Computational Finance FIN-472

Polynomial expansion methods: The Jacobi model

Sergio Pulido Swiss Finance Institute @ EPFL Lausanne, Switzerland

Outline

- Motivation and model specification
- 2 Log-price density
- 3 Density approximation and pricing algorithm
- Mumerical example

Table of contents

- Motivation and model specification

Stochastic volatility models

The volatility of stock price log-returns is stochastic

	Black-Scholes	Heston (affine)
volatility	constant	stochastic $\in \mathbb{R}_+$
calls and puts	closed-form	Fourier transform
exotic options	closed-form	

$\mathsf{Black}\text{-}\mathsf{Scholes}\;\mathsf{model}\subset\overline{\mathsf{Jacobi}\;\mathsf{model}}\to\mathsf{Heston}\;\mathsf{model}$

- stochastic volatility on a parametrized compact support
- vanilla and exotic option prices have a series representation
- fast and accurate price approximations

Jacobi Stochastic Volatility model

Fix $0 \le v_{min} < v_{max}$. Define the quadratic function

$$Q(v) = \frac{(v - v_{min})(v_{max} - v)}{(\sqrt{v_{max}} - \sqrt{v_{min}})^2} \le v$$

Jacobi Model

Stock price dynamics $S_t = e^{X_t}$ given by

$$dV_{t} = \kappa(\theta - V_{t}) dt + \sigma \sqrt{Q(V_{t})} dW_{1t}$$

$$dX_{t} = (r - V_{t}/2) dt + \rho \sqrt{Q(V_{t})} dW_{1t} + \sqrt{V_{t} - \rho^{2} Q(V_{t})} dW_{2t}$$
(1)

for $\kappa, \sigma > 0$, $\theta \in (v_{min}, v_{max}]$, interest rate r, $\rho \in [-1, 1]$, and 2-dimensional BM $W = (W_1, W_2)$

Some properties

The function Q(v)

$$v \geq Q(v)$$
 , $v=Q(v)$ if and only if $v=\sqrt{v_{min}v_{max}}$, and $Q(v) \geq 0$ for all $v \in [v_{min},v_{max}]$

Instantaneous variance

 $d\langle X, X \rangle_t = V_t \in [v_{min}, v_{max}]$ is a Jacobi process

Some properties (cont.)

Polynomial model

 (V_t, X_t) is a polynomial diffusion – efficient calculation of moments

Black-Scholes model nested

Take
$$V_0 = \theta = v_{max} = \sigma_{\mathrm{BS}}^2$$

Heston model as a limit case

If $v_{min}=0$ and $v_{max} \to \infty$ then (V_t,X_t) converges to the Heston model

Table of contents

- 2 Log-price density

Log-price density

We define

$$C_T = \int_0^T \left(V_t - \rho^2 Q(V_t) \right) dt$$

Theorem 1

Let $\epsilon < 1/(2v_{max}T)$. Then the distribution of X_T admits a density $q_T(x)$ on \mathbb{R} that satisfies

$$\int_{\mathbb{R}} e^{\epsilon x^2} g_T(x) \, dx < \infty \tag{2}$$

If

$$\mathbb{E}\left[C_T^{-1/2}\right] < \infty \tag{3}$$

then $g_T(x)$ and $e^{\epsilon x^2}g_T(x)$ are uniformly bounded and continuous on \mathbb{R} . A sufficient condition for (3) to hold is

$$v_{min} > 0$$
 and $\rho^2 < 1$

Remark: The Heston model does not satisfy (2) for any $\epsilon > 0$

A crucial corollary

Corollary 2

Assume (3) holds. Then $\ell(x) = \frac{g_T(x)}{v(x)} \in L_w^2$, where

$$L_w^2 := \left\{ h : \int_{\mathbb{R}} |h(x)|^2 w(x) \, dx \right\}$$

and w(x) is any Gaussian density with variance σ_w^2 satisfying

$$\sigma_w^2 > \frac{v_{max}T}{2} \tag{4}$$

- (Filipovic, Mayerhofer, Schneider 2013) For the Heston model we have that $\ell(x) = \frac{g_T(x)}{w(x)} \in L_w^2$, where w(x) is a (bilateral) Gamma density
- Corollary 2 is a consequence of Theorem 1 because any uniformly bounded and integrable function is square integrable

