Data Modelling/Data Base Systems

VU 184.685/VU 184.686, WS 2020

Relational Design Theory – Normalforms

Anela Lolić

Institute of Logic and Computation, TU Wien

Acknowledgements

The slides are based on the slides (in German) of Sebastian Skritek.

The content is based on Chapter 6 of (Kemper, Eickler: Datenbanksysteme – Eine Einführung).

For related literature in English see Chapter 19 of (Ramakrishnan, Gehrke: Database Management Systems).

Overview

- Aims
- Functional Dependencies
 - Definitions
 - Canonical Cover
- Design Theory and Decomposition
 - "Bad" Relational Schemata
 - Decomposition of Relational Schemata
 - Criteria for a "meaningful" Decomposition
- Normalforms (1., 2., 3., Boyce-Codd)
 - Normalization through Synthesis Algorithm
 - Normalization through Decomposition

Design Theory and Decomposition

- "Bad" Relational Schemata
- Decomposition of Relational Schemata
- Criteria for a "meaningful" Decomposition
 - Lossless-Join Decomposition
 - Dependency-Preserving Decomposition

ProfLec						
persNr	name	rank	room	<u>lecNr</u>	title	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5295	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die drei Kritiken	4

Anela Lolić Seitz

ProfLec						
persNr	name	rank	room	<u>lecNr</u>	title	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5295	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die drei Kritiken	4

update anomaly: Sokrates moves

Anela Lolić Seite

ProfLec						
persNr	name	rank	room	<u>lecNr</u>	title	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5295	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die drei Kritiken	4

update anomaly: Sokrates moves deletion anomaly: ex. "Die 3 Kritiken" does not take place

Anela Lolić

ProfLec						
persNr	name	rank	room	<u>lecNr</u>	title	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5295	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die drei Kritiken	4

update anomaly: Sokrates moves

deletion anomaly: ex. "Die 3 Kritiken" does not take place

insertion anomaly: ex. Curie is new and does not give any lectures yet

(has no key?!)

Anela Lolić

anomalies are based on the fact, that data is stored that does not correspond to each other

- anomalies are based on the fact, that data is stored that does not correspond to each other
- intuitively:
 - all information to professors is stored in a relation,
 - all information to lectures is stored in a relation,
 - the information about the connection of the two relations is stored in a relation

- anomalies are based on the fact, that data is stored that does not correspond to each other
- intuitively:
 - all information to professors is stored in a relation,
 - all information to lectures is stored in a relation.
 - the information about the connection of the two relations is stored in a relation
- solution: decomposition of the schema into sub schemata

- anomalies are based on the fact, that data is stored that does not correspond to each other
- intuitively:
 - all information to professors is stored in a relation.
 - all information to lectures is stored in a relation.
 - the information about the connection of the two relations is stored in a relation
- solution: decomposition of the schema into sub schemata
- question: what is a "meaningful' decomposition?

Anela Lolić

Example

decomposition of

profLec(persNr, name, rank, room, lecNr, title, SWS)

in sub schemata

Example

decomposition of

profLec(persNr, name, rank, room, lecNr, title, SWS)

in sub schemata

1 attempt: decomposition in:

- prof(persNr, name, rank, room)
- lecture(lecNr, title, SWS)

Example

decomposition of

profLec(persNr, name, rank, room, lecNr, title, SWS)

in sub schemata

1 attempt: decomposition in:

- prof(persNr, name, rank, room)
- lecture(lecNr, title, SWS)

problem: Who is teaching which lecture?

cause: sub schemata cannot be correctly connected any more

Example

decomposition of

profLec(persNr, name, rank, room, lecNr, title, SWS)

in sub schemata

Example

decomposition of

profLec(persNr, name, rank, room, lecNr, title, SWS)

in sub schemata

2 attempt: decomposition in:

- prof(persNr, name, room, lecNr, title, SWS)
- title(name, rank)

Example

decomposition of

profLec(persNr, name, rank, room, lecNr, title, SWS)

in sub schemata

2 attempt: decomposition in:

- prof(persNr, name, room, lecNr, title, SWS)
- title(name, rank)

problem: rank of professors with the same names

cause: the FD $\{persNr\} \rightarrow \{rank\}$ is lost

■ a decomposition of a relational schema \mathcal{R} is a set of schemata $\mathcal{R}_1, \ldots, \mathcal{R}_n$ such that:

$$att(\mathcal{R}_1) \cup \cdots \cup att(\mathcal{R}_n) = att(\mathcal{R})$$

■ a decomposition of a relational schema \mathcal{R} is a set of schemata $\mathcal{R}_1, \ldots, \mathcal{R}_n$ such that:

$$att(\mathcal{R}_1) \cup \cdots \cup att(\mathcal{R}_n) = att(\mathcal{R})$$

there are two soundness criteria for the decomposition of relational schemata:

Lossless-Join Decomposition (loss of information)

Dependency-Preserving Decomposition (loss of meta information)

Definition (Lossless-Join Decomposition - intuitively)

Information occurring in the state R of the schema \mathcal{R} has to be reconstructible from the states R_1, \ldots, R_n of the new schemata $\mathcal{R}_1, \ldots, \mathcal{R}_n$.

Definition (Lossless-Join Decomposition - intuitively)

Information occurring in the state R of the schema \mathcal{R} has to be reconstructible from the states R_1, \ldots, R_n of the new schemata $\mathcal{R}_1, \ldots, \mathcal{R}_n$.

Definition (Dependency-Preserving Decomposition - intuitively)

functional dependencies on \mathcal{R} have to be transformable to the schemata $\mathcal{R}_1, \dots, \mathcal{R}_n$.

Definition (Lossless-Join Decomposition)

Given a relation schema $(\mathcal{R}, \mathcal{F}_{\mathcal{R}})$.

A decomposition $\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_n$ of \mathcal{R} is said to be a lossless-join decomposition, if for every instance R of \mathcal{R} that satisfies $F_{\mathcal{R}}$ it holds that:

$$R = \pi_{\mathcal{R}_1}(R) \bowtie \pi_{\mathcal{R}_2}(R) \bowtie \cdots \bowtie \pi_{\mathcal{R}_n}(R)$$

Definition (Lossless-Join Decomposition)

Given a relation schema $(\mathcal{R}, \mathcal{F}_{\mathcal{R}})$.

A decomposition $\mathcal{R}_1, \mathcal{R}_2, \dots, \mathcal{R}_n$ of \mathcal{R} is said to be a lossless-join decomposition, if for every instance R of \mathcal{R} that satisfies $F_{\mathcal{R}}$ it holds that:

$$R = \pi_{\mathcal{R}_1}(R) \bowtie \pi_{\mathcal{R}_2}(R) \bowtie \cdots \bowtie \pi_{\mathcal{R}_n}(R)$$

Theorem (sufficient condition for lossless-join decomposition)

A decomposition of \mathcal{R} in \mathcal{R}_1 and \mathcal{R}_2 is said to be a lossless-join decomposition, if the join attributes are (super-) keys in one of the sub relations.

Example (lossless-join decomposition 1)

decomposition of profLec(persNr, name, rank, <u>lecNr</u>, title, SWS) in several sub schemata:

profLec					
persNr	name	rank	<u>lecNr</u>	title	SWS
2125	Sokrates	C4	5041	Ethik	4
2125	Sokrates	C4	5049	Mäeutik	2
2125	Sokrates	C4	4052	Logik	4
2132	Popper	C3	5295	Der Wiener Kreis	2
2137	Kant	C4	4630	Die drei Kritiken	4

Example (lossless-join decomposition 1)

first attempt:

professors				
persNr	name	rank		
2125	Sokrates	C4		
2132	Popper	C3		
2137	Kant	C4		

lectures				
<u>lecNr</u>	title	SWS		
5041	Ethik	4		
5049	Mäeutik	2		
4052	Logik	4		
5295	Der Wiener Kreis	2		
4630	Die drei Kritiken	4		

question: $profLec = professors \bowtie lectures ?$

Example (lossless-join decomposition 1)

first attempt:

professors				
persNr	name	rank		
2125	Sokrates	C4		
2132	Popper	C3		
2137	Kant	C4		

	lectures				
<u>lecNr</u>	title	SWS			
5041	Ethik	4			
5049	Mäeutik	2			
4052	Logik	4			
5295	Der Wiener Kreis	2			
4630	Die drei Kritiken	4			

question: $profLec = professors \bowtie lectures ?$

no: the combination via join degenerates to cross product due to the lack of join attributes.

