BUCKLING ANALYSIS OF FUNCTIONALLY GRADED PLATE

BY

AYUSH YADAV

(Admission No. 18MT0071)

In Partial Fulfillment for the award of the degree of MASTER OF TECHNOLOGY

IN
MECHANICAL ENGINEERING
(Specialization: Machine Design)

Project Thesis Submitted to
DEPARTMENT OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY
(INDIAN SCHOOL OF MINES), DHANBAD

भारतीय प्रौद्योगिकी संस्थान (भारतीय खनि विद्यापीठ)

धनबाद-826004 झारखंड, भारत INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES) DHANBAD-826004 JHARKHAND, INDIA

This is to certify that the project entitled "BUCKLING ANALYSIS OF FUNCTIONALLY GRADED PLATE" been carried out by AYUSH YADAV (Admission Number 18MT0071) at the Department of Mechanical Engineering Indian Institute of Technology (Indian School of Mines), Dhanbad under the supervision in the partial fulfillment of the requirement of the award of the Degree of Master of Technology in Mechanical Engineering (specialization: Machine Design) during the academic session 2019-2020.

Dr. Md Sikandar Azam

Assistant Professor

Dept. of Mechanical Engg.

Indian Institute of Technology

(Indian School of Mines) Dhanbad

ACKNOWLEDGEMENT

A person cannot go through life without the help and guidance of others. One is invariably indebted, which may be of physical, mental, physiological or intellectual in nature, knowingly or unknowingly. To enlist all of them is not easy. To repay them even in words is beyond our capabilities.

With recondite honour, I offer our sincerest gratitude to my guide *Dr. Md Sikandar Azam*, Asst. professor, Department of Mechanical Engineering, for his enthusiasm, his inspiration and his great efforts to explain things clearly and simply. He took great pain in going through the entire literature, and made immortal comments and acted as a beacon at each and every step in the accomplishment of this project work.

I extend my heartfelt thanks to *Mr.Piyush Pratap Singh*, Research Scholar, IIT(ISM) Dhanbad for his guidance, continuous support, and cooperation throughout my work.

AYUSH YADAV Admission No – 18MT0071

DECLARATION

I hereby declare that the dissertation entitled "Buckling analysis of Functionally Graded Plate" submitted to INDIAN INSTITUTE OF TECHNOLOGY (INDIAN SCHOOL OF MINES), DHANBAD is a record of original work done by me under the guidance of **Dr. Md. Sikandar Azam**, (Assistant professor) Department of Mechanical Engineering and this work has not been presented anywhere fully or partially for the award of any degree.

Date-02 April. 2020

Place- Dhanbad

AYUSH YADAV Admission no.- 18MT0071

M.Tech (Mechanical Engg.)

Dr. Md Sikandar Azam Guide Assistant Professor Dept. of Mechanical Engg. Indian Institute of Technology (ISM) Dhanbad

Abstract

In this work, the analysis of buckling of plates is conducted to learn the behavior of rectangular plates under biaxial thermo mechanical loading and subjected to different sets of boundary conditions within the framework of classical plate theory. Variational method of weighted residual is used to obtain the generalized form of differential equation. Trial functions denoting the displacement components are expressed in simple algebraic polynomial forms which can handle any sets of boundary conditions. The presented mathematical model omits the limitations regarding edge conditions and is accurate, more accessible, and computationally faster. Rayleigh–Ritz method is used to obtain the generalized solution of the differential equation. A parametric study has been thoroughly conducted focusing on the effects of aspect ratio, nano effect, power law exponent, elastic foundation and loading parameter on nondimensionalised buckling load of plate. It has been observed that the aspect ratio, elastic foundation and power law exponent have great influence on buckling load. New results for nondimensionalised buckling load are incorporated after performing a test of convergence. Comparison with the results from the existing literature are provided for validation.

List of figures

Figure 3.1. The schematic of the isotropic plate

Figure 4. 1 The flow of various combinations of boundary supports in FG plate Figure 4.2 Variation of λ of embedded plate for different a/b with k=1, k_w =50 and k_p =100	21 28
Figure 4.3. Variation of λ of embedded plate for different k with a/b=2, k_w =50 and k_p =100	29
Figure 4.4. Variation of λ of embedded plate with k_w for with $k=1$, $a/b=2$ and $k_p=100$	30
Figure 4.5 Variation of λ of embedded plate with k_w for k=1, a/b=2 and k_w =100, Δ T=300.	30
Figure 4.6. Variation of λ of embedded plate with ΔT for a/b=2, k=1, k_w =50 and k_p =100	31
<u>List of tables</u>	
Table 4.1 Material Properties of the constituents of FGEP.	21
Table 4.2. The convergence of λ of plate having a/b=0.5, k=1, k _w =500, k _p =100.	22
Table 4.3. Comparison of λ of embedded isotropic square plate under biaxial loading	22
Table 4.4. λ of simply supported embedded plate under biaxial loading	24
Table 4.5. λ of clamped embedded plate under biaxial loading	26

8

CONTENTS

CEF	RTIFICA	ATE	i
ACl	KNOLEI	DGEMENT	ii
DEC	CLARA	ΓΙΟΝ	iii
ABS	STRACT	Γ	iv
LIS	T OF FIG	GURES	v
LIS	T OF TA	ABLES	vi
1.	INTF	RODUCTION	1
	1.1 C	Objective and Scope of Study	1
2.	LITE	ERATURE REVIEW	3
3.	МАТ	THEMATICAL MODELLING	7
	3.1	Model	7
	3.2	Solution Procedure	12
		3.2.1 Weak Formulation	13
	3.3.	Thermal Buckling	16
	3.4.	Buckling In Thermal Environment	17
4.	RES	ULTS AND DISCUSSION	21
	4.1	Convergence	22
	4.2	Comparison	22
	4.3	Numerical Results	23
		4.3.1 Parametric Effect	23
		4.3.2 Temperature Effect	28
4.	Conc	clusion	32
5.	Refe	rence	33

Chapter 1

Introduction

Plate is a two dimensional element, it means width is comparable to length but the thickness is not comparable to its width and length. Plate is one of the important structural element it has many engineering application such as air bridge, buildings, aircraft wings, big machines base and offshore structures. Most of the structural plates are stronger in tension as compared to compression. Generally compressed plate failure promote the tragic structural failure. So to avoid the failure of whole structure it is very important.

Functionally graded materials are a type of composite that made from two different materials of desires properties, which are impossible to find in a single material. In FGM, the variation of the material properties take place from one end of the material to another end. Now a days FGM used in many engineering field like mechanical engineering, civil, aerospace, nuclear and automotive. With the increasing demand of FGM material in various field, many researches have been done to analyse the behaviour of FGM under different conditions like environment, loading etc. Most of the research models are based on the displacement theories and to find the equilibrium equation they used principal of virtual work.

Based on some research model, the surrounding elastic medium such as Winkler-type and Pasternak-type elastic foundation has a great influence on the analysis of FGM plate. The FGM plate is treated to be rested on the elastic foundation of Winkler and Pasternak, and these parameter precisely considering both the spring and shear effect of elastic foundation. The results found by the researcher in their study using this Winkler and Pasternak foundation model

are desired and accurate. Here, the Winkler and Pasternak coefficient represents the linear springs and the shear effect of the elastic foundation respectively .

1.1. Objective and Scope of Study

The buckling of rectangular FGM plate have been studied by several researches and various results are available based on some boundary conditions. However, a new FGM plate buckling problem where the FGM plate subjected to mechanical loading (biaxial compression), *thermal loading* with uniform and linear rise, FGM plate with size effect (nanoplate) and plate under thermal environment remains to be studied.

The aim of this work is to determine the nondimensional buckling load under thermosmechanical loading with or without size effect. And this study also consists the effect of thermal
environment on the buckling load. The plate have simply supported, clamp, free and mixed
boundary condition. Classical plate theory and principal of virtual work is used to calculate the
equilibrium equation. Further the study consider the effects of various plate parameters aspect
ratios, foundation, size effect, temperature, power law exponent to vary the mechanical
properties of FGM and different boundary condition.

Chapter 2

Literature Review

The following literature review will help to know the background information for this research. The literature review target on the thin isotropic FGM plate. In this part the focus will be on the investigation of FGM rectangular plates under different boundary conditions. Navier (1822) first derive the basic equilibrium equation of rectangular plate under lateral load. Saint-Venant (1883) include the axial edge forces and shearing forces and modified that equation. Now this equation become the basis for most of the work on plate stability of plates with various loads and different boundary condition.

Bryan (1891) first consider the plate under biaxial compressive loading with simply supported edge condition (SSSS) by written the deflection as a double Fourier series. Wang(1953) approached that problem by Finite-difference method. Timoshenko and Gere (1961) solved the plate under bi-axial loading with all clamped edge condition (CCCC) by the energy method. Bulson (1970) cited many research works on buckling of plate subjected to biaxial compression. One of them is proper analysis for ESFS plates by using the exact solution of the differential equation of equilibrium. And also added an extra term in equilibrium equation for transverse force. Along one side ranged between simply supported and clamped edge boundary condition it is found the effect of a restraint. In another example it is used two buckling forms, i.e. symmetric and anti-symmetric forms for the calculation of FSFS edge condition, with the help of this research work it is found that the load associated with symmetric buckling forms were much lower than the anti-symmetric form.

FGMs are appropriate for various engineering field and gained intense interest by several researches (Javaheri and Eslami, 2002; Chakraborty et al, 2003; Zenkour and Sobhy, 2010; Zhang, 2013; Pradhan and Chakraverty, 2013; Esfahani et al 2014; Wattanasakulpong and Chaikittiratana, 2015).

