Sequence (Lecture-3)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Sequence

Definition

A sequence of real numbers or a sequence in \mathbb{R} is a function $f: \mathbb{N} \to \mathbb{R}$.

• We write a_n for f(n), $n \in \mathbb{N}$ and the notation for a sequence is $\{a_n\}_{n=1}^{\infty}$.

Examples

- **①** Constant sequence: $\{c, c, c, \cdots\}$, where $c \in \mathbb{R}$.
- ② Sequence defined by listing: $\{1, 4, 8, 11, 52, \dots\}$.
- **3** Sequence defined by rule: $\{a_n\}_{n=1}^{\infty}$, where $a_n = 3n^2$ for all $n \in \mathbb{N}$.
- $\bullet \quad \left\{ \frac{n-1}{n} \right\}_{n=1}^{\infty}$
- What does **convergence** mean?
- Think of the examples: $\{2,2,2,\cdots\}$, $\{\frac{1}{n}\}_{n=1}^{\infty}$, $\{n^2-1\}_{n=1}^{\infty}$, $\{1,2,1,2,\cdots\}$, $\{(-1)^n\frac{1}{n}\}_{n=1}^{\infty}$, $\{(-1)^n(1-\frac{1}{n})\}_{n=1}^{\infty}$.

Convergence

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ converges to limit L if for every $\epsilon > 0$ (given) there exists a positive integer N such that $n \ge N \implies |a_n - L| < \epsilon$.

- Notation: $L = \lim_{n \to \infty} a_n$ or $a_n \to L$.
- If $\{a_n\}_{n=1}^{\infty}$ is a sequence and if both $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} a_n = M$ holds, then L = M.

Examples

- **①** Constant sequence $\{c\}_{n=1}^{\infty}, c \in \mathbb{R}$, has c as it's limit.
- ② Show that $\lim_{n\to\infty} \frac{1}{n} = 0$.

Solution: Let $\epsilon > 0$ be given. To show that 1/n approaches 0, we must show that there exists an integer $N \in \mathbb{N}$ such that for all $n \geq N$,

$$\left|\frac{1}{n} - 0\right| = \frac{1}{n} < \epsilon.$$

But $1/n < \epsilon \Leftrightarrow n > 1/\epsilon$. Thus, if we choose $N \in \mathbb{N}$ such that $N > 1/\epsilon$, then for all $n \ge N$, $1/n < \epsilon$.

Convergence

Example

Show that $\lim_{n\to\infty} \frac{(-1)^n}{n} = 0$.

Solution: For any $\epsilon > 0$,

$$\left|\frac{(-1)^n}{n} - 0\right| = \frac{1}{n} < \epsilon \ \forall \ n \ge N,$$

where N is a positive integer such that $N > \frac{1}{\epsilon}$. Thus, $\frac{(-1)^n}{n} \to 0$ as $n \to \infty$.

Example

Show that $\lim_{n\to\infty} \frac{n}{n+1} = 1$.

Solution: Note that $|a_n - 1| = \frac{1}{n+1} < \frac{1}{n}$. Thus, for any $\epsilon > 0$, take $N > \frac{1}{\epsilon}$, we get

$$\left|\frac{n}{n+1} - 1\right| = \frac{1}{1+n} < \frac{1}{n} < \epsilon \ \forall \ n \ge N.$$

Hence, $\frac{n}{1+n} \to 1$ as $n \to \infty$.

