EEE213 Power Electronics and Electromechanism

7. Power Electronic Devices

Outline

- Power Electronic Devices
- Power Transistors
 - Power BJT
 - Power MOSFET
 - IGBT
- Comparison

Power Electronic Devices

Terminals of a controllable power electronic device

Power semiconductor devices

- Power Diode uncontrollable
- Thyristor (晶闸管)
 - SCR (Silicon Controlled Rectifier) on controllable
 - TRIAC (Triode ac switch)
 - GTO (Gate turn-off thyristor) on/off controllable
- Power Transistors
 - Power BJT
 - Power MOSFET
 - IGBT

2. Power Transistors

Features

- Fully-controllable
- High frequency
- IC fabrication technology

Applications

- From 1980s
- GTR and GTO are seldom in use today
- IGBT and power MOSFET are the two major power semiconductor devices nowadays

2.1 Power BJT

- Three-terminal devices with NPN or PNP type
- The terminals c-e are used as a fully controllable (one-way) switch controlled by the current signal through b-e
- Also called GTR (Giant Transistor)

BJT I-V Characteristics

- Comparing with informationprocessing BJT
 - Basic operation principles are the same
 - Special features: higher voltage withstand, larger current, better switching characteristics
 - Common-emitter connection
 - Operating in ON-OFF states

Breakdown and SOA

- Avalanche breakdown
 - the 1st breakdown
- The 2nd breakdown
 - A destructive phenomenon
 - Due to the current flow to a small portion of the base, producing localized hot spots
 - A localized thermal runaway
 - Cause the permanent damage of the device
- Safe operating area (SOA)

2.2 Power MOSFET

- Three-terminal devices with a P or N channel
- Relatively high input impedance
- The switch between d-s is fully controlled by a voltage signal between g-s.

MOSFET I-V Characteristics

- Operating in switching mode: On-Off
- No 2nd-breakdown problem

Transfer

Output

Switching characteristics

Features and applications

- Very fast switching speed, high operating frequency (could be hundreds of kHz)
- High input impedance; voltage controlled device; easy to drive
- No 2nd-breakdown problem => wider SOA than BJT
- Easy to use in parallel
- Conduction loss of MOSFET is larger than that of BJT due to a larger voltage drop for high-voltage applications
- On-resistance increases rapidly with rated blocking voltage
 - Usually used at voltages less than 500V and power less than 10kW
 - 1000V devices are available, but are useful only at low power levels (100W)

2.3 *IGBT*

- A hybrid MOS-gated bipolar transistor
- Combination of power transistor and MOSFET

GTR: (:) low conduction losses (especially at larger blocking voltages),

O longer switching times, current-driven

MOSFET: (1) faster switching speed, easy to drive (voltage-driven),

(2) larger conduction losses (especially for higher blocking voltages)

- Features
- Low conduction loss (BJT)
 - High-speed turn-on (MOSFET)
 - Low-power, easy drive (MOSFET)

IGBT

IGBT I-V Characteristics

- On-state losses are much smaller than those of a power MOSFET
- Faster than GTR, but slower than power MOSFET
- Easy to drive —similar to power MOSFET

Review of the classifications

power electronic devices

| Current-driven (current-controlled) devices: thyristor, GTO, GTR
| Voltage-driven (voltage-controlled) devices (Field-controlled devices):power MOSFET, IGBT, SIT, SITH, MCT, IGCT

| Pulse-triggered devices: thyristor, GTO | Pulse-triggered devices: thyri

MCT, IGCT

Level-sensitive (Level-triggered) devices:

GTR, power MOSFET, IGBT, SIT, SITH,

devices

Comparison of power semiconductor devices

Frequency