1. Definition of ring

1.3

Let R be a ring, and let S be any set. Explain how to endow the set R^S of set-functions $S \to R$ of two operations +, so as to make R^S into a ring, such that R^S is just a copy of R if S is a sigleton.

Proof. The construction is straight forward, for any $f, g \in \mathbb{R}^S$, let:

$$f + g : S \to R, s \mapsto f(s) + g(s)$$

 $fg : S \to R, s \mapsto f(s)g(s)$

1.12

Just as complex numbers may be viewed as combinations a+bi, where $a,b \in \mathbb{R}$, and i satisfies the relation $i^2=1$ (and commutes with \mathbb{R}), we may construct a ring \mathbb{H} by considering linear combinations a+bi+cj+dk where $a,b,c,d \in \mathbb{R}$, and i,j,k commute with \mathbb{R} and satisfy the following relations:

$$i^2 = j^2 = k^2 = -1, ij = -ji = k, jk = -kj = i, ki = -ik = j.$$

Addition in \mathbb{H} is defined componentwise, while multiplication is defined by imposing distributivity and applying the relations. For example,

$$(1+i+j)(2+k) = 12+i2+j2+1k+ik+jk = 2+2i+2j+kj+i = 2+3i+j+k$$

- (i) Verify that this prescription does indeed define a ring.
- (ii) Compute (a + bi + cj + dk)(a bi cj dk), where $a, b, c, d \in \mathbb{R}$.
- (iii) Prove that \mathbb{H} is a division ring Elements of \mathbb{H} are called quaternions. Note that $\mathbb{Q}_8 := \{\pm 1, \pm i, \pm j, \pm k\}$ forms a subgroup of the group of units of \mathbb{H} ; it is a noncommutative group of order 8, called the quaternionic group.
- (iv) List all subgroups of \mathbb{Q}_8 , and prove that they are all normal.
- (v) Prove that \mathbb{Q}_8 , D_8 are not isomorphic.

Proof. The proof is as follows:

(i) It's obviously the set \mathbb{H} forms an abelian group where $0 \in \mathbb{R}$ is the identity and each element a+bi+cj+dk has addition inverse -a-bi-cj-dk. For multiplication, the operation is close and has identity 1, and distribution law is nativaly true because multiplication is defined in this way.

(ii)

$$(a + bi + cj + dk)(a - bi - cj - dk)$$

$$= a^{2} - (bi + cj + dk)^{2}$$

$$= a^{2} - (-b^{2} - c^{2} - d^{2} + bcij + bdik + cdjk + bcji + bdki + cdkj)$$

$$= a^{2} + b^{2} + c^{2} + d^{2}$$

(iii) To prove that \mathbb{H} is a division ring, it suffices to show that each element is an unit. According to (i), we have

$$(a + bi + cj + dk)(a - bi - cj - dk) = a^2 + b^2 + c^2 + d^2$$

and:

$$(a - bi - cj - dk)(a + bi + cj + dk) = a^{2} + (-b)^{2} + (-c)^{2} + (-d)^{2}$$

Thus, the multiplication inverse of a + bi + cj + dk is $(a - bi - cj - dk)/(a^2 + b^2 + c^2 + d^2)$

(iv) Since the order of \mathbb{Q}_8 is 8, the only possible size of the subgroup of \mathbb{Q}_8 could only be 2 and 4. For the first case, it's impossible since no element of \mathbb{Q}_8 has order of 2. For the second case, recall that there are only two possible structure of group with order 4:

The first one is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$, with means there are four elements of order 2, which is impossible as explained before.

The second one is isomorphic to \mathbb{Z}_4 , generated by an element of order 4. Thus, subgroups of 4 are exactly $\{i, -1, -i, 1\}$ or $\{j, -1, -j, 1\}$, $\{k, -1, -k, 1\}$. For any element g of \mathbb{Q}_8 , we have gig^{-1} is still an element of this subgroup. Thus this subgroup is normal.

(v) TODO

1.13

Verify that the multiplication defined in R[x] is associative.

Proof. We have to prove for any $f(x), g(x), h(x) \in R[x], (f(x)g(x))h(x) = f(x)(g(x)h(x))$. Suppose that:

$$f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{i=0}^{m} b_i x^i, h(x) = \sum_{i=0}^{l} c_i x^i$$

Then for (f(x)g(x))h(x) the coefficient of x^p is:

$$\sum_{i+j=p} (fg)_i h_j = \sum_{i+j=p} (fg)_i c_j = \sum_{i+j=p} (\sum_{k+l=i} a_k b_l) c_j \stackrel{!}{=} \sum_{k+l+j=p} a_k b_l c_j$$

Similarly, for f(x)(g(x)h(x)), the coefficient of x^p is:

$$\sum_{i+j=p} f_i(gh)_j = \sum_{i+j=p} f_i(\sum_{k+l=j} b_k c_l) \stackrel{!}{=} \sum_{i+k+l=p} a_i b_k c_l$$

