Bayesian Statistics Asymptotic Theory

Shaobo Jin

Department of Mathematics

Bayesian Data Generating Process

In a Bayes model, the parameter θ is a random variable with known distribution π .

• Finding the true parameter makes no sense in a Bayes model.

Data that we observe are generated in a hierarchical manner:

$$\theta \sim \pi(\theta)$$
, $X \mid \theta \sim f(x \mid \theta)$.

Given the data x, we can make inference for the data generating process.

In the usual frequentist statistics, we can find consistent estimators such that

$$P\left(\left\|\hat{\theta} - \theta\right\| < \epsilon\right) \rightarrow 1,$$

as $n \to \infty$. We also want the Bayes procedure to enable us to know θ with almost complete accuracy.

Example of Concentration

Example

Consider $X \mid \theta \sim \text{Binomial}(n, \theta)$ and $\theta \sim \text{Beta}(a_0, b_0)$. The posterior is $\theta \mid x \sim \text{Beta}(a_0 + x, b_0 + n - x)$, which concentrates around the true θ_0 as $n \to \infty$.

Convergence in Probability

Let $X \in \mathbb{R}^p$ be a $p \times 1$ random vector of random variables.

Definition (Convergence in probability)

 X_n converges in probability to X if, for every $\epsilon > 0$,

$$\lim_{n \to \infty} P\left((X_n - X)^T (X_n - X) > \epsilon^2 \right) = 0.$$

It is denoted by $X_n \stackrel{P}{\to} X$. If X is a constant, then we also say X_n is consistent for X.

Example

Consider a sequence of independent random variables $\{X_n\}$, where $X_n \sim N(0, n^{-1})$. Show that $X_n \stackrel{P}{\to} 0$.

Convergence Almost Surely

Definition (Convergence almost surely)

 X_n converges almost surely to X if

$$P\left(\lim_{n\to\infty} X_n = X\right) = 1,$$

or equivalently, for every $\epsilon > 0$,

$$P\left(\sqrt{\left(X_k - X\right)^T \left(X_k - X\right)} < \epsilon, \text{ for all } k \ge n\right) \to 1$$

It is denoted by $X_n \stackrel{a.s.}{\to} X$.

Example

Consider a sequence of independent random variables $\{X_n\}$, where $X_n \sim N(0, n^{-1})$. Show that $X_n \stackrel{a.s.}{\to} 0$.

Some Useful Results for Us

Theorem

 $X_n \stackrel{a.s.}{\to} X$ implies $X_n \stackrel{P}{\to} X$, but not the reverse.

Theorem (Slutsky Theorem)

- If $X_n \stackrel{P}{\to} X$ and $X_n Y_n \stackrel{P}{\to} 0$, then $Y_n \stackrel{P}{\to} X$.

The theorem is also valid if every $\stackrel{P}{\rightarrow}$ is replaced by $\stackrel{a.s.}{\rightarrow}$.

Theorem (Continuous Mapping Theorem)

Let $g: \mathbb{R}^k \to \mathbb{R}^m$ be continuous at every point of a set C such that $P(X \in C) = 1$. If $X_n \stackrel{P}{\to} X$, then $g(X_n) \stackrel{P}{\to} g(X)$. The theorem is also valid if $\stackrel{P}{\to}$ is replaced by $\stackrel{a.s.}{\to}$.

Law of Large Numbers

Theorem

Let $X_1, X_2,...$ be iid random vectors, and let $\bar{X}_n = n^{-1} \sum_i X_i$. Then,

- Weak law of large numbers: If $E\left[\sqrt{X^TX}\right] < \infty$, then $\bar{X}_n \stackrel{P}{\to} \mu = E(X).$
- \bullet Strong law of large numbers: $\bar{X}_n \stackrel{a.s.}{\to} \mu$ for some μ if and only if $E\left|\sqrt{X^TX}\right| < \infty \ and \ \mu = E\left(X\right).$

Consistency of MLE

Theorem

Let $X_1, X_2, ..., X_n \stackrel{iid}{\sim} f(x \mid \theta_0)$. Suppose that the density is identified such that $f(x \mid \theta) = f(x \mid \theta_0)$ implies $\theta = \theta_0$. Assume C1 Θ is an open set in \mathbb{R}^p , where θ_0 is an interior point, Then, under some other assumptions, the maximizer $\hat{\theta}$ of $\sum_{i=1}^{n} \log f(x_i \mid \theta) \text{ is consistent, i.e., } \hat{\theta}_n \stackrel{P}{\to} \theta_0.$

If we change C1 to

C1' Θ is a compact set in \mathbb{R}^p , where θ_0 is an interior point, then, under additional assumptions, $\hat{\theta}_n \stackrel{a.s.}{\rightarrow} \theta_0$.

