

Why Supervised Learning in a Datathon?

Many real-world problems involve predicting an outcome (price, label, class)

Supervised learning is the right tool when you have labeled data

Most datathon problems involve either:

Regression: Predicting continuous values (e.g., housing prices)

Classification: Predicting categories or classes (e.g., spam vs not spam)

What is Supervised Learning?

Definition: Supervised Learning is a type of machine learning where an algorithm learns from labeled data.

Each training example includes an input (features) and the correct output (label).

Key Ideas:

- The algorithm tries to learn a function that maps inputs (X) to outputs (y).
- Once trained, the model can predict outputs for new, unseen inputs.

Real-world Examples:

- Predicting house prices (Regression)
- Identifying spam emails (Classification)

Key Concepts in Supervised Learning

Building a Predictive Model

How to Frame a Supervised Problem

Data Science Model Development

Regression vs Classification

Choose the appropriate machine learning task for your prediction needs.

Regression

Predict numeric values

Classification

Predict categories

Regression vs Classification

category/class label vs continuous number

Regression

Regression is a type of supervised learning used to predict continuous numerical values.

Regression Examples:

- Predicting number of people who will click a Google ad based on the ad content and data about the user's prior online behavior,
- Predicting the number of traffic accidents based on road conditions and speed limit,
- Predicting weather parameters (such as wind speed) based on historical weather behaviour.

Regression predictive modeling is the task of approximating a mapping function (f) from input variables (X) to a continuous output variable (y)

y = f(X), X = input features, y = target variable

Regression Algorithms

Optimal regression model depend on dataset

• Linear

Non-Linear

Regression Algorithms - Linear

- Simple linear regression
- Ordinary Least Squares
- Stochastic Gradient Descent etc.

Regression Algorithms - Non-Linear

Decision Trees

Random Forest Regression (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html)

Support vector regression (kernel = linear, polynomial, rbf) (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html)

Kernel ridge regression

Multi layer perceptron (Deep learning)

Artificial Neural network (LSTM/ Recurrent Neural Network) (Deep learning)

Regression Models Explained

Regression Metrics

Which evaluation metric to use for model performance?

MAE

Provides average absolute error, suitable for linear models.

MSE

Penalizes large errors more, useful for sensitive models.

RMSE

Gives error in original units, good for interpretability.

R² Score

Measures model's explanatory power, ideal for assessing fit.

Classification

Classification is a type of supervised learning used to predict categories or labels.

Classification is used when the target, or value to predict, is a discrete class label.

Classification examples:

Spam filtering
Identifying an object in an image
Customer behaviour prediction

Classification Algorithms

- Some examples of algorithms are:
- Q Logistic Regression (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)
- Decision trees (https://scikit-learn.org/stable/modules/tree.html)
- Random Forest (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html)
- XGBoost (https://pypi.org/project/xgboost/)
- Support Vector Machines (https://scikit-learn.org/stable/modules/svm.html)
- Multi layer perceptron
- Artificial neural networks (e.g., Convolutional neural networks)

Classification Models Explained

Machine Learning Classifiers and Their Characteristics

Classification Metrics

Model Evaluation Metrics

Metric Description Formula **△** Accuracy **Correct prediction** Performance **Confusion Matrix** TP, FP, TN, FN visualization Correct positive Precision TP/(TP + FP)predictions ୍ଟିଆ Recall (Sensitivity) **Detected actual** TP/(TP + FN)positives 2 * (Precision * F1 Score **Balances** precision Recall) / (Precision + and recall Recall)

Before you start

Preparing Data For Regression or Classification

- Rescale Inputs (normalization/standardization)
- Randomisation
- Remove Collinearity (if exist)
- Test/Train split

Additional operations if needed (applicable to Linear regression)

- Linear Assumption
- Remove Noise

Workflow

Prepare/create dataset

Communicate result

Build the model

Make predictions Train the model

Summary & Takeaways

Supervised Learning Mastery

