W06-08

Slide 01: In this unit, we will introduce a very important concept that provides the foundation to linear approximation, namely, orthogonal projection.

Slide 02: We first define what is meant by a vector being orthogonal to a subspace. Let V be a subspace of \mathbb{R}^n . A vector \boldsymbol{u} is said to be orthogonal to V if \boldsymbol{u} is orthogonal to all the vectors in the subspace V. You can visualise this by putting the vector \boldsymbol{u} with its initial point at the origin, which is certainly contained in V since V is a subspace.

(#)

Any vector in V

(#)

with their initial point likewise placed at the origin

(#)

will be orthogonal or perpendicular to the vector \boldsymbol{u} . With this definition, you will now see that the term orthogonal can be used to describe the relationship between two vectors, to describe a set, and now to describe the relationship between a vector and a set.

Slide 03: For example, the set V that contains all the vectors (x, y, z) satisfying 2x + 3y - z = 0 is a subspace of \mathbb{R}^3 . You should recognise this immediately as a plane in \mathbb{R}^3 that contains the origin.

(#)

A vector in \mathbb{R}^3 will be in V if and only if 2x + 3y - z = 0.

(#)

Or in other words, the dot product between (x, y, z) and (2, 3, -1) is zero.

(#)

So the vector (2,3,-1) is orthogonal to every vector in the subspace V

(#)

and thus we say that (2,3,-1) is orthogonal to V.

Slide 04: We can generalise the above example. For any plane in \mathbb{R}^3 that contains the origin, we know that the plane is a subspace of \mathbb{R}^3 and can be described by the linear equation ax + by + cz = 0. So a vector (x, y, z) belongs to the subspace if and only if $(x, y, z) \cdot (a, b, c)$ is zero. (#)

Thus the vector (a, b, c) is orthogonal to the subspace.

Slide 05: Continuing with the subspace V that represents a plane in \mathbb{R}^3 containing the origin.

(#)

Let n denote the vector (a, b, c) which we have seen to be a vector orthogonal to V. (#)

We can now rewrite V as the set of all vectors \boldsymbol{u} in \mathbb{R}^3 such that the dot product between \boldsymbol{n} and \boldsymbol{u} is zero.

(#)

The vector \boldsymbol{n} is orthogonal to V and we can also say that \boldsymbol{n} is a normal vector of V. (#)

Now if n is orthogonal to V, will any non zero multiple of n be also orthogonal to V?

(#)

The answer is definitely yes, since $\mathbf{n} \cdot \mathbf{u} = 0$ is equivalent to $c\mathbf{n} \cdot \mathbf{u} = 0$ for any non zero scalar c. You can think of this as $c\mathbf{u}$ being just a longer or shorter version of \mathbf{u} , having the same direction as \mathbf{u} . So if \mathbf{u} is perpendicular to V, so will $c\mathbf{u}$.

Slide 06: Let V be a subspace of \mathbb{R}^4 spanned by the two vectors (1, 1, -1, 0) and (0, 1, 1, -1). We would like to find all vectors orthogonal to V.

(#)

Remember that a vector is orthogonal to V if and only if it is orthogonal to every vector in V.

(#)

It may seem very challenging to find even one vector that is orthogonal to every single vector in V, let alone finding **all** vectors with such a property which is what the question wants. How can we go about doing this?

Slide 07: Fortunately, if we know that V is spanned by a set of vectors u_1, u_2 to u_k , then a vector v will be orthogonal to the subspace V if and only if v is orthogonal to each of the vector that spans V.

(#)

In other words, we just need to make sure that the dot product between v and all the u_i 's is zero, which is much easier to check.

Slide 08: Let us return to the problem of finding all vectors orthogonal to V.

(#)

We now know that a vector \boldsymbol{u} is orthogonal to V if and only if \boldsymbol{u} is orthogonal to the vectors that spans V.

(#)

Let $\mathbf{u} = (w, x, y, z)$. So the dot product between \mathbf{u} and (1, 1, -1, 0), as well as the dot product between \mathbf{u} and (0, 1, 1, -1) will be zero.

(#)

Thus we now have a homogeneous linear system involving 4 variables and 2 equations.

