PRIMA ESPERIENZA DI LABORATORIO.

1 Strumentazione

- Breadboard
- Alimentatore da banco (alimentatore duale flottante max/min: +/-30V, 2A; alimentatore singolo flottante max: +8V, 5A)
- Multimetro DMM (sensibilità corrente: 200 μA 10 A; sensibilità tensione: 200 mV 1000 V)

2 Misure di tensione

3 Misure di Corrente

4 Legge di Ohm

4.1 Dati sperimentali

Utilizzando il multimetro¹ si sono misurate le intensità di corrente (I) al variare arbitrario del voltaggio (V), con una resistenza equivalente di 500Ω ottenuta mettendo in parallelo 2 resistori da $R = 1k\Omega$.

Table 1: MISURE DI LABORATORIO

V (Volt)		
1	1.948	
2	3.998	
3	5.846	
4	7.796	
5	9.747	
6	11.699	
7	13.956	
8	15.955	

4.2 Relazione fra V ed I

La legge che mette in relazione la corrente che fluisce in un resistore e la caduta di potenziale che quest' ultimo causa è la **Legge di Ohm**.

$$V = RI \tag{2}$$

In particolare:

$$\frac{V}{I} = R \tag{3}$$

Dunque fra V ed I c'è una relazione lineare. In cui R è una costante che dipende dalle proprietà fisiche del resistore.

4.3 Stima del valore di R

lpotizzando di non conoscere a priori la R_{eq} , dai dati sperimentali e dalla legge di Ohm³, si cerca una relazione fra V ed I, del tipo V/I.

Table 2: CALCOLO R MISURATA

V (Volt)		$R_i(\Omega)$
1	1.948	513.35
2	3.998	500.25
3	5.846	513.17
4	7.796	513.08
5	9.747	512.97
6	11.699	512.86
7	13.956	501.58
8	15.955	501.41

Per stimare il valore misurato di R utilizziamo un tool di **fitting curve** (Vernier Studio), utilizzando un metodo di regressione lineare per calcolare i parametri b e m della retta che meglio approssima la relazione V/I.

Figure 1: Fitting lineare

Best Fit
$$y = 50.9 + 501.7x$$
 (4)

Il parametro m corrisponde alla misura della resistenza R_{eq} , effettivamente la misura coincide con il reale valore della R_{eq} .

$$R_{eq} = 500\Omega \simeq 501.7 = R_{mis} \tag{5}$$