Lab 07 - Chihuahua or Muffin Workshop Instructions

Enrique Alejandro Quintero Garcia

CNN Architecture one different in a Convolutional Neural Networks use three-dimensional data for image classification and object recognition tasks.

Model Performance, we learn about if model has more and more images the time for training require more resources, however the precision in the model is better.

Comparison between Traditional Neural Networks Networks and CNNs one particular difference is the use of small kernels, CNNs have significantly fewer parameters compared to fully connected networks for the same input size. This makes them more computationally efficient.

In conclusion, one challenge for CNN is your application in real life, however the technologies is ready everyday CNN or other technologies are been better.

Additionally, I Add the Jupiter Python:

Chihuahua vs Muffin Classifier using Convolutional Neural Networks

□ 1. Introduction

In this lab, we'll build upon our previous workshop where we used a traditional Neural Network (NN) to classify images as either Chihuahuas or muffins. This time, we'll use a Convolutional Neural Network (CNN), which is particularly well-suited for image classification tasks because it can learn spatial hierarchies of features directly from the image data. By the end of this lab, we'll compare the performance of our CNN model with the traditional NN from the previous workshop.

This is what we'll do in this lab:

- 1) Build the convolutional neural network
- 2) Load the data
- 3) Train the model on the data
- 4) Visualize the results

Remember: This is an INTERACTIVE Notebook!

You should run and play with the code as you go to see how it works. Select a cell and press shift-enter to execute code.

Let's get started!

□ 2. Setup and Imports

Let's get to the fun stuff! First, we need to Install and import the necessary libraries. Each import serves a specific purpose in our project.python

```
!pip install torch --upgrade
!pip install torchvision --upgrade
```

Requirement already satisfied: torch in /usr/local/lib/python3.10/dist-packages (2.4.1+cu121)
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch) (3.16.1)
Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch) (4.12.2)

```
Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch) (1.13.3)
Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch) (3.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch) (3.1.4)
Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch) (2024.6.1)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch) (2.1.5)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch) (1.3.0)
Requirement already satisfied: torchvision in /usr/local/lib/python3.10/dist-packages (0.19.1+cu121)
Requirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from torchvision) (1.26.4)
Requirement already satisfied: torch==2.4.1 in /usr/local/lib/python3.10/dist-packages (from torchvision) (2.4.1+cu121)
Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in /usr/local/lib/python3.10/dist-packages (from torchvision) (10.4.0)
Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->torchvision) (3.16.1)
Requirement already satisfied: typing-extensions>=4.8.0 in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->torchvision) (4.1
Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->torchvision) (1.13.3)
Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->torchvision) (3.3)
Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->torchvision) (3.1.4)
Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from torch==2.4.1->torchvision) (2024.6.1)
Requirement already satisfied: MarkupSafe>=2.0 in /usr/local/lib/python3.10/dist-packages (from jinja2->torch==2.4.1->torchvision) (2.1.
Requirement already satisfied: mpmath<1.4,>=1.1.0 in /usr/local/lib/python3.10/dist-packages (from sympy->torch==2.4.1->torchvision) (1.
```

import numpy as np # Numpy for matrix operations
import torch # PyTorch deep learning framework
import torch.nn as nn # Neural network module of PyTorch
import torch.optim as optim # Optimization algorithms
from torchvision import datasets, transforms # Tools for loading and transforming image data
from torch.utils.data import DataLoader # Efficient data loading
import matplotlib.pyplot as plt # For plotting and visualization. It is graphical library, to plot images
special Jupyter notebook command to show plots inline instead of in a new window
%matplotlib inline

```
# Check if CUDA is available and set the device accordingly device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}")

Using device: cpu

!git clone https://github.com/patitimoner/workshop-chihuahua-vs-muffin.git

fatal: destination path 'workshop-chihuahua-vs-muffin' already exists and is not an empty directory.
```

□ 3 Data Preparation

Before we start training our model, it's crucial to separate our data into training and testing (validation) sets. This separation is a fundamental concept in machine learning that helps us assess how well our model generalizes to unseen data.

3.1 Understanding Train-Test Split

In machine learning, we typically divide our dataset into two main subsets:

- 1. **Training set:** This is the larger portion of the data that we use to train our model. The model learns the patterns and features from this data.
- 2. **Testing set** (also called Validation set): This is a smaller portion of the data that we set aside and don't use during training. We use this to evaluate how well our model performs on unseen data.

