# Convergence in adaptation after domestication in the grasses

Woodhouse, M.R. and M. B. Hufford

September 11, 2018

#### **Abstract**

The selection of desirable traits in crops during domestication has been well studied. In this review, the authors explore the current research to determine to what extent domestication in grass cereal crops has shaped environmental adaptation, and whether it is possible to predict which loci in a cereal might confer adaptive properties.

#### Introduction

Human societies rely heavily on domesticated crop species for survival. For example, considering crop production as a measure of consumption, in 2016 alone the United States produced 384 million tons of maize, China produced 211 million tons of rice, and Nigeria produced 6.9 million tons of sorghum [28]. Over the last  $\approx 10,000$  years, crops have been continually selected by humans for traits including nutrition, yield, and other attractive features a process that has dramatically changed crop physiology. As such, domesticated crops are often radically different from their wild relatives. Notably, there are certain traits that often distinguish domesticated crops from their wild progenitors [18], distinctions that are shared even among distantly related crops such as maize and sunflower. These traits include apical dominance or lack of branching, loss of seed dormancy, loss of bitterness, larger fruits or grains, and loss of shattering or seed dispersal (Table 1). This suite of shared traits is collectively known as the domestication syndrome [42].

But how can two vastly diverged species such as maize and sunflower (their last common ancestor was 150 MYA [12]) share the same domestication traits? Since these two species still share enzymatic pathways, perhaps orthologous genes or genes with similar physiological roles have been targeted by selection during domestication. Shared phenotypes caused by repeated modification of orthologs, is a phenomenon sometimes known as parallelism; parallelism is more likely to occur in closely related species [85]. Conversely, it is possible for unrelated genes in different enzymatic pathways to give rise to similar traits, particularly when species experience similar selection pressures (either human or environmental), such as fruit/seed indehiscence in both dicot and monocot crops (reviewed in [19]). This phenomenon, known as convergence, is more likely to occur in substantially diverged species since there are fewer orthologous loci [106, 85].

After the initial wave of crop domestication yielded many of the aforementioned domestication syndrome traits, another level of domestication ensued—the adaptation of crop species to varied environmental conditions during global expansion. A cultivar of maize bred to thrive at sea level, for

Table 1: Prevalence of Domestication Syndrome Traits

| <b>Domestication Trait</b>    | In Grass Crops | In non-Grass Crops | References |
|-------------------------------|----------------|--------------------|------------|
| Compact plant growth          | yes            | yes                | [35, 65]   |
| Reduced axillary branching    | yes            | yes                | [65]       |
| Reduced seed dormancy         | yes            | yes                | [35, 27]   |
| Changes in flowering time     | yes            | yes                | [65]       |
| Uniform flowering or matura-  | yes            | yes                | [65]       |
| tion time                     |                |                    |            |
| Vernalization                 | yes            | yes                | [8]        |
| Increased resource allocation | yes            | yes                | [75]       |
| to harvested organ/larger or- |                |                    |            |
| gan (fruit, grain, root)      |                |                    |            |
| Compact inforescence          | yes            | yes                | [35, 40]   |
| Non-shattering/indehiscent    | yes            | yes                | [65, 20]   |
| fruit or grain                |                |                    |            |
| Changes in pigmentation       | yes            | yes                | [65]       |
| Self-fertilizing              | yes            | yes                | [35]       |
| Perennial to annual lifecycle | yes            | yes                | [35, 75]   |
| Sexual to vegetative repro-   | no             | yes                | [71]       |
| duction                       |                |                    |            |
| Reduced defensive structures  | no             | yes                | [75, 84]   |
| (spines, thorns)              |                |                    |            |
| Reduced toxicity              | no             | yes                | [75, 93]   |
| Soft or naked kernel or seed  | yes            | no                 | [103]      |
| Increased spikelets           | yes            | no                 | [35]       |
| Increased number of kernel    | yes            | no                 | [65]       |
| rows                          |                |                    |            |

instance, may not necessarily thrive in the colder, higher UV environment of the Andes. Therefore, cultivators in the Andes must have looked for individuals in the existing domesticated maize population that were hardy under these new conditions. However, crop adaptation faced genetic limitations not experienced during domestication of wild progenitors due to the loss of diversity during genetic bottlenecks associated with both initial domestication and subsequent crop expansion [104].

Only a subset of wild relative diversity was retained in initial domesticates and additional diversity was lost through subsampling events during crop expansion. Furthermore, selection on particular alleles coding for desirable traits (such as those in the domestication syndrome) often resulted in dramatic reductions in diversity in particular chromosomal regions. The effects of this loss of genetic diversity on the potential for adaptation has been documented. For example, a dramatic genetic bottleneck in the "lumper" variety of potato led to the catastrophic outbreak of *Phytopthera infestans*, resulting in the infamous Potato Famine in Ireland in the 1840s [38]. The Potato Famine demonstrated that by divesting a crop cultivar of its diversity, the cultivar also loses its ability to adapt to newly encountered environmental pressures, because the alleles that code for adaptive traits such as, for instance, disease resistance are lost.

This review will focus on the extent of parallelism and convergence in both crop domestication and adaptation and consider the extent to which early bottlenecks have affected the potential for parallelism/convergence during post-domestication adaptation. We will focus mainly on grass crops, since the major grass crop species—maize, rice, sorghum, wheat, barley, and millet—include a range of divergence times conducive to adaptation and evolution of domestication syndrome traits through both parallelism and convergence. Grasses also share a certain amount of genomic dynamism, including polyploidization and transposable element activity, that provides diversity upon which selection can act. We examine the relationship between domestication and adaptive traits, how domestication bottlenecks reduce population diversity, and look at the ways in which the dynamic nature of grass genomes might potentially increase genomic diversity to enable further adaptation.

# **Domestication in the grasses**

Grasses as a whole have often been studied as a cohesive genetic group [7, 31], and there are many reasons why they present a compelling system for studying crop domestication. The grass clade is thought to have arisen around 75 MYA [10, 57] with rice, wheat, barley, millet, maize, and sorghum arising sequentially afterward (Figure 1). Prior to the radiation of the grasses, however, a genome duplication event occurred approximately 70 MYA [82], which is shared among all grass crops (Figure 1). Subsequently, both maize and wheat have undergone additional, lineage-specific polyploidy events (Figure 1) [66]. These polyploidy events, followed by selective and ongoing fractionation, present an opportunity for grass genomes to evolve subfunctionalized homeologs; this, along with relatively high transposon activity (particularly in maize and wheat) [109, 69], make the grasses more susceptible to a higher rate of functional mutation compared with other crop species. Additionally, most grass crops were domesticated within the latitudinal boundaries of the equator and 35 N [48, 35], featuring both wet and dry seasons [48], which means that many

domesticated grasses shared similar environmental pressures such as temperature and day length; yet each grass cereal has been cultivated in separate geographic locations, including maize (Americas), sorghum (Africa), rice (Asia), millet (Eurasia), and wheat and barley (the Middle East) [37] Approaches to domestication in these distinct regions reflected culturally distinct selection of traits. Taken together, these features make domesticated grass species especially conducive to the meaningful study of convergence and parallelism. We argue that the six major domesticated grass crops in particular–maize, rice, sorghum, wheat, barley, and millet–with their shared histories of selection for domestication traits and adaptation during global expansion offer compelling opportunities for basic evolutionary insight regarding the repeatability of evolution.



Figure 1: Simple cladogram of major cereal speciation. Numbers are in MYA (millions of years ago). Orange sun: grass speciation event 75 MYA. Blue stars: polyploidy events; the major grass polyploidy event immediately after the grass speciation event occurred approximately 70 MYA. The Ehrhartoideae clade, which includes rice, arose approximately 55MYA. The Pooideae clade, which includes wheat and barley, arose around 44MYA; Chloridoideae which contains foxtail millet 28 MYA, and the Panicoids, which include maize and sorghum, arose approximately 24MYA. The branch length is not proportional to the number of substitutions per site.

