- 1. a) Quan un objecte cau en caiguda lliure, es produeix una força de fregament amb l'aire que és proporcional a l'àrea transversal de l'objecte i al quadrat de la seva velocitat, és a dir *F=CAv*², on C és una constant. Digueu quines són les unitats de C.
 - b) En el sistema d'unitats americà, la massa d'un peu cúbic d'aigua són 62,4 lliures. Si un peu són 30,5 centímetres, quants kilograms són una lliura? (Recordeu que 1 metre cúbic d'aigua pesa 1000 Kg)

2. Els manuals de circulació estableixen que la distància mínima que un vehicle ha de mantenir amb el vehicle que el precedeix és proporcional al quadrat de la velocitat que porta.

Si per un vehicle que va a 90 km/h la distància de seguretat ha de ser de 81 metres, quina serà la distància de seguretat per un vehicle a 80 km/h?. Troba també l'acceleració de frenada corresponent per aquest cotxe (és a dir, l'acceleració de frenada suposant que passa de 80 a 0 km/h en una distància igual a la distància de seguretat).

- 3. Suposem que tenim un cotxe amb les quatre rodes bloquejades a sobre d'una plataforma que es pot inclinar l'angle α que vulguem (utilitzant, per exemple, una grua). Els coeficients de fregament estàtic i dinàmic entre les rodes i la plataforma són 0.35 i 0.3, respectivament.
 - a) Trobeu quin és l'angle màxim que podem inclinar la plataforma sense que el cotxe patini cap enrere.
 - b) Si inclinem la plataforma amb un angle de α =10° i desbloquejem les rodes, amb quina acceleració es mourà el cotxe cap enrere?

4. En una planta d'emmagatzematge de residus comptem amb una bulldozer de dos eixos, com la de la figura.

Si la massa de la cabina i de la pala són 5 tones i 1 tona respectivament (considereu que la massa dels braços de la pala és meyspreable) trobeu quina és la massa màxima que la pala pot arribar a carregar sense que la bulldozer bolqui cap endavant.

Nota: A la figura teniu les longituds del vehicle:

- Hi ha 5 metres entre el centre de la pala i l'eix de la roda trassera.
- Hi ha 3 metres entre els eixos de les rodes
- Hi ha 1 metre entre l'eix de la roda davantera i el centre de masses de la cabina

5. Deixem caure una bola de plastilina de 2 Kg sobre una plataforma de 4 Kg situada a sobre d'una molla que esmorteeix la caiguda (tal i com apareix a la figura, la distància inicial entre massa i plataforma és de 5 metres).

Si la molla acompleix la llei de Hooke i té una constant de 100 N/m, troba quina és la longitud màxima que s'arriba a contreure quan la massa hi cau a sobre.

- 6. Imagineu que una artista de circ s'aguanta del trapezi amb una sola mà (per simplificar suposarem que la mà està just al centre de la barra). La barra del trapezi (de massa menyspreable) fa 80 centímetres de llargada i 2 centímetres de radi, i està aguantada per dues cordes situades als extrems. Suposant que:
 - la càrrega màxima que cada corda pot suportar sense trencar-se és 2·10³ N.
 - el radi màxim de curvatura que pot tenir la barra sense que arribi a trencar-se és 0.5 metres, i el seu mòdul de Young és de 5·10⁹ N/m²

...trobeu què passarà abans, que les cordes es trenquin o que la barra es parteixi. (És a dir, trobeu quina és la força mínima que hauria d'exercir la trapezista per a què passi cada una de les dues coses, i mireu quina de les dues és menor).

(Nota: Considereu la barra com un cilindre massís, i per tant que el seu moment d'inercia és $\pi r^4/4$, on r és el radi)

- 7. Imagineu que tenim un recipient cilíndric de 25 cm de radi ple d'aigua fins una alçada de 1 metre, com apareix a la figura. Si ara introduïm un cub sòlid de 30 cm de costat a dintre del recipient, calculeu fins a quin nivell pujarà l'aigua suposant que:
 - a) La densitat del cub es 1200 Kg/m³.
 - b) La densitat del cub és 800 Kg/m³.

- 8. En molts països (especialment països nòrdics) una forma habitual de fer més eficient el sistema de calefacció o d'aigua calenta d'un bloc de pisos consisteix en fer servir una caldera comunitària en comptes d'una caldera per a cada veí.
 - a) Explica breument quin raonament físic ens permet afirmar que aquest mètode és més eficient des del punt de vista energètic.

