MLRF Lecture 02

J. Chazalon, LRDE/EPITA, 2019

Global image descriptors

Lecture 02 part 02

Two approaches

Global image descriptors

- Compute statistics about the content of the image
- Produce a single global vector

Very attractive because they are very fast to compute and match, but... (see end of section)

Bag of Features techniques

- Select regions of interest in the image (may be a variable quantity)
- Compute descriptors for each region
- Index each part separately (like a text search engine which indexes words)

It is always possible to build a single descriptor from local descriptors!

This technique is the one used in modern image search engines.

Color Histograms

Color histograms – a very simple global descriptor (of pixels statistics)

High invariance to many transformation rotation, scaling thanks to normalization, perspective...

But limited discriminative power

Easy to implement

- 1. Reduce the colors (opt. when performing backprojection)
- 2. Compute a reduced color histogram on each image
- 3. Use a distribution distance to compare the descriptors

Color histograms: Some results on Twin it!

Timing comparison (1 CPU)

Template matching Match each pair of image: 3 hours

Color Histogram Color reduction: 3 seconds

Compute color histogram for all bubbles:

30 seconds

Compute distance between each pair of descriptors:

2 seconds

Color histograms: Step by step

1: Color reduction

- Use K-Means or any other clustering technique to find N useful colors.
- 2. Project each pixel value on the value of the closest cluster center.

Swain & Ballard 1991

Fig. 1. Left: Image of a Crunchberries cereal box. Right: Three dimensional color histogram of the Crunchberries image with the black background substrated.

↑ 16M colors

↑ 7 colors (+ white bg)

One possible result on the Twin it! poster

Color histograms: Step by step

2: Histogram computation

You already know it. (Normalize it.)

Color histograms: Step by step

3: Descriptor comparison

Many distribution metrics.

Cosine, Euclidean, Chebyshev...

Read, try, compare, learn!

Two histograms =
Two 1-D vectors!

from scipy.spatial.distance import ...

Distance functions between two numeric vectors **u** and **v**. Computing distances over a large collection of vectors is inefficient for these functions. Use **pdist** for this purpose.

braycurtis(u, v[, w])	Compute the Bray-Curtis distance between two 1-D arrays
canberra(u, v[, w])	Compute the Canberra distance between two 1-D arrays.
chebyshev(u, v[, w])	Compute the Chebyshev distance.
cityblock(u, v[, w])	Compute the City Block (Manhattan) distance.
correlation(u, v[, w, centered])	Compute the correlation distance between two 1-D arrays
cosine(u, v[, w])	Compute the Cosine distance between 1-D arrays.
euclidean(u, v[, w])	Computes the Euclidean distance between two 1-D arrays.
Jensenshannon (p, q[, base])	Compute the Jensen-Shannon distance (metric) between two 1-D probability arrays.
mahalanobis(u, v, VI)	Compute the Mahalanobis distance between two 1-D arrays.
minkowski(u, v[, p, w])	Compute the Minkowski distance between two 1-D arrays.
seuclidean(u, v, V)	Return the standardized Euclidean distance between two

arrays.

1-D arrays.

Compute the squared Euclidean distance between two 1-D

Compute the weighted Minkowski distance between two

sqeuclidean(u, v[, w])

wminkowski(u, v, p, w)

Discussion

Can you think of other global descriptors we could have implemented for the *Twin it!* case?

Other global image descriptors

More global descriptors

GIST of a scene:

- Oliva, Torralba, "Modeling the shape of the scene: a holistic representation of the spatial envelope", IJCV'01.
- Douze, Jegou, Sandhawalia, Amsaleg, Schmid, "Evaluation of GIST descriptors for web-scale image search", CIVR'09.

CENTRIST: CENsus Transform hISTogram

 Wu, Rehg, "CENTRIST: a visual descriptor for scene categorization", TPAMI'11.

Figure 15. Organization of natural scenes according to the openness and ruggedness properties estimated by the WDSTs.

Global descriptors: drawback

According to F. Perronnin:

Highly efficient to compute and to match

⇒ perfect in theory

But robustness vs informativeness tradeoff is hard to set

(personal conclusion):

- Approaches based on global image descriptors are confined to near-duplicate detection applications until now.
- Modern search engines use local representations and leverage them.