Grass crops do share a number of common domestication syndrome traits also observed in nongrass crop species (Table 1). However, some common domestication syndrome traits are notably lacking in the grasses, such as reduced toxicity, vegetative reproduction, and reduced defensive structures like spines and thorns—by and large the wild relatives of grass crops lacked these defense mechanisms. Likewise, some grass domestication syndrome traits are absent in non-grass crops, such as increased spikelet number and increased number of kernel rows, because these traits occur on structures that are not found outside the grasses.

An ever-increasing number of genes involved in the domestication syndrome are being identified both within and outside of the grasses; these genes are summarized in Table 2 (modified from [65]). Grass domestication genes specifically can be categorized by whether they occur strictly within a species, share orthologs across the grasses, share orthologs within and outside of the grasses, or share orthologs entirely outside of the grasses (Column 3, Table 2) We have expanded upon examples identified by [65] in Table 2, indicating in column 7 whether a domestication gene is expected to be convergent or parallel, based on patterns of orthology. If a domestication gene is found only within a species, it cannot be selected in parallel. check to make sure this is new For instance, coloration in blood orange through selection on the Ruby gene and coloration in grapevine due to selection on the VvMYBA1-3 gene is an example of convergence since these respective genes appear to be species-specific. Other coloration genes, such as BADH2 and DFR (Table 2), occur orthologously in species as diverse as rice, soybean, and potato. We should note, however, that coloration is a broad term, and raises an important question regarding convergence or parallelism associated with the physiological location of a domestication trait. Can a trait that is observed in vastly different organs such as a potato tuber and a rice grain (as with DFR coloration) truly be considered parallel, even if the alleles that code for them occur in orthologous genes? For the purposes of this review, we will keep our definitions of convergence and parallelism to within gene families and enzymatic pathways.

What might cause domestication syndrome traits to be parallel (i.e. orthologous) rather than convergent? A review by Lenser and Theissen [65] sets out four examples: (1) Genes occupying a nodal position upstream of genes that effect domestication traits; (2) Genes involved in simple metabolic pathways, because only a minimal set of genes serves as a potential mutational target to change a given trait (such as *Waxy*, Table 2); (3) genes with fewer pleiotropic effects, such as the MYB genes (i.e. *DFR*) associated with changes in fruit or seed color; (4) domestication-related alleles that are already present at low frequency within a wild population. The first three cases all rely on the retention of orthologous genes throughout evolution that have not undergone functional divergence. Therefore, loss of certain orthologs prior to widespread crop domestication would ensure that parallel domestication for some traits would be impossible. Some of the genes predicted as convergent in Table 2 could have lost their orthologs in other species over evolutionary time.

Table 2 gives us a starting point to predict which domestication genes are likely to be found in the grasses, which genes in the grasses are likely to be parallel, and which are likely to be convergent. This is useful if we wish to breed wild grass relatives for domestication traits, or create hybrids among existing cultivars, since we can now associate favorable phenotypes and QTL with orthologs across species by simple comparative genomics. In fact, comparative genomics can easily demonstrate that many of the genes in Table 2 described as convergent do in fact have orthologs in other clades, even if the function of these orthologs have yet to be deduced (Figure 2). But, to what extent can this knowledge help us to understand how domestication has impacted a crop's ability to adapt to new environments?

Table 2: Parallel or Convergent Orthologies

| Rice, barley                                                                           |                             | uan                                  |                                                   |                                       |                     |               |            |                             |
|----------------------------------------------------------------------------------------|-----------------------------|--------------------------------------|---------------------------------------------------|---------------------------------------|---------------------|---------------|------------|-----------------------------|
|                                                                                        | Family                      | grass-wide                           | OsGA200x-2, HvGA200x-2                            | Metabolic enzyme                      | Dwarfism            | domestication | parallel   | [3, 2, 50]                  |
| Wheat                                                                                  | Species                     | species-specific, grass              | Rht-1                                             | SH2-TF                                | Dwarfism            | domestication | convergent | [18]                        |
| Sorghum, pearl millet                                                                  | Family                      | grass-wide                           | dw3, d2                                           | Transporter protein                   | Dwarfism            | domestication | parallel   | [76, 81]                    |
| Tomato, soybean, common bean                                                           | Family/above family         | outside the grasses                  | SP, Dt1, PvTFL1y                                  | Signaling protein                     | Determinate growth  | domestication | parallel   | [18, 90, 70, 63,<br>1001    |
| Barley, pea, strawberry                                                                | Above family                | grasses and beyond                   | HvCEN, PsTFL1c, FvTFL1                            | Signaling protein                     | Flowering time      | both          | parallel   | [14, 30, 60]                |
| Barley, wheat, ryegrass                                                                | Species/family              | grass-wide                           | VRN1, BM5, TmAP1, WAP1,<br>LpVRN1                 | MADS domain TF                        | Flowering time      | both          | parallel   | [4]                         |
| Barley, wheat, maize                                                                   | Species/family              | grass-wide                           | VRN2, ZCCT1, ZmZCCT9                              | Zinc finger-CCT<br>domain TF          | Flowering time      | both          | parallel   | [45]                        |
| Rice, barley, wheat, sorghum, sugar beet                                               | Species/family/above family | grasses and beyond                   | OsPRR37, Ppd-H1, Ppd1,<br>SbPRR37, BvBTC1         | Circadian clock pathway               | Flowering time      | both          | parallel   | [77, 102, 51, 5, 110, 16]   |
| Turnip, Brassica oleracea                                                              | Family                      | outside the grasses                  | BrFLC2, BoFLC2                                    | MADS domain TF                        | Flowering time      | both          | parallel   | [113, 115, 79]              |
| Rice, barley, pea, lentil                                                              | Family/above family         | grasses and beyond                   | Hd17, EAM8, Mat-a, HR, LcELF3                     | Circadian clock<br>pathway            | Flowering time      | both          | parallel   | [108, 74, 116,<br>26]       |
| Rice, wheat, sunflower, barley                                                         | Family/above family         | grasses and beyond                   | Hd3a (Heading date 3a),<br>VRN3/TaFT, HaFT1, HvFT | Signaling protein                     | Flowering time      | both          | parallel   | [114, 98, 9]                |
| Rice                                                                                   | Species                     | species-specific, grass              | Hd1                                               | Zinc finger TF                        | Flowering time      | both          | convergent | [73]                        |
| Sorghum, rice, maize                                                                   | Family                      | grass-wide                           | Sh1, OsSh1, ZmSh1                                 | YABBY-like TF                         | Shatter resistance  | domestication | parallel   | [88]                        |
| Rice, wheat, maize, foxtail millet,<br>barley, amaranth, sorghum,<br>broomMaize millet | Species/family/above family | grasses and beyond                   | GBSSI, Waxy                                       | Metabolic enzyme                      | Glutinous seeds     | domestication | parallel   | [49, 25, 55, 56,<br>47, 80] |
| Rice, soybean                                                                          | Species/family              | grasses and beyond                   | BADH2, GmBADH2                                    | Metabolic enzyme                      | Fragrance           | domestication | parallel   | [61, 53]                    |
| Rice, potato                                                                           | Species/above family        | grasses and beyond                   | Rd/DFR, DFR                                       | Metabolic enzyme                      | Coloration          | both          | parallel   | [33, 117]                   |
| Blood orange                                                                           | Species                     | species-specific, outside<br>grasses | Ruby                                              | MYB-TF                                | Coloration          | both          | convergent | [11]                        |
| Rice                                                                                   | Species                     | species-specific, grass              | Bh4                                               | Transporter protein                   | Coloration          | both          | convergent | [119]                       |
| Soybean                                                                                | Species                     | species-specific, outside grasses    | Ж                                                 | MYB-TF                                | Coloration          | both          | convergent | [36]                        |
| Pea, potato                                                                            | Above family                | outside the grasses                  | flavonoid 3',5'-hydroxylase                       | Metabolic enzyme                      | Coloration          | both          | parallel   | [73]                        |
| Rice                                                                                   | Species                     | species-specific, grass              | Rc                                                | PHLH-TF                               | Coloration          | both          | convergent | [73]                        |
| Grapevine                                                                              | Species                     | species-specific, outside<br>grasses | VvMYBA1-3                                         | MYB-TF                                | Coloration          | both          | convergent | [73]                        |
| Maize, pearl millet, barley                                                            | Family                      | grass-wide                           | tb1, Pgtb1, INT-C                                 | TCP-TF                                | Plant architecture  | both          | parallel   | [96, 88, 87]                |
| Barley                                                                                 | Species                     | species-specific, grass              | VRS1                                              | Homeodomain-TF                        | Plant architecture  | both          | convergent | [73]                        |
| Maize                                                                                  | Species                     | species-specific, grass              | Opaque2                                           | bZIP-TF                               | Grain quality       | domestication | convergent | [73]                        |
| Wheat, rye                                                                             | Family                      | grass-wide                           | TaALMT1, ScALMT1                                  | Transporter protein                   | Metal tolerance     | adaptation    | parallel   | [73]                        |
| Sorghum, Maize                                                                         | Family                      | grass-wide                           | SbMATE1, ZmMATE1                                  | Transporter protein                   | Metal tolerance     | adaptation    | parallel   | [73]                        |
| Maize, Arabidopsis                                                                     | Above family                | grasses and beyond                   | ZmVPP1, AVP1                                      | Vacuolar-type H(+)<br>pyrophosphatase | Drought tolerance   | adaptation    | parallel   | [105]                       |
| Rice                                                                                   | Species                     | species-specific, grass              | OsAHL1                                            | AT-hook PPC<br>domain                 | Drought tolerance   | adaptation    | convergent | [118]                       |
| Barley, wheat                                                                          | Family                      | grass-wide                           | HVA1, Wrab18, Wrab19                              | LEA protein                           | Cold tolerance      | adaptation    | parallel   | [44, 23]                    |
| Wheat, barley                                                                          | Family                      | grass-wide                           | Wcs19, Wcor14, Wcor15, Bcor14b                    | Cor protein                           | Cold tolerance      | adaptation    | parallel   | [66]                        |
| Barley, maize, spinach                                                                 | Above family                | grasses and beyond                   | HvPIP2;1, ZmPIP2-4, PM28A                         | Aquaporin                             | Soil salinity       | adaptation    | parallel   | [54, 120, 29]               |
| Rice, foxtail millet, tomato                                                           | Above family                | grasses and beyond                   | OsASR1, OsASR3, SiASR1,<br>SIASR1                 | ABA stress ASR<br>protein             | Soil salinity       | adaptation    | parallel   | [67, 59]                    |
| Maize                                                                                  | Species                     | species-specific, grass              | Rp3                                               | NBS-LRR                               | Pathogen resistance | adaptation    | convergent | [107]                       |
| Wheat, rice, sorghum                                                                   | Family                      | grass-wide                           | LR34                                              | ABC transporter                       | Pathogen resistance | adaptation    | parallel   | [62]                        |

