CS174A: Introduction to Computer Graphics

5200 Math Science TT 2-4pm

Scott Friedman, Ph.D UCLA Institute for Digital Research and Education

Where are we at...

- Assignment #2
 - Due (tomorrow) 10/29 at 11:55.
- Assignment #3 available on CCLE
 - Due 11/7
- Term project proposal
 - Due next Tuesday 11/4
 - Should have your teams formed by now!
- Mid-Term
 - -11/6
 - Through Texture Mapping

Quick Review

- Transparency order matters.
 - Red box (1,0,0), alpha = 0.75
 - Drawn over white background, alpha = 1.0

$$(R_{d'}, G_{d'}, B_{d'}, \alpha_{d'}) = (\alpha_s R_s + (1 - \alpha_s) R_d, \alpha_s G_s + (1 - \alpha_s) G_d, \alpha_s B_s + (1 - \alpha_s) B_d, \alpha_s \alpha_d + (1 - \alpha_s) \alpha_d)$$

$$(1.0, 0.25, 0.25, 1.0) = (0.75(1) + 0.25(1), 0.75(0) + 0.25(1), 0.75(0) + 0.25(1), 0.75(1) + 0.25(1)).$$

Quick Review

- Transparency order matters.
 - Green box (0,1,0), alpha = 0.75
 - Drawn over (i.e. after) the red box.

 $(R_{d'}, G_{d'}, B_{d'}, \alpha_{d'}) = (\alpha_s R_s + (1 - \alpha_s) R_d, \alpha_s G_s + (1 - \alpha_s) G_d, \alpha_s B_s + (1 - \alpha_s) B_d, \alpha_s \alpha_d + (1 - \alpha_s) \alpha_d)$ (0.25, 0.8125, 0.0625, 1.0) = (0.75(0) + 0.25(1), 0.75(1) + 0.25(0.25), 0.75(0) + 0.25(.25), 0.75(1) + 0.25(1)).

Quick Review

- Transparency order matters.
 - If we reverse the rendering order, however.
 - We get a different blending result.

 $(R_{d'}, G_{d'}, B_{d'}, \alpha_{d'}) = (\alpha_s R_s + (1 - \alpha_s) R_d, \alpha_s G_s + (1 - \alpha_s) G_d, \alpha_s B_s + (1 - \alpha_s) B_d, \alpha_s \alpha_d + (1 - \alpha_s) \alpha_d)$ (0.8125, 0.25, 0.0625, 1.0) = (0.75(1) + 0.25(0.25), 0.75(0) + 0.25(1), 0.75(0) + 0.25(0.25), 0.75(1) + 0.25(1)).

- Reflection of a fixed environment.
 - Sometimes called reflection mapping.
 - Reflections could be computed via ray tracing.
 - Too slow for real-time environments, generally.
 - However, a texture map can be used to approximate the effect.

- How can we do it?
 - Take advantage of the fact that we can compute the reflection vector. (i.e. eye -> surface -> reflect -> world).
 - Intersect that ray with the scene and compute the color (shading) value.
 - Good, except this is essentially ray tracing!

- How can we do it?
 - Approximate things with a two-pass method.
 - Place camera at the location of the mirror object.
 - Facing in direction of mirror surface normal.
 - Render scene, without mirror into texture map
 - Render scene normally with texture map applied to mirror.
 - Camera in original position and mirror back in scene

- How can we do it?
 - There are several problems with this approach.
 - Where exactly to put the camera?
 - Mirror is missing from first render pass
 - » Which can mess up lighting / mirror occludes something.
 - Projection from mirror can be tricky off-axis
 - Have to re-render texture every time camera or mirror moves.

- How can we do it?
 - Projection of scene onto a sphere centered at COP.
 - Viewer cannot tell difference between object and projection.
 - Common example is the experience inside of a planetarium.

