passar pelas localidades intermediárias. Ex.: RAM, discos SSD e Pendrives/SdCards.

Tempo de acesso típicos:

- Caches L1-3: 1-5 ns.
- DDR: 3-10 ns.
- SSD: 0,1-0,5 ms
- HDD: 5-15 ms

Acesso Sequencial

Mais lento, dependente da localização dos dados

Acesso Aleatório

Mais rápido, tempo de acesso uniforme

Memórias: Volatilidade

- As memórias voláteis perdem a informação ao ser cortada a alimentação. São memórias feitas, geralmente, de Flip-Flops, células biestáveis ou células capacitor-transistor. Ex.: Registradores, Cache, DRAM e SRAM
- As memórias não voláteis continuam com as informações armazenadas mesmo na ausência de energia. Ex.: ROM, EEPROM, Flash e Discos magnéticos.

A palavra latina "volatilis" refere-se à dissipação fácil no ar.

Perde dados sem energia

Memória Não Volátil

Retém dados sem energia

Memórias: Troca de dados

- As memórias apenas de leitura, possuem informação fixa, só podendo efetuar-se a leitura. São chamadas ROM (Read-Only Memory).
- As memórias de escrita/leitura permitem armazenagem e recuperação de informações. Ex.: RAM, EEPROM, Flash e Discos. Há, no entanto, as que permitem apenas uma gravação como a PROM e os CDs.

ROMs são pouco utilizadas, mesmo as BIOS atuais são programáveis.

Permite apenas a recuperação de dados

Memória de Leitura/Escrita

Permite tanto o armazenamento quanto a recuperação

Memórias: Tipos de armazenamento

- As memórias estáticas são aquelas que mantêm a informação gravada de forma indefinida, desde que a energia elétrica esteja presente.
- As memórias dinâmicas requerem um "refresh" periódico, pois a informação armazenada se degrada após um certo tempo, necessitando de recargas para manter os dados acessíveis.

Tipicamente as DRAM precisam de refresh a cada 64 ms, mas pode ser mais frequente em temperaturas altas

Fornece retenção de dados indefinida com energia

Memória Dinâmica

Requer atualização periódica para manter os dados

Comunicação entre memórias

- São armazenados nas memórias de alta velocidade os dados e instruções que o processador vai utilizar com mais frequência.
- Em memórias mais lentas, com grande capacidade de armazenamento podem ser usadas para guardar dados e instruções que não serão necessários naquele momento
 - As memórias são organizadas hierarquicamente de forma a obtermos um sistema com desempenho (velocidade) próximo ao da memória mas rápida e custo por bit próximo ao da memória de menor custo

Comunicação entre memórias

Memória em 2 níveis:

Memória em 3 níveis:

Hierarquia de Memórias

Memórias comerciais

- Memória ROM (Read Only Memory) são estáticas e não voláteis já vindo gravada de fábrica com informações, permitindo apenas leitura
- Memória PROM (Programmable Read Only Memory) são estáticas e não voláteis e permitem uma única gravação que ficará por definitivo
 - Memória EEPROM (Electrically Erasable Read Only Memory) são estáticas e não voláteis que permitem leitura e escrita
 - Suportam de 10.000 a 1.000.000 de ciclos de escrita
 - Memória Flash são estáticas e não voláteis que permitem leitura e escrita, são mais velozes se comparadas com memórias EEPROM
 - Suportam de 10.000 a 100.000 de ciclos de escrita

Memórias comerciais - DRAM

- Memória RAM (Rando-Access Memory) são voláteis.
- Podem ser estáticas (<u>SRAM</u>) que são normalmente construídas com Flip-Flops ou dinâmicas (<u>DRAM</u>) que são construídas com circuitos mais simples (latches).
 - Não tem limite prático em termos de ciclos de escrita
 - Vêm sofrendo evolução ao longo das últimas décadas, tendo o tempo de acesso que era de cerca de 100 ns chegando atualmente a 5 ns.

Memórias comerciais - DRAM

Sai	Santa Catarina								
	Tecnologia	Melhoria principal	bits	Latência	Pico Transf.				
J Z	DRAM tradicionais	Assíncronas, tem controlador p/ leitura, escrita e refresh	8/16	80 a 120 ns	1 a 16 MB/s				
	FPM DRAM Fast Page Mode	Acelerou acesso a dados consecutivos da página	32	50 a 70 ns	20 a 50 MB/s				
	EDO DRAM Extended Data Out	Leitura mais rápida mantendo dados anteriores na saída	32	40 a 50 ns	50 a 100 MB/s				
	SDRAM Synch. Dynamic	são síncronas com o clock do processador	64	10 a 15 ns	133 a 800 MB/s				
H	DDR SDRAM Double Data Rate	Transferência em ambas as bordas de subida e descida	64	7 a 10 ns	2,1 a 3,2 GB/s				
	DDR2, DDR3, DDR4	Melhor desempenho, menor consumo, maior densidade e frequência de operação	64	3 a 7,5 ns	4 a 6 GB/s 8 a 15 GB/s 17 a 25 GB/s				
	DDR5	Barramentos independentes por banco e refresh mais efic.	64 canais diferentes	3 ns	32 a 51 GB/s				