idididi 041c31a09d3a37198729f6e4a9d9e618446ddd8a

# Adaptation in the grasses

An adaptive trait is one that interacts or responds to the environment in a way that helps an organism to thrive. For domesticated crops, however, adaptive traits that reverse desired domestication phenotypes such as yield, fragrance, flavor, or shatterproofing would not be considered favorable; therefore, we will narrow down the definition of an adaptive trait in this review to one that interacts or responds to the environment favorably but does not detract from desired domestication traits. Perhaps it is also necessary to define what specifically is meant by "environment." A straightforward (and admittedly simplistic) way would be to break "environment" down to discrete features, which can include: The level of carbon dioxide in the air; the level of UV radiation due to altitude; temperature; daylength; humidity; rainfall; wind; soil nutrient load; soil salinity; and pathogen microbiome. By dividing the environment into these discrete elements, we can now address each element individually by asking what sort of adaptive trait we would expect to observe in response to each, and how many of these adaptive traits are expressed in the same genetic pathway as known domestication genes.

If we take another look at Table 2, Column F, we find descriptions of domestication phenotypes that seem to also describe traits that would be involved in response to environment. For example, variation in flowering time is known to be a response to photoperiod sensitivity: the gene *ZmCCT9* in maize appears to be involved in flowering under the long days of higher latitudes in the Americas, but a transposon insertion upstream of *ZmCCT9* in domesticated maize cultivars is thought to have led to reduced photoperiod sensitivity, which has allowed domesticated maize to expand its range [45]. This is an excellent example of a domestication-related gene that has an environmentally adaptive component.

Another example of a domestication trait with an adaptive component is coloration. Loss of coloration has been favored in a variety of cereal cultivars, from rice to maize, as a cultural preference (ref?). As it turns out, coloration assists with UV tolerance in cereals and other plant species [94, 39]. Therefore, a return of coloration could likely lead to a greater tolerance of UV radiation in cereals that were bred at higher elevations [86]. Table 2 attempts to match examples of adaptation traits to domestication traits, where possible, using the definition of adaptive as described above.

On the flip side, there are a number of adaptive traits unlikely to have a domestication component, since they appear unrelated to domestication syndrome traits. These include (but are not limited to) drought tolerance; cold tolerance; soil salinity; and pathogen defense. Table 2 includes some adaptive genes and their orthologs, and whether or not they are associated with domestication traits. Adaptive genes not expected to be associated with domestication include the maize ZmVPP1 gene, where an upstream insertion is linked to drought tolerance [105]. Since this gene has a drought-tolerant ortholog in Arabidopsis, AVP1 [34], it suggests that orthologs could exist elsewhere in the cereals as well. However, another drought-tolerance gene in rice, OsAHL1 [118], does not appear to have a defined drought-tolerant ortholog in any other species at the time of this writing. Wheat and barley possess a small family of cold-tolerance genes including Wcs19 [13], Wcorl4 [101] and Bcorl4b [15], all of which encode chloroplast-targeted COR proteins analogous to the Arabidopsis protein COR15a [95, 99]. The LEA protein orthologs HVA1 and Wrab 18/19 in barley and wheat, respectively, are also associated with cold tolerance [44, 23]. Transcript and protein levels of the barley HvPIP2 aquaporin gene were found to be down-regulated in roots but up-regulated in the shoots of plants under salt stress [54]. HvPIP2 has an ortholog in maize, ZmPIP2-4 [120], and in spinach, PM28A [29]. There are also the ASR (abscisic acid, stress, and ripening-induced) genes that are associated with salinity tolerance in rice [52], *Setaria* (millet) [67], and tomato [59].

Of course, finding orthologs for genes known to be adaptive is no guarantee that the function will be similar in different species. Though foxtail millet has a functional ortholog of the maize *tb1* (*teosinte branched1*) gene [17] which restricts branching in domesticated maize, the foxtail millet ortholog only exhibits slight control over branching, which shows that even though two species might share orthology for a gene, it does not mean that the phenotype will be the same in both species [21]. And so far, we have only discussed adaptive phenotypes that are driven by alleles in one locus; this neglects all the other adaptive phenotypes that are due to alleles at multiple loci. Most importantly, however, the extent to which we can expect to find adaptive alleles for existing orthologs is dependent on the severity of the domestication bottleneck within a given cereal species.

Domestication bottlenecks are the result of selection for traits that make for desirable crops but not necessarily for environmental adaptability. Massive nucleotide diversity loss is reported in domesticated bread wheat [43], maize (with an increase in deleterious alleles) [24, 104], rice [121], Sorghum [41], and barley [58] compared with wild relatives, demonstrating that loss of diversity is widespread in cultivated grasses and is a phenomenon that is distinct from uncultivated wild relatives. These results suggest that domestication itself is responsible for the loss of diversity, and because of this, attempts to adapt domesticated grasses to new environments could pose a challenge.

