Question-1

18F0139 M·Asad Assignment-co

1) (ambn/m zn).

Sol:
$$S \rightarrow AS$$

 $S_1 \rightarrow aS_1b1\lambda$
 $A \rightarrow aA1\lambda$

2) (ambropda/m+n=P+q)

3) (wE(a+b)* | w has twice as many b's as a's)

4) [uaws: u, we (a+b)*, |u|=|w|]

7)-

$$S \rightarrow aSa$$
 $S \rightarrow bSa$
 $S \rightarrow \lambda$

Sol:

L= [uvwv.u,v,we[a,b]; |u|=|w|=2]

Sol:

S -> AB

A -> aalablbalbb

B -> aBalbBblaAalbAb

aabbbb:

from:

$$S \rightarrow AB \mid \lambda$$
 $A \rightarrow \alpha B$
 $B \rightarrow SD$

Sol:

underlined Wodls are the final states.

314 11 11/11

S-aSbS/bSaS/2 is ambiguous?

Sol- grammer is said to be ambiguous only it there exists multiple lett or right most derivation on same string.

(et: take example string for test: S ⇒ abab using left most derivation

So, grammer is ambiguous

Question: 6

 $S \rightarrow AaB|aaB$ $A \rightarrow \lambda$ $B \rightarrow bbA|\lambda$

Sol:-

A LB axe Nullable

there fore Putting Value of A -> 1

S -> AaB aaB aB

B >> bbA/2/bb

 $A \rightarrow \lambda$ (1.1.) $e - \gamma_e$

·Now Putting value of B >> 2

S-> AaBlaaBlaBlAalaala

B -> bbAlbb

Removal of A as it dosen't exist.

S -aB | aaB | aB | a | aa | a

B -> bb | bb

Removing duplicates:

S→aB|aaB|a|aa

-> final grammer affect eliminating all h outsi Production

uestion: 7

S-alaABIC

A -> aB/2

B-Aa

 $C \rightarrow CCD$

D-> ddd

Eliminate all unit Production;

Sol:- here unit Production are

S → B, S → C

apply Transitive Property

S>B-Aa, S>C->CCD

Now

S-alaAlAalccD

A > ABIX

 $C \rightarrow CCD$

B>Aa

D > ddd

95 the final cyrammer.

Question-8

S→abab A→bablz B→BAalAlz

Sol:- Removing & Productions & variables > {A,B}

Removing A de l'arion Fill e partition de l'arion de l

S > abAB ab B, - V V

A-> bAB | bB

B -> BAa/A/X/Ba

RemovingB

S -> abAB/abB/abA/ab

A-> bAB| bB| bA|b

B-> B Aal A Bal Aala

Removing unit Production:

Removing: B > A

S-> abBlabAB labAlab

A > bAB | bAB | bB | bA | b

B -> bAB|bB|BAa|bA|b|Ba|Aala.

Converting to chomsky normal form:

Using $S_a \rightarrow a$, $S_b \rightarrow b$ $S \rightarrow S_a S_b A B | S_a S_b B | S_a S_b A | S_a S_b$ $A \rightarrow S_b A B | S_b B | S_b A | S_b$ $B \rightarrow B A S_a | S_b A B | S_b B | S_b A | S_b | B S_a | A S_a | S_a$ $S_a \rightarrow a$ $S_b \rightarrow b$

Now adding additional variables

 $V \rightarrow AB$, $U \rightarrow S_b V$, $X \rightarrow S_b V$, $X \rightarrow S_b B$, $Y \rightarrow S_b A$ $Z \rightarrow AS_q$

S-> SaU/SaX/SaY/SaSb

A -> SbV/SbA/SbB/SB

B -> BZ/ASa/BSa/Sa/SbV/SbA/SbB/Sb Sa -> a

Sb >> b

Converted to chomsky Noxmalform:

$$S \rightarrow aA \mid aBB$$

$$A \rightarrow aaA \mid x$$

$$B \rightarrow bB \mid bbc$$

$$C \rightarrow B$$

Sol: Removing > Production A->>

$$S \rightarrow aA|aBB|a$$

 $A \rightarrow uaA|aa$
 $B \rightarrow bB|bbc$
 $C \rightarrow B$

$$S \rightarrow \alpha A | \alpha BB | \alpha$$
 $A \rightarrow \alpha \alpha A | \alpha \alpha$
 $B \rightarrow bB | bbC$
 $C \rightarrow bB | bbC$

Removing useless Production

(), B:- As its a LOOP

(S) a A la

A → caA laa → final resultant grammer.

- a) $S \rightarrow SS|AAA|X$ $A \rightarrow aA|Aa|b$ $L = \{w, w \in (a+b)^{*}\}$
 - b) left Most derivation of "abbaba"

Sal:

S-AAA

S-aAAA

S-> a SAA

S-abAgA

S-abbaA

S-abba Aa

S-abbaba

Using S > AAA

using A -> aA

Using A >b

Using A -> Ab

Using A >b

Using A -> Aa

Wing A>b

c)

Sol: Sis said to be ambiguous if it has multiple left or Right derivation tree on specific String

Using: abbab: - Using left darivation tree

So, grammer is ambilgous.

S→TbT T→aTb|bTa|TT|2 String:- abbabab

Bol: Left Most derivation:

SITOT

Using S-> TJT

S->aTbbT

Using T-aTb

S-> asbatb

using 7-32

S -> abbab Tab

Using T->bTa

S-abbabab

using T->>

Tree:

