

COMISSÃO DE EXAMES DE ADMISSÃO

EXAME DE ADMISSÃO (2017)

PROVA DE FÍSICA

INSTRUÇÕES

- 1. A prova tem a duração de 120 minutos e contempla um total de 35 perguntas.
- 2. Leia atentamente a prova e responda na Folha de Respostas a todas as perguntas.
- 3. Para cada pergunta existem quatro alternativas de resposta. Só **uma** é que está correcta. Assinale **apenas** a alternativa correcta.
- 4. Para responder correctamente, basta marcar na alternativa escolhida como se indica na Folha de Respostas. Exemplo:
- 5. Para marcar use **primeiro** lápis de carvão do tipo **HB**. Apague **completamente** os erros usando uma borracha. Depois passe por cima esferográfica **preta** ou azul.
- 6. No fim da prova, entregue **apenas** a Folha de Respostas. **Não será aceite** qualquer folha adicional.
- 7. Não é permitido o uso da máquina de calcular ou telemóvel.

Lembre-se! Assinale correctamente o seu Código

PROVA DE FÍSICA

MECÂNICA

- 1. Um ponto move-se num segmento AB partindo de A com velocidade $v_1 = 10 \ km/h$. Ao atingir o ponto médio a velocidade muda bruscamente para $v_2 = 40 \ km/h$ e permanece constante até atingir B. A velocidade média no trecho AB, é:
 - **A)** 32 km/h;
- **B)**16 km/h;
- C) 15 km/h;
- **D)** 25 km/h.
- 2. Dois carros A e B movem-se numa estrada, na mesma direcção e sentido com velocidades $v_A = 40 km/h v$ e $v_B = 70 km/h$. Em um dado instante passam simultaneamente por um mesmo ponto. A distância entre eles $30 \ minutos$ depois de passarem pelo referido ponto é:
 - A) 30 km;
- **B)** 70 km;
- C) 40 km;
- **D)** 15 km.
- 3. Podemos afirmar que o móvel que permitiu a construção do gráfico v x t ao lado, com a velocidade inicial de 3 m/s, percorre entre os instantes t = 2 s e t = 6 s uma distância de:
 - **A)** 8 m;

C) 12 m;

B) 10 m;

D) 14 m.

- 4. Uma partícula que se movimenta segundo a equação $s = 5 + 2t + t^2$:
 - A) inicia o seu movimento com a velocidade de 5m/s;
 - B) tem uma aceleração variável;
 - C) movimenta-se com a velocidade constante de 10m/s;
 - D) nenhuma das afirmações anteriores é correcta.
- 5. Duas roldanas estão ligadas entre si por uma correia. O raio de uma delas é 20 cm e o da outra é 10 cm. Se a polia de raio maior efectua 25 rpm, a frequência de rotação de outra polia e a velocidade linear de um ponto de sua periferia são respectivamente:
 - **A)** f=40 rpm e v=40,05 cm/s;
 - **B) C)** f=50 rpm e v=52,35 cm/s;
 - C) f= 30 rpm e v= 30,05 cm/s;
 - **D)** Faltam dados para resolver o problema.

- 6. Duas forças concorrentes, de intensidades respectivamente iguais a 0.5 N e 1.2 N, formam entre se um ângulo de 60° . A intensidade da resultante é igual a:
 - A) 1.1 N;
- B) 1.7 N;
- C) 1.5 N:
- D) 1,3 N.
- 7. Dois homens carregam um corpo de peso P = 80 N, por meio de uma barra AB apoiada nos seus ombros. Se um deles suporta a carga $Q_1 = 50 N$, a carga suportada pelo outro e a posição do corpo sobre a barra, sabendo que o comprimento desta é igual a 1.5 m são respectivamente.
 - A) 30 N e 0,56 m;

C) 50 N e 0,75 m;

B) 15 N e 0,65 m;

- **D)** 45 N e 0,70 m.
- 8. Três blocos A, B e C, de massas $m_A = 5kg$, $m_B = 3kg$ e $m_C = 4kg$ estão sobre uma superfície horizontal e sem atrito e presos um ao outro por meio de cordas inextensíveis e de massas desprezíveis como mostra a figura. O bloco A é puxado por uma força de 60 N, horizontal e de módulo constante. A aceleração do bloco B é igual a:

A	2	m /.
A	0	m/;

B)
$$s^2 5 \text{ m/s}^2$$
; **C)** 1 m/s^2 ;

