

Efficient Entropy Estimation for Mutual Information Analysis using B-splines

Alexandre VENELLI

Secure Microcontroller Solutions
Rousset, FRANCE

IML – ERISCS Université de la Méditerranée Marseille, FRANCE

Outline

- Differential side-channel attacks Power analysis
- Mutual Information Analysis
- Proposed B-splines estimation technique
- Experimental results
- Conclusion

Differential side-channel attack workflow

Decision

WISTP 2010 3

Power analysis and leakage model

- Messerges et al. 1999
 - Linear relation between power consumption and Hamming Weight of a processed data.

$$P(t) = a.H(M) + b$$

power consumption

Some statistical tests used in practice (1)

- Kocher et al. 1999
 - Simplified T-Test (distance of means)

- Brier et al. 2004
 - Pearson correlation factor,
 - Correlation Power Analysis (CPA)

Some statistical tests used in practice (2)

- Gierlichs et al. 2008
 - Mutual Information Analysis (MIA) + histograms

- Veyrat-Charvillon et al. 2009
 - Cramér-von Mises test (nonparametric)

- This presentation
 - MIA + B-splines estimation (nonparametric)

Remainder on information theory

- Let X be a random variable with M_X possible states X_i with $i = \{1...M_X\}$.
- Entropy of X:

$$H(X) = \sum_{i=1}^{M_X} p(X_i) \log(p(X_i))$$

- Mutual information:
 - I(X;Y) = H(X) H(X|Y)
 - I(X;Y) = H(X) + H(Y) H(X,Y)

Problem: estimating mutual information

- Mutual Information:
 - very powerful,
 - yet difficult to estimate.
- Using the definition of entropy, the density has to be estimated.
- Goal: estimate a density given a finite number of data points drawn from that density function.
- Different approaches:
 - histograms, kernel density estimation, ...

Histogram based estimation

MIA vs CPA

Figure taken from:

Moradi A, Mousavi N, Paar C, Salmasizadeh M. A Comparative Study of Mutual Information Analysis under a Gaussian Assumption. Information Security Applications. 2009:193–205.

What are B-spline functions? (1)

Degree-0 basis functions

What are B-spline functions ? (2)

Degree-1 basis functions

What are B-spline functions ? (3)

Degree-2 basis functions

B-splines for MI estimation

Idea proposed by Daub et al. 2004 in the context of medical studies.

■ Instead of using a step function with histograms, a polynomial B-spline function is used to weight a data point.

Hence, data points can be in one or several intervals.

MI estimation in the presence of noise

Histograms

MI estimation in the presence of noise

Degree-2 B-spline functions

B-splines for MI estimation

Better efficiency than histogramsInteresting propriety for side-channel	- Slower to compute than histograms

Cramér-von Mises with B-splines

Cramér-von Mises test in Veyrat-Charvillon et al. 2009.

Its needs cumulative density functions.

■ B-splines can be used to estimate these density functions.

Experimental results

- Metrics to measure the efficiency of side-channel attacks by Standaert et al. 2008:
 - <u>first order success rate</u>: given a number of traces, the probability that the correct hypothesis is the first best hypothesis of an attack.
 - <u>guessed entropy</u>: average position of the correct hypothesis in the sorted hypothesis vector of an attack
- Attacks efficiency tested with 2 different setups:
 - on « DPA Contest 2008/2009^a » power curves of a DES,
 - on power curves acquired on a Atmel STK600 board with a ATmega2560 chip of a multiprecision multiplication.

DES – DPA Contest 2008/2009 First order success rate

DES – DPA Contest 2008/2009 Guessed Entropy

Multiplication – STK600 / Atmega 2560 First order success rate

Multiplication – STK600 / Atmega 2560 Guessed entropy

Conclusion

■ B-splines offer a lot more efficiency than classical histograms for an acceptable computational overhead.

■ However MIA still is not as performant as CPA on most platforms.

A New Hope:

- Other efficient entropy estimators,
- Higher order side-channel analysis.

Questions?

