

การทดลองที่ 1 ข้อมูลและคณิตศาสตร์ใน คอมพิวเตอร์

การทดลองนี้เป็นการทบทวนความเข้าใจและแบบฝึกหัดเสริมของเนื้อหาในบทที่ 1 เนื่องจากจำนวนบิท ข้อมูลที่ยาวขึ้นจำเป็นต้องใช้โปรแกรมคอมพิวเตอร์ช่วยคำนวณแทน โดยมีวัตถุประสงค์ ดังต่อไปนี้

- เพื่อให้เข้าใจการแปลงและคณิตศาสตร์สำหรับเลขจำนวนเต็มฐานสองชนิดไม่มีเครื่องหมายและมี เครื่องหมายแบบ 2-Complement
- เพื่อให้เข้าใจการแปลงและคณิตศาสตร์สำหรับเลขทศนิยมฐานสองมาตรฐาน IEEE 754 Single Precision และ Double Precision
- เพื่อให้เข้าใจรหัส ASCII และ Unicode สำหรับข้อมูลตัวอักษร

นอกจากเนื้อหาในบทที่ 1 แล้ว ผู้อ่านสามารถศึกษาเว็บเพจเพิ่มเติม เพื่อทำความเข้าใจอย่างลึกซึ้ง ได้แก่

- https://www.tutorialspoint.com/cprogramming/c_data_types.htm
- https://www.ntu.edu.sg/home/ehchua/programming/java/datarepresentation.
 html

ผู้อ่านจะพบว่าเนื้อหาในเว็บที่สองเป็นการสอนพื้นภาษา Java ใช้งานข้อมูลเป็นเลขฐานสองเหมือนกับ ภาษา C/C++ ในเว็บที่สอง การทดลองจะครอบคลุมเนื้อหาตามทฤษฎี โดยจะเริ่มจากเลขจำนวนเต็ม เลข ทศนิยม และตัวอักษรตามลำดับ

A.1 การแปลงและคณิตศาสตร์สำหรับเลขฐานสองจำนวนเต็ม

A.1.1 การทดลอง

เนื่องจากการแปลงเลขฐานสิบเป็นฐานสอง unsigned สามารถแปลงได้ ด้วยเครื่องคิดเลขทางวิทยาศาสตร์ ทั่วไป ดังนั้น การทดลองนี้จะเน้นที่การแปลงเป็นเลขฐานสองชนิดมีเครื่องหมายแบบ 2 Complement สอดคล้องกับเนื้อหาในหัวข้อที่ 1.2 โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด กรอกหรือคลิกที่ ชื่อลิงค์ต่อไปนี้ http://www.free-test-online.com/binary/signed_converter.html เมื่อเว็บเพจปราก ภูขึ้น ขอให้ผู้อ่านปฏิบัติตามการทดลอง ดังนี้

1. คลิกเลือกที่ปุ่ม Signed แล้วจึงกรอกเลข -123 ลงในกล่องข้อความ ดังรูปที่ A.1

Figure A.1: กรอกเลข -123 ลงในกล่องข้อความ และคลิกเลือกที่ปุ่ม Signed เพื่อให้เป็นเลขฐานสองชนิด Signed

คล้ายเครื่องคิดเลข ประกอบด้วยปุ่มต่างๆ ดังนี้

- 'Bin2Dec' 'Dec2Bin' สำหรับแปลงเลขฐานสองเป็นฐานสิบไปและกลับ
- 'Dec2Hex' 'Hex2Dec' สำหรับแปลงเลขฐานสิบเป็นฐานสิบหกไปและกลับ
- 'Hex2Bin' 'Bin2Hex' สำหรับแปลงเลขฐานสองเป็นฐานสิบหกไปและกลับ
- ปุ่ม 0-9 และ A-F สำหรับกรอกตัวเลขฐานสิบและฐานสิบหก
- CL (Clear) สำหรับล้างค่าในกล่องข้อความให้เป็น 0
- RoR (Rotate Right) และ RoL (Rotate Left) สำหรับหมุนเลขที่อยู่ในกล่องข้อความ
- ShR (Shift Right) และ ShL (Shift Left) โดยป้อนเลข 0 เข้ามาแทน
- 2's C (2's Complement) สำหรับแปลงเลขฐานสองให้เป็นค่า 2's Complement

- +/- สำหรับกลับเครื่องหมายของตัวเลขฐานสิบในกล่องข้อความ
- 2. กดปุ่มเครื่องหมาย 'Bin2Dec' เพื่อให้เป็นเลขฐานสองชนิด Signed ดังรูปที่ A.2

