

BIRLA VISHVAKARMA MAHAVIDYALAY (AN AUTONOMOUS INSTITUTION) ELECTRONICS ENGINNERING DEPARTMENT

A.Y. 2023-2024

DIGITAL SYSTEM DESIGN: -50 VERILOG CODES

NAME: SHREYA VERMA

ID NO.: 21EL001

SEMESTER: 5TH

BATCH: A - BATCH

BRANCH: ELECTRONICS ENGINEERING

SR.	LIST
NO.	
1.	CLOCK DIVIDER
2.	JOHNSON COUNTER
3.	RING COUNTER
4.	5 INPUT MAJORITY CIRCUIT
5.	PARITY GENERATOR
6.	BINARY TO ONE HOT ENCODER
7.	4-BIT BCD SYNCHRONOUS COUNTER
8.	4-BIT CARRY LOOKAHEAD ADDER
9.	N-BIT COMPARATOR
10.	SERIAL IN SERIAL OUT SHIFT REGISTER
11.	SERIAL IN PARALLEL OUT SHIFT REGISTER
12.	PARALLEL IN PARALLEL OUT REGISTER
13.	PARALLEL IN SERIAL OUT REGISTER
14.	BIDIRECTION SHIFT REGISTER
15.	PRBS SEQUENCE GENERATOR
16.	8-BIT SUBTRACTOR
17.	8-BIT ADDER/SUBTRACTOR
18.	4-BIT MULTIPLIER
19.	FIXED POINT DIVISION
20.	MASTER SLAVE JK FLIP FLOP
21.	POSITIVE EDGE DETECTOR

22.	BCD ADDER
23.	4-BIT CARRY SELECT ADDER
24.	MOORE FSM 1010 SEQUENCE DETECTOR
25.	N:1 MUX
26.	BCD TIMECOUNT
27.	3-1 MUX
28.	BCD TO SEVEN SEGMENT DISPLAY
29.	D LATCH USING 2:1 MUX
30.	8-BIT BARREL SHIFTER
31.	1-BIT COMPARATOR USING 4X1 MUX
32.	LOGICAL, ALGEBRAIC, AND ROTATE SHIFT
	OPERATIONS
33.	ALU
34.	4-BIT ASYNCHRONOUS DOWN COUNTER
35.	MOD-N UPDOWN COUNTER
36.	UNIVERSAL BINARY COUNTER
37.	UNIVERSAL SHIFT REGISTER
38.	CN(CHANGE-NO CHANGE FLIPFLOP)
	USING 2:1 MUX
39.	FREQUENCY DIVIDER BY ODD NUMBERS
40.	GREATEST COMMON DIVISOR USING
	BEHAVIOURAL MODELLING
41.	GREATEST COMMON DIVISOR VIA FSM
·	

42.	SINGLE PORT RAM
43.	DUAL PORT RAM
44.	CLOCK BUFFER
45.	SYNCHRONOUS FIFO
46.	PRIORITY ENCODER
47.	SEVEN SEGMENT DISPLAY USING ROM
48.	SERIAL ADDER
49.	FIXED PRIORITY ARBITER
50.	ROUND ROBIN ARBITER

CODE-1: CLOCK DIVIDER

CODE FOR TESTBENCH:

endmodule

```
module testbench;
reg Clk, Rst;
wire [3:0] Count;
wire D2, D4, D8, D16;
Clock_Divider dut(Clk, Rst, Count, D2, D4, D8, D16);
initial
begin
$monitor("Clk=%b Rst=%b Count=%b D2=%b D4=%b D8=%b D16=%b",Clk,Rst,Count,D2,D4,D8,D16);
always
begin
 #50 Clk = ~Clk;
 end
initial
begin
     #100 Rst = 1;
     #100 Rst = 0;
     $finish;
   end
```

VERILOG CODE:

```
module Clock_Divider(
   input Clk,
   input Rst,
   output reg [3:0] Count,
   output reg D2, D4, D8, D16
   always@(posedge Clk)
  begin
  if (Rst==0)
  Count=4'b0000;
   else
   Count=Count+1;
   D2=Count[0];
   D4=Count[1];
   D8=Count[2];
   D16=Count[3];
   end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

CODE-2: JOHNSON COUNTER

CODE FOR TESTBENCH:

```
module testbench;
reg Clk,Rst;
reg [3:0] Width;
wire [3:0] Count;

JOHNSON_COUNTER dut(Clk,Rst,Width,Count);
initial
begin
$monitor("Clk=%b Rst=%b Width=%b Count=%b",Clk,Rst,Width,Count);
end
always
begin
#50 Clk = ~Clk;
end
initial
begin
#100 Rst = 1;
#100 Rst = 0;

$finish;
end
endmodule
```

```
module JOHNSON_COUNTER(
    input [3:0] Width,
    input Clk,
    input Rst,
    output reg [3:0] Count
);

always@(posedge Clk)
    begin
    if(Rst)
    Count={~Count[0],Count[3:1]};
    else
    Count=4'b0001;
    end
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.287 W

Junction Temperature: 26.8 °C

Thermal Margin: 58.2 °C (40.1 W)

Effective dJA: 1.4 °C/W

CODE-3: RING COUNTER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0] Width;
reg Clk, Rst;
wire [3:0] Count;
RING_COUNTER dut(Clk, Rst, Width, Count);
initial
begin
$monitor("Clk=%b Rst=%b Width=%b Count=%b",Clk,Rst,Width,Count);
  always
 begin
  #50 Clk=~Clk;
  end
  initial
  begin
  #100 Rst=1;
  #100 Rst=0;
   $finish;
   end
   endmodule
```

```
module RING_COUNTER(
   input [3:0] Width,
   input Clk,
   input Rst,
   output reg [3:0] Count
);

always@(posedge Clk)
  begin
   if(Rst)
   Count={~Count[0],Count[3:1]};
  else
   Count=4'b0001;
  end
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.287 W

Junction Temperature: 26.8 ℃

Thermal Margin: 58.2 °C (40.1 W)

Effective dJA: 1.4 °C/W

CODE-4: 5 INPUT M&JORITY CIRCUIT

CODE FOR TESTBENCH:

```
module testbench;
req [4:0] x;
wire z;
INPUT_MAJORITY_CIRCUIT dut(x[0],x[1],x[2],x[3],x[4],z);
begin
$monitor("x[0]=8b x[1]=8b x[2]=8b x[3]=8b x[4]=8b z=8b",x[0],x[1],x[2],x[3],x[4],z);
  #2 x[0]=0; x[1]=0; x[2]=0; x[3]=0; x[4]=0;
  #3 x[0]=0; x[1]=0; x[2]=0; x[3]=0; x[4]=1;
  #4 x[0]=0; x[1]=0; x[2]=0; x[3]=1; x[4]=0;
  #5 x[0]=0; x[1]=0; x[2]=0; x[3]=1; x[4]=1;
  #6 x[0]=0; x[1]=0; x[2]=1; x[3]=0; x[4]=0;
  #7 x[0]=0; x[1]=0; x[2]=1; x[3]=0; x[4]=1;
  #8 x[0]=0; x[1]=0; x[2]=1; x[3]=1; x[4]=0;
  #9 x[0]=0; x[1]=1; x[2]=1; x[3]=1; x[4]=1;
  #10 x[0]=0; x[1]=1; x[2]=0; x[3]=0; x[4]=0;
  #11 x[0]=0; x[1]=1; x[2]=0; x[3]=0; x[4]=1;
  #12 x[0]=0; x[1]=1; x[2]=0; x[3]=1; x[4]=0;
  #13 x[0]=0; x[1]=1; x[2]=0; x[3]=1; x[4]=1;
  #14 x[0]=0; x[1]=1; x[2]=1; x[3]=0; x[4]=0;
  #15 x[0]=0; x[1]=1; x[2]=1; x[3]=0; x[4]=1;
  #16 x[0]=0; x[1]=1; x[2]=1; x[3]=1; x[4]=0;
  #17 x[0]=0; x[1]=1; x[2]=1; x[3]=1; x[4]=1;
  #18 x[0]=1; x[1]=0; x[2]=0; x[3]=0; x[4]=0;
  #19 x[0]=1; x[1]=0; x[2]=0; x[3]=0; x[4]=1;
  end
endmodule
```

VERILOG CODE:

```
module INPUT MAJORITY CIRCUIT (
    input [4:0] x,
    output z
    );
    wire [9:0] w;
    and and1(w[0],x[2],x[3],x[4]);
    and and 2(w[1], x[1], x[3], x[4]);
    and and 3(w[2], x[1], x[2], x[4]);
    and and4(w[3],x[1],x[3],x[2]);
    and and 5(w[4], x[0], x[3], x[4]);
    and and6(w[5],x[0],x[2],x[4]);
    and and 7(w[6], x[0], x[3], x[2]);
    and and8(w[7],x[1],x[0],x[4]);
    and and9(w[8],x[1],x[3],x[0]);
    and and 10(w[9], x[1], x[0], x[2]);
    or or1(z,w[0],w[1],w[2],w[3],w[4],w[5],w[6],w[7],w[8],w[9]);
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.712 W

Junction Temperature: 26.0 ℃

Thermal Margin: 59.0 °C (40.6 W)

Effective ϑJA : 1.4 $^{\circ}C/W$

CODE-5: PARITY GENERATOR

CODE FOR TESTBENCH:

```
module testbench;
reg x, y, z;
wire result;
PARITY_GENERATOR dut(x,y,z,result);
initial
begin
$monitor("x=%b y=%b z=%b result=%b",x,y,z,result);
 #100 x=0; y=0; z=0;
 #200 x=0; y=0; z=1;
 #300 x=0; y=1; z=0;
 #400 x=0; y=1; z=1;
#500 x=1; y=0; z=0;
  #600 x=1; y=0; z=1;
 #700 x=1; y=1; z=0;
 #800 x=1; y=1; z=1;
end
endmodule
```

```
module PARITY_GENERATOR(
    input x,
    input y,
    input z,
    output result
    );
    assign result= x^y^z;
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective dJA: 1.4 °C/W

