Näherungsalgorithmen (Approximationsalgorithmen) WiSe 2024/25 in Trier

Henning Fernau
Universität Trier
fernau@uni-trier.de

11. Oktober 2024

Näherungsalgorithmen Gesamtübersicht

- Organisatorisches
- Einführung / Motivation
- Grundtechniken für Näherungsalgorithmen
- Approximationsklassen (Approximationstheorie)

Organisatorisches

Vorlesung Besprechung bzw. Übungen (nach Absprache) Termin: donnerstags 12-14 Uhr im H13

Modulprüfungen werden bei uns immer als mündliche Prüfungen abgelegt

Meine Sprechstunde: DO, 13-14 Uhr im F213

Sprechstunde Kevin Mann: DI, 13-14 Uhr im H407

Kontakt: fernau@uni-trier.de, mann@uni-trier.de

Einbettung

- Zum Umgang mit NP-schweren Problemen:
 Näherungsalgorithmen im Wechsel mit Parametrisierten Algorithmen
- Zur Komplexität von Problemen:
 Komplexitätstheorie A im Wechsel mit Komplexitätstheorie B
- Algorithmische Vorlesungen bei Kollegen N\u00e4her und Kindermann
- Optimierungsvorlesungen in der Mathematik

Motivation

Viele interessante Probleme (aus der Praxis!) sind NP-schwer

⇒ wohl keine Polynomialzeitalgorithmen sind zu erwarten.

Motivation

siehe http://max.cs.kzoo.edu/~kschultz/CS510/ClassPresentations/NPCartoons.
html wiederum aus Garey / Johnson

Sorry Chef, aber ich kann für das Problem keinen guten Algorithmus finden...

Die beste Antwort wäre hier aber...

... Ich kann aber beweisen, dass es für das Problem keinen guten Algorithmus geben kann !

Was die Komplexitätstheorie statt dessen liefert...

... Ich kann aber beweisen, dass das alle anderen auch nicht können!

Heuristische Verfahren

• Ziel: schnelle Laufzeit

- "hoffentlich" wird "gute" Lösung gefunden.
- typische Beispiele: Greedy-Verfahren

Randomisierte Verfahren

• finden optimale Lösung "mit groer Wahrscheinlichkeit". Hinweis: Eine Vorlesung "randomisierte Algorithmen" wird manchmal angeboten; oder auch Seminar zum Thema.

Parametrisierte Verfahren

- finden stets optimale Lösung.
- versuchen, den nicht-polynomiellen Laufzeitanteil auf einen (als klein angenommenen) sogenannten Parameter zu beschränken.

Hinweis: Spezialvorlesung "paramet(e)risierte Algorithmen" wird im Wechsel mit "Näherungsalgorithmen" in jedem zweiten Wintersemester angeboten.

Näherungsverfahren

- sind "Heuristiken mit Leistungsgarantie".
- Güte von Näherungsverfahren kann
 - absolut oder
 - relativ zum Optimum gemessen werden

Ein *Optimierungsproblem* \mathcal{P} wird beschrieben durch ein Quadrupel $(I_{\mathcal{P}}, S_{\mathcal{P}}, m_{\mathcal{P}}, \text{opt}_{\mathcal{P}})$:

- 1. $I_{\mathcal{P}}$ ist die Menge der möglichen Eingaben (*Instanz*en),
- 2. $S_{\mathcal{P}}: I_{\mathcal{P}} \to \mathsf{Menge} \ \mathsf{der} \ \mathsf{zul\"{assigen}} \ \mathsf{L\"{o}sungen} \ \mathsf{(feasible solutions)},$
- 3. $m_{\mathcal{P}}: (x,y) \mapsto m_{\mathcal{P}}(x,y) \in \mathbb{N}$ (oder $\mathbb{Q},...$) für $x \in I_{\mathcal{P}}, y \in S_{\mathcal{P}}(x)$ liefert den *Wert* der zulässigen Lösung y und
- 4. $opt_{\mathcal{P}} \in \{min, max\}$: \mathcal{P} Minimierungs- oder Maximierungsproblem?

 $I_{\mathcal{P}}$ und $S_{\mathcal{P}}(x)$ sind —geeignet binär codierte— formale Sprachen, also Sprachen über dem Alphabet $\{0,1\}$.

