### Systèmes Informatiques I Partie I: Assembleur

Jürgen Harms juergen.harms@cui.unige.ch http://cui.unige.ch



### Systèmes Informatiques I, autres douments :

Partie I: Assembleur (fragmentée pour web) \*

Partie II: UNIX

Travaux pratiques

\*) 1 document PDF d'environ 200 kbytes pour chaque chapitre pas de chaînage 'hypertexte' (PDF) entre documents



- 1. Introduction
- L'architecture du CPU Intel 8086
- Principes d'un assembleur
- Le répertoire d'instructions
- Variables et expressions
- Aspects méta-assembleur
- Extensions de l'architecture de la famille 8086
- Principes de l'entrée / sortie

Liste des instructions du CPU Intel 8086

Littérature et références

Mots-clé

'Boutons' dans les documents:



... début du chapitre



page suivante

... fin du chapitre



... page en arrière



... page d'acceuil



### Table des matières

Pour accéder à une page, sélectionner la page avec un "click" de la sourris

| Introduction                                                           |
|------------------------------------------------------------------------|
| Buts (cours, document)                                                 |
| Evolution des familles de microprocesseurs                             |
| Exemple simple                                                         |
| Code-source et code-objet                                              |
| Segments et adresses                                                   |
| Parties principales d'un programme en machine                          |
| Description de la "zone-instructions" d'un programme 1.9               |
| L'ARCHITECTURE DU CPU INTEL 8086 2.1                                   |
| Configuration d'un système Intel 8086                                  |
| Mémoire                                                                |
| Mot-mémoire à l'adresse 'n', "sexe des bytes" 2.3                      |
| Implantation physique                                                  |
| - Plan de la mémoire (Intel 8086)                                      |
| Mémoire physique et mémoire logique                                    |
| Représentation externe des adresses                                    |
| Génération une adresse-bus dans le CPU 2.6                             |
| La pile                                                                |
| Séquence physique - séquence logique                                   |
| Instructions et données d'un programme                                 |
| Format d'une opération                                                 |
| Champs du code d'une opération 2.11                                    |
| - Opérandes                                                            |
| Propriétés des opérations du CPU Intel 8086 2.12                       |
| Différences entre instructions-assembleur et instructions-machine 2.13 |
| Registres du CPU Intel 8086                                            |
| Registres-opérandes et d'indexage                                      |
| Recouvrement des registres à 8 et à 16 bits 2.16                       |
| Registres de base ("segment registers")                                |
| Compteur ordinal                                                       |
| Registre d'état ("flag register")                                      |

| - Le rôle du bit "carry" (report arithmétique, décalage) 2.19  Quelques opérations typiques |
|---------------------------------------------------------------------------------------------|
| Adressage Intel 8086                                                                        |
| PRINCIPES D'UN ASSEMBLEUR 3.1                                                               |
| Assembleur : introduction                                                                   |
| Syntaxe                                                                                     |
| Génération de code-objet                                                                    |

| פב            |   |
|---------------|---|
| T S S C I I I |   |
| ı             |   |
| מממ           | - |
| <u> </u>      |   |
| 2             |   |
| ij            |   |
|               |   |
|               | • |

| - Completer de position et completer-ordinal                          | Extension du bit de signe                                | 4.9  |
|-----------------------------------------------------------------------|----------------------------------------------------------|------|
| - Valeur initiale du compteur-ordinal lors de l'exécution 3.13        | Opérations itératives, actions sur chaînes de caractères | 4.10 |
| Contrôle des segments                                                 | Résumé des instructions                                  | 4.10 |
| L'instruction SEGMENT 3.14                                            | Contrôle des itérations                                  | 4.11 |
| Association du code-objet à un segment logique 3.15                   | Contrôle des bits du registre 'flags'                    | 4.12 |
| - Décomposition du code en segments logiques 3.15                     | Diverses opérations                                      |      |
| - Gestion à l'aide d'un compteur de position 3.15                     | Diverses operations                                      | 7.12 |
| - Alternance entre segments                                           | VARIABLES ET EXPRESSIONS                                 | 5.1  |
| - Exemple: résultat du travail de l'éditeur de liens 3.16             | Variables                                                | 5.2  |
| Placement de segments                                                 | Composantes d'une variable                               |      |
| Alignement de l'adresse de base d'un segment 3.18                     | Définition d'une variable                                |      |
| Gestion des registres de base                                         | - Visibilité d'une variable                              |      |
| Initialisation des registres de base                                  |                                                          |      |
| - Réalisation (assembleur et éditeur de liens)                        | Types de variables                                       |      |
| Association segments logiques - registres de base 3.21                | Etiquettes ("labels")                                    |      |
| Gestion des registres de base, exemple                                | Variables relogeables ("variables")                      |      |
| Contrôle des segments, résumé                                         | Constantes ("numbers")                                   |      |
| Exemple d'un programme                                                | Expressions                                              | 5.6  |
| Définition de données                                                 | Fonctions                                                | 5.7  |
| Pseudo-instructions pour la réservation et définition de données 3.26 | Fonction pour l'accès au compteur de position            | 5.7  |
| - La fonction DUP 3.27                                                | Fonctions pour obtenir les attributs d'un "RECORD"       | 5.7  |
| - Constantes-caractères                                               | Fonctions pour obtenir les attributs d'une variable      | 5.8  |
| - Formats possibles                                                   | Fonctions pour manipuler les attributs d'une variable    |      |
| Réservation de données, exemples                                      | Fonctions comme opérateurs dans une expression           | 5.10 |
| LE RÉPERTOIRE D'INSTRUCTIONS 4.1                                      | ASPECTS MÉTA-ASSEMBLEUR                                  | 6.1  |
| Opérations utilisant la pile                                          | Assemblage conditionnel                                  | 6.2  |
| Utilisation d'une pile                                                | - Conditions reconnues                                   | 6.2  |
| Opérations utilisant la pile                                          | - Utilisation                                            | 6.3  |
| Opérations de branchement                                             | Assemblage répétitif                                     | 6.4  |
| Forme des instructions de branchement 4.4                             | Substitutions de chaînes                                 | 6.6  |
| Branchements sans condition                                           | Macro-assemblage                                         | 6.7  |
| Branchements pour itérations                                          | Définition d'une macro-instruction                       |      |
| Branchements conditionnels                                            | Appel d'une macro-instruction                            |      |
| Opérations arithmétiques & logiques                                   | - Principes de la substitution                           |      |
|                                                                       | 1                                                        |      |



| Déclaration de variables locales 6.8                           |   |
|----------------------------------------------------------------|---|
| Séparateur de chaînes de caractères                            | ) |
| Exemples                                                       |   |
| - Macro instruction pour imprimer une chaîne de caractères 6.9 |   |
| - Macro instructions pour la gestion de files d'attente 6.1    | 0 |
| Importation de code-source 6.1                                 | 3 |
| Décomposition en modules 6.1                                   | 4 |
| Procédures                                                     | 4 |
| Utilisation de variables globales 6.1                          | 4 |
| Utilisation de procédures, exemple 6.1                         |   |
| Contrôle de l'impression 6.1                                   | 6 |
| Suppression de l'impression 6.1                                | 6 |
| Lignes d'en-tête                                               | 6 |
| Mise-en-page                                                   |   |
| Impression de code conditionnel 6.1                            |   |
| Impression des macro-instructions 6.1                          | 7 |
| EXTENSIONS DE L'ARCHITECTURE DE LA FAMILLE 8086 7.1            | L |
| Evolution de l'architecture du CPU 8086 7.2                    |   |
| Agrandissement de la taille d'un mot-CPU a 32 bits 7.3         |   |
| Espace-mémoire, mode d'adressage 7.4                           |   |
| - Concept                                                      |   |
| - Descripteurs de segments                                     |   |
| - Désignation d'un descripteur par un registre de base 7.6     | ) |
| Pagination                                                     | ) |
| Extension du répertoire d'instructions 7.7                     | , |
| Entrée / sortie                                                |   |
| Entrée / sortie dans un système micro-informatique 8.2         |   |
| Concept architectural 8.2                                      |   |
| Fonctionnement des opérations d'entrée / sortie 8.3            | ) |
| Registres internes des équipements d'entrée / sortie 8.4       |   |
| Déroulement d'une opération d'entrée / sortie 8.5              |   |
| - Ecriture                                                     |   |
| - Lecture                                                      |   |
| - Esquisse d'un contrôleur DMA                                 | / |

| - Fin de l'opération d'entrée / sortie physique 8.8         |
|-------------------------------------------------------------|
| - Interruption d'entrée / sortie 8.9                        |
| Initialisation d'un équipement d'entrée / sortie 8.10       |
| - Opération "reset"                                         |
| - Séquence d'initialisation 8.10                            |
| Adressage des registres internes 8.11                       |
| Documentation                                               |
| Entrée / sortie "memory-mapped" ou "non-memory-mapped" 8.13 |
| ACIA (Motorola 6850)                                        |
| Tâches de l'interface ACIA 8.15                             |
| Standard V.24 de l'UIT 8.15                                 |
| - Signaux échangés entre l'interface et le modem 8.16       |
| Signification des contenus des registres (ACIA) 8.17        |
| - Le registre "status" 8.17                                 |
| - Le registre "contrôle"                                    |
| ACIA: Schéma (1) 8.20                                       |
| Exemple de programmation 8.24                               |
| LISTE DES INSTRUCTIONS DU CPU INTEL 8086                    |

LITTÉRATURE ET RÉFÉRENCES













# /user/u2/harms/cours/asm/1.fm















### **Chapitre 1:**

### Introduction

### Résumé:

- ■ Buts du cours sur l'assembleur
- Familles de microprocesseurs
- Illustration simple d'un programme assembleur

### **Buts (cours, document)**

### **☞** Buts du cours







base pour des activités professionnelles toujours d'actualité (bien que taux d'utilisation relativement faible):



programmation en langage de base,



- compréhension des principes de bas niveau,



compréhension du fonctionnement du matériel:



contrôle directe du CPU,



- mécanisme de base des opérations d'entrée/sortie,



aspects "culturels" (développement historique).



**→** Familiarisation avec un système simple du genre MS-DOS:



système = support pour les actions fondamentales de l'utilisateur.



### Mise-en-garde

### **Importance des travaux pratiques:**

- → aspect "artisanal": la maîtrise d'un assembleur s'apprend en faisant des exercices,
- → mélange de difficultés conceptuelles et pratiques concentration sur les concepts en automatisant les activités de "programmation".

### Choix problématique du CPU Intel 8086:

- → l'architecture de l'Intel 8086 est quelque peu "baroque",
- → confrontation "choc" avec la complexité du matériel,
- → passablement de concepts se retrouvent dans les architectures plus modernes, méthodes d'adressage, concept de segment, etc.

### Le présent document propose:

- une documentation de base en support aux leçons (éviter distraction "prendre des notes"),
- une documentation technique supplémentaire "à prendre à la maison".

### Ce document n'est pas:

- **X** le remplacement d'un livre,
- 🗶 un "polycopié" traditionnel.



- 1.3 -

### Ce document est disponible sur le serveur Web du CUI

### Navigation par lien 'hypertext'

- → références par mots clé (accès par 🔲 ou la marque 'liste de références')
- → liens dans la table des matières (accès par 🐷 ou la marque 'table des matières'),
- → parcours séquentiel de pages sans limite de chapitre:
  - **v** = avancer une page, **v** = reculer une page;
  - **=** avancer au début du chapitre, **=** reculer à la fin du chapitre;
  - | = recharger à la dernière page visitée.

### Version pour utilisation locale

http://cui.unige.ch/tios/cours/asm/slides.pdf

- **→** un seul fichier d'environs 2 Mbytes
- → liens 'hypertext' sans contraintes

Version pour accès par liaison à faible débit <a href="http://cui.unige.ch/tios/cours/asm/home.pdf">http://cui.unige.ch/tios/cours/asm/home.pdf</a>

- 1.4 -

- **→** un fichier par chapitre (chacun environs 200 Kbytes)
- → liens 'hypertext' restreints (pas de parcours séquentiel d'un chapitre à l'autre, changement de chapitre = recherche d'un nouveau fichier par le réseau).



## /user/u2/harms/cours/asm/1.fm

### Evolution des familles de microprocesseurs

| type          | vitesse (mbps) | mot<br>(# bits) | date<br>d'annonce | commentaire                                                           |
|---------------|----------------|-----------------|-------------------|-----------------------------------------------------------------------|
| Intel 4004    | ?              | 4               | 11. 1971          |                                                                       |
| 8008          | ?              | 8               | 4. 1972           |                                                                       |
| 8080          | 2              | 8.5             | 4. 1974           |                                                                       |
| 8085          | 2              | 8.5             | 3. 1976           | CPU "single chip" 8080                                                |
| 8086          | 8              | 16              | 6 1978            |                                                                       |
| 8088          | 8              | 16              | 6. 1979           | 8086, bus de 8 bits                                                   |
| 80186         | 10             | 16              |                   | 8086 + DMA + périphériques                                            |
| 80286         | 10             | 16              | 2. 1982           | MMU ("memory management unit"), support système                       |
| Pentium       | >>100          | 64              | dès 1993          |                                                                       |
| ZILOG Z 80    | 2.5            | 8               |                   | 8080 + extensions                                                     |
| Z 8000        | 10             | 16              |                   | 8086 + extensions                                                     |
| Motorola 680x | 2              | 8.5             |                   |                                                                       |
| 68000         | 10             | 16              |                   |                                                                       |
| 68010         | 10             | 16              |                   | MMU                                                                   |
| 6802x         | 25             | 32              |                   | MMU                                                                   |
| 6803x         | > 25           | 32              |                   | MMU                                                                   |
| RISC          |                |                 |                   | ectures traditionnelles; aujourd'hui: ute implantation de processeur. |



### **Exemple simple**

### Code-source et code-objet

Remplir une zone de mémoire de nombres entiers allant de 0 à la val. de la variable l\_tab - 1

|    | -     |             |             |                            |                                           |
|----|-------|-------------|-------------|----------------------------|-------------------------------------------|
| 1  | Adr.  | Code généré | Instruction |                            | Commentaire                               |
| 2  | 0000  |             | m_seg       | SEGMENT                    | ; début du segment logique "m_seg"        |
| 3  |       |             |             | ASSUME CS:m_seg,           | ; reg. de base <-> segment logique        |
| 4  |       |             |             | DS:m_seg                   |                                           |
| 5  | =004D |             | l_tab       | EQU 77                     | ; définir constante: longueur de la table |
| 6  | 0000  | 4D [        | table       | <pre>DB l_tab DUP(?)</pre> | ; rés.de la mémoire pour la table         |
| 7  |       | ??]         |             |                            |                                           |
| 8  | 004D  | B8 R        | debut:      | MOV AX,m_seg               | ; première instruction à exécuter         |
| 9  | 0050  | 8E D8       |             | MOV DS,AX                  | ; initialiser DS = base du segment        |
| 10 | 0052  | BB 00 4D    |             | MOV BX,l_tab               | ; initialiser BX = pointeur dans la table |
| 11 | 0055  | 4B          | rempl:      | DEC BX                     | ; mise-à-jour pointeur (vers le début)    |
| 12 | 0056  | 88 9F 0000  | R           | MOV table[BX],BL           | ; stocker (BL = byte inférieur de BX)     |
| 13 | 005A  | 83 FB 00    |             | CMP BX,0                   | ; 0 = début de la table                   |
| 14 | 005D  | 75 F6       |             | JNZ rempl                  | ; continuer sauf si au début              |
| 15 | 005F  | B4 4C       |             | MOV AH, 4CH                | ; prép. la requête (4CH = fin exécution)  |
| 16 | 0061  | CD 21       |             | INT 21H                    | ; faire la requête à MS/DOS               |
| 17 | 0063  |             | m_seg       | ENDS                       | ; fin du segment                          |
| 18 |       |             |             | END debut                  | ; fin, définir l'adresse du début         |

Note: Distinguer entre "interruption DOS" et "interruption CPU" (= mécanisme matériel)!





Systèmes informatiques I - Assembleur

### **Segments et adresses**

Microsoft MACRO Assembler Version 3.00















Segments and Groups:

| Name  | Size | Align | Combine Class |
|-------|------|-------|---------------|
| M_SEG | 0063 | PARA  | NONE          |

Symbols:

| Name  | Type   | Value | Attr  |             |
|-------|--------|-------|-------|-------------|
| REMPL | L NEAR | 0055  | M_SEG |             |
| DEBUT | L NEAR | 004D  | M_SEG |             |
| TABLE | L BYTE | 0000  | M_SEG | Length=004D |
| L_TAB | Number | 004D  |       |             |

49708 Bytes free

| Warning | Severe |
|---------|--------|
| Errors  | Errors |
| 0       | 0      |



### Version 2.31 /user/u2/harms/cours/asm/1.fm

### Parties principales d'un programme en machine



zone-pile:

gestion dynamique des données temporaires.

### zone-données:

positions-mémoire pour la représentation et la gestion des valeurs des variables du programme.



séquence de positions-mémoire contenant la représentation binaire des instructions à exécuter l'une après l'autre (= le code exécutable du programme).



En règle générale, ces zones ("segments") sont stockées dans différentes parties de la mémoire, disjointes les unes des autres.

Afin que le programme puisse accéder aux positions de la mémoire utilisées pour la gestion des valeurs des variables, il en doit connaître les adresses ("collaboration" assembleur - éditeur de liens!)



### Description de la "zone-instructions" d'un programme





Cette adresse ne doit pas être nécessairement au début de la zone-mémoire allouée au programme.



→ En générale, les premières instructions \*) du programme servent à définir l'état de différents registres de contrôle du CPU.



→ Cette partie "d'initialisation de l'environnement" est suivie des instructions servant à accomplir la tâche proprement dit du programme.



Normalement, le début de cette partie sert à initialiser l'état des variables (tableaux, struc-



tures de données) utilisées par le programme.



"premier" et "dernier" dans l'ordre de l'exécution des instructions (= de la "séquence logique") - qui peut être différent de l'ordre physique du stockage des instructions (= de leur "séquence physique").

















### **Chapitre 2:**

### L'architecture du CPU INTEL 8086

### Résumé:

- Architecture: mémoire et CPU
- Organisation de la mémoire
- Registres du CPU
- Instructions
- Adressage



### Configuration d'un système Intel 8086

Tout système micro-informatique est organisé autour d'un bus

### Architecture de la famille Intel 80xx:

- CPU à 16 bits
- mémoire organisée en bytes (8 bits)
- espace-mémoire avec des adresses représentées sur 20 bits



Note: Evolution ultérieure de la taille des mots: 16 bits  $\Rightarrow$  32 (80386) $\Rightarrow$  64 (Pentium) - et de la taille de l'espace d'adresses:  $1M \Rightarrow 64 M (80386) \Rightarrow 4 G (80486, Pentium)$ 



### Mémoire

**Mémoire** = espace contigu d'adresses

- → adresses (= numérotation des positions de stockage) en général bornées entre 0 et une limite supérieure
- → limite supérieure de la mémoire (la plus grande adresse)
  normalement imposée par la plus grande valeur qui peut être représentée en machine:
  - soit dans un registre,
  - soit dans une instruction.

