Prova scritta di Elementi di Analisi Matematica 2 del 17 febbraio 2020

- [T1] Rispondere ad almeno una delle seguenti domande.
- a) Siano a, b due funzioni reali continue in un intervallo $I \subseteq \mathbb{R}$ e y_1, y_2 due soluzioni dell'equazione differenziale y'' + a(x)y' + b(x)y = 0. Cosa vuol dire che y_1, y_2 sono indipendenti? Se y_1, y_2 sono indipendenti, qual è l'integrale generale dell'equazione differenziale ?
 - b) Sia $\{a_n\}$ una successione a termini positivi tale che

$$a_{n+1} = (n+1)a_n, \quad \forall n \in \mathbb{N}.$$

Qual è il carattere della serie

$$\sum_{n=1}^{\infty} \frac{1}{a_n}?$$

- [T2] Rispondere ad almeno uno dei seguenti quesiti:
- a) Enunciare e dimostrare il Teorema fondamentale del calcolo integrale.
- b) Enunciare e dimostrare il criterio del confronto per le serie.

- [E1] Svolgere almeno uno dei seguenti esercizi.
- a) Calcolare

$$\int \frac{\sin x \cos x}{\cos^3 x + 1} \, dx$$

b) Data la funzione definita dalla legge

$$f(x,y) = x^4 + y^3 - 4x^2 - 3y^2$$

- i) determinarne gli eventuali estremi relativi in \mathbb{R}^2
- ii) determinarne gli eventuali estremi assoluti nel triangolo di vertici (0,0),(1,0) e (1,1).
- $[\mathbf{E2}]$ a) Studiare, al variare del parametro reale α il carattere della serie numerica:

$$\sum_{n=1}^{\infty} n^{\alpha} \int_{0}^{1/n} \sin t \, dt.$$

b) Determinare l'integrale generale in $]1, +\infty[$ dell'equazione:

$$y' + \frac{y}{x \log x} = \frac{\log x}{x}$$