

#### **Overview of RMACC Summit**

- Joel Frahm
- Joel.Frahm@Colorado.Edu
  - www.rc.colorado.edu
- Slides: <a href="https://github.com/ResearchComputing/CU\_DENVER\_HPC\_2019">https://github.com/ResearchComputing/CU\_DENVER\_HPC\_2019</a>





### **Before We Begin**

- Goals
  - Inform people about RC resources, expectations, etc.
  - Reduce user frustrations, questions
  - Avoid misunderstandings, lost time, lost work
  - Inform users about best practices
- Things to take note
  - Confusing, ambiguous, highly nuanced concepts
  - Common mistakes or frustrations
  - Best Practices
- Good questions to ask
  - Why? Questions
  - If a question is said to be covered later feel free to re-ask if it's not answered to your satisfaction.





### **Outline**

- What is RC?
  - Resources and services/support
  - Summit overview
- Steps to get access to our systems
  - Accounts
  - Two-factor authentication
  - Logging in
- Navigating our systems
  - Blanca
  - Petalibrary
- Summit (and other RC cluster) New user
  - Allocations
  - Storage spaces
  - Data transfer Globus
  - Software





# What is Research Computing?

- Provide services for researchers that include:
  - Large scale computing
  - Data storage
  - High speed data transfer
  - Data management support
  - Consulting
  - Training
- We are likely best known for:
  - Summit Supercomputer
  - PetaLibrary storage





### What Would I Use Summit For?

- Research Computing is more than just Summit
- What would you use Summit For?
  - Solving large problems that require more:
    - Memory than you have on your personal computer
    - Cores/nodes/power than you have on your personal computer
  - High performance GPU computing
  - High memory jobs
  - Visualization rendering
- Not a place for:
  - Large data storage





# Hardware - Summit Supercomputer

- 500+ compute nodes (450 Intel Xeon Haswell general compute nodes)
- 24 cores per "shas" (general compute) node, different core counts for other node types
- 12,000+ total cores
- Omni-Path interconnect
- 1.2 PB scratch storage
- GPFS Scratch File system
- Allocation: 67% CU, 23% CSU, 10% RMACC



# Additional Types of Summit Compute Nodes

- 10 Graphics Processing Unit (GPU) Nodes
  - NVIDIA Tesla K80 (2/node)
- 5 High Memory Nodes
  - 2 TB of memory/node, 48 cores/node
- Phi Nodes
  - 20 nodes
  - Intel Xeon Phi





### Getting an RC Account

- UCD / Anschutz Users:
  - Email <u>rc-help@colorado.edu</u> and we'll guide you through the process
  - CC your local RMACC representative, <u>NICHOLAS.RAFAELS@CUANSCHUTZ.EDU</u>
     (or we'll add him to the cc list after we get your email)
  - There is a form for grant supported projects using the system Nicholas will link you to
  - Light usage for learning/exploration of the system is a reasonable use case.





#### **Two-Factor Authentication**

- Provides an extra level of authentication
  - We are outside the firewall!
  - Valuable resources
  - Inviting, high-profile target
  - Lost time investigating/fixing and damage to our reputation if compromised
- Duo
  - Most users use the Duo smartphone app
  - "Phone Call" or Passcode are alternatives





#### **Duo Authentication**

- For RMACC users, this is handled by the XSEDE SSO (Single Sign On)
- Most users will use the "Push" smartphone app
  - Make sure you have a good data network connection if you are having trouble authenticating.
  - Make sure your WiFi is working or use 4G
- Duo accounts usually expire if left unused for 6-12 months
- Purged accounts will need to be restored by XSEDE





# Logging In

 It's important to note that you are NOT logging into any specific resource, Summit, etc.

- When you log in, you land on our login nodes
  - RC users have used the same hostname to log in and accessed the same non-scratch storage for over 9 years and 5 clusters
- From there, you can access our other resources



### **Accessing RC Resources**

- https://curc.readthedocs.io/en/latest/access/rmacc.html
- ssh -l <your-xsede-username> login.xsede.org
- ssh <your-xsede-username>@login.xsede.org
- Enter your XSEDE portal password
- Select an option for Duo
- Enter a passcode or select one of the following options:
- 1. Duo Push to XXX-XXX-XXXX
- 2. Phone call to XXX-XXX-XXXX
- your Duo app or Phone Call will alert you to confirm the login
- SSH to RC: gsissh rmacc-summit





### **Navigating our Systems**

- Now that you've logged in, now what?
  - What are the different node types we have?
  - What are the different storage spaces?
    - What should I be putting in these storage spaces?
  - How do I transfer data around?
  - How do I deal with software?