The reason for this split is to simulate how our model would perform on new, unseen data in the real world. If we tested on the same data we used for training, we wouldn't know if our model was truly learning general patterns or just memorizing the training data (a problem called overfitting).

```
import os
print("Data contents:", os.listdir("workshop-chihuahua-vs-muffin/data"))
print("Train contents:", os.listdir("workshop-chihuahua-vs-muffin/data/train"))
print("Validation contents:", os.listdir("workshop-chihuahua-vs-muffin/data/validation"))
# Count the number of images in each set
# /content/workshop-chihuahua-vs-muffin
train_chihuahuas = len(os.listdir("workshop-chihuahua-vs-muffin/data/train/chihuahua"))
train_muffins = len(os.listdir("workshop-chihuahua-vs-muffin/data/train/muffin"))
val chihuahuas = len(os.listdir("workshop-chihuahua-vs-muffin/data/validation/chihuahua"))
val_muffins = len(os.listdir("workshop-chihuahua-vs-muffin/data/validation/muffin"))
print(f"Training set: {train_chihuahuas} Chihuahuas, {train_muffins} Muffins")
print(f"Validation set: {val_chihuahuas} Chihuahuas, {val_muffins} Muffins")

→ Data contents: ['validation', 'train']
     Train contents: ['chihuahua', 'muffin']
     Validation contents: ['chihuahua', 'muffin']
     Training set: 65 Chihuahuas, 55 Muffins
     Validation set: 17 Chihuahuas, 13 Muffins
```

3.2 Dataset Structure

In our case, we've already separated our data into train and validation sets in our file structure: You should see that we have two main directories (same dataset as previous exercise): 'train' and 'validation', each containing subdirectories for our classes (Chihuahua and Muffin).

3.3 Loading Separated Datasets

Now, let's load our separated datasets: Remember we have to load all the images and convert them into a form that our neural network understands. Specifically, PyTorch works with **Tensor** objects. (A tensor is just a multidimensional matrix, i.e. an N-d array.)

☐ 3.4 Define Data transformations

Now that we understand our dataset, let's define the transformations we'll apply to our images. These transformations help in data augmentation and normalization. To easily convert our image data into tensors, we use the help of a "dataloader." The dataloader packages

data into convenient boxes for our model to use. You can think of it like one person passing boxes (tensors) to another.

```
from torchvision import transforms
# Define image dimensions
input height, input width = 224,224
# Define data transforms for training and validation sets
data transforms = {
    'train': transforms.Compose([
        transforms.Resize((input_height, input_width)), # Resize images
        transforms.RandomHorizontalFlip(), # Randomly flip images horizontally
        transforms.RandomRotation(10), # Randomly rotate images
        transforms.ToTensor(), # Convert images to PyTorch tensors
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # Normalize with ImageNet mean and std
    1),
    'validation': transforms.Compose([
        transforms.Resize((input_height, input_width)), # Resize images
        transforms.ToTensor(), # Convert images to PyTorch tensors
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # Normalize with ImageNet mean and std
    1)
}
```

3.5 Create Dataset and Dataloader

With our transformations defined, we can now create our datasets and dataloaders. These will efficiently feed data into our model during training.

```
# Load datasets
image_datasets = {
    'train': datasets.ImageFolder('workshop-chihuahua-vs-muffin/data/train', data transforms['train']),
    'validation': datasets.ImageFolder('workshop-chihuahua-vs-muffin/data/validation', data_transforms['validation'])
}
# Create dataloaders
batch size = 32
dataloaders = {
    'train': DataLoader(image_datasets['train'], batch_size=batch_size, shuffle=True, num_workers=4),
    'validation': DataLoader(image_datasets['validation'], batch_size=batch_size, shuffle=False, num_workers=4)
# Get the number of classes
num_classes = len(image_datasets['train'].classes)
print(f"Number of classes: {num_classes}")
# Print dataset sizes
print(f"Training samples: {len(image_datasets['train'])}")
print(f"Validation samples: {len(image_datasets['validation'])}")
    Number of classes: 2
     Training samples: 120
     Validation samples: 30
```

Let's break down what this code does:

- 1. We define separate data transforms for training and validation sets. The training set includes data augmentation (random flips and rotations) to increase variety in our training data, while the validation set doesn't use augmentation.
- 2. We use datasets. ImageFolder to load our images from the 'train' and 'validation' directories. This function automatically assigns labels based on the subdirectory names.
- 3. We create DataLoader objects for both sets. These handle batching our data and shuffling the training set (but not the validation set, as order doesn't matter for validation).
- 4. Finally, we print the sizes of our datasets to confirm the split.

