Activity Recognition via Learning from Distributions

QIAN Hangwei, IGS-LILY NTU

21.Feb.2017

Main Supervisor: Prof. Sinno Jialin Pan Co-Supervisors: Prof. Lihui Chen, Prof. Chun Yan Miao

Outline

- Overview
 - Human Activity Recognition
 - Existing Framework
- 2 Activity Recognition via Kernel Embedding
 - Kernel Mean Embeddings of Distributions
 - Learning from Distributions
- Second Second
- Conclusion and Future Work

Outline

- Overview
 - Human Activity Recognition
 - Existing Framework
- Activity Recognition via Kernel Embedding
 - Kernel Mean Embeddings of Distributions
 - Learning from Distributions
- 3 Experiments Results
- 4 Conclusion and Future Work

Human Activity Recognition

A multi-class classification problem

• Input: sensor data (Our focus: on-body sensors)

Human Activity Recognition

A multi-class classification problem

- Input: sensor data (Our focus: on-body sensors)
- Output: activity labels

Human Activity Recognition

A multi-class classification problem

- Input: sensor data (Our focus: on-body sensors)
- Output: activity labels

Tremendous applications:

- eldercare
- healthcare
- smart building
- gaming

Outline

- Overview
 - Human Activity Recognition
 - Existing Framework
- Activity Recognition via Kernel Embedding
 - Kernel Mean Embeddings of Distributions
 - Learning from Distributions
- 3 Experiments Results
- 4 Conclusion and Future Work

Classification algorithms

Figure 1: Classical framework of classification

- Supervised: kNN, Naive Bayes, GMM, SVM, etc
- Semi-supervised: co-training, self-training, etc
- Unsupervised: topic modeling, HMM, DP, etc
- Others: fuzzy reasoning, multi-agent-based, etc

Feature selection

Low-level features

- Manual feature engineering, statistical features
- Dimension reduction methods, e.g., PCA, FFT

High-level features

- String matching methods
- Deep learning based methods

Feature selection

Low-level features

- Manual feature engineering, statistical features
- Dimension reduction methods, e.g., PCA, FFT

High-level features

- String matching methods
- Deep learning based methods

Premise: one fixed-length feature vector for each activity

Feature selection

Premise: one fixed-length feature vector for each activity

Two simple solutions:

- Frame-level: frame-label pairs
- Segment-level (1entry): mean feature vector to represent one segment

Contributions

- A new time-series data representation: distribution representations
- A novel feature representation for time-series data based on kernel embedding technique

Intuition

$$\mu_X = (\mathbb{E}[X])$$

Problem: Lots of Distributions have the same mean!

$$\mu_X = \left(\begin{array}{c} \mathbb{E}[X] \\ \mathbb{E}[X^2] \end{array} \right)$$

Better, but lots of distributions still have the same mean and variance!

$$X \sim \mathcal{D}$$

$$\mu_X = \left(\begin{array}{c} \mathbb{E}[X] \\ \mathbb{E}[X^2] \\ \mathbb{E}[X^3] \end{array} \right)$$

Even better, but lots of distributions still have the same first three moments!

Intuition

 But the vector is infinite......how do we compute things with it?????

©Eric Xing @ CMU, 2012-2014

Outline

- Overview
 - Human Activity Recognition
 - Existing Framework
- 2 Activity Recognition via Kernel Embedding
 - Kernel Mean Embeddings of Distributions
 - Learning from Distributions
- Experiments Results
- 4 Conclusion and Future Work

Kernel Embeddings

Kernel[1]

The \mathcal{X} is a valid set. A kernel $\mathbf{k}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ promises the existence of a Hilbert space \mathcal{H} and a map $\phi: \mathcal{X} \times \mathcal{H}, s.t.$

$$\forall x, x' \in \mathcal{X}, \mathbf{k}(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}}.$$

Reproducing kernel Hilbert space (RKHS)[2]

Let $\mathcal H$ be a Hilbert space of $\mathbb R$ -valued functions defined on a valid set $\mathcal X$. A function $\mathbf k: \mathcal X \times \mathcal X \to \mathbb R$ is called a reproducing kernel of $\mathcal H$, and $\mathcal H$ is a reproducing kernel Hilbert space, if $\mathbf k$ satisfies:

- $\bullet \forall x \in \mathcal{X}, \mathbf{k}(\cdot, x) \in \mathcal{H}$
- • $\forall x \in \mathcal{X}, \forall f \in \mathcal{H}, \langle f, \mathbf{k}(\cdot, x) \rangle_{\mathcal{H}} = f(x)$ (the reproducing property).

Kernel Mean Embeddings of a Distribution

Figure 2: Illustrations of kernel mean embeddings of a distribution and embeddings of empirical examples

$$\mu[P_x] = E_x[k(\cdot, x)] \tag{1}$$

$$\mu[X] = \frac{1}{m} \sum_{i=1}^{m} k(\cdot, x_i)$$
 (2)

Here
$$X = \{x_1, ..., x_m\} \stackrel{i.i.d.}{\sim} P_x$$
.

