PERTURBATION AND DYNARE

PERTURBATION

Tools for Macroeconomists: The essentials

Petr Sedláček

Perturbation

PERTURBATION: BASIC IDEA

- Perturbation is a way to approximate a function
 - · more generally, it is a way of taking derivatives
 - as such it has broad applications

PERTURBATION: BASIC IDEA

- Perturbation is a way to approximate a function
 - more generally, it is a way of taking derivatives
 - as such it has broad applications
- it uses Taylor's theorem
- it also uses the Implicit function theorem

Perturbation

THEORETICAL UNDERPINNING

TAYLOR'S THEOREM

Theorem Let $k \geq 1$ be an integer and let function $f: \mathbb{R} \to \mathbb{R}$ be k times differentiable at point $a \in \mathbb{R}$. Then there exists a function $h_b : \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(k)}(a)}{k!}(x - a)^k + h_k(x)(x - a)^k,$$

$$\lim_{x \to a} h_k(x) = 0.$$

and $\lim_{x\to a} h_k(x) = 0$.

IMPLICIT FUNCTION THEOREM

Theorem Let $f: \mathbb{R}^{n+m} \to \mathbb{R}^m$ be a continuously differentiable function and let \mathbb{R}^{n+m} have coordinates (x,y). Fix a point (\bar{x},\bar{y}) with $f(\bar{x},\bar{y})=0$. If the Jacobian matrix $\mathcal{J}_{f,y}(\bar{x},\bar{y})$ is invertible, then there exists an open set U of \mathbb{R}^n containing \bar{x} such that there exists a unique continuously differentiable function $g:U\to\mathbb{R}^m$ such that

$$g(\bar{x}) = \bar{y}$$

and

$$f(x,g(x)) = 0$$
 for all $x \in U$.

Moreover, the partial derivatives of g in U are given by the matrix product

$$\frac{\partial g}{\partial x_j}(x) = -[\mathcal{J}_{f,y}(x,g(x))]^{-1} \left[\frac{\partial f}{\partial x_j}(x,g(x)) \right]$$

Perturbation

DETAILS

BACK TO THE NEOCLASSICAL MODEL

- the above is all very nice
- but at this point a bit abstract
- · lets see if we can write the neoclassical growth model
- · in a way that looks like the notation we just used...

OPTIMALITY CONDITIONS

OPTIMALITY CONDITIONS

$$c_t^{-\gamma} = \beta \mathbb{E}_t c_{t+1}^{-\gamma} \alpha Z_{t+1} k_{t+1}^{\alpha - 1}$$
$$c_t + k_{t+1} = Z_t k_t^{\alpha}$$
$$Z_t = (1 - \rho) + \rho Z_{t-1} + \sigma \epsilon_t$$

OPTIMALITY CONDITIONS

$$c_t^{-\gamma} = \beta \mathbb{E}_t c_{t+1}^{-\gamma} \alpha Z_{t+1} k_{t+1}^{\alpha - 1}$$
$$c_t + k_{t+1} = Z_t k_t^{\alpha}$$
$$Z_t = (1 - \rho) + \rho Z_{t-1} + \sigma \epsilon_t$$

 \cdot σ controls the degree of uncertainty

rewrite the above equations as

· rewrite the above equations as

$$\mathbb{E}_t F[c_{t+1}, c_t, k_{t+1}, Z_{t+1}, k_t, Z_t] = 0$$

rewrite the above equations as

$$\mathbb{E}_t F[c_{t+1}, c_t, k_{t+1}, Z_{t+1}, k_t, Z_t] = 0$$

• what are the states (x) and "policy" variables (g(x))?

rewrite the above equations as

$$\mathbb{E}_t F[c_{t+1}, c_t, k_{t+1}, Z_{t+1}, k_t, Z_t] = 0$$

• what are the states (x) and "policy" variables (g(x))?

$$x_t = [k_t, Z_t]$$

rewrite the above equations as

$$\mathbb{E}_t F[c_{t+1}, c_t, k_{t+1}, Z_{t+1}, k_t, Z_t] = 0$$

• what are the states (x) and "policy" variables (g(x))?

