

22 - 23

THE

GATEWAY

GUIDE DE REVISION

Une compile des anciennes épreuves, TDs et des ressources de révision pour assurerer une révision rapide pour les evaluations (DS, examens de fin de semestre).

MODULE: PROGRA

PROGRAMMATION PROCEDURALE

NIVEAU:

THE GATEWAY

LES ÉNONCÉS FNA FOUCATION

together we learr

Examen: Mathématiques de base 1

Session : **Principale** Semestre : **1**

(Documents et calculatrices non autorisés)

Classes :1A Nombre de pages : 2

Date: 03/01/2017 Heure: 11h15 Durée: 1h30

Exercice (1): (9pts)

I. Soit $A \in \mathbb{R}_+^*$ et f une fonction définie sur $[0, +\infty[$ par :

$$f(x) = 3 - \frac{A}{x+1}$$

a. Dresser le tableau de variation de f. (1pt)

b. Selon la valeur de A, discuter la stabilité de l'intervalle $[0, +\infty[$ par f. (1pt)

On suppose 0 < A < 3.

c. Montrer que l'équation f(x) = x admet une seule solution, notée α , dans l'intervalle $[0, +\infty[$. (1pt)

Discuter le signe de la fonction $x \mapsto f(x) - x$.

d. Montrer que si $x \in [0, \alpha]$, alors $f(x) \in [0, \alpha]$. (0.5pt)

e. Montrer que si $x \in [\alpha, +\infty[$, alors $f(x) \in [\alpha, +\infty[$. (0.5pt)

II. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 \ge 0$ et pour tout $n \in \mathbb{N}$,

$$u_{n+1} = f(u_n)$$

- 1. Pour $u_0 = 0$,
 - a. Montrer que $\forall n \in \mathbb{N}, 0 \le u_n \le \alpha$. (1pt)

b. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est croissante. (0.5pt)

c. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite. $(\mathbf{1pt})$

2. Pour $u_0 = \alpha + 1$,

a. Montrer que $\forall n \in \mathbb{N}, \alpha \leq u_n$. (1pt)

b. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante. $(\mathbf{0}.\mathbf{5pt})$

c. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite. $(\mathbf{1}pt)$

Exercice (2): (5pts)

Soit $f: \mathbb{R} \to \mathbb{R}$ une application. Écrire les propositions ci-dessous ainsi que leur négation en utilisant des quantificateurs et (ou) des connecteurs logiques :

- 1. f est croissante.
- 2. f est paire.
- 3. f est T-périodique.

- 4. f est constante.
- 5. f est majorée.

Exercice (3): (6pts)

- 1. Trouver une solution particulière $(x_0, y_0) \in \mathbb{Z}^2$ de l'équation 13x + 5y = 3.
- 2. Trouver l'ensemble des solutions de l'équation 13x + 5y = 3 dans \mathbb{Z}^2 .
- 3. Déterminer le reste de la division euclidienne de 2^{2017} par 5 et de 2^{2017} par 13.
- 4. Déduire le reste de la division euclidienne de 2²⁰¹⁷ par 65.

together we learn

JUIN 2017

EXAMEN

Session : Principale	Rattrapage
----------------------	------------

Module : Mathématiques de base I

Enseignants: UP-Maths

Classe(s): 1A

Documents autorisés : OUI NON Nombre de pages : 2

Calculatrice autorisée : OUI NON Internet autorisé : OUI NON Date : 12/06/2017 Heure : 10h30 Durée : 1h30

$$f(x) = e^x - 1.$$

- (a) (0.5 points) Étudier le sens de variation de f.
- (b) (1 point) Étudier le signe de la fonction g définie par g(x) = f(x) x, $\forall x \in \mathbb{R}$.
- (c) (0.5 points) En déduire que x = 0 est l'unique solution de l'équation f(x) = x.
- II. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 \in \mathbb{R}, \\ u_{n+1} = f(u_n), \ \forall n \in \mathbb{N}^*. \end{cases}$$

- (a) (1 point) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie et que $\forall n\geq 1,\,u_n>-1.$
- (b) (1 point) Étudier la monotonie de la suite $(u_n)_{n\in\mathbb{N}}$.
- (c) (1 point) Étudier la convergence de la suite $(u_n)_{n\in\mathbb{N}}$ si : \mathbb{R}^n We let \mathbb{R}^n
 - 1. $u_0 = 0$,
 - $2. u_0 < 0,$
 - 3. $u_0 > 0$.

- P. Pour toute porte ouverte du bâtiment B, il existe une clé qui l'ouvre.
- Q. Il existe une clé qui ouvre toutes les portes du bâtiment B.
- (a) (1 point) Donner la valeur de vérité de la proposition : $P \Rightarrow Q$.

