MZTIO 发布 0.0

Hongyi Wu(吴鸿毅)

Contents:

1	.1 Safety	3 3 4
2	WEB Control GUI 1.1 register	5 5 6 8 8
3	.1 minicom	11 11 12
4	basic configuration	13 14 15
5	.1 Install	17 17 17 17
6	online monitor	19 19 19 20 20
7	1.1 PS code 2 1.2 PL code 2	21 21 21 23

Contents: 1

2 Contents:

README

If you need firmware, please contact Hongyi Wu(wuhongyi@qq.com)

If you want to know how PKU uses MZTIO, please click on the link below: PKUMZTIO

XIA SUPPORT: XIA Blog

The Pixie-16 MZ-TrigIO is designed to route signals from the backplane (rear connectors) to the front panel (front connectors) and make logical combinations between them in FPGA fabric. It has the following features and capabilities:

- Ethernet programmable trigger/coincidence control module for the Pixie-16
- 48+ Pixie-16 backplane trigger connections to local Zynq processor
- 48 front panel LVDS connections to local Zynq processor
- MicroZed Zynq processor with embedded Linux, acting as a standalone PC with built-in SD card drive, USB host, 10/100 Ethernet, webserver, etc
- 1588 PTP and SyncE clock synchronization
- Open source user access to software and firmware
- Use as standalone desktop unit or in 6U PXI chassis
- Custom I/O standards via daughtercards

1.1 Safety

Please take a moment to review these safety precautions. They are provided both for your protection and to prevent damage to the Pixie module and connected equipment. This safety information applies to all operators and service personnel.

- Power Source
 - The Pixie-16 MZ-TrigIO module is powered through an AC/DC wall adapter or a PXI backplane. The
 default adapter has a variety of AC plug attachments for different localities.

- Please remember to shut down the Linux OS before removing the power plug from the Pixie-16 MZ-TrigIO or powering down the PXI chassis.
- User Adjustments/Disassembly
 - To avoid personal injury, and/or damage, always disconnect power before accessing the module's interior.
 There are a few jumpers related to clocking on the board that experienced users may want to use.
- · Voltage Ratings
 - Signals on the inputs and outputs must not exceed \pm 3.3V. Please review the pinout in the appendix before making any connections.
- · Daughtercards
 - Daughtercards can be used as alternatives to front panel and rear inputs, which requires caution to avoid conflicts from FPGA outputs and standard connector inputs.
- · Servicing and Cleaning
 - To avoid personal injury, and/or damage to the Pixie module or connected equipment, do not attempt to repair or clean the inside of these units.
- · Linux Passwords
 - The Pixie-16 MZ-TrigIO Linux OS comes with default user IDs and passwords for 1) SSH login, 2) SMB file sharing, and 3) Web Operations as described below. Users should immediately change these passwords, especially when the Pixie-16 MZ-TrigIO is connected to external networks. Don't let hackers take over your Pixie-16 MZ-TrigIO!
- · Linux Backup
 - The Pixie-16 MZ-TrigIO Linux OS is stored on a removable SD card. SD cards' file systems can become
 corrupted, which would crash the Linux system and make the Pixie-16 MZ-TrigIO unable to operate.
 Therefore periodic backup of the SD card is recommended, for example using Win32DiskImager. (Byte
 for byte copy is required).
 - Note that all Linux passwords are stored on the SD card.

1.2 Logic programming

In order to meet the needs of medium and low energy experimental nuclear physics, we have developed the following basic functions.

- · signal delay
- signal extend
- · coincidence
- · multiplicity
- · scaler/counter
- · down scale
- · remote parameter adjustment
-

WEB Control GUI

2.1 register

The user can easily adjust the experimental logic by modifying the control registers in the settings.ini file.