$$x_t = [k_t, Z_t]$$

$$X_{t+1} = h(X_t, \sigma) + \sigma \widetilde{\epsilon}_{t+1}$$

rewrite the above equations as

$$\mathbb{E}_t F[c_{t+1}, c_t, k_{t+1}, Z_{t+1}, k_t, Z_t] = 0$$

• what are the states (x) and "policy" variables (g(x))?

$$x_{t} = [k_{t}, Z_{t}]$$

$$x_{t+1} = h(x_{t}, \sigma) + \sigma \widetilde{\epsilon}_{t+1}$$

$$c_{t} = g(x_{t}, \sigma)$$

• notice that uncertainty (σ) explicitly enters the policy function!

REWRITE THE SYSTEM

REWRITE THE SYSTEM

$$\mathbb{E}_{t}F\bigg(g(h(X_{t},\sigma)+\sigma\widetilde{\epsilon}_{t+1},\sigma),g(X_{t},\sigma),h(X_{t},\sigma)+\sigma\widetilde{\epsilon}_{t+1},X_{t}\bigg)=0$$

Perturbation

1ST ORDER PERTURBATION AND CERTAINTY EQUIVALENCE

• perturbation methods find a local approximation of g and h

- \cdot perturbation methods find a local approximation of g and h
- it is local around a certain point $(\bar{x}, \bar{\sigma})$

- \cdot perturbation methods find a local approximation of g and h
- it is local around a certain point $(\bar{x}, \bar{\sigma})$
- in particular, a Taylor approximation around $(\bar{x}, \bar{\sigma})$ gives

- \cdot perturbation methods find a local approximation of g and h
- it is local around a certain point $(\bar{x}, \bar{\sigma})$
- in particular, a Taylor approximation around $(\overline{x}, \overline{\sigma})$ gives

$$g(x,\sigma) \approx g(\overline{x},\overline{\sigma}) + g_{x}(\overline{x},\overline{\sigma})(x-\overline{x}) + g_{\sigma}(\overline{x},\overline{\sigma})(\sigma-\overline{\sigma})$$

$$+ 1/2[g_{xx}(\overline{x},\overline{\sigma})(x-\overline{x})^{2} + 2g_{x\sigma}(\overline{x},\overline{\sigma})(x-\overline{x})(\sigma-\overline{\sigma})$$

$$+ g_{\sigma\sigma}(\overline{x},\overline{\sigma})(\sigma-\overline{\sigma})^{2}] + \cdots$$

$$h(x,\sigma) \approx h(\overline{x},\overline{\sigma}) + h_{x}(\overline{x},\overline{\sigma})(x-\overline{x}) + h_{\sigma}(\overline{x},\overline{\sigma})(\sigma-\overline{\sigma})$$

$$h(x,\sigma) \approx h(x,\sigma) + h_{x}(x,\sigma)(x-x) + h_{\sigma}(x,\sigma)(\sigma-\sigma) + 1/2[h_{xx}(\overline{x},\overline{\sigma})(x-\overline{x})^{2} + 2h_{x\sigma}(\overline{x},\overline{\sigma})(x-\overline{x})(\sigma-\overline{\sigma}) + h_{\sigma\sigma}(\overline{x},\overline{\sigma})(\sigma-\overline{\sigma})^{2}] + \cdots$$

 \cdot we approximate the policy functions with a polynomial

- \cdot we approximate the policy functions with a polynomial
- the unknown coefficients are the n-order derivatives at $(\bar{x}, \bar{\sigma})$
- how do we solve for them?

- \cdot we approximate the policy functions with a polynomial
- the unknown coefficients are the n-order derivatives at $(\bar{x}, \bar{\sigma})$
- · how do we solve for them?
- · recall that $F[x_t, \sigma] = 0$ for any value of x and σ

- · we approximate the policy functions with a polynomial
- the unknown coefficients are the n-order derivatives at $(\bar{x}, \bar{\sigma})$
- · how do we solve for them?
- recall that $F[x_t, \sigma] = 0$ for any value of x and σ
- $\cdot \rightarrow$ derivatives (of any order) of F also 0!

$$F_{X^k,\sigma^j}[X_t,\sigma] = 0 \quad \forall x,\sigma,j,k$$

WHERE ARE WE APPROXIMATING?

