

Analyse von Mikroplastik in Lebensmitteln und Verpackungen; IGF-Vorhaben 298 EBG "microplastic@food" und geplantes Folgeprojekt "MICROPLEXFOOD"

Dr. Elisabeth Pinter
OFI - österreichisches Forschungsinstitut für Chemie und Technik

OFI – Österreichisches Forschungsinstitut für Chemie und Technik

OFI: unabhängiges Forschungsinstitut -> Schwerpunkt auf Materialanalytik und Bautechnik

Internationale Projekte (ein Auszug)

Projekte: XENOhormone, Migratox Sicherheitsbewertung von Virgin-Kunststoffmaterialien hinsichtlich endokriner Aktivität und direkt-DNA reaktiven Mutagenen

https://www.ofi.at/

Material- und Verpackungsanalytik

> Nachhaltigkeit, Recycling

Projekt: microplastic@food

Material Analyse mittels FTIR-Imaging mit Fokus auf Mikroplastikkontaminationen

Projekte: PolyCycle, SafeCycle

Analyse von rezyklierten Materialien durch die Kombination von chemischer Analyse gemeinsam mit in vitro Bioassays

Vortrag um 11:00 Uhr:

Entwicklung einer Teststrategie zur umfassenden Sicherheitsbewertung von Kunststoffrezyklaten; IGF-Vorhaben 258 EN "PolyCycle" und Nachfolgeprojekt SafeCycle

Definition und Beschaffenheit Mikroplastik

- $-1 \mu m 5 mm = Mikroplastik$
- $-<1 \mu m = Nanoplastik$
- Primäres MP: Als solches produziert (z.B. Peel-Kügelchen, Farben, Dünger)
- Sekundäres MP: Via physikalischer, biologischer, chemischer Degradation größerer Kunststoffeinheiten entstanden

- Beschaffenheit:
 - Heterogen, je nach Ursprung sphärisch, unregelmäßig, faserförmig;
 - Alle Kunststoffarten vertreten (PE, PP, PET, PVC, Gummi,...)

Quellen und Mengen an Mikroplastik

Zahlen für Deutschland

Jährliche Menge an Mikroplastik in Gramm pro Kopf

Reifen	1.228,5
Abfallentsorgung	302,8
Asphalt	228
Kunststoffgranulat	182
Sport- und Spielplätze	131,8
Baustellen	117,1
Schuhsohlen	109
Kunststoffverpackungen	99,1
Fahrbahnmarkierungen	91
Textilwäsche	76,8

Grafik: Forschung & Lehre • Quelle: Fraunhofer • Daten herunterladen • Erstellt mit Datawrapper

Quelle: https://www.forschung-und-lehre.de, Nach einer Statistik des Fraunhofer-Institutes

Vorkommen in Lebensmittel

- In unterschiedlichsten Lebensmitteln wurden Mikroplastikpartikel nachgewiesen,

jedoch sind die Eintragsquellen oft unbekannt.

Vorkommen nachgewiesen in....

...unterschiedlichen Salz-Proben ...

...in Honig und Zucker

...Mineralwasser und Bier...

Karami, A. (2017). The presence of microplastics in commercial salts from different countries. Scientific Reports, 7(1)

Liebezeit, G. (2013). Non-pollen particulates in honey and sugar. Food Additives & Contaminants: Part A, 30(12)

Liebezeit, G. (2014). Synthetic particles as contaminants in German beers. Food Additives & Contaminants: Part A, 31(9)

Schymanski, D. (2018). Analysis of microplastics in water by mirco-Raman spectroscopy: Release of plastic particles from different packaging into mineral water. Water Research 129

Liebmann B., Sexlinger K. (2019), MIKROPLASTIK IN DER UMWELT, Statusbericht 2019

ABER:

- ...Untersuchung in Lebensmitteln extrem schwierig und fehleranfällig durch Matrix, andere Verschmutzungen,...!
- ...Eintrag vor, während und nach der Verarbeitung muss gründlich erhoben werden!

