Linking the Dynamics of Genetic Algorithms to the Encoding of Information

Henrik Åhl Supervised by Carl Troein and Adriaan Merlevede June 2, 2016

Presentation overview

An introduction to genetic algorithms

Experiment setup

Results

Concluding remarks

An introduction to genetic algorithms

Algorithms inspired by evolution

Genetic algorithms evolve *data sequences* by using the concepts of *mutation, reproduction* and *selection*

- ... for optimisation purposes
- ... for solving hard combinatorial problems
- ... for studying evolutionary dynamics

General structure

- Genetic algorithms maintain a pool of candidate solutions and modify them using mutation and crossover (recombination) operators
- A selection operator determines which solutions are mutated, recombined or picked for survival

General structure

- Information (phenotype) is encoded as a data sequence (genotype)
- Phenotypes are evaluated by a fitness, cost or objective function

The search space

• The algorithms traverse a fitness landscape, or search space

 This is done by mutating and recombining the current data structures to produce new sample points

Genetic operators

 The mutation operator changes the genome such that a new candidate solution is produced

A common choice is the *point mutation* operator

 The selection operator determines diversity and bias by picking individuals for survival or reproduction

A common choice is tournament selection

The encoding and decoding is problem specific

Question: What are the differences between encodings which code for the same phenotype?

Encoding integers

Integers are normally encoded with a **Binary** encoding scheme

Phenotype:
$$1\times 2^8+1\times 2^7+1\times 2^5+1\times 2^4+1\times 2^0=433$$

Problem: adjacent phenotypes are not adjacent genotypes (e.g. 0111 [7] and 1000 [8])

Solution: **Gray code** – all adjacent phenotypes are also adjacent genotypes

Experiment setup

Algorithm settings

- Population of 40 bitstrings
- All bitstrings are duplicated every generation
- Duplicates undergo point mutation (p = 1/genome length)
- 40 new bitstrings are selected for survival by tournament selection
- No crossover operator

Algorithm objective

- Find a set of 10 random integers, $I_i \in [0, 1023]$
- The cost is measured as the sum of pairwise differences

Smallest pairs are prioritised

Encodings used

- Binary
- Gray code
- Consensus encodings: "Dead code" with coding segments

Coding parts are signified by a start sequence of six bits:
110011

Search spaces

Results

Performance

A: Linear, B: Stairs

- Gray code performs the best. Binary is grouped with consensus encodings.
- Binary performance is unaffected by complexity changes

Performance

C: Moguls, D: Sharktooth

With high enough complexity, Gray code loses its benefits

Distribution of cost effects – Linear transformation

- Binary and Gray are similar. Consensus encodings are similar.
- Gray code has consistent positive mutations
- Consensus encodings evolve by adding and removing random numbers

Robustness – Linear transformation

- Consensus encodings are more robust, bijective encodings sensitive to high mutation rates
- Gray code evolves mainly by single bit flips, Binary by multiple

Concluding remarks

Implication of the results

- The different modes of evolution give rise to different overall evolutionary dynamics
- Bijectivity is not everything also directly available states and the connectivity between states matter
- Non-bijectivity make for more flexible genomes

Binary-Gray code table

Integer	Binary	Gray	Gray as integer
0	000	000	0
1	001	001	1
2	010	011	3
3	011	010	2
4	100	110	6
5	101	111	7
6	110	101	5
7	111	100	4

What about the biology?

- Biological genetic strands carry large amounts of "dead code"
- Natural evolution is a product of itself what are the alternatives?
- Evolutionary mechanisms are complex and not well understood

Distribution of cost effects – Stairs transformation

Distribution of cost effects – Moguls transformation

Distribution of cost effects - Sharktooth transformation

Robustness - Stairs transformation

Robustness – Moguls transformation

Robustness - Sharktooth transformation

