AI2619 2024Spring Written Assignment #3

Problem 1

Suppose $\tilde{x}[n]$ is a periodic sequence with period N. Then $\tilde{x}[n]$ is also periodic with period 3N. Let $\tilde{X}[k]$ denote the DFS coefficients of $\tilde{x}[n]$ considered as a periodic sequence with period N, and let $\tilde{X}_3[k]$ denote the DFS coefficients of $\tilde{x}[n]$ considered as a periodic sequence with period 3N.

- (a) Express $\tilde{X}_3[k]$ in terms of $\tilde{X}[k]$.
- (b) By explicitly calculating $\tilde{X}[k]$ and $\tilde{X}_3[k]$, verify your result in Part (a) when $\tilde{x}[n]$ is as given in Figure 1.

Figure 1: The periodic sequence $\tilde{x}[n]$ in Part (b).

Problem 2

We know some information about a discrete-time signal x[n]:

- (a). x[n] has non-zero values only when $0 \le n \le 4$;
- (b). Its 5-point DFT $X[k] = a + b \cos\left(\frac{2\pi}{5}k\right) + c \cos\left(\frac{4\pi}{5}k\right)$ for $0 \le k \le 4$;
- (c). $\sum_{n=0}^{4} (-1)^n x[n] = 1$
- (d). X[0] = 2
- (e). The weighted sum $z[n] = \sum_{m=0}^{6} x[m]y[(n-m)]_{7}$ has z[2] = 3 when $y[n] = \delta[n] + 2\delta[n-1] + 3\delta[n-2]$.
- (1). Determine x[n] and X[k].
- (2). If we change information (b) to "both of x[n] and its 5-point DFT X[k] are real-valued", could we obtain the same results as those in question (1)? Briefly state your reasons.

Problem 3

In this problem, you should give detailed derivation for your conclusion.

We have a *N*-point discrete-time signal x[n] (whose non-zero values are in $0 \le n \le N-1$), with corresponding z-transform X(z) and *N*-point DFT X[k], $0 \le k \le N-1$.

(1).
$$Y[k] = X(z)|_{z=\frac{1}{2}e^{j\frac{2\pi}{N}k}}$$
 for $0 \le k \le N-1$. Express $y[n]$ $(0 \le n \le N-1)$ in terms of $x[n]$.

(2).
$$g[n]$$
 and $h[n]$ are two $\frac{N}{2}$ -point DT signals, with corresponding $\frac{N}{2}$ -point DFT $G[k], H[k]$, where $G[k] = X[2k]$ and $H[k] = X[2k+1]$ for $0 \le k \le \frac{N}{2} - 1$. Express $g[n]$ and $h[n]$ ($0 \le n \le \frac{N}{2} - 1$) in terms of $x[n]$.