컴퓨터 공학 기초 설계 및 실험1 예비 보고서

실험제목: Thevenin Equivalent Circuit & Maximum Power Transfer

실험일자: 2023년 06월 02일 (금)

제출일자: 2023년 05월 29일 (월)

학 과: 컴퓨터정보공학부

담당교수: 신동화 교수님

실습분반: 03

학 번: 2022202065

성 명: 박나림

예비보고서

1. 제목 및 목적

A. 제목

Thevenin Equivalent Circuit & Maximum Power Transfer

B. 목적

테브닌 등가회로에 대한 이론을 이해하도록 한다. 최대 전력 전달 개념을 이해하며, 이러한 원리를 이용하여 실제로 회로를 설계해본다. 실험을 통해 원리를 적용하는 데에 목적을 둔다.

2. 원리(배경지식)

A. 테브닌 등가 회로

전압원, 전류원, 저항과 같이 두 개의 단자를 지닌 것들의 회로를 하나의 전압원과 하나의 직렬 저항으로 변환한 등가 회로를 테브닌 등가 회로라고 한다. 소자의 개수가 많은 복잡한 회로일 때 이러한 테브닌의 정리를 활용하면 훨씬 간단하게 회로를 계산할 수 있다.

왼쪽 회로처럼 출력 전압 V가 개방 회로 상태일 때, 테브닌 전압인 V_{th} 로 변환할 수 있다. 개방 회로에서 출력 전류 I는 끊어진 부분을 이어서 단락 회로 상태로 바꿀 때 옴의 법칙을 이용하여 R_{th} 를 구할 수 있다. 따라서 등가 회로로 바꾸면 V_{th} 전압의 전압원에 직렬로 저항 R_{th} 를 직력로 연결한 것과 같다.

위와 같이 변환할 수 있는 이유는 회로를 개방 회로로 분리시킬 때, 개방 쪽의 저항에는 전류가 흐르지 않기 때문에 전압원 쪽 저항에만 걸리는 전압으로 V_{cc} 를 구할 수 있는 것이다. 이때 회로에 전압 분배 법칙을 적용한다. 그 다음으로 복잡한 회로 쪽에서 독립 전원을 제거하여 저항끼리의 병렬, 직렬 값을 계산한다. 그 값이 R_{th} 가 되는 것이다. 마지막으로 구한 V_{cc} 와 R_{th} 를 직렬 연결시킨 뒤 개방쪽을 연결하여 부하저항인 R_{t} 로 써준다.

B. 최대 전력 전달

위의 테브닌 회로에서 있는 R_L 의 값이 최대가 될 때, 이를 최대 전력 전달이라고 한다. 이를 구하기 위해서는 R_L 에 대해 미분한 후, 이 미분 값이 0이 되는 해를 찾아야 한다. R_L 에 걸리는 전력은 $P_L = i^2R_L = (V_L^2R_L) / (R_s + R_L)$ 로 구할 수 있다.

P 을 미분하여 0이 되는 방정식을 세워서 식을 계산하면

- \rightarrow $P_1' = (R_S + R_1)^2 v_S^2 2 V_S^2 R_1 (R_S + R_1) / (R_S + R_1)^4 = 0$
- \rightarrow 2R_L(R_S + R_L) = (R_S + R_L)²
- \rightarrow R_S = R_L

따라서, R_s 와 R_L 의 값이 동일할 때, 즉 등가 저항과 부하 저항이 같을 때 최대 전력을 구할 수 있다.

3. 참고문헌

William H. Hayt, Jr / 회로이론 / Mc Graw Hill / 2019 테브난의 정리 / https://url.kr/mj28xc