# ma5210 assignment 2

# Nguyen Ngoc Khanh - A0275047B

#### August 2024

# 1 Questions 1-4

## 1.1 Question 1

Let A be an m by m real matrix. Suppose  $A^2 = -I_m$  where  $I_m$  is the identity matrix

- 1. Show that A is an invertible matrix
- 2. Show that m is an even integer

Answer. The inverse of A is  $A^{-1} = -A$ . If  $A^2 = -I_m$ , then

$$\det(A)^2 = \det(A^2) = \det(-I_m) = (-1)^m$$

If m is odd, then we have  $det(A)^2 = -1$  which is a contradiction since det(A) is real.

## 1.2 Question 2

Let V be a  $\mathbb{R}$ -vector space of finite dimension m. Let J be a complex structure on V i.e.  $J:V\to V$  is an  $\mathbb{R}$ -linear transformation such that  $J^2=-\operatorname{id}_V$ 

- 1. Show that J is an invertible linear transformation
- 2. Show that m is an even integer

Answer. The inverse of J is  $J^{-1}=-J$ . Let  $B=\{e_1,e_2,...,e_m\}$  be a basis of V. Then, let  $A\in\mathbb{R}^{m\times m}$  be the matrix of J over B. Then we have,  $A^2=-I_m$ . Therefore, m is even.

#### 1.3 Question 3

Let U' be an open subset of  $\mathbb{R}^6$ . Let  $\phi$  be a section in  $\mathcal{E}^2(U') = \mathcal{E}(U', \wedge^2 T^*(\mathbb{R}^6))$ . We write

$$\phi(x) = \sum_{1 \le j \le k \le 6} f_{jk}(x) dx_j \wedge dx_k$$

where  $x = (x_1, x_2, ..., x_6) \subseteq U'$  and  $f_{jk} : U' \to \mathbb{R}$  is a smooth function.

- 1. Compute  $d\phi \subseteq \mathcal{E}^3(U')$  in terms of  $dx_1, dx_2, ..., dx_6$
- 2. Show that  $d^2\phi = 0$  in  $\mathcal{E}^4(U')$

#### **1.3.1** Compute $d\phi \subseteq \mathcal{E}^3(U')$

$$d\phi = d\left(\sum_{1 \le j < k \le 6} f_{jk} dx_j \wedge dx_k\right)$$

$$= \sum_{1 \le j < k \le 6} df_{jk} \wedge dx_j \wedge dx_k$$

$$= \sum_{1 \le j < k \le 6} \left(\sum_{i=1}^6 \frac{\partial f_{jk}}{\partial x_i} dx_i\right) \wedge dx_j \wedge dx_k$$

$$= \sum_{1 \le j < k \le 6} \sum_{i=1}^6 \frac{\partial f_{jk}}{\partial x_i} dx_i \wedge dx_j \wedge dx_k$$

# **1.3.2** Show that $d^2 \phi = 0$ in $\mathcal{E}^4(U')$

We will show that  $d^2 = 0$  for the general case.

Let  $U' \subseteq \mathbb{R}^n$  be an open set, let  $0 \le m < n$ , let  $\phi$  be a section in  $\mathcal{E}^m(U') = \mathcal{E}(U', \wedge^m T^*(\mathbb{R}^n))$ . Let

$$[n] = \{1, ..., n\}$$

for any subset  $\sigma \subseteq [n]$  of size m where  $\sigma = \{i_1 < i_2 < ... < i_m\}$ , let

$$dx_{\sigma} = dx_{i_1} \wedge dx_{i_2} \wedge \dots \wedge dx_{i_m} \in \mathcal{E}^m(U')$$

Then a basis of  $\mathcal{E}^m(U')$  is

$$D_m = \{ dx_{\sigma} : \sigma \subseteq [n], |\sigma| = m \}$$

We can write  $\phi \in \mathcal{E}^m(U')$  as

$$\phi = \sum_{\sigma \in D_m} f_\sigma dx_\sigma$$

By defintion of  $d: \mathcal{E}^m(U') \to \mathcal{E}^{m+1}(U')$ , we have

$$d\phi = \sum_{\sigma \in D_m} df_{\sigma} \wedge dx_{\sigma} = \sum_{\sigma \in D_m} \sum_{i=1}^n \frac{\partial f_{\sigma}}{\partial x_i} dx_i \wedge dx_{\sigma}$$

