Topología – 2° cuatrimestre 2015

Resuelto de práctica 6

- Ejercicio para entregar
- La cantidad de componentes conexas es un invariante homotópico.

Demostración Supongamos que $X \simeq Y$ pero que la cantidad de componentes conexas de X (De ahora en mas $|C_X|$) es distinta de la de Y. Podemos suponer que $|C_X| = n > |C_Y| = m$. Notemos que si $f: X \to Y$ es la equivalencia homotópica y $X = \bigcup_{i \in I}^d C_{x_i}$ es la partición de X en sus componentes conexas, mientras que $Y = \bigcup_{i \in I}^d C_{y_i}$ es la partición de Y en sus componentes conexas entonces $f(C_{x_i}) \subseteq C_{y_{j_0}}$ para un único j_o pues como f es continua, entonces $f(C_{x_i})$ es conexo, pero si $f(C_{x_i}) \subseteq C_{y_{j_0}} \cup C_{y_{j_1}}$ eso sería una desconexión. Por ende como $n \ge m$ entonces $\exists i_0, i_1 \in I$ tal que $f(C_{x_{i_0}}), f(C_{x_{i_1}}) \in C_{y_{j_0}}$, que es una manera muy poco linda de decir, al menos dos componentes distintas caen por f es la misma componente de Y. Pero sea $g: Y \to X$ la inversa homotópica de f, entonces $g(C_{y_{j_0}}) \subseteq C_{x_{i_0}}$ por conexión y el hecho que si fuese a otra diferente $C_{x_{i_2}}$ entonces via H $fg \simeq 1_Y$ y entonces fijando $y_2 \in C_{y_{j_2}}$ tendriamos que H_{y_2} sería un camino entre y_2 y y_0 que estan en diferentes componentes, Abs! Pero entonces, con el mismo razonamiento, sea $x_2 \in C_{x_{i_2}}$ y sea F la homotopía entre $gf \simeq 1_X$, entonces $F_{x_2}(t)$ cumple que $F_{x_2}(0) = gf(x_2) = x_0 \in C_{x_{i_0}}$ y $F_{x_2}(1) = x_2 \in C_{x_{i_2}}$ y por ende tenemos un camino entre $C_{x_{i_0}}$ y $C_{x_{i_2}}$. Abs! Entonces n = m y notemos simplemente que si $|C_X| > |C_Y| \implies \exists f$ suryectiva pero no inyectiva, y eso vale para todo cardinal .

1. Ejercicio 1

Probar que si $h, h': X \to Y$ son homotópicas (rel $A \subseteq X$) y $k, k': Y \to Z$ son homotópicas (rel $B \subseteq Y$ con $h(A) \subseteq B$), entonces $kh, k'h': X \to Z$ son homotópicas (rel A).

Demostración Sea $H: X \times I \to Y$ la homotopía entre h y h', y sea $K: Y \times I \to Z$ la homotopía entre k y k'. Necesitamos una $F: X \times I \to Z$ contínua tal que F(x,0) = kh y F(x,1) = k'h'. Proponemos:

$$F(x,s) = K(H(x,s),s)$$

Entonces veamos:

- F(x,0) = K(H(x,0),0) = K(h(x),0) = k(h(x)) = kh(x) entonces $F_0 := F(x,0) = kh$
- F(x,1) = K(H(x,1),1) = K(h'(x),1) = k'(h'(x)) = k'h'(x) entonces $F_1 := F(x,1) = k'h'(x)$
- F es contínua pues es composición de K y H que son contínuas

2. Ejercicio 2

Sea X es un espacio topológico. Pruebe que las aplicaciones $i_0, i_1: X \to X \times I$ definidas por $i_j(x) = (x, j)$ $(j \in \{0, 1\})$ son equivalencias homotópicas con la misma inversa $p: (x, t) \in X \times I \mapsto x \in X$. Más aún, $i_0 \simeq i_1$.

Demostración Como ya nos dan la inversa, debemos ver que $i_i p \simeq 1_{X \times I}$ y que $p i_i \simeq 1_X$. Vayamos!

a) i_0 Notemos que $i_0p(x,t)=i_0(x)=(x,0)$, entonces sea H((x,t),s)=(x,t)(1-s)+(x,0)s, para empezar $H:(X\times I)\times I\to X\times I$, esta bien definida y es continua pues es una combinación lineal entre $1_{X\times I}$ y i_0p que son continuas pues composión de continuas. Además $H((x,t),0)=(x,t)\Longrightarrow H_0=1_{X\times I}$ y $H((x,t),1)=(x,0)\Longrightarrow H_1=i_0p$ entonces $i_0p\simeq 1_{X\times I}$ Por otro lado $pi_0(x)=p(x,0)=x$ entonces $pi_1=1_X$ y por ende i_0 es una equivalencia homotópica.

- b) i_1 Es fácil ver que si defino $\tilde{H}((x,t),s)=(x,t)(1-s)+(x,1)s$ esta es la homotpía que sirve.
- c) $i_0 \simeq i_1$ Sea F(x,t)=(x,0)t+(x,1)(1-t) entonces $F_0=i_1$ y $F_1=i_0$ y F es una homotopía.

Sean $f, g: X \to Y$ funciones continuas tal que $f \simeq g$. Pruebe que si f es una equivalencia homotópica, entonces g también lo es.

Demostración Sea $k: Y \to X$ la inversa homootópica de f. Entonces si usamos el ejercicio 1:

$$f \simeq g \rightarrow 1_X \simeq kf \simeq kg$$

 $f \simeq g \rightarrow 1_Y \simeq fk \simeq gk$

Entonces $kg \simeq 1_X$ y $gk \simeq 1_Y$, por la unicidad de la inversa, k es la inversa homotópica de g y por ende g es una equivalencia homotópica

4. Ejercicio 4

Dé un ejemplo de una función f que tenga inversa homotópica a izquierda (a derecha) pero no a derecha (a izquierda).

Demostración Sea $X = \{*\}$, $Y = S^1$, $i: X \to Y$ $f: Y \to X$ con i(*) = N (El polo norte) y f la función que lleva todo al punto *. Entonces:

$$if = C_N$$
 $fi = 1_{\{*\}}$

De acá sacamos que i tienen inversa a izquierda, pero no a derecha pues $C_N \not\simeq 1_Y$ pues S^1 no es contractil. Del mismo ejemplo tenemos al revés para f

5. Ejercicio 5

Pruebe que:

- a) Si f posee una inversa homotópica a izquierda y una inversa homotópica a derecha, entonces f es una equivalencia homotópica.
- b) f es una equivalencia homotópica si y sólo si existen functiones $g, h: Y \to X$ tales que $f \circ g$ y $h \circ f$ son equivalencias homotópicas.

