Definition

Given a partition of a set A, the **relation induced by the partition**, R, is defined on A as follows: For all $x, y \in A$,

 $x R y \Leftrightarrow$ there is a subset A_i of the partition such that both x and y are in A_i .

Example Relation Induced by a Partition

Let $A = \{0, 1, 2, 3, 4\}$ and consider the following partition of A:

 $\{0, 3, 4\}, \{1\}, \{2\}.$

Find the relation R induced by this partition.

Theorem

Let A be a set with a partition and let R be the relation induced by the partition. Then R is reflexive, symmetric, and transitive.

Definition

Let A be a set and R a relation on A. R is an **equivalence relation** if, and only if, R is reflexive, symmetric, and transitive.

• Definition

Let m and n be integers and let d be a positive integer. We say that m is congruent to n modulo d and write

$$m \equiv n \pmod{d}$$

$$d \mid (m-n)$$
.

$$m = n \pmod{d}$$

$$m \equiv n \pmod{d} \quad \Leftrightarrow \quad d \mid (m - n)$$

Example Evaluating Congruences

Determine which of the following congruences are true and which are false.

a.
$$12 \equiv 7 \pmod{5}$$

b.
$$6 \equiv -8 \pmod{4}$$
 c. $3 \equiv 3 \pmod{7}$

c.
$$3 \equiv 3 \pmod{7}$$

Example An Equivalence Relation on a Set of Subsets

Let X be the set of all nonempty subsets of $\{1, 2, 3\}$. Then

$$X = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}\$$

Define a relation \mathbf{R} on X as follows: For all A and B in X,

 $A \mathbf{R} B \Leftrightarrow$ the least element of A equals the least element of B.

Prove that \mathbf{R} is an equivalence relation on X.

• Definition

Suppose A is a set and R is an equivalence relation on A. For each element a in A, the **equivalence class of** a, denoted [a] and called the **class of** a for short, is the set of all elements x in A such that x is related to a by R.

In symbols:

$$[a] = \{x \in A \mid x R a\}$$

Example Equivalence Classes of a Relation Given as a Set of Ordered Pairs

Let $A = \{0, 1, 2, 3, 4\}$ and define a relation R on A as follows:

$$R = \{(0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4)\}.$$

The directed graph for R is as shown below. As can be seen by inspection, R is an equivalence relation on A. Find the distinct equivalence classes of R.

Example Equivalence Classes of the Identity Relation

Let A be any set and define a relation R on A as follows: For all x and y in A,

$$x R y \Leftrightarrow x = y.$$

Then R is an equivalence relation. [To prove this, just generalize the argument used in Example 8.2.2.] Describe the distinct equivalence classes of R.

Lemma

Suppose A is a set, R is an equivalence relation on A, and a and b are elements of A. If a R b, then [a] = [b].

Lemma

If A is a set, R is an equivalence relation on A, and a and b are elements of A, then either $[a] \cap [b] = \emptyset$ or [a] = [b].

Theorem The Partition Induced by an Equivalence Relation

If A is a set and R is an equivalence relation on A, then the distinct equivalence classes of R form a partition of A; that is, the union of the equivalence classes is all of A, and the intersection of any two distinct classes is empty.