Of course, for different types of experiments, we have specialized software, please refer to the manual of the experiment for the specific register control method.

		settings	.ini - Ho	ngyi Wu	u @ Peking University (于 PixieNet) -		×
File Edit	Options	Buffers	Tools	Conf	Help		
1 0x000	0				CSR[15:0]	(R)	
2 0x001	Θ				VERSION	(R)	
3 0x002	Θ				D18[2:0]	(W/F	₹)
4 0x003	Θ				outblock[1:0]	(W/F	
5 0x00A	Θ				numtrig	(R)	
6 0x00B	Θ				numtrig	(R)	
7 0x00C	Θ				runticks	(R)	
8 0x00D	Θ				runticks	(R)	
9 0x100	0x6666				FrontIO Aena	(W/F	₹)
0 0×105	0x6666				LVDSIO Āena	(W/F	₹)
.1 0×101	0x6666				FrontIO_Bena	(W/F	₹)
.2 0x106	0x6666				LVDSIO_Bena	(W/F	₹)
.3 0x102	0×6600				FrontIO_Cena	(W/F	₹)
4 0×107	0x6666				LVDSIO_Cena	(W/F	₹)
.5 0x103	0×000000	0000			TriggerAllena	(W/F	₹)
6 0x104	0×0000				EB Dataena	(W/F	₹)
7 0×108	0xFFFF				frontA_coincidence_mask	(W/F	₹)
8 0x109	0xFFFF				frontB coincidence mask	(W/F	₹)
9 0x10A	0xFFFF				frontC_coincidence_mask	(W/F	₹)
0 0x10B	0xFFFFF	FFF			TriggerAll_coincidence_mask	(W/F	₹)
1 0×10C	0xFFFF				EB_Data_coincidence_mask	(W/F	₹)
2 0x110	0xFFFF				<pre>frontA_multiplicity_mask</pre>	(W/F	
3 0x111	0xFFFF				frontB_multiplicity_mask	(W/F	
4 0x112	0xFFFF				<pre>frontC_multiplicity_mask</pre>	(W/F	
5 0x113	0xFFFFF	FFF			TriggerAll_multiplicity_mask	(W/F	
6 0x114	0xFFFF				EB_Data_multiplicity_mask	(W/F	
7 0x118	0×0000				frontA_coincidence_pattern	(W/F	
8 0x119	0×0000				frontB_coincidence_pattern	(W/F	
9 0x11A	0×0000				frontC_coincidence_pattern	(W/F	
0 0x11B	0×00000	0000			TriggerAll_coincidence_pattern	(W/F	
1 0x11C	0×0000				EB_Data_coincidence_pattern	(W/F	
2 0x120	2				frontA_multiplicity_threshold	(W/F	
3 0x121	2				frontB_multiplicity_threshold	(W/F	
4 0x122	2				frontC_multiplicity_threshold	(W/F	
5 0x123	2				TriggerAll_multiplicity_threshold		
6 0x124	2				EB_Data_multiplicity_threshold	(W/F	
7 0x128	0				frontA_output_select	(W/F	
8 0x129	0				frontB_output_select	(W/F	
9 0x12A	0				frontC_output_select	(W/F	
0 0x12B	0				TriggerAll_output_select	(W/F	
1 0x12C	0				EB_Data_output_select	(W/F	
2 0x030	0x00320	0028			DelayAndExtend1	(W/F	
3 0x031	0×000A				DownScale1	(W/F	
4 0x040	0				LEMO output mode	(W/F	₹)
-:	settings.	. ini A obsolet	ill (1,	0)	(Conf[Space]) 07:49 0.20		

2.2 web pages

2.2.1 main page

The main page of the web, it will provide basic information and precautions for the module.

2.2.2 status page

When you aaccess the status page, the page will automatically refresh every 5 second.

There are currently five columns of monitorable parameters on this page.

- The fourth row of the first column indicates the date the solid is allowed to be used.
- The fifteenth line of the first column indicates the running time of the current round of DAQ.
- The first column, line 16, represents the percentage of DPMFULL and total runtime.

