$\underline{\text{Titre}}$: Théorème des extrema liés + corollaire sur les endomorphismes symétriques

Recasages: 151,159,214,215,219

Thème: Calcul différentiel, sous-variété, algèbre linéaire.

Références : Avez, Calcul différentiel

Théorème 1. (Extrema liés)

Soient $U \subset \mathbb{R}^n$ un ouvert, $f, g_1, \dots, g_r : U \to \mathbb{R}$ des fonctions de classe C^1 . On pose $g := (g_1, \dots, g_r) : U \to \mathbb{R}^r$, $\Gamma := \{x \in U \mid g(x) = 0\}$.

Si $a \in \Gamma$ est un extremum relatif de $f_{|\Gamma}$ et si les formes linéaires dg_{ia} sont linéairement indépendantes. Alors $df_a \in V = \text{Vect}(\{dg_{ia}, i \in [\![1,r]\!]\})$ (les coefficients de df_a dans la base des dg_{ia} sont appelés les multiplicateurs de Lagrange).

Par hypothèse, l'application linéaire

$$dg_a = \begin{pmatrix} dg_{1_a} \\ \vdots \\ dg_{r_a} \end{pmatrix} : U \to \mathbb{R}^r$$

est surjective : g est une submersion en a, il existe donc un voisinage Ω de a dans \mathbb{R}^n tel que $S := \Gamma \cap \Omega$ soit une sous-variété définie comme pré-image de 0 par la submersion g.

Étudions l'espace tangent T_aS : il s'agit d'un sous-espace vectoriel de \mathbb{R}^n de dimension r (car dg_a est à valeurs dans \mathbb{R}^r), de même que Ker dg_a , pour montrer que ces deux espaces sont égaux, il suffit de montrer que $T_aS \subset \text{Ker } dg_a$. Soit donc $x \in T_aS$, il existe par définition $\varepsilon > 0$ et $\gamma :] - \varepsilon, \varepsilon [\to S$ de classe \mathcal{C}^1 tel que $\gamma(0) = a$ et $\gamma'(0) = x$. Par définition de S, on a $g \circ \gamma = 0$ et en particulier

$$0 = (g \circ \gamma)'(0) = dg_{\gamma(0)}(\gamma'(0)) = dg_a(x)$$

d'où $x \in \text{Ker } dg_a$ et $T_a S = \text{Ker } dg_a$.

De même, la fonction $f\circ\gamma:]-\varepsilon,\varepsilon[\to\mathbb{R}$ admet un extremum local en 0, d'où

$$0 = (f \circ \gamma)'(0) = df_{\gamma(0)}(\gamma'(0)) = df_a(x)$$

et $T_aS = \operatorname{Ker} dg_a \subset \operatorname{Ker} df_a$.

On sait par définition de dg_a que Ker $dg_a = \bigcap_{i=1}^r \operatorname{Ker} dg_{ia}$, on a donc

$$\bigcap_{i=1}^{r} \operatorname{Ker} dg_{ia} \subset \operatorname{Ker} df_{a} \Rightarrow (\operatorname{Vect}(dg_{1a}, \cdots, dg_{ra}))^{o} \subset \operatorname{Vect}(df_{a})^{o}$$

$$\Rightarrow \operatorname{Vect}(df_{a}) \subset \operatorname{Vect}(dg_{1a}, \cdots, dg_{ra})$$

Soit le résultat voulu.

<u>Corollaire</u>. Soient (E, (., .)) un espace vectoriel (réel) euclidien, et $u \in \mathcal{L}(E)$ un endomorphisme symétrique : alors u est diagonalisable sur E (i.e E possède une base formée de vecteurs propres de u).

 $D\acute{e}monstration$. On raisonne par récurrence sur $n = \dim E$. Le cas n = 1 est immédiat (tous les endomorphismes sont alors diagonaux).

Dans le cas général, considérons les applications suivantes :

$$f: E \longrightarrow \mathbb{R}$$

 $x \longmapsto (u(x), x)$ et $g: E \longrightarrow \mathbb{R}$
 $x \longmapsto ||x||^2 - 1$

On a par définition $g^{-1}(0) = S(0,1) =: S$ est un compact, sur lequel f admet donc un minimum en $e_1 \in S$. Remarquons que g est une submersion, en effet, pour $x, h \in E$, on a

$$g(x+h) - g(x) = (x+h, x+h) - 1 - (x, x) + 1$$
$$= (x, x) + (x, h) + (h, x) + (h, h) - (x, x)$$
$$= 2(x, h) + o(||h||)$$

Par l'inégalité de Cauchy-Schwarz, donc $\nabla g(e_1) = 2e_1$, comme $||e_1|| = 1 \neq 0$, dg_{e_1} est non nulle et surjective (théorème de Riesz), il s'agit donc d'une 'famille libre', le théorème des extremas liés nous donne alors $df_{e_1} = \lambda dg_{e_1}$ pour un $\lambda \in \mathbb{R}$. Or, on a (pour $x, h \in E$)

$$f(x+h) - f(x) = (u(x+h), x+h) - (u(x), x)$$

$$= (u(x), x) + (u(x), h) + (u(h), x) + (u(h), h) - (u(x), x)$$

$$= 2(u(x), h) + (u(h), h)$$

Car u est symétrique, et comme $|(u(h), h)| \leq ||u|| ||h||^2 = o(||h||)$, on a $\nabla f(e_1) = 2u(e_1)$. Le théorème des extrema liés donne alors $u(e_1) = \lambda e_1$ et e_1 est un vecteur propre de u. Posons enfin $F = \text{Vect}(e_1)^{\perp}$, pour $x \in F$, on a

$$(u(x), e_1) = (x, u(e_1)) = (x, \lambda e_1) = 0$$

Donc $u(x) \in F$, qui est alors stable par u: comme dim F = n - 1, on peut appliquer l'hypothèse de récurrence à u_F , ce qui termine la démonstration.