- (1) (10%, 1% each) Determine whether each of the following statements is **true** or **false**. No proof or explanation is necessary.
 - Statement A: If events \mathcal{A} and \mathcal{B} are statistically independent and if events \mathcal{B} and \mathcal{C} are statistically independent, then events \mathcal{A} and \mathcal{C} are statistically independent.
 - Sol: False. Let event \mathcal{C} be the complement of event \mathcal{A} . If events \mathcal{A} and \mathcal{B} are statistically independent, events \mathcal{B} and \mathcal{C} are statistically independent as well. However, events \mathcal{A} and \mathcal{C} are NOT statistically independent.
 - Statement B: If two events \mathcal{A} and \mathcal{B} are statistically independent, then \mathcal{A} can not be a proper set of \mathcal{B} .
 - Sol: False. Let \mathcal{B} be the universe \mathcal{U} and \mathcal{A} be a proper set of \mathcal{U} . Then, \mathcal{A} is a proper set of \mathcal{B} and

$$P(A \cap B) = P(A) = P(A)P(U) = P(A)P(B).$$

Therefore, events \mathcal{A} and \mathcal{B} are statistically independent.

- ✓ Statement C: If two events are mutually exclusive, then they are statistically independent.
- Sol: False. Let events \mathcal{A} and \mathcal{B} be mutually exclusive with $P(\mathcal{A}) \neq 0$ and $P(\mathcal{B}) \neq 0$. Then, we have

$$P(A \cap B) = 0 \neq P(A)P(B)$$

- which indicates that events \mathcal{A} and \mathcal{B} are NOT statistically independent.
- Statement D: If two events \mathcal{A} and \mathcal{B} are statistically independent, then the probability of their union is equal to the sum of marginal probabilities, i.e., $P(\mathcal{A} \cup \mathcal{B}) = P(\mathcal{A}) + P(\mathcal{B})$.
 - Sol: False. Let \mathcal{B} be the universe \mathcal{U} and $P(\mathcal{A}) > 0$. Then, $P(\mathcal{A} \cup \mathcal{B}) = 1 < P(\mathcal{A}) + P(\mathcal{B})$ and thus $P(\mathcal{A} \cup \mathcal{B}) \neq P(\mathcal{A}) + P(\mathcal{B})$.
- Statement E: If P(A|B) = P(A) with $P(B) \neq 0$, then events A and B are not statistically independent.
 - Sol: False. If P(A|B) = P(A), then $P(A \cap B) = P(A|B)P(B) = P(A)P(B)$ and thus events A and B are statistically independent.
 - Statement F: If a wide-sense stationary random process $X(\mu, t)$ has mean zero, then the power spectrum of $X(\mu, t)$ must be zero on f = 0, i.e., $S_X(0) = 0$.
 - Sol: False. Let $X(\mu, t) \triangleq c(\mu) + n(\mu, t)$ where $c(\mu)$ is a random variable with zero mean and $E\{c^2(\mu)\} = C$ with a positive finite C and $n(\mu, t)$ is a WSS random process with zero mean and autocorrelation function $R_n(\tau) = \delta(\tau)$. Further,

we assume that $c(\mu)$ and $n(\mu, t)$ are mutually independent. Then, the mean of $X(\mu, t)$ is zero and the autocorrelation function of $X(\mu, t)$ is given by

$$R_X(\tau) = E\{X(\mu, t + \tau)X(\mu, t)\}$$

$$= E\{(c(\mu) + n(\mu, t + \tau))(c(\mu) + n(\mu, t))\}$$

$$= E\{c^2(\mu)\} + E\{n(\mu, t + \tau)n(\mu, t)\}$$

$$= C + \delta(\tau).$$

Therefore, $X(\mu, t)$ is a zero-meaned WSS random process with nonzero spectrum on f = 0.

Statement G: The function $R(\tau) = \sin(\pi \tau) \exp\{-|\tau|\}$ can be the autocorrelation function of a wide-sense stationary random process.

Sol: False. Because $R(0) = 0 \le R(1/2)$, $R(\tau) = \sin(\pi \tau) \exp\{-|\tau|\}$ can NOT be the autocorrelation function of a wide-sense stationary random process.

Statement H: If $Z(\mu) \triangleq \sum_{n=1}^{N} l_n X_n(\mu)$ is a Gaussian random variable for any set of real-valued constants $\{l_n\}_{n=1}^{N}$ with l_n 's constrained to be not all zeros simultaneously, then every $X_n(\mu)$ is marginally Gaussian distributed.

