Алгебра и геометрия Лекция 2

Направленный отрезок

Направленным отрезком (HO) \overrightarrow{AB} называется упорядоченная пара точек (A,B)

$$A$$
 — начало \overrightarrow{AB} , B — конец \overrightarrow{AB}

Пара (A,A) называется нулевым НО $(\vec{0})$

Длиной \overrightarrow{AB} называется |AB|

Обозначение: $|\overrightarrow{AB}|$

Равенство направленных отрезков

 $\overrightarrow{AB} = \overrightarrow{CD}$, если середины [AD] и [BC] совпадают

$$\overrightarrow{AB} \neq \overrightarrow{0}, \ \overrightarrow{CD} \neq \overrightarrow{0};$$
 все нулевые НО равны по определению

Свойства отношения равенства НО

1.
$$\forall \overrightarrow{AB} \quad \overrightarrow{AB} = \overrightarrow{AB}$$
 (рефлексивность)

2.
$$\forall \overrightarrow{AB}, \overrightarrow{CD} \colon \overrightarrow{AB} = \overrightarrow{CD} \Rightarrow \overrightarrow{CD} = \overrightarrow{AB}$$
 (симметричность)

3.
$$\forall \overrightarrow{AB}, \overrightarrow{CD}, \overrightarrow{EF} : \overrightarrow{AB} = \overrightarrow{CD}, \overrightarrow{CD} = \overrightarrow{EF} \Rightarrow$$

 $\Rightarrow \overrightarrow{AB} = \overrightarrow{EF}$ (транзитивность)

Свойства отношения равенства НО

4. Пусть
$$C\left(\overrightarrow{AB}\right)$$
 — множество всех НО, равных \overrightarrow{AB} $C\left(\overrightarrow{CD}\right)$ — множество всех НО, равных \overrightarrow{CD} $\overrightarrow{AB} \neq \overrightarrow{CD} \Rightarrow C\left(\overrightarrow{AB}\right) \cap C(\overrightarrow{CD}) = \emptyset$

Доказательство:

Пусть
$$\exists \vec{x} \in C\left(\overrightarrow{AB}\right), \vec{y} \in C\left(\overrightarrow{CD}\right): \vec{x} = \vec{y} \Rightarrow$$
 $\Rightarrow \vec{x} = \overrightarrow{AB}, \vec{y} = \overrightarrow{CD} \Rightarrow \overrightarrow{AB} = \overrightarrow{CD}$ Противоречие

Определение вектора

Вектором называется множество всех НО, равных данному

Писать $\overrightarrow{AB} \in \vec{a}$ не принято

Предполагаются известными из курса геометрии средней школы

- 1. Операции сложения и вычитания векторов, свойства этих операций
- 2. Операция умножения вектора на число (скаляр) и свойства этой операции
- 3. Понятия коллинеарности и компланарности векторов. Признаки компланарности и коллинеарности
- 4. Некоторые другие утверждения, которые будут специально выделены ниже

Угол между векторами

Если $\vec{a} = \overrightarrow{AB}$, то говорят, что вектор \vec{a} отложен от точки A

Отложим ненулевые векторы \vec{a} и \vec{b} от одной точки

$$\angle \left(\vec{a}, \vec{b}\right) = min\{\varphi_1, \varphi_2\}$$

Угол между $\vec{0}$ и любым другим вектором не определен!

Если $\angle\left(\vec{a},\vec{b}\right)=\frac{\pi}{2}$, то \vec{a} и \vec{b} называются ортогональными $\left(\vec{a}\perp\vec{b}\right)$

Будем считать, что нулевой вектор ортогонален всем остальным

Нормировка вектора

Операция замены $\vec{a} \neq \vec{0}$ вектором $\vec{b} = \frac{\vec{a}}{|\vec{a}|}$ называется нормировкой \vec{a}

При этом
$$\left| \overrightarrow{b} \right| = 1$$

Линейная комбинация векторов

Пусть даны векторы $\overrightarrow{a_1}, ..., \overrightarrow{a_k}$ и числа $\lambda_1, ..., \lambda_k$. Линейной комбинацией векторов $\overrightarrow{a_1}, ..., \overrightarrow{a_k}$ называется выражение

$$\sum_{i=1}^{k} \lambda_i \overrightarrow{a_i} = \lambda_1 \overrightarrow{a_1} + \dots + \lambda_k \overrightarrow{a_k}$$