11111111111111110000101			Binary
\circ	0		
Unsigned	Signed		
Bin2Dec	Dec2Hex	Hex2Bin	CL
Dec2Bin	Hex2Dec	Bin2Hex	RoR
D	E	F	RoL
Α	В	С	ShR
7	8	9	ShL
4	5	6	
1	2	3	
0	2's C	+/-	

Figure A.2: ผลลัพธ์จากการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความยาว 24 บิท

3. กดปุ่มเครื่องหมาย 'Bin2Hex' เพื่อแปลงเลขฐานสองที่ได้ให้เป็นเลขฐานสิบหกชนิด Signed ตาม รูปที่ A.3

FFFF85			HEX
\circ	0		
Unsigned	Signed		
Bin2Dec	Dec2Hex	Hex2Bin	CL
Dec2Bin	Hex2Dec	Bin2Hex	RoR
D	E	F	RoL
Α	В	С	ShR
7	8	9	ShL
4	5	6	
1	2	3	
0	2's C	+/-	

Figure A.3: ผลลัพธ์จากการแปลงเลข -123 ให้เป็นเลขฐานสิบหกชนิด Signed 2-Complement ความ ยาว 24 บิทหรือ 6 ตัวเลข

- 4. กดปุ่ม Hex2Bin เพื่อแปลงผลลัพธ์กลับไปเป็นฐานสอง แล้วเลือกตัวเลขฐานสองทั้งหมด แล้วทำการ คัดลอก (Copy) หรือกดปุ่ม Ctrl-C พร้อมกัน
- 5. คลิกบนชื่อลิงค์ต่อไปนี้ เพื่อเปิดหน้าเว็บสำหรับ บวก/ลบ/คูณ/หาร เลขจำนวนเต็ม ทั้งชนิด Unsigned และ Signed http://www.free-test-online.com/binary/binary_calculator.html

6. กดปุ่ม Signed ก่อนแล้วจึงทำการวาง (Paste) ลงในกล่องข้อความ เพื่อเปลี่ยนการทำงานให้อยู่ใน โหมดตัวเลขฐานสองชนิดมีเครื่องหมายตามรูปที่ A.4

Figure A.4: หน้าต่างวางเลขการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความ ยาว 32 บิท

- 7. กดปุ่ม '-' เพื่อทำการกระบวนการลบเลข แล้ววาง (Paste) เลข -123 อีกรอบในกล่องข้อความที่ ว่างลง
 - 8. กดปุ่ม = เพื่อแสดงผลลัพธ์

Figure A.5: ผลลัพธ์เลขการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Signed 2-Complement ความยาว 32 บิท

ในรูปที่ A.5 แสดงให้เห็นว่า -123 - (-123) = 0

A.1.2 กิจกรรมท้ายการทดลอง

จงทำการทดลองและตอบคำถามต่อไปนี้ โดยแสดงวิธีทำตามเนื้อหาในหัวข้อที่ 1.2.2 และตรวจคำตอบ ตามวิธีทำการทดลองที่ได้ทำไป

1. จงแปลงเลขฐานสิบต่อไปนี้ให้เป็นเลขฐานสองและฐานสิบหกชนิดไม่มีเครื่องหมาย และนับจำนวน บิทที่เกิดขึ้น

ฐานสิบ	ฐานสอง	ฐานสิบหก	J14 2	TOK
7	3	1	111	7
8	le	1	1000	8
15	le	1	1111	F
16	5	2	1 0000	10
255	8	2	1 1111	FF
256	9	3	10 0000	100
65535	16	4	11 1111	FFF
65536	17	5	100 0000	100

2. จงแปลงเลขฐานสิบต่อไปนี้ให้เป็นเลขฐานสองและฐานสิบหกชนิดมีเครื่องหมายแบบ 2-Complement และนับจำนวนบิทที่เกิดขึ้น

ฐานสิบ	ฐานสอง	ฐานสิบหก
+1	24	1
-1	24	8
+15	24	1
-16	24	8
+255	24	2
-256	24	8
+65535	24	ų
-65536	24	8

776 E	Thu 16
0000 0000 0000 0000 0000 0001	1
1111 1111 1111 1111 1111 1111	FFFF FFFF
0000 0000 0000 0000 0000 1111	F
1111 1111 1111 1111 1111 0000	FFFF FFF0
0000 0000 0000 0000 1111 1111	FF
1111 1111 1111 1111 0000 0000	FFFF FF00
0000 0000 1111 1111 1111 1111	FFFF
1111 1111 0000 0000 0000 0000	FFFF 0000