Demostración a) Sa g la inversa a izquierda y h a derecha, entonces:

$$q \simeq q 1_V \simeq q(fh) \simeq (qf)h \simeq 1_X h \simeq h \Longrightarrow qf \simeq 1_X fq \simeq fh \simeq 1_V$$

Entonces f es equivalencia homotópica

- b) De a partes
 - \Longrightarrow)
 Tomo $g=1_X$ y $h=1_Y$, entonces fg=f y hf=f y son equivalencias homotópicas por hipótesis.
 - Sea k la inversa homotópica de fg, entonces $(fg)k \simeq f(gk) \simeq 1_Y$ y entonces gk es una inversa homótipica a derecha. Por otro lado sea j la inversa homoótipica de hf, entonces $j(hf) \simeq (jh)f \simeq 1_X$ y entonces jh es una inversa homotópica a izquierda. Por el item anterior f es equivalencia homotópica.

Sea X un espacio, sea $A \subseteq X$ un subespacio y sea $a_0 \in A$. Supongamos que existe una función continua $H: X \times I \to X$ tal que: H(x,0) = x para todo $x \in X; H(A \times I) \subseteq A;$ y $H(a,1) = a_0$ para todo $a \in A$. Entonces la aplicación cociente $q: X \to X/A$ es una equivalencia homotópica.

Demostración A nosotros nos gustaría hallar una funcion $\tilde{f}: X/A \to X$ tal que $fq \simeq 1_X$ y $qf \simeq 1_{X/A}$. Para obtener \tilde{f} deberíamos tenes una $f: X \to X$ tal que $a \sim a' \Longrightarrow f(a) = f(a')$, pero notemos que H hace esto pues manda todo A en la tapa superior del cilindro al mismo punto. Entonces sea:

$$f(x) = H(x, 1)$$

- f esta bien definida pues H lo estaba
- \bullet fes continua pues $f=H|_{X\times\{1\}}$ y Hera continua y restrinjo a un cerrado del cilindro.
- Si $a, a' \in A$ entonces $f(a) = f(a') = a_0$

Por todo lo anterior tenemos el siguiente diagrama conmutativo por la PU del cociente:

$$X \xrightarrow{f} X$$

$$q \downarrow \xrightarrow{\exists ! \tilde{f}} X$$

$$X/A$$

Afirmo que \tilde{f} es la inversa homotópica de q, veamoslo!

- $\tilde{f}q$ Sea $x \in X$, entonces $\tilde{f}q(x) = f(x) = H(x,1)$ por que el diagrama conmuta. Pero H(x,0) = x, entonces tenemos una $H: X \times I \to X$ continua tal que $H_0 = 1_X$ y que $H_1 = f$, entonces $\tilde{f}q = f \simeq 1_X$ y \tilde{f} es la inversa a izquierda de q.
- $q\tilde{f}$ Apriori esta es difícil pues $q\tilde{f}(\bar{x}) = q(f(x)) = qH(x,1)$, pero $qH(x,0) = \bar{x}$. Notemos que hallar una homotopía en X/A es una función $\tilde{H}: X/A \times I \to X/A$, entonces inspirados por lo del principio veamos el siguiente diagrama:

$$X \times I \xrightarrow{H} X \xrightarrow{q} X/A$$

$$\downarrow q \times 1_I \downarrow \qquad \qquad \exists ! q \check{H} \qquad \qquad X/A \times I$$

Pues:

- qH es continua pues es composición de continuas, y esta bien definida.
- Si $(x_1, t_1) \sim (x_2, t_2) \rightarrow x_1, x_2 \in A$, $t_1 = t_2 = t \implies H(x_1, t), H(x_2, t) \in A \implies qH(x_1, t_1) = qH(x_2, t_2) = \bar{a_0}$
- Como I es localmente compacto y T_2 y q es cociente, entonces $q \times 1_I$ es cociente

Notemos que $\tilde{q}H(\bar{x},0)=qH(x,0)=q(x)=\bar{x}$ y entonces $\tilde{q}H_0=1_{X/A}$, mientras que $\tilde{q}H(\bar{x},1)=qH(x,1)=qf(x)=q\tilde{f}(\bar{x})$ y entonces $\tilde{q}H_1=q\tilde{f}$. Por ende $q\tilde{f}\simeq 1_{X/A}$ y con el item anterior q es equivalencia homotópica.

7. Ejercicio 7

Pruebe que:

- a) Si $C \subseteq \mathbb{R}^n$ es un subespacio convexo, entonces es contráctil. Más aún, C tiene a cualquiera de sus puntos como retracto por deformación fuerte. Concluya que I y \mathbb{R} son contráctiles.
- b) Si X es contráctil, entonces es arcoconexo.
- c) Todo retracto de un espacio contráctil es contráctil.

Demostración a) Sea $c_0 \in C$, veamos que $\{c_0\}$ es RDF de C, esto dirá además que es contractil. Para esto notemos que $pi_{c_0} = 1_{\{c_0\}}$, ahora para el otro lado $i_{c_0}p(c) = c_0$, tendríamos que ver que $C_{c_0} \simeq 1_C(rel\{c_0\})$. Sea $H: C \times I \to C$ dada por $H(c,t) = ct + c_0(1-t)$, entonces:

- H esta bien definida pues $\forall c \in C \ [c, c_0] \subseteq C \ y \ \text{entonces} \ H(C \times I) \subseteq C$
- \blacksquare H es continua
- $H(c,0) = c_0$ y entonces $H_0 = C_{c_0}$
- H(c,1) = c y entonces $H_1 = 1_C$
- $H(c_0,t) = c_0 \ \forall t \in I$

Por todo lo anterior, tenemos que vía H $pi_{c_0} \simeq 1_C(rel \{c_0\})$ y por ende $\{c_0\}$ es RDF de C.

- b) Sea H la homotopía entre $C_{\{x_0\}}$ y 1_X , entonces fijado $x \in X$ tenemos que $\gamma(t) := H_x(t) = H(x,t)$: $I \to X$ es continua y $\gamma(0) = H(x,0) = x_0$ y $\gamma(1) = H(x,1) = x$. Por ende: $x_0 \xrightarrow{\gamma} x$ y X es arcoconexo.
- c) Sea $r: X \to A$ tal que $ri_A = 1_A$ y sea $H: X \times I \to X$ tal que $H_0 = 1_X$ y $H_1 = C_{a_0}$ para un $a_0 \in A$. Sea $H^A: A \times I \to A$ dada por:

$$H^{A}(a,t) = r(H(i_{A}(a),t))$$

Entonces tenemos que:

- $H^A(A \times I) \subseteq A$ pues $r(X) \subseteq A$.
- H^A es continua pues r, H, i_A lo son
- $H^A(a,0) = r(H(i_A(a),0)) = r(a_0)$ entonces $H^A_0 = C_{\{r(a_0)\}}$
- $H^A(a,1) = r(H(i_A(a),1)) = ri_A(a) = a \text{ entonces } H_1^A = 1_A$

Por ende dado un $a_0 \in A$ tenemos que $1_A \simeq C_{\{r(a_0)\}}$ y entonces A es contractil

8. Ejercicio 8

Pruebe que:

- a) Todo subespacio compacto convexo de \mathbb{R}^n es retracto por deformación fuerte de \mathbb{R}^n .
- b) Si A es un retracto de X, entonces para todo Y espacio topológico, $A \times Y$ es retracto de $X \times Y$.
- c) Si X es un espacio conexo y $A \subseteq X$ es un subespacio discreto con más de un punto, entonces A no es un retracto débil de X, es decir, $\nexists r: X \to A$ continua tal que $r \circ i \simeq \mathrm{id}_A$.

Demostración a) Sea $C \subseteq \mathbb{R}^n$ un compacto convexo, necesitamos definir $r: \mathbb{R}^n \to C$ tal que $ri_C = 1_C$, $i_C r \simeq 1_{\mathbb{R}^n}$ ($rel\ C$). Como $ri_C(c) = r(c) = c$ entonces $r|_C = 1_C$. Dado $x \in \mathbb{R}^n$ notemos que estamos en un espacio de Hilbert y C es cerrado, acotado y convexo; por ende $\exists! c_x^* \in C$ tal que $d(x,C) = d(x,c_x^*)$, o sea el único elemento de C tal que realiza la distancia. Sea $r(x) = c_x^*$, veamos que esta sirve!

- Si $x \in C$, entonces d(x,C) = 0 y por ende r(x) = x.
- Notemos que r es continua pues $r(x) = P_C(x)$ donde P es la proyección ortogonal a C y esta función por Avanzado es continua(si suponemos que no, entonces perdemosla unicidad de c_x^*).

■ Sea $H: \mathbb{R}^n \times I \to \mathbb{R}^n$ dada por H(x,s) = x * s + r(x) * (1-s), entonces H esta bien definida y es continua por los items anteriores. Además $H_0 = ir$ y $H_1 = 1_{\mathbb{R}^n}$. Además si $c \in C$ entonces $H(c,s) = c * s + r(c) * (1-s) = c * s + c * (1-s) = c \; \forall c \in C$.

Por todo lo anterior $ri_C = 1_C$, $i_C r \simeq 1_{\mathbb{R}^n}$ (rel C) y entonces C es RDF de \mathbb{R}^n

- b) Sea $r: X \to A$ tal que $ri_A = 1_A$, entonces si llamamos $\tilde{r} := r \times 1_Y$ tenemos que \tilde{r} es continua y que $\tilde{r}i_{A\times Y}(a,y) = \tilde{r}(i_A(a),y) = (ri_A(a),y) = (a,y)$ y por ende $A\times Y$ es retracto de $X\times Y$
- c) Sea $r: X \to A$ tal que $ri_A \simeq 1_A$. Entonces existe $H: A \times I \to A$ continua tal que H(a,0) = a y H(a,1) = r(a). Como X es conexo y r es continua r(X) es conexo, y como A es discreto entonces $r(X) = \{a_0\}$ con $a_0 \in A$. Pero entonces sea $a_1 \in A$, $a_1 \neq a_0$ y sea $\gamma(t) := H_{a_1}(t)$, entonces γ es continua y $\gamma(0) = a_1$ mientras que $\gamma(1) = r(a_1) = a_0$, o sea $a_0 \xrightarrow{\gamma} a_1$. Absurdo! Pues A es discreto.

9. Ejercicio9

Sean X, Y espacios topológicos. Sea [X, Y] el conjunto de clases homotópicas de funciones continuas de X en Y. Pruebe que:

- a) Si Y es contráctil, entonces [X,Y] tiene un sólo elemento.
- b) Si X es contráctil e Y arcoconexo, entonces [X,Y] tiene un sólo elemento.
- c) Hay una biyección natural $[*,Y] \to \pi_0(Y)$.
- d) Más generalmente, si Y es contráctil, entonces hay una biyección natural $[Y, X] \to \pi_0(X)$.
- e) Si X' es otro espacio y $X \simeq X'$, entonces hay una biyección entre $\pi_0(X)$ y $\pi_0(X')$.

Demostración a) Sea $f: X \to Y$, entonces $f \simeq 1_Y f \simeq C_{y_0} f = C_{y_0}$, entonces $\bar{f} = \bar{C}_{y_0} \ \forall f \in \mathcal{F}(X,Y)$

- b) Sean $f,g:X\to Y$, como $1_X\simeq C_{x_0}$ entonces x ej 1 $f=f1_X\simeq fC_{x_0}=C_{f(x_0)}$ y $g\simeq C_{g(x_0)}$. Sean H y K las homotopías entre f y $C_{f(x_0)}$, $C_{g(x_0)}$, y g. Deberíamos hallar una homotopía F entre $C_{f(x_0)}$ y $C_{g(x_0)}$, pues entonces $f\simeq g$ (H*F*K). Pero si llamamos γ al camino que une a $f(x_0)$ y $g(x_0)$, entonces $F(x,t)=\gamma(t)$ tenemos que:
 - F es continua pues si $U \subseteq Y$ es abierto, entonces $\gamma^{-1}(U)$ es abierto en I (por ser γ continua), y entonces $F^{-1}(U) = X \times \gamma^{-1}(U)$ es abierto en el producto.
 - $F_0(x) := F(x,0) = \gamma(0) = f(x_0) \implies F_0 = C_{f(x_0)}$
 - $F_1(x) := F(x,1) = \gamma(1) = g(x_0) \implies F_1 = C_{g(x_0)}$

Y tenemos lo deseado.

- c) Hagamos el d)
- d) Nosotros queremos hallar una biyección entre [Y, X] y $\Pi_0(X)$, dado que ambos son cocientes veamos si podemos encontrar una funcion continua que respeto ambas relaciones de equivalencia y por ende pueda pasar al cociente. Sea $y_0 \in Y$ tal que $C_{y_0} \simeq 1_Y$ y sea el morfismo $ev_{y_0} : \mathcal{C}(Y, X) \to X$ tal que $ev_{y_0}(f) = f(y_0)$. Esta función es continua por lo visto en la teórica si dotamos a $\mathcal{C}(Y, X)$ de la topología compacto-abierta. Veamos el siguiente diagrama conmutativo:

$$\begin{array}{ccc}
\mathcal{C}(Y,X) & \xrightarrow{ev_{y_0}} X \\
\downarrow & & \downarrow \\
q_h \downarrow & & \downarrow \\
[Y,X] & & \Pi_0(X)
\end{array}$$

Entonces si $f \sim_h g$ entonces $f \simeq g$ y entonces $ev_{y_0}(f) = f(y_0) \sim_X g(y_0) = ev_{y_0}(g)$ pues si H es la homotopía entre f y g, entonces $H_{y_0}: I \to Y$ es continua y $H_{y_0}(0) = H(y_0, 0) = f(y_0)$ mientras

que $H_{y_0}(1)=H(y_0,1)=g(y_0)$, por lo que $f(y_0)$ $g(y_0)$. Por ende por la PU del cociente, el siguiente diagrama conmuta:

$$\begin{array}{ccc} \mathcal{C}(Y,X) & \xrightarrow{ev_{y_0}} X \\ q_h & & q_X \\ \downarrow & & \downarrow \\ [Y,X] & \xrightarrow{\exists ! \tilde{ev}_{y_0}} \Pi_0(X) \end{array}$$

Veamos que \tilde{ev}_{y_0} es la biyección que buscabamos!

