

KomAn 2023/2024

Opgavesæt A

Besvarelsen afleveres via Absalon inden deadline! Husk navn og KU-brugernavn. Besvarelsen godkendes hvis mindst 70 % er rigtigt besvaret. Udover de obligatoriske opgaver findes en supplerende opgave, og endeligt nogle vink til opgaverne.

Rettelse den 23.11.2023: I Opgave 1(b) er "nulpunkter for f" rettet til "nulpunkter for f-1".

Opgave 1 (35%) Betragt funktionen

$$f(z) = e^{-z^2/2}, \quad z \in \mathbb{C}.$$

For reelle *z* vil nogle måske genkende denne som standard normalfordelingstætheden (op til en multiplikativ konstant). Faktisk gælder der

$$\int_{-\infty}^{\infty} f(x) \, dx = \sqrt{2\pi}.$$

Figuren til venstre neden for viser grafen for f på intervallet [-5,5], som illustrerer, at ligningen f(x) = 1 (for reelle tal x) kun har løsningen x = 0. Men hvad sker der uden for den reelle akse?

(a) Figuren til højre viser billedmængden ved f af et vandret linjestykke i den komplekse plan; mere præcist vises mængden

$$\{f(\gamma(t)) \mid t \in [2,4]\},\$$

hvor $\gamma(t) = t + \sqrt{2\pi}i$.

Forklar hvordan figuren viser, at f antager værdien 1 på dette linjestykke. Antager f også værdien 0?

- (b) Bestem samtlige nulpunkter for f-1 i den komplekse plan og skitsér beliggenheden af nogle af dem.
- (c) Lad $\Omega_a = \{z \in K(0, a) \mid \Re(z) > 0\}$. Vis, at f er injektiv i $\Omega_{\sqrt{2\pi}}$.

Opgave 2 (30%) For potensrækken

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

indføres $T_f = \{t \geq 0 \mid |a_n| t^n \text{ er en begrænset følge} \}$ og konvergensradius $\rho_f = \sup T_f$. Konvergensradius kan også udtrykkes ved $1/\limsup_{n\to\infty} \sqrt[n]{|a_n|}$.

(a) Lad $a_n = n(n-1)$, $n = 0, \dots$ og lad $g(z) = \sum_{n=0}^{\infty} a_n z^n$. Vis, at $\rho_g = 1$ og at der gælder

$$g(z) = \frac{2z^2}{(1-z)^3}$$

for |z| < 1.

(b) Lad

$$h(z) = \sum_{n=1}^{\infty} z^{n!} = z + z^2 + z^6 + z^{24} + \dots$$

Bestem talfølgen $\{a_n\}$ så $h(z) = \sum_{n=0}^{\infty} a_n z^n$ og bestem dernæst T_h og ρ_h . Findes grænseværdien $\lim_{n\to\infty} \sqrt[n]{|a_n|}$?

Opgave 3 (35%) Lad

$$f(z) = \frac{z+2}{z-i}.$$

- (a) Vis, at $f : \mathbb{C} \setminus \{i\} \to \mathbb{C} \setminus \{1\}$ er bijektiv og bestem den inverse funktion.
- (b) Skitsér kurverne $\gamma_1(t) = t$ og $\gamma_2(t) = it$ for $t \in \mathbb{R}$. Vis, at billedkurverne $t \mapsto f(\gamma_1(t))$, $t \mapsto f(\gamma_2(t))$ skærer hinanden i punktet 2i og bestem en skæringsvinkel.
- (c) Vis, at billedmængden $f(i\mathbb{R} \setminus \{i\}) = \{f(\gamma_2(t)) \mid t \in \mathbb{R} \setminus \{1\}\}$ er en ret linje og bestem en parameterfremstilling eller lignende for den.

2

Vis endvidere, at $f(\mathbb{R}) = \{f(\gamma_1(t)) | t \in \mathbb{R}\}$ er en cirkel på nær et enkelt punkt og angiv cirklens centrum og radius.

Skitsér billedmængderne i den komplekse plan.

Supplerende opgave

Du er velkommen til at prøve kræfter med nedenstående supplerende opgave. Besvarelsen kan afleveres via Absalon (Assigment: "Supplerende opgaver") og så vil jeg rette den. Opgaven tæller ikke med i bedømmelsen af Opgavesæt A.

Supplerende A Lad

$$h(z) = \sum_{n=0}^{\infty} z^{2^n} = z + z^2 + z^4 + z^8 + \cdots$$

Vis, at h har konvergensradius lig med 1. Vis, at der ikke findes noget par (a,r) med $a \in \partial K(0,1)$ og r > 0 og så h har en holomorf udvidelse til $K(0,1) \cup K(a,r)$.

Bemærk: at h har en holomorf udvidelse til $K(0,1) \cup K(a,r)$ betyder, at der findes en holomorf funktion \widetilde{h} i $K(0,1) \cup K(a,r)$ så $\widetilde{h}(z) = h(z)$ for $z \in K(0,1)$.

Bemærkning Funktionen h i opgaven har altså den egenskab, at det ikke er muligt at udvide den holomorft til nogen punkter på randen af konvergenscirklen. Man siger, at h har randen af konvergenscirklen som naturlig rand.

Potensrækken for h har "langt færre" led end den geometriske række (og derfor konvergerer den "hurtigere" i K(0,1)). Imidlertid er sumfunktionen for den geometriske række jo 1/(1-z), som kan udvides til en holomorf funktion i hele $\mathbb{C}\setminus\{1\}$, og specielt til alle punkter på konvergenscirklen på nær et.

Potensrækker som h med store huller i potenserne kaldes lakunære rækker og sumfunktionen for en sådan række har meget ofte automatisk randen af rækkens konvergenscirkel som naturlig rand.

Vink til opgaverne

- Opgave 1: I (b) får man nok brug for Theorem 1.18 i lærebogen. I (c) kan man starte med at vise, at funktionen $z\mapsto -z^2/2$ er injektiv i højre halvplan og at den afbilder $\Omega_{\sqrt{2\pi}}$ ind i strimlen $\{w\in\mathbb{C}\,|\,|\Im(w)|<\pi\}$.
- Opgave 2: I (a) kan man få brug for summen af nogle ledvist differentierede af den geometriske række.
- Opgave 3: I (c) prøv at bruge Maple's complexplot. Det kan give en idé om hvordan billedkurverne kunne se ud.

```
with(plots):
f:=z->(z+2)/(z-I);
complexplot(f(t), t=-10..10);
complexplot(f(I*t), t=-10..10);
```

• Supperende A: Vis først, at h ikke er begrænset nær z=1; find dernæst en relation mellem $h(z^2)$ og h(z) og konkludér, at h heller ikke er begrænset nær -1...

Henrik Laurberg Pedersen (henrikp@math.ku.dk)