开放世界

机器人的个性化知识容易缺漏 或过期,在运用的时候不应该 假设它全面无误。例如,不能 假设机器人不知道的人或物品 就不存在

用户接受度

个性化知识学习主要是在帮助 机器人提高能力,对用户的效 用不一定明显可感,这可能导 致用户不愿意参与。

多用户交互

实际使用环境中,可能有多个用户出于不同目的试图与机器人交互。机器人需要方法来有效管理交互的流程、应对突然的交互等等

有效提问

非专业用户不一定能理解机器 人学习的目标或学习所需要的 信息。如果机器人提问题的方 式不够合适,可能会得到错误 或无效的反馈。

数据质量

交互式学习能采取的样本量有限,需要尽量采取到高质量的数据。因此需要确保标签准确、图像特征清晰等。

开放世界 Open world

询问求证

当知识检索出现缺失时,能否增加一个小步骤来 直接向用户求证?

解决方案示例

当遇到一名无法识别的用户时,与其直接假设是 第一次遇到的人,不如上前表示没有认出,并询 问对方的身份。

开放世界 Open world

旁敲侧击

当知识检索出现缺失时,能否设计一种机制来让 其他相关用户提供缺失的知识?

解决方案示例

当无法识别一个物体、地点或人时,可以向旁边 的其他已知用户询问求助。

用户接受度 User Acceptance

赋予功能

能否给机器人增加一个对用户有用的功能,并把一段用来学习知识的交互植入进去?

解决方案示例

在办公室、教室等定期有大量新用户进入的应用场景,可以为机器人设计引导破冰的功能。破冰过程中,利用大家的自我介绍来学习面部-名称-信息的对应关系。可以结合隔离使用。

用户接受度 User Acceptance

多种选择

根据不同的语境,能否为一个问题准备多种问 法?

解决方案示例

记录一个问题被询问的次数,当第二次询问同样 的问题时,机器人可以表示出对重复提问的歉 意。

多用户交互 Multiparty interaction

隔离

能否给机器人设计一个小交互,引导需要关注的 那个人做出和其他人显著不一样的举动?

解决方案示例

在组织活动或者游戏的场景下,可以设立如"说话人起立"或者"击鼓传花"的规则,从而从体态或人-物关系上区分出说话者。主动要求用户"一个一个来"也是一种可能的方案。

有效提问 Question Effectiveness

敢于说错

如果已经有了初步的识别结果,能否以容易理解 的方式提供给用户?

解决方案示例

接近一个用户时,主动展示出识别到的用户姓名;如果未识别到,则用清晰的形式表明。

有效提问 Question Effectiveness

提供语境

当需要向用户提问时,能否同时利用多模态的交 互来描述出相关的语境?

解决方案示例

当向用户描述一个物体时,在屏幕上展示上次看 到物体的位置、拍到的照片等信息。

有效提问 Question Effectiveness

描述不确定性

当需要向用户提问时,能否同时利用多模态的交 互来描述不确定的程度?

解决方案示例

向用户提到一个物体、地点时,设计多种表达方式(例如"应该是"、"我确信是"、"我猜 是")来区分不同的置信度。

循循善诱

能否给机器人设计一个小交互,引导用户做出更 能帮助机器人学习的行为?

解决方案示例

设计交互来引导用户做出合适的动作,例如设法 纠正用户展示物体的方式,或者引导用户做一个 动作。可以尝试与变Bug为特性结合。

守株待兔

有没有办法利用机器人的空闲时间,提前面向用户最可能经过的地方等待?

解决方案示例

例如在办公室场景下,茶水间、休息室、会议室 等地方的使用频率较高,可以让机器人待机时自 动巡回这些地方。

