

Swiss Institute of Bioinformatics

BIOLOGY-INFORMED MULTIOMICS DATA INTEGRATION AND VISUALIZATION

Multi-omics data

Deepak Tanwar

June 16-17, 2025

Learning outcomes

- Different layers of genome activity
- Basic pipeline for data generation
- Basic pipeline for the data processing

Simplified illustration of transcriptional regulation

Simplified illustration of transcriptional regulation

Chromatin accessibility

Library preparation for ATAC-seq

Example snapshot of chromatin accessibility

ATAC-seq data analysis pipeline

Simplified illustration of transcriptional regulation

Chromatin Immunoprecipitation sequencing

Example snapshot of enrichment

ChIP-seq data analysis pipeline

Simplified illustration of transcriptional regulation

Gene expression

Differences in gene expression

RNA-seq data analysis pipeline

Simplified illustration of transcriptional regulation

DNA cytosine methylation is a biological process by which methyl groups are added to the DNA molecule

Role of DNA methylation in transcriptional regulation

Gold standard to study DNA methylation patterns across the genome: WGBS

Example plot for DNA methylation

DNAme data analysis pipeline

Integration of RNA-seq and WGBS

Integration of RNA-seq and ATAC-seq

Integration of RNA-seq and ATAC-seq: diffTF

A Schematic of diffTF - basic mode

B Schematic of diffTF - classification mode

Multi-omics integration overview

Feature	Systematic Approaches	Ad-hoc Approaches
Definition	Algorithmic frameworks for integrating multiple omics datasets using statistical or machine learning models.	Custom, hypothesis-driven integration of 1–2 omics datasets based on specific biological questions.
Tools	mixOmics, DIABLOMOFAMINTsGCCA	- diffTF - Custom R/Python scripts
Supervision	Supervised, unsupervised, or semi-supervised	Typically unsupervised or guided by prior biological knowledge
Omics Types	Multiple omics datasets (≥2), can be diverse (transcriptomics, epigenomics, proteomics, etc.)	Usually 2 omics types (e.g., RNA-seq + ATAC-seq)
Advantages	Scalable and reproducibleHandles complex dataReveals hidden patternsSupports biomarker discovery	Biologically intuitiveEasy to prototypeFocused and hypothesis-driven
Interpretability	Moderate (depends on model complexity)	High (based on direct biological rationale)

Multi-omics integration

Feature	Systematic Approaches	Ad-hoc Approaches
Definition	Algorithmic frameworks for integrating multiple omics datasets using statistical or machine learning models.	Custom, hypothesis-driven integration of 1–2 omics datasets based on specific biological questions.
Tools	mixOmics, DIABLOMOFAMINTsGCCA	- diffTF - Custom R/Python scripts
Supervision	Supervised, unsupervised, or semi-supervised	Typically unsupervised or guided by prior biological knowledge
Omics Types	Multiple omics datasets (≥2), can be diverse (transcriptomics, epigenomics, proteomics, etc.)	Usually 2 omics types (e.g., RNA-seq + ATAC-seq)
Advantages	Scalable and reproducibleHandles complex dataReveals hidden patternsSupports biomarker discovery	Biologically intuitiveEasy to prototypeFocused and hypothesis-driven
Interpretability	Moderate (depends on model complexity)	High (based on direct biological rationale)

We will learn ad-hoc approaches for multi-omics in this course

Quiz: 6-10

Thank you

DATA SCIENTISTS FOR LIFE sib.swiss

