Bundles of bounded complete metric spaces as left-ultrafunctors and generalisation to other metric structures

Ali Hamad

November 3, 2022

► The first place we usually encounter ultrafilter is point-set topology.

- ► The first place we usually encounter ultrafilter is point-set topology.
- a filter on a set is non-empty a family of subsets that does not contain the empty set ,upward closed, and closed under intersection

- ► The first place we usually encounter ultrafilter is point-set topology.
- a filter on a set is non-empty a family of subsets that does not contain the empty set ,upward closed, and closed under intersection
- They are used(alongside Nets) to generalise the idea of convergent sequence into spaces that are not first countable.
- examples: nhood filter, Frechet filter(cofinite filter), principal ultrafilter
- A filter converges to a point by definition iff it contains(is a superset of) its nhood filter(in a certain specified topology).

- ► The first place we usually encounter ultrafilter is point-set topology.
- a filter on a set is non-empty a family of subsets that does not contain the empty set ,upward closed, and closed under intersection
- They are used(alongside Nets) to generalise the idea of convergent sequence into spaces that are not first countable.
- examples: nhood filter, Frechet filter(cofinite filter), principal ultrafilter
- A filter converges to a point by definition iff it contains(is a superset of) its nhood filter(in a certain specified topology).
- An ultrafilter is a maximal element among filters

- ► The first place we usually encounter ultrafilter is point-set topology.
- a filter on a set is non-empty a family of subsets that does not contain the empty set ,upward closed, and closed under intersection
- ► They are used(alongside Nets) to generalise the idea of convergent sequence into spaces that are not first countable.
- examples: nhood filter, Frechet filter(cofinite filter), principal ultrafilter
- A filter converges to a point by definition iff it contains(is a superset of) its nhood filter(in a certain specified topology).
- An ultrafilter is a maximal element among filters
- Ultrafilter Lemma(Consequence of Zorn's lemma): every filter is contained(subset of) an ultrafilter

- ► The first place we usually encounter ultrafilter is point-set topology.
- a filter on a set is non-empty a family of subsets that does not contain the empty set ,upward closed, and closed under intersection
- ► They are used(alongside Nets) to generalise the idea of convergent sequence into spaces that are not first countable.
- examples: nhood filter, Frechet filter(cofinite filter), principal ultrafilter
- ► A filter converges to a point by definition iff it contains(is a superset of) its nhood filter(in a certain specified topology).
- An ultrafilter is a maximal element among filters
 Ultrafilter Lemma(Consequence of Zorn's lemma): every filter
- is contained(subset of) an ultrafilter
 ▶ Lemma: A filter μ on X is an ultrafilter iff for every A ⊆ X
- either $A \in \mu$ or $A \notin \mu$.
- Alternative definition of ultrafilters: An ultrafilter on X is a morphism of Boolean algebras from P(X) to $\{0,1\}$

► The Forgetful functor from the category of compact Hausdorff spaces to the category of sets has a left adjoint: The Stone-Cech compactification of the discrete topology associated to a set.

- ► The Forgetful functor from the category of compact Hausdorff spaces to the category of sets has a left adjoint: The Stone-Cech compactification of the discrete topology associated to a set.
- We construct this functor as follows :for any set X we equip the set βX of all ultrafilters with the topology having as basis sets of the form $(\beta S)_{S\subseteq X}$ (here βS is the set of all ultrafilters on S identified with the set of all ultrafilters on X that contains S).
- ▶ Alternatively this is the unique topology on βX such that for every $\eta \in \beta \beta X$, η to converges to $\mu(\eta)$, where $\mu(\eta)$ is defined by $S \in \mu(\eta)$ iff $\beta S \in \eta$

Some topological properties stated in term of filters ultrafilters

- A space is compact iff every ultrafilter converges to some point
- A space is Hausdorff iff if a filter converges to x and y then x = y

Some topological properties stated in term of filters ultrafilters

- ► A space is compact iff every ultrafilter converges to some point
- lackbox A space is Hausdorff iff if a filter converges to x and y then x=y

Theorem (Wyler)

A topology on a set X is a relation R(called the convergence relation) between βX and X such that The following two conditions are satisfied :

- 1. for each $x \in X$ $(\delta_x, x) \in R$
- 2. if μ is an ultrafilter on S and $(\gamma_s)_{s \in S}$ is a family of ultrafilters on X indexed by S such that each γ_s $(\gamma_s, f(s)) \in R$ for some f(s) then : if $(f\mu, x) \in R$ then $(\int_S \gamma_s d\mu, x) \in R$
- ► Here $\int_{S} \nu_s d\mu$ is the ultrafilter defined by $U \in \int_{S} \nu_s d\mu$ iff $\{s \in S | U \in \nu_s\} \in \mu$.