Xiang et al. (2003) solved the problem of rectangular plate buckling with internal hinge under biaxial loads with the help of Ritz method. It is used to calculate the buckling factors for rectangular plates of various hinge location, boundary condition and aspect ratios. Hosseini-Hashemi et al. (2008) has worked on the buckling of isotropic plate. In this study they presented the non-dimensional critical buckling loads and mode shape for combination of four different boundary in which two opposite edges are simply supported under biaxial compression. V. Piscopo (2010) investigated the shimpi for thick plate and also recognized FEM as one of the most efficient method for thin plate buckling analysis under different boundaries conditions. Chee-Kiong Chin et al. (1993) conferred a finite element method using thin plate element. This method was capable to calculate the nondimensional buckling load for any arbitrarily shape thin plate member under general loading and boundary condition. MwisamMohammadi, et al. (2010) presented the explicit buckling analysis for thin FGM plate, and the equilibrium equations are obtained by using classical plate theory (CPT) and principal of minimum total potential energy. The resulting differentials are solved for different loading conditions and finally get the non dimensional buckling load.

Na and Kim (2004) examined three-dimensional (3D) thermal buckling analysis for FGM. They investigate the variation of material properties and temperature field in thickness direction using 18- node solid element by FEM. Shariat and Eslami (2005, 2006) performed thermal buckling analysis on geometrical imperfection rectangular FGM plate. They used classical plate theory to drive stability, compatibility and equilibrium equations. Naderi and

Saidi (2011) analysed the buckling of FGM annular sector plate resting on an elastic foundation and provide an analytical solution for that problem. They used Kirchoff's plate theory and energy mathod to drive equilibrium and stability equation. Shariat and Eslami (2007) performed the buckling analysis of thick rectangular FGM plates under thermo- mechanical load using third-order shear deformation plate theory (HSDT). Zhao et al. (2009) used first- order shear deformation theory (FSDT) with the element- free *kp*-Ritz method to performed the buckling analysis under mechanical and thermo-mechanical loading. Lanhe (2004) used FSDT kinematics to drive the equilibrium and stability equations of a moderately thick FGM plate, which material properties varies in thickness direction subjected under thermal loading. Talha and Singh (2011) work on thermomechanical induced vibration characteristics of FGM plates based on modified higher-order shear deformation kinematics. They conclude the effect of volume fraction and temperature field on vibration characteristics of the FGM plates .

Nanoscale is a field of intense interest of several researches in the field of nanomechanics. Therefore, it is very important to consider the influence of small size in the mechanical analysis of nanostructures. The classical continuum elasticity theory is not capable of describing the size influence due to the lack of a material length scale. So, Eringen (Eringen, 1972 and 1983) proposed the nonlocal elasticity theory which is sizedependent continuum theory. According to this theory stress at a reference point is a function of strain of all points of the body. Hence this nonlocal theory (sizedependent) applied to analyse the mechanical response of nanoplates(Ressy, 2007; Prsdhan and Phadikar, 2009; Aydogdu, 2009; Murmu and Adhikari, 2010; Lim et al. 2010; Ke et al. 2014).

Reddy (2000) used third-order shear deformation plate theory and developed a FE model that accounts for the thermomechanical coupling for FGM plate. But, that analysis did not consists the change of material properties due to temperature distribution. Yang and Shen

(2002) presented the vibration characteristics and transient response analysis of FGM plate made of temperature-dependent material in thermal environment. According to the above-mentioned studies, one can notice the influence of various temperature environments on buckling behaviour of functionally graded nanoplate embedded in elastic foundation is not yet conducted .

Chapter 3

Mathematical modelling

This chapter consists of the derivation of the governing equation for rectangular FGM plate subjected under thermo- mechanical loading and Plate under thermal environment. We consider Classical plate theory and Hamilton principal to drive the equilibrium equation.

3.1. Thin FGM plate subjected under biaxial compression

Consider a thin rectangular FGM plate of dimension, length a, width b, and height h is subjected under biaxial compressive load N_x and N_y as shown in figure 2.1. Taking reference plane as mid plane and adopting Cartesian coordinate system. The biaxial loading N_x and N_y are parallel to x and y axis respectively.

For thin plate all theories gives the same results so we are adopting classical plate theory here because it is a simplest plate theory.

Assumptions of classical plate theory are:

- a. Thickness of the plate is small as compared to the thickness, it is a case of plain stress.
- b. No stretching in z direction, it means plain strain condition.
- c. Mid plane remain neutral i.e. no stretching in mid plane.
- d. The plane section rotate during bending to remain normal to the neutral surface, and do not distort, so that stresses and strains are proportional to their distance from the neutral surface.
- e. Effect of shearing load is neglected and the load is entirely resisted by the banding moment induced in plate element.

Derivation starts on the behalf of first two assumption, that no stretching in z direction. It means normal stress and strain in z direction are zero. Material properties of FG plate are assumed to vary along the thickness direction according to power-law form as:

$$p(z) = (p_c - p_m) \left(\frac{z}{h} + \frac{1}{2}\right)^k + p_m$$
 3.1

Where p_m and p_c denote the value of the material properties of the metal and ceramic ingredient of the FG plate, respectively. Power law exponent (k) is a nonnegative variable parameter. At bottom surface (z=-h/2) of FG plate is pure metal, although the top surface (z=h/2) is pure ceramic and one can get the desirable properties by different value of k. In this case only young's modulus (E) considered as the variable property where as the value of poisson's ratio will remain constant with respect to thickness

Figure 3.1. The schematic of the isotropic plate

According to the assumption, no stretching along the thickness,

$$\varepsilon_{zz} = 0$$

$$\varepsilon_{zz} = \frac{\partial W}{\partial Z} = 0$$

On integration,

$$W=f(x,y)$$

At the middle plate, z=0, and $W = W_0$

3.4

Now assumption on shear strain of z plane considering equal to zero.

$$\gamma_{zx} = \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} = 0$$

$$\frac{\partial u}{\partial z} = -\frac{\partial w}{\partial x}$$
 3.5

On integration,

$$u = -z\frac{\partial w}{\partial x} + g(x, y)$$
3.6

And at mid plane z=0, so $u = u_0$

$$g(x, y) = u_o 3.7$$

$$u = u_0 - z \frac{\partial w}{\partial x}$$
 3.8

Similarly,

$$v = v_0 - z \frac{\partial w}{\partial x}$$
 3.9

The displacement field can be represented as

$$u = \begin{cases} u_x(x, y, t) \\ u_y(x, y, t) \\ u_z(x, y, z, t) \end{cases} = \begin{cases} u_0 - z \frac{\partial w(x, y)}{\partial x} \\ v_0 - z \frac{\partial w(x, y)}{\partial y} \\ w(x, y, t) \end{cases}$$

$$3.10$$

Where u_x u_y and u_z are displacement along coordinates x, y and z, and w shows the deflection of an arbitrary point in the z-axis on the middle plane.

According to the nonlocal theory of elasticity, stress at a point in a body depends on strains at all other points of that body. According to this assumption, the nonlocal behaviour of a Hookean solid is introduced by the following transformed differential equation.

$$\sigma_{ij}^{(nl)} - \mu \nabla^2 \sigma_{ij}^{(nl)} = \sigma_{ij}^{(l)}$$
3.11

$$\alpha = \left(\frac{e_0 l_{\text{int}}}{l_{\text{ext}}}\right)^2$$
3.12

$$\mu = (l_0 l_{\text{int}})^2 \tag{3.13}$$

Whereas $\sigma_{ij}^{(nl)}$ and $\sigma_{ij}^{(l)}$ represent the nonlocal and local stress tensor respectively. μ represent the nonlocal parameter.

According to Kirchhoff's assumption, the displacement associated with linear non zero strain is presented as

$$\begin{cases}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{cases} = \begin{cases}
\frac{\partial u}{\partial x} \\
\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}
\end{cases} = \begin{cases}
\frac{\partial u_0}{\partial x} - z \frac{\partial^2 w}{\partial x^2} \\
\frac{\partial v_0}{\partial y} - z \frac{\partial^2 w}{\partial y^2} \\
\left(\frac{\partial v_0}{\partial y} + \frac{\partial u_0}{\partial x} - 2z \frac{\partial^2 w}{\partial x \partial y}\right)
\end{cases}$$
3.14

where, \mathcal{E}_{xx} and \mathcal{E}_{yy} are normal strains and γ_{xy} is a shear strain. Following the generalized Hook's law, the stress-strain relationship is formulated as:

$$\begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{cases} =
\begin{pmatrix}
C_{11} & C_{12} & 0 \\
C_{21} & C_{22} & 0 \\
0 & 0 & C_{66}
\end{pmatrix}
\begin{pmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{pmatrix}$$
3.15

where, σ_{xx} and σ_{yy} are normal stresses and τ_{xy} is shear stress in x - y plane. Further,

 C_{11} , C_{12} , C_{22} , C_{66} are

$$C_{11} = \frac{E(Z)}{(1-v^2)}$$
 $C_{12} = \frac{vE(Z)}{(1-v^2)}$ $C_{66} = \frac{E(Z)}{2(1+v)}$ 3.16

Stress and moments are

$$\begin{cases}
N_{x} \\
N_{y} \\
N_{xy}
\end{cases} = \int_{-h/2}^{h/2} \begin{cases} \sigma_{x} \\
\sigma_{y} \\
\tau_{xy}
\end{cases} dz$$

$$\begin{cases}
M_{x} \\
M_{y} \\
M_{xy}
\end{cases} = \int_{-h/2}^{h/2} z \begin{cases} \sigma_{x} \\
\sigma_{y} \\
\sigma_{xy}
\end{cases} dz$$
3.17

Using the principle of virtual work, the equation of motion of rectangular plate is derived and written as

$$\frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial x} = 0$$

$$\frac{\partial N_{xx}}{\partial x} + \frac{\partial N_{xy}}{\partial x} = 0$$

$$\frac{\partial^{2} M_{x}}{\partial^{2} x^{2}} + \frac{\partial^{2} M_{y}}{\partial^{2} y^{2}} + \frac{\partial^{2} M_{xy}}{\partial x \partial y} + \frac{\partial}{\partial x} \left(N_{x} \frac{\partial w}{\partial x} \right) + \frac{\partial}{\partial y} \left(N_{y} \frac{\partial w}{\partial y} \right)$$

$$+ \frac{\partial}{\partial x} \left(N_{xy} \frac{\partial w}{\partial y} \right) + \frac{\partial}{\partial y} \left(N_{xy} \frac{\partial w}{\partial x} \right) + q - k_{w} + k_{p} \left(\frac{\partial^{2} w}{\partial x^{2}} + \frac{\partial^{2} w}{\partial y^{2}} \right) = 0$$
3.18