Slide 09: Solving the homogeneous linear system by Gauss Jordan elimination, (#)

we obtain the following general solution involving two arbitrary parameters s and t.

- **Slide 10:** So \boldsymbol{u} is orthogonal to V if and only if \boldsymbol{u} can be written as a linear combination of the two vectors (2, -1, 1, 0) and (-1, 1, 0, 1).
- **Slide 11:** In other words, \boldsymbol{u} is orthogonal to V if and only if \boldsymbol{u} belongs to the linear span of (2,-1,1,0) and (-1,1,0,1). We have thus found all such vectors \boldsymbol{u} that are orthogonal to V.
- Slide 12: We are now ready to define orthogonal projection. Let V be a subspace of \mathbb{R}^n . Every vector \boldsymbol{u} in \mathbb{R}^n can now be written uniquely as the sum of two vectors \boldsymbol{n} and \boldsymbol{p} such that

(#) n is a vector orthogonal to V (#)

and p is a vector belonging to V. From the diagram shown, you can see that the red vector u is essentially decomposed into two vectors, one of which is the blue vector n that is orthogonal to the space V, while the other is the green vector p which is in the space V.

(#)

We call p the orthogonal projection of u onto the space V.

(#)

It is also interesting to note that such a decomposition is unique, meaning that every vector \boldsymbol{u} can have only one orthogonal projection onto V. This fact can be proven but we will not do so in this unit.

Slide 13: While the previous slide has shown the red vector \boldsymbol{u} to be sticking out from the space V, making it easy to understand how its orthogonal projection onto V would be, the definition of orthogonal projection does not require \boldsymbol{u} not to be in V before it can be projected.

(#)

So what would orthogonal projection mean if the vector \boldsymbol{u} that we wish to project onto V is already in V itself?

(#)

In this case, we simply decompose u into 0 + u. Note that this decomposition still satisfies the condition for orthogonal projection since the zero vector is trivially orthogonal to every vector in V, while u is already a vector in V. In other words, the orthogonal projection p of the vector u onto V is u itself.

Slide 14: Let us consider some simple cases of orthogonal projection in \mathbb{R}^2 and \mathbb{R}^3 . For example, suppose V is the y-axis in \mathbb{R}^2 , that is, V is the set containing all vectors of the form (0, y) where y is a real number.

(#)

Then for any vector $\mathbf{u} = (x, y)$ in \mathbb{R}^2 , we can write \mathbf{u} as

(#)

 $\boldsymbol{n} + \boldsymbol{p}$ where \boldsymbol{n} is the vector (x,0)

(#)

while p is the vector (0, y). It is easy to check that indeed the vector (x, 0) is orthogonal to every vector in V while the vector (0, y) is certainly a vector in V.

(#

Thus the projection of (x, y) onto V is (0, y).

Slide 15: Suppose V is the xy-plane in \mathbb{R}^3 . In other words, V is the subspace of \mathbb{R}^3 with the equation z=0, so the vectors in V are of the form (x,y,0) where x and y are real numbers.

(#)

Then for any vector $\boldsymbol{u}=(x,y,z)$ in \mathbb{R}^3 , we can write \boldsymbol{u} as

(#)

 $\boldsymbol{n} + \boldsymbol{p}$ where \boldsymbol{n} is the vector (0, 0, z)

(#)

while p is the vector (x, y, 0). It is easy to check that indeed the vector (0, 0, z) is orthogonal to every vector in V while the vector (x, y, 0) is a vector in V.

(#)

Thus the projection of (x, y, z) onto V is (x, y, 0).

Slide 16: Before proceeding further, note that the two examples on orthogonal projection that we have seen so far are very straightforward, as the subspace V that we are projecting on are simple subspaces that are easy to work with.

(#)

What happens if the subspaces that we are projecting on are not so trivial? How can we then compute the orthogonal projection of a vector onto V? What do we need before the projection can be computed? These questions will be answered in the subsequent units.

Slide 17: Summarising the main points in this unit,

(#)

we defined what is meant by a vector being orthogonal to a vector space.

(#)

We then gave the definition of orthogonal projection onto a vector space.