The parameters of the third column, the fourth column and the fifth column are determined by the settings of each experiment. For details, please refer to the manual of the specific experiment settings.

2.2.3 log page

In development, this page will save the status parameters and read the historical parameters.

2.2. web pages 7

2.2.4 support page

This page provides some basic instructions, including XIA instructions, PKU instructions, and more.

2.3 Oscilloscope

Output signals to the oscilloscope through the MZTIO daughter board.

Most oscilloscopes have only 4 channels, so our monitor settings are set by default for 4 channels. If you want to monitor 8 channels at the same time, you can do it with 2 oscilloscopes.

Of course, the monitored signal can be switched by modifying the control register. For instructions on how to monitor different signals, please read the instructions for the specific experiment.

The following figure is an example of oscilloscope monitoring. Line 1 represents the trigger signal, line 2 is the down scale 10, line 3 represents the signal after line 1 is delayed by 400 ns, and line 4 represents line 3 is extend to 500 ns.

Control: (222.29.111.226) Jul 22, 2019

2.4 FIFO IP code limits

The figure below shows the settable range of the FIFO IP core parameters.

Due to the limitation of the FIFO IP core, the delay is set to a minimum of 4 clocks.

remote control

3.1 minicom

Connect the USB cable to your computer to get the IP

Serial communication software(minicom) can be used in Linux OS

```
minicom -s
```

```
+----[configuration]-----+
| Filenames and paths |
| File transfer protocols |
| Serial port setup |
| Modem and dialing |
| Screen and keyboard |
| Save setup as dfl |
| Save setup as.. |
| Exit |
| Exit from Minicom |
```

- Enter Serial port setup, modify Serial Device to /dev/ttyUSB0. Bps/Par/Bits change to 115200 8N1, the bottom two options are NO
- Enter Modem and dialing, delete A, B, and K items
- Then select Save setup as dfl to save the settings
- Finally, select Exit to exit the configuration mode and enter the control mode

```
user: root
password: xia17pxn

The password is the default, so users can log in.
```

Assuming the IP address is 222.29.111.80, you can log in with the following command.

```
ssh -Y root@222.29.111.80
```

3.2 static IP setting

Because Ubuntu 18.04 uses netplan to manage the network. So you can create a file ending in yaml in the /etc/netplan/directory. For example, the 01-netplan.yaml file.

Then write the following configuration under this file(You need to modify the IP address and gateway):

```
network:
    version: 2
    renderer: networkd
    ethernets:
        enp3s0:
        dhcp4: no
        addresses: [192.168.1.110/24]
        gateway4: 192.168.1.1
        nameservers:
        addresses: [8.8.8.8, 114.114.114]
```

It is important to note that the spaces in each line must be there, otherwise the error will be reported and the setting will fail!

```
network:
    version: 2
    renderer: networkd
    ethernets:
        eth0:
        addresses: [10.10.6.33/24]
        gateway4: 10.10.6.10
        dhcp4: no
```

The above parameters are the configurations used by the CIAE experiment.

Finally, use sudo netplan apply to restart the network service. Use ip a to see if your static IP is set up successfully!

ubuntu

4.1 basic configuration

4.1.1 ubuntu 18

If the operating system is the latest version, no additional source configuration is required.

If you want to install CERN ROOT, add the following line to /etc/apt/sources.list

deb http://ports.ubuntu.com/ xenial main universe multiverse

4.1.2 ubuntu 12

If the operating system version is the previous version, you need to modify the source configuration as follows.

