## Grafer

- 1. Påståendet är falskt. Ett enkelt motexempel är  $K_5$
- 2. Lösning: Den kompletta grafen  $K_4$  är planär. Eftersom varje graf med högst 4 hörn är en delgraf till  $K_4$ , så är påståendet sant
- 3. Lösning: Det kromatiska polynomet för grafen som fås från  $K_5$  genom att underdela precis en kant kan bestämma genom att använda den vanliga rekursionsformeln. Låt  $K_5^+$  vara grafen som fås från  $K_5$  genom att underdela precis en kant. Kromatiska polynomet för  $K_5^+$  e ( $K_5^+$  minus en kant som slutar vid hörnet av valens 2) är  $\lambda(\lambda-1)^2(\lambda-2)(\lambda-3)^2$ . Vidare genom att kontrahera en kant som slutar vid hörnet av valens 2 fås  $K_5$  som har kromatiskt polynom  $\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)$ . Alltså är det sökta kromatiska polynomet  $\lambda(\lambda-1)^2(\lambda-2)(\lambda-3)^2-\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda-4)=\lambda(\lambda-1)(\lambda-2)(\lambda-3)(\lambda^2-5\lambda+7)$
- 4. Lösning: Använd t.ex. induktion över n.
- 5. Lösning: Grafen ser ut som följer:



Som synes är grafen planär. Vidare är kromatiska polynomet lika med  $\lambda(\lambda-1)(\lambda-2)((\lambda-1)(\lambda-2)(\lambda-3))^3$ , ty vi kan välja 3 olika färger till triangeln 4-5-9 på  $(\lambda(\lambda-1)(\lambda-2)$  olika sätt, och sedan kan resterande färger till varje kopia av  $K_4$  väljas på  $(\lambda-1)(\lambda-2)(\lambda-3)$  olika sätt.

6. Lösning: Grafen G kan fås från följande graf genom att dessutom lägga till alla möjliga kanter mellan de två komponenterna. Därmed fås att den längsta cykeln innehåller alla hörn i G, och alltså har längd 8.





7. Lösning: Grafen kan ritas på följande sätt:



Lösning: Grafen G är bipartit, så den har kromatiskt tal 2

8. Lösning: Ett träd är en planär graf som ej innehåller någon hamiltoncykel

## Po-mängder

1. a) Svar: Relationen är reflexiv, antisymmetrisk och transitiv och alltså en partialordning. Hassediagrammet ser ut på följande sätt:



- b) Lösning: Alla element utom 14, 16, 18 är minimala, och alla element utom 7, 8, 9 är maximala
- 2. Relationen är reflexiv, antisymmetrisk och transitiv, och därmed en partialordning. Hassediagrammet ser ut på följande sätt



- 3. a) Lösning: Relationen är inte antisymmetrisk, och alltså inte en partialordning.
  - b) Lösning: En partialordning  $\preccurlyeq$  på R ges av ordna elementen enligt följande:  $(6,10) \preccurlyeq (6,11) \preccurlyeq (7,10) \preccurlyeq (7,11) \preccurlyeq (8,10) \preccurlyeq (8,11) \preccurlyeq (9,10) \preccurlyeq (9,11)$ . (Det finns många olika lösningar.)
- 4. a) Lösning: Relationen är reflexiv, antisymmetrisk och transitiv och alltså en partialordning.
  - b) Lösning: Hassediagrammet ser ut som följer:



c) Lösning: Po-mängden kan bara sorteras topologiskt på ett sätt, eftersom det är en totalordning.