Some topological properties stated in term of filters ultrafilters

- ► A space is compact iff every ultrafilter converges to some point
- lackbox A space is Hausdorff iff if a filter converges to x and y then x=y

Theorem (Wyler)

A topology on a set X is a relation R(called the convergence relation) between βX and X such that The following two conditions are satisfied :

- 1. for each $x \in X$ $(\delta_x, x) \in R$
- 2. if μ is an ultrafilter on S and $(\gamma_s)_{s \in S}$ is a family of ultrafilters on X indexed by S such that each γ_s $(\gamma_s, f(s)) \in R$ for some f(s) then : if $(f\mu, x) \in R$ then $(\int_S \gamma_s d\mu, x) \in R$
- ► Here $\int_{S} \nu_s d\mu$ is the ultrafilter defined by $U \in \int_{S} \nu_s d\mu$ iff $\{s \in S | U \in \nu_s\} \in \mu$.

First construction of an ultraproduct

Let $(M_i)_{i\in I}$ be a family of sets and let μ be an ultrafilter on I then in this case we construct the ultraproduct of the family M_i and we denote it by $\int_I M_i d\mu = \varinjlim_{U \in \mu} (\prod_{i \in U} M_i)$.

First construction of an ultraproduct

- Let $(M_i)_{i\in I}$ be a family of sets and let μ be an ultrafilter on I then in this case we construct the ultraproduct of the family M_i and we denote it by $\int_I M_i d\mu = \varinjlim_{U \in \mu} (\prod_{i \in U} M_i)$.
- In the case where all the M_i are non-empty we have an easier description of the ultraproduct as $\prod_{i \in I} M_i / \sim$ where \sim is defined by $(a_i)_{i \in I} \sim (b_i)_{i \in I}$ iff there exists some $U \in \mu$ such that $(a_i)_{i \in U} = (b_i)_{i \in U}$.

First construction of an ultraproduct

- Let $(M_i)_{i\in I}$ be a family of sets and let μ be an ultrafilter on I then in this case we construct the ultraproduct of the family M_i and we denote it by $\int_I M_i d\mu = \varinjlim_{U \in \mu} (\prod_{i \in U} M_i)$.
- In the case where all the M_i are non-empty we have an easier description of the ultraproduct as $\prod_{i \in I} M_i / \sim$ where \sim is defined by $(a_i)_{i \in I} \sim (b_i)_{i \in I}$ iff there exists some $U \in \mu$ such that $(a_i)_{i \in U} = (b_i)_{i \in U}$.
- We can generalise this construction to the category of models of any first order theory using Łos theorem.
- ▶ Los theorem:Let ϕ be a first order sentence in some language \mathcal{L} and let $(M_i)_{i \in I}$ be a family of \mathcal{L} -structures such that for each $i \in I$ we have $M_i \models \phi$ then $\int_I M_i d\mu \models \phi$.

- Ultracategories(introduced by Makkai and then by Lurie) are a categorical axiomatization of the idea a category with an ultraproduct.
- lacktriangle An ultracategory is a category ${\cal M}$ with an ultrastructure.
- ► The ultrastructure consists of the following data:
 - 1. For each ultrafilter μ on a set S a functor $\int_{S} \bullet d\mu$: $\mathcal{M}^{S} \to \mathcal{M}$

- Ultracategories(introduced by Makkai and then by Lurie) are a categorical axiomatization of the idea a category with an ultraproduct.
- lacktriangle An ultracategory is a category ${\mathcal M}$ with an ultrastructure.
- ► The ultrastructure consists of the following data:
 - 1. For each ultrafilter μ on a set S a functor $\int_S \bullet d\mu$: $\mathcal{M}^S \to \mathcal{M}$
 - 2. for every family of objects $\{M_s\}_{s\in S}$ and every principal ultrafilter δ_{s_0} a natural isomorphism ϵ_{S,s_0} from $\int_S M_s d\delta_{s_0}$ to M_{s_0} .