Note that the equation labeled with ! is induced by the associativity and distributive law of R itself. \Box

1.14

Let R be a ring, and let $f(x), g(x) \in R[x]$ be nonzero polynomials. Prove that

$$\deg(f(x) + g(x)) \le \max(\deg(f(x)), \deg(g(x))).$$

Assuming that R is an integral domain, prove that

$$\deg(f(x)q(x)) = \deg(f(x)) + \deg(q(x)).$$

Proof. Let $n = \deg(f(x) + g(x))$, then $\exists f_i \neq 0, i \geq n$ or $\exists g_i \neq 0, i \geq n$. Thus $\max(\deg(f(x)), \deg(g(x))) \geq \deg(f(x) + g(x))$

For the second part, let $n = \deg f(x), m = \deg g(x)$, then $(fg)_{n+m} = f_n g_m \neq 0$. And for any i > n+m, we must have $(fg)_i = 0$ as $f_i = 0, i > n$ and $g_i = 0, i > m$. \square

1.15

Prove that R[x] is an integral domain if and only if R is an integral domain

Proof. If R[x] is an integral domain, then R is an integral domain as R can be viewed as element of R[x]. If R is integral domain, then

$$deg(fg) = deg f + deg g >= max(deg f, deg g) \ge 0$$

when deg f, deg $g \ge 0$. Thus R[x] is an integral domain. \square

1.16

Let R be a ring, and consider the ring of power series R[[x]]

- (i) Prove that a power series $a_0 + a_1x + a_2x^2 + \dots$ is a unit in R[[x]] if and only if a_0 is a unit in R. What is the inverse of 1x in R[[x]]?
- (ii) Prove that R[[x]] is an integral domain if and only if R is.

Proof. The proof is as follows:

(i) If $a_0 + a_1x + a_2x^2 + ...$ has inverse, let the inverse be $b_0 + b_1x + b_2x^2 + ...$, then we have

$$1 = (a_0 + a_1x + a_2x^2 + \dots)(b_0 + b_1x + b_2x^2 + \dots)$$

= $a_0b_0 + (a_0b_1 + a_1b_0)x + (a_0b_2 + a_1b_1 + a_2b_0)x^2 + \dots$

We must have $a_0b_0 = 1$, similarly we have $b_0a_0 = 1$. Thus indicates a_0 is an unit.

On the other hand, if a_0 has inverse, we formally write the inverse of f as: $f^{-1} = b_0 + b_1 x + b_2 x^2 + \dots$ Thus $f f^{-1} = 1$ implies the following equations:

$$a_0b_0 = 1$$

$$a_0b_1 + a_1b_0 = 0$$

$$a_0b_2 + a_1b_1 + a_2b_0 = 0$$

$$a_0b_3 + a_1b_2 + a_2b_1 + a_3b_0 = 0$$

g is constructed by solve these equations:

$$b_0 = a_0^{-1}$$

$$b_1 = -a_0^{-1} a_1 b_0$$

$$b_2 = -a_0^{-1} (a_1 b_1 + a_2 b_0)$$
...

$$b_k = -a_0^{-1} (\sum_{i=1}^k a_i b_{k-i})$$

This indicates f is an unit.

(ii) If $f, g \in R[[x]]$ and $f, g \neq 0$. Then write them in the following form:

$$f = x^{p}(a_{p} + a_{p+1}x + \ldots), g = x^{q}(b_{q} + b_{q+1}x + \ldots)$$

Then $fg = x^{p+q}(a_pb_q + ...) \neq 0$. In addition, R is Commutative indicates R[[x]] is also commutative, thus R[[x]] is an integral domain.

2. Category Ring

2.3

Let S be a set, and consider the power set ring $\mathscr{P}(S)$ (Exercise 1.2), and the ring $(\mathbb{Z}/2\mathbb{Z})^S$ you constructed in Exercise 1.3. Prove that these two rings are isomorphic. (Cf. Exercise I.2.11.)

Proof. First note that $\mathscr{P}(S)$ and $(\mathbb{Z}/2\mathbb{Z})^S$ are isomorphic in **Set**. For each $f \in (\mathbb{Z}/2\mathbb{Z})$, maps f to $\varphi(f)$ by the following subset of S:

$$\varphi(f) = \{ s \in S \mid f(s) = [1]_2 \}$$

Then it's easy to show that φ is both bijective and a ring homomorphim, therefore a ring isomorphism. \square

2.6

Let $\alpha: R \to S$ be a fixed ring homomorphism, and let $s \in S$ be an element commuting with $\alpha(r)$ for all $r \in R$. Then there is a unique ring homomorphism $\overline{\alpha}: R[x] \to S$ extending α , and sending x to s

