

Sniffer OSPFv2 a OSPFv3

Dokumentace projektu pro předmět Síťové aplikace a správa sítí

Martin Knapovský VUT FIT Brno xknapo02@stud.fit.vutbr.cz

Obsah

Úvod	3
Směrovací protokoly	3
OSPF	3
Typy zpráv protokolu OSPF	3
Databázové informace	4
Popis programu	4
Spuštění	5
Implementace	5
Moduly	5
Logické části programu	
Použitá Literatura	7
Metriky projektu	7
Příloha – Parametry překladu programu	8

Úvod

Cílem projektu bylo implementovat aplikaci pro odposlech OSPF zpráv podporující IPv4 a IPv6 LSA topologické informace a po ukončení tohoto programu i exportér OSPFv3 LSA topologických informací. Aplikace je implementována v programovacím jazyku C pro prostředí FreeBSD/Linux.

Směrovací protokoly

Směrovací protokoly zahrnují sadu procesů, datových struktur, algoritmů a zpráv, které slouží k přenosu informací mezi směrovači. Umožňují tak směrovači se autonomně rozhodnout o tom, na který výstup odešle zprávy, které nejsou určeny pro zařízení k němu přímo připojená, ale pro zařízení, ke kterým pomocí směrovacích protokolů získal cestu.

Směrovací protokoly se rozdělují na *Distance Vector* a *Link State* protokoly. Distance Vector protokoly jsou vhodné pro menší sítě, ve kterých není potřeba znát síťovou topologii. Pro výpočet nejlepší cesty používají Bellman-Fordův algoritmus a mezi typické zástupce patří protokoly RIPv1, RIPv2, IGRP, EIGRP. Oproti tomu Link State protokoly vytváří kompletní pohled na topologii sítě a umožňují tak efektivnější směrování v rozsáhlejších sítích.

OSPF

Open Shortest Path First, neboli zkráceně OSPF je Link State směrovací protokol využívající Dijkstrova algoritmu stejného názvu. Byl vyvinut jako náhrada protokolu RIP, zahrnuje koncept oblastí a pomocí výše zmíněného algoritmu vytváří kompletní topologii sítě. To mu umožňuje nasazení ve větších, hierarchicky strukturovaných sítích s možností pozdějšího růstu.

Protokol za svou dobu prošel několika inovacemi. Původní OSPFv1 byl pouze experimentální, ktežto OSPFv2, který byl vyvinut Johnem Moyem v roce 1991 se dočkal okamžitého nasazení na poli počítačových sítí. Nejnovější revize OSPFv3 zahrnuje podporu IPv6 a zjednodušuje některé ze zpráv, které používá jeho předchůdce.

Typy zpráv protokolu OSPF

Následující tabulka uvádí typy zpráv protokolu OSPFv2 a OSPFv3.

Kód zprávy	Typ zprávy	Popis
0x01	Hello	Slouží k objevení sousedů a
		navázání spojení mezi směrovači.
0x02	Database Description	Obsahuje zkracený seznam
		databáze směrovacích informací.
0x03	Link-State Request	Požadavek na směrovací
		informace.
0x04	Link-State Update	Odpověď na požadavek
		obsahující směrovací informace.
0x05	Link-State Acknowledgment	Potvrzení příjmu směrovacích
		informací.

Databázové informace

Informace o databázi směrovače jsou distribuovány ve formě zpráv *Link-State Advertisments* (LSA), které jsou obsaženy ve zprávě typu *Link-State Update.* Zde jsou již typy zpráv různých revizí více odlišné. V následující tabulce jsou uvedeny typy zpráv a jejich popis pro OSPFv3.

Kód zprávy	Typ zprávy	Popis
0x2001	Router-LSA	Popis stavu a metriky rozhranní směrovače.
0x2002	Network-LSA	Popis všech směrovaču připojených k danému spoji.
0x2003	Inter-Area-Prefix-LSA	Popis cest a prefixů v jiných oblastech.
0x2004	Inter-Area-Router-LSA	Původcem těchto zpráv jsou hraniční směrovače informující ostatní hraniční směrovače v jiných oblastech o vnitřních cestách.
0x4005	AS-External-LSA	Slouží pro popis implicitní cesty.
0x2006	Neschváleno	
0x2007	NSSA-LSA	Vysílány hraničními směrovači k popisu vzdálených lokací mimo autonomní systém.
0x0008	Link-LSA	Pro každý fyzický spoj je generána zpráva tohoto typu, která poskytuje informace směrovačům na daném spoji o adresách typu link-local a prefixech.
0x2009	Intra-Area-Prefix-LSA	Určeno pro šíření informací o prefixech spojených s místní adresou směrovače, síťovým segmentem, nebo připojeným tranzitním síťovým segmentem.

Popis programu

Program zachytává zprávy na naslouchaném ethernetovém rozhranní v promiskuitním módu a vypisuje informace v nich obsažené. Tyto informace zahrnují výpis hlavičky ethernetového rámce, výpis hlavičky IP packetu a dále hlavičku, typ zprávy popř. další doplňující informace OSPF ve zprávě obsažené. Po ukončení programu zasláním signálu SIGINT je programem vypsána OSPFv3 topologie z odposlechnutých zpráv.