- How can we do it?
 - The result looks like this. (360x360 degree view)
 - Given a reflection vector we can look up the shaded color in the scene directly.
 - Google Street View, QuicktimeVR are variations of this

- How can we do it?
 - OpenGL supports this method directly
 - Given a reflection vector determining texture coordinates *s* and *t* is straightforward.

$$\mathbf{r} = \begin{bmatrix} r_x \\ r_y \\ r_z \end{bmatrix} = 2(\mathbf{n} \cdot \mathbf{v})\mathbf{n} - \mathbf{v}$$

$$f = 2\sqrt{r_x^2 + r_y^2 + (r_z + 1)^2}$$

$$s = \frac{r_x}{f} + \frac{1}{2}$$

$$t = \frac{r_y}{f} + \frac{1}{2}$$

- How can we do it?
 - Not really correct (but good enough)
 - Created at a specific location (origin)
 - » Which is not the location of the mirrored surface
 - Needs to be recomputed if what is in scene changes.

- How can we do it?
 - Difficult, but doable to create map.
 - Real cameras have spherical lenses (Google Street View)
 - OpenGL has a simpler way.
 - We can use the projections we have already developed.

- Make things even simpler
- Cube mapping
 - Render six images
 - Each centered on an axis
 - Results in the inside of a cube
 - unfolded
 - FOV must be 90 deg.
 - Edges have to match

- Cube mapping
 - Given we are passing correctly transformed surface normals into the vertex shader.
 - We can compute the reflection vector
 - and pass it on to the fragment shader.

```
attribute vec4 vPosition;
attribute vec4 normal;
varying vec3 reflection;

uniform mat4 ModelView;
uniform mat4 Projection;

void main( void )
{
   gl_Position = Projection * ModelView * vPosition;
   vec3 eyePos = vPosition.xyz;
   reflection = reflect( eyePos, normalize( (ModelView * normal).xyz );
}
```

- Cube mapping
 - The reflection vector is interpolated for us in fragment shader.
 - So the rest is simple
 - Notice
 - samplerCube type (similar in function to sampler2D)
 - textureCube function

```
varying vec3 reflection;
uniform samplerCube cubeMap; // passed this in from our application

void main( void )
{
   gl_FragColor = textureCube( cubeMap, reflection );
}
```

- Bump mapping
 - Bump mapping is really Displacement Mapping.
 - A texture map stores displacements to the surface.
 - This requires computing a normal at the new, displaced, surface point.
 - Partial derivatives must be found to solve this.
 - Finite differences can be used.
 - Slow-ish when solving for every fragment.
 - Advantage is we can use the result to perturb the normal in *object* space.

- Normal mapping
 - What we typically think of as Bump Mapping.
 - Here we store *normals* in a texture map.
 - x, y and z components of a normal vector are stored in the R, G and B channels of the texture map.

- Normal mapping
 - We have to map the [-1,1] range of our normal components to the [0,1] range of color values.
 - Easily done by [R,G,B]=([x,y,z]+1)/2

- Normal mapping
 - This is not enough.
 - Normal maps require a new coordinate frame.
 - Tangent Space or TBN space
 - Lighting for surfaces with normal maps applied will be computed in TBN space.
 - TBN = Tangent, Bi-tangent, Normal space
 - The Tangent is the tangent to the surface at point p
 - The Bi-tangent is the cross product of the normal and tangent.
 - The Normal is the surface normal at point p

- Normal mapping
 - The TBN vectors define a new frame at the point we are lighting on the surface.
 - We align the T and B vectors with the s and t dimensions of our normal map.
 - We can get from object space to tangent space by a vector transformation.

$$\left[egin{array}{cccc} T_x & T_y & T_z \ B_x & B_y & B_z \ N_x & N_y & N_z \end{array}
ight]$$

- Normal mapping
 - We transform the light vector by this matrix.
 - The light and normal map vectors are in the same coordinate system so lighting equations are correct.

