Announcements: Monday, May 3

- Last week of classes!!!!
- Quiz 3 (attempt 2) and Quiz 4 (attempt 1) are end of this week
 - See Piazza note about quiz-window
 - Yes, things are rushed.... 🕾
- Module 4 hard deadline is May 10
 - Yes, this is during exams. See Piazza note. You can think of this as you being meant to be done by Thursday night, but you can have extra time.
 - No Module 4 soft deadline really
- Recommended: do whatever Module 4 HWs you need to meet your goal
- Today: another reduction!

Lecture Planning

- There are n total guest lectures that can be given
- There are I guest lectures to be given (one per week) during the first "half" of the course
 - For each week, a different set of lectures are available
 - There may be more guest lectures than the I slots
- During the second "half" of the course, there are p projects to be completed, one each week
 - Each project requires one of a set of guest lectures
- Can you schedule *I* guest lecturers (one per week) such that all *p* the projects can be completed?

Lecture planning Inputs

- I (the number of weeks of lectures)
- p (the number of projects)
- *n* (the number of possible guest lecturers)
- Availability of lecturers for each week, L_i
 - $L_1 = \{A, B, C\}, L_2 = \{A, D\}, ...$
- Which lectures/lecturers are needed for each of the projects, P_i
 - $P_1 = \{B, C\}, P_2 = \{A, B, D\}, P_3 = \{C, D\}, ...$

Remember: reduction means transforming one input to another...

Lecture planning example

- / (the number of weeks of lectures) = 2
- p (the number of projects) = 3
- n (the number of possible guest lecturers) = 4
- L_i, the availability for the two weeks:
 - $L_1 = \{A, B, C\}, L_2 = \{A, D\}$
- P_i, which lectures/lecturers are needed for each of the 3 projects:
 - $P_1 = \{B, C\}, P_2 = \{A, B, D\}, P_3 = \{C, D\}$
- Of the 4 lecturers, can we schedule 2 of them such that all 3 of the projects can be completed?
 - Yes, we can schedule B in the first week and D in the second week
 - Solution for search-problem: { (i,j), ... } where lecturer i scheduled for week j for all / weeks.

$3-SAT \leq_p Lecture Planning$

3-SAT

 $(x \lor y \lor z) \land (x \lor \overline{y} \lor y) \land (u \lor y \lor \overline{z})$

x = true

y = false

z = false

u = true

polynomial-time reduction

LecturePlanning

 I, p, n, L_i, P_i

Solution for *LP*

Mapping of lecturers to weeks

Prove that Lecture Planning is NP-complete

- Can reduce from 3-SAT
 - Can you do it?
 - Will you see this later on a quiz?
 - Maybe ;)
 - Actually...no you won't
 - Is he lying?
 - I'm confused!
- Seriously though...this is a really good example of how to approach a reduction