A branch-and-cut algorithm for the κ -connected Forest Star Problem

Alfie Plant University of Edinburgh

 25^{th} March 2025

The κ -connected Forest Star Problem

Given a complete directed graph $\mathcal{G}=(\mathcal{V}\cup\mathcal{R},\mathcal{A})$, find a set of directed trees, each rooted at a different $r\in\mathcal{R}$, such that each vertex $i\in\mathcal{V}$ is either on κ trees, or is assigned a vertex that is, which minimises the total tree and assignment cost.

The κ -connected Forest Star Problem

Given a complete directed graph $\mathcal{G}=(\mathcal{V}\cup\mathcal{R},\mathcal{A})$, find a set of directed trees, each rooted at a different $r\in\mathcal{R}$, such that each vertex $i\in\mathcal{V}$ is either on κ trees, or is assigned a vertex that is, which minimises the total tree and assignment cost.

Agenda

- Naive IP formulation
- Reduced IP formulation
- Branch-and-bound algorithm
- Outline of proof for the equivalence of formulations
- Computational results
- 6 Conclusions

■ Consider a directed graph $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$

- Consider a directed graph $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$

The κ -connected Forest Star Problem

×

- Consider a directed graph $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$
- $\mathcal{A}_r = \mathcal{A}_{\mathcal{V}} \cup (\{r\} \times \mathcal{V})$ for some $r \in \mathcal{R}$

×

- Consider a directed graph $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$
- $A_r = A_{\mathcal{V}} \cup (\{r\} \times \mathcal{V}) \text{ for some } r \in \mathcal{R}$
- For some vertex set $S \subset V \cup R$ and some arc set $T \subseteq A$

- Consider a directed graph $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$
- $\blacksquare \ \mathcal{A}_{\mathcal{V}} = \mathcal{V} \times \mathcal{V}$
- $A_r = A_{\mathcal{V}} \cup (\{r\} \times \mathcal{V})$ for some $r \in \mathcal{R}$
- For some vertex set $S \subset V \cup R$ and some arc set $T \subseteq A$

- Consider a directed graph $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$
- $A_{\mathcal{V}} = \mathcal{V} \times \mathcal{V}$
- $A_r = A_{\mathcal{V}} \cup (\{r\} \times \mathcal{V})$ for some $r \in \mathcal{R}$
- For some vertex set $S \subset V \cup R$ and some arc set $T \subseteq A$
- $\delta^+(\mathcal{T},\mathcal{S}) = \{(i,j) \in \mathcal{T} : i \notin \mathcal{S}, j \in \mathcal{S}\}$

- Consider a directed graph $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$
- $A_{\mathcal{V}} = \mathcal{V} \times \mathcal{V}$
- $A_r = A_{\mathcal{V}} \cup (\{r\} \times \mathcal{V}) \text{ for some } r \in \mathcal{R}$
- For some vertex set $S \subset V \cup R$ and some arc set $T \subseteq A$
- $\bullet \delta^+(\mathcal{T},\mathcal{S}) = \{(i,j) \in \mathcal{T} : i \notin \mathcal{S}, j \in \mathcal{S}\}\$
- If $\mathcal{T} = \mathcal{A}$, $\delta^+(\mathcal{S})$ is used for simplicity

Decision variables

$$y_{ij} = egin{cases} 1 & ext{if vertex } i \in \mathcal{V} ext{ is assigned to vertex } j \in \mathcal{V} \ 0 & ext{otherwise} \end{cases}$$

Decision variables

$$y_{ij} = \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is assigned to vertex } j \in \mathcal{V} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{ij}^r = \begin{cases} 1 & \text{if arc } (i,j) \in \mathcal{A} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases}$$

Decision variables

$$y_{ij} = \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is assigned to vertex } j \in \mathcal{V} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{ij}^r = \begin{cases} 1 & \text{if arc } (i,j) \in \mathcal{A} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases}$$

$$w_{ir} = \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases}$$

Decision variables

$$y_{ij} = \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is assigned to vertex } j \in \mathcal{V} \\ 0 & \text{otherwise} \end{cases}$$

$$x_{ij}^r = \begin{cases} 1 & \text{if arc } (i,j) \in \mathcal{A} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases}$$

$$w_{ir} = \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases}$$

Note

If $y_{ii} = 1$, then vertex $i \in \mathcal{V}$ must be on a tree.

Decision variables

$$\begin{aligned} y_{ij} &= \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is assigned to vertex } j \in \mathcal{V} \\ 0 & \text{otherwise} \end{cases} \\ x_{ij}^r &= \begin{cases} 1 & \text{if arc } (i,j) \in \mathcal{A} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases} \\ w_{ir} &= \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Note

If $y_{ii} = 1$, then vertex $i \in \mathcal{V}$ must be on a tree.

