Tema 1 - Transformacions Geomètriques

- 1) El cable que subjecta una torre de comunicacions està fitxat al punt A. La tensió del cable és de 2500 N. Determineu:
 - a) Les components de la força \vec{F} que actua sobre A.
 - b) Els angles $\theta_x, \theta_y, \theta_z$ que defineixen la direcció de la força.

- 2) Un avió vola a una velocitat de 250 km/h respecte de l'aire en repòs. Si bufa un vent de 80 km/h en direcció Nord-Est.
 - a) En quina direcció ha de volar l'avió per tal que el seu rumb sigui Nord?
 - b) Quant val la velocitat de l'avió respecte a terra?
 (Nota: En navegació la direcció del vent ens indica d'on bufa el mateix.)
- 3) Trobeu les expressions de transformació de coordenades cartesianes a polars, cilíndriques i esferiques. Com a aplicació, escriviu el punt P, de coordenades cartesianes (1, 2, -1), en coordenades cilíndriques i esferiques.
- 4) Escribiu el vector $\vec{v} = \vec{i} + 2\vec{j}$ en funció dels vectors ortonormals $\{\vec{\nu}, \vec{\tau}\}$, base de les coordenades polars per a $\varphi = \pi/6$ rad.
- 5) Utilitzeu les matrius de rotació bàsiques per a demostrar que si bé la composició de rotacions no és, en general, commutativa, sí que ho és en el cas de rotacions infinitesimals.
- 6) Demostreu que el producte escalar de dos vectors és invariant en front de una rotació del sistema de referència.
- 7) Determineu la matriu homogènia T corresponent a una rotació de valor γ respecte l'eix OX_A , seguida d'una translació de b unitats en la direcció de l'eix OY_B (que ha estat previament girat).
- 8) Un punt s'escriu com $^DP = (1,-1,-1)$ en un sistema de referència $\{D\}$, que ha

estat obtingut aplicant inicialment al sistema $\{A\}$ una rotació de 30^{0} al voltant d'OX, a continuació una rotació de -45^{0} respecte OZ i finalment una translació de +2 unitats segons OY. Trobeu ^{A}P .

9) A la figura, el cub està unit de forma rígida al sistema mòbil $\{B\}$, amb origen en el punt ${}^{A}O'(1,1,1)$. Trobeu les coordenades, respecte del sistema fix $\{A\}$, dels vèrtex del cub quan girem $\{B\}$ 45^{0} al voltant de l'eix Y_{B} .

- 10) Donat un punt P de coordenades cartesianes (1,3,0) respecte d'un sistema de referència fix $\{A\}$,
 - a) Determineu les coordenades esfèriques i cilíndriques del punt P.
- b) La vareta OP gira al voltant de l'eix Z_A amb velocitat angular $\omega=2$ rad/s. Calculeu la matriu de rotació A_BR associada a un sistema de coordenades $\{B\}$ lligat a l'extrem de la vareta. Suposeu que per t=0 s, X_A i X_B coincideixen en orientació. Trobeu les coordenades del punt ${}^AH(1,3,1)$ respecte $\{B\}$ per t=2s.

11) Un observador està sobre un dispositiu que es trasllada a una velocitat constant $\vec{v} = 2\vec{i} + \vec{j} + 0\vec{k}$ m/s, i que gira amb velocitat angular constat w = 0.25rad/s entorn de l'eix Z. Escriviu la matriu homogènia de transformació entre el sistema lligat a l'observador mòbil $\{B\}$, a temps t, i el mateix sistema $\{A\}$ quan t=0s.

Si en t=10s l'observador mòbil dóna les coordenades cartesianes d'un punt P com (1,3,4), quines són les coordenades de P respecte el sistema $\{A\}$?.

12) La Lluna completa una revolució al voltant de la Terra en 28 dies, essent la distància mitjana entre el centre de la terra i el de la Lluna, $D_{T-L}=3.8\times 10^8 \mathrm{m}$. En el mateix periode, efectua una revolució completa al voltant de si mateixa, respecte d'un eix paral.lel al de la rotació anterior. Si prenem com a eixos fixos un sistema cartesiá lligat al centre de la Terra, trobeu la matriu homogènia de transformació entre el sistema lligat a la Terra i el lligat a la Lluna (suposeu que per t=0s , els sistemes eren paral·lels).

Expliqueu el fenomen que la Lluna presenti sempre la mateixa cara.

