CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 17 OTTOBRE 2013

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Sia $F = \mathcal{P}_f(\mathbb{N})$ l'insieme delle parti finite di \mathbb{N} , e sia f l'applicazione

$$f \colon X \in F \longmapsto \begin{cases} \varnothing, & \text{se } X = \varnothing \\ X \smallsetminus \{\min X, \max X\}, & \text{se } X \neq \varnothing \end{cases} \in F.$$

- (i) f è iniettiva? f è suriettiva?
- (ii) Caratterizzare gli $X \in F$ tali che ...
 - (a) ... $f(X) = \emptyset$;
 - (b) ... |X| = |f(X)|;
 - (c) ... |X| = |f(X)| + 1.

Sia \mathcal{R} la relazione d'ordine in F definita da: $\forall X, Y \in F$

$$X \mathcal{R} Y \iff (X = Y \vee f(X) \subset f(Y)).$$

- (iii) \mathcal{R} è totale?
- (iv) Caratterizzare gli eventuali elementi minimali, massimali, minimo, massimo in (F, \mathcal{R}) .

Posto $S = \{1, 2, 3, 4\}$, studiare la relazione d'ordine indotta da \mathcal{R} su $\mathcal{P}(S)$:

- (v) elencare gli eventuali elementi minimali, massimali, minimo, massimo in $(\mathcal{P}(S), \mathcal{R})$;
- (vi) $(\mathcal{P}(S), \mathcal{R})$ è un reticolo?

Posto $T = \{\emptyset, S\} \cup \{S \setminus \{x\} \mid x \in S\}$, studiare la relazione d'ordine indotta da \mathcal{R} su T:

- (vii) disegnare il diagramma di Hasse di (T, \mathcal{R}) ;
- (viii) (T, \mathcal{R}) è un reticolo?

Esercizio 2. In $\mathbb{Q}^* \times \mathbb{Q}$ si definisca l'operazione * ponendo, per ogni $(a,b), (c,d) \in \mathbb{Q}^* \times \mathbb{Q}$,

$$(a,b)*(c,d) = (ac,ad+b).$$

- (i) *è commutativa? *è associativa?
- (ii) $(\mathbb{Q}^* \times \mathbb{Q}, *)$ ha elemento neutro? Nel caso lo abbia, dire quali elementi di $\mathbb{Q}^* \times \mathbb{Q}$ sono invertibili rispetto a *, descrivendone esplicitamente gli inversi.
- (iii) $(\mathbb{Q}^* \times \mathbb{Q}, *)$ è un semigruppo?, un monoide?, un gruppo?
- (iv) Per ciascuno di $\mathbb{Z}^* \times \mathbb{Q}$, $\mathbb{Q}^* \times \mathbb{Z}$ e $\{1, -1\} \times \mathbb{Z}$ si stabilisca se è o meno una parte chiusa in $(\mathbb{Q}^* \times \mathbb{Q}, *)$ e, nel caso lo sia, dedurre dai risultati precedenti che genere di struttura costituisca con l'operazione indotta da *.

Esercizio 3. Si determini l'insieme degli interi n tali che $10 \le n \le 18$ e l'equazione congruenziale $2nx \equiv_{108} 6$ abbia soluzioni. Si determini l'insieme di tutte le soluzioni nel caso in cui n sia il minimo tale intero.

Esercizio 4. Per definizione, se $f \in \mathbb{Q}[x]$, cosa significa dire che un polinomio $g \in \mathbb{Q}[x]$ è associato a f in $\mathbb{Q}[x]$? È vero che ogni polinomio non nullo in $\mathbb{Q}[x]$ ha (in $\mathbb{Q}[x]$) un associato di coefficiente direttore 5/2?

Esiste o non esiste (se esiste, fornire un esempio):

- (i) $f \in \mathbb{Q}[x]$ tale che f(1) = f(2) = f(3) = 0, f abbia grado 4 ed f abbia in $\mathbb{Q}[x]$ un divisore irriducibile di secondo grado?
- (ii) $f \in \mathbb{Q}[x]$, di grado 9, i cui fattori irriducibili in $\mathbb{Q}[x]$ abbiano tutti grado pari?
- (iii) $f \in \mathbb{Q}[x]$, di grado 5, privo di radici in \mathbb{Q} , che abbia in $\mathbb{Q}[x]$ un divisore irriducibile di grado 4?
- (iv) $f \in \mathbb{Q}[x]$, di grado 5, che abbia 0 come unica radice in \mathbb{Q} e che abbia in $\mathbb{Q}[x]$ un divisore irriducibile di grado 3?