

10/30/97

A

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No.: PB340P2

Date: October 30, 1997

Assistant Commissioner for Patents
 Box PATENT APPLICATION
 Washington, D.C. 20231

Sir:

Transmitted herewith for filing under 37 C.F.R. §1.53 is the following patent application:

Applicants: Gil H. Choi
 Chuck Kunsch
 Alex Hromockyj
 L. Sydnor Johnson

Title of Invention: *Streptococcus pneumoniae*
 Antigens and Vaccines

Including: Specification (110 pgs);
 21 Claims (3 pgs); and
 Abstract (1 pg)

PATENT APPLICATION FEE VALUE

TYPE	NO. FILE	LESS	EXTRA	EXTRA RATE	FEE
Total Claims	21	-20	1	\$22.00 each	22.00
Independent	6	-3	3	\$82.00 each	246.00
				Minimum Fee	790.00
				Multiple Dependency Fee if applicable (\$260.00)	
				Total Filing Fee	1058.00

Priority of Provisional Application Serial No. 60/029,960, filed on October 31, 1996 is hereby claimed under 35 U.S.C. §119(e).

Please charge the required fee to Deposit Account No. 08-3425. In addition, the Commissioner is hereby authorized to charge payment for any additional filing fees required under 37 C.F.R. 1.16 or credit any overpayment to Deposit Account No. 08-3425. A duplicate of this paper is attached.

Respectfully submitted,

 A. Anders Brookes (Reg. No. 36,373)
 Attorney for Applicants

Human Genome Sciences, Inc.
 9410 Key West Avenue
 Rockville, MD 20850
 (301) 850-4985 (telephone)

Enclosure

Streptococcus pneumoniae Antigens and Vaccines

Field of the Invention

The present invention relates to novel *Streptococcus pneumoniae* antigens for the detection of *Streptococcus* and for the prevention or attenuation of disease caused by *Streptococcus*. The invention further relates to isolated nucleic acid molecules encoding antigenic polypeptides of *S. pneumoniae*. Antigenic polypeptides are also provided, as are vectors, host cells and recombinant methods for producing the same. The invention additionally relates to diagnostic methods for detecting *Streptococcus* gene expression.

Background of the Invention

Streptococcus pneumoniae has been one of the most extensively studied microorganisms since its first isolation in 1881. It was the object of many investigations that led to important scientific discoveries. In 1928, Griffith observed that when heat-killed encapsulated pneumococci and live strains constitutively lacking any capsule were concomitantly injected into mice, the nonencapsulated could be converted into encapsulated pneumococci with the same capsular type as the heat-killed strain. Years later, the nature of this "transforming principle," or carrier of genetic information, was shown to be DNA. (Avery, O.T., *et al.*, *J. Exp. Med.*, 79:137-157 (1944)).

In spite of the vast number of publications on *S. pneumoniae* many questions about its virulence are still unanswered, and this pathogen remains a major causative agent of serious human disease, especially community-acquired pneumonia. (Johnston, R.B., et al., *Rev. Infect. Dis.* 13(Suppl. 6):S509-517 (1991)). In addition, in developing countries, the pneumococcus is responsible for the death of a large number of children under the age of 5 years from pneumococcal pneumonia. The incidence of pneumococcal disease is highest in infants under 2 years of age and in people over 60 years of age. Pneumococci are the second most frequent cause (after *Haemophilus influenzae* type b) of bacterial meningitis and otitis media in children. With the recent introduction of conjugate vaccines for *H. influenzae* type b, pneumococcal meningitis is likely to become increasingly prominent. *S. pneumoniae* is the most important etiologic agent of community-acquired pneumonia in adults and is the second most common cause of bacterial meningitis behind *Neisseria meningitidis*.

The antibiotic generally prescribed to treat *S. pneumoniae* is benzylpenicillin, although resistance to this and to other antibiotics is found occasionally. Pneumococcal resistance to penicillin results from mutations in its

penicillin-binding proteins. In uncomplicated pneumococcal pneumonia caused by a sensitive strain, treatment with penicillin is usually successful unless started too late. Erythromycin or clindamycin can be used to treat pneumonia in patients hypersensitive to penicillin, but resistant strains to these drugs exist.

5 Broad spectrum antibiotics (e.g., the tetracyclines) may also be effective, although tetracycline-resistant strains are not rare. In spite of the availability of antibiotics, the mortality of pneumococcal bacteremia in the last four decades has remained stable between 25 and 29%. (Gillespie, S.H., *et al.*, *J. Med. Microbiol.* 28:237-248 (1989)).

10 *S. pneumoniae* is carried in the upper respiratory tract by many healthy individuals. It has been suggested that attachment of pneumococci is mediated by a disaccharide receptor on fibronectin, present on human pharyngeal epithelial cells. (Anderson, B.J., *et al.*, *J. Immunol.* 142:2464-2468 (1989)). The mechanisms by which pneumococci translocate from the nasopharynx to 15 the lung, thereby causing pneumonia, or migrate to the blood, giving rise to bacteremia or septicemia, are poorly understood. (Johnston, R.B., *et al.*, *Rev. Infect. Dis.* 13(Suppl. 6):S509-517 (1991)).

20 Various proteins have been suggested to be involved in the pathogenicity of *S. pneumoniae*, however, only a few of them have actually been confirmed as virulence factors. Pneumococci produce an IgA1 protease that might interfere with host defense at mucosal surfaces. (Kornfield, S.J., *et al.*, *Rev. Inf. Dis.* 3:521-534 (1981)). *S. pneumoniae* also produces neuraminidase, an enzyme that may facilitate attachment to epithelial cells by cleaving sialic acid from the host glycolipids and gangliosides. Partially purified neuraminidase 25 was observed to induce meningitis-like symptoms in mice; however, the reliability of this finding has been questioned because the neuraminidase preparations used were probably contaminated with cell wall products. Other pneumococcal proteins besides neuraminidase are involved in the adhesion of pneumococci to epithelial and endothelial cells. These pneumococcal proteins have as yet not been identified. Recently, Cundell *et al.*, reported that peptide 30 permeases can modulate pneumococcal adherence to epithelial and endothelial cells. It was, however, unclear whether these permeases function directly as adhesions or whether they enhance adherence by modulating the expression of pneumococcal adhesions. (DeVelasco, E.A., *et al.*, *Micro. Rev.* 59:591-603 35 (1995)). A better understanding of the virulence factors determining its pathogenicity will need to be developed to cope with the devastating effects of pneumococcal disease in humans.

DRAFT - 6/20/95

Ironically, despite the prominent role of *S. pneumoniae* in the discovery of DNA, little is known about the molecular genetics of the organism. The *S. pneumoniae* genome consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory elements, such as prophages, plasmids, transposons and the like. Most physical characteristics and almost all of the genes of *S. pneumoniae* are unknown. Among the few that have been identified, most have not been physically mapped or characterized in detail. Only a few genes of this organism have been sequenced. (See, for instance current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. pneumoniae* such as those set out elsewhere herein.) Identification of *in vivo*-expressed, and broadly protective, antigens of *S. pneumoniae* has remained elusive.

Summary of the Invention

The present invention provides isolated nucleic acid molecules comprising polynucleotides encoding the *S. pneumoniae* polypeptides described in Table 1 and having the amino acid sequences shown as SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and so on through SEQ ID NO:226. Thus, one aspect of the invention provides isolated nucleic acid molecules comprising polynucleotides having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence encoding any of the amino acid sequences of the polypeptides shown in Table 1; and (b) a nucleotide sequence complementary to any of the nucleotide sequences in (a).

Further embodiments of the invention include isolated nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical, to any of the nucleotide sequences in (a) or (b) above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide in (a) or (b) above. This polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues. Additional nucleic acid embodiments of the invention relate to isolated nucleic acid molecules comprising polynucleotides which encode the amino acid sequences of epitope-bearing portions of an *S. pneumoniae* polypeptide having an amino acid sequence in (a) above.

The present invention also relates to recombinant vectors, which include the isolated nucleic acid molecules of the present invention, and to host cells containing the recombinant vectors, as well as to methods of making such

vectors and host cells and for using these vectors for the production of *S. pneumoniae* polypeptides or peptides by recombinant techniques.

The invention further provides isolated *S. pneumoniae* polypeptides having an amino acid sequence selected from the group consisting of an amino acid sequence of any of the polypeptides described in Table 1.

The polypeptides of the present invention also include polypeptides having an amino acid sequence with at least 70% similarity, and more preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% similarity to those described in Table 1, as well as polypeptides having an amino acid sequence at least 70% identical, more preferably at least 75% identical, and still more preferably 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to those above; as well as isolated nucleic acid molecules encoding such polypeptides.

The present invention further provides a vaccine, preferably a multi-component vaccine comprising one or more of the *S. pneumoniae* polynucleotides or polypeptides described in Table 1, or fragments thereof, together with a pharmaceutically acceptable diluent, carrier, or excipient, wherein the *S. pneumoniae* polypeptide(s) are present in an amount effective to elicit an immune response to members of the *Streptococcus* genus in an animal. The *S. pneumoniae* polypeptides of the present invention may further be combined with one or more immunogens of one or more other streptococcal or non-streptococcal organisms to produce a multi-component vaccine intended to elicit an immunological response against members of the *Streptococcus* genus and, optionally, one or more non-streptococcal organisms.

The vaccines of the present invention can be administered in a DNA form, e.g., "naked" DNA, wherein the DNA encodes one or more streptococcal polypeptides and, optionally, one or more polypeptides of a non-streptococcal organism. The DNA encoding one or more polypeptides may be constructed such that these polypeptides are expressed fusion proteins.

The vaccines of the present invention may also be administered as a component of a genetically engineered organism. Thus, a genetically engineered organism which expresses one or more *S. pneumoniae* polypeptides may be administered to an animal. For example, such a genetically engineered organism may contain one or more *S. pneumoniae* polypeptides of the present invention intracellularly, on its cell surface, or in its periplasmic space. Further, such a genetically engineered organism may secrete one or more *S. pneumoniae* polypeptides.

The vaccines of the present invention may be co-administered to an animal with an immune system modulator (e.g., CD86 and GM-CSF).

The invention also provides a method of inducing an immunological response in an animal to one or more members of the *Streptococcus* genus, preferably one or more isolates of the *S. pneumoniae* genus, comprising administering to the animal a vaccine as described above.

The invention further provides a method of inducing a protective immune response in an animal, sufficient to prevent or attenuate an infection by members of the *Streptococcus* genus, preferably at least *S. pneumoniae*, comprising administering to the animal a composition comprising one or more of the polynucleotides or polypeptides described in Table 1, or fragments thereof. Further, these polypeptides, or fragments thereof, may be conjugated to another immunogen and/or administered in admixture with an adjuvant.

The invention further relates to antibodies elicited in an animal by the administration of one or more *S. pneumoniae* polypeptides of the present invention and to methods for producing such antibodies.

The invention also provides diagnostic methods for detecting the expression of genes of members of the *Streptococcus* genus in an animal. One such method involves assaying for the expression of a gene encoding *S. pneumoniae* peptides in a sample from an animal. This expression may be assayed either directly (e.g., by assaying polypeptide levels using antibodies elicited in response to amino acid sequences described in Table 1) or indirectly (e.g., by assaying for antibodies having specificity for amino acid sequences described in Table 1). An example of such a method involves the use of the polymerase chain reaction (PCR) to amplify and detect *Streptococcus* nucleic acid sequences.

The present invention also relates to nucleic acid probes having all or part of a nucleotide sequence described in Table 1 (shown as SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and so on through SEQ ID NO:225) which are capable of hybridizing under stringent conditions to *Streptococcus* nucleic acids. The invention further relates to a method of detecting one or more *Streptococcus* nucleic acids in a biological sample obtained from an animal, said one or more nucleic acids encoding *Streptococcus* polypeptides, comprising: (a) contacting the sample with one or more of the above-described nucleic acid probes, under conditions such that hybridization occurs, and (b) detecting hybridization of said one or more probes to the *Streptococcus* nucleic acid present in the biological sample.

The invention also includes immunoassays, including an immunoassay for detecting *Streptococcus*, preferably at least isolates of the *S. pneumoniae* genus, comprising incubation of a sample (which is suspected of being infected with *Streptococcus*) with a probe antibody directed against an antigen epitope of *S. pneumoniae*, to be detected under conditions allowing the formation of an antigen-antibody complex; and detecting the antigen-antibody complex which contains the probe antibody. An immunoassay for the detection of antibodies which are directed against a *Streptococcus* antigen comprising the incubation of a sample (containing antibodies from a mammal suspected of being infected with *Streptococcus*) with a probe polypeptide including an epitope of *S. pneumoniae*, under conditions that allow the formation of antigen-antibody complexes which contain the probe epitope containing antigen.

Some aspects of the invention pertaining to kits are those for: investigating samples for the presence of polynucleotides derived from *Streptococcus* which comprise a polynucleotide probe including a nucleotide sequence selected from Table 1 or a fragment thereof of approximately 15 or more nucleotides, in an appropriate container; analyzing the samples for the presence of antibodies directed against a *Streptococcus* antigen made up of a polypeptide which contains a *S. pneumoniae* epitope present in the polypeptide, in a suitable container; and analyzing samples for the presence of *Streptococcus* antigens made up of an anti-*S. pneumoniae* antibody, in a suitable container.

Detailed Description

The present invention relates to recombinant antigenic *S. pneumoniae* polypeptides and fragments thereof. The invention also relates to methods for using these polypeptides to produce immunological responses and to confer immunological protection to disease caused by members of the genus *Streptococcus*, at least isolates of the *S. pneumoniae* genus. The invention further relates to nucleic acid sequences which encode antigenic *S. pneumoniae* polypeptides and to methods for detecting *S. pneumoniae* nucleic acids and polypeptides in biological samples. The invention also relates to *S. pneumoniae*-specific antibodies and methods for detecting such antibodies produced in a host animal.

Definitions

The following definitions are provided to clarify the subject matter which the inventors consider to be the present invention.

As used herein, the phrase "pathogenic agent" means an agent which causes a disease state or affliction in an animal. Included within this definition, for examples, are bacteria, protozoans, fungi, viruses and metazoan parasites which either produce a disease state or render an animal infected with such an organism susceptible to a disease state (e.g., a secondary infection). Further included are species and strains of the genus *Streptococcus* which produce disease states in animals.

As used herein, the term "organism" means any living biological system, including viruses, regardless of whether it is a pathogenic agent.

As used herein, the term "*Streptococcus*" means any species or strain of bacteria which is members of the genus *Streptococcus*. Such species and strains are known to those of skill in the art, and include those that are pathogenic and those that are not.

As used herein, the phrase "one or more *S. pneumoniae* polypeptides of the present invention" means polypeptides comprising the amino acid sequence of one or more of the *S. pneumoniae* polypeptides described in Table 1 and disclosed as SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and so on through SEQ ID NO:226. These polypeptides may be expressed as fusion proteins wherein the *S. pneumoniae* polypeptides of the present invention are linked to additional amino acid sequences which may be of streptococcal or non-streptococcal origin. This phrase further includes polypeptide comprising fragments of the *S. pneumoniae* polypeptides of the present invention.

Additional definitions are provided throughout the specification.

Explanation of Table 1

Table 1, below, provides information describing 113 open reading frames (ORFs) which encode potentially antigenic polypeptides of *S. pneumoniae* of the present invention. The table lists the ORF identifier which consists of the letters SP, which denote *S. pneumoniae*, followed immediately by a three digit numeric code, which arbitrarily number the potentially antigenic polypeptides of *S. pneumoniae* of the present invention and the nucleotide or amino acid sequence of each ORF and encoded polypeptide. The table further correlates the ORF identifier with a sequence identification number (SEQ ID NO:). The actual nucleotide or amino acid sequence of each ORF identifier is also shown in the Sequence Listing under the corresponding SEQ ID NO.

Thus, for example, the designation "SP126" refers to both the nucleotide and amino acid sequences of *S. pneumoniae* polypeptide number 126 of the present invention. Further, "SP126" correlates with the nucleotide

sequence shown as SEQ ID NO:223 and with the amino acid sequence shown as SEQ ID NO:224 as is described in Table 1.

The open reading frame within each "ORF" begins with the second nucleotide shown. Thus, the first codon for each nucleotide sequence shown is bases 2-4, the second 5-7, the third 8-10, and so on.

Explanation of Table 2

Table 2 lists the antigenic epitopes present in each of the *S. pneumoniae* polypeptides described in Table 1 as predicted by the inventors. Each *S. pneumoniae* polypeptide shown in Table 1 has one or more antigenic epitopes described in Table 2. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly. The exact location of the antigenic determinant may shift by about 1 to 5 residues, more likely 1 to 2 residues, depending on the criteria used. Thus, the first antigenic determinant described in Table 2, "Lys-1 to Ile-10" of SP001, represents a peptide comprising the lysine at position 1 in SEQ ID NO:2 through and including the isoleucine at position 10 in SEQ ID NO:2, but may include more or fewer residues than those 10. It will also be appreciated that, generally speaking, amino acids can be added to either terminus of a peptide or polypeptide containing an antigenic epitope without affecting its activity, whereas removing residues from a peptide or polypeptide containing only the antigenic determinant is much more likely to destroy activity. It will be appreciated that the residues and locations shown described in Table 2 correspond to the amino acid sequences for each ORF shown in Table 1 and in the Sequence Listing.

Explanation of Table 3

Table 3 shows PCR primers designed by the inventors for the amplification of polynucleotides encoding polypeptides of the present invention according to the method of Example 1. PCR primer design is routine in the art and those shown in Table 3 are provided merely for the convenience of the skilled artisan. It will be appreciated that others can be used with equal success.

For each primer, the table lists the corresponding ORF designation from Table 1 followed by either an "A" or a "B". The "A" primers are the 5' primers and the "B" primers 3'. A restriction enzyme site was built into each primer to allow ease of cloning. The restriction enzyme which will recognize and cleave a sequence within each primer is shown in Table 3, as well, under the heading

PCT/US2009/040069

"RE" for restriction enzyme. Finally the sequence identifier is shown in Table 3 for each primer for easy correlation with the Sequence Listing.

*Selection of Nucleic Acid Sequences Encoding Antigenic S.
pneumoniae Polypeptides*

The present invention provides a select number of ORFs from those presented in the fragments of the *S. pneumoniae* genome which may prove useful for the generation of a protective immune response. The sequenced *S. pneumoniae* genomic DNA was obtained from a sub-cultured isolate of *S. pneumoniae* Strain 7/87 14.8.91, which has been deposited at the American Type Culture Collection, as a convenience to those of skill in the art. The *S. pneumoniae* isolate was deposited on October 10, 1996 at the ATCC, 12301 Park Lawn Drive, Rockville, Maryland 20852, and given accession number 55840. A genomic library constructed from DNA isolated from the *S. pneumoniae* isolate was also deposited at the ATCC on October 11, 1996 and given ATCC Deposit No. 97755. A more complete listing of the sequence obtained from the *S. pneumoniae* genome may be found in co-pending U.S. Provisional Application Serial No. 60/029,960, filed 10/31/96, incorporated herein by reference in its entirety. Some ORFs contained in the subset of fragments of the *S. pneumoniae* genome disclosed herein were derived through the use of a number of screening criteria detailed below.

The selected ORFs do not consist of complete ORFs. Although a polypeptide representing a complete ORF may be the closest approximation of a protein native to an organism, it is not always preferred to express a complete ORF in a heterologous system. It may be challenging to express and purify a highly hydrophobic protein by common laboratory methods. Thus, the polypeptide vaccine candidates described herein may have been modified slightly to simplify the production of recombinant protein. For example, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, have been excluded from some constructs used for *in vitro* expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus have also been excluded from the recombinant expression constructs. Thus, in one embodiment, a polypeptide which represents a truncated or modified ORF may be used as an antigen.

While numerous methods are known in the art for selecting potentially immunogenic polypeptides, many of the ORFs disclosed herein were selected

on the basis of screening all theoretical *S. pneumoniae* ORFs for several aspects of potential immunogenicity. One set of selection criteria are as follows:

5 1. *Type I signal sequence*: An amino terminal type I signal sequence generally directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Experimental evidence obtained from studies with *Escherichia coli* suggests that the typical type I signal sequence consists of the following biochemical and physical attributes (Izard, J. W. and Kendall, D. A. *Mol. Microbiol.* **13**:765-773 (1994)). The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus. In addition, the central region of the signal sequence adopts an alpha-helical conformation in a hydrophobic environment. Finally, the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.

10 15 2. *Type IV signal sequence*: The type IV signal sequence is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., *J. Bacteriol.* **174**:7345-7351 (1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, type IV signal sequences generally contain a phenylalanine residue at the +1 site relative to the cleavage site.

15 25 3. *Lipoprotein*: Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)-(G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C., *J. Bioenerg. Biomembr.* **22**:451-471 (1990)).

20 30 35 4. *LPXTG motif*: It has been experimentally determined that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than fifty such proteins from organisms such as *S. pyogenes*, *S. mutans*, *E. faecalis*, *S. pneumoniae*, and others, have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A., *ASM News* **62**:405-410 (1996)). The conserved region consists of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids

presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins examined. The amino acid sequence of this region is L-P-X-T-G-X, where X is any amino acid.

An algorithm for selecting antigenic and immunogenic *S. pneumoniae* polypeptides including the foregoing criteria was developed. Use of the algorithm by the inventors to select immunologically useful *S. pneumoniae* polypeptides resulted in the selection of a number of the disclosed ORFs. Polypeptides comprising the polypeptides identified in this group may be produced by techniques standard in the art and as further described herein.

Nucleic Acid Molecules

The present invention provides isolated nucleic acid molecules comprising polynucleotides encoding the *S. pneumoniae* polypeptides having the amino acid sequences described in Table 1 and shown as SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and so on through SEQ ID NO:226, which were determined by sequencing the genome of *S. pneumoniae* and selected as putative immunogens.

Unless otherwise indicated, all nucleotide sequences determined by sequencing a DNA molecule herein were determined using an automated DNA sequencer (such as the Model 373 from Applied Biosystems, Inc.), and all amino acid sequences of polypeptides encoded by DNA molecules determined herein were predicted by translation of DNA sequences determined as above. Therefore, as is known in the art for any DNA sequence determined by this automated approach, any nucleotide sequence determined herein may contain some errors. Nucleotide sequences determined by automation are typically at least about 90% identical, more typically at least about 95% to at least about 99.9% identical to the actual nucleotide sequence of the sequenced DNA molecule. The actual sequence can be more precisely determined by other approaches including manual DNA sequencing methods well known in the art. As is also known in the art, a single insertion or deletion in a determined nucleotide sequence compared to the actual sequence will cause a frame shift in translation of the nucleotide sequence such that the predicted amino acid sequence encoded by a determined nucleotide sequence will be completely different from the amino acid sequence actually encoded by the sequenced DNA molecule, beginning at the point of such an insertion or deletion.

Unless otherwise indicated, each "nucleotide sequence" set forth herein is presented as a sequence of deoxyribonucleotides (abbreviated A, G, C and

T). However, by "nucleotide sequence" of a nucleic acid molecule or polynucleotide is intended, for a DNA molecule or polynucleotide, a sequence of deoxyribonucleotides, and for an RNA molecule or polynucleotide, the corresponding sequence of ribonucleotides (A, G, C and U), where each thymidine deoxyribonucleotide (T) in the specified deoxyribonucleotide sequence is replaced by the ribonucleotide uridine (U). For instance, reference to an RNA molecule having a sequence described in Table 1 set forth using deoxyribonucleotide abbreviations is intended to indicate an RNA molecule having a sequence in which each deoxyribonucleotide A, G or C described in Table 1 has been replaced by the corresponding ribonucleotide A, G or C, and each deoxyribonucleotide T has been replaced by a ribonucleotide U.

Nucleic acid molecules of the present invention may be in the form of RNA, such as mRNA, or in the form of DNA, including, for instance, cDNA and genomic DNA obtained by cloning or produced synthetically. The DNA may be double-stranded or single-stranded. Single-stranded DNA or RNA may be the coding strand, also known as the sense strand, or it may be the non-coding strand, also referred to as the anti-sense strand.

By "isolated" nucleic acid molecule(s) is intended a nucleic acid molecule, DNA or RNA, which has been removed from its native environment. For example, recombinant DNA molecules contained in a vector are considered isolated for the purposes of the present invention. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the DNA molecules of the present invention. Isolated nucleic acid molecules according to the present invention further include such molecules produced synthetically.

Isolated nucleic acid molecules of the present invention include DNA molecules comprising a nucleotide sequence described in Table 1 and shown as SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and so on through SEQ ID NO:225; DNA molecules comprising the coding sequences for the polypeptides described in Table 1 and shown as SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and so on through SEQ ID NO:226; and DNA molecules which comprise sequences substantially different from those described above but which, due to the degeneracy of the genetic code, still encode the *S. pneumoniae* polypeptides described in Table 1. Of course, the genetic code is well known in the art. Thus, it would be routine for one skilled in the art to generate such degenerate variants.

The invention also provides nucleic acid molecules having sequences complementary to any one of those described in Table 1. Such isolated molecules, particularly DNA molecules, are useful as probes for detecting expression of *Streptococcal* genes, for instance, by Northern blot analysis or the polymerase chain reaction (PCR).

The present invention is further directed to fragments of the isolated nucleic acid molecules described herein. By a fragment of an isolated nucleic acid molecule having a nucleotide sequence described in Table 1, is intended fragments at least about 15 nt, and more preferably at least about 17 nt, still more preferably at least about 20 nt, and even more preferably, at least about 25 nt in length which are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments 50-100 nt in length are also useful according to the present invention as are fragments corresponding to most, if not all, of a nucleotide sequence described in Table 1. By a fragment at least 20 nt in length, for example, is intended fragments which include 20 or more contiguous bases of a nucleotide sequence as described in Table 1. Since the nucleotide sequences identified in Table 1 are provided as SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and so on through SEQ ID NO:225, generating such DNA fragments would be routine to the skilled artisan. For example, such fragments could be generated synthetically.

Preferred nucleic acid fragments of the present invention also include nucleic acid molecules comprising nucleotide sequences encoding epitope-bearing portions of the *S. pneumoniae* polypeptides identified in Table 1. Such nucleic acid fragments of the present invention include, for example, nucleotide sequences encoding polypeptide fragments comprising from about the amino terminal residue to about the carboxy terminal residue of each fragment shown in Table 2. The above referred to polypeptide fragments are antigenic regions of the *S. pneumoniae* polypeptides identified in Table 1.

In another aspect, the invention provides isolated nucleic acid molecules comprising polynucleotides which hybridize under stringent hybridization conditions to a portion of a polynucleotide in a nucleic acid molecule of the invention described above, for instance, a nucleic acid sequence identified in Table 1. By "stringent hybridization conditions" is intended overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

5 By polynucleotides which hybridize to a "portion" of a polynucleotide is intended polynucleotides (either DNA or RNA) which hybridize to at least about 15 nucleotides (nt), and more preferably at least about 17 nt, still more preferably at least about 20 nt, and even more preferably about 25-70 nt of the reference polynucleotide. These are useful as diagnostic probes and primers as discussed above and in more detail below.

10 Of course, polynucleotides hybridizing to a larger portion of the reference polynucleotide, for instance, a portion 50-100 nt in length, or even to the entire length of the reference polynucleotide, are also useful as probes according to the present invention, as are polynucleotides corresponding to most, if not all, of a nucleotide sequence as identified in Table 1. By a portion 15 of a polynucleotide of "at least 20 nt in length," for example, is intended 20 or more contiguous nucleotides from the nucleotide sequence of the reference polynucleotide (e.g., a nucleotide sequences as described in Table 1). As noted above, such portions are useful diagnostically either as probes according to conventional DNA hybridization techniques or as primers for amplification of a target sequence by PCR, as described in the literature (for instance, in *Molecular Cloning, A Laboratory Manual*, 2nd. edition, Sambrook, J., Fritsch, E. F. and Maniatis, T., eds., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989), the entire disclosure of which is hereby incorporated herein by reference).

20 Since nucleic acid sequences encoding the *S. pneumoniae* polypeptides of the present invention are identified in Table 1 and provided as SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:5, and so on through SEQ ID NO:225, generating 25 polynucleotides which hybridize to portions of these sequences would be routine to the skilled artisan. For example, the hybridizing polynucleotides of the present invention could be generated synthetically according to known techniques.

30 As indicated, nucleic acid molecules of the present invention which encode *S. pneumoniae* polypeptides of the present invention may include, but are not limited to those encoding the amino acid sequences of the polypeptides by themselves; and additional coding sequences which code for additional amino acids, such as those which provide additional functionalities. Thus, the sequences encoding these polypeptides may be fused to a marker sequence, 35 such as a sequence encoding a peptide which facilitates purification of the fused polypeptide. In certain preferred embodiments of this aspect of the invention, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (Qiagen, Inc.), among others, many of which are

DE2017000000000000

commercially available. As described by Gentz and colleagues (*Proc. Natl. Acad. Sci. USA* **86**:821-824 (1989)), for instance, hexa-histidine provides for convenient purification of the resulting fusion protein.

Thus, the present invention also includes genetic fusions wherein the *S. pneumoniae* nucleic acid sequences coding sequences identified in Table 1 are linked to additional nucleic acid sequences to produce fusion proteins. These fusion proteins may include epitopes of streptococcal or non-streptococcal origin designed to produce proteins having enhanced immunogenicity. Further, the fusion proteins of the present invention may contain antigenic determinants known to provide helper T-cell stimulation, peptides encoding sites for post-translational modifications which enhance immunogenicity (e.g., acylation), peptides which facilitate purification (e.g., histidine "tag"), or amino acid sequences which target the fusion protein to a desired location (e.g., a heterologous leader sequence).

In all cases of bacterial expression, an N-terminal methionine residues is added. In many cases, however, the N-terminal methionine residues is cleaved off post-translationally. Thus, the invention includes polypeptides shown in Table 1 with, and without an N-terminal methionine.

The present invention thus includes nucleic acid molecules and sequences which encode fusion proteins comprising one or more *S. pneumoniae* polypeptides of the present invention fused to an amino acid sequence which allows for post-translational modification to enhance immunogenicity. This post-translational modification may occur either *in vitro* or when the fusion protein is expressed *in vivo* in a host cell. An example of such a modification is the introduction of an amino acid sequence which results in the attachment of a lipid moiety.

Thus, as indicated above, the present invention includes genetic fusions wherein a *S. pneumoniae* nucleic acid sequence identified in Table 1 is linked to a nucleotide sequence encoding another amino acid sequence. These other amino acid sequences may be of streptococcal origin (e.g., another sequence selected from Table 1) or non-streptococcal origin.

The present invention further relates to variants of the nucleic acid molecules of the present invention, which encode portions, analogs or derivatives of the *S. pneumoniae* polypeptides described in Table 1. Variants may occur naturally, such as a natural allelic variant. By an "allelic variant" is intended one of several alternate forms of a gene occupying a given locus on a chromosome of an organism (*Genes II*, Lewin, B., ed., John Wiley & Sons,

New York (1985)). Non-naturally occurring variants may be produced using art-known mutagenesis techniques.

Such variants include those produced by nucleotide substitutions, deletions or additions. The substitutions, deletions or additions may involve one or more nucleotides. These variants may be altered in coding regions, non-coding regions, or both. Alterations in the coding regions may produce conservative or non-conservative amino acid substitutions, deletions or additions. Especially preferred among these are silent substitutions, additions and deletions, which do not alter the properties and activities of the *S. pneumoniae* polypeptides disclosed herein or portions thereof. Silent substitution are most likely to be made in non-epitopic regions. Guidance regarding those regions containing epitopes is provided herein, for example, in Table 2. Also especially preferred in this regard are conservative substitutions.

Further embodiments of the invention include isolated nucleic acid molecules comprising a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably at least 95%, 96%, 97%, 98% or 99% identical to: (a) a nucleotide sequence encoding any of the amino acid sequences of the polypeptides identified in Table 1; and (b) a nucleotide sequence complementary to any of the nucleotide sequences in (a) above.

By a polynucleotide having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence encoding a *S. pneumoniae* polypeptide described in Table 1, is intended that the nucleotide sequence of the polynucleotide is identical to the reference sequence except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the subject *S. pneumoniae* polypeptide. In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. These mutations of the reference sequence may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.

Certain nucleotides within some of the nucleic acid sequences shown in Table 1 were ambiguous upon sequencing. Completely unknown sequences are shown as an "N". Other unresolved nucleotides are known to be either a

purine, shown as "R", or a pyrimidine, shown as "Y". Accordingly, when determining identity between two nucleotide sequences, identity is met where any nucleotide, including an "R", "Y" or "N", is found in a test sequence and at the corresponding position in the reference sequence (from Table 1). Likewise, an A, G or "R" in a test sequence is identical to an "R" in the reference sequence; and a T, C or "Y" in a test sequence is identical to a "Y" in the reference sequence.

As a practical matter, whether any particular nucleic acid molecule is at least 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, a nucleotide sequence described in Table 1 can be determined conventionally using known computer programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). Bestfit uses the local homology algorithm of Smith and Waterman (*Advances in Applied Mathematics* 2:482-489 (1981)), to find the best segment of homology between two sequences. When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference nucleotide sequence and that gaps in homology of up to 5% of the total number of nucleotides in the reference sequence are allowed.

The present application is directed to nucleic acid molecules at least 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleic acid sequences described in Table 1. One of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer. Uses of the nucleic acid molecules of the present invention include, *inter alia*, (1) isolating *Streptococcal* genes or allelic variants thereof from either a genomic or cDNA library and (2) Northern Blot or PCR analysis for detecting *Streptococcal* mRNA expression.

Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of nucleic acid molecules having a sequence at least 90%, 95%, 96%, 97%, 98%, or 99% identical to a nucleic acid sequence identified in Table 1 will encode the same polypeptide. In fact, since degenerate variants of these nucleotide sequences all encode the same polypeptide, this will be clear to the skilled artisan even without performing the above described comparison assay.

It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode

proteins having antigenic epitopes of the *S. pneumoniae* polypeptides of the present invention. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect the antigenicity of a polypeptide (*e.g.*, replacement of an amino acid in a region which is not believed to form an antigenic epitope). For example, since antigenic epitopes have been identified which contain as few as six amino acids (see Harlow, *et al.*, *Antibodies: A Laboratory Manual*, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988), page 76), in instances where a polypeptide has multiple antigenic epitopes the alteration of several amino acid residues would often not be expected to eliminate all of the antigenic epitopes of that polypeptide. This is especially so when the alterations are in regions believed to not constitute antigenic epitopes.

Vectors and Host Cells

The present invention also relates to vectors which include the isolated DNA molecules of the present invention, host cells which are genetically engineered with the recombinant vectors, and the production of *S. pneumoniae* polypeptides or fragments thereof by recombinant techniques.

Recombinant constructs may be introduced into host cells using well known techniques such as infection, transduction, transfection, transvection, electroporation and transformation. The vector may be, for example, a phage, plasmid, viral or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged *in vitro* using an appropriate packaging cell line and then transduced into host cells.

Preferred are vectors comprising *cis*-acting control regions to the polynucleotide of interest. Appropriate *trans*-acting factors may be supplied by the host, supplied by a complementing vector or supplied by the vector itself upon introduction into the host.

In certain preferred embodiments in this regard, the vectors provide for specific expression, which may be inducible and/or cell type-specific. Particularly preferred among such vectors are those inducible by environmental factors that are easy to manipulate, such as temperature and nutrient additives.

Expression vectors useful in the present invention include chromosomal-, episomal- and virus-derived vectors, e.g., vectors derived from bacterial plasmids, bacteriophage, yeast episomes, yeast chromosomal elements, viruses such as baculoviruses, papova viruses, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as cosmids and phagemids.

The DNA insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the *E. coli lac*, *trp* and *tac* promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination and, in the transcribed region, a ribosome binding site for translation. The coding portion of the mature transcripts expressed by the constructs will preferably include a translation initiating site at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase or neomycin resistance for eukaryotic cell culture and tetracycline or ampicillin resistance genes for culturing in *E. coli* and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as *E. coli*, *Streptomyces* and *Salmonella typhimurium* cells; fungal cells, such as yeast cells; insect cells such as *Drosophila S2* and *Spodoptera Sf9* cells; animal cells such as CHO, COS and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from Qiagen; pBS vectors, Phagescript vectors, Bluescript vectors, pNH8A, pNH16a, pNH18A, pNH46A available from Stratagene; pET series of vectors available from Novagen; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Among known bacterial promoters suitable for use in the present invention include the *E. coli lacI* and *lacZ* promoters, the T3 and T7 promoters, the *gpt* promoter, the lambda PR and PL promoters and the *trp* promoter. Suitable eukaryotic promoters include the CMV immediate early promoter, the

HSV thymidine kinase promoter, the early and late SV40 promoters, the promoters of retroviral LTRs, such as those of the Rous sarcoma virus (RSV), and metallothionein promoters, such as the mouse metallothionein-I promoter.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection or other methods. Such methods are described in many standard laboratory manuals (for example, Davis, *et al.*, *Basic Methods In Molecular Biology* (1986)).

Transcription of DNA encoding the polypeptides of the present invention by higher eukaryotes may be increased by inserting an enhancer sequence into the vector. Enhancers are *cis*-acting elements of DNA, usually about from 10 to 300 bp that act to increase transcriptional activity of a promoter in a given host cell-type. Examples of enhancers include the SV40 enhancer, which is located on the late side of the replication origin at bp 100 to 270, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.

For secretion of the translated polypeptide into the lumen of the endoplasmic reticulum, into the periplasmic space or into the extracellular environment, appropriate secretion signals may be incorporated into the expressed polypeptide. The signals may be endogenous to the polypeptide or they may be heterologous signals.

The polypeptide may be expressed in a modified form, such as a fusion protein, and may include not only secretion signals, but also additional heterologous functional regions. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence in the host cell, during purification, or during subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to polypeptides to engender secretion or excretion, to improve stability and to facilitate purification, among others, are familiar and routine techniques in the art. A preferred fusion protein comprises a heterologous region from immunoglobulin that is useful to solubilize proteins. For example, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is thoroughly advantageous for use in therapy and diagnosis and thus results, for example, in improved pharmacokinetic properties (EP-A 0232 262).

On the other hand, for some uses it would be desirable to be able to delete the Fc part after the fusion protein has been expressed, detected and purified in the advantageous manner described. This is the case when Fc portion proves to be a hindrance to use in therapy and diagnosis, for example when the fusion protein is to be used as antigen for immunizations. In drug discovery, for example, human proteins, such as, hIL5-receptor has been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See Bennett, D. et al., *J. Molec. Recogn.* 8:52-58 (1995) and Johanson, K. et al., *J. Biol. Chem.* 270 (16):9459-9471 (1995).

The *S. pneumoniae* polypeptides can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography and high performance liquid chromatography ("HPLC") is employed for purification. Polypeptides of the present invention include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect and mammalian cells.

Polypeptides and Fragments

The invention further provides isolated polypeptides having the amino acid sequences described in Table 1, and shown as SEQ ID NO:2, SEQ ID NO:4, SEQ ID NO:6, and so on through SEQ ID NO:226, and peptides or polypeptides comprising portions of the above polypeptides. The terms "peptide" and "oligopeptide" are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires to indicate a chain of at least two amino acids coupled by peptidyl linkages. The word "polypeptide" is used herein for chains containing more than ten amino acid residues. All oligopeptide and polypeptide formulas or sequences herein are written from left to right and in the direction from amino terminus to carboxy terminus.

Some amino acid sequences of the *S. pneumoniae* polypeptides described in Table 1 can be varied without significantly effecting the antigenicity of the polypeptides. If such differences in sequence are contemplated, it should be remembered that there will be critical areas on the polypeptide which determine antigenicity. In general, it is possible to replace residues which do

not form part of an antigenic epitope without significantly effecting the antigenicity of a polypeptide. Guidance for such alterations is given in Table 2 wherein epitopes for each polypeptide is delineated.

The polypeptides of the present invention are preferably provided in an isolated form. By "isolated polypeptide" is intended a polypeptide removed from its native environment. Thus, a polypeptide produced and/or contained within a recombinant host cell is considered isolated for purposes of the present invention. Also intended as an "isolated polypeptide" is a polypeptide that has been purified, partially or substantially, from a recombinant host cell. For example, recombinantly produced versions of the *S. pneumoniae* polypeptides described in Table 1 can be substantially purified by the one-step method described by Smith and Johnson (*Gene* 67:31-40 (1988)).

The polypeptides of the present invention include: (a) an amino acid sequence of any of the polypeptides described in Table 1; and (b) an amino acid sequence of an epitope-bearing portion of any one of the polypeptides of (a); as well as polypeptides with at least 70% similarity, and more preferably at least 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% similarity to those described in (a) or (b) above, as well as polypeptides having an amino acid sequence at least 70% identical, more preferably at least 75% identical, and still more preferably 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to those above.

By "% similarity" for two polypeptides is intended a similarity score produced by comparing the amino acid sequences of the two polypeptides using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711) and the default settings for determining similarity. Bestfit uses the local homology algorithm of Smith and Waterman (*Advances in Applied Mathematics* 2:482-489 (1981)) to find the best segment of similarity between two sequences.

By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a reference amino acid sequence of a *S. pneumoniae* polypeptide is intended that the amino acid sequence of the polypeptide is identical to the reference sequence except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the reference amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to

5 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either
individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

10 The amino acid sequences shown in Table 1 may have on or more "X" residues. "X" represents unknown. Thus, for purposes of defining identity, if any amino acid is present at the same position in a reference amino acid sequence (shown in Table 1) where an X is shown, the two sequences are identical at that position.

15 As a practical matter, whether any particular polypeptide is at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to, for instance, an amino acid sequence shown in Table 1, can be determined conventionally using known computer programs such the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive, Madison, WI 53711). When using Bestfit or any other sequence alignment program to determine whether a particular sequence is, for instance, 95% identical to a reference sequence according to the present invention, the parameters are set, of course, such that the percentage of identity is calculated over the full length of the reference amino acid sequence and that gaps in homology of up to 5% of the total number of amino acid residues in the reference sequence are allowed.

20 As described below, the polypeptides of the present invention can also be used to raise polyclonal and monoclonal antibodies, which are useful in assays for detecting *Streptococcal* protein expression.

25 In another aspect, the invention provides peptides and polypeptides comprising epitope-bearing portions of the *S. pneumoniae* polypeptides of the invention. These epitopes are immunogenic or antigenic epitopes of the polypeptides of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein or polypeptide is the immunogen. These immunogenic epitopes are believed to be confined to a few loci on the molecule. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic determinant" or "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes (Geysen, *et al.*, *Proc. Natl. Acad. Sci. USA* **81**:3998- 4002 (1983)). Predicted antigenic epitopes are shown in Table 2, below.

As to the selection of peptides or polypeptides bearing an antigenic epitope (*i.e.*, that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein (for instance, Sutcliffe, J., *et al.*, *Science* **219**:660-666 (1983)). Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (*i.e.*, immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer, peptides, especially those containing proline residues, usually are effective (Sutcliffe, *et al.*, *supra*, p. 661). For instance, 18 of 20 peptides designed according to these guidelines, containing 8-39 residues covering 75% of the sequence of the influenza virus hemagglutinin HA1 polypeptide chain, induced antibodies that reacted with the HA1 protein or intact virus; and 12/12 peptides from the MuLV polymerase and 18/18 from the rabies glycoprotein induced antibodies that precipitated the respective proteins.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Thus, a high proportion of hybridomas obtained by fusion of spleen cells from donors immunized with an antigen epitope-bearing peptide generally secrete antibody reactive with the native protein (Sutcliffe, *et al.*, *supra*, p. 663). The antibodies raised by antigenic epitope-bearing peptides or polypeptides are useful to detect the mimicked protein, and antibodies to different peptides may be used for tracking the fate of various regions of a protein precursor which undergoes post-translational processing. The peptides and anti-peptide antibodies may be used in a variety of qualitative or quantitative assays for the mimicked protein, for instance in competition assays since it has been shown that even short peptides (*e.g.*, about 9 amino acids) can bind and displace the larger peptides in immunoprecipitation assays (for instance, Wilson, *et al.*, *Cell* **37**:767-778 (1984) p. 777). The anti-peptide antibodies of the invention also are useful for purification of the mimicked protein, for instance, by adsorption chromatography using methods well known in the art.

Antigenic epitope-bearing peptides and polypeptides of the invention designed according to the above guidelines preferably contain a sequence of at

least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger portion of an amino acid sequence of a polypeptide of the invention, containing about 30 to about 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are considered epitope-bearing peptides or polypeptides of the invention and also are useful for inducing antibodies that react with the mimicked protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (*i.e.*, the sequence includes relatively hydrophilic residues and highly hydrophobic sequences are preferably avoided); and sequences containing proline residues are particularly preferred.

Non-limiting examples of antigenic polypeptides or peptides that can be used to generate *Streptococcal*-specific antibodies include portions of the amino acid sequences identified in Table 1. More specifically, Table 2 discloses antigenic fragments of polypeptides of the present invention, which antigenic fragments comprise amino acid sequences from about the first amino acid residues indicated to about the last amino acid residue indicated for each fragment. The polypeptide fragments disclosed in Table 2 are believed to be antigenic regions of the *S. pneumoniae* polypeptides described in Table 1. Thus the invention further includes isolated peptides and polypeptides comprising an amino acid sequence of an epitope shown in Table 2 and polynucleotides encoding said polypeptides.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means for making peptides or polypeptides including recombinant means using nucleic acid molecules of the invention. For instance, an epitope-bearing amino acid sequence of the present invention may be fused to a larger polypeptide which acts as a carrier during recombinant production and purification, as well as during immunization to produce anti-peptide antibodies. Epitope-bearing peptides also may be synthesized using known methods of chemical synthesis. For instance, Houghten has described a simple method for synthesis of large numbers of peptides, such as 10-20 mg of 248 different 13 residue peptides representing single amino acid variants of a segment of the HA1 polypeptide which were prepared and characterized (by ELISA-type binding studies) in less than four weeks (Houghten, R. A. Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985)). This "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten and coworkers (1986). In this procedure the individual

resins for the solid-phase synthesis of various peptides are contained in separate solvent-permeable packets, enabling the optimal use of the many identical repetitive steps involved in solid-phase methods. A completely manual procedure allows 500-1000 or more syntheses to be conducted simultaneously (Houghten, *et al.*, *supra*, p. 5134).

Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art (for instance, Sutcliffe, *et al.*, *supra*; Wilson, *et al.*, *supra*; Chow, M., *et al.*, *Proc. Natl. Acad. Sci. USA* **82**:910-914; and Bittle, F. J., *et al.*, *J. Gen. Virol.* **66**:2347-2354 (1985)). Generally, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling of the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine may be coupled to carrier using a linker such as m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carrier using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier-coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 µg peptide or carrier protein and Freund's adjuvant. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody which can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.

Immunogenic epitope-bearing peptides of the invention, *i.e.*, those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. For instance, Geysen, *et al.*, *supra*, discloses a procedure for rapid concurrent synthesis on solid supports of hundreds of peptides of sufficient purity to react in an enzyme-linked immunosorbent assay. Interaction of synthesized peptides with antibodies is then easily detected without removing them from the support. In this manner a peptide bearing an immunogenic epitope of a desired protein may be identified routinely by one of ordinary skill in the art. For instance, the immunologically important epitope in the coat protein of foot-and-mouth disease virus was located by Geysen *et al.* *supra* with a resolution of seven amino acids by synthesis of an overlapping set of all 208 possible hexapeptides covering the

entire 213 amino acid sequence of the protein. Then, a complete replacement set of peptides in which all 20 amino acids were substituted in turn at every position within the epitope were synthesized, and the particular amino acids conferring specificity for the reaction with antibody were determined. Thus, peptide analogs of the epitope-bearing peptides of the invention can be made routinely by this method. U.S. Patent No. 4,708,781 to Geysen (1987) further describes this method of identifying a peptide bearing an immunogenic epitope of a desired protein.

Further still, U.S. Patent No. 5,194,392, to Geysen (1990), describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (*i.e.*, a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092, also to Geysen (1989), describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. *et al.* (1996) discloses linear C₁-C₇-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

The entire disclosure of each document cited in this section on "Polypeptides and Fragments" is hereby incorporated herein by reference.

As one of skill in the art will appreciate, the polypeptides of the present invention and the epitope-bearing fragments thereof described above can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life *in vivo*. This has been shown, *e.g.*, for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins (EPA 0,394,827; Traunecker *et al.*, *Nature* 331:84-86 (1988)). Fusion proteins that have a disulfide-linked dimeric structure due to the IgG part can also be more efficient in binding and neutralizing other molecules than a monomeric *S. pneumoniae* polypeptide or

fragment thereof alone (Fountoulakis *et al.*, *J. Biochem.* 270:3958-3964 (1995)).

Diagnostic Assays

5 The present invention further relates to a method for assaying for *Streptococcal* infection in an animal *via* detecting the expression of genes encoding *Streptococcal* polypeptides (*e.g.*, the polypeptides described Table 1). This method comprises analyzing tissue or body fluid from the animal for *Streptococcus*-specific antibodies or *Streptococcal* nucleic acids or proteins.
10 Analysis of nucleic acid specific to *Streptococcus* can be done by PCR or hybridization techniques using nucleic acid sequences of the present invention as either hybridization probes or primers (*cf. Molecular Cloning: A Laboratory Manual, second edition*, edited by Sambrook, Fritsch, & Maniatis, Cold Spring Harbor Laboratory, 1989; Eremeeva *et al.*, *J. Clin. Microbiol.* 32:803-810
15 (1994) which describes differentiation among spotted fever group *Rickettsiae* species by analysis of restriction fragment length polymorphism of PCR-amplified DNA). Methods for detecting *B. burgdorferi* nucleic acids *via* PCR are described, for example, in Chen *et al.*, *J. Clin. Microbiol.* 32:589-595
20 (1994).

20 Where diagnosis of a disease state related to infection with *Streptococcus* has already been made, the present invention is useful for monitoring progression or regression of the disease state whereby patients exhibiting enhanced *Streptococcus* gene expression will experience a worse clinical outcome relative to patients expressing these gene(s) at a lower level.

25 By "assaying for *Streptococcal* infection in an animal *via* detection of genes encoding *Streptococcal* polypeptides" is intended qualitatively or quantitatively measuring or estimating the level of one or more *Streptococcus* polypeptides or the level of nucleic acid encoding *Streptococcus* polypeptides in a first biological sample either directly (*e.g.*, by determining or estimating absolute protein level or nucleic level) or relatively (*e.g.*, by comparing to the *Streptococcus* polypeptide level or mRNA level in a second biological sample).
30 The *Streptococcus* polypeptide level or nucleic acid level in the second sample used for a relative comparison may be undetectable if obtained from an animal which is not infected with *Streptococcus*. When monitoring the progression or regression of a disease state, the *Streptococcus* polypeptide level or nucleic acid level may be compared to a second sample obtained from either an animal infected with *Streptococcus* or the same animal from which the first sample was obtained but taken from that animal at a different time than the first. As will be
35

appreciated in the art, once a standard *Streptococcus* polypeptide level or nucleic acid level which corresponds to a particular stage of a *Streptococcus* infection is known, it can be used repeatedly as a standard for comparison.

By "biological sample" is intended any biological sample obtained from an animal, cell line, tissue culture, or other source which contains *Streptococcus* polypeptide, mRNA, or DNA. Biological samples include body fluids (such as plasma and synovial fluid) which contain *Streptococcus* polypeptides, and muscle, skin, and cartilage tissues. Methods for obtaining tissue biopsies and body fluids are well known in the art.

The present invention is useful for detecting diseases related to *Streptococcus* infections in animals. Preferred animals include monkeys, apes, cats, dogs, cows, pigs, mice, horses, rabbits and humans. Particularly preferred are humans.

Total RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski and Sacchi, *Anal. Biochem.* 162:156-159 (1987). mRNA encoding *Streptococcus* polypeptides having sufficient homology to the nucleic acid sequences identified in Table 1 to allow for hybridization between complementary sequences are then assayed using any appropriate method. These include Northern blot analysis, S1 nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction (RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).

Northern blot analysis can be performed as described in Harada *et al.*, *Cell* 63:303-312 (1990). Briefly, total RNA is prepared from a biological sample as described above. For the Northern blot, the RNA is denatured in an appropriate buffer (such as glyoxal/dimethyl sulfoxide/sodium phosphate buffer), subjected to agarose gel electrophoresis, and transferred onto a nitrocellulose filter. After the RNAs have been linked to the filter by a UV linker, the filter is prehybridized in a solution containing formamide, SSC, Denhardt's solution, denatured salmon sperm, SDS, and sodium phosphate buffer. A *S. pneumoniae* polypeptide DNA sequence shown in Table 1 labeled according to any appropriate method (such as the ³²P-multiprime DNA labeling system (Amersham)) is used as probe. After hybridization overnight, the filter is washed and exposed to x-ray film. DNA for use as probe according to the present invention is described in the sections above and will preferably at least 15 bp in length.

S1 mapping can be performed as described in Fujita *et al.*, *Cell* 49:357-367 (1987). To prepare probe DNA for use in S1 mapping, the sense strand of an above-described *S. pneumoniae* DNA sequence of the present invention is used as a template to synthesize labeled antisense DNA. The antisense DNA can then be digested using an appropriate restriction endonuclease to generate further DNA probes of a desired length. Such antisense probes are useful for visualizing protected bands corresponding to the target mRNA (*i.e.*, mRNA encoding *Streptococcus* polypeptides).

Preferably, levels of mRNA encoding *Streptococcus* polypeptides are assayed using the RT-PCR method described in Makino *et al.*, *Technique* 2:295-301 (1990). By this method, the radioactivities of the "amplicons" in the polyacrylamide gel bands are linearly related to the initial concentration of the target mRNA. Briefly, this method involves adding total RNA isolated from a biological sample in a reaction mixture containing a RT primer and appropriate buffer. After incubating for primer annealing, the mixture can be supplemented with a RT buffer, dNTPs, DTT, RNase inhibitor and reverse transcriptase. After incubation to achieve reverse transcription of the RNA, the RT products are then subject to PCR using labeled primers. Alternatively, rather than labeling the primers, a labeled dNTP can be included in the PCR reaction mixture. PCR amplification can be performed in a DNA thermal cycler according to conventional techniques. After a suitable number of rounds to achieve amplification, the PCR reaction mixture is electrophoresed on a polyacrylamide gel. After drying the gel, the radioactivity of the appropriate bands (corresponding to the mRNA encoding the *Streptococcus* polypeptides)) is quantified using an imaging analyzer. RT and PCR reaction ingredients and conditions, reagent and gel concentrations, and labeling methods are well known in the art. Variations on the RT-PCR method will be apparent to the skilled artisan.

Assaying *Streptococcus* polypeptide levels in a biological sample can occur using any art-known method. Preferred for assaying *Streptococcus* polypeptide levels in a biological sample are antibody-based techniques. For example, *Streptococcus* polypeptide expression in tissues can be studied with classical immunohistological methods. In these, the specific recognition is provided by the primary antibody (polyclonal or monoclonal) but the secondary detection system can utilize fluorescent, enzyme, or other conjugated secondary antibodies. As a result, an immunohistological staining of tissue section for pathological examination is obtained. Tissues can also be extracted, *e.g.*, with urea and neutral detergent, for the liberation of *Streptococcus* polypeptides for

Western-blot or dot/slot assay (Jalkanen, M., *et al.*, *J. Cell. Biol.* 101:976-985 (1985); Jalkanen, M., *et al.*, *J. Cell. Biol.* 105:3087-3096 (1987)). In this technique, which is based on the use of cationic solid phases, quantitation of a *Streptococcus* polypeptide can be accomplished using an isolated *Streptococcus* polypeptide as a standard. This technique can also be applied to body fluids.

Other antibody-based methods useful for detecting *Streptococcus* polypeptide gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). For example, a *Streptococcus* polypeptide-specific monoclonal antibodies can be used both as an immunoabsorbent and as an enzyme-labeled probe to detect and quantify a *Streptococcus* polypeptide. The amount of a *Streptococcus* polypeptide present in the sample can be calculated by reference to the amount present in a standard preparation using a linear regression computer algorithm. Such an ELISA for detecting a tumor antigen is described in Iacobelli *et al.*, *Breast Cancer Research and Treatment* 11:19-30 (1988). In another ELISA assay, two distinct specific monoclonal antibodies can be used to detect *Streptococcus* polypeptides in a body fluid. In this assay, one of the antibodies is used as the immunoabsorbent and the other as the enzyme-labeled probe.

The above techniques may be conducted essentially as a "one-step" or "two-step" assay. The "one-step" assay involves contacting the *Streptococcus* polypeptide with immobilized antibody and, without washing, contacting the mixture with the labeled antibody. The "two-step" assay involves washing before contacting the mixture with the labeled antibody. Other conventional methods may also be employed as suitable. It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed from the sample.

Streptococcus polypeptide-specific antibodies for use in the present invention can be raised against an intact *S. pneumoniae* polypeptide of the present invention or fragment thereof. These polypeptides and fragments may be administered to an animal (*e.g.*, rabbit or mouse) either with a carrier protein (*e.g.*, albumin) or, if long enough (*e.g.*, at least about 25 amino acids), without a carrier.

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and $F(ab')_2$ fragments) which are capable of specifically binding to a *Streptococcus* polypeptide. Fab and $F(ab')_2$ fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may

have less non-specific tissue binding of an intact antibody (Wahl *et al.*, *J. Nucl. Med.* 24:316-325 (1983)). Thus, these fragments are preferred.

The antibodies of the present invention may be prepared by any of a variety of methods. For example, the *S. pneumoniae* polypeptides identified in Table 1, or fragments thereof, can be administered to an animal in order to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of a *S. pneumoniae* polypeptide of the present invention is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of high specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies. Such monoclonal antibodies can be prepared using hybridoma technology (Kohler *et al.*, *Nature* 256:495 (1975); Kohler *et al.*, *Eur. J. Immunol.* 6:511 (1976); Kohler *et al.*, *Eur. J. Immunol.* 6:292 (1976); Hammerling *et al.*, In: *Monoclonal Antibodies and T-Cell Hybridomas*, Elsevier, N.Y., (1981) pp. 563-681). In general, such procedures involve immunizing an animal (preferably a mouse) with a *S. pneumoniae* polypeptide antigen of the present invention. Suitable cells can be recognized by their capacity to bind anti-*Streptococcus* polypeptide antibody. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 µg/ml of streptomycin. The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP₂O), available from the American Type Culture Collection, Rockville, Maryland. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands *et al.* (*Gastroenterology* 80:225-232 (1981)). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the *Streptococcus* polypeptide antigen administered to immunized animal.

Alternatively, additional antibodies capable of binding to *Streptococcus* polypeptide antigens may be produced in a two-step procedure through the use of anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and that, therefore, it is possible to obtain an antibody

which binds to a second antibody. In accordance with this method, *Streptococcus* polypeptide-specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the *Streptococcus* polypeptide-specific antibody can be blocked by a *Streptococcus* polypeptide antigen. Such antibodies comprise anti-idiotypic antibodies to the *Streptococcus* polypeptide-specific antibody and can be used to immunize an animal to induce formation of further *Streptococcus* polypeptide-specific antibodies.

