

Harmonic Analysis

Author: Yitong Qiu

Time: Spring 2024

Contents

1	Introduction		1
	1.1	Supplement knowledge	1
	1.2	Maximal functions	2
	1.3	Approximation to the identity	4
2	Fourier Transform		10
	2.1	The Fourier Transform on L^1 space	10
	2.2	The Fourier Transform on L^2 and L^p , $(1 space$	15
	2.3	The Fourier Transform on \mathcal{S}'	21
3	The Theory of Singular Integrals		26
	3.1	The Hilbert transform: A model	26
	3.2	Singular Integrals	32

Chapter 1

Introduction

1.1 Supplement knowledge

(Interpolation) Let f be a measurable function on the measure space (X, M, μ) . The distribution function of f is defined as $d_f : [0, \infty) \to [0, \infty]$ given by

$$d_f(\lambda) = \mu(\{x \in X : |f(x)| > \lambda\})$$

as a function of λ .

(Weak L^p norm) For $0 , the weak <math>L^p$ norm of f is defined as

$$||f||_{p,\infty} = \sup_{\lambda>0} (\lambda^p \mu(\{x \in X : |f(x)| > \lambda\}))^{\frac{1}{p}}.$$

(Weak L^p space) The weak L^p space, denoted by $L^{p,\infty}$, is the set of all functions f such that $||f||_{p,\infty} < \infty$.

Remark: The weak L^{∞} space is identical to the standard L^{∞} space.

Proposition 1.1.1. If 0 , then

$$||f||_p^p = \int |f|^p d\mu = p \int_0^\infty \alpha^{p-1} d_f(\alpha) d\alpha.$$

Proof. Assuming μ is a suitable measure, we have

$$\begin{split} p\int_0^\infty \alpha^{p-1}\mu(\{x\in X:|f(x)|>\alpha\})d\alpha &= p\int_0^\infty \alpha^{p-1}\int_X \chi_{\{x:|f(x)|>\alpha\}}d\mu d\alpha \\ &\stackrel{\text{Fubini}}{=} \int_X \int_0^{|f(x)|} p\alpha^{p-1}d\alpha d\mu(x) \\ &= \int_X |f(x)|^p d\mu(x) = \|f\|_p^p. \end{split}$$

Theorem 1.1.2 (The Marcinkiewicz Interpolation Theorem). Let (X, μ) and (Y, ν) be measure spaces. Suppose that p_0, p_1, q_0, q_1 are elements of $[1, \infty]$ satisfying $p_0 \leq q_0$, $p_1 \leq q_1$, and $q_0 \neq q_1$. Consider T to be a sublinear map (|T(cf)| = c|T(f)| and $|T(f + g)| \leq |T(f)| + |T(g)|$) from $L^{p_0}(\mu) + L^{p_1}(\mu)$ to the space of measurable functions on Y. If T is of weak type (p_0, q_0) and (p_1, q_1) , then for any 0 < t < 1 and $\left(\frac{1}{p}, \frac{1}{q}\right) = (1-t)\left(\frac{1}{p_0}, \frac{1}{q_0}\right) + t\left(\frac{1}{p_1}, \frac{1}{q_1}\right)$, the map T is of strong type (p, q). Then, B_p remains bounded as $p \to p_j$ if $p_j < \infty$ (or as $p \to \infty$ if $p_j = \infty$).

Remark. Weak type means that there exist constants C_0 and C_1 such that $||Tf||_{L^{q_0,\infty}} \leq C_0||f||_{L^{p_0}}$ and $||Tf||_{L^{q_1,\infty}} \leq C_1||f||_{L^{p_1}}$. Strong type means that there exists a constant B_p depending only on p, p_j, q_j, C_j (for j = 0, 1) such that $||Tf||_{L^q} \leq B_p||f||_{L^p}$.

Theorem 1.1.3 (The Riesz-Thorin Interpolation Theorem). Let (X, μ) and (Y, ν) be two measure spaces, and let $1 \leq p_0, p_1, q_0, q_1 \leq \infty$. If $q_0 = q_1 = \infty$, assume further that ν is semifinite. Let T be a linear operator from $L^{p_0}(X) + L^{p_1}(X)$ into $L^{q_0}(Y) + L^{q_1}(Y)$ such that:

- 1. $||Tf||_{L^{q_0}} \leq M_0 ||f||_{L^{p_0}}$ for all $f \in L^{p_0}$ (strong type (p_0, q_0)).
- 2. $||Tf||_{L^{q_1}} \leq M_1 ||f||_{L^{p_1}}$ for all $f \in L^{p_1}$ (strong type (p_1, q_1)).

Then, for any $0 < \theta < 1$ and $\left(\frac{1}{p}, \frac{1}{q}\right) = (1 - \theta) \left(\frac{1}{p_0}, \frac{1}{q_0}\right) + \theta \left(\frac{1}{p_1}, \frac{1}{q_1}\right)$, we have $||Tf||_{L^q} \leq M_0^{1-\theta} M_1^{\theta} ||f||_{L^p}$ for all $f \in L^p$ (strong type (p,q)).

1.2 Maximal functions

 $f \in L^1_{loc}(\mathbb{R}^n)$ The Hardy-Littlewood maximal function of f is defined as

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r|} \int_{B_r} |f(x-y)| dy$$
 where $B_r = B(0,r) \subset \mathbb{R}^n$

which can also be expressed as

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r|} \int_{B(x,r)} |f(y)| dy$$

or equivalently as

$$Mf(x) = \sup_{r>0} \frac{1}{|B_r|} (\chi_{B_r} * |f|)(x)$$

where χ_{B_r} is the characteristic function of the ball B_r .

An alternative definition is given by

$$\tilde{M}f(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y)| \, dy$$

where the supremum is taken over all balls B containing x. It can be shown that Mf(x) and $\tilde{M}f(x)$ are equivalent in the sense that there exists a constant C>0 such that

$$Mf(x) \le \tilde{M}f(x) \le CMf(x)$$

denoted as $\tilde{M}f(x) \lesssim Mf(x)$.

Lemma 1.2.1 (A finite version of the Vitali covering lemma). Let E be a measurable subset of \mathbb{R}^n that is the union of a finite collection of balls $\{B_j\}$. Then one can select a disjoint subcollection B_1, \ldots, B_m of the $\{B_j\}$ so that

$$\sum_{k=1}^{m} |B_k| > C|E|$$

with $C = 3^{-n}$.

Theorem 1.2.2. Let f be a function defined on \mathbb{R}^n .

(a) The operator M is of weak type (1,1), i.e., if $f \in L^1$, $\lambda > 0$, then

$$m(\{x: |Mf(x)| > \lambda\}) \le \frac{C}{\lambda} ||f||_1$$

where m denotes the Lebesgue measure.

(b) M is of strong type (p, p) for 1 , i.e.,

$$||Mf||_p \le A_p ||f||_p$$

where A_p is a constant depending only on p and n.

Remark. If f is in L^1 and is not identically zero, then $Mf \notin L^{\infty}$.

Since f is not identically zero, there exist $\varepsilon > 0$ and R > 0 such that

$$\int_{B_R} |f| \ge \varepsilon > 0$$

If |x| > R, then $B_R \subset B(x, 2|x|)$ and

$$Mf(x) \geq \frac{1}{|B(x,2|x|)|} \int_{B(x,2|x|)} |f| \, dv \geq \frac{C}{|x|^n} \int_{B_R} |f| \, dv \geq \frac{C\varepsilon}{|x|^n}$$

which is not in L^1 . Therefore, $Mf \notin L^{\infty}$.

Proof. Obviously, $||Mf||_{\infty} \leq ||f||_{\infty}$, so by the Marcinkiewicz interpolation theorem, it suffices to prove (a). Let $E_{\lambda} = \{x : |\tilde{M}f(x)| > \lambda\}$. For all $x \in E_{\lambda}$, there exists a ball B_x such that

$$\frac{1}{m(B_x)} \int_{B_x} |f(y)| \, dy > \lambda$$

Fix a compact subset K of E_{λ} . Since K is covered by $\bigcup_{x \in E_{\lambda}} B_x$, we can select a finite subcover $K \subset \bigcup_{l=1}^{N} B_l$. By the covering lemma, there exist disjoint balls B_{i1}, \ldots, B_{ik} such that

$$m\left(\bigcup_{l=1}^{N} B_l\right) \le C \sum_{j=1}^{k} m(B_{ij})$$

Therefore,

$$m(K) \le m\left(\bigcup_{l=1}^{N} B_l\right) \le C \sum_{j=1}^{k} m(B_{ij}) \le \frac{C}{\lambda} \sum_{j=1}^{k} \int_{B_{ij}} |f| \, dy = \frac{C}{\lambda} \int_{\bigcup B_{ij}} |f| \, dy \le \frac{C}{\lambda} ||f||_1$$

Letting $m(K) \to m(E_{\lambda})$ completes the proof of (a).

As a corollary, we obtain the Lebesgue differentiation theorem:

Theorem 1.2.3. If $f \in L^1_{loc}(\mathbb{R}^n)$, then

$$\lim_{r \to 0} \frac{1}{|B(x,r)|} \int_{B(x,r)} f(y) \, dy = f(x) \quad \text{for a.e. } x$$

1.3 Approximation to the identity.

Definition 1.3.1. Let φ be a function belonging to $L'(\mathbb{R}^n)$, the dual space of Lebesgue integrable functions on \mathbb{R}^n , satisfying $\int_{\mathbb{R}^n} \varphi(x) dx = 1$. Define $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi\left(\frac{x}{\varepsilon}\right)$ for $\varepsilon > 0$. The family of functions $\{\varphi_{\varepsilon}\}_{{\varepsilon}>0}$ is known as an approximation to the identity.

Theorem 1.3.2. Suppose $\{\varphi_{\varepsilon}\}_{{\varepsilon}>0}$ is an approximation to the identity. Then for any function f in $L^p(\mathbb{R}^n)$ with $1 \leq p < \infty$, we have

$$\lim_{\varepsilon \to 0} \|\varphi_{\varepsilon} * f - f\|_{p} = 0$$

where * denotes convolution.

Remark. There exists a sequence $\{\varepsilon_k\}_{k\in\mathbb{N}}$ converging to 0 as $k\to\infty$ such that $\varphi_{\varepsilon_k}*f(x)=f(x)$ almost everywhere.

Proof. Since $\int_{\mathbb{R}^n} \varphi(x) dx = 1$, we can write

$$\varphi_{\varepsilon} * f(x) - f(x) = \int_{\mathbb{R}^n} \varphi(y) [f(x - \varepsilon y) - f(x)] dy$$

Given $\tilde{\varepsilon} > 0$, choose $\delta > 0$ such that if $|h| < \delta$, then $||f(t+h) - f(t)|| < \frac{\tilde{\varepsilon}}{2||\varphi||_1}$. For this fixed δ , if ε is sufficiently small, then

$$\int_{|y| \ge \frac{\delta}{\varepsilon}} |\varphi(y)| \, dy \le \frac{\tilde{\varepsilon}}{4 \|f\|_p}$$

Using Minkowski's integral inequality, we have

$$\|\varphi_{\varepsilon} * f - f\|_{p} \leq \int_{\mathbb{R}^{n}} |\varphi(y)| \|f(x - \varepsilon y) - f(x)\|_{L^{p}} dy$$

$$< \int_{|y| < \frac{\delta}{\varepsilon}} |\varphi(y)| \|f(x - \varepsilon y) - f(x)\|_{L^{p}} dy + 2\|f\|_{p} \int_{|y| \geq \frac{\delta}{\varepsilon}} |\varphi(y)| dy$$

$$\leq \frac{\widetilde{\varepsilon}}{2\|\varphi\|_{1}} \cdot \|\varphi\|_{1} + 2\|f\|_{p} \cdot \frac{\widetilde{\varepsilon}}{4\|f\|_{p}} = \widetilde{\varepsilon}$$

Definition 1.3.3 (Schwartz Space $S(\mathbb{R}^n)$). The Schwartz space $S(\mathbb{R}^n)$ is defined as the set of all infinitely differentiable functions f on \mathbb{R}^n such that for any multi-indices α and β , the supremum $\sup_{x \in \mathbb{R}^n} |x^{\alpha}D^{\beta}f(x)|$ is finite. Here, $x^{\alpha} = x_1^{\alpha_1}x_2^{\alpha_2}\cdots x_n^{\alpha_n}$ and $D^{\beta} = \partial_{x_1}^{\beta_1}\partial_{x_2}^{\beta_2}\cdots\partial_{x_n}^{\beta_n}$, where $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ and $\alpha, \beta \in \mathbb{N}^n$.

