MATH 601 HOMEWORK (DUE 9/11)

HIDENORI SHINOHARA

Exercise. (1) Show that 2×2 matrices give a functor, M_2 , from the category of rings to itself, $R \mapsto M_2(R)$.

Proof. Let R, R' be rings and $\phi \in \text{Hom}(R, R')$. Let $M_2(\phi) : M_2(R) \to M_2(R')$ be defined such that

$$(M_2(\phi))$$
 $\begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \phi(a) & \phi(b) \\ \phi(c) & \phi(d) \end{bmatrix}$.

We claim that M_2 is indeed a functor.

• Claim 1: For any $\phi \in \text{Hom}(R, R')$, $M_2(\phi) \in \text{Hom}(M_2(R), M_2(R'))$. In other words, we want to show that $M_2(\phi)$ is a ring homomorphism for any ϕ .

$$(M_{2}(\phi)) \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} \end{pmatrix} = (M_{2}(\phi)) \begin{pmatrix} \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} \phi(a+e) & \phi(b+f) \\ \phi(c+g) & \phi(d+h) \end{bmatrix}$$

$$= \begin{bmatrix} \phi(a) + \phi(e) & \phi(b) + \phi(f) \\ \phi(c) + \phi(g) & \phi(d) + \phi(h) \end{bmatrix}$$

$$= \begin{bmatrix} \phi(a) & \phi(b) \\ \phi(c) & \phi(d) \end{bmatrix} + \begin{bmatrix} \phi(e) & \phi(f) \\ \phi(g) & \phi(h) \end{bmatrix}$$

$$= (M_{2}(\phi)) \begin{bmatrix} a & b \\ c & d \end{bmatrix} + (M_{2}(\phi)) \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

$$(M_{2}(\phi)) \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \end{pmatrix}$$

$$= (M_{2}(\phi)) \begin{pmatrix} \begin{bmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} \phi(ae + bg) & \phi(af + bh) \\ \phi(ce + dg) & \phi(cf + dh) \end{bmatrix}$$

$$= \begin{bmatrix} \phi(a)\phi(e) + \phi(b)\phi(g) & \phi(a)\phi(f) + \phi(b)\phi(h) \\ \phi(c)\phi(e) + \phi(d)\phi(g) & \phi(c)\phi(f) + \phi(d)\phi(h) \end{bmatrix}$$

$$= \begin{bmatrix} \phi(a) & \phi(b) \\ \phi(c) & \phi(d) \end{bmatrix} \begin{bmatrix} \phi(e) & \phi(f) \\ \phi(g) & \phi(h) \end{bmatrix}$$

$$= (M_{2}(\phi)) \begin{pmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \end{pmatrix} (M_{2}(\phi)) \begin{pmatrix} \begin{bmatrix} e & f \\ g & h \end{bmatrix} \end{pmatrix}$$

Therefore, $M_2(\phi)$ is indeed a ring homomorphism.

- For any ring R and the identity function Id_R , $M_2(\mathrm{Id}_R)$ is the identity map on $M_2(R)$ because it maps each element in a given matrix to itself.
- Let $f \in \text{Hom}(A, B), g \in \text{Hom}(B, C)$.

$$(M_{2}(f \circ g)) \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} (f \circ g)(a) & (f \circ g)(b) \\ (f \circ g)(c) & (f \circ g)(d) \end{bmatrix}$$

$$= \begin{bmatrix} f(g(a)) & f(g(b)) \\ f(g(c)) & f(g(d)) \end{bmatrix}$$

$$= M_{2}(f) \left(\begin{bmatrix} g(a) & g(b) \\ g(c) & g(d) \end{bmatrix} \right)$$

$$= M_{2}(f) \left(M_{2}(g) \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) \right)$$

$$= (M_{2}(f) \circ M_{2}(g)) \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right).$$

Therefore, M_2 is indeed a functor.

Exercise. (Problem 4 from More exercises)

(1) If F is a functor from category C to a category C' and G is a functor from a category C' to a category C'', under what conditions is a composite functor, $G \circ F : C \to C''$ defined?

