软件板通用协议 V8

目录

一、物理接口	,
一、初连按口	
二、.帧结构	2
三、命令解释	3
3.1基本信息0x03指令	3
3.2单体电压0x04指令	
3.3硬件版本号05指令	
3.4保护统计次数:	
四、控制MOS指令(FB)	
五、参数读取与设置模式(0xfA)	
六:控制命令说明:	
6.1控制指令(0x0A指令)	
七、增加电池内阻指令(F6) -暂时没有加	20
八: 蓝牙密码协议	
九 、芯片类型读取指令:	
十、控制加热指令(0xFC):	22
十一、实际示例解析:	23

十二、修订历史.......25

一、物理接口

此协议支持嘉佰达软件板RS485/RS232/UART接口通用协议,与上位机协议一致,波特率为9600BPS或者其他客户定制速率。所有的16位数据都是大端模式,高字节在前面,低字节在后面。(注意协议最后有示例说明)由于保护板都具有休眠模式,在休眠情况下第一条数据是无法响应的,需要再次发生送。

二、.帧结构

主机发送指令:

起始位	读取位	命令码	长度	数据内容	校验	停止位	CALLBACK_ID
0xDD	0xA5-读 0x5A-写	寄存器地址	表示数据长度, 不包括本身	数据内容,长度为0时,此处为空,跳过	为数据段内容+长度字节+命令码字节的校验和 然后在取反加1,高位在前, 低位在后		最长4BYTE,可为空, 主机发什么从机回复什么.

BMS响应:

起始位	命令码	状态位	长度	数据内容	校验	停止位	CALLBACK_ID
0xDD	寄存器地址	00表示读取成功, 0x80表示失败			为数据段内容+长度字节+状态码字节的校验和 然后在取反加1,高位在前, 低位在后		最长4BYTE,可为空,主机发什么从机回复什么.

该协议主要命令码:

读03读取基本信息及状态,包含容量,总压、电流、温度、保护状态等芯片

读04读取电池单体电压 包含每一串电池的单体电压

读05读取保护板硬件版本号-读取板子的版本信息

读AA读取保护板保护板历史保护次数 -读取历史的保护次数

状态位增加响应失败增加命令码区分: 0x00-表示执行操作成功; 0x80 -命令码不存在;

0x81-操作错误无效操作(没有进工厂模式设置参数或者内部密码不匹配的,密码功能针对蓝牙); 0x82—校验错误(原则上校验错误是不返回的,这样与其他设备并联使用时有错误数据回复) 0x83-为密码操作时密码配对错误返回。

三、命令解释

3.1基本信息0x03指令

主机发送读取基本信息0x03指令

0xDD	0xA5	0x03	0	(没有时为空)	checksum	0x77
------	------	------	---	---------	----------	------

BMS响应读取基本信息0x03指令

0xDD	0x03		表示数据长度,不包括本身,响应写时长度为0	数据内容,长度为0时,此处跳过	checksum	0x77
		错误则返回 0x80	0		checksum	0x77

实例:

主机发送: DD A5 03 00 FF FD 77

BMS响应: DD 03 <u>00 1B 17 00 00 00 02 D0 03 E8 00 00 20 78 00 00 00 00 00 10 48 03 0F 02 0B 76 0B 82 AA BB CC</u> FB FF 77

