

INSTITUTO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE COMPUTAÇÃO

UML – Diagrama de Transição de Estados (DTE)

Eduardo Kinder Almentero ekalmentero@gmail.com

Introdução

- É um diagrama comportamental
 - Enfatizam o que deve acontecer no sistema que está sendo modelado.
 - Como ilustram o comportamento de um software, são muito utilizados para descrever as funcionalidades, ou comportamentos específicos.

Introdução

- O diagrama mais antigo que faz parte da UML
 - Foi criado nos anos 6o;
- Ferramenta útil para mostrar o ciclo de vida de um objeto;
- Em um sistema real, **somente poucas classes** demandam o uso de um DTE.
 - Classes críticas;
 - Classes que se comportam de forma diferente em função de transições de estados;
 - Estados relevantes para compreensão do funcionamento do sistema;

Notação Básica

Estados

- Os estados são momentos no ciclo de vida de um objeto;
 - São determinados pelo valor que um ou mais de seus atributos assume.
- Esses estados determinam que ações podem ser feitas sobre o objeto;
- Exemplo
 - Um ventilador simples pode ter os estados desligado e ligado;
 - Um ventilador mais elaborado pode ter os estados desligado, ventilando fraco, ventilando médio e ventilando forte.

Notação Gráfica: Estado Inicial e Final

- Estado inicial
 - Ponto de início do diagrama
 - Não aceita transições de entrada

- Estado final
 - Ponto de término do diagrama
 - Não aceita transições de saída

Notação Gráfica: Estados

Um estado caracteriza um determinado instante (momento) do ciclo de vida do objeto

É usual que o nome do estado seja um substantivo ou um verbo (gerúndio) acompanhado de um substantivo.

Efeitos

- É possível abordar os efeitos do a partir da perspectiva de requisitos (análise) e técnica (projeto)
- Em análise (requisitos)
 - Os efeitos de entrada, execução e de saída são descritos em linguagem natural
- Em projeto (aspectos técnicos considerados)
 - Os efeitos de entrada, execução e de saída são transformados em operações

Análise

Corrigindo

entry / seleciona o texto do / verifica ortografia exit / salva a informação

Projeto

Corrigindo

entry / text.selectAll()
do / text.checkSpell()
exit / text.save()

- As transições determinam a troca de estados em função de um determinado evento;
- Exemplo
 - A partir do estado desligado, caso o botão seja apertado, o ventilador vai para o estado ventilando forte
 - A partir do estado ventilando forte, caso o botão seja apertado, o ventilador vai para o estado ventilando médio
 - A partir do estado ventilando médio, caso o botão seja apertado, o ventilador vai para o estado ventilando fraco
 - A partir do estado ventilando fraco, caso o botão seja apertado, o ventilador vai para o estado desligado

Exemplo simples: ventilador

- As transições são representadas por linhas, que podem conter (versão completa):
 - Gatilho (trigger)
 - Condição de guarda (guard)
 - Efeito (*effect*)
- Sintaxe: GATILHO [CONDIÇÃO] / EFEITO

- Fm análise
 - Utilização de linguagem natural para gatilhos, condição de guarda e efeitos
- Em projeto
 - Gatilhos transformados em eventos
 - Condições de guarda transformadas em expressões booleanas
 - Efeitos transformados em operações

Estados compostos

- Para viabilizar uma melhor organização do diagrama, podem ser criados estados compostos
- Estados compostos permitem a descrição de um diagrama interno de transição de estados

Escolha

 É exibida como um losango, com uma transação chegando e duas ou mais saindo;

 Representa um desvio dinâmico, ou seja, quando só é possível determinar o caminho em tempo de

execução.

Ponto de junção

- São utilizados para agrupar múltiplas transições.
- Representam desvio condicional estático, ou seja, o caminho é determinado em tempo de projeto.
 - A escolha representa um desvio dinâmico.

Concorrência

 Um estado pode ser dividido em duas regiões, contendo sub estados que executam concorrentemente.

Observações

- Faça inicialmente um diagrama simples, e complique somente se for necessário
- O que aparece em quase todo diagrama
 - Estados com nome
 - Transições com gatilho
- Exemplo simples no nível de análise para um condicionador de ar:

Exemplo

• Funcionamento de uma porta.

- A porta pode estar em dos três estados: "aberta", "fechada" ou "trancada".
- O objeto pode responder aos eventos: fechar, abrir, trancar e destrancar.
- Nem todos os eventos são válidos em todos os estados.

Exercício

- Matrícula
 - na Universidade
 - em disciplina
- Pedidos em e-commerce tradicional

Ferramentas de Modelagem

- StarUML (avaliação por tempo indefinido)
 - https://staruml.io/
- Draw.io
 - https://app.diagrams.net/
 - Web

Referências

- Boock, G. and Rumbaugh, J. The Unified Modeling Language User Guide . Addison-Wesley, 1999
- Arlow, J. and Neustadt, I. UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design, 2nd Edition, The Addison-Wesley Object Technology Series, 2005.
- Rumbaugh, J.; Jacobson, I. and Booch, G. The Unified Modeling Language Reference Manual, 2nd Edition, The Addison-Wesley Object Technology Series, 2004.
- Boock, G.; Rumbaugh, J. and Jacobson, I; Unified Modeling Language User Guide, 2nd Edition, The Addison-Wesley Object Technology Series, 2005.
- Jacobson, I; Boock, G. and Rumbaugh, J., Unified Software Development Process, Addison-Wesley, Janeiro 1999.
- Larman, C. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design Prentice-Hall, New Jersey - USA, 1997

INSTITUTO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE COMPUTAÇÃO

Perguntas?