Universidad de Córdoba

ESCUELA POLITÉCNICA SUPERIOR DE CÓRDOBA

GRADO DE INGENIERÍA INFORMÁTICA - MENCIÓN EN COMPUTACIÓN

Tercer curso - Segundo cuatrimestre - 2020/2021

Introducción al Aprendizaje Automático

Práctica 4: Análisis cluster

Profesor: Nicolás Emilio García Pedrajas

Autor: Ventura Lucena Martínez

Córdoba, 2 de julio de 2021

Índice

1	Ejercicio 0	1							
	$1.1 plot_affinity_propagation.py \dots \dots \dots \dots \dots \dots \dots \dots \dots $	1							
	$1.2 plot_cluster_iris.py \dots \dots \dots \dots \dots \dots \dots \dots \dots $	2							
	$1.3 plot_dbscan.py \dots \dots$	6							
	$1.4 plot_kmeans_assumptions.py \dots \dots \dots \dots \dots \dots \dots \dots \dots $	7							
	$1.5 plot_mean_shift.py \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8							
	$1.6 plot_segmentation_toy \dots \dots \dots \dots \dots \dots \dots \dots \dots $	8							
2	Ejercicio 1	12							
3	Ejercicio 2	13							
4	Ejercicio 3								
5	Ejercicio 4	22							
6	Ejercicio 5	23							

Listings

1	Resultados de algoritmo de clúster Affinity propagation.	1
2	Resultados de algoritmo de clúster DBSCAN	6
3	Resultados de algoritmo de clúster K-Medias	13
4	Clústering jerárquico	22
5	Coeficiente de Silhouette	23

Índice de figuras

Resultados $plot_affinity_propagation.py.$	1
Resultados $plot_cluster_iris.py$ (1)	2
Resultados plot_cluster_iris.py (2)	3
Resultados plot_cluster_iris.py (3)	4
Resultados plot_cluster_iris.py (4)	5
	6
Resultados plot_kmeans_assumptions.py	7
Resultados plot_mean_shift.py	8
Resultados plot_segmentation_toy (1)	9
Resultados plot_segmentation_toy (2)	10
Resultados plot_segmentation_toy (3)	11
Resultados plot_segmentation_toy (4)	12
Resultados aplicación de $K ext{-}Medias$ sobre el conjunto de datos $glass.arff$ (1)	15
Resultados aplicación de K-Medias sobre el conjunto de datos glass.arff (2)	16
Resultados aplicación de $single\ link$ sobre el conjunto de datos $glass.arff\ (1)$	17
Resultados aplicación de $single\ link$ sobre el conjunto de datos $glass.arff\ (2)$	18
Resultados aplicación de $complete\ link$ sobre el conjunto de datos $glass.arff\ (1)$.	19
Resultados aplicación de $complete\ link$ sobre el conjunto de datos $glass.arff\ (2)$.	20
Resultados aplicación de $average\ link$ sobre el conjunto de datos $glass.arff\ (1)$.	21
Resultados aplicación de $average\ link$ sobre el conjunto de datos $glass.arff\ (2)$.	22
	Resultados plot_cluster_iris.py (1)

Ejecute los programas ejemplo facilitados junto con la práctica para familiarizarse con los conceptos de los algoritmos de clustering de scikit-learn.

Algunas de las ejecuciones propuestas nos dejan con los siguientes resultados:

$1.1 \quad plot_affinity_propagation.py$

Figura 1: Resultados $plot_affinity_propagation.py$.

Listing 1: Resultados de algoritmo de clúster Affinity propagation.

Estimated number of clusters: 3 Homogeneity: 0.872

Completeness: 0.872 V-measure: 0.872

Adjusted Rand Index: 0.912

Adjusted Mutual Information: 0.871 Silhouette Coefficient: 0.753

$1.2 \quad plot_cluster_iris.py$

Los gráficos muestran en primer lugar lo que produciría un algoritmo de K-medias utilizando tres grupos. Luego se muestra cuál es el efecto de una mala inicialización en el proceso de clasificación: Al establecer n_init en solo 1 (el valor predeterminado es 10), se reduce la cantidad de veces que el algoritmo se ejecutará con diferentes semillas de centroide. El siguiente gráfico muestra lo que proporcionaría el uso de ocho grupos y, finalmente, el ground truth.

Figura 2: Resultados plot_cluster_iris.py (1).

Figura 3: Resultados plot_cluster_iris.py (2).

Figura 4: Resultados plot_cluster_iris.py (3).

Figura 5: Resultados plot_cluster_iris.py (4).

