

NEURAL NETWORK STRUCTURES

- Neural networks are modeled based on the structure of human brain
 - Have the possibility of capturing the human cognitive processes in future
 - Basic notion
 - All cognitive processes occur in brain
 - If one were able to understand the structure of the brain and then map functions to these structures, then one could have an in-silico system that will be able to perform cognitive tasks
 - Brain structure
 - Most fundamental unit neurons
 - Neurons are connected to each other so that information in terms of electrical and chemical signals can be exchanged for collective decision making
- These structures are quite useful in data science and ML even viewed purely as a nonlinear model form
- We would be discussing the engineering viewpoint
- Computational neural networks model the fundamental component and the interconnections through mathematical equations

NEURAL NETWORK STRUCTURES

- A neuron in a neural network receives multiple inputs from other neurons and/or exogenous inputs $(x_1, ..., x_n)$ and generates an output (y)
- Each node/neuron is partitioned into two components/functions (S and A)
 - S acting on $(x_1, ..., x_n)$ to provide an intermediate output o
 - Activation function A acting on o to give the final output y
 - S is generally a summation function

$$y = A(o);$$

$$o = S(x_1, x_2, ..., x_n) = \sum x_i$$

NEURAL NETWORK STRUCTURES ACTIVATION FUNCTIONS

• Some of the popular activation functions used in neural networks

(a) Sigmoid function

$$A(o) = \frac{1}{1 + e^{-o}}$$

(b) tanh function

$$A(o) = \frac{1}{1 + e^{-o}}$$
 $A(o) = \frac{e^{-o} - e^{o}}{e^{-o} + e^{o}}$

(c) Relu function

$$A(o) = \begin{cases} o & \forall \ o \ge 0 \\ 0 & \forall \ o < 0 \end{cases}$$

FULLY CONNECTED NEURAL NETWORK STRUCTURE

- Bottom most layer input layer with input nodes (representing input variables)
 - Output of an input node is the value of the input variable
- Top most layer output layer with output node (representing output variable)
- Layers in between hidden layers
- Each node in a hidden layer will be connected to all the nodes in the previous layer
- The strength of each connection is represented by weights
- The output of jth node in the kth layer is calculated using

$$h_{k,j} = A(o_{k,j})$$

$$o_{k,j} = S(h_{k-1,1}, \dots, h_{k-1,r_{k-1}}) = \sum_{i=1}^{l=r_{k-1}} w_{k,lj} h_{k-1,l}$$

where r_{k-1} is the number of nodes in the (k-1)th layer

FULLY CONNECTED NEURAL NETWORK STRUCTURE

• If we have an *m* layer network (excluding input layer) and a single output *y*, then the predicted value of output from the given neural network is

$$\hat{y} = h_{m,1}$$

- Given a neural network structure, all the weights (W) and values of input variables, output can be calculated
 - forward calculation or propagation
 - Example: If sigmoid activation function is used and the inputs are $x_1 = -3.2$, $x_2 = 4.1$ and $x_3 = 0.163$,

$$O_{1,1} = 0.1x_1 + 0.3x_2 + 0.5x_3 = 0.9915$$

$$O_{1,2} = 0.2x_1 + 0.4x_2 + 0.6x_3 = 1.0978$$

$$h_{1,1} = A(O_{1,1}) == \frac{1}{1 + e^{-1.0015}} = 0.7294$$

$$h_{1,2} = A(O_{1,2}) == \frac{1}{1 + e^{-1.1178}} = 0.7498$$

 $y = 0.7h_{1.1} + 0.8h_{1.2} = 1.1104$

FULLY CONNECTED NEURAL NETWORK STRUCTURE

- Can be extended to multiple outputs
- Neural network is a non-linear model for the function approximation problem
- Though an explicit model form can be written, it is more convenient to refer to the model as a weights structure, W
- Use of a NN require
 - A choice for the structure
 - No. of hidden layers, choice of activation function and no of nodes in each hidden layer
 - Choice of weights given structure
- How do we decide the neural network structure and weights?