- Ultracategories(introduced by Makkai and then by Lurie) are a categorical axiomatization of the idea a category with an ultraproduct.
- lacktriangle An ultracategory is a category ${\mathcal M}$ with an ultrastructure.
- ► The ultrastructure consists of the following data:
 - 1. For each ultrafilter μ on a set S a functor $\int_S \bullet d\mu$: $\mathcal{M}^S \to \mathcal{M}$
 - 2. for every family of objects $\{M_s\}_{s\in S}$ and every principal ultrafilter δ_{s_0} a natural isomorphism ϵ_{S,s_0} from $\int_S M_s d\delta_{s_0}$ to M_{s_0} .
 - 3. Suppose we have a family of ultrafilters $\{\nu_s\}_{s\in S}$ on T and a family of objects of \mathcal{M} $\{M_t\}$ and an ultrafilter μ on S we have a map called the categorical Fubini transform $\Delta_{\nu_{\bullet},\mu}$ from $\int_{T} M_t d(\int \nu_s \mu)$ to $\int_{S} (\int_{T} M_t d\nu_s) d\mu$, which is required to be natural in the family $\{M_t\}_{t\in T}$.

- Ultracategories(introduced by Makkai and then by Lurie) are a categorical axiomatization of the idea a category with an ultraproduct.
- ightharpoonup An ultracategory is a category $\mathcal M$ with an ultrastructure.
- ► The ultrastructure consists of the following data:
 - 1. For each ultrafilter μ on a set S a functor $\int_S \bullet d\mu$: $\mathcal{M}^S \to \mathcal{M}$
 - 2. for every family of objects $\{M_s\}_{s\in S}$ and every principal ultrafilter δ_{s_0} a natural isomorphism ϵ_{S,s_0} from $\int_S M_s d\delta_{s_0}$ to M_{s_0} .
 - 3. Suppose we have a family of ultrafilters $\{\nu_s\}_{s\in S}$ on T and a family of objects of \mathcal{M} $\{M_t\}$ and an ultrafilter μ on S we have a map called the categorical Fubini transform $\Delta_{\nu_{\bullet},\mu}$ from $\int_T M_t d(\int \nu_s \mu)$ to $\int_S (\int_T M_t d\nu_s) d\mu$, which is required to be natural in the family $\{M_t\}_{t\in T}$.
- these data are required to satisfy certain compatibility axioms.

We highlight some important ways of constructing ultracategories:

- Let \mathcal{M} be a category having both directed colimits and products, then it has an ultrastructure.
- We highlight this ultrastructure construction:Let T be a set and μ an ultrafilter on T, and $\{M_t\}_{t\in T}$ a family of objects of \mathcal{M} , Then the ultraproduct functor is defined by : $\{M_t\}_{t\in T}\mapsto \varinjlim_{H\in U}\prod_{t\in U}M_t$.

We highlight some important ways of constructing ultracategories:

- Let \mathcal{M} be a category having both directed colimits and products, then it has an ultrastructure.
- We highlight this ultrastructure construction:Let T be a set and μ an ultrafilter on T, and $\{M_t\}_{t\in T}$ a family of objects of \mathcal{M} , Then the ultraproduct functor is defined by : $\{M_t\}_{t\in T}\mapsto \varinjlim_{H\in U}\prod_{t\in U}M_t$.
- Let \mathcal{M} be a full subcategory of some category of \mathcal{M}^+ such that \mathcal{M}^+ have both products and directed colimits and such that \mathcal{M} is closed under the previous construction,then \mathcal{M} has an ultrastructure given by $\{M_t\}_{t\in\mathcal{T}}\mapsto \varinjlim_{H\in\mathcal{U}}\prod_{t\in\mathcal{U}}M_t$.

We highlight some important ways of constructing ultracategories:

- Let \mathcal{M} be a category having both directed colimits and products, then it has an ultrastructure.
- We highlight this ultrastructure construction:Let T be a set and μ an ultrafilter on T, and $\{M_t\}_{t\in T}$ a family of objects of \mathcal{M} , Then the ultraproduct functor is defined by : $\{M_t\}_{t\in T}\mapsto \varinjlim_{H\in U}\prod_{t\in U}M_t$.
- Let \mathcal{M} be a full subcategory of some category of \mathcal{M}^+ such that \mathcal{M}^+ have both products and directed colimits and such that \mathcal{M} is closed under the previous construction,then \mathcal{M} has an ultrastructure given by $\{M_t\}_{t\in\mathcal{T}}\mapsto \varinjlim_{H\in\mathcal{U}}\prod_{t\in\mathcal{U}}M_t$.

The previous ultraproduct construction works for the category of k-bounded metric spaces with contractions(as morphisms).(here k is a non-negative real).