Using equation (3.15) - (3.17), the bending moments resultants of plate in terms of flexural rigidities (bending stiffness) and displacement field are expressed as:

$$M_{ij}^{(nl)} - \mu \nabla^2 M_{ij}^{(nl)} = M_{ij}^{(l)}$$

$$\begin{cases}
M_x \\
M_y \\
M_{xy}
\end{cases} = \begin{bmatrix}
D_{11} & D_{12} & 0 \\
D_{21} & D_{22} & 0 \\
0 & 0 & D_{66}
\end{bmatrix} \begin{cases}
\frac{\partial^2 w}{\partial x^2} \\
\frac{\partial^2 w}{\partial y^2} \\
\frac{\partial^2 w}{\partial xy}
\end{cases}$$
3.19

The flexural rigidities is defined in terms of coefficient of stiffness as

$$D_{11} = \int_{\frac{-h}{2}}^{\frac{h}{2}} C_{11} Z^2 dz , \qquad D_{12} = \int_{\frac{-h}{2}}^{\frac{h}{2}} C_{12} Z^2 dz \qquad \text{and} \qquad D_{66} = \int_{\frac{-h}{2}}^{\frac{h}{2}} C_{66} Z^2 dz$$
 3.20

With the help of equations (3.15), (3.17), (3.18) and (3.19), and assuming modal equation,

 $w = W(x, y)e^{i\omega t}$, the following decoupled equilibrium equation will be obtained for rectangular plate.

$$D_{11} \frac{\partial^{4} W}{\partial x^{4}} + 2(D_{12} + 2D_{66}) \frac{\partial^{4} W}{\partial x^{2} \partial y^{2}} + D_{22} \frac{\partial^{4} W}{\partial y^{4}}$$

$$- (1 - \mu \nabla^{2}) \left[q_{0} - k_{w} W + k_{p} \left(\frac{\partial^{2} W}{\partial x^{2}} + \frac{\partial^{2} W}{\partial y^{2}} \right) \right]$$

$$\left(\frac{\partial}{\partial x} \left(N_{xx} \frac{\partial W}{\partial x} \right) + \frac{\partial}{\partial y} \left(N_{yy} \frac{\partial W}{\partial y} \right) + \frac{\partial}{\partial x} \left(N_{xy} \frac{\partial W}{\partial y} \right) + \frac{\partial}{\partial y} \left(N_{yx} \frac{\partial W}{\partial x} \right) \right) = 0$$

$$3.21$$

3.2. Solution procedure

The calculus of variation is a branch of mathematics wherein the stationary property of function of function, namely, a functional, is studied.

It is well known that the basis of variational formulation is the principle of minimum total potential energy. The principle of minimum total potential energy is valid under the assumption that stress at a point can be uniquely defined in terms of the strain at that point.

Here an inverse approach is taken to reach to quadratic form of the governing equation.

This quadratic functional can be then used as a basis for different numerical solution such as Rayleigh-Ritz and finite element methods.

3.2.1. Weak formulation

The partial differential equation developed in equation (3.21) is the strong form of the governing system of equation for buckling of rectangular FG plate since obtaining the exact solution for a strong form of the system equation is usually difficult for practical engineering problems, because at the end of solution it forms inconsistence form of solution. A weak form of the system of equations is usually created for solution. The weak form is often an integral form and requires a weaker continuity on the field variables in contrast to the strong form. The weak form of the system of equations is usually created using one of the energy principles or weighted residual methods.

So by weighted residual method

$$\int_{R} k(\nabla^4 W + q) = 0$$
3.22

K=weight function

$$\iint_{R} \left\{ D_{11} \frac{\partial^{4}W}{\partial x^{4}} + 2(D_{12} + 2D_{66}) \frac{\partial^{4}W}{\partial x^{2} \partial y^{2}} + D_{22} \frac{\partial^{4}W}{\partial y^{4}} - (1 - \mu \nabla^{2}) \left[q_{0} - k_{w}W + k_{p} \left(\frac{\partial^{2}W}{\partial x^{2}} + \frac{\partial^{2}W}{\partial y^{2}} \right) \right] \right. \\ \left. \left(\frac{\partial}{\partial x} \left(N_{xx} \frac{\partial W}{\partial x} \right) + \frac{\partial}{\partial y} \left(N_{yy} \frac{\partial W}{\partial y} \right) + \frac{\partial}{\partial x} \left(N_{xy} \frac{\partial W}{\partial y} \right) + \frac{\partial}{\partial y} \left(N_{yx} \frac{\partial W}{\partial x} \right) \right) \right\} K dx dy = 0$$

With the help of Gauss and Green theorem breaking this residual form into integral of region and boundary.

$$\iint\limits_R \dot{\prod}(x,y) dx dy = 0$$

$$\begin{split} \dot{E} &= D_{11} \left(\frac{\partial^{2}W}{\partial x^{2}} \frac{\partial^{2}K}{\partial y^{2}} \right) + D_{12} \left(\frac{\partial^{2}W}{\partial x^{2}} \frac{\partial^{2}K}{\partial y^{2}} + \frac{\partial^{2}W}{\partial y^{2}} \frac{\partial^{2}K}{\partial x^{2}} \right) + D_{22} \left(\frac{\partial^{2}W}{\partial y^{2}} \frac{\partial^{2}K}{\partial y^{2}} \right) + \left(4D_{66} \frac{\partial^{2}W}{\partial x \partial y} \frac{\partial^{2}K}{\partial x \partial y} \right) \\ &+ k_{w} \left[WK + \mu \left(\frac{\partial W}{\partial x} \frac{\partial K}{\partial x} + \frac{\partial W}{\partial x} \frac{\partial K}{\partial x} \right) \right] \\ &+ k_{p} \left[\frac{\partial W}{\partial x} \frac{\partial K}{\partial x} + \frac{\partial W}{\partial x} \frac{\partial K}{\partial x} + \mu \left(\frac{\partial^{2}W}{\partial x^{2}} \frac{\partial^{2}K}{\partial x^{2}} + 2 \frac{\partial^{2}W}{\partial x \partial y} \frac{\partial^{2}K}{\partial y \partial x} + \frac{\partial^{2}W}{\partial y^{2}} \frac{\partial^{2}K}{\partial y^{2}} \right) \right] \end{split}$$

$$\dot{\tilde{F}} = N_{\boldsymbol{X}} \bigg(\frac{\partial \boldsymbol{W}}{\partial \boldsymbol{x}} \frac{\partial \boldsymbol{K}}{\partial \boldsymbol{x}} + \mu \bigg(\frac{\partial^2 \boldsymbol{W}}{\partial \boldsymbol{x}^2} \frac{\partial^2 \boldsymbol{K}}{\partial \boldsymbol{x}^2} + \frac{\partial^2 \boldsymbol{W}}{\partial \boldsymbol{x} \partial \boldsymbol{y}} \frac{\partial^2 \boldsymbol{K}}{\partial \boldsymbol{x} \partial \boldsymbol{y}} \bigg) \bigg) + N_{\boldsymbol{y}} \bigg(\frac{\partial \boldsymbol{W}}{\partial \boldsymbol{y}} \frac{\partial \boldsymbol{K}}{\partial \boldsymbol{y}} + \mu \bigg(\frac{\partial^2 \boldsymbol{W}}{\partial \boldsymbol{y}^2} \frac{\partial^2 \boldsymbol{K}}{\partial \boldsymbol{y}^2} + \frac{\partial^2 \boldsymbol{W}}{\partial \boldsymbol{x} \partial \boldsymbol{y}} \frac{\partial^2 \boldsymbol{K}}{\partial \boldsymbol{x} \partial \boldsymbol{y}} \bigg) \bigg)$$

The Rayleigh Ritz functions obviate the tedious task of choosing the form of the infinite series or trigonometric or algebraic functions to suit the conditions of support along the edges. These functions are made from the product of a basic function and a set of orthogonal polynomials whose degree may be increased until the desired accuracy is achieved. The basic function is defined by the product of equations of the specified boundary shape of the plate raised to the power of either 0, 1 or 2 corresponding to free, simply supported and clamped edges, respectively.

$$W(x, y) = \sum_{i} C_{i} \phi_{i}(x, y)$$

$$3.25$$

 C_j =unknown coefficient

 ϕ_i =Algebraic function

It is well known that 'The determination of the weak form is equivalent to the minimization of the quadratic function or minimization of the total potential energy .

$$B(K,W) = l(k)$$
3.26

To satisfy the essential boundary condition $K \longrightarrow \delta W$

Now this weak form become,

$$B(\delta W, W) = l(\delta W)$$
 3.27

$$B(\delta W, W) = \int \left(\frac{\partial \delta W}{\partial x} \frac{\partial w}{\partial x} + \frac{\partial \delta W}{\partial x} \frac{\partial w}{\partial x}\right) d\Omega$$
3.28

$$B(\delta W, W) = \delta \int \frac{1}{2} \left(\left(\frac{\partial w}{\partial x} \right)^2 + \left(\frac{\partial w}{\partial x} \right)^2 \right) d\Omega$$
3.29

$$B(\delta W, W) = \frac{\delta}{2} (B(W, W))$$
3.30

$$\frac{\delta}{2} (B(W, W)) - \delta l(W) = 0$$
 3.31

$$\frac{1}{2}\Big[\Big(B\big(W,W\big)\Big) - l(W)\Big] = 0$$

$$E = \frac{1}{2} [A + B + C]$$

$$A = D_{11} \left(\frac{\partial^{2} W}{\partial x^{2}} \right)^{2} + 2D_{12} \left(\frac{\partial^{2} W}{\partial x^{2}} \frac{\partial^{2} W}{\partial y^{2}} \right) + D_{22} \left(\frac{\partial^{2} W}{\partial y^{2}} \right)^{2} + \left(4D_{66} \left(\frac{\partial^{2} W}{\partial x \partial y} \right)^{2} \right)$$

$$B = k_{w} \left\{ W^{2} + \mu \left(\left(\frac{\partial W}{\partial x} \right)^{2} + \left(\frac{\partial W}{\partial y} \right)^{2} \right) \right\}$$

$$C = k_{p} \left\{ \left(\frac{\partial W}{\partial x} \right)^{2} + \left(\frac{\partial W}{\partial y} \right)^{2} + \mu \left(\left(\frac{\partial^{2} W}{\partial x^{2}} \right)^{2} + \left(\frac{\partial^{2} W}{\partial y^{2}} \right)^{2} + \left(\frac{\partial^{2} W}{\partial x \partial y} \right)^{2} \right) \right\}$$

$$F = \frac{1}{2} [D + G]$$

$$D = N_x \left[\left(\frac{\partial W}{\partial x} \right)^2 + \mu \left(\left(\frac{\partial^2 W}{\partial x^2} \right)^2 + \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 \right) \right]$$

$$G = N_y \left[\left(\frac{\partial W}{\partial y} \right)^2 + \mu \left(\left(\frac{\partial^2 W}{\partial y^2} \right)^2 + \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 \right) \right]$$
3.34