10/22

Table of contents

- Motivation and model specification
- 2 Log-price density
- 3 Density approximation and pricing algorithm
- 4 Numerical example

Weighted L^2 –space

The weighted Hilbert space

$$L_w^2 = \left\{ f(x) \mid ||f||_w^2 = \int_{\mathbb{R}} f(x)^2 w(x) dx < \infty \right\}$$

where w(x) is a Gaussian density with mean μ_w and variance σ_w^2 . This is a Hilbert space with scalar product

$$\langle f, g \rangle_w = \int_{\mathbb{R}} f(x)g(x) w(x) dx$$

Orthonormal basis – Generalized Hermite polynomials

$$H_n(x) = \frac{1}{\sqrt{n!}} \mathcal{H}_n\left(\frac{x - \mu_w}{\sigma_w}\right)$$

where $\mathcal{H}_n(x)$ are the standard (probabilists' / not physicists') Hermite polynomials

More precisely

$$\mathcal{H}_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}}$$

Price approximation

Pricing problem

Assume that X_T has a density $g_T(x)$

$$\pi_f = \mathbb{E}[f(X_T)] = \int_{\mathbb{R}} f(x)g_T(x)dx$$

Price series expansion

Suppose $\ell(x) = g_T(x)/w(x) \in L^2_w$ and $f(x) \in L^2_w$. Then

$$\pi_f = \langle f, \ell \rangle_w = \sum_{n \ge 0} f_n \ell_n \tag{5}$$

for the Fourier coefficients and Hermite moments

$$f_n = \langle f, H_n \rangle_w, \quad \ell_n = \langle \ell, H_n \rangle_w = \int_{\mathbb{R}} H_n(x) g_T(x) dx$$

Price and Density approximation

Price approximation

$$\pi_f \approx \pi_f^{(N)} = \sum_{n=0}^N f_n \ell_n = \sum_{n=0}^N \langle f, \ell_n H_n \rangle_w = \int_{\mathbb{R}} f(x) g_T^{(N)}(x) dx$$
 (6)

"Gram-Charlier A expansion"

$$g_T^{(N)}(x) = w(x) \sum_{n=0}^{N} \ell_n H_n(x)$$

European calls and puts - Fourier coefficients

 Consider the discounted payoff function for a call option with log strike k

$$f(x) = e^{-rT} \left(e^x - e^k \right)^+$$

• Its **Fourier coefficients** f_n are given by

Fourier coefficients call option

$$f_0 = e^{-rT + \mu_w} I_0 \left(\frac{k - \mu_w}{\sigma_w}; \sigma_w \right) - e^{-rT + k} \Phi \left(\frac{\mu_w - k}{\sigma_w} \right)$$
$$f_n = e^{-rT + \mu_w} \frac{1}{\sqrt{n!}} \sigma_w I_{n-1} \left(\frac{k - \mu_w}{\sigma_w}; \sigma_w \right) n \ge 1$$

European calls and puts - Fourier coefficients (cont)

• The functions $I_n(\mu; \nu)$ are defined recursively by

$$I_0(\mu; \nu) = e^{\frac{\nu^2}{2}} \Phi(\nu - \mu);$$

$$I_n(\mu; \nu) = \mathcal{H}_{n-1}(\mu) e^{\nu \mu} \phi(\mu) + \nu I_{n-1}(\mu; \nu), \quad n \ge 1$$

where $\mathcal{H}_n(x)$ are the standard Hermite polynomials, $\Phi(x)$ denotes the standard Gaussian distribution function, and $\phi(x)$ its density

 To prove this representation of Fourier coefficients it is sufficient to establish the following identity

$$I_n(\mu; \nu) = \int_{\mu}^{\infty} \mathcal{H}_n(x) e^{\nu x} \phi(x) dx, \quad n \ge 0.$$

