ᄪ	,
治	4

鉄

淤

姓名

开/闭卷 闭卷 A/B 卷 A 1500620001-课程名称 计算机网络-传输层 学分 3 1500620005

命题人(签字) 评卷人(签字)

2023 年 5 月 15 日

题号	1	1 1	11]	四	五.	六	七	八	九	+	基本题 总分	附加题
得分												
评卷人												

一、填空(每题1分,共5分)

- 1. 假设拥塞窗口为20KB,通知窗口为30KB,TCP能够发送的最大字节数是(20KB)。
- 2. 在 TCP 协议中,请求建立连接时需要将(控制)字段中的(SYN)标志位置 1。
- 3. 主机甲和主机乙之间已建立一个 TCP 连接, 主机甲向主机乙发送了 3 个连续的 TCP 段,分别包含300B、400B和500B的有效载荷,第三个段的序号为900。若主机乙 仅正确接收到第1个段和第3个段,则主机乙发送给主机甲的确认序号是(500)。
- 4. 若主机甲主动发起一个与主机乙的 TCP 连接,甲、乙选择的初始序列号分别为 2018 和 2046,则第三次握手 TCP 段的确认序列号是(2047)。

二、单选题(每题 2 分, 共 30 分, 在以下每小题给出的 A、B、C、D 四个选 项中, 只有一个选项正确, 请选出正确答案)

- 1. 为了保证连接的可靠建立, TCP 通常采用 (A
 - A. 三次握手机制

B. 窗口控制机制

C. 自动重发机制

- D. 端口机制
- 2. A和B之间建立了TCP连接, A向B发送了一个报文段, 其中序号字段 seq=300, 确 认号字段 ACK=101,数据部分包含 7B,那么在 B 对该报文的确认报文段中(
 - A. seq=301, ACK=101

B. seq=301, ACK=108

- C. seq=101, ACK=101
- D. seq=101, ACK=307
- 3. 可靠的传输协议中的"可靠"指的是(D)。
 - A. 使用面向连接的会话
- B. 使用"尽力而为"的传输
- C. 使用滑动窗口来维持可靠性 D. 使用确认机制来确保传输数据的可靠性
- 4. 以下关于 TCP 协议的描述中,错误的是(B)
 - 计算机网络 》试卷 卷 第 1 页 共 6 页

- A. TCP 提供面向连接的服务
- B. 采用 TCP 协议的报文段在传输过程中不会丢失
- C. TCP 能够将顺序混乱的报文段重新拼装成顺序的报文
- D. TCP 提供端对端可靠的传输服务
- 5. 下列关于 UDP 协议的叙述中,正确的是 (B)。
 - I. 提供无连接服务, 且通过差错校验保障可靠数据传输
 - II. 提供复用/分用服务
 - III. UDP 校验和对伪首部、报文头及应用层数据进行校验
 - IV. UDP 长度字段是 UDP 数据报的长度,包括伪首部的长度
 - A. 仅I、II和III
- B. 仅 II 和 III
- C. 仅 I 和 II
- D. 仅III和IV
- 6. 某客户通过一个 TCP 连接向服务器发送数据的部分过程如图所示。客户在 t_0 时刻第一次收到确认序列号 ack_seq=100 的段,并发送序列号 seq=100 的段,但发生丢失。若 TCP 支持快重传,则客户重新发送 seq=100 段的时刻是(C)。

A. t_1

B. *t*₂

- C. **t**₃
- D. t₄
- 7. 下列关于 TCP 协议的四个描述中,错误的是(D)。
 - I. 拥塞窗口(cwnd)是接收端根据网络拥塞情况确定的窗口值,其大小在开始时可以按指数规律增长。
 - II. TCP 连接建立的过程需要经过"三次握手"的过程,而释放过程相对复杂且只有客户端可以主动提出释放连接的请求。
 - III. 接收窗口(rwnd)通过TCP首部中的窗口字段通知数据的发送方。
 - Ⅳ. 发送窗口确定的依据是:发送窗口=min[接收窗口,拥塞窗口]。
 - 《 计算机网络 》试卷 卷 第 2 页 共 6 页