MAP Estimator

Suppose that data are generated from $X_i \mid \theta = \theta_0 \sim f(x \mid \theta_0)$, i = 1, ..., n. The MAP estimator essentially maximizes

$$\sum_{i=1}^{n} \log f(x_i \mid \theta) + \log \pi(\theta).$$

- Since the MLE of θ is a consistent estimator of the true value θ_0 , the MAP should also be consistent if $n^{-1}\log \pi(\theta) \to 0$ as $n \to \infty$.
- We should also expect the MAP estimator to be strongly consistent, converging almost surely to θ_0 .

Posterior Consistency

Apart from consistency of the estimator, we can also introduce consistency of the posterior distribution, as a frequentist evaluation of Bayesian posterior.

Definition

Suppose that data are generated from $X \mid \theta = \theta_0 \sim f(x \mid \theta_0)$.

- the posterior is consistent at θ_0 if $P(O \mid x)$ converges in probability to 1 under $f(x \mid \theta_0)$ as $n \to \infty$, for every open subset $O \subset \Theta$ with $\theta_0 \in O$.
- the posterior is strongly consistent at θ_0 if the convergence is almost surely. That is, for every open subset $O \subset \Theta$ with $\theta_0 \in O$. it holds that

 $P(O \mid x) \to 1$, as $n \to \infty$, with probability 1.

One Implication of Posterior Consistency

Posterior consistency suggests that, even though $\theta \sim \pi(\theta)$, the posterior $\pi(\theta \mid x)$ should concentrate around the θ_0 that generates the observed data.

• If $\pi(\theta \mid x)$ contracts to θ_0 , we expect the Bayes estimator $\delta_B(x)$ should converge to θ_0 .

Regularity Conditions

To establish such result, we need some regularity conditions. Let $L(\theta,d)$ be a loss function.

R1 There exists a constant $c_0 > 0$ for all d such that

$$c_0 \|d - \theta_0\| \le L(\theta_0, d) - L(\theta_0, \theta_0).$$

- This condition implies that the loss function $L(\theta_0,\cdot)$ as a function of d has a minimum at $d = \theta_0$.
- R2 There exists a constant K for all $X \sim f(x \mid \theta_0)$ such that

$$\int L^{2}(\theta, \theta_{0}) \pi(\theta \mid x) d\theta \leq K^{2} \text{ almost sure.}$$

Consistency of Bayes Estimator

Theorem

Suppose that the loss function fulfills the conditions R1 and R2. Assume that

• for all $\epsilon > 0$ and all open sets $O \subset \Theta$ with $\theta_0 \in O$, it holds for

$$B_{\epsilon}\left(\theta_{0}\right) = \left\{\theta: \; \theta \in O, \; \left|L\left(\theta,d\right) - L\left(\theta_{0},d\right)\right| < \epsilon, \; for \; all \; d\right\}$$

that the prior probability $P(B_{\epsilon}(\theta_0)) > 0$ and there is an open subset in $B_{\epsilon}(\theta_0)$ such that θ_0 is an interior point.

 \bullet Let $X \sim f(x \mid \theta_0)$ and the sequence of posteriors $\pi(\theta \mid x)$ be strongly consistent at θ_0 .

Then, for $n \to \infty$, $\delta_B(x) \to \theta_0$ almost surely.

Consistency of General Estimator

Theorem

Suppose that the sequence of posteriors is strongly consistent at θ_0 . Define the estimator $\hat{\theta}$ as the center of a ball of minimal radius that has posterior mass at least 0.5. Then $\hat{\theta}$ is consistent at θ_0 .