As an example, the function $f(x) = e^{-|x|^2}$ belongs to $S(\mathbb{R}^n)$. If f belongs to the Schwartz space S, then for any multi-index α , the function $D^{\alpha}(x^{\beta}f)$ also belongs to S.

Proposition 1.3.4. If $f \in S(\mathbb{R}^n)$, then for any multi-index β and any natural number N, there exists a constant $C_{N,\beta}$ such that $|D^{\beta}f(x)| \leq \frac{C_{N,\beta}}{(1+|x|)^N}$. As a consequence, $D^{\beta}f$ belongs to L^p for all $p \geq 1$.

Proposition 1.3.5. Let $\varphi \in L'(\mathbb{R}^n)$ with $\int \varphi = 1$, and define $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\varepsilon^{-1} x)$. Then, for all $f \in S(\mathbb{R}^n)$,

$$\lim_{\varepsilon \to 0} (f * \varphi_{\varepsilon})(x) = f(x).$$

Proof. Consider the convolution $f * \varphi_{\varepsilon}(x) = \int f(x - \varepsilon y) \varphi(y) dy$. We have the estimate

$$|f(x - \varepsilon y)\varphi(y)| \le ||f||_{\infty} |\varphi(y)|,$$

which belongs to L' since $\varphi \in L'(\mathbb{R}^n)$ and f is bounded. Therefore, by the Dominated Convergence Theorem (DCT),

$$\lim_{\varepsilon \to 0} (f * \varphi_{\varepsilon})(x) = \int f(x)\varphi(y)dy = f(x) \int \varphi(y)dy = f(x),$$

as desired. \Box

Theorem 1.3.6. Let $\varphi \in L^1$ with $\int \varphi = 1$, and define $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(\varepsilon^{-1} x)$ and $\psi(x) = \sup_{|y| \ge |x|} |\varphi(y)|$ (the least decreasing radial majorant of φ). Suppose that $\psi \in L^1$. Then,

- (1) For all $f \in L^p(\mathbb{R}^n)$ with $1 \leq p \leq \infty$, we have $\sup_{\varepsilon>0} |f * \varphi_{\varepsilon}(x)| \leq AMf(x)$ almost everywhere, where $A = \int_{\mathbb{R}^n} \psi(x) dx$ and Mf is the Hardy-Littlewood maximal function of f.
- (2) For all $f \in L^p$ with $1 \leq p < \infty$, we have $\lim_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x) = f(x)$ almost everywhere. (This is known as differentiation of the approximation to identity.)
- *Proof.* (1) It suffices to show that $\sup_{\varepsilon>0} |f_1 * \psi_{\varepsilon}(x)| \leq ||\psi||_1 M f(x)$ for any radial decreasing function $\psi \in L^1(\mathbb{R}^n)$ (i.e., $\psi(x) \leq \psi(y)$ if |x| > |y|).
- **Step 1:** Assume first that ψ is a simple function, say $\psi(x) = \sum_{j=1}^{m} b_j \chi_{R_j}(x)$ where $\{R_j\}$ are annuli centered at the origin and $\{b_j\}$ are distinct positive numbers with $b_1 > \cdots > b_m$. We can write

$$\psi(x) = \sum_{j=1}^{m} (b_j - b_{j+1}) \chi_{B_j}(x)$$

where B_j are concentric balls centered at the origin, $B_j = \{x : |x| \leq r_j\}$ for some r_j , and $b_{m+1} = 0$. Let $a_j = b_j - b_{j+1} > 0$ for j = 1, ..., m-1 and $a_m = b_m > 0$. Then,

$$\int \psi(x)dx = \sum_{i=1}^{m} a_{i}|B_{i}|.$$

Now,

$$|f| * \psi(x) = \int |f|(x-y)\psi(y)dy = \sum_{j=1}^{m} a_j \int_{B_j} |f|(x-y)dy \leqslant Mf(x) \sum_{j=1}^{m} a_j |B_j| = ||\psi||_1 Mf(x).$$

Step 2: For a general radial decreasing function $\psi \in L^1(\mathbb{R}^n)$, there exists a sequence of simple functions $\{\psi_k\}$ as in Step 1 such that $0 \leq \psi_1 \leq \cdots \leq \psi_k \leq \cdots$ and $\psi_k \leq \psi$ for all $k \in \mathbb{N}$, with $\psi(x) = \lim_{k \to \infty} \psi_k(x)$. Clearly, $\|\psi_k\|_1 \leq \|\psi\|_1$ for all k. By Fatou's Lemma, we have

$$|f| * \psi(x) = \int |f|(x-y) \lim_{k \to \infty} \psi_k(y) dy \leqslant \liminf_{k \to \infty} \int |f|(x-y)\psi_k(y) dy$$

$$\leqslant \liminf_{k \to \infty} ||\psi_k||_1 M f(x)$$

$$\leqslant ||\psi||_1 M f(x).$$

Step 3: Replace ψ in Step 2 by ψ_{ε} to get

$$|f| * \psi_{\varepsilon}(x) \leqslant ||\psi_{\varepsilon}||_1 M f(x) = ||\psi||_1 M f(x).$$

Taking the supremum over $\varepsilon > 0$ completes the proof of part (1).

(2) For $1 \leq p < \infty$, it is known that $\lim_{\varepsilon \to 0} ||f * \varphi_{\varepsilon} - f||_p = 0$, which implies that $\lim_{\varepsilon_k \to 0} f * \varphi_{\varepsilon_k}(x) = f(x)$ almost everywhere for any sequence $\{\varepsilon_k\}$ converging to 0. It remains to show that $\lim_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x)$ exists almost everywhere.

Define $\Omega f(x) = |\limsup_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x) - \liminf_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x)|$. If $f \in S(\mathbb{R}^n)$ (the Schwartz space), then $\lim_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x) = f(x)$ for all $x \in \mathbb{R}^n$, so $\Omega f(x) \equiv 0$. For a general $f \in L^p$ with $1 \leq p < \infty$, we can write $f = f_1 + f_2$ where $f_1 \in S(\mathbb{R}^n)$ and $||f_2||_p$ is arbitrarily small, since the Schwartz space is densely embedded in the L^p space. Then,

$$\Omega f(x) \leqslant \Omega f_1(x) + \Omega f_2(x) = \Omega f_2(x) \leqslant 2AM f_2(x).$$

Therefore,

$$|\{x: \Omega f(x) \geqslant \varepsilon\}| \leqslant |\{x: M f_2(x) > \frac{\varepsilon}{2A}\}| \leqslant C \left(\frac{\|f_2\|_p}{\varepsilon/2A}\right)^p.$$

Since $||f_2||_p$ can be made arbitrarily small, we conclude that $|\{x: \Omega f(x) > \varepsilon\}| = 0$ for all $\varepsilon > 0$, and hence $|\{x: \Omega f(x) > 0\}| = 0$. This completes the proof of part (2) for $1 \le p < \infty$.

For $p = \infty$, fix any ball B and let B_1 be a larger ball containing B with δ the distance from B to $\mathbb{R}^n \setminus B_1$. Write $f = f_1 + f_2$ where $f_1 = f\chi_{B_1}$ and $f_2 = f - f_1$. Then $f_1 \in L^1$ and for $x \in B$, we have

$$|f_2 * \varphi_{\varepsilon}(x)| = \left| \int f_2(x - y) \varphi_{\varepsilon}(y) dy \right| \le ||f||_{\infty} \int_{|y| \ge \delta} |\varphi_{\varepsilon}(y)| dy = ||f||_{\infty} \int_{|y| \ge \delta/\varepsilon} |\varphi(y)| dy \to 0$$

as $\varepsilon \to 0$. Since $\lim_{\varepsilon \to 0} f_1 * \varphi_{\varepsilon}(x) = f_1(x)$ almost everywhere, we conclude that $\lim_{\varepsilon \to 0} (f_1 + f_2) * \varphi_{\varepsilon}(x) = f_1(x) = f(x)$ for almost every $x \in B$. This completes the proof of part (2) for $p = \infty$.

Theorem 1.3.7. Let $\{T_{\varepsilon}\}$ be a family of linear operators mapping from $L^{p}(\mathbb{R}^{n})$ into the space of measurable functions from \mathbb{R}^{n} to \mathbb{C} . Define the operator T^{*} as $T^{*}f(x) = \sup_{\varepsilon>0} |T_{\varepsilon}f(x)|$. If T^{*} is of weak type (p,q), then the set $\{f \in L^{p}(\mathbb{R}^{n}) : \lim_{\varepsilon \to \varepsilon_{0}} T_{\varepsilon}f(x) = f(x) \text{ almost everywhere}\}$ is closed in $L^{p}(\mathbb{R}^{n})$.

Remark. T^* is the maximal operator associated with the family $\{T_{\varepsilon}\}$.

Proof. Consider a sequence of functions $\{f_n\} \subset L^p$ converging to f in L^p and satisfying $T_{\varepsilon}f_n(x) \to f_n(x)$ almost everywhere. Then,

$$m\left(\left\{x: \limsup_{\varepsilon \to \varepsilon_{0}} |T_{\varepsilon}f(x) - f(x)| > \lambda\right\}\right)$$

$$\leqslant m\left(\left\{x: \limsup_{\varepsilon \to \varepsilon_{0}} |T_{\varepsilon}(f - f_{n})(x) - (f - f_{n})(x)| > \lambda\right\}\right)$$

$$\leqslant m\left(\left\{x: |T^{*}(f - f_{n})(x)| > \frac{\lambda}{2}\right\}\right) + m\left(\left\{x: |(f - f_{n})(x)| > \frac{\lambda}{2}\right\}\right)$$

$$\leqslant \left(\frac{2C}{\lambda} \|f - f_{n}\|_{p}\right)^{q} + \left(\frac{2}{\lambda} \|f - f_{n}\|_{p}\right)^{p} \to 0 \quad \text{as } n \to \infty.$$

Therefore,

$$m\left(\left\{x: \limsup_{\varepsilon \to \varepsilon_0} |T_{\varepsilon}f(x) - f(x)| > \lambda\right\}\right) = 0.$$

Hence,

$$m\left(\left\{x: \limsup_{\varepsilon \to \varepsilon_0} |T_{\varepsilon}f(x) - f(x)| > 0\right\}\right) \leqslant \sum_{k=1}^{\infty} m\left(\left\{x: \limsup_{\varepsilon \to \varepsilon_0} |T_{\varepsilon}f(x) - f(x)| > \frac{1}{k}\right\}\right) = 0.$$

Thus, f belongs to the given set.

