Zadanie 1.

Zmienna losowa (X,Y,Z) ma rozkład normalny z wartością oczekiwaną $EX=EY=1,\; EZ=0$ i macierzą kowariancji

$$\begin{bmatrix} 4 & 1 & 2 \\ 1 & 1 & 1 \\ 2 & 1 & 4 \end{bmatrix}.$$

Obliczyć Var((X - Y)Z).

- (A) 5
- (B) 27
- (C) 16
- (D) 13
- (E) 2

Zadanie 2.

Zmienne losowe $X_1, X_2, ..., X_n, ...$ są niezależne i mają rozkład dwupunktowy $P(X_i=1)=P(X_i=-1)=\frac{1}{2}$. Niech $S_n=\sum_{i=1}^n X_i$. Oblicz $P(S_{10}=4 \text{ i } S_n \leq 6 \text{ dla } n=1,2,...,9)$

- (A) $\frac{120}{1024}$
- (B) $\frac{119}{1024}$
- (C) $\frac{118}{1024}$
- (D) $\frac{117}{1024}$
- (E) $\frac{116}{1024}$

Zadanie 3.

Zmienne losowe $X_1,X_2,...,X_5,\ Y_1,Y_2,...,Y_4$ są niezależne o tym samym rozkładzie z gęstością

$$f_{\theta}(x) = \begin{cases} \frac{\theta}{(1+x)^{\theta+1}} & gdy \quad x > 0\\ 0 & gdy \quad x \le 0 \end{cases},$$

gdzie $\theta>0$ jest nieznanym parametrem. Wyznaczono estymatory największej wiarogodności $\hat{\theta}_1$ i $\hat{\theta}_2$ parametru θ :

estymator $\hat{\theta}_1$ na podstawie próby $X_1, X_2, ..., X_5$ i

estymator $\hat{\theta}_2$ na podstawie próby $Y_1, Y_2, ..., Y_4$.

Wyznaczyć stałe a i b, tak aby

$$P\left(\frac{\hat{\theta}_1}{\hat{\theta}_2} < a\right) = P\left(\frac{\hat{\theta}_1}{\hat{\theta}_2} > b\right) = 0.05$$

A)
$$a = 0.193, b = 6.256$$

(B)
$$a = 0.299, b = 3.347$$

(C)
$$a = 0.160, b = 5.192$$

(D)
$$a = 0.299, b = 3.072$$

(E)
$$a = 0.326, b = 3.347$$

Zadanie 4.

W każdej z trzech urn znajduje się 5 kul, przy czym w pierwszej urnie są 4 kule białe i 1 czarna, w drugiej 3 kule białe i 2 czarne, w trzeciej 2 białe i 3 czarne. Wykonujemy 3-etapowe doświadczenie:

1 etap: losujemy urnę (wylosowanie każdej urny jest jednakowo prawdopodobne);

2 etap: z wylosowanej urny ciągniemy 2 kule bez zwracania, a następnie dorzucamy do tej urny 1 kulę białą i 1 czarną;

3 etap: z tej samej urny ciągniemy 1 kulę.

Prawdopodobieństwo wyciągnięcia w trzecim etapie kuli białej, jeśli w drugim etapie wyciągnięto 2 kule białe jest równe

- (A) $\frac{10}{30}$
- (B) $\frac{15}{30}$
- (C) $\frac{12}{30}$
- (D) $\frac{20}{30}$
- (E) $\frac{18}{30}$

Zadanie 5.

Niech (X,Y) będzie dwuwymiarową zmienną losową o funkcji gęstości

$$f(x, y) = \begin{cases} \frac{2}{\pi} & \text{gdy} \quad y > 0 \text{ i } x^2 + y^2 < 1\\ 0 & \text{w przeciwnym przypadku.} \end{cases}$$

Niech
$$Z = \frac{X}{\sqrt{X^2 + Y^2}}$$
 i $V = \sqrt{X^2 + Y^2}$. Wtedy

- (A) zmienne X i Y są niezależne
- (B) funkcja gęstości rozkładu brzegowego zmiennej V wyraża się wzorem g(v) = 2v dla $v \in (0,1)$
- (C) funkcja gęstości rozkładu brzegowego zmiennej V wyraża się wzorem g(v) = 1 dla $v \in (0,1)$
- (D) zmienne Z i V są zależne
- (E) funkcja gęstości rozkładu brzegowego zmiennej Z wyraża się wzorem $h(z) = \frac{|z|}{2\sqrt{1-z^2}} \text{ dla } z \in (-1,1)$

Zadanie 6.

Rzucamy symetryczną kostka do gry tak długo, aż uzyskamy każdą liczbę oczek. Obliczyć wartość oczekiwaną liczby rzutów.

- (A) 12,5
- (B) 18,5
- (C) 12,0
- (D) 13,7
- (E) 14,7

Zadanie 7.

