Prova pratica Programmazione Non Lineare

December 9, 2021

Parte 1 Si devono progettare 3 scatole a forma di parallelepipedo rettangolo. La prima scatola deve avere altezza doppia rispetto alla seconda scatola. Le 3 dimensioni (altezza, larghezza e profondità) di ogni scatola devono essere pari ad almeno 30 cm. Si deve massimizzare il volume cumulativo delle 3 scatole avendo a disposizione 10 mq di materiale per tutte le superfici.

Parte 2 Data una funzione $f: \mathbb{R}^3 \to \mathbb{R}$, si conoscono le seguenti coppie ingressi-uscita: $x^1 = (10, 14, 2), \ y^1 = 38; \ x^2 = (30, 11, 2), \ y^2 = 52; \ x^3 = (14, 81, 3), \ y^3 = 257; \ x^4 = (12, 32, 3), \ y^4 = 108; \ x^5 = (22, 21, 4), \ y^5 = 106; \ x^6 = (11, 62, 4), \ y^6 = 259; \ x^7 = (12, 0, 5), \ y^7 = 12; \ x^8 = (1, 71, 5), \ y^8 = 356.$ Completare tutti i seguenti punti:

- 1. approssimare f con la funzione $(a_{12}x_1x_2 + m_1x_1 + m_2x_2 + m_3x_3 + q)$, stimando i parametri che minimizzano l'errore in norma 2 quadrata $(\|e\|_2^2)$;
- 2. trovare la funzione che approssima perfettamente i dati.

Parte 3 Un azienda produce 3 tipi di lampade: light, gold e silver. Si devono considerare le quantità intere. Il prezzo di mercato p_i di ciascuno dei 3 prodotti segue una legge di domanda inversa

$$p_i = a_i - 0.002q_i$$
.

I parametri a_i (presenti nella funzione di domanda inversa) subiscono delle variazioni non prevedibili, ma si conoscono valore atteso e varianza: $E[a_{\text{light}}] = 4$, $\sigma^2(a_{\text{light}}) = 0.5$, $E[a_{\text{gold}}] = 5$, $\sigma^2(a_{\text{gold}}) = 0.6$, $E[a_{\text{silver}}] = 7$, $\sigma^2(a_{\text{silver}}) = 0.3$. Il totale dei prodotti deve essere pari a 1000 unità. Sapendo che il rischio deve essere mantenuto basso (varianza non superiore a 0.2), stimare le quantità intere dei prodotti in modo da massimizzare il profitto totale.

NOTA: per il calcolo della varianza non si possono usare direttamente le quantità assolute q_i , ma si devono usare le frazioni di quantità prodotte $\frac{q_i}{\sum_i q_i}$.