Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский Авиационный Институт» (Национальный Исследовательский Университет)

Институт №8 «Информационные технологии и прикладная математика»

Курсовой проект по курсу «Вычислительные системы» 1 семестр

Задание [4] Процедуры и функции в качестве параметров;

Выполнил: Алиев Р.М

Группа: М8О-104Б-22

Руководитель: Потенко М.А.

Оценка:

Дата: 15.12.2022

Подпись:

Содержание

Введение	3
Теоретическая часть	
Метод дихотомии (половинного деления)	3
Метод итераций	
Метод Ньютона	
Практическая часть	6
Задание	
Вариант	6
Графики функций и их производных	
Функция из варианта 7	7
Функция из варианта 6	9
Использованные переменные и функции	10
Протокол	11
Выходные данные	
Вывод	
Источники	

ЗАДАНИЕ №4

Введение

Нахождение корней трансцендентных уравнений является зачастую достаточно сложной задачей, не решаемой аналитически с помощью конечных формул. Кроме того, иногда на практике уравнение содержит коэффициенты, значения которых заданы приблизительно, так что говорить о точном решении уравнений в таких случаях не стоит, поэтому задачи приближенного определения корней уравнения и соответствующей оценки их точности имеют большое значение.

В ходе выполнения работы необходимо составить программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными численными методами (итераций, Ньютона и половинного деления – дихотомии). Применить каждую процедуру к решению двух уравнений.

Теоретическая часть

Метод дихотомии (половинного деления)

Если на отрезке [a, b] существует корень уравнения, то значения функции на концах отрезка имеют разные знаки: F(a)*F(b)<0. Метод заключается в делении отрезка пополам и его сужении в два раза на каждом шаге итерационного процесса в зависимости от знака функции в середине отрезка.

Итерационный процесс строится следующим образом: за начальное приближение принимаются границы исходного отрезка $a^{(0)}=a$, $b^{(0)}=b$.

Далее вычисления проводятся по формулам:

$$a^{(k+1)} = \frac{(a^{(k)} + b^{(k)})}{2}, b^{(k+1)} = b^{(k)}, \text{ если } F\left(a^{(k)}\right) \cdot F\left(\frac{\left(a^{(k)} + b^{(k)}\right)}{2}\right) > 0;$$

$$a^{(k+1)} = a^{(k)}, \ b^{(k+1)} = \frac{(a^{(k)} + b^{(k)})}{2}, \text{ если } F\left(b^{(k)}\right) \cdot F\left(\frac{\left(a^{(k)} + b^{(k)}\right)}{2}\right) > 0.$$

Процесс повторяется до тех пор, пока не будет выполнено условие окончания:

$$\left|a^{(k)} - b^{(k)} < \varepsilon\right|$$

Приближенное значение корня к моменту окончания итерационного процесса получается следующим образом:

$$\chi^* \approx \frac{a^{(\text{конечное})} + b^{(\text{конечное})}}{2}$$

Иллюстрация метода дихотомии:

Метод итераций

Идея метода заключается в замене исходного уравнения f(x) = 0 уравнением вида x = f(x).

Достаточное условие сходимости метода |f'(x)| < 1, $x \in [a, b]$. Это условие необходимо проверить перед началом решения задачи, так как функция f(x) может быть выбрана неоднозначно, причем в случае неверного выбора указанной функции метод расходится.

Начальное приближение корня: $\chi^{(0)} = \frac{a+b}{2}$ (середина исходного отрезка).

Итерационный процесс: $x^{(k+1)} = f(x^{(k)})$.

Условие окончания: $|x^{(k)} - x^{(k-1)}| < \varepsilon$.

Приближенное значение корня: $x^* \approx x^{(\text{конечное})}$.

Иллюстрация метода итераций:

Метод Ньютона

Метод Ньютона является частным случаем метода итераций.

Условие сходимости метода: $|f(x) \cdot f''(x)| < (f'(x))^2$ на отрезке [a, b].

Итерационный процесс:

$$\chi^{(k+1)} = \frac{\chi^{(k)} - F(\chi^{(k)})}{F'(\chi^{(k)})}$$

Иллюстрация метода Ньютона:

Практическая часть

Задание

Составить программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными численными методами (итераций, Ньютона и половинного деления – дихотомии). Нелинейные уравнения оформить как параметры-функции, разрешив относительно неизвестной величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, заданных двумя строками таблицы, начиная с варианта с заданным номером. Если метод неприменим, дать математическое обоснование и графическую иллюстрацию.

Вариант

6	$x + \cos(x^{0.52} + 2) = 0$	[0.5, 1]	итераций	0.9892
7	$3 \ln^2 x + 6 \ln x - 5 = 0$	[1, 3]	Ньютона	1.8832

Графики функций и их производных

Функция из варианта 7

График функции:

$$F'(x) = (3\ln^2 x + 6\ln x - 5)' = \frac{6\ln x + 6}{x}$$

$$F''(x) = (\frac{6\ln x + 6}{x})' = -\frac{6\ln x}{x^2}$$

$|f(x) \cdot f''(x)| < f'(x)^2$ на отрезке [1, 3]

(фиолетовым - $f'(x)^2$, зелёным - $f(x) \cdot f''(x)$) Условия сходимости выполняется.

