Tight and non-fillable contact manifolds are everywhere

Agustin Moreno j.w. Bowden, Gironella, Zhou

Heidelberg University

Background

Contact topology: The study of contact manifolds, up to isotopy.

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are **fillable**?

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are fillable?

Eliashberg, Borman-Eliashberg-Murphy:

Dichotomy: Rigidity vs. Flexibility.

- tight (rigid/geometric);
- overtwisted (flexible/topological).

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are fillable?

Eliashberg, Borman–Eliashberg–Murphy:

Dichotomy: Rigidity vs. Flexibility.

- tight (rigid/geometric);
- overtwisted (flexible/topological).

Theorem (Eliashberg–Gromov)

Fillable contact manifolds are tight.

Converse is false (Etnyre–Honda, Massot–Niederkrueger–Wendl).

Existence and classification

Topological obstruction: *almost* contact structure, i.e. reduction of structure group to $U(n) \times 1$.

Theorem (Lutz-Martinet (dim 3), Casals-Pancholi-Presas (dim 5), Borman-Eliashberg-Murphy (any dim))

Almost contact manifolds are contact, where the contact structure is overtwisted.

Existence and classification

Topological obstruction: *almost* contact structure, i.e. reduction of structure group to $U(n) \times 1$.

Theorem (Lutz–Martinet (dim 3), Casals–Pancholi–Presas (dim 5), Borman–Eliashberg–Murphy (any dim))

Almost contact manifolds are contact, where the contact structure is overtwisted.

Tight manifolds

How can we understand tight contact manifolds?

Contact topology: fillability

Hierarchy of fillability:

$$\{Stein\} \stackrel{\textcircled{1}}{=} \{Weinstein\} \stackrel{\textcircled{2}}{\subsetneq} \{Liouville\} \stackrel{\textcircled{3}}{\subsetneq} \{strong\}$$

$$\stackrel{\textcircled{4}}{\subsetneq} \{weak\} \stackrel{\textcircled{5}}{\subsetneq} \{tight\}$$

- dim = 3: (1) Cieliebak–Eliashberg, (2) Bowden, (3) Ghiggini, (4) Eliashberg, (5) Etnyre–Honda.
- dim ≥ 5: 1 Cieliebak–Eliashberg,
- ② Bowden–Crowley–Stipsicz, ③ Zhou,
- 4 Bowden–Gironella–M., 5 Massot–Niederkrüger–Wendl.

Contact structures on spheres

First step in classification: contact structures on spheres.

Standard contact structure

The standard contact structure is $(S^{2n-1}, \xi) = \partial(B^{2n}, \omega_{std})$.

Contact structures on spheres

First step in classification: contact structures on spheres.

Standard contact structure

The standard contact structure is $(S^{2n-1}, \xi) = \partial(B^{2n}, \omega_{std})$.

Theorem (Eliashberg, '91)

On S³, it is the unique tight contact structure.

In particular, no tight and non-fillable contact structures on S^3 .

Tight and non-fillable structures in dim ≥ 5

Theorem (Bowden-Gironella-M.-Zhou '22-'24)

In dim \geqslant 7, if M admits a tight structure, it also admits a tight and non strongly-fillable structure, in the same almost contact class.

Tight and non-fillable structures in dim ≥ 5

Theorem (Bowden-Gironella-M.-Zhou '22-'24)

In $\dim \geqslant 7$, if M admits a tight structure, it also admits a tight and non strongly-fillable structure, in the same almost contact class.

In dim = 5, the same holds, if the first Chern class vanishes.

We get infinitely many if $\dim \ge 11$, and M is Weinstein fillable with torsion first Chern class.

Case of spheres

The general theorem follows by connected sum with an "exotic" sphere:

Theorem (Bowden-Gironella-M.-Zhou '22-'24)

For every $n \ge 2$, the sphere \mathbb{S}^{2n+1} admits a tight, non-fillable contact structure that is homotopically standard.

