CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES

R. F. C. WALTERS

Sheaves and Cauchy-complete categories

Cahiers de topologie et géométrie différentielle catégoriques, tome 22, n° 3 (1981), p. 283-286

http://www.numdam.org/item?id=CTGDC_1981__22_3_283_0

© Andrée C. Ehresmann et les auteurs, 1981, tous droits réservés.

L'accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XXII - 3 (1981)

3^e COLLOQUE SUR LES CATEGORIES

DEDIE A CHARLES EHRESMANN

Amiens, Juillet 1980

SHEAVES AND CAUCHY-COMPLETE CATEGORIES

by R. F. C. WALTERS

I want to consider the point of view (see [2, 4]) that sheaves are sets with a generalized equality, in the context of enriched category theory (see [3]), where such structures as metric spaces and additive categories are regarded as categories with a generalized hom-functor. In this context sheaves on a locale H tum out to be precisely symmetric Cauchy-complete B-categories for a suitable bicategory B constructed out of H.

This idea arose in conversations with Stefano Kasangian and Renato Betti in Milan. The necessary B-category theory was developed with Betti. I present here only the basic idea; developments will appear elsewhere.

1. CATEGORIES BASED ON A BICATEGORY (see [1])

The theory of categories with hom taking values in a bicategory, rather than a monoidal category (= bicategory with one object) seems to be very little developed. I have only some unpublished notes of R. Betti. However, most of what we need for this lecture is a simple translation of [3]. For our application we need only consider the case where the base bicategory B is locally partially-ordered; i.e., B(a, b) is a poset for all a, b in B. We need also to assume that all these posets are co-complete and that suprema are preserved by composition in B.

DEFINITIONS. A B-category X is a set X with a function $e: X \to obj. B$ and a function $d: X \times X \to morph. B$ satisfying:

- (i) $d(x_1, x_2): e(x_1) \rightarrow e(x_2)$,
- (ii) $l_{e(x)} \leq d(x,x)$,
- (iii) $d(x_2, x_3).d(x_1, x_2) \le d(x_1, x_3).$

(Draw a picture: X is a space lying over B.)

A B-functor f from X to Y is a function $f: X \to Y$ satisfying:

- (i) e(f(x)) = e(x),
- (ii) $d(x_1, x_2) \le d(fx_1, fx_2)$.

EXAMPLE. Let H be a locale. Form a bicategory B from H as follows:

objects of B: opens u in H,

arrows from u to v: elements $w \le u \wedge v$,

2-cells: order in H,

composition of arrows: intersection.

Notice that B = Relations(H).

From a sheaf F on H we can form a B-category L(F) as follows:

L(F) = set of partial sections of F,

 $e: L(F) \rightarrow obj. B: s \mapsto domain \ of \ s$,

$$d: L(F) \times L(F) \rightarrow morph. B: (s,t) \rightarrow V\{u: s | u = t | u\}.$$

Notice that L(F) has the property that if

$$s, t \in L(F)$$
 and $d(s, t) = e(s) = e(t)$,

then s = t. Call such a B-category skeletal.

Notice that the bicategory B = Span(H) of this example has the property that B^{op} (arrows reversed) = B. This property allows us to say that a B-category X is symmetric if

$$d(x_1, x_2) = d(x_2, x_1)$$
 for all $x_1, x_2 \in X$.

Clearly L(F) is symmetric and in fact L is a fully-faithful functor

L: Sheaves(H) \rightarrow skeletal symmetric B-categories.

2. CAUCHY-COMPLETENESS

To express Lawvere's notion of Cauchy-completeness we need to define bimodules. A bimodule ϕ from X to Y (denoted $\phi: X \longrightarrow Y$) is a function $\phi: X \times Y \rightarrow morph$. B satisfying (for all $x, x' \in X, y, y' \in Y$)

- (i) $\phi(x, y)$: $e(x) \rightarrow e(y)$,
- (ii) $\phi(x, y)$. $d(x', x) < \phi(x', y)$,
- (iii) $d(y,y').\phi(x,y) \le \phi(x,y').$

As usual a B-functor $f: X \to Y$ yields a pair of bimodules

$$f^*: X \longrightarrow Y$$
 and $f_*: Y \longrightarrow X$

defined by

$$f^*(x,y) = d(fx,y)$$
 and $f_*(y,x) = d(y,fx)$.