Функция из варианта 6

Функция	Отрезок,
	содержащий
	корень
$F(x) = x + \cos(x^{0.52} + 2)$	[0.5, 1]

График функции:

$$\mathbf{F'(x)} = -\frac{0.52 \cdot \sin((x^{0.52}) + 2)}{x^{0.48}} + 1$$

График производной под модулем:

Условие |f'(x)| < 1 выполняется на всём отрезке [0.5, 1], следовательно, условие сходимости метода итераций выполнено. Графики $|f(x) \cdot f''(x)|$ и $(f'(x))^2$ (красный и зеленый):

Условие $|f(x) \cdot f''(x)| < (f'(x))^2$ выполняется на всём отрезке [0.5, 1], поэтому условие сходимости метода Ньютона выполнено.

Протокол

```
#include <stdio.h>
#include <math.h>
const double eps = 0.000001;
//Функция для первого уравнения
double f2(double x)
  return 3 * \log(x) * \log(x) + 6 * \log(x) -5;
//Первообразная первого уравнения
double F2(double x)
  return \exp((5 - 3 * pow(log(x), 2))/6);
//Первая производная от первообразной первого уравнения
double Fp2(double x)
  return 6*((\log(x))/x)+6/x;
//Функция для второго уравнения
double fl(double x)
  return x + \cos(pow(x, 0.52) + 2);
//Первообразная второго уравнения
double F1(double x)
  return -\cos(pow(x, 0.52) + 2);
```

```
//Первая производная от первообразной второго уравнения
double Fp1(double x)
  return 1 - (13 * \sin(pow(x, 0.52) + 2)) / (25 * pow(x, 0.48));
//Функция для нахождения корня уравнения с использованием метода дихотомии
double dichotomy(double function(double), double left, double right) {
  double result:
  while (fabs(left - right) > eps) {
    result = (right + left) / 2;
    if (function(left) * function(result) > 0) {
      left = result;
    } else {
      right = result;
  return result;
double dabs(double x)
  return (x > 0 ? x : -x);
//Функция для нахождения корня уравнения с использованием итерационного метода
double iteration(double f(double), double a, double b) {
  double prevX = (a + b) / 2., x = f(prevX);
  while (dabs(x - prevX) > eps) {
    prevX = x;
    x = f(x);
  return x;
//Функция для нахождения корня уравнения с использованием метода Ньютона
double newton(double F(double), double F1(double), double a, double b, double eps) {
  double x = (a + b / 2):
  while (fabs(F(x) / F1(x)) > eps) {
    x = F(x) / F1(x);
  return x;
int main() {
  printf("-----\n");
  printf("| Уравнение | Отрезок | Метод | Результат |\n");
  printf("-----\n"):
  printf("| \t 1 | [0.5;1] | Дихотомии | %.10f \n", dichotomy(f2, 1, 3));
  printf("-----\n"):
  printf("| \t 1 | [0.5;1] | Ньютона | %.10f \n", newton(f2, Fp2, 1, 3, eps));
  printf("-----\n");
  printf("| \t 1 | [0.5;1] | Итераций | %.10f \n", iteration(F2, 1, 3));
  printf("-----\n"):
  printf("| \t 2 | [1;3] | Дихотомии | %.10f \n", dichotomy(f1, 0.5, 1));
  printf("-----\n"):
  printf("| \t 2 | [1;3] | Ньютона | %.10f |\n", newton(f1, Fp1, 0.5, 1, eps));
  printf("-----\n"):
  printf("| \t 2 | [1;3] | Итераций | %.10f \n", iteration(F1, 0.5, 1));
  printf("-----\n"):
  return 0;
```

Результаты работы программы

yoonseak@MacBook-Air-Ruslan Cpap % gcc kp4.c -Wallyoonseak@MacBook-Air-Ruslan Cpap % ./a.out			
Уравнение Отрезок Метод Результат			
1 [0.5;1] Дихотомии 1.8832387924			
1 [0.5;1] Ньютона 1.8832389883			
1 [0.5;1] Итераций 1.8832393103			
2 [1;3] Дихотомии 0.9891805649			
2 [1;3] Ньютона 0.9891807350			
2 [1;3] Итераций 0.9891806553			
○ voonseak@MacBook-Air-Ruslan Cpap %			

Вывод

Нахождение корней трансцендентных уравнений является зачастую достаточно сложной задачей, не решаемой аналитически с помощью конечных формул. Кроме того, иногда на практике уравнение содержит коэффициенты, значения которых заданы приблизительно, так что говорить о точном решении уравнений в таких случаях вообще не имеет смысла. Поэтому задачи приближенного определения корней уравнения и соответствующей оценки их точности имеют большое значение.

В курсовом проекте были рассмотрены 3 численных метода решения трансцендентных уравнений – метод дихотомии, метод итераций и метод Ньютона.

Численные методы являются основным инструментом решения современных прикладных задач. Аналитическое решение той или иной задачи в виде отдельных формульных соотношений является скорее исключением, нежели правилом в силу сложного и приближенного характера исследуемых моделей. Вот почему численный анализ математических моделей является в настоящее время актуальным и наиболее эффективным аппаратом конструктивного исследования прикладных проблем.

Источники

- https://prog-cpp.ru/
- http://yotx.ru/ построение графиков