 $\boldsymbol{\cdot}$ particularly convenient point is the non-stochastic steady state

• i.e.
$$\sigma = 0$$
 and $x_t = \overline{x}$

WHERE ARE WE APPROXIMATING?

- $\boldsymbol{\cdot}$ particularly convenient point is the non-stochastic steady state
 - i.e. $\sigma = 0$ and $x_t = \overline{x}$
 - $\overline{c} = g(\overline{x}, 0)$ and $\overline{x} = h(\overline{x}, 0)$

WHERE ARE WE APPROXIMATING?

- particularly convenient point is the non-stochastic steady state
 - i.e. $\sigma = 0$ and $x_t = \overline{x}$
 - $\overline{c} = g(\overline{x}, 0)$ and $\overline{x} = h(\overline{x}, 0)$
- · why is so convenient?
- · in principle you can approximate around any point

GETTING THE POLICY FUNCTION DERIVATIVES

under 1st order perturbation we have

$$g(x,\sigma) \approx g(\overline{x},0) + g_x(\overline{x},0)(x-\overline{x}) + g_\sigma(\overline{x},0)\sigma$$
$$h(x,\sigma) \approx h(\overline{x},0) + h_x(\overline{x},0)(x-\overline{x}) + h_\sigma(\overline{x},0)\sigma$$

· we also know that

$$g(\overline{x},0) = \overline{c}$$
$$h(\overline{x},0) = \overline{x}$$

GETTING THE POLICY FUNCTION DERIVATIVES

under 1st order perturbation we have

$$g(x,\sigma) \approx g(\overline{x},0) + g_x(\overline{x},0)(x-\overline{x}) + g_\sigma(\overline{x},0)\sigma$$
$$h(x,\sigma) \approx h(\overline{x},0) + h_x(\overline{x},0)(x-\overline{x}) + h_\sigma(\overline{x},0)\sigma$$

· we also know that

$$g(\overline{x},0) = \overline{c}$$
$$h(\overline{x},0) = \overline{x}$$

• solve for the derivatives (coefficients of approximating Taylor polynomial)

$$F_{X^k,\sigma^j}[X_t,\sigma] = 0 \quad \forall x,\sigma,j,k$$

DERIVING COEFFICIENTS OF TAYLOR POLYNOMIAL

DERIVING COEFFICIENTS OF TAYLOR POLYNOMIAL

$$F_{x} = \frac{\partial F}{\partial x_{t+2}} \frac{\partial x_{t+2}}{\partial x_{t+1}} \frac{\partial x_{t+1}}{\partial x_{t}} + \frac{\partial F}{\partial x_{t+1}} \frac{\partial x_{t+1}}{\partial x_{t}} + \frac{\partial F}{\partial x_{t}}$$
$$= \overline{F}_{1} \frac{\partial x_{t+2}}{\partial x_{t+1}} \frac{\partial x_{t+1}}{\partial x_{t}} + \overline{F}_{2} \frac{\partial x_{t+1}}{\partial x_{t}} + \overline{F}_{3}$$
$$= \overline{F}_{1} h_{x}^{2} + \overline{F}_{2} h_{x} + \overline{F}_{3} = 0$$

•
$$\frac{\partial F(x_{t+2}, x_{t+1}, x_t, \sigma)}{\partial x_{t+i}}|_{x_{t+2} = x_{t+1} = x_t = \overline{x}, \sigma = 0} = \overline{F}_{3-i}$$

$$\cdot \frac{\partial h(x_t,\sigma)}{\partial x_t}|_{x_t=\bar{x},\sigma=0 \ \forall t} = h_X$$

Perturbation

UNCERTAINTY

CERTAINTY EQUIVALENCE

Certainty equivalence result

CERTAINTY EQUIVALENCE

Certainty equivalence result

- the variance of shocks does not matter for policy rules
- important limitation of 1st order approximation

CERTAINTY EQUIVALENCE

Certainty equivalence result

- the variance of shocks does not matter for policy rules
- important limitation of 1st order approximation
 - · what economic questions cannot be studied in this case?
- what about higher order approximations?

