Mostow RIGIDITY

Thm. M, N complete, finite vol, hyp n-mans n>2Any isomorphism $\pi_1 M \to \pi_1 N$ is included by a unique isometry $M \to N$

In particular: ① $\pi_1(M) \cong \pi_1(N) \Rightarrow M \equiv N$ ② volume, diam, inj rad are invariants of M.

Cor. M closed, hyp n-man n>2 Isom (M) = Out (TUM) and these gps are finite.

Pf idea. Mostow -> Isom(M) -> Out(TLM) is surjective.

Non-rigidity

1) Mostow not true for n=2:

2) Mostow not true for non-hyp mans

 $\pi_1 L(7,1) \cong \pi_1 L(7,2) \cong \mathbb{Z}/7$ but $L(7,1) \not\cong L(7,2)$ (Reidemeister)

OUTLINE OF PROOF

Assume M,N compact.

Start with $F: TLIM \xrightarrow{\cong} TLIN$ Wount to promote F to an isometry $M \longrightarrow N$

Step 1. Homotopy equivalence

M, N are K(G, I) spaces since $\widetilde{M} \cong \widetilde{N} \cong H^n$ $M \cong \widetilde{N} \cong H^n$

Step 2. Lift

 $\longrightarrow \tilde{f}: H^n \longrightarrow H^n$ (lifting criterion)

Step 3. Extend

~ of: ahr - ahr

Step 4. Show of is conformal.

Step 5. Extend

~ Q: H" → H" isometry

Step 6. φ descends to $\overline{\varphi}: M \to N$.

Step 2. Properties of f

① \tilde{f} is $\pi_1(M)$ - equivariant: $\tilde{f}(g \cdot x) = f_*(g) \cdot \tilde{f}(x) \qquad \text{(exercise)}.$

@ F is a quasi-isometry: 3 K,C s.t.

 $\frac{1}{k} d(x,y) + C \leq d(\tilde{f}(x), \tilde{f}(y)) \leq k d(x,y) + C \qquad \left(\begin{array}{c} and \; \exists \\ qi \; inverse \end{array}\right)$

 $\underline{\rho} \widehat{f} \circ \widehat{f} \circ \widehat{D}$. Compactness + continuity $\longrightarrow \widehat{f}, \widehat{g}$ Lipschitz, i.e. $\exists K > 0 \text{ s.t.}$ $d(\widehat{f}(x), \widehat{f}(y)) \leq K d(x,y)$

Other inequality. For $x,y \in \widetilde{M}$ have $d(\widetilde{g}\widetilde{f}(x), \widetilde{g}\widetilde{f}(u)) \leq K d(g\widetilde{f}(x), \widetilde{f}(y))$

But of f equiv. homotopic to id & M compact

→ d(gf(z),z) ≤ C for some C indep of Z. → d(f(x), f(y)) > 1/k d(gf(x), gf(y))

> 1/K (d(x,4)-2C).

Step 3. Quasigeodesics and the boundary map

Thm. Any quasi-isometry $h: H^n \to H^n$ extends to a homeo $\partial H^n \to \partial H^n$

Note: h need not be continuous!

This works for n= 2.

Quasiquedesics

A geodesic in a metric space X is an isometric embedding $I \longrightarrow X$.

A quasiquedesic is a quasi-isometric embedding I-X.

examples in IR2

Morse-Mostow Stability Lemma. If x: R-+H" is a quasigeod, I! good f s.t. x lies in bdd nbd of f.

Key point: Let I = [a,b], x = x(a), y = x(b), \$ B the geodesic from x to y.

Pick D>> K and suppose & does not stay within D of B. Let x', y' be distinct pts of & at distance D from B.

Let B' be paintin segment of B from projs of x' & y'.

Now, $d(x',y') \leq L(\alpha')$ and $D \gg K$

$$\Rightarrow l(x') \leq \frac{2DK^2 + CK}{1 - K^2 e^{-D}} \leq 4D^2$$

 \Rightarrow x stays in $D+4D^2$ nbd of \$B.

This only depends on K so works for any bold interval [a,b]

Any quasigeodesic leaves every ball around 0 in 14", and this argument rules out spiralling:

The Extension

Recall $\partial H^n = \{\text{geodesic rays}\}/ \sim$ $\kappa \sim \beta$ if $d(\kappa(t), \beta(t))$ bounded k(t).

By the Lemma, h takes rays to rays (after straightening) and preserves \sim $\partial h: \partial H^n \longrightarrow \partial H^n$

Check: In is well def and 1-1.

Want to show is continuous.

"Notilting"

Lemma. $\exists D = D(K)$ s.t. for any hyperplane $P \subseteq H^n$ and any good $f \perp P$ we have diam $Proj_{\mathcal{T}}(h(P)) \leq D$.

prime means: apply h then straighten.

 $d(x',y') \leq d(x',l') \leq Kd(x,l) + C$.

Proof that $\partial \tilde{f}$ is continuous:

Open half-spaces \bot to J' form a nbd basis around $\partial h(X)$. Pick such a half-space \mathbb{Q} .

Choose Z on J s.t. $d(Z',\partial \mathbb{Q}) > 100 \, \mathrm{D}'$ as in lemma.

Then the half-space \bot to J through Z maps into \mathbb{Q} .