CODE-6: BINARY TO ONE HOT ENCODER

CODE FOR TESTBENCH:

```
module testbench;
reg [1:0] bin_i;
wire [1:0] one_hot_o;

BINARY_TO_ONE_HOT_ENCODER dut(bin_i,one_hot_o);

initial
begin
$monitor("bin_i=8b one_hot_o=8b",bin_i,one_hot_o);

#100 bin_i[0]=0; bin_i[1]=0;
#200 bin_i[0]=0; bin_i[1]=1;
#300 bin_i[0]=1; bin_i[1]=0;
#400 bin_i[0]=1; bin_i[1]=1;
end
endmodule
```

```
module BINARY_TO_ONE_HOT_ENCODER(
   input [2:0] bin_i,
   output [7:0] one_hot_o
);
   parameter bin_w=4;
   parameter one_hot_w=16;
   input [1:0] bin_i;
   output reg [1:0] one_hot_o;

assign one_hot_o = (1<<bin_i);
endmodule</pre>
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.712 W

Junction Temperature: 26.0 °C

Thermal Margin: 59.0 °C (40.6 W)

Effective #JA: 1.4 °C/W

CODE-7: 4 BIT BCD SYNCHRONOUS COUNTER

CODE FOR TESTBENCH:

```
module bcd counter(
 input wire clk, // Clock input
 input wire rst, // Reset input
 output wire [3:0] bcd // 4-bit BCD output
);
reg [3:0] count; // 4-bit counter
always @(posedge clk or posedge rst) begin
 if (rst) begin
   count <= 4'b0000; // Reset the counter to 0
 end else begin
   // Increment the counter
   if (count == 4'b1001) begin
     count <= 4'b0000; // Reset to 0 when it reaches 9 (BCD)
   end else begin
    count <= count + 1;
   end
 end
end
assign bcd = count; // Output BCD
endmodule
```

VERILOG CODE:

```
module BCD_COUNTER(
   input Clk,
    input Clear,
    output [3:0] Count
     reg [3:0] t;
     always@(posedge Clk)
     begin
     if(Clear)
     t <= 4'b0000;
     Count <= 4'b0000;
      end
     else
     begin
      t <= t+1;
     if(t==4'b1001)
     begin
     t <= 4'b0000;
      end
      Count <=t;
      end
      end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 5.248 W

Junction Temperature: 32.3 °C

Thermal Margin: 52.7 °C (36.1 W)

Effective dJA: 1.4 °C/W

CODE-8: 4 - BIT CARRY LOOK AHEAD ADDER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0] a, b,cin;
wire [3:0] sum, cout;
CARRY LOOK AHEAD ADDER dut(a,b,cin,sum,cout);
initial
begin
$monitor("a=8b b=8b cin=8b sum=8b cout=8b",a,b,cin,sum,cout);
     cin=1:
#50 a[0]=0; a[1]=0; a[2]=0; a[3]=0;
    b[0]=0; b[1]=0; b[2]=0; b[3]=0;
#70 a[0]=0; a[1]=0; a[2]=0; a[3]=1;
    b[0]=0; b[1]=0; b[2]=0; b[3]=1;
#90 a[0]=0; a[1]=0; a[2]=1; a[3]=0;
    b[0]=0; b[1]=0; b[2]=1; b[3]=0;
#110 a[0]=0; a[1]=0; a[2]=1; a[3]=1;
    b[0]=0; b[1]=0; b[2]=1; b[3]=1;
#130 a[0]=0; a[1]=1; a[2]=0; a[3]=0;
    b[0]=0; b[1]=1; b[2]=0; b[3]=0;
#150 a[0]=0; a[1]=1; a[2]=0; a[3]=1;
    b[0]=0; b[1]=1; b[2]=0; b[3]=1;
#170 a[0]=0; a[1]=1; a[2]=1; a[3]=0;
     b[0]=0; b[1]=1; b[2]=1; b[3]=0;
#190 a[0]=0; a[1]=1; a[2]=1; a[3]=1;
    b[0]=0; b[1]=1; b[2]=1; b[3]=1;
#210 a[0]=1; a[1]=0; a[2]=0; a[3]=0;
    b[0]=1; b[1]=0; b[2]=0; b[3]=0;
     end
     endmodule
```

VERILOG CODE:

```
module CARRY_LOOK_AHEAD_ADDER(
   input [3:0] a,
   input [3:0] b,
   input cin,
   output [3:0] sum,
   output cout
   );
   and (g0,a[0],b[0]),
   (g1,a[1],b[1]),
    (g2,a[2],b[2]),
   (g3,a[3],b[3]);
   xor (p0,a[0],b[0]),
   (p1,a[1],b[1]),
    (p2,a[2],b[2]),
    (p3,a[3],b[3]);
    xor (sum[0],p0,cin),
        (sum[1],p1,c0),
        (sum[2],p2,c1),
        (sum[3],p3,c2);
       assign c0= g0 | (p0 & cin),
       c1= g1 | (p1 & g0) | (p1 & p0 & cin),
       c2= g2 | (p2 & g1) | (p2 & p1 & g0) | (p2 & p1 & p0 & cin),
       c3= g3 | (p3 & g2) | (p3 & p2 & g1) | (p3 & p2 & p1 & g0) | (p3 & p2 & p1 & p0 & cin);
       assign cout=c3;
```

endmodule

SIMULATION:

Name	Value	0 n	s I		200 ns	1	400	ns	600 ns		800 ns		1,000 ns	1,200 ns 1
⊞ % a[3:0]	0001		(0000	1000	X 0100	110	ър	0010	1010	X	0110	Ċ	1110	0001
⊞ b[3:0]	0001		0000	1000	0100	X 110	oþ 💮	0010	1010	X	0110	\equiv	1110	0001
⊞	0001	\mathbb{I}							0001					
⊞ - No sum [3:0]	0011		(0	001	X	1001		χ ο	101	X	1	101	X	0011
	1010		ZZZO	2221	X 2220	X 22:	21	2220	2221		2220			.011

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective ®JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-9: N - BIT COMPARATOR

CODE FOR TESTBENCH:

```
module testbench;
reg [1:0] a,b;
wire L, E, G;
N BIT COMPARATOR dut(a,b,L,E,G);
initial
begin
$monitor("a=%b b=%b L=%b E=%b G=%b",a,b,L,E,G);
#100 a[0]=0; a[1]=0;
    b[0]=0; b[1]=0;
#200 a[0]=0; a[1]=1;
    b[0]=0; b[1]=1;
#300 a[0]=1; a[1]=0;
    b[0]=1; b[1]=0;
#400 a[0]=1; a[1]=1;
    b[0]=1; b[1]=1;
#500 a[0]=0; a[1]=0;
    b[0]=0; b[1]=0;
#600 a[0]=0; a[1]=1;
    b[0]=0; b[1]=1;
     end
     endmodule
```

VERILOG CODE:

```
module N_BIT_COMPARATOR(
   input [1:0]a,
   input [1:0] b,
   output L,
   output G,
   output E
   );
  parameter n=32;
   input [1:0]a,b;
   output L,G,E;
   reg L=0, G=0, E=0;
   always@(a,b)
   begin
   if(a>b)
   begin
   L=0; E=0; G=1;
   end
   else if (a<b)
   begin
   L=1; E=0; G=0;
   end
   else
  begin
   L=0; E=1; G=0;
   end
   end
endmodule
```

SIMULATION:

Name	Value	0 ns .		200 ns .		400	ns .	600 ns .		800 ns .		1,000 ns	1,200 ns 1
- F4 (n n)				لحسل					上		누		<u> </u>
⊞ 🖥 a[3:0]	0001	(0000	X 1000	X 0100	X 110	₽	0010	1010 X	_	0110	\subseteq	1110 X	0001
⊞ · 😽 b[3:0]	0001	0000	1000	0100	110		0010	1010	\subseteq	0110		1110	0001
	0001							0001					
⊞	0011		0001	χ :	1001			101		1.	101	X	0011
	1010	2220	X ZZZ1	X 2220	X ZZZ	1	2220	2221		2220			.011

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W
Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective ϑJA : 1.4 °C/W

CODE-10: SERIAL IN SERIAL OUT SHIFT REGISTER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0] Width;
reg Clk, Rst;
wire [3:0] Count;
RING_COUNTER dut(Clk, Rst, Width, Count);
initial
$monitor("Clk=%b Rst=%b Width=%b Count=%b",Clk,Rst,Width,Count);
  always
 begin
  #50 Clk=~Clk;
  end
  initial
  begin
  #100 Rst=1;
   #100 Rst=0;
   $finish;
   end
   endmodule
```

```
module SISO_REG(
    input clk,
    input si,
    input clear,
    output so
);
    reg [3:0] tmp;
    always@(posedge clk)
    begin
    if(clear)
    tmp <=4'b0000;
    else
    tmp <= tmp >>1;
    tmp[3] <= si;
    end
    assign so = tmp;
endmodule</pre>
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power:0.43 WJunction Temperature:25.6 °CThermal Margin:59.4 °C (40.9 W)Effective ♂JA:1.4 °C/WPower supplied to off-chip devices:0 WConfidence level:Low

CODE-11: SERIAL IN PARALLEL OUT SHIFT REGISTER

CODE FOR TESTBENCH:

```
module testbench;
reg clk, clear;
reg [3:0] din;
wire [3:0] dout;
SIPO_REG dut(clk,clear,din,dout);
initial
begin
$monitor("clk=%b clear=%b din=%b dout=%b",clk,clear,din,dout);
#100 din[0]=0; din[1]=0; din[2]=0; din[3]=0;
#200 din[0]=0; din[1]=0; din[2]=0; din[3]=1;
#300 din[0]=0; din[1]=0; din[2]=1; din[3]=0;
#400 din[0]=0; din[1]=0; din[2]=1; din[3]=1;
#500 din[0]=0; din[1]=1; din[2]=0; din[3]=0;
#600 din[0]=0; din[1]=1; din[2]=0; din[3]=1;
end
endmodule
```

```
module SIPO_REG(
    input clk,
    input clear,
    input [3:0] din,
    output reg [3:0] dout
);
    always@(posedge clk)
    begin
    if(clear)
    dout <= 4'b0000;
    else
    dout <= din;
    end
endmodule</pre>
```

Name	Value		1,000 ns	1,500 ns	12.0	100 ns	2,500 ns	3,000 ns	3,500 ns	4,000 n
				-,						
¹⅓ dk	1									
™ dear	0									
⊞ - ₩ din[3:0]	1010	0100	1100	0010	\Box	X		1010		
■ ■ dout[3:0]	1010	xxxx	1100	0010	\Box	X		1010		
					Γ					

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W
Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective 0JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-12: PARALLEL IN PARALLEL OUT SHIFT REGISTER

CODE FOR TESTBENCH:

```
module testbench:
reg clk, clear;
reg [3:0] din;
wire [3:0] dout;
PIPO_REG dut(clk,clear,din,dout);
initial
begin
$monitor("clk=%b clear=%b din=%b dout=%b",clk,clear,din,dout);
#100 din[0]=0; din[1]=0; din[2]=0; din[3]=0;
#200 din[0]=0; din[1]=0; din[2]=0; din[3]=1;
#300 din[0]=0; din[1]=0; din[2]=1; din[3]=0;
#400 din[0]=0; din[1]=0; din[2]=1; din[3]=1;
#500 din[0]=0; din[1]=1; din[2]=0; din[3]=0;
#600 din[0]=0; din[1]=1; din[2]=0; din[3]=1;
end
endmodule
```

```
module PIPO_REG(
   input clk,
   input clear,
   input [3:0] din,
   output reg [3:0] dout
  );
   always@(posedge clk)
   begin
   if(clear)
   dout <= 4'b0000;
   else
   dout <= din;
   end
endmodule</pre>
```

Name	Value		1,000 ns	1,500 ns	12.0	100 ns	2,500 ns	3,000 ns	3,500 ns	4,000 n
				-,						
¹⅓ dk	1									
™ dear	0									
⊞ - ₩ din[3:0]	1010	0100	1100	0010	\Box	X		1010		
■ ■ dout[3:0]	1010	xxxx	1100	0010	\Box	X		1010		
					Γ					

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective dJA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-13: PARALLEL IN SERIAL OUT SHIFT REGISTER

CODE FOR TESTBENCH:

```
module s1(
input a,b,s1,
output q
);
assign q = (\sim s1 \epsilon b) \mid (s1 \epsilon a);
endmodule
module dff(
input d, clk,
output q
);
reg q=0;
always@(posedge clk)
begin
q <= d;
end
endmodule
module PISO REG(
    input [3:0] d,
    input clk,
    input s1,
   output q
    );
   wire q1,q2,q3,d1,d2,d3;
    dff a(d[3],clk,q1);
    s1 a1(q1,d[2],s1,d1);
    diff b(d1,clk,q2);
    s1 b1(q2,d[1],s1,d2);
    dff c(d2,clk,q3);
    s1 c1(q3,d[0],s1,d3);
    dff dd(d3,clk,q);
endmodule
```

VERILOG CODE:

```
module s1(
input a,b,s1,
output q
);
assign q = (\sim s1sb) \mid (s1sa);
endmodule
module dff(
input d, clk,
output q
);
reg q=0;
always@(posedge clk)
begin
q \ll d;
end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.796 W

Junction Temperature: 26.1 °C

Thermal Margin: 58.9 °C (40.6 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-14: BIDIRECTIONAL SHIFT REGISTER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0] Width;
reg Clk,Rst;
wire [3:0] Count;

RING_COUNTER dut(Clk,Rst,Width,Count);

initial
begin
$monitor("Clk=%b Rst=%b Width=%b Count=%b",Clk,Rst,Width,Count);
end
always
begin
#50 Clk=-Clk;
end
initial
begin
#100 Rst=1;
#100 Rst=0;
$finish;
end
endmodule
```

```
module BIDIRECTIONAL SHIFT REG
#(parameter MSB=4)
    input d,
    input clk,
    input en,
    input dir,
    input rstn,
    output reg [MSB-1:0] out
    );
    always@(posedge clk)
   if (!rstn)
    out <= 0;
    else
   begin
   if (en)
   case (dir)
    0: out <= {out[MSB-2:0],d};
    1: out <= {d,out[MSB-1:1]};
    endcase
    else
       out <= out;
        end
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.542 W

Junction Temperature: 28.6 ℃

Thermal Margin: 56.4 °C (38.8 W)

Effective &JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-15: PRBS SEQUENCE GENERATOR

CODE FOR TESTBENCH:

```
module tb PRBS SEQUENCE GENERATOR;
 reg clk;
 reg rst;
 wire rand;
 PRBS_SEQUENCE_GENERATOR uut (
   .clk(clk),
   .rst(rst),
   .rand(rand)
   always begin
   #5 clk = \sim clk;
   initial begin
   rst = 1;
   #10 \text{ rst} = 0;
 end
    initial begin
    $display("Time\tPRBS Output");
    $monitor("%d\t%b", $time, rand);
    #100;
    $finish;
  end
endmodule
```

VERILOG CODE:

```
module PRBS_SEQUENCE_GENERATOR(
input clk, rst,
output rand
);
reg [3:0] temp;
always@(posedge rst)
begin
temp <= 4'hf;
end
always@(posedge clk)
begin
if (~rst)
begin
temp <= {temp[0]^temp[1],temp[3],temp[2],temp[1]};
end
end
assign rand = temp[0];
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.274 W

Junction Temperature: 25.4 ℃

Thermal Margin: 59.6 °C (41.1 W)

Effective 0JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-16: 8 - BIT SUBTRACTOR

CODE FOR TESTBENCH:

```
module SUBTRACTOR_8_BIT(
    input [7:0] a,
    input [7:0] b,
    output reg [7:0] result
);

reg neg_b;
    always@(a or b)
    begin
    neg_b = ~ b + 1;
    result = a + neg_b;
    end
endmodule
```

					1,000.
Name	Value	200 ns	400 ns ,	600 ns ,	800 ns
⊡	01011000	01010101	*	01011000	
■ • b [7:0]	11110111	11101011	k	11110111	
■ Note: The second in the sec	01011001	01010110	k	01011001	
16 [7]	0				
U ₆ [6]	1				
16 [5]	0				
U ₆ [4]	1				
Va [3]	1				
V _a [2]	0				
V ₆ [1]	0				
U _a [0]	1				

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-17: &-BIT ADDER SUBTRACTOR

CODE FOR TESTBENCH:

```
module testbench;
reg [7:0] a,b;
wire [7:0] result;
SUBTRACTOR_8_BIT dut(a,b,result);
initial
begin
$monitor("a=8b b=8b result=8b",a,b,result);
#100 a[0]=1; a[1]=0; a[2]=1; a[3]=0; a[4]=1; a[5]=0; a[6]=1; a[7]=0;
    b[0]=1; b[1]=1; b[2]=0; b[3]=1; b[4]=0; b[5]=1; b[6]=1; b[7]=1;
#300 a[0]=0; a[1]=0; a[2]=0; a[3]=1; a[4]=1; a[5]=0; a[6]=1; a[7]=0;
    b[0]=1; b[1]=1; b[2]=1; b[3]=0; b[4]=1; b[5]=1; b[6]=1; b[7]=1;
    end
    endmodule
```

```
module ADDER_SUBTRACTOR_8_BIT(
    input [7:0] a,
   input [7:0] b,
   input mode,
   output reg [7:0] result,
   output reg ovfl
   wire [7:0] a,b;
   wire mode;
   reg [7:0] neg_b;
   always@(a or b or mode)
   begin
   if (mode==0)
   begin
   result = a+b;
   ovfl = (a[7] & b[7] & ~result[7]) | (~a[7] & ~b[7] & result[7]);
   else
   begin
   neg_b = \sim b+1;
   result = a + neg b;
    ovfl = (a[7] & neg_b[7] & ~result[7]) | (~a[7] & ~neg_b[7] & result[7]);
endmodule
```

					1,000.
Name	Value	200 ns	400 ns ,	600 ns ,	800 ns
⊡	01011000	01010101	*	01011000	
■ • b [7:0]	11110111	11101011	k	11110111	
■ Note: The second in the sec	01011001	01010110	k	01011001	
16 [7]	0				
U ₆ [6]	1				
16 [5]	0				
U ₆ [4]	1				
Va [3]	1				
V _a [2]	0				
V ₆ [1]	0				
U _a [0]	1				

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-18: 4 - BIT MULTIPLYER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0]a,b;
wire [7:0] product;

MULTIPLYER dut(a,b,product);
initial
  begin
  $monitor("a=8b b=8b product=8b",a,b,product);

#100 a[0]=0; a[1]=1; a[2]=1; a[3]=0;
  b[0]=1; b[1]=0; b[2]=1; b[3]=1;
#200 a[0]=1; a[1]=0; a[2]=1; a[3]=0;
  b[0]=1; b[1]=1; b[2]=0; b[3]=1;
#300 a[0]=0; a[1]=1; a[2]=0; a[3]=0;
  b[0]=1; b[1]=1; b[2]=0; b[3]=1;
end
endmodule
```

```
module MULTIPLYER(
    input [3:0] a,
    input [3:0] b,
    output [7:0] product
    );
   wire [3:0] m0;
   wire [4:0] m1;
   wire [5:0] m2;
    wire [6:0] m3;
   wire [7:0] s1,s2,s3;
    assign m0={4{a[0]}}&b[3:0];
    assign m1={4{a[1]}}&b[3:0];
    assign m2={4{a[2]}}&b[3:0];
    assign m3={4{a[3]}}&b[3:0];
    assign s1=m0+(m1<<1);
    assign s2=s1+(m2<<1);
    assign s3=s2+(m3<<1);
    assign product= s3;
endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective dJA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-19: FIXED POINT DIVISION

CODE FOR TESTBENCH:

```
module testbench;
reg [7:0]a;
reg [3:0]b;
reg start;
wire [7:0] result;
    FIXED POINT DIVISION dut(a,b,start,result);
    initial
    begin
    $monitor("a=%b b=%b start=%b result=%b",a,b,start,result);
    #100 a[0]=0; a[1]=1; a[2]=1; a[3]=0; a[4]=1; a[5]=0; a[6]=1; a[7]=1;
         b[0]=1; b[1]=0; b[2]=1; b[3]=1;
    #200 a[0]=1; a[1]=0; a[2]=1; a[3]=0; a[4]=0; a[5]=1; a[6]=0; a[7]=0;
         b[0]=1; b[1]=1; b[2]=0; b[3]=1;
    #300 a[0]=0; a[1]=1; a[2]=0; a[3]=0; a[4]=1; a[5]=1; a[6]=1; a[7]=1;
         b[0]=1; b[1]=1; b[2]=0; b[3]=1;
         end
         endmodule
```

