3BiT

до лабораторної роботи №2 на тему:

«Розв'язання систем лінійних алгебраїчних рівнянь»

Студентки 2-ого курсу Групи К-25 ФКНК Нємкевич Дар'ї

Київ 2022

Зміст

- 1 Постановка задачі
- 2 Метод Гаусса
- 3 Метод Зейделя

Постановка задачі

Розглянемо систему лінійних алгебраїчних рівнянь:

$$Ax = b$$
,

де A — матриця розмірності $n \times n, \ det A \neq 0, \$ отже розв'язок системи існує і він єдиний.

$$A = \begin{pmatrix} 1 & 0 & 0 & 0 & \dots & 0 & 1 \\ 1 & a_1 & 0 & 0 & \dots & 0 & 0 \\ 1 & 1 & a_2 & 0 & \dots & 0 & 0 \\ 1 & 0 & 1 & a_3 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & 0 & \dots & 1 & a_{n-1} \end{pmatrix}, \quad \bar{b} = \begin{pmatrix} n\cos\frac{\pi}{n} \\ n\cos\frac{\pi}{n} \\ n\cos\frac{\pi}{n-1} \\ \vdots \\ n\cos\frac{\pi}{1} \end{pmatrix},$$

$$n_0 = 10$$
, $(n = \overline{10,30})$,
 $a_k = 1 + 0.75 \cdot k$

Методом Гаусса знайти:

- а) розв'язок системи x;
- б) нев'язку $\bar{r} = A\bar{x} \bar{b}$;
- в) число обумовленості матриці А;
- г) визначник матриці А (знайдений за допомогою заданого прямого методу);
- д) обернену матрицю A^{-1} (знайдену за допомогою заданого прямого методу), вивести також матрицю $A^{-1} \cdot A$.

Методом Зейделя знайти:

- а) розв'язок системи \bar{x} , отриманий з точністю ε ($\varepsilon_0 = 10^{-4}$);
- б) нев'язку $\bar{r} = A\bar{x} \bar{b}$;
- в) вивести кількість ітерацій.

Метод Гаусса

(з вибором головного елемента по стовпцях)

Покладемо $A_0 = A$. Ведучим елементом обирається максимальний по модулю елемент стовпця, що розглядається: $a_{lk}=\max_{i}|a_{ik}^{(k-1)}|,\;i=\overline{k,n}$. Для того щоб ведучий елемент

зайняв відповідне місце, переставляються рядки k та l в матриці A_{k-1} за допомогою матриці перестановок:

$$\tilde{A}_k = P_k A_{k-1},$$

де P_k – це матриця перестановок, отримана з одиничної матриці перестановкою k та l рядків:

$$P_k = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix}^{l} k$$

Прямий хід Гаусса в матричній формі:

$$A_k = M_k \tilde{A}_k,$$

де M_k – матриця розмірності $n \times n$:

$$M_k = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & m_{kk} & 0 & \dots & 0 \\ 0 & 0 & \dots & m_{(k+1)k} & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & m_{nk} & 0 & \dots & 1 \end{pmatrix},$$

$$m_{kk} = \frac{1}{\tilde{a}_{kk}^{(k)}}, \quad m_{ik} = \frac{-\tilde{a}_{ik}^{(k)}}{\tilde{a}_{kk}^{(k)}}, \quad i = \overline{k+1, n}.$$

$$m_{kk} = \frac{1}{\tilde{a}_{kk}^{(k)}}, \quad m_{ik} = \frac{-\tilde{a}_{ik}^{(k)}}{\tilde{a}_{kk}^{(k)}}, \quad i = \overline{k+1, n}.$$

За допомогою прямого ходу методу Гаусса в матричній формі:

$$M_n P_n ... M_2 P_2 M_1 P_1 Ax = M_n P_n ... M_2 P_2 M_1 P_1 b,$$

зводимо систему до вигляду:

$$\begin{cases} x_1 + a_{12}^{(1)} x_2 + \dots + a_{1n}^{(1)} x_n = & a_{1(n+1)}^{(1)}; \\ x_2 + \dots + a_{2n}^{(2)} x_n = & a_{2(n+1)}^{(2)}; \\ \dots & \dots & \dots \\ x_n = & a_{n(n+1)}^{(n)}. \end{cases}$$

Розв'язок знаходимо за допомогою зворотнього ходу Гаусса:

$$x_n = a_{n(n+1)}^n, \quad x_i = a_{i(n+1)}^{(i)} - \sum_{j=i+1}^n a_{ij}^{(i)}, \quad i = \overline{n-1, 1}.$$

Складність методу Гаусса: $Q(n) = \frac{2}{3}n^3 + O(n^2)$.

Зауваження. Методом Гаусса з вибором головного можна знайти визначник:

$$det A=(-1)^p\ \tilde{a}_{11}^{(1)}\ \tilde{a}_{22}^{(2)}\ ...\ a_{nn}^{(n)}=(-1)^p\ a_{11}^{(0)}\ a_{22}^{(1)}\ ...\ a_{nn}^{(n-1)},$$
 де p – кількість перестановок.

