KHOA ĐIỆN-ĐIỆN TỬ Bộ Môn Cơ Sở KỸ Thuật Điện Tử

CHƯƠNG 2: CÁC LOẠI TRANSISTOR

TRANSISTOR LUÖNG CỰC (BJT – BIPOLAR JUNCTION TRANSISTOR)

Hình dạng thực tế

2. Nguyên lý hoạt động

Để BJT làm việc, phải cung cấp điện áp 1 chiều tới các cực của nó, gọi là phân cực cho Transistor (phân cực cho mối nối BE và BC)

Các chế độ hoạt động của BJT Tích cực: (khuếch đại hay tuyến tính - active)

Mối nối B-E phân cực thuận

Mối nối B-C phân cực nghịch

Bão hòa: (saturation)

Mối nối B-E phân cực thuận Mối nối B-C phân cực thuận

Ngung dẫn: (cutoff)

Mối nối B-C, B-E phân cực nghịch

Hoạt động của BJT npn ở chế độ khuếch đại

Mối quan hệ dòng điện trong BJT

$$\alpha = \frac{\text{Số HẠT ĐẾN ĐƯỢC C}}{\text{SỐ HẠT PHÁT RA TỪ E}} = \frac{I_{C}}{I_{E}} \quad (0.95:0.99)$$

$$Ic = \alpha.Ie + Icbo$$

$$IE = IB + IC$$

hệ số khuếch đại dòng điện dc
$$\beta = \frac{Ic}{I_B}$$

QUAN HỆ GIỮA
$$\alpha$$
 VÀ β : $\beta = \frac{\alpha}{1 - \alpha}$ $\alpha = \frac{\beta}{\beta + 1}$

I_{CBO}: dòng ri của mối nối CB khi phân cực ngược CB và cực E hở mạch.

Đặc tuyến Volt - Ampere

BJT dẫn cần phân cực thuận BE:

$$V_{BE}$$
= 0.7V (npn, Si)
 V_{BE} = -0.7V (pnp, Si)

Vùng bão hoà (saturation)

$$I_{B} = I_{Bsat} du l du$$
 $V_{CE} = V_{CEsat} \approx 0$
 $R_{CE} = 0$
 $I_{C} = I_{Cmax}$
 $I_{C} \leq \beta I_{B}$

Vùng ngưng dẫn (cut off)

$$\begin{array}{c} I_{B} = 0 \\ I_{C} = I_{CEO} \approx 0 \\ R_{CE} = \infty \end{array}$$

Vùng tích cực (active)

$$\begin{aligned} 0 &< I_B < I_{Bsat} \\ 0 &< R_{CE} < \infty \\ I_C &= \beta I_B \end{aligned}$$

Đặc tuyến ngõ ra
$$I_C = f(V_{CE})$$

4. Các thông số giới hạn của BJT

MAXIMUM RATINGS

Characteristic	Symbol	2SA671	Unit	
Collector-Emitter Voltage	V _{CEO}	50		
Collector-Base Voltage	V _{CBO}	50	V	
Emitter-Base Voltage	V _{EBO}	4.0	V	
Collector Current - Continuous - Peak	I _C	3:0 6.0	А	
Base current	I _B	0.5	А	
Total Power Dissipation @T _C = 25°C Derate above 25°C	P _D	25 0.2	W/°C	
Operating and Storage Junction Temperature Range	T _J ,T _{STG}	°C		

^{*} hFE(2) Classification :

30 // /0 30 2 120 130 3 2 3		35	Α	70	60	В	120	100	С	200	160	D	320
---	--	----	---	----	----	---	-----	-----	---	-----	-----	---	-----

CÁC MẠCH PHÂN CỰC CHO BJT

Mục đích:

• Phân cực cho
BJT nhằm xác định chế độ hoạt động và điểm làm việc tĩnh $Q(I_{CO}, V_{CEO})$ của BJT.

Mạch phân cực ổn định cực phát – mạch phân cực định

 $=V\gamma$

dòng có R_E)

Mạch vòng BE

$$-Vcc + I_BR_B + V_{BE} + I_ER_E = 0$$

Mà
$$I_E = (\beta + 1)I_B$$

$$\rightarrow I_B = \frac{V_{CC} - V_{BE}}{R_B + (\beta + 1)R_E}$$

$$\rightarrow$$
 $I_{CQ} = I_{C} = \beta I_{B}$

Mạch vòng CE

$$-Vcc + I_CR_C + V_{CE} + I_ER_E = 0$$

$$\rightarrow$$
 $V_{CEQ} = V_{CE} = Vcc - I_C(R_C + R_E) (I_C \approx I_E)$

 \rightarrow Điểm làm việc tĩnh Q(I_{CQ} , V_{CEQ})

