0.1 H15 数学 A

 $\boxed{1}$ $(1)\{f(x)\mid x\in X\}$ が下に有界でないとする.すなわち任意の $n\in\mathbb{N}$ に対して $f(x)\leq -n$ なる $x\in X$ が存在する.これを x_n とおく.X は \mathbb{R}^n のコンパクト集合であるから有界閉集合である.よって X 内の点列 $\{x_n\}_{n=1}^\infty$ は収束する部分列 $\{x_{n_k}\}_{k=1}^\infty$ をもち, $x_{n_k}\to\alpha\in X$ となる. $f(\alpha)\leq \liminf_{k\to\infty}f(x_{n_k})=-\infty$ となりこれは矛盾.よって下に有界.

(2) 下に有界であるから $\inf\{f(x)\mid x\in X\}=M\in\mathbb{R}$ である。M が下限であるから任意の $n\in\mathbb{N}$ に対して $f(x_n)\leq M+\frac{1}{m}$ なる x_n が存在する。数列 $\{x_n\}$ は収束部分列 $\{x_{n_k}\}$ をもち, $x_{n_k}\to\alpha\in X$ となる。 $M\leq f(\alpha)\leq \liminf_{k\to\infty}f(x_{n_k})\leq \lim_{k\to\infty}(M+\frac{1}{n_k})=M$ となり $f(\alpha)=M$. よって f は最小値をもつ。

2 (1)g(0)=1 であり g は連続関数であるから 0 を含むある開区間 I で g(x)>0 となる. I 上で $h(x)=\sqrt[m]{g(x)}$ とする. I 上で h は C^1 級であり $h(x)^m=g(x),h(x)>0$ である.

 $(2)f(\varphi(y))=\varphi(y)^mg(\varphi(y))=\varphi(y)^mh(\varphi(y))^m=y^m$ をみたす $\varphi(y)$ を求める. $\varphi(y)h(\varphi(y))=y$ をみたす $\varphi(y)$ を求めればよい. F(x,y)=xh(x)-y とおく. $\partial F/\partial x(0,0)=h(0)+0\varphi'(0)>0$ である. 陰関数定理から F(x,y)=0 をみたす C^1 級関数 $x=\varphi(y)$ が 0 の近傍で存在する.

 $\boxed{3}$ $(1)T_A(cX+Y)=^t(cX+Y)A+A(cX+Y)=c^tXA+cAX+^tYA+AY=cT_A(X)+T_A(Y)$ である. よって線形.

 $(2)^t({}^tXA+AX)=AX+{}^tXA$ より $\mathrm{Im}T_A\subset S$ である. $Y\in S$ に対して $X=A^{-1}Y/2$ とすると, ${}^tXA+AX={}^t(AX)+AX={}^t(Y/2)+(Y/2)=Y$ となる. よって $S\subset \mathrm{Im}T_A$ である.

$$(AX)^t(AX) + AX = {}^o(Y/2) + (Y/2) = Y$$
 となる。ようじらに $\operatorname{Im} I_A$ である。 $(3)^t(AX) + AX = O$ より AX が交代行列となる X を考える。よって $X_1 = \begin{pmatrix} 0 & 1 & 0 \ -1 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}, X_2 = \begin{pmatrix} 0 & 1 & 0 \ 0 & 0 & 0 \end{pmatrix}$

 $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ とする. AX_1, AX_2, AX_3 は交代行列である. よって X_1, X_2, X_3 は $\ker T_A$ の其底となる

 $\boxed{4}$ (1)AB = BA のとき、 $v \in V_i$ に対して $ABv = BAv = B\alpha_i v = \alpha_i Bv$ より、 $Bv \in V_i$ である.

 $BV_j \subset V_j$ $(j=1,\dots,k)$ のとき、A がエルミート行列であるから、 \mathbb{C}^n を固有空間の直和に分解できる、したがって $\{v_1,\dots,v_n\}$ をそれぞれが A の固有ベクトルであるような基底とできる、 $v_i \in V_{s_i}$ とする、 $u \in \mathbb{C}^n$ に対して $u=a_1v_1+\dots+a_nv_n$ とできる、 $ABu=A(a_1Bv_1+\dots a_nBv_n)=a_1\alpha_{s_1}Bv_1+\dots+a_n\alpha_{s_n}Bv_n$ である。また $BAu=B(a_1\alpha_{s_1}v_1+\dots a_n\alpha_{s_n}v_n)=a_1\alpha_{s_1}Bv_1+\dots+a_n\alpha_{s_n}Bv_n$ である。よって ABu=BAu である。すなわち AB=BA

 $(2)v\in V_j$ に対して $A^mv_j=\alpha_j^mv_j$ である。 A^m の固有値 α_j^m の固有空間を W_j とすると, $W_j\supset V_j$ である。 A はエルミート行列であるから固有値は実数である。したがって異なる固有値 α_i,α_j にたいして $\alpha_i^m=\alpha_j^m$ となるには m が偶数であることが必要。今 m は奇数であるから $\alpha_i^m\neq\alpha_j^m$ である。したがって $i\neq j$ なら $W_i\neq W_j$ である。よって $W_j=V_j$ である。 A^m はエルミート行列であり $A^mC=CA^m$ であるから A^m はエルミート行列であり。 $A^mC=CA^m$ であるから A^m はエルミート行列である。