

Illustrative Visualization: Photic Extremum Lines

Markus Pawellek

January 11, 2022

Outline

Related Work

Mathematical Preliminaries

Photic Extremum Lines

Algorithm

Results

Conclusions

Tools

Tools

2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"

Tools

- 2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"
- 2004 Rusinkiewicz "Estimating Curvatures and Their Derivatives on Triangle Meshes"

Tools

- 2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"
- 2004 Rusinkiewicz "Estimating Curvatures and Their Derivatives on Triangle Meshes"

Algorithm

Tools

- 2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"
- 2004 Rusinkiewicz "Estimating Curvatures and Their Derivatives on Triangle Meshes"

Algorithm

2007 Xie et al. "An Effective Illustrative Visualization Framework Based on Photic Extremum Lines (PELs)"

Tools

- 2003 Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models"
- 2004 Rusinkiewicz "Estimating Curvatures and Their Derivatives on Triangle Meshes"

Algorithm

- 2007 Xie et al. "An Effective Illustrative Visualization Framework Based on Photic Extremum Lines (PELs)"
- 2010 Zhang, He, and Seah "Real-Time Computation of Photic Extremum Lines (PELs)"

Mathematical Preliminaries

 $lackbox{}{} f\colon S o \mathbb{R}$ on mesh S characterized by its values at vertices

- $lackbox{} f\colon S o\mathbb{R}$ on mesh S characterized by its values at vertices
- ► For interiors of faces, use barycentric interpolation

ightharpoonup Compute ∇f for each face

- ightharpoonup Compute ∇f for each face
- For each vertex, accumulate weighted and rotated gradients for adjacent faces

$$I_{uv} := \begin{pmatrix} \|u\|^2 & \langle u, v \rangle \\ \langle u, v \rangle & \|v\|^2 \end{pmatrix} \qquad \nabla f = \begin{pmatrix} u & v \end{pmatrix} I_{uv}^{-1} \begin{pmatrix} f(B) - f(A) \\ f(C) - f(A) \end{pmatrix}$$

Mathematical Preliminaries: Directional Derivatives

$$\partial_w f(x) = \langle \nabla f(x), w \rangle$$
 $\mathcal{D}_f g(x) := \left\langle \nabla g(x), \frac{\nabla f(x)}{\|\nabla f(x)\|} \right\rangle$

Scalar illumination function

 $\varphi\colon S \to \mathbb{R}$ on mesh S

(e.g. directional light source)

- Scalar illumination function $\varphi\colon S \to \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

- Scalar illumination function
 - $arphi\colon S o \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

- Scalar illumination function
 - $arphi\colon S o \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

$$\mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\| (x) = 0 \qquad \mathfrak{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (x) < 0$$

- Scalar illumination function
 - $arphi\colon S o \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

$$\mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\| (x) = 0 \qquad \mathfrak{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (x) < 0$$

- Scalar illumination function
 - $arphi\colon S o \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

$$\mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\| (x) = 0 \qquad \mathfrak{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (x) < 0$$

- Scalar illumination function
 - $arphi\colon S o \mathbb{R}$ on mesh S (e.g. directional light source)
- ▶ Variation of illumination $\|\nabla \varphi\|$

Photic Extremum

$$\mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\| (x) = 0 \qquad \mathfrak{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (x) < 0$$

Algorithm

1. Compute φ

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathfrak{D}_{\varphi} \| \nabla \varphi \|$

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathfrak{D}_{\varphi} \| \nabla \varphi \|$
- 4. Compute $\mathfrak{D}_{\varphi}^2 \| \nabla \varphi \|$

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathcal{D}_{\varphi} \| \nabla \varphi \|$
- 4. Compute $\mathcal{D}^2_{\varphi} \| \nabla \varphi \|$
- 5. Detect line vertices on edges by testing for photic extremums

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathcal{D}_{\varphi} \| \nabla \varphi \|$
- 4. Compute $\mathcal{D}^2_{\varphi} \| \nabla \varphi \|$
- 5. Detect line vertices on edges by testing for photic extremums
- 6. Trace and filter out lines by using a threshold