红色为被校验字节, 为所有的字节的总和;后面2个为校验结果, 为前面所有校验的总和取反+1的结果

数据内容解释

数据内容	字节大小	说明
总电压	2BYTE,单位10mV, 高字节在前, 下同	例程中的值为= 0x1700

电流	2BYTE, 默认单位10mA, 如果FET控制 状态最高位为1,则单位是100mA	带符号型16进制数, 通过电流判断电池充放电状态, 充电为正, 放电为负。例如充电1A, 传输数值为0x0064,放电1A传输数值为0X10000 -0X0064 = 0xff9c;
剩余容量	2BYTE,默认单位10mAh,如果FET控制状态最高位为1,则单位是100mAh	=0x02d0
标称容量	2BYTE,默认单位10mAh,如果FET控制状态最高位为1,则单位是100mAh	=0x03e8
循环次数	2BYTE	= 0000
生产日期	2BYTE	采用2个字节传送比如0x2078,其中日期为最低5为:0x2078&0x1f = 24表示日期;月份(0x2078>>5)&0x0f= 0x03表示3月;年份就为2000+ (0x2078>>9) = 2000 + 0x10 =2016; =
均衡状态	2BYTE	每一个bit则表示每一串均衡,0为关闭,1为打开表示1~16串
均衡状态_高	2BYTE	每一个bit则表示每一串均衡,0为关闭,1为打开表示17~32串,最高支持32串V0版基础上增加
保护状态	2BYTE	每一个bit表示一种保护状态,0为未保护,1发生保护 <mark>详见注1</mark> :
软件版本	1byte	0x10表示1.0版本
RSOC	1byte	表示剩余容量百分比 =0x48=80%
FET控制状态	1byte	MOS指示状态, bit0表示充电MOS, bit1表示放电MOS, 0表示MOS关闭, 1表示打开 =0x03表示都是打开状态 BIT2表示限流模块是否开启, 1为打开, 0为关闭 Bit3:表示加热是否开启, 1为正在加热中, 0为关闭。 其中BIT7用来表示电流容量单位, 如果最高位为1则表示电流容量单位是0.1A/0.1Ah V9增加,暂时未使用
电池串数	1byte	电池串数 =0x0f = 15串
NTC个数N	1byte	NTC个数 = 2个温控

N个NTC内容	2*N, 单位0.1K, 高在前	采用绝对温度传输, 2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
湿度	1BYTE	单位, 1%
告警状态	2BYTE	见注释2, 常规未使用
满充容量	2BYTE	10mAH
剩余容量	2BYTE	10mAH
均衡电流	2BYTE	mA

注1:保护状态说明 bit0 单体过压保护 bit1 单体欠压保护 bit2 整组过压保护 bit3 整组欠压保护 bit4 充电过温保护	bit5 充电低温保护 bit6 放电过温保护 bit7 放电低温保护 bit8 充电过流保护 bit9 放电过流保护 bit10 短路保护	bit11 前端检测IC错误 bit12 软件锁定MOS bit13充电MOS击穿标志 bit14 放电MOS击穿标志 bit15预留
注2:告警状态说明bit0 单体高压告警bit1 单体低压告警bit2 整组高压告警bit3 整组低压告警bit4 充电高温告警	bit5 充电低温告警 bit6 放电告温告警 bit7 放电低温保护 bit8 充电电流大告警 bit9 放电电流大告警	bit10 单体压差大告警 bit11 容量低告警 bit12 预留 bit13 <mark>预留</mark> bit14 <mark>预留</mark>

3.2单体电压0x04指令

指令详情

0xDD	0xA5	0x04	0	(没有时为空)	checksum	0x77	

BMS响应读取基本信息0x04指令

0xDD	0x04	状态, 0表正确	表示数据长度,不包括本身,响应写时长度为0	数据内容,长度为0时,此处跳过	checksum	0x77	
错误则返回0x80		错误则返回0x80	0		checksum	0x77	Ì

主机发送: DD A5 04 00 FF FC 77

BMS响应: DD 04 00 1E 0F 66 0F 63 0F 63 0F 64 0F 3E 0F 63 0F 5B 0F 65 0F 3B 0F 63 0F 63 0F 3C 0F 66 0F 3D F9 F9 77 红色为被校验字节, 为所有的字节的总和; 后面2个为校验结果, 为前面所有校验的总和取反+1的结果

数据内容解释

数据长度	数据长度为电池串数N乘以2			
第一串单体电压	2Byte,单位mV, 高位在前			
第二串单体电压	2Byte,单位mV, 高位在前			
第三串单体电压	2Byte,单位mV, 高位在前			
第N串单体电压	2Byte,单位mV, 高位在前			