- $\bullet \ q_h, ev_{y_0}, q_X$ son sobreyectivas, por ende \tilde{ev}_{y_0} es sobreyectiva
- Sean $\overline{f} \neq \overline{g}$, queremos ver que $\overline{f(y_0)} \neq \overline{g(y_0)}$. Notemos que $\overline{f} = \overline{f1_Y} = \overline{fC_{y_0}} = \overline{C_{f(y_0)}}$, mientras que $\overline{g} = \overline{g1_Y} = \overline{gC_{y_0}} = \overline{C_{g(y_0)}}$; luego como $\overline{f} \neq \overline{g}$ entonces $\overline{C_{f(y_0)}} \neq \overline{C_{g(y_0)}}$ y por ende $\overline{f(y_0)} \neq \overline{g(y_0)}$ como queríamos.
- e) Como $X \simeq X'$ entonces $CX \simeq CX'$, y si recordamos que CX es contractil $\forall X$ espacio topológico, tenemos vía el item anterior que $\Pi_0(X) \simeq [CX, X]$ y $\Pi_0(X') \simeq [CX', X']$ por lo que basta probar que $[CX, X] \simeq [CX', X']$, pero esto es consecuencia de que $X \simeq X'$ y $CX \simeq CX' \Longrightarrow \mathcal{C}(CX, X) \simeq \mathcal{C}(CX', X')$, por lo que bajan igual al cociente.

10. Ejercicio 10

Sea $f: X \to Y$ una función continua y sea Z un espacio topológico. Definimos aplicaciones

$$f^* : [g] \in [Y, Z] \mapsto [g \circ f] \in [X, Z],$$

$$f_* : [g] \in [Z, X] \mapsto [f \circ g] \in [Z, Y].$$

- a) Las funciones f^* y f_* están bien definidas.
- b) Si $f': X \to Y$ es otra función continua y $f \simeq f'$, entonces $f^* = f'^*$ y $f_* = f'_*$.
- c) Si f es una equivalencia homotópica, entonces f^* y f_* son biyecciones.

Demostración a) Veamoslo por partes!

- f^* Sean $g, g': Y \to Z$ tal que $g \simeq g'$, entonces por el ejercicio 1 $gf \simeq g'f$, por lo que $f^*(g) = f^*(g')$
- f_* Idem
- b) Nuevamente por partes:
 - $\blacksquare \text{ Sea } g: Y \to Z \text{, entonces como } f \simeq f' \implies gf \simeq gf' \implies f^*(g) = f'^*(g) \implies f^* = f'^*$
 - Idem
- c) Sea $k: Y \to X$ la inversa homotópica de f. Entonces como $kf \simeq 1_X \implies (kf)^* = k^*f^* = 1_X^*$ y $fk \simeq 1_Y \implies (fk)^* = f^*k^* = 1_Y^*$, por ende f^* es una biyección con inversa k^* . Idem con f_* .

Sea X el peine, esto es, el subespacio de \mathbb{R}^2 dado por

$$X = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le 1, x = 0 \lor x^{-1} \in \mathbb{N}\} \cup \{(x, 0) : 0 \le x \le 1\}$$

Sea $x_0 = (0, 1) \in X$.

- a) El espacio X es contráctil.
- b) No existe una homotopía relativa a x_0 entre la identidad $\mathrm{id}_X:X\to X$ y la función constante $c:x\in X\mapsto x_0\in X.$

Esto nos dice que toda contracción de X a x_0 mueve al punto x_0 .

- c) Por otro lado, el espacio Y que resulta de pegar dos copias de X identificando los puntos x_0 en un solo punto no es contráctil.
- d) La inclusión $i: X \to [0,1] \times [0,1]$ es una equivalencia homotópica pero no un retracto.

Demostración a) Veamos que $\{(0,0)\}$ es un RDF de X, lo cual deriva en que X es contráctil. Notemos que tenemos que encontrar una homotopía entre 1_X y $C_{(0,0)}$; en pos de ello sea $(x,y) \in X$ y sea $\gamma_1^{(x,y)}(t) = (x,y)(1-t) + t(x,0)$ y $\gamma_2^{(x,y)}(t) = (1-t)(x,0) + t(0,0)$. Es claro que $\gamma_1^{(x,y)}$ y $\gamma_2^{(x,y)}$ son caminos continuos en X tal que $\gamma_2^{(x,y)} := \gamma_2^{(x,y)} * \gamma_1^{(x,y)}$ es una camino continuo en X del (x,y) al (0,0). Consideremos $H: X \times I \to X$ dada por $H((x,y),t) = \gamma^{(x,y)}(t)$, veamos que sirve:

- H es continua pues $\gamma^{(x,y)}$ es continua $\forall (x,y) \in X$ y lineal (por lo que es continua en (x,y))
- $H_0 = 1_{(x,y)}$
- $H_1 = C_{(0,0)}$
- $H_{(0,0)} = (0,0) \ \forall t \in I$

Por todo esto si $i_{(0,0)}$ es la inclusión y r((x,y))=(0,0) tenemos que $ri_{(0,0)}=1_{(0,0)}$ y $i_{(0,0)}r\simeq 1_X$ $(rel\ \{(0,0)\})$

- b) Sea $H: X \times I \to X$ continua tal que H((x,y),0) = (x,y), H((x,y),1) = (0,1) y H((0,1),t) = (0,1) $\forall t \in I$, lleguemos a un absurdo! Sea $x_0 := (0,1)$ y $x_o \in U$ con U un entorno abierto disjunto de $\{0\} \times I$. Como $H(x_0,t) = x_0$ entonces $\{x_0\} \times I \subseteq H^{-1}(U)$, y como $\{x_0\} \times I$ es compacto por el lema del tubo $\exists x_0 \in V$ tal que $\{x_0\} \times I \subseteq V \times I \subseteq H^{-1}(U)$. Esto dice $\forall v \in V$, $H_t(v) \in U \ \forall t \in I$, en particular fijando $y = (\alpha,1) \in V$ tenemos que H_y es un camino de y a x_0 enteramente contenido en U. Abs! Pues $(0,0) \notin U$!
- c) Hagamoslo por pasos!
 - Overture

Sea $Y = X_1 \cup_f X_2$ el doble peine donde f identifica a los extremos superiores opuestos del peine. Supongamos que $x_0 = (1,0)$ es el punto de unión y sea $H: Y \times I \to Y$ continua tal que $H_0 = C_{x_0}$ y $H_1 = 1_Y$ una homotopía.

