

Bayesian Statistics and Bayesian Cognitive Modeling

Lei Zhang

Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf

Universitätsklinikum Hamburg-Eppendorf

Recap

What we've learned...

- Linear Regression Model
- Predictive Check
- Cognitive Modeling
- Reinforcement Learning Model
- Hierarchical Modeling
- Optimizing Stan Codes
- Model Comparison

DAY3

09:00 - 09:30	Implementing Model Comparison
09:30 - 10:15	Stan Style Tips and Debugging
10:15 - 11:00	Introduction to Model-based fMRI
11:00 - 11:15	Coffee break
11:15 – 12:15	Capstone Project: Delay Discounting
12:15 - 13:00	Summary, Misc., Q&A

STAN DEBUGGING

cognitive model
statistics
computing

Stan Style Tips

cognitive model

computing

Make it Reproducible

- Scripts are good documentation!
- Save your seed

Make it Readable

- Choose a consistent style
- Give meaningful variable names

Start with Simulated Data

Design Top-Down, Code Bottom-Up

Write Comments

Code never lies!

The Editor of your Choice


```
data {
   int<lower=0> w;
   int<lower=0> N;
}

parameters {
   real<lower=0,upper=1> p;
}

model {
   p ~ uniform(0,1);
   w ~ binomial(N, p);
```



```
data {
  int<lower=0> w;
  int<lower=0> N;
}

parameters {
  real<lower=0,upper=1> p;
}

model {
  p ~ uniform(0,1);
  w ~ binomial(N, p);
}
```



```
data {
   int<lower=0> w;
   int<lower=0> N;
}

parameters {
   real<lower=0,upper=1> p;
}

model {
   p ~ uniform(0,1);
   w ~ binomial(N, p);
}
```

statistics

computing

Common Error / Warning Types

ERRORS

WARNINGS

forget ";" mis-indexing: mismatch or constant support mismatch improper constrain improper dimension declaration vectorizing when not supported wrong data type wrong distribution names forget priors miss spelling

forget last blank line
use earlier version of Stan
numerical problems
divergent transitions
hit max_treedepth
improper prior

Debugging in Stan

- always use a *.stan file
- press Check in RStudio
- use lookup()
- start with simulated data
- be careful with copy/paste
- run 1 chain, 1 sample
- debugging by printing

```
for (s in 1:1) {
  vector[2] v;
  real pe;
  v <- initV;
  for (t in 1:nTrials) {
    choice[s,t] ~ categorical_logit( tau[s] * v );
    print("s = ", s, ", t = ", t, ", \vee = ", \vee);
    pe <- reward[s,t] - v[choice[s,t]];</pre>
    v[choice[s,t]] <- v[choice[s,t]] + lr[s] * pe;</pre>
```


Example: Memory Retention

cognitive model

statistics

computing

	Time Interval								
Subject	1	2	4	7	12	21	35	59	99
1	18	18	16	13	9	6	4	4	4
2	17	13	9	6	4	4	4	4	4
3	14	10	6	4	4	4	4	4	4

Lee & Wagenmakers (2013)

Simple Exponential Decay Model

cognitive model

statistics

Exercise I

statistics

.../BayesCog/09.debugging/_scripts/exp_decay_main.R

TASK: Debugging the Memory retention model

>= 10 errors!

Viel Spaß!

cognitive model statistics

Why Stan Fails?

computing

```
for (s in 1:ns) {
    for (t in 1:nt) {
        theta[s,t] = fmin(1.0, exp(-alpha[s] * intervals[t]) + beta[s]);
        k[s,t] ~ binomial(nItem, theta[s,t]);
    }
}
```

Non-differentiable link (likelihood)functions are bad news, particularly in Stan, which relies on derivatives.