- (2) For a ring R write $GL_2(R)$ for the set of all invertible 2×2 matrices with entries in R. List the exercises above and the sections of the handouts which combine to give a proof that GL_2 is a functor from rings to groups.
- (3) For a commutative ring R let $SL_2(R)$ denote the set of all 2×2 matrices with entries in R and determinant 1. Is SL_2 a functor from commutative rings to groups?
- (4) Let k be a field. There is a natural right action of $GL_2(k)$ on $\mathbb{P}^1(k)$. Write down how an element of $GL_2(k)$ acts on an element of $\mathbb{P}^1(k)$ using homogeneous coordinates.
- (5) Determine the subroup of $GL_2(k)$ which acts as the identity on $\mathbb{P}^1(k)$.

Proof.

- (1) A composition of two functors is always a functor.
- (2) Exercise 1 from More exercises shows that M_2 is a functor from the category of rings to itself. From "Units as a functor" in the handout from the first lecture, we know that passing from rings to units is a functor from the category of rings to the category of groups. Then by composing M_2 with the operation to take units, we get GL_2 . Exercise 4(a) from More exercises shows that a composition of two functors is a functor. Thus GL_2 is a functor.
- (3) Yes, it is.

(4)

$$(x_0:x_1)\star\begin{bmatrix}a&b\\c&d\end{bmatrix}=(ax_0+cx_1:bx_0+dx_1).$$

- (5) We claim that the subgroup $\{tI \mid t \in k^*\}$ acts as the identity on $\mathbb{P}^1(k)$. $(x_0: x_1) \star tI =$ $(tx_0:tx_1)=(x_0:x_1).$ Let $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{P}^1(k).$ Suppose A acts as the identity on
 - Case 1: $b \neq 0$. Then $(1:0) \star \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a:b)$. Since $b \neq 0$, $(t \cdot 1, t \cdot 0) \neq (a,b)$ for any $t \in k^{\times}$. Therefore, A does not act as the identity on $\mathbb{P}^{1}(k)$.
 - Case 2: $d \neq 0$. Then $(0:1) \star \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (c:d)$. Since $d \neq 0$, $(t \cdot 0, t \cdot 1) \neq (c,d)$ for any $t \in k^{\times}$. Therefore, A does not act as the identity on $\mathbb{P}^{1}(k)$.
 - Case 3: b = d = 0 and $a \neq d$. Then $(1:1) \star \begin{bmatrix} a & b \\ c & d \end{bmatrix} = (a:d)$. Since $a \neq d$, $(t\cdot 1,t\cdot 1)\neq (a,d)$ for any $t\in k^{\times}$. Therefore, A does not act as the identity on $\mathbb{P}^1(k)$.

This means that b=d=0 and a=d. Since A is invertible, $a\neq 0$. Thus A is indeed an element of $\{tI \mid t \in k^{\times}\}$. Therefore, $\{tI \mid t \in k^{\times}\}$ is exactly the set of elements that act as the identity on $\mathbb{P}^1(k)$.

Exercise. (Problem 5 from More exercises)

(1) Compute $|SL_2(\mathbb{Z}/p)|$, the number of elements in $SL_2(\mathbb{Z}/p)$, when p is an odd prime number.

Proof.

(1) From the previous homework, we know that $|GL_2(\mathbb{Z}/p)| = p^4 - p^3 - p^2 + p$. We claim that $|SL_2(\mathbb{Z}/p)| = (p^4 - p^3 - p^2 + p)/(p-1)$. For each $i = 1, 2, \dots, p-1$, let S_i denote the set of all matricies in $GL_2(\mathbb{Z}/p)$ whose determinant is i. Then $GL_2(\mathbb{Z}/p) = \bigcup S_i$ and S_i 's are disjoint. Let $i \neq j \in \{1, \dots, p-1\}$. Let $f: S_i \to S_j$ be the function that multiplies the first row of a matrix by j/i. f is well-defined because multiplying the first row of a matrix by j/i multiplies the determinant by j/i. f is injective since $g \circ f$ is the identity map on S_i where $g: S_j \to S_i$ is the map that multiplies the first row of a matrix by i/j.

This implies that $|S_i| \leq |S_j|$ for each $i \neq j$. This is only possible if $|S_i| = |S_j|$ for each $i \neq j$. Therefore, $|S_i| = |GL_2(\mathbb{Z}/p)|/(p-1) = p^3 - p$.