By using separate dataloaders for training and validation, we ensure that our model is evaluated on data it hasn't seen during training, giving usa more accurate assessment of its performance.

□ 4. Model Definition

Now that we've prepared our data, we can define our CNN model. We'll use the information about our input dimensions and number of classesto structure our network.

```
class ChihuahuaMuffinCNN(nn.Module):
    def init__(self, input_channels=3, num_classes=num_classes):
        super(ChihuahuaMuffinCNN, self).__init__()
       # Convolutional layers
       self.features = nn.Sequential(
           # First convolutional layer
           nn.Conv2d(input_channels, 32, kernel_size=3, padding=1),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2),
           # Second convolutional layer
           nn.Conv2d(32, 64, kernel_size=3, padding=1),
           nn.ReLU().
           nn.MaxPool2d(kernel_size=2, stride=2),
           # Third convolutional layer
           nn.Conv2d(64, 128, kernel_size=3, padding=1),
           nn.ReLU(),
           nn.MaxPool2d(kernel_size=2, stride=2)
       )
       # Fully connected layers
       self.classifier = nn.Sequential(
           nn.Linear(128 * (input_height//8) * (input_width//8), 512),
           nn.ReLU().
           nn.Dropout(0.5),
           nn.Linear(512, num_classes)
   def forward(self, x):
       x = self.features(x) # Pass input through convolutional layers
       x = torch.flatten(x, 1) # Flatten the output for the fully connected layers
       x = self.classifier(x) # Pass through the fully connected layers
# Initialize the model and move it to the appropriate device
model = ChihuahuaMuffinCNN().to(device)
print(model)
# Print model summary
from torchsummary import summary
summary(model, (3, input_height, input_width))
ChihuahuaMuffinCNN(
       (features): Sequential(
         (0): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
         (1): ReLU()
         (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
         (3): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
         (4): ReLU()
         (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
         (6): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
         (7): ReLU()
        (8): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
       (classifier): Sequential(
         (0): Linear(in_features=100352, out_features=512, bias=True)
         (1): ReLU()
         (2): Dropout(p=0.5, inplace=False)
         (3): Linear(in_features=512, out_features=2, bias=True)
            Layer (type) Output Shape
                                                        Param #
     _____
                Conv2d-1
                            [-1, 32, 224, 224]
                                [-1, 32, 224, 224]
                                                               0
                 ReLU-2
             MaxPool2d-3
                              [-1, 32, 112, 112]
                                                                а
                                                           18,496
                Conv2d-4
                                 [-1, 64, 112, 112]
                  ReLU-5
                                [-1, 64, 112, 112]
```

```
MaxPool2d-6
                               [-1, 64, 56, 56]
            Conv2d-7
                              [-1, 128, 56, 56]
                                                          73,856
              ReLU-8
                              [-1, 128, 56, 56]
                                                               0
         MaxPool2d-9
                              [-1, 128, 28, 28]
                                                               a
                                                      51,380,736
           Linear-10
                                      [-1, 512]
             ReLU-11
                                       [-1, 512]
                                                               0
          Dropout-12
                                      [-1, 512]
                                                               0
                                        [-1, 2]
          Linear-13
                                                           1,026
Total params: 51,475,010
Trainable params: 51,475,010
Non-trainable params: 0
Input size (MB): 0.57
Forward/backward pass size (MB): 48.25
Params size (MB): 196.36
Estimated Total Size (MB): 245.18
```

□ 5. Training Setup

With our model defined, we now need to set up our loss function and optimizer. These are crucial components for training our network. In deep learning, they are the two key components for training: Let's recap and understand what these are and how we'll use them.

Loss Function The loss function measures how well our model is performing. It calculates the difference between our model's predictions and the true labels. For our classification task, we'll use Cross Entropy Loss, which is well-suited for multi-class classification problems.

Optimizer The optimizer is responsible for updating our model's parameters to minimize the loss function. We'll use the Adam optimizer, whichis an extension of stochastic gradient descent (SGD) that adapts the learning rate for each parameter.

Let's define our loss function and optimizer:

```
# Define the loss function (Cross Entropy for classification)
criterion = nn.CrossEntropyLoss()
# Define the optimizer (Adam) with learning rate 0.001
optimizer = optim.Adam(model.parameters(), lr=0.001)
print("Loss function:", criterion)
print("Optimizer:", optimizer)
→ Loss function: CrossEntropyLoss()
     Optimizer: Adam (
     Parameter Group 0
         amsgrad: False
         betas: (0.9, 0.999)
         capturable: False
         differentiable: False
         eps: 1e-08
         foreach: None
         fused: None
         lr: 0.001
         maximize: False
         weight_decay: 0
```

In this code:

nn.CrossEntropyLoss() creates our loss function. optim.Adam(model.parameters(), Ir=0.001) creates our optimizer. We pass it our model's parameters and set a learning rate of 0.001.