Обозначения: ЛК; $\langle a_1, ..., a_k \rangle$

Если $\overrightarrow{b} = \lambda_1 \overrightarrow{a_1} + \dots + \lambda_k \overrightarrow{a_k}$, то говорят, что \overrightarrow{b} разложен по $\overrightarrow{a_1}, \dots, \overrightarrow{a_k}$ (или линейно выражается через $\overrightarrow{a_1}, \dots, \overrightarrow{a_k}$)

Линейная комбинация векторов

ЛК называется тривиальной, если $\forall i=\overline{1,k} \;\; \lambda_i=0$

$$(\Leftrightarrow \lambda_1^2 + \dots + \lambda_k^2 = 0)$$

ЛК называется нетривиальной, если $\exists j \colon \ \lambda_j \neq 0$

Замечание

ЛК удобно записывать в "матричной" форме: $\vec{a}\lambda$, где

$$\vec{a}$$
 — строка из $\overrightarrow{a_1}$, ..., $\overrightarrow{a_k}$

 λ — столбец из λ_1 , ..., λ_k

Система векторов $\overrightarrow{a_1}, ..., \overrightarrow{a_k}$ называется линейно зависимой, если \exists их нетривиальная ЛК, равная $\overrightarrow{0}$, и линейно независимой в противном случае

Утверждение 1.1

 $\overrightarrow{a_1}$, ..., $\overrightarrow{a_k}$ линейно зависимы \Leftrightarrow среди $\overrightarrow{a_i}$ \exists $\overrightarrow{a_j}$, линейно выражающийся через остальные

Доказательство утверждения 1.1

$$(\Rightarrow)$$
 Достаточность
$$\exists \; \lambda_i \neq 0 \colon \vec{a}\lambda = \vec{0} \Rightarrow$$

(⇐) Необходимость

$$\overrightarrow{a_j} = \mu_1 \overrightarrow{a_1} + \dots + \mu_{j-1} \overrightarrow{a_{j-1}} + \mu_{j+1} \overrightarrow{a_{j+1}} + \dots + \mu_k \overrightarrow{a_k}$$

Утверждение 1.2

- 1) Если в системе $\overrightarrow{a_1}, ..., \overrightarrow{a_k}$ есть линейно зависимая подсистема, то исходная система линейно зависима
- 2) Подсистема линейно независимой системы линейно независима

Упражнение: докажите эти утверждения

Утверждение 1.3

Пусть
$$\vec{b} = \lambda_1 \overrightarrow{a_1} + \dots + \lambda_k \overrightarrow{a_k}$$
 (1)

Тогда λ_i определены однозначно $\Leftrightarrow \overrightarrow{a_1}, ..., \overrightarrow{a_k}$ линейно независимы

Доказательство (⇒)

Пусть $\overrightarrow{a_1}, \dots, \overrightarrow{a_k}$ линейно зависимы. Прибавим к правой части равенства (1) любую нетривиальную ЛК $\overrightarrow{a_1}, \dots, \overrightarrow{a_k}$, равную $\overrightarrow{0}$. Получим другое линейное выражение для \overrightarrow{b} , отличное от (1).

Противоречие

Утверждение 1.3

Пусть
$$\vec{b} = \lambda_1 \overrightarrow{a_1} + \dots + \lambda_k \overrightarrow{a_k}$$
 (1)

Тогда λ_i определены однозначно $\Leftrightarrow \overrightarrow{a_1}, ..., \overrightarrow{a_k}$ линейно независимы

Доказательство (←)

Пусть
$$\vec{b} = \mu_1 \overrightarrow{a_1} + \dots + \mu_k \overrightarrow{a_k}$$
 (2)

Вычтем (2) из (1):
$$(\lambda_1 - \mu_1)\overrightarrow{a_1} + \dots + (\lambda_k - \mu_k)\overrightarrow{a_k} = \overrightarrow{0}$$

$$\overrightarrow{a_1}$$
, ... , $\overrightarrow{a_k}$ линейно независимы $\Rightarrow \lambda_i = \mu_i \; \forall i = \overline{1,k}$

Теорема

- 1. Система из одного вектора $\overrightarrow{a_1}$ линейно зависима \Leftrightarrow $\overrightarrow{a_1} = \overrightarrow{0}$
- 2. Система из двух векторов $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ линейно зависима \Leftrightarrow $\overrightarrow{a_1} \parallel \overrightarrow{a_2}$
- 3. Система из трех векторов $\overrightarrow{a_1}$, $\overrightarrow{a_2}$, $\overrightarrow{a_3}$ линейно зависима $\Leftrightarrow \overrightarrow{a_1}$, $\overrightarrow{a_2}$, $\overrightarrow{a_3}$ компланарны
- 4. В пространстве система из любых четырех векторов $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}, \overrightarrow{a_4}$ линейно зависима