Influence of Prior: Posterior

Theorem (Posterior robustness)

Consider $X_1, ..., X_n \stackrel{iid}{\sim} f(x \mid \theta_0)$. Let θ_0 be an interior point of Θ , and π_1 and π_2 be two prior densities, which are positive and continuous at θ_0 . Let $\pi_1(\theta \mid x)$ and $\pi_2(\theta \mid x)$ be the respective posterior densities of θ . If $\pi_1(\theta \mid x)$ and $\pi_2(\theta \mid x)$ are both strongly consistent at θ_0 , then

$$\lim_{n \to \infty} \int |\pi_1(\theta \mid x) - \pi_2(\theta \mid x)| d\theta = 0, \text{ almost surely under } P_{\theta_0}.$$

Influence of Prior: Predictive Distribution

Theorem (Predictive robustness)

Assume that $\theta \mapsto P_{\theta}$ is one-to-one and continuous. Assume also that there is a compact set K such that $P(X \in K \mid \theta) = 1$ for all θ . Suppose that the posteriors $\pi_1(\theta \mid x)$ and $\pi_2(\theta \mid x)$ are both strongly consistent at θ_0 , then the predictive distributions $\lambda_1(x^* \mid x)$ and $\lambda_2(x^* \mid x)$ satisfy

$$\lim_{n \to \infty} \left| \int \phi(x^*) \, \lambda_1(x^* \mid x) \, dx^* - \int \phi(x^*) \, \lambda_2(x^* \mid x) \, dx^* \right| = 0$$

for all bounded continuous functions ϕ .

Doob Consistency

Theorem (Doob's theorem for posterior consistency)

Suppose that $\theta \mapsto P(X \in A \mid \theta)$ is one-to-one. Then, there exists a $\Theta_0 \subseteq \Theta$ with prior probability $P(\Theta_0) = 1$ such that, for every $\theta_0 \in \Theta_0$, if $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x \mid \theta_0)$, we have

$$\lim_{n \to \infty} P(\theta \in O \mid X_1, ..., X_n) = 1, \text{ almost surely under } P_{\theta_0}$$

for any open set O with $\theta_0 \in O$.

Doob's theorem says that the posterior will concentrate in a neighborhood, as long as

- the statistics model is identified,
- Θ_0 has strictly positive measure under the prior.

Example of Consistency

Example

Consider $X \mid \theta \sim \text{Binomial}(n, \theta)$ and $\theta \sim \text{Beta}(a_0, b_0)$. The posterior is $\theta \mid x \sim \text{Beta}(a_0 + x, b_0 + n - x)$. Show that posterior distributions concentrates around θ_0 as $n \to \infty$.

Positive Prior Assumption

The positive prior assumption plays a very important role in consistency. The posterior is

$$\pi(\theta \mid x) \propto f(x \mid \theta) \pi(\theta),$$

where $\pi(\theta \mid x) > 0$ only if $\pi(\theta) > 0$. We should never exclude any possible value from the prior.

Example

If $\pi(\theta) > 0$ for $\theta > 0$ and $\pi(\theta) = 0$ otherwise, then posterior can be better expressed as

$$\pi(\theta \mid x) \propto f(x \mid \theta) \pi(\theta) 1 (\theta > 0).$$

The posterior is always zero for $\theta < 0$.

Doob's Theorem For Estimators

Theorem

Suppose that $\theta \mapsto P(X \in A \mid \theta)$ is one-to-one. Then, there exists a $\Theta_0 \subseteq \Theta$ with prior probability $P(\Theta_0) = 1$ such that, for every $\theta_0 \in \Theta_0$. if $X_1, \ldots, X_n \stackrel{iid}{\sim} f(x \mid \theta_0)$, we have

$$\lim_{n\to\infty} E[g\left(\theta\right)\mid X_{1},...,X_{n}] = g\left(\theta_{0}\right), \ almost \ surely \ under \ P_{\theta_{0}}$$

for any function $g(\theta)$ such that

$$\int g(\theta) \pi(\theta) d\theta < \infty.$$

For $q:\Theta\mapsto\mathbb{R}^p$, the theorem holds to each component of $q(\theta)$.

Doob's Theorem: Example

Example

Show that the posterior mean is strongly consistent.

- Consider $X \mid \theta \sim \text{Binomial}(n, \theta)$ and $\theta \sim \text{Beta}(a_0, b_0)$. The posterior is $\theta \mid x \sim \text{Beta}(a_0 + x, b_0 + n x)$.
- ② Let $X_1, ..., X_n$ be iid $N(\mu, \sigma^2)$, where σ^2 is known. Consider the prior $\mu \sim N(\mu_0, \sigma_0^2)$. The posterior is

$$\theta \mid x \sim N\left(\frac{\sigma_0^2 \sum_{i=1}^n x_i + \sigma^2 \mu_0}{n\sigma_0^2 + \sigma^2}, \frac{\sigma^2 \sigma_0^2}{n\sigma_0^2 + \sigma^2}\right).$$

Limitations of Doob Consistency

Doob's theorem establishes consistency under quite mild conditions. However, it has been criticized based on various grounds.