Anela Lolić

Example (lossless-join decomposition 1)

second attempt:

	professors				
persNr	name	rank			
2125	Sokrates	C4			
2132	Popper	C3			
2137	Kant	C4			

	lectures					
<u>lecNr</u>	title	SWS	persNr			
5041	Ethik	4	2125			
5049	Mäeutik	2	2125			
4052	Logik	4	2125			
5295	Der Wiener Kreis	2	2132			
4630	Die drei Kritiken	4	2137			

question: $profLec = professors \bowtie lectures ?$

Example (lossless-join decomposition 1)

second attempt:

	professors				
persNr	name	rank			
2125	Sokrates	C4			
2132	Popper	C3			
2137	Kant	C4			

lectures			
<u>lecNr</u>	title	SWS	persNr
5041	Ethik	4	2125
5049	Mäeutik	2	2125
4052	Logik	4	2125
5295	Der Wiener Kreis	2	2132
4630	Die drei Kritiken	4	2137

question: profLec = professors ⋈ lectures ?

yes: the join attribute persNr is key in professors \Rightarrow sufficient condition is satisfied

⇒ lossless-join decomposition

FANOLITÄT FÜR IMPERMATE Faculty of Informati

Seite 14

Example (lossless-join decomposition 2)

decompose relation parents(father, mother, <u>child</u>) in two sub relations:

 \mathcal{R}_1 fathers(father, child)

R₂ mothers(mother, child)

question: lossless-join decomposition?

Example (lossless-join decomposition 2)

decompose relation parents(father, mother, child) in two sub relations:

 \mathcal{R}_1 fathers(father, child)

 \mathcal{R}_2 mothers(mother, child)

question: lossless-join decomposition?

yes: the join attribute of fathers and mothers is child

⇒ lossless-join decomposition guaranteed

Example (lossless-join decomposition 2)

decompose relation parents(father, mother, <u>child</u>) in two sub relations:

 \mathcal{R}_1 fathers(father, child)

 \mathcal{R}_2 mothers(mother, child)

question: lossless-join decomposition?

yes: the join attribute of fathers and mothers is child ⇒ lossless-join decomposition guaranteed

remark: the decomposition of parents is a lossless-join

decomposition but also not really needed, as the relation is

in a very good state (normalform)

Decomposition of Relational Schemata – Dependency-Preserving Decomposition

■ let F be a set of FDs over \mathcal{R} , and $\mathcal{R}' \subseteq \mathcal{R}$:

$$F[\mathcal{R}'] = \{ \alpha \to \beta \in F \mid \alpha \cup \beta \subseteq \mathcal{R}' \}$$

Decomposition of Relational Schemata – Dependency-Preserving Decomposition

■ let F be a set of FDs over \mathcal{R} , and $\mathcal{R}' \subseteq \mathcal{R}$:

$$F[\mathcal{R}'] = \{\alpha \to \beta \in F \mid \alpha \cup \beta \subseteq \mathcal{R}'\}$$

Definition (dependency-preserving decomposition)

Given a relation schema (\mathcal{R}, F) .

A decomposition $\mathcal{R}_1, \dots, \mathcal{R}_n$ of \mathcal{R} is said to be a dependency-preserving decomposition, if

$$F \equiv (F^+[\mathcal{R}_1] \cup \cdots \cup F^+[\mathcal{R}_n])$$
 i.e. $F^+ = (F^+[\mathcal{R}_1] \cup \cdots \cup F^+[\mathcal{R}_n])^+$

Decomposition of Relational Schemata – Dependency-Preserving Decomposition

■ let F be a set of FDs over \mathcal{R} , and $\mathcal{R}' \subseteq \mathcal{R}$:

$$F[\mathcal{R}'] = \{ \alpha \to \beta \in F \mid \alpha \cup \beta \subseteq \mathcal{R}' \}$$

Definition (dependency-preserving decomposition)

Given a relation schema (\mathcal{R}, F) .

A decomposition $\mathcal{R}_1,\dots,\mathcal{R}_n$ of \mathcal{R} is said to be a dependency-preserving decomposition, if

$$F \equiv (F^+[\mathcal{R}_1] \cup \cdots \cup F^+[\mathcal{R}_n])$$
 i.e. $F^+ = (F^+[\mathcal{R}_1] \cup \cdots \cup F^+[\mathcal{R}_n])^+$

alternatively: dependency-preserving decomposition if there is a set G of FDs, such that $G \equiv F$ and $F \equiv (G[\mathcal{R}_1] \cup \cdots \cup G[\mathcal{R}_n])$

Anela Lolić

Decomposition of Relational Schemata – Dependency-Preserving Decomposition

Example (no dependency-preserving decomposition)

Given a relation schema address(street, town, state, zipcode) and the following assumptions:

- towns are identified uniquely by name and state
- \blacksquare zipAreas remain within towns \Rightarrow $\{zipcode\} \rightarrow \{town, state\}$
- zipcode does not change within a street ⇒ $\{\text{street, town, state}\} \rightarrow \{\text{zipcode}\}.$

Example (no dependency-preserving decomposition)

Given a relation schema address(street, town, state, zipcode) and the following assumptions:

- towns are identified uniquely by name and state
- \blacksquare zipAreas remain within towns \Rightarrow $\{zipcode\} \rightarrow \{town, state\}$
- zipcode does not change within a street ⇒ $\{\text{street, town, state}\} \rightarrow \{\text{zipcode}\}.$

decomposition in:

 \mathcal{R}_1 streets(zipcode, street)

 \mathcal{R}_2 towns(zipcode, town, state) with FD {zipcode} \rightarrow {town, state}

Example (no dependency-preserving decomposition)

Given a relation schema address(street, town, state, zipcode) and the following assumptions:

- towns are identified uniquely by name and state
- zipAreas remain within towns \Rightarrow {zipcode} \rightarrow {town, state}
- zipcode does not change within a street \Rightarrow {street, town, state} \rightarrow {zipcode}.

decomposition in:

```
\mathcal{R}_1 streets(zipcode, street)
```

 $\mathcal{R}_2 \ \, \mathsf{towns}(\mathsf{zipcode}, \, \mathsf{town}, \, \mathsf{state}) \, \, \mathsf{with} \, \, \mathsf{FD} \, \, \{\mathsf{zipcode}\} \, \rightarrow \, \{\mathsf{town}, \, \mathsf{state}\}$

BUT: {street, town, state} \rightarrow {zipcode} is lost

(lossless-join decomposition, as zipcode is key in towns)

Caira 17

Example (no dependency-preserving decomposition)

address					
town state street zipcode					
Frankfurt	Hessen	Goethestraße	60313		
Frankfurt	Hessen	Schillerstraße	60437		
Frankfurt	Brandenburg	Goethestraße	15234		

Example (no dependency-preserving decomposition)

address					
town state street zipcod					
Frankfurt	Hessen	Goethestraße	60313		
Frankfurt	Hessen	Schillerstraße	60437		
Frankfurt	Brandenburg	Goethestraße	15234		

streets					
zipcode	<u>street</u>				
60313	Goethestraße				
60437	Schillerstraße				
15234	Goethestraße				
15235	Goethestraße				

towns					
town	state	zipcode			
Frankfurt	Hessen	60313			
Frankfurt	Hessen	60437			
Frankfurt	Brandenburg	15234			
Frankfurt	Brandenburg	15235			


```
Example (F^+[\mathcal{R}_i]?)
```

Given a relation schema (\mathcal{R}, F) with

```
\mathcal{R} = \text{ancestors}(\text{child}, \text{mother}, \text{grandmother}) and
```

$$F = \{\{\text{child}\} \rightarrow \{\text{mother}\}, \{\text{child}, \text{mother}\} \rightarrow \{\text{grandmother}\}\}$$

Seite 19

```
Example (F^+[\mathcal{R}_i]?)
```

Given a relation schema (\mathcal{R}, F) with

 \mathcal{R} = ancestors(child, mother, grandmother) and

 $F = \{\{\text{child}\} \rightarrow \{\text{mother}\}, \{\text{child}, \text{mother}\} \rightarrow \{\text{grandmother}\}\}$

decomposition in

 \mathcal{R}_1 mothers(child, mother),

 \mathcal{R}_2 grandmothers(child, grandmother),


```
Example (F^+[\mathcal{R}_i]?)
```

Given a relation schema (\mathcal{R}, F) with

 $\mathcal{R} = \text{ancestors}(\text{child}, \text{mother}, \text{grandmother})$ and

 $F = \{\{\text{child}\} \rightarrow \{\text{mother}\}, \{\text{child}, \text{mother}\} \rightarrow \{\text{grandmother}\}\}$

decomposition in

 \mathcal{R}_1 mothers(child, mother), $F[\mathcal{R}_1] = \{\{\text{child}\} \rightarrow \{\text{mother}\}\}$

 \mathcal{R}_2 grandmothers(child, grandmother), $F[\mathcal{R}_2] = \emptyset$

Anela Lolić

Example ($F^+[\mathcal{R}_i]$?)

