#### Méthodes de Monte Carlo avancées

#### G. Perrin

guillaume.perrin@univ-eiffel.fr

Année 2022-2023















## Introduction - Schéma général

G. Perrin



2 / 28

### Plan de la séance

1 Méthode de Monte Carlo - rappels

Méthodes de réduction de variance

3 Optimisation de plans d'expériences

# Monte Carlo - Objectif

La méthode de Monte Carlo permet le calcul d'une intégrale d-dimensionnelle I à partir de son interprétation sous la forme d'une espérance :

$$I = \mathbb{E}(\psi(Y)) = \mathbb{E}(\psi(g(X))) = \int_{\mathbb{R}^d} \psi(g(x)) f_X(x) dx$$

où Y = g(X) et  $f_X$  est la distribution jointe du vecteur X.

#### Quelques exemples

- $\psi(Y) = Y \ (\leftrightarrow \text{ calcul de la moyenne de } Y)$ ,
- $\psi(Y) = (Y \mathbb{E}(Y))^2 \ (\leftrightarrow \text{ calcul de la variance de } Y)$ ,
- $\psi(Y) = \mathbf{1}_{[g_0, +\infty[}(Y) \ (\leftrightarrow \text{ calcule de la probabilité de dépasser le seuil } g_0).$

# Monte Carlo - principe

On cherche à estimer :

$$I = \mathbb{E}(\psi(Y)) = \mathbb{E}(\psi(g(X))) = \int_{\mathbb{R}^d} \psi(g(X)) f_X(X) dX$$

 On tire un n-échantillon de réalisations indépendantes de X de pdf jointe f<sub>X</sub> :

$$(X^{(i)})_{i=1,\cdots,n}=(X_1^{(i)},\cdots,X_d^{(i)})_{i=1,\cdots,n}$$

• Estimateur Monte Carlo de I :  $\hat{\mathbf{I}}_n = \frac{1}{n} \sum_{i=1}^n \psi(g(X^{(i)}))$ .

#### Outil universel!

Méthode générale de propagation des incertitudes, applicable à toutes quantités d'intérêt (moments, probabilité de dépasser un seuil) . . . à un coût de calcul plus ou moins abordable.

# Monte Carlo - Propriétés de l'estimateur

Estimateur Monte Carlo de I :  $\hat{\mathbf{I}}_n = \frac{1}{n} \sum_{i=1}^n g(X^{(i)})$ .

- Estimateur non biaisé :  $\mathbb{E}(\hat{\mathbf{I}}_n) = \mathbf{I} \ \forall \ n$
- Convergence :  $\hat{\mathbf{I}}_n \stackrel{n \to \infty}{\longrightarrow} \mathbf{I}$  avec probabilité 1 (loi des grands nombres)
- Variance de l'estimateur  $\hat{I}_n$  (i.e. **précision**) :

$$\operatorname{\mathbb{V}ar}(\hat{\mathbf{I}}_n) = \mathbb{E}\left((\hat{\mathbf{I}}_n - \mathbf{I})^2\right) = \frac{1}{n}\operatorname{\mathbb{V}ar}\left(g(X)\right)$$

Théorème central Limite (TCL) :

$$\sqrt{\frac{n}{\mathbb{V}\mathrm{ar}\left(g(X)\right)}}\left(\hat{\mathrm{I}}_{n}-\mathrm{I}\right)\overset{\mathcal{L}}{\longrightarrow}\mathcal{N}(0,1).$$



## Monte Carlo - Propriétés de l'estimateur

#### Intervalle de confiance asymptotique :

$$\mathbb{P}\left(q_{\alpha/2} \leq \sqrt{\frac{n}{\widehat{\mathbb{V}\mathrm{ar}}\left(g(X)\right)}}\left(\widehat{\mathbf{I}}_n - \mathbf{I}\right) \leq q_{1-\alpha/2}\right) = 1 - \alpha,$$

avec  $\widehat{\mathbb{V}\mathrm{ar}}(g(X))$  un estimateur de  $\mathbb{V}\mathrm{ar}(g(X))$ .



$$q_{95\%} \simeq 1.64 \mid q_{97.5\%} \simeq 1.96 \mid q_{99.5\%} \simeq 2.58$$

Attention! Il n'existe pas d'intervalles contenant I avec une probabilité égale à 1, mais des IC contenant I avec une probabilité proche de 1.