Outside of breeding to a wild relative, is it possible for cereal crops to be rescued from a diversity bottleneck? We have seen that grasses tend to have relatively active transposons, and this transposon activity may permit a higher mutation rate in cereals than in other crops, allowing for new alleles to arise in a population. In Table 2, several of the domestication and adaptive phenotypes are due to a transposon insertion somewhere in the functional region of a gene: *tb1* [96], *ZmCCT9*, and *ZmVVP1*, to name just a few. In addition, diversity in waxy foxtail millet crops in southeast Asia was shown to be mediated by multiple transposable element insertions [56]. However, a comprehensive review of TEs and plant evolution [69] suggests that our understanding of the role of transposable element activity in crop adaptation is largely anecdotal and might be overstated, but perhaps can be better elucidated by harnessing the recent advances in genomics such as more sophisticated TE annotation protocols, whole-genome sequencing, and comparative algorithms. Using these advances in genome biology, a recent study by Lai and coworkers found that transposon insertions may have played an important role in creating the variation in gene regulation that enabled the rapid adaptation of domesticated maize to diverse environments [64].

Loss of allelic diversity due to domestication bottlenecks may have a more significant impact on those adaptive phenotypes that are controlled by the same genes that control domestication phenotypes (such as ZmZCCT9), rather than on the genes that appear unrelated to domestication (such as ZmVPP1). So it is not a foregone conclusion that a bottleneck in a flowering time allele, for instance, would necessarily lead to a bottleneck in an allele related to drought tolerance, unless loss of diversity in a population were severe and genome-wide, or unless drought tolerance and flowering time were phenotypically or genetically linked. Therefore, one might predict that selection for transposable element insertion would be greater for domestication-syndrome adaptation alleles than in adaptation alleles unrelated to domestication syndrome.

But another way an adaptation trait could escape a domestication bottleneck is if the domesticationsyndrome allele were on a gene with a retained homeolog, allowing for subfunctionalization or neofunctionalization of the other homeolog to an adaptive allele. Neofunctionalization of homeologs is widespread in maize [46], which has undergone a recent tetraploidy event approximately 5-12MYA [97]; and in bread wheat, subfunctionalization of homeologs as a result of wheat's hexaploidy event appear to have given rise to alleles associated with baking quality [83].

To some extent, it can be predicted which homeolog in a post-polyploid cereal is likely to be adaptive. It is known that of the two retained post-polyploidy subgenomes in maize, one undergoes less fractionation and is more highly expressed than the other (i.e. the dominant subgenome) [112, 91], and there is evidence that fractionation is biased not only in maize, but in wheat as well [22]. Schnable and Freeling found that of the "classical" maize genes, or characterized genes that have a known mutant phenotype, the majority are on the less fractionated subgenome [92]. Many of these genes, such as tb1, Waxy, Opaque2, and several starch synthesis and coloration genes not in Table 2, have a domestication syndrome phenotype in maize. Additionally, recent work has suggested that the genes on the more highly expressed subgenome in maize contribute more to phenotypic variation than the less expressed subgenome [89] because they are under greater purifying selection. If genes associated with domestication tend to be on the less fractionated subgenome, and greater phenotypic variation is observed in the less fractionated subgenome, then adaptive traits should more likely be associated with the homeolog on the less fractionated subgenome. Indeed, two genes associated with adaptive phenotypes in maize from Table 2, ZmVPP1 (drought tolerance) and ZmPIP2-4 (soil salinity) are both found on the less fractionated subgenome [92]. Yet about forty percent of the genes on the more fractionated subgenome do exhibit some amount of expression dominance and phenotypic variation [89], and genome dominance alone is not a guarantee that adaptive alleles could not arise on the more fractionated genome as well.

Finally, there are some adaptive traits that are less likely to have orthologs in even closely related species. These include pathogen resistance and stress response. While there are examples of pathogen defense and stress response genes in the grasses that are orthologous to other species (Table 2), by and large, genes that code for traits involved in plant defense and stress response are frequently orphan genes, or genes that are specific to a particular lineage and share no defined orthologs with any outgroup [111]; reviewed in [1]. Orphan genes tend to be very dynamic, arising and becoming lost much faster than their basal counterparts [32]. If an adaptive trait such as pathogen resistance is dependent on these orphan-type genes, which quite often are unique even in individual cultivars within the same crop species, then we would not expect to see convergence of this trait at the alleleic level in cereal adaptation, since each species-indeed, each cultivar-would be expected to have its own unique, "outward-facing" suite of orphan genes that would confer environmental adaptation uniquely to its niche. Orphan genes often propagate through trans duplication [32, 1]; therefore, movement of these genes to a new region whose local euchromatic status can confer novel expression patterns to the mobilized gene can be a strong source of adaptation, especially since it has been shown that stressful environments can stimulate activation of transposable elements [6, 72] reviewed in [78], and this is one way that crop species might be able to escape domestication bottlenecks in adaptation.

### **Conclusions**

This review set out to explore how domestication has influenced the potential for adaptation in the grasses. Factors of domestication that have influenced adaptation include the selection for domestication traits that also have adaptive qualities, and to what extent diversity of a locus has undergone

a domestication bottleneck. We discussed the possible ways that a crop might escape a domestication bottleneck, including homeolog sub- or neofunctionalization, transposable element activity, and trans duplication or fast-evolvability of lineage-specific adaptive genes. We also set out to see whether it is possible to predict the likelihood of adaptability of any given trait, irrespective of domestication syndrome effects. How realistically we can predict this in any given cereal crop is dependent upon (1) the existence of an ortholog to a known adaptive gene in another species; (2) the retention of functionality in the ortholog; (3) which subgenome a putatively adaptive gene is on within a species that had undergone a recent polyploidy; and (4) the propensity of an adaptive gene or gene family to be orthologous. Table 2 attempts to summarize these findings by correlating adaptivity with domestication traits as well as orthology in other species.

#### References

- [1] Zebulun W. Arendsee, Ling Li, and Eve Syrkin Wurtele. Coming of age: orphan genes in plants. *Trends in Plant Science*, 19(11):698–708, nov 2014.
- [2] K. Asano, M. Yamasaki, S. Takuno, K. Miura, S. Katagiri, T. Ito, K. Doi, J. Wu, K. Ebana, T. Matsumoto, H. Innan, H. Kitano, M. Ashikari, and M. Matsuoka. Artificial selection for a green revolution gene during japonica rice domestication. *Proceedings of the National Academy of Sciences*, 108(27):11034–11039, jun 2011.
- [3] Kenji Asano, Tomonori Takashi, Kotaro Miura, Qian Qian, Hidemi Kitano, Makoto Matsuoka, and Motoyuki Ashikari. Genetic and molecular analysis of utility of sd1 alleles in rice breeding. *Breeding Science*, 57(1):53–58, 2007.
- [4] Torben Asp, Stephen Byrne, Heidrun Gundlach, Rémy Bruggmann, Klaus F. X. Mayer, Jeppe R. Andersen, Mingliang Xu, Morten Greve, Ingo Lenk, and Thomas Lübberstedt. Comparative sequence analysis of VRN1 alleles of lolium perenne with the co-linear regions in barley, wheat, and rice. *Molecular Genetics and Genomics*, 286(5-6):433–447, nov 2011.
- [5] James Beales, Adrian Turner, Simon Griffiths, John W. Snape, and David A. Laurie. A pseudo-response regulator is misexpressed in the photoperiod insensitive ppd-d1a mutant of wheat (triticum aestivum l.). *Theoretical and Applied Genetics*, 115(5):721–733, jul 2007.
- [6] T. Beguiristain. Three tnt1 subfamilies show different stress-associated patterns of expression in tobacco. consequences for retrotransposon control and evolution in plants. *PLANT PHYSIOLOGY*, 127(1):212–221, sep 2001.
- [7] J. L. Bennetzen and M. Freeling. Grasses as a single genetic system: genome composition, collinearity and compatibility. *Trends Genet.*, 9(8):259–261, Aug 1993.
- [8] Benjamin K. Blackman. Changing responses to changing seasons: Natural variation in the plasticity of flowering time. *Plant Physiology*, 173(1):16–26, nov 2016.
- [9] Benjamin K. Blackman, Jared L. Strasburg, Andrew R. Raduski, Scott D. Michaels, and Loren H. Rieseberg. The role of recently derived FT paralogs in sunflower domestication. *Current Biology*, 20(7):629–635, apr 2010.

