

SQL - Funções importantes e Tratamento de Dados SUBQUERY e Tabelas Temporárias

SQL – Funções Importantes

SUBQUERY

Funções importantes para a Análise de Dados: SUBQUERY

Qual a taxa de sobrevivência entre as variáveis: classe, sexo e idade?

Para responder essa questão, o primeiro passo é fazer a análise exploratória de cada variável. Calcularemos

a frequência relativa utilizando o recurso do <u>SQL chamado de subquery</u>. Com ele é possível encadear

queries:

A contagem de observações resultantes dessa subquery é utilizada como denominador para o cálculo da SELECT frequência relativa.

Pclass, COUNT (passengerId) as n, FROM

CAST (COUNT (passengerId) AS FLOAT) / (SELECT COUNT (passengerId) FROM titanic) as freq rel

titanic' GROUP BY Pclass ORDER BY Pclass

<u> </u>	¹²³ Pclass ∜‡	¹²³ n 📆	123 freq_rel
1	1	216	0,24
2	2	185	0,21
3	3	494	0,55

O comando **CAST** serve para converter uma variável para o tipo desejado. Neste caso, queremos converter o número inteiro para um com casas decimais (FLOAT).

Funções importantes para a Análise de Dados: SUBQUERY

Um dado interessante é a taxa de sobrevivência de cada classe. Para isso, vamos utilizar o fato da variável **Survived** ser binária, calculando a sua média para ter a proporção de sobreviventes:

```
SELECT
   Pclass,
   COUNT (passengerId) as n,
   CAST (COUNT (passengerId) AS FLOAT) / (SELECT COUNT (passengerId) FROM titanic) as freq rel,
   AVG(CAST(Survived AS FLOAT)) as taxa sobrevivencia
FROM
   titanic
GROUP BY
   Pclass
ORDER BY
   Pclass
```

•	¹²³ Pclass ∜‡	¹²³ n 📆	123 freq_rel	¹²³ taxa_sobrevivencia ^{17‡}
1	1	216	0,24	0,63
2	2	185	0,21	0,48
3	3	494	0,55	0,24

Funções importantes para a Análise de Dados: SUBQUERY

Incluindo o sexo conseguimos extrair mais informações interessantes:

```
SELECT
   Pclass,
   Sex,
   COUNT (passengerId) as n,
   CAST (COUNT (passengerId) AS FLOAT) / (SELECT COUNT (passengerId) FROM titanic) as freq rel,
   AVG(CAST(Survived AS FLOAT)) as taxa sobrevivencia
FROM
                                          Pclass T Sex T 123 n T 123 freq_rel
   titanic
                                                                        taxa sobrevivencia
GROUP BY
                                                1 female
                                                                   0,11
                                                                                    0,97
   Pclass, Sex
                                                1 male
                                                          122
                                                                   0.14
                                                                                    0,37
ORDER BY
                                                2 female
                                                                   0,09
                                                                                    0,92
   Pclass, Sex
                                                2 male
                                                          108
                                                                   0,12
                                                                                    0,16
                                                3 female
                                                                   0.16
                                                          144
                                                                                     0,5
                                                3 male
                                                          350
                                                                   0,39
```

Aqui temos a taxa de sobrevivência pela combinação Classe e Sexo.

Podemos destacar os grupos com mais de 50% de sobrevivência utilizando o HAVING.

```
Pclass,
Sex,
COUNT(passengerId) as n,
CAST(COUNT(passengerId) AS FLOAT)/(SELECT COUNT(passengerId) FROM titanic) as freq_rel,
AVG(CAST(Survived AS FLOAT)) as taxa_sobrevivencia
```

FROM

titanic

GROUP BY

Pclass, Sex

HAVING

AVG(CAST(Survived AS FLOAT))>= 0.5

ORDER BY

Pclass, Sex

<u> </u>	Pclass T:	Sex TI	¹²³ n 📆	¹²³ freq_rel T :	taxa_sobrevivencia T‡
1	1	female	94	0,105	0,9681
2	2	female	77	0,086	0,9221
3	3	female	144	0,1609	0,5