C)
$$1 \text{ m/s}^2$$

9. É dado o gráfico da força F que age sobre um corpo de massa 1 kg, em função do deslocamento, a partir do repouso. A forca F tem direcção constante paralela à trajectória. O trabalho de F de 0 a 0.6

- 10. Um corpo de massa 2 kg está em repouso, na posição A. Aplica-se ao corpo uma força horizontal, de intensidade 30 N, que desloca o corpo até a posição B, afastada de A em 5 m. O coeficiente de atrito entre o corpo e a superfície é 0,5. O trabalho realizado pela força F no deslocamento do corpo de A até B é de:
 - A) 250 J;
- B) 150 J:
- D) 30 J
- 11. Ainda relativamente ao exercício anterior, o trabalho realizado pela força de atrito sobre o corpo, de A até B é igual:

- D) 100 J.
- 12. Um motor de potência 125 W deve erguer um peso de 10 N a uma altura de 10 m. Nestas condições, podemos afirmar que:
 - A) o tempo de operação será superior a 20 s;
 - B) em 0.10 s a operação estará completada:
 - C) em nenhum caso o tempo de operação ultrapassará 1.0 s;
 - D) o tempo depende do rendimento da máquina empregada; se o rendimento for de 100%, o tempo será de $0.8 \, \text{s}.$
- 13. Uma massa m estava em repouso quando explodiu em dois pedaços. Um pedaço com $\frac{3}{4}m$ de massa vai para a direita com velocidade v e o outro vai:
 - A) para a esquerda com a velocidade 3v;
- C) para a direita com a velocidade v:
- **B)** para a esquerda com a velocidade v.
- **D)** .para a direita com a velocidade 3*v*

TERMODINÂMICA

- 14. A condução de calor num metal é através de:
 - A) convenção;

C) radiação;

B) condução;

- **D)** nenhumas destas formas.
- 15. Uma placa metálica possui um furo circular através do qual consegue justamente passar ainda uma esfera. A placa metálica é fortemente aquecida com ajuda de uma chama. Depois do aquecimento:
 - A) o furo torna-se maior e a esfera passa agora mais livremente
 - B) o furo não se altera e a esfera passa normalmente como antes:
 - C) o furo torna-se mais pequeno e o anel deixa de passar;
 - **D)** nenhuma das respostas anteriores satisfaz.

- 16. Quanto medirá a 40° C, um fio de cobre com 10 m de comprimento a 0° C, se o coeficiente de dilatação linear do cobre for de 0,000017?
 - A) L = 0.780 m;
- **B)** L= 10.0000 m;
- C) L=10,0068 m;
- **D)**. L = 13,007 m

17. A quantidade de calor necessária para elevar a temperatura de água de massa 500 g, de 10° 100° C, (o calor específico de água é 1 cal/g °C) é:							
	A) $Q = 45.10^3 \text{ J};$	B) $Q = 4.5.10^3 \text{ J};$	C) $Q = 0.45.10^3 \text{ J};$	D) $Q = 450. \ 10^3 \ J.$			
18.	8. A quantidade de calor libertada quando uma massa de água $m=800~g$, baixa a sua temperatura de 80° C para 0° C é:						
	A) $Q = 64 \text{ kcal};$	B) $Q = 64$ cal;	C) Q = 64 Joules;	D) $Q = 64 \text{ kJ}.$			
19.	Uma certa massa de gás mudado para um recipi A) 2,0 atm.;	ente de $5,0 dm^3$, send	de 2,0 dm³, quando su lo constante a temper C)1,2 atm;	abmetida à pressão de 3,0 atm. Se for atura, o gás ficará a uma pressão de? D) 0,8 atm			
20.	0. Um gás a uma temperatura inicial de 27° C, foi aquecido em 1° C sob pressão constante. A parcela do seu volume inicial que corresponde ao aumento do volume é:						
	A) 0,001;	B) 0,002;	C) 0,003;	D) 0,004.			
21.	O gráfico p-V ao lado máquina trabalha com (que a relação entre os vo A) 300 K; B) 600 K;	0,1 mol de um gás id	eal monoatómico. Coi	nsiderando p2 2			
22.	 22. Indique a afirmação correcta A) A existência das sombras explica-se pela propagação rectilínea da luz. B) A existência das sombras é devida à propagação irregular da luz não atingir essas zonas; C) A existência das sombras é devida a um factor natural; D) A existência das sombras é devida às propriedades ondulatórias da luz; 						
 23. Indique a afirmação verdadeira: A) Eclipse solar é a formação da sombra na terra devido a interposição do sol entre a lua e a terra; B) Eclipse solar é a formação da sombra na terra devido a interposição da terra entre o sol e a lua; C) Eclipse solar é a formação da sombra na terra devido a interposição da lua entre o sol e a terra; D) Nenhuma das afirmações anteriores faz sentido. 							
24.	Um poste de 2 m de alt forma uma sombra de 1 A) 10 m;	ura forma uma som 0 m. Determinar a al B) 20 m;	abra de <i>50cm</i> sobre o ltura do edifício. C) 30 m;	solo. Ao mesmo tempo, um edifício D) 40 m.			
25.	A distância entre uma l vale 36 cm. A imagem é A) 3 cm;	âmpada e a sua ima cinco vezes maior qu B) 6 cm;	gem projectada em u ue o objecto. A distânc C) 9 cm;	m anteparo por um espelho esférico cia da lâmpada ao espelho é: D) 12 cm.			
26.	Na figura ao lado, a in lente convergente é a im		produzida pela	L P4			
	A) P'1;	C) P':	3;				

