INT303 Final project

Yuxuan Wu 1716309

December 1, 2020

Import the libraries

library(tidyr)

library(skimr)

library(GGally)

library(viridis)

library(caret)

library(e1071)

library(rpart)

library(xgboost)

library(corrplot)

library(corrgram)

library(ggplot2)

library(ggthemes)

library(psych)

library(scales)

library(treemap)

library(repr)

library(cowplot)

library(magrittr)

library(ggpubr)

library(RColorBrewer)

library(plotrix)

library(ggrepel)

library(tidyverse)

library(gridExtra)

library(lubridate)

library(tibbletime)

library(reshape2)

Load the data and return the head of data

df <- read.csv("/Users/yuxuan/Desktop/INT301-Avocado-prediction/avocado-updated-2020.csv")
head(df)</pre>

##	date	average_price	total_volume	X4046	X4225	X4770	total_bags
## :	1 2015-01-04	1.22	40873.28	2819.50	28287.42	49.90	9716.46
## 2	2 2015-01-04	1.79	1373.95	57.42	153.88	0.00	1162.65
## 3	3 2015-01-04	1.00	435021.49	364302.39	23821.16	82.15	46815.79
## 4	1 2015-01-04	1.76	3846.69	1500.15	938.35	0.00	1408.19
## !	5 2015-01-04	1.08	788025.06	53987.31	552906.04	39995.03	141136.68
## (3 2015-01-04	1.29	19137.28	8040.64	6557.47	657.48	3881.69
##	small_bags	bags large_bags xlarge_bags		type year		geography	

##	1	9186.93	529.53	0	${\tt conventional}$	2015	Albany
##	2	1162.65	0.00	0	organic	2015	Albany
##	3	16707.15	30108.64	0	${\tt conventional}$	2015	Atlanta
##	4	1071.35	336.84	0	organic	2015	Atlanta
##	5	137146.07	3990.61	0	${\tt conventional}$	2015	Baltimore/Washington
##	6	3881.69	0.00	0	organic	2015	Baltimore/Washington

Explore the data and some clarification

Explain the features

- date The date of the observation
- average_price The average price of a single
- total_volume Total number of avocados sold
- year The year
- type conventional or organic
- geography The city or region of the observation

X4046, X4225, X4770 stands for the PLU code

- Small/Medium Hass Avocado (~3-5oz avocado) | #4046
- Large Hass Avocado (~8-10oz avocado) | #4225
- Extra Large Hass Avocado (~10-15oz avocado) | #4770

Exploratory Data Analysis

```
levels(df$type)
```

Density plot of the difference between two avocadoes.

```
## [1] "conventional" "organic"
```

```
library(ggplot2)
options(repr.plot.width = 8, repr.plot.height = 4)
ggplot(df, aes(x=average_price, fill=type))+
   geom_density()+
   facet_wrap(~type)+
   theme_minimal()+
   theme(plot.title = element_text(hjust = 0.5),legend.position = "bottom")+
   labs(title = "Avocado Price by type")+
   scale_fill_brewer(palette = "Set2")
```

Avocado Price by type

Create a matrix to demonstrate the volume of conventional and organic avocadoes

```
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
vol_type <- df %>% group_by(type) %>% summarise(average_volume = round(mean(total_volume),3),average_pr
vol_type
## # A tibble: 2 x 4
##
     type
                  average_volume average_price volume_percent
##
     <fct>
                            <dbl>
                                          <dbl>
                                                          <dbl>
```

96.8 3.20

As can be seen from the density plot and the table in avocadoes. - there are two types of avocado: organic and conventional - organic avocado share a small percent (3.2%) of volume but has a high price (1.62) - conventional avocado share a large percent (96.8) of volume but has a relative low price (1.16)

1.16

1.62

1818206.

60127.

1 conventional

2 organic

Avocado price with the Date

```
library(ggplot2)
## Change the Date column from factor to the date format
df$date <- as.Date(df$date, "%Y-%m-%d")

## Sort the dates and order the datesets in date
df <- df[order(df$date),]

## Make the plot
df %>% select(date, average_price, type) %>%
ggplot(aes(x=date,y=average_price))+
geom_area(aes(color=type,fill=type),alpha=0.3,position=position_dodge(0.8))+
theme_minimal()+
scale_color_manual(values = c("#ED7921","#62BE51"))+
scale_fill_manual(values = c("#FD833E","#B8FC5F")
)
```

