ASDS Statistics, YSU, Fall 2020 Lecture 26

Michael Poghosyan

02 Dec 2020

Contents

- ► Properties of MLE
- ► Confidence Intervals

Note: The MLE does not always exist;

Note: The MLE does not always exist;

Example: Consider the Model Unif(a, b), i.e., Uniform over the open inteval (a, b).

Note: The MLE does not always exist;

Example: Consider the Model Unif(a, b), i.e., Uniform over the open inteval (a, b).

Example: Consider the Model with PDF

$$f(x|\theta) = \begin{cases} e^{\theta - x}, & x > \theta \\ 0, & x \le \theta. \end{cases}$$

Note: The MLE does not always exist;

Example: Consider the Model Unif(a, b), i.e., Uniform over the open inteval (a, b).

Example: Consider the Model with PDF

$$f(x|\theta) = \begin{cases} e^{\theta-x}, & x > \theta \\ 0, & x \le \theta. \end{cases}$$

Note: The MLE is not always unique;

Note: The MLE does not always exist;

Example: Consider the Model Unif(a, b), i.e., Uniform over the open inteval (a, b).

Example: Consider the Model with PDF

$$f(x|\theta) = \begin{cases} e^{\theta-x}, & x > \theta \\ 0, & x \le \theta. \end{cases}$$

Note: The MLE is not always unique;

Example: Consider the Model $Unif[\theta, \theta + 1]$.

Note: The MLE does not always exist;

Example: Consider the Model Unif(a, b), i.e., Uniform over the open inteval (a, b).

Example: Consider the Model with PDF

$$f(x|\theta) = \begin{cases} e^{\theta - x}, & x > \theta \\ 0, & x \le \theta. \end{cases}$$

Note: The MLE is not always unique;

Example: Consider the Model $Unif[\theta, \theta + 1]$.

Note: Sometimes it is necessary to find it numerically, say, using the NR Method

Examples

Example: It is not possible to find the MLE Estimator in a closed form for θ in the one-Parametric Cauchy Distribution $Cauchy(\theta)$ Model. Here, the PDF of $X \sim Cauchy(\theta)$ is given by

$$f(x|\theta) = \frac{1}{\pi(1+(x-\theta)^2)}, \qquad x \in \mathbb{R},$$

and $\theta \in \mathbb{R}$ is called the *location parameter*.

It can be proven that, under some regularity conditions on the Parametric Family \mathcal{F}_{θ} ,

► The MLE $\hat{\theta}_n^{MLE}$ is Consistent, i.e.,

It can be proven that, under some regularity conditions on the Parametric Family \mathcal{F}_{θ} ,

► The MLE $\hat{\theta}_n^{MLE}$ is Consistent, i.e.,

$$\hat{\theta}_n^{MLE} \stackrel{\mathbb{P}}{\longrightarrow} \theta$$

It can be proven that, under some regularity conditions on the Parametric Family \mathcal{F}_{θ} ,

► The MLE $\hat{\theta}_n^{MLE}$ is Consistent, i.e.,

$$\hat{\theta}_n^{MLE} \stackrel{\mathbb{P}}{\longrightarrow} \theta$$

► The MLE $\hat{\theta}_n^{MLE}$ is Asymptotically Normal and Efficient:

$$\frac{\hat{\theta}_{n}^{MLE} - \theta}{\sqrt{\frac{1}{n \cdot \mathcal{I}(\theta)}}} \stackrel{D}{\longrightarrow} \mathcal{N}\left(0, 1\right)$$

It can be proven that, under some regularity conditions on the Parametric Family \mathcal{F}_{θ} ,

► The MLE $\hat{\theta}_n^{MLE}$ is Consistent, i.e.,

$$\hat{\theta}_n^{\textit{MLE}} \overset{\mathbb{P}}{\longrightarrow} \theta$$

▶ The MLE $\hat{\theta}_n^{MLE}$ is Asymptotically Normal and Efficient:

$$\frac{\hat{\theta}_{n}^{MLE} - \theta}{\sqrt{\frac{1}{n \cdot \mathcal{I}(\theta)}}} \stackrel{D}{\longrightarrow} \mathcal{N}\left(0, 1\right)$$

or, as people usually use:

$$\sqrt{n} \cdot \left(\hat{\theta}_n^{MLE} - \theta\right) \stackrel{D}{\longrightarrow} \mathcal{N}\left(0, \frac{1}{\mathcal{I}(\theta)}\right),$$

