

Complete Instruction Set Summary

- Notes: 1. Not all instructions are available in all devices. Refer to the device specific instruction summary.
 - 2. Cycle times for data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface. For LD, ST, LDS, STS, PUSH, POP, add one cycle plus one cycle for each wait state. For CALL, ICALL, EICALL, RCALL, RET, RETI in devices with 16 bit PC, add three cycles plus two cycles for each wait state. For CALL, ICALL, EICALL, RCALL, RET, RETI in devices with 22 bit PC, add five cycles plus three cycles for each wait state.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clock Note	
Arithmetic and Logic Instructions						
ADD	Rd, Rr	Add without Carry	Rd ← Rd + Rr	Z,C,N,V,S,H	1	
ADC	Rd, Rr	Add with Carry	Rd ← Rd + Rr + C	Z,C,N,V,S,H	1	
ADIW	Rd, K	Add Immediate to Word	Rd+1:Rd ← Rd+1:Rd + K	Z,C,N,V,S	2	
SUB	Rd, Rr	Subtract without Carry	Rd ← Rd - Rr	Z,C,N,V,S,H	1	
SUBI	Rd, K	Subtract Immediate	Rd ← Rd - K	Z,C,N,V,S,H	1	
SBC	Rd, Rr	Subtract with Carry	Rd ← Rd - Rr - C	Z,C,N,V,S,H	1	
SBCI	Rd, K	Subtract Immediate with Carry	Rd ← Rd - K - C	Z,C,N,V,S,H	1	
SBIW	Rd, K	Subtract Immediate from Word	Rd+1:Rd ← Rd+1:Rd - K	Z,C,N,V,S	2	
AND	Rd, Rr	Logical AND	Rd ← Rd • Rr	Z,N,V,S	1	
ANDI	Rd, K	Logical AND with Immediate	Rd ← Rd • K	Z,N,V,S	1	
OR	Rd, Rr	Logical OR	Rd ← Rd v Rr	Z,N,V,S	1	
ORI	Rd, K	Logical OR with Immediate	Rd ← Rd v K	Z,N,V,S	1	
EOR	Rd, Rr	Exclusive OR	$Rd \leftarrow Rd \oplus Rr$	Z,N,V,S	1	
СОМ	Rd	One's Complement	Rd ← \$FF - Rd	Z,C,N,V,S	1	
NEG	Rd	Two's Complement	Rd ← \$00 - Rd	Z,C,N,V,S,H	1	
SBR	Rd,K	Set Bit(s) in Register	Rd ← Rd v K	Z,N,V,S	1	
CBR	Rd,K	Clear Bit(s) in Register	Rd ← Rd • (\$FFh - K)	Z,N,V,S	1	
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V,S	1	
DEC	Rd	Decrement	Rd ← Rd - 1	Z,N,V,S	1	
TST	Rd	Test for Zero or Minus	Rd ← Rd • Rd	Z,N,V,S	1	
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V,S	1	
SER	Rd	Set Register	Rd ← \$FF	None	1	
MUL	Rd,Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr (UU)$	Z,C	2	
MULS	Rd,Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr (SS)$	Z,C	2	
MULSU	Rd,Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr (SU)$	Z,C	2	
FMUL	Rd,Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) <<1 (UU)$	Z,C	2	
FMULS	Rd,Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) <<1 (SS)$	Z,C	2	
FMULSU	Rd,Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) <<1 \text{ (SU)}$	Z,C	2	

Instruction Set

Mnemonics	Operands	Description	Operation	Flags	#Clock Note
		Branch	Instructions		
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC(15:0) ← Z, PC(21:16) ← 0	None	2
EIJMP		Extended Indirect Jump to (Z)	PC(15:0) ← Z, PC(21:16) ← EIND	None	2
JMP	k	Jump	PC ← k	None	3
RCALL	k	Relative Call Subroutine	PC ← PC + k + 1	None	3 / 4
ICALL		Indirect Call to (Z)	PC(15:0) ← Z, PC(21:16) ← 0	None	3 / 4
EICALL		Extended Indirect Call to (Z)	PC(15:0) ← Z, PC(21:16) ← EIND	None	4
CALL	k	Call Subroutine	PC ← k	None	4/5
RET		Subroutine Return	PC ← STACK	None	4/5
RETI		Interrupt Return	PC ← STACK	I	4/5
CPSE	Rd,Rr	Compare, Skip if Equal	if (Rd = Rr) PC ← PC + 2 or 3	None	1/2/3
СР	Rd,Rr	Compare	Rd - Rr	Z,C,N,V,S,H	1
CPC	Rd,Rr	Compare with Carry	Rd - Rr - C	Z,C,N,V,S,H	1
CPI	Rd,K	Compare with Immediate	Rd - K	Z,C,N,V,S,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register Set	if (Rr(b)=1) PC ← PC + 2 or 3	None	1/2/3
SBIC	A, b	Skip if Bit in I/O Register Cleared	if(I/O(A,b)=0) PC \leftarrow PC + 2 or 3	None	1/2/3
SBIS	A, b	Skip if Bit in I/O Register Set	If(I/O(A,b)=1) PC \leftarrow PC + 2 or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if $(SREG(s) = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BREQ	k	Branch if Equal	if $(Z = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRCS	k	Branch if Carry Set	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRCC	k	Branch if Carry Cleared	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRSH	k	Branch if Same or Higher	if (C = 0) then PC \leftarrow PC + k + 1	None	1/2
BRLO	k	Branch if Lower	if (C = 1) then PC \leftarrow PC + k + 1	None	1/2
BRMI	k	Branch if Minus	if (N = 1) then PC \leftarrow PC + k + 1	None	1/2
BRPL	k	Branch if Plus	if (N = 0) then PC \leftarrow PC + k + 1	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if (N \oplus V= 0) then PC \leftarrow PC + k + 1	None	1/2
BRLT	k	Branch if Less Than, Signed	if (N \oplus V= 1) then PC \leftarrow PC + k + 1	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if (H = 1) then PC \leftarrow PC + k + 1	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if (H = 0) then PC \leftarrow PC + k + 1	None	1/2
BRTS	k	Branch if T Flag Set	if (T = 1) then PC \leftarrow PC + k + 1	None	1/2
BRTC	k	Branch if T Flag Cleared	if $(T = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2

