

Energy Efficiency in 4E Standards and Roadmaps

Roland Brueniger

ADVISORY COMMITTEE ON ENERGY EFFICIENCY

(last meeting 19-21 April 2016 in Milwaukee, WI, USA), draft CD for review: Guide 118:

«Energy Efficiency aspects inclusion in electrotechnical publications»,

Guide 119: "Preparation of the Energy Efficiency Publications and the use of

Basic EE publications and Group EE publications".

IEC TC 2 ROTATING MACHINES

(last meeting 16-20 May 2016 in Washington DC, USA)

■WG 12 Revision of IEC 60034-1: Performance, tolerance, rating plate: ► FDIS

■WG 28 Revision of IEC 60034-2-3: Converter fed motors: ►CDV

■WG 31 New IEC TS 60034-30-2: Efficiency classes for converter fed motors: ▶ DTS

Next meeting: 13 October 2016 in Zurich, Switzerland

IEC SC22 G CONVERTERS & SYSTEM EFFICIENCY

■WG 18 (last meeting 3 -5 November 2015, Brea, CA, USA)

IEC 61800-9-1/IEC 61800-9-2: ► FDIS

Last meeting TF on Converter Testing: 13/14 October 2016 in Zurich,

■EMSA members in IEC: A. Baghurst/Australia, C. U. Brunner/Switzerland, S. Nielsen/ Denmark

		Scope	Testing	Efficiency classification	
1	Motor	motor	IEC 60034-2-1 ed 2 published 2014	IEC 60034-30-1 ed 2 published 2014	
2	VFD Motor	motor, driven by a VFD	IEC 60034-2-3 ed 2 CD 2017	IEC TS 60034-30-2 Technical Specification spring of 2017	
3	VFD Motor	VFD		1800-9 xtended Products	
4	VFD Motor	Motor + VFD	IEC 61800-9-2 VFD Classification/Testing FDIS spring of 2017		

IEA Technology Collaboration Programme Energy Efficient End-Use Equipment

Content	S

	Summary4
	•
1 11	Introduction
1.1	Background
1.3	Goal 8
1.4	Covered regions9
2	Scope and focus on Motor Driven Unit11
2.1	Scope11
2.2	Focus on Motor Driven Unit
3	International standards14
4	Methodology16
5	Results
5.1	Introduction
5.2	Overview
5.3	Motors
5.4	Pumps
5.5	Fans
5.6	Compressors
6	Findings and observations42
6.1	Findings – overview
6.2	Observations
6.3	Part 2
7	References46
8	Glossary47
8	Glossary
	,
9	Acronyms48

Energy Efficiency Roadmap for electric motors and motor systems.

NOVEMBER 2015

4E: Energy efficiency roadmap for electric motors and motor systems

Contents

Executive Summary

	Value Value I	
1	Introduction	
2	Adoption of test standards and MEPS	5
3	The transition to increased motor efficiency	
4	Motor efficiency trends up to 2019	9
5	Variable Frequency Drives - A step towards energy efficient motor systems	12
6	Energy efficiency roadmap for electric motors and motor systems	14
7	Observations for policy makers	18
8	References	19
Atta	achment A: Regional methods of testing motor efficiency	20
Atta	achment B: Energy efficiency policies for motors	22
l	achment C: Stock and sales modelling Methodology	

Energy Efficiency Roadmap for electric motors and motor systems.

Product Performance Tiers

Striving for high quality, energy efficient SSL products in your market? The IEA-4E SSL

Annex has prepared voluntary quality and performance tiers to address product attributes such as colour, lifetime, power, and efficacy for common SSL applications. These product performance tiers are a limited number of proposed performance levels, agreed upon by IEA SSL Annex members, that could be utilised by government, non-profit and donor agencies when designing programmes and policies. The objective is to provide a limited number of levels that can be utilised by programme designers to reduce costs of writing specifications and to facilitate economic advantages for industry/trade. Further, they help minimise compliance costs with SSL programmes and policies. Member countries are not obligated to use the tiers, and they are not international standards.

Non-directional Lamps

Outdoor Lighting (Street Lighting)

Directional Lamps

High/Low Bay LED Luminaires

Downlight Luminaires

Planar Luminaires

Linear LED Lamps

Spreadsheet for calculating Fourier Series (Dominant Light Modulation Frequency)

IEA Technology Collaboration Programme Energy Efficient End-Use Equipment

Table 1. IEA 4E SSL Annex Performance Tiers for Non-Directional Lamps

Note: please see Table 2 for recommended test methods for these parameters

Parameter	Tier 1	Tier 2		Tier 3		
Energy-Efficiency						
Minimum lamp luminous efficacy (lm/W) ¹	65 lm/W	90 lm/W		125 lm/W		
Maximum Standby Power ²	0.5 W	0.3 W		0.2 W		
	For 120V mains voltage products: Incandescent Wattage _{120V} = [(lumens + 187) / 15.8] or For 230V mains voltage products: Incandescent Wattage _{230V} = [(lumens + 176) / 13.9] or					
	Miles the objective of a		Incancescent Wattage	Light Output		
Claimed incandescent lamp	With the objective of moving away from voltage-dependent lumen bins, the table to the right offers incandescent wattage		10 W	100 lm]	
			15 W	150 lm]	
wattage (W) equivalent			25 W	250 lm		
based on initial light output			30 W	350 lm		
(lumens) ³	equivalency for the giv		40 W	500 lm		

EDNA-1

EDNA-3

www.iea-4e.org

Contacts

4E Chair Michelle Croker

michelle.croker@environment.gov.au

EMSA Chair Roland Brueniger

roland.brueniger@R-BRUENIGER-AG.CH

SSL Annex Chair Peter Bennich

peter.bennich@energimyndigheten.se

EDNA Chair Katherine Delves

katherine.Delves@canada.ca

4E Operating Agent Mark Ellis

mark@energyellis.com