The Least-Squares Problem

We can use the SVD to "solve" the general system of linear equations

$$y = Ax$$

where $\boldsymbol{y} \in \mathbb{R}^M$, $\boldsymbol{x} \in \mathbb{R}^N$, and \boldsymbol{A} is an $M \times N$ matrix.

Given \boldsymbol{y} , we want to find \boldsymbol{x} in such a way that

- 1. when there is a unique solution, we return it;
- 2. when there is no solution, we return something reasonable;
- 3. when there are an infinite number of solutions, we choose one to return in a "smart" way.

The **least-squares** framework revolves around finding an \boldsymbol{x} that minimizes the length of the residual

$$r = y - Ax$$
.

That is, we want to solve the optimization problem

$$\underset{\boldsymbol{x} \in \mathbb{R}^N}{\text{minimize}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_2^2, \tag{1}$$

where $\|\cdot\|_2$ is the standard Euclidean norm. We will see that the SVD of \boldsymbol{A} :

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}},\tag{2}$$

plays a pivotal role in solving this problem.

To start, note that we can write any $\boldsymbol{x} \in \mathbb{R}^N$ as

$$\boldsymbol{x} = \boldsymbol{V}\boldsymbol{\alpha} + \boldsymbol{V}_0\boldsymbol{\alpha}_0. \tag{3}$$

Here, V is the $N \times R$ matrix appearing in the SVD decomposition (2), and V_0 is a $N \times (N - R)$ matrix whose columns are orthogonal to one another and to the columns in V. We have the relations

$$\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}=\mathbf{I}, \quad \boldsymbol{V}_{0}^{\mathrm{T}}\boldsymbol{V}_{0}=\mathbf{I}, \quad \boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}_{0}=\mathbf{0}.$$

You can think of V_0 as an orthobasis for the null space of A. Of course, V_0 is not unique, as there are many orthobases for Null(A), but any such set of vectors will serve our purposes here. The decomposition (3) is possible since Range(A^T) and Null(A) partition \mathbb{R}^N for any $M \times N$ matrix A. Taking

$$oldsymbol{lpha} = oldsymbol{V}^{\mathrm{T}} oldsymbol{x}, \quad oldsymbol{lpha}_0 = oldsymbol{V}_0^{\mathrm{T}} oldsymbol{x},$$

we see that (3) holds since

$$\boldsymbol{x} = \boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{x} + \boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}} \boldsymbol{x} = (\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} + \boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}}) \boldsymbol{x} = \boldsymbol{x},$$

where we have made use of the fact that $VV^{T} + V_{0}V_{0}^{T} = I$, because VV^{T} and $V_{0}V_{0}^{T}$ are ortho-projectors onto complementary subspaces¹ of \mathbb{R}^{N} . So we can solve for $\boldsymbol{x} \in \mathbb{R}^{N}$ by solving for the pair $\boldsymbol{\alpha} \in \mathbb{R}^{R}$, $\boldsymbol{\alpha}_{0} \in \mathbb{R}^{N-R}$.

Similarly, we can decompose \boldsymbol{y} as

$$y = U\beta + U_0\beta_0, \tag{4}$$

where U is the $M \times R$ matrix from the SVD decomposition, and U_0 is a $M \times (M-R)$ complementary orthogonal basis. Again,

$$\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}=\mathbf{I}, \quad \boldsymbol{U}_{0}^{\mathrm{T}}\boldsymbol{U}_{0}=\mathbf{I}, \quad \boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}_{0}=\mathbf{0},$$

¹Subspaces S_1 and S_2 are **complementary** in \mathbb{R}^N if $S_1 \perp S_2$ (everything in S_1 is orthogonal to everything in S_2) and $S_1 \oplus S_2 = \mathbb{R}^N$. You can think of S_1, S_2 as a partition of \mathbb{R}^N into two orthogonal subspaces.