Now put $W(x, y) = \sum_{i} C_{ij} \phi_{ij}(x, y)$

$$\phi_i(x, y) = \varphi \tau_i(x, y) \tag{3.35}$$

$$\varphi = x^{p} y^{q} (x - a)^{r} (y - b)^{s}$$
3.36

$$\tau_i(x, y) = (1, x, y, x^2, xy, y^2, x^3, x^2y, y^3, x^4, x^2y^2, y^4, \dots)$$
3.37

Where p, q, r and s are exponent, which controls different edge conditions, the parameter p= 0, 1 or 2 denotes that the edge is subjected to Free (F) S (simply supported) or C (clamped) support. Further, the partial derivative of Eqs (3.33) and (3.34) w.r.t unknown constant is taken which results in eq. (3.38)

$$([K]_{nxn} - \lambda_{b}[M]_{nxn})\{\Delta\} = 0$$

$$3.38$$

where, $\{\Delta\}$ is a coefficient column vector, [K] and [M] are stiffness matrix due to strain energy, stiffness matrix due to potential energy and λ_b denotes non-dimensional mechanical buckling parameters expressed as $\lambda_b = \frac{|N_x|a^2}{D_c}$. The uniform in-plane compressive loading $N_x = N_y = -N$ and $N_{xy} = 0$. Where as the D_c is the flexural rigidity, $D_c = \frac{E_c h^3}{12(1-\nu^2)}$ 3.39

3.3. Thermal Buckling

To find the critical buckling temperature of the FGM plate subjected to thermal loading, there is a need to compute the pre-buckling thermal forces. To achieve this, the method of Meyers and Hyer [35] are employed. The resultant of pre-buckling load of plate subject to thermal load is given by [36] as

$$N = \int_{-h/2}^{h/2} \left[\frac{E(z,T)}{1-\nu} \alpha(z,T) \Psi dz \right]$$
 3.40

Where α is a coefficient of thermal expansion and Φ is the type of temperature distribution through-thickness. For the different thermal distributions different functions of Φ are considered, which are given as

For Uniform Temperature rise

Let an FGM nanoplate at a reference temperature T_i , the temperature is uniformly raised to final value T_f , which the temperature change is

$$\Delta T = T_f _T T_i$$

$$\Psi = \Delta T$$
3.41

For Linear Temperature rise

For a thin enough FGM plate the temperature distribution can be assumed to linear variation through the thickness as follows (Javaheri and Eslami, 2002): 3.42

$$\Psi = \frac{\Delta T}{h} \left(z + \frac{h}{2} \right) + T_m$$

$$\Delta T = T_C - T_m$$

Whereas T_c = Temperature of the ceramic rich surface. T_m = Temperature of the metal rich surface.

Following the procedure as above, ΔT can be obtained. The critical buckling temperature difference represented as ΔT_{cr} are reported here which are the lowest values

3.4. Buckling in thermal environment

The derivation of the generalised equation of thin FGM rectangular plate already discuss in the starting of this chapter. The Objective of this sub chapter is to study the power law variation of the temperature dependent material properties for the convergence of the results for the FG plate in thermal environment.

Here we are discuss the two different cases of the temperature variation and its effect on the mechanical properties on FG plate. The variation of temperature only occurs in thickness direction.

The material properties of FG material i.e. Young modulus, poisson ratio and thermal expansion coefficient are nonlinear function of temperature as study presented by J.N.Reddy (1998) and H.S.Shen (2002).

$$P(T) = P^{T}_{0} \left(P_{-1}^{T} T^{-1} + 1 + P_{1}^{T} T^{1} + P_{2}^{T} T^{2} + P_{3}^{T} T^{3} \right)$$

$$3.43$$

Where $T = T_0 + \Delta T(z)$, denotes the environmental temperature and T_0 is the room temperature, and P_{-1}^T , P_0^T , P_1^T , P_2^T and P_3^T are the constant coefficients in the cubic expression of the respective material property.

We have already discuss the CPT and its assumptions in the starting of this chapter, in this subchapter we are presented the effect of temperature variation on the mechanical properties and these effects of buckling load parameter. So by Hooks law the stress strain relationship can be represented as:

$$\begin{cases}
\sigma_{xx} \\
\sigma_{yy} \\
\tau_{xy}
\end{cases} =
\begin{pmatrix}
C_{11} & C_{12} & 0 \\
C_{21} & C_{22} & 0 \\
0 & 0 & C_{66}
\end{pmatrix}
\begin{bmatrix}
\varepsilon_{xx} \\
\varepsilon_{yy} \\
\gamma_{xy}
\end{bmatrix}$$
3.44

where, σ_{xx} and σ_{yy} are normal stresses and τ_{xy} is shear stress in x - y plane. Further, $C_{11}, C_{12}, C_{22}, C_{66}$ are

$$C_{11} = \frac{E(z,T)}{\left(1 - \nu(z,T)^{2}\right)} \qquad C_{12} = \frac{\nu(z,T)E(z,T)}{\left(1 - \nu(z,T)^{2}\right)} \qquad C_{66} = \frac{E(z,T)}{2\left(1 + \nu(z,T)\right)} \qquad 3.45$$

Now the expression of Strain energy and potential energy for the thin rectangular FG plate in thermal environment can be expressed as

$$E_{TH} = \frac{1}{2} [A + B + C]$$

$$A = A_1 + A_2$$

$$A_1 = \left(D^T_{11} + D^T_{12}\right) \left[\left(\frac{\partial^2 W}{\partial x^2}\right)^2 + \left(\frac{\partial^2 W}{\partial y^2}\right)^2 + 2\left(\frac{\partial^2 W}{\partial x \partial y}\right)^2\right]$$

$$A_2 = \left(A^T_{11} + A^T_{12}\right) \left[\left(\frac{\partial^2 W}{\partial x^2}\right)^2 + \left(\frac{\partial^2 W}{\partial y^2}\right)^2\right]$$

$$B = k_w \left\{W^2 + \mu \left(\left(\frac{\partial W}{\partial x}\right)^2 + \left(\frac{\partial W}{\partial y}\right)^2\right)\right\}$$

$$C = k_p \left\{\left(\frac{\partial W}{\partial x}\right)^2 + \left(\frac{\partial W}{\partial y}\right)^2 + \mu \left(\left(\frac{\partial^2 W}{\partial x^2}\right)^2 + \left(\frac{\partial^2 W}{\partial y^2}\right)^2\right) + \left(\frac{\partial^2 W}{\partial x \partial y}\right)^2\right\}$$

The flexural rigidities is defined in terms of coefficient of stiffness as:

$$D_{11} = \int_{\frac{-h}{2}}^{\frac{h}{2}} C_{11} Z^2 \alpha \Delta T dz \qquad \text{and} \qquad D_{12} = \int_{\frac{-h}{2}}^{\frac{h}{2}} C_{12} Z^2 \alpha \Delta T dz \qquad 3.47$$

$$A_{11} = \int_{\frac{-h}{2}}^{\frac{h}{2}} C_{11} \alpha \Delta T dz$$
 and $A_{12} = \int_{\frac{-h}{2}}^{\frac{h}{2}} C_{12} \alpha \Delta T dz$ 3.48

$$F = \frac{1}{2} [D + G]$$

$$D = N_x \left[\left(\frac{\partial W}{\partial x} \right)^2 + \mu \left(\left(\frac{\partial^2 W}{\partial x^2} \right)^2 + \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 \right) \right]$$

$$G = N_y \left[\left(\frac{\partial W}{\partial y} \right)^2 + \mu \left(\left(\frac{\partial^2 W}{\partial y^2} \right)^2 + \left(\frac{\partial^2 W}{\partial x \partial y} \right)^2 \right) \right]$$
3.49

Now we are considering the effect of both biaxial compression and thermal environment on the thin FG plate, so the total strain energy can be presented as:

$$E_{eff} = E + E_{th}$$
 3.50

By equating the both differential equation of strain energy and potential energy we can get the Buckling load 'N' with the help of Ritz method.

$$([K]_{nxn} - \lambda_{b}[M]_{nxn})\{\Delta\} = 0$$

$$3.51$$

where, $\{\Delta\}$ is a coefficient column vector, [K] and [M] are stiffness matrix due to strain energy, stiffness matrix due to potential energy and λ_b denotes non-dimensional mechanical buckling parameters expressed as $\lambda_b = \frac{|N_x|a^2}{D_c}$.

Chapter 4

Results and Discussions

We have considered different BCs for the FG plates. Here, the flow of BCs is demonstrated in Fig. 4.1. For example, if we consider the edge support SCSF, then 1 is meant for simply supported (S) and accordingly 2, 3 and 4 represent clamped (C), simply supported (S), completely free (F) edge conditions respectively. In Fig. 4.1 for Lévy plates, 1 and 3 are always kept to be simply supported and other edges 2 and 4 vary as per different BCs.