Projekt "microplastic@food"

Forschungspartner:innen

Vereinigungen

microplastic@food

Branchenprojekt zur Methodenentwicklung und Erforschung von Mikroplastik in Lebensmitteln

Projektstart: Juli 2021

Projektende: Juni 2023

Förderung

Über 50 Partner aus der Lebensmittelindustrie und Verpackungsindustrie

Industriepartner:innen

Projektziele "microplastic@food"

Entwicklung einer analytischen Methode für die Detektion und Identifikation von Mikroplastik für die Lebensmittel- und Verpackungsindustrie

Erheben von validierten und zuverlässigen Daten in vier Case Studies:

- I. Verpackungen und Abfüllanlagen
- II. Wasser und gefilterte Getränke
- III. Lebensmitteloberflächen
- IV. Lösliche Lebensmittel

Evaluierung der **Eintragsquellen** und Formulierung von **Gegenmaßnahmen** und Strategien, um die Präsenz von Mikroplastik in Lebensmitteln zu vermeiden

Raman: alpha 300R+ / WITec

FTIR: spotlight 400/PERKIN-ELMER

Arbeitsplan "microplastic@food"

Probenaufarbeitung & Methodenerstellung

Vergleich und Optimierung der Methoden zur Messung der Mikroplastikpartikel

AP4

Automatisierte, computerunterstützte Auswertung

AP7

Erstellung eines Handbuchs zur standardisierten Methodik und eines Katalogs mit Gegenmaßnahmen für Mikroplastik in Lebensmittelund Verpackungen

AP6

Anwendung der entwickelten Methoden in definierten Lebensmittelprodukt-kategorien

AP5

Analyse von
Verpackungsmaterialen und
Füllanlagen hinsichtlich derer
potentieller
Mikroplastikbelastung und
etwaigen Quellen

Verpackungsmaterialien der Industriepartner

- Verpackungsmaterialien als Referenzproben der Industriepartner
 - Analyse der Referenzproben mit FTIR und Raman-Spektroskopie
 - Erstellung von FTIR- und Raman-Datenbanken
 - Auswahl von Materialien für die Herstellung von MP-Partikeln
- → Herstellung von MP-Partikeln von 16 ausgewählten Polymeren (Kryovermahlung) und Aufnahme von FTIR-Images der Referenz-MP-Partikel
- → als Input für Erstellung der automatisierte Datenanalyse-Methode durch Machine Learning

Gesamt: ~300 Proben

Verschiedenfärbige oder unterschiedlich bedruckte, aber von der Materialbasis idente Muster wurden zu Gruppen zusammengefasst

-> 153 Referenzproben

Referenz- und Realproben Analyse im Projekt

MP-Partikel-Referenzproben (künstlich hergestellt / Kryomahlung aus Verpackungsmaterialien der Firmen)

Entwicklung spektroskopische MP-Materialanalytik

Trainingsdaten für automatisierte Datenauswertung

Analytische Methodenentwicklung mit Referenzproben (Jahr 1)

Lebensmittel – MP-Analysen (an Realproben von Firmenpartnern): wäßrigen Getränke, lösliche Lebensmittel, abgespülte Stückgutoberflächen

Einfluß von Abfüllung & Verpackung auf MP-Eintrag

Anwendung auf Realproben; Identifizierung von Quellen und Erarbeitung von Gegenmaßnahmen (Jahr 2)

Erste Realproben für MP-Messungen: Probenvorbereitung

- Verpackungen mit Reinstwasser abspülen
 - Flaschen, Becher, Eimer, Schalen (innere Oberfläche = Kontaktfläche zu Lebensmittel)
 - Schraubverschlüsse, Preforms (alle Oberflächen)
- Flüssigkeitsanalyse : (Mineral)wasser oder klare Getränke aus Glasflaschen, Kunststoffflaschen oder Getränkekartons

Filtration

- Flasche/Behälter schütteln, öffnen und gesamten Inhalt filtrieren
- Filtration der wässrigen Proben bzw. der Abspül-Lösung (wässrige Lösung mit potentiellen MP-Partikel) über Si-Filter bzw. Ano-Disk;
- Nachspülen der Apparatur mit Reinstwasser

Si-Filter, stark beladen

Si-Filter, sauber

Spektroskopie/Mikroskopie

IR-Transmission-Imaging und/oder partikelbasierte Raman-Messungen an Realproben

- 3 Filter / Probentype: Doppelbestimmung -> bei Abweichungen 3. Analyse
- bei jeder Probenserie wird eine Blankprobe (Reinstwasser) mitanalysieren