Theorem 1.3.8. If $|\phi(x)| \leq \psi(x)$ almost everywhere, where ψ is a non-negative, radially decreasing, and integrable function, and $f \in L^p(\mathbb{R}^n)$ for $1 \leq p < \infty$, then

$$\lim_{\varepsilon \to 0} \phi_{\varepsilon} * f(x) = \left(\int \phi \right) f(x)$$

almost everywhere.

Proof. By some known results, $\sup_{\varepsilon>0} |\phi_{\varepsilon} * f(x)|$ is of weak type (1,1) and strong type (p,p) for 1 . From the previous theorem, the set

$$\left\{ f \in L^{p}\left(\mathbb{R}^{n}\right) : \lim_{\varepsilon \to 0} \phi_{\varepsilon} * f(x) = \left(\int \phi\right) f(x) \text{ a.e.} \right\}$$

is closed in $L^p(\mathbb{R}^n)$. Since $S \subset \{f \in L^p(\mathbb{R}^n) : \lim_{\varepsilon \to 0} \phi_{\varepsilon} * f(x) = (\int \phi) f(x) \text{ a.e.}\} \subset L^p$, taking the closure, we have $\bar{S} = L^p$. Therefore,

$$\left\{ f \in L^p(\mathbb{R}^n) : \lim_{\varepsilon \to 0} \phi_{\varepsilon} * f(x) = \left(\int \phi \right) f(x) \text{ a.e.} \right\} = L^p.$$

Example 1.3.9. Let $P(x) = \frac{C_n}{(1+|x|^2)^{\frac{n+1}{2}}}$ be the Poisson kernel, where $C_n = \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}}$. Define

$$P_t(x) = C_n \frac{t}{(t^2 + |x|^2)^{\frac{n+1}{2}}}.$$

Now, let $u(x,t) = P_t(x) * f(x)$. Then, for $f \in L^p$, the function u(x,t) solves the Dirichlet problem

$$\begin{cases} \left(\Delta_x + \frac{\partial^2}{\partial t^2}\right) u = 0 & \text{in } \mathbb{R}^{n+1}_+ = \{(x, t) : x \in \mathbb{R}^n, t > 0\}, \\ u(x, 0) = f(x) & \text{a.e. on } \mathbb{R}^n. \end{cases}$$

Chapter 2

Fourier Transform

2.1 The Fourier Transform on L^1 space

Definition 2.1.1. Let f be a function in $L^1(\mathbb{R}^n)$. The Fourier transform of f, denoted by $\hat{f}(\xi)$, is defined as

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} dx$$
, for $\xi \in \mathbb{R}^n$.

Proposition 2.1.2. Suppose $f \in L^1(\mathbb{R}^n)$. Then the following properties hold:

- (a) The L^{∞} -norm of \hat{f} is bounded by the L^1 -norm of f, i.e., $\|\hat{f}\|_{\infty} \leq \|f\|_{1}$.
- (b) The function \hat{f} is uniformly continuous on \mathbb{R}^n .
- (c) As $|\xi|$ approaches infinity, $\hat{f}(\xi)$ tends to zero. This is known as the Riemann-Lebesgue Lemma.
- (d) If f and g are functions in $L^1(\mathbb{R}^n)$ such that their product $f \cdot g$ is also in $L^1(\mathbb{R}^n)$, then the Fourier transform of their sum is the product of their Fourier transforms, i.e., $\widehat{f+g} = \widehat{f} \cdot \widehat{g}$.

Proof. (c): Consider the following manipulation of the Fourier transform:

$$\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} dx$$

$$= \int_{\mathbb{R}^n} f(x)e^{-2\pi ix\cdot\xi} \cdot (-1)e^{-2\pi i\xi\cdot\frac{\xi}{2|\xi|^2}} dx$$

$$= -\int_{\mathbb{R}^n} f(x)e^{-2\pi i\xi\cdot\left(x + \frac{\xi}{2|\xi|^2}\right)} dx$$

$$= -\int_{\mathbb{R}^n} f\left(x - \frac{\xi}{2|\xi|^2}\right)e^{-2\pi ix\cdot\xi} dx.$$

Then, we have

$$\begin{split} |\hat{f}(\xi)| &= \frac{1}{2} |\hat{f}(\xi) + \hat{f}(\xi)| \\ &= \frac{1}{2} \left| \int_{\mathbb{R}^n} \left[f(x) - f\left(x - \frac{\xi}{2|\xi|^2} \right) \right] e^{-2\pi i x \cdot \xi} \, dx \right| \\ &\leqslant \frac{1}{2} \int_{\mathbb{R}^n} \left| f(x) - f\left(x - \frac{\xi}{2|\xi|^2} \right) \right| \, dx \\ &\to 0 \quad \text{as } |\xi| \to \infty. \end{split}$$

Proposition 2.1.3. Let f be a function in $L^1(\mathbb{R})$. Then the following properties of the Fourier transform hold:

- (1) The Fourier transform of f(x-b) is $e^{-2\pi i \xi \cdot b} \hat{f}(\xi)$.
- (2) The Fourier transform of $e^{2\pi ix \cdot h} f(x)$ is $\hat{f}(\xi h)$.
- (3) For any positive real number t, the Fourier transform of $t^{-n}f(t^{-1}x)$ is $\hat{f}(t\xi)$.
- (4) Let ρ be an orthogonal transformation on \mathbb{R}^n , i.e., a linear transformation that preserves the inner product, satisfying $\rho(x) \cdot \rho(y) = x \cdot y$. Then the Fourier transform of $f \circ \rho$ is $\hat{f} \circ \rho(\xi)$.
 - (5) If f is a radial function, then \hat{f} is also radial.

Proof. (4):

$$(f \circ \rho)^{\wedge}(\xi) = \int_{\mathbb{R}^n} f(\rho x) e^{-2\pi i x \cdot \xi} dx$$

$$\stackrel{y=\rho x}{=} \int_{\mathbb{R}^n} f(y) e^{-2\pi i \rho^{-1} y \cdot \xi} dy$$

$$= \int_{\mathbb{R}^n} f(y) e^{-2\pi i y \cdot \rho \xi} dy$$

$$= \hat{f}(\rho \xi).$$

(5) To show that $\hat{f}(\xi_1) = \hat{f}(\xi_2)$ when $|\xi_1| = |\xi_2|$, we can use a rotation ρ such that $\rho \xi_1 = \xi_2$. Then, by property (4), we have

$$\hat{f}(\xi_2) = \hat{f}(\rho \xi_1) = (f \circ \rho)^{\wedge}(\xi_1) = \hat{f}(\xi_1).$$

Theorem 2.1.4. Let $f \in L^1(\mathbb{R})$. Then,

- (1) $\frac{\partial \hat{f}(\xi)}{\partial \xi_k} = (-2\pi i x_k f(x))^{\hat{}}(\xi)$ provided that $x_k f \in L^1$.
- (2) If $f \in C^1 \cap C_0$ and $\frac{\partial f}{\partial x_k} \in L^1$, then $\left(\frac{\partial f}{\partial x_k}\right)^{\wedge}(\xi) = 2\pi i \xi_k \hat{f}(\xi)$.

Here, C_0 denotes the set of continuous functions that vanish at infinity, i.e., $C_0 = \{f \in C(x) : \forall \varepsilon > 0, \{x | |f(x)| \ge \varepsilon\} \text{ is compact } \}.$

Proof. (1): Consider $h = (0, \dots, 0, h_k, 0, \dots, 0)$ where h_k is the k^{th} element. We have

$$\frac{\hat{f}(\xi+h) - \hat{f}(\xi)}{h_k} = \int_{\mathbb{R}^n} \frac{e^{-2\pi i x_k h_k} - 1}{h_k} f(x) e^{-2\pi i x \cdot \xi} \, dx.$$

Observe that $\left|\frac{e^{-2\pi i x_k h_k}-1}{h_k}f(x)e^{-2\pi i x \cdot \xi}\right| \leq 2\pi |x_k f(x)|$. By the Dominated Convergence Theorem (D.C.T.),

$$\lim_{h_k \to 0} \frac{\hat{f}(\xi + h) - \hat{f}(\xi)}{h_k} = \int_{\mathbb{R}^n} -2\pi i x_k f(x) e^{-2\pi i x \cdot \xi} dx = (-2\pi i x_k f(x))^{\hat{}}(\xi).$$

Corollary 2.1.5. For $\alpha \in \mathbb{Z}_+^n$ and $D^{\alpha} = (\partial_{x_1})^{\alpha_1} \cdots (\partial_{x_n})^{\alpha_n}$, let $P(x) = \sum_{|\alpha| \leq d} a_{\alpha} x^{\alpha}$ where $|\alpha| = \alpha_1 + \cdots + \alpha_n$ and $x^{\alpha} = x_1^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$. Define the differential operator $P(D) = \sum_{|\alpha| \leq d} a_{\alpha} D^{\alpha}$. Then,

$$P(D)\hat{f}(\xi) = (P(-2\pi ix)f(x))^{\wedge}(\xi).$$

Moreover, for $f \in S(\mathbb{R}^n)$ (the Schwartz space),

$$(P(D)f)^{\wedge}(\xi) = P(2\pi i \xi)\hat{f}(\xi).$$

Definition 2.1.6 (Inverse Fourier Transform). If $f \in L^1$, the inverse Fourier transform of f is defined as

$$\check{f}(x) = \int_{\mathbb{R}^n} f(\xi) e^{2\pi i \xi \cdot x} d\xi \ (= \hat{f}(-x)).$$

Lemma 2.1.7. If $f, g \in L'$, then $\int \hat{f}(\xi)g(\xi)d\xi = \int f(x)\hat{g}(x)dx$ (the multiplication formula).

Proof.

$$\begin{split} \int_{\mathbb{R}^n} \hat{f}(\xi) g(\xi) d\xi &= \iint_{\mathbb{R}^n \times \mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx g(\xi) d\xi \\ &= \iint_{\mathbb{R}^n \times \mathbb{R}^n} g(\xi) e^{-2\pi i x \cdot \xi} d\xi f(x) dx \\ &= \int_{\mathbb{R}^n} f(x) \hat{g}(x) dx. \end{split}$$

Lemma 2.1.8. $\left(e^{-\pi|x|^2}\right)^{\wedge}(\xi) = e^{-\pi|\xi|^2}$.

Proof.

$$\left(e^{-\pi|x|^2}\right)^{\wedge}(\xi) = \int_{\mathbb{R}^n} e^{-\pi|x|^2} e^{-2\pi i x \cdot \xi} dx$$

$$= \prod_{i=1}^n \int_{\mathbb{R}} e^{-\pi x_i^2} e^{-2\pi i x_i \xi_i} dx_i.$$

It suffices to show $\left(e^{-\pi x^2}\right)^{\wedge}(\xi) = e^{-\pi \xi^2}$ for $x, \xi \in \mathbb{R}^1$.

The function $f(x) = e^{-\pi x^2}$ is the solution of the initial value problem (I.V.P):

$$\begin{cases} u' + 2\pi x u = 0, \\ u(0) = 1. \end{cases}$$

If $f \in S$ satisfies the initial value problem, then \hat{f} also satisfies the same initial value problem. Indeed,

$$\hat{f}(0) = \int_{\mathbb{R}^n} f(x)dx = 1,$$

$$0 = (f' + 2\pi x f)^{\hat{}}(\xi)$$

$$= 2\pi i \xi \hat{f}(\xi) + \frac{1}{-i}(\hat{f})'(\xi)$$

$$= i(\hat{f}(\xi) + 2\pi \xi \hat{f}(\xi)).$$

Therefore, by uniqueness, $\hat{f} = f$.

