PX30 IO 电源域配置说明

文档标识: RK-SM-YF-909

发布版本: V1.0.0

日期: 2021-05-15

文件密级:□绝密 □秘密 □内部资料 ■公开

免责声明

本文档按"现状"提供,瑞芯微电子股份有限公司("本公司",下同)不对本文档的任何陈述、信息和内容的准确性、可靠性、完整性、适销性、特定目的性和非侵权性提供任何明示或暗示的声明或保证。本文档仅作为使用指导的参考。

由于产品版本升级或其他原因,本文档将可能在未经任何通知的情况下,不定期进行更新或修改。

商标声明

"Rockchip"、"瑞芯微"、"瑞芯"均为本公司的注册商标,归本公司所有。

本文档可能提及的其他所有注册商标或商标,由其各自拥有者所有。

版权所有 © 2021 瑞芯微电子股份有限公司

超越合理使用范畴,非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部,并不得以任何形式传播。

瑞芯微电子股份有限公司

Rockchip Electronics Co., Ltd.

地址: 福建省福州市铜盘路软件园A区18号

网址: <u>www.rock-chips.com</u>

客户服务电话: +86-4007-700-590

客户服务传真: +86-591-83951833

客户服务邮箱: fae@rock-chips.com

前言

概述

主控电源域的IO电平要与对接外设芯片的IO电平保持一致,还要注意软件的电压配置要跟硬件的电压一致,否则,最坏的情况可能会导致IO的损坏。

本文主要描述了PX30平台Linux SDK配置IO电源域的方法,旨在帮助开发者正确配置IO的电源域。

产品版本

芯片名称	内核版本
PX30	Linux 4.4

读者对象

本文档(本指南)主要适用于以下工程师:

- 技术支持工程师
- 软件开发工程师

修订记录

版本号	作者	修改日期	修改说明
V1.0.0	Caesar Wang	2021-05-15	初始版本

目录

PX30 IO 电源域配置说明

- 1. 第一步: 获取硬件原理图并确认硬件电源的设计方案
- 2. 第二步: 查找对应的内核dts配置文件
- 3. 第三步:修改内核dts的电源域配置节点pmu_io_domains
- 4. 第四步: SDK查看当前固件电源域配置
- 5. 第五步: 烧录固件后确认寄存器值是否正确

1. 第一步: 获取硬件原理图并确认硬件电源的设计方案

本文以px30_mini_evb_v11_20190507 EVB板为例进行介绍。

硬件原理图: px30 mini evb v11 20190507.pdf

电源方案: 从硬件原理图分析, EVB板px30_mini_evb_v11_20190507是带PMU(RK809-1)方案。

2. 第二步: 查找对应的内核dts配置文件

由第一步可知,该EVB板的硬件电源设计是带PMU方案的,对应的内核dts配置文件位于: arch/arm64/boot/dts/rockchip/px30-evb-ddr3-v10-linux.dts(本文讨论的方案)

3. 第三步: 修改内核dts的电源域配置节点 pmu_io_domains

```
&io_domains {
    status = "okay";

    vccio1-supply = <&vcc_3v0>;
    vccio2-supply = <&vcci_sd>;
    vccio3-supply = <&vcc_3v0>;
    vccio4-supply = <&vcc3v0_pmu>;
    vccio5-supply = <&vcc_3v0>;
};

&pmu_io_domains {
    status = "okay";

    pmuio1-supply = <&vcc3v0_pmu>;
    pmuio2-supply = <&vcc3v0_pmu>;
};
```

以**pmuio2-supply**为例,首先查看硬件原理图确认pmuio2电源域(PMUIO2)的配置如图所示。 **PMUIO2**配置的电源域为VCC3V0_PMU(即3.0v)。

4. 第四步: SDK查看当前固件电源域配置

命令: ./build.sh info

5. 第五步: 烧录固件后确认寄存器值是否正确

以**PX30**芯片为例,根据手册获取PMU_SOC_CON0寄存器(0xFF010100)和 GRF_IO_VSEL寄存器(0xFF140180)说明如下:

PMUGRF_SOC_CON0

Address: Operational Base + offset (0x0100)

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_enable When bit 16=1, bit0 can be written by software. When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Copyright 2018 © FuZhou Rockchip Electronics Co., Ltd.

RK3326 TRM-Part1

Bit	Attr	Reset Value	Description
15	RW	0×0	poc_pmuio2_sel18 PMU VCCIO2 voltage select 1'b0: 3.3V 1'b1: 1.8V
14	RW	0x0	poc_pmuio1_sel18 PMU VCCIO1 voltage select 1'b0: 3.3V 1'b1: 1.8V
13	RW	0×0	ddrphy_bufferen_core 1'b1: enable ddrphy_bufferen; 1'b0: disable ddrphy_bufferen
12	RW	0×0	ddrphy_bufferen_sel 1'b1: ddrphy_bufferen from ddrphy_bufferen_core; 1'b0: ddrphy_bufferen from pmu and ddr_fail_safe
11:7	RO	0x0	reserved
6	RW	0x0	uart0_cts_sel 1'b1: reverse polarity of cts;
5	RW	0x0	uart0_rts_sel

18

GRF_IO_VSEL

Address: Operational Base + offset (0x0180)

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
7	RW	0x0	grf_vccio_oscgpi_vsel IO voltage select 1'b0:3.3V 1'b1:1.8V
6	RW	0×0	grf_vccio5_vsel VCC IO5 voltage select 1'b0:3.3V 1'b1:1.8V
5	RW	0×0	grf_vccio4_vsel VCC IO4 voltage select 1'b0:3.3V 1'b1:1.8V
4	RW	0×0	grf_vccio3_vsel VCC IO3 voltage select 1'b0:3.3V 1'b1:1.8V
3	RW	0×0	grf_vccio2_vsel VCC IO2 voltage select 1'b0:3.3V 1'b1:1.8V

io -r -4 0xFF010100 ff010100: 00002380

io -r -4 0xFF140180 ff140180: 00000003