Результат для n = 10:

Детерм	Детермінант: 446817.4833984375								
Оберне [1.1	ена матриця: -2.2e-6	3.9e-6	-9.8e-6	3.2e-5	-0.00013	0.0006	-0.0033	0.021	-0.15]
-0.64	0.57	-2.2e-6	5.6e-6	-1.8e-5	7.3e-5	-0.00035	0.0019	-0.012	0.083
-0.19	-0.23	0.4	1.7e-6	-5.5e-6	2.2e-5	-0.0001	0.00057	-0.0036	0.025
-0.29	0.07	-0.12	0.31	-8.1e-6	3.2e-5	-0.00015	0.00085	-0.0053	0.037
-0.21	-0.018	0.031	-0.077	0.25	2.4e-5	-0.00011	0.00062	-0.0039	0.027
-0.19	0.0037	-0.0065	0.016	-0.053	0.21	-0.0001	0.00057	-0.0036	0.025
-0.17	-0.00067	0.0012	-0.0029	0.0096	-0.038	0.18	0.0005	-0.0031	0.022
-0.15	0.00011	-0.00019	0.00047	-0.0015	0.0061	-0.029	0.16	-0.0028	0.02
-0.14	-1.5e-5	2.6e-5	-6.6e-5	0.00021	-0.00086	0.0041	-0.022	0.14	0.018
_0.13	3 2.2e-6	-3.9e-6	9.8e-6	-3.2e-5	0.00013	-0.0006	0.0033	-0.021	0.15

Добуток об	ерненої та	початково	ї матриць:						
1.0	8.5e-22	1.7e-21	0	0	0	-4.3e-19	-3.5e-18	0	0]
0	1.0	0	0	0	5.4e-20	2.2e-19	1.7e-18	1.4e-17	0
2.4e-17	5.6e-17	1.0	0	0	0	0	0	0	0
-2.1e-17	0	0	1.0	0	0	1.1e-19	8.7e-19	6.9e-18	0
-6.9e-18	0	0	0	1.0	1.4e-20	1.1e-19	4.3e-19	3.5e-18	2.8e-17
-5.9e-17	0	0	6.9e-18	0	1.0	0	0	0	-2.8e-17
1.4e-17	2.2e-19	0	0	0	0	1.0	4.3e-19	0	-2.8e-17
-2.4e-17	-2.7e-20	-5.4e-20	-2.2e-19	0	3.5e-18	2.8e-17	1.0	0	-2.8e-17
6.9e-18	6.8e-21	1.4e-20	5.4e-20	0	0	0	0	1.0	-2.8e-17
2.8e-17	-8.5e-22	-1.7e-21	0	0	0	4.3e-19	3.5e-18	0	1.0
Число обумовленості: 27.1561791582892									

Метод Зейделя

Метод Зейделя є ітераційним методом для розв'язання СЛАР Ax = b, розв'язок знаходимо із заданою точністю є. Початкове наближення x^0 обираємо довільним чином. Ітераційний процес має вигляд:

$$x_i^{k+1} = -\sum_{j=1}^{i-1} \frac{a_{ij}}{a_{ii}} x_j^{k+1} - \sum_{j=i+1}^{n} \frac{a_{ij}}{a_{ii}} x_j^k + \frac{b_i}{a_{ii}}.$$

Достатня умова збіжності 1. Якщо $\forall i: i=\overline{1,n}$ виконується нерівність

$$|a_{ii}| \geqslant \sum_{j=1, j \neq i}^{n} |a_{ij}|,$$

то ітераційний процес методу Зейделя збігається, при чому швидкість збіжності лінійна.

Достатня умова збіжності 2. Якщо $A = A^T > 0$, то ітераційний процес методу Зейделя збігається, при чому швидкість збіжності лінійна.

Умова припинення: $||x^n - x^{n-1}|| \le \varepsilon$.

Необхідні і достатні умови збіжності. Для $\forall x^0$ ітераційний процес методу Зейделя збігається тоді і тільки

тоді, коли $|\lambda| < 1$, де λ – це корені нелінійного рівняння:

$$\begin{vmatrix} \lambda a_{11} & a_{12} & \dots & a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ \lambda a_{n1} & \lambda a_{n2} & \dots & \lambda a_{nn} \end{vmatrix} = 0.$$

Для заданої матриці виконується перша достатня умова збіжності, отже можна застосувати метод Зейделя.

Результат для n = 10:

Метод Зейделя: Кількість ітера Г 12.16511802	цій:	7	Нев'язка: [-4.92876e-6]
-1.581823894			4.02725
-0.5377995212			5.54328
-0.8054245605			6.23748
-0.6748598558			6.49519
-0.7158080468			6.38698
-0.7960440296			5.78542
-1.019051839			4.2
-1.592295169			-1.45519e-11
2.654557787			8.70968