Further f^* and f_* are adjoint in the sense that

(i)
$$d(x,x') \leq \exists y [f_*(y,x'), f^*(x,y)]$$

(where we write $\exists y$ for the supremum (over y) in $B(x,x')$) and

(ii)
$$\exists x [f^*(x,y').f_*(y,x)] \leq d(y,y').$$

Then a *B*-category *Y* is Cauchy-complete if every adjoint pair of bimodules ϕ , ψ : $X \longleftrightarrow Y$ arises from a functor $X \to Y$.

3. SHEAVES

We now have the definitions required to state the result.

THEOREM. If H is a locale, then Sheaves (H) is equivalent to the category of skeletal symmetric Cauchy-complete Rel(H)-categories.

PROOF. We want to see

- (a) that L lands in Cauchy-complete B-categories, and
- (b) that every skeletal Cauchy-complete symmetric B-category is isomorphic to $L\left(F\right)$ for some sheaf F.

For each element $u \in H$ we can define a B-category \hat{u} with one element * and with e(*) = u, d(*,*) = u. Then, in testing Cauchy-completeness of Y, we need only consider adjoint pairs of bimodules from \hat{u} to Y for each $u \in H$.

To prove (a) consider an adjoint pair of bimodules $\phi(s)$, $\psi(s)$ ($s \in L(F)$) from \hat{u} to F. Then condition (i) of adjointness says that: $u_s = \phi(s) \wedge \psi(s)$ ($s \in L(F)$) is a cover of u. Condition (ii) says that $s | u_s|$ ($s \in L(F)$) is a compatible family of sections, and so there is a section $s_0 \in F(u)$ such that

$$s_0 | u_s = s | u_s$$
 for all $s \in L(F)$.

Now it is clear that for a general s,

$$d(s_0,s) = \bigvee_t d(s,t|u_t).$$

From property (ii) of adjunction:

$$\phi(s) \wedge \psi(t) \wedge \phi(t) \leq d(s,t) \leq d(s,t|u_t)$$

and so by (i)

$$\phi(s) \leq \bigvee_{t} d(s, t | u_t) = d(s_0, s).$$

From property (iii) of bimodules

$$\phi(s) \ge d(s,t) \wedge \phi(t) \ge d(s,t|u_t)$$
, and so $\phi(s) \ge d(s_0,s)$.

Hence.

$$\phi(s) = \psi(s) = d(s_0, s).$$

That is, the pair of bimodules arises from a functor.

To prove (b) consider a *skeletal* Cauchy-complete symmetric B-category Y. We need to be able to define the restriction of an element y over u to $v \le u$. But this restriction comes from the fact that the adjoint pair of bimodules

$$\phi(y') = \psi(y') = v_{\Lambda} d(y, y') : \hat{v} \rightleftarrows Y$$

is given by a functor. We need also to have the glueing together of a compatible family of elements $(y_a)_a$ with $\bigvee_a e(y_a) = u$. In this case the required section comes from the representation of the bimodules

$$\phi(y') = \psi(y') = \bigvee_{\alpha} d(y_{\alpha}, y') : \hat{u} \rightleftharpoons Y$$

as a functor.

REFERENCES

- J. B EN ABOU, Introduction to bicategories, Lecture Notes in Math. 47, Springer (1967), 1-77.
- 2. D. HIGGS, A category approach to boolean-valued set theory, unpub. manus.
- 3. F. W. LAWVERE, Metric spaces, generalized logic and closed categories, Rend. Sem. Mat. e Fis. di Milano 43 (1974), 135-166.
- 4. M.P. FOURMAN & D.S. SCOTT, Sheaves and Logic, Lecture Notes in Math. 753, Springer (1979).

Pure Mathematics Department University of Sydney SYDNEY, AUSTRALIE