Swap

Problem

Swap two integers x and y.

Problem

Swap two integers x and y without using a temporary.

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap two integers x and y without using a temporary.

$$x = x \wedge y;$$

 $y = x \wedge y;$
 $x = x \wedge y;$

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap two integers x and y without using a temporary.

$$x = x \wedge y;$$

 $y = x \wedge y;$
 $x = x \wedge y;$

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap two integers x and y without using a temporary.

$$x = x \wedge y;$$

$$y = x \wedge y;$$

$$x = x \wedge y;$$

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Problem

Swap two integers x and y without using a temporary.

$$X = X \wedge y;$$

$$y = X \wedge y;$$

$$X = X \wedge y;$$

Example

X	10111101	10010011	10010011	00101110
У	00101110	00101110	10111101	10111101

Why it works

XOR is its own inverse: $(x \land y) \land y = x$.

Performance

Poor at exploiting instruction-level parallelism (ILP).

Minimum of Two Integers

Problem

Find the minimum \mathbf{r} of two integers \mathbf{x} and \mathbf{y} .

```
if (x < y)

r = x;

else

r = y;
```

Performance

A mispredicted branch empties the processor pipeline • ~16 cycles on the cloud facility's Intel Core i7's. The compiler might be smart enough to avoid the unpredictable branch, but maybe not.

No-Branch Minimum

Problem

Find the minimum z of two integers x and y without a branch.

$$r = y \wedge ((x \wedge y) \& -(x < y));$$

Why it works:

- C represents the Booleans TRUE and FALSE with the integers 1 and 0, respectively.
- If x < y, then -(x < y) = -1, which is all 1's in two's complement representation. Therefore, we have $y \land (x \land y) = x$.
- If $x \ge y$, then -(x < y) = 0. Therefore, we have $y \land 0 = y$.