Math 246A Lecture 8 Notes

Daniel Raban

October 12, 2018

1 Cauchy's Integral Formula and Morera's Theorem

1.1 Cauchy's integral formula for rectangles

Let $\Omega \subseteq \mathbb{C}$ be a domain. Last time we proved the following.

Lemma 1.1. If R is a rectangle with $\overline{R} \subseteq \Omega$ and $f \in H(\Omega)$, then

$$\int_{\partial R} f(z) \, dz = 0.$$

Let's go further with this result.

Lemma 1.2. Let R be a rectangle. Then

$$\int_{\partial R} \frac{1}{z - a} \, dz = \begin{cases} 0 & a \notin R \\ 2\pi i & a \in R. \end{cases}$$

Proof. If $a \notin \overline{R}$, use the previous lemma. Other wise, let $S = \{x : |x - \operatorname{Re}(a)| < \delta\} \cup \{y : |y - \operatorname{Im}(a)| < \delta\}$ be a square. Then $\overline{S} \subseteq R$. Split the rectangle R into disjoint rectangles including S, where the only rectangle containing a is S. Change the contour appropriately.

The contributions of the other rectangles to the contour integral all are zero by the previous lemma. So

$$\int_{\partial R} \frac{1}{z-a} \, dz = \int_{\partial S} \frac{1}{z-a} \, dz.$$

Without loss of generality, $\delta = 1$ and a = 0. Then this is the integral

$$= \underbrace{\int_{-1}^{1} \frac{1}{x - i} \, dx}_{I} + \underbrace{\int_{-1}^{1} \frac{i}{1 + iy} \, dy}_{II} - \underbrace{\int_{-1}^{1} \frac{1}{x + i} \, dx}_{III} + \underbrace{\int_{-1}^{1} \frac{i}{-1 + iy} \, dy}_{IV}$$

Note that

$$I + III = \int_{-1}^{1} \frac{1}{x - i} - \frac{1}{x + i} dx = 2i \int_{-1}^{1} \frac{1}{1 + x^2} dx = 2i(\tan^{-1}(1) - \tan^{-1}(-1)).$$

You can find that II + IV is equal to the same thing.

Theorem 1.1 (Cauchy integral formula for rectangles). Let $\overline{R} \subseteq \Omega$ and $f \in H(\Omega)$. Then

$$\frac{1}{2\pi i} \int_{\partial R} \frac{f(z)}{z - a} dz = \begin{cases} 0 & a \notin \overline{R} \\ f(a) & a \in \text{int}(R). \end{cases}$$

Proof. If $a \in R$, then this is

$$\frac{1}{2\pi i} \int_{\partial S} \frac{f(z)}{z - a} \, dz,$$

where S is a square. The previous lemma gives us that

$$\left| \frac{1}{2\pi i} \int_{\partial S} \frac{f(z)}{z - a} dz - f(a) \right| = \left| \frac{1}{2\pi i} \int_{\partial S} \frac{f(z) - f(a)}{z - a} dz \right|.$$

Now note that since f(z) = f(a) + f'(z)(z-a) + o(|z-a|),

$$\frac{f(z) - f(a)}{z - a} \xrightarrow{z \to a} f'(a).$$

So as we make the square S smaller, this goes to 0.

Corollary 1.1. $H(\Omega) = \mathcal{A}(\Omega)$, where $\mathcal{A}(\Omega)$ is the set of functions $f : \Omega \to \mathbb{C}$ such that f has a convergent power series in some radius around every point in Ω .

Proof. Let $f \in H(\Omega)$, $z_0 \in \Omega$, $\delta > 0$, and $B(z_0, 2\sqrt{2}\delta) = \{z : |z - z_0| < 2\sqrt{2}\delta\} \subseteq \Omega$. Let $S \subseteq B(z_0, 2\sqrt{2}\delta)$ be a square around z_0 . If $|z - z_0| < \delta$, then

$$f(z) = \frac{1}{2\pi i} \int_{\partial S} \frac{f(\zeta)}{\zeta - z} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\partial S} \frac{f(\zeta)}{(\zeta - z_0) - (z - z_0)} d\zeta$$

$$= \frac{1}{2\pi i} \int_{\partial S} \frac{f(\zeta)}{\zeta - z_0} \left(\frac{1}{1 - (z - z_0)/(\zeta - z_0)}\right) d\zeta$$

The part in the parentheses is $\sum_{n=0}^{\infty} (z-z_0)^n/(\zeta-z_0)^n$, which is a convergent geometric series.

$$= \sum_{n=0}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial S} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta \right) (z - z_0)^n.$$

1.2 Morera's theorem

Theorem 1.2 (Morera). Suppose $f: \Omega \to \mathbb{C}$ is continuous, and for all $z_0 \in \Omega$, let $\delta(z_0) > 0$ such that $B(z_0, \delta(z_0)) \subseteq \Omega$. Let $R \subseteq B(z_0, \delta(z_0))$ be a rectangle with sides parallel to the axes, and suppose that

$$\int_{\partial R} f(z) \, dz = 0.$$

Then $f \in H(\Omega)$.

Proof. Without loss of generality, Ω is a disc $B = \{z : |z - z_0| < a\}$. If $z \in V$, let $\gamma_{z_0,z}$ be a curve joining $z_0 = z(0)$ to z = z(1) consisting of two sides of the rectangle with opposite vertices z_0 and z. Let

$$F(z) = \int_{\gamma_{z_0, z}} f(\zeta) d\zeta.$$

F is well-defined because the hypothesis says that this integral is the same no matter which curve we take $\gamma_{z_0,z}$ to be.

Let $z, w \in B$ with |w - z| small. Note that

$$|F(w) - F(z) - f(z)(w - z)| = \left| \int_{\gamma w, z} f(\zeta) - f(w) d\zeta \right|$$

$$\leq \sup_{|\zeta - w| < |z - w|} |f(\zeta) - f(w)| \cdot |z - w|$$

$$= |z - w| \cdot o(|z - w|).$$

So F'(u) = f(u). Then, since holomorphic implies analytic (we will prove this later), we get that f is holomorphic.

Next time, we will prove the following.

Theorem 1.3 (Goursat). Let $f: \Omega \to \mathbb{C}$ be such that f'(z) exists for all $z \in \Omega$. Then $f \in H(\Omega)$.

Corollary 1.2. Let $f: \Omega \in \mathbb{C}$. The following are equivalent:

- 1. f'(z) exists for all $z \in \Omega$
- 2. $f \in H(\Omega)$
- 3. $f \in \mathcal{A}(\Omega)$
- 4. $\int_{\partial R} f(z) dz = 0$ for all rectangles R with $\overline{R} \subseteq \Omega$.
- 5. f is differentiable, and the matrix $df = \begin{bmatrix} u_x & u_y \\ v_x & v_y \end{bmatrix}$ satisfies the Cauchy-Riemann equations, $u_x = v_y$, $v_x = -u_y$.