	A. 仅II	B. 仅 I 和III	C. 仅II和IV	D. 仅I和II
8.		送一个(SYN=1, seq=1 接受该连接请求,则主机		
	A. (SYN=0, AC	EK=0, seq=11221, ack=1	11221)	
	B. (SYN=1, AC	EK=1, seq=11220, ack=1	11220)	
	C. (SYN=1, AC	K=1, seq=11221, ack=1	11221)	
	D. (SYN=0, AC	K=0, seq=11220, ack=1	11220)	
9.	下列关于 TCP 连接	接释放过程, 叙述不正确	的是(B)。	
	A. 通过设置 FIN	为来表示释放连接		
	B. 当一方释放连	接后另一方即不能继续发		
	C. 只有双方均释:	放连接后,该连接才被释	 発放	
	D. 释放连接采用	了改进的三次握手机制		
10.	传输层可以通过(B)标识不同的	应用。	
	A. 物理地址	B. 端口号	C. IP 地址	D. 逻辑地址
11.	A和B建立了TCI	P 连接, 当 A 收到确认号	为 100 的确认报文段	及时,表示(C)。
	A. 报文段 99 已收	:到	B. 报文段 100 已收	女到
	C. 末字节序号为 9	99 的报文段已收到	D. 末字节序号为	100 的报文段已收到
12.	以下关于 TCP 使用	目的计时器的描述中,错	误的是(D)。	
	A. 设置重传计时器	器的目的是控制报文确认	与等待重传的时间	
	B. 设置保持计时器	器的目的是为了防止 TCF	·连接处于长时期空间	羽状态
	C. 设置时间等侍记	十时器的目的是为了保证	TCP 连接释放过程证	E常地进行
	D. 设置坚持计时器	器的目的是防止接收端因	接收一个长报文的多	6个分段而造成死锁
13.	以下关于 UDP 协订	义主要特点的描述中,错	·误的是(A)。	
	A. UDP 报文的报》	人长度是可变的		
	B. 伪报头包括 IP	分组报头的一部分		
	C. UDP 报头主要包	包括端口号、长度、检验	和等字段	
	D. UDP 校验和计算	章包括伪报头、UDP 报乡	人及应用层数据	
14.	TCP 流量控制的主	E要目的是(B)。		
	«	计算机网络 》试卷	卷 第 3 页 共 6 页	

- A. 减少比特错误 B. 控制发送端发送速率以使接收端可以及时接收
- C. 防止发送方溢出 D. 提高发送效率
- 15. 以下关于 TCP 报头格式的描述中,错误的是(D)。
 - A. 报头长度为 20~60 B, 其中固定部分为 20 B, 且它总是 4 字节的整数倍
 - B. 当 SYN 字段为 1, ACK 字段为 0 时,表示这是一个请求建立连接的报文
 - C. 窗口字段是接收方让发送方设置发送窗口的依据之一,由接收方的接收缓存空间 大小决定
 - D. 与 UDP 校验和不同的是, TCP 校验和是必需的, 但其计算不需要伪首部
- 三、分析计算题(共45分。要求:必须写出必要的计算过程,否则酌情扣分)
- (此题共10分)主机甲和主机乙新建一个TCP连接,甲的拥塞控制初始阈值是32KB, 1. 甲向乙始终以 MSS = 1KB 大小的段发送数据,并一直有数据发送。乙为该连接分配 16KB 接收缓存,并对每个数据段进行确认。忽略段传输延迟。若乙接收的数据全部 存入缓存,不被取走,则甲从连接建立成功时刻起,未发送超时的情况下,试写出经 过1RTT, 2RTT, 3RTT 和4RTT 后甲的发送窗口。
 - 答案: (1) 经过一个 RTT 后第二次发送时, rwnd=15KB、cwnd=2KB, 发送窗口取较小值: 2KB
 - (2) 经过两个RTT,第三次发送时,rwnd=13KB、cwnd=4KB,发送窗口取较小值:4KB
 - (3) 经过三个 RTT, 第四次发送时, rwnd = 9KB、cwnd = 8KB, 发送窗口取较小值: 8KB
 - (4) 经过四个 RTT, 第五次发送时, rwnd = 1KB、cwnd = 16KB, 发送窗口取较小值: 1KB
- (此题共 10 分)已知以下是以十六进制格式存储的一个 UDP 首部: 0x0035F7220030E827。试问:(1)源端口号和目的端口号分别是多少?(2)该数据报 的总长度和数据部分长度分别是多少?(3)该数据报是从客户端到服务器方向,还是 从服务器到客户端方向?使用该UDP服务的是哪个应用层协议?
 - 答: (1) 源端口号为前 2 个字节,即(0035)₁₆=53,目的端口号为第 3、4 个字节,即(F721) 16=63265;
 - (2)数据报总长度为第5、6个字节,即(0030)₁₆=48,总长度为48B;数据部分长度为48-8=40 B
 - (3) 该 UDP 的源端口号为 53, 目的端口号为 63265, 前一个为服务器端使用的 DNS 熟知端 口号, 后一个为客户端使用的临时端口号, 可知该数据报是服务器发给客户端的, 使用该 UDP 服务的是 DNS 协议。
- (此题共 10 分) TCP 的拥塞窗口 cwnd 的大小与传输轮次 n 关系见下表。 3.
 - 计算机网络 》试卷 卷 第 4 页 共 6 页