Given a relation schema (\mathcal{R}, F) with

 \mathcal{R} = ancestors(child, mother, grandmother) and

$$F =$$

 $\{\{\mathsf{child}\} \to \{\mathsf{mother}\}, \{\mathsf{child}, \ \mathsf{mother}\} \to \{\mathsf{grandmother}\}\}$

decomposition in

 \mathcal{R}_1 mothers(child, mother), $F[\mathcal{R}_1] = \{\{\text{child}\} \rightarrow \{\text{mother}\}\}$

 \mathcal{R}_2 grandmothers(child, grandmother), $F[\mathcal{R}_2] = \emptyset$

$$(F[\mathcal{R}_1] \cup F[\mathcal{R}_2])^+ = \{\{\mathsf{child}\} \rightarrow \{\mathsf{mother}\}, \dots\} \neq F^+$$

· (D) (E) (E) (9)

Example ($F^+[\mathcal{R}_i]$?)

Given a relation schema (\mathcal{R}, F) with

 $\mathcal{R} = \text{ancestors(child, mother, grandmother)}$ and

$$F = \{\{child\}\}$$

 $\{\{\mathsf{child}\} \to \{\mathsf{mother}\}, \{\mathsf{child}, \ \mathsf{mother}\} \to \{\mathsf{grandmother}\}\}$

decomposition in

$$\mathcal{R}_1$$
 mothers(child, mother), $F[\mathcal{R}_1] = \{\{\text{child}\} \rightarrow \{\text{mother}\}\}\$
 $F^+[\mathcal{R}_1] = \{\{\text{child}\} \rightarrow \{\text{mother}\}, \dots\}$

$$\mathcal{R}_2$$
 grandmothers(child, grandmother), $F[\mathcal{R}_2] = \emptyset$

$$(F[\mathcal{R}_1] \cup F[\mathcal{R}_2])^+ = \{\{\mathsf{child}\} \rightarrow \{\mathsf{mother}\}, \dots\} \neq F^+$$


```
Example (F^+[\mathcal{R}_i]?)
Given a relation schema (\mathcal{R}, F) with
                    \mathcal{R} = \text{ancestors}(\text{child}, \text{mother}, \text{grandmother}) and
                    F =
                         \{\{\text{child}\} \rightarrow \{\text{mother}\}, \{\text{child}, \text{mother}\} \rightarrow \{\text{grandmother}\}\}
decomposition in
\mathcal{R}_1 mothers(child, mother), F[\mathcal{R}_1] = \{\{\text{child}\} \rightarrow \{\text{mother}\}\}
        F^+[\mathcal{R}_1] = \{\{\text{child}\} \rightarrow \{\text{mother}\}, \dots\}
\mathcal{R}_2 grandmothers(child, grandmother), F[\mathcal{R}_2] = \emptyset
        F^+[\mathcal{R}_2] = \{\{\text{child}\} \rightarrow \{\text{grandmother}\}, \dots\}
(F[\mathcal{R}_1] \cup F[\mathcal{R}_2])^+ = \{\{\mathsf{child}\} \rightarrow \{\mathsf{mother}\}, \dots\} \neq F^+
```


10/10//2/12/

```
Example (F^+[\mathcal{R}_i]?)
Given a relation schema (\mathcal{R}, F) with
                                                                                    \mathcal{R} = \text{ancestors}(\text{child}, \text{mother}, \text{grandmother}) and
                                                                                       F =
                                                                                                            \{\{\text{child}\} \rightarrow \{\text{mother}\}, \{\text{child}, \, \text{mother}\} \rightarrow \{\text{grandmother}\}\}
decomposition in
   \mathcal{R}_1 mothers(child, mother), F[\mathcal{R}_1] = \{\{\text{child}\} \rightarrow \{\text{mother}\}\}
                                   F^+[\mathcal{R}_1] = \{\{\text{child}\} \rightarrow \{\text{mother}\}, \dots\}
   \mathcal{R}_2 grandmothers(child, grandmother), F[\mathcal{R}_2] = \emptyset
                                   F^+[\mathcal{R}_2] = \{\{\text{child}\} \rightarrow \{\text{grandmother}\}, \dots\}
(F[\mathcal{R}_1] \cup F[\mathcal{R}_2])^+ = \{\{\mathsf{child}\} \rightarrow \{\mathsf{mother}\}, \dots\} \neq F^+
(F^+[\mathcal{R}_1] \cup F^+[\mathcal{R}_2])^+ = \{\{\text{child}\} \rightarrow \{\text{mother}\}, \{\text{child}\} \rightarrow \{\text{mother}\}, \{\text{child}\}, \{\text{child}\} \rightarrow \{\text{mother}\}, \{\text{child}\}, \{\text{
 \{grandmother\}, \{child, mother\} \rightarrow \{grandmother\}, \dots\} = F^+
```


Anela Lolić

Normalforms

- 1. Normalform
 - NF² Relations
- 2. Normalform
- 3. Normalform
 - Decomposition in 3NF
 - Synthesis Algorithm
- Boyce-Codd Normalform
 - Decomposition in BCNF
 - Decomposition Algorithm

Definition (1. normalform)

A relation schema \mathcal{R} is in 1. normalform, if the domains of \mathcal{R} are atomic.

Definition (1. normalform)

A relation schema \mathcal{R} is in 1. normalform, if the domains of \mathcal{R} are atomic.

parents				
father	mother	children		
Johann	Martha	{Else, Lucie}		
Heinz	Martha	$\{Cleo\}$		

not in 1NF

parents					
father mother child					
Johann	Martha	Else			
Johann	Martha	Lucie			
Heinz	Martha	Cleo			

in 1NF

NF² Relations

- non-first normalform relations
- attribute of a relation can be a relation itself
- contained in SQL2003 standard

NF² Relations

- non-first normalform relations
- attribute of a relation can be a relation itself
- contained in SQL2003 standard

parents					
father	mother	children			
		cName cAge			
Johann	Martha	Else	5		
		Lucie 3			
Johann	Maria	Theo 3			
		Josef	1		
Heinz	Martha	Cleo	9		

- lacktriangleright intuitively: relation schema $\mathcal R$ violates the 2. normalform, if information about more than one concept is modelled in the relation
- only of historical interest, as anomalies are still possible

Definition (3. normalform)

A relation schema \mathcal{R} is in third normalform, if for every on \mathcal{R} holding FD of the form $\alpha \to B$ with $\alpha \subseteq \mathcal{R}$ and $B \in \mathcal{R}$ at least one of the following three conditions hold:

- **1** $B \in \alpha$, i.e., the FD is trivial
- $\mathbf{2}$ α is super key of \mathcal{R}
- f 3 the attribute B is contained in one of the keys of $\cal R$

3. Normalform – "Alternative" Definition

original definition of Codd (1971):

A relation schema is in 3NF if it is in 2NF and if no non-key attribute transitively depends on a key.

3. Normalform - "Alternative" Definition

original definition of Codd (1971):

A relation schema is in 3NF if it is in 2NF and if no non-key attribute transitively depends on a key.

i.e. the following conditions have to be satisfied:

- 2NF
- there are no attribute sets α (keys), β (non-keys) and attribute A (not contained in a key), such that
 - $\alpha \rightarrow \beta$ and $\beta \rightarrow A$ holds and
 - $\beta \not\rightarrow \alpha$, $A \notin \alpha$, $A \notin \beta$

3. Normalform - "Alternative" Definition

original definition of Codd (1971):

A relation schema is in 3NF if it is in 2NF and if no non-key attribute transitively depends on a key.

i.e. the following conditions have to be satisfied:

- 2NF
- there are no attribute sets α (keys), β (non-keys) and attribute A (not contained in a key), such that
 - $\alpha \to \beta$ and $\beta \to A$ holds and
 - $\beta \not\rightarrow \alpha$, $A \notin \alpha$, $A \notin \beta$

"Every non-key attribute must provide a fact about the key, the whole key, and nothing but the key. (So help me Codd)"

Example

```
 \begin{array}{ll} \mathsf{profLec}(\mathsf{persNr},\,\mathsf{name},\,\mathsf{rank},\,\mathsf{room},\,\mathsf{lecNr},\,\mathsf{title},\,\mathsf{SWS}) \\ F_d = \{\mathsf{persNr} \to \mathsf{name}\,\,\mathsf{rank}\,\,\mathsf{room},\,\,\\ \mathsf{lecNr} \to \mathsf{persNr}\,\,\mathsf{name}\,\,\mathsf{rank}\,\,\mathsf{room}\,\,\mathsf{lecNr}\,\,\mathsf{title}\,\,\mathsf{SWS}\} \end{array}
```

profLec						
persNr	name	rank	room	<u>lecNr</u>	title	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5295	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die drei Kritiken	4

not in 3. normalform

Example (check for 3NF 1)

$$\mathcal{R} = (ABCDEF),$$
 $F = \{C \rightarrow BDAE\} = \{C \rightarrow B, C \rightarrow D, C \rightarrow A, C \rightarrow E\}.$

Example (check for 3NF 1)

$$\mathcal{R} = (ABCDEF),$$
 $F = \{C \to BDAE\} = \{C \to B, C \to D, C \to A, C \to E\}.$
the only key of \mathcal{R} is: CF

Example (check for 3NF 1)

$$\mathcal{R} = (ABCDEF),$$

 $F = \{C \to BDAE\} = \{C \to B, C \to D, C \to A, C \to E\}.$

the only key of \mathcal{R} is: CF

 (\mathcal{R}, F) in 3NF, if for every FD one of the NF-conditions holds:

I Is the FD trivial? No, condition 1 does not hold for any FDs.