It can be proven that, under some regularity conditions on the Parametric Family \mathcal{F}_{θ} ,

▶ The MLE $\hat{\theta}_n^{MLE}$ is Consistent, i.e.,

$$\hat{\theta}_n^{MLE} \stackrel{\mathbb{P}}{\longrightarrow} \theta$$

▶ The MLE $\hat{\theta}_n^{MLE}$ is Asymptotically Normal and Efficient:

$$\frac{\hat{\theta}_{n}^{MLE} - \theta}{\sqrt{\frac{1}{n \cdot \mathcal{I}(\theta)}}} \stackrel{D}{\longrightarrow} \mathcal{N}\left(0, 1\right)$$

or, as people usually use:

$$\sqrt{n} \cdot \left(\hat{\theta}_n^{MLE} - \theta\right) \stackrel{D}{\longrightarrow} \mathcal{N}\left(0, \frac{1}{\mathcal{T}(\theta)}\right),$$

or, put in other way,

$$\hat{\theta}_{n}^{\textit{MLE}} \overset{\textit{D}}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

Let us give an interpretation to this last property:

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

Let us give an interpretation to this last property:

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

We can interpret this as:

• $\hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;

Let us give an interpretation to this last property:

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

We can interpret this as:

- $\hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ► The Mean of $\hat{\theta}_n^{MLE}$ is approximately θ , so it is Asymptotically Unbiased;

Let us give an interpretation to this last property:

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

We can interpret this as:

- $ightharpoonup \hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ► The Mean of $\hat{\theta}_n^{MLE}$ is approximately θ , so it is Asymptotically Unbiased;
- ▶ The Variance of $\hat{\theta}_n^{MLE}$ is approximately $\frac{1}{n \cdot \mathcal{I}(\theta)}$. And we know that, by CR LB, this is the possible smallest Variance we can have with Unbiased Estimators.

Let us give an interpretation to this last property:

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

We can interpret this as:

- $\hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ► The Mean of $\hat{\theta}_n^{MLE}$ is approximately θ , so it is Asymptotically Unbiased;
- ▶ The Variance of $\hat{\theta}_n^{MLE}$ is approximately $\frac{1}{n \cdot \mathcal{I}(\theta)}$. And we know that, by CR LB, this is the possible smallest Variance we can have with Unbiased Estimators. So we interpret this as **MLE** is **Asymptotically Efficient**.

Let us give an interpretation to this last property:

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

We can interpret this as:

- $ightharpoonup \hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ► The Mean of $\hat{\theta}_n^{MLE}$ is approximately θ , so it is Asymptotically Unbiased;
- ▶ The Variance of $\hat{\theta}_n^{MLE}$ is approximately $\frac{1}{n \cdot \mathcal{I}(\theta)}$. And we know that, by CR LB, this is the possible smallest Variance we can have with Unbiased Estimators. So we interpret this as **MLE** is **Asymptotically Efficient**.

So, MLE is **Consistent** and **Asymptotocally Efficient**.

Let us give an interpretation to this last property:

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right)$$

We can interpret this as:

- $\hat{\theta}_n^{MLE}$ is approximately (Asymptotically) Normal;
- ▶ The Mean of $\hat{\theta}_n^{MLE}$ is approximately θ , so it is Asymptotically Unbiased;
- ▶ The Variance of $\hat{\theta}_n^{MLE}$ is approximately $\frac{1}{n \cdot \mathcal{I}(\theta)}$. And we know that, by CR LB, this is the possible smallest Variance we can have with Unbiased Estimators. So we interpret this as **MLE** is **Asymptotically Efficient**.

So, MLE is **Consistent** and **Asymptotocally Efficient**. And this is why, for large Sample Size n, MLE is the Top 1 Choice, is (almost) unbeatable.

