

Unidad 5

Seguridad en Redes

Stack TCP/IP

7-Aplicación 6-Presentación 5-Sesión	Telnet	FTP	otros	SNMP	otros	
4-Transporte	TCP		UDP			
3-Red	IP					
2-Enlace de	ethernet		PF	PP PP	otros	
datos			ги т	IA 000		
1-Físico			EIA-TIA 232			

Datagrama IP

0		8	1 6	2 4	3 1
4	IHL	ToS	Length		
ld		Flags X DF M	— Franmont Attent		
Т	ΓL	Protocol	Header checksum		
Source IP address					
Dest IP address					
Options					
DATA					

TCP, UDP, ICMP

- TCP: Transmission Control Protocol. Protocolo orientado a la conexión. Provee control de flujo, recuperación de errores y confiabilidad.
- **UDP: User Datagram Protocol.** Muy sencillo, no provee garantías. La recuperación de errores es responsabilidad de la aplicación.
- ICMP: Internet Control Message Protocol. Es usado para mensajes de control, mensajes de error, etc. El Ping utiliza ICMP. Algunos tipos de ICMP: Echo request, Echo Reply, Destination Unreachable, Time Exceeded, Timestamp, Timestamp Reply, Redirect Message, etc.

Paquete TCP

0	8		1 6	2 4	3 1
Source Port			Dest Port		
Sequence Number					
Acknowledgment Number					
Data Offset	Reserved	U A P R S F C S S Y I G K H T N N		Window	
Checksum			Urgent Pointer		
Options Paddii		ing			
DATA					

Three-way handshake

Sniffers

Los Sniffers (husmeadores) de paquetes son programas de software o hardware que pueden "ver" y registrar el tráfico que pasa sobre una red digital. Mientras el flujo de datos viaja por la red, el sniffer captura cada paquete y opcionalmente lo decodifica y lo analiza en base a reglas, estandares y especificaciones.

Dependiendo de la infraestructura de comunicaciones, uno puede sniffear todo o sólo una parte del tráfico de red desde un sólo equipo dentro de esa red.

Se dice que opera en "modo promiscuo" porque escucha todo lo que pasa por el medio, y no sólo lo que está destinado al equipo adonde se ejecuta la herramienta.

Pueden ser usados para:

- •Analizar problemas en la red.
- •Detectar intentos de intrusión a través de la red.
- •Obtener información para luego hacer una intrusión.
- •Monitorear el uso de la red.
- •Reportar estadísticas de la red.
- •Espiar a otros usuarios de la red y obtener información sensible como passwords.
- •Hacer ingenieria reversa de protocolos usados en la red.
- •Ejemplos: Tcpdump, wireshark (ethereal), ngrep, dsniff, Kismet (wireless)

Ejemplo: Establecimiento de la conexión

tcpdump -n -i eth0 -S port 9 (servicio discard)

16:38:21.644505 IP 192.168.0.1.1912 > 192.168.0.99.9: S 3617094593:3617094593(0) win 65535 <mss 1460,nop,nop,sackOK>

16:38:21.644603 IP 192.168.0.99.9 > 192.168.0.1.1912: S 3448904776:3448904776(0) ack 3617094594 **win 5840 <mss 1460>**

16:38:21.644720 IP 192.168.0.1.1912 > 192.168.0.99.9: . ack 3448904777 win 65535

Wireshark

Hub vs Switch

Monitoreo de redes switcheadas

•La mayoría de los switch que tienen funcionalidades de administración, pueden definir un puerto de monitoreo (port mirroring o switch port analyzer (span)). En este puerto se copia todo el tráfico de y hacia uno o varios puertos para que pueda ser monitoreado mediante sniffing.

Session 1
Origin
Reply

Switch
Mirror/Span
Port

A
B
C
D
NIDS

Network Tap

•Dispositivos de hardware que se insertan en un segmento de red y envían copia del tráfico que pasa por ellos a una estación de monitoreo. Ejemplo:

Dispositivos inline

 Se puede utilizar una estación de trabajo con 2 placas de red (sin IP) para armar un bridge transparente. Se suele agregar una tercer placa con IP para acceder y administrar el equipo en forma remota.

