

Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Estadística

EYP1026 - MODELOS PROBABILÍSTICOS Ayudantía N°4

Profesor: Guido del Pino Ayudante: José Quinlan Fecha: 31 de Agosto - 2016

- 1. Sean $X \sim \text{Poisson}(\lambda_1)$ e $Y \sim \text{Poisson}(\lambda_2)$ independientes con $\lambda_1, \lambda_2 \in \mathbb{R}^+$. Pruebe que $X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$.
- 2. Sean $X \sim \text{Binomial}(n,p)$ e $Y \sim \text{Binomial}(m,p)$ independientes, donde $n,m \in \mathbb{N}$ y $p \in (0,1)$. Demuestre que $X+Y \sim \text{Binomial}(n+m,p)$.
- 3. Considere X,Y variables aleatorias independientes y continuas. Suponga que $\mathrm{E}[X]=\mathrm{E}[Y]=\mu\in\mathbb{R},$ $\mathrm{Var}[X]=\sigma_X^2\in\mathbb{R}^+$ y $\mathrm{Var}[Y]=\sigma_Y^2\in\mathbb{R}^+$ con $\sigma_X^2\neq\sigma_Y^2$. Defina $C(\alpha)=\alpha X+(1-\alpha)Y,$ donde $\alpha\in[0,1].$
 - a) Muestre que $E[C(\alpha)] = \mu$.
 - b) Determine α tal que $\mathrm{Var}[C(\alpha)]$ sea máxima.
- 4. Sean $X, Y \sim \text{Geométrica}(p)$ independientes con $p \in (0, 1)$.
 - a) Determine las distribuciones de $f(X,Y) = \min\{X,Y\}$ y g(X,Y) = X Y. Calcule sus valores esperados y varianzas.
 - b) ¿Son f(X,Y) y g(X,Y) variables aleatorias independientes?. Justifique.