Memórias comerciais - DRAM

- Algumas tecnologias DRAM:
 - DRAM tradicionais são assíncronas, gerenciadas por um controlador que trata leitura, escrita e refresh (80 ~ 120 ns, 8 ou 16 bits, 1 a 16 MB/s.
 - FPM DRAM (Fast Page Mode DRAM) acelerou acesso dentro da página (50 ~ 70 ns, 20 a 50 MB/s)
 - EDO DRAM (Extended Data Out DRAM) leitura mais rápida (40 ~ 50 ns, 50 a 100 MB/s)
 - SDRAM (Synchronous Dynamic RAM) são síncronas com o clock do processador (10 ~ 15 ns, 133 a 800 MB/s)
 - DDR SDRAM (Double Data Rate SDRAM) operam em ambas as bordas de subida e descida (taxas de transf. de 2,1 a 3,2 GB/s)
 - DDR2, DDR3, DDR4, DDR5: melhor desempenho, menor consumo e maior densidade de dados (taxas de transferência 4,27 a 6,4 / 8,5 a 14,9 / 17 a 25,6 / 32 a 51.2 GB/s)

Outros tipos de RAMs

- NVRAM RAM não-volátil: Armazenamento de Dados com o Sistema Desligado. Muitos equipamentos armazenam seus dados em memórias RAM alimentadas com baterias de reserva.
 - Memória FIFO (First-In, First-Out): também conhecidas como buffers para armazenamento temporário. Por exemplo, os dados são transferidos em altas taxas do PC para a impressora. Como a impressão é mais lenta que a transferência, esses dados devem ser armazenados em FIFOs e daí podem ser impressos.

Memórias que utilizam FGTs

 Memórias EEPROM e Flash são formadas por células que contém Floating Gate Transistors (Transistores de porta flutuante) que permitem armazenamento de dados de forma não volátil

Interação entre Processador e Memória Principal

As células de bit não normalmente não são endereçáveis individualmente, mas em conjuntos (palavras ou bytes)

Memória: pinos de entrada e saída

Barramento de dados

- Conjunto de pinos utilizados para disponibilizar dados para serem gravados na memória ou para que a memória disponibilize dados que serão lidos por um sistema externo
- A quantidade de bits segue normalmente o tamanho da palavra utilizado pela memória
 - 4 bits (Nibble)
 - 8 bits (Byte)
 - 16 bits
 - o 32 bits
 - o 64 bits

Barramento de endereços

- Conjunto de pinos utilizados para apontar uma posição da memória
- Cada posição identifica um agrupamento de bits (cujo tamanho depende do tamanho da palavra adotado pela memória)
 - Cada palavra deve ter um endereço único
- A quantidade de pinos (bits) do barramento depende da quantidade de palavras endereçáveis (para "n" a quandidade de fios, a quantidade de palavras deve ser <= a 2ⁿ)

Comandos de controle comuns

EN,CS,CE: Seleção (ou habilitação) do chip

RD,OE: Habilitar leitura de dados ("read")

WR: Permitir escrita/gravação de dados ("write")

RW: Híbrido para leitura ou escrita/gravação

CL: Limpa toda a memória (dados □ 0)

PS: Preseta toda a memória (dados □ 1)

Escrevendo na memória: simplificado

- Habilita a memória
- Informar o endereço de destino
- Disponibilizar o dado
- Dar comando de escrita

Ex.: Escrever o byte 1110 0101 no endereço E2

Escrevendo na memória:

Memória 4 x 8 bits

INSTITUTO FEDERAL Santa Catarina

Escrevendo na memória:

Memória 4 x 8 bits

0b10

- É a quantidade de informação que pode ser armazenada em uma memória.
- Medida em bits ou Bytes

4 registradores de 8 bits

Tamanho de 32 bits = 4 x 8

Aula00 | Memórias

Leitura de uma memória: simplificado

- Habilita a memória
- Informar o endereço de destino
- Dar comando de leitura
- Ler o dado no barramento de dados

Ex.: Lendo o byte armazenado no endereço E2

MEMÓRIAS

Arquitetura interna de uma memória de 4 registradores de 4 bits

MEMÓRIAS

 Exemplo de diagrama de uma memória de 32 registradores de 4 bits

le m	emó	ria						
				Endereços				
0	1	1	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1
1	1	1	1	0	0	0	1	0
1	0	0	0	0	0	0	1	1
0	0	0	1	0	0	1	0	0
0	0	0	0	0	0	1	0	1
					:		:	
1	1	0	1	1	1	1	0	1
1	1	0	1	1	1	1	1	0
0	1	1	1	1	1	1	1	1