DIFFERENTIAL GEOMETRY: A COMPLETE GUIDE

Subject

April 30, 2021

ELIJAH THOMPSON, PHYSICS AND MATH HONORS

Solo Pursuit of Learning

Contents

I	Euclidean Geometry	2
	1 Postulates 1.1 Euclid's Postulates	3 3 4
	2 Tangent and Normal Spaces 2.1 Notation	6 6 7
II	Manifold Theory	9
	3 Manifold Definitions and Types	10
	4 Smooth Maps	11
	5 Immersions, Submersions, and Submanifolds	12
	6 Tangent Bundles	13
	7 Differential Forms	14
	8 Integration on Manifolds	15
	9 Stoke's Theorem	16

Part I Euclidean Geometry

Postulates

1.1 Euclid's Postulates

Theorem: Euclid's Postulates

- 1. To draw a straight line, from any point to any point.
- 2. To produce a finite straight line continuously in a straight line.
- 3. To describe a circle with any center and distance.
- 4. That all right angles are equal to another.
- 5. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles [in sum], then the two straight lines if produced indefinitely meet in that side on which the angles less than right angles.

Theorem 1.1: Playfair's Postulate

This postulate is equivalent to Euclid's fifth postulate: Given straight line m and point P not on m, there exists a unique line n that contains P and is parallel to m.

1.1.1 Hyperbolic Geometry Introduction

Definition 1.1.1: Hyperbolic Plane

We define the hyperbolic plane to be the set

$$\mathcal{H} := \{ (x, y) \in \mathbb{R}^2 : y > 0 \}$$
 (1.1.1)

The hyperbolic metric is defined as

$$d_{\mathcal{H}}(\gamma) = \int_{\gamma} \frac{\sqrt{dx^2 + dy^2}}{y} \tag{1.1.2}$$

where γ is a curve.

Proposition 1.1.1

For $\alpha < \beta$ *we have that*

$$d_{\mathcal{H}}(\gamma_{Q,P}) = \ln \left[\frac{\csc \beta - \cot \beta}{\csc \alpha - \cot \alpha} \right]$$
 (1.1.3)

Moreover, if we had a line segment from (a, y_1) to (a, y_2) , the hyperbolic length would be

$$d_{\mathcal{H}}(l) = \int_{l} \frac{1}{y} \sqrt{\frac{dx^{2}}{dt} + \frac{dy^{2}}{dt}} dt = \int_{y_{1}}^{y_{2}} \frac{1}{t} dt = \ln\left(\frac{y_{2}}{y_{1}}\right)$$
(1.1.4)

Proposition 1.1.2

Euclidean angles are the same as hyperbolic angles.

What is a line?

→ A line is a *geodesic*, which is the shortest path with respect to the metric of the geometry (the distance function).

Theorem 1.1.3

In the hyperbolic plane the geodesics are either vertical lines (rays from the Euclidean respective), or semi-circles, terminating asymptotically to the x-axis.

Remark 1.1.1

Given a circle with center (h,k) above the x-axis in the Euclidean plane, the image in the hyperbolic plane is a circle centered at (H,K) with $H=\sqrt{k^2-r^2}$, $R=\frac{1}{2}\ln\left(\frac{k+r}{k-r}\right)$, and K=k.

Remark 1.1.2

The hyperbolic half-plane satisfies Euclid's first four axioms, but the fifth (e.i Playfair's Postulate) is not satisfied in the hyperbolic half-plane.

Tangent and Normal Spaces

2.1 Notation

Remark 2.1.1

In \mathbb{R}^n we shall write $(p+q)^i=p^i+q^i$ (component wise addition) with i as an index and $(cp)^i=cp^i$. For $p\in\mathbb{R}^n$ we have

$$p = (p^{1}, p^{2}, ..., p^{n})$$

$$= p^{1}(1, 0, ..., 0) + p^{2}(0, 1, ..., 0) + ... + p^{n}(0, ..., 0, 1)$$

$$= \sum_{i=1}^{n} p^{i}e_{i}$$

We define the Kroneker Delta to be

$$\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
 (2.1.1)

Remark 2.1.2

There exists a correspondence between points and vectors based at the origin (0,0,...,0).

2.2 Definitions and Examples

Definition 2.2.1

The tangent space to \mathbb{R}^n at a point $p \in \mathbb{R}^n$ is defined as

$$T_p \mathbb{R}^n := \{p\} \times \mathbb{R}^n = \{(p, v) : v \in \mathbb{R}^n\}$$
 (2.2.1)

Then, the tangent bundle is defined as

$$T\mathbb{R}^n := \bigcup_{p \in \mathbb{R}^n} T_p \mathbb{R}^n \tag{2.2.2}$$

Remark 2.2.1

We give $T_p\mathbb{R}^n$ a vector space structure by defining an addition

$$(p, v) + (p, w) := (p, v + w)$$
 (2.2.3)

for all $v, w \in \mathbb{R}^n$, and we define scalar multiplication by

$$c(p, v) = (p, cv) \tag{2.2.4}$$

for all $c \in \mathbb{R}$. We can also define a standard inner product on $T_p\mathbb{R}^n$ by

$$(p, v) \cdot (p, w) = v \cdot w = v^T w \tag{2.2.5}$$

as well as a norm

$$||(p, v)|| = ||v|| \tag{2.2.6}$$

We say that $(p, v), (p, w) \in T_P \mathbb{R}^n$ are orthogonal if

$$(p, v) \cdot (p, w) = 0 = v \cdot w$$
 (2.2.7)

Given a subspace $S \subset T_p\mathbb{R}^n$, we have the orthogonal complement of S

$$S^{\perp} := \{ (p, w) \in T_p \mathbb{R}^n : (p, w) \cdot (p, v) = 0, \forall (p, v) \in S \}$$
 (2.2.8)

Definition 2.2.2

For a curve C, we can define the tangent space at a point p on C by

$$T_pC := \operatorname{span}\{(p, v)\} \subset T_p\mathbb{R}^n \tag{2.2.9}$$

where (p, v) is tangent to C at p. Then, we have that

$$(T_pC)^{\perp} = normal \ space \ to \ C \ at \ p \tag{2.2.10}$$

For n = 2 we get the normal line, for n = 3 we get the normal plane, etc.

Example 1

 $\alpha(t) = (t, t^2), \ p = \alpha(1) = (1, 1).$ Then $\alpha'(1) = \langle 1, 2 \rangle$, so $v = (p, \langle 1, 2 \rangle)$. This parametrizes a parabola in \mathbb{R}^2 .

Part II Manifold Theory

Manifold Definitions and Types

Smooth Maps

Immersions, Submersions, and Submanifolds

Tangent Bundles

Differential Forms

Integration on Manifolds

Stoke's Theorem