And

$$d^{2}\phi = \sum_{\sigma \in D_{m}} \sum_{i=1}^{n} d\left(\frac{\partial f_{\sigma}}{\partial x_{i}}\right) \wedge dx_{i} \wedge dx_{\sigma}$$
$$= \sum_{\sigma \in D_{m}} \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial^{2} f_{\sigma}}{\partial x_{i} \partial x_{j}} dx_{j} \wedge dx_{i} \wedge dx_{\sigma}$$

For all pairs of  $(i, j) \in [n] \times [n]$ , if i = j, then  $dx_i \wedge dx_i \wedge dx_\sigma = 0$ . If  $i \neq j$ , we have

$$\frac{\partial^2 f_{\sigma}}{\partial x_i \partial x_j} dx_j \wedge dx_i \wedge dx_{\sigma} + \frac{\partial^2 f_{\sigma}}{\partial x_i \partial x_j} dx_i \wedge dx_j \wedge dx_{\sigma} = 0$$

Therefore,  $d^2 = 0$ . This is also true for the case m < 0 or  $n \le m$  since  $d^2 : \mathcal{E}^m(U') \to \mathcal{E}^{m+2}(U')$  is a linear map from or to a zero dimensional vector space.

#### 1.4 Question 4

Let M be a real smooth  $\mathcal{E}$ -manifold of dimension 6.

- 1. Let  $h: U \to U'$  be a chart where U' is an open subset of  $\mathbb{R}^6$ . Let  $\omega \in \mathcal{E}^2(U) = \mathcal{E}(U, \wedge^2 T^*(M))$ . Show that  $d^2\omega = 0$
- 2. Consider the composition of maps

$$\mathcal{E}^{2}(M) \xrightarrow{d} \mathcal{E}^{3}(M) \xrightarrow{d} \mathcal{E}^{4}(M)$$

True or false:  $d^2 = 0$ , give proof, counterexample

#### 1.4.1 Show that $d^2\omega = 0$

The diagram below commutes (m=2)



Therefore,  $d^2: \mathcal{E}^m(U) \to \mathcal{E}^{m+2}(U)$  is a composition of

$$\cong : \mathcal{E}^{m}(U) \to \mathcal{E}^{m}(U')$$

$$d^{2} : \mathcal{E}^{m}(U') \to \mathcal{E}^{m+2}(U')$$

$$\cong : \mathcal{E}^{m+2}(U') \to \mathcal{E}^{m+2}(U)$$

 $d^2: \mathcal{E}^m(U') \to \mathcal{E}^{m+2}(U')$  is a zero map implies  $d^2: \mathcal{E}^m(U) \to \mathcal{E}^{m+2}(U)$  is a zero map

# 1.4.2 True or false: $d^2 = 0$ , give proof, counterexample

Let  $U \subseteq M$  be a chart of M. The diagram below commutes



Let  $\omega \in \mathcal{E}^m(M) = \mathcal{E}(M, \wedge^m T^*(M))$ , then the restriction of  $d^2\omega$  on U denoted by  $(d^2\omega)|_U \in \mathcal{E}^{m+2}(U) = \mathcal{E}(U, \wedge^{m+2} T^*(M))$  is

$$(d^2\omega)|_U = r_U^M d^2\omega = d^2 r_U^M \omega = 0$$

 $d^2\omega$  restricted to any chart is zero, therefore, it is zero globally.

# 2 Questions 5-10

In the last few questions, we clarify some connections between the real tangent spaces and complex tangent spaces of a complex manifold.

Let  $M = \mathbb{C}^3$  which is a complex analytic manifold. When we consider M as a real manifold, we will denote it by  $M_0$  to avoid confusion. We have  $M_0 = \mathbb{R}^6$  and the bijection  $\Phi: M \to M_0$  is given by

$$\Phi(z_1, z_2, z_3) = (x_1, y_1, x_2, y_2, x_3, y_3)$$

where  $z_j = x_j + \sqrt{-1}y_j$  for j = 1, 2, 3.

We fix a point  $x = (a_1, b_1, a_2, b_2, a_3, c_3) \in M_0$ .

