\mathbb{K} désigne un corps commutatif. Dans la pratique \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

1 Notion de polynôme formel

Définition 1 On appelle polynôme à coefficients dans \mathbb{K} en l'indéterminée X tout objet noté $P = \sum_{k=0}^{+\infty} a_k X^k$, où $(a_k)_{k \in \mathbb{N}}$ est une suite d'éléments de \mathbb{K} nuls à partir d'un certain rang, appelée suite des coefficients de

Pour tout $k \in \mathbb{N}$, le coefficient a_k est appelé le coefficient de degré k du polynôme. On note $\mathbb{K}[X]$ l'ensemble de ces éléments.

Remarques 1 • La suite $(a_k)_{k \in \mathbb{N}}$ est nulle à partir d'un certain rang, c'est-à-dire qu'il existe n tel que pour tout k > n, $a_k = 0$ et $a_n \neq 0$.

On en déduit que la somme $\sum_{k=0}^{+\infty} a_k X^k$ est finie et P s'écrit : $a_0 + a_1 X + \cdots + a_n X^n$.

• L'indéterminée X n'est pas une variable, c'est une lettre qui permet de désigner les coefficients respectifs d'un polynôme.

Exemple 1 • $2+X-X^2$ est un polynôme de $\mathbb{R}[X]$ dont la suite des coefficients est $(2,1,-1,0,0,0,\cdots)$.

- X^4 est un polynôme de $\mathbb{R}[X]$ dont la suite des coefficients est $(0,0,0,0,1,0,0,0,\cdots)$.
- 0 est un polynôme de $\mathbb{R}[X]$ dont la suite des coefficients est $(0,0,0,\cdots)$.

Définition 2 Soient
$$P, Q \in \mathbb{K}[X]$$
, $P = \sum_{k=0}^{+\infty} a_k X^k$ et $Q = \sum_{k=0}^{+\infty} b_k X^k$. $P = Q$ si et seulement si pour tout $k \in \mathbb{N}$, $a_k = b_k$.

Définition 3

Soit
$$P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{K}[X]$$
 non nul.

Le plus grand indice k pour lequel $a_k \neq 0$ est appelé le **degré de** P et est noté $\partial^{\circ} P$ ou deg(P).

Le coefficient de degré $\partial^{\circ} P$ de P est appelé son coefficient dominant.

S'il est égal à 1, on dit que le polynôme P est unitaire.

Par convention le polynôme nul est de degré $-\infty$.

Définition 4 On dit qu'un polynôme $P \in \mathbb{K}[X]$ est associé à un polynôme $Q \in \mathbb{K}[X]$ s'il exite $\lambda \in \mathbb{K}^*$ tel que $P = \lambda Q$.

On montre que l'association de polynômes définit une relation d'équivalence sur $\mathbb{K}[X]$.

Remarques 2 Deux polynômes associés ayant le même coefficient dominant sont égaux.

Définition 5 Soient
$$P, Q \in \mathbb{K}[X]$$
, $P = \sum_{k=0}^{+\infty} a_k X^k$ et $Q = \sum_{k=0}^{+\infty} b_k X^k$.

- On appelle somme de P et Q le polynôme $\sum_{k=0}^{+\infty} (a_k + b_k) X^k$, noté P + Q.
- On appelle **produit** de P et Q le polynôme $\sum_{k=0}^{+\infty} c_k X^k$ où , pour tout $k \in \mathbb{N}$, $c_k = \sum_{i=0}^{k} a_i b_{k-i}$, noté $P \times Q$ ou PQ.

Justification de la définition de somme et produit de deux polynômes

Soient
$$P, Q \in \mathbb{K}[X]$$
, $P = \sum_{k=0}^{+\infty} a_k X^k$ et $Q = \sum_{k=0}^{+\infty} b_k X^k$.

• Montrons que
$$\sum_{k=0}^{+\infty} (a_k + b_k) X^k \in \mathbb{K}[X]$$
:

 $\forall k > \max(\partial^{\circ} P, \partial^{\circ} Q), \ a_k = \cdots \text{ et } b_k = \cdots,$

donc:

 $\forall k > \max(\partial^{\circ} P, \partial^{\circ} Q), \, a_k + b_k = \cdots.$

La suite $(a_k + b_k)_{k \in \mathbb{N}}$ est donc nulle à partir d'un certain rang, donc : $\sum_{k=0}^{+\infty} (a_k + b_k) X^k \in \mathbb{K}[X]$.