and we can think of U_0 as an orthogonal basis for everything in \mathbb{R}^M that is not in the range of A. As before, we can calculate the decomposition above using

$$\boldsymbol{\beta} = \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}, \quad \boldsymbol{\beta}_0 = \boldsymbol{U}_0^{\mathrm{T}} \boldsymbol{y}.$$

Using the decompositions (2), (3), and (4) for \boldsymbol{A} , \boldsymbol{x} , and \boldsymbol{y} , we can write the residual $\boldsymbol{r} = \boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}$ as

$$\begin{aligned} \boldsymbol{r} &= \boldsymbol{U}\boldsymbol{\beta} + \boldsymbol{U}_0\boldsymbol{\beta}_0 - \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}(\boldsymbol{V}\boldsymbol{\alpha} + \boldsymbol{V}_0\boldsymbol{\alpha}_0) \\ &= \boldsymbol{U}\boldsymbol{\beta} + \boldsymbol{U}_0\boldsymbol{\beta}_0 - \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{\alpha} \quad (\text{since } \boldsymbol{V}^{\mathrm{T}}\boldsymbol{V} = \boldsymbol{I} \text{ and } \boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}_0 = \boldsymbol{0}) \\ &= \boldsymbol{U}_0\boldsymbol{\beta}_0 + \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}). \end{aligned}$$

We want to choose α that minimizes the energy of r:

$$||\boldsymbol{r}||_{2}^{2} = \langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} + \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}), \ \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} + \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle$$

$$= \langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0}, \boldsymbol{U}_{0}\boldsymbol{\beta}_{0} \rangle + 2\langle \boldsymbol{U}_{0}\boldsymbol{\beta}_{0}, \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle$$

$$+ \langle \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}), \boldsymbol{U}(\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}) \rangle$$

$$= ||\boldsymbol{\beta}_{0}||_{2}^{2} + ||\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}||_{2}^{2}$$

where the last equality comes from the facts that $\boldsymbol{U}_0^{\mathrm{T}}\boldsymbol{U}_0 = \mathbf{I}, \boldsymbol{U}^{\mathrm{T}}\boldsymbol{U} = \mathbf{I}$, and $\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}_0 = \mathbf{0}$. We have no control over $\|\boldsymbol{\beta}_0\|_2^2$, since it determined entirely by our observations \boldsymbol{y} . Therefore, our problem has been reduced to finding $\boldsymbol{\alpha}$ that minimizes the second term $\|\boldsymbol{\beta} - \boldsymbol{\Sigma}\boldsymbol{\alpha}\|_2^2$ above, which is non-negative. We can make it zero (i.e. as small as possible) by taking

$$\hat{oldsymbol{lpha}} = oldsymbol{\Sigma}^{-1} oldsymbol{eta}.$$

Finally, the \boldsymbol{x} which minimizes the residual (solves (1)) is

$$\hat{\boldsymbol{x}} = \boldsymbol{V}\hat{\boldsymbol{\alpha}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{\beta} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{y}. \tag{5}$$

Thus we can calculate the solution to (1) simply by applying the linear operator $\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}$ to the input data \boldsymbol{y} . There are two interesting facts about the solution $\hat{\boldsymbol{x}}$ in (5):

- 1. When $\mathbf{y} \in \text{span}(\{\mathbf{u}_1, \dots, \mathbf{u}_M\})$, we have $\boldsymbol{\beta}_0 = \boldsymbol{U}_0^{\mathrm{T}} \mathbf{y} = \mathbf{0}$, and so the residual $\mathbf{r} = \mathbf{0}$. In this case, there is at least one exact solution, and the one we choose satisfies $\mathbf{A}\hat{\mathbf{x}} = \mathbf{y}$.
- 2. Note that if R < N, then the solution is not unique. In this case, \mathbf{V}_0 has at least one column, and any part of a vector \mathbf{x} in the range of \mathbf{V}_0 is not seen by \mathbf{A} , since

$$AV_0\alpha_0 = U\Sigma V^{\mathrm{T}}V_0\alpha_0 = 0$$
 (since $V^{\mathrm{T}}V_0 = 0$).

