Systèmes dynamiques Corrigé 3

Exercice 1. Ensemble ω -limite non minimal

Soit $X = \{0,1\}^{\mathbb{N}}$ et $\sigma: X \to X$ le décalage. Soit

$$x = 010011000111...$$

Alors les singletons $\{000...\}$ et $\{111...\}$ sont deux parties fermées invariantes distinctes qui sont contenues dans $\omega(x)$.

Exercice 2. Croissance des orbites périodiques et entropie des applications expansives

1. Soient $n \in \mathbb{N}^*$ et $x \in X$ tels que $f^n(x) = x$. Soit $\varepsilon > 0$ tel que pour tous $y \in B(x, \varepsilon)$ on a

$$d(f^k(x), f^k(y)) \le \delta, \quad 0 \le k \le n.$$

Alors si $f^n(y) = y$ et $d(x, y) \le \varepsilon$, on a $d(f^k(x), f^k(y)) \le \delta$ pour tout $k \in \mathbb{N}$, et donc x = y. En particulier l'ensemble $\mathcal{P}_n(f) = \{x \in X, f^n(x) = x\}$ ne contient que des points isolés et donc $p_n(f)$ est fini par compacité.

De plus, pour tous $x \neq y \in \mathcal{P}_n(f)$, on a $d_n^f(x,y) > \delta$ (sinon on aurait x = y par expansivité). Ainsi $\mathcal{P}_n(f)$ est une famille de points qui est δ-séparée pour la distance d_n^f . Ceci donne que pour tout $\alpha < \delta$ on a (avec les notations du cours)

$$N(\alpha, n) \ge N(\delta, n) \ge p_n(f).$$

Cela conclut.

2. On considère $E_m: \mathbf{R}/\mathbf{Z} \to \mathbf{R}/\mathbf{Z}$ définie par $x \mapsto mx$, pour $m \geq 2$. Alors

$$p_n(E_m) = m^n - 1$$

ce qui implique que $p(E_m) = \log(m) = h_{top}(E_m)$ (cf. le cours).

3. On a

$$\#\{x \in \mathbf{T}^m, A^n(x) = x\} = \#\{x \in \mathbf{T}^m, (A^n - \mathrm{Id})x = 0\} = |\det(A^n - 1)|$$

par le TD 1. On a

$$\operatorname{sp}(A^n - 1) = \{\lambda^n - 1, \ \lambda \in \operatorname{sp}(A)\}.$$

Il suit que (la somme porte sur les valeurs propres comptées avec multiplicité algébrique)

$$\log|\det(A^n - 1)| = \sum_{\lambda \in \operatorname{sp}(A)} \log|\lambda^n - 1|.$$

On a

$$\lim_{n} \frac{1}{n} \log |\lambda^{n} - 1| = \begin{cases} \log |\lambda| & \text{si } |\lambda| > 1, \\ 0 & \text{sinon.} \end{cases}$$

Le lemme suivant permet de conclure par la question 1.

Lemme 1. f_A est expansive dans le sens où il existe $\delta > 0$ tel que pour tous $x, y \in X$,

$$\sup_{n \in \mathbf{Z}} d(f_A^n(x), f_A^n(y)) \le \delta \quad \Longrightarrow \quad x = y.$$

Proof. Supposons d'abord que $A \in \operatorname{Mat}_{n \times n}(\mathbf{Z})$ est une matrice telle que $\operatorname{sp}(A) \subset \{z \in \mathbf{C}, |z| > 1\}$. On pose $\mu = \min_{\lambda \in \operatorname{sp}(A)} |\lambda|$. Alors pour tout $\nu \in]1, \mu[$, il existe une constante C > 0 telle que pour tout $N \geq 0$ on a

$$||A^N X|| > C\nu^N ||X||, \quad X \in \mathbf{R}^n.$$

Cela se vérifie aisément en utilisant la décomposition de Jordan. Soit $0 < \varepsilon < \frac{1}{4\|A\|}$ (ici $\|A\|$ désigne la norme d'opérateur de A), et $y \in \mathbf{R}^n \setminus 0$ tel que $\|y\| \le \varepsilon$. Soit

$$N_0 = \max\{N \ge 0, \|A^n Y\| \le 2\varepsilon\} + 1.$$

Alors $||A^{N_0}Y|| \ge 2\varepsilon$ et

$$||A^{N_0}Y|| \le ||A|| ||A^{N_0-1}Y|| \le ||A|| (2\varepsilon) \le \frac{1}{2}.$$

On a montré que pour tout $X \in \mathbf{R}^n \setminus 0$

$$||X|| \le \varepsilon \implies \exists n \in \mathbb{N}, \quad 2\varepsilon \le ||A^n X|| \le 1/2.$$

Ceci implique que pour tous $x \neq y \in \mathbf{T}^n$,

$$d(x,y) \le \varepsilon \implies \exists n \in \mathbf{N}, \quad d(f_A^n(x), f_A^n(y)) \ge 2\varepsilon,$$
 (1)

et donc f_A est expansive.

