Linear Algebra 1

Systems of linear equations

Vector Equation

Span
$$\left\{ \underline{V_1} / \underline{V_2}, \dots \right\} = C_1 V_1 + C_2 V_2 + \dots$$

span of a vectors set is all the combinationals of a set of vectors

and it exist when: $C_1V_1+C_2V_2\in Span\{4,1V_2\}\setminus C_1,C_2\in \mathbb{R}$

Homogeneous systems: f A x = Q

Trivial solution: if A=1 in Homogeneous lines System nontrivial solution: if and only if the system has at least one free variable

Nonhomogeneous Systems

A
$$\{V_1, V_2, V_K\}$$
 is lowerly independent if $x_1y_1 - x_2y_2 = 0$ but will solution $\rightarrow x_2 = 0$ and linearly dependent if C_1, C_2, \dots notatibe zero

$$A
ightharpoonup RFF
ightharpoonup Consistent
ightharpoonup unique solution (no fice uni)$$

$$A \times = 0$$
 where $A = [Y_1 \times Y_2 \times Y_3]$ A column see independent $\Rightarrow A_3 = 0$ similar exhibition

A column see dependent $\Rightarrow A_3 = 0$ monthful solution

$$\nearrow$$
 A way to prove having traid solution without computation:

$$\begin{bmatrix}
1 & 0 & 3 & 2 \\
0 & 1 & 2 & 4 \\
2 & 0 & 3 & 1
\end{bmatrix}$$
4 columns \rightarrow Those runs to be free variable

Notation
$$A_{\underline{x}} = b \rightarrow \underline{x} = \begin{pmatrix} 2 \\ r \\ x \end{pmatrix} + \chi(f_{\underline{x}}, x_{\underline{y}}) \begin{pmatrix} 3 \\ 2 \\ z \end{pmatrix} \rightarrow V$$

Transformation

T(
$$\pm$$
) = $A \pm T$: $R \rightarrow R$

A Notations (1) Standard Basis: $\pm * \left(\frac{\pi}{4}\right) = \pi \left[\frac{\pi}{2} + \pi \left[\frac{\pi}{2}\right] + \pi \left[\frac{\pi}{2}\right] = \pi \left[\frac{\pi}{2}\right] + \pi \left[\frac{\pi}{2}\right] = \pi$

Matrix Operations

I matrix (Identity) _ 1 in Diagonals 80 on others

Transpose of Matrix. Columns of A will be nows of A in correct order

Ar
$$(AB)^T = B^TA^T$$

Invariable matrix of $Ac = CA = In$ final Suggetar Matrix

At $f \mid IA \mid \neq 0$ — Animable and $A^{-1} = \frac{1}{|AI|} \left[\frac{d}{-b} \right]$

* $(AB)^{-1} = B^{-1}A^{-1}$
 $(A^T)^{-1} = (A^{-1})^T$

Algorithm for A
 $A \rightarrow [A|In] \rightarrow [RREF|A^{-1}]$ or A^{-1}

Determinant

A cofactor
$$\rightarrow C\ddot{y} = (-1)^{3} \det(A\dot{y})$$

At cofactor $\rightarrow C\ddot{y} = (-1)^{3} \det(A\dot{y})$

$$\det(A) = a_{11}Cn + a_{12}C_{12} + ... + a_{10}C_{10} \rightarrow empartion of 1d row$$
Theorems

A) $|A| = |A'| \rightarrow A' = A_{row}i + c A_{row}i$

B) $|A| = |A'| \rightarrow A' = A_{row}i + c A_{row}i$
 $|A'| = |A'| \rightarrow A' = A_{row}i + c A_{row}i$

C) $|A'| = |A'| \rightarrow A' = A_{row}i + c A_{row}i$

Carmer and Transformation

Carmer Rule - if [Coefficient] invertible

$$a_1 \times + b_1 y = c_1$$
 $A_2 \times + b_2 y = c_2$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$
 $A = \begin{bmatrix} a_1 & b_2 \\ a_2 & b_2 \end{bmatrix}$

And if $A = \begin{bmatrix} a_1 & a_2 & b_2 \\ a_2 & b_2 \end{bmatrix}$

Area of parallel open made by A reason (name)

 $A = \begin{bmatrix} a_1 & a_2 & b_2 \\ a_2 & b_2 \end{bmatrix}$

Transformed (Mapped) Area

 $A = \begin{bmatrix} a_1 & a_2 & b_2 \\ a_2 & b_2 \end{bmatrix}$

Area

 $A = \begin{bmatrix} a_1 & a_2 & b_2 \\ a_2 & b_2 \end{bmatrix}$

Transformed (Mapped) Area

 $A = \begin{bmatrix} a_1 & a_2 & b_2 \\ a_2 & b_2 \end{bmatrix}$

Transformed (Mapped) Area

e. ____ [3] Tout in [6]

a. ____ [7] The [6]

Area of Transformed (A) Matrix(s)

is Area (T(s)) = [ALIS] * System have unique solution if | coef| ≠0