3A Exercises

mardi 16 juillet 2024 15

1 Suppose $b, c \in \mathbb{R}$. Define $T \colon \mathbb{R}^3 \to \mathbb{R}^2$ by

T(x, y, z) = (2x - 4y + 3z + b, 6x + cxyz).

Show that T is linear if and only if b = c = 0.

"=>": T linear map => T(0) = 0

T(0) =
$$(b, 0) = 0 => b = 0$$

T linear map => T($(1,1,1) + (1,0,0) = T(1,1,1) + T(1,0,0)$

T($(2,1,1) = (3,12+2c) = (1,6+c) + (2,6) = T(1,1,1) + T(1,0,0)$

=> $(3,12+2c) = (3,12+c)$

=> $(3,12+2c) = (3,12+c)$

"=" he can verify additional homogeneity with b = c = 0. Additivity: let $(a_1y_1, t), (a_1, y_1, t') \in \mathbb{R}^3$

$$= (2(a+a')-9(y+y')+3(z+z'),6(z+a'))$$

· Hongereitz let LEF, (~,y,t) ER3

=> This map

3 Suppose that $T \in \mathcal{L}(\mathbf{F}^n, \mathbf{F}^m)$. Show that there exist scalars $A_{j,k} \in \mathbf{F}$ for j=1,...,m and k=1,...,n such that

$$T(x_1,...,x_n)=(A_{1,1}x_1+\cdots+A_{1,n}\,x_n,...,A_{m,1}x_1+\cdots+A_{m,n}\,x_n)$$

for every $(x_1, ..., x_n) \in \mathbf{F}^n$.

This exercise shows that the linear map T has the form promised in the second to last item of Example 3.3.

$$T(\alpha_{1}...\alpha_{m}) = T(\alpha_{1}(1,0...0) + ... + \alpha_{m}(0...0,1))$$

$$= \alpha_{1}T(1,0...0) + ... + \alpha_{m}T(0...0,1)$$

$$= \alpha_{1}(A_{1,1},...,A_{m,1}) + ... + \alpha_{m}(A_{1,m}...A_{m,m}) (for Aij 6T)$$

$$= (A_{1,1}\alpha_{1} + ... + A_{1,m}\alpha_{m}, ..., A_{m,1}\alpha_{1} + ... + A_{mm}\alpha_{m})$$

4 Suppose $T \in \mathcal{L}(V,W)$ and $v_1,...,v_m$ is a list of vectors in V such that $Tv_1,...,Tv_m$ is a linearly independent list in W. Prove that $v_1,...,v_m$ is linearly independent.

Let
$$a_1 ... a_m \in \mathbb{T}$$
 $\sum_{i=1}^{m} a_i v_i = 0 \Rightarrow T(\sum_{i=1}^{m} a_i v_i) = T(0)$

Using additively, largeredly and $T(0) = 0$.

 $\sum_{i=1}^{m} a_i T_{0i} = 0 \Rightarrow a_i = -a_m = 0$ as $T_{0i} - T_{0i}$ heavy $\sum_{i=1}^{m} a_i T_{0i} = 0$
 $\sum_{i=1}^{m} a_i T_{0i} = 0 \Rightarrow a_i = -a_m = 0$ as $T_{0i} - T_{0i}$ heavy $\sum_{i=1}^{m} a_i T_{0i} = 0$
 $\sum_{i=1}^{m} a_i T_{0i} = 0 \Rightarrow a_i = -a_m = 0$ as $T_{0i} - T_{0i}$ heavy $\sum_{i=1}^{m} a_i T_{0i} = 0$

- 6 Prove that multiplication of linear maps has the associative, identity, and
- Anoudily cares from the anoudably of fuctions comportion
- · let T: U → V, and Iv idelely on U, Ividan V Vo, TIvv = Tv = IvTv
- · let S,, S2: U > V, T: V > W, U & V

$$((S_1 + S_2) +)(v) = (S_1 + S_2)(Tv)$$

$$(all kin in L(UX)) + S_1 + S_2 + S_2 + S_3 + (S_1 + S_2)(\sigma) + (S_2 + S_2)(\sigma)$$

Sac reasoning for SCT,+T2).

7 Show that every linear map from a one-dimensional vector space to itself is multiplication by some scalar. More precisely, prove that if dim V = 1 and T ∈ ℒ(V), then there exists λ ∈ F such that Tv = λv for all v ∈ V.

Using Ex 3's reals on a linear map T from a

8 Give an example of a function $\varphi \colon \mathbb{R}^2 \to \mathbb{R}$ such that

$$\varphi(av) = a\varphi(v)$$

for all $a \in \mathbf{R}$ and all $v \in \mathbf{R}^2$ but φ is not linear.

This exercise and the next exercise show that neither homogeneity nor additivity alone is enough to imply that a function is a linear map.

$$P(x_1y) = nx + y + 1$$

$$P(\alpha(x_1y)) = P(\alpha x_1 \alpha y) = \alpha x_2 + \alpha y + \alpha$$

$$A(x_1y) = \alpha(x_2 + y + 1) = \alpha x_2 + \alpha y + \alpha$$

$$A(x_1y) = \alpha(x_2 + y + 1) = \alpha x_2 + \alpha y + \alpha$$
However, $P(\alpha, \alpha) = 1 \neq 0$, hence $P(\alpha) = 1$ is not linear.

9 Give an example of a function $\varphi \colon \mathbb{C} \to \mathbb{C}$ such that

$$\varphi(w+z) = \varphi(w) + \varphi(z)$$

for all $w,z\in \mathbf{C}$ but φ is not linear. (Here \mathbf{C} is thought of as a complex vector space.)