The real tangent space of  $M_0$  at x is

$$T_x(M_0) = \mathbb{R} - \operatorname{span}\left\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial y_2}, \frac{\partial}{\partial x_3}, \frac{\partial}{\partial y_3}\right\}$$

We set

$$\begin{split} \frac{\partial}{\partial z_j} &= \frac{1}{2} \bigg( \frac{\partial}{\partial x_j} - \sqrt{-1} \frac{\partial}{\partial y_j} \bigg) \\ \frac{\partial}{\partial \bar{z}_j} &= \frac{1}{2} \bigg( \frac{\partial}{\partial x_j} + \sqrt{-1} \frac{\partial}{\partial y_j} \bigg) \end{split}$$

for j = 1, 2, 3

#### 2.1 Question 5

Show that  $T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C} = T^{1,0} \oplus T^{0,1}$  where

$$T^{1,0} = \mathbb{C} - \operatorname{span} \left\{ \frac{\partial}{\partial z_1}, \frac{\partial}{\partial z_2}, \frac{\partial}{\partial z_3} \right\}$$
$$T^{0,1} = \mathbb{C} - \operatorname{span} \left\{ \frac{\partial}{\partial \bar{z}_1}, \frac{\partial}{\partial \bar{z}_2}, \frac{\partial}{\partial \bar{z}_3} \right\}$$

*Proof.* A basis of  $T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C}$  is

$$\left\{\frac{\partial}{\partial x_1}, \frac{\partial}{\partial y_1}, \frac{\partial}{\partial x_2}, \frac{\partial}{\partial y_2}, \frac{\partial}{\partial x_3}, \frac{\partial}{\partial y_3}\right\} \otimes_{\mathbb{R}} 1$$

Without confusion, we denote the basis vectors of  $T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C}$  by

$$\frac{\partial}{\partial x_j} := \frac{\partial}{\partial x_j} \otimes_{\mathbb{R}} 1 \text{ and } \frac{\partial}{\partial y_j} := \frac{\partial}{\partial y_j} \otimes_{\mathbb{R}} 1$$

It is clear that basis vectors of  $T^{1,0} \oplus T^{0,1}$  are linear combinations of basis vectors of  $T_x(M_0) \otimes \mathbb{C}$ , that is

$$\frac{\partial}{\partial z_j} = \frac{1}{2} \left( \frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j} \right)$$
$$\frac{\partial}{\partial \bar{z}_j} = \frac{1}{2} \left( \frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right)$$

Therefore,  $T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C} \supseteq T^{1,0} \oplus T^{0,1}$ . Moreover, basis vectors of  $T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C}$  are also linear combinations of basis vectors of  $T^{1,0} \oplus T^{0,1}$ 

$$\begin{split} \frac{\partial}{\partial x_j} &= \frac{\partial}{\partial \bar{z}_j} + \frac{\partial}{\partial z_j} \\ \frac{\partial}{\partial y_j} &= i \bigg( \frac{\partial}{\partial \bar{z}_j} - \frac{\partial}{\partial z_j} \bigg) \end{split}$$

TODO - mistake here

Therefore,  $T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C} \subseteq T^{1,0} \oplus T^{0,1}$ , then

$$T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C} = T^{1,0} \oplus T^{0,1}$$

# 2.2 Question 6

The same point x is the point  $(a_1 + \sqrt{-1}b_1, a_2 + \sqrt{-1}b_2, a_2 + \sqrt{-1}b_2, a_3 + \sqrt{-1}b_3) \in M$ . The complex tangent space of M at x is

$$T_x(M) = T^{1,0} = \mathbb{C} - \operatorname{span}\left\{\frac{\partial}{\partial z_1}, \frac{\partial}{\partial z_2}, \frac{\partial}{\partial z_3}\right\}$$

Indeed this is the space of derivations of the holomorphic germs at x.

We have shown in class that two tangent spaces  $T_x(M)$  and  $T_x(M_0)$  are isomorphic as a real vector spaces. Since  $T_x(M)$  is a complex vector space, it gives a complex structure J on  $T_x(M_0)$ , i.e  $J:T_x(M_0)\to T_x(M_0)$  is an  $\mathbb{R}$ -linear transformation satisfying  $J^2=-$  id. Compute

$$J\left(\frac{\partial}{\partial x_j}\right)$$
 and  $J\left(\frac{\partial}{\partial y_j}\right)$ 

for j = 1, 2, 3

*Proof.* Let  $t: T_x(M_0) \to T^{1,0} = T_x(M)$  be the isomorphism as real vector space.

