Отчет по практикуму на ЭВМ "Аппроксимация дифференциальной задачи с помощью метода кусочно-квадратичных конечных элементов"

Артем Зданович, 411 группа 6 ноября 2022 г.

1 Постановка Задачи

Аппроксимировать следующую задачу с помощью метода конечных элементов (кусочно квадратичных) и найти решение полученной системы алгебраических уравнений многосеточным методом при различных h и f

$$-(ku')' + u' + u = f(x),$$

$$u(0) + u'(0) = u(1) = 0, k = \begin{cases} 5/2 & x \le 0.5\\ 3 & x > 0.5 \end{cases}$$

Исследовать построенную разностную схему на устойчивость и сходимость.

2 Метод решения

Найдем решение в виде $u(x) = \sum_{i=0}^N c_i \phi_i^h(x) + \sum_{i=0}^{N-1} c_i \psi_i^h(x)$, где c_i – некоторые коэффициенты, а $\{\phi_i^h(x), \psi_i^h(x)\}$ – набор базисных функций. Всего их 2N+1. Явный вид этих функций:

$$\begin{cases} \phi_i^h(x) = \frac{(h(i-1)-x)(-h(i+1)+x)}{h^2}, i=0,\dots,N\\ \psi_i^h(x) = -4N^2(x-\frac{i}{N})^2+1, i=0,\dots,N-1\\ \Pi$$
усть наша сетка имеет вид $D_h=\{x_j=jh, j=0,\dots,N; Nh=1\}$. Считаем,

Пусть наша сетка имеет вид $D_h = \{x_j = jh, j = 0, \dots, N; Nh = 1\}$. Считаем, что точка разрыва функции k—0.5 принадлежит множеству узлов сетки (т.е. N-четно).

Используем метод Галеркина: $\sum_{j=0}^N c_j^\phi(L\phi_j^h(x),\phi_i^h(x)) + \sum_{j=0}^{N-1} c_j^\psi(L\psi_j^h(x),\phi_i^h(x)) = (f,\phi_i^h(x)) \text{ (и аналогичное } f(x))$ равенство, где в правой части скалярных произведений стоит $\psi_i^h(x)$).

Кроме того, имеем граничное условие, которое будем использовать позже: u(0) + u'(0) = u(1) = 0.

Задача свелась к нахождению c_i из решения СЛУ Ac = b. Найдем элементы A (используя пакет Wolfram Mathematica) для каждого вида базисных функций: $(L\phi_j^h(x),\phi_i^h(x)) = \int_{x_i-1}^{x+i+1} (k(\phi_j^h(x))'(\phi_i^h(x))' + (\phi_j^h(x))'\phi_i^h(x) + \phi_j^h(x)\phi_j^h(x) = \frac{16h}{15} + \frac{16h}{15}$ $(L\psi_j^h(x), \psi_i^h(x)) = \int_{x_i}^{x_{i+1}} (-k(\psi_j^h(x))'(\psi_i^h(x))' + (\psi_j^h(x))'\psi_i^h(x) + \psi_j^h(x)\psi_i^h(x)) =$ $\frac{8h}{15} + \frac{16k}{3h}, i = j$ $(L\phi_j^h(x), \psi_i^h(x)) = \int_{x_{i-1}}^{x_{i+1}} (-k(\phi_j^h(x))'(\psi_i^h(x))' + (\phi_j^h(x))'\psi_i^h(x) + \phi_j^h(x)\psi_i^h(x)) = \frac{2}{3} + \frac{16k}{3h}, i = j$ $(L\psi_{j}^{h}(x),\phi_{i}^{h}(x)) = \int_{x_{i}-1}^{x+i+1} (-k(\psi_{j}^{h}(x))'(\phi_{i}^{h}(x))' + (\psi_{j}^{h}(x))'\phi_{i}^{h}(x) + \psi_{j}^{h}(x)\phi_{j}^{h}(x) = \frac{-2}{3} + \frac{7h}{15} + \frac{16k}{3h}, i = 2l, j = 2l + 2$ $(L\phi_{j}^{h}(x),\phi_{i}^{h}(x)) = \int_{x_{i}-1}^{x+i+1} (k(\phi_{j}^{h}(x))'(\phi_{i}^{h}(x))' + (\phi_{j}^{h}(x))'\phi_{i}^{h}(x) + \phi_{j}^{h}(x)\phi_{j}^{h}(x) = \frac{11h}{30} - \frac{11h}{30} + \frac{11h}{30}$

Mатрица A имеет вид

$$A = \begin{pmatrix} 1 & \frac{4}{h} & \frac{2}{h} & 0 & 0 & \cdots \\ (L\psi_0^h(x), \phi_0^h(x)) & (L\psi_0^h(x), \psi_0^h(x)) & (L\psi_0^h(x), \phi_1^h(x)) & 0 & 0 & \cdots \\ (L\phi_1^h(x), \phi_0^h(x)) & (L\phi_1^h(x), \psi_0^h(x)) & (L\phi_1^h(x), \phi_1^h(x)) & (L\phi_1^h(x), \psi_1^h(x)) & (L\phi_1^h(x), \phi_2^h(x)) & \cdots \\ 0 & 0 & (L\psi_1^h(x), \phi_1^h(x)) & (L\psi_1^h(x), \psi_1^h(x)) & (L\psi_1^h(x), \phi_2^h(x)) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \ddots \end{pmatrix}$$

где первая строка состоит из краевых условий.

Теперь найдем вектор b:

$$b_i^{\phi} = (f, \phi_i^h(x)) = \int_0^1 f \phi_i^h(x) dx = \frac{4}{3} h f(hi)$$

$$b_i^{\psi} = (f, \psi_i^h(x)) = \int_0^1 f \psi_i^h(x) dx = \frac{2}{3} h f(hi)$$

Следовательно: $b = (b_0^{\phi}, b_0^{\psi}, b_1^{\phi}, b_1^{\psi}, \dots)$ Используем краевые условия:

$$u(0) + u'(0) = 0 \Rightarrow c_1 + \frac{4}{h}c_2 + \frac{2}{h}c_3 = 0$$

$$u(1) = 0 \Rightarrow c_{\phi} \phi_N^h = 0 \Rightarrow c_{\phi} = 0.$$

$$u(1) = 0 \Rightarrow c_{\stackrel{\phi}{N}} \phi_N^h = 0 \Rightarrow c_{\stackrel{\phi}{N}} = 0.$$

Остальные коэффициенты вычислим, используя программу на языке С++

3 Аппроксимация

Посмотрим на работу алгоритма на примере. Возьмем в качестве правой части

$$f(x) = \pi \sin(2\pi x) - \frac{1}{2}(1 + 4k\pi^2)\cos(2\pi x) + \frac{1}{2})$$

Тогда аналитическим решением задачи будет $sin^2(\pi x)$. Аппроксимируем решение с данной функцией f и построим графики обеих функций. Так как наша схемах на многочленах второй степени точна, то она аппроксимирует решение с точностью $O(h^3)$. Имеет место устойчивость и сходимость.

4 Результаты

Погрешность - Евклидова норма u_{analit} и u_{approx} умноженная на h при различных N=5,10,20,50,100,200,500,1000 Зависимость погрешности, от масштаба разбиения представлена ниже:

N	Погрешность
5	0.42723
10	0.05336
20	0.01049
50	0.00234
100	0.00108
200	0.00068
500	0.00043
1000	0.00031