《高等数学》全程教学视频课

第九讲 数列收敛的判定方法

顾客向银行存入本金 p 元 , t 年后他在银行的存款是本金与利息之和. 设银行规定年复利率为r , 考虑下列不同结算方式 t 年后的最终存款额.

● 每年结算一次
$$p(t) = p(1+r)^t$$

● 每月结算一次
$$p(t) = p(1 + \frac{r}{12})^{12t}$$

• 每年结算
$$m$$
 次 $p(t) = p(1 + \frac{r}{m})^{mt}$

夹逼定理

单调有界原理

区间套定理

定理1 (夹逼定理)设 $x_n \le a_n \le y_n (n = 1, 2, \dots)$, 且数列 $\{x_n\}$

和 {y_n} 收敛到相同极限,则数列 {a_n} 收敛,且

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n.$$

例1 证明: $\lim_{n\to\infty}(\sqrt{n+1}-\sqrt{n})=0$.

思考 问 k 为何值时有

$$\lim_{n\to\infty}[(n+1)^k-n^k]=0$$
?

例2 求极限: $\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n}\right)$.

例3 设 a > 1 为常数,证明 $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

定理2 设数列 { a , } 单调增加且有上界,即

$$a_1 \le a_2 \le \dots \le a_{n-1} \le a_n \le \dots$$

且存在常数 M 使得 $a_n \leq M$ $(n=1,2,\cdots)$ 则数列 $\{a_n\}$ 存在极限.

推论 设数列{ a n } 单调增加且有上界,即

$$a_1 \ge a_2 \ge \dots \ge a_{n-1} \ge a_n \ge \dots$$

且存在常数 m 使得 $a_n \ge m (n = 1, 2, \dots)$, 则数列 $\{a_n\}$ 存在极限.

单调有界原理 任何单调有界数列一定存在极限.

例4(重要极限)设 $a_n = (1 + \frac{1}{n})^n (n = 1, 2, \dots)$,证明数列 $\{a_n\}$ 存在极限.

n	a_n	n	a_n
10	2.59374246	10 ⁵	2.71826824
10 ²	2.70481383	10 ⁶	2.71828047
10 ³	2.71692393	10 ⁷	2.71828169
10 ⁴	2.71814593	10 ⁸	2.71828179

 $\lim_{n\to\infty} (1+\frac{1}{n})^n = e = 2.7182818284 \cdots$ 纳皮尔常数(欧拉数)

例5 设

$$a_1 > 0, a_{n+1} = \frac{1}{2}(a_n + \frac{1}{a_n})$$

$$(n=1,2,\cdots)$$

证明数列{an}存在极限,

茹科夫斯基变换

$$w = \frac{1}{2}(z + \frac{1}{z})$$

定理3 设 $\{x_n\}$ 为递增数列 $\{y_n\}$ 为递减数列 $\{y_n\}$ 为递减数列 $\{y_n\}$

$$x_n < y_n \ (n=1, 2, \cdots),$$

则 $\{x_n\}$ 与 $\{y_n\}$ 均收敛,且极限相同,即 $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n$.

定理4(区间套定理)设有区间序列 $\{[a_n,b_n]\}_{n=1}^{\infty}$ 满足

(1)
$$[a_n, b_n] \supset [a_{n+1}, b_{n+1}] (n = 1, 2, \dots)$$
;

(2)
$$b_n - a_n \rightarrow 0 \ (n \rightarrow \infty)$$

则存在惟一的 $x_0 \in [a_n, b_n] (n = 1, 2, \dots)$