- Notemos que $\tilde{H} := H|_{X_2}$ es una homotopía entre la identidad y el extremo superior en el peine, pues $X_2 \times I$ es un cerrado de $Y \times I$ y por ende restringir es continuo. Entonces si $H_{x_0} = x_0 \ \forall t \in I$ tendríamos que $\tilde{H}_{x_0} = x_0 \ \forall t \in I$ ABS! Pues sabíamos de antes que toda homotopía del peine mueve al x_0 , por ende H también tiene que mover al x_0 .
- Conjuntos por donde x_0 pasa Sean los conjuntos $F_{x_0} = \{t \in I \mid H_{x_0}(t) = x_0\}$, $F_{(0,0)} = \{t \in I \mid H_{x_0}(t) = (0,0)\}$ y $F_{y_0} = \{t \in I \mid H_{x_0}(t) = y_0\}$ con y_0 el análogo al (0,0) en el peine rotado (osea si escribo a X_2 el peine usual y $X_1 = Q(X_2 + (1,0))$ el peine rotado y trasladado, entonces $y_0 = Q((0,0) + (1,1))$; notemos que F_{x_0} , $F_{(0,0)}$, $F_{y_0} \subseteq I$ son acotados (trivial) y son cerrados pues $F_i = H_{x_0}^{-1}(\{i\})$ con $i \in \{x_0, (0,0), y_0\}$ y H es continua. Es claro que F_{x_0} es no vacío y por ende es compacto, entonces como $\{0,1\} \subseteq F_{x_0}$, $\exists t_0, t_f \in I$ tal que $[0,t_0] \cup [t_f,1] \subseteq F_{x_0}$

- Provemos que los tres son compactos no vacíos Para ver que los otros conjuntos son no vacíos notemos que H es continua y $X \times I$ es subespacio cerrado y acotado de R^2 y por ende es compacto, entonces H es uniformemente continua. Sea $\epsilon > 0$, $\delta > 0$ el de la continuidad uniforme y sea $x_0 \in U := B_{\frac{\delta}{2}}(x_0)$, entonces $\exists N \in \mathbb{N}$ tal que $(\frac{1}{n}, 1) \in U \quad \forall n \geq N$ y entonces (si llamamos con y a los análogos en X_1) $x_1 : (\frac{N+1}{1}, 1), y_1 \in U$. Ahora como $H_{x_1}(t) : I \to X$ es un camino continuo de x_1 a x_0 , entonces por conexión $H_{x_1}(I)$ es arcoconexo y entonces $(0,0) \in H_{x_1}(I)$, o sea $\exists t^* \in I$ tal que $H(x_1,t^*)=(0,0)$ y por ende como $d((x_0,t^*),(x_1,t^*))<\delta \implies d(H(x_0,t^*),(0,0))<\epsilon$, tomando $\epsilon=\frac{1}{n}$ tenemos que $\exists \tilde{t}^* \in F_{(0,0)}$ y por ende $F_{(0,0)} \neq \emptyset$ y es compacto, análogo con F_{y_0} .
- El remate Sean $t^{F_{(0,0)}} := \min(F_{(0,0)}), t^{F_{y_0}} := \min(F_{(y_0)}) \in (0,1)$ y podemos suponer sin pérdida de generalidad que $t_1 := t^{F_{(0,0)}} < t_2 := t^{F_{y_0}}$ (O sea que primero baja al (0,0)). Como $d((x_0,t_1),(y_1,t_1)) < \delta \implies d(H(y_1,t_1),(0,0)) < \epsilon$ y como $B_{\epsilon}(0,0) \cap X_1 = \emptyset$ entonces $H(y_1,t_1) \in X_2 \{x_0\}$, por ende como $[0,t_1] \subseteq I$ es arcoconexo y H es continua tenemos que $H_{y_1}(t)$ es un camino entre $y_1 \in X_1$ y $(0,0) \in X_2$ (en realidad a un punto arbitrariamente cerca del (0,0) y por ende podríamos tomar un t_1^* que si cumpla, pero mucha notación) y por ende por arcoconexión $y_0 \in H_{y_1}([0,t_1])$. Pero entonces $\exists 0 < t_{\frac{1}{2}} < t_1$ tal que $H(y_1,t_{\frac{1}{2}}) = y_0$ y como $d((x_0,t_{\frac{1}{2}}),(y_1,t_{\frac{1}{2}})) < \delta$ esto dice que $\exists t^* < t_1 / t^* \in F_{y_0}$, pero t_2 era el mínimo. ABS! Entonces Y no es contráctil.
- d) Sea $r:[0,1]^2 \to X$ dada por $r=C_{(0,0)}$, entonces $i_Xr=C_{(0,0)}\simeq 1_{[0,1^2]}$ pues $[0,1]^2\subseteq\mathbb{R}^2$ es un compacto convexo, por otro lado $ri_X=C_{(0,0)}\simeq 1_X$ por el item a), por ende $i_X:X\to [0,1]^2$ es una equivalencia homotópica. Pero no es un retracto porque si existiese $r:[0,1]^2\to X$ continua tal que $ri_X=1_X$ entonces $r(x_0)=x_0, \, r(x_1)=x_1$ y entonces $\exists x_0\in U$ entorno abierto en el cuadrado tal que $f(U)\subseteq B_{\frac{1}{2}}(x_0)$. Sea entonces $N\in\mathbb{N}\ /\ (\frac{1}{N},1)\in U\implies (\frac{t}{N},1)\in U \ \forall t\in I$, entonces $\gamma:I\to X$ dada por $\gamma(t)=f((\frac{t}{N},1))$ es un camino continuo de x_1 a x_0 tal que $\gamma(I)\subseteq B_{\frac{1}{2}}(x_0)$ ABS! Entonces X no es retracto de $[0,1]^2$.

Si X es un espacio, el cono de X es el espacio $CX = X \times I/\sim$ donde \sim es la relación de equivalencia $(x,1) \sim (y,1)$ para todo par de puntos $x,y \in X$. Si $x \in X$ y $t \in I$, escribimos $[x,t] \in CX$ a la clase de equivalencia de (x,t) en $X \times I$.

- a) La función $i: x \in X \mapsto [x,0] \in CX$ es continua, inyectiva y cerrada.
- b) El espacio CX es contráctil.
- c) X es contráctil si y sólo si $i: X \to CX$ es un retracto.
- d) $f: X \to Y$ es homotópica a una función constante si y sólo si f se puede extender a una función continua $\bar{f}: CX \to Y$.

Demostración a) Por partes!

- Continua
 - Notemos que en realidad $i: X \to CX$ es $i = qi_0$ con $i_0: X \to X \times I$ dado por $i_0(x) = (x, 0)$ y estas dos son claramente continuas y composición de continuas es continua.
- Inyectiva Si $x \neq y$ entonces $(x,0) \neq (y,0)$ y entonces $\overline{(x,0)} \neq \overline{(y,0)}$ pues q relaciona cuando t=1
- Cerrada Si $F \subseteq X$ es cerrado, entonces $F \times \{0\} \subseteq X \times I$ es cerrado, pero entonces como $(x,0) \sim (y,0) \iff x = y$ tenemos que $q(F \times \{0\})$ es cerrado, y entonces i es cerrada.

