

STA 325 Final Project:

Calleigh Smith, Hannah Bogomilsky, Hugh Esterson, Maria Henriquez & Mariana Izon

01

EXECUTIVE SUMMARY

PROJECT OBJECTIVES

Motivations:

- US aviation as growing transportation method
 - 2019: 925.5M passengers (4.1% increase)
- Number one complaint: delayed flights

Project Goals:

- Understand the market for US airline industry
- Be able to improve upon airline arrival times to improve customer satisfaction
- Allow airports to better plan for unexpected delays

• Approach:

- Analyze flight data from January 2020
 - JFK to California airports (team members' hometown airports)
- Determine which variables are significant in predicting arrival delays.
- Predict arrival delays with high accuracy

EMPHASIS ON PREDICTION

Industry Factors

- Customer satisfaction relies on an airline's ability to get clients where they need to be on time
 - Airline industry is competitive
- Issues arise when flights are delayed
 - Missed connections → greater internal pressure for airlines/risk of losing revenue
 - Logistics as optimization

Incentives

- Being able to predict delays can lead to more accurate arrival times
 - Trickle-down effects for all parties involved
- Still want to understand how variables affect delays

PROJECT SUMMARY

Data Cleaning

- Huge dataset of all US domestic flights from January 2020
- Focus on a specific route(s)
- Select relevant variables

Modeling

- \circ General \rightarrow Complex
 - Linear regression \rightarrow GAM \rightarrow Trees
- Emphasis on prediction but inference is important as well

Prediction

- Test error metrics (80-20 division of training-test sets)
- Cross-validation throughout to corroborate decisions

MODELING STRATEGIES

- Multivariate Linear Model:
 - Determine interaction effects through ANOVA
 - Correct degree of variables through CV
 - Check diagnostics
- Generalized Additive Model:
 - Understand effects of significant individual variables
- Regression Tree:
 - Interpretable and generally good for prediction
 - Test out random forest and boosting
 - Choose the best method and tuning parameters via cross-validation

MODEL PROGRESSION

START SIMPLE Check for underlying relationships

MLR

BUILD

Understand variables and their effects

TOWARDS CUTTING-EDGE
Improve prediction
and inference

TREES

DATA
DESCRIPTION

DATA BREAKDOWN

Source

- US Department of Transportation
 - Bureau of Transportation Statistics
- Reporting Carrier On-Time Performance
 - Data bank of flight statistics, per month, since 1987

Variables of interest

- Time-based: DayOfWeek, DayofMonth
- o Route-based: Origin, Dest
- Flight-based: Reporting_Airline, TaxiOut, TaxiIn, DepDelay
- o Delay indicators: Carrier, Weather, NAS, Security, LateAircraft

Data prep

- Download as CSV
- Cleaned externally in Excel / Numbers
- Filtered in R with dplyr
- Created indicator variables to replace time-additive variables

DATA DICTIONARY

		Table 1: Data Dictionary		
Variables	Type	Description		
General Flight Variables	5			
DAY_OF_MONTH	numeric	flight's day of week; Monday (1), Tuesday (2),, Sunday (7)		
DAY_OF_WEEK	numeric	flight's day of month		
OP_CARRIER	factor	airline providing flight; American (AA), Delta (DL), Alaska Airlines (AS), JetBlue (B6)		
TYPE_DELAY	factor	classifaction type of delay; weather, National Air System, security, late aircraft		
Departure-Based Variables				
ORIGIN	factor	flight's origin airport code; all JFK		
CRS_DEP_TIME	numeric	Computerized Reservation System/scheduled time of departure; reported in military time, e.g. 7:30pm as 1930		
DEP_TIME	numeric	flight's actual time of departure		
DEP_DELAY	numeric	difference in flight's scheduled and actual time of departure; negative values indicate an early departure		
TAXI_OUT	numeric	time duration from gate pushback to takeoff upon departure		
Arrival-Based Variables				
DEST	factor	flight's destination airport code; SFO or LAX		
CRS_ARR_TIME	numeric	Computerized Reservation System/scheduled time of arrival		
ARR_TIME	numeric	flight's actual time of arrival		
ARR_DELAY	numeric	difference in flight's scheduled and actual time of arrival; negative values indicate an early departure		
TAXI_IN	numeric	time duration from landing to gate parking upon arrival		

EXPLORATORY DATA ANALYSIS: INITIAL

- Quick stats:
 - 2044 flights with originally 34 variables
 - o Carriers: 4 included American, Delta, JetBlue, Alaska
 - o **Destinations**: 10 California destinations from JFK origin
 - o **Delay Cause**: relatively few delays, with **NAS delays** as most common
 - National Air System delay: weather, airport operations, ATC

EXPLORATORY DATA ANALYSIS: FINAL

- Final data cleaning:
 - > **80-20** training-test set split
 - Carriers: 4 included American, Delta, JetBlue, Alaska
 - o **Destinations**: 2 California destinations (SFO and LAX) from JFK origin
 - Some transformations: log-transformations on predictors; Box-Cox on response

EXPLORATORY DATA ANALYSIS: CLEANED

Non-Linearity in Response vs. Predictors

Box-Cox Transformation on Response

03

MULTIPLE LINEAR REGRESSION

MLR: ATTEMPT 1

Baseline Model

- Performed model selection using AIC to get rid of insignificant predictors
- No interactions or transformations to variables

MLR: ATTEMPT 2

Log-transformed predictors model

MLR: ATTEMPT 3

Box-Cox transformed response model

MLR: PROS AND CONS

Pros

- Yields relatively interpretable models
- Computationally inexpensive to implement
- No hyperparameter tuning