ARP

Address Resolution Protocol (RFC 826)

Protocolo responsable de encontrar la dirección de hardware (MAC) que corresponde a una determinada dirección IP.

Funciona enviando un paquete del tipo ARP Request a la dirección de broadcast conteniendo la dirección IP a la que se quiere contactar. Se espera un ARP Reply con la dirección MAC que le corresponde a dicha IP.

Cada equipo tiene una tabla ARP en la que guarda un cache temporal de los resultados obtenidos.

ARP Spoofing

MA (Máquina atacante)

IP: 192.168.1.121 Hw: 00:00:00:00:00:03

Antes del ataque.....

ARP Spoofing

Antes del ataque, E1 y E2 se comunican entre ellos. Las tablas ARP de cada equipo son:

E1(192.168.1.1):

192.168.1.100	00:00:00:00:00:02
192.168.1.123	00:00:00:00:014

E2(192.168.1.100):

192.168.1.1	00:00:00:00:00:01
192.168.1.123	00:00:00:00:04

El switch trabaja a nivel de direcciones MAC y reenvia paquetes a la máquina correcta basandose en dicha dirección. ¿Qué pasa si manipulamos la tabla de ARP (también llamado ARP poisoning) en E1 y E2 para que la dirección MAC de destino en todos los paquetes que intercambian sea la dirección de la máquina atacante? Entonces, el switch reenvia los paquetes a dicha maquina atacante.

Después del ataque, la tabla queda así:

E1:

192.168.1.100	00:00:00:00:00:03
192.168.1.123	00:00:00:00:04

Ξ2:

192.168.1.1	00:00:00:00:00:03
192.168.1.123	00:00:00:00:00:14

Donde 00:00:00:00:00:03 es la dirección MAC de la máquina atacante.

ARP Spoofing

Después del ataque......

Nota: Hay que habilitar ip_forwarding en la máquina atacante o si no se romperá la comunicación entre las máquinas atacadas.

IP Spoofing

 El host que recibe un paquete confía en que el remitente está diciendo la verdad con respecto a su dirección IP de origen.

¿Por que querría mentir?

- Esconder el origen de un ataque
- Secuestrar una sesión abierta.
- Aprovecharse de aplicaciones que autentican basandose en la dirección IP de origen.
- ¿Cómo se hace?
 - Se crean paquetes con IP de origen falsificada.

Ataques de Denegación de Servicio

- Ataque de Syn Flooding
- Ataque TCP RST
- Ataque ICMP contra TCP

Ataque de Syn Flooding

- Cada nuevo SYN crea una nueva conexión half-open.
- Estas conexiones tardan minutos en dar timeout.
- Las tablas de conexiones de los servidores son finitas.
- El atacante puede utilizar como dirección origen un IP de otro (Spoofing)

Referencia: CERT Advisory CA-1996-21

Una solución: Syn cookies

- Las SYN cookies son elecciones particulares del ISN por parte del servidor.
- Se almacena el estado en el ISN, no en el servidor.
- El ISN se elije utilizando un hash que incluye un secreto del servidor y los datos de ip y puerto origen y destino.

Reset de Conexiones

- Un host X envia un paquete RST reseteando la conexión cuando:
 - Un host Y solicita una conexión a un puerto cerrado de X.
 - Por cualquier razón (sin uso por un cierto tiempo, condición anormal) desea cerrar la conexión.
- El RESET es unilateral!

Ataque TCP RST

- Enviar un paquete RST (TCP RESET flag) con una dirección IP "spoofeada" a cualquier extremo de la conexión:
 - Debo conocer SRC_IP, SRC_PORT, DST_IP, DST_PORT
 - Es necesario adivinar un número de secuencia dentro de la ventana correspondiente.
 - O escuchar el tráfico y ver que número utilizar.
 - El rango puede ser obtenido con facilidad:
 - Números de Secuencia: 32 bits
 - Tamaño de ventana: hasta 16 bits

Ataques ICMP contra TCP

- Un atacante podría falsificar un mensaje ICMP de error que indique un error "hard". Este tipo de errores son:
 - Protocol Unreachable
 - Port Unreachable
 - Fragmentation Needed and DF set
- Según el RFC 1122, TCP debería abortar la conexión.
- Los RFCs no recomiendan ningún chequeo en los mensajes de error ICMP recibidos. Por ende, no hace falta adivinar números de secuencias!