► Also,

$$\frac{\hat{\theta}_{n}^{\textit{MLE}} - \theta}{\sqrt{\frac{1}{n \cdot \mathcal{I}\left(\hat{\theta}_{n}^{\textit{MLE}}\right)}}} \overset{\textit{D}}{\longrightarrow} \mathcal{N}\left(0, 1\right)$$

Also,

$$\frac{\hat{\theta}_n^{MLE} - \theta}{\sqrt{\frac{1}{n \cdot \mathcal{I}(\hat{\theta}_n^{MLE})}}} \stackrel{D}{\longrightarrow} \mathcal{N}\left(0, 1\right)$$

or, in more non-rigorous terms,

$$\hat{\theta}_{n}^{MLE} \overset{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}\left(\hat{\theta}_{n}^{MLE}\right)}\right)$$

Also,

$$rac{\hat{ heta}_{n}^{ extit{MLE}} - heta}{\sqrt{rac{1}{n \cdot \mathcal{I}\left(\hat{ heta}_{n}^{ extit{MLE}}
ight)}}} \stackrel{D}{\longrightarrow} \mathcal{N}\left(0,1
ight)$$

or, in more non-rigorous terms,

$$\hat{\theta}_{n}^{\textit{MLE}} \overset{D}{pprox} \mathcal{N} \left(\theta, \frac{1}{n \cdot \mathcal{I} \left(\hat{\theta}_{n}^{\textit{MLE}} \right)} \right)$$

Note: This is almost the above Property,

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right),$$

but, instead of $\mathcal{I}(\theta)$ we have $\mathcal{I}\left(\hat{\theta}_{n}^{MLE}\right)$.

$$\frac{\hat{\theta}_{n}^{\textit{MLE}} - \theta}{\sqrt{\frac{1}{n \cdot \mathcal{I}\left(\hat{\theta}_{n}^{\textit{MLE}}\right)}}} \stackrel{D}{\longrightarrow} \mathcal{N}\left(0, 1\right)$$

or, in more non-rigorous terms,

$$\hat{\theta}_{n}^{\textit{MLE}} \stackrel{D}{pprox} \mathcal{N} \left(\theta, \frac{1}{n \cdot \mathcal{I} \left(\hat{\theta}_{n}^{\textit{MLE}} \right)} \right)$$

Note: This is almost the above Property,

$$\hat{\theta}_n^{MLE} \stackrel{D}{pprox} \mathcal{N}\left(\theta, \frac{1}{n \cdot \mathcal{I}(\theta)}\right),$$

but, instead of $\mathcal{I}(\theta)$ we have $\mathcal{I}\left(\hat{\theta}_{n}^{MLE}\right)$.

Note: We will use this later, to construct an (approximate) Confidence Interval for θ and for testing Hypotheses about θ .

▶ If $\hat{\theta}$ is the MLE for θ , then for any function g, the MLE of $g(\theta)$ is $g(\hat{\theta})$, i.e.,

$$\widehat{g(\theta)}^{MLE} = g\left(\hat{\theta}^{MLE}\right).$$

▶ If $\hat{\theta}$ is the MLE for θ , then for any function g, the MLE of $g(\theta)$ is $g(\hat{\theta})$, i.e.,

$$\widehat{g(\theta)}^{MLE} = g\left(\hat{\theta}^{MLE}\right).$$

This is sometimes called the invariance Principle of MLE.

▶ If $\hat{\theta}$ is the MLE for θ , then for any function g, the MLE of $g(\theta)$ is $g(\hat{\theta})$, i.e.,

$$\widehat{g(\theta)}^{MLE} = g\left(\hat{\theta}^{MLE}\right).$$

This is sometimes called the invariance Principle of MLE.

Example Find the MLE for σ in $\mathcal{N}(\mu, \sigma^2)$ Model.

Solution: OTB

Some topics to consider by yourself

- Multivariate Normal and MLE for MVNormal
- Kullback-Leibler Divergence and its relation to MLE
- ▶ MLE for the Mixture Model, EM Algorithm
- Bayesian Estimation: MAP and Bayes Estimator

Confidence Intervals

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

Assume θ is our Parameter to be Estimated, and $\hat{\theta}$ is a good Estimator for θ .