It will be appreciated that Fab and $F(ab')_2$ and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce $F(ab')_2$ fragments). Alternatively, *Streptococcus* polypeptide-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

Of special interest to the present invention are antibodies to *Streptococcus* polypeptide antigens which are produced in humans, or are "humanized" (*i.e.*, non-immunogenic in a human) by recombinant or other technology. Humanized antibodies may be produced, for example by replacing an immunogenic portion of an antibody with a corresponding, but non-immunogenic portion (*i.e.*, chimeric antibodies) (Robinson, R.R. *et al.*, International Patent Publication PCT/US86/02269; Akira, K. *et al.*, European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison, S.L. *et al.*, European Patent Application 173,494; Neuberger, M.S. *et al.*, PCT Application WO 86/01533; Cabilly, S. *et al.*, European Patent Application 125,023; Better, M. *et al.*, *Science* 240:1041-1043 (1988); Liu, A.Y. *et al.*, *Proc. Natl. Acad. Sci. USA* 84:3439-3443 (1987); Liu, A.Y. *et al.*, *J. Immunol.* 139:3521-3526 (1987); Sun, L.K. *et al.*, *Proc. Natl. Acad. Sci. USA* 84:214-218 (1987); Nishimura, Y. *et al.*, *Canc. Res.* 47:999-1005 (1987); Wood, C.R. *et al.*, *Nature* 314:446-449 (1985)); Shaw *et al.*, *J. Natl. Cancer Inst.* 80:1553-1559 (1988). General reviews of "humanized" chimeric antibodies are provided by Morrison, S.L. (*Science*, 229:1202-1207 (1985)) and by Oi, V.T. *et al.*, *BioTechniques* 4:214 (1986)). Suitable "humanized" antibodies can be alternatively produced by CDR or CEA substitution (Jones, P.T. *et al.*, *Nature* 321:552-525 (1986);

Verhoeyan *et al.*, *Science* 239:1534 (1988); Beidler, C.B. *et al.*, *J. Immunol.* 141:4053-4060 (1988)).

Suitable enzyme labels include, for example, those from the oxidase group, which catalyze the production of hydrogen peroxide by reacting with substrate. Glucose oxidase is particularly preferred as it has good stability and its substrate (glucose) is readily available. Activity of an oxidase label may be assayed by measuring the concentration of hydrogen peroxide formed by the enzyme-labeled antibody/substrate reaction. Besides enzymes, other suitable labels include radioisotopes, such as iodine (^{125}I , ^{121}I), carbon (^{14}C), sulphur (^{35}S), tritium (^3H), indium (^{112}In), and technetium (^{99m}Tc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

Further suitable labels for the *Streptococcus* polypeptide-specific antibodies of the present invention are provided below. Examples of suitable enzyme labels include malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast-alcohol dehydrogenase, alpha-glycerol phosphate dehydrogenase, triose phosphate isomerase, peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase, and acetylcholine esterase.

Examples of suitable radioisotopic labels include ^3H , ^{111}In , ^{125}I , ^{131}I , ^{32}P , ^{35}S , ^{14}C , ^{51}Cr , ^{57}To , ^{58}Co , ^{59}Fe , ^{75}Se , ^{152}Eu , ^{90}Y , ^{67}Cu , ^{217}At , ^{212}Pb , ^{47}Sc , ^{109}Pd , etc. ^{111}In is a preferred isotope where *in vivo* imaging is used since it avoids the problem of dehalogenation of the ^{125}I or ^{131}I -labeled monoclonal antibody by the liver. In addition, this radionucleotide has a more favorable gamma emission energy for imaging (Perkins *et al.*, *Eur. J. Nucl. Med.* 10:296-301 (1985); Carasquillo *et al.*, *J. Nucl. Med.* 28:281-287 (1987)). For example, ^{111}In coupled to monoclonal antibodies with 1-(P-isothiocyanatobenzyl)-DPTA has shown little uptake in non-tumorous tissues, particularly the liver, and therefore enhances specificity of tumor localization (Esteban *et al.*, *J. Nucl. Med.* 28:861-870 (1987)).

Examples of suitable non-radioactive isotopic labels include ^{157}Gd , ^{55}Mn , ^{162}Dy , ^{52}Tr , and ^{56}Fe .

Examples of suitable fluorescent labels include an ^{152}Eu label, a fluorescein label, an isothiocyanate label, a rhodamine label, a phycoerythrin label, a phycocyanin label, an allophycocyanin label, an o-phthaldehyde label, and a fluorescamine label.

Examples of suitable toxin labels include diphtheria toxin, ricin, and cholera toxin.

Examples of chemiluminescent labels include a luminal label, an isoluminal label, an aromatic acridinium ester label, an imidazole label, an acridinium salt label, an oxalate ester label, a luciferin label, a luciferase label, and an aequorin label.

5 Examples of nuclear magnetic resonance contrasting agents include heavy metal nuclei such as Gd, Mn, and iron.

Typical techniques for binding the above-described labels to antibodies are provided by Kennedy *et al.*, *Clin. Chim. Acta* 70:1-31 (1976), and Schurs *et al.*, *Clin. Chim. Acta* 81:1-40 (1977). Coupling techniques mentioned in the latter are the glutaraldehyde method, the periodate method, the dimaleimide method, the m-maleimidobenzyl-N-hydroxy-succinimide ester method, all of which methods are incorporated by reference herein.

In a related aspect, the invention includes a diagnostic kit for use in screening serum containing antibodies specific against *S. pneumoniae* infection. Such a kit may include an isolated *S. pneumoniae* antigen comprising an epitope which is specifically immunoreactive with at least one anti-*S. pneumoniae* antibody. Such a kit also includes means for detecting the binding of said antibody to the antigen. In specific embodiments, the kit may include a recombinantly produced or chemically synthesized peptide or polypeptide antigen. The peptide or polypeptide antigen may be attached to a solid support.

In a more specific embodiment, the detecting means of the above-described kit includes a solid support to which said peptide or polypeptide antigen is attached. Such a kit may also include a non-attached reporter-labelled anti-human antibody. In this embodiment, binding of the antibody to the *S. pneumoniae* antigen can be detected by binding of the reporter labelled antibody to the anti-*S. pneumoniae* antibody.

In a related aspect, the invention includes a method of detecting *S. pneumoniae* infection in a subject. This detection method includes reacting a body fluid, preferably serum, from the subject with an isolated *S. pneumoniae* antigen, and examining the antigen for the presence of bound antibody. In a specific embodiment, the method includes a polypeptide antigen attached to a solid support, and serum is reacted with the support. Subsequently, the support is reacted with a reporter-labelled anti-human antibody. The support is then examined for the presence of reporter-labelled antibody.

The solid surface reagent employed in the above assays and kits is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plates or filter material. These attachment methods generally include non-specific adsorption of the

protein to the support or covalent attachment of the protein , typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s).

5

Therapeutics and Modes of Administration

The present invention also provides vaccines comprising one or more polypeptides of the present invention. Heterogeneity in the composition of a vaccine may be provided by combining *S. pneumoniae* polypeptides of the present invention. Multi-component vaccines of this type are desirable because they are likely to be more effective in eliciting protective immune responses against multiple species and strains of the *Streptococcus* genus than single polypeptide vaccines. Thus, as discussed in detail below, a multi-component vaccine of the present invention may contain one or more, preferably 2 to about 20, more preferably 2 to about 15, and most preferably 3 to about 8, of the *S. pneumoniae* polypeptides identified in Table 1, or fragments thereof.

Multi-component vaccines are known in the art to elicit antibody production to numerous immunogenic components. Decker, M. and Edwards, K., *J. Infect. Dis.* 174:S270-275 (1996). In addition, a hepatitis B, diphtheria, tetanus, pertussis tetravalent vaccine has recently been demonstrated to elicit protective levels of antibodies in human infants against all four pathogenic agents. Aristegui, J. et al., *Vaccine* 15:7-9 (1997).

The present invention thus also includes multi-component vaccines. These vaccines comprise more than one polypeptide, immunogen or antigen. An example of such a multi-component vaccine would be a vaccine comprising more than one of the *S. pneumoniae* polypeptides described in Table 1. A second example is a vaccine comprising one or more, for example 2 to 10, of the *S. pneumoniae* polypeptides identified in Table 1 and one or more, for example 2 to 10, additional polypeptides of either streptococcal or non-streptococcal origin. Thus, a multi-component vaccine which confers protective immunity to both a Streptococcal infection and infection by another pathogenic agent is also within the scope of the invention.

As indicated above, the vaccines of the present invention are expected to elicit a protective immune response against infections caused by species and strains of *Streptococcus* other than strain of *S. pneumoniae* deposited with that ATCC.

Further within the scope of the invention are whole cell and whole viral vaccines. Such vaccines may be produced recombinantly and involve the

expression of one or more of the *S. pneumoniae* polypeptides described in Table 1. For example, the *S. pneumoniae* polypeptides of the present invention may be either secreted or localized intracellular, on the cell surface, or in the periplasmic space. Further, when a recombinant virus is used, the *S. pneumoniae* polypeptides of the present invention may, for example, be localized in the viral envelope, on the surface of the capsid, or internally within the capsid. Whole cells vaccines which employ cells expressing heterologous proteins are known in the art. See, e.g., Robinson, K. et al., *Nature Biotech.* 15:653-657 (1997); Sirard, J. et al., *Infect. Immun.* 65:2029-2033 (1997); Chabalgoity, J. et al., *Infect. Immun.* 65:2402-2412 (1997). These cells may be administered live or may be killed prior to administration. Chabalgoity, J. et al., *supra*, for example, report the successful use in mice of a live attenuated *Salmonella* vaccine strain which expresses a portion of a platyhelminth fatty acid-binding protein as a fusion protein on its cells surface.

A multi-component vaccine can also be prepared using techniques known in the art by combining one or more *S. pneumoniae* polypeptides of the present invention, or fragments thereof, with additional non-streptococcal components (e.g., diphtheria toxin or tetanus toxin, and/or other compounds known to elicit an immune response). Such vaccines are useful for eliciting protective immune responses to both members of the *Streptococcus* genus and non-streptococcal pathogenic agents.

The vaccines of the present invention also include DNA vaccines. DNA vaccines are currently being developed for a number of infectious diseases. Boyer, J et al., *Nat. Med.* 3:526-532 (1997); reviewed in Spier, R., *Vaccine* 14:1285-1288 (1996). Such DNA vaccines contain a nucleotide sequence encoding one or more *S. pneumoniae* polypeptides of the present invention oriented in a manner that allows for expression of the subject polypeptide. The direct administration of plasmid DNA encoding *B. burgdorferi* OspA has been shown to elicit protective immunity in mice against borrelial challenge. Luke, C. et al., *J. Infect. Dis.* 175:91-97 (1997).

The present invention also relates to the administration of a vaccine which is co-administered with a molecule capable of modulating immune responses. Kim, J. et al., *Nature Biotech.* 15:641-646 (1997), for example, report the enhancement of immune responses produced by DNA immunizations when DNA sequences encoding molecules which stimulate the immune response are co-administered. In a similar fashion, the vaccines of the present invention may be co-administered with either nucleic acids encoding immune modulators or the immune modulators themselves. These immune modulators

include granulocyte macrophage colony stimulating factor (GM-CSF) and CD86.

The vaccines of the present invention may be used to confer resistance to streptococcal infection by either passive or active immunization. When the vaccines of the present invention are used to confer resistance to streptococcal infection through active immunization, a vaccine of the present invention is administered to an animal to elicit a protective immune response which either prevents or attenuates a streptococcal infection. When the vaccines of the present invention are used to confer resistance to streptococcal infection through passive immunization, the vaccine is provided to a host animal (*e.g.*, human, dog, or mouse), and the antisera elicited by this antisera is recovered and directly provided to a recipient suspected of having an infection caused by a member of the *Streptococcus* genus.

The ability to label antibodies, or fragments of antibodies, with toxin molecules provides an additional method for treating streptococcal infections when passive immunization is conducted. In this embodiment, antibodies, or fragments of antibodies, capable of recognizing the *S. pneumoniae* polypeptides disclosed herein, or fragments thereof, as well as other *Streptococcus* proteins, are labeled with toxin molecules prior to their administration to the patient. When such toxin derivatized antibodies bind to *Streptococcus* cells, toxin moieties will be localized to these cells and will cause their death.

The present invention thus concerns and provides a means for preventing or attenuating a streptococcal infection resulting from organisms which have antigens that are recognized and bound by antisera produced in response to the polypeptides of the present invention. As used herein, a vaccine is said to prevent or attenuate a disease if its administration to an animal results either in the total or partial attenuation (*i.e.*, suppression) of a symptom or condition of the disease, or in the total or partial immunity of the animal to the disease.

The administration of the vaccine (or the antisera which it elicits) may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the compound(s) are provided in advance of any symptoms of streptococcal infection. The prophylactic administration of the compound(s) serves to prevent or attenuate any subsequent infection. When provided therapeutically, the compound(s) is provided upon or after the detection of symptoms which indicate that an animal may be infected with a member of the *Streptococcus* genus. The therapeutic administration of the compound(s) serves to attenuate any actual infection. Thus, the *S. pneumoniae* polypeptides, and

fragments thereof, of the present invention may be provided either prior to the onset of infection (so as to prevent or attenuate an anticipated infection) or after the initiation of an actual infection.

The polypeptides of the invention, whether encoding a portion of a native protein or a functional derivative thereof, may be administered in pure form or may be coupled to a macromolecular carrier. Example of such carriers are proteins and carbohydrates. Suitable proteins which may act as macromolecular carrier for enhancing the immunogenicity of the polypeptides of the present invention include keyhole limpet hemacyanin (KLH) tetanus toxoid, pertussis toxin, bovine serum albumin, and ovalbumin. Methods for coupling the polypeptides of the present invention to such macromolecular carriers are disclosed in Harlow *et al.*, *Antibodies: A Laboratory Manual, 2nd Ed.*; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1988), the entire disclosure of which is incorporated by reference herein.

A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient animal and is otherwise suitable for administration to that animal. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

While in all instances the vaccine of the present invention is administered as a pharmacologically acceptable compound, one skilled in the art would recognize that the composition of a pharmacologically acceptable compound varies with the animal to which it is administered. For example, a vaccine intended for human use will generally not be co-administered with Freund's adjuvant. Further, the level of purity of the *S. pneumoniae* polypeptides of the present invention will normally be higher when administered to a human than when administered to a non-human animal.

As would be understood by one of ordinary skill in the art, when the vaccine of the present invention is provided to an animal, it may be in a composition which may contain salts, buffers, adjuvants, or other substances which are desirable for improving the efficacy of the composition. Adjuvants are substances that can be used to specifically augment a specific immune response. These substances generally perform two functions: (1) they protect the antigen(s) from being rapidly catabolized after administration and (2) they nonspecifically stimulate immune responses.

Normally, the adjuvant and the composition are mixed prior to presentation to the immune system, or presented separately, but into the same

40

site of the animal being immunized. Adjuvants can be loosely divided into several groups based upon their composition. These groups include oil adjuvants (for example, Freund's complete and incomplete), mineral salts (for example, $\text{AlK}(\text{SO}_4)_2$, $\text{AlNa}(\text{SO}_4)_2$, $\text{AlNH}_4(\text{SO}_4)$, silica, kaolin, and carbon),
5 polynucleotides (for example, poly IC and poly AU acids), and certain natural substances (for example, wax D from *Mycobacterium tuberculosis*, as well as substances found in *Corynebacterium parvum*, or *Bordetella pertussis*, and members of the genus *Brucella*. Other substances useful as adjuvants are the saponins such as, for example, Quil A. (Superfos A/S, Denmark). Preferred
10 adjuvants for use in the present invention include aluminum salts, such as $\text{AlK}(\text{SO}_4)_2$, $\text{AlNa}(\text{SO}_4)_2$, and $\text{AlNH}_4(\text{SO}_4)$. Examples of materials suitable for use in vaccine compositions are provided in *Remington's Pharmaceutical Sciences* (Osol, A, Ed, Mack Publishing Co, Easton, PA, pp. 1324-1341 (1980), which reference is incorporated herein by reference).

15 The therapeutic compositions of the present invention can be administered parenterally by injection, rapid infusion, nasopharyngeal absorption (intranasopharangeally), dermoabsorption, or orally. The compositions may alternatively be administered intramuscularly, or intravenously. Compositions for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Carriers or occlusive dressings can be used to increase skin permeability and enhance antigen absorption. Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form. Suitable forms for suspending liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water. Besides the inert diluents, such compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, or sweetening, flavoring,
20 or perfuming agents.
25
30

Therapeutic compositions of the present invention can also be administered in encapsulated form. For example, intranasal immunization of mice against *Bordetella pertussis* infection using vaccines encapsulated in biodegradable microsphere composed of poly(DL-lactide-co-glycolide) has been shown to stimulate protective immune responses. Shahin, R. *et al.*, *Infect. Immun.* 63:1195-1200 (1995). Similarly, orally administered encapsulated *Salmonella typhimurium* antigens have also been shown to elicit protective
35

immunity in mice. Allaoui-Attarki, K. *et al.*, *Infect. Immun.* 65:853-857 (1997). Encapsulated vaccines of the present invention can be administered by a variety of routes including those involving contacting the vaccine with mucous membranes (*e.g.*, intranasally, intracolonically, intraduodenally).

5 Many different techniques exist for the timing of the immunizations when a multiple administration regimen is utilized. It is possible to use the compositions of the invention more than once to increase the levels and diversities of expression of the immunoglobulin repertoire expressed by the immunized animal. Typically, if multiple immunizations are given, they will be
10 given one to two months apart.

15 According to the present invention, an "effective amount" of a therapeutic composition is one which is sufficient to achieve a desired biological effect. Generally, the dosage needed to provide an effective amount of the composition will vary depending upon such factors as the animal's or human's age, condition, sex, and extent of disease, if any, and other variables which can
be adjusted by one of ordinary skill in the art.

20 The antigenic preparations of the invention can be administered by either single or multiple dosages of an effective amount. Effective amounts of the compositions of the invention can vary from 0.01-1,000 µg/ml per dose, more preferably 0.1-500 µg/ml per dose, and most preferably 10-300 µg/ml per dose.

25 Having now generally described the invention, the same will be more readily understood through reference to the following example which is provided by way of illustration, and is not intended to be limiting of the present invention, unless specified.

Examples

Example 1: Expression and Purification of S. pneumoniae Polypeptides in E. coli

30 The bacterial expression vector pQE10 (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311) is used in this example for cloning of the nucleotide sequences shown in Table 1 and for expressing the polypeptides identified in Table 1. The components of the pQE10 plasmid are arranged such that the inserted DNA sequence encoding a polypeptide of the present invention expresses the polypeptide with the six His residues (*i.e.*, a "6 X His tag") covalently linked to the amino terminus.
35

The DNA sequences encoding the desired portions of the polypeptides of Table 1 are amplified using PCR oligonucleotide primers from either a DNA

library constructed from *S. pneumoniae*, such as the one deposited by the inventors at the ATCC for convenience, ATCC Deposit No. 97755, or from DNA isolated from the same organism such as the *S. pneumoniae* strain deposited with the ATCC as Deposit No. 55840. A list of PCR primers which can be used for this purpose is provided in Table 3, below. The PCR primers anneal to the nucleotide sequences encoding both the amino terminal and carboxy terminal amino acid sequences of the desired portion of the polypeptides of Table 1. Additional nucleotides containing restriction sites to facilitate cloning in the pQE10 vector were added to the 5' and 3' primer sequences, respectively. Such restriction sites are listed in Table 3 for each primer. In each case, the primer comprises, from the 5' end, 4 random nucleotides to prevent "breathing" during the annealing process, a restriction site (shown in Table 3), and approximately 15 nucleotides of *S. pneumoniae* ORF sequence (the complete sequence of each cloning primer is shown as SEQ ID NO:227 through SEQ ID NO:452).

For cloning the polypeptides of Table 1, the 5' and 3' primers were selected to amplify their respective nucleotide coding sequences. One of ordinary skill in the art would appreciate that the point in the protein coding sequence where the 5' primer begins may be varied to amplify a DNA segment encoding any desired portion of the complete amino acid sequences described in Table 1. Similarly, one of ordinary skill in the art would further appreciate that the point in the protein coding sequence where the 3' primer begins may also be varied to amplify a DNA segment encoding any desired portion of the complete amino acid sequences described in Table 1.

The amplified DNA fragment and the pQE10 vector are digested with the appropriate restriction enzyme(s) and the digested DNAs are then ligated together. The ligation mixture is transformed into competent *E. coli* cells using standard procedures such as those described in Sambrook *et al.*, *Molecular Cloning: a Laboratory Manual*, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). Transformants are identified by their ability to grow under selective pressure on LB plates. Plasmid DNA is isolated from resistant colonies and the identity of the cloned DNA confirmed by restriction analysis, PCR and DNA sequencing.

Clones containing the desired constructs are grown overnight ("O/N") in liquid culture under selection. The O/N culture is used to inoculate a large culture, at a dilution of approximately 1:25 to 1:250. The cells are grown to an optical density at 600 nm ("OD600") of between 0.4 and 0.6. Isopropyl-β-D-thiogalactopyranoside ("IPTG") is then added to a final concentration of 1 mM

to induce transcription from the *lac* repressor sensitive promoter, by inactivating the *lacI* repressor. Cells subsequently are incubated further for 3 to 4 hours. Cells are then harvested by centrifugation.

The cells are stirred for 3-4 hours at 4 C in 6M guanidine-HCl, pH 8. The cell debris is removed by centrifugation, and the supernatant containing the protein of interest is loaded onto a nickel-nitrilo-tri-acetic acid ("NiNTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6x His tag bind to the NI-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist, 1995, QIAGEN, Inc., *supra*). Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH8, then washed with 10 volumes of 6 M guanidine-HCl pH6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.0.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins can be eluted by the addition of 250 mM imidazole. Imidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

The DNA sequences encoding the amino acid sequences of Table 1 may also be cloned and expressed as fusion proteins by a protocol similar to that described directly above, wherein the pET-32b(+) vector (Novagen, 601 Science Drive, Madison, WI 53711) is preferentially used in place of pQE10.

Each of the polynucleotides shown in Table 1, was successfully amplified and subcloned into pQE10 as described above using the PCR primers shown in Table 3. These pQE10 plasmids containing the DNAs of Table 1, except SP023, SP042, SP054, SP063, SP081, SP092, SP114, SP122, SP123, SP126, and SP127, were deposited with the ATCC as a pooled deposit as a convenience to those of skill in the art. This pooled deposit was desposited on October 16, 1997 and given ATCC Deposit No. 209369. Those of ordinary skill in the art appreciate that isolating an individual plasmid from the pooled deposit is trivial provided the information and reagents described herein. Each of the deposited clones is capable of expressing its encoded *S. pneumoniae* polypeptide.

Example 2: Immunization and Detection of Immune Responses

Methods

*Growth of bacterial innoculum, immunization of Mice and Challenge with *S. pneumoniae*.*

Propagation and storage of, and challenge by *S. pneumoniae* are performed essentially as described in Aaberge, I.S. et al., Virulence of *Streptococcus pneumoniae* in mice: a standardized method for preparation and frozen storage of the experimental bacterial inoculum, *Microbial Pathogenesis*, 18:141 (1995), incorporated herein by reference.

Briefly, Todd Hewitt (TH) broth (Difco laboratories, Detroit, MI) with 17% FCS, and horse blood agar plates are used for culturing the bacteria. Both broth and blood plates are incubated at 37°C in a 5% CO₂ atmosphere. Blood plates are incubated for 18 hr. The culture broth is regularly 10-fold serially diluted in TH broth kept at room temperature and bacterial suspensions are kept at room temperature until challenge of mice.

For active immunizations C3H/HeJ mice (The Jackson Laboratory, Bar Harbor, ME) are injected intraperitoneally (i.p.) at week 0 with 20 g of recombinant streptococcal protein, or phosphate-buffered saline (PBS), emulsified with complete Freund's adjuvant (CFA), given a similar booster immunization in incomplete Freund's adjuvant (IFA) at week 4, and challenged at week 6. For challenge *S. pneumoniae* are diluted in TH broth from exponentially-growing cultures and mice are injected subcutaneously (s.c.) at the base of the tail with 0.1 ml of these dilutions (serial dilutions are used to find medium infectious dose). Streptococci used for challenge are passaged fewer than six times *in vitro*. To assess infection, blood samples are obtained from the distal part of the lateral femoral vein into heparinized capillary tubes. A 25 ul blood sample is serially 10-fold diluted in TH broth, and 25 ul of diluted and undiluted blood is plated onto blood agar plates. The plates are incubated for 18 hr. and colonies are counted.

Other methods are known in the art, for example, see Langermann, S. et al., *J. Exp. Med.*, **180**:2277 (1994), incorporated herein by reference.

Immunoassays

Several immunoassay formats are used to quantify levels of streptococcal-specific antibodies (ELISA and immunoblot), and to evaluate the functional properties of these antibodies (growth inhibition assay). The ELISA and immunoblot assays are also used to detect and quantify antibodies elicited in response to streptococcal infection that react with specific streptococcal antigens. Where antibodies to certain streptococcal antigens are elicited by infection this is taken as evidence that the streptococcal proteins in question are expressed *in vivo*. Absence of infection-derived antibodies (seroconversion) following streptococcal challenge is evidence that infection is prevented or suppressed. The immunoblot assay is also used to ascertain whether antibodies raised against recombinant streptococcal antigens recognize a protein of similar size in extracts of whole streptococci. Where the natural protein is of similar, or identical, size in the immunoblot assay to the recombinant version of the same protein, this is taken as evidence that the recombinant protein is the product of a full-length clone of the respective gene.

Enzyme-Linked Immunosorbant Assay (ELISA).

The ELISA is used to quantify levels of antibodies reactive with streptococcus antigens elicited in response to immunization with these streptococcal antigens. Wells of 96 well microtiter plates (Immunlon 4, Dynatech, Chantilly, Virginia, or equivalent) are coated with antigen by incubating 50 μl of 1 mg/ml protein antigen solution in a suitable buffer, typically 0.1 M sodium carbonate buffer at pH 9.6. After decanting unbound antigen, additional binding sites are blocked by incubating 100 μl of 3% nonfat milk in wash buffer (PBS, 0.2% Tween 20, pH 7.4). After washing, duplicate serial two-fold dilutions of sera in PBS, Tween 20, 1% fetal bovine serum, are incubated for 1 hr, removed, wells are washed three times, and incubated with horseradish peroxidase-conjugated goat anti-mouse IgG. After three washes, bound antibodies are detected with H₂O₂ and 2,2'-azino-di-(3-ethylbenzthiazoline sulfonate) (Schwan, T.G., *et al.*, *Proc. Natl. Acad. Sci. USA* 92:2909-2913 (1985)) (ABTS®, Kirkegaard & Perry Labs., Gaithersburg, MD) and A₄₀₅ is quantified with a Molecular Devices, Corp. (Menlo Park, California) Vmax™ plate reader. IgG levels twice the background level in serum from naive mice are assigned the minimum titer of 1:100.

Sodiumdodecylsulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Immunoblotting

Using a single well format, total streptococcal protein extracts or recombinant streptococcal antigen are boiled in SDS/2-ME sample buffer before electrophoresis through 3% acrylamide stacking gels, and resolving gels of higher acrylamide concentration, typically 10-15% acrylamide monomer. Gels are electro-blotted to nitrocellulose membranes and lanes are probed with dilutions of antibody to be tested for reactivity with specific streptococcal antigens, followed by the appropriate secondary antibody-enzyme (horseradish peroxidase) conjugate. When it is desirable to confirm that the protein had transferred following electro-blotting, membranes are stained with Ponceau S. Immunoblot signals from bound antibodies are detected on x-ray film as chemiluminescence using ECL™ reagents (Amersham Corp., Arlington Heights, Illinois).

*Example 3: Detection of *Streptococcus* mRNA expression*

Northern blot analysis is carried out using methods described by, among others, Sambrook *et al.*, *supra*. to detect the expression of the *S. pneumoniae* nucleotide sequences of the present invention in animal tissues. A cDNA probe containing an entire nucleotide sequence shown in Table 1 is labeled with ^{32}P using the *rediprime*™ DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using a CHROMA SPIN-100™ column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to detect the expression of *Streptococcus* mRNA in an animal tissue sample.

Animal tissues, such as blood or spinal fluid, are examined with the labeled probe using ExpressHyb™ hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70 C overnight, and films developed according to standard procedures.

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples.

Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of
5 the appended claims.

The entire disclosure of all publications (including patents, patent applications, journal articles, laboratory manuals, books, or other documents) cited herein are hereby incorporated by reference.

Table 1**SP001 nucleotide (SEQ ID NO:1)**

TAAAATCTACGACAATAAAATCAACTCATTGCTGACTTGGTTCTGAACGCCCGTCAATGCCAAGCTAATGATATTCCCACAGATTGGTTAAGGCAATCGTTCTATCGAAGACCATCGCTTCTCGACCACAGGGGATTGATACCATCCGTATCCTGGGAGCTTCTTGCGCAATCTGAAAGCAATTCCCTCAAGGTGGATCAACTCTCACCCAACAGTTGATTAAGGACTTACTTTCAACTTCGACTTCCGACCAGACTATTC TCGTAAGGCTCAGGAAGCTGGTTAGCGATTCACTAGTTAGAACAAGCAACCAAGCAAGAAATCTTGACCTACTATATAAAAGGCTACATGTCTAATGGGAACTATGGAATCGACAGCAGCTCAAACACTACTATGGTAAAGACCTCAATAATTAAAGTTCACCTCAGTTAGCCTTGCTGGATGCGCTCAGGCACCAACCAATATGACCCCTATTACATCCAGAACGAGCCAGAACCTGGTCTATCTGAAATGAAATCAAGGCTACATCTGCTGAACAGTATGAGAAAGCAGTCATAACACCAATTACTGATGGACTACAAGTCTCAAATCAGCAAGTAATTACCCCTGCTTACATGGATAATTACCTCAAGGAAGTCATCAATCAAGT TGAAGAAGAACAGGCTATAACCTACTCACAACTGGGATGGATGTCTACACAAATGTAGACCAAGAACACAAACATCTGTGGGATATTACAATACAGACGAATACGTTGCCTATCCAGACGATGAATTGCAAGT CGCTTCTACCATTGTTGATGTTCTAACGGTAAAGTCATTGCCAGCTAGGACACGCCATCAGTCAGTAATGTTCTCGGAATTAAACCAAGCAGTAGAAACAAACCGCGACTGGGATCAACTATGAAACCGATCACAGACTATGCTCTGCTTGGAGTACGGTGTCTACGATTCAACTGCTACTATCGTCACGATGAGCCCTATAACTACCCCTGGGACAAATACTCCTGTTATAACTGGGATAGGGCTACTTTGGCAACATCACCTT GCAATACGCCCTGCAACAATCGCGAACGTCCAGCCGTGGAAACTCTAAACAAAGTCGGACTCAACCGCGCAAGACTTCCATAATGGGACTACCCAAAGTATTCAACTAAATGCCATTCAAGTAACACAACCGAATCAGACAAAAATATGGAGCAAGTAGTGAAAGATGGCTGCTGCTTACGCTGCCTTGCAATGGTGAACCTACTATAAAACCAATGTATATCCATAAAAGTCGCTTTAGTGTGAGTGGAGTGAAGAACAGTCTTCAATGTCGAACTGGACAGCCTATATGATGACCGACATGATGAAACACTCTAACTATAACAGACGAGGAATTGAAAACCATCAAGACCTCTCAATTGTAGCACCTGATGAACTATTTGCTGGCTACCGTAAATATTCAATGGCTGTATGGACAGGCTATTCTAACCGTCTGACACCACCTGTAGGCAATGCCCTACGGTGTGCTGCCAAAGTTACCGCTCTATGATGACCTACCTGTCTGAAGGAAGCAATCCAGAACGATGGAAATATACCAGAGGGCTCTACAGAAATGGAGAATTGCTATTAAAAATGGTGCTCGTTCTACGTGGAACTCACCTGCTCCACAACAACCCCCATCAACTGAAAGTCAGCTCATCATCAGATAGTTCAACTTCACAGTCTAGCTCAACCACCTCCAAGCACAAATAATAGTACGACTACCAATCCTAA CAATAATACGCAACAATCAAATACAACCCCTGATCAACAAATCAGAATCCTCAACCAGCACACCA

SP001 AMINO ACID (SEQ ID NO:2)

KIYDNKNQLIADLGSSRVNAQANDIPDLVKAIVSIEDHRFFDHRGIDTIRILGAFLRLNLSQNSLQGGSTLTQQLIKLYFSTSTSQTISRKAQEAWLAIQLEQKATKQEILTYYINKVMSNGNYGMQTAQNYY GKDLNNLSPQLALLAGMPQAPNQYDPYSHPEAAQDRRNVLSEMKNQGYISAEQYEKAVNTPITDGLQSLKSASNPAYMDNLKEVINQVEETGYNLLITGMDVYTVDQEAQKHLWDIYNTDEYVAYPDDELQVASTIVDVSNKGVIQLGARHQSSNVSGINQAETNRDWGSTMKPITDYAPALEYGVYDSTATIVHDEPYNYPGTNTPVYNWDRGYFGNITLQYALQQRNVPAVETLNKVLGNRAKTFNLNGIDYPSIHYSNAISSNTTESDKKYGASSEKMAAAAYAAFANGGTYYKPMYIHKVVFSDGSEKEFSNVGTRAMKETTAYMMTDMMKTVLTYGTGRNAYLAWLPOAGKTGTSNYTDEEIENHIKTSQFVAPDELFAGYTRKYSMAWTGYSNRLTPLVGNGLTVAAKVYRSMMTYLSEGSNPEDWNIPEGLYRNGEFVKNGARSTWNSPAPQQPPSTESSSSSSDSSTSQSSSTTPSTNNSTTNPNNNNTQOSNTPDQQNQNQPQAQP

SP004 nucleotide (SEQ ID NO:3)

AAATTACAATACGGACTATGAATTGACCTCTGGAGAAAATTACCTCTTCCCTAAAGAGATTCAGGTTACACTTATATTGGATATATCAAAGAGGGAAAACGACTTCTGAGTCAGTAAGTAATCAAAGAGTTCAAGTACAGCTTCTACAAACAAACAAACACCTGTTCTCAACTAAGCCGACAGAAGTTCAAGTAGTTGAACAGTACAAGCTATTCAAGAACACACCTGTTCTCAACTAAGCCGACAGAAGTTCAAGTAGTTGAACACAAACCTCTACTGAATTCAATCCAAGAAAAGAGAGAAAACAATCTCAGATTCTCAAGAACAAACACCTTCTACTGAATTCAAGAACACACCTGTTCTCAACTAAGCCGACAGAAGTTCTCCAAAAGAAAAGACTGGGGTAAATACATTAAATCCACAGGATGAAGTTTATCAGGTCAATTGAACAAACCTGAACCTTTAGCTGAAGGAACGGAAACTATGGAGACAAAAATAGATTTCAGGAAGAAGAAATTCAAGAAAATCTGATTAGCTGAAGGAAC TGTAAGAGTAAACAAAGAAGGTTAAATTAGGTAAAGAAAAGTTGAAATCGTCAGAAATTCTCTGTAAACAA GGAAGAAGTTCGCGAGAAATTGTTCAACTTCACGACTGCGCCTAGTCCAAGAAATAGTCGAAAAGGTTACTAAAAAAACTCAAGTTATAAAGGAACAAACCTGAGACTGGTGTAGAACATAAGGACGTACAGTCAGTGGAGCTATTGTTGAACCCGCAATTCAAGCCTGAGTTGCCCCGAAGCTGTAGTAAGTGACAAAGGCGAACAGAGTTCAACCTACATTACCGAAGCAGTTGTGACCGACAAAGGTGAGACTGAGGTTCAACCCAGAGTCGCCAGATACTGTGTTAAGTGTGATAAAGGTGAACCGAGCAGGTAGCACCCTCCAGAATATAAGGGTAATAT

Table 1

TGAGCAAGTAAAACCTGAAACTCCGGTTGAGAAGACCAAGAACAGGTCCAGAAAAACTGAAGAAGT
 TCCAGTAAAACCAACAGAAGAACCCAGTAATCCAATGAAGGTACTACAGAAGGAACCTCAATTCA
 AGAAGCAGAAAATCCAGTCAACCTGCAGAAGAACAAACAGAATTCAAGAGAAAGTATCACCGAGATAC
 ATCTAGCAAAAATCTGGGAAGTGCCAGTAATCTAGTGATTGACAACCTCAGTTGGAGAATCAA
 TAAACCAGAACATAATGACTCTAAAATGAGAAGAACCTGAGAAGAACCTGAGTAAATCC
 AAATGAAGGCACAGTAGAAGGTACCTCAAATCAAGAACAGAAAACCAGTTCAACCTGCAGAAGAAC
 ACAAACAAACTCTGGAAAATAGCTAACGAAAATCTGGAGAAGTATCCAATAAACCTAGTGATTCAA
 ACCACCAGTTGAAGAACATCAACCAGAAAAACGGAACACTGCAACAAACAGAAAATTCAAGGTA
 TACAACATCAGAACATGGACAAACAGAACCATCAAACGGAAATTCAACTGAGGATGTTCAAC
 CGAATCAAACACATCCAATTCAAATGGAAACGAAGAAATTAAACAAGAAAATGAACAGACCCCTGATAA
 AAAGGTAGAAGAACCAAGAGAAAACACTTGAATTAAAGAAATGTTCCGACCTAGAGTTA

SP004 amino acid (SEQ ID NO:4)

NYNTDYELTSGEKLPLPKIEGYTYIGYIKEGKTTSESEVSQKSSVATPTKQQKVDYNTPNFVDHPS
 TVQAIQEQTVPVSTKPTEVQVVEKFSTELINPRKEEKQSSDSQEQLAEHKNLETKKEEKISPKEKTGV
 NTLNPQDEVLSQQLNKPPELLYREETMETKIDFQEEIQENPDLAEGTVRKQEGKLGKKVEIRIFSVNK
 EEVSRREIVSTSTTAPSPRIVATEKGTKTQVIKEQPETGVEHKDVQSGAIVEPAIQPELPEAVVSDKGEPE
 VQPTLPEAVVTDKGTEVQPESPDTVVSDKGEPEQVAPLPEYKGNIEQVKPETPVEKTKEQGPEKTEEV
 PVKPTTEETPVNPNEGTTGTQVIKEQPETGVEHKDVQSGAIVEPAIQPELPEAVVSDKGEPE
 KPEHNDSKNENSEKTVEEVVPVNPNEGTVEGTSNQETEKPVQPAEETQTNSGKIANENTGEVSNKPSDSK
 PPVEESNQPEKNGTATKPENSGNTTSENGQTEPEPSNGNSTEDVSTESNTSNSNGNEEIKQENELDPDK
 KVEEPEKTLELRNVSDLEL

SP006 nucleotide (SEQ ID NO:5)

TGAGAATCAAGCTACACCCAAAGAGACTAGCGCTCAAAAGACAATCGTCCTGCTACAGCTGGCGACGT
 GCCACCATTGACTACGAAGACAAGGGCAATCTGACAGGCTTGATATCGAAGTTTAAAGGCAGTAGA
 TGAAAACACTAGCGACTACGAGATTCAATTCAAAGAACCGCTGGGAGAGCATCTTCCCAGGACTTGA
 TTCTGGTCACTATCAGGCTGCCAAATAACTTGAGTTACACAAAAGAGCGTGTGAAAAATACCTTAA
 CTCGCTTCAATTCAAACATCCCCCTCGTCCTGTCAAGCAACAAGAAAAATCCTTGACTTCTCTTGA
 CCAGATCGCTGGTAAAACACACAAGAGGATACCGAACCTCTAACGCTCAATTCAATAACTGGAA
 TCAGAAACACACTGATAATCCGCTACAATTAAATTCTGGTGAGGATATTGGTAAACGAATCCTAGA
 CCTTGCTAACGGAGAGTTGATTCTCTAGTTTGACAAGGTATCGTTCAAAGATTATCAAGGACCG
 TGGTTAGACCTCTCAGTCGGTGTGATTACCTCTGCAGATAGCCCCAGCAATTATATCATTCTCAAG
 CGACCAAAAAGAGTTAAAGAGCAATTGATAAAGCGCTCAAAGAACTCTATCAAGACGGAACCCTTGA
 AAAACTCAGCAATACCTATCTAGGTGGTTCTTACCTCCCAGATCAATCTCAGTTACAA

SP006 amino acid (SEQ ID NO:6)

ENQATPKETAQKTIIVLATAGDVPPFDYEDKGNLTFDIEVLKAVDEKLSDYEIQFQRTAWESIFPGLD
 SGHYQAAANNLSYTAKERAKYLYSLPISNNPLVSNKKNPLSLDQIAGKTTQEDTGTNAQFINNWN
 QKHTDNPATINFSGEDIGKRILDLANGEFDFLVFDKVSVQKIIKDRGLDLSVVDLPSADSPSNYIIFSS
 DQKEFKEQFDKALKELYQDGTLKLSNTYLGGSYLPDQSQLQ

SP007 nucleotide (SEQ ID NO:7)

TGGTAACCCTCTCGTAACGCGCTCATCTCTGATGTGAAGACAAAAGCAGCAATCGTCACTGA
 TACTGGTGGTGTGATGACAATCATTCAACCAATCAGCTTGGGAAGGTTGCAAGGCTTGGGTAAAGA
 ACACAATCTTCAAAGATAACGGTTCACTTACTTCCAAATCAACAAGTGAAAGCTGACTACGCTAACAA
 CTTGCAACAAGCGGCTGGAAAGTTACAACCTAATCTCGGTGTTGGTTGCCCTTAATAATGAGTTAA
 AGATGCAGAAAAGAACACACTGACTTGAACTATGCTTGATTGATGTGATTAAAGACAAAAGAA
 TGTTGCGAGCGTAACCTTCGCTGATAATGAGTCAGGTACCTTGCAAGGTGTCAGCAAGGAAAC
 TAAGACAAAACAAGTTGGTTGTAGGTGGTATCGAATCTGAAGTTATCTCTCGTTTGAAAGCAGGATT
 CAAGGCTGGTGTGCGTCAGTAGACCCATCTAAAGTCAAGTTGACTACGCTGGTCATTGGTGA
 TGCAGCTAAAGGTAAAACAATTGCAAGCCGACAAATACGCAAGCCGTCAGATATTGTTACCAAGTAGC
 TGGTGGTACAGGTGCAGGTGTCTTGCAAGGCAAATCTCTAACGAAAGCCGTCCTGAAAATGAAAA
 AGTTGGGTTATCGGTGTTGATCGTGACCAAGAACAGAAGGTTAAACACTCTAAAGATGGCAAAGA
 ATCAAACCTTGTCTTGATCTACTTGAACAAAGTTGTCAGACTGAAAGATATTCTAAACAGGC
 AGAAAGAGGAGAATCCCTGGCGGTCAAGTGATCGTTACTCATTGAAGGATAAAGGGTTGACTTGGC
 AGTAACAAACCTTCAGAAGAACAGTAAAGCTGCGAAGATGCAAAAGCTAAATCCTGATGGAAG
 CGTAAAAGTTCTGAAAAA

Table 1**SP007 amino acid (SEQ ID NO:8)**

GNRSSRNAASSSDVTKAAIVTDTGGVDDKSFNQSAWEGLQAWGKEHNLSKDNGFTYFQSTSEADYANN
 LQQAAGSYNLIFGVGFALNNAVKDAAKEHTDLNYLIDDVIKDQKNVASVTFADNESGYLAGVAAAKTT
 KTKQVGFVGGIESEVISRFEAAGFKAGVASVDPISKVQVDYAGSGFDAKGKTIAAQYAAGADIVYQVA
 GGTGAGVFAEAKSLNESRPENEKVWVIGVDRDQEAGKYTSKDGKESNFVLVSTLKQVGTIVKDISNKA
 ERGEFPGGQVIVYSLDKGVDLAVTNLSEEGKAVEDAKAKILDGSVKVPEK

SP008 nucleotide (SEQ ID NO:9)

TGTGAAATTGACAGGTAACAGCAAAAAGCTGCTGATTCAGGTGACAACCTGTTATCAAATGTAC
 CAAATCGGTGACAAACCAGACAACCTGGATGAAATTGTTAGCAAATGCCAACAAATCATTGAAGAAAAAA
 GTTGGTGCCAAATTGGATATCCAATACCTGGCTGGGGTACTATGTTAGAAAATGTCAGTTATCACA
 TCATCTGGTAAAACATATGATATTGCCTTGAGATAACTATATTGAAATGCTCAAAAGGTGCTTAC
 GCTGACTTGACAGAATTGACAAAAAGAGTAAAGACCTTACAAAGCACTGACCCAGCTTACATC
 AAGGTAATACTGTAATGGTAAAGATTACGCTGTTCCAGTTGCAGCAACGTTGCATCATCTAAAC
 TTTGCCCTAACGGAACCTCCTGCTAAATATGGTATCGATATTTCAGGTGTTACTTCTTACGAAACT
 CTTGAGCCAGTCTGAAACAAATCAAAGAAAAAGCTCCAGACGTAGTACCAATTGCTATTGGTAAAGTT
 TTCATCCCACATCTGATAATTGACTACCCAGTAGCAAACGGCTTCCATTGCTATCGACCTTGAGGC
 GATACTACTAAAGTTGTAACCGTTACGAAGTGCCTCGTTCAAAGAACACTTGAAGACTCTCACAAA
 TTCTATGAAGCTGGCTACATTCCAAAAGACGTCGCAACAAGCGATACTCCTTGACCTTCAACAAGAT
 ACTTGGTCGTCGTGAAAGAACAGTAGGACAGCTGACTACGGTAACAGCTTGCTTACGTGTTGCC
 AACAAAGATATCCAAATCAAACCAATTACTAACCTCATCAAGNAAACCAAACACAAGTTGCTAAC
 TTTGTCATCTCAAACAACCTAAGAACAAAGAAAATCAATGAAATCTTGAAACCTCTTGAATACGAAC
 CCAGAACTCTTGAACGGCTTGTACGGTCCAGAAGGCAAGACTGGGAAAAATTGAAGGTAAAGAA
 AACCGTCTCGCCTCTGATGGTACAAAGGAAACACTCACATGGTGGATGAAACACTGGTAACAAAC
 TGGATCCTTACATCAACGAAACGTTACAGACCAACAAATCGAAAATTCTAAGAACAGATTGGCAGAA
 GCTAAAGAACCTCCAGCCTGGATTATCTCAATACTGACAATGTGAAATCTGAAATCTCAGCTATT
 GCTAACACAATGCAACAATTGATACAGCTACACTGGTACTGTAGACCCAGATAAAAGCGATTCCA
 GAATTGATGGAAAATTGAAATCTGAAGGTGCTACGAAAAGTATTGAACGAAATGCAAAACAATAC
 GATGAATTCTGAAAAACAAAAAA

SP008 amino acid (SEQ ID NO:10)

CGNLTGNSKKAADSGDPVIKMYQIGDKPDNLDELLANANKIIEEKVGAKLDIQYLGWGDYGKKMSVIT
 SSGENYDIAFADNYIVNAQKGAYADLTLYKKEGKDLYKALDPAYIKGNTVNGKIYAVPVAANVASSQN
 FAFNGTLLAKYGINISGVTSYETLEPVLKQIKEKAPDVVPFAIGKVFIPSDNFDPVANGLPFVIDLEG
 DTTKVVNRYEVPRFKEHLKTLHKFYEAQYIPKDVATSDTSFDLQDITWFVREETVGPADYGNSLLSRA
 NKDIQIKPITNFIXNQTQVANFVISNNSKNKEKSMEILNLLNTNPELLNGLVYPEGKNWEKIEGKE
 NRVRLDGYKGNTMGGWNTGNNWILYINENVTDQQIENSKKELAEAKESPALGFIFNTDNVKSEISAI
 ANTMQQFDTAINTGTVDPDKAIPLEMELKSEGAYEVLNEMQKQYDEFLKNKK

SP009 nucleotide (SEQ ID NO:11)

TGGTCAAGGAAC TGCTCTAAAGACAACAAAGAGGCAGAACCTTAAGAAGGTTGACTTTATCCTAGACTG
 GACACCAAATACCAACCACAGGGCTTATGTTGCCAACAGAAAAGGTTATTCAAAGAACGCTGGAGT
 GGATGTTGATTGAAATTGCCACCCAGAACAGAAAAGTTCTCTGACTTGTTATCACCGAAAGGCACCAATT
 TGCAGTGTATTCCAAGACTACATGGCTAACGAAATTGGAAAAGGAGCAGGAATCACTGCCGTTGCAGC
 TATTGTTGAACACAATACATCAGGAATCATCTCGTAAATCTGATAATGTAAGCAGTCCAAAGACTT
 GGTTGTAAGAAAATATGGGACATGGAATGCCAACACTGAACCTGCTATGTTGAAACCTTGTTAGAAC
 TCAAGGTGGAGACTTGAGAACGGTTGAAAAGTACCAAATAACGACTCAAACCTCAATCACACCGATTGC
 CAATGGCGTCTTGATACTGCTGGATTACTACGGTTGGATGGTATCCTGCTAAATCTCAAGGTGT
 AGATGCTAACCTCATGTACTTGAAAGACTATGCAAGGAGTTGACTACTATTCAACAGTTATCATCGC
 AAACAACGACTATCTGAAAGATAACAAAGAAGAACAGCTGCCAAAGTCATCCAAGGCATCAAAAAGGCTA
 CCAATATGCCATGGAACATCCAGAAGAACAGCTGCAAGATATTCTCATCAAGAACACTGCAACTCAAGGA
 AAAACGTGACTTTGTCATCGAATCTCAAAATACTTGTCAAAAGAACAGCAAGCGACAAGGAAAATG
 GGGTCAATTGACGCAAGCTGCTGGAATGCTTCTACAAATGGGATAAGAACAGGTTATCCTTAAAGA
 AGACTTGACAGACAAAGGCTTCACCAACGAATTGTAAGA

SP009 amino acid (SEQ ID NO:12)

Table 1

GQGTASKDNKEAELKKVDFILDWTPNTNHTGLYVAKEKGKFKEAGVDVDLKLPPEESSSDLIVINGKAPF
 AVYFQDYMAMKLEKGAGITAVAAIVEHNTSGIISRKSDNVSSPKDLVGKKYGTWNPDTELAMLKTLVES
 QGGDFEKVEKVPNNDSNSITPIANGVFTDAWIYYGWDGILAKSQGVANFMYLKDYVKEFDYYSPVIIA
 NNDYLKDNKEEARKVIQAIIKKGYQYAMEHPEEAADILIKNAPELKEKRDFVIESQKYLKEYASDKEKW
 GQFDAARWNAYFKWDKENGILKEDLTDKGFTNEFKV

SP010 nucleotide (SEQ ID NO:13)

TAGCTCAGGTGAAACGCTGGTTATCCTCTGGAAAAACAACTGCCAAAGCTCGCACTATCGATGAAAT
 CAAAAAAAGCGGTGAACCGTCAACTGCAGTACGATATTGAACTAGGAAACCAACTAGCTCAAGACCTGGTCAAGGT
 TGGTCTACCAAGGTACGCTACGATATTGAACTAGGAAACCAACTAGCTCAAGACCTGGTCAAGGT
 TAAATACATTCAGTCATGCTGCCAACCGTGCAGGAAACTTGATTCAAACAAGGTAGATATTACTCT
 TGCTAACCTTACAGTAACGTACGAAACGTAAGAAACAAGTGATTTGCCCTTCATATATGAAAGTTTC
 TCTGGGTGTCGTATCACCTAACAGACTGGTCTCATACAGACGTCAAACAACCTGAAGGTAAAACCTTAAT
 TGTACACAAAGAACGACTGCTGAGACTTATTGAAAAGAATCATCCAGAAATCAAACCTCCAAAATA
 CGACCAATACAGTGAACCTTACCAAGCTCTTGCACGGACGTGGAGATGCCCTTCAACTGACAATAC
 GGAAGTTCTAGCTGGCGCTTGAAAATAAAGGATTGAGTAGGAAATTACTCCCTCGGTGATCCCGA
 TACCATTCGGCAGCAGTCAAAAGGCAACCAAGAATTGCTAGACTTCATCAATAAGATATTGAAA
 ATTAGGCAAGGAAAACCTCTCCACAAAGGCCTATGAAAAGACACTTCACCCACCTACGGTGACGCTGC
 TAAAGCAGATGACCTGGTTGTTGAAGGTGGAAAAGTTGAT

SP010 amino acid (SEQ ID NO:14)

SSGGNAGSSSGTTAKARTIDEIKKSGELRIAVFGDKKPFGYVDNDGSTKVRVDIELGNQLAQDLGVKV
 KYISVDAANRAEYLISNKVDITLANFTVTDERKQVDFALPYMKVSLGVVSPKTGLITDVQLEGKTLI
 VTKGTTAETYFEKNHPEIKLQKYDQYSDSYQALLDRGRDAFSTDNTEVLALENKGFEVGITSLGDPD
 TIAAAVQKGNQELLDINKDIEKLGENFFHKAYEKTLLHTYGDAAKADDLVVEGGKVD

SP011 nucleotide (SEQ ID NO:15)

CTCCAACATGGTAAATCTGCGGATGGCACAGTGACCATCGAGTATTCAACCAAGAAAAAGAAATGAC
 CAAAACCTTGGAGAAATCACTCGTGATTTGAGAAGGAAACCTAAAGATCAAGGTCAAAGTCGTCAA
 TGTACCAAATGCTGGTGAAGTATTGAGAACACCGCTTCGCAGGAGATGTCCTGATGTTGGTCAATAT
 TTACCCACAGTCCATCGAACTGCAAGAATGGCAAAAGCAGGTGTTTGAGATTGAGAACAAAGA
 CTACCTGAAACGGCTGAAAATGGCTACGCTGAAAATATGCTGTAACGAAAAGTTACAACGTTCC
 TTTTACAGCTAATGCTTATGAAATTACTACAAACAGATAATTGAGAACACTGGCTTGAGGTTCC
 TGAAACCTGGATGAATTGAAACAGTTAGTCAAAGATATGCTGCTAAAGGACAAACACCATTGGAAT
 TGCAGGTGCAGATGCTGGACACTCAATGGTACAATCAATTAGCCTTGCACAGCAACAGGTGGAGG
 AAAAGAACAAATCAATACCTTCGTATTCTCAACCAAATGCCATTAAATTGTCGGATCCGATTATGAA
 AGATGATATCAAGGTCAATGGACATCCTCGCATCAATGGATCTAAGCAAAAGAATGGGAGGTGCTGG
 CTATACCGATGTTATCGGAGCCTCGCACGTGGGATGTCCTCATGACACCAAATGGGTCTGGCGAT
 CACAGCGATTAAATGAACAAAACGAACTTTAAGATTGGACCTTCATGATTCCAGGAAAAGAAAAGG
 ACAAAAGCTTAACCGTTGGTGGAGACTTGGCATGGTCTATCTCAGCCACCACCAACATCCAAAAGA
 AGCCAATGCCTTGTGGAATATATGACCCGTCCAGAAGTCATGCAAAACTACGATGTTGGACGGATC
 TCCAACAGCGATCGAAGGGTCAAACAAGCAGGAGAAGATTACCGCTTGCTGGTATGACCGAATATGC
 CTTTACGGATCGTCACTTGGTCTGGTGCAACAATACTGGACCAGTGAAGCAGACTTCATCTGAC
 CATGAACATATGCTTGACCGGTGATAAACAAAGGCATGGTCAATGATTGAATGCCCTTTAACCGAT
 GAAAGCGGATGTTGGAT

SP011 amino acid (SEQ ID NO:16)

SNYGKSADGTVTIEYFNQKEMTKLEEITRDFEKENPKIKVKVVNPNAVEVLKTRVLAGDVPDVNI
 YPQSIELQEWAAGVFEDLSNKDYLKRVKNGYAKEYAVNEKVNVPTANAYGIYNNKDKFEELGLKVP
 ETWDEFQEVQLVKDIVAKGQTGPGIAGADAWTLNGYNQLAFAATATGGGKEANQYLRYSQPNAIKLSDPIMK
 DDIKVMDILRINGSKQKNWEGAGYTDVIGAFARGDVLMTPNGSWAITAINEQKPNFKIGTFMIPGKEKG
 QSLTVGAGDLAWSISATTKHPKEANAFVEYMTRPEVMQKYYDVGSPATAIEGVVKQAGEDSPLAGMTEYA
 FTDRHLVWLQQYWTSEADFHTLMNYVLTGDKQGMVNDLNAFFNPMKADV

SP012 nucleotide (SEQ ID NO:17)

TGGAAAAATTCTAGCGAAACTAGTGGAGATAATTGGTCAAAGTACCGAGTCTAACAAAGTCTATTACTAT
 TGGATTGATAGTACTTTGTTCCAATGGGATTGCTCAGAAAGATGGTCTTATGCAAGGATTGATAT
 TGATTTAGCTACAGCTGTTTGAAAATACCGAATCACGGTAAATTGGCAACCGATTGATTGGGATT

Table 1

GAAAGAAGCTGAATTGACAAAAGGAACGATTGATCTGATTGGAATGGCTATCCGCTACAGACGAACG
 CCGTGAAGGCTTCAGTAACCATATACTGAAGAACGAGCTATTGGTTACGAAGAAATCATIC
 TGGTATCACGACTGCAAAGGATATGACTGGAAAGACATTAGGAGCTAAGCTGGTTCATCTGGTTATGC
 GGACTTTGAAGCAAATCCAGAAATTGAGAAGAATATTGTCGCTAATAAGGAAGCGAATCAATACCAAC
 CTTTAATGAAGCCTTGATTGATTTGAAAAACGATCGAATTGATGGCTATTGATTGACCGTGTCTATGC
 AAACATTATTAGAAGCAGAAGGTGTTAAACGATTATAATGCTTTACAGTGGACTAGAAACAGA
 AGCTTTGCGGGTGGAGCCGTAAGGAAGATAACAAACTGGTTAAGAAGATAATGAAGCTTTCTAG
 TCTTACAAGGACGGCAAGTCCAAGAAATCAGCCAAAATGGTTGGAGAAGATGTAGCAACCAAAGA
 AGTAAAAGAAGGACAG

SP012 nucleotide (SEQ ID NO:18)

GKNSETSGDNWSKYQSNKSITIGFDSTFVPMGFAQKDGSYAGFDIDLATAVFKEYGITVNWQPIDWDL
 KEAELETKGTDIILWNGYSATDERREKVAFSNSYMKNEQVLVTKKSSGTTAKDMTGKTLGAQAGSSGYA
 DFEANPEILKNIVANKEANQYQTFNEALIDLKNDRIDGLLIDRVYANYLEAEGVLNDYNVFTVGLETE
 AFAVGARKEDTNLVKKINEAFSSLYKDGFQEISQKWFGEDVATKEVKEGQ

SP013 nucleotide (SEQ ID NO:19)

TGCTAGCGAAAAAAAGATACAACCTCTGGTCAAAAACCTAAAGTTGGCTACAAACACTCAATCATCGC
 TGATATTACTAAAATATTGCTGGTACAAAATTGACCTTCATAGTATCGTCCGATTGGCAAGACCC
 ACACGAATACGAACCCTCCTGAAGACGTTAAGAAACTTCTGAGGCTAATTGATTTCTATAACGG
 TATCAACCTTGAAACAGGTGGCAATGCTTGGTTACAAAATTGGTAGAAAATGCCAAGAAAATGAAAA
 CAAAGACTACTCGCAGTCAGCGACGGCGTTGATGTTACCTTGAGGCTAAATGAAAAGGAAA
 AGAAGACCCACACGCTTGAACCTTGAAACCGTTTACCTTGAAAGCTTGTAAAAATATGCCAACAAATT
 GAGGCCAAAGACCTAACAAATAAGAATTCTATGAAAAAAATCTCAAAGAATATACTGATAAGTTAGA
 CAAACTTGATAAAAGAAGTAAAGGATAAAATTAAAGATCCCTGCTGAAAAGAAAATCATGTAACCAG
 CGAAGGAGCATTCAAATACTCTCTAAAGCCTATGGTGTCCCAGTGCTTACATCTGGAAATCAATAC
 TGAAGAAGAAGGAACCTCTGAACAAATCAAGACCTTGGTGAAAACCTCGCCAAACAAAAGTTCCATC
 ACTCTTGTAGAATCAAGTGTGGATGACCGTCAATGAAAATGTTCTCAAGACACAAACATCCAAAT
 CTACGCTCAAATCTTACTGACTCTATCGCAGAACAAAGGTAAAGAAGGCGACAGCTACTACAGCATGAT
 GAAATACAACCTTGACAAGATTGCTGAAGGATTGGCAAAA

SP013 amino acid (SEQ ID NO:20)

ASGKKDTSQQLKVVATNSIIADITKNIAGDKIDLHSIVPIQDPHEYEPLPEDVKKTSEANLIFYNG
 INLETGGNAWFTKLVENAKKTEENKYDFAVSDGVDVYILEGQNEKGKEDPHAWLNLENLIFIAKQL
 SAKDPNNKEFYEKNLKEYTDKLDKLDKESKDFNPKIPAEEKKLIVTSEGAFKYFSKAYGVPSAYIWEINT
 EEEGTPEQIKTLVEKLRQTKVPSLFVESSVDDRPMKTVSQDTNIPYQIIFTDSIAEQKEGDSYYSMM
 KYNLDKIAEGLAK

