

POLITECNICO DI MILANO DIPARTIMENTO DI MECCANICA

20156 MILANO - Via La Masa, 1

Corso di Principi di Ingegneria Elettrica Allievi Meccanici

II appello A.A. 2009-10 – 16 febbraio 2010 – Tema A

ESERCIZIO 1

Sia dato il circuito in figura 1 con ingresso stazionario, funzionante a regime. All'istante t = 0 il deviatore si sposta dalla posizione A alla posizione B. Determinare l'espressione in funzione del tempo della corrente i(t) e tracciarne l'andamento qualitativo nel tempo.

$$R_1 = 1 \ \Omega$$
, $R_2 = 2 \ \Omega$, $R_3 = 1 \ \Omega$, $V_S = 100 \ V$, $C = 1 \ \mu F$

ESERCIZIO 2

Data la rete in figura 2, determinare la corrente \bar{I} applicando il teorema di Thevenin.

$$X_1 = 4 \Omega$$
, $X_2 = 4 \Omega$, $R = 2 \Omega$,
 $\overline{V}_S = 10 \text{ V}$, $\overline{I}_{S1} = 1 \exp(j\pi/6) \text{ A}$, $\overline{I}_{S2} = 2 \exp(j\pi/3) \text{ A}$

ESERCIZIO 3

Data la rete in figura 3, funzionante in regime stazionario, determinare la forza verticale totale F agente sull'ancora inferiore.

$$V_{\rm S} = 100 \text{ V}, I_{\rm S} = 1 \text{ A},$$

 $R_1 = 2 \Omega, R_2 = 4 \Omega, N_1 = 100, N_2 = 200,$
 $A_{\rm Fe} = 100 \text{ cm}^2, \delta = 1 \text{ mm}, \mu_{\rm Fe} = \infty$

Fig. 3.

TEORIA

- a) Le potenze in regime alternato sinusoidale.
- b) Metodo del generatore equivalente parallelo (Norton).