Esercitazione 3 Teoria dei Giochi

Chiara Nardi

Corso di Laurea in Economia Aziendale Università degli Studi di Verona

15 dicembre 2014

Teoria dei Giochi

Un gioco è formato da:

- a giocatori
- b strategie
- c matrice dei payoff

Possiamo inoltre affermare che:

- Un gioco con un numero finito di giocatori e di strategie ha almeno un NE.
 Quindi, se non sono presenti NE in strategie pure, esiste sicuramente un NE in strategie miste (Teorema di Nash).
- Un gioco in cui sono presenti delle strategie strettamente dominanti ha un UNICO NE, in cui ciascun giocatore sceglie la propria strategia dominante. Infatti, le strategie strettamente dominate possono essere eliminate.
- Un gioco in cui sono presenti delle strategie debolmente dominanti potrebbe avere più di un NE.

Due persone salgono su un autobus e vedono due posti liberi molto stretti. Ogni persona deve decidere se stare in piedi (P) o sedersi (S). Si consideri la seguente matrice dei payoff:

		Persona 2		
		Р	S	
Persona 1	Р	0;0	0;2	
	S	2;0	1;1	

- Descrivere il gioco.
- Dire se esistono delle strategie dominanti.
- Oeterminare l'equilibrio di Nash nel caso in cui la scelta sia simultanea.

Soluzione:

- Elementi del gioco:
 - a due giocatori: Persona 1 e Persona 2
 - b ciascun giocatore ha a disposizione due strategie: Stare in Piedi (P) e Sedersi (S)
 - la matrice dei payoff è

		Persona 2	
		Р	S
Persona 1	Р	0;0	0;2
	S	2 ;0	1;1

dove, il primo numero è l'utilità (payoff) del giocatore riga (Persona 1), mentre il secondo numero è l'utilità (payoff) del giocatore colonna (Persona 2)

- Per entrambi i giocatori la strategia (strettamente) dominante è Sedersi
- In presenza di strategie strettamente dominanti il gioco ha un UNICO NE, in cui ciascun giocatore sceglie la propria strategia dominante. In questo caso, (S;S)

Calcolare tutti gli equilibri di Nash del seguente gioco:

			Marco)
		S	С	D
	Α	3,1	1,4	4,2
Luca	M	2,4	0,2	3,1
	В	1,3	2,1	6,0

Soluzione:

- Per Luca, M è una strategia strettamente dominata da A e quindi possiamo eliminarla.
- Per Marco, D è una strategia strettamente dominata da C e quindi possiamo eliminarla.

Possiamo riscrivere il gioco nel seguente modo:

	Marco		
		S	С
Luca	Α	3,1	1,4
	M	1,3	2,1

Assumiamo che:

- Luca scelga la strategia A con probabilità x e la strategia M con probabilità (1 - x)
- Marco scelga la strategia S con probabilità y e la strategia C con probabilità (1 - y)

Soluzione (continua)

A è la BR_L se $U_L(A, y) \ge U_L(B, y)$, ossia se $y \ge \frac{1}{3}$. Bè la BR_l se $U_l(B, y) \ge U_l(A, y)$, ossia se $y \le \frac{1}{2}$.

$$PBR_L(y) = \begin{cases} A & y > \frac{1}{3} \\ A, B & y = \frac{1}{3} \\ B & y < \frac{1}{3} \end{cases}$$

$$PBR_{L}(y) = \begin{cases} A & y > \frac{1}{3} \\ A, B & y = \frac{1}{3} \\ B & y < \frac{1}{2} \end{cases} \qquad BR_{L}(y) = \begin{cases} x = 1 & y > \frac{1}{3} \\ x \in [0, 1] & y = \frac{1}{3} \\ x = 0 & y < \frac{1}{3} \end{cases}$$

Soluzione (continua)

S è la BR_M se $U_M(x, S) \ge U_M(x, C)$, ossia se $x \le \frac{2}{5}$. C è la BR_M se $U_M(x, C) \ge U_M(x, S)$, ossia se $x \ge \frac{2}{5}$.

$$PBR_{M}(x) = \begin{cases} S & x < \frac{2}{5} \\ S, C & x = \frac{2}{5} \\ C & x > \frac{2}{5} \end{cases}$$

$$BR_{M}(x) = \begin{cases} y = 1 & x < \frac{2}{5} \\ y \in [0, 1] & x = \frac{2}{5} \\ y = 0 & x > \frac{2}{5} \end{cases}$$