- 1. Compute φ
- 2. Compute $\frac{\nabla \varphi}{\|\nabla \varphi\|}$ and $\|\nabla \varphi\|$
- 3. Compute $\mathcal{D}_{\varphi} \| \nabla \varphi \|$
- 4. Compute $\mathcal{D}^2_{\varphi} \| \nabla \varphi \|$
- 5. Detect line vertices on edges by testing for photic extremums
- 6. Trace and filter out lines by using a threshold
- 7. Render visible lines

▶ For each edge $[v, w] \subset S$, check zero-crossing:

$$h(x) := \mathcal{D}_{\varphi} \|\nabla \varphi\|(x)$$
$$h(v)h(w) < 0$$

▶ For each edge $[v, w] \subset S$, check zero-crossing:

$$h(x) \coloneqq \mathfrak{D}_{\varphi} \left\| \nabla \varphi \right\|(x)$$

Approximate zero-crossing:

$$p := \frac{|h(w)| v + |h(v)| w}{|h(v)| + |h(w)|}$$

Check maximum condition:

$$\mathcal{D}_{\varphi}^{2} \left\| \nabla \varphi \right\| (p) < 0$$

Check maximum condition:

$$\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\| (p) < 0$$

 For each triangle, connect valid zero-crossings of adjacent edges to segments

Algorithm: Threshold Filter

Algorithm: Threshold Filter

Strength S of photic extremum or strength $\mathbb S$ of photic extremum line L:

$$S(x) = \|\nabla \varphi(x)\| > T$$
 or $S(L) := \int_L \|\nabla \varphi(s)\| \, ds > T$

Use z-buffer in a two-pass rendering approach

- ▶ Use z-buffer in a two-pass rendering approach
- Render the shape with a custom shader for its fragments

- Use z-buffer in a two-pass rendering approach
- Render the shape with a custom shader for its fragments
- Render visible feature lines by using depth testing

Results

 Able to render convex and concave edges simultaneously

- Able to render convex and concave edges simultaneously
- Applicable to isosurfaces of volumetric datasets

- Able to render convex and concave edges simultaneously
- Applicable to isosurfaces of volumetric datasets
- Highly dependent on scalar illumination function

- Able to render convex and concave edges simultaneously
- Applicable to isosurfaces of volumetric datasets
- Highly dependent on scalar illumination function
- Computationally expensive: interactive on CPU, real-time capable on GPU

Results: Contours vs. Photic Extremum Lines

Results: Contours vs. Photic Extremum Lines

Contours lack details, but are strongest for overall shape

Results: Contours vs. Photic Extremum Lines

- Contours lack details, but are strongest for overall shape
- ▶ Photic extremum lines convey additional structure

Scanned models with many triangles often provide noisy normals

- Scanned models with many triangles often provide noisy normals
- Such noise leads to small feature line artifacts

- Scanned models with many triangles often provide noisy normals
- Such noise leads to small feature line artifacts
- Bilateral normal filtering should be applied

Summary

▶ Photic Extremums: $\mathcal{D}_{\varphi} \|\nabla \varphi\|(x) = 0$, $\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\|(x) < 0$

- ▶ Photic Extremums: $\mathcal{D}_{\varphi} \|\nabla \varphi\|(x) = 0$, $\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\|(x) < 0$
- View- and light-dependent object-space feature line method

- ▶ Photic Extremums: $\mathcal{D}_{\varphi} \|\nabla \varphi\|(x) = 0$, $\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\|(x) < 0$
- ▶ View- and light-dependent object-space feature line method
- Computationally expensive third- to fourth-order derivatives

- ▶ Photic Extremums: $\mathcal{D}_{\varphi} \|\nabla \varphi\|(x) = 0$, $\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\|(x) < 0$
- View- and light-dependent object-space feature line method
- Computationally expensive third- to fourth-order derivatives
- Convey shapes similar to human perception