Objective Function

$$\text{minimise} \sum_{(i,j,r) \in \mathcal{A} \times \mathcal{R}} c_{ij} x_{ij}^r \ + \sum_{(i,j) \in \mathcal{A}_{\mathcal{V}}} a_{ij} y_{ij}$$

Decision variables

$$\begin{aligned} y_{ij} &= \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is assigned to vertex } j \in \mathcal{V} \\ 0 & \text{otherwise} \end{cases} \\ x_{ij}^r &= \begin{cases} 1 & \text{if arc } (i,j) \in \mathcal{A} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases} \\ w_{ir} &= \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Note

If $y_{ii} = 1$, then vertex $i \in \mathcal{V}$ must be on a tree.

Objective Function

$$\text{minimise} \sum_{(i,j,r) \in {\color{blue}\mathcal{A}} \times \mathcal{R}} {\color{blue}c_{ij} x_{ij}^r} \ + \sum_{(i,j) \in {\color{blue}\mathcal{A}} \mathcal{V}} a_{ij} y_{ij}$$

Decision variables

$$\begin{aligned} y_{ij} &= \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is assigned to vertex } j \in \mathcal{V} \\ 0 & \text{otherwise} \end{cases} \\ x_{ij}^r &= \begin{cases} 1 & \text{if arc } (i,j) \in \mathcal{A} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases} \\ w_{ir} &= \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is in a tree rooted at } r \in \mathcal{R} \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

Note

If $y_{ii} = 1$, then vertex $i \in \mathcal{V}$ must be on a tree.

Objective Function

$$\text{minimise} \sum_{(i,j,r) \in \mathcal{A} \times \mathcal{R}} c_{ij} x_{ij}^r \ + \sum_{(i,j) \in \textcolor{red}{\mathcal{A}_{\textcolor{blue}{\mathcal{V}}}}} \textcolor{red}{a_{ij}} y_{ij}$$

$$\sum_{j \in \mathcal{V}} y_{ij} = 1$$

$$\forall i \in \mathcal{V}$$

$$\sum_{j \in \mathcal{V}} y_{ij} = 1 \qquad \forall i \in \mathcal{V}$$
$$y_{ii} \ge y_{ji} \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{j \in \mathcal{V}} y_{ij} = 1 \qquad \forall i \in \mathcal{V}$$

$$y_{ii} \ge y_{ji} \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{r \in \mathcal{R}} w_{ir} = \kappa y_{ii} \qquad \forall i \in \mathcal{V}$$

$$\begin{split} \sum_{j \in \mathcal{V}} y_{ij} &= 1 & \forall i \in \mathcal{V} \\ y_{ii} &\geq y_{ji} & \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V} \\ \sum_{r \in \mathcal{R}} w_{ir} &= \kappa y_{ii} & \forall i \in \mathcal{V} \\ \sum_{r \in \mathcal{R}} (x_{ij}^r + x_{ji}^r) &\leq 1 & \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V} \end{split}$$

$$\sum_{j \in \mathcal{V}} y_{ij} = 1 \qquad \forall i \in \mathcal{V}$$

$$y_{ii} \geq y_{ji} \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{r \in \mathcal{R}} w_{ir} = \kappa y_{ii} \qquad \forall i \in \mathcal{V}$$

$$\sum_{r \in \mathcal{R}} (x_{ij}^r + x_{ji}^r) \leq 1 \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{(i,j) \in \delta^+(\mathcal{A}_r, i)} x_{ji}^r = w_{ir} \qquad \forall i \in \mathcal{V}, \ \forall r \in \mathcal{R}$$

$$\sum_{j \in \mathcal{V}} y_{ij} = 1 \qquad \forall i \in \mathcal{V}$$

$$y_{ii} \geq y_{ji} \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{r \in \mathcal{R}} w_{ir} = \kappa y_{ii} \qquad \forall i \in \mathcal{V}$$

$$\sum_{r \in \mathcal{R}} (x_{ij}^r + x_{ji}^r) \leq 1 \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{r \in \mathcal{R}} x_{ji}^r = w_{ir} \qquad \forall i \in \mathcal{V}, \ \forall r \in \mathcal{R}$$

$$\sum_{(i,j) \in \delta^+(\mathcal{A}_r, \mathcal{S})} x_{ij}^r \geq w_{kr} \qquad \forall \mathcal{S} \subseteq \mathcal{V}, \forall k \in \mathcal{S}, \ \forall r \in \mathcal{R}$$