SP014 nucleotide (SEQ ID NO:21)

TGGCTAAAAAACAGCTTCAGATTATAAGTGGAGGTGTAACATCCGCTCAAGAAAA
 GAAAACATTGAAGTTATGACAGCCAGTTACCGTTATCTCCTAAAGACCCAAATGAAAAGTTAATT
 GCAACGTTGGAGAAGGAAACTGGCGTTCATATTGACTGGACCAACTACCAATCCGACTTGCAGAAAA
 ACGTAACCTGGATATTCAGTGGTGTGATTACAGATGCTATCCACAAACGACGGAGCTTCAGATGTGGA
 CTTGATGAACTGGCTAAAAAGGTGTTATTATTCCAGTTGAAGATTGATTGATAAATACATGCCAA
 TCTTAAGAAAATTGGATGAGAACACCAGAGTACAAGGCCATTGATGACAGCACCTGATGGGCACATT
 CTCATTCCATGGATTGAAGAGCTTGGAGATGGTAAAGAGTCTATTACAGTGTCAACGATATGGCTTG
 GATTAACAAAGATTGGCTTAAGAAACTTGGCTTGAATGCCAAAACACTACTGATGATTGATTAAAGT
 CCTAGAACGCTTCAAAACGGGATCCAAATGGAAATGGAGAGGCTGATGAAATTCCATTTCATT
 TAGTGGTAACGGAAACGAAGATTAAATTCCATTGCTGCATTGGTATAGGGATAACGATGATCA
 TTTAGTAGTAGGAAATGATGGCAAAGTTGACTTCACAGCAGATAACGATAACTATAAGAAGGTGTCAA
 ATTTATCCGTCAATTGCAAGAAAAAGGCCTGATTGATAAAGAAGCTTCAACATGATTGAAATAGTTA
 CATTGCTAAAGGTATGATGTTTACCACTGCTGGACCAAGTGGTCAAAAACACGTAGCTCGTACAAA
 CGGTATGGGATTGACAGTGAAGATGGTTATTACCACTGTAACAAAACCTAGAATTGACAGCTAA
 ATGGATTGATGACAAATACGCTCCACTCCAATCTGTGAAAATAACTGGGAACCTACGGAGATGACAA
 ACAACAAAACATCTTGAATTGGATCAAGCGTCAAATAGCTAAAACACTTACCAACTAACGGAACACTGC
 ACCAGCAGAACCTCGTCAAAGACTGAAGTAGGAGGACCACTAGCTATCCTAGATTCAACTATGGTAA
 AGTAACAACCATGCCATTGATGACAAATGGCGTTGGATCTTACAAAGAATATTATGTTCTTACAT

Table 1

53

GAGCAATGTCAATACTATCCAAGAGTCTTATGACACAGGAAGATTGGACAAGATTGCCCATATCGA
AGCAGATATGAATGACTATCTACCGTAAACGTGCTGAATGGATTGAAATGCAATTGATACTGA
GTGGATGATTACAAGAAAGAACTTGAAAATACGGACTTCTGATTACCTCGCTATTAAACAAAATA
CTACGACCAATACCAAGCAAACAAAAAC

SP014 amino acid (SEQ ID NO:22)

GSKNTASSPDYKLEGVTFLQEKKTLKFMTASSPLSPKDNEKLILQRLEKETGVHIDWTNYQSDFAEK
RNLDISSLGDPDAIHNDGASDVLMNWAKGVII PVEDLIDKYMPNLKKILDEKPEYKALMTAPDGHIY
SFPWIEELGDGKEISIHSVNDMAWINKDWLKKLGEMLPKTTDDLIKVLEAFKNGDPNGNGEADEIPFSFI
SGNGNEDFKFLFAFGIGDNDDHLVVGNKGVDFTADNDNYKEGVKFIQLQEKGGLIDEKAFFEHDWNSY
IAKGDQKFGVYFTWDKNVTGSNESYDVLVPLAGPSQKHARTNGMFARDKMVITSVNKNLELTAK
WIDAQYAPLQSVQNWNWGTYGDDKQQNIFELDQASNSLKHLPLNGTAPAELRQKTEVGGPLAILDSYYGK
VTTMPDDAKWRDLIKEYYVPYMSNVNNYPRVFMTQEDLDKIAHIEADMNDIYIRKRAEWIVNGNIDTE
WDDYKKELEKYGLSDYLAIKQKYDQYQANKN

SP015 nucleotide (SEQ ID NO:23)

TAGTACAAACTCAAGCACTAGTCAGACAGAGACCAGTAGCTCTGCTCCAACAGAGGTAAACCATTAAAAG
TTCACTGGACGAGGTCAAACCTTCAAAGTTCTGAAAAGATTGTGACCTTGACCTCGGCCTGCGA
TACTATTGCGCTTCTAGGATTGAAAAAAATATCGTCGGAATGCCTACAAAACGTTCCGACTTATCT
AAAAGACCTAGTGGGAACTGTCAAAATGTTGGTTCTATGAAAGAACCTGATTAGAACGCTATCGCCG
CCTTGAGCCTGATTGATTATCGCTCGCCACGTACACAAAAATTGCTAGACAAAGAACATCGC
CCCAACCGTTCTTCCAAGCAAGCAAGGACGACTACTGGACTCTACCAAGGTAATATCGAATCCTT
AGCAAGTGCCTCGGCAGAACCTGGTACACAGAAAGCAAGGAAGAACATTGACCAAGCTAGAACAGAGCAT
CCAAGAACGCTACTAAAAATGAAAGCTCTGACAAAAAGCCCTTGCATCCTCCTTAATGAAGGAAA
AATGGCAGCCTTGGTCCAATCTGTTCTTTCTTGACCAACCTTGAATTCAAACCAACTGA
TACAAAATTGAAAGACTCACGCCACGGACAAGAACAGTCAAGCTTGAAGTGTCAAAGAAATCAACCTGA
CATCCTCTTGTCATCAACCGTACCCCTGCCATCGGTGGGACAACCTCTAGCAACGACGGTGTCTAGA
AAATGCCCTTATCGCTGAAACACCTGCTGCTAAAATGGTAAGATTATCCAACACACCAGACCTCTG
GTATCTAAGCGGAGGCGGACTTGAATCAACAAACTCATGATTGAAGACATACAAAAGCTTGAAA

SP015 amino acid (SEQ ID NO:24)

STNSSTSQTETSSSAPTEVTIKSSLDEVKLSKVPEKIVTFDLGAADTIRALGFENIVGMPTKTVPTYL
KDLVGTVKNVGSMKEPDLEAIAALEPDLIIASPRQKFVDFKFEIAPTVLFQASKDDYWTSTKANIESL
ASAFGETGTQAKEELTKLDKSIQEVAUTKNESDKKALAIILLNEGKMAFGAKSRFSFLYQTLKFKP
TKFEDSRHGQEVSFESVKEINPDILFVINRTLAIGGDNSSNDGVLENALIAETPAAKNGKIIQLTPDLW
YLSGGGLESTKLMIEDIQKALK

SP016 nucleotide (SEQ ID NO:25)

TGGCAATTCTGGCGGAAGTAAAGATGCTGCCAATCAGGTGGTGACGGTGCCAAAACAGAAATCACTTG
GTGGCATTCCAGTATTACCAAGAAAAACTGGTGACGGTGTGGAACTTATGAAAATCAATCAT
CGAACGCTTGAAAAAGCAAACCCAGATATAAAAGTGAATTGAAACCATCGACTTCAAGTCAGGTCC
TGAAAAAATACAACAGCCATCGAACAGCAGGAACAGCTCCAGACGTACTCTTGATGCACCAGGACGTAT
CATCCAATACGGTAAAAACGGTAAATTGGCTGAGTTGAATGACCTCTCACAGATGAATTGTTAAAGA
TGTCAACAATGAAAACATCGTACAAGCAAGTAAAGCTGGAGACAAGGCTTATATGTATCCGATTAGTTC
TGCCCCATTCTACATGGCAATGAACAGAAAATGTTAGAAGATGCTGGAGTAGCAAACCTTGTAAAAGA
AGGTTGGACAACGTGATGATTTGAAAAAGTATTGAAAGCACTTAAAGACAAGGTTACACACCAGGTT
ATTGTTCACTTCTGGTCAAGGGGGAGACCAAGGAACACGTGCCCTTATCTCTAACCTTATAGCGGTT
TGTAAACAGATGAAAAGTTAGCAAATATACAACGTGATGATCCTAAATTGCTCAAAGGTCTGAAAAGC
AACTAGCTGGATTAAAGACAATTGATCAATAATGGTTACAATTGACGGTGGGACAGATATCCAAA
CTTGCACCGGTCAAACATCTTACACAATCCTTGGCACCAGCTCAAATGGTATCCAAGCTAAACT
TTTAGAAGCAAGTAAGGTAGAAGTGGTAGAAGTACCATCCCACAGACGAAGGTAAGCCAGCTTGA
GTACCTTGAAACGGTTTGCACTTCAACAATAAGACGACAAGAAAGTCGCTGCATCTAAGAAATT
CATCCAGTTATCGCAGATGACAAGGAGTGGGACCTAAAGACGTAGTCGTACAGGTGCTTCCCAGT
CCGTACTTCATTGGAAAACCTTATGAAGACAAACGCACTGGAAACAACTCAGCGCTGGACTCAATA
CTCACCATACTACAACACTATTGATGGATTGCTGAAATGAGAACACTTGGTCCCAATGTTGCAATC
TGTATCAAATGGTGACGAAAACCAGCAGATGCTTGAAGCCTTCACTGAAAAGCGAACGAAACAAT
AAAAAGCTATGAAACAA

Table 1

54

SP016 amino acid (SEQ ID NO:26)

GNSGSKDAAKSGGDGAKTEITWWAFPVFTQEKTDGVGTYEKSIIEAFEKANPDIKVKLETIDFKSGP
 EKITTAIEAGTAPDVLFDAPGRIIQYGKNGKLAELNDLFTDEFVKDVNNENIVQASKAGDKAYMYPISS
 APFYAMNKKMLEDAGVANLVKEGWTDDFEKVLKALKDKGYTPGSLFSSGQGGDQGTRAFISNLYSGS
 VTDEKVSKYTTDDPKFVKGLEKATSWIKDNLINNGSQFDGGADIONFANGQTSYTILWAPAQNQIQA
 LEASKVEVVEVPFPSDEGPKALEYLVNGFAVFNNKDDKKVAASKFIQFIADDKEWGPKDVRGAFPV
 RTSFGKLYEDKRMETISGWTQYYSPYYNTIDGFAEMRTLWFPMQLQSVSNGDEKPADALKAFTEKANETI
 KKAMQ

SP017 nucleotide (SEQ ID NO:27)

TTCACAAGAAAAACAAAAAATGAAGATGGAGAAACTAACAGACAGACAGCCAAAGCTGATGGAAC
 AGTCGGTAGTAAGTCTCAAGGAGCTGCCAGAAGAAAGCAGAAGTGGTCAATAAAGGTATTACTACAG
 CATTCAAGGGAAATACGATGAAATCATCGTAGCCAACAAACACTATCCATTGCTAAAGACTATAATCC
 AGGGAAAATCCAACAGCCAAGGCAGAGTTGGTCAAACCTCATCAAAGCGATGCCAGAGCCAGGTTCCC
 TATTAGTGATCATTACAGTGGTTAGAAGTTATGAAACTCAGACCAAGCTCTATCAAGATTATGTCAA
 CCAAGATGGAAGGCAGCAGCTGACCGTTACTCTGCCGTCCTGGCTATAGCGAACACCAGACAGGCTT
 GGCCTTGATGTGATTGGACTGATGGTGTAGTTGGTACAGAAGAAAAGCAGCCAAATGGCTTTGGA
 TCATGCAGCTGATTATGGCTTGTCCGTTATCTCAAAGGCAAGGAAAGGAAACAGGCTATATGGC
 TGAAGAATGGCACCTGCGTTATGTAGGAAAGCTAAAGAAATTGCTGCAAGTGGTCTCAGTTGGA
 AGAATACTATGGCTTGAGGCGGAGACTACGTCGAT

SP017 amino acid (SEQ ID NO:28)

SQEKTKNEDGETKTEQTAKADGTVGSKSQGAAQKKAEVVNKGDYYSIQGKYDEIIVANKHYPLSKDYNP
 GENPTAKAELVLIKAMQEAGFPISDHYSFRSYETQTKLYQDYVNQDGKAAADRYSARPGYSEHQTGL
 AFDVIGTDGLVTEEKAAQWLLDHAADYGFVVRYLKGKEKETGYMAEWHLYVGKEAKEIAASGLSLE
 EYYGFEGG DYVD

SP019 nucleotide (SEQ ID NO:29)

GAAAGGTCTGGTCAAATAATCTTACCTGCGTTATGATGAAAAAATACTTGGAAAATATAAATAT
 AAAAATACCTGAAGAAAAAATATCAGTTATTGGTCAAATGGTGTGGAAATCAACACTCATTAA
 AACCTTGTCTCGACTTATAAAGCCATTAGAGGGAGAAGTATTGCTTGATAATAATCAATTAACTTA
 TAAAGAAAAGATTAGCAAAACACATAGCTATATTACCTCAATCTCAAATAATCCCTGAATCAATAAC
 AGTAGCTGATTTGTAAGCGTGGTCGTTCCCTACAGAAAAGCCTTTAAGAGTCTTGGAAAAGATGA
 CCTTGAATAATAAACAGATCAATGGTTAAGGCCAATGTTGAAGATCTAGCAAATAACCTAGTTGAAGA
 ACTTCTGGGGTCAAAGGAAAGAGTATGGATAGCTCTAGCCCTAGCCAAGATAAGTATCCTACT
 TTTAGATGAGCCAACACTTACTTGATATCTCATATCAAATAGAACTATTAGACCTCTGACTGATCT
 AAACCAAAATATAAGACAACCATTGCATGTTGCACGATAAACTAACAGCAAGATAACGCTGA
 TTACCTATTGCAATTAAAGAAGTAAACTTGTGAGAGGGAAAGCCTGAAGATAACTAAATGATAA
 ACTAGTTAAAGATATCTTAACTCTGAAGCAAAATTACGTGACCCATTCCAATTGCCCTCTAAT
 GATTCCATTGGCAAGCACCATGTTAACTCT

SP019 amino acid (SEQ ID NO:30)

KGLWSNNLTCGYDEKITLENINIKIPEEKISVIIGSNGCGKSTLIKTLRSLIKPLEGEVLLDNKSINSY
 KEKDLAKHIAILPQSPIIPESTITVADLVSRRGRFPYRKPFKSLGKDDLEIINRSMVKANVEDLANNLVEE
 LSGGQRQRVWI ALALA QDTSILLDEPTTYLDISYQIELLDLLTDLNQKYKTTICMILHDINLTARYAD
 YLFAIKEGKLVAEGKPEDILNDKLVDIFNLEAKIIRDPINSPLMIPIGHVHS

SP020 nucleotide (SEQ ID NO:31)

AAACTCAGAAAAGAAAGCAGACAATGCAACAACACTATCAAATCGCAACTGTTAACCGTAGCGGTTCTGA
 AGAAAAACGTTGGACAAAATCCAAGAATTGGTTAAAAAGACGGAATTACCTGGAATTACAGAGTT
 CACAGACTACTCACAACCAAACAAAGCAACTGCTGATGGCGAAGTAGATTGAAACGCTTCCAACACTA
 TAACTTCTTGAACAACACTGGAACAAAGAAAAGCGAAAAGACCTTGTAGCGATTGCAGATAACTTACATCTC
 TCCAATCCGCTTACTCAGGTTGAATGGAAGTGCAACAAGTACACTAAAGTAGAAGACATCCCAGC
 AAACGGAGAAATCGCTGTACCGAATGACGCTACAAACGAAAGCGTAGCGCTTATTGCTCAATCAGC
 TGGCTGATTAAATTGGATGTTCTGGAACCTGCTCTGCAACAGTTGCAACATCAAAGAAAATCCAAA
 GAACTTGAAAATCACTGAATTGGACGCTAGCCAAACAGCTCGTCTATTGTCATCAGTTGACGCTGCCGT
 TGTAACAAATACCTCGTTACAGAAGCAAATTGGACTACAAGAAATCACTTTCAAAGAACAGCTGA
 TGAAAACCAACATGGTACAACATCATTGTCACAAAGATTGGAAACATCACCTAACGCTGA

Table 1

55

TGCTATCAAGAAAGTAATCGCAGCTTACCAACACAGATGACGTAAAAAAGTTATCGAAGAACATCAGA
TGGTTGGATCAACCAGTTGG

SP020 amino acid (SEQ ID NO:32)

NSEKKADNATTIKIATVNRSGSEEKRWDKIQELVKKDGTITLEFTEFDTYSQPNKATADGEVDLNAFQHY
NFLNNWNKENGKDLVAIADTYISPIRLYSGLNGSANKYTKVEDIPANGEIAVPNDATNESRALYLLQSA
GLIKLDVSGTALATVANIKENPKNLKITELDASQTARSLSSVDAAVVNNTFVTEAKLDYKKSLFKEQAD
ENSKQWYNIIIVAKKDWEETSPKADAIIKKVIAAYHTDDVKKVIEESSDGLDQPVW

SP021 nucleotide (SEQ ID NO:33)

TTCGAAAGGGTCAGAAGGTGCAGACCTTATCAGCATGAAAGGGATGTCATTACAGAACATCAATTAA
TGAGCAAGTAAAAGCAACCCCTTCAGCCAACAAGTCTTGTAAATATGACCATCCAAAAGTTTTGA
AAAACAATATGGCTCAGAGCTTGATGATAAAAGAGGTTGATGATACTATTGCCGAAGAAAAAAACAATA
TGGCAGAAACTACCAACGTGTTGTCACAAGCAGGTATGACTCTGAAACACGTAAGCTCAAATTG
TACAAGTAAATTAGTTGAGTTGGCAGTTAAGAAGGTAGCAGAAGCTGAATTGACAGATGAAGCCTATAA
GAAAGCCTTGATGAGTACACTCCAGATGTAACGGCTCAAATCATCCGCTTAATAATGAAGATAAGGC
CAAAGAAGTTCTCGAAAAAGCCAAGGCAGAACGTCGCTGATTTGCTCAATTAGCAAAGATAATTCAAC
TGATGAAAAAACAAAAGAAAATGGTGGAGAAATTACCTTGATTCTGCTTCAACAGAAGTACCTGGAGC
AAGTCCAAAAAAGCCGCTTCGCTTAGATGTGGATGGTGTGTTCTGGATGTGGATTACAGCAACTG
GGGCACACCAAGCCTACAG

SP021 amino acid (SEQ ID NO:34)

SKGSEGADLISMKGDVITEHQFYEQVKSNSPAQQVLLNMTIQKVFEKQYGSSELDDKEVDDTIAEKKQY
GENYQRVLSQLQAGMTLETRKAQIRTSKLVELAVKKVAEAELTDEAYKAFDEYTPDVTQIIRLNNEKA
KEVLEKAKAEGADFAQLAKDNSTDEKTENGGEITFDSASTEVPGASPCKPLFAFRGMVFLDVDYNSW
GTPSLQ

SP022 nucleotide (SEQ ID NO:35)

GGGGATGGCAGCTTTAAAAATCCTAACAACTAACATACAAGCTATTACAATTGCTCAAACCTCTAGGTGA
TGATGCTTCTCAGAGGAATTGGCTGGTAGATATGGTTCTGCTGTTAGTACAGAACAGTGAACACTGCCTC
AAACCTTCAACAGTTAAAACCTAACAGCTACGGTTGTAGAAAACCAGTGAAGATTTAGAGCGTCTAC
GTCTGATCAGCTGGTTGGGTGGAACCTAAATGGTAAATGGTACTATTGAAATGACTTAGGTGTCATGCAGACTGGATTG
AGGTTGGGTGAAACAGATGGTAAATGGTACTATTGAAATGACTTAGGTGTCATGCAGACTGGATTG
AAAATTTCTGGTAGCTGGTATTACTTGAGCAATTAGGTGCTATGTTACAGGCTGGTACAAGGAAATGGCACTTG
TAGCAGATGGTCTACTTGACGGCTCAGGAGCTATGAAGACAGGCTGGTACAAGGAAATGGCACTTG
GTATTACCTTGACGAAGCAGGTATCATGAAGACAGGTTGTTAAAGTCGGACACACTGGTACTATGC
CTACGGTTCAAGGAGCTTGGCTGTGAGCACAAACACCAGATGGTACCGTGTAAATGGTAATGGTGA
ATGGTAAAC

SP022 amino acid (SEQ ID NO:36)

GMAAFKNPNNQYKAITIAQTLGDDASSEELAGRYGSAVQCTEVTVNLSTVKTATVVEKPLKDFRAST
SDQSGWVESNGKWFYYESGDVKTGVKTDGKWWYLNDLGMQTFVFKFSGSWYLSNSGAMFTGWGTDG
SRWFYFDGSGAMKTGKYKENGTwYYLDEAGIMKTGWFKVGPHWYYAGSGALAVSTTPDGYRVNGNG
WVN

SP023 nucleotide (SEQ ID NO:37)

AGACGAGCAAAAATTAAGCAAGCAGAACGGAAAGTTGAGAGTAAACAAGCTGAGGCTACAAGGTTAAA
AAAATCAAGACAGATCGTGAAGAACAGAACAGAGCTAACAGAACAGCAGATGCTAAAGAGCAAGG
TAAACCAAGGGCGGGCAAAACGAGGAGTTCTGGAGAGCTAGCAACACCTGATAAAAAGAAAATGA
TGCGAAGTCTCAGATTCTAGCGTAGGTGAAGAAAACCTCTCCAAGCCCACCTGAAACCCAGAAAAAAA
GGTAGCAGAACGCTGAGAACAGGTTGAAGAACAGCTAACAGGAAAGCCGAGGATCAAAAGAACAGATCG
CCGTAACCTACCCAAACCAACTTACAAAAGCCTGAACTTGAAGAACAGCTAACAGGAAAGCTGAGTCCGATGTGGAAGTTAA
AAAAGCGGAGCTGAACTAGTAAAGAGGAAGCTAACAGGAAACCTCGAACAGGAGGAAAAGTTAACAGAAC
AAAAGCGGAAGTTGAGAGTAAAAGAGGAAGCTAACAGGCTAACAGGTTAGAAAATCAAGAACAGATCGTAAAAA
AGCAGAACAGAACAGCTAACAGAACAGCAGAACAGAACAGAACAGAACAGAACAGAACAGAAC
ACAACCAAGCGCCGGCTCCAAAAGCAGAAAACCAGCTCCAGCTCCAAAACCAGAACATCCAGCTGAACA
ACCAAAAGCAGAAAACCAGCTGATCAACAAAGCTGAAGAACAGTATGCTGTAGATCAGAACAGAAC
TAATCGCTTCAACAGCAACGCCAAAAGCAGCACAAACCATCTACTCCAAAACAGG

Table 1

56

CTGGAAACAAGAAAACGGTATGTTGACTTCTACAATACTGATGGTCATGGCGACAGGATGGCTCCA
AAACAATGGCTCATGGTACTACCTAACAGCAATGGCGCTATGGCGACAGGATGGCTCCAAAACAATGG
TTCATGGTACTATCTAACGCTAATGGTCATGGCAACAGGATGGCTCCAAAACAATGGTCATGGTA
CTACCTAACGCTAATGGTCATGGCGACAGGATGGCTCCAATACAATGGCTCATGGTACTACCTAAA
CGCTAATGGTCATGGCGACAGGATGGCTCCAATACAATGGCTCATGGTACTACCTAACGCTAATGG
TGATATGGCGACAGGTTGGGTGAAAGATGGAGATACTGGTACTATCTTGAAGCATTGGTGCATGAA
AGCAAGCCAATGGTCAAAGTATCAGATAATGGTACTATGTCAATGGCTCAGGTGCCCTGAGTCAA
CACAACGTAGATGGCTATGGAGTCATGCCAATGGTGAATGGTAAAC

SP023 amino acid (SEQ ID NO:38)

DEQKIKQAEAEVESKQAEATRLKKIKTDEREAEAEKRRADAKEQGKPKGRAKRGVPGELATPDKKEND
AKSSDSSVGEETLPSPSLKPEKKVAEAEKKVEEAKKAEDQKEEDRNPNTYKTLELEIAESDVVK
KAEELVLVKEEAKEPRNEEKVKQAKAEVESKKAETRLEKIKTDRKKAEEAKRKAEEEDKVKEKPAEQP
QPAPAPKAEPKAPAPKPENPAEQPKAEPKADQQAEEDYARRSEEEYNRLTQQQPPKTEKPAQPSTPKTG
WKQENGWYFYNTDGSMATGWLQNNGSWYLYNSNGAMATGWLQNNGSWYLYNANGSMATGWLQNNGSWY
YLNANGSMATGWLQYNGSWYLYNANGSMATGWLQYNGSWYLYNANGDMATGWLKDGTWYLYEASGAMK
ASQWFVSDKWYVNGSGALAVNTVDGYGVNANGEWVN

SP025 nucleotide (SEQ ID NO:39)

CTGGGTGAGGAAGAAACTAAAAAGACTCAAGCAGCACACAGCCAAAACAACAAAGACTGTACAACA
AATTGCTGTTGGAAAAGATGCTCCAGACTCACATTGCAATCCATGGATGGCAAAGAAGTTAAGTTATC
TGATTTTAAGGGTAAAAGGTTACTTGAAGTTCGGGCTTCATGGTGTGGTCCATGCAAGAAAAGTAT
GCCAGAGTTGATGGAACTAGCGGCGAACACAGATCGTGAATTCTACTGTCATTGCACCAGG
AATTCAAGGTGAAAAAACTGTTGACCAATTCCCACAATGGTTCAGGAACAAGGATATAAGGATATCCC
AGTTCTTATGATACCAAGCAACCACTTCAAGCTTATCAAATTGAGCATTCTACAGAATATT

SP025 amino acid (SEQ ID NO:40)

CGEEETKKTQAAQQPKQOQTTVQQIAVGKDAPDFTLQSMDGKEVKLSDFKGKVVLYKFWSWCGPCKKSMP
PELMELAAKPDRDFEILTVIAPGIOGEKTVEOFPOWFEOEGYKDIPLVYDTKATTSKLIKFEAFLONI

SP028 nucleotide (SEQ ID NO:41)

GA
CTTTAACAATAAAACTATTGAGAGTGCACAACTCCTGTCTCAAGGAATTCTGCAACAGA
ATTGACCCAAGCAACACTTGAAAATATCAAGTCTCGTAGGAAAGCCCTCAATTCTATTGTCACCATCGC
TGAGGAGCAAGCTTGTCAAGCTAACGCCATTGATGAAGCTGGATTGATGTCACAATGCTCCTTC
AGGAATTCCACTTGCTGTTAGGATAACATCTACAGACGGTATTCTCACAACTGCTGCCCTAAAAAT
GCTCTACAACATGAGCCAATCTTGATGCGACagCTgTTGCAATGCAAAACCAAGGGCATGATTGT
CGTTGGAAAGACCAACATGGACGAATTGCTATGGGTGGGTCAGGtGAAACTTCACACTACGGAGCAAC
TAAAAACGCTTGGACCACAGCAAGGTTCCCTGGTGGGTATCAAGTGGTCTGCCAGCTGTAGCCTC
AGGACAAGTCGCTTGTCACTGGTCTGATACTGGTGGTCCATCCGCCAACCTGCTGCCCTAACGG
AATCGTGGTCTCAAACCAACCTACGGAACAGTTCACGTTCGGTCTATTGCCCTTGGTAGCTCATT
AGACCAAGATTGGACCTTTGCTCTACTGTTAAGGAAATGCCCTTGTCAACGCTATTGCCAGCGA
AGATGCTAAAGACTCTACTTCTGCTCCTGTCGCATGCCGACTTTACTTCAAAATGGCCAAGACAT
CAAGGGTATGAAAATCGCTTGCCTAAGGAACACTAGGCGAAGGAATTGATCCAGAGGTTAAGGAAAC
AATCTTAAACCGGCCAACACTTTGAAAATTGGGTGCTATCGTCAAGAAGTCAGCCTTCCTCACTC
TAAATACGGTGTGCGGTTATTACATCATCGCTCATCAGAGCTCATCAAACCTGCAACGCCCTCGA
CGGTATCCGTTACGGCTATCGGCAGAAGATGCAACCAACCTTGTGAAATCTATGAAACAGCCGAAG
CCAAGGTTGGTGAAGAGGTAACAGCTGTATCATGCTGGTACTTTCAGTCTTCATCAGGTTACTA
TGATGCTACTACAAAAGGCTGGTCAAGTCCGTACCCCTCATCATTCAAGATTGAAAGCTTC
GGATTACGATTGATTTGGTCCAACTGCTCCAAGTGTGCTATGACTGGATTCTCTCAACCATGA
CCCAGTGCCATGTACTTAGCCGACCTATTGACCATACCTGAAACTTGGCAGGACTGCCCTGGAATTTC
GATTCTGCTGGATTCTCTCAAGGTCTACCTGTCGGACTCCAATTGATGGTCCCAAGTACTCTGAGGA
AACCATTTACCAAGCTGCTGCTGCTTTGAAGCAACACAGACTACCACAAACAACCCGTGATTT
TGGAGGTGACAAC

SP028 amino acid (SEQ ID NO:42)

TPFNNKTIEELHNLLVSKEISATELTQATLENIKSREEALNSFTIAEQQALVQAKAIDEAGIDADNVLS
GIPЛАVKDNISTDGILTTAAKMLYNYEPIFDATAVANAKTKGMIVVGKTNMDEFAMGGSGETSHYGAT
KNAWNHSKVPGGSSSGSAAAASGOVRLSLGSDTGGSIROPAAFNGIVGLKPTYGTVSRFGLIAFGSSL

Table 1

DQIGPFAPTVKENALLNAAEDAKDSTSAPVRIADFTSKIGQDIKGKIALPKEYLGEGIDPEVKET
 ILNAAKHFEKLGAIVEEVSLPHSKYGVAVYYIASSSEASSNLQRFDGIRYGYRAEDATNLDEIVNSRS
 QGFGEVKRRIMLGTFSLSGGYYDAYYKKAGQVRTLIIQDFEKVFADYDLILGPTAPSAYDLDLSLNHD
 PVAMYLADELLTIPVNLAGLPGISIPAGFSQGLPVGLQLIGPKYSEETIYQAAAFAEATTDYHKQQPVIF
 GGDN

SP030 nucleotide (SEQ ID NO:43)

CTTTACAGGTAAACAACACTACAAGTCGGCGACAAGGCCTGTGATTTCTCTTACTACAACAGATCTTC
 TAAAAAAATCTGGCTGATTTGATGGCAAGAAAAAGCTTGAGTGTGTTCTATCGATAACAGG
 CATCTGCTCAACTCAAACACGTCGTTAATGAAGAATTGGCTGGACTGGACAACACGGTCGTATTGAC
 TGTTCAATGGACCTACCTTTGCTAAAAACGTTGGTGCCTGCTGAAGGCCTTGACAATGCCATTAT
 GCTTCAGACTACTTTGACCATTCTTCGGGCGCATTATGCCCTCTGATCAACGAATGGCACCTATT
 AGCACGCGCAGTCTTGCCCTCGATACTGACAATACGATCGCTACGTTGAATACGTGATAATATCAA
 TTCTGAGCCAACCTTCGAA

SP030 amino acid (SEQ ID NO:44)

FTGKQLQVGDKALDFSLTTDSLKSLADFDGKKVLSVPSIDTGICSTQTRFNEELAGLDNTVVLT
 VSMDLPFAQKRWCAGAEGLDNAIMLSDYFDHSFGRDYALLINEWLLARAVFVLTDNTIRYVEYVDNIN
 SEPNFE

SP031 nucleotide (SEQ ID NO:45)

CCAGGCTGATACAAGTATCGCAGACATTCAAAAAAGAGGCGAACTGGTTGTCGGTGTCAAACAAGACGT
 TCCCATTGGTTACAAnGATCCAAGACCGTACTTATTCTGGTATCGAAaccGACTTGGCAAGAT
 GGTAGCTGATGAACACTCAAGGTCAAGGATTGCTATGTGCCGTTACAGCACAAACCCGCGGGCCCCCTCT
 AGACAATGAACAGGTGATATGGATATCGCACCTTACCATCACGGACGAACGCAAAACTCTACAA
 CTTTACCACTCCACTACACAGACGCTCTGGATTGGTCAATAAATCTGCCAAACATCAAAAGAT
 TGAGGACCTAACCGCAAAACCATCGGAGTCGCCAAGGGTCTATCACCCAAACGCTGATTACTGAAC
 GGGTAAAAAGAAAGGTCTGAAGTTAAATTCTCGCAACTGGTTCTACCCAGAATTGATTACTCCCT
 GCACGCTCATCGTATCGATACCTTCCGTTGACCGCTCTATTCTATCTGGTACACTAGTAAACGGAC
 AGCACTACTAGATGATAGTTCAAGCCATCTGACTACGGTATTGTTACCAAGAAATCAAATACAGAGCT
 CAACGACTATCTGATAACTGGTTACTAAATGGAGCAAGGATGGTAGTTGCAGAAACTTATGACCG
 TTACAAGCTCAAACCATCTAGCCACTGCGAGAT

SP031 amino acid (SEQ ID NO:46)

QADTSIADIQKRGELVVGVKQDVNPFGYXDPKTGTYSIGIETDLAKMVADELKVKIRYVPVTAQTRGPL
 DNEQVDMIAITFTITDERKKLYNFTSPYYTDASGFLVNKSAKIKKIEDLNGKTIGVAQGSITQRLITEL
 GKKGKLFKFVELGSPELITSLHAHRIDTFSVDRSILSGYTSKRTALLDSFKPSDYGIVTKKSNTTEL
 NDYLDNLVTKWSKDGLSLQKLYDRYKLKPSSHTAD

SP032 nucleotide (SEQ ID NO:47)

GTCTGTATCATTGAAAACAAAGAAACAAACCGTGGTGTCTTgACTTTCACTATCTCTCAAGACCAAAT
 CAAACCAATTGGACCGTGTCTCAAGtCAGTAAGAAATCTCTTAATGTTCCAGGTTCCGTAAAGG
 TCACCTTCCACGCCCTATCTTCGACCAAAAATTGGTGAAGAAGCTCTTATCAAGATGCAATGAACGC
 ACTTTGCCAAACGTTATGAAGCAGCTGAAAAGAAGCTGGTCTTGAAGTGGTTGCCAACCAAAAT
 TGACGTAACTCAATGGAAAAGGTCAAGACTGGTTATCACTGCTGAAGTCGTTACAAACCTGAAGT
 AAAATTGGGTGACTACAAAACCTTGAAAGTATCAGTTGATGTAGAAAAGAAGTAACTGACGCTGATGT
 CGAAGACCGTATCGAACCGAACGCAACACCTGGCTGAATTGGTTATCAAGGAAGCTGCTGCTGAAA
 CGCGACACTGTTGATCGACTTCGTTGGTCTATCGACGGTGTGAATTGACGGTGGAAAAGGTGA
 AAACCTCTCACTGGACTTGGTCAGGTCAATTCTCCCTGGTTCGAAGACCAATTGGTAGGTCACTC
 AGCTGGCGAAACCGTTGATGTTATCGTAACATTCCAGAAGACTACCAAGCAGAAGACCTTGCAGGTAA
 AGAAGCTAAATTCTGTGACAACATCCACGAAGTAAAGCTAAAGAAGTCCGGCTCTGACGATGAAC
 TGCAAAAGACATTGATGAAGAAGTGAACACACTTGCTGACTTGAAAGAAAATACAGCAAAGAATTGGC
 TGCTGCTAAAGAAGAAGCTTACAAAGATGCAGTTGAAGGTGCAGCAATTGATACAGCTGTAGAAAATGC
 TGAAATCGTAGAACTCCAGAAGAAATGATCCATGAAGAAGTTCACCGTTAGTAAATGAATTCCCTTGG
 GAATTGCAACGTCAAGGGATCAACCTGACATGTACTTCAAATCACTGAAACTACTCAAGAAGACCT
 TCACAACCAATACCAAGCAGAAGCTGAGTCACGTACTAACGACTAACCTGTTATCGAAGCAGTTGCCAA
 AGCTGAAGGATTGATGCTCAGAAGAAGAAATCCAAAAGAAGTTGAGCAATTGGCAGCAGACTACAA

Table 1

CATGGAAGTTGCACAAGTCAAAACTTGCTTTCAGCTGACATGTTGAAACATGATATCACTATCAAAAA
AGCTGTTGAATTGATCACAAAGCACAGCAACAGTAAAAA

SP032 amino acid (SEQ ID NO:48)

SVSFENKETNRGVLTFTISQDQIKPELDRFKSVKSLNVPGFRKGHLPRPIFDQKFGEELYQDAMNA
LLPNAYEAAVKEAGLEVVAQPKIDVTSMEGKQDWITAEEVVTKPEVKLGDYKNLEVDVEKEVTDADV
EERIERERNNLAELVIKEAAAENGDTVVIFVGSIIDGVEFDGGKGENFSLGLGSGQFIPGFEDQLVGH
AGETVDVITFPEDYQAEDLAGKEAKFVTIHEVKAKEVPALDDELAKDIDEEVETLADLKEKYSKELA
AAKEEAYKDAVEGAAIDTAVENAEIVELPEEMIHEEVHRSVNEFLGNLQRQGINPDMYFQITGTTQEDL
HNQYQAAEAESRTKTNLVIEAVAKAEGFDASEEEIQKEVEQLAADYNMEVAQVNLLSADMLKHDIRTIKK
AVELITSTATVK

SP033 nucleotide (SEQ ID NO:49)

TGGTAAAAGGAAAGTCAGACAGGAAAGGGGATGAAAATTGTGACCAGTTTATCCTATCTACGCTAT
GGTTAAGGAAGTATCTGGTGACTTGAATGATGTTGGATGATTCACTCACTCCTT
TGAACCTTCGGCAAATGATATCGCAGCCATCTATGATGCAGATGTTGTTACCATCTCATACACT
CGAACATCTGGGCAAGGAAGTCTGGATCCAAATCTAAAAAAATCCAAAGTGAAGGTCTAGAGGCTCTGA
GGGAATGACCTTGGAACGTGTCCTGGACTAGAGGATGTGGAAGCAGGGGATGGAGTTGATGAAAAAAAC
GCTCTATGACCCTCACACATGGCTAGATCCTGAAAAAGCTGGAGAAGAAGGCCAATTATCGCTGATAA
ACTTTCAGAGGTGGATAGTGAGCATAAAGAGACTTATCAAAAAAAATGCGCAACCTTATCAAAAAAGCT
CAGGAAT

SP033 amino acid (SEQ ID NO:50)

GQKESQTGKGMKIVTSFYPPIYAMVKEVSGDLNDVRMIQSSSGIHSFEPSANDIAAIYDADVVFVYHSHTL
ESWAGSLDPNLKKSKVKVLEASEGMTLERVPGLEDVEAGDGVDEKTLYDPHTWLDPKAGEAQIIADK
LSEVDSEHKETYQKNAQPLSKKLRN

SP034 nucleotide (SEQ ID NO:51)

GAAGGGATAGATATTTAGCATTGAGACATCCTGTGATGAGACCAGTGTGCCGCTTGAAAAACGA
CGATGAGCTTGTCCAATGTCATTGCTAGTCAAATTGAGAGTCACAAACGTTGGTGGCGTAGTGC
CGAAGTAGCCAGTCGTACCAGTCGAGGTCAATTACAGCCTGTATCGAGGAGGCATTGGCAGAACGAGG
GATTACCGAAGAGGACGTGACAGCTGTGCCGTTACCTACGGACCAGGCTGGTCGGAGCCTGCTAGT
TGGTTTGTCACTGCCAAGGCCCTTGCTTGGCTCACGGACTTCCACTGATTCTGTTAACATCACATGGC
TGGGCACCTCATGGCAGCTCAGAGTGTGGAGCCTTGGAGTTCCCTTGCTAGCCCTTGGTCAGCGG
CGGACACACAGAGTTGGTTATGTTGGAGGCAGGAGATTATAAGATTGTTGGGAAACCCGTGATGA
TGCGGTGGTGAGGCTTATGATAAGGTCGGCCGTGTCATGGCTTGACCTATCTGCAGGTGAGAT
TGACGAGCTGGCTCATCAGGGGAGGATTTATGATTCCCCCTGCCATGATTAAGGAAGATAATCT
GGAGTTCTCCTCTCAGGTTGAAATCTGCCCTTATCAATCTCATCACAATGCCGAGCAAAGGGAGA
AAGCCTGTCTACAGAAGATTGTCGCTTCCCTCAAGCAGCAGTTATGGACATTCTCATGGCAAAAC
CAAGAAGGCTTGGAGAAATATCTGTAAAATCTAGTTGGCAGGTGGTGTGCAGCCAATAAAGG
TCTCAGAGAACGCCAGCAGCCGAAATCACAGATGTCAAGGTTATCATCCCCCTCTGCAGCTGCGG
AGACAATGCAGGTATGATTGCCATTGCCAGCGTCAGCNAGTGGAACAAAGAAAATTCGCAGGCTGGGA
CCTCAATGCCAAACCAAGTCTGCTTGTACCATGGAA

SP034 amino acid (SEQ ID NO:52)

KDRYILAFETSCDETSVAVLKNDDELLSNVIASQIESHKRGGVVPEVASRHHVEVITACIEEALAEAG
ITEEDVTAVAVTYGPGLVGALLVGLSAAKAFAWAHGLPLIPVNHMAGHLMAAQSVEPLEFPLLALLVSG
GHTELVVVSEAGDYKIVGETRDDAVGEAYDKVGRVMGLTPAGREIDEALHQGQDIYDFPRAMIKEDNL
EFSFSGLKSAFINLHHNAEQKGESLSTEDLCASFQAAMDILMAKTKALEKYPVKILVVAGGVAANKG
LRLAEEITDVKVIIPPLRLCGDNAGMIAYASVSXWNKENFAGWDLNAKPSLAFDTME

SP035 nucleotide (SEQ ID NO:53)

GGTAGTTAAAGTTGGTATTAACGGTTCCGAGCTACGGTCTGCTTCGCTATCCAAAACGT
AGAAGGTGTTGAAGTTACACCGCATCAACGACCTTACAGATCCAGTTATGCTTGCACACTTGTGAAATA
CGACACAACTCAAGGTGTTGCGGGTACTGTTGAAGTTAAAGAAGGTGGATTGAGTTAACGGTAA
ATTCCATCAAAGTTCTGCTGAACGTATCCAGAACAAATCGACTGGGCTACTGACGGTGTAGAAAATCGT
TCTTGAAGCTACTGGTTCTTGCTAAGAAAGAAGCAGCTGAAAAACACCTTAAGGTGGAGCTAAAAAA

Table 1

AGTTGTTATCACTGCTCCTGGTGGAAACGACGTTAAAACAGTTGATTCAACACTAACCGACGTTCT
 TGACGGTACTGAAACAGTTATCTCAGGTGCTTCATGTACTACAAACTGCTGGCTCCAATGGCTAAAGC
 TCTTCAGACAACCTTGGTGTGAAGGATTGATGACTACTATCCACGCTTACACTGGTGACCAAAT
 GATCCTTGACGGACCACACCGTGGTGGTACCTCGCCGTGCTCGCGCTGGTGCACAAACATCGTTCC
 TAACCTCAACTGGTGCCTGAAAAGCTATCGGTCTGTAATCCCAGAATTGAATGGTAAACTTGACGGATC
 TGCACAACGCGTTCCAACCTCAACTGGATCAGTTACTGAATTGGTAGCAGTTCTGAAAAGAACGTTAC
 TGTTGATGAAGTGAACGCGAGCTATGAAAGCAGCTTACAGCAATCATACGGTTACACAGAACATCCAAT
 CGTATCTTCAGATATCGTAGGTATGCTTACGGTTATTGTTGACGCCACTCAAACAAAGTTCTTG
 CGTTGACGGTAAACAATTGGTAAAGTTGATCATGGTACGACAACGAAATGTCATACACTGCACAAC
 TGTCGTAACCTGGAAACTTCGCAAAAATTGC

SP035 amino acid (SEQ ID NO:54)

VVKVGINGFGRIGRLAFRRIONVEGVETRINDLDPVMLAHLLKYDTTQGRFDGTVEVKEGGFEVNKG
 FIKVSAERDPEQIDWATDGVEIVLEATGFFAKKEAEKHLKGGAKVVITAPGGNDVKTVVFNTHDVL
 DGTEVTISGASCTTNCLAPMAKALQDNFGVVEGLMTTIHAYTDQMILDGPHRGDLRRARAGAANIP
 NSTGAAKAIGLVIPELNGKLDGSAQRVPTPTGSVTELVALEKNVTDEVNAAMKAASNESYGYTEDPI
 VSSDIVGMSYGSLSFDATQTKVLDVDGKQLVKVWSYDNEMSYTAQLVRTLGILRKNC

SP036 nucleotide (SEQ ID NO:55)

TTCTTACGAGTTGGACTGTATCAAGCTAGAACGGTTAAGGAAAATAATCGTCTTCTATATAGATGG
 AAAACAAGCGACGCAAAAAACGGAGATTGACTCCTGATGAGGTTAGCAAGCGTGAAGGAATCAATGC
 TGAGCAAATCGCATCAAGATAACAGACCAAGGCTATGTCACATGGCGACCACTATCATTATTA
 CAATGGTAAGGTTCTTATGACGCTATCATCAGTGAAGAATTACTCATGAAAGATCCAAACTATAAGCT
 AAAAGATGAGGATATTGTTAATGAGGTCAAGGGTGGATATGTTATCAAGGTAGATGGAAAATACTATGT
 TTACCTTAAGGATGCTGCCACGCGATAACGTCGTACAAAAGAGGAAATCAATCGACAAAAACAAGA
 GCATAGTCAACATCGTGAAGGTGGAACCTCAAGAAACGATGGTGTGCTTGCCTGGCACGTTCGCAAGG
 ACGCTATACTACAGATGATGGTTATATCTTAAATGCTCTGATATCATAGAGGAACTGGGTGATGCTTA
 TATCGTTCTCATGGAGATCATTACATTACATTCTAAGAATGAGTTATCAGCTAGCGAGTTGGCTGC
 TGCAGAAGCCTCCTATCTGGTCAGGAAATCTGTCATTCAGAACCTATGCCGACAAAATAGCGA
 TAACACTTCAAGAACAAACTGGTACCTTCTGTAAGCAATCCAGGAACCTACAAATACTAACACAAGCAA
 CAACAGCAACACTAACAGTCAAGCAAGTAAATGACATTGATAGTCTCTGAAACAGCTCTACAA
 ACTGCCTTGAGTCACGACATGTAGAATCTGATGGCCTGCTTGTCCAGCAGCACAAATCACAGTCG
 AACAGCTAGAGGTGTTGAGTCACGACATGTAGAATCTGATGGCCTGCTTGTCCAGCAGCACAAATCTGA
 ATTGGAAGAACGAATCGCTCGTATTATTCCCCCTCGTTATCGTTAACACCATTGGGTACCAGATTCAAG
 GCCAGAACACCAAGTCCACAACCGACTCCGAACTAGTCCAGGCCGCAACCTGCACCAAAATCTAA
 AATAGACTCAAATTCTCTTTGGTTAGTCAGCTGGTACGAAAGTTGGGAAGGATATGTATTGAAAGA
 AAAGGGCATCTCGTTATGTCTTGCGAAAGATTACCATCTGAAACTGTTAAAATCTGAAAGCAA
 GTTATCAAACAAAGAGAGTGTGTTACACACTTTAAGTCTAACTGCTAAAAAGAAAATGTTGCTCTCGTGACCA
 AGAATTATGATAAAAGCATATAATCTGTTACTGAGGCTCATAAAGCCTTGTGNAATAAGGGTCG
 TAATTCTGATTCCAAGCCTTAGACAAATTATTAGAACGCTTGAATGATGAATCGACTAATAAGAAA
 ATTGGTAGATGATTTATTGGCATTCTAGCACCAATTACCCATCCAGAGCGACTTGGCAAACCAAATTC
 TCAAATTGAGTAACTGAAGACGAAGTTCGTATTGCTCAATTAGTCTGATAAGTACACAGTCAGATGG
 TTACATTGATGAACATGATATAATCAGTGTAGAAGGAGATGCATATGTAACGCCATATGGCCA
 TAGTCACTGGATTGGAAAAGATAGCCTTCTGATAAGGAAAAGTTGAGCTCAAGCCTATACTAAAGA
 AAAAGGTATCCTACCTCCATCTCCAGACGAGATGTTAAAGCAAATCCAACCTGGAGATAGTCAGCAGC
 TATTTCACATCGTGTGAAAGGGAAAACGAATTCCACTCGTGCACCTCCATATATGGTGAGCATAAC
 AGTTGAGGTTAAAACGGTAATTGATTATTCTCTCATAGGATCATACCCATAATTAAATTGCTTG
 GTTGATGATCACACATACAAAGCTCCAAATGGCTATACCTGGAAAGATTGTTGCGACGATTAAGTA
 CTACGTAGAACACCCCTGACGAACGTCACATTCTAATGATGGATGGGCAATGCCAGTGAAGCATGTGTT
 AGGCAAGAACGACACAGTGAAGGATCCAATAAGAACCTGCTAAAGCGGATGAAGAGCCAGTAGAGGAAAC
 ACCTGCTGAGCCAGAAGTCCCTCAACTAGAGACTGAAAAGTAGAAGGCCAACTCAAAGAACGAGAAAGT
 TTTGCTTGCGAAAAGTAACGGATTCTAGTCTGAAAGCCAATGCAACAGAAACTCTAGCTGGTTACGAAA
 TAATTGACTCTCAAATTATGGATAACAATAGTATCATGGCAGAACGAGAAAATTACTTGCGTTGTT
 AAAAGGAAGTAATCCTCATCTGTAAGTAAGGAAAAATAAAC

SP036 amino acid (SEQ ID NO:56)

SYELGLYQARTVKENNRSVYIDGKQATQKTENLTPDEVSREGINAEQIVIKITDQGYVTSHGDHYHYY
 NGKVPYDAIISELLMKDPNYKLKDEDIIVNEVKGGYVIKVVDGKYYVYLKDAAHADNVRTKEEINRQKQE

Table 1

HSQHREGGTPRNDGAVALARSQGRYTTDDGYIFNASDIIEDTGDAYIVPHGDHYHYIPKNELSASELAA
 AEAFLSGRGNLNSRTYRQRNDSNTSRTNWPSVSNPGTTNTNTSNNNTNSQASQNSNDISLLKQLYK
 LPLSQRHVESDGLVFDPQITSRTARGVAVPHGDHYFIPYSQMSELEERIARIIPLRYRSNHVPDSR
 PEQPSPQPTPEPSPGPQAPNLKIDSNSSLVSQVLRKVGEGYVFEEKGISRYVFAKDLPSETVKNLESK
 LSKQEVSVSHTLTAKKENVAPRDQEYDKAYNLLTEAHKALFXNKGNSDFQALDKLLERLNDESTNKEK
 LVDDLLAFLAPITHPERLGKPNQIEYTEDEVRIAQLADKYTTSDGYIFDEHDIIISDEGDAYVTPHMGH
 SHWIGKDSLSDKEKVAAQAYTKEKGILPPSPDADVKAAPTGSAAAIYNRVKGEKRIPLVRLPYMVEHT
 VEVKNGNLIIPKDHYHNIFKFAWFDDHTYKAPNGYTLEDFATIKYYVEHPDERPHSNDGWNASEHVL
 GKKDHSEDPNKNFKADEEPVEETPAEPEPVQVETEKVEAQLKEAVLLAKVTDSSLKANATELAGLRR
 NLTLQIMDNNSIMAEAKLLALLKGNSNPSSVSKEKIN

SP038 nucleotide (SEQ ID NO:57)

TACTGAGATGCATCATAATCTAGGAGCTGAAAAGCGTCAGCAGTGGCTACTACTATCGATAGTTTAA
 GGAGCGAAGTCAAAAGTCAGAGCACTATCTGATCCAAATGTGCGTTTGTTCCTTCTGGCTCTAG
 TGAATGGCTCGTTTGACGGTGCTATTCTCGGGTATTAGCTGAGAAATACAATCGTCCTACCGTCC
 TTATCTTTAGGACAGGGGGAGCTGCATCGCTAACCAATATTTGAATGCAACAGATGTTACCA
 GCTGGAGAATAAACAAAGTGTGTATGTTACCTCACCTCAGTGGTTCACTAAAGCTATGATCCAGC
 AGCCTTCCAGCAGTATTTAATGGAGACCAGTGTGACTAGTTCTGAAACATCAATCTGGGATCAGGC
 TAGTCAATATGCAGCGACTCGCTTACTGCAACAGTCCCAAACGTAGCTATGAAGGACCTGGTTAGAA
 GTTGGCAAGTAAAGAAGAATTGTCGACAGCAGACAATGAAATGATTGAATTATGGCTCGTTAATGA
 ACGCCAAGCTTCTTTGGTCAGTTTCGGTTAGAGGCTATGTTAATCAGATAAGCATGTTAGCTAA
 GTATTTAAAATCTTGCCAGACCAGTTTCTTACAGGCAATAGAAGATGTTGCAAAGCAGATGCTGA
 AAAAATCTTCAATAATGAGATGGAATGAAAATTATTCATAATGAGCAGATCAAGAAGGATT
 GAAGAAATTAAAGGATTCTCAGAAAAGCTTACCTATCTAAGTCGCCAGAGTATAATGNNTGCAGTT
 GGTTTAACACAGTTCTAAATCTAAGGTAACCCGATTTTATCATTCCACCTGTTAATAAAAATG
 GATGNACTATGCTGGCTACAGAGAGGATATGTACCAACAAACGGTGAGAAGATTGCTACCGAGTTAGA
 AAGTCAGGTTTACCAATATAGCAGATTTCTAAGGACGGCGGGAGCCTTCTTTATGAAGGACAC
 CATTACCTTGGTTGGCTTGGCTTGGCTTGAACAAGGAGTTGATCCTTCCTATCCAATCCCAC
 ACCAGCTCCGACTTACCATCTGAATGAGCCTTTCAAGCAAAGATTGGCGACTTATGATGGAGATGT
 CAAAGAA

SP038 amino acid (SEQ ID NO:58)

TEMHHNLGAEKRSAVATTIDSFKERSQKVRLSDLPNVRFPFFGSSEWLRFDAHSAVLAEKYNRSYRP
 YLLGQGGAASLNQYFGMQQMLPQLENKQVYVISPOWFSKNGYDPAAFQQYFNGDQLTSFLKHQSQDQA
 SQYAATRLLQQFPNVAMKDLVQKLASKELSTADNEMIELLARFNERQASFFGQFSVRGYVNQDKHVA
 YLKILPDQFSYQAIEDVVKADEAKNTSNEMGMENYFYNEQIKKDLKKLKSQKSFTYLKSPEYNXLQL
 VLTQFSKSKVNPIFIIPPVNKKWMXYAGLREDMYQQTVQKIRYQLESQGFTNIADFSKDGEPEFFMKDT
 IHLGWLWLAFDKAVDPFLSNPTPAPTYHLNERFFSKDWATYDGDVKE

SP039 nucleotide (SEQ ID NO:59)

GGTTTGAGAAAGTATTGCAGGGGGCCCTGATTGAGTCATTGAGCAAGTGGAAAATGACCGTATTGT
 GGAAATTACAGTTCAATAAAAACGAGATTGGAGACCATATCCAGGCTACCTGATTATCGAAATTAT
 GGGGAAACACAGTAATATTCTACTGGTCGATAAAAGCAGTCATAAAATCCTCGAAGTTATCAAACACGT
 CGGCTTTCACAAAATAGCTACCGCACCTTACTTCCAGGATCGACCTATATCGCTCCGCCAGTACAAA
 ATCTCTCAATCCTTTACTATCAAGGATGAAAGCTCTTGAAATCCTGCAAACCCAAGAAACTAACAGC
 AAAAATCTCAAAGCCTTTCAAGGTCTGGGACGCGATAACGGCAATGAATTGAAAGGAACTGTT
 TAGTGAAGAAACTTCCGCTTCCGAAATTTCATCAAGAAACAGCCATGCTGACTGAGACTTC
 CTTCAGTCCAGTCCCTTGCATAATCAGGTGGGAGAGCCTTGCATAATCTCTGATTGTTGGACAC
 CTACTATAAGGATAAGGCTGAGCGCGACCGCGTCAAACAGCAGGCCAGTGAACCTGACTCGCTGTTGA
 AAATGAACTTCAGAAAAACCGACACAAACTCAAAAACAGGAAAAAGAGTTACTGGCGACAGACAACGC
 TGAAAGAATTTCGTCAAAAGGAGATTGCTGACAACCTTCCTCCACCAAGTGCCTAACGACCAAGACCA
 GTTATCCTAGACAACACTATACCAACCAACCTATCATGATTGCGCTTGATAAGGCTCTGACTCCCAA
 CCAGAATGCCAACGCTATTTAAACGGTATCAGAAACTCAAAGAAGCTGTCAAATACTTGACTGATT
 GATTGAAGAAACCAAGCCACTATTCTCTATCTGAAAGTGTAGAAACCGTCTCAACCAAGCTGGACT
 GGAAGAAATCGCTGAAATCCGTGAAGAATTGATTCAAACAGGTTTATCCGCAGAAGACAACGGGAGAA
 AATCCAGAAACGCAAAAAACTAGAACAAATATCTAGCAAGCGATGGCAAACACCATCATCTATGTCGGACG
 AAACAATCTCAAATGAGGAATTGACCTTAAATGGCCCGCAAGGAGGAACCTTGGTTCCATGCTAA
 GGACATTCCCTGGAAGCCATGTTGTCATCTCAGGAAATCTGACCCATCTGATGCGAGTCAGACAGACG

Table 1

AGCAGAGTTAGCTGCCTACTTCTCAAGGGCCCTGCGAATCTGGTGCAGGTAGATATGATTGAAGT
CAAAAAACTCAATAAACCAACTGGTGGAAACCCGGCTTGTCACTTACACAGGACAAAAGACCCTCCG
CGTCACACCAGACTCCAAAAATTGCATCCATGAAAAATCC

SP039 amino acid (SEQ ID NO:60)

VLRKYLQGALIESIEQVENDRIVEITVSNKNEIGDHIQATLIEIMGKHSNILLVDKSSHKILEVIKHV
GFSQNSYRTLLPGSTYIAPPSTKSLNPFTIKDEKLFEILQELTAKNLQSLFQGLGRDTANELERILV
SEKLSAFRNRFFNQETKPCLTETSFSPVPFANQVGEFPFANLSDLDDTYYDKDAERDRVKKQQASELIRRVE
NELQKNRHKLKQEKELLATDNAEEFRQKGELLTFLHQVPNDQDVILDNYTNQPIMIALDKALTPN
QNAQRYFKRYQLKEAVKYLTDLIETKATILYLESVETVLNQAGLEEIAEIREELIQTGFIRRRQREK
IQKRKKLEQYLASDGKTIYVGRNNLQNEELTFKMARKEELWFHAKDIPGSHVISGNLDPSDAVKTDA
AELAAYFSQGRLSNLVQVDMIEVKKLNKPTGGKPGFVTYTGQKTLRVTPDSKKIASMKKS

SP040 nucleotide (SEQ ID NO:61)

