About an Identity and its Applications

Mihály Bencze and Florentin Smarandache

Str. Hărmanului 6, 505600 Săcele, Jud. Brașov, Romania University of New Mexico, 200 College Road, Gallup, NM 87301, USA

Theorem 1. If
$$x, y \in C$$
 then $2(x^2 + y^2)^3 - (x + y)^3(x^3 + y^3) = (x - y)^4(x^2 + xy + y^2)$.

Proof. With elementary calculus.

Application 1.1. If $x, y \in C$ then

$$\left(2\left(x^{2}+y^{2}\right)^{3}-\left(x+y\right)^{3}\left(x^{3}+y^{3}\right)\right)\left(2\left(x^{2}+y^{2}\right)^{3}-\left(x-y\right)^{3}\left(x^{3}-y^{3}\right)\right)=\left(x^{2}-y^{2}\right)^{4}\left(x^{4}+x^{2}y^{2}+y^{4}\right)$$

Proof. In Theorem 1 we replace $y \rightarrow -y$, etc.

Application 1.2. If $x \in R$ then

$$(\sin x - \cos x)^4 (1 + \sin x \cos x) + (\sin x + \cos x)^3 (\sin^3 x + \cos^3 x) = 2$$

Proof. In Theorem 1 we replace $x \to \sin x$, $y \to \cos x$

Application 1.3. If
$$x \in R$$
 then $2ch^6x - (1 + shx)^3 (1 + sh^3x) = (1 + shx)^4 (shx + ch^2x)$.

Proof. In Theorem 1 we replace $x \to 1$, $y \to shx$

Application 1.4. If $x, y \in C$ $(x \neq \pm y)$ then

$$\frac{2(x^2+y^2)^3-(x+y)^3(x^3+y^3)}{(x-y)^4}+\frac{2(x^2+y^2)^3-(x-y)^3(x^3-y^3)}{(x+y)^4}=2(x^2+y^2)$$

Application 1.5. If $x, y \in C$ then

$$\frac{2(x^2+y^2)^3-(x+y)^3(x^3+y^3)}{x^2+xy+y^2}+\frac{2(x^2+y^2)^3-(x-y)^3(x^3-y^3)}{x^2-xy+y^2}=2(x^4+6x^2y^2+y^4)$$

Application 1.6. If $x, y \in R$ then $2(x^2 + y^2)^3 \ge (x + y)^3 (x^3 + y^3)$.

(See Jószef Sándor, Problem L.667, Matlap, Kolozsvar, 9/2001.)

Proof. See Theorem 1.

Theorem 2. If $x, y, z \in R$ then $3(x^2 + y^2 + z^2)^3 \ge (x + y + z)^3 (x^3 + y^3 + z^3)$.

Proof. With elementary calculus.

Application 2.1. Let $ABCDA_1B_1C_1D_1$ be a rectangle parallelepiped with sides a,b,c and diagonal d. Prove that $3d^6 \ge (a+b+c)^3(a^3+b^3+c^3)$.

Application 2.2. In any triangle ABC the followings hold:

1)
$$3(p^2-r^2-4Rr)^3 \ge 2p^4(p^2-3r^2-6Rr)$$

2)
$$3(p^2-2r^2-8Rr)^3 \ge p^4(p^2-12Rr)$$

3)
$$3((4R+r)^2-2p^2)^3 \ge (4R+r)^3((4R+r)^3-12p^2R)$$

4)
$$3(8R^2 + r^2 - p^2)^3 \ge (2R - r)^3((2R - r)((4R + r)^2 - 3p^2) + 6Rr^2)$$

5)
$$3((4R+r)^2-p^2)^3 \ge (4R+r)^3((4R+r)^3-3p^2(2R+r))$$

Proof. In Theorem 2 we take:

 ${x, y, z} \in$

$$\in \left\{ \{a,b,c\}; \{p-a,p-b,p-c\}; \{r_a,r_b,r_c\}; \left\{\sin^2\frac{A}{2},\sin^2\frac{B}{2},\sin^2\frac{C}{2}\right\}; \left\{\cos^2\frac{A}{2},\cos^2\frac{B}{2},\cos^2\frac{C}{2}\right\} \right\}$$

Application 2.3. Let *ABC* be a rectangle triangle, with sides a > b > c then $24a^6 \ge (a+b+c)^3 (a^3+b^3+c^3)$

Theorem 3. If
$$x_k > 0$$
, $k = 1, 2, ..., n$, then $n \left(\sum_{k=1}^n x_k^2 \right)^3 \ge \left(\sum_{k=1}^n x_k \right)^3 \sum_{k=1}^n x_k^3$.

Application 3.1 The following inequality is true: $\sum_{k=0}^{n} \left(C_{n}^{k}\right)^{3} \leq (n+1) \left(\frac{C_{2n}^{n}}{2}\right)^{3}.$

Proof. In Theorem 3 we take $x_k = C_n^k$, k = 0,1,2,...,n.

Application 3.2. In all tetrahedron *ABCD* holds:

1)
$$\frac{\left(\sum \frac{1}{h_a^2}\right)^3}{\sum \frac{1}{h_a^3}} \ge \frac{4}{r^3}$$
 2) $\frac{\left(\sum \frac{1}{r_a^2}\right)^3}{\sum \frac{1}{r_a^3}} \ge \frac{2}{r^3}$

Proof. In Theorem 3 we take $x_1 = \frac{1}{h_a}$, $x_2 = \frac{1}{h_b}$, $x_3 = \frac{1}{h_c}$, $x_4 = \frac{1}{h_d}$ and $x_1 = \frac{1}{r_a}$, $x_2 = \frac{1}{r_b}$, $x_3 = \frac{1}{r_c}$, $x_4 = \frac{1}{r_d}$.

Application 3.3. If $S_n^{\alpha} = \sum_{k=1}^n k^{\alpha}$ then $n(S_n^{2\alpha})^3 \ge (S_n^{\alpha})^3 S_n^{3\alpha}$.

Proof. In Theorem 3 we take $x_k = k^{\alpha}$, k = 0,1,2,...,n.

Application 3.4. If F_k denote Fibonacci numbers, then $\sum_{k=1}^n F_k^3 \le n \left(\frac{F_n F_{n+1}}{F_{n+2} - 1} \right)^3$.

Proof. In Theorem 3 we take $x_k = F_k$, k = 1, 2, ..., n.

References:

- [1] Mihály Bencze, Inequalities (manuscript), 1982.
- [2] Collection of "Octogon Mathematical Magazine", 1993-2004.

{Published in "Octogon Mathematical Journal", Vol. 13, No. 1, 2005.}