LOW RIPPLE VOLTAGE REGULATOR WITH EXTERNAL TRANSISTOR

RN5RF SERIES APPLICATION MANUAL

LOW RIPPLE VOLTAGE REGULATOR WITH EXTERNAL TRANSISTOR

RN5RF SERIES

OUTLINE

The RN5RF Series are voltage regulator ICs which control external driver transistors with high ripple rejection, high accu-racy output voltage, low supply current by CMOS process. Each of these voltage regulator ICs consists of a voltage refer-ence unit, an error amplifier, output voltage setting resistor, short circuit current limiting circuit and chip enable circuit. These ICs are suitable for constructing regulators with ultra low dropout voltage and an output current in the range of several tens of mA and several hundreds mA. In addition to low supply current by CMOS process, chip enable function can be used to conserve battery life during standby.

Furthermore, a supreme ripple rejection and a transient response are suited for portable communicatior such as cell phones, PDAs, walky talkies. SOT23-5 (Mini Mold) package is available.

FEATURES

Ultra Low Supply Current	TYP. 30µA
Standby Mode	TYP. $0.1\mu\mathrm{A}$
High Accuracy Output Voltage	±2.0%
High Ripple Rejection	TYP. 60dB/f=1kHz
Low Dropout Voltage	TYP. 0.1V/Iout=100mA, dependent on External Tr.
Low Temperature Drift	TYP. ±100ppm/°C
High Line Regulation	TYP. 0.05%/V
Output Voltage	Stepwise setting with a step of 0.1V in the range of 1.8V to
	6.0V
Current Limit for external Tr	TYP. 8mA, Limit a base current

APPLICATIONS

- Power source for battery-powered equipment
- Telecommunications, Cameras, VCRs
- Power source for domestic appliances

BLOCK DIAGRAM

SELECTION GUIDE

The output voltage, the chip enable active type, the packing type and the taping type for the ICs can be selected at the user's request.

The selection can be made by designating the part number as shown below:

RN5RF
$$\times \times \times - \times \leftarrow$$
 Part Number $\uparrow \uparrow \uparrow \uparrow$ a bc d

Code	Contents
	Setting Output Voltage (Vout):
a	Stepwise setting with a step of 0.1V in the range of 1.8V to 6.0V is possible.
	Designation of Chip enable Active Type
b	A: "L" active type
	B: "H" active type
	Designation of Packing type
c	A: Taping
	C: Antistatic bag only for samples
.1	Designation of Taping type
d	Ex. TR, TL (refer to Taping Specifications, TR type is prescribed as a standard.)

PIN CONFIGURATION

PIN DESCRIPTION

Pin No.	Symbol	Pin Description
1	GND	Ground Pin
2	V_{DD}	Input Pin
3	Vout	Output Pin
4	EXT	External Transistor Drive Pin (CMOS Output)
5	CE or CE	Chip Enable Pin

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
$V_{\rm IN}$	Input Voltage	12	V
Vce	Input Voltage for CE/CE Pin	-0.3 to V _{IN} +0.3	V
Vext	EXT Output Voltage	12	V
Iext	EXT Output Current	50	mA
PD	Power Dissipation	150	mW
Topt	Operating Temperature Range	-40 to +85	°C
Tstg	Storage Temperature Range	-55 to +125	°C

ABSOLUTE MAXIMUM RATINGS

Absolute Maximum ratings are threshold limit values that must not be exceeded even for an instant under any conditions. Moreover, such values for any two items must not be reached simultaneously. Operation above these absolute maximum ratings may cause degradation or permanent damage to the device. These are stress ratings only and do not necessarily imply functional operation below these limits.

ELECTRICAL CHARACTERISTICS

Topt=25°C

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	VIN-VOUT=1.0V IOUT=50mA	Vout ×0.98		Vоит ×1.02	V
Iout	Output Current	V _{IN} -V _{OUT} =1.0V		1.0^{*1}		A
IEXT	EXT Current	V_{IN} =4.0V, V_{EXT} =2.0V	5	8	15	mA
ΔV out/ ΔI out	Load Regulation	V _{IN} -V _{OUT} =1.0V 1mA≤I _{OUT} ≤100mA	-60		60	mV
V _{DIF}	Dropout Voltage	Iout=100mA, Iout=0mA		0.1	0.2	V
Iss	Supply Current	V _{IN} -V _{OUT} =1.0V		30	50	μ A
Istandby	Standby Current	V _{IN} =10.0V	0.01	0.1	1.0	μ A
IEXTleak	EXT Leakage Current				0.5	μ A
ΔV out/ ΔV in	Line Regulation	IOUT=50mA VOUT+0.5V\leqVIN\leq10V	0	0.05	0.30	%/V
Rr	Ripple Rejection	f=1kHz, sinusoidal 0.5Vp-p V _{IN} -V _{OUT} =1.0V		60		dB
$V_{\rm IN}$	Input Voltage				10	V
Vext	EXT Output Voltage				10	V
ΔVout/ΔTopt	Output Voltage Temperature Coefficient	Iouт=10mA -40°C≤Topt≤85°C		±100		ppm/°C
Rpu	Pull up resistance for CE pin			4		ΜΩ
Vceh	CE Input Voltage "H"		1.5		$V_{\rm IN}$	V
VCEL	CE Input Voltage "L"		0		0.25	V

