

Instituto de Matemática - IM/UFRJ Cálculo Diferencial e Integral IV - MAC248 1ª Prova - Escola Politécnica / Escola de Química - 28/05/2013

Questão 1: (2.0 pontos)

Quanto às séries abaixo pede-se:

- a. classificar em convergente ou divergente a série númerica $\sum_{n=2}^{+\infty} \frac{1}{n\sqrt{n^2-1}}$;
- b. classificar em condicionalmente convergente, absolutamente convergente ou divergente a série $\sum_{n=2}^{+\infty} (-1)^{n+1} \frac{1}{\ln(n)};$
- c. determinar o raio de convergência da série de potências $\sum\limits_{n=0}^{\infty}n!x^{n^2}.$

Observação: justifique todas as suas afirmações.

Solução:

- a. Sejam $a_n = \frac{1}{n\sqrt{n^2-1}}$ e $b_n = \frac{2}{n^2}$. Notemos que $0 < a_n \le b_n$ para todo $n \ge 2$. Como $\sum b_n$ é uma p-série para p = 2, a série $\sum b_n$ converge. Portanto, $0 < \sum a_n \le \sum b_n$ e também convergirá $\sum a_n$. A convergência absoluta decorre do fato de todos os termos a_n serem positivos.
- b. Comecemos por analisar a convergência absoluta. Para n suficientemente grande (por exemplo $n \ge 10$), $\frac{1}{\ln(n)} \ge \frac{1}{n}$. Usando que a série harmônica diverge $(\sum \frac{1}{n} = +\infty)$, a série $\sum \frac{1}{\ln(n)} \ge \sum \frac{1}{n} = +\infty$ diverge. Logo, $\sum_{n=2}^{+\infty} (-1)^{n+1} \frac{1}{\ln(n)}$ diverge em carater absoluto.

Façamos $a_n = \frac{1}{\ln(n)}$, $n = 2, 3, 4, \ldots$ Como $\ln(n) < \ln(n+1)$ e $\lim_{n \to +\infty} \ln(n) = +\infty$, segue que $a_n \ge a_{n+1}$ e $\lim_{n \to +\infty} a_n = 0$. Temos assim uma série alternada. Pelo teste de série alternada, a série $\sum (-1)^{n+1} \frac{1}{\ln(n)}$ é condicionalmente convergente.

c. Definamos $a_n = n!x^{n^2}$. Notemos que $\left|\frac{a_{n+1}}{a_n}\right| = \frac{(n+1)!|x|^{(n+1)^2}}{n!|x|^{n^2}} = (n+1)|x|^{2n+1}$. Para $|x| \ge 1$, $\lim_{n \to +\infty} \left|\frac{a_{n+1}}{a_n}\right| = 0$, enquanto que para |x| < 1, $\lim_{n \to +\infty} \left|\frac{a_{n+1}}{a_n}\right| = +\infty$ (compare com o assintota horizontal da função te^{-t}). O raio de convergência R é então R = 1.

Questão 2: (3.0 pontos)

Determine uma solução em série para o problema de valor inicial

$$\begin{cases} (1+x^2)y'' + xy' - 25y = 0\\ y(0) = 0, \quad y'(0) = 1, \end{cases}$$

e determine o raio de convergência da solução.

Solução:

O ponto x=0 é um ponto regular, então podemos supor que uma solução definida ao redor de 0 é da forma $y(x)=\sum_{n=0}^{\infty}a_nx^n$. Assim, substituindo-se as derivadas de y(x) na equação diferencial, obtemos

$$(2a_2 - 25a_0) + (6a_3 + a_1 - 25a_1)x + \sum_{n=2}^{\infty} \left[(n+2)(n+1)a_{n+2} + n(n-1)a_n + na_n - 25a_n \right] x^m = 0,$$

que nos dá as seguintes relações de recorrências

$$a_2 = \frac{25}{2}a_0$$
 $a_3 = 4a_1$
 $a_{n+2} = \frac{-(n^2 - 25)}{(n+2)(n+1)}a_n$, para $n \ge 2$.

Se y(0)=0 então $a_0=0$ e logo $a_2=a_4=a_6=\cdots=0$. Se y'(0)=1 então $a_1=1$ e

$$a_{3} = 4$$

$$a_{5} = \frac{-(9-25)}{20} \cdot 4 = \frac{16}{5}$$

$$a_{7} = \frac{-(25-25)}{7 \cdot 6} \cdot a_{5} = 0$$

$$a_{9} = a_{11} = \dots = 0.$$

Então, $y(x)=x+4x^3+\frac{16}{5}x^5$. Como a solução é polinomial, o raio de convergência é $R=+\infty$

Questão 3: (3.0 pontos)

Consideremos uma mola elástica fixada por uma de suas extremidades e que possa vibrar na vertical. Suponhamos que um corpo de massa m=1 quilograma esteja preso à extremidade inferior da mola, que a constante elástica da mola seja k=1 e que no instante t=0 o sistema seja submetido a uma força periódica $f(t)=\sin(2t)$. No instante t=1, o sistema massa-mola recebe por baixo um golpe brusco que comunica instantaneamente 5 unidades de momento ao sistema. Usando a segunda lei de Newton e o eixo y convenientemente posicionado, somos levados à seguinte equação do movimento y(t)

$$\frac{d^2y}{dt^2} + y = \sin(2t) + 5\delta(t-1).$$

Supondo as condições iniciais y(0) = y'(0) = 0, determine o movimento do sistema.