As such,

$$\boldsymbol{x}' = \hat{\boldsymbol{x}} + \boldsymbol{V}_0 \boldsymbol{\alpha}_0$$

for $any \ \alpha_0 \in \mathbb{R}^{N-R}$ will have exactly the same residual, since $Ax' = A\hat{x}$. In this case, our solution \hat{x} is the solution with smallest norm, since

$$||\mathbf{x}'||_{2}^{2} = \langle \hat{\mathbf{x}} + \mathbf{V}_{0} \boldsymbol{\alpha}_{0}, \ \hat{\mathbf{x}} + \mathbf{V}_{0} \boldsymbol{\alpha}_{0} \rangle$$

$$= \langle \hat{\mathbf{x}}, \hat{\mathbf{x}} \rangle + 2 \langle \hat{\mathbf{x}}, \mathbf{V}_{0} \boldsymbol{\alpha}_{0} \rangle + \langle \mathbf{V}_{0} \boldsymbol{\alpha}, \mathbf{V}_{0} \boldsymbol{\alpha} \rangle$$

$$= ||\hat{\mathbf{x}}||_{2}^{2} + 2 \langle \mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\mathrm{T}} \mathbf{y}, \mathbf{V}_{0} \boldsymbol{\alpha}_{0} \rangle + ||\boldsymbol{\alpha}_{0}||_{2}^{2} \quad (\text{since } \mathbf{V}_{0}^{\mathrm{T}} \mathbf{V}_{0} = \mathbf{I})$$

$$= ||\hat{\mathbf{x}}||_{2}^{2} + ||\boldsymbol{\alpha}_{0}||_{2}^{2} \quad (\text{since } \mathbf{V}^{\mathrm{T}} \mathbf{V}_{0} = \mathbf{0})$$

which is minimized by taking $\alpha_0 = 0$.

To summarize, $\hat{\boldsymbol{x}} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}$ has the desired properties stated at the beginning of this module, since

- 1. when $\mathbf{y} = \mathbf{A}\mathbf{x}$ has a unique exact solution, it must be $\hat{\mathbf{x}}$,
- 2. when an exact solution is not available, $\hat{\boldsymbol{x}}$ is the solution to (1),

3. when there are an infinite number of minimizers to (1), $\hat{\boldsymbol{x}}$ is the one with smallest norm.

Because the matrix $V\Sigma^{-1}U^{T}$ gives us such an elegant solution to this problem, we give it a special name: the **pseudo-inverse**.

The Pseudo-Inverse

The **pseudo-inverse** of a matrix A with singular value decomposition (SVD) $A = U\Sigma V^{\mathrm{T}}$ is

$$\boldsymbol{A}^{\dagger} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}. \tag{6}$$

Other names for A^{\dagger} include **natural inverse**, **Lanczos inverse**, and **Moore-Penrose inverse**.

Given an observation \boldsymbol{y} , taking $\hat{\boldsymbol{x}} = \boldsymbol{A}^{\dagger} \boldsymbol{y}$ gives us the **least squares** solution to $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}$. The pseudo-inverse \boldsymbol{A}^{\dagger} always exists, since every matrix (with rank R) has an SVD decomposition $\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$ with $\boldsymbol{\Sigma}$ as an $R \times R$ diagonal matrix with $\Sigma[r,r] > 0$.

