北京工业大学 2020—2021 学年第一学期 《 线性代数 (工) 》期末考试试卷 (A)

考试说明:考试时间: 2021年 01月 07 日.考试时长: 95分钟.考试方式: 闭卷承诺:

本人已学习了《北京工业大学考场规则》和《北京工业大学学生违纪处分条例》,在考试过程中自觉遵守有关规定和纪律,服从监考教师管理,诚信考试,做到不违纪、不作弊、不替考,若有违反,愿接受相应处分。

承诺人:	学号:	班号:				

注:本试卷共 <u>8</u> 大题, 共 <u>8</u> 页,满分 100 分,考试时必须使用卷后附加的 统一草稿纸。

卷 面 成 绩 汇 总 表 (阅卷教师填写)

题号	-	=	Ξ	四	五	六	七	八	总成绩
满分	30	12	12	12	12	12	5	5	
得分									

得分

一. 填空题(每小题 3 分, 共 30 分. 注意: 所有题目需给出计算结果; "a=a"型答案失分;"或者a,或者b"型答案失分)

1. 已知
$$A = \begin{pmatrix} 0 & -1 & 2 \\ 1 & 0 & 6 \\ -2 & -6 & 0 \end{pmatrix}$$
. A' 是 A 的伴随矩阵, $X = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$, X^T 是 X 的转置。

则
$$X^T A^* X =$$

2.
$$A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
 的逆矩阵 A 的逆矩阵 A

- 4. 若1,2,2,3是4阶实方阵A的特征值,而且A不能相似对角化,则3A-6E的秩 R(3A-6E)=_____
- 5. A是3阶实方阵。若三个齐次线性方程组(A+E)X=0、(2E-A)X=0和 (E-A)X=0 均有非零解,则行列式 $A^*+3A^{-1}+A=$ ______
- 6. 若 $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$,则由 $A^*X = 0$ 的解向量形成的极大线性无关组中包含向

量的个数 =_____

- 7. 若 A 是 3 阶实方阵, $\alpha_1, \alpha_2, \alpha_3$ 是线性无关的 3 维实列向量,满足 $A\alpha_1 = \alpha_1 \alpha_2 \alpha_3$, $A\alpha_2 = -\alpha_1 + \alpha_2 \alpha_3$, $A\alpha_3 = -\alpha_1 \alpha_2 + \alpha_3$,则 A 的正特征值的代数重数是______
- 8. 二次型 $f(x,y,z) = (x,y,z) \begin{pmatrix} 1 & -2 & 3 \\ 2 & -1 & -1 \\ -3 & 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

的正、负惯性指数之和 =_____

- 9. 若实矩阵 $\begin{pmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{pmatrix}$ 和 $\begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$ 相似,且 a > 0,则 a =______
- 10. 实矩阵 $A = \begin{pmatrix} a_1 & b_1 & c_1 & d_1 \\ b_1 & b_2 & c_2 & d_2 \\ c_1 & c_2 & c_3 & d_3 \\ d_1 & d_2 & d_3 & d \end{pmatrix}$ 满足 $A^{12} + 2A^7 + A^2 + A + E = 0$,则行列式

$$\begin{vmatrix} a_1 & b_1 & d_1 \\ b_1 & b_2 & d_2 \\ d_1 & d_2 & d \end{vmatrix}$$
 ______ 0 (填 >,=,< 之一).

资料由公众号【工大喵】收集整理并免费分享

,	**			1	2	2	1	-1	
	得分	N COST	海市区方。或领				6		
		二(12分)	计算行列式D=	3	-5	1	5	3	(要求出具体数值).
	WHEN S	(MISS. SEA.31)	0	-6	2	0	2		
				-1	-1	2	-2	1	

三 (12 分) 用初等变换的方法,解方程
$$X\begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 3 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix}$$
.

资料由公众号【工大喵】收集整理并免费分享

四 (12) a 取何值时,线性方程组 $\begin{cases} x_1 - x_2 + x_3 + 2x_4 = -1 \\ x_1 + 2x_2 - x_3 + x_4 = 2 \end{cases}$ 有解? $\begin{cases} x_1 - x_2 + x_3 + 2x_4 = -1 \\ x_1 - 2x_2 + x_3 + 2x_4 = a \end{cases}$

有解时,写出其通解.

资料由公众号【工大喵】收集整理并免费分

五(12分) 已知
$$A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$
. 求一个可逆矩阵 P ,使得 $P^{-1}AP$

是对角矩阵;并求出这一对角矩阵.

资料由公众号【工大喵】收集整理并免费分享

六(12分) 给定列向量组

$$\alpha_1 = (0,1,0,2,0)^T, \alpha_2 = (-1,1,0,1,-1)^T,$$

 $\alpha_3 = (1,-1,1,0,3)^T, \alpha_4 = (0,0,1,0,-1)^T, \alpha_5 = (0,2,8,5,-5)^T.$

- 1 求该向量组的秩;
- 2 求该向量组的一个极大线性无关组;
- 3 把其余向量用问题 2 中求出的极大线性无关组线性表出.

七 (5 分) 已知: 实三元线性方程组
$$\begin{cases} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_3z = d_2 有唯一解。 \\ a_3x + b_3y + c_3z = d_3 \end{cases}$$

证明:
$$x = \frac{D_1}{D}$$
, 其中, $D = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$, $D_1 = \begin{vmatrix} d_1 & b_1 & c_1 \\ d_2 & b_2 & c_2 \\ d_3 & b_3 & c_3 \end{vmatrix}$.

得分

八 $(5 \, \mathcal{G})$. 已知: 实n 阶方阵 A 既是正交矩阵,又是正定矩阵。 证明: A = E (单位矩阵)。