b) Sea $\overline{x}^* \in CX$ el punto $\overline{(x,1)}$, probemos que $1_{CX} \simeq C_{\overline{x}^*}$! Para ello necesitamos una $\overline{H}: CX \times I \to CX$ y una buena idea es proceder como en el ej 6)! Sea $H: (X \times I) \times I \to X \times I$ dada por H((x,t),s) = (x,t(1-s)+s) y veamos que $q_{X\times I}H$ va a respetar la relación de equivalencia dada por $q_{X\times I} \times 1_I$ y por ende va a bajar al cociente! O sea tenemos el siguiente diagrama:

$$(X \times I) \times I \xrightarrow{H} X \times I$$

$$q_{X \times I} \times 1_{I} \downarrow \qquad q_{X \times I} \downarrow$$

$$CX \times I \xrightarrow{\exists ! \tilde{q}H} CX$$

- \blacksquare H es continua por ser lineal y q es continua, por ende qH es continua
- Si $((x_1,t_1),s_1) \sim ((x_2,t_2),s_2) \implies t_1 = t_2 = 1$, $s_1 = s_2 = s$, entonces tenemos que $qH(((x_1,1),s)) = q((x,1)) = \overline{(x,1)} = q((y,1)) = qH(((y,1),s))$. O sea que si $x, \tilde{x} \in (X \times I) \times I$ son tal que $x \sim \tilde{x} \implies qH(x) = qH(\tilde{x})$

Entonces sabemos que $\exists ! \overline{qH} : (X \times I) \times I/\sim_{q_{X \times I} \times 1_I} \to X \times I/\sim_{q_{X \times I}}$, ie: $\exists ! \overline{qH} : CX \times I \to CX$ dada por $\overline{qH}(\overline{(x,t)},s) = qH((x,t),s) = \overline{(x,t(1-s)+s)}$. Veamos que esta nos va a servir!

- \bullet \overline{qH} es continua por la PU del cociente
- ullet $\overline{qH}_0(\overline{(x,t)}) = \overline{(x,t)}$ y entonces $\overline{qH}_0 = 1_{CX}$
- $\overline{q}\overline{H}_1(\overline{(x,t)})=\overline{(x,1)}$ y entonces $\overline{q}\overline{H}_1=C_{\overline{(x,1)}}$

Por ende $1_{CX} \simeq C_{\overline{(x,1)}}$ y CX es contráctil.

- c) Supongamos el item d) por un momento y veamos que es corolario deéste. Sea $x_0 \in X$, entonces:
 - ⇒) X es contráctil sii $1_X \simeq C_{x_0}$ sii (item d)) $\exists \tilde{1_X} : CX \to X$ tal que $\tilde{1_X}|_X = 1_X$ y por ende $\tilde{1_X}i(x) = \tilde{1_X}(x) = 1_X(x) = x$, o sea X es un retracto
 - \Leftarrow Sea $r: CX \to X$ tal que $ri = 1_X$, notemos que en particular $r|_X = 1_X$ y por ende r es una extensión al cono de 1_X , sii por item d) $\exists x_0 \in X \ / \ 1_X \simeq C_{x_0}$ sii X es contráctil
- d) Vamos por partes!
 - \Longrightarrow) Sea $f: X \to Y$ y sea $y_0 \in Y$ tal que $f \simeq C_{y_0}$, entonces tenemos el siguiente diagrama conmutativo:

$$X \xrightarrow{f} Y$$

$$i \downarrow \qquad \exists ! \overline{f} \nearrow \\ CX \xrightarrow{f}$$

Para construirnos la \overline{f} notemos que no podemos usar la PU del cociente pues $CX \neq X/\sim$, sino que es del cilindro, veamos entonces que si extendemos la homotopía entre f y C_{y_0} en tiempo 0 debería ser una extensión de f! Entonces tenemos:

$$\begin{array}{c} X \times I \xrightarrow{H} Y \\ \downarrow q & \exists ! \overline{H} / \\ CX \end{array}$$

Veamos que $H: X \times I \to Y$ respeta $\sim_q!$

- $\bullet \ H$ es continua por hipótesis
- Si $(x_1, t_1) \sim (x_2, t_2)$ entonces $t_1 = t_2 = 1$ y entonces $H(x_1, t_1) = y_0 = H(x_2, t_2)$

Entonces $\exists ! \overline{H} : CX \to Y$ dada por $\overline{H}(\overline{(x,t)}) = H(x,t)$, por ende $\overline{f} : \overline{H}(\overline{(x,0)}) = H(x,0) = f$ y entonces $\overline{f}i = f$ y $\overline{f}|_i(X) = f$

Tenemos que $f = \overline{f}i$, pero $i \simeq cte$ pues CX es contráctil, entonces $f \simeq cte'$.

El grupo fundamental

13. Sea X es un espacio topológico y, $x_0 \in X$. Sea

$$\Omega(X, x_0) = \{ \alpha \in C(I, X) : \alpha(0) = \alpha(1) = x_0 \}$$

con la topología de subespacio de la topología compacto-abierta. Pruebe que hay una biyección

$$\pi_0(\Omega(X, x_0)) = \pi_1(X, x_0)$$

.

Demostración Notemos que $\pi_0(\Omega(X, x_0)) = \Omega(X, x_0)/\sim_1$ donde $\alpha \sim_1 \alpha'$ sii $\exists \psi : I \to \Omega(X, x_0)$ tal que $\psi(0) = \alpha$, $\psi(1) = \alpha'$. Mientras que $\pi_1(X, x_0) = \Omega(X, x_0)/\sim_2$ donde $\alpha \sim_2 \alpha'$ sii $\exists H : I \times I \to X$ tal que $H_0 = \alpha$, $H_1 = \alpha'$. Sea id el morfismo identidad, veamos que q_2i respeta \sim_1 !

- Es trivial que q_2i es continua
- Si $\alpha \sim_1 \beta$ y sea ψ el camino entre α y β , sea $H: I^2 \to X$ dada por $H(s,t) = \psi(s)(t)$, veamos que $\alpha \simeq_c \beta$ por H!
 - H es continua pues I es localmente compacto y T_2 y entonces vale la ley exponencial. (Aclarar...)
 - $H(0,t)=\alpha(t)$, $H(1,t)=\beta(t)$, $H(s,0)=\psi(s)(0)=x_0=\psi(s)(1)=H(s,1)$ y por ende $\alpha\simeq_c\beta$

Por ende por la PU del cociente:

$$\Omega(X, x_0) \xrightarrow{id} \Omega(X, x_0)
\downarrow q_1 \qquad \qquad \downarrow q_2 \qquad \downarrow
\pi_0(\Omega(X, x_0)) \xrightarrow{\exists ! \overline{q_2}} \pi_1(X, x_0)$$

Veamos que $\overline{q_2}$ es uan biyección.

- Como id, q_1, q_2 son sobre, entonces por conmutatividad $\overline{q_2}$ es sobre
- Notemos [.] a las clases en $\pi_0(\Omega(X, x_0))$ y a las clases en $\pi_1(X, x_0)$; sean $[\alpha] \neq [\beta]$ y $H: I^2 \to X$ una homotopía entre α y β , entonces sea $i \in I$ tenemos que $H_i(0) = \alpha(i)$ y $H_i(1) = \beta(i)$, o sea para cada $i \in I$ H es un camino entre $\alpha(i)$ y $\beta(i)$, como I es localmente compacto y T_2 , entonces por la ley exponencial $\tilde{H}: I \to \mathcal{C}(I, X)$ es continua, pero $\tilde{H}(I) \subseteq \Omega(X, x_0)$ y por ende \tilde{H} es un camino continuo entre α y β , o sea que $[\alpha] = [\beta]$. Abs! Entonces $\overline{\alpha} \neq \overline{\beta}$ y $\overline{q_2}$ es inyectiva.
- 14. Sea X un espacio topológico, $x_0 \in X$ y sea $s \in S^1$ un punto cualquiera. Sea

$$[(S^1, s), (X, x_0)] = \{[f]/f : S^1 \to X \text{ continua tal que } f(s) = x_0\}$$

donde [f] = [g] si $f \simeq g$ rel $\{s\}$. Pruebe que $\pi_1(X, x_0) = [(S^1, s), (X, x_0)]$.

