CYI101 Common CHEMISTRY(Organic)

Stereochemistry: Concept of chirality, Stereoisomers

20th December 2021/Sec G & H

Constitutional Isomers

- Isomers that differ in how their atoms are arranged in chains are called **constitutional isomers**
- They must have the same molecular formula to be isomers

$\begin{array}{c} \textbf{Different carbon} \\ \textbf{skeletons} \\ \textbf{C}_{4}\textbf{H}_{10} \end{array}$	$\mathrm{CH_{3}} \\ \\ \mathrm{CH_{3}CHCH_{3}}$	and	$\mathrm{CH_{3}CH_{2}CH_{2}CH_{3}}$
	2-Methylpropane (Isobutane)		Butane
$\begin{array}{c} \textbf{Different functional}\\ \textbf{groups}\\ \textbf{C}_2\textbf{H}_6\textbf{O} \end{array}$	CH ₃ CH ₂ OH Ethyl alcohol	and	$ m CH_3{\color{red}OCH_3}$ Dimethyl ether
Different position of functional groups C_3H_9N	NH ₂ CH ₃ CHCH ₃ Isopropylamine	and	$\mathrm{CH_{3}CH_{2}CH_{2}NH_{2}}$ $\mathbf{Propylamine}$

Chiral Carbons

- A point in a molecule where four different groups (or atoms) are attached to carbon is called the **chiral carbon**
- A chiral molecule usually has at least one chiral carbon

Stereoisomers: Superimposable Image

chiral - nonsuperimposable

Chiral and Achiral Molecules

- Although everything has a mirror image, mirror images may or may not be superimposable.
- Some molecules are like hands. Left and right hands are mirror images, but they are not identical, or superimposable.

A molecule (or object) that is not superimposable on its mirror image is said to be chiral.

CHIRALITY: Describes objects not superimposable with their mirror image

Chirality and Plane of Symmetry

- The molecule labeled A and its mirror image labeled B are not superimposable. No matter how you rotate A and B, all the atoms never align.
- A and B are stereoisomers—specifically, they are enantiomers.
- A carbon atom with four different groups is a tetrahedral stereogenic center.

- Stereogenic centers may also occur at carbon atoms that are part of a ring.
- To find stereogenic centers on ring carbons, always draw the rings as flat polygons, and look for tetrahedral carbons that are bonded to four different groups.

Enantiomers in NATURE!

The less common *S*(-)-isomer is found in mint oils and has a piny, turpentine-like odor.

The **R(+)-isomer**, occurring more commonly in nature as the **fragrance of oranges**, is a flavoring agent in food manufacturing.

S-(+)-carvone, has a spicy aroma.

R-(-)-carvone, has a **sweetish minty smell**, like spearmint leaves.

Chemical Properties of Enantiomers

• Many drugs are chiral and often must react with a chiral receptor or chiral enzyme to be effective. One enantiomer of a drug may effectively treat a disease whereas its mirror image may be ineffective or toxic.

Thalidomide exists in two mirror-image forms: it is a racemic mixture of (R)- and (S)-enantiomers. The (R)-enantiomer, shown, has sedative effects, whereas the (S)-isomer is teratogenic.

Thalidomide: 1957

• Larger organic molecules can have two, three or even more stereogenic centers.

$$CH_3$$
 CH_2
 C^*
 C^*
 C^*
 $CH_2N(CH_3)_2$
 CH_3CH_2
 C
 CH_3CH_2

propoxyphene Trade name: Darvon (analgesic)

ephedrine (bronchodilator, decongestant)

[* = stereogenic center]

$$CH_{2}OH$$
 $C=O$
 $+O-C^{*}-H$
 $+-C^{*}-OH$
 $+-C^{*}-OH$
 $+-C^{*}-OH$
 $+-C^{*}-OH$

fructose (a simple sugar)

Diastereomer

CH₂OHCH(OH)CH(OH)CHO

- Pairs of enantiomers: A and B; C and D.
- Pairs of diastereomers: A and C; A and D; B and C; B and D.

Diastereomer

- For a molecule with n stereogenic centers, the maximum number of stereoisomers is 2^n . Let us consider the stepwise procedure for finding all the possible stereoisomers of 2,3-dibromopentane.
- ☐ Find and draw all possible stereoisomers for a compound with two stereogenic centers

Step [1]: Draw one stereoisomer by arbitrarily arranging substituents around the stereogenic centers. Then draw its mirror image.

• Switching the positions of H and Br (or any two groups) on one stereogenic center of either A or B forms a new stereoisomer (labeled C in this example), which is different from A and B. The mirror image of C is labeled D. C and D are enantiomers.

How to, Continued...

• Stereoisomers that are not mirror images of one another are called diastereomers. For example, A and C are diastereomers.

- Pairs of enantiomers: A and B; C and D.
- Pairs of diastereomers: A and C; A and D; B and C; B and D.

Enantomers vs Diastereomer

Enantiomers	Diastereomers		
They are mirror images of each other and are non- superimposable	They are not mirror images of each other and are non-superimposable		
They always have a different R, S-configuration	They have the same R,S-configuration at least on one stereocenter		
They have one or more stereocenters	They have at least two stereocenters		
They have the same chemical and physical properties	They have different chemical and physical properties		
They all possess optical activity although they rotate light in opposite directions	Not all diastereomers possess optical activity		

- Compound C contains a plane of symmetry, and is achiral.
- Meso compounds generally contain a plane of symmetry so that they possess two identical halves.

• Because one stereoisomer of 2,3-dibromobutane is superimposable on its mirror image, there are only three stereoisomers, not four.

Meso Compounds

Active/Inactive Isomer

Case I

Case II

Inactive = $2^{n-2/2} = 2^{2-2/2} = 1$

Case III

Active compounds= $2^{3-1}-2^{3-1/2} = 2^2-2^1 = 4-2=2$

Inactive = $2^{3-1/2} = 2^1 = 2$

Case IV

Active compounds=
$$2^{4-1} = 2^3 = 8$$

Inactive =
$$2^{4-2/2} = 2^1 = 2$$

General formulae

If 'n' is even (here n is the number of chiral centres):

Number of Optically active isomers 2ⁿ⁻¹

Number of Meso Compounds 2^{n-2/2}

If 'n' is odd (here n is the number of chiral centres):

Number of Optically active isomers 2ⁿ⁻¹-2^{n-1/2}

Number of Meso Compounds 2^{n-1/2}