### Mot-mémoire à l'adresse 'n', "sexe des bytes"

La séquence des bytes stockés pour représenter un mot en mémoire diffère de machine à machine







### **Implantation physique**

### Implantation physique de la mémoire =

sous-ensemble de l'espace d'adresses, effectivement équipé de mémoire (vive ou morte), organisé en zones contiguës

### Plan de la mémoire (Intel 8086)

adresse type de mémoire utilisation figée (conception du 8086)
installée

0 - 400<sub>16</sub>



FFFF0<sub>16</sub> - FFFFF<sub>16</sub> (programme d'initialisation)

(256 vecteurs d'interruption)

### Segment de mémoire =

concept pour désigner une partie contiguë de la mémoire



FFFFF<sub>16</sub>

 $(= 1 048 575_{10})$ 





### Représentation externe des adresses

base: adresse-logique convention de Intel

> 1000 : C395 1C395 =exemple:

1B29:1105

ou



Registre de base

(Segment register)

 $(=65\ 535_{10})$ 

### Génération une adresse-bus dans le CPU

### Modèle fonctionnel

illustration: MOV AX,5000H

**0** MOV DS, AX ; 5000H ... définir la base du segment DS = 50000H

• • •

2 MOV AL, dummy; 'dummy' représente une donnée dont la place est

; réservée à l'adresse 1234H du 'data segment'



= registre



- 2.6 -



### La pile



- zone de mémoire à part, réservée au stockage temporaire de données;
   implantation 8086: la valeur SS:SP désigne l'adresse courante sur la pile (= le pointeur-pile "stack pointer");
- le CPU supporte des instructions conçues pour exploiter le mécanisme de la pile;
- concept:
  - zone de mémoire gérée dynamiquement;
  - accès limité à une extrémité de la pile (= le 'haut de la pile');
  - actions de base: *empiler*, *des-empiler* (i.e. ajout/retrait d'une valeur de l'adresse SS:SP avec mise-à-jour automatique du contenu de SP).



Note: La pile du 8086 "grandit vers le bas" - le haut de la pile correspond à son adresse la plus petite (autre machines: l'inverse)





### Segment physique =

zone contiguë de la mémoire physique, déterminée par:







des caractéristiques de la mémoire physique installée (p.ex. RAM/ROM, vitesse d'accès),



◆ la fragmentation de la mémoire physique.



### Segment logique =

partie du code-objet d'un programme







destiné pour le chargement dans un segment physique,



définie comme une partie de la structure modulaire du code-objet.

Note: La notion de "mémoire virtuelle" se réfère à une technique particulière pour implanter la mémoire logique dans le cadre d'un système d'exploitation.



### Séquence physique - séquence logique

La numérotation des positions de stockage (= succession des adresses) implique la

séquence physique des positions de la mémoire

→ La séquence physique détermine l'ordre de l'accès aux positions de la mémoire lors d'un accès séquentiel, p.ex. par une opération d'entrée / sortie.

### Instructions d'un programme stocké en mémoire



→ séquence physique des instructions

suite des positions de la mémoire utilisées pour le stockage des instruction.

**→** séquence logique des instructions

séquence déterminée par l'exécution des instructions lorsque le CPU les cherche et les interprète.



### Instructions et données d'un programme



→ En exécutant un programme, le CPU cherchera les instructions dans la mémoire, une instruction après l'autre.



→ Cette recherche sera faite "bêtement" en suivant la séquence logique.



→ Chaque résultat de cette recherche est interprété comme une instruction.



Donc, attention!



Lorsque - dans l'exemple - la recherche de la prochaine instruction fournit la valeur '1234', le CPU la comprendra comme le code d'une instruction à exécuter, peut importe "le sens" sous-entendu par le programmeur lors de la création du programme.









Tri entre instructions et données d'un programme!

Ce tri doit être fait par le programmeur (assembleur) ou le compilateur (langage élevé): éviter un mélange entre code et données (= représentation de variables).

Normalement, cela aboutit dans le regroupement d'instructions et de données dans des segments (logiques) distincts:

- segment de code,
- segment de données



### Format d'une opération

### Champs du code d'une opération

opération opérandel (opérande2)



interprétées en fonction du type de l'opération et de la représentation de l'opérande

- soit comme le contenu d'un registre,
- soit comme une adresse de la mémoire.



Les sous-champs d'une opérande interprétée comme une adresse déterminent :

- le "mode d'adressage" (= "fonction", la méthode pour calculer l'adresse et pour en obtenir la valeur de l'opérande) (= "algorithme d'adressage"),
- une *valeur constante* à utiliser dans ce calcul ; dans le cas le plus simple (le mode d'adressage "absolu") cette valeur est directement l'adresse de l'opérande,
- le cas échéant, un ou plusieurs *registres d'indexage*.



### Propriétés des opérations du CPU Intel 8086



- 2. Opérations arithmétiques en complément à deux
- 3. Inversion apparente des bytes dans les opérandes-mot
- **4. Opérandes implicites**  $\boxed{1 \ 1 \ 1 \ 0 \ 1 \ 1 \ 1} \quad write[AL] \rightarrow porte[DX]$
- 5. Instructions avec préfixe 0 1 1 r r 1 1 0 code op. registre de base = rr
- MOV r BX BP r... source = registre
- 7. Trois opérandes ... deux champs e.g. ADD AX,BX ... dest. = source1 + source2 (= dest.)
- 8. Jeu d'instructions relativement riche, complexe, non-orthogonal







### <u>Différences entre instructions-assembleur et instructions-machine</u>

Dans certains cas il existe une différence entre

- → la *machine réelle*: comportement déterminé par le CPU
- → la *machine abstraite* ("machine assembleur"): comportement déterminé par la définition des instructions figurant dans un programme



machine abstraite ... adresses absolues

conversion automatique par l'assembleur



machine réelle (CPU) ... adresses relatives.

2. Sélection automatique de l'opération (certains instructions Intel 8086) :

machine abstraite ... une seule instruction

sélection automatique par l'assembleur



machine réelle ... ensemble d'opérations du CPU.



### Par exemple (Intel 8086):

| Machine réelle              | Machine abstraite |    |                   |      |
|-----------------------------|-------------------|----|-------------------|------|
| $\mathtt{CALL} \Rightarrow$ | CALL intrasegment | et | CALL intersegment |      |
| $\texttt{MOV} \Rightarrow$  | MOV immédiat      | et | MOV direct        | etc. |





















un assembleur ne connaissant pas les types "entier" et "réel" ne peut pas choisir entre les additions correspondantes, p. ex. ADD et FADD.







### Registres du CPU Intel 8086

### Registres-opérandes et d'indexage

| reg. 16 bits |      | reg. 8 bits |      | utilisation implicite                                                    |  |  |  |
|--------------|------|-------------|------|--------------------------------------------------------------------------|--|--|--|
| mném.        | code | mném.       | code |                                                                          |  |  |  |
| AX           | 000  |             |      | accumulateur (opérations arithmétiques), opérande E/S                    |  |  |  |
|              |      | AL          | 000  | comme AX (mais opérande-byte)                                            |  |  |  |
|              |      | AH          | 001  | aucune                                                                   |  |  |  |
| CX           | 001  |             |      | compteur pour itérations (boucles, opération sur chaînes)                |  |  |  |
|              |      | CL          | 010  | compteur pour décalage                                                   |  |  |  |
|              |      | СН          | 011  | aucune                                                                   |  |  |  |
| DX           | 010  |             |      | porte E/S, extens. de $AX \rightarrow 32$ bit (DX = msb) (MUL, DIV)      |  |  |  |
|              |      | DL          | 100  | aucune                                                                   |  |  |  |
|              |      | DH          | 101  | aucune                                                                   |  |  |  |
| BX           | 011  |             |      | indexage <sup>1)</sup> , XLAT                                            |  |  |  |
|              |      | BL          | 110  | aucune                                                                   |  |  |  |
|              |      | BH          | 111  | aucune                                                                   |  |  |  |
| SP           | 100  |             |      | indexage pile (= pointeur pile)                                          |  |  |  |
| BP           | 101  |             |      | indexage <sup>1)</sup> , accès données par registre segment = SS (regis- |  |  |  |
|              |      |             |      | tre)                                                                     |  |  |  |
| SI           | 110  |             |      | indexage-source [DS] <sup>2)</sup> (opérations sur chaînes)              |  |  |  |
| DI           | 111  |             |      | indexage-destination [ES] <sup>2)</sup> (opérations sur chaînes)         |  |  |  |



### Recouvrement des registres à 8 et à 16 bits

L'implantation effective d'un registre-byte

se recouvre avec la partie supérieure ou inférieure du

registre-mot correspondant



Conséquences sur l'extension du bit de signe!

Par exemple:

MOV AX, -3; AX devient 0FFFD

MOV AL, -3; AX devient 0xxFD (0xx = valeur antérieure)

Note: Ce concept a probablement son origine dans la volonté d'Intel de garantir un important degré de portabilité de programmes du 8080 vers le 8086



### Registres de base ("segment registers")

| nom              | mném. | code | utilisation implicite (= choix automatique d'un registre de base par le CPU)                                                             |
|------------------|-------|------|------------------------------------------------------------------------------------------------------------------------------------------|
| Extra<br>Segment | ES    | 00   | opérations sur chaînes (chaîne-destination)                                                                                              |
| Code<br>Segment  | cs    | 01   | code à exécuter                                                                                                                          |
| Stack<br>Segment | SS    | 10   | opérations utilisant la pile (y compris les appels de procédures et les interruptions) accès aux opérandes en mémoire si indexage par BP |
| Data<br>Segment  | DS    | 11   | accès aux opérandes en mémoire sauf si indexage par BP opérations sur chaînes (chaîne-source)                                            |



(= "instruction pointer", "IP")

- Seulement indirectement accessible au programme (JMP, CALL, etc.)
- Autres machines : registre(s) d'état +compteur ordinal (= "Processor StatusWord", "PSW")



### Registre d'état ("flag register")

### Le registre d'état contient une liste de bits représentant l'état du CPU

- bits de contrôle (état de fonctionnement du CPU, déterminé par des instructions de contrôle, respectivement le système d'interruption),
- bits arithmétiques (la valeur décrit le résultat de l'exécution d'une opération).

| 15 |   |   |   |    |    |    | 8  | 7  |    |   |    |   |    |   | 0         |
|----|---|---|---|----|----|----|----|----|----|---|----|---|----|---|-----------|
| X  | X | X | X | OF | DF | IF | TF | SF | ZF | X | AF | X | PF | X | <b>CF</b> |

|    | Bit (nom)      | Signification: 1 si                 |
|----|----------------|-------------------------------------|
| OF | ("overflow")   | report MSB ↔ bit devant MSB         |
| DF | ("direction")  | marche-arrière (op. sur chaînes)    |
| IF | ("interrupt")  | les interruption sont acceptées     |
| TF | ("trap")       | interruption après chaque opération |
| SF | ("sign")       | résultat négatif (MSB = 1)          |
| ZF | ("zero")       | résultat = 0                        |
| AF | ("arithmetic") | report bit #4 ↔ bit #3              |
| PF | ("parity")     | la parité du résultat est paire     |
| CF | ("carry")      | report du / vers le MSB             |

significant bit" (bit de poids le plus faible *Note*: **MSB** "most LSB





### Le rôle du bit "carry" (report arithmétique, décalage)

Opérations de rotation et le bit "CF"



(dito pour registres bytes)

Opérations arithmétiques et les bits "CF", "OF"



CF OF ... bits modifiés en cas de report du / vers le bits du plus grand poids:

- registres à 16 bits: report des bits  $2^{15}$  ou  $2^{14}$
- registres à 8 bits: report des bits  $2^7$  et  $2^6$

### Quelques opérations typiques

| Mném. | Opérandes                               | Sémantique                                           |
|-------|-----------------------------------------|------------------------------------------------------|
| SUB   | dest 1) source 1)                       | dest := dest - source                                |
| AND   | dest 1) source 1)                       | $dest := dest \land source$                          |
| SHL   | dest 1) count 1)                        | $dest := dest * 2^{count}$                           |
| CMP   | dest 1) source 1)                       | dest - source <sup>4)</sup>                          |
| TEST  | dest 1) source 1)                       | dest ∧ source <sup>4)</sup>                          |
| JMP   | valeur                                  | IP := IP + valeur                                    |
| JE    | valeur                                  | si <b>ZF</b> = 1 <b>IP</b> := <b>IP</b> + valeur     |
| MOV   | dest <sup>2)</sup> source <sup>2)</sup> | dest := source                                       |
| PUSH  | source 3)                               | empiler source                                       |
| CALL  | valeur                                  | (pas 1) empiler IP, (pas 2) IP := IP + valeur        |
| CLI   |                                         | désactiver le système d'interruption (IF := 0)       |
| OUT   | valeur                                  | envoyer AL vers l'équipement avec l'adresse "valeur" |



- 1)... registre 8-bits, registre 16-bits, position-mémoire, valeur immédiate ("source" seulement)
- 2)... comme 1); en plus: registre de base
- 3)... registre 16-bits, registre de base, position-mémoire
- 4)... ne modifie pas le registre-résultat (seulement les bits arithmétiques du registre d'état sont touchés)







### **Adressage Intel 8086**

### **Principes**

**→** Adressage implicite

par exemple : opération sur pile (PUSH, POP)

**→** Adressage explicite

information fournie dans le champ d'opérande, évaluée en deux phases :

- 1. Calcul de l'adresse effective (adreff) pour un des modes :
  - adressage absolu
  - adressage indexé
  - adressage relatif
- 2. Recherche de l'opérande en utilisant adr<sub>eff</sub> pour un des modes :
  - adressage immédiat
  - adressage direct
  - adressage indirect

Note: La sélection d'un mode d'adressage fait partie de l'information figurant dans le champ d'opérande.

L'Intel 8086 ne supporte pas tous ces modes et seulement certaines combinaisons entre les modes de la phase 1 et de la phase 2 (voir "Modes d'adressage").



### Modes d'adressage

### 1. Modes pour le calcul de l'adresse effective

- adressage absolu
- $adr_{eff} = const.^{1)}$
- adressage indexé
- $adr_{eff} = const.^{2} + r_{i} [ + r_{k}]^{3}$

Note: Le double indexage est une option particulière du CPU Intel 8086.





$$adr_{eff} = const.^2 + IP$$

- → Le CPU Intel 8086 ne permet l'adressage relatif que pour les instructions de branchement (JMP, CALL, JE etc.); voir remarque sous "Syntaxe : adressage"
- 1) const. ... contenu d'un sous-champ particulier, interprété comme une valeur sans signe
- 2) const. ... contenu d'un sous-champ particulier, interprété comme une valeur positive ou négative (complément à 2)
- 3)  $[\ldots]$  ... champ optionnel
- $r_i$ ,  $r_k$  ... contenu d'un registre d'indexage
- IP ... contenu du compteur ordinal





### 2. Modes pour la recherche de l'opérande







adressage direct

opérande = 
$$[adr_{eff}]^{4}$$



• adressage indirect

opérande = 
$$[[adr_{eff}]]^{4}$$



→ L'Intel 8086 ne supporte pas l'adressage indirect. Certains CPU permettent une multiple indirection.



4) [ adresse ] ... obtenir le contenu de la position de la mémoire "adresse"



## Combinaison des modes (phase 1 et 2)

En principe, un CPU devrait permettre de combiner chaque mode traité en phase 1 ("calcul de l'adresse effective") avec chaque mode traité en phase 2 ("recherche de l'opérande").



L'architecture du CPU Intel 8086 cependant ne supporte pas toutes les combinaisons théoriquement possibles





## Modes d'adressage possibles (Intel 8086)

| mode    | immédiat | direct | indirect |  |  |
|---------|----------|--------|----------|--|--|
| absolu  | 1        | ✓      | ×        |  |  |
| indexé  | ×        | ✓      | ×        |  |  |
| relatif | ×        | ✓      | ×        |  |  |













## Modes d'adressage (exemples Intel 8086)







# /user/u2/harms/cours/asm/3.fm

## **Chapitre 3:**

## Principes d'un assembleur

## Résumé:

- Concepts généraux
- Instructions
  - Représentation, syntaxe des instructions
  - Adressage
- Génération de code
  - Compteurs de positions
  - Segments et gestion des registres de base
- Instructions



















## **Assembleur: introduction Assemblage** Edition de liens **Editeur Assembleur** de liens

**Exécution du code-objet** 

Code-objet

en mémoire

Chargeur

8

















Code-

source

## Description symbolique d'un programme

- des instructions-machine,

Code-objet

relogeable

- des directives pour l'assembleur,
- (des directives pour l'éditeur de liens).

Code-objet relogeable:

## Description binaire d'un programme

- des instructions-machine,
- de l'information pour l'éditeur de liens (relocation, chargement, exécution).

Code-objet

exécutable

Code-objet absolu:

## Représentation binaire d'un programme

- des instructions-machine,
- de l'information pour le chargement et l'exécution du programme-objet.

## Caractéristiques d'un assembleur

- Représentation à l'aide de *mnémoniques*.
- Représentation de *valeurs constantes*:
  - constantes numériques,
  - chaînes de caractères.
- Gestion de l'espace-mémoire, symboles.
- - "fonctions" de l'assembleur,
  - assemblage conditionnel,
  - assemblage répétitif,
  - macro-assemblage.
- Assemblage en plusieurs "passes" (en général 2 passes)

Notes: rour un type de CPU ... plusieurs assembleurs,

... syntaxes différentes,

... mnémoniques différents!

par exemple: MASM (Microsoft),

Turbo Assembleur (Borland)

\* l'assembleur accomplit son travail en lisant les instructions du programme-source l'une après l'autre; il s'arrête lorsqu'il trouve l'instruction "END".

## **Syntaxe**

## Forme générale d'une instruction MASM

[[ étiquette [ : ] + ] opération [ + opérande ][ ; commentaire ] ¶

## Y

## Syntaxe:

- représentation d'une instruction par un enregistrement,
- décomposition d'une instruction en champs, séparés de caractères-séparateurs,
- si nécessaire, décomposition d'un champ en sous-champs.