JUIN 2017

- (b) (3 points) En déduire à l'aide d'une table de vérité les valeurs de vérité des propositions suivantes :
 - 1. $Q \Rightarrow P$.
 - 2. $P \Leftrightarrow Q$.
 - 3. $\overline{P} \Rightarrow \overline{Q}$.
 - 4. $\overline{Q} \Rightarrow P$.

- (a) (3 points) Un cadenas possède un code à 3 chiffres, sachant que chacun de ces chiffres peut varier de 1 à 9 :
 - Combien y a-t-il de codes possibles?
 - Combien y a-t-il de codes se terminant par un chiffre pair?
 - Combien y a-t-il de codes contenant au moins un chiffre 4?
 - Combien y a-t-il de codes contenant exactement un chiffre 4?
- (b) (3 points) Dans cette question on souhaite que le code comporte obligatoirement trois chiffres distincts.
 - Combien y a-t-il de codes possibles?
 - Combien y a-t-il de codes se terminant par un chiffre impair?
 - Combien y a-t-il de codes comprenant le chiffre 6?

together we learn

EXAMEN

Semestre : 1 2

Session : Principale Rattrapage

Module : Mathématiques de base I

Enseignants: UP-Maths

Classe(s): 1A

Documents autorisés : OUI NON Nombre de pages : 2

Calculatrice autorisée : OUI NON Internet autorisé : OUI NON Date : 04/01/2018 Heure : 15h30 Durée : 1h30

Partie I:

On considère la fonction f, définie, sur son domaine de définition \mathcal{D}_f , par :

$$f(x) = \arccos\left(\frac{1-x^2}{1+x^2}\right).$$

- (a) (1 point) Montrer que $\forall x \in \mathbb{R}, \frac{1-x^2}{1+x^2} \in [-1,1]$ et en déduire \mathcal{D}_f .
- (b) (1 point) Déterminer \mathcal{D}_f^d , le domaine de dérivabilité de f.
- (c) (1 point) Montrer que

$$f'(x) = \begin{cases} \frac{-2}{1+x^2}, & \text{si } x < 0; \\ \frac{2}{1+x^2}, & \text{si } x > 0. \end{cases}$$

(d) (1 point) Tracer le tableau de variation de f.

Partie II:

On considère maintenant la fonction g, définie, sur son domaine de définition \mathcal{D}_g , par :

$$g(x) = f(x) - x$$
. together we learn

- (a) (0.5 points) Déterminer \mathcal{D}_q .
- (b) (1.5 points) Déterminer \mathcal{D}_g^d , le domaine de dérivabilité de g et déterminer l'expression de $g'(x), \ \forall x \in \mathcal{D}_g^d$.
- (c) (1 point) Tracer le tableau de variation de g.
- (d) (1 point) Déduire de la question (c) :
 - i) L'équation g(x)=0 admet deux solutions : 0 et $\alpha>1$. Justifier vos réponses.
 - ii) Le signe de g(x), $\forall x \in \mathcal{D}_g$.

Partie III:

On considère la suite
$$(U_n)_{n\geq 0}$$
 définie par :
$$\begin{cases} U_0 \geq 0 \\ U_{n+1} = \arccos\left(\frac{1-U_n^2}{1+U_n^2}\right) \end{cases}$$

(a) (2 points) Étudier, selon la valeur de U_0 , la monotonie de la suite $(U_n)_{n\geq 0}$.

JUIN 2018

(b) (1 point) Prouver que pour tout $U_0 > 0$ la suite $(U_n)_{n \ge 0}$ converge vers α .
Exercice 2:
(P_1) : Si l'utilisateur appuie sur la touche OK, alors le programme ne se plante pas.
(P_2) : Le fichier est effacé si le programme se plante ou l'utilisateur appuie sur la touche Cancel.
(P_3) : Si l'utilisateur n'appuie pas sur les deux touches OK et Cancel en même temps alors le fichier n'est pas effacé si l'utilisateur appuie sur la touche OK.
En considérant les propositions suivantes :
p: l'utilisateur appuie sur la touche Cancel.
q: l'utilisateur appuie sur la touche OK.
\mathbf{r} : le programme se plante.
s : le fichier est effacé.
(a) (1.5 points) Exprimer les propositions P_1 , P_2 et P_3 en fonctions des propositions p, q, r et s et des connecteurs logiques.
(b) (1 point) Donner la contraposée de P_1 .
(c) (1 point) Donner la réciproque de P_2 .
(d) (1 point) Donner la négation de P_3 .
(e) (0.5 points) Supposons maintenant que P_1 , P_2 et P_3 sont vraies. Que se passe-t-il si l'utilisateur appuie sur les touches Cancel et OK en même temps?
Exercice 3:

Quel est la somme minimale, en dinars, que la vieille peut en bénéficier ?

Bon travail.

École Supérieure Privée d'Ingénierie et de Technologies

Session : Principale Examen de Mathématiques de Base I Semestre :1

Classes : lère année <u>Documents et calculatrices non autorisés</u> Nombre de pages : 2

Date: 10/01/2019 Heure: 13h30 Durée: 1h30

Exercice 1 (6.5 points)

Soit f une fonction définie par

$$f(x) = \arcsin(x) + \arcsin(\frac{x}{2})$$

1. (0.5 pt) Déterminer D_f le domaine de définition de f.