Example (check for 3NF 1)

$$\mathcal{R} = (ABCDEF),$$

$$F = \{C \to BDAE\} = \{C \to B, C \to D, C \to A, C \to E\}.$$

the only key of \mathcal{R} is: CF

 (\mathcal{R}, F) in 3NF, if for every FD one of the NF-conditions holds:

- I Is the FD trivial? No, condition 1 does not hold for any FDs.
- 2 Is the attribute set on the left side of the FD a super key of \mathcal{R} ? No, condition 2 does not hold for any FDs.

Example (check for 3NF 1)

$$\mathcal{R} = (ABCDEF),$$

$$F = \{C \to BDAE\} = \{C \to B, C \to D, C \to A, C \to E\}.$$

the only key of \mathcal{R} is: CF

 (\mathcal{R}, F) in 3NF, if for every FD one of the NF-conditions holds:

- I Is the FD trivial? No, condition 1 does not hold for any FDs.
- 2 Is the attribute set on the left side of the FD a super key of \mathcal{R} ? No, condition 2 does not hold for any FDs.
- Is the attribute on the right side of the FD contained in a key of \mathcal{R} ? No, condition 3 does not hold for any FDs.

Example (check for 3NF 1)

$$\mathcal{R} = (ABCDEF),$$

 $F = \{C \to BDAE\} = \{C \to B, C \to D, C \to A, C \to E\}.$

the only key of \mathcal{R} is: CF

 (\mathcal{R}, F) in 3NF, if for every FD one of the NF-conditions holds:

- I Is the FD trivial? No, condition 1 does not hold for any FDs.
- 2 Is the attribute set on the left side of the FD a super key of \mathcal{R} ? No, condition 2 does not hold for any FDs.
- Is the attribute on the right side of the FD contained in a key of \mathcal{R} ? No, condition 3 does not hold for any FDs.

at least one FD violates the 3NF $\Rightarrow \mathcal{R}$ not in 3NF.

4 D > 4 D > 4 E > 4 E > ...

Example (check for 3NF 2)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

Example (check for 3NF 2)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$
the keys of \mathcal{R} are: C, E, F, D

Example (check for 3NF 2)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

the keys of \mathcal{R} are: C, E, F, D

I Is the FD trivial? No, condition 1 does not hold for any FDs.

Example (check for 3NF 2)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

the keys of \mathcal{R} are: C, E, F, D

- Is the FD trivial? No, condition 1 does not hold for any FDs.
- 2 Is the attribute set on the left side of the FD a super key of \mathcal{R} ? OK for $C \to B$, $C \to D$, $D \to A$, $D \to E$, $E \to C$, $E \to F$, $F \to E$.

Example (check for 3NF 2)

the keys of \mathcal{R} are: C, E, F, D

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

- Is the FD trivial? No, condition 1 does not hold for any FDs.
- 2 Is the attribute set on the left side of the FD a super key of \mathcal{R} ? OK for $C \to B$, $C \to D$, $D \to A$, $D \to E$, $E \to C$, $E \to F$, $F \to E$.
- Is the attribute on the right side of the FD contained in one of the keys of \mathcal{R} ? No for $C \to B, D \to A$ but OK for $C \to D, D \to E, E \to CF, F \to E$.

Example (check for 3NF 2)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

the keys of \mathcal{R} are: C, E, F, D

- I Is the FD trivial? No, condition 1 does not hold for any FDs.
- Is the attribute set on the left side of the FD a super key of \mathcal{R} ? OK for $C \to B$, $C \to D$, $D \to A$, $D \to E$, $E \to C$, $E \to F$, $F \to E$.
- Is the attribute on the right side of the FD contained in one of the keys of \mathcal{R} ? No for $C \to B, D \to A$ but OK for $C \to D, D \to E, E \to CF, F \to E$.

no FD violates the 3NF \Rightarrow in 3NF (In this case this is clear after step 2.)

101101112121

Example

```
profLec(persNr, name, rank, room, lecNr, title, SWS) F_d = \{ persNr \rightarrow name \ rank \ room, \ lecNr \rightarrow persNr \ name \ rank \ room \ lecNr \ title \ SWS \}
```

profLec						
persNr	name	rank	room	<u>lecNr</u>	title	SWS
2125	Sokrates	C4	226	5041	Ethik	4
2125	Sokrates	C4	226	5049	Mäeutik	2
2125	Sokrates	C4	226	4052	Logik	4
2132	Popper	C3	52	5295	Der Wiener Kreis	2
2137	Kant	C4	7	4630	Die drei Kritiken	4

not in 3. normalform

Decomposition in 3NF

Theorem

A relation schema $\mathcal{R} = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$ is in third normalform, if all \mathcal{R}_i are in third normalform.

Decomposition in 3NF

Theorem

A relation schema $\mathcal{R} = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$ is in third normalform, if all \mathcal{R}_i are in third normalform.

- **given** a relation schema \mathcal{R} with FDs F.
- find: decomposition in sub schemata $\mathcal{R}_1 \dots \mathcal{R}_n$, such that:
 - lossless-join decomposition in $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - dependency-preserving decomposition in $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - all $\mathcal{R}_1 \dots \mathcal{R}_n$ are in third normalform.

Decomposition in 3NF

Theorem

A relation schema $\mathcal{R} = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$ is in third normalform, if all \mathcal{R}_i are in third normalform.

- **\blacksquare** given a relation schema \mathcal{R} with FDs F.
- find: decomposition in sub schemata $\mathcal{R}_1 \dots \mathcal{R}_n$, such that:
 - lossless-join decomposition in $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - dependency-preserving decomposition in $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - all $\mathcal{R}_1 \dots \mathcal{R}_n$ are in third normalform.
- solution: synthesis algorithm

1 construct the canonical cover F_c for F

- \blacksquare construct the canonical cover F_c for F
- 2 for each FD $\alpha \rightarrow \beta \in F_c$:
 - construct a relation schema $\mathcal{R}_i := \alpha \cup \beta$
 - assign to \mathcal{R}_{α} the FDs $F_i := F_c[\mathcal{R}_i]$ informally: from every FD one schema (condition for dependency-preserving decomposition is satisfied) canonical cover important to ensure not creating too many or too big schemata.

- \blacksquare construct the canonical cover F_c for F
- 2 for each FD $\alpha \rightarrow \beta \in F_c$:
 - construct a relation schema $\mathcal{R}_i := \alpha \cup \beta$
 - assign to Rα the FDs F_i := F_c[R_i]
 informally: from every FD one schema (condition for
 dependency-preserving decomposition is satisfied) canonical cover
 important to ensure not creating too many or too big schemata.
- 3 does one of the sub schemata constructed in step 2 contain a key from \mathcal{R} w.r.t. $F_c \Rightarrow$ step 4 otherwise: choose one key $\kappa \in \mathcal{R}$ and define the following additional schema: $\mathcal{R}_{\kappa} := \kappa$ with $F_{\kappa} := \emptyset$

informally: construct a schema to connect sub schemata (condition for lossless-join decomposition satisfied)

- \blacksquare construct the canonical cover F_c for F
- 2 for each FD $\alpha \rightarrow \beta \in F_c$:
 - construct a relation schema $\mathcal{R}_i := \alpha \cup \beta$
 - assign to Rα the FDs F_i := F_c[R_i]
 informally: from every FD one schema (condition for
 dependency-preserving decomposition is satisfied) canonical cover
 important to ensure not creating too many or too big schemata.
- Is does one of the sub schemata constructed in step 2 contain a key from \mathcal{R} w.r.t. $F_c \Rightarrow$ step 4 otherwise: choose one key $\kappa \in \mathcal{R}$ and define the following additional schema: $\mathcal{R}_{\kappa} := \kappa$ with $F_{\kappa} := \emptyset$ informally: construct a schema to connect sub schemata (condition for lossless-join decomposition satisfied)
- 4 eliminate the schemata \mathcal{R}_i contained in another schema \mathcal{R}_j informally: shorten superfluous schemata