Sol: True. Let $l_k = 1$ and $l_m = 0$ for $m \neq k$. Then, $Z(\mu) = \sum_{n=1}^{N} l_n X_n(\mu) = X_k(\mu)$ is Gaussian distributed.

• Statement I: The Gaussian process $X(\mu, t)$ with mean function $\eta_X(t) = 0$ and autocorrelation function $R_X(t_1, t_2) = \delta(t_1 - t_2)$ (with $\delta(\tau)$ a Dirac delta function) possesses the strict-sense stationary property.

Sol: True. For Gaussian random processes, WSS implies SSS.

Statement J: For any event \mathcal{A} and any continuous random variable $X(\mu)$, $P(\mathcal{A}) = P(\mathcal{A}|X(\mu) \le x)F_X(x) + P(\mathcal{A}|X(\mu) \ge x)(1 - F_X(x)).$

Sol: True. Define event $\mathcal{B} \triangleq \{\mu | X(\mu) \leq x\}$ and denote \mathcal{B}^c as its complement. We have $P(A) = P(\mathcal{A} \cap \mathcal{B}) + P(\mathcal{A} \cap \mathcal{B}^c) = P(\mathcal{A}|\mathcal{B})P(\mathcal{B}) + P(\mathcal{A}|\mathcal{B}^c)P(\mathcal{B}^c)$ = $P(\mathcal{A}|X(\mu) \leq x)F_X(x) + P(\mathcal{A}|X(\mu) > x)(1 - F_X(x))$.

(2) (4%; 2% each) Let $X_1(\mu)$, $X_2(\mu)$, $X_3(\mu)$ be independent and identically distributed (i.i.d.) continuous random variables with a common continuous probability density function $f_X(x)$ and a common cumulative probability distribution function $F_X(x)$. Now, form $Y_1(\mu)$, $Y_2(\mu)$, $Y_3(\mu)$ in a way that for a given outcome μ

if
$$X_{k_1}(\mu) \leq X_{k_2}(\mu) \leq X_{k_3}(\mu)$$
, then $Y_1(\mu) = X_{k_1}(\mu), Y_2(\mu) = X_{k_2}(\mu)$, and $Y_3(\mu) = X_{k_3}(\mu)$

where $X_{k_1}(\mu), X_{k_2}(\mu), X_{k_3}(\mu)$ are the three numbers $X_1(\mu), X_2(\mu), X_3(\mu)$ arranged in a nondecreasing order.

 $\sqrt{}$

- (a) Find the probability density function of $Y_2(\mu)$ (i.e., $f_{Y_2}(y)$) in terms of $f_X(\cdot)$ and $F_X(\cdot)$.
- Sol: Denote $X(\mu)$ as a random variable with probability density function $f_X(x)$ and cumulative probability distribution function $F_X(x)$. For a differential dy,

$$\Pr\{y \le Y_2(\mu) < y + dy\}$$

$$= f_{Y_2}(y)dy$$

$$= \Pr\{\text{one of } X_1(\mu), X_2(\mu), X_3(\mu) \text{ are smaller than } y, \text{ another is not smaller than } y + dy, \text{ and the rest is in } [y, y + dy)\}$$

$$= \binom{3}{1} \binom{2}{1} \Pr\{X(\mu) < y\} \Pr\{X(\mu) \ge y + dy\} \Pr\{y \le X(\mu) < y + dy\}$$

$$= 6F_X(y)(1 - F_X(y + dy)) \cdot f_X(y)dy.$$

As $dy \to 0$, we thus have

$$f_{Y_2}(y) = 6F_X(y)(1 - F_X(y))f_X(y).$$

(b) Find the joint probability density function of $Y_1(\mu)$ and $Y_3(\mu)$ (i.e., $f_{Y_1,Y_3}(w,z)$) in terms of $f_X(\cdot)$ and $F_X(\cdot)$.

