This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

HIGH PERFORMANCE THERMOPLASTIC RUBBER

SEPICI

KURARAY CO., LTD.

SEPTON Company of America

KURARAY EUROPE GMBH

CONTENTS

What is SEPTON₀? Unique and Versatile Polymer	
SEPTON. Types and Properties	, ⁻ , *
SEPTON₀ High Performance Thermoplastic Rubber	;
SEPTON₀ Basic Characteristics	7
SEPTON₅ Applications	9

What is SEPTON.?

Unique and Versatile Polymer

SEPTON. is a series of high performance thermoplastic rubbers developed by KURARAY CO., LTD. using its unique isoprene technology.

In terms of structure, SEPTON is a series of hydrogenated styrenic block copolymers, and it exhibits rubber-like properties over a wide range of temperatures. Its remarkable characteristics are as follows:

- Excellent Mechanical Properties
- Good Weatherability
- Excellent Low Temperature Properties
- Excellent Electrical Insulation Properties
- Superior Heat Resistance
- Excellent Chemical Resistance
- Low Toxity

Prior to processing, the polystyrene end blocks are associated in rigid domains. In the presence of heat and shear such as during processing, the polystyrene domains soften and permits flow. After cooling, the polystyrene domains reform and harden, locking the rubber network in place. This physical phenomenon provides SEPTON_® with its high tensile strength and its elasticity. Since SEPTON_® is a thermoplastic, it is recyclable.

Molecular Structure Model

Diblock: WWW.

Polystyrene block(S)

Acts as a crosslinking point at the temperature below the glass transition temperature (Tg) of polystyrene.

Acts as an origin of rubber-like properties.
Hydrogenation provides excellent
heat resistance and weatherability.

Types and Properties

SEPTON_• is available in either a diblock (A-B) type⁻¹ or the more common triblock (A-B-A) types.^{-2, -3, -4}

Several types of hydrogenated styrenic block copolymers of SEPTON are a hydrogenated poly(styrene-b-isoprene) (SEP)¹¹, a hydrogenated poly(styrene-b-isoprene-b-styrene) (SEPS)¹², a hydrogenated poly(styrene-b-butadiene-b-styrene) (SEBS)¹³ and a hydrogenated poly(styrene-b-isoprene/butadiene-b-styrene) (SEEPS)¹⁴. Each type of polymers has its own set of unique properties.

· Good Flowability

-Better Low Temperature Properties

- No Crystallization
- · High Elongation

SEBS¹³

$$\begin{array}{c} \text{Random copolymer block} \\ \text{PS} \left\{ \left(-\text{C-C-C-C-C-} \right)_{m} - \left(-\text{C-C-C-} \right)_{n} \right\} \text{PS} \\ \overset{\text{C}}{\text{C}} \\ \overset{\text{C}}{\text{C}} \end{array}$$

Moderate Tensile Strength

SEEPS*

- · High Tensile Strength
- Moderate Elongation
- Better Oil Absorbency
- *1 Polystyrene-b-poly(ethylene/propylene)
- ² Polystyrene-b-poly(ethylene/propylene)-b-polystyrene
- *3 Polystyrene-b-poly(ethylene/butylene)-b-polystyrene
- ^{*4} Polystyrene-b-poly(ethylene-ethylene/propylene)-b-polystyrene

SEPTON.

High Performance Thermoplastic Rubber

SEPTONe is offered in a variety of grades as shown below:

SEP : Polystyrene-b-poly(ethylene/propylene)

SEPS : Polystyrene-b-poly(ethylene/propylene)-b-polystyrene SEBS : Polystyrene-b-poly(ethylene/butylene)-b-polystyrene

SEEPS: Polystyrene-b-poly(ethylene/ethylene/propylene)-b-polystyrene

An Aid in Selecting the Right SEPTON Grade for Your Application

The following pages are intended to assist in the selection of the proper SEPTON_o grade for a particular application. The properties shown are typical properties and should not be used to establish specifications. To obtain more specific information on a particular SEPTON_o grade, contact your SEPTON_o representative.