Proof. Define $\overline{\alpha}$ as follows:

$$\overline{\alpha}(\sum_{i>0} a_i x^i) = \sum_{i>0} \alpha(a_i) s^i$$

To prove this is a ring homomorphism, we need to show that $\overline{\alpha}$ maintains both addition and multiplication (and send identity to identity, which is obvious). Addition is easy to verify, for multiplication, it is worthy noted s commutes with $\alpha(r), r \in R$ makes it maintains multiplication:

$$\overline{\alpha}((\sum_{i\geq 0} a_i x^i)(\sum_{i\geq 0} b_i x^i)) = \overline{\alpha}(\sum_{i\geq 0} (\sum_{k+l=i} a_k b_l) x^i) = \sum_{i\geq 0} \alpha(\sum_{k+l=i} a_k b_l) s^i$$

$$\overline{\alpha}(\sum_{i\geq 0} a_i x^i) \overline{\alpha}(\sum_{i\geq 0} b_i x^i) = (\sum_{i\geq 0} \alpha(a_i) s^i)(\sum_{i\geq 0} \alpha(b_i) s^i)$$

$$= \sum_{i\geq 0} (\sum_{k+l=i} \alpha(a_k) s^k \alpha(b_l) s^l)$$

$$= \sum_{i\geq 0} (\sum_{k+l=i} \alpha(a_k) \alpha(b_l) s^i)$$

$$= \sum_{i\geq 0} (\alpha(\sum_{k+l=i} a_k b_l) s^i)$$

$$= \overline{\alpha}((\sum_{i>0} a_i x^i)(\sum_{i>0} b_i x^i))$$

Note that ! is true because s commutates with all $\alpha(a_k)$ and $\alpha(b_l)$. The uniqueness of $\overline{\alpha}$ comes from the fact that $\overline{\alpha}$ is homomorphism, and $\overline{\alpha}(r) = \alpha(r), \overline{\alpha}(x) = s$. \square

NOTE Example 2.2 asks for particular situation, where a ring homomorphism $\varphi: \mathbb{Z}[x] \to S$ extends the unique homomorphism $f: \mathbb{Z} \to S, n \mapsto n1_S$ and sends x to any element of S doesn't necessarily consider the commutativity of S. The answer is clean here, any element $s \in S$ must commutes with the image of f since $s(n1_S) = ns = (n1_S)s$

2.9

The center of a ring R consists of the elements a such that ar = ra for all $r \in R$. Prove that the center is a subring of R. Prove that the center of a division ring is a field.

Proof. Denote the center of R as Z(R), then for any $s, t \in Z(R), r \in R$, we have r(s-t) = rs - rt = sr - tr = (s-t)r, which indicates that $s-t \in Z(R)$. Thus, Z(R) is an addition subgroup of R.

Moreover, $\forall s, t \in Z(R), r \in R$, we have (st)r = s(tr) = s(rt) = (sr)t = (rs)t = r(st). Thus $rs \in Z(R)$, indicating Z(R) is closed under multiplication. The associativity and distributive law natively holds in Z(R). And $1_R \in Z(R)$ obviousl. In conclusion, Z(R) is a subring of R.

If R is a division ring, for any $s \in Z(R)$, we must prove that $s^{-1} \in Z(R)$. Actually, for any $s \in Z(R)$, $r \in R$, $sr = rs \Rightarrow rs^{-1} = s^{-1}r$. Thus $s^{-1} \in Z(R)$. And Z(R) is obviously commutative, and therefore a field. \square

2.10

The *centralizer* of an element a of a ring R consists of the elements $r \in R$ such that ar = ra. Prove that the centralizer of a is a subring of R, for every $a \in R$. Prove that the center of R is the intersection of all its centralizers. Prove that every centralizer in a division ring is a division ring.

Proof. To prove the centralizer of $a \in R$ is a subring of R basically follows the same way as exercise 2.9 does.

For the second part, if $s \in Z(R)$, then r commutes with any element $r \in R$, thus $s \in \operatorname{Cen}_R(r), r \in R$. and $s \in \bigcap_{r \in R} \operatorname{Cen}_R(r)$, indicating $Z(R) \subseteq \bigcap_{r \in R} \operatorname{Cen}_R(r)$. On the other hand, any element of $\bigcap_{r \in R} \operatorname{Cen}_R(r)$ must commute with any element of R, thus belongs to Z(R). In conclusion,

$$Z(R) = \bigcap_{r \in R} \operatorname{Cen}_R(r).$$

For the third part, it suffices to show that if r commutes with a then so does r^{-1} . It is done in exercise 2.9 already. \square

2.11

Let R be a division ring consisting of p^2 elements, where p is a prime. Prove that R is commutative.

Proof. Assume that R is not commutative, consider the center of R, denoted as Z(R). Then $Z(R) \neq R$. Note that Z(R) is an addition subgroup of R, Then it must have |Z(R)| = p since |Z(R)| divides |R|, which is p^2 .