- 13) Un element habitual en molts dispositius mecànics és el sistema biela-maneta representat a la figura.
- a) Trobeu una expressió general per a la velocitat del pistó, \vec{v}_p , respecte del sistema de referència $\{A\}$, com a funció de $\theta, \dot{\theta}, l_1, l_2$.
 - b) Calculeu \vec{v}_p per a $\theta=20^0, \dot{\theta}=50 \text{ rad/s}, l_1=0.2 \text{ m}, l_2=0.4 \text{ m}.$ (Suggeriment: descriviu el moviment des de B i passeu a $\{A\}$ mitjançant una rotació)

- 14) Es llença un coet des d'un punt de l'Equador a 30⁰ de longitud.
- a) Trobeu la matriu homogènia de transformació ${}_{1}^{0}T$, essent $\{1\}$ el sistema d'eixos situat al punt de llançament i $\{0\}$ un sistema d'eixos situats al centre de la Terra, amb Z_{0} assenyalant el Nord i X_{0} situat sobre el meridià de Greenwich, (0^{0} de longitud). Es suggereix prendre el sistema d'eixos $\{1\}$ com s'indica a la figura, on X_{1} és l'eix de la

vertical del coet i R el radi de la Terra.

b) Si el coet es desplaça a velocitat constant $|\vec{v}|$ i gira sobre si mateix amb una velocitat angular constant w, trobeu l'expressió general de 0_1T per a un instant de temps t qualsevol, essent $\{1\}$ el sistema d'eixos solidari al coet.

SOLUCIONS

1) a)
$$F_x = 795$$
 N; $F_y = -1060$ N; $F_z = 2120$ N b) $\theta_x = 71.5^0$; $\theta_y = 115.1^0$; $\theta_z = 32.0^0$

2) a) 13.08^0 en direcció Nord-Est b) $187~\mathrm{Km/h}$

3)
$$\rho = \sqrt{5}; \ \phi = 63.4^{\circ}; \ z = -1 \qquad r = \sqrt{6}; \ \phi = 63.4^{\circ}; \ \theta = 114.1^{\circ}$$

4) $\vec{v} = 1.866\vec{\eta} + 1.232\vec{\tau}$

7)

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & c\gamma & -s\gamma & bc\gamma \\ 0 & s\gamma & c\gamma & bs\gamma \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

8)

$$^{A}P = \begin{pmatrix} \sqrt{2} \\ 1/2 \\ -\sqrt{3}/2 \end{pmatrix}$$

9)
$$(1,1,1);(1+\sqrt{2}/2,1,1-\sqrt{2}/2);(1+\sqrt{2}/2,2,1-\sqrt{2}/2);(1,2,1);(1+\sqrt{2}/2,1,1+\sqrt{2}/2);(1+\sqrt{2},1,1);(1+\sqrt{2},2,1);(1+\sqrt{2}/2,2,1+\sqrt{2}/2)$$

10) a)
$$\rho = \sqrt{10}$$
; $\phi = 71.6^{\circ}$; $z = 0$ $r = \sqrt{10}$; $\phi = 71.6^{\circ}$; $\theta = 90^{\circ}$ b) $^{B}H = (-6.09, -1.20, 1)$

11)

$$\begin{pmatrix} c0.25t & -s0.25t & 0 & 2t \\ s0.25t & c0.25t & 0 & t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}; \qquad {}^{A}P(t=10s) = \begin{pmatrix} 17.4 \\ 8.2 \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} c\omega t & -s\omega t & 0 & D_{T-L}c\omega t \\ s\omega t & c\omega t & 0 & D_{T-L}s\omega t \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$^{A}v_{px} = -\left(1 + rac{(l_{1}/l_{2})\cos{ heta}}{\sqrt{1 - (l_{1}/l_{2})^{2}\sin^{2}{ heta}}}
ight)L_{1}\sin{ heta}\;\dot{ heta}$$

$$ec{v}_P = egin{pmatrix} -24.5 \ 0 \ 0 \end{pmatrix} \quad m/s$$

$$\begin{pmatrix}
c\phi & -s\phi & 0 & Rc\phi \\
s\phi & c\phi & 0 & Rs\phi \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix} c\phi & -s\phi c\omega t & s\phi s\omega t & (vt+R)c\phi \\ s\phi & c\phi c\omega t & -c\phi s\omega t & (vt+R)s\phi \\ 0 & s\omega t & c\omega t & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$