EE 3171 Final Exam Review

The Stuff That Might Be On the Final

- Timers
 - General purposes (scheduling events, counting pulses, measuring duration)
- The Tiva C timers
 - Half-width vs. full-width
 - Configuring the timers for different modes of operation using TivaWare functions
 - Enabling interrupts and writing good interrupt handlers for the timers
 - Using the prescalers to slow down the clock
 - Determining the correct kind of timer to use for a specific application
 - And then maybe configuring it thusly

- Analog to Digital Conversion
- Why?
- Basic Methods (Up-Counter, Successive Approximation)
 - And their respective pros/cons.
- Running calculations
 - Calculating resolution, binary value for input voltage (and vice versa)
- Using the Tiva C ADC system.
 - Including writing code.

- Basic Serial Communications
- Definitions (Duplex, Simplex, Collision Detection, UART)
- The important parameters:
 - Bit-clock period τ
 - Endian ordering of the data
 - Number of bits per word
 - Parity Mode
 - Framing bits to identify start of a data word
 - Idle or quiescent state of the line
- Draw transmission waveforms.
- Write some code to control the Tiva UART.

- Serial Peripheral Interface
- Differences between RS-232 and SPI.
- The rotational data transfer idea.
- What are the most appropriate applications for SPI vs. RS232?
- Maybe sketching waveforms

- 12C
 - Signaling conventions
 - Sketch simple waveforms
 - Flow control options (SCL vs. NACK)

- C Programming for Embedded Systems
 - Basic Constructs (for, if, while, int main)
 - Pointers, Pointer Arithmetic
 - Embedded Keywords:
 - static, extern, volatile

- TivaWare
 - Define terms: Direct Register Access, Software Driver Access
 - Naming conventions for registers
 - When to use DRA vs. SDA
 - Using GPIO functions
 - All documentation provided

- I/O Programming
 - The four difficulties (Analog vs. Digital; Speed of Processor vs. Speed of Device; Throughput vs. Response Time; Asynchronous vs. Synchronous) and the Parallel vs. Serial design decision.
 - The 3 parts of a port
 - Memory-mapped I/O vs. isolated/separate/port-mapped I/O
 - Tiva C ports and registers to configure them
 - I will NOT ask specific questions about what devices share pins — that's just pointless trivia

- I/O Synchronization Polling, Interrupts, DMA
 - Be able to describe the basic operation
 - Advantages and disadvantages of each method
 - Interrupt behaviors (pushing process state, finding interrupter, finding ISR)
 - The four steps to creating an interrupt-based program

- Pulse Width Modulation
 - Definition of duty cycle
 - Calculating duty cycle/period/etc.
 - Generic PWM implementation
 - Using the Tiva PWM hardware
 - Mainly using TivaWare, but some register behavior too.

To Bring

- Writing Implements
- A calculator
 - For calculating ADC, Timer, PWM values
- Beverages (caffeinated)
- A Song in your Heart

Format

- Some short-answer, some problem-solving, some coding.
 - Syntax does not have to be 100% accurate, but make every attempt to be as close as possible.
 - When in doubt, write lots of comments!
 - LOTS.
 - Arranged by topic rather than problem type.
- Written to be done in about 90 minutes
 - But you'll have 120.
- Wednesday, 8:00 AM, 12/20. EERC 100.

Various and Sundry

- Leave the textbook home.
- Leave your notes home.
 - You may bring two (2) pieces of 8½ x 11 paper, both sides, *handwritten*, with any notes of your choice.
 - You may reuse previous note sheets if you wish.
- If you need something from the Tiva C Reference Manual, I'll give it to you.
- Random Fact on the next slide...

- The notion of an *Intelligence Quotient* has only been around since about 1912.
 - William Stern coined the term when he was at the University of Breslau (now called the University of Wrocław, in Wrocław, Poland).
 - It was originally a German term: *Intelligenzquotient*.
- Originally, you would take some form of intelligence test, yielding a "mental age score", which was then divided by your age and multiplied by 100. The median raw score of modern tests is 100, with 2/3 of the population falling between 85 and 115.
- The earliest attempt to quantify intelligence came from an English statistician, Francis Galton, in the 1880's. He attempted to show a correlation between measurable traits (reflexes, head size) and intelligence. He couldn't, so he gave up.
- Most of our modern IQ testing came from a French psychologist, Alfred Binet. Binet attempted to quantify the types of tasks that a person of a given age should be able to do.
- The most common modern IQ test is the Wechsler Intelligence Scale. Instead of one number, it gives 6: Verbal Comprehension Index; Perceptual Reasoning Index; Working Memory Index; Processing Speed Index; and the broad "Full Scale IQ"; and General Ability Index.
- You can take a Wechsler Test for free at <u>wechslertest.com</u>. (Detailed results cost \$\$.)