When \mathbf{A} is full rank $(R = \min(M, N))$, then we can calculate the pseudo-inverse without using the SVD. There are three cases:

• When \mathbf{A} is square and invertible (R = M = N), then

$$\boldsymbol{A}^{\dagger} = \boldsymbol{A}^{-1}.$$

This is easy to check, as here

$$\boldsymbol{A} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}$$
 where both $\boldsymbol{U}, \boldsymbol{V}$ are $N \times N$,

and since in this case $VV^{T} = V^{T}V = I$ and $UU^{T} = U^{T}U = I$,

$$egin{aligned} oldsymbol{A}^\dagger oldsymbol{A} &= oldsymbol{V} oldsymbol{\Sigma}^{-1} oldsymbol{U}^\mathrm{T} oldsymbol{U} oldsymbol{\Sigma} oldsymbol{V}^\mathrm{T} \ &= oldsymbol{V} oldsymbol{V}^\mathrm{T} \ &= oldsymbol{I}. \end{aligned}$$

Similarly, $\mathbf{A}\mathbf{A}^{\dagger} = \mathbf{I}$, and so \mathbf{A}^{\dagger} is both a left and right inverse of \mathbf{A} , and thus $\mathbf{A}^{\dagger} = \mathbf{A}^{-1}$.

• When \boldsymbol{A} more rows than columns and has full column rank $(R = N \leq M)$, then $\boldsymbol{A}^{T}\boldsymbol{A}$ is invertible, and

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{\mathrm{T}} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}}. \tag{7}$$

This type of \boldsymbol{A} is "tall and skinny"

$$\left[\begin{array}{c} \boldsymbol{A} \end{array}\right],$$

and its columns are linearly independent. To verify equation (7), recall that

$$A^{\mathrm{T}}A = V\Sigma U^{\mathrm{T}}U\Sigma V^{\mathrm{T}} = V\Sigma^{2}V^{\mathrm{T}},$$

and so

$$(\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A})^{-1}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-2}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}},$$

which is exactly the content of (6).

• When \boldsymbol{A} has more columns than rows and has full row rank $(R = M \leq N)$, then $\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}$ is invertible, and

$$\boldsymbol{A}^{\dagger} = \boldsymbol{A}^{\mathrm{T}} (\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}})^{-1}. \tag{8}$$

This occurs when \boldsymbol{A} is "short and fat"

and its rows are linearly independent. To verify equation (8), recall that

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}} = \boldsymbol{U}\boldsymbol{\Sigma}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{U}\boldsymbol{\Sigma}^{2}\boldsymbol{U}^{\mathrm{T}},$$

and so

$$\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}})^{-1} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{U}\boldsymbol{\Sigma}^{-2}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}},$$

which again is exactly (6).

A^{\dagger} is as close to an inverse of A as possible

As discussed in the last section, when \mathbf{A} is square and invertible, \mathbf{A}^{\dagger} is exactly the inverse of \mathbf{A} . When \mathbf{A} is not square, we can ask if there is a better right or left inverse. We will argue that there is not.

Left inverse Given y = Ax, we would like $A^{\dagger}y = A^{\dagger}Ax = x$ for any x. That is, we would like A^{\dagger} to be a *left inverse* of $A: A^{\dagger}A = I$. Of course, this is not always possible, especially when A has more columns than rows, M < N. But we can ask if any other matrix H comes closer to being a left inverse

than \boldsymbol{A}^{\dagger} . To find the "best" left-inverse, we look for the matrix which minimizes

$$\min_{\mathbf{H} \in \mathbb{R}^{N \times M}} \|\mathbf{H}\mathbf{A} - \mathbf{I}\|_F^2. \tag{9}$$

Here, $\|\cdot\|_F$ is the *Frobenius norm*, defined for an $N \times M$ matrix \mathbf{Q} as the sum of the squares of the entires:

$$\|oldsymbol{Q}\|_F^2 = \sum_{n=1}^M \sum_{n=1}^N |Q[m,n]|^2$$

(It is also true, and you can and should prove this at home, that $\|\boldsymbol{Q}\|_F^2$ is the sum of the squares of the singular values of \boldsymbol{Q} : $\|\boldsymbol{Q}\|_F^2 = \lambda_1^2 + \cdots + \lambda_p^2$.) With (9), we are finding \boldsymbol{H} such that $\boldsymbol{H}\boldsymbol{A}$ is as close to the identity as possible in the least-squares sense.

The pseudo-inverse \mathbf{A}^{\dagger} minimizes (9). To see this, recognize (see the exercise below) that the solution $\hat{\mathbf{H}}$ to (9) must obey

$$\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}\hat{\boldsymbol{H}}^{\mathrm{T}} = \boldsymbol{A}.\tag{10}$$

We can see that this is indeed true for $\hat{\boldsymbol{H}} = \boldsymbol{A}^{\dagger}$:

$$AA^{\mathrm{T}}A^{\dagger^{\mathrm{T}}} = U\Sigma V^{\mathrm{T}}V\Sigma U^{\mathrm{T}}U\Sigma^{-1}V^{\mathrm{T}} = U\Sigma V^{\mathrm{T}} = A.$$

So there is no $N \times M$ matrix that is closer to being a left inverse than \mathbf{A}^{\dagger} .

Right inverse If we re-apply \boldsymbol{A} to our solution $\hat{\boldsymbol{x}} = \boldsymbol{A}^{\dagger} \boldsymbol{y}$, we would like it to be as close as possible to our observations \boldsymbol{y} . That is,

we would like $\boldsymbol{A}\boldsymbol{A}^{\dagger}$ to be as close to the identity as possible. Again, achieving this goal exactly is not always possible, especially if \boldsymbol{A} has more rows that columns. But we can attempt to find the "best" right inverse, in the least-squares sense, by solving

$$\underset{\boldsymbol{H} \in \mathbb{R}^{N \times M}}{\text{minimize}} \|\boldsymbol{A}\boldsymbol{H} - \mathbf{I}\|_F^2. \tag{11}$$

The solution $\hat{\boldsymbol{H}}$ to (11) (see the exercise below) must obey

$$\mathbf{A}^{\mathrm{T}}\mathbf{A}\hat{\mathbf{H}} = \mathbf{A}^{\mathrm{T}}.\tag{12}$$

Again, we show that \mathbf{A}^{\dagger} satisfies (12), and hence is a minimizer to (11):

$$\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{A}^{\dagger} = \boldsymbol{V}\boldsymbol{\Sigma}^{2}\boldsymbol{V}^{\mathrm{T}}\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{V}\boldsymbol{\Sigma}\boldsymbol{U}^{\mathrm{T}} = \boldsymbol{A}^{\mathrm{T}}.$$

Moral:

 $m{A}^\dagger = m{V} m{\Sigma}^{-1} m{U}^{\mathrm{T}}$ is as close (in the least-squares sense) to an inverse of $m{A}$ as you could possibly have.

Exercise:

1. Show that the minimizer $\hat{\boldsymbol{H}}$ to (9) must obey (10). Do this by using the fact that the derivative of the functional $\|\boldsymbol{H}\boldsymbol{A} - \mathbf{I}\|_F^2$ with respect to an entry $H[k,\ell]$ in \boldsymbol{H} must obey

$$\frac{\partial \|\boldsymbol{H}\boldsymbol{A} - \mathbf{I}\|_F^2}{\partial H[k,\ell]} = 0, \quad \text{for all } 1 \le k \le N, \ 1 \le \ell \le M,$$

to be a solution to (9). Do the same for (11) and (12).

Stability Analysis of the Pseudo-Inverse

We have seen that if we make indirect observations $\boldsymbol{y} \in \mathbb{R}^M$ of an unknown vector $\boldsymbol{x}_0 \in \mathbb{R}^N$ through a $M \times N$ matrix $\boldsymbol{A}, \boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}_0$, then applying the pseudo-inverse of \boldsymbol{A} gives us the least squares estimate of \boldsymbol{x}_0 :

$$\hat{m{x}}_{ ext{ls}} = m{A}^\dagger m{y} = m{V} m{\Sigma}^{-1} m{U}^{ ext{T}} m{y},$$

where $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathrm{T}}$ is the singular value decomposition (SVD) of \mathbf{A} .

We will now discuss what happens if our measurements contain *noise*—the analysis here will be very similar to when we looked at the stability of solving square sym+def systems, and in fact this is one of the main reasons we introduced the SVD.