Case of spheres

The general theorem follows by connected sum with an "exotic" sphere:

Theorem (Bowden-Gironella-M.-Zhou '22-'24)

For every $n \ge 2$, the sphere \mathbb{S}^{2n+1} admits a tight, non-fillable contact structure that is homotopically standard.

Infinitely many if $n \ge 5$.

General remarks

• This is a novel and strictly higher-dimensional phenomenon (false in dim 3).

General remarks

- This is a novel and strictly higher-dimensional phenomenon (false in dim 3).
- Suggests that higher-dimensional contact phenomena should occur independently of underlying smooth topology.

Liouville but not Weinstein

Theorem (Bowden-Gironella-M.-Zhou '22-'24)

In dim ≥ 7 , if M admits a Weinstein fillable structure with torsion first Chern class, then it also admits infinitely many Liouville but non-Weinstein fillable structures in the same formal class.

Case of spheres

This again follows by connected sum with an "exotic" sphere:

Theorem (Bowden-Gironella-M.-Zhou '22)

For any $n \ge 3$, there exist infinitely many Liouville fillable contact structures on \mathbb{S}^{2n+1} that are not Weinstein fillable, and are homotopically standard.

Open questions

- Is there a Liouville but not Weinstein fillable structure on S⁵?
- Is there a strong but not Liouville fillable structure on \mathbb{S}^{2n+1} , $n \ge 2$?

Tight and non-fillable spheres

Giroux correspondence

Giroux: Contact structures are *supported* by open books.

Figure: Supported contact structure.

Bourgeois contact structures

Theorem (Bourgeois '02)

Open book supporting $(M, \xi) \leadsto$ contact structure on $M \times \mathbb{T}^2$.

These are \mathbb{T}^2 -equivariant.

Geometric construction: We now construct **one** tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

Geometric construction: We now construct **one** tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

• Milnor open book on $\mathbb{S}^{2n-1} \rightsquigarrow$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ \rightsquigarrow two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \rightsquigarrow$ one 2-surgery = \mathbb{S}^{2n+1} .

Geometric construction: We now construct **one** tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

- Milnor open book on $\mathbb{S}^{2n-1} \leadsto$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ \leadsto two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \leadsto$ one 2-surgery = \mathbb{S}^{2n+1} .
- If $n \ge 3$, surgeries are *subcritical* \leadsto by 'Eliashberg's' h-pple, Weinstein cobordism \leadsto contact manifold ($\mathbb{S}^{2n+1}, \xi_{ex}$).

Geometric construction: We now construct **one** tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

- Milnor open book on $\mathbb{S}^{2n-1} \leadsto$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ \leadsto two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \leadsto$ one 2-surgery = \mathbb{S}^{2n+1} .
- If $n \ge 3$, surgeries are *subcritical* \leadsto by 'Eliashberg's' h-pple, Weinstein cobordism \leadsto contact manifold $(\mathbb{S}^{2n+1}, \xi_{ex})$.

Claim: ($\mathbb{S}^{2n+1}, \xi_{ex}$) is tight and non-fillable.

Tightness and fillability from algebraic perspective

Contact homology algebra CHA(Y) (homology well-defined by Pardon).

Definition

- Y is algebraically tight if $CHA(Y) \neq 0$.
- ② Y is algebraically fillable if there is a DGA augmentation of CHA(Y) at the chain level.

Similarly for algebraically overtwisted/non-fillable.

Note: This definition is well-defined, due to functoriality of the DGA, even though homotopy type of chain level is not.

Formal algebraic properties

Lemma

- Algebraically tight ⇒ tight.
- ② Algebraically fillable ⇒ algebraically tight.
- Algebraically non-fillable ⇒ non-fillable.
- 1-ADC ⇒ algebraically tight.

1-ADC is an *index-positivity* condition (Lazarev, Zhou).