TRAINING OF NEURAL NETWORKS

- The neural network structure is usually decided based on prior knowledge or by trial-and-error
- Training a network implies the evaluation of optimal weights for the given network structure for the data available
- Optimization problem

$$\min_{W} \sum_{s=1}^{m} (\hat{y}^{s}(W) - y^{s})^{2}$$

- s sample number; W weight matrix (decision variable)
- Predicted output will be a complex function of W
- Objective minimization of prediction error
- Can we solve this using any of the methods we learned in optimization?
 - Non-linear programming problem
 - Any solution strategy to solve unconstrained NLP like steepest descent algorithm can be used

TRAINING OF NEURAL NETWORKS STEEPEST DESCENT

- Example: Given sample: $x_1 = -3.2$, $x_2 = 4.1$, $x_3 = 0.163$ and y = 2
- Decision variables: 8 weights $(w_{k,lj})$
- Objective function: min_w $f = (\hat{y}(w) y)^2$
- Steepest descent update rule:

$$w_{k,lj}^{[q+1]} = w_{k,lj}^{[q]} - \alpha \left(\frac{\partial f}{\partial w_{k,lj}} \right)_{w^{[q]}}$$

• Evaluating gradient

$$\frac{\partial f}{\partial w_{k,lj}} = 2\left(\hat{y} - y\right) \frac{\partial \hat{y}}{\partial w_{k,lj}}$$

- Backpropagation steepest descent with the gradient computed using chain rule of differentiation
- It efficiently computes one layer at a time, unlike a native direct computation
- Start with an initial guess of weights
- Each iteration has
 - Forward propagation (Given the weights, we calculate predicted output for the given input and error)
 - Backward propagation Gradient calculation and updation of weights
- We will describe how the algorithm will work for one sample point; including all the points or a batch of points will only manifest as summation terms in the algorithm

- Consider a p-layer neural network (0th layer input, pth layer output, p-1 hidden layers)
- Let the final output of the lth node in kth layer be $h_{k,l}$ and the intermediate output before the application of activation function be $o_{k,l}$
- r_k represents number of nodes in k^{rh} layer
- Predicted output $\hat{y} = h_{p,1}$
- Prediction error due to sample I

$$E^i = 0.5 \left(y^i - \hat{y}^i \right)^2$$

• Total prediction error: $E = \sum E^i$

- For every node, we define a new variable, $\delta_{k,l}$
 - For the lth node in the kth layer

$$\delta_{k,l} = \frac{\partial E}{\partial o_{k,l}}$$
$$\delta_{k,l}^{i} = \frac{\partial E^{i}}{\partial o_{k,l}^{i}}$$

- Let the weight between l^{th} node in the k^{th} layer and j^{th} node in the $(k+1)^{th}$ layer be $w_{k+1,ij}$
- Then,

$$h_{k,l}^{i} = A(o_{k,l}^{i}); \qquad h_{k+1,j}^{i} = A(o_{k+1,j}^{i})$$

$$o_{k+1,j}^{i} = \sum_{l=1}^{r_{k}} w_{k+1,lj} h_{k,l}^{i} = \sum_{l=1}^{r_{k}} w_{k+1,lj} A(o_{k,l}^{i})$$

- To find $\delta^i_{k,l}$, we need to find $\frac{\partial E^i}{\partial o^i_{k,l}}$
- Changes in $o_{k,l}^i$ would affect $o_{k+1,j}^i$ which in turn affects E^i

$$E^i = E^i \big(o^i_{k+1,j} \big)$$

• Using chain rule of differentiation,

$$\delta_{k,l}^i = \sum_{j=1}^{r_{k+1}} \frac{\partial E^i}{\partial o_{k+1,j}^i} \frac{\partial o_{k+1,j}^i}{\partial o_{k,l}^i} = \sum_{j=1}^{r_{k+1}} \delta_{k+1,j}^i \frac{\partial o_{k+1,j}^i}{\partial o_{k,l}^i}$$

• Since $\frac{\partial o_{k+1,j}^i}{\partial o_{k,l}^i} = w_{k+1,lj}A'(o_{k,l}^i)$

$$\delta_{k,l}^{i} = \sum_{j=1}^{r_{k+1}} \delta_{k+1,j}^{i} w_{k+1,lj} A'(o_{k,l}^{i}) = A'(o_{k,l}^{i}) \sum_{j=1}^{r_{k+1}} w_{k+1,lj} \delta_{k+1,j}^{i}$$

BACKPROPAGATION (m SAMPLES)