### Monte Carlo accéléré

$$\hat{\mathbf{I}}_n = \frac{1}{n} \sum_{i=1}^n g(X^{(i)}), \quad \mathbb{V}\mathrm{ar}(\hat{\mathbf{I}}_n) = \frac{1}{n} \mathbb{V}\mathrm{ar}(g(X)).$$

#### Objectif : réduire la variance de l'estimateur de MC classique.

- Les méthodes dites de réduction de variance ont pour but de réduire la constante, en restant proches de l'esprit Monte Carlo.
- Les méthodes de quasi-Monte Carlo ont pour but de changer le 1/n.

### Plan de la séance

1 Méthode de Monte Carlo - rappels

Méthodes de réduction de variance

Optimisation de plans d'expériences

# Méthodes de réduction de variance - Quelques exemples

#### Principe de base

Ces méthodes sont toutes basées sur une réécriture judicieuse de l'intégrale d-dimensionnelle I (en apportant de l'information supplémentaire).

- Monte Carlo conditionnel : on décompose X en deux sous-vecteurs à partir desquels on peut introduire une espérance conditionnelle sachant l'autre et réduire la dimension de l'intégrale.
- **Tirage d'importance** : on échantillonne *X* suivant une densité *biaisée* favorisant les tirages dans la zone d'importance.
- Variable de contrôle : on utilise un modèle réduit que l'on connait parfaitement, au maximum.
- **Statification**: on force l'échantillon à respecter exactement des proportions définies dans chaque strate d'un espace.
- . . . .

# Monte Carlo conditionnel (ou réduction de la dimension)

ullet Décomposition (si possible) de X en deux sous vecteurs  $X_1$  et  $X_2$  :

$$I = \int \int g(x_1, x_2) f_X(x_1, x_2) dx_1 dx_2$$
  
= 
$$\int \mathbb{E}_{X_2} [g(X_1, X_2) | X_1 = x_1] f_{X_1}(x_1) dx_1,$$

#### Estimation

- $\hat{\mathbf{I}}_{n}^{cond} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}_{X_{2}} \left[ g(X_{1}^{(i)}, X_{2}) | X_{1}^{(i)} \right], X_{1}^{(i)} \text{ v.a.i.id} \sim f_{X_{1}}$
- $\operatorname{\mathbb{V}ar}\left(\hat{\mathbf{I}}_{n}^{cond}\right) = \frac{1}{n} \operatorname{\mathbb{V}ar}\left(\mathbb{E}_{X_{2}}\left[g(X_{1}, X_{2}) | X_{1}\right]\right)$

#### Résultats

- ullet Une réduction de variance garantie :  $\mathbb{V}\mathrm{ar}\left(\hat{\mathrm{I}}_{n}^{cond}\right) \leq \mathbb{V}\mathrm{ar}\left(\hat{\mathrm{I}}_{n}\right)$
- Facile à mettre en œuvre si une variable de fonction de répartition connue (ou un groupe de variables) est indépendante des autres variables.

Isolement d'une variable de suppression de la fonction indicatrice :

$$P = \mathbb{P}_{X,Z}(g(X) \ge Z)$$

$$= \int_{\mathcal{X}} \int_{\mathcal{Z}} \mathbf{1}_{z \le g(x)}(x,z) dz dx$$

$$= \int_{\mathcal{X}} \mathbb{P}_{Z}(Z \le g(X)) dx$$

$$= \mathbb{E}_{X} (F_{Z}(g(X)))$$

D'où : 
$$\hat{P} = \frac{1}{n} \sum_{i=1}^{n} F_Z(g(X^{(i)}))$$
  
où  $X^{(i)} \sim f_X$  et  $F_Z$  cdf de  $Z$ .



