

Santander Product Recommendation

TEAM KWT Wen Li

Yisong Tao

Lydia Kan

- 101 Introduction
- Data Cleaning and EDA
- Feature Engineering
- Of the state of
- Result and Finding
- 06 Future Steps

Introduction

Project Description

Santander Bank offers their customers personalized product recommendations time to time, in order to meet the individuals needs and satisfaction.

This challenge seeks to improve the recommendation system by predicting which products their existing customers will use in the next month based on their past behavior.

Achieve top 5% ranking and MAP@7 score on Kaggle leader board

Introduction

Workflow

Data Cleaning

Imputation

Dropping Features

Contain Missing Values:

24 Features

Drop 5 Features:

- Having over 95% missing value
 - Repetitive of other features

Imputation

Unknown

- Sex
- Employee Index
- Country Residency
- Segmentation
- Residence Index
- Foreigner Index
- Channel to Join
- Primary
- Province Name

Common Type

- Customer Type
- Activity Index
- Rent

Others

- New Customer New
- Seniority Min
- Age Scale, Mean
- Relationship Type 'A'
- Deceased Index 'N'

Products

- Payroll 0
- Pensions 0

Product Sales Related to Customer's Info - 2016.5

Product Sales Related to Customer's Info - 2016.5

Product Sales Related to Customer's Info - 2016.5

Number of Customers by Time

Number of Product Own - 2016.5

Number of Product Own - 2016.5

Number of Product Sales by Time

Feature Engineering

Use adjacent month
i.e. 2016.1-2016.2

Encoding

Use the same month
i.e. 2015.5 – 2016.5

Encoding

Use the seasonal month
i.e. 2016.3 – 2016.6

Input Features

Use adjacent month
i.e. 2016.1-2016.2

Previous Month
Products

Use the same month
i.e. 2015.5 – 2016.5

Use the seasonal month
i.e. 2016.3 – 2016.6

Input Features

Create Change Features

i.e. Previous -Current Time Series
Pick significant pattern
Level = 0, 1
&
Create as new
input features

Input Features

Time Series Level = -1, 0, 1

Output Features

Drop features & add weight Based on popularity of the products

Make recommendation based on products' popularity

Time Series

Results of Dickey - Fuller Test
Product Pension

Test Statistic	-3.163039
p-value	0.022226
No. Lags Used	4.000000
Critical Value (5%)	-3.232950
Critical Value (1%)	-4.331573
Critical Value (10%)	-2.748700

Models Training

Ensemble - Voting

Result & Findings

Using the month from the previous year has better prediction than the previous month from the current year

Single Model, Naïve Bayes has the best performance

From the evaluation, it only penalized the false negative

Multiclass has better performance than multi-labels

Future Steps

- Using best models for model stacking
- Trying more features engineering
- More Ensemble and Stacking