- ▶ Photic Extremums: $\mathcal{D}_{\varphi} \|\nabla \varphi\|(x) = 0$, $\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\|(x) < 0$
- View- and light-dependent object-space feature line method
- Computationally expensive third- to fourth-order derivatives
- Convey shapes similar to human perception

Summary

- ▶ Photic Extremums: $\mathcal{D}_{\varphi} \|\nabla \varphi\|(x) = 0$, $\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\|(x) < 0$
- View- and light-dependent object-space feature line method
- Computationally expensive third- to fourth-order derivatives
- Convey shapes similar to human perception

Future Work

Faster GPU-based implementation even for volumetric datasets

Summary

- ▶ Photic Extremums: $\mathcal{D}_{\varphi} \|\nabla \varphi\|(x) = 0$, $\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\|(x) < 0$
- View- and light-dependent object-space feature line method
- Computationally expensive third- to fourth-order derivatives
- Convey shapes similar to human perception

Future Work

- Faster GPU-based implementation even for volumetric datasets
- Robustness: Exaggerated and mean curvature illumination

Summary

- ▶ Photic Extremums: $\mathcal{D}_{\varphi} \|\nabla \varphi\|(x) = 0$, $\mathcal{D}_{\varphi}^{2} \|\nabla \varphi\|(x) < 0$
- View- and light-dependent object-space feature line method
- Computationally expensive third- to fourth-order derivatives
- Convey shapes similar to human perception

Future Work

- Faster GPU-based implementation even for volumetric datasets
- Robustness: Exaggerated and mean curvature illumination
- Robustness: Automatic thresholding and noise filtering

Thank you for Your Attention!

References

- (1) Tobias Isenberg et al. "A Developer's Guide to Silhouette Algorithms for Polygonal Models". In: Computer Graphics and Applications, IEEE 23 (August 2003), pp. 28 –37. DOI: 10.1109/MCG.2003.1210862.
- (2) Szymon Rusinkiewicz. "Estimating Curvatures and Their Derivatives on Triangle Meshes". In: October 2004, pp. 486–493. ISBN: 0-7695-2223-8. DOI: 10.1109/TDPVT.2004.1335277.
- (3) Xuexiang Xie et al. "An Effective Illustrative Visualization Framework Based on Photic Extremum Lines (PELs)". In: IEEE transactions on visualization and computer graphics 13 (November 2007), pp. 1328–1335. DOI: 10.1109/IVCG.2007.70538.
- (4) Long Zhang, Ying He, and Hock Seah. "Real-Time Computation of Photic Extremum Lines (PELs)". In: The Visual Computer 26 (June 2010), pp. 399–407. DOI: 10.1007/s00371-010-0454-x.

- (5) Douglas DeCarlo et al. "Suggestive Contours for Conveying Shape". In: ACM Trans. Graph. 22 (July 2003), pp. 848–855. DOI: 10.1145/1201775.882354.
- (6) Michael Kolomenkin, Ilan Shimshoni, and Ayellet Tal. "Demarcating Curves for Shape Illustration". In: ACM Trans. Graph. 27 (December 2008), p. 157. DOI: 10.1145/1457515.1409110.
- (7) Szymon Rusinkiewicz, Michael Burns, and Douglas DeCarlo. "Exaggerated Shading for Depicting Shape and Detail". In: ACM Trans. Graph. 25 (July 2006), pp. 1199–1205. DOI: 10.1145/1179352.1142015.
- (8) Mark Meyer et al. "Discrete Differential-Geometry
 Operators for Triangulated 2-Manifolds". In: Proceedings of
 Visualization and Mathematics 3 (November 2001). Doi:
 10.1007/978-3-662-05105-4_2.
- (9) Gordon Kindlmann et al. "Curvature-Based Transfer Functions for Direct Volume Rendering: Methods and Applications". In: vol. 2003. November 2003, pp. 513–520. ISBN: 0-7803-8120-3. DOI: 10.1109/VISUAL.2003.)250414.

A ALLES