New Distance Formulas

April 13, 2025

1 Document Analysis

Total documents processed: 2

- $\bullet \ {\rm ratio}_d e_f ibosuite_d e_f ibo$ Total unique terms: 378
 - Term 0: 0
 - Term 1: 000095604
 - Term 2: 000101584
 - Term 3: 000197188
 - Term 4: 0002987
 - Term 5: 000489623
 - Term 6: 0004957
 - Term 7: 0007944
 - Term 8: 00129
 - Term 9: 001373265
 - ... (and 368 more terms)

2 Available Metrics

- Euclidean (Vector Space, Implemented): Straight-line distance (L2 norm)
- Manhattan (Vector Space, Implemented): Sum of absolute differences (L1 norm)
- Chebyshev (Vector Space, Implemented): Maximum of absolute differences (L norm)
- Minkowski (Vector Space, Implemented): Generalized distance with p=3

- Mahalanobis (Vector Space, Implemented): Distance accounting for covariance
- Cosine (Vector Space, Implemented): Cosine of the angle between vectors
- Hamming (String Space, Implemented): Number of differing positions
- Levenshtein (String Space, Implemented): Minimum edit distance
- **KL Divergence** (Probability Space, Implemented): Divergence between distributions
- **Jensen-Shannon** (Probability Space, Implemented): Symmetrized KL divergence
- Bhattacharyya (Probability Space, Implemented): Similarity between distributions
- **Hellinger** (Probability Space, Implemented): Bounded similarity between distributions
- Wasserstein (Probability Space, Implemented): Optimal transport distance
- Alcubierre (Vector Space, Implemented): Warped distance inspired by Alcubierre metric
- **Persistent Homology** (Topological Space, Implemented): Topological distance using persistent homology
- Neural Network (Vector Space, Implemented): Learned distance using a neural network
- Fibonacci (Sequence Space, Implemented): Distance based on Fibonacci progression

3 Selected Metrics

• Fibonacci

4 Analysis Steps

4.1 New Distance Formulas for Feature j=0, Config 1

4.2 Final Equation for Feature j=0, Config 1

Final threshold equation: $x_0 \ge \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$ Evaluated threshold: $x_0 \ge \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$, Result: [TrueFalse]

4.3 Properties of the Main Formula for Feature j=0, Config 1

4.3.1 Document $ratio_d e_f ibo$

- Norms for x_0 :
 - $-L_1$ Norm: 19.3907 $-L_2$ Norm: 19.3907

 $-L_{\infty}$ Norm: 19.3907

- Norms for $x_0 \theta$:
 - L_1 Norm: 19.3907 - L_2 Norm: 19.3907 - L_∞ Norm: 19.3907
- Inner Product: $\langle x_0, \theta \rangle = 0.0000$
- Induced Norm of x_0 : $\sqrt{\langle x_0, x_0 \rangle} = 19.3907$
- Induced Metric: $\sqrt{\langle x_0 \theta, x_0 \theta \rangle} = 19.3907$
- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.3.2 Document $suite_d e_f ibo$

- Norms for x_0 :
 - $\ L_1 \ {\rm Norm:} \ 19.3907$ $\ L_2 \ {\rm Norm:} \ 19.3907$ $\ L_\infty \ {\rm Norm:} \ 19.3907$
- Norms for $x_0 \theta$:
 - L_1 Norm: 19.3907 - L_2 Norm: 19.3907 - L_∞ Norm: 19.3907

- Inner Product: $\langle x_0, \theta \rangle = -0.0000$
- Induced Norm of x_0 : $\sqrt{\langle x_0, x_0 \rangle} = 19.3907$
- Induced Metric: $\sqrt{\langle x_0 \theta, x_0 \theta \rangle} = 19.3907$
- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - $-\,$ Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.4 Metrics Usage for Feature j=0, Config 1

4.5 New Distance Formulas for Feature j=0, Config 2

4.6 Final Equation for Feature j=0, Config 2

Final threshold equation: $x_0 \ge \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$ Evaluated threshold: $x_0 \ge \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$, Result: [TrueFalse]

4.7 Properties of the Main Formula for Feature j=0, Config 2

4.7.1 Document $ratio_d e_f ibo$

• Norms for x_0 :

