ST758, Homework 2

Due Tuesday, Sep 23, 2014

- 1. Show the following facts about triangular matrices. A unit triangular matrix is a triangular matrix with all diagonal entries being 1.
 - (a) The product of two upper (lower) triangular matrices is upper (lower) triangular.
 - (b) The inverse of an upper (lower) triangular matrix is upper (lower) triangular.
 - (c) The product of two unit upper (lower) triangular matrices is unit upper (lower) triangular.
 - (d) The inverse of a unit upper (lower) triangular matrix is unit upper (lower) triangular.
 - (e) An orthogonal upper (lower) triangular matrix is diagonal.
- 2. Suppose matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has entries $a_{ij} = i(n j + 1)$ and matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ has entries $b_{ij} = \sum_{k=1}^{i} \sigma_k^2$ for $j \geq i$ and $\sigma_k^2 \geq 0$. Show that \mathbf{A} and \mathbf{B} are positive semidefinite.
- 3. (a) Show the Sherman-Morrison formula

$$(A + uu^{\mathsf{T}})^{-1} = A^{-1} - \frac{1}{1 + u^{\mathsf{T}}A^{-1}u}A^{-1}uu^{\mathsf{T}}A^{-1},$$

where $A \in \mathbb{R}^{n \times n}$ is a nonsingular matrix and $u \in \mathbb{R}^n$. This formula supplies the inverse of the symmetric, rank-one perturbation of A.

(b) Show the Woodbury formula

$$(A + UV^{\mathsf{T}})^{-1} = A^{-1} - A^{-1}U(I_m + V^{\mathsf{T}}A^{-1}U)^{-1}V^{\mathsf{T}}A^{-1}$$

where $A \in \mathbb{R}^{n \times n}$ is nonsingular, $U, V \in \mathbb{R}^{n \times m}$, and I_m is the $m \times m$ identity matrix. In many applications m is much smaller than n. Woodbury formula generalizes Sherman-Morrison and is valuable because the smaller matrix $I_m + V^{\mathsf{T}} A^{-1} U$ is typically much easier to invert than the larger matrix $A + UV^{\mathsf{T}}$.

(c) Show the binomial inversion formula

$$(A + UBV^{\mathsf{T}})^{-1} = A^{-1} - A^{-1}U(B^{-1} + V^{\mathsf{T}}A^{-1}U)^{-1}V^{\mathsf{T}}A^{-1},$$

where \boldsymbol{A} and \boldsymbol{B} are nonsingular.

(d) Show the identity

$$\det(\boldsymbol{A} + \boldsymbol{U}\boldsymbol{V}^{\mathsf{T}}) = \det(\boldsymbol{A})\det(\boldsymbol{I}_m + \boldsymbol{V}^{\mathsf{T}}\boldsymbol{A}^{-1}\boldsymbol{U}).$$

This formula is useful for evaluating the density of a multivariate normal with covariance matrix $A + UU^{\mathsf{T}}$.

(e) Consider the $n \times n$ matrix

$$\boldsymbol{M} = \begin{pmatrix} a & b & \cdots & b \\ b & a & \cdots & b \\ \vdots & \vdots & \vdots & \vdots \\ b & b & \cdots & a \end{pmatrix}.$$

Show that M has inverse and determinant

$$\boldsymbol{M}^{-1} = \frac{1}{a-b} \left[\boldsymbol{I}_n - \frac{b}{a+(n-1)b} \boldsymbol{1}_n \boldsymbol{1}_n^T \right]$$
$$\det(\boldsymbol{M}) = (a-b)^{n-1} [a+(n-1)b].$$

- 4. Write an R function, with interface solve.power(A, k, b), to solve linear equation $A^k x = b$, where $A \in \mathbb{R}^{n \times n}$ is non-singular and $b \in \mathbb{R}^n$. Test your function in simulated data.
- 5. Consider a mixed effects model

$$y_i = \boldsymbol{x}_i^t \boldsymbol{\beta} + \boldsymbol{z}_i^t \boldsymbol{\gamma} + \epsilon_i, \quad i = 1, \dots, n,$$

where ϵ_i are independent normal errors $N(0, \sigma_0^2)$, $\boldsymbol{\beta} \in \mathbb{R}^p$ are fixed effects, and $\boldsymbol{\gamma} \in \mathbb{R}^q$ are random effects assumed to be $N(\mathbf{0}_q, \sigma_1^2 \boldsymbol{I}_q)$ independent of ϵ_i . Show that $\boldsymbol{y} \sim N(\boldsymbol{X}\boldsymbol{\beta}, \sigma_0^2 \boldsymbol{I}_n + \sigma_1^2 \boldsymbol{Z} \boldsymbol{Z}^t)$, where $\boldsymbol{y} \in \mathbb{R}^n$, $\boldsymbol{X} \in \mathbb{R}^{n \times p}$, and $\boldsymbol{Z} \in \mathbb{R}^{n \times q}$. Write an R function, with interface dmvnorm.lowrank(y, mu, Z, sigma0, sigma1, log = FALSE), that evaluates the (log)-density of a multivariate normal with mean $\boldsymbol{\mu}$ and covariance $\sigma_0^2 \boldsymbol{I} + \sigma_1^2 \boldsymbol{Z} \boldsymbol{Z}^t$ at \boldsymbol{y} . Test your function on simulated data.

6. In class we learnt about the BLAS and how it has become a de facto standard for basic linear algebra operations. R uses the BLAS and LAPACK libraries extensively to accelerate certain types of operations. Apart from *, %*%, eigen, and qr, what other common functions use the BLAS and LAPACK routines to speed up calculations?

Find out if R uses an optimized BLAS on your system. If yes, what version is used? If not, find out if any optimized BLAS is available for your system.