Email Spam Detection using Machine Learning

A lightweight, web-based spam detection system that classifies email content as **Spam** or **Not Spam** using a trained ML model. Built with Python, Flask, and Scikit-learn, this project is beginner-friendly and suitable for showcasing ML + web integration.

☐ Problem Statement

Spam emails reduce productivity and can lead to security threats. The goal is to build a machine learning model that can **automatically classify email messages** as spam or not spam (ham).

Objective

- Build a spam email classifier using **Naive Bayes**
- Preprocess and vectorize text data using **TF-IDF**
- Evaluate the model for **high accuracy (90%+)**
- Create a user-friendly **web interface using Flask**
- Present results with a clean and modern UI (Dark Mode)

★□ Tech Stack

■ Project Structure

```
EmailSpamDetection/
 app.py
                     # Flask web app
 model trainer.py
                     # ML training script
- model.pkl
                    # Trained ML model
 vectorizer.pkl
                    # TF-IDF vectorizer
 index.html
                     # Dark mode UI (no templates folder)
 spam.csv
                    # Dataset (from Kaggle)
- requirements.txt
                    # Python dependencies
 README.md
                    # Project documentation
```

Dataset

Dataset used: [SMS Spam Collection

Dataset](https://www.kaggle.com/datasets/uciml/sms-spam-collection-

dataset)

- Format: CSV

- Columns: `label` (spam/ham), `text` (email content)

Model Pipeline

- 1. Load and preprocess data
- 2. Lowercase, remove stopwords (NLTK)
- 3. Convert to TF-IDF vectors
- 4. Train **Multinomial Naive Bayes**
- 5. Evaluate using accuracy, precision, recall
- 6. Save model and vectorizer using 'pickle'

Install dependencies

pip install -r requirements.txt

Or manually:

pip install pandas scikit-learn nltk flask

Train the model (creates model.pkl, vectorizer.pkl)

python model_trainer.py

Run the web app

python app.py