$1.3 \quad plot_dbscan.py$

Estimated number of clusters: 3

Figura 6: Resultados plot_dbscan.py.

Listing 2: Resultados de algoritmo de clúster DBSCAN.

Estimated number of clusters: 3
Estimated number of noise points: 18

Homogeneity: 0.953 Completeness: 0.883 V-measure: 0.917

Adjusted Rand Index: 0.952

Adjusted Mutual Information: 0.916 Silhouette Coefficient: 0.626

$1.4 \quad plot_kmeans_assumptions.py$

Figura 7: Resultados $plot_kmeans_assumptions.py$.

$1.5 \quad plot_mean_shift.py$

Figura 8: Resultados plot_mean_shift.py.

$1.6 \quad plot_segmentation_toy$

En este ejemplo, se genera una imagen con círculos conectados y la agrupación espectral se utiliza para separar los círculos.

En estas configuraciones, el enfoque: ref: 'spectral_clustering' resuelve el problema conocido como normalized graph cuts: la imagen se ve como un gráfico de vóxeles conectados, y el algoritmo de agrupamiento espectral equivale a elegir cortes de gráfico que definen regiones mientras se minimiza la relación del gradiente a lo largo del corte y el volumen de la región.

A medida que el algoritmo intenta equilibrar el volumen (es decir, equilibrar los tamaños

de las regiones), si tomamos círculos con diferentes tamaños, la segmentación falla.

Además, como no hay información útil sobre la intensidad de la imagen o su gradiente, se opta por realizar el agrupamiento espectral en un gráfico que solo está débilmente informado por el gradiente. Esto está cerca de realizar una partición Voronoi del gráfico.

Además, se hace uso de la máscara de los objetos para restringir el gráfico al contorno de los objetos. En este ejemplo, estamos interesados en separar los objetos unos de otros, y no del fondo.

Figura 9: Resultados plot_segmentation_toy (1).

Figura 10: Resultados $plot_segmentation_toy$ (2).

Figura 11: Resultados plot_segmentation_toy (3).

Figura 12: Resultados plot_segmentation_toy (4).

Seleccione al menos cinco problemas de los disponibles en lo repositorios usados en las prácticas anteriores. Use problemas que solo contengan atributos numéricos. No olvide eliminar la información de la clase antes de ejecutar los algoritmos.

Los ficheros elegidos han sido los siguientes:

- cpu.arff.
- diabetes.arff.
- glass.arff.

- ionosphere.arff.
- iris.arff.

Seleccione el algoritmo de clustering k-means.

Para llevar a cabo el algoritmo de clustering K-Medias, se ha procedido a realizar los siguientes pasos sobre un conjunto de datos cualquiera:

- 1. Importar el conjunto de datos.
- 2. Normalizar los datos.
- 3. Aplicar el método de Elbow para obtener el número óptimo de clústers.
- 4. Análisis de componentes principales.
- 5. Representación de resultados.

Los resultados obtenidos sobre el conjunto de datos glass.arff son los siguientes:

Listing 3: Resultados de algoritmo de clúster K-Medias.

	RI	Na	Mg	Al	Si	'K'	Ca	Вa
		Fe						
0	0.297629	0.309774	0.779510	0.258567	0.575000	0.103060	0.310409	0.0
	0.00000							
1	0.231782	0.215038	0.783964	0.330218	0.550000	0.091787	0.288104	0.0
	0.00000							
2	0.297629	0.372932	0.775056	0.348910	0.505357	0.095008	0.278810	0.0
	0.00000							
3	0.080773	0.551880	0.387528	0.389408	0.846429	0.00000	0.200743	0.0
	0.00000							
4	1.000000	0.236090	0.00000	0.221184	0.062500	0.019324	1.000000	0.0
	0.470588							
209	0.217296	0.404511	0.757238	0.289720	0.514286	0.095008	0.268587	0.0
	0.00000							
210	0.209394	0.320301	0.783964	0.570093	0.508929	0.111111	0.236059	0.0
	0.00000							
211	0.218613	0.479699	0.783964	0.299065	0.548214	0.059581	0.233271	0.0
	0.274510							
212	0.251975	0.291729	0.641425	0.442368	0.607143	0.117552	0.289033	0.0
	0.00000							

213 0.323529 0.505263 0.487751 0.426791 0.510714 0.000000 0.361524 0.0 0.000000

[214 rows x 9 columns]

RI		Na			Mg		Al		Si	'K'		
				Ca		Ba		Fе				
cour	nt 214.	000000	214.0	00000	214.00	0000	214.000	000	214.00	0000	214.000000	
	214.0000	000 21	4.00000	00 214	4.00000	0						
mear	o.	316744	0.402684		0.597891		0.359784		0.50	7310	0.080041	
	0.327	7785	0.055570		0.111783							
std	0.	133313	0.122798		0.321249		0.155536		0.13	8312	0.105023	
	0.132	2263	0.157847		0.191056							
min	0.	000000	0.0	00000	0.000000		0.000000		0.00	0000	0.00000	
	0.000	0000	0.0000	000	0.000000							
25 %	0.	235843	0.327444		0.471047		0.280374		0.44	1071	0.019726	
	0.263	1152	0.00000		0.00000							
50%	0.	0.286655		0.386466		0.775056		0.333333		2143	0.089372	
	0.294	0.294610		0.000000		0.00000						
75 %	0.	0.351514		0.465414		0.801782		0.417445		5268	0.098229	
	0.347	0.347816		0.00000		0.196078						
max	1.	1.000000		1.000000		1.000000		1.000000		0000	1.000000	
	1.000	1.000000 1.000000		000	1.000000							
	RI	Na	Mg	Al	Si	'K '	Ca	Вa	Fe	KMea	ns_Clusters	
0 1	1.51793	12.79	3.50	1.12	73.03	0.64	8.77	0.0	0.00		1	
	1.51643	12.16	3.52	1.35	72.89	0.57	8.53	0.0	0.00		1	
2 1	1.51793	13.21	3.48	1.41	72.64	0.59	8.43	0.0	0.00		1	
3 1	1.51299	14.40	1.74	1.54	74.55	0.00	7.59	0.0	0.00		1	
4 1	1.53393	12.30	0.00	1.00	70.16	0.12	16.19	0.0	0.24		0	

Figura 13: Resultados aplicación de K-Medias sobre el conjunto de datos glass.arff (1).

Observando la gráfica, se puede observar que el número óptimo de clústers es 2.

Figura 14: Resultados aplicación de K-Medias sobre el conjunto de datos glass.arff (2).

Selecciones los algoritmos de clustering jerárquicos $single\ link,\ complete\ link\ y$ $average\ link.$

La aplicación del algorítmo, según el método, sobre el conjunto de datos utilizado anteriormente queda como sigue, teniendo en cuenta que la aplicación del diagrama de dispersión se realiza sobre dos columnas del dataset seleccionadas aleatoriamente:

Figura 15: Resultados aplicación de single link sobre el conjunto de datos glass.arff (1).

Figura 16: Resultados aplicación de single link sobre el conjunto de datos glass.arff (2).

Figura 17: Resultados aplicación de complete link sobre el conjunto de datos glass.arff (1).

Figura 18: Resultados aplicación de complete link sobre el conjunto de datos glass.arff (2).

Figura 19: Resultados aplicación de average link sobre el conjunto de datos glass.arff (1).

Figura 20: Resultados aplicación de average link sobre el conjunto de datos glass.arff (2).

Para ello, se ha modificado el atributo method de la siguiente línea de código:

Listing 4: Clústering jerárquico.

```
h_clustering = sch.linkage(attributes, method="single")
h_clustering = sch.linkage(attributes, method="complete")
h_clustering = sch.linkage(attributes, method="average")
```

5 Ejercicio 4

Implemente la medida de evaluación de la calidad de un método de agrupación basada en la correlación entre la matriz de incidencia y la de proximidad. Seleccione una de las medidas de evaluación no supervisada disponibles en scikit-learn.

La medida seleccionada ha sido el coeficiente de Silhouette. Se ha utilizado el ejemplo provisto en la práctica para su testeo. La línea de código a aplicar sería la siguiente, donde df hace mención al conjunto de datos y clusters a los distintos grupos o etiquetas:

Listing 5: Coeficiente de Silhouette.

print("Silhouette Coefficient: %0.3f"% metrics.silhouette_score(df, clusters, metric='euclidean'))

6 Ejercicio 5

Para cada uno de los problemas seleccionados realice las siguientes tareas:

- 1. Ejecute el algoritmo k-means y evalúe su rendimiento para un rango de valores alrededor del número conocido de clases.
- 2. Ejecute los algoritmos jerárquicos y evalúe su rendimiento al nivel en el cual tengan el mismo número de grupos que el número de clases del problema.

Referencias

- $[1]\,$ Moodle Universidad de Córdoba Enunciado Práctica 4.
- [2] Moodle Universidad de Córdoba Introducción al clústering con scikit-learn.