Figure 4. 1 The flow of various combinations of boundary supports in FG plate

The functionally graded plate is considered to be made up of Aluminium and Zirconium. The top and
bottom layers of the plate are ceramics, and metallic respectively. The metal and ceramics that are
employed as contributing materials of the FGEP are (table 1).

Table 4.1 Material Properties of the constituents of FGEP

Properties	Aluminium (Metal)	ZrO ₂ – I (Ceramic)
E	70 Gpa	151 Gpa
ν	0.3	0.3
ρ	2700 Kg/m^3	3000 Kg/m^3

4.1. Convergence

The convergence of non-dimensional buckling of plates (k = 0 in case of FG plates) has been performed in Table 4.2. The convergence of non-dimensional frequencies may be achieved by increasing the number of polynomials (n) in the displacement component.

BC	Polynomials	λ_1	λ2	λ3	λ4
	4	7.2242	7.9788	9.9101	12.9987
CCCC	6	7.2135	7.8672	9.8977	12.9725
ccc	8	7.2135	7.8358	9.8847	12.9571
	10	7.2135	7.8358	9.8847	12.9571
	4	3.8252	5.2214	3.9254	8.8838
SSSS	6	3.7121	5.0685	3.7388	8.6452
	8	3.7121	5.0607	7.4368	8.3002
	10	3.7121	5.0607	7.4368	8.3002

Table 4.2. The convergence of λ of plate having a/b=0.5, k=1, k_w=500, k_p=100.

4.2. Comparison

The comparison of the computed result is done with the published one and presented in table 4.3. From the validation, it may be noticed that present results are in excellent agreement with the available literature, irrespective of the elastic foundations and boundary support considered.

Table 4.3. Com	parison of λ o	f embedded FG sc	juare plate under	biaxial loading

$K_w a^4$	$K_p a^4$	Source			Λ	
\overline{D}	\overline{D}	Source	CCCC	SCSC	SSSS	FCFC
		Present	3.9031	2.7224	2.1010	1.2040
	0	Lam et al. (2000)	3.8300	2.6630	2.0000	1.1440
0		Thai et al. (2013)	3.8299	2.6627	2.0000	1.1436
0		Present	13.9824	12.8651	12.1803	11.3100
	100	Lam et al. (2000)	13.9600	12.8000	12.1300	11.2800
		Thai et al. (2013)	13.9620	12.7948	12.1321	11.2757
		Present	4.2800	3.1320	2.5130	1.7620
100	0	Lam et al. (2000)	4.2800	3.1320	2.5130	1.7620
		Thai et al. (2013)	4.2795	3.1320	2.5133	1.7617

	Present	14.4100	13.2600	12.6500	11.8900
100	Lam et al. (2000)	14.4100	13.2600	12.6500	11.8900
	Thai et al. (2013)	14.4116	13.2641	12.6454	11.8938

4.3. Numerical Results

4.3.1. Parameteric Effect

The effect of various parameters on buckling modes of FG plates resting on Winkler Pasternak Foundation may be observed in Tables 4.4 and 4.5 with different combination of boundary conditions. The important results in Tables 4.4 and 4.5 are summarized as below:

- Irrespective of the elastic foundations and edge support, it can easily be noticed that the buckling load follow the ascending behavior with increase in a/b as shown in the graph.
- Irrespective of k, k_w and kp assumed, it can also be observed that second non-dimensional buckling load for CCCC and SSSS square FG plates are coinciding with the respective third mode frequencies. But no coincidence can be observed for natural frequencies of rectangular FG plates (a/b \neq 1). This proposition may be true because of the identical edge supports at all edges of the FG square plate.
- Looking into these computations, we may draw the conclusions that the buckling loads are decreasing with the increasing values of k.
- It is evident that non-dimensional buckling load are increasing with increase in foundation parameters (k_w & k_p) regardless of the aspect ratio and power-law index considered. Although the effect of variation of k_p dominates over k_w .

Table 4.4. λ of simply supported embedded plate under biaxial loading

a/b	K	kw	kp	λ_1	λ_2	λ3	λ_4	λ_1
			50	3.1529	5.4119	9.0664	10.2572	14.1075
0.5	0	0	100	3.8672	6.1262	9.7807	10.9715	14.8218
			500	9.5815	11.84	15.495	16.6858	20.5361