Getting 2-order derivative w.r.t. σ

- \cdot only $g_{\sigma\sigma}$ and $h_{\sigma\sigma}$ matter for policy function
- this affects the constant in the policy rule
- can still have important implications

GETTING 2-ORDER DERIVATIVE W.R.T. σ

- only $g_{\sigma\sigma}$ and $h_{\sigma\sigma}$ matter for policy function
- this affects the constant in the policy rule
- can still have important implications
 - · certain economic questions can be addressed
 - can have indirect effect on dynamics (how?)
- need 3rd order to capture effect of uncertainty on "slopes"

Perturbation

ACCURACY

LOCAL APPROXIMATION?

 $\boldsymbol{\cdot}$ perturbation is also known as local approximation

LOCAL APPROXIMATION?

- perturbation is also known as local approximation
- when does the question of accuracy arise?

LOCAL APPROXIMATION?

- perturbation is also known as local approximation
- · when does the question of accuracy arise?
- what could go wrong?

The theory guarantees local convergence

The theory guarantees local convergence

 global convergence could be good, but it depends on the approximated function

The theory guarantees local convergence

- global convergence could be good, but it depends on the approximated function
- \cdot e.g. if the true function is analytical o successive approximations converge to truth

The theory guarantees local convergence

- global convergence could be good, but it depends on the approximated function
- \cdot e.g. if the true function is analytical o successive approximations converge to truth

Theory doesn't say anything about convergence properties

The theory guarantees local convergence

- global convergence could be good, but it depends on the approximated function
- \cdot e.g. if the true function is analytical ightarrow successive approximations converge to truth

Theory doesn't say anything about convergence properties

• e.g. not clear whether 2nd order is better than 1st

The theory guarantees local convergence

- global convergence could be good, but it depends on the approximated function
- \cdot e.g. if the true function is analytical o successive approximations converge to truth

Theory doesn't say anything about convergence properties

- e.g. not clear whether 2nd order is better than 1st
- · nonlinear higher-order polynomials always have "weird" shapes, e.g. like this
- this can occur close or far away from the steady state!

The theory guarantees local convergence

- global convergence could be good, but it depends on the approximated function
- \cdot e.g. if the true function is analytical ightarrow successive approximations converge to truth

Theory doesn't say anything about convergence properties

- e.g. not clear whether 2nd order is better than 1st
- · nonlinear higher-order polynomials always have "weird" shapes, e.g. like this
- this can occur close or far away from the steady state!

Wouter's example: Consider the true function to be defined on $x \in [0.7, 2]$ s.t.

$$f(x) = -690.59 + 3202.4x - 5739.45x^2 + 4954.2x^3 - 2053.6x^4 + 327.1x^5$$

WOUTER'S EXAMPLE: ALL KINDS OF WILD THINGS CAN HAPPEN

WOUTER'S EXAMPLE: ALL KINDS OF WILD THINGS CAN HAPPEN

Perturbation

TAKING STOCK

Perturbation:

• (in our context) means of approximating policy rules

Perturbation:

- (in our context) means of approximating policy rules
- \cdot relies on Taylor polynomial and Implicit function theorem

Perturbation:

- (in our context) means of approximating policy rules
- relies on Taylor polynomial and Implicit function theorem

Pros:

- easy to implement (you'll see)
- can handle large state-space (heterogeneity)

Perturbation:

- (in our context) means of approximating policy rules
- relies on Taylor polynomial and Implicit function theorem

Pros:

- easy to implement (you'll see)
- can handle large state-space (heterogeneity)

Cons:

· can't handle certain features (non-differentiabilities)

Perturbation:

- (in our context) means of approximating policy rules
- relies on Taylor polynomial and Implicit function theorem

Pros:

- easy to implement (you'll see)
- can handle large state-space (heterogeneity)

Cons:

- can't handle certain features (non-differentiabilities)
- "local" solution method

