## Deep and shallow slice knots in 4-manifolds



Joint work with Michael Klug

Benjamin Motthias Ruppile
PhD student @ Max-Planck-Institute for Mathematics,
Bonn, Germany



K is deep slice in X if the dish "needs to use the extra topology of X", i.e. there is no slice dish for K in a collar  $\partial X \times [0,1] \subset X$  of the  $\partial$ .



## Non-example: There are no deep slice knots in $4^k \$^1 \times D^3$ .

$$\# \$^1 \times \mathbb{D}^3 = \text{thickening of}$$



Any slice disk generically avoids the spine

-> lives in a collar neighborhood of the boundary

Example: 
$$\chi^{4} = D^{4} \cup (2-\text{hanolles})$$

$$\sigma_{\text{handle}} \quad \text{at least one } 2-\text{h.}$$

has deep slice knots in boundary (which are nullhomotopic in 2X, but not contained in a 3-ball)

Two cases

$$T_1(\partial X) = \{1\}$$
 and thus  $\partial X = S^3$ 

We use a theorem of Rohlin on the genus of embedded surfaces representing 2-dim. homology classes in  $\hat{X} = X \cup (4-\text{handle})$ 

Use Wall's self-intersection number with values in  $\frac{\mathbb{Z}[\mathcal{I}_{1}(\partial X)]}{\langle g=g^{-1},1\rangle}$  of the track of a homotopy in  $\partial X \times [0,1]$ 