Consider one element $r \in R, r \notin Z(R)$, and its centralizer, denoted as $\operatorname{Cen}_R(r)$, then since $r \notin Z(R)$, it means $\operatorname{Cen}_R(r) \neq R$. And exercise 2.10 indicates $\operatorname{Cen}_R(r)$ is a subring of R, thus $|\operatorname{Cen}_R(r)| = p$.

Exercise 2.10 also shows that $Z(R) \subseteq \operatorname{Cen}_R(r)$, their cardinality equals to each other means $Z(R) = \operatorname{Cen}_R(r)$. However, it's obvious that $r \in \operatorname{Cen}_R(r)$ but $r \notin Z(R)$, a contradiction.

In conclusion, we must have Z(R)=R and R is therefore commutative, further more, it's a field. \square

NOTE In fact, any finite division ring is commutative, thus a field. But the proof used here seems hard to extend to more complex condition, i.e. the case of arbitary integer. Actually, it's even hard to extend this method to $p^n, n \geq 3$ case: |Z(R)| might be p^3 and $\operatorname{Cen}_R(r)$ might be p^2 and no contradictions so far.

2.12

Consider the inclusion map $\iota: \mathbb{Z} \to \mathbb{Q}$. Describe the cokernel of ι in \mathbf{Ab} , and its cokernel in \mathbf{Ring} (as defined by the appropriate universal property in the style of the one given in § II.8.6)

Proof. Before we describe the cokernel requested above, we will review what these concepts(and kernel) means in category conception:

Kernel Let G, H be group and $f: G \to H$ is a group homomorphism.

Then Consider the following category: \mathscr{K}_{φ} : The object of \mathscr{K}_{φ} is one group S associated one morphism j, such that the following diagram holds:

$$S \xrightarrow{j} G \xrightarrow{f} H$$

And the morphism between (j_1, S_1) and (j_2, S_2) is the following diagram:

And ker φ is defined to be the final object of \mathscr{K}_{φ} . That is, the following diagram holds:

And ker f exists as ker $f = \{g \in G \mid f(g) = 0\}$. It's easy to verify such set is a subgroup of G and this subgroup associated with the injection homomorphism satisfies the universal property of ker.

Cokernel Conceptually, cokernel just reverse all arrows in the above diagram. Let G, H be groups and $f: G \to H$ is a group homomorphism, consider the category \mathscr{C}_f of which objects and morphisms are following diagrams:

And coker f is an initial object in this category, that is, the following diagram

holds:

As we have proved before, in \mathbf{Grp} , $\operatorname{coker} f$ is H/N, where N is the smallest normal subgroup that contains $\operatorname{Im} f$. In particular, $\operatorname{coker} f = H/\operatorname{Im} f$ in \mathbf{Ab} .

If we replace groups with rings and group homomorphisms with ring homomorphisms, we can naturally get the definition of kernel and cokernel in **Ring**.

Now back to the problem itslef,coker ι in \mathbf{Ab} , as stated, is \mathbb{Q}/\mathbb{Z} . The associated π is $\pi(q) = q + \mathbb{Z}$. And coker ι in \mathbf{Ring} is $(0, \{0\})$. Actually if (j, S) where S is a ring and j is a ring homomorphism from \mathbb{Q} to S, if it satisfies $j \circ \iota = 0$. Then we have:

$$j(\frac{p}{q}) = j(pq^{-1}) = j(p)j(q)^{-1} = j(\iota(p))j(\iota(q)) = 0(p)0(q)^{-1} = 0$$

Thus j maps each element to be 0 in S, thus S could only be $\{0\}$ since $1_S = f(1_{\mathbb{Q}}) = 0$. This indicates there is only one object in this category, and coker ι is this object. \square

2.13

Verify that the 'componentwise' product $R_1 \times R_2$ of two rings satisfies the universal property for products in a category, given in § I.5.4

Proof. $(R_1 \times R_2, \pi_1, \pi_2)$ is the product of R_1 and R_2 , where $\pi_1(r_1, r_2) = r_1$ and $\pi_2(r_1, r_2) = r_2$. It's easy to show that π_1, π_2 are ring homomorphisms, we must show that the following diagrams holds:

For (R, f_1, f_2) , defines $\varphi: R \to R_1 \times R_2, r \mapsto (f_1(r), f_2(r))$. Then the diagram is commutative. To prove the uniqueness, consider another ring homomorphism $\varphi': R \to R_1 \times R_2$ makes this diagram commutes, then $\varphi'(r) = (r_1, r_2)$. Further we have $f_1(r) = \pi_1(\varphi(r)) = \pi_1(r_1, r_2) = r_1, f_2(r) = \pi_2(\varphi(r)) = \pi_2(r_1, r_2) = r_2$. Thus $\varphi(r) = (f_1(r), f_2(r))$, the uniqueness is proved.

In conclusion, $(R_1 \times R_2, \pi_1, \pi_2)$ is the product of R_1 and R_2 . \square

2.16

Prove that there is (up to isomorphism) only one structure of ring with identity on the abelian group $(\mathbb{Z}, +)$.

