$$A = \{i \in \mathbb{N} \mid i < 10\}, \ B = \{i \in \mathbb{N} \mid 5 < i < 15\}, \ R = \{((x, y) \in A \times B \mid y = 2x)\}$$

Building new relations from given ones

Inverse relation

Definition Given a relation $R \subseteq A \times B$, we define the *inverse relation* $R^{-1} \subseteq B \times A$ by

$$R^{-1} = \{(b, a) \mid (a, b) \in R\}.$$

Example: The inverse of the relation *is a parent of* on the set of people is the relation *is a child of*.

Example: $A = \{1, 2, 3, 4\}$, $R = \{(x, y) \mid x \le y\}$

Composition of relations

Definition Let $R \subseteq A \times B$ and $S \subseteq B \times C$. The (functional) composition of R and S, denoted by $S \circ R$, is the binary relation between A and C given by

$$S \circ R = \{(a, c) \mid \text{ exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$$

Example: If R is the relation is a sister of and S is the relation is a parent of, then

- $S \circ R$ is the relation is an aunt of,
- $S \circ S$ is the relation is a grandparent of.

people

R: is a sister of

S: is a parent of

 $S \circ R = \{(a, c) \mid \text{ exists } b \in B \text{ such that } aRb \text{ and } bSc\}.$

Alice R Ken and Ken S Alan so Alice $S \circ R$ Alan.

Penny R Sue and Sue S Jane so Penny $S \circ R$ Jane.

Fred S Ken and Ken S Fiona so Fred $S \circ S$ Fiona.

Digraph representation of compositions

A – set of people, B – set of countries

 $R \subseteq A \times A$, R(x, y) represents x is a friend of y

 $S \subseteq A \times B$, S(u, v) represents u visited v

Computer friendly representation of binary relations: matrices

- Let $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_m\}$ and $R \subseteq A \times B$.
- We represent R by an array M of n rows and m columns. Such an array is called a n by m matrix.
- The entry in row i and column j of this matrix is given by M(i,j) where

$$M(i,j) = \begin{cases} 1 & \text{if} \quad (a_i, b_j) \in R \\ 0 & \text{if} \quad (a_i, b_j) \notin R \end{cases}$$

Let $A = \{1, 3, 5, 7\}$, $B = \{2, 4, 6\}$, and

$$U = \{(x, y) \in A \times B \mid x + y = 9\}$$

Assume an enumeration $a_1 = 1$, $a_2 = 3$, $a_3 = 5$, $a_4 = 7$ and $b_1 = 2$, $b_2 = 4$, $b_3 = 6$. Then M represents U, where

$$M = \begin{bmatrix} 2 & 4 & 6 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

Let $A = \{a, b, c, d\}$ and suppose that $R \subseteq A \times A$ has the following matrix representation:

$$M = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

List the ordered pairs belonging to R.

$$R = \{(a,b), (a,c), (b,c), (b,d), (c,b), (d,d)\}$$

The binary relation R on $A = \{1, 2, 3, 4\}$ has the following digraph representation.

- The ordered pairs $R = \{ (4, 5), (3,1), (2,1) \}$
- The matrix

■ In words:

X, y are a one rel. R of X=4+1, X, y are element