TP2 Multi - Lothmann Feyrit	Pt		A E	3 C	D	Note	
I. Régulation de température simple boucle (10 pts)							
1 Donner le schéma électrique correspondant au cahier des charges.	1	Α				1	
2 Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.	1	Α				1	
3 Régler votre maquette pour avoir une mesure de 40% pour une commande de 50%.	1	С				0,35	La mesure est à 30 % !
Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).	1	Α				1	
5 Régler la boucle de régulation utilisant la méthode par approches successives.	4	С				1,4	Bof
6 Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.	2	С				0,7	Il n'y a rien à voir d'intéressant sur cette courbe.
II. Régulation cascade (10 pts)							
1 Rappeler le fonctionnement d'une boucle de régulation cascade.	1	С				0,35	C'est quoi ce charabia.
2 Programmer le regulateur pour obtenir le fonctionnement en regulation cascade conformement au schema il ci-	3	Α				3	
Régler la boucle de régulation esclave en utilisant la méthode par approches successives. On ne changera pas le réglage de la boucle maître.	2	D				0,1	Encore des courbes sur la boucle maitre ?
4 Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.	2	D				0,1	
5 Expliquez l'intérêt d'une régulation cascade en vous aidant de vos enregistrements. Citez un autre exemple pratique.	2	D				0,1	
		No	te:	01/	/20		

Note: 9,1/20

I. Régulation de température simple boucle

1)Donner le schéma électrique correspondant au cahier des charges.

2)Programmer votre T2550 afin de réaliser la régulation représentée ci-dessus.

Entrée:

TagName	01M01_08		LIN Name	01M01_08	
Туре	AI_UIO		DBase	<local></local>	
Task	3 (110ms)		Rate	0	
MODE	AUTO		Alarms		
Fallback	AUTO		Node	>00	
	1.5.0		SiteNo	1	
PV	0.0	%	Channel	1	
HR	100.0	%	InType	mA	
LR	0.0	%	HR_in	20.00	
			LR_in	4.00	
HiHi	100.0	%	AI	0.00	
Hi	100.0	%	Res	0.000	
Lo	0.0	%			
LoLo	0.0	%	CJ_type	Auto	
Hyst	0.5000	%	CJ_temp	0.000	
			LeadRes	0.000	
Filter	0.000	Secs	Emissiv	1.000	
Char	Linear		Delay	0.000	
UserChar					
			SBreak	Up	
PVoffset	0.000	%	PVErrAct	Up	
AlmonTim	0.000	Secs	Options	>0000	
Alm0fTim	0.000	Secs	Status	>0000	

PID:

TagName	PID1		LIN Name	PID1
Туре	PID		DBase	<local></local>
Task	3 (110ms)		Rate	0
Mode	AUTO		Alarms	
FallBack	AUTO			
			HAA	100.0
PV	0.0	%	LAA	0.0
SP	0.0	%	HDA	100.0
OP	0.0	%	LDA	100.0
SL	0.0	%		
TrimSP	0.0	%	TimeBase	Secs
RemoteSP	0.0	%	XP	100.0
Track	0.0	%	TI	0.00
			TD	0.00
HR_SP	100.0	%		
LR_SP	0.0	%	Options	00101100
HL_SP	100.0	%	SelMode	00000000
LL_SP	0.0	%		
			ModeSel	00000000
HR_OP	100.0	%	ModeAct	00000000
LR_OP	0.0	%		
HL_OP	100.0	%	FF_PID	0.0
LL_OP	0.0	%	FB_OP	0.0

sorties:

TagName	02P01_08		LIN Name	02P01_08
Туре	AO_UIO		DBase	<local></local>
Task	3 (110ms)		Rate	0
MODE	AUTO		Alarms	
Fallback	AUTO		Node	>00
			Sitello	2
→ OP	0.0	%	Channel	1
HR	100.0	%	OutType	mA
LR	0.0	%	HR_out	20.00
			LR_out	4.00
Out	0.0	%	AO	0.00
Track	0.0	%		02P01_08.L
Trim	0.000	mA	Options	>0000
			Status	>0000

TagName	02P02_08		LIN Name	02P02_08
Туре	AO_UIO		DBase	<local></local>
Task	3 (110ms)		Rate	0
MODE	MANUAL		Alarms	
Fallback	MANUAL		Node	>00
			SiteNo	2
OP	0.0	%	Channel	2
HR	100.0	%	OutType	mA
LR	0.0	%	HR_out	20.00
			LR_out	4.00
Out	50.0	%	AO	0.00
Track	0.0	%		
Trim	0.000	mA	Options	>0000
			Status	>0000