GACAACATTTACTATCCATACAGTAGAGTCAGCACAGCAGAAAGTGAAGAACACTAGA
AAAAGACAACAATGGCTATATTCCCAACCTAATCGGTCTTGGCCAATGCCCGACTGTTTAGAACGC
CTACCAAAATTGTCATCATCCACCGTCGACAGCCTGACACCCGTTGAGCGTGAAGTGGTCAAAT
CACGGCAGCCGTGACCAATGGTTGCGCTTCTGTGTCGAGGTACACAGCCTTCCATCAAACAAAT
CCAGATGAATGATGACTTGTGATTCAAGCTTCGCAATCGTACTCCAATTGAAACAGATCTAAATTGGA
TACCCTAGCTAAGTTACCTTGGCAGTTATCAATACCAAGGGTCGTAGGAGATGAAGCCTGCTGA
GTTTTAGAAGCTGGCTACACTCAACAAATGCCCTGGATGTGGTTTGCTGAGCCTAGCAATCCT
CTGTAACATGCCAACAACTTAGCTAATACACCAATTAACTCAGAACCTTATGCC

SP040 amino acid (SEQ ID NO:62)

TTFTIHTVESAPAEVKEILETVEKDNNGYIPNLIGLLANAPTVLEAYQIVSSIHRRNSLTPVEREVVQI
TAAVTNGCAFCVAGHTAFSIKQIQMNDLIQALRNRTPIETDPKLDLAKFTLAVINTKGRVGDEALSE
FLEAGYTQQNALDVVFVSLAILCNYANNLANTPINPELQPYA

SP041 nucleotide (SEQ ID NO:63)

GGCTAAGGAAAGAGTGGATGTAAGCTTATAAACAGGGGTTGTTGAAACGAGAGAGCAGGCCAAGCG
AGGTGTGATGGCTGGCCTAGTCGTAGCAGTCCTTAATGGAGAACGGTTGACAAGCCAGGAGAGAAAAT
TCCAGATGACACCGAATTAACACTCAAGGGGAGAAACTCAAGTATGTCAGCCGTGGTGGTTGAAACT
GGAAAAGGCCTGCAGGTCTTGATTTGTCGGTGGATGGCGCAGTACGATTGATATCGGGCCTCTAC
TGGAGGTTTACCGATGTCATGCTACAGAAATAGTGCACAGTTGTCAGCATGGAGCAGTTCAATTCCGCTATGC
TCAGTTGGCTTGGAAATTACGCCAACGACCCACGAGTTGTCAGCATGGAGCAGTTCAATTCCGCTATGC
TGAAAAGACTGATTCGAGCAGGAGCCGAGCTTGCCAGTATTGATGTGAGTTCAATTCCCTTAGCT
GATTTGCCAGCCTTGACCGCTGTCTGGCTGATCAAGGTCAAGGTGGTAGCAGTGTCAAACCTCAGTT
TGAGGCAGGACGTGAGCAGATTGGAAAAATGGAATTATTCGAGATGCTAAGGTTCATCAGAAATGTCT
TGAATCTGAAACAGCTATGGCAGTAGAGGTAGGTTTCAGTCCTGGCTTGACTTTCTCCCATCCA
AGTGGACATGGAATTATGAATTAGCGTATTGAAAAAGAAAAGTCAGCAAGCAATCAGATTCT
TGCTGAGATTAAAGAACAGTAGAGAGAGGGCGCATAGTCATTAAAGTAA

SP041 amino acid (SEQ ID NO:64)

AKERDVVLAYKQGLFETREQAKRGVMAGLVAVLNGERFDKPGEKIPDDTELKLKGEKLKYVSRGGLKL
EKALQVFDSLVDGATTIDIGASTGGFTDVMLQNSAKLVAFAVDVGTNQLAWKLRLQDPRVVSMEQFNFRYA
EKTDFEQEPFASFIDVSFISLSSLILPALHRVLAQGQVVALVKPQFEAGREQIGKNGIIRDALKVHQNVL
ESVTAMAVEVGFSVLGLDFSPIQGGHGNIEFLAYLKKEKSASNQILAEIKEAVERAHSQFKNE

SP042 nucleotide (SEQ ID NO:65)

TTGTTCTATGAACCTGGTCGTACCAAGCTGGTCAGGTTAAGAAAAGAGTCATACTGAGTTCTTATAT
AGATGGTGATCAGGCTGGTCAAAAGGCAGAAAACCTGACACCAAGATGAAGTCAGTAAGAGGGAGGGGAT
CAACGCCAACAAATNGTNATCAAGATTACGGATCAAGGTTATGTGACCTCTCATGGAGACCATTATCA
TTACTATAATGGCAAGGTTCTTATGATGCCATCATCAGTGAAGAGCTCTCATGAAAGATCCGAATT
TCAGTTGAAGGATTTCAGACATTGTCATGAAATCAAGGGTGGTTATGTCATTAGGTAAACGGTAAATA
CTATGTNTACCTTAAGGATGCAGTCATGCCATAATTCCGACAAAAGAAGAGATTAACGTCAGAA
GCAGGAACGCAGTCATAACTCAAGAGCAGATAATGCTGTTGCTGCAGCCAGAGCCCAAGGACG
TTATACAACGGATGATGGGTATATCTCAATGCACTGATCATCTGAGGACACGGGTGATGCTTATAT
CGTTCCCTACGGCGACCATTACCATTCATAAGAATGAGTTACAGCTAGCGAGTTAGCTGCTGC

Table 1

AGAAGCCTATTGAATGGGAAGCAGGGATCTCGTCCTTCAAGTTCTAGTTATAATGCAAATCCAGC
 TCAACCAAGATGTCAAGAGAACCAATCTGACTGTCACCTCATCAAAATCAAGGGAAAA
 CATTCAAGCCTTTACGTGAATTGTATGCTAAACCCATTACAGAACGCCATGTGGAATCTGATGGCT
 TATTTCGACCCAGCGAAATCACAAGTCGAACCGCCAGAGGTGTAGCTGTCCTCATGGTAACCATT
 CCACCTTATCCCTTATGACAACAAATGTCTGAATTGGAAAACGAATTGCTCGTATTATTCCCCTCGTT
 TCGTCAAACCATGGGTACCGATTCAGAACACAGAACAGCAGCAGGATTGATAGCAAACAGGCCAAGCAGGAAAGTTATCTCA
 TCCAAGTCCGCAACCTGCACCAATCCTCAACCAGCTCCAAGCAATCCAATTGATGAGAAATTGGTCAA
 AGAAGCTGTTGAAAAGTAGGCGATGGTTATGTCTTGAGGAGAATTGGAGTTCTCGTTATATCCCAGC
 CAAGGATCTTCAGCAGAACAGCAGCAGGATTGATAGCAAACAGGCCAAGCAGGAAAGTTATCTCA
 TAAGCTAGGAGCTAAGAAAACGTGACCTCCATCTAGTATGAGAATTTACAATAAGGCTTATGACTT
 ACTAGCAAGAATTCAACCAAGATTTACTGATAATAAAGGTCGACAAGTTGATTGAGGCTTGGATAA
 CCTGTTGGAAGCAGTCAAGGATGTCNCAACTGATAAAAGTCAGTTAGTGGANGATATTCTGCCTTCTT
 AGCTCCGATTGTCATCCAGAACGTTAGGAAAACCAAATGCGCAAATTACCTACACTGATGATGAGAT
 TCAAGTAGCCAAGTTGGCAGGCAAGTACACAAACAGAACAGACGGTTATATCTTGATCCTCGTGATATAAC
 CAGTGTAGGGGGATGCTTATGTAACCTCACATATGACCCATAGCCACTGGATTAAAAAGATAGTTT
 GTCTGAAGCTGAGAGAGCGGCAGCCAGGCTTATGCTAAAGAGAAGGTTGACCCCTCCTCGACAGA
 CCATCAGGATTAGGAAATACTGAGGCAAAAGGAGCAGAACGCTATCTACAACCCGCTGAAAGCAGCTAA
 GAAGGTGCCACTTGATGCTTACAATCTCAATATACTGTTAGAAGTCAAAACGGTAGTTAAT
 CATACCTCATTATGACCATTACATAACATCAAATTGAGTGGTTGACGAAGGCTTATGAGGCACC
 TAAGGGTATACTCTGAGGATCTTGAGGACTGTCAAGTACTATGTCGAAACATCCAAACGAACGTCC
 GCATTCAAGATAATGGTTTGGTAACGCTAGCGACCATGTCAAAGAAACAAAATGGTCAAGCTGATAC
 CAATCAAACGAAAACCAAGCGAGGAGAACCTCAGACAGAAAACCTGAGGAAGAACCCCTCGAGA
 AGAGAAACCGCAAAGCGAGAACCAAGAGTCTAAAACCAACAGAGAACCGAGAACGAAATCACCAGAGGA
 ATCAGAAGAACCTCAGGTCGAGACTGAAAAGGTTGAAGAAAACCTGAGAGAGGCTGAAGATTACTTGG
 AAAAATCCAGGAT

SP042 amino acid (SEQ ID NO:66)

CSYELGRHQAGQVKESNRVSYIDGQAGQKAENLTPDEVSKREGINAEQXVIKITDQGYVTSHGDHYH
 YYNGKVPYDAIISELLMKDPNYQLKSDIVNEIKGGYVIKVNGKYYVYLKDAAHADNIRTKEEIKRQK
 QERSHNHNSRADNAVAARAQGRYTTDDGYIFNASDIIEDTGDAYIVPHGDHYHYIPKNELSASELAAA
 EAYWNGKQGSRPSSSSYNANPAQPRLENSHENHLTVTPHTYHQNQENISSLRELYAKPLSERHVESDGL
 IFDPAQITSRTARGAVPHGNHYHFIPYEQMSELEKRIARIIPRLYRSNHVPDSRPEQPSPQSTPEPS
 PSPQPAPNPQPAQSNPIDEKLVKEAVRKVGDGYVFEEGVSRYIPAKDLASAETAAGIDSKLAKQESLH
 KLGAKKTDLPSDREFYNKAYDLLARIHQDLDNKGRQVDFAEDNLLERLKDVSDFKVLVXDILAFL
 APIRHPERLGKPNQITYTDDEIQVAKLAGKYTTEDGYIFDPRDITSDEGDAYVTPHMTHSHWIKKDSL
 SEAERAACQAYAKEKGLTPPSTDHQDSGNTEAKGAEAIYNRVKAACKVPLDRMPYNLQYTVEVKNGSLI
 IIPHYDHYHNIFEWFDGLEYAPKGTYLEDLLATVKYYVEHPNERPHSDNGFGNASDHVQRNKNGQADT
 NQTEKPSEEKPQTEKPEEETPREEKPQSEKPESPKTEEPEESPEESEPQVETEKVEEKLRREAEDLLG
 KIQL

SP043 nucleotide (SEQ ID NO:67)

TTATAAGGGTGAATTAGAAAAAGGATACCAATTGATGGTTGGAAATTCTGGTTTCGAAGGTAAAAA
 AGACGCTGGCTATGTTATTAATCTACAAAGATACCTTATAAAACCTGTATTCAAGAAAATAGAGGA
 GAAAAAGGAGGAAGAAAATAAACCTACTTTGATGTATCGAAAAGAAAGATAACCCACAAGTAAACCA
 TAGTCATTAATGAAAGTCACAGAAAAGAGGATTACAAAGAGAACGATTCAACAAAATCTGATTC
 AACTAAGGATGTTACAGCTACAGTTGATAAAACAAATACAGTAGTAAATCAACTACAATCC
 TAATAAG

SP043 amino acid (SEQ ID NO:68)

YKGELEKGYQFDGWEISGFEGKKDAGYVINLSKDTFIKPVFKIEEKKEEENKPTFDVSKKKDNPQVNH
 SQLNESHRKEDLQREEHSQKSDSTKDTATVLDKNNISSKTTNNPNK

SP044 nucleotide (SEQ ID NO:69)

GAATGTTCAAGGCTCAAGAAAGTCAGGAAATAAAACTTATCAATGTTCAAGAAGGTGGCAGTGA
 TCGCATTATTCTTGAAAGCAATGGACATTGTCATGGGATACAGGAGAACGATTGATTTCCAGA
 TGGAAGTGTCTCGCTATCCATGGAGAGAACGAGATTGAAACGTCTATAAGCATGTTCAACAGACCG
 TGTCTTCGTCGTTGAAGGAATTGGGTGTCCAAAACCTGATTTATTGAGCCATACCCACAG
 TGATCATATTGAAATGTTGATGAATTACTGTCACCTATCCAGTTGACCGAGTCTATCTAAGAAATA

Table 1

TAGTGATAGTCGTATTACTAATTCTGAACGTCATGGGATAATCTGTATGGCTATGATAAGGTTTACA
 GACTGCTGCAGAAAAGGTGTTCACTTAAATACACACAAGGGATGCTCATTTCAGTTGG
 GGACATGGATATTCACTCTATAATTATGAAAATGAAACTGATTCACTCGGGTGAATTAAAGAAAATTG
 GGATGACAATTCCAATTCCCTGATTAGCGTGGTGAAGTCAATGGCAAGAAAATTACCTGGGGCGA
 TTTAGATAATGTCATGGAGCAGAACAGAAGTATGGCTCTCATTGGAAAAGTTGATTTGATGAAGTT
 TAATCATCACCATGATACCAACAAATACCAAGGATTCTACATTAAAATTGAGTCCGAGTTGAT
 TGTTCAAACCTCGGATAGTCTACCTGGAAAAATGGTGTGATAGTGAAGTTAATTGGCTCAAAGA
 ACGAGGAATTGAGAGAACGACAGCAAGACTATGATGCAACAGTTTGATATTGAAAGA
 CGGTTTGTCAATATTCAACATCCTACAAGCCGATTCCAAGTTCAAGCTGGTGGCATAAGAGTGC
 ATATGGGAACTGGTGGTATCAAGCGCTGATTCTACAGGAGAGTATGCTGTCGTTGGAATGAAATCGA
 AGGTGAATGGTATTACTTAACCAAACGGGTATCTTGTACAGAACATCAATGGAAAAATGAAACATCA
 TTGGTTCTATTGACAGACTCTGGTGTCTGCTAAAAATTGGAAGAAAATCGCTGGAATCTGGTATTA
 TTTTAACAAAGAAAACCAGATGGAATTGGTGGATTCAAGATAAACAGCAGTGGTATTATTGGATGT
 TGATGGTTCTATGAAGACAGGATGGCTCAATATGGGCAATGGTATTACTTGCTCCATCAGGGGA
 A

SP044 amino acid (SEQ ID NO:70)

NVQAQESSGNKIHFinVQEGGSDAIlesNGHFAMVDTGEDYDFPDGSDSRYPWREGIETSYKHVLTDR
 VFRLRKELGVQKLDFFILVTHHSNDHGNVDELLSTYPVDRVYLKKYSDSRITNSERLWDNLYGYDKVQL
 TAAEKGVSVIQNITQGDAHFQFGMDIQLYNENETDSSGELKKIWNDNSNSLISVVVKVNGKKIYLGGD
 LDNVHGAEDKYGPLIGKVLMKFNNHHDNTKSNTKDFIKNLSPSLIVQTSDSLPKNGVDSEYVNWLKE
 RGIERINAASKDYDATVFDIRKDGFVNISTSYKPIPSFQAGWHKSAYGNWWYQAPDSTGEYAVGWNEIE
 GEWYYFNQQTGILLQNQWKWNHWFYLTDSGASAKNKKIAGIWYFNKENQMEIGWIQDKEQWYLLDV
 DGSMTKGWLQYMGQWYFAPSGE

SP045 nucleotide (SEQ ID NO:71)

CTTGGGTGTAAACCCATATCCAGCTCCTCCAGTCTGTCTTACTACTTTGTCAATGAATTGAAAACCA
 TGAAACGCTTGTCTGACTACGCTTCAAGCAACAGCAACTACAACGGGGATATGACCCCTAAAACACTTT
 CTCCTTGACTGGTATGTACTCAAGCGATCCTAAGAACGAAATCCAGAAAACGAATCGCAGAAATTAAAAACCT
 CATCAACGAAATCCACAAACGTGGTATGGGAGCTATCCTAGATGTCGTTATAACCACACGCCAAAGT
 CGATCTCTTGAAGATTGGAACCAAACACTACTACCACTTTATGGATGCCATGGCACACCTCGAAGTAG
 CTTTGGTGGTGGACGCTGGGGACAACCCACCATATGACCAACGGCTCTAAATTGACTCTATCAAATA
 CCTAGTTGATACCTACAAAGTGGATGGCTTCCGTTGATATGATGGGAGACCATGACGCCGCTTCTAT
 CGAAGAAGCTTACAAGGCTGCACGCCCTCAATCCAAACCTCATCATGCTGGTGAAGGTTGGAGAAC
 CTATGCCGGTGTGAAACATGCCACTAAAGCTGCTGACCAAGATTGGATGAAACATACCGATACTGT
 CGCTGTCTTTCAGATGACATCCGTAAACACCTCAAATCTGGTTATCCAAACGAAGGTCAACCTGCCCT
 TATCACAGGTGGCAAGCGTGTGCAACACCATTTCATTAAATCTCATTGCTCAACCAACTAACTTGA
 AGCTGACAGCCCTGGAGATGTCATCCAATACATCGCAGCCCATGATAACTTGACCCCTTTGACATCAT
 TGCCCAGTCTATCAAAAAGACCCAAGCAAGGCTGAGAACATATGCTGAAATCCACCGTCGTTACGACT
 TGGAAATCTCATGGTCTTGACAGCTCAAGGAACCTCATTATCCACTCCGGTCAGGAATATGGACGTAC
 TAAACAATTCCGTGACCCAGCCTACAAGACTCCAGTAGCAGAGGATAAGGTTCCAACAAATCTCACTT
 GTTGGCGTGTGATAAGGACGGCAACCCATTGACTATCCTTACTTCATCCATGACTCTACGATTCTAGTGA
 TGCAGTCACAAGTTGACTGGACTAAGGCTACAGATGGTAAAGCTTACCTGAAATGTCAAGAGCCG
 TGACTATATGAAAGGTTGATTGCCCTCGTCAATCTACAGATGCCCTCGACTTAAGAGTCTTCAAGA
 TATCAAAGACCGTGTCCACCTCATCACTGTCCCAGGCCAAATGGTGTGGAAAAAGAGGATGTAGTGT
 TGGCTACCAAACTACTGCTCCAAACGGCGATATCTACGAGTCTTGTCAATGCGGATGAAAAGCTCG
 CGAATTAAATTGGGAAACTGCCCTTCGACATCTAAGAACGCGGAAGTTGGCAGATGAAAACCAACG
 AGGACCAAGTCCGAATTGCCAACCCGAAAGGACTTGAATGGACTGAAAAGGCTTGAATTGAATGCCCT
 TACAGCTACTGTTCTCGAGTCTCTCAAAATGGAACTAGCCATGAGTCAGTCAACTGCGAGAGAGAAC
 CTCAACCCCTCCAAGCTGAACATCAAATGAAGCTCTCACCTGCACATCAAGACCCAGCTCCAGA
 AGCTAGACCTGATTCTACTAAACCAAGATGCCAAAGTAGCTGATGCCGAAATAAACCTAGCCAAGCTAC
 AGCTGATTTCACAAGCTGAACAACCAGCACAAGAAGCACAAGCATCTGTAAAAGAAGCGGTTCGAAA
 CGAATCGGTAGAAAACCTAGCAAGGAAATACCTGCAACCCAGATAAACAGCTGAA

SP045 nucleotide (SEQ ID NO:72)

LGVTHIQLLPVLSYYFVNELKNHERLSDYASSNSNYNWGYDPQNYFSLTGMYSSDPKNPEKRIAEFKNL
 INEIHKRGMGAILDVFVYHNTAKVDFEDLEPNEYHFDADGTPTSFGGRLGTTHHMTKRLLIDSICKY
 LVDTYKVDGFRFDMMGDHDAASIEEAYKAARALNPNLIMLGEGRWTYAGDENMPTKAADQDWMKHTDTV

Table 1

AVFSDDIRNNLKGYPNEGQPAFITGGKRDVNTIFKNLIAQPTNFEADSPGDVIQYIAAHDLTLFDII
 AQSIIKKDPSKAENYAEIHRRRLGLGNLMLTAQGTPFIHSQEYGRTKQFRDPAYKTPVAEDKVPNKS
 LRLDKDGNPDFDYPFIHDSDSSDAVNKFDTWKTATDGKAYPENVKSRDYMKGHLIALRQSTD
 IKDRVHLITVPGQNGVEKEDVVIGYQITAPNGDIYAVFVNADEKAREFNLGTAFHLRNAEVLA
 GPVGIANPKGLEWTEKGLKLNALTATVLRVSQNGTSHESTAEEKPDSTPSKPEHQNEASHPAHQD
 PAPE
 ARPDKPDAVADAENKPSQATADSQAEQPAQEAQASSVKEAVRNESVENSSKENIPATPDKQAE

SP046 nucleotide (SEQ ID NO:73)

TTTNGATACTCATTATCAATCTGGTTCTATATAAAAGCAGATGCTAACTATGCTAAAATGAATGGCT
 AAAGCAAGGTGACGACTATTTTACCTCAAATCTGGGGCTATATGCCAAATCAGAATGGGTAGAAGA
 CAAGGGAGCCTTTATTATCTTGACCAAGATGAAAGATGAAAAGAAATGCTGGGTAGGAACCTCCA
 TGTTGGTGCAACAGGTGCAAAGTAATAGAAGACTGGGTCTATGATTCTCAATACGATGCTGGTTTA
 TATCAAAGCAGATGGACAGCACGCAGAGAAAGAATGGCTCAAATTAAAGGGAGGACTATTATTC
 ATCCGGTGGTTATCTACTGACAAGTCAGTGGATTAATCAAGCTTATGTGAATGCTAGTGGTGC
 CAAAGTACAGCAAGGTTGGCTTTTGACAAACAATACCAATCTGGTTTACATCAAAGAAAATGGAA
 ACTATGC TGATAAAAGAATGGATTTGAGAATGGTCACTATTATTATCTAAACATCCGGTGGCTAC
 ATGGCAGCAA TGAAATGGCTTACAGCTGGTACTACTTCAAATCTGATGGGAAAATAGCTGAAA
 AGAATGGCTA CGATTCTCATAGTCAGCTGGTACTACTTCAAATCTGGGGCTACATGGCAGCAA
 TGAGACAGTAGA
 TGGTTATCAGCTTGGAACCGATGGTAAATGGCTTGGAGGAAAATCACAATGAAAATGCTGCTTACTA
 TCAAGTAGTGCCTGTTACAGCCAATGTTATGATTAGCAGTGGTGAAGCTTCCCTATATCGCAAGG
 TAGTGTGTAGGCTAGATAAGGATAGAAAAGTGTGACAAGCGCTTGGCTATTACTATTCTGGTT
 GTCAGGCTATATGAAAACAGAAGATTACAAGCGTAGATGCTAGTAAGGACTTTATCCCTTATTATGA
 GAGTGATGGCCACCGTTTATCACTATGTGGCTCAGAATGCTAGTATCCCAGTAGCTTCATCTTC
 TGATATGGAAGTAGGCAAGAAATATTCCGGCAGATGGCTGATTTGATGGTTAAGCTTGAGAA
 TCCCTCCTTTCAAAGATTAAACAGAGGCTACAAACTACAGTGTGAAGAATGGATAAGGTATTAG
 TTTGCTAAACATTAACAATAGCCTTTGGAGAACAGGGCGCTACTTTAAGGAAGCCGAAGAACATTA
 CCATATCAATGCTCTTATCTCCTGGCATTACAGCCTATGATCAGACCCCTTACCTTCTGCTAAGACATT
 CAAAGATAAGAATAATTCTTGGCATTACAGCCTATGATCAGACCCCTTACCTTCTGCTAAGACATT
 TGATGATGTGGATAAGGAATTAGGTGCAACCAAGTGGATTAAGGAAAATTATATCGATAGGGAG
 AACTTCCTGGAAACAAGGCTCTGGTATGAATGTGGAATATGCTCAGACCCCTTATTGGGGCGAAA
 AATTGCTAGTGTGATGAAAATCAATGAGAAGCTAGGTGGCAAAGAT

SP046 amino acid (SEQ ID NO:74)

SDGTWQGKQYLKEDGSQAANEWXDTHYQSWFYIKADANYAENEWLKQGDDYFYLKSGGYMAKSEW
 VEDKGAFYYLDQDGKMKRNAWVGTYSVGA
 KVIEDWVYDSQYDAFWYIKADGQHAEKEWLQIKGDYYFK
 SGGYLLTSQWINQAYVNASGAKVQQGWLFDKQYQSWFYIKENGNYADKEWIFENGHYYYLKSGGYMA
 ANEWIWDKESWFYLKFDGKMAEKEWVYDSHSQAWYYFKSGGYMTANEWIWDKESWFYLKSDGKIAEKEW
 VYDSHSQAWYYFKSGGYMAKNETVDGYQLGSDGKWLGGKTTNENAAYYQVVPVTANVYDSDGEKLSY
 ISQG
 SVVWLDKDRKSDDKRLAITISGLSGYMKTEDLQALDASKDFIPYYESDGHRFYHYVAQN
 ASIPVASHLS
 DMEVGKKYYSADGLHFDFKLENPLFLKD
 LEATN
 YSAEELDKVFSLNNINNSLLENKGATFKEAE
 EHYHINALYLLAHS
 ALESNWGRSKIAKDKNFFGITAYDT
 TPYLSAKTFDDVDKGILGATKWI
 KENYIDRGR
 TFLGNKASGMNVEYASDPYWG
 EKIASVMMKINEKLGGKD

SP048 nucleotide (SEQ ID NO:75)

TGGGATTCAATATGTCAGAGATGATACTAGAGATAAAGAAGAGGGAAAGAGTATGATGACGCTGACAA
 TGGGGATATTATTGTAAGGACTAAACCTAACGGTAGTAACTAACCAAGAAAATTCAAGTACGCGAAT
 TCGTTATGAAAAGATGAAACAAAGACCGTAGTGGAAATCCTGTTACAATTGATGGAGAGGATGGCTA
 TGTAACGACAAGGACCTACGATGTTAACAGAGACTGGTTATGTTACCGAACAGGTTACTGTTGA
 TAGAAAAGGCCACGGATACAGTTACAAAGTCCAGCTAAAGCAAGGTTGAAGAAGTTCTGTTCC
 ATTGCTACTAAATATGAAGCAGACAATGACCTTCTGCAGGACAGGAGCAAGAGATTACTCTAGGAAA
 GAATGGAAAACAGTTACAACGATAACTTATAATGTAGATGGAAAGAGTGGACAAGTA
 ACTGAGAGTAC
 TTTAAGTCAAAAAAAGACTCTCAAACAAGAGTTGTTAAAAAGaACC
 ArkCCCCAAGTTCTGTCCA
 AGAAATTCCAATCGAAACAGAATATCTCGATGGCCCaACTCTTGATAAAaGTCAAGAAGT
 AGAAGT
 AGGAGAAATTGGTAAATTACTCTTACTACAATCTACTGGTAGATGAAC
 GTGATGGAAACAATTGAAGA
 AACTACTCTCGTCAAATTACTAAAGAGATGGTAAAAGACGTATAAGGAGAGGGACGAGAGAAC
 CTGA

Table 1

AAAAGTTGTTCTGAGCAATCATCTATTCCCTCGTATCCTGTACTGTTACATCTAACCAAGGAAC
AGATGTAGCAGTAGAACCAAGCTAAAGCAGTTGCTCAACAACAGACTGGAAACAAGAAAATGGTATGTG
GTATTTTATAACTGATGGTCCATGGCACAGGTTGGTACAAGTTAATAGTCATGGTACTACCT
CAACAGCAACGGTTCTATGAAAGTCAATCAATGGTCCAAGTTGGTGGTAAATGGTATTATGTAAATAC
ATCGGGTGAGTTAGCGGTCAATACAAGTATAGATGGCTATAGAGTCAATGATAATGGTGAATGGTGC
T

SP048 amino acid (SEQ ID NO:76)

GIQYVRDDTRDKEEGIEYDDADNGDIIVKVATKPKVVTKISSTRIRYEKDETDRSENPVTIDGEDGY
VTTTRTYDVNPETGYVTEQVTVDRKEATDTVIKVPAKSKEEVLPFATKYEADNDLSAGQEQEITLGK
NGKTVTITINYVDGKSGQVTESTLSQKKDSQTRVVKRXPQVLVQEIPETEYLDGPTLDKSQEVEEV
GEIGKLLLLQSLVDERDTIEETTSRQITKEMVKRRIRRGTRPEKVVVPEQSSIPSYPVSVTSNQGT
DVAVEPAKAVAPTTDWKQENGWYFYNTDGSMATGWVQVNSSWYILNSNGSMKVNVQWFQVGGKWYYVNT
SGELAVNTSIDGYRVNDNGEWR

SP049 nucleotide (SEQ ID NO:77)

GGATAATAGAGAACGATTAACCTTATGACGGGTGAAAATTTTATCTCAAACATTATCTAGGAGC
ACATAGGAAAGAACTAAATGGAGAGCATGGCTATACTTCCGTGTTGGGACCTAATGCTCAGGCTGT
TCACCTGGTTGGTGTACCAACTGGATTGAAAATCAGATTCCAATGGTAAGAAATGATTTGGGGT
CTGGGAAGTCTTACCAATATGGCTCAAGAAGGGCATATTACAAATATCATGTCACACGTCAAATGG
TCATCAACTGATGAAGATGACCCCTTGCTGTCAGGTATGAGGCTGTCAGGAACAGGGCAATCGT
AACAGAGCTTCTGAGAAGAAATGAAAGGATGAGCTTGGCTGGCACGAAGAAACGTTGGGCTTTGA
AGAGCGCTGTCAATATTATGAAGTTCACGCTGGATCATGGAAAAGAAATTCTGATGGCAGTCCTTA
TAGTTTGCCCAGCTCAAGGATGAACTCATTCTTATCTCGTTGAAATGAACATATACTCATATTGAGTT
TATGCCCTTGATGTCCCATTCTGGCTTGAGTTGGGGTATCAGCTTATGGTTACTCGCTTAA
GCATGCTTATGCCGACCAGAGGAGTTCAAGATTTC

SP049 amino acid (SEQ ID NO:78)

DNREALKTFMTGENFYLQHYLGAHREELNGEHYTFRVWAPNAQAVHLVGDFTNWIENQIPMVRNDFGV
WEVFTNMAQEHIYKYHVTRQNGHQLMKIDPFAVRYEARPGTGAIVTELPEKKWDGLWLARRKRWGFE
ERPVNIEVHAGSWKRNSDGSPYSFAQLKDELIPYLVEMNYTHIEFPLMSHPLGLSWGYQLMGYFALE
HAYGRPEEFQDFV

SP050 nucleotide (SEQ ID NO:79)

AGATTTGTCGAGGAGTGTCAACCCATAATATTGGGTTATTGTGGAATGGTACCGANTCACTTAC
CATCAACGATGATGCCTTAGCCTATTATGATGGACACCGACTTTGAATACCAAGACCATAATAAGGC
TCATAACCCTGGTTGGGTGCCCTTAATTGGACCTTGGAAAAATGAAGTCCAGTCCTCTTAATTTC
TTGCATTAAGCATTGGATTGATGTCTATCATTGGATGGTATTCTGTGTTGGATGCTGTTAGCAACATGCT
CTATTGGACTATGATGATGCTCCATGGACACCTAATAAGATGGCGGAATCTCAACTATGAAGGTTA
TTATTCCTCAGCGCTGAATGAGGTTATTAAGTTAGAATATCCAGATGTGATGATGATGCGAGAAGA
AAGTCGTCTCGCATCAAGATTACGGGAATGAAAGAGAGATGGTGGCTAGGATTGACTACAAATGGAA
CATGGGCTGGATGAATGATATCCTCCGTTCTACGAAGAAGATCCGATCTATGTAATATGACTTTAA
CCTGGTGAATTTCAGCTTATGTTAGTGTGTTNAAGGAGAATTATCTCTGCCATTCTCGCACGATGAAGT
GGTCATGGCAAGAAGAGTATGATGCATAAGATGTGGGAGATCGTTACAATCAATTGCGAGGCTTGC
CAATCTCTACGTACCAATTGTCACCCCTGTTAGAAATTGCTCTCATGGTAGCGAATACGGTCA
ATTCTAGAATGGAAATCTGAAGAACAGTTGAATGGCTAACCTAGAAGACCCAATGAATGCTAAGAT
GAAGTATTTCGCTCTCAGCTAACACAGTTTACAAAGATCATCGCTGTCTGGAAATTGATACCAAG
CTATGATGGTATTGAAATCATTGATGCGGATAATCGAGACCAGAGTGTCTTCTTATTGTAAGGG
AAAAAGGGA

SP050 amino acid (SEQ ID NO:80)

DFVEECHTHNIGVIVDWVPXHFTINDDALAYDGTPTFEYQDHNKAHNHGWGALNFDLGKNEVQSFLIS
CIKHWDVYLDGIRVDAVSNMLYLDYDDAPWTGNKDGGNLNYEGYYFLQRLNEVIKLEYPDVMMIAEE
SSSAIKITGMKEIGGLGFDYKWNMGWMNDILRFYEDPIYRKYDFNLVTFSFMVYXKENYLLPFSHDEV
VHGKKSMMHKMWDYRNQFAGLRNLYTYQICHPGKLLFMGSEYQFLEWKSEEQLEWSNLEDPMNAKM
KYFASQLNQFYKDHRCLWEIDTSYDGIEIIDADNRDQSVLFSIRKGKKG

SP051 nucleotide (SEQ ID NO:81)

Table 1

66

ATCTGTAGTTATCGGGATGAAACACTTATTACTCATACTGCTGAGAACCTAAAGAGGAAAAATGAT
 AGTAGAAGAAAAGGCTGATAAGCTTGGAAACTAAAAATATAGTTGAAAGGACAGAACAAAGTGAACC
 TAGTCAACTGAGGCTATGCATCTGAGNAGAAGAAGATGAAGCCTAACCTCAAAGAGGAAAAAGT
 GTCTGCTAAACCGGAAGAAAAGCTCCAAGGATAGAATCACAAGCTCAAATCAAGAAAAACCGCTCAA
 GGAAGATGCTAAAGCTGTAACAAATGAAGAAGTGAATCAAATGATTGAAGACAGGAAAGTGGATTTAA
 TCAAAATTGTAACCTCAATGCAAATTCTAAGGAAGCCATTAAACCTGATGCAGACGTATCTAC
 GTGGAAAAAATTAGATTTACCGTATGACTGGAGTATCTTAACGATTCGATCATGAATCTCTGCACA
 AAATGAAGGTGGACAGCTAACGGGGAGCTGGATCGCAAGACTTCAAACTAGATGAAAAGA
 CCTCAAGAAAATGTTGCCCTACTTTGATGGCTACATGGATTCTCAAGTTATGTCATGGTCA
 GTTAGTGGGCATTATCCAAATGGTATAACCAGTCTCATATGATATCACCAAATACCTCAAAAAGA
 TGGTCGTGAGAATGTGATTGCTGTCCATGCGAGTCACAAACAGCCAAGTAGCCGTTGGTATTCAAGGAAAG
 TGGTATCTATCGTGATGTGACTTACAAGTGACAGATAAGGTGATGTTGAGAAAATGGGACAACAT
 TTTAACACCAAAACTGAGAACACAACATGGCAAGGTGAAACTCATGTGACCAGCAGCAAATCGTCAA
 TACGGACGACAAAGACCATGAACTTGTAGCCGAATATCAAATCGTTGAAACGAGGTGGTCATGCTGTAAC
 AGGCTTAGTCGTACAGCGAGTCGTACCTTAAAGCACATGAATCAACAAGCTAGATGCGATTAGA
 AGTTGAAAGACAAAACCTGGACTGTTAAATGACAACCTGCCCTGTACGAATTGATTACGCGTGT
 TTACCGTGACGGTCAATTGGTTGATGCTAAGAAGGATTGTTGGTACCGTTACTATCACTGGACTCC
 AAATGAAGGTTCTCTTGAAATGGTAACGTATTAATCCATGGAGTATCCTGCAACCACGACCATGG
 GGCGCTGGAGCAGAAGAAAACATAAACCGAGAATATGCCGTCTCAAACAAATGAAGGAGATGGGAGT
 TAACTCCATCCGTACAACCCACAACCCCTGCTAGTGAGCAAACCTGCAAATCGCAGCAGAACTAGGTT
 ACTCGTTAGGAAGAGGCCCTTGATACGTGGTATGGTGGCAAGAACCTTATGACTATGGACGTTCTT
 TGAAAAGATGCCACTCACCAGAACGCTCGAAAAGGTGAAAATGGTCTGATTGACCTACGTACCAT
 GGTGAAAGAGGCAAAACAACCCCTGCTATCTCATGTGGTAAAGGTTATCAAGGATGTTAGACTCG
 CTATGTTACCATGGGAGCAGATAAAATTCCGTTCGGTAAAGGTAGCCGAGGGCATGAGAAAATTGCTGA
 TGAACTCGATGCTGTTGGATTAACTATTCTGAAGATAATTACAAAGCCCTAGAGCTAACGATCCAA
 ATGGTTGATTATGGATCAGAAACATCTCAGCTACCGTACACGGTAAGTTACTATGCCCTGAACG
 TGAATTGAAACATAGCAATGGACCTGAGCGTAATTATGAACAGTCAGATTATGAAATGATCGTGTGG
 TTGGGGAAAACAGCAACCGCTTCATGGACTTTGACCGTGACAACGCTGGTATGCTGGACAGTTAT
 CTGGACAGGTACGGACTATATTGGTGAACCTACACCATGGCACAAACAAACTCCTGTTAAGAG
 CTCTACTTTGGTATCGTAGATACAGCCGGCATTCAAACATGACTTCTATCTACCAAAGC

SP051 amino acid (SEQ ID NO:82)

SVVYADETLITHTAEKPKEEKMIVEEKADKALETKNIVERTEQSEPSSTEIAISEXKEDEAVTPKEEKV
 SAKPEEKAPRIESQASNQEKPPLKEDAKAVTNNEEVNQMIEDRKVDFNQNWFKLNANSKEAIKPDAVST
 WKKLDPYDWSIFNDFDHESPAQNEMGGQLNGGEAWYRKTFLDEKDLKKNVRLTFDGVYMDSQVVNGQ
 LVGHYPNGYNQFSYDITKYLQKDRENVIAVHAVNKQPSSRWYSGSGIYRDVTQVTDKVHVEKNGTTI
 LTPKLEEQQHGKVETHVTSKIVNTDDKDELVAEYQIVERGGHAVTGLVRTASRTLKAHESTSLDAILE
 VERPKLWTVLNDKPALYELITRVYRDQLVDACKDLFGYRYYHWTPNEGFLNGERIKFHGVSLHHDHG
 ALGAEENYKAERYRLQKMKEGMVNSIRTTHNPASEQTLQIAAEGLLLQEEAFDTWYGGKPYDYGRFF
 EKDATHPEARKGEKWSDFDLRTMVERGKNNPAIFMWSIGNEIGEANGDAHSLATVKRLVKVIKDVDKTR
 YVTMGADKFRCNGSGGHEKIADELDAVGFNYSEDNYKALRAKHPKWLHYGSETSSATRTRGSYYRPER
 ELKHSNGPERNYEQSDYGNDRVGWGTKTATASWTFDRDNAGYAGQFIWTGTDYIGEPTPWHNQNQTPVKS
 SYFGIVDTAGIPKHDFLYQS

SP052 nucleotide (SEQ ID NO:83)

TTACTTTGGTATCGTAGATACAGCCGGCATTCAAACATGACTTCTATCTACCAAAGCCAATGGGT
 TTCTGTTAAGAAGAAAACCGATGGTACACCTCTCCTCACTGGAACCTGGAAAACAAAGAATTAGCATC
 CAAAGTAGCTGACTCAGAAGGTAAAGATTCCAGTCGTGTTATTGAAATGCTCTAGTGTAGAATTGTT
 CTTGAATGGAAAATCTTGGTCTTAAGACTTCAATAAAAAACAAACCGAGCGATGGCGGACTTACCA
 AGAAGGTGCAAATGTAATGAACTTATCTGAATGAAAGTGCCTATCAACCAAGGTACCTGGAAAGC
 AATTGCTCGTATGAAATCTGGCAAGGAATTGCTCGAGATAAGATTACGACTCCTGGTAAGCCAGCGC
 AGTCGTCTTATTAAGGAAGACCATGCGATTGCGAGATGGAAAAGACTTGAACATCTACTATGA
 AATTGTTGACGCCAGGGAAATGTTGCTCAACTGCTAATAATCTGGTTCGCTTCAATTGATGGCCA
 AGGTCAACTGGTCGGTAGATAACGGAGAACAGCCAGCCGTGAACGCTATAAGGCGAACAGATGG
 TTCTGGATTGCTAAAGCATTAAATGGTAAAGGTGTTGCCATTGTCAAATCAACTGAACAAAGCAGGAA
 ATTACCCCTGACTGCCACTCTGATCTCTGAAATGAAACCAAGTCACTGCTTACTGGTAAGAAAGA
 AGGACAAGAGAAGACTGTTGGGACAGAAGTGCACAAAGTACAGACCATTATTGGAGAGGCACCTGA

Table 1

AATGCCTACCACTGTTCCGTTGTATACAGTGATGGTAGCCGTGCAGAACGTCTGTAAACCTGGTCTTC
 AGTAGATGTGAGCAAGCCTGGTATTGTAACGGTCAAAGGTATGGCTACGGACAGAAGTAGAAGCTCG
 TGTAGAAGTGTATTGCTCTAAATCAGAGCTACCGAGTTGTAAACGTATTGCTCAAATACTGACTTGAA
 TTCTGTAGACAAATCTGTTCTATGTTGATGGAAGTGTGAAGAGTATGAAGTGGACAAGTG
 GGAGATTGCCGAAGAAGATAAAGCTAAGTTAGCAATTCCAGGTTCTCGTATTCAAGGCACCGTTATT
 AGAAGGTCAACCAATTCATGCAACCCTGTGGTAGAAGAAGGCAATCCTGCCACCTGCAGTACCAAC
 TGTAACGGTTGGTGGTAGGGCAGTAACAGGTCTACTAGTCAAAACCAATGCAATACCGCACTTGC
 TTATGGAGCTAAGTTGCCAGAAGTCACAGCAAGTGTCTAAAGATGAGCTGTTACAGTTCTCAAGCAAG
 CGCAGCAAACGGCATGCGAGCATCTTATTGAGCTAAAGATGGTGGCCCTCTCAAACCTATGC
 AATTCAATTCTGAAGAAGGCCAAAATTGCTCACTTGAGCTTGCAAGTGGAAAAGCTGACAGTCT
 CAAAGAAGACCAAATGTCAAATTGCGGTTGAGCTCACTATCAAGATGGAACGCAAGCTGTATTACC
 AGCTGATAAAGTAACCTCTCTACAAGTGGTAGAGGGGAAGTCGCAATTGTAAGGAATGCTTGAGTT
 GCATAAGCCAGGAGCAGTCACTCTGAACGCTGAATATGAGGGAGCTAAAGACCAAGTGAACACTAT
 CCAAGCCAATACTGAGAAGAAGATTGCGCAATCCATCCGCTGTAAATGTTAGTGACAGATTGACATCA
 GGAACCAAGTCTCCAGCAACAGTAACAGTTGAGTATGACAAAGGTTCCCTAAACACTCATAAAAGTCAC
 TTGCGAAGCTATTCCGAAAGAAAAACTAGACTCCTATCAACATTTGAAAGTACTAGGTAAGTGAAGG
 AATTGACCTTGAGCGCGTGCAAAAGTCTCTGAGAAGGTATGTTCAAGTTGAAAGAAGTCAGTGTGAC
 AACTCCAATCGCAGAACGACCACAAATTACAGAAAGTGTCCGACATATGATTCAAATGGTCACGTTTC
 ATCAGCTAAGGTTGCATGGATGCGATTGCTCCAGAGCAATACGCTAAGGAAGGTGTCTTACAGTTAA
 TGGTCGCTTAGAAGGTACGCAATTAAACA

SP052 amino acid (SEQ ID NO:84)

YFGIVDTAGIPKHDFYLYQSQWVSVKKPMVHLLPHWNWENKELASKVADSEKIPVRAYSNASSVELF
 LNGKSLGLKTFNKKQTSDGRYQEGRANANELYLEWKVAYQPGTLEAIARDESGKEIARDKITTAKPAA
 VRLIKEDHAIADGKDLYIYYEIVDSQGNVVPPTANNLVRQLHGQQLVGVDNQEASRERYKAQADG
 SWIRKAFNGKGVAIVKSTEQAGKFTLTAHSDDLKSNSQVTFTGKKEQEKTVLGTEVPKVQTIIGEAPE
 MPTTVPFVYSDGSRAERPVTVSSVDVSKPGIVTVKGMDGREVEARVEVIALKSELPVVKRIPNTDLN
 SVDKSVSYVLIDGSVEEYEVDKWEIAEEDKAKLAIPGSRIQATGYLEGQPIHATLVVEGNPAAPAVPT
 VTVGGEAVTGLTSQKPMQYRTLAYGAKLPEVTASAKNAAVTQLQASAANGMRASIFIQPKDGGPLQTYA
 IQFLFEAPKIAHLSLQVEKADSLKEDQTVKLSVRHYQDGTQAVLPADKVFSTSGEGEVAIRKGMLEL
 HKPGAVTLNAEYEGAKDQVELTIQANTEKKIAQSIRPVNVTDLHQEPSPATVTVEYDKGFPKTHKVT
 WQAIPKEKLDSYQTFEVLGKVEGIDLEARAKVSVEGIVSVEEVSVTPIAEAPQLPESVRTYDSNGHVS
 SAKVAWDAIRPEQYAKEGVFTVNGRLEGTQLT

SP053 nucleotide (SEQ ID NO:85)

AGCTAAGGTTGCATGGATGCGATTGTCAGAGCAATACGCTAAGGAAGGTGTCTTACAGTTAATGG
 TCGCTTAGAAGGTACGCAATTAAACAACCTAAACTCATGTTGCGTATCTGCTCAAACGTGAGCAAGGTGC
 AAACATTCTGACCAATGGACCGGTTAGAATTGCCACTTGCTTGTCTCAGACTCAAATCCAAGCGA
 CCCAGTTCAAATGTTAATGACAAGCTCATTCTACAATAACCAACCAGCCAATCGTGGACAAACTG
 GAATCGACTAATCCAGAAGCTTCAGTCGGTTCTGTTGGAGATTAGGTATCTTGAGCAAACGCTC
 CGTTGATAATCTAAGTGTGGATTCCATGAAGACCATGGAGTTGGTGTACCGAAGTCTTATGTGATTGA
 GTATTATGTTGGTAAGACTGTCCAACAGCTCTAAACCCCTAGTTTGTGGTAATGAGGACCATGT
 CTTTAATGATTCTGCCACTGGAAACCAGTTACAATCTAAAGCCCCTGCTCAACTCAAGGCTGGAGA
 AATGAACCACCTTAGCTTGATAAAAGTTGAAACCTATGCTGTTCGTATTGCGATGGTAAAGCAGATAA
 CAAGCGTGGAACGTCTATCACAGAGGTACAAATCTTGCAGAACAAAGTTGCGGCAGCCAAGCAAGGACA
 AACAAAGAACCTAACAGTTGACGGCAAAGACTTAGCAAACCTCAACCCCTGATTGACAGACTACTACCTTGA
 GTCTGTAGATGGAAAAGTCCGGCAGTCACAGCAAGTGTAGCAACAATGGTCTCGTACCGTCGTTCC
 AAGCGTTCGTGAAGGTGAGCCAGTTGCTGTCATCGCAAAGCTGAAAATGGCAGATCTTAGGAGAATA
 CCGTCTGCACTTCATAAGGATAAGAGCTTACTTCTCATAAACCAAGTTGCTGCGGTTAAACAAGCTCG
 CTTGCTACAAGTAGGTCAAGCACTTGAATTGCCACTAAGGTTCCAGTTACTTCACAGTAAAGACGG
 CTACGAAACAAAGACCTGACAGTTGAATGGAGAAGTCCAGCGAAAATCTGACAAAAGCAGGTCA
 ATTACTGTTGAGGCGGTGCTTGGTAGTAAACCTGTTGCTGAGATCACTGTACGAGTGACAGACAA
 ACTTGGTAGAGACTCTTCAGATAACCTAACTATGATGAAACAGTAACCAGGCCTTGCTTCAAGCAAC
 CAATGATATTGACAAAATCTCATGACCGCGTTGACTATCTCAATGACGGAGATCATTGAGAAATCG
 TCGTTGGACAAACTGGTACCAACACCATTCTCTAATCCAGAAGTATCAGCGGGTGTGATTTCCGTGA
 AAATGGTAGAGATTGAGAACGGACTGTTACACAAGGAAAAGTTCAAGTTGCTTGCAGATAGGGTACGGA
 TGCACCATCTAAACTCGTTAGAACGCTATGTCGGTCCAGAGTTGAAGTGCACACTATTCAAAC
 CTACCAAGCCTACGACGCGAGACCATCCATTCAACAAATCCAGAAAATTGGAGCAGTGTCCATTGTC

Table 1

GGATAAAGACATTGCAGCTGGTGATGAAATCAACGTAAACATTAAAGCTATCAAAGCCAAGCTATGAG
 ATGGCGTATGGAGCGTAAAGCAGATAAGAGCGGTGTCGATGATTGAGATGACCTTCCTGACCAAG
 TGAATTGCCTCAAGAAAGCACTCAATCAAAGATTCTGTAGATGGAAAAGAACTTGCTGATTCGCTGA
 AAATCGTCAAGACTATCAAATTACCTATAAAGGTCAACGCCAAAGTCTCAGTTGAAGAAAACAATCA
 AGTAGCTCAACTGTGGTAGATAGTGGAGAAGATAGCTTCCAGTACTGTTCCGCTCGTTCAGAAAG
 TGAAAACAAGTCAAGGAATACCGTATCCACTTGACTAAGGAAAACCAGTTCTGAGAAGACAGTTGC
 TGCTGTACAAGAAGATCTCCAAAATCGAATTGTTGAAAAAGATTGGCATACAAGACAGTTGAGAA
 AAAAGATTCAACACTGTATCTAGGTGAAACTCGTGTAGAACAGAAGGAAAGTTGAAAAGAACGTAT
 CTTTACAGCGATTAATCCTGATGGAAGTAAGGAAGAAAACCTCGTGAAGTGGTAGAAGTTCCGACAGA
 CCGCATCGTCTGGTGGAAACCAACCAAGTAGCTCAAGAAGCTAAAAAACACAAAGTGTCAAGAAAAGC
 AGATACAAAACCAATTGATTCAAGTGAAGCTAGTCAAACTAATAAGCCCAG

SP053 amino acid (SEQ ID NO:86)

AKVAWDAIRPEQYAKEGVFTVNGRLEGTQLTTKLHVRVSAQTEQGANISDQWTGSELPLAFASDSNPSD
 PVSNVNDKLISYNNQPANRWTNWNRTNPEASGVVLFGDSILSKRSVDNLSVGFHEDHGVGPKSYVIE
 YYVGKTVPTAPKNPSFVGNEHVFNDSANWKPTNLKAPPAQLKAGEMNHFSDKVETYAVRIRMVKADN
 KRGTSITEVQIFAKQVAAKQGQTRIQVDGKDLANFPNPDLDYVLESVDGKPVAVTASVSNNGLATVVP
 SVREGEPRVIAKAENGDLGEYRLHFTDKSLLSHKPVAAVKQARLLQVGQALELPTKVPVYFTGKDGYETKDLTVEEVP
 PAENLTKAGQFTVRGRVLGSNLVAEITVRVTDKLGETLSDPNPDYDENSNQAFASATNDIDKNSHDRV
 YLNDGDHSENRRWTNWSPTPSSNPEVSAGVIFRENGKIVERTVTQGVQFFADSGTDAPS
 KLVLERYVGPEFEVPTYYNSYQAYDADHPFNNPENWEAVPYRADKDIAGDEINVTFKAIKAKAMRWR
 MERKADKSGVAMIEMTFLAPSELQESTQSKILVDGKELADFAENRQDYQITYKGQRPKVS
 VEEENNQVASTVVDSGEDSFPLVRLVSESGKQVKEYRIHLTKEKPSEKTVAAVQEDLPKIEFVEK
 DLSKTDLYLGETRVEQEGKVGKERIFTAINPDGSSEEKLREVVEP
 TDRLVGTGPVAQEAKKPQVSEKADTKPIDSSEASQTNKAQ

SP054 nucleotide (SEQ ID NO:87)

CTATCACTATGTAATAAAGAGATTATTCACAAGAAGCTAAAGATTAAATT
 CAGACAGGAAAGCCTGA
 CAGGAATGAAGTTGTATATGGTTGGTGTACAAAAGATCAGTTGCCTAACACAGGGACAGAA

SP054 amino acid (SEQ ID NO:88)

YHYVNKEIISQEAKDLIQTGKPDRNEVVYGLVYQKDQLPQTGTE

SP055 nucleotide (SEQ ID NO:89)

TGAGACTCCTCAATCAATAACAAATCAGGAGCAAGCTAGGACAGAAAACCAAGTAGTAGAGACAGAGGA
 AGCTCCAAAAGAAGAACCTAAACAGAAGAAGAAAGTCCAAAGGAAGAACCAAAATCGGAGGTAAAACC
 TACTGACGACACCCTTCTAAAGTAGAAGAGGGAAAGAAGATTCTCAGCAGAACCAAGCTCCAGTTGAAGA
 AGTAGGTGGAGAAGTTGAGTCAAAACCAGAGGAAAAGTAGCAGTTAGCCAGAAAGTCACCATCAGA
 CAAACCAGCTGAGGAATCAAAGTTGAACAAGCAGGTGAACCAGTCGC
 CCAAGAGAACCGAAAGCAGGAAAGAACCCAG
 ACCAGTCGAGCCAGAAAGCAACCAGAAGCTCTGAAGAAGAGAAGGCTGTAGAGGAACACCGAAACA
 AGAAGAGTCACCTCCAGATACCAAGGCTGAAGAAACTGTAGAAC
 CAAAAGAGGAGACTGTTAATCAATCTATTGAACAACCAAAAGTTGAAACGCC
 GCTGCTGTAGAAAAACAAAGAACAGAACAGAGGAAC
 AAAGCAACCAGAAGTTCTGAAGAAGAGAAGGGCTGTAGAGGAACACCGAAAC
 CAGAACAGAACGGCACCAACGGCACCAGTGAGCCAGA
 AAGAAC
 GGGTATTGGTACTAAAGAACAGTTGATAAAAGTGAGTTAAATAATCAA
 ATTGATAAAAGCTAGTTCA
 GTTTCTCCTACTGATTAT

SP055 amino acid (SEQ ID NO:90)

ETPQSITNQEQA
 RTENQV
 VETEEAPK
 EEEAPKTE
 ESPKEEP
 KSEVK
 PTKPTDDTL
 PKVEEG
 KEDSAEP
 PAPV
 EEE
 VGE
 VESK
 PEEK
 VAVK
 PESQ
 PSDK
 PAEE
 SKV
 EQAGE
 P
 VAP
 REDE
 KAP
 V
 PEPE
 K
 QPE
 EEE
 K
 VAE
 ETP
 K
 PED
 K
 IKG
 IGT
 KEP
 DV
 K
 SEL
 NN
 QID
 KASS
 VS
 PTDY

SP056 nucleotide (SEQ ID NO:91)

GGATGCTCAAGAAACTGCGGGAGTTCACTATAAATATGTGGCAGATT
 CAGAGCTATCATCAGAAGAAA
 GAAGCAGCTTGTCTATGATATTCCGACATACGTGGAGAATGATGATGAA
 ACTTATTATCTGTTATAA
 GTTAAATTCTCAAAATCAACTGGCGGAATTGCC
 AAATCTGGAAGCAAGAAC
 ATGAGAGGCAA

Table 1

SP056 amino acid (SEQ ID NO:92)

DAOE TAGVHYK VAD SELS SEEKKOL VYDI PTY VENDDET YLUV KLN SON QLAEL PNTG SKNERQ

SP057 nucleotide (SEQ ID NO:93)

CGACAAAGGTGAGACTGAGTTCAACCAGAGTCGCCAGATACTGTGGTAAGTGTAAAAGGTGAACCAGA
GCAGGTAGCACCCTCCAGAATATAAGGGTAATTGTGACCAAGTAAACCTGAAACTCCGGTTGAGAA
GACCAAAGAACAAAGGTCAGAAAAACTGAAGAAGTCCAGTAAACCAACAGAAGAACACCAGTAA
TCCAAATGAAGGTACTACAGAAGGAACCTCAATTCAAGAAGCAGAAAATCCAGTTCACCTGAGAAGA
ATCAACAAACGAATTTCAGAGAAAGTATCACCGAGATACTAGCAAAATACTGGGAAGTGTCCAGTAA
TCCTAGTGATTGACAACCTCAGTTGAGAATCAAATAACCAAGAACATAATGACTCTAAAATGAAAA
TTCAGAAAAAAACTGTAGAAGAAGTCCAGTAAATCCAATGAAGGCACAGTAGAAGGTACCTCAAATCA
AGAAAACAGAAAAACCAAGTTCAACCTGAGAAGAACACAAACAAACTCTGGGAAATAGCTAACGAAAA
TACTGGAGAAGTATCCAATAAACCTAGTGATTCAAACCCAGTGAAGAATCAAATCAACCCAGAAAA
AAACGGAACTGCAACAAACAGAAAATTCAAGTAAATCACACATCAGAGAATGGACAAACAGAACAGA
ACCATCAAACGGAAATTCAACTGAGGATGTTCAACCGAATCAAACACATCCAATCAAATGAAACAGA
AGAAAATTAAACAAGAAAATGAACCTAGACCCCTGATAAAAAGGTAGAAGAACCGAGAGAAAACACTTGAATT
AAGAAAAT

SP057 amino acid (SEQ ID NO:94)

DKGTEVQPESPDVTVDKGEPEQVAPLPEYKGNIEQVKPETYKTEQGPEKTEEVPKPTEETPVN
PNEGTTGTSIQAEANPVQPAEESTTNSEKVSPDTSSKNTGEVSSNPSDSTSVDGESNKPEHNDSKNEN
SEKTVEEVVPNNEGTVEGTSNQETEKPVQPAEETQTNSGKIANENTGEVSNKPSDKPPVVEESNQPEK
NGTATKPENSGNTTSENGQTEPEPSNGNSTEDVSTESNTSNSNGNEEIKQENELDPDKKVEEPEKTL
RN

SP058 nucleotide (SEQ ID NO:95)

AAATCAATTGGTAGCACAAGATCCAAAAGCACAAAGATGACTAAACTGACTGCTGAAAAATCAACTGT
TAAAGCACCTGCTAAAGAGTAGATGTAAGATATAACTCATTACAGATGAAGAAAAGTTAACGGT
TGCTATTTACAAGCAAATGGTTAGCATTAGACGGAGCGACAATCAATGTTAGCTGGAGATGGTACAGC
AACAAATCACATTCCCAGATGGTCAGTAGTGCAGATTCTAGGAAAAGATACAGTTCAACAAATCTGC
AGGTGAATCTGTAACTCAAGAAGCTACACCAGAGTATAAGCTAGAAAATACACCAAGGTGGAGATAAGGG
AGGCAAACTGGAGCTCAGATGCTAATGCGAATGAAAGGCCGGTGGTAGCCAGGCCGGTGGATCAGCTA
CACAGGTTCACAAAACCTCAGCTCAATCACAAGCTCTAACAGATTAGCTACTGAAAAGAATCAGCTAA
AAATGCCATTGAAAAGCAGCAAGGACAAGCAGGATGAAATCAAAGGCCACCCTTCTGATAAAAGA
AAAAGCAGAACTTTAGCAAGAGTGGAAAGCAGAAAACAAGCAGCTCTAACAGAGATTGAAAATGC
AACTATGGAAGATGTGAAGGAAGCAGAAACGATTGGAGTGCAAGGCCATTGCCATGGTTACAGTTCTAA
GAGACCAGTGGCTCTAAT

SP058 amino acid (SEQ ID NO:96)

NQLVAQDPKAQDSTKLTAEKSTVKAPAQRVDVKDITHLTDEEKVVAIILQANGSALDGATINVAGDGTATITFPDGSVVTILGKDTVQQSAKGESVTQEATPEYKLENTPGGDKGNGNTGSSDANANEGBGSQAGGSAH
TGSQNSAQSQASKOLATEKESAKNATEKAAKDKQDEIKGAPLSDKEKAELLARVEAEKQAAALKIEENAK
TMEDVKEAETIGVQIAAMTVPKRPVAPN