Application Selector Guide

							S	EPT(ON _® (Grad	es					
	1000 Series			7.4	2000 Serje	Silve				Se	ies			Se	00. ries	
	1001	2002	2004	2007	2005	2006	2063	2104	4033	4044	4055	4077	8007	-8004	8006	8104
过程被决定的 在一下						, is one		29.00		2.32.4		or Aller	44 M.E.S.	事心	6	
Polymer Modification	大型: 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	epolicies.			135.55 1 1 4 Au	100		Landade in	i jaar Albiya	5 (1) 46 (2) 10 (1890) 4	3 6 6 AM	F-30312	A	laine	ter te er Liste kil	2
		: >						353								
Adhesives/Sealants/Coatings	a negligibility	and the second	September 1				77,2365		-	aplante,						
			: ::							iel i						
Wire & Cable Coatings	of the Section			944					2 (\$10)	EL 4 SOLUTION				4		
					***								爱练	18 12 13 13 13 13 13 13 13 13 13 13 13 13 13		
Viscosity Improver				1.6									1			rija ir a Dat
			li .	1.1.	K # F		j va im.		4.7	1960	4.3	\$ 10 m				
Compatibilizer	r withder			1575					p-2/p=1		-				*2	
			1					- 11. d								
General Compounding	-	et carre	e de la comita	atariye		of to Visite	Augustic		on S.E	e de la companya de l	Tara et til pa		1. _{6.4} () }- ∀) 	30.53	

Certain grades may be used for FDA approved applications. Contact your SEPTON representative for specific.

SEPTON. High Performance Thermoplastic Rubber

These are typical values and should not be used to set specifications.

Property	1001	2002	2004	⊴ 2007	2005	2006	2063
Туре	SEP	SEPS	SEPS	SEPS	SEPS	SEPS	SEPS
Styrene Content wt%	35	30	18	30	20	35	13
Specific Gravity	0.92	0.91	0.89	0.91	0.89	0.92	0.88
Hardness shore A	80	80	67	80		_	36
Tensile Property							
100% Modulus MPa	,	3.2	2.2	3.0	<u> </u>	-	0.4
Tensile Strength MPa .	2	11.2	16	16.7	-	-	10.8
Elongation %	<100	480	690	580	_ :		1200
MFR			. ¥.,			• • .	
230°C, 2.16kg g/10min	0.1	70	5	2.4	No Flow	No Flow	7
200°C, 10kg g/10min	1	100		4	No Flow	No Flow	22
Solution Viscosity							
5wt%mPa·s					40	27	
10wt% ™ mPa∙s	70			17	1700	1220	29 ⁻
15wt% mPa·s	1220	25	145	70			140
Physical Form ¹	Pellet	Pellet	Pellet	Pellet	Powder	Powder	Pellet

¹⁾ Precautions should be taken in handling and storing.
Refer to the appropriate Material Safety Data sheet for further safety information.

In using SEPTON₆, please confirm related law and regulations, and examine its safety and suitability for the application.

For medical and health care applications, please contact your SEPTON $_{\bullet}$ representative for specific recommendations.

(Tested by KURARAY CO., LTD.)

70104	1000	10.4044	1.055			N# 2 22 76 W			INTERNATIONAL TO.
2104	4033	4044	4055	4077.	8007	8004	× 8006	.⊭.8104 ₃	Measurement
SEPS	SEEPS	SEEPS	SEEPS	SEEPS	SEBS	SEBS	∜SEBS∵	SEBS	Method + **
65	30	32	30	30	29	29	33	60	
0.98	0.91	0.91	.0.91	0.91	0.91	0.91	0.92	., 0.97	ISO 1183
98	76	_	<u>.</u>	_	80	80		98	ISO 48
	2.2			. · · . · ·	2.3	2.3		12.9	
4.3	35.3	- '	. —	_	20.6	31.6		32.8	ISO 37
<100	500		Ī		560	560		500	
	1 1					4			
0.4	<0.1	No Flow	No Flow	No Flow	1	<0.1	No Flow		ISO 1133
-22	<0.1	No Flow	No Flow	No Flow		<0.1	No Flow		
	*	22	90	300			42		42.5
	50	460	5800			40			-Toluene solution
23	390		3500					80	30°C
Pellet	Powder	Powder	Powder	Powder	Pellet	Powder	Powder	Pellet	

SEPTON. Basic Characteristics

(Test Data from KURARAY CO., LTD.)