- [10] YANIS BOUCHENAK-KHELLADI, G. ANTHONY VERBOOM, VINCENT SAVOLAINEN, and TREVOR R. HODKINSON. Biogeography of the grasses (poaceae): a phylogenetic approach to reveal evolutionary history in geographical space and geological time. *Botanical Journal of the Linnean Society*, 162(4):543–557, apr 2010.
- [11] E. Butelli, C. Licciardello, Y. Zhang, J. Liu, S. Mackay, P. Bailey, G. Reforgiato-Recupero, and C. Martin. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. *The Plant Cell*, 24(3):1242–1255, mar 2012.
- [12] Chien-Chang Chang, Hsin-Liang Chen, Wen-Hsiung Li, and Shu-Miaw Chaw. Dating the monocot?dicot divergence and the origin of core eudicots using whole chloroplast genomes. *Journal of Molecular Evolution*, 58(4):424–441, apr 2004.
- [13] L. P. Chauvin, M. Houde, and F. Sarhan. A leaf-specific gene stimulated by light during wheat acclimation to low temperature. *Plant Mol. Biol.*, 23(2):255–265, Oct 1993.
- [14] Jordi Comadran, Benjamin Kilian, Joanne Russell, Luke Ramsay, Nils Stein, Martin Ganal, Paul Shaw, Micha Bayer, William Thomas, David Marshall, Pete Hedley, Alessandro Tondelli, Nicola Pecchioni, Enrico Francia, Viktor Korzun, Alexander Walther, and Robbie Waugh. Natural variation in a homolog of antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. *Nature Genetics*, 44(12):1388–1392, nov 2012.
- [15] C. Crosatti, P. Polverino de Laureto, R. Bassi, and L. Cattivelli. The interaction between cold and light controls the expression of the cold-regulated barley gene cor14b and the accumulation of the corresponding protein. *Plant Physiol.*, 119(2):671–680, Feb 1999.
- [16] Aurora Díaz, Meluleki Zikhali, Adrian S. Turner, Peter Isaac, and David A. Laurie. Copy number variation affecting the photoperiod-b1 and vernalization-a1 genes is associated with altered flowering time in wheat (triticum aestivum). *PLoS ONE*, 7(3):e33234, mar 2012.
- [17] J. Doebley, A. Stec, and L. Hubbard. The evolution of apical dominance in maize. *Nature*, 386(6624):485–488, Apr 1997.
- [18] John F. Doebley, Brandon S. Gaut, and Bruce D. Smith. The molecular genetics of crop domestication. *Cell*, 127(7):1309–1321, dec 2006.
- [19] Yang Dong and Yin-Zheng Wang. Seed shattering: from models to crops. *Frontiers in Plant Science*, 6, jun 2015.
- [20] Yang Dong, Xia Yang, Jing Liu, Bo-Han Wang, Bo-Ling Liu, and Yin-Zheng Wang. Pod shattering resistance associated with domestication is mediated by a NAC gene in soybean. *Nature Communications*, 5(1), feb 2014.
- [21] Andrew N. Doust, Katrien M. Devos, Michael D. Gadberry, Mike D. Gale, and Elizabeth A. Kellogg. Genetic control of branching in foxtail millet. *Proceedings of the National Academy of Sciences*, 101(24):9045–9050, jun 2004.

- [22] N. A. Eckardt. Genome dominance and interaction at the gene expression level in allohexaploid wheat. *The Plant Cell*, 26(5):1834–1834, may 2014.
- [23] C. Egawa, F. Kobayashi, M. Ishibashi, T. Nakamura, C. Nakamura, and S. Takumi. Differential regulation of transcript accumulation and alternative splicing of a DREB2 homolog under abiotic stress conditions in common wheat. *Genes Genet. Syst.*, 81(2):77–91, Apr 2006.
- [24] A. Eyre-Walker, R. L. Gaut, H. Hilton, D. L. Feldman, and B. S. Gaut. Investigation of the bottleneck leading to the domestication of maize. *Proc. Natl. Acad. Sci. U.S.A.*, 95(8):4441–4446, Apr 1998.
- [25] Longjiang Fan, Liyan Quan, Xiaodong Leng, Xingyi Guo, Weiming Hu, Songlin Ruan, Huasheng Ma, and Mengqian Zeng. Molecular evidence for post-domestication selection in the waxy gene of chinese waxy maize. *Molecular Breeding*, 22(3):329–338, mar 2008.
- [26] S. Faure, A. S. Turner, D. Gruszka, V. Christodoulou, S. J. Davis, M. von Korff, and D. A. Laurie. Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (hordeum vulgare) to short growing seasons. *Proceedings of the National Academy of Sciences*, 109(21):8328–8333, may 2012.
- [27] Beatriz Fernandez-Marin, Ruben Milla, Nieves Martin-Robles, Erwann Arc, Ilse Kranner, Jose Maria Becerril, and Jose Ignacio Garcia-Plazaola. Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. *BMC Plant Biology*, 14(1), dec 2014.
- [28] Commodities by country. http://faostat3.fao.org/.
- [29] Dimitrios Fotiadis, Paul Jenö, Thierry Mini, Sabine Wirtz, Shirley A. Müller, Laure Fraysse, Per Kjellbom, and Andreas Engel. Structural characterization of two aquaporins isolated from native spinach leaf plasma membranes. *Journal of Biological Chemistry*, 276(3):1707–1714, oct 2000.
- [30] F. Foucher. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. *THE PLANT CELL ONLINE*, 15(11):2742–2754, oct 2003.
- [31] M. Freeling. Grasses as a single genetic system: reassessment 2001. *Plant Physiol.*, 125(3):1191–1197, Mar 2001.
- [32] M. Freeling, E. Lyons, B. Pedersen, M. Alam, R. Ming, and D. Lisch. Many or most genes in arabidopsis transposed after the origin of the order brassicales. *Genome Research*, 18(12):1924–1937, oct 2008.
- [33] Tsutomu Furukawa, Masahiko Maekawa, Tomoyuki Oki, Ikuo Suda, Shigeru Iida, Hiroaki Shimada, Itsuro Takamure, and Koh ichi Kadowaki. The rc and rd genes are involved in proanthocyanidin synthesis in rice pericarp. *The Plant Journal*, 49(1):91–102, dec 2006.

