"Metodología para la Caracterización de Medios Porosos a Escala de Poro Empleando los Modelos de Red de Poros"

Edgar G. Martínez Mendoza^{1*} Martín A. Díaz Viera²

¹* Universidad Nacional Autónoma de México edgar.g.martinez@hotmail.com

²Instituto Mexicano del Petróleo mdiazv@imp.mx

3ra Reunión Anual del Capítulo Mexicano de Interpore

México D.F. 6 de Octubre de 2016, 12:00-12:20

- Introducción
 - Objetivo y alcance
- 2 Modelo de Red de Poros (MRP)
 - ¿Qué es un Modelo de Red de Poros?
 - Elementos que conforman un MRP
 - Flujo de trabajo para MRP
- Aplicación del MRP
 - Permeabilidad absoluta
 - Presión capilar
- Casos de estudio
 - Caso de estudio 1
 - Caso de estudio 2
- Comentarios finales
 - Observaciones y conclusiones
 - Trabajo en curso y futuro

Objetivo y alcance

Objetivo

Presentar los Modelos de Red de Poros (MRP) como enfoque metodológico para caracterizar medios porosos a escala de poro

Alcance

Se emplea la metodología de un Modelo de Red de Poros para simular **flujo** y **desplazamiento inmiscible**, bajo condiciones ideales.

Introducción: Escala ideal para estructura interna

Figura 1: Tomado de http://goo.gl/Dw79Gg.

Introducción: Jerarquía de escalas

¿Qué es un Modelo de Red de Poros?

Técnica que discretiza un medio poroso, con el fin de estudiar la influencia de la morfología del medio en parámetros de flujo y transporte.

Figura 2: Imagen micro-CT de una arenisca en la que se observan los poros y gargantas de la muestra.

Elementos que conforman un MRP

En literatura: geometría y modelos

Base: red, geometría, fases, física a escala de poro y métodos

Figura 3: Elementos base para generar un MRP.

Flujo de trabajo para MRP

Aplicación del MRP

Consideraciones

- Fluido newtoniano e incompresible
- Flujo laminar
- Tubería circular uniforme
- No hay reacción fase-fase, fase-medio
- No hay puntos fuente/sumidero

Permeabilidad absoluta: Modelo de Flujo

Relación Hagen-Poiseuille

Balance de masa

$$Q = -\frac{\pi r^4 \Delta p}{8\mu L} \tag{1}$$

$$\sum q_{ij} = 0$$

Considerando conductancia para una garganta cilíndrica:

$$\kappa_{ij} = \frac{\pi r^4}{8\mu L} \tag{3}$$

El modelo de flujo para un MRP es

$$\sum q_{ij} = \sum \kappa_{ij} (p_i - p_j) = 0$$
 (4)

(2)

Permeabilidad absoluta

Ley de Darcy

$$K_{=} - \frac{\mu QL}{A(p_{in} - p_{out})}$$

Donde A y L son el área de la sección transversal y la longitud del MRP, respectivamente, p_{in} es la presión de entrada y p_{out} la presión de salida.

Curva de Presión Capilar

Percolación de invasión con entrampamiento \Longrightarrow Representa secuencia de invasión

Cálculo de saturaciones

$$S_{invasora} = \frac{\sum \text{Volumen de poros y gargantas invadidos}}{\sum \text{Volumen de todos los elementos de la red}}$$
 (5)

$$S_{defensora} = 1 - S_{invasora} \tag{6}$$

Cálculo de presiones capilares

$$p_c = \frac{2\sigma\cos\theta}{r} \tag{7}$$

Casos de estudio

Caso 1

- Permeabilidad
- Presiones capilares
- Permeabilidades relativas

Caso 2

• Ajuste $P_c(S_w)$

Caso de estudio 1

Caso de estudio 1: Descripción del MRP

- Medio poroso: Arenisca
- Reconstrucción de imágenes por micro-CT
- Muestra S1_Sandstone (Imperial College)
- Fases: Mercurio y aire

Propiedad	Poros	Gargantas
Total elementos Forma Diámetro máximo Diámetro mínimo	1717 Esferas $228.00 \; [\mu m]$ $1.77 \; [\mu m]$	2824 Cilindros 121.70 $[\mu m]$ 1.74 $[\mu m]$

Caso de estudio 1: Tamaños de poro y garganta

Figura 4: Histograma de los tamaños de poro y garganta de S1 Sandstone.