Dynamic Viscoelastic Behavior (SEPTON₆ 2007)

Test Conditions:

Aparatus: Dynamic Rheometer "REOVIBRON DDV-III"

Tensile mode Heating Rate: 3°C/min Frequency: 11Hz

Capillary Flow Test (SEPTON, 2007)

Test Conditions:

Aparatus: Capillary Rheometer "CAPIRO GRAPH"

Heat Resistance (SEPTON, 2007)

Test Conditions:

Thermobalance Heat Degradation Heating Rate: 10°C/min

Nitrogen Atomosphere

Heat Aging Resistance (SEPTON 2007)

Test Conditions:
Geer Oven at 120°C

SEPTON_® Basic Characteristics

(Test Data from KURARAY CO., LTD.)

Electrical Properties (SEPTON, 2063)

ltem Grade	20634
Dielectric Constant 50Hz 10³Hz -10 ⁶ Hz	2.31 2.31 2.31
Dielectric Loss Tangent 50Hz 10°Hz 10°Hz	0.0002 0.0002 0.0008
Dielectric Breakdown Voltage kV/mm	23.0
Volume Resistivity Ω·cm	3.0×10¹⁵

Test Conditions: JIS K-6911-Dielectric Breakdown Voltage: Voltage Rising Rate =1kV/sec Electrode 25 mm φ plate(measured in insulating oil)

Volume Resistivity: Measured 1min. after applying DC500V @20*

Combustion Test (SEPTON_o 2002)

	The state of the s	Detection Limit
Combustion Gas SOx(reduced to SO2)	not detected	1
NOx(reduced to NO₂)	not detected	SE1100
HOLDER PROPERTY.	not detected	0.05
HCN	not detected	0.005
NHa	not detected	0.05
CO	1.1	0.5
CO ₂	2,900	20
Gross Calorific Value Cal/g	10,800	

Test Conditions:Combustion gas was analyzed in accordance with JIS K-7217

Gross Caloric Value:Nekken type automated gas cylinder calorimeter

SEPTON. Applications

Due to their excellent balance of properties and versatility, SEPTON₆ polymers are applied to a wide variety of uses as can be seen below.

The following are examples of typical formulations or polymer modification where SEPTON_o polymers provide high performance at an economical cost.

SEPTON. Applications

Compounds

When blended with a polyolefin and a process oil, SEPTON• provides a soft compound that is a suitable replacement for vulcanized rubber and soft PVC.

(test data from KURARAY CO., LTD.)

		of data from itori	ALIA 1 00., LID.,
	45.2 2 13.8	2	3.7
Formulation			*
SEPTON₀ 4055	100	100	100
Polypropylene	75	50	25
Process Oil	120	120	120
Anti Oxidant (parts by wt.)	0.3	0.3	0.3
MFR 230°C,2.16kg g/10min.	10	2.9	0.1
Hardness JIS A	76	64	45
Mechanical Properties	• •		
= 100% Modulus MPa	3.1	2.2	0.9
300% Modulus MPa	4.2	3.1	1.6
Tensile Strength MPa	15.2	10.8	7.4
Elongation %	790	790	850
Permanent Set (100% @ 10min.) %	16	10,	5 5
Compression Set (70°C @ 22hrs) %	48	39 1	: ⊹: 29

Mixing Condition: Twin Screw Extruder, 230°C, 200rpm.

Molding Condition: Injection Molding

(1MPa=10.20kgt/ cm²)

Examples of practical use of SEPTON compounds

Adhesives

Due to their excellent balance of properties and versatility, SEPTON* polymer are applied to a wide variety of uses as can be seen below.

