EC5.203 Communication Theory I (3-1-0-4):

Lecture 5 Analog Communication Techniques: Amplitude Modulation

Instructor: Dr. Sachin Chaudhari

Email: sachin.chaudhari@iiit.ac.in

Jan. 27, 2025

References

• Chap. 3 (Madhow)

Analog comm techniques: Motivation

- Why bother?
 - After all, the world is going digital
 - Modern comm system designers focused mainly on DSP algorithms for digital comm
- But need to understand the underlying physical analog signals
 - Establishes common language with circuit designers
 - Analog-centric techniques become critical when pushing the limits of carrier frequency, bandwidth and/or power consumption
- Focus of these techniques is on baseband to passband conversion, and back

Terminology and Notations

- Let m(t) denote the message signal with frequency response M(f).
- For a real signal m(t), $M(f) = M^*(-f)$.
- Based on our convenience, we will consider it to be a power or an energy signal.

Terminology and Notations

- Let m(t) denote the message signal with frequency response M(f).
- For a real signal m(t), $M(f) = M^*(-f)$.
- Based on our convenience, we will consider it to be a power or an energy signal.
- Power of the signal is given by

$$\overline{m^2} = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_0^{T_0} m^2(t) dt$$

• DC value of the signal is

$$\overline{m} = \lim_{T_0 \to \infty} \frac{1}{T_0} \int_0^{T_0} m(t) \ dt$$

Terminology and Notations

• Let $u_p(t)$ denote the signal transmitted over the channel. Also called passband signal given in term of cartesian coordinates as

$$u_p(t) = u_c(t)\cos(2\pi f_c t) - u_s(t)\sin(2\pi f_c t)$$
I

• In Polar coordinates

$$u_p(t) = e(t)\cos(2\pi f_c t + \theta(t))$$

where e(t) is magnitude of the envelope and $\theta(t)$ is the phase.

Key Concepts

- Two ways of encoding info in complex envelope
 - I and Q: amplitude modulation (several variants)
 - Envelope and phase: angle modulation (constant envelope)
- For example, for a sinusoid carrier

$$A_c(t)\cos(2\pi f_c(t)t + \theta_c(t))$$

where $A_c(t)$, $f_c(t)$, $\theta_c(t)$ are the amplitude, frequency, and the phase of the carrier respectively.

Amplitude Modulation

Frequency Modulation

Phase Modulation

Key Concepts

- Up/Down conversion
 - Multiple stages or single stage (superhet or direct conversion)
- Phase locked loop
 - Feedback-based synchronization and tracking

Amplitude Modulation

Example: sinusoidal message

• Consider a sinusoidal message given by

$$m(t) = A_m \cos(2\pi f_m t)$$

where A_m is magnitude of the envelope and f_m is the signal frequency.

• Fourier transform is given by

$$M(f) = \frac{A_m}{2} (\delta(f + f_m) + \delta(f - f_m))$$

$$A_m(f) = \frac{A_m}{2} (\delta(f + f_m) + \delta(f - f_m))$$
(a) Sinusoidal message waveform
(b) Sinusoidal message spectrum

• Find power and average for this signal. (Assignment)

AM: Double Sideband Suppressed Carrier

• Here the message m(t) modulates the I component of the passband signal u(t) and is given by

$$u_{DSB}(t) = m(t) \cdot A\cos(2\pi f_c t)$$

while the Fourier transform is given by

$$U_{DSB}(f) = \frac{A}{2}(M(f - f_c) + M(f + f_c))$$

DSB-SC signal for sinusoidal message

Here the signal is given by

$$u_{DSB}(t) = A_m \cos(2\pi f_m t) \cdot A \cos(2\pi f_c t)$$

while the Fourier transform is given by

$$U_{DSB}(f) = \frac{AA_m}{4} \{ \delta(f - f_c - f_m) + \delta(f - f_c + f_m) + \delta(f + f_c + f_m) + \delta(f + f_c - f_m) \}$$

(a) DSB time domain waveform

No impulses at f_c or $-f_c$!

(b) DSB spectrum

Example 2

• Consider a message signal m(t) with following frequency response M(f)

DSB-SC spectrum for Example 2

Demodulation of DSB-SC

- Standard downconverter to recover I component
- The received signal in the passband is

$$y_p(t) = Am(t)\cos(2\pi f_c t)$$

where θ_r is the phase difference arising from the phase offset with respect to local carrier at Rx.

• The output of multiplier followed by low pass filter is

$$\hat{m}(t) = Am(t)\cos\theta_r$$

Try this as a assignment!

Recap: Chapter 2 Effect of Frequency and Phase Offset

Upconversion (baseband to passband)

Downconversion (passband to baseband)

• Show that in this case

$$\tilde{u}_{c}(t) = u_{c}(t)\cos\phi(t) + u_{s}(t)\sin\phi(t)$$

where $\phi(t) = 2\pi\Delta f t + \gamma$ is the phase offset resulting from frequency offset Δf and the phase offset γ . Here $\theta_r = \phi(t)$

Example: Phase Offset

$$x(t) = \cos(2\pi f_c t + \theta_r)$$

Here $\theta = \gamma$

Causes of Phase Offset

• Frequency offset: The local oscillator at the receiver is generating frequency at $f_c + \Delta f$

$$\theta_r = 2\pi \Delta f t$$

This happens as the two physical devices cannot be exactly same resulting in slight differences. Here there will be phase difference even if they are same place.