Доказательство

- 1. Очевидно
- 2. (⇒) Из Утв. 1.1 ⇒ один из векторов линейно выражается через другой ⇒ они коллинеарны
 - (\Leftarrow)
- а) $\overrightarrow{a_1}=\overrightarrow{0}$. Система из $\overrightarrow{a_1}$ линейно зависима \Rightarrow (Утв. 1.2) система $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ линейно зависима
- б) $\overrightarrow{a_1} \neq \overrightarrow{0}$. Из $\overrightarrow{a_1} \parallel \overrightarrow{a_2} \Rightarrow \overrightarrow{a_2}$ линейно выражается через $\overrightarrow{a_1} \Rightarrow$ (Утв. 1.1) система $\overrightarrow{a_1}$, $\overrightarrow{a_2}$ линейно зависима.

Доказательство (продолжение)

3. (
$$\Rightarrow$$
) Из Утв. 1.1 \Rightarrow НУО $\overrightarrow{a_3} = \lambda_1 \overrightarrow{a_1} + \lambda_2 \overrightarrow{a_2} \Rightarrow \overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ компланарны

(⇐)
$$\overrightarrow{a_1} \parallel \overrightarrow{a_2} \Rightarrow \overrightarrow{a_1}, \overrightarrow{a_2}$$
 — линейно зависима ⇒
 ⇒ (Утв. 1.2) $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ тоже линейно зависимы

Доказательство (продолжение)

4. a) $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ компланарны $\Rightarrow \overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ линейно зависима $\Rightarrow \overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}, \overrightarrow{a_4}$ тоже линейно зависима

б) $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}$ некомпланарны $\Rightarrow \overrightarrow{a_4}$ линейно выражается через них \Rightarrow (Утв. 1.1) $\overrightarrow{a_1}, \overrightarrow{a_2}, \overrightarrow{a_3}, \overrightarrow{a_4}$ линейно зависима

Базис

Пусть V_1 — множество всех векторов на прямой, V_2 — на плоскости, V_3 — в пространстве

Упорядоченная система векторов

$$e = (\overrightarrow{e_1} \cdots \overrightarrow{e_n}) \quad (n = 1,2,3)$$

называется базисом в V_n , если она линейно независима и \forall вектор из V_n раскладывается по $\overrightarrow{e_1}, \cdots, \overrightarrow{e_n}$

Базис

Ясно, что $\forall \vec{e} \neq \vec{0}$ — базис в V_1

 \forall упорядоченная пара $\{\overrightarrow{e_1},\overrightarrow{e_2}\}$: $\overrightarrow{e_1} \nparallel \overrightarrow{e_2}$ — базис в V_2

 \forall упорядоченная тройка $\{\overrightarrow{e_1},\overrightarrow{e_2},\overrightarrow{e_3}\}$ некомпланарных векторов — базис в V_3

Упражнение

Докажите эти утверждения

Ортогональный базис

Ортогональный базис — базис, векторы которого попарно ортогональны

Ортонормированный базис

Ортонормированный базис — ортогональный базис, все векторы которого имеют длину 1

Координаты вектора в базисе

Из определения базиса

$$\Rightarrow \forall \vec{a} = \lambda_1 \overrightarrow{e_1} + \dots + \lambda_n \overrightarrow{e_n}$$

Числа λ_i называются координатами вектора \vec{a} в базисе \underline{e}

$$\vec{a} = e\lambda$$
 $e = (\vec{e_1} \cdots \vec{e_n})$ $\lambda = \begin{pmatrix} \lambda_1 \\ \vdots \\ \lambda_n \end{pmatrix}$

Координаты вектора в базисе

Теорема (Линейность сопоставления координат)

Пусть в V_n зафиксирован базис. При сложении векторов их координаты складываются, а при умножении вектора на число — умножаются на это число