Suppose we observe

$$y = Ax_0 + e$$

where $\boldsymbol{e} \in \mathbb{R}^M$ is an unknown perturbation. Say that we again apply the pseudo-inverse to \boldsymbol{y} in an attempt to recover \boldsymbol{x} :

$$\hat{oldsymbol{x}}_{ ext{ls}} = oldsymbol{A}^\dagger oldsymbol{y} = oldsymbol{A}^\dagger oldsymbol{A} oldsymbol{x}_0 + oldsymbol{A}^\dagger oldsymbol{e}$$

What effect does the presence of the noise vector \boldsymbol{e} had on our estimate of \boldsymbol{x}_0 ? We answer this question by comparing $\hat{\boldsymbol{x}}_{ls}$ to the reconstruction we would obtain if we used standard least-squares on perfectly noise-free observations $\boldsymbol{y}_{clean} = \boldsymbol{A}\boldsymbol{x}_0$. This noise-free recon-

struction can be written as

$$egin{aligned} oldsymbol{x}_{ ext{pinv}} &= oldsymbol{A}^\dagger oldsymbol{y}_{ ext{clean}} = oldsymbol{A}^\dagger oldsymbol{A} oldsymbol{x}_0 \ &= oldsymbol{V} oldsymbol{\Sigma}^{-1} oldsymbol{U}^ ext{T} oldsymbol{x}_0 \ &= oldsymbol{V}^R oldsymbol{\langle x}_0, oldsymbol{v}_r ig
angle oldsymbol{v}_r. \end{aligned}$$

The vector $\boldsymbol{x}_{\text{pinv}}$ is the orthogonal projection of \boldsymbol{x}_0 onto the row space (everything orthogonal to the null space) of \boldsymbol{A} . If \boldsymbol{A} has full column rank (R=N), then $\boldsymbol{x}_{\text{pinv}}=\boldsymbol{x}_0$. If not, then the application of \boldsymbol{A} destroys the part of \boldsymbol{x}_0 that is not in $\boldsymbol{x}_{\text{pinv}}$, and so we only attempt to recover the "visible" components. In some sense, $\boldsymbol{x}_{\text{pinv}}$ contains all of the components of \boldsymbol{x}_0 that \boldsymbol{A} does not completely remove, and has them preserved perfectly.

The reconstruction error (relative to $\boldsymbol{x}_{\text{pinv}}$ is)

$$\|\hat{\boldsymbol{x}}_{ls} - \boldsymbol{x}_{pinv}\|_{2}^{2} = \|\boldsymbol{A}^{\dagger}\boldsymbol{e}\|_{2}^{2} = \|\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{T}\boldsymbol{e}\|_{2}^{2}.$$
 (13)

Now suppose for a moment that the error has unit norm, $\|e\|_2^2 = 1$. Then the worst case for (13) is given by

$$\underset{\boldsymbol{e} \in \mathbb{R}^M}{\text{maximize}} \|\boldsymbol{V}\boldsymbol{\Sigma}^{-1}\boldsymbol{U}^{\mathrm{T}}\boldsymbol{e}\|_2^2 \quad \text{subject to} \quad \|\boldsymbol{e}\|_2 = 1.$$

Since the columns of U are orthonormal, $||U^{T}e||_{2}^{2} \leq ||e||_{2}^{2}$, and the above is equivalent to

$$\max_{\boldsymbol{\beta} \in \mathbb{R}^R: \|\boldsymbol{\beta}\|_2 = 1} \|\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}\|_2^2. \tag{14}$$

