Inhaltverzeichnis

1	Trasseneinrechnung und Absteckung im Straßen- und Gleisbau			2
	1.1	Straße	nentwurf	2
	1.2	Entwurfselemente im Lage und Höhenplan		
		1.2.1	Krümmungsbild	2
		1.2.2	Gerade	2
		1.2.3	Kreisbogen	2
		1.2.4	Klothoide	4
		1.2.5	Weitere Übergangsbogen	8
		1.2.6	Überhöhung, Quer und Längsneigung	8
		1.2.7	Kippen und Wannenausführung	9
	1.3			10
		1.3.1	Eilinie	10
		1.3.2	Wendelinie	11
		1.3.3	Scheitelklothoide	11
	1.4	Relation zwischen Höhen und Lageplan		
	1.5	Trasseneinrechnung nach graphischen Entwurf		12
	1.6	Trasse	nlage und Höhenabsteckung	12
		1.6.1	Lageabsteckung	12
	1.7	Trasse	nlage und Höhenabsteckung	12
		1.7.1	Polare Absteckung	12
		1.7.2	Orthogonale Absteckung	13
		1.7.3	Höhenabsteckung	13

1 Trasseneinrechnung und Absteckung im Straßenund Gleisbau

1.1 Straßenentwurf

Trasse: Achse eines linienförmigen Objekts, horizontal festgelegt im Lageplan und vertikal festgelegt im Höhenplan. Beide Pläne sind miteinander abgestimmt.

1.2 Entwurfselemente im Lage und Höhenplan

2-a Krümmungsbild

bei direktem Übergang, Gerade - Kreisbogen $\frac{dR}{dL}\sim\infty$ — Klothoid = Lineare Änderung der Krümmung $k=\frac{L}{A^2}, A$: Klothoid Parameter.

2-b Gerade

2-c Kreisbogen

Radius $R \longrightarrow \text{durch Fahrdynamik begrenzt.}$ Länge $b \longrightarrow \text{mindesten 2s zu durchfahren.}$

Hauptpunkt: Bogenanfang(A), Bogenendpunkt(E), Kreismittelpunkt(M)

- Zentriwinnkel des Bogens r
- $= R \cdot r$
- $r = \frac{b}{R}$
- Tangentenlänge: $t = R \tan \frac{r}{2}$

Bestimmung von Zwischenpunkten:

$$r' = \frac{b'}{R}$$

b' wird vorgegeben, z.B. alle 10m

$$x_P = R \cdot \sin(r')$$

$$y_P = R \cdot \cos(r')$$

(a)

$$G = m \cdot g$$

$$F = \frac{mv^2}{R}$$

$$G_N = G\cos\alpha = mg\cos\alpha$$

$$G_R = G\sin\alpha$$

$$F_R = F\cos\alpha = m\frac{v^2}{R}\cos\alpha$$

Forderung(damit das auf der Straße bleiben)

$$G_R + f_R(G_N + F_N) \ge F_R$$

$$mg \sin \alpha + f_R mg \cos \alpha + f_R m \frac{v^2}{R} \sin \alpha \ge m \frac{v^2}{R} \cdot \cos \alpha$$

$$\alpha \text{ klein} \longrightarrow \sin \alpha \approx \tan \alpha \approx q$$

$$\cos \alpha \approx 1$$

$$\dots$$

$$R \ge \frac{(1 - f_R \cdot q)}{q + f_R} \cdot \frac{v^2}{q}$$

Beispiel: $v=100km/h,\,q=6\%,\,f_R=0,4\longrightarrow R>167m$ als minimal radius.