## Notation utilisée :

espace ou tabulation ("whitespace"):
 des espaces ou tabulations (supplémentaires) peuvent figurer au début et à la fin des champs et sous-champs

[] ... optionnel

¶ ... fin de ligne

par exemple:

CALC: MOV CX, 7; définir le compteur





## Signification des champs de l'instruction





- max 31 caractères {A..Z} {a..z} {0..9} {.?@\_\$},
- {0..9} défendu comme 1er caractère,
- "." uniquement permis comme 1er caractère,
- pas de distinction entre minuscules et majuscules,
- terminaison par ":" ... le symbole aura le type "near" (valeur sans partie "segment", voir aussi "Variables, symboles");

la valeur attribuée au symbole dépend du champ d'opération.

## Champ d'opération

opération à effectuer, indiquée à l'aide d'un "mnémonique"; deux significations possibles :

- opération ...
  - élément du répertoire d'instructions du CPU dont le code-objet est à générer,
- pseudo-opération ("pseudo-instruction") ...
  directive au programme "assembleur" (ne produit pas forcément du code-objet).
- Si le premier champ d'une instruction est une (pseudo-)opération, ce champ sera considéré comme un champ d'opération sinon comme un champ d'étiquette.



## Champ d'opérande

## argument(s) pour la (pseudo-)opération :



rappel: ♦ ... espace ou tabulation ("whitespace")



opération destination, source

Note: cette ordre est inverse pour les assembleurs de la plupart des autres machines, par exemple celui du Motorola 68000

3. la signification spécifique du champ d'opérande et de ses sous-champs dépend de l'opération et, par conséquent, est déterminée par le champ d'opération.

## Champ de commentaire

## texte explicatif:

champ sans signification syntaxique et sémantique pour l'assembleur; chaîne de caractères terminée par la fin de l'instruction (= fin de ligne)

; commentaire



## **Syntaxe: constantes**

## Format des constantes numériques

chiffre [ chiffre ... ] [ selecteur ]

| type        | selecteur               | chiffre                    | exemple   |
|-------------|-------------------------|----------------------------|-----------|
| binaire     | В                       | {0,1}                      | 00011101B |
| octal       | O ou Q                  | {07}                       | 0350      |
| hexadécimal | Н                       | {09}{AF}{af} <sup>1)</sup> | 1dH       |
| décimal     | D ou rien <sup>2)</sup> | {09}                       | 29        |

- (1) contrainte: premier chiffre = obligatoirement {0..9}
- 2) base utilisée par défaut pour la conversion (initialisée au début de l'assemblage à 10), peut être changée par la directive

$$(2 \le n \le 16)$$

## Format des chaînes de caractères

(constantes alpha-numériques)

séparateur [ caractère [ caractère...] ] séparateur

séparateur ... {'"}

caractère ... tout caractère du jeu ASCII sauf séparateur

par exemple:

"abc'\lX" ou 'abc"e'



## Spécification d'adresses



```
[ segreg: ][ valeur [ [ indreg [+indreg ][+valeur ] ] ] ]
```

```
[...] = [et] indiquent sous-champs optionnel
[...] = [et] sont des caractères significatifs
```



## Sélection du mode d'adressage

Le choix des modes d'adressage disponibles est déterminé par l'architecture du CPU. La syntaxe de l'assembleur permet de sélectionner pour chaque opérande un mode spécifique.



## Le mode d'adressage est déterminé par :

- → la syntaxe particulière d'une opérande (par exemple adressage indexé),
- → la présence ou absence de certains sous-champs (par exemple un champ avec un registre d'indexage),
- → les *caractéristiques* associées par l'assembleur à ces *sous-champs* (par exemple le type du champ "valeur").



## Mode d'adressage

## Calcul de l'adresse effective



par exemple: 4[SI]

[SI+4]

SYMBOL[SI+BP]

ES:[DI+BX+3]



par exemple: SYMBOL

ES:SYMBOL

, ,

Offf

■ l'assembleur simule la disponibilité d'instructions de branchement permettant l'adressage absolue (JMP, CALL, JE ...), bien que les instructions correspondant de l'Intel 8086 ne permettent que l'adressage relatif :

l'assembleur effectue automatiquement une conversion en adressage relatif

par exemple: JMP LABEL

CALL EXIT





## Recherche de l'opérande

\* l'assembleur reconnaît le mode "adressage immédiat" par l'absence de tous sous-champ spécifiant un registre d'indexage (terme en notion [registre]), mais seulement si le champ "valeur" représente une constante (par opposition à une adresse relogeable);

par exemple: ''

0ffff

par exemple: symbole\_relogeable

4[SI]

en cherchant une valeur dans la mémoire, l'Intel 8086 utilise des règles par défaut pour sélectionner un registre de base (voir "Registres de base");

si un sous-champ spécifiant un registre de base (nom de registre-segment suivi de ":") est rencontré, l'assembleur composera un code-préfixe ("Segment Prefix Code") qui, lors de l'exécution, forcera le CPU d'utiliser ce registre de base.

par exemple: ES:SYMBOL

Note: Contraintes imposés par l'architecture du 8086 quant à la disponibilité et au choix des combinaisons de modes! voir aussi: adressage Intel 8086, combinaison des modes).

- → Un non-respect de ces contraintes est traitée comme une erreur de programmation, l'assembleur fournira un message d'erreur correspondant.
- → par exemple: ES:7



- 3.10 -

## Génération de code-objet

La génération de code exécutable par un assembleur ou par un compilateur aboutit, en général, dans

la création de plusieurs zones disjointes de code-objet.

## Tables de code-objet





## **Segment logique**

- En créant du code-objet, l'assembleur regroupe le code généré (instructions, données) en différentes zones contiguës, indépendantes l'une de l'autre des "segments logiques".
- Le contenu de chaque segment logique représente un espace d'adresses indépendant.
- L'emplacement des segments logiques dans la mémoire et la position d'un segment logique par rapport à l'autre ne seront déterminés que lors de l'édition de liens.



## Compteur de position

## Rôle du compteur de position



Table de code-objet d'un segment

- un compteur par segment logique,
- valeur courante = position (adresse relative dans le segment) où le prochain byte de code-objet sera placé.

## Contrôle du compteur de position

ORG valeur

Mettre la valeur du compteur de position du segment courant à "valeur"

**EVEN** 

Assurer que la valeur du compteur de position du segment courant soit paire; si nécessaire, générer un byte de code-objet ("no-op")

## Valeur du compteur de position

La fonction "\$" fournit à tout instant la valeur courante du compteur de position du segment courant.



## Compteur de position et compteur-ordinal

Il y a une relation étroite entre le compteur de position du segment de code (tel qu'il est géré au moment de l'assemblage) et le compteur-ordinal du CPU (l'adresse de l'instruction que le CPU cherche au moment de l'exécution):





→ le compteur de position correspond à la valeur du compteur-ordinal au moment où l'instruction sera exécutée.



## Valeur initiale du compteur-ordinal lors de l'exécution

END valeur





Considérer l'instruction comme la dernière du programme à traduire.



L'adresse de transfert sera mémorisée dans le code-objet du programme généré. Cette valeur sera utilisée par le système d'exploitation pour initialiser le compteur-ordinal (= déterminer la première instruction du programme à exécuter).

L'adresse de transfert spécifie l'adresse de la première instruction exécutée suite au chargement du programme



## Contrôle des segments

## L'instruction SEGMENT



Y

- 1. contrôler le *placement du code-objet* dans des segments spécifiques;
- 2. associer les symboles représentant des adresses à un segment en considérant leur valeur comme un déplacement par rapport au début du segment;



## **Utilisation de l'instruction SEGMENT:**

| nom | SEGMENT | opérande(s) |
|-----|---------|-------------|
|     | •       |             |
| nom | ENDS    |             |



## Association du code-objet à un segment logique

## Décomposition du code en segments logiques

Le code-objet correspondant au bloc d'instructions figurant entre les pseudo-instructions SEGMENT et ENDS sera placé dans un segment dont le nom figure dans le champ d'étiquette.



## Gestion à l'aide d'un compteur de position



Un "compteur de position" est associé à chaque segment.



Ce compteur de position vaut initialement (= lors de la première sélection d'un segment) 0.



Si le segment est dé-sélectionné pour sélectionner un autre segment, la valeur du compteur est sauvée jusqu'au moment où le segment est de nouveau sélectionné.



## **Alternance entre segments**

Un programme peut alterner entre différents segments pour y générer de code:

- l'instruction SEGMENT permet de re-ouvrir un segment déjà existant (donc, SEGMENT soit crée un nouveau segment, soit ouvre un segment en vue d'y ajouter de code supplémentaire);
- suite à une telle re-ouverture, le compteur de positions pointera à la fin des données déjà existant dans le segment;
- ne pas oublier l'instruction ENDS avant une telle opération, elle permet de (temporairement) clore l'ancien segment!



## Exemple: résultat du travail de l'éditeur de liens



## code-objet du module B;





## Placement de segments

Les opérandes de l'instruction SEGMENT déterminent la manière dont l'éditeur de liens traitera le segment :



*Note*: rappel: ♦ ... espace ou tabulation ("whitespace")



**PUBLIC** tous les segments avec ce qualificatif seront regroupés dans un seul segment-résultat, l'un derrière l'autre ;

STACK un seul segment avec ce qualificatif est accepté, il est destiné à la gestion de la pile ;

le premier segment portant ce qualificatif sera placé à une position de mémoire en dessus de tout autre segment; s'il y a d'avantage de segments de ce genre, ils seront traités comme les segments du type "COMMON";

AT♦ adr les étiquettes définies dans un tel segment sont définies comme étant relatives à la valeur ("adr" / 16) \* 16.



## Alignement de l'adresse de base d'un segment

Le segment sera placé à une adresse alignant le positionnement du segment de manière spécifique:

| mot-clé | alignement sur           | adresse modulo |
|---------|--------------------------|----------------|
| BYTE    | frontière de bytes       | 1              |
| WORD    | frontière de mots        | 2              |
| PARA    | frontière de paragraphes | 16             |
| PAGE    | frontière de pages       | 256            |



Le mode "BYTE" est utilisé par défaut, les segments seront donc placés directement l'un derrière l'autre.

En mode "WORD", par exemple, un byte supplémentaire sera inséré au besoin, ce qui assure que les adresses paires d'un segment correspondent à des adresses paires de la mémoire physique; ceci permet d'écrire du code "rapide", exploitant le fait que le 8086 utilise un seul cycle du bus pour chercher une opérande-mot si elle est stockée à une adresse paire (sinon, le mot est découpé en 2 bytes transmis de manière séquentielle).



## Gestion des registres de base

## Initialisation des registres de base







2 Segment1 ENDS

Segment 2 SEGMENT STACK

Segment2 ENDS

Initialisation: MOV AX, Segment1

MOV ES,AX

MOV AX, Segment 2

MOV SS,AX

• • •





## Réalisation (assembleur et éditeur de liens)





→ l'éditeur de liens définit la valeur du symbole comme l'origine du segment (= la valeur de l'adresse de base / 16).



Note: Le contenu des registres de segment CS et SS (ainsi que les registres IP et SP) sont définis par le système d'exploitation avant le début de l'exécution du programme (segment contenant le code, petite pile mise à disposition par le système).



Néanmoins il est préférable de redéfinir la pile (SS et SP) pour disposer d'une zone de mémoire suffisante lors de l'exécution du programme.









## Association segments logiques - registres de base (= segments physiques)













La pseudo-opération ASSUME indique à l'assembleur quel registre de segment il doit utiliser pour accéder aux opérandes :



- comme résultat, l'assembleur associe le(s) registre(s) de base (CS, ES, SS, DS) au nom des segments logiques "nom<sub>k</sub>";



par la suite, l'assembleur ajoutera automatiquement des préfixes de segment où cela est nécessaire.



Note: L'assembleur n'ajoutera un préfixe qu'aux instructions où le choix par défaut du registre de base (voir "Registres") ne fournira pas le bon résultat.



## Gestion des registres de base, exemple





| 9  | MOV | AX,seg1 |
|----|-----|---------|
| 10 | MOV | ES,AX   |
| 11 | MOV | AX,seg2 |
| 12 | MOV | SS,AX   |
|    |     |         |





## Au moment de l'assemblage

- 1. Définition du symbole 'nom1'
  - → 'nom1' est défini comme une adresse dans le segment 'seg1' ( 1 et 2 )
- 2. Définition du symbole 'nom2'
  - → 'nom2' est défini comme une adresse dans le segment 'seg2' ( 4 et 5 )
- 3. Directive ASSUME = "promesse" du programmeur ( 8 ) : lors de l'exécution,
  - **→** ES va contenir la base du segment 'seg1'
  - → SS va contenir la base du segment 'seg2'
- 4. Traduction de l'instruction 13 MOV AX, nom1 : l'assembleur va
  - **→** se souvenir que le symbole 'nom1' avait été défini dans le segment 'seg1' ( 2 )
  - **→** savoir que, lors de l'exécution, ES contiendra l'adresse du segment 'seg1' ( 8 )
  - → donc, va interpréter l'instruction comme MOV AX, ES: nom1
- 5. Traduction de l'instruction 14 MOV BX, nom2 par
  - → dito ( 4 et 8 ), traduction comme MOV BX,SS:nom2

## donc

## Au moment de l'exécution

- 1. L'exécution de 9 et 10 chargera, "comme promis", dans ES l'adresse du segment 'seg1'
- 2. L'exécution de 11 et 12 chargera, "comme promis", dans SS l'adresse du segment 'seg2'
- 3. Les instructions 13 et 14 utiliseront donc les bon registres de base (ES, resp. SS) et ces registres contiendront les adresses de base de ces segments.



## Contrôle des segments, résumé

Mesures pour le contrôle de la séparation du code en segments, respectivement de l'association de variables à un segment spécifique:

- → Association du code objet à un segment logique (pseudo-instructions SEGMENT, ENDS) :
- définition de blocs de code-source et, par conséquent, du code-objet correspondant;

création des symboles représentant des adresses dans le code-objet.



**→** Association entre segments logiques et registres de base (pseudo-instruction ASSUME).



→ Initialisation des registres de base aux valeurs correspondant aux adresses des segments physiques (opérations d'initialisation à incorporer dans le programme).



→ Utilisation du registre de base correct par le CPU (géré par le système d'exploitation).

- 3.24 -



## Version 2.31 /user/u2/harms/cours/asm/3.fm

## **Exemple d'un programme**



; dans le fichier MACRO.LIB



3 100 DUP (?); mots sans initialisation DW

; adresse-mot suivant la pile WORD haut LABEL

pile **ENDS** 

; ici seront placées les données du programme data SEGMENT PUBLIC

data **ENDS** 

code SEGMENT PUBLIC

9 **ASSUME** CS:code,SS:pile,DS:data ;

start LABEL FAR

11 ; lier DS au segment data AX, data MOV

12 ; (pas de MOV imm. DS!) DS, AX MOV

13 AX, pile ; ditto pour SS MOV

14 MOV SS, AX

15 ; haut de la pile (vide !) MOV SP, haut

AH, 4CH (de "MACRO.LIB") MOV 16 EXIT INT 21H

17 code **ENDS** 

18 ; fin du code-source, adresse de la première instruction **END** start







## Définition de données

## Pseudo-instructions pour la réservation et définition de données







**→** définir une variable (champ d'étiquette!) portant le type déterminé par l'instruction (BYTE, WORD, DWORD, QWORD, TBYTE) (optionnel).

```
DB
DW valeur value
? ? ?
DD fact DUP(valeur) [, fact DUP(valeur) [,...]]
DQ fact DUP(?) fact DUP(?)
```

Les sous-champs du champ d'opérande de ces pseudo-opérations déterminent le contenu du code réservé ou généré. Ce code se compose d'éléments dont la taille est implicitement déterminée par la pseudo-instruction (1, 2, 4, 8, 10 bytes).



## La fonction DUP

La fonction DUP permet de créer des copies multiples d'une constante, d'une liste de constantes ou d'un champ vide.



Si la représentation interne d'un sous-champ dépasse cette taille, un message d'erreur sera donné. Exception : une chaîne de caractères dans une instruction DB est considérée comme une liste de sous-champs d'un caractère.





La longueur des chaînes de caractères dans tous les instructions sauf DB est limitée à 2 caractères; le code correspondant est ajusté à droite, en ajoutant des 0-bits à gauche si nécessaire.



## Formats possibles

Comme indiqué, 4 formats sont possibles pour chaque sous-champ :





3. DUP (valeur) ... réserver et générer de multiples éléments (nombre d'éléments = "fact") de code-objet, chacun avec un contenu correspondant à "valeur";

4. DUP (?) ... réserver de multiples éléments de code-objet sans générer de code

- 3.27 -



9

## Réservation de données, exemples

| 1 | DB | 16 |
|---|----|----|
|   |    | _  |











- Opérations itératives, actions sur chaînes de caractères

- 4.1 -



## Le répertoire d'instructions

## Résumé:

- **☞** Opération de l'Intel 8086
  - Opérations utilisant la pile
  - **Branchements**
  - Opérations arithmétiques et logiques

## **Opérations utilisant la pile**

## **Utilisation d'une pile**



## Ajouter une valeur sur la pile :

- 1. SP := SP 2
- 2. déposer la valeur à l'adresse déterminée par SP

## Retirer une valeur de la pile :

- 1. Retirer la valeur de l'adresse déterminée par SP
- 2. SP := SP + 2

Note: la pile "grandit" vers le bas de la mémoire (Intel 8086!) choix du constructeur!



