

Find
$$\widehat{\mu}_{MLE}$$
 $\frac{\partial \widehat{\mu}}{\partial \mu} = \sum_{i=1}^{E} \frac{(x_i - \mu)}{T^2 + 6_i^2}$

$$\frac{\partial \widehat{\mu}}{\partial \mu} = 0 \implies \widehat{\frac{x_i}{T^2 + 6_i^2}} = \widehat{\frac{1}{E}} \frac{\widehat{\mu}}{T^2 + 6_i^2}$$

$$\implies \widehat{\mu} = \underbrace{\underbrace{\sum x_i / t^2 + 6_i^2}}_{\sum 1 / (t^2 + 6_i^2)}$$

$$\frac{F_{ind}}{F_{ind}} \underbrace{\frac{\partial \widehat{\mu}}{\partial t^2}}_{\sum 1 = 1} = \underbrace{\frac{\widehat{\mu}_{i}}{T^2 + 6_i^2}}_{\sum 1 = 1} \underbrace{\frac{\widehat{\mu}_{i} - \mu_{i}^2}{(t^2 + 6_i^2)^2}}_{\sum 1 = 1} - \underbrace{\frac{\widehat{\mu}_{i}}{T^2 + 6_i^2}}_{\sum 1 = 1} \underbrace{\frac{\widehat{\mu}_{i} - \mu_{i}^2}{(t^2 + 6_i^2)^2}}_{\sum 1 = 1} = \underbrace{\frac{\widehat{\mu}_{i} - \mu_{i}^2}{(t^2 + 6_i^2)^2}}_{\sum 1 / (t^2 + 6_i^2)}$$
Solve this system to get \widehat{T}_{i}^2 .

Now, $\widehat{\mu}$ is in terms of \widehat{T}_{i}^2 , and \widehat{T}_{i}^2 is in terms of $\widehat{\mu}$.

Hence, to obtain $\widehat{\mu}_{MLE}$ and \widehat{T}_{MLE}^2 , we
$$\underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_{\sum 1 / (t^2 + 6_i^2)} = \underbrace{\widehat{T}_{i}^2 + \widehat{\mu}_{i}^2}_$$

Then, once we've obtained $\hat{\mu}$, $\hat{\tau}^2$ the final Parametric Empirical Rayer estimator $\hat{\tau}^2$ and $\hat{\tau}^2$ the final Parametric Empirical Rayer $\hat{\tau}^2$ (EBML) = $\frac{\hat{\tau}^2}{\hat{\tau}^2 + 6i^2} (\hat{\tau}^2 - \hat{\mu}) + \hat{\mu}$