La compressione JPEG

Sistemi ipermediali

Lo standard JPEG

- Creato nel 1992 come standard per la compressione di immagini fotografiche
- Sfrutta la <u>ridondanza</u> nella percezione visiva

- Occhio umano poco sensibile ai piccoli dettagli rispetto all'insieme
- Possiamo tagliare i dettagli più piccoli: lossy

NB: Non funziona per immagini con stacchi netti!

Algoritmo di compressione 1. Preparazione dell'immagine

- Occhio umano più sensibile a luminanza rispetto a crominanza: si usano 2 risoluzioni diverse
- Codifica YUV rispetto ad RGB diretta
- Y (luminanza): combinazione delle componenti di colore RGB
- U (crominanza) = B Y
 V (crominanza) = R Y

Taglio sulla crominanza: piccola perdita di dati

Immagine suddivisa in blocchi di 8x8 pixel

Algoritmo di compressione 1. Preparazione dell'immagine

RGB: se questa codifica, impossibile scartare una componente

Algoritmo di compressione 1. Preparazione dell'immagine

YUV: anche perdendo 1 pixel ogni 4 di U e V non si perde informazione significativa

Algoritmo di compressione 2. DCT: Discrete Cosine Transform

- Ad ogni blocco 8x8 di ogni componente (Y,U,V) applichiamo la DCT
- Ogni coefficiente della DCT esprime il peso della relativa frequenza nell'immagine

Spazio dei colori Spazio delle frequenze

- Otteniamo matrice 8x8 in cui l'elemento (0,0) (DC) contiene il colore predominante: informazioni concentrate sulle basse frequenze
- Piccola perdita di dati: DCT invertibile perfettamente solo in teoria!

3. Quantizzazione

- L'occhio umano fa fatica a notare la variazione di luminanza per le alte frequenze
- Viene presa la matrice 8x8 delle frequenze e viene divisa per una matrice di quantizzazione
- Dopodiché si arrotonda all'intero più vicino

Compressione lossy: molte alte frequenze vengono arrotondate a O

Algoritmo di compressione 4. Codifica coefficiente DC

- Trattamento diverso rispetto agli altri 63 AC
- Solitamente c'è correlazione tra i coefficienti DC di blocchi 8x8 adiacenti

 Per mantenere bassi i valori quindi risparmiare bit, codifichiamo il coefficiente DC come differenza rispetto al DC precedente

Algoritmo di compressione 5. Linearizzazione coefficienti DCT

 Zig zag scan: la matrice 8x8 dei coefficienti AC viene linearizzata

Raggruppiamo gli zeri per poter applicare la compressione

6. Compressione

Possiamo applicare RLE e successivamente Huffman. 4 modalità di codifica:

Sequenziale:

 Ogni immagine è codificata in una sola scansione dall'alto al basso e da sinistra a destra

6. Compressione

Lossless:

- Non viene applicata DCT ma tecniche predittive
- In decodifica si ottiene l'immagine senza perdita di informazioni

Scarsa compressione (meglio PNG)

6. Compressione

Progressive:

- Si ha la sensazione che l'immagine si metta a fuoco: inizialmente bassa qualità che cresce durante la visualizzazione
- 2 Algoritmi:
 - Selezione spettrale (prima coefficienti più significativi)
 - Approssimazioni successive (prima bit più significativi)
- Utile per tempi di trasmissione lunghi

6. Compressione

Gerarchica:

- Codifica in più risoluzioni di un'immagine f₁
 - 1. Si dimezza la risoluzione dell'immagine \longrightarrow f_2
 - 2. Si dimezza la risoluzione di $f_2 \longrightarrow f_4$
 - 3. Si comprime f₄ con uno degli altri metodi JPEG
 - 4. Si comprimono le differenze tra f₄ e f₂, con uno degli altri metodi JPEG
 - 5. Si comprimono le differenze tra f₂ e f₁
- Utile se immagini ad alta risoluzione devono essere visualizzate a bassa risoluzione

JPEG: utilizzo

- Standard compresso più utilizzato
- Ma quando va usato?
 - Immagini fotografiche ricche di colori e sfumature
 - Precisione dei dettagli non essenziale
 - Caricamento e visualizzazione progressivi
 - Necessità di diversi tipi di qualità (stampa web)
- Quando non va usato?
 - Stacchi netti

Testo

Lorem ipsum ea vis el bus no. Minim congue est, no cum viris erudi quas dolore cu mel. Im qui an habeo graecis.

Immagini artificiali

JPEG vs GIF vs PNG

	JPEG	GIF	PNG
Formato proprietario	No	Sì	No
Lossy	Sì	No	No
Trasparenza	No	Sì	Sì
Animazioni	No	Sì	No
Colori	16 milioni	256 (255 + trasparenza)	16 milioni
Utilizzo consigliato	Foto colorate e sfumate	Immagini artificiali, pochi colori, animazioni	Immagini artificiali, immagini lossless (mediche, satellitari)
Utilizzo sconsigliato	Immagini artificiali, immagini lossless	Immagini colorate, foto naturali	Foto naturali da comprimere

Grazie per l'attenzione