```
module FIXED POINT DIVISION(
   input [7:0] a,
   input [3:0] b,
   input start,
   output reg [7:0] result
   );
   wire[3:0] b bar;
   reg [3:0] b_neg;
   reg [3:0] count;
   assign b_bar=~b;
   always@(b bar)
   b neg=b bar+1;
   always@(posedge start)
   begin
   result=a;
   count=4'b0000;
   if((a!=0) && (b!=0))
   while (count)
   begin
   result=result<<1;
   result={(result[7:4] + b), result[3:1],1'b0};
   count=count-1;
   end
   else
   begin
   result={result[7:1],1'b1};
   count=count-1;
   end
    end
endmodule
```

							1.
Name	Value		1,000,000 ps	1,000,200 ps	1,000,400 ps	1,000,600 ps	1,000
⊞™ a[7:0]	10101011	峝	*		0101011	111111111	
	1100	I≣	X		1100		
୍ଲ start	1						
⊞ 📲 result[7:0]	10101011	I⊡	X	1	0101011		
⊞ - ■ b_bar[3:0]	0011	I⊡	X		0011		
⊞ ■ b_neg[3:0]	0100	┃	X		0100		
	0000	I⊡	X		0000		
		Γ					

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.564 W

Junction Temperature: 28.6 °C

Thermal Margin: 56.4 °C (38.8 W)

Effective ϑJA : 1.4 $^{\circ}C/W$

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-20: MASTER SLAVE JK FLIP FLOP

CODE FOR TESTBENCH:

```
module master_slave(
   input s,r,clk,
   output qn,qn_bar
);
   wire mq;
   wire mq_bar;
   wire mclk;
   assign mclk=~clk;
   JK_FF master(s,r,clk,mq,mq_bar);
   JK_FF slave(mq,mq_bar,mclk,qn,qn_bar);
   endmodule
```

```
module JK FF(
   input j,
   input k,
   input clk,
   output reg q,
   output q_bar
   );
   assign q_bar=~q;
   always@(posedge clk)
   case({j,k})
   2'b00: q<=q;
   2'b01: q<=0;
   2'b10: q<=1;
   2'b11: q<=~q;
   endcase
   end
endmodule
module master_slave(
  input s,r,clk,
   output qn,qn_bar
   );
   wire mq;
   wire mq_bar;
   wire mclk;
   assign mclk=~clk;
   JK_FF master(s,r,clk,mq,mq_bar);
   JK_FF slave(mq,mq_bar,mclk,qn,qn_bar);
  endmodule
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.586 W

Junction Temperature: 27.2 °C

Thermal Margin: 57.8 °C (39.8 W)

Effective θ JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-21: POSITIVE EDGE DETECTOR

CODE FOR TESTBENCH:

```
module testbench;
reg data,clk;
wire edge_detect;
    EDGE_DETECTOR dut(data,clk,edge_detect);
    initial
    begin
    $monitor("data=%b clk=%b edge_detect=%b",data,clk,edge_detect);
    end
    always
    begin
    #50 clk = ~clk;

    end
endmodule
```

```
module EDGE_DETECTOR(
    input data,
    input clk,
    output edge_detect
);
    reg data_d;
    always@(posedge clk)
    begin
    data_d <= data;
    end
    assign edge_detect= data & ~data_d;
endmodule</pre>
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-22: BCD ADDER

CODE FOR TESTBENCH:

```
module BCD_Adder_Testbench;
reg [3:0] A, B;
wire [3:0] Sum;
wire CarryOut;
BCD Adder uut(
    .A(A),
   .B(B),
    .Sum (Sum),
    .CarryOut (CarryOut)
initial begin
    $display("Testing BCD Adder");
   A = 4'b0101;
    B = 4'b0011;
   #10 $display("A = %b, B = %b, Sum = %b, CarryOut = %b", A, B, Sum, CarryOut);
   A = 4'b1001;
    B = 4'b1001;
    #10 $display ("A = %b, B = %b, Sum = %b, CarryOut = %b", A, B, Sum, CarryOut);
   A = 4'b00000;
   B = 4'b00000;
    #10 $display("A = %b, B = %b, Sum = %b, CarryOut = %b", A, B, Sum, CarryOut);
    $finish;
end
endmodule
```

VERILOG CODE:

```
module BCD_Adder(
    input [3:0] A,
    input [3:0] B,
    output reg [3:0] Sum,
    output reg CarryOut
);
always @(*) begin
    Sum = A + B;
    if (Sum >= 10) begin
        Sum = Sum - 10;
        CarryOut = 1;
    end else begin
        CarryOut = 0;
    end
end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective ®JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-23: 4-BIT CARRY SELECT ADDER

CODE FOR TESTBENCH:

```
module testbench;
reg [3:0]x,y;
reg carry;
wire [3:0] s;
    CARRY_SELECT_dut(x,y,carry,s);
    initial
    begin
    $monitor("x=%b y=%b carry=%b s=%b",x,y,carry,s);
    carry = 1;
    carry = ~carry;
    #100 x[0]=0; x[1]=1; x[2]=1; x[3]=0;
         y[0]=1; y[1]=0; y[2]=1; y[3]=1;
    #200 x[0]=1; x[1]=0; x[2]=1; x[3]=0;
         y[0]=1; y[1]=1; y[2]=0; y[3]=1;
    #300 x[0]=0; x[1]=1; x[2]=0; x[3]=0;
         y[0]=1; y[1]=1; y[2]=0; y[3]=1;
         end
         endmodule
```

```
module FULL_ADDER(
   input a,
   input b,
   input cin,
   output reg S, cout
   always@(a or b or cin)
   begin
   S = a^b^cin;
   cout = asb | bscin | cinsa;
   end
   endmodule
   module mux(
   input a,b,
   input S,
   output reg y
   );
   always@(a,b,S)
   begin
   y = Sea | Seb;
   end
    endmodule
module CARRY_SELECT(
   input [3:0] x,
   input [3:0] y,
   input carry,
   output [3:0] s,
   output cout
   wire w1, w2, w3, w4, w5, w6, w7, w8, w9, w10, w11, w12, w13, w14, w15, w16;
   FULL ADDER fa0(x[0],y[0],1'b0,w1,w2);
   FULL ADDER fa1(x[1],y[1],w2,w3,w4);
   FULL_ADDER fa2(x[2],y[2],w4,w5,w6);
   FULL ADDER fa3(x[3],y[3],w6,w7,w8);
   FULL_ADDER fa4(x[0],y[0],1'b1,w9,w10);
   FULL ADDER fa5(x[1],y[1],w10,w11,w12);
   FULL_ADDER fa6(x[2],y[2],w12,w13,w14);
   FULL_ADDER fa7(x[3],y[3],w14,w15,w16);
   mux mu0(w1,w9,carry,s[0]);
   mux mu1(w3,w11,carry,s[1]);
   mux mu2(w5,w13,carry,s[2]);
   mux mu3(w7,w15,carry,s[3]);
   mux mu4 (w8, w16, carry, cout);
endmodule
```

Name	Value			500	ns	1,000 ns	1,500 ns	2,000 ns 2.
□ - ■ x[3:0]	0010	0110	0101				0010	
□ ► y[3:0]	1111	1101				1011		
15 carry	1							
⊞ ■ s[3:0]	1010					0000		1010

RTL SCHEMATIC:

POWER REPORT

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-24: MOORE FSM 1010 SEQUENCE DETECTOR

CODE FOR TESTBENCH:

```
module testbench;
reg din,clk,rst;
wire y;
   MOORE_FSM dut(din,clk,rst,y);
   initial
   begin
   $monitor("din=%b clk=%b rst=%b y=%b",din,clk,rst,y);
   end
   always
   begin
   #50 clk = ~clk;

   end
endmodule
```

```
module MOORE FSM(
    input din,
    input clk,
    input rst,
    output reg y
    );
   reg [2:0] cst,nst;
    localparam s0=3'b000,
               s1=3'b001,
               s2=3'b010,
               s3=3'b100,
               s4=3'b101;
    always@(cst or din)
   begin
    case (cst)
    s0 : if(din==1'b1)
       begin
       nst = s1;
       y=1'b0;
        end
      else nst = cst;
      s1 : if(din==1'b0)
              begin
              nst = s2;
              y=1'b0;
              end
      else
      begin
      nst = cst;
      y=1'b0;
      end
      s2 : if(din==1'b1)
                   begin
                   nst = s3;
                   y=1'b0;
                   end
           else
```


RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.246 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective dJA: 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-25: N:1 MUX

CODE FOR TESTBENCH:

```
module testbench:
  N MUX uut (
   .data inputs({16'b00000001, 16'b00000010, 16'b00000100, 16'b00001000,
                 16'b00010000, 16'b00100000, 16'b01000000, 16'b10000000,
                 16'b00000001, 16'b00000010, 16'b00000100, 16'b00001000,
                 16'b00010000, 16'b00100000, 16'b01000000, 16'b10000000}),
   .sel(sel),
    .y(y)
  );
  reg [15:0] in;
 reg [3:0] sel;
 wire y;
 reg clk = 0;
 always #5 clk = ~clk;
  initial begin
   sel = 4'b00000;
   #10;
   sel = 4'b0101;
   #10;
   sel = 4'b1111;
   #10;
    Sfinish:
  end
 always @(posedge clk)
    $monitor("sel = %b in = %b y=%b", sel, in, y);
  end
endmodule
```

```
module N MUX(
    input [15:0] in,
    input clk,
    input [3:0] sel,
   output reg y
    );
    always@(in or sel)
   begin
    case(sel)
    4'b00000 : y = in[0];
    4'b00001 : y = in[1];
    4'b0010 : y = in[2];
    4'b0011 : y = in[3];
    4'b0100 : y = in[4];
    4'b0101 : y = in[5];
    4'b0110 : y = in[6];
    4'b0111 : y = in[7];
    4'b1000 : y = in[8];
    4'b1001 : y = in[9];
    4'b1010 : y = in[10];
    4'b1011 : y = in[11];
    4'b1100 : y = in[12];
    4'b1101 : y = in[13];
    4'b1110 : y = in[14];
    4'b1111 : y = in[15];
    default : y = 4'b00000;
    endcase
   end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.202 W

Junction Temperature: 26.7 °C

Thermal Margin: 58.3 °C (40.2 W)

Effective dJA: 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-26: BCD TIMECOUNT