Mnemonics	Operands	Description	Operation	Flags	#Clock Note
BRVS	k	Branch if Overflow Flag is Set	if $(V = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
		Data Trans	efer Instructions		
VOM	Rd, Rr	Copy Register	Rd ← Rr	None	1
MOVW	Rd, Rr	Copy Register Pair	Rd+1:Rd ← Rr+1:Rr	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LDS	Rd, k	Load Direct from data space	Rd ← (k)	None	2
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Increment	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, -X	Load Indirect and Pre- Decrement	$X \leftarrow X - 1$, $Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Increment	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, -Y	Load Indirect and Pre- Decrement	$Y \leftarrow Y - 1$, $Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Increment	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre- Decrement	$Z \leftarrow Z - 1$, Rd \leftarrow (Z)	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
STS	k, Rr	Store Direct to data space	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post- Increment	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	-X, Rr	Store Indirect and Pre- Decrement	$X \leftarrow X - 1$, $(X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	(Y) ← Rr	None	2
ST	Y+, Rr	Store Indirect and Post- Increment	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	-Y, Rr	Store Indirect and Pre- Decrement	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	(Y + q) ← Rr	None	2
ST	Z, Rr	Store Indirect	(Z) ← Rr	None	2
ST	Z+, Rr	Store Indirect and Post- Increment	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2

Mnemonics	Operands	Description	Operation	Flags	#Clock Note
ST	-Z, Rr	Store Indirect and Pre- Decrement	$Z \leftarrow Z - 1$, $(Z) \leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
LPM		Load Program Memory	R0 ← (Z)	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post- Increment	$Rd \leftarrow (Z), Z \leftarrow Z + 1$	None	3
ELPM		Extended Load Program Memory	R0 ← (RAMPZ:Z)	None	3
ELPM	Rd, Z	Extended Load Program Memory	$Rd \leftarrow (RAMPZ:Z)$	None	3
ELPM	Rd, Z+	Extended Load Program Memory and Post-Increment	$Rd \leftarrow (RAMPZ:Z), Z \leftarrow Z + 1$	None	3
SPM		Store Program Memory	(Z) ← R1:R0	None	-
ESPM		Extended Store Program Memory	(RAMPZ:Z) ← R1:R0	None	-
IN	Rd, A	In From I/O Location	$Rd \leftarrow I/O(A)$	None	1
OUT	A, Rr	Out To I/O Location	I/O(A) ← Rr	None	1
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
	1	Bit and Bit-	test Instructions		
LSL	Rd	Logical Shift Left	$Rd(n+1)\leftarrow Rd(n), Rd(0)\leftarrow 0, C\leftarrow Rd(7)$	Z,C,N,V,H	1
LSR	Rd	Logical Shift Right	$Rd(n)\leftarrow Rd(n+1), Rd(7)\leftarrow 0, C\leftarrow Rd(0)$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V,H	1
ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30) ↔ Rd(74)	None	1
BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) ← 0	SREG(s)	1
SBI	A, b	Set Bit in I/O Register	I/O(A, b) ← 1	None	2
СВІ	A, b	Clear Bit in I/O Register	I/O(A, b) ← 0	None	2
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	N	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1

Mnemonics	Operands	Description	Operation	Flags	#Clock Note
SEI		Global Interrupt Enable	I ← 1	I	1
CLI		Global Interrupt Disable	I ← 0	I	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Two's Complement Overflow	V ← 1	V	1
CLV		Clear Two's Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR)	None	1