NAME	ACA2022_EXAM_FORM2 Data: 08/09/2022
SURNAME	Data. 00/07/2022
PERSONAL CODE	

ACA2022_FORM2_8Sept2022_SILVANO

ACA Course -- Prof. SILVANO

FORM2 is composed of 5 QUESTIONS to get UP TO 12 POINTS

Duration is 24 minutes!

Question 1 (complete table format) 2 points

Let's consider the following access patterns on a **4-processor** system with a direct-mapped, write-back cache with one cache block per processor and a two-cache block memory.

Assume the MESI protocol is used, with write-back caches, write-allocate, and write-invalidate of other caches.

Please COMPLETE the following table:

Cycle	After Operation	P0 cache block state	P1 cache block state	P2 cache block state	P3 cache block state	Memory at bl. 0 up to date?	Memory at bl. 1 up to date?
0	Initial state	Invalid	Invalid	Invalid	Invalid	Yes	Yes
1	P0: Read Bl. 1	Excl (1)	Invalid	Invalid	Invalid	Yes	Yes
2	P1: Read Bl. 0	Excl (1)	Excl (0)	Invalid	Invalid	Yes	Yes
3	P2: Read Bl. 0						
4	P0: Write Bl. 1						
5	P3: Write Bl. 0						
6	P2: Write Bl. 1						
7	P1: Read Bl. 1						
8	P0: Read Bl. 0						

NAME	ACA2022_EXAM_FORM2 Data: 08/09/2022
SURNAME	Data. 00/03/2022
PERSONAL CODE	

Cycle	After Operation	P0 cache block state	P1 cache block state	P2 cache block state	P3 cache block state	Memory at bl. 0 up to date?	Memory at bl. 1 up to date?
0	Initial state	Invalid	Invalid	Invalid	Invalid	Yes	Yes
1	P0: Read B1. 1	Excl (1)	Invalid	Invalid	Invalid	Yes	Yes
2	P1: Read B1. 0	Excl (1)	Excl (0)	Invalid	Invalid	Yes	Yes
3	P2: Read Bl. 0	Excl (1)	Shared (0)	Shared (0)	Invalid	Yes	Yes
4	P0: Write Bl. 1	Mod (1)	Shared (0)	Shared (0)	Invalid	Yes	No
5	P3: Write Bl. 0	Mod (1)	Invalid	Invalid	Mod (0)	No	No
6	P2: Write Bl. 1	Invalid	Invalid	Mod (1)	Mod (0)	No	No
7	P1: Read Bl. 1	Invalid	Shared (1)	Shared (1)	Mod (0)	No	Yes
8	P0: Read B1. 0	Shared (0)	Shared (1)	Shared (1)	Shared (0)	Yes	Yes

See MESI protocols on the slides on L13: Multiprocessors.

NAME	ACA2022_EXAM_FORM2 Data: 08/09/2022
SURNAME	Data. 00/03/2022
PERSONAL CODE	

Question 2 (complete table and open text format) 4 points

Let's consider the following assembly code:

FOR1:beq \$t6,\$t7, END
lw \$t2,VECTA(\$t6)
lw \$t3,VECTB(\$t6)
lw \$t4, VECTC (\$t6)
addi \$t2,\$t2,k
sw \$t2, VECTA(\$t6)
add \$t4,\$t3,\$t4
sw \$t4, VECTC (\$t6)
addi \$t6,\$t6,4
j FOR1

to be executed on a CPU with dynamic scheduling based on **TOMASULO algorithm** with all cache HITS, a single Common Data Bus and:

- 4 RESERVATION STATIONS (RS1, RS2, RS3, RS4) for two LOAD/STORE unit (LDU1, LDU2) with latency 6
- 2 RESERVATION STATION (RS5, RS6) for two ALU/BR FUs (ALU1, ALU2) with latency 2
- Static Branch Prediction **BTFNT** (**BACKWARD TAKEN FORWARD NOT TAKEN**) with Branch Target Buffer

Please complete the following table:

Calculate the CPI and the IPC:

INSTRUCTION	ISSUE	START EXEC	WRITE RESULT	Hazards Type	RSi	UNIT
FOR1:beq \$t6,\$t7, END	1	2	4	None	RS5	ALU1
lw \$t2,VECTA(\$t6)	2	3	9	None (Control solved by BP)	RS1	LDU1
lw \$t3,VECTB(\$t6)	3	4	10	None	RS2	LDU2
lw \$t4,VECTC(\$t6)						
addi \$t2,\$t2,k						
sw \$t2,VECTA(\$t6)						
add \$t4,\$t3,\$t4						
sw \$t4,VECTC(\$t6)						
addi \$t6,\$t6,4						
j FOR1						

CPI =		 	

NAME	ACA2022_EXAM_FORM2 Data: 08/09/2022
SURNAME	Data. 00/07/2022
PERSONAL CODE	

INSTRUCTION	ISSUE	START EXEC	WRITE RESULT	Hazards Type	RSi	UNIT
FOR1:beq \$t6,\$t7, END	1	2	4	None	RS5	ALU1
lw \$t2,VECTA(\$t6)	2	3	9	None(Control solved by BP)	RS1	LDU1
lw \$t3,VECTB(\$t6)	3	4	10	None	RS2	LDU2
lw \$t4,VECTC(\$t6)	4	10	16	STRUCT LDU1	RS3	LDU1
addi \$t2,\$t2,k	5	H	13	RAW \$t2 + RF read	RS5	ALU1
sw \$t2,VECTA(\$t6)	6	F	20	RAW \$t2	RS4	LDU2
add \$t4,\$t3,\$t4	7	17	19	RAW \$t4	RS6	ALU2
sw \$t4,VECTC(\$t6)	10	20	26	STRUCT RS1 + RAW \$t4	RS1	LDU1
addi \$t6,\$t6,4	14	15	17	STRUCT RS6	RS5	ALU1
j FOR1	18	19	21	STRUCT RS6	RS5	ALU2

 $CPI = \# \ clock \ cycles / IC = 26 / 10 = 2.6$

IPC = 1/CPI = 1/2.6 = 0.38

NAME		ACA2022_EXAM_FORM2
SURNAME		Data: 08/09/2022
PERSONAL	CODE	
Question 3 (op 2 points	en text format)	
	• v 11	<i>I version</i> of a given loop including start-up ard 2 have been initialized to 0 and 40 respective
START-UP:	LD \$F0, 0 (\$R1) ADDI.D \$F0, \$F0, 8 ADD.D \$F4, \$F0, \$F2 LD \$F0, 4 (\$R1)	
SW-LOOP:	SD \$F4, 0 (\$R1) ADDI.D \$F0, \$F0, 8 ADD.D \$F4, \$F0, \$F2 LD \$F0, 8 (\$R1) ADDI.U \$R1, \$R1, 4 BNE \$R1, \$R2, SW-LOOK	
FINISH-UP:	SD \$F4, 0 (\$R1) ADDI.D \$F0, \$F0, 8 ADD.D \$F4, \$F0, \$F2 SD \$F4, 4 (\$R1)	
1) How many	iterations of the SW-LOOP are o	executed?
2) Write the or	riginal de-pipelined version of th	ne loop:

3) How many iterations of the original de-pipelined loop are executed?

NAME	ACA2022_EXAM_FORM2 Data: 08/09/2022
SURNAME	Data. 06/07/2022
PERSONAL CODE	

- 1) 10 iterations of the SW-LOOP are executed (40/4)
- 2) The original de-pipelined version of the loop is the following where the registers **\$R1** and **\$R2** have been respectively initialized to **0** and **48**:

```
LOOP: LD $F0, 0 ($R1)

ADDI.D $F0, $F0, 8

ADD.D $F4, $F0, $F2

SD $F4, 0 ($R1)

ADDI.U $R1, $R1, 4

BNE $R1, $R2, LOOP
```

3) 12 iterations of the original de-pipelined LOOP are executed.