• Timing offset: The transmitter and receiver have slightly different time references or they are separated by distance d resulting in time offset of δt .

$$\theta_r = 2\pi f_c \Delta t$$

Need of Coherent Detection

• The output of multiplier followed by low pass filter is

$$\hat{m}(t) = Am(t)\cos\theta_r$$

- For $\theta_r = 0$, $\hat{m}(t) = Am(t)$
- For $\theta_r = \pi/2$, $\hat{m}(t) = 0$
- For $\theta_r(t) = 2\pi\Delta f t + \phi$, time varying signal degradation in amplitude and unwanted sign changes.
- Need of synchronization of phase of the local oscillator with the phase of incoming signal:
 - Phased locked loop (PLL)
- Switch to other AM techniques which do not need synchronization
 - Conventional AM or DSB (with carrier)

Conventional AM

Conventional AM

• Add a large carrier component to a DSB-SC signal so that the passband has the following form

$$u_{AM}(t) = (Am(t) + A_c)\cos(2\pi f_c t)$$
$$= Am(t)\cos(2\pi f_c t) + A_c\cos(2\pi f_c t)$$

• Taking Fourier transform

$$U_{\rm AM}(f) = \frac{A}{2} (M(f - f_c) + M(f + f_c)) + \frac{A_c}{2} (\delta(f - f_c) + \delta(f + f_c))$$

Conventional AM: spectrum

Envelope and its importance

• Add a large carrier component to a DSB-SC signal so that the passband has the following form

$$u_{AM}(t) = \underbrace{(Am(t) + A_c)}\cos(2\pi f_c t)$$
$$= Am(t)\cos(2\pi f_c t) + A_c\cos(2\pi f_c t)$$

- Envelope is given by $e(t) = |Am(t) + A_c|$.
- If $Am(t) + A_c > 0$, then $e(t) = Am(t) + A_c$. In this case, message m(t) can be recovered from e(t).

What does the envelope tell us?

• Example: sinusoidal message signal

$$m(t) = A_m \cos(2\pi f_m t)$$

DSB-SC signal

Envelope = message magnitude \rightarrow Envelope detection loses info in message sign.

DSB + strong carrier component

Envelope = message + DC

 \rightarrow Envelope detector + DC block recovers message info

Sidestepping sync requirement

- The envelope (or magnitude of complex envelope) does not depend on carrier phase
- Suppose we can extract the envelope of a passband signal (will soon see a simple circuit for this purpose)
 - Does not require carrier sync
- Can we recover the message?

Constraint for recovering message from envelope

Example of sinusoidal message

Envelope = message + DC

Envelope = message

Message info not preserved in envelope

Example of Sinusoidal Message

 $A = 1.0, A_{m} = 1.0, A_{c} = 1.0, a_{mod} = 1.0, f_{m} = 10 Hz, f_{c} = 100 Hz$

$$Am(t) + A_c > 0 \quad \forall t$$

Envelope = message + DC

$$Am(t) + A_c \ge 0 \quad \forall t$$
 Envelope = message + DC

Message info not preserved in envelope

$$Am(t) + A_c \ngeq 0 \quad \forall t$$

Modulation Index

• Condition needed for envelope to preserve message info

$$A m(t) + A_c > 0 \quad \forall t$$

$$A \min_{t} m(t) + A_c > 0$$

• Can be expressed in terms of modulation index

$$a_{\text{mod}} = \frac{AM_0}{A_c} = \frac{A|\min_t m(t)|}{A_c}$$

• For signal to be recoverable, $a_{\text{mod}} \leq 1$.

AM signal in terms of modulation index

• Convenient to normalize message so that the largest negative swing is -1

$$m_n(t) = \frac{m(t)}{M_0} = \frac{m(t)}{|\min_t m(t)|}$$

$$\min_t m_n(t) = \frac{\min_t m(t)}{M_0} = -1$$

• AM signal in terms of modulation index and normalized message

$$y_p(t) = B(1 + a_{\text{mod}}m_n(t))\cos(2\pi f_c t + \theta_r)$$

Effect of modulation index

Example of sinusoidal message

Envelope = message + DC

Envelope = message

Message info not preserved in envelope

Envelope Detectors

Positive carrier cycle → capacitor charges up (reaches value of envelope)

Negative carrier cycle → capacitor discharges with RC time constant

Envelope detector operation

Positive carrier cycle \Rightarrow capacitor charges up (reaches value of envelope) Negative carrier cycle \Rightarrow capacitor discharges with RC time constant Should not discharge too fast during negative cycle Should react fast enough to follow variations in envelope (which depend on message bandwidth B) $\frac{1}{f_c} \ll RC \ll \frac{1}{R}$