Normalization

- 1. Given the relation shown below
 - a. List all non-trivial functional dependencies satisfied by the relation shown below.
 - b. Give all candidate keys of this relation.

A	В	C
a1	b1	c1
a1	b1	c2
a2	b1	c3
a2	b1	c4

2. Consider the following relation:

CAR_SALE(Car#, Date_sold, Salesman#, Commission%, Discount_amt) Assume that a car may be sold by multiple salesmen, and hence {Car#, Salesman#} is the primary key. Additional dependencies are

Date sold → Discount amt

Car# → Data sold

Salesman# → Commission%

- a) Based on the given primary key, is this relation in 1NF, 2NF, or 3NF? Why or why not?
- b) How would you successfully normalize it completely? Show and explain each decomposition step and verify the decomposition is lossless or not.

- 3. Consider the relation R (A,B,C,D,E, F, G, H, I, J) with the following FDs: $AB \rightarrow C$, $BD \rightarrow EF$, $AD \rightarrow GH$, $A \rightarrow I$, $H \rightarrow J$
 - a) What is the candidate key of R?
 - b) Explain why the relation is not in 2NF.
- c) Normalize it to 2NF, 3NF, and BCNF. Show and explain each decomposition step and verify the decomposition is lossless or not.

4. Consider the following relation for published books: BOOK (Book_title, Author_name, Book_type, List_price, Author_affil, Publisher).

Suppose the following dependencies exist:

Book_title→ Publisher, Book_type

Book_type → List_price

Author_name → Author_affil

- a. What normal form is the relation in? Explain your answer.
- b. Apply normalization until you cannot decompose the relations further. Show and explain each decomposition step and verify the decomposition is lossless or not.