Remark. $\left(e^{-\pi a|x|^2}\right)^{\wedge}(\xi) = a^{-\frac{n}{2}}e^{-\pi\frac{|\xi|^2}{a}} \text{ for } a > 0.$

Theorem 2.1.9 (The Fourier inversion theorem for L^1 functions). If $f, \hat{f} \in L^1(\mathbb{R}^n)$, then $(\hat{f})^{\vee} = f$ almost everywhere (a.e.).

Remark. Since $\hat{f} \in L^1$, then $(\hat{f})^{\vee} \in C_0$. Modify f on a set of measure zero such that

$$(\hat{f})^{\vee}(x) = f(x) \quad \forall x.$$

Definition 2.1.10. $G_{\varepsilon}(f) = \int_{\mathbb{R}^n} f(x)e^{-\varepsilon|x|^2}dx$ is the Gauss means of $\int_{\mathbb{R}^n} f(x)dx$.

Theorem 2.1.11. If $f \in L^1(\mathbb{R}^n)$, then

$$\left\| \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i x \cdot \xi} e^{-4\pi^2 \varepsilon^2 |\xi|^2} d\xi - f(x) \right\|_{L^1(dx)} \to 0$$

as $\varepsilon \to 0$.

Proof.

$$\int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i x \xi} e^{-4\pi^2 \varepsilon^2 |\xi|^2} d\xi = \int f(y) \left(e^{2\pi i x \cdot \xi} e^{-4\pi^2 \varepsilon^2 |\xi|^2} \right)^{\wedge} (y) dy$$

$$= \int_{\mathbb{R}^n} f(y) \left(e^{-4\pi^2 \varepsilon^2 |\xi|^2} \right)^{\wedge} (y - x) dy$$

$$= \int_{\mathbb{R}^n} f(y) \varepsilon^{-n} (4\pi)^{-\frac{n}{2}} e^{-\frac{1}{4} \left| \frac{y - x}{\varepsilon} \right|^2} dy$$

$$= \int_{\mathbb{R}^n} f(y) \varphi_{\varepsilon}(x - y) dy$$

$$= f * \varphi_{\varepsilon}(x),$$

where $\varphi(x) = (4\pi)^{-\frac{n}{2}} e^{-\frac{1}{4}|x|^2} \in L^1$ and $\int_{\mathbb{R}^n} \varphi(x) dx = 1$.

Next we prove Theorem 2.1.9

Proof. By the previous theorem, there exists a sequence $\{\varepsilon_k\}_{k=1}^{\infty}$ converging to 0 such that

$$\lim_{\varepsilon_k \to 0} \int \hat{f}(\xi) e^{2\pi i x \cdot \xi} e^{-4\pi^2 \varepsilon_k^2 |\xi|^2} d\xi = f(x) \text{ for almost every } x.$$

Since $\hat{f} \in L'$, by the Dominated Convergence Theorem, we have

$$f(x) = \int \lim_{\epsilon_k \to 0} \hat{f}(\xi) e^{2\pi i x \cdot \xi} e^{-4\pi^2 \epsilon_k^2 |\xi|^2} d\xi = \int \hat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi = (\hat{f})^{\vee}(x).$$

Corollary 2.1.12. If $f_1, f_2 \in L'$ and $\hat{f}_1(\xi) = \hat{f}_2(\xi)$, then $f_1(x) = f_2(x)$ for almost every x.

Proof. Set $f = f_1 - f_2$. Then $f \in L^1$ and $\hat{f} = \widehat{f_1 - f_2} = \hat{f_1} - \hat{f_2} = 0 \in L^1$. By Fourier inversion, $f = (\hat{f})^{\vee} = 0$, thus $f_1 = f_2$ almost everywhere.

Remark. Let $\mathcal{F}f(\xi) = \hat{f}(\xi)$ denote the Fourier transform of f evaluated at ξ .

2.2 The Fourier Transform on L^2 and L^p , (1 space

Theorem 2.2.1. Suppose that $|\varphi(x)| \leq \frac{c}{(1+|x|)^{n+\varepsilon_0}}$ for some constants $c, \varepsilon_0 > 0$ and $\int_{\mathbb{R}^n} \varphi(x) dx = a$. If $f \in L^p$ for $1 \leq p \leq \infty$, then

$$\lim_{\varepsilon \to 0} f * \varphi_{\varepsilon}(x) = af(x)$$

holds for every x in the Lebesgue set of f.

Remark. The Lebesgue set L_f of f is defined as the set of points x where f(x) is finite and

$$\lim_{r \to 0} \frac{1}{r^n} \int_{|y| < r} |f(x - y) - f(x)| \, dy = 0.$$

Proof. Let $x \in L_f$. For any $\delta > 0$, there exists $\eta > 0$ such that

$$\frac{1}{r^n} \int_{|y| < r} |f(x - y) - f(x)| \, dy \le \delta$$

for all $r \leq \eta$. Now consider the expression

$$|f * \varphi_{\varepsilon}(x) - af(x)| = \left| \int_{\mathbb{R}^n} f(x - y) \varphi_{\varepsilon}(y) \, dy - \int_{\mathbb{R}^n} f(x) \varphi_{\varepsilon}(y) \, dy \right|.$$

This can be rewritten as

$$\left| \int_{\mathbb{R}^n} (f(x-y) - f(x)) \varphi_{\varepsilon}(y) \, dy \right|.$$

We split the integral into two parts:

$$\underbrace{\int_{|y| \le \eta} |f(x-y) - f(x)| |\varphi_{\varepsilon}(y)| \, dy}_{I_1} + \underbrace{\int_{|y| > \eta} |f(x-y) - f(x)| |\varphi_{\varepsilon}(y)| \, dy}_{I_2}.$$

We claim that $I_1 \leq A\delta$, where A is independent of ε , and $I_2 \to 0$ as $\varepsilon \to 0$. Since $|f * \varphi_{\varepsilon}(x) - af(x)| \leq I_1 + I_2 \leq A\delta + I_2$, we have

$$\limsup_{\varepsilon \to 0} |f * \varphi_{\varepsilon}(x) - af(x)| \le A\delta.$$

As δ is arbitrary, we conclude that $\lim_{\varepsilon\to 0} f * \varphi_{\varepsilon}(x) = af(x)$. To estimate I_1 , let $K \in \mathbb{N}$ be

fixed such that $2^K \leq \eta/\varepsilon < 2^{K+1}$ when $\eta/\varepsilon \geq 2$. We define the set $B(0,\eta)$ as follows:

$$B(0,\eta) = \begin{cases} B(0, 2^{-k}\eta) \cup \left(\bigcup_{i=1}^{K} \{ y \mid 2^{-i}\eta \le |y| < 2 \cdot 2^{-i}\eta \} \right), & \text{if } \eta/\varepsilon \geqslant 2, \\ B(0,\eta), & \text{if } \eta/\varepsilon < 2. \end{cases}$$

Case 1: $\eta/\varepsilon < 2$. In this case, we have

$$I_1 \leqslant c\varepsilon^{-n} \int_{B(0,\eta)} |f(x-y) - f(x)| \, dy \leqslant c\varepsilon^{-n} \delta \eta^n \leqslant c\delta.$$

Case 2: $\eta/\varepsilon \geqslant 2$. On the k-th annulus, we estimate

$$|\varphi_{\varepsilon}(y)| = \varepsilon^{-n} \left| \varphi \left(\varepsilon^{-1} y \right) \right| \leqslant C \varepsilon^{-n} \frac{1}{\left| \varepsilon^{-1} y \right|^{n+\varepsilon_0}} \leqslant C \varepsilon^{\varepsilon_0} \frac{1}{\left(2^k \eta \right)^{n+\varepsilon_0}}.$$

On the ball $B(0, 2^{-k}\eta)$, we use the estimate $|\varphi_{\varepsilon}(y)| \leq C\varepsilon^{-n}$. Thus,

$$I_{1} \leqslant \sum_{k=1}^{K} c \varepsilon^{\varepsilon_{0}} \frac{1}{(2^{k} \eta)^{n+\varepsilon_{0}}} \delta \left(2 \cdot 2^{-k} \eta\right)^{n} + c \varepsilon^{-n} \delta \left(2^{-K} \eta\right)^{n}$$

$$= c \delta \frac{\varepsilon^{\varepsilon_{0}}}{\eta^{\varepsilon_{0}}} \sum_{k=1}^{K} 2^{-k(n+\varepsilon_{0}-n)} + c \delta \left(2^{-K} \frac{\eta}{\varepsilon}\right)^{n}$$

$$= c \delta \frac{\varepsilon^{\varepsilon_{0}}}{\eta^{\varepsilon_{0}}} \sum_{k=1}^{K} 2^{-k\varepsilon_{0}} + c \delta \left(2^{-K} \frac{\eta}{\varepsilon}\right)^{n}$$

$$\leq c \delta \frac{\varepsilon^{\varepsilon_{0}}}{\eta^{\varepsilon_{0}}} \frac{1 - 2^{-K\varepsilon_{0}}}{1 - 2^{-\varepsilon_{0}}} + c \delta$$

$$\leq c \delta \frac{1}{1 - 2^{-\varepsilon_{0}}} + c \delta = A \delta$$

As for I_2 , if p' is the conjugate exponent to p and $x = \mathbf{1}_{\{|y|:|y|>\eta\}}$, by Hölder's inequality we have:

$$I_{2} \leqslant \int (|f(x-y)| + |f(x)|) \left| \mathbf{1}_{\{|y|:|y|>\eta\}} \varphi_{\varepsilon}(y) \right| dy$$

$$\leqslant ||f||_{p} \left| \left| \mathbf{1}_{\{|y|:|y|>\eta\}} \varphi_{\varepsilon} \right| \right|_{p'} + |f(x)| \left| \left| \mathbf{1}_{\{|y|:|y|>\eta\}} \varphi_{\varepsilon} \right| \right|_{1}$$

It suffices to show $\|\mathbf{1}_{\{|y|>\eta\}}\varphi_{\varepsilon}\|_{q} \to 0$ as $\varepsilon \to 0$. If $q = \infty$, then

$$\left\| 1_{\{|y| > \eta\}} \varphi_{\varepsilon} \right\|_{\infty} \leqslant \varepsilon^{-n} \frac{c}{(1 + \varepsilon^{-1} \eta)^{n + \varepsilon_0}} \le C \eta^{-n - \varepsilon_0} \varepsilon^{\varepsilon_0} \to 0$$

as $\varepsilon \to 0$.

If $q < \infty$, then

$$\begin{aligned} \|1_{\{|y|>\eta\}}\varphi_{\varepsilon}\|_{q}^{q} &= \int_{|y|>\eta} \left|\varepsilon^{-n}\varphi\left(\varepsilon^{-1}y\right)\right|^{q} dy \\ &= \varepsilon^{-nq} \int_{|z|\geqslant \frac{\eta}{\varepsilon}} \left|\varphi(z)\right|^{q} \cdot \varepsilon^{n} dz \\ &\leq C\varepsilon^{n(1-q)} \int_{|z|\geqslant \frac{\eta}{\varepsilon}} \frac{1}{(1+|z|)^{(n+\varepsilon_{0})q}} dz \\ &\leq C\varepsilon^{n(1-q)} \int_{r=\frac{\eta}{\varepsilon}}^{\infty} \frac{r^{n-1}}{(1+r)^{(n+\varepsilon_{0})q}} dr \\ &\leq C\eta^{n-(n+\varepsilon_{0})q} \varepsilon^{\varepsilon_{0}q} \longrightarrow 0 \end{aligned}$$

as $\varepsilon \to 0$.

Corollary 2.2.2. Suppose $f \in L^1(\mathbb{R}^n)$ and $\hat{f} \geq 0$. If f is continuous at 0, then $\hat{f} \in L^1$ and $f(x) = \int \hat{f}(\xi)e^{2\pi ix\cdot\xi}d\xi$ almost everywhere. In particular, $f(0) = \int \hat{f}(\xi)d\xi$.

