CSE251: ASSIGNMENT-1

Full Marks: 70

Q1. [CO2]

- a. Draw the alternative representation of circuit-1.
- b. Analyze the Circuit from question-1 to determine v and I.

c. Draw an alternative representation of circtuit-2 minimizing the number of floating voltage sources.

Circuit-1

Q2. [CO2] 10

Circuit-3

For the circuit shown above , R_1 =2k, R_f =6k, + V_s = +15v , - V_s = -15v

- a. **Find** the value of V_o if $V_i=4v$
- b. **Draw** the graph of V_o with proper labels if V_i = 4sin(ω t)
- c. **Draw** the graph of V_0 with proper labels if V_i = 6sin(ω t)

Q3. [CO2] 10

Analyze Circuit to Find V_o in terms of input V_{s1} and V_{s2} .

Analyze the circuit to find Vx. Draw the waveform of V_O and label the graph properly.

10

Q5. [CO3] Design a circuit using OP-Amp to implement the following functions

a.
$$f = 6x - 5y + z$$

b. $f = 5x - 10 \frac{dy}{dt} + 2 \int z \, dt$

Design a Circuit using OP-Amp that follows the voltage transfer characteristics (VTC) shown in figure-01

Figure 01

Q7. [CO3] Design a circuit using OP-Amp that takes V_{in} as the input and generates V_{out} as illustrated in Figure-2 10

- I. Design the circuit using inverting amplifier .
- II. Design the circuit using non-inverting amplifier .

Figure 02

Q8. [CO3] Design a circuit using OP-Amp to generate the output V_{out} from the input V_{in} as illustrated in figure-3.

[Hinst: use summing amplifier]

Figure 03