Chapter 08

Mingjia Huo

Problem 8.1. By the definition of group, we have \mathbb{G} has a identity and every element in \mathbb{G} has a inverse. Unique identity:

Given two identities $a, b \in \mathbb{G}$, we have ab = a and ab = b. So a = b, and there is only one identity. Unique inverse:

For element $a \in \mathbb{G}$, given it's inverse b, c, we have ba = ab = e, ca = ac = e. So b = be = b(ac) = (ba)c = ec = c, thus there is only one inverse of a.

Problem 8.3.

G is finite:

- Closure: Since $g \in \mathbb{G}$, with the closure property, $\forall i \in \mathbb{N}, g^i \in \mathbb{G}$. So we have $\langle g \rangle \subseteq \mathbb{G}$, a close-set.
- Existence of an identity: $g^0 = e$. $\forall a \in \langle g \rangle$, we have $a \in \mathbb{G}$. So ae = ea = a.
- Existence of inverses: Since $\langle g \rangle \subseteq \mathbb{G}$, $\exists i, j \in \mathbb{N}, i < j, g^i = g^j$. There is a inverse of g^i in \mathbb{G} , denoted as a. So $e = ag^i = ag^j = ag^ig^{j-i} = g^{j-i}$. Let t = j-i. Thus $\forall s \in \mathbb{N}, s = kt+r, 0 \le r < t$, so $g^s = g^r$.
 - If r = 0, it's inverse is e.
 - If r > 0, it's inverse is g^{t-r} .

So we get the inverse of g^s .

• Associativity: $\forall a, b, c \in \langle g \rangle$, we have $a, b, c \in \mathbb{G}$, which has associativity. Thus $\langle g \rangle$ has associativity.

 \mathbb{G} is infinite: give a counterexample:

Give $g=1,\mathbb{G}=(\mathcal{Z},+)$. Then $\langle g\rangle=\{0,1,2\cdots\}$. But $\{1,2\cdots\}$ don't have their inverses, a contradiction.

Problem 8.8. Define $\mathbb{G} \times \mathbb{H} = \{(g,h) \mid g \in \mathbb{G}, h \in \mathbb{H}\}$, and the operation is (a,b)(c,d) = (ab,cd).

- Closure: $\forall (a,b), (c,d) \in \mathbb{G} \times \mathbb{H}$, we have (ac,bd) with $ac \in \mathbb{G}, bd \in \mathbb{H}$. Thus $(ac,bd) \in \mathbb{G} \times \mathbb{H}$.
- Existence of an identity: The identities of \mathbb{G}, \mathbb{H} are e_g, e_h respectively, so $\forall (a, b) \in \mathbb{G} \times \mathbb{H}$, $(a, b)(e_g, e_h) = (ae_g, be_h) = (a, b)$. And it's similar with $(e_g, e_h)(a, b)$. So the identity is (e_g, e_h) .
- Existence of inverses: $\forall (a,b) \in \mathbb{G} \times \mathbb{H}$, denote $a^{-1} \in \mathbb{G}$, $b^{-1} \in \mathbb{H}$. So $(a,b)(a^{-1},b^{-1}) = (aa^{-1},bb^{-1}) = (e_g,e_h)$, which is the identity of $\mathbb{G} \times \mathbb{H}$. And it's similar with $(a^{-1},b^{-1})(a,b)$. So the inverse is (a^{-1},b^{-1}) .
- Associativity: $((a_1, b_1)(a_2, b_2))(a_3, b_3) = ((a_1a_2)a_3, (b_1b_2)b_3) = (a_1(a_2a_3), b_1(b_2b_3)) = (a_1, b_1)((a_2, b_2)(a_3, b_3))$. The second equality holds for the associativity of \mathbb{G} , \mathbb{H} .

Problem 8.14. Construct A' as followed:

- 1. \mathcal{A}' is given y. Set cnt = 1.
- 2. Uniformly choose $r \in \mathcal{Z}_N^*$. It's easy compute r^{-1} in $\log N$ time by Euclidean algorithm.
- 3. Compute $yr^e = y' \mod N$, and give y' to A.
- 4. When \mathcal{A} outputs x', check if $x'^e = y'$.
 - If so, output $x = x'r^{-1}$.

• If not, then check the number of cnt. If cnt < 500, increase cnt by 1 and jump to step 2; else return a uniform $x \in \mathcal{Z}_N^*$.

In the above algorithm, \mathcal{A}' can uniformly choose at most 99 r. Since r is uniform, then xr is uniform in \mathcal{Z}_N^* . Since

$$\Pr[\mathcal{A}([(xr)^e \mod N]) = xr] = 0.01,$$

we have $\Pr[\mathcal{A}([(xr)^e \mod N]) \neq xr] = 0.99$. Repeat 500 times, the probability of all failed is

$$\Pr[\mathcal{A}([(xr)^e \mod N]) \neq xr]^{500} \approx 0.006 < 0.01.$$

And

$$\Pr[\mathcal{A}'([(x)^e \mod N]) = x] = 1 - \Pr[\mathcal{A}([(xr)^e \mod N]) = xr]^{500} > 0.99.$$

Problem 8.16. Determine the points on the elliptic curve $E: y^2 = x^3 + 2x + 1$ over \mathcal{Z}_{11} . How many points are on this curve?

Firstly, the quadratic residues of 11 are 1, 4, 9, 5, 3.

Define $f(x) = x^3 + 2x + 1$,

- f(0) = 1. So (0,1), (0,-1) is on the curve.
- f(1) = 4. So (1, 2), (1, -2) is on the curve.
- f(2) = 2, a quadratic non-residue modulo 11.
- f(3) = 1. So (3,1), (3,-1) is on the curve.
- f(4) = 7, a quadratic non-residue modulo 11.
- f(5) = 4. So (5,2), (5,-2) is on the curve.
- f(6) = 9. So (9,3), (9,-3) is on the curve.
- f(7) = 6, a quadratic non-residue modulo 11.
- f(8) = 1. So (8,1), (8,-1) is on the curve.
- f(9) = 0. So (9,0) is on the curve.
- f(10) = 9. So (10,3), (10,-3) is on the curve.

Along with $\{\mathcal{O}\}$, there are totally 16 points on $y^2 = x^3 + 2x + 1$ over \mathcal{Z}_{11} .