☐ 6. Model Trainning

Now we're ready to train our model. We'll define a function to handle the training process and then run it for a specified number of epochs.

This function will:

· Iterate over our data for a specified number of epochs

In each epoch, it will:

• Train on the training data

· Evaluate on the validation data

Keep track of and print our loss and accuracy for both training and validation sets This will start the training process. You'll see progress barsfor each epoch, along with loss and accuracy metrics for both training and validation sets.

The training process may take some time, depending on your hardware. Once it's complete, we'll have a trained model ready for making predictions!

```
def train_model(model, dataloaders, criterion, optimizer, num_epochs=10):
   for epoch in range(num_epochs):
       print(f'Epoch {epoch+1}/{num_epochs}')
       print('-' * 10)
       for phase in ['train', 'validation']:
           if phase == 'train':
               model.train() # Set model to training mode
           else:
               model.eval() # Set model to evaluate mode
           running_loss = 0.0
           running_corrects = 0
           # Iterate over data
           for inputs, labels in tqdm(dataloaders[phase], desc=phase):
               inputs = inputs.to(device)
               labels = labels.to(device)
               # Zero the parameter gradients
               optimizer.zero_grad()
               # Forward pass
               with torch.set_grad_enabled(phase == 'train'):
                   outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                   loss = criterion(outputs, labels)
                   # Backward pass + optimize only if in training phase
                   if phase == 'train':
                       loss.backward()
                       optimizer.step()
               # Statistics
                running_loss += loss.item() * inputs.size(0)
               running_corrects += torch.sum(preds == labels.data)
           epoch_loss = running_loss / len(image_datasets[phase])
           epoch_acc = running_corrects.double() / len(image_datasets[phase])
           print(f'{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
       print()
   return model
# Train the model
trained_model = train_model(model, dataloaders, criterion, optimizer, num_epochs=10)
print("Training complete!")

→ Epoch 1/10
     train: 100%| 4/4 [00:31<00:00, 7.95s/it]
     train Loss: 4.5377 Acc: 0.5000
     validation: 100%| 1/1 [00:03<00:00, 3.06s/it]
     validation Loss: 0.7563 Acc: 0.5667
     Epoch 2/10
     train: 100%| 4/4 [00:21<00:00, 5.47s/it]
     train Loss: 0.6592 Acc: 0.5917
     validation: 100%| 1/1 [00:02<00:00, 2.30s/it]
     validation Loss: 0.6605 Acc: 0.4333
    Epoch 3/10
    train: 100%| 4/4 [00:22<00:00, 5.66s/it] train Loss: 0.6207 Acc: 0.6583
     validation: 100%| 1/1 [00:02<00:00, 2.33s/it]
```

```
validation Loss: 0.4653 Acc: 0.8333
Epoch 4/10
train: 100%| 4/4 [00:22<00:00, 5.61s/it]
train Loss: 0.4423 Acc: 0.7667
validation: 100%| 1/1 [00:02<00:00, 2.32s/it]
validation Loss: 0.2702 Acc: 0.9333
Epoch 5/10
train: 100%| 4/4 [00:23<00:00, 5.87s/it]
train Loss: 0.4220 Acc: 0.8500
validation: 100%| 1/1 [00:02<00:00, 2.32s/it]
validation Loss: 0.2288 Acc: 0.9000
Epoch 6/10
train: 100%| 4/4 [00:22<00:00, 5.55s/it]
train Loss: 0.2967 Acc: 0.8917
validation: 100%| 1/1 [00:02<00:00, 2.49s/it]
validation Loss: 0.1313 Acc: 1.0000
Epoch 7/10
train: 100%| 4/4 [00:21<00:00, 5.36s/it]
train Loss: 0.2275 Acc: 0.9083
validation: 100%| 1/1 [00:03<00:00, 3.32s/it]
validation Loss: 0.1620 Acc: 0.9333
Epoch 8/10
train: 100%| 4/4 [00:21<00:00, 5.30s/it]
train Loss: 0.2010 Acc: 0.9333
validation: 100%| 1/1 [00:02<00:00, 2.65s/it]
validation Loss: 0.1683 Acc: 0.9333
Epoch 9/10
```

###This function does the following:

- 1. For each epoch:
- · It trains the model on the training data.
- · It then evaluates the model on the validation data.
- · For both phases, it calculates and prints the average loss and accuracy.
- 2. The model.train() and model.eval() calls ensure the model behaves appropriately for training and validation phases.
- 3. We use torch.set_grad_enabled() to only calculate gradients during the training phase.
- 4. In the training phase, we perform backpropagation (loss.backward()) and update the model parameters (optimizer.step()).

