Lab 8

Common Emitter Amplifier

Learning outcomes

- 1) Studying the open-loop amplification characteristics of CE circuit
- 2) Studying the effect of load resistance R_L on amplification characteristics of CE circuit
- 3) Studying the effect of source internal resistance R_{sig} on amplification characteristics of CE circuit
- 4) Studying the effect of degenerate resistance R_E on amplification characteristics of CE circuit

Experiment 1) Studying the open-loop amplification characteristics of CE circuit

A) Create a new Multisim project and construct the circuit shown

- B) Double click on the BJT transistor then in the "Value" tap click "Edit package"
- C) Change "Ideal maximum forward beta" to 100 (set β =100)

- D) Run the simulation and record $I_{\text{C}},\,V_{\text{C}},\,V_{\text{BE}}$ and calculate r_{π}
- E) Calculate the theoretical values of I_C , I_B , V_C (note: use the V_{BE} measured in (D) not 0.7) then calculate r_π
- F) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
I _B			
lc			
V _C			
r_{π}	$V_T/I_B =$ (25mV/9.57*10 ⁻³)		

G) Read $v_{\text{o-pp}}$ and $v_{\text{sig-pp}}$ after setting both ChA and ChB as shown below

H) Take a screenshot of the outputs of the oscilloscope and put it in the following place holder

Put a screenshot of your output ($v_{o\text{-pp}}$ and $v_{sig\text{-pp}}$) here and PIz make $v_{o\text{-pp}}$ in green and $v_{sig\text{-pp}}$ in red

- I) Calculate open loop gain Avo= v_{o-pp} / v_{sig-pp}
- J) Calculate the theoretical values of Avo = $\frac{-\beta R_C}{r\pi}$
- K) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
Avo			

Experiment 2) Studying the effect of load resistance on the amplification characteristics of CE circuit

A) Create a new Multisim project and construct the circuit shown (note: copy and paste from exp 1 project but add the new resistance RL as a load)

- B) Change "Ideal maximum forward beta" of the transistor to 100 (set β =100) as explained in exp 1
- C) Run the simulation and record I_C , V_C , V_{BE} and calculate r_π
- D) Calculate the theoretical values of I_C , I_B , V_C (note: use the V_{BE} measured in (D) not 0.7) then calculate r_π
- E) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
I _B			
I _C			
V _C			
r_{π}			

F) Do you notice any change in I_C, V_C, or V_{BE} from exp 1? Why or why not? Plz put you answer in the following placeholder

Answer (F) here! (Plz write your answer in red)

G) Read $v_{o\text{-pp}}$ and $v_{\text{sig-pp}}$ after setting both ChA and ChB as shown below

Put a screenshored	t of your output (v₀	_{-pp} and v _{sig-pp}) here	and Plz make $\nu_{\text{o-pp}}$ in green and $\nu_{\text{sig-pp}}$ in
Calculate the volt	age gain Av= v _{o-pp} /	′ V _{sig-pp}	
Calculate the the	oretical values of A	$V = \frac{-\beta (R_C R_L)}{r\pi}$	
Based on your me	easurements and c	alculations fill the	following table
	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
Av			
Comparing Av to	Avo in exp 1 which	is greater and wh	y?
	·		our answer in red)
	ous procedure at $R_{\rm t}$	=50Ω	our answer in red) 0Ω fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
	ous procedure at R _t	=50 Ω alculations at R _L =5	0Ω fill the following table
Based on your mo	ous procedure at R _t	=50Ω alculations at R _L =5 Theoretical	$0Ω$ fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} × 100$
Based on your mo	ous procedure at R _l easurements and c Measured R _L = 5K Ω to Av at F	=50Ω alculations at R _L =5 Theoretical $R_L = 50 \Omega$ which is g	$0Ω$ fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} × 100$ Treater and why?
Based on your mo	ous procedure at R _l easurements and c Measured R _L = 5K Ω to Av at F	=50Ω alculations at R _L =5 Theoretical $R_L = 50 \Omega$ which is g	$0Ω$ fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} × 100$
Based on your mo	ous procedure at R _l easurements and c Measured R _L = 5K Ω to Av at F	=50Ω alculations at R _L =5 Theoretical $R_L = 50 \Omega$ which is g	$0Ω$ fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} × 100$ Treater and why?
Based on your mo	ous procedure at R _l easurements and c Measured R _L = 5K Ω to Av at F	=50Ω alculations at R _L =5 Theoretical $R_L = 50 \Omega$ which is g	$0Ω$ fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} × 100$ Treater and why?
Based on your mo	ous procedure at R _l easurements and c Measured R _L = 5K Ω to Av at F	=50Ω alculations at R _L =5 Theoretical $R_L = 50 \Omega$ which is g	$0Ω$ fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} × 100$ Treater and why?
Based on your mo	ous procedure at R _l easurements and c Measured R _L = 5K Ω to Av at F	=50Ω alculations at R _L =5 Theoretical $R_L = 50 \Omega$ which is g	$0Ω$ fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} × 100$ Treater and why?
Based on your mo	ous procedure at R _l easurements and c Measured R _L = 5K Ω to Av at F	=50Ω alculations at R _L =5 Theoretical $R_L = 50 \Omega$ which is g	$0Ω$ fill the following table $Error = \frac{\ Measured - Theortical\ }{Theortical} × 100$ Treater and why?

