Applied Mathematics & Humanities Department SVNIT Surat

Tutorial -1 Aug 8, 2021

Discrete Mathematics (Code: MA-211)

Last Date: Within 10 days Platform: Google Classroom/MSTeams

Do all the questions.

- 1. Let $A = \{a, b, c\}$. Then find the power set $(\mathcal{P}(A))$ of A, i.e., find the collection of all the subsets of A.
- 2. Which of the following subset(s) of $A \times B$, where $A = \{1, 2, 3, 4, 5\}$ and $B = \{a, b, c, d, e\}$, is/are functions? If it is a function, mention the type of the function also, like 1-1, onto, 1-1 and onto, or neither 1-1 nor onto.
 - $\{(1,a),(1,b),(2,d),(3,e),(4,c)\}$
 - $\{(1,a),(2,b),(3,d),(4,c),(5,c)\}$
 - $\{(1,a),(2,b),(3,d),(4,c)\}$
 - $\{(1,a),(2,a),(3,b),(4,c),(5,e)\}$
 - $\{(1,a),(2,b),(3,e),(4,c),(5,d)\}$

Do you think, every one-one function is also an onto function and vice-versa in the above case? If this is so, what is the reason you have observed?

- 3. Which of the following subsets are subgroups of the group $G = (\mathbb{R}, \cdot)$, where \cdot represents the usual multiplication of real numbers?
 - (\mathbb{Z}, \cdot) , where \mathbb{Z} is set of all integers.
 - $(\mathbb{Z}, +)$, where + is the usual addition of integers.
 - (\mathbb{Q},\cdot) , where \mathbb{Q} is set of all rational numbers.
 - (\mathbb{Q}^+,\cdot) , where \mathbb{Q}^+ is set of all positive rational numbers.
 - $\bullet \ (\mathbb{Q}^+,\cdot),$ where \mathbb{Q}^- is set of all negative rational numbers.
 - $(\mathbb{R} \mathbb{Q}, \cdot)$.
- 4. Prove that for all $n \geq 2$, $\frac{\mathbb{Z}}{n\mathbb{Z}}(or \mathbb{Z}_n)$ is not a group under multiplication of residue classes. What about the set $\{1, 2, 3, \ldots, n-1\}$ under multiplication modulo n, when n is a prime?
- 5. Find the order of each element of additive group \mathbb{Z}_{12} and multiplicative group U(12).
- 6. Prove or disprove that the set of positive irrational numbers together with 1 under multiplication is a group.
- 7. Prove or disprove that the set of 2×2 matrices of the form $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$ with real entries a, b, c such that $ac \neq 0$ is a group.
- 8. A set of all 2×2 matrices of the form $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with determinant 1 with entries from Z_5 is denoted by $SL(2, Z_5)$, a special linear group. Find the inverse of $\begin{bmatrix} 3 & 4 \\ 4 & 4 \end{bmatrix}$ in $SL(2, Z_5)$.

- 9. Prove that set of all rational numbers of the form 3^m6^n for integers m, n, is a group under multiplication.
- 10. Answer the following:
 - the order of $\bar{4}$ in the group $Z_5 \{\bar{0}\}$ under multiplication?
 - the order of i in the multiplicative group $\{1, -1, i, -i\}$?
 - the generators of the group $\{w^{15} = 1, w, w^2, \dots, w^{14}\}$?
 - If $f = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$, then find $f^2 = f \circ f$.
 - Check whether U(16) and \mathbb{Z}_8 are isomorphic?