

TECNICATURA SUPERIOR EN TELECOMUNICACIONES

PROGRAMACIÓN

IMPLEMENTACIÓN DE SENSORES DE TEMPERATURA Y HUMEDAD EN AMBIENTES REDUCIDOS

Alumnas

BRIZUELA, Laura Analía

PANTOJA, Paola Natalia Alejandra

Profesor

LANFRANCO, Lisandro Noel

Fecha de entrega

16/9/2024

Entrega N°1 Año 2024

Resumen

La humedad es la cantidad de agua presente en el aire de un determinado espacio. En lugares reducidos como baños, el vapor generado por agua caliente sin una adecuada ventilación origina la aparición de manchas negras en techos y paredes, proliferación de moho, corrosión y daño en equipos mecánicos o electrónicos.

Los efectos de la humedad y la temperatura pueden provocar daños estéticos, estructurales y en la salud, especialmente a personas con problemas respiratorios

La necesidad de regular los ambientes se convierte en la mejor forma de asegurar el confort y el bienestar de nuestra salud. Y para esta tarea, el sensor de humedad y temperatura resultan elementos claves en cualquier espacio domótico.

<u>Índice</u>

Glosario	2
Introducción	3
Metodología	4
Resultados	g
Conclusión	10
Webgrafía	11
ANEXOS	12

Glosario

<u>Humedad</u>: Cantidad de vapor de agua presente en el aire o en un material. Se mide generalmente como un porcentaje de la cantidad máxima de vapor que el aire puede contener a una temperatura determinada (humedad relativa).

<u>Relé</u>: Dispositivo electromecánico que actúa como interruptor controlado eléctricamente. Se utiliza para abrir o cerrar circuitos eléctricos mediante una señal de bajo voltaje.

<u>Arduino Uno</u>: Placa de desarrollo basada en un microcontrolador ATmega328P. Es utilizada para proyectos de electrónica y programación, permitiendo el control de sensores y actuadores.

<u>VCC</u>: Voltaje de alimentación o de entrada en un circuito. Generalmente representa el voltaje positivo necesario para que un componente electrónico funcione.

<u>DATA</u>: Señal o línea utilizada para transmitir información digital entre dispositivos o componentes electrónicos.

<u>IN</u>: Terminal o pin de entrada de un dispositivo electrónico, a través del cual se recibe una señal o corriente.

<u>COM</u>: Terminal común en un relé o interruptor. Es el punto de conexión que puede conectarse a otros terminales, como NO (Normalmente Abierto) o NC (Normalmente Cerrado).

<u>GND</u>: Sigla de "Ground" o tierra. Es la referencia de voltaje en un circuito eléctrico y sirve como punto de retorno para la corriente.

<u>NO</u> (Normalmente Abierto): Contacto de un relé que permanece desconectado en su estado de reposo. Solo se conecta cuando se activa el relé.

<u>Resistor</u>: Componente electrónico que limita el paso de corriente en un circuito. Se mide en ohmios y es utilizado para proteger otros componentes.

<u>LED:</u> Sigla de "Light Emitting Diode" (Diodo Emisor de Luz). Componente que emite luz al ser atravesado por una corriente eléctrica en el sentido adecuado.

Introducción

Los sensores de humedad y temperatura tienen multitud de aplicaciones en el mundo de la jardinería, la agricultura, construcción y meteorología, tales como:

- Comprobar porcentajes de humedad presente en el suelo, ajustando eficazmente el riego para que se realice de manera adecuada.
- Medir la humedad de los materiales de construcción, permitiendo detectar el momento en el que han terminado de fraguar para seguir trabajando con ellos.
- Prevenir inundaciones y fugas de agua en distintos ambientes.

Sin embargo, cada vez son incluidos con mayor asiduidad en los sistemas de climatización domésticos permitiendo establecer con precisión el porcentaje de humedad ambiental y temperatura. Por lo tanto, el objetivo general del presente trabajo es implementar un sistema loT para el monitoreo de variables de temperatura y humedad en ambientes reducidos a través de un sensor de tamaño pequeño. Por objetivo

específico se plantea el diseño e implementación de un sistema de captura y visualización de datos que permita el monitoreo permanente de las variables.

