Abstract

This is where the abstract will go. I guess I'll mention a thing or two about the contents, what I plan to discuss and what my analysis shows.

Cognitive Science and Artificial Intelligence: An

Interwoven Approach Supervisor: Francesco Bianchini

> Paolo Marzolo June 16, 2021

1 Introduction

This is Paolo Marzolo's bachelor thesis, written as part of the three-year program in computer science at University of Bologna. The stated objective of this document is to analyze the history of Cognitive Science and Artificial Intelligence and identify how influences among the two disciplines and others led to a partially shared evolution in the overarching research topics throughout their lifespans. Other similarities will be pointed out, and some of the algorithms and concepts contained throughout the sections will be explained in detail, in order to give the reader a more complete understanding.

The structure of the document will be as follows: after this introduction, a brief glossary will introduce some of the terms that will be used in this document with a short definition; this has been included to avoid having "foundational" terms be constrained by a specific philosophy or line of research. Then, the rest of the document will develop parallel to the history of the disciplines. In the final section, a bird's-eye-view will provide additional insight, and MAYBE a brief discussion of the roles of symbols will conclude the contents.

2 Terms and Definitions

Before definining our glossary, it is important to understand the reasoning behind why we chose to include it: when discussing researchers' understanding of human thought, it is nearly impossible to avoid using terms that have a strong past history. As an example, "thought" could already be considered too far from a behaviorist point of view. A further example is a recent discussion that took place after a somewhat controversial paper by Nunez was published [7], questioning the multidisciplinarity of Cognitive Science as a discipline (and journal) and declaring "The prospect launched by the cognitive revolution of a unified and coherent interdisciplinary seamless cognitive science did not materialize".

Cognitive Science. As we will see in following sections, saying "definitions of Cognitive Science have evolved throughout the years" would be a massive understatement. ("Thinking can best be understood in terms of representational structures in the mind and computational procedures that operate on those structures"). Its multidisciplinary nature is uncontested from what the International Encyclopedia of Social & Behavioral Sciences [4] reports 'may have been the first published use of the term cognitive science':

'The concerted efforts of a number of people from ... linguistics, artificial intelligence, and psychology may be creating a new field: cognitive science'

. Even the "essential original features" identified by Gardner in 1987 [3] (summarized here as (1) necessity to speak about mental representation as a separate layer of analysis from the biological, (2) faith that the computer is central to the understanding of the human mind and (3) de-emphasizing factors such as

emotions or cultural factors) would be completely or partially thrown out by contemporary scholars.

In a more recent publication[2], Cognitive Science is characterized as

The field would be better defined as the study of 'mind as machine' ... More precisely, cognitive science is the interdisciplinary study of mind, informed by theoretical concepts drawn from computer science and control theory.

.

Not only was its definition cloudy and unstable ("cognitive science is ... a perspective, rather than a discipline in any conventional sense" [9]), but as Nunez points out its disciplines have varied wildly in which ones they are and how represented they are in the Cognitive Science enterprise. Because of the reasons outlined here, far removed form the subject of this document, we will avoid using the term "Cognitive Science", and prefer the acronym "DCS".

Descriptive Cognitive Sciences (DCS). As we mentioned, the disciplines which make up Cognitive Science are not only multiple, but subject to interpretation as well. Since the nature of this work is to compare it to the history of Artificial Intelligence, we will from this point on use the acronym "DCS", for Descriptive Cognitive Sciences, as an alternate approach to the Constructive one taken by Artificial Intelligence researchers. This is not to say that a psychologist cannot take a constructive approach to the explanation of consciousness: the only reason we chose this is because we found it to be an intuitive use of the term.

Mind. Once again, although we take notice of the history of the term, we have to select a few terms to use in our language. Hereafter, we consider the mind as the non-physical correlate of human brains: "the complex of faculties involved in perceiving, remembering, considering, evaluating, and deciding. Mind is in some sense reflected in such occurrences as sensations, perceptions, emotions, memory, desires, various types of reasoning, motives, choices, traits of personality, and the unconscious." [6].

whatever else will come up

3 A History of Influences

As mentioned in the introduction, our approach will follow the historical sequence of events, although some references or explanations may be anachronistic for clarity. In order to give a general view, we split the histories of these disciplines into broad periods: one for (more or less) every substantial shift in approach and views. Generally, every time period will mention two sides of the story: one of them will focus on DCS, and the other on AI and Computer Science.