```
module testbench;
reg clk;
reg rst;
wire [3:0] bcd_seconds;
wire [3:0] bcd_minutes;
wire [3:0] bcd_hours;
BCD TIMECOUNT uut (
   .clk(clk),
    .rst(rst),
    .bcd_seconds(bcd_seconds),
    .bcd_minutes(bcd_minutes),
    .bcd_hours(bcd_hours)
);
always begin
    #5 clk = ~clk;
end
initial begin
   clk = 0;
   rst = 1;
   #10 rst = 0;
    #1000 $finish;
end
always @(posedge clk) begin
    $display("Time: %d%d:%d%d", bcd hours, bcd hours, bcd minutes, bcd minutes, bcd seconds);
endmodule
```

```
module BCD TIMECOUNT (
    input wire clk,
   input wire rst,
   output wire [3:0] bcd seconds,
   output wire [3:0] bcd minutes,
    output wire [3:0] bcd hours
);
reg [3:0] seconds reg = 4'b00000;
reg [3:0] minutes reg = 4'b0000;
reg [3:0] hours_reg = 4'b00000;
reg [23:0] count = 0;
always @(posedge clk or posedge rst) begin
    if (rst) begin
        seconds reg <= 4'b00000;
        minutes reg <= 4'b00000;
        hours reg <= 4'b00000;
        count <= 0;
    end else if (count == 1000000) begin
        seconds reg <= seconds reg + 1;
        count <= 0;
    end else if (seconds reg == 10) begin
        seconds reg <= 4'b0000;
        minutes reg <= minutes reg + 1;
    end else if (minutes reg == 10) begin
        minutes reg <= 4'b00000;
        hours reg <= hours reg + 1;
    end else begin
        count <= count + 1;
    end
end
assign bcd seconds = seconds reg;
assign bcd minutes = minutes reg;
assign bcd hours = hours reg;
endmodule
```

SIMULATION:

							6.010000 us
Name	Value	0 us	1 us	2 us .	3 us .	4 us	5 us .
		ــــــــــــــــــــــــــــــــــــــ					
™ dk	1						
¼ rst	1						
■ ■ bcd_seconds[3:0]	1101	0000	k	10	10		1101
■ ■ bcd_minutes[3:0]	1010	0000	X	11	10		1010
■ ■ bcd_hours[3:0]	1000	0000	X	11	11		1000
		ll .					

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-27: 3:1 MUX

```
module tb MUX 3 1;
   reg [2:0] A;
    reg [2:0] B;
   reg [2:0] C;
   reg [1:0] S;
    wire [2:0] Y;
    MUX_3_1 uut (
        .A(A),
        .B(B),
        .C(C),
        .S(S),
        .Y(Y));
    initial begin
        $display("Testing 3-to-1 Multiplexer");
        A = 3'b101;
        B = 3'b010;
        C = 3'b110;
        S = 2'b00;
        #10;
        if (Y !== A)
            $display("Test case 1 failed");
        A = 3'b101;
        B = 3'b010;
        C = 3'b110;
        S = 2'b01;
        #10;
        if (Y !== B)
            $display("Test case 2 failed");
        A = 3'b101;
        B = 3'b010;
        C = 3'b110;
        S = 2'b10;
        #10;
        if (Y !== C)
            $display("Test case 3 failed");
 Sfinish:
    end
endmodule
```

```
module MUX_3_1(
   input A,
   input B,
   input C,
   input [1:0] S,
   output reg Y
   );
   always@(A or B or C or S)
   begin
   if(S==2'b00)
   Y=A;
   else if (S==2'b01)
   Y=B;
   else if (S==2'b10)
   Y=C;
   else
   Y=C;
   end
endmodule
```

SIMULATION:

Name	Value	0 ns ,		20 ns ,	40 ns ,	60 ns ,	80 ns ,	100 ns	120 ns ,
■ ■ A[2:0]	101					101			
⊡	010					010			
 C[2:0]	110					110			
⊡	10	(00 X	01				10		
□ - □ Y[2:0]	101	ZZI	Z2	:0			101		

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W Junction Temperature: 25.3 ℃

59.7 °C (41.1 W) Thermal Margin:

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W Confidence level: Low

CODE-28: BCD TO SEVEN SEGMENT DISPLAY

```
module tb BINARY 7 SEGMENT;
 reg [3:0] Binary Num;
 wire [6:0] Segment;
 wire [6:0] anodes;
 wire cathode:
  BINARY 7 SEGMENT uut (
    .bcd input (bcd input),
    .seg output(seg output),
    .anodes(anodes),
    .cathode(cathode)
  );
  initial begin
    bcd input = 4'b00000;
    $display("BCD Input | 7-Segment Output");
    $display("----");
    for (int i = 0; i \le 9; i = i + 1) begin
     bcd input = i;
     #10;
      $display("%b | %b", bcd input, seg output);
    end
    $finish;
  end
  initial begin
    $monitor("Anodes: %b, Cathode: %b", anodes, cathode);
  end
endmodule
```

```
module BINARY 7 SEGMENT (
    input [3:0] Binary Num,
   output reg [6:0] Segment
    );
    always@(Binary Num)
    begin
    case (Segment)
    0: Segement = 7'b1111110;
    1: Segement = 7'b0110000;
     2: Segement = 7'b1101101;
     3: Segement = 7'b1111001;
     4: Segement = 7'b0110011;
     5: Segement = 7'b1011011;
     6: Segement = 7'b1011111;
     7: Segement = 7'b1110000;
     8: Segement = 7'b1111111;
     9: Segement = 7'b1111011;
     default : Segment = 7'b00000000;
     endcase
     end
endmodule
```

SIMULATION:

Name	Value		3,000 ns	3,500 ns	4,000 ns	4,500 ns	5,000 ns	5,500 ns
⊞ ■ Binary_Num[3:0]	0011	1010	11	00	11	11	10	10
Segment[6:0]	1111110	110	0000	1000	1111	110	0000	000

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 5.746 W

Junction Temperature: 33.0 °C

Thermal Margin: 52.0 °C (35.7 W) Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: <u>Low</u>

CODE-29: D LATCH USING 2:1 MUX

```
module tb D LATCH;
 reg a;
 reg b;
 wire y;
 D_LATCH uut (
   .a(a),
   .b(b),
   .y(y)
 );
 initial begin
   a = 0;
   b = 1;
    $display("Time | a | b | y");
   $display("----");
   for (int i = 0; i <= 1; i = i + 1) begin
     a = i;
     #10;
     $display("%t | %b | %b | %b", $time, a, b, y);
   a = 0;
   b = 1;
   #10;
   $display("%t | %b | %b | %b", $time, a, b, y);
   a = 0;
   #10:
   $display("%t | %b | %b", $time, a, b, y);
   a = 1;
   b = 1;
   $display("%t | %b | %b", $time, a, b, y);
   $finish;
  end
endmodule
```

```
module MUX(
    input a,
    input b,
    input s,
    output reg y
   );
    always@(a or b or s)
   begin
   y= (~s&a) | (s&b);
    end
    endmodule
   module D LATCH (
    input d, clk,
    output q
    );
    MUX mux1(.a(q),.b(d),.s(clk),.y(q));
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.699 W Junction Temperature: 26.0 ℃

Thermal Margin: 59.0 °C (40.7 W)

Effective dJA: 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-30: 8 BIT BARALLEL SHIFTER

CODE FOR TESTBENCH:

endmodule

```
module barrel shifter tb;
  parameter DATA WIDTH = 8;
  reg [DATA WIDTH-1:0] data in;
  reg [2:0] shift_amount;
  reg enable;
  wire [DATA WIDTH-1:0] data out;
  barrel_shifter_8bit_uut (
    .data in(data in),
    .shift amount(shift amount),
    .enable(enable),
    .data_out(data_out)
  );
  reg clk;
  always begin
    #5 clk = \simclk;
  initial begin
   clk = 0;
   data_in = 8'b11011010;
    shift amount = 3'b001;
    enable = 1;
    $display("Time\tData In\tShift Amount\tEnable\tData Out");
    shift amount = 3'b001;
    $monitor("%d\t%b\t%b\t%b", $time, data_in, shift_amount, enable, data_out);
    #10;
    shift amount = 3'b010;
    $monitor("%d\t%b\t%b\t%b\t%b", $time, data_in, shift_amount, enable, data_out);
    #10;
    $finish;
  end
```

```
module BARALLEL SHIFTER (input [7:0] in,
    input [2:0] ctrl,
   output [7:0] out,
   wire [7:0] x,y);
    //4-bit shift right
   mux2X1 ins 17 (.in0(in[7]),.in1(1'b0),.sel(ctrl[2]),.out(x[7]));
   mux2X1 ins 16 (.in0(in[6]),.in1(1'b0),.sel(ctrl[2]),.out(x[6]));
   mux2X1 ins 15 (.in0(in[5]),.in1(1'b0),.sel(ctrl[2]),.out(x[5]));
   mux2X1 ins 14 (.in0(in[4]),.in1(1'b0),.sel(ctrl[2]),.out(x[4]));
   mux2X1 ins 13 (.in0(in[3]),.in1(in[7]),.sel(ctrl[2]),.out(x[3]));
   mux2X1 ins 12 (.in0(in[2]),.in1(in[6]),.sel(ctrl[2]),.out(x[2]));
   mux2X1 ins 11 (.in0(in[1]),.in1(in[5]),.sel(ctrl[2]),.out(x[1]));
   mux2X1 ins 10 (.in0(in[0]),.in1(in[4]),.sel(ctrl[2]),.out(x[0]));
   //2-bit shift right
   mux2X1 ins 27 (.in0(x[7]),.in1(1'b0),.sel(ctrl[1]),.out(y[7]));
   mux2X1 ins 26 (.in0(x[6]),.in1(1'b0),.sel(ctrl[1]),.out(y[6]));
   mux2X1 ins 25 (.in0(x[5]),.in1(in[7]),.sel(ctrl[1]),.out(y[5]));
   mux2X1 ins 24 (.in0(x[4]),.in1(in[6]),.sel(ctrl[1]),.out(y[4]));
   mux2X1 ins 23 (.in0(x[3]),.in1(in[5]),.sel(ctrl[1]),.out(y[3]));
   mux2X1 ins 22 (.in0(x[2]),.in1(in[4]),.sel(ctrl[1]),.out(y[2]));
   mux2X1 ins 21 (.in0(x[1]),.in1(in[3]),.sel(ctrl[1]),.out(y[1]));
   mux2X1 ins 20 (.in0(x[0]),.in1(in[2]),.sel(ctrl[1]),.out(y[0]));
   //1-bit shift register
   mux2X1 ins 07 (.in0(y[7]),.in1(1'b0),.sel(ctrl[0]),.out(out[7]));
   mux2X1 ins 06 (.in0(y[6]),.in1(y[7]),.sel(ctrl[0]),.out(out[6]));
   mux2X1 ins 05 (.in0(y[5]),.in1(y[6]),.sel(ctrl[0]),.out(out[5]));
   mux2X1 ins 04 (.in0(y[4]),.in1(y[5]),.sel(ctrl[0]),.out(out[4]));
   mux2X1 ins 03 (.in0(y[3]),.in1(y[4]),.sel(ctr1[0]),.out(out[3]));
   mux2X1 ins 02 (.in0(y[2]),.in1(y[3]),.sel(ctr1[0]),.out(out[2]));
   mux2X1 ins 01 (.in0(y[1]),.in1(y[2]),.sel(ctr1[0]),.out(out[1]));
   mux2X1 ins 00 (.in0(y[0]),.in1(y[1]),.sel(ctrl[0]),.out(out[0]));
endmodule
module mux2X1(in0,in1,sel,out);
input in0, in1;
input sel;
output out;
assign out=(sel)?in1:in0;
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 8.406 W

Junction Temperature: 36.8 ℃

Thermal Margin: 48.2 °C (33.0 W)

Effective 0JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-31: 1-BIT COMPARATOR USING 4:1 MUX

