Module 16

Exploring and
Visualizing Large
Datasets with Cloud
Datalab

In this module we will:

- Notebooks in the Cloud
- Accessing BigQuery datasets from Cloud Datalab
- Visualizing Datasets in Charts
- Practice Reading ML Models

Increasingly, data analysis and machine learning are carried out in self-descriptive, shareable, executable notebooks

A typical notebook contains code, charts, and explanations

Starting Cloud Datalab in Cloud Shell is quite simple ...

Datalab notebooks let you change the underlying hardware

what happens to your work when you are through? You do want to stop paying for the datalab machine ...

Demo: Analyzing ecommerce conversion data in Cloud Datalab

Track conversions and abandonments from home and product pages from an example ecommerce site

Demo of Cloud Datalab

Datalab notebooks are developed in an iterative, collaborative process

Users of the same GCP project can simply connect to your VM

Consider also pushing your notebook to a version control repository for sharing

You can develop locally with Datalab and then scale out data processing to the cloud

Datalab integrates well with Google Cloud Platform products

Exploring and Analyzing	BigQuery, Google Cloud Storage		
Machine Learning and Modeling	TensorFlow and GCML		
Visualizing	Google Charts or Plotly or matplotlib		
Seamless product combination	CMLE, Dataflow, CloudStorage		
Integration	authentication and code source control		

Module 16

Exploring and
Visualizing Large
Datasets with Cloud
Datalab

In this module we will:

- Notebooks in the Cloud
- Accessing BigQuery datasets from Cloud
 Datalab
- Visualizing Datasets in Charts
- Practice Reading ML Models

Import BigQuery as a library into Cloud Datalab to use it later

import google.datalab.bigquery as bq

Use %%bq to execute BigQuery commands

%%bq tables describe -n "google.com:analytics-bigquery.LondonCycleHelmet.ga_sessions_20130910"

name	type	mode	description			
visitorId	INTEGER	NULLABLE				
visitNumber	INTEGER	NULLABLE				
visitId	INTEGER	NULLABLE				
visitStartTime	INTEGER	NULLABLE				
date	STRING	NULLABLE				
totals	RECORD	NULLABLE				
trafficSource	RECORD	NULLABLE				
device	RECORD	NULLABLE				
customDimensions	RECORD	REPEATED				
hits	RECORD	REPEATED				
fullVisitorId	STRING	NULLABLE				
→ totals						
▶ trafficSource						

Describing tables is a great way to explore schemas within Cloud Datalab

Write and execute queries and view results inside the notebook

%%bq query -n sessions

SELECT fullVisitorId, visitId, hit.hitNumber as hitNumber, hit.page.pagePath as path FROM `google.com:analytics-bigquery.LondonCycleHelmet.ga_sessions_20130910`

CROSS JOIN UNNEST(hits) as hit

ORDER BY visitStartTime, hitNumber

%bq execute --query sessions

	fullVisitorId	visitId	hitNumber	path
1	2879713562608983525	1,378,803,173	1	1
2	2879713562608983525	1,378,803,173	2	/vests/

use -n to provide a name for the query as you can have more than one query in a single notebook

Consider validating complex queries inside the BigQuery web UI if you are getting syntax errors

BigQuery operations have defined parameters

%%bg load

```
%%bq datasets {list | create | delete}
%%bq tables
%%bq query
%%bq execute
                            %%bq datasets create --name "irs_990"
%%bq extract
%%bg sample
                            %%bq datasets list
%%bq dryrun
                             data-insights-evanjones.irs_990
%%bq udf
```

Keep the Cloud Datalab command reference handy

In Scope:

BQ commands Charting commands ML Toolbox commands (pre-built)

Out of Scope: (covered in Data Engineering)
ML / TensorFlow commands

Access it here:

http://googledatalab.github.io/pydatalab/

BigQuery commands summary

- Having your dataset and table creation
- Running multiple queries in succession in the same window
- Quickly manipulate and export CSV files to GCS
- Running more than just BigQuery commands (charting, ML)
- Clearly and cleanly document your work with markdown
- Version control and share your notebooks
- Option to develop locally in datalab (e.g. Pandas) then uplevel to cloud (e.g. BigQuery, Dataflow) when ready

Module 16

Exploring and
Visualizing Large
Datasets with Cloud
Datalab

In this module we will:

- Notebooks in the Cloud
- Accessing BigQuery datasets from Cloud Datalab
- Visualizing Datasets in Charts
- Practice Reading ML Models

Visualize tables or query results with charting commands

get charting data ready in a table, query, dataframe, or list

Specify chart type, data source, and fields to visualize

Each chart type may have different required parameters

```
%%chart area
%%chart bars
%%chart bubbles
%%chart columns
%%chart heatmap
%%chart histogram
%%chart line
%%chart treemap
%%chart scatter
....and many more
```

Use --help to view parameters

Module 16

Exploring and
Visualizing Large
Datasets with Cloud
Datalab

In this module we will:

- Notebooks in the Cloud
- Accessing BigQuery datasets from Cloud Datalab
- Visualizing Datasets in Charts
- Practice Reading ML Models

Your Cloud Datalab instance comes preloaded with samples

Access them under docs and samples

Here is our Google Analytics example \rightarrow

☐					
□					
□ □ contrib					
☐ ☐ ML Toolbox					
☐ ☐ TensorFlow					
☐ ■ Anomaly Detection in HTTP Logs.ipynb					
 E Conversion Analysis with Google Analytics Data.ipynb 					
 Exploring Genomics Data.ipynb 					
☐ ■ Programming Language Correlation.ipynb					

You can load any iPython notebook into Cloud Datalab

Fork and copy data science notebooks that you want to practice with

GitHub is a good starting place to find iPython notebooks

Recap: This module covered the basics of Cloud Datalab

The next module covers the basics of machine learning

Then, the next module you practice ML within Cloud Datalab

ML Preview: Practice Reading an ML notebook

Preprocess in BigQuery

Leverage ML models

Preprocess the training data on BigQuery

Define a neural network

```
In [15]: import tensorflow as tf
    tf.logging.set_verbosity(tf.logging.ERROR) # supress warning messages

# define two feature columns with real values
    feature_columns = [tf.contrib.layers.real_valued_column("", dimension=2)]

# create a neural network
    dnnc = tf.contrib.learn.DNNClassifier(
        feature_columns=feature_columns,
        hidden_units=[20, 20, 20, 20],
        n_classes=2)

dnnc
```

Lab 16 **Connecting BigQuery to Cloud Datalab**

Lab: Connecting BigQuery to Cloud Datalab

Flex your BigQuery skills inside of Cloud Datalab and learn how you can analyze, visualize, and document your findings all in a single notebook

Cloud Datalab notebooks are collaborative and built for data

Access and Process your Data with BigQuery

Visualize Query Results in Charts and Graphs

Document, Share, and Collaborate