Exercise. (Problem 8 from More exercises) Consider the subgroup, $D_5 = \langle (12345), (14)(23) \rangle \subset S_5$.

- (1) Set a = (12345) and compute a^{-1} .
- (2) Set b = (14)(23) and compute aba^{-1} .
- (3) Show that every element in D_5 may be written in the form $a^i b^j$ for some $i, j \in \mathbb{Z}$.
- (4) Compute $|D_5|$.
- (5) Draw a regular pentagon with vertices labeled successively 1, 2, 3, 4, 5. Show that D_5 acts on the pentagon by describing he action in geometric terms.
- (6) Recall that a group acts on its subgroups by conjugation, $H \subset G, H \mapsto gHg^{-1}$. The orbits of this action are called conjugacy classes of subgroups. Determine all the conjugacy classes of subgroups of D_5 .

Proof.

- (1) a sends 1 to 2, 2 to 3, \cdots . We want a^{-1} to do the opposite. Thus $a^{-1} = (15432)$. Since (12345)(15432) = (15432)(12345) = (1), (15432) is indeed a^{-1} .
- (2) $aba^{-1} = (a(1)a(4))(a(2)a(3)) = (25)(34).$
- (3) ba = (14)(23)(12345) = (13)(45), and $a^{-1}b = (15432)(14)(23) = (13)(45)$. Therefore, $ba = a^{-1}b$. We claim that $ba^n = a^{-n}b$ for every $n \in \mathbb{N}$. Suppose $ba^n = a^{-n}b$ for some $n \in \mathbb{N}$. Then $ba^{n+1} = (ba^n)a = (a^{-n}b)a = a^{-n}(ba) = a^{-n}a^{-1}b = a^{-n-1}b$. By mathematical induction, $ba^n = a^{-n}b$ for every $n \in \mathbb{N}$.

For any $n \in \mathbb{N}$, $ba^n = a^{-n}b$, so $a^nba^n = b$, and thus $a^nb = ba^{-n}$. Therefore, we have $ba^k = a^{-k}b$ for every $k \in \mathbb{Z}$.

We claim that for any $i, j \in \mathbb{Z}$, $b^j a^i$ can be written in the desired form. Since $b^2 = e$, we consider two cases based on the parity of j. If j is even, then $b^j = e$, so $b^j a^i = a^i$. If j is odd, then $b^j = b$, so $b^j a^i = ba^i = a^{-i}b$ as shown above.

We will prove the general case. By the argument above, it suffices to show that every element in D_5 can be represented as a word of length ≤ 2 . Let $x_1^{i_1} \cdots x_k^{i_k} \in D_5$ be given where $i_1, \dots, i_k \in \mathbb{Z}$ and each x_i is either a or b. Since D_5 is generated by a, b, every element can be represented in this form. We will show that every element in D_5 can be represented as a word of length ≤ 2 by using strong induction. If $k \leq 2$, then we are done. Suppose that we can represent every element in D_5 of length $\leq k$ as a word of length ≤ 2 for some $k \geq 2$. Let $x = x_1^{i_1} \cdots x_{k+1}^{i_{k+1}} \in D_5$. If $x_1 = x_2$, then $x = x_2^{i_1+i_2}x_3^{i_3} \cdots x_{k+1}^{i_{k+1}}$, so by the inductive hypothesis, this can be represented as a word of length ≤ 2 . If $x_2 = x_3$, then $x = x_1^{i_1}x_2^{i_2+i_3}x_4^{i_4} \cdots x_{k+1}^{i_{k+1}}$, so by the inductive hypothesis, this can be represented as a word of length ≤ 2 . Suppose $x_1 \neq x_2$ and $x_2 \neq x_3$. Then there are two cases:

- Case 1: $(x_1, x_2, x_3) = (a, b, a)$. By the argument above, $b^{i_2}a^{i_3}$ can be represented as a^ib^j for some $i, j \in \mathbb{Z}$. Therefore, $a^{i_1}(b^{i_2}a^{i_3}) = a^{i_1}(a^ib^j) = a^{i_1+i}b^j$, so x can be represented as a word of length k. By the inductive hypothesis, x can be represented as a word of length ≤ 2 .
- Case 2: $(x_1, x_2, x_3) = (b, a, b)$. By the argument above, $b^{i_1}a^{i_2}$ can be represented as a^ib^j for some $i, j \in \mathbb{Z}$. Therefore, $(b^{i_1}a^{i_2})b^{i_3} = (a^ib^j)b^{i_3} = a^ib^{j+i_3}$. By the inductive hypothesis, x can be represented as a word of length ≤ 2 .
- (4) $a^1 = a \neq (1)$.