- 3. จงบวกเลข 2-Complement ต่อไปนี้ แล้วบันทึกผลลัพธ์เป็นฐานสอง ฐานสิบ ข้อผิดพลาดที่แจ้ง เตือน และอธิบายเหตุผลว่าทำไมจึงไม่ตรงกัน

-	ผลลพธฐานสอง_	1000 0000 0000 0000 0000 0000 0000 0000 0000
_	ผลลัพธ์ฐานสิบ_	-2147483647
_	ข้อผิดพลาดที่แจ้	งเตือน —
	1000010	

- - ผลลัพธ์ฐานสอง____
 - ผลลัพธ์ฐานสิบ

Appendix A. การทดลองที่ 1 ข้อมูลและคณิตศาสตร์ในคอมพิวเตอร์

- ข้อผิดพลาดที่แจ้งเตือน
- เหตุผล_ จำนาน บิทที แรงเมื่อมอ
• 1000000000000000000000000000000000000
 ผลลัพธ์ฐานสอง
 ผลลัพธ์ฐานสิบ
– ข้อผิดพลาดที่แจ้งเตือน
- เหตุผล <u>จำนาน บิดที่ แส</u> ณส์ ไม่พอ
• 1000000000000000000000000000000000000
- ผลลัพธ์ฐานสอง <u> เพอ เพอ เพอ เพอ เพอ เพอ เพอ เพอ</u>
 ผลลัพธ์ฐานสิบ
 ข้อผิดพลาดที่แจ้งเตือน
- เหตุผล

A.2 การแปลงและคณิตศาสตร์สำหรับ Floating-Point IEEE754

เพื่อให้เข้าใจรูปแบบของเลขฐานสอง และคณิตศาสตร์ แบ่งเป็น Single Precision และ Double Precision สอดคล้องกับเนื้อหาในหัวข้อ 1.6

A.2.1 การทดลองสำหรับ Single-Precision

การทดลองนี้จะ เน้นที่การแปลงเลขจำนวนจริงให้ เป็น เลขฐานสองทศนิยมชนิดลอยตัว สอดคล้องกับ เนื้อหาในหัวข้อที่ 1.6 ในรูปแบบ Single Precision โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด กรอกหรือคลิกที่ ชื่อลิงค์ต่อไปนี้

http://www.binaryconvert.com/convert_float.html เมื่อเว็บเพจปรากฏขึ้น ขอให้ผู้อ่านปฏิบัติตามการทดลอง ดังนี้

1. กรอกเลข 123 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.6

Figure A.6: ผลลัพธ์จากการแปลงเลข 123 ให้เป็นเลขฐานสองชนิด Single Precision

โปรดสังเกต กล่องสี่เหลี่ยมสีเขียวตรงกับบิทที่เป็น '1' กล่องสีเทาตรงกับบิทที่เป็น '0' 0x หมายถึง เลขฐานสิบหก

2. กรอกเลข -123 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.7

Figure A.7: ผลลัพธ์จากการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Single Precision

โปรดสังเกต ความแตกต่างที่ค่า Sign Exponent และ Mantissa ดังนั้น เราจะเห็นได้ว่าเฉพาะ Sign ที่ มีการเปลี่ยนแปลง

3. คลิกบนลิงค์นี้ เพื่อทดลองบวกและคูณเลขในรูปแบบ Single Precision ด้วยลิงค์ต่อไปนี้ http://weitz.de/ieee/ เลื่อนหน้าเว็บลงไปด้านล่างสุด เพื่อค้นหาแถบเมนูตามรูปที่ A.8

Figure A.8: เมนูด้านล่างสุดของหน้าเว็บ เพื่อเลือกเลขฐานสองชนิด Single Precision (Binary32) และ Double Precision (Binary64)

4. เลื่อนหน้าเว็บกลับไปด้านบนสุดเพื่อกรอกเลข -123 ลงในกล่องข้อความซ้ายบน และ กรอกเลข 123 ลงในกล่องข้อความถัดลงมา แล้วกดปุ่ม + แล้วจะได้ผลลัพธ์ดังรูปต่อไปนี้

IEEE 754 Calculator

(See info at bottom of page.)