$$T_x(M_0) \xrightarrow{inc} T_x(M_0) \otimes C$$

$$\downarrow proj \\ T_{1,0}$$

Then,  $t\frac{\partial}{\partial x_j}$  and  $t\frac{\partial}{\partial y_j}$  are

$$T_{x}(M_{0}) \xrightarrow{inc} T_{x}(M_{0}) \otimes_{\mathbb{R}} \mathbb{C} \xrightarrow{proj} T^{1,0}$$

$$\frac{\partial}{\partial x_{j}} \longmapsto \frac{\partial}{\partial x_{j}} = \frac{\partial}{\partial \overline{z}_{j}} + \frac{\partial}{\partial z_{j}} \longmapsto \frac{\partial}{\partial z_{j}}$$

$$\frac{\partial}{\partial y_{j}} \longmapsto \frac{\partial}{\partial y_{j}} = i \left( \frac{\partial}{\partial \overline{z}_{j}} - \frac{\partial}{\partial z_{j}} \right) \longmapsto -i \frac{\partial}{\partial z_{j}}$$

 $J: T_x(M_0) \to T_x(M_0)$  is defined by

$$T^{1,0} \xrightarrow{i} T^{1,0}$$

$$t \uparrow \qquad t \uparrow$$

$$T_x(M_0) \xrightarrow{-J} T_x(M_0)$$

Then,  $J\frac{\partial}{\partial x_j}$  and  $J\frac{\partial}{\partial y_j}$  are

$$T_{x}(M_{0}) \xrightarrow{t} T^{1,0} \xrightarrow{i} T^{1,0} \xrightarrow{t^{-1}} T_{x}(M_{0})$$

$$\frac{\partial}{\partial x_{j}} \longmapsto \frac{\partial}{\partial z_{j}} \longrightarrow i \frac{\partial}{\partial z_{j}} \longrightarrow -\frac{\partial}{\partial y_{j}}$$

$$\frac{\partial}{\partial y_{j}} \longmapsto -i \frac{\partial}{\partial z_{j}} \longrightarrow \frac{\partial}{\partial z_{j}} \longrightarrow \frac{\partial}{\partial x_{j}}$$

# 2.3 Question 7

The cotangent space at x is

$$T_x^*(M_0) = \mathbb{R} - \text{span}\{dx_1, dy_1, dx_2, dy_2, dx_3, dy_3\}$$

where  $dx_j: T_x(M_0) \to \mathbb{R}$  is the  $\mathbb{R}$ -linear transformation such that

$$dx_j \left(\frac{\partial}{\partial x_k}\right) = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$
$$dx_j \left(\frac{\partial}{\partial y_k}\right) = 0 \text{ for every } k$$

What is the defintion of  $dy_j$  for j = 1, 2, 3

Answer.

$$dy_j \left(\frac{\partial}{\partial y_k}\right) = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$
$$dy_j \left(\frac{\partial}{\partial x_k}\right) = 0 \text{ for every } k$$

# 2.4 Question 8

The cotangent space of complex manifold M at x is

$$T_x^*(M) = \mathbb{C} - \operatorname{span}\{dz_1, dz_2, dz_3\}$$

where  $dz_j: T_x(M_0) \otimes_R \mathbb{C} \to \mathbb{C}$  is the  $\mathbb{C}$ -linear transformation such that

$$dz_{j}\left(\frac{\partial}{\partial z_{k}}\right) = \begin{cases} 1 & \text{if } k = j\\ 0 & \text{if } k \neq j \end{cases}$$
$$dz_{j}\left(\frac{\partial}{\partial \overline{z}_{k}}\right) = 0 \text{ for every } k$$

What is the defintion of  $d\bar{z}_j$  for j = 1, 2, 3

Answer.

$$d\bar{z}_{j}\left(\frac{\partial}{\partial \bar{z}_{k}}\right) = \begin{cases} 1 & \text{if } k = j\\ 0 & \text{if } k \neq j \end{cases}$$
$$d\bar{z}_{j}\left(\frac{\partial}{\partial z_{k}}\right) = 0 \text{ for every } k$$