3.Ideals and quotient rings

3.2

Let $\varphi: R \to S$ be a ring homomorphism, and let J be an ideal of S. Prove that $I = \varphi^{-1}(J)$ is an ideal of R. Thus, the inverse image of an image is also an ideal, is the image of an ideal also an ideal? Prove it or given a counterexample.

Proof. For any $s \in \varphi^{-1}(J)$, $r \in R$, we have $\varphi(rs) = \varphi(r)\varphi(s) \in J$, $\varphi(sr) = \varphi(s)\varphi(r) \in J$ since $\varphi(s) \in J$, $\varphi(r) \in R$, which indicates that $rs \in \varphi^{-1}(J)$, $sr \in \varphi^{-1}(J)$. Thus $\varphi^{-1}(J)$ is an ideal.

Then second proposition is false in general, the ring homomorphism image of an ideal is not necessarily an ideal. Consider injection: $\iota: \mathbb{Z} \to \mathbb{Z}[x]$. However, the image of an ideal, say $2\mathbb{Z}$ is still $2\mathbb{Z} \subseteq \mathbb{Z}[x]$ and is not an ideal of \mathbb{Z} .

However, if φ is surjective, then $\varphi(I)$ is also an ideal of the target ring. \square

3.3

Let $\varphi: R \to S$ be a ring homomorphism, and let J be an ideal of R.

- 1. Show that $\varphi(J)$ need not be an ideal of S.
- 2. Assume that φ is surjective; then prove that $\varphi(J)$ is an ideal of S.
- 3. Assume that φ is surjective, and let $I = \ker \varphi$; thus we may identify S with R/I. Let $\overline{J} = \varphi(J)$, an ideal of R/I by the previous point. Prove

that

$$\frac{R/I}{\overline{J}} \cong \frac{R}{I+J}$$

Proof. The first proposition are proved in exercise 3.2, and the second one is easy to be proved following the definition.

For the third proposition, note that actually we have $\overline{J} \cong (I+J)/J$, then according to proposition 3.14, we have:

$$\frac{R/I}{\overline{J}} \cong \frac{R/J}{(I+J)/J} \cong R/(I+J)$$

The proof is done. \square

3.4

Let R be a ring such that every subgroup of (R, +) is in fact an ideal of R. Prove that $R \cong \mathbb{Z}/n\mathbb{Z}$, where n is the characteristic of R

Proof. Consider the subset:

$$S = \{ n1_R \mid n \in \mathbb{Z} \}$$

It is a subgroup of (R, +) because:

$$(\forall a 1_R, b 1_R \in S, a, b \in \mathbb{Z}) : a 1_R - b 1_R = (a - b) 1_R \in S$$

According to the assumption, we have S to be an ideal, in particular, we have:

$$(\forall r \in R): \quad r = r1_R \in S$$

this indicates that $\forall r \in R, r = m1_R$ for some $m \in \mathbb{Z}$. And therefore R = S. This indicates $R \cong \mathbb{Z}$ or $R \cong \mathbb{Z}/n\mathbb{Z}$ for n to be the characteristic of R. \square

3.8

Prove that a ring R is a division ring if and only if its only left-ideals and right-ideals are $\{0\}$ and R. In particular, a commutative ring R is a field if and only if the only ideals of R are $\{0\}$ and R.

Proof. Let R be a ring, and I be an ideal of R. Then if I contains element other than 0_R , we will have I = R since $1_R \in I$. Thus the ideal of R can only be R and $\{0\}$ if R is a division ring.

On the other hand, if R has only $\{0\}$ and R as ideals, then any element of R must be an unit, otherwise aR where a is a non-unit, could be a right-ideal, a contradiction.

The second part of this problem is nothing more than a special case of field. \square

3.9

Counterpoint to Exercise 3.8: it is not true that a ring R is a division ring if and only if its only two-sided ideals are $\{0\}$ and R. A nonzero ring with this property is said to be simple; by Exercise 3.8, fields are the only simple commutative rings.

Proof. If R is a division ring, then the ideals of R could only be R or $\{0\}$. However, the ideals of R are only $\{0\}$ and R doesn't mean both left-ideals and right-ideals of R are only $\{0\}$ and R. \square

3.11

Let R be a ring containing $\mathbb C$ as a subring. Prove that there are no ring homomorphisms $R \to \mathbb R$

Proof. If there exists some ring homomorphism $R \to \mathbb{R}$, then it induce a ring homomorphism from \mathbb{C} to \mathbb{R} . However, this can not be true because:

$$-1 = f(-1) = f(\mathbf{i} * \mathbf{i}) = f(\mathbf{i})^2$$

There is no such $f(\mathbf{i}) \in \mathbb{R}$ satisfies $f(\mathbf{i})^2 = -1 \square$

3.12

Let R be a commutative ring. Prove that the set of nilpotent elements of R is an ideal of R. (Cf. Exercise 1.6. This ideal is called the *nilradical* of R.) Find a non-commutative ring in which the set of nilpotent elements is not an ideal.