There also exists a function $\varphi \colon \mathbf{R} \to \mathbf{R}$ such that φ satisfies the additivity condition above but φ is not linear. However, showing the existence of such a function involves considerably more advanced tools.

10 Prove or give a counterexample: If $q \in \mathcal{P}(\mathbf{R})$ and $T \colon \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ is defined by $Tp = q \circ p$, then T is a linear map.

no is not linear

The function T defined here differs from the function T defined in the last bullet point of 3.3 by the order of the functions in the compositions.

If q(X)=1, then (90P)(X)=1 \XER

If
$$q(X)=1$$
, then $(q \circ p)(X)=1 \forall (Y \in IX)$
To possible $(q \circ p)(0)=1 \neq 0$, hence T is not a linear map.

Suppose U is a subspace of V with $U \neq V$. Suppose $S \in \mathcal{L}(U,W)$ and $S \neq 0$ (which means that $Su \neq 0$ for some $u \in U$). Define $T \colon V \to W$ by

$$Tv = \begin{cases} Sv & \text{if } v \in U, \\ 0 & \text{if } v \in V \text{ and } v \notin U. \end{cases}$$

Prove that T is not a linear map on V.

Let $U \in U$, $E \subseteq S \cup \neq 0$, and $G \in V \cap U$ T(U+U) = D, as $U \neq 0$ However, $TU + TU = S \cup \neq 0$ $T(U+U) \neq TU + TU$, T is not a linear map

13 Suppose V is finite-dimensional. Prove that every linear map on a subspace of V can be extended to a linear map on V. In other words, show that if U is a subspace of V and $S \in \mathcal{L}(U, W)$, then there exists $T \in \mathcal{L}(V, W)$ such that Tu = Su for all $u \in U$.

The result in this exercise is used in the proof of 3.125.

Let
$$v = \sum_{i=1}^{m} a_i v_i + \sum_{i=n+1}^{m} a_i w_i$$
 and $v = \sum_{i=1}^{m} b_i v_i + \sum_{i=n+1}^{m} a_i + \sum_{i=n+1}^{m} a_i + \sum_{i=1}^{m} a_i + \sum_{i=1}^{m}$

Homogeneity of T is cany to show

Suppose V is finite-dimensional with dim V > 0, and suppose W is infinite-

led vi ... V m be a base of V.

Winfinde durand => Fw1, w2, EWst Vh integer, w, we is linearly independent

led (The) RENT the require of clarks of L(V,W) s.t.:

Tρυ; = ω km+i V;=1...m

We only need to show that I'm ilogen, T, ... To is linearly undependent to show L(V, W) is wifted dumonand

Les a, ... a EFs.t:

$$\sum_{i=1}^{m} \alpha_{i} \Upsilon_{i} = 0$$

$$\sum_{i=1}^{r} \alpha_i \Upsilon_i = 0$$

In portion, for $V = V_1$:

$$\sum_{i=1}^{m} a_i T_{iV_i} = \sum_{i=1}^{m} a_i \omega_{im+1} = 0$$

We defined $\omega_1, \omega_2, \ldots$ to be a broady independent bit of rectors. We can this andide $a_i = 0 \ \forall i = 1 \dots m$, $T_1 \dots T_m$ is linearly independent. This implies h(V, W) is infinite dimensional.

We have to prove :

v, v linearly dependent

=> 3w,-w, EV, ATEL(V,V) s.t. Toz=wh Y k=1...m

The contopolion is:

Yw, w, 39EL(V,W), t. Ton=whyl (1)

=> 5,... on linearly independed

let a, ... a m BF.

 $\sum_{i=1}^{m} a_i \sigma_i = 0$

We can apply (1) with w, ≠0 (the assumes W≠{0}), w; =0 ∀i≥2

We than have:

 $\sum_{i=1}^{\infty} a_i \sigma_i = 0 \Rightarrow \sum_{i=1}^{\infty} a_i \tau_{\sigma_i} = \tau(0)$

¹⁵ Suppose $v_1,...,v_m$ is a linearly dependent list of vectors in V. Suppose also that $W \neq \{0\}$. Prove that there exist $w_1,...,w_m \in W$ such that no $T \in \mathcal{L}(V,W)$ satisfies $Tv_k = w_k$ for each k = 1,...,m.

E a; $U_i = 0 \Rightarrow \sum_{j=1}^{n} a_j T_{U_j} = 1(0)$ $\Rightarrow \alpha_i \cup_{j=0}^{n} 0$ $\Rightarrow \alpha_i = 0, \text{ as } W_i \neq 0$ We can repeat this process with T_i of $T_{U_i} = W_i \neq 0, T_{U_j} = 0 \text{ V}_j \neq 0$ This leads to $\alpha_i = 0 \text{ V}_i$ $\Rightarrow U_i = 0 \text{ V}_i$ $\Rightarrow U_i = 0 \text{ V}_i$ As skaled at the beging, taking the contraportion lead gives the rould.

16 Suppose *V* is finite-dimensional with dim V > 1. Prove that there exist $S, T \in \mathcal{L}(V)$ such that $ST \neq TS$.

led 5,-5 m he a basis of V (diV=m>1)

We can define Seh(V) > t. Sv₁=V₂, and Sv₂=V₁, and Sv;=V; ∀i≠1,2 and TE h(V) > t. Tv,=V₁+V₂, Tv;=V; ∀i≠1

 $STv_1 = S(v_1+v_2) = v_2+v_1$ $TSv_1 = Tv_2 = v_2 \neq STv_1$ $\longrightarrow TS \neq ST$