```
module comparator_4bit_tb;
 parameter DATA WIDTH = 4;
 reg [DATA_WIDTH-1:0] data_A;
 reg [DATA_WIDTH-1:0] data_B;
 reg [1:0] select;
 wire result;
 comparator_4bit uut (
    .data A(data A),
   .data_B(data_B),
    .select(select),
    .result(result)
 );
  initial begin
   data_A = 4'b0101;
   data B = 4'b1010;
   select = 2'b00;
   $display("Test case 1: data A = %b, data B = %b, select = %b, result = %b", data A, data B, select, result);
   data A = 4'b1111;
   data_B = 4'b11111;
    select = 2'b01;
    $display("Test case 2: data A = %b, data B = %b, select = %b, result = %b", data A, data B, select, result);
  end
endmodule
```

```
module mux4X1(
input in0,in1,in2,in3,s1,s0,
output out
);
assign out= s1 ? (s0 ? in3 : in2) : (s0 ? in1 : in0);
endmodule

module COMPARATOR_4_BIT(
input a,b,
output greater,lesser,equal
);
mux4X1 mux1(1'b0,1'b1,1'b0,1'b0,a,b,lesser);
mux4X1 mux2(1'b1,1'b0,1'b0,1'b1,a,b,equal);
mux4X1 mux3(1'b0,1'b0,1'b1,1'b0,a,b,greater);
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 1.203 W

Junction Temperature: 26.7 ℃

Thermal Margin: 58.3 °C (40.2 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-32: LOGICAL, ALGEBRAIC AND ROTATE SHIFT OPERATIONS

```
module shift operations tb;
 reg [3:0] data in;
  reg [1:0] shift type;
 wire [3:0] data out;
  shift operations uut (
    .data in(data in),
   .shift_type(shift_type),
    .data out(data out)
 initial begin
   data_in = 4'b1100;
   shift type = 2'b00;
    $display("Logical Right Shift: data in = %b, data out = %b", data_in, data_out);
   data in = 4'b1101;
    shift type = 2'b01;
    $display("Arithmetic Right Shift: data in = %b, data out = %b", data in, data out);
    data_in = 4'b1100;
    shift type = 2'b10;
    $display("Rotate Left: data in = %b, data out = %b", data_in, data_out);
    $finish;
  end
endmodule
```

```
module SHIFT ROTATE(
    input [7:0] a,
    input [2:0] opcode,
    output [7:0] result
   );
   paramtere sra op = 3'b000,
   srl_op = 3'b001,
   sla op = 3'b010,
   sll_op = 3'b011,
   ror_op = 3'b100,
   rol op = 3'b101;
   always@(a or opcode)
   begin
   case (opcode)
    srl_op : result = {a[7], a[7], a[6], a[5], a[4], a[3], a[2], a[1]};
    srl op : result = a>>1;
    sla_op : result = {a[6], a[5], a[4], a[3], a[2], a[1], a[0], 1'b0};
    sll op : result = a<<1;
    ror_op : result = {a[0], a[7], a[6], a[5], a[4], a[3], a[2], a[1]};
   rol_op : result = {a[6], a[5], a[4], a[3], a[2], a[1], a[0], a[7]};
    default : result = 0;
    endcase
    end
endmodule
```

SIMULATION:

Name	Value	l us	2 us .
Ⅲ ■ a[7:0]	11010111	10110100	11010111
Ⅲ ™ opcode[2:0]	111	101	111
Ⅲ W result[7:0]	00000000	01101001	0000000
■ ■ sra_op[2:0]	000	000)
srl_op[2:0]	001	00	1
■ • sla_op[2:0]	010	010)
■ ■ sl_op[2:0]	011	01	1
ror_op[2:0]	100	100)
■ • rol_op[2:0]	101	10.	1

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 3.435 W

Junction Temperature: 29.8 ℃

Thermal Margin: 55.2 °C (37.9 W)

Effective θJA : 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-33: ARITHMETIC LOGICAL OPERATIONS (ALU)

```
module alu tb;
  reg [3:0] operandA, operandB;
  reg [2:0] alu ctrl;
 wire [3:0] result;
  alu my_alu (
    .A (operandA),
   .B(operandB),
    .ALUctrl(alu_ctrl),
    .Y(result)
 );
 reg clk;
  always begin
   #5 clk = ~clk;
  end
 initial begin
   clk = 0;
   operandA = 4'b0010;
    operandB = 4'b1101;
    $display("Starting ALU Testbench");
    alu ctrl = 3'b0000;
    #10;
    $display("ALU Operation: ADD");
    $display("Operand A: %b", operandA);
    $display("Operand B: %b", operandB);
    $display("Result: %b", result);
    alu ctrl = 3'b001;
    $display("ALU Operation: SUB");
    $display("Operand A: %b", operandA);
    $display("Operand B: %b", operandB);
    $display("Result: %b", result);
    $display("ALU Testbench finished");
    $finish;
  end
endmodule
```

```
module ALU(
    input [3:0] a,
    input [3:0] b,
    input [2:0] opcode,
    output reg [7:0] rslt
    );
    parameter add op = 3'b000,
    sub op = 3'b001,
    mul op = 3'b010,
    and op = 3'b011,
    or op = 3'b100,
    not op = 3'b101,
    xor op = 3'b110,
    xnor op = 3'b111;
    always@(a or b or opcode)
    begin
    case (opcode)
    add op : rslt = a + b;
    sub op : rslt = a - b;
    mul op : rslt = a * b;
    and op : rslt = a \epsilon b;
    or op : rslt = a | b;
    not op : rslt = ~a;
    xor op : rslt = a ^ b;
    xnor op : rslt = \sim(a ^ b);
    endcase
    end.
endmodule
```

SIMULATION:

				4
Name	Value	lus .	2 us	3 us
⊞ ™ a[3:0]	1111	1010	1101	1111
□ • i b[3:0]	0101	1100	0001	0101
☐ opcode[2:0]	111	011	100	111
rslt[7:0]	11110101	00001000	00001101	11110101
Ⅲ ■ add_op[2:0]	000		000	
sub_op[2:0]	001		001	
	010		010	
□ ■ and_op[2:0]	011		011	
Ⅲ ■ or_op[2:0]	100		100	
Ⅲ ■ not_op[2:0]	101		101	
	110		110	
■ ★ xnor_op[2:0]	111		111	

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 5.116 W

Junction Temperature: 32.2 ℃

Thermal Margin: 52.8 °C (36.3 W)

Effective 0JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-34: 4-BIT ASYNCHRONOUS DOWN COUNTER

```
module testbench;
 reg clk;
   reg reset;
   wire [3:0] count;
    async down counter 4bit counter (
        .clk(clk),
        .reset (reset),
        .count (count)
    );
    always begin
        #5 clk = \simclk;
    end
    initial begin
        reset = 1;
        #10 reset = 0;
    end
    initial begin
        $dumpfile("counter.vcd");
        $dumpvars(0, testbench);
        $display("Time\tCount");
        $monitor("%d\t%b", $time, count);
        #30 $finish;
    end
endmodule
```

```
module async down counter 4bit (
    input wire clk,
    input wire reset,
    output reg [3:0] count
);
always @(posedge clk or posedge reset)
begin
    if (reset)
        count <= 4'b1111; // Reset the counter to 1111
    else
        count <= count - 1; // Decrement the counter by 1
end
endmodule
module testbench;
    req clk;
   reg reset;
    wire [3:0] count;
    async down counter 4bit counter (
        .clk(clk),
        .reset (reset),
        .count (count)
    );
    always begin
        #5 clk = ~clk; // Toggle the clock every 5 time units
    end
    initial begin
        reset = 1;
        #10 reset = 0; // Deassert reset after 10 time units
    end
    initial begin
        $dumpfile("counter.vcd");
        $dumpvars(0, testbench);
        $display("Time\tCount");
        $monitor("%d\t%b", $time, count);
        #30 $finish;
    end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W Junction Temperature: 25.3 ℃ Thermal Margin: Effective &JA: 1.4 °C/W

59.7 °C (41.1 W) Power supplied to off-chip devices: 0 W Confidence level: Low

CODE-35: MOD-N UP DOWN COUNTER

```
module testbench;
  reg clk;
   reg reset;
   reg up;
   reg down;
   wire [2:0] count; /
   mod_n_updown_counter counter (
        .clk(clk),
        .reset(reset),
        .up(up),
        .down(down),
        .count (count)
    );
    always begin
        #5 clk = ~clk;
    initial begin
        reset = 1;
        #10 reset = 0; // Deassert reset after 10 time units
    end
    initial begin
        up = 1;
        down = 0;
        #20 up = 0;
        #20 \text{ down} = 1;
        #20 up = 1;
        #20 down = 0;
        #20 $finish;
    end
    initial begin
        $dumpfile("counter.vcd");
        $dumpvars(0, testbench);
        $display("Time\tCount");
        $monitor("%d\t%h", $time, count);
    end
endmodule
```