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

Assume θ is our Parameter to be Estimated, and $\hat{\theta}$ is a good Estimator for θ . Assume $\hat{\theta}$ is a Continuous r.v.

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

Assume θ is our Parameter to be Estimated, and $\hat{\theta}$ is a good Estimator for θ . Assume $\hat{\theta}$ is a Continuous r.v. If the True value of our Parameter is θ^* , then

$$\mathbb{P}(\hat{\theta} = \theta^*) = 0,$$

i.e., we will (almost) never be correct in our guess.

So far we have studied the Parametric Point Estimation Problem: we were assuming that our data is coming from a Parametric Family of Distribution, and our aim was to find a best guess for that Parameter.

Assume θ is our Parameter to be Estimated, and $\hat{\theta}$ is a good Estimator for θ . Assume $\hat{\theta}$ is a Continuous r.v. If the True value of our Parameter is θ^* , then

$$\mathbb{P}(\hat{\theta} = \theta^*) = 0,$$

i.e., we will (almost) never be correct in our guess. Sad news!

Prelude No. 2

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

In fact, we think as

$$\theta^* = \hat{\theta} \pm \textit{error},$$

where error is small¹,

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

In fact, we think as

$$\theta^* = \hat{\theta} \pm \textit{error},$$

where *error* is small¹, or, rather, as

$$\theta^* \in (\hat{\theta} - error, \hat{\theta} + error).$$

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

In fact, we think as

$$\theta^* = \hat{\theta} \pm \textit{error},$$

where error is small¹, or, rather, as

$$\theta^* \in (\hat{\theta} - error, \hat{\theta} + error).$$

And we can ask questions about how small is the *error* or how much sure are we in our Estimate (for the Unknown Parameter), and how large n needs to be to have a good estimate.

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

But the good news is that even when we cannot exactly find the True value of our Parameter using $\hat{\theta}$, if $\hat{\theta}$ possesses some good properties, we believe that the Estimate obtained is a good approximation/Estimate for θ^* .

In fact, we think as

$$\theta^* = \hat{\theta} \pm \textit{error},$$

where error is small¹, or, rather, as

$$\theta^* \in (\hat{\theta} - error, \hat{\theta} + error).$$

And we can ask questions about how small is the *error* or how much sure are we in our Estimate (for the Unknown Parameter), and how large n needs to be to have a good estimate.

Here we want to develop the theory of Confidence Intervals, which will contain answers to these questions.

¹Recall the \widehat{SE} , the Estimated Standard Error reporting story.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Our aim is to find an interval containing the Unknown Parameter value.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Our aim is to find an interval containing the Unknown Parameter value.

More rigorously, we want to have an interval

which contains the True Parameter value with high Probability;

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Our aim is to find an interval containing the Unknown Parameter value.

More rigorously, we want to have an interval

- which contains the True Parameter value with high Probability;
- which has the possible smallest length.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Our aim is to find an interval containing the Unknown Parameter value.

More rigorously, we want to have an interval

- which contains the True Parameter value with high Probability;
- which has the possible smallest length.

Let us state this in Mathematical terms. We will consider here only 1D case, i.e., we will assume $\theta \in \Theta \subset \mathbb{R}$.

We start by Random Intervals:

We start by **Random Intervals:**

Assume X and Y are two r.v. on the same probability space and $X \leq Y$ a.s., that is, $\mathbb{P}(X > Y) = 0$.

We start by **Random Intervals:**

Assume X and Y are two r.v. on the same probability space and $X \leq Y$ a.s., that is, $\mathbb{P}(X > Y) = 0$. We will call intervals of the form [X,Y] or (X,Y) or

We start by Random Intervals:

Assume X and Y are two r.v. on the same probability space and $X \leq Y$ a.s., that is, $\mathbb{P}(X > Y) = 0$. We will call intervals of the form [X,Y] or (X,Y) or

Example: Assume $X \sim Pois(2.3)$. Then

$$[X, X + 2)$$

is a Random Interval.

