Evidence of rocky planet engulfment

The Star-Planet Connection - ESO Workshop

in the wide binary system HIP 71726-37

Jhon Yana Galarza, Ricardo López-Valdivia, Jorge Meléndez, Diego Lorenzo-Oliveira

Binary Systems

Credit: ALMA (ESO/NAOJ/NRAO)

Assumptions:

- (1) Binary systems stars are formed at aproximately the same time (coeval) and from the same prestellar gas (conatal).
- (2) If the assumption (1) is true, then the components of a binary system should be chemically homogeneous.

 $\Delta [Fe/H] = [Fe/H]_A - [Fe/H]_B \sim 0.0 \text{ dex}$

Most of the binary systems analyzed with high-resolution instruments ($R > 60\ 000$) are consistent to the level of 0.1 dex. However, whithin this level, some pairs have a large difference in Li abundance between the components, which may indicates a planet engulfment event.

The wide binary system HIP 71726/HIP 71737

Credit: Simbad

Observation and analysis

- Spectra (S/R = 350) obtained with the Robert G. Tull Coudé Spectrograph (R = 60 000) at the McDonald Observatory.
- Stellar parameters and chemical abundances determined through the differential technique.
- Ages and masses estimated using isochrones of stellar evolution.

Fundamental parameters

ID	Teff (K)	[Fe/H] (dex)	Log <i>g</i> (dex)	Age (Gyr)	Mass (M _⊙)
HIP 71726	5957 +/- 9	0.16 +/- 0.01	4.26 +/- 0.02	4.2 +/- 0.3	1.18 +/- 0.01
HIP 71737	5934 +/- 9	0.05 +/- 0.01	4.35 +/- 0.03	5.1 +/- 0.3	1.09 +/- 0.01
Difference	23	0.11	0.09	0.9	0.09

The components of HIP 71726-37 are chemically inhomogeneus at the level of ~ 0.1 dex.

The difference in age could indicate that the pair is not coeval. However, it is coeval when we adopt the median or the lowest [Fe/H] as the 'real' metallicity of the system in the age determinations.

Therefore, the system HIP 71726-37 is truly coeval and conatal!

Condensation Temperature (K)

HIP 71726-37 has the largest difference of Li (~1.0 dex) detected in twin-star binary systems!

Planet engulfment

Conclusions

- HIP 71726 is rich not only in refractory elements, but also in lithium abundance.
- A planetary engulfment of ~10 Earth masses reproduces well the abundance pattern of HIP 71726 and its high lithium abundance.
- Our results has important implications for studies of the evolution of planetary systems and chemical tagging.

More details in:

Yana Galarza et al. 2021, arXiv:2109.00679