Kernel Mean Embeddings of a Distribution

Figure 2: Illustrations of kernel mean embeddings of a distribution and embeddings of empirical examples

Theorem [2]

Assume that $\|f\|_{\infty} \leq R$ for all $f \in \mathcal{H}, \|f\|_{\mathcal{H}} \leq 1$. Then with probability at least $1-\delta$,

$$\|\mu[P_x] - \mu[X]\| \le 2R_m(\mathcal{H}, P_x) + R\sqrt{-m^{-1}\log(\delta)}$$

Kernel Mean Embeddings of Distributions

Figure 3: Illustration of the kernel mean embedding of two different distributions

Injectivity[2]

A universal kernel k can promise an injective mean map $\mu: P_x \to \mu[P_x]$.

Outline

- Overview
 - Human Activity Recognition
 - Existing Framework
- 2 Activity Recognition via Kernel Embedding
 - Kernel Mean Embeddings of Distributions
 - Learning from Distributions
- 3 Experiments Results
- 4 Conclusion and Future Work

Learning from Distributions

$$\langle \hat{\boldsymbol{\mu}}_{\mathbb{P}_x}, \hat{\boldsymbol{\mu}}_{\mathbb{P}_z} \rangle = \tilde{k}(\hat{\boldsymbol{\mu}}_{\mathbb{P}_x}, \hat{\boldsymbol{\mu}}_{\mathbb{P}_z}) = \frac{1}{n_{\mathsf{x}} \times n_{\mathsf{z}}} \sum_{i=1}^{n_{\mathsf{x}}} \sum_{i=1}^{n_{\mathsf{z}}} k(\mathbf{x}_i, \mathbf{z}_j), \quad (1)$$

$$\tilde{k}(\boldsymbol{\mu}_i, \boldsymbol{\mu}_j) = \langle \psi(\boldsymbol{\mu}_i), \psi(\boldsymbol{\mu}_j) \rangle \tag{2}$$

Figure 4: Illustration of the two level kernel learning framework based on the distributional data.

Problem Formulation

- Training set: $\{(P_i, y_i)\}, i \in \{1, ..., N\}, x_i \sim P_i, x_i = \{x_{i1}, ..., x_{im_i}\}, y_i \in \{1, ..., L\}$
- Multi-class classifier $\to C_L^2$ binary classifiers $f, y = f(\phi(\mu_x)) + b$
- Primal Optimization problem:

Objective:
$$\underset{f,b}{\operatorname{argmin}} \frac{1}{2} \|f\|_{\mathcal{H}}^{2} + C \sum_{i=1}^{N} \xi_{i}$$

$$s.t.y_{i} = f(\phi(\mu_{x_{i}})) + b$$

$$y_{i}f(\phi(\mu_{i})) \geq 1 - \xi_{i}, \forall i$$

$$\xi_{i} \geq 0, \forall i$$

$$(3)$$

Problem Formulation

Dual Optimization Problem:

$$L(f, b, \alpha, \beta) = \frac{1}{2} ||f||^2 + C \sum_{i=1}^{N} \xi_i - \sum_{i=1}^{N} \alpha_i \{ y_i (f(\phi(\mu(x_i))) + b) - 1 \}$$

$$- \sum_i \beta_i \xi_i$$

$$\frac{\partial L}{\partial f} = 0 \Rightarrow f = \sum_{i=1}^{N} \alpha_i y_i \phi(\mu(x_i))$$

$$(4)$$

$$\frac{\partial L}{\partial b} = 0 \Rightarrow \sum_{i=1}^{N} \alpha_i y_i = 0 \tag{5}$$

$$\frac{\partial L}{\partial \xi} = 0 \Rightarrow \alpha_i = C - \beta_i \quad \text{and} \quad \text{for all } \quad$$

Problem Formulation

• Substitute Eq.(5) into Eq.(4):

$$L(\alpha, \beta) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} \alpha_{n} \alpha_{m} y_{n} y_{m} \tilde{k}(\mu_{n}, \mu_{m})$$

$$s.t.0 \leq \alpha_{i} \leq C$$

$$\beta_{i} \geq 0$$

$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$
(6)

•
$$y_{new} = f(\phi(\mu_{x_{new}})) + b = \sum_{i=1}^{N} \alpha_i y_i \phi(\mu_i)^T \phi(\mu_{x_{new}}) + b$$