Spuštění

Pro spuštění je potřeba programu pomocí parametru zadat rozhranní, na kterém bude naslouchat pomocí přepínače —i následujícím způsobem :

./myospfsniffer –i eth1

,kde eth1 je rozhranní, na kterém se bude naslouchat. Pro výpis nápovědy je možné použít přepínač -h.

Implementace

Moduly

Program je rozčleněn do několika modulů:

- obsahuje funkce pro tisk nápovědy, ethernetových a ip hlaviček a dále funkce pro tisk

IPv4 a IPv6 adres a jejich prefixů

const - definice kostant použitých v programu

- makro pro převod čísla z binární reprezentace do reprezentace programovacího jazyka

С

ospfv2 - struktury a funkce pro výpis OSPFv2 informací

ospfv3 - struktury a funkce pro výpis OSPFv3 informací

ospfv3_db - struktury a funkce pro záznam a výpis OSPFv3 topologie

main - samotný program

Logické části programu

Odposlech zpráv na rozhranní

Pro odposlech byla použita knihovna *libpcap*, bez použití filtrace, což umožnilo zpracovat přijaté zprávy přímo v programu a vypsat tak přesné pořadové číslo tak, jak to dělá například program *Wireshark*. Pro použití filtru je však možné změnit definici *FILTER_EXP*, v hlavičkovém souboru *main.h*. Stejně tak je možné zapnout/vypnout výpis ladících informací pomocí definice *DEBUG*, v hlavičkovém souboru *const.h*. Seznam dalšího nastavení překladu programu je obsažen v příloze 1.

Zpracování

O zpracování zprávy se stará funkce *got_packet*, která postupně rozlišuje struktury zprávy dle jejího typu (IPv4/IPv6, OSPF typy zpráv), vypisuje celé tyto struktury na standartní výstup a ukládá relevantní informace do databáze za použití dříve uvedených modulů. Formát výpisu zprávy lze změnit pomocí změny definic *ETHERNET_FORMAT*, *IP_FORMAT*, *OSPF_HEADER_FORMAT*, *OSPF_TYPE_FORMAT*, *OSPF_LSA_HEADER_FORMAT* a *OSPF_LSA_FORMAT*.

Tisk LSA

Je vhodné zmínit funkce pro tisk *print_ospf2_lsa* a *print_ospf3_lsa*. Tyto funkce přijímají jako parametr ukazatel na hlavičku LSA části OSPF zprávy, samostatně pak rozlišují typ předaného LSA a prostřednictvým pomocných funkcí tisknou LSA na standartní výstup. Problém nastává u struktur zprávy, které nemají přesně danou velikost jako například pole *prefix* u OSPFv3 Inter-Area-Prefix LSA, kde je nutné tuto velikost zjistit a pracovat s pamětí pouze v rozsahu zprávy. Dále se ve zprávách vyskytují pole, která se mohou opakovat. Je opět nutné ze zprávy zjistit počet opakování a tisknout pouze relevantní informace.

Databáze topologických informací

Databáze topologických informací je rozčleněna do několika struktur. Je vhodné rozlišovat informace od různých směrovačů, jejichž informace byla na rozhranní odposlechnuta a dále identifiční číslo instance procesu OSPF, která dané informace ze směrovače vyslala. LSA informace mohou patřit do různých oblastí a mohou být různého typu, což je potřeba pro efektivní prohledávání databáze také rozlišit. Vzhledem k tomu, že předem nevíme kolik routerů/instancí/oblastí budou odposlechnuté zprávy obsahovat, byly pro implementaci databáze zvoleny jednosměrně vázané seznamy. Na následujícím diagramu je znázorněna struktura databáze.

Obr. 1 – Struktura Databáze

Topologická databáze je po zaslání signálu *SIGINT* celá vytištěna na standartní výstup ve formátu blížícímu se výpisu topologické databáze na směrovačích Cisco.

Použitá Literatura

- RFC5340, RFC2328
- Přednášky CCNA2

Metriky projektu

3061 řádků kódu

Příloha - Parametry překladu programu

Program je spustitelný na operačních systémech FreeBSD a Linux. Pro překlad na operačním systému FreeBSD použijte GNU Make bez parametrů.

> gmake

Pro překlad na operačním systému Linux je potřeba dodat parametr linux.

> make linux

V následující tabulce jsou uvedena různá nastavení programu, kterými lze změnit chování programu.

Nastavení	Popis
PRINT_IP	výpis IP hlaviček
PRINT_ETHERNET	výpis Ethernetových hlaviček
PRINT_PACKET_NUMBER	výpis pořadového čísla packetu
PRINT_OSPF_NUMBER	výpis pořadového čísla OSPF zprávy
IP_PRETTY_PRINT	zapne výpis zkraceného tvaru IP adres a prefixů
DEBUG	zapne výpis ladících zpráv
ETHERNET_FORMAT	odsazení výpisu Ethernetové hlavičky
IP_FORMAT	odsazení výpisu IP hlavičky
OSPF_HEADER_FORMAT	odsazení výpisu OSPF hlavičky
OSPF_TYPE_FORMAT	odsazení výpisu OSPF zprávy (Hello, DBU,)
OSPF_LSA_HEADER_FORMAT	odsazení výpisu LSA hlavičky
OSPF_LSA_FORMAT	odsazení výpisu LSA zprávy
PRINT_LLS	zapne výpis LLS bloku

Tato nastavení se provádějí změnou definic v hlavičkovém souboru const.h.