• This can be shown using integration by parts and the identity

$$\mathcal{H}_n(x) = x\mathcal{H}_{n-1}(x) - \mathcal{H}'_{n-1}(x).$$

Calculation of the Hermite-moments ℓ_n

• Let $\pi: \mathcal{E} \to \{1, \dots, M = (N+2)(N+1)/2\}$ be an enumeration of the set of exponents

$$\mathcal{E} = \{ (m, n) : m, n \ge 0; m + n \le N \}$$

The polynomials

$$h_{\pi(m,n)}(v,x) = v^m H_n(x), \quad (m,n) \in \mathcal{E}$$

form a basis of Pol_N

• The $(M \times M)$ -matrix G representing the infinitesimal generator of (V_t, X_t) on Pol_N is sparse in view of the elementary property

$$H_n'(x) = \frac{\sqrt{n}}{\sigma_m} H_{n-1}(x)$$

which is a consequence of

$$\mathcal{H}'_n(x) = n\mathcal{H}_{n-1}(x)$$

The matrix of the generator

The matrix G has at most 7 nonzero elements in column $\pi(m,n)$

$$G_{\pi(m-2,n),\pi(m,n)} = -\frac{\sigma^2 m(m-1) v_{max} v_{min}}{2(\sqrt{v_{max}} - \sqrt{v_{min}})^2}, \quad m \ge 2$$

$$G_{\pi(m-1,n-1),\pi(m,n)} = -\frac{\sigma \rho m \sqrt{n} v_{max} v_{min}}{\sigma_w (\sqrt{v_{max}} - \sqrt{v_{min}})^2}, \quad m, n \ge 1$$

$$G_{\pi(m-1,n),\pi(m,n)} = \kappa \theta m + \frac{\sigma^2 m(m-1) (v_{max} + v_{min})}{2(\sqrt{v_{max}} - \sqrt{v_{min}})^2}, \quad m \ge 1$$

$$G_{\pi(m,n-1),\pi(m,n)} = \frac{r\sqrt{n}}{\sigma_w} + \frac{\sigma \rho m \sqrt{n} (v_{max} + v_{min})}{\sigma_w (\sqrt{v_{max}} - \sqrt{v_{min}})^2}, \quad n \ge 1$$

$$G_{\pi(m+1,n-2),\pi(m,n)} = \frac{\sqrt{n(n-1)}}{2\sigma_w^2}, \quad n \ge 2$$

$$G_{\pi(m,n),\pi(m,n)} = -\kappa m - \frac{\sigma^2 m(m-1)}{2(\sqrt{v_{max}} - \sqrt{v_{min}})^2}$$

$$G_{\pi(m+1,n-1),\pi(m,n)} = -\frac{\sqrt{n}}{2\sigma_w} - \frac{\sigma \rho m \sqrt{n}}{\sigma_w (\sqrt{v_{max}} - \sqrt{v_{min}})^2}, \quad n \ge 1$$

Calculation of the Hermite-moments ℓ_n (cont.)

Theorem 3

The coefficients ℓ_n are given by

$$\ell_n = [h_1(V_0, X_0), \dots, h_M(V_0, X_0)] e^{TG} \mathbf{e}_{\pi(0,n)}, \quad 0 \le n \le N$$

where \mathbf{e}_i is the *i*-th standard basis vector in \mathbb{R}^M . In particular,

$$\ell_0 = 1;$$

$$\ell_1 = \frac{1}{\sigma_w} \left(rT - \frac{\theta}{2} \left(T + \frac{e^{-\kappa T} - 1}{\kappa} \right) + \frac{e^{-\kappa T} - 1}{2\kappa} V_0 + X_0 - \mu_w \right)$$

Table of contents

- Mumerical example

Example: Call option pricing

Figure: The Fourier coefficients (first row), the Hermite moments (second row), and the price expansion (third row) as a function of the order n. The parameters values are T=1/12, $X_0=k=0$, $\kappa=0.5$, $\theta=V_0=(0.25)^2$, $\sigma=0.25$, $v_{min}=(0.10)^2$, $\rho=-0.5$, and $v_{max}\in\{0.3,1,5\}$, $\mu_w=\mathbb{E}[X_T]$ and $\sigma_w^2=v_{max}T/2+\epsilon$

Volatility smiles - Call option

Fix
$$\theta = \sqrt{v_{min}v_{max}} = v_*$$
 and scale up v_{min}

Diffusion function $\sigma\sqrt{Q(v)}$ (1st row) and implied volatility smile (2nd row)