Debido a que el campo de aplicación del presente proyecto es en hogares, se plantea que el mismo sea rentable y de fácil implementación, que el consumo energético sea reducido y mantenga al mismo tiempo la capacidad de obtener mediciones precisas y fiables, siendo las razones que justifican su aplicación:

- Su sencillez en sus mecanismos de funcionamiento.
- Fácil de calibrar, económicos y duraderos.
- Capacidad de controlar y ajustar los niveles de humedad y temperatura deseados.
- Medir la temperatura y avisar ante aumentos bruscos que superen los umbrales de confort.
- Alertar inmediatamente cuando el nivel de humedad alcanza niveles que no son recomendables para la salud.

Metodología

De acuerdo con lo solicitado por la empresa "Dispositivos Inteligentes SRL", se llevó a cabo la elección de los componentes de un dispositivo que recaudará información y en base a ella accionará un actuador. El mismo fue elegido luego de una exhaustiva búsqueda e investigación que se realizó en las inmediaciones de la ciudad de Córdoba Capital.

La investigación fue motivada por una necesidad que se encuentra en los hogares

de esta provincia, debido a su clima en las estaciones primaverales y de verano existe un factor que genera daños a la salud y a las instalaciones inmobiliarias, hablamos de la humedad.

Por lo que se hará uso del sensor DHT11 que mide la humedad y la temperatura, un extractor de aire, un LED, un Relé, una batería y un convertidor.

La elección del uso del relé se realizó para no comprometer la seguridad de la ESP32. El mismo controlará al extractor que estará alimentado directamente desde una toma de corriente de 220V, facilitando las conexiones y configuraciones que se requieran en el circuito para que el dispositivo funcione con éxito.

A continuación, se describen los detalles de los componentes y las conexiones eléctricas:

Componentes:

- Microcontrolador ESP32 (Microcontrolador que recibe y procesa los datos del sensor y en base a los resultados acciona un actuador)
- Sensor DHT11 (mide temperatura y humedad)
- Actuador (extractor de aire que elimina el exceso de humedad en el baño)
- LED (indicador visual del estado)
- Relé de 5V(Controla el encendido y apagado del extractor de aire)
- Batería LiFePO4 (proporciona energía)

Conexiones eléctricas:

Para las simulaciones del proyecto se utilizó el software de Proteus y Arduino Ide. Ambos fueron de gran utilidad a la hora del análisis de viabilidad del proyecto. Debido a las limitaciones propias de los simuladores se utilizó Arduino Uno en lugar de ESP32.

A continuación se describen las conexiones realizadas.

- Sensor DHT11 al ESP32:
 - Pin de datos (DATA): Se conecta a un pin digital del ESP32. Este es el pin que usará el ESP32 para leer la información de humedad y temperatura.
 - Pin VCC (Alimentación): Se conecta al pin de 3.3V del ESP32.
 - Pin GND (Tierra): Se conecta al pin GND del ESP32.
- Actuador (Extractor de aire 220V)-Resistor:

Por sus características energéticas se conectará a una fuente de alimentación externa que estará ubicado en el baño para que cumpla su función.

- Relé-Conexiones al extractor y a la ESP32:
 - El pin IN del módulo de relé se conecta al pin GPIO 7 del ESP32.
 - El pin VCC del relé se conecta a 5V.
 - El pin GND del relé se conecta a GND del ESP32.
 - En el lado de alta potencia del relé:
 - El terminal COM del relé se conecta a la fase de la fuente externa de 220V que alimenta el extractor.
 - El terminal NO (normalmente abierto) del relé se conecta a uno de los cables del extractor, mientras que el otro cable del extractor se conecta

a neutro.

Conexión del LED al ESP32:

- El pin positivo del LED se conecta a una resistencia (220Ω) y luego al pin
 GPIO 6 del ESP32.
- El pin negativo del LED se conecta a un resistor de 220V y éste al GND del ESP32.