```
module mod n updown counter (
   input wire clk,
   input wire reset,
   input wire up,
   input wire down,
   output reg [3:0] count // Assuming 4-bit counter
);
parameter N = 8; // Set N to the desired modulo value (e.g., 8)
always @(posedge clk or posedge reset)
begin
   if (reset)
        count <= 4'b0000; // Reset the counter to 0
    else if (up && !down && count < N - 1)
        count <= count + 1; // Count up
   else if (down && !up && count > 0)
        count <= count - 1; // Count down
end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 2.074 W

Junction Temperature: 27.9 °C

Thermal Margin: 57.1 °C (39.3 W)

Effective #JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-36: UNIVERSAL BINARY COUNTER

```
module testbench;
 reg clk;
 reg reset;
 reg count up;
 wire [3:0] count;
 universal_binary_counter uut (
   .clk(clk),
   .reset(reset),
   .count_up(count_up),
    .count (count)
 );
  always begin
   #5 clk = ~clk;
  end
 initial begin
   clk = 0;
  reset = 0;
  count_up = 1;
   #10 reset = 1;
  #10 reset = 0;
  count up = 0;
   #10;
  count up = 1;
   #10;
  count_up = 0;
   #10;
   count up = 1;
  $finish:
 end
  always @(posedge clk) begin
   $display("Count: %b", count);
  end
endmodule
```

```
module universal binary counter (
 input wire clk,
 input wire reset,
 input wire count up,
 output reg [3:0] count
always @(posedge clk or posedge reset) begin
 if (reset) begin
    count <= 4'b0000;
 end else begin
   if (count_up) begin
     if (count == 4'b1111) begin
       count <= 4'b00000;
     end else begin
        count <= count + 1;
      end
    end else begin
     if (count == 4'b0000) begin
       count <= 4'b1111;
      end else begin
        count <= count - 1;
      end
    end
  end
end
endmodule
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-37: UNIVERSAL SHIFT REGISTER

```
module testbench;
 reg clk;
 reg reset;
 reg shift_left;
 reg shift right;
 reg shift enable;
  reg data in;
 wire [7:0] data out;
 universal_shift_register uut (.clk(clk),.reset(reset),
    .shift_left(shift_left),
   .shift_right(shift_right),
    .shift_enable(shift_enable),
    .data in(data in),
    .data_out(data_out));
  always begin
    #5 clk = ~clk;
 end
 initial begin
   clk = 0;
   reset = 0;
   shift left = 0;
   shift_right = 0;
   shift_enable = 1;
   data in = 8'b11011011;
   #10 reset = 1;
    #10 reset = 0;
    #10 shift left = 1;
    #10 shift_right = 0;
   data_in = 8'b00110010;
   #10 shift left = 0;
    shift right = 1;
   data_in = 8'b10101010;
  $finish;
 end
  always @(posedge clk) begin
    $display("Data Out: %b", data_out);
  end
endmodule
```

```
module universal_shift_register (
 input wire clk,
 input wire reset,
 input wire shift left,
 input wire shift_right,
 input wire shift_enable,
 input wire data_in,
 output wire [7:0] data_out
);
reg [7:0] shift_register;
always @(posedge clk or posedge reset) begin
 if (reset) begin
   shift_register <= 8'b000000000;</pre>
 end else if (shift enable) begin
   if (shift_left) begin
      shift_register <= {shift_register[6:0], data_in};</pre>
   end else if (shift_right) begin
      shift_register <= {data_in, shift_register[7:1]};</pre>
  end
end
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

CODE-38: CN (CHANGE-NO CHANGE FLIPFLOP) USING 2:1 MUX

```
module testbench;
 req clk;
 reg reset;
  reg d;
 wire q;
 CN FlipFlop uut (
   .clk(clk),
   .reset (reset),
    .d(d),
  .q(q));
  always begin
    #5 clk = ~clk;
  end
  initial begin
   clk = 0;
   reset = 0;
    d = 0:
    #10 reset = 1;
    #10 reset = 0;
    #10 d = 1;
    #10 d = 0;
    #10 d = 1;
    #10 d = 1;
    #10 d = 0;
   $finish;
  always @(posedge clk) begin
    display("Q = 8b", q);
  end
endmodule
```

```
module CN_FlipFlop (
 input wire clk,
 input wire reset,
 input wire d,
 output wire q
);
wire mux sel;
reg q_reg;
assign mux_sel = (d != q_reg);
always @(posedge clk, posedge reset) begin
  if (reset) begin
   q_reg <= 1'b0;
 end else begin
    if (mux_sel) begin
      q_reg <= d;
    end
  end
end
assign q = q_reg;
endmodule
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)
Effective ØJA: 1.4 °C/W

CODE-39: FREQUENCY DIVIDER BY ODD NUMBER

```
module testbench;
 reg clk;
 wire clk out;
  frequency_divider_odd uut (
    .clk(clk),
   .clk_out(clk_out)
  );
  always begin
   #5 clk = ~clk;
  end
  initial begin
   clk = 0;
   #100;
   $finish;
  end
  always @(posedge clk_out) begin
    $display("Clock Out toggled at time %t", $realtime);
  end
endmodule
```

```
module frequency_divider_odd (
  input wire clk,
  output wire clk_out
);

reg [2:0] counter;

always @(posedge clk) begin
  if (counter == 3'b100) begin
    counter <= 3'b000;

// clk_out <= ~clk_out;
  end else begin
    counter <= counter + 1;
  end
end
end</pre>
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-40: GREATEST COMMON DIVISOR USING BEHAVIOURAL MODELLING

CODE FOR TESTBENCH:

```
module testbench;
  reg [15:0] a;
  reg [15:0] b;
  wire [15:0] result;

gcd uut (
    .a(a),
    .b(b),
    .result(result)
);

initial begin
  a = 48;
  b = 18;
  #10;
  $display("GCD(%d, %d) = %d", a, b, result);
  $finish;
  end
endmodule
```

VERILOG CODE:

```
module gcd (
  input wire [15:0] a,
  input wire [15:0] b,
  output wire [15:0] result
);

always @* begin
  if (b == 0)
    result = a;
  else
    result = gcd(b, a % b);
end
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W
Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

CODE-41: GREATEST COMMON DIVISOR VIA FSM

```
module gcd fsm testbench;
 reg clk;
 reg reset;
 reg start;
 reg [31:0] a;
  reg [31:0] b;
 wire [31:0] gcd;
 gcd_fsm uut (
  .clk(clk),
   .reset(reset),
   .start(start),
   .a(a),
    .b(b),
   .gcd (gcd)
 );
  always begin
   #5 clk = ~clk;
 initial begin
   clk = 0;
   reset = 0;
   start = 1;
   a = 48;
   b = 18;
   #10 reset = 1;
   #10 reset = 0;
   #10 start = 1;
   #10 start = 0;
   $finish end
  always @(posedge clk) begin
   $display("GCD: %d", gcd);
  end
endmodule
```

```
module gcd_fsm (
  input wire clk,
 input wire reset,
 input wire start,
 input wire [31:0] a,
 input wire [31:0] b,
 output wire [31:0] gcd
);
  typedef enum logic [3:0] {
   IDLE = 4'b00000,
   SUBTRACT = 4'b0001,
   COMPARE = 4'b0010,
   OUTPUT = 4'b0011
  } state t;
  reg [3:0] state, next_state;
  reg [31:0] a reg, b reg, gcd reg;
  always_ff @(posedge clk or posedge reset) begin
   if (reset)
      state <= IDLE:
      state <= next state;
  end
  always_ff @(posedge clk or posedge reset) begin
    if (reset) begin
      a reg <= 32'h0;
      b reg <= 32'h0;
      gcd_reg <= 32'h0;
    end else begin
      case (state)
       IDLE: begin
          a reg <= a;
         b_reg <= b;
          gcd_reg <= 32'h0;
        end
```

```
COMPARE: begin
       if (a reg == b reg)
         gcd reg <= a reg;
     OUTPUT: begin
       gcd reg <= a reg;
     end
     default: begin
       a reg <= a;
      b_reg <= b;
       gcd_reg <= 32'h0;
   endcase
 end
end
always_ff @(posedge clk or posedge reset) begin
 if (reset)
   next state <= IDLE;
 else
   next_state <= state;</pre>
always_comb begin
 case (state)
   IDLE: next state = start ? SUBTRACT : IDLE;
   SUBTRACT: next_state = SUBTRACT;
   COMPARE: next_state = COMPARE;
   OUTPUT: next state = OUTPUT;
   default: next_state = IDLE;
 endcase
end
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

CODE-42: SINGLE PROT RAM

```
module testbench;
 reg clk;
 req we;
 reg [7:0] addr;
 reg [7:0] data_in;
 wire [7:0] data out;
 single_port_ram uut (
   .clk(clk),
   .we(we),
   .addr(addr),
   .data in(data in),
    .data_out(data_out)
 );
  always begin
   #5 clk = ~clk;
 end
 initial begin
   clk = 0;
   we = 1;
   addr = 8'b0000 0000;
  data in = 8'b1101 0010;
   #10 we = 0;
   #10 addr = 8'b0010 1101;
   #10 data_in = 8'b1010_1100;
   $finish;
 end always @(posedge clk) begin
    $display("Data Out: %h", data out);
  end
endmodule
```

```
module single_port_ram (
  input wire clk,
  input wire we, // Write enable signal
  input wire [7:0] addr, // Address for read and
  input wire [7:0] data_in, // Data input for way
  output reg [7:0] data_out // Data output for all
);

reg [7:0] mem [0:255]; // 256x8-bit memory

always @(posedge clk) begin
  if (we) begin
  if (we) begin
  mem[addr] <= data_in;
  end
  data_out <= mem[addr];
end
endmodule</pre>
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective đJA: 1.4 °C/W

CODE-43: DUAL PROT RAM

```
module testbench;
 reg [9:0] address a;
 reg [9:0] address b;
 reg write enable a;
 reg write enable b;
 reg [7:0] data a;
 reg [7:0] data b;
 reg clock;
 wire [7:0] q a;
 wire [7:0] q b;
 dual_port_ram uut (
    .address a (address a),
    .address b(address b),
    .write_enable_a(write_enable_a),
    .write enable b(write enable b),
    .data_a(data_a),
    .data b(data b),
    .clock(clock),
    .q_a(q_a),
    .q b(q b)
  always begin
   #5 clock = ~clock;
  initial begin
   address a = 0;
   address b = 1;
   write_enable_a = 1;
   data a = 8'b11001100;
   write enable b = 0;
   data b = 8'b00110011;
    #10 address a = 2;
   write enable a = 0;
   data a = 8'b111111111;
    #10 address b = 3;
   write enable b = 1;
    data b = 8'b01010101;
    #10 address a = 4;
```