Example (synthesis algorithm 1)

 $\mathcal{R} = \{\textit{persNr}, \textit{name}, \textit{rank}, \textit{room}, \textit{town}, \textit{street}, \textit{zipcode}, \textit{Vorwahl}, \textit{state}, \textit{population}, \textit{Landesregierung}\} = \{\textit{P}, \textit{N}, \textit{R}, \textit{Z}, \textit{O}, \textit{S}, \textit{zip}, \textit{V}, \textit{B}, \textit{E}, \textit{L}\} \text{ and the FDs from before}$

Example (synthesis algorithm 1)

 $\mathcal{R} = \{\textit{persNr}, \textit{name}, \textit{rank}, \textit{room}, \textit{town}, \textit{street}, \textit{zipcode}, \textit{Vorwahl}, \textit{state}, \textit{population}, \textit{Landesregierung}\} = \{P, N, R, Z, O, S, \textit{zip}, V, B, E, L\} \text{ and the FDs from before}$

1 canonical cover: $P \rightarrow NRZOSB$, $Z \rightarrow P$, $SBO \rightarrow zip$, $OB \rightarrow EV$, $B \rightarrow L$, $zip \rightarrow BO$

Example (synthesis algorithm 1)

 $\mathcal{R} = \{\textit{persNr}, \textit{name}, \textit{rank}, \textit{room}, \textit{town}, \textit{street}, \textit{zipcode}, \textit{Vorwahl}, \textit{state}, \textit{population}, \textit{Landesregierung}\} = \{P, N, R, Z, O, S, \textit{zip}, V, B, E, L\} \text{ and the FDs from before}$

canonical cover:

$$P o NRZOSB, \ Z o P, \ SBO o zip, \ OB o EV, \ B o L, \ zip o BO$$

2 generate sub schemata and assign all FDs:

Example (synthesis algorithm 1)

■ Does any of the sub schemata contain a key of \mathcal{R} w.r.t. F? Yes: P was a key and is contained in $\{PNRZOSB\}$ \Rightarrow done

- 3 Does any of the sub schemata contain a key of \mathcal{R} w.r.t. F? Yes: P was a key and is contained in $\{PNRZOSB\} \Rightarrow$ done
- 4 schema elimination:

```
\{ZP\} is already contained in \{PNRZOSB\} \Rightarrow shorten \{zipBO\} is already contained in \{SBOzip\} \Rightarrow shorten
```


Example (synthesis algorithm 1)

- Does any of the sub schemata contain a key of \mathcal{R} w.r.t. F? Yes: P was a key and is contained in $\{PNRZOSB\} \Rightarrow$ done
- 4 schema elimination:

```
\{ZP\} is already contained in \{PNRZOSB\} \Rightarrow shorten \{zipBO\} is already contained in \{SBOzip\} \Rightarrow shorten
```

5 result:

```
professors: {[persNr, name, rank, room, town, street, state]}
zipcodeList: {[street, town, state,zipcode]}
    cities: {[town, state, population, area code]}
government: {[state, state government]}
```


A D A A D A A E A A E A A

$$\mathcal{R} = (ABCDEF), F = \{A \rightarrow EC, BC \rightarrow F, D \rightarrow B\}$$
 question: in 3 NF?

$$\mathcal{R} = (ABCDEF), F = \{A \rightarrow EC, BC \rightarrow F, D \rightarrow B\}$$
 question: in 3 NF? key: AD

$$\mathcal{R} = (ABCDEF), F = \{A \rightarrow EC, BC \rightarrow F, D \rightarrow B\}$$
 question: in 3 NF? no key: AD

Example (synthesis algorithm 2)

$$\mathcal{R} = (ABCDEF), F = \{A \rightarrow EC, BC \rightarrow F, D \rightarrow B\}$$
 question: in 3 NF? no key: AD

1 is already canonical

$$\mathcal{R} = (ABCDEF), F = \{A \rightarrow EC, BC \rightarrow F, D \rightarrow B\}$$
 question: in 3 NF? no key: AD

- 1 is already canonical
- **2** $\mathcal{R}_1 = (AEC), \mathcal{R}_2 = (BCF), \mathcal{R}_3 = (DB)$ no (non-trivial) assignment possible

Example (synthesis algorithm 2)

$$\mathcal{R} = (ABCDEF), F = \{A \rightarrow EC, BC \rightarrow F, D \rightarrow B\}$$
 question: in 3 NF? no key: AD

- 1 is already canonical
- 2 $\mathcal{R}_1 = (AEC), \mathcal{R}_2 = (BCF), \mathcal{R}_3 = (DB)$ no (non-trivial) assignment possible
- **3** key of \mathcal{R} : AD add $\mathcal{R}_4 = (AD)$

A D A A DRA A E A A E A E

$$\mathcal{R} = (ABCDEF), F = \{A \rightarrow EC, BC \rightarrow F, D \rightarrow B\}$$
 question: in 3 NF? no key: AD

- 1 is already canonical
- **2** $\mathcal{R}_1 = (AEC), \mathcal{R}_2 = (BCF), \mathcal{R}_3 = (DB)$ no (non-trivial) assignment possible
- 3 key of \mathcal{R} : AD add $\mathcal{R}_4 = (AD)$
- 4 nothing to be eliminated

Example (synthesis algorithm 2)

$$\mathcal{R} = (ABCDEF), F = \{A \rightarrow EC, BC \rightarrow F, D \rightarrow B\}$$
 question: in 3 NF? no key: AD

- 1 is already canonical
- **2** $\mathcal{R}_1 = (AEC), \mathcal{R}_2 = (BCF), \mathcal{R}_3 = (DB)$ no (non-trivial) assignment possible
- f 3 key of \mathcal{R} : AD add $\mathcal{R}_4=(AD)$
- 4 nothing to be eliminated

$$\mathcal{R} = (AEC) \cup (BCF) \cup (DB) \cup (AD)$$

.

Example

```
Why do we need a canonical cover?
```

profLec(persNr, name, rank, room, lecNr, title, SWS)

 F_1 : {persNr \rightarrow name rank room, lecNr \rightarrow persNr name rank room lecNr title SWS}

Example

Is 3 NF enough?

Example

```
\label{eq:Relation} \begin{split} \mathcal{R} &= \mathsf{cities}(\mathsf{town}, \, \mathsf{land}, \, \mathsf{boss}, \, \mathsf{population}) \\ \mathsf{F} &= \{ \{\mathsf{town}, \, \mathsf{land}\} \rightarrow \{\mathsf{population}\}, \\ &\quad \{\mathsf{land}\} \rightarrow \{\mathsf{boss}\}, \, \{\mathsf{boss}\} \rightarrow \{\mathsf{land}\} \} \end{split}
```

key:

Is 3 NF enough?

Example

```
 \begin{split} \mathcal{R} &= \mathsf{cities}(\mathsf{town}, \, \mathsf{land}, \, \mathsf{boss}, \, \mathsf{population}) \\ & \mathsf{F} &= \{ \{\mathsf{town}, \, \mathsf{land}\} \rightarrow \{\mathsf{population}\}, \\ & \{ \mathsf{land}\} \rightarrow \{ \mathsf{boss}\}, \, \{ \mathsf{boss}\} \rightarrow \{ \mathsf{land}\} \} \\ & \mathsf{key} : \, \{ \mathsf{town}, \, \mathsf{land}\}, \, \{ \mathsf{town}, \, \mathsf{boss}\} \end{split}
```


Is 3 NF enough?

Example

```
\mathcal{R} = \text{cities(town, land, boss, population)}
\mathsf{F} = \{\{\text{town, land}\} \rightarrow \{\text{population}\}, \\ \{\text{land}\} \rightarrow \{\text{boss}\}, \{\text{boss}\} \rightarrow \{\text{land}\}\}
\mathsf{key:} \{\text{town, land}\}, \{\text{town, boss}\} \Rightarrow \mathsf{in 3NF}
```

towns			
town	land	boss	population
Minas Tirith	Gondor	Denethor	2002
Osgiliath	Gondor	Denethor	0
Dol Amroth	Gondor	Denethor	700
Barad-dûr	Mordor	Sauron	20

Definition (Boyce-Codd normalform)

A relation schema $\mathcal R$ is in Boyce-Codd normalform, if for every on $\mathcal R$ holding FD of the form $\alpha \to B$ with $\alpha \subseteq \mathcal R$ and $B \in \mathcal R$ at least one of the following two conditions hold:

- **11** $B \in \alpha$, i.e., the FD is trivial
- $\mathbf{2}$ α is super key of \mathcal{R} .

