- About Dataset
- CO2 emissions (metric tons per capita)
- Global CO2 Emissions from 1960 to 2018.
- Tasks
- Country with highest/lowest emissions
- Data Visualisation (world map)

import library

```
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import os
import warnings
warnings.filterwarnings("ignore")
```

Matplotlib is building the font cache; this may take a moment.

Read the dataset

```
In [4]: df = pd.read_csv('CO2_Emissions_1960-2018.csv', index_col='Country Name')
```

shape of the dataset

```
In [8]: df.shape
Out[8]: (266, 59)
In [10]: df1=df.transpose()
    df1.index=pd.to_datetime(df1.index).year
    df1.head()
```

Out[10]:	Country Name	Aruba	Africa Eastern and Southern	Afghanistan	Africa Western and Central	Angola	Albania	Andorra	
	1960	204.631696	0.906060	0.046057	0.090880	0.100835	1.258195	NaN	0.6
	1961	208.837879	0.922474	0.053589	0.095283	0.082204	1.374186	NaN	0.6
	1962	226.081890	0.930816	0.073721	0.096612	0.210533	1.439956	NaN	0.7
	1963	214.785217	0.940570	0.074161	0.112376	0.202739	1.181681	NaN	3.0
	1964	207.626699	0.996033	0.086174	0.133258	0.213562	1.111742	NaN	2.0
	5 rows × 2	266 columns							
	4								•
In [12]:	px.line(data_frame=	df1,x=df1.	index, y=['W	lorld'],ma	rkers= Tru	e, title=	'World ca	rbo

World carbon emission 1960 - 2018

During the 1990s emissions were mainly reduced due to structural changes in the European economies from heavy manufacturing towards more service-based economies and a change from coal to a higher share of gas in the energy mix4.

```
In [14]: df.head()
```

Out[14]:		1	960	1961	1962	1963	1964	1965			
		intry lame									
	Α	ruba 204.631	696 2	208.837879	226.081890	214.785217	207.626699	185.213644	1.		
	A Eastern Sout		060	0.922474	0.930816	0.940570	0.996033	1.047280			
	Afghani	istan 0.046	057	0.053589	0.073721	0.074161	0.086174	0.101285			
		frica stern 0.090 ntral	880	0.095283	0.096612	0.112376	0.133258	0.184803			
	An	gola 0.100	835	0.082204	0.210533	0.202739	0.213562	0.205891			
	5 rows ×	59 columns									
	4								•		
In [15]:	df.rese	et_index(leve	el=0. :	inplace= Tr	ue)						
								Unio Filizza de La	1 \		
In [16]:	a+2=a+.	melt(id_vars	S=[CO	untry Name], var_nam	ie= Year).s	sort_values(by=[Year]	1)		
In [17]:	df2.hea	df2.head()									
Out[17]:	Co	ountry Name	Year	value	<u> </u>						
	0	Aruba	1960	204.631696	5						
	169	Malaysia	1960	0.437450)						
	170 N	North America	1960	15.529995	5						
	171	Namibia	1960	NaN	J						
	172 N	lew Caledonia	1960	10.908165	5						
In [18]:	px.chor	ropleth(data_	_frame:	=df2[df2['	Country Nam	ne']!='World	l'], locatio	onmode='cour	ntr		

CO2 Emission by Countries by Year

Year=1960

1960 1964 1968 1972 1976 1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

In [45]: !pip install raceplotly

Defaulting to user installation because normal site-packages is not writeable Looking in links: /usr/share/pip-wheels

Requirement already satisfied: raceplotly in ./.local/lib/python3.9/site-packages (0.1.7)

Requirement already satisfied: plotly in /opt/conda/envs/anaconda-2022.05-py39/lib/python3.9/site-packages (from raceplotly) (5.6.0)

Requirement already satisfied: pandas in /opt/conda/envs/anaconda-2022.05-py39/lib/python3.9/site-packages (from raceplotly) (1.4.2)

Requirement already satisfied: numpy in /opt/conda/envs/anaconda-2022.05-py39/lib/python3.9/site-packages (from raceplotly) (1.21.5)

