COMPREHENSIVE ANALYSIS OF COVID-19 VACCINATION DATA: ENHANCING DEPLOYMENT STRATEGIES FOR OPTIMAL PUBLIC HEALTH IMPACT

INNOVATION PHASE

Team Members:

1. Dinesh K

• Email: dineshreddykonda@gmail.com

2. Ezhil Oviya C

• Email: oviyagarcia141@gmail.com

3. Geetika TK

• Email: geetikatk@gmail.com

4. Gogilarasan S

• Email: gogilarasan@gmail.com

5. Nijantha Nathan M

• Email: nijanthanathan72@gmail.com

Covid Vaccine Analysis

```
# import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
plt.rc('font', size=10)
%matplotlib inline
# import dataset from CSV
vac = '../country_vaccinations.csv'
manu = '../country_vaccinations_by_manufacturer.csv'
df_vac = pd.read_csv(vac, parse_dates= ['date'])
df_manu = pd.read_csv(manu, parse_dates = [])
df_manu.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 35623 entries, 0 to 35622
     Data columns (total 4 columns):
                              Non-Null Count Dtype
     # Column
     0 location
                              35623 non-null object
                              35623 non-null object
         date
                              35623 non-null object
         vaccine
         total_vaccinations 35623 non-null int64
     dtypes: int64(1), object(3)
     memory usage: 1.1+ MB
df_vac.tail(5)
              country iso_code date total_vaccinations people_vaccinated people_fully_vaccinated
                           ZWE
      86507 Zimbabwe
                                                  8691642.0
                                                                     4814582.0
                                 03-25
                                 2022-
      86508 Zimbabwe
                           ZWE
                                                  8791728.0
                                                                     4886242.0
                                 03-26
                                 2022-
      86509 Zimbabwe
                                                  8845039.0
                                                                     4918147.0
                                 03 - 27
                                 2022-
      86510 Zimbabwe
                           ZWE
                                                  8934360.0
                                                                     4975433.0
                                 03-28
                                 2022-
      86511 Zimbabwe
                           ZWE
                                                  9039729.0
                                                                     5053114.0
                                 03-29
df_manu.head()
         location
                        date
                                        vaccine total_vaccinations
                                                                       0 Argentina 2020-12-29
                                       Moderna
                                                                  2
                                                                       th
      1 Argentina 2020-12-29 Oxford/AstraZeneca
                                                                  3
      2 Argentina 2020-12-29
                                Sinopharm/Beijing
      3 Argentina 2020-12-29
                                       Sputnik V
                                                              20481
      4 Argentina 2020-12-30
                                       Moderna
                                                                  2
# the most popular vaccine
most_vac = df_manu.groupby(['vaccine'])[['location','date', 'total_vaccinations']].sum().sort_values(by =
                                                                                                                                   ascending = F
most_vac['Total_vac_per_million'] = round(most_vac['total_vaccinations']/1000000,2)
                                                                                                             'total_vaccinations',
most\_vac['Percent\_of\_total\_vac'] = round(100*\ most\_vac['total\_vaccinations']/most\_vac['total\_vaccinations'].sum($\overline{\bigcirc}$, 2)
most_vac.reset_index(inplace = True)
most_vac
```

<ipython-input-5-ba5b9c3bd4be>:2: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future ve most vac = df manu.groupby(['vaccine'])[['location','date', 'total vaccinations']].sum().sort values(by = 'total vaccinations', ascend

m	ost_vac = d+_manu.	.grouppy([vaccine])	[[location , date ,	total_vaccinations]].s	sum().sort_values(by = 'total_vaccinations', ascend	
	vaccine	total_vaccinations	Total_vac_per_million	Percent_of_total_vac		
0	Pfizer/BioNTech	344835955037	344835.96	64.18	th.	
1	Moderna	103072147621	103072.15	19.18		
2	Oxford/AstraZeneca	46451509497	46451.51	8.65		
3	Sinovac	13407163275	13407.16	2.50		
4	Johnson&Johnson	12611375881	12611.38	2.35		
5	Sinopharm/Beijing	10877006517	10877.01	2.02		
6	Sputnik V	5787343199	5787.34	1.08		
7	CanSino	271397675	271.40	0.05		
8	Novavax	8268113	8.27	0.00		
9	Covaxin	3572	0.00	0.00		
<pre># Let's plot this for easy visualization fig = px.bar(most_vac[:7], x="Percent_of_total_vac", y="vaccine", template = 'simple_white',</pre>						
<pre>size=14, color="black"), showlegend = False) fig.show()</pre>						