Els veïns d'un edifici de Barcelona decideixen seguir aquesta idea i substituir les seves calderes individuals (12 calderes cilíndriques de 20 centímetres de radi i 1 metre d'alçada) per una sola caldera comunitària (de 40 centímetres de radi i 2 metres d'alçada).

b) Si la caldera manté l'aigua en el seu interior a 70 °C i la temperatura a la cambra de calderes és de 20 °C, trobeu quin és l'estalvi energètic aconseguit (calculeu quina quantitat de calor es perdia abans amb les 12 calderes i quina quantitat es perdrà ara, i trobeu la diferència). Considereu que les parets de les calderes són de 4 mm i estan fetes d'un material amb una conductivitat tèrmica de 0.1 W/mK.

9. Suposeu que tenim dues màquines tèrmiques en sèrie, de tal manera que el calor que desprèn la primera (que treballa entre dues fonts a 400°K i a 350 °K) és aprofitat per la segona (que treballa entre la font de 350 °K i una tercera a 300 °K) per tal d'obtenir un treball extra.

Suposant que les dues màquines treballen seguint un procés reversible, trobeu quin és el rendiment de cada una de les dues màquines per separat i quin és el rendiment total del sistema.

- 10. Tenim una fàbrica operant en el nostre municipi que diu que emet a una hora concreta del matí 300 kg d'una substància a l'atmosfera a través d'una xemeneia situada a 20 metres d'alçada. Com que l'Ajuntament sospita que la fàbrica emet més del que declara, decideix instal·lar per sorpresa una estació de mesura a 40 metres del peu de la xemeneia, en un dia que no fa gens de vent. Després de fer la mesura, resulta que els aparells detecten una concentració màxima de 400 mg/m³, que és més del que caldria esperar.
 - a) Quina és la concentració màxima que caldria esperar?

L'empresa es defensa dient que part d'aquesta contaminació que ha mesurat l'aparell prové d'una altra empresa veïna, que es troba a 80 metres d'on està l'aparell i que aproximadament a la mateixa hora ha emès 200 Kg de la mateixa substància amb una xemeneia situada també a 20 metres d'alçada.

b) Feu els càlculs per a verificar si el que diu l'empresa té sentit.

- 11. Imagineu que estem xerrant a través d'Internet amb un amic fent servir un micròfon i una webcam. Les especificacions tècniques del micròfon diuen que la seva sensibilitat (la intensitat mínima que detecta) és de 27 dB.
 - a) Suposant que les especificacions tècniques són correctes, i menyspreant qualsevol efecte d'atenuació, quina serà la potència amb la que haurem de parlar si estem a 2 metres del micròfon per tal que ens detecti la veu?
 - b) Si ara cobrim el micròfon amb un full de paper, com canvia el resultat de l'apartat anterior, suposant que els coeficients d'absorció i de reflexió del full son 0.05 i 0.1, respectivament?

- 12. Tenim una partícula (que considerarem puntual) amb +1 μC de càrrega elèctrica i 5 grams de massa situada a sobre d'una placa metàl·lica horitzontal. En un moment donat comencem a carregar uniformement la placa amb càrrega positiva. Com a conseqüència observem que passat un temps la càrrega puntual se separa de la placa i comença a "flotar" per sobre d'ella.
 - a) Per què succeeix això?
 - b) Troba quina és la densitat de càrrega que li hem de subministrar a la placa per arribar a observar el fenomen.

Solucions numèriques:

- 1- 0.455 Kg
- 2- 64 m; 3.86 m/s²
- 3- 20°.5; 4.64 m/s²
- 4- 1500 Kg
- 5- 1.59 m
- 6- Calen 4000N per a què es trenqui la corda i 3170N per a què es parteixi la barra.
- 7- a) Puja 13.7 cm; b) Puja 11.0 cm
- 8- 13.8 KJ/s
- 9- Per separat: $1-T_1/T_2$ i $1-T_2/T_3$; Pel total: $1-T_1/T_3$
- 10-a) 247 mg/m³; b) 26 mg/m³ 11-a) 5,67·10⁻⁸ W; b) 6.67·10⁻⁸ W
- 12-0.86 μC/m²