Escola d'Enginyeria, Enginyeria Telecomunicació Curs 2020/21 PRIMER CONTROL ACiP: El procesador

Nombre:				NIU:		
Pregunta 1	Pregunta 1 (1 punto)					
Dados los pr	ocedimientos anida	idos de la figura:				
	Programa principal		Subrutina SUB1		Subrutina SUB2	
Direcciones				_		
		5040		5900		
7000	Call SUB1					
7002		5110	Call SUB2			
		5112				
					Return	
		5300	Call SUB2			
		5302				

Si la pila crece hacia las direcciones bajas de memoria y el registro SP (Stack Pointer) siempre apunta a la posición de la memoria del último elemento introducido en la pila. Mostrar la evolución de la pila cuando se ejecutan las llamadas a procedimientos indicados anteriormente

Return

Escola d'Enginyeria, Enginyeria Telecomunicació Curs 2020/21 PRIMER CONTROL ACiP: El procesador

PREGUNTA 2 (1,5 puntos) La siguiente figura presenta el esquema simplificado de un procesador de 64 bits con un banco de 64 registros de propósito general (R0,..., R63). El procesador se encuentra conectado a una memoria que se direcciona por bytes. En cada acceso a memoria se leen o escriben 8 bytes (1 palabra), requiriéndose para este acceso 2 ciclos de reloj. La decodificación de una instrucción requiere 1 ciclo de reloj. Los registros RT, TR1 y TR2 son registros temporales transparentes al usuario. El PC es un registro contador, con lo que no necesita pasar por ALU para actualizar su contenido.

a) Si el formato de la instrucción LOAD es

LOAD Rx, dir : Guarda el contenido de la dirección de memoria dir en el registro Rx

COD	REG	DIRECCION
10bits	6bits	48 bits

Razonar brevemente:

a1) Si se utiliza direccionamiento directo. ¿Qué cantidad de memoria es posible direccionar con este formato de instrucción?

Cantidad de memoria direccionable con direccionamiento directo = 2^{48} Bytes

a2) Si se utiliza direccionamiento indirecto. ¿Qué cantidad de memoria es posible direccionar con este formato de instrucción?

Cantidad de memoria direccionable con direccionamiento indirecto = 2^{64} Bytes

a3) Si se utiliza direccionamiento indirecto relativo a registro base. ¿Qué cantidad de memoria es posible direccionar con este formato de instrucción?

Cantidad de memoria direccionable con direccionamiento relativo a reg base = 2^{64} Bytes

Escola d'Enginyeria, Enginyeria Telecomunicació Curs 2020/21 PRIMER CONTROL ACiP: El procesador

b) Si el formato de la instrucción ADD es:

ADD Rx, Ry: Suma el contenido de Ry al de Rx y deja el resultado en Rx

COD	REG	REG	No usados
10bits	6bits	6 bits	42 bits

Indicar las operaciones elementales (microoperaciones) y el número de ciclos de reloj correspondientes a las fases de búsqueda, decodificación y ejecución de las siguientes instrucciones:

LOAD R3, 0x10000	Ciclos	ADD R1,R3	Ciclos
Búqueda		Búqueda	
MAR < PC	1	MAR < PC	1
MBR <mp, +="" 8<="" <="" pc="" td=""><td>2</td><td>MBR<mp, +="" 8<="" <="" pc="" td=""><td>2</td></mp,></td></mp,>	2	MBR <mp, +="" 8<="" <="" pc="" td=""><td>2</td></mp,>	2
RI < MBR	1	RI < MBR	1
Decodificación		Decodificación	
DEC	1	DEC	1
Ejecución		Ejecución	
MAR < RI(dirección)	1	TR1 < R1	1
MBR < MP	2	TR2 < R3	1
R3 < MBR	1	R1 < TR1 + TR2	1
TOTAL CICLOS:	9	TOTAL CICLOS:	8

Escola d'Enginyeria, Enginyeria Telecomunicació Curs 2020/21 PRIMER CONTROL ACiP : El procesador

Pregunta 3 (2 puntos) Los siguientes programas implementan una expresión utilizando máquinas de 3, 2 y 1 direcciones, respectivamente.

Arquitectura	3-Direcciones	2-Direcciones	1-Dirección
Programa	ADD C, D, C SUB A, B, A MUL E, C, A	ADD C, D SUB A, B MUL D, B STORE E, B	LOAD A SUB B STORE A LOAD C ADD D MUL A STORE E

• El formato de las instrucciones para cada máquina es el siguiente:

3-direcciones <CodOp> <Dest> <Fuente1> <Fuente2>

2-direcciones <CodOp> <Dest>/<Fuente1> <Fuente2>

1-dirección* <CodOp> <Fuente>

A, B, C, D, son posiciones de memoria que almacenan los operandos. E es la posición de memoria del resultado de la operación.

La longitud de las instrucciones de cada máquina es la siguiente:

3-direcciones: 8 Bytes 2-direcciones: 4 Bytes 1-dirección: 2 Bytes

El bus de datos para cada máquina es de 16 bits. Los operandos son de 16 bits

a) Deducir la expresión que ejecuta el programa de 3 direcciones y completar la instrucción que falta en los programas de 2 y 1 dirección de la tabla anterior.

Expresión	$E = (D + C) \times (B - A)$

b) Comparar el número de accesos a memoria necesarios para calcular la expresión deducida utilizando las tres máquinas.

Máquina	3-Direcciones	2-Direcciones	1-Dirección
No. accesos de lectura de instrucciones	12	8	7
No. accesos de lectura de operandos	6	7	5
No. accesos de escritura	3	4	2
No. accesos total	21	19	14

^{*} Se opera con acumulador: Fuente1 / Dest