Demostración Para empezar, sea $q := Qq_{\sim} : I \to S^1$ donde $q_{\sim} : I \to S^1$ dada por q(0) = q(1) = (1,0) y Q((x,y)) = A((x,y)) la rotación en un ángulo θ dado por el ángulo entre s y (1,0). Por ende como det(A) = 1 tenemos que $Q : S^1 \to S^1$ es un isomorfismo y q_s es cociente tal que $q_s(0) = q_s(1) = s$. Ahora si empecemos bien!

Notemos $\Omega(S^1,s,X,x_0)=\{f\in \mathcal{C}(S^1,X)/f:S^1\to X \text{ continua tal que } f(s)=x_0\}$ y $q_s:\Omega(S^1,s,X,x_0)\to [(S^1,s),(X,x_0)]$ la proyección al cociente dado por $f\sim_s g\iff f\simeq G(rel\ \{s\})$, mientras que notemos $q_{x_0}:\Omega(X,x_0)\to\pi_1(X,x_0)$ la proyección al cociente dado por $f\sim g\iff f\simeq g(rel\ \{x_0\})$. Nosotros queremos una aplicación ψ tal que $q_s\psi$ respete \sim ! Vayamos de a poco.

Sea $f \in \Omega(X, x_0)$, entonces tenemos el diagrama:

Veamos que podemos obtener $\overline{f}: S^1 \to X!$

- \bullet f es continua por hipótesis
- $f(0) = f(1) = x_0$ y por ende si $q(x) = q(x') \implies f(x) = f(x')$

Notemos que por la PU del cociente tenemos que \overline{f} es continua y $\overline{f}((\overline{x})) = f(x)$ y por ende $\overline{f}(s) = f(0) = x_0$ y por ende $\overline{f} \in \Omega(S^1, s, X, x_0)$. Por ende tenemos definida una aplicación $\psi : \Omega(X, x_0) \to \Omega(S^1, s, X, x_0)$ dada por $\psi(f) = \overline{f}$, este es un morfismo en la categoría de los conjuntos. Veamos que $q_s\psi : \Omega(X, x_0) \to [(S^1, s), (X, x_0)]$ respeta \sim_{x_0} !

- Si $f \sim_{x_0} g$ entonces $\exists H : I \times I \to X$ tal que:
 - H(s,0) = f(s)
 - H(s,1) = g(s)
 - $H(0,t) = x_0$
 - $H(1,t) = x_0$

Tenemos el siguiente diagrama:

Veamos que H respeta $\sim_{q_s \times 1_I}$ y por ende podemos proyectar la homotopía!

- H es continua
- Si $(s,t) \sim_{q_s \times 1_I} (s',t') \implies t = t'$ y s = s' u s = 0, s' = 1. En el primer caso trivialmente H(s,t) = H(s',t'), en el segundo $H(0,t) = x_0 = H(1,t)$

Por ende como I es localmente compacto y T_2 tenemos que $q_s \times 1_I$ es cociente y por la PU del cociente tenemos $\overline{H}: S^1 \times I \to X$ continua dada por $\overline{H}(\overline{s},t) = H(s,t)$ y entonces tenemos que:

- $\overline{H}(\overline{s},0) = \overline{f}(\overline{s})$
- $\overline{H}(\overline{s}, 1) = \overline{q}(\overline{s})$
- $\overline{H}(s,t) = x_0$

Y por ende tenemos que $\psi(f) \simeq_s \psi(g)$ (rel $\{s\}$)

En resumen vimos que si $f \sim_{x_0} g$ entonces $q_s \psi(f) = q_s \psi(g)$

Por ende tenemos el siguiente diagrama conmutativo en la categoría de conjuntos:

$$\Omega(X, x_0) \xrightarrow{\psi} \Omega(S^1, s, X, x_0)$$

$$\downarrow^{q_{x_0}} \qquad \downarrow^{q_s} \downarrow$$

$$\pi_1(\Omega(X, x_0)) \xrightarrow{\exists !\overline{\psi}} \{ (S^1, s), (X, x_0) \}$$

Por la PU del cociente tenemos que $\exists ! \overline{\psi} : \pi_1(\Omega(X, x_0)) \to [(S^1, s), (X, x_0)]$ dado por $\overline{\psi}([f]_{x_0}) = q_s \psi(f)$ donde $[f]_{x_0}$ es la clase de f homotópica como caminos con inicio y final en x_0 . Veamos que $\overline{\psi}$ es biyectiva!

- Como q_{x_0}, q_s, ψ son sobreyectivas, entonces claramente $\overline{\psi}$ lo va a ser
- Veamos que si $[f]_{x_0} \neq [g]_{x_0}$ entonces $\overline{\psi}([f]) \not\simeq \overline{\psi}([g])$ (rel $\{s\}$) y con eso estaríamos Sea $\overline{H}: S^1 \times I \to X$ una homotopía entre $\psi(f)$ y $\psi(g)$ relativa a $\{s\}$, entonces definamos $H: I \times I \to X$ como:

$$H(v,t) = \begin{cases} \overline{H}(\overline{v},t) & \text{si } v \neq \{0,1\} \\ \overline{H}(s,t) & \text{si } v \in \{0,1\} \end{cases}$$

Entonces H esta bien definida pues $\overline{0} = \overline{1} = s$. Además resulta continua pues como q_{x_0} es continua entonces $H|_{[\epsilon,1-\epsilon]\times I}, H|_{[0,\epsilon]\times I}$ y $H|_{[1-\epsilon,1]\times I}$ son continuas y lema del pegado. Más aún, $H(0,t) = H(1,t) = x_0$ y $H(s,0) = \overline{H}(\overline{s},0) = \overline{f}(\overline{s}) = f(s)$ pues $s \notin \{0,1\}$ y $H(s,1) = \overline{H}(\overline{s},1) = \overline{g}(\overline{s}) = g(s)$ pues $s \notin \{0,1\}$. Entonces $f \simeq g$ (rel $\{x_0\}$) Abs! Entonces $\psi(f) \not\simeq \psi(g)$ (rel $\{s\}$) y $\overline{\psi}$ es inyectiva.

15. Sean $x_0, x_1 \in X$ dos puntos en un espacio arcoconexo X. Probar que $\pi_1(X, x_0)$ es abeliano si y sólo si para todo par de caminos $x_0 \xrightarrow{\omega, \omega'} x_1$ se tiene $\widehat{\omega} = \widehat{\omega'}$.

Demostración Vamos por partes!