100					0.0.00	.	0.100:	40.50=1	4 4 4 7 1 -
S00 9.6972 11.91 15.529 16.726 20.5633 S00 3.7318 5.7603 9.2364 10.4582 14.2436 S00 100 4.4461 6.4746 9.9507 11.1725 14.9579 S00 10.16 12.189 15.665 16.8868 20.6722 S00 2.4189 3.998 6.5526 7.38496 10.0764 S00 8.8475 10.427 12.981 13.8135 16.505 S00 8.8475 10.427 12.981 13.8135 16.505 S00 8.9475 10.427 12.981 13.8135 16.505 S00 8.9633 10.496 13.015 13.8537 16.532 S00 8.9633 10.496 13.015 13.8537 16.532 S00 9.4264 10.775 13.151 14.0146 16.6411 S00 9.4264 10.775 13.151 14.0146 16.6411 S00 8.2131 10.223 12.529 13.2981 15.7255 S00 8.233 10.323 12.529 13.2981 15.7255 S00 9.2845 10.502 12.665 13.4591 15.8615 S00 100 3.5702 4.7873 6.9507 7.74485 10.1473 S00 9.2845 10.502 12.665 13.4591 15.8615 S00 100 3.5702 4.7873 6.9507 7.74485 10.1473 S00 9.2845 10.502 12.665 13.4591 15.8615 S00 100 3.5702 4.7873 6.9507 7.74485 10.1473 S00 9.2845 10.502 12.665 13.4591 15.8615 S00 100 3.5702 4.7873 6.9507 7.74485 10.1473 S00 100 3.5702 4.7873 6.9507 7.74485 10.1473 S00 100 3.5702 4.7873 6.9507 7.74485 10.1473 S00 100 3.5702 11.359 14.649 21.5777 35.8006 S00 100 3.5702 11.359 14.649 21.5777 35.8006 S00 100 5.6917 11.474 14.786 21.5947 35.8134 S00 100 5.6917 11.474 14.786 21.6627 35.8644 S00 100 5.6917 11.474 14.786 21.6627 35.8644 S00 1.406 17.188 20.5 27.377 41.5787 S00 9.87 14.064 16.384 21.2275 31.1696 S00 3.5138 7.6641 9.9828 14.8159 24.7538 S00 3.			100						
S00 3.7318 5.7603 9.2364 10.4582 14.2436 100 4.4461 6.4746 9.9507 11.1725 14.9579 500 10.16 12.189 15.665 16.8868 20.6722 50 2.4189 3.998 6.5526 7.38496 10.0764 100 3.1332 4.7123 7.2669 8.09925 10.7907 500 8.8475 10.427 12.981 13.8135 16.505 500 2.5347 4.0677 6.5866 7.42517 10.1036 100 3.249 4.782 7.3009 8.13945 10.8179 500 8.9633 10.496 13.015 13.8537 16.5322 500 2.9979 4.3464 6.7225 7.58599 10.2125 500 9.4264 10.775 13.151 14.0146 16.6411 500 2.9913 4.4389 6.7808 7.54383 10.0112 500 8.7056 10.153 12.495 13.2581 15.7255 500 8.8213 10.223 12.529 13.2983 15.7527 500 2.8982 3.7943 6.1005 6.86975 9.32412 2 100 100 3.1071 4.5086 6.8147 7.58403 10.0384 500 8.8213 10.223 12.529 13.2983 15.7527 500 2.8454 10.502 12.665 13.4591 15.8615 500 9.2845 10.502 12.665 13.4591 15.8615 500 9.2845 10.502 12.665 13.4591 15.8615 500 100 5.3299 11.329 14.649 21.5777 35.8006 500 11.044 17.044 20.363 27.292 41.5149 500 4.6156 10.615 13.934 20.8634 35.0863 500 11.044 17.044 20.363 27.292 41.5149 500 4.6688 10.644 13.962 20.8804 35.0991 500 100 5.6917 11.474 14.786 21.5627 35.8134 500 100 4.257 8.3495 10.677 15.5302 25.4651 500 3.4414 7.6352 9.9553 14.7989 24.741 0 100 4.1557 8.3495 10.667 15.5302 25.4681 100 4.228 8.3784 10.697 15.5302 25.4681 100 100 4.228 8.3784 10.697 15.5302 25.4681 500 9.9423 14.093 16.411 21.2445 31.1824 500 9.9423 14.093 16.411 21.2454 31.1824 500 9.9423 14.093 16.411 21.2454 31.1824 500 9.9423 14.093 16.411 21.2453 31.234 500 10.04 4.5175 8.4937 10.807 15.5932 25.5191 500 10.0232 14.208 16.521			100	-					
100									
1				-					
1			500	-					
1							!		
1				-					
1			0						
1 100 100 3.249 4.782 7.3009 8.13945 10.8179 500 8.9633 10.496 13.015 13.8537 16.5322 50 2.9979 4.3464 6.7225 7.58599 10.2125 500 100 3.7121 5.0607 7.4368 8.30028 10.9268 50 2.277 3.7246 6.0665 6.82954 9.29691 0 100 2.9913 4.4389 6.7808 7.54333 10.0115 500 8.7056 10.153 12.495 13.2581 15.7255 50 2.3928 3.7943 6.1005 6.86975 9.32412 2 100 100 3.1071 4.5086 6.8147 7.58403 10.0384 500 8.8213 10.223 12.529 13.2983 15.7527 500 8.8213 10.223 12.565 13.4591 15.8615 500 100 3.5702 4.7873 6.9507 7.74485									
S00				50	2.5347	4.0677		7.42517	10.1036
S00 2.9979 4.3464 6.7225 7.58599 10.2125 500 3.7121 5.0607 7.4368 8.30028 10.9268 500 9.4264 10.775 13.151 14.0146 16.6411 500 2.277 3.7246 6.0665 6.82954 9.29691 500 8.7056 10.153 12.495 13.2581 15.7255 500 2.3928 3.7943 6.1005 6.86975 9.32412 2 100 100 3.1071 4.5086 6.8147 7.58403 10.0384 500 8.8213 10.223 12.529 13.2983 15.7527 500 2.8559 4.073 6.2364 7.03057 9.43297 500 100 3.5702 4.7873 6.9507 7.74485 10.1473 500 9.2845 10.502 12.665 13.4591 15.8615 500 4.6156 10.615 13.934 20.8634 35.0863 500 11.044 17.044 20.363 27.292 41.5149 500 11.044 17.044 20.363 27.292 41.5149 500 11.117 17.073 20.39 27.309 41.5277 500 11.117 17.073 20.39 27.309 41.5277 500 4.9774 10.759 14.072 20.9485 35.1501 500 11.406 17.188 20.5 27.377 41.5787 500 3.4414 7.6352 9.9553 14.7989 24.741 500 3.5138 7.6641 9.9828 14.8159 24.7538 100 4.228 8.3784 10.697 15.5302 25.4681 500 9.9423 14.093 16.411 21.2445 31.1824 500 3.8032 7.7794 10.093 14.884 24.8048 500 100 4.218 8.3784 10.697 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2344 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2334 500 10.232 14.208 16.521 21.3125 31.2344 500 10.232 14.208 16.521 21.3125 31.2344 50		1	100	100	3.249	4.782	7.3009	8.13945	10.8179
500 100 3.7121 5.0607 7.4368 8.30028 10.9268 500 9.4264 10.775 13.151 14.0146 16.6411 60 100 2.9913 4.4389 6.7808 7.54383 10.0112 500 8.7056 10.153 12.495 13.2581 15.7255 50 2.3928 3.7943 6.1005 6.86975 9.32412 2 100 100 3.1071 4.5086 6.8147 7.58403 10.0384 500 8.8213 10.223 12.529 13.2983 15.7527 50 2.8559 4.073 6.2364 7.03057 9.43297 500 100 3.5702 4.7873 6.9507 7.74485 10.1473 500 9.2845 10.502 12.665 13.4591 15.8615 60 100 5.3299 11.329 14.649 21.5777 35.8006 70 1100 5.4023 11.358 14.676 21.5947<				500	8.9633	10.496	13.015	13.8537	16.5322
500 9.4264 10.775 13.151 14.0146 16.6411 0 100 2.277 3.7246 6.0665 6.82954 9.29691 100 2.9913 4.4389 6.7808 7.54383 10.0112 500 8.7056 10.153 12.495 13.2581 15.7255 50 2.3928 3.7943 6.1005 6.86975 9.32412 2 100 100 3.1071 4.5086 6.8147 7.58403 10.0384 500 8.8213 10.223 12.529 13.2983 15.7527 50 2.8559 4.073 6.2364 7.03057 9.43297 500 100 3.5702 4.7873 6.9507 7.74485 10.1473 500 9.2845 10.502 12.665 13.4591 15.8615 4 50 4.6156 10.615 13.934 20.8634 35.0863 9 100 5.32299 11.329 14.649 21.5777 35.8006 </td <td></td> <td></td> <td></td> <td>50</td> <td>2.9979</td> <td>4.3464</td> <td>6.7225</td> <td>7.58599</td> <td>10.2125</td>				50	2.9979	4.3464	6.7225	7.58599	10.2125
0 50 2.277 3.7246 6.0665 6.82954 9.29691 100 2.9913 4.4389 6.7808 7.54383 10.0112 500 8.7056 10.153 12.495 13.2581 15.7255 50 2.3928 3.7943 6.1005 6.86975 9.32412 500 8.8213 10.223 12.529 13.2983 15.7527 500 2.8559 4.073 6.2364 7.03057 9.43297 500 9.2845 10.502 12.665 13.4591 15.8615 500 9.2845 10.502 12.665 13.4591 15.8615 60 100 5.3299 11.329 14.649 21.5777 35.8006 70 100 5.3299 11.329 14.649 21.5777 35.8006 100 100 5.4023 11.358 14.676 21.5947 35.8134 500 11.041 17.073 20.39 27.309 41.5277 50 <td></td> <td></td> <td>500</td> <td>100</td> <td>3.7121</td> <td>5.0607</td> <td>7.4368</td> <td>8.30028</td> <td>10.9268</td>			500	100	3.7121	5.0607	7.4368	8.30028	10.9268
0 100 2.9913 4.4389 6.7808 7.54383 10.0112 500 8.7056 10.153 12.495 13.2581 15.7255 50 2.3928 3.7943 6.1005 6.86975 9.32412 100 100 3.1071 4.5086 6.8147 7.58403 10.0384 500 8.8213 10.223 12.529 13.2983 15.7527 50 2.8559 4.073 6.2364 7.03057 9.43297 500 100 3.5702 4.7873 6.9507 7.74485 10.1473 500 9.2845 10.502 12.665 13.4591 15.8615 60 100 5.3299 11.329 14.649 21.5777 35.8006 500 11.044 17.044 20.363 27.292 41.5149 60 100 5.4023 11.358 14.676 21.5947 35.8134 70 100 5.4023 11.358 14.676 21.5947 35.813				500	9.4264	10.775	13.151	14.0146	16.6411
500 8.7056 10.153 12.495 13.2581 15.7255 50 2.3928 3.7943 6.1005 6.86975 9.32412 500 100 3.1071 4.5086 6.8147 7.58403 10.0384 500 8.8213 10.223 12.529 13.2983 15.7527 500 100 3.5702 4.7873 6.9507 7.74485 10.1473 500 9.2845 10.502 12.665 13.4591 15.8615 50 4.6156 10.615 13.934 20.8634 35.0863 0 100 5.3299 11.329 14.649 21.5777 35.8006 500 11.044 17.044 20.363 27.292 41.5149 0 100 5.4023 11.358 14.676 21.5947 35.8134 500 11.117 17.073 20.39 27.309 41.5277 50 4.9774 10.759 14.072 20.9485 35.1501 10 <td></td> <td></td> <td></td> <td>50</td> <td>2.277</td> <td>3.7246</td> <td></td> <td>6.82954</td> <td>9.29691</td>				50	2.277	3.7246		6.82954	9.29691
100			0	100	2.9913	4.4389	6.7808	7.54383	10.0112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				500	8.7056	10.153	12.495	13.2581	15.7255
500 8.8213 10.223 12.529 13.2983 15.7527 50 2.8559 4.073 6.2364 7.03057 9.43297 500 100 3.5702 4.7873 6.9507 7.74485 10.1473 500 9.2845 10.502 12.665 13.4591 15.8615 50 4.6156 10.615 13.934 20.8634 35.0863 0 100 5.3299 11.329 14.649 21.5777 35.8006 500 11.044 17.044 20.363 27.292 41.5149 50 4.688 10.644 13.962 20.8804 35.0991 100 5.4023 11.358 14.676 21.5947 35.8134 500 11.117 17.073 20.39 27.309 41.5277 50 4.9774 10.759 14.072 20.9485 35.1501 50 11.406 17.188 20.5 27.377 41.5787 1 50 3.4414 7.6352 9.9553 14.7989 24.741 0 100		2		50	2.3928	3.7943	6.1005	6.86975	9.32412
500 2.8559 4.073 6.2364 7.03057 9.43297 500 100 3.5702 4.7873 6.9507 7.74485 10.1473 500 9.2845 10.502 12.665 13.4591 15.8615 0 100 5.3299 11.329 14.649 21.5777 35.8006 500 11.044 17.044 20.363 27.292 41.5149 50 4.688 10.644 13.962 20.8804 35.0991 100 100 5.4023 11.358 14.676 21.5947 35.8134 500 11.117 17.073 20.39 27.309 41.5277 50 4.9774 10.759 14.072 20.9485 35.1501 500 11.406 17.188 20.5 27.377 41.5787 1 50 3.4414 7.6352 9.9553 14.7989 24.741 0 100 4.1557 8.3495 10.67 15.5132 25.4553				100	3.1071	4.5086	6.8147	7.58403	10.0384
500 100 3.5702 4.7873 6.9507 7.74485 10.1473 500 9.2845 10.502 12.665 13.4591 15.8615 0 4.6156 10.615 13.934 20.8634 35.0863 0 100 5.3299 11.329 14.649 21.5777 35.8006 500 11.044 17.044 20.363 27.292 41.5149 0 100 5.4088 10.644 13.962 20.8804 35.0991 0 100 5.4023 11.358 14.676 21.5947 35.8134 500 11.117 17.073 20.39 27.309 41.5277 50 4.9774 10.759 14.072 20.9485 35.1501 500 11.406 17.188 20.5 27.377 41.5787 1 50 3.4414 7.6352 9.9553 14.7989 24.741 0 100 4.1557 8.3495 10.67 15.5132 25.4553 </td <td></td> <td>500</td> <td>8.8213</td> <td>10.223</td> <td>12.529</td> <td>13.2983</td> <td>15.7527</td>				500	8.8213	10.223	12.529	13.2983	15.7527
500 9.2845 10.502 12.665 13.4591 15.8615 50 4.6156 10.615 13.934 20.8634 35.0863 100 5.3299 11.329 14.649 21.5777 35.8006 500 11.044 17.044 20.363 27.292 41.5149 50 4.688 10.644 13.962 20.8804 35.0991 100 5.4023 11.358 14.676 21.5947 35.8134 500 11.117 17.073 20.39 27.309 41.5277 50 4.9774 10.759 14.072 20.9485 35.1501 500 11.406 17.188 20.5 27.377 41.5787 50 3.4414 7.6352 9.9553 14.7989 24.741 0 100 4.1557 8.3495 10.67 15.5132 25.4553 500 9.87 14.064 16.384 21.2275 31.1696 1 50 3.5138 7.6641				50	2.8559	4.073	6.2364	7.03057	9.43297
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				100	3.5702	4.7873	6.9507	7.74485	10.1473
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				500	9.2845	10.502	12.665	13.4591	15.8615
100 11.044 17.044 20.363 27.292 41.5149 50 4.688 10.644 13.962 20.8804 35.0991 100 100 5.4023 11.358 14.676 21.5947 35.8134 500 11.117 17.073 20.39 27.309 41.5277 500 100 5.6917 11.474 14.786 21.6627 35.8644 500 11.406 17.188 20.5 27.377 41.5787 100 4.1557 8.3495 10.67 15.5132 25.4553 500 9.87 14.064 16.384 21.2275 31.1696 100 4.228 8.3784 10.697 15.5302 25.4681 100 4.228 8.3784 10.697 15.5302 25.4681 500 9.9423 14.093 16.411 21.2445 31.1824 500 100 4.5175 8.4937 10.807 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334				50	4.6156	10.615	13.934	20.8634	35.0863
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0	100	5.3299	11.329	14.649	21.5777	35.8006
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				500	11.044	17.044	20.363	27.292	41.5149
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				50	4.688	10.644	13.962	20.8804	35.0991
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	100	100	5.4023	11.358	14.676	21.5947	35.8134
1				500	11.117	17.073	20.39	27.309	41.5277
1				50	4.9774	10.759	14.072	20.9485	35.1501
1			500	100	5.6917	11.474	14.786	21.6627	35.8644
100 4.1557 8.3495 10.67 15.5132 25.4553 500 9.87 14.064 16.384 21.2275 31.1696 50 3.5138 7.6641 9.9828 14.8159 24.7538 100 100 4.228 8.3784 10.697 15.5302 25.4681 500 9.9423 14.093 16.411 21.2445 31.1824 50 3.8032 7.7794 10.093 14.884 24.8048 500 100 4.5175 8.4937 10.807 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334				500	11.406	17.188	20.5	27.377	41.5787
1 500 9.87 14.064 16.384 21.2275 31.1696 50 3.5138 7.6641 9.9828 14.8159 24.7538 100 100 4.228 8.3784 10.697 15.5302 25.4681 500 9.9423 14.093 16.411 21.2445 31.1824 50 3.8032 7.7794 10.093 14.884 24.8048 500 100 4.5175 8.4937 10.807 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334	1			50	3.4414	7.6352	9.9553	14.7989	24.741
1 50 3.5138 7.6641 9.9828 14.8159 24.7538 100 4.228 8.3784 10.697 15.5302 25.4681 500 9.9423 14.093 16.411 21.2445 31.1824 50 3.8032 7.7794 10.093 14.884 24.8048 500 100 4.5175 8.4937 10.807 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334			0	100	4.1557	8.3495	10.67	15.5132	25.4553
1 100 100 4.228 8.3784 10.697 15.5302 25.4681 500 9.9423 14.093 16.411 21.2445 31.1824 500 3.8032 7.7794 10.093 14.884 24.8048 500 100 4.5175 8.4937 10.807 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334				500	9.87	14.064	16.384	21.2275	31.1696
1 500 9.9423 14.093 16.411 21.2445 31.1824 50 3.8032 7.7794 10.093 14.884 24.8048 500 100 4.5175 8.4937 10.807 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334				50	3.5138	7.6641	9.9828	14.8159	24.7538
50 3.8032 7.7794 10.093 14.884 24.8048 500 100 4.5175 8.4937 10.807 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334		1	100	100	4.228	8.3784	10.697	15.5302	25.4681
500 100 4.5175 8.4937 10.807 15.5983 25.5191 500 10.232 14.208 16.521 21.3125 31.2334				500	9.9423	14.093	16.411	21.2445	31.1824
500 10.232 14.208 16.521 21.3125 31.2334				50	3.8032	7.7794	10.093	14.884	24.8048
500 10.232 14.208 16.521 21.3125 31.2334			500	100	4.5175	8.4937	10.807	15.5983	25.5191
2 50 3.2142 7.050 0.1950 12.6262 22.7405				500	10.232	14.208	1	21.3125	
2 30 3.2143 7.039 9.1639 13.0202 22.7403		2		50	3.2143	7.059	9.1859	13.6262	22.7405

