- Радиоэлектроника
 - Диоды
 - Выпрямительные диоды
 - Выпрямители
 - Однополупериодный выпрямитель
 - Двухполупериодный выпрямитель
 - Расчет двухполупериодного выпрямителя
 - Порядок расчета:
- Практическая работа №1

Радиоэлектроника

Диоды

Диод - полупроводниковый прибор, пропускающий эл.ток только в одном направлении. Свойство односторонней проводимости p-n перехода.

р-п переход — это граница между двумя типами полупроводников в полупроводниковом материале. "р" обозначает положительный тип (от слова "positive"), который имеет избыток положительно заряженных дырок, а "п" обозначает отрицательный тип (от слова "negative"), который имеет избыток отрицательно заряженных электронов. Когда материалы с разными типами проводимости (р-тип и n-тип) соединяются вместе, образуется p-n переход. В этом переходе происходит диффузия (перемешивание) носителей заряда (дырок и электронов) между областью p-типа и областью n-типа. При этом происходит образование области, называемой диффузионной зоной, в которой носители заряда пересекаются и рекомбинируют. Когда электроны из n-области и дырки из p-области пересекаются в диффузионной зоне, они рекомбинируют, и заряженные частицы становятся нейтральными. В результате рекомбинации в диффузионной зоне образуется область, лишенная носителей заряда, называемая областью разрядки или областью дефицита носителей. Эта область создает электрическое поле, которое препятствует дальнейшей диффузии

носителей через p-n переход. Когда p-n переход находится в состоянии покоя (без внешнего воздействия), он имеет разницу потенциала, называемую контактной разницей потенциала или барьерным напряжением. Когда к p-n переходу применяется внешнее напряжение в определенном направлении (направление прямого включения), барьерное напряжение уменьшается, и переход становится проводящим. В противном случае, когда к p-n переходу применяется внешнее напряжение в обратном направлении (направление обратного включения), барьерное напряжение увеличивается, и переход становится непроводящим. Это явление обратного включения позволяет использовать p-n переходы в электронных устройствах, таких как диоды и транзисторы.

Таблица 1

Название	УГО	Символ	Назначение
Выпрямительный диод	A H	Д	для преобразования переменного тока (AC) в постоянный ток (DC)
Импульсный диод	<u>д</u>	Д	для работы в режиме импульсов, таких как импульсные выпрямители, импульсные источники питания, и другие высокочастотные устройства
Стабилитрон	c	С	для обеспечения стабильности напряжения в электрических цепях
Варикап (переменный ёмкостный диод)	B	В	для создания переменных емкостных цепей
Туннельный диод		И	генераторы микроволновых колебаний, высокочастотные усилители, и в некоторых цифровых и логических устройствах.
Диод Шоттки	<u>-</u>	-	имеет металл-полупроводниковый контакт, обеспечивающий более быстрое перемещение электронов и дырок через диод
Светодиод	, n	Л	излучает свет при прохождении через него электрического тока в прямом

			направлении
Фотодиод	•	Ф	способен преобразовывать световые сигналы в электрические сигналы
Теристор	T1	-	для управления большими токами
Семистор	T2	-	обладает свойствами тиристора и диода, что позволяет управлять током в обоих направлениях

Выпрямительные диоды

- 1. Слаботочные до 0.3А
- 2. Средней мощности от 0.3 до 10А
- 3. Мощные (силовые) диоды более 10A (до 100000A, 6кВ)

Выпрямители

Выпрямитель - это устройство, которое преобразует переменный ток (AC) в постоянный ток (DC). Применяются в блоках питания компьютеров, телевизоров, радиоприемников и др.

Диодные выпрямители:

- однополупериодные (половинный мост)- предназначены для выпрямления только половины периода переменного тока
- двуполупериодными (полный мост) выпрямляют оба полупериода переменного тока

Однополупериодный выпрямитель

Для сглаживания сигнала применяют в схеме однополупериодного выпрямителя еще и конденсатор

Двухполупериодный выпрямитель

Диодный мост - предназначен для преобразования (выпрямления) переменного тока в пульсирующий постоянный.

Сглаживающие фильтры уменьшают пульсацию выпрямленного напряжения.

Расчет двухполупериодного выпрямителя

Рассчитать выпрямитель - значит правильно выбрать выпрямительные диоды и конденсатор фильтра, а также определить необходимое переменное напряжение, снимаемое для выпрямления с вторичной обмотки сетевого трансформатора. Исходными данными для расчета выпрямителя служат: требуемое напряжение на нагрузке $U_{\rm H}$ и потребляемый ею максимальный ток $I_{\rm H}$.