Seitenbeschleunigung bei der Kreisfahrt:

Kriterium des Fahrkomfortarts:

p: Seitenbeschleunigung.

$$p = \frac{F_R - G_R}{m} = \frac{v^2}{R}(\cos \alpha - g \sin \alpha)$$
$$p = \frac{v^2}{R} - q \cdot g$$

 $empirische \ Grenzwert: p=0,85m/s^2$

Forderung:

$$\frac{v^2}{R} - g \cdot q \le 0,85$$

$$\frac{v^2}{R} \le 0,85 + g \cdot q$$

$$R \ge \frac{v^2}{0,85 + g \cdot q}$$

$$v = 100km/h \quad q = 6\% \longrightarrow R > 543m$$

Kriterium Fahrkomfort ist entscheidend

Pfeilhöhenverfahren:

Ermittelung der Krümmung aus drei Punkten bei vorausgesetzten Kreisbogen (bzw. des Radius)

(b) h:Pfeilhöhe, s:Sehnenlänge

$$R^{2} = (R - h)^{2} + (\frac{S}{2})^{2}$$

$$R^{2} = R^{2} - 2Rh + h^{2} + (\frac{S}{2})^{2}$$

$$\dots$$

$$k = \frac{1}{R} = \frac{8h}{s^{2}}$$

Radius somit graphisch bestimmbar.

2-d Klothoide

Hauptpunkte:

• ÜA: Klothoideanfang

• ÜE: Klothoideende

gegeben: R, A, x_A , y_A

gesucht:

• L: Bogenlänge

• τ : Tangentenwinkel

• t_A , t_E : Tantentenlänge

• x_E, y_E : Koordinaten des Klothoidenpunktes

• ΔR : Tangentenabrückung

Bogenlänge $L = \frac{A^2}{R}$

für einen laufenden Punkt P':

$$k' = \frac{1}{R'} = \frac{L'}{A^2}$$

$$dL = R \cdot d\tau$$

$$\longleftrightarrow d\tau = \frac{L'}{A^2} dl$$

$$\tau = \int_A^E d\tau = \int_A^E \frac{L'}{A^2} dL$$

$$\tau = \frac{L}{2R}$$

$$L = \frac{A^2}{R} \longleftrightarrow \tau = \frac{L^2}{2A^2}$$

Koordinaten x_E , y_E , wieder kleine Änderung für laufende Punkt.

$$dy = dL \sin \tau$$

$$dx = dL \cos \tau$$

$$y_E = \int_A^E dy = \int_A^E dL \sin \tau$$

$$x_E = \int_A^E dx = \int_A^E dL \cos \tau$$

$$y_E = \int_A^E \sin(\frac{L^2}{2A^2}) dL$$

$$x_E = \int_A^E \cos(\frac{L^2}{2A^2}) dL$$

Fresnel'sche Integral:

- nicht geschlossen lösbar
- Reihenentwicklung

für Einheitsklothoide

$$l = \frac{L}{A}, \quad r = \frac{R}{A}$$

$$\longleftrightarrow L = A \cdot l, \quad R = A \cdot r$$

$$Y_E = \int_A^E \sin(\frac{l^2}{2}) A dl = A y_E$$

$$X_E = \int_A^E \sin(\frac{l^2}{2}) A dl = A x_E$$

Reihenentwicklung

$$x_E = l - \frac{l^5}{40} + \frac{l^9}{3456}$$
$$y_E = \frac{l^3}{6} - \frac{l^7}{336} + \frac{l^{11}}{42240}$$

Dann:

$$X_E = A \cdot x_E$$
$$Y_E = A \cdot y_E$$

Tangente Länge t_A , t_E :

$$t_A = X_E - Y_E \cot(\tau)$$

$$t_E = \sqrt{(X_E - t_A)^2 + Y_E^2}$$

Tangentabrücklung

$$R + \Delta R = R \cos \tau + Y_E$$

$$\Delta R = Y_E - R(1 - \cos \tau)$$

Zusätzliche Elemente

$$s = \sqrt{X_E^2 + Y_E^2}$$

$$bei \ X_A = 0, \ Y_A = 0$$

$$\sigma = \arctan(\frac{Y_E}{X_E})$$

Mittelpunkt des Folgekreises

$$X_M = X_E - R\sin\tau$$
$$Y_M = Y_E + R\cos\tau$$

Berechnung von Zwischenpunkten — Übergang auf Einheitsklothoide,

$$l' = \frac{L'}{R}$$

$$x_P = l' - \frac{l'^5}{40} + \frac{l'^9}{3456}$$

$$y_P = \frac{l'^3}{6} - \frac{l'^7}{336} + \frac{l'^{11}}{42240}$$

$$X_P = Rx_P$$

$$Y_P = Ry_P$$

Seitenrück bei der Klothoidenfahrt

Änderung der Seitenbeschleunigung über die Zeit: $r=\frac{dp}{dt}$, mit p= Seitenbeschleunigung. $r\leq 0,5$ bis $0,7m/s^2$ (empirische Grenzwert)

