Université IBN KHALDOUN –TIARET Faculté Des Mathématiques et de l'informatique Master RT, Bases de données avancées

Correction Examen Semestriel (2020), Durée: 1 heure 30 mn (Documents non autorisés)

Exercice 1: (10 points)

- 1. Quelles sont les opérations de base de la transaction ?
 - Lire / Ecrire (1 point)
- 2. Quels sont les 5 états d'une transaction?
 - Actif, Partiellement validée, Validée, Echec, Avortée (Abondonnée) (1,25 points)
- 3. Quelles propriétés ACID sont garanties par le système de reprise (recovery system) ?
- 4. Atomique, Durabilité (1)
- **5.** Si un système de traitement des transactions ne connaît jamais d'échecs, la journalisation (par ex. *redo logging*) est complètement inutile ? □ Vrai, □ Faux , pourquoi!!
 - Vrai (0,5), La reprise (restauration) de la BD est non nécéssaire(0,5)
- 6. À l'aide d'un diagramme, expliquez les étapes du traitement de la requête SQL ? (2)

- 7. Comparez les deux stratégies d'optimisation de plan d'exécution des requêtes SQL ? (1)
 - Optimisation à Base de Règles : Rule Base,
 - Optimisation à Base de Coût : cost base
- 8. Expliquer l'intérêt des deux listes UNDO et REDO ?
 - Undo: Image de BD avant (1)
 - REDO: image de BD apres (1)
- 9. Comparez NoSQL et la base de données relationnelle ?

Une seule différence =(1)

Scale difference =(1)	
SQL	NoSQL
Relational	Non-Relational
	Un-structured stored in JSON files but the graph database
Structured Data stored in Tables	does supports relationship
Static	Dynamic
Vertical	Horizantal
Structured Query Language	Un-structured Query Language
Helpful to design complex queries	No joins, Don't have the powerful interface to prepare complex query
Recommended and best suited for OLTP systems	Less likely to be considered for OLTP system
Great support	community depedent, they are expanding the support model
Supports In-line memory(SQL2014 and SQL 2016)	Supports integrated caching
rigid schema bound to relationship	Non-rigid schema and flexible
ACID	CAP theorem
Requires downtime in most cases	Automatic, No outage required
	Relational Structured Data stored in Tables Static Vertical Structured Query Language Helpful to design complex queries Recommended and best suited for OLTP systems Great support Supports In-line memory(SQL2014 and SQL 2016) rigid schema bound to relationship ACID

Exercice 2: (5 points)

Considérez les deux transactions et l'ordonnancement suivants :

Transaction T_0	Transaction T_1
$r_0[A]$	
$w_0[A]$	
	$r_1[A]$
	$r_1[B]$
	c_1
$r_0[B]$	
$w_0[B]$	
c_0	

Cet ordonnancement est sérialisable par conflit ? Expliquez pourquoi ou pourquoi pas?
 Non (1 point),

The schedule is not conflict serializable because the precedence graph contains a cycle. The graph has an edge $T_0 \to T_1$ because the schedule contains $w_0[A] \to r_1[A]$. The graph has an edge $T_1 \to T_0$ because the schedule contains $r_1[B] \to w_o[B]$.

- 2) Montrez comment 2PL peut garantir un ordonnancement sérialisable par conflit pour les mêmes transactions ci-dessus. (3)
 - (b) Show how 2PL can ensure a conflict-serializable schedule for the same transactions above. Use the notation $L_i[A]$ to indicate that transaction i acquires the lock on element A and $U_i[A]$ to indicate that transaction i releases its lock on A.

(c) Show how the use of locks without 2PL can lead to a schedule that is NOT conflict serializable.

Solution:

Transaction T_0	Transaction T_1
$egin{array}{c} L_0[A] \ r_0[A] \ w_0[A] \ U_0[A] \end{array}$	7.10
	$egin{array}{c} L_1[A] & & & & & & & & & & & & & & & & & & &$
$egin{aligned} L_0[B] & r_0[B] & \\ w_0[B] & \\ U_0[B] & \\ c_0 & \end{aligned}$	

Exercice 3: (5 points)

Chaque groupe de mots ci-dessous appartient à une catégorie. A vous de trouver la catégorie en essayant d'être le plus précis que possible. La première ligne est un exemple.

		Catégorie
	Oracle, DB2, SQL Server, PostgreSQL	SGBD Relationnels
1	COMMIT, ROLLBACK, SAVEPOINT, GRANT, REVOKE	Contrôle de transaction,
		LCD : langage de contrôle de
		données (1)
2	Haute Disponibilité, Scalabilité, SQL Support, ACID	NewSQL (0,25)
3	Photocopie, Copie vivante, Fragmentation	Modèle de distribution de BD
		(base de données repartie)
		(0,25)
4	Haute disponibilité, Scalabilité, Pas de ACID	NoSQL(0,25)
5	Entité/Association (EA), UML, Express.	MCD (Modèle conceptuel des
		données) (1)
6	Relationnel, Multidimensionnel, Réseau, Relationnel-Objet	MLD Modèle logique des
		données(0,25)
7	Clé-valeur, Graphes, Documents, Colonnes	NoSQL(0,25)
8	Shared memory, Shared disks, Shared nothing	Architecture de BD parallèle
		(Déploiement de BD) (0,25)

Pleine réussite à tous