- [34] R. A. Gaxiola, J. Li, S. Undurraga, L. M. Dang, G. J. Allen, S. L. Alper, and G. R. Fink. Drought- and salt-tolerant plants result from overexpression of the AVP1 h+pump. *Proceedings of the National Academy of Sciences*, 98(20):11444–11449, sep 2001.
- [35] Paul Gepts. Crop domestication as a long-term selection experiment. In *Plant Breeding Reviews*, pages 1–44. John Wiley & Sons, Inc., jun 2010.
- [36] Jason D Gillman, Ashley Tetlow, Jeong-Deong Lee, J Shannon, and Kristin Bilyeu. Loss-of-function mutations affecting a specific glycine max r2r3 MYB transcription factor result in brown hilum and brown seed coats. *BMC Plant Biology*, 11(1):155, 2011.
- [37] Sylvain Glémin and Thomas Bataillon. A comparative view of the evolution of grasses under domestication. *New Phytologist*, 183(2):273–290, jun 2009.
- [38] S. B. Goodwin, B. A. Cohen, and W. E. Fry. Panglobal distribution of a single clonal lineage of the irish potato famine fungus. *Proceedings of the National Academy of Sciences*, 91(24):11591–11595, nov 1994.
- [39] Kevin S. Gould. Nature's swiss army knife: The diverse protective roles of anthocyanins in leaves. *Journal of Biomedicine and Biotechnology*, 2004(5):314–320, 2004.
- [40] Julian R. Greenwood, E. Jean Finnegan, Nobuyoshi Watanabe, Ben Trevaskis, and Steve M. Swain. New alleles of the wheat domestication geneQreveal multiple roles in growth and reproductive development. *Development*, 144(11):1959–1965, apr 2017.
- [41] M. T. Hamblin. Challenges of detecting directional selection after a bottleneck: Lessons from sorghum bicolor. *Genetics*, 173(2):953–964, apr 2006.
- [42] Karl Hammer. Das domestikationssyndrom. *Die Kulturpflanze*, 32(1):11–34, jun 1984.
- [43] A Haudry, A Cenci, C Ravel, T Bataillon, D Brunel, C Poncet, I Hochu, S Poirier, S Santoni, S Glémin, and J David. Grinding up wheat: A massive loss of nucleotide diversity since domestication. *Molecular Biology and Evolution*, 24(7):1506–1517, apr 2007.
- [44] Bimei Hong, Scott J. Uknes, and Tuan hua David Ho. Cloning and characterization of a cDNA encoding a mRNA rapidly-induced by ABA in barley aleurone layers. *Plant Molecular Biology*, 11(4):495–506, 1988.
- [45] Cheng Huang, Huayue Sun, Dingyi Xu, Qiuyue Chen, Yameng Liang, Xufeng Wang, Guanghui Xu, Jinge Tian, Chenglong Wang, Dan Li, Lishuan Wu, Xiaohong Yang, Weiwei Jin, John F. Doebley, and Feng Tian. ZmCCT9enhances maize adaptation to higher latitudes. *Proceedings of the National Academy of Sciences*, 115(2):E334–E341, dec 2017.
- [46] Thomas E. Hughes, Jane A. Langdale, and Steven Kelly. The impact of widespread regulatory neofunctionalization on homeolog gene evolution following whole-genome duplication in maize. *Genome Research*, 24(8):1348–1355, apr 2014.

- [47] Harriet V. Hunt, Hannah M. Moots, Robert A. Graybosch, Huw Jones, Mary Parker, Olga Romanova, Martin K. Jones, Christopher J. Howe, and Kay Trafford. Waxy phenotype evolution in the allotetraploid cereal broomcorn millet: Mutations at the GBSSI locus in their functional and phylogenetic context. *Molecular Biology and Evolution*, 30(1):109–122, oct 2012.
- [48] Subodh Jain. Crops and man. 2nd ed. 1992. by jack r. harlan. american society of agronomy, 677 s. segoe road, madison, WI 53711. 284 pp. \$34 hardcover. *American Journal of Alternative Agriculture*, 8(01):47, mar 1993.
- [49] Jong-Seong Jeon, Nayeon Ryoo, Tae-Ryong Hahn, Harkamal Walia, and Yasunori Nakamura. Starch biosynthesis in cereal endosperm. *Plant Physiology and Biochemistry*, 48(6):383–392, jun 2010.
- [50] Qiaojun Jia, Jingjuan Zhang, Sharon Westcott, Xiao-Qi Zhang, Mathew Bellgard, Reg Lance, and Chengdao Li. GA-20 oxidase as a candidate for the semidwarf gene sdw1/denso in barley. *Functional & Integrative Genomics*, 9(2):255–262, mar 2009.
- [51] H. Jones, F. J. Leigh, I. Mackay, M. A. Bower, L. M.J. Smith, M. P. Charles, G. Jones, M. K. Jones, T. A. Brown, and W. Powell. Population-based resequencing reveals that the flowering time adaptation of cultivated barley originated east of the fertile crescent. *Molecular Biology and Evolution*, 25(10):2211–2219, jul 2008.
- [52] Joungsu Joo, Youn Hab Lee, Yeon-Ki Kim, Baek Hie Nahm, and Sang Ik Song. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities. *Molecules and Cells*, 35(5):421–435, apr 2013.
- [53] Ruangchai Juwattanasomran, Prakit Somta, Sompong Chankaew, Takehiko Shimizu, Sugunya Wongpornchai, Akito Kaga, and Peerasak Srinives. A SNP in GmBADH2 gene associates with fragrance in vegetable soybean variety kaori and SNAP marker development for the fragrance. *Theoretical and Applied Genetics*, 122(3):533–541, nov 2010.
- [54] Maki Katsuhara, Yoshiko Akiyama, Kazuki Koshio, Mineo Shibasaka, and Kunihiro Kasamo. Functional analysis of water channels in barley roots. *Plant and Cell Physiology*, 43(8):885–893, aug 2002.
- [55] Hiroyuki Kawahigashi, Masao Oshima, Tomotaro Nishikawa, Hisahito Okuizumi, Shigemitsu Kasuga, and Jun ichi Yonemaru. A novelwaxyallele in sorghum landraces in east asia. *Plant Breeding*, 132(3):305–310, apr 2013.
- [56] Makoto Kawase, Kenji Fukunaga, and Kenji Kato. Diverse origins of waxy foxtail millet crops in east and southeast asia mediated by multiple transposable element insertions. *Molecular Genetics and Genomics*, 274(2):131–140, aug 2005.
- [57] E. A. Kellogg. Evolutionary history of the grasses. *PLANT PHYSIOLOGY*, 125(3):1198–1205, mar 2001.

- [58] Benjamin Kilian, Hakan Özkan, Jochen Kohl, Arndt von Haeseler, Francesca Barale, Oliver Deusch, Andrea Brandolini, Cemal Yucel, William Martin, and Francesco Salamini. Haplotype structure at seven barley genes: relevance to gene pool bottlenecks, phylogeny of ear type and site of barley domestication. *Molecular Genetics and Genomics*, 276(3):230–241, jun 2006.
- [59] Zvia Konrad and Dudy Bar-Zvi. Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. *Planta*, 227(6):1213–1219, feb 2008.
- [60] E. A. Koskela, K. Mouhu, M. C. Albani, T. Kurokura, M. Rantanen, D. J. Sargent, N. H. Battey, G. Coupland, P. Elomaa, and T. Hytonen. Mutation in TERMINAL FLOWER1 reverses the photoperiodic requirement for flowering in the wild strawberry fragaria vesca. *PLANT PHYSIOLOGY*, 159(3):1043–1054, may 2012.
- [61] M. J. Kovach, M. N. Calingacion, M. A. Fitzgerald, and S. R. McCouch. The origin and evolution of fragrance in rice (oryza sativa 1.). *Proceedings of the National Academy of Sciences*, 106(34):14444–14449, aug 2009.
- [62] Simon G. Krattinger, Evans S. Lagudah, Thomas Wicker, Joanna M. Risk, Anthony R. Ashton, Liselotte L. Selter, Takashi Matsumoto, and Beat Keller. Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. *The Plant Journal*, 65(3):392–403, dec 2010.
- [63] Myounghai Kwak, Orlando Toro, Daniel G. Debouck, and Paul Gepts. Multiple origins of the determinate growth habit in domesticated common bean (phaseolus vulgaris). *Annals of Botany*, 110(8):1573–1580, sep 2012.
- [64] Xianjun Lai, James C. Schnable, Zhengqiao Liao, Jie Xu, Gengyun Zhang, Chuan Li, Erliang Hu, Tingzhao Rong, Yunbi Xu, and Yanli Lu. Genome-wide characterization of non-reference transposable element insertion polymorphisms reveals genetic diversity in tropical and temperate maize. *BMC Genomics*, 18(1), sep 2017.
- [65] Teresa Lenser and Günter Theißen. Molecular mechanisms involved in convergent crop domestication. *Trends in Plant Science*, 18(12):704–714, dec 2013.
- [66] A. A. Levy. The impact of polyploidy on grass genome evolution. *PLANT PHYSIOLOGY*, 130(4):1587–1593, dec 2002.
- [67] Jianrui Li, Yang Dong, Cong Li, Yanlin Pan, and Jingjuan Yu. SiASR4, the target gene of SiARDP from setaria italica, improves abiotic stress adaption in plants. *Frontiers in Plant Science*, 7, jan 2017.
- [68] Zhongwei Lin, Xianran Li, Laura M Shannon, Cheng-Ting Yeh, Ming L Wang, Guihua Bai, Zhao Peng, Jiarui Li, Harold N Trick, Thomas E Clemente, John Doebley, Patrick S Schnable, Mitchell R Tuinstra, Tesfaye T Tesso, Frank White, and Jianming Yu. Parallel domestication of the shattering1 genes in cereals. *Nature Genetics*, 44(6):720–724, may 2012.

