

CHEMISTRY

44th and 45th class, 11-11-2021

Dr. K. Ananthanarayanan
Associate Professor (Research)
Department of Chemistry
Room No 319, 3rd Floor, Research Building

Email: ananthak@srmist.edu.in
Phone: 9840154665

11/11/2021

Page 1

Virtual lab.

Determination of strength of an acid using pH meter

Expt. No.: 7

11/11/2021

Experiment

□ Aim:

To find out the strength of given hydrochloric acid solution by titrating it against sodium hydroxide (0.05N) using pH meter

■ Materials required:

pH meter, electrodes, beaker ,100mL standard flask, pipette, burette, funnel, glass rod

□ Chemicals required :

Hydrochloric acid, NaOH solution, distilled water

11/11/2021

pH of a solution

13

12

2

10-13

10-12

10-5 10-4

10-2

10-1

- ☐ The pH of a solution is the negative logarithm of the hydrogen ion concentration. 10-14
- □ pH may be represented mathematically as :

- ☐ If the [H⁺] concentration is greater than $1x10^{-7}$ M, pH is less than 7 and vice-versa.
- □ pH < 7 indicate acidic solution, pH > 7 indicate basic solution and pH =7 means neutral solution.

NEUTRAL

Potentiometric titration

- □ <u>Volumetric method</u> for the measurement of <u>changes in the</u> <u>e.m.f between two electrodes on the addition of titrant</u> of <u>known concentration</u> to a <u>solution of unknown concentration</u>.
- ☐ In this potentiometric titration setup an indicator electrode (ISE electrode) and reference electrode (calomel) is coupled to form electrochemical cell.
- ☐ The overall cell potential is calculated as :

$$E_{cell} = E_{ind} - E_{ref} + E_{sol}$$

□ E_{sol} is the **potential drop over the test solution** between the two electrodes which is recorded at intervals as the titrant is added.

11/11/2021

5

Potentiometric titration

- We have seen that the potential of a metallic electrode arises from the tendency of an oxidation-reduction reaction to occur at an electrode surface (redox titration).
- ☐ In membrane electrodes, in contrast, the observed potential is a kind of junction potential that develops across a membrane that separates the analyte solution from a reference solution.
- ☐ Requirements: minimal solubility, need some electrical conductivity and selective reactivity with the analyte

11/11/2021

pH meter

- □A pH meter consists of two electrodes: <u>a glass electrode (ISE)</u>, which is sensitive to the concentration of hydrogen ions in solution, and <u>a calomel reference electrode</u>.
- □ The reference electrode supplies a constant potential (E° = +0.24 V versus the SHE) as determined by the half-reaction :

$$H_{g_2}Cl_2 + 2e^- \implies 2H_g + 2Cl^-$$

□ The pH meter measures the total potential across the two electrodes and displays this measurement on a scale calibrated in pH units

11/11/2021

Principle

- ☐ In order to measure the voltage, two points with different electrical potential values are required.
- ☐ The reference electrode is designed to maintain a constant electrical potential that is independent of the sample composition and temperature.
- ☐ In contrast, the hydrogen ion selective electrode (ISE) with glass membrane provides an electrical potential that is dependent upon the activity of hydrogen (H⁺) ions in the sample solution.
- ☐ Therefore, both the reference electrode and the hydrogen ISE are needed when determining pH.

Principle □ This membrane is filled with a buffer solution of known pH (typically pH = 7). □ This electrode design creates an environment with constant binding of H⁺ ions on the inside of the glass membrane, while the outside of the glass membrane is exposed to the sample where a variable amount of H⁺ ions exist. □ The difference in H⁺ ions creates a potential that is read versus the stable potential of the reference electrode.

Principle The glass used in a pH electrode contains sodium (Na*) ions. When placed in contact with a solution, a microscopically thin (10 nm thick) hydrated gel layer forms on the surface of the glass. Within this gel layer, hydrogen ions from the solution can migrate a very short distance into the glass and displace sodium ions. The number of H* ions that migrate into the gel layer depends directly on the concentration of H* in the solution.

Principle

☐ For	the	<u>intern</u>	nal	solution,	the	cond	entra	ation	of	H+	<u>is</u>
<u>con</u>	stant	so a	fixe	d number	of N	la⁺ ion	s are	disp	lace	d fr	om
the	gel la	yer by	Η+	ions.							

- ☐ For the external solution, the number of H⁺ ions changes with the pH so the number of Na⁺ ions displaced from the gel layer varies as a function of the pH.
- ☐ The ratio of [H⁺] to [Na⁺] in the outside gel layer influences the magnitude of the membrane potential.
- ☐ The reason the membrane potential varies with the ratio of the two ions is because the smaller H+ ions have a higher mobility than the larger Na+ ions.