Formal algebraic properties

Lemma

- Algebraically tight \Rightarrow tight.
- ② Algebraically fillable ⇒ algebraically tight.
- Algebraically non-fillable ⇒ non-fillable.
- 1-ADC ⇒ algebraically tight.

1-ADC is an *index-positivity* condition (Lazarev, Zhou).

Facts:

- (Advek '22) tight contact manifolds can be algebraically overtwisted, in dim 3.
- Algebraic tightness is preserved under surgeries. Tightness is also, in dim 3 (Wand '14).
- 3 1-ADC binding of fillable open book ⇒ 1-ADC algebraically fillable Bourgeois manifold ⇒ algebraically tight.
- **1.** E.g. Milnor A_k -singularity open book has 1-ADC binding.

Tightness

Milnor A_k open book $\Rightarrow (\mathbb{S}^{2n+1}, \xi_{ex})$ is *tight*.

Tightness

Milnor A_k open book $\Rightarrow (\mathbb{S}^{2n+1}, \xi_{ex})$ is *tight*.

Note: Heuristically, there is a priori *many* choices of open book. This suggests *many* non-standard structures. However, distinguishing is subtle.

Non-fillability

Non-fillability of $(\mathbb{S}^{2n+1}, \xi_{ex})$ can be proven via:

- Homological obstruction and cobordisms as in [Bowden–Gironella–M.], building on [Massot–Niederkrüger–Wendl].
- 2 Symplectic cohomology computations as in [Zhou].

Homological obstructions

Observation: Bourgeois manifolds have convex decomposition

$$\textbf{\textit{M}}\times\mathbb{T}^2=(\textbf{\textit{M}}\times\mathbb{S}^1)\times\mathbb{S}^1=\textbf{\textit{V}}_+\times\mathbb{S}^1\cup_\phi\overline{\textbf{\textit{V}}}_-\times\mathbb{S}^1,$$

with $V_+ = \Sigma \times D^* \mathbb{S}^1$, $\Sigma =$ page of the open book, $\phi =$ monodromy.

Homological obstructions

Observation: Bourgeois manifolds have convex decomposition

$$\textbf{\textit{M}}\times\mathbb{T}^2=(\textbf{\textit{M}}\times\mathbb{S}^1)\times\mathbb{S}^1=\textbf{\textit{V}}_+\times\mathbb{S}^1\cup_\phi\overline{\textbf{\textit{V}}}_-\times\mathbb{S}^1,$$

with $V_{\pm} = \Sigma \times D^* \mathbb{S}^1$, $\Sigma =$ page of the open book, $\phi =$ monodromy.

Theorem (Bowden-Gironella-M.)

 $M = V \times \mathbb{S}^1 = V_+ \times \mathbb{S}^1 \cup_{\phi} \overline{V_-} \times \mathbb{S}^1$ with convex decomposition, $N = \partial V_{\pm}$ dividing set. If W is a symplectic filling of M, then

$$H_*(N) \rightarrow H_*(V_{\pm}) \rightarrow H_*(W),$$

induced by inclusion. Then second map is injective on image of the first.

Namely, if a homology class in N survives in V_{\pm} , then it survives in the filling.

• Capping cobordism from M to $N \times \mathbb{S}^2$ with a SHS, via handles H_{\pm} with co-core V_{+} .

- Capping cobordism from M to $N \times \mathbb{S}^2$ with a SHS, via handles H_{\pm} with co-core V_{+} .
- Second factor gives moduli space of spheres \mathcal{M}_* with evaluation map $ev: \mathcal{M}_* \to W$.