## Opérations utilisant la pile

1) cont(pos) = contenu de laposition-mémoire "pos"



















4. IF := 0 TF := 0

- 2) flags = contenu du registre d'état ("flag register")
- adresse absolue (valeur \* 4)

- 1. POP IP RET
  - 2. POP CS (seulement si "FAR")

5. CS:IP := cont ("valeur" \* 4)  $^{1) (3)}$ 

1. POP IP IRET 2. POP CS 3. POP flags <sup>2)</sup>

**Liste des instructions** 



## **Opérations de branchement**

## Forme des instructions de branchement

| ine  | truc | stin | n  |  |
|------|------|------|----|--|
| 1113 | uu   | LIU  | ,, |  |

opérande

Note: "opérande" doit être du type "NEAR", sauf pour les instructions JMP et CALL où il peut aussi être "FAR"



## **Branchements sans condition**

| JMP | branchement simple                                              |
|-----|-----------------------------------------------------------------|
|     | avant le branchement, sauver<br>l'adresse de retour sur la pile |

## **Branchements pour itérations**

| Instruction   | Actions (phases)         |                          |  |  |  |  |  |  |
|---------------|--------------------------|--------------------------|--|--|--|--|--|--|
| mstruction    | 1. mise-à-jour de CX     | 2. branchement si:       |  |  |  |  |  |  |
| LOOP          | CX := CX-1               | CX≠0                     |  |  |  |  |  |  |
| LOOPZ,LOOPE   | CX := CX-1               | $(CX\neq 0)\land (ZF=1)$ |  |  |  |  |  |  |
| LOOPNZ,LOOPNE | <b>CX</b> := <b>CX-1</b> | $(CX\neq 0)\land (ZF=0)$ |  |  |  |  |  |  |
| JCXZ          | pas d'action             | $\mathbf{CX} = 0$        |  |  |  |  |  |  |





## **Branchements conditionnels**

| ZF | SF   | CF           | OF              | PF       | opération | condition de branchement<br>(à la suite de l'exécution de l'instruction "CMP A,B") |  |  |  |  |  |  |  |
|----|------|--------------|-----------------|----------|-----------|------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 1  |      |              |                 |          | JE,JZ     | A=B                                                                                |  |  |  |  |  |  |  |
| 0  |      |              |                 |          | JNE,JNZ   | A≠B                                                                                |  |  |  |  |  |  |  |
|    | 1    |              |                 |          | JS        |                                                                                    |  |  |  |  |  |  |  |
|    | 0    |              |                 |          | JNS       |                                                                                    |  |  |  |  |  |  |  |
|    |      | 1            |                 |          | JB,JNAE   | A < B                                                                              |  |  |  |  |  |  |  |
|    |      | 0            |                 |          | JNB,JAE   | A≥B comparaison de                                                                 |  |  |  |  |  |  |  |
|    | CF   | ∨ <b>ZF</b>  | = 1             | <b>'</b> | JBE,JNA   | <b>A≤B</b> valeurs sans signe                                                      |  |  |  |  |  |  |  |
|    | CF   | ∨ <b>ZF</b>  | = 0             |          | JNBE, JA  | A>B $=$ "ou" inclusif                                                              |  |  |  |  |  |  |  |
|    | SF   | <b>∀OF</b>   | = 1             |          | JL, JNGE  | $A < B \qquad \forall = "ou" exclusif$                                             |  |  |  |  |  |  |  |
|    | SF   | <b>∀OF</b>   | = 0             |          | JNL,JGE   | A≥B comparaison de                                                                 |  |  |  |  |  |  |  |
| (5 | SF\( | <b>)F</b> )∨ | $\mathbf{ZF} =$ | 1        | JLE, JNG  | <b>A≤B</b> valeurs avec signe                                                      |  |  |  |  |  |  |  |
| (5 | SF\( | <b>)F</b> )∨ | $\mathbf{ZF} =$ | 0        | JNLE, JG  | A>B                                                                                |  |  |  |  |  |  |  |
|    |      |              | 1               |          | JO        | dépassement arithmétique                                                           |  |  |  |  |  |  |  |
|    |      |              | 0               |          | JNO       | pas de dépassement arithmétique                                                    |  |  |  |  |  |  |  |
|    |      |              |                 | 1        | JP,JPE    | parité paire ("even")                                                              |  |  |  |  |  |  |  |
|    |      |              |                 | 0        | JNP,JPO   | parité impaire ("odd")                                                             |  |  |  |  |  |  |  |

Notes: Caractères mnémoniques: <u>Equal, Zero, Below, Above, Less-than, Greater-than, Not</u>







## Opérations arithmétiques & logiques

|           | destination |        |     |          |      |      | source |             |     |        |          |      | flags    |
|-----------|-------------|--------|-----|----------|------|------|--------|-------------|-----|--------|----------|------|----------|
| opération |             | reg16  | seg | mém.     | imm. | flag | reg8   | reg16       | seg | mém.   | imm.     | flag | modifiés |
| MOV       | ✓<br>✓      | ✓<br>✓ | ✓   | <b>√</b> |      |      | ✓      | ✓<br>✓<br>✓ |     | \(  \) | <b>√</b> |      | aucun    |
| LEA 1)    |             | ✓      |     |          |      |      |        |             |     | ✓      |          |      | aucun    |
| XCHG      | 1           | ✓      |     |          |      |      | ✓      | ✓           |     | ✓      |          |      | aucun    |
| PUSH      |             |        | pi  | le       |      |      |        | ✓           | ✓   |        |          |      | aucun    |
| PUSHF     |             |        | pi  | le       |      |      |        |             |     |        |          | ✓    | aucun    |
| POP       |             | ✓      | 2)  |          |      |      |        |             | рi  | ile    |          |      | aucun    |
| POPF      |             |        |     |          |      | ✓    |        |             | pi  | ile    |          |      | tous     |
| LAHF      | AH          |        |     |          |      |      |        |             |     |        |          | inf  | aucun    |
| SAHF      |             |        |     |          |      | inf  | AH     |             |     |        |          |      | ACOPSZ   |



- source et opérande sont de la même taille
- il a au plus une seule opérande-mémoire
- inf ... 8 bits inférieurs
- pile ... adressage implicite par une action sur la pile
- 1) évaluation de l'adresse-mémoire, résultat (= adresse effective)  $\rightarrow$  registre
- sauf CS





# **Opérations arithmétiques & logiques (suite)**

| opération          |          | destination |     |      |      | source   |      |       |     |        | flags |          |          |
|--------------------|----------|-------------|-----|------|------|----------|------|-------|-----|--------|-------|----------|----------|
|                    |          | reg16       | seg | mém. | imm. | flag     | reg8 | reg16 | seg | mém.   | imm.  | flag     | modifiés |
| ADD 1)             | 1        | ✓           |     | ✓    |      |          | 1    | ✓     |     | ✓      | ✓     |          | ACOPSZ   |
| INC, DEC           | <b>/</b> | ✓           |     | ✓    |      |          |      |       | = d | lest   |       |          | AOPSZ    |
| NEG 2)             | <b>/</b> | ✓           |     | ✓    |      |          |      |       | = d | lest   |       |          | ACOPSZ   |
| NOT 3)             | <b>✓</b> | ✓           |     | ✓    |      |          |      |       | = d | lest   |       |          | aucun    |
| SHL, SAL, SHR, SAR | 1        | ✓           |     | ✓    |      |          |      |       | = d | lest   |       |          | ACOPSZ   |
| ROL, ROR, RCL, RCR | 1        | ✓           |     | ✓    |      |          |      |       | = d | lest   |       |          | CO       |
| MUL, IMUL {        |          | X:A<br>AX   | X   |      |      |          | 1    | ✓     | ✓   | ✓      |       | 4)<br>4) | } ACOPSZ |
| DIV, IDIV {        | AL       | AX          |     |      |      | 5)<br>5) | 1    | ✓     |     | ✓<br>✓ |       |          | } ACOPSZ |



- source et opérande sont de la même taille
- il a au plus une seule opérande-mémoire
- 1) dito: ADC, CMP, SUB, SBB, TEST, AND, OR, XOR
- 2) complément à deux de tous les bits
- 3) complément à un de tous les bits
- 4) l'autre opérande-source = AX, resp. AL
- 5) dest. = résultat; reste = DX, resp. DL, diviseur = source; dividende = AX:DX, resp. AX
  Liste des instructions



# Extension du bit de signe

Certaines opérations doivent ajouter des bits significatifs en début d'une valeur p.ex. conversion byte  $\rightarrow$  mot, décalages







Illustration à l'aide d'un exemple non-Intel (l'opération "MOV AX, AL" n'es pas permise):

MOV

AX,AL

!! Opération défendue !!



Deux implantations possibles de l'extension du contenu de AL en valeur de 16 bits (choix du constructeur):



1. Extension logique : adjonction de huit 0-bits en position de fort poids



2. Extension du bit de signe : reproduction du 1er bit



**CBW** 

extension du bit de signe de AL vers AH

**CWD** 

extension du bit de signe de AX vers DX



MOVZX

AX,AL

adjonction de huit 0-bits

MOVSX

AX,AL

reproduction du 1er bit

un problème semblable se présente si une valeur immédiate représentée sur 8 bits doit déterminer une opérande de 16 bits. Normalement ceci est traité par l'assembleur sans que le programmeur ne s'en aperçoive.



# Opérations itératives, actions sur chaînes de caractères

#### Résumé des instructions

|              | destination     |            |              |       | source  |     |     |      |        |                   |
|--------------|-----------------|------------|--------------|-------|---------|-----|-----|------|--------|-------------------|
| opération    | reg 8<br>reg 16 | seg<br>mém | imm.<br>flag | reg 8 | reg 16  | seg | mém | imm. | flag   | flags<br>modifiés |
| MOVSW, MOVSB | [ES:DI]         |            |              |       | [DS:SI] |     |     |      | aucun  |                   |
| CMPSW, CMPSB | [ES:DI]         |            |              |       | [DS:SI] |     |     |      | ACOPSZ |                   |
| SCAW         |                 | [ES:D      | I]           |       | AX      |     |     |      |        | ACOPSZ            |
| SCAB         |                 | [ES:D      | I]           | AL    |         |     |     |      |        | ACOPSZ            |
| LODW         | AX              |            |              |       |         | [D  | s:s | I]   |        | aucun             |
| LODB         | AL              |            |              |       |         | [D  | s:s | I]   |        | aucun             |
| STOW         |                 | [ES:D      | I]           |       | AX      |     |     |      |        | aucun             |
| STOB         |                 | [ES:D      | I]           | AL    |         |     |     |      |        | aucun             |

Note: [ES:DI] et [DS:SI] ... contenu de la position-mémoire

Les registres SI et DI sont modifiés après l'exécution de ces instructions, en fonction du contenu du bit DF du registre d'état (0 ... incrémenter, 1 ... décrémenter; l'incrément ou décrément est de 1 pour les opérandes-byte, de 2 pour les opérandes-mot).







## Contrôle des itérations

Les instructions de ce groupe peuvent être exécutées de manière itérative en les faisant précéder d'un code de répétition (REP, REPE, REPZ, REPNE, REPNZ).

Ce préfixe provoque l'exécution répétitive (CX fois) de l'opération et détermine une condition d'arrêt supplémentaire.



Avant chaque itération (et avant le teste de la condition de sortie), CX se décrémenté de 1.

| Préfixe      | Répétition si CX≠0 ou si : |
|--------------|----------------------------|
| REP          | pas d'autre condition      |
| REPE, REPZ   | <b>ZF=1</b>                |
| REPNE, REPNZ | ZF≠0                       |







## **Exemple:**

CX,17 MOV

; Recopier la valeur de AL REP

; dans 17 bytes consécutifs STOB







# Contrôle des bits du registre 'flags'

| Opération     | Action                                                               |
|---------------|----------------------------------------------------------------------|
| CLC, CMC, STC | modification <sup>1)</sup> du bit 'C' ("carry")                      |
| CLD,STD       | modification <sup>1)</sup> du bit 'D' (direction opérations-chaînes) |
| CLI,STI       | modification <sup>1)</sup> du bit 'I' ("interrupt enable")           |

























# **Diverses opérations**

| Opération       | Action                                                                                                                           |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------|
| AAM,AAS,DAA DAS | Adaptation de la représentation d'opérandes ASCII et BCD avant/après une opération arithmétique (e.g. addition de 2 car. ASCII). |
| CBW             | Extension du bit de signe du registre AL vers le registre AX                                                                     |
| CWD             | Extension du bit de signe du registre AX vers le registre DX                                                                     |
| ESC             | Mettre une opérande destinée au co-processeur sur le bus.                                                                        |
| HLT             | Arrêter le CPU avant l'exécution de la prochaine instruction; reprise p.ex. par une interruption.                                |
| WAIT            | Suspendre le CPU, attendre un niveau 1 au "pin" TEST du CPU.                                                                     |
| LOCK            | Instruction préfixe pour bloquer le bus pour la totalité des cycles nécessaires pour exécuter une opération.                     |





# Chapitre 5 :

# Variables et expressions

#### Résumé:

- L'utilisation de variables dans un assembleur
- Les expressions
- L'utilisation de 'fonctions' pour l'accès aux conditions gérées par l'assembleur





















# **Variables**

Variable = représentation d'un objet gérée par l'assembleur

En général, cet objet est la représentation d'une valeur

- → assembleur pour le CPU 8086: objets typés (= exception par rapport aux autres assembleurs)

  Justifications principales pour le typage:
  - associer un registre de base spécifique aux symboles désignant une adresse-mémoire,
  - distinguer entre contenant-mot et contenant byte,
  - distinguer entre cibles pour branchement avec ou sans modification du registre CS.

# Composantes d'une variable

Une variable est définie par:

1. Le nom de la variable :

un symbole unique qui désigne la variable (= chaîne de caractères, introduite par le programme-source, obéissant à certaines règles syntaxiques) (voir "champ d'étiquette")

2. Les attributs de la variable :

des valeurs et caractéristiques (types) associées à la variable ; ceux-ci sont déterminées par l'assembleur

- en fonction de l'opération par laquelle la variable est définie,
- de l'état de l'assemblage au moment où la variable est définie.





## Définition d'une variable

Une variable est (re-)définie quand son nom figure dans le champ d'étiquette d'une instruction (dont les autres champs peuvent être vides).

Note: Problème des "références en avant" ... assemblage "en deux passes"

#### Visibilité d'une variable

La définition de la variable se solde par la création d'une entrée dans la table des symboles, table gérée par l'assembleur et qui disparaît à la fin de l'assemblage.

Visibilité = contexte de la validité de l'association nom ⇔ valeur; correspond à la "duré de vie" de la variable - la période pendant laquelle cette association reste définie.



Cas normal:

variable locale visibilité restreinte au code-source définissant la variable: la variable n'est définie que dans un contexte local.



variable globale visibilité au delà du code dans lequel est défini la variable: la variable est définie dans un contexte global.

> **→** l'assembleur enregistre la valeur finale des variables globales dans un tableau auxiliaire du code-objet.

exemples: • les variables déclarées "PUBLIC"

• code créé en vu d'une mise-au-point à l'aide d'un "debugger symbolique"



/user/u2/harms/cours/asm/5.fm



# Types de variables

# Distinction entre 3 types de variables :

- étiquettes
- variables relogeables
- constantes

# **Etiquettes ("labels")**

Etiquettes ... opérandes pour les opérations de branchement

Attributs segment ... nom du segment où l'étiquette est définie

offset ... adresse relative dans le segment (= sa "valeur")

type ... étiquette-cible pour les branchements

NEAR ... à l'intérieur d'un segment,

**FAR** ... dans un autre segment (syntaxe

= segment: offset)

**Définition** 

dans une instruction de la forme :

*étiquette* [vinstruction] ... type implicite = NEAR

*étiquette:* [ $\sqrt{instruction}$ ] ... type implicite = FAR

étiquette LABEL ... choix explicite du type

Ce type de variable ne peut être définie qu'à l'intérieur de segments liés à CS (voir "ASSUME").





# Variables relogeables ("variables")

Variables ... opérandes pour les opérations se référant à la mémoire (accès aux données)



BYTE, WORD, DWORD,

QWORD, TBYTE, STRUCT



dans une instruction de la forme :

# **Constantes ("numbers")**

Constantes ... représentation d'une valeur numérique

**Attributs** 

offset ... valeur numérique attribuée à la variable

**Définition** 

variable \( \times = \times valeur \)

... re-définition permise

dans une instruction de la forme :

... re-définition défendue variable Very EQU Very valeur.





# **Expressions**

L'assembleur permet d'utiliser des expressions partout où une valeur numérique est attendue; le résultat de l'évaluation sera substitué à l'expression.

L'expression sera évaluée en respectant l'ordre de précédence des opérateurs, à précédence égale, de gauche à droite











| opérateur | précédence | exem       | ples, commentaires              |
|-----------|------------|------------|---------------------------------|
| Operateur | procedence | expression | résultat                        |
| * / MOD   | 5          | 14 MOD 3   | 2                               |
| SHL SHR   | 25         | 101B SHL 3 | 010100B (décalage)              |
| + -       | 6          | 2 + 3      | 5                               |
| EQ NE LT  | 7          | 3 EQ 3     | 0FFFFH                          |
| LE GT GE  | 7          | 3 NE 3     | 0                               |
| NOT       | 8          | NOT 0      | 0FFFFH                          |
| AND       | 9          | 12H AND 3  | 2                               |
| OR        | 10         | 11H OR 3   | 13H                             |
| XOR       | 10         | 11H XOR 3  | 1H                              |
| HIGH LOW  | 4          | HIGH 1234H | 12H (high, low byte)            |
| :         | 1          | symbole:   | définir "symbole" (type = NEAR) |
| ( )       | 1          |            |                                 |



# **Fonctions**









Note: L'assembleur 8086 offre un nombre important de fonctions (accès et gestion des attributs associés aux symboles!). Cet aspect complexe ne se retrouve pas dans les assembleurs d'autres CPU.



Ce cour ce concentre sur la fonction '\$' (pour laquelle un correspondant existe dans la plupart des assembleurs. Les autre fonction ne sont décrites qu'à titre de documentation.







