

Data Science Level 1

-- Session 3--Basic Machine learning

Hung Nguyen

TIC Data Team Lead

Data Science Process: Recap

Business Understanding	Data Preparation	Data Munging	Model Training	Model Evaluation	Model Deployment	Model Tracking
Determine	Identify	Impute	Train	Evaluate	Deploy	Monitor
Understand	Collect	Transform	Assess	Peer Review	Document	Maintain
Мар	Assess	Reduce	Select	Present		Test
	Vectorize					
DISCUSS	COLLATE	WRANGLE	PERFORM	COMMUNICATE	EXECUTE	TRACK

What is machine learning?

Machine learning = learn from examples and experience, without being explicitly programmed

Why Machine Learning?

- Some tasks cannot be defined well
- Find hidden relationships/correlations withinlarge amount of data
- Human designing cannot work well as desired
- Reduce computational time

Data Science Level 1

-- Session 3--

Basic ML Algorithms

- > Linear Regression
- > Logistic Regression
- > K-Means clustering
- > kNN
- Decision Tree
- > SVM

- Naive Bayes
- > Random Forest
- DimensionalityReduction Algorithms
- Gradient Boosting algorithms

Linear regression

Find

$$\widehat{Y} = W \cdot X + b$$

that minimizes

$$\sum (Y - \widehat{Y})^2$$

from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(X, y)

Regression model evaluation

Root mean squared error (RMSE)

$$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (Y_i - \widehat{Y}_i)^2}$$

Mean squared error (MSE)

$$MSE = \frac{1}{N} \sum_{i=1}^{N} (Y_i - \hat{Y}_i)^2$$

Mean absolute error (MAE)

$$MAE = \frac{1}{N} \sum_{i=1}^{N} ||Y_i - \hat{Y}_i||$$

The smaller error, the better model

Overfit & underfit

Logistic regression

Find parameters θ
that maximize **likelihood**

$$\Pr(y|X;\theta) = h_{\theta}(X)^{y} (1 - h_{\theta}(X))^{1-y}$$

$$h_{\theta}(X) = \frac{1}{1 + e^{-\theta^T X}} = Pr(Y = 1 | X; \theta)$$

from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X,y)

Classification model evaluation

A lot of metrics to consider

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F1 = 2 \frac{Precision \times Recall}{Precision + Recall}$$

$$ROC$$

k-Means clustering

from sklearn.cluster import Kmeans

k_means = Kmeans()

K nearest neighbors: regression & classification

Predicted label of new point is based on its k nearest points

- ➤ If classification voting
- > If regression taking averages

Decision tree: regression & classification

Support vector machine - classification

Find some line (hyperplane) that splits the data between the two differently classified groups of data, such that the distances from the closest point in each of the two groups will be farthest away.

Gaussian because this is a normal distribution

P(data | class) x p(class)
p(data)

p(class | data) =

We don't calculate this in naive bayes classifiers.

This is our prior

Random forest – an ensemble of decision trees

Dimensionality Reduction Algorithms

Reduce (usually by PCA) dimension of input data to speed up the model

Gradient Boosting

Idea

- make a prediction with higher
 prediction power from plenty of data
- an ensemble of learning
 algorithms which combines the
 prediction of several base estimators

Framework

- GBM, AdaBoost (sklearn)
- XGBoost
- LightGBM

THANK YOU!

Vietnam: **84-2839-951-059**

North America: +1 844 224 4188

Australia: +61 414 734 277

Japan: +81 364 324 994

Website: http://tma-innovation.center

Email: innovation@tma.com.vn