3.3硬件版本号05指令

主机发送读取保护板的硬件版本号0x05指令, 最长支持31个字符, 通过上位机的设备型号写入型号

	0xDD	0xA5	0x05	0	(没有时为空)	checksum	0x77	l
--	------	------	------	---	---------	----------	------	---

BMS响应读取基本信息0x05指令

0xE	DD	0x05	状态, 0表正确	表示数据长度,不包括本身,响应写时长度为0	数据内容, 长度为0时, 此处跳过	checksum	0x77
	错误则返回0x80 0		0		checksum	0x77	

数据长度N	设备类型名称长度
BYTE0	第一个字符的ASCII码(比如硬件版本为LH-XXXX, 那么长度为7, byte0 = 'L')
BYTE(N-1)	

主机发送: DD A5 05 00 FF FB 77

BMS响应: DD 05 **00 0A 30 31 32 33 34 35 36 37 38 39** FD E9 77 --代表它的硬件版本号0123456789 红色为被校验字节, 为所有的字节的总和;后面**2**个为校验结果, 为前面所有校验的总和取反**+1**的结果

3.4保护统计次数:

发送:send:DD A5 AA 00 FF 56 77

数据内容	字节大小	说明(两个字节都是高位在前)
短路保护次数	2BYTE	如00 01 计算方式:00&0xff << 8 + 01&0xff
充电过流次数	2BYTE	如上
放电过流次数	2BYTE	
单体过压次数	2BYTE	
单体欠压次数	2BYTE	
充电高温次数	2BYTE	
充电低温次数	2BYTE	
放电高温次数	2BYTE	

放电低温次数	2BYTE	
整体过压次数	2BYTE	
整体欠压次数	2BYTE	
系统重启次数	2BYTE	

注意为了兼容旧版本, 此处判断返回长度, 当数据长度为22, 则不带系统重启次数, 当长度为24则带系统重启次数计数。

四、控制MOS指令(FB)

主机发送控制MOS指令

起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0X5A	0XFB	0X02	YY <mark>XX</mark>	CHECKSUM_H CHECKSUM_L	0X77

BMS响应写入基本信息0xfb指令

0xDD	0xFB	0x00	0x00		Checksum_HChecksum_L	0x77
------	------	------	------	--	----------------------	------

注意:其中校验计算方式与其他方式一致。其中XX表示控制MOS的状态,YY表示MOS管类别

BIT0:充电开关控制:1关闭充电开关;0为打开充电开关。 BIT1:放电开关控制:1关闭放电开关;0为打开放电开关。

具体值定义可以参考下面列表:

YY的值(优先级别)	XX的值	MOS的动作
	0X00	放电MOS
YY	0x01	充电MOS
''	<mark>0x03</mark>	<mark>预放电MOS</mark>
	0x0A	充放电MOS

	0X00	解除软件关闭MOS管动作
XX	0X01	软件关闭MOS管动作,

例:主机端发送DD5AFB020101FF0177则表示终端客户软件关闭充电MOS:

BMS返回: DD FB 00 00 00 00 77

五、参数读取与设置模式(0xfA)

5.1 读参数:

发送读参数, 直接发送对应的参数序号进行读取。

起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0XA5	0XFA	0X03	<mark>参数序号(2BYTE)+长度</mark> (1BYTE),见列表	CHECKSUM_H CHECKSUM_L	0X77

BMS响应进读取参数指令

0xDD	0xFA	0x00-响应码	LEN= 2*N+3	BYTE0, BYTE1BYTE2···BYTEn_1	Checksum_HChecksum_L	0x77
------	------	----------	------------	-----------------------------	----------------------	------

其中BYTE0~BYTE1表示参数的序号,根据长度N读取对应寄存器数据,比如长度LEN = 5, byte0 =0x00, BYTE1= 0X01,BYTE2 = 0x01,BYTE3 =0x0A,BYTE4 =0x0B则表示读取参数1为起始的1个寄存器的值,返回结果为0X0A0B,具体转换单位以实际说明为准,