Cycle Elimination Constraints

$$\sum_{(i,j)\in\delta^{+}(\mathcal{A}_{r},\mathcal{S})}x_{ij}^{r}\geq w_{kr}\quad\forall\mathcal{S}\subseteq\mathcal{V},\ \forall k\in\mathcal{S},\ \forall r\in\mathcal{R}$$

Cycle Elimination Constraints

$$\sum_{(i,j)\in\delta^{+}(\mathcal{A}_{r},\mathcal{S})}x_{ij}^{r}\geq w_{kr}\quad\forall\mathcal{S}\subseteq\mathcal{V},\;\forall k\in\mathcal{S},\;\forall r\in\mathcal{R}$$

Cycle Elimination Constraints

$$\sum_{(i,j)\in\delta^{+}(\mathcal{A}_{r},\mathcal{S})}x_{ij}^{r}\geq w_{kr}\quad\forall\mathcal{S}\subseteq\mathcal{V},\ \forall k\in\mathcal{S},\ \forall r\in\mathcal{R}$$

$$\sum_{(i,j)\in\delta^{+}(\mathcal{A}_{r},\mathcal{S})}x_{ij}^{r}\geq w_{kr}\quad\forall\mathcal{S}\subseteq\mathcal{V},\;\forall k\in\mathcal{S},\;\forall r\in\mathcal{R}$$

$$\sum_{(i,j) \in \delta^{+}(\mathcal{A}_{r},\mathcal{S})} x_{ij}^{r} \geq \underline{w_{kr}} \quad \forall \mathcal{S} \subseteq \mathcal{V}, \ \forall k \in \mathcal{S}, \ \forall r \in \mathcal{R}$$

$$w_{kr}^* = 1$$

$$\sum_{(i,j) \in \delta^{+}(\mathcal{A}_{r},\mathcal{S})} x_{ij}^{r} \geq w_{kr} \quad \forall \mathcal{S} \subseteq \mathcal{V}, \ \forall k \in \mathcal{S}, \ \forall r \in \mathcal{R}$$

$$w_{kr}^* = 1$$

$$\sum_{(i,j)\in\delta^+(\mathcal{A}_r,\mathcal{S})} x_{ij}^{r*} = 0$$

$$\sum_{(i,j)\in\delta^{+}(\mathcal{A}_{r},\mathcal{S})}x_{ij}^{r}\geq w_{kr}\quad\forall\mathcal{S}\subseteq\mathcal{V},\,\forall k\in\mathcal{S},\,\forall r\in\mathcal{R}$$

$$w_{kr}^* = 1$$

$$\sum_{(i,j) \in \delta^+(\mathcal{A}_r,\mathcal{S})} x_{ij}^{r*} = 1$$

$$\sum_{(i,j)\in\delta^{+}(\mathcal{A}_{r},\mathcal{S})}x_{ij}^{r}\geq w_{kr}\quad\forall\mathcal{S}\subseteq\mathcal{V},\ \forall k\in\mathcal{S},\ \forall r\in\mathcal{R}$$

Decision Variables

$$x_{ij} = \begin{cases} 1 & \text{if arc } (i,j) \in \mathcal{A} \text{ is in a tree} \\ 0 & \text{otherwise} \end{cases}$$

$$y_{ij} = \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is assigned to vertex } j \in \mathcal{V} \\ 0 & \text{otherwise} \end{cases}$$

Decision Variables

$$x_{ij} = \begin{cases} 1 & \text{if arc } (i,j) \in \mathcal{A} \text{ is in a tree} \\ 0 & \text{otherwise} \end{cases}$$

$$y_{ij} = \begin{cases} 1 & \text{if vertex } i \in \mathcal{V} \text{ is assigned to vertex } j \in \mathcal{V} \\ 0 & \text{otherwise} \end{cases}$$

Objective Function

$$\text{minimise} \sum_{(i,j) \in \mathcal{A}} c_{ij} x_{ij} + \sum_{(i,j) \in \mathcal{A}_{\mathcal{V}}} a_{ij} y_{ij}$$

$$\sum_{j \in \mathcal{V}} y_{ij} = 1$$

$$y_{ii} \geq y_{ji}$$

$$\forall i \in \mathcal{V}$$

$$\forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{j \in \mathcal{V}} y_{ij} = 1 \qquad \forall i \in \mathcal{V}$$

$$y_{ii} \ge y_{ji} \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{(i,j) \in \delta^{+}(i)} x_{ji} = \kappa y_{ii} \qquad \forall i \in \mathcal{V}$$