Also, for any vector $\boldsymbol{z} \in \mathbb{R}^R$, we have

$$\|oldsymbol{V}oldsymbol{z}\|_2^2 = \langle oldsymbol{V}oldsymbol{z}, oldsymbol{V}oldsymbol{z}
angle = \langle oldsymbol{z}, oldsymbol{V}oldsymbol{z}
angle = \langle oldsymbol{z}, oldsymbol{V}oldsymbol{z}
angle = \|oldsymbol{z}\|_2^2,$$

since the columns of V are orthonormal. So we can simplify (14) to

$$\underset{\boldsymbol{\beta} \in \mathbb{R}^R}{\text{maximize}} \|\boldsymbol{\Sigma}^{-1}\boldsymbol{\beta}\|_2^2 \quad \text{subject to} \quad \|\boldsymbol{\beta}\|_2 = 1.$$

The worst case $\boldsymbol{\beta}$ (you should verify this at home) will have a 1 in the entry corresponding to the largest entry in $\boldsymbol{\Sigma}^{-1}$, and will be zero everywhere else. Thus

$$\max_{\boldsymbol{\beta} \in \mathbb{R}^R: \|\boldsymbol{\beta}\|_2 = 1} \|\boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}\|_2^2 = \max_{r=1,...,R} \sigma_r^{-2} = \frac{1}{\sigma_R^2}.$$

(Recall that by convention, we order the singular values so that $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_R$.)

Returning to the reconstruction error (13), we now see that

$$\|\hat{m{x}}_{ ext{ls}} - m{x}_{ ext{pinv}}\|_2^2 \ = \ \|m{V}m{\Sigma}^{-1}m{U}^{ ext{T}}m{e}\|_2^2 \ \le \ rac{1}{\sigma_R^2}\|m{e}\|_2^2.$$

Since U is an $M \times R$ matrix, it is possible when R < M that the reconstruction error is zero. This happens when e is orthogonal to every column of U, i.e. $U^{T}e = 0$. Putting this together with the work above means

$$0 \leq \frac{1}{\sigma_1^2} \|\boldsymbol{U}^{\mathrm{T}}\boldsymbol{e}\|_2^2 \leq \|\hat{\boldsymbol{x}}_{\mathrm{ls}} - \boldsymbol{x}_{\mathrm{pinv}}\|_2^2 \leq \frac{1}{\sigma_R^2} \|\boldsymbol{U}^{\mathrm{T}}\boldsymbol{e}\|_2^2 \leq \frac{1}{\sigma_R^2} \|\boldsymbol{e}\|_2^2.$$

Notice that if σ_R is small, the worst case reconstruction error can be **very bad**.

We can also relate the "average case" error to the singular values. Say that e is additive Gaussian white noise, that is each entry e[m] is a random variable independent of all the other entries, and distributed

$$e[m] \sim \text{Normal}(0, \nu^2).$$

Then, as we have argued before, the average measurement error is

$$\mathrm{E}[\|\boldsymbol{e}\|_2^2] = M\nu^2,$$

and the average reconstruction error² is

$$E\left[\|\boldsymbol{A}^{\dagger}\boldsymbol{e}\|_{2}^{2}\right] = \nu^{2} \cdot \operatorname{trace}(\boldsymbol{A}^{\dagger T}\boldsymbol{A}^{\dagger}) = \nu^{2} \cdot \left(\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}} + \dots + \frac{1}{\sigma_{R}^{2}}\right)$$

$$= \frac{1}{M} \left(\frac{1}{\sigma_{1}^{2}} + \frac{1}{\sigma_{2}^{2}} + \dots + \frac{1}{\sigma_{R}^{2}}\right) \cdot E[\|\boldsymbol{e}\|_{2}^{2}].$$

Again, if σ_R is tiny, $1/\sigma_R^2$ will dominate the sum above, and the average reconstruction error will be quite large.

²We are using the fact that if \boldsymbol{e} is vector of iid Gaussian random variables, $\boldsymbol{e} \sim \operatorname{Normal}(\mathbf{0}, \nu^2 \mathbf{I})$, then for any matrix \boldsymbol{M} , $\operatorname{E}[\|\boldsymbol{M}\boldsymbol{e}\|_2^2] = \nu^2 \operatorname{trace}(\boldsymbol{M}^{\mathrm{T}}\boldsymbol{M})$. We will argue this carefully as part of the next homework.