Proof. Since f is continuous at 0, we have that $0 \in L_f$. Recall that

$$\int \hat{f}(\xi)e^{2\pi ix\cdot\xi}e^{-4\pi^2\varepsilon^2|\xi|^2}d\xi = \int f *\varphi_{\varepsilon}(x)dx$$

with $\varphi(x) = (4\pi)^{-\frac{n}{2}} e^{-\frac{|x|^2}{4}}$ and $\varphi_{\varepsilon}(x) = \varepsilon^{-n} \varphi(x/\varepsilon)$. By a previous result, we have at x = 0

$$f(0) = \lim_{\varepsilon \to 0} \int f * \varphi_{\varepsilon}(0) dx = \lim_{\varepsilon \to 0} \int \hat{f}(\xi) e^{-4\pi^2 \varepsilon^2 |\xi|^2} d\xi$$

Hence,

$$\|\hat{f}\|_{1} = \int \hat{f}(\xi)d\xi = \int \lim_{\varepsilon \to 0} \hat{f}(\xi)e^{-4\pi^{2}\varepsilon^{2}|\xi|^{2}}d\xi \le \liminf_{\varepsilon \to 0} \int \hat{f}(\xi)e^{-4\pi^{2}\varepsilon^{2}|\xi|^{2}}d\xi = f(0) < \infty$$

thus $\hat{f} \in L^1$. By the Dominated Convergence Theorem (D.C.T.),

$$f(0) = \int \lim_{\varepsilon \to 0} \hat{f}(\xi) e^{-4\pi^2 \varepsilon^2 |\xi|^2} d\xi = \int \hat{f}(\xi) d\xi$$

Now, let's proceed to define the Fourier Transform on L^2 .

Theorem 2.2.3. If $f \in L^1 \cap L^2$, then $\|\hat{f}\|_2 = \|f\|_2 < \infty \ (\hat{f} \in L^2)$.

Proof. Let $g(x) = \overline{f(-x)}$. Then $h = f * g \in L^1$ ($||h||_1 = ||f * g||_1 \le ||f||_1 ||g||_1 = ||f||_1^2$). h

is bounded $(\|h\|_{\infty} \leq \|f\|_2 \|g\|_2 = \|f\|_2^2)$ and uniformly continuous. Thus $\hat{h} = \hat{f} * \hat{g} = \hat{f}\hat{g} = \hat{f}\hat{f} = |\hat{f}|^2 \geq 0$. By the previous corollary, $\hat{h} \in L^1$ and $h(0) = \int \hat{h}(\xi)d\xi$. We thus have $\int |\hat{f}|^2 d\xi = h(0) = f * g(0) = \int f(x)g(0-x)dx = \int f(x)\overline{f(x)}dx = \int |f|^2 dx$.

Theorem 2.2.4. Let $f \in L^2(\mathbb{R}^n)$ and $\{g_n\} \subset L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ with $g_n \to f$ in $L^2(\mathbb{R}^n)$. Then \hat{g}_n converges to a function $\mathcal{F}f$ in $L^2(\mathbb{R}^n)$. $\mathcal{F}f$ is independent of the particular sequence $\{g_n\}$ and $\mathcal{F}f$ is called the L^2 Fourier transform of f on $L^2(\mathbb{R}^n)$. The Fourier transform on $L^2(\mathbb{R}^n)$ will be denoted by \mathcal{F} , and we shall use the notation $\hat{f} = \mathcal{F}f$ whenever $f \in L^2(\mathbb{R}^n)$.

Proof. We have $\|\hat{g}_n - \hat{g}_m\|_2 = \|(g_n - g_m)^\wedge\|_2 = \|g_n - g_m\|_2 \to 0$ as $m, n \to \infty$. Thus $\{\hat{g}_n\}$ is an Cauchy sequence in $L^2(\mathbb{R}^n)$. Then there exists an $L^2(\mathbb{R}^n)$ function, denoted by $\mathcal{F}f$, such that $\hat{g}_n \xrightarrow{L^2} \mathcal{F}f$. Assume $\{g_n\}$ and $\{\tilde{g}_n\}$ both converge to f in $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ with respect to the L^2 -norm. Consider the sequence $\{g_1, \tilde{g}_1, g_2, \tilde{g}_2, \dots, g_n, \tilde{g}_n, \dots\}$ in $L^1(\mathbb{R}^n) \cap L^2(\mathbb{R}^n)$ converging to f in $L^2(\mathbb{R}^n)$. Hence, there exists $h \in L^2(\mathbb{R}^n)$ such that $\{\hat{g}_1, \hat{g}_1, \dots, \hat{g}_n, \hat{g}_n, \dots\} \xrightarrow{L^2} h$. Both $\hat{g}_n \xrightarrow{L^2} h$ and $\hat{g}_n \xrightarrow{L^2} h$ converge to the same function in $L^2(\mathbb{R}^n)$.

Theorem 2.2.5 (The Plancherel Theorem). For any function f in the space $L^2(\mathbb{R}^n)$, the Fourier transform $\mathcal{F}f$ satisfies the equality $\|\mathcal{F}f\|_2 = \|f\|_2$.

Proof. Assume we have a sequence of functions g_n that converge to f in the L^2 norm, and each g_n belongs to the intersection of $L^1(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$. Then, the Fourier transforms \hat{g}_n converge to $\mathcal{F}f$ in the L^2 norm.

Since the Fourier transform preserves the L^2 norm for each g_n , i.e., $\|\hat{g}_n\|_2 = \|g_n\|_2$, we can take the limit as n approaches infinity to obtain $\|\mathcal{F}f\|_2 = \|f\|_2$.

Corollary 2.2.6. The Fourier transform \mathcal{F} is injective.

Then we will show \mathcal{F} be a linear operator. For all $f, g \in L^2(\mathbb{R}^n)$, there exist sequences f_n and g_n such that f_n converges to f in L^2 , g_n converges to g in L^2 , and $f_n \cdot g_n$ belongs to both $L^1(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$. We have that:

$$\mathcal{F}f = \lim_{n \to \infty} \hat{f}_n \quad \mathcal{F}g = \lim_{n \to \infty} \hat{g}_n$$

Consequently, the linearity of \mathcal{F} is established as follows:

$$\mathcal{F}(f+g) = \lim_{\substack{n \to \infty \\ \text{in } L^2}} \widehat{f_n + g_n} = \lim_{\substack{n \to \infty \\ \text{in } L^2}} (\widehat{f_n} + \widehat{g_n}) = \lim_{\substack{n \to \infty \\ \text{in } L^2}} \widehat{f_n} + \lim_{\substack{n \to \infty \\ \text{in } L^2}} \widehat{g_n} = \mathcal{F}f + \mathcal{F}g$$

Thereby, we conclude that \mathcal{F} is a unique bounded linear operator mapping from $L^2(\mathbb{R}^n)$ into $L^2(\mathbb{R}^n)$. Additionally, for any function f that belongs to both $L^1(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$, $\mathcal{F}f$ is equivalent to its Fourier transform \hat{f} .

To demonstrate uniqueness, let us assume the existence of two distinct bounded linear operators, F_1 and F_2 , both defined on $L^2(\mathbb{R}^n)$ with values in $L^2(\mathbb{R}^n)$. Furthermore, let these operators satisfy the property that for all functions f in the intersection of $L^1(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$, $F_i f = \hat{f}$ for i = 1, 2.

For any function g in $L^2(\mathbb{R}^n)$, we can construct a sequence g_n belonging to the intersection of $L^1(\mathbb{R}^n)$ and $L^2(\mathbb{R}^n)$ such that g_n approaches g in the L^2 norm. Now, considering the differences between F_1g and F_2g in the L^2 norm, we have:

$$||F_1g - F_2g||_2 \le ||F_1g - F_1g_n||_2 + ||F_1g_n - F_2g_n||_2 + ||F_2g_n - F_2g||_2$$

The middle term, $||F_1g_n-F_2g_n||_2$, vanishes since both operators agree on g_n (by our assumption). Thus,

$$||F_1g - F_2g||_2 \le c||g - g_n||_2 + c'||g_n - g||_2$$

for some constants c and c' depending on the boundedness of the operators. As n approaches infinity, this expression tends to zero, implying the equality of F_1 and F_2 . This establishes the uniqueness of the operator \mathcal{F} .

Proposition 2.2.7. The Fourier transform $\mathcal{F}: L^2 \to L^2$ is surjective.

Proof. Since \mathcal{F} is an isometry, its range $R(\mathcal{F})$ constitutes a closed subspace of L^2 (as established in Claim 1). Furthermore, the Schwartz space S is contained within $R(\mathcal{F})$ (as shown in Claim 2). Therefore, the image of \mathcal{F} is indeed the entirety of L^2 .

Claim 1:

Consider a sequence $\{\mathcal{F}f_n\}$ in $R(\mathcal{F})$ where $f_n \in L^2$ and $\mathcal{F}f_n$ converges to g in the L^2 norm. We can deduce that $\{\mathcal{F}f_n\}$ is a Cauchy sequence in L^2 . Consequently, $\{f_n\}$ is also a Cauchy sequence in L^2 and converges to some $f \in L^2$. By continuity of \mathcal{F} , we have $\mathcal{F}f_n \to \mathcal{F}f$ in L^2 and thus $g = \mathcal{F}f$. This establishes that g belongs to $R(\mathcal{F})$.

Claim 2:

It is a known fact that the Fourier transform maps the Schwartz space S onto itself bijectively. To elaborate, if f belongs to S, then it is both integrable and bounded. For any multi-indices α and β , the function $\widehat{D^{\alpha}(x^{\beta}f)}$ is bounded since $D^{\alpha}(x^{\beta}f)$ also belongs to S. We have the identity $\widehat{D^{\alpha}(x^{\beta}f)} = C_{\alpha,\beta}\xi^{\alpha}D^{\beta}\hat{f}$ which implies that $\xi^{\alpha}D^{\beta}\hat{f}$ is bounded. This, in turn, means that \hat{f} belongs to S.

The injectivity of \mathcal{F} on S follows from the fact that if $f_1, f_2 \in S$ and $\mathcal{F}f_1 = \mathcal{F}f_2$, then f_1

and f_2 must be equal almost everywhere. Hence, they are equivalent.

To show the surjectivity of \mathcal{F} on S, consider any $f \in S$. Define F(x) = f(-x) and let $g = \hat{F}$. It can be shown that g belongs to S and that $\hat{g}(\xi) = f(\xi)$. This demonstrates that \mathcal{F} is surjective onto S.

Theorem 2.2.8. The Fourier transform is a unitary operator on L^2 .

Unitary: A linear operator on L^2 that is an isometry and maps onto L^2 .

Corollary 2.2.9. The Fourier transform on L^2 preserves inner products: $\langle \mathcal{F}f, \mathcal{F}g \rangle = \langle f, g \rangle$ for all $f, g \in L^2$.

Proof. By the polarization identity, we have

$$\langle f, g \rangle = \int_{\mathbb{R}^n} f \bar{g} = \frac{1}{4} \left(\|f + g\|_2^2 - \|f - g\|_2^2 + i \|f + ig\|_2^2 - i \|f - ig\|_2^2 \right).$$

Since \mathcal{F} is an isometry, it follows that $\|\mathcal{F}f\|_2 = \|f\|_2$ for all $f \in L^2$. Therefore, applying the polarization identity to $\mathcal{F}f$ and $\mathcal{F}g$, we obtain

$$\langle \mathcal{F}f, \mathcal{F}g \rangle = \frac{1}{4} \left(\|\mathcal{F}f + \mathcal{F}g\|_2^2 - \|\mathcal{F}f - \mathcal{F}g\|_2^2 + i\|\mathcal{F}f + i\mathcal{F}g\|_2^2 - i\|\mathcal{F}f - i\mathcal{F}g\|_2^2 \right) = \langle f, g \rangle.$$

This completes the proof that the Fourier transform preserves inner products on L^2 .