• For m samples (m could be entire samples or a batch),

$$\delta_{k,l} = \frac{\partial E}{\partial o_{k,l}} = \sum_{i=1}^{m} \frac{\partial E^{i}}{\partial o_{k,l}^{i}} = \sum_{i=1}^{m} \delta_{k,l}^{i} = \sum_{i=1}^{m} \left(A' \left(o_{k,l}^{i} \right) \left(\sum_{j=1}^{r_{k+1}} w_{k+1,lj} \delta_{k+1,j}^{i} \right) \right)$$
$$\delta_{p,1} = \sum_{i=1}^{m} \delta_{p,1}^{i} = -\sum_{i=1}^{m} \left(y^{i} - h_{p,1}^{i} \right) A' \left(o_{p,1}^{i} \right)$$

- We first evaluate δ for the output node, then for all nodes in the (p-1)th layer, (p-2)th layer, and so on until the first layer
- Since we start at the output node and come all the way down to the input node, this scheme is referred to as back-propagation scheme

$$w_{k+1,lj}^{n} = w_{k+1,lj} + \eta \sum_{i=1}^{m} \left(\frac{-\partial E^{i}}{\partial w_{k+1,lj}} \right) = w_{k+1,lj} + \eta \sum_{i=1}^{m} \left(\frac{-\partial E^{i}}{\partial o_{k+1,j}} \right) \left(\frac{\partial o_{k+1,j}}{\partial w_{k+1,lj}} \right)$$

$$\implies w_{k+1,lj}^{n} = w_{k+1,lj} - \eta \sum_{i=1}^{m} \delta_{k+1,j}^{i} h_{k,l}^{i} \text{ (From 1.21)}$$

EXAMPLE

- Example: Given sample: $x_1 = -3.2$, $x_2 = 4.1$, $x_3 = 0.163$ and y = 2
- Decision variables: 8 weights $(w_{k,lj})$
- Objective function: min_w $f = (\hat{y}(w) y)^2$
- Steepest descent update rule with back-propagation

$$w_{k+1,lj}^{q+1} = w_{k+1,lj}^{[q]} - \eta \, \delta_{k+1,j}^{[q]} h_{k,l}^{[q]}$$

Decision Variable	Initial Guess	Iteration 1
$w_{1,11}$	0.1	0.0633
$w_{1,21}$	0.3	0.347
$w_{1,31}$	0.5	0.5019
$w_{1,12}$	0.2	0.1602
$w_{1,22}$	0.4	0.4510
$w_{1,32}$	0.6	0.602
$w_{2,11}$	0.7	0.7605
$w_{2,21}$	0.8	0.8622


```
peration == "MIRROR_X":
             object ___
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
lrror_mod.use_y = True
mirror_mod.use_z = False
  operation == "MIRROR_Z":
  rror_mod.use_x = False
  rror mod.use y = False
  Irror mod.use z = True
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.active
  "Selected" + str(modifie
   ata.objects[one.name].sel
  Int("please select exactle
```

THANKYOU

k-NN, DECISION TREES, AND RANDOM FOREST FOR REGRESSION AND CLASSIFICATION

RESMI SURESH ASSISTANT PROFESSOR, IIT GUWAHATI

k-NEAREST NEIGHBORS

REGRESSION

FUNCTIONAL APPROXIMATION USING k-NEAREST NEIGHBOUR

- k-NN is a non-parametric supervised learning method
- Philosophy: If you want to know someone, understand the neighbors
- It is also called 'Lazy algorithm' as there's no training phase, just holding on to x,y data. No model is built during training phase
- A distance metric (usually Euclidean) is needed to identify the nearest neighbours
- A tunable parameter 'k' is chosen to get the best performance
- For a new point x_{new} , the k-NN algorithm finds the k nearest neighbours and predicts the output $\hat{y} = \bar{y}$, where the average is done over the identified k neighbours
- While k-NN method is super-easy to implement, it can be susceptible to noise, as each & every distance need to be calculated

PRACTICE EXAMPLE OF k-NN

Example: Consider the following dataset.

Height (h)	1.5	1.7	1.6	1.5	1.4	1.6	1.4	1.9	2	1.4	1.8	1.5
Weight (w)	71.1	103.3	26.4	27.8	21.8	94.9	90	98.3	108.1	91.9	61.5	90.2
$BMI (y = w/h^2)$	31.6	35.74	10.31	12.36	11.12	37.07	45.92	27.23	27.23	46.89	18.98	40.09

If we use K-NN for predicting BMI from height and weight assuming the true model ($y = w/h^2$) is unknown, find BMI for a person with height 1.3m and weight 32kg. Use K-NN with 4 neighbours and Euclidean distance as the metric for choosing neighbours.

