Integer Programming ISE 418

Lecture 1

Dr. Ted Ralphs

Reading for This Lecture

- N&W Sections I.1.1-I.1.4
- Wolsey Chapter 1
- CCZ Chapters 1-2

Mathematical Optimization Problems

• What is mathematical optimization?

Mathematical Optimization Problems

- What is mathematical optimization?
- *Mathematical optimization* is a framework for formulating and analyzing optimization problems.
- The essential elements of an optimization problem are
 - a system whose operating states can be described numerically by specifying the values of certain *variables*;
 - a set of states considered *feasible* for the given system; and
 - an *objective function* that defines a preference ordering of the states.
- Before applying mathematical optimization techniques, we must first create a *model*, which is then translated into a particular *formulation*.
- The formulation is a formal description of the problem in terms of mathematical functions and logical operators.
- The use of mathematical optimization as a framework for formulation imposes constraints on what aspects of the system can be modeled.
- We often need to make simplifying assumptions and approximations in order to put the problem into the required form.

Modeling

• Our overall goal is to develop a *model* of a real-world system in order to analyze the system.

- The system we are modeling is typically (but not always) one we are seeking to control by determining its "operating state."
- The (independent) variables in our model represent aspects of the system we have control over.
- The values that these variables take in the model tell us how to set the operating state of the system in the real world.
- Modeling is the process of creating a conceptual model of the real-world system.
- Formulation is the process of constructing a mathematical optimization problem whose solution reveals the optimal state according to the model.
- This is far from an exact science.

The Modeling Process

- The modeling process consists generally of the following steps.
 - Determine the "real-world" state variables, system constraints, and goal(s) or objective(s) for operating the system.
 - Translate these variables and constraints into the form of a mathematical optimization problem (the "formulation").
 - Solve the mathematical optimization problem.
 - Interpret the solution in terms of the real-world system.
- This process presents many challenges.
 - Simplifications may be required in order to ensure the eventual mathematical optimization problem is "tractable."
 - The mappings from the real-world system to the model and back are sometimes not very obvious.
 - There may be more than one valid "formulation."
- All in all, an intimate knowledge of mathematical optimization definitely helps during the modeling process.

Formalizing: Mathematical Optimization Problems

Elements of the model:

- Decision variables: a vector of variables indexed 1 to n.
- Constraints: pairs of functions and right-hand sides indexed 1 to m.
- Objective Function
- Parameters and Data

The general form of a *mathematical optimization problem* is:

$$z_{\text{MP}} = \sup f(x)$$

s.t. $g_i(x) \le b_i, \ 1 \le i \le m$ (MP)
 $x \in \mathbb{Z}^p \times \mathbb{R}^{n-p}$

Note the use supremum here because the maximum may not exist.

Feasible Region

• The *feasible region* of (MP) is

$$\mathcal{F} = \{ x \in \mathbb{Z}^p \times \mathbb{R}^{n-p} \mid g_i(x) \le b_i, \ 1 \le i \le m \}$$

The feasible region is bounded when

$$\mathcal{F} \subseteq \{x \in \mathbb{R}^m \mid ||x||_1 \le M\}$$

and *unbounded* otherwise.

- We take $z_{\mathrm{MP}} = -\infty$ when $\mathcal{F} = \emptyset$ (the problem is *infeasible*).
- We may also have $z_{\text{MP}} = \infty$ when the problem is *unbounded*, e.g., f is a linear function and $\exists \hat{x} \in \mathcal{F}$ and $d \in \mathbb{R}^n$ such that
 - $-x + \lambda d \in \mathcal{F}$ for all $\lambda \in \mathbb{R}_+$,
 - -f(d) < 0.

Solutions

- A *solution* is an assignment of values to variables.
- \bullet A solution can hence be thought of as an n-dimensional vector.
- A *feasible solution* is an assignment of values to variables such that all the constraints are satisfied, i.e., a member of \mathcal{F} .
- The *objective function value* of a solution is obtained by evaluating the objective function at the given point.
- An optimal solution (assuming maximization) is one whose objective function value is greater than or equal to that of all other feasible solutions.
- Note that a mathematical optimization problem may not have an optimal solution.
- Question: What are the different ways in which this can happen?