每次最多查询95个寄存器。

例如: DD A5 FA 03 00 01 02 FF 00 77//表示从0001寄存器开始读取2个寄存器的值

返回: DD FA 00 07 00 01 02 0F A0 10 36 FF 01 77//返回: 从0001寄存开始, 2个寄存器的值

第一个寄存器的值为0FA0, 第二个寄存器的值为1036

例如: DD A5 FA 03 00 38 10 FE BB 77//读取厂商的数据

//0x0038寄存器, 返回寄存器数量0x10, 内容为:05 44.。。。。此表示厂商寄存器的有效字符串为5个, 对应内容:0x44 47 4a 42 44 = "DGJBD"

写参数:写参数需要先进入工厂模式, 然后对应序号写入, 写入完成后退出工厂模式

进入工厂模式指令:

起始位	状态位	命令码	长度	数据内容	校验	停止位

0xDD	0X5A	0X00	0X02	0x5678	CHECKSUM_H CHECKSUM_L	0X77
入工厂指	令:	•	•		•	
起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0x00	0X00	0X00	空	CHECKSUM_H CHECKSUM_L	0X77
指令:						
起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0X5A	0XFA	2N+3	BYTE0, BYTE1, BYTE2···BYTEn_	CHECKSUM_H CHECKSUM_L	0X77
					BYTE1= 0X01,BYTE2 =0x01,BYTE3 = (UXOA,BYTE
1为起始的 指令 :]地址中写 <i>]</i>	(1个寄存器的	的值,写入值为 0X0 。 	A0B, 具体转换单位以实际说明为准。 	1	
1为起始的				AOB, 具体转换单位以实际说明为准。 数据内容 BYTEO, BYTE1, BYTE2	校验 CHECKSUM_H CHECKSUM_L	
1为起始的指令:]地址中写 <i>]</i>	命令码	的值,写入值为 0X0 。 长度	A0B, 具体转换单位以实际说明为准。 数据内容	校验	停止位
1为起始的指令:	大态位 OxFA	命令码	的值,写入值为 0X0 。 长度	AOB, 具体转换单位以实际说明为准。 数据内容 BYTEO, BYTE1, BYTE2 其中0~1为起始地址位,	校验	停止位
1为起始的 指令: 起始位 0xDD	大态位 OxFA	命令码	的值,写入值为 0X0 。 长度	AOB, 具体转换单位以实际说明为准。 数据内容 BYTEO, BYTE1, BYTE2 其中0~1为起始地址位,	校验	停止位

响应退出工厂指令:

起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0x01	0X00	0X00	空	CHECKSUM_H CHECKSUM_L	0X77

参数序号表格:

参数序号	参数内容	长度	说明
------	------	----	----

0	标称容量	2BYTE	单位是0.01AH, 比如传输值为100, 表示为1.00AH
1	循环容量	2BYTE	单位是0.01AH, 比如传输值为100, 表示为1.00AH
2	充满电压	2BYTE	单位mV
3	放空电压	2BYTE	单位mV
4	系统功耗	2BYTE	单位mA
5	生产日期	2ВҮТЕ	采用2个字节传送比如0x2078,其中日期为最低5为:0x2078&0x1f = 24表示日期;月份(0x2078>>5)&0x0f= 0x03 表示3月;年份就为2000+ (0x2078>>9) = 2000 + 0x10 =2016; =
6	序列号	2BYTE	无单位
7	循环次数	2BYTE	单位次
8	充电高温保护值	2BYTE	采用绝对温度传输, 2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
9	充电高温释放值	2ВҮТЕ	采用绝对温度传输, 2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
10	充电低温保护值	2BYTE	采用绝对温度传输, 2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
11	充电低温释放值	2BYTE	采用绝对温度传输, 2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
12	放电高温保护值	2BYTE	采用绝对温度传输,2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
13	放电高温释放值	2BYTE	采用绝对温度传输, 2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
14	放电低温保护值	2BYTE	采用绝对温度传输, 2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
15	放电低温释放值	2ВҮТЕ	采用绝对温度传输, 2731+(实际温度*10),0度 = 2731 25度 = 2731+25*10 = 2981 温度1 = 0x0b76 = 2934,实际值 = 2934 -2731 = 20.3℃,温度2= 0xb82= 2946 – 2731 = 21.5℃
16	总压过压保护值	2BYTE	单位10mV, 传输值为100, 则表示1000mV= 1.00V
17	总压过压释放值	2BYTE	单位10mV, 传输值为100, 则表示1000mV= 1.00V
18	总压低压保护值	2BYTE	单位10mV, 传输值为100, 则表示1000mV= 1.00V

