代数学方法(第二卷)勘误表跨度: 2024年9月正式出版迄今

李文威

2025-06-08

- ◇ 注记 1.7.3 之上的讨论
 原文 (iv) 更正 (ii)
- \diamond 引理 1.9.8 陈述中显示公式右侧 \lim 的下标,以及证明末段 将两处的 $S_{/Y}$ 都改成 $S_{Y/}$
- ◇ **约定 2.6.3 第**二行 原文 上确界 (或下确界) 更正 下确界 (或上确界) 感谢黄 行知指正
- ◆ §3.12 第一段 原文 … 左导出函子 (或右导出函子); 更正 … 右导出函子 (或 左导出函子); 感谢黄行知指正
- **♦ 推论 3.12.7 证明倒数第二行的显示公式** 将末项的 $R^1F(Z)$ 换成 $R^1F(X)$ 感谢黄行知 指正
- ◇ 约定 3.12.8 原文 高次左导出函子 (或右导出函子) 更正 高次右导出函子 (或 左导出函子) 感谢黄行知指正
- **⋄ 命题 3.13.13 证明** 在 "进入正题…" 一段, 将最后的 $\psi^{-1}(c)$ 改为 $(\lim \psi)^{-1}(c)$.
- ◇ 注记 3.14.8 之前的段落原文 $\cdots \rightarrow Q_1 \rightarrow Q_0 \rightarrow X \rightarrow 0$ 更正 $\cdots \rightarrow Q_1 \rightarrow Q_0 \rightarrow X \rightarrow 0$
- \$3.14 倒数第四段
 原文
 作为推论,... $H^p(C) \otimes H^q(D)$, 从它到 $H^n(C \otimes D)$...
 更正
 作为推论,... $H_p(C) \otimes H_q(D)$, 从它到 $H_n(C \otimes D)$...
 感谢黄行知指正
- ◇ 定义 4.5.11 第三行
 原文
 ... X 同构 Y 的...
 更正
 ... X 通过 Y 的...
 感谢郑维

 結指正

- **◇ 定理 4.5.13 证明倒数第二段** 原来的"至于图表右半部... 同时左半部情况保持不变 (请验证)."这段应当修改为如下形式:
 - "至于图表右半部, 基于 $a_i^{-n} = \mathrm{id}_Y$,可用同伦适当修改 $W \to Z_i$ 以确保右半部在 $C(\mathcal{A})$ 中交换,然后重复证明满性时的推出操作,化约到 $W^{-n} = Y$ 而 $b^{-n} = \mathrm{id}_Y$ 的 情形,同时左半部情况保持不变 (请验证)." 感谢黄良伟指正
- \diamond **定义 5.1.1** 第一条的 F^{p+1} 改为 $F^{p+1}X$, 定义之后第二段末尾的范畴 $F_{\bullet}(\mathcal{A})$ 改为范畴 $Fil_{\bullet}(\mathcal{A})$.
- ◇ 推论 5.5.6 的陈述倒数第二行 原文 而 $F^nX = X$ 更正 而 $F_nX = X$ 感谢黄行知 指正
- ◇ 定义 A.2.11 最后一段
 原文
 当 κ 越大, 条件便越松弛, ...
 更正
 当 κ' 相对于

 κ 充分大, 相应的条件便比 κ 松弛; ...
 感谢黄行知指正