Continuous Strategies and Rationalizability

ECON 420: Game Theory

Spring 2018

Announcements

- ► Reading: Chapter 5 and 6
- ► Homework due next Monday
- Midterm exam next Wednesday

Continuous strategies

- ► So far: Games with *discrete* strategies
 - Choosing from a finite set of actions
- ► Many games have many (or infinite) available actions
- ▶ Can we generalize the notion of *best response* to these settings?

Price-setting game

- ► Suppose there are two competing restaurants (they make only one dish)
- ▶ Both firms must choose their prices p_1 and p_2 ▶ The number of dishes each restaurant sells is $Q_i = 44 2p_i + p_j$
- After a price change, half of your usual customers will leave to go to the other restaurant
- ► The dishes cost \$8 to make for each restaurant
- ► Which price should each restaurant choose?

Both firms are maximizing profits -> MR = MC R(P,): revenue for firm 1 as a function of price MR = 44 -4P1 +P2 R(P1) = P,Q1 MC = -16 $= P_1 \left(44 - 2P_1 + P_2 \right)$ 44-4P, +Pz = -16 = 44P, - 2P,2 + P, P2 48, = 60+ 82 c(P₁) = 8·Q₁ P, = 15 + = 1 P2 = 8(44-77,+72) = 8-14 - 16P, +8Pz price given Pz

Best response

- ▶ Profit depends on the pricing choice of the other firm
- Restaurants try to profit maximize given the price that they think the other will choose
- ▶ This pricing strategy is the *best response* of the restaurant

BR, = 15 +
$$\frac{1}{4}$$
P₂
BR₂ = 15 + $\frac{1}{4}$ BR₂ both true simultaneously
BR₂ = 15 + $\frac{1}{4}$ BR₁
 $\frac{1}{4}$ P₁ = $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₁ = $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₁ = $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₁ = $\frac{1}{4}$ P₁ = $\frac{1}{4}$ P₁ = $\frac{1}{4}$ P₂ + $\frac{1}{4}$ P₃ + $\frac{1}{4}$ P₄ + $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₁ = $\frac{1}{4}$ P₁ = $\frac{1}{4}$ P₂ + $\frac{1}{4}$ P₃ + $\frac{1}{4}$ P₄ + $\frac{1}{4}$ P₄ + $\frac{1}{4}$ P₅ + $\frac{1}{4}$ P₇ + $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₂ + $\frac{1}{4}$ P₃ + $\frac{1}{4}$ P₄ + $\frac{1}{4}$ P₄ + $\frac{1}{4}$ P₅ + $\frac{1}{4}$ P₇ + $\frac{1}{4}$ P₇ + $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₁ + $\frac{1}{4}$ P₂ + $\frac{1}{4}$ P₃ + $\frac{1}{4}$ P₄ + $\frac{1}{4}$ P₄ + $\frac{1}{4}$ P₅ + $\frac{1}{4}$ P₇ + $\frac{1}{4}$ P₇ + $\frac{1}{4}$ P₁ +

$$T_{1} = P_{1}Q_{1} - 8Q_{1}$$

$$= 20(44 - 2(20) + 20) - 8(44 - 2(20) + 20)$$

$$= 20(24) - 8(24)$$

$$= (20 - 8)24$$

$$= 12 \cdot 24$$

$$= 288$$

$$Suppose P_{1} = 19, P_{2} = 20$$

$$Q_{1} = 44 - 2(19) + 20$$

$$= 26$$

$$= 271$$

P= B = 20

Can the restaurants do better?

- ► Suppose an outside company buys both restaurants
- ▶ The firm is now a monopolist, chooses one price for both locations
- ▶ What is the optimal price? What are the profits?

$$Q_1 = 44 - 2P + P$$

$$= 44 - P$$

 $R(P) = P(44 - P)$

C(P) = 8(44-P)

$$MR = 44 - 2P$$
 $MC = -8$

$$44-2P = -8$$
 $2P = 52$
 $P = 26$
 $T_1 = PQ_1 - 8Q_1$
 $Q_1 = 44-P$
 $= (P-8)(44-P)$
 $= (26-8)(44-26)$
 $= 18 \cdot 18$

MR=MC

 $\Pi_1 = 324$

Collusion

- ► The pricing game is a form of a prisoners' dilemma (with continuous strategies)
- ► The firms could cooperate to split the monopolist profits
- ► But each can do better (individually) by choosing something *other* than the monopolist price
- ► Cooperation is *never* a best response

Limitations of NE?

Example:

- ► Player A: Chooses "Up" or "Down"
- ▶ Player B: Chooses "Left" or "Right"
- ► Payoffs (A, B):
 - ► Up, Left: (2 chocolates, 2 chocolates)
 - ► Up, Right: (1 chocolates, 1 chocolates)
 - Down, Left: (3 chocolates, 2 chocolates)
 - ► Down, Right: (50% penalty on midterm, 1 chocolate)

B

		Left	Right
A	NP	<u>~</u> 2, <u>Z</u>	<u>l</u> , l
~	Down	3,2	F, 473

* NE

Why might we not see a NE?

- ► Often, player A won't choose Down, because it is risky
- ► Why is it risky?
 - ► A might think B doesn't like chocolate

► A has uncertainty about B's payoffs

- ► A might be concerned the B will try to "spite" them
- ► These options might mean that the game is *misspecified*

Example

		COLUMN		
		Α	В	С
	Α	2,2 *	3,1	0,2
ROW	В	1,3	2,2	3,2
	С	2,0	2,3	2,2

Rationalization

- ► Suppose games are properly specified
- ► Nash equilibrium:
- ► The choice of each player is their best response given their beliefs about what the other players are doing
 - ► The beliefs are accurate

▶ Does this mean that purely rational players will achieve the NE?

		COLUMN		
		C1	C2	C3
	R1	0, 7	2,5	7,0
ROW	R2	5, 2	3, 3	5, 2
	R3	7, 0	2,5	0, 7

Is it rational for R to play R1?

Yes, if they believe C plays C3?

Is it rational for C to play C3?

Yes, if the believe R plays 173.

Rationalizability

- ▶ Multiple outcomes can be supported by rational "chains" of thought
- Not necessarily NE
- ▶ But not *every* outcome is supported by rationality
- ► For instance: It is never rational to play a strategy that is *never a best response*

			COLUMN			
			C1	C2	C3	C4
ſ		R1	0, 7	2,5	7,0	0, 1
l	ROW	R2	5, 2	3, 3	5, 2	0, 1
l		R3	7, 0	2, 5	0,7	0, 1
		R4	0, 0	0, -2	0,0	10, -1

Rationalizability

- ▶ Note: Not all strategies that are never a best response are dominated by

some other strategy

► Sometimes rationalizability can lead to a NE (but not always)

Cournot competition

- ► Suppose there are two fishing boats that choose how many fish to catch each day
- ▶ The local fish market buys the fish for a price P = 60 Y
- ▶ Boat one has costs of 30 per fish and boat 2 has costs 36 per fish