Cons

- High test error
- Evidence of non-linearity in data

MLR: ERROR TABLE

Model Name	Model MSE
Baseline Linear	322.46
Selected Linear w/ Log-Transformed Predictors	333.90
Selected Linear w/ Box-Cox	334.92

```
\begin{split} \widehat{ARR\_DELAY} &= -24.10 + 0.87(DEP\_DELAY) - 1.57(OP\_CARRIER(AS)) + 1.92(OP\_CARRIER(B6)) \\ &- 2.30(OP\_CARRIER(DL)) - 1.83(DEST(SFO)) - 0.004(CRS\_DEP\_TIME) - 0.002(CRS\_ARR\_TIME) \\ &+ 0.87(TAXI\_OUT) + 0.47(TAXI\_IN) - 2.22(TYPE\_DELAY(LATE\_AIRCRAFT)) \\ &+ 25.09(TYPE\_DELAY(NAS)) - 13.60(TYPE\_DELAY(No~Delay)) \end{split}
```

04

GENERAL ADDITIVE MODELING

GAM: ATTEMPT 1

Original Response Model

- ANOVA to check linearity on TAXI_IN
 - Smoothing spline performs better
- ANOVA to remove insignificant predictors

Numerical variables with cubic smoothing splines

Model Diagnostics

GAM: ATTEMPT 2

Box-Cox Transformation Model

Numerical variables with cubic smoothing splines

Model Diagnostics

GAM: PROS AND CONS

Pros

- Relatively computationally inexpensive
- Good for inference
- Has the ability to model highly complex nonlinear relationships

Cons

- Somewhat high test error
- Could be potentially overfitting

GAM: ERROR TABLE

Model Name	
GAM	312.30
GAM w/ Box-Cox	317.45

$$\begin{split} ARR_DELAY &= 1.83 - 1.68(OP_CARRIER(AS)) + 2.49(OP_CARRIER(B6)) - 3.14(OP_CARRIER(DL)) \\ &- 3.20(TYPE_DELAY(LATE_AIRCRAFT)) + 18.80(TYPE_DELAY(NAS)) - 22.41(TYPE_DELAY(No\ Delay)) \\ &+ s(TAXI_IN) + s(TAXI_OUT) + s(DEP_DELAY) + s(CRS_DEP_TIME) \end{split}$$

TREE-BASED REGRESSION

TREES: RANDOM FOREST

- Performs well when underlying relationships are non-linear
- Parameters to tune through cross-validation
 - \circ Number of predictors sampled to build each tree \rightarrow 2
 - Number of trees \rightarrow 10,000

TREES: BOOSTING

- Parameters to tune through cross-validation
 - \circ Shrinkage/learning rate $\rightarrow 0.1$
 - Number of trees \rightarrow 150
 - \circ Interaction depth \rightarrow 3
- Importance Metrics
 - DEP_DELAY most significant (understandably)
 - DAY_OF_MONTH
 - NAS_DELAY
 - TAXI variables

TREES: PROS AND CONS

Pros

- Performs well when true relationship is non-linear
- Model gives some insight into which variables are most important in predicting the response
- Increased predictive performance compared to our other models

Cons

- Possibility of overfitting
- Random Forests and boosting can sometimes yield results that are difficult to interpret
- Not as "plug-and-chug" compared to other models

TREES: ERROR TABLE

Model Name	Model MSE
Random Forest	155.01
Boosting	129.80

OVERALL ERROR TABLES

 Boosting provided the best performing model with a large percent increase and the lowest MSE

Model Name	Model Type	Model MSE	Model Percent Improvement
Baseline Linear	Multiple Linear Regression	322.46	↓
Selected Linear w/ Log-Transformed Predictors	Multiple Linear Regression	333.90	↓ -3.5469
Selected Linear w/ Box-Cox	Multiple Linear Regression	334.92	↓ -3.865
GAM	Generalized Additive Model	312.30	↑ 3.1519
GAM w/ Box-Cox	Generalized Additive Model	317.45	↑ 1.5523
Random Forest	Tree-Based Regression	155.01	↑ 51.9272
Boosting	Tree-Based Regression	129.80	↑ 59.7479

HISTOGRAMS: MLR

HISTOGRAMS: GAM

HISTOGRAMS: TREES

FINAL CONCLUSIONS

TAKEAWAYS

- Optimal model for predicting arrival delay times for flights from JFK to SFO and LAX is a tree-based regression with boosting
 - Large increase in predictive performance
- Using several types of models with several iterations helped identify weaknesses and increase comprehension of the dataset as a whole
 - Ultimately allowed for the best model selection
- Robust model would help all parties involved
 - o Passengers, airlines, and airports
 - Each with their own priorities, but all helped by less delays and/or more efficient recovery from delays

FUTURE DIRECTIONS

- Focused on one month in one year, January of 2020
 - Expand to a longer period of time
- Only one originating airport, JFK, to two destinations, SFO and LAX
 - Explore the opposite, originating from CA and landing in NY
 - Add more origins and/or destinations
- Interesting to analyze effect of COVID-19
 - Decreased air traffic → less delays?
- Strong modeling procedure, but more holistic application to larger-scale data would uncover most crucial effect

THANKS!

For questions, please email any of our team members:

- -Calleigh Smith (cas175@duke.edu)
- -Hugh Esterson (<u>hugh.esterson@duke.edu</u>)
- -Maria Henriquez (meh83@duke.edu)
- -Hannah Bogomilsky (<u>hlb25@duke.edu</u>)
- -Mariana Izon (mariana.izon@duke.edu)

CREDITS: This presentation template was created by Slidesgo, including icons by Flaticon, and infographics & images by Freepik

