$$(i)$$
 $-2+8\times3$
= $-2+24$
= $[22]$

$$(-2+8) \times 3$$

= $(6) \times 3$
= $[18]$

$$(-4)^{2} = (-4) \cdot (-4)$$
 $= [16]$

$$n) = 5 - 2^{2}$$

o)
$$(5-2)^2$$

= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
= $(3)^2$
=

$$=\frac{-2}{8}$$

 $=8-2$
 $=\frac{6}{6}$

$$r)$$
 $12 - 8/4$
= $12 - 2$
= 10

a)
$$\times y - z$$

= $2i(-3) - 4$
= $-6 - 4$
= $-10i$

01350

h) [1,23×10] 1) [5.1234×106] (j) [-5.15×106

$$f(x) = \frac{1}{21}$$
 $f(x) = \frac{1}{21}$
 $f(x) = \frac{1$

$$||z||^{\frac{2}{35}} < \frac{1}{5}||z||^{\frac{2}{35}} < \frac{1}{5}||z||^{\frac{2}{35}} < \frac{1}{5}||z||^{\frac{2}{35}} < \frac{1}{108}||z||^{\frac{2}{35}} < \frac{1}{108}||z||^$$

$$12_{(6)} = \frac{1}{8} = \frac{1}{2} \qquad (6) = \frac{8}{24} = \frac{8 \cdot 1}{9 \cdot 3} = \frac{1}{3} \qquad (6) = \frac{9 \cdot 1}{45} = \frac{1}{9 \cdot 5} = \frac{1}{5}$$

(e)
$$\frac{8}{50} = \frac{4 \cdot 2}{4 \cdot 5} = \frac{2}{5} \left(1 \right)^{\frac{2}{5}} \frac{1}{5} = \frac{2}{5} = \frac{2}{5}$$

(5)
$$\frac{10 \times y^3}{280 \times 2} = \frac{\times y^3}{2 \times 4} = \frac{y^3}{2 \times 4}$$
 (b) $\frac{10 \times y}{16 \times 6} = \frac{2.5 \times 3}{8.863} = \frac{50.3}{863}$