Theorem 2.2.10. The inverse of the Fourier transform, denoted by \mathcal{F}^{-1} , can be obtained by letting $(\mathcal{F}^{-1}g)(x) = (\mathcal{F}g)(-x)$ for all $g \in L^2(\mathbb{R}^n)$.

Proof. Suppose first that $g \in S(\mathbb{R}^n)$, the Schwartz space of rapidly decreasing functions. Then there exists $f \in S(\mathbb{R}^n)$ such that $g = \hat{f}$, where \hat{f} denotes the Fourier transform of f. By the Fourier inversion formula for functions in the Schwartz space, we have

$$f = \mathcal{F}^{-1}g = (\hat{f})^{\vee} = \hat{g}(-x) = (\mathcal{F}g)(-x).$$

This shows that $(\mathcal{F}^{-1}g)(x) = (\mathcal{F}g)(-x)$ holds for all $g \in S(\mathbb{R}^n)$.

Now let $g \in L^2(\mathbb{R}^n)$ be arbitrary. By density of the Schwartz space in $L^2(\mathbb{R}^n)$, there exists a sequence $\{g_k\}$ in $S(\mathbb{R}^n)$ such that $g_k \to g$ in L^2 as $k \to \infty$. Using the triangle inequality and

the fact that \mathcal{F} is an isometry on L^2 , we have

$$\begin{aligned} &\|(\mathcal{F}g)(-x) - \mathcal{F}^{-1}g(x)\|_{L^{2}} \\ &\leq \|(\mathcal{F}g)(-x) - (\mathcal{F}g_{k})(-x)\|_{2} + \|(\mathcal{F}g_{k})(-x) - \mathcal{F}^{-1}g_{k}(x)\|_{2} + \|\mathcal{F}^{-1}g_{k}(x) - \mathcal{F}^{-1}g(x)\|_{2} \\ &= \|g - g_{k}\|_{2} + 0 + \|g_{k} - g\|_{2} \to 0 \text{ as } k \to \infty. \end{aligned}$$

This shows that $(\mathcal{F}g)(-x) = \mathcal{F}^{-1}g(x)$ almost everywhere, completing the proof.

If a function f can be expressed as the sum of two functions f_1 and f_2 where f_1 belongs to L^1 and f_2 belongs to L^2 , then we write $f = f_1 + f_2$. In this case, we define the Fourier transform of f as $\hat{f} = \hat{f}_1 + \hat{f}_2$.

Well-definedness: Suppose we have another decomposition of f as $g_1 + g_2$ where $g_1 \in L^1$ and $g_2 \in L^2$. Then, it follows that $f_1 + f_2 = g_1 + g_2$. Rearranging this equation, we obtain $f_1 - g_1 = g_2 - f_2$. Since both L^1 and L^2 are linear spaces, the difference $f_1 - g_1$ belongs to L^1 and the difference $g_2 - f_2$ belongs to L^2 . Therefore, the Fourier transform of $f_1 - g_1$ exists and is equal to the Fourier transform of $g_2 - f_2$. This implies that $\hat{f}_1 + \hat{f}_2 = \hat{g}_1 + \hat{g}_2$, showing that the definition of the Fourier transform for functions in $L^1 + L^2$ is well-defined.

Definition 2.2.11. For $1 \le p \le 2$, since $L^p \subset L^1 + L^2$, we can apply the above definition to functions in L^p .

2.3 The Fourier Transform on \mathcal{S}'

At the beginning, we define the **seminorm** $||f||_{\alpha,\beta} = ||x^{\alpha}D^{\beta}f||_{\infty}$. Then we define a topology on S as follows: a sequence $\{f_k\} \subset S$ converges in S to f if and only if

$$\forall \alpha, \beta \in \mathbb{N}_0^n, \quad \lim_{k \to \infty} ||f_k - f||_{\alpha,\beta} = 0.$$

The space of bounded linear functionals on \mathcal{S} , denoted by \mathcal{S}' , is called the space of tempered distributions. A linear map $T: \mathcal{S} \to \mathbb{C}$ belongs to \mathcal{S}' if $\lim_{k \to \infty} T(\phi_k) = 0$ whenever $\lim_{k \to \infty} \phi_k = 0$ in \mathcal{S} .

Theorem 2.3.1. The Fourier transform is a continuous map from S to S.

Proof. We have

$$\|\hat{f}\|_{\alpha,\beta} = \|\xi^{\alpha} D^{\beta} \hat{f}(\xi)\|_{\infty} \le C \|\widehat{D^{\alpha}(x^{\beta} f)}(\xi)\|_{\infty} \le C \|D^{\alpha}(x^{\beta} f)\|_{1}.$$

The L^1 norm can be bounded by a finite linear combination of seminorms of f, which implies

that the Fourier transform is a continuous map.

Remark. Using Leibniz's rule, we can write

$$D^{\alpha}(x^{\beta}f) = \sum_{\alpha_1 + \alpha_2 = \alpha} C_{\alpha_1, \alpha_2} D^{\alpha_1}(x^{\beta}) D^{\alpha_2} f.$$

Then,

$$||D^{\alpha_1}(x^{\beta})D^{\alpha_2}f||_1 = ||(1+|x|^2)^{-N}(1+|x|^2)^N D^{\alpha_1}(x^{\beta})D^{\alpha_2}f||_1$$

$$\leq ||(1+|x|^2)^N D^{\alpha_1}(x^{\beta})D^{\alpha_2}f||_{\infty}||(1+|x|^2)^{-N}||_1$$

$$< \infty,$$

since the first factor is a finite linear combination of seminorms of f.

Definition 2.3.2. The Fourier transform (F.T.) of $T \in S'$ is the tempered distribution given by

$$\hat{T}(f) = T(\hat{f})$$
 for $f \in S$.

Remark. \hat{T} is a tempered distribution since $f_k \to 0$ in S implies $\hat{f}_k \to 0$ in S and hence

$$T(\hat{f}_k) \to 0 \Rightarrow \hat{T} \in S'.$$

Examples of tempered distributions

(1) Let $f \in L^p$ with $1 \leq p \leq \infty$. Define

$$L(\varphi) = L_f(\varphi) = \int_{\mathbb{R}^n} f(x)\varphi(x) dx$$
 for $\varphi \in S$.

 $L_f \in S'$ since $||L_f(\varphi)|| \le ||f||_p ||\varphi||_q \to 0$ as $\varphi \to 0$ in S (where q is the conjugate exponent of p). Then,

$$\hat{L}_f(\varphi) = L_f(\hat{\varphi}) = \int_{\mathbb{R}^n} f(x)\hat{\varphi}(x) dx.$$

If $1 \leq p \leq 2$ and $f \in L^p$, then for $\varphi \in S$,

$$\hat{L}_f(\varphi) = \int_{\mathbb{R}^n} f(x)\hat{\varphi}(x) dx = \int_{\mathbb{R}^n} \hat{f}(x)\varphi(x) dx,$$

where \hat{f} is the Fourier transform of f in the sense of $L^{p'}$ norm (with p' being the conjugate exponent of p). A distribution $u \in S'$ coincides with a function h if

$$u(\varphi) = \int_{\mathbb{R}^n} h(x)\varphi(x) dx$$
 for all $\varphi \in S$.

In this case, \hat{L}_f coincides with \hat{f} .

Note: For any p > 2, there exists an $f \in L^p$ whose Fourier transform as a tempered distribution dose not **coincides with** a function.

(2) If μ is a finite Borel measure, the linear functional $L = L_{\mu}$ defined by

$$L(\varphi) = L_{\mu}(\varphi) = \int_{\mathbb{R}^n} \varphi(x) \, d\mu(x) \quad \text{for } \varphi \in S$$

is a tempered distribution. Then,

$$\hat{L}_{\mu}(\varphi) = L_{\mu}(\hat{\varphi}) = \int_{\mathbb{R}^n} \hat{\varphi}(\xi) \, d\mu(\xi)$$

$$= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \varphi(x) e^{-2\pi i x \cdot \xi} \, dx \, d\mu(\xi)$$

$$= \int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} e^{-2\pi i x \cdot \xi} \, d\mu(\xi) \right) \varphi(x) \, dx.$$

 $\hat{L}_{\mu}(\varphi)$ coincides with $\hat{\mu}(x) = \int_{\mathbb{R}^n} e^{-2\pi i x \cdot \xi} d\mu(\xi)$.

(3) A measurable function f satisfying $\frac{f(x)}{(1+|x|^2)^k} \in L^p$, where $1 \leq p \leq \infty$ and $k \in \mathbb{N}$, is called a tempered function. (When $p = \infty$, such a function is called a slowly increasing function.)

Theorem 2.3.3. A linear functional L on S is a tempered distribution if and only if there exist constants C > 0 and integers m and l such that

$$|L(\varphi)| \leqslant C \sum_{\substack{|\alpha| \leqslant l \\ |\beta| \leqslant m}} ||\varphi||_{\alpha,\beta} \quad \forall \varphi \in S.$$

Convolution of a distribution with a function in S

For a function g on \mathbb{R}^n , its reflection \tilde{g} is defined by $\tilde{g}(x) = g(-x)$. If $u, \varphi, \psi \in S$, then

$$\int_{\mathbb{R}^n} (u * \varphi)(x) \psi(x) \, dx = \int_{\mathbb{R}^n} u(x) (\tilde{\varphi} * \psi)(x) \, dx.$$

The mappings $\psi \longmapsto \int_{\mathbb{R}^n} (u * \varphi)(x) \psi(x) dx$ and $\theta \longmapsto \int_{\mathbb{R}^n} u(x) \theta(x) dx$ are linear functionals on S. Denote these functionals by $u * \varphi$ and u, respectively. Then, (*) is given by

$$(u * \varphi)(\psi) = u(\tilde{\varphi} * \psi).$$

Definition 2.3.4. Let $u \in S'$ and $\varphi \in S$. Define the convolution $u * \varphi$ by $(u * \varphi)(\psi) = u(\tilde{\varphi} * \psi)$. Then, for all $u \in S'$ and $\varphi \in S$, we have $u * \varphi \in S'$ and the convolution is associative: $(u * \varphi) * \psi = u * (\varphi * \psi)$ whenever $u \in S'$ and $\varphi, \psi \in S$.