We start by Random Intervals:

Assume X and Y are two r.v. on the same probability space and $X \leq Y$ a.s., that is, $\mathbb{P}(X > Y) = 0$. We will call intervals of the form [X,Y] or (X,Y) or

Example: Assume $X \sim Pois(2.3)$. Then

$$[X, X + 2)$$

is a Random Interval.

Example: Let $X_1, X_2, ..., X_n$ are IID r.v.s. Then

$$\left(\overline{X}-0.1,\ \overline{X}+0.1\right)$$

is a Random Interval.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

We take $\alpha \in (0,1)$, and call the number $1-\alpha$ the **confidence** level.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

We take $\alpha \in (0,1)$, and call the number $1-\alpha$ the **confidence** level.

Problem: Using the Random Sample, construct an interval containing the Unknown Parameter value with Probability not less than $1-\alpha$.

Assume we have a Random Sample from a Parametric Model \mathcal{F}_{θ} :

$$X_1, X_2, ..., X_n \sim \mathcal{F}_{\theta}, \qquad \theta \in \Theta.$$

We take $\alpha \in (0,1)$, and call the number $1-\alpha$ the **confidence** level.

Problem: Using the Random Sample, construct an interval containing the Unknown Parameter value with Probability not less than $1-\alpha$.

The usual values of the confidence level are 90%, 95%, 99%, so the usual values of α are 0.1, 0.05 and 0.01.

CI

Definition: Assume $0 < \alpha < 1$, and let $L = L(x_1, ..., x_n, \alpha)$, $U = U(x_1, ..., x_n, \alpha)$ be two functions with $L(x_1, ..., x_n, \alpha) \le U(x_1, ..., x_n, \alpha)$ for all $(x_1, ..., x_n, \alpha)$.

Definition: Assume $0 < \alpha < 1$, and let $L = L(x_1, ..., x_n, \alpha)$, $U = U(x_1, ..., x_n, \alpha)$ be two functions with $L(x_1, ..., x_n, \alpha) \le U(x_1, ..., x_n, \alpha)$ for all $(x_1, ..., x_n, \alpha)$. The random interval

$$(L, U) = (L(X_1, ..., X_n, \alpha), U(X_1, ..., X_n, \alpha))$$

is called a confidence interval (or confidence interval estimator) for θ of confidence level $1-\alpha$, if for any $\theta \in \Theta$,

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha.$$

CI

In the case we have a realization/observation of $X_1, ..., X_n$, say, $x_1, ..., x_n$, then the interval

$$(L(x_1,...,x_n,\alpha), U(x_1,...,x_n,\alpha))$$

will be an interval estimate for θ for the confidence level $(1-\alpha)$.

CI

In the case we have a realization/observation of $X_1, ..., X_n$, say, $x_1, ..., x_n$, then the interval

$$(L(x_1,...,x_n,\alpha), U(x_1,...,x_n,\alpha))$$

will be an interval estimate for θ for the confidence level $(1-\alpha)$.

Going back to our CI, CI of the confidence level $1-\alpha$ is a Random Interval that contains θ in more than $(1-\alpha)\cdot 100\%$ of cases.

CI, Interpretation

Note: It is important to understand, that in the CI definition

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha$$

 θ is not our r.v., θ is our unknown constant Parameter, so we do not read this as "with high Probability, θ is in (L, U)".

CI, Interpretation

Note: It is important to understand, that in the CI definition

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha$$

 θ is not our r.v., θ is our unknown constant Parameter, so we do not read this as "with high Probability, θ is in (L, U)". Instead, the Interval (L, U) is Random, so we read this as with high Probability, the interval (L, U) will contain θ .

²But not different θ -s!!

CI, Interpretation

Note: It is important to understand, that in the CI definition

$$\mathbb{P}(L < \theta < U) \ge 1 - \alpha$$

 θ is not our r.v., θ is our unknown constant Parameter, so we do not read this as "with high Probability, θ is in (L, U)". Instead, the Interval (L, U) is Random, so we read this as **with high Probability, the interval** (L, U) **will contain** θ .

So, if we will have/generate different observations, we will have different Intervals² (L, U), and we want to have that most of the time that interval contains our unknown Parameter value.

²But not different θ -s!!

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$.

