Classes de Comportamento Assintótico Projeto e Análise de Algoritmos

Daniel Capanema

Pontifícia Universidade Católica de Minas Gerais

- Se f é uma função de complexidade para um algoritmo F, então O(f) é considerada a complexidade assintótica ou o comportamento assintótico do algoritmo F.
- A relação de dominação assintótica permite comparar funções de complexidade.
- Entretanto, se as funções f e g dominam assintoticamente uma a outra, então os algoritmos associados são equivalentes.
- Nestes casos, o comportamento assintótico não serve para comparar os algoritmos.
- Por exemplo, considere dois algoritmos F e G aplicados à mesma classe de problemas, sendo que F leva três vezes o tempo de G ao serem executados, isto é, f(n) = 3g(n), sendo que O(f(n)) = O(g(n)).
- Logo, o comportamento assintótico não serve para comparar os algoritmos F e G, porque eles diferem apenas por uma constante.

Comparação de Programas

- Podemos avaliar programas comparando as funções de complexidade, negligenciando as constantes de proporcionalidade
- Um programa com tempo de execução O(n) é melhor que outro com tempo O(n2)
 - Porém, as constantes de proporcionalidade podem alterar esta consideração
- Exemplo: um programa leva 100n unidades de tempo para ser executado e outro leva 2n2. Qual dos dois programas é melhor?
 - o Depende do tamanho do problema
 - Para n < 50, o programa com tempo 2n2 é melhor do que o que possui tempo 100n
 - Para problemas com entrada de dados pequena é preferível usar o programa cujo tempo de execução é O(n2)
 - Entretanto, quando n cresce, o programa com tempo de execução O(n2) leva muito mais tempo que o programa O(n)

- Complexidade constante $\leftarrow f(n) = O(1)$
 - O uso do algoritmo independe do tamanho de n
 - As instruções do algoritmo são executadas um número fixo de vezes
 - O que significa um algoritmo ser O(2) ou O(5)?

- Complexidade Logarítmica $\leftarrow f(n) = O(\log n)$
 - Ocorre tipicamente em algoritmos que resolvem um problema transformando-o em problemas menores
 - Nestes casos, o tempo de execução pode ser considerado como sendo menor do que uma constante grande
- Supondo que a base do logaritmo seja 2:
 - Para n = 1 000, $\log_2 \approx 10$
 - Para n = 1 000 000, $\log_2 \approx 20$
- Exemplo:
 - Algoritmo de pesquisa binária

- Complexidade Linear $\leftarrow f(n) = O(n)$
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada
 - Esta é a melhor situação possível para um algoritmo que tem que processar/produzir n elementos de entrada/saída
 - Cada vez que n dobra de tamanho, o tempo de execução também dobra
- Exemplo:
 - Algoritmo de pesquisa sequencial

- Complexidade Linear Logarítmica $\leftarrow f(n) = O(n \log n)$
 - Este tempo de execução ocorre tipicamente em algoritmos que resolvem um problema quebrando-o em problemas menores, resolvendo cada um deles independentemente e depois agrupando as soluções
 - Caso típico dos algoritmos baseados no paradigma divisão-e-conquista
- Supondo que a base do logaritmo seja 2:
 - Para n = 1 000 000, $\log_2 \approx 20\ 000\ 000$
 - Para n = 2 000 000, $\log_2 \approx 42\ 000\ 000$
- Exemplo:
 - Algoritmo de ordenação MergeSort

- Complexidade Quadrática $\leftarrow f(n) = O(n^2)$
 - Algoritmos desta ordem de complexidade ocorrem quando os itens de dados são processados aos pares, muitas vezes em um anel dentro do outro
 - Para n = 1000, o número de operações é da ordem de 1000000
 - Sempre que n dobra o tempo de execução é multiplicado por 4
 - Algoritmos deste tipo s\u00e3o \u00fateis para resolver problemas de tamanhos relativamente pequenos

Exemplos:

Algoritmos de ordenação simples como seleção e inserção

- Complexidade Cúbica $\leftarrow f(n) = O(n^3)$
 - Algoritmos desta ordem de complexidade geralmente são úteis apenas para resolver problemas relativamente pequenos
 - o Para n = 100, o número de operações é da ordem de 1000000
 - Sempre que n dobra o tempo de execução é multiplicado por 8

- Exemplo:
 - Algoritmo para multiplicação de matrizes

- Complexidade Exponencial $\leftarrow f(n) = O(2^n)$
 - Algoritmos desta ordem de complexidade não são úteis sob o ponto de vista prático
 - Eles ocorrem na solução de problemas quando se usa a força bruta para resolvê-los
 - Para n = 20, o tempo de execução é cerca de 1000000
 - Sempre que n dobra o tempo de execução fica elevado ao quadrado

- Exemplo:
 - Algoritmo do Caixeiro Viajante

- Complexidade Exponencial $\leftarrow f(n) = O(n!)$
 - Um algoritmo de complexidade O(n!) é dito ter complexidade exponencial, apesar de O(n!) ter comportamento muito pior do que O(2n)
 - Geralmente ocorrem quando se usa força bruta na solução do problema

Considerando:

- n = 20, temos que 20! = 2432902008176640000, um número com 19 dígitos
- o n = 40 temos um número com 48 dígitos

Comparação de funções de complexidade

Função de custo	Tamanho n						
	10	20	30	40	50	60	
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006	
	s	s	s	s	s	s	
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036	
	s	S	s	s	s	s	
n^3	0,001	0,008	0,027	0,64	0,125	0.316	
	s	s	s	s	s	s	
n^5	0,1	3,2	24,3	1,7	5,2	13	
	s	s	s	min	min	min	
2 ⁿ	0,001	1	17,9	12,7	35,7	366	
	s	s	min	dias	anos	séc.	
3 ⁿ	0,059	58	6,5	3855	10 ⁸	10 ¹³	
	s	min	anos	séc.	séc.	séc.	

Função de custo de tempo		Computador 100 vezes mais rápido	
n	t_1	100 t ₁	1000 t ₁
n^2	t_2	10 t ₂	$31,6 t_2$
n^3	t ₃	4,6 t3	10 t ₃
2^n	t ₄	$t_4 + 6, 6$	$t_4 + 10$

Comparação de funções de complexidade