Theorem 2.3.5. If $u \in S'$ and $\varphi \in S$, then the convolution $u * \varphi$ coincides with the function f defined by $f(x) = u(\tau_x \tilde{\varphi})$ for $x \in \mathbb{R}^n$, where τ_x denotes the translation by x (i.e., $\tau_x(g(y)) = g(y - x)$). Moreover, $f \in C^{\infty}$ and it as well as all its derivatives are slowly increasing, i.e., for all α there exist constants $C_{\alpha}, k_{\alpha} > 0$ such that

$$|(\partial^{\alpha} f)(x)| \leqslant C_{\alpha} (1 + |x|)^{k_{\alpha}}.$$

Proof. By the continuity of u and the fact that

$$\frac{\tau_{he_j}(\tau_x(\tilde{\varphi})) - \tau_x(\tilde{\varphi})}{h} \to -\tau_x(\partial_j \tilde{\varphi})$$

in S as $h \to 0$, we have

$$\frac{f(x+he_j)-f(x)}{h} = \frac{u(\tau_{x+he_j}\tilde{\phi})-u(\tau_x\tilde{\phi})}{h} = u(\frac{\tau_{he_j}(\tau_{x+he_j}\tilde{\phi})-\tau_x\tilde{\phi}}{h}) \to -u(T_x(\partial_j\tilde{\varphi})).$$

Considering higher-order derivatives, we find that the function f belongs to the class C^{∞} and satisfies the relation:

$$\partial^{\alpha} f(x) = (-1)^{|\alpha|} u(\tau_x D^{\alpha} \tilde{\varphi}).$$

Moreover, we can estimate the magnitude of $\partial^{\alpha} f(x)$ as:

$$\begin{aligned} |\partial^{\alpha} f(x)| &\leq c \sum_{|\gamma| \leq l} \sup_{y \in \mathbb{R}^{n}} |y^{\gamma} \tau_{x} (\partial^{\alpha+\beta} \tilde{\varphi})(y)| \\ &\leq c \sum_{\substack{|\gamma| \leq l \\ |\beta| \leq m}} \sup_{y \in \mathbb{R}^{n}} |(x+y)^{\gamma} (\partial^{\alpha+\beta} \tilde{\varphi})(y)| \\ &\leq C_{l} \sum_{|\beta| \leq m} \sup_{y \in \mathbb{R}^{n}} (1+|x|^{l}+|y|^{l}) |(\partial^{\alpha+\beta} \tilde{\varphi})(y)|. \end{aligned}$$

This estimation reveals that $|\partial^{\alpha} f(x)|$ is bounded by a polynomial of x.

Now, let's demonstrate that for any ψ belonging to the Schwartz space S, the following equality holds:

$$(u * \varphi)(\psi) = \int_{\mathbb{R}^n} f(x)\psi(x) dx.$$

To this end, we observe that:

$$(u * \varphi)(\psi) = u(\tilde{\varphi} * \psi)$$

$$= u\left(\int_{\mathbb{R}^n} \tilde{\varphi}(x - y)\psi(y) \, dy\right)$$

$$= u\left(\int_{\mathbb{R}^n} (\tau_y \tilde{\varphi})(x)\psi(y) \, dy\right)$$

$$= \int_{\mathbb{R}^n} u(\tau_y \tilde{\varphi})\psi(y) \, dy.$$

Here, the transition from the Riemann sum of $\int_{\mathbb{R}^n} (\tau_y \tilde{\varphi})(x) \psi(y) dy$ to the integral is justified by the linearity and continuity of the functional u in the Schwartz space S.

Chapter 3

The Theory of Singular Integrals

3.1 The Hilbert transform: A model

Definition 3.1.1. The principal value of the function $\frac{1}{x}$ is denoted as $p.v.\frac{1}{x}$. We define $\omega_0 = p.v.\frac{1}{x}$ as follows: For $\varphi \in S(\mathbb{R})$ (functions in the Schwartz space), we have

$$\omega_0(\varphi) = \lim_{\varepsilon \to 0} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, dx$$

Proposition 3.1.2. $\omega_0 \in S'$, which means ω_0 is a tempered distribution.

Proof.

$$\omega_0(\varphi) = \lim_{\varepsilon \to 0} \left(\int_{\varepsilon < |x| \le 1} \frac{\varphi(x)}{x} \, dx + \int_{|x| \ge 1} \frac{\varphi(x)}{x} \, dx \right)$$
$$= \lim_{\varepsilon \to 0} \left(\int_{\varepsilon < |x| \le 1} \frac{\varphi(x) - \varphi(0)}{x} \, dx + \int_{|x| \ge 1} \frac{\varphi(x)}{x} \, dx \right)$$

Since $\left|\frac{\varphi(x)-\varphi(0)}{x}\right| \leq \|\varphi'\|_{\infty}$, by the Dominated Convergence Theorem (DCT), we obtain

$$|\omega_0(\varphi)| \le \int_{\mathbb{R}} \left| \frac{\varphi(x) - \varphi(0)}{x} \right| dx + \int_{|x| \ge 1} \left| \frac{\varphi(x)}{x} \right| dx$$

$$\le 2\|\varphi'\|_{\infty} + \int_{|x| \ge 1} \left| \frac{x\varphi(x)}{x^2} \right| dx$$

$$\le 2\|\varphi'\|_{\infty} + 2\|x\varphi(x)\|_{\infty}$$

Therefore, $\omega_0 \in S'$.

Definition 3.1.3. For $f \in S(\mathbb{R})$, the Truncated Hilbert Transform (at height ϵ) is defined

as

$$H^{(\varepsilon)}(f)(x) = \frac{1}{\pi} \int_{|y| \ge \varepsilon} \frac{f(x-y)}{y} \, dy = \frac{1}{\pi} \int_{|x-y| > \varepsilon} \frac{f(y)}{x-y} \, dy$$

The Hilbert Transform is then defined as

$$Hf(x) = \frac{1}{\pi}(w_0 * f)(x) = \lim_{\varepsilon \to 0} H^{(\varepsilon)}(f)(x)$$

Note. The convolution $\omega_0 * f(x)$ can be expressed as $\omega_0(\tau_x \tilde{f})$, where $\tau_x \tilde{f}(y) = \tilde{f}(y-x)$, i.e.,

$$\omega_0 * f(x) = \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} \frac{\tau_x \tilde{f}(y)}{y} \, dy = \lim_{\varepsilon \to 0} \int_{|y| > \varepsilon} \frac{f(x-y)}{y} \, dy$$

Alternatively, the Hilbert Transform can also be represented as

$$Hf(x) = \frac{1}{\pi} p.v. \int_{-\infty}^{+\infty} \frac{f(x-y)}{y} dy = \frac{1}{\pi} p.v. \int_{-\infty}^{+\infty} \frac{f(y)}{x-y} dy$$

Remark. If we use $\lim_{\varepsilon\to 0} \int_{|y|>\varepsilon} \frac{f(x-y)}{y} \, dy$ to define the Hilbert Transform , its definition can be naturally extended to a broader class of functions. Given $x\in\mathbb{R}$, Hf(x) is defined for all integrable functions f on \mathbb{R} that satisfy the Hölder condition near x, i.e., there exist $C_x, \varepsilon_x > 0$ such that $|f(x) - f(y)| \le C_x |x - y|^{\varepsilon_x}$ whenever $|y - x| < \delta_x$.

For piecewise smooth integrable functions, the Hilbert Transform is well-defined at the Hölder-Lipschitz continuous points of the function.

Proposition 3.1.4. $\left(\frac{1}{\pi}p.v.\frac{1}{x}\right)^{\wedge}(\xi)$ is coincide with $-i\operatorname{sgn}(\xi)$ i.e,

$$\left(\frac{1}{\pi}p.v.\frac{1}{x}\right)^{\wedge}(\varphi) = \int (-i\operatorname{sgn}(\xi))\varphi(\xi) d\xi$$

Proposition 3.1.5. $\widehat{Hf}(\xi)$ is coincide with $-i\operatorname{sgn}(\xi)\widehat{f}(\xi)$ for $f \in S(\mathbb{R})$ i.e, for all $\varphi \in S(\mathbb{R})$, we have

$$\widehat{Hf}(\varphi) = \int_{\mathbb{R}} -i \operatorname{sgn}(\xi) \widehat{f}(\xi) \varphi(\xi) d\xi.$$

Proof. In fact, $\widehat{Hf}(\varphi) = Hf(\hat{\varphi}) = \frac{1}{\pi}(\omega_0 * f)(\hat{\varphi})$ can be further derived as:

$$\begin{split} &= \frac{1}{\pi} \omega_0(\hat{f} * \hat{\varphi}) = \frac{1}{\pi} \omega_0(\hat{\hat{f}}) \\ &= \frac{1}{\pi} \omega_0(\hat{f}\varphi) \\ &= \int_{\mathbb{R}} -i \operatorname{sgn}(\xi) \hat{f}(\xi) \varphi(\xi) \, d\xi. \end{split}$$

this is what we desired.

We consider $\widehat{Hf}(\xi)$ as a function and identify $\widehat{H} \in S'$ with the function $-i\operatorname{sgn}(\xi)\widehat{f}(\xi)$. Therefore, for $f \in S$, we have $\|\widehat{Hf}\|_2 = \|\widehat{f}\|_2$.

Using this isometric property, we can extend the definition of the Hilbert Transform to $L^2(\mathbb{R})$. If $f \in L^2(\mathbb{R})$, then $-i\operatorname{sgn}(\xi)\hat{f}(\xi) \in L^2$. We define $Hf(x) = (-i\operatorname{sgn}(\xi)\hat{f}(\xi))^{\vee}(x)$. If $f \in L^2$ and there exists a sequence $\{f_n\} \subset S$ converging to f in L^2 , then $\{H\hat{f}_m\}$ is a Cauchy sequence in L^2 and thus converges to a function in L^2 . For f in L^2 , we can define its Hilbert transform via $g \in L^2$ where $\hat{g} = \lim_{m \to \infty} \widehat{Hf_m}$ in L^2 .

Theorem 3.1.6. For $f \in S(\mathbb{R})$,

- (1) H is of weak type (1,1), i.e., $m\{x \in \mathbb{R} : |Hf(x)| > \lambda\} \leqslant \frac{c}{\lambda} ||f||_1$;
- (2) H is of strong type (p,p) for $1 , i.e., <math>||Hf||_p \leqslant C_p ||f||_p$.

Remark. (1) As $p \to \infty$, $C_p = O(p)$; as $p \to 1$, $C_p = O\left(\frac{1}{p-1}\right)$; (2) If $f = \chi_{[0,1]}$, then $Hf(x) = \frac{1}{\pi} \log \left| \frac{x}{x-1} \right|$. Note that while $f \in L^1$, $Hf \notin L^1$ and similarly, while $f \in L^\infty$, $Hf \notin L^\infty$.

Lemma 3.1.7 (The Calderon-Zygmund Decomposition in $L^1(\mathbb{R}^n)$). Let $f \in L'(\mathbb{R}^n)$ and $\lambda > 0$. Then f can be decomposed as f = g + b where $|g| \leq \lambda$ a.e. and $b = \sum_Q x_Q f$. The summation is over a collection $B = \{Q\}$ of disjoint cubes, and for each Q, $\lambda < \frac{1}{|Q|} \int_Q |f(x)| dx \leq 2^n \lambda$ (①). Furthermore, $m(\bigcup_{Q \in B} Q) < \frac{1}{\lambda} ||f||_1$ (②).

Proof. For each $l \in \mathbb{Z}$, define a collection of dyadic cubes D_l as follows:

$$D_{l} = \left\{ \prod_{i=1}^{n} \left[2^{l} m_{i}, 2^{l} (m_{i} + 1) \right) : m_{1}, \dots, m_{n} \in \mathbb{Z} \right\}$$

Observe that if $Q \in D_l$ and $Q' \in D_{l'}$, then either $Q \cap Q' = \emptyset$, $Q \subset Q'$, or $Q' \subset Q$. Choose l_0 large enough so that for each $Q \in D_{l_0}$ satisfies $\frac{1}{|Q|} \int_Q |f(x)| dx \leq \lambda$. For each such cube, consider its 2^n "children" (or subcube) with side length 2^{l_0-1} . Each subcube Q' will have one of the following properties:

$$\frac{1}{|Q'|} \int_{Q'} |f(x)| dx \leqslant \lambda \quad \text{or} \quad \frac{1}{|Q'|} \int_{Q'} |f(x)| dx > \lambda \tag{3.1}$$

In the latter case, we stop and include Q' in the collection B. Observe that in this case,

$$\frac{1}{|Q'|} \int_{Q'} |f(x)| dx \leqslant \frac{2^n}{|Q|} \int_{Q} |f(x)| dx \leqslant 2^n \lambda$$

Let Q denote the parent cube of Q'. Therefore, (\mathfrak{D}) holds. If the first inequality in (3.1) is satisfied, then further subdivide Q' into its child cubes, each with half the side length of Q'. Continuing this process yields a collection of disjoint dyadic cubes B that satisfy (\mathfrak{D}) . Consequently, (\mathfrak{D}) also holds because

$$\left| \bigcup_{Q \in B} Q \right| \le \sum_{Q \in B} |Q| < \sum_{Q \in B} \frac{1}{\lambda} \int_{Q} |f(x)| dx = \frac{1}{\lambda} \int_{\bigcup Q} |f(x)| dx \le \frac{1}{\lambda} ||f||_{1}.$$

Now, consider a point $x_0 \in \mathbb{R}^n \setminus \bigcup_{Q \in B} Q$. Such an x_0 is contained in a decreasing sequence of dyadic cubes $\{Q_i\}$, each satisfying $\frac{1}{|Q_j|} \int_{Q_j} |f| \leq \lambda$. By Lebesgue's theorem, for such an x_0 , we have $|f(x_0)| \leq \lambda$ almost everywhere.

