

Semi-Supervised Learning with GANs for Device-Free Fingerprinting Indoor Localization

Kevin M. Chen and Ronald Y. Chang Presenter: Kevin M. Chen

Research Center for Information Technology Innovation (CITI), Academia Sinica, Taipei, Taiwan

Presentation Outline

I. Introduction

- A. Indoor Localization Problem
- B. Our Motivation

II. Proposed Method

- A. Intro. to Generative Adversarial Networks (GANs)
- B. Semi-Supervised with GANs

III. Experiment & Discussion

- A. Performance Comparison
- B. Discussion on Generator model

IV. Conclusion

Indoor Localization Problem

Many current and future <u>Internet of Things (IoT)</u> applications are enabled or facilitated by indoor location information.

Indoor Localization Problem (cont.)

Solution = Collect Indoor Wireless Signal (CSI) + Fingerprint (Deep Learning)

Motivation

Many proposed deep learning-based solutions are based on <u>supervised</u> <u>learning</u>, which requires <u>numerous labeled data</u> collected in the site survey to train the fingerprinting localization system. However, data labeling is <u>labor-intensive</u> and <u>time-consuming</u>.

Motivation (cont.)

- <u>Semi-Supervised Learning</u>, which uses a small amount of labeled data and a large amount of unlabeled data for training, gives a possible solution to reduce labor effort.
- Generative Adversarial Network (GAN) has been proposed for Semi-Supervised Learning.

Generative Adversarial Network (GAN)

Basic idea of GAN:

Training a GAN is a *minimax optimization*.

Semi-Supervised with GANs

If we want a GAN to **generate fake CSI samples**... Location pg (fake, 1 epoch) Generator model G: Fake Fake CSI (1 epoch) **CSI Samples** A NN, generates fake CSI [xg] Training Location p₈ (fake, 100 epoch) Fake samples Fake CSI (100 epoch) Discriminator model D: Real samples Real or fake Real A NN, distinguishes true from false Resemblance Location p_8 (real) **CSI Samples** [x] Real CSI

Semi-Supervised with GANs (cont.)

If we want a GAN to do semi-supervised learning with CSI samples...

Semi-Supervised with GANs (cont.)

We apply **Deep Convolutional Generative Adversarial Network** (DCGAN) as

our model's architecture.

Note: The parameters of the model is determined by cross-validating the model performance with different configurations.

Conv-2

112x32

Input

120x1

116x32

Generator model G

Output

16x1

Conv-3

Predictions

Generator Model

- **Input:** Random Gaussian distribution noise **z** (size 100x1)
- Output: Fake Generated CSI sample x_g (size 120x1)

- Input: Generated fake sample x_g (size 120x1); Real CSI sample x (size 120x1)
- Output: q, possibility the input is real (scalar); y, predictions on input (size Mx1)

Discriminator Model (cont.)

 Seen as Discriminator D: Produce a scalar q which represents the probability of the input CSI sample being a real sample with a customized lambda function:

$$\lambda(\mathbf{c}) = \frac{\sum_{m=1}^{M} \exp(c_m)}{\sum_{m=1}^{M} \exp(c_m) + 1}$$

[T. Salimans et al, "Improved techniques for training GANs, NIPS2016]

Discriminator Model (cont.)

- Seen as *Classifier C*: Produce a prediction vector **y** with Softmax activation and index of the largest component in **y** is the class prediction.
- This model C is saved as the fingerprint.

Training DCGAN

The training of the proposed DCGAN involves a **two-step** iterative process: (1) <u>Training **Discriminator**</u> and (2) <u>Training **Generator**</u>. For each iteration:

First, we train Discriminator as Classifier, with few labeled CSI

Real CSI (Labeled)

Discriminator D

Pre-activated output

Train D to make more accurate predictions.

Update Discriminator's weight.

Training DCGAN (cont.)

Next, we train Discriminator D again, but with the fake CSI samples from **fixed G** plus real CSI samples:

Training DCGAN (cont.)

Finally, we turn to train Generator G, with the **fixed and updated Discriminator D**:

Experimental Environment

Dataset:

- Training Set: 400 CSI samples for each location (6400 for all locations)
- Testing Set: 200 CSI samples for each location (3400 for all locations)
- Unlabeled Set: the CSI is same as training set but without label

Conference room at the Research Center for Information Technology Innovation, Academia Sinica.

Experiment Result

Labeled CSI samples	Semi-Supervised DCGAN (%)	Supervised CNN (%) (same architecture as D of DCGAN)
16	85.75	58.87
32	85.78	68.78
64	87.28	82.47
128	87.41	81.25
1600	87.09	86.87
3200	86.72	88.31
6400	87.84	87.71

With semi-supervised DCGAN, the classification accuracy retains with reduced amount of labeled data.

Simplified G

Simplified G (cont.)

Labeled CSI samples	Semi-Supervised DCGAN (%)	Semi-Supervised DCGAN With a Simplified G (%)
16	85.75	64.40
32	85.78	72.94
64	87.28	79.25
128	87.41	79.41
1600	87.09	81.41
3200	86.72	86.63
6400	87.84	87.06

A sophisticated G can help train a good D, and consequently a good C, in the considered DCGAN architecture.

Conclusion

- 1. We have presented a **GAN-based semi-supervised approach** to the device-free fingerprinting indoor localization problem.
- We showed that the proposed scheme <u>achieves an increasingly</u> <u>advantageous performance when trained with an increasingly reduced</u> <u>number of labeled training samples</u>, as compared to the supervised approach.
- 3. The <u>interactions between the G, D, and C</u> of the proposed model were discussed.

Thank you for your attention!