- It only guarantees consistency on set Θ_0 with prior probability $P(\Theta_0) = 1$, not specific points θ_0 .
- 2 It is less useful if θ is of infinite dimension, as the null set can be very large.

An alternative general theory is the Schwartz' theorem.

Distance/Divergence Between Two Distributions

Let P and Q be two probability measures with respective densities p(x) and q(x).

• Kullback-Leibler divergence (aka entropy loss):

$$\mathrm{KL}\left(\mathrm{P},\mathrm{Q}\right) = \int \log\left(\frac{p\left(x\right)}{q\left(x\right)}\right) p\left(x\right) dx.$$

• Hellinger distance:

$$\mathrm{H}^{2}\left(\mathrm{P},\mathrm{Q}\right) \ = \ \frac{1}{2} \int \left[\sqrt{p\left(x\right)} - \sqrt{q\left(x\right)}\right]^{2} dx = 1 - \mathrm{H}_{\frac{1}{2}}\left(\mathrm{P},\mathrm{Q}\right),$$

where $H_{\frac{1}{2}}(P,Q) = \int \sqrt{p(x) q(x)} dx$ is the Hellinger transform.

Schwartz' Theorem

Theorem

Let $X_1, ..., X_n$ be iid from P_{θ} , denoted by $P_{\theta}^{\otimes n}$. Let $f_n(x \mid \theta)$ be the density of $x = (x_1, ..., x_n)$.

- KL condition: Suppose that $P(K_{\epsilon}(\theta_0)) > 0$ for all $\epsilon > 0$, where $K_{\epsilon}(\theta_0) = \{\theta : KL(P_{\theta_0}, P_{\theta}) < \epsilon\}.$
- **2** Hellinger condition: For every open set $O \in \Theta$ with $\theta_0 \in O$, there exist constants D_0 and $q_0 < 1$, such that

$$H_{\frac{1}{2}}\left(P_{\theta_0}^{\otimes n}, P_{n,O^c}\right) \leq D_0 q_0^n,$$

where P_{n,O^c} is defined by

$$P_{n,O^c}(A) = \int_A \int_{O^c} f_n(x \mid \theta) \frac{\pi(\theta)}{P(O^c)} d\theta dx.$$

Then, the sequence of posteriors is strongly consistent at θ_0 .

Interpret the Conditions

- The KL condition $P(K_{\epsilon}(\theta_0)) > 0$ means that the prior does not exclude a neighborhood (in terms of the KL divergence) of θ_0 .
- The Hellinger condition means that the Hellinger distance

$$\mathrm{H}^2\left(\mathrm{P}_{\theta_0}^{\otimes n},\mathrm{P}_{n,O^c}\right) \ = \ 1-\mathrm{H}_{\frac{1}{2}}\left(\mathrm{P}_{\theta_0}^{\otimes n},\mathrm{P}_{n,O^c}\right) \geq 1-D_0q_0^n.$$

Intuitively speaking, we can distinguish between $P_{\theta_0}^{\otimes n}$ and $P_{\theta}^{\otimes n}$ if θ is not in O where $\theta_0 \in O$.

• The Hellinger condition essentially replaces the identification condition $(\theta \mapsto P(X \in A \mid \theta))$ is one-to-one) in Doob's theorem.

Hellinger Condition

Lemma

Let $X_1, ..., X_n$ be iid from P_{θ} , denoted by $P_{\theta}^{\otimes n}$. Let $f_n(x \mid \theta)$ be the density of $x = (x_1, ..., x_n)$. Consider testing $H_0: P_{\theta_0}^{\otimes n}$ versus $H_1: \{P_{\theta}^{\otimes n}: \theta \in \Theta \setminus O\}$, where $O \in \Theta$ is a neighborhood of θ_0 . Suppose that there exists a nonrandomized test $\phi_n(x)$ and positive constants C and β such that

$$E[\phi_n(x) \mid \theta_0] + \sup_{\theta \in \Theta \setminus O} E[1 - \phi_n(x)] \leq C \exp(-n\beta).$$

Then the Hellinger condition holds.