D) P'4.

3

B) P'2;

- 27. Se você movimentar o objecto P da figura anterior ao encontro da lente L, a respectiva imagem:
 - A) afasta-se da lente e aumenta de tamanh:
- C) também se aproxima da lente e aumenta de tamanho;
- **B)** afasta-se da lente e diminui de tamanho.
- **D)** o também se aproxima da lente e diminui de tamanho:
- 28. O índice de refracção da água a 20° C em relação ao ar é igual a 1,33. Se um raio de luz que sai do ar para a água incidir com um ângulo de incidência $\alpha = 60^\circ$, o ângulo θ de desvio que o raio luminoso sofre ao passar para a água é aproximadamente igual a:
 - A) 30° 00';
- B) 45°12':
- C) 25°75':
- D) 19°46'.

ELECTROMAGNETISMO

- 29. Duas cargas pontuais $q_1 = 2 \times 10^{-6} C$ e $q_2 = 8 \times 10^{-6} C$ estão fixas em dois pontos A e B, respectivamente, distantes 3 cm entre si e localizadas no vácuo a intensidade da força com que se repelem é:
 - A) 170 N;
- **B**) 160 N:
- C)150 N:
- D) 140 N.
- 30. O modelo de átomo de Bohr para o átomo de hidrogénio, é constuído por um protão e um electrão. O eletrão gira em torno do protão numa órbita circular de raio $r = 5.3 \cdot 10^{-11} m$. Sabendo que a massa electrão é $m_p = 9.1 \cdot 10^{-31} kg$, o valor da aceleração centrípeta a que ele está sujeito é:
 - A) $9 \cdot 10^{22} ms^{-2}$:
- **B)** $0.9 \cdot 10^{22} ms^{-2}$: **C)** $-9 \cdot 10^{22} ms^{-2}$:
- **D)** $9.10^{-22} ms^{-2}$
- 31. O valor da resistência desconhecida no circuito ao lado é.
 - A) 1Ω ;
- B) 2Ω :
- C) 3Ω ;
- D) 4Ω .

32. Um electrão movendo-se com uma velocidade de $6.0 \times 10^5 \, ms^{-1}$ passa perpendicularmente através de um campo magnético de $2.0 \times 10^{-2} T$.

A carga do electrão $1.6 \times 10^{-19} C$. A força que actua sobre ele é:

A) $19 \times 10^{-15} N$;

C) Nenhuma forca actua sobre o electrão:

B) $1.9 \times 10^{-15} N$:

- **D)** $1.9 \times 10^{-5} N$.
- 33. A relação de transformação num transformador é:

- A) $\frac{V_s}{V_p} = \frac{N_p}{N_s}$; B) $\frac{V_p}{N_s} = \frac{N_p}{V_s}$; C) $\frac{V_p}{V_s} = \frac{N_p}{N_s}$; D) $\frac{N_p}{V_s} = \frac{V_p}{N_s}$.
- 34. Um condutor vertical conduz uma corrente de 6.0 A. O valor da indução magnética a 20 mm do condutor é:
 - A) $6.0 \times 10^{-5} T$:

C) $0.6 \times 10^{-5} T$;

B) $3.0 \times 10^{-5} T$:

- **D)** $0.3 \times 10^{-5} T$
- 35. O número de espiras no enrolamento secundário que deve fornecer 15 V a partir de 220V quando tem 3000 espiras no primário é:
 - **A)** 310;
- **B**) 205;
- C) 250;
- **D)** 300.