Decomposition of the estimation error

In the previous section, we compared the estimate $\hat{\boldsymbol{x}}_{ls}$ to \boldsymbol{x}_{pinv} , the projection of \boldsymbol{x}_0 onto the row space of \boldsymbol{A} . In this section, let's see how to compare $\hat{\boldsymbol{x}}_{ls}$ to \boldsymbol{x}_o itself.

We can separate this error into two separate errors:

$$\hat{\boldsymbol{x}}_{ls} - \boldsymbol{x}_0 = \hat{\boldsymbol{x}}_{ls} - \boldsymbol{x}_{pinv} + \boldsymbol{x}_{pinv} - \boldsymbol{x}_0. \tag{15}$$

The first error above, $\hat{\boldsymbol{x}}_{ls} - \boldsymbol{x}_{pinv}$, is what we analyzed above. Let's take a close look at the second error $\boldsymbol{x}_{pinv} - \boldsymbol{x}_0$.

The singular vectors $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_R \in \mathbb{R}^N$ are an orthobasis for the row space (the span of the rows) of \boldsymbol{A} . Let $\boldsymbol{v}_{R+1}, \ldots, \boldsymbol{v}_N \in \mathbb{R}^N$ be an orthobasis for the null space of \boldsymbol{A} (the linear subspace of all vectors \boldsymbol{x} such that $\boldsymbol{A}\boldsymbol{x} = \boldsymbol{0}$) — these would be the columns of the $N \times (N-R)$ matrix \boldsymbol{V}_0 in the last set of notes. Together, $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_N$ form an orthobasis for all of \mathbb{R}^N .

We can decompose x_0 as

$$egin{aligned} oldsymbol{x}_0 &= \sum_{n=1}^N \langle oldsymbol{x}_0, oldsymbol{v}_n
angle oldsymbol{v}_n \ &= \sum_{n=1}^R \langle oldsymbol{x}_0, oldsymbol{v}_n
angle oldsymbol{v}_n + \sum_{n=R+1}^N \langle oldsymbol{x}_0, oldsymbol{v}_n
angle oldsymbol{v}_n \ &= oldsymbol{x}_{ ext{pinv}} + oldsymbol{x}_{ ext{null}}. \end{aligned}$$

The vector \boldsymbol{x}_{pinv} is the projection of \boldsymbol{x}_0 onto the row space of \boldsymbol{A} (i.e. \boldsymbol{x}_{pinv} is the closest point in the subspace of \mathbb{R}^N formed by taking all linear combinations of the rows of \boldsymbol{A}). The vector \boldsymbol{x}_{null} is the

projection of \boldsymbol{x}_0 onto the null space of \boldsymbol{A} . Since the \boldsymbol{v}_n are all orthogonal to one another, it should be clear that $\boldsymbol{x}_{pinv} \perp \boldsymbol{x}_{null}$.

Returning to (15), we can write

$$\hat{m{x}}_{
m ls} - m{x}_0 = (\hat{m{x}}_{
m ls} - m{x}_{
m pinv}) - m{x}_{
m null}.$$

As we saw above, $\hat{\boldsymbol{x}}_{ls} - \boldsymbol{x}_{pinv}$ is also in the span of $\boldsymbol{v}_1, \ldots, \boldsymbol{v}_R$, and so it is also orthogonal to \boldsymbol{x}_{null} . Thus we can write

$$\begin{aligned} \|\hat{\boldsymbol{x}}_{ls} - \boldsymbol{x}_0\|_2^2 &= \|\hat{\boldsymbol{x}}_{ls} - \boldsymbol{x}_{pinv}\|_2^2 + \|\boldsymbol{x}_{null}\|_2^2 \\ &= \|\text{Noise error}\|_2^2 + \|\text{Nullspace error}\|_2^2. \end{aligned}$$

The null space error has nothing to do with the noise added to the observations. It is simply the part of x_0 that A removes completely.