Problem Solutions

Chapter 2

Pierre Paquay

Problem 2.1

Let us begin by extracting the value of N from the $\epsilon(M, N, \delta)$ expression. We have that

$$\sqrt{\frac{1}{2N}\ln\frac{2M}{\delta}} \leq \epsilon \Leftrightarrow N \geq \frac{1}{2\epsilon^2}\ln\frac{2M}{\delta}.$$

(a) So for M=1 and $\delta=0.03$, to have $\epsilon\leq 0.05$ we need

$$N \ge \frac{1}{2 \cdot 0.05^2} \ln \frac{2}{0.03} = 839.9410156.$$

(b) For M=100 and $\delta=0.03$, to have $\epsilon\leq 0.05$ we need

$$N \ge \frac{1}{2 \cdot 0.05^2} \ln \frac{2 \cdot 100}{0.03} = 1760.9750528.$$

(c) And for M = 10000 and $\delta = 0.03$, to have $\epsilon \leq 0.05$ we need

$$N \ge \frac{1}{2 \cdot 0.05^2} \ln \frac{2 \cdot 10000}{0.03} = 2682.00909.$$

Problem 2.2

For N=4, if we consider four non aligned points, this \mathcal{H} shatters these points (you only have to effectively enumerate them to see that all dichotomies can be generated), so in this case we have $m_{\mathcal{H}}(4)=2^4$.

However, for N = 5, no matter how you place your five points, some point will be inside a rectangle defined by others. In this case, we are not able to generate all dichotomies and consequently $m_{\mathcal{H}}(5) < 2^5$.

From these two observations, we may conclude that, for poisitive rectangles, we have $d_{VC} = 4$, thus

$$m_{\mathcal{H}}(N) \le N^4 + 1.$$

Problem 2.3

(a) We already know that the growth function for positive rays is equal to N+1. If we enumerate the dichotomies added by negative rays, we get N-1 new dichotomies (you get the opposite of the ones from positive rays and you have to substract the two dichotomies where all points are +1 and where all points are -1). So in total, we get that

$$m_{\mathcal{H}}(N) = 2N.$$

As the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$ is 2 $(m_{\mathcal{H}}(3) = 6)$, we have that $d_{VC} = 2$.

(b) Here, we already know that the growth function for positive intervals is equal to $N^2/2 + N/2 + 1$. If we add the new dichotomies generated by negative intervals, we get N-2 new ones (for example for N=3, we only add the (+1,-1,+1) dichotomy, and for N=4, we add the (+1,-1,+1,+1) and (+1,+1,-1,+1)

1

dichotomies). Of course, this only holds if N > 1, in the case where N = 1 we already generate the two dichotomies with the positive intervals alone. In conclusion, we may write that

$$m_{\mathcal{H}}(N) = \frac{N^2}{2} + \frac{3N}{2} - 1 \text{ if } N > 1 \text{ and } 2 \text{ if } N = 1.$$

As the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$ is 3 $(m_{\mathcal{H}}(4) = 13)$, we have that $d_{VC} = 3$.

(c) To determine the growth function fo concentric circles, we have to map the problem from \mathbb{R}^d to $[0, +\infty[$. To do this, we use the map ϕ defined as

$$\phi: (x_1, \dots, x_d) \mapsto r = \sqrt{x_1^2 + \dots + x_d^2}$$

By doing that, we may see that the problem of concentric circles in \mathbb{R}^d is equivalent to the problem of positive intervals in \mathbb{R} (it is easy to see that ϕ maps points with the same radius to a unique point in $[0, +\infty[)$, and consequently we may write that

$$m_{\mathcal{H}}(N) = \frac{N^2}{2} + \frac{N}{2} + 1$$

which is independent of d. As the largest value of N for which $m_{\mathcal{H}}(N) = 2^N$ is 2 $(m_{\mathcal{H}}(3) = 7)$, we have that $d_{VC} = 2$.

Problem 2.4

Problem 2.5

To prove the inequality, we begin with the case D=0. Here, it is easy to see that

$$1 = \binom{N}{0} \le N^0 + 1 = 2.$$

Now, we assume the result is correct for D ($D \ge 1$), and we will prove it for D + 1. We may write that

$$\sum_{i=0}^{D+1} \binom{N}{i} = \sum_{i=0}^{D} \binom{N}{i} + \binom{N}{D+1}$$

$$\leq N^{D} + 1 + \binom{N}{D+1}$$

$$\leq N^{D} + 1 + \frac{N!}{(D+1)!(N-D-1)!}$$

To continue, we have to prove that

$$\frac{N!}{(N-D-1)!} \le N^{D+1},$$

which is equivalent to

$$\frac{1}{N^{D+1}}\cdot\frac{N!}{(N-D-1)!}\leq 1.$$

To see this, it suffices to note that

$$\frac{1}{N^{D+1}} \cdot \frac{N!}{(N-D-1)!} = \frac{1}{N^{D+1}} \prod_{i=0}^{D} (N-i) = \prod_{i=0}^{D} \frac{N-i}{N^{D+1}} \le 1.$$

So, we are now able to write that

$$\sum_{i=0}^{D+1} \binom{N}{i} \leq N^D + 1 + \frac{N!}{(D+1)!(N-D-1)!}$$

$$\leq N^D + 1 + \frac{N^{D+1}}{(D+1)!}.$$

As $D \ge 1$, we have $(D+1)! \ge 2$, and consequently

$$\frac{1}{(D+1)!} \le \frac{1}{2},$$

which enables us to write that

$$\begin{split} \sum_{i=0}^{D+1} \binom{N}{i} & \leq & N^D + 1 + \frac{N^{D+1}}{(D+1)!} \\ & \leq & N^D + 1 + \frac{N^{D+1}}{2}. \end{split}$$

Moreover, as we assumed $N \ge D+1$ (if not, we trivially have the result, as in this case $\binom{N}{D+1}=0$), we get $N \ge 2$ and consequently

$$\frac{1}{N} < \frac{1}{2} \Leftrightarrow \frac{N^D}{N^{D+1}} < \frac{1}{2} \Leftrightarrow N^D < \frac{N^{D+1}}{2},$$

which allows us to get our result as we now have

$$\begin{split} \sum_{i=0}^{D+1} \binom{N}{i} & \leq & N^D + 1 + \frac{N^{D+1}}{2} \\ & \leq & \frac{N^{D+1}}{2} + 1 + \frac{N^{D+1}}{2} = N^{D+1} + 1. \end{split}$$