Порядок расчета:

1. Найти напряжение на вторичной обмотке:

$$U_2 = B \cdot U_{\rm H}$$

- U_2 постоянное напряжение на нагрузке
- В коэффициент, зависящий от нагрузки из таблицы

Таблица 2

Коэффициент	Ток нагрузки , А							
	0,1	0,2	0,4	0,6	0,8	1	1,5	2
В	0,8	1	1,9	1,4	1,5	1,7	2	2,3
С	2,4	2,2	2	1,9	1,8	1,8	2	2

2. По току нагрузки, из таблицы, определяют максимальный ток, текущий через каждый диод моста:

$$I_{\text{\tiny J}} = 0.5 \cdot C \cdot I_{\text{\tiny H}}$$

- $I_{\rm I}$ ток проходящий чере диод (A)
- ullet $I_{
 m H}$ максимальный ток нагрузки (A)
- \bullet C коэффициент, зависящий от тока нагрузки (по таблице)
- 3. Рассчитывают обратное напряжение, которое будет приложено к каждому диоду моста:

$$U_{\text{ofp}} = 1, 5 \cdot U_{\text{H}}$$

- $U_{
 m oбp}$ обратное напряжение (В)
- U_{H} напряжение на нагрузке (B)
- 4. Выбирают диоды, у которых значения выпрямленного тока и допустимого обратного напряжения равны или превышают расчетные.

Таблица 3

	Электрические параметры при toбр = + 20 ± 5° C						
Тип диода	Наибольшая амплитуда обратного напряжения, В	Наибольший выпрямленный ток (среднее значение), А	Обратный ток при наибольшем обратном напряжении, мА	Падение напряжения в прямом направлении при наибольшем токе, В			
Д242,	100	5	3	1,5			
Д242А,	100	10	3	1,0			
Д2426,	100	2	3	1,0			
Д243,	200	5	3	1,0			
Д243А,	200	10	3	1,0			
Д243Б,	200	2	3	1,0			
Д244,	50	5	3	1,0			
Д244А,	50	10	3	1,0			
Д244 Б	50	2	3	1,0			
2Д201 А,	100	5	3	1,0			
2Д201 Б,	100	10	3	1,0			
2Д201 В,	200	5	3	1,0			
2Д201 Г,	200	10	3	1,0			
Д1004	2000	0,1	0,1	4,0			
Д1005А	4000	0,5	0,1	4,0			
Д1005Б	4000	0,1	0,1	6,0			
Д1006	6000	0,1	0,1	6,0			

Д1007	8000	75	0,1	6,0
Д1008	10000	0,05	0,1	6,0
Д1009	2000	0,1	0,1	7,0
Д1009А	10002	0,1.2	0,1	3,5
Д1010	2000	0,3	0,1	11,0

5. Определяют емкость конденсатора фильтра:

$$C_{\Phi} = \frac{3200I_{\mathrm{H}}}{U_{\mathrm{H}}K_n}$$

- $C_{\rm d}$ емкость конденсатора фильтра (мкФ)
- $I_{\rm H}$ максимальный ток нагрузки (A)
- $U_{\rm H}$ напряжение на нагрузке (B)
- К_n коэффициент пульсации выпрямленного напряжения (отношение амплитудного значения переменной составляющей частотой 100 Гц на выходе выпрямителя к среднему значению выпрямленного напряжения)

$$K_n = \frac{U_{\rm H}}{U_2}$$

Если выходное напряжение выпрямителя будет дополнительно стабилизироваться транзисторным стабилизатором напряжения, то расчетная емкость конденсатора фильтра может быть уменьшена в 5...10 раз.

Практическая работа №1

Дано:

• U_c - напряжение питающей сети 220 Вольт 50Гц

- $U_{ exttt{H}}$ выпрямленное напряжение нагрузки после диодного моста = 20 Вольт
- $I_{
 m H}$ максимальный ток нагрузки после диодного моста = 1 Ампер

Найти:

- U_2 напряжение со второй обмотки понижающего трансформатора (Вольт):
- I_{I} максимальный ток текущий через каждый диод моста (Ампер):
- $U_{
 m oбp}$ обратное напряжение (Вольт):
- K_n коэффициент пульсации выпрямленного напряжения:
- C_{Φ} емкость фильтрующего конденсатора:

диод	дано		найти				
Подбор из таблицы	Uн (B)	Iн (A)	U2 (B)	Iд (A)	Uобр (В)	Kn	Сф (мкф)
	20	1	34	0.9	30	0.588	272,11

1.
$$U_2 = B \cdot U_H = 1, 7 \cdot 20 = 34B$$

2.
$$I_{\text{II}} = 0.5 \cdot C \cdot I_{\text{H}} = 0.5 \cdot 1, 8 \cdot 1 = 0,9 \text{A}$$

3.
$$U_{\text{ofp}} = 1, 5 \cdot U_{\text{H}} = 1, 5 \cdot 20 = 30 \text{B}$$

4.
$$K_n = \frac{U_H}{U_L} = \frac{20}{34} = 0,588$$

4.
$$K_n = \frac{U_{\text{H}}}{U_2} = \frac{20}{34} = 0,588$$

5. $C_{\Phi} = \frac{3200I_{\text{H}}}{U_{\text{H}}K_n} = \frac{3200 \cdot 1}{20 \cdot 0,588} = 272,11$

Ответ: Диоды Д242Б 4шт. Конденсатор Сф 470μ 1шт. или 220μ 2шт.