Theorem

let $(A_x)_{x\in X}$ be family of metric spaces all and let μ be an ultrafilter on X then the space $\prod_{x\in X}A_x/\sim$, (where \sim is the equivalence relation given by $(b_x)_{x\in X}\sim (c_x)_{x\in X}$ iff $\forall \epsilon>0$ $\exists U\in \mu$ such that $\sup_{x\in U}d(b_x,c_x)<\epsilon$) equipped with the distance $d((b_x),(c_x))=\inf_{U\in \mu}\sup_{x\in U}d_x(b_x,c_x)$ defines an ultraproduct functor on the category of k-bounded metric spaces for any $k\in [0,\infty)$.

The previous ultraproduct construction works for the category of k-bounded metric spaces with contractions(as morphisms).(here k is a non-negative real).

Theorem

let $(A_x)_{x\in X}$ be family of metric spaces all and let μ be an ultrafilter on X then the space $\prod_{x\in X}A_x/\sim$, (where \sim is the equivalence relation given by $(b_x)_{x\in X}\sim (c_x)_{x\in X}$ iff $\forall \epsilon>0$ $\exists U\in \mu$ such that $\sup_{x\in U}d(b_x,c_x)<\epsilon$) equipped with the distance $d((b_x),(c_x))=\inf_{U\in \mu}\sup_{x\in U}d_x(b_x,c_x)$ defines an ultraproduct functor on the category of k-bounded metric spaces for any $k\in [0,\infty)$.

Lemma

If every space of $\{A_x\}_{x\in X}$ is complete then $\prod_{x\in X}A_x/\sim$ is also and this construction is the categorical ultraproduct in the category of complete k-bounded metric spaces for any $k\in [0,\infty)$.

The previous ultraproduct construction works for the category of k-bounded metric spaces with contractions(as morphisms).(here k is a non-negative real).

Theorem

let $(A_x)_{x\in X}$ be family of metric spaces all and let μ be an ultrafilter on X then the space $\prod_{x\in X}A_x/\sim$, (where \sim is the equivalence relation given by $(b_x)_{x\in X}\sim (c_x)_{x\in X}$ iff $\forall \epsilon>0$ $\exists U\in \mu$ such that $\sup_{x\in U}d(b_x,c_x)<\epsilon$) equipped with the distance $d((b_x),(c_x))=\inf_{U\in \mu}\sup_{x\in U}d_x(b_x,c_x)$ defines an ultraproduct functor on the category of k-bounded metric spaces for any $k\in [0,\infty)$.

Lemma

If every space of $\{A_x\}_{x\in X}$ is complete then $\prod_{x\in X}A_x/\sim$ is also and this construction is the categorical ultraproduct in the category of complete k-bounded metric spaces for any $k\in [0,\infty)$.

Note

This construction is usually denoted in the literature by ultralimit when the indexing family is \mathbb{N} (it is usually done for families of pointed metric spaces and with respect to a non-principal ultrafilter), and in that case the resulting space would be complete for any family of pointed metric spaces.

Another example of ultracategories

- Another important ultracategory construction is an ultracategory with no non-identity morphism, following Lurie we call these ultrasets.
- Theorem: There is a bijection between ultrastructures on a small category with no non-identity morphisms and compact Hausdorff topology on the underlying set of such category.

Functors between ultracategories

- ► The first idea of a functor between ultracategories is that of a ultraproduct respecting functor, well behaving with respect to the compatibility conditions imposed in the definition of an ultracategory.
- Such functor is called an ultrafunctor.

Functors between ultracategories

- ► The first idea of a functor between ultracategories is that of a ultraproduct respecting functor, well behaving with respect to the compatibility conditions imposed in the definition of an ultracategory.
- Such functor is called an ultrafunctor.
- Unfortunately such concept is too restrictive thus we look for a weakening.

Leftultrafunctors

- ► The important notion of morphism between ulracategories that we are going to deal with is that of Leftultrafunctor.
- let \mathcal{M} and \mathcal{N} be ultracategories ,we call a leftultrafunctor F from \mathcal{M} to \mathcal{N} a functor equipped with a leftultrastructure.

Leftultrafunctors

- ► The important notion of morphism between ulracategories that we are going to deal with is that of Leftultrafunctor.
- let \mathcal{M} and \mathcal{N} be ultracategories ,we call a leftultrafunctor F from \mathcal{M} to \mathcal{N} a functor equipped with a leftultrastructure.
- a left-ultrastructure consists of the following data:
- for every collection of objects of \mathcal{M} $\{M_s\}_{s\in S}$ and every ultrafilter μ on S a map $\sigma_{\mu}: F(\int_S M_s d\mu) \to \int_S F(M_s) d\mu$.

