

Grundzüge der Informatik 1

Vorlesung 8

Überblick

Überblick

- Wiederholung
 - Integer Multiplikation
 - Matrix Multiplikation (Anfang)
- Matrix Multiplikation
 - Verbesserter Algorithmus
- Auflösen von Rekursionsgleichungen
 - "Master Theorem"

Teile & Herrsche Algorithmen

Wodurch unterscheiden sich Teile & Herrsche Algorithmen?

- Die Anzahl der Teilprobleme
- Die Größe der Teilprobleme
- Den Algorithmus für das Zusammensetzen der Teilprobleme
- Den Rekursionsabbruch

Wann lohnt sich Teile & Herrsche?

Kann durch Laufzeitanalyse vorhergesagt werden

Laufzeiten der Form

$$T(n) = a T(n/b) + f(n)$$

$$(und T(1) = O(1))$$

Laufzeiten der Form

$$T(n) = aT(n/b) + f(n)$$

$$(und T(1) = O(1))$$

Laufzeiten der Form

$$T(n) = a T(n/b) + f(n)$$

Anzahl Unterprobleme

$$(und T(1) = O(1))$$

Laufzeiten der Form

(und
$$T(1) = O(1)$$
) Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

Laufzeiten der Form

(und T(1) = O(1)) Größe der Unterprobleme (bestimmt Höhe des Rekursionsbaums)

Teile & Herrsche Prinzip - Multiplikation großer Zahlen

Integer Multiplikation

- Problem: Multipliziere zwei n-Ziffer Integer
- Eingabe: zwei n-Ziffer Integer X und Y
- Ausgabe: 2n-Ziffer Integer Z mit Z=XY

Darstellung im Rechner

- Wir nehmen an, dass jede Ziffer eine Speicherzelle benötigt!
- Wir können zwei n-Ziffer Integer in ⊕(n) Zeit addieren
- Wir können ein n-Ziffer Integer mit Zehnerpotenz 10^k in Θ(n+k) Zeit multiplizieren

Teile & Herrsche Prinzip - Multiplikation großer Zahlen

Laufzeitanalyse

- Verbesserte Integer Multiplikation

Verbesserte Integer Multiplikation

Größe der Unterprobleme (und
$$T(1) = O(1)$$
) (bestimmt Höhe des Rekursionsbaums)

Laufzeitanalyse – grafische Darstellung

- Verbesserte Integer Multiplikation

- Auflösen von T(n) ≤ 3 T(n/2) + cn (Intuition)
- T(1) = c

Laufzeitanalyse – grafische Darstellung

- Verbesserte Integer Multiplikation

- Auflösen von T(n) ≤ 3 T(n/2) + cn (Intuition)
- T(1) = c

- Matrixmultiplikation

Matrixmultiplikation

Problem: Berechne das Produkt zweier n×n-Matrizen

Eingabe: Matrizen X, Y

Ausgabe: Matrix Z = X · Y

- Matrixmultiplikation

Matrixmultiplikation

$$\begin{array}{c|ccc} \bullet & B \\ \hline C & D \end{array}) \begin{array}{c|ccc} \bullet & F \\ \hline G & H \end{array}) = \begin{pmatrix} AE + BG & AF + BH \\ CE + DG & CF + DH \end{pmatrix}$$

Laufzeit

- 8 Multiplikationen von n/2×n/2 Matrizen
- 4 Additionen von n/2 ×n/2 Matrizen

$$T(n) \le \begin{cases} 8T\left(\frac{n}{2}\right) + cn^2 & \text{, für } n > 1\\ c & \text{, für } n = 1 \end{cases}$$

- Matrixmultiplikation

- Auflösen von $T(n) \le 8 T(n/2) + cn^2$ (Intuition)
- T(1) = c

Matrixmultiplikation

Matrixmultiplikation

Trick wie bei Integer Multiplikation

$$P_1 = A \cdot (F-H)$$

•
$$P_1 = A \cdot (F-H)$$
 $P_5 = (A+D) \cdot (E+H)$

•
$$P_2 = (A+B) \cdot H$$

•
$$P_2 = (A+B) \cdot H$$
 $P_6 = (B-D) \cdot (G+H)$

$$P_3 = (C+D) \cdot E$$

•
$$P_3 = (C+D) \cdot E$$
 $P_7 = (A-C) \cdot (E+F)$

$$P_4 = D \cdot (G-E)$$

AE + BG =
$$P_4 + P_5 + P_6 - P_2$$

AF + BH = $P_1 + P_2$
CE + DG = $P_3 + P_4$
AF + BH = $P_1 + P_5 - P_3 - P_7$

Py+ Rut PMultiplikationenitii)+ (A+D). (E+H)+(B-D). (G+H)-(A+D).H

- Matrixmultiplikation

- Auflösen von $T(n) \le 7 T(n/2) + cn^2$ (Intuition)
- T(1) = c

- Matrixmultiplikation

Satz 8.1 (Algorithmus von Strassen)

 Zwei nxn Matrizen können mit Hilfe des Teile & Herrsche Verfahrens in O(n^{2.81}) Zeit multipliziert werden.