SP059 nucleotide (SEQ ID NO:97)

CAAACAGTCAGCTCAGGAACGATTGAGGTGATTTCACGAGAAAATGGCTGGGACACGGGGTGCCTT
CACAGAAATCACAGGGATTCTCAAAAAAGACGGTGATAAAAAAATTGACAACACTGCCAAAACAGCTGT
GATTCAAAATAGTACAGAAGGTGTTCTCAGCAGTTCAAGGAATGCTAATGCTATCGGCTACATCTC
CTTGGGATCTTAACGAAATCTGTCAGGCTTAAAGAGATTGATGGTGTCAAGGCTAGTCGAGACACAGT
TTTAGATGGTGAATACCCCTTCAACGTCCTCAACATTGTTGGTCTCTAATCTTCCAAGCTAGG
TCAAGATTTATCAGCTTATCCACTCCAACAAAGGTCAACAAGTGGTCACAGATAATAAATTATTGA
AGCTAAAACGAAACCACGGAATATACAAGCCAACACTTACAGGCAAGTTGTCTGTTAGGTTCCAC
TTCAGTATCTCTTAATGGAAAATTAGCAGAACGTTATAAAAAGAAAATCCAGAAGTTACGATTGA
TATTACCTCTAATGGGTCTTCAGCAGGTATTACCGCTTAAAGGAGAAAACCGCTGATATTGGTATGGT
TTCTAGGGAAATTAACTCCTGAAGAAGGTAAAGAGTCTCACCCATGATGCTATTGTTAGACGGTATTGC
TGTTGTGGTCAATAATGACAATAAGGCAAGCCAAGTCAGTATGGCTGAACATTGCAGACGTTTAGTGG
CAAATTAAACCACCTGGGACAAGATTAAA

Table 1

70

SP059 amino acid (SEQ ID NO:98)

KQSASGTIEVISRENGSGTRGAFTEITGILKKDGDKKIDMNTAKTAVIQNSTEMGVLSAVQGNANAIGYIS
 LGSLTKSVKALEIDGVKASRDTVLDGEYPLQRPFNIVWSSNLSKLGQDFISFIHSKQGQQVVTDNKFIE
 AKTETTEYTSQHLSGKLSVVGSTSSSLMEKLAEAYKENPEVTIDITSNGSSAGITAVKEKTADIGMV
 SRELTPEEGKSLTHDAIALDIAVWNNDNKASQVSMAELADVFSGKLTTWDKIK

SP060 nucleotide (SEQ ID NO:99)

ATTCGATGATGCGGATGAAAAGATGACCCGTGATGAAATTGCCATATGCTGACAAATAGTGAAGAAC
 ATTGGATGCTGATGAGATGAGATGCTACAAGGTGCTTTCGCTCGATGAAGTGGCACGAGAGGTT
 TATGGTCTCGAACGGATGCCTTATGGGGATATTAGGATGATAGTCAGGCCATTATCCAAGAT
 TTTAAAACAAAATTATTCTCGATCCGGTTATGATGGGGATAAGGACAATGTAATTGGAATCATTCA
 CACCAAGAGTCCTTAAGGCAGGGCTTGTGGACGGTTTGACAATATTGTTGGAGAGAATTTACA
 AGATCCACTTTTGACCTGAAACTATTTTGATGACTTGCTAAAAGAACCTGCGAAATACCAAAG
 ACAAATG

SP060 amino acid (SEQ ID NO:100)

FDDADEKMTRDEIAYMLTNSEETLDADEIEMLQGVFSLDELMAREVMVPRTDAMVDIQDDSQAIIQSI
 LKQNYSRIPVYDGDKDNNVIGIHTKSLLKAGFDGFDNIVWKRLQDPLFVPETIFVDDLLKELRNTQR
 QM

SP062 nucleotide (SEQ ID NO:101)

GGAGAGTCGATCAAAAGTAGATGAAGCTGTCTAAGTTGAAAAGGACTCATCTTCTCGTCAAGTTC
 AGACTCTTCCACTAAACCGGAAGCTCAGATACAGCGAACGCCAACAGCGACAGAACCCAGGAGAAA
 GGTAGCAGAACGTAAGAAGAGTTGAAGAAGCTGAGAAAAAGCCAAGGATCAAAAGAAGAACATCG
 TCGTAACCTACCCAAACCATTACTTACAAAACGCTTGAACTTGAAATTGCTGAGTCCGATGTGGAGTTAA
 AAAAGCGGAGCTTGAACTAGTAAAAGCTAACGAAACCTCGAGACGAGCAA

SP062 amino acid (SEQ ID NO:102)

ESRSKVDEAVSKFEKDSSSSSDSSTKPEASDTAKPNKPTEPGEKVAEAKKVEEAEKKAQDQKEEDR
 RNYPTITYKTLELEIAESDVEVKKAELELVVKANEPRDEQ

SP063 nucleotide (SEQ ID NO:103)

ATGGACAAACAGGAAACTGGGACGAGGTTATCTGGTAAGATTGACAAGTACAAAGATCCAGATATTCC
 AACAGTTGAATCACAAGAACGTTACGACTCTAGTGATAAAGAAATAACGGTAAGGTATGACCGTT
 ATCAACACCAGAAAAACCAATCCCACAACCAATCCAGAGCATCCAAGTGTCCGACACCAAACCCAGA
 ACTACCAAATCAAGAGACTCCAACACCAGATAAACCAACTCCAGAACCCAGGTACTCCAAAAGTGAAC
 TCCAGTGAATCCAGACCCAGAAGTCCGACTTATGAGACAGGTAAGAGAGAGGAATTGCCAAACACAGG
 TACAGAACGCTAAT

SP063 amino acid (SEQ ID NO:104)

WTGWNWDEVISGKIDKYKDPDIPTVESQEVTSDSSDKEITVRYDRLSTPEKPIQPNEHPSVPTPNPE
 LPNQETPTPDKPTPEPGTPKTETPVNPDPPEVPTYETGKREELPNTGTEAN

SP064 nucleotide (SEQ ID NO:105)

CGATGGGCTCAATCCAACCCCAGGTCAAGTCTTACCTGAAGAGACATGGGAACGAAAGAGGGTGACTT
 ATCAGAAAAACCAAGGAGACACCGTTCTCACTCAAGCGAACCTGAGGGCGTTACTGGAAATACGAATTC
 ACTTCCGACACCTACAGAAAGACTGAAGTGAGCGAGGAAACAAGCCCTCTAGTCTGGATACACTTT
 TGAAAAAGATGAAGAACGCTAAAAAAATCCAGAGCTAACAGATGCTTAAAGAAACTGTAGATACAGC
 TGATGTGGATGGACACAAGCAAGCAGAACACTCCTGAACAAGTAAAAGGTGGAGTGAAAGA
 AAATACAAAAGACAGCATCGATGTTCTGCTTATCTGAAAAAGCTGAAGGGAAAGGTCTTAC
 TGCCGGTGTAAACCAAGTAATTCTTATGAACTATTGCTGGTGTGGTATGTTAACTCGTCTATTACT
 AAAAGCTCGGATAATGCTCCTGGTCTGACAATGGTACTGCTAAAAATCCTGCTTACCTCCTCTTGA
 AGGATTAACAAAAGGAAATACTCTATGAAGTAGACTTAAATGGCAATACTGTTGGTAAACAAGGTCA
 AGCTTTAATTGATCAACTTCGCGCTAATGGTACTCAAACCTATAAAAGCTACTGTTAAAGTTACGGAAA
 TAAAGACGGTAAAGCTGACTTGACTAATCTAGTTGCTACTAAAATGTAGACATCAACATCAATGGATT
 AGTTGCTAAAGAAACAGTTCAAAAGCCGTTGCAGACAACGTTAAAGACAGTATCGATGTTCCAGCAGC
 CTACCTAGAAAAGCCAAGGGTGAAGGTCCATTACAGCAGGTGTCACCAGTGTGATTCCATACGAAC
 CTTCGCAGGTGATGGCATGTTGACTCGTCTCTGCTCAAGGCATCTGACAAGGCACCATGGTCAGATAA

Table 1

CGGCGACGCTAAAACCCAGCCCTATCTCCACTAGGCAGAACGTGAAGACCAAAGGTCAATACTTCTA
 TCAANTAGCCTGGACGAAATGTAGCTGGCAAAGAAAAACAAGCGCTCATGGACCAGTTCGAGCAA
 NGGTACTCAAACCTACAGCGCTACAGTCAATGTCTATGGTAACAAAGACGGTAAACCAGACTTGGACAA
 CATCGTAGCAACTAAAAAGTCACTATTAACATAACGTTAATTCTAAAGAAACAGTTCAAAAAGC
 CGTTGCAGACAACGTTAANGACAGTATCGATGTTCCAGCAGCCTACCTAGAAAAGCCAAGGGTGAAGG
 TCCATTACAGCAGGTGTCACCAGTGTATTCCATACGAACACTCTCCAGGTGATGGTATGTTGACTCG
 TCTCTGCTCAAGGCATCTGACAAGGCACCATGGTCAGATAACGGNGACGCTAAAACCCAGCNCTATC
 TCCACTAGGTGAAACGTAAGACCAAAGGTCAATACTCTATCAANTAGCCTGGACGAAATGTAGC
 TGGCAAAGAAAAACAAGCGCTATTGACCAGTCCGAGCAAACGGTACTCAAACCTACAGCGCTACAGT
 CAATGTCTATGTAACAAAGACGGTAAACCAGACTTGGACAACATCGTAGCAACTAAAAAGTCACTAT
 TAAGATAAAATGTTAAAGAAACATCAGACACAGCAAATGGTCATTATCACCTCTAACTCTGGTTCTGG
 CGTGACTIONGATGAAATCACATCATGCTACAGGTACTACAGATAGCATGCCTGTCGACACCATGACAAG
 TTCTACCAACACGATGGCAGGTGAAAACATGGCTGCTGCTAACAGATGTCGATACGATGATGTC
 AGAGGATAAAGCTATG

SP064 amino acid (SEQ ID NO:106)

DGLNPTPGQVLPEETSGTKEGLSEKPGDTVLQAKPEGVTGNNSLPTPTTEREVSEETSPSSLDTLF
 EKDEEAQKNPELTDVLKETVDTADVDGTQASPAETTPEQVKGGVKENTKDSIDVPAAYLEKAEGKGPF
 AGVNQVIPYELFAGDGMTRLLKASDNAPWSNDNTAKNPALPPLGLELTKGKYFYEVDLNGNTVGKQGQ
 ALIDQLRANGTQTYKATVKVYGNKDGADELNLVATKNVDININGLVAKETVQKAVADNVKDSIDVPA
 YLEKAKGEGPFTAGVNHVIPYELFAGDGMTRLLKASDKAPWSDNGDAKNPALSPLGENVKTKGQFY
 QXALDGNVAGKEKQALIDQFRAXGTQTYSATVNVYGNKDGPDLNDIVATKKVTININGLISKETVQKA
 VADNVXDSIDVPAAYLEKAKGEGPFTAGVNHVIPYELFAGDGMTRLLKASDKAPWSDNGDAKNPALS
 PLGENVKTKGQFYQXALDGNVAGKEKQALIDQFRANGTQTYSATVNVYGNKDGPDLNDIVATKKVTI
 KINVKETSDTANGSLSPNSGSGVTPMNHNATGTTDSPADMTSSTNTMAGENMAASANKMSDTMMS
 EDKAM

SP065 nucleotide (SEQ ID NO:107)

TTCCAATAAAAACAGGCAGATGGTAAACTCAATATCGTGACAACCTTTACCTGTCTATGArTTTAC
 CAAGCAAGTCGCAGGAGATACGGCTAATGTAGAACCTCCTAATCGGTGCTGGGACAGAACCTCATGAATA
 CGAACCATCTGCCAAGGCAGTTGCCAAAATCCAAGATGCAGATACCTTCGTTTATGAAAATGAAAACAT
 GGAAACATGGGTACCTAAATTGCTAGATACTTGGATAAGAAAAAGTGAACCATCAAGGCACAGG
 CGATATGTTGCTCTGCCAGGTGGCAGGAAGAAGAGGGAGACCATGACCATGGAGAAGAAGGTCACTCA
 CCATGAGTTGACCCCCATGTTGGTTATCACCAGTTGCTGCCATTAAACTAGTAGAGCACCATCCCG
 ACACTTGTCAGCAGATTATCCTGATAAAAAAGAGACCTTGAGAAGAATGCAGCTGCCTATATCGAAA
 ATTGCAAGCCTGGATAAGGCTTACGCAGAAGTTGTCTCAAGAAAACAAAGAGCTTGTGACTCA
 ACACGCAgCCTTAACTaCTTGCTTGGACTATGGGACTC

SP065 amino acid (SEQ ID NO:108)

SNQKQADGKLNIVTFYPVYEFTKQVAGDTANVELLIGAGTEPHEYEPSAKAVAKIQDADTFVYENEM
 ETWVPKLLDLDKKVKTIKATGDMLLLPGGEEEEDHGDHDHGEEGHHEFDPHVWLSPVRAIKLVEHHPR
 HLSADYPDKKETFEKNAAYIEKLQALDKAYAEGLSQAKQSFVTQHAAFNYLALDYGT

SP067 nucleotide (SEQ ID NO:109)

TATCACAGGATCGAACGTAAGACAACCAACGACTATGATTGGGAAGTTTGACTGCTGCTGGCCA
 ACATGGTCTTTATCAGGAAATATCGGCTATCCAGCTAGTCAGGTTGCTCAAATAGCATCAGATAAGGA
 CACGCTTGTATGAACTTTCTTCTCAACTCATGGGTGTTCAAGAATTCCATCCAGAGATTGCGGT
 TATTACCAACCTCATGCCAACTCATCGACTACCATGGGTGTTCAAGAATTCCATCCAGAGATTGCGGT
 GAATATCCAGAACAGATGACAGCAGCTGATTCCCTGCTTGAACCTTAATCAAGACTTGGCAAAAGA
 CTTGACTTCCAAGACAGAAGCCACTGTTGTAACATTCAACACTTGAAAAGGTTGATGGAGCTTATCT
 GGAAGATGGTCAACTCTACTTCCGTGGTGAAGTAGTCATGGCAGCGAATGAAATCGGTGTTCCAGGTAG
 CCACAATGTGGAAAATGCCCTTGCAGCTATTGCTGTAGCCAAGCTTCGTGATGGACAAATCAAACCAT
 CAAGGAAACTCTTCAGCCTCGGTGGTCAAACACCGTCTCCAGTTGTGGATGACATCAAGGGTGT
 TAAATTCTATAACGACAGTAAATCAACTAATCTTGGCTACTCAAAAAGCCTTGTCAAGGAGTTGACAA
 CAGCAAGGTCGCTTGATTGCAGGTGGTTGGACCGTGGCAATGAGTTGACGAATTGGTGCCAGACAT
 TACTGGACTCAAGAAGATGGTCACTCCTGGGTCAAATCTGAGAACGTGTCAAACGGGCAGCAGACAAGGC
 TGGTGTGCTTATGTGGAGGCGACAGATATTGCAAGATGCGACCCGCAAGGCCTATGAGCTTGCAGTC

Table 1

AGGAGATGTGGTCTTCTAGTCCTGCCAATGCTAGCTGGATATGTATGCTAACTTGAAAGTACGTGG
CGACCTCTTATCGACACAGTAGCGGAGTTAAAAGAA

SP067 amino acid (SEQ ID NO:110)

GITGSNGKTTTTMIGEVILTAAGQHGLLSGNIGYPASQVAQTASDKDTLVMELSSFQLMGVQEFPHEIA
VITNLMPHTIDYHGSFSEYVAAKWNIQNKMATAFLVLNFNQDLAKDLTSKTEATVVPFSTLEKVDGAY
LEDGQLYFRGEVVMAANEIGVPGSHNVENALATIAVAKLRVDNQTIKETLSAFGGVKHRLQFVDDIKG
VKFYNDSKSTNILATQKALSGFDNSKVLIAGGLDRGNEFDELVDITGLKKMVLGQSAERVKRAADK
AGVAYVEATDIADATRKAYELATQGDVLLSPANASWDMYANFEVRGDLFIDTVUELKE

SP068 nucleotide (SEQ ID NO:111)

AAGTCATCGAAGATGGTGGGAAGTCCACTATATCGGGGACAAGTGTGGTATCGAACACCAAGAAATC
CTTAAGTCAGGTTGGATGTCACCTTCCATTCTATTGCGACTGGAAAATTGCGTCGCTATTCTCTTGG
CAAATATGCTGGACGTCTCAAAGTTGGTGGGAATTGCTCAATCGCTCTTATCATGTTGCGACTG
CGTCCACAGACCCCTTTTCAAAGGGGGCTTGTCTCAGTACCGCTGTATCGTCGCGGTGTCA
GGAGTGCCTGCTTTATTCAAGAATCTGACCTGTCTATGGGCTGGCAATAAAATGCCATAAATT
GCGACTAAGATGTATTCAACCTTGAAACAAGCTCGAGTTGGCTAAGGTTGAGCATGTGGAGCGG

SP068 amino acid (SEQ ID NO:112)

SSSKMVGKSTISGTSVSNTKKSLSQVWMSPSILLRENCVAISLGKICWTSSKLVGELSNRSLSCCDC
VHRPFFQORGALSQYRLLSLRVCQECLSLFTNLTCLWAWSPIKSPINLRLCIQPLNKLRLWRLSMWER

SP069 nucleotide (SEQ ID NO:113)

ATCGCTAGCTAGTGAAGATGCAAGAAAGTACACGTAAGGTTACTGCTGACCTAACAGATGCCGG
TGTTGGAACGATTGAAGTCCTTGAGCATTGAAGATTACCAATGGCTGACCGCTGTGGCGACTCC
GCAAAATTACAGTCAGATTGGTAAGAAGGCTCAGAAGGATAAGGTTACAGAGATTGA
CCCTAGTCAAATTGATAGTCGGGTACAAATTGAAAATGTCATGGTGTCAAGATAAAAGAAGTGTCTATTAC
GAGTGACCAAGAGACATTGGATAGAATTGATAAGATTATCGCTGTTTGCAACTAGCGAACGTATAAC
AGGTAATTACAGTGGTTCACTACCTTGAGGCAATCGACCGCAATGGTTGCTTACCGGCAGTTAT
CACTCCGTTGATACAATAATGAAGGTGACTACAAAACCAGTAGCACCAAGTTCAAGCACATCAAATT
AAGTACAAGCAGTTCATCGGAGACATCTCGTCAACGAAAGCAACTAGTTCAAAACGAAT

SP069 amino acid (SEQ ID NO:114)

SLASEMQESTRKFKVTDLTDAGVTIEVPLSIEDLPNGLTAVALPQKITVKIGKKAQKDVKIVPEID
PSQIDSRRVQIENVMVSDKEVSITSQETLDRIDKIIAVLPTSERITGNYSVPLQAIDRNGVVLPAVI
TPFDTIMKVTTPVAPSSSTSNSSTSSSETSSKATSSKTN

SP070 nucleotide (SEQ ID NO:115)

GCACCAGATGGGCACAAGGTTCAAGGATCAGATGTTGAAAAGTACTACTTACCCAACGCCGCTTGA
GCAGGCAGGAATTACCATCTTCTTGTGAAAGAAAAACTAGACGGTATGGAAATTATCGCTGG
AAATGCCCTTCGTCAGATAACACGTCGAAATTGCTATGCGGACCAAAATGGTATCAGCTACAAACG
TTACCATGAGTTCTAGGTAGCTTATGCGTGACTTGTAGCATGGGAGTAGCAGGAGCACATGGAAA
AACTTCAACGACAGGTATGTTGTCATGTCTCAGTACATTACAGATAACGCTTGTGATTGGAGA
TGGGACAGGTCGTTGCGCAATGCCAATATTGTCTTGAATCTGACGAATATGAGCGTCACCT
CATGCCTTACCAACCCAGAAACTCTATTATCACCAACATTGACTTGTGACCATCCAGATTATTCACAAG
TCTCGAGGATGTTTAATGCCCTTAACGACTATGCCAACAATCACCAAGGGCTTTGTCTATGG
TGAAGATGCTGAATTGCCGAAGATTACGTCTGATGCCACCAATTATTATGGTTGAGCTGAAGG
CAATGACTTTGACTGCTAGTGTCTTCTCGTCAATAACTGGTCAACCTTCACCGTCAATTCCGTGG
ACAAAATTGGGCAATTCCACATTCCAACCTTGGCGTCACAATATCATGAATGCGACAGCCGTAT
TGGTCTTCTTACACAGCAGGATTGATTGAACTTGGTGCCTGAGCACTTGAAAACATTGCCGGTGT
TAAACGTGTTCACTGAGAAAATTGCAATGATACTGAGATTATCGATGACTTGTGCCCACCATCCAAC
AGAAATTATTGCGACCTTGGATGCGGCTCGTCAGAAATACCAAGCAAGGAAATTGTAGCAGTCTTCA
ACCGCATACTTACAAGAACATTGCCCTGGGACGACTTGTGCCCAGTCTTAAACCAAGCAGATGC
TGTTTATCTAGCGCAAATTATGGCTGGCTCGTGAAGTAGATCATGGTACGTTAAGGTAGAAGACCT
AGCCAACAAAATCAACAAAAACACCAAGTGATTACTGTTGAAAATGTTCTCCACTCCTAGACCATGA
CAATGCTGTTACGTCTTATGGGAGCAGGAGACATCCAAACCTATGAATACTCATTGAGCGTCTT
GTCTAACTTGACAAGCAATGTTCAA

Table 1

73

SP070 amino acid (SEQ ID NO:116)

HQMGHKVQGSDVEKYYFTQRGLEQAGITILPFDEKNLDGDMIIAGNAFRPDNMVEIAYADONGISYKR
 YHEFLGSFMRDFVSMGVAGAHGKTSTTGMISHVLSHITDTSFLIGDTGRGSANAKYFVFESDEYERHF
 MPYHPEYSIITNIDFDHPDYFTSLEDVFNAFNNDYAKQITKGLFVYGEDAELRKITSDAPIYYYGFEAEG
 NDFVASDLLRSITGSTFTVHFRGQNLGFHIPTFGRHNIMNATAVIGLLYTAGFDLNLVREHLKTFAGV
 KRRFTEKIVNDTVIIDDFAHHPTEIATLDAARQKYP SKEIVAVFQPHFTRTIALLDDFAHALNQADA
 VYLAQIYGSAREVDHGDVKVEDLANKINKHQVITVENVSPLLDHDNAVYVFMGAGDIQTYEYSFERLL
 SNLTSNVQ

SP071 nucleotide (SEQ ID NO:117)

TTTTAACCCAAC TGTGGTACTTCCTTTACTGCAGGATTGAGCTTGTAGTTTATTGGTTCTAA
 AAGGAAAATGAAAGAACGACTTGTCACTTTCTGCTGTGACTAGCATGGGAGTTCAATTGGTTGCC
 GGCCAGTGCTTTGGGTGACCAGCCAGATTTATCTGCCTATAATAGTCAGCTTCTATCGGAGTCGG
 GGAACATTACAGAGCCTCTGAAAATCGAAGGTTATCAATATATTGGTTATATCAAACAACTAAGAACAA
 GGATAATACAGAGCTTCAGGACAGTTGATGGGAAATACTCTGCTCAAAGAGATAGTCACCCAAACTC
 TACAAAAACATCAGATGTAGTCATTAGCTGATTAGAATGGAACCAAGGACAGGGGAAGGTTAGTT
 ACAAGGTGAAGCATCAGGGATGATGGACTTTCAGAAAAATCTCTATAGCAGCAGACAATCTATCTTC
 TAATGATTCACTCGCAAGTCAAGTTGAGCAGAATCCGGATCACAAAGGAGAATCTGTAGTTGACCAAC
 AGTGCCAGAACAGGAAATCCTGTCTGCTACAACGGTGCAGAGTGCAGGAAAGAGAATTTGGCGAC
 GACAAATGATCGACCAGAGTATAAACCTCCATGGAAACCAAGGACCGAAGAACCCGGTATGAGGG
 TGAAGCCCGAGTCCGTGAAGACTTACCACTACACTAACGCCACTAGAAACCAAAGGTACACAAGGACC
 CGGACATGAAGGTGAAGCTGCAGTTCGGAGGAAGAACCGAGCTTACACAGAACCGTTAGCAACGAAAGG
 CACGCAAGAGCAGGTATGAGGGCAAAGCTACAGTCCCGAAGAGACTCTAGAGTACACGGAACCGGT
 AGCGACAAAAGGCACACAAGAACCCGAACTGAGGGCGaaCGGsCAGTAGAAGAAGAACTCCGGCTTT
 AGAGGTCACTACACGAAATAGAACGAAATCCAGAAATATTCTTATACAACAGAACAAATTCAAGGATCC
 AACACTCTGAAAATCGCTGAAGATTGAACGACAAGGGCAAGCAGGGACACGTACAATATGA
 AGACTACATCGTAAATGGTAATGTCGTAGAAACTAAAGAAGTGTACGAACACTGAAGTAGCTCCGGTCAA
 CGAAGTCGTTAAAGTAGGAACACTTGTGAAAGTTAACCTACAGTAGAAATTACAAACTTAACAAAAGT
 TGAGAACAAAAATCTATAACTGTAAGTTATAACTTAATAGACACTACCTCAGCATATGTTCTGCCAA
 AACGCAAGTTTCCATGGAGACAAGCTAGTTAAAGAGGTTGATATAGAAAATCTGCCAAAGAGCAAGT
 AATATCAGGTTAGATTACTACACACCGTATACAGTTAAACACACTAACTTATAATTGGGTGAAA
 TAATGAGGAAAATACTGAAACATCAACTCAAGATTTCATTAGAGTATAAGAAAATAGAGATTAAAGA
 TATTGATTCACTGAGATTATACGGTAAAGAAAATGATCGTTATCGTAGATATTAAAGTCTAAGTGAAGC
 GCCGACTGATACGGCTAAATACTTGTAAAAGTGAATCAGATCGCTCAAAGAAAATGTACCTACCTGT
 AAAATCTATTACAGAAAATACGGATGGAACGTATAAGTGAACGGTAGCCGTTGATCAACTGTGCAAGA
 AGGTACAGACGGTTACAAAGATGATTACACATTACTGTAGCTAACTAAACAGAGCAACCAGGAGT
 TTACACATCCTTAAACAGCTGGTAACAGCCATGCAAAGCAATCTGCTCGGTGCTATACATTGGCTTC
 AGATATGACCGCAGATGAGGTGAGCTTAGGCGATAAGCAGACAAGTTATCTCACAGGTGCAATTACAGG
 GAGCTTGATCGTTCTGATGGAACAAAATCGTATGCCATTATGATTGAAAGAACCAATTATTGATAC
 ATTAAATGGTGTACAGTTAGAGATTGGATATTAAAAGTGTCTGCTGATAGTAAAGAAAATGTGCG
 AGCGCTGGCGAAGGCAGCGAATAGCGCAATTAAATAATGTTGAGCTAGAAGGAAAATCTCAGGTG
 GAAATCTGTTGGGGATTAGTAGCGAGCGCAACAAATACAGTGTAGAAAACAGCTCGTTACAGGGAA
 ACTTATCGCAAATCACCAGGACAGTAATAAAAATGATACTGGAGGAATAGTAGGTAATATAACAGGAAA
 TAGTTGAGAGGTTAATAACTTAGGGTAGATGCCCTAATCTCTACTAATGCACGCAATAATAACCAAAC
 AGCTGGAGGGATAGTAGGTTAGAAAATGGTGCATTGATATCTAATTCGGTTGCTACTGGAGGAAT
 ACGAAATGGTCAAGGATATTCTAGAGTCGGAGGAATAGTAGGATCTACGTGGCAAACGGTCAGTAAA
 TAATGTTGAGTAACTGAGTGTGAGATGGTTATGTTACCTCACCGGTGATCAATAACGCAAGCAGCAG
 TGTGAAAATGCAAGTACATCAGTTGATAATAGAAAAGCAGACAGATTCGCTACAAAATTATCAAAGA
 CCAAATAGACCGGAAAGTTGCTGATTATGGAATCACAGTAACCTCTGATGATACTGGGCAAGATTAA
 ACGTAATCTAAAGAGAAGTTGATTATAACAGACTAAATAAGCAGAAAGCTGAAAGAAAAGTAGCTTATAG
 CAACATAGAAAACCTGATGCCATTCTACAATAAGACCTAGTAGTTCACTATGGTAACAAAGTAGCGAC
 AACAGATAAAACTTACACTACAGAATTGTTAGATGTTGCGGATGAAAGATGATGAAGTAGTAACCGGA
 TATTAATAATAAGAAAATCAATAAAATAAGTTATGTTACATTCAAAGATAATAACAGTAGAATACCT
 AGATGTAACATTCAAAGAAAACCTCATAAACAGTCAGTAATCGAATAACGATAACGTACTAACGCA
 TATATTACACCCAGAAGCATTGTTGACTATACAGCGATAACGAAATAACGTACTAACGCAACTTGCA
 AAATGTAACACTTAAC

SP071 amino acid (SEQ ID NO:118)

Table 1

74

FNPTVGTFLFTAGLSLLVLSKRENGKKRLVHFLLTSMGVQLLPASAFGLTSQILSAYNSQLSIGVG
EHLPEPLKIEGYQYIGYIKTKQDNTELSRTVDGKYSQAQRDSQPNSTKTSDVVHSADLEWNQGQGVSL
QGEASGDDGLSEKSSIAADNLSSNDSFASQVEQNPDHKGESVVRPTVPEQGNPVSATTVQSAEEEVLAT
TNDRPEYKLPLETKGTQEPGHEGEAAVREDLPVYTKPLETKGTQGPGEHEGEAAVREEEPAYTEPLATKG
TQEPGHEGKATVREETLEYTEPVATKGTQEPHEGERXVEEELPALEVTRNRTEIQNI PYTTEEI QDPT
TLLKNRKIERQGQAGTRTIQYEDYIVNGNVETKEVSRTVEAPVNEVVKGTLVVKVPTVEITNLTKV
ENKKSITVSYNLIDTTSAYVSAKTQVFHGDKLVKEVDIENPAKEQVISGLDDYYTPYTVKTHLTYNLGEN
NEENTETSTQDFQLEYKKIEIKDIDSVELYKGENDRYRRYLSLSEAPTDTAKYFVKVKSDRFKEMYLPV
KSITENTDGTYKVTVAVDQLVEEGTDGYKDDYTFTVAKSKAEQPGVYTSFKQLVTAMQSNLSGVYTLAS
DMTADEVSLGDQKTSYLTGAFTGSIGHLGSDGTTSYAIDLKKPLFDLNGATVRDLDDIKTVSADSKENVA
ALAKAANSANINNVAVEGKISGAKSVAGLVASATNTVIENSSTGKLIANHQDSNKNDTGGIVGNITGN
SSRVNKVRVDALISTNARNNNQTAGGIVGRLENGALISNSVATGEIRNGQGYSR VGGIVGSTWQNGRVN
NVVSNVDVGDGIVITGDQYAAADVKNASTSVDRKADRFAKLSKDQIDAKVADYGITVTLDDTGQDLK
RNLREVDYTRLNKAEAERKVAYSNIEKLMPFYNKDLVVHYGNKVATTDKLYTTTELVDVPPMKDEVVTD
INNKKNSINKVMLHFKDNTVEYLDVTFKENFINSQVIEYNVTGKEYIFTPEAFVSDYTAITNVNLSDLQ
NVTLN

SP072 nucleotide (SEQ ID NO:119)

TTTTAACCCAACGTGGTACTTCCTTTACTGCAGGATTGAGCTTGTAGTTTATTGGTTCTAA
AAGGGAAAATGGAAGAACGACTTGTCATTTCTGCTGTTGACTAGCATGGGAGTCAATTGTTGCC
GGCCAGTGCTTGGGTGACCAGCCAGATTATCTGCCTATAATAGTCAGCTTCTATCGGAGTCGG
GGAACATTACCAAGAGCCTCTGAAATCGAAGGTTATCAATATATTGGTTATATCAAAACTAAGAAACA
GGATAATACAGAGCTTCAAGGACAGTTGATGGGAAATACTGCTCAAAGAGATAGTCACCCAAACTC
TACAAAAACATCAGATGTAGTTCACTCAGCTGATTAGAATGGAACCAAGGACAGGGAAAGGTTAGTT
ACAAGGTTGAAGCATTCAAGGGATGATGGACTTCAAGAAAATCTCTATAGCAGCAGACAATCTATCTTC
TAATGATTCACTCGCAAGTCAAGTGAGCAGAACCTGGATCACAAAGGAGAACCTGAGTCACCAAC
AGTGCCAGAACAGGAATCCTGTCAGTACAACGGTGAGGTGGGAAGAGGAAGTATTGGCAG
GACAAATGATCGACCAGAGTATAAACTCCATTGAAACCAAAGGCACGCCAGAACCCGGTCATGAGGG
TGAAGCCGAGTCGTGAAGACTTACCACTCAGTCTACACTAACGCACTAGAAACCAAAGGTACACAAGGACC
CGGACATGAAGGTGAAGCTGCAGTTGGAGGAAGAACAGCTACAGTCCGCAAGAGACTCTAGAGTACACGGAAACGGT
CACGCAAGAGCCAGGTACAGGGCAAAGCTACAGTCCGCAAGAGACTCTAGAGTACACGGAAACGGT
AGCGACAAAAGGCACACAAGAACCGAACATGAGGGCGAaCGGsCAGTAGAAGAACCTCCGGCTTT
AGAGGTCACTACACGAAATAGAACGGAAATCCAGAATATTCTTACACAGAAGAAATTCAAGGATCC
AACACTCTGAAAAATCGCTGAAGATTGAAACGACAAGGGCAAGCAGGGACACGTACAATTCAATATGA
AGACTACATCGTAATGGTAATGTCGTAGAAACTAAAGAAGTGTACGAACTGAAGTAGCTCCGGTC
CGAAGTCGTTAAAGTAGGAACACTTGTGAAAGTTAACCTACAGTAGAAATTACAAACTTAAACAAAGT
TGAGAACAAAAATCTATAACTGTAAGTTATAACTTAAAGACACTACCTCAGCATATGTTCTGAAA
AACGCAAGTTTCATGGAGACAAGCTAGTTAAAGAGGTGGATATAGAAAATCCTGCCAAAGAGCAAGT
AATATCAGGTTAGATTACTACACACCGTATACAGTTAAACACACCTAACTTATAATTGGGTGAAA
TAATGAGGAAAATACTGAAACATCAACTCAAGATTCCAATTAGAGTATAAGAAAATAGAGATTAAAGA
TATTGATTCACTAGTAGAATTACGGTAAAGAAAATGATCGTTATCGTAGA

SP072 amino acid (SEQ ID NO:120)

FNPTVGTFLFTAGLSLLVLLVKRENGKKRLVHFLLTSMGVQLLPASAFGLTSQILSAYNSQLSIGVG
EHLPEPLKIEGYQYIGYIKTKKQDNTELSRTVDGKSAQRDSQPNSTKTSDVVHSADLEWNQGQGVSL
QGEASGDDGLSEKSSIAADNLSSNDSFASQVEQNPDHKGESVVRPTVPEQGNPVSATTVQSAAEEVLAT
TNDRPEYKLPLETKGTQEPEGHEGEAAVREDLPVYTKEPLTKTQGPCHGEAAVREEEPAYTEPLATKG
TQEPEGHEGKATVREETLEYTEPVATKGTQEPEHEGERXVEEELPALEVTRNRTEIQNIPTYTEEIQDP
TLLKNRRKIERQGQAGTRTIQYEDYIVNGNVETKEVSRTEAVPNEVVKVGTLVKVKPTVETNLTKV
ENKKSITVSYNLIDTTSAYVSAKTQVFHGDKLKVKEVDIENPAKEQVISGLDYYTPYTVKTHLTYNLGEN
NEENTETSTQDFQLEYKKIEKIDIDSVELYKGENDRYRR

SP073 nucleotide (SEQ ID NO:121)

TCGTAGATATTAAGTCTAAGTGAAGGCCGACTGATACGGCTAAATACTTGTAAAAGTGAATCAGA
TCGCTCAAAGAAATGTACCTACCTGTAAAATCTATTACAGAAAATACGGATGGAACGTATAAGTGAC
GGTAGCCGTTGATCAACTTGTGAGAAGGTACAGACGGTTACAAAGATGATTACACATTACTGTAGC
TAAATCTAAAGCAGAGCAACCAGGAGTTACACATCCTTAAACAGCTGGAACAGCCATGCAAAGCAA
TCTGTCCTGGTGTCTATACATGGCTTCAGATATGACCGCAGATGAGGTGAGCTTAGGCATAAGCAGAC

Table 1

AAGTTATCTCACAGGTGCATTTACAGGGAGCTGATCGGTTCTGATGGAACAAATCGTATGCCATTATG
TGATTGAAGAACCATTTGATACATTAATGGTCAGCTAGTTAGAGATTGGATATTAAAACGT
TTCTGCTGATAGTAAAGAAAATGTCGAGCGCTGGCGAAGGCAGCGAATAGCGCAATTAAATAATG
TGCAGTAGAAGGAAAATCTCAGGTGCGAAACTCTGTCGGGATTAGTAGCGAGCGAACAAATACAGT
GATAGAAAACAGCTCGTTACAGGGAAACTTATCGCAAATCACCAGGACAGTAATAAAATGATACTGG
AGGAATAGTAGGTAATATAACAGGAAATAGTCGAGAGTTAATAAGTTAGGGTAGATGCCATTCTC
TACTAATGCACCGCAATAATAACCAAACAGCTGGAGGGATAGTAGGTAGATTAGAAAATGGTCATTGAT
ATCTAATTGGTTGCTACTGGAGAAATACGAAATGGTCAGGATATTCTAGAGTCGGAGGAATAGTAGG
ATCTACGTGGCAAAACGGTCAGTAAATAATGTTGTGAGTAACGTAGATGTTGAGATGGTTATGTTAT
CACCGGTGATCAATACGCAGCAGCAGATGTGAAAATGCAAGTACATCAGTTGATAATAGAAAAGCAGA
CAGATTGCTACAAAATTATCAAAAGACCAAATAGACCGAAAGTTGCTGATTATGGAATCACAGTAAC
TCTTGATGATACTGGGCAAGATTTAAAACGTAATCTAAGAGAAGTTGATTATAAGACTAAATAAGC
AGAAGCTGAAAGAAAAGTAGCTTATAGCAACATAGAAAAACTGATGCCATTCTACAATAAAAGACCTAGT
AGTTCACTATGTAACAAAGTAGCGACAACAGATAAAACTTACACTACAGAATTGTTAGATGTTGCC
GATGAAAGATGATGAAGTAGTAACGGATATTATAATAAGAAAATCAATAAAATAAGTTATGTTACA
TTTCAAAGATAATACAGTAGAATACCTAGATGTAACATTCAAAGAAAATTCATAAACAGTCAAGTAAT
CGAACATAACGACTAAGCGACTTGCAAAATGTAACACTTAAC

SP073 amino acid (SEQ ID NO:122)

RRYLSLSEAPTDKAKYFVKVKSDFKEMYLPVKSITENTDGTYKVTVAVDQLVEEGTDGYKDDYTFV
KSKEQPGVYTSFKQLVTAMQSNLGSVYTLASDMTADEVSLGDKQTSYLTGAFTGSLIGSDGKSYAIY
DLKKPLFDLNGATVRDLDIKTVSADSKENVAALAKAANSANINNVAVEGKISAKSVAGLVASATNTV
IENSSTFGKLIANHQDSNKNDTGGIVGNITGNSSRVNKRVDALISTNARNNNQTAGGIVRLENGALI
SNSVATGEIRNGQGYSRVGGIVGSTWQNGRVNNVSVNDVGDGYITGDQYAAADVKNASTSVDRNKAD
RFATKLSKDQIDAKVADYGITVTLDDTGQDLKRNLRVDYTRLNKAEEERKVAYSNIEKLMPFYNKDLV
VHYGNKVATTDKLYTTELLDVPMKDEVVTDINNKNSINKVMLHFKDNTVEYLDVTFKENFINSQVI
EYNVTGKEYIFTPEAFVSDYTAITNNVLSLDLNQVTLN

SP074 nucleotide (SEQ ID NO:123)

CTTGGTTTGAGGAAGTAAGCGTGGACAATTGCTGAGAAGGAATCAATCAACTTCGTGAGCATGT
AGACACTCTATTGATTATCTCAAACAAACAATTGCTGAAATTGTTGATAAGAAAACACCGCTTTGGA
GGCTCTAGCGAACCGGATAACGTTCTCGTCAGGTGTTCAAGGGATTACCGATTTGATTACCAATCC
AGGATTGATTAACCTTGACTTGCCGATGTGAAAACGGTAATGGCAAACAAAGGAATGCTCTTATGG
TATTGGTATCGGTAGTGGAGAAGAACGTGTTAGAAGCGGACCGTAAGGCAATCTATTCAACACTTCT
TGAAACAACTATTGACGGTGCTGAGGATGTTATCGTCACCGTTACTGGTGGCTTGACTTAACCTTGAT
TGAGGCAGAAGAGGCTTCACAAATTGTAACCAGGCAGCAGGTCAAGGAGTGAAACATCTGGCTCGGTAC
TTCAATTGATGAAAGTATCGTGATGAAATTGCTGTAACAGTTGCAACGGGTGTTGTCAAGACCG
CGTAGAAAAGGTTGTCGCCACAAGCTAGATCTGCTACTAACCGTGAGACAGTGAAACCCAGCTCA
TTCACATGGCTTGATCGTCATTGATATGGCAGAACAGTTGAATTGCCAAACAAATCCACGT
TTTGGAACCAACTCAGGCATCTGCTTTGGTGAATTGGATCTCGCCGTGAATGATTGTCGACAAC
AGATTCACTCGTTCTCCAGTCGAGCGCTTGAAGCCCCAATTCAACAAGATGAAGATGAATTGGATAC
ACCTCCATTTCACAAATCGT

SP074 amino acid (SEQ ID NO:124)

FGFEGSKRGQFAVEGINQLREHVDTLLIISNNNLLEIVDKKTPLEALSEADNVLRQGVQGITDLITNP
GLINLDFADVKTVMANKGNALMGIGIGSGEERVVAAARKAIYSPLETTIDGAEDVIVNVGGLDLTLI
EAEAEASQIVNQAAGQGVNIWLGTIDESMRDEIRVTVVATGVRQDRVEKVVAPQARSATNYRETVKPAH
SHGFDRHFDMAETVELPKQNPRRLEPTQASAFGDWDLRRESIVRTTDSVVSPVERFEAPISQDEDELDT
PPFFKNR

SP075 nucleotide (SEQ ID NO:125)

CTACTACCTCTCGAGAGAAAGTGACCTAGAGGTGACCGTTTGACCATGAGCAAGGTCAAGCCACCAA
GGCCGCAGCAGGAATTATCAGTCCTGGTTTCCAAACGCCGTAAATAAGCCTGGTACAAGATGGCGCG
CTTGGGGGCTGATTGTTATGTGGATTAGTAGCTGATTAGAGAAATCAGGACAAGAAATCGACTTTA
CCAGCGTTGGAGTCTTCTCTGAAAAAGGATGAATCCAATTGGAAGAACCTTATCAACTGGCCCT
CCAGCGCAGAGAAGAACCTCCCTGATAGGGCAATTAGCCATTCTGAACCAAGCCTCAGCTAATGAATT
ATTCCCTGGTTGCAGGGATTGACCGCCTGCTATGCTCTGGTGGAGCGAGAGTAGATGGCCAACCT

Table 1

76

TTTAGTGA
CTCGTTGCTGGAAGTCAGTCATGTCAAGCTGGCAAAGAAAAACTGACTCTGACACC
GGCAGTCAAGCTGGCAAAGAAAAACTGACTCTGACACC
AGCATCAGGCTACCA
GAGATTGGTGAAGAGGAGTTGAGCAGGTTATTTGGCGACGGGAGCTGGTTGGG
GGACATGTTAGAGCCTT
TAGGTTAGTGAAGTGGATGTCCGTCTCAAAAGGACA
ACTACGAGATTATCA
GCTTGCCC
AAGACATGGAAGATTACCC
TGTGT
CATGCC
AAGGGGAGTGGGATTGATTCC
TTGCG
AGGTGGAAATTATCCT
TAGGC
TACCC
ACGAAA
ATGAC
ATGGGATTGATTGACGGTAGATGAAAC
CTTGCTCCA
ACAA
ATGGAGGAGGCCAC
TTGACT
ACTATCTG
ATT
GGCTGAAGCTACT
TCAAA
ATCTGAGCGTGT
GGATCC
GTGCCTACACC
AGT
ATT
CTCT
CCTT
CTTG
GGCAGGT
GCCTGACT
TTAAC
TGGTGT
CTATGCAG
CCAGTGGACT
AGGTT
CATCAG
GCCT
ACA
ACT
GGT
CCT
ATC
ATT
GGTT
ACCATCT
AG
CCCC
AACT
GAT
CCA
AAG
ACA
AGG
AGT
TGAC
CTT
GG
AC
CC
CT
TAA
ATT
ACCC
ATT
GAAA
ACT
AT
GT
CAA
ACGAGT
AAA
AGCGAA

SP075 amino acid (SEQ ID NO:126)

YYLSRESDLETVFDHEQGQATKAAAGIISPWFSKRRNKAWYKMARLGADFYVDLLADLEKSGQEIDFY
QRSGVFLKKDESNLLELYQLALQRREESPLIGQLAILNQASANELFPGLQGFDRLLYASGGARVDGQL
LVTRLLEVSHVKLVKEKVTLTPLASGYQIGEEFEQVILATGAWLGDMLEPLGYEVDVRPKQGQLRDYQ
LAQDMEDYPVVMPEGEWDLIPFAGGKLSLGATHENDMGFDLTVDETLLQQMEEATLTHYLILAESTSKS
ERVGIRAYTSDFSPFFGQVPDLTGVYAASGLGSSGLTTGPIIGYHLAQLIQDKELTLDPLNYPIENYVK
RVKSE

SP076 nucleotide (SEQ ID NO:127)

TAAGGTCTAAAGTCAGACCGCTAAGAAAAGTGTAGAAAAGATTGGAGCTGACTCGGTTATCTGCCAGA
GTATGAAATGGGGCAGTCTCTAGCACAGACCATTCTTTCCATAATAGTGTGATGTCTTCAGTTGGA
TAAAAATGTGTCTATCGTGGAGATGAAAATTCCCTCAGTCTGGCCAGGTCAAAGTCTGAGTAAATTAGA
CCTCCGTGCAAATACAATCTGAATATTTGGGTTCCGAGAGCAGGAAAATTCCCCATTGGATGTTGA
ATTGGGACCAAGATGACCTCTTGAAAGCAGATACCTATATTTGGCAGTCATCAACAAACCAGTATTTGGA
TACCCCTA

SP076 amino acid (SEQ ID NO:128)

KVKQSQTAKVLEKIGADSVISPEYEMGQSLAQTIIFHNSVDVFQLDKNVSIVEMKIPQSWAGQSLSKLD
LRGKYNLNLILGFREQENSPLDVEFGPDLLKADTYILAVINNQYLDTL

SP077 nucleotide (SEQ ID NO:129)

TGACGGGTCTCAGGATCAGACTCAGGAAATCGCTGAGTGTAGCTAGCAAGTATCCATAATCGTTAG
AGCCCATCTATCAGGAAAATAATGCCATGGCGGTGCGGTCAATCGTGGCTGGTAGAGGGCTCTGGGCC
CTATTAAAGTAGTTGACAGTGACTGGGTGGATCCTCGCTACTGAAAATTCTTGAAACTTG
CAGGAACCTGAGAGCAAAGGTCAAGAGGGTGGATGTCTTG

SP077 amino acid (SEQ ID NO:130)

DGSQDQTQEIAECLASKYPNIVRAIYQENKCHGGAVNRGLVEASGRYFKVVDSDDWVDPRAYLKILETCRNLRAVKVRWMSL

SP078 nucleotide (SEQ ID NO:131)

TAGAGGGCTTGCCAAATGGTGGGAAGGGCACGAGCGTCGAAAAGAGGAACGTTGTCAAACAAGAAGA
AAAAGCTGCCAAAAGGCTGAGAAAGAGGCTAGATTAGAACAAAGAAGAGACTGAAAAGCCTACTCGA
TTTGCCCTCTGTTGATATGAAACGGGTGAAATTCTGACAGAGGAAGCTGTTCAAAATCTTCACCTAT
TCCAGAAGAAAAGTGGGTGAAACCAGAAATCATCTGCCTCAAGCTGAACCTAAATTCCCTGAAACAGGA
AGATGACTCAGATGACGAAGATGTTAGGTCGATTTTAGGCAAAGAAGGCCCTGAATACAAACTTCC
AAGCTTACAACCTTTGACCCAGATAAACCAAAAGATCAGTCTAAAGAGAAGAAAATTGTCAGAGAAA
TATCAAAATCTTAGAAGCACCTTGCTAGCTTGGTATTAGGTAACAGTTGAAACGGGCCGAAATTGG
GCCATCAGTGACCAAGTATGAAAGTCAGCCGGCTTGGTGAAGGGTCAACCGCATTTCAAATCTATC
AGATGACCTCGCTAGCCTGGCTGCCAAAGATGTCAGGCCGATTGAAGCACCAATCCCTGGAAATCCCT
AATCGGAATTGAAAGTGCCAACTCCGATATTGCCACTGTATCTTCCGAGAACTATGGGAACAATCGCA
AACGAAAGCAGAAAATTCTGGAAATTCCCTTAGGAAAGGCTGTTATGGAACCGCAAGAGCTTTGA
CCTTCTAAAATGCCCACTGCTAGTGCAGGTTCAACGGGTTAGGGAAGTCAGTAGCAGTTAACGG
CATTATTGCTAGCATTCTCATGAGGCGAGACCAGATCAAGTTAAATTATGATGGTCGATCCCAAGAT
GGTTGAGTTATCTGTTACAATGATATTCCCCACCTCTGATTCCAGTCGTGACCAATCCACGCAAAGC
CAGCAAGGCTCTGCAAAAGGTTGTTGAGTGAATGGAAAACCGTTATGAACTCTTGCCAAGGTGGGAGT
TCGGAATTGCAAGGTTTATGCCAAGTGAAGAGTCAATTCCTAGTCTGAGTACAAGCAAAATTCC

Table 1

GCTACCATTGTCGTATTGGATGAGTGGCTGACCTCATGATGGTGGCCAGCAAGGAAGTGGAAAGTGGATCAGCGTCTGGCAGGCTGCTGCAGGTATCACATGATTCTGCAACTCAGCGTCCATCTGGTTGATGTCATCTGGTTGATTAAGGCCAATGTTCCATCTCGTGAGCATTGCGGTTCTCAGGAACAGACTCCCCTACGATTGGATGAAAATGGAGCAGAAAAACTTCTGGTCGAGGAGACATGCTCTTAAACCGATTGATGAAAATCATCCAGGTCGTCCTCAAGGCTCCTTATCTCGGATGACGATGTTGAGCGCATTTGAACTTCATCAAGACTCAGGCAGATGCAGACTACGATGAGAGTTTGATCCAGGTGAAGTTCTGAAAATGAAGGAGAATTTGGATGGAGATGCTGGTGTGATCCGCTTTTGAGAAGAAGCTAACTCTTGTTATCGAAACACAGAAAGCCAGTGCCTATGATTGAGTAGCAGGTGTCATCGGTCAGCTGAAGGTACCAAACCTCGAAAAGTGTACAACAA

SP078 amino acid (SEQ ID NO:132)

RGFAKWWEGHERRKEERFKQEEKARQKAKEEARLEQEETEKALLDLPPVDMETGEILTEEAVQNLPIPEEKWVEPEIILPQAEKFPEQEDDSDEDEVQVDFSAKEALEYKLPQLFAPDKPKDQSKEKKIVRENIKILEATFASFGIKVTVERAEIGPSVTKYEVKPAVGVRVNRISNLSSDLALALAAKDVRIEAPIPGKSLIGIEVPNSDIATVSFRELWEQSQTKAENFLEIPLGKAVNGTARAFDLSKMPHLLVAGSTGSGKSVAVNGIIASIILMKARPQVFKMMDPKMVLSVYNDIPHLLIPVVTNPRASKALQKVDEMENRYELFAKVGVRNIAGFNAKVEEFNSQSEYKQIPLPFIVVIVDELADLMMVASKEVEDAIIRLGQKARAAGTHMILATQRPSVDVISGLIKANVPSRVAFAVSSGTDRTILDENGAEKLLGRGDMLFKPIDENHPVRLQGSFISDDDVERIVNFIFKTQADADYDEFDPGEVSENEGEFSQDGDAGGDPLFEEAKSLVIETQKASASMIQRRLSVGFRATRLMEELEIAGVIGPAEGTKPRKVLQQ

SP079 nucleotide (SEQ ID NO:133)

TCAAAAAGAGAAGGAAAATTGGTTATTGCTGGAAAATAGGTCCAGAACCGAAATTGGCAATATGTATAAGTTGCTGATTGAAGAAAATACCGACATGACTGCGACTGTTAAACCGAATTGGCAAGAACAGCTTCCTTATGAAGCTCTGAAAAAAGGCATATTGACATCTATCCTGAATTACTGGTACGGTACTGAAGTTGCTTCAACCACACCCATGCTTATCAAACACCTATGCTGTAGCTGTCTGGTCAAGCAGGATCATCTAGCCTATCTCAAACCCATGCTTATCAAACACCTATGCTGTAGCTGTCTGGAAAAGATTGCTCAAGAATATGGCTGAAGACCATTTCAGACTTGAAAGGGCTTGCAATCAATGTATGGGAAGGGCAGTTGAAGGCAGGTTTACACTCGAGTTAACGACCGTGAAGATGGAAATAAGGGCTTGCAATCAATGTATGGTCTCAATCTCAATGTAGCGACCATTGAGCCAGCCCTCGCTATCAGCTATTCAAGGCTTGGAAAGATGACAAATCACGGATGCCATTGCACTGATGCCGAATTGGAGCGTTATGATTACAGGTCTGGAAAGATGACAAAGCAACTCTCCCACCTTATCAAGGGCTCCACTCATGAAAGAAGCTTCTCAAGAAACACCCAGAGTTGGAAAGAGTTCTTAATACATTGGCTGGTAAGATTACAGAAAGCCAGATGAGCCAGCTCAACTACCAAGTCGGTGTGAAGGCAAGTCAGCAAAGCAAGTAGCCAAGGAGTTCTCCAAGAACAAAGGTTGTGAAGAA

SP079 amino acid (SEQ ID NO:134)

QKEKENLVIAGKIGPEPEILANMYKLLEENTSMATVKPNFGKTSFLYEALKKGIDIDIYPEFTGVTE SLLQPSPKVSHEPEQVYQVARDGIQKDHLAYLKPMQSYQNTYAVAVPKKIAQEQYGLKTISDLKKVEGQLKAGFTLEFNDREDGNKGLQSMYGLNLNVATIEPALRYQAIQSGDIQITDAYSTDAELERYDLQVLEDDKQLFPYQGAPLMEALLKKPELERVLNTLAGKITESQMSQLNYQVGVEGKSQVAKEFLQEQQGLLKK

SP080 nucleotide (SEQ ID NO:135)

ACGTTCTATTGAGGACCAATTGATTCAAACCTCGAATTGGAATATAACCTCAAAGAAAAGGGAAAACAGATCTTTGAGCTAGTTGATAAAACAACTGACATGCGCTCTGCATTTATCCGCCAAACTCATCCACGCGCTCGGAGATGCTGTTGCAAGCCAAGGCTTCGAAATGAACCTTTGCTTATGCTTGGTGATGACTTGATGGATATCACAGACGAAAAGGCTGTTCCACTTACCAAACAACTCATGGATGACTACGAGCGTACCCACCGCTACTATCGCTGTCATGCCAGTCCCTCATGACGAAGTATCTGCTTACGGGTTATTGCTCCGCAAGGCGAAGGAAAAGATGGCTTACAGTGTGAAACCTTGTGAAAACCGCTCCAGAGGACGCTCTAGCGACCTGCTATTATCGGACGCTACCTCCTCACGCCCTGAAATTGGAGATTCTCGAAAGCAAGCTCCAGGTGAGGAAATGAAATTCAAGCTGACAGATGCAATCGACACCCCTCAATAAAACACAACGTGTATTGCTCGTGAGTTCAAAGGGCTCGTACGATGTCGGAGACAAGTTGGCTTATGAAAACATCCATCGACTACGCCCTCAAACACCCACAAGTCAAAGATGATTGAAGAATTACCTCATCCAACCTGGAAAAGAATTGACTGAGAAGGAA

Table 1**SP080 amino acid (SEQ ID NO:136)**

RSIEDHFDSNFLEYNLKEKGKTDLLKLVDKTTDMRLHFIROTHPRGLGDAVLQAKAFVGNEPFVVMLG
 DDLMDITDEKAVPLTKQLMDDYERTHASTIAVMPVPHDEVSAYGVIAPQGEKGDKGLYSVETFVEKPAPE
 DAPSDLAIIGRYLLTPEIFEILEKQAPGAGNEIQLTDAIDLNLKTQRVFAREFKGARYDVGDKFGFMKT
 SIDYALKHPQVKDDLKNYLIQQLGKELTEKE

SP081 nucleotide (SEQ ID NO:137)

CGCTCAAATACCAGAGGTGTCAGCTAACGACGTTCTCCTCAAATGTTGAAAGCCAATTGGA
 GAGTGCTTTCTGATATCCACCTCAGGCTGAAAACGGAATGTTGGCTACTACTGAAATCATGGAA
 AATCATCCAACCTATCTAAAAACTGGATTGTCCTATGTCCTTGATCCTGTTATGGTGCTACAAG
 TGGAGATGCCTTGATTGACTCAATGCTAGAGACTATCTAAAACAACTTACCTCTAGCAACTAT
 TATTACGCCAATCTCCTGAAGCAGAAGAGATTGTTGGTTTCAATCCATGACCCGAAGACATGCA
 CGGTGCTGGTCGCGCTGATTTAAAAGAATTGGTCTCAGTCTGTGTTATCAAAGGCGGACATCTCAA
 AGGTGGTGCTAAAGATTCCCTTTACCAAGAATGAACAATTGTCGGAAAGCCCACGAATTCAAAC
 CTGTCACACCCATGGTACT

SP081 amino acid (SEQ ID NO:138)

AQNTRGVQLIEHVSPQMLKAQLESVFSIDIPPOAVKTGMLATTEIMEITIOPYLKKLDCPYVLDPMVATS
 GDALIDSNARDYDLKTNLLPLATIITPNLPEAEELIVGFSIHDPEDMQRAGRLILKEFGPQSIVIKGGHLK
 GGAKDFLFTKNEQFWESPRIQTCHTHGT

SP082 nucleotide (SEQ ID NO:139)

AATTGTACAATTAGAAAAGATAGCAAATCAGACAAAGAACAGTTGATAAACTATTGAAATCATTGAA
 TGCATCTTCAGATGAATCTATTCTAAATTAAAAGAACTATCTGAAACTTCACCTAAACCGATGCAGG
 TAAAGACTATCTTAATAACAAAGTCAAAGAACATCTAAAGCAATTGTAGATTTCATTTGCAAAAGG
 TTTGGCTTATGATGTTAAAGATTCAAGATGACAAATTAAAGATAAAAGCAACTCTGAAACAAATGTA
 AGAAAATTACAAAACAAATGATTTATCAAAAAAGTTGATGAAACTTTAAACAAGAGAAATTGGAAGA
 AACTCTTAAATCTCTAAATGATCTTGTGATAAAATATCAAAACAAATCGAACATTGAAAGAAAGA
 AGAAAAAGCTGCTGAAAAGCTGCTGAAAAGCAAAGGAATCTCTAGTCAAAGTAATTCTCTGGTAG
 TGCTCTAAATGAGTCTTATAATGGATCTTCCAATTCAAATGTAGATTATGTTCATCTGAACAAACTAA
 TGGATATTCAAATAATTATGGCGGTCAAGATTCTGGTCAGGAGATGTTCAACAAATGGTGGATC
 ATCAGAACAAATTACATCTAGCAATTCAAACAGCGGAGCAAATAATGTCACAGATAAAAGGACTGG
 TGCTGACGGCTATCAAAGATACTACTACAAAGATCATAATAATGGAGATGTTGATGACGATGGAAA
 TTACCTGGAACTTGGTGGCGCATTGCAGAACCTAGTCACACGC