Weitere Bezeichnungen

 $S_{\mathcal{P}}^*: I_{\mathcal{P}} \to \mathsf{Menge} \ \mathsf{der} \ \mathit{bestm\"{o}glichen} \ \mathit{L\"{o}sungen} \ (\mathsf{optimum} \ \mathsf{solution}), \ \mathsf{d.h.}$

$$\forall x \in I_{\mathcal{P}} \ \forall y^*(x) \in S_{\mathcal{P}}^*(x) : m_{\mathcal{P}}(x, y^*(x)) = \mathsf{opt}_{\mathcal{P}}\{m_{\mathcal{P}}(x, z) \mid z \in S_{\mathcal{P}}(x)\}.$$

Der Wert einer bestmöglichen Lösung wird auch $m_{\mathcal{D}}^*(x)$ notiert.

Ist \mathcal{P} aus dem Zusammenhang klar, so schreiben wir kurz —unter Fortlassung des Indexes \mathcal{P} — $I, S, m, \text{opt}, S^*, m^*$.

Ziel: Polynomialzeitalgorithmus A, der zu x eine zulässige Lösung y berechnet, für die $m(x,y)/m^*(x)$ beschränkt ist.

Unser Ziel: Genauer definiert

Ist \mathcal{P} ein Optimierungsproblem, so ist —für jede Instanz x von \mathcal{P} und für jede zulässige Lösung y von x— die *Leistungsgüte* (engl: performance ratio) von y bezüglich x definiert als

$$R(x,y) := \max \left\{ \frac{m^*(x)}{m(x,y)}, \frac{m(x,y)}{m^*(x)} \right\}.$$

Ist A ein Approximationsalgorithmus für P, so heißt A r-Approximation, wenn

$$\forall x \in I_{\mathcal{P}} : R(x, \mathcal{A}(x)) \leq r.$$

Bem.: Die Leistungsgüte ist gleich Eins, wenn die Lösung optimal ist, und sie ist sehr groß, wenn die Lösung schlecht ist.

Eine erste Definition für ein einführendes Beispiel

Eine *Knotenüberdeckung* (engl: vertex cover) eines Graphen G=(V,E) ist eine Menge $C\subseteq V$ derart, dass für jede Kante $e=\{v_1,v_2\}\in E$ gilt: $e\cap C\neq\emptyset$, d.h., e wird durch einen Knoten aus C abgedeckt.

Knotenüberdeckungsproblem VC: Finde kleinstmögliche Knotenüberdeckung!

Hinweis: VC ist eines der grundlegenden NP-schweren Probleme.

Ein Beispiel: das Knotenüberdeckungsproblem VC (als Optimierungsproblem)

1.
$$I = \{G = (V, E) \mid G \text{ ist Graph } \}$$

2.
$$S(G) = \{U \subseteq V \mid \forall \{x,y\} \in E : x \in U\}$$
 (Knotenüberdeckungseigenschaft)

3.
$$m = |U|$$

4.
$$opt = min$$

Ein Beispiel: Wie groß ist ein kleinstmögliches VC?

Einfache Beobachtungen und Regeln

- Zwei Knoten in einem Dreieck gehören in ein VC.
- Wenn Wahlmöglichkeit besteht, nimm solche Knoten, die "noch mehr" abdecken können.
 - → Nimm Nachbarn eines Grad-1-Knotens ins VC. (Blattregel)
 - \rightsquigarrow Gibt es in einem Dreieck einen Knoten vom Grad zwei, so nimm dessen beide Nachbarn ins VC. (\triangle -Regel)

Unser Beispiel: Wende die △-Regeln nacheinander an: ergibt 6 VC-Knoten.

Unser Beispiel: Die Blattregeln kaskadieren → 5 weitere VC-Knoten.

Unser Beispiel: Was bleibt übrig?

Ein Greedyverfahren GreedyVC (G, C)

• Falls E(G) leer, gib C aus; exit.

• Suche Knoten v mit maximalem Grad in G.

• Berechne GreedyVC $(G - v, C \cup \{v\})$

Hinweis: G-v entsteht aus G, indem v (mit anliegenden Kanten) aus G gelöscht wird.

Unser Beispiel: Greedy at work... Farben kodieren Grad → 16 VC-Knoten

Ein Suchbaumverfahren SuchbaumVC(G, C, k)

- Falls E(G) leer, gib C "nach oben"; exit.
- Falls k = 0: exit (Fehlerfall).
- Nimm irgendeine Kante $e = \{v_1, v_2\}$ aus G und verzweige:
 - 1. Berechne Suchbaum $VC(G v_1, C \cup \{v_1\}, k 1)$
 - 2. Berechne Suchbaum $VC(G v_2, C \cup \{v_2\}, k 1)$
 - 3. Liefere kleinere Lösung "nach oben".