Leftultrafunctors(contd)

- These maps are required to satisfy certain axioms :
 - 1. The assignment σ_{μ} is natural in $\{M_s\}$
 - 2. for every collection of objects of \mathcal{M} $\{M_s\}_{s \in S}$, and every principal ultrafilter δ_{s_0} the following diagram commutes:

3. For every collection $\{M_t\}_{t\in T}$ of objects of \mathcal{M} indexed by a set T ,and for every collection $\alpha_{\bullet}=\{\alpha_s\}_{s\in S}$ of ultrafilters on T indexed by a set S, and every ultrafilter μ on S, the following diagram commutes :

$$F(\int_{T} M_{t}d(\int_{S} d\alpha_{s})d\mu) \int_{T} M_{t}d(\int_{S} d(\alpha_{s})d\mu) \xrightarrow{\sigma_{\int_{S} \alpha_{s}d\mu}} \int_{T} F(M_{t})d(\int_{S} \alpha_{s}d\mu)$$

$$\downarrow^{F(\Delta_{\mu,\alpha_{\bullet}})} \qquad \qquad \downarrow^{\Delta_{\mu,\alpha_{\bullet}}}$$

$$F(\int_{S}(\int_{T} M_{t}d\alpha_{s})d\mu) \xrightarrow{\sigma_{\mu}} \int_{S} F(\int_{T} M_{t}d(\alpha_{s}))d\mu \xrightarrow{\int_{S} \sigma_{\alpha_{s}}d\mu} \int_{S} \int_{T} F(M_{t}d(\alpha_{s}))d\mu$$

Left-ultrafunctors(contd)

Suppose F and G are two left ultrafunctors a natural transformation $u: F \to G$ is called a natural transformation of left ultrafunctors if for every family of objects $\{M_s\}_{s \in S}$ and every ultrafilter μ on S the following diagram commutes:

$$F(\int_{S} M_{s} d\mu) \xrightarrow{\sigma_{\mu}} \int_{S} F(M_{s}) d\mu$$

$$\downarrow u_{\int_{S} M_{s} d\mu} \qquad \qquad \downarrow \int_{S} u_{M_{s}} d\mu$$

$$G(\int_{S} M_{s} d\mu) \xrightarrow{\sigma_{\mu}} \int_{S} G(M_{s}) d\mu$$

Equivalence of left-ultrafunctors and sheaves of sets

The following result indicates that left-ultrafunctors provides information necessary to reconstruct a sheaf of sets from it stalks.

Theorem (Lurie)

Let X be an ultraset, then there exists an equivalence between left-ultrafunctors from X to Set and sheaves of sets on the compact Hausdorff topology of X.

Thus we have three description of sheaves of sets over X

Sheaves of sets	Etale Bundles	Left ultrafunctors
functor from the	Stalks+extra	Stalks + extra in-
category of open	informa-	formation(coming
sets	tion(topology	from the left-
	of the bundle)	ultrastructure)

Bundle of Banach spaces

Definition (Hofmann)

A pre-bundle of Banach spaces is a triple (E, X, π) where π is a function form E to X such that for any $x \in X$ $\pi^{-1}(x)$ is a Banach space, that satisfies the following axioms:

- ▶ The set E carries a topology such that :
 - 1. The subspace topology on each fiber agrees with its Banach space topology.
 - 2. Addition $E \times_X E \to E$ is continuous
 - 3. Scalar multiplication $\mathbb{K} \times E \to E$ is continuous
 - 4. The norm $|| || : E \to [0, \infty)$ is upper semi-continuous
- ▶ The set X carries a topology such that :
 - 1. the map $\pi: E \to X$ is open and continuous
 - 2. the 0 selection is continuous
- For every $b \in X$ the set $\{\coprod_{x \in U} B(0,r) \ U$ nhood of b and $r > 0\}$ is a filter basis for nhood filter of 0_b .

Bundles of Banach spaces(contd)

Definition

We say that a pre-bundle (E, X, π) is a full bundle if for every $f \in E$ there exists a global section s such that $s(\pi(f)) = f$

Theorem (Douady, Dal Soglio-Hérault)

If X is compact Hausdorff then every pre-bundle is a full bundle.

Bundles of complete metric spaces

We wanted to find an adequate extension of the notion of Bundle of Banach spaces to complete metric spaces all bounded by a certain constant k so we have the following definition:

Definition (H.)