Summary of Learning from Distributions Methods

Methods	Main Advantages	Main Disadvantages		
Define new kernels	Easy to implement	Designed specifically for certain distribu- tions and application domains		
Divergence estima- tors	can be calculated in closed form	lack the consistency analysis; assume the training distributions are Gaussians		
Kernel-kernel estima-	take the whole distributions as input,	Strong assumptions on input space and ker-		
tor	scalar values as output, and address	nels; need density estimation; the input dis-		
	the consistency	tributions can affect the convergence rate.		
Double-basis estima-	easy to scale up	need density estimation; strong assumptions		
tor		on input space		
Distribution to distri-	Inputs and outputs are both distribu-	need density estimation		
bution regression	tions			
MERR method	Prove the consistency under mild con-	Data are assumed to be i.i.d.		
	ditions, more general; no need of ker-			
	nel density estimation as an interme-			
	diate step			
SMM	First to propose a learning algorithm	lack the analysis of consistency and com-		
	on probability distributions	putational cost		
OCSMM	Group anomaly detection	computational expensive		
Fastfood + MERR	interdisciplinary applications; fast	Approximations to obtain the embeddings		
Latent SMM	solve the bag-of-words data classifica-	Some parameters need to be fixed before-		
	tion problem	hand		
Learning with addi-	incorporate the unlabeled data	need kernel density estimation		
tional distributions				
Distributional data	encode distributional data into	cannot capture all the information in the		
learning	tuples of attribute values by	distributions		
	aggregation/generative meth- ods/discriminative methods			

Experiments Setup

Data Sets

Datasets	Features	Instances	Classes	Subjects
Opportunity	113	674926	4	4
Skoda	60	696975	10	1

Baseline Methods

Methods	Algorithms	
Frame-based	SVM	
Frame-based	kNN	
	1entry+SVM	
Segment-based	1entry $+$ k NN	
	miFV	

Performance Metric

Evaluation in 2 aspects: frame, event F1 score:

microaverage F1 score (miF)

$$miF = 2 \times \frac{precision_{all} \times recall_{all}}{precision_{all} + recall_{all}}$$

$$precision_{all} = \frac{\sum_{i} TP_{i}}{\sum_{i} TP_{i} + \sum_{i} FP_{i}}$$

$$recall_{all} = \frac{\sum_{i} TP_{i}}{\sum_{i} TP_{i} + \sum_{i} FN_{i}}$$
(7)

weighted macroaverage F1 score (maF)

$$maF = 2 \times \sum_{i} w_{i} \frac{precision_{i} \times recall_{i}}{precision_{i} + recall_{i}}$$
(8)

Experiments Results

Table 1: Experiments results on two data sets (unit: %)

		Opportunity		Skoda	
Methods	Algorithms	miF_segment	maF_segment	miF_segment	$maF_segment$
	Proposed	77.286	75.673	98.895	98.887
Segment- based	1entry+SVM	74.036	72.997	92.279	92.213
	1entry+kNN	75.381	75.186	91.588	91.518
	miFV	25.577	24.009	61.877	55.086
	Proposed	77.286	75.673	98.895	98.887
Frame-	SVM	75.914	75.423	81.819	77.062
based	kNN	74.333	73.952	92.618	92.044

Experiments Results

Table 1: Experiments results on two data sets (unit: %)

		Opportunity		Skoda	
Methods	Algorithms	miF_segment	maF_segment	miF_segment	maF_segment
	Proposed	77.286	75.673	98.895	98.887
Segment- based	1entry+SVM	74.036	72.997	92.279	92.213
	1entry+kNN	75.381	75.186	91.588	91.518
based	miFV	25.577	24.009	61.877	55.086
	Proposed	77.286	75.673	98.895	98.887
Frame-	SVM	75.914	75.423	81.819	77.062
based	kNN	74.333	73.952	92.618	92.044

• miFV: Null class interruption and imbalanced multi-class

Choices of kernels

Table 2: miF_event of proposed method on Skoda data set with different kernels

		$ ilde{k}(\cdot,\cdot)$			
		LIN	POLY3	RBF	SIG
	LIN	91.4300	91.3852	91.3632	28.6446
	POLY3	98.1202	98.0728	98.1556	92.0938
$k(\cdot)$	RBF	98.1422	90.8818	98.8950	98.3728
	SIG	87.7026	87.0830	90.4140	90.4176

Choices of kernels

Table 2: miF_event of proposed method on Skoda data set

with different kernels

		$ ilde{k}(\cdot,\cdot)$			
		LIN	POLY3	RBF	SIG
	LIN	91.4300	91.3852	91.3632	28.6446
·.	POLY3	98.1202	98.0728	98.1556	92.0938
$k(\cdot)$	RBF	98.1422	90.8818	98.8950	98.3728
	SIG	87.7026	87.0830	90.4140	90.4176

PD kernels better than non-PD kernels

Interclass similarity

Confusion matrix of proposed method

Interclass similarity

Confusion matrix of 1entry+SVM method

Interclass similarity

Confusion matrix of SVM method

Conclusion

- A new way to represent activity data: probability distributions (compared to commonly fixed-length vectors)
- A novel feature representation for time-series activity data via kernel embedding
 - Extract more discriminative features from sensor data
 - Robustness to Null class and imbalanced class cases
 - Handle interclass similarity problems
- Experiments results illustrate the efficacy of the proposed method

Future Work

- Extend the framework to more applications
- Extend the framework for large-scale data
- Develop the semi-supervised and unsupervised learning framework for the activity recognition problems

References I

- Nachman Aronszajn. "Theory of reproducing kernels". In: Transactions of the American mathematical society 68.3 (1950), pp. 337–404.
- Alex Smola et al. "A Hilbert space embedding for distributions". In: International Conference on Algorithmic Learning Theory. Springer. 2007, pp. 13–31.