3.1 Landscape before 1950

Although the official birth of the "Cognitive Science" institutions is in the late 1970s, reasoning about thought has been a staple in philosophical research for centuries. Because of the scope of this document, we will focus on a few important concepts, and use them to set the stage for the first large shift of ideas.

3.1.1 Mathematics and Computer Science

Some of the most relevant contributions to the "reasoning as a process" come from Mathematics and what would later become Theoretical Computer Science. We will outline some of them here, while we trace part of the history of conceiving of thought as computation, first, and computers as devices for computation, second. In this respect, the following step is to be expected: can we use devices for the computation that thoughts "work" with?

Boole's Laws of Thought and Boolean Algebra. To avoid going too deep in mathematical concepts for our purposes, we can think of Boolean algebra as the branch of algebra where the variables can be either true or false (1 and 0), and the main operations on its variables are conjuction (and, \wedge), disjunction (or, \vee), negation (not, \neg). Through these, logical operations can be described. In "An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities", one of the author's two monographs on algebraic logic, George Boole, then mathematics professor in Ireland, introduces Boole's algebra as an extension to Aristotle's logic. In it, Boole provides Aristotle's algebra with mathematical foundations, and expands it from two-term to any-term. Boole's algebra differs from modern Boolean algebra (in Boole's algebra uninterpretable terms exist) and cannot be interpreted as set operations; still, its introduction marks a step towards the formalization of laws of thought and a possible bridge between mathematical research and thinking processes (even the title of the book it was introduced in gives a very clear direction). Boolean algebra would instead be developed by Boole's successors (Jevons, Peirce, Schroder and Huntington in particular); this work allows boolean algebra to now be defined by the Stanford Encyclopedia as

the algebra of two-valued logic with only sentential connectives, or equivalently of algebras of sets under union and complementation.

Automata theory. The study of how automatic calculators (more properly, abstract machines TODO: mi sbaglio? or automata) can be used to compute and solve problems is a part of theoretical computer science research. The history of Automata Theory is especially interesting, as it will let us meet some important researchers: it features two neurophysiologists, Warren McCulloch and Walter Pitts, and is thus born from the desire of modeling human thought itself. The first model was proposed in 1943 [5], in a seminal paper that also introduced other research themes we will come back to later. A little over twelve years later, two computer scientists, Mealy and Moore, generalized the theory to more powerful machines, "Finite-State machines". The general idea behind

them is this: starting from an input and a set of states, a "transition function" maps the current state and an input to an output together with the next state. They do not have any memory, and as such can only "solve" simpler problems: if used to recognize languages, they can only recognize regular ones.

More powerful abstract machines had already been proposed: Turing had introduced "Turing machines" in 1937 [11], as part of his proof of the Entscheidungsproblem. The relationship between automata "expressive power" and language complexity will be explained in later chapters.

Cybernetics. Although in recent years the term "cybernetic" has been used to mean futuristic/sci-fi technology, Cybernetics is a transdisciplinary discipline that studies regulatory systems. The core of the discipline are feedback loops (or circular causality), where the result of action is taken as input for (choosing) future actions. Cybernetics isn't bound to any particular application, so its applications include biology, sociology, computer science, robotics and many others. Its flexible approach led to many different definitions: two early ones are the one used in Macy cybernetics conferences, "the study of circular causal and feedback mechanisms in biological and social systems" [10], and the definition by Norbert Wiener, considered the originator of cybernetics, "the scientific study of control and communication in the animal and the machine" [12]. Although the word itself was used by Plato to signify the governance of people, our interest resides in contemporary cybernetics, born in the 1940s. Before the aforementioned paper by McCulloch and Pitts, the study of feedback was considered by Anokhin in 1935 [1] (physiologist). In the same year as the McCulloch-Pitts paper was published, Wiener, together with Rosenblueth and Bigelow, published "Behavior, Purpose and Teleology" [8]: these three researchers, together with McCulloch, Turing, Grey Walter and Ross Ashby, would go on to establish the discipline of cybernetics. Wiener coined the term to denote "teleological mechanisms".