Definition (Boyce-Codd normalform)

A relation schema $\mathcal R$ is in Boyce-Codd normalform, if for every on $\mathcal R$ holding FD of the form $\alpha \to B$ with $\alpha \subseteq \mathcal R$ and $B \in \mathcal R$ at least one of the following two conditions hold:

- **1** $B \in \alpha$, i.e., the FD is trivial
- $\mathbf{2}$ α is super key of \mathcal{R} .

Theorem (normalforms correlation)

The normalforms are connected in the following way:

$$BCNF \subset 3NF \subset 2NF \subset 1NF$$

Example (check for BCNF 1)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

Example (check for BCNF 1)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$
the keys of \mathcal{R} are: C, E, D, F

Example (check for BCNF 1)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

the keys of \mathcal{R} are: C, E, D, F

 (\mathcal{R}, F) is in BCNF, if for every FD one of the two NF-conditions holds:

no FD is trivial: condition 1 does not hold

Example (check for BCNF 1)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

the keys of \mathcal{R} are: C, E, D, F

 (\mathcal{R}, F) is in BCNF, if for every FD one of the two NF-conditions holds:

- no FD is trivial: condition 1 does not hold
- Is the attribute set on the left side of the FDs a super key of \mathcal{R} ? Yes, condition 2 holds for all FDs.

Example (check for BCNF 1)

$$\mathcal{R} = (ABCDEF)$$

$$F = \{C \to B, C \to D, D \to A, D \to E, E \to C, E \to F, F \to E\}$$

the keys of \mathcal{R} are: C, E, D, F

 (\mathcal{R}, F) is in BCNF, if for every FD one of the two NF-conditions holds:

- no FD is trivial: condition 1 does not hold
- Is the attribute set on the left side of the FDs a super key of \mathcal{R} ? Yes, condition 2 holds for all FDs.

no FD violates the BCNF ⇒ in BCNF

Example (check for BCNF 2)

```
 \begin{split} \mathcal{R} &= \mathsf{cities}(\mathsf{town}, \, \mathsf{land}, \, \mathsf{boss}, \, \mathsf{population}) \\ \mathsf{F} &= \{ \{\mathsf{town}, \, \mathsf{land}\} \rightarrow \{\mathsf{population}\}, \\ &\qquad \{ \mathsf{land} \} \rightarrow \{ \mathsf{boss} \}, \, \{ \mathsf{boss} \} \rightarrow \{ \mathsf{land} \} \} \\ \end{aligned}
```


Example (check for BCNF 2)

```
 \mathcal{R} = \mathsf{cities}(\mathsf{town}, \mathsf{land}, \mathsf{boss}, \mathsf{population})   \mathsf{F} = \{ \{\mathsf{town}, \mathsf{land}\} \rightarrow \{\mathsf{population}\}, \\ \{\mathsf{land}\} \rightarrow \{\mathsf{boss}\}, \{\mathsf{boss}\} \rightarrow \{\mathsf{land}\} \}  key: \{\mathsf{town}, \mathsf{land}\} resp. \{\mathsf{town}, \mathsf{boss}\}
```


Example (check for BCNF 2)

```
\label{eq:Relation} \begin{split} \mathcal{R} &= \mathsf{cities}(\mathsf{town}, \, \mathsf{land}, \, \mathsf{boss}, \, \mathsf{population}) \\ & \mathsf{F} &= \{ \{\mathsf{town}, \, \mathsf{land} \} \rightarrow \{\mathsf{population}\}, \\ & \{\mathsf{land}\} \rightarrow \{\mathsf{boss}\}, \, \{\mathsf{boss}\} \rightarrow \{\mathsf{land}\} \} \\ & \mathsf{key:} \, \{\mathsf{town}, \, \mathsf{land}\} \, \mathsf{resp.} \, \{\mathsf{town}, \, \mathsf{boss}\} \end{split}
```

1 no FD is trivial

Example (check for BCNF 2)

```
\mathcal{R} = \mathsf{cities}(\mathsf{town}, \mathsf{land}, \mathsf{boss}, \mathsf{population})
\mathsf{F} = \{\{\mathsf{town}, \mathsf{land}\} \rightarrow \{\mathsf{population}\}, \{\mathsf{land}\} \rightarrow \{\mathsf{boss}\}, \{\mathsf{boss}\} \rightarrow \{\mathsf{land}\}\}\}
```

key: {town, land} resp. {town, boss}

- no FD is trivial
- \blacksquare Is the attribute set on the left side of the FDs a super key?No for land \to boss. boss \to land

Boyce-Codd Normalform

Example (check for BCNF 2)

```
\mathcal{R} = \mathsf{cities}(\mathsf{town}, \mathsf{land}, \mathsf{boss}, \mathsf{population})
\mathsf{F} = \{\{\mathsf{town}, \mathsf{land}\} \rightarrow \{\mathsf{population}\}, \{\mathsf{land}\} \rightarrow \{\mathsf{boss}\}, \{\mathsf{boss}\} \rightarrow \{\mathsf{land}\}\}
```

key: {town, land} resp. {town, boss}

- 1 no FD is trivial
- 2 Is the attribute set on the left side of the FDs a super key?No for land \rightarrow boss, boss \rightarrow land

 $\Rightarrow \mathcal{R}$ not in BCNF

Boyce-Codd Normalform

Example (check for BCNF 2)

```
\mathcal{R} = \mathsf{cities}(\mathsf{town}, \mathsf{land}, \mathsf{boss}, \mathsf{population})
\mathsf{F} = \{\{\mathsf{town}, \mathsf{land}\} \rightarrow \{\mathsf{population}\}, \{\mathsf{land}\} \rightarrow \{\mathsf{boss}\}, \{\mathsf{boss}\} \rightarrow \{\mathsf{land}\}\}\}
```

key: {town, land} resp. {town, boss}

- no FD is trivial
- f 2 Is the attribute set on the left side of the FDs a super key?No for land igtherap boss, boss igtherap land

$\Rightarrow \mathcal{R}$ not in BCNF

But: in 3NF, as condition 2 (3NF): on the right side is a key attribute is satisfied.

1 D 2 1 D 2 1 E 2 1 E 2

Theorem

Theorem

- **given** a relation schema \mathcal{R} with FDs F
- find: decomposition in sub schemata $\mathcal{R}_1 \dots \mathcal{R}_n$, for which it holds that:
 - lossless-join decomposition in $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - dependency-preserving decomposition $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - all $\mathcal{R}_1 \dots \mathcal{R}_n$ are in Boyce-Codd normalform.

Theorem

- **given** a relation schema \mathcal{R} with FDs F
- find: decomposition in sub schemata $\mathcal{R}_1 \dots \mathcal{R}_n$, for which it holds that:
 - lossless-join decomposition in $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - dependency-preserving decomposition $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - all $\mathcal{R}_1 \dots \mathcal{R}_n$ are in Boyce-Codd normalform.
- only the BCNF guarantees to be anomaly-free

Theorem

- \blacksquare given a relation schema \mathcal{R} with FDs F
- find: decomposition in sub schemata $\mathcal{R}_1 \dots \mathcal{R}_n$, for which it holds that:
 - lossless-join decomposition in $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - dependency-preserving decomposition $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - all $\mathcal{R}_1 \dots \mathcal{R}_n$ are in Boyce-Codd normalform.
- only the BCNF guarantees to be anomaly-free
- problem: a lossless-join decomposition in BCNF is always possible, but dependency-preserving decomposition cannot always be reached

Theorem

- **given** a relation schema \mathcal{R} with FDs F
- find: decomposition in sub schemata $\mathcal{R}_1 \dots \mathcal{R}_n$, for which it holds that:
 - lossless-join decomposition in $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - dependency-preserving decomposition $\mathcal{R}_1 \dots \mathcal{R}_n$,
 - all $\mathcal{R}_1 \dots \mathcal{R}_n$ are in Boyce-Codd normalform.
- only the BCNF guarantees to be anomaly-free
- problem: a lossless-join decomposition in BCNF is always possible, but dependency-preserving decomposition cannot always be reached
- decomposition algorithm (without a dependency-preserving decomposition)

■ start with $Z = \{(\mathcal{R}, F)\}$

- start with $Z = \{(\mathcal{R}, F)\}$
- **a** as long as there is a relation schema $(\mathcal{R}_i, \mathcal{F}_i)$ in Z, which violates the BCNF i.e. there is a FD $\alpha \to \beta$ in \mathcal{R}_i with $\beta \not\subseteq \alpha$ and $\neg(\alpha \to \mathcal{R}_i)$:

- start with $Z = \{(\mathcal{R}, F)\}$
- as long as there is a relation schema (\mathcal{R}_i, F_i) in Z, which violates the BCNF i.e. there is a FD $\alpha \to \beta$ in \mathcal{R}_i with $\beta \not\subseteq \alpha$ and $\neg(\alpha \to \mathcal{R}_i)$: pick one such FD $\alpha \to \beta$ and decompose as follows:
 - $\mathcal{R}_{i_1} := (\alpha \cup \beta), F_{i_1} := F_i^+[\mathcal{R}_{i_1}]$
 - $\mathcal{R}_{i_2} := \mathcal{R}_i (\beta \alpha), \ F_{i_2} := F_i^+[\mathcal{R}_{i_2}]$

- start with $Z = \{(\mathcal{R}, F)\}$
- as long as there is a relation schema (\mathcal{R}_i, F_i) in Z, which violates the BCNF i.e. there is a FD $\alpha \to \beta$ in \mathcal{R}_i with $\beta \not\subseteq \alpha$ and $\neg(\alpha \to \mathcal{R}_i)$: pick one such FD $\alpha \to \beta$ and decompose as follows:
 - $\mathcal{R}_{i_1} := (\alpha \cup \beta), \ F_{i_1} := F_i^+[\mathcal{R}_{i_1}]$
 - $\mathcal{R}_{i_2} := \mathcal{R}_i (\beta \alpha), \ F_{i_2} := F_i^+[\mathcal{R}_{i_2}]$

remove (\mathcal{R}_i, F_i) from Z and insert $(\mathcal{R}_{i_1}, F_{i_1})$ and $(\mathcal{R}_{i_2}, F_{i_2})$:

$$Z := (Z - (\{\mathcal{R}_i, F_i)\}) \cup \{(\mathcal{R}_{i_1}, F_{i_1})\} \cup \{(\mathcal{R}_{i_2}, F_{i_2})\}$$

- start with $Z = \{(\mathcal{R}, F)\}$
- as long as there is a relation schema (\mathcal{R}_i, F_i) in Z, which violates the BCNF i.e. there is a FD $\alpha \to \beta$ in \mathcal{R}_i with $\beta \not\subseteq \alpha$ and $\neg(\alpha \to \mathcal{R}_i)$: pick one such FD $\alpha \to \beta$ and decompose as follows:
 - $\mathcal{R}_{i_1} := (\alpha \cup \beta), \ F_{i_1} := F_i^+[\mathcal{R}_{i_1}]$
 - $\mathcal{R}_{i_2} := \mathcal{R}_i (\beta \alpha), \ F_{i_2} := F_i^+[\mathcal{R}_{i_2}]$

remove (\mathcal{R}_i, F_i) from Z and insert $(\mathcal{R}_{i_1}, F_{i_1})$ and $(\mathcal{R}_{i_2}, F_{i_2})$:

$$Z := (Z - (\{\mathcal{R}_i, F_i)\}) \cup \{(\mathcal{R}_{i_1}, F_{i_1})\} \cup \{(\mathcal{R}_{i_2}, F_{i_2})\}$$


```
\label{eq:reconstruction} \begin{split} \mathcal{R} &= \mathsf{cities}(\mathsf{town}, \, \mathsf{land}, \, \mathsf{boss}, \, \mathsf{population}) \\ \mathsf{F} &= \{ \{\mathsf{town}, \, \mathsf{land}\} \rightarrow \{\mathsf{population}\}, \\ &\quad \{\mathsf{land}\} \rightarrow \{\mathsf{boss}\}, \, \{\mathsf{boss}\} \rightarrow \{\mathsf{land}\} \} \end{split}
```



```
\label{eq:Relation} \begin{split} \mathcal{R} &= \mathsf{cities}(\mathsf{town}, \, \mathsf{land}, \, \mathsf{boss}, \, \mathsf{population}) \\ &\mathsf{F} &= \{ \{\mathsf{town}, \, \mathsf{land} \} \rightarrow \{\mathsf{population}\}, \\ &\quad \{\mathsf{land}\} \rightarrow \{\mathsf{boss}\}, \, \{\mathsf{boss}\} \rightarrow \{\mathsf{land}\} \} \\ &\mathsf{key:} \, \{\mathsf{town}, \, \mathsf{land}\}, \, \{\mathsf{town}, \, \mathsf{boss}\} \end{split}
```



```
 \begin{split} \mathcal{R} &= \mathsf{cities}(\mathsf{town}, \, \mathsf{land}, \, \mathsf{boss}, \, \mathsf{population}) \\ & \mathsf{F} &= \{ \{\mathsf{town}, \, \mathsf{land} \} \rightarrow \{\mathsf{population}\}, \\ & \{ \mathsf{land} \} \rightarrow \{ \mathsf{boss} \}, \, \{ \mathsf{boss} \} \rightarrow \{ \mathsf{land} \} \} \\ & \mathsf{key} : \{ \mathsf{town}, \, \mathsf{land} \}, \, \{ \mathsf{town}, \, \mathsf{boss} \} \end{split}
```

- $Z := \mathcal{R}$
- \blacksquare {land} \rightarrow {boss} violates the BCNF


```
\mathcal{R} = \text{cities}(\text{town}, \text{land}, \text{boss}, \text{population})
   F = \{\{\text{town, land}\} \rightarrow \{\text{population}\},\
              \{land\} \rightarrow \{boss\}, \{boss\} \rightarrow \{land\}\}
key: {town, land}, {town, boss}
    \mathbf{Z} := \mathcal{R}
    \blacksquare {land} \rightarrow {boss} violates the BCNF
            • \mathcal{R}_1 := (land, boss) and
               F_1 := \{\{land\} \rightarrow \{boss\}, \{boss\} \rightarrow \{land\}, \ldots\}
            • \mathcal{R}_2 := (town, land, population) and
               F_2 := \{\{\text{town}, \text{land}\} \rightarrow \{\text{population}\}, \dots\}
```



```
\mathcal{R} = \text{cities}(\text{town}, \text{land}, \text{boss}, \text{population})
    F = \{\{\text{town, land}\} \rightarrow \{\text{population}\},\
              \{land\} \rightarrow \{boss\}, \{boss\} \rightarrow \{land\}\}
key: {town, land}, {town, boss}
    \mathbf{Z} := \mathcal{R}
    \blacksquare {land} \rightarrow {boss} violates the BCNF
            • \mathcal{R}_1 := (land, boss) and
                F_1 := \{\{land\} \rightarrow \{boss\}, \{boss\} \rightarrow \{land\}, \ldots\}
            • \mathcal{R}_2 := \text{(town, land, population)} and
                F_2 := \{\{\text{town}, \text{land}\} \rightarrow \{\text{population}\}, \dots\}
            • Z := \{(\mathcal{R}_1, F_1), (\mathcal{R}_2, F_2)\}
```


Example (decomposition algorithm 1)

```
\mathcal{R} = \text{cities}(\text{town}, \text{land}, \text{boss}, \text{population})
   F = \{\{\text{town, land}\} \rightarrow \{\text{population}\},\
              \{land\} \rightarrow \{boss\}, \{boss\} \rightarrow \{land\}\}
key: {town, land}, {town, boss}
    \mathbf{Z} := \mathcal{R}
    \blacksquare {land} \rightarrow {boss} violates the BCNF
            • \mathcal{R}_1 := (land, boss) and
                F_1 := \{\{land\} \rightarrow \{boss\}, \{boss\} \rightarrow \{land\}, \ldots\}
            • \mathcal{R}_2 := (town, land, population) and
                F_2 := \{\{\text{town}, \text{land}\} \rightarrow \{\text{population}\}, \dots\}
            • Z := \{(\mathcal{R}_1, F_1), (\mathcal{R}_2, F_2)\}
```

 lossless-join decomposition and dependency-preserving decomposition


```
\mathcal{R} = \text{zipcodeList(street, town, state, zipcode)}

F = \{\{\text{zipcode}\}\rightarrow \{\text{town, state}\}, \{\text{street, town, state}\}\rightarrow \{\text{zipcode}\}\}
```



```
\label{eq:reconstruction} \begin{split} \mathcal{R} &= \mathsf{zipcodeList}(\mathsf{street},\,\mathsf{town},\,\mathsf{state},\,\mathsf{zipcode}) \\ & \mathsf{F} &= \{\{\mathsf{zipcode}\} {\rightarrow} \{\mathsf{town},\,\mathsf{state}\},\, \{\mathsf{street},\,\mathsf{town},\,\mathsf{state}\} {\rightarrow} \{\mathsf{zipcode}\}\} \\ & \mathsf{key} \colon \end{split}
```



```
\mathcal{R} = \mathsf{zipcodeList}(\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}, \, \mathsf{zipcode})
\mathsf{F} = \{\{\mathsf{zipcode}\} \rightarrow \{\mathsf{town}, \, \mathsf{state}\}, \, \{\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}\} \rightarrow \{\mathsf{zipcode}\}\}
\mathsf{key:} \, \{\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}\}, \, \{\mathsf{zipcode}, \, \mathsf{street}\},
\mathsf{Z} := (\mathcal{R}, \mathcal{F})
```



```
\mathcal{R} = \mathsf{zipcodeList}(\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}, \, \mathsf{zipcode}) \mathsf{F} = \{\{\mathsf{zipcode}\} \rightarrow \{\mathsf{town}, \, \mathsf{state}\}, \, \{\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}\} \rightarrow \{\mathsf{zipcode}\}\} \mathsf{key:} \, \{\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}\}, \, \{\mathsf{zipcode}, \, \mathsf{street}\},
```