# Fonction pour l'accès au compteur de position

| fonction | valeur                                                                                                                              |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|
|          | La fonction "\$" fournit une valeur qui, à tout instant, est égal au compteur de positions actuel avec les attributs correspondant. |

# Fonctions pour obtenir les attributs d'un "RECORD"

| fonction | valeur                                                       |
|----------|--------------------------------------------------------------|
| MASK     | Masque pour isoler un champ d'un record par un "et" logique. |
| WIDTH    | Nombre de bits dans un record.                               |



# Fonctions pour obtenir les attributs d'une variable

# Obtenir la valeur d'un attribut par l'utilisation d'une fonction :

| fonction | valeur                                                                                                                                           |  |  |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| SEG      | Base du segment dont le nom = symbole ou base du segment où le symbole est défini.                                                               |  |  |  |  |  |  |
| OFFSET   | Adresse relative ou valeur attribuée au symbole.                                                                                                 |  |  |  |  |  |  |
| TYPE     | • code représentant le type :<br>nombre de bytes (variable d'adresse),                                                                           |  |  |  |  |  |  |
|          | • -2 pour FAR, -1 pour NEAR (étiquette),                                                                                                         |  |  |  |  |  |  |
|          | • 0 (variable absolue).                                                                                                                          |  |  |  |  |  |  |
| LENGTH   | Nombre d'éléments associés à l'opérande, p.ex.                                                                                                   |  |  |  |  |  |  |
|          | XX DW 100 DUP (1) LENGTH XX ; donne 100                                                                                                          |  |  |  |  |  |  |
| SIZE     | Nombre de bytes réservés (ne peut être utilisé qu'avec les opérandes du genre DUP): résultat = "LENGTH" * "TYPE" (200 dans l'exemple précédant). |  |  |  |  |  |  |



# Fonctions pour manipuler les attributs d'une variable

# Déterminer la valeur d'un attribut par l'utilisation d'une fonction :

| fonction | valeur                                                                                                                                                                                                                       |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SHORT    | Utiliser une étiquette du type "FAR" en faisant apparaître son type comme "NEAR".                                                                                                                                            |
| PTR      | Utiliser la valeur d'une expression (argument suivant PTR) en lui attribuant un type explicitement spécifié par l'argument suivant PTR <sup>1</sup> ), qui est en règle général différent du type implicite de l'expression. |
|          | Par exemple                                                                                                                                                                                                                  |
|          | xyz DB 4                                                                                                                                                                                                                     |
|          | MOV AX, WORD PTR xyz                                                                                                                                                                                                         |
| THIS     | Définir le symbole figurant dans le champ d'étiquette comme une variable d'un type spécifié (argument suivant THIS); le reste des attributs est déterminé par le compteur de position et le segment courant.                 |
|          | Par exemple                                                                                                                                                                                                                  |
|          | xyz DB 4                                                                                                                                                                                                                     |
|          | abc EQU THIS WORD                                                                                                                                                                                                            |

<sup>1)</sup> un des types

BYTE, WORD, DWORD, QWORD, TBYTE, NEAR, FAR



# Fonctions comme opérateurs dans une expression

| opérateur | précé- |        | exen      | nples, commentaires                                      |
|-----------|--------|--------|-----------|----------------------------------------------------------|
| operateur | dence  | exp    | ression   | résultat                                                 |
| SHORT     | 11     | JMP    | SHORT far | symbol                                                   |
| SEG       | 3      | SEG    | seg       | base du segment "seg"                                    |
|           |        | SEG    | var       | base du segment contenant la variable "var"              |
| LENGTH    | 1      | LENTH  | dup       | nombre d'éléments dans la zone "dup"                     |
| SIZE      | 1      | SIZE   | dup       | nombre de bytes dans la zone "dup"                       |
| TYPE      | 3      | TYPE   | symb      | code pour le type de la variable "symb"                  |
| MASK      | 1      | MASK   | champ     | masque pour isoler la zone "champ"                       |
| WIDTH     | 1      | WIDTH  | champ     | longueur de la zone "champ" d'un record                  |
| OFFSET    | 3      | OFFSET | symb      | adresse relative de la variable "symb"                   |
| PTR       | 3      | WORD   | PTR var   | valeur de "var", avec le type "WORD"                     |
| THIS      | 3      | THIS   | BYTE      | segment et compteur de position courants (type = "BYTE") |





# **Chapitre 6:**

# Aspects méta-assembleur

#### Résumé:

- Assemblage conditionnel et répétitif
- **★** Macro-assemblage
- ♣ Procédures et décomposition du programme en modules
- Contrôle de l'impression





















# **Assemblage conditionnel**

Suppression conditionnelle de l'assemblage d'un bloc de lignes de code-source.



# **Conditions reconnues**

| condition | opérande(s)                 | assemblage si :                       |
|-----------|-----------------------------|---------------------------------------|
| IF        | expression                  | "expression" ≠ 0                      |
| IFE       | expression                  | "expression" = 0                      |
| IF1       |                             | en 1er passage de l'assembleur        |
| IF2       |                             | en 2me passage de l'assembleur        |
| IFDEF     | variable                    | "variable" est définie                |
| IFNDEF    | variable                    | "variable" n'est pas définie          |
| IFB       | <arg></arg>                 | "arg" est blanc                       |
| IFNB      | <arg></arg>                 | "arg" n'est pas blanc                 |
| IFIDN     | <arg1>,<arg2></arg2></arg1> | "arg1" = "arg2" comparaison de        |
| IFNIDN    | <arg1>,<arg2></arg2></arg1> | "arg1" ≠ "arg2" chaînes de caractères |





#### **Utilisation**





# Conditions dynamiques

Conditions variant en fonction de l'état de l'assemblage, utilisation surtout dans des macro-instructions





| MACH | EQU | 780 | ; type de machine (750 / 780) |
|------|-----|-----|-------------------------------|
|------|-----|-----|-------------------------------|

IFE MACH-750

; code spécifique VAX 11/750

ENDIF

MACH-780 IFE

; code spécifique VAX 11/780

**ENDIF** 



IF (OFFSET \$) MOD 256

> 256-((OFFSET \$) MOD 256) DUP(?) DB

; le prochain byte généré sera placé à une **ENDIF** 

; adresse relative qui est un multiple de 256





# Assemblage répétitif



Assemblage répétitif d'un bloc de lignes de code-source (= dédoublement automatique du bloc)

Implantation dans l'assembleur par une opération de substitution de chaînes :

V

1. "re-écriture" du code-source (n fois, en effectuant les modifications éventuellement nécessaires)



2. assemblage du code-source ainsi obtenu



REPT count

les instructions figurant entre les deux pseudo-instructions sont traitées "count" fois







IRP  $symb, \langle arg_1, ..., arg_n \rangle$ 



**ENDM** 

comme REPT, mais le nombre de répétitions = nombre d'arguments; "symb" prend successivement les valeurs des arguments



symb, < chaîne > ou symb, chaîne



comme REPT, mais le nombre de répétitions = nombre de caractères dans "chaîne"; toute occurrence de "symb" est successivement remplacée par les caractères de la chaîne



# **Exemples**

| x<br>x | = REPT DB = ENDM   | 0<br>3<br>x<br>x+1 |             | DB 0<br>DB 1<br>DB 2 |
|--------|--------------------|--------------------|-------------|----------------------|
|        | IRPC<br>DB<br>ENDM | xx,012<br>xx       |             | DB 0<br>DB 1<br>DB 2 |
|        | IRPC<br>DB<br>ENDM | xx,012<br>xx       |             | DB 0<br>DB 1<br>DB 2 |
|        | IRPC<br>DB<br>ENDM | xx,012<br>3&xx     | <b>&gt;</b> | DB 0<br>DB 1<br>DB 2 |



#### Substitutions de chaînes

# Traitement interne par l'assembleur

Modèle "substitution de chaînes" en support de la compréhension des opérations

- de l'assemblage conditionnel
- de l'assemblage répétitif
- du macro-assemblage
- 1. Manipulation du code source
- 2. Assemblage conditionnel: suppression conditionnelle de code-source
  - Assemblage répétitif :
    - a. lecture répétitive du code-source,
    - b. opération de substitution de chaînes de caractères
  - Macro-assemblage:
    - a. remplacement de l'appel par le corps
    - b. opération de substitution de chaînes de caractères
- 3. Assemblage du code ainsi obtenu

Note: Ce modèle est utile pour l'aspect conceptuel; la réalisation concrète et effective dans un assembleur est, en général, différent.



















# Macro-assemblage

#### **Définition d'une macro-instruction**

Définition du nom de la macro-instruction, association du corps au nom :



# **Appel d'une macro-instruction**

Substitution • de l'instruction d'appel par le corps de la macro-instruction

des arguments actuels aux paramètres formels :

```
macname [ arg<sub>1</sub>[,arg<sub>2</sub>...]]
```

# Principes de la substitution

- → substitution = traitement de chaînes;
- → chaque occurrence d'un paramètre formel (parf<sub>i</sub>) est remplacée par l'argument correspondant (arg<sub>i</sub>);
- → le reste des opérations de l'assembleur n'interviennent qu'après cette substitution;
- → des symboles rencontrés dans les champs d'étiquettes des instruction générées au cours de la substitution donnent lieu à la définition de variables qui sont globalement visibles.



#### Déclaration de variables locales

LOCAL [ parf<sub>1</sub>[,parf<sub>2</sub>...]]

La validité de la définition de variables peut être restreinte à la zone correspondant au code généré par l'appel de la macro-instruction (fautes d'assemblage suite à la définition répétée du même symbole si une macro-instruction est appelée plusieurs fois !).



Ces variables doivent être déclarées comme paramètres formels et figurer comme argument d'une pseudo-instruction LOCAL.



L'assembleur remplacera alors chacun de ces symboles par un symbole unique (..0001, ..0002, etc.) lors de chaque appel.



Note: Cette utilisation du terme "variable local" est quelque peu différente de celle introduite dans le chapitre sur les "variables"! Notion commune: restriction de la visibilité d'une variable à





# Séparateur de chaînes de caractères

& ... séparateur transparent pour le reste de l'assemblage, permettant de séparer l'occurrence d'un paramètre formel des caractères avoisinants.

- 6.8 -

Par exemple:

(xx = paramètre formel, 12 dans l'exemple)

abc&xx&efg

 $\Rightarrow$  abc12efg



# /user/u2/harms/cours/asm/6.fm

15

16

# **Exemples**

# Macro instruction pour imprimer une chaîne de caractères

Impression d'une chaîne fournie comme argument (sauvetage de tous les registres utilisés sur la pile). Pour imprimer la chaîne abcd :

| 1 | Appel (illustr | ration): | PRSTR   | 'abcd' |
|---|----------------|----------|---------|--------|
| 2 | Définition:    | PRSTR    | MACRO   | chaine |
| 3 |                |          | LOCAL   | temp   |
| 4 |                | tdata    | SEGMENT |        |

| 5 | temp | DB | chaine      | ; chaîne en zone données   |
|---|------|----|-------------|----------------------------|
| 6 |      | DB | <b>'\$'</b> | ; terminaison de la chaîne |

| 1 | tdata | ENDS |
|---|-------|------|
|   |       |      |

| 8  | PUSH | AX | ; sauver les |
|----|------|----|--------------|
| 9  | PUSH | DX | ; registres  |
| 10 | PUSH | DS | ; utilises   |

| 1 | MOV | AX,tdata |
|---|-----|----------|
|   |     |          |

| 12 | MOY | V DS,AX | ; segi          | ment avec chaîne  |
|----|-----|---------|-----------------|-------------------|
| 13 | MOY | DX,OF   | FSET temp ; dép | lacement au début |

| MOV | AH,9h | ; no. fonction "impression" |
|-----|-------|-----------------------------|
| INT | 21h   | ; appel fonction du DOS     |

| POP | DS | ; rétablir les |
|-----|----|----------------|
|-----|----|----------------|

| 17 | POP | DX   | ; registres |
|----|-----|------|-------------|
| 40 | DOD | 7.37 | 4:1:        |

utilises POP AX

**ENDM** 





# Macro instructions pour la gestion de files d'attente

Définir une structure de données en support d'un traitement de files: usage de macroinstructions en support de structures complexes et d'opération pour leur gestion.





















; élément vide

; descripteur d'élément de file

; chaînage prochain élément

; données (bidon)

; données (bidon)

## ; descripteur de file

; premier élément (VOID si vide)

; dernier élément (VOID si vide)

; heure dernière action



**ENDS** 

12

Q new

\$9

MACRO



| 34 | ; Initialisation      |                 |                                          |
|----|-----------------------|-----------------|------------------------------------------|
|    | • • •                 |                 |                                          |
| 35 | Q_new                 | high_pr         | ; file pour priorité élevée              |
| 36 | Q_new                 | low_pr          | ; file pour priorité basse               |
| 37 | ; Produire un élément |                 |                                          |
|    | • • •                 |                 |                                          |
| 38 | CALL                  | new_element     | ; créer un nouvel élément (base = $BX$ ) |
| 39 | MOV                   | i_data1[BX],••• | ; définir                                |
| 40 | MOV                   | i_data2[BX],••• | ; son contenu                            |
| 41 | Q_app                 | high_pr         | ; insérer l'élément en fin de la file    |

#### Non-inclu dans l'exemple:

- la procédure 'new\_element'
  - elle alloue la mémoire (gestion dynamique) pour un nouvel élément
  - au retour, le registre BX désigne l'adresse de cet élément
- la gestion de la position 'system\_time' on admet que cette position contient à tout instant la valeur de l'horloge du système
- les instructions ASSUME et SEGMENT pour la procédure principale, ainsi que la préparation correspondante des registres de base



# Importation de code-source

INCLUDE

name

Insérer le contenu du fichier "name" en lieu et place de l'instruction INCLUDE



















# Décomposition en modules



NEAR PROC symb FAR

**ENDP** 

symb

Définir "symb" comme une étiquette, par défaut du type "NEAR". Les instructions RET à l'intérieur du bloc seront du type intra-segment si le type est "NEAR", sinon du type inter-segment.

Fin du bloc défini par "PROC".

# **Utilisation de variables globales**

PUBLIC symb1[,symb2...]

> Les symboles indiqués sont accessibles à l'éditeur de liens, donc à d'autres (sous-) programmes

**EXTRN** symb1: type1[,symb2: type2...]

> Les symboles indiqués ne sont pas définis dans le programme actuellement assemblé et devront être fixés par l'éditeur de liens.

> > "type;" ... BYTE, WORD, DWORD, NEAR, FAR, ABS



# Utilisation de procédures, exemple

| nrp | PROC  •••  RET  •••  RET  ENDP | NEAR       | le symbole "nrp" obtient le type "NEAR"  utilisation de l'instruction RET intra-segment (PROC précédant était "NEAR")                                |
|-----|--------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| frp | PROC  •••  RET  •••  RET  ENDP | FAR        | le symbole "frp" obtient le type "FAR" utilisation de l'instruction RET-inter segment (PROC précédant était "FAR"                                    |
|     | CALL<br>CALL                   | nrp<br>frp | utilisation de l'instruction CALL intra-segment ("nrp" est du type "NEAR") utilisation de l'instruction CALL-inter segment ("frp" est du type "FAR") |

Note: Le type de l'instruction CALL utilisé ne dépend que du type du symbole fourni en argument:

- si le type est "FAR", un appel inter-segment est composé, même si la procédure appelée se trouve dans le même segment et qu'un appel inter-segment ne serait pas nécessaire;
- l'appel d'un symbole du type "NEAR", mais déclaré dans un autre segment, correspond à une erreur de programmation



# Contrôle de l'impression

# Suppression de l'impression

.LIST

text

ydim,xdim

Permettre (.LIST) / suspendre (.XLIST) l'impression des instructions assemblées















Déterminer le contenu de la 1ère (TITLE) et 2ème (SUBTTL) ligne imprimées sur chaque page

# Mise-en-page

Déterminer les dimensions d'une page (nombre de lignes et de colonnes), le numéro de la section ("+"), ou provoquer un saut de page (rien)

Note: L'effet de toutes les pseudo-instructions contrôlant l'état du mode d'impression persiste

.XLIST

TTTT

PAGE

SUBTTL

## <u>Impression de code conditionnel</u>



.LFCOND

.TFCOND

Supprimer (.SFCOND) ou provoquer (.LFCOND) l'impression des zones de code conditionnel. .TFCOND rétablit le mode pris par défaut.











Contrôle de l'impression du code-source résultant de la substitution de l'appel d'une macroinstruction :



Supprimer (.SFCOND) ou provoquer (.LFCOND) l'impression des zones de code conditionnel. .TFCOND rétablit le mode pris par défaut.



. LALL

Supprimer l'impression de toute instruction résultant de l'appel d'une macro-instruction.

Imprimer toutes les instructions résultant de l'appel d'une macro-instruction, à l'exception de celles commençant par ";;" (deux point-virgules).

















# **Chapitre 7:**

# Extensions de l'architecture de la famille 8086

#### Résumé:

- Evolution, aspects communs entre processeurs de la famille 8086
- Agrandissement de la taille d'un mot CPU
- Agrandissement de l'espace-mémoire
  - Descripteurs de segment, "real mode" et "protected mode"
  - **Pagination**
- Extension du répertoire d'instructions



## **Evolution de l'architecture du CPU 8086**

|                        | mot-CPU<br>(bits) | vitesse     | bus-<br>données | mémoire<br>cache | espace<br>mémoire | bus-<br>adresses | éléments nouveaux                                                          |
|------------------------|-------------------|-------------|-----------------|------------------|-------------------|------------------|----------------------------------------------------------------------------|
|                        | (bits)            | (MHz)       | (bits)          | (bytes)          | (bytes)           | (bits)           |                                                                            |
| 8086                   | 16                |             | 16              | -                | 1 M               | 20               |                                                                            |
| 80186                  | 16                |             | 16              | -                | 1 M               | 20               |                                                                            |
| 80286                  | 16                |             | 16              | -                | 16 M              | 24               | mode protégé (OS ⇔ utilisateur!)                                           |
|                        |                   |             |                 |                  |                   |                  | instructions pour permettre l'accès à un espace de mémoire agrandi         |
| 80386                  | 32                |             | 32              | -                | 4 G               | 32               | MMU ("memory management unit")                                             |
| 80486                  | 32                | <b>50</b> → | 32              | 8 K              | 4 G               | 32               | co-processeur réel, instructions avec<br>double vitesse                    |
| <b>Pentium</b> (80586) | 32                | <b>60</b> → | 64              | 16 K             | 4 G               | 32               | co-processeur réel, deux processeurs<br>(entiers) travaillant en parallèle |



→ Pour chaque type de CPU, des variantes existent, p.ex. avec de largeur de bus différentes (tel que le 8088 avec un bus donnés de 8 bits) ou différents taux de l'horloge CPU.



# Agrandissement de la taille d'un mot-CPU a 32 bits



- **→** implantation physique des registres
  - 80386 et suite... registres de 32 bits,
  - avant 80386 ... style 8086 (16 bits);
- → 80386 et suite... 2 modes de fonctionnement du **CPU:** choix entre
  - "mode 16 bits"
  - "mode 32 bits";
- → en "mode 32 bits": si un registre de 8 ou 16 bits est modifié, seulement les 8 ou 16 bits correspondant du registre physique de 32 bits seront modifiés;





















#### Espace-mémoire, mode d'adressage

#### **Concept**



Modifications du mécanisme d'adressage de segments physiques:

- → adresses de base > 2<sup>20</sup>: contenu des registres de base = descripteur (au lieu d'une adresse);
- → taille des segments > 64 Kbytes : adresses effectives sur 32 bits, extension de la portée de l'adresse-limite par le "granularity bit" du descripteur.
- → contrôle de l'accès à la mémoire: les descripteurs contiennent une adresse-limite et des bits de contrôle (protection);



# **Descripteurs de segments**

| byte# | Signification du contenu du descripteur |    |   |   |   |                                     |  |  |
|-------|-----------------------------------------|----|---|---|---|-------------------------------------|--|--|
| 0     | adresse-limite<br>(bits #15 - #0)       |    |   |   |   |                                     |  |  |
| 2     | adresse de base<br>(bits #15 - #0)      |    |   |   |   |                                     |  |  |
| 4     | adresse de base<br>(bits #23 - #16)     |    |   |   |   | contrôle de l'accès                 |  |  |
| 6     | adresse-limite<br>(bits #19 - #16)      | AV | O | D | G | adresse de base<br>(bits #31 - #24) |  |  |

Note: Les bytes 6 et 7 dans un descripteur du 80286 sont toujours 0 (n'ont pas de signification).

| adresse-limite                                                                                                                                                                | valeur (80286: 20 bits, 80386 et au delà: 32 bits) pour déterminer la dernière adresse valable du segment;                                      |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| adresse de base                                                                                                                                                               | valeur (80286: 16 bits, 80386 et au delà: 20 bits) déterminant l'adresse de base du segment; valeur * 4096 (1000 $_{16}$ ) si le bit 'G' vaut 1 |  |  |  |  |
| contrôle de l'accès                                                                                                                                                           | liste de bits: contrôle du mode de sélection et protection du segment                                                                           |  |  |  |  |
| AV 1 le segment est disponible ("available"), sinon 0; O D 1 instructions sur opérandes à 32 bits, 0 instructions compatible 8086; G "granularity bit", voir adresse de base. |                                                                                                                                                 |  |  |  |  |



#### Désignation d'un descripteur par un registre de base

Concept: registre de base devient une indirection sur une structure déterminant l'adresse

Registre de base: Sélecteur TI

Sélecteur ... par l'intermédiaire d'un *numéro de descripteur* désigner la représentation du descripteur en mémoire (table de descripteurs locale ou globale)

PR

TI ... 0 : table globale, 1 : table locale

PR ... niveau de privilège (mécanisme de contrôle de l'accès)

### **Pagination**

Un mécanisme de pagination existe pour le CPU 80386 et ses successeurs; ce mécanisme s'applique au résultat de l'évaluation du registre de segment, respectivement du descripteur de segment.