Edit source list file

vim /etc/apt/sources.list

change into:

```
deb http://old-releases.ubuntu.com/ubuntu vivid main restricted universe multiverse
deb http://old-releases.ubuntu.com/ubuntu vivid-security main restricted universe_
\hookrightarrowmultiverse
deb http://old-releases.ubuntu.com/ubuntu vivid-updates main restricted universe_
\hookrightarrowmultiverse
deb http://old-releases.ubuntu.com/ubuntu vivid-proposed main restricted universe_
→multiverse
deb http://old-releases.ubuntu.com/ubuntu vivid-backports main restricted universe_
⊶multiverse
deb-src http://old-releases.ubuntu.com/ubuntu vivid main restricted universe_
⊶multiverse
deb-src http://old-releases.ubuntu.com/ubuntu vivid-security main restricted_
→universe multiverse
deb-src http://old-releases.ubuntu.com/ubuntu vivid-updates main restricted_
→universe multiverse
deb-src http://old-releases.ubuntu.com/ubuntu vivid-proposed main restricted_
 universe multiverse
                                                                                (下页继续)
```

(续上页)

```
deb-src http://old-releases.ubuntu.com/ubuntu vivid-backports main restricted_
ouniverse multiverse

deb http://mirrors.ustc.edu.cn/ubuntu/ vivid main universe
deb-src http://mirrors.ustc.edu.cn/ubuntu/ vivid main universe
```

4.1.3 software upgrade

```
apt-get update
```

```
#install firefox
apt-get install firefox
# install emacs
apt-get install emacs
# ROOT dependent library
apt-get install cmake
apt-get install libx11-dev
apt-get install libxpm-dev
apt-get install libxft-dev
apt-get install libxext-dev
apt-get install gfortran
apt-get install libssl-dev
apt-get install xlibmesa-glu-dev
apt-get install libglew1.5-dev
apt-get install libftgl-dev
apt-get install libmysqlclient-dev
apt-get install libfftw3-dev
apt-get install libcfitsio-dev
apt-get install graphviz-dev
apt-get install libavahi-compat-libdnssd-dev
apt-get install libxml2-dev
apt-get install libkrb5-dev
apt-get install libgs10-dev
apt-get install libqt4-dev
```

```
apt-get install root-system-bin
```

Ubuntu color configuration, place the color configuration file .dircolors in the personal directory, the file name is .dir_colors in the readhat system.

4.2 Restore SD card space

In order to speed up the installation speed of the image, only the SD card space of about 8/16G is actually formatted. The 16/32G SD card and the 8/16G space are not used. In order to be able to use, the following operations are performed.

```
fdisk /dev/mmcblk0 # Then enter: d [ENTER], 2 [ENTER], n[ENTER] [ENTER], [ENTER], [ENTER], [ENTER], \rightarroww[ENTER]. Then reboot the OS. If there is a problem, please refer to *Getting-started with Xillinux for Zynq-7000 EPP*
```

14 Chapter 4. ubuntu

```
# Execute the following command
resize2fs /dev/mmcblk0p2

# Use the following command to view the result
df -h
```

4.3 update the boot files

To mount the SD card boot partition to a folder /mnt/sd, execute

```
mount /dev/mmcblk0p1 /mnt/sd
```

this is useful to update the boot files without removing the SD card. The Pixie-16 MZ-TrigIO has to be rebooted before the new boot files become effective.

So the precedure would be

- generate FW files on a desktop PC
- copy to shared Linux folder on the SD card (/var/www)
- mount boot partition mount /dev/mmcblk0p1 /mnt/sd (create /mnt/sd if not already there)
- copy files e.g. cp /var/www/xillydemo.bit /mnt/sd
- reboot or power cycle (reboot)

```
scp xillydemo.bit root@222.29.111.157:~
```

4.4 /dev/mmcblk0p1

boot.bin devicetree.dtb uImage xillydemo.bit

16 Chapter 4. ubuntu

Vivado

5.1 Install

5.2 Compile

When you open it for the first time, you need to clear the P16_MZTIO_FW_0p01/build folder.

- Open Vivado. Use Tools > Run Tcl Script to run project generating script ···/verilog/xillydemo-vivado.tcl. The resulting project file is in ···\verilog\vivado
- There have been cases where the script crashes Vivado, and then the compile has ~100 pin property critical warnings. In such cases, start over.
- Compile demo project (generate bitstream). Ignore warnings and critical warnings.
- Check build/xillydemo.runs/impl_1/xillydemo.bit

5.3 In system debug

Is possible???

