

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

GUIA DE PRÁCTICAS LABORATORIO TALLER 1 MÉTODO M

CARRERA:	ASA	ASI	<u>X</u> E	M	ET		
ASIGNATURA:	Investigación	de Op	peraciones	_ CÓDIGO:	TSI-434	GRUPO:	GR1
FECHA:	04/11/15						
APELLIDOS Y NOMBRES :	Sánchez Arto	eaga Fr	redy Vicent	e			
CÉDULA DE IDENTIDAD:	1725634552						
1. PROPÓSITO DE LA PRÁ							
-Calcular la solución óptim	na mediante e	l méto	do M para	ejercicios de	programació	n lineal.	
2. OBJETIVO GENERAL:				سمرمام مكنوريا	مر مام ممسما مام		اممما
 Aplicar los conocimiento utilizando el método M. 	is adquiridos e	n cuan	ito a la reso	olucion de pr	obiemas de p	rogramacion i	iineai
3. OBJETIVOS ESPECÍFICO				la ataustatas		.: 4 1: 1	
 Distinguir el beneficio de Recordar los pasos a segu 	•			-			nétodo M.
Theorem is pused a sego	an para la rese		de ejereie.	03 de progra		a traves acri	ictodo ivii

INSTRUCCIONES:

- Resolver en clase los siguientes ejercicios.
- Subir al aula virtual los dos archivos comprimidos (i.e. un archivo .pdf y un archivo .xls)

4. DESCRIPCIÓN DE ACTIVIDADES Y PROCEDIMIENTO DE LA PRÁCTICA:

- Nombre del archivo pdf: #lista.Apellido_taller1p1.pdf
- Nombre del archivo Excel: #lista.Apellido_taller1p2.xls

EJERCICIOS: [1]

1. Considere el siguiente conjunto de restricciones:

$$-2x_1 + 3x_2 = 3 \qquad (1)$$

$$4x_1 + 5x_2 \ge 10$$
 (2)

$$x_1 + 2x_2 \le 5 \tag{3}$$

$$6x_1 + 7x_2 \le 3 \quad (4)$$

$$4x_1 + 8x_2 \ge 5 \quad (5)$$

$$x_1, x_2 \ge 0$$

En cada uno de los siguientes problemas, desarrolle la fila z después de sustituir las variables artificiales:

- (a) Maximizar $z = 5x_1 + 6x_2$ sujeto a (1), (3) y (4).
- **(b)** Maximizar $z = 2x_1 + 7x_2$ sujeto a (1), (2) (4) y (5).
- (c) Minimizar $z = 3x_1 + 6x_2$ sujeto a (3), (4) y (5).
- (d) Minimizar $z = 4x_1 + 6x_2$ sujeto a (1), (2) y (5).
- (e) Minimizar $z = 3x_1 + 2x_2$ sujeto a (1) y (5).
- 2. De las variables del ejercicio anterior, resuelva por el método M el problema del literal c) y e)
- 3. Compruebe los resultados obtenidos en 2) mediante la herramienta Solver de Excel.

ESCUELA POLITÉCNICA NACIONAL ESCUELA DE FORMACIÓN DE TECNÓLOGOS

5. TÉCNICAS E INSTRUMENTOS APLICADOS:

-MS Excel

6. RESULTADOS

1. Desarrollar fila z después de sustituir las variables artificiales.

PROCEDIMIENTO

- 1. Convertir la desigualdad de cada restricción en igualdades.
- 2. Agregar un valor M a la función Objetivo por cada variable artificial.
- 3. Despejar las variables artificiales.
- 4. Sustituir los valores en la función objetivo.

Literal a)

Maximizar
$$z = 5 x1 + 6x2$$

Sujeto a:
 $-2x1 + 3x2 = 3 (1)$
 $x1 + x2 \le 5 (3)$
 $6x1 + 7x2 \le 3 (4)$
 $x1, x2 \ge 0$

Literal b)

Maximizar
$$z = 2x1 + 7x2$$

Sujeto a:
 $-2x1 + 3x2 = 3$ (1)
 $4x1 + 5x2 \ge 10$ (2)
 $6x1 + 7x2 \le 3$ (4)
 $4x1 + 8x2 \ge 5$ (5)
 $x1, x2 \ge 0$

②
$$z = 2 x1 + 7x2 - MR1 - MR2 - MR5$$

$$\begin{array}{l} \textcircled{4} \\ z = 2x1 + 7x2 - M(3 + 2x1 - 3x2) - M(10 - 4x1 - 5x2 + S2) - M(5 - 4x1 - 8x2 + S5) \\ z = 2x1 + 7x2 - 3M - 2Mx1 + 3Mx2 - 10M + 4Mx1 + 5Mx2 - MS2 - 5M + 4Mx1 + 8Mx2 - MS5 \\ z = (2 - 2M + 4M + 4M)x1 + (7 + 3M + 5M + 8M)x2 - MS2 - MS5 - 18M \\ z + (-2 - 6M)x1 + (-7 - 16M)x2 + MS2 + MS5 = -18M \end{array}$$

