Chapter 19

1	\mathbf{The}	\mathbf{First}	t Law of Thermodynamics	1	L
	1.1	Work	x Done During Volume Changes	. 1	
		1.1.1	Question	. 2)
		1.1.2	19.7	. 2)

1 The First Law of Thermodynamics

In a thermodynamic process, Q is positive when heat flows **into** a system, and negative when heat flows **out** of the system.

Work W is **positive** when work is done by the system against its surroundings, and hence corresponds to energy leaving the system. W is negative when work is done on the system.

1.1 Work Done During Volume Changes

• Isobaric: p is constant

$$dW = (F)dx$$

$$dW = (pA)dx, \quad \text{Pressure} = \frac{\text{Force}}{\text{Area}}$$

$$dW = (p)dV$$

$$\int_0^W (1)dW = p \int_{V_0}^{V_1} (1)dV$$

$$W = p [V_1 - V_0]$$

$$W = p [V_1 - V_0]$$
(1)

• Isochoric: V is constant, $\Delta U = Q - 0$

$$W = \int (p)dV = p(0) = 0$$

• Isothermal: T is constant, $0 = Q - nRT \ln \frac{V_1}{V_0}$

$$W = \int (p)dV$$

$$W = \int \left(\frac{nRT}{V}\right)dV$$

$$W = nRT \int_{V_0}^{V_1} \left(\frac{1}{V}\right)dV$$

$$W = nRT \ln \left[\frac{V_1}{V_0}\right]$$

1.1.1 Question

$$dW = \int \left(\frac{nRT}{P}\right) dp$$

$$\int_0^W (1)dW = nRT \int_{p_0}^{p_1} \left(\frac{1}{P}\right) dp$$

1.1.2 19.7

(a)

$$W_{1,3} = p_1(V_2 - V_1)$$

$$W_{3,2} = 0$$

$$W_{2,4} = p_2(V_1 - V_2)$$

$$W_{4,1} = 0$$

$$W_{total} = p_1(V_2 - V_1) + p_2(V_1 - V_2)$$

$$W_{total} = p_1(V_2 - V_1) - p_2(-V_1 + V_2)$$

$$W_{total} = (p_1 - p_2)(V_2 - V_1)$$