Spektroskopische Analyse:

- FTIR Mikroskopie/Spektroskopie (Imaging); ~22-28% analysiert-> auf 100% hoc
- Raman-Mikroskopie/Spektroskopie (Partikelbasierte Messung); 100% analysiert

Datenauswertung (automatisiert; mit Visualisierung):

- Purency "Microplastics Finder" (Machine Learning Software)
- Software GEPARD (Gepard-Enabled PARticle Detection): open source

OFI 2022 | www.ofi.at

pro IR-image (~2 x 2 mm) werden ~100.000 Einzelspektren aufgenommen

Beladener Filter mit 4 Messbereichen (25-30% der Fläche) für FTIR –Imaging (Transmission)

Automatisierte Datenauswertung

- Innovative Datenverarbeitungsmethode: Machine Learning Software
- -> Schwierigkeiten für MP-Analytik
- wenn man versucht, die Analysequalität durch Erweiterung der Referenzdatenbank zu erhöhen, steigt damit auch die Rechenzeit enorm an

Datenanalyse

Automatisierte Datenauswertung

Innovative Datenverarbeitungsmethode: Machine Learning Software -> Microplastics Finder

Inzwischen wurde das System mit spektralen Daten (extrahiert aus den IR-Images)

Open Windows: particle editor

IR Spectrum [cm-1]

von MP-Partikeln und Fasern aus 18 Substanzklassen trainiert:

Ringversuch / Methodenvergleich

Konkrete Zielsetzung:

Entwicklung einer validen Methodik von MP-Quantifizierungsverfahren (für Lebensmittelproben) Überprüfung und Sicherstellung der Interkomparabilität

unterschiedlicher Analyseverfahren

(μRaman, μFTIR) mit je

unterschiedlicher Auswertesoftware

(Gepard/ParticleScout; Purency/Microplastics Finder) um robuste verfahrensunabhängige Ergebnisse zu generieren

-> Ermittlung der analytischen Schwankungs-breite als Grundlage für die realen Lebensmittel-MP-Messungen

Methodenvergleich Spektroskopie und interner "Ringversuch":

OFI: FTIR Imaging / Perkin Elmer FTIR-Mikroskop / Transmission

IPF: partikelbasierte Raman-Messung / Witec

IPF: partikelbasierte FTIR-Messung und Imaging /

Perkin Elmer

UBT: FTIR Imaging / Bruker FTIR Mikroskope

Immobilisierter Ringversuch (in drei Laboratorien)

Bilder: IPF, UBT, OFI

Fazit:

- Rein analytische Streuung: 6% relative Standardabweichung
- → Geringe Schwankungen zw. den 3 Analyseinstituten/spektroskopischen Techniken!
- Gewisse Polymere führen zu höherer Ergebnisvarianz (z.B. PA)
- → Verbesserung der spektroskopischen Erkennung nötig!

Beispiel: Lichtmikroskopisches Bild des Filteraus-schnitts, von dem ein IR-Image gemessen wurde; überlagert mit den Ergebnissen des Machine – Learning Programs "Microplastics Finder"/Purency

Nächste Schritte

Einfluss Verpackung und Abfüllsysteme

- Probenahme in Abfüll- und Verpackungsanlagen
- Analyse der etwaigen MP-Kontaminationen der Produkten in unterschiedlichen Verarbeitungsschritten
- Identifizierung von potentiellen Quellen der Entstehung oder Einbringung
- Erarbeitung eines Katalogs mit "Gegenmaßnahmen für Mikroplastik in Lebensmitteln, Getränken und Verpackungen"

Case Studies anhand definierter Lebensmittelproduktkategorien

- Wasser und filtrierte Getränke
- Lösliche Lebensmittel (Salz, Zucker,....)
- Abspülen von Lebensmitteloberflächen (Fleisch, Hartkäse, ...)