$$\sum_{j \in \mathcal{V}} y_{ij} = 1 \qquad \forall i \in \mathcal{V}$$

$$y_{ii} \geq y_{ji} \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\sum_{(i,j) \in \delta^{+}(i)} x_{ji} = \kappa y_{ii} \qquad \forall i \in \mathcal{V}$$

$$x_{ij} + x_{ji} \leq 1 \qquad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

$$\begin{split} \sum_{j \in \mathcal{V}} y_{ij} &= 1 & \forall i \in \mathcal{V} \\ y_{ii} &\geq y_{ji} & \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V} \\ \sum_{(i,j) \in \delta^{+}(i)} x_{ji} &= \kappa y_{ii} & \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V} \\ x_{ij} + x_{ji} &\leq 1 & \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V} \\ \sum_{(o,i) \in \delta^{+}(\mathcal{S})} x_{oi} &\geq \sum_{j \in \mathcal{S}} y_{kj} (\kappa - |\mathcal{S} \cap \mathcal{R}|) & \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S} \end{split}$$

$$\sum_{(o,i)\in\delta^{+}(\mathcal{S})}x_{oi}\geq\sum_{j\in\mathcal{S}}y_{kj}(\kappa-|\mathcal{S}\cap\mathcal{R}|)\quad\forall\mathcal{S}\subset\mathcal{V}\cup\mathcal{R},\forall k\in\mathcal{S}$$

$$\kappa = 2$$

$$\sum_{(o,i)\in\delta^+(\mathcal{S})} x_{oi} \geq \sum_{j\in\mathcal{S}} y_{kj}(\kappa - |\mathcal{S}\cap\mathcal{R}|) \quad \forall \mathcal{S}\subset\mathcal{V}\cup\mathcal{R}, \forall k\in\mathcal{S}$$

$$\kappa = 2$$
$$|\mathcal{S} \cap \mathcal{R}| = 1$$

$$\sum_{(o,i)\in\delta^{+}(\mathcal{S})}x_{oi}\geq\sum_{j\in\mathcal{S}}y_{kj}(\kappa-|\mathcal{S}\cap\mathcal{R}|)\quad\forall\mathcal{S}\subset\mathcal{V}\cup\mathcal{R},\forall k\in\mathcal{S}$$

$$\begin{split} \kappa &= 2\\ |\mathcal{S} \cap \mathcal{R}| &= 1\\ \sum_{j \in \mathcal{S}} y_{kj}^*(\kappa - |\mathcal{S} \cap \mathcal{R}|) &= 1 \end{split}$$

$$\sum_{(o,i) \in \delta^{+}(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj}(\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

$$\begin{split} \kappa &= 2 \\ |\mathcal{S} \cap \mathcal{R}| &= 1 \\ \sum_{j \in \mathcal{S}} y_{kj}^*(\kappa - |\mathcal{S} \cap \mathcal{R}|) &= 1 \\ \sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi}^* &= 0 \end{split}$$

$$\sum_{(o,i) \in \delta^{+}(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj} (\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

$$\begin{split} \kappa &= 2 \\ |\mathcal{S} \cap \mathcal{R}| &= 1 \\ \sum_{j \in \mathcal{S}} y_{kj}^*(\kappa - |\mathcal{S} \cap \mathcal{R}|) &= 1 \\ \sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi}^* &= 1 \end{split}$$

Branch-and-cut Algorithm

■ Define the initial LP relaxation of the formulation as a sub-problem

- Define the initial LP relaxation of the formulation as a sub-problem
- **■** Select a sub-problem and determine the LP solution

- Define the initial LP relaxation of the formulation as a sub-problem
- 2 Select a sub-problem and determine the LP solution
- **3** Solve the separation problem

- Define the initial LP relaxation of the formulation as a sub-problem
- 2 Select a sub-problem and determine the LP solution
- Solve the separation problem
- If violated cycles are found, add them and return to step 1

- Define the initial LP relaxation of the formulation as a sub-problem
- 2 Select a sub-problem and determine the LP solution
- Solve the separation problem
- If violated cycles are found, add them and return to step 1
- **5** Otherwise, create a branch and return to step 2

■ Assume $\kappa = |\mathcal{R}|$

- Assume $\kappa = |\mathcal{R}|$
- \blacksquare Mapping : Naive \rightarrow Reduced

- Assume $\kappa = |\mathcal{R}|$
- Mapping : Naive \rightarrow Reduced
- $lue{}$ Decomposition : Reduced ightarrow Naive

- Assume $\kappa = |\mathcal{R}|$
- \blacksquare Mapping : Naive \rightarrow Reduced
- lacksquare Decomposition : Reduced ightarrow Naive

Proposition 1

For any optimal solution (x^*, y^*, w^*) to the naive κ -FSP, there exists a mapping to a feasible solution (\bar{x}, \bar{y}) of the reduced κ -FSP.

