KON317 - Otomatik Kontrol Sistemleri 8 Temmuz 2008 Dr. Murat Yeşiloğlu Kısa Sınav 5

Yukarıda verilen kapalı çevrim sistemde Routh-Hurwitz yöntemini kullanarak

- a) $G(s) = \frac{s+6}{(s+1)(s+2)}$ için sistemi kararlı kılan K kazanç değer aralığını bulun. b) K=1 ve $G(s) = \frac{1}{4s^2(s^2+1)}$ olarak verildiğine göre kapalı çevrim sistem kutuplarının s-düzleminde hangi bölgede olduğunu belirleyin.
- K=1 ve $G(s)=\frac{s+8}{s^5-s^4+4s^3-4s^2+2s-10}$ olarak verildiğine göre kapalı çevrim sistem kutuplarının s-düzleminde hangi bölgede olduğunu belirleyin.

Çözüm:

a) Kapalı çevrim transfer fonksiyonu $\frac{Y(s)}{R(s)} = \frac{K(s+6)}{s^2 + (K+3)s + 6K + 2}$ olarak hesaplanır. Dolayısıyla, sistemin karakteristik denklemi $s^2 + (K+3)s + 6K + 2 = 0$ kullanılarak aşağıdaki Routh tablosu oluşturulur.

Birinci sütunda işaret değişikliği olmaması için s^1 satırından K>-3 koşulu, s^0 satırından da $K>-\frac{1}{3}$ koşulu gelir. Her ikisinin de sağlanması gerektiğinden $K > -\frac{1}{3}$ koşulu sistemin kararlılığı için K'nın alabileceği değerlerin sınırını belirler.

b) Kapalı çevrim transfer fonksiyonu $\frac{Y(s)}{R(s)} = \frac{1}{4s^4 + 4s^2 + 1}$ olarak hesaplanır. Dolayısıyla, sistemin karakteristik denklemi $4s^4 + 0s^3 + 4s^2 + 0s + 1 = 0$ kullanılarak aşağıdaki Routh tablosu oluşturulur.

 s^3 satırının tüm elemanları sıfırdır. Bu durumda s^4 satırını oluşturan fonksiyonun s'e göre türevi alınır. $\frac{d[4s^4+4s^2+1]}{ds}=16s^3+8$ olarak bulunan fonksiyon s^3 satırında yerine konur ve sadeleştirme amacıyla 8'e bölünür. Bu sefer de s^1 satırının tüm elemanları sıfır çıkar. Bu durumda da s^2 satırını oluşturan fonksiyonun s'e göre türevi alınır. $\frac{d[2s^2+1]}{ds}=4s$ olarak bulunan fonksiyon s^1 satırında yerine konarak Routh tablosu oluşturulur. s^3 satırının tüm elemanları sıfır olması fonksiyonun 4. dereceden bir çift fonksiyon olduğundan kay-

 s^3 satırının tüm elemanları sıfır olması fonksiyonun 4. dereceden bir çift fonksiyon olduğundan kaynaklanmıştır. Dolayısıyla, bu fonksiyonun 4 kökü orijine göre simetriktir. Routh tablosunun ilk sütununda işaret değişikliği olmadığı için bu köklerin hiçbirisinin sağ yarı düzlemde olmadığını anlıyoruz. Öyleyse bu 4 kök $j\omega$ ekseni üzerinde olmalı. s^1 satırının tüm elemanlarının sıfır olması ise bu köklerin katlı kök olduğunu gösterir.

c) Kapalı çevrim transfer fonksiyonu $\frac{Y(s)}{R(s)} = \frac{s+8}{s^5-s^4+4s^3-4s^2+3s-2}$ olarak hesaplanır. Dolayısıyla, sistemin karakteristik denklemi $s^5-s^4+4s^3-4s^2+3s-2=0$ kullanılarak aşağıdaki Routh tablosu oluşturulur.

 s^3 satırının ilk elemanı sıfır olduğu için bu elemanın yerine sıfıra yakın ama sıfırdan farklı bir değerde olduğunu kabul ettiğimiz ϵ koyarız. ϵ 'un pozitif ya da negatif değerli olması sonucu değiştirmez. Aşağıdaki tabloda bu her iki durum için de toplam işaret değişikliğinin 3 olduğunu görürüz.

$\epsilon = 0^+$	$\epsilon = 0^-$	ilk sütun
+	+ ,,	1
_	- 🖖	-1
+ 1	-	ϵ
+	- 11	$\frac{1-4\epsilon}{\epsilon}$
+ ,,	+ 🖐	$\frac{2\epsilon^2 - 4\epsilon + 1}{1 - 4\epsilon}$
_ ↓	- 1	-2

O halde sistemin 3 kökü sağ yarı düzlemdedir. 5. dereceden bir sistem olduğu için toplam 5 kökü vardır. Kalan 2 kök sol yarı düzlemdedir.