Principle

- A voltmeter measures the voltage generated by the solution and displays it as a pH-measurement.
- An increase in voltage means more hydrogen ions and an increase in acidity, so the meter shows it as a decrease in pH; in the same way, a decrease in voltage means fewer hydrogen ions, more hydroxide ions, a decrease in acidity, an increase in alkalinity, and an increase in pH.
- \uparrow voltage = more H+ /less OH = \uparrow acidity = \downarrow pH
- \downarrow voltage = less H+ /more OH = \downarrow acidity = \uparrow pH

11/11/2021

17

Principle

ullet In order to measure pH, the cell is set up -

Ag | AgCl, 0.1.M HCl | glass | Unknown solution | sat.KCl | Hg2Cl2 | Hg

The glass electrode and calomel electrode are dipped in a solution of known pH.

$$E_{\mathrm{cell}} = E_{\mathrm{ref(int)}} - E_{\mathrm{ref(samp)}} + E_{\mathrm{mem}} + E_{\mathrm{j}}$$

11/11/2021

Principle

$$E_{
m mem} = E_{
m asym} - rac{RT}{zF} {
m ln} \, rac{(a_{
m A})_{
m int}}{(a_{
m A})_{
m samp}}$$

0.0592
$$\log \left[\left(\mathcal{A}_{inner} \right) / \left(\mathcal{A}_{outer} \right) \right]$$

 (a_A) samp is the analyte's concentration in the sample, (a_A) int is the concentration of analyte in the ion-selective electrode's internal solution, and z is the analyte's charge. Ideally, E_{mem} is zero when (a_A) int = (a_A) samp. The term E_{asym} , which is an asymmetry potential, accounts for the fact that E_{mem} is usually not zero under these conditions.

11/11/2021

19

Principle

- □The <u>pH values of the solution</u> at different stage of acid–base neutralization are determined and <u>plotted against the volume</u> <u>of alkali added.</u>
- □On <u>adding a base to an acid</u>, the <u>pH rises slowly</u> in the initial stages as the concentration of H⁺ ion decreases gradually.
- □ At the <u>equivalence point, it increases rapidly</u> as at the equivalent point H⁺ ion concentration is very small and then it flattens out after the end point.
- ☐ The end point of the titration can be detected where the pH value changes most rapidly.

11/11/202

Procedure □ Standardize the pH meter using different buffers of known pH, wash the electrode with distilled water. □ The given acid is diluted to 100 ml using distilled water. 10 ml of this made up solution is pipetted out into a 250 mL clean beaker. □ 100 ml of distilled water is added to it, so that the electrode is completely dipped. Note the initial pH of the pure acid solution. □ Fill the burette with standard NaOH solution (0.05 N) and run down into the beaker in small increments (1 mL). Stir the solution well using glass rod.

Procedure contd.. □ Note down the pH after every successive addition. □ Continue the titration till beyond the neutralization point as indicated by an abrupt change in pH. (at least 15-20 increments). □ Plot a pilot graph of volume of NaOH versus pH. The midpoint of the 'S' shaped curve of the graph gives the equivalence point. □ In order to get an accurate end point, perform one more similar titration in a small volume range (3.0 mL on either side of the abrupt change in pH)

SRM Procedure contd.. ☐ Measure the pH after addition of every 0.2 mL of standard NaOH solution. \Box Plot a fair graph of volume of NaOH versus Δ pH / Δ V. ☐ Find out the exact end point from the fair graph. The peak point of the curve from the fair graph gives the end point (b) 50-Equivalence 30-20 10 Volume added Volume of NaOH (mL) Pilot Graph Fair Graph 11/11/2021

Tabular column

Table-2: Fair titration (HCI Vs NaOH)

S.No.	Volume of NaOH (V) ml	pН	ΔрН	ΔV	Δ pH / ΔV
1.					
2.					
3.					
20.					

11/11/2021

Calculation

Volume of NaOH V_1 = ----- ml [from FAIR graph]

Strength of NaOH $N_1 = ----N$

Volume of HCl V_2 = 10 ml

Strength of HCl N_2 = N

Therefore strength of HCl (N_2) = $V_1 \times N_1 / V_2$

= ----N.

11/11/2021

Result	SRM NITH OF SULVE A HORSOGY Chand in to thereby of the class come
☐ The strength of the given HCl solution =	N
11/11/2021	27

<u>Ia</u>		rmination of the strength of		CDM
	SI.No.	Volume of NaOH (mL)	рН	DISTITUTE OF SCIENCE & TECHNOLOG (Decend to be University u/s 2 of USC dat, 19
	1	0	2.84	
	2	1	2.86	
	3	2	2.90	
	4	3	2.94	
	5	4	3.00	
	6	5	3.07	
	7	6	3.15	
	8	7	3.26	
	9	8	3.40	
	10	9	3.61	
	11	10	4.13	
	12	11	7.11	
	13	12	9.85	
	14	13	10.41	
	15	14	10.67	
11/11/2021	16	15	10.84	28

SI.No	Volume of	рН	∆рН	ΔV	Δ pH/ Δ	(S) S I
	NaOH (mL)			(mL)	V	(Dunned on the Univers
1	9	3.69				
2	9.2	3.73	0.04	0.2	0.2	
3	9.4	3.83				
4	9.6	3.91				
5	9.8	4.07				
6	10	4.31				
7	10.2	4.86				
8	10.4	5.83				
9	10.6	6.29				
10	10.8	6.80				
11	11	7.20				
12	11.2	8.70				
13	11.4	9.26				
14	11.6	9.47				
15	11.8	9.72				

