Topological Recursion

Roderic Guigo Corominas

02-10-2018

Boston Graduate Math Colloquium

Table of contents

- 1. Introduction
- 2. Definitions
- 3. Applications
- 4. Further Questions

Introduction

Context

- Recursive formula for hyperbolic volumes (Mirzhakani 2004): .
- Recursive formula for random matrices (2006).
- Topological recursion (Eynard, Orantin 2007).
- Topological recursion for Gromov-Witten invariants (Bouchard, Klemm, Marino, Pasquetti 2009).
- Link with Frobenius manifolds and Givental Formalism (Dunin-Barkowski, Orantin, Shadrin, Spitz 2014).
- Topological recursion from Quantum Airy structure (Kontsevich, Soibelman 2017).

Main Idea

Spectral Curve Σ

Topological Recursion

Invariants $\omega_{g,n}(\Sigma)$.

Definitions

Riemann Surfaces

A **Riemann Surface** Σ is a connected space of complex dimension one (e.g. $\mathbb{C}, \mathbb{CP}^1, \mathbb{T}, \ldots$).

A map $x: \Sigma_1 \to \Sigma_2$ between Riemann Surfaces is **ramified** at z_0 if $dx(z_0)=0$. Locally x can be written as

$$z \mapsto z^n$$

for some n > 1 which we call **ramification index**.

Spectral Curves and Polydifferentials

Definition

A **spectral curve** $S = (\Sigma, x, y, B)$ consists of:

- \bullet a Riemann surface Σ
- a covering map $x: \Sigma \to \mathbb{C}$ with set of ramification points $\{r_a\}$.
- a function $y \sim \sum_{k} \tilde{t}_{a,k} x^{k/r_a}$ near each branchpoint
- a polydifferential $B \in \Gamma(\Sigma \times \Sigma \setminus \Delta, \pi_1^*(K_{\Sigma}) \otimes \pi_2^*(K_{\Sigma}))$ with vanishing residue. That is

$$B(z_1, z_2) \underset{z_1 \to z_2}{\sim} \frac{dz_1 dz_2}{(z_1 - z_2)^2} + \text{holomorphic.}$$

Definition

A **polydifferential** $\omega_{g,n}(z_1,\ldots,z_n)$ is an expression of the form $f(z_1,\ldots,z_n)dz_1\ldots dz_n$. In other words, a section of

$$\pi_1^*(K_{\Sigma}) \otimes \cdots \otimes \pi_n^*(K_{\Sigma}).$$

Initial Data

Assume from now on only simple ramification $z \mapsto z^2$. Let $\sigma(z) = -z$ be the local involution that permutes the two sheets near the ramification point.

Given a spectral curve (Σ, x, y, B) define the following:

- A 1-form $\omega_{0,1}(z) = y(z)dx(z)$
- A polydifferential $\omega_{0,2}(z_1,z_2)=B(z_1,z_2)$
- A recursion kernel

$$K_a(z_0,z) = \frac{-1}{2} \frac{\int_{\sigma_a(z)}^2 \omega_{0,2}(z_0,\cdot)}{\omega_{0,1}(z) - \omega_{0,1}(\sigma(z))}.$$

6

Basic Idea

Spectral Curve Σ —— ? Invariants $\omega_{g,n}(\Sigma)$

Recursive Formula

Definition

Define $\omega_{g,n+1}(z_0,z_1,\ldots,z_n)$ via the following formula:

$$\omega_{g,n+1}(z_0,\ldots,z_n) = \sum_{a} \underset{z=a}{\operatorname{Res}} K_a(z_0,z) \left(\omega_{g-1,n+2}(z,\sigma(z),z_1,\ldots,z_n) + \sum_{\substack{h+h'=g\\l \coprod J=\{z_1,\ldots,z_n\}}} \omega_{h,1+|I|}(z,z_l)\omega_{h',1+|J|}(\sigma(z),z_J) \right)$$

Recursion on the Euler Characteristic $\chi(X) = 2 - 2g - n$:

$$\chi(LHS) = 1 - 2g - n < 2 - 2g - n = \chi(RHS).$$

Geometric Interpretation

$$\omega_{g,n+1}(z_0,\ldots,z_n) \qquad \sim \qquad \mathop{\text{Res}}_{z=a} \, K_a(z_0,z) \left(\omega_{g-1,n+2} \qquad + \qquad \omega_{h,1+|I|}(z,z_I) \omega_{h',1+|J|}(\sigma(z),z_J) \right) .$$

Properties

Properties

The polydifferentials $\omega_{g,n+1}(z_0,z_1,\ldots,z_n)$ satisfy the following properties:

• Symmetric under the action of Σ_n :

$$\omega_{g,n}(z_1,\ldots,z_n)=\omega_{g,n}(z_{\sigma_1},\ldots,z_{\sigma_n}).$$

- Pole at the ramification points with vanishing residues.
- Symplectic invariance
- Modular invariance

Example

Consider the spectral curve $S = \left(\mathbb{C}, x(z) = z^2/2, y(z) = z, \frac{dz_1 dz_2}{(z_1 - z_2)^2}\right)$.