SP082 amino acid (SEQ ID NO:140)

IVQLEKDSKSDKEQVDKLFESFDASSDESISKLKELSETSLKTDAGKDYLNNKVKESSKAIVDFHLQKG
 LAYDVKDSDDFKDKATLETNVKEITKQIDFIKKVDETFKQENLEETLKSLSNDLVKYQKIELLKKEE
 EKAAEKAAEKAKESSSQNSSGSASNESYNGSSNSNVYDVSSEQTNGYSNNYGGQDYSGGDSSTNGGS
 SEQYSSNSNSGANVYRYKGTGADGYQRYYYDHNNGDVYDDDGNYLGNFGGGIAEPSQR

SP083 nucleotide (SEQ ID NO:141)

TCTGACCAAGCAAAAGAACAGTCATGACAAAGGAAAAGCAGCTGTTGTTAAGGTGGTGGAAAGCCA
 GGCAGAACTTATAGCTTAGAAAAGAACATGAAGATGCTAGCCCTAAAGAAAGTTACAAGCAGATGGACGCAT
 CACGGAAGAACAGGCTAAAGCTTATAAGAACATACAATGATAAAATGGAGGAGCAAATCGTAAAGTCAA
 TGAT

SP083 amino acid (SEQ ID NO:142)

LTKQKEAVNDKGKAAVVKVVESQAElysLEKNEDASLRKLQADGRITEEQAKAYKEYNDKNGGANRKVN
 D

SP084 nucleotide (SEQ ID NO:143)

GTCCGGCTCTGTCAGTCCACTTTTCAGCGGTAGAGGAACAGATTTCATTGGAGTTGAAGAACT
 CTATCGGAAACCCAAAACGCAGTGTAGCCAGTCAGAAAAGACTAGTCAGACTTAGATGGCAGAC
 GCTTAGCAATGGCAGTCAAAGTTGCCAGTCAGCTAAAGGAATTCAAGGCCATCAGGCCAAAGTATTAC
 ATTTGACCGAGCTGGGGCAATTGTCCTGGCTAAGGTTGAATTCAAGACCAGTAAAGGAGCGATTG
 CTATCAATTATCTAGGAAATGGAAAATTAAACGCATTAAGGAAACAAAAAT

Table 1**SP084 amino acid (SEQ ID NO:144)**

SGSVQSTFSAVEEQIFFMEEFEELYRETQKRSVASQQKTSLNLDGQTLNSNGSQKL PVPKGIQAPSGQSIT
FDRAGGNSSLAKVEFQTSKGAIRYQLYLGNGKIKRIKETKN

SP085 nucleotide (SEQ ID NO:145)

GGGACAAATTCAAAAAAATAGGCAAGAGGAAGC AAAATCTTGCAAAAGGAAGAAGTCTTGAGGGTAGC
TAAGATGGCCCTGCAGACGGGGCAAATCAGGTAAAGCATCAACGGAGTTGAGATTCAAGGTATTTCTAG
TGAAAAGGATTGGAGGTCTACCATGGTCAGAACAGTTGTTGGCAATCAAAGAGCCA

SP085 amino acid (SEQ ID NO:146)

GQIQKNRQEAKILQKEEVLRVAKMALQTGQNQVSINGVEI QVFSSEKGLLEVYHGSEQLLAIKEP

SP086 nucleotide (SEQ ID NO:147)

TCGCTACCAGCAACAAAGCGAGC AAAAGGAGTGGCTCTTGTGACCAACTTGAGGTAGAATTAGA
CCGTCGAGTCGAAAAGTAGAAGGCAATCGCCTATACATGAAGCAAGATGGCAAGGACATCGCCAT
CGGTAAGTCAAAGTCAGATGATTCCTGAAACGAATGCTCGTGGTCGAGGTATCAGCCTATGGTTA
TGGACTCAAATCTGTACGGATTACAGAGGACAATCAACTGGTCGCTTCATTCCAGTTCCAAAAGG
CTTAGAAAGGGAGTTCATCTCGTGTGGAAAAAGAAAAAGT

SP086 amino acid (SEQ ID NO:148)

RYQQQSEQKEWLLFVDQLEVELDRSQFEKVEGNRLYMKQDGKDIAIGKSksDDFRKTNARGRGYQPMVY
GLKSVRITEDNQLVRHFQFQKGLEREFIYRVEKEKS

SP087 nucleotide (SEQ ID NO:149)

GAACCGACAAGTCGCCACTATCAAGACTATGCTTGAAATAAGAAAATTGGTTGCTTGTCTATGGC
TAAACGAACCAAAGATAAGGTTGAGCAAGAAAGTGGGGAACAGTTTTAATCTAGGTCAAGGTAAGCTA
TCAAAACAAGAAA ACTGGCTTAGTGACGAGGGTTCGTACGGATAAGAGCCAATATGAGTTCTGTTCC
TTCAGTCAAAATCAAAGAAGAGAAAAGAGATAAAAAGGAAGAGGTAGCGACCGATTCAAGCGAAAAGT
GGAGAAGAAAAATCAGAAGAGAAGCCTGAAAAGAAAGAGAATTCA

SP087 amino acid (SEQ ID NO:150)

NRQVAHYQDYALNKEKLVAFAMAKRTKDKVQESEQFFNLGQVSYQNKKTGLVTRVRTDKSQYEFLFP
SVKIKEEKRDKKEEVATDSSEKVEKKSEEKPEKKENS

SP088 nucleotide (SEQ ID NO:151)

GGTGTGGCTGGCAATATATCCGTTCCATCTAAAGGTAGTACAATTGGCCTTACCCAAATGGTAT
CAGATTAGAAGGTTTCCAAAGTCAGAGTGGTACTACTTCGATAAAAATGGAGTGCTACAAGAGTTGT
TGGTTGAAACATTAGAGATTAAAACCTAAAGACAGTGGAGAAAGTACGGGGAAAACGTGAAGA
TTCAGAAGATAAAGAAGAGAAGCGTTATTATACGAACCTTAACTTAACTCAAATCATTCTTAGAGAC
AGGTTGGTTATGATCAGTCTAACTGGTATTATCTAGCTAAGACGGAAATTAAATGGAGAAAACCTACCT
TGGTGGTAAAGACGTGCGGGTGGATAAACGATGATTGACTTGGTACTACCTAGATCCAACAACCTGG
TATTATGCAAACAGGTTGGCAATATCTAGGTAAATAAGTGGTACTACCTCCGTTCTCAGGAGCAATGGC
CACTGGCTGGTATCAGGAAGGTACCACTGGTATTATTA GACCACCCAAATGGCGATATGAAAACAGG
TTGGCAAAACCTTGGGACAAATGGTACTATCTCCGTTATCAGGAGCTATGGCAACTGGTTGGTATCA
AGATGGTTCAACTTGGTACTACCTAAATGCAGGTAAATGGAGACATGAAGACAGGTTGGTCCAGGTCAA
TGGCAACTGGTACTATGCTTATAGCTCAGGTGCTTGGCAGTGAATACGACCGTAGATGGCTATTCTGT
CAACTATAATGGCGAATGGTTCGG

SP088 amino acid (SEQ ID NO:152)

VVGWQYIPFPSKGSTIGPYPNGIRLEGFPKSEWYYFDKNGVLQEFVGWKTLEI KTKDSVGRKYGEKRED
SEDKEEKRYYTNYYFNQNHSL ETGWLYDQSNWYYLAKTEINGENYLGGERRAGWINDDSTWYYLDPTTG
IMQTGWQYLGKWWYLRSSGAMATGWYQEGTTWYYLDHPNGDMKTCGWQNLGNKWWYLRSSGAMATGWYQ
DGSTWYLNAGNGDMKTCGFQVNGNWYYAYSSGALAVNTTVGDGSVNYNGEWVR

SP089 nucleotide (SEQ ID NO:153)

GGCCAATCAGAATGGTAGAAGACAAGGGAGCCTTTATTATCTTGACCAAGATGGAAAGATGAAAAG
AAATGCTGGTAGGAACCTCCATGTTGGTCAACAGGTGCCAAAGTAATAGAAGACTGGGTCTATGA
TTCTCAATACGATGCTGGTTTATATCAAAGCAGATGGACAGCACG CAGAGAAAAGATGGCTCAAAT

Table 1

TAAAGGAAAGGACTATTATTCAAATCCGGTGGTTATCTACTGACAAGTCAGTGGATTAATCAAGCTTA
 TGTGAATGCTAGTGGTGC_AAGTACAGCAAGGTTGGCTTTGACA_AACAA_CATACCA_ACTGGTTTA
 CATCAAAGAAAATGGAAACTATGCTGATAAAGAATGGATTTCGAGAATGGTCACTATTATTATCTAAA
 ATCCGGTGGCTACATGGCAGCCAATGAATGGATTGGGATAAGGAATCTTGGTTTATCTCAAATTGGA
 TGGGAAAATGGCTGAAAAAGAATGGGCTACGATTCTCATAGTCAGCTGGTACTACTCAAATCCGG
 TGGTACATGACAGCCAATGAATGGATTGGGATAAGGAATCTTGGTTTATCTCAAATCTGATGGGAA
 AATAGCTGAAAAAGAATGGGCTACGATTCTCATAGTCAGCTGGTACTACTCAAATCCGGTGGTA
 CATGACAGCCAATGAATGGATTGGGATAAGGAATCTTGGTTTACCTCAAATCTGATGGGAAATAGC
 TGAAAAGAATGGGCTACGATTCTCATAGTCAGCTGGTACTACTCAAATCTGATGGGCTACATGGC
 GAAAATGAGACAGTAGATGGTTACAGCTTGAAGCGATGGTAAATGGCTTGGAGGAAAACACAAA
 TGAAAATGCTGTTACTATCAAGTAGTGCCTGTTACAGCCAATGTTATGATTGAGATGGTAAAGCT
 TTCCTATATATCGCAAGGTAGTGTGTTAGATAAGGATAGAAAAGTGTGACAAGCGCTTGGC
 TATTACTATTTCTGGTTGTCAGGCTATATGAAAACAGAAGATTACAAGCGTAGATGCTAGTAAGGA
 CTTTATCCCTTATTATGAGAGTGATGCCACCGTTTATCACTATGTCAGTATGCTAGTATCCC
 AGTAGCTTCTCATCTTCTGATATGGAAGTAGGCAAGAAATATTATTCGGCAGATGCCCTGCATTTGA
 TGGTTTTAAGCTTGAGAATCCCTTCAAGATTTAACAGAGGCTACAAACTACAGTGTGAAGA
 ATTGGATAAGGTATTAGTTGCTAACATTAACATAGCCTTGGAGAACAGGGCTACTTTAA
 GGAAGCCGAAGAACATTACCATATCAATGCTTTATCTCTTGGCCATAGTGCCTAGAAAGTAACTG
 GGGAAAGAAGTAAAATTGCCAAGATAAGAATAATTCTTGGCATTACAGCCTATGATACGACCCCTA
 CCTTCTGCTAACAGACATTGATGATGTGGATAAGGAATTAGGTGCAACCAAGTGGATAAGGAAA
 TTATATCGATAGGGGAAGAACCTTCTGGAAACAAGGCTCTGGTATGAATGTGGAATATGCTTCAGA
 CCCTTATTGGGGCGAAAAATTGCTAGTGTGATGAAATCAATGAGAAG

SP089 amino acid (SEQ ID NO:154)

AKSEVEDKGAFYYLDQDGKMRNAVGTSYVGATGAKVIEDWVYDSQYDAWFYIKADGQHAEKEWLQI
 KGKDYYFKSGGYLLTSQWINQAYVNASKVQQGWLFDKQYQSWFYIKENGNYADKEWIFENGHYYYLK
 SGGYMAANEWIWDKESWFYLKFDGKMAEKEWVYDSHSQAWYYFKSGGYMTANEWIWDKESWFYLKSDGK
 IAEKEWVYDSHSQAWYYFKSGGYMTANEWIWDKESWFYLKSDGKIAEKEWVYDSHSQAWYYFKSGGYMA
 KNETVDGYQLGSDGKWLGGKTTNENAAYYQVVPVTANVYDSDGEKLSYISQGSVVWLDKDRKSDDKRLA
 ITISGLSGYMKTEDLQALDASKDFIPYYEDGHRFYHYVAQNASIIVASHLSDMEVGKKYSADGLHFD
 GFKLENPFLFKDLTEATNYSAEELDKVFSLLNINNSLLENKGATFKEEEHYHINALYLLAHSALESNW
 GRSKIAKDKNNFFGITAYDTTPYLSAKTFDDVDKGILGATKWIKENYIDRGRTFLGNKASGMNEYASD
 PYWGEKIASVMMKINEK

SP090 nucleotide (SEQ ID NO:155)

ATTTGCAGATGATTCTGAAGGATGGCAGTTGTCCAAGAAAATGGTAGAACCTACTACAAAAAGGGGA
 TCTAAAAGAAACCTACTGGAGAGTGATAGATGGGAAGTACTATTATTTGATCCTTATCCGGAGAGAT
 GGTTGTCGGCTGGCAATATATACCTGCTCCACACAAGGGGTTACGATTGGCTCTCTCCAAGAATAGA
 GATTGCTCTAGACCAGATTGGTTTATTTGGTCAAGATGGTGTATTACAAGAATTGTTGGCAAGCA
 AGTTTAAAGCAAAACTGCTACGAATACCAACAAACATCATGGGAAGAATATGATAGCCAAGCAGA
 GAAACGAGTCTATTATTTGAAGATCAGCGTAGTTATCATACTTTAAAAGTGGTGGATTATGAAGA
 GGGTCATTGGTATTATTCAGAAGGATGGTGGCTTGATTGCGCATCAACAGATTGACGGTTGGAGA
 GCTAGCACGTGGTGGTTAAGGATTACCCCTTACGTATGATGAAGAGAAGCTAAAGCAGCTCCATG
 GTACTATCTAAATCCAGCAACTGGCATTATGCAAACAGGTTGGCAATATCTAGGTAAATAGATGGTACTA
 CCTCCATTCTGTCAGGAGCTATGGCAACTGGCTGGTATAAGGAAGGCTCAACTGGTACTATCTAGATGC
 TGAAAATGGTATGAGAACTGGCTGGCAAAACCTTGGAAACAATGGTACTATCTCCGTTCATCAGG
 AGCTATGGCAACTGGTGGTATCAGGAAAGTTCGACTGGTACTATCTAAATGCAAGTAATGGAGATAT
 GAAAACAGGCTGGTCCAAGTCAATGGTAACTGGTACTATGCCTATGATTAGGTGCTTAGCTGTTAA
 TACCACAGTAGGTGGTTACTACTAAACTATAATGGTGAATGGGTTAAG

SP090 amino acid (SEQ ID NO:156)

VFADDSEGWFVQENGRTYYKKGDLKETYWRVIDGKYYYFDPLSGEMVVGWQYIPAPHKGVTIGPSPRI
 EIALRPDWFYFGQDGVLQEFVGKQVLEAKTATNTNKHHGEEYDSQAERKVYYFEDQRSYHTLKTGWIYE
 EGHWYYLQKDGGFDSRINRLTVGELARGWVKDYPLTYDEEKLKAAPWYYLNPATGIMQTGWQYLGNRWY
 YLHSSGAMATGWYKEGSTWYYLDAENGDMRTGWQNLGNKWYLRSSGAMATGWYQESSTWYYLNASNGD
 MKTGWFQVNGNWYYAYDSDLAVNTTVGGYYLYNNGEWVK

Table 1**SP091 nucleotide (SEQ ID NO:157)**

TGTCGCTGCAAATGAAACTGAAGTAGCAAAAACCTCGCAGGATACAACGACAGCTTCAAGTAGTTCAAGA
 GCAAAATCAGTCTTCTAATAAAACGAAACGAGCGCAGAAGTACAGACTAATGCTGCTGCCACTGGGA
 TGGGATTATTATGTAAAGGATGATGGTCTAAAGCTCAAAGTGAATGGATTTGACAACACTACTATAA
 GGCTGGTTTATATTAAATTCAGATGGTCTTACTCGCAGAATGAATGGCATGAAATTACTACCTGAA
 ATCAGGTGGATATGGCCAAAACGAGTGGATCTATGACAGTAATTACAAGAGTTGGTTTATCTCAA
 GTCAGATGGGCTTATGCTCATCAAGAATGGCAATTGATTGAAATAAGTGGTACTACTTCAAGAAGTG
 GGGTACATGGCTAAAGCCAATGGCAAGGAAGTTATTCCTGAATGGTCAGGAGCTATGATGCAAAA
 TGAATGGCTCATGATCCAGCCTATTCTGTTATTTTATCTAAAATCCGATGGAACCTATGCTAAC
 AAGAGTGGCAAAAGTGGCGCAAATGGTACTATTCAGAAGAAGTGGGCTATATGGCTCGGAATGAGT
 GGCAGGCAACTACTATTGACTGGAAGTGGTGCCTGGCGACTGACGAAGTGAATTGGATGGTACTC
 GCTATATCTTGGGCCTCTGGTGGCTCAAAGAAAAAAAGATTGAATGTCGGCTGGGTCACAGAG
 ATGGTAAGCGCTATTCTTAATAATAGAGAAGAACAGTGGGAACCGAACATGCTAAGAAAGTCATG
 ATATTAGTGAGCACATGGTCGATCAATGATTGAAAAGGTTATTGATGAGAACGAAGTGGATGGTG
 TCATTGTTCGCTCTAGGTTATAGCGGAAAGAACAGGAATTGGCGCATAACATTAAGGAGTTAAC
 GTCTGGGAATTCTTATGGTGTCTATCTCTACCTATGCTGAAATGAGACCGATGCTGAGAGTGACG
 CTAACAGACCATGAACTTATAAGAAATAACATGAAACCTGTTACCCCTATCTATTATGATGTTG
 AGAATTGGGAATATGTAATAAGAGCAAGAGAGCTCCAAGTGATACAGGACTTGGGTTAAATCATCA
 ACAAGTACATGGACACGATGAAGCAGGCGGGTATCAAAATGTGTATGTCTATGCTATCGTAGTTAT
 TACAGACGCGTTAAAACACCCAGATATTTAAAACATGTAACACTGGTAGCGGCCTATACGAATGCTT
 TAGAATGGAAAACCCTATTATTCAAGGAAAAAAAGGTTGGCAATATACCTCTCTGAATACATGAAAG
 GAATCCAAGGGCGCGTAGATGTCAGCGTTGGTAT

SP091 amino acid (SEQ ID NO:158)

VAANETEVAKTSQDTTASSSEQNQSSNKTQTSAEVQTNAAHWDGDYVKKDGSKAQSEWIFDNYK
 AWFYINSDGRYSQNEWHGNYYLKSGGYMAQNEWIYDSNYKSWFYLKSDGAYAHQEQLIGNKWWYFKW
 GYMAKSQWQGSYFLNGQGAMMQNEWLYDPAYSAYFYLKSDGTYANQEWAQVGGKWYYFKKWGYMARNEW
 QGNYLTGSGAMATDEVIMDGTRYIFAASGELKEKKDLNVGVWHRDGKRYFFNNREEQVGTEHAKVID
 ISEHNGRINDWKKVIDENEVDGIVIRLGYSKGEDKELAHNIKELNRGIPYGVLYTYAENETDAESDA
 KQTIELIKKYNMNLSPYIYDVENWEVNKSKRAPSDTGWVKIINKYMDTMKQAGYQNVVYVSYRSLL
 QTRLKHPDILKHVNWVAAYTNALEWENPHYSKKWQYTSEYMKTIQGRVDVSVWY

SP092 nucleotide (SEQ ID NO:159)

TACGTCTCAGCCTACTTTGTAAGAGCAGAAGAACATCCACAAAGTTGCGAAAAATCTCATTAGAGAA
 GAAATATGAGGAAGCAAACGAAAGCTGATACTGCCAAGAAAGATTACGAAACGGCTAAAAGAAAGC
 AGAACAGCCTAGAAAAAGTATGAAGATGATCAGAACAGAGACTGAGGAGAAAGCTGAAAAGAACAGA
 AGCATCTAAAATTGAATGATGTGGCGTTGTTGTCAAAATGCATATAAAGAGTACCGAGAACGAGTCA
 AAATCAACGTAGTAAATATAATCTGACGCTGAATATCAGAAAAAAATTAAACAGAGGTCGACTCTAA
 AGAGAAGGCTAGGAAAGAGCAACAGGACTTGCAAAATAATTAAATGAAGTAAGAGCAGTTGAGTTCC
 TGAACCAATGCGTTGGCTGAGACTAAGAAAAAGCAGAACAGAGCTAAAGCAGAACAGAAAAGTAGCTAA
 GAGAAAATATGATTATGCAACTCTAAAGGTAGCACTAGCGAACAGAACAGTAGAGGCTAACAGACTTGA
 ATTGAAAAACTTCATATGAAATTCTACTTTGGAACAAGAACAGTTGCTACTGCTAACATCAAGTAGA
 TAATTGAAAAACTTCTGCTGGTGCCTGATGATGGCACAGAACAGTTATAGAACAGCTAAATTAAA
 AAAAGGAGAACGCTGAGCTAAACGCTAAACAGCTGAGTTAGCAAAAAACAAACAGAACACTGAAA
 ACTTGTGACAGCCTTGATCCTGAAGGTAGACTCAGGATGAATTAGATAAAAGAACAGAACAGCTGAGTT
 GGATAAAAAGCTGATGAACCTCAAATAAGTTGCTGATTAGAAAAGAACAGTAGCTAACCTTGAAAT
 ATTACTTGGAGGGCTGATNCTGAAGATGATACTGCTGCTCTCAAATAATTAGCTACTAAAAAGC
 TGAATTGAAAAAAACTCAAAGAATTAGATGCAAGCTCTTAATGAGTTAGGCCCTGATGGAGATGAAGA
 AGAAACTCCAGCGCCGGCTCTAACCCAGAACAGCTCCTGCACCAAAACAGAGCAACCAGCTCCAGCT
 AGCTCCAAAACCAGAGCAACCAGCTCCTGCACCAAAACAGAGCAACCAGCTGAGAACAGCT
 GCAACCAGCTCCAGCTCCAAAACCAGAGCAACCAGCTAACAGCGGAGAAACCAAGCTGAGAACAGCT
 ACCAGAAAAACCAGCCACTCCAAAACAGGCTGGAAACAAGAAAACGGTATGGGTATTCTACAATAC
 TGATGGTTCAATGGCAATAGGTTGGCTCAAACACGGTTCATGGTACTACCTAACGCTAACGGCG
 TATGGCAACAGGTTGGGTGAAAGATGGAGATACCTGGTACTATCTGAAGCATCAGGTGCTATGAAAGC
 AACCCAATGGTCAAAGTATCAGATAATGGTACTATGTCACAGCAATGGCCTATGGCGACAGGATGGCT
 GCTCCAATACAATGGCTCATGGTACTACCTCAACGCTAACGGTATGGTGTATGGCGACAGGATGGCT
 CAACGGTTCATGGTATTACCTCAACGCTAACGGTGTATGGCAGAGGATGGCTAAAGTCAACGGTT
 ATGGTACTACCTAACGCTAACGGTGTATGGCTACAGGTTGGGCTAAAGTCAACGGTTATGGTACTA

Table 1

CCTAAACGCTAACGGTTCAATGGCAACAGGTTGGTGAAAGATGGAGATACTGGTACTATCTGAAGC
ATCAGGTGCTATGAAAGCAAGCCAATGGTTCAAAGTATCAGATAATGGTACTATGTCATGGCTTAGG
TGCCCTTGCAGTCAACACAACGTAGATGGCTATAAAGTCAATGCCAATGGTGAATGGTT

SP092 amino acid (SEQ ID NO:160)

TSQPTFVRAEESPQVVEKSSLEKKYEEAKAKADTAKKDYETAKKKAEDAQKKYEDDQKRTEEKARKEAE
ASQKLNDVALVVQNAYKEYREVQNQRSKYKSDAEYQKQLTEVDSKIEKARKEQQDLQNKFNEVRADVVP
EPNALAETKKAAEAKAEEKVAKRKYDYATLKVALAKKEVEAKELEIEKLQYEISTLEQEVTAAQHQVD
NLKLLAGADPDDGTEVIEAKLKKGEAELNAQAEALKQTELEKLLDSLDPGKTQDELDKEAEEAEL
DKKADELQNKVADLEKEISNLEILLLGADXEDDTAALQNKLATKAALEKTQKELDAALNELGPDGDEE
ETPAPAPQPEQPAPAPKPEQPAKPEQPAKPEQPAKPEQPAKPEQPAKPEQPAKPEKPAEEPTQ
PEKPATPKTGWQENGWYFYNTDGSMAIGWLQNNGSWYLYNANGAMATGWVKDGTWYYLEASGAMKA
SQWFKVSDKWYYVNSNGAMATGWLQYNGSWYLYNANGDMATGWLQYNGSWYLYNANGDMATGWAKVNGS
WYLYNANGAMATGWAKVNGSWYLYNANGSMATGWVKDGTWYYLEASGAMKASQWFKVSDKWYYVNGLG
ALAVNTTVVDGYKVNANGEWV

P093 nucleotide (SEQ ID NO:161)

TGGACAGGTGAAAGGTATGCTACATTGTGAAATCCATGACAACGTGAAATGTACCAAGAACACAGAA
CCATTCTCTCGCCTACAATCAACGCTTGGNTTCGAAAATCGCATTGTAGATCCTTTTGGCGGAGGG
ATATGAGGTCAATTACCAAGTGTCTGACGACCCCTGATGCAGTCTATGGTTACTGTCTATTCCAAGTT
GGAAATCATGGAGCCGGTTATTGGGAGCAGATTATCATCATTAGGGATGGCTTGGCTCATGTGGA
TGGTACACCGCTGCCCTGGATGGTACAGGGATTCGCTAGTGATTGCTGGGCACCGTCAGAGCCAAG
CCATGTCTTTCCGCCATTGGATCAGCTAAAGTTGGAGATGCTCTTATTATGATAATGCCAGGA
AATTGAGAATATCAGATGATGGACACAGAGATTATTTACCGTCGAATGGAAAATTAGAATCGGT
TAGCTCTAAAATATCATGACCTTGATAACCTGCGATCCGATTCTACCTTAATAAACGCTTATTAGT
GAATTGGAAACGAGTCGCTGTTATCAAAAATCAGATCCACAAACAGCTGCAAGTTGCGAGGGTTGCTTT
TACGAAAGAAGGACAATCTGTATCGCGTTGCAACCTCTCAATGGTTG

SP093 amino acid (SEQ ID NO:162)

GQVKGHATFVKSMTEMYQEQQNHSLAYNQRLXSQNRIVDPLAEGYEVNYQVSDDPAVYGYLSIPL
EIMEPVYLGADYHHLGMGLAHVDGTPPLDGTGIRSVIAHRAEPSHVFFRHLQLKVGDALYYDNGQE
IVEYQMMDEIILPSEWEKLESVSSKNIMTLITCDPIPTFNKRLLVNFERAVYQKSDPQTAavarvaf
TKEGQSRSRVATSQWL

SP094 nucleotide (SEQ ID NO:163)

GATTGCTCCTTGAAGGATTGAGAGAAACCATGTTGGAAATTGCTCTGGTGCCTAAAATCTCGTGC
CAAGGAAGTTGGTGCCTATGAACGTGAGAGAAAGTAACTCGCCATTAAATGCTATGTTGGATCAGATTGA
TCAGTTGATGGTAGCTATCGTAGCCAGGAAGAACGACCCGTCACTACCAACTTCAAGCCCTTTCGAG
CCAGATTAATCCACATTCTCTATAAACACTTGGACACCATCATCTGGATGGCTGAATTTCATGATAG
TCAGCGAGTGGTGCAGGTGACCAAGTCCTGGCACCTATTCCGCTTGGCGCTCAATCAAGGCAAGGA
CTTGATTGTCCTCTGACGAAATCAATCATGTCGCCAGTATCTCTTATCCAGAAACACGCTATGG
AGATAAGCTGGAATACGAAATTAAATGAAAATGTTGCCTTGATAATTAGTCTTACCCAGCTGGTCT
ACAACCCCTGTAGAAAATGCTCTTACCATGGCATTAAGGAAAAGGAAGGTCAAGGCCATTAAACT
TTCTGTCCAGAAAACAGGATTGGGATTGGTCATCCGTATTGAGGATGATGGCGTTGGCTTCCAAGATGC
TGGTGTAGTAGTCAAAGTCACACTAAACGTTGGGGAGTTGGTCTTCAAAATGTCGATCAACGGCTCAA
ACTTCATTGGAGCCAATTACCATATGAAGATTGATTGACCCCCAAAAGGGACGAAAGTTGAAAT
ATATATAAAATAGAATAGAAACTAGC

SP094 amino acid (SEQ ID NO:164)

IAPLKDLRETMLEIASGAQNLRAKEVGAYELREVTRQFNAMLDQIDQLMVAIRSQEETTRQYQLQALSS
QINPHFLYNTLDIIWMAEFHDSQRVVQVTKSLATYFRLALNQGKDLICLSDIEINHVRQYLFQIKQRYG
DKLEYEINENVAFDNLVLPKVLQPLVENALYHGIKEKEQGHIKLSVQKQDSGLVIRIEDDGVGFQDA
GDSSSQLRKGGVGLQNVQRLKLHFGANYHMKIDSRPQKGTKVEIYINRIETS

SP095 nucleotide (SEQ ID NO:165)

TAGGTCATATGGGACTTTTTCTACAACAAAATAGGCTCCATAATATCTATAAGGGATTACCCACTA
CAAATATTATAGAGCCAAAATTACATCTAATATATGCAGACTACTTGAATGAAATTAAAAAATT
ATTAAAGGATGACACAAAAGTTGAAAATCTACATTCAAATTGTTAGAAGGATATAAAATACCT

Table 1

GACAGAATCTAAAGAACATCTGGAAATTAAACAAATGGACAATGTCATAAAATATTTGAGTTATTGAATC
TAAAAGTATTGCTTATATTTCAAAAACGATTAATGAGCTGATAGAT

SP095 amino acid (SEQ ID NO:166)

RSYGTFFLQQNRLHNIYKGFTHYKYYRAENSHLIYADYFEMKLKKLLKDDTKVFEKSTFKFVEGYKIYL
TESKESGIKQMDNVIKYFEFIESKSIALYFQKRLNELID

SP096 nucleotide (SEQ ID NO:167)

CAACGTTGAGAATTATTCGAATGTGTTGGATAGCATTCAGAATCAGACGTATCAAATTTGAGTG
TTTATTAATCAATGATGGCTCTCCAGATCATTCAAAATATGTAAGAATTGAGAGAAAGATT
TCGTTTCAAATATTTGAGAAAGCAAACGGCGTCTTCATCAGCTCGAACCTAGGTATTGAATGTT
GGGGGGGGCGTACATTACTTTGTAGACTC

SP096 amino acid (SEQ ID NO:168)

NVENYLRMCLDSIQNQTYQNFECLLINDGSPDHSSKICEEFVEKDSRFKYFEKANGGLSSARNLGIECS
GGGVHYFCRL

SP097 nucleotide (SEQ ID NO:169)

CTACTATCAATCAAGTTCTCAGCCATTGAGGCCACCATGAGGGCAACAGCAAACGACCACAGCCA
GACTAGCCACTTATTCACTGTTATCAAAAAACTAGAAACCACCTCGACTGTTGACCCAGCAGAC
GGATGTTCTGGCCTATGCTGAGAATCCCAGTCAGACAAGGTCGAGGGATCCGAGATTGTTTGTAC
CATCTTGAAGTCAGATAAGGACTTGAAACTGTTGTGCTGGTACCAAAATCTGGTCAGGTCTAC
AGATGACAGTGTGCAGATGAAAACCTCCTCTGATATGATGGCTGAGGATTGGTACCAAAAGGCCATTCA
TCAGGGAGCTATGCCGTGGTACTCCAGCTCGTAAATCAGATAGTCAGTGGGTCTTCGACTCA
AGAACCTGTTGATGCAAAGGGAGCCAATCTTGGTGTGCTCGTTGATATTCTTATGAAACTCTGGA
AGCCTATCTCAATCAACTCCAGTTGGGCAGCAGGGCTTGCCTTCATTATCAATGAAACCATGAATT
TGTCTACCATCCTCAACACACAGTTATAGTCGCTAGCAAATGGAGGCTATGAAACCTACATCGA
TACAGGTCAGGGTTACTCCTGGTCACAAATCCTACGTCAGTCAGAGAAGATTGAGGAACGTGATTG
GACGGTGCTTGGCGTGTACATTGAAAAGTTAGACCAGGTTGGAGTCAG

SP097 amino acid (SEQ ID NO:170)

YYQSSSSAIEATIEGNSQTTISQTSFIQSYYIKKLETTSTGLTQQTDVLAYAENPSQDKVEGIRDLFLT
ILKSDKDLKTVLVTKGQVISTDDSVQMKTSDMMAEDWYQKAIHQGAMPVLT PARKSDSQWVISVTO
ELVDAKGANLGVLRLDISYETLEAYLNQLQQLQGFIFIINENHEFVYHPQHTVYSSSSKMEAMKPYID
TGQGYTPGHKSYSQEKIA GTDWTVLGVSSLEKLDQVRSQ

SP098 nucleotide (SEQ ID NO:171)

GACAAAACATTAAACGTCCTGAGGTTTATCACCTGCAGGGACTTTAGAGAAGCTAAAGGTAGCTGT
TCAGTATGGAGCAGATGCTGCTTATCGGTGGTCAGGCCTATGGCTTCGTAGCCGTGGGAAACTT
TACTTCGAACAGATGGAAGAAGGCGTGCAGTTGCGGCCAAGTATGGTCCAAGGTCTATGTAGCGGC
TAATATGGTTATGCACGAAGGAAATGAAGGCTGGTGGAGTGGTCCGTAAACTGCCTGATATCGG
GATTGCAGCAGTTATCGTATCTGACCCAGCCTGATTATGATTGACTGAAGCACCAGGCCTTGA
AATCCACTTCTACCCAAGCCAGTCCCACTAACATGAAACCCCTTGAGTTCTGGAAAGAGCTAGGCTT
GACTCGTGTGTTTAGCGCGTGAGGTTCAATGGAAGAATTAGCTGAGATCCGAAACGTACAGATGT
TGAAATTGAAGCCTTGTCCATGGAGCTATGTGTATTCTACTCTGGACGTTGTACTCTTCAAACCA
CATGAGTATGCGTGATGCCAACCGTGGTGGATGTTCTCAGTCATGCCGTGGAAATACGACCTTACGA
TATGCCATTGGAAAGAACGTAAGAGTTGCAGGGTGAGATTCCAGAAGAATTTCATGTCAGCCGT
TGACATGTCTATGATTGACCAATTCCAGATATGATTGAAAATGGTGTGGACAGTCTAAAATCGAAGG
ACGTATGNAGTCTATTCACTANGTATCAACAGTAACCAACTGCTACAAGGCGCTGTGGATGCCTATCT
TGAAAGTCCCTGAAAAGTTGAAGCTATCAAACAAAGACTTGGTGGACGAGATGTGGAAAGGTTGCCAACG
TGAACCTGGCTACAGGATTACTATGGTACACCACATCTGAAAATGAGCAGTTGTTGGCTCGTCAA
AATCCCTGAGTACAAGTTGTCGCTGAAGTGGTTCTTATGATGATGCGGCCACAAACAGCAACTATTG
TCAACGAAACGTCATTAACGAAGGGACCAAGTTGAGTTATGGTCCAGGTTCCGTCTTGTAAAC
CTATATTGAAGATTGATGCTAAAGGCAATAAAATCGACCGCGCTCCAATCCAATGGAACATT
GACTATTAAAGTCCCACAAACCTGTTCAATCAGGAGACATGGTCAGCTTAAAGAGGGCTTATCAA
TCTTTATAAGGAAGATGGAACCAGCGTCACAGTCAGTGTGCT

Table 1**SP098 amino acid (SEQ ID NO:172)**

TKTLKRPEVLSAGTLEKLKVAVQVGADAVFIGGQAYGLRSRAGNFTFEQMEEGVQFAAKYGAKVYVAA
 NMVMHEGNEAGAGEWFRLKRDIGIAAVIVSDPALIMIAVTEAPGLEIHLSTQASATNYETLEFWKELGL
 TRVVLAREVSMEELAEIRKRTDVEIEAFVHGAMCISYSRCTLNSHMSMRDANRGCSQSCRWKYDLYD
 MPFGKERKSLQGEIPEEFSMSAVDMSMIDXIIPDMIENGVDLSKIEGRMXSIHXVSTVTNCYKAADVAYL
 ESPEKFEAIKQDLVDEMVKVAQRELATGFYYGTPSENEQLFGARRKIPEYKFVAEVVSYDDAAQTATIR
 QRNVINEGDQVFYGPGRHFETYIEDLHDAGKNIDRAPNPMELLTIKVPQPVQSGDMVRALKEGLIN
 LYKEDGTSVTVR

SP099 nucleotide (SEQ ID NO:173)

TTCTCAGGAGACCTTTAAAAATATCACCAATAGCTTCTCCATGCAAATCAATCGTCGCGTCAACCAAGG
 AACGCCCTCGTGGTGTGGAAATATCAAGGGTGAAGACATCAAAAAAATCACCAGAAAACAAGGCCATTGA
 GTCTTATGTCAAACGTATCACCGCTATCGGAGATTGACTGGATATGACCTGATTGAAACGCCAGAAAC
 CAAGAAGAATCTCACTGCTGATCGTCCAAGCGTTTGGAGTAGCTTGATGATTACAGGTGTCAATGA
 CTCCTCTAAAGAACAGAAGTTGTCTGGTTCTATAAAACTAGTCGAAGGAGAGCACTTAACCAACGA
 CGACAAGGATAAAATCCTTGCACAAGGACTGGCAGCCAACACGGCTGGAAAGTAGGGGACAAGGT
 TAAACTGGACTCTAATATCTACGATGCCAGATAATGAAAAAGGAGCAAGGAAACAGTTGAAGTGACAAT
 CAAGGGACTCTTGATGGTCATAATAAGTCAGCAGTAACCTACTCACAAGAACATTACGAAAACACAGC
 TATTACAGACATTACACTGCTGAAAACCTTATGGATACACAGAACACAGCCATTATGGGGACGC
 AACCTTCTTGTAACAGCAGAACAGAACCTGGATGATGTTATGAAAGAGTTGAATGGCATCAGTGGTAT
 CAACTGGAAGAGACTACACACTCGTCAAGAGCTCCTCTAACTACCCAGCTTGGAGCAATCTATCTGG
 TATGTACAAGATGGCCAAC

SP099 amino acid (SEQ ID NO:174)

SQETFKNITNSFSMQINRRVNQGTPRGAGNIKGEDIKKITENKAIESYVKRINAIGDLTGVDLIETPET
 KKNLTADRAKRGFSSLMITGVNDSSKEDKFVSGSYKLVEGEHTNDKDILLHKDLAAKHGWKVGDKV
 KLDNSIYDADNEKGAKETVEVTIKGLFDGHNKSAVTYSQELYENTAITDIHTAAKLYGYTEDTAIYGDA
 TFFVTADKNLDDVMKELNGISGINWKSYTLVKSSSNYPALEQSISGMYKMAN

SP100 nucleotide (SEQ ID NO:175)

AGTAATGCGCAATCAAATTCAATTAAATTAAAGATGAACTGAAATCTCAGTCATCCGAGTGCAAT
 CTATAAAATTAAAGAGTTTTACTTCAGAGAGTTAAATAAAAACATCAAATTATTACACTACACA
 TTCTACACAACCTATAAAAGATTTCTAGAGAACGCCGTGAAACTTTAGTGAACCGGAGAAAAGGT
 AGATGTTATTGAAAATATTGATTATCAGGATGCATTGGATGATTAGGTGATGTTATCATTCTAGGAA
 GATGATTTATGTTGAAGAGACTAGCTAAATATATTCTAGAGTTGTTATCCTCAGGTAGTGA
 GAATCTTAAACAGAAATTAGTAGTGAAGATATATTCTGGTGGAGCAAATCAAATAATTGTAATAATAT
 TTTAAACTCATCGTATTAGATTCCGATAACCATTATTTGGCTTGATGGAGATCAAACACTAATGT
 TAGTGAATCAAATAATTGAACATCTTGAAGATGGTTGTTATATCAGATAAAATCCTGAATC
 AGATAATAAAATCTTGATGATATTATAAAATTGATAANGGGATGCCAATTAAATTAAATGTTTCAGG
 TAATAAAGGGAAAAATAATATTGAATTATTGCGAAACAAAGAAGCTTATAGATTGGGCTAA
 ATAC

SP100 amino acid (SEQ ID NO:176)

VNAQSNSLILIDEPEISLHPSAIYKFKEFLQECLNKKHQIIITTHSTQLIKDFPREAVKLLVKNGEKV
 DVENIDYQDAFFELGDVYHSRKMIYVEDRLAKYILEFVITHSGSENLKQNLVVRYIPGGANQIICNNI
 LNSSYLDSDNHYFWLDGDQNTNVSESNNLMNYLENGVVISDKIPESDNKNLDDIIKLIIXGCPPIKFNVSG
 NKGQKNNIELIAKQRSFIDYWAKY

SP101 nucleotide (SEQ ID NO:177)

TTACCGCGTTCATCAAGATGTCAAACAAAGTCATGACCTATCAACCCATGGTGCAGAGAAATATTGAGTG
 ACAAGACACCCAGCAAACGAAGAGCTTGCTGCTATGATTACTGAAACAAAAGGAAAAGAAGG
 CGATGTTATGCAGTCTAGTGAGTCAGTCAGTGGTCCACCAACACCATCAATGATAATGCCTCTAGCAT
 TCGGCAAGGCATTCAAACCTGACAGGCAATCTCTATCTGGCGCAGAAGAAGGGGGTAGATATCTGGAC
 AGCTGTTCAAGCCTATAATTGGACCTGCCTATATGATTATCGCCAAAATGGCAAGGAAAATAC
 CCTGGCTCTAGCCAAACAGTACTCTCGTGAGACTGTTGCCCCCTGCTTGGTAAAGGACTGGAAAGAC
 TTATAGTTATTCACCCATTCCATTTCACGGTGCTGAACCTATGTAATGGAGGAAACTATTA
 TTATTCTAGACAGGTACGACTAACCTTACATCAAATGTTCACTCTTCAACATCTGGC

Table 1**SP101 amino acid (SEQ ID NO:178)**

YRVHQDVKQVMTYQPMVREILSEQDTPANEELVLAMIYTETKGKEGDMQSSESASGSTNTINDNASSI
RQGIQTLTGNLYLAQKKGVDIWTAVQAYNFGPAYIDFIQNGKENTLALAKQYSRETVA~~PL~~GNRTGKT
YSYIHPISIFHGAELYVNGGNYYYSRQVRLNLYIIKCFTLFSTSG

SP102 nucleotide (SEQ ID NO:179)

GTGGATGGGCTTAACTATCTCGTATTGCCGTGCGCTAAAATTGGACAATGAGGAGTTGAAGC
CTTGATTCTGACGGGTCAATTGATTGCGCAGCCACGAGAATTCCACAGAAAACATATCCTTG
TGCACGCAATATTCTTCAGTCAGTTGAAAAGTCTTCAGCTTACTGAAAAAACAGTTTC
TCTCTACGAAAACCAACGTGCGAACGAGTTACAAATGCAGCTTTACTGAAAAAACAGTTTC
TGAGATTATATCCTTCTATGGCTGGATTCTGGAAAGGAAAGTGAAGACTAGC

SP102 amino acid (SEQ ID NO:180)

WMGFNYLRIRRAAKIVDNEEFEALIRTGQLIDL RDPAEFHRKHILGARNIPSSQLKTS~~LA~~LRKD~~K~~PVL
LYENQRAQRVTNAALYLKQGFSEIYILSYGLDSWKGKVCTS

SP103 nucleotide (SEQ ID NO:181)

ACTAAACCAGCATCGTTCGAGGAAAATAAGGACAATAATCGTGTCTTATGTGGATGGCAGCCAGTC
AAGTCAGAAAAGTGAAAACCTGACACCAGCAGGGTAGCCAGAAAGAAGGAATT~~C~~AGGCTGAGCAAAT
TGTAAATCAAATTACAGATCAGGGCTATGTAACGTACACGGTGACCAACTATCATTACTATAATGGAA
AGTTCCCTATGATGCCCTTCTTAGTGAAGAAC~~T~~CTTGATGAAGGATCCAAC~~T~~ATCAACTAAAGACGC
TGATATTGTCAATGAAGTCAGGGTGGTTATATCATCAAGGTCGATGGAAAATATTATGTCTAC~~T~~GAA
AGATGCAGCTCATGCTGATAATGTTGAACTAAAGATGAA~~A~~TCATCGTAAAACAAGAACATGTCAA
AGATAATGAGAAGGTTAAC~~T~~CTAATGTTGCTGAGCAAGGCTCAGGGACGATATACGACAAATGATGG
TTATGTCTTAA~~T~~CCAGCTGATATTATCGAAGATA~~C~~GGGTAATGCTTATATCGTCTCATGGAGGTCA
CTATCACTACATTCCC~~A~~AGCGATTATCTGCTAGTGAATTAGCAGCAGCTAAAGCACATCTGGCTGG
AAAAAAATGCAACCGAGTCAGTTAGCTATTCTCAACAGCTAGTGA~~A~~ATAACACGCAATCTGTAGC
AAAAGGATCAACTAGCAAGCCAGCAAATAATCTGAAAATCTCCAGAGTCTTGAAGGA~~A~~CT~~T~~ATGA
TTCACCTAGGCCAACGTTACAGTGAATCAGATGCC~~T~~GGCTTTGAC~~C~~CTGCTAAGATTATCAGTCG
TACACCAAATGGAGTTGCGATTCCGCATGGC~~G~~ACCATTACCACTTTATTCTTACAGCAAGCTTCTGC
CTTAGAAGAAAAGATTGCCAGAA~~T~~GGTGCCTATCAGTGA~~A~~CTGGTTCTACAGTTCTACAAATGCAA
ACCTAATGAAGTAGTGTCTAGTCTAGGCAGTCTTCAAGCAATCCTCTTAA~~C~~GACAA~~G~~TAAAGGA
GCTCTTCCAGCATCTGATGGTTATATTTTAA~~T~~CCAAAGATATCGTGAAGAAACGGCTACAGCTTA
TATTGTAAGACATGGTGA~~T~~CTTCCATTACATTCCAA~~A~~ATCAAA~~T~~GGGCAACCGACTCTTCC
AAACAATAGTCTAGCAACACCTTCTCCATCTTCCAA~~T~~CAATCCAGGA~~A~~CTTCACATGAGAAACATGA
AGAAGATGGATACGGATTIGATGCTAATCGTATTATCGCTGAAGATGAATCAGGTTTGT~~C~~ATGAGTC
CGGAGACCACAATCATTATTCTTCAACAAAG

SP103 amino acid (SEQ ID NO:182)

LNQHRSQENKDNNRVSYVDGSQSSQKSENLT~~D~~QVSQKEGIQAEQIVIKITDQGYVTSHGDHYHYN~~G~~
VPYDALFSEELLMKDPNYQLKDADIVNEVKGGYI~~I~~KVDGKYYVYLDAAHADNV~~R~~TKDEINRQKQE~~H~~V~~K~~
DNEKVNSNAVARSQGRYTTNDGYVFNPAD~~I~~IEDTGNAYIVPHGGH~~Y~~YIPKS~~D~~LSASELAAKAHL~~A~~
KNMOPSQLSYS~~S~~STASDNNTQS~~V~~AKGSTSKPANKSEN~~L~~Q~~S~~LLKELYDPSAQRYS~~E~~SDGLVFDPAK~~I~~IS~~R~~
TPNGVAIPHGDHYHFIPYSKLSALEEKIARMVPI~~S~~GTGSTV~~S~~NAKPNEVVSSLG~~S~~LSNPSSL~~T~~TS~~K~~
LSSASDGYIFNPKDIVEETATAYIVRHGDHFHYIPKS~~N~~QIGQPTLPNNSLATPS~~P~~SLPINPGTSHEKHE
EDGYGFDANRIIAEDESGFVM~~S~~HGDHNHYFFKK

SP105 nucleotide (SEQ ID NO:183)

TGACTACCTGAAATCCCAC~~T~~TACAGCTATCTGGTGGATTCAACACTAAAGTTCTCCA~~A~~CTCCAAT
GATGAACATCATCAACGGTGGTCTCACTCTGACGCT~~C~~CAATCGCTTTCCAAGAGTT~~C~~ATGATCTTG~~C~~
AGTTGGTGC~~G~~CCAACATTAAAGAAGCC~~T~~TCGTTACGGTGC~~G~~TGAA~~A~~CTTCCACGCT~~C~~TTAAGAAAAT
CCTTAAATCACGTGGTTGGAAACTGCC~~T~~AGGTGACGAAGGTGGATT~~C~~GCTCCTCGTT~~C~~GAAGGAAC
TGAAGATGGTGTGAAACTATCCTGCTGCGATTGAAGCTGCTGGATATGTAC~~C~~AGGTAAGACGTATT
TATCGGATTGACTGTGCTTCATCAGAATT~~C~~TACGATAAAGAAGTAAAGTTACGACTACACTAA~~A~~
TGAAGGTGAAGGTGCTGCTGTT~~C~~GTACATCTG~~C~~AGAACAAATCGACTACCTTGAAGAATTGGTTAACAA
ATACCCAATCATCACTATTGAAGATGGTATGGATGAA~~A~~ACGACTGGGATGGTTGGAAAGCTTACTGA
ACGTCTGGTAAGAAAGTACAAC~~T~~GGTGGT~~G~~ACGACT~~T~~CTTCG~~T~~TAACAAACACTGACTAC~~C~~TTGCACG

Table 1

86

TGGTATCCAAGAAGGTGCTGCTAACACTCAATCCTTATCAAAGTTAACCAAATCGGTACTCTTACTGAAAC
 TTTGAAGCTATCGAAATGGCTAAAAGAAGCTGGTTACACTGCTGTTGATACACCCGTTAGGGTAAAC
 TGAAGATTCAACAATCGCTGATATTGCAGTTGCAACTAACGCAGGACAAATCAAGACTGGTCACTTTC
 ACGTACAGACCGCATCGCTAAATAACACCAATTGCTCGTATCGAAGACCAACTGGTGAAGTAGCTGA
 ATATCGTGGATTGAAATCATTCTACAAACCTTAAAAAA

SP105 amino acid (SEQ ID NO:184)

DYLEIPLYSYLLGFNTKVLPTPMNNI INGGSHSDAPIAFQEFMILPVGAPTFKEALRYGAEIFHALKKI
 LKSRGLETAVGDEGGFAPRFEGTEDGVETILAAIEAAGYVPGKDVFIGFDCASSEFYDKERKVYDVTKF
 EGEAAVRSAEQIDYLEELVNKPPIITIEDGMDEDWDGWKALTERLGKKVQLVGDDFFVTNDYLAR
 GIQEGAANSILIKVNQIGTLTETFEAIEMAKEAGYTAVVSHRSGETEDSTIADIATNAGQIKTGSL
 RTDRIAKYNQLLIEDQLGEVAEYRGLKSFYNLKK

SP106 nucleotide (SEQ ID NO:185)

TCGTATCTTTTTGGAGCAATGTTGGCTAGAAGGACATTCCATGGATCCGACCCCTAGCGGATGGCGA
 AATTCTCTCGTTGAAACACCTTCTATTGACCGTTTGATATCGTGGTGGCCATGAGGAAGATGG
 CAATAAGGACATCGTCAAGCGCGTATTGAAATGCGCTGGCGACACCATTGTTACGAAAATGATAAACT
 CTACATCAATGACAAAGAACGGAGGCCTTATCTAGCAGACTATATCAAACGCTTCAGGATGACAA
 ACTCCAAAGCACTTACTCAGGCAAGGGCTTGAAGGAAATAAGGAACTTCTTAGAAGTATCGCTCA
 AAAAGCTCAAGCCTTCACAGTTGATGTCAACTACAACACCAACTTTAGCTTACTGTTCCAGAAGGAGA
 ATACCTCTCCTCGGAGATGACCGCTTGGTTCGAGCGACAGCCGCACGTAGGTACCTCAAAGCAA
 AGATATCACAGGGAGCTAAATTCCGTTATGCCAACCCGTATCGGAACATTT

SP106 amino acid (SEQ ID NO:186)

RIFFWSNRVVEGHSMPTLADGEILFVVKHLPIDRFDIVVAHEEDGNKDIVKRVIGMPGDTIRYENDKL
 YINDKETDEPYLADYIKRFKDDKLQSTYSGKGFFRSIAQKAQFTVDVNYNTNFSFTVPEGE
 YLLLGDRLVSSDSRHVGTFKAKDITGEAKFRLWPITRGTF

SP107 nucleotide (SEQ ID NO:187)

GGACTCTCTCAAGATGTGAAAGCAAATGCTAGCGACAGCAAGCCTGCACAGGACAAGAAGGATGCAA
 ACAAGGAACGGAAGATAGTAAGGATTCAGATAAGATGACTGAAACAAACTCAGTCCGGCAGGAGTGAT
 TGTGGTCAGTCACTTGCCTCCTAGGCCTATTGCTCTGGCTGATTGCGCTAAGAAAGAGTCAGA
 AATCCAGCAATTAAAGCACCGAATTGATCAAGGTTCTAGGACAGCTAGATGCAGAAAAAGCGGATAAAA
 AGTCCTGCCAAAGCCAAAACCTCTCCAAGAAACCCCTGATTGCTGAAAGAAGAAAATGGCTCAGC
 AGAGACAGAAACTAAACTAGTAGAGGGAGCTAACGAATCCTTGACAAACTCAAG

SP107 amino acid (SEQ ID NO:188)

DSLKDVKANASDSKPAQDKDAKQGTEDSKDSKMTETNSVPAGVIVVSLLALLGVIWFWLIRRKESE
 IQQLSTELIKVLGQLDAEKADKKVLAKAQNLQETLDFVKEENGSAETETKLVEELKAILDKLK

SP108 nucleotide (SEQ ID NO:189)

CAAGAAATCCTATCATCTTCCAGAAGCAAACAGAGACGAGGGATTCAAGACTCAGTTGATTGAAGA
 ATCGCTTAGTCAGCAGACTATAATCCAGTCCTCAATGCTAAACAGAATTATCAAAGATTGCGTGA
 GGCTCATGACAACACTCAGGCTATTCTCAGTCAGCCATCTTTATTCTCAACGGTCAATCCTTCGAC
 TCGCTTGTAAATGCACTCATTATGCCCTTTAGCTGGAGTAGGAGCTTATCGTATCATGATGGGTT
 AGCCTTGACCGTCGGTCTAGTGAACATGTTAGCAGCAATACACCAAGCCCTTAACGA
 TATTCTCAGTGTAGCTGAGTTGCAAAGTGTCTGGCTGCGTAGAGCTATGGAGTCTTAA
 TAGGCCCTGAAGTGGCTGAAACAGGTAGGAAGTCTGACGACCAGTGACCAAGTTAAGGGAGCTATT
 CTTAAACATGCTCTTTGGCTACCATCCTGAAAAAATTGATTAAGGACTTGTCTATCGATATT
 AGCTGGTAGTAAGGTAGCCATCGTGGTCCGACAGGTGCTGGAAAATCAACTCTTATCAATCCTTAT
 GCGTTTTATCCCATTAGCTGGAGATATCTGCTGGATGGCAATCCATTGATTACACGAGT
 ATCATTGAGACAGCAGTTGGTATGGTCTCAAGAAACCTGGCTCACACAAGGGACCATTGATAA
 TATTGCCTTGGCAATCCTGAAGCCAGTCGAGAGCAAGTAATTGCTGCTGCCAAAGCAGCTAATGCACA
 CTTTTCATCCAACAGTTGCCACAGGGATACGATACCAAGTTGGAAAATGCTGGAGAATCTCTCTGT
 CGGCCAAGCTCAGCTCTGACCATAGCCGAGTCTTCTGGCTATTCCAAAGATTCTTACAGCGA
 GGCAACTCTCCATTGATACACGGACAGAAGTGTGCTGGTACAGGATGCCTTGCAAAACTCATGAAGGG
 CGCACAAGTTCATCATTGCTCACCGTTGTCAACCATTAGGATGCGGATTTAATTCTGTCTTAGT

Table 1

AGATGGTATTTGTAATGGTAACCATAAGAACTCATGGATAGAAAGGGTAAGTATTACCAAT
GCAAAAAGCTCGGCCTTTAGTTCTGA

A

SP108 amino acid (SEQ ID NO:190)

KKSYHLFQKQTETRGIQTQLIEESLSQQTIIQSFNAQTEFIQRLREAHDNYSGYSQSAIFYSSTVNPST
RFVNALIYALLAVGAYRIMMGSALTVGRLVTFLNYVQQYTKPFNDISSLAEIQLSALACVERIYGVD
SPEVAETGKEVLTTSDQVKGAISFKHVSFGYHPEKILIKDLSIDIPIAGSKVAIVGPTGAGKSTLINLLM
RFYPPISSGDILLDGQSIYDYTRVSLRQQFGMVLQETWLTQGTIHNDNIAFGNPEASREQVIAAKAANAD
FFIQQLPQGYDTKLENAGESLSVGQAQLLTIARVFLAPIKILILDEATSSIDTRTEVLVQDAFAKLMKG
RTSFIIAHLSTIQLADLILVLVDGDIVEYGNHQELMDRGKYYQMKAQAFSSE

SP109 nucleotide (SEQ ID NO:191)

ACGAAATGCAGGGCAGACAGATGCCCGCAAATTGAAAAGGCGCAGTTAGCCAAGGAGGAAAGCAGT
GAAAAAAACAGAAATTAGTAAAGACGCAGACTGACGAAATTATCTAGCTGGAGGTTGTTCTGGGG
AGTGGAGGAATATTCTCACGTGTTCCGGGTGACGGATGCCGTTTCAGGCTATGCAAATGGTAGAGG
AGAACAAACCAAGTACGAATTGATTAACCAAACAGGTATGCCAGAAACCGTCCATGTCACCTATGATGC
CAAGCAAATTCTCTCAAGGAAATCTGCTTCACTATTCCGCATTATCAATCCAACCAGCAGAAAATAA
ACAAGGAAATGATGTGGGGACCCAGTACCGTACTGGTGTATTACACAGATGACAAGGATTGGAAGT
GATTAACCAAGTCTTGATGAGGTGGCTAAGAAATACGATCAACCTCTAGCAGTTGAAAAGGAAACTT
GAAGAATTGGTGGCTGAGGATTACCATCAAGACTATCTCAAGAAAATCCAATGGCTACTGCCA
TATCAATGTTAACAGCGGCCTATCCTGTCATTGATGCCAGCAAATATCCAAAACCAAGTGATGAGGA
ATTGAAAAGACCCCTGTACCTGAGGAGTATGCACTTACCCAGGAAATCAAACAGAACGAGCTTCTC
AAACCGTTACTGGGATAAATTGAATCCGGTATCTATGTTGATATAGCAACTGGGAAACCTCTTTC
ATCAAAAGACAAATTGAGTCTGGTGTGGCTGGCTAGTTACCCAACCCATCAGTCCAGATGTTG
CACCTACAAGGAAGATAAGTCTACAATATGACCGTATGGAAGTGCAGGAGCTAGGAGATTCTCA
CCTGGGATGCTTTACGGATGGTCCACAGGACAAGGGGGCTTACGTTACTGTATCAATAGCCTCTC
TATCCGCTTATTCCCAAAGACCAAATGGAAGAAAAGGCTACGCTATTACTAGATTGTTGAT

