		Test n ^c	10	(durée :	30 mn
NOM:					

Question de cours

Développement de Taylor(-Young) : hypothèse? conclusion?

Exercices

1) a) Calculer la différentielle de l'application $\alpha\colon\thinspace \mathscr{L}(\mathbb{R}^2) \ \longrightarrow \ \mathscr{L}(\mathbb{R}^2).$ $u \ \longmapsto \ u^3$

b) On note : $F = \{u \in \mathscr{L}(\mathbb{R}^2) \mid u^3 = \mathrm{id}_{\mathbb{R}^2}\}.$ Démontrer que F est d'intérieur vide dans $\mathscr{L}(\mathbb{R}^2).$ Indication : vérifier que la différentielle de α ne s'annule pas sur F. 2) On munit ici \mathbb{R}^3 de la <u>norme euclidienne</u> et \mathbb{R} de la valeur absolue.

Soient
$$f \colon \mathbb{R}^3 \longrightarrow \mathbb{R}$$
 et $r > 0$.
 $(x, y, z) \longmapsto x^3 + y^3 + z^3$

a) On pose : $U =]0, r[\times]0, r[\times]0, r[$.

Démontrer que $f \!\mid_{U}$ est lipschitzienne.

b) Trouver un réel $k \geq 0$, de la forme k = P(r) pour un $P \in \mathbb{R}[X]$, tel que $f|_U$ est k-lipschitzienne.