Electromagnétisme Question 46

Propagation d'une onde EM dans un conducteur

On s'intéresse à une onde polarisée rectilignement selon \vec{x} dans un bon conducteur (conducteur où est valable l'approximation des bons conducteurs : $\gamma \gg \varepsilon_0 \omega$, qui est équivalente à l'ARQP)

Équations de Maxwell :
$$\operatorname{div} \vec{B} = 0 = \operatorname{div} \vec{E} \quad \operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \operatorname{rot} \vec{B} = \mu_0 \vec{j} + \mu \varepsilon_0 \frac{\partial \vec{E}}{\partial t}$$

Donc $i\vec{k} \cdot \vec{E} = 0 = i\vec{k} \cdot \vec{B} \quad i\vec{k} \wedge \vec{B} = \mu_0 \gamma \vec{E} - \mu_0 \varepsilon_0 i\omega \vec{E} \quad i\vec{k} \wedge \vec{E} \quad i\vec{k} \wedge \vec{E} = i\omega \vec{B}$

Donc $\vec{E} \perp \vec{k}$ et $\vec{B} \perp \vec{k}$ donc le champ électromagnétique est transverse.

Donc
$$i\vec{k} \cdot \vec{\underline{E}} = 0 = i\vec{k} \cdot \vec{\underline{B}} \quad i\vec{k} \wedge \vec{B} = \mu_0 \gamma \vec{\underline{E}} - \mu_0 \varepsilon_0 i\omega \vec{\underline{E}} \quad i\vec{k} \wedge \vec{\underline{E}} \quad i\vec{k} \wedge \vec{\underline{E}} = i\omega \vec{\underline{B}}$$

De plus,
$$\vec{k} \wedge (\vec{k} \wedge \vec{E}) = -i\omega \vec{k} \wedge \vec{B} = -i\omega \mu_0 (\gamma + i\omega \varepsilon_0) \text{ donc } -\vec{k}^2 = -i\omega \mu_0 (\gamma + i\omega \varepsilon_0) \text{ donc } \vec{k}^2 = \frac{\omega^2}{c^2} - i\omega \mu_0 \gamma$$

On obtient donc la relation de dispersion du conducteur γ : $\vec{k}^2 = \frac{\omega^2}{c^2} - i\omega\mu_0\gamma$

Avec l'approximation des bons conducteurs : $\vec{k}^2 = -i\omega\mu_0\gamma$

On a donc
$$k = \pm \frac{1+i}{\sqrt{2}} \sqrt{\mu_0 \omega \gamma}$$

L'onde peut être progressive ou régressive. On s'intéresse à l'onde progressive.

On note
$$k = \frac{1+i}{\delta}$$
 avec $\delta = \sqrt{\frac{2}{\mu_o \gamma \omega}}$, δ est appelée épaisseur de peau

 $\underline{\overrightarrow{E}} = \underline{A} \overrightarrow{x} e^{-\frac{z}{\delta}} e^{-i(\omega t - \frac{z}{\delta})}$ avec une bonne origine des temps, \underline{A} est réel. L'onde se propage selon \overrightarrow{z} en s'amortisant est devient négligeable après une longueur δ . On parle d'onde amortie

ou évanescente.
$$\overrightarrow{E} = \operatorname{Re} \underline{\overrightarrow{E}} = A \overrightarrow{x} e^{-\frac{z}{\delta}} \cos(\omega t - \frac{z}{\delta})$$

L'onde est plane.
$$v_{\varphi} = \frac{\omega}{\text{Re}\underline{k}} = \sqrt{\frac{2\omega}{\mu_0 \gamma}}$$
.