Let k be a positive real, A triple (E,X,π) with $\pi:E\to X$ a surjection such that for every $x\in X$ $\pi^{-1}(x)$ is a complete metric space bounded by k, is said to define a bundle of k bounded metric spaces if it satisfies the following conditions:

- 1. The topology of *E* is such that the distance function is upper semi-continuous and the subspace topology agrees with the metric space topology for each fiber.
- 2. π is continuous and open.
- 3. for every open set W and every $f \in W$ there exist an open nhood V of f and $\epsilon > 0$ such that $V \subseteq_{\epsilon} W$.

Here $V \subseteq_{\epsilon} W$ means that $V \subseteq V_{\epsilon} \subseteq W$ where $V_{\epsilon} = \{x \in E \ \exists y \in V \ \pi(x) = \pi(y) \ \text{and} \ d_{\pi(x)}(x,y) < \epsilon\}$ is an open set.

Bundles of complete metric spaces(contd)

Definition

If (E, X, π) and (E', X, π') are two bundles with base space X we define a map of bundles σ to be a continuous map from E to E'

such that the following diagram commutes:

and such that for each $x \in X$ the map $\psi|_{\pi^{-1}(x)}$ is a contraction .

Main theorem

Let k-CompMet denote the category of complete metric spaces bounded by a certain k

Theorem (H.)

Let X be an ultraset, there exists an equivalence of categories between the category of left-ultrafunctors from X to k-CompMet,and the category of bundles of complete metric spaces bounded by k with X as base space.

- In the next few slides we are going to give the construction of two functors ℒ and ℛ inverses(up to iso) that are going to realise the equivalence of these categories.
- from now on the compact Hausdorff space X is going to be fixed.

Main theorem

Let k-CompMet denote the category of complete metric spaces bounded by a certain k

Theorem (H.)

Let X be an ultraset, there exists an equivalence of categories between the category of left-ultrafunctors from X to k-CompMet,and the category of bundles of complete metric spaces bounded by k with X as base space.

- In the next few slides we are going to give the construction of two functors ℒ and ℛ inverses(up to iso) that are going to realise the equivalence of these categories.
- from now on the compact Hausdorff space X is going to be fixed.

The functor \mathcal{L}

We give a construction of the two functors $\mathcal L$ and $\mathcal R$ that should realise the equivalence of categories

- The functor L gives a bundle of complete metric spaces for each left ultrafunctor F from X to k-CompMet.
- ▶ As a set the bundle $\mathcal{L}(F)$ is just $\coprod_{x \in X} F(x)$

The functor \mathcal{L}

We give a construction of the two functors $\mathcal L$ and $\mathcal R$ that should realise the equivalence of categories

- The functor L gives a bundle of complete metric spaces for each left ultrafunctor F from X to k-CompMet.
- ▶ As a set the bundle $\mathcal{L}(F)$ is just $\coprod_{x \in X} F(x)$

Theorem

There exists a well defined topology on $\coprod_{x \in X} F(x)$ that makes into a bundle of complete metric spaces .

- This topology is defined in terms of convergence of ultrafilters: an ultrafilter μ on $\coprod_{x \in X} F(x)$ converges to f iff following conditions are satisfied:
 - 1. $\pi\mu$ converges to $\pi(f)$
 - 2. if $\sigma_{\pi\mu}(f) = (b_x)_{x \in X}$ then the following holds: $\forall \epsilon > 0$ $\coprod_{x \in X} B(b_x, \epsilon) \in \mu$
- So we define the functor $\mathcal{L}(F)$ by sending F to the space $\coprod_{x \in X} F(x)$ equipped with this topology.

The functor \mathcal{R}

Let (E, X, π) be a bundle of complete metric spaces, we want to construct leftultrafunctor from X (as an ultraset) to k-CompMet.

► Clearly $\mathcal{R}(E)$ as a functor needs to send x to $\pi^{-1}(x)$, but how do we get a left ultrastructure?

The functor \mathcal{R}

Let (E, X, π) be a bundle of complete metric spaces, we want to construct leftultrafunctor from X (as an ultraset) to k-CompMet.

- ► Clearly $\mathcal{R}(E)$ as a functor needs to send x to $\pi^{-1}(x)$, but how do we get a left ultrastructure?
- For every ultrafilter μ converging to some $y \in X$ we need to construct a map σ_{μ} from $\mathcal{R}(E)(y) = \pi^{-1}(y)$ to $\int_{X} \pi^{-1}(x) d\mu$

The functor \mathcal{R} (contd)

- In the case every f has a local section s that hits f, we can easily define σ_{μ} by taking the equivalence class of $(s(x))_{x \in U}$.
- if such local sections are not guaranteed to exist, the construction of σ_{μ} is more technical, and it involves the construction of certain convergent filter in the ultraproduct of the fibers.