- Capping cobordism from M to $N \times \mathbb{S}^2$ with a SHS, via handles H_{\pm} with co-core V_{+} .
- Second factor gives moduli space of spheres \mathcal{M}_* with evaluation map $ev: \mathcal{M}_* \to W$.
- Spheres intersect H_{\pm} precisely once \rightsquigarrow intersection map $\mathcal{I}_{\pm}: \mathcal{M}_* \to V_{\pm}.$

- Capping cobordism from M to $N \times \mathbb{S}^2$ with a SHS, via handles H_{\pm} with co-core V_{+} .
- Second factor gives moduli space of spheres \mathcal{M}_* with evaluation map $ev: \mathcal{M}_* \to W$.
- Spheres intersect H_{\pm} precisely once \leadsto intersection map $\mathcal{I}_{\pm}:\mathcal{M}_*\to V_{\pm}.$
- If $\sigma \subset W$ satisfies $\partial \sigma = c$ with c cycle in N, then $b = \mathcal{I}_{\pm} ev^{-1}(\sigma)$ bounds σ in V_+ .

Homological obstructions

Fact:

• If dim $\geqslant 7$, subcritical surgeries on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ can be pushed away from dividing set to V_+ .

$$\Rightarrow$$
 (\mathbb{S}^{2n+1} , ξ_{ex}) still has a dividing set N ,

with
$$H_n(N) \neq 0$$
.

Homological obstructions

Fact:

• If dim $\geqslant 7$, subcritical surgeries on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ can be pushed away from dividing set to V_+ .

$$\Rightarrow (\mathbb{S}^{2n+1}, \xi_{ex})$$
 still has a dividing set N ,

with $H_n(N) \neq 0$.

4 Homological obstruction theorem persists under surgery away from dividing set (capping cobordisms).

Figure: Capping cobordism.

End of the proof: *W* filling of $(\mathbb{S}^{2n+1}, \xi_{ex}) \Rightarrow$ Homological obstruction:

$$0 \neq H_n(N) \hookrightarrow H_n(W)$$
.

However, this factors as

$$0 \neq H_n(N) \to H_n(\mathbb{S}^{2n+1}) = 0 \to H_n(W),$$

contradiction.

Homotopically standard: Fixed ξ , Bourgeois manifolds have same almost contact class $\xi \oplus T\mathbb{T}^2$, so suffices with trivial open book. h-cobordism theorem gives standard smooth topology on sphere.

- **Homotopically standard:** Fixed ξ , Bourgeois manifolds have same almost contact class $\xi \oplus T\mathbb{T}^2$, so suffices with trivial open book. h-cobordism theorem gives standard smooth topology on sphere.
- Infinitely many: connected sums with Lazarev's non-standard flexibly fillable spheres. Distinguished by positive symplectic cohomology (Cieliebak–Oancea).

- **Homotopically standard:** Fixed ξ , Bourgeois manifolds have same almost contact class $\xi \oplus T\mathbb{T}^2$, so suffices with trivial open book. h-cobordism theorem gives standard smooth topology on sphere.
- Infinitely many: connected sums with Lazarev's non-standard flexibly fillable spheres. Distinguished by positive symplectic cohomology (Cieliebak–Oancea).
- Oimension 5: Needs careful flexible version of the homological obstruction theorem.

- **Homotopically standard:** Fixed ξ , Bourgeois manifolds have same almost contact class $\xi \oplus T\mathbb{T}^2$, so suffices with trivial open book. h-cobordism theorem gives standard smooth topology on sphere.
- Infinitely many: connected sums with Lazarev's non-standard flexibly fillable spheres. Distinguished by positive symplectic cohomology (Cieliebak–Oancea).
- Oimension 5: Needs careful flexible version of the homological obstruction theorem.
- **Symplectic cohomology:** Capping cobordisms reach $\partial(V \times \mathbb{D}^2)$. Zhou's computations of $SH_+(\partial(V \times \mathbb{D}^2))$ and SH_+ computations of Brieskorn spheres as by [Kwon–van-Koert] can be used.

Liouville but not Weinstein fillable spheres

One example:

• $V = N^{2n-1} \times [-1, 1]$ Liouville domain (MNW) $\rightsquigarrow M = \partial (V \times \mathbb{D}^2)$, which is ADC (Lazarev, Zhou).

