A JOURNEY

IN

PURE MATHEMATICS

A JOURNEY

IN

PURE MATHEMATICS

MAT3006 & 3040 & 4002 Notebook

Dr. Daniel Wong

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	vii
Notat	ions	ix
1	Week1	1
1.1	Monday for MAT3040	1
1.1.1	Introduction to Advanced Linear Algebra	1
1.1.2	Vector Spaces	2
1.2	Monday for MAT3006	5
1.2.1	Overview on uniform convergence	5
1.2.2	Introduction to MAT3006	6
1.2.3	Metric Spaces	7

Acknowledgments

This book is from the MAT3006, MAT3040, MAT4002 in spring semester, 2018-2019.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 1

Week1

1.1. Monday for MAT3040

1.1.1. Introduction to Advanced Linear Algebra

Advanced Linear Algebra is one of the most important course in MATH major, with pre-request MAT2040. This course will offer the really linear algebra knowledge.

What the content will be covered?.

- In MAT2040 we have studied the space \mathbb{R}^n ; while in MAT3040 we will study the vector space V.
- In MAT2040 we have studied the *linear transformation* $T : \mathbb{R}^n \to \mathbb{R}^m$, i.e., left-multiplying some matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$; while in MAT3040 we will study the linear transformation from vector spaces to vector spaces: $T : V \to W$
- In MAT2040 we have studied the eigenvalues of $n \times n$ matrix A; while in MAT3040 we will study the eigenvalues of a **linear operator** $T: V \to V$.
- In MAT2040 we have studied the dot product $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i$; while in MAT3040 we will study the **inner product** $\langle \mathbf{v}_1, \mathbf{v}_2 \rangle$.

Why do we do the generalization?. We are studying many other spaces, e.g., $\mathcal{C}(\mathbb{R})$ is called the space of all functions on \mathbb{R} , $\mathcal{C}^{\infty}(\mathbb{R})$ is called the space of all infinitely differentiable functions on \mathbb{R} , $\mathbb{R}[x]$ is the space of polynomials of one-variable.

For example, the Laplace equation $\nabla^2 f = 0$:

$$\nabla^2: \mathcal{C}^{\infty}(\mathbb{R}^3) \to \mathcal{C}^{\infty}(\mathbb{R}^3), \qquad f \mapsto (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})f$$

The solution of $\nabla^2 f = 0$ is the 0-eigenspace of ∇^2 .

Consider the Schriodiageis equation

$$\hat{H}: \mathcal{C}^{\infty}(\mathbb{R}^3) \to \mathbb{R}^3, \quad f \mapsto \left(-\frac{h^2}{2\mu}\nabla + V(x, y, z)\right)f$$

we aim to solve the equation $\hat{H}f = Ef$, where E denotes the energy. It suffices to find the eigenvectors of \hat{H} .

In fact, the eigenvalues of \hat{H} are **discrete**.

1.1.2. Vector Spaces

Definition 1.1 [Vector Space] A **vector space** over a field $\mathbb F$ (in particular, $\mathbb F=\mathbb R$ or $\mathbb C$) is a set of objects V such that

- 1. they can be added subject to the rules:
 - (a) Commutativity: $\forall oldsymbol{v}_1, oldsymbol{v}_2 \in V$, $oldsymbol{v}_1 + oldsymbol{v}_2 = oldsymbol{v}_2 + oldsymbol{v}_1$.
 - (b) Associativity: $v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$.
 - (c) Addictive Identity: $\exists \mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$, $\forall \mathbf{v} \in V$.
- 2. scalar multiplication satisfying
 - (a) Distributive: $\alpha(\boldsymbol{v}_1 + \boldsymbol{v}_2) = \alpha \boldsymbol{v}_1 + \alpha \boldsymbol{v}_2, \forall \alpha \in \mathbb{F} \text{ and } \boldsymbol{v}_1, \boldsymbol{v}_2 \in V$
 - (b) Distributive: $(\alpha_1 + \alpha_2)\boldsymbol{v} = \alpha_1\boldsymbol{v} + \alpha_2\boldsymbol{v}$
 - (c) 0v = 0, 1v = v.

Example 1.1 For $V = \mathbb{F}^n$, we can define

$$\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

•

$$\alpha \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

•

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

- Example 1.2 1. It is clear that the set $V = M_{n \times n}(\mathbb{F})$ (the space of all $m \times n$ matrices) is a vector space aswell.
 - 2. The set $V = \mathcal{C}(\mathbb{R})$ is a vector space:
 - For $\forall f,g \in V$, f+g is defined by (f+g)(x)=f(x)+g(x)
 - For $\alpha \in \mathbb{R}$, αf is defined by $(\alpha f)(x) = \alpha f(x)$. In this case, $\mathbf{0}$ is a zero function, i.e., $\mathbf{0}(x) = 0$ for all $\mathbf{x} \in \mathbb{R}$.