SEPTON Solubility

Poor or Non Soluble In: Ethyl Acetate, Methyl Ethylketone,

Methanol, Ethanol, Acetone, Water

Soluble: Petroleum Ether, Toluene, Benzene,

Hexane, Cyclohexane

Tackifiers Compatible with SEPTON_o

Rubber Phase: Alicyclic Saturated Hydrocarbon Resins,

Hydrogenated Terpene Resins,

Petroleum Resin, Hydrogenated Rosin Resin

Hot melt Adhesives

(tested by Kuraray Co., Ltd)

8	A CONTRACTOR OF THE PARTY OF TH	CONTRACTOR OF THE SECOND	A tries of the Said Chairman	A CONTRACTOR OF THE PARTY OF TH
	1	2	3	4
	100	100	100	
	300	250	200	100 300
/ wt:) =	100	100	100	100
	. 3	18	22 🗰	<2·
(min)	÷ 90	104	105	>240
ingtheris William			e e	6.5
ı/cm)+ ı/cm)	1200 1090	1.000 840	740 480	1380 500
r s)	3250	4280	5600	4700
	min) min) mm) (mm) /cm)	300 /wt) 100 3 min 90 mm) 90 mm) 1200 /cm) 1200 /cm) 1090	300 250 300 250 (Wt) 100 100 3 18 mini 90 104 mm) 1200 1000 (cm) 1200 1000 (cm) 1090 840	300 250 200 300 250 200 /WI) 100 100 100 3 18 22 min) 90 104 105 mm) 1200 1000 740 /cm) 1200 840 480

TEST Conditions : Coating Thickness 30 μm

Rolling Ball Tack Test: Measured at 25°C

Creep Test: Load 1kg at 40°C, Sample Size 25mm × 25mm Peel test: 180° Peel test Bate of Peel 300mm/min at 25°C

Melt Viscosity: Brook field viscometer

SEPTON_® Applications

Plastics Modification

When blended with olefinic polymers, SEPTON improves various properties including impact strength. SEPTON can also act as a compatibilizer between polyolefins and polystyrenics.

Polypropylene Modification

(test data from KURARAY CO., LTD.)

	€ 2. 1 (§ 8).	2	- 3 ·	4
PP (Block copolymer)	100	80	80	80
SEPTONe 2004 SEPTONe 2007		20	20	
EPR				20
Izod Impact strength				
(J/m) -20°C (J/m)	38.5	614	547 122	164 90
Flexural Modulus (MPa)	y 752	· :: .572, _{-1.5}	671	656
Flexural Strength (MPa)	23.3	18.3	19.3	18.3

Compatibilizer

(test data from KURARAY CO., LTD.)

	- 1 2 2 ·
ABS	70 70
SEPTON _e 2104 (parts by wt.)	30 30 5 5
Izod Impact Strength	
Notched 25°C J/m Unnotched 25°C J/m	49 88 167 549
Flexural Modulus MPa	2040 1980

(1MPa =10.20kgf/cm²) (1 J/m =0.102kgf·cm/cm)

ABS/PP/SEPTONe Blend

ABS/PP Blend

Scanning Electron Micrograph(X1000)

KURARAY CO., LTD.: Kuraray Nihonbashi Bldg., 3-1-6, Nihonbashi, Chuo-ku, Tokyo 103-8254

PHONE: +81-3-3277-6655, FACSIMILE: +81-3-3277-6718

SEPTON Company of America: 11414 Choate Road, Pasadena, TX 77507

PHONE: +1-281-909-5850, FACSIMILE: +1-281-909-5851

KURARAY EUROPE GMBH: Schiess-Strasse 68, 40549 Düsseldorf

PHONE: +49-211-53888-39, FACSIMILE: +49-211-53888-48

This information contained in this booklet is, to the best of our knowledge, true and accurate. However, since conditions of use are beyond our control, all recommendations or suggestions are presented without guarantee or responsibility on the part of Kuraray Co., Ltd., SEPTON Campany of America or Kuraray Europe GmbH. We disclaim all liability in connection with the use of information contained herein or otherwise. All risks of such use are assumed by the user. Furthermore, nothing contained herein shall be construed as an inducement or recommendation to use any process or to manufacture or to use any product in conflict with existing or future patents.