	Sign	Significand	Exponent
-123.0	1	1 . 11101100000000000000000	10000101
	_	1.921875	+6
		0xC2F60000 0b110000101111011000000000000	00000
123.0	0	1 . 11101100000000000000000000000000000	10000101
	+	1.921875	+6
		0x42F60000 0b010000101111011000000000000	00000
+	_	x /	
0.0	0	0.0000000000000000000000000000000000000	0000000
	+	0.0 0x0000000	+0
		0P000000000000000000000000000000000000	00000

Figure A.9: ผลลัพธ์จากการบวกเลข -123+123 ให้เป็นเลขฐานสองชนิด Single Precision

จะสังเกตเห็นว่า ผลลัพธ์ที่ได้เรียกว่า True Zero ตามตารางที่ 1.11

5. กดปุ่ม x (คูณ) แล้วจะได้ผลลัพธ์ดังรูปต่อไปนี้

IEEE 754 Calculator

(See info at bottom of page.)

	Sign	Significand	Exponent
-123.0	1	1 . 11101100000000000000000	10000101
	-	1.921875 0xC2F60000 0b110000101111011000000000000	+6
123.0	0	1 .111011000000000000000000000000000000	10000101
	+	1.921875	+6
		0x42F60000 0b01000010111101100000000000	00000
+	_	x /	
-15129.0	1	1 .11011000110010000000000	10001100
	_	1.8468018	+13
		0xC66C6400 0b110001100110110001100100000	00000

Figure A.10: ผลลัพธ์จากการคูณเลข -123 x 123 ให้เป็นเลขฐานสองชนิด Single Precision

A.2.2 การทดลองสำหรับ Double-Precision

การทดลองนี้จะเน้นที่การแปลงเลขจำนวนจริงให้เป็น เลขฐานสองทศนิยมชนิดลอยตัว สอดคล้องกับ เนื้อหาในหัวข้อที่ 1.6 ในรูปแบบ Double Precision โดยผ่านเว็บเบราส์เซอร์ที่ผู้อ่านถนัด กรอกหรือ คลิกที่ ชื่อลิงค์ต่อไปนี้

http://www.binaryconvert.com/convert_double.html เมื่อเว็บเพจปรากฏขึ้น ขอให้ผู้อ่านปฏิบัติตามการทดลอง ดังนี้

Figure A.11: ผลลัพธ์จากการแปลงเลข 123 ให้เป็นเลขฐานสองชนิด Double Precision

1. กรอกเลข 123 ลงในกล่องข้อความ แล้วกดปุ่ม Convert to binary ได้รูปที่ A.11

Figure A.12: ผลลัพธ์จากการแปลงเลข -123 ให้เป็นเลขฐานสองชนิด Double Precision

2. คลิกบนลิงค์นี้ เพื่อทดลองบวกและคูณเลขในรูปแบบ Double Precision ด้วยลิงค์ต่อไปนี้ http://weitz.de/ieee/ แล้วกดเลือกเมนู Binary64 ในรูปที่ A.8

3. กรอกเลข -123 ลงในกล่องข้อความซ้ายบน และ กรอกเลข 123 ลงในกล่องข้อความถัดลงมา แล้ว กดปุ่ม + แล้วจะได้ผลลัพธ์ดังรูปต่อไปนี้

Figure A.13: ผลลัพธ์จากการบวกเลข -123+123 ให้เป็นเลขฐานสองชนิด Double Precision

จะสังเกตเห็นว่า ผลลัพธ์ที่ได้เรียกว่า True Zero ตามตารางที่ 1.11

4. กดปุ่ม x (คูณ) แล้วจะได้ผลลัพธ์ดังรูปต่อไปนี้

Figure A.14: ผลลัพธ์จากการคูณเลข -123 x 123 ให้เป็นเลขฐานสองชนิด Double Precision

A.2.3 กิจกรรมท้ายการทดลอง

จงใช้เว็บเพจลิงค์ต่อไปนี้ในการตอบคำถาม

https://www.h-schmidt.net/FloatConverter/IEEE754.html

Tools & Thoughts IEEE-754 Floating Point Converter Translations: de This page allows you to convert between the decimal representation of numbers (like "1.02") and the binary format used by all modern CPUs (IEEE 754 floating point).				
IEEE 754 Converter (JavaScript), V0.22				
	Sign	Exponent	Mantissa	
Value:	+1	2 ⁻¹²⁶ (denormalized)	0.0 (denormalized)	
Encoded as:	0	0	0	
Binary:				
You entered		0		
Value actually stored in float: 0		ored in float: 0	+1	
Error due to conversion: 0		version: 0	-1	
Binary Representation 0		tation 000000000000	0000000000000000000	
Hexadecimal Representation		presentation 0x00000000		

Figure A.15: เว็บสำหรับการตอบคำถามเพื่อสร้างเลขหรือแปลงเลขฐานสิบด้วยมาตรฐาน IEEE 754 Single Precision การกดเลือกคือทำให้บิทนั้นเท่ากับ '1'

โดยแสดงวิธีทำตามเนื้อหาในหัวข้อที่ 1.6 และตรวจคำตอบตามวิธีทำการทดลองที่ได้ทำไป

- 1. จงสร้างเลข -0.0₁₀ โดยการกดเลือกปุ่มสี่เหลี่ยมในส่วน Sign เท่านั้น Binary Representation=...!

