Uma Introdução ao LATEX¹ Parte I: O básico

Luiz Rafael dos Santos

IFC-Camboriú

17 de setembro de 2013

¹Adaptado de "An interactive introduction to LATEX" por John Lees-Miller.

Por que utilizar LATEX

- Gera textos bonitos
 - Especialmente textos matemáticos
- ► Foi criado por cientistas, para cientistas
 - Uma grande comunidade que atualiza e faz novos pacotes
- É bem poderoso pode ser estendido
 - ► Pacotes para artigos, apresentações, monografias, teses, planilhas, . . .
- Multi plataforma (MSW, Mac OS, Unix)

Dificuldades

- Linguagem de marcação
- Mudança de paradigma em relação a como se escreve um texto
- Lidar com os erros

Como funciona?

- Você escreve o documento em texto puro com comandos que descrevem sua estrutura ou significado
- O programa latex processa seu texto e os comandos para produzir um documento esteticamente bem formatado.

A chuva na Amazônia \emph{cai} na horizontal.

A chuva na Amazônia cai na horizontal.

Mais exemplos e seus resultados...

\begin{itemize}
\item Café
\item Leite
\item Bolacha
\end{itemize}

Café

Leite

Bolacha

Bolacha

\begin{figure}
\includegraphics{chick}
\end{figure}


```
\begin{equation} \\ \alpha + \beta + 1 \\ \end{equation} \\ \label{eq:alpha} \\ \label{eq:alpha}
```

Imagem retirada de http://www.andy-roberts.net/writing/latex/importing_images

Mudança de atitude

- Utilize comandos para descrever 'o que é', e não 'como deve parecer'.
- Concentre-se no conteúdo.
- ▶ Deixe que o LATEX faça seu trabalho.

Começando

▶ Um documento LATEX minimalista em português do Brasil:

```
\documentclass{article}
\usepackage[brazil]{babel}
\usepackage[T1]{fontenc}
\usepackage{ae,aecompl}
\usepackage[utf8]{inputenc} %applemac, ou latin1
\begin{document}
Alow Mundo! % seu comentario vai aqui
\end{document}
```

- ▶ Todo comando começa com uma barra invertida 🕥 .
- ► Todo documento começa com o comando \documentclass .
- ▶ o argumento que fica entre chaves () diz ao LATEX que tipo de documento você está criando: an article.
- ► O símbolo de porcentagem inicia um comentário LATEX irá ignorar tudo que vem após o comentário.

Começando com writeLATEX

- ▶ writeIATEX é um website para escrever documentos em IATEX.
- O site 'compila' seu LATEX automaticamente e mostra os resultados.

Clique aqui para abrir um exemplo do documento no writeLATEX

Ou vá para use este URL: http://bit.ly/WU0bMU
Para melhores resultados, utilize Google Chrome ou uma versão recente do
FireFox.

- ► Conforme sigamos para os próximos *slides*, tente os exemplos, digitando-os no documento exemplo do LATEX.
- ▶ É verdade, você deve tentar durante o curso!

Digitando Texto

- Digite seu texto entre os comandos \begin{document} and \end{document}.
- ▶ Na maior parte do tempo, você pode digitar o texto normalmente.

Palavras são separadas por um ou mais espaços.	Palavras são separadas por um ou mais espaços.
Parágrafos são separados por uma ou mais linhas em branco.	Parágrafos são separados por uma ou mais linhas em branco.

Espaço no código-fonte será colapsado no arquivo-saída.

ſ	Α	chuva	na	amazônia	A chuva na amazônia cai na
l	cai	na Horizontal.			Horizontal.

Digitando Texto: Advertências

Marcas de citação são um pouco chatas: use uma crase na esquerda e um apóstrofo na direita.

```
Aspas simples: 'texto'.

Aspas simples: 'texto'.

Aspas duplas: 'texto'.

Aspas duplas: "texto".
```

► Alguns caracteres comuns tem significado especial no LATEX:

- porcentagem
 hashtag (jogo da velha)
 e comercial
 cifrão
- Se você apenas digitá-los, você terá um erro. Se você quiser que algum deles apareça, tera que utilizar uma barra invertida antes do símbolo.