Definition 1.2 A sub-collection $W \subseteq V$ of a vector space V is called a **vector subspace** of V if W itself forms a vector space. We use the notation $W \leq V$.

■ Example 1.3 1. For $V = \mathbb{R}^3$, we claim that $W = \{(x,y,0) \mid x,y \in \mathbb{R}\} \leq V$ 2. $W = \{(x,y,1) \mid x,y \in \mathbb{R}\}$ is not the vector subspace of V.

Proposition 1.1 $W \subseteq V$ is a **vector subspace** of V iff for $\forall w_1 + w_2 \in W$, we have

 $\alpha \mathbf{w}_1 + \beta \mathbf{w}_2 \in W$, for $\forall \alpha, \beta \in \mathbb{F}$.

$$(\alpha f+\beta g)''=\alpha f''+\beta g''=\alpha (-f)+\beta (-g)=-(\alpha f+\beta g),$$
 which implies
$$(\alpha f+\beta g)''+(\alpha f+\beta g)=0.$$

$$\begin{bmatrix} 1 & 2 & 5 \\ 4 & 5 & 14 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 2 & 5 \\ 0 & -3 & -6 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 2 & 5 \\ 0 & 1 & 2 \end{bmatrix} \Longrightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \end{bmatrix}.$$

1.2. Monday for MAT3006

1.2.1. Overview on uniform convergence

Definition 1.3 [Convergence] Let $f_n(x)$ be a sequence of functions on an integral I = [a,b]. Then $f_n(x)$ converges **pointwise** to f(x) (i.e., $f_n(x_0) \to f(x_0)$) for $\forall x_0 \in I$, if

$$\forall \varepsilon > 0, \exists N_{x_0, \varepsilon} \text{ such that } |f_n(x_0) - f(x_0)| < \varepsilon, \forall n \geq N_{x_0, \varepsilon}$$

We say $f_n(x)$ converges uniformly to f(x), (i.e., $f_n(x) \to f(x)$) for $\forall x_0 \in I$, if

$$orall arepsilon > 0, \exists N_arepsilon$$
 such that $|f_n(x_0) - f(x_0)| < arepsilon, orall n \geq N_arepsilon$

■ Example 1.5 It is clear that the function $f_n(x) = \frac{n}{1+nx}$ converges pointwisely into $f(x) = \frac{1}{x}$ on $[0,\infty)$, and it is uniformly convergent on $[1,\infty)$

Proposition 1.2 If $f_n(x)$ is continuous on I, $\forall n$, and $f_n(x) \rightarrow f(x)$. Then

- 1. f(x) is continuous on I.
- 2. $\int_a^b f_n(x) dx \to \int_a^b f(x) dx.$
- 3. Suppose furthermore that $f_n(x)$ is **continuously differentiable**, and $f'_n(x) \to g(x)$, then f(x) is differentiable, and $f'_n(x) \to f'(x)$.

Proposition 1.3 Putting the discussions above into the content of series, i.e., $f_n(x) = \sum_{k=1}^n S_k(x)$. If $S_k(x)$ is continuous for $\forall k$, and $f_n(x) \to f(x) := \sum_{k=1}^\infty S_k(x)$, then

- 1. $f(x) = \sum_{k=1}^{\infty} S_k(x)$ is continuous,
- 2. $\sum_{k=1}^{\infty} \int_{a}^{b} S_{k}(x) dx = \int_{a}^{b} \sum_{k=1}^{\infty} S_{k}(x) dx$
- 3. blabla, then

$$\left(\sum_{k=1}^{\infty} S_k(x)\right)' = \sum_{k=1}^{\infty} S_k'(x)$$

Proposition 1.4 For power series, i.e., $S_k(x) = a_k x^k$. Suppose $f(x) = \sum_{k=1}^{\infty} a_k x^k$ has

radius of convergence R, then

$$\sum_{k=1}^{n} a_k x^k \to f(x)$$

for any [-L, L] with L < R. Then f(x) is continuous, and

$$\int_0^x f(t) \, dt = \sum_{k=1}^{\infty} \frac{a_k}{k+1} x^{k+1}$$

$$f'(x) = \sum_{k=1}^{\infty} k a_k x^{k-1}$$

1.2.2. Introduction to MAT3006

What are we going to do.

- 1. (a) Generalize our study of (sequence, series, functions) on \mathbb{R}^n into a metric space.
 - (b) We will study spaces outside \mathbb{R}^n .