#### **Concepts:**

- L'exécution d'un programme (y compris l'application du mécanisme de segmentation style 8086, ou utilisation de descripteurs) produit des *"linear address"* (= adresses virtuelles).
- Avant d'accéder à la mémoire physique, une telle adresse est convertie en "physical address" en utilisant un dispositif de pagination (technique de pagination habituelle).
- Le CPU contient un ensemble de registres de contrôle ("control registers" CR0 ... CR3, un registre CR4 n'existe que dans le Pentium); ces registres déterminent:
  - si ou sinon le mécanisme de pagination sera utilisé,
  - les conditions particulières et les paramètres à appliquer.





# Extension du répertoire d'instructions

- → Maintien de la compatibilité avec le 8086
  - recouvrement entre registres de différentes tailles;
  - deux modes pour l'exécution d'opérations
    - "16-bit mode": correspond au 8086,
    - "32-bit mode": support de l'accès aux registres de 32 bits et du calcul d'adresses (virtuelles) de 32 bits;

le mode est déterminé par le descripteur de segment (i.e. son bit 'D') d'où provient l'instruction.



- Possibilité d'utiliser tous les registres de 32 bits (EAX ... ESI) pour l'indexation.
- Nouveau mode: "Scaled Index Addressing" (double indexage, 2me registre fois 2, 4, 8)
- → Instructions pour l'exploitation des nouvelles caractéristiques du CPU, p.ex.

  INVD ("invalid data cache"): marquer le contenu de la mémoire-cache comme non-valide

  LGDT, LLDT ("load global/local descriptor table"): définition de la table de descripteurs.
- **→ Instructions** supplémentaires pour augmenter le *confort de programmation*, p.ex. LDS, LSS etc.: faciliter la définition du contenu des registres segment BTC ("bit test and complement") et opérations similaires: manipulation de bits.
- → 2 registres de base supplémentaires (FS, GS)





# **Chapitre 8:**

# Entrée / sortie

#### Résumé:

- Equipements d'entrée / sortie
  - Architecture
  - Principe de fonctionnement
  - Adressage des registres internes
- Programmation des opérations d'entrée / sortie
  - Synchronisation de la fin des opérations
  - Initialisation des équipements d'entre / sortie
- **☞** Exemple: l'interface ACIA (Motorola 6850)



















# Entrée / sortie dans un système micro-informatique

# **Concept architectural**





#### Fonctionnement des opérations d'entrée / sortie

- **☞ Echange de données** entre
  - l'équipement central (CPU / mémoire)
  - un équipement périphérique



Synchronisation entre activités se déroulant à différentes vitesses et rythmes



registres internes des équipements (dépôt intermédiaire des données)





**→** Transfert interne

échange de données entre l'équipement central (e.g. un registre du CPU) et un registre interne de l'équipement périphérique,

→ Transfert physique

échange de données entre un registre interne de l'équipement périphérique et un support de données extérieur.





#### Registres internes des équipements d'entrée / sortie

- Registres pour le transfert des données
  - Registre de réception (accès-bus = lecture) :

    Données reçues par l'équipement à transférer par la suite au CPU ou à la mémoire.
  - Registre de transmission (accès-bus = écriture) :

    Données à transmettre par l'équipement elles avaient été au préalable transférées du CPU ou de la mémoire.
- Registres pour le contrôle des opérations d'entrées / sorties
  - Registre(s) de status (accès-bus = lecture) : Information binaire représentant l'état de fonctionnement actuel de l'équipement, prêt pour la consultation par le CPU.
  - Registre(s) de contrôle (accès-bus = écriture) : Liste de bits pour contrôler des fonctions particulières de l'équipement; initialisée par le CPU pour contrôler le déroulement des opérations d'entrées / sorties.
  - Registres numériques auxiliaires (sens de l'accès selon fonction du registre) : Valeurs numériques liées au déroulement de l'opération d'entrée / sortie (p. ex. compteur de bytes / mots, adresse physique du bloc lu/écrit, etc.).



# Déroulement d'une opération d'entrée / sortie



- 1 ... Transfert des données à transmettre du CPU (ou de la mémoire) au registre "Transmit"
- 2 ... Déclenchement de l'opération physique d'écriture
- 3 ... Vérification si l'opération d'écriture est effectivement terminé

# Deux méthodes pour l'action 1 :

- Déclenchement automatique: Le dépôt d'une nouvelle valeur dans le registre "Transmit" déclenche automatiquement sa transmission physique par l'équipement.
- Déclenchement explicite: Le CPU doit exécuter une instruction d'entrée / sortie, p.ex. envoyer une valeur particulière à un registre de contrôle.





- ... Déclenchement de l'opération physique de lecture
- 2 ... Vérification si l'opération de lecture est effectivement terminée
- 3 ... Transfert des données reçues du registre "Receive" au CPU (ou à la mémoire)

# Trois méthodes pour l'action 2 :

- **Déclenchement automatique** : le prélèvement d'une valeur du registre "Receive" déclenche automatiquement la prochaine lecture physique.
- Déclenchement explicite : le CPU doit exécuter une instruction d'entrée / sortie, p. ex. envoyer une valeur particulière à un registre de contrôle.
- Lecture permanente: Stocker toute donnée reçue par l'équipement immédiatement dans le registre "Receive".



# Esquisse d'un contrôleur DMA

('Direct Memory Access'):

illustration du principe de fonctionnement (exemple: contrôleur de disque)



- 1. Le CPU définit: Adresse-secteur, Adresse-mémoire, Compte-bytes, Contrôle
- 2. L'interface commence l'opération: positionnement de la tête ("Adresse-secteur")
- 3. L'interface exécute un processus itératif jusqu'à ce que "Compte-bytes" arrive à 0
  - lecture/écriture d'un byte: registre "Donnée" (séquence avec DMA inversée si écriture)
  - exécution d'un cycle-bus DMA: transfert registre "Donnée" ⇔ "Adresse-mémoire"
  - mise-à-jour des registres: "Adresse-mémoire" + 1, "Nombre-bytes" 1
- 4. Fin itération
  - modification du registre "Status" pour indiquer 'opération complète'
  - génération d'une interruption (conditionnel, selon liste de bits dans "Contrôle")



# Fin de l'opération d'entrée / sortie physique

1. Observation du registre "status": Le CPU consulte (périodiquement) le contenu du registre "status" pour connaître l'état d'avancement de l'opération en cours.























### Interruption d'entrée / sortie

#### Déroulement d'une interruption entrée / sortie





Déclenchement d'une interruption

#### Conditions déclenchant une interruption

La sélection des conditions "actives" est déterminée par le contenu d'un registre de contrôle.

### **Exemples:**

- nouvelle donnée reçue,
- transmission d'une donnée accomplie,
- faute détecté par l'équipement, etc.

Pour une opération sans interruption : ne sélectionner aucune de ces conditions, p. ex. dans des application très simples.



## Initialisation d'un équipement d'entrée / sortie

# **Opération "reset"**

- = remise dans un état de repos bien défini :
  - après l'enclenchement de l'alimentation électrique,
  - suite à la détection d'erreurs,
  - lors de modifications du mode d'opération.

#### Deux types de "reset":

#### 1. "Hard Reset":

Déclenché par un signal externe (p. ex. ligne du bus), souvent commun à tous les équipements d'un système (= "Reset général").

2. "Soft Reset": (= "Reset programmé")

Déclenché par le dépôt d'une valeur particulière dans un registre de contrôle de l'équipement.

#### Séquence d'initialisation

- Définit le mode d'opération d'un équipement par une suite d'opérations d'entrées / sorties, déterminant le contenu de chaque registre de contrôle spécifique au mode.
- Généralement nécessaire après une opération "Reset".



#### Adressage des registres internes

#### Adresses-bus individuelles

Adresse individuelle pour chaque registre ⇒ permet de choisir un registre spécifique. Génération d'un signal "adresse sélectionnée" lorsque cette adresse apparaît sur le bus.

#### Choix d'une adresse, détection de la sélection de l'adresse:





#### Regroupement des adresses des registres d'un équipement :

- Normalement une seule adresse de base peut être configurée pour un équipement.
- Adresses des registres de l'équipement ... suite contiguë commençant à cette adresse.







# Recouvrement d'adresses :

Deux registres dont un est accessible seulement en lecture et l'autre seulement en écriture peuvent porter la même adresse.



Cette technique est souvent utilisée pour des paires de registres dont les fonctions sont complémentaires (p. ex. registres de transmission / de réception, registres "Status" / "Contrôle").







#### **Documentation**

Les documents des fournisseurs des interfaces d'équipement d'entrées / sorties doivent fournir toutes les informations sur l'utilisation et l'adressage des registres nécessaires pour la programmation de l'interface.

L'expérience montre cependant que ces renseignements sont souvent défaillants et que l'expérience pratique et la communication entre utilisateurs jouent un rôle important ("news", etc.)



### Entrée / sortie "memory-mapped" ou "non-memory-mapped"

## Entrée / sortie "memory-mapped" :

Existence d'un seul et unique espace d'adresses pour la mémoire et pour les registres;

- → pas de distinction entre une adresse-mémoire et celle d'un registre d'entrée / sortie.
- → Pas de nécessité de disposer d'instructions spécifiques pour les opérations d'entrée / sortie, accès aux registres internes des équipements d'entrées /sorties par les mêmes instructions que celles utilisées pour l'accès à la mémoire.

# Entrée / sortie "non-memory-mapped" :

Existence d'espaces d'adresses différents et distincts pour la mémoire et pour les registres;

- → notion de "porte d'entrée / sortie": adresse d'un équipement = adresse du registre correspondant (ou première adresse d'une suite de registres).
- **→** Nécessité de disposer d'instructions spécifiques pour les opérations d'entrées / sorties (p.ex. IN, OUT, RBYTE, RWORD, WBYTE, etc.).



















# ACIA (Motorola 6850)

(<u>A</u>synchronous <u>C</u>ommunication <u>I</u>nterface <u>A</u>daptor)

Interface pour la communication sérielle de données selon le standard V.24.

**Correspondant chez Intel : UART (= Universal Asynchronous Receiver-Transmitter)** 



#### Tâches de l'interface ACIA

Mise-en-série / re-assemblage des données

Conversion entre représentation interne (byte) et représentation externe (chaîne de bits).

Gestion des signaux pour le contrôle des opérations d'entrée/sortie

Contrôle du sens de la communication, synchronisation CPU - évènement externes.

Détection d'erreurs de transmission.

Signalisation des erreurs au CPU, actions pour la remise en situation normale.

#### Standard V.24 de l'UIT

- Utilisation de "modems" pour la communication entre équipements informatiques à l'aide de lignes analogiques; V.24 : communication entre l'ordinateur et le modem.
- Représentation des données échangées entre modem et ordinateur : binaire, sérielle.
- Multiplexage du sens de la communication entre les modems à l'aide de signaux de contrôle échangés entre l'ordinateur et le modem.

Note: UIT = Union Internationale des Télécommunications) (son organe de standardisation fut anciennement connu sous le nom CCITT = Comité Consultatif International Télégraphique et Téléphonique)'

Norme américaine correspondante = RS 232C





### Signaux échangés entre l'interface et le modem

→ Transfert sériel de données :



"Transmit Data"



→ Echantillonnage des données :

"Receive Clock"

"Transmit Clock"



→ Multiplexage du sens de la communication :

"Request-to-Send"

Indication de l'interface au modem local que le modem du partenaire peut commencer une transmission.

"Clear-to-Send"

Indication du modem à l'interface qu'il peut commencer une transmission.

→ Ligne en état de fonctionnement :

"Carrier Detect"

Indication du modem à l'interface qu'il reçoit le signal "porteuse".





# Signification des contenus des registres (ACIA)

# Le registre "status"

|        | bit #  |        |        |        |        |        |        | signification             |                        |
|--------|--------|--------|--------|--------|--------|--------|--------|---------------------------|------------------------|
| 7      | 6      | 5      | 4      | 3      | 2      | 1      | 0      | Significatio              | ••                     |
| 0<br>1 | •      | •      | •      | •      | •      | •      | •      | Requête d'interruption    | absent<br>présent      |
| •      | 0<br>1 | •      | •      | •      | •      | •      | •      | Erreur parité             | non<br>oui             |
| •      | •      | 0<br>1 | •      | •      | •      | •      | •      | Erreur "receiver overrun" | non<br>oui             |
| •      | •      | •      | 0<br>1 | •      | •      | •      | •      | Erreur "framing"          | non<br>oui             |
| •      | •      | •      | •      | 0<br>1 | •      | •      | •      | "Clear-to-Send"           | état de repos<br>actif |
| •      | •      | •      | •      | •      | 0<br>1 | •      | •      | "Carrier Detect"          | état de repos<br>actif |
| •      | •      | •      | •      | •      | •      | 0<br>1 | •      | Registre "Transmit Data"  | plein<br>vide          |
| •      | •      | •      | •      | •      | •      | •      | 0<br>1 | Registre "Receive Data"   | plein<br>vide          |



# Le registre "contrôle"

|     | bit # |   |   |   |   |   |   | cianification                           |
|-----|-------|---|---|---|---|---|---|-----------------------------------------|
| 7   | 6     | 5 | 4 | 3 | 2 | 1 | 0 | signification                           |
| 1 0 | •     | • | • | • | • | • | • | Interruption réception possible bloquée |
| •   | 0     | 0 | • | • | • | • | • | Interruptions de transmission bloquée   |
| •   | 0     | 1 | • | • | • | • | • | Interruption de transmission possible   |
| •   | 1     | 0 | • | • | • | • | • | Transmettre un 'break'                  |
|     |       |   |   |   |   |   |   | # de data bits parité # de stop bits    |
| •   | •     | • | 1 | 1 | 1 | • | • | 8 impaire 1                             |
| •   | •     | • | 1 | 1 | 0 | • | • | 8 paire 1                               |
| •   | •     | • | 1 | 0 | 1 | • | • | 8 aucune 1                              |
| •   | •     | • | 1 | 0 | 0 | • | • | 8 aucune 2                              |
| •   | •     | • | 0 | 1 | 1 | • | • | 7 impaire 1                             |
| •   | •     | • | 0 | 1 | 0 | • | • | 7 paire 1                               |
| •   | •     | • | 0 | 0 | 1 | • | • | 7 impaire 2                             |
| •   | •     | • | 0 | 0 | 0 | • | • | 7 paire 2                               |
| •   | •     | • | • | • | • | 0 | 0 | ) tel que fournie                       |
| •   | •     | • | • | • | • | 0 | 1 | horloge /16                             |
| •   | •     | • | • | • | • | 1 | 0 | <b>J</b> /64                            |
| •   | •     | • | • | • | • | 1 | 1 | "reset" général                         |



#### Note: La fonction 'break':

Un 'break' est un signal transmis sur une ligne de communication, transmis comme un caractère; mais

- conceptuellement, le 'break' est transmis sur une voie de transmission indépendante de tout autre communication,
- le 'break' est donc transmis "en parallèle" à l'échange des données "normales".

La fonction d'un 'break' peut être utilisée pour signaler une condition particulière, par exemple pour interrompre la transmission d'un flot de données par une sorte "d'interruption".

L'implantation de la fonction 'break' se fait

- en mettant la ligne de communication dans un état particulier, différent de celui observé pendant la transmission de données "normales" (p.ex. une condition d'erreur de transmission toute particulière),
- la définition de cet état doit être convenu entre les deux partenaire d'une communication.

