Requirement already satisfied: python-dateutil>=2.8.1 in /opt/conda/envs/anaconda -2022.05-py39/lib/python3.9/site-packages (from pandas->raceplotly) (2.8.2)

Requirement already satisfied: pytz>=2020.1 in /opt/conda/envs/anaconda-2022.05-p y39/lib/python3.9/site-packages (from pandas->raceplotly) (2021.3)

Requirement already satisfied: six>=1.5 in /opt/conda/envs/anaconda-2022.05-py39/lib/python3.9/site-packages (from python-dateutil>=2.8.1->pandas->raceplotly) (1. 16.0)

Requirement already satisfied: tenacity>=6.2.0 in /opt/conda/envs/anaconda-2022.0 5-py39/lib/python3.9/site-packages (from plotly->raceplotly) (8.0.1)

Carbon Emission Race by Country (Since 1960 to 2018)

```
In [71]: from raceplotly.plots import barplot
    race_plot=barplot(df=df2[df2['Country Name']!='World'],item_column='Country Name
    race_plot.plot(title='Carbon Emission Race by Country (Since 1960 to 2018)', val
```

```
Aruba
204.6
                Kuwait
29.01
      Top 10 Countries
              United States
                16.00
              North America
15.53
              ussian Federation
12.08
              ited Kingdom
11.15
          0
                    50
                              100
                                        150
                                                   200
                                                             250
                                                                        300
                                                                                   350
                                              Value
                                                                          Date: 1960
     Play
           Pause
                   1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
         country_col=df2[df2['Country Name']!='World'].groupby(by=['Country Name']).max()
In [49]:
          country_col.extend(['India','China'])
In [51]: | sample_mean=df2[df2['Country Name'].isin(country_col)]['value'].mean()
         pop_mean = df2['value'].mean()
In [53]: plt.figure(figsize=(15, 8))
         ax = sns.kdeplot(data=df2[df2['Country Name'].isin(country_col)],
                           x=df2['value'],
                           hue='Country Name',
                           fill=True,
                           linewidth=3,
                           edgecolor='white',
                           alpha=0.7)
         ax = plt.axvline(x=sample mean)
         ax = plt.axvline(x=pop_mean)
         ax = plt.text(x=sample_mean, y=0.015, s='Sample mean')
         ax = plt.text(x=pop_mean, y=0.015, s='Population mean')
         plt.title('Kernel Density Plot with Sample and Population Means')
         plt.xlim(-20, 60)
         plt.ylim(0.00, 0.04)
         plt.show()
```


In [54]: df2

Out[54]:		Country Name	Year	value
	0	Aruba	1960	204.631696
	169	Malaysia	1960	0.437450
	170	North America	1960	15.529995
	171	Namibia	1960	NaN
	172	New Caledonia	1960	10.908165
	•••			
	15522	Guyana	2018	3.132193
	15523	High income	2018	10.254533
	15524	Hong Kong SAR, China	2018	NaN
	15510	Georgia	2018	2.538542
	15693	Zimbabwe	2018	0.849793

15694 rows × 3 columns

Variation of Carbon emission by top 12 countries

Variation of Carbon emission by top 12 countries


```
In [60]: df2['decade']=1
    df2['decade'][df2['Year'].between('1960','1970')]='1960-1970'
    df2['decade'][df2['Year'].between('1971','1980')]='1971-1980'
    df2['decade'][df2['Year'].between('1981','1990')]='1981-1990'
    df2['decade'][df2['Year'].between('1991','2000')]='1991-2000'
    df2['decade'][df2['Year'].between('2001','2010')]='2001-2010'
    df2['decade'][df2['Year'].between('2011','2020')]='2011-2018'
```

Variation of Carbon emission by top 12 countries

As we can see the country Aruba contributed high carbon emssion from 1960 - 1990, which shows high figure in the chart. after 1990, there is no much carbon emission from Aruba, in this case, let us remove Aruba to clearly view other countries data.

Refrence

- https://www.kaggle.com/datasets/kkhandekar/co2-emissions-1960-2018
- https://plotly.com/python/plotly-express/
- https://seaborn.pydata.org/
- https://pandas.pydata.org/

In []: