

Modéliser et visualiser la ville 4D

Vincent Jaillot, Sylvie Servigne, Gilles Gesquière

Laboratoire d'InfoRmatique en Image et Systèmes d'information

Contexte

Urbanisation – population en ville: 55% en 2018, 68% en 2050

Seoul, South Korea

Abu Dhabi, United Arab Emirates

2050

Source: https://www.boredpanda.com/how-famous-city-changed-timelapse-evolution-before-after

Ville numérique 3D - Modèles

- Représentée comme un ensemble d'objets géographiques
- Un objet géographique:
 - "Representation of real world phenomenon associated with a location relative to the Earth." Sources: OGC glossary, ISO 19104
 - Dimensions géométrique et thématique et temporelle

Système de coordonnées géographiques

Géométries

type: bâtiment

propriétaire: John Doe

nombre d'étages: 1

usage: mairie

• • •

Thématique

Ville numérique 3D - Modèles

- Modèles structurés et hiérarchisés
- Plusieurs niveaux de granularité

Ville numérique 3D – Contexte technologique

Ecosystème riche et récent

Source: https://www.arcorama.fr/2019/04/utiliser-lopen-data-et-arcgis-pour.html

Dans cette présentation....

Comment formaliser la dimension temporelle des villes 3D pour leur visualisation sur le web ?

Défis:

- Différents niveaux de granularité (espace et temps)
- Importance du cycle de vie des objets
- Gros jeux de données
- Visualisation et navigation interactive
- Contexte web

Modèles temporels – données géospatiales

Typologie des modèles spatio-temporels pour les données géospatiales [Siabato et al., 2018]

Modelling approach	Modelling approach	Modelling approach	
Snapshot method	Semantic-based	Moving Objects	
Time-stamping *	Event-based	Graphs-based	
Base state amendment vectors *	Process-based	Lifespan-based	
Space-time composite model *	Ontology-based	Agents-based	
Domain-based modelling *	Feature-based (Entity-based)	Kinematics	
Object-Oriented	Identity-based	Ontological foundations	
	Conceptual modelling extensions		

Exemple modèles temporels

Modèle basé graph [Renolen, 2000]

Modèle générique (diagramme états -transitions)

Typologie des changements

Proposition

Proposition:

Modèles pour l'échange et la visualisation de l'évolution des villes 4D sur le web

Méthodologie et contributions:

- Modèle générique 3D Tiles et i3s
- Formalisation et intégration dimension temporelle
- Spécification dans 3D Tiles
- Implémentation open source

Modèle générique – Villes 3D

Modèle générique pour la visualisation de villes 3D sur le web

Spécification dans 3D Tiles

visualisation de villes 4D sur le web

Specification JSON Schema

https://doi.org/10.5281/zenodo.3596881

Modèle logique de 3D Tiles (blanc) et extension temporelle (gris)

Architecture logicielle

iTowns UD-Viz Geospatial data Client Geospatial data visualization framework navigation interface **Apache HTTP server** Web server 3D Tiles HTTP server py3dtiles **3DUSE Processing** 3D Tiles dataset Geospatial analysis server creator processes 3D Tiles + CityGML 3DCityDB 3D Tiles 3DTiles_temporal **Data** server Time-evolving 3D City models 3D city models

Evaluation – Jeux de données

- Trois jeux de données:
 - **DS-CityGML**: Lyon 2009, 2012 et 2015 en CityGML
 - **DS-3DTiles**: Lyon 2009, 2012 et 2015 en 3D Tiles
 - **DS-3DTiles-Tmp**: Lyon entre 2009 et 2015 en 3D Tiles avec extension temporelle

Dataset		Size (MB)	Number of buildings
DS-CityGML	2009	1100	14827
	2012	1110	14835
	2015	976	24289
	Total	3176	53951
DS-3DTiles	2009	182	14827
	2012	183	14835
	2015	261	24289
	Total	626	53951
DS-3DTiles-Tmp		435	36975

Evaluation – Navigation

Dataset		Mean loading and rendering time (seconds)	Standard deviation
DS-3DTiles	2009	1.4	0.03
	2012	1.4	0.04
	2015	1.9	0.1
	Total	4.7	N.A.
DS-3DTiles	s-Tmp	3	0.04

Legend

Animation time with 3D Tiles (seconds)

Animation time with 3D Tiles temporal extension (seconds)

Evaluation – Navigation

Démonstration: Visualisation et navigation

Delivering time-evolving 3D city models for web visualization

Vincent Jaillot, Sylvie Servigne, Gilles Gesquière

Conclusion

- Modèle générique 3D Tiles i3s
- Formalisation et intégration de la dimension temporelle au niveaux conceptuel, logique et specification
- Implémentation open source

Perspectives

- Quels index spatio-temporels ?
 - HR-Tree ? (Yufei et al., 2001)

Vers un modèle plus complexe pour représenter l'évolution de

la ville? (Samuel et al., 2020)

Pour aller plus loin...

Article: Jaillot, Vincent, Sylvie Servigne, and Gilles Gesquière. 2020. "Delivering Time-Evolving 3D City Models for Web Visualization." International Journal of Geographical Information Science, April. https://www.tandfonline.com/doi/abs/10.1080/13658816.2020.1749637.

- Reproduire la démonstration: https://github.com/VCityTeam/UD-Reproducibility/tree/master/Demos/Temporal-LyonMetropole
- Reproduire l'évaluation: https://github.com/VCityTeam/UD-Reproducibility/tree/master/Articles/2020-IJGIS-Temporal
- Jeux de données:
 - 3D Tiles Lyon, Villeurbanne, Bron 2015: https://zenodo.org/record/3606733
 - 3D Tiles temporel Lyon 2009 2015: http://doi.org/10.5281/zenodo.3596861

