

An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal Effects

Roche

Thanh Vinh Vo¹ Arnab Bhattacharyya¹ Young Lee² Tze-Yun Leong¹
¹National University of Singapore ²Roche AG and Harvard University
{votv, arnabb, leongty}@nus.edu.sg

Contributions

- We propose CausalRFF that learns causal effects from multiple data sources while maintaining the sources at their local sites.
- CausalRFF minimizes information transmitted among the sources, thus enabling privacy-preserving causal inference.
- CausalRFF adaptively learn similarity of data distributions among the sources and hence reduce negative transfer.
- The performance of CausalRFF is competitive to the baselines trained on combined data whose sources are dissimilar.

Motivation

- Multiple data sources cannot be combined or shared due to privacy concern.
- Different data sources might have different data distributions.
- Some sources with sufficient data observations might dominate the ones with fewer data observations.

- For example: Patient data are private and confidential, and they are maintained in multiple hospitals.
- How to estimate causal effects from multiple sources without combining them?

Assumptions & Causal Quantities of Interest

The causal graph

- Z: latent confounder
- Y: the outcome
- *W*: the treatment
- X: covariate/proxy variable
- (1). Consistency: $W = w \Longrightarrow Y(w) = Y$.
- (2). No interference + Positivity.
- (3). Individuals in all sources have the same set of *common* covariates.
- (4). Any individual can be uniquely identified across different sources.

We estimate the following quantities:

Conditional average treatment effect (CATE):

$$\tau(\boldsymbol{x}) \coloneqq E\big[Y|\mathrm{do}(W=1), X=\boldsymbol{x}\big] - E\big[Y|\mathrm{do}(W=0), X=\boldsymbol{x}\big].$$

Average treatment effect (ATE):

$$\tau := E[\tau(X)].$$

The Proposed Method

Expectation of the outcome given intervention on the treatment $E[y_i^{\rm s}|{\rm do}(w_i^{\rm s}),\mathbf{x}_i^{\rm s}]$ \downarrow The interventional distribution of the outcome $p(y_i^{\rm s}|{\rm do}(w_i^{\rm s}),\mathbf{x}_i^{\rm s}) = \int p(y_i^{\rm s}|w_i^{\rm s},\mathbf{z}_i^{\rm s})\,p(\mathbf{z}_i^{\rm s}|\mathbf{x}_i^{\rm s})\,d\mathbf{z}_i^{\rm s}$ \downarrow The conditional distributions to be estimated $p(\mathbf{z}_i^{\rm s}|\mathbf{x}_i^{\rm s},y_i^{\rm s},w_i^{\rm s}),p(y_i^{\rm s}|w_i^{\rm s},\mathbf{z}_i^{\rm s}),p(w_i^{\rm s}|\mathbf{x}_i^{\rm s}) \otimes p(y_i^{\rm s}|\mathbf{x}_i^{\rm s},w_i^{\rm s})$ \downarrow Augmented representer theorem estimator \downarrow Transfer kernel function Allow dissimilar data distributions among the sources. \downarrow Random Fourier feature: enable federated training $k(u,u') \simeq \phi(u)^{\top}\phi(u'),$ $\phi(u) = B^{-\frac{1}{2}}[\cos(\omega_1^{\top}u),...,\cos(\omega_B^{\top}u),\sin(\omega_1^{\top}u),...,\sin(\omega_B^{\top}u)]^{\top},$

Federated inference:

Repeat the following steps until convergence:

- (1). Compute gradients using local data and send to a server.
- (2). The sever collects all *local* gradients and updates the model.
- (3). The server sends the new model to all sources.

