목록

ㅂ	조さ	-
\neg	0 7	-
소	기구	
Ó	/ 1 -	
소	- ロス	
Ò	느	
유	도ㅁ	
Ψ.	οι	-
유	수호	
낵	0 7	
Οl	두견	
1	L	
Οl	수민	
!	1 5	
짓ŀ	유충	
-3	2 1	(
와	누야	

답안

- 1) 디자인 적인 문제
 - 레이어 구조가 무너짐
 - IP로 호스트를 못찾아 포트번호를 사용하는 등
- 2) TRACE ROUTE 등

 DHCP 가 두 개 이상일 경우 ⇒ 두 개 이상 offer가 음⇒ 그 중에서 내가 원하는 걸 선 택

그래서 선택 후 request를 다시 보내는 것

그리고 DHCP기능을 하는 얘들이 여러개 있을수 있으니 걔네들한테 간접적으로 "나한 테 준 offer 선택 안했음"을 전달하기 위함.

2.

- 인터넷/통신 상에서 발생한 일반적인 상황에 대한 보고
- 인터넷/통신 상에서 발생한 오류에 대한 보고 : 연결할 수 없는 호스트, network, port, protocol

네트워크 3, 4 정답

2022년 11월 8일 화요일 오후 9:11

DHCP 서버로부터 IP할당 절차 나열하기(1,2,3,4는 단순알파벳 순임)

- 1. DHCP ack
- 2. DHCP discover
- 3. DHCP offer
- 4. DHCP request

___2__-> ___3___-> ___4___-> ___1___

IPv4의 고갈 문제로 ____IPv6__가 등장하게 되었다. 그러나, 모든 라우터가 업그레이드를 할 수 없어서 IPv4와 IPv6를 같이 사용하는 기법을 ____터널링(tunneling)기법이라고 한다.

A1) 다잌스트라!

A2) 알수없음

같은 DHCP 서버를 공유(같은 네트워크를 사용 = NAT)하기 때문에 내부적으론 다른 IP 주소를 사용하지만 외부에 보낼 때는 같은 IP주소로 network를 보내게 된다. 즉 IP주소가 내부적으로 재사용 될 수 있음

정답 1.

DHCP server 내부에 DHCP 기능을 수행하는 노드들이 여러 개 있을 수 있고, 따라서 client는 다른 노드들로부터 다수의 offer를 받을 수 있다. 이 때 선택되지 않는 노드들에게 해당 offer가 승락되지 않았다는 것도 간접적으로 전달하기 위해서 broadcast를 하는 것이다.

(교수님이 정확한 명칭을 말하지 않아서 노드라는 단어는 제가 임의로 넣은 것 입니다.)

정답 2.

내부에서 웹서버 운영한다면 내부에서는 접근을 할 수 있지만, 외부에서는 해당 주소를 찾지 못 한다. 교수님이 설명하셨던 IP 4의 현실적인 문제점.

답안

1. 고정 ip에 비해 address pool을 유연하게 사용할 수 있다

2. U(0) \rightarrow W(3) \rightarrow X(5) \rightarrow V(6) \rightarrow Y(10) \rightarrow Z(12)

정답_이수민

broadcast

- 1. 브로드캐스트 도메인 안에 있는 모든 네트워크 장비들에게 보내는 통신
- 2. 증가한다.
- 3. 감소한다.

IP fragmentation

- 1. MTU (Max Transfer Size)
- 2. O
- 3. $X \rightarrow 패킷에 이상이 있으면 더 위 계층으로 data를 보내지 않음$

1. 다음은 인터넷에 연결되기 위해 필요한 기본적인 정보 네가지와 그에 대한 예시이다. 빈칸을 채우세요.

명칭	예시
IP Address	192.168.1.47
Subnet Mask	255.255.255.0
Router Address	192.168.1.1
DNS	192.168.1.1

2. 다음은 라우터 알고리즘에 (Router Algorithm) 관한 내용이다. 빈칸을 채우세요.

라우터	트리의(Node)
(Communication Link)	노드 사이의 엣지
링크에 존재하는 값	링크의 (Cost) - 트래픽 양 - 라우터 간 실제 거리
라우터 알고리즘의 목적	(목적지까지 최소비용 최단경로)구하기

전체를 보고 알고리즘을 설계하는 방법

Link-state Routing) 알고리즘 - (Dijkstra's) 알고리즘

2)

Bellman-Ford equation (dynamic programming)

let

$$d_x(y) := cost of least-cost path from x to y$$

then

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

$$cost from neighbor v to destination y$$

$$cost to neighbor v$$

min taken over all neighbors v of x

이웃한 노드를 중심으로 설계하는 방법

Distance Vector

) 알고리즘

다익스트라 알고리즘

DHCP