Flow past a cylinder – From laminar to turbulent flow

Vortex shedding behind a cylinder

Drag coefficient

Strouhal number

Flow past a cylinder – From laminar to turbulent flow

Some experimental (E) and numerical (N) results of the flow past a circular cylinder at various Reynolds numbers

Reference	c_d – Re = 20	L _{rb} – Re = 20	$c_d - Re = 40$	L_{rb} – Re = 40
[1] Tritton ^(E)	2.22	-	1.48	-
[2] Cuntanceau and Bouard (E)	-	0.73	-	1.89
[3] Russel and Wang (N)	2.13	0.94	1.60	2.29
[4] Calhoun and Wang (N)	2.19	0.91	1.62	2.18
[5] Ye et al. (N)	2.03	0.92	1.52	2.27
[6] Fornbern (N)	2.00	0.92	1.50	2.24
[7] Guerrero (N)	2.20	0.92	1.62	2.21

 $\mathbf{L_{rb}}$ = length of recirculation bubble, $\mathbf{c_d}$ = drag coefficient, \mathbf{Re} = Reynolds number,

- [1] D. Tritton. Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 6:547-567, 1959.
- [2] M. Cuntanceau and R. Bouard. Experimental determination of the main features of the viscous flow in the wake of a circular cylinder in uniform translation. Part 1. Steady flow. Journal of Fluid Mechanics, 79:257-272, 1973.
- [3] D. Rusell and Z. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191:177-205, 2003.
- [4] D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 176:231-275, 2002.
- [5] T. Ye, R. Mittal, H. Udaykumar, and W. Shyy. An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries. Journal of Computational Physics, 156:209-240, 1999.
- [6] B. Fornberg. A numerical study of steady viscous flow past a circular cylinder. Journal of Fluid Mechanics, 98:819-855, 1980.
- [7] J. Guerrero. Numerical simulation of the unsteady aerodynamics of flapping flight. PhD Thesis, University of Genoa, 2009.

Flow past a cylinder – From laminar to turbulent flow

Some experimental (E) and numerical (N) results of the flow past a circular cylinder at various Reynolds numbers

Reference	c _d – Re = 100	c _I – Re = 100	c _d – Re = 200	c ₁ – Re = 200
[1] Russel and Wang ^(N)	1.38 ± 0.007	± 0.322	1.29 ± 0.022	± 0.50
[2] Calhoun and Wang (N)	1.35 ± 0.014	± 0.30	1.17 ± 0.058	± 0.67
[3] Braza et al. (N)	1.386± 0.015	± 0.25	1.40 ± 0.05	± 0.75
[4] Choi et al. (N)	1.34 ± 0.011	± 0.315	1.36 ± 0.048	± 0.64
[5] Liu et al. (N)	1.35 ± 0.012	± 0.339	1.31 ± 0.049	± 0.69
[6] Guerrero (N)	1.38 ± 0.012	± 0.333	1.408 ± 0.048	± 0.725

 c_1 = lift coefficient, c_d = drag coefficient, Re = Reynolds number

^[1] D. Rusell and Z. Wang. A cartesian grid method for modeling multiple moving objects in 2D incompressible viscous flow. Journal of Computational Physics, 191:177-205, 2003.

^[2] D. Calhoun and Z. Wang. A cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions. Journal of Computational Physics. 176:231-275, 2002.

^[3] M. Braza, P. Chassaing, and H. Hinh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79-130, 1986.

^[4] J. Choi, R. Oberoi, J. Edwards, an J. Rosati. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224:757-784, 2007.

^[5] C. Liu, X. Zheng, and C. Sung. Preconditioned multigrid methods for unsteady incompressible flows. Journal of Computational Physics, 139:33-57, 1998.

^[6] J. Guerrero. Numerical Simulation of the unsteady aerodynamics of flapping flight. PhD Thesis, University of Genoa, 2009.