Exercise 2.1.3: Is the sequence $\left\{\frac{(-1)^n}{2n}\right\}$ convergent? If so, what is the limit?

$$\lim_{n\to\infty} \frac{(-1)^n}{2n} = 0 \text{ , so the limit of the sequence } \left\{ \frac{(-1)^n}{2n} \right\} \text{ is } 0.$$
(oscillates between $\frac{1}{\infty}$ and $\frac{1}{\infty}$)

let & be an arbitrary positive number.

$$\left|\frac{(-1)^n}{2n}-0\right|=\frac{1}{2n}$$

$$\exists N = \lceil \frac{1}{25}, \rceil \leq t, \quad \frac{1}{2N} \leq \epsilon . \quad \forall \leq 70$$

$$\forall n \nearrow N$$
, $\left| \frac{(-1)^n}{2n} - 0 \right| = \frac{1}{2n} \le \frac{1}{2N} \le \varepsilon$

Therefore, by definition,
$$\{\frac{(-1)^n}{2n}\}$$
 is convergent

Exercise 2.1.6: Is the sequence $\left\{\frac{n}{n^2+1}\right\}$ convergent? If so, what is the limit? $\lim_{n\to\infty}\frac{n}{n^2+1}=0,$ so the limit of the sequence $\left\{\frac{n}{n^2+1}\right\}$ is 0.

Let & be an arbitrary positive number.

$$W.T.S. \exists N s.t. \forall n \geqslant N, \left| \frac{n}{n^2+1} - 0 \right| C \leq$$

$$\left| \frac{n}{n^2+1} - 0 \right| = \frac{n}{n^2+1}$$

$$\exists N = \lceil \frac{1}{2} \rceil$$
 s.t. $\forall C \in \Sigma$.

$$\forall n \nearrow N$$
, $\left| \frac{h}{n^2 + 1} - 0 \right| = \frac{N}{n^2 + 1} < \frac{1}{N} < \frac{1}{N} < \frac{1}{N}$

Therefore, by definition,
$$\{\frac{n}{n^2+1}\}$$
 is convergent

Exercise 2.1.7: Let $\{x_n\}$ be a sequence.

- a) Show that $\lim x_n = 0$ (that is, the limit exists and is zero) if and only if $\lim |x_n| = 0$.
- b) Find an example such that $\{|x_n|\}$ converges and $\{x_n\}$ diverges.

$$\lim_{N \to \infty} |x_{n}| = 0 \quad \implies \lim_{N \to \infty} |x_{n}| = 0$$

$$Similarly, \forall \Sigma > 0, \exists N \in N \text{ s.t. } |x_{n}| + x \mid C \Sigma \quad \forall n > N$$

$$X = \lim_{N \to \infty} |x_{n}| = 0, \text{ so } |x_{n}| \in \Sigma \quad |x_{n}| \in \Sigma$$

$$So |x_{n} - 0| \in \Sigma, |x_{n} - x| \in \Sigma, \text{ which } \text{ satisfies that } \forall \Sigma > 0, \exists N \in N \text{ s.t. } |x_{n} - x| \in \Sigma \quad \forall n \geq N$$

$$So |x_{n} - 0| \in \Sigma, |x_{n} - x| \in \Sigma \quad \forall n \geq N$$

$$So |x_{n} - x| = 0$$

Exercise 2.1.13: Let $\{x_n\}$ be a convergent monotone sequence. Suppose there exists a $k \in \mathbb{N}$ such that

$$\lim_{n\to\infty}x_n=x_k.$$

Show that $x_n = x_k$ for all $n \ge k$.

We know {Xn} is convergent monotone sequence.

Assume it's monotone increasing, then

 $X_{k} = \lim_{n \to \infty} X_{n} = \sup \{ \chi_{n} : n \in \mathbb{N} \}.$

Xx (kell) is within { xn: nell}

So $X^{k} \leq X^{u} \quad \forall u \not \geq k$

Since {xn} is monotone increasing, Xk = Xn Un>k

Sinilarly, if (Xn) is monotone decreasing,

 $X_{k} = \lim_{n \to \infty} X_{n} = \inf \{ X_{n} : n \in \mathbb{N} \} \Rightarrow X_{k} \supset X_{n} \Rightarrow X_{k} = X_{n} \forall n \geqslant k \}$

Exercise 2.1.16: Let $\{x_n\}$ be a sequence. Suppose there are two convergent subsequences $\{x_{n_i}\}$ and $\{x_{m_i}\}$. Suppose

$$\lim_{i\to\infty}x_{n_i}=a \qquad and \qquad \lim_{i\to\infty}x_{m_i}=b,$$

where $a \neq b$. Prove that $\{x_n\}$ is not convergent, without using Proposition 2.1.17.