Consistent Test

The condition in the lemma means that we can find a uniformly consistent test for testing H_0 : $\theta = \theta_0$ versus H_1 : $\theta \in O^c$, where $O \in \Theta$ is a neighborhood of θ_0 .

• That is, there exists a test $\phi_n(x)$ such that

$$\mathrm{E}\left[\phi_{n}\left(x\right)\mid\theta_{0}\right]\rightarrow0,\qquad\sup_{\theta\in\mathcal{O}^{c}}\mathrm{E}\left[1-\phi_{n}\left(x\right)\mid\theta\right]\rightarrow0.$$

- If we can find a uniformly consistent test, we can apply the Hoeffding's inequality to obtain the exponential rate.
- The existence of a uniformly consistent test only requires that we can find a uniformly consistent estimator of θ , i.e.,

$$\sup_{\theta} P\left[\left(\hat{\theta} - \theta \right)^T \left(\hat{\theta} - \theta \right) > \epsilon \mid \theta \right] \ \rightarrow \ 0.$$

Schwartz' Theorem: Another Version

Theorem

Let $X_1, ..., X_n$ be iid from P_{θ} , denoted by $P_{\theta}^{\otimes n}$. Let $f_n(x \mid \theta)$ be the density of $x = (x_1, ..., x_n)$.

- KL condition: Suppose that $P(K_{\epsilon}(\theta_0)) > 0$ for all $\epsilon > 0$, where $K_{\epsilon}(\theta_0) = \{\theta : KL(P_{\theta_0}, P_{\theta}) < \epsilon\}.$
- **2** Uniformly consistent test condition: Let $O \in \Theta$ be a neighborhood of θ_0 . Consider testing H_0 : $\theta = \theta_0$ versus H_1 : $\theta \in O^c$. There exists a test $\phi_n(x)$ such that

$$E[\phi_n(x) \mid \theta_0] \to 0, \qquad \sup_{\theta \in O^c} E[1 - \phi_n(x) \mid \theta] \to 0.$$

Then, the sequence of posteriors is strongly consistent at θ_0 .

Consistency and Normality of MLE

Theorem

Let $X_1, ..., X_n \stackrel{iid}{\sim} f(x \mid \theta)$. Assume that

- C1 Θ is an open set in \mathbb{R}^p , where θ_0 is an interior point,
- C2 $\{x: f(x \mid \theta) > 0\}$ does not depend on θ , i.e., common support,
- C3 $\int f(x \mid \theta) dx$ can be twice differentiable under the integral sign,
- C4 The Fisher information $\mathcal{I}(\theta)$ satisfies $0 < I(\theta) < \infty$.

If some other regularity conditions are satisfied, then there exists a strongly consistent sequence $\hat{\theta}$ of roots of the likelihood equation

$$\frac{\partial \sum_{i=1}^{n} \log f(x_i \mid \theta)}{\partial \theta} = 0,$$

such that

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \stackrel{d}{\rightarrow} N\left(0, \mathcal{I}^{-1}\left(\theta\right)\right).$$

Posterior Distribution

The posterior of a beta-binomial model is

Beta
$$\left(a_0 + \sum_{i=1}^{n} x_i, b_0 + n - \sum_{i=1}^{n} x_i\right)$$
.

distribution — Normal --- Posterior

Normality of Posterior

The heuristic argument that we aim to conclude is that posterior distributions in differentiable parametric models converge to the Gaussian posterior distribution.

• If $\hat{\theta}$ is the MLE of θ , then

$$\sqrt{n}\left(\hat{\theta}-\theta\right) \stackrel{d}{\rightarrow} N\left(0, \mathcal{I}^{-1}\left(\theta\right)\right).$$

• We want to claim that the difference between the posterior distribution $\pi(\theta \mid x_1,...,x_n)$ and the normal distribution

$$\hat{\theta} \approx N\left(\theta, \frac{1}{n}\mathcal{I}^{-1}\left(\theta\right)\right)$$

converge to zero.

Bernstein-von Mises Theorem

Let $\hat{\theta}$ be the strongly consistent sequence of roots of the likelihood equation. Define $t = \sqrt{n} \left(\theta - \hat{\theta} \right)$. Let $\pi \left(t \mid x_1, ..., x_n \right)$ be the posterior density of t.