The functor \mathcal{R} (contd)

Lemma

For any bundle E and any left ultrafunctor F $\operatorname{Hom}(\mathcal{L}(F),E)\simeq\operatorname{Hom}(F,\mathcal{R}(E))$ and this bijection is natural in F.

Lemma

This isomorphism induces a functor structure on $\mathcal R$ such that $\mathcal R$ and $\mathcal L$ are adjoints.

Back to main result

Theorem

Both the unit and counit of adjunction are isomorphisms.

We are going to use *Model theory of* C^* *algebras* Farah et al. (2021) as primary source for continuous model theory :

A language $\mathfrak L$ in continuous model theory consists of the following triplet $<\mathfrak S,\mathfrak F,\mathfrak R>$:

1. the sorts \mathfrak{S} consists of a set of sorts symbols such that each symbol comes equipped with a symbol $d_{\mathcal{S}}$ (should be interpreted as the distance function) and a constant $k_{\mathcal{S}}$ (actual constant not just a symbol) (which should be interpreted as an upper bound for the distance function).

We are going to use *Model theory of* C^* *algebras* Farah et al. (2021) as primary source for continuous model theory :

A language $\mathfrak L$ in continuous model theory consists of the following triplet $<\mathfrak S,\mathfrak F,\mathfrak R>$:

- 1. the sorts \mathfrak{S} consists of a set of sorts symbols such that each symbol comes equipped with a symbol d_S (should be interpreted as the distance function) and a constant k_S (actual constant not just a symbol) (which should be interpreted as an upper bound for the distance function).
- 2. the function symbols sets $\mathfrak F$ which consists on family of symbols,and for each symbol f we specify a formal domain $\mathrm{dom}(f)=(S_1,...,S_n)$ and a formal range $\mathrm{rng}(f)=S^{'}$ and a function δ_f which should be interpreted as the uniform continuity modulus of f.

We are going to use *Model theory of* C* *algebras* Farah et al. (2021) as primary source for continuous model theory:

A language $\mathfrak L$ in continuous model theory consists of the following triplet $<\mathfrak S,\mathfrak F,\mathfrak R>$:

- 1. the sorts \mathfrak{S} consists of a set of sorts symbols such that each symbol comes equipped with a symbol d_S (should be interpreted as the distance function) and a constant k_S (actual constant not just a symbol) (which should be interpreted as an upper bound for the distance function).
- 2. the function symbols sets \mathfrak{F} which consists on family of symbols,and for each symbol f we specify a formal domain $\mathrm{dom}(f)=(S_1,...,S_n)$ and a formal range $\mathrm{rng}(f)=S^{'}$ and a function δ_f which should be interpreted as the uniform continuity modulus of f.
- 3. the relation symbols set $\mathfrak R$ which consist of relation symbols,each equipped with a compact subset of $\mathbb R$ (which should be interpreted as the range of these relations) as well as a uniform continuity modulus δ_{ϕ} for every $\phi \in \mathfrak R$.

Note

In our work We are going to treat the distance symbol as a relation symbol(with additional requirements).

- ightharpoonup connectives are continuous functions from S^n to R where n is non-negative integer.
- Quantifiers are $\inf_{\vec{x} \in S}$ and $\sup_{\vec{x} \in S}$, here $\vec{x} = (x_{S_1}, ... x_{S_n})$ and $S = (S_1, ..., S_n)$.
- Terms and formulas are defined inductively (the same thing as in usual model theory).

- ightharpoonup connectives are continuous functions from S^n to R where n is non-negative integer.
- ▶ Quantifiers are $\inf_{\vec{x} \in S}$ and $\sup_{\vec{x} \in S}$, here $\vec{x} = (x_{S_1}, ... x_{S_n})$ and $S = (S_1, ..., S_n)$.
- ► Terms and formulas are defined inductively (the same thing as in usual model theory).
- ▶ A sentence is a formula with no free variables.
- ▶ given M and N \mathcal{L} -structures we define a morphism f of \mathcal{L} structures to be a set of functions $(f^S)_{S \in \mathfrak{S}}$ such that for any atomic formula ϕ with free variables $(x_{S_1}, ..., x_{S_n})$ and any $(a_1, ...a_n) \in M(S_1) \times ...M(S_n)$ we have $\phi^N(f^{S_1}(a_1), ..., f^{S_n}(a_n)) \leq \phi^M(a_1, ..., a_n)$.
- ▶ given T a theory (set of sentences) we say that an \mathcal{L} -structure M is a model of T and we denote that by $M \models T$ iff for every $\phi \in T$ $\phi^M = 0$.