# Tirage d'importance (ou échantillonnage préférentiel)

• **Principe**: lorsque l'on sait que g(X) est surtout sensible à certaines valeurs de X, au lieu de tirer les  $X^{(i)}$  selon leur densité originale  $f_X(x)$ , on les tire selon une densité "biaisée"  $\tilde{f}_X(x)$  qui favorise les valeurs de X dans la zone d'importance :  $I = \mathbb{E}_{f_X}[g(X)] =$ 

$$\int g(x)f_X(x)dx = \int g(x)\frac{f_X(x)}{\tilde{f}_X(x)}\tilde{f}_X(x)dx = \mathbb{E}_{\tilde{f}_X}\left[g(X)\frac{f_X(X)}{\tilde{f}_X(X)}\right]$$

ullet Estimateur : avec  $(X^{(i)})_{i=1,\dots,n}$  tiré selon  $ilde{f}_{\mathsf{X}}$ ,

$$\hat{\mathbf{I}}_{n}^{\mathrm{TI}} = \frac{1}{n} \sum_{i=1}^{n} g(X^{(i)}) \frac{f_{X}(X^{(i)})}{\tilde{f}_{X}(X^{(i)})} 
\mathbb{V}\mathrm{ar}\left(\hat{\mathbf{I}}_{n}^{\mathrm{TI}}\right) = \frac{1}{n} \mathbb{V}\mathrm{ar}_{\tilde{f}_{X}}\left(g(X) \frac{f_{X}(X)}{\tilde{f}_{X}(X)}\right)$$

• Résultats : la réduction de variance (non garantie) dépend du choix de la densité d'importance  $\tilde{f}_X$ .

# Tirage d'importance - Propriétés

- Si  $\mathsf{Supp}(f_X) \subset \mathsf{Supp}(\tilde{f}_X)$ , l'estimateur  $\hat{\mathbf{I}}_n^{TI}$  est sans biais.
- ullet  $ilde f_X$  facile à manipuler :  $X \sim ilde f_X$  simple à générer et  $rac{f_X}{ ilde f_X}$  facile à calculer.
- ullet Un mauvais choix de  $ilde{f}_X$  peut augmenter la variance
- La densité optimale est :  $f^*(x) = \frac{|g(x)|f_X(x)}{\int |g(y)|f_X(y)dy}$ , où  $\int |g(y)|f_X(y)dy$  est malheureusement aussi difficile à évaluer que I...
- $\Rightarrow$  Techniques adaptatives afin que  $\tilde{f}_X$  s'approche de  $f^*$ .

# Tirage d'importance - illustration en fiabilité

- Favoriser les tirages dans le domaine de défaillance.
- Pousser vers les défaillances, mais sans trop forcer car dans ce cas la variance de l'estimateur deviendrait trop importante...



⇒ Utiliser d'autres lois que les lois initiales afin de concentrer les tirages dans les régions de l'espace les plus intéressantes.

# Stratification (ou échantillonnage stratifié)

- Partition du support de  $X: \mathcal{X} = \bigcup_{i=1}^{m} \mathcal{X}_i, \ \mathcal{X}_i \bigcap \mathcal{X}_j = \emptyset, \ i \neq j$
- On force l'échantillon à respecter exactement les proportions théoriques dans certaines strates.
- Reécriture de I (formule des probabilités totale) :

$$I = \mathbb{E}(g(X)) = \sum_{i=1}^{m} \underbrace{\mathbb{E}(g(X)|X \in \mathcal{X}_i)}_{J_i} \underbrace{P(X \in \mathcal{X}_i)}_{p_i}$$

- $J_i = \int_{\mathbb{R}^d} \mathbf{1}_{x \in \mathcal{X}_i} \frac{g(x)}{p_i} f_X(x) dx$  estimée par Monte Carlo avec  $n_i$  simulations :  $\hat{J}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} g(X_{(i)}^{(j)}) \quad X_{(i)} \sim \mathcal{L}(X|X \in \mathcal{X}_i)$
- I:  $\hat{\mathbf{I}}_n^S = \sum_{i=1}^m p_i \hat{\mathbf{J}}_i$ ,  $\operatorname{Var}\left(\hat{\mathbf{I}}_n^S\right) = \sum_{i=1}^m \frac{p_i^2}{n_i} \sigma_i^2$ ,  $\sigma_i^2 = \operatorname{Var}\left(g(X)|X \in \mathcal{X}_i\right)$ .

#### Stratification

 La réduction (non garantie) de variance (par rapport à MC) dépend du choix des strates et du nombre de tirages dans chacune d'entre elles.