- Assume $\kappa = |\mathcal{R}|$
- \blacksquare Mapping : Naive \rightarrow Reduced
- Decomposition : Reduced \rightarrow Naive

Proposition 1

For any optimal solution (x^*, y^*, w^*) to the naive κ -FSP, there exists a mapping to a feasible solution (\bar{x}, \bar{y}) of the reduced κ -FSP.

$$\begin{array}{ll} \text{Let} & \bar{x}_{ij} = \sum_{r \in \mathcal{R}} x_{ij}^{r*} & & \forall (i,j) \in \mathcal{A} \\ \\ \text{and} & \bar{y}_{ij} = y_{ij}^* & & \forall (i,j) \in \mathcal{A}_{\mathcal{V}}. \end{array}$$

Theorem (Max-flow Min-cut)

Given $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$ such that $\omega_{ij} \geq 0$ for $(i, j) \in \mathcal{A}$, together with some $s \in \mathcal{V} \cup \mathcal{R}$ and $t \in \mathcal{V} \cup \mathcal{R}$, the maximum flow in \mathcal{G} from s to t is equal to the minimum s-t cut of \mathcal{G} .

Theorem (Max-flow Min-cut)

Given $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$ such that $\omega_{ij} \geq 0$ for $(i, j) \in \mathcal{A}$, together with some $s \in \mathcal{V} \cup \mathcal{R}$ and $t \in \mathcal{V} \cup \mathcal{R}$, the maximum flow in \mathcal{G} from s to t is equal to the minimum s-t cut of \mathcal{G} .

• $\omega_{ij} > 0$ for $(i, j) \in \mathcal{A}$

Theorem (Max-flow Min-cut)

Given $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$ such that $\omega_{ij} \geq 0$ for $(i, j) \in \mathcal{A}$, together with some $s \in \mathcal{V} \cup \mathcal{R}$ and $t \in \mathcal{V} \cup \mathcal{R}$, the maximum flow in \mathcal{G} from s to t is equal to the minimum s-t cut of \mathcal{G} .

- $\omega_{ij} > 0 \text{ for } (i,j) \in \mathcal{A}$
- \blacksquare There is no directed path from s to t

Theorem (Max-flow Min-cut)

Given $\mathcal{G} = (\mathcal{V} \cup \mathcal{R}, \mathcal{A})$ such that $\omega_{ij} \geq 0$ for $(i, j) \in \mathcal{A}$, together with some $s \in \mathcal{V} \cup \mathcal{R}$ and $t \in \mathcal{V} \cup \mathcal{R}$, the maximum flow in \mathcal{G} from s to t is equal to the minimum s-t cut of \mathcal{G} .

- $\omega_{ij} > 0 \text{ for } (i,j) \in \mathcal{A}$
- lacksquare There is no directed path from s to t
- Maximum flow is zero, hence the minimum cut is zero.

Lemma 1

For any solution (\bar{x}, \bar{y}) to the reduced formulation there exists a path from each $r \in \mathcal{R}$ to k for all $k \in \mathcal{V}$ such that $\bar{y}_{kk} = 1$.

Lemma 1

For any solution (\bar{x}, \bar{y}) to the reduced formulation there exists a path from each $r \in \mathcal{R}$ to k for all $k \in \mathcal{V}$ such that $\bar{y}_{kk} = 1$.

$$\sum_{(o,i)\in\delta^+(\mathcal{S})} x_{oi} \geq \sum_{j\in\mathcal{S}} y_{kj}(\kappa - |\mathcal{S}\cap\mathcal{R}|) \quad \forall \mathcal{S}\subset\mathcal{V}\cup\mathcal{R}, \forall k\in\mathcal{S}$$

Lemma 1

For any solution (\bar{x}, \bar{y}) to the reduced formulation there exists a path from each $r \in \mathcal{R}$ to k for all $k \in \mathcal{V}$ such that $\bar{y}_{kk} = 1$.

$$\sum_{(o,i)\in\delta^+(\mathcal{S})} x_{oi} \geq \sum_{j\in\mathcal{S}} y_{kj}(\kappa - |\mathcal{S}\cap\mathcal{R}|) \quad \forall \mathcal{S}\subset\mathcal{V}\cup\mathcal{R}, \forall k\in\mathcal{S}$$

