Supervised Learning: a Business of Cost-Cutting

STUFF TO KNOW BY HEART - EVEN WHEN DRUNK!

- 1. Supervised learning is about achieving low Hypothesis-vs.-Target costs
- 2. Cost functions measure degree of prediction errors: low when errors are small, high when they are large
- 3. Training is mathematical optimization that makes cost decrease, i.e. make errors smaller

In a supervised learning framework, we give the machine Input \mathbf{X} - a matrix/array representing m cases of input features - and Target Output \mathbf{Y} representing the m corresponding "**right answers**", and want the machine to learn a structured formula that transforms \mathbf{X} to Hypothesized Output \mathbf{H} that is similar/close to \mathbf{Y} .

The extent of \mathbf{H} 's similarity/closeness to \mathbf{Y} - which is the criterion to judge how well a Supervised Learning Model learns to mimick \mathbf{Y} from knowing \mathbf{X} - is numerically measured by a certain specified scalar cost function $c(\mathbf{H},\mathbf{Y})$. This function c's value should be small when \mathbf{H} is very "similar" or "close" to \mathbf{Y} , and large otherwise. In almost all Supervised Learning Models in practical use nowadays, $c(\mathbf{H},\mathbf{Y})$ is a continous real-valued function and its partial derivative $\frac{\partial c}{\partial \mathbf{H}}$ with respect to \mathbf{H} is computable as a certain function $d(\mathbf{H},\mathbf{Y})$. Cost functions are usually measured on an average per-case basis.

The task of helping a Supervised Learning Model learn - or so-called "**training**" it - involves mathematical optimization procedures that make the average per-case \mathbf{H} -vs.- \mathbf{Y} cost decrease when we let the Model see more and more cases of inputs and corresponding "right-answer" target outputs. Once trained until its cost has decreased to an acceptably low level, a Model will make only small errors and hence be a good tool for predicting the output \mathbf{y} from a not-yet-seen input \mathbf{x} .

NOTE ON OVER-FITTING

Note that we are using the rather gentle phrase "acceptably low" instead of the stronger word "minimized". This is because when a Supervised Learning Model does achieve the absolutely smallest possible error rate during the "training" process, it will have over-learned: not only will it have learned the overall rules of the game (which are useful when generalizing to new cases), it will have also **memorized various irrelevant idiosyncracies** specific to the training data (which **hurts** its generalization ability). We'll discuss this so-called "**over-fitting**" issue separately.