- [69] D. R. Lisch. Mutator transposase is widespread in the grasses. *PLANT PHYSIOLOGY*, 125(3):1293–1303, mar 2001.
- [70] B. Liu, S. Watanabe, T. Uchiyama, F. Kong, A. Kanazawa, Z. Xia, A. Nagamatsu, M. Arai, T. Yamada, K. Kitamura, C. Masuta, K. Harada, and J. Abe. The soybean stem growth habit gene dt1 is an ortholog of arabidopsis TERMINAL FLOWER1. *PLANT PHYSIOLOGY*, 153(1):198–210, mar 2010.
- [71] Jun Lyu. Unearthing potato evolution. *Nature Plants*, 3(12):912–912, dec 2017.
- [72] Irina Makarevitch, Amanda J. Waters, Patrick T. West, Michelle Stitzer, Candice N. Hirsch, Jeffrey Ross-Ibarra, and Nathan M. Springer. Transposable elements contribute to activation of maize genes in response to abiotic stress. *PLoS Genetics*, 11(1):e1004915, jan 2015.
- [73] Arnaud Martin and Virginie Orgogozo. THE LOCI OF REPEATED EVOLUTION: A CAT-ALOG OF GENETIC HOTSPOTS OF PHENOTYPIC VARIATION. *Evolution*, pages n/a-n/a, mar 2013.
- [74] Kazuki Matsubara, Eri Ogiso-Tanaka, Kiyosumi Hori, Kaworu Ebana, Tsuyu Ando, and Masahiro Yano. Natural variation in hd17, a homolog of arabidopsis ELF3 that is involved in rice photoperiodic flowering. *Plant and Cell Physiology*, 53(4):709–716, mar 2012.
- [75] Allison J. Miller and Briana L. Gross. From forest to field: Perennial fruit crop domestication. *American Journal of Botany*, 98(9):1389–1414, sep 2011.
- [76] D. S. Multani. Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. *Science*, 302(5642):81–84, oct 2003.
- [77] Masaya MURAKAMI, Akinori MATSUSHIKA, Motoyuki ASHIKARI, Takafumi YA-MASHINO, and Takeshi MIZUNO. Circadian-associated rice pseudo response regulators (OsPRRs): Insight into the control of flowering time. *Bioscience, Biotechnology, and Biochemistry*, 69(2):410–414, jan 2005.
- [78] Pooja Negi, Archana N. Rai, and Penna Suprasanna. Moving through the stressed genome: Emerging regulatory roles for transposons in plant stress response. *Frontiers in Plant Science*, 7, oct 2016.
- [79] K. Okazaki, K. Sakamoto, R. Kikuchi, A. Saito, E. Togashi, Y. Kuginuki, S. Matsumoto, and M. Hirai. Mapping and characterization of FLC homologs and QTL analysis of flowering time in brassica oleracea. *Theoretical and Applied Genetics*, 114(4):595–608, nov 2006.
- [80] Young-Jun Park, Tomotaro Nishikawa, Norihiko Tomooka, and Kazuhiro Nemoto. The molecular basis of mutations at the waxy locus from amaranthus caudatus 1.: evolution of the waxy phenotype in three species of grain amaranth. *Molecular Breeding*, 30(1):511–520, sep 2011.
- [81] Rajiv K. Parvathaneni, Vinod Jakkula, Francis K. Padi, Sebastien Faure, Nethra Nagarajappa, Ana C. Pontaroli, Xiaomei Wu, Jeffrey L. Bennetzen, and Katrien M. Devos. Finemapping and identification of a candidate gene underlying the d2 dwarfing phenotype in

- pearl millet, cenchrus americanus (l.) morrone. *G3: Genes Genomes Genetics*, 3(3):563–572, mar 2013.
- [82] A. H. Paterson, J. E. Bowers, and B. A. Chapman. Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. *Proceedings of the National Academy of Sciences*, 101(26):9903–9908, may 2004.
- [83] M. Pfeifer, K. G. Kugler, S. R. Sandve, B. Zhan, H. Rudi, T. R. Hvidsten, K. F. X. Mayer, and O.-A. Olsen and. Genome interplay in the grain transcriptome of hexaploid bread wheat. *Science*, 345(6194):1250091–1250091, jul 2014.
- [84] B. Pickersgill. Domestication of plants in the americas: Insights from mendelian and molecular genetics. *Annals of Botany*, 100(5):925–940, jul 2007.
- [85] Barbara Pickersgill. Parallel vs. convergent evolution in domestication and diversification of crops in the americas. *Frontiers in Ecology and Evolution*, 6, may 2018.
- [86] Tanja Pyhäjärvi, Matthew B. Hufford, Sofiane Mezmouk, and Jeffrey Ross-Ibarra. Complex patterns of local adaptation in teosinte. *Genome Biology and Evolution*, 5(9):1594–1609, jul 2013.
- [87] Luke Ramsay, Jordi Comadran, Arnis Druka, David F Marshall, William T B Thomas, Malcolm Macaulay, Katrin MacKenzie, Craig Simpson, John Fuller, Nicola Bonar, Patrick M Hayes, Udda Lundqvist, Jerome D Franckowiak, Timothy J Close, Gary J Muehlbauer, and Robbie Waugh. INTERMEDIUM-c, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. *Nature Genetics*, 43(2):169–172, jan 2011.
- [88] Marie-Stanislas Remigereau, Ghayas Lakis, Samah Rekima, Magalie Leveugle, Michaël C. Fontaine, Thierry Langin, Aboubakry Sarr, and Thierry Robert. Cereal domestication and evolution of branching: Evidence for soft selection in the tb1 orthologue of pearl millet (pennisetum glaucum [l.] r. br.). *PLoS ONE*, 6(7):e22404, jul 2011.
- [89] Simon Renny-Byfield, Eli Rodgers-Melnick, and Jeffrey Ross-Ibarra. Gene fractionation and function in the ancient subgenomes of maize. *Molecular Biology and Evolution*, 34(8):1825–1832, apr 2017.
- [90] S. L. Repinski, M. Kwak, and P. Gepts. The common bean growth habit gene PvTFL1y is a functional homolog of arabidopsis TFL1. *Theoretical and Applied Genetics*, 124(8):1539–1547, feb 2012.
- [91] J. C. Schnable, N. M. Springer, and M. Freeling. Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. *Proceedings of the National Academy of Sciences*, 108(10):4069–4074, feb 2011.
- [92] James C. Schnable and Michael Freeling. Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. *PLoS ONE*, 6(3):e17855, mar 2011.