Sol: For z > w and differentials dw and dz,

$$\Pr\{w \le Y_1(\mu) < w + dw, z \le Y_3(\mu) < z + dz\} = f_{Y_1,Y_3}(w,z)dwdz$$

$$= \Pr\{\text{one of } X_1(\mu), X_2(\mu), X_3(\mu) \text{ is in } [w + dw, z),$$
another is in $[z, z + dz)$, and the rest is in $[w, w + dw)$ }
$$= \binom{3}{1} \binom{2}{1} \Pr\{w + dw \le X(\mu) < z\} \Pr\{z \le X(\mu) < z + dz\}$$

$$\Pr\{w \le X(\mu) < w + dw\}$$

$$= 6 (F_X(z) - F_X(w + dw)) \cdot f_X(z)dz \cdot f_X(w)dw.$$

As $dz \to 0$ and $dw \to 0$, we thus have

$$f_{Y_1,Y_3}(w,z) = 6 (F_X(z) - F_X(w)) f_X(z) f_X(w)$$

which holds for z > w and $f_{Y_1,Y_N}(w,z) = 0$ otherwise.

(6%; 2% each) Let $\{X_n(\mu); n = 1, 2, ...\}$ be a random sequence consisting of i.i.d. binary-valued random variables, each taking value +1 or -1 with equal probability, i.e., $\Pr\{X_n(\mu) = +1\} = \Pr\{X_n(\mu) = -1\} = \frac{1}{2}$. Define a new random variable

$$Z_n(\mu) \triangleq \frac{1}{\sqrt{n}} \sum_{k=1}^n X_k(\mu).$$

(a) Find the characteristic function $\Phi_{Z_n}(\omega)$ of $Z_n(\mu)$. If we put the answer in the form of

$$\Phi_{Z_n}(\omega) \triangleq \exp\{ng(\omega, n)\}$$

what is $g(\omega, n)$? Give your answer in terms of cos function. (Note: $\cos(x) = \frac{1}{2}\{\exp\{jx\} + \exp\{-jx\}\}\)$.

Sol: By definition,

$$g(\omega, n) = \frac{1}{n} \ln[\Phi_{Z_n}(\omega)] = \frac{1}{n} \ln[\prod_{k=1}^n \Phi_{X_k}(\frac{\omega}{\sqrt{n}})]$$
$$= \frac{1}{n} \sum_{k=1}^n \ln[\Phi_{X_k}(\frac{\omega}{\sqrt{n}})].$$

Because $\Phi_{X_k}(\frac{\omega}{\sqrt{n}}) = \frac{1}{2} \exp\{j\frac{\omega}{\sqrt{n}}\} + \frac{1}{2} \exp\{-j\frac{\omega}{\sqrt{n}}\} = \cos(\frac{\omega}{\sqrt{n}})$, we have

$$g(\omega, n) = \ln[\cos(\frac{\omega}{\sqrt{n}})].$$

(b) Evaluate the limit $\lim_{n\to\infty} ng(\omega, n)$.

Sol: By Central Limit Theorem,

$$\lim_{n\to\infty} \Phi_{Z_n}(\omega) = \exp\{-\frac{1}{2}\omega^2\} = \exp\{\lim_{n\to\infty} ng(\omega,n)\}.$$

Thus, $\lim_{n\to\infty} ng(\omega,n) = -\frac{1}{2}\omega^2$. Another method is also given here:

$$\lim_{n \to \infty} ng(\omega, n) = \lim_{n \to \infty} \frac{\ln[\cos(\frac{\omega}{\sqrt{n}})]}{1/n}.$$

By L'Hopital's rule,

$$\lim_{n \to \infty} ng(\omega, n) = \lim_{n \to \infty} \frac{\frac{-\sin(\frac{\omega}{\sqrt{n}})}{\cos(\frac{\omega}{\sqrt{n}})} n^{-3/2}(-\frac{\omega}{2})}{-1/n^2}$$
$$= (-\frac{\omega}{2}) \cdot \lim_{n \to \infty} \frac{\tan(\frac{\omega}{\sqrt{n}})}{n^{-1/2}}.$$

Applying L'Hopital's rule again, we have

$$\lim_{n \to \infty} ng(\omega, n) = -\frac{1}{2}\omega^2.$$

(c) Write down the Chernoff bound

$$\Pr\{Z_n(\mu) \ge \epsilon\} \le \min_{\lambda \ge 0} E\{\exp\{\lambda(Z_n(\mu) - \epsilon)\}\} \triangleq \min_{\lambda \ge 0} \exp\{f(\lambda, n, \epsilon)\}$$

for some positive constant ϵ . Identify exactly the exponent function $f(\lambda, n, \epsilon)$ in the bound in terms of cosh function. (Note: $\cosh(x) = \frac{1}{2} \{ \exp\{x\} + \exp\{-x\} \}$).