Minimax lower bound: for learning distributions with latent confounders

where ω_b $_{b=1}^B$ are drawn i.i.d from spectral distribution of the kernels.

$$\inf_{\hat{\boldsymbol{\theta}}} \sup_{P \in \mathcal{P}} \mathbb{E}_{P} \left[\| \hat{\boldsymbol{\theta}} - \boldsymbol{\theta}(P) \|_{2} \right] \geq \frac{\sqrt{m(d_{x} + 3) \log(2\sqrt{m})}}{64\sqrt{B} \sum_{s \in \mathcal{S}} n_{s} \left(1 + \sum_{v \in \mathcal{S}_{\backslash s}} \lambda^{s,v}\right)^{2}}.$$

Lower bound for the worst case of the best estimator. The bound shows how the sources are incorporated through the transfer factors $\lambda^{s,v}$.

Experiments

Synthetic data

- The data are simulated with a ground truth causal model.
- We use a factor Δ to control for dissimilar data distributions.

Analysis 1: The sources have the same data distribution ($\Delta = 0$).

Result: The errors of
CausalRFF are as low as
those of training on
combined data. This result
verifies the efficacy of
CausalRFF for federated
learning.

Analysis 2: The sources have different data distributions ($\Delta \neq 0$).

Result: The errors of CausalRFF are lower than those of training on combined data. This verifies the importance of CausalRFF when the sources have different data distributions.

IHDP dataset

- This dataset is from a study on the impact of specialist visits on the cognitive development of children.
- Treatment/control group are children with/without specialist visit.
- The dataset has 747 entries with 25 covariates, it is divided to 3 sources.

We compare with the recent baselines trained on combined data (cb)

Method	The error of CATE ($\sqrt{\epsilon_{\mathrm{PEHE}}}$)			The error of ATE (ϵ_{ATE})		
	1 source	2 sources	3 sources	1 source	2 sources	3 sources
BART _{cb}	2.2±.22	2.1±.26	2.1±.25	1.0±.16	0.8±.20	O.7±.17
X-Learner _{cb}	1.9±.21	$1.9 \pm .21$	$1.8 \pm .18$	0.5 \pm .21	0.5 \pm .18	0.4 \pm .11
R-Learner _{cb}	2.8±.31	$2.6 \pm .23$	$2.6 \pm .17$	$1.6 \pm .25$	$1.6 \pm .26$	$1.6 \pm .19$
OthoRF _{cb}	$2.8 \pm .16$	$2.1 \pm .14$	$1.9 \pm .14$	$0.8 {\pm}.15$	0.6 \pm .10	0.6 \pm .10
TARNet _{cb}	3.5±.59	2.7±.12	$2.5 \pm .15$	$1.6 \pm .61$	0.7 \pm .12	0.6 \pm .17
CFR-wass _{cb}	2.2±.15	2.1±.22	2.1±.23	0. 7 ±.23	0.6 \pm .18	0.6 \pm .16
CFR-mmd _{cb}	2.7±.19	2.3±.26	2.2±.10	0.9±.30	0.7 \pm .17	0.5 \pm .17
CEVAE _{cb}	1.8 ±.22	2.0±.11	1.7 \pm .12	0. 5 ±. 14	1.4±.07	0.9±.07
FedCI	1.6±.10	1.6±.12	1.7±.09	0.5±.10	0. 5 ±.24	0.5±.09
CausalRFF	1.7±.34	1.4±.33	1.2±.18	0.7±.14	0. 7 ±. 17	0. 5 ±. 1 6

Result: CausalRFF is among top-3 performance. Importantly, it preserves privacy under federated setting while the other baselines violate this constraint.

Conclusion & Future Work

- We proposed CausalRFF that learns causal effects without sharing raw data.
- CausalRFF is an important step towards a privacy-preserving causal learning model.
- Future research direction: Combining CausalRFF with differential privacy to give a stronger privacy guarantee.

Acknowledgement.

This research/project is supported by the National Research Foundation Singapore and DSO National Laboratories under the Al Singapore Programme (AISG Award No: AISG2-RP-2020-016).

AB was supported by an NRF Fellowship for AI grant (NRFFAI1-2019-0002) and an Amazon Research Award.

This work was conducted while YL was at Harvard University and the views expressed here do not necessarily reflect the position of Roche AG.