PRACTICE EXAMPLE OF k-NN

- Euclidian distance of point (1.3,32) from all points are-
- d = [39.1, 71.3, 5.61, 4.2, 10.2, 62.9, 58, 66.3, 76.1, 59.9, 29.5, 58.2]
- The 4 neighbours would be samples 4,3,5 and 11
- Now the predicted BMI for the given test sample would be the average BMI of the 4 neighbours
- i.e. $\hat{y} = 13.1924$
- True BMI = 18.94
- Squared error prediction = 33.035

OPTIMAL VALUE OF K

- No structured way to find best k
 - Trial and error approach
 - Compare the models based on cross-validation performance
- Small value of k noise will have high impact on the predictions, high SSE
- High value of k Computationally more expensive
- A general practice: choose $k = \sqrt{n}$ where n is the number of samples in the training set

DISTANCE METRICS

- Continuous variables
 - Euclidean distance: $\sqrt{\sum (x^i x_{test})^2}$
 - Manhattan distance: $\sum |x^i x_{test}|$
- Strings of equal length
 - Hamming distance: Number of positions in which two strings differ. Example: Hamming distance between 'A23D' and 'A13E' is 2
- Strings of unequal length (eg: categories like lion, dog, cheetah etc.)
 - Reformulate features using
 - Integer encoding

Each category is given a number, like lion - 1, dog - 2, cheetah - 3 etc.

• One-hot encoding

The concerned feature is converted into multiple binary features

For the above example, if we keep a separate binary variable for lion, dog, and cheetah

k-NEAREST NEIGHBORS CLASSIFICATION

CLASSIFICATION USING k-NN

- The procedure of Classification using k-NN is quite similar to Functional Approximation using k-NN
- However, to predict an output for X(new) a majority vote of k neighbours is used
- It is useful for binary and multiclass classification problems
- As the number of data points are increased, using k-NN becomes computationally hard
- Odd numbers preferred for k in case of binary classification

EXAMPLE

- Question: Find the species for a new sample with (x1,x2,x3,x4) = (6.3,2.5,4.9,1.5)
- Let k = 3
- Nearest neighbors based on Euclidean distance

SI No.	Nearest training data samples	Distance	Class Label
1	(6.8,2.8,4.8,1.4)	0.6	1
2	(5.7,2.8,4.5,1.3)	0.806	1
3	(5.6,3,4.5,1.5)	0.95	1

• Predicted class: 1

Dataset

Sepal length (x1)	Sepal width (x2)	Petal length (x3)	Petal width (x4)	Species Class (y)
7.4	2.8	6.1	3	2
5.5	2.4	3.8	1.9	1
5.6	3	4.5	1.5	1
4.8	3	1.4	0.1	0
5	3.4	1.5	0.2	0
6.2	3.4	5.4	2.3	2
7.9	3.8	6.4	2	2
6.4	2.8	5.6	2.2	2
5.4	3.9	1.7	0.4	0
4.9	3.6	1.4	0.1	0
5.7	2.8	4.5	1.3	1
5.1	3.5	1.4	0.3	0
6.5	3	5.8	2.2	2
6.8	2.8	4.8	1.4	1
5.5	4.2	1.4	0.2	0
5.8	2.7	5.1	1.9	2
4.8	3	1.4	0.3	0

REGRESSION

- Mimic the manner in which decisions are made by most of us
- Every decision point is represented as a node
- At each node, one variable is chosen from all the input variables and a decision is made based on the value of the variable
- Can be used for function approximation and classification
- Choice of variable and splitting value at each node have to be chosen based on our objective function:
 - Minimum prediction error for function approximation
 - Minimum classification error for classification

Input features: x_1 and x_2 Output feature: y

- Each end-node has a subset of samples given data is split into multiple subsets
- Partitions happen only in the input space
- Outputs are used in computing the predicted value for each of the regions that is generated
- Output for a new test sample depends on the end-node to which the new point would fall
- One can keep growing the tree to a large number of nodes
 - Although performance on training set improves, may result in over-fitting
 - Size of tree might become computationally unwieldy
- Make choices that limit tree complexity
 - Tree depth
 - Number of end-nodes
 - Minimum size of each node (cardinality)
- Growing a tree is continued until a certain accuracy requirement is met and/or until the complexity becomes too much

