ISLR 9. Support Vector Machines (SVM)

Topics: The Support Vector Classifier

: The Support Vector Machine Classifier

9.1 Support Vector Classifier

Separable Hyperplanes

Imagine a situation where you have

- •a two class classification problem
- •with two predictors X₁ and X₂.

Suppose that the two classes

- are "linearly separable"
- •i.e. one can draw a straight line in which all points on one side belong to the first class and All points on the other side to the second class.

Then a natural approach is to

- •find the straight line that gives the biggest separation between the classes
- •i.e. the points are as far from the line as possible

This is the basic idea of a support vector classifier.

Its Easiest To See With A Picture

C is the minimum perpendicular distance

between each point and the separating line.

We find the line which maximizes C.

This line is called

the "optimal separating hyperplane"

The classification of a point

depends on which side of the line it falls on.

Separating Hyperplanes

- If $f(X) = \beta_0 + \beta_1 X_1 + \cdots + \beta_p X_p$,
 - then f(X) > 0 for points on one side of the hyperplane,
 - and f(X) < 0 for points on the other.
- If we code the colored points as $Y_i = +1$ for blue, say,

Applied Data Science, Materials Science & Engineering Department, Roger H. French © 2016

- and $Y_i = -1$ for mauve, then if $Y_i \cdot f(X_i) > 0$ for all i,
- f(X) = 0 defines a separating hyperplane.

What is a hyperplane

- A hyperplane in p dimensions is a flat affine subspace of dimension p-1.
- In general the equation for a hyperplane has the form

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$$

- In p = 2 dimensions a hyperplane is a line.
- If $\beta_0 = 0$, the hyperplane goes through the origin, otherwise not.
- The vector $\beta = (\beta_1, \beta_2, \dots, \beta_p)$ is called the normal vector
- it points in a direction orthogonal to the surface of a hyperplane.

Hyperplane in 2 Dimensions

Maximal Margin Classier

Among all separating hyperplanes, find the one that makes the biggest gap or margin between the two classes.

Constrained optimization problem

$$\max_{\beta_0,\beta_1,...,\beta_p} M$$

subject to
$$\sum_{j=1}^{p} \beta_j^2 = 1$$
,

$$y_i(\beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip}) \ge M$$

for all $i = 1, \ldots, N$.

This can be rephrased as a convex quadratic program, and solved efficiently. The function svm() in package e1071 solves this problem efficiently

More Than Two Predictors

This idea works just as well

•with more than two predictors.

For example, with three predictors

- you want to find the plane
- •that produces the largest separation between the classes.

With more than three dimensions

- it becomes hard to visualize a plane but it still exists.
- In general they are called hyper-planes.

Non-Separating Classes

Of course in practice it is not usually possible

•to find a hyper-plane that perfectly separates two classes.

In other words, for any straight line or plane that I draw

there will always be at least some points on the wrong side of the line.

In this situation we try to find the plane

- that gives the best separation between the points that are correctly classified
- •subject to the points on the wrong side of the line not being off by too much.

It is easier to see with a picture!

Non-Separating Example

Let ξ_i^* represent the amount

- that the ith point is
- •on the wrong side
- •of the margin (the dashed line).

Then we want to maximize C

•subject to
$$\frac{1}{C} \sum_{i=1}^{n} \xi_{i}^{*} \leq \text{Constant}$$

The constant C

- •is a tuning parameter
- •that we choose.

A Simulation Example With A Small Constant

This is the simulation example

•from chapter 1.

The distance between the dashed lines

•represents the margin or 2C.

The purple lines represent

•the Bayes decision boundaries

The Same Example With A Larger Constant

Using a larger constant C

- allows for a greater margin and
- •creates a slightly different classifier.

Notice, however, that the decision boundary

•must always be linear.

9.2 Support Vector Machine Classifier

Non-Linear Classifier

The support vector classifier is fairly easy to think about.

- However, because it only allows for a linear decision boundary
- •it may not be all that powerful.