INTRODUCTION TO MODEL-BASED FMRI

statistics

computing

Model-based Analysis

statistics

```
Explore Hidden Patterns in Stan
```

```
generated quantities {
 vector[2] v[nSubjects, nTrials+1];
 real vc[nSubjects,nTrials]; //chosen value
 real pe[nSubjects,nTrials];
   for (s in 1:nSubjects) {
     log lik[s] <- 0;
     v[s,1] \leftarrow initV;
     for (t in 1:nTrials) {
       log lik[s] = log lik[s] + categorical logit log(choice[s,t], tau[s] * v[s,t] );
       vc[s,t] = v[s,t,choice[s,t]];
       pe[s,t] = reward[s,t] - v[s,t,choice[s,t]];
       v[s,t+1] = v[s,t];
       v[s,t+1,choice[s,t]] = v[s,t,choice[s,t]] + lr[s] * pe[s,t];
```

statistics

computing

Obtain Decision Variables

subject0 l

Perform Model-based fMRI

cognitive model

statistics

Implementing in SPM12

cognitive model statistics

cognitive model statistics

```
SPM12 – batch scripting
```

```
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(cnt).name = 'onsetPE';
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(cnt).onset = onscat.sub(i_sub).cueoutcome;
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(cnt).duration = 0;
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(cnt).tmod = 0;
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(cnt).pmod.name = 'PE';
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(cnt).pmod.param = pe(i_sub);
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(cnt).pmod.poly = 1;
matlabbatch{1}.spm.stats.fmri_spec.sess.cond(cnt).orth = 0;
```

Exercise II

.../BayesCog/10.model_based/_scripts/reinforcement_learning_model_based_main.R

TASK: extract and plot V(option=I), for subject0I (from L64/L105)

TIP: fit_rl <- readRDS('_outputs/fit_rl.RData')</pre>

cognitive model
statistics
computing

Delay Discounting Task and Models

statistics computing

Hyperbolic Discounting Model

$$SV = \frac{A}{1 + k * delay}$$

$$p(LL) = \frac{1}{1 + \exp^{temp(v(SS) - v(LL))}}$$

LL - late large option SS - soon small option

24

Delay Discounting Task and Models

statistics computing

Exponential Discounting Model

$$SV = A * \exp(-r * delay)$$
$$p(LL) = \frac{1}{1 + \exp^{temp(v(SS) - v(LL))}}$$

Exercise III

statistics

.../BayesCog/11.delay discounting/ scripts/delay discounting main.R

TASK:

- (I) understand how to deal with missing trials
- (2) complete and fit both models
- (3) complete the main script for comparing the two models

)ummary

cognitive model
statistics
computing

Summary of Topics

Summary of Examples/Exercises

FOLDER	TASK	MODEL			
01.R_basics	NA	NA			
02.binomial_globe	Globe toss	Binomial Model			
03.bernoulli_coin	Coin flip	Bernoulli Model			
04.regression_height	Observed weight and beight	Linear regression model			
05.regression_height_poly	Observed weight and height				
06.reinforcement_learning	2-armed bandit task	Simple reinforcement learning (RL) model			
07.optm_rl	z-armed bandit task				
08.compare_models	Probabilistic reversal learning task	Simple and fictitious RL models			
09.debugging	Memory Retention	Exponential decay model			
10.model_based	2-armed bandit task	Simple RL model			
I I.delay_discounting	Delay discounting task	Hyperbolic and exponential discounting model			

computing

After the Workshop, you...

- ...are able to implement your own model
- ...consider the implementation of the "computational modeling" section
- ...feel comfortable with reading mathematical equations
- ...gain insightful understanding of Bayesian stats and modeling
- ...take it as a good start and work on it later

Remember: we are NOT modelers!

DOING RESEARCH:

WRITING ABOUT RESEARCH:

WWW.PHDCOMICS.COM

^{*} BEST CASE SCENARIO

Write Your Own Tutorial Paper!

Revealing neuro-computational mechanisms of reinforcement learning and decision-making with the hBayesDM package

Woo-Young Ahn, Nathaniel Haines, Lei Zhang doi: http://dx.doi.org/10.1101/064287

statistics

computing

Resources

help & discussion

https://groups.google.com/forum/?fromgroups#!forum/stan-users

AN JEST ON

Happy Computing!