

Appendix for the Report Dosimetric Assessment of the Portable Device

Field tablet PC (JLT 8404) from JLT Mobile Computer AB (FCC ID: VGX8404)

According to the FCC Requirements

SAR Distribution Plots

February 26, 2008

IMST GmbH

Carl-Friedrich-Gauß-Str. 2

D-47475 Kamp-Lintfort

Customer JLT Mobile Computer AB Isbjörnsvägen 3 35245 Växjö, Sweden

The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Table of Contents

1	SAR DISTRIBUTION PLOTS, 2.450 MHZ RANGE, BLUETOOTH	3
2	SAR DISTRIBUTION PLOTS, 2.450 MHZ RANGE, WLAN B/G MODE	5
3	SAR Z-AXIS SCANS (VALIDATION)	. 13
4	SAR Z-AXIS SCANS (MEASUREMENTS)	. 14

1 SAR Distribution Plots, 2.450 MHz range, Bluetooth

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 8404_bbthm_1.da4

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: System Performance Check at 2450 MHz

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 2 \text{ mho/m}$; $\epsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.060 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.36 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 0.126 W/kg

SAR(1 g) = 0.057 mW/g; SAR(10 g) = 0.027 mW/g

Maximum value of SAR (measured) = 0.069 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.36 V/m; Power Drift = 0.071 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.037 mW/g; SAR(10 g) = 0.016 mW/g

Maximum value of SAR (measured) = 0.055 mW/g

Fig. 1: Worst SAR distribution for the JLT 8404, Bluetooth, channel 39, bottom edge touching the phantom (February 22, 2008; Ambient Temperature: 22.0°C; Liquid Temperature: 21.0°C).

dasy_report_fcc_1900_plots_1.1.doc/08.07.2005/CH

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 8404_bbthm_3.da4

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: System Performance Check at 2450 MHz

Communication System: Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2441 MHz; $\sigma = 2 \text{ mho/m}$; $\epsilon_r = 51.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.027 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.70 V/m: Power Drift = 0.151 dB

Peak SAR (extrapolated) = 0.104 W/kg

SAR(1 g) = 0.020 mW/g; SAR(10 g) = 0.00976 mW/g

Maximum value of SAR (measured) = 0.043 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 1: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.70 V/m; Power Drift = 0.151 dB

Peak SAR (extrapolated) = 0.052 W/kg

SAR(1 g) = 0.019 mW/g; SAR(10 g) = 0.016 mW/g

Maximum value of SAR (measured) = 0.038 mW/g

Worst case SAR distribution the JLT 8404, Bluetooth, channel 39, Lap held Fig. 2: position (February 22, 2008; Ambient Temperature: 22.0° C; Liquid Temperature : 21.0° C).

2 SAR Distribution Plots, 2.450 MHz range, Wlan b/g mode

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 8404_wbhh_1_B.da4

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: System Performance Check at 2450 MHz

Communication System: 2.4 GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 2462 MHz; $\sigma = 2.03$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.250 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.36 V/m; Power Drift = 0.152 dB

Peak SAR (extrapolated) = 0.479 W/kg

SAR(1 g) = 0.218 mW/g; SAR(10 g) = 0.087 mW/g Maximum value of SAR (measured) = 0.255 mW/g

Fig. 3: Worst case SAR distribution the JLT 8404, Antenna B, b-mode, channel 11, upper edge touching the phantom (February 20, 2008; Ambient Temperature: 21.5 C; Liquid Temperature: 20.7° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 8404 wbhh 3 B.da4

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: System Performance Check at 2450 MHz

Communication System: 2.4 GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 2462 MHz; $\sigma = 2.03$ mho/m; $\epsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.060 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.06 V/m; Power Drift = 0.165 dB

Peak SAR (extrapolated) = 0.152 W/kg

SAR(1 g) = 0.063 mW/g; SAR(10 g) = 0.031 mW/g

Fig. 4: Worst case SAR distribution the JLT 8404, Antenna B, b-mode channel 11, lap held position (February 20, 2008; Ambient Temperature: 21.5° C; Liquid Temperature: 20.7° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 8404 wbhl 1 A.da4

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: System Performance Check at 2450 MHz

Communication System: 2.4 GHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.89 \text{ mho/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.52 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.31 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 2.82 W/kg

SAR(1 g) = 1.34 mW/g; SAR(10 g) = 0.556 mW/g

Maximum value of SAR (measured) = 1.57 mW/g

Fig. 5: Worst case SAR distribution the JLT 8404, Antenna A, b-mode channel 1, bottom edge touching the phantom (February 20, 2008; Ambient Temperature: 21.5° C; Liquid Temperature : 20.7° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 8404 wbhl 3 A.da4

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: System Performance Check at 2450 MHz

Communication System: 2.4 GHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.89$ mho/m; $\varepsilon_r = 51.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x17x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.289 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.10 V/m; Power Drift = -0.189 dB

Peak SAR (extrapolated) = 0.698 W/kg

SAR(1 g) = 0.311 mW/g; SAR(10 g) = 0.144 mW/g

Maximum value of SAR (measured) = 0.350 mW/g

SAR distribution the JLT 8404, Antenna A, b-mode channel 1, lap held Fig. 6: position (February 20, 2008; Ambient Temperature: 21.5° C; Liquid Temperature : 20.7° C).