#### **Blanca**

- If you are a new Blanca user you need an RC account, and we need to know what resources to connect you to.
- To run jobs as a Blanca user, once you've logged into a login node, load the Blanca slurm module

module load slurm/blanca

Use --qos=blanca-<group-identifier> for high priority access --qos=blanca for low-priority access

- Only certain users have access to Blanca paid service
- If you are unsure, you can ask your advisor or RC





### **PetaLibrary**

- To access the PetaLibrary, you login in to one our RC's login nodes as normal
- Then you cd to either /work/<groupname> or /archive/<groupname>, depending on your PetaLibrary service
  - <groupname> is the name set for your group when you set up the PetaLibrary service
  - You do not include the <>
- Only certain users have access to PetaLibrary paid service
- If you are unsure, you can ask your advisor or RC
  - But likely if you are unsure you don't have access





#### **Using Summit (and other RC clusters)**



#### **Allocations**

- You will need a compute time allocation to use any of our compute resources.
- Blanca allocations are part of the buy-in
- New RMACC users should be added to the Summit General allocation when you sign up
- If this does not seem to be the case, to request access please email <u>rc-help@colorado.edu</u> and ask for access to the General allocation
- If you plan heavy usage we can discuss an allocation to get access to a larger "share" of Summit.





#### What is Fair Share?

- Fair share scheduling uses a complex formula to determine priority in queue
- Looks at load for each user and each QOS and balances utilization to fairly share resources
  - Involves historical use by user plus how long job has been in the queue
- System will first look at weighted average utilization of user mostly over the last 4 weeks
- Then compare it to the fair share target percentage of a user





## Fair Share Target Percentage

- The target percentage depends on your priority based on your project proposal
- Everyone not associated with a project shares a target percentage of 13% (20% of the CU fraction)
  - No guaranteed level per user
- If you are under (over) your target percentage (based on a 4 week average) your priority is increased (decreased)
- Reminder: this all only impacts pending jobs
- If no other pending jobs and enough resources are available then your job will run regardless of your previous usage





### **Different Node Types**

- Login nodes
  - Four virtual machines
  - This is where you are when you log in
  - No heavy computation, interactive jobs, or long running processes
  - Great for script or code editing
  - Also Job submission, checking on jobs, looking at output
- Compile nodes
  - Where you compile code, install packages, etc.
  - Explore the Summit software environment
- Compute/batch nodes
  - This is where jobs that are submitted through the scheduler run
  - Intended for heavy computation





# **Storage Spaces**

#### Home Directories

- /home/\$USER
- Not for direct computation
- Small quota (2 GB)
- Backed up

#### \$PROJECT Space

- /projects/\$USER
- Mid level quota (250 GB)
- Large file storage
- Backed up

#### Scratch Directory

- /scratch/summit/\$USER
- 10 TB
  - Can ask for more if needed
- Files purged around 90 days





# **What Belongs Where?**

#### /home

- Scripts
- Code
- Small, important files/directories
- Inappropriate for sharing files with others
- Inappropriate for job output

#### /projects

- Code/files/libraries
- Software you are installing
- Mid-level size input files
- Appropriate for sharing files with others
- Inappropriate for job output
- /scratch/summit
  - Output from running jobs
  - Large files/datasets
  - Appropriate for sharing files with others
  - THIS IS NOT APPROPRIATE FOR LONG TERM STORAGE





### **Transferring Data**

- Globus is Research Computing's preferred method of data transfer for larger files or datasets
- Designed with researchers in mind
- End points between computers make for efficient data transfer with an easy to use interface
  - Endpoints are different locations that data can be moved to/from
  - Personal or multi-user
- rsync and sftp through the login nodes is good for small transfers – transfers that take a few minutes.
  - This may require an SSH tunnel from your host or a firewall exception.





## **Setting Up Globus**

- Create an account at Globus.org
- Make your personal computer an endpoint if you want
  - Not needed if you are transferring between two other endpoints, like a repository and RC
- Transfer data
  - www.globus.org





### **Software**

- Common software is available to everyone on the systems
- Can install your own software
  - It is best if you are responsible for support
  - We are happy to assist
- Research Computing uses modules to manage software
  - You load modules to prepare your environment for using software
    - Modules set any environment variables, paths, etc.
    - Set environment so application can find appropriate libraries, etc.





# **Important Things to Know About Modules**

- You need to be on a compile node to browse the modules
- Some modules might require a specific hierarchy to load
  - For some modules, you may need to specify a specific version
    - For example, module load R/3.3.0
  - For other modules, you may be able to be more generic
    - For example, module load matlab
- Some modules may require you to first load other modules that they depend on
- To find dependencies for a module, type module spider <package>
- To find out what software is available, you can type module avail
- To set up your environment to use a software package, type module load <package>/<version>





### **Questions?**

- Presenter: Joel Frahm
- Email <u>rc-help@colorado.edu</u>
- Twitter: @CUBoulderRC
- Link to survey on this topic:
  <a href="http://tinyurl.com/curc-survey18">http://tinyurl.com/curc-survey18</a>

#### Slides:

https://github.com/ResearchComputing/CU\_DENVER\_HPC\_2019