Beweis

Laufzeit und Korrektheit können leicht per Induktion gezeigt werden.

- Auflösen von Rekursionsgleichungen

Rekursionsgleichung:

Sei T(n) = a T(n/b) + f(n) und T(1) = 1

- Auflösen von Rekursionsgleichungen

Rekursionsgleichung:

Sei T(n) = a T(n/b) + f(n) und T(1) = 1

- Auflösen von Rekursionsgleichungen

Rekursionsgleichung:

• Setze $f(n) = \gamma a f(n/b)$

- Auflösen von Rekursionsgleichungen

Rekursionsgleichung:

Setze $f(n) = \gamma$ a f(n/b)

f(n) a f(n/b)n/b n/b n/b n/b Höhe h=log_b n a^h $O(f(n) \log n)$ Universität

- Auflösen von Rekursionsgleichungen

Rekursionsgleichung:

• Setze $f(n) = \gamma$ a f(n/b)

Fall 1: Konstante $\gamma > 1$

Universität

- Auflösen von Rekursionsgleichungen

Rekursionsgleichung:

• Setze $f(n) = \gamma$ a f(n/b)

Fall 1: Konstante γ <1

- Auflösen von Rekursionen

Satz 8.2

Seien a ≥ 1 und b ≥ 2 ganzzahlige Konstanten und f: N₀→N₀.

• Sei
$$T(n) \le \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & \text{, für } n > 1 \\ f(1) & \text{, für } n = 1 \end{cases}$$

- Dann gilt:
 - (1) wenn f(n) = a f(n/b), dann ist $T(n) = O(f(n) \log n)$
 - (2) wenn $f(n) \ge \gamma$ a f(n/b) für eine Konstante $\gamma > 1$, dann gilt T(n) = O(f(n))
 - (3) wenn $f(n) \le \gamma$ a f(n/b) für eine Konstante $0 < \gamma < 1$, dann gilt $T(n) = O(a^{\log_b n})$

- Auflösen von Rekursionen

Beweis:

(1) wenn
$$f(n) = a f(n/b)$$
, dann ist $T(n) = O(f(n) \log n)$ Dy: My Sat
Am.: n'ut Peterz va b
 $7.7: T(n) \leq f(n) \cdot \log_{10} n + 1$

$$7.7: T(n) \leq f(n) \cdot \log_{2} n + 1$$

 $5.7: T(n) = f(1) = f(1) \cdot \log_{2} 1 + 1$

Teile & Herrsche Prinzip - Auflösen von Rekursionen

Beweis:

(1) wenn f(n) = a f(n/b), dann ist $T(n) = O(f(n) \log n)$ Ind. Am: Es egilt T(m) < f(m). (loge m+1) fin m (n, m Peters van b Ind. Sellucs: T(n) = a. T (7/2) + f(n) < a. /(1/2). logn + f(m) $= f(x) \cdot \log x + f(x) = f(x) \cdot \log x + 1$ Prof. Dr. Christian Sohler | Abteilung für Informatik | Universität zu Köln | 2.5.2022

- Auflösen von Rekursionen

Beweis:

(2) wenn $f(n) \ge \gamma$ a f(n/b) für eine Konstante $\gamma > 1$, dann gilt T(n) = O(f(n))

Z.Z:
$$T(n) \leq f(n) \cdot \frac{\lambda_0 q_0 n}{\lambda_0 q_0 n}$$

$$= const logg_1$$

$$\int_{1}^{1} \int_{1}^{1} \int_{1}^{1}$$

- Auflösen von Rekursionen

Beweis:

(2) wenn $f(n) \ge \gamma$ a f(n/b) für eine Konstante $\gamma > 1$, dann gilt T(n) = O(f(n))

Ind. Am:
$$T(m) \leq f(m) \cdot \frac{1}{2} (\frac{1}{x})^n cycle

m(n, m) Potenz ven b

Ind. Schluss: $T(n) \leq a \cdot T(\sqrt{b}) + f(m)$
 $\leq a \cdot f(\frac{n}{x}) \cdot \frac{1}{2} (\frac{1}{x})^n + f(m)$
 $\leq \frac{1}{x} \cdot f(m) \cdot \frac{1}{2} (\frac{1}{x})^n + f(m)$$$

Teile & Herrsche Prinzip - Auflösen von Rekursionen

Beweis:

(2) wenn $f(n) \ge \gamma$ a f(n/b) für eine Konstante $\gamma > 1$, dann gilt T(n) = O(f(n))

$$= f(n) \cdot \frac{\log n}{\sqrt{x}} \left(\frac{1}{x}\right)^{n} + f(n)$$

$$= f(n) \cdot \frac{\log n}{\sqrt{x}} \left(\frac{1}{x}\right)^{n} + f(n) \cdot \left(\frac{1}{x}\right)^{n}$$

$$= f(n) \cdot \frac{\log n}{\sqrt{x}} \left(\frac{1}{x}\right)^{n}$$

Teile & Herrsche Prinzip Auflösen von Rekursionen

Beweis:

(3) wenn $f(n) \le \gamma$ a f(n/b) für eine Konstante $0 < \gamma < 1$, dann gilt $T(n) = O(a^{\log_b n})$

$$22:T(n) \leq \alpha^{\log 2^{n}} f(1) \cdot \frac{1}{1-y} - \frac{y}{1-y} \cdot f(n) = O(\alpha^{\log 2^{n}})$$

$$\frac{2^{n} d \cdot A_{n} f_{i}}{T(x) = f(x) = f(x) \cdot \frac{1}{1 - y} - \frac{1}{1 - y} \cdot f(x)}$$

$$= a^{\log x^{1}} \cdot f(x) \cdot \frac{1}{1 - y} - \frac{1}{1 - y} \cdot f(x)$$

$$= a^{\log x^{1}} \cdot f(x) \cdot \frac{1}{1 - y} - \frac{1}{1 - y} \cdot f(x)$$

$$= a^{\log n} \cdot f(n) \cdot \frac{1}{n-x} - \frac{1}{n-x} \cdot f(n)$$

Teile & Herrsche Prinzip - Auflösen von Rekursionen

Prof. Dr. Christian Sohler | Abteilung für Informatik | Universität zu Köln | 2.5.2022

Beweis:

(3) wenn $f(n) \le \gamma$ a f(n/b) für eine Konstante $0 < \gamma < 1$, dann gilt $T(n) = O(a^{\log_b n})$

- Auflösen von Rekursionen

Beweis:

(3) wenn $f(n) \le \gamma$ a f(n/b) für eine Konstante $0 < \gamma < 1$, dann gilt $T(n) = O(a^{\log_b n})$

Universität

- Auflösen von Rekursionen

Satz 8.2

■ Seien a ≥ 1 und b ≥ 2 ganzzahlige Konstanten und f: $\mathbb{N}_0 \to \mathbb{N}_0$.

• Sei
$$T(n) \le \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & \text{, für } n > 1 \\ f(1) & \text{, für } n = 1 \end{cases}$$

- Dann gilt:
 - (1) wenn f(n) = a f(n/b), dann ist $T(n) = O(f(n) \log n)$
 - (2) wenn $f(n) \ge \gamma$ a f(n/b) für eine Konstante $\gamma > 1$, dann gilt T(n) = O(f(n))
 - (3) wenn $f(n) \le \gamma$ a f(n/b) für eine Konstante $0 < \gamma < 1$, dann gilt $T(n) = O(a^{\log_b n})$

- Auflösen von Rekursionen

Satz 8.2

Seien a ≥ 1 und b ≥ 2 ganzzahlige Konstanten und f: N₀→N₀.

• Sei
$$T(n) \le \begin{cases} aT\left(\frac{n}{b}\right) + f(n) & \text{, für } n > 1 \\ f(1) & \text{, für } n = 1 \end{cases}$$

$$-a^{\log_b n} = b^{\log_b a} \log_b n$$
$$= n^{\log_b a}$$

- Dann gilt:
 - (1) wenn f(n) = a f(n/b), dann ist $T(n) = O(f(n) \log n)$
 - (2) wenn $f(n) \ge \gamma$ a f(n/b) für eine Konstante $\gamma > 1$, dann gilt T(n) = O(f(n))
 - (3) wenn $f(n) \le \gamma$ a f(n/b) für eine Konstante $0 < \gamma < 1$, dann gilt $T(n) = O(a^{\log_b n})$

- Auflösen von Rekursionen

Beispiel:

$$t(n) = 16. T(\gamma_2) + n^4$$
 $a = 16$
 $t = 2$
 $t(n) = n^4$
 $t(n) = n^4$

Zusammenfassung

- Teile & Herrsche Prinzip:
 - Aufteilen in gleich große Teile
 - Rekursiv lösen
 - Zusammensetzen
- Teile & Herrsche Algorithmen
 - MergeSort
 - Binäre Suche
 - Integer Mutliplikation
 - Matrix Multiplikation
- Auflösen von Laufzeitrekursionen
 - "Master"-Theorem

Referenzen

T. Cormen, C. Leisserson, R. Rivest, C. Stein. Introduction to Algorithms.
 The MIT press. Second edition, 2001.