Montrons que $\sum_{k=0}^{+\infty} c_k X^k \in \mathbb{K}[X]$ où, pour tout $k \in \mathbb{N}$, $c_k = \sum_{i=0}^{k} a_i b_{k-i}$:

Posons $N = \max(\partial^{\circ} P, \partial^{\circ} Q)$.

On a : $\forall i > N$, $a_i = 0$ et $b_i = 0$.

- * Soit k > 2N. Montrons que $c_k = 0$.
 - \diamond Fixons $i \in [0, k]$.

On a: i > N ou k - i > N,

 $donc: a_i = 0 \text{ ou } b_{k-i} = 0,$

 $donc: a_i b_{k-i} = 0.$

On en déduit que : $c_k = \sum_{i=1}^{k} a_i b_{k-i} = 0$.

On a montré que, pour tout k > 2N, $c_k = \sum_{i=0}^k a_i b_{k-i} = 0$. Donc : $\sum_{k=0}^{+\infty} c_k X^k$ (où, pour tout $k \in \mathbb{N}$,

 $c_k = \sum_{i=1}^{n} a_i b_{k-i}$) est un polynôme.

Cas particulier de la multiplication par un polynôme constant Soient $P = \sum_{k=0}^{+\infty} a_k X^k$ et $Q = \sum_{k=0}^{+\infty} b_k X^k$ avec $\begin{cases} b_0 = \lambda \\ b_i = 0 \text{ pour } i \geqslant 1 \end{cases}$

$$QP = \sum_{k=0}^{+\infty} c_k X^k = \sum_{k=0}^{+\infty} \left(\sum_{i=\cdots}^{\cdots} \cdots \right) X^k = \sum_{k=0}^{+\infty} \cdots X^k$$

On confondra le polynôme $Q = \lambda$ et le nombre $\lambda \in \mathbb{K}$.

La loi externe : $\mathbb{K} \times \mathbb{K}[X]$

$$\left(\lambda, \sum_{k=0}^{+\infty} \lambda a_k X^k\right) \quad \mapsto \quad \sum_{k=0}^{+\infty} \lambda a_k X^k$$

coincide avec la multiplication interne d'un polynôme constant par un polynôme quelconque.

Proposition 1 Soient $P, Q \in \mathbb{K}[X]$.

- $\partial^{\circ}(P+Q) \leq max(\partial^{\circ}P,\partial^{\circ}Q)$ L'inégalité est stricte si et seulement si les coefficients dominants de P et Q sont opposés.
- $\partial^{\circ}(PQ) = \partial^{\circ}P + \partial^{\circ}Q$

Proposition 2 $(\mathbb{K}[X], +, \times)$ est un anneau commutatif intègre d'élément nul le polynôme nul et d'élément unité le polynôme constant égal à 1.

Rappelons qu'un anneau est un ensemble muni de deux lois de composition interne, dans le cas de $\mathbb{K}[X]$, on a:

- l'addition de polynômes (qui est fait déjà une groupe commutatif)
- la multiplication (interne) de polynômes qui est associative, commutative, dont le neutre est 1, et qui est distributive par rapport à l'addition.

L'ensemble de ces propriétés donne une structure d'anneau commutatif unitaire à $\mathbb{K}[X]$.

De plus, $\mathbb{K}[X]$ est intègre c'est à dire que si P et Q sont deux éléments de $\mathbb{K}[X]$, $PQ = 0 \Rightarrow P = 0$ ou Q = 0. (Ceci se montre en utilisant la propriété sur le degré $\partial^{\circ}(PQ) = \partial^{\circ}P + \partial^{\circ}Q$ pour P et Q non nul).

Remarques 3 $\mathbb{K}[X]$ muni de l'addition + (interne), et de la multiplication externe · est un \mathbb{K} -espace vectoriel . On rappelle que l'on note $K_n[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à n, dont une base est donnée par $(1, X, \ldots, X^n)$, et dim $\mathbb{K}_n[X] = n + 1$.

Remarques 4 $\mathbb{K}[X]$ muni des lois + (interne), · (externe) et × (interne) est aussi une \mathbb{K} -algèbre unitaire associative et commutative.

