

COMP2054 Tutorial Session 8: Floyd-Warshall Algorithm

Rebecca Tickle
Warren Jackson
AbdulHakim Ibrahim

Session outcomes

- Understand how to solve all-pairs shortest path problem using dynamic programming.
- Apply Floyd-Warshall to directed graphs to solve all-pairs shortest path problem.

All-Pairs Shortest Paths

All-pairs shortest paths problem

• Given a directed or undirected graph, find the shortest paths (costs) between all pairs of nodes.

Floyd-Warshall

Dynamic programming algorithm for all-pairs shortest paths

Floyd-Warshall algorithm

- Given a directed or undirected graph, find the shortest paths (costs) between all pairs of nodes.
- Uses dynamic programming to build up the graph from:
 - No intermediate nodes...
 - ...to considering all nodes being allowed as intermediate nodes.

Important notations

• d(i,j,k) - the shortest distance between nodes i and j through some subset (including the empty set) of $\{V_1, ..., V_k\}$.

Important notations

- d(i,j,k) the shortest distance between nodes i and j through some subset (including the empty set) of $\{V_1, ..., V_k\}$.
- $d(i,j,k) = \min[d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)]$

Floyd-Warshall Example: Initialisation

Initialise the adjacency matrix

i	V_1	V_2	V_3
V_1	0		
V_2		0	
V_3			0

- -d(i,j,0)
- Allowed intermediate nodes: {}

All
$$d(i, i) = 0$$

Floyd-Warshall Example: Initialisation

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	
V_3	3	2	0

- -d(i,j,0)
- Allowed intermediate nodes: {}

If there is a (directed) edge linking two nodes, add the weight to the adjacency matrix.

Floyd-Warshall Example: Initialisation

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	∞
V_3	3	2	0

- -d(i,j,0)
- Allowed intermediate nodes: {}

If there is no directed edge, add ∞

Using the definition of:

$$d(i, j, k) = \min[d(i, j, k-1), d(i, k, k-1) + d(k, j, k-1)]$$

■ Repeat for k = 1 to K (the number of vertices):

Insert V_k as an intermediate node and update the matrix

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	8
V_3	3	2	0

$$d(i,j,k) = \min[d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0),d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

K = 0			
i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	8
V_3	3	2	0

$$d(i,j,k) = \min[d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

k = 0			
i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	∞
V_3	3	2	0

$$d(i,j,k) = \min[d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

$$d(1,1,1) = \min[d(1,1,0), d(1,1,0) + d(1,1,0)]$$

= $\min[0,0+0] = 0$

k = 0			
i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	8
V_3	3	2	0

k = 1			
i	V_1	V_2	V_3
V_1	0		
V_2			
V_3			26

$$d(i,j,k) = \min[d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

$d(1,2,1) = \min[d(1,2,0), d(1,1,0) + d(1,2,0)]$
$= \min[7,0+7] = 7$

k = 0			
i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	∞
V_3	3	2	0

k = 1			
i	V_1	V_2	V_3
V_1	0	7	
V_2			
V_3			21

$$d(i,j,k) = \min[d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

$d(2,3,1) = \min[d(2,3,0), d(2,1,0) + d(1,3,0)]$)]
$= \min[\infty, 7+3] = 10$	

k=1

k = 0			
i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	8
V_3	3	2	0

$\kappa - 1$			
i	V_1	V_2	V_3
V_1	0	7	
V_2			10
V_3			28

$$d(i,j,k) = \min[d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

k = 0				
i	V_1	V_2	V_3	
V_1	0	7	3	
V_2	7	0	∞	
V_3	3	2	0	

$\kappa - 1$				
i	V_1	V_2	V_3	
V_1	0	7	3	
V_2	7	0	10	
V_3	3	2	0	

 $\nu - 0$

$$d(i,j,k) = \min[d(i,j,k-1),d(i,k,k-1) + d(k,j,k-1)]$$

- Working cell-by-cell in this way is quite laborious and error prone.
- There is a "shortcut" we can use to make the working more straightforward...

$\kappa - 0$				
i	V_1	V_2	V_3	
V_1	0	7	3	
V_2	7	0	∞	
V_3	3	2	0	

$\kappa - 1$				
i	V_1	V_2	V_3	
V_1	0	7	3	
V_2	7	0	10	
V_3	3	2	0	

$$d(i,j,k) = \min[d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

k = 0	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	∞
V_3	3	2	0

k = 1			
i	V_1	V_2	V_3
V_1			
V_2			
V_3			_ 3

$$d(i, j, k) = \min[d(i, j, k-1), d(i, k, k-1) + d(k, j, k-1)]$$

k = 1

 $l_{z} - 0$

- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

$\kappa = 0$				
i	V_1	V_2	V_3	
V_1	0	7	3	
V_2	7	0	∞	
V_3	3	2	0	

	nto	er	m	ed	iat	te	SU	m
_								

i	V_1	V_2	V_3
V_1			
V_2			
V_3			

1	4
V	
Λ	

i	V_1	V_2	V_3
V_1			
V_2			
V_3			

$$d(i,j,k) = \min[d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	∞
V_3	3	2	0

