ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ СВОЙСТВ И СОСТАВА НЕФТЕЙ ПТ АПШЕРОНСКОГО НЕФТЕГАЗОНОСНОГО РАЙОНА

Велиева С.Р., Тагиев М.Ф., Мамедова Ф.А.

Азербайджан, SOCAR, НИПИ «Нефтегаз»

Апшеронский нефтегазоносный район (НГР) является одним из старейших нефтегазодобывающих регионов мира. Здесь встречаются как легкие, так и тяжелые нефти, малосмолистые и высокосмолистые, с различным содержанием асфальтенов и твердого парафина, метановым и нафтеновым основанием. Исследование нефтяных флюидов плиоценчетвертичного комплекса отложений региона имеет солидную историю. Тем не менее, изучение закономерностей распределения состава и свойств флюидов сохраняет свою актуальность и требует более глубокого анализа данных. Формирование состава нефти в подземных условиях происходит под влиянием многочисленных физических и химических факторов, среди которых температура, поровые давления, процессы адсорбции, растворения, фильтрации и биохимических изменений углеводородов (УВ) наиболее важные. К настоящему времени доминирующей является концепция, согласно которой резервуары продуктивной толщи (ПТ) заполнялись УВ, поступающими из нижележащих олигоценмиоценовых отложений. В условиях относительно небольшого отрезка геологического времени восходящие потоки УВ из этих отложений проникали в резервуары различных свит ПТ. При вертикальном расстоянии между подошвенными и верхними горизонтами ПТ, составляющем более 3 км, сложились условия в некотором смысле уникальные для миграции УВ и заполнения ими резервуаров. Параллельно, в осадочной толще шло формирование и изменение свойств нефтей.

Несмотря на многолетнюю историю геологических исследований Апшеронского НГР, вопросы о нефтепроизводящих толщах, миграции УВ и формировании залежей остаются актуальными. Известен ряд геохимически обоснованных аргументов, позволяющий считать основным источником генерации УВ подстилающие ПТ диатомовую и майкопскую свиты, при этом вклад в УВ-образование глинистых свит нижнего отдела ПТ также не исключается. По всей вероятности миграция нефти в структурные ловушки ПТ происходила как путем вертикального фильтрационного перетока вдоль трещин и дизъюнктивных нарушений, так и путем латеральных передвижений флюидов. При опускании продуктивных горизонтов на глубину 3000-5000м процессы катагенетического изменения нефтей приобретают особое значение.

Важнейшими характеристиками нефти являются ее фракционный, компонентный и УВ состав. Носителями важной информации являются такие свойства нефтей как плотность, вязкость и содержание в них серы. По физико-химическим показателям все нефти являются легкими, малосернистыми. Плотность нефтей, встречающихся в ПТ Апшеронского полуострова, колеблется в широких пределах от 0,78 до 0,92 г/см³, при этом нефти ПТ в большинстве своем несколько тяжелее, чем средне принятой величины. Наибольшие градиенты изменения плотности нефтей с глубиной наблюдаются в нижних горизонтах ПТ. Молекулярный вес многих нефтей нижнего плиоцена находится в пределах 220-290. Встречающиеся нефти с высоким молекулярным весом, как правило содержат значительное количество силикагелевых смол (выше 15% в нефтях месторождений Бузовна, Балаханы, Кюровдаг, Нефтчала). Нефти Калинского и Сураханского месторождений имеют относительно меньший молекулярный вес. С глубиной доля тяжелых фракций в нефтях полуострова увеличивается, закономерно снижается количество бензина и лигроина. Особенно четко эта тенденция прослеживается на месторождениях Бибиэйбат, Сураханы, Балаханы-Сабунчи-Раманы и Гала, где стратиграфический диапазон образцов представлен наиболее широко. В составе нефтей Апшеронского НГР содержится относительно высокое количество нафтеновых кислот (в пределах 0,1-2,0%), причем наибольшее их количество отмечено в нефтях месторождений Балаханы-Сабунчи-Рамана, Бинагади, Чахнаглар, Шабандаг (до 2%). С глубиной в нефтях Апшерона уменьшается количество нафтеновых УВ и растет количество ароматических, что связывается с метаморфизмом УВ флюидов. В то же время на этих месторождениях со стратиграфической глубиной наблюдается увеличение содержания парафинов. В направлении от Балаханы-Сабунчи-Раманинского месторождения к Сураханскому, Карачухурскому и далее уменьшается плотность и смолистость нефтей. В составе последних возрастает количество метановых и ароматических углеводородов за счет снижения доли нафтеновых, обуславливая тем самым изменение типа нефтей от нафтенового (Балаханы-Сабунчи-Раманы) до метанового (Гум-адасы, Бахар), содержание твердых парафинов при этом увеличивается.

К примеру, в нефтях свиты ПК месторождения Бинагади содержится 0,28%, в одноименной свите Сулутепе – 0,32% парафина. Содержание ароматических УВ во фракциях с повышением температуры их кипения увеличивается: во фракциях до 150°С оно изменяется постепенно, выше этой температуры – более резко. Содержание нафтеновых УВ в нефтях Балаханы-Сабунчи-Раманы характеризуется наибольшим диапазоном колебаний. В распределении метановых УВ по фракциям для большей части нефтей закономерность не обнаруживается.

- 1. В нефтях Апшеронского полуострова со стратиграфической глубиной относительное количество тяжелых высококипящих компонентов увеличивается.
- 2. Нефти Апшеронского полуострова являются преимущественно нафтеновыми, но в распределении их УВ состава нет строгой закономерности.
- 3. Со стратиграфической глубиной во всех фракциях нефтей наблюдается увеличение содержания ароматических УВ. С повышением температуры кипения растет также относительная доля ароматических соединений в УВ части дистиллята. Количество метановых УВ в легких фракциях разгонки характеризуются большим процентом по сравнению с более высококипящими.