In conclusione, rappresentando le BR in un grafico con x in ascisse e y in ordinate, vediamo che questo gioco non ha equilibri di Nash in strategie pure. L'unico NE è in strategie miste ed è dato da:

$$(\frac{2}{5}A + \frac{3}{5}B; \frac{1}{3}S + \frac{2}{3}C)$$

Calcolare tutti gli equilibri di Nash del seguente gioco:

	Giocatore 2				
		L	M	С	R
Giocatore 1	U	1,3	-1,2	0,0	2,1
Glocatore	D	0,1	-1,-1	1,4	1,2

9/13

Soluzione:

- Per il Giocatore 1, non esistono strategie dominate.
- Per II Giocatore 2, M è una strategia strettamente dominata da L (3 > 2 e 1 > -1) e quindi possiamo eliminarla.

Possiamo riscrivere il gioco nel seguente modo:

		Giocatore 2			
		L	С	R	
Giocatore 1	U	1,3	0,0	2,1	
	D	0,1	1,4	1,2	

Assumiamo che:

- Giocatore 1 scelga la strategia U con probabilità x e la strategia D con probabilità (1-x)
- Giocatore 2 scelga la strategia L con probabilità y, la strategia C con probabilità z e la strategia R con probabilità (1 - y - z)

Soluzione (continua)

Per il Giocatore 1,

U è la BR_1 se $U_1(U, y, z) \ge U_1(D, y, z)$, ossia se $z \le \frac{1}{2}$.

Dè la BR_1 se $U_1(D, y, z) \ge U_1(U, y, z)$, ossia se $z \ge \frac{1}{2}$.

$$PBR_L(y) = \begin{cases} U & z < \frac{1}{2} \\ U, D & z = \frac{1}{2} \\ D & z > \frac{1}{2} \end{cases}$$

$$PBR_{L}(y) = \begin{cases} U & z < \frac{1}{2} \\ U, D & z = \frac{1}{2} \\ D & z > \frac{1}{2} \end{cases}$$

$$BR_{L}(y) = \begin{cases} x = 1 & z < \frac{1}{2} \\ x \in [0, 1] & z = \frac{1}{2} \\ x = 0 & z > \frac{1}{2} \end{cases}$$

Soluzione (continua)

Per il Giocatore 2, abbiamo $U_2(x, L) = 1 + 2x$, $U_2(x, C) = 4 - 4x$ e $U_2(x, R) = 2 - x$.

Rappresentando le funzioni nello spazio (x, U_2) si ottiene:

Dal grafico possiamo vedere che la retta corrispondente alla strategia R è sempre inferiore alle rette associate alle strategie L e C. Questo significa che la strategia R è dominata da una combinazione di L e C e quindi, in equilibrio, non sarà mai scelta dal Giocatore 2. Vediamo inoltre che $PBR_2 = C$ se $x \le \frac{1}{2}$ e $PBR_2 = L$ se $x \ge \frac{1}{2}$.

Soluzione (continua)

$$PBR_{2}(x) = \begin{cases} C & x < \frac{1}{2} \\ C, L & x = \frac{1}{2} \\ L & x > \frac{1}{2} \end{cases} \qquad BR_{2}(x) = \begin{cases} z = 1(y = 0) & x < \frac{1}{2} \\ y, z \in [0, 1], y + z = 1 & x = \frac{1}{2} \\ y = 1(z = 0) & x > \frac{1}{2} \end{cases}$$

- Se il Giocatore 1 sceglie U \Rightarrow $x = 1 \Rightarrow y = 1 \Rightarrow PBR_2 = L$. Se il Giocatore 2 sceglie L \Rightarrow y = 1 e quindi $z = 0 \Rightarrow z < \frac{1}{2} \Rightarrow x = 1 \Rightarrow PBR_1 = U$. \Rightarrow (U,L) è un NE
- Se il Giocatore 1 sceglie D \Rightarrow $x = 0 \Rightarrow z = 1$ e quindi $y = 0 \Rightarrow PBR_2 = C$. Se il Giocatore 2 sceglie C \Rightarrow z = 1 e quindi $z > \frac{1}{2} \Rightarrow x = 0 \Rightarrow PBR_1 = D$. \Rightarrow (D,C) è un NE
- se $x \in [0, 1] \Rightarrow z = \frac{1}{2} \Rightarrow y = \frac{1}{2} \Rightarrow x = \frac{1}{2}$ \Rightarrow NE in strategie miste dato da $(\frac{1}{2}U + \frac{1}{2}D; \frac{1}{2}L + \frac{1}{2}C)$

