Mestrado integrado em Engª e Gestão de Sistemas de Informação

Bases de Dados

1ºAno / 2ºSemestre

2014/15

José Luís Pereira

Departamento de Sistemas de Informação

Universidade do Minho

MiEGSI - 2014/15

Modelo Relacional de Bases de Dados

A implementação de um esquema relacional de BD, envolve:

- Modelação conceptual: consiste na construção do modelo conceptual de dados, o qual traduz a perceção que os utilizadores têm dos dados, sendo independente de qualquer tecnologia ou implementação física. A abordagem mais popular recorre aos DER (Diagramas de Entidades e Relacionamentos);
- Modelação lógica: Corresponde à transformação do modelo conceptual em estruturas de dados que são implementáveis no SGBD selecionado. O modelo relacional tem sido o modelo de bases de dados mais utilizado na construção de modelos lógicos de dados:
- Implementação física: Passa pela definição dos detalhes físicos que serão considerados na implementação do modelo lógico, e que são específicos do SGBD selecionado.

MiEGSI - 2014/15

Modelo Relacional de Bases de Dados

Esquemas de Bases de Dados Relacionais

MiEGSI - 2014/15

Modelo Relacional de Bases de Dados

Modelação lógica – transformação do modelo conceptual de dados num modelo de bases de dados (neste caso relacional):

Regras de transformação (não necessariamente por esta ordem):

- A. Cada entidade no modelo conceptual dará origem a uma relação/tabela no modelo relacional, cujos atributos são os atributos da entidade;
- B. Para cada relação, de entre as chaves candidatas que possam existir, há que selecionar uma chave primária. As restantes passam a ser chaves secundárias:
- C. Recorrendo à cardinalidade dos relacionamentos estabelecidos no modelo conceptual:

MiEGSI - 2014/15

MiEGSI - 1° ano / 2°sem

4

Modelação lógica – transformação do modelo conceptual de dados num modelo de bases de dados (neste caso relacional):

Regras de transformação (não necessariamente por esta ordem):

- Para cada relacionamento de muitos para muitos (M:N) cria-se uma nova relação cujos atributos serão os atributos correspondentes às chaves primárias das relações envolvidas;
- Relacionamentos de um para um (1:1) tendem a dar origem a uma única relação que, fundindo as entidades envolvidas nesse relacionamento, será constituída por todos os respetivos atributos. Quando não for possível, ou aconselhável, fazer a fusão das duas entidades, uma das duas relações correspondentes deve importar a chave primária da outra relação;

MiEGSI - 2014/15

Modelo Relacional de Bases de Dados

Exercício:

- Utilizando as regras de transformação de modelos conceptuais de dados em modelos relacionais, desenvolver os esquemas relacionais correspondentes a alguns dos exercícios de modelação anteriores:
 - · Contexto Escolar:
 - · Contexto Bancário;
 - · Contexto Empresarial.

MiEGSI - 2014/15

Modelo Relacional de Bases de Dados

Modelação lógica – transformação do modelo conceptual de dados num modelo de bases de dados (neste caso relacional):

Regras de transformação (não necessariamente por esta ordem):

- Relacionamentos de um para muitos (1:N) implicam a importação, para a relação correspondente à entidade do lado "muitos", da chave primária da relação que corresponde à entidade do lado "um";
- D. As questões relacionadas com a opcionalidade dos relacionamentos são relevantes para decidir quais as importações de chaves primárias mais convenientes.