$$r = \frac{dp}{dt} = \frac{dp}{dR} \cdot \frac{dR}{dL} \cdot \frac{dL}{dt}$$

(a). $\frac{V^2}{R} - g \cdot q$, bei Plannung q kompensiert $\frac{1}{3}$ der Fliehkraft.

$$p = \frac{2}{3} \frac{v^2}{R} \longrightarrow \frac{dp}{dr} = -\frac{2}{3} \frac{v^2}{R^2}$$

(b).

$$k = \frac{1}{R} = \frac{L}{A^2} \longleftrightarrow R = \frac{A^2}{L}$$
$$\frac{dR}{dL} = -\frac{A^2}{L^2} = -\frac{R^2}{A^2}$$
$$da \ L^2 = \frac{A^4}{R^4}$$

(c).

$$\frac{dL}{dt} = v$$

$$(a)+(b)+(c)\longrightarrow r=-\tfrac{2}{3}\tfrac{V^2}{R^2}(-(\tfrac{R^2}{A^2})v)=\tfrac{2}{3}\tfrac{V^3}{A^2}\leq 0, 5m/s^3\longrightarrow A\geq \sqrt{\tfrac{2}{3\cdot 0,5}v^3}=\sqrt{\tfrac{4}{3}v^3}$$
 Numerische Beispiel: $v=100km/h\longrightarrow A>170m$

2-e Weitere Übergangsbogen

Nutzung nur bei der Gleislaussierung, da beide Klothode an den Punkten ÜA und ÜE ein Sprung im Rückauftritt.

1) Parabel 5. Grades / Bloss - Kurve

$$y = \frac{x^4}{4 \cdot r \cdot l} - \frac{x^5}{10 \cdot r \cdot l^3}$$
$$k = \frac{3 \cdot x^2}{r \cdot l} - \frac{2 \cdot x^3}{r \cdot l^4}$$

2) Sinusoide

Steige Verlauf des Seitenrucks, fahrdynamisch das Beste, Einsatz bei Magnetischwebebahn

$$k = \frac{1}{R}(\frac{l}{L} - \frac{1}{2\pi}\sin(\frac{l'}{L}2\pi))$$

2-f Überhöhung, Quer und Längsneigung

Überhöhung: Höhendifferenz zwischen Innere und äußere Schiene; Angabe in mm(zwischen 20 und 180 mm) nur im Gleisbau.

Neigungsmaße:

- Neigungswinkel: $\alpha = \arctan(\frac{\Delta H}{s})$
- Prozent: $p = \frac{\Delta H}{s} \cdot 100\%$
- Böschungsverhältnis: $\tan \alpha = \frac{1}{x} = \frac{\Delta H}{s}$

Steigung des Gelände von 1m der Entfernung von x.

Querneigung: Überhöhung im Straßenbaus, Angabe in %

- Mindestwerte zur Abführug des Oberflächenwassers (wenn kein Längsneigung): 2,5%
- Maximalwerte bei Kreisbögen: 5 bis 8%
- bei vier spruigen Straßen: Dachprofil
- Verwindung: Drehen der Querschnitt von der Achse; meist in Übergangsbögen.

Längsneigung:

Straßenbau:

- Maximalwerte Straßenbau: 4, 5 8%
- Mindestwerte Straßenbau:(zum Abfluss der Oberflächenwassers) 0, 7 1%

Gleisbau:

• Maximalwerte beim Gleisbau: 1,25% bei Hauptbahnen, 4% bei S-Bahnen und Nebenbahnen, 0,25% in Bahnhöfen.