Remark:

- For (a), different metric may yield different kind of convergence of sequences. For (b), one important example we will study is $X = \mathcal{C}[a,b]$ (all continuous functions defined on [a,b].) We will generalize X into $\mathcal{C}_b(E)$, which means the set of bounded continuous functions defined on $E \subseteq \mathbb{R}^n$.
- The insights of analysis is to find a **unified** theory to study sequences/series on a metric space X, e.g., $X = \mathbb{R}^n$, C[a,b]. In particular, for C[a,b], we will see that
 - most functions in C[a,b] are nowhere differentiable. (repeat part of content in MAT2006)
 - We will prove the existence and uniqueness of ODEs.
 - the set poly[a,b] (the set of polynomials on [a,b]) is dense in C[a,b]. (analogy: $\mathbb{Q} \subseteq \mathbb{R}$ is dense)
- 2. Introduction to the Lebesgue Integration.

For convergence of integration $\int_a^b f_n(x) dx \to \int_a^b f(x)$, we need the pre-conditions (a) $f_n(x)$ is continuous, and (b) $f_n(x) \to f(x)$. The natural question is that Can we relax the condition to

- (a) $f_n(x)$ is integrable?
- (b) $f_n(x) \to f(x)$ pointwisely?

The answer is yes, by using the tool of Lebesgue integration. If $f_n(x) \to f(x)$ and $f_n(x)$ is Lebesgue integrable, then $\int_a^b f_n(x) dx \to \int_a^b f(x) dx$, which is so called the dominated convergence.

1.2.3. Metric Spaces

Normed Space. We will study the distance and length of elements in an arbitrary set X.

[Normed Space] Let X be a vector space. A **norm** on X is a function $\|\cdot\|: X \to \mathbb{R} \text{ such that}$ $1. \ \|\boldsymbol{x}\| \geq 0 \text{ for } \forall \boldsymbol{x} \in X, \text{ with equality iff } \boldsymbol{x} = \boldsymbol{0}$ $2. \ \|\alpha\boldsymbol{x}\| = |\alpha|\|\boldsymbol{x}\|, \text{ for } \forall \alpha \in \mathbb{R} \text{ and } \boldsymbol{x} \in X.$ $3. \ \|\boldsymbol{x} + \boldsymbol{y}\| \leq \|\boldsymbol{x}\| + \|\boldsymbol{y}\| \text{ (triangular inequality)}$

Any vector space equipped with $\|\cdot\|$ is called a **normed space**.

■ Example 1.6 1. For $X = \mathbb{R}^n$, define

$$\|m{x}\|_2 = \left(\sum_{i=1}^n x_i^2
ight)^{1/2}$$
 (Euclidean Norm) $\|m{x}\|_p = \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p}$ (p -norm)

$$\|\mathbf{x}\|_{p} = (\sum_{i=1}^{n} |x_{i}|^{p})^{1/p}$$
 (p-norm)

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

$$||f||_p = \left(\int_a^b |f(x)|^p dx\right)^{1/p}$$

Exercise: check the norm defined above are well-defined.

Here raise a question: can we define the distance in an arbitrary set?

Definition 1.5 A set X is a **metric space** with metric (X,d) if there exists a (distance) function $d: X \times X \to \mathbb{R}$ such that

- 1. $d(x,y) \ge 0$ for $\forall x,y \in X$, with equality iff x = y. 2. d(x,y) = d(y,x). 3. $d(x,z) \le d(x,y) + d(y,z)$.

- 1. If X is a normed space, then define $d(\boldsymbol{x},\boldsymbol{y}) = \|\boldsymbol{x} \boldsymbol{y}\|$, which is so called the metric induced from the norm $\|\cdot\|$.
 - 2. Let X be any (non-empty) set with $\boldsymbol{x},\boldsymbol{y}\in X$, the discrete metric is given by:

$$d(\mathbf{x}, \mathbf{y}) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$$

Exercise: check the metric space defined above are well-defined.

So we have defined a metric on C[a,b] by

$$d_{\infty}(f,g) = \|f - g\|_{\infty} := \max_{x \in [a,b]} |f(x) - g(x)|$$

This is the correct metric to study the uniform convergence for $\{f_n\}\subseteq \mathcal{C}[a,b]$.

Let (X,d) be a metric space. An **open ball** centered at $x \in X$ of radius

$$B_r(\mathbf{x}) = \{ \mathbf{y} \in X \mid d(\mathbf{x}, \mathbf{y}) < r \}.$$

■ Example 1.8 1. $X=\mathbb{R}^2$, and $d_2(\pmb x,\pmb y)=\|\pmb x-\pmb y\|_2$. Graph: $d_1(\pmb x,\pmb y)=\|\pmb x-\pmb y\|_1$. Graph:

9