Referencia: Gont, F., "ICMP attacks against TCP", Febrero 2006, Internet Draft

Protocolos de aplicación

- Comandos r
- Ident
- Telnet y SSH
- Tftp
- Web
- Mail
- DNS
- SNMP
- NTP
- Autenticación en Windows

Comandos r

- Hace un tiempo, la gente quería acceder fácilmente a equipos remotos, sin tener que loguearse con usuario y clave.
- Surgen los comandos r
 - rcp Copia de archivos remotos (TCP/514)
 - rlogin login remoto (TCP/513)
 - rsh Shell remoto (TCP/514)
 - rwho Usuarios logueados en el equipo remoto (UDP/513)

Autenticación

- Los archivos /etc/hosts.equiv y .rhosts proveen el mecanismo de autenticación para rlogin, rsh y rcp
- Estos archivos especifican qué equipos remotos y usuarios son considerados "confiables"
 - Los usuarios confiables pueden acceder al sistema local sin proveer una password.
 - El archivo /etc/hosts.equiv aplica a todo el sistema, mientras que cada usuario puede mantener su propio .rhost en su directorio home.
- Estos mecanismos saltean los mecanismos standard basados en usuario-password.

Identd (TCP/113)

- Definido en RFC 1413. También conocido como auth.
- Sirve para identificar el usuario remoto de una conexión TCP determinada.
- Cuando un usuario o programa en la computadora A hace un pedido ident a la computadora b, solo puede preguntar por la identidad de los usuarios de las conexiones entre A y B. El cliente especifica los números de puertos usados en ambos extremos, y el servidor B devuelve una cadena con el nombre del usuario.

Telnet (TCP/23)

- Permite login remoto.
- Todo el tráfico viaja en claro.
- Utiliza user y password para loguearse.
- Muy utilizado para administración de routers, switches, etc.
- Posibilidad de MitM, Session Hijack, etc

SSH (TCP/22)

- Secure shell es un protocolo para comunicaciones seguras, permite login remoto, transferencia de archivos y tunneling de conexiones.
- SSH cifra todo el tráfico (incluidas las contraseñas) para eliminar de un modo efectivo las "escuchas", los secuestros de las conexiones y otros ataques a nivel de red.
- Además, puede utilizar mecanismos de pares de claves en vez de username/password.

- Man-in-the-Middle (MitM) attack / Spoofing
- Session hijacking
- Sniffing
- Data modification

home:~\$> ssh -L 10143:imap.utn.edu.ar:143 bastion.utn.edu.ar

TFTP (UDP/69)

- Trivial FTP. Protocolo muy simple de transferencia de archivos.
- Usado para arrancar estaciones de trabajo sin disco rígido o transferir configuraciones de dispositivos de red como por ejemplo routers. Es usado por PXE (Preboot Execution Environment)
- No usa usuario ni clave
- Útil para copiar archivos en equipos comprometidos.

HTTP (TCP/80)

El HyperText Transfer Protocol es un protocolo de aplicación para sistemas de información hipermediales, distribuidos y colaborativos. Es el lenguaje que utilizan los clientes y servidores web para comunicarse entre sí. Es un protocolo simple, basado en texto, que no maneja estados. Esto significa que cada solicitud que el cliente envía al servidor es independiente de las solicitudes anteriores.

HTTP

Protocolo cliente servidor

HTTP Request

El protocolo HTTP es un protocolo de pedido/respuesta. Un cliente envía una solicitud a un servidor. En dicha solicitud incluye un método, URI y versión de http. Luego incluye una serie de encabezados y modificadores. Opcionalmente, puede incluir un cuerpo adicional con contenidos.

URI y URL

Las URIs proveen una forma de localizar un recurso en internet.

Diferencia: URI es un concepto genérico, URL es un concepto informal (no se usa más en las especificaciones técnicas) asociado con algunos esquemas populares como HTTP, FTP, MAILTO, etc.