Folgeprojekt

microplastic@food

Branchenprojekt zur Methodenentwicklung und Erforschung von Mikroplastik in Lebensmitteln

Projektstart: Juli 2021

Projektende: Juni 2023

Geplantes Folgeprojekt:

MICROPLEXFOOD

Branchenprojekt zur Erforschung der Präsenz/Absenz von Mikroplastik in komplexen Lebensmittelmatrizes und die Ermittlung potenzieller Eintragsquellen

Projektstart: Mitte/Ende 2023

Dauer: 2 Jahre

Erkenntnisse microplastic@food -> MICROPLEXFOOD

Hintergrund:

- Im Projekt "microplastic@food" wurden bereits Methoden entwickelt und erste Erkenntnisse über einige Produktgruppen gewonnen.
- ABER: für den Start wurden eher "einfachere" Lebensmittel, wie Mineralwässer, lösliche Lebensmittel und Lebensmitteloberflächen mit Abspülung betrachtet.

Wie ist die Methodik anwendbar für Lebensmittel, die komplexer sind (=aufgeschlossen werden müssen)? oder Partikel enthalten, die mit der Messung interferieren könnten (=Lebensmittelpartikel werden fälschlich als Mikroplastik klassifiziert)?

Auflösen der Lebensmittelmatrix

Projekt "MICROPLEXFOOD" (mp2)

Forschungspartner:innen

Folgeprojekt:

MICROPLEXFOOD

Branchenprojekt zur Erforschung der Präsenz/Absenz von Mikroplastik in komplexen Lebensmittelmatrizes und die Ermittlung potenzieller Eintragsquellen

Collective Research Networking

Förderung

Projektstart: Mitte/Ende 2023

Dauer: 2 Jahre

Lebensmittelindustrie Verpackungsindustrie

Industriepartner:innen

Vereinigungen

Ziele "MICROPLEXFOOD" (mp2)

Analyse unterschiedlichster Produktgruppen

 Analyse der Produkte der Cases, sowie der Prozessumgebung und der Verpackungen, geben Rückschlüsse über etwaige Quellen und Eintrag

Erweiterung der Methodik zur Analyse komplexer Lebensmittel

 Einsatz von unterschiedlichen enzymatischen und, wenn notwendig, von chemischen Aufschlussmethoden, innerhalb der definierten Case Studies

Weiterentwicklung der spektroskopischen Methodik

 Um die Abgrenzung der Mikroplastikpartikeln von der Probenmatrix zu verbessern =Gezielte Unterscheidung zwischen z.B. Schwebeteilchen von Mikroplastikpartikeln

Erweiterung der Guideline und Erstellung des Maßnahmenkatalogs

Vorläufiger Arbeitsplan "MICROPLEXFOOD" (mp2)

Projekt "MICROPLEXFOOD" (mp2)

Case I: Trübe Getränke und Fruchtsäfte

 Lebensmittel mit Pektinen, Zellulose, Stärke
 Enthalten Schwebeteilchen, die die Analysen erschweren können und Eintragungsquellen im Prozess

Case II: Milchprodukte

= Lebensmittel mit hohem Wasser-, Proteinund Zuckergehalt

Einfluss von Partikeln in den Produkten, die die Analysen erschweren (=Unterscheidung z.B.

Fruchtjoghurtpartikel von Mikroplastik) und Eintragungsquellen im Prozess

Case III: Fisch und verarbeitete Fleischprodukte

= Lebensmittel mit hohem Protein und/oder Fettgehalt

Potentielle Eintragungsquellen: Verarbeitung (z.B. Maschinen, Verarbeitungshilfen, etc.) und Wasser, in dem sich der Fisch befindet

Weiters:

Vergleichsmessungen mit Referenzmustern (Verpackungen), Wasser und klare Getränke

Teilnahme "MICROPLEXFOOD" (mp2)

- Vorteile für Industriepartner:innen:
 - Erkenntnisse über die unterschiedlichen, potentiellen Eintragungsquellen von Mikroplastik in Lebensmitteln
 - Fundierte Ergebnisse über die Präsenz/Abstinenz von Mikroplastik in unterschiedlichen Lebensmittelproduktkategorien
 - Qualitative und quantitative Ergebnisse über Mikroplastikpartikel
 - Maßnahmenvorschläge, um die Mikroplastikbelastung zu reduzieren

Kontakt

Dr. Elisabeth Pinter

t: +43 1 798 16 01 – 274 gabriele.eder@ofi.at

OFI
1030 Wien, Franz-Grill-Straße 5, Objekt 213
office@ofi.at | www.ofi.at