- $a^2 = (13524) \neq (1)$.
- $a^3 = (14253) \neq (1)$.
- $a^4 = (15432) \neq (1)$.
- $a^5 = (1)$.

Therefore, the order of a is 5. Since $b \neq (1)$ and $b^2 = (1)$, the order of b is 2. We claim that there are exactly 10 elements in D_5 .

- Claim 1: $|D_5| \leq 10$. Let $x \in D_5$. Then there exist $i, j \in \mathbb{Z}$ such that $x = a^i b^j$. Since the order of a is 5 and the order of b is 2, we can assume that $0 \leq i \leq 4$ and $0 \leq j \leq 1$. Therefore, $D_5 \subset \{a^i b^j \mid 0 \leq i \leq 4, 0 \leq j \leq 1\}$. Thus there are at most 10 elements in D_5 .
- Claim 2: $|D_5| \leq 10$. Let $a^i b^j$, $a^{i'} b^{j'} \in \{a^i b^j \mid 0 \leq i \leq 4, 0 \leq j \leq 1\}$. Suppose $a^i b^j = a^{i'} b^{j'}$. Then $a^{i-i'} = b^{j'-j}$. We have calculated all the powers of a above, and none of them is equal to b. Therefore, $i i' \equiv 0 \pmod{5}$ and $j j' \equiv 0 \pmod{2}$. Since $0 \leq i, i' \leq 4, 0 \leq j, j' \leq 1$, i = i' and j = j'. This implies that the set $\{a^i b^j \mid 0 \leq i \leq 4, 0 \leq j \leq 1\}$ contains exactly 10 elements. Since the set is a subset of D_5 , D_5 contains at least 10 elements.

Therefore, D_5 contains exactly 10 elements.

- (5) a corresponds to a reflection, and b corresponds to a rotation as in the figure.
- (6) We will first identify all the subgroups of D_5 . By Lagrange's Theorem, a subgroup must have exactly 1, 2, 5, or 10 elements. Since the case when the order is 1 or 10 is trivial, we will consider order 2 and 5.
 - Subgroups of order 2. They are cyclic groups generated by elements of order 2. a has order 5, so a does not form a subgroup of order 2. The order of a^2 , a^3 , a^4 must divide a^5 by Lagrange's theorem since $\langle a^i \rangle$ is a subset of $\langle a \rangle$. Since 5 is prime, the order of a^2 , a^3 , a^4 must be 5. Thus none of a, a^2 , a^3 , a^4 generate a subgroup of order 2. Moreover, $a^5 = e$ does not form a subgroup of order 2. The remaining elements are b, ab, a^2b , a^3b , a^4b .

```
- b = (14)(23), and b^2 = (1).

- ab = (12345)(14)(23) = (15)(24), and (ab)^2 = (1).

- a^2b = (12345)(15)(24) = (25)(34), and (a^2b)^2 = (1).

- a^3b = (12345)(25)(34) = (12)(35), and (a^3b)^2 = (1).

- a^4b = (12345)(12)(35) = (13)(45), and (a^4b)^2 = (1).
```

Thus $\langle b \rangle$, $\langle ab \rangle$, $\langle a^2b \rangle$, $\langle a^3b \rangle$, $\langle a^4b \rangle$ are all the distinct subgroups of order 2.

• Subgroups of order 5. Since 5 is prime, they are cyclic groups generated by elements of order 5. As shown above, the only elements of order 5 are a, a^2, a^3, a^4 , and they all generate the same subgroup. Thus $\langle a \rangle$ is the only subgroup of order 5.

Now, we will determine all the conjugacy classes of subgroups of D_5 . Since $|H| = |gHg^{-1}|$ for each subgroup H and $g \in G$, it suffices to compare subgroups of the same order.

