Gate + qubit_count: int + basis size: int + dtype: type + eval bs(basis state: int): State + call (state: State): State + __mul__(gate: Gate): Gate + __mul__(gate: Gate): Gate + mulit_gate(qubit_count: int, gate: Gate, apply_qubits: [int]): Gate + from_eval_bs(qubit_count: int, _eval_bs: function): Gate + controlled gate(qubit_count: int, gate: Gate, apply_qubits: [int], control_qubits[int]): Gate **MatrixGate FunctionalGate** init (qubit count: int, matrix) <u>init</u> (qubit_count: int, <u>eval_bs: function</u>)

+ amplitudes: np.ndarray

__init___(state:np.ndarray)

- + dtype: type
 - _____
- + norm(): float
 - omi(). iloat
- + is_normalized(): bool
- + prob_of_bs(bs: int): float
 - sb of state(state)
- + prob_of_state(state: State): float
- + random_measure_bs(): int

(len)(): State

- + <u>from basis state</u>(bs: int): state
- ([])(bs: int): dtype
- (==)(state: State): bool
- (+)(state: State): State
- (-)(state: State): State
 - state: Stat
- (-)(): State
- (*)(number: complex): State
 - (state: State): compley
- (*)(state: State): complex

(/)(number: complex): State