MiEGSI - 2014/15

6

Modelo Relacional de Bases de Dados

2014/15 7 MiEGSI - 2014/15

Normalização de Dados

MiEGSI - 2014/15

Modelo Relacional de Bases de Dados

11

- Normalização (cont.)
 - Dependências funcionais (X → Y, ou seja, X determina Y)
 Exemplos:

NºFuncionário → Nome_Funcionário, Departamento (NºFactura, Cod_produto) → Qtd_vendida, Preço_venda

- A manipulação de dependências funcionais é governada por regras
 - Reflexividade (se X ≥ Y então X → Y)
 - Aumentatividade (se X → Y então XZ → YZ)
 - Transitividade (se $X \rightarrow Y e Y \rightarrow Z então X \rightarrow Z$)
 - Decomposição ($\underline{se} X \rightarrow YZ \underline{então} X \rightarrow Y \underline{e} X \rightarrow Z$)
 - União (se $X \rightarrow Y e X \rightarrow Z então X \rightarrow YZ)$
 - Pseudotransitividade ($\underline{se} X \rightarrow Y \underline{e} YW \rightarrow Z \underline{então} XW \rightarrow Z$)

MiEGSI - 2014/15

Modelo Relacional de Bases de Dados

- Normalização
 - Conceito
 - Decomposição sucessiva de relações sem perda de informação
 - · Objetivo principal → redução dos níveis de redundância
 - · As consequências da redundância
 - · Problemas de integridade
 - · Espaço de armazenamento
 - · Redução do desempenho
 - Dependências
 - Funcionais / Multivalor / Junção

MiEGSI - 2014/15

10

Modelo Relacional de Bases de Dados

- · Normalização (cont.)
- Objetivo: Partindo de um conjunto inicial de dependências funcionais, por manipulação dessas dependências pretende-se:
 - → Encontrar o conjunto mínimo de dependências!
 - → Ou seja, o Esquema Relacional de Bases de Dados
 - · Por exemplo, o Esquema Relacional:

Alunos (NºAluno, Nome, Data_Nasc, Género) **Unidades_Curriculares** (Cod UC, Designação, Ano_Curricular) **Inscrições** (NºAluno, Cod UC, Nota)

traduz as seguintes dependências funcionais:

NºAluno → Nome, Data_Nasc, Género Cod_UC → Designação, Ano_Curricular (NºAluno, Cod UC) → Nota

MiEGSI - 2014/15

12

- · Normalização (cont.)
 - Processo de normalização (bastante mais sistemático...)
 - 1ªFN (grupos de elementos que provocam redundância são removidos para outra(s) relação(ões))

Encomendas (nºencomenda, nºcliente, cliente, endereço_cliente, data_encomenda, cod_produto, produto, qtd_encomenda)

 \downarrow

Encomendas (nºencomenda, nºcliente, cliente, endereço cliente, data encomenda)

+

 $\begin{tabular}{lll} \textbf{Linhas_Encomenda} & (\underline{n^q}encomenda, cod_produto, produto, \\ qtd_encomenda) \end{tabular}$

MiEGSI - 2014/15

13

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - Processo de normalização (cont.)
 - 3ªFN (não existem dependências transitivas entre atributos não-chave)

Encomendas (<u>nºencomenda</u>, nºcliente, cliente, endereço_cliente, data_encomenda)

 Ψ

Encomendas (nºencomenda, nºcliente, data_encomenda)

+

Clientes (nºcliente, cliente, endereço_cliente)

MiEGSI - 2014/15

15

Modelo Relacional de Bases de Dados

- · Normalização (cont.)
 - · Processo de normalização (cont.)
 - 2ªFN (todos os atributos não-chave dependem da totalidade da chave)

Linhas_Encomenda (nºencomenda, cod produto, produto, qtd encomenda)

 \downarrow

Linhas_Encomenda (nºencomenda, cod produto, qtd encomenda)

+

Produtos (cod produto, produto)

MiEGSI - 2014/15

. . .

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - Processo de normalização (cont.)
 - Resultado final (até à 3ªFN)

Encomendas (nºencomenda, nºcliente, data_encomenda)

Clientes (nºcliente, cliente, endereço_cliente)

Linhas_Encomenda (nºencomenda, cod_produto, qtd_encomenda)

Produtos (cod_produto, produto)

Qual seria a solução obtida via Modelação Conceptual?