Proof. Let N denotes the set of all nilpotent elements of R, first to prove that N is a subgroup of (R, +). For any $a, b \in N$, there exists some $m, n \in \mathbb{N}^+$ that $a^m = 0, b^n = 0$, then we shall have $(a - b)^{m+n+1} = 0$ (using binomial theorem). This indicates $a - b \in N$, and thus N is a subgroup of (R, +).

The second part is to prove that for any $r \in R$, $a \in N$, $ra \in N$. Note that $(ra)^m = r^m a^m = r^m 0 = 0$. Thus $ra \in N$. In conclusion, we have N is an ideal of R.

One counterexample for non-commutative case would be matrix ring $M_n(\mathbb{R})$. Note that $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ is a nilpotent element but $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ is not, which fails to make $N(M_n(\mathbb{R}))$ to be an ideal.

NOTE There might be some properties of this ideal, one most notable is that the quotient ring R/N has no non-naive nilpotent element:

$$(a+N)^m = 0_{R/N} \Rightarrow a^m + N = 0_{R/N} \Rightarrow a^m \in N \Rightarrow a \in N$$

3.13

Let R be a commutative ring, and let N be its nilradical (cf. Exercise 3.12). Prove that R/N contains no nonzero nilpotent elements. (Such a ring is said to be reduced.)

Proof. The proof is done in the "NOTE" section of exercise 3.12

3.14

Prove that the characteristic of an integral domain is either 0 or a prime integer. Do you know any ring of characteristic 1?

Proof. If the characteristic of R is non-prime, say $\operatorname{char} R = mn, m > 1, n > 1$. Then the definion of characteristic shows that $mn1_R = 0$, which is $(m1_R)(n1_R) = 0$. Note that m > 1, n > 1 indicates $m < \operatorname{char} R, n < \operatorname{char} R$, thus $m1_R \neq 0, n1_R \neq 0$. The equation $(m1_R)(n1_R) = 0$ implies the multiplication of two non-zero elements is zero, which contradicts the definition of integral domain.

Ring of characteristic 1 could only be zero ring. \square

3.15

A ring R is boolean if $a^2 = a$ for all $a \in R$. Prove that $\mathscr{P}(S)$ is boolean, for every set S (cf. Exercise 1.2). Prove that every boolean ring is commutative, and has characteristic 2. Prove that if an integral domain R is boolean, then $R \cong \mathbb{Z}/2\mathbb{Z}$

Proof. $\mathscr{P}(S)$ is boolean as for any element $S \in \mathscr{P}(S)$ we have $S^2 = S \cap S = S$. First we prove that if R is *boolean*, then for each element $r \in R$, we have 2r = 0, thus the characteristic of R is 2. Consider the following two equations:

$$(1+r) = (1+r)^2 = 1 + 2r + r^2 = 1 + 2r + r$$

This indicates $\forall r \in R, 2r = 0$. Further, $\forall a, b \in R$, we have:

$$(a + b) = (a + b)^2 = a^2 + ab + ba + b^2 = a + ab + ba + b$$

This means ab + ba = 0, note that 2ab = 0, these two equations imply $ab = ba, \forall a, b \in R$. Thus R is commutative. The characteristic part is proved already.

If R is itself an integral domain, then for any element $r \in R$, we have:

$$r^2 = r \Rightarrow r(r - 1_R) = 0 \Rightarrow r = 1_R$$

This implies there are only two elements of R if it is boolean and domain, thus is isomorphic to $\mathbb{Z}/2\mathbb{Z}$. \square

3.17

Let I, J be ideals of a ring R. State and prove a precise result relating the ideals (I + J)/I of R/I and $J/(I \cap J)$ of $R/(I \cap J)$

Proof. (I+J)/I is an ideal of quotient ring R/I. It's obvious that I+J is an ideal that contains I. And there is, actually a one-to-one corespondence between the ideal of R/I and the ideal of R that contains I.

Considering the canonical project: $\pi: R \to R/I, r \mapsto r+I$. The for each ideal of R/I, say S, $\pi^{-1}(S)$ is an ideal of R and it contains I. This map: $S \mapsto \pi^{-1}(S)$ has one inverse function: $J \mapsto J/I$. Thus the bijection exists. \square

4. Ideals and quotients: remarks and examples

4.2

Prove that the homomorphic image of a Noetherian ring is Noetherian. That is, prove that if $\varphi: R \to S$ is a surjective ring homomorphism, and R is Noetherian, then S is Noetherian.