2-g Kippen und Wannenausführung

Steigung: positiv: \oplus S Gefälle: negativ: \ominus S Wannenhalbmesse: \oplus H Kuppenhalbmesse: \ominus H

$$\tan \alpha = \frac{s_1}{100} \approx \alpha \qquad (positiv)$$

$$\tan \beta = \frac{s_2}{100} \approx \beta \qquad (negativ)$$

$$T_{\alpha} = -H \cdot \frac{S_1}{100}$$

$$T_{\beta} = -H \cdot \frac{-S_2}{100}$$

$$2T = T_{\alpha} + T_{\beta} = H(\frac{S_2 - S_1}{100})$$

$$T = T_{\alpha} + T_{\beta} = \frac{H}{2}(\frac{S_2 - S_1}{100})$$

$$S(x) = S_1 + \frac{x}{H} \cdot 100$$

$$y(x) = \frac{s_1}{100}x + \frac{x^2}{2H}$$

$$f = \frac{x_M^2}{2H} = \frac{T^2}{2H}$$

$$f = \frac{H}{8} \frac{(s_2 - s_1)^2}{100^2}$$

$$h_a = \frac{(S_H^a)^2}{2H}$$

$$h_z = \frac{(S_H^a)^2}{2H}$$

$$\Rightarrow S_H^a = \sqrt{h_a \cdot 2H}$$

$$S_H^a = \sqrt{$$

numerische Beispiel

$$V = 100km/h \longrightarrow S_H = 170m \longrightarrow V_{Kuppe} \ge 8300m$$

 $H_{Wanne} = \frac{H_{Kuppe}}{2} \quad (nur \ aus \ optische \ Grnden)$

1.3

3-a Eilinie

Folge: Kreisbogen - Klothoide - Kreisbogen

→ Klothoide zwischen 2 gleichsinnig gekrümmten Kreisbögen. (mit unterschiedlichen Radien)

$$k_1 = \frac{1}{R_1}, (\ddot{\mathsf{U}}\mathsf{A})$$

 $k_2 = \frac{1}{R_2}, (\ddot{\mathsf{U}}\mathsf{E})$

gegeben: $R_1, R_2, x_{m_1}, y_{m_1}, x_{m_2}, y_{m_2}$

Vorbedingungen:

- $R_1 > R_2$
- R_2 innerhalb von R_1
- M_1 und M_2 nicht identisch.

a: kürzester Abstand der verlängerten Kreisbögen / Kreisbogenabrückung.

$$a = R_1 - R_2 - \sqrt{(x_{m_1} - x_{m_2})^2 - (y_{m_1} - y_{m_2})^2}$$

Klothoide Parameter A_{E_i}

$$A_{E_i} = \sqrt[4]{24aR^3}$$

$$R = \frac{R_1R_2}{R_1 - R_2}$$

$$L_{E_i} = \frac{A_E^2}{R}$$

 A_{E_i} stellt Näherungslösung, daher benötigt man eine iteration Vorgehesweise Iteration

- mit A_{E_i} (als Nahrung) Koordinaten der Mittelpunkt berechnen.
- dann a neu berechnen, und A_{E_i}
- Korrektur von a bzw. A_{E_i} bis keine Wiedersprüche in dem Koordinaten auftreten.

3-b Wendelinie

Kreis - Wendeklothoide - Kreis

- Klothoide verbindert 2 Kreisbögen entgegengesetzte Krümmung
- kann auch als 2 Entgegengesetzte gekrümmte Klothoide aufgefasst werden
- am Wendepunkte gleiche Tangente
- Klothoidenparameter sollten bei beide Ästen gleich sein oder maximal $0,07 \le A_1/A_2 \le 1,5$ sein.

