1-9 谓词公式语义

概念:

解释,赋值,项和公式的语义

解释 (Interpretation) 谓词语言的一个解释 I=(D, φ)包括:

- (1) 非空集合D, 称之为论域;
- (2) 对应于每一个个体常元a, ϕ (a)∈D;
- (3) 对应于每一个n元函数符号f都有一个函数 $\varphi(f):D^n \to D$;
- (4) 对应于每一个 $n元谓词符号A都有一个<math>n元关系\phi(A) \subseteq D^n$ 。

注:解释也称为结构,通常简单地用φ表示。

赋值 (Assignment) 解释I中的赋值v为每一个个体变元 x指定一个值v(x) \in D,即设 V为所个体变元的集合,则赋值v是函数 v:V \rightarrow D.

若v是赋值,则v的a-equivalent 赋值记为v[x←a](其中a ∈D表示一个由

定义的赋值。

注:给定解释I和I中的赋值v后,任何项和公式的含义就明确了。

$$v_l$$
:TERM \rightarrow D
 v_l :WFF \rightarrow {1,0}

项的语义

项t在解释I=(D, φ)和赋值v下的值,记为 $v_i(t)$

- (1) 若t 是常元a,则 $v_i(t) = \phi(a)$
- (2) 若t 是变元x,则 $v_l(t) = \phi(x)$
- (3) 若t 是f(t₁,t₂,...,t_n), 则v_I(t) = φ (f)(v_I(t₁), v_I(t₂), ..., v_I(t_n))

例、 $\Sigma=\{a, f\}$,f(x,a)是一个项解释 ϕ_1 、 ϕ_2 、 ϕ_3 。

$$\phi_1(a)=1$$
, $\phi_1(f)=+$; $I_1=(Z,\phi_1)$

$$\varphi_2(a)=0$$
, $\varphi_2(f)=-$; $I_2=(Z,\varphi_2)$

$$\varphi_3(a) = -2$$
, $\varphi_3(f) = x$; $I_3 = (Z, \varphi_3)$

x的赋值 v_1 、 v_2 、 v_3 $v_1(x)=7$ 、 $v_2(x)=0$ 、 $v_3(x)=-5$

公式的语义

公式A在解释 $I=(D, \phi)$ 和赋值v下的值,记为 $v_I(A)$

1、若A为命题常元符号p,则

2、若A为原子公式 $P(t_1,...,t_n)$,则

$$v_I(A) = \begin{cases} 1 & \stackrel{\text{def}}{\approx} \langle v_I(t_1), v_I(t_2), \cdots, v_I(t_n) \rangle \in \varphi(P); \\ 0 & else \end{cases}$$

3、若A为否定式(¬B),则

4、若A为析取式(BVC),则

5、若A为合取式(B∧C),则

6、若A为蕴含式(B→C),则

7、若A为等价式($B \leftrightarrow C$),则

8、若A为(∀xB),则

$$v_I(A) = \begin{cases} 1 & \text{若对任何} d \in D, v[x \leftarrow d]_I(B) = 1 \\ 0 & else \end{cases}$$

9、若A为(∃xB),则

$$v_I(A) = \begin{cases} 1 & \text{若对某个} d \in D, v[x \leftarrow d]_I(B) = 1 \\ 0 & else \end{cases}$$

例: 给出如下两个公式:

1)
$$G=\exists x(P(f(x))\land Q(x, f(a)))$$
 1

2)
$$H=\forall x(P(x)\land Q(x, a))$$

给出如下的解释I:

$$D=\{2, 3\}$$

$$a = 2$$

$$P(2)$$
 $P(3)$ $Q(2,2)$ $Q(2,3)$ $Q(3,2)$ $Q(3,3)$

谓词逻辑总结

- 解释
- 赋值
- 项值
- 公式的真值