☐ 7. Examine model performance (Model Evaluation)

Finally, let's evaluate our trained model on the validation set and visualize some of its predictions.

```
def evaluate_model(model, dataloader):
    model.eval() # Set the model to evaluation mode
    all_preds = []
    all_labels = []

with torch.no_grad(): # Disable gradient calculation
    for inputs, labels in dataloader:
        inputs = inputs.to(device)
        outputs = model(inputs)
        _, preds = torch.max(outputs, 1)
        all_preds.extend(preds.cpu().numpy())
        all_labels.extend(labels.numpy())

return all_preds, all_labels

# Get predictions

val_preds, val_labels = evaluate_model(trained_model, dataloaders['validation'])
```

```
29/9/24, 3:29 p.m.
                                                                                     Copy of CNN_1 Chihuahua or Muffin.ipynb - Colab
     # Calculate accuracy
      accuracy = sum(np.array(val_preds) == np.array(val_labels)) / len(val_labels)
     print(f"Validation Accuracy: {accuracy:.4f}")
      # Visualize some predictions
     def plot_results(images, preds, labels):
           fig, axs = plt.subplots(5, 6, figsize=(20, 20))
           for i, (img_path, pred, label) in enumerate(zip(image_datasets['validation'].imgs, preds, labels)):
                img = plt.imread(img_path[0])
                 ax = axs[i // 6, i % 6]
                ax.imshow(img)
                ax.axis('off')
                color = 'green' if pred == label else 'red'
                ax.set_title(f"Pred: {'Chihuahua' if pred == 0 else 'Muffin'}\nTrue: {'Chihuahua' if label == 0 else 'Muffin'}", color=color)
           plt.tight_layout()
           plt.show()
     plot_results(image_datasets['validation'].imgs, val_preds, val_labels)

→ Validation Accuracy: 0.9333
                                                                                  Pred: Chihuahua
True: Chihuahua
                                                                                                                Pred: Chihuahua
True: Chihuahua
                      Pred: Chihuahua
True: Chihuahua
                                                                                                                                              Pred: Chihuahua
True: Chihuahua
                                                    Pred: Chihuahua
True: Chihuahua
                                                                                  Pred: Chihuahua
True: Chihuahua
                                                                                                                Pred: Chihuahua
True: Chihuahua
                                                                                                                                               Pred: Muffin
True: Chihuahua
                                                    Pred: Muffin
True: Chihuahua
                                                                                                                                                                             Pred: Chihuahua
True: Chihuahua
                                                                                                                                              Pred: Chihuahua
True: Chihuahua
                                                                                  Pred: Chihuahua
True: Chihuahua
                                                    Pred: Chihuahua
True: Chihuahua
                                                     Pred: Muffin
True: Muffin
                                                                                                                                                Pred: Muffin
True: Muffin
                       Pred: Muffin
True: Muffin
```


8. Conclusion and Reflection

Congratulations! You've successfully built, trained, and evaluated a CNN for classifying Chihuahuas and Muffins. Here are some reflection questions to consider:

How does the performance of this CNN compare to the traditional Neural Network from the previous workshop? What role do the convolutional layers play in image classification? How might you further improve this model's performance? What challenges might this model face in real-world applications? How does data augmentation (like random flips and rotations) contribute to the model's performance? What are the ethical considerations in developing and deploying an image classification system like this?

Remember to support your answers with references to relevant literature or resources on deep learning and computer vision. Good luck withyour reflective journal!

If you want you can play with some hyperparameters to play with:

- · Number of epochs
- · The learning rate "Ir" parameter in the optimizer
- The type of optimizer (https://pytorch.org/docs/stable/optim.html)
- · Number of layers and layer dimensions
- Image size
- Data augmentation transforms (https://pytorch.org/docs/stable/torchvision/transforms.html)

Special Thanks!

Credit for the original idea and code goes to DeepSense.ai! I've modified it significantly to cater to this Lab.

The original tutorial was created through hard work and love by Jing Zhao, Dylan Wang, Jason Do, Jason Jiang, and Andrew Jong.