- $-L_1$ Norm: 19.3907
- $-L_2$ Norm: 19.3907
- $-L_{\infty}$ Norm: 19.3907
- Norms for $x_0 \theta$:
 - $-L_1$ Norm: 19.3907
 - $-L_2$ Norm: 19.3907
 - $-L_{\infty}$ Norm: 19.3907
- Inner Product: $\langle x_0, \theta \rangle = 0.0000$
- Induced Norm of x_0 : $\sqrt{\langle x_0, x_0 \rangle} = 19.3907$
- Induced Metric: $\sqrt{\langle x_0 \theta, x_0 \theta \rangle} = 19.3907$
- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.7.2 Document $suite_d e_f ibo$

- Norms for x_0 :
 - $-L_1$ Norm: 19.3907
 - $-L_2$ Norm: 19.3907
 - $-L_{\infty}$ Norm: 19.3907
- Norms for $x_0 \theta$:
 - $-L_1$ Norm: 19.3907
 - $-L_2$ Norm: 19.3907
 - L_{∞} Norm: 19.3907
- Inner Product: $\langle x_0, \theta \rangle = -0.0000$
- Induced Norm of x_0 : $\sqrt{\langle x_0, x_0 \rangle} = 19.3907$
- Induced Metric: $\sqrt{\langle x_0 \theta, x_0 \theta \rangle} = 19.3907$
- Transformations and Embeddings: PCA with 2 dimensions

- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.8 Metrics Usage for Feature j=0, Config 2

4.9 New Distance Formulas for Feature j=0, Config 3

4.10 Final Equation for Feature j=0, Config 3

Final threshold equation: $x_0 \ge \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$ Evaluated threshold: $x_0 \ge \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$, Result: [TrueFalse]

4.11 Properties of the Main Formula for Feature j=0, Config 3

4.11.1 Document ratio_d $e_f ibo$

• Norms for x_0 :

- L_1 Norm: 19.3907 - L_2 Norm: 19.3907 - L_∞ Norm: 19.3907

• Norms for $x_0 - \theta$:

- L_1 Norm: 19.3907 - L_2 Norm: 19.3907 - L_∞ Norm: 19.3907

- Inner Product: $\langle x_0, \theta \rangle = 0.0000$
- Induced Norm of x_0 : $\sqrt{\langle x_0, x_0 \rangle} = 19.3907$
- Induced Metric: $\sqrt{\langle x_0 \theta, x_0 \theta \rangle} = 19.3907$
- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.11.2 Document $suite_d e_f ibo$

- Norms for x_0 :
 - $-L_1$ Norm: 19.3907
 - $-L_2$ Norm: 19.3907
 - $-L_{\infty}$ Norm: 19.3907
- Norms for $x_0 \theta$:
 - $-L_1$ Norm: 19.3907
 - $-L_2$ Norm: 19.3907
 - $-L_{\infty}$ Norm: 19.3907
- Inner Product: $\langle x_0, \theta \rangle = -0.0000$
- Induced Norm of x_0 : $\sqrt{\langle x_0, x_0 \rangle} = 19.3907$
- Induced Metric: $\sqrt{\langle x_0 \theta, x_0 \theta \rangle} = 19.3907$
- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.12 Metrics Usage for Feature j=0, Config 3

4.13 New Distance Formulas for Feature j=1, Config 1

4.14 Final Equation for Feature j=1, Config 1

Final threshold equation: $x_1 \geq \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$ Evaluated threshold: $x_1 \geq \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$, Result: [FalseFalse]

4.15 Properties of the Main Formula for Feature j=1, Config 1

4.15.1 Document ratio de_fibo

• Norms for x_1 :

- L_1 Norm: 0.0000 - L_2 Norm: 0.0000 - L_∞ Norm: 0.0000

• Norms for $x_1 - \theta$:

- L_1 Norm: 0.0000 - L_2 Norm: 0.0000 - L_{∞} Norm: 0.0000

• Inner Product: $\langle x_1, \theta \rangle = 0.0000$

• Induced Norm of x_1 : $\sqrt{\langle x_1, x_1 \rangle} = 0.0000$

• Induced Metric: $\sqrt{\langle x_1 - \theta, x_1 - \theta \rangle} = 0.0000$

- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.15.2 Document $suite_d e_f ibo$

- Norms for x_1 :
 - $-L_1$ Norm: 0.0000
 - $-L_2$ Norm: 0.0000
 - L_{∞} Norm: 0.0000
- Norms for $x_1 \theta$:
 - $-L_1$ Norm: 0.0000
 - $-L_2$ Norm: 0.0000
 - L_{∞} Norm: 0.0000
- Inner Product: $\langle x_1, \theta \rangle = 0.0000$
- Induced Norm of x_1 : $\sqrt{\langle x_1, x_1 \rangle} = 0.0000$
- Induced Metric: $\sqrt{\langle x_1 \theta, x_1 \theta \rangle} = 0.0000$
- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.16 Metrics Usage for Feature j=1, Config 1

