Daily Practice Problems Engg.Maths Day - 1

- 1. If two matrices A and B are of order p x q and r x s respectively, can be subtracted only, if

- a) p = q b) p = q, r = s c) p = r, q = s d) p = r

2. A square matrix (a_{ij}) in which $a_{ij} = 0$ for $i \neq j$ and $a_{ij} = k$ (constant) for i = j is ($k \neq 1$) a) unit matrix b) scalar matrix c) null matrix d) diagonal matrix

Use the Code: BVREDDY, to get the Maximum Discount

- 3. If $A = [a_{ij}]$ is a scalar matrix of order n x n, such that $a_{ij} = k$ for all i = j, and $a_{ij} = 0$ for all $i \neq j$ then trace of A is .
 - a) nk
- b) n + k

c) $\frac{n}{k}$

d) 1

- 4. If D_1 and D_2 are two 3 x 3 diagonal matrices then (MSQ)
 - a) D_1D_2 is a diagonal matrix
 - b) $D_1 + D_2$ is a diagonal matrix
 - c) $D_1^2 + D_2^2$ is a diagonal matrix
 - d) $D_1^{\rm T} + D_2^{\rm T}$ is a diagonal matrix

Use the Code: BVREDDY, to get the Maximum Discount

- 5. If AB = 0, then
 - a) A must be null matrix
 - c) A and B need not be zero matrices

- b) B must be null matrix
- d) A and B are zero matrices

Use the Code: BVREDDY, to get the Maximum Discount

- 6. If A and B are two independent events, then the probability of occurrence of at least one of A and B is given by
 - (1) 1 P(A')P(B') (2) $P(A \cap B)$
 - (3) $P(\overline{A} \cap B)$ (4) $P(A \cap \overline{B})$

7. If A and B are any two events in a sample space

S then $P(A \cup B)$ is

$$1) \geq P(A) + P(B)$$

2)
$$P(A) + P(B)$$

$$3) \le P(A) + P(B) \qquad 4) P(A \cap B)$$

4)
$$P(A \cap B)$$

8. If $A \subset B$ then $P(A \cap B^{c}) =$ 1) 1 2) 0 3) P(A) 4) P(B)

9. If A and B are mutually exclusive events in the sample space (s), then

(1)
$$P(A) \le P(\overline{B})$$
 (2) $P(A) \ge P(\overline{B})$

(2)
$$P(A) \ge P(\overline{B})$$

(3)
$$P(A) < P(\overline{B})$$

(3) $P(A) < P(\overline{B})$ (4) None of these

- 10. An unbiased coin is tossed n times. The probability that head will present itself, odd number of times is

- 1) $\frac{1}{4}$ 2) $\frac{1}{3}$ 3) $\frac{1}{2}$ 3) $\frac{1}{5}$

 $\frac{(K)^{1+X-1}}{K}$ (K is a positive integer)

$$^{2)}-K$$

3)
$$\frac{1}{K}$$

2)
$$-K$$
 3) $\frac{1}{K}$ 4) $-\frac{1}{K}$

12.
$$\lim_{x \to 1} \frac{(2x-3)(\sqrt{x}-1)}{2x^2+x-3} =$$

$$1)\frac{1}{10}$$

1)
$$\frac{1}{10}$$
 2) $-\frac{1}{10}$ 3) $\frac{2}{5}$ 4) $-\frac{2}{5}$

3)
$$\frac{2}{5}$$

4)
$$-\frac{2}{5}$$

13.
$$\lim_{x\to 0} \frac{\sqrt[3]{1+\sin x} - \sqrt[3]{1-\sin x}}{x} =$$

1) 0

2) 1

3) $\frac{2}{3}$

4) $\frac{3}{2}$

14. If
$$\lim_{x\to 5} \frac{x^k - 5^k}{x - 5} = 500$$
, then the positive integral

value of k is

1) 3

2) 4

3)5

4)6

15.
$$\lim_{x \to 1} \frac{\sqrt{x^2 - 1} + \sqrt{x - 1}}{\sqrt{x^2 - 1}} =$$

1)
$$1 + \frac{1}{\sqrt{2}}$$

3)
$$-1+\frac{1}{\sqrt{2}}$$

$$(2)^{1-\frac{1}{\sqrt{2}}}$$

4)
$$-1-\frac{1}{\sqrt{2}}$$