18 Chapter 5. Vivado

experiment

About multiplicity output in RJ45 in PKU firmware

- when setting multiplicity==0, output high level
- when setting multiplicity>=1, the default output is low level, and it is high when triggered.

When the MSRB bit 6 is 1

- the synchronization indication signal can be obtained
- have the DPMFULL output information
- have back plane FT, VT information

6.1 online monitor

After modifying the parameter configuration file settings.ini, you need to run the following program to modify the register settings.

./progfippi

It should be noted that the program is not allowed to be executed when DAQ running

You can view the parameters settings in the web page, and the scaler counter and so on.

6.2 experiment mode

We will provide a common combination of firmware and software for the following four types of experiments.

6.3 in beam gamma

designing...

6.4 beta decay

 $\mathbf{designing}\cdots$

6.5 nuclear reaction

designing...

6.6 Super heavy nucleus

designing...

Code

7.1 PS code

```
#PKU MZTIO GUIDES
docs
static # css js
webops
Pixie16_MZTrigIO_Manual.pdf
MZTIOCommon.c
MZTIOCommon.h
MZTIODefs.h
clockprog.c
progfippi.cc
settings.ini
status.c
status.cgi
makefile
pkulogo100.jpg
why.jpg
webopspasswords
index.html
log.html
status.html
support.html
```

7.2 PL code

7.2.1 downscale

```
module downscale
( (下页继续)
```

(续上页)

7.2.2 scaler

```
module scaler
(
    din,
    dout ,
    endcount,
    clk
    );

parameter DATA_W = 32;
    output[DATA_W-1:0] dout;
    reg [DATA_W-1:0] dout;

    input din;
    input endcount;
    input clk;
endmodule
```

7.2.3 signaldelay512

```
module signaldelay512
  (
    din,
    dout,
    delay,
    clk
  );

    output dout;
    reg    dout;
    input [9:0] delay;
    input    din;
    input clk;
endmodule
```

7.2.4 signalextend512

```
module signalextend512 (
din,
```

(下页继续)

22 Chapter 7. Code

(续上页)

7.2.5 IP core

FIFO

```
module fifo_delay512(clk, srst, din, wr_en, rd_en, dout, full, empty,
    data_count)
/* synthesis syn_black_box black_box_pad_pin="clk,srst,din[0:0],wr_en,rd_en,
    dout[0:0],full,empty,data_count[9:0]" */;
    input clk;
    input srst;
    input [0:0]din;
    input wr_en;
    input rd_en;
    output [0:0]dout;
    output full;
    output empty;
    output [9:0]data_count;
endmodule
```

7.3 xillydemo

7.3. xillydemo 23

DB

• FRONT_X_OUTENA

- == 1 表示从 MZ 往前面板驱动输出,代码里面操作 out
- == 0 表示从前面板往 MZ 驱动输入,代码里面操作 in

• LVDS X OUTTENA

- == 1 表示驱动网口向外输出
- == 0 表示驱动网口向里输入

如果 MEZZ01 开启输入模式,则必须设置 FRONT_X_OUTENA==0 && LVDS_X_OUTTENA==1,其余模式下,MEZZ01 跳针全部设置成输出模式,此时网口可用于输入或者输出模式。

当前,在前面板 C 口配置一个 MEZZ01 模块,其中前四通道设置为信号输入,分别连接 [1]/[2]/[5]/[6],后四个通道设置为信号输出,分别连接 [9]/[10]/[13]/[14]。该配置模式下,C 口对应的四个网口仍然可用于多重性的输出,此时参数 FrontIO = 0x6600, LVDSIO = 0x6666。如果不使用 MEZZ01 模块,只连接网口与 P16 模块,则参数 FrontIO/LVDSIO 均设置为 0x6666。

24 Chapter 7. Code