Conexión de la batería LiFePO4:

- La batería LiFePO4 se conecta al convertidor boost, que eleva el voltaje de 3.2V a 5V.
- La salida de 5V del convertidor se conecta al pin VIN del ESP32 y a VCC del módulo de relé.

Para proteger el sistema de la humedad del baño y de otros factores de hará uso de una caja de conexiones plástica que permitirá albergar los componentes electrónicos sin riesgo de daño.

Características técnicas del sensor DHT11:

El DHT11 es un sensor digital de temperatura y humedad relativa de bajo costo y de fácil implementación con cualquier microcontrolador, de bajo consumo de energía y excelente estabilidad a largo plazo

Integra un sensor capacitivo de humedad y un termistor para medir el aire circundante, y muestra los datos mediante una señal digital en el pin de datos (no posee

salida analógica), trabaja con un rango de medición de temperatura de 0 a 50 °C con precisión de ±2.0 °C v un rango de humedad de 20% a 90% RH con precisión de 4% RH.

Los ciclos de lectura deben ser como mínimo 1 o 2 segundos, pero debido a que la temperatura y la humedad son variables que no cambian muy rápido en el tiempo no se considera una desventaja para este proyecto.

A nivel de software se dispone de librerías para Arduino con soporte para el protocolo "Single bus". En cuanto al hardware, solo es necesario conectar el pin VCC de alimentación a 3-5V, el pin GND a Tierra (0V) y el pin de datos a un pin digital del microcontrolador.

El protocolo de comunicación entre el sensor y el microcontrolador emplea un único hilo o cable, la distancia máxima recomendable de longitud de cable es de 20m., de preferencia

Especificaciones técnicas:

- Voltaje de Operación: 3V 5V DC
- Rango de medición de temperatura: 0
 a 50 °C
- Precisión de medición de temperatura: ±2.0 °C
- Resolución Temperatura: 0.1°C
- Rango de medición de humedad:
 20% a 90% RH.

- Precisión de medición de humedad:
 5% RH.
- Resolución Humedad: 1% RH
- Tiempo de sensado: 1 seg.
- Interfaz digital: Single-bus (bidireccional)
- Modelo: DHT11
- Dimensiones: 16*12*5 mm

- Peso: 1 gr.
- Carcasa de plástico celeste

- 1- Alimentación:+5V (VCC)
- 2- Datos (DATA)
- 3- No Usado (NC)
- 4- Tierra (GND)

PINES

- 2- Datos (DATA)
- 3- No Usado (NC)
- 4- Tierra (GND)

Resultados

CIRCUITO ELECTRÓNICO

De acuerdo con las características del proyecto solicitado se realizó la simulación en Proteus, a su vez se muestra la Virtual Terminal arrojando los valores del nivel de batería.

Imagen 1: circuito electrónico.

Conclusión

De este proyecto se concluyó que se cumplió con los objetivos propuestos para esta primera entrega. En primer lugar, se logró determinar las variables que permiten monitorear cambios en las condiciones ambientales en lugares reducidos como baños hogareños.

En cuanto al sensor seleccionado, el DHT11 es un dispositivo apto para medir temperatura y humedad de forma casi continua con un ciclo de 1 o 2 segundos, pero no

se considera una desventaja para este proyecto.

Por último, el diseño del esquema eléctrico considerando el sensor, el actuador y la medición de la batería y realizando unas primeras pruebas se observa que el prototipo es apto para medir las variables seleccionadas. Por lo tanto, se concluye que el proyecto puede cumplir con el objetivo general propuesto al momento de culminar con las entregas solicitadas.

Webgrafía

- Copyright © 2023 Prometec . (s.f.). Prometec . Obtenido de Prometec : https://www.prometec.net/sensores-dht11/
- geekfactory. (28 de Sep de 2017). geekfactory. Obtenido de https://www.geekfactory.mx/tutoriales-arduino/alimentar-el-arduino-la-guiadefinitiva/
- Hernández, L. d. (s.f.). programarfacil. Obtenido de programarfacil: https://programarfacil.com/domotica/bateria-para-esp32-esp8266/
- juanjobe. (11 de May de 2021). iasalud. Obtenido de iasalud:
 https://iasalud.es/esp32-y-dth11-temperatura-y-humedad/
- manlybatterycompany. (s.f.). Obtenido de https://manlybattery.com/es/gu%C3%ADa-de-bater%C3%ADa-lifepo4-de-12v-todo-lo-que-necesitas/#:~:text=Esta%20disposici%C3%B3n%20es%20clave%20para,nomina l%20de%203%2C2%20V.
- SenodeX. (8 de may de 2022). youtube. Obtenido de https://www.youtube.com/watch?v=4oGh68PtBz0&t=3s