- ightharpoonup connectives are continuous functions from S^n to R where n is non-negative integer.
- ▶ Quantifiers are $\inf_{\vec{x} \in S}$ and $\sup_{\vec{x} \in S}$, here $\vec{x} = (x_{S_1}, ... x_{S_n})$ and $S = (S_1, ..., S_n)$.
- ► Terms and formulas are defined inductively (the same thing as in usual model theory).
- ▶ A sentence is a formula with no free variables.
- ▶ given M and N \mathcal{L} -structures we define a morphism f of \mathcal{L} structures to be a set of functions $(f^S)_{S \in \mathfrak{S}}$ such that for any atomic formula ϕ with free variables $(x_{S_1}, ..., x_{S_n})$ and any $(a_1, ...a_n) \in M(S_1) \times ...M(S_n)$ we have $\phi^N(f^{S_1}(a_1), ..., f^{S_n}(a_n)) \leq \phi^M(a_1, ..., a_n)$.
- ▶ given T a theory (set of sentences) we say that an \mathcal{L} -structure M is a model of T and we denote that by $M \models T$ iff for every $\phi \in T$ $\phi^M = 0$.

➤ To axiomatise structures where the distance are not bounded like Banach space, we define a sort for each natural number n which is intended to be interpreted as the unit ball with radius n.

Bundle of structures

Suppose that $\mathcal L$ is a language, we define a bundle of structure of $\mathcal L$ with base space X as follows :

▶ For each sort $S \in \mathfrak{S}$ we define a require the existence of a bundle E^S of metric spaces bounded by k_S .

Bundle of structures

Suppose that $\mathcal L$ is a language, we define a bundle of structure of $\mathcal L$ with base space X as follows :

- ▶ For each sort $S \in \mathfrak{S}$ we define a require the existence of a bundle E^S of metric spaces bounded by k_S .
- ▶ For each relation symbol with formal domain $S_1 \times \cdots \times S_n$ we require the global relation defined from $E^{S_1} \times_X \cdots \times_X E^{S_n}$ to some compact subset of \mathbb{R} to be upper semi continuous.
- ▶ For each function symbol with formal domain $S_1 \times \cdots \times S_n$ and formal range S we require the global function defined from $E^{S_1} \times_X \cdots \times_X E^{S_n}$ to E^S to be continuous.

Theorem (H.)

There exists an equivalence of categories between the category of bundles of structures of some language $\mathcal L$ with bases a space a compact Hausdorff space X, and the category of left ultrafunctors from X to the category of $\mathcal L$ structures.

Bundle of models

Definition

Let $\mathcal L$ be a language, and let T be a set of sentences in that language, we simply define a category of bundles of T models over some X to be the full subcategory of $\mathcal L$ -structures for which every fiber is a T model.

Bundle of models

Definition

Let \mathcal{L} be a language, and let T be a set of sentences in that language, we simply define a category of bundles of T models over some X to be the full subcategory of \mathcal{L} -structures for which every fiber is a T model.

- ▶ We extend the k-CompMet equivalence of the category from £-structures to T-models by noticing that the category of left-ultrafunctors from X to the category of models is full subcategory of the category of left ultrafunctors to the category of structures.
- ▶ We can show by this equivalence that bundles of Banach spaces over a compact Hausdorff space *X* corresponds to left-ultrafunctors from *X* to the ultracategory of Banach spaces with contractions.
- ightharpoonup Also we can extend this equivalence to C^* algebras and Hilbert spaces.

Further results

▶ Informally speaking, if we axiomatise a theory without much caring about morphisms, then we usually get structure preserving contractions as morphisms.

Further results

- ▶ Informally speaking, if we axiomatise a theory without much caring about morphisms, then we usually get structure preserving contractions as morphisms.
- If we want to get isometries instead of contraction we should add a new relation symbol χ_S with formal domain $S \times S$ for each sort S and an additional set of axioms of form : $\sup_{(x,y)} |(\chi_S(x,y) k_S + d_S(x,y))|.$
- Bundles of such models are going to be bundles of the original theory with distance function being continuous instead of only being upper semi-continuous.