SP109 amino acid (SEQ ID NO:192)

RNAGQTDASQIEKAASQGGKAVKKTIEISKADLHEIYLGGCFWGVEEYFSRPGVTDAVSGYANGRG
ETTKYELINQTHAETVHVTYDAKQISLKEILHYFRIINPTSKNKQGNDVGTQRTGVYYTDDKDL
INQVFDEVAKKYDQPLAVEKENLKNFVVAEDYHQDYLKKNPNGYCHINVNQAAVPVIDASKYPKPSDEE
LKKTLSPEEYAVTQENQTERAFSNRYWDKFESGIYVDIATGEPLFSKDKFESGCGWPSFTQPISP
TYKEDKSYNMTRMEVRSRVGDSHLGHVFTDGPQDKGLRYCINSLSIRFIPKDQMEEKGAYLLDYVD

SP110 nucleotide (SEQ ID NO:193)

TGTATAGTTTAGCGCTTCTCTAATTCTGNTAAAATGAAGAAAATCTTCTAAAGAGCATGCG
CCTGATAAAATAGTTTAGATCATGCTTCGGTCAAACACTATATTAGATAAAAACCTGAAAGAGTTGCA
ACTATTGCTGGGAAATCATGATGTAGCATTAGCTTCTGGATAGTTCTGTGGATTTCACCAAGCA
AATTACGGTGTAAAGTGTGATAAAGGAGTTTACCATGGACAGAAGAAAAATCAAAGAACTAAATGGT
AAAGCTAACCTATTGACGATTGGACTTAACCTTGAAGCAATATCAAATTCTAAACCAGATGTT
ATCTTAGCAGGTTATTCTGGTATAACTAAAGAAGATTATGACACTCTATCA

SP110 amino acid (SEQ ID NO:194)

CIVFSACSSNSXNEENTSKEAPDKIVLDHAFQTIILDKKPERVATIAWGNHDVALALGIVPVGF
SKANYGVSAKGVLPWTEEKIKELNKGKANLFDDLDGLNFEISNSKPDVILAGYSGITKEDYDTLS

SP111 nucleotide (SEQ ID NO:195)

GTGTGTCGAGCATATTCTGAAGCAAACCTATCAAATATAGAAAATTAGTTAGTTGATGACGGTTCTAC
GGATAATTCTGGGAAATTGTGATGCTTTATGATGCAAGATAATCGTGTGGAGTATTGATCAAGA
AAATAAGGGGGGGCAGCACAAGCTAAAATATGGGATTAGTGTAGCTAAGGGAGAGTACATCACGAT
TGTTGATTCAAGATGATATCGTAAAGAAAATATGATTGAAACTCTTATCAGCAAGTCCAAGAAAAGGA
TGCAGATGTTAGGAAATTACTATAATTGACGAAAGTGACGGAAATTAGTTATGTAAC
AGGCAAGATTTCGCTCGAAGAATTAGCTATACAAGAAATTGACCGTCAAGCAGGAGATTGGAA
ATTCAATAGCTCGGCCTTATATTGCCGACATTAGTTGATGAAAGCAACTATGCATCGCTTATCTTGTAA
CTTTCAAATGGTCGCCGCTTGTGATGAGCAACTATGCATCGCTTATCTTGTAA
CGTCTTATAACGATAATCTCTATCTGTATAGAAGACGTTAGGAAGCAGTCAGGAAATTGA

Table 1

TCTTCCTGGCAAGAGATATTGTTGAAGTGTCTAAGAAAATACGGATTGTCTGGCTGGTT
 GGATGTCTCCGTTCTCGTATTGCAATCTTAAAGATTATAAGCAAACCTTAGAATACCA
 TCAATTAAACAGACTTGAGGAATATAAAGATATTGTTCAGATTAAAGTTGTTTGATGCAGAAC
 AAGAAATGGTAAAAGT

SP111 amino acid (SEQ ID NO:196)

CVEHILKQTYQNIEIIILVDDGSTDNSGEICDAFMMDNVRVLHQENKGAAQAKNMGI SVAKGEYITI
 VDSDDIVKENMIETLYQQVQEKDADVIGNYYNDESDGNFYFYVTGQDFCVELAIQEIMNRQAGDWK
 FNSSAFILPTFKLIKELFNEVHFNSGRFDDEATMHRFYLLASKIVFINDNLYRRRSGSIMRTEFD
 LSWARDIVEVFSKKISDCVLAGLDVSVLIRFVNLLDYKQTLEYHQLTDTEEYKDICFRLKLFFDAEQ
 RNGKS

SP0112 nucleotide (SEQ ID NO:197)

GTGTTGGATAGCATTAGAATCAGACGTATCAAAATTGAGTGTATTAAATCAATGATGGCTCTCC
 AGATCATTCATCCAAAATATGTGAAGAATTGAGAAGATTCTGTTCAAATATTGAGAAAGC
 AAACGGCGGTCTTCATCAGCTCGTAACCTAGGTATTGAATGTTGGGGGGCGTACATTACTTTGT
 AGACTCTGATGATTGGTGGAACATGATGCTTAGACCGATTATATGGCTTGAAAAAGGAAACGC
 AGATATTAGTATCGGGCGTTATAATTCTTATGATGAAACACGCTATGTGTATATGACTTATGTTACGA
 TCCAGATGATTCTCTAGAAGTGATAGAAGGTAAGCAATTATGGATAGGAAGGTGTCAGAAAGTCAG
 AAATGGGAACCTGGACTGTAGCTGTTGAAGTTATTCAAGAGAGAGTTACTACAAGATTACCATTTCC
 TATAGGAAAATTGAGAGGAACTACTGGACATGGAAGGTACTCTAAAGAGCTCGAGGAGTAGCTA
 TTTGAATCGTTGTGTTACTGGTACCGTGTGTTATCTGATACTTTATCGAATACATGGAGTGAAA
 GCGTATGTATGATGAAATTGGGGCTAGGAAGAAAGATAGCTATTAGCAAGTTCAAGACTATGACTT
 GACCAATCATTTGATTATAAAAGATTACAAGAGTGATAGCAAATTAGAAGAACAAAT
 GCAGTTCACAGAGATTACAGAAGAATGAGGAAAATTGTTACTCCG

SP0112 amino acid (SEQ ID NO:198)

CLDSIQNQTYQNFECLLINDGSPDHSSKICEEFVEKDSRFKYFEKANGGLSSARNLGIECSGGAYITFV
 DSDDWLEHDALDRLYGALKKENADISIGRNSYDETRYVYMTYVTDPPDSLEVIEGKAIMDREGVEEV
 NGNWTVAVLKLFKRELLQDLPFPPIGKIAEDTYWTWKVLLRASRIVYLNRCVYWRVGLSDTLSNTWSEK
 RMYDEIGAREEKIAILASSDYDLTNHILYKNRLQRVIKLEEQNMQFTEIYRMMEKLSSL

SP113 nucleotide (SEQ ID NO:199)

GTGCCTAGATAGTATTACTCAAACATATAAAATATTGAGATTGTTGTCGTTAATGATGGTTCTAC
 GGATGCTTCAGGTGAAATTGAAAGAATTTCAGAAATGGATCACCGAATTCTCTATATAGAACAGA
 AAATGCTGGTCTTCGCGCACGAAACACCGCTGTAATAATATGTCGGAATTATGACCTTGT
 GGACTCGGATGATTGGATTGAGCAAGATTATGAGAAACTCTATATAAAAAAATAGTAGAGTATCAGGC
 TGATATTGAGTTGGTAATTATTCTTCACGAAAGTGAAGGAATGTTCTACTTTCATATATTGGG
 AGACTCCTATTATGAGAAAGTATATGATAATGTTCTATCTTGAGAACTTGATGAAACTCAAGAAAT
 GAAGAGTTTGTGATATCTGCTGGGTAACACTCTATAAGGCAAGATTGTTGAGCAGTTGCGCTT
 TGACATAGGTAAATTAGGAGAAGATGGTTACCTCAATCAAAGGTATATTATCAGAAAAGGTAAAT
 TTATTAAATAAAAGTCTTATGCTTATCGGATTAGAAAAGGTAGTTATCAAGAGTTGGACAGAAA
 GTGGATGCACGCTTAGTTGATGCTATGTCAGTATTACGCTACTAGCTAATATGGTTATCCTCT
 AGAGAAACACTTGGCAGTTATCGTCAGATGTTGAGTCAGTCTCGCCAACGGTCAAGCTAGTGGTT
 ATCTGACACAGCAACGTATAAAGAGTTGAAATGAAACAAAGGCTTAAATCAGCTATCGAGACAAAGA
 GGAAAGTGAAAAGAACGCCATTGCTCGCAGCAAACATGGCTATGTAGACCAAGTTAACGACAAT
 CAACTCTATTGTTATCATATCGTCGATTGTTTATCTGATTCAAGCATTTCAAATGAATG
 GATTAAGCAATTAAATAAGCCTAGAGAAGTTGACTCAGAAATTATTAATTGTCGGGTAACCTCTGA
 GCAAATTTCATGTTATAAATCGGATATTAGTTACACAGTCTTTACGCTATTCTCATAGCTGATTCTGT
 GCAAGAACAGACAGGCCCTACTTGGACTGTGATCTAGTTGTAACGAAAATCTGGATGACTTGTG
 TACAGACTTACAAGATTATCCTTGGCTGCTGTTAGAGATTGGGGCAGAGCTTATTGTTGGTCAAGA
 AATCTTAAATGCCGGTGTCTCTGGTAAACAATGCTTTGGAAAAAAGAGAATATGACCCAAAATT
 AATTGATGTAACCAATGAATGGCATGATAAGGTGGATCAGGCAGATCAGAGCATTGAAATATGCTTT
 TGAACATAATGGTTGGAATTGGACTTTGATTATAATCATATTGTCATTCAAAACAGTTGCTGATTA
 TCAATTGCCTGAGGGTCAGGATTATCCTGCTATTACTATCTTCATCGGAAACCGTGGAAAGA
 TTTGGCGGCCAACCTATCGTGAAGTTGGGTACTATCATGGGCTTGAATGGACAGAATTGGGACA
 AAACCATCATTACATCCATTACAAAGATCTCACATCTATCCAATAAAGGAACCTTCACTTGTCTAAT
 CTACTGCCTCAGACCATTGAAACAATTGAGACATTGGTTCAATCCTGCCTGATATTCAAGTTAA

Table 1

GATAGCAGCTAGAGTAATAGTTAGTGATCGATTGGCTCAGATGACAATTATCCAAACGTGACTATATT
TAACCGAATTCACTATTTGGTAGATGTCGATAATGAATTGGTAGAAACCGACTAAGTACTTTAGATAT
TAATCATGGCGAAAAGACAGAAATTCTCGATCAATTGCTAATCTTGGCAAGCCTATCTTATCCTT
TGAAAATACTAAAACCTATGAAGTAGGTCAAGGAGGCATATGCTGTTGACCAAGTTCAAGCAATGATTGA
AAAATTGAGAGAAATAAGCAAA

SP113 amino acid (SEQ ID NO:200)

CLDSIITQTYKNEIIVVNDGSTDASGEICKEFSEMDHRILYIEQENAGLSAARNTGLNNMSGNYVTFV
DSDDWIEQDYVETLYKKIVEYQADIAGVNYSFNESEGMFYFHILGDSYYEKVYDNVSIFENLYETQEM
KSFALISAWGKLYKARLFEQLRFIDIGKLGEDGYLNQKVYLLSEKVIYLNKSLYAIRRKGSLSRVWTEK
WMHALVDAMSERITLLANMGYPLEKHLAVYRQMLEVSLANGQASGLSDTATYKEFEMKQRLLNQLSRQE
ESEKKAIVLAANYGYVDQVLTTIKSICYHNRSIRFYLIHSDFPNEWIKQLNKRLEKFDEIIINCRVTSE
QISCYKSDISYTVFLRYFIADFVQEDKALYLDCDLVVTKNLDDLATFDLQDYPLAAVRDFGGRAYFGQE
IFNAGVLLVNNAFWKKEENMTQKLIDVTNEWHDVKVDQADQSILNMLFEHKWLELDFDYHNHIVIHKQFADY
QLPEGQDYPAIHYLSHRKPKDLAQTYREVVWYHGLEWTELGQNHHHLPLQRSHIYPIKEPFTCLI
YTASDHIEQIETLVQSLPDIQFKIAARVIVSDRLAQMTIYPNTIFNGIHYLVDVDNELVETSQVLLDI
NHGEKTEEILDQFANLGKPILSFENTKTYEVGQEAYAVDQVQAMIEKLREISK

SP114 nucleotide (SEQ ID NO:201)

CATTCAAGCAGACCTATCAAATCTGAAATTATTCTGTTGATGATGGTCAACAGATGAAAGTGG
TCGCTTGTGTGATTCAATCGCTGAACAAGATGACAGGGTGTCACTGCTTCATAAAAAGAACGAAGGATT
GTCGCAAGCAGAAATGATGGATGAAGCAGGCTCACGGGATTATCTGATTTTATTGACTCAGATGA
TTATATCCATCCAGAAATGATTCAAGAGCTTATGAGCAATTAGTTCAAGAAGATGCCATGTTGAG
CTGGTGTGTATGAATGTCATGCTAATGATGAAAGGCCACAGTCAGCCAATCAGGATGACTATTTGT
CTGTGATTCTCAAACATTCTAAAGGAATACCTCATAGGTGAAAAAATACCTGGGACGATTGCAATAA
GCTAATCAAGAGACAGATTGCAACTGCCATCCTTCTAAGGGTTGATTACGAAGATGCCATTAA
CCATTTGATTTAATCAAGTTGGCCAAGAAGTATGTGGTTAATACTAAACCTATTATTACTATTTCCA
TAGAGGGGATAGTATTACGACCAAACCCATGAGAGAAGGATTAGCCTATATTGATATCTACCAAAA
GTTTTATAATGAAGTTGTGAAAAACTATCCTGACTTGAAAGAGGTGCTTTTCAGATTGGCTATGC
CCACTTCTTATTCTGGATAAGATGTTGCTAGATGATCAGTATAAACAGTTGAAGCCTATTCTCAGAT
TCATCGTTTTAAAAGGCCATGCCATTGCTATTCTAGGAATCCAATTTCGTAAGGGAGAAGAAT
TAGTGCTTGGCCATTTCATAAAATATTCTTATATCGATTCTTAACTGAAAATATTGAAAATC
AAAAAAATTACAT

SP114 amino acid (SEQ ID NO:202)

IQKQTYQNLEIILVDDGATDESGLCD\$IAEQDRVSVLHKNEGLSQARNDGMKQAHGDYLIFIDSDD
YIHPEMIQSLYEQLVQEDADVSSCGVMNVYANDESPQSANQDDYFVCD\$QTLKEYLIGEKIPGTICNK
LIKROIATALSFPKGLIYEDAYYHFDLIKLAKYVNTKPYYYYFHRGDSITTKPYAEKDLAYIDIYQK
FYNEVVKNYPDLKEVAFFRLAYAHFFILDKMLDDQYKQFEAYSQIHRFLKGHAFAISRNPIFRKGRRI
SALALFINISLYRFLLKNIEKSKKLH

SP115 nucleotide (SEQ ID NO:203)

TAAGGCTGATAATCGTGTCAAATGAGAACGACGATTAAATGAATGCCATTGTTGCTTCTCCGTT
GTATGGCAATGATAATGGTAACGGATTATGGTGGGGAAACACATTGAAGGGAGCATGGAGCTATTCC
TGAAGATGTAAGCCATATGCAGCGATTGAACCTCATCTGCAAAAGTCTGTAACCAACAAGTTGAT
TCCACAGATAAGAAATTGAGAGAATGGTATGTCAGATGTTGGAGGAAGCTCAAAGTCTAAACAT
TCCAGTTTCTGGTTATTATGTCGGCTGGAGAGCGTAATACAGTCCCTCAGAGTGGTAGATGAACA
ATTCCAAAAGTATAGTGTGTTAAAGGTGTTAAATATTGAGAATTATTGGATTACATAACCAGTT
AGCTCCGATAGTGTCTAAATATTGGAAGTTGTGCCAATATGGAGCGCATTTATCTGGCATGATCA
TGAAAAATGGTCTGGAAACTATTATGAATGATCCGACATTCTTGAAGCGAGTCAAATATCATAA
AAATTGGTGTGGCAACTAAAATACGCCAATAAGAGATGATGCCGGTACAGATTCTATCGTTAGTGG
ATTGGTTGAGTGGCTATGTGATAACTGGGGCTCATCAACAGATACATGGAAATGGTGGAAAAACA
TTATACAAACACATTGAAACTGGAAGAGCTAGGGATATGAGATCCTATGCATCGGAACCAGAAATCAAT
GATTGCTATGAAATGATGAATGTATATACTGGGGAGGCACAGTTATAATTGCAATGTGCCGCTA
TACATTATGACAAATGATGTACCAACTCCAGCATTACTAAAGGTATTATTCTTCTTGTAGACATGC
TATACAAATCCAGCTCCAAGTAAGGAAGAAGTTGTAAATAGAACAAAAGCTGTATTGGAAATGGAGA
AGGTAGGATTAGTTCATTAACGGATTATCAAGGACTTTATCGAATGATGAAACAATGCCATTATA
TAATAATGGGAGATATCATATTCTCCTGTAATACATGAGAAAATTGATAAGGAAAAGATTCTATCTAT

Table 1

ATTCCTAATGCAAAATTGACTAAAATAGTGAGGAATTGTCTAGTAAAGTCAACTATTTAAACTCGCTTATCCAAAACCTTATGAAAGGAGATGGGTATGCTCAGCGTGTAGGTAACTTCTGGTATATTTATAATAGTAATGCTAATATCAATAAAAATCAGCAAGTAATGTTGCCTATGTATACTAATAATACAAAGTCGTTATCGTTAGATTGACGCCACATACTTACGCTGTTAAAGAAAATCCAATAATTACATATTTATTGAATAATTACAGGACAGATAAGACAGCTATGTTGGCATTATCAGGAAATTGATGCATCAAAAGTTGAAGAAAAGAATTAGAGTTAGCAGACTGGATAAGCAAAATTATCCATCAATCCTGTAGATAATGACTTTAGGACAACAACACTTACATTAAAAGGGCATACTGGTCATAACCTCAGATAAATATAAGTGGCGATAAAAATCATTATACTTACAGAAAATTGGGATGAGAATACCCATGTTATACCATTACGGTTAATCATTAATGGAATGGTAGAGATGTCTATAAAACTGAGGGACAGGTCCAGTCTCTTCCAACACCCAGATAAATTAAATGATGTAATTGAAATATAGCATATGCAAAACCAACACAAAGTCTGTAGATTACAATGGAGACCTAATAGAGCTGTTGGATGGTAACAGAAATGGTAATTAACTCTGGTTCGTTAACACACACTAGGCCAGATAATCCCTCTTGGTGGGAAGTCGATTGAAAAAAATGGATAAAGTGGCTTGTAAAATTATAATCGCACAGATGCTGAGACTCAACGTCTATCAATT

SP115 amino acid (SEQ ID NO: 204)

KADNRVQMRITTINNESPLLSPLYGNDNGNGLWWGNTLKGWEAIPEDVKPYAAIELHPAKVCKPTSCI
PRDTKELREWYVKMLEEQLNIPVFLVIMSAGERNTVPEWLDEQFQKYSVLGVNLNENYWIYNQAPHS
SAKYLEVCAKYGAHFIWHDHEKWFETIMDPTFFEASQKYHKNLVLATKNTPIRDDAGTDSIVSGFWL
SGLCDNWGSSTDWKWWEKHYTNTFETGRARDMRSYASEPESMIAMEMMNVTGGGTVNFECAYTFMT
NDVPTPAFTKGIIFFRHAIQNPAKILTKNSEELSSKVNLNSLYPKLYEGDGYAQRVGNWSYIYN
NNGRYHILPVIEHKIDKEKISSIFPNAKILTGNSEELSSKVNLNSLYPKLYEGDGYAQRVGNWSYIYN
SNANINKNQQVMLPMYTNNTKSLSLDLTPHTYAVVKENPNNLHILLNNYRTDKTAMWALSGNFASKSW
KKEELELANWISKNSINPVNDFRTTTLKGHTGHKPQINISGDKNHYTYYTENWDENTHVYTITVNH
NGMVEMSINTEGTGPVSFTPDKFNLDNLNIAKPTTQSSVDYNGDPNRAVDGNGRNFGNSVTHTR
ADNPSSWEVDLKKMDKVLVKIYNRTDAEQRLSNF

SP117 nucleotide (SEQ ID NO: 205)

CTGGCCAATCAGTCAGCTGCTTCAAACAGTCAGCTTCAGGAACAGATTGAGGTGATTCACGAGAAAA
TGGCTCTGGACACGGGGTGCCTCACAGAAATCACAGGGATTCTCAAAAAGACGGTGTAAAGGGAA
TGACAAACACTGCCAAAACAGCTGTGATTCAAATAGTACAGAAGGTGTTCTCAGCAGTCAGGGAA
TGCTAATGCTATCGGCTACATCTCTGGATCTTAACGAAATCTGTCAAGGCTTGTAGAGATTGATGG
TGTCAAGGCTAGTCGAGACACAGTTAGATGTTCAAGATTTCAGCTTCAACGTCTTCACATTGTTG
GTCTCTAACTCTTCAAGCTAGGTCAGATTTCAGCTTCAACAGGCTTCAACATTGTTCAAGGCTAACAGT
GGTCACAGATAATAAATTATTGAAGCTAAACCGAAACACGGAATATACAAGCCAACACTTACAGG
CAAGTTGCTGTTGAGGTTCACTTCAGTATCTTCAATGGAAAATTAGCAGAAGCTTATAAAA
AGAAAATCCAGAAGTTACGATTGATATTACCTTAATGGCTTCAAGGTTATTACCGCTGTTAAGGA
GAAAACCGCTGATATTGGTATGGTTCTAGGAAATTACCTGAAGAAGGTAAAGAGTCACCCATGA
TGCTATTGCTTGTAGCGTATTGCTGTTGTTCAATAATGACAATAAGGCAAGCCAAGTCAGTATGGC
TGAACATTGCAAGACGTTTGTGGCAAATTAAACCACCTGGGACAAGATTAA

SP117 amino acid (SEQ ID NO:206)

CGNQSAASKQSASGTIEVISRENGSGTRGAFTEITGILKKDGDKKIDNTAKTAVIQNSTEGVLSAVQGN
ANAIYIISLGLTSKVKALEIDGVKASRDTVLDGEYPLQRPFNIVWSSNLSQLQDFISFIHSKQGQOV
VTDNKFIEAKTETTEYTSQHLSGKLSVVGSTSVSSLMEKLAEAYKKENPEVTIDITSNGSSAGITAVKE
KTADIGMVSRELTPEEGKSLTHDAIALDGIAVVNNDNKASQVSMELADVFSKLTTWDKIK

SP118 nucleotide (SEQ ID NO:207)

TTGTCAACAAACAACATGCTACTTCTGAGGGACGAATCAAAGGCAAAGCAGTCAGCGAAAGTTCCATGG
AAAAGCTTCATACACCAACCTAAACAAACAGGTAAGTACAGAAGAGGTCAAATCTCTTATCAGCTCA
CTTGGATCCAATAGTGTGATGCATTCTTAATCTGTTAATGACTATAATACCAATTGTCGGCTCAAC
TGGCTTATCAGGAGATTCACTTCTTACTCACACCGAATACGATGTTGAGAAAATCAGTCATCTCTG
GAATCAAAGAAGGGCGATTGGTGGACCAACTGCCGTATCAATAGTTATTGCTTTGAAAATTC
AGTCACCATTCCAAGCTGAAAAGAATGACCAGTTGCTTCTAGATAATGATGCGATTGATAAAGG
AAAGGTCTTGATTCAAGATAAGGAAGAGTTGATATTCTATTTCGAGAGTTCCAAGTCAGTCAAC
TACAGATGTCAAGGTTACGCTGAAAAGATGGAAGCATTCTCTACAATTCAATTCAATGAAAAGC
TCGAATGCTGCTGTAGTCTTGCACGACAATTGGATGGCAGTATCTGTTGAGGCCACGTTGGG
CTTAGTACCTGCTGATGACGGTTCTTATTGTAGAGAAATTGACTTCGAAGAGCCCTACCAAGCGAT

Table 1

TAAATTGCTAGTAAGGAAGATTGCTACAAGTATTGGGCACCAAGTATGCGGATTATACAGGCGAGGG
ACTGGCTAAGCCTTTATCATGGATAATGATAAGTGGGTAAACTT

SP118 amino acid (SEQ ID NO:208)

CQQQHATSEGTNQRQSSAKVPWKASYTNLNQVSTEEVKSLSAHDPNSVDAFFNLVNDYNTIVGST
GLSGDFTSFTHTEYDVEKISHLWNQKKGDFVGTNCRINSYCLLKNSVTIPKLEKNDQLLFLDNDAIKG
KVFDSQDKEEFDILFSRVPTESTTDVKVHAEKMEAFFSQFQFNEKARMLSUVLHDNLDGEYLFGVHGV
LVPADDGFLFVEKLTFEEPYQAIKFASKEDCYKLGTYADYTGEGLAKPFIMDNDKWKL

SP119 nucleotide (SEQ ID NO:209)

TTGTCAGGCAAGTCGTGACTAGTGAAACACCAAACGAAAGATGAAATGAAGACGGAGCAGACAGCTAG
TAAAACAAGCGCAGCTAAAGGGAAAGAGGTGGTGTATTGAAATTGATGGGAGTAGATGGCAAGACCTA
CCGTTTATCTGATTACAAGGGCAAGAAAGTCTATCTCAAATTCTGGGCTTCTGGTGTTCATCTGTCT
GGCTAGTCTTCAGATAACGGATGAGATTGCTAAAGAAGCTGGTGTACTATGTGGTCTTGACAGTAGT
GTCACCAGGACATAAGGGAGAGCAATCTGAAGCGGACTTTAAGAATTGGTATAAGGGATTGGATTATAA
AAATCTCCCAGTCCTAGTGACCCATCAGGCAAACATTGGAAACTATGGTGTCCCGTTACCCAAC
CCAAGCCTTTAGACAAAGAAGCAAGCTGGTCAAAACACATCCAGGATTATGGAAAAAGATGCAAT
TTGCAAACATTGAAAGGAATTAGCC

SP119 amino acid (SEQ ID NO:210)

CSGKSVTSEHQTKDEMKTETQASKTSAAKGKEVADFELMGVDGKTYRLSDYKGKKVYLKFASWCSICL
ASLPDTDEIAKEAGDDYVVLTVVSPGHKEQSEADFKNWYKGLDYKNLPVLVDPGKLLETYGVRSYPT
QAFIDKEGKLVKTHPGFMKDALIQLTKELA

SP120 nucleotide (SEQ ID NO:211)

CTCGCAAATTGAAAAGCGGGCAGTTAGCCAAGGAGGAAAGCAGTGAAAAAAACAGAAATTAGTAAAGA
CGCAGACTTGCACGAAATTATCTAGCTGGAGGTTCTGGGGAGTGGAGGAATATTCTCACGTGT
TCCCGGGGTGACGGATGCCGTTTCAGGCTATGCAAATGGTAGAGGGAGAACACCAAGTACGAATTGAT
TAACCAAACAGGTCAATGCAAGAAACCGTCCATGTCACCTATGATGCCAACCAAATTCTCAAGGAAAT
CCTGCTTCACTATTCCGCATTATCAATCCAACCAGCAAAATAAACAGGAAATGATGTGGGACCCA
GTACCGTACTGGTGTATTACACAGATGACAAGGATTGGAAGTGATTAACCAAGTCTTGATGAGGT
GGCTAAGAAATACGATCAACCTCTAGCAGTTGAAAAGGAAACTTGAGAAATTGTTGTGGTGGCTGAGGA
TTACCATCAAGACTATCTCAAGAAAATCAAATGGCTACTGCCATATCAATGTTAACAGCGGGCTA
TCCTGTCATTGATGCCAGCAAATATCAAACCAAGTGTGAGGAAATTGAAAAGACCTGTCACCTGA
GGAGTATGCAGTTACCCAGGAAAATCAAACAGAACGAGCTTCTCAAACCGTTACTGGGATAAATTGA
ATCCGGTATCTATGTGGATATAGCAACTGGGAAACCTCTTTTCAAAAGACAAATTGAGTCTGG
TTGTGGCTGGCCTAGTTTACCAACCCATCAGTCCAGATGTTGTACCTACAAGGAAGATAAGTCCTA
CAATATGACCGTATGGAAGTGCAGGAGCTAGGAGATTCTCACCTGGCATGTCTTACGGATGG
TCCACAGGACAAGGGCGCTTACGTTACTGTATCAATAGCCTCTATCCGTTATTCCAAAGACCA
AATGGAAGAAAAGGTACGTTATTAC

SP120 amino acid (SEQ ID NO:212)

SQIEKAAVSQQGKAVKKTEISKDADLHEIYLAGGCFWVVEYFSRVPVTDVSGYANGRGETTKYELI
NQTGHAETVHTYDAKQISLKEILLHYFRIINPTSKNKQGNDVGTQYRTGVYYTDDKDLEVINQVFDEV
AKKYDQPLAVEKENLKNFVVAEDYHQDYLKKNPNGYCHINVNQAAYPVIDASKYPKPSDEELKKTLSPE
EYAVTQENQTERAFSNRYWDKFESGIYVDIATGEPLFSSKDKFESCGCWPSFTQPISPDVVTYKEDKSY
NMTRMEVRSRVGDSHLGHVFTDGPQDKGLRYCINSLSIRFIPKDQMEEKGTLIY

SP121 nucleotide (SEQ ID NO:213)

TTGTCAGTCAGGTCTAATGGTCTCAGTCGCTGTGGATGCTATCAAACAAAAGGGAAATTAGTTGT
GGCAACCAGTCCTGACTATGCACCCCTTGAATTCAATCATTGGTGTAGGAAAGAACCGAGTAGTCGG
TGCAGACATCGACATGGCTCAGGCTATCGCTGATGAACTTGGGTTAAGTTGAAATCTCAAGCATGAG
TTTGACAATGTTGACCAGTCTCAAACGGTAAGGCTGACCTAGCAGTTGCAAGGAATTAGTGTAC
TGACGAGAGAAAAGTCTTGATTTCATCCACTATGAAAACAAGATTAGTGTCTGGTTCG
TAAGGCTGATGTTGAAAATACAAGGATTAACTAGCCTAGAAAGTGCTAATATTGCAGCCAAAAGG
GACTGTTCCAGAATCAATGGTCAAGGAACAATTGCCAAAAGTCAATTAACTTCCCTAACTAATATGGG
TGAAGCAGTCATGAATTGCAAGGCTGGAAAATAGATGCTTATGGATGAGCCTGTCACCTAG

Table 1

TTATGCTGCTAAAACGCTGGCTTAGCTGTCGAACGTGAGCTTGAAGATGAAGGACGGCGACGCCAA
TGCC

SP121 amino acid (SEQ ID NO:214)

CQSGSNGSQSAVDAIKQKGKLVVATSPDYAPFEFQSLVDGKNQVVGADIDMAQAIADELGVKLEISSMS
FDNVLTSLOQTGKADLAVAGISATDERKEVFDHSIPYYENKISFLVRKADVEKYKDLTSLESANIAAQKG
TVPESMVKEQLPKVQLTSLTNMGEAVNELQAGKIDAVHMDEPVALSYAASNAGLAVATVSLKMKDGDAN
A

SP122 nucleotide (SEQ ID NO:215)

GGAAACTTCACAGGATTAAACAGAGAAAACAGCAGTCATTAAGGAAAAAGAAGTTGTTAGTAAAAAA
TCCTGTGATAGACAATAACACTAGCAATGAAGAAGCAAAATCAAAGAAGAAAATTCCAATAAACCTCA
AGGAGATTATACGGACTCATTTGTGAATAAAAACACAGAAAATCCCAAAAAGAAGATAAAGTTGCTA
TATTGCTGAATTAAAGATAAAGAATCTGGAGAAAAGCAATCAAGGAACATCCAGTCTTAAGAATAC
AAAAGTTTATATACCTATGATAGAATTTCACGGTAGTGCATAGAAACAACCTCCAGATAACTTGG
CAAATTAACAAATAGAAGGTATTTCATCGGTTGAAAGGGCACAAAAGTCAACCCATGATGAATCA
TGCCAGAAAGGAAATTGGAGTTGAGGAAGCTATTGATTACCTAAAGTCTATCAATGCTCCGTTGGAA
AAATTTGATGGTAGAGGTATGGTCATTCAAATATCGATACTGGAACAGATTATAGACATAAGGCTAT
GAGAATCGATGATGATGCCAACGCTCAATGAGATTAAAAGAAGACTTAAAGGCACGTGATAAAA
TTATTGGTTGAGTGAATAAACCTCATGCGTCAATTATTATAATGGTGGCAAATCAGTGTAGAAAA
ATATGATGATGAGGGATTATTTGACCCACATGGGATGCATATTGCAAGGGATTCTTGCTGGAAATGA
TACTGAACAAGACATCAAAACTTAAACGGCATAGATGGAATTGCACCTAATGCACAAATTTCCTTA
CAAATGTATTCTGACGCAGGATCTGGTTGCGGTGATGAAACAATGTTCATGCTATTGAAGATT
TATCAAACACAACGTTGATGTTGTTCGGTATCATCTGGTTTACAGGAACAGGTCTTGTAGGTGAGAA
ATATTGCAAGCTATTGGGCAATTAAGAAAAGCAGGCATCCAATGGTTGTCGCTACGGTAACATATGC
GACTCTGCTTCAGTTCTCATGGGATTAGTACCAAATAATCATCTGAAAATGACCGACACTGGAAA
TGTAACACGAACACTGCAGCACATGAAGATGCGATAGCGGTCGCTCTGCTAAAATCAAACAGTTGAGTT
TGATAAGTTAACATAGGTGGAGAAAGTTAAATACAGAAATATAGGGCCTTTTCGATAAGAGTAA
AATCACAACAAATGAAGATGGAACAAAAGCTCTAGTAAATTAAAATTGTATATAGGCAAGGGGCA
AGACCAAGATTGATAGGTTGGATCTAGGGCAAATTCAGTAAATGGGATAGAATTATACAAAGGA
TTTAAAAAATGCTTTAAAAAGCTATGGATAAGGGTGCACGCCATTATGGTTGAAATACTGTAAA
TTACTACAATAGAGATAATTGGACAGAGCTTCCAGTATGGGATATGAAGCGGATGAAGGTACTAAAAG
TCAAGTGTTCATTCAGGAGATGATGGTAAAGCTATGGAACATGATTAACTCTGATAAAAAAAC
TGAAGTCAAAGAAATAAAAGAAGATTAAAGATAAATTGGAGCAAAACTATCCAATTGATATGG
AAGTTTAAATTCCAACAAACGAATGTAGGTGACAAAAGAGATTGACTTTAAGTTGCACCTGACAC
AGACAAAGAACTCTATAAAGAAGATATCATCGTCCAGCAGGATCTACATCTGGGGGCCAAGAATAGA
TTTACTTTAAAACCGATGTTTCAGCACCTGTTAAATTAATCCACGCTTAATGTTATTAAATGG
CAAATCAACTATGGCTATATGTCAGGAACCTAGTATGGCACTCCAATCGTGGCAGCTCTACTGTT
GATTAGACCGAAATTAAAGGAAATGCTTGAAGACCTGTATTGAAAATCTTAAGGGAGATGACAAAT
AGATCTTACAAGTCTACAAAATTGCCCTACAAAATCTGCGCAGCTATGGATGCAACTTCTG
GAAAGAAAAAGTCATACTTGCATCACCTAGACAACAGGGAGCAGGCCATTAAATGTGGCCAATGC
TTTGAGAAATGAAGTTGAGCAACTTCAAAACACTGATTCTAAAGGTTGGTAAACTCATATGGTT
CATTCTCTAAAGAAATAAAAGGTGATAAAAATCTTACAATCAAGCTTCACAATACATCAAACAG
ACCTTGTACTTTAAAGTTCAGCATCAGCGATAACTACAGATTCTCTAATGACAGATTAAGACTTGA
TGAAACATATAAAGATGAAAATCTCCAGATGGTAAGCAAATTGTTCCAGAAATTCAACCCAGAAAAAGT
CAAAGGAGCAAATATCACATTGAGCATGATACTTCACTATAGCGCAAATTCTAGCTTGATTGAA
TGCCTTATAATGTTGGAGAGGCCAAAACAAAATAATTGTTAGAATCATTATTCAATTGAGTC
AGTGGAAAGCGATGGAAGCTCTAAACTCCAGCGGGAGAAAATAACTCCAAACCTTCTTGTGATGCC
TCTAATGGGATTGCTGGAAATTGGAACCACCGAACATCCTGATAATGGCTTGGGAGAAGGGTC
AAGATCAAACACTGGGAGGTATGATGATGGTAAACCGAAAATTCCAGGAACCTTAAATAAGGG
AATTGGTGGAGAACATGGTATAGATAAATTAAATCCAGCAGGAGTTACAAAATAGAAAAGATAAAA
TACAACATCCCTGGATCAAATCCAGAATTATTGCTTCAATAACGAAGGGATCAACGCTCCATCATC
AAGTGGTTCTAAGATTGCTAACATTATCCTTGTAGATTCAAATGGAAATCCTCAAGATGCTCAACTTGA
AAGAGGATTAACACCTCTCCACTTGTATTAAGAAGTGCAGAAGAAGGATTGATT

SP122 amino acid (SEQ ID NO:216)

ETSQDFKEKKTAVIKEKEVVSKNPVIDNNTSNEEAKIKEENSNKSQGDYTDASFVNKNTEPKKEDKVY
IAEFKDKESEGEKAICELSSLKNTKVLTYDRIFNGSAIETTPDNLDKIKQIEGISSVERAQKVOPMMNH

Table 1

ARKEIGVEEAIDYLKSINAPFGKNFDGRGMVISNIDTGTDRHKAMRIDDDAKASMRFKKEDLKGTDKNYWLSDKIPHAFNYYNGGKITVEKYDDGRDYFDPHGMHIAGILLAGNDTEQDIKNFNGIDGIAPNAQIFSYKMYSDAGSGFAGDETMFHAIEDSIKHNVDVSVSSGFTGTGLVGEKYWQAIRALRKAGIPMVATGNYATSASSSSWDLVANNHLKMTDTGNVTRTAHEDAIAVASAKNQTVFDFVNIGGESFKYRNIGAFFDKSKITTNEDEGDKAPSCLKFVYIGKGQDQDLIGLDLRGKIAVMDRITYTKDLKNAFKKAMDKGARAIVMVNTVNYYNRDNWTELPMGYEADEGTKSQVFSISGDDGVKLWNMINPDKKTEVKRNNKEDFKDKLEQYYPIDMSEFNSNKPNVGDEKEIDFKFAPDTDKELYKEDIIVPAGSTSWGPRIDL禄KPDVSAPGKNIKSTLNVINGKSTYGYMSGTSMATPIVAASTVLIRPKLKEMLERPVLKNLKGGDKIDLTSLTKIALQNTARPMMDATSWKEKSQYFASPRQQGAGLINVANALRNEVVATFKNTDSKGLVNSYGSISLKEIKGDKKYFTIKLHNTSNRPLTFKVVASAITTDSLTDRLKLDETYKDEKSPDGKQIVPEIHPKVGANITFEHDFTFTIGANSSFDLNAAVINVGEAKNKNKFVESFIHFESVEAMEALNSSGKKINFQPSLSMPLMGFAGNWNHEPILDKWAEWEGSRSKTLGGYDDDGPCKIPGTLNKGIGGEHGIDKFNPAGVIQRKDNTTSLDQNPELFAFNNEGINAPSSSGSKIANIYPLDSNGNPQDAQLERGLTPSPLVRLRSAEEGLI

SP123 nucleotide (SEQ ID NO:217)

TGTGGTCGAAGTTGAGACTCCTCAATCAATAACAAATCAGGAGCAAGCTAGGACAGAAAACCAAGTAGT
AGAGACAGAGGAAGCTCCAAAAGAAGAACCTAAAACAGAAGAAAGTCCAAGGAAGAACCAAATC
GGAGGTAAACCTACTGACGACACCCTCCTAAAGTAGAAGAGGGAAAGAAGATTCAAGCAGAACCGAGC
TCCAGTGAAGAAGTAGGTGAGAAGTTGAGTCAAACAGAGGAAAAGTAGCAGTTAACGCCAGAAAG
TCAACCATCAGACAAACCAGTGAGGAATCAAAGTTGAACAAGCAGGTGAACCAGTCGCAGCAAGAGA
AGACGAAAAGGCACCAGTCGAGCCAGAAAAGCAACCAGAAGCTCCTGAAGAAGAGAAGGCTGTAGAGGA
AACACCGAAACAAGAAGACTCAACTCCAGATACCAAGGCTGAAGAACTGTAGAACCAAAAGAGGAGAC
TGTAAATCAATCTATTGAACAAACAAAGTTGAAACGCCCTGCTGTAGAAAAAACAAACAGAACCAACAGA
GGAACCAAAAGTTGAAACAAGCAGGTGAACCAGTCGCAGCAAGAGAACAGAACAGGCACCAACGGCAC
AGTTGAGCCAGAAAAGCAACCAGAAGTTCTCTGAAGAAGAGAAGGCTGTAGAGGAAACACCGAAACCAGA
AGATAAAAATAAGGGTATTGGTACTAAAGAACAGTTGATAAAAGTGAGTTAAATAATCAAATTGATAAA
AGCTAGTTCACTTCTCCTACTGATTATTCTACAGCAAGTTACAATGCTCTGGACCTGTTTAGAAAC
TGCAAAAGGTGCTATGCTTCAGAGCCTGTAAAACAGCCTGAGGTAAATAGCGAGACAAATAACTTAA
AACGGCTATTGACGCTCTAACAGTTGATAAAACTGAATTAAACAATAGATTGCAAGATGCCAAAACAAA
GGTAAAAGAACATTACAGTGATAGAAGTTGGCAAAACCTCCAAACTGAAGTTACAAAGGCTGAAAAGT
TGCAGCTAATACAGATGCTAACAAAGTGAAGTTACGAAGCTGTTGAAAAATTACTGCAACTATTGA
AAAATTGGTTGAATTATCTGAAAAGCCAATTAAACATTGACTAGTACCGATAAGAAAATTGGAACG
TGAAGCTGTTGCTAAGTATACTCTAGAAAATCAAACAAAACAAAATCAAATCAATCACAGCTGAATT
GAAAAAAGGAGAAGAACGTTATTAAATACTGTAGTCCTACAGATGACAAGGTAAACACAGAAAATATAAG
CGCTGCATTAAAGAACCTAGAGTACTACAAAGAATACACCCCTATCTACAAACTATGATTTACGACAGAGG
TAACGGTGAAGAAAATCTAGAAAATCAAATATTCAATTAGATCTTAAAAAGTTGAGCTTAA
AAATATTAAACGTACAGATTAAATCAAATACGAAAATGGAAAAGAAACTATGAATCAGTACACTGATAACAA
TATTCTGATGATAAGAGCAATTATTATTAAAATACTTCAAATAATCAGAAAATCAGTACACTGATAACAA
TGTAAAAAATAGAAGAAAATCAGGTTAACGGAAACACCTGTATATAAGTTACAGCAATCGCAGACAA
TTTAGTCTCTAGAACTGCTGATAATAAATTGAAAGAAGAA

SP123 amino acid (SEQ ID NO:218)

VVEVETPQSITNQEQAARTENQVVETEEAPKEEAKTEESPKEEPKSEVKPTDDTLKVEEGKEDSAEPA
PVEEVGGEVESKPEEKVAVKPESQPSDKPAEESKVEQAGEPVAPREDEKAPVEPEKQPEAPEEEKAVEE
TPKQEESTPDTKAETVEPKETVNQSIEQPKVETPAVEKQTEPEEPKVEQAGEPVAPREDEQAPTAP
VEPEKQPEVPEEEKAVEETPKPEDKIKGIGTKEPVDKSELNNQIDKASSVSPTDYSTASYNALGPVLET
AKGVYASEPVKQPEVNSETNKLKTAIDLNVDTKTELNNNTIADAKTKVKEHYSDRSWQNLQTEVTKAEV
AANTDAKQSEVNEAVEKLTATIEKLVELSEKPILTSTDKKILEREAVAKYTLENQNKTCKIKSITAEL
KKGEEVINTVVLTDKVTETISAASFKNLEYYKEYTLSTTMIYDRGNGEETETLENQNQIQLDLKKVELK
NIKRTDLIKYENGKETNESLTTIPDDKSNYYLKITSNNQKTLAVKNIEETTVNGTPVYKVTAIADN
LVSRTADNKFEEE

SP124 amino acid (SEQ ID NO:219)

AACACCTGTATATAAAGTTACAGCAATCGCAGACAATTAGTCTCTAGAACTGCTGATAATAATTGAA
AGAAGAATACGTTCACTATATTGAAAAACCTAAAGTCCACGAAGATAATGTATATTATAATTCAAAGA
ATTAGTGGAAAGCTATTCAAAACGATCCTTCAAAAGAATATCGTCTGGGACAATCAATGACCCTAGAAA
TGTTGTTCTTAATGGAAAATCATATATCACTAAAGAATTACAGGAAAACCTTTAAGTCTGAAGGAAA
ACAATTGCTATTACTGAATTGGAACATCCATTATTAAATGTGATAACAAACGCAACGATAAAATAATGT

Table 1

GAATTTGAAAATGTAGAGATAGAACGTTCTGGTCAAGATAATATTGCATCATTAGCCAATACTATGAA
 AGGTCTTCAGTTATTACAAATGTCAAAATTACAGGCACACTTCAGGTGTAATAATGTTGCTGGATT
 TGTAAATAATATGAATGATGGAACTCGTATTGAAAATGTTGCTTCTTGGCAAACACTACACTCTACAAG
 TGGAAATGGCTCTCATACAGGGGATTGCAGGTACAAACTATAGAGGAATTGTTAGAAAAGCATATGT
 TGATGCTACTATTACAGGAAACAAACACGCCAGCTGTTAGTCTAAAGTAGATTATGGATTAAC
 TCTAGACCATCTATTGGTACAAAAGCTCTCTAAGTGACTCGGTGTAAGGTAAGTAAAGCTGTT
 AAATCCAGTAGAAGTTGGAGCAATAGCAAGTAAGACTTGGCCTGAGGTACGGTAAGTAAAGCTGTT
 CTATGCTAAGATTATCCGGAGAGGAGTTATCGGCTCTAACGACGTTGATGATTCTGATTATGCTAG
 TGCTCATATAAAAGATTATGCGTAGAGGGATATTGCTCAGGTAAAGATCATTAGGAAATCTAA
 AACATTTACTAAATTAACAAAGCTGATGCTAAAGTTACTACTTCAATATTACTGCTGATAA
 ATTAGAAAAGTGTATCTCCTCTTGCAAAACCTTAATGAAGAAAAGCCTATTCTAGTATTCAAGATTA
 TAACGCTGAATATAACCAAGCTATAAAATCTGAAAATTAATACCATTCTACAATAAAAGATTATAT
 TGTATATCAAGGTAAATAAATTAAGAACACCATCTAAACTAAAGAAGTTCTTCTGTTACCGC
 GATGAACAACAATGAGTTATCACAAACCTAGATGAAGCTAATAAAATTATTGTTCACTATGCGGACGG
 TACAAAAGATTACTTTAACCTGTCTAGCAGTGAAGGTTAAGTAAAGAAAATACTATAAC
 TGACTTAGGAATTAAATATACACCTAATATCGTTCAAAAGATAACACTACTCTGTTAATGATATAAA
 ATCTATTTAGAATCAGTAGAGCTCAGTCTCAAACGATGTATCAGCATCTAAATCGATTAGGTGACTA
 TAGAGTTAATGCAATCAAAGATTATTTAGAAGAAAGCTTCACAGATGTTAAAGAAAATTAACAAA
 CCTAATCACAAAATTAGTCAAAAGCAAGAACATCAACTAAATGATTCTCAGCTGCTGCAAATGAT
 TCGTGATAAAGTCGAGAAAACAAAGCAGCTTATTACTAGGTTAACTTACCTAAATCGTTACTATGG
 AGTTAAATTGTTGATGTTAATATTAAAGAATTAAATGCTATTCAAACAGATTCTATGGTAAAAAGT
 TAGCGTATTAGACAGATTAATTGAAATCGGTTCTAAAGAGAACACATTAAAGGTTACGTACATTGACGCATT
 CGCATT

SP124 amino acid (SEQ ID NO:220)

TPVYKVTAIADNLVSRTADNKFEEEVHYIEKPKVHEDNVYYNFKELVEAIQNQPSKEYRLGQSMSARN
 VVPNGKSYITKEFTGKLLSSEGKQFAITELEHPLFNVTNATINNNFENVEIERSQDNIASLANTMK
 GSSVITNVKITGTLGRNNVAGFVNMMNDGTRIENVAFFGKLHSTSGNGSHTGGIAGTNYRGIVRKAYV
 DATITGNKTRASLLVPVKDYGLTLHILGTKALLTESVVKGKIDVSNPVEVGAIAASKTWPGTVNSVS
 YAKIIRGEELFGSNDVDDSDYASAHIKDLYAVEGYSSGNRSFRKSFTKLTKEQADAKVTFNITADK
 LESDLSPLAKLNEEKAYSSIQDYNQAYKNLEKLIPIFYNKDYIVYQGNKLNEHHLNTEVLSVTA
 MNNNEFITNLDEANKIIVHYADGTDYFNLSSEGLSNVKEYTITDLGIKYTPNIVQKDNTTLVNDIK
 SILEVELQSQTMYQHNLRLGDYRVNAIKDLYLEESFTDVKENLTNLITKLVQNEEHQLNDSPAARQMI
 RDKVEKNKAALLLGLTYLNRYYGVKFGDVNIKELMLFKPDFYGEKVSVLDRLLIEIGSKENNIKGSRFD
 AFGQV

SP125 nucleotide (SEQ ID NO:221)

ATTAGACAGATTAATTGAAATCGGTTCTAAAGAGAACACATTAAAGGTTACGTACATTGACGCATT
 CGGTCAAGTATTGGCTAAATATACTAAATCAGGTAAATTAGATGCATTTAAATTATAATAGACAATT
 GTTCACAAATATAGACAATATGAACGATTGGTTATTGATGCTACAGAACGACATGTCTACATCGCAGA
 ACGCGCTCTGAGGTGCAAGAAATTAAAATTCTAAACATCGTCATTGATAATTAAACGAAGTCA
 CCTTAGAAATACTATACTCCCCTACTGAATATTGATAAAAGCACATCTTATTAAATTCAAATTATAA
 TGCAATTGCTTGGTAGTCAGAGCATTAGGTAAAAATTCAATTAGAAGATATTAAAGATATCGTTAA
 CAAAGCTCAGATGGTTATAGAAACTATTATGATTCTGGTATCGCTAGCGCTGATAACGTTAAACA
 ACGACTAAAGAGATGCTTTACTTAGGTGGCTTGGACACCGTGAAGGTACTGATGCTGAAGCATATGCTCA
 CAACGACCGTGCATTACTTAGGTGGCTTGGACACCGTGAAGGTACTGATGCTGAAGCATATGCTCA
 GGGTATGCTACAAACTCTGTTACTGGTAGGGATTGATGAGTTGGTTCTTAGGTATTAAATATGGT
 ATTAAACGAAAAATGATGGGAATCAGGGTATTACAGATCCAAAACACGAGAAGA
 TATTAATAGATATGAAGGGTTATAATGACACTTAACTCTTCTGATGAAATTGAGGCTGAATCTGT
 GATTCTCAACAAATAAGATTAAATAGTCATGGTCAAAAAAATAGATAGAGAACACCGTGATAA
 CAATAATTAAATCAATGGGATAAAATTGCAAATCTAAGTCAGAACAGAGAAAATGAATTAAATTCA
 ATCTGTTAATGATTAGTTGATCAACAATTAGACTAATCGCAATCCAGGTATGGTATCTATAAAC
 CGAAGCAATTAGCTATAACGATCAATCACCTTATGTAGGTGTTAGAATGATGACCGGTATCTACGGAGG
 TAATACTAGTAAAGGTGCTCTGGAGCTGTTCAACACATAATGCTTTAGATTATGGGTTACTA
 CGGATACGAAAATGGGTTCTAGGTATGCTCAAATAAACACAAATCTAAAACAGATGGTGA

Table 1

GTCTGTTCTAAGTGATGAATATATTATCAAGAAAATATCTAACAAACATTTAATACTATTGAAGAATT
 TAAAAAAAGCTTACTTCAGAAAGTAAAGATAAAGCAACGAAAGGATTAACAACATTGAGTAAATGG
 TTCTCCGTTCATCAGATGATTACTGACATTGTTAAAGAAGCTGTTAAAAGATGCCAAC
 TCTTAAACAAGCAACGGTAATAAAACAGTATCTATGAATAATACAGTTAAATTAAAAGAAGCTGT
 TTATAAGAAACTTCTCAACAAACAAATAGCTTAAACTTCATCTTAA

SP125 amino acid (SEQ ID NO:222)

LDRLIEIGSKENNIKGSRTFDAFGQVLAKYTKSGNLDAFLNYNRQLFTNIDNMNDWFIDATEDHVYIAE
 RASEVEEIKNSKHRAFDNLKRSHLRNTILPLLNIDKAHLYLISNYNAIAFGSAERLGKKSLEDIKDIN
 KAADGYRNYYDFWYRLASDNVKQRLRDAVPIWEGYNAPGGWVEKYGRYNTDKVYTPLREFFGPMDKY
 YNYNGTGYAAIYPNSDDIRTDVKYVHLEMVGEYGISVYTHEVVNDRAIYLGGFGHREGTDAEAYAQ
 GMLQTPVTGSGFDEFGSLGINMVFKRKNDGNQWYITDPKTLKTREDINRYMKYNDTLLDEIEAESV
 ISQQNKDLNSAWFKKIDREYRDNNKLNOWDKIRNLQSEEKNELNQSVNDLVDQQLMTNRNPNGNLYKP
 EAISYNDQSPYVGVRMMTGIFYGGNTSKGAPGAVSFKHNAFRWLWGYGYENGFLGYASNKYKQQSKTDGE
 SVLSDEYIICKISNNTFNTIEEFKKAYFKEVKDKATKGTTFEVNGSSVSSYDDLTLFKEAVKKDAET
 LKQEANGNKTSMNNTVKLKEAVYKLLQQTNSFKTSIFK

SP126 nucleotide (SEQ ID NO:223)

TAAGACAGATGAACGGAGCAAGGTGTTGACTTTCCATTCCTACTATACGTGCAAAAAATAAACTCAT
 TGTCAAAAATCTGACTTGACTACTTATCAGTGTAAACGACTTGGCGCAGAAAAGGTGGAGCGCA
 GAAAGGTTGATTCAAGAGACGATGGCAAAGATTGCTACAAAATTCTCCCTGTATCTGCCTAA
 AAATGGGAATTAAATCACAGATTTAAATCAGGACAAGTGGATGCCATTCTTGAAGAACCTGTTTC
 CAAGGGATTGTGGAAATAATCCTGATTAGCAATCGCAGACCTCAATTGAAAAGAGCAAGATGA
 TTCCTACCGCGTAGCCATgAAAAAAGATAGCAAGAAATTGAAGAGGCAGTTGATAAAACCATTCAAAA
 GTTGAAGGAGTCTGGGAATTAGACAAACTATTGAGGAAGCCTTA

SP126 amino acid (SEQ ID NO:224)

KTDERSKVFDSIPYYTAKNKLIVKSDLTTYQSVNDLAQKVGAQKGSIQETMAKDLLQNSLVSLPK
 NGNLITDLKSGQVDAVIFEPPSKGFVENNPDLAIADLNFKEQDDSYAVAMKKDSKQLRQFDKTIQK
 LKESGELDKLIEEAL

SP127 nucleotide (SEQ ID NO:225)

CTGTGAGAATCAAGCTACACCCAAAGAGACTAGCGCTAAAAGACAATCGCCTTGCTACAGCTGGCGA
 CGTGCACCATTTGACTACGAAGACAAGGGCAATCTGACAGGTTGATATCGAAGTTAAAGGCAGT
 AGATGAAAACCTCAGCGACTACGAGATTCAATTCCAAGAACCGCTGGGAGAGCATCTTCCCAGGACT
 TGATTCTGGTCACTATCAGGCTCGGCCAATAACTTGAGTTACACAAAAGAGCGTGTGAAATAACT
 TTACTCGCTTCAATTCCAACAATCCCTCGTCCTTGTCAGCAACAAGAAAATCTTGACTTCT
 TGACCAGATCGCTGGTAAACAAACACAAGAGGATACCGGAACCTCTAACGCTCAATTCAATAACTG
 GAATCAGAAACACACTGATAATCCCGTACAATTAAATTCTGGTGGAGGATATTGGTAAACGAATCCT
 AGACCTGCTAACGGAGAGTTGATTCCTAGTTTGACAAGGTATCCGTTCAAAAGATTATCAAGGA
 CCGTGGTTAGACCTCTAGTCGTTGATTACCTCTGAGATAGCCCCAGCAATTATCATTCTC
 AAGCGACCAAAAGAGTTAAAGAGCAATTGATAAAAGCGCTAAAGAACTCTATCAAGACGGAACCT
 TGAAAAACTCAGCAATACCTATCTAGGTGGTCTTACCTCCAGATCAATCTCAGTTACAA

SP127 amino acid (SEQ ID NO:226)

CENQATPKETSQKTVLATAVDVPPFDYEDKGNLTGFDIEVLKAVDEKLSDYEIQFQRTAWESIFPGL
 DSGHYQAAANNLNSYTKERAEKYLYSLPISNNPLVLSNKKNPLTSLDQIAGKTTQEDTGT SNAQFINNW
 NQKHTDNPATINFSGEDIGKRILD Lange FDFLVFDKVSQKIIKDRGLDLSVVDLPSADSPSNYIIFS
 SDQKEFKEQFDKALKELYQDGTL EKLSNTYLGGSYLPDQSQLQ

Table 2
S. pneumoniae Antigenic Epitopes

SP001

Lys-1 to Ile-10; Leu-13 to Lys-32; Arg-41 to Ile-51; Ser-85 to Glu-97; Ala-159 to His-168; Val-309 to Thr-318; Val-341 to Asn-352; Asn-415 to Met-430; Phe-454 to Asn-464; Ser-573 to Gly-591; Asn-597 to Thr-641; and Asn-644 to Ala-664.

SP004

Thr-9 to Thr-24; Ile-29 to Ala-48; Thr-49 to Val-56; Val-286 to Val-312; Pro-316 to Glu-344; Val-345 to Ile-367; Gln-368 to Val-399; Ser-400 to Glu-431; Asn-436 to Ala-457; Ile-467 to Ala-498; and Thr-499 to Glu-540.

SP006

Glu-1 to Lys-13; Pro-24 to Gly-36; Val-104 to Thr-112; Ala-118 to Asn-130; Trp-137 to Ala-146; Ser-151 to Ile-159; Ile-181 to Leu-188; and Pro-194 to Tyr-202.

SP007

Gly-1 to Asn-7; Tyr-24 to Gln-34; His-47 to Phe-55; Ser-60 to Ala-67; Ala-122 to Leu-129; Leu-221 to Lys-230; Val-236 to Phe-256; and Asp-271 to Gly-283; and Leu-291 to Asp-297.

SP008

Leu-4 to Lys-17; Gln-24 to Leu-32; Asp-60 to Ser-66; Ser-70 to Asp-76; Ala-276 to Lys-283; Asn-304 to Lys-311; and Thr-429 to Pro-437.

SP009

Thr-4 to Glu-11; Leu-50 to Asp-60; Ile-102 to Trp-123; and Ser-138 to Ile-157.

SP010

Phe-34 to Gly-41; Asp-44 to Lys-50; Leu-172 to Val-186; Leu-191 to Val-198; Ser-202 to Ile-209; and Val-213 to Leu-221.

