

Linear Algebra II Nilpotent Linear Transformations

Ming-Hsuan Kang

Nilpotent Linear Transformations

Let T be a linear transformation on a vector space V over F.

Definition

A linear transform T is nilpotent if $T^k \equiv 0$ for some positive integer k. The smallest such k is called the index of T.

Proposition

Let n be the dimension of V. The following are equivalent.

- 1. $T^k \equiv 0$ for some positive integer k.
- 2. The generalized kernel of T is equal to the whole space V.
- 3. $T^n \equiv 0$.
- 4. $f_T(x) = x^n$.

Cyclic Subspace

Suppose T is nilpotent. Let \vec{v} be a nonzero vector in V and

$$W = \operatorname{cyclic}(\vec{v}) = F\vec{v} \oplus \cdots \oplus FT^{m-1}(\vec{v})$$

which the cyclic subspace generated by \vec{v} . Recall that

$$f\big|_{T\big|_W}(x)$$
 divides $f_T(x) = x^n$

which implie that

$$f|_{T|_W}(x) = x^m$$
 and $T^m(\vec{v}) = \vec{0}$.

It is convenient to express the action of T on W by the diagram

$$\vec{0} \leftarrow T^{m-1}(\vec{v}) \leftarrow \cdots \leftarrow T(\vec{v}) \leftarrow \vec{v}.$$

Matrix Representation

Under the cyclic basis $\alpha=\{\vec{v},\cdots,T^{m-1}(\vec{v})\}$, $T\big|_W$ has the matrix representation

$$\operatorname{Rep}_{\alpha}(T|_{W}) = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 \\ 1 & 0 & \ddots & \ddots & 0 \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}.$$

Cyclic Decomposition

The goal of this lecture is to prove the following theorem.

Theorem

Let T be a nilpotent linear transformation on the vector space V. Then V can be decomposed as a direct sum of cyclic subspaces.

We are looking for a decomposition as the following form.

Find cyclic subspaces of maximal dimension first.

Apply T^2 to the basis, then cyclic spaces of smaller dimension are killed. One can determine $T^2(\vec{v}_1)$ and $T^2(\vec{v}_2)$ since they form a basis of $Im(T^2)$.

From $T^2(\vec{v}_1)$ and $T^2(\vec{v}_2)$, we can find \vec{v}_1 and \vec{v}_2 .

Next, let us find the cyclic subspace of second largest dimension. On the subspace $ker(T^2)$,

k-dimensional cyclic subspaces are of maximal dimension on ker(T^k).

On the subspace $\ker(T^2)$, apply T to its basis, then cyclic spaces of smaller dimension are killed. One can determine $T(\vec{v_3})$ since it together with $T^2(\vec{v_1})$ and $T^2(\vec{v_2})$ form a basis of $\operatorname{Im}(T)$ on $\ker(T^2)$.

From $T(\vec{v_3})$, we can find $\vec{v_3}$.

$$\vec{0} \leftarrow T^{2}(\vec{v}_{1}) \leftarrow T(\vec{v}_{1}) \leftarrow \vec{v}_{1}
\vec{0} \leftarrow T^{2}(\vec{v}_{2}) \leftarrow T(\vec{v}_{2}) \leftarrow \vec{v}_{2}
\vec{0} \leftarrow T(\vec{v}_{3}) \leftarrow \vec{v}_{3}
\vec{0} \leftarrow \vec{v}_{4}$$

Repeat this process, we can find a cyclic decomposition.

Cyclic Subspaces of Maximal Dimension

Theorem

Let T be a nilpotent linear transformation on V of index k+1. Let $\vec{v}_1, \dots, \vec{v}_m$ be vectors in V such that $T^k(\vec{v}_1), \dots, T^k(\vec{v}_m)$ form a basis of $Im(T^k)$.

- (1) $V = \ker(T^k) \bigoplus_{i=1}^m F \vec{v}_i$.
- (2) $\sum_{i=1}^{m} \operatorname{cyclic}(\vec{v}_i) = \bigoplus_{i=1}^{m} \operatorname{cyclic}(\vec{v}_i)$.
- (3) There exists some T-invariant subspace W such that $V = W \bigoplus_{i=1}^{m} \operatorname{cyclic}(\vec{v_i})$.

Review of Direct Sum

- 1. For subspaces W_1, \dots, W_r of V, the following are equivalent.
 - a) $W_1 + \cdots + W_r = W_1 \oplus \cdots \oplus W_r$.
 - b) Whenever $\vec{w}_1 + \cdots + \vec{w}_r = \vec{0}$ with $\vec{w}_i \in W_i$ for all i, we have $\vec{w}_1 = \cdots = \vec{w}_r = \vec{0}$.
 - c) Let α_i be a basis of W_i , then $\alpha_1 \cup \cdots \cup \alpha_m$ is linearly independent.
- 2. $W_1 \oplus \cdots \oplus W_r = V$ if dim $W_1 + \cdots + \dim W_r = \dim V$.

Proof of (1) $V = \ker(T^k) \bigoplus F \vec{v}_i$.

First, we claim that the right hand side of (1) is a direct sum. In other words, we have to show

$$\ker(T^k) + \sum_{i=1}^m F\vec{v}_i = \ker(T^k) \bigoplus_{i=1}^m F\vec{v}_i.$$

Suppose $\vec{0} = \vec{v} + \sum_{i=1}^{m} a_i \vec{v}_i$ for some $\vec{v} \in \ker(T^k)$ and $a_i \in F$. Apply T^k to the both hand sides, we obtain

$$\vec{0} = \vec{0} + \sum_{i=1}^{m} a_i T^k(\vec{v}_i).$$

Since $\{T^k(\vec{v}_i)\}$ is linearly independent, we have $a_1 = \cdots = a_m = 0$ which implies that $\vec{v} = 0$. The claim is proved.