Ejemplo URL

Métodos HTTP

- GET Solicita la entidad identificada por el URI incluido en el pedido.
- HEAD De funcionalidad similar al GET, pero el servidor debe devolver solo los headers, y no el contenido.
- POST Para que el servidor destino reciba la entidad incluida en el request, subordinada al URI indicado.
- PUT Para que el servidor almacene en el URI indicado, la entidad incluida en la solicitud.
- OPTIONS Solicita información acerca de los mecanismos de comunicación disponibles, métodos habilitados, etc.
- DELETE Para borrar del servidor el URI indicado.
- TRACE Para que el servidor responda con la solicitud, tal cual la recibió. Se utiliza para debugging.

HTTP Request

GET http://www.ejemplo.edu.ar HTTP/1.1

Host: www.ejemplo.edu.ar

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.1;

en-US; rv:1.9.0.1) Gecko/2008070208 Firefox/3.0.1

Accept: text/html,application/xhtml+xml,application/xml;

q=0.9,*/*;q=0.8

Accept-Language: en-us,en;q=0.5

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

Keep-Alive: 300

Proxy-Connection: keep-alive

Content-length: 0

HTTP Response

HTTP/1.1 200 OK

Date: Tue, 16 Sep 2008 20:53:07 GMT

Server: Apache/1.3.32 (Unix) PHP/5.2.4 Chili!Soft-ASP/3.6.2

mod_ssl/2.8.21 OpenSSL/0.9.7

Last-Modified: Fri, 22 Sep 2006 15:54:45 GMT

ETag: "b1c03a-523c-45140745"

Accept-Ranges: bytes Content-Length: 21052 Content-Type: text/html

<HTML><HEAD><TITLE>Web interno de la universidad</TITLE>

<BODY bgcolor="#CCCC66">

Web Interno de la universidad

HTTP Basic Auth

Mecanismo de autenticación Definido en RFC 2617

HTTPS

HTTP + SSL

Comunicación con canal encriptado utilizando SSL. Bien implementado, no permite el robo de información en tránsito. Además, permite identificar fehacientemente al servidor y, en algunos casos, al cliente. Puede tener un Overhead importante. Port 443/TCP

Site	http://www.exactas.uba.ar	Netblock Owner	Universidad Nacional de Buenos Aires	
Domain	uba.ar	Nameserver	ns1.uba.ar	
IP address	157.92.32.110	DNS admin	oper@ccc.uba.ar	
IPv6 address	Not Present	Reverse DNS	oldwebmail.exactas.uba.ar	
Domain registrar	unknown	Nameserver unknown organisation		
Organisation	unknown	Hosting company	uba.ar	
Top Level Domain	Argentina (.ar)	DNS Security unknown Extensions		
Hosting country	■ AR			

□ Hosting History

Netblock owner	IP address	os	Web server	Last seen Refresh
Universidad Nacional de Buenos Aires Buenos Aires	157.92.32.110	Linux	Apache/2.2.9 Debian PHP/5.2.6-1lenny16 with Suhosin-Patch mod_python/3.3.1 Python/2.5.2 mod_ssl/2.2.9 OpenSSL/0.9.8g mod_wsgi/2.5 mod_perl/2.0.4 Perl/v5.10.0	1-Dec-2014
Universidad Nacional de Buenos Aires Buenos Aires	157.92.32.110	Linux	Apache/2.2.3 Debian mod_python/3.2.10 Python/2.4.4 PHP/5.2.0-8etch13 mod_ssl/2.2.3 OpenSSL/0.9.8c mod_perl/2.0.2 Perl/v5.8.8	12-Nov-2008

Site	http://www.ypf.com	Netblock Owner	YPF S.A.	
Domain	ypf.com	Nameserver	ns1.ypf.com.ar	
IP address	200.1.118.183	DNS admin	hostmaster@ypf.com	
IPv6 address	Not Present	Reverse DNS	unknown	
Domain registrar	networksolutions.com	Nameserver organisation	unknown	
Organisation	YPF S.A., Buenos Aires, C1106BKK, AR	Hosting company	ypf.com.ar	
Top Level Domain	Commercial entities (.com)	DNS Security Extensions	unknown	
Hosting country	■ AR			