NAME	ACA2022_EXAM_FORM2 Data: 08/09/2022
SURNAME	Data. 00/07/2022
PERSONAL CODE	

	Question 4 (open text format) 2 points					
Let us	consider a 1 GHz processor architecture with 3-level caches and the main memory:					
Hit Ti	me $_{L1}$ = 1 ns; Hit Rate $_{L1}$ = 96% me $_{L2}$ = 5 ns; Hit Rate $_{L2}$ = 92% ne $_{L3}$ = 10 ns; Hit Rate $_{L3}$ = 90%, Miss Penalty $_{L3}$ = 20 ns.					
1.	Write the Global Miss Rate for the last level cache:					
2.	Write the Average Memory Access Time:					

NAME	ACA2022_EXAM_FORM2
SURNAME	Data: 08/09/2022
PERSONAL CODE	

1. How much is the Global Miss Rate for Last Level Cache?

Miss Rate L1 L2 L3 = Miss RateL1 x Miss RateL2 x Miss RateL3 = $0.04 \times 0.08 \times 0.1 \rightarrow 0.032\%$

2. How much is the AMAT?

 $AMAT = Hit Time_{L1} + Miss Rate_{L1} \times Miss Penalty_{L1} =$

Hit $Time_{L1} + Miss Rate_{L1} x$ (Hit $Time_{L2} + Miss Rate_{L2} x$ (Hit $Time_{L3} + Miss Rate_{L3} x$ Miss $Penalty_{L3}$)) =

Hit Time $_{L1}$ + Miss Rate $_{L1}$ x Hit Time $_{L2}$ + Miss Rate $_{L1}$ L2 x Hit Time $_{L3}$ + Miss Rate $_{L1}$ L2 L3x Miss Penalty $_{L3}$ =

1 ns + 0.04 x 5 ns + 0.0032 x 10 ns + 0.00032 x 20 ns = 1.2384 ns

NAME	ACA2022_EXAM_FORM2 Data: 08/09/2022
SURNAME	Data. 00/07/2022
PERSONAL CODE	

Question 5 (complete table format) 2 points

Let's consider 32-block main memory with a direct-mapped 8-block cache based on a *write allocate* with *write-through* protocol.

The addresses are expressed as decimal numbers:

Memory Address: [0, 1, 2, 31] 10

Cache Address: $[0, 1, 2, ...7]_{10}$

and Cache Tags are expressed as binary numbers.

At cold start the cache is empty, then there is the following sequence of memory accesses.

Please complete the following table:

	Type of memory	Memory Address	HIT/MISS Type	Cache Tag	Cache Address	Write in memory
	access		V I			v
1	Read	$[16]_{10}$	Cold-start Miss	$[10]_{2}$	$[0]_{10}$	No
2	Write	$[16]_{10}$				
3	Read	$[16]_{10}$				
4	Read	[10] 10				
5	Write	[8] 10				
6	Write	[10] 10				
7	Write	[16] 10				
8	Read	[26] 10				
9	Read	[23] 10				
10	Write	[24] 10				

NAME	ACA2022_EXAM_FORM2 Data: 08/09/2022
SURNAME	Data. 00/07/2022
PERSONAL CODE	

	Type of memory access	Memory Address	HIT/MISS Type	Cache Tag	Cache Address	Write in memory
1	Read	[16] 10	Cold-start Miss	[10]2	[0] 10	No
2	Write	[16] 10	Hit	[10] 2	[0] 10	Yes, Wr. in M[16] ₁₀
3	Read	[16] 10	Hit	[10] ₂	[0] 10	No
4	Read	[10] 10	Cold-start Miss	[01] ₂	[2] 10	No
5	Write	[8] 10	Conflict Miss	[01] ₂	[0] 10	Yes, Wr. in M[8] 10
6	Write	$[10]_{10}$	Hit	[01] ₂	[2] 10	Yes, Wr. in M[10] ₁₀
7	Write	[16] 10	Conflict Miss	$[10]_{2}$	[0] 10	Yes, Wr. in M[16] ₁₀
8	Read	[26] 10	Conflict Miss	[11] ₂	[2] 10	No
9	Read	[23] 10	Cold-start Miss	[10] ₂	[7] 10	No
10	Write	[24] 10	Conflict Miss	[11] ₂	[0] 10	Yes, W in M[24] 10