Recall that in chapter 3 we extended linear regression

•to non-linear regression using a basis function i.e.

$$Y_i = \beta_0 + \beta_1 b_1(X_i) + \beta_2 b_2(X_i) + \dots + \beta_p b_p(X_i) + \varepsilon_i$$

Feature Expansion

- Enlarge the space of features by including transformations;
 e.g. X₁², X³, X₁X₂, X₂X₁X²,.... Hence go from a p-dimensional space to a M > p dimensional space.
 - Fit a support-vector classifier in the enlarged space.
 - This results in non-linear decision boundaries in the original space.

Example: Suppose we use $(X_1, X_2, X_1^2, X_2^2, X_1X_2)$ instead of just (X_1, X_2) . Then the decision boundary would be of the form

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 = 0$$

This leads to nonlinear decision boundaries in the original space (quadratic conic sections).

A Basis Approach

Conceptually, we can take a similar approach

with the support vector classifier.

The support vector classifier

•finds the optimal hyper-plane in the space spanned by $X_1, X_2, ..., X_p$.

<u>Instead we can create</u> transformations

- •(or a basis) $b_1(x)$, $b_2(x)$, ..., $b_M(x)$ and
- find the optimal hyper-plane in the space spanned by b₁(X), b₂(X), ..., b_M(X).

This approach produces a linear plane

- •in the transformed space
- •but a non-linear decision boundary in the original space.

This is called the Support Vector Machine Classifier.

In Reality

While conceptually the basis approach

- •is how the support vector machine works,
- •there is some complicated math (which I will spare you) which means that we don't actually choose $b_1(x)$, $b_2(x)$, ..., $b_M(x)$.

Instead we choose something called a Kernel function

which takes the place of the basis.

Common kernel functions include

- Linear
- Polynomial
- Radial Basis
- Sigmoid

Cubic Polynomials

Here we use a basis expansion of cubic poly-nomials

From 2 variables to 9

The support-vector clas- sifier in the enlarged space solves the problem in the lower-dimensional space

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \beta_6 X_1^2 + \beta_7 X_1^3 + \beta_8 X_1 X_2 + \beta_9 X_2 X_2 = 0$$

Polynomial Kernel On Sim Data

Using a polynomial kernel

- •we now allow SVM to
- produce a non-linear decision boundary.

Notice that the test error rate

•is a lot lower.

SVM - Degree-4 Polynomial in Feature Space

Radial Basis Kernel

Using a Radial Basis Kernel

•you get an even lower error rate.

SVM - Degree-4 Polynomial in Feature Space

SVM - Radial Kernel in Feature Space

Error Rates on S&P Data

Here a Radial Basis Kernel is used and

- calculate the error rate
- •for different values of the tuning parameter.

The results on this data were

- similar to GAM
- •but not as good as Boosting.

Radial Kernel

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2).$$
 $f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i K(x, x_i)$

Implicit feature space; very high dimensional.

Controls variance by squashing down most dimensions severely

SVMs: more than 2 classes?

The SVM as defined works for K = 2 classes. What do we do if we have K > 2 classes?

- OVA One versus All. Fit K different 2-class SVM classifiers $\hat{f}_k(x)$, k = 1, ..., K; each class versus the rest. Classify x^* to the class for which $\hat{f}_k(x^*)$ is largest.
- OVO One versus One. Fit all $\binom{K}{2}$ pairwise classifiers $\hat{f}_{k\ell}(x)$. Classify x^* to the class that wins the most pairwise competitions.

Which to choose? If K is not too large, use OVO.

Support Vector versus Logistic Regression (LR)?

With $f(X) = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p$ can rephrase support-vector classifier optimization as

$$\underset{\beta_0,\beta_1,\ldots,\beta_p}{\text{minimize}} \left\{ \sum_{i=1}^n \max\left[0,1-y_i f(x_i)\right] + \lambda \sum_{j=1}^p \beta_j^2 \right\}$$

This has the form loss plus penalty.

The loss is known as the hinge loss.

Very similar to "loss" in logistic regression (negative log-likelihood).

Which to use: SVM or Logistic Regression

When classes are (nearly) separable,

- SVM does better than LR.
- So does Linear Discriminant Analysis (LDA).

When they aren't separable

- •LR (with ridge penalty)
- •and SVM very similar.

If you wish to <u>estimate probabilities</u>,

LR is the choice.

For nonlinear boundaries,

kernel SVMs are popular.

Can use kernels with LR and LDA as well,

but computations are more expensive.