- [93] J. Gwen Shlichta, Maximilien A.C. Cuny, Johnattan Hernandez-Cumplido, Juan Traine, and Betty Benrey. Contrasting consequences of plant domestication for the chemical defenses of leaves and seeds in lima bean plants. *Basic and Applied Ecology*, may 2018.
- [94] A. E. Stapleton and V. Walbot. Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage. *Plant Physiol.*, 105(3):881–889, Jul 1994.
- [95] P. L. Steponkus, M. Uemura, R. A. Joseph, S. J. Gilmour, and M. F. Thomashow. Mode of action of the COR15a gene on the freezing tolerance of Arabidopsis thaliana. *Proc. Natl. Acad. Sci. U.S.A.*, 95(24):14570–14575, Nov 1998.
- [96] Anthony Studer, Qiong Zhao, Jeffrey Ross-Ibarra, and John Doebley. Identification of a functional transposon insertion in the maize domestication gene tb1. *Nature Genetics*, 43(11):1160–1163, sep 2011.
- [97] Z. Swigonova. Close split of sorghum and maize genome progenitors. *Genome Research*, 14(10a):1916–1923, sep 2004.
- [98] Y. Takahashi, K. M. Teshima, S. Yokoi, H. Innan, and K. Shimamoto. Variations in hd1 proteins, hd3a promoters, and ehd1 expression levels contribute to diversity of flowering time in cultivated rice. *Proceedings of the National Academy of Sciences*, 106(11):4555–4560, feb 2009.
- [99] S. Takumi. Cold-specific and light-stimulated expression of a wheat (triticum aestivum 1.) cor gene wcor15 encoding a chloroplast-targeted protein. *Journal of Experimental Botany*, 54(391):2265–2274, oct 2003.
- [100] Z. Tian, X. Wang, R. Lee, Y. Li, J. E. Specht, R. L. Nelson, P. E. McClean, L. Qiu, and J. Ma. Artificial selection for determinate growth habit in soybean. *Proceedings of the National Academy of Sciences*, 107(19):8563–8568, apr 2010.
- [101] S. Tsvetanov, R. Ohno, K. Tsuda, S. Takumi, N. Mori, A. Atanassov, and C. Nakamura. A cold-responsive wheat (Triticum aestivum L.) gene wcor14 identified in a winter-hardy cultivar 'Mironovska 808'. *Genes Genet. Syst.*, 75(1):49–57, Feb 2000.
- [102] A. Turner. The pseudo-response regulator ppd-h1 provides adaptation to photoperiod in barley. *Science*, 310(5750):1031–1034, nov 2005.
- [103] Huai Wang, Tina Nussbaum-Wagler, Bailin Li, Qiong Zhao, Yves Vigouroux, Marianna Faller, Kirsten Bomblies, Lewis Lukens, and John F. Doebley. The origin of the naked grains of maize. *Nature*, 436(7051):714–719, aug 2005.
- [104] Li Wang, Timothy M. Beissinger, Anne Lorant, Claudia Ross-Ibarra, Jeffrey Ross-Ibarra, and Matthew B. Hufford. The interplay of demography and selection during maize domestication and expansion. *Genome Biology*, 18(1), nov 2017.
- [105] Xianglan Wang, Hongwei Wang, Shengxue Liu, Ali Ferjani, Jiansheng Li, Jianbing Yan, Xiaohong Yang, and Feng Qin. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. *Nature Genetics*, 48(10):1233–1241, aug 2016.

- [106] Jacob D. Washburn, Kevin A. Bird, Gavin C. Conant, and J. Chris Pires. Convergent evolution and the origin of complex phenotypes in the age of systems biology. *International Journal of Plant Sciences*, 177(4):305–318, may 2016.
- [107] C. A. Webb, T. E. Richter, N. C. Collins, M. Nicolas, H. N. Trick, T. Pryor, and S. H. Hulbert. Genetic and molecular characterization of the maize rp3 rust resistance locus. *Genetics*, 162(1):381–394, Sep 2002.
- [108] J. L. Weller, L. C. Liew, V. F. G. Hecht, V. Rajandran, R. E. Laurie, S. Ridge, B. Wenden, J. K. Vander Schoor, O. Jaminon, C. Blassiau, M. Dalmais, C. Rameau, A. Bendahmane, R. C. Macknight, and I. Lejeune-Henaut. A conserved molecular basis for photoperiod adaptation in two temperate legumes. *Proceedings of the National Academy of Sciences*, 109(51):21158–21163, dec 2012.
- [109] Thomas Wicker, Yeisoo Yu, Georg Haberer, Klaus F. X. Mayer, Pradeep Reddy Marri, Steve Rounsley, Mingsheng Chen, Andrea Zuccolo, Olivier Panaud, Rod A. Wing, and Stefan Roffler. DNA transposon activity is associated with increased mutation rates in genes of rice and other grasses. *Nature Communications*, 7:12790, sep 2016.
- [110] Edward P. Wilhelm, Adrian S. Turner, and David A. Laurie. Photoperiod insensitive ppd-a1a mutations in tetraploid wheat (triticum durum desf.). *Theoretical and Applied Genetics*, 118(2):285–294, oct 2008.
- [111] M. R. Woodhouse, H. Tang, and M. Freeling. Different gene families in arabidopsis thaliana transposed in different epochs and at different frequencies throughout the rosids. *The Plant Cell*, 23(12):4241–4253, dec 2011.
- [112] Margaret R. Woodhouse, James C. Schnable, Brent S. Pedersen, Eric Lyons, Damon Lisch, Shabarinath Subramaniam, and Michael Freeling. Following tetraploidy in maize, a short deletion mechanism removed genes preferentially from one of the two homeologs. *PLoS Biology*, 8(6):e1000409, jun 2010.
- [113] Jian Wu, Keyun Wei, Feng Cheng, Shikai Li, Qian Wang, Jianjun Zhao, Guusje Bonnema, and Xiaowu Wang. A naturally occurring InDel variation in BraA.FLC.b (BrFLC2) associated with flowering time variation in brassica rapa. *BMC Plant Biology*, 12(1):151, 2012.
- [114] L. Yan, D. Fu, C. Li, A. Blechl, G. Tranquilli, M. Bonafede, A. Sanchez, M. Valarik, S. Yasuda, and J. Dubcovsky. The wheat and barley vernalization gene VRN3 is an orthologue of FT. *Proceedings of the National Academy of Sciences*, 103(51):19581–19586, dec 2006.
- [115] Yu-Xiang Yuan, Jian Wu, Ri-Fei Sun, Xiao-Wei Zhang, Dong-Hui Xu, Guusje Bonnema, and Xiao-Wu Wang. A naturally occurring splicing site mutation in the brassica rapa FLC1 gene is associated with variation in flowering time. *Journal of Experimental Botany*, 60(4):1299–1308, feb 2009.
- [116] S. Zakhrabekova, S. P. Gough, I. Braumann, A. H. Muller, J. Lundqvist, K. Ahmann, C. Dockter, I. Matyszczak, M. Kurowska, A. Druka, R. Waugh, A. Graner, N. Stein,

- B. Steuernagel, U. Lundqvist, and M. Hansson. Induced mutations in circadian clock regulator mat-a facilitated short-season adaptation and range extension in cultivated barley. *Proceedings of the National Academy of Sciences*, 109(11):4326–4331, feb 2012.
- [117] Yongfei Zhang, Shuping Cheng, Darlene De Jong, Helen Griffiths, Rayko Halitschke, and Walter De Jong. The potato r locus codes for dihydroflavonol 4-reductase. *Theoretical and Applied Genetics*, 119(5):931–937, jul 2009.
- [118] Liguo Zhou, Zaochang Liu, Yunhua Liu, Deyan Kong, Tianfei Li, Shunwu Yu, Hanwei Mei, Xiaoyan Xu, Hongyan Liu, Liang Chen, and Lijun Luo. A novel gene OsAHL1 improves both drought avoidance and drought tolerance in rice. *Scientific Reports*, 6(1), jul 2016.
- [119] B.-F. Zhu, L. Si, Z. Wang, Y. Z. Jingjie Zhu, Y. Shangguan, D. Lu, D. Fan, C. Li, H. Lin, Q. Qian, T. Sang, B. Zhou, Y. Minobe, and B. Han. Genetic control of a transition from black to straw-white seed hull in rice domestication. *PLANT PHYSIOLOGY*, 155(3):1301–1311, jan 2011.
- [120] Chuanfeng Zhu, Daniela Schraut, Wolfram Hartung, and Anton R. Schäffner. Differential responses of maize MIP genes to salt stress and ABA. *Journal of Experimental Botany*, 56(421):2971–2981, oct 2005.
- [121] Q. Zhu, X. Zheng, J. Luo, B. S. Gaut, and S. Ge. Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice. *Mol. Biol. Evol.*, 24(3):875–888, Mar 2007.