Assume {Xn3 is convergent. Let lim Xn=L, such that

4 2 > 0, 3 N EIN S. T. | Xn - L | < 2 H n > N (1)

We know that lim Xn = a , lim Xn = 6 , a = b

So either L≠a≠b, or L≠a, or L≠b

Assume L #a, let k = | L-a| >0 (2)

Since (Xni} is convergent,

HEDO ZMEIN S.T. YIIZM,

 $|\chi_n: -a| \in \mathcal{E}$

Choose $\Sigma = \frac{k}{2} > 0$, so $|X_{ni} - a| < \frac{k}{2}$ (3)

From (2), k= |L-a|= |L-Xn; + Xn; -a| \[|L-Xn; |+ |Xn; -a|

From (3), $k < |L-Y_n| + \frac{k}{2}$, So $|L-X_n| > \frac{k}{2} = \varepsilon$ (4)

(1) and (4) contradiction.

Similarly, if we otherwise assume $L \neq b$, $\Sigma = \frac{k}{2} = \frac{|L-b|}{2} > 0$

(4) will become $|L-X_m:|>\frac{k}{2}=\varepsilon$ (5)

(1) and (5) contradiction.

Therefore, {Xn} is not convergent.

Exercise 2.1.23: Suppose that $\{x_n\}$ is a monotone increasing sequence that has a convergent subsequence. Show that $\{x_n\}$ is convergent. Note: So Proposition 2.1.17 is an "if and only if" for monotone sequences.

{Xn3 is monotone increasing, so its subsequences are also monotone increasing. Let {Xni} be the given convergent subsequence.

Since {Xni} is convergent and monotone increasing,

lim Xni = sup {Xni: i EN3 = k, so Xn sk H n EN

By Proposition 2.1.10, since

{Xn} is upper bounded,

it is convergent

Exercise 2.2.4: Suppose $x_1 := \frac{1}{2}$ and $x_{n+1} := x_n^2$. Show that $\{x_n\}$ converges and find $\lim x_n$. Hint: You cannot divide by zero!

$$X_1 = \frac{1}{2} < 1$$
 $0 < X_2 = \frac{1}{4} < X_1 = \frac{1}{2}$ So $X_{n+1} = X_n^2 < X_n \ \forall \ n \in \mathbb{N}$

$$L \neq I$$
. There fore, $\lim_{n \to \infty} x_n = 0$

Exercise 2.2.5: Let $x_n := \frac{n - \cos(n)}{n}$. Use the squeeze lemma to show that $\{x_n\}$ converges and find the limit.

$$-1 \leq Cos(n) \leq 1$$

$$-\frac{1}{n} \leq \frac{Cos(n)}{n} \leq \frac{1}{n}$$

$$-\frac{1}{n} \leq 1 - \frac{Cos(n)}{n} \leq 1 + \frac{1}{n}$$

$$\frac{1}{n-cos(n)}$$

Since
$$\lim_{n\to\infty} \{1-\frac{1}{n}\} = 1 = \lim_{n\to\infty} \{1+\frac{1}{n}\},$$

by squeeze lemma, $\lim_{n\to\infty} \{x_n\} = 1$
So $\{x_n\}$ converges to 1

Exercise 2.2.12:

- a) Suppose $\{a_n\}$ is a bounded sequence and $\{b_n\}$ is a sequence converging to 0. Show that $\{a_nb_n\}$ converges
- b) Find an example where $\{a_n\}$ is unbounded, $\{b_n\}$ converges to 0, and $\{a_nb_n\}$ is not convergent.
- c) Find an example where $\{a_n\}$ is bounded, $\{b_n\}$ converges to some $x \neq 0$, and $\{a_nb_n\}$ is not convergent.
- a) $\Im B \in \mathbb{R}$ s.t. $|a_n| \leq B$ $\forall n \in \mathbb{N}$

4 570, FNEIN s.t. | bn-0 = | bn | CE H n2N

Therefore, Y 270,] N GIN s.t. landar-of < B. E = Eo Y E, >0

b). Qn:= N2

 $b_n := \frac{1}{n}$ and $b_n = n$ not convergent

C) $a_n := (-1)^n$ $b_n := 1$ $a_n b_n = (-1)^n$ not convergent

Exercise 2.2.14: Suppose $x_1 := c$ and $x_{n+1} := x_n^2 + x_n$. Show that $\{x_n\}$ converges if and only if $-1 \le c \le 0$, in which case it converges to 0.

 $-1 \le c \le 0 \implies \{x_n\}$ converges to 0 $x_{n+1} = x_n^2 + x_n > x_n$, so $\{x_n\}$ is monotonic increasing. $\lim_{n \to \infty} x_n = L$ $L = C^2 + L$ L = C

{Xn} converges to $0 \Rightarrow -1 \in C \in O$ If C > 0, {Xn} is monotone increasing, {Xn} is bounded below by C, so $\lim_{n \to \infty} X_n > C > 0 \Rightarrow C = C$ If C < -1, {Xn} is monotone increasing with no upper bound.