2 Racines d'un polynôme

2.1 Valeur d'un polynôme en un point

Définition 6 (Evaluation polynomiale et fonction polynomiale)

Soit
$$P = \sum_{k=0}^{+\infty} a_k X^k \in \mathbb{K}[X].$$

- Pour tout $\lambda \in \mathbb{K}$, on note $P(\lambda)$ l'élément de \mathbb{K} défini par : $P(\lambda) = \sum_{k=0}^{+\infty} a_k \lambda^k$.
- L'application $\widetilde{P}: \mathbb{K} \to \mathbb{K}$ est appelée fonction polynômiale associée à P. $x \mapsto P(x)$

Il faut distinguer:

- la fonction polynomiale \tilde{P} (application) du polynôme sous-jacent P (expression)
- l'élément x (de \mathbb{K}) de l'indéterminée X (lettre permettant de décrire le polynôme).

Proposition 3 L'application $\mathbb{K}[X] \to \mathbb{K}^{\mathbb{K}}$ est un morphisme d'anneaux. $P \mapsto \widetilde{P}$

Rappelons que $\mathbb{K}^{\mathbb{K}}$ est l'ensemble des applications de \mathbb{K} dans \mathbb{K} ; c'est une \mathbb{K} -algèbre commutative, associative et unitaire pour les lois usuelles.

On vérifie que c'est un morphisme d'anneau en montrant que $\widetilde{P+\alpha Q}=\widetilde{P}+\alpha\widetilde{Q}$ et $\widetilde{PQ}=\widetilde{P}\widetilde{Q}$ où $P,Q\in\mathbb{K}[X]$ et $\alpha\in\mathbb{K}$.

Remarques 5 Dans ce cas où K est un corps infini, on peut identifier tout polynôme à sa fonction polynômiale. Dans ce cas, nous noterons $P = \tilde{P}$ suivant la commodité.

2.2 Définition de racines d'un polynôme

Définition 7 Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

On dit que a est racine de P (dans \mathbb{K})si et seulement si P(a) = 0.

La notion de racine de P dans \mathbb{K} n'est pas superflue. Le polynôme $X^2 + 1$ n'a pas de racine dans \mathbb{R} mais il en a deux dans \mathbb{C} .

3 Arithmétique dans $\mathbb{K}[X]$

3.1 Relation de divisibilité

Définition 8 Soient $A, B \in \mathbb{K}[X]$.

On dit que A divise B, si et seulement si il existe $P \in \mathbb{K}[X]$ tel que B = AP. Cette relation se note A|B.

Remarques 6 On dit également A est un diviseur de B, ou B est divisible par A, ou B est un multiple de A.

Exemple 2 • X-3 divise X^2-4X+3 dans $\mathbb{R}[X]$ en effet:

- Un polynôme constant λ non nul divise tout polynôme P en effet :
- Tout polynôme A divise le polynôme nul en effet :
- 0 ne divise aucun polynôme $B \neq 0$ en effet :

Proposition 4 Soient $A, B, C, D \in \mathbb{K}[X]$.

- 1. A|A.
- 2. Si A|B et B|C alors A|C.
- 3. $(A|B \ et \ B|A \iff A \ et \ B \ sont \ associés)$.
- 4. Si A|B et A|C alors, pour tout $Q, R \in \mathbb{K}[X]$, A|(QB + RC).
- 5. Si A|B et C|D alors AC|BD.
- 6. Si $D \neq 0$: $A|B \iff AD|BD$.

3.2 Division euclidienne

Théorème 1 Soient $A, B \in \mathbb{K}[X], B \neq 0$.

Il existe un unique couple $(Q, R) \in \mathbb{K}[X] \times \mathbb{K}[X]$ tel que

$$A = BQ + R$$
 et $\partial^{\circ} R < \partial^{\circ} B$

A est appelé le dividende, B le diviseur, Q le quotient et R le reste.

Ce théorème a été démontré en PeiP1.

Exemple 3 Effectuer la division euclidienne de $A = X^4 + 2X^3 - X + 6$ par $B = X^3 - 6X^2 + X + 4$ dans $\mathbb{R}[X]$.

Proposition 5 Soient $A, B \in \mathbb{K}[X]$ et $B \neq 0$.

B divise A si et seulement si le reste de la division euclidienne de A par B est nul.

Proposition 6 Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

a est racine de P si et seulement si X - a divise P.

Définition 9 Soient $P \in \mathbb{K}[X]$ et $a \in \mathbb{K}$.