Sol: Now,

$$\Pr\{Z_n(\mu) \ge \epsilon\} \le \min_{\lambda \ge 0} E\{\exp\{\lambda(Z_n(\mu) - \epsilon)\}\}$$

$$= \min_{\lambda \ge 0} \exp\{-\lambda \epsilon\} E\{\exp\{\lambda Z_n(\mu)\}\}$$

$$= \min_{\lambda \ge 0} \exp\{-\lambda \epsilon\} \Phi_{Z_n}(-j\lambda)$$

$$= \min_{\lambda \ge 0} \exp\{-\lambda \epsilon\} \exp\{n \ln[\cos(-\frac{j\lambda}{\sqrt{n}})]\}$$

$$= \min_{\lambda \ge 0} \exp\{-\lambda \epsilon + n \ln[\cosh(\frac{\lambda}{\sqrt{n}})]\}$$

since $\cosh(x) = \frac{1}{2} \{ \exp\{x\} + \exp\{-x\} \} = \cos(-jx)$. Thus,

$$f(\lambda, n, \epsilon) = -\lambda \epsilon + n \ln[\cosh(\frac{\lambda}{\sqrt{n}})].$$

- (4) (2%) Assume that two random variables $X(\mu)$ and $Y(\mu)$ are observed by a receiver. The receiver makes decision based on the metric $Z(\mu) \triangleq X(\mu)Y(\mu)$. An error occurs if $Z(\mu) > Q^{-1}(\alpha)$ and the decision is correct otherwise, where Q^{-1} is the inverse function of $Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} \exp\{\frac{-1}{2}y^2\} dy$ and α is a positive design value with $0 < \alpha < 1$. It is also known that $X(\mu)$ and $Y(\mu)$ are mutually independent, that $X(\mu)$ is a Gaussian random variable with zero mean and unit variance, and that $Y(\mu)$ is a binary-valued random variable with the common probability mass function $\Pr\{Y(\mu) = y\} = \frac{1}{2}$ if y = +1 or y = -1, and $\Pr\{Y(\mu) = y\} = 0$ otherwise. Now, determine the probability of incorrect decision for the receiver, i.e., $\Pr\{Z(\mu) > Q^{-1}(\alpha)\}$. Your answer should be expressed in terms of α .
 - Sol: Given $Y(\mu)$, $Z(\mu)$ is conditionally Gaussian distributed with zero mean and unit variance. This conditional density has nothing to do with $Y(\mu)$. Thus, $Z(\mu)$ is a Gaussian random variable with zero mean and unit variance. Therefore, the probability of incorrect decision is given by $\Pr\{Z(\mu) > Q^{-1}(\alpha)\}$, which is derived as

$$\Pr\{Z(\mu) > Q^{-1}(\alpha)\} = Q(Q^{-1}(\alpha))$$
$$= \alpha$$

- (5) (4%; 2% each) Consider a linear and time invariant system with continuous real input $X(\mu, t)$, continuous real output $Y(\mu, t)$, continuous real impulse response h(t), and system function $H(\omega)$. Let $X(\mu, t)$ and $Y(\mu, t)$ be both wide-sense stationary random processes with means η_X and η_Y , respectively, and power spectrums $S_X(\omega)$ and $S_Y(\omega)$, respectively. Also, let h(t) = 1 if |t| < 1/2 and h(t) = 0 otherwise.
- (a) It is known that $\eta_Y = \alpha \eta_X$ with α a constant. Determine α . Sol: Because $\eta_Y(t) = \eta_X(t) * h(t) = \int_{-\infty}^{\infty} \eta_X(t-x)h(x)dx = \eta_X \int_{-\infty}^{\infty} h(x)dx$, $\alpha = \int_{-\infty}^{\infty} h(x)dx = 1$.

(b) Express $S_Y(\omega)$ in terms of $S_X(\omega)$. Derivation is required.