SP011

Asn-2 to Thr-10; Asp-87 to Ala-102; Tyr-125 to Glu-132; Thr-181 to Tyr-189; Arg-217 to Thr-232; Asn-257 to Lys-264; Pro-271 to Ser-278; Tyr-317 to Ala-325; Glu-327 to Pro-337; and Thr-374 to Val-381.

SP012

Gly-1 to Lys-19; Phe-34 to Tyr-41; Leu-109 to Lys-126; and Leu-231 to Glu-247.

SP013

Ala-1 to Lys-12; Ile-42 to Pro-53; Leu-138 to Lys-146; Ile-205 to Lys-217; Ser-235 to Ile-251; and Ser-261 to Tyr-272.

SP014

Gly-1 to Val-16; Leu-35 to Leu-44; Asp-73 to Asp-81; Ile-83 to Asp-92; Glu-145 to Ile-153; Phe-188 to Asn-196; Ser-208 to Phe-215; Ile-224 to Leu-231; and Asn-235 to Ala-243.

SP015

Ser-1 to Pro-16; Asn-78 to Glu-88; Ala-100 to Val-108; Ala-122 to Thr-129; Thr-131 to Ser-137; Leu-201 to Ser-220; and Gly-242 to Val-251.

Table 2
***S. pneumoniae* Antigenic Epitopes**

SP016

Gly-1 to Glu-20; Thr-30 to Val-38; Gln-94 to Asn-105; Lys-173 to Pro-182; Gly-189 to Arg-197; Ser-207 to Val-224; Pro-288 to Leu-298; Ala-327 to Ala-342; and Ser-391 to Ala-402.

SP017

Ser-1 to Thr-12; Ala-36 to Tyr-45; Gln-48 to Ile-54; Lys-59 to Lys-76; Tyr-113 to Leu-138; and Phe-212 to Asp-219.

SP019

Val-97 to Glu-117; Asp-163 to Leu-169; Thr-182 to Thr-191; and Lys-241 to Ser-250.

SP020

Asn-18 to Lys-25; Thr-47 to Glu-60; Trp-75 to Val-84; Gly-102 to Val-110; Pro-122 to Ala-131; and Glu-250 to Pro-258.

SP021

Ser1 to Asp-8; Val-44 to Asp-54; Ala-117 to Val-125; Thr-165 to Thr-173; and Glu-180 to Pro-189.

SP022

Phe-5 to Lys-13; Thr-20 to Ser-36; Glu-59 to Lys-81; Tyr-85 to Gly-93; Trp-94 to Trp-101; and Thr-195 to Trp-208.

SP023

Gln-45 to Glu-59; Asp-69 to Pro-85; Lys-111 to Asn-121; Pro-218 to Ala-228; and Glu-250 to Asn-281.

SP025

Gln-14 to Thr-20; Gly-27 to Phe-33; Gly-63 to Glu-71; and Ile-93 to Phe-102.

SP028

Asp-171 to Pro-179; Tyr-340 to Glu-350; Pro-455 to Tyr-463; and Asp-474 to Pro-480.

SP030

Leu-22 to Leu-37; Trp-81 to Ala-90; Phe-101 to Ala-106; Thr-124 to Tyr-130; and Asn-138 to Glu-144.

SP031

Asp-8 to Val-16; Gly-27 to Thr-35; Gly-178 to Asp-195; Thr-200 to Asp209; Trp-218 to Leu-224; and Lys-226 to Asp-241.

SP032

Ser-9 to Asp-28; Phe-31 to Val-40; Gly-42 to Arg-50; Ile-52 to Leu-60; Asp-174 to Phe-186; Leu-324 to Met-333; and Thr-340 to Asn-347.

SP033

Gln-2 to Ile-13; Phe-46 to Ile-53; and Asp-104 to Thr-121.

SP034

Glu-36 to Gly-43; Ala-188 to Asp-196; Trp-313 to Gly-320; and Leu-323 to Leu-329.

Table 2
***S. pneumoniae* Antigenic Epitopes**

SP035

Arg-19 to Asp-36; Asp-47 to Val-57; Asn-134 to Thr-143; Asp-187 to Arg-196; and Glu-222 to Ser-230.

SP036

Arg-10 to Arg-17; Lys-29 to Ser-39; Ser-140 to Ala-153; Arg-158 to Tyr-169; Asp-175 to Ala-183; Gly-216 to Asn-236; Ala-261 to Leu-270; Arg-282 to Phe-291; and Thr-297 to Ala-305; Pro-342 to Gln-362; Phe-455 to Asp-463; His-497 to Thr-511; Ala-521 to Gly-529; Ile-537 to Val-546; Ile-556 to Ala-568; Pro-581 to Ser-595; Glu-670 to Ala-685; Ser-696 to Ala-705 and Leu-782 to Ser-791.

SP038

Glu-61 to Pro-69; Phe-107 to Ala-115; Leu-130 to Tyr-141; Ala-229 to Glu-237; Ser-282 to Asn-287; Ala-330 to Glu-338; and Tyr-387 to Glu-393.

SP039

Ser-28 to Asp-35; Pro-88 to Pro-96; Leu-125 to Arg-135; Phe-149 to Leu-157; Gln-246 to Val-254; Ala-357 to Thr-362; Gly-402 to Lys-411; and Leu-440 to Pro-448.

SP040

Thr-21 to Ile-30; His-54 to Gln-68; Arg-103 to Leu-117; and Thr-127 to Leu-136.

SP041

Gly-36 to Asp-49; Leu-121 to Val-128; and Ala-186 to Ile-196.

SP042

Gly-11 to Arg-19; Ile-23 to Lys-31; His-145 to Asn-151; Gln-159 to Asp-166; Ile-175 to Asp-181; Gly-213 to Tyr-225; Ile-283 to Val-291; Pro-329 to Glu-364; Arg-372 to Ser-386; Thr-421 to Phe-430; Leu-445 to Val-453; Ile-486 to Ala-497; Asp-524 to Ala-535; His-662 to Gly-674; and His-679 to Gln-702.

SP043

Lys-2 to Asp-12; Val-58 to Asn-68; Ser-87 to Asp-95; and Asp-102 to Lys-117.

SP044

Gln-3 to Lys-11; Asp-37 to Tyr-52; Glu-171 to Leu-191; His-234 to Asn-247; and Asn-283 to Ala-291.

SP045

Tyr-52 to Ile-63; Asp-212 to Gln-227; Ser-315 to Thr-332; Leu-345 to Phe-354; Asp-362 to Val-370; Thr-518 to Asn-539; Ala-545 to Lys-559; and Val-601 to Pro-610.

SP046

Gln-9 to Ala-18; Glu-179 to Lys-186; Lys-264 to Glu-271; Gly-304 to Glu-17; Ser-503 to Asn-511; Asn-546 to Thr-553; and Asn-584 to Asp-591.

SP048

Table 2
***S. pneumoniae* Antigenic Epitopes**

Tyr-4 to Asp-25; Lys-33 to Val-70; Asp-151 to Thr-170; Asp-222 to Val-257; Thr-290 to Phe-301; and Gly-357 to Val-367.

SP049

Ala-23 to Arg-37; Tyr-85 to Gln-95; Glu-106 to Ile-118; Arg-131 to ILE-144; Gly-150 to Ser-162; and Ala-209 to Asp-218.

SP050

Asp-95 to Glu-113; Gly-220 to Gly-228; Asn-284 to Glu-295; Thr-298 to Val-315.

SP051

Lys-16 to Glu-50; Lys-57 to Asn-104; Ser-158 to Trp-173; Asp-265 to Pro-279; Val-368 to Tyr-386; Glu-420 to Ile-454; Pro-476 to Ile-516; Phe-561 to Gly-581; Thr-606 to Gly-664; and Glu-676 to Val-696.

SP052

Asn-41 to Tyr-60; Phe-80 to Glu-103; Ala-117 to Val-139; Ile-142 to Leu-155; Val-190 to Lys-212; Glu-276 to Phe-283; Arg-290 to Ser-299; Leu-328 to Val-351; Gly-358 to Thr-388; Glu-472 to Ala-483; Val-533 to Asn-561; Asp-595 to Val-606; Glu-609 to Val-620; Glu-672 to Ser-691.

SP053

Ala-62 to Val-101; Thr-147 to Leu-174; Lys-204 to Val-216; Gln-228 to Val-262; Ser-277 to Gly-297; Thr-341 to Glyn-368; Thr-385 to Ala-409; Thr-414 to Ser-453; Asn-461 to Leu-490; Glu-576 to Thr-625; Gly-630 to Arg-639; and Asp-720 to Leu-740.

SP054

Glu-7 to Val-28; and Tyr-33 to Glu-44.

SP055

Pro-3 to Val-18; Thr-21 to Lys-53; Val-84 to Lys-99; Ile-162 to Val-172; and Val-204 to Ser-241.

SP056

Val-34 to Tyr-41; Leu-47 to Glu-55; and Pro-57 to Gln-66.

SP057

Asp-1 to Val-25; Pro-29 to Ile-80; Asn-96 to Val-145; and Pro-150 to Glu-172.

SP058

Ala-64 to Thr-70; Leu-82 to His-138; and Val-228 to Asn-236.

SP059

Val-10 to Thr-24; Ser-76 to Pro-102; Ser-109 to Ile-119; Ser-124 to Val-130; Thr-186 to Ile-194; and Asn-234 to Ser-243.

SP060

Leu-70 to Arg-76; and Val-79 to Ile-88.

SP062

Glu-14 to Lys-28; Ser-32 to Lys-46; and Glu-66 to Thr-74.

Table 2
***S. pneumoniae* Antigenic Epitopes**

SP063

Ile-10 to Val-25; Val-30 to Thr-40; Asp-44 to Pro-54; Asn-57 to Val-63; Pro-71 to Val-100; and Thr-105 to Thr-116.

SP064

Pro-12 to Leu-32; Val-40 to Leu-68; Asp-95 to Ala-125; Ser-164 to Glu-184; Ser-314 to Glu-346; Asn-382 to Val-393; Leu-463 to Gln-498; Asn-534 to Lys-548; and Lys-557 to Gly-605.

SP065

Asn-2 to Ile-12; Ala-39 to Thr-61; and His-135 to Ala-155.

SP067

Gly-1 to Thr-13; Asp-203 to Asn-218; and Gly-240 to Asp-253.

SP068

Ser-2 to Ser-12; Val-17 to Gln-26; and Lys-54 to Cys-67.

SP069

Ser-32 to Thr-41; Pro-66 to Glu-80; Thr-110 to Val-122; and Val-147 to Thr-180.

SP070

Lys-6 to Tyr-16; Gln-19 to Ile-27; Arg-50 to Ala-58; Leu-112 to Val-128; Ile-151 to Asn-167; Leu-305 to Phe-321.

SP071

Gln-92 to Asn-158; Gln-171 to Gln-188; Val-204 to Val-240; Thr-247 to Ala-273; Glu-279 to Thr-338; Pro-345 to Glu-368; Asn-483 to Lys-539; Val-552 to Ala-568; Glu-575 to Ser-591; Ser-621 to Gly-640; Gln-742 to Gly-758.

SP072

Val-68 to Tyr-81; Tyr-86 to Val-121; Leu-127 to Gly-140; Gly-144 to Ala-155; Gln-168 to Val-185; Asp-210 to Try-241; Glu-246 to Thr-269; Lys-275 to Tyr-295; Gly-303 to Pro-320; Arg-327 to Ile-335; Thr-338 to Thr-364; Tyr-478 to Phe-495; and Tyr-499 to Arg-521.

SP073

Glu-37 to Val-45; Glu-55 to Val-68; Thr-104 to Thr-119; Ile-127 to Tyr-135; Asn-220 to Ile-232; Thr-237 to Ala-250; Ser-253 to Ala-263; Glu-284 to Ile-297; and Met-438 to Asn-455.

SP074

Gly-2 to Ala-12; Gly-96 to Ile-110; and Thr-220 to Phe-239.

SP075

Phe-33 to Tyr-42; Gln-93 to Gly-102; and Val-196 to Asp-211.

SP076

Ser-64 to Leu-76; and Phe-81 to Ala-101.

SP077

Asp-1 to Glu-12; Tyr-26 to Val-36; and Val-51 to Try-62.

Table 2
***S. pneumoniae* Antigenic Epitopes**

SPO78

Ala-193 to Ile-208; Tyr-266 to Asn-275; Glu-356 to Leu-369; Ala-411 to Gly-422; Ser-437 to Pro-464; Thr-492 to Glu-534; and Glu-571 to Gln-508.

SPO79

Gly-11 to Leu-20; Lys-39 to Leu-48; Leu-72 to Val-85; Asn-147 to Ser-158; Ile-178 to Asp-187; Tyr-189 to Gln-201; and Leu-203 to Ala-216

SPO80

Ser-2 to Glu-12; Gln-42 to Ala-51; Ala-116 to Ser-127; Phe-131 to Asp-143; and Ile-159 to Ile-171.

SPO81

Gln-2 to Leu-9; Gln-49 to Cys-57; Ile-108 to Val-131; Gly-134 to Leu-145; and Trp-154 to Cys-162.

SPO82

Ile-101 to Ser-187; Gly-191 to Asn-221; Arg-225 to Arg-236; Tyr-239 to Leu-255; and Gly-259 to Arg-268.

SPO83

Ser-28 to Asp-70.

SPO84

Leu-42 to Gln-66; Thr-69 to Lys-81; Glu-83 to Arg-92; and Gly-98 to Asn-110.

SPO85

Gln-2 to Val-22; and Ser-45 to Glu-51.

SPO86

Leu-18 to Gln-65; and Lys-72 to Val-83.

SPO87

Ser-45 to Leu-53; and Thr-55 to Gln-63

SPO88

Pro-8 to Ile-16; Leu-25 to Trp-33; Tyr-35 to Gln-43; Leu-51 to Val-59; Val-59 to Arg-67; Thr-55 to Tyr-63; Asn-85 to Gly-93; Thr-107 to Leu-115; Leu-115 to Trp-123; Ala-121 to Thr-129; Tyr-153 to Ala-161; His-176 to Gly-184; Tyr-194 to Ala-202; Ala-217 to Gly-225; and Asn-85 to Gly-93.

SPO89

Trp-43 to Ala-51; Gln-68 to Phe-76; Val-93 to Gln-101; Phe-106 to Phe-114; Lys-117 to Lys-125; Trp-148 to Phe-156; Glu-168 to Gln-176; Ile-193 to Tyr-201; Lys-203 to Lys-211; Glu-212 to Gln-220; Ile-237 to Tyr-245; Lys-247 to Lys-255; Glu-256 to Gln-264; Met-275 to Gly-283; Lys-286 to Gly-294; Trp-292 to Glu-300; Asp-289 to Thr-297; Tyr-315 to Ser-323; Asp-334 to Lys-342; Pro-371 to Arg-379; Arg-485 to Asn-493; Lys-527 to Arg-535; Phe-537 to Met-545; and Tyr-549 to Glu-557.

SPO90

Table 2
S. pneumoniae Antigenic Epitopes

Phe-2 to Gln-10; Gln-13 to Lys-21; Tyr-19 to Glu-27; Tyr-39 to Met-47; Pro-65 to Leu-73; Tyr-121 to His-129; Lys-147 to Ile-155; Gly-161 to Lys-169; Gly-218 to Trp-226; Asp-230 to Thr-238; Tyr-249 to Ala-257; and Ala-272 to Gly-280.

SP091

Ser-19 to Ser-27; Asn-25 to Thr-33; Val-51 to Gln-59; Asn-75 to Asn-83; Ile-103 to Trp-111; Tyr-113 to Ala-121; Leu-175 to Asn-183; Glu-185 to Trp-193; Ala-203 to Tyr-211; Val-250 to Phe-258; Asn-260 to Thr-268; Ser-278 to Asp-286; Tyr-305 to Leu-313; Asn-316 to Gly-324; Asn-374 to Asp-382; Asn-441 to Gly-449; and Ser-454 to Gln-462.

SP092

Arg-95 to Glu-103; Ala-216 to Val-224; Leu-338 to Glu-346; Pro-350 to Ala-358; Pro-359 to Ala-367; Pro-368 to Ala-376; Pro-377 to Ala-385; Pro-386 to Ala-394; Pro-395 to Ala-403; Pro-350 to Ala-358; Gln-414 to Lys-422; Pro-421 to Asn-429; Trp-465 to Tyr-473; Phe-487 to Tyr-495; Asn-517 to Gly-525; Trp-586 to Tyr-594; Phe-608 to Tyr-616; and Asp-630 to Gly-638.

SP093

Gln-30 to Ile-38; Gln-52 to Val-60; Ala-108 to His-116; Tyr-133 to Glu-141; Tyr-192 to Ala-200; and Phe-207 to Ser-215.

SP094

Ala-87 to Val-95; Leu-110 to Cys-118; Gln-133 to Leu-141; Ser-185 to Leu-193; Ile-195 to Gly-203; Asp-206 to Gln-214; Ser-211 to Gly-219; Ile-241 to Thr-249.

SP095

Arg-1 to Gln-9; Phe-7 to Asn-15; Thr-21 to Asn-30; Leu-46 to Phe-54; and Ser-72 to Met-80.

SP096

Gly-29 to Ile-37; Glu-52 to Ser-60; and Leu-64 to Gly-72.

SP097

Ala-11 to Thr-19; Glu-53 to Glu-61; Ser-91 to Lys-99; Thr-123 to Gln-131; and Gly-209 to Lys-217.

SP098

Thr-3 to Ser-11; Gly-38 to Phe-46; Tyr-175 to Asn-183; Met-187 to Cys-195; Gln-197 to Leu-205; Tyr-307 to Gln-315; Gly-318 to Tyr-326; Asn-348 to Val-356; Lys-377 to Pro-385; and Leu-415 to Val-423.

SP099

Arg-19 to Gly-27; Asp-76 to Ser-84; Val-90 to Lys-98; Phe-165 to Val-173; Leu-237 to Pro-245.

SP100

His-111 to Gln-119; Ser-141 to His-149; Asp-154 to Ser-162; Gln-158 to Gln-166; Asp-154 to Gln-166; Lys-180 to Gln-188; and Ser-206 to Gln-214.

SP101

Table 2
***S. pneumoniae* Antigenic Epitopes**

Glu-23 to Glu-31; Glu-40 to Val-48; Gln-50 to Ser-58; Thr-61 to Ile-69; Leu-82 to Ile-90; Ala-108 to Leu-116; Gln-121 to Pro-129; and Leu-130 to Thr-138.

SP102

Asp-32 to His-40; Arg-48 to Lys-56; and Asp-102 to Thr-110.

SP103

Arg-5 to Gln-13; Gln-22 to Leu-30; Arg-151 to Gln-159; Arg-167 to Gln-175; Pro-189 to Glu-197; Gly-207 to Leu-215; Ser-219 to Gln-227; Ser-233 to Ser-241; Pro-255 to Asp-264; Lys-272 to Gly-280; Ser-318 to Val-326; Thr-341 to Asp-351; Asn-356 to Thr-364; Val-370 to Tyr-378; Ile-379 to Gln-387; and Met-435 to Tyr-443.

SP105

Asn-28 to Pro-36; Thr-77 to Phe-85; Arg-88 to Val-96; Gly-107 to Phe-115; Asp-169 to Asp-177; His-248 to Ser-256; and Ser-274 to Ala-282.

SP106

Val-10 to Thr-18; Ile-62 to Tyr-70; Ile-71 to Pro-79; Lys-86 to Gln-94; Lys-100 to Thr-108; Phe-132 to Leu-140; and Asp-145 to Arg-153.

SP107

Asp-33 to Val-41; and Arg-63 to Gln-71.

SP108

Lys-9 to Gln-17; Leu-44 to Ser-52; Ser-63 to Phe-71; Tyr-109 to Ser-117; Ile-183 to Ile-191; Pro-194 to Leu-202; Gly-257 to Gln-265; Ala-323 to Thr-331; and Leu-381 to Tyr-389.

SP109

Asn-2 to Gln-10; Ala-65 to Lys-73; Leu-76 to Glu-84; Thr-111 to Asp-119; Gln-116 to Tyr-124; Tyr-130 to Val-138; Asp-173 to Gly-181; Asp-196 to Ser-204; Asn-231 to Ser-239; Phe-252 to Ser-260; Phe-270 to Tyr-278; Val-291 to His-299; Asp-306 to Leu-314; and Pro-327 to Gly-335.

SP110

Ser-8 to Glu-16; Ile-37 to Val-45; Ala-107 to Val-115; and Gly-122 to Thr-130.

SP111

Asp-19 to Glu-28; Leu-43 to Ala-51; Asn-102 to Phe-110; Gln-133 to Ser-141; Phe-162 to Asp-170; Tyr-194 to Met-202; and Asp-273 to Ser-281.

Table 2
***S. pneumoniae* Antigenic Epitopes**

SP112

Asp-3 to Gln-11; Gly-21 to Ile-29; Ala-46 to Arg-54; Arg-98 to Arg-106; Thr-114 to Val-122; Gln-133 to Asn-141; and Leu-223 to Thr-231.

SP113

Asn-19 to Gly-27; Arg-54 to Ser-62; Val-69 to Gln-77; Ser-117 to Asn-125; Gly-164 to Leu-172; Tyr-193 to Ser-201; Cys-303 to Phe-311; His-315 to Ile-323; Arg-341 to Cys-349; Ile-347 to Ser-355; Arg-403 to Phe-411; Gln-484 to Pro-492; Ser-499 to Leu-507; Ile-541 to Thr-549

Asn-622 to Ile-630; and Glu-645 to Gly-653.

SP114

Gly-17 to Leu-25; His-40 to Gln-48; Arg-49 to Arg-57; Ile-65 to Pro-73;
 Asn-101 to Asp-111; Gly-128 to Cys-136; Phe-183 to Thr-191; and
 Pro-268 to Ile-276.

SP115

Met-8 to Ser-16; Tyr-24 to Leu-32; Cys-68 to Leu-76; Ser-100 to Pro-108; Thr-193 to Thr-201; Gly-238 to Pro-250; Thr-280 to Phe-288; Pro-303 to Asn-312; Trp-319 to Leu-328; Leu-335 to Leu-344; Lys-395 to Ala-403; Asn-416 to Gln-424; Tyr-430 to Ser-438; Val-448 to Leu-456; Leu-460 to Thr-468; Pro-502 to Thr-510; Lys-515 to Ile-524; Gln-523 to His-532; Tyr-535 to Thr-543; Ser-559 to Pro-567; Thr-572 to Asn-580;
 Val-594 to Arg-602; Arg-603 to Asn-611; Thr-620 to Trp-628; and
 Tyr-644 to Arg-653.

SP117

Ala-6 to Gly-14; Ile-19 to Thr-27; Thr-99 to Leu-107; Ser-117 to Asp-125; His-131 to Val-139; Ile-193 to Gly-201; and Val-241 to Gln-249.

SP118

Ser-8 to Trp-23; His-46 to Ala-54; Asn-93 to Gly-101; Val-100 to Ser-108; Arg-155 to Asp-163; and His-192 to Leu-200.

SP119

Tyr-46 to Lys-54; Ser-93 to Ser-101; Trp-108 to Asn-116; Val-121 to Glu-129; and Tyr-131 to Gln-139.

SP120

Ala-57 to Lys-65; Leu-68 to Glu-76; Thr-103 to Tyr-116; Tyr-122 to Val-130; His-163 to Gly-173; Asp-188 to Ser-196; Ser-222 to Ser-231; Phe-244 to Ser-252; Pro-262 to Tyr-270; Val-283 to His-291; and Asp-298 to Leu-306.

SP121

Ser-3 to Ala-11; Asp-13 to Leu-21; Ser-36 to Val-44; and Gln-136 to Met-144.

SP122

Asn-28 to Lys-36; Glu-39 to Thr-50; Val-54 to Lys-62; Asn-106 to Leu-114; Phe-159 to Gly-167; Asn-172 to Arg-180; Glu-199 to Asn-207;

Table 2
***S. pneumoniae* Antigenic Epitopes**

Lys-230 to His-241; Asn-252 to Gly-263; Met-278 to Ala-287; Thr-346 to Asp-354; Lys-362 to Thr-370; Asp-392 to Asn-405; Asp-411 to Ala-424; Gly-434 to Gly-443; Tyr-484 to Glu-492; Ile-511 to Leu-519; Asn-524 to Asp-538; Glu-552 to Ile-567; Val-605 to Lys-613; Phe-697 to Ala-705; Phe-722 to Leu-730; Leu-753 to Leu-761; Asp-787 to Gln-795; Leu-858 to Asn-866; Ala-892 to Thr-901; Gly-903 to Ile-913; Ile-921 to Asn-931; Asn-938 to Pro-951; Gly-960 to Lys-970; Leu-977 to Asp-985; and Leu-988 to Pro-996.

SP123

Val-4 to Asn-12; Glu-47 to Leu-55; Lys-89 to Glu-100; Ser-165 to Thr-173; Lys-234 to Val-242; Ser-258 to Ser-266; Glu-284 to Asn-292; Tyr-327 to Leu-335; Tyr-457 to Thr-465; Tyr-493 to Glu-501; Thr-506 to Tyr-514; Lys-517 to Thr-525; Asn-532 to Gly-540; and Arg-556 to Glu-564.

SP124

Arg-16 to Glu-24; Gln-52 to Arg-60; Asn-69 to Tyr-77; Glu-121 to Asn-129; Ala-134 to Val-142; Thr-151 to Ala-159; Asn-164 to Glu-172; His-181 to His-189; Thr-210 to Ala-218; Ser-244 to Val-252; Phe-287 to Tyr-297; Ser-312 to Thr-323; His-433 to Tyr-441; Ser-445 to Asn-453; Asn-469 to Thr-477; Asn-501 to Asn-509; Gln-536 to Ala-547; and Gln-608 to Asp-621.

SP125

Ser-9 to Asp-21; Ala-28 to Leu-36; Asn-49 to Phe-57; Val-137 to Arg-145; Asn-155 to Leu-163; Glu-183 to Asp-191; Gly-202 to Tyr-210; Pro-221 to Asp-229; Phe-263 to Ala-271; Phe-300 to Gln-308; Asp-313 to Glu-321; Asn-324 to Asp-332; Ile-346 to Asn-354; Asp-362 to Lys-370; Met-402 to Gly-410; Gly-437 to Gly-445; Ser-471 to Glu-483; Gly-529 to Asp-537; Gln-555 to Val-563; and Leu-579 to Lys-587.

SP126

Leu-22 to Thr-30; Val-65 to Leu-73; and Thr-75 to Asp-83.

SP127

Glu-2 to Ala-12; Asp-28 to Thr-36; Val-105 to Thr-113; Lys-121 to Thr-129; Trp-138 to Pro-146; Ser-152 to Ile-160; Lys-180 to Asp-188; Leu-194 to Asn-202; and Gly-228 to Thr-236.

Table 3
***S. pneumoniae* ORF Cloning Primers**

Primer	Name	SEQ ID	Sequence	RE
	SP001A	NO:227	GACTGGATCCTAAAATCTACGACAATAAAATC	Bam HI
	SP001B	NO:228	CTGAGTCGACTGGTTGTGCTGGTTGAG	Sal I
	SP004A	NO:229	GTCAGGATCCAAATTACAATACGGACTATG	Bam HI
	SP004B	NO:230	CAGTGTGACTAATCTAGGTCGGAAAC	Sal I
	SP006A	NO:231	GACTGGATCCTGAGAACATCAAGCTACACCCAAAGAG	Bam HI
	SP006B	NO:232	AGTCAAGCTTTGTAACTGAGATTGATCTGG	Hind III
	SP007A	NO:233	GACTGGATCCTGGTAACCGCTCTCTCGTAACGCAGC	Bam HI
	SP007B	NO:234	AGTCAAGCTTTTCAGGAACCTTACGCTTCC	Hind III
	SP008A	NO:235	AGTCAGATCTTGTGGAAATTGACAGGTAACAGCAAAAAAGCTGC	Bgl II
	SP008B	NO:236	ACTGAAGCTTTTGTGTTTCAAGAACATTACATCG	Hind III
	SP009A	NO:237	GACTGGATCCTGGTCAAGGAACCTGCTCTAAAGAC	Bam HI
	SP009B	NO:238	AGTCAAGCTTCACAAATTCTGGTGAAGCC	Hind III
	SP010A	NO:239	GACTGGATCCTAGCTCAGGTGGAAACGCTGGTTCATCC	Bam HI
	SP010B	NO:240	AGTCAAGCTTATCAACTTTCCACCTTCACAAACC	Hind III
	SP011A	NO:241	GTCAAGATCTCTCCAACATGGTAAATCTGCGGATGG	Bgl II
	SP011B	NO:242	AGTCCTGCAGATCCACATCCGCTTCATCGGGTTAAAGAAGG	Pst I
	SP012A	NO:243	GACTGGATCCTGGGAAAAATTCTAGCAGAAACTAGTGG	Bam HI
	SP012B	NO:244	GTCACTGCAGCTGTCCTCTTTACTCTTGGTGC	Pst I
	SP013A	NO:245	GACTGGATCCTGCTAGCGGAAAAAAAGATAACACTCTGG	Bam HI
	SP013B	NO:246	CTGAAAGCTTTTGCCAATCCTCAGCAATCTGTC	Hind III
	SP014A	NO:247	GACTAGATCTGGCTAAAAATACAGCTTCAAGTCC	Bgl II
	SP014B	NO:248	AGTCCTGCAGGTTTGTGCTGGTATTGGTGC	Pst I
	SP015A	NO:249	GACTGGATCCTAGTACAAACTCAAGCACTAGTCAGACAGAG	Bam HI
	SP015B	NO:250	CAGTCTGCAGTTCAAAGCTTTGTATGTC	Pst I
	SP016A	NO:251	GACTGGATCCTGGCAATTCTGGCGGAAGTAAAGATGC	Bam HI
	SP016B	NO:252	AGTCAAGCTTGTTCATAGCTTTTGATTGTTTCG	Hind III
	SP017A	NO:253	GACTGGATCCTCACAAGAAAAACAAAAATGAAGATGG	Bam HI
	SP017B	NO:254	AGTCAAGCTTATCGACGTAGTCTCCGCCCTTC	Hind III
	SP019A	NO:255	GACTGGATCCGAAAGGTCTGTGCTAAATAATCTTAC	Bam HI
	SP019B	NO:256	AGTCAAGCTTAGAGTTAACATGGTGTGCTGCCAATAGG	Hind III
	SP020A	NO:257	GACTGGATCCAAACTCAGAAAAGAAAGCAGACAATGC	Bam HI
	SP020B	NO:258	AGTCAAGCTTCCAAACTGGTTGATCCAAACCATCTG	Hind III
	SP021A	NO:259	GACTGGATCCTCGAAAGGGTCAGAAGGTGCAGACC	Bam HI
	SP021B	NO:260	AGTCAAGCTCTGTAGGCTGGTGTGCCAGTTGC	Hind III
	SP022A	NO:261	CTGAGGATCCGGGGATGGCAGCTTTAAAAATC	Bam HI
	SP022B	NO:262	CAGTAAGCTTACCCATTCAACATTAC	Hind III
	SP023A	NO:263	CAGTGGATCCAGACGAGCAAAAAATTAAG	Bam HI
	SP023B	NO:264	TCAGAACCTTGTACCCATTCAACATT	Hind III
	SP025A	NO:265	GACTGGATCCCTGTGGTGGAAAGAAACTAAAAAG	Bam HI
	SP025B	NO:266	CTGAGTCGACAATATTCTGTAGGAATGCTCGAATTG	Sal I
	SP028A	NO:267	CTGAGGATCCGACTTTAACAAATAAAACTATTGAAGAG	Bam HI
	SP028B	NO:268	GTCACTGCAGGTTGTCACCTCCAAAATCACGG	Pst I
	SP030A	NO:269	GACTGGATCCCTTACAGGTAAACAACATACAAGTCGG	Bam HI
	SP030B	NO:270	CAGTAAGCTTTCGAAGTTGGCTCAGAATTG	Hind III
	SP031A	NO:271	GACTGGATCCCCAGGGCTGATACAAGTATCGCA	Bam HI
	SP031B	NO:272	CAGTAAGCTTATCTGCAGTATGGCTAGATGG	Hind III
	SP032A	NO:273	GACTGGATCCGTCTGTATCATTGAAAACAAAGAAAC	Bam HI
	SP032B	NO:274	CAGTCTGCAGTTTACTGGTGTGCTTGT	Pst I
	SP033A	NO:275	ACTGAGATCTGGTCAAAGGAAAGTCAGACAGGAAAGG	Bgl II
	SP033B	NO:276	CAGTAAGCTTATTCCCTGAGCTTTTGATAAAAGGTTGCGCA	Hind III
	SP034A	NO:277	ACTGGGATCCGAAGGATAGATATATTAGCATTGAGAC	Bam HI
	SP034B	NO:278	AGTCAAGCTTCCATGGTATCAAAGGCAAGACTTGG	Hind III
	SP035A	NO:279	GTCAGGATCCGGTAGTTAAAGTGGTATTAAACGG	Bam HI
	SP035B	NO:280	AGTCAAGCTTGCACATTGCGAAGTATTCAAGAG	Hind III
	SP036A	NO:281	AGTCGGATCCTTCTACAGAGTTGGACTGTATCAAGC	Bam HI

Table 3
***S. pneumoniae* ORF Cloning Primers**

Primer	Name	SEQ ID	Sequence	RE
	SP036B	NO:282	AGTCAAGCTGTTATTTTCCCTACTTACAGATGAAGG	Hind III
	SP038A	NO:283	AGTCGGATCCTACTGAGATGCATCATAATCTAGGAGC	Bam HI
	SP038B	NO:284	TCAGCTCGAGTTCTTGACATCTCCATCATAAGTCGC	Xho I
	SP039A	NO:285	GACTGGATCCGGTTTGAGAAAGTATTGCAAGGGG	Bam HI
	SP039B	NO:286	CAGTAAGCTGGATTTTATGGATGCAATTCTTGG	Hind III
	SP040A	NO:287	GACTGGATCCGACAACATTACTATCCATACAGTAGTCAGC	Bam HI
	SP040B	NO:288	GACTAAGCTGGCATAAAGGTGCAATTCTGGATTAATTGG	Hind III
	SP041A	NO:289	GACTGGATCCGCTAACAGAAAGAGTGGATG	Bam HI
	SP041B	NO:290	GACTAAGCTTTCATTTAAATTGACTATGCGCCCG	Hind III
	SP042A	NO:291	GACTGGATCCTGTTCTATGAACTTGGTCGTAC	Bam HI
	SP042B	NO:292	CATGAAGCTTATCCTGGATTTTCCAAGTAAATCT	Hind III
	SP043A	NO:293	GACTGGATCCTATAAAGGTGAATTAGAAAAAGG	Bam HI
	SP043B	NO:294	GACTAAGCTTCTTATTAGGATTGTTAGTTG	Hind III
	SP044A	NO:295	GACTGGATCCGAATGTCAGGCTCAAGAAAGTTCAAGG	Bam HI
	SP044B	NO:296	GACTAAGCTTTCCCTGATGGAGCAAAGTAATACC	Hind III
	SP045A	NO:297	GACTGGATCCCTGGGTGAACCCATATCCAGCTCCTTCC	Bam HI
	SP045B	NO:298	GACTGTCGACTTCAGCTTGTATCTGGGTTGC	Sal I
	SP046A	NO:299	GACTGGATCCTAGTGTAGGTTGGCAAGGAAACAG	Bam HI
	SP046B	NO:300	ACTGCTGCAGATCTTGCCACCTAGCTCTCAT	Pst I
	SP048A	NO:301	GTCAGGATCCTGGGATTCAATATGTCAGAGATGATACTAG	Bam HI
	SP048B	NO:302	CTAGAAGCTTACGCACCCATTCAACCATTATCATTG	Hind III
	SP049A	NO:303	GTCAGGATCCGATAATAGAGAACATTAAAACC	Bam HI
	SP049B	NO:304	AGTCAAGCTTGACAAAATCTTGAACACTCCTCTGGTC	Hind III
	SP050A	NO:305	GTCAGGATCCAGATTTGTCGAGGAGTGTAC	Bam HI
	SP050B	NO:306	AGTCAAGCTTCCCTTTTACCCCTACGAATCCAGG	Hind III
	SP051A	NO:307	GACTGGATCCATCTGTAGTTATGCGGATGAAACACTTATTAC	Bam HI
	SP051B	NO:308	GACTGTCGACGCTTGGTAGAGATAGAACGTAC	Sal I
	SP052A	NO:309	GACTGGATCCTACTTGGTATCGTAGATACAGCCGGC	Bam HI
	SP052B	NO:310	AGTCAAGCTTGTAAATTGCGTACCTCTAACCGAC	Hind III
	SP053A	NO:311	GACTGGATCCAGCTAAGGTGACATGGATGCGATTG	Bam HI
	SP053B	NO:312	GACTGTCGACCTGGCTTATTAGTTGACTAGC	Sal I
	SP054A	NO:313	CAGTGGATCCCTATCACTATGAAATAAAGAGA	Bam HI
	SP054B	NO:314	ACTGAAGCTTCTGCCCTGTTGAGGCA	Hind III
	SP055A	NO:315	CAGTGGATCCGAGACTCCTCAATCAATAACAAA	Bam HI
	SP055B	NO:316	ACGTAAGCTATAATCAGTAGGAGAAACTGAAC	Hind III
	SP056A	NO:317	CAGTGGATCCGGATGCTCAAGAAACTGCG	Bam HI
	SP056B	NO:318	GACTAAGCTTGCCTCTCATTCTGCTTCC	Hind III
	SP057A	NO:319	CAGTGGATCCGACAAAGGTGAGACTGAG	Bam HI
	SP057B	NO:320	ACGTAAGCTTATTCTTAATTCAAGTGTCTCTG	Hind III
	SP058A	NO:321	GACTGGATCCAATCAATTGGTAGCACAAAGATCC	Bam HI
	SP058B	NO:322	CAGTGTGACATTAGGAGCCACTGGCTC	Sal I
	SP059A	NO:323	CAGTGGATCCCACAGTCAGCTTCAGGAAC	Bam HI
	SP059B	NO:324	GACTCTGCAGTTAATCTGTCCAGGTGG	Pst I
	SP060A	NO:325	GACTGGATCCATTGATGTCGGATGAAAG	Bam HI
	SP060B	NO:326	GACTAAGCTTCATTGTCTTGGTATTCGCA	Hind III
	SP062A	NO:327	CAGTGGATCCGGAGAGTCGATCAAAACTAG	Bam HI
	SP062B	NO:328	GTCACTGCACTTGTCTCGTCAAGGTTC	Pst I
	SP063A	NO:329	CAGTGGATCCATGGACAAACAGGAAACTGGGAC	Bam HI
	SP063B	NO:330	CAGTAAGCTTATTAGCTCTGTACCTGTGTTG	Hind III
	SP064A	NO:331	GACTGGATCCGATGGCTCAATCCAACCCAGGTCAAGTC	Bam HI
	SP064B	NO:332	GACTCTGCAGCATAGCTTATCCTCTGACATCATCGTATC	Pst I
	SP065A	NO:333	GACTGGATCTTCCAATCAAAACAGGCAGATGG	Bam HI
	SP065B	NO:334	GACTAAGCTTGAGTCCCAGTCCAAGGCA	Hind III
	SP067A	NO:335	AGTCGGATCCTATCACAGGATCGAACGGTAAGACAACC	Bam HI
	SP067B	NO:336	ACTGGTCGACTTCTTTAACTCCGCTACTGTGTC	Sal I

Table 3
S. pneumoniae ORF Cloning Primers

Primer	Name	SEQ ID	Sequence	RE
	SP068A	NO:337	CAGTGGATCCAAGTTCATCGAAGATGGTTGGGAAGTCC	Bam HI
	SP068B	NO:338	GATCGTCGACCCGCTCCCACATGCTAACCTT	Sal I
	SP069A	NO:339	TGACGGATCCATCGTAGCTAGTGAATGCAAGAAAG	Bam HI
	SP069B	NO:340	TGACAAGCTTATTGTTTGAACTAGTTGCTTCGT	Hind III
	SP070A	NO:341	GACTGGATCCGACCAGATGGGCACAAGGTTCAGGG	Bam HI
	SP070B	NO:342	TGACAAGCTTAACCTGTAACGAACAGTTCAATCTG	Hind III
	SP071A	NO:343	GACTAGATCTTTAACCCAACCTGTTGGTACTTCC	Bgl II
	SP071B	NO:344	TGACAAGCTTGTAGGTGTTACATTTGACCGTC	Hind III
	SP072A	NO:345	ACTGAGATCTTTAACCCAACCTGTTGGTACTTTC	Bgl II
	SP072B	NO:346	GACTAAGCTTCTACGATAACGATCATTCTTTACC	Hind III
	SP073A	NO:347	GACTGTCGACTCGTAGATATTTAAGTCTAAGTGAAGCG	Sal I
	SP073B	NO:348	AGTCAAGCTTGTAGGTGTTACATTTGCAAGTC	Hind III
	SP074A	NO:349	GACTGGATCCCTTGGTTGAAGGAAGTAAG	Bam HI
	SP074B	NO:350	TGACCTGCAGACGATTGGAAAAATGGAGGTGTATC	Pst I
	SP075A	NO:351	CAGTGGATCCCTACTACCTCTCGAGAGAAAG	Bam HI
	SP075B	NO:352	ACTGAAGCTTTCGCTTTTACTCGTTGACA	Hind III
	SP076A	NO:353	CAGTGGATCCTAAGTCAAAAGTCAGACCGCTAAGAAAGTGC	Bam HI
	SP076B	NO:354	CAGTAAGCTTGTAGGTATCCAAACTGGTTGTGATG	Hind III
	SP077A	NO:355	TGACAGATCTTGACGGGTCTCAGGATCAGACTCAGG	Bgl II
	SP077B	NO:356	TGACAAGCTTCAAAGACATCCACCTCTTGACCTTG	Hind III
	SP078A	NO:357	GACTGGATCCTAGAGGCTTGCCAAATGGGGAAAGG	Bam HI
	SP078B	NO:358	GTCAGTCGACTTGTGTAACACTTTGAGGTTGGTACC	Sal I
	SP079A	NO:359	CAGTGGATCCTCAAAAAGAGAAGGAAAACCTGG	Bam HI
	SP079B	NO:360	CAGTCTGCAGTTCTCAACAAACCTGTTCTTG	Pst I
	SP080A	NO:361	CAGTGGATCCACGTTCTATTGAGGACCACTT	Bam HI
	SP080B	NO:362	CAGTAAGCTTCTCTCAGTCATTCTTTCC	Hind III
	SP081A	NO:363	GACTGGATCCCGCTCAAAATACCAGAGGTGTTCA	Bam HI
	SP081B	NO:364	GACTAAGCTTAGTACCATGGGTGACAGGTTGAA	Hind III
	SP082A	NO:365	CTGAGGATCCAATTGTACAATTAGAAAAGATAGC	Bam HI
	SP082B	NO:366	TGACAAGCTTGCCTTGACTAGGTTCTGCAATGCC	Hind III
	SP083A	NO:367	GACTGGATCCTCTGACCAAGCAAAAAGAAGCAGTCATGA	Bam HI
	SP083B	NO:368	TCAGCAGCTGATCATTGACTTTACGATTTGCTCC	Bgl II
	SP084A	NO:369	GACTGGATCCGTCCGCTCTGTCAGTCCACTTTCAACG	Bam HI
	SP084B	NO:370	TCAGAAGCTTATTTTGTCTCTTAATGCGTT	Hind III
	SP085A	NO:371	GACTGGATCCGGACAAATTCAAAAAATAGGCAAGAGG	Bam HI
	SP085B	NO:372	GTCAAAGCTTGGCTCTTGATTGCCAACACTG	Hind III
	SP086A	NO:373	GACTGGATCCTCGTACACGCAACAAAGCGAGCAAAAGG	Bam HI
	SP086B	NO:374	GACTAAGCTTACTTTCTTCTTCCACACGA	Hind III
	SP087A	NO:375	CAGTGGATCCGAACCGACAAGTCGCCACTATCAAGACT	Bam HI
	SP087B	NO:376	CTGAAAGCTTGAATTCTCTTCTTCACTCAGGCT	Hind III
	SP088A	NO:377	TCGAGGATCCGGTTGTCGGCTGCCAATATATCCCGT	Bam HI
	SP088B	NO:378	CAGTAAGCTTCCGAACCCATTGCCATTATAGTTGAC	Hind III
	SP089A	NO:379	AGTCGGATCCGGCAAATCAGAATGGTAGAAGAC	Bam HI
	SP089B	NO:380	TGACCTGCAGCTCTCATTGATTTCATCATCAC	Pst I
	SP090A	NO:381	GACTGGATCCATTGCAAGATGATTCTGAAGGATGG	Bam HI
	SP090B	NO:382	TCAGCTGCAGCTTAACCCATTCAACCATTCTAGTTAAG	Pst I
	SP091A	NO:383	GACTGGATCCTGTCGCTGCAAATGAAACTGAAGTAGC	Bam HI
	SP091B	NO:384	GACTAAGCTTATACCAAACGCTGACATCTACGCG	Hind III
	SP092A	NO:385	AGTCAGATCTACGCTCTCAGCCTACTTTGTAAGAGC	Bgl II
	SP092B	NO:386	GACTAAGCTTAACCCATTCAACCAATTGGCATTGAC	Hind III
	SP093A	NO:387	CAGTGGATCCTGGACAGGTGAAAGGTATGCTACATTGTG	Bam HI
	SP093B	NO:388	GACTAAGCTTCAACCAATTGAGACCTTGCAACAC	Hind III
	SP094A	NO:389	GTCAGGATCCGATTGCTCTTGAAGGATTGAGAGAAACC	Bam HI
	SP094B	NO:390	GACTAAGCTTCGATCAAAGATAAGATAAAATATATAAAGT	Hind III
	SP095A	NO:391	GACTGGATCCTAGGGTATGGGACTTTCTACAAACAAAGG	Bam HI

Table 3
S. pneumoniae ORF Cloning Primers

Primer	Name	SEQ ID	Sequence	RE
	SP095B	NO:392	TGACAAGCTTATCTATCAGCTATTAAATCGTTTTG	Hind III
	SP096A	NO:393	CTGAGGATCCCAACGTTGAGAATTATTCGAATG	Bam HI
	SP096B	NO:394	TGACAAGCTGAGTCTACAAAAGTAATGTAC	Hind III
	SP097A	NO:395	GTCAGGATCCCTACTATCAATCAAGTTCTCAGCC	Bam HI
	SP097B	NO:396	TGACAAGCTGACTGAGGGCTTGGACCAGATTGAAAAG	Hind III
	SP098A	NO:397	GACTGGATCCGACAAAAACATTAAAACGTCTGAGG	Bam HI
	SP098B	NO:398	GACTAAGCTTAGCACGAACTGTGACGCTGGTCC	Hind III
	SP099A	NO:399	GACTGGATCCTCTCAGGAGACCTTTAAAATATC	Bam HI
	SP099B	NO:400	GACTAAGCTGTTGGCCATCTGTACATACCC	Hind III
	SP100A	NO:401	GACTGGATCCAGTAAATCGCAATCAAATTCC	Bam HI
	SP100B	NO:402	AGTCCTGCAGGTATTAGCCAAATAATCTATAAAGCT	Pst I
	SP101A	NO:403	CAGTGGATCCTTACCGCGTTCATCAAGATGTC	Bam HI
	SP101B	NO:404	GACTAAGCTGCCAGATGTTGAAAAGAGAGTG	Hind III
	SP102A	NO:405	GACTGGATCCGTGGATGGCTTAACTATCTCGTATTG	Bam HI
	SP102B	NO:406	AGTCAAGCTTGCTAGTCTTCACTTCCCTTCC	Hind III
	SP103A	NO:407	GACTGTCGACACTAAACCAGCATTGCGCAGGA	Sal I
	SP103B	NO:408	CTGACTGCAGCTTCTGAAGAAAATAATGATTGTGG	Pst I
	SP105A	NO:409	CAGTGGATCCTGACTACCTTGAAATCCCACCC	Bam HI
	SP105B	NO:410	CAGTAAGCTTTTTTAAGGTTGAGAATGATTTCATC	Hind III
	SP106A	NO:411	CAGTGTGACTCGTATCTTTGGAGCAATGTT	Sal I
	SP106B	NO:412	GACTAAGCTTAAATGTTCCGATACGGGTGATTG	Hind III
	SP107A	NO:413	CAGTGGATCCGGACTCTCTCAAAGATGTAAG	Bam HI
	SP107B	NO:414	GACTAAGCTTCTGAGTTGTCAAGGATTGCTTT	Hind III
	SP108A	NO:415	CAGTGGATCCAAGAAATCCTATCATCTTCCAGAAG	Bam HI
	SP108B	NO:416	GACTAAGCTTTCAGAACACTAAAGCCGCAGCTT	Hind III
	SP109A	NO:417	GACTGGATCCACGAAATGCAGGGCAGACAG	Bam HI
	SP109B	NO:418	CAGTAAGCTTATCAACATAATCTAGTAAATAAGCGT	Hind III
	SP110A	NO:419	CAGTGGATCCTGTATAGTTAGCGCTTGTCTTC	Bam HI
	SP110B	NO:420	GTCAAAGCTTGATAGAGTGTCTAAATCTCTTTAG	Hind III
	SP111A	NO:421	GACTGGATCCGTGTGAGCATATTCTGAAG	Bam HI
	SP111B	NO:422	CAGTAAGCTTACTTTACCAATTCTTGTCTGCATC	Hind III
	SP112A	NO:423	GACTGTCGACGTGTTGGATAGCATTCAAGACAG	Sal I
	SP112B	NO:424	CAGTAAGCTCGGAAGTAAAGACAATTTC	Hind III
	SP113A	NO:425	CAGTGGATCCGTGCCTAGATAGTATTACTCAAAC	Bam HI
	SP113B	NO:426	GACTAAGCTTTGCTTATTCTCTCAATTTC	Hind III
	SP114A	NO:427	CAGTGGATCCCATTCAAGCAGACCTATCAAATC	Bam HI
	SP114B	NO:428	ACTGAAGCTTATGTAATTAGATTTCAATATTTCAG	Hind III
	SP115A	NO:429	AGTCGGATCTAAGGCTGATAATCGTCTCAAATG	Bam HI
	SP115B	NO:430	GACTAAGCTTAAATTAGATAGACGTTGAGT	Hind III
	SP117A	NO:431	AGTCGGATCCCTGTGCAATCAGTCAGCTGCTTCC	Bam HI
	SP117B	NO:432	GACTGTCGACTTTAATCTTGTCCAGGTGTTAATTGCC	Sal I
	SP118A	NO:433	ACTGGTCGACTTGTCAACAACACATGCTACTCTGAG	Sal I
	SP118B	NO:434	GACTCTGAGAAGTTAAACCCACTTATCATTATCC	Pst I
	SP119A	NO:435	ACTGGGATCCTGTTCAAGGCAAGTCCGTGACTAGTGAAC	Bam HI
	SP119B	NO:436	GACTAAGCTTGGCTAATTCTCTCAAAGTTGCA	Hind III
	SP120A	NO:437	AGTCGGATCCCTCGCAAATTGAAAAGCGGGCAGTTAGCC	Bam HI
	SP120B	NO:438	GACTAAGCTTGTAAATAAGCGTACCTTTCTTCC	Hind III
	SP121A	NO:439	TCAGGGATCCTGTCAGTCAGGTTCTAATGGTTCTCAG	Bam HI
	SP121B	NO:440	AGTCAAGCTTGGCATTGGCGTCGCCGTCCTTC	Hind III
	SP122A	NO:441	GACTGGATCCGGAAACCTCACAGGATTAAAGAGAAG	Bam HI
	SP122B	NO:442	GACTGTCGACAATCAATCCTCTCTGCACCTCT	Sal I
	SP123A	NO:443	CAGTGGATCCTGTGGCGAAGTTGAGACTCCTCAATC	Bam HI
	SP123B	NO:444	GACTAAGCTTTCTCAAATTATTATCAGC	Hind III
	SP124A	NO:445	AGTCGGATCCAACACCTGTATATAAAGTTACAGCAATCG	Bam HI
	SP124B	NO:446	GACTGTCGACTACTTGACCGAATGCGTCGAATGTACG	Sal I

Table 3
***S. pneumoniae* ORF Cloning Primers**

Primer	Name	SEQ ID	Sequence	RE
	SP125A	NO:447	CTGAGGGATCCATTAGACAGATTAATTGAAATCGG	Bam HI
	SP125B	NO:448	GACTGTCGACTTTAAAGATTGAAGTTTAAAGCT	Sal I
	SP126A	NO:449	TGACGGATCCTAACAGACAGATGAACGGAGCAAGGTG	Bam HI
	SP126B	NO:450	CTGAAAGCTTAAGGCTTCCTCAATGAGTTGTCT	Hind III
	SP127A	NO:451	GACTGGATCCCTGTGAGAATCAAGCTACACCCA	Bam HI
	SP127B	NO:452	CTGAAAGCTTTGTAACTGAGATTGATCTGGGAG	Hind III

What Is Claimed Is:

1. An isolated nucleic acid molecule comprising a polynucleotide having a nucleotide sequence at least 95% identical to a sequence selected from the group consisting of:

(a) a nucleotide sequence encoding any of the amino acid sequences of the polypeptides shown in Table 1; or

(b) a nucleotide sequence complementary to any of the nucleotide sequences in (a).

10

2. An isolated nucleic acid molecule comprising a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide having a nucleotide sequence identical to a nucleotide sequence in (a) or (b) of claim 1 wherein said polynucleotide which hybridizes does not hybridize under stringent hybridization conditions to a polynucleotide having a nucleotide sequence consisting of only A residues or of only T residues.

15

3. An isolated nucleic acid molecule comprising a polynucleotide which encodes the amino acid sequence of an epitope-bearing portion of a polypeptide having an amino acid sequence in (a) of claim 1.

20

4. The isolated nucleic acid molecule of claim 3, wherein said epitope-bearing portion of a polypeptide has an amino acid sequence listed in Table 2.

25

5. A method for making a recombinant vector comprising inserting an isolated nucleic acid molecule of claim 1 into a vector.

30

6. A recombinant vector produced by the method of claim 5.

7. A method of making a recombinant host cell comprising introducing the recombinant vector of claim 6 into a host cell.

8. A recombinant host cell produced by the method of claim 7.

35

9. A method of producing a polypeptide encoded by the nucleic acid molecule of claim 1 comprising culturing the host cell of claim 8 under conditions favoring expressing the heterologous polypeptide.

65 620 7 607 680

10. A polypeptide produced according to the method of claim 9.

5 11. An isolated polypeptide comprising an amino acid sequence at least 70% identical to a sequence selected from the group consisting of an amino acid sequence of any of the polypeptides described in Table 1.

10 12. An isolated polypeptide antigen comprising an amino acid sequence of an *S. pneumoniae* epitope shown in Table 2.

15 13. An isolated nucleic acid molecule comprising a polynucleotide with a nucleotide sequence encoding a polypeptide of claim 9.

14. An isolated antibody that binds specifically to a polypeptide of claim 11.

15 15. A hybridoma which produces an antibody according to claim 14.

20 16. A vaccine, comprising:

(1) one of more *S. pneumoniae* polypeptides selected from the group consisting of a polypeptide comprising an amino acid sequence identified in Table 1, or a fragment thereof; and

(2) a pharmaceutically acceptable diluent, carrier, or excipient; wherein said polypeptide is present, in an amount effective to elicit protective antibodies in an animal to a member of the *Streptococcus* genus.

25 17. A method of preventing or attenuating an infection caused by a member of the *Streptococcus* genus in an animal, comprising administering to said animal a polypeptide of claim 11, wherein said polypeptide is administered in an amount effective to prevent or attenuate said infection.

30 18. A method of detecting *Streptococcus* nucleic acids in a biological sample obtained from an animal involving assaying for one or more nucleic acid sequences encoding *Streptococcus* polypeptides in a sample comprising:

35 (a) contacting the sample with one or more of the above-described nucleic acid probes, under conditions such that hybridization occurs, and

(b) detecting hybridization of said one or more probes to the one or more *Streptococcus* nucleic acid sequences present in the biological sample.

SEARCHED SERIALIZED

19. A method of detecting *Streptococcus* nucleic acids in a biological sample obtained from an animal, comprising:

- 5 (a) amplifying one or more *Streptococcus* nucleic acid sequences in said sample using polymerase chain reaction, and
(b) detecting said amplified *Streptococcus* nucleic acid.

20. A kit for detecting *Streptococcus* antibodies in a biological sample obtained from an animal, comprising

- 10 (a) a polypeptide of claim 12 attached to a solid support; and
(b) detecting means.

21. A method of detecting *Streptococcus* antibodies in a biological sample obtained from an animal, comprising

- 15 (a) contacting the sample with a polypeptide of claim 12; and
(b) detecting antibody-antigen complexes.

PCT/GB2007/000660

Streptococcus pneumoniae Antigens and Vaccines***Abstract***

The present invention relates to novel vaccines for the prevention or
5 attenuation of infection by *Streptococcus pneumoniae*. The invention further
relates to isolated nucleic acid molecules encoding antigenic polypeptides of
Streptococcus pneumoniae. Antigenic polypeptides are also provided, as are
vectors, host cells and recombinant methods for producing the same. The
invention additionally relates to diagnostic methods for detecting *Streptococcus*
10 nucleic acids, polypeptides and antibodies in a biological sample.

DECLARATION FOR PATENT APPLICATION

As a below named inventor, I declare that I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

Streptococcus pneumoniae Antigens and Vaccines

the specification of which is being filed concurrently herewith.

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to patentability as defined in 37 C.F.R. § 1.56.

I hereby claim foreign priority benefits under 35 U.S.C. § 119(a)-(d) or § 365(b) of any foreign application(s) for patent or inventor's certificate, or § 365(a) of any PCT international application, which designated at least one country other than the United States listed below , and have also identified below any foreign application for patent or inventor's certificate , or PCT international application having a filing date before that of the application on which priority is claimed.

Prior Foreign Application(s):

<u>Priority Claimed</u>	
Yes	No

<hr/> <p>(Number)</p>	<hr/> <p>(Country)</p>	<hr/> <p>(Day/Month/Year Filed)</p>
-----------------------	------------------------	-------------------------------------

I hereby claim the benefit under 35 U.S.C. § 119(e) of any United States provisional application(s) listed below.

<hr/> <p>60/029,960 (Application Serial No.)</p>	<hr/> <p>10/31/96 (Filing Date)</p>
---	--

I hereby claim the benefit under 35 U.S.C. § 120 of any United States application(s), or under § 365(b) of any PCT international application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT international application in the manner provided by the first paragraph of 35 U.S.C. § 112, I acknowledge the duty to disclose information that is material to patentability as defined in 37 C.F.R. § 1.56 that became available between the filing date of the prior application and the national or PCT international filing date of this application.

<p>(Application Serial No.)</p>	<p>(Filing Date)</p>	<p>(Status: patented, pending, abandoned)</p>
---------------------------------	----------------------	---

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith: Robert H. Benson (Reg. No. 30,446), A. Anders Brookes (Reg. No. 36,373) and James H. Davis (Reg. No. 40,582) of Human Genome Sciences, Inc. 9410 Key West Avenue, Rockville, Maryland, 20878.

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Full name of additional joint inventor: Gil H. Choi

Inventor's signature: _____ Date: _____
Residence: 11429 Potomac Oaks Drive, Rockville, MD 20850 Citizenship: KR
Post Office Address: same as above

Full name of first joint inventor: Charles A. Kunsch

Inventor's signature: _____ Date: _____
Residence: 8405 Dasher Court, Gaithersburg, MD 20882 Citizenship: US
Post Office Address: same as above

Full name of additional joint inventor: Alex Hromockyj

Inventor's signature: _____ Date: _____
Residence: 10003 Sidney Road, Silver Spring, MD 20901 Citizenship: US
Post Office Address: same as above

Full name of additional joint inventor: L. Sydnor Johnson

Inventor's signature: _____ Date: _____
Residence: 13545 Ambassador Drive, Germantown, MD 20874 Citizenship: US
Post Office Address: same as above