☐ Hosting History

Netblock owner	IP address	os	Web server	Last seen Refresh	
YPF S.A. Buenos Aires	200.1.118.183	F5 BIG-IP	unknown	22-Apr-2015	
YPF S.A. Buenos Aires	200.1.118.183	F5 BIG-IP	Apache/2.2.15 Win32 mod_jk/1.2.30	3-Oct-2012	
YPF S.A. Buenos Aires	200.1.118.183	Citrix Netscaler	Apache/2.2.15 Win32 mod_jk/1.2.30	8-Sep-2012	
YPF S.A. Buenos Aires	200.1.118.183	unknown	Apache/2.2.15 Win32 mod_jk/1.2.30	7-Sep-2012	
YPF S.A. Buenos Aires	200.1.118.183	Citrix Netscaler	Apache/2.2.15 Win32 mod_jk/1.2.30	3-Sep-2012	
YPF S.A. Buenos Aires	200.1.118.183	Citrix Netscaler	Apache/2.2.15 Win32 mod_jk/1.2.30	3-Aug-2012	
YPF S.A. Buenos Aires	200.1.118.183	Citrix Netscaler	Apache/2.2.15 Win32 mod_jk/1.2.30	3-Jul-2012	
YPF S.A. Buenos Aires	200.1.118.183	Citrix Netscaler	Apache/2.2.15 Win32 mod_jk/1.2.30	2-Jun-2012	
YPF S.A. Buenos Aires	200.1.118.183	Citrix Netscaler	Apache/2.2.15 Win32 mod_jk/1.2.30	2-May-2012	
YPF S.A. Buenos Aires	200.1.118.183	Citrix Netscaler	Apache/2.2.15 Win32 mod_jk/1.2.30	2-Apr-2012	

Correo Electrónico

- Protocolos
 - SMTP (TCP/25), POP3 (TCP/110), IMAP4(TCP/143)
- Se pueden usar sobre SSL: 465, 995, 993
- Exchange, Postfix, Exim, Sendmail, Qmail

Ejemplo Correo Electrónico

Return-Path: <xxx@xxx.com.ar>

Delivered-To: rbaader@ejemplo.edu.ar

Received: from unknown (HELO me) (200.x.x.x)

by mail.ejemplo.edu.ar with SMTP; 29 Oct 2004 14:00:16 -0000

Received: from ecosport.xxx.com.ar ([127.0.0.1])

by localhost (chatarra [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id 28182-02 for <rbaader@ejemplo.edu.ar>

Received: from of123c (of123_1-T_rbaader.xxx.com.ar [10.1.1.51]) by chatarra.xxx.com.ar (Postfix) with SMTP id C2AA5204F6A for <rbaader@ejemplo.edu.ar>

From: "Fernando X" <xxx@xxx.com.ar>

To: "Rodolfo Baader" <rbaader@ejemplo.edu.ar>

Subject: Re: Un favor!

Problema: Open Relay

Open Relay

- Usado por spammers
- Diversas formas
 - usuario@dominio.remoto
 - usuario@remoto@local
 - "usuario@remoto"@local
 - local!usuario@remoto
- ORDB http://www.ordb.org

Open Relay

SMTP-AUTH (RFC 2554)

220-mail.xxxxxxxx.com ESMTP Exim 4.34 #1 Wed, 23 Jun 2004 17:35:13 -0700

EHLO mail.myserver.com

250-mail.xxxxxxxxx.com Hello mail.myserver.com [192.168.0.156]

250-SIZE 52428800

250-PIPELINING

250-AUTH PLAIN LOGIN

250-STARTTLS

250 HELP

AUTH LOGIN

334 VXNIcm5hbWU6

bXI1c2VybmFtZQ==

334 UGFzc3dvcmQ6

bXIwYXNzd29yZA==

235 Authentication succeeded

SMTP-AUTH CRAM-MD5

S: 220 smtp.example.com ESMTP server ready

C: EHLO jgm.example.com

S: 250-smtp.example.com

S: 250 AUTH CRAM-MD5 DIGEST-MD5

C: AUTH FOOBAR

S: 504 Unrecognized authentication type.