Possible Outcomes

- When we say we are going to "solve" a mathematical optimization problem, we mean to determine
 - whether it has an optimal value (meaning z_{MP} is finite), and
 - whether it has an optimal *solution* (the supremum can be attained).
- ullet Note that the supremum may not be attainable if, e.g., ${\mathcal F}$ is an open set.
- We may also want to know some other things, such as the status of its "dual" or about sensitivity.

Types of Mathematical Optimization Problems

 The type of a mathematical optimization problem is determined primarily by

- The form of the objective and the constraints.
- The form of the set X.
- In 406, you learned about linear models.
 - The objective function is linear.
 - The constraints are linear.
- The most important determinants of whether a mathematical optimization problem is "tractable" are the convexity of
 - The objective function.
 - The feasible region.

Types of Mathematical Optimization Problems (cont'd)

 Mathematical optimization problems are generally classified according to the following dichotomies.

- Linear/nonlinear
- Convex/nonconvex
- Discrete/continuous
- Stochastic/deterministic
- See the NEOS guide for a more detailed breakdown.
- This class concerns (primarily) models that are discrete, linear, and deterministic (and as a result generally non-convex)

The Formal Setting for This Course

• We consider linear optimization problems in which we additionally impose that $x \in \mathbb{Z}_+^p \times \mathbb{R}_+^{n-p}$.

The general form of such a mathematical optimization problem is

$$z_{\mathsf{IP}} = \max\{c^{\mathsf{T}}x \mid x \in \mathcal{S}\},$$
 (MILP)

where for $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m, c \in \mathbb{Q}^n$. we have

$$\mathcal{P} = \{ x \in \mathbb{R}^n \mid Ax \le b \}$$
 (FEAS-LP)

$$\mathcal{S} = \mathcal{P} \cap (\mathbb{Z}_+^p \times \mathbb{R}_+^{n-p})$$
 (FEAS-MIP)

- This type of optimization problem is called a *mixed integer linear* optimization problem (MILP).
- If p = n, then we have a pure integer linear optimization problem, or an integer optimization problem (IP).
- If p = 0, then we have a *linear optimization problem* (LP).
- The first p components of x are the *discrete* or *integer* variables and the remaining components consist of the *continuous* variables.

Special Case: Binary Integer Optimization

- In many cases, the variables of an IP represent yes/no decisions or logical relationships.
- These variables naturally take on values of 0 or 1.
- Such variables are called binary.
- IPs involving only binary variables are called *binary integer optimization* problems (BIPs) or 0-1 integer optimization problems (0-1 IPs).

Combinatorial Optimization

- A combinatorial optimization problem $CP = (N, \mathcal{F})$ consists of
 - A finite ground set N,
 - A set $\mathcal{F} \subseteq 2^N$ of feasible solutions, and
 - A cost function $c \in \mathbb{Z}^n$.
- The *cost* of $F \in \mathcal{F}$ is $c(F) = \sum_{j \in F} c_j$.
- The combinatorial optimization problem is then

$$\max\{c(F) \mid F \in \mathcal{F}\}$$

- \bullet There is a natural association with a 0-1 IP.
- Many COPs can be written as BIPs or MILPs.

Some Notes

• The form of the problem we consider will be maximization by default, since this is the standard in the reference texts.

- I normally think in terms of minimization by default, so please be aware that this may cause some confusion.
- Also note that the definition of S includes non-negativity, but the definition of P does not.
- One further assumption we will make is that the constraint matrix is rational. Why?

Some Notes

• The form of the problem we consider will be maximization by default, since this is the standard in the reference texts.

- I normally think in terms of minimization by default, so please be aware that this may cause some confusion.
- Also note that the definition of S includes non-negativity, but the definition of \mathcal{P} does not.
- One further assumption we will make is that the constraint matrix is rational. Why?
 - This is an important assumption since with irrational data, certain "intuitive" results no longer hold (such as what?)
 - A computer can only understand rational data anyway, so this is not an unreasonable assumption.

How Difficult is MILP?