Literal c)

Minimizar
$$z = 3x1 + 6x2$$

Sujeto a:
 $x1 + 2x2 \le 5(3)$
 $6x1 + 7x2 \le 3(4)$
 $4x1 + 8x2 \ge 5(5)$

 $x1, x2 \ge 0$

-S5 = 5

②
$$z = 3 x1 + 6x2 + MR5$$

4x1 + 8x2 + R5

Literal d)

Minimizar z = 4x1 + 6x2Sujeto a:

$$-2x1 + 3x2 = 3 (1)$$

$$4x1 + 5x2 \ge 10 (2)$$

$$4x1 + 8x2 \ge 5 (5)$$

$$x1, x2 \ge 0$$

②
$$z = 4x1 + 6x2 + MR1 + MR2 + MR5$$

Literal e)

Minimizar
$$z = 3x1 + 2x2$$

Sujeto a:
 $-2x1 + 3x2 = 3$ (1)
 $4x1 + 8x2 \ge 5$ (5)
 $x1, x2 \ge 0$

①
$$-2x1 + 3x2 + R1 = 3$$

$$4x1 + 8x2 + R5 - S5 = 5$$

②
$$z = 3 x1 + 2x2 + MR1 + MR5$$

③
$$R1 = 3 + 2x1 - 3x2$$

$$R5 = 5 - 4x1 - 8x2 + S5$$
④
$$z = 3x1 + 2x2 + M(3 + 2x1 - 3x2) + M(5 - 4x1 - 8x2 + S5)$$

$$z = 3x1 + 2x2 + 3M + 2Mx1 - 3Mx2 + 5M - 4Mx1 - 8Mx2 + MS5$$

$$z = (3 + 2M - 4M)x1 + (2 - 3M - 8M)x2 + MS5 + 8M$$

$$z + (-3 + 2M)x1 + (-2 + 11M)x2 - MS5 = 8M$$

2. Resuelva por el método M.

PROCEDIMIENTO.

- 1. Convertir la desigualdad de cada restricción en igualdades.
- 2. Agregar un valor M a la función Objetivo por cada variable artificial.
- 3. Determinar las variables básicas y no básicas.
- 4. Despejar las variables artificiales y sustituir los valores en la función objetivo.
- 5. Plantear la matriz Simplex.

Literal c)

Minimizar
$$z = 3x1 + 6x2$$

Sujeto a:
 $x1 + 2x2 \le 5$ (3)
 $6x1 + 7x2 \le 3$ (4)
 $4x1 + 8x2 \ge 5$ (5)
 $x1, x2 \ge 0$

②
$$z = 3 x1 + 6x2 + MR5$$

(3)

Variables Basica	Variables NO Basica
<i>S</i> 3 = 5	x1 = 0
<i>S</i> 4 = 3	$x^2 = 0$
R5 = 5	S5 = 0

4

Para este caso en el que XI=3 y x2=6, vamos a utilizar un valor de M=100 R5 = 5 - 4x1 - 8x2 + S5 z = 3 x1 + 6x2 + M(5 - 4x1 - 8x2 + S5) z = 3 x1 + 6x2 + 5M - 4Mx1 - 8Mx2 + MS5 z = (3 - 4M)x1 + (6 - 8M)x2 + MS5 + 5M z + (-3 + 4M)x1 + (-6 + 8M)x2 - MS5 = 5M z + 397x1 + 794x2 - 100S5 = 500

MATRIZ SIMPLEX

Se encuentra la columna y fila pivote y en su intersección el elemento pivote.

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 3	<i>S</i> 4	<i>S</i> 5	<i>R</i> 5	Solución	
F1	Z	397	794	0	0	-100	0	500	
F2	<i>S</i> 3	1	2	1	0	0	0	5	$\frac{5}{2} = 2.5$
F3	<i>S</i> 4	6	7	0	1	0	0	3	$\frac{3}{7} = 0.4$
F4	R5	4	8	0	0	-1	1	5	$\frac{5}{8} = 0.6$

Se hace 1 al elemento pivote.

$$\frac{1}{7}F3 \rightarrow F3$$

Hacemos ceros los elementos de arriba y abajo del elemento pivote.

$$-794F3 + F1 \rightarrow F1$$

$$-2F3 + F2 \rightarrow F2$$

$$-8F3 + F4 \rightarrow F4$$

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 3	<i>S</i> 4	<i>S</i> 5	<i>R</i> 5	Solución	
F1	Z	$-\frac{1985}{7}$	0	0	$-\frac{794}{7}$	-100	0	$\frac{1118}{7}$	
F2	<i>S</i> 3	$-\frac{5}{7}$	0	1	$-\frac{2}{7}$	0	0	$\frac{29}{7}$	-5.8
F3	<i>x</i> 2	6 7	1	0	$\frac{1}{7}$	0	0	$\frac{3}{7}$	0.5
F4	R5	$-\frac{20}{7}$	0	0	$-\frac{8}{7}$	-1	1	$\frac{11}{7}$	-0.55

Solución:

INFACTIBLE (SIN SOLUCIÓN): No se encuentra un punto en el que se cumplan todas las restricciones y además se encuentra en la matriz una variable artificial. Geométricamente, esto implica que la región de los puntos que cumplen todas las restricciones se halla fuera del primer cuadrante.