DECISION TREES FOR REGRESSION

ONE INPUT FEATURE

DECISION TREES FOR REGRESSION

GENERAL CASE

- \square For regression, to predict the output for a new test sample ' x_{new} ',
 - \square identify the set (or rectangle) R_j corresponding to sample x_{new} and
 - \Box \hat{y}_{new} would be the average of the output values of all samples in set R_i
- ☐ Example: consider the new point marked by '*'

$$\hat{y}_{new} = \text{mean}\left(y(x^i)\right)$$
 such that $x^i \in R_1$

- \square Same prediction for any point within the rectangle R_1
- ☐ How do we find the optimal split point?
 - \square Based on minimum squared error, $\sum (y^i \hat{y}^i)^2$

DECISION TREES FOR REGRESSION

- Consider the data relating weight to BMI
- If a single node decision tree is used, let us see how to find the best split point
- If 's' is split point, let the decision be w < s.

Sample No	1	2	3	4	5	6	7	8	9	10
$egin{aligned} ext{Weight} \ ext{(w)} \end{aligned}$	91.3	67.6	71.1	103.3	26.4	27.8	21.8	94.9	90	98.3
BMI (y)	40.58	23.39	27.77	45.91	13.47	10.86	11.12	26.29	22.5	50.15

Split point	Samples in	Samples in	_	_	COL
(w)	R_1	R_2	\bar{y}_{R_1}	\bar{y}_{R_2}	SSE
91.3	2,3,5,6,7,9	1,4,8,10	18.185	40.7325	587.49
67.6	5,6,7	1,2,3,4,8,9,10	11.8167	33.7986	792.9
71.1	2,5,6,7	1,3,4,8,9,10	14.71	35.5333	766.96
103.3	1,2,3,5,6,7,8,9,10	4	25.1256	45.91	1418.83
26.4	7	1,2,3,4,5,6,8,9,10	11.12	28.9911	1520.18
27.8	5,7	1,2,3,4,6,8,9,10	12.295	30.9313	1251.9
21.8	-	1,2,3,4,5,6,7,8,9,10	-	27.204	1807.6
94.9	1,2,3,5,6,7,9	4,8,10	21.3843	40.7833	1017.3
90	2,3,5,6,7	1,4,8,9,10	17.322	37.086	831.0856
98.3	1,2,3,5,6,7,8,9	4,10	21.9975	48.03	723.3192

CLASSIFICATION

- ☐ Similar to function approximation, except for
 - how we find the best choice of split variable and split point
 - Minimization of error for function approximation while other metrics like maximization of Gini split index for classification
 - how we make predictions
 - Average of output values for function approximation while majority voting for classification
- \square Consider j^{th} node at the k^{th} level of the tree. Let the set of points in the node be $\{S_j^k\}$. Assume that n samples are present in set $\{S_j^k\}$. Let there be p classes in the data.
- \Box $f_i(j,k)$ fraction of data points in $\{S_i^k\}$ that belong to class i
- ☐ Gini impurity

$$GI(j, k) = 1 - \sum_{i=1}^{p} f_i(j, k)^2$$

 \square When a node has data from only one class, $GI = 0 \rightarrow pure node$

- ☐ When choosing the variable to branch on and split point, aim is to get pure or close to pure child nodes
- \square Let child nodes be S_l^{k+1} (with n_l samples) and S_m^{k+1} (with n_m samples)
- ☐ Gini split index

$$GSI = GI(j,k) - \frac{n_l}{n}GI(l,k+1) - \frac{n_m}{n}GI(m,k+1)$$

- \square If both child nodes are pure, GSI = GI(j, k)
- \square For any other split, GSI would be less than GI(j, k)
- ☐ Since the best case scenario is to get pure nodes on splitting, variable and split point that maximizes GSI is selected

$$n = n_l + n_m$$

Consider the data relating hours studied to result

Sample No.	1	2	3	4	5	6	7	8
Hours studied	10.5	2.5	14	8.2	10.4	5	6.7	14.7
Pass $(1)/\text{Fail}(0)$	1	0	1	1	1	0	0	1

- If a single node decision tree is used, let us see how to find the best split point
- Gini impurity (GI) for the given data:

$$GI = 1 - f_0^2 - f_1^2 = 1 - \left(\frac{3}{8}\right)^2 - \left(\frac{5}{8}\right)^2 = 0.4688$$

Sample No.	1	2	3	4	5	6	7	8
Hours studied	10.5	2.5	14	8.2	10.4	5	6.7	14.7
Pass (1)/Fail(0)	1	0	1	1	1	0	0	1