- L'ensemble $\{k \in \mathbb{N}, (X-a)^k \text{ divise } P\}$ possède un plus grand élément m appelé **multiplicité** de a dans P.
- Une racine est dite simple si m = 1, double si m = 2, etc...
- Plus concrêtement, m est caractérisé par deux propositions équivalentes :
 - 1. P est divisible par $(X-a)^m$ mais pas par $(X-a)^{m+1}$
 - 2. Il existe $Q \in \mathbb{K}[X]$ tel que $P = (X a)^m Q$ et $Q(a) \neq 0$.

Exemple 4 La multiplicité de 1 dans $P = X^4 + 3X^3 - 3X^2 - 7X + 6$ est égale à 2.

3.3 PGCD

Définition 10 Soient $A, B \in \mathbb{K}[X]$.

- On appelle diviseur commun de A et B tout polynôme D qui est à la fois diviseur de A et diviseur de B.
- On appelle multiple commun de A et B tout polynôme M qui est à la fois multiple de A et multiple de B.

Exemple 5 • Soient A et B deux polynômes quelconques, tous les polynômes constants non nuls sont des diviseurs communs à A et B.

• X-1 est un diviseur commun à X^4-1 et X^2-3X+2 .

Proposition 7 Soient $A, B \in \mathbb{K}[X]$ et $B \neq 0$.

 $Si\ A = BQ + R$ alors tout diviseur commun de A et B est aussi diviseur commun de B et R.

Définition 11 Soient $A, B \in \mathbb{K}[X]$.

On appelle plus grand commun diviseur (PGCD) de A et de B tout polynôme $D \in \mathbb{K}[X]$ tel que :

- D est un diviseur commun de A et B : D|A et D|B;
- D est un multiple de tout diviseur commun de A et B : $\forall \Delta \in \mathbb{K}[X], (\Delta | A \text{ et } \Delta | B) \Rightarrow \Delta | D.$

Théorème 2 (Existence et unicité du PGCD) Soient $A, B \in \mathbb{K}[X]$.

- Si A ≠ 0 ou B ≠ 0, il existe un unique PGCD unitaire de A et B, noté PGCD(A, B). Il est clair que 0 est l'unique PGCD de 0 et 0 et on peut poser PGCD(0,0) = 0.
- Les autres PGCD de A et B sont tous les $\lambda PGCD(A, B)$ où $\lambda \in \mathbb{K}^*$.

L'existence du PGCD est établie par l'algorithme d'Euclide, qui en fournit aussi une construction. Preuve du Théorème 2

Montrons l'unicité du PGCD unitaire

Soient D_1 et D_2 deux PGCD de A et B unitaires.

 D_2 est un PGCD de A et B et D_1 est un diviseur commun de A et B donc :

On en déduit que D_1 et D_2 sont associés;

Si l'un est nul alors l'autre aussi et $D_1 = D_2$.

S'ils ne sont pas nuls, ils sont unitaires et associés donc égaux.

Montrons l'existence du PGCD unitaire

- Si A = B = 0 alors D = 0 convient.
- Sinon, quitte à échanger A et B on peut supposer $B \neq 0$. Posons $A = A_0$ et $A_1 = B$. On réalise les divisions euclidiennes suivantes tant que les restes obtenus sont non nuls.

$$A_0 = A_1Q_1 + A_2 \text{ avec } \partial^{\circ} A_2 < \partial^{\circ} A_1$$

$$\vdots = \vdots$$

$$A_{m-2} = A_{m-1}Q_m + A_m \text{ avec } \partial^{\circ} A_m < \partial^{\circ} A_{m-1}$$

$$A_{m-1} = A_mQ_m + 0$$

Ce processus s'arrête puisque $\partial^{\circ} A_1 > \partial^{\circ} A_2 > \dots$ et ces quantités sont des entiers naturels.

Alors, tout diviseur commun de $A=A_0$ et $B=A_1$ est aussi diviseur commun de A_{m-1} et A_{m-1} et aussi diviseur commun de A_m et 0.

Le polynôme D unitaire associé à A_m convient donc.

п

Exemple 6 Déterminons $D = PGCD(X^3 + X^2 - 2, X^3 + X - 2)$. Par divisions euclidiennes successives : $X^3 + X^2 - 2 = (X^3 + X - 2) \times 1 + X^2 - X$,

$$X^3 + X - 2 = (X^2 - X)(X + 1) + 2X - 2,$$

$$X^2 - X = (2X - 2) \times \frac{1}{2}X + 0.$$

Donc D est le polynôme unitaire associé au dernier reste non nul, i.e. associé à 2X-2. Ainsi D=X-1.