n	1	2	3	4	5	6	7	8	9	10	11	12	13
cwnd	1	2	4	8	16	32	33	34	35	36	37	38	39
n	14	15	16	17	18	19	20	21	22	23	24	25	26
cwnd	40	41	42	21	22	23	24	25	26	1	2	4	8

请解答以下问题:

- (1) 指明 TCP 工作在慢开始阶段和拥塞避免阶段的时间间隔;
- (2) 在第 1、18 和 24 轮发送数据时,门限 ssthresh 分别被设置为多大?
- (3) 假定在第 26 轮次后收到了 3 个重复的确认,因而检测出了报文段的丢失,那么拥塞 窗口 cwnd 和门限 ssthresh 应设置为多大?
- 答: (1) 慢开始时间间隔: [1,6] 和 [23,26]

拥塞避免实践间隔: [6,16] 和 [17,22]

(2) 在第 1 轮发送时,门限 ssthresh 被设置为 32,因为从第 6 轮次起就进入了拥塞避免状态,拥塞窗口每个轮次加 1;

第 18 轮发送时, 门限 ssthresh 被设置为发生拥塞时拥塞窗口 42 的一半, 即 21

第 24 轮发送时, 门限 ssthresh 被设置为发生拥塞时拥塞窗口 26 的一半, 即 13

- (3)检测出了报文段的丢失时拥塞窗口 cwnd 是 8,因此拥塞窗口 cwnd 的数值应当减半,等于 4,而门限应设置为检测出报文端丢失时拥塞窗口 8的一半,即 4。
- 4. (此题共 15 分) 主机 A 与主机 B 之间有一条 TCP 连接, 主机 A 通过这个 TCP 连接 向主机 B 连续发送两个报文, 第一个报文 100 字节, 第二个报文 50 字节。已知第一个报文的序号是 120, 源端口号是 302, 目的端口号是 53。假设 B 已经收到并确认了 A 在这之前发送的所有数据。另外,假设只要主机 B 接收到来自主机 A 的报文,它都会发送确认。
 - (1) 请问 A 发给 B 的第二个报文的序号、源端口号、目的端口号是什么?
 - (2) 如果两个报文顺序到达, B 发送给 A 的第一个确认消息中, 确认号, 源端口号、目的端口号分别是什么?
 - (3) 如果第二个报文在第一个报文到达之前到达,那么 B 发送给 A 的第一个确认消息中,确认号是多少?

- (4) 假设这两个报文顺序到达 B,第一个确认丢失了,第二个确认正常到达 A,请问主机 A 在什么情况下会进行重传,并指出重传哪个报文?而在什么情况下不进行重传?
- 答: (1) 序号是 220, 源端口号是 302, 目的端口号是 80。
- (2) 确认号是 220, 源端口号是 80, 目的端口号是 302。
- (3) 确认号是 120。
- (4) 如果第二个确认在第一个报文的重传计时器过期之后到达,则会发生重传,重传的是 第一个报文

如果第二个确认在第一个报文的重传计时器过期之前到达,则不会发生重传。