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$. Then good **Estimator** for λ is

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$. Then good **Estimator** for λ is

$$\hat{\lambda} = \frac{1}{\overline{X}}.$$

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$. Then good **Estimator** for λ is

$$\hat{\lambda} = \frac{1}{\overline{X}}.$$

Now, let us take as CI

Example: Consider an example: our Model is $Exp(\lambda)$, and we have an observation from it. Let us take a Random Sample for the general case: $X_1, X_2, ..., X_n$ from $Exp(\lambda)$. Then good **Estimator** for λ is

$$\hat{\lambda} = \frac{1}{\overline{X}}.$$

Now, let us take as CI

$$\left(\frac{1}{\overline{X}} - 0.1, \frac{1}{\overline{X}} + 0.1\right)$$

and do some simulations:

Exponential Model, CI, (1/mean - 0.1, 1/mean + 0.1)


```
Cl. R Simulation. Code
    #CI Idea, Exponential Model
    lambda <-0.41
    conf.level \leftarrow 0.95; a = 1 - conf.level
    sample.size <- 50; no.of.intervals <- 100</pre>
    epsilon <- 0.1
    plot.new()
    plot.window(xlim = c(0,no.of.intervals), ylim = c(0.2,0.8))
    axis(1); axis(2)
    title("Exponential Model, CI, (1/mean - 0.1, 1/mean + 0.1)")
    for(i in 1:no.of.intervals){
      x <- rexp(sample.size, rate = lambda)
      lo \leftarrow 1/\text{mean}(x) - \text{epsilon}; \text{up} \leftarrow 1/\text{mean}(x) + \text{epsilon}
      if(lo > lambda || up < lambda){</pre>
        segments(c(i), c(lo), c(i), c(up), col = "red")
      }
      else{
        segments(c(i), c(lo), c(i), c(up))
    abline(h = lambda, lwd = 2, col = "blue")
```

Methods to obtain Confidence Intervals

We will consider several methods to construct CIs:

- Chebyshev Inequality Based;
- ► Pivotal Quantity Based

CI for the Mean, Variance is given, Cheby Method

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$.

CI for the Mean, Variance is given, Cheby Method

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$. Assume σ^2 is known, and μ is unknown, and we want to estimate it using the Sample.

CI for the Mean, Variance is given, Cheby Method

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$. Assume σ^2 is known, and μ is unknown, and we want to estimate it using the Sample. The problem is to construct a CI for μ of given Confidence Level $1 - \alpha$.

CI for the Mean, Variance is given, Cheby Method

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$. Assume σ^2 is known, and μ is unknown, and we want to estimate it using the Sample. The problem is to construct a CI for μ of given Confidence Level $1 - \alpha$.

By the Chebyshev inequality method, we can obtain that the interval

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n \cdot \alpha}}, \ \overline{X} + \frac{\sigma}{\sqrt{n \cdot \alpha}}\right)$$

is a CI for μ of Confidence Level $1-\alpha$.

CI for the Mean, Variance is given, Cheby Method

Example: Assume $X_1, X_2, ..., X_n$ are Independent r.v. with the same Mean $\mathbb{E}(X_k) = \mu$ and the same Variance $Var(X_k) = \sigma^2$. Assume σ^2 is known, and μ is unknown, and we want to estimate it using the Sample. The problem is to construct a CI for μ of given Confidence Level $1 - \alpha$.

By the Chebyshev inequality method, we can obtain that the interval

$$\left(\overline{X} - \frac{\sigma}{\sqrt{n \cdot \alpha}}, \ \overline{X} + \frac{\sigma}{\sqrt{n \cdot \alpha}}\right)$$

is a CI for μ of Confidence Level $1 - \alpha$.

Note: Here

$$\frac{\sigma}{\sqrt{n\cdot\alpha}}$$

is called the **Margin of Error** (for the Interval Estimate of μ , given σ^2).

Some Notes

Two notes about the obtained CI - in fact, these notes will work also for other cases too:

Some Notes

Two notes about the obtained CI - in fact, these notes will work also for other cases too:

The CI length obtained above is

$$\frac{2\sigma}{\sqrt{n\cdot\alpha}}$$
.

