COMS 4111 Intro to DB HW2

Zachary Huang (zh2408) March 5, 2022

1 Relational Algebra

1.1 Q1.1

 $\pi_{Person.ssn}((\sigma_{companyid=601}(Person)) \bowtie_{Person.ssn=Holdings.ssn} (\sigma_{companyid=700 \land sharenum>500}(Holding)))$ **Note:** Natural join between Person and Holdings is wrong, as you are joining on both ssn and companyid.

Rubric:

- +0.5 Select google employees
- +0.25 Select facebook shareholders
- +0.25 Select the shareholds that has sharenum > 500
- +0.5 Correctly joined both relations
- +0.5 Correctly project the ssn

1.2 Q1.2

```
// PersonStock are the stocks each person owns \rho(PersonStock, \pi_{Person.ssn, Holding.companyid}(Person \bowtie_{Person.ssn=Holdings.ssn} Holding))
// ManagerStock are the stocks each person's manager owns \rho(ManagerStock, \pi_{Person.ssn, Holding.companyid}(Person \bowtie_{Person.managerid=Holdings.ssn} Holding))
// PersonIntersection are persons whose stocks intersect with manager's stocks \rho(PersonIntersection, \pi_{ssn}(PersonStock \cap ManagerStock))
\pi_{ssn}(Person) - PersonIntersection
```

Note: The problem doesn't specify corner cases when a person or manager doesn't own any stock. For those without stocks, both excluding and including them are fine.

Rubric:

- +0.25 compute person stocks
- +0.5 compute manager stocks
- +0.25 attribute references and projections are unambiguous
- +0.75 compute persons that have no stocks in common with their manager (may be solved in multiple ways)
- +0.25 correct final projection

1.3 Q1.3

```
\rho(h1, Holding)) \\ \rho(h2, Holding)) \\ \pi_{ssn}(\sigma_{Holding.companyid \neq h1.companyid \land Holding.companyid \neq h2.companyid \neq h2.comp
```

Note: We do not have aggregation in relational algebra.

Rubric:

- +1.0 for using 3 self joins
- +0.5 for using the right selection
- +0.5 For correctly projecting the final result

2 More Relational Algebra

2.1 Q2.1

A	В	
1	X	
2	у	
2	Z	

Rubric:

+1.0 Correct Column Names

+1.0 Correct Rows (Duplicates removed)

2.2 Q2.2

D c a

Rubric:

+1.0 Correct Column Names

+1.0 Correct Rows (Duplicates removed)

2.3 Q2.3

(A)	В	С	(A)
1	X	a	1
2	У	С	1
2	у	b	1
2	Z	С	1
1	X	a	2
2	У	С	2
2	У	b	2
2	Z	С	2

Rubric:

+0.25 First Column A represented correctly parenthesis or TableName.ColumnName

+0.25 Last Column A represented correctly parenthesis or TableName.ColumnName

+0.5 column order is correct

+1.0 all rows are correct (as per the column order)

2.4 Q2.4

Α	T1.B	T1.C	T2.B	T2.C	D
1	X	a	1	X	С
1	X	a	3	X	a
2	у	С	2	у	С
2	y	b	2	у	С

 $\boldsymbol{Note:}$ The schema keeps all 6 attributes because it's a theta join.

Rubric:

+0.75 if all column names are correct and has proper order of all attributes of first relation with all attributes of second relation

+1.0 all rows are correct according to the column order

+0.25 parenthesis or TableName.ColumnName mentioned correctly

2.5 Q2.5

Α	В	С
1	X	a
2	у	b
2	Z	С

 $\boldsymbol{Note:}$ For set operation, we use the left argument's schema. Schema BCD is wrong.

Rubric: +1.0 schema is correct

+0.25 no row contains intersection (2,y,c)

+0.75 rows are all correct

2.6 Q2.6

A	T1.B	T1.C	T2.B	T2.C	T2.D
2	y	С	1	X	С
2	у	b	1	X	С
2	z	С	1	X	С

Rubric:

+0.75 correct Schema Order

+0.25 appropriate notation for same column names

+0.25 no row contains T2.B = 2 (so selection is right)

+0.25 no row contains T1.A>T2.B (so join condition is satisfied)

+0.5 rows are all correct

3 SQL

3.1 Q3.1

Find the ids and names of stores which is in NY or has at most 100 employees.

```
SELECT storeid, s_name
FROM Store
WHERE employee_number <= 100 OR city = "New York"</pre>
```

Note: Distinct is not necessary because (storeid, g id) is primary key.

Rubric:

- +0.25 description is correct
- +0.5 employee_number <= 100 is correct
- +0.5 city = "New York" is correct
- +0.5 "OR" is correct
- +0.25 "storeid, s_name" is correctly selected

3.2 Q3.2

Find the names of stores which are supplied with pencils.

```
SELECT DISTINCT s_name
FROM Store, Goods, Supply
WHERE Store.storeid = Supply.storeid AND Supply.g_id = Goods.g_id AND g_name = "pencil"
```

Note: Distinct is necessary here.

Rubric:

- +0.25 description is correct
- +0.25 all three relations "Store, Goods, Supply" are in "From" clause
- +0.5 "DISTINCT" is correct
- +0.5 join conditions are correct
- +0.5 "g_name = "pencil"" is correct

3.3 Q3.3

Find the goods each store doesn't have.

```
(SELECT storeid, g_id FROM Store, Goods) EXCEPT (SELECT * FROM Supply );
```

Rubric:

- +0.25 description is correct
- +0.5 cross product is computed
- +0.5 the schema of the cross product "storeid, g_id" is correct
- +0.25 supply relation is correctly selected
- +0.5 "EXCEPT" is correct (can also use nested query)