Literal e)

Minimizar
$$z = 3x1 + 2x2$$

Sujeto a:
 $-2x1 + 3x2 = 3$ (1)
 $4x1 + 8x2 \ge 5$ (5)
 $x1, x2 \ge 0$

①
$$-2x1 + 3x2 + R1 = 3 4x1 + 8x2 + R5 - S5 = 5$$

②
$$z = 3 x1 + 2x2 + MR1 + MR5$$

3

Variables Basica	Variables NO Basica
R1 = 3	x1 = 0
R5 = 5	$x^2 = 0$
	S5 = 0

(4)

Para este caso en el que X1=3 y x2=2, vamos a utilizar un valor de M=100 R1 =
$$3 + 2x1 - 3x2$$
 R5 = $5 - 4x1 - 8x2 + S5$ $z = 3x1 + 2x2 + M(3 + 2x1 - 3x2) + M(5 - 4x1 - 8x2 + S5)$ $z = 3x1 + 2x2 + 3M + 2Mx1 - 3Mx2 + 5M - 4Mx1 - 8Mx2 + MS5$ $z = (3 + 2M - 4M)x1 + (2 - 3M - 8M)x2 + MS5 + 8M$ $z + (-3 + 2M)x1 + (-2 + 11M)x2 - MS5 = 8M$

MATRIZ SIMPLEX

Se encuentra la columna y fila pivote y en su intersección el elemento pivote.

z + 197x1 + 1098x2 - 100S5 = 800

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 5	<i>R</i> 1	<i>R</i> 5	Solución	
F1	Z	197	1098	-100	0	0	800	
F2	R1	-2	3	0	1	0	3	$\frac{3}{3} = 1$
F3	R5	4	8	-1	0	1	5	$\frac{5}{8} = 0.6$

Se hace 1 al elemento pivote.

$$\frac{1}{8}F3 \rightarrow F3$$

Hacemos ceros los elementos de arriba y abajo del elemento pivote.

$$-1098F3 + F1 \rightarrow F1$$
$$-3F3 + F2 \rightarrow F2$$

Realizamos una nueva iteración y encontramos otra vez el elemento pivote.

	Básica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 5	<i>R</i> 1	R5	Solución	
F1	Z	-352	0	$\frac{149}{4}$	0	$-\frac{549}{4}$	455	
F2	<i>x</i> 1	$-\frac{7}{2}$	0	3 8	1	$-\frac{3}{8}$	9 8	-0.32
F3	<i>x</i> 2	$\frac{1}{2}$	1	$-\frac{1}{8}$	0	$\frac{1}{8}$	<u>5</u> 8	1.25

Se hace 1 al elemento pivote.

$$-\frac{2}{7}F2 \rightarrow F2$$

Hacemos ceros los elementos de arriba y abajo del elemento pivote.

$$352F2 + F1 \rightarrow F1$$

$$-\frac{1}{2}F2+F3\rightarrow F3$$

	B ásica	<i>x</i> 1	<i>x</i> 2	<i>S</i> 5	<i>R</i> 1	<i>R</i> 5	Solución
F1	Z	0	0	_ 13	_ 704	_2787	<u>17</u>
				28	7	28	28
F2	<i>x</i> 1	1	0	3	2	3	9
				$-{28}$	$-\frac{7}{7}$	28	$-{28}$
F3	<i>x</i> 2	0	1	5	1	7	11
				$-\frac{16}{16}$		$-\frac{1}{16}$	$\overline{14}$

Encontramos las soluciones.

Solución:

$$z = \frac{17}{28}$$
$$x1 = -\frac{9}{28}$$
$$x2 = \frac{11}{14}$$

3. Compruebe los resultados obtenidos en 2) mediante la herramienta Solver de Excel.

ANEXO 1: Resolución Solver

7. CONCLUSIONES
-El método M para la resolución de problemas es factible para resolver cuando tenemos restricciones $\geq o =$ utilizando las variables de holgura y artificiales correspondientesLos pasos de resolución son seguidos correctamente pero no se encuentra solución por fallas de formulación de los respectivos ejercicios.

[1] H. Taha, Investigación de operaciones, 9th ed. México: PEARSON, 2012.

Fredy Sánchez Arteaga

FIRMA DEL ESTUDIANTE