MiEGSI - 2014/15

16

- · Normalização (cont.)
 - BCNF (todos os atributos são funcionalmente dependentes da chave, de toda a chave e nada mais que a chave)
 - Exemplo: "num determinado contexto hospitalar em que existem diversos serviços e médicos nass respetivas especialidades [...] num dado serviço cada paciente é sempre atendido pelo mesmo médico"

R (paciente, serviço, médico), contudo também:

médico → serviço, logo R não está na BCNF !!!

desta forma só será possível registar um médico num dado serviço quando este atender o seu primeiro doente...

Soluções?

MiEGSI - 2014/15

17

19

Modelo Relacional de Bases de Dados

Normalização (cont.)

Uma outra solução:

R (paciente, serviço, médico)

R2 (médico, serviço)

Esta solução sofre de maior redundância mas mantém as duas dependências funcionais:

Qual seria a solução obtida via Modelação Conceptual?

MiEGSI - 2014/15

Modelo Relacional de Bases de Dados

· Normalização (cont.)

Possível solução:

R1 (paciente, médico)

R2 (médico, serviço)

R1 e R2 estão na BCNF, mas existem alguns problemas:

Paciente	Médico
J. Silva	C.Costa
J.Silva	B.Sousa

Médico	Serviço
C.Costa	Cardiologia
B.Sousa	Cardiologia

Desta forma poder-se-á ter pacientes com médicos diferentes no mesmo serviço! O que se passa é que se perdeu a dependência:

(paciente, serviço) → médico

MiEGSI - 2014/15

18

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - 4ªFN (não existem dependências multivalor)

X -->> Y

X multidetermina Y

Se X ->> Y e X ->> Z então Y e Z são independentes em relação a X!

· Exemplo, considere-se a seguinte relação

R (agente, produto, zona)

que pretende representar o seguinte facto:

"agente vende produto na zona"

O que acontece se, neste contexto, "todos os agentes vendem todos os produtos que representam nas zonas em que atuam"?

Muita redundância!!!

MiEGSI - 2014/15

20

- · Normalização (cont.)
 - 5ªFN (não existem dependências de junção)

Se uma relação puder ser decomposta sem perda de informação num conjunto de relações menores, deve sê-lo.

 Exemplo: Supor que a informação relativa aos produtos representados pelos agentes nas zonas em que atuam aparece na seguinte tabela:

Agente	Produto	Zona
Alberto	Bolacha	Norte
Alberto	Bolacha	Centro
Alberto	Bombom	Centro
Carlos	Chocolate	Centro
Carlos	Caramelo	Centro
Carlos	Caramelo	Sul
Carlos	Rebuçado	Sul
Miguel	Bombom	Ilhas

Esta tabela pode ser decomposta em três tabelas sem perdas de informação:

MiEGSI - 2014/15

22

Modelo Relacional de Bases de Dados

- Normalização (cont.)
 - 5ªFN (não existem dependências de junção)

Agente	Produto
Alberto	Bolacha
Alberto	Bombom
Carlos	Chocolate
Carlos	Caramelo
Carlos	Rebuçado
Miguel	Bombom

Agente	Zona
Alberto	Norte
Alberto	Centro
Carlos	Centro
Carlos	Sul
Miguel	Ilhas

Produto	Zona
Bolacha	Norte
Bolacha	Centro
Bombom	Centro
Chocolate	Centro
Caramelo	Centro
Caramelo	Sul
Rebuçado	Sul
Bombom	Ilhas

- Apenas a junção entre aquelas três projeções reconstrói a relação original!
- Alterações nestas tabelas impedem a recuperação da tabela original!
 - →Interesse puramente académico!!!

Qual seria a solução obtida via Modelação Conceptual?

MiEGSI - 2014/15

23

Modelo Relacional de Bases de Dados

- · Normalização (cont.)
 - O compromisso na normalização

· Melhor ainda:

Modelação Conceptual + Mapeamento Relacional

MiEGSI - 2014/15

24