Note: If we increase n, the CI gets narrower. This is intuitive: if we collect more data, we can estimate the parameter more precisely, we can enclose it in a smaller length interval.

Some Notes

Two notes about the obtained CI - in fact, these notes will work also for other cases too:

The CI length obtained above is

$$\frac{2\sigma}{\sqrt{n\cdot\alpha}}$$
.

Note: If we increase n, the CI gets narrower. This is intuitive: if we collect more data, we can estimate the parameter more precisely, we can enclose it in a smaller length interval.

Note: If we increase the Confidence Level, i.e., if we decrease α , then the length of CI increases. This is intuitive too: if we want to be more sure where our unknown Parameter is lying, we will get a larger interval.

Example: Now, let us construct a CI of CLevel $1 - \alpha$ for p in the Bernoulli(p) Model.

Example: Now, let us construct a CI of CLevel $1-\alpha$ for p in the Bernoulli(p) Model.We assume we have a Random Sample

 $X_1, X_2, ..., X_n \sim Bernoulli(p)$.

Example: Now, let us construct a CI of CLevel $1 - \alpha$ for p in the Bernoulli(p) Model.We assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim Bernoulli(p).$$

The CI for p by Chebyshev Inequality will be

$$\left(\overline{X} - \frac{1}{2\sqrt{n \cdot \alpha}}, \ \overline{X} + \frac{1}{2\sqrt{n \cdot \alpha}}\right)$$

is a CI for p of level $1 - \alpha$.

Example: Now, let us construct a CI of CLevel $1 - \alpha$ for p in the Bernoulli(p) Model.We assume we have a Random Sample

$$X_1, X_2, ..., X_n \sim Bernoulli(p).$$

The CI for p by Chebyshev Inequality will be

$$\left(\overline{X} - \frac{1}{2\sqrt{n \cdot \alpha}}, \ \overline{X} + \frac{1}{2\sqrt{n \cdot \alpha}}\right)$$

is a CI for p of level $1 - \alpha$.

Note: Here

$$\frac{1}{2\sqrt{n\cdot\alpha}}$$

is called the Margin of Error (for the Interval Estimate of p).

Bernoulli Model, CI by Cheby

Sample Size
$$=$$
 50, $\mathit{CL} = 95\%$

Bernoulli Model, CI by Cheby

Sample Size
$$=$$
 150, $\mathit{CL} = 95\%$

Bernoulli Model, CI by Cheby

Sample Size
$$=$$
 150, $\mathit{CL} = 99\%$

Bernoulli Model, CI by Cheby

Sample Size
$$= 250$$
, $CL = 90\%$

```
Cl. R Simulation. Code
    #CI Idea, Bernoulli Model
    p < -0.345
    conf.level \leftarrow 0.9; a = 1 - conf.level
    sample.size <- 250; no.of.intervals <- 150</pre>
    ME <- 1/(2*sqrt(sample.size*a)) #Margin of Error
    plot.new()
    plot.window(xlim = c(0, \text{no.of.intervals}), ylim = c(0, 1))
    axis(1); axis(2)
    title("Bernoulli Model, CI by Cheby")
    for(i in 1:no.of.intervals){
      x <- rbinom(sample.size, size = 1, prob = p)
      lo \leftarrow mean(x) - ME
      up \leftarrow mean(x) + ME
      if(lo > p || up < p){
        segments(c(i), c(lo), c(i), c(up), col = "red")
      }
      else{
        segments(c(i), c(lo), c(i), c(up))
```

abline(h = p, lwd = 2, col = "blue")

Examples

Example: Assume we are interested in the proportion of smokers in AUA. We ask 120 persons at AUA and learn that 55 of them are smokers. Construct a CI for the proportion of smokers in AUA of 95% confidence level.

Solution: OTB

Examples

Example: Assume we are interested in the proportion of smokers in AUA. We ask 120 persons at AUA and learn that 55 of them are smokers. Construct a CI for the proportion of smokers in AUA of 95% confidence level.

Solution: OTB

Example: Continuing the above Example: now assume we want to find that Proportion within the Error Margin 0.1, with the CL 95%. At least, how many persons at AUA we need to ask?

Solution: OTB