The world most popular vaccine


```
# The list of SEA countries which have the highest percentage of fully vaccinated people
sea = ['Brunei', 'India', 'Indonesia', 'Laos', 'Malaysia', 'Myanmar', 'Philippines', 'Singapore',

df_vac_sea = df_vac[df_vac['country'].isin(sea)]
df_vac_sea_group = df_vac_sea.groupby(['country'])[['date','people_fully_vaccinated_per_hundred']].max().sort_values(by = 'people_fully_vaccindf_vac_sea_group
```

```
\overline{\mathbf{H}}
                        date people_fully_vaccinated_per_hundred
         country
                                                                     th
        Brunei
                  2022-03-18
                                                             91.71
df_vac_sea_group['iso_alpha'] = ["BRN","SGP","VNM", "MYS","THA","LAO","IND", "PHL", "IDN","MMR"]
       vietnam
                2022-03-22
                                                             79.20
fig = px.bar(df_vac_sea_group, x= "people_fully_vaccinated_per_hundred", y= df_vac_sea_group.index, template = 'simple_white',
              width=1000, height=500 , orientation = 'h', color = df_vac_sea_group.index,
             color_discrete_sequence=px.colors.sequential.Plotly3, text_auto=True,
             labels=dict(people_fully_vaccinated_per_hundred ="Fully vaccinated people (%)")).update_xaxes(categoryorder = "total descending"
fig.update_layout(
    title="<b>SEA total fully vaccinated people (%)</b>",
    font=dict(
        size=14,
        color="black"),
    showlegend = False
fig.show()
```

SEA total fully vaccinated people (%)


```
Total fully vaccinated people(%)
90
```

Vaccination rate in SEA countries (%)

Vietnam 2021-03-07

84250

```
# Fill NULL values with back values close to that NULL
df_vac_daily['daily_vaccinations_per_million'].fillna(method = 'bfill', inplace =True)
df_vac_daily.daily_vaccinations_per_million.isna().sum()
```

NaN

Interactive daily vaccination rate


```
!pip install --upgrade pip
     Requirement already satisfied: pip in /usr/local/lib/python3.10/dist-packages (23.1.2)
     Collecting pip
      Downloading pip-23.3-py3-none-any.whl (2.1 MB)
                                                  _ 2.1/2.1 MB 12.8 MB/s eta 0:00:00
     Installing collected packages: pip
       Attempting uninstall: pip
         Found existing installation: pip 23.1.2
         Uninstalling pip-23.1.2:
           Successfully uninstalled pip-23.1.2
     Successfully installed pip-23.3
!pip install pystan~=2.14
     Requirement already satisfied: pystan~=2.14 in /usr/local/lib/python3.10/dist-packages (2.19.1.1)
     Requirement already satisfied: Cython!=0.25.1,>=0.22 in /usr/local/lib/python3.10/dist-packages (from pystan~=2.14) (3.0.3)
     Requirement already satisfied: numpy>=1.7 in /usr/local/lib/python3.10/dist-packages (from pystan~=2.14) (1.23.5)
     WARNING: Running pip as the 'root' user can result in broken permissions and conflicting behaviour with the system package manager. It i
# Fill NULL using interpolate
df_in = df_vac_sea[df_vac_sea['country'] == 'Indonesia'][['date','people_fully_vaccinated_per_hundred']]
df_in['people_fully_vaccinated_per_hundred']= df_in['people_fully_vaccinated_per_hundred'].interpolate()
df_in = df_in.rename(columns={'people_fully_vaccinated_per_hundred': 'y', 'date':'ds'})
```

New Section

10/18/23, 7:26 PM	covid19vaccine.ipynb - Colaboratory