An important addition to the field would be the Von Neumann cellular automata, which introduced the concept of self replication, soon adopted by cybernetics as a core concept. Another important contribution from cybernetics is the creation of Artificial Neural Networks, introduced in the same McCulloch-Pitts paper we mentioned earlier.

- cybernetics - information theory

topics: - behaviorism - gestalt? - Vygotsky-Luria? - Several psychologists who later pioneered a more cognitive approach, including Miller, Ulric Neisser, and Donald Norman, received their training in S. S. Stevens's Psycho-acoustic Laboratory at Harvard - simplest mcCullough-Pitts neuron is 1943!

- 3.2 1956: A Pivotal Year
- 3.3 1960-1970: Great Promise
- 3.4 1975-1985: Ashes and Embers
- 3.5 1987-1993: Bodies as the Key to Minds
- 3.6 1993-2000: Agents and Cooperation
- 3.7 2000-now: Hybrid Systems: New Perspectives
- 3.7.1 gianandrea

4 Perception shifts

Should I merge these two?

- 4.1 Symbolism and Connectionism
- 4.2 Symbols and Subsymbols: Collect or Extract

5 Conclusion

References

- [1] P. K. Anokhin. "Problems of Centre and Periphery in the Physiology of Nervous Activity". In: *Gorki*, *Gozizdat* (1935).
- [2] Margaret A. Boden. *Mind as Machine: A History of Cognitive Science*. en. Clarendon Press, June 2008. ISBN: 978-0-19-954316-8.
- [3] Howard E. Gardner. The Mind's New Science: A History of the Cognitive Revolution. June 1987.
- [4] "International Encyclopedia of Social & Behavioral Sciences 1st Edition". In: ().
- [5] Warren S. McCulloch and Walter Pitts. "A Logical Calculus of the Ideas Immanent in Nervous Activity". en. In: The bulletin of mathematical biophysics 5.4 (Dec. 1943), pp. 115–133. ISSN: 1522-9602. DOI: 10.1007/ BF02478259.
- [6] Mind. en. https://www.britannica.com/topic/mind.
- [7] Rafael Núñez et al. "What Happened to Cognitive Science?" en. In: Nature Human Behaviour 3.8 (Aug. 2019), pp. 782–791. ISSN: 2397-3374. DOI: 10.1038/s41562-019-0626-2.
- [8] Arturo Rosenblueth, Norbert Wiener, and Julian Bigelow. "Behavior, Purpose and Teleology". In: *Philosophy of Science* 10.1 (Jan. 1943), pp. 18–24. ISSN: 0031-8248. DOI: 10.1086/286788.

- [9] Noel Sheehy and Antony J. Chapman. Cognitive Science. Sept. 1995.
- [10] M. D. Steer. "Cybernetics: Circular Causal and Feedback Mechanisms in Biological and Social Systems. Transactions of the Seventh Conference, March 23-24, 1950, New York. Heinz von Foerster, Ed. New York: Josiah Macy, Jr. Foundation, 1951. 251 Pp. \$3.50". en. In: Science 115.2978 (Jan. 1952), pp. 100–100. ISSN: 0036-8075, 1095-9203. DOI: 10.1126/science. 115.2978.100.
- [11] A. M. Turing. "On Computable Numbers, with an Application to the Entscheidungsproblem". en. In: *Proceedings of the London Mathematical Society* s2-42.1 (1937), pp. 230–265. ISSN: 1460-244X. DOI: 10.1112/plms/s2-42.1.230.
- [12] Norbert Wiener. "Cybernetics: Control and Communication in the Animal and the Machine –2nd. Ed". In: 212 p. Cambridge, Mass.: The MIT Press, 1961. Includes Index. CUMINCAD, 1961.