Weitere Idee: Knotenorientierter Suchbaum, kombiniert mit den Regeln \leadsto zwei Zweige

Weitere Idee: Kombiniere Suchbaum mit unseren Regeln der blaue Fall

Weitere Idee: Kombiniere Suchbaum mit unseren Regeln der rote Fall

Ergebnis für unser Beispiel:

Die kleinste Knotenüberdeckung enthält 16 Knoten.

Eine kleinste Knotenüberdeckung wurde von der Heuristik gefunden.

Die Verwendung von sog. Reduktionsregeln hilft, die Verzweigungszahl bei Suchbaumalgorithmen zu verringern.

Ein Näherungsverfahren N1VC(G = (V, E), C)

Falls E leer, gib C aus; exit.

• Nimm irgendeine Kante $e=\{v_1,v_2\}$ aus G und berechne $N1VC(G-\{v_1,v_2\},C\cup\{v_1,v_2\})$

Dies ist ein 2-Approximations-Verfahren (s.u.)

Unser Beispiel: magentafarbene Knoten gehören nicht zu *(inklusions-)minimaler* Überdeckung; die gefundene Lösung ist daher fast bestmöglich Wichtig: Minimal (Greedy) versus Minimum VC (NP-schwer).

Ein (weiteres) Beispiel: MAXSAT

 $I: \mathsf{Menge}\ C \ \mathsf{von}\ \mathsf{Klauseln}\ \mathsf{\"{uber}}\ \mathsf{einer}\ \mathsf{Menge}\ V \ \mathsf{von}\ \mathsf{Variablen}$ (Eine Klausel ist eine Disjunktion von Literalen.

Ein Literal ist eine Variable oder ihre Negation.

Formal ist C als Menge von Mengen von Literalen aufzufassen.)

 $S: Menge der Belegungen <math>f: V \rightarrow \{true, false\}$

 $m: |\{c \in C \mid f(c) = \text{true}\}|$

opt: max

Beispiel: Die KNF-Formel $(x \vee \bar{y}) \wedge (\bar{x} \vee y)$ würden wir als $C = \{\{x, \bar{y}\}, \{\bar{x}, y\}\}$ schreiben.

Ein einfacher Algorithmus

- 1. Es sei C eine Klauselmenge über V.
- 2. Evaluiere die Belegungen $f_0 = 0$ und $f_1 = 1$.
- 3. Liefere $f = f_i$ zurück mit $m(f_i) \ge m(f_{2-i})$.

Satz: Der Algorithmus ist eine 2-Approximation.

Beweis: Für jede Klausel c gilt: $f_0(c) \vee f_1(c)$ ist wahr.

Daher gilt: $m(f_0) + m(f_1) \ge |C|$.

$$\sim 2 \cdot m(f) \ge m(f_0) + m(f_1) \ge |C| \ge m^*(C)$$
.

Ein Beispiel: das Problem unabhängiger Knotenmengen (als Opt.problem)

1.
$$I = \{G = (V, E) \mid G \text{ ist Graph } \}$$

2.
$$S(G) = \{U \subseteq V \mid \forall \{x, y\} \in E : |\{x, y\} \cap U| \leq 1\} \ (U \text{ ist unabhängig})$$

3.
$$m = |U|$$

4.
$$opt = max$$

Bem. Das Komplement einer unabhängigen Menge ist eine Knotenüberdeckung und umgekehrt.

Ein Beispiel: das Problem unabhängiger Kantenmengen (als Opt.problem) Auch bekannt als Maximum Matching.

- 1. $I = \{G = (V, E) \mid G \text{ ist Graph } \}$
- 2. $S(G) = \{U \subseteq E \mid \forall e, f \in U : e \cap f \neq \emptyset \implies e = f\}$ (Matching-Eigenschaft)
- 3. m = |U|
- 4. opt = max

Bem. Dieses Problem kann man in Polynomialzeit lösen, wie Edmonds zeigen konnte. Die Größe jedes maximalen (!) Matchings ist eine untere Schranke für die Größe einer jeden Knotenüberdeckung.