## 2.5 Question 9

Show that

$$dz_j = dx_j + \sqrt{-1}dy_j$$
  
$$d\bar{z}_j = dx_j - \sqrt{-1}dy_j$$

for j = 1, 2, 3

*Proof.* We extend  $dx_j: T_x(M_0) \to \mathbb{R}$  and  $dy_j: T_x(M_0) \to \mathbb{R}$  into  $dx_j: T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C}$  and  $dy_j: T_x(M_0) \otimes_{\mathbb{R}} \mathbb{C} \to \mathbb{C}$  canonically as follows

$$dx_{j}\left(\frac{\partial}{\partial x_{k}}\right) = \begin{cases} 1 & \text{if } k = j\\ 0 & \text{if } k \neq j \end{cases}$$
$$dx_{j}\left(\frac{\partial}{\partial y_{k}}\right) = 0 \text{ for every } k$$
$$dy_{j}\left(\frac{\partial}{\partial y_{k}}\right) = \begin{cases} 1 & \text{if } k = j\\ 0 & \text{if } k \neq j \end{cases}$$
$$dy_{j}\left(\frac{\partial}{\partial x_{k}}\right) = 0 \text{ for every } k$$

We will verify that  $dx_j + idy_j$  agrees with the defintion of  $dz_j$ ,  $dx_j - idy_j$  agrees with the defintion of  $d\bar{z}_j$ 

$$(dx_j + idy_j) \frac{\partial}{\partial z_k} = (dx_j + idy_j) \left( \frac{1}{2} \left( \frac{\partial}{\partial x_k} - i \frac{\partial}{\partial y_k} \right) \right)$$

$$= \frac{1}{2} \left( dx_j \frac{\partial}{\partial x_k} + dy_j \frac{\partial}{\partial y_k} \right)$$

$$= \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$

$$(dx_j + idy_j) \frac{\partial}{\partial \bar{z}_k} = (dx_j + idy_j) \left( \frac{1}{2} \left( \frac{\partial}{\partial x_k} + i \frac{\partial}{\partial y_k} \right) \right)$$
$$= \frac{1}{2} \left( dx_j \frac{\partial}{\partial x_k} - dy_j \frac{\partial}{\partial y_k} \right)$$
$$= 0$$

$$(dx_j - idy_j) \frac{\partial}{\partial z_k} = (dx_j - idy_j) \left( \frac{1}{2} \left( \frac{\partial}{\partial x_k} - i \frac{\partial}{\partial y_k} \right) \right)$$
$$= \frac{1}{2} \left( dx_j \frac{\partial}{\partial x_k} - dy_j \frac{\partial}{\partial y_k} \right)$$
$$= 0$$

$$(dx_j - idy_j) \frac{\partial}{\partial \bar{z}_k} = (dx_j - idy_j) \left( \frac{1}{2} \left( \frac{\partial}{\partial x_k} + i \frac{\partial}{\partial y_k} \right) \right)$$

$$= \frac{1}{2} \left( dx_j \frac{\partial}{\partial x_k} + dy_j \frac{\partial}{\partial y_k} \right)$$

$$= \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j \end{cases}$$

Question 10 2.6

Let  $f: M_0 \to \mathbb{C}$  be a smooth function. We warn that f does not have to be holomorphic function. We define

$$df = \sum_{j=1}^{3} \frac{\partial f}{\partial x_j} dx_j + \frac{\partial f}{\partial y_j} dy_j$$

which is a section in

$$\mathcal{E}^1(M_0, T(M) \otimes \mathbb{C}) = \mathcal{E}^1(M_0, T^{1,0}) \oplus \mathcal{E}^1(M_0, T^{0,1})$$

We define  $\partial f$  as the projection of df into  $\mathcal{E}^1(M_0, T^{1,0})$ . Show that

$$\partial f = \sum_{j=1}^{3} \frac{\partial f}{\partial z_j} dz_j$$

Proof. Note that

$$T(M) \otimes \mathbb{C} = \coprod_{m \in M_0} \operatorname{Hom}(T_m(M_0) \otimes \mathbb{C}, \mathbb{C})$$

$$T^{1,0} = \coprod_{m \in M_0} \operatorname{Hom}(T_m^{1,0}, \mathbb{C})$$

where  $T_m(M_0)$  is the tangent space at  $m \in M$  of  $M_0$  and  $T_m(M_0) \otimes \mathbb{C} = T_m^{1,0} \oplus T_m^{0,1}$ . The projection from  $\mathcal{E}^1(M_0, T(M) \otimes \mathbb{C})$ into  $\mathcal{E}^1(M_0, T^{1,0})$  is defined as follows