			100	3.9286	7.7732	9.9002	14.3405	23.4548
			500	9.6429	13.488	15.614	20.0548	29.1691
			50	3.2867	7.0878	9.2134	13.6432	22.7532
		100	100	4.001	7.8021	9.9277	14.3575	23.4675
			500	9.7153	13.516	15.642	20.0718	29.1818
			50	3.5762	7.2032	9.3233	13.7112	22.8043
		500	100	4.2904	7.9175	10.038	14.4255	23.5186
			500	10.005	13.632	15.752	20.1398	29.2328
			50	10.469	17.242	38.886	49.3226	54.2873
		0	100	11.183	17.957	39.6	50.0369	55.0016
			500	16.897	23.671	45.314	55.7512	60.7159
			50	10.498	17.26	38.896	49.3306	54.2941
	0	100	100	11.212	17.975	39.61	50.0449	55.0084
			500	16.926	23.689	45.325	55.7592	60.7227
		500	50	10.613	17.332	38.936	49.3627	54.3213
			100	11.328	18.046	39.65	50.077	55.0356
			500	17.042	23.761	45.365	55.7913	60.7499
		0	50	7.5328	12.268	27.397	34.6925	38.1629
			100	8.2471	12.982	28.111	35.4067	38.8772
			500	13.961	18.696	33.826	41.121	44.5915
			50	7.5618	12.286	27.407	34.7005	38.1697
2	1	100	100	8.276	13.1200	28.121	35.4148	38.884
			500	13.99	18.714	33.836	41.1291	44.5983
			50	7.6775	12.358	27.447	34.7326	38.1969
		500	100	8.3918	13.072	28.162	35.4469	38.9112
			500	14.106	18.786	33.876	41.1612	44.6255
			50	6.9651	11.306	25.175	31.8633	35.0448
		0	100	7.6794	12.02	25.89	32.5776	35.7591
			500	13.394	17.734	31.604	38.2919	41.4734
			50	6.994	11.324	25.185	31.8713	35.0516
	2	100	100	7.7083	12.038	25.9	32.5856	35.7659
			500	13.423	17.752	31.614	38.2999	41.4802
			50	7.1098	11.396	25.226	31.9034	35.0788
		500	100	7.8241	12.11	25.94	32.6177	35.7931
			500	13.538	17.824	31.654	38.332	41.5074

Table 4.5. λ of clamped embedded plate under biaxial loading

a/b	K	kw	kp	λ_1	λ_2	λ_3	λ_4
0.5	0	0	50	8.3694	9.4361	12.4968	17.0068
			100	9.0837	10.15	13.2111	17.7211
			500	14.798	15.865	18.9254	23.4354
		100	50	8.4566	9.4982	12.5405	17.0348

			100	9.1709	10.213	13.2548	17.7491
			500	14.885	15.927	18.9691	23.4634
			50	8.8041	9.7467	12.7163	17.1466
		500	100	9.5184	10.461	13.4306	17.8609
			500	15.233	16.175	19.1449	23.5752
			50	6.0654	6.811	8.9505	12.1031
		0	100	6.7796	7.5253	9.66479	12.8174
			500	12.494	13.24	15.3791	18.5317
			50	6.1526	6.8731	8.99425	12.1311
	1	100	100	6.8669	7.5874	9.70853	12.8453
			500	12.581	13.302	15.4228	18.5596
			50	6.4992	7.1216	9.17046	12.2429
		500	100	7.2135	7.8359	9.88475	12.9572
			500	12.928	13.55	15.599	18.6715
			50	5.6198	6.3034	8.26472	11.1548
		0	100	6.3341	7.0177	8.97901	11.8691
			500	12.048	12.732	14.6933	17.5834
		100	50	5.707	6.3655	8.30848	11.1828
	2		100	6.4213	7.0798	9.02276	11.8971
			500	12.136	12.794	14.737	17.6114
			50	6.0534	6.614	8.48483	11.2946
		500	100	6.7677	7.3282	9.19912	12.0089
			500	12.482	13.043	14.9134	17.7232
			50	11.072	18.961	20.1861	27.1847
		0	100	11.786	19.675	20.9004	27.899
			500	17.501	25.39	26.6147	33.6133
			50	11.128	18.985	20.2117	27.201
	0	100	100	11.842	19.699	20.9259	27.9152
			500	17.556	25.414	26.6402	33.6295
			50	11.35	19.081	20.3137	27.2659
		500	100	12.064	19.795	21.028	27.9802
			500	17.779	25.509	26.7423	33.6945
1			50	7.9545	13.469	14.3255	19.2177
1		0	100	8.6688	14.184	15.0398	19.9319
			500	14.383	19.898	20.7541	25.6462
1			50	8.0102	13.493	14.351	19.2339
	1	100	100	8.7245	14.207	15.0653	19.9482
			500	14.439	19.922	20.7796	25.6625
			50	8.2324	13.589	14.4531	19.2988
		500	100	8.9467	14.303	15.1673	20.0131
			500	14.661	20.017	20.8816	25.7274
	2	0	50	7.3517	12.407	13.1922	17.677
	2		100	8.066	13.122	13.9065	18.3913

			500	13.78	18.836	19.6208	24.1056
		100	50	7.4073	12.431	13.2177	17.6932
			100	8.1216	13.145	13.932	18.4075
			500	13.836	18.86	19.6463	24.1218
		500	50	7.6295	12.527	13.3197	17.7582
			100	8.3438	13.241	14.034	18.4725
			500	14.058	18.955	19.7483	24.1867
	0	0	50	31.335	34.788	47.8443	70.8599
			100	32.049	35.502	48.5586	71.5742
			500	37.763	41.216	54.2729	77.2884
		100	50	31.357	34.802	47.8553	70.8675
			100	32.071	35.517	48.5696	71.5818
			500	37.785	41.231	54.2838	77.2961
		500	50	31.444	34.862	47.899	70.898
			100	32.158	35.576	48.6133	71.6123
			500	37.872	41.291	54.3275	77.3266
	1	0	50	22.119	24.532	33.6591	49.7475
			100	22.833	25.247	34.3734	50.4618
			500	28.547	30.961	40.0877	56.176
		100	50	22.14	24.547	33.6701	49.7551
2			100	22.855	25.261	34.3844	50.4694
			500	28.569	30.976	40.0986	56.1837
		500	50	22.228	24.607	33.7138	49.7856
			100	22.942	25.321	34.4281	50.4999
			500	28.656	31.035	40.1424	56.2142
	2	0	50	20.336	22.549	30.916	45.6648
			100	21.051	23.263	31.6303	46.3791
			500	26.765	28.978	37.3446	52.0934
		100	50	20.358	22.564	30.927	45.6724
			100	21.072	23.278	31.6413	46.3867
			500	26.787	28.992	37.3555	52.101
		500	50	20.445	22.623	30.9707	45.7029
			100	21.16	23.338	31.685	46.4172
			500	26.874	29.052	37.3993	52.1315

4.3.2. Temperature Effect

Figure 4.1 Variation of λ of embedded plate for different a/b with k=1, k_w =50 and k_p =100, ΔT =300.