Sol: Because $H(\omega) = \mathcal{F}\{h(t)\} = \sin(\omega/2)/(\omega/2),$

$$S_Y(\omega) = S_X(\omega) \frac{\sin^2(\omega/2)}{(\omega/2)^2}.$$

- (6) (2%) Let $A(\mu)$ and $B(\mu)$ be independent and identically distributed Gaussian random variables with mean zero and unit variance. Also, denote p as the probability that the random process $X(\mu, t) = A(\mu) B(\mu)t$ crosses the t axis in the time interval (0, T). Show that $\pi p = \arctan(T)$.
- Sol: $X(\mu, t)$ crosses the t axis in the time interval (0, T) if and only if $\exists t_1 \in (0, T)$ such that $A(\mu) B(\mu)t_1 = 0$. Hence, we have $p = \Pr\{0 < \frac{A(\mu)}{B(\mu)} < T\}$. Further, because $A(\mu)$ and $B(\mu)$ are independent and identically distributed Gaussian random variables with mean zero and unit variance, $C(\mu) \triangleq \frac{A(\mu)}{B(\mu)}$ is a Cauchy random variable with probability distribution function $F_C(c) = \frac{1}{2} + \frac{1}{\pi} \arctan(c)$. As a result, p is given by

$$p = \Pr\{0 < \frac{A(\mu)}{B(\mu)} < T\}$$
$$= F_C(T) - F_C(0)$$
$$= \frac{1}{\pi}\arctan(T)$$

and thus $\pi p = \arctan(T)$.

- (7) (2%) Consider the real-valued Gaussian random process $X(\mu,t)$ which have mean zero, i.e., $\eta_X(t) = E\{X(\mu,t)\} = 0$ and autocorrelation $R_X(t_1,t_2) = \delta(t_1 t_2)$ with $\delta(t)$ being the Dirac delta function. Also define K new random processes $Y_1(\mu,t), Y_2(\mu,t), ..., Y_K(\mu,t)$ by the outputs of the K linear time-invariant systems with real-valued impulse responses $h_1(t), h_2(t), ..., h_K(t)$, respectively, and common input $X(\mu,t)$. Prove that $\sum_{k=1}^K Y_k(\mu,t)$ is strict-sense stationary.
- Sol: Now, $Y_k(\mu, t)$ can be represented as $Y_k(\mu, t) = X(\mu, t) * h_k(t)$ with * being the convolution operator. Thus, we can represent sum process $Z(\mu, t) \triangleq \sum_{k=1}^{K} Y_k(\mu, t)$ by

$$Z(\mu, t) = \sum_{k=1}^{K} X(\mu, t) * h_k(t)$$
$$= X(\mu, t) * \sum_{k=1}^{K} h_k(t).$$

Thus, the mean function and the autocorrelation function of $Z(\mu, t)$ are given by

$$\eta_{Z}(t) \triangleq E\{Z(\mu, t)\} = \eta_{X}(t) * \sum_{k=1}^{K} h_{k}(t) = 0$$

$$R_{Z}(t_{1}, t_{2}) \triangleq E\{Z(\mu, t_{1})Z(\mu, t_{2})\}$$

$$= R_X(t_1, t_2) * \sum_{k_1=1}^K h_{k_1}(t_1) * \sum_{k_2=1}^K h_{k_2}(t_2)$$

$$= \delta(t_1 - t_2) * \sum_{k_1=1}^K h_{k_1}(t_1) * \sum_{k_2=1}^K h_{k_2}(t_2)$$

$$= \sum_{k_1=1}^K h_{k_1}(t_1 - t_2) * \sum_{k_2=1}^K h_{k_2}(t_2)$$

$$= \sum_{k_1=1}^K \sum_{k_2=1}^K h_{k_1}(t_1 - t_2) * h_{k_2}(t_2)$$

where $h_{k_1}(t_1 - t_2) * h_{k_2}(t_2)$ can be expressed as

$$h_{k_1}(t_1 - t_2) * h_{k_2}(t_2) = \int_{-\infty}^{\infty} h_{k_1}(t_1 - \tau) h_{k_2}(t_2 - \tau) d\tau$$
$$= \int_{-\infty}^{\infty} h_{k_1}(x) h_{k_2}(x + t_2 - t_1) dx$$
$$(x = t_1 - \tau)$$

and is a function of $t_1 - t_2$. Since $\eta_Z(t)$ is a constant and $R_Z(t_1, t_2)$ is a function of $t_1 - t_2$ only, $Z(\mu, t)$ is wide-sense stationary. Further, $Z(\mu, t)$ is a Gaussian process because it is the result of a linear transform of Gaussian process $X(\mu, t)$. Thus, $Z(\mu, t)$ is strict-sense stationary since a wide-sense stationary Gaussian process is strict-sense stationary.