gegeben: $R_1, R_2, x_{m_1}, y_{m_1}, x_{m_2}, y_{m_2}$

$$a = \overline{M_1 M_2} - R_1 - R_2$$

$$A_w = \sqrt[4]{24aR^3} \qquad (ohne\ Beweis)$$

$$R = \frac{R_1 R_2}{R_1 + R_2}$$

$$L_w = \frac{A_w^2}{R}$$

$$\Rightarrow L_{w_1} = \frac{A_w^2}{R_1} \qquad L_{w_2} = \frac{A_w^2}{R_2}$$

$$y_{m_1} = R_1 + \Delta R_1 \quad mit\ \Delta R_1 = \frac{L^2 w_1}{24R_1}$$

$$y_{m_2} = R_2 + \Delta R_2 \quad mit\ \Delta R_2 = \frac{L^2 w_2}{24R_2}$$

$$x_{m_1} = x_{E_1} - R_1 \sin \tau_1 \quad mit\ \tau_1 = \frac{L_{w_1}}{2R_1}$$

$$x_{[m_2]} = x_{E_2} - R_2 \sin \tau_2 \quad mit\ \tau_2 = \frac{L_{w_2}}{2R_2}$$

$$\varepsilon = \arctan(\frac{x_{m_1} + x_{m_2}}{y_{m_1} + y_{m_2}})$$

 \implies Bestimmung von $\overline{M_1M_2}$ möglich Iteration (Da A_w , ΔR_1 , ΔR_2 sind Nährungswerte)

- Berechnung von Kreismittelpunkten, die nicht mit Vorgabe übereinstimmen.
- a / A_w konvergieren
- Berechnung von Kreismittelpunkten bis keine Wiedersrüche auftreten.

3-c Scheitelklothoide

2 Klothoiden mit unterschiedlichen Vorzeichen der Krümmungsänderung grenzen ohne Kreisbogen aneinander. (Schlechte Fahrdynamik, da "Kreisbogendurchfahrt" in jedem Fall < 2,5), möglichst nicht verwenden!

1.4 Relation zwischen Höhen und Lageplan

1.5 Trasseneinrechnung nach graphischen Entwurf

1.6 Trassenlage und Höhenabsteckung

6-a Lageabsteckung

Tangentenpolygon berechnen.

Beispie: Gerade - Klothoide - Kreisbogen

- Vorgabe x_A , y_A , t_{AE}
- L bekannt
- polares Anhängen für $x_E = (x_{Uea}), y_E = y_{Uea}$
- t_A , $t_E \tau$ aus Formel
- Polares Anhängen von x_{k_1}, y_{k_1} unter Nutzung von t_A
- $t_{k_1,k_2} = t_{AE} \tau$
- Polares Anhängen von $x_{Uee} = (x_{k_A}), y_{Uee} = (y_{k_A})$ unter Nutzung von t_E
- t, j aus Formeln zum Kreisbogen.
- Polares Anhängen von x_{k_2} , y_{k_2} unter Nutzung von t
- $t_{k_2k_E} = t_{k_1k_2} \tau$
- Polares Anhängen von x_{k_E} , y_{k_E} unter Nutzung von t

1.7 Trassenlage und Höhenabsteckung

7-a Polare Absteckung

- Tangenten Polygon in Landeskoordinaten berechnen
- Berechnung der Bogenkleinpunkt (zwischenpunkte) bezogen auf Tangenten
- Transformation der Zwischenpunkte in das Landessystem (3 Parameter (kein Maßstab))
- Anlage aus trassennahem Polygons/Festpunkt
- Polare Absteckung der Haupt- und Zwischenpunkt

7-b Orthogonale Absteckung

- Tangenten Polygon in Landeskoordinaten berechnen (identisch)
- Berechnung der Bogenkleinpunkt (zwischenpunkte) bezogen auf Tangenten (identisch)
- Herstellung des Tangentpolygons in der Örtlichkeit
- Orthogonale Absteckung der Zwischenpunkte

7-c Höhenabsteckung

- alle Trassenpunkten werden zunächst ohne Höheninformation abgesteckt.
- In Trassennähe wird dann an Absolutehöhe vermarkt
- Von dort können die Höhen für übertragen und entsprechend Erdmassen entnommen oder aufgeschüttet werden

Höhenfeinabsteckung für Fahrbahnschnitt

- Nutzung des Leitdrahts (auch für die Lage)
- Längsneigung wird gleichfalls durch Leitdrahts festgelegt
- Querneigung wird angeschrieben
- Heute werden Leitdraht oft durch komplett automatisiert Baumaschine und Soll-DGMs ersetzt.