SOCCER COMMENTARY MINIG

Natural Language Processing Project 1 proposal

> Szymon Maksymiuk Adam Narożniak Władysław Olejnik Patryk Świątek

Unexplored – we have not found previous work about analysing boradcast's transcriptions.

Accessible – everyone at least one has seen a football match and knows basic rules.

Challenging – data from three different sources – audio, text and tabular events.

Part of the bigger picture – chance to contribiute in a field where recent years were marked by rapid introduction of various statistical approaches.

SOCCER COMMENTARY

0

0

SOCCERNET

SOCCER COMMENTARY

0

+

League	14/15	Seasons 15/16	16/17	Total
EN - EPL	6	49	40	95
ES - LaLiga	18	36	63	117
FR - Ligue 1	1	3	34	38
DE - BundesLiga	8	18	27	53
IT - Serie A	11	9	76	96
EU - Champions	37	45	19	101
Total	81	160	259	500

- Opensource dataset.
- 500 games from the main European Championships.
- Two untrimmed videos for one match (each for one half period).
- An average of 13 labels per match:
 - Goal
 - Yellow/Red Card
 - Substitution
- Exact minute of the match for each label.

- Updated version of SoccerNet.
- 17 types of labels instead of 3.
- An average of 221
 labels per match (17
 times more than for
 the previous version).

TRANSCRIPTS GENERATION: WHISPER

- ASR model developed by OpenAI.
- Transformer encoder-decoder framework.
- Trained on different speech processing tasks:
 - multilingual speech recognition,
 - speech translation,
 - · spoken language identification,
 - voice activity detection.

SOCCER COMMENTARY MINING

0

RESEARCH QUESTIONS

RESEARCH QUESTIONS

- **How** well does the tabulated data we have, explain the estimated sentiment?
- Statistical differences between lexical and ML approaches?
- Can emotion intensification serve as an indicator of an important event?
- What are the differences between sentiment from text and emotion from audio?
- Do we really need audio data to spot interesting relationships? Is text alone not enough?
- Do commentators of different nationalities react differently to the same events during a match?
- **How** much and for how long do emotions intensify after important events in a match?
- Can emotion intensification serve as an indicator of a future important event?

SOCCER COMMENTARY MINING

PROJECT APPROACH

PRELIMINARY DATA EXPLORATION

PRELIMINARY DATA **EXPLORATION**

- Tokens vs types analysis
- Average statement length acorss languages
- Filtering proper names
- Words repetition and stopwords count
- Overall language complexity:
 - Lexical readability (Flesch-Kinacid)
 - Lexical richness (TTR, Hapax richness)

SOCCER COMMENTARY MINING

SENTIMENT ANALYSIS

LEXICON-BASED "MODELS"

- LEXICON = DICTIONARY
- Pros:
- Interpretable
 - Cons:
 - Creation is time consuming (manual creation)
 - Dictionary size limited by the design
 - Based on expert knowledge

SEMANTIC ORIENTATION LEXICONS

(POLARITY-BASED)

Model	Example	Scores
POLARITY- BASED	This pass is good.	+1
POLARITY- BASED	This pass is amazing.	+1
POLARITY- BASED	This pass is not bad .	-1

LIWC Category	Examples	No. of Words
Positive Emotion	Love, nice, good, great	406
Negative Emotion	Hurt, ugly, sad, bad, worse	499

Table 1: Example words from two of LIWC's 76 categories. These two categories can be leveraged to construct a semantic orientation-based lexicon for sentiment analysis.

SENTIMENT INTENSITY **LEXICONS**

(VALENCE-BASED)

Model	Example	Scores
VALENCE- BASED	This pass is good .	+0.5
VALENCE- BASED	This pass is amazing.	+1.5
VALENCE- BASED	This pass is not bad .	-1.0

CONTEXT AWARE LEXICONS

+

Model	Example	Scores
CONTEXT AWARE	This pass is good .	+0.5
CONTEXT AWARE	This pass is amazing.	+1.5
CONTEXT AWARE	This pass is not bad .	+1.0

VADER

	Correlation to ground truth	3-class (positive, negative, neutral) Classification Accuracy Metrics			Correlation to ground truth	3-class (positive, negative, neutral) Classification Accuracy Metrics				
	(mean of 20 humanraters)	Overall Precision	Overall Recall	Overall F1 score	Ordin Rani (by F:	k	(mean of 20 human raters)	Overall Precision	Overall Recall	Overall F1 score
Social Medi	a Text (4,200 T	weets)					Movie Reviev	vs (10,605 r	eview snipp	ets)
Ind. Humans	0.888	0.95	0.76	0.84	2	1	0.899	0.95	0.90	0.92
VADER	0.881	0.99	0.94	0.96	1*	2	0.451	0.70	0.55	0.61
Hu-Liu04	0.756	0.94	0.66	0.77	3	3	0.416	0.66	0.56	0.59
SCN	0.568	0.81	0.75	0.75	4	7	0.210	0.60	0.53	0.44
GI	0.580	0.84	0.58	0.69	5	5	0.343	0.66	0.50	0.55
SWN	0.488	0.75	0.62	0.67	6	4	0.251	0.60	0.55	0.57
LIWC	0.622	0.94	0.48	0.63	7	9	0.152	0.61	0.22	0.31
ANEW	0.492	0.83	0.48	0.60	8	8	0.156	0.57	0.36	0.40
WSD	0.438	0.70	0.49	0.56	9	6	0.349	0.58	0.50	0.52
Amazon.cor	n Product Revi	ews (3,708	review snip	opets)			NY Times Edi	torials (5,19	0 article sni	ippets)
nd. Humans	0.911	N 94	0.80	0.85	1	1	0.745	0.87	0.55	0.65
VADER	0.565	0.78	0.55	0.63	2	2	0.492	0.69	0.49	0.55
Hu-Liu04	0.571	0.74	0.56	0.62	3	3	0.487	0.70	0.45	0.52
SCN	0.316	0.64	0.60	0.51	7	7	0.252	0.62	0.47	0.38
GI	0.385	0.67	0.49	0.55	5	5	0.362	0.65	0.44	0.49
SWN	0.325	0.61	0.54	0.57	4	4	0.262	0.57	0.49	0.52
LIWC	0.313	0.73	0.29	0.36	9	9	0.220	0.66	0.17	0.21
ANEW	0.257	0.69	0.33	0.39	8	8	0.202	0.59	0.32	0.35
WSD	0.324	0.60	0.51	0.55	6	6	0.218	0.55	0.45	0.47

Table 4: VADER 3-class classification performance as compared to individual human raters and 7 established lexicon baselines across four distinct domain contexts (clockwise from upper left: tweets, movie reviews, product reviews, opinion news articles).

- Lexiconbased
- Rule-base

FLAIR

- Powerfull framework which utilizes different models and approaches
- Supports many types of text analysis, including sequence labeling, text classification, similarity learning and text regression.
- Supports many embeddings including GloVe, FastText, ELMo, BERT, XLM, Byte Pair Embeddings and of course our own Flair embeddings:
- Includes a "model zoo" of pre-trained models ready to use.
- Multilingual

SPEECH EMOTION DETECTION

- Typically deep neural networks
- Features might be:
 - Raw audio files
 - (mel)Spectrograms
 - MFCCs
 - Embeddings (e.g. created from selfsupervised wav2vec2.0)
- |Emotions| > |Sentiments|
- Emotions involve anger, disgust, fear, happiness, pleasant surprise, sadness, and neutral.
 But might include also e.g. frustration. (Dataset dependent)