MPAMVPM6_EL2, MPAM Virtual PARTID Mapping Register 6

The MPAMVPM6 EL2 characteristics are:

Purpose

MPAMVPM6_EL2 provides mappings from virtual PARTIDs 24 - 27 to physical PARTIDs.

<u>MPAMIDR_EL1</u>.VPMR_MAX field gives the index of the highest implemented MPAMVPM<n>_EL2 registers. VPMR_MAX can be as large as 7 (8 registers) or 32 virtual PARTIDs. If <u>MPAMIDR_EL1</u>.VPMR_MAX == 0, there is only a single MPAMVPM<n>_EL2 register, <u>MPAMVPM0_EL2</u>.

Virtual PARTID mapping is enabled by <u>MPAMHCR_EL2</u>.EL1_VPMEN for PARTIDs in <u>MPAM1_EL1</u> and by <u>MPAMHCR_EL2</u>.EL0_VPMEN for PARTIDs in <u>MPAM0_EL1</u>.

A virtual-to-physical PARTID mapping entry, PhyPARTID<n>, is valid only when the MPAMVPMV EL2.VPM V bit in bit position n is set to 1.

Configuration

This register is present only when FEAT_MPAM is implemented, MPAMIDR_EL1.HAS_HCR == 1 and UInt(MPAMIDR_EL1.VPMR_MAX) > 5. Otherwise, direct accesses to MPAMVPM6 EL2 are undefined.

This register has no effect if EL2 is not enabled in the current Security state.

Attributes

MPAMVPM6_EL2 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

PhyPARTID27	PhyPARTID26
PhyPARTID25	PhyPARTID24

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PhyPARTID27, bits [63:48]

Virtual PARTID Mapping Entry for virtual PARTID 27. PhyPARTID27 gives the mapping of virtual PARTID 27 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PhyPARTID26, bits [47:32]

Virtual PARTID Mapping Entry for virtual PARTID 26. PhyPARTID26 gives the mapping of virtual PARTID 26 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PhyPARTID25, bits [31:16]

Virtual PARTID Mapping Entry for virtual PARTID 25. PhyPARTID25 gives the mapping of virtual PARTID 25 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PhyPARTID24, bits [15:0]

Virtual PARTID Mapping Entry for virtual PARTID 24. PhyPARTID24 gives the mapping of virtual PARTID 24 to a physical PARTID.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing MPAMVPM6_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPAMVPM6_EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0110	0b110

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2, NV> == '11' then
        X[t, 64] = NVMem[0x970];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1'
then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = MPAMVPM6\_EL2;
elsif PSTATE.EL == EL3 then
   X[t, 64] = MPAMVPM6\_EL2;
```

MSR MPAMVPM6_EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1010	0b0110	0b110

```
if PSTATE.EL == ELO then
   UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.<NV2,NV> == '11' then
        NVMem[0x970] = X[t, 64];
    elsif EL2Enabled() && HCR_EL2.NV == '1' then
        if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1'
then
            if Halted() && EDSCR.SDD == '1' then
                UNDEFINED;
            else
                AArch64.SystemAccessTrap(EL3, 0x18);
        else
            AArch64.SystemAccessTrap(EL2, 0x18);
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if HaveEL(EL3) && MPAM3_EL3.TRAPLOWER == '1' then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
```

```
else
AArch64.SystemAccessTrap(EL3, 0x18);
else
MPAMVPM6_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
MPAMVPM6_EL2 = X[t, 64];
```

AArch32 Registers AArch64 Registers AArch32 Instructions

AArch64 Instructions Index by Encoding External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.