Proof. Recall that Noetherian ring is a ring where all ideals are finitely generated. Let J be an ideal of S, then $I = \varphi^{-1}(J)$ is an ideal of R. Then R is finitely generated, say $I = (r_1, r_2, \ldots r_n)$. Then for any element $p \in J$, we have $p = \varphi(q), q \in I$, thus $q = \sum_{i=1}^n a_i r_i$ and $p = \varphi(q) = \sum_{i=1}^n \varphi(a_i)\varphi(r_i)$. Thus, $J \subseteq (\varphi(r_1), \varphi(r_2), \ldots, \varphi(r_n))$ And is finitely generated. \square

4.5

Let I, J be ideals in a ring R, such that I + J = (1). Prove that $IJ = I \cap J$

Proof. Recall that IJ denotes the ideal generated by all production $ij, i \in I, j \in J$. And $IJ \subseteq I \cap J$ in general. We have to show $I \cap J \subset IJ$. For any element $r \in I \cap J$, we have $r = r1_R = r(i+j) = ri + rj, i \in I, j \in J$. Note that $ri = ir \in IJ, rj \in IJ$, thus $r = ri + rj \in IJ$, and we have $IJ \subseteq I \cap J$ as a result. \square

4.6

Let I, J be ideals in a ring R. Assume that R/(IJ) is reduced (that is, it has no nonzero nilpotent elements; cf. Exercise 3.13). Prove that $IJ = I \cap J$.

Proof. If $IJ \subseteq I \cap J$, then there is some element $r \in I \cap J$, $r \notin IJ$. Then consider $r + IJ \in R/(IJ)$. We are gonna to have

$$(r+IJ)^2 = r^2 + IJ = IJ$$

as $r^2 \in IJ(r \in I, r \in J)$, which contradicts the assumption that R/(IJ) is reduced. In conclusion, $IJ = I \cap J$. \square

4.9

Generalize the result of Exercise 4.8, as follows. Let R be a ring, and let f(x) be a left-zero-divisor in R[x]. Prove that $\exists b \in R, b \neq 0$, such that f(x)b = 0.

Proof. We prove by induction on the degree of f(x). If $\deg f(x) = 0$, then f(x) is simply an element of R, written as r. Say f(x)g(x) = 0, $g(x) \neq 0$. Then it's easy to see the first coefficient of g(x), say t, satisfies rt = 0. Thus the proposition is true of $\deg f(x) = 0$.

Assume that for deg f(x) = k the proposition is true. Then for k+1 case, \square

4.10

Let d be an integer that is not the square of an integer, and consider the subset of \mathbb{C} defined by:

$$\mathbb{Q}(\sqrt{d}) := \{ a + b\sqrt{d} \mid a, b \in \mathbb{Q} \}.$$

- 1. Prove that $\mathbb{Q}(\sqrt{d})$ is a subring of \mathbb{C} .
- 2. Define a function $N: \mathbb{Q}(\sqrt{d}) \to \mathbb{Z}$ by $N(a+b\sqrt{d}) := a^2 b^2 d$. Prove that N(zw) = N(z)N(w), and that $N(z) \neq 0$ if $z \in \mathbb{Q}(\sqrt{d}), z \neq 0$.
- 3. Prove that $Q(\sqrt{d})$ is a field, and in fact the smallest subfield of \mathbb{C} containing both \mathbb{Q} and \sqrt{d} (Use N).
- 4. Prove that $\mathbb{Q}(\sqrt{d}) \cong \mathbb{Q}[t]/(t^2-d)$. (Cf. Example 4.8.)

The function N is a 'norm'; it is very useful in the study of $Q(\sqrt{d})$ and of its subrings. (Cf. also Exercise 2.5.)

Proof. The proof is as follows:

1. $Q(\sqrt{d})$ is indeed a subring of $\mathbb C$ because it's a subgroup of $\mathbb C$ and closed under multiplication:

$$(\forall a_1 + b_1 \sqrt{d}, a_2 + b_2 \sqrt{d} \in \mathbb{Q}(\sqrt{d}))$$
:

$$(a_1 + b_1\sqrt{d}) - (a_2 + b_2\sqrt{d}) = (a_1 - a_2) + (b_1 - b_2)\sqrt{d} \in \mathbb{Q}(\sqrt{d})$$
$$(a_1 + b_1\sqrt{d})(a_2 + b_2\sqrt{d}) = (a_1a_2 + b_1b_2d) + (a_1b_2 + a_2b_1)\sqrt{d} \in \mathbb{Q}(\sqrt{d})$$

Also, $1_{\mathbb{C}} \in \mathbb{Q}(\sqrt{d})$ by setting a = 1, b = 0. In conclusion, $\mathbb{Q}(\sqrt{d})$ is a subring of \mathbb{C} .