# **Receive Transmit**



















ACIA: Schéma (1)















### **Exemple de programmation**

; Définir les adresses des registres



| 1 | ACIADR | EQU | \$810 | ; reg. transmit et receive |
|---|--------|-----|-------|----------------------------|
|   |        |     |       |                            |

**ACIASR** \$811 ; reg. status EQU

; reg. contrôle **ACIACR EQU** \$811

; Initialisation

| 4 | MOVE     | #3,ACIACR                              | ;Reset   |
|---|----------|----------------------------------------|----------|
| - | 110 1 11 | 11 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | / IXCBCt |

5 7 bits, impair, 2 stop-bits, horloge / 64 #4+2,ACIACR MOVE

; Réception d'un byte

| 6 | ATTRCV | BTST | #0,ACIASR | ; ZF=1 si "receiver plein"  |
|---|--------|------|-----------|-----------------------------|
| U | ALIRC  | DIDI | #U,ACIASK | , Zr – i si Teceivei pielli |

; attendre si vide BNE **ATTRCV** 

ACIADR, dest ; chercher le byte reçu MOVE

;Transmission d'un byte

| 9 | MOVE | <pre>srce,ACIADR</pre> | ; transmettre le byte |
|---|------|------------------------|-----------------------|
|---|------|------------------------|-----------------------|

#1,ACIASR ;ZF=1 si "transm. plein" **ATTTRM** BTST

; attendre si plein BEQ **ATTTRM** 



## Notes sur l'assembleur 68000

| BTST | num, oper | Zero-flag := 1 si le bit "num" de l'opérande "oper" vaut |
|------|-----------|----------------------------------------------------------|
|      |           | 0, sinon Zero-flag := 0                                  |
| BEQ  | adresse   | branchement si le Zero-flag == 1                         |
| BNE  | adresse   | branchement si le Zero-flag == 0                         |
| MOVE | srce,dest | Transfert d'une opérande de "srce" à "dest"              |
|      | ·         | (# valeur immédiate)                                     |



















# tèmes Informatiques I - Assembleur

# Liste des instructions du CPU Intel 8086

|      | Nom (mnémonique)            | Action                                                      | I    | Nom (mnémonique)             | Action                                                                                                                                           |
|------|-----------------------------|-------------------------------------------------------------|------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| AAA  | ASCII Adjust for Addition   | opération complexe, voir littérature                        | JA   | Jump if Above =JNBE          | branchement cond. (op2 > op1)                                                                                                                    |
| AAD  | ASCII Adjust for Division   | opération complexe, voir littérature                        | JAE  | Jump if Above or Eq. =JNB    | branchement cond. $(op2 > op1)$<br>branchement cond. $(op2 \ge op1)$<br>branchement cond. $(op2 \le op1)$<br>branchement cond. $(op2 \le op1)$   |
| AAM  | ASCII Adjust for Multiplic. | opération complexe, voir littérature                        | JB   | Jump if Below =JNAE          | branchement cond. (op2 < op1)                                                                                                                    |
| AAS  | ASCII Adjust for Subtr      | opération complexe, voir littérature                        | JBE  | Jump if Below or Eq. =JNA    | branchement cond. (op2 ≤ op1)                                                                                                                    |
| ADC  | Add with Carry              | $op1 + op2 (+1) \rightarrow op1 (+1 \text{ si } CF = 1)$    | JCXZ | Jump if $CX = 0$             | branchement si $CX = 0$                                                                                                                          |
| ADD  | Add                         | $op1 + op2 \rightarrow op1$                                 | JE   | Jump if Equal =JZ            | branchement cond. (op2 = op1)                                                                                                                    |
| AND  |                             | op1 AND op2 → op1                                           | JG   | Jump if Greater =JNLE        | branchement cond. (op2 > op1)                                                                                                                    |
| CALL |                             | appel de procédure                                          | JGE  | Jump if Greater or Eq. =JNL  | branchement cond. ( $op2 \ge op1$ )                                                                                                              |
| CBW  | Convert Byte to Word        | $AL \rightarrow AX$ (extension bit de signe)                | JL   | Jump if Less =JNGE           | branchement cond. (op2 < op1)                                                                                                                    |
| CLC  | Clear Carry flag            | $0 \rightarrow CF$ ('Carry' bit, 'flag-register')           | JLE  | Jump if Less or Equal =JNG   | branchement cond. (op2 ≤ op1)                                                                                                                    |
| CLD  | Clear Direction flag        | $0 \rightarrow DF$ ('Direction' bit, 'flag-reg.')           | JMP  | Jump                         | branchement inconditionnel                                                                                                                       |
| CLI  | Clear Interrupt flag        | $0 \rightarrow IF$ ('Interrupt' bit, 'flag-register')       | JNA  | Jump if Not Above =JBE       | branchement cond. (op2 $\leq$ op1)                                                                                                               |
| CMC  | Complement Carry flag       | NOT $CF \rightarrow CF$ ('Carry' bit, 'flag-reg.')          | JNAE | Jump if Not Above or Eq. =JB | branchement cond. $(op2 \le op1)$<br>branchement cond. $(op2 \le op1)$<br>branchement cond. $(op2 \ge op1)$<br>branchement cond. $(op2 \ge op1)$ |
| CMP  | Compare                     | op1 — op2                                                   | JNB  | Jump if Not Below = JAE      | branchement cond. (op2≥ op1)                                                                                                                     |
| CMPB | Compare Byte                | zone-mémoire – zone-mémoire (byte)                          | JNBE |                              | branchement cond. (op2 > op1)                                                                                                                    |
| CMPW | Compare Word                | zone-mémoire – zone-mémoire (mot)                           | JNE  |                              | branchement cond. (op2 $\neq$ op1)                                                                                                               |
| CWD  | Convert Word to Double      | $AX \rightarrow DX:AX$ (extension bit de signe)             | JNG  |                              | branchement cond. (op2 ≤ op1)                                                                                                                    |
| DAA  | Decimal Adjust for Addition | opération complexe, voir littérature                        | JNGE | ·                            | branchement cond. (op2 < op1)                                                                                                                    |
| DAS  | Decimal Adjust for Subtr.   | opération complexe, voir littérature                        | JNL  | •                            | branchement cond. (op2 ≥ op1)                                                                                                                    |
| DEC  | Decrement                   | $op1 - 1 \rightarrow op1$                                   | JNLE | •                            | branchement cond. (op2 > op1)                                                                                                                    |
| DIV  | Divide                      | $DX:AX / op1 \rightarrow AX$ , reste $\rightarrow DX$       | JNO  | Jump if Not Overflow         | branchement cond. (si pas 'overflow')                                                                                                            |
|      |                             | $AX / op1 \rightarrow AL$ , reste $\rightarrow AH$          | JNP  |                              | branchement cond. (si parité impaire)                                                                                                            |
| ESC  | Escape                      | op1 → bus (pas d'autre action CPU)                          | JNS  | Jump if Not Sign             | branchement cond. (si valeur positive)                                                                                                           |
| HLT  | Halt                        | arrêter le CPU                                              | JNZ  | •                            | branchement cond. (si résultat ≠ 0)                                                                                                              |
| IDIV | Integer Divide              | $DX:AX / op1 \rightarrow AX$ , reste $\rightarrow DX$       | JO   | Jump if Overflow             | branchement cond. (si 'overflow')                                                                                                                |
|      |                             | $AX/op1 \rightarrow AL$ , reste $\rightarrow AH$ (op. abs.) | JP   |                              | branchement cond. (si parité paire)                                                                                                              |
| IMUL | Integer Multiply            | $op1 * AX \rightarrow DX:AX$                                | JPE  | • •                          | branchement cond. (si parité paire)                                                                                                              |
|      |                             | $op1 * AL \rightarrow AX (op. abs.)$                        | JPO  | •                            | branchement cond. (si parité impaire)                                                                                                            |
| IN   | Input                       | entrée/sortie → AL                                          | JS   | Jump if Sign                 | branchement cond. (si valeur négative)                                                                                                           |
| INC  | Increment                   | $op1 + 1 \rightarrow op1$                                   | JZ   | •                            | branchement cond. (si résultat $= 0$ )                                                                                                           |
| INT  | Interrrupt                  | interruption par vecteur numéro op1                         | LAHF | Load AH with Flags           | bits arithmétiques du 'flag-reg.' → AH                                                                                                           |
| INTO | Interrupt Overflow          | interr. par vecteur numéro 4 (si $OF = 1$ )                 | LDS  | Load pointer to DS           | adresse de op2 → DS:op1                                                                                                                          |
| INW  | Input Word                  | entrée/sortie → AX                                          | LEA  | Load Effective Addr.         | adresse de <i>op2</i> → <i>op1</i>                                                                                                               |
| IRET | Interrupt Return            | retour du traîtement d'interruption                         | LES  | Load pointer to ES           | adresse de op2 → ES:op1                                                                                                                          |



Version 2.31 - 2000 / 01

| N      | lom (mnémonique)        |       | Action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |  |
|--------|-------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| LOCK   |                         |       | réservation du bus pour > 1 cycle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |
| LODB   | Load Byte               |       | zone-mémoire → AL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |
| LODW   | Load Word               |       | zone-mémoire → AX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |
| LOOP   |                         |       | branchement si $CX = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | :: ×                                 |  |
| LOOPE  | Loop while Equal =I     | LOOPZ | branchement si $CX = 0$ et $ZF = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ior<br>→                             |  |
| LOOPNE | Loop while Not Eq. =LC  | DOPNZ | branchement si $CX = 0$ et $ZF = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | act<br>1 -                           |  |
| LOOPNZ | Loop while Not Zero =LC | OPNE  | branchement si $CX = 0$ et $ZF = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lère action: $CX - 1 \rightarrow CX$ |  |
| LOOPZ  | Loop while Zero =L      | LOOPE | branchement si $CX = 0$ et $ZF = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{2}$                        |  |
| MOV    | Move                    |       | op2 → op1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |  |
| MOVB   | Move Byte               |       | zone-mémoire → zone-mémoire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |  |
| MOVW   | Move Word               |       | zone-mémoire → zone-mémoire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |  |
| MUL    | Multiply                |       | $op1 * AX \rightarrow DX:AX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |  |
|        |                         |       | $op1 * AL \rightarrow AX$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |  |
| NEG    | Negate                  |       | $0 - op1 \rightarrow op1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |  |
| NOT    |                         |       | NOT op1 $\rightarrow$ op1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |  |
| OR     |                         |       | op1 OR op2 $\rightarrow$ op1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |  |
| OUT    | Output                  |       | AL→ entrée/sortie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |
| OUTW   | Output Word             |       | AX → entrée/sortie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |  |
| POP    |                         |       | des-empiler → op1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |
| POPF   | Pop Flags               |       | des-empiler → 'flag-register'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |  |
| PUSH   |                         |       | op1 → empiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |  |
| PUSHF  | Push Flags              |       | 'flag-register'→ empiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |  |
| RCL    | Rotate Left with Carry  |       | décalage circulaire gauche par CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |
| RCR    | Rotate Right with Carry |       | décalage circulaire droite par CF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                    |  |
| REP    | Repeat                  |       | pré-fixe: repétition sur zone-mém                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oire                                 |  |
| RET    | Return                  |       | retour d'une procédure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |  |
| ROL    | Rotate Left             |       | décalage circulaire gauche                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |  |
| ROR    | Rotate Right            |       | décalage circulaire droite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |  |
| SAHF   | Store AH to Flags       | O     | AH → bits arithm. du 'flag-registe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |  |
| SAL    | Shift Arithm. Left      | =SHL  | décalage à gauche (0-remplissage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,                                    |  |
| SAR    | Shift Arithmetic Right  |       | décalage à droite, extension du signature de la constant de la con | _                                    |  |
| SBB    | Subtract with Borrow    |       | $ op1 - op2  (-1) \rightarrow op1 (-1 \text{ si } CF = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .)                                   |  |
| SCAB   | Scan Byte               |       | AL – zone-mémoire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |
| SCAW   | Scan Word               | CVI   | AX — zone-mémoire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | `                                    |  |
| SHL    | Shift Logical Dight     | =SAL  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *                                    |  |
| SHR    | Shift Logical Right     |       | décalage à droite (0-remplissage)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |  |

- Instructions 2 -

|      | Nom (mnémonique)   | Action                                                |
|------|--------------------|-------------------------------------------------------|
| STC  | Set Carry flag     | $1 \rightarrow CF$ ('Carry' bit, 'flag-register')     |
| STD  | Set Direction flag | $1 \rightarrow DF$ ('Direction' bit 'flag-reg.')      |
| STI  | Set Interrupt flag | $1 \rightarrow IF$ ('Interrupt' bit, 'flag-register') |
| STOB | Store Byte         | AL → zone-mémoire                                     |
| STOW | Store Word         | AX → zone-mémoire                                     |
| SUB  | Subtract           | $op1 - op2 \rightarrow op1$                           |
| TEST |                    | op1 AND op2                                           |
| WAIT |                    | le CPU entre dans une boucle d'attente                |
| XCHG | Exchange           | <i>op1</i> ⇔ <i>op2</i>                               |
| XLAT | Translate          | conversion de code par table de corresp.              |
| XOR  | Exclusive Or       | op1 XOR op2                                           |
|      |                    | •                                                     |







| Littérature et références                    |                                   | CUI<br>Phys. |
|----------------------------------------------|-----------------------------------|--------------|
| La bible PC, Programmation système           | ref 1144, ISBN 2-7429-0144-2      | C P          |
| Micro Application.                           | CUI: D.4.m TIS                    |              |
| The undocumented PC                          | Addison-Wesley                    |              |
| Franck Van GILLUWE.                          | ISBN 0-201-62277-7                |              |
| The undocumented DOS                         | Addison-Wesley                    | C P          |
| Andrew Shulman                               | CVI: D.4m UND; Phys: 197 NOR      |              |
| La Programmation en Assembleur sur PC et PS  | PSI                               |              |
| Perter Norton; John Socha                    | ISBN 2.86595.584.X                |              |
| Introduction à l'infographie                 | Addison Wesley                    | C            |
| Foley, Van Dam, Feiner, Huges, Philips       | ISBN 2 87308 058                  |              |
| Programming the 80286, 80386, 80486 and Pen- | Prentice Hall                     |              |
| tium-Base Personal Computer                  | ISBN 0-02-314263-4                |              |
| Barry B. Brey                                |                                   |              |
| Ralph Brown's Interrupt List                 | http://www.ctyme.com/intr/INT.HTM |              |
| T . 10                                       | 1 11 11 06 1                      |              |

Intel Secret

The Art of Assembly Language Programming

http://www.x86.org/

http://silo.csci.unt.edu/home/brackeen/vga/ ??

- CUI, Phys. ... bibliothèques à Genève restreint à la consultation
- disponible en prêt



#### Mots-clé

Références imprimées en *caractères italiques* : commande MASM. Références imprimées en **caractères gras** : référence principale. Pour accéder à la page d'une référence, sélectionner la page par un "click" de la souris.

| . <i>LALL</i> 6.17                               |
|--------------------------------------------------|
| .LFCOND 6.17                                     |
| <i>.LIST</i> 6.16                                |
| .RADIX 3.7                                       |
| . <i>SALL</i> 6.17                               |
| .SFCOND 6.17                                     |
| .TFCOND 6.17                                     |
| .XALL 6.17                                       |
| .XLIST 6.16                                      |
|                                                  |
| <i>AAM</i> 4.12                                  |
| <i>AAS</i> 4.12                                  |
| <i>ABS</i> 6.14                                  |
| accumulateur 2.15                                |
| ACIA 8.14, 8.15, 8.17, 8.20–                     |
| 8.24                                             |
| <i>ADC</i> 4.7                                   |
| ADD                                              |
| adressage 2.21                                   |
| - absolu 2.11, 2.21, <b>2.22</b> , 2.24,         |
| 2.25, 3.9<br>- direct 2.21, <b>2.23</b> , 3.10   |
| - immédiat 2.21, <b>2.23</b> , 3.10              |
| - indexé 2.15, 2.21, 2.24, 2.25,                 |
| 3.8, 3.9                                         |
| 3.8, 3.9<br>- indirect 2.21, <b>2.23</b>         |
| - mode d'adressage 2.11, 2.25, 3.8, <b>3.8</b> , |
| 3.9, 7.4, 7.7<br>- relatif                       |
| - relatii                                        |
| adresse 2.3, 2.6, 2.9, 2.11, 2.23,               |
| 3.8, 3.12, 3.13, 3.18,                           |
| 3.23, 5.4, 5.8, 5.10, 8.4,                       |
| 8.11, 8.13                                       |
| - de base (segment) 2.5, 3.17, 3.18, 3.20,       |
| 3.23, 3.24, 7.4                                  |
|                                                  |

| - de transfert 1.6, 1.9, <b>3.13</b> , 3.25    |
|------------------------------------------------|
| - effective 2.21, 2.22, 2.24, <b>3.9</b> ,     |
| 4.6, 7.4                                       |
| - espace d'adresses 2.3, 2.4, 3.11             |
| - logique 2.5                                  |
| - physique 2.5                                 |
| - registre e/s 8.11, 8.12, 8.13                |
| - relogeable 3.10                              |
| - virtuelle 7.6, 7.7                           |
| AF (registre d'état) 2.18                      |
| <i>AND</i> 2.20, <b>4.7</b> , 5.6              |
| ASCII 3.7, 4.12                                |
| assemblage 3.2, 3.3, 3.7, 3.11, 3.13,          |
| 3.23, 5.2, 5.3, 6.3                            |
| - conditionnel 3.3, <b>6.2</b> , 6.6, 6.17     |
| - en deux passes 3.3, 5.3                      |
| - macro                                        |
| - répétitif 3.3, <b>6.4</b> , 6.6              |
| <i>ASSUME</i> 1.6, <b>3.21</b> , 3.22, 3.23,   |
| 3.24, 3.25, 5.4                                |
| <i>AT</i> 3.17                                 |
| attente active 8.8                             |
| attributs d'une variable, voir variable        |
| attribute a une variable, von variable         |
| BCD 4.12                                       |
| branchement 2.13, 2.22, <b>4.4</b> , 4.5, 5.4, |
| 8.25                                           |
| BTC 7.7                                        |
| bus 2.2, 2.6, 3.18, 4.12, 7.2,                 |
| 8.2, 8.4, 8.5, 8.6, 8.7,                       |
| 8.10, 8.11                                     |
| ,                                              |
| BYTE 3.17, <b>3.18</b> , 3.26, <b>5.5</b> ,    |
| 5.9, 5.10, 6.14                                |
| CALL 2.14, 2.17, 2.20, 2.22,                   |
| 3.9, 4.3, 4.4, <b>4.4</b> , 6.15               |
| 3.7, T.3, T.T, <b>T.T</b> , 0.13               |

| on do la souris.                                 |
|--------------------------------------------------|
| <i>CBW</i> 4.9, 4.12                             |
| CCITT 8.15                                       |
| CF (registre d'état) 2.18, 2.19, 4.5             |
| champ                                            |
| - d'étiquette                                    |
| 53 67                                            |
| - d'opérande 3.6                                 |
| - d'opération 2.11, <b>3.5</b>                   |
| <i>CLC</i> 4.12                                  |
| <i>CLD</i> 4.12                                  |
| <i>CLI</i> 2.20, 4.12                            |
| <i>CMC</i> 4.12                                  |
| <i>CMP</i> 1.6, 2.20, 4.5, <b>4.7</b>            |
| <i>CMPSB</i> 4.10                                |
| <i>CMPSW</i> 4.10                                |
| Code Segment, voir CS                            |
| code-objet 2.8, 3.2, 3.5, <b>3.11</b> , 3.12,    |
| 3.14, 3.15, 3.18, 3.27                           |
| code-source <b>3.2</b> , 3.2, 3.24, 6.13         |
| <i>COMMON</i> 3.17                               |
| complément                                       |
| - à deux                                         |
| - à un                                           |
| compteur                                         |
| - de position 3.11, 3.12, <b>3.12</b> , 3.13,    |
| 3.15, 5.7, 5.9                                   |
| - itérations et décalage 2.15                    |
| - ordinal, voir IP                               |
| constante 5.5                                    |
| - alpha-numérique 3.7                            |
| - binaire 3.7                                    |
| - décimal 3.7                                    |
| - hexadécimal 3.7<br>- numérique 3.3, <b>3.7</b> |
| - numerique                                      |
| 00tui                                            |

