Exercici 2 (3 punts) (Agenda)

A la vostra agenda teniu una llista L de totes les tasques que heu de completar en el dia de avui. Per a cada tasca $i \in L$ s'especifica la durada $d_i \in \mathbb{N}$ que indica el temps necessari per a completar-la i un factor de penalització $p_i \in \mathbb{Z}^+$ que n'agreuja el retard. Heu de determinar en quin ordre realitzar totes les tasques per obtenir el resultat que menys penalització total acumuli.

Tingueu en compte que:

- en un instant de temps només podeu realitzar una única tasca,
- una vegada comenceu a fer una tasca, heu de continuar-la fins a finalitzar-la, i
- s'han de completar totes les tasques.

El criteri d'optimització és la penalització total que s'acumula. La penalització real associada a una tasca $i \in L$ és el temps de finalització t_i de la seva realització, multiplicat per la seva penalització p_i . El temps de finalització t_i es correspon al temps transcorregut des de l'inici de la jornada laboral (és a dir, des de l'instant de temps 0) fins al moment en que s'ha finalitzat la tasca. 1

Considereu l'algorisme voraç que programa les tasques en ordre decreixent de factor de penalització p_i . Determineu si aquest algoritme resol el problema. En cas que no ho faci, proporcioneu un algorisme (tant eficient com pogueu) per resoldre'l.

Solució

El algoritmo propuesto no es correcto. Para ello consideramos la siguiente entrada con dos tareas: $d_1 = 4, p_1 = 2, d_2 = 1, p_2 = 1$.

Si las realizamos en orden decreciente de penalización el coste es $d_1p_1 + (d_1 + d_2)p_2 = 8+5 = 13$. Si las realizamos en el orden inverso el coste es $d_2p_2 + (d_2+d_1)p_1 = 1+10 = 11$. Por tanto el algoritmo propuesto no da la mejor solución posible.

Para resolver el problema ordenaremos las tareas en orden decreciente de p_i/d_i . El coste del algoritmo corresponde al de obtener la ordenación y es $O(n \log n)$.

Para demostrar que es correcto utilizaré un algoritmo de intercambio. Supongamos que en la ordenación óptima dos tareas que se realizan consecutivamente i y i+1 no cumplen el criterio propuesto. Es decir $p_i/d_i < p_{i+1}/d_{i+1}$.

Sea T el tiempo en el que se inicia la tarea i y M el coste debido a las tareas que no son ni i ni i+1. El coste de la solución óptima que estamos analizando es

$$M + (T + d_i)p_i + (T + d_i + d_{i+1})p_{i+1}$$
.

Si intercambiamos la posiciones de i e i+1 el coste debido a las otras tarea y el tiempo de inicio de t_{i+1} no cambia. Así en este nuevo orden de realización el coste es

$$M + (T + d_{i+1})p_{i+1} + (T + d_{i+1} + d_i)p_i$$
.

¹Observeu que, segons les restriccions del problema, la realització d'una tasca $i \in L$ amb temps de finalització t_i haurà començat a l'instant $t_i - d_i$.

Si calculamos la diferencia entre los dos tenemos:

$$\begin{split} M + (T + d_i)p_i + (T + d_i + d_{i+1})p_{i+1} - [M + (T + d_{i+1})p_{i+1} + (T + d_{i+1} + d_i)p_i] \\ = & d_ip_i + (d_i + d_{i+1})p_{i+1} - d_{i+1}p_{i+1} - (d_{i+1} + d_i)p_i \\ = & d_ip_{i+1} - d_{i+1}p_i \\ < & 0 \end{split}$$

ya que $p_i/d_i < p_{i+1}/d_{i+1}$. Y llegamos a una contradicción con la hipótesis de que la ordenación era óptima.