Intermediate sum

i j	V_1	V_2	V_3	
V_1	0+0	0+7	0+3	C
V_2	7+0	7+7	7+3	7
V_3	3+0	3+7	3+3	3

V_1	3	
7		W
V ₂	2	3

k	=	1

i	V_1	V_2	V_3
V_1			
V_2			
V_3			

$$d(i,j,k) = \min[d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$

i	V_1 V_2 V_3				
V_1	0	7	3		
V_2	7	0	∞		
V_3	3	2	0		

r	1	te	rı	m	e	d	ia	te	S	u	m
	ш					<u>U</u>	J			U	

i	V_1	V_2	V_3	
V_1	0	7	3	0
V_2	7	14	10	7
V_3	3	10	6	3

	3	
7		
		V_3
(V_2)	2	

1	- 1
$\boldsymbol{\nu}$	- 1
Λ	

i	V_1	V_2	V_3
V_1			
V_2			
V_3			

$$d(i,j,k) = \min[d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)]$$

- k = 1
- $d(i,j,1) = \min[d(i,j,0), d(i,1,0) + d(1,j,0)]$
- Intermediate nodes = $\{V_1\}$

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	∞
V_3	3	2	0

Intermediate sum

i	V_1	V_2	V_3	
V_1	0	7	3	
V_2	7	14	10	-
V_3	3	10	6	

k = 1 as min[k = 0, Intermediate sum]

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	10
V_3	3	2	0

$$d(i,j,k) = \min[d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)]$$

- k = 2
- $d(i,j,2) = \min[d(i,j,1), d(i,2,1) + d(2,j,1)]$
- Intermediate nodes = $\{V_1, V_2\}$

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	10
V_3	3	2	0

Intermediate sum

i	V_1	V_2	V_3
V_1			
V_2			
V_3			

2

k = 2 as min[k = 1, Intermediate sum]

i	V_1	V_2	V_3
V_1			
V_2			
V_3			

$$d(i,j,k) = \min[d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)]$$

- k = 2
- $d(i, j, 2) = \min[d(i, j, 1), d(i, 2, 1) + d(2, j, 1)]$
- Intermediate nodes = $\{V_1, V_2\}$

<u>k</u>	=	1

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	10
V_3	3	2	0

Intermediate sum

i	V_1	V_2	V_3
V_1	14	7	17
V_2	7	0	10
V_3	9	2	12

 V_1 V_2 V_3

k = 2 as min[k = 1, Intermediate sum]

i	V_1	V_2	V_3
V_1			
V_2			
V_3			

$$d(i,j,k) = \min[d(i,j,k-1), d(i,k,k-1) + d(k,j,k-1)]$$

- k = 2
- $d(i,j,2) = \min[d(i,j,1), d(i,2,1) + d(2,j,1)]$
- Intermediate nodes = $\{V_1, V_2\}$

K	1	
$\overline{\ }$	1.	

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	10
V_3	3	2	0

Intermediate sum

i	V_1	V_2	V_3			
V_1	14	7	17			
V_2	7	0	10			
V_3	9	2	12			

k = 2 as min[k = 1, Intermediate sum]

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	10
V_3	3	2	0

$$d(i, j, k) = \min[d(i, j, k-1), d(i, k, k-1) + d(k, j, k-1)]$$

- k = 3
- $d(i,j,3) = \min[d(i,j,2), d(i,3,2) + d(3,j,2)]$
- Intermediate nodes = $\{V_1, V_2, V_3\}$

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	10
V_3	3	2	0

Intermediate sum

i	V_1	V_2	V_3
V_1	6	5	3
V_2	13	12	10
V_3	3	2	0

10

0

k = 3 as min[k = 2, Intermediate sum]

i	V_1	V_2	V_3
V_1	0	5	3
V_2	7	0	10
V_3	3	2	0

Floyd-Warshall Example: Complete Shortcut

Intermediate sum:

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	14	10
V_3	3	10	6

i	V_1	V_2	V_3
V_1	14	7	17
V_2	7	0	10
V_3	9	2	12

i	V_1	V_2	V_3
V_1	6	5	3
V_2	13	12	10
V_3	3	2	0

k = 0

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	8
V_3	3	2	0

k = 1

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	10
V_3	3	2	0

k = 2

i	V_1	V_2	V_3
V_1	0	7	3
V_2	7	0	10
V_3	3	2	0

k = 3

i	V_1	V_2	V_3
V_1	0	5	3
V_2	7	0	10
V_3	3	2	0

Floyd-Warshall Questions

Use the Floyd-Warshall algorithm to find the matrix of all-pairs shortest paths for the graphs below.

Q1.

Q2.

Thank you