control register, voir registre de contrôle













Systèmes informatiques I - Assembleur



Carry-flag, see CF

| CPU 1.8, 1.9, <b>2.2</b> , 2.6, 2.7,                                                                                                                                                                                            | <i>ENDS</i> 1.6, <b>3.15</b> , 3.22, 3.24,                                                                                  | <i>IF2</i> <b>6.2</b>                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.10, 2.13, 2.18, 3.5,                                                                                                                                                                                                          | 3.25, 6.9, 6.11                                                                                                             | <i>IFB</i> 6.2                                                                                                                                                                                                                                                                       |
| 7.2, 7.3, 7.4, 7.6, 8.2,                                                                                                                                                                                                        | entrée / sortie 2.2, <b>8.2</b>                                                                                             | IFDEF 6.2                                                                                                                                                                                                                                                                            |
| 8.3, 8.4, 8.5, 8.6, 8.8                                                                                                                                                                                                         | - écriture 8.5                                                                                                              | <i>IFE</i> <b>6.2</b> , 6.3                                                                                                                                                                                                                                                          |
| CS (registre) 2.17, 3.20, 3.21, 3.22,                                                                                                                                                                                           | - initialisation 8.10                                                                                                       | IFIDN 6.2                                                                                                                                                                                                                                                                            |
| 4.3, 4.6, 5.4                                                                                                                                                                                                                   | - lecture 8.6<br>- memory-mapped 8.13                                                                                       | <i>IFNB</i> 6.2                                                                                                                                                                                                                                                                      |
| <i>CWD</i> 4.9, 4.12                                                                                                                                                                                                            | - non-memory-mapped 8.13                                                                                                    | <i>IFNDEF</i> 6.2                                                                                                                                                                                                                                                                    |
| <i>DAA</i> 4.12                                                                                                                                                                                                                 | - porte                                                                                                                     | <i>IFNIDN</i> 6.2                                                                                                                                                                                                                                                                    |
| DAS 4.12                                                                                                                                                                                                                        | $\parallel EQ \dots $ | impression <b>6.16</b> , 6.17                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                 | <i>EQU</i> 1.6, <b>5.5</b> , 5.9, 6.3                                                                                       | IMUL 4.7                                                                                                                                                                                                                                                                             |
| Data Segment, voir DS                                                                                                                                                                                                           | ES (registre) 2.15, <b>2.17</b> , 3.9, 3.10,                                                                                | <i>IN</i> 8.13                                                                                                                                                                                                                                                                       |
| DB 1.6, <b>3.26</b> , <b>3.27</b> , 3.28,                                                                                                                                                                                       | 3.19, 3.21, 3.22                                                                                                            | INC 4.7                                                                                                                                                                                                                                                                              |
| 5.5, 5.9, 6.3, 6.5, 6.9<br>DCE                                                                                                                                                                                                  | ESC 4.12                                                                                                                    | INCLUDE 3.25, <b>6.13</b>                                                                                                                                                                                                                                                            |
| DD                                                                                                                                                                                                                              | étiquette 2.14, 3.4, 3.17, 5.4, <b>5.4</b> ,                                                                                | instruction pointer, voir IP                                                                                                                                                                                                                                                         |
| ,                                                                                                                                                                                                                               | 5.5, 5.8, 5.9, 6.14                                                                                                         | INT 1.6, 3.25, 4.3, 6.9                                                                                                                                                                                                                                                              |
| DEC1.6, 4.7                                                                                                                                                                                                                     | EVEN 3.12                                                                                                                   | Intel                                                                                                                                                                                                                                                                                |
| descripteur de segment . 7.4, 7.5, 7.6                                                                                                                                                                                          | expression <b>5.6</b> , 5.9, 5.10, 6.2                                                                                      | interruption 8.9                                                                                                                                                                                                                                                                     |
| DF (registre d'état) 2.18, 4.10                                                                                                                                                                                                 | extended memory 7.4                                                                                                         | - CPU 1.6, 2.4, 2.17, 2.18,                                                                                                                                                                                                                                                          |
| Direct Memory Access, voir DMA                                                                                                                                                                                                  | extension du bit de signe 2.16, <b>4.9</b> , 4.12                                                                           | 2.20, 4.12, 8.8, 8.9,<br>8.17, 8.18                                                                                                                                                                                                                                                  |
| DIV 2.15, <b>4.7</b>                                                                                                                                                                                                            | EXTERN 6.14                                                                                                                 | - DOS 1.6                                                                                                                                                                                                                                                                            |
| DMA 1.5, 8.7                                                                                                                                                                                                                    | Extra Segment, voir ES                                                                                                      | INVD                                                                                                                                                                                                                                                                                 |
| $DQ \dots 3.26, 5.5$                                                                                                                                                                                                            | FADD 2.14                                                                                                                   | IP (compteur-ordinal) 2.17, 2.20, 2.22, 3.13,                                                                                                                                                                                                                                        |
| DS (registre) 2.15, <b>2.17</b>                                                                                                                                                                                                 | FAR 2.14, 3.25, 4.3, 4.4, 5.4,                                                                                              | 3.20, 4.3, 7.3                                                                                                                                                                                                                                                                       |
| <i>DT</i> 3.26, 3.28, 5.5                                                                                                                                                                                                       | <b>5.4</b> , 5.8, 5.9, 6.14, 6.15                                                                                           | IRET 4.3                                                                                                                                                                                                                                                                             |
| DTE 8.14                                                                                                                                                                                                                        |                                                                                                                             |                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                 | Flag Register, voir registre d'état                                                                                         | IRP 6.4                                                                                                                                                                                                                                                                              |
| <i>DUP</i>                                                                                                                                                                                                                      | Flag Register, voir registre d'état fonction 3.3, 3.12, 3.27, <b>5.7</b> , 5.7,                                             |                                                                                                                                                                                                                                                                                      |
| 3.28, 5.8, 6.3                                                                                                                                                                                                                  | • •                                                                                                                         | IRP 6.4 IRPC 6.4, 6.5                                                                                                                                                                                                                                                                |
| 3.28, 5.8, 6.3<br>DW                                                                                                                                                                                                            | fonction 3.3, 3.12, 3.27, <b>5.7</b> , 5.7, 5.8, 5.9, 5.10                                                                  | IRP       6.4         IRPC       6.4, 6.5         JA       4.5                                                                                                                                                                                                                       |
| 3.28, 5.8, 6.3<br>DW                                                                                                                                                                                                            | fonction                                                                                                                    | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5                                                                                                                                                                                                 |
| 3.28, 5.8, 6.3<br>DW                                                                                                                                                                                                            | fonction                                                                                                                    | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5         JB       4.5                                                                                                                                                                            |
| 3.28, 5.8, 6.3<br>DW                                                                                                                                                                                                            | fonction                                                                                                                    | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5         JB       4.5         JBE       4.5                                                                                                                                                      |
| 3.28, 5.8, 6.3  DW                                                                                                                                                                                                              | fonction                                                                                                                    | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5         JB       4.5         JBE       4.5         JBNE       4.5                                                                                                                               |
| 3.28, 5.8, 6.3  DW                                                                                                                                                                                                              | fonction                                                                                                                    | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5         JB       4.5         JBE       4.5         JBNE       4.5         JCXZ       4.4                                                                                                        |
| 3.28, 5.8, 6.3  DW                                                                                                                                                                                                              | fonction 3.3, 3.12, 3.27, <b>5.7</b> , 5.7, 5.8, 5.9, 5.10  GE 5.6 granularity bit 7.4, 7.5 GT 5.6  HIGH 5.6 HLT 4.12       | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5         JB       4.5         JBE       4.5         JBNE       4.5         JCXZ       4.4         JE       2.20, 2.22, 3.9, 4.5                                                                  |
| 3.28, 5.8, 6.3  DW                                                                                                                                                                                                              | fonction                                                                                                                    | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5         JB       4.5         JBE       4.5         JBNE       4.5         JCXZ       4.4         JE       2.20, 2.22, 3.9, 4.5         JG       4.5                                             |
| 3.28, 5.8, 6.3  DW 3.22, 3.25, <b>3.26</b> , 3.28, 5.5, 5.8  DWORD. 3.26, <b>5.5</b> , 5.9, 6.14  éditeur de liens. <b>3.2</b> , 3.11, 3.14, 3.17, 3.18, 3.20  ELSE 6.2  END 1.6, 3.3, <b>3.13</b> , 3.14, 3.19  ENDIF 6.2, 6.3 | fonction                                                                                                                    | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5         JB       4.5         JBE       4.5         JBNE       4.5         JCXZ       4.4         JE       2.20, 2.22, 3.9, 4.5         JG       4.5         JGE       4.5         JGE       4.5 |
| 3.28, 5.8, 6.3  DW                                                                                                                                                                                                              | fonction                                                                                                                    | IRP       6.4         IRPC       6.4, 6.5         JA       4.5         JAE       4.5         JB       4.5         JBE       4.5         JBNE       4.5         JCXZ       4.4         JE       2.20, 2.22, 3.9, 4.5         JG       4.5                                             |

















| <i>JMP</i> 2.9, 2.17, 2.20, 2.22, | <i>LOW</i> 5.6                         | opération                                     |
|-----------------------------------|----------------------------------------|-----------------------------------------------|
| 3.9, 4.4, <b>4.4</b> , 5.10       | LSB 2.18                               | 2.20, 3.4, 3.5, 3.6, 5.2                      |
| JNA 4.5                           | LSS 7.7                                | opération sur chaînes 2.15, <b>4.10</b>       |
| <i>JNAE</i> 4.5                   | LT 5.6                                 | <i>OR</i> 4.7, 5.6                            |
| <i>JNB</i> 4.5                    |                                        | <i>ORG</i> 3.12                               |
| <i>JNE</i> 4.5                    | <i>MACRO</i> <b>6.7</b> , 6.9, 6.11    | <i>OUT</i> 2.20, 8.13                         |
| <i>JNG</i> 4.5                    | macro-instruction 6.7, 6.17            | DACE 2.17 2.18                                |
| $JNGE \dots 4.5$                  | MASK 5.7, 5.8, 5.9, 5.10               | <i>PAGE</i> 3.17, <b>3.18</b>                 |
| JNL 4.5                           | mémoire 2.2, 2.3, <b>2.5</b> , 8.2     | pagination 7.6                                |
| <i>JNLE</i> 4.5                   | - logique                              | PARA 3.17, <b>3.18</b>                        |
| <i>JNO</i> 4.5                    | mémoire virtuelle 2.8                  | paramètre formel 6.7                          |
| <i>JNP</i> 4.5                    | <i>MEMORY</i> 3.17                     | parité                                        |
| <i>JNS</i> 4.5                    | MMU 7.2                                | PF (registre d'état) 2.18, 4.5                |
| JNZ 1.6, 4.5                      | mnémonique 3.3                         | pile 2.7, 2.17, 2.21, 3.17, 3.20, 3.25, 4.2   |
| JO 4.5                            | <i>MOD.</i>                            | pointeur-pile, voir SP                        |
| <i>JP</i> 4.5                     | mode                                   | <i>POP</i> 2.21, 4.3, 6.9                     |
| <i>JPE</i> 4.5                    | - 16-bit mode 7.7                      | POPF 4.6                                      |
| <i>JPO</i> 4.5                    | - 32-bit mode 7.7                      | précédence 5.6                                |
| <i>JS</i> 4.5                     | modem 8.14, 8.15, 8.16                 | préfixe                                       |
| JZ4.5                             | Motorola 1.5                           | - repetition 4.11                             |
|                                   | <i>MOV</i> 1.6, 2.10, 2.14, 2.16,      | - segment                                     |
| <i>LABEL</i> 3.25                 | 2.20, 3.19, 3.25, <b>4.6</b> ,         | - vérouillage bus 4.12                        |
| <i>LAHF</i> 4.6                   | 4.9, 5.9, 6.9                          | <i>PROC</i> <b>6.14</b> , 6.15                |
| LDS 7.7                           | <i>MOVSB</i> 4.10                      | procédure 2.17, 6.14, 6.15                    |
| <i>LE</i> 5.6                     | <i>MOVSW</i> 4.10                      | Processor Status Word . 2.17                  |
| <i>LEA</i> 4.6                    | <i>MOVSX</i> 4.9                       | protected mode addressing 7.4                 |
| <i>LENGTH</i> 5.8, 5.10           | <i>MOVZX</i> 4.9                       | pseudo-opération 3.5, 3.26, 5.5, 6.4, 6.8,    |
| <i>LGDT</i> 7.7                   | MSB 2.18                               | 6.16                                          |
| <i>LLDT</i> 7.7                   | <i>MUL</i> 2.15, <b>4.7</b>            | <i>PTR</i> <b>5.9</b> , 5.10                  |
| <i>LOCAL</i>                      | <i>NE</i> 5.6                          | <i>PUBLIC</i> 3.17, 5.3, 6.14                 |
| <i>LOCK</i> 4.12                  | NEAR 2.14, 4.4, <b>5.4</b> , 5.6, 5.8, | <i>PUSH</i> 2.20, 2.21, 4.3, <b>4.6</b> , 6.9 |
| <i>LODB</i> 4.10                  | 5.9, 6.14, 6.15                        | <i>PUSHF</i> 4.6                              |
| <i>LODW</i> 4.10                  | NEG 4.7                                | <i>QWORD</i> 3.26, <b>5.5</b> , 5.9           |
| <i>LOOP</i> 4.4                   | NOT 4.7, 5.6                           | QWORD 3.20, 3.5, 3.9                          |
| <i>LOOPE</i> 4.4                  | , ,                                    | RAM 2.4                                       |
| <i>LOOPNE</i> 4.4                 | OF (registre d'état) 2.18, 4.5         | <i>RBYTE</i> 8.13                             |
| <i>LOOPNZ</i> 4.4                 | <i>OFFSET</i> <b>5.8</b> , 5.10        | <i>RCL</i> 4.7                                |
| LOOPZ 4.4                         | opérande 2.23                          | RCR 4.7                                       |









| real memory7.4                             |
|--------------------------------------------|
| real mode addressing 7.4                   |
| <i>RECORD</i> 5.5                          |
| record5.7                                  |
| références en avant 5.3                    |
| registre                                   |
| - d'entrée / sortie 8.11                   |
| - d'état 2.17, <b>2.18</b> , 4.3           |
| - d'indexage 2.11, <b>2.22</b> , 3.9, 3.10 |
| - d'opérandes 2.15                         |
| - de base 2.5, <b>2.17</b> , 2.20, 3.10    |
| 3.19, 3.24, 7.4, 7.6,                      |
| 7.7                                        |
| - de byte                                  |
| - de controle 8.9<br>- de réception 8.4    |
| - de segment, voir registre de base        |
| <i>REP</i> 4.11                            |
| <i>REPE</i> 4.11                           |
| <i>REPNE</i> 4.11                          |
| <i>REPNZ</i> 4.11                          |
| <i>REPT</i> 6.4, 6.5                       |
| <i>REPZ</i> 4.11                           |
| Reset 7.4, 8.10                            |
| <i>RET</i> 4.3, 6.14, 6.15                 |
| RISC 1.5                                   |
| ROL 4.7                                    |
| ROM 2.4                                    |
| <i>ROR</i> 4.7                             |
| RS 232C 8.15                               |
| RWORD 8.13                                 |
| KWOKD 6.13                                 |
| <i>SAHF</i> 4.6                            |
| <i>SAL</i> 4.7                             |
| <i>SAR</i> 4.7                             |
| <i>SBB</i> 4.7                             |
| <i>SCAB</i> 4.10                           |
| <i>SCAW</i> 4.10                           |
| <i>SEG</i> <b>5.8</b> , 5.10               |
|                                            |

| SEGMENT                   | 1.6, <b>3.14</b> , 3.15, <b>3.17</b> , 3.19, 3.22, 3.24, 3.25, 6.9, 6.11 |
|---------------------------|--------------------------------------------------------------------------|
| segment - logique         | 2.5, <b>3.11</b> , 3.12, 3.15, 3.18, 3.19, 3.20, 3.21,                   |
|                           | 3.24<br>2.4, <b>2.5</b> , 2.8, 3.19,<br>3.21, 3.24                       |
| Segment Prefix Code, vo   | *                                                                        |
| Segment Register, voir re | egistre de base                                                          |
| séparateur de chaîne      | 3.7, 6.8                                                                 |
| sexe des bytes            | 2.3                                                                      |
| SF (registre d'état)      | <b>2.18</b> , 4.5                                                        |
| <i>SHL</i>                | 2.20, <b>4.7</b> , 5.6                                                   |
| SHORT                     | 5.10                                                                     |
| SHR                       | 4.7, 5.6                                                                 |
| SIZE                      | <b>5.8</b> , 5.10                                                        |
| SP (registre)             | 2.7, 2.15, 3.20                                                          |
| SS (registre)             | 2.15, <b>2.17</b> , 3.19, 3.20,                                          |
|                           | 3.21, 3.22, 4.3                                                          |
| <i>STACK</i>              | 3.17                                                                     |
| Stack Segment, voir SS    |                                                                          |
| status                    | 8.8                                                                      |
| <i>STC</i>                | 4.12                                                                     |
| STD                       | 4.12                                                                     |
| STI                       | 4.12                                                                     |
| STOB                      | 4.10                                                                     |
| STOW                      | 4.10                                                                     |
| STRUCT                    | 5.5                                                                      |
| <i>SUB</i>                | *                                                                        |
| SUBTTL                    | 6.16                                                                     |
| symbole                   | <b>3.5</b> , 3.14, 3.24, 5.2, 5.6, 5.8, 5.9, 6.7, 6.8, 6.14, 6.15        |
| table de code objet       | 3.11                                                                     |
|                           |                                                                          |
| TBYTE                     | 3.26, <b>5.5</b> , 5.9 2.20, <b>4.7</b>                                  |
|                           |                                                                          |

| TF (registre d'état)       2.18, 4.3         THIS       5.9, 5.10         TITLE       6.16         transfert sériel       8.16         TYPE       5.8, 5.10                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| UART       8.14         V.24       8.14, 8.15         variable       5.2         - attribut       5.2, 5.5, 5.7, 5.8, 5.7, 5.8, 5.7, 5.8, 6.14         - globale       5.3, 6.14         - locale       5.3, 6.8         - relogeable       3.10, 5.4, 5.5         - table des variables       5.3         vecteur d'interruption       2.4 |
| WAIT                                                                                                                                                                                                                                                                                                                                        |
| XCHG       4.6         XLAT       2.15         XOR       4.7         5.6         ZF (registre d'état)       2.18         2.20       4.5         4.11         ZILOG       1.5                                                                                                                                                                |