## Choix des allocation $n_i$ $(n = \sum_{i=1}^m n_i)$

- Stratification proportionnelle  $n_i = np_i : \mathbb{V}\mathrm{ar}\left(\hat{I}_n^{SP}\right) \leq \mathbb{V}\mathrm{ar}\left(\hat{I}_n^{MC}\right)$ .
- Stratification optimale

Trouver 
$$(n_i^*)_{i=1,\dots,m}$$
 qui minimise  $\sum_{i=1}^m \frac{p_i^2}{n_i} \sigma_i^2$  avec  $n = \sum_{i=1}^m n_i$ 

La solution est donnée par :  $n_i^* = n \frac{p_i \sigma_i}{\sum_{j=1}^m p_j \sigma_j}$ 

On a alors : 
$$\mathbb{V}\mathrm{ar}\left(\hat{I}_{n}^{SO}\right) \leq \mathbb{V}\mathrm{ar}\left(\hat{I}_{n}^{SP}\right) \leq \mathbb{V}\mathrm{ar}\left(\hat{I}_{n}^{MC}\right)$$
.

En pratique,  $\sigma_i$  n'est pas connu et donc  $(n_i^*)_{i=1,\dots,m}$  incalculables

→ techniques adaptatives.



### Stratification - illustration en fiabilité

• 
$$P = P(g(X) \in D) = \mathbb{E}\left(\mathbf{1}_{G(x) \le 0}\right) = \int_{\mathbb{R}^d} \mathbf{1}_{G(x) \le 0}(x) f_X(x) dx$$

• Estimateur :

$$\begin{split} \hat{\mathbf{P}}^S &= \sum_{i=1}^m p_i \hat{\mathbf{J}}_i \\ \text{avec} &: \hat{\mathbf{J}}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} \mathbf{1}_{G(X_{(i)}^{(j)}) \leq 0} \\ X_{(i)} &\sim \mathcal{L}(X | X \in \mathcal{X}_i) \end{split}$$

- En général les strates sont choisies comme des pavés.
- Favoriser les tirages dans le domaine de défaillance.



# Variables de contrôle - Principe

- Utilisation dans le cas où on dispose d'un modèle réduit  $g_r$  de g.
- ullet On suppose que l'on connait  $\mathrm{I}_r=\mathbb{E}[g_r(X)]$
- I peut se reécrire (b > 0) :  $I = \mathbb{E}(g(X) bg_r(X)) + b\mathbb{E}(g_r(X))$ .

#### Estimation

- Estimateur de I :  $\hat{\mathbf{I}}_n^{\text{VC}} = \frac{1}{n} \sum_{i=1}^n \left( g(X^{(i)}) bg_r(X^{(i)}) \right) + b\mathbf{I}_r$
- Et sa variance :  $\mathbb{V}\mathrm{ar}\left(\hat{\mathbf{I}}_n^{\mathrm{VC}}\right) = \frac{1}{n}\mathbb{V}\mathrm{ar}\left(g(X) bg_r(X)\right)$

#### Resultats

- Peut beaucoup réduire la variance.
- Le b optimal est donné par :  $b^* = \frac{\operatorname{cov}(g(X), g_r(X))}{\operatorname{\mathbb{V}ar}(g_r(X))}$

Dans ce cas, on a : 
$$\mathbb{V}\mathrm{ar}\left(\hat{\mathbf{I}}_{n}^{\mathrm{VC}}\right) = (1-\rho_{gg_{r}}^{2})\mathbb{V}\mathrm{ar}\left(\hat{\mathbf{I}}_{n}\right)$$
. où  $\rho_{gg_{r}}$  est le coefficient de corrélation entre  $g$  et  $g_{r}$ .

(OI) F (BI) (E) (E) E \*) Q(\*

### Synthèse des méthodes de réduction de variance

- Les méthodes, complémentaires plus que concurrentielles, peuvent être combinées entre-elles (en particulier pour le MC conditionnel).
- Les méthodes de Monte Carlo peuvent être très gourmandes en nombre de simulations.
- Le gain en nombre de simulations n'est pas toujours garanti (stratification, tirage d'importance).
- Ces techniques nécessitent un choix réfléchi des paramètres les régissant (le choix des strates, la densité d'importance).
- Le calcul des variances des estimateurs de I est indispensable.

