

${ m MI030-Analyse}$ des programmes et sémantique (APS) Premier examen répartie

Lundi 22 mars 2010, 13h30 - 15h30

Directives

- 1. Le contrôle dure 2h00.
- 2. Le total des points des questions est de 30, mais la note obtenue sera ramenée sur 20 (soit n la note sur 30, la note de l'examen sera e = si n > 20 alors 20 sinon n.
- 3. Tous les documents sont autorisés.
- 4. Tous les appareils électroniques sont **prohibés** (y compris les téléphones portables, les assistants numériques personnels et les agendas électroniques).

Le langage Logo et sa tortue

Le langage Logo a rendu populaire sa fameurs tortue, se déplaçant sur une grille de pixels avec son crayon levé ou baissé, de manière à tracer par ses déplacements depuis des formes géométriques simples jusqu'à des «œuvres » d'un art numérique qu'on pourrait qualifier de naïf..., par exemple :

S'agissant d'apprendre aux enfants les rudiments de la programmation impérative, les ordres que ces derniers pouvaient donner à leur tortue peut se résumer en un langage dont une syntaxe abstraite simplifiée serait :

```
Instructions
d
     \in
          Directions
          Conditions
     \in
c
     \in
          Numéraux
n
          lever | baisser | tourner d | avancer n | i ; i | répéter n i | si c i
i
    ::=
    ::= droite | gauche
d
          \mathtt{non}\;c\;\mid\;\mathtt{murDevant}\;\mid\;\mathtt{murAGauche}\;\mid\;\mathtt{murADroite}
```

Avec cette syntaxe abstraite, on peut construire un programe dont la sémantique produirait la figure précédente, en supposant qu'initialement la tortue se trouve sur le carré en bas à gauche et qu'elle « regarde » vers le haut) :

```
avancer 1 ; tourner droite ; baisser ; avancer 6 ; tourner gauche ;
répéter 5
  (lever ; tourner gauche ; avancer 1 ; baisser ; avance 1 ; tourner droite) ;
répéter 2 (tourner gauche) ;
avancer 6 ; lever ;
répéter 2 (tourner droite) ;
avancer 7
```

Notez que lorsque le crayon de la tortue est baissé, elle noircit le carré d'arrivée lors de son déplacement, et pas celui du départ.

La sémantique informelle des instructions est :

```
crayon levé; les déplacements de la tortue ne laissent plus de trace.
lever
               crayon baissé; les déplacements de la tortue laissent une trace.
baisser
tourner d
               la tortue tourne dans la direction indiquée.
               la tortue avance de n pas dans la direction courante.
avancer n
répéter n i
               la tortue répète n fois i.
\verb"si" c i
               si c est vraie, la tortue exécute i.
               90^{\circ} à droite.
droite
gauche
               90° à gauche.
               la tortue est face à un mur.
murDevant
murAGauche
               la tortue a un mur à sa gauche immédiate.
murADroite
               la tortue a un mur à sa droite immédiate.
\operatorname{non} c
               la négation de la condition c.
```

Question 1. Définir les éléments de l'état du programme et la signature des relations \rightarrow qu'il faut pour donner la sémantique de ce langage. Précisez bien la nature (les types) de chaque élément.

(6 points)

Note : Vous pouvez supposer qu'il existe une relation $Num\'eraux \to \mathbb{N}$ donnant l'entier correspondant à n.

Question 2. Définir la sémantique opérationnelle structurelle pour ce langage.

(12 points)

Question 3. Écrire un programme Prolog implantant la sémantique opérationnelle structurelle donnée à la question précédente. Attention, il ne s'agit pas d'écrire n'importe quel programme Prolog qui fonctionne, mais bien celui qui correspond (ou correspondrait) à des règles en sémantique opérationnelle structurelle.

(12 points)

Note : Vous pouvez supposer que les numéraux sont directement représentés par des entiers Prolog. Vous pouvez également utiliser une représentation de la grille sous forme de liste telle que [(1, 1, noir), (2, 3, noir)], indiquant que les cases (1, 1) et (2, 3) sont noires. Alors, vous pouvez utiliser les deux prédicats suivants pour « noircir » des cases en avançant dans la direction des axes i et j respectivement :

FIN DU CONTRÔLE.