C: AUTH CRAM-MD5

S: 334

PENCeUxFREJoU0NnbmhNWitOMjNGNndAZWx3b29kLmlubm9zb2Z0LmNvbT4=

C: h

S: 235 Authentication successful.

DNS (UDP/53, TCP/53)

- Domain Name System
- Esquema jerárquico de resolución de nombres.
- Servidores primarios y secundarios, comunicación entre ellos.

SEGURIDAD

DNS

- No permitir consultas recursivas
- Retacear información
 - No permitir transferencia de zonas.
 - Cuidar los nombres de los hosts.
- Actualizaciones

Ver http://dns.measurement-factory.com/surveys/201010/

SNMP (UDP 161 y 162)

- Simple Network Management Protocol
- Versiones v1, v2 y v3
- Sólo v3 sirve en un ambiente no asegurado

NTP (UDP/123)

- Network Time Protocol
- http://www.ntp.org
- Permite sincronizar relojes

Autenticación en Windows vía Red

MSV1_0 – Mecanismo pre-Kerberos

Ejemplo captura

AuthType	LM Hash	NT Hash	NT Serv-Chall	LM Cli-Chall	NT Cli-Chall
LM & NTLMv1	087B5B51531EE75983C6EFD966462706	8A923847309A	F49FC03EB1C7DF68	69AD1B2DF0F4	07756D654613
LM & NTLMv1	FD1FDDF9D58BD888DD263737E88F9C9F	4C02E5EDD99B	3A5B76E314612A9A	E5E5EA7785B4	E56D9D8055F1
LM & NTLMv1	7466F995B694D1AB192EF69A336921A6	115767781107	CB7C7E82FBDD0FF4	7ADBA44A06E6	C5639AA8416E
LM & NTLMv1	A91555B318E9559AA512BD877DD6C77C	C0A6D474B155	0E0412D789643500	266EC72B3C53	C1917F2483C6
LM & NTLMv1	7C1500C8B9EED8680EA08C2DAC7C930B	6243D8DB3A56	1F12B6AAEEFE173B	B25475DB358A	192FC9FF584E
LM & NTLMv1	C5A2E43D377FA8C2089FE84EBB7286A0	9BA1663D9414	062B38CEADF87405	7A6016269196	80E425AF6E81
LM & NTLMv1	A1F836199D6866CDAE89A67B78DD4950	FE67E078E313	E803A629F3BAC8D6	96DB5DA146A1	9F31CD332B10
LM & NTLMv1	752C0F327F198C61BF8E5C98B61D1157	B51E87F65090	E79349190A3CAE5F	5996A9AC5F1C	8D808A115619
LM & NTLMv1	9B4D439EEC8436E798F1BACC2B3F67E5	B0665CCE6206	6FF825DCECE318F6	C2D7BD06FFF0	5A771D165103
LM & NTLMv1	873F39F55EEAC889CE28035E420A0A54	37F7D7C84024	C49D1826373476B8	9E4B01968513	0A3037B0C802
LM & NTLMv1	27CB72C50130DF94F4D11FD67780C21F	8757476CD807	AB136BB36D11192D	F4E11C696B87	DA4AEC1E0EFE
LM & NTLMv1	F9880E29CD5DD8807D030CB2F21A5197	36B540646143	3CBA646E8274A889	F7390D5DA289	F2A980653748
LM & NTLMv1	8339FDD2B94A9141BCEB657F34048533	86B21425CA54	566199AE10C5E0D7	26F2EA870F30	3231BC4D4A69
LM & NTLMv1	921E9E5DD29A7DA3A9F28FD6B9A8EF59	43468FFC7F0E	252E713393B3ACD6	AA92E3045E09	B47FB278F042
LM & NTLMv1	78E494CF85C47BC5138741EC2A1EBD02	FD252A00B7FD	318F5D9D35D1DECC	95EC75E72A19	48AB36035B6F
LM & NTLMv1	ACA936F2799F00B7B6AD8ED76B4677F7	18FA980700A6	658A97AD3FC10EED	7F4CF87237ED	EF5617D4DE52