```
module dual_port_ram (
 input wire [9:0] address_a,
 input wire [9:0] address_b,
 input wire write enable a,
 input wire write enable b,
 input wire [7:0] data_a,
 input wire [7:0] data b,
 input wire clock,
 output reg [7:0] q_a,
 output reg [7:0] q_b
);
reg [7:0] mem [0:1023];
always @(posedge clock) begin
 if (write_enable_a) begin
   mem[address_a] <= data_a;
 if (write_enable_b) begin
   mem[address_b] <= data_b;
 end
 q_a <= mem[address_a];</pre>
 q_b <= mem[address_b];</pre>
end
endmodule
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective đJA: 1.4 °C/W

CODE-44: CLOCK BUFFER

CODE FOR TESTBENCH:

```
module testbench;
 reg clk in;
 wire clk_out;
  clock_buffer uut (
    .clk_in(clk_in),
    .clk_out(clk_out)
 );
 initial begin
   clk_in = 0;
   #5 clk_in = 1;
   #5 clk in = 0;
    #5 clk in = 1;
   #5 clk_in = 0;
    $finish;
  end
  always begin
    #2 clk_in = ~clk_in;
  end
endmodule
```

VERILOG CODE:

```
module clock_buffer (
   input wire clk_in,
   output wire clk_out
);
assign clk_out = clk_in;
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective đJA: 1.4 °C/W

CODE-45: SYNCHRONOUS FIFO

```
module testbench;
 reg clk;
  reg reset;
 reg write enable;
 reg read enable;
  reg [7:0] data in;
  wire [7:0] data_out;
  wire full;
  wire empty;
  initial begin
   clk = 0;
   reset = 0:
   write enable = 0;
   read enable = 0;
   data in = 8'b0;
   #10 reset = 1;
    #10 reset = 0;
   for (int i = 0; i < 8; i = i + 1) begin
     data_in = i;
     write_enable = 1;
     #10;
    end
    for (int i = 0; i < 8; i = i + 1) begin
     read enable = 1;
     #10;
     read enable = 0;
    $finish;
  end
  always begin
   #5 clk = ~clk;
  end
endmodule
```

```
module synchronous_fifo (
  input wire clk,
  input wire reset,
 input wire write_enable,
 input wire read_enable,
 input wire [7:0] data_in,
  output wire [7:0] data_out,
 output wire full,
 output wire empty
);
  parameter DEPTH = 16;
  reg [7:0] memory [0:DEPTH-1];
  reg [3:0] write_ptr = 4'b00000;
  reg [3:0] read_ptr = 4'b00000;
  wire [3:0] next_write_ptr;
  wire [3:0] next_read_ptr;
  assign next_write_ptr = (write_enable) ? (write_ptr == DEPTH - 1 ? 4'b0000 : write_ptr + 1) : write_ptr;
  assign next_read_ptr = (read_enable) ? (read_ptr == DEPTH - 1 ? 4'b0000 : read_ptr + 1) : read_ptr;
  always @(posedge clk or posedge reset) begin
   if (reset) begin
     write_ptr <= 4'b00000;
     read_ptr <= 4'b00000;
   end else begin
     write_ptr <= next_write_ptr;
     read_ptr <= next_read_ptr;
     if (write_enable)
       memory[write ptr] <= data in;
    end
  end
  assign data_out = (empty) ? 8'b0 : memory[read_ptr];
  assign full = (next_write_ptr == next_read_ptr) && (write_enable);
  assign empty = (next_write_ptr == next_read_ptr) && (read_enable);
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective đJA: 1.4 °C/W

CODE-46: PRIORITY ENCODER

CODE FOR TESTBENCH:

```
module testbench;
 reg [3:0] inputs;
 wire [1:0] out;
 priority_encoder uut (
    .inputs(inputs),
   .out(out)
  );
 initial begin
   inputs = 4'b0000;
   #10 inputs = 4'b0001;
   #10 inputs = 4'b0010;
   #10 inputs = 4'b0100;
   #10 inputs = 4'b1000;
   Sfinish:
  end
  always begin
    $display("Inputs: %b, Out: %b", inputs, out);
endmodule
```

VERILOG CODE:

```
module priority_encoder (
   input wire [3:0] inputs,
   output reg [1:0] out
);
assign out[0] = ~|inputs;
assign out[1] = |inputs;
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective đJA: 1.4 °C/W

CODE-47: SEVEN SEGMENT DISPLAY USING ROM

```
module testbench;
 reg clk;
 reg reset;
 reg shift_left;
 reg shift right;
 reg shift enable;
  reg data in;
 wire [7:0] data out;
 universal_shift_register uut (.clk(clk),.reset(reset),
    .shift_left(shift_left),
   .shift_right(shift_right),
    .shift_enable(shift_enable),
    .data in(data in),
    .data_out(data_out));
  always begin
    #5 clk = ~clk;
 initial begin
   clk = 0;
   reset = 0;
   shift left = 0;
   shift_right = 0;
   shift_enable = 1;
   data in = 8'b11011011;
   #10 reset = 1;
    #10 reset = 0;
    #10 shift left = 1;
    #10 shift_right = 0;
   data_in = 8'b00110010;
   #10 shift left = 0;
    shift right = 1;
   data_in = 8'b10101010;
  $finish;
 end
  always @(posedge clk) begin
    $display("Data Out: %b", data_out);
  end
endmodule
```

```
module universal_shift_register (
 input wire clk,
 input wire reset,
 input wire shift left,
 input wire shift_right,
 input wire shift_enable,
 input wire data_in,
 output wire [7:0] data_out
);
reg [7:0] shift_register;
always @(posedge clk or posedge reset) begin
 if (reset) begin
   shift_register <= 8'b000000000;</pre>
 end else if (shift enable) begin
   if (shift_left) begin
      shift_register <= {shift_register[6:0], data_in};</pre>
   end else if (shift_right) begin
      shift_register <= {data_in, shift_register[7:1]};</pre>
  end
end
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

CODE-48: SERIAL ADDER

```
module testbench;
reg [3:0]a,b;
wire [7:0] product;

MULTIPLYER dut(a,b,product);
initial
  begin
  $monitor("a=%b b=%b product=%b",a,b,product);

#100 a[0]=0; a[1]=1; a[2]=1; a[3]=0;
  b[0]=1; b[1]=0; b[2]=1; b[3]=1;
#200 a[0]=1; a[1]=0; a[2]=1; a[3]=0;
  b[0]=1; b[1]=1; b[2]=0; b[3]=1;
#300 a[0]=0; a[1]=1; a[2]=0; a[3]=0;
  b[0]=1; b[1]=1; b[2]=0; b[3]=1;
end
endmodule
```

```
module MULTIPLYER(
    input [3:0] a,
    input [3:0] b,
    output [7:0] product
    );
   wire [3:0] m0;
    wire [4:0] m1;
    wire [5:0] m2;
    wire [6:0] m3;
    wire [7:0] s1,s2,s3;
    assign m0={4{a[0]}}&b[3:0];
    assign m1={4{a[1]}}&b[3:0];
    assign m2={4{a[2]}}&b[3:0];
    assign m3={4{a[3]}}&b[3:0];
    assign s1=m0+(m1<<1);
    assign s2=s1+(m2<<1);
    assign s3=s2+(m3<<1);
    assign product= s3;
endmodule
```

SIMULATION:

RTL SCHEMATIC:

POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective #JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W
Confidence level: Low

CODE-49: FIXED PRIORITY ARBITAR

```
module testbench;
 reg clk;
 reg [1:0] request;
 wire grant;
  fixed priority arbiter uut (
    .clk(clk),
    .request (request),
    .grant (grant)
  );
  always begin
    #5 clk = ~clk;
  end
  initial begin
    clk = 0;
    request = 2'b00;
    #10 request = 2'b01;
    #10 request = 2'b10;
    #10 request = 2'b11;
    $finish;
  end
  always @(posedge clk) begin
    $display("Grant = %b", grant);
  end
endmodule
```

```
module fixed_priority_arbiter (
  input wire clk,
  input wire [1:0] request, // Input request lines
  output reg grant // Output grant line
);

always @(posedge clk) begin
  case (request)
    2'b00: grant <= 1'b0;
    2'b01: grant <= 1'b0;
    2'b10: grant <= 1'b0;
    2'b11: grant <= 1'b1;
    default: grant <= 1'b0;
  endcase
end
endmodule</pre>
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 ℃

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W
Power supplied to off-chip devices: 0 W

Confidence level: Low

CODE-50: ROUND ROBIN ARBITAR

CODE FOR TESTBENCH:

```
module testbench;
 reg clk;
 reg reset;
 reg shift left;
 reg shift right;
 reg shift enable;
 reg data in;
 wire [7:0] data out;
 universal shift register uut (.clk(clk),.reset(reset),
   .shift left(shift left),
    .shift right(shift right),
    .shift enable(shift enable),
    .data in(data in),
    .data out(data out));
 always begin
    #5 clk = ~clk;
 initial begin
   clk = 0;
   reset = 0;
   shift left = 0;
   shift right = 0;
   shift enable = 1;
   data in = 8'b11011011;
   #10 reset = 1;
    #10 reset = 0;
   #10 shift_left = 1;
   #10 shift_right = 0;
   data in = 8'b00110010;
    #10 shift left = 0;
   shift right = 1;
   data in = 8'b101010101;
 $finish;
  always @(posedge clk) begin
   $display("Data Out: %b", data out);
 end
endmodule
```

VERILOG CODE:

```
module universal_shift_register (
 input wire clk,
 input wire reset,
 input wire shift left,
 input wire shift_right,
 input wire shift_enable,
 input wire data_in,
 output wire [7:0] data_out
reg [7:0] shift_register;
always @(posedge clk or posedge reset) begin
 if (reset) begin
    shift_register <= 8'b000000000;
 end else if (shift_enable) begin
    if (shift_left) begin
      shift_register <= {shift_register[6:0], data_in};</pre>
    end else if (shift_right) begin
      shift_register <= {data_in, shift_register[7:1]};</pre>
 end
end
```


POWER REPORT:

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.241 W

Junction Temperature: 25.3 °C

Thermal Margin: 59.7 °C (41.1 W)

Effective &JA: 1.4 °C/W

