10.2 1s Complement (2/3)

Technique to negate a value: invert all the bits.

Largest value: 01111111 = +127₁₀

Smallest value: 10000000 = -127₁₀

 \blacksquare Zeros: $00000000 = +0_{10}$

 $111111111 = -0_{10}$

- Range (for 8 bits): -127₁₀ to +127₁₀
- Range (for *n* bits): $-(2^{n-1}-1)$ to $2^{n-1}-1$
- The most significant bit (MSB) still represents the sign: 0 for positive, 1 for negative.

10.3 2s Complement (2/3)

 Technique to negate a value: invert all the bits, then add 1.

Largest value: 01111111 = +127₁₀

Smallest value: 10000000 = -128₁₀

Zero: $00000000 = +0_{10}$

- Range (for 8 bits): -128₁₀ to +127₁₀
- Range (for n bits): -2ⁿ⁻¹ to 2ⁿ⁻¹ 1
- The most significant bit (MSB) still represents the sign: 0 for positive, 1 for negative.

10.8 Excess Representation (1/2)

- Besides sign-and-magnitude and complement schemes, the excess representation is another scheme.
- It allows the range of values to be distributed <u>evenly</u> between the positive and negative values, by a simple translation (addition/subtraction).
- Example: Excess-4 representation on 3-bit numbers. See table on the right.

Excess-4 Representation	Value
000	-4
001	-3
010	-2
011	-1
100	0
101	1
110	2
111	3

11.2 IEEE 754 Floating-Point Rep. (3/4)

3 components: sign, exponent and mantissa (fraction)

sign

- Sign bit: 0 for positive, 1 for negative.
- Mantissa is normalised with an implicit leading bit 1
 - 110.1₂ \rightarrow normalised \rightarrow 1.101₂ × 2² \rightarrow only **101** is stored in the mantissa field
 - $0.00101101_2 \rightarrow \text{normalised} \rightarrow 1.01101_2 \times 2^{-3} \rightarrow \text{only } 01101 \text{ is stored in the mantissa field}$

11.2 IEEE 754 Floating-Point Rep. (2/4)

3 components: sign, exponent and mantissa (fraction)

sign	exponent	mantissa
------	----------	----------

- The base (radix) is assumed to be 2.
- Two formats:
 - Single-precision (32 bits): 1-bit sign, 8-bit exponent with bias 127 (excess-127), 23-bit mantissa
 - Double-precision (64 bits): 1-bit sign, 11-bit exponent with bias 1023 (excess-1023), and 52-bit mantissa
- We will focus on the single-precision format
- Reading
 - DLD pages 32 33
 - IEEE standard 754 floating point numbers:
 http://steve.hollasch.net/cgindex/coding/ieeefloat.html

11.2 IEEE 754 Floating-Point Rep. (3/4)

3 components: sign, exponent and mantissa (fraction)

sign

- Sign bit: 0 for positive, 1 for negative.
- Mantissa is normalised with an implicit leading bit 1
 - 110.1₂ \rightarrow normalised \rightarrow 1.101₂ × 2² \rightarrow only **101** is stored in the mantissa field
 - $0.00101101_2 \rightarrow \text{normalised} \rightarrow 1.01101_2 \times 2^{-3} \rightarrow \text{only } 01101 \text{ is stored in the mantissa field}$

Function Prototype

- It is a good practice to put function prototypes at the top of the program, <u>before</u> the main() function, to inform the compiler of the functions that your program may use and their return types and parameter types.
- A function prototype includes only the function's return type, the function's name, and the data types of the parameters (names of parameters are optional).
- Function definitions to follow <u>after</u> the main() function.
- Without function prototypes, you will get error/warning messages from the compiler.