\\$\%\&\#! | \$%&#!

Lidando com Erros

- ETEX pode se confundir ao compilar seu documento. Se isso acontecer, parará com um erro, o qual deverá ser consertado antes de produzir o documento.
- Por exemplo, se você digitar o comando \emph como \meph, LATEX irá parar com um erro "undefined control sequence" (sequencia de controle indefinida), já que "meph" não é um comando conhecido.

Conselho sobre Erros

- 1. Não entre em pânico. Erros acontece,.
- 2. Concerte-os assim que eles aparecerem se o que você digitou causou erro, deve debugar a partir daquela linha.
- 3. Se houver muitos erros, comece pelo primeiro, a causa de um erro pode ser um outro erro anterior.

Exercício de digitação 1

Escreva isto em LATEX: 2

Brasil, oficialmente "República Federativa do Brasil" é o maior país da América do Sul e da região da América latina. [...] O setor de serviços responde pela maior parte do PIB, com 66,8%, seguido pelo setor industrial, com 29,7% (estimativa para 2007), enquanto a agricultura representa 3,5% (2008 est). A força de trabalho brasileira é estimada em R\$ 100,77 milhões, dos quais 10% são ocupados na agricultura, 19% no setor da indústria e 71% no setor de serviços.

Click to open this exercise in $write I\!\!\!/ T_E X$

- ▶ Dica: perceba os caracteres que tem significado especial!
- Uma vez que tenha dado certo, veja aqui minha solução.

²http://pt.wikipedia.org/wiki/Brasil

Digitando Matemática: Cifrão (\$)

▶ Por que o cifrão 🐧 é um caracter especial? Porque o utilizamos para marcar textos matemáticos.

```
% n\~ao t\~ao bom:

Seja a e b inteiros positivos distintos, e seja c = a - b + 1.

% muito melhor:

Seja a = b inteiros positivos distintos, e seja c = a - b + 1.

Seja a = b inteiros positivos distintos, e seja c = a - b + 1.

Seja a = b inteiros positivos distintos, e seja c = a - b + 1.
```

- Sempre utilize cifrão em pares um para o começo do texto matemático e outro para o final.
- ► LATEX maneja o espaçamento automaticamente; ele ignora os seus espaços.

```
Seja y=mx+b \ldots Seja y=mx+b ... Seja y=mx+b ...
```

Digitando Matemática: Notação

 Use circunflexo para sobrescritos e underline para índices.

```
$y = c_2 x^2 + c_1 x + c_0$  y = c_2 x^2 + c_1 x + c_0
```

▶ Use chaves ﴿ para agrupar sobrescritos e índices.

```
$F_n = F_n-1 + F_n-2$ % oops! F_n = F_n - 1 + F_n - 2
$F_n = F_{n-1} + F_{n-2}$ % ok! F_n = F_{n-1} + F_{n-2}
```

 Há também comandos para letras Gregas e para notações comuns.

```
$\mu = A e^{Q/RT}$  \mu = Ae^{Q/RT}  $\Omega = \sum_{k=1}^{n} \omega_k$  \Omega = \sum_{k=1}^{n} \omega_k
```

Digitando Matemática: Equações centralizadas

► Se algo for grande e amedrontador, *exiba-o* em sua própria linha utilizando \begin{equation} e \end{equation}.

```
As raízes de uma equação quadrática são dadas por \\begin{equation} \x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \end{equation} \\ em que $a\$, $b$ e $c$ são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a, b e c são \ldots \end{equation} \\ em que $a e são e são en
```

Perigo: LATEX na maioria das vezes ignora espaços no ambiente matemático, porém não pode manejar linhas em branco em equações — não pule linhas dentro de ambientes matemáticos.