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: Body Worn

Communication System: 2.4 GHz; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 1.96 \text{ mho/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.181 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.24 V/m; Power Drift = 0.124 dB

Peak SAR (extrapolated) = 0.342 W/kg

SAR(1 g) = 0.159 mW/g; SAR(10 g) = 0.067 mW/g

Maximum value of SAR (measured) = 0.182 mW/g

Fig. 7: SAR distribution the JLT 8404, Antenna B, g-mode channel 6, upper edge touching the phantom (February 20, 2008; Ambient Temperature: 21.7° C; Liquid Temperature: 20.8° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 8404 wghh 3 B.da4

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: System Performance Check at 2450 MHz

Communication System: 2.4 GHz; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (extrapolated): f = 2462 MHz; $\sigma = 2.03$ mho/m; $\varepsilon_r = 51.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x19x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.069 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.86 V/m; Power Drift = -0.158 dB

Peak SAR (extrapolated) = 0.167 W/kg

SAR(1 g) = 0.066 mW/g; SAR(10 g) = 0.038 mW/g

Maximum value of SAR (measured) = 0.071 mW/g

Fig. 8: SAR distribution the JLT 8404, Antenna B, g-mode channel 11, lap held position (February 20, 2008; Ambient Temperature: 21.7° C; Liquid Temperature: 20.8° C).

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: Body Worn

Communication System: 2.4 GHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.89 \text{ mho/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (10x16x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.22 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.34 V/m; Power Drift = 0.022 dB

Peak SAR (extrapolated) = 2.37 W/kg

SAR(1 g) = 1.08 mW/g; SAR(10 g) = 0.447 mW/g

Maximum value of SAR (measured) = 1.24 mW/g

Fig. 9: SAR distribution the JLT 8404, Antenna A, g-mode channel 1, bottom edge touching the phantom (February 20, 2008; Ambient Temperature: 21.7° C; Liquid Temperature: 20.8° C).

Test Laboratory: IMST GmbH, DASY Blue (I); File Name: 8404 wghl 3 A.da4

DUT: JLT; Type: 8404; Serial: 0017253A00728

Program Name: Body Worn

Communication System: 2.4 GHz; Frequency: 2412 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 1.89 \text{ mho/m}$; $\varepsilon_r = 51.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

- Probe: EX3DV4 SN3536; ConvF(7.46, 7.46, 7.46); Calibrated: 18.09.2007
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn335; Calibrated: 08.02.2008
- Phantom: SAM Glycol 1176; Type: Speag; Serial: 1176
- Measurement SW: DASY4, V4.7 Build 53; Postprocessing SW: SEMCAD, V1.8 Build 172

d=10mm, Pin=250mW/Area Scan (11x16x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.259 mW/g

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.86 V/m; Power Drift = 0.058 dB

Peak SAR (extrapolated) = 0.504 W/kg

SAR(1 g) = 0.242 mW/g; SAR(10 g) = 0.106 mW/g

Maximum value of SAR (measured) = 0.276 mW/g

Fig. 10: SAR distribution the JLT 8404, Antenna A, g-mode channel 1, lap held position (February 20, 2008; Ambient Temperature: 21.7° C; Liquid Temperature: 20.8° C).

3 SAR z-axis scans (Validation)

Fig. 11: SAR versus liquid depth, 2450 MHz Body (Wlan b/g-mode) (February 20, 2008; Ambient Temperature: 21.5° C; Liquid Temperature: 20.7° C).

Fig. 12: SAR versus liquid depth, 2450 MHz Body (Bluetooth) (February 22, 2008; Ambient Temperature: 22.0° C; Liquid Temperature: 21.0° C).

The following pictures show the plots of SAR versus liquid depth for the worst case values.

Fig. 13: SAR versus liquid depth, 2450 MHz Body, b-mode, Antenna B (February 20, 2008; Ambient Temperature: 21.5° C; Liquid Temperature: 20.7° C).

Fig. 14: SAR versus liquid depth, 2450 MHz Body, b-mode, Antenna A (February 20, 2008; Ambient Temperature: 21.5° C; Liquid Temperature: 20.7° C).

0,014; 0,064

Fig. 15: SAR versus liquid depth, 2450 MHz Body (Bluetooth) (February 22, 2008; Ambient Temperature: 22.0° C; Liquid Temperature: 21.0° C).