Lemma 1

$$\sum_{(o,i)\in\delta^+(\mathcal{S})} x_{oi} \geq \sum_{j\in\mathcal{S}} y_{kj}(\kappa - |\mathcal{S}\cap\mathcal{R}|) \quad \forall \mathcal{S}\subset\mathcal{V}\cup\mathcal{R}, \forall k\in\mathcal{S}$$

$$\sum_{(i,j)\in\delta^+(\mathcal{S}^*)} \bar{x}_{ij} = 0$$

Lemma 1

$$\sum_{(o,i)\in\delta^+(\mathcal{S})} x_{oi} \geq \sum_{j\in\mathcal{S}} y_{kj}(\kappa - |\mathcal{S}\cap\mathcal{R}|) \quad \forall \mathcal{S}\subset\mathcal{V}\cup\mathcal{R}, \forall k\in\mathcal{S}$$

$$\sum_{(i,j)\in\delta^+(\mathcal{S}^*)} \bar{x}_{ij} = 0$$
$$|\mathcal{S}^* \cap \mathcal{R}| = 1$$

Lemma 1

$$\sum_{(o,i)\in\delta^+(\mathcal{S})} x_{oi} \geq \sum_{j\in\mathcal{S}} y_{kj}(\kappa - |\mathcal{S}\cap\mathcal{R}|) \quad \forall \mathcal{S}\subset\mathcal{V}\cup\mathcal{R}, \forall k\in\mathcal{S}$$

$$\sum_{\substack{(i,j) \in \delta^+(\mathcal{S}^*)}} \bar{x}_{ij} = 0$$
$$|\mathcal{S}^* \cap \mathcal{R}| = 1$$
$$\sum_{\substack{(i,j) \in \delta^+(\mathcal{S}^*)}} \bar{x}_{ij} \ge 1$$

Lemma 2

$$\sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj}(\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

Lemma 2

$$\sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj} (\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

Lemma 2

$$\sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj} (\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

Lemma 2

$$\sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj} (\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

Lemma 2

$$\sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj} (\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

Lemma 2

$$\sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj} (\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

$$\sum_{(i,j)\in\delta^+(\mathcal{S}^*)} \bar{x}_{ij} = 1$$

Lemma 2

$$\sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj} (\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

$$\sum_{\substack{(i,j)\in\delta^+(\mathcal{S}^*)\\|\mathcal{S}^*\cap\mathcal{R}|=1}} \bar{x}_{ij} = 1$$

Lemma 2

$$\sum_{(o,i) \in \delta^+(\mathcal{S})} x_{oi} \geq \sum_{j \in \mathcal{S}} y_{kj}(\kappa - |\mathcal{S} \cap \mathcal{R}|) \quad \forall \mathcal{S} \subset \mathcal{V} \cup \mathcal{R}, \forall k \in \mathcal{S}$$

$$\sum_{\substack{(i,j) \in \delta^+(\mathcal{S}^*) \\ |\mathcal{S}^* \cap \mathcal{R}| = 1}} \bar{x}_{ij} = 1$$
$$\sum_{\substack{(i,j) \in \delta^+(\mathcal{S}^*) \\ (i,j) \in \delta^+(\mathcal{S}^*)}} \bar{x}_{ij} \ge 2$$

 \blacksquare Lemmas 1 and 2 ensure that κ disjoint paths can be selected for each vertex

- Lemmas 1 and 2 ensure that κ disjoint paths can be selected for each vertex
- \blacksquare A selection must be made to produce κ disjoint trees

- Lemmas 1 and 2 ensure that κ disjoint paths can be selected for each vertex
- **A** selection must be made to produce κ disjoint trees

$$\sum_{r \in \mathcal{R}} (x_{ij}^r + x_{ji}^r) \le 1 \quad \forall i \in \mathcal{V}, \ \forall j \in \mathcal{V}$$

• A chokepoint is an arc that, when removed from the graph, there is no directed path from some $r \in \mathcal{R}$ to some $k \in \mathcal{V}$.

- A chokepoint is an arc that, when removed from the graph, there is no directed path from some $r \in \mathcal{R}$ to some $k \in \mathcal{V}$.
- In other words, when a chokepoint arc is found, the path chosen from r to k must contain that arc.

- A chokepoint is an arc that, when removed from the graph, there is no directed path from some $r \in \mathcal{R}$ to some $k \in \mathcal{V}$.
- In other words, when a chokepoint arc is found, the path chosen from r to k must contain that arc.