Solução:

A transformada de Laplace da equação diferencial nos fornece a seguinte equação:

$$s^{2}\mathcal{L}(y)(s) + \mathcal{L}(y)(s) = \frac{2}{s^{2} + 4} + 5e^{-s}$$

$$\mathcal{L}(y)(s) = \frac{2}{(s^{2} + 1)(s^{2} + 4)} + 5\frac{1}{s^{2} + 1}e^{-s}$$

$$= \frac{2}{3}\frac{1}{s^{2} + 1} - \frac{1}{3}\frac{2}{s^{2} + 4} + 5\frac{1}{s^{2} + 1}e^{-s}.$$

A solução y(t) é dada por $y(t) = \mathcal{L}^{-1}(\mathcal{L}(y))$. Portanto,

$$y(t) = \mathcal{L}^{-1}(\mathcal{L}(y))$$

$$= \frac{2}{3}\mathcal{L}^{-1}\left(\frac{1}{s^2+1}\right) - \frac{1}{3}\mathcal{L}^{-1}\left(\frac{2}{s^2+4}\right) + 5\mathcal{L}^{-1}\left(\frac{1}{s^2+1}e^{-s}\right)$$

$$= \frac{2}{3}\operatorname{sen}(t) - \frac{1}{3}\operatorname{sen}(2t) + 5u_1(t) \cdot \operatorname{sen}(t-1).$$

Questão 4: (2.0 pontos)

Determine os valores de α para os quais todas as soluções de

$$x^2y'' + \alpha xy' + (5/2)y = 0$$

tendem a zero quando x tende ao infinito.

Solução:

A equação diferencial $x^2y'' + \alpha xy' + \frac{5}{2}y = 0$ é uma Equação de Euler. Logo, se supusermos que a solução seja da forma $y(x) = x^r$, obtemos a equação característica

$$2r^2 + 2(\alpha - 1)r + 5 = 0.$$

As raízes da equação característica são dadas por

$$r_{+} = \frac{-(\alpha - 1) + \sqrt{(\alpha - 1)^{2} - 10}}{2}, \quad r_{-} = \frac{-(\alpha - 1) - \sqrt{(\alpha - 1)^{2} - 10}}{2}.$$

Caso 1. $r_+ \neq r_-$ são números reais distintos. Para que este caso ocorra devemos ter $(\alpha - 1)^2 - 10 > 0$. Portanto, devemos ter $\alpha > 1 + \sqrt{10}$ ou $\alpha < 1 - \sqrt{10}$ A solução geral no caso de raízes reais diferentes é

$$y(x) = C_1 x^{r_+} + C_2 x^{r_-}.$$

Ela tenderá a zero quando x tender ao infinito se, e somente se, $0 > r_+ > r_-$. Temos assim que

$$-(\alpha - 1) + \sqrt{(\alpha - 1)^2 - 10} < 0$$

-(\alpha - 1) - \sqrt{(\alpha - 1)^2 - 10} < 0.

Somando as duas inequações, obtemos $\alpha > 1$. A intersecção das três inequações é $\{\alpha \mid \alpha > 1 + \sqrt{10}\}$

Caso 2. r_+ e r_- são números reais iguais. Neste caso $\alpha=1+\sqrt{10}$ ou $\alpha=1-\sqrt{10}$ e as raízes são $r_+=r_-=r=\frac{-(\alpha-1)}{2}$. A solução geral é da forma

$$y(x) = (c_1 + c_2 \ln(x)) x^r.$$

A solução geral y(x) tenderá a zero quando x tender ao infinito se, e somente se, r < 0. Como r < 0 implica em $\alpha > 1$, obtemos $\alpha = 1 + \sqrt{10}$.

Cálculo Diferencial e Integral IV - MAC248

 $1^{\underline{a}}$ Prova - Escola Politécnica / Escola de Química - $28/05/2013 ({\rm continuação})$

Caso 3. $r_+ = \lambda + i\mu$ e $r_- = \lambda - i\mu$ são números reais complexos conjugados, em que $\lambda = \frac{-(\alpha-1)}{2}$ e $\mu = \frac{1}{2}\sqrt{1-(\alpha-1)^2}$. Para este caso $1-\sqrt{10}<\alpha<1+\sqrt{10}$. A solução geral da equação diferencial tem a forma

$$y(x) = (c_1 \cos(\mu \ln(x)) + c_2 \operatorname{sen}(\mu \ln(x))) x^{\lambda}.$$

Todas as soluções reais tendem para zero quando x tende para o infinito se, e somente se, $\lambda < 0$. Isto é, se $1 < \alpha < 1 + \sqrt{10}$.

A união dos três casos nos dá $\alpha > 1$.