19	总压低压释放值	2ВҮТЕ	单位10mV, 传输值为100, 则表示1000mV= 1.00V
20	单体过压保护值	2ВҮТЕ	单位mV, 传输值为1000, 则表示1000mV= 1.000V
21	单体过压释放值	2BYTE	单位mV, 传输值为1000, 则表示1000mV= 1.000V
22	单体欠压保护值	2BYTE	单位mV, 传输值为1000, 则表示1000mV= 1.000V
23	单体欠压释放值	2ВҮТЕ	单位mV, 传输值为1000, 则表示1000mV= 1.000V
24	充电过流保护值	2BYTE	单位10mA, 比如传输值为100则表示1000mA= 1.00A
25	放电过流保护值	2BYTE	单位10mA, 采用补码形式传送, 假定设置值为1A,则电流值为100, 传送值为(65536)0x10000 - 100 = 65436
26	均衡开启电压	2BYTE	单位mV
27	均衡开启压差	2BYTE	单位mV
28	检流电阻值	2ВҮТЕ	单位根据最高位识别, 如果为0, 则单位是0. 1mR; 如果为1则单位是0.01mR; 例如传送值为10 = 1.0mR, 如果传送值为0x800a,最高位为1, 则表示单位是0.01, 则表示检流电阻为0.1mR
29	功能配置	2BYTE	见说明
30	温度探头配置	2BYTE	见说明
31	电池串数	2BYTE	无单位
32	开关控制时间	2BYTE	单位S
33	LED工作时间	2BYTE	单位S
34	VOL-80%电压点	2BYTE	单位mV
35	VOL-60%电压点	2ВҮТЕ	单位mV
36	VOL_40%电压点	2BYTE	单位mV
37	VOL_20%电压点	2ВҮТЕ	单位mV
38	硬件过压保护值	2BYTE	单位mV

39	硬件欠压保护值	2BYTE	单位mV
40	二级过流保护设置	2BYTE	见说明
41	短路保护设置	2BYTE	见说明
42	硬件过欠压延时	2BYTE	见说明
43	短路释放延时	2BYTE	单位S
44	充电低温延时	2BYTE	单位S
45	充电高温延时	2BYTE	单位S
46	放电低温延时	2BYTE	单位S
47	放电高温延时	2BYTE	单位S
48	总压低压延时	2BYTE	单位S
49	总压高压延时	2BYTE	单位S
50	单体欠压延时	2BYTE	单位S
51	单体过压延时	2BYTE	单位S
52	充电过流延时	2BYTE	单位S
53	充电过流释放延时	2BYTE	单位S
54	放电过流延时	2BYTE	单位S
55	放电过流释放延时	2BYTE	单位S
56 [~] 71	生产厂商信息	32ВҮТЕ	采用ASCII码传送, 内容的第一个字节表示长度, 比如需要传送"123", 长度值为=4, 传输内容为 03 '1' '2' '3'
72~87	BMS-编码信息	32ВҮТЕ	采用ASCII码传送, 内容的第一个字节表示长度, 比如需要传送"123", 长度值为=4, 传输内容为 03 '1' '2' '3'
88~103	条形码信息	32ВҮТЕ	采用ASCII码传送, 内容的第一个字节表示长度, 比如需要传送"123", 长度值为=4, 传输内容为03 '1' '2' '3'

