EE4.66 LARGE DATA PRO-CESSING EXERCISE

IMPERIAL COLLEGE LONDON

Contents

1	Convexity 5	
	1.1 Convex Set 5	
	1.2 Convex Functions	6
	1.3 Line Search 6	
2	Bibliography 9	

1

Convexity

1.1 Convex Set

1.

- (a) Let A, B be two convex sets. Define $C := A + B = \{a + b | a \in A, b \in B\}$. Show that C is convex.
- (b) Let A_k , $k = 1, 2, \dots, K$, be convex sets. Show that $A := \bigcap_{k=1}^{K} A_k$ is convex.
- (c) Show that a set is convex if and only if its intersection with any line is convex.
- 2. This question is about the distance between two parallel hyperplanes $\left\{x \in \mathbb{R}^n | a^\mathsf{T} x = b_1\right\}$ and $\left\{x \in \mathbb{R}^n | a^\mathsf{T} x = b_2\right\}$.
 - (a) Give a scientifically reasonable definition for the distance.
 - (b) Find the distance in a closed form.
- 3. For each of the following sets, indicate whether it is convex or not and prove your answer.
 - (a) A slab, i.e., $\{x \in \mathbb{R}^n | \alpha \le a^\mathsf{T} x \le \beta\}$.
 - (b) A rectangle, i.e., $\{x \in \mathbb{R}^n | \alpha_i \le x_i \le \beta_i\}$.
 - (c) The set of points closer to a given point x_0 than to another given point y, i.e.,

$${x|||x-x_0||_2 \leq ||x-y||_2}.$$

(d) The set of points closer to a given point than to a given set, i.e.,

$${x|||x-x_0||_2 \le ||x-y||_2, \ \forall y \in S}$$

where $S \subseteq \mathbb{R}^n$.

(e) The set of points closer to one set than another, i.e.,

$$\{x|\operatorname{dist}(x,S)\leq\operatorname{dist}(x,T)\}$$

where

$$dist(x, S) := \inf\{\|x - z\|_2 \mid z \in S\}.$$

(f) The set of points whose distance to a does not exceed a fixed fraction θ of the distance to b, i.e., the set $\{x \mid \|x - a\|_2 \le \theta \|x - b\|_2\}$, where $a \ne b$ and $0 \le \theta \le 1$.

1.2 Convex Functions

- 1. Use the second-order condition of convexity to prove the following functions are convex
 - (a) $f(x) = -\log(x)$ where $x \in \mathbb{R}^+$.
 - (b) $f(x) = x \log(x)$ where $x \in \mathbb{R}^+$.
 - (c) Affine functions f(x) = Ax + b.
 - (d) Quadratic functions $f(x) = \frac{1}{2}x^{\mathsf{T}}Ax + b^{\mathsf{T}}x + c$ where $A \succeq 0$.
 - (e) $f(x) = \frac{1}{2} ||Ax + b||_2^2$.

2.

- (a) Prove that if f(x) is convex, then g(x) := f(Ax + b) is convex.
- (b) Prove that any norm $\|\cdot\|$ on \mathbb{R}^m is convex.
- (c) Let

$$f(x) := \max_{i=1,\dots,k} \|A^{(i)}x + b^{(i)}\|,$$

where $A^{(i)} \in \mathbb{R}^{m \times n}$, $b^{(i)} \in \mathbb{R}^m$, and $\|\cdot\|$ is a norm on \mathbb{R}^m . Indicate whether $f(\cdot)$ is convex or not. Prove your claim.

(d) Let

$$f(x) = \sum_{i=1}^{r} |x|_{[i]},$$

where $|x|_{[i]}$ is the *i*th largest component of $|x_1|, \dots, |x_n|$. Decide whether $f(\cdot)$ is convex or not. Prove your claim.

1.3 Line Search

1. Let $x \in \mathbb{R}^2$ and

$$f(x) = 3|x_1| + |x_2|.$$

Consider the point $y = [0, 1]^T$.

- (a) Show that $g = [3,1]^T \in \partial f(y)$.
- (b) Let $\tau \in (0,1)$, find the closed form for

$$f(y-\tau g)$$
.

- (c) Comment on whether -g is a descent direction or not.
- The following is the famous Wolfe's example, which shows that gradient descent method may not converge to a local optimal point.

Let $x \in \mathbb{R}^2$ and

$$f(\mathbf{x}) = \begin{cases} 5(9x_1^2 + 16x_2^2)^{1/2} & \text{if } x_1 > |x_2|, \\ 9x_1 + 16|x_2| & \text{if } x_1 \le |x_2|. \end{cases}$$

Suppose that $x^0 = [16/9, 1]^T$. Consider exact line search where

$$\mathbf{x}^{l+1} = \mathbf{x}^l - t^{l+1} \nabla f(\mathbf{x}^l),$$

where

$$t^{l+1} = \arg \min_{t} f(\mathbf{x}^{l} - t\nabla f(\mathbf{x}^{l})).$$

- (a) Draw the contours of f(x) in the region $-2 \le x_1 \le 2$ and $-2 \le x_2 \le 2$.
- (b) Is the point $x = [0, 0]^T$ optimal? Why?
- (c) Find the closed form of $\nabla f(x)$ in the region where $x_1 > |x_2|$.
- (d) Find t^1 and x^1 .
- (e) Find t^2 and x^2 .
- (f) Use mathematical induction, find t^l and x^l . It can be concluded that $x^l \to [0,0]^T$ as $l \to \infty$.