4.17 New Distance Formulas for Feature j=1, Config 2

4.18 Final Equation for Feature j=1, Config 2

Final threshold equation: $x_1 \geq \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$ Evaluated threshold: $x_1 \geq \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$, Result: [FalseFalse]

4.19 Properties of the Main Formula for Feature j=1, Config 2

4.19.1 Document ratio_d $e_f ibo$

• Norms for x_1 :

- L_1 Norm: 0.0000 - L_2 Norm: 0.0000 - L_∞ Norm: 0.0000

• Norms for $x_1 - \theta$:

 $-L_1$ Norm: 0.0000 $-L_2$ Norm: 0.0000 $-L_\infty$ Norm: 0.0000

• Inner Product: $\langle x_1, \theta \rangle = 0.0000$

• Induced Norm of x_1 : $\sqrt{\langle x_1, x_1 \rangle} = 0.0000$

• Induced Metric: $\sqrt{\langle x_1 - \theta, x_1 - \theta \rangle} = 0.0000$

- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components:
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.19.2 Document $suite_d e_f ibo$

- Norms for x_1 :
 - $-L_1$ Norm: 0.0000
 - $-L_2$ Norm: 0.0000
 - L_{∞} Norm: 0.0000
- Norms for $x_1 \theta$:
 - $-L_1$ Norm: 0.0000
 - $-L_2$ Norm: 0.0000
 - L_{∞} Norm: 0.0000
- Inner Product: $\langle x_1, \theta \rangle = 0.0000$
- Induced Norm of x_1 : $\sqrt{\langle x_1, x_1 \rangle} = 0.0000$
- Induced Metric: $\sqrt{\langle x_1 \theta, x_1 \theta \rangle} = 0.0000$
- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.20 Metrics Usage for Feature j=1, Config 2

4.21 New Distance Formulas for Feature j=1, Config 3

4.22 Final Equation for Feature j=1, Config 3

Final threshold equation: $x_1 \geq \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$ Evaluated threshold: $x_1 \geq \mathbb{R} \times (1 - \frac{1}{N} \sum_{k=1}^{N} d_{\text{Fibonacci}}(x_i, x_k))$, Result: [FalseFalse]

4.23 Properties of the Main Formula for Feature j=1, Config 3

4.23.1 Document $ratio_d e_f ibo$

• Norms for x_1 :

 $-L_1$ Norm: 0.0000 $-L_2$ Norm: 0.0000

 $-L_{\infty}$ Norm: 0.0000

• Norms for $x_1 - \theta$:

 $-L_1$ Norm: 0.0000

 $-L_2$ Norm: 0.0000

– L_{∞} Norm: 0.0000

• Inner Product: $\langle x_1, \theta \rangle = 0.0000$

• Induced Norm of x_1 : $\sqrt{\langle x_1, x_1 \rangle} = 0.0000$

• Induced Metric: $\sqrt{\langle x_1 - \theta, x_1 - \theta \rangle} = 0.0000$

- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.23.2 Document $suite_d e_f ibo$

- Norms for x_1 :
 - $-L_1$ Norm: 0.0000
 - $-L_2$ Norm: 0.0000
 - L_{∞} Norm: 0.0000
- Norms for $x_1 \theta$:
 - $-L_1$ Norm: 0.0000
 - $-L_2$ Norm: 0.0000
 - L_{∞} Norm: 0.0000
- Inner Product: $\langle x_1, \theta \rangle = 0.0000$
- Induced Norm of x_1 : $\sqrt{\langle x_1, x_1 \rangle} = 0.0000$
- Induced Metric: $\sqrt{\langle x_1 \theta, x_1 \theta \rangle} = 0.0000$
- Transformations and Embeddings: PCA with 2 dimensions
- Scale and Units: Features standardized using StandardScaler (mean=0, std=1)
- Underlying Geometry/Topology:
 - Persistent Homology: Number of H0 components: 2, H1 components: 0
 - Geometry Note: Data embedded in a vector space with Euclidean geometry, transformed using PCA

4.24 Metrics Usage for Feature j=1, Config 3

5 Metric Validity Summary

• Fibonacci: ✓ (Valid metric)