CS M51A, Sec. 1, Class Exercises No. 1 - SOLUTIONS

Solutions Manual - Introduction to Digital Design - September 29, 2000

11

Exercise 2.11

(a)

$$34\ 567 = (0011\ 0100\ 0101\ 0110\ 0111)_{BCD}$$

= $(0110\ 0111\ 1000\ 1001\ 1010\)_{Excess-3}$

(b) BCD does not have the complementary property, so an actual subtraction is needed:

$$99\ 999 - 34\ 567 = 65\ 432 = (0110\ 0101\ 0100\ 0011\ 0010)_{BCD}$$

2421 code has the complementary property, such that the subtraction is done by complementing each bit:

$$34\ 567 = (0011\ 0100\ 1011\ 1100\ 1101)_{2421\text{-code}}$$

$$99\ 999 - 34\ 567 = (1100\ 1011\ 0100\ 0011\ 0010)_{2421\text{-code}}$$

Exercise 2.13

- (a) $(1001010100011110)_2 = (1001\ 0101\ 0001\ 1110\)_2 = (951E)_{16}$
- (b) $(3456)_8 = (011\ 100\ 101\ 110)_2 = (011100101110)_2$
- (c) To convert from radix-2 to radix- 2^k we consider groups of k bits. The digits in radix- 2^k are obtained converting each group (binary representation of the digit) into a single value in the new radix.

To convert from radix- 2^k to radix-2, the digits in radix- 2^k are converted to binary. The final vector, that corresponds to the concatenation of all digit representations in binary, is the radix-2 representation of the number.

Exercise 2.15

(a) Prove that $f_{\mbox{XOR}}(f_{\mbox{AND}}(x_1,x_0),f_{\mbox{AND}}(x_1,x_0)) = f_{\mbox{EQUIVALENCE}}(x_1,x_0)$

x_1	x_0	$f_{ ext{AND}}(x_1, x_0)$	$f_{\text{XOR}}(f_{\text{AND}}(x_1, x_0), f_{\text{AND}}(x_1, x_0))$	$f_{\text{EQUIVALENCE}}(x_1, x_0)$
0	0	0	0	1
0	1	0	0	0
1	0	0	0	0
1	1	1	0	1

The conclusion is:

$$f_{\text{XOR}}(f_{\text{AND}}(x_1, x_0), f_{\text{AND}}(x_1, x_0)) \neq f_{\text{EQUIVALENCE}}(x_1, x_0)$$

(b) Prove that $f_{\text{NAND}}(f_{\text{NAND}}(x_1, x_0), f_{\text{NAND}}(x_1, x_0)) = f_{\text{AND}}(x_1, x_0)$

x_1	x_0	$f_{ ext{NAND}}(x_1, x_0)$	$f_{ ext{NAND}}(f_{ ext{NAND}}(x_1, x_0), f_{ ext{NAND}}(x_1, x_0))$	$f_{ ext{AND}}(x_1, x_0)$
0	0	1	0	0
0	1	1	0	0
1	0	1	0	0
1	1	0	1	1

The conclusion is:

$$f_{\mbox{\scriptsize NAND}}(f_{\mbox{\scriptsize NAND}}(x_1,x_0),f_{\mbox{\scriptsize NAND}}(x_1,x_0)) = f_{\mbox{\scriptsize AND}}(x_1,x_0)$$

Exercise 2.16

Each variable can have 2 values (0 or 1).

Total number of *n*-variable inputs: $\underbrace{2 \cdot 2 \cdot \ldots \cdot 2}_{n} = 2^{n}$

For each input, the output function can have 2 values.

Total number of functions:
$$\underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{2^n} = 2^{2^n}$$