Define $g = f - b = f - \sum_{Q \in B} x_Q f = 1_{\mathbb{R}^n \setminus \bigcup_{Q \in B}} f$. Since $\mathbb{R}^n \setminus \bigcup_{Q \in B} Q$ and $\mathbb{R}^n \setminus \bigcup_{Q \in \bar{Q}} Q$ differ only by a set of measure zero, it follows that $|g| \leq \lambda$ almost everywhere, as desired. \square

Proof of boundedness of H (Theorem 3.1.6):

(1) Fix $\lambda > 0$. Using the C - Z decomposition, there exist disjoint intervals $\{I_j\}$ such that

$$|f| \le \lambda \text{ a.e. } x \notin \Omega = \bigcup_{j} I_{j}, \quad \lambda < \frac{1}{|I_{j}|} \int_{I_{j}} |f(x)| dx \le 2\lambda, \quad |\Omega| \le \frac{1}{\lambda} ||f||_{1}.$$

Decompose f as f = g + b, where

$$g(x) = \begin{cases} f(x) & x \notin \Omega \\ \frac{1}{|I_i|} \int_{I_i} f(x) dx & x \in I_j, j \in \mathbb{N} \end{cases}$$

and $b(x) = \sum_{j} b_{j}(x)$ with $b_{j}(x) = \left(f(x) - \frac{1}{|I_{j}|} \int_{I_{j}} f(x) dx\right) \mathbf{1}_{I_{j}}(x)$. Then $|g(x)| \leq 2\lambda$ almost everywhere, and each b_{j} is supported on I_{j} with $\int_{I_{j}} b_{j}(x) dx = 0$.

Since f = g + b, we have Hf = Hg + Hb. Consequently,

$$\left|\left\{x: |Hf(x)| > \lambda\right\}\right| \le \left|\left\{x: |Hg(x)| > \frac{\lambda}{2}\right\}\right| + \left|\left\{x: |Hb(x)| > \frac{\lambda}{2}\right\}\right|.$$

For the first term, we have

$$\begin{split} \left|\left\{x:|Hg(x)|>\frac{\lambda}{2}\right\}\right| &\leqslant \frac{1}{(\lambda/2)^2}\int |Hg(x)|^2 dx = \frac{4}{\lambda^2}\int |g(x)|^2 dx \\ &\leqslant \frac{4}{\lambda^2}\left(\int |g(x)| dx\right)^2 \leqslant \frac{4}{\lambda^2}\left(\int |f(x)| dx\right)^2 \\ &\leqslant \frac{4}{\lambda^2}\|f\|_1^2 < \infty \quad \text{(Since } f \in L^1 \subset L^2\text{)} \end{split}$$

Let $2I_j$ be the interval with the same center as I_j and twice the length, and let $\Omega^* = \bigcup_j 2I_j$. Then $|\Omega^*| \leq 2|\Omega|$ and

$$\left| \left\{ x : |Hb(x)| > \frac{\lambda}{2} \right\} \right| \le |\Omega^*| + \left| \left\{ x \notin \Omega^* : |Hb(x)| > \frac{\lambda}{2} \right\} \right|$$

$$\le 2|\Omega| + \frac{2}{\lambda} \int_{\mathbb{R} \setminus \Omega^*} |Hb(x)| dx$$

$$\le \frac{2}{\lambda} ||f||_1 + \frac{2}{\lambda} \int_{\mathbb{R} \setminus \Omega^*} |Hb(x)| dx$$

Note that

$$\int_{\mathbb{R}\backslash\Omega^*} |Hb(x)| dx \le \int_{\mathbb{R}\backslash\Omega^*} \left| \sum_j Hb_j(x) \right| dx \le \sum_j \int_{\mathbb{R}\backslash\Omega^*} |Hb_j(x)| dx$$

$$\le \sum_j \int_{\mathbb{R}\backslash2I_j} |Hb_j(x)| dx$$

and

$$\int_{\mathbb{R}\backslash 2I_j} |Hb_j(x)| dx = \int_{\mathbb{R}\backslash 2I_j} \lim_{\varepsilon \to 0} \left| \int_{\substack{|x-y| > \varepsilon \\ y \in I_j}} \frac{b_j(y)}{x - y} dy \right| dx$$
$$= \int_{\mathbb{R}\backslash 2I_j} \left| \int_{I_j} b_j(y) \left(\frac{1}{x - y} - \frac{1}{x - c_j} \right) dy \right| dx$$

where c_j is the center of I_j and $\int_{\mathbb{R}} b_j(x) dx = 0$. Since $|y - c_j| \leq \frac{1}{2} |I_j|$ and $|x - y| \geq \frac{1}{2} |x - c_j|$, then,

$$\begin{split} \int_{\mathbb{R}\backslash 2I_j} \left| \int_{I_j} b_j(y) \left(\frac{1}{x-y} - \frac{1}{x-c_j} \right) dy \right| dx &\leq \int_{I_j} |b_j(y)| \int_{\mathbb{R}\backslash 2I_j} \frac{|y-c_j|}{|x-y||x-c_j|} dx dy \\ &\leq \int_{I_j} |b_j(y)| \int_{\mathbb{R}\backslash 2I_j} \frac{|I_j|}{|x-c_j|^2} dx dy \\ &= 2 \int_{I_j} |b_j(y)| dy \end{split}$$

Thus,

$$\sum_{j} \int_{\mathbb{R}^{2I_{j}}} |Hb_{j}(x)| \, dx \leqslant 2 \sum_{j} \int_{I_{j}} |b_{j}(x)| \, dx \leqslant 4 \sum_{j} \int_{I_{j}} |f(x)| \, dx \leqslant 4 \|f\|_{1}.$$

Then, we can show that

$$\left| \left\{ x : |Hb(x)| > \frac{\lambda}{2} \right\} \right| \le \frac{10}{\lambda} ||f||_1,$$

which proves the weak type (1,1) estimate.

(2) H is of weak type (1,1) and strong type (2,2) (since $||Hf||_2 = ||f||_2$). Hence, by interpolation, it is also of strong type (p,p) for 1 . If <math>2 , then <math>p' < 2. Consider the following estimate:

$$||Hf||_{p} = \sup \left\{ \left| \int_{\mathbb{R}^{n}} Hf \cdot g \, dx \right| : g \in C_{c}^{\infty}, ||g||_{p'} \le 1 \right\}$$
$$= \sup \left\{ \left| -\int_{\mathbb{R}^{n}} f \cdot Hg \right| : g \in C_{c}^{\infty}, ||g||_{p'} \le 1 \right\}.$$

For $f, g \in S(\mathbb{R})$, we have

$$\int_{\mathbb{R}^n} Hf \cdot g = \int_{\mathbb{R}^n} Hf(\tilde{g})^{\hat{}} = \int_{\mathbb{R}^n} \hat{H}_f \tilde{g} = \int_{\mathbb{R}^n} -i \operatorname{sgn}(\xi) \hat{f}(\xi) \hat{g}(\xi) d\xi.$$

Furthermore, by a change of variables $(\eta = -\xi)$, we obtain

$$\int_{\mathbb{R}^n} -i \operatorname{sgn}(\xi) \hat{f}(\xi) \hat{g}(\xi) d\xi$$

$$= -\int_{\mathbb{R}^n} i \operatorname{sgn}(\eta) \hat{f}(\eta) \hat{g}(\eta) d\eta$$

$$= -\int_{\mathbb{R}^n} \hat{f}(\eta) H \hat{g}(\eta) d\eta$$

$$= -\int_{\mathbb{R}^n} (\hat{f})^{\wedge} H g$$

$$= -\int_{\mathbb{R}^n} f \cdot H g.$$

Using Holder's Inequality, we have

$$||Hf||_p \leqslant C||f||_p \sup \{||g||_{p'} : g \in C_c^{\infty}, ||g||_{p'} \le 1\} \leqslant C||f||_p.$$

Remark. We can extend the Hilbert transform to functions in L^p space. For $1 \le p < \infty$ and any $f \in L^p$, there exists a sequence $\{f_k\} \subset S$ such that $f_k \to f$ in L^p . Since

$$||Hf_m - Hf_n||_p \le C||f_m - f_n||_p \to 0$$

as $m, n \to \infty$, the sequence $\{Hf_m\}$ is Cauchy in L^p and converges to some g = Hf.

Another similar example is the **Riesz transform**.

Definition 3.1.8. For $\varphi \in \mathcal{S}(\mathbb{R}^n)$ and $w_i \in \mathcal{S}'$, let

$$\langle w_j, \varphi \rangle = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \lim_{\varepsilon \to 0} \int_{|y| \ge \varepsilon} \frac{y_j}{|y|^{n+1}} \varphi(y) \, dy.$$

and for $1 \leq j \leq n$, the **j-th Riesz transform** of f is given by

$$R_j(f)(x) = (w_j * f)(x) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \text{ p.v. } \int_{\mathbb{R}^n} \frac{x_j - y_j}{|x - y|^{n+1}} f(y) \, dy, \quad \forall f \in \mathcal{S}(\mathbb{R}^n),$$

where p.v. denotes the principal value integral.

Remark. The definition makes sense for any integrable function that satisfies the following property: for all x, there exist constants $C_x > 0$, $\varepsilon_x > 0$, and $\delta_x > 0$ such that

$$|f(x) - f(y)| \leqslant C_x |x - y|^{\varepsilon_x}$$

whenever $|x - y| < \delta_x$.

3.2 Singular Integrals

Definition 3.2.1. Let $K : \mathbb{R}^n \setminus \{0\} \to \mathbb{C}$ satisfy, for some constant B,

- 1. $|K(x)| \leq B|x|^{-n}$ for $x \in \mathbb{R}^n \setminus \{0\}$ (size condition)
- 2. $\int_{|x|>2|y|} |K(x)-K(x-y)| dx \leq B$ for all y (smoothness condition)
- 3. $\int_{r < |x| < S} K(x) dx = 0$ for all $0 < r < S < \infty$ (cancellation condition)

Then K is called a Calderón-Zygmund kernel. The singular integral operator (or Calderón-Zygmund operator) with kernel K is defined as

$$Tf(x) = \lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} K(x-y)f(y) \, dy, \quad \forall f \in \mathcal{S}(\mathbb{R}^n).$$

Lemma 3.2.2. Suppose that $|\nabla K(x)| \leq B|x|^{-n-1}$ for all $x \neq 0$ and some B > 0. Then

$$\int_{|x|>2|y|} |K(x) - K(x-y)| \, dx \le CB$$

with C = C(n) being a constant depending only on n.