Predizione di anomalie nel traffico urbano attraverso la geolocalizzazione dei veicoli ed il machine learning

Tesi di Laurea in Ingegneria Informatica

Candidato

Leonardo Poggiani

Relatori

Prof. Mario G.C. A. Cimino Prof. Gigliola Vaglini Ing. A.L. Alfeo

Introduzione e Problema

Nelle città con
flussi di traffico elevati
può rivelarsi molto utile
riuscire a riconoscere
in quali giornate
si potrebbe avere
un traffico di tipo anomalo.

Un metodo per farlo è
addestrando
un modello di machine
learning a classificare
le giornate in anomale o
normali
in base all'andamento
del traffico.

- Maggiore scalabilità
- ✓ Precisione elevata
- ✓ Data driven

Leonardo Poggiani 2

Architettura del software con le principali dipendenze

Fasi dell'analisi:

Predizione prossima giornata come se fosse normale con tecnologia LSTM Confronto e classificazione dei risultati ottenuti

- 1. Caricamento dei dati
- 2. Calcolo del valore della finestra
- 3. Creazione dataframe target

- 1. Calcolo della cosine distance
- 2. Classificazione mediante MLP

Leonardo Poggiani 3

Confronto tra time-series di una giornata normale predetta in rosso e quella di una giornata anomala in blu

Confronto tra time-series di una giornata normale in rosso e quella di una giornata normale predetta in blu

- Migliore configurazione con precisione del 75%
- Possibilità di analisi visiva dei risultati

Max_iter	accuracy
5	0.5
200	0.75
350	0.633
500	0.633
1000	0.583

max_iter: numero di epoche di addestramento del classificatore MLP. Al crescere possono verificarsi problemi di overfitting.

Leonardo Poggiani 4