Niech X_1, X_2, X_3, X_4 będą niezależnymi zmiennymi losowymi, przy czym $EX_i = im$ oraz $VarX_i = i^2m^2$, i = 1,2,3,4. Niech \widetilde{m} będzie estymatorem parametru m minimalizującym błąd średniokwadratowy w klasie estymatorów postaci

$$\hat{m} = a_1 X_1 + a_2 X_2 + a_3 X_3 + a_4 X_4,$$

gdzie a_i , i=1,2,3,4, są liczbami rzeczywistymi. Wtedy błąd średniokwadratowy

$$E(\widetilde{m}-m)^2$$

jest równy

- (A) $\frac{1}{3}m^2$
- (B) $\frac{1}{4}m^2$
- (C) $\frac{1}{5}m^2$
- (D) $\frac{1}{6}m^2$
- (E) m^2

Zadanie 8.

Niech X_1, X_2, \dots, X_6 będą niezależnymi zmiennymi losowymi o tym samym rozkładzie o gęstości

$$f_{\theta}(x) = \begin{cases} \theta x^{\theta - 1} & gdy \ x \in (0, 1) \\ 0 & gdy \ x \notin (0, 1) \end{cases},$$

gdzie $\theta > 0$ jest nieznanym parametrem. Weryfikujemy hipotezę $H: \theta = 1$ przy alternatywie $K: \theta > 1$ testem jednostajnie najmocniejszym na poziomie istotności 0,05. Moc tego testu przy alternatywie $\theta = 3$ jest równa

- (A) 0,95
- (B) 0,44
- (C) 0,79
- (D) 0,98
- (E) 0,65

Uwaga: Może Ci pomóc wyznaczenie rozkładu zmiennej $-\ln X_i$.

Zadanie 9.

Zmienne losowe $X_1, X_2, ..., X_n, ...$ są niezależne o jednakowym rozkładzie

$$P(X_n = 0) = P(X_n = 1) = P(X_n = 2) = P(X_n = 3) = \frac{1}{4}.$$

Niech $Y_0 = 3$ oraz niech dla n = 1,2,3,... zachodzi

$$Y_n = \begin{cases} 3 & gdy \ X_n = 3\\ \min(Y_{n-1}, X_n) & gdy \ X_n < 3 \end{cases}$$

Oblicz $\lim_{n\to+\infty} P(Y_n \le 1)$

- $(A) \quad \frac{1}{6}$
- (B) $\frac{1}{4}$
- (C) $\frac{1}{2}$
- (D) $\frac{1}{3}$
- (E) $\frac{2}{3}$

Zadanie 10.

Zakładamy, że zależność czynnika Y od czynnika x (nielosowego) opisuje model regresji liniowej $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, gdzie błędy ε_i są niezależne i mają rozkłady normalne o wartości oczekiwanej 0 i wariancji 1. Obserwujemy zmienne losowe Y_1, Y_2, \ldots, Y_n przy danych wartościach x_1, x_2, \ldots, x_n . Test najmocniejszy dla wervfikacji hipotezy

$$H_0: \beta_0 = 0 \text{ i } \beta_1 = 1$$

przy alternatywie

$$H_1: \beta_0 = 1 \text{ i } \beta_1 = 2$$

na poziomie istotności 0,05 odrzuca hipotezę H_0 , gdy spełniona jest nierówność

(A)
$$\frac{\sum_{i=1}^{n} (Y_i - x_i)(1 + x_i)}{\sqrt{\sum_{i=1}^{n} (1 + x_i)^2}} > 1,645$$

(B)
$$\frac{\sum_{i=1}^{n} (Y_i - 1)(1 + x_i)}{\sqrt{\sum_{i=1}^{n} (1 + x_i)^2}} > 1,645$$

(C)
$$\frac{\sum_{i=1}^{n} Y_i (1 + x_i)}{\sqrt{\sum_{i=1}^{n} (1 + x_i)^2}} > 1,645$$

(D)
$$\frac{\sum_{i=1}^{n} (Y_i - x_i)(1 + x_i)}{\sum_{i=1}^{n} (1 + x_i)^2} > 1,645$$

(E)
$$\frac{\sum_{i=1}^{n} (Y_i - 1)(1 + x_i)}{\sum_{i=1}^{n} (1 + x_i)^2} > 1,645$$

Egzamin dla Aktuariuszy z 5 czerwca 2006 r.

Prawdopodobieństwo i statystyka

Arkusz odpowiedzi*

Imię i nazwisko:	K L U C Z	ODPOWIEDZ	Z I
Pesel			

Zadanie nr	Odpowiedź	Punktacja*
1	D	
2	В	
3	D	
4	В	
5	В	
6	Е	
7	C	
8	С	
9	Е	
10	A	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w *Arkuszu odpowiedzi*.

^{*} Wypełnia Komisja Egzaminacyjna.