Caso de estudio 1: MRP

Imagen micro-CT, resolución 8.63 μm

MRP de la arenisca S1 Sandstone

Resultados

Caso de estudio 1: Permeabilidad

ullet Dirección de flujo: eje x del modelo

Permeabilidad absoluta en una dirección

• Longitud: $2.57 \times 10^{-3} [m]$

• Área: $6.83 \times 10^{-6} [m^2]$

• Gasto: $5.41 \times 10^{-12} [m^3/s]$

• Permeabilidad: $1.34 \times 10^{-12} [m^2] = 1366.01 [mD]$

Caso de estudio 1: Presión capilar

Aire (Defensor) = azul, Mercurio (Invasor) = rojo Entrada = verde, Salida = amarillo

Caso de estudio 1: Presión capilar

- $S_{a_{ir}} = 23.81$
- $S_{hg_{ir}} = 31.21$
- $P_{ad} = 15[kPa]$

Caso de estudio 1: Permeabilidades relativas

•
$$S_{hgc} = 13\%$$

$$\bullet$$
 K_{ra} $@S_{hgc} = 0.36$

•
$$S_{ac} = 29\%$$

$$\bullet$$
 K_{rhg} $@S_{ac} = 0.12$

Figura 6: Curva de permeabilidades relativas.

Caso de estudio 2

Caso de estudio 2: Descripción del MRP

- Misma conectividad del MRP Caso 1
- Tamaños de poros/ gargantas a partir de distribuciones
- Cien simulaciones

Salmuera \longrightarrow invasor Aceite \longrightarrow defensor

Cuadro 1: Coeficientes de la distribución tipo Weibull.

	Forma	Localización $[\mu m]$	Escala $[\mu m]$
Poros	1.62	1.22	55.93
Gargantas	1.37	1.63	25.11

Caso de estudio 2: Objetivo

Figura 7: Curva de P_c a partir de prueba experimental.

Resultados

Caso de estudio 2: Simulaciones

Figura 8: Curvas de P_c a partir de simulaciones (gris).

Caso de estudio 2: Ajuste $P_c(S_w)$

Para la prueba experimental

Brooks-Corey

$$P_c = \frac{3583.42}{\left(\frac{S_w - S_{wr}}{1 - S_{wr}}\right)^{0.22}} \tag{8}$$

Skjaeveland(2000)

$$P_c = \frac{3583.42}{\left(\frac{S_w - S_{wr}}{1 - S_{wr}}\right)^{0.22}} - \frac{3583.4 (0.2)^{0.87}}{(1 - S_w)^{0.87} \left(\frac{0.98 - S_{wr}}{1 - S_{wr}}\right)^{0.22}} \tag{9}$$

Caso de estudio 2: Presión capilar

Figura 9: Ajuste de curva.

Caso de estudio 2: Presión capilar

Figura 10: Comparativa de curvas.

Comentarios finales

Observaciones y conclusiones

- Los modelos de flujo y desplazamiento permiten realizar estimaciones aceptables
- Se propone un flujo de trabajo para emplear los MRP
- Seguir la metodología de MRP en su totalidad, conforma una alternativa para caracterizar un medio poroso
- Conocer la estructura del medio es fundamental
- Involucrar tecnología en estudios a escala de poro

Trabajo en curso y futuro

- Ajuste de curvas
- Familia de $P_c(S_w)$ para σ , μ y θ
- Formas irregulares para poros y gargantas

¡Gracias por su atención!

¿Preguntas y Comentarios?

Bibliografía I

Berkowitz, B. and Ewing, R. (1998).

Percolation theory and network modeling aplications in soil physics.

Surveys in Geophysics, (19):23–72.

Brooks, R. and Corey, A. (1964).

Hydraulic Properties of Porous Media.

Hydrology Papers, (3):1–27.

Chandler, R., Koplik, J., Lerman, K., and Willemsen, J. (1982).

Capillary displacement and percolation in porous media.

J. Fluid Mech., 119:248-267.

Gostick, J.T., Ioannidis, M., Fowler, M., and Pritzker, M. (2007).

Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells.

Journal of Power Sources, (177):277–290.

Bibliografía II

Imperial College (2016).

Pore scale modelling consortium.

https://goo.gl/HWM4fU. [En línea; 21-01-2016].

Lenormand, R. and Boris, S. (1980). *Acad. Sci.*, (B291):279.

Martínez-Mendoza, E. G. (2016).

Modelos de red de poros para la obtención de propiedades efectivas de flujo y transporte en yacimientos petroleros.

Oren, P., Bakke, S., and Arntzen, O. (1998).

Extending predictive capabilities to network models.

Society of Petroleum Engineers SPE, (52052):324–336.

Sahimi, M. (2011).

Flow and Transport in Porous Media and Fractured Rock.

Wiley-VCH, second edition.

Bibliografía III

Skjaeveland, S. M., Siqveland, L. M., Kjosavik, A., Thomas, W. L. H., and Virnovsky, G. A. (2000).

Capillary Pressure Correlation for Mixed-Wet Reservoirs.

SPE Reservoir Evaluation & Engineering, 3(1):60-67.

Stockmayer, W. (1943).

Theory of molecular size distribution and gel formation in branched-chain polymers.

J. Chem. Phys., (45).