- Sean $\omega, \omega' : I \to X$ dos caminos entre x_0 y x_1 . Recordemos que $\hat{\omega} : \pi_1(X, x_0) \to \pi_1(X, x_1)$ se define por $\hat{\omega}([f]) = [\overline{\omega} * f * \omega]$. Sea entonces $[f] \in \pi_1(X, x_0)$. Entonces $\hat{\omega}([f]) = [\overline{\omega} * f * \omega] = [\overline{\omega} * f * \omega' * \overline{\omega'} * \omega] = [\overline{\omega} * f * \omega'] * [\overline{\omega'} * \omega] = \star Y$ como $\hat{\omega}$ es un iso, entonces $\pi_1(X, x_1)$ es abeliano, por lo que: $\star = [\overline{\omega'} * \omega] * [\overline{\omega} * f * \omega'] = [\overline{\omega'} * (\omega * \overline{\omega}) * f * \omega'] = [\overline{\omega'} * f * \omega'] = \hat{\omega'}([f])$ Por ende $\hat{\omega} = \hat{\omega'}$
- Notemos que $\gamma := f * \omega$ es un camino de x_0 a x_1 y entonces por hipótesis $\hat{\gamma}([g]) = \hat{\omega}([g])$. Veamos que resulta!

$$\widehat{\gamma}([g]) = \star_1 = [\overline{f * \omega} * g * f * \omega] = [\overline{\omega} * g * \omega] = \star_2 = \widehat{\omega}([g])$$

Entonces: $\star_1 = [\overline{\omega} * \overline{f} * g * f * \omega]$ y $\star_2 = [\overline{\omega} * g * \omega]$ entonces cancelando:

$$[\overline{f} * g * f] = [g]$$

y por ende:

$$[f,g] = [\overline{f} * g * f * \overline{g}] = [1]$$

O sea que $\pi_1(X, x_0)$ es abelaino

16. Pruebe que $\pi_1(X \times Y, (x, y))$ es isomorfo a $\pi_1(X, x) \times \pi_1(Y, y)$.

Demostración Sea $\psi: \pi_1(X \times Y, (x, y)) \to \pi_1(X, x) \times \pi_1(Y, y)$ el morfismo dado por $\psi([(f, g)]) = ([f], [g])$ veamos que es un isomorfismo!

- ψ es morfismo de grupos: Sean $[(f,g)], [(f',g')] \in \pi_1(X \times Y, (x_0,y_0))$ entonces $\psi([(f,g)] * [(f',g')]) = \psi([(f*f',g*g')]) = ([f*f'], [g*g']) = ([f], [g]) * ([f'], [g']) = \psi([(f,g)]) * \psi(([f',g']))$ y por ende es morfismo de grupos.
- ψ es monomorfismo:

Sean $H^X: I \times I \to X$ la homotopía entre f y C_{x_0} y sea $H^Y: I^2 \times Y$ la análoga para g y C_{y_0} , entonces sea $H: I^2 \to X \times Y$ dada por $H = (H^X, H^Y)$, entonces:

- ullet H es continua pues es producto cartesiano de continuas
- $H(0,t) = (H^X(0,t), H^Y(0,t)) = (x_0, y_0)$
- $H_0(s) = (H_0^X(s), H_0^Y(s) = (f(s), g(s))$
- $H_1 = (C_{x_0}, C_{y_0}) = C_{(x_0, y_0)}$

Y por ende si $\psi([(f,g)]) = [0]$ entonces [(f,g)] = 0, o sea que $\{[0]\} = Ker(\psi)$ y ψ es mono

• Trivialmente es epi.

Por todo lo anterior ψ es un isomorfismo!

- 17. Sea X un espacio, sea $A \subseteq X$ un subespacio y sea $i: A \to X$ la inclusión.
 - a) Si $r: X \to A$ es una retracción, entonces cualquiera sea $a_0 \in A$ el morfismo $r_*: \pi_1(X, a_0) \to \pi_1(A, a_0)$ es un epimorfismo y el morfismo $i_*: \pi_1(A, a_0) \to \pi_1(X, a_0)$ es un monomorfismo.
 - b) Si A es un retracto por deformación , entonces para todo $a_0 \in A$ se tiene que $\pi_1(X, a_0) \cong \pi_1(A, a_0)$.

Demostración a) Juntos

Recordemos que el morfismo $r_*([f]) = [fr]$ y por ende como $ri_A = 1_A$ tenemos que el siguiente diagrama conmuta:

$$\pi_1(A, a_0) \xrightarrow{(ri_A)_*} \pi_1(A, ri_A(a_0) = a_0)$$

$$\uparrow \widehat{C_{a_0}} \downarrow$$

$$\pi_1(A, a_0)$$

Por ende como $(1_A)_*$ es un isomorfismo y $(C_{a_0})_*$ es un isomorfismo, tenemos que $(ri_A)_* = r_*(i_A)_*$ es un isomorfismo. Pero ya nos dice que r_* es epi y que $(i_A)_*$ es mono!

b) Ahora como $i_A r \simeq 1_X$ tenemos nuevamente el siguiente diagrama:

$$\pi_1(X, a_0) \xrightarrow[(1_X)_*]{(i_A r)_*} \pi_1(A, i_A r(a_0) = a_0)$$

$$\xrightarrow{\widehat{C_{a_0}}}$$

$$\pi_1(X, a_0)$$

Y por ende por el mismo razonamiento llegamos a que $(i_A r)_* = (i_A)_* r_*$ es un isomorfismo, que nos dice que r_* es mono además, y por ende un isomorfismo.

18. Sean X un espacio topológico, $A \subseteq \mathbb{R}^n$ un subespacio y $f: A \to X$ una función continua. Pruebe que si f se extiende a una función $g: \mathbb{R}^n \to X$, entonces para todo $a \in A$, el morfismo $f_*: \pi_1(A, a) \to \pi_1(X, f(a))$ es el morfismo cero.

Demostración Sabemos que $\exists g : \mathbb{R}^n \to X$ tal que $f = gi_A$, pero \mathbb{R}^n es contráctil y por ende $g \simeq C_{x_0}$ con $x_0 \in X$, entonces $f \simeq C_{x_0}$. Entonces sabemos que si $\gamma : I \to X$ es el camino entre $a \in A$ arbitrario y f(a) (Suponemos que X es arco-conexo para que exista dicho camino) tenemos que el siguiente diagrama conmuta:

Y por ende $\widehat{\gamma}(f)_* = (C_{x_0})_* = 0$ pues X es arco-conexo, como $\widehat{\gamma}$ es un isomorfismo siempre tenemos que $f_* = 0$

19. Sea (G, \cdot, e) un grupo topológico. Si $\alpha, \beta \in \Omega(G, e)$, sea

$$\alpha \odot \beta : t \in I \mapsto \alpha(t) \cdot \beta(t) \in G.$$

Esto define una operación \odot en el conjunto $\Omega(G,e)$ que hace de él un grupo.

- a) La operación \odot induce una operación, que también notamos \odot , sobre $\pi_1(G, e)$ y con ésta $\pi_1(G, e)$ es un grupo.
- b) Esta estructura de grupo coincide con la estructura usual de $\pi_1(G, e)$.
- c) $\pi_1(G, e)$ es un grupo abeliano.