$$T(M)\otimes \mathbb{C} = \coprod_{m\in M_0} \operatorname{Hom}(T_m(M_0)\otimes \mathbb{C}, \mathbb{C})$$

$$\downarrow^{\phi}$$

$$M_0 \xrightarrow{\psi} T^{1,0} = \coprod_{m\in M_0} \operatorname{Hom}(T_m^{1,0}, \mathbb{C})$$

$$\phi(m): T_m(M_0) \otimes \mathbb{C} \to \mathbb{C}$$
$$\psi(m): T_m^{1,0} \otimes \mathbb{C} \to \mathbb{C}$$

 $\phi \in \mathcal{E}^1(M_0, T(M) \otimes \mathbb{C})$  is projected into  $\psi \in \mathcal{E}^1(M_0, T^{1,0})$  such that for all  $m \in M_0, \psi(m) : T_m^{1,0} \otimes \mathbb{C} \to \mathbb{C}$  is a restriction

Note that,  $\mathcal{E}^1(M_0, T(M) \otimes \mathbb{C})$ ,  $\mathcal{E}^1(M_0, T^{1,0})$ ,  $\mathcal{E}^1(M_0, T^{0,1})$  are all  $\mathcal{E}(M_0)$ -algebra. Note that  $\frac{\partial f}{\partial x_j}: M_0 \to \mathbb{C}$  is defined by

$$\left.\frac{\partial f}{\partial x_j}:m\mapsto \frac{\partial f}{\partial x_j}\right|_m=\frac{\partial}{\partial x_j}[f]_m$$

where  $[f]_m$  is the germ of f at  $m \in M_0$ . Similar for  $\frac{\partial f}{\partial y_j}$ . Therefore, from previous part,  $\frac{\partial}{\partial z_j}\Big|_m = \frac{1}{2}\Big(\frac{\partial}{\partial x_j} - i\frac{\partial}{\partial y_j}\Big)\Big|_m$  implies

$$\left. \frac{\partial f}{\partial z_j} \right|_m = \frac{1}{2} \left( \frac{\partial f}{\partial x_j} - i \frac{\partial f}{\partial y_j} \right) \right|_m$$

Now, for any  $m \in M_0$ , we have

$$(df)(m) = \sum_{i=1}^{3} \frac{\partial f}{\partial x_{i}} \Big|_{m} dx_{j}|_{m} + \frac{\partial f}{\partial y_{j}} \Big|_{m} dy_{j}|_{m}$$

From previous part we have

$$dz_j|_m = dx_j|_m + idy_j|_m$$
  
$$d\bar{z}_j|_m = dx_j|_m - idy_j|_m$$

Therefore,

$$dx_j|_m = \frac{1}{2}(d\bar{z}_j|_m + dz_j|_m)$$
  
$$dy_j|_m = \frac{i}{2}(d\bar{z}_j|_m - dz_j|_m)$$

Then,

$$(df)(m) = \sum_{i=1}^{3} \frac{\partial f}{\partial x_j} \Big|_{m} \frac{1}{2} (d\bar{z}_j|_{m} + dz_j|_{m}) + \frac{\partial f}{\partial y_j} \Big|_{m} \frac{i}{2} (d\bar{z}_j|_{m} - dz_j|_{m})$$

Restrict into  $\text{Hom}(T_m^{1,0},\mathbb{C})=T_m^*(M)=\mathbb{C}-\text{span}\{dz_1|_m,dz_2|_m,dz_3|_m\},$  we have

$$(\partial f)(m) = \sum_{j=1}^{3} \frac{\partial f}{\partial x_{j}} \Big|_{m} \frac{1}{2} dz_{j}|_{m} - \frac{\partial f}{\partial y_{j}} \Big|_{m} \frac{i}{2} dz_{j}|_{m}$$

$$= \sum_{j=1}^{3} \frac{1}{2} \left( \frac{\partial f}{\partial x_{j}} - i \frac{\partial f}{\partial y_{j}} \right) \Big|_{m} dz_{j}|_{m}$$

$$= \sum_{j=1}^{3} \frac{\partial f}{\partial z_{j}} \Big|_{m} dz_{j}|_{m}$$

Then,

$$\partial f = \sum_{j=1}^{3} \frac{\partial f}{\partial z_j} dz_j$$