Si on suppose juste que $\operatorname{sp}(A) \cap \{z \in \mathbf{C}, |z| = 1\} = \emptyset$ alors on peut appliquer le raisonnement précédent à $(A^{\pm 1})|_{E_{\pm}}$ où

$$E_{\pm} = \lim_{N \to \infty} \bigoplus_{|\lambda| \pm 1 > 1} \ker(A - \lambda \operatorname{Id})^{N};$$

on obtient alors (??) en remplaant N par Z, ce qui conclut.

Exercice 3. Codage symbolique de l'application du Chat d'Arnold

1. On considère $B = (b_{ij}) \in \mathrm{Mat}_{5\times 5}(\mathbf{Z})$ définie par

$$B = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}.$$

On note $\Sigma_B = \{\omega = (\omega_n)_{n \in \mathbb{Z}}, \ b_{\omega_n \omega_{n+1}} = 1\}$ l'alphabet associé à B. Alors pour tout $\omega \in \Sigma_B$, on a

$$\Delta(\omega) = \bigcap_{n \in \mathbf{Z}} f^{-n}(\Delta_{\omega_n}) \neq \emptyset,$$

puisque pour tout $N \geq 1$, l'intersection $\Delta(\omega, N) = \bigcap_{|n| \leq N} f^{-n}(\Delta_{\omega_n})$ est non vide. De plus, il existe une constante C > 0 telle que pour tout N, on a que $\Delta(\omega, N)$ est un rectangle qui vérifie que

$$\operatorname{diam}(\Delta(\omega, N)) \le C\lambda^{-N}.$$
 (2)

Il s'en suit que $\Delta(\omega)$ est réduit à un point, noté $x(\omega)$. Soit $h: \Sigma_B \to \mathbf{T}^2$ définie par $h(\omega) = x(\omega)$.

Alors h est surjective. En effet, si $x \in \mathbf{T}^2$, on choisit pour tout $n \in \mathbf{Z}$ un $\omega_n \in \{0, 1\}$ tel que $f^n(x) \in \Delta_{\omega_n}$; ceci implique que $h((\omega_n)_n) = x$.

L'application h est aussi continue. En effet, soit $\varepsilon > 0$ et $N \ge 1$ tels que $C\lambda^{-N} \le \varepsilon$. Soient $\omega, \omega' \in \Sigma_B$ tels que $\omega_j = \omega_j'$ pour tout $|j| \le N$. Alors $h(\omega), h(\omega') \in \Delta(\omega, N)$, et (??) implique que $d(h(\omega), h(\omega')) \le \varepsilon$.

On a bien s ûr $f_L \circ h = h \circ \sigma_B$, où σ_B est le décalage sur Σ_B , ce qui montre que (\mathbf{T}^2, f_L) est un facteur topologique de (Σ_B, σ_B) .

2. Par la question précédente et le cours on obtient pour $\lambda = (3 + \sqrt{5})/2$

$$h_{\text{top}}(f_L) \le h_{\text{top}}(\sigma_B) = \log \rho(B) = \log \lambda.$$

On a aussi par l'exercice précédent

$$h_{\text{top}}(f_L) \ge p(f_L) = \log \lambda.$$

Ainsi

$$h_{\text{top}}(f_L) = \log \frac{3 + \sqrt{5}}{2}.$$

Exercice 4. Fonctions zêta dynamiques

1. Soit $|z| < \exp(-p(f))$ et $\varepsilon > 0$ tel que $|z| < \exp(-p(f) - \varepsilon)$. Il existe C tel que tout n assez grand $p_n(f) \le C \exp((p(f) + \varepsilon/2)n)$ pour tout n assez grand, par définition de p(f). Alors pour tout n assez grand on a

$$\left| \frac{p_n(f)}{n} z^n \right| \le \frac{C}{n} e^{-n\varepsilon/2},$$

et donc $\zeta_f(z)$ est bien définie.

