Algebra 2R, list 8.

All mappings/functions are R-linear (R-homomorphisms), M, N, P, Q are R-modules. R is a commutative ring with $1 \neq 0$. Homework: as usual.

- 1. (a)— Assume that $f: M \to N$ is an epimorphism. Prove that f splits $\iff \exists g: N \to M, \ fg = id_N.$
 - (b) Assume $g: M \to N$ is a monomorhism. Prove that g(M) is a direct summand of module $N \iff \exists f: N \to M, \ fg = id_M$.
- 2. Prove that the following conditions are equivalent:
 - (a) For every epimorphism $f: M \to N$ of arbitrary modules M, N and every $g: P \to N$ there is an $h: P \to M$ such that fh = g.
 - (b) Module P is projective.
 - (c) There is a module L such that $P \oplus L$ is free.

(hint: for a proof of (c) \Rightarrow (a) consider projection $p: P \oplus L \to P$)

- 3. Prove that the following conditions are equivalent:
 - (a) Module Q is injective.
 - (b) For every monomorphism $f: M \to N$ of arbitrary modules M, N and homomorphism $g: M \to Q$ there is an $h: N \to Q$ such that hf = g.

(hint: in a proof of (a) \Rightarrow (b) consider the module $M = Q \oplus N/L$, where L is a submodule of $Q \oplus N$ generated by $\{(g(m), -f(m)) : m \in M\}$).

- 4. (a) Prove that the module $M = \bigoplus_{i \in I} M_i$ is projective \iff every M_i is projective.
 - (b) Prove that the module $M = \prod_{i \in I} M_i$ is injective \iff every M_i is inective.
- 5. Assume that $\{m_1, \ldots, m_n\}$ is a basis of a free R-module M and

$$m_j' = \sum_i r_{ij} m_i,$$

where $r_{ij} \in R$ for i, j = 1, ..., n. Prove that the set $\{m'_1, ..., m'_n\}$ is a basis of $M \iff \det[r_{ij}]_{n \times n}$ is invertible in R.

- 6. Assume K_1, K_2 are fields and $R = K_1 \times K_2$ (ring product).
 - (a) Prove that every R-module is of the form $V_1 \times V_2$, where V_i is a vector space over K_i (i = 1, 2) and for $(k_1, k_2) \in R$, $(k_1, k_2) \cdot (v_1, v_2) = (k_1v_1, k_2v_2)$.
 - (b) Prove that every R-module is projective. Which R-modules are free?
- 7. (a)—Assume M is a submodule of N and $n \in N$. Prove that the set $I = \{r \in R : rn \in M\}$ is an ideal in R.
 - (b) Prove that the R-module Q is injective \iff for every ideal $I \subset R$ and R-homomorphism $f: I \to Q$, f extends to an R-homomorphism $R \to Q$. (hint: To prove \iff use (a))
 - (c) Conclude from (b) that if R is PID, then a module Q jest injektywny

$$\iff \forall r \in R \setminus \{0\} \forall m \in Q \exists m' \in Q, \ rm' = m.$$

(in paertocuar an abelian group G is an injective \mathbb{Z} -module $\iff G$ is divisible)

8. * Prove that every module M embeds into an injective R-module. (forsy do it for R that is PID, use the previous problem)

(hint: for an ideal $I \subset R$ and $f: I \to M$ consider the module $M \oplus R/L$, where L is generated by (f(i), -i) for $i \in I$).

One can prove that there is a smallest injective R-module containing M, it is also unique up to isomorphism. It io called the injective hull of M.

One can prove that a nmodule M is injective $\iff M$ is existentially closed in the class of R-modules.