Vd: Mạch phân cực ổn định cực phát — mạch phân cực định dòng có $R_{\rm E}$)

Mạch phân cực dùng cầu phân áp)

Điểm tĩnh Q không phụ thuộc vào hệ số β.

$$V_{CEQ} = V_{CC} - I_C (R_C + R_E)$$

Mạch phân cực dùng cầu phân áp)

Tính chính xác

$$R_{\rm BB} = R_{\rm Th} = R_1 \| R_2 \qquad V_{\rm BB} = \frac{R_2}{R_1 + R_2} Vcc$$
 Mach vòng BE
$$E_{\rm Th} - I_B R_{\rm Th} - V_{\rm BE} - I_E R_E = 0$$

$$\Longrightarrow I_{\mathcal{B}} = \frac{E_{\mathsf{Th}} - V_{\mathcal{B}\mathcal{E}}}{R_{\mathsf{Th}} + (\beta + 1)R_{\mathcal{E}}} \quad (I_{\mathsf{E}} = (\beta + 1)I_{\mathsf{B}})$$

$$\longrightarrow$$
 $I_{CQ} = I_{C} = \beta I_{B}$

Mạch vòng CE

$$V_{CE} = V_{CC} - I_C (R_C + R_E)$$

 \rightarrow Điểm làm việc tĩnh Q(I_{CQ} , V_{CEQ})

Vd: Mạch phân cực dùng cầu phân áp

Vd: Mạch phân cực dùng cầu phân áp

Mạch phân cực hồi tiếp từ cực C

Mạch vòng BE

$$V_{CC} = I_C R_C + I_B R_B + V_{BE} + I_E R_E$$

Tính gần đúng

$$I_{C}^{'}\cong I_{C}=eta I_{B}$$
 $I_{E}\cong I_{C}$

$$I_{\mathcal{B}} = \frac{V_{CC} - V_{\mathcal{B}\mathcal{E}}}{R_{\mathcal{B}} + \beta(R_C + R_{\mathcal{E}})}$$

$$\longrightarrow$$
 $I_{CQ} = I_{C} = \beta I_{B}$

Mạch vòng CE

$$V_{CC} = I_E R_E + V_{CE} + I'_C R_C$$

Tính gần đúng

$$\longrightarrow V_{CE} = V_{CC} - I_C (R_E + R_C)$$

 \rightarrow Điểm làm việc tĩnh Q(I_{CQ} , V_{CEQ})

PHƯƠNG TRÌNH ĐƯỜNG TẢI

Đường tải DC (DCLL-DCLoad Line)

Biểu diễn quan hệ $I_C = f(V_{CE})|_{(DC)}$

$$\mathbf{I_{C}} = \mathbf{f}(\mathbf{V_{CE}})|_{(\mathbf{DC})}$$

Xây dựng bằng cách áp dung ĐL Kirchhoff cho mạch vòng CE

Xét đáp ứng DC

$$t\mu \rightarrow h \mathring{o} mach$$

Vi= 0

Mạch vòng CE

$$-Vcc + I_CR_C + V_{CE} = 0$$

$$\rightarrow I_C = -\frac{1}{R_C} V_{CE} + \frac{V_{CC}}{R_C} \quad \text{DCLL}$$

Điểm Q thay đổi theo dòng I_B .

 V_{CE}

 V_{CC_2}

ÚNG DỤNG

Đặc điểm của BJT dẫn bão hoà

$$V_{CE} = V_{CESAT} = 0V$$
 (thực tế 0.2V)

$$I_C = I_{Csat} = I_{cmax} = Vcc/R_C$$

 I_B mất khả năng điều khiển I_C : $(I_C \le \beta I_B)$

$$\beta_{\text{sat}} = \beta_{\text{khu\acute{e}ch dại}} / (\text{hệ số bão hoà sâu k})$$

$$I_{Bsat} = I_{Csat}/\beta_{sat}$$

Hinh 4-7a

V CE(sat)

Các chế độ hoạt động ngắt dẫn bão hòa của BJT

<u>Vd:</u>

Úng dụng bão hòa

IKALOGIC.COM

<u>Úng dụng bão hòa</u>

http://www.lqv77.com

Ứng dụng khuếch đại tín hiệu

Kiểu CB (Common Base – B chung): vào E ra C

Kiểu CE (Common Emitter – E chung): vào B ra C

Kiểu CC (Common Collector – C chung): vào B ra E

Thiết kế phân cực dạng mạch định dòng:

Thiết kế phân cực dạng mạch dùng cầu phân áp

Thiết kế phân cực dạng mạch hồi tiếp từ cực C

