EXAMEN. ANUL I - MARIRE BUHA! DARIUS STRUCTURI ALGEBRICE ?N IN FORMATICA

(1)
$$x^2 = \nabla , x \in S_4 , x = ?$$

$$V \times ES$$
, $Sgn(X^2)=1$ (perm. pare) $V \times ES$, $Sgn(X^2)=1$ (perm. pare) $V \times ES$, V

(2)
$$x^3 = 5$$
, $x \in S_4$, $x = ?$

Cazul 1: ord
$$(x)=2$$
 | $x=\nabla$ (sol. unice)

$$d = c_{mmn} c(k, s) = (3, 0) = 2 = 7$$

 $g = 3 = 6 \quad (c_{outradidie})$

(3) fix
$$H = 2 \sigma 7$$
 $\nabla = (13)(24)$
 $C_2: \text{ ord } H = 2$
 $\sigma^2 = 2$
 $\sigma^3 = \sigma \cdot 2 = \sigma$

111

$$P_3 \quad P_{CX}) = x^3 + nx - 2, n \in \mathcal{Z}$$

$$Q: P(x) = 0 =) \times \{2 = \} \times \{\{1, \pm 2\}\}$$

$$Q: P(x) = 0 =) \times \{2 = \} \times \{\{1, \pm 2\}\}$$

$$X = 1 =) P(1) = 1 + M - 2 =) M - 1 = 0 = M = 1$$

$$X = -1 =) P(-1) = -1 - M - 2 =) -2M = -6 =) M = -3$$

$$X = 2 =) P(2) = P + 2M - 2 =) 2M = -6 =) M = -3$$

$$X = 2 =) P(2) = -P - 2M - 2 =) -2M = 10 =) M = -5$$

$$X = -2 =) P(-2) = -P - 2M - 2 =) -2M = 10 =) M = -5$$

$$(a_{2}1 : M = 1 -) P(x) = x^{3} + x - 2$$

$$P(x) = (x-1) P(x) = x + x + x$$

$$P(x) = (x-1) (x^2 + x + x)$$

Caq
$$\overline{11}$$
 $n = -3$
 $P(x) = x^3 - 3x - 1$
 $P(-1) = 0 = 0$ $P(x) = (x+1)$ $x^2 - x - 2$
 $x^3 - 3x - 2$ $x + 1$
 $-x^3 - x^2$ $x + 1$
 $-x^2 - 3x - 2$
 $-x^2 - 3x - 2$
 $-x^2 - 3x - 2$
 $-x^2 + x$
 $-2x - 2$
 $2x + 2$
 0
 $x^2 - x - 2 = 0$
 $x - x$

$$\frac{2\ell_{2}}{\rho(x)} = x^{3} + 4x = x(x^{2} + 4) = 0$$

$$\frac{4\pi + 1}{\rho(x)} = x(x + 1)^{2}$$

$$\frac{4\pi + 2}{\rho(x)} = x(x + 1)^{2}$$

$$\frac{4\pi + 2}{\rho(x)} = x^{3}$$

$$\frac{2\ell_{3}}{\rho(x)} = x^{3} + 4x + 1$$

$$P(i) = 1$$
 (inid)

 $P(i) = 1 + 41 = 42$ (rid, $4 = 1$)

 $P(2) = 24$ (rid, $4 = 0$)

$$P(x) = 0 \Rightarrow P(x) = (x-2)(x^2-x+1) = (x+1)(x^2+2x)$$

$$= (x+1)^3$$

$$N = 1 = \frac{1}{2} P(x) = x^{3} + x + 1$$

$$P(1) = 0 + \frac{1}{2} P(x) = (x + 2) - (x^{2} + x + 2) \quad irud. \quad fu = 2/3$$

$$P(x) = (x + 2) (x^{2} + x + 2)$$