Markov Inequality

Version 1 If X is any random variable (not necessarily positive)

and "a" is any positive constant, then $P(|X| \ge a) \le \frac{E(|X|)}{a}.$ Why? Let Y indicate whether $|X| \ge a$, i.e. Y=1 if $|X| \ge a$ = 0 otherwise.

I doe is that $Y \le \frac{|X|}{a}$ always.

Two cases to check: If Y=0 then $Y=0 \le \frac{|X|}{a}$ $|Y=1| \text{ Then } a \le |X| \text{ so } Y=1 \le \frac{|X|}{a}.$ Since $Y \le \frac{|X|}{a}$ always, $E(Y) \le E(\frac{|X|}{a}) = \frac{E(|X|)}{a}$ $P(|X| \ge a)$

Second version! If X is a random variable that is always ≥ 0 i.e. nonnegative, then Markov inequality applies to X with no need to take absolute value, i.e. $P(X \geq a) \leq \frac{E(X)}{a}$ for a > 0.