- Solving general integer MILPs can be much more difficult than solving LPs.
- There in no known *polynomial-time* algorithm for solving general MILPs.
- Solving the associated *LP relaxation*, an LP obtained by dropping the integerality restrictions, results in an upper bound on $z_{\rm IP}$.
- Unfortunately, solving the LP relaxation may not tell us much.
 - Rounding to a feasible integer solution may be difficult.
 - The optimal solution to the LP relaxation can be arbitrarily far away from the optimal solution to the MILP.
 - Rounding may result in a solution far from optimal.

Discrete Optimization and Convexity

- One reason why convex problems are "easy" to solve is because convexity makes it easy to find *improving feasible directions*.
- Optimality criteria for a linear program are equivalent to "no improving feasible directions."
- The feasible region of an MILP is nonconvex and this makes it difficult to find feasible directions.
- The algorithms we use for LP can't easily be generalized.
- Although the feasible set is nonconvex, there is a convex set over which we can optimize in order to get a solution (why?).
- The challenge is that we do not know how to describe that set.
- Even if we knew the description, it would in general be too large to write down explicitly.
- Integer variables can be used to model other forms of nonconvexity, as we will see later on.

The Geometry of an MILP

• Let's consider again an integer optimization problem

$$\max c^{\top} x$$
s.t.
$$Ax \le b$$

$$x \in \mathbb{Z}_{+}^{n}$$

• The feasible region is the integer points inside a polyhedron.

Why does solving the LP relaxation not necessarily yield a good solution?

How General is Discrete Optimization?

- A natural question to ask is just how general this language for describing optimization problems is.
- Is this language general enough that we should spend time studying it?
- To answer this question rigorously requires some tools from an area of computer science called *complexity theory*.
- We can say informally, however, that the language of mathematical optimization is very general.
- One can show that almost anything a computer can do can be described as a mathematical optimization problem¹.
- Mixed integer linear optimization is not quite as general, but is complete for a broad class of problems called NP.
- We will study this class later in the course.

¹Formally, mathematical optimization can be shown to be a "Turing-complete" language

Conjunction versus Disjunction

• A more general mathematical view that ties integer programming to logic is to think of integer variables as expressing *disjunction*.

- The constraints of a standard mathematical program are *conjunctive*.
 - All constraints must be satisfied.
 - In terms of logic, we have

$$g_1(x) \le b_1 \text{ AND } g_2(x) \le b_2 \text{ AND } \cdots \text{ AND } g_m(x) \le b_m$$
 (1)

- This corresponds to *intersection* of the regions associated with each constraint.
- Integer variables introduce the possibility to model *disjunction*.
 - At least one constraint must be satisfied.
 - In terms of logic, we have

$$g_1(x) \le b_1 \text{ OR } g_2(x) \le b_2 \text{ OR } \cdots \text{ OR } g_m(x) \le b_m$$
 (2)

This corresponds to union of the regions associated with each constraint.

Representability Theorem

The connection between integer programming and disjunction is captured most elegantly by the following theorem.

Theorem 1. (MILP Representability Theorem) A set $\mathcal{F} \subseteq \mathbb{R}^n$ is MILP representable if and only if there exist rational polytopes $\mathcal{P}_1, \ldots, \mathcal{P}_k$ and vectors $r^1, \ldots, r^t \in \mathbb{Z}^n$ such that

$$\mathcal{F} = \bigcup_{i=1}^{k} \mathcal{P}_i + \operatorname{intcone}\{r^1, \dots, r^t\}$$

Roughly speaking, we are optimizing over a union of polyhedra, which can be obtained simply by introducing a disjunctive logical operator to the language of linear programming.

Connection with Other Fields

• Integer programming can be studied from the point of view of a number of fundamental mathematical disciplines:

- Algebra
- Geometry
- Topology
- Combinatorics
 - * Matroid theory
 - * Graph theory
- Logic
 - * Set theory
 - * Proof theory
 - * Computability/complexity theory
- There are also a number of other related disciplines
 - Constraint programming
 - Satisfiability
 - Artificial intelligence

Basic Themes

Our goal will be to expose the geometrical structure of the feasible region (at least near the optimal solution). We can do this by

- Outer approximation
- Inner approximation
- Division

An important component of the algorithms we consider will be mechanisms for computing bounds by either

- Relaxation
- Duality

When all else fails, we will employ a basic principle: divide large, difficult problems into smaller ones.

- Logic (conjunction/disjunction)
- Implicit enumeration
- Decomposition