COMP 201 – Software Engineering I Lecture 7 – System Models

Lecturer: T. Carroll

Office: G.14

Email: Thomas.carroll2@Liverpool.ac.uk

See Vital for all notes

Coming Up...

This Week...

- System Models
- Use-Case Diagrams
- Sequence Diagrams
- Data Flow Diagrams
- Statechart Models
- UML
- Finite State Automata
- Moore Machines
- Mealey Machines
- Petri Nets

Today

Overview

- Intro to System Models
- Use Case Diagrams
- Use Case Descriptions
- Architectural Model
- Process Models
- Sequence Diagrams

System Models

- User requirements must be written in such a way that non-technical experts can understand them, e.g., by using natural language
- Detailed system requirements may be expressed in a more technical way
- Document the system specification as a set of system models
 - Graphical representations which describe business processes and the system to be developed
 - An important bridge between the analysis and design processes

System Modelling

- System modelling helps the analyst to understand the functionality of the system
- Models are used to communicate with customers
- Different models present the system from different perspectives:
 - External perspective
 - shows the system's context or environment
 - Behavioural perspective
 - shows the behaviour of the system
 - Structural perspective
 - shows the system or data architecture

A Picture Paints A Thousand Words

System Model Advantages

- They can be easier to understand than a verbose natural language description
- System models can leave out unnecessary details of the system -focus on what is important
 - A system representation should maintain all the information of a system
 - An abstraction deliberately simplifies the system and picks out its most salient characteristics
- Different models can focus on different approaches to abstraction

System Model Weaknesses

- They do not model non-functional system requirements
- They do not usually include information about whether a method is appropriate for a given problem
- They may produce too much documentation
- System models are sometimes too detailed and difficult for users to understand

Model Types

- Context Models
 - shows the boundaries of a system
- Data processing model
 - Shows how the data is processed at different stages
- Composition model
 - shows how entities are composed of other entities
- Architectural model
 - shows principal sub-systems
- Classification model
 - shows how entities have common characteristics
- Stimulus/response model
 - shows the system's reaction to events

Use Case Diagrams

Use Case Diagrams – Scenarios using UML

- Functional modelling of requirements
- Show the external view of the system (we don't look at internal behaviour)
- Show the system relative to different users of the system
- A set of use-cases should describe all possible interactions with the system.
 - Actors involved
 - Details of the interaction
- Sequence diagrams may be used to add detail to use-cases by showing the sequence of event processing in the system

Actors and Use Cases

- An actor is a user of the system acting in a particular role
 - Something external to the system
 - Can be human (Customer, Cashier, ...)
 - Can be non-human (Robotic Arm, Sensor, ...)
- A use-case is a task which the actor needs to perform with the help of the system
 - e.g., find details of a book, print receipt, ...
- The details of each use case should also be documented by a use case description
 - Print receipt A customer has paid for an item via a valid payment method. The till
 should print a receipt indicating the current date and time, the price, the payment type
 and the member of staff who dealt with the sale.
 - [Alternate Case] No print paper available Print out "Please enter new till paper" to the cashier's terminal. Try to print again after 10 seconds.

Example – Actor and Use Case

ATM Actors and Use Cases

- Actors
 - Customers
 - Bank staff
 - ATM service engineer
- Use cases
 - Withdraw cash
 - Check balance
 - Add cash to machine
 - Check security video recording
 - Check Cash Stock
- Can your draw the associated Use Case Diagram?

ATM Use Case Diagram

System Boundary and Inheritance

- Box around a set of use cases to denote the system boundary
- Inheritance can be used between actors to show that all use cases of one actor are available to the other:

<<includes>> relation

• A use case always makes use of another

Note the direction of the arrows!

<<extends>> relation

- A use-case has two or more significantly different outcomes
- Extends the use case to a main use case and one or more subsidiary cases.
 - Use cases are sometimes needed

Note the direction of the arrows!

Use Case Descriptions

Use Case Description Template

- ID
 - Short ID (useful for diagrams and reference)
- Name
 - Full name
- Description
 - Full description
- Pre-condition
 - What must be true before the use case can proceed
- Event flow
 - Flow of behaviour that makes up this use case

- Post-condition
 - What should be true if the use case successfully completes
- Includes
 - What other use cases are used
- Extensions
 - Optional behaviour
- Triggers
 - What makes this use case happen

ATM use case descriptions

ID	UC1
Name	Withdraw cash
Description	Bank customer withdraws cash from machine
Pre-condition	ATM in service
	ATM Has sufficient cash in stock
Event flow	1. Include Use case 2 "Authenticate customer"
	2. Choose quick cash or enter exact amount
	3. Include usecase Check balance
	3. Choose receipt option
	4. Take cash
Extension points	Transaction Aborted
	Insufficient funds
Triggers	Customer selected the "Withdraw Cash" option
Post-condition	Balance Updated, Cash dispensed

ATM use case descriptions

ID	UC2
Name	Authenticate customer
Description	Bank customer proves their identity to the ATM.
Pre-condition	ATM in service
Event flow	 If user already authenticated exit from user case. User enters card and PIN number User re-enters PIN if PIN incorrect
Extension points	Use case 5 "Card stolen"
	Use case 6 "PIN entry failure"
Triggers	Authenticated service requested and user not authenticated
Post-condition	User is authenticated if credentials correct

ATM use case descriptions

ID	UC3
Name	Check balance
Description	Bank customer retrieves a balance for their account
Pre-condition	ATM in service
Event flow	Include Use case 2 "Authenticate customer" Choose onscreen or paper balance
Extension points	
Triggers	
	Check balanced requested
Post-condition	Balance displayed or printed

Architectural Model

Example – Architectural Model of an ATM System

Process Models

Process Models

- Process models show the overall process and the processes that are supported by the system
 - In process models it is implicit 1 process is completed before another process begins
 - Process models are similar to flow charts
- Data flow models may be used to show the processes and the flow of information from one process to another
 - The data flow models it is implicit that processes will happen in parallel (concurrent processing)

Example Process Model

Sequence Diagram

Sequence Diagrams

- Show actors and objects that partake in an interaction (like a use case)
- Shows messages passed between objects as time passes (top-to-bottom)
- Shows the lifetime of objects' computation

Sequence Diagram: Receptionist Creates An Appointment