2. (0.5pt) Etudier la parité de f.

3. (1pt) Déterminer D_f^d le domaine de dérivabilité de f et calculer sa dérivée.

4. (1pt) Tracer le tableau de variation de f.

5. (1pt) Montrer que l'équation $f(x) = \frac{\pi}{2}$ admet une seule solution x_0 dans [0,1].

6. a (0.5 pt) Montrer que

$$cos(arcsin(x)) = \sqrt{1-x^2}, \quad \forall x \in [-1,1]$$

b (1pt) Calculer cos(f(x)), pour tout $x \in D_f$.

c (1pt) Déduire que $x_0 = \sqrt{\frac{4}{5}}$.

Rappel: cos(a+b) = cos(a)cos(b) - sin(a)sin(b)

Exercice 2 (8 points)

Soit G un graphe non orienté de sommets A, B, C et D défini par sa matrice d'adjacence

$$M = \left(\begin{array}{cccc} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{array}\right)$$

1. a (0.5pt) Représenter le graphe G.

b (1pt) Ce graphe est-il planaire? (Justifier la réponse)

c (1pt) Donner deux autres propriétes de ce graphe.

2. a (1pt) Calculer M².

- entre
- b (1pt) En déduire le nombre de chaines de longueur 2 entre les sommets A et B et entre le sommet A et lui même.
- 3. a (1pt) Trouver deux réels α et β tels que

$$M^2 = \alpha M + \beta I_4$$

avec I_4 la matrice identité dans $M_4(\mathbb{R})$.

- **b** (1pt) En déduire que M est inversible et donner M^{-1} .
- 4. Soit (S) le système suivant

$$(S): \left\{ \begin{array}{l} y+z+t=-1,\\ x+z+t=2,\\ x+y+t=3,\\ x+y+z=-\frac{1}{2}. \end{array} \right.$$

Résoudre (S) dans \mathbb{R}^4 . (1.5pts)

Exercice 3 (5.5 points)

Soit n un nombre entier non nul. On pose a = 4n + 3 et b = 5n + 2 et d = pgcd(a, b).

- 1. (1.5pts)Donner la valeur de d dans les cas suivants: n = 1, n = 15 et n = -11.
- 2. (1pt) Calculer 5a 4b et en déduire que d = 1 ou d = 7.
- 3. Supposons maintenant que d=7.
 - (a) (0.5pt) Vérifier que $\exists k \in \mathbb{Z}$ tel que 4n + 3 = 7k et $\exists k' \in \mathbb{Z}$ tel que 5n + 2 = 7k'.
 - (b) (1pt)Déterminer l'ensemble des couples d'entiers (m, k) tels que 4m + 3 = 7k.
 - (c) (1pt)Déterminer l'ensemble des couples d'entiers (m, k') tels que 5m + 2 = 7k'.
 - (d) (0.5pt)En déduire la valeur de r où r est le reste de la division euclidienne de n par 7.

- together we learn

- entre
- b (1pt) En déduire le nombre de chaines de longueur 2 entre les sommets A et B et entre le sommet A et lui même.
- 3. a (1pt) Trouver deux réels α et β tels que

$$M^2 = \alpha M + \beta I_4$$

avec I_4 la matrice identité dans $M_4(\mathbb{R})$.

- **b** (1pt) En déduire que M est inversible et donner M^{-1} .
- 4. Soit (S) le système suivant

$$(S): \left\{ \begin{array}{l} y+z+t=-1,\\ x+z+t=2,\\ x+y+t=3,\\ x+y+z=-\frac{1}{2}. \end{array} \right.$$

Résoudre (S) dans \mathbb{R}^4 . (1.5pts)

Exercice 3 (5.5 points)

Soit n un nombre entier non nul. On pose a = 4n + 3 et b = 5n + 2 et d = pgcd(a, b).

- 1. (1.5pts)Donner la valeur de d dans les cas suivants: n = 1, n = 15 et n = -11.
- 2. (1pt) Calculer 5a 4b et en déduire que d = 1 ou d = 7.
- 3. Supposons maintenant que d=7.
 - (a) (0.5pt) Vérifier que $\exists k \in \mathbb{Z}$ tel que 4n + 3 = 7k et $\exists k' \in \mathbb{Z}$ tel que 5n + 2 = 7k'.
 - (b) (1pt)Déterminer l'ensemble des couples d'entiers (m, k) tels que 4m + 3 = 7k.
 - (c) (1pt)Déterminer l'ensemble des couples d'entiers (m, k') tels que 5m + 2 = 7k'.
 - (d) (0.5pt)En déduire la valeur de r où r est le reste de la division euclidienne de n par 7.

- together we learn