2. For the second part, let $z = a_1 + b_1 \sqrt{d}$, $w = a_2 + b_2 \sqrt{d}$. Then:

$$N(zw) = (a_1a_2 + b_1b_2d)^2 - d(a_1b_2 + a_2b_1)^2$$

$$= a_1^2a_2^2 + b_1^2b_2^2d^2 - da_1^2b_2^2 - da_2^2b_1^2$$

$$= (a_1^2 - b_1^2d)(a_2^2 - b_2^2d)$$

$$= N(z)N(w)$$

If N(z) = 0, then $a^2 - b^2 d = 0 \Rightarrow a/b = \sqrt{d}$, contrdicts the fact that \sqrt{d} is irrational.

- 3. $\mathbb{Q}(\sqrt{d})$ is a field since each non-zero element $a + b\sqrt{d}$ has inverse $(a b\sqrt{d})/(a^2 b^2d)$. Note that we have proved that in (2), $N(z) = a^2 b^2d = 0$ if and only if z = 0, thus it's ok to write $a^2 b^2d$ as denominator.
- 4. Note that $\mathbb{Q}[t]/(t^2-d)\cong\mathbb{Q}^{\oplus 2}$, there is a one to one corespondence:

$$\mathbb{Q}(\sqrt{d}) \to \mathbb{Q}^{\oplus 2} : a + b\sqrt{d} \mapsto (a, b)$$

And the multiplication defined over $\mathbb{Q}^{\oplus 2}$ is (a,b)(e,f)=(ae+dbf,af+be)

The proof is done. \square

4.11

Let R be a commutative ring, $a \in R$, and $f_1(x), \ldots, f_r(x) \in R[x]$.

1. Prove the equality of ideals

$$(f_1(x),\ldots,f_r(x),x-a)=(f_1(a),\ldots,f_r(a),x-a).$$

2. Prove the useful substitution trick

$$\frac{R[x]}{(f_1(x),\ldots,f_r(x),x-a)} \cong \frac{R}{(f_1(a),\ldots,f_r(a))}$$

Proof. (1) Since x - a is a mononic polynomial, then for each $f_i(x)$, there exists one $g_i(x), t_i(x)$ such that $\deg t_i(x) < \deg(x - a) = 1$. And:

$$f_i(x) = g_i(x)(x - a) + t_i(x)$$

Let x = a, we fill have: $t_i(a) = f_i(a)$. Note that $\deg t_i(x) < 1$, then we must have $t_i(x) = f_i(a) \in R$, which means:

$$f_i(x) = (x - a)g_i(x) + f_i(a)$$

Indicating: $(f_i(x)) \subseteq (x - a, f_i(a))$. Thus we have:

$$(f_1(x),\ldots,f_r(x))\subseteq (f_1(a),\ldots,f_r(a),x-a)$$

Also, $f_i(x) = (x - a)g_i(x) + f_i(a)$ indicates $f_i(a) = f_i(x) - (x - a)g_i(x)$, and $(f_i(a)) \subseteq (f_i(x), x - a)$. Similarly we have:

$$(f_1(a),\ldots,f_r(a),x-a)\subseteq (f_1(x),\ldots,f_r(x))$$

In conclusion, we have:

$$(f_1(a), \ldots, f_r(a), x - a) = (f_1(x), \ldots, f_r(x))$$

(2) Consider the following ring homomorphism:

$$R[x] \longrightarrow R \longrightarrow \frac{R}{(f_1(a), \dots, f_r(a))}$$

$$f(x) \mapsto f(a) \mapsto f(a) + (f_1(a), \dots, f_r(a))$$

Then it's easy to see that this homomorphism is surjective, since $R[x] \longrightarrow R$ is surjective and $R \longrightarrow \frac{R}{(f_1(a), \dots, f_r(a))}$ is surjective.

Denote this ring homomorphism as φ , consider ker φ :

$$\ker \varphi = \{ f(x) \in R[x] \mid f(a) \in (f_1(a), \dots, f_r(a)) \}$$

Note that for each $f(x) \in (f_1(x), \dots, f_r(x), x - a)$ we have:

$$f(x) = \sum_{i=1}^{r} r_i(x) f_i(x) + r(x)(x - a)$$

and $f(a) = \sum_{i=1}^{r} r_i(a) f_i(a) \in (f_1(a), \dots, f_r(a))$, this implies that

$$(f_1(x),\ldots,f_r(x))\subseteq \ker \varphi$$

On the other hand, let $f(x) \in \ker \varphi$, using remainder divison, we have:

$$f(x) = g(x)(x - a) + f(a)$$

Note that $f(a) \in (f_1(a), \dots, f_r(a))$, thus $f(x) \in (f_1(a), \dots, f_r(a), x - a)$. Thus we have:

$$f(x) \subseteq (f_1(a), \dots, f_r(a), x - a) = (f_1(x), \dots, f_r(x), x - a)$$

and

$$\ker \varphi = (f_1(x), \dots, f_r(x), x - a)$$

According to the fundamental homomorphism theorem, we have:

$$\frac{R[x]}{(f_1(x), \dots f_r(x), x - a)} \cong \frac{R}{(f_1(a), \dots, f_r(a))}$$

The proof is done. \square