Interlúdio: Ambientes

- equation é um ambiente um contexto.
- Um comando pode produzir diferentes resultados em contextos diferentes.

```
Podemos escrever  \begin{array}{l} \text{Podemos escrever} \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ no texto, ou podemos escrever} \\ \text{$$ \text{no texto, ou podemos escrever} \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ no texto, ou podemos escrever} \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ no texto, ou podemos escrever} \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_k$ (3) } \\ \text{$$ \backslash 0$mega = \sum_{k=1}^{n} \omega_
```

Note que Σ é maior no ambiente equation, e como sobrescritos e índices mudam de posição, embora você tenha utilizado os mesmos comandos

Interlúdio: Ambientes

- Os comandos \begin e \end s\u00e3\u00f3\u00f3\u00f3\u00fanta\u00e4\u00e4\u00fanta\u00e4\u00fanta\u00e4\u00fanta\u00e4\u
- Os ambientes itemize e enumerate geram listas.

\begin{itemize} % for bullet points \item Bolachas	▶ Bolachas
\item Cafés \end{itemize}	► Cafés
\begin{enumerate} % for numbers	
\item Bolachas	1. Bolachas
\item Cafés \end{enumerate}	2. Cafés

Interlúdio: Pacotes

- Todos os comandos que utilizamos estão contidos nas distribuições de LATEX.
- Pacotes são bibliotecas com comandos e ambientes extra. Há milhares de pacotes disponíveis.
- Devemos chamar cada pacote que queremos utilizar com um comando \usepackage no preâmbulo.
- Exemplo: amsmath da American Mathematical Society.

```
\documentclass{article}
\usepackage{amsmath} % preâmbulo
\begin{document}
% agora podemos usar os comandos do amsmath aqui
\end{document}
```

Digitando Matemática: Exemplos com amsmath

 Use equation* ("equation-asterisco") para equações não numeradas.

```
\label{eq:continuity} $$ \operatorname{\Omega} = \sum_{k=1}^n \omega_k $$ \operatorname{Qequation*} $$
```

 LATEX trata letras adjacentes como variáveis múltiplas multiplicadas, o que nem sempre é o que você deseja. amsmath define vários operadores matemáticos comuns.

▶ Pode-se utilizar \operatorname pra outros.

```
\label{eq:cov} $$ \begin{array}{ll} \begin{array}{ll} \begin{array}{ll} \text{\colored} & \\ \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \text{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \text{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \beta_i = \text{sen}(\alpha) \frac{\text{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \text{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \beta_i = \text{sen}(\alpha) \frac{\text{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \beta_i = \text{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored} & \\ \end{array} & \\ \end{array} & \\ \begin{array}{ll} \textbf{\colored}
```

Digitando Matemática: Exemplos com amsmath

Alinhe uma sequência de equações com o símbolo de igualdade

$$(x+1)^3 = (x+1)(x+1)(x+1)$$
$$= (x+1)(x^2+2x+1)$$
$$= x^3 + 3x^2 + 3x + 1$$

com o ambiente align*.

- ▶ O e comercial ⓐ separa a coluna da esquerda (antes do =) da coluna da direta (após o =).

Exercícios de escrita 2

Typeset this in LATEX:

Sejam X_1,X_2,\ldots,X_n uma sequência de variáveis aleatórias independentes e distribuídas de forma igual com $\mathrm{E}[X_i]=\mu$ e $\mathrm{Var}[X_i]=\sigma^2<\infty$, e denote

$$S_n = \frac{1}{n} \sum_{i=1}^{n} X_i$$

suas médias. Então quando n tende ao infinito, as variáveis aleatórias $\sqrt{n}(S_n-\mu)$ convergem em distribuição à uma normal $N(0,\sigma^2)$.

Clique aqui para abrir o exercícios no $write \LaTeX$

- ▶ Dica: use o comando \infty para ∞ .
- Uma vez que tenha tentado, clique aqui e veja a solução .

Fim da Parte 1

- Muito bem! Aprendemos como . . .
 - Escrever em LATEX.
 - Usar uma porção de comandos.
 - Manejar erros quando eles aparecem.
 - Digitar belos textos matemáticos.
 - Usar vários ambientes diferentes.
 - Chamar pacotes.
- Na Parte 2, veremos como usar LATEX para escrever documentos estruturados com seções, referências cruzadas, figuras, tabelas e bibliografias. Vejo vocês!