ANEXOS

ANEXO A:

Datasheet DHT 11 Humidity & Temperature Sensor

DHT 11 Humidity & Temperature Sensor

1. Introduction

DHT11 Temperature & Humidity Sensor features a temperature & humidity sensor complex with a calibrated digital signal output. By using the exclusive digital-signal-acquisition technique and temperature & humidity sensing technology, it ensures high reliability and excellent long-term stability. This sensor includes a resistive-type humidity measurement component and an NTC temperature measurement component, and connects to a high-performance 8-bit microcontroller, offering excellent quality, fast response, anti-interference ability and cost-effectiveness.

Each DHT11 element is strictly calibrated in the laboratory that is extremely accurate on humidity calibration. The calibration coefficients are stored as programmes in the OTP memory, which are used by the sensor's internal signal detecting process. The single-wire serial interface makes system integration quick and easy. Its small size, low power consumption and up-to-20 meter signal transmission making it the best choice for various applications, including those most demanding ones. The component is 4-pin single row pin package. It is convenient to connect and special packages can be provided according to users' request.

2. Technical Specifications:

Overview:

Item	Measurement	Humidity	Temperature	Resolution	Package
	Range	Accuracy	Accuracy		
DHT11	20-90%RH	±5%RH	±2°C	1	4 Pin Single
	0-50 ℃				Row

Detailed Specifications:

Parameters	Conditions	Minimum	Typical	Maximum		
Humidity						
Resolution		1%RH	1%RH	1%RH		
			8 Bit			
Repeatability			±1%RH			
Accuracy	25℃		±4%RH			
	0-50℃			±5%RH		
Interchangeability	Fully Interchangeable					
Measurement	0℃	30%RH		90%RH		
Range	25℃	20%RH		90%RH		
	50 ℃	20%RH		80%RH		
Response Time	1/e(63%)25℃,	6 S	10 S	15 S		
(Seconds)	1m/s Air					
Hysteresis			±1%RH			
Long-Term	Typical		±1%RH/year			
Stability						
Temperature						
Resolution		1℃	1℃	1℃		
		8 Bit	8 Bit	8 Bit		
Repeatability			±1°C			
Accuracy		±1°C		±2°C		
Measurement		0 ℃		50℃		
Range						
Response Time	1/e(63%)	6 S		30 S		
(Seconds)						

3. Typical Application (Figure 1)

Figure 1 Typical Application

Note: 3Pin - Null; MCU = Micro-computer Unite or single chip Computer

When the connecting cable is shorter than 20 metres, a 5K pull-up resistor is recommended; when the connecting cable is longer than 20 metres, choose a appropriate pull-up resistor as needed.

4. Power and Pin

DHT11's power supply is 3-5.5V DC. When power is supplied to the sensor, do not send any instruction to the sensor in within one second in order to pass the unstable status. One capacitor valued 100nF can be added between VDD and GND for power filtering.

5. Communication Process: Serial Interface (Single-Wire Two-Way)

Single-bus data format is used for communication and synchronization between MCU and DHT11 sensor. One communication process is about 4ms.

Data consists of decimal and integral parts. A complete data transmission is **40bit**, and the sensor sends **higher data bit** first.

Data format: 8bit integral RH data + 8bit decimal RH data + 8bit integral T data + 8bit decimal T data + 8bit check sum. If the data transmission is right, the check-sum should be the last 8bit of "8bit integral RH data + 8bit decimal RH data + 8bit integral T data + 8bit decimal T data".