^{*1)} The output current depends on the performance of external PNP transistor. Use External PNP transistor of a low saturation type, with an hFE between 100 and 300.

^{*)} With respect to Test Circuit, refer to Typical Application.

Topt=25°C

Symbol	Item	Conditions	MIN.	TYP.	MAX.	Unit
Vout	Output Voltage	VIN-VOUT=1.0V Iout=50mA	Vout ×0.98		Vоит ×1.02	V
Iout	Output Current	V _{IN} -V _{OUT} =1.0V		1.0^{*1}		A
Iext	EXT Current	V _{IN} =4.0V, V _{EXT} =2.0V	5	8	15	mA
ΔV out/ ΔI out	Load Regulation	V _{IN} -V _{OUT} =1.0V 1mA≤I _{OUT} ≤100mA	-60		60	mV
VDIF	Dropout Voltage	Iour=100mA		0.1	0.2	V
Iss	Supply Current	V _{IN} -V _{OUT} =1.0V I _{OUT} =0mA		30	50	μΑ
Istandby	Standby Current	V _{IN} =10.0V	0.01	0.1	1.0	μ A
IEXTleak	EXT Leakage Current				0.5	μ A
ΔV out/ ΔV in	Line Regulation	IOUT=50mA VOUT+0.5V\leqVIN\leq10V	0	0.05	0.30	%/V
R_{R}	Ripple Rejection	f=1kHz, sinusoidal 0.5Vp-p V _{IN} -V _{OUT} =1.0V		60		dB
Vin	Input Voltage				10	V
VEXT	EXT Output Voltage				10	V
ΔVout/ΔTopt	Output Voltage Temperature Coefficient	Iout=10mA -40°C≤Topt≤85°C		±100		ppm/°C
Rpd	Pull down resistance for CE pin			4		ΜΩ
Vсен	CE Input Voltage "H"		1.5		$V_{\rm IN}$	V
VCEL	CE Input Voltage "L"		0		0.25	V

^{*1)} The output current depends on the performance of external PNP transistor. Use External PNP transistor of a low saturation type, with an hfe between 100 and 300.

^{*)} With respect to Test Circuit, refer to Typical Application.

OPERATION

In these ICs, Output Voltage Vout is detected by Feed-back Resistors, R_A and R_B and the detected Output Voltage is com-pared with a reference voltage by Error Amplifier so that the base current of External PNP Transistor can be adjusted and Output Voltage Vout is able to be regulated.

The base current of an external Tr. is monitored and controlled by an internal Base Current Limit circuit to keep current within a proper range. Furthermore, the other current limit circuit prevents a problem which is that a base current increas-es sharply when input Voltage VIN becomes lower than Set Output Voltage.

Notes on selecting external components

- (1) On external PNP transistor

 Be careful of output current, input voltage and power dissipation of External PNP Transistor.

 External PNP Transistor with a low Vce (sat) and an here between 100 and 300 is suitable.
- (2) On phase compensation In these ICs, phase compensation is made for securing stable operation on the output stage even if the load current is varied. For this purpose, be sure to use a capacitor C_L (tantalum type) with a capacitance of $10\mu F$ of more. There may be the case the loop oscillation takes place when a tantalum capacitor C_L with a large ESR is used, so select the C_L carefully including the frequency characteristics.

TEST CIRCUITS

Basic Test Circuit

Test Circuit for Supply Current

Test Circuit for Ripple Rejection and Line
Transient Response

Test Circuit for Load Transient Response

TYPICAL CHARACTERISTICS

1) Output Voltage vs. Input Voltage (Topt=25°C)

2) Output Voltage vs. Output Current (Topt=25°C)

3) Dropout Voltage vs. Output Current

4) Output Voltage vs. Temperature

5) Supply Current vs. Input Voltage (Topt=25°C)

6) Supply Current vs. Temperature

Ripple Rejection vs. Frequency (Topt=25°C)

8) Line Transient Response (Topt=25°C)

9) Load Transient Response (Topt=25°C)

TYPICAL APPLICATION