### Plan de la séance

1 Méthode de Monte Carlo - rappels

Méthodes de réduction de variance

3 Optimisation de plans d'expériences

### Monte Carlo accéléré

$$\hat{\mathbf{I}}_n = \frac{1}{n} \sum_{i=1}^n g(X^{(i)}), \quad \mathbb{V}\mathrm{ar}(\hat{\mathbf{I}}_n) = \frac{1}{n} \mathbb{V}\mathrm{ar}(g(X)).$$

#### Objectif : réduire la variance de l'estimateur de MC classique.

- Les méthodes dites de réduction de variance ont pour but de réduire la constante, en restant proches de l'esprit Monte Carlo.
- Les méthodes de quasi-Monte Carlo ont pour but de changer le 1/n.

# Méthodes de quasi-Monte Carlo - principe

- On cherche à calculer :  $I = \mathbb{E}(g(X)) = \int_{[0,1[^d} g(x) dx$ .
- Estimateur quasi-Monte Carlo de  $I : \tilde{I}_n = \frac{1}{n} \sum_{i=1}^n g(\widetilde{X}^{(i)})$  avec  $D_n = (\widetilde{X}^{(i)})_{i=1,\dots,n}$  un échantillon non-aléatoire de points tirés selon une suite à discrépance faible.
- Propriété générale (inégalité de Koksma-Hlawka) :

$$arepsilon := \left| \operatorname{I} - \widetilde{\operatorname{I}}_n \right| \leq V\left( g 
ight) imes \operatorname{\mathsf{discrepance}}(D_n),$$

avec V(g) une constante contrôlant les variations de g (borne de Hardy-Krause) et discrepance $(D_n)$  la **discrépance** de  $D_n$ .

• Avec une suite à discrépance faible :  $\varepsilon = O\left(\frac{(\ln n)^d}{n}\right)$ .

- La discrépance est un critère statistique qui mesure la déviation maximale entre la répartition des points de l'échantillon et une répartition uniforme.
- Interprétation géométrique : comparaison entre le volume de sous-domaines et le nombre de points contenus dans ces domaines.

$$Q(t) \subset \mathcal{X} = [0,1[^d,\ Q(t) = [0,t_1[ imes[0,t_2[ imes \dots imes [0,t_d[$$
  $ext{discrepance(plan)} = \sup_{Q(t) \in [0,1[^d]} \left| rac{n_{Q(t)}}{n} - \prod_{i=1}^d t_i 
ight|$ 



- Disprépance faible : bonne répartition uniforme des points dans l'espace
- En pratique : on choisit une discrépance avec une norme L<sup>2</sup> pour avoir une formule analytique.



- Il existe de nombreuses suites à faible discrépance (en général déterministes): suite de Halton, suite de Van der Corput, suite de Sobol ...
- On parle de méthodes de quasi-Monte-Carlo ⇒ "bon" remplissage de l'espace, rapide à construire, flexible (séquentialité)...
- Mêmes cadres d'utilisation que les méthodes de Monte Carlo (calcul d'intégrale) pour accélérer la convergence.







## Suites à discrépances faibles - réduction de la variance

#### Monte Carlo

- $\hat{\mathbf{I}}_n = \frac{1}{n} \sum_{i=1}^n g(X^{(i)}), (X^{(i)})_{i=1,\dots,n}$  échantillon **aléatoire (i.i.d)**. Erreur d'estimation :  $\varepsilon = O\left(\frac{1}{\sqrt{n}}\right)$  (  $\mathbb{V}\mathrm{ar}(\hat{\mathbf{I}}_n) = \frac{1}{n}\mathbb{V}\mathrm{ar}(g(X))$ ).

#### quasi-Monte Carlo

- $\widetilde{I}_n = \frac{1}{n} \sum_{i=1}^n g(\widetilde{X}^{(i)}), (\widetilde{X}^{(i)})_{i=1,\dots,n}$  issu d'une suite à faible discrépance.
- Erreur d'estimation :  $\varepsilon = O\left(\frac{(\ln n)^d}{n}\right)$ .





# Suites à discrépances faibles - Exemple et pathologies

Suite de Sobol (n = 150, d = 2)



Projection 2D Sobol (n = 150, d = 10)



Suite de Halton (n = 150, d = 2)



Projection 2D Halton (n=150, d=10)



### Plan de la séance

1 Méthode de Monte Carlo - rappels

Méthodes de réduction de variance

3 Optimisation de plans d'expériences