Proof of (1) $V = \ker(T^k) \bigoplus F \vec{v_i}$.

By the dimension formula, we have

$$\dim V = \dim \ker(T^k) + \dim \operatorname{Im}(T^k) = \dim \ker(T^k) + m.$$

The statement (1) is proved.

Proof of (2) $\sum \operatorname{cyclic}(\vec{v_i}) = \bigoplus \operatorname{cyclic}(\vec{v_i})$.

Note that the subspace $\operatorname{cyclic}(\vec{v_i})$ admits a basis

$$\alpha_i = \{\vec{v}_i, T(\vec{v}_i) \cdots, T^k(\vec{v}_i)\}.$$

It remains to show that $\alpha_1 \cup \cdots \cup \alpha_m$ is linearly independent. Suppose not, then there exists some non-trivial linear relation, namely,

$$\vec{0} = \sum_{i=0}^{k} \sum_{j=1}^{m} a_{ij} T^{i}(\vec{v}_{j}).$$

Let r be the smallest integer satisfying $a_{rj} \neq 0$ for some j. Applying T^{k-r} to the above equation, we obtain

$$\vec{0} = \sum_{i=r}^{k} \sum_{j=1}^{m} a_{ij} T^{k-r+i}(\vec{v}_j) = \sum_{j=1}^{m} a_{rj} T^k(\vec{v}_j)$$
 (since $T^{k+1} \equiv 0$)

Thus, we obtain a non-trivial linear relation of $T^k(\vec{v}_1), \dots, T^k(\vec{v}_m)$, which is a contradiction.

Proof of (3)

Theorem

(3) There exists some T-invariant subspace W such that $V = W \bigoplus_{i=1}^{m} \operatorname{cyclic}(\vec{v_i})$.

We will prove the statement by induction on the index k + 1.

When k = 0, T^0 is the identity map and $Im(T^0) = V$. In this case, $\bigoplus_{i=1}^m \operatorname{cyclic}(\vec{v_i}) = V$, so we can just let $W = \{\vec{0}\}$.

Suppose the statement (3) holds for all nilpotent linear transformation of index < k + 1.

Proof of (3)

Let \tilde{T} be the restriction of T on $\tilde{V} = \ker(T^k)$. Then \tilde{T} is a nilpotent linear transformation on \tilde{V} of index k and the statement (3) holds for \tilde{T} . First, let us find a special basis of $\operatorname{Im}(\tilde{T}^{k-1})$.

Note that $T(ec{v}_1), \cdots, T(ec{v}_m) \in ilde{V}$ and

$$\left\{ \tilde{T}^{k-1}(T(\vec{v}_1)), \cdots, \tilde{T}^{k-1}(T(\vec{v}_m)) \right\} = \left\{ T^k(\vec{v}_1), \cdots, T^k(\vec{v}_m) \right\}$$

is a linearly independent subset of $\operatorname{Im}(\tilde{T}^{k-1})$. One can extend this subset to a basis of $\operatorname{Im}(\tilde{T}^{k-1})$, namely

$$\left\{ \left. \tilde{\mathcal{T}}^{k-1}(\textit{T}(\vec{v}_1)), \cdots, \left. \tilde{\mathcal{T}}^{k-1}(\textit{T}(\vec{v}_m)) \right\} \bigcup \left\{ \left. \tilde{\mathcal{T}}^{k-1}(\vec{u}_1), \cdots, \left. \tilde{\mathcal{T}}^{k-1}(\vec{u}_r) \right. \right\} \right. \\$$

for some $\vec{u}_1, \cdots, \vec{u}_r$ in \tilde{V} .

Proof of (3)

By (3), there exists some \tilde{T} -invariant space W_0 (which is also T-invariant) such that

$$\ker(T^k) = \tilde{V} = W_0 \bigoplus_{j=1}^r \operatorname{cyclic}(\vec{u}_j) \bigoplus_{i=1}^m \operatorname{cyclic}(T(\vec{v}_i))$$

Finally, we have

$$V = \ker(T^{k}) \bigoplus_{j=1}^{r} F\vec{v}_{i}$$

$$= W_{0} \bigoplus_{j=1}^{r} \operatorname{cyclic}(\vec{u}_{j}) \bigoplus_{i=1}^{m} \left(\operatorname{cyclic}(T(\vec{v}_{i})) \oplus F\vec{v}_{i}\right)$$

$$= W \bigoplus_{i=1}^{m} \operatorname{cyclic}(\vec{v}_{i})$$

Cyclic Decomposition

Theorem

Let T be a nilpotent linear transformation on V of index k+1. Let $\vec{v}_1, \dots, \vec{v}_m$ be vectors in V such that $T^k(\vec{v}_1), \dots, T^k(\vec{v}_m)$ form a basis of $Im(T^k)$.

(3) There exists some T-invariant subspace W such that $V = W \bigoplus_{i=1}^{m} \operatorname{cyclic}(\vec{v_i})$.

Theorem

Let T be a nilpotent linear transformation on the vector space V. Then V can be decomposed as a direct sum of cyclic subspaces.