Experiment 3) Studying the effect of internal resistance of source ν_{sig} on the amplification characteristics of CE circuit

A) Create a new Multisim project and construct the circuit shown (note: copy and paste from exp 1 project but add the new resistance Rsig as an internal resistance of Vsig)

- B) Change "Ideal maximum forward beta" of the transistor to 100 (set β =100) as explained in exp 1
- C) Run the simulation and record I_C , V_C , V_{BE} and calculate r_{π}
- D) Calculate the theoretical values of I_C , I_B , V_C (note: use the V_{BE} measured in (D) not 0.7) then calculate r_π
- E) Based on your measurements and calculations fill the following table

,	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
I _B			
Ic			
V _C			
r_{π}			

F) Do you notice any change in I_C , V_C , or V_{BE} from exp 1? Why or why not? PIz put you answer in the following placeholder

Answer (F) here! (Plz write your answer in red)

G) Read V_{o-pp} and V_{sig-pp} after setting both ChA and ChB as shown below

	Put a screenshot red	of your output (v _o .	$_{pp}$ and $v_{sig-pp})$ here a	and Plz make $v_{\text{o-pp}}$ in green and $v_{\text{sig-pp}}$ in
	Calculate the ove	rall voltage gain Gv	=V _{o-pp} /V _{sig-pp}	
	Calculate the the	oretical values of G	$v = Av \frac{R_{in}}{R_{in} + R_{sig}}$, whe	ere Av = $\frac{-\beta R_C}{r\pi}$ and Rin= $R_1 R_2 r_\pi$
		easurements and ca		
	·	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
	Gv			
	Comparing Gv to	Avo in exp 1 which	is greater and why	?
Answer (L) here! (Plz write your answer in red)				
)	Repeat the previo	ous procedure at R _s	_{ig} =50Ω	
Based on your measurements and calculations at R_{Sig} =50 Ω fill the following table				
		Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$

Answer (O) here! (Plz write your answer in red)

Experiment 4) Studying the effect of Emitter degenerate resistance on the amplification characteristics of CE circuit

A) Create a new Multisim project and construct the circuit shown (note: copy and paste from exp 1 project but add the new resistance R_E between Emitter and ground)

- B) Change "Ideal maximum forward beta" of the transistor to 100 (set β =100) as explained in exp 1
- C) Run the simulation and record I_C , V_C , V_B , V_E and calculate r_π
- D) Calculate the theoretical values of I_C , I_B , V_C (note: use the $V_{BE}=V_B-V_E$ measured in (D) not 0.7) then calculate r_{π}
- E) Based on your measurements and calculations fill the following table

,	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
I _B			
Ic			
V _C			
r_{π}			

F) Do you notice any change in I_C , V_C , or V_{BE} from exp 1? Why or why not? PIz put you answer in the following placeholder

Answer G) here! (Plz write your answer in red)

G) Read Vopp and Vsigpp after setting both ChA and ChB as shown below

H)	Take a screenshot of the output	s of the oscilloscope and	put it in the following place holder
----	---------------------------------	---------------------------	--------------------------------------

Put a screenshot of your output ($v_{o\text{-pp}}$ and $v_{sig\text{-pp}}$) here and PIz make $v_{o\text{-pp}}$ in green and $v_{sig\text{-pp}}$ in red

- I) Calculate the overall voltage gain Av= $v_{o\text{-pp}}$ / $v_{\text{sig-pp}}$
- J) Calculate the theoretical values of Av = $\frac{-\beta R_C}{r\pi + (\beta + 1)R_E}$
- K) Based on your measurements and calculations fill the following table

	Measured	Theoretical	$Error = \frac{\ Measured - Theortical\ }{Theortical} \times 100$
Av			

L) Comparing Av to Avo in exp 1 which is greater and why?

Answer (M) here! (Plz write your answer in red)		