 Hexadecimal Representation=...

 Powerous*
- 3. จงสร้างเลข -1.5₁₀ โดยการกดเลือกปุ่มสี่เหลี่ยมในส่วน Mantissa เท่านั้น ต่อจากข้อที่แล้ว Binary Representation=...<u>!!!</u>...!!!!...!!<u>เก. ๑๑๐ ๑๐๐ ๑๐๐</u> ๑๐๐ ๑๐๐ ๒๐๐๐ Нехаdecimal Representation=...<u>๑ x leftcoo ๑๐๐</u>

Hexadecimal Representation=....0x00400000

5. จงแปลงเลข 32 บิทนี้ ให้เป็น เลขจำนวนเต็ม โดยใช้ลิงค์ต่อไปนี้ http://www.binaryconvert.com/convert_signed_int.html เมื่อคัดลอกและวางเลขครบแล้ว ให้กดปุ่ม Convert to decimal

4194304

A.3 รหัสของข้อมูลตัวอักษร

A.3.1 การทดลอง

การทดลองในหัวข้อนี้จะเป็นการแปลงรหัสตัวอักษรภาษาอังกฤษและไทย เป็นรหัส ASCII และ Unicode ตามเนื้อหาในหัวข้อ 1.7 ผ่านทางเว็บไซต์ https://www.branah.com/ascii-converter ที่มีนัก พัฒนาเพื่อเผยแพร่ความรู้เป็นวิทยาทานเช่นเดียวกับเว็บที่ได้ทดลองมา

- 1. เปิดเว็บตามลิงค์ต่อไปนี้ หรือ กดปุ่มซ้ายบนชื่อลิงค์ https://www.branah.com/ascii-converter
- 2. กรอกข้อความต่อไปนี้ ลงไปในกล่องข้อความ ASCII

ไทยกขคabc

โปรดสังเกต ระหว่างตัวอักษรมี ช่องว่าง 1 ตัวอักษรเสมอ

3. กดปุ่ม Convert ซ้ายบนสุด จะได้ผลลัพธ์ดังรูปต่อไปนี้

ASCII Converter - Hex, decimal, binary, base64, and ASCII converter

Convert	ASCII (Example: a b c)
ไทยกชคลbc	
Add spaces	Remove spaces Convert white space characters
Convert	Hex (Example: 0x61 0x62 0x63) ✓ Remove 0x
e44 e17 e22 e01 e	e02 e04 61 62 63
Convert	Decimal (Example: 97 98 99)
3652 3607 3618 3	585 3586 3588 097 098 099
Convert	Binary (Example: 01100001 01100010 01100011)
111001000100 11 01100011	1000010111 111000100010 111000000001 111000000
Convert	Base64 (Example: YSBiIGM=)
RCAXICIgASACIA	QgYSBilGM=

Figure A.16: ผลลัพธ์จากการกรอกและแปลงตัวอักษร ไ ท ย ก ข ค a b c เป็นรหัสต่างๆ

4. กล่องข้อความ Hex จะแสดงค่า Unicode สำหรับภาษาไทย และ ASCII สำหรับภาษาอังกฤษ ใน รูปผู้เขียนได้กดเลือก Remove 0x เพื่อความสะดวกในการอ่านค่า

A.3.2 กิจกรรมท้ายการทดลอง

- 1. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส ASCII ของตัวอักษร 0 9 : เอารนัส ASCII ละตัว นริ ชาติกะบุราน เอา
- 2. จงอธิบายวิธีการหาค่าฐานสิบ 0 9 จากรหัส Unicode ของตัวอักษร o ๙ : เอารนัว Unicode อนดับ 3664 จากักคาโด
- 3. จงเปิดเว็บที่มีข้อความภาษาไทย เช่น เว็บข่าว แล้วทดลองเปลี่ยนการนำเสนอบนจอเพื่อ View source เช่น Google Chrome ใช้เมนู Tool-> View Source แล้ว Find หรือกดปุ่ม CTRL-F คำ ว่า charset ว่ามีค่าเท่ากับ utf-8 หรือไม่ เพราะเหตุใด ว่า เหลาว่า บาร-8 คือ Voicede