Polar Plots

- => A different way of showing the properties of G(jw)
- => Bode plots |G(jw)| and 4G(jw) vs. w, using logarithmic scales for 0=w<0
- => Polar shows G(jw) as points on complex plane as w varies from \$6000 using actual (non-logarithmic) 5 cales
- => Learn to sketch polar from Bode
- => We are aiming for something qualitatively corned, but will deliberately distort scales to make certain critical features readily apparent.

- => For each we [0,00], G(jw) is a different point on Complex plane
- => As w varies from \$p\$ to as, these points will trace out a Curve on complex plane.
- => Bode diagrams show us the polar coordinates of the points G(jw) for each w
- => To map from Bode to polar
 - 1.) Remember to convert magnifules from dB back to actual.
 - 2.) Remember angle convention for Complex numbers.

A simple Example

$$G(s) = \frac{K_B}{(1+rs)} \quad T > \emptyset \quad (min Phase)$$

$$K_B > 1$$

Alway start by thinking about Low/high freq. Limiting behavior:

A simple Example

$$G(s) = \frac{K_B}{(1+rs)} \quad T > \emptyset \quad (min Phase)$$

$$K_B > 1$$

Alway start by thinking about Low/high freq. Limiting behavior:

Low freq. magnitude is $|K_B| > 1$, high freq. magnitude is \emptyset : $\lim_{\omega \to \infty} |G(j\omega)| = \emptyset$

Magnitude Crossover

"Magnitude crossover" occurs where polar plot "punctures" the unit circle

|G(jw)|=1 at this point.

The frequency at which this occurs to the "magnitude crossever freq", termed Wy

Easily seen on $Bode: W_{\gamma}$ is the frequency where $|G(j\omega)| = \phi dB$

Note: depending on the system there may be one, many, or no magnitude xover freq.

Important quantity: $\frac{1}{2}G(jw_8)$: phase at magnitude xover

Phase Margin

The <u>Phase margin</u> is the angle around the unit circle from -I to magnitude crossover point, measured Positive counter-clockwise from -1 (or, equiv, CW from mag xover to -1)

The phase margin angle, &, is expressed in deg (although later it will be convenient to express in rad).

Assuming we write
$$\#G(j\omega_8)$$
 in range $[0^\circ, -360^\circ]$ an expression for 8 is:

$$Y \in [-180^\circ, 180^\circ]$$

$$Y = 180^\circ + \#G(j\omega_8)$$
if $\#G(j\omega_8) > -180^\circ$

Note: Matlab will usually try to wrop phase plot &G(jw) so that &G(jw) is in this range. Sometimes it clossit. You can always manually add or subtract a multiple of 3600 to get &G(jw) in this range.

Another Example

$$G(s) = \frac{K_B}{(1+\tau s)^3} \quad K_B > 1$$

Low freq mag: Constant at KB

Low freq. phase: Constant at 0°

High freq. mag slope:

High freq. phase:

Another Example

$$G(s) = \frac{K_B}{(1+\tau s)^3} \quad K_B > 1$$

Low freq mag: Constant at KB

Low freq. phase: Constant at 0°

High freq. mag slope: -60 dB dec

High freq. phase: -2700

Recall: negative high freq. slope means

|G(jw)| -> Ø as w -> 00

Phase Crossover

The "phase crossover" of a polar plot is the point where the plot crosses through the negative real axis.

This corresponds to the point where $4G(j\omega) = -180^{\circ}$

Again, exsily seen from Bode Phase diagrams: call wa "phase crossover freq." The value of w for which $\times G(j\omega) = -180^{\circ}$.

Note: May be one, none, or many wa depending on system.

Important quantity: |G(jwa)| magnitude at phase xover frequency

Gain Margin

The gain margin, a, is defined as:

$$Q = \frac{1}{|G(j\omega_{\alpha})|}$$

Gain margin is commonly expressed in dB:

$$= - |G(j\omega_a)|_{dB}$$

So gain margin in dB is negative of Bode magnitude at phase crossover freq.

Meaning of Gain and Phase margins

a, 8 measure how close polar plot comes to point -1+0; ("-1 point") in complex plane. Recall -1+0; = 1x-180°

Two "pseudo-orthogonal" directions

- → a measures distance to -1 along real Axis
 as a ratio 1/16(jual)
- => 8 measures distance to -1 as an angle around Unit circle.

Note: a71 (a>ØdB) means phase crossover occurs inside unit circle. a<1 (a<ØdB) means phase crossover is outside unit circle

Effect of Gain Changes

Increasing or decreasing K_B uniformly expands or contrads polar plot about the origin \Longrightarrow Will generally Change crossovers and margins

Effect of Zeros

Since they affect magnitude and phase, zeros will change shape of polar plot.

Example:

$$G(s) = K_B \frac{(\tau_1 s + 1)}{(\tau_2 s + 1)^3} K_B > 1$$

high freq phase: - 180° here (Why??)

But this limit may be asymptotically approached from above or below as who were

This difference can have a profound impact on Shape of plot. Need to check Bode for accuracy, but can often "reason it out" for simple cases.

