Деление урана

 n^\prime - число нейтронов текущего поколения,

 $m{n}$ - число нейтронов предыдующего поколения.

Возможные реакции нейтронов с веществом

Рассеяние (scattering)

- упругое
- неупругое

Захват (absorption)

- поглощение (capture)
- деление (fission)

"Полезный" захват

$$^{238}U + ~^1n \rightarrow ~^{239}U \rightarrow ~^{239}Np \rightarrow ~^{239}Pu$$

Сечение взаимодействия

Микроскопическое сечение взаимодействия

С - кол-во взаимодействий за ед.вр. на ед. площади (см2) I - кол-во (n), упавших за ед.вр. на ед. площади (см2)

N_a - кол-во атомов мишени, приходящееся на ед. площади (см2)

$$\sigma = \frac{C}{N \ I}, \left[\text{cm}^{-2} \right]$$
 1 бн ("барн") = 10^-28 см^2

Макроскопическое сечение взаимодействия

$$\Sigma = N_{\rm M} * \sigma$$
, где $N_{\rm M}$ - концентрация ядер, σ - микроскопическое сечение $[1/{
m cm}^3 * {
m cm}^2] = [1/{
m cm}]$

Рис. 1. Полное сечение взаимодействия σ_{tot} (1) и упругого рассеяния (2) нейтронов в зависимости от энергии нейтронов для ядер 12 C (a), 56 Fe (δ) , 235 U (ϵ) . Данные — оценка ядерной базы данных ENDF/B-VIII.0.

Источник <u>[1]</u>

Нейтронный цикл

Источник [2]

Рис. 6.3. Нейтронный цикл в реакторе на тепловых нейтронах

Модель

Объект

Составляющие ядерного реактора на тепловых (n):

- 1. топливо
- 2. теплоноситель
- 3. замедлитель
- 4. поглотитель

Допущения модели

 $k=k_\infty*(1-w)$, где w - вероятность утечки нейтрона из конечного реактора.