Theorem

Let $X_1, ..., X_n \stackrel{iid}{\sim} f(x \mid \theta)$. Suppose that the assumptions C1 - C4 in the previous theorem hold. Assume that $\pi(\theta)$ is continuous and $\pi(\theta) > 0$ for all $\theta \in \Theta$.

• If some other regularity conditions are satisfied, then

$$\left|\pi\left(t\mid x_{1},...,x_{n}\right)-\phi\left(t,0,\mathcal{I}^{-1}\left(\theta\right)\right)\right|\overset{a.s.}{\rightarrow}0\ under\ P_{\theta},$$

where $\phi(t, 0, \mathcal{I}^{-1}(\theta))$ is the density of $N(0, \mathcal{I}^{-1}(\theta))$.

2 If, in addition, $\mathcal{I}(\theta)$ is continuous, then,

$$\left| \pi\left(t \mid x_1,...,x_n\right) - \phi\left(t,0,\mathcal{I}^{-1}\left(\hat{\theta}\right)\right) \right| \stackrel{a.s.}{\rightarrow} 0 \ under \ P_{\theta}.$$

Bernstein-Von Mises Theorem: Example

Example

Suppose that $X_1,...,X_n$ are iid Bernoulli (θ) . We consider a continuous prior $\pi(\theta) > 0$ for all $\theta \in \Omega$. Approximate the posterior of θ .

Total Variation Distance

Let P and Q be two probability measures. Then, their total variation distance is

$$\sup_{A} |P(A) - Q(A)|,$$

for all Borel sets A. If p and q are the respective densities, then,

$$\sup_{A} |P(A) - Q(A)| = \frac{1}{2} \int |p(x) - q(x)| dx.$$

The Bernstein-von Mises theorem indicates that

$$\sup_{A} \left| P\left(t \in A \mid x_{1}, ..., x_{n} \right) - P\left(t \in A \mid t \sim \phi\left(t, 0, \mathcal{I}^{-1}\left(\theta\right) \right) \right) \right| \stackrel{a.s.}{\to} 0,$$
and
$$\int \left| \pi\left(t \mid x_{1}, ..., x_{n} \right) - \phi\left(t, 0, \mathcal{I}^{-1}\left(\theta\right) \right) \right| dt \stackrel{a.s.}{\to} 0.$$

Bayesian Credible Set

For simplicity, the classic one dimensional MLE $\hat{\theta}$ satisfies that $P(\theta \in C(\alpha)) \to 1 - \alpha$, where

$$C(\alpha) = \left[\hat{\theta} - \lambda_{1-\alpha/2} \sqrt{\frac{\mathcal{I}^{-1}(\theta)}{n}}, \, \hat{\theta} + \lambda_{1-\alpha/2} \sqrt{\frac{\mathcal{I}^{-1}(\theta)}{n}}\right].$$

The Bernstein-von Mises theorem allows us to approximate the posterior probability. In particular, let

$$B(\alpha) = \{\theta : \pi(\theta \mid x) \ge c_n\}$$

such that $P(B(\alpha) \mid x) = 1 - \alpha$. Then, for any $\epsilon > 0$,

$$P(C(\alpha + \epsilon) \subset B(\alpha) \subset C(\alpha - \epsilon)) \rightarrow 1.$$

Example

Approximate the Bayesian credible set in the beta-binomial model.

Asymptotic Efficiency of Bayes Estimators

Consider the squared loss. The Bayes estimator of θ is the posterior mean $\tilde{\theta} = \mathrm{E}\left[\theta \mid x\right]$. The Bernstein-von Mises theorem may also indicate that

$$\mathrm{E}\left[\sqrt{n}\left(\theta - \hat{\theta}\right) \mid x\right] \rightarrow 0.$$

This suggests that

$$\sqrt{n}\left(\tilde{\theta} - \hat{\theta}\right) \rightarrow 0.$$

- The Bayes estimator and the MLE are asymptotically equivalent.
- The Bayes estimator is asymptotically efficient since MLE is asymptotically efficient.

An Counterexample

Example

Suppose that $X_1, ..., X_n$ are iid with density

$$f(x \mid \theta) = \exp\{-(x - \theta)\}, \quad x > \theta.$$

The prior is $\theta \sim \text{Gamma}(2, b_0)$. Find the posterior of θ and show that the Bernstein-von Mises theorem is not applicable.

Counterexample: Posterior of Shifted Exponential