One example:

- $V = N^{2n-1} \times [-1, 1]$ Liouville domain (MNW) $\leadsto M = \partial (V \times \mathbb{D}^2)$, which is ADC (Lazarev, Zhou).
- Bowden–Crowley–Stipsicz \rightsquigarrow cobordism W to sphere \mathbb{S}^{2n+1} .

One example:

- $V = N^{2n-1} \times [-1, 1]$ Liouville domain (MNW) $\leadsto M = \partial (V \times \mathbb{D}^2)$, which is ADC (Lazarev, Zhou).
- Bowden–Crowley–Stipsicz \rightsquigarrow cobordism W to sphere \mathbb{S}^{2n+1} .
- Cieliebak–Eliashberg \rightsquigarrow W can be taken flexible Weinstein \rightsquigarrow contact sphere (\mathbb{S}^{2n+1}, ξ), which is ADC.

One example:

- $V = N^{2n-1} \times [-1, 1]$ Liouville domain (MNW) $\leadsto M = \partial (V \times \mathbb{D}^2)$, which is ADC (Lazarev, Zhou).
- Bowden–Crowley–Stipsicz \rightsquigarrow cobordism W to sphere \mathbb{S}^{2n+1} .
- Cieliebak–Eliashberg \rightsquigarrow W can be taken flexible Weinstein \rightsquigarrow contact sphere (\mathbb{S}^{2n+1}, ξ) , which is ADC.
- Stacking W on top of $V \times \mathbb{D}^2 \leadsto (\mathbb{S}^{2n+1}, \xi)$ has Liouville filling $X^{2n+2} = V \times \mathbb{D}^2 \cup W$.

One example:

- $V = N^{2n-1} \times [-1, 1]$ Liouville domain (MNW) $\leadsto M = \partial (V \times \mathbb{D}^2)$, which is ADC (Lazarev, Zhou).
- Bowden–Crowley–Stipsicz \rightsquigarrow cobordism W to sphere \mathbb{S}^{2n+1} .
- Cieliebak–Eliashberg \rightsquigarrow W can be taken flexible Weinstein \rightsquigarrow contact sphere (\mathbb{S}^{2n+1}, ξ) , which is ADC.
- Stacking W on top of $V \times \mathbb{D}^2 \leadsto (\mathbb{S}^{2n+1}, \xi)$ has Liouville filling $X^{2n+2} = V \times \mathbb{D}^2 \cup W$.

Note: $H_{2n-1}(X) \neq 0$, coming from [N], and 2n-1 > n+1 if $n \geq 3 \Rightarrow X$ **not** Weinstein (if n=2, it is by Breen–Christian).

One example:

- $V = N^{2n-1} \times [-1, 1]$ Liouville domain (MNW) $\leadsto M = \partial (V \times \mathbb{D}^2)$, which is ADC (Lazarev, Zhou).
- Bowden–Crowley–Stipsicz \rightsquigarrow cobordism W to sphere \mathbb{S}^{2n+1} .
- Cieliebak–Eliashberg \rightsquigarrow W can be taken flexible Weinstein \rightsquigarrow contact sphere (\mathbb{S}^{2n+1}, ξ), which is ADC.
- Stacking W on top of $V \times \mathbb{D}^2 \leadsto (\mathbb{S}^{2n+1}, \xi)$ has Liouville filling $X^{2n+2} = V \times \mathbb{D}^2 \cup W$.

Note: $H_{2n-1}(X) \neq 0$, coming from [N], and 2n-1 > n+1 if $n \geq 3 \Rightarrow X$ **not** Weinstein (if n=2, it is by Breen–Christian).

X' another filling, ADC $\leadsto H_*(W) \cong H_*(W')$ (Zhou) \Rightarrow **not** Weinstein fillable.

Thank you!