- A chokepoint is an arc that, when removed from the graph, there is no directed path from some $r \in \mathcal{R}$ to some $k \in \mathcal{V}$.
- In other words, when a chokepoint arc is found, the path chosen from r to k must contain that arc.

- A chokepoint is an arc that, when removed from the graph, there is no directed path from some $r \in \mathcal{R}$ to some $k \in \mathcal{V}$.
- In other words, when a chokepoint arc is found, the path chosen from *r* to *k* must contain that arc.

- A chokepoint is an arc that, when removed from the graph, there is no directed path from some $r \in \mathcal{R}$ to some $k \in \mathcal{V}$.
- In other words, when a chokepoint arc is found, the path chosen from r to k must contain that arc.

Lemma 3

Proposition 2

For any optimal solution (\bar{x}, \bar{y}) of the reduced κ -FSP with $\kappa = |\mathcal{R}|$, there exists a mapping to a feasible solution of the naive κ -FSP.

Lemmas 1, 2 and 3 guarantee that an algorithm can be implemented to assign each arc in the solution to a tree.

Proposition 2

For any optimal solution (\bar{x}, \bar{y}) of the reduced κ -FSP with $\kappa = |\mathcal{R}|$, there exists a mapping to a feasible solution of the naive κ -FSP.

 Lemmas 1, 2 and 3 guarantee that an algorithm can be implemented to assign each arc in the solution to a tree.

Proposition 2

For any optimal solution (\bar{x}, \bar{y}) of the reduced κ -FSP with $\kappa = |\mathcal{R}|$, there exists a mapping to a feasible solution of the naive κ -FSP.

 Lemmas 1, 2 and 3 guarantee that an algorithm can be implemented to assign each arc in the solution to a tree.

TREE DECOMPOSITION

■ **Step 1**: Assign Root Arcs

Proposition 2

For any optimal solution (\bar{x}, \bar{y}) of the reduced κ -FSP with $\kappa = |\mathcal{R}|$, there exists a mapping to a feasible solution of the naive κ -FSP.

 Lemmas 1, 2 and 3 guarantee that an algorithm can be implemented to assign each arc in the solution to a tree.

TREE DECOMPOSITION

- Step 1: Assign Root Arcs
- **Step 2**: Find all Chokepoints

Proposition 2

For any optimal solution (\bar{x}, \bar{y}) of the reduced κ -FSP with $\kappa = |\mathcal{R}|$, there exists a mapping to a feasible solution of the naive κ -FSP.

 Lemmas 1, 2 and 3 guarantee that an algorithm can be implemented to assign each arc in the solution to a tree.

TREE DECOMPOSITION

- Step 1: Assign Root Arcs
- **Step 2**: Find all Chokepoints
- Step 3a: Assign Chokepoint Paths
- Step 3b: Assign Remaining Paths

- Performance of naive and reduced formulations tested on five different seeds across 15 instances of data
- $|\mathcal{V}| = 20, 40, 60, 80, 100$
- $\kappa = 2, 4, 6$

instance			naive		reduced						
$ \mathcal{V} $	κ	build	cuts	cut time	opt.	solve	build	cuts	cut time	opt.	solve
	2	0.07	187	00.19	5	00.60	0.06	40	00.05	5	00.12
20	4	0.10	718	02.96	5	06.89	0.07	28	00.16	5	00.75
	6	0.16	656	03.19	5	08.28	0.06	11	00.11	5	00.76
	2	0.39	912	01.87	5	04.27	0.33	140	00.35	5	00.80
40	4	1.35	_	_	0	_	0.35	434	26.1 5	5	49.41
	6	1.23	_	-	0	-	0.37	16 5	06.72	5	19.43
	2	1.47	27 55	17.79	5	31.03	1.15	400	02.04	5	04.34
60	4	2.85	10848	01:27.39	2	12:11.83	1.26	3930	06:06.37	4	16:17.40
	6	4.22	_	-	0	-	1.48	2307	02:14.70	5	09:14.83
	2	6.83	8371	05:14.50	5	07:09.84	3.07	1289	11.32	5	18.97
80	4	13.67	14111	02:36.59	3	18:00.77	2.96	-	-	0	-
	6	16.69	-	-	0	-	3.90	3190	03:50.63	1	25:50.09
	2	11.60	9274	11:54.36	3	14:34.47	4.08	1306	11.80	5	19.52
100	4	25.09	_	-	0	-	4.24	-	-	0	-
	6	42.02	-	-	0	-	6.10	-	-	0	-