3)Régler votre maquette pour avoir une mesure de 40% pour une commande de 50%

TagName	PID1		LIN Name	PID1
Туре	PID		DBase	<local></local>
Task	3 (110ms)		Rate	0
Mode	MANUAL		Alarms	
FallBack	MANUAL			
			HAA	100.0
→PV	30.6	%	LAA	0.0
SP	40.0	%	HDA	100.0
OP	50.0	%	LDA	100.0
SL	40.0	%		
TrimSP	0.0	%	TimeBase	Secs
RemoteSP	0.0	%	XP	100.0
Track	0.0	%	TI	0.00
			TD	0.00
HR_SP	100.0	%		
LR_SP	0.0	%	Options	00101100
HL_SP	100.0	%	SelMode	00000000
LL_SP	0.0	%		
			ModeSel	00100000
HR_OP	100.0	%	ModeAct	00100001
LR_OP	0.0	%		
HL_OP	100.0	%	FF_PID	0.0
LL_OP	0.0	%	FB_OP	50.0

4)Relever l'évolution de la mesure X en réponse à un échelon de commande Y. En déduire le sens de fonctionnement du régulateur (inverse ou direct).

Le régulateur est inverse car le procédé est direct.

5)Régler la boucle de régulation utilisant la méthode par <u>approches successives</u>.

TimeBase	Secs
XP	10.0
TI	5.00
TD	20.00 10.0
	10.0
Options	00101100

6)Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.

On constate un plus important retard avec la perturbation.

II. Régulation cascade

1)Rappeler le fonctionnement d'une boucle de régulation cascade.

La régulation cascade permet d'augmenter considérablement la qualité de la régulation. L'évolution de la grandeur réglée en cas de modification de la grandeur pilote ou d'apparition de grandeurs pertubatrices.

2)Programmer le régulateur pour obtenir le fonctionnement en régulation cascade conformément au schéma TI ci-dessus.

TagName	esclave		LIN Name	esclave		
Туре	PID		DBase	<local></local>		
Task	3 (110ms)		Rate	0		
Mode	REMOTE		Alarms			
FallBack	REMOTE					
			HAA	100.0	%	
→ PV	24.2	%	LAA	0.0	%	
SP	0.0	%	HDA	100.0	%	
OP	25.7	%	LDA	100.0	%	
SL	0.0	%				
TrimSP	0.0	%	TimeBase	Secs		
RemoteSP	0.0	%	XP	100.0	%	
Track	0.0	%	TI	0.00		
			TD	0.00		
HR_SP	100.0	%				
LR_SP	0.0	%	Options	00101100		
HL_SP	100.0	%	SelMode	00001100		
LL_SP	0.0	%				
			ModeSel	00001001		
→ HR_OP	100.0	%	ModeAct	00001000		
LR_OP	0.0	%				
HL_OP	100.0	%	FF_PID	50.0	%	
LL_OP	0.0	%	FB_OP	25.7	%	

3)Régler la boucle de régulation esclave en utilisant la méthode par <u>approches successives</u>. On ne changera pas le réglage de la boucle maître.

TagName	esclave		LIN Name	esclave
Туре	PID		DBase	<local></local>
Task	3 (110ms)		Rate	0
Mode	REMOTE		Alarms	
FallBack	REMOTE			
			HAA	100.0
→PV	25.2	%	LAA	0.0
SP	0.0	%	HDA	100.0
OP	0.0	%	LDA	100.0
SL	0.0	%		
TrimSP	0.0	%	TimeBase	Secs
RemoteSP	0.0	%	XP	40.0
Track	0.0	%	TI	15.00
			TD	5.00
HR_SP	100.0	%		
LR_SP	0.0	%	Options	00101100
HL_SP	100.0	%	SelMode	00001100
LL_SP	0.0	%		
			ModeSel	00001001
→ HR_OP	100.0	%	ModeAct	00001000
LR_OP	0.0	%		
HL_OP	100.0	%	FF_PID	50.0
LL_OP	0.0	%	FB_OP	0.0

4)Enregistrer l'influence d'une perturbation du débit d'eau chaude sur la température, en fermant V6.

Le système devient plus stable.

5)Expliquez l'intérêt d'une régulation cascade en vous aidant de vos enregistrements. Citez un autre exemple pratique.

La régulation cascade permet d'augmenter considérablement la qualité de la régulation. La régulation mixte.