Fundamentals of Computer Science Study Guide

Books

- 1. Rosen, K.H. Discrete Mathematics and its Applications, Global Edition <u>Direct Link</u>
- Sipser, M. *Introduction to the theory of computation* PDF excerpts are provided on Coursera, however I suggest getting the book, because we only have access to chapter
 The international edition can be found for cheap. <u>Link</u>
- 3. Hopcroft, J., R. Motwani and J.D. Ullman *Introduction to automata theory, languages and computation* PDF Excerpts are provided on Coursera.
- 4. Forbes, M. A theoretical introduction to Turing Machine <u>Direct Link</u> (This book is trash)
- 5. Kozen, D.C. Automata and Computability. PDF excerpts are provided on Coursera
- 6. Chang, S. (ed) Data structures and algorithms Direct Link

Topics Covered

- Discrete Math Prerequisites
 - Logic
 - o Proofs:
 - Direct Proof
 - Proof by Contraposition
 - Proof by Contradiction
 - Proof by Induction
 - Combinatorics
- Automata Theory
 - Finite State Automata
 - Deterministic
 - Nondeterministic
 - Regular Languages
 - Regular Expressions
 - Non-Regular Languages*
 - Pumping Lemma
 - Context-Free Grammars
 - Turing Machines*
- Algorithms
 - Algorithm Complexity
 - Algorithms Covered:
 - Insertion Sort
 - Bubble Sort
 - Heap Sort
 - Quick Sort
 - Merge Sort
 - Binary Search
 - Gale-Shapley

*Consult external resources because these topics are not explained well in the lectures

Topic Map

Suggested Reading List

Week	Торіс	Reading
1 & 2	Logic	Rosen: Chapter 1.1 - 1.4, 1.5 (optional)
3 & 4	Proofs	Rosen: Chapter 1.8, 1.9 (optional, to practice proof-writing) 5.1, 5.3 (optional, but highly recommended to get more comfortable with recursion)
5 & 6	Combinatorics	Rosen: Chapter 6.1 - 6.3
7 & 8	Automata Theory: DFA and NFA	Sipser: Chapter 1.1, 1.2
9 & 10	Automata Theory: Regular Languages	Sipser: Chapter 1.3, 1.4

Week	Торіс	Reading
11 & 12	Automata Theory: Non- Regular Languages*	Sipser: Chapter 2.1 (More concise and easier to understand than Hopcroft reading) Hopcroft: Chapter 5 Chapter 7.1 (Covers Chomsky Normal Form)
13 & 14	Automata Theory: Turing Machines*	Forbes: Chapter 1 (I found this book to be unreadable. Read Sipser or Hopcroft instead) Kozen: Lecture 32 Sipser: Chapter 3.1 (Optional) Hopcroft: Chapter 8.1, 8.2 (Optional)
15 & 16	Algorithms I	Rosen: Chapter 3.1 Chang: Chapter 8, 9
17 & 18	Algorithms II	Rosen: 5.4
19 & 20	Algorithms: Complexity	Rosen: Chapter 3.2, 3.3 (both optional) Chang: Chapter 2, 3 (optional)

^{*}The lectures in weeks 11 - 14 (covering non-regular languages and Turing machines) are exceptionally poor so I suggest consulting the resources below

Resources

<u>Lecture notes</u> by Felipe Balbi

Writing Proofs

- 1. The exercises in chapters 1.8, 1.9, and 5.1of the Rosen book give you the opportunity to practice proof-writing. Check your answers here
- 2. A Guide to Proof-Writing
- 3. Techniques for Proof-Writing
- 4. The Stanford CS103 website has many resources related to writing proofs

Automata Theory

- 1. Practice designing automata, regular expressions, grammars, and Turing machines by solving homework problems in the Automata Theory MOOC (#5 below) or the Sipser book. Check your answers here
- 2. The Stanford CS103 <u>website</u> also has very well made and detailed slides covering Finite State Automata, Regular Expressions, Context-Free Grammars, and Turing Machines

- 3. <u>Theory of Computation lectures by UC Davis</u>. Follows the Sipser book.
- 4. NESO Academy Theory of Computation playlist
- 5. <u>Stanford Automata Theory MOOC</u>. Follows the Hopcroft book. Includes homework as well.

Algorithms

There are many resources to learn algorithms online here is a few of them:

- 1. Khanacademy
- 2. <u>Visualgo</u>
- 3. GeeksforGeeks
- 4. <u>Interview Cake sorting algorithms reference</u>, <u>Binary Search reference</u>
- 5. Algorithms Youtube Playlist
- 6. We also have access to CLRS, a popular algorithms textbook. <u>Direct Link</u> The chapters relevant to this course are: 2, 3, 4.5, 4.6, 6, 7