Доказательство

$$\vec{a} = e\alpha, \vec{b} = e\beta \Rightarrow \vec{a} + \vec{b} =$$

$$= (\alpha_1 \vec{e_1} + \dots + \alpha_n \vec{e_n}) + (\beta_1 \vec{e_1} + \dots + \beta_n \vec{e_n}) =$$

$$= (\alpha_1 + \beta_1) \vec{e_1} + \dots + (\alpha_n + \beta_n) \vec{e_n}$$

$$\lambda \vec{a} = \lambda (\alpha_1 \overrightarrow{e_1} + \dots + \alpha_n \overrightarrow{e_n}) = (\lambda \alpha_1) \overrightarrow{e_1} + \dots + (\lambda \alpha_n) \overrightarrow{e_n}$$

Замена базиса

$$e=(\overrightarrow{e_1}\cdots\overrightarrow{e_n})$$
 — "старый" базис

$$e' = \left(\overrightarrow{e'_1} \cdots \overrightarrow{e'_n}\right)$$
 — "новый" базис

Матрица S, j-ый столбец которой есть координатный столбец вектора $\overrightarrow{e_j}$ в базисе e, называется матрицей перехода от старого базиса к новому

To есть
$$e' = eS$$

Теорема

$$\vec{a} = e\alpha = e'\alpha' \Rightarrow \alpha = S\alpha'$$

Доказательство

$$\vec{a} = e'\alpha'$$

$$\Rightarrow \alpha = S\alpha'$$

Некоторые замечания о замене базиса

1)
$$e = e' \Rightarrow S = E_n$$

2) $e=(\overrightarrow{e_1},\overrightarrow{e_2})$ — ОНБ на плоскости, $e'=\left(\overrightarrow{e'_1},\overrightarrow{e'_2}\right)$ получен из e поворотом на угол φ в направлении от $\overrightarrow{e_1}$ к $\overrightarrow{e_2}$ \Rightarrow

$$S = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

Некоторые замечания о замене базиса

3)
$$e, e', e''$$
 — три базиса в V

S — матрица перехода от e к e^\prime

R — матрица перехода от e^\prime к $e^{\prime\prime}$

Тогда матрица перехода от e к $e^{\prime\prime}$ равна SR

Доказательство

$$e'' = e'R = (eS)R = e(SR)$$

Общей декартовой системой координат (ОДСК) называется совокупность точки и базиса: (0,e)

ОДСК на плоскости

ОДСК в пространстве

ОДСК называют прямоугольной (ПДСК), если ее базис ортонормированный

Координатами точки M в ОДСК (O,e) называются координаты вектора \overrightarrow{OM} в базисе e

Мы будем записывать это так: если

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
, to $M \underset{(0,e)}{\leftrightarrow} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

$$(\Leftrightarrow \overrightarrow{OM} = ex)$$

Утв. 2.1 Пусть в
$$(O,e)$$
 $M \underset{(O,e)}{\leftrightarrow} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $N \underset{(O,e)}{\leftrightarrow} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

Тогда
$$\overrightarrow{MN} = e \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix}$$

Доказательство

Утверждение вытекает из равенства $\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$ и определения координат

Теорема (о делении отрезка в данном отношении)

Пусть
$$(O,e)$$
 — ОДСК, $M \underset{(O,e)}{\leftrightarrow} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$, $N \underset{(O,e)}{\leftrightarrow} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, $\overrightarrow{MP} = \lambda \overrightarrow{MN}$.

Тогда $P \underset{(O,e)}{\leftrightarrow} \begin{pmatrix} (1-\lambda)x_1 + \lambda y_1 \\ \vdots \\ (1-\lambda)x_n + \lambda y_n \end{pmatrix}$

Доказательство

Утверждение следует из цепочки равенств $\overrightarrow{OP} = \overrightarrow{OM} + \lambda \overrightarrow{MN} = (1 - \lambda) \overrightarrow{OM} + \lambda \overrightarrow{ON}$ и линейности сопоставления координат

Замена ОДСК

Теорема

Пусть (0,e),(0',e') — две ОДСК, причем $0' \leftrightarrow \gamma$, S — матрица перехода от e к e',

$$M \leftrightarrow \chi$$
, $M \leftrightarrow \chi'$
(0,e) (O',e')

Тогда
$$x = Sx' + \gamma$$

Доказательство

$$\overrightarrow{OO'} = e\gamma$$
 $\overrightarrow{OM} = ex$ $\overrightarrow{O'M} = e'x'$

Из теоремы о замене базиса $\Rightarrow \overrightarrow{OM} = e(Sx')$, а из равенства $\overrightarrow{OM} = \overrightarrow{O'M'} + \overrightarrow{OO'} \Rightarrow x = Sx' + \gamma$ с учетом линейности сопоставления координат