- Subgroups of order 1. The only subgroup of order 1 is the trivial group, and it is the only subgroup in its conjugacy class.
- Subgroups of order 2. The set of all the subgroups of order 2 are $\{\langle a^ib\rangle \mid 0 \le i \le 4\}$. Let $0 \le i \le 4$ be given. Then $a^3(a^ib)a^{-3} = a^{i+3}(ba^{-3}) = a^{i+3}a^3b = a^{i+6}b =$

Figure 1. Interpretate D_5 geometrically

 $a^{i+1}b$. Therefore, $\langle a^ib\rangle \sim \langle a^{i+1}b\rangle$ for each $0 \leq i \leq 4$. In other words, the set of all the subgroups of order 2 is an equivalence class.

- Subgroups of order 5. The only subgroup of order 5 is $\langle a \rangle$, and it is the only subgroup in its conjugacy class.
- Subgroups of order 10. The only subgroup of order 10 is itself, and it is the only subgroup in its conjugacy class.

Therefore, there are 4 conjugacy classes, $\{\langle e \rangle\}, \{\langle a^i b \rangle \mid 0 \leq i \leq 4\}, \{\langle a \rangle\}, \{D_5\}.$

Exercise. (Problem 9 from More exercises) Consider the subgroup $B = \langle (12345), (1243) \rangle \subset S_5$.

- Determine the number of elements in B.
- Show that B is a solvable group.

Proof. Let a = (12345), b = (1243).

- Since the order of a is 5, 5 | |B| by Lagrange's Theorem. Similarly, 4 | |B| since |b| = 4. This implies that the order of B is at least 20. Let $S = \{a^i b^j \mid 0 \le i \le 4, 0 \le j \le 3\}$. We claim that B = S.
 - $-S \subset B$. This is trivial.
 - $-B \subset S$? $a^2b = (1452) = ba$, so $ba^n = (ba)a^{n-1} = a^2(ba^{n-1}) = \cdots = a^{2n}b \in S$ for each $n \in \mathbb{N}$. This is similar to Problem 8(iii) and can be shown more rigorously using mathematical induction. Since the order of a is finite, $\forall n \in \mathbb{N}, a^{-n}$ can be expressed as a positive power of a. Therefore, $ba^k \in S$ for each $k \in \mathbb{Z}$.

For any $n \in \mathbb{N}$, $k \in \mathbb{Z}$, $b^n a^k = b^{n-1}(ba^k) = b^{n-1}(a^{2k}b) = b^{n-2}(ba^{2k})b = \cdots = a^{2^n k}b^n \in S$. This again can be shown more rigorously using mathematical induction. Since the order of b is finite, $\forall n \in \mathbb{N}, b^{-n}$ can be expressed as a positive power of b. Therefore, $b^k a^l \in S$ for each $k, l \in \mathbb{Z}$.

Using the same argument as Problem 8(iii), we can conclude that every element in B can be expressed as $a^i b^j$.

Therefore, B = S. Since we know that B contains at least 20 elements, S is exactly the set of elements in B. Thus |B| = 20.

• Let $C = \{a^ib^j \mid i \in \{0,1,2,3,4\}, j \in \{0,2\}\}$. We claim that C is a subgroup of B. Let $a^ib^j \in C$. Then j = 0 or 2. Thus $-j = j \pmod{4}$. $(a^ib^j)^{-1} = b^{-j}a^{-i} = b^ja^{-i} = a^{-2^ji}b^j \in C$. Thus C is closed under multiplication. Since C contains the identity, C is nonempty. Any nonempty subset of a finite group that is closed under multiplication is a subgroup, so C is a subgroup. C contains 10 elements. Thus C is a normal subgroup of B because the index [B:C] is 2.

Since B/C is a group with 2 elements, it is isomorphic to $\mathbb{Z}/2\mathbb{Z}$, thus it is abelian. Similarly, $\langle a \rangle$ is a subgroup of C and the index $[C:\langle a \rangle]$ is 2, so $\langle a \rangle$ is a normal subgroup of C. Again, $C/\langle a \rangle$ is a group with 2 elements, so it is abelian. Finally, $\{e\}$ is a normal subgroup of $\langle a \rangle$. Since $\langle a \rangle$ is abelian, $\langle a \rangle/\{e\}$ is abelian.

Thus $\{e\} \subset \langle a \rangle \subset C \subset B$ is a filtertation by subgroups, so B is solvable.

7