The brachpoint is at $dx = zdz = 0 \Rightarrow z = 0$ and the local involution is $\sigma(z) = -z$.

Figure 1: Curve $x = y^2/2$.

In this case we have $\omega_{0,1}(z) = z^2 dz$ and $\omega_{0,2}(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}$.

Example

The recursion kernel $K(z_1, z) = \frac{-dz_1}{2z(z_1^2 - z^2)dz}$.

$$\bullet \ \omega_{1,1}(z_1) = \underset{z=0}{\operatorname{Res}} \ K_0(z_1,z) \omega_{0,2}(z,-z) = \underset{z=0}{\operatorname{Res}} \ \tfrac{dz_1 dz}{8z_1^3(z_1^2-z^2)} = \tfrac{dz_1}{8z_1^4}.$$

•
$$\omega_{0,3}(z_1, z_2, z_3) = 2 \underset{z=0}{\text{Res}} \ K_0(z_1, z) \omega_{0,2}(z, z_2) \omega_{0,2}(-z, z_3) = \frac{dz_1 dz_2 dz_3}{z_1^2 z_2^2 z_3^2}.$$

Applications

Kontsevich-Witten Intersection Numbers

The Deligne-Mumford compactification $\overline{\mathcal{M}}_{g,n}$ of the moduli space of stable curves of genus g and n is constructed by including nodal curves.

Let
$$\psi_i = c^1(\mathbb{L}_i)$$
. For $\sum d_i = 3g - 3 + n$ let

$$\langle \tau_{d_1}, \tau_{d_2} \dots \tau_{d_n} \rangle = \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1} \cdots \psi_n^{d_n}.$$

Kontsevich-Witten Intersection Numbers

Set

$$W_{g,n}(z_1,\ldots,z_n) = \sum_{d} \langle \tau_{d_1},\ldots,\tau_{d_n} \rangle_g \prod_{i=1}^n \frac{(2d_i-1)!}{z_i^{2d_i+2}} dz_i.$$

Theorem

The $W_{g,n}$ are obtained via topological recursion on the spectral curve

$$\left(\mathbb{C}, x(z) = z^2/2, y(z) = z, B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}\right).$$

Hyperbolic Volumes

Fact

Any compact Riemann surface X with $\chi(X) < 0$ admits a (non-unique) hyperbolic metric of constant curvature -1. If we require the boundaries to be geodesics of fixed length then the metric is unique.

Consider the moduli space $\mathcal{M}_{g,n}$ of Riemann surfaces of genus g and n boundary components of lengths (L_1, \ldots, L_n) .

It is naturally equipped with Fenchel-Nilsen coordinates (θ_i, τ_i) (lengths and twists).

Hyperbolic Volumes

Although (θ_i, τ_i) are not global coordinates,

$$\omega = \prod d\theta_i \wedge d\tau_i$$

is a well-defined volume form. Consider the volume of the moduli space:

$$\mathcal{V}_{g,n}(L_1,\ldots,L_n)=\int_{\mathcal{M}_{g,n}}\omega.$$

For example we have

$$V_{0,3}(L_1, L_2, L_3) = 1$$
 $V_{1,1}(L) = \frac{1}{48}(L^2 + 4\pi^2).$

Laplace transform

$$V_{g,n}(L_1,\ldots,L_n)\longrightarrow W_{g,n}(z_1,\ldots,z_n).$$

For example

$$1 \longrightarrow \frac{1}{z_1^2 z_2^2 z_3^2},$$

$$\frac{1}{48}(L^2+4\pi^2)\longrightarrow \frac{1}{8z^4}+\frac{\pi^2}{12z^2}.$$

Theorem

The $W_{g,n}$ are obtained via topological recursion on the spectral curve

$$\left(\mathbb{C}, x(z) = z^2, y(z) = \frac{1}{4\pi} \sin(2\pi z), B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}\right).$$

Hurwitz Numbers

The Hurwitz number $h_{g,n}(k_1,\ldots,k_n)$ is the number of ramified coverings of \mathbb{CP}^1 of genus g with 2g-2+n simple ramification points and one point with ramification profile $\{k_1,\ldots,k_n\}$.

Again we can perform a certain Laplace Transform

$$h_{g,n} \longrightarrow W_{g,n}$$
.

Theorem

The $W_{g,n}$ are be obtained via a topological recursion on the spectral curve

$$\left(\mathbb{C}, x(z) = -z + \ln(z), y(z) = z, B(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 - z_2)^2}\right).$$

Other examples

(From A short overview of the Topological Recursion).

Further Questions

What's next?

- Topological recursion for knot invariants (Jones, HOMFLY...).
- Given an enumerative problem, determine if it statisfies the topological recursion.
- Given an enumerative problem, find the spectral curve associated to it.
- Quantum Airy structure analog for higher ramification.

Questions?