- Let 's' be a split point such that set R_1 contains all points such that $x \le s$ and set R_2 contains all points such that x > s
- Let x = 10.4 be the split point, then R_1 contains samples $\{2, 4, 5, 6, 7\}$, and R_2 contains samples $\{1, 3, 8\}$
- Since 3 out of 5 samples in R_1 have label 0 and the remaining 2 have label 1.

$$f_0 \text{ for } R_1 = 0.6$$

$$f_1 \text{ for } R_1 = 0.4$$

$$GI \text{ for } R_1 = 1 - 0.6^2 - 0.4^2 = 0.48$$

- R_2 is a pure node, implies GI = 0 for R_2
- GSI for split point $10.4 = 0.4688 \left(\frac{5}{8}\right)0.48 0 = 0.1688$

Sample No.	1	2	3	4	5	6	7	8
Hours studied	10.5	2.5	14	8.2	10.4	5	6.7	14.7
Pass (1)/Fail(0)	1	0	1	1	1	0	0	1

	Split point (s)	Samples in R1	Samples in R2	GI for R1	GI for R2	GSI
_	10.5	1,2,4,5,6,7	3,8	0.5	0	0.094
	2.5	2	1,3,4,5,6,7,8	0	0.408	0.112
	14	1,2,3,4,5,6,7	8	0.49	0	0.04
	8.2	2,4,6,7	1,3,5,8	0.375	0	0.28
	10.4	2,4,5,6,7	1,3,8	0.48	0	0.169
«	5	2,6	1,3,4,5,7,8	0	0.28	0.26
Best split poir	nt 6.7	2,6,7	1,3,4,5,8	0	0	0.469
_	14.7	1,2,3,4,5,6,7,8	-	0.469	-	0

RANDOM FOREST

REGRESSION AND CLASSIFICATION

RANDOM FORESTS

- ☐ Simple extension of decision trees
- ☐ Forest comprise of many trees; equivalently, random forests consists of many decision trees
- ☐ Decision tree may give considerably different results for minor changes in the data or construction procedure
- ☐ Random forests help to avoid this by building multiple trees
- ☐ Each tree is realized by choosing a subset of datapoints or variables and building a decision for each sub-selected data matrix

RANDOM FORESTS

o Predictions

- Average of predictions from multiple trees for function approximation
- Majority voting (or other metrics) for classification

o Advantages of random forest

Stochasticity is included in various forms

- O Splitting on the basis of random subsets of samples
- O Splitting on the basis of random features
- Bagging (Bootstrap aggregating) decision trees –
 random samples with replacement

Other approaches for introducing stochasticity: Boosting decision trees – trees added sequentially

PERFORMANCE MEASURES FOR CLASSIFICATION

CONFUSION MATRIX

- TP Correct identification of positive labels
- TN Correct identification of negative labels
- FP Incorrect identification of positive labels
- FN Incorrect identification of negative labels

- Accuracy: Overall effectiveness of a classifier
- Total number of actual positive samples TP+FN
- Total number of actual negative samples TN+FP
- Sensitivity/Recall Effectiveness of a classifier to identify positive labels

$$S_e = \frac{TP}{TP + FN}$$

Specificity – Effectiveness of a classifier to identify negative labels

$$S_p = \frac{TN}{FP + TN}$$

- Accuracy, specificity and sensitivity maximum value is 1
- Balanced accuracy = 0.5(Specificity+Sensitivity)
- Maximizing recall may adversely affect precision and vice versa

■ F1-score F1 - score =
$$\frac{2(\text{Precision} \times \text{Recall})}{\text{Precision} + \text{Recall}}$$

PERFORMANCE MEASURES

Best case scenario

High precision and recall, low specificity

High precision, low recall and specificity

CONCLUSIONS

- ☐ Decision trees for both function approximation and classification
- ☐ Random forests for both function approximation and classification
- ☐ Performance measures for classification (using any algorithm)


```
peration == "MIRROR_X":
             object ___
mirror_mod.use_x = True
mirror_mod.use_y = False
mirror_mod.use_z = False
 _operation == "MIRROR_Y"
lrror_mod.use_x = False
lrror_mod.use_y = True
mirror_mod.use_z = False
  operation == "MIRROR_Z":
  rror_mod.use_x = False
  rror mod.use y = False
  Irror mod.use z = True
   ob.select= 1
  er ob.select=1
   ntext.scene.objects.active
  "Selected" + str(modifie
   ata.objects[one.name].sel
  Int("please select exactle
```

THANKYOU