Tutorial 5 (with solution)

Numbers

Question 1: Simple Proof

P5-7

□ Prove that for all integers a, b, and c, if a|b and a|c, then a|(b+c).

Q.1 (solution)

Proof

By the definition of divisibility,

b = ar and c = as for some integers r and s.

By substitution,

$$b+c = ar + as = a(r+s).$$

Since r + s is an integer, by the definition of divisibility, a|(b + c).

Q.E.D.

Question 2: Simple Proof

□ Prove that the square of any odd integer has the form 8m + 1 for some integer m.

Q.2 (solution)

Proof

Let n be an odd number, which can be written as n = 2k + 1 for some integer k.

Then,

$$n^{2} = (2k + 1)(2k + 1) = 4k^{2} + 4k + 1$$
$$= 4k(k + 1) + 1$$

Since either k or k + 1 is an even number, we have $n^2 = 8m + 1$ for some integer m.

Q.E.D.

Question 3: Euclidean Algorithm

P5-32

□ Compute gcd(65432, 8642).

Q.3 (solution)

7	65432	8642	1
	60494	4938	
1	4938 3704	3704 3702	3
617	1234 1234	2	
	0		

Therefore, gcd(65432, 8642) = 2.

Question 4: Extended Euclidean Alg.

P5-44

Find a solution in integers to the equation

$$65432x + 8642y = \gcd(65432, 8642).$$

Q.4 (solution)

65432	8642		
1	0	65432	а
0	1	8642	b
1	- 7	4938	c = a - 7b
-1	8	3704	d = -a + 8b
2	-15	1234	e = c - d
	53	2	f = d - 3e

$$x = -7 \text{ and } y = 53$$