Recurrence Relations

Aug-14

Invented by French mathematician Edouard Lucas in 1883.

- There are three pegs: A, B and C
- Peg A has stack of disks
- Disks are stored in decreasing size.

Problem: How will you move all the disks from peg A to peg C?

Rule 1: You can only move one disk at a time

Rule 2: You can make use of all the pegs

Rule 3: At no point should a larger disk be placed on a smaller one

Solution:

Transfer the top n-1 disks from A to B

Transfer the largest disk from A to C

Transfer n-1 disks from B to C

What is the cost?

Let T(n) denote the number of moves required to transfer a stack of size n

What is T(0), T(1), and T(2)

Let T(n) denote the number of moves required to transfer a stack of size n

What is T(0), T(1), and T(2)

T(0)=0, T(1)=1, and T(2)=3

Let T(n) denote the number of moves required to transfer a stack of size n

Solution:

- Transfer the top n-1 disks from A to B
- Transfer the largest disk from A to C
- Transfer n-1 disks from B to C

Let T(n) denote the number of moves required to transfer a stack of size n

Solution:

- Transfer the top n-1 disks from A to B----T(n-1)
- Transfer the largest disk from A to C--- 1

Transfer n-1 disks from B to C ----- T(n-1)

Upper bound on the cost

$$T(n) \le T(n-1) + 1 + T(n-1)$$

$$T(n) \le 2. T(n-1) + 1$$

What about the lower bound?

$$T(n) >= ??$$

Is it possible to accomplish the task In less than 2.T(n-1) + 1 moves?

What about the lower bound?

$$T(n) >= ??$$

Is it possible to accomplish the task In less than 2.T(n-1) + 1 moves?

No it is not possible. But why?

Given T(0)=0 and T(1)=1 we have:

$$T(n) <= 2. T(n-1) + 1$$

and

$$T(n) >= 2. T(n-1) + 1$$

Given
$$T(0)=0$$
 and $T(1)=1$ we have:
 $T(n) = 2. T(n-1) + 1$

There are multiple ways to solve it

First one is make a guess and then verify the guess.

- -T(0)=0
- T(1)=2.0+1=1
- T(2) = 2.1 + 1 = 3
- T(3) = 2.3 + 1 = 7

■ It might be that $T(n) = 2^n - 1$

Verify it !

Aug-14

How to verify: Remember that recurrences are ideally suited for Mathematical Induction.

Pizza cutting problem

The problem was solved by Jacob Steiner in 1826.

Problem Statement:

How many slices of pizza can a person obtain by making n straight cuts with a pizza knife?

Let's rephrase it mathematically!

What is the maximum number of regions defined by n lines in a plane?

Notation: Let L_n be the number of regions obtained by drawing n lines.

■ Base Case: We know what is L₀

What is L_1 , L_2 and L_3

Case 1: We cut through the center each time

In Case 1, each cut adds two regions.

• Thus, $L_n = 2.n \quad (n > 0)$

Case 2: You don't need to cut through the center each time

A Better Slicing Method ...

What is common that you see between these two figures ?

An Important Observation

The nth line increases the number of regions by k iff it splits k of the old regions iff it intersects previous lines in k-1 different places.

Upper bound

$$L_n \le L_{n-1} + n$$

Is it possible that $L_n = L_{n-1} + n$

• It's possible to attain upper bound always, provided you draw the new line such that it intersects with all the previous lines.

