Propriété

Relations entre coefficients et racines

Soit $P(x) = ax^2 + bx + c$ un polynôme de degré 2 avec $a \ne 0$. Si P admet deux racines x_1 et x_2 (distinctes ou confondues), alors :

- 1. La **somme** des racines est égale à $x_1 + x_2 = -\frac{b}{a}$
- **2.** Le **produit** des racines est égal à $x_1 \times x_2 = \frac{c}{a}$

Remarque : Ces formules sont valables dans le cas où $\Delta \ge 0$, c'est-à-dire lorsque le polynôme admet au moins une racine réelle.

Dans le cas $\Delta = 0$, la racine double x_0 vérifie : $x_0 + x_0 = -\frac{b}{a}$ et $x_0 \times x_0 = \frac{c}{a}$.

Démonstration

À partir de la forme factorisée

On considère un polynôme $P(x) = ax^2 + bx + c$ avec $a \neq 0$ et $\Delta \geq 0$.

On sait que lorsque $\Delta \ge 0$, le polynôme peut s'écrire sous forme factorisée :

$$P(x) = a(x - x_1)(x - x_2)$$

où x_1 et x_2 sont les racines du polynôme.

Développons cette forme factorisée :

$$P(x) = a(x - x_1)(x - x_2)$$

$$= a [x^2 - x \cdot x_2 - x_1 \cdot x + x_1 \cdot x_2]$$

$$= a [x^2 - (x_1 + x_2)x + x_1x_2]$$

$$= ax^2 - a(x_1 + x_2)x + ax_1x_2$$

Identification avec la forme développée $P(x) = ax^2 + bx + c$:

Par identification des coefficients, on obtient :

 $-a(x_1+x_2)=b$

Coefficient de x:

Terme constant:

D'où :
$$x_1 + x_2 = -\frac{b}{a}$$

D'où :
$$x_1 \times x_2 = \frac{c}{a}$$

 $ax_1x_2 = c$

On rappelle que les racines sont données par :

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$

Calcul de la somme $x_1 + x_2$:

$$x_1 + x_2 = \frac{-b - \sqrt{\Delta}}{2a} + \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{-b - \sqrt{\Delta} + (-b) + \sqrt{\Delta}}{2a}$$

$$= \frac{-2b}{2a}$$

$$= -\frac{b}{a}$$

Calcul du produit $x_1 \times x_2$:

$$x_1 \times x_2 = \frac{-b - \sqrt{\Delta}}{2a} \times \frac{-b + \sqrt{\Delta}}{2a}$$

$$= \frac{(-b - \sqrt{\Delta})(-b + \sqrt{\Delta})}{4a^2}$$

$$= \frac{(-b)^2 - (\sqrt{\Delta})^2}{4a^2} \quad \text{(identit\'e remarquable : } (a - b)(a + b) = a^2 - b^2\text{)}$$

$$= \frac{b^2 - \Delta}{4a^2}$$

$$= \frac{b^2 - (b^2 - 4ac)}{4a^2} \quad \text{(car } \Delta = b^2 - 4ac\text{)}$$

$$= \frac{b^2 - b^2 + 4ac}{4a^2}$$

$$= \frac{4ac}{4a^2}$$

$$= \frac{4ac}{4a^2}$$

$$= \frac{c}{a}$$

Conclusion : Les relations $x_1 + x_2 = -\frac{b}{a}$ et $x_1 \times x_2 = \frac{c}{a}$ sont donc démontrées.