5.1 Overall Communication Process (Figure 2, below)

When MCU sends a start signal, DHT11 changes from the low-power-consumption mode to the running-mode, waiting for MCU completing the start signal. Once it is completed, DHT11 sends a response signal of 40-bit data that include the relative humidity and temperature information to MCU. Users can choose to collect (read) some data. Without the start signal from MCU, DHT11 will not give the response signal to MCU. Once data is collected, DHT11 will change to the low-power-consumption mode until it receives a start signal from MCU again.

Figure 2 Overall Communication Process

5.2 MCU Sends out Start Signal to DHT (Figure 3, below)

Data Single-bus free status is at high voltage level. When the communication between MCU and DHT11 begins, the programme of MCU will set Data Single-bus voltage level from high to low and this process must take at least 18ms to ensure DHT's detection of MCU's signal, then MCU will pull up voltage and wait 20-40us for DHT's response.

Figure 3 MCU Sends out Start Signal & DHT Responses

5.3 DHT Responses to MCU (Figure 3, above)

Once DHT detects the start signal, it will send out a low-voltage-level response signal, which lasts 80us. Then the programme of DHT sets Data Single-bus voltage level from low to high and keeps it for 80us for DHT's preparation for sending data.

When DATA Single-Bus is at the low voltage level, this means that DHT is sending the response signal. Once DHT sent out the response signal, it pulls up voltage and keeps it for 80us and prepares for data transmission.

When DHT is sending data to MCU, every bit of data begins with the 50us low-voltage-level and the length of the following high-voltage-level signal determines whether data bit is "0" or "1" (see Figures 4 and 5 below).

Figure 4 Data "0" Indication

Figure 5 Data "1" Indication

If the response signal from DHT is always at high-voltage-level, it suggests that DHT is not responding properly and please check the connection. When the last bit data is transmitted, DHT11 pulls down the voltage level and keeps it for 50us. Then the Single-Bus voltage will be pulled up by the resistor to set it back to the free status.

6. Electrical Characteristics

VDD=5V, T = 25°C (unless otherwise stated)

	Conditions	Minimum	Typical	Maximum
Power Supply	DC	3V	5V	5.5V
Current	Measuring	0.5mA		2.5mA
Supply				
	Average	0.2mA		1mA
	Standby	100uA		150uA
Sampling	Second	1		
period				

Note: Sampling period at intervals should be no less than 1 second.

7. Attentions of application

(1) Operating conditions

Applying the DHT11 sensor beyond its working range stated in this datasheet can result in 3%RH signal shift/discrepancy. The DHT11 sensor can recover to the calibrated status gradually when it gets back to the normal operating condition and works within its range. Please refer to (3) of

this section to accelerate its recovery. Please be aware that operating the DHT11 sensor in the non-normal working conditions will accelerate sensor's aging process.

(2) Attention to chemical materials

Vapor from chemical materials may interfere with DHT's sensitive-elements and debase its sensitivity. A high degree of chemical contamination can permanently damage the sensor.

(3) Restoration process when (1) & (2) happen

Step one: Keep the DHT sensor at the condition of Temperature 50~60Celsius, humidity <10%RH for 2 hours:

Step two:K keep the DHT sensor at the condition of Temperature 20~30Celsius, humidity >70%RH for 5 hours.

(4) Temperature Affect

Relative humidity largely depends on temperature. Although temperature compensation technology is used to ensure accurate measurement of RH, it is still strongly advised to keep the humidity and temperature sensors working under the same temperature. DHT11 should be mounted at the place as far as possible from parts that may generate heat.

(5) Light Affect

Long time exposure to strong sunlight and ultraviolet may debase DHT's performance.

(6) Connection wires

The quality of connection wires will affect the quality and distance of communication and high quality shielding-wire is recommended.

(7) Other attentions

- Welding temperature should be bellow 260Celsius and contact should take less than 10 seconds.
- * Avoid using the sensor under dew condition.
- * Do not use this product in safety or emergency stop devices or any other occasion that failure of DHT11 may cause personal injury.
- * Storage: Keep the sensor at temperature 10-40°C, humidity <60%RH.

Disclaimer

This is a translated version of the manufacturer's data sheet. OSEPP is not responsible for the accuracy of the translated information.