

Intro to Metagenomics

SLU --- Intro to Metagenomics 2020

typical genomics

Single organism Single genome

Meta- genomics

Many organisms A Metagenome

Why make our life complicated

- It is hard/impossible to separate the organisms:
 - Isolating (e.g. making a pure culture) microbes is hard
- We want to study interaction
- We want to study organisms in situ
- It's mainly about the microbes

Hug et al 2016 (10.1038/nmicrobiol.2016.48)

A human gut

- 10*10^13 (1.3 x human cells)
- About 0.5% of dry weight
- ~150 species in every gut
- 300x human genes
- But diverse from one to the other! More than 10 that many known gut species and genes
- But only ~20% cultivated

A lake

- 1.35*10^17 cells (a milion per mL)
- About 135kg of dry weight
- ~700 species in the water
- 3.000.000 encoded genes
- Only a couple of handfull are cultivated.

It all maters

- They are everywhere
- They do a lot of stuff:
 - 90% of disease in humans can be related to microbiomes
 - Most nutrients that end up in your blood stream have been somewhat metabolized by some microbe
 - Microbes do 2/3rds of carbon fixation in aquatic environments
 - But also the majority of carbon emissions!

Before the computer

- Get sample
- Extract DNA
- Prep library
- Send to Sequencing facility
- ????
- PROFIT

Dream-quest of unknown metagenome

From an environment with the power of genomics we want to know:

- Who is in the environment? (taxonomy)
- How many of each? (abundance)
- What can they do they? (genetic potential)
- What are they doing? (expression analysis)
- What do they eat? (metabolism)
- Where do they come from? (evolution and ecology)

Sequencing strategies

- Targeted, a.k.a. amplicon /metabarcoding/edna
- Shotgun sequencing:
 - Short reads (HiSeq, NovaSeq, all Illumina basically)
 - Long reads (PacBio, Nanopore, ...)
- Metatranscriptomic
- Functional metagenomics

•

PROTIP: IF YOU EVER NEED TO DEFEAT ME, JUST GIVE ME TWO VERY SIMILAR OPTIONS AND UNLIMITED INTERNET ACCESS.

Image credit: xkcd

Shotgun and amplicon

Two main players:

Shotgun:

- The obvious approach
- Sequence all : make sense of it
- Computationally diverse methodologies

Amplicon:

- Pick a gene, sequence it
- Snapshot of a function or taxonomy
- Much cheaper, more depth

Image credit: xkcd

This week

First let's do some 16s rRNAgene amplicon!

- Some mouse poop samples!
- Using dada2 and phyloseq in R

Then let's do some shotgun!

- The king-discipline (I am biased)
- Some simulated data based on data from the TARA ocean stuff
- Assembly with megahit, binning with metabat, and much more!