Théorème 3 (Théorème de Bézout, version 1) Soient $A, B \in \mathbb{K}[X]$. Si D = PGCD(A, B) alors il existe $U, V \in \mathbb{K}[X]$ tels que D = AU + BV

Le couple (U, V) n'est pas unique.

Preuve du théorème 3

- Si A = B = 0 alors D = 0 et U, V quelconques conviennent.
- Sinon, on réalise comme ci-dessus l'algorithme d'Euclide puis on écrit successivement les A_i sous la forme $AU_i + BV_i$ avec $U_i, V_i \in \mathbb{K}[X]$. A terme on parvient à écrire D sous la forme AU + BV.

Exemple 7 Reprenons $A = X^3 + X^2 - 2$ et $B = X^3 + X - 2$ pour lesquels D = PGCD(A, B) = X - 1. En renversant les divisions euclidiennes précédentes

$$X^2 - X = A - B,$$

$$2X - 2 = B - (X + 1)(X^2 - X) = B - (X + 1)(A - B),$$

puis

$$D = 12(X+2)B - 12(X+1)A = AU + BV \text{ avec } U = -12(X+1) \text{ et } V = 12(X+2)$$

3.4 Polynômes premiers entre eux

Définition 12 Soient $A, B \in \mathbb{K}[X]$.

On dit que A et B sont premiers entre eux si et seulement si PGCD(A, B) = 1.

Exemple 8 Soient $a, b \in \mathbb{K}$. Si $a \neq b$ alors X - a et X - b sont premiers entre eux.

Théorème 4 (Théorème de Bézout, version 2) Soient $A, B \in \mathbb{K}[X]$. Les assertions suivantes sont équivalentes :

- (i) A et B sont premiers entre eux.
- (ii) Il existe deux polynômes $U, V \in \mathbb{K}[X]$ tels que AU + BV = 1.

PREUVE:

- On suppose que A et B sont premiers entre eux . Par définition $\operatorname{PGCD}(A,B)=1_{\mathbb{K}[X]}$, en appliquant le théorème de Bezout version 1, on en déduit qu' il existe $U,V\in\mathbb{K}[X]$ tels que $AU+BV=1_{\mathbb{K}[X]}$.
- On suppose qu' il existe $U, V \in \mathbb{K}[X]$ tels que $AU + BV = 1_{\mathbb{K}[X]}$.

Soit D un diviseur commun de A et B.

Alors D divise AU + BV, c'est- \tilde{A} -dire que D divise $1_{\mathbb{K}[X]}$.

Or les seuls diviseurs de $1_{\mathbb{K}[X]}$ dans $\mathbb{K}[X]$ sont les constantes non nulles.

On en déduit que PGCD(A, B) est une constante non nulle.

Or le PGCD est unitaire, donc $PGCD(A, B) = 1_{\mathbb{K}[X]}$.

On en déduit que A et B sont premiers entre eux.

Corollaire 1 Soient $A, B, C \in \mathbb{K}[X]$.

Si PGCD(A, B) = 1 et PGCD(A, C) = 1 alors PGCD(A, BC) = 1.

Preuve:

On suppose que PGCD(A, B) = 1 et PGCD(A, C) = 1.

On en déduit qu'il existe $U_1, U_2, V_1, V_2 \in \mathbb{K}[X]$ tels que : $AU_1 + BV_1 = 1$ (*) et $AU_2 + CV_2 = 1$.

En multipliant (\star) par CV_2 on en déduit que : $AU_1CV_2 + BCV_1V_2 = CV_2$.

Or $CV_2 = 1 - AU_2$, donc : $AU_1CV_2 + BCV_1V_2 = 1 - AU_2$.

Finalement:

$$A\underbrace{(U_1CV_2+U_2)}_{\in\mathbb{K}[X]}+BC\underbrace{(V_1V_2)}_{\in\mathbb{K}[X]}=1$$

En appliquant le théorème de Bezout (version 2), on en déduit que PGCD(A, BC) = 1.

Exemple 9 Soient $a, b \in \mathbb{K}$ et $\alpha, \beta \in \mathbb{N}$. Si $a \neq b$ alors $(X - a)^{\alpha}$ et $(X - b)^{\beta}$ sont premiers entre eux.

Remarques 7 $Pour \mathbb{K} = \mathbb{R} \ ou \mathbb{C}$.

Deux polynômes sont premiers entre eux si et seulement si ils n'ont pas de racines complexes communes.