

Algebra of Matrices Ex 5.1 Q16

$$\begin{bmatrix} xy & 4 \\ z+6 & x+y \end{bmatrix} = \begin{bmatrix} 8 & w \\ 0 & 6 \end{bmatrix}$$

The corresponding entries of the two equal matrices are equal.

⇒
$$xy = 8 \dots (1),$$

 $w = 4 \dots (2),$

$$z + 6 = 0 \dots (3),$$

and
$$x + y = 6 \dots (4)$$

from equation (2) and equation (3) we get z = -6 and w = 4.

from equation(4) we have,

$$x + y = 6$$
,

$$\Rightarrow x = 6 - y$$

substituting value of x in equation (1) we get,

$$\Rightarrow$$
 (6 - y)y = 8,

$$\Rightarrow$$
 y²- 6y + 8 = 0,

$$\Rightarrow$$
 (y - 2) (y - 4)= 0,

$$\Rightarrow$$
 y = 2, 4

subsituting the value of y in equation(1) we get,

$$\Rightarrow$$
 x = 4, 2

Therefore, value of x, y, z, w are 2, 4, -6, 4 or 4, 2, -6, 4.

Algebra of Matrices Ex 5.1 Q17

We know that,

Order of a row matrix = $1 \times n$

order of a column matrix=m×1

So, order of a row as well as column matrix = 1×1

Therefore,

Required matrix = [a]

A diagonal matrix has only a_{11} , a_{22} , a_{33} for a 3 imes3 matrix such that a_{11} , a_{22} , a_{33} are equal or different and all other entries zero while scalor matrix has $a_{11,}=a_{22,}=a_{33}=m$ (say) So, A diagonal matrix which is not scalar must have,

 a_{11} , $\neq a_{22}$, $\neq a_{33}$ and aij = 0 for $i \neq j$, So

A triangular matrix is a square matrix A = [aij] such that aij = 0 for all i > j, so

$$A = \begin{bmatrix} 3 & 2 & -1 \\ 0 & 4 & 3 \\ 0 & 0 & -6 \end{bmatrix}$$

Algebra of Matrices Ex 5.1 Q18

Given datais,

For January 2013:

Dealer A	Deluxe Premium		Standard Cars	
	5	3	4	
Dealer B	7	2	3	

For January-February:

Dealer A	DeluxePremium		Standard Cars	
	8	7	ϵ	j
Dealer B	10	5		7

Hence,

	Deluxe	Premum	Standard
$A = \frac{\text{Dealer A}}{\text{Dealer B}}$	5	3	4]
Dealer B	7	2	3]
Deluxe	Pr <i>emum</i>	Standard	
$B = \frac{\text{Dealer A}}{\text{Dealer B}}$	8	7	6 7
Dealer B	10	5	7]

******* END *******