Figure 4.2. Variation of λ of embedded plate for different k with a/b=2, k_w =50 and k_p =100, ΔT =300.

Figure 4.3. Variation of λ of embedded plate with k_w for with k=1, a/b=2 and $k_p=100$, $\Delta T=300$.

Figure 4.4 Variation of λ of embedded plate with k_w for k=1, a/b=2 and $k_w=100$, $\Delta T=300$.

Figure 4.5. Variation of λ of embedded plate with ΔT for a/b=2, k=1, k_w=50 and k_p=100. In this section, effect of temperature on buckling parameter (λ) and frequency parameter of FGP in are plotted in figures 4.1 – 4.5. CCCC and SSSS edge constraints are taken into account for the analysis. Effect of the thermal environment are summarized as.

- 1. Irrespective of the edge support and thermal state, λ of an embedded plate decrease with an increase in the aspect ratio. The reason is that the plate loses it's stiffness in a thermal environment.
- The second nondimensional buckling load coincides with the third for a FG square plate irrespective of the thermal condition but no coincidence can be observed for natural frequencies of rectangular FG plates.

Chapter 5

Conclusions

The thesis is concerned with the buckling of FG rectangular plate resting on the elastic foundation. The plate has four edges with simply supported, clamped, free and their combination. The tedious task of solving the infinite series of trigonometric functions for edge constraints is obviated by the Rayleigh-Ritz and orthogonal algebraic polynomials. These polynomials are capable of handling any configurations of edge constraints simultaneously and efficiently. Also, there is no requirement of generation of mesh, and thus large degrees of freedom can be attained.

The buckling solution constitute of different solution combination depending on various boundary condition, aspect ratios, effect of nano scale, the power law exponent, the temperature and foundation and the influence of these factors are presented in graphs. It is found that in thermal environment the less buckling load required as compared with normal environment, it is obvious because on heating the material getting soft. Our research should be useful for the engineers designing the plated walls under heating environment and subjected to various boundary conditions.

Furthermore, from this analysis, the following can be concluded:

- With increasing a/b of plate, the thermal buckling load of plate increases.
- The 2nd and 3rd mode of mechanical buckling parameters are same for the case of square plate under clamped and simply supported boundary condition.
- Effect of temperature rise is nominal
- On increasing k buckling load decreases.

References

Bryan (1891), On the Stability of a Plane Plata under Thrusts in its own Plane, with Applications to the Buckling of the Sides of a Ship.

Timoshenko, S. P., and Gere, J. M. (1961). Theory of elastic stability, McGraw-Hill, New York.

Bulson, P. S. (1970). The stability of flat plates, Chatto and Windus, London

A.Chakraborty (2003), A new beam finite element for the analysis of a functionally graded material.

Zhang (2013), Nonlinear bending analysis of FGM beam based on physical neutral surface and high order shear deformation theory.

I Ramu and S.C. Mohanty (2014) Buckling analysis of rectangular functionally graded material plates under uniaxial and biaxial compression load. Procedia Engineering 86 (2014) 748 – 757

B. Sidda Reddy,1 J. Suresh Kumar,2 C. Eswara Reddy,3 and K. Vijaya Kumar Reddy2 (2013) Buckling Analysis of Functionally Graded Material Plates Using Higher Order Shear Deformation Theory.

R. Javaheri & M. R. Eslami (2002): Thermal buckling of functionally graded plates based on higher order theory, Journal of Thermal Stresses, 25:7, 603-625

Pradhan and Chakraverty (2013), Free vibration of Euler and Timoshenko functionally graded beam by Rayleigh-Ritz method.

Amin Anjomshoa (2012), Application Ritz functions in buckling analysis of embedded orthotropic circular and elliptical micro/nano-plates based on nonlocal elasticity theory. *Meccanica* (2013) 48:1337-1353

Lu P, He LH, Lee HP, Lu C (2006) Thin plate theory including surface effects. Int J Solid Struct 43:4631-4647

Ansari, R., Sahmani, S., Rouhi, H. (2011a) Axial buckling analysis of single-walled carbon nanotubes in thermal environments via the rayleigh-ritz technique, *Computational Materials Science*, 50, 3050-3055

E Sfahani (2014), Vibration of temperature-dependent pre/post buckling of FGM beam over a nonlinear hardening elastic foundation.

Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. *Int J Solids Struct* 39:2731-2743

Hossini-Hashemi (2008), Exact solution for linear buckling of rectangular Mindlin plates.

V. Piscopo (2010), Refined Buckling Analysis of Rectangular Plates under Uniaxial and Biaxial Compression.

Chee-Kiong Chin, Faris G. A. AI-Bermani, and SritawatKitipornchai (1993), Finite Element Method for Buckling Analysis of Plate Structures.

MeisamMohammadi, Ali Reza Saidi, EmadJomehzadeh (2010), Levy Solution for Buckling Analysis of Functionally Graded Rectangular Plates.

Xiang, Y., Wang, C. M., Wang, C. Y. and Su G. H. (2003). "Ritz buckling of rectangular plates with internal hinge." *Journal of Engineering Mechanics, ASCE*. Vol. 129, No. 6, 683-688.

Kyung-Su Na, Ji-Hwan Kim (2004), Three-dimensional thermal buckling analysis of functionally graded materials.

B.A.Samsam Shariat and M.R.Eslami (2006), Thermomechanical stability of imperfect functionally Graded plate based on the third order theory.

Hashemi, S. H., Samaei, A. T. (2011) Buckling analysis of micro/nanoscale plates via nonlocal elasticity theory, *Physica E*, 43, 1400-1404.

Malekzadeh, P., Setoodeh, A. R., Beni, A. (2011b) Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium, Composite Structures, 93, 2083-2089.

Zenkour, A. M., Sobhy, M. (2013) Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler-Pasternak elastic substrate medium, Physica E, 53, 251-259.

Ugural, A. C. (1999). Stress in Plates and Shells. McGraw-Hill, New York.

Timoshenko, S. and Woinowsky-Krieger, S. (1959). *Theory of Plates and Shells*. McGraw-Hill, NewYork.

X Zhao, Y.Y.Leek, M.Liew (2004), Mechanical and yhermal buckling analysis of functionall graded plates.

Mohammad Talha and B.N.Singh (2011), Thermo-Mechanical buckling analysis of finite element modeled functionally graded ceramic-metal plates.

Pradhan and Phadikar (2009), Bending and vibration analyses of nonhomogeneous nanotubes usibg GDQ and nonlocal elasticity theory.

T.Murmu, S.Adhikari (2010), Nonlocal effects in the longitudinal vibration of double-nanorod systems.

Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. *Nanotechnology* 18(7):075702

Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. *Int J Eng Sci* 45:288-307

J.N.Reddy, Sami El-Borgi (2014), Eringen's nonlocal theories of beams accounting for moderate rotations.

Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

Submission author: Ayush Yadav

Assignment title: Similarity

Submission title: M.Tech Thesis

File name: ilovepdf_merged_1.pdf

File size: 1.46M

Page count: 42

Word count: 9,376

Character count: 41,648

Submission date: 12-May-2020 03:11PM (UTC+0700)

Submission ID: 1322406431

BUCKLING ANALYSIS OF FUNCTIONALLY GRADED ${\bf PLATE}$

BY

AYUSH YADAV (Admission No. 18MT0071)

In Partial Fulfillment for the award of the degree of
MASTER OF TECHNOLOGY
IN
MECHANICAL ENGINEERING
(Specialization: Machine Design)

Project Thesis Submitted to
DEPARTMENT OF MECHANICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY
(INDIAN SCHOOL OF MINES), DHANBAD

May, 2020

M.Tech Thesis

ORIGINALITY REPORT

9%
SIMILARITY INDEX

8%

7%

INTERNET SOURCES

PUBLICATIONS

STUDENT PAPERS

PRIMARY SOURCES

1	etd.lib.metu.edu.tr
	Internet Source

Karan K. Pradhan, Snehashish Chakraverty. "Free vibration of FG Lévy plate resting on elastic foundations", Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics, 2016

Publication

ethesis.nitrkl.ac.in Internet Source

worldscientific.com Internet Source

Amin Anjomshoa. "Application of Ritz functions 5 in buckling analysis of embedded orthotropic circular and elliptical micro/nano-plates based on nonlocal elasticity theory", Meccanica, 2012 Publication

Piyush Pratap Singh, Mohammad Sikandar Azam, Vinayak Ranjan. "Size-dependent natural frequencies of functionally graded plate with out

1 %

of plane material inhomogeneity using Eringen's theory of nonlocal elasticity", Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019

Publication

7	Mohammad Reza Barati, Ashraf M. Zenkour, Hossein Shahverdi. "Thermo-mechanical buckling analysis of embedded nanosize FG plates in thermal environments via an inverse cotangential theory", Composite Structures, 2016 Publication	1%
8	Submitted to University of Hertfordshire Student Paper	<1%
9	journals.sagepub.com Internet Source	<1%
10	Solid Mechanics and Its Applications, 2005. Publication	<1%
11	shellbuckling.com Internet Source	<1%
12	quod.lib.umich.edu Internet Source	<1%
13	www.scribd.com Internet Source	<1%