2. Montrer, dans les cas suivants, que ζ_f est une fonction rationnelle admettant un p ôle simple au point $z = \exp(-h_{\text{top}}(f))$, et que

$$p_n(f) \sim \exp\left(nh_{\text{top}}(f)\right) \quad (n \to \infty).$$

(a) On a $p_n(E_m) = m^n - 1$ pour tout $n \ge 1$. On calcule

$$\zeta_{E_m}(z) = \exp \sum_{n=1}^{\infty} \frac{m^n - 1}{n} z^n = \frac{1 - z}{1 - mz}.$$

Ainsi ζ_{E_m} a un p ôle simple en $z = 1/m = \exp(-\log m) = \exp(-h_{\text{top}}(E_m))$.

(b) On a $p_n(f_L) = |\det(L^n - 1)| = -\det(L^n - 1)$ et donc, si $\lambda = (3 + \sqrt{5})/2$,

$$\zeta_{f_L}(z) = \exp -\sum_{n=1}^{\infty} \frac{\det(L^n - 1)}{n} z^n$$

$$= \exp -\sum_{n=1}^{\infty} \frac{(\lambda^n - 1)(\lambda^{-n} - 1)}{n} z^n$$

$$= \exp -\sum_{n=1}^{\infty} \frac{2 - \lambda^n - \lambda^{-n}}{n} z^n,$$

ce qui donne comme à la question précédente

$$\zeta_{f_L}(z) = \frac{(1-z)^2}{(1-z\lambda)(1-z/\lambda)}.$$

Encore une fois, ζ_{f_L} a un p ôle simple en $\lambda^{-1} = \exp(-\log \lambda) = \exp(-h_{\text{top}}(f_L))$.

(c) Par le cours on a $p_n(\sigma_A) = \operatorname{tr} A^n$. Ainsi

$$\zeta_{\sigma_A}(z) = \exp \sum_{n=1}^{\infty} \frac{\operatorname{tr} A^n}{n} z^n = \frac{1}{\det(1 - zA)}.$$

Par le théorème de Perron-Frobenius, on a $\det(1-zA)=(1-z\rho(A))P(z)$ où P est un polyn ôme qui n'admet que des racines de modules strictement inférieurs à $\rho(A)$. Cela conclut puisque $h_{\text{top}}(\sigma_A) = \log \rho(A)$.

3. On note $Q_n(f)$ l'ensemble des points périodique de période exactement n, et $\mathcal{O}(n)$ l'ensemble des orbites de période n. Alors $\#Q_n(f) = n\#\mathcal{O}(n)$ et (toutes les opérations sont licites pour $|z| < e^{-p(f)}$)

$$\zeta_f(z) = \exp \sum_{n=1}^{\infty} \frac{\# \mathcal{P}_n(f)}{n} z^n$$

$$= \exp \sum_{n=1}^{\infty} \frac{\sum_{k|n} \# \mathcal{Q}_k(f)}{n} z^n$$

$$= \exp \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \# \mathcal{Q}_k(f) \frac{z^{kj}}{kj}$$

$$= -\exp \sum_{k=1}^{\infty} \# \mathcal{O}(k) \log(1 - z^k)$$

$$= \prod_{p \in \mathcal{P}} \frac{1}{1 - z^{|p|}}.$$

Exercice 5. Toute transformation continue surjective est facteur d'un homéomorphisme

Soit $\hat{X} = X^{-\mathbf{N}}$ et $\hat{f}: \hat{X} \to \hat{X}$ définie par

$$\hat{f}: (x_n)_{n \le 0} \mapsto (f(x_n))_{n \le 0}.$$

On note

$$\tilde{X} = \{ \tilde{x} = (x_n)_{n \le 0} \in X^{-\mathbf{N}}, \ k < 0 \implies x_{k+1} = f(x_k) \}.$$

Alors \tilde{X} est une partie fermée et positivement invariante par \hat{f} . On note \tilde{f} la restriction de \hat{f} à \tilde{X} . Soit $h: \tilde{X} \to X$ définie par

$$h: (x_n)_{n<0} \mapsto x_0.$$

Alors h est continue et vérifie $h \circ \tilde{f} = f \circ h$.

Montrons que h est surjective. Soit $x \in X$. Par surjectivité de f, il existe x_{-1} tel que $f(x_{-1}) = x$. En itérant ce processus, on obtient $\tilde{x} = (x_{-n})_{n \geq 0} \in \tilde{X}$ tel que $\tilde{f}(\tilde{x}) = x$. Il reste à montrer que \tilde{f} est un homéomorphisme. On définit $\tilde{g}: \tilde{X} \to \tilde{X}$ par

$$\tilde{g}: (x_k)_{k \le 0} \mapsto (x_{k-1})_{k \le 0}.$$

Alors g est continue et vérifie $\tilde{g}\circ \tilde{f}=\tilde{f}\circ \tilde{g}=\mathrm{id}_{\tilde{X}},$ ce qui conclut.