- $Z := (\mathcal{R}, F)$
- \blacksquare {{zipcode} \rightarrow {town, state}} violates the BCNF

Example (decomposition algorithm 2)

```
 \mathcal{R} = \mathsf{zipcodeList}(\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}, \, \mathsf{zipcode})   \mathsf{F} = \{\{\mathsf{zipcode}\} \rightarrow \{\mathsf{town}, \, \mathsf{state}\}, \, \{\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}\} \rightarrow \{\mathsf{zipcode}\}\}   \mathsf{key:} \, \{\mathsf{street}, \, \mathsf{town}, \, \mathsf{state}\}, \, \{\mathsf{zipcode}, \, \mathsf{street}\},   \blacksquare \, Z := (\mathcal{R}, F)
```

- \blacksquare {{zipcode} \rightarrow {town, state}} violates the BCNF
 - $\mathcal{R}_1 := (zipcode, town, state) and$ $F_1 := \{\{zipcode\} \rightarrow \{town, state\}, \dots\}$
 - $\mathcal{R}_2 := (zipcode, street)$ and F_2 contains only trivial FDs

A D A A D A A E A A E A A

```
\label{eq:reconstruction} \begin{split} \mathcal{R} &= \mathsf{zipcodeList}(\mathsf{street},\,\mathsf{town},\,\mathsf{state},\,\mathsf{zipcode}) \\ & \mathsf{F} &= \{\{\mathsf{zipcode}\}{\rightarrow}\{\mathsf{town},\,\mathsf{state}\},\,\{\mathsf{street},\,\mathsf{town},\,\mathsf{state}\}{\rightarrow}\{\mathsf{zipcode}\}\} \\ & \mathsf{key:}\,\,\{\mathsf{street},\,\mathsf{town},\,\mathsf{state}\},\,\{\mathsf{zipcode},\,\mathsf{street}\}, \end{split}
```

- $Z := (\mathcal{R}, F)$
- \blacksquare {{zipcode} \rightarrow {town, state}} violates the BCNF
 - $\mathcal{R}_1 := \{\text{zipcode}, \text{ town, state}\}\$ and $F_1 := \{\{\text{zipcode}\} \rightarrow \{\text{town, state}\}, \dots\}$
 - $\mathcal{R}_2 := (zipcode, street)$ and F_2 contains only trivial FDs
 - $Z := \{(\mathcal{R}_1, F_1), (\mathcal{R}_2, F_2)\}$


```
\label{eq:reconstruction} \begin{split} \mathcal{R} &= \mathsf{zipcodeList}(\mathsf{street},\,\mathsf{town},\,\mathsf{state},\,\mathsf{zipcode}) \\ & \mathsf{F} &= \{\{\mathsf{zipcode}\}{\rightarrow}\{\mathsf{town},\,\mathsf{state}\},\,\{\mathsf{street},\,\mathsf{town},\,\mathsf{state}\}{\rightarrow}\{\mathsf{zipcode}\}\} \\ & \mathsf{key:}\,\,\{\mathsf{street},\,\mathsf{town},\,\mathsf{state}\},\,\{\mathsf{zipcode},\,\mathsf{street}\}, \end{split}
```

- $Z := (\mathcal{R}, F)$
- $\blacksquare \ \{\{\mathsf{zipcode}\} \to \{\mathsf{town}, \, \mathsf{state}\}\} \ \mathsf{violates} \ \mathsf{the} \ \mathsf{BCNF}$
 - $\mathcal{R}_1 := (\mathsf{zipcode}, \, \mathsf{town}, \, \mathsf{state}) \, \mathsf{and}$ $F_1 := \{\{ \mathsf{zipcode}\} \rightarrow \{ \mathsf{town}, \, \mathsf{state}\}, \dots \}$
 - $\mathcal{R}_2 := (zipcode, street)$ and F_2 contains only trivial FDs
 - $Z := \{(\mathcal{R}_1, F_1), (\mathcal{R}_2, F_2)\}$
- lossless-join decomposition but the dependency $\{\{\text{street, town, state}\} \rightarrow \{\text{zipcode}\}\}\$ is lost

$$\mathcal{R} = ABCDE$$

$$F = \{A \rightarrow B, C \rightarrow B, BE \rightarrow D\}$$

$$key: ACE$$

$$\mathcal{R} = ABCDE$$
 $F = \{A oup B, C oup B, BE oup D\}$
key: ACE
 $\mathcal{R}_1 = AB$
 $F_1 = \{A oup B, \dots\}$
key: A

$$\mathcal{R} = ABCDE$$

$$F = \{A \rightarrow B, C \rightarrow B, BE \rightarrow D\}$$

$$\text{key: } ACE$$

$$\mathcal{R}_1 = AB$$

$$\mathcal{R}_2 = ACED$$

$$F_1 = \{A \rightarrow B, \dots\}$$

$$F_2 = \{AE \rightarrow D, CE \rightarrow D, ACE \rightarrow D, \dots\}$$

$$\text{key: } ACE$$

$$\mathcal{R} = ABCDE$$

$$F = \{A \to B, C \to B, BE \to D\}$$

$$\text{key: } ACE$$

$$\mathcal{R}_1 = AB$$

$$\mathcal{R}_2 = ACED$$

$$F_1 = \{A \to B, \dots\}$$

$$F_2 = \{AE \to D, CE \to D, ACE \to D, \dots\}$$

$$\text{key: } ACE$$

$$\mathcal{R}_{2,1} = AED$$

$$F_{2,1} = \{AE \to D, \dots\}$$

$$\text{key: } AE$$

Example (decomposition algorithm 3)

$$\mathcal{R} = ABCDE$$

$$F = \{A \rightarrow B, C \rightarrow B, BE \rightarrow D\}$$

$$key: ACE$$

$$\mathcal{R}_1 = AB$$

$$\mathcal{R}_2 = ACED$$

$$F_1 = \{A \rightarrow B, \dots\}$$

$$F_2 = \{AE \rightarrow D, CE \rightarrow D, ACE \rightarrow D, \dots\}$$

$$key: A$$

$$key: ACE$$

$$\mathcal{R}_{2,1} = AED$$

$$F_{2,1} = \{AE \rightarrow D, \dots\}$$

$$key: ACE$$

$$\mathcal{R}_{2,2} = ACE$$

$$F_{2,2} = \{\dots\}$$

$$key: ACE$$

Anela Lolić

Example (decomposition algorithm 3)

$$\mathcal{R} = ABCDE$$

$$F = \{A \rightarrow B, C \rightarrow B, BE \rightarrow D\}$$

$$key: ACE$$

$$\mathcal{R}_1 = AB$$

$$\mathcal{R}_2 = ACED$$

$$F_1 = \{A \rightarrow B, \dots\}$$

$$F_2 = \{AE \rightarrow D, CE \rightarrow D, ACE \rightarrow D, \dots\}$$

$$key: ACE$$

$$\mathcal{R}_{2,1} = AED$$

$$\mathcal{R}_{2,1} = AED$$

$$\mathcal{R}_{2,1} = AED$$

$$\mathcal{R}_{2,2} = ACE$$

$$F_{2,1} = \{AE \rightarrow D, \dots\}$$

$$key: ACE$$

$$key: ACE$$

lossless-join decomposition, but not a dependency-preserving decomposition:

$$\{C \rightarrow B, BE \rightarrow D\} \in F$$
, z.B. $\{CE \rightarrow D, \dots\} \in F^+$

FAROUTÄT FGR INFORMATI Facility of Informati

Anela Lolić

Learning Objectives

- What kinds of anomalies are there?
- What is a lossless-join decomposition and what is a dependency-preserving decomposition?
- Which normalforms are there?
 - When are they satisfied and how are the computed?