instance		naive						reduced					
$ \mathcal{V} $	κ	build	cuts	cut time	opt.	solve	build	cuts	cut time	opt.	solve		
	2	0.07	187	00.19	5	00.60	0.06	40	00.05	5	00.12		
20	4	0.10	718	02.96	5	06.89	0.07	28	00.16	5	00.75		
	6	0.16	656	03.19	5	08.28	0.06	11	00.11	5	00.76		
	2	0.39	912	01.87	5	04.27	0.33	140	00.35	5	00.80		
40	4	1.35	-	-	0	-	0.35	434	26.15	5	49.41		
	6	1.23	_	_	0	_	0.37	165	06.72	5	19.43		
	2	1.47	27 55	17.79	5	31.03	1.15	400	02.04	5	04.34		
60	4	2.85	10848	01:27.39	2	12:11.83	1.26	3930	06:06.37	4	16:17.40		
	6	4.22	-	-	0	-	1.48	2307	02:14.70	5	09:14.83		
	2	6.83	8371	05:14.50	5	07:09.84	3.07	1289	11.32	5	18.97		
80	4	13.67	14111	02:36.59	3	18:00.77	2.96	-	-	0	-		
	6	16.69	-	-	0	-	3.90	3190	03:50.63	1	25:50.09		
	2	11.60	9274	11:54.36	3	14:34.47	4.08	1306	11.80	5	19.52		
100	4	25.09	-	-	0	-	4.24	-	-	0	-		
	6	42.02	_	_	0	-	6.10	_	_	0	_		

instance		naive						reduced					
$ \mathcal{V} $	κ	build	cuts	cut time	opt.	solve	build	cuts	cut time	opt.	solve		
	2	0.07	187	00.19	5	00.60	0.06	40	00.05	5	00.12		
20	4	0.10	718	02.96	5	06.89	0.07	28	00.16	5	00.75		
	6	0.16	656	03.19	5	08.28	0.06	11	00.11	5	00.76		
	2	0.39	912	01.87	5	04.27	0.33	140	00.35	5	00.80		
40	4	1.35	-	-	0	-	0.35	434	26.15	5	49.41		
	6	1.23	-	-	0	-	0.37	16 5	06.72	5	19.43		
	2	1.47	27 55	17.79	5	31.03	1.15	400	02.04	5	04.34		
60	4	2.85	10848	01:27.39	2	12:11.83	1.26	3930	06:06.37	4	16:17.40		
	6	4.22	-	_	0	-	1.48	2307	02:14.70	5	09:14.83		
	2	6.83	8371	05:14.50	5	07:09.84	3.07	1289	11.32	5	18.97		
80	4	13.67	14111	02:36.59	3	18:00.77	2.96	-	-	0	-		
	6	16.69	_	-	0	-	3.90	3190	03:50.63	1	25:50.09		
100	2	11.60	9274	11:54.36	3	14:34.47	4.08	1306	11.80	5	19.52		
	4	25.09	_	-	0	-	4.24	-	-	0	-		
	6	42.02	-	-	0	-	6.10	-	-	0	-		

■ The κ -FSP is a novel problem that builds on existing work by introducing survivability.

- The κ -FSP is a novel problem that builds on existing work by introducing survivability.
- Two formulations have been explored and an original proof has been outlined that is necessary for their comparison

- The κ -FSP is a novel problem that builds on existing work by introducing survivability.
- Two formulations have been explored and an original proof has been outlined that is necessary for their comparison
- The naive formulation provides intuition, but computational performance struggles as the problem size increases

- The κ -FSP is a novel problem that builds on existing work by introducing survivability.
- Two formulations have been explored and an original proof has been outlined that is necessary for their comparison
- The naive formulation provides intuition, but computational performance struggles as the problem size increases
- The reduced formulation avoids this issue by taking a more congruous approach

- The κ -FSP is a novel problem that builds on existing work by introducing survivability.
- Two formulations have been explored and an original proof has been outlined that is necessary for their comparison
- The naive formulation provides intuition, but computational performance struggles as the problem size increases
- The reduced formulation avoids this issue by taking a more congruous approach
- Consequently, a tree decomposition is not given by a solution. A new algorithm has been presented that offers a structured approach to extracting this information

- The κ -FSP is a novel problem that builds on existing work by introducing survivability.
- Two formulations have been explored and an original proof has been outlined that is necessary for their comparison
- The naive formulation provides intuition, but computational performance struggles as the problem size increases
- The reduced formulation avoids this issue by taking a more congruous approach
- Consequently, a tree decomposition is not given by a solution. A new algorithm has been presented that offers a structured approach to extracting this information
- Future research could explore the development of a primal heuristic for the κ -FSP and prove the result of equivalence for $\kappa < |\mathcal{R}|$