	_	_	
104	GPS关断电压	2BYTE	单位mV
105	GPS关断延时	2BYTE	单位S
106	VOL-90%	2BYTE	单位mV
107	VOL-70%	2BYTE	单位mV
108	VOL-50%	2BYTE	单位mV
109	VOL-30%	2BYTE	单位mV
110	VOL-10%	2BYTE	单位mV
111	VOL-100%	2BYTE	单位mV
112	学习容量	2BYTE	单位是0.01AH, 比如传输值为100, 表示为1.00AH
113	修正间隔	2BYTE	单位S,默认6小时,为0时表示不修正。
114	额定电压	2BYTE	0.1V
115	额定电流	2BYTE	A
116	最大功率	2BYTE	w
117	额定充电电压	2BYTE	0.1V
118	额定放电电流	2BYTE	A
119	额定充电电流	2BYTE	A
120	额定放电功率	2BYTE	W
121	最小识别电流	2BYTE	mA
122	休眠时间	2BYTE	S
123~157	预留告警参数	35*2BYTE	
158~169	电池型号	24вүте	采用ASCII码传送, 内容的第一个字节表示长度, 比如需要传送"123", 长度值为=4, 传输内容为03 '1' '2' '3', 转为05指令内容

170 [~] 175	唯一ID码	12вуте	12个16进制数
176~183	硬件名称	8ВҮТЕ	采用ASCII码传送, 内容的第一个字节表示长度, 比如需要传送"123", 长度值为=4, 传输内容为 03 '1' '2' '3'

说明:

1温度值数据格式:实际温度是℃,数据传输以开尔文单位传输,单位0.1K,具体数据对应

0°C =2731

 $-10^{\circ}\text{C} = 2731-100=2631$ $10^{\circ}\text{C} = 2731+100=$

2831

2. 功能配置

2个字节共有16个bite,每一个bite表示一种功能的使能,为1表示该功能使能,为0表示未使能

Bite0: 弱电开关功能 Bite6 FCC限制 Bitel: 短路负载检测功能 Bite7 RTC使能

Bite2 均衡功能 Bite8 充电握手使能

Bite3 充电均衡 Bite9 GPS功能

Bite4 LED使能 Bite10 蜂鸣器功能 Bite5 LED数量 Bitell 启动电池模式

电流容量单位说明:为了兼容单位超范围,单位做如下调整:

参数名称	Bite12 = 0	Bite12 = 1
剩余容量	10mAh	100mAh
满充容量	10mAh	100mAh
循环容量	10mAh	100mAh
标称容量	10mAh	100mAh
电流值	10mA	100mA
充电过流值	10mA	100mA
放电过流值	10mA	100mA
检流电阻	0.1mR	0.01mR

3.NTC配置

2个字节共有16个bite,每一个bite表示一对应的温度探头使能,为1表示该功能使能,为0表示未使能

Bite12:电流容量单位标识, 具体下面备注。

例如: bite0置位了,就表示温度探头位置1有效

4. 短路保护延时说明以及二级过流保护值设定会根据IC类型不一样,内容不一样,IC类型读取分类请看第9条说明

A.IC类型为0,表示TI方案:

BIT	7	6	5	4	3	2	1	0
NAME	RSNS	SCD_T2	SCD_T1	SCD_T0	_	_	SCD_D1	SCD_D0

RSNS:表示过流及短路值翻倍.

SCD_D(短路延时设定: bit1~bit0)SCD_T(短路延时设定: bit2~bit0)

Code	(in µs)
0x0	70
0x1	100
0x2	200
0x3	400

Code	RSNS = 1 (in mV)	RSNS = 0 (in mV)
0x0	44	22
0x1	67	33
0x2	89	44
0x3	111	56
0x4	133	67
0x5	155	78
0x6	178	89
0x7	200	100

短路保护及延时

BIT	7	6	5	4	3	2	1	0
NAME	RSNS	SCD_T2	SCD_T1	SCD_T0	-	ı	SCD_D1	SCD_D0

二级过流保护及延时

BIT	7	6	5	4	3	2	1	0
NAME	OCD_T3	OCD_T2	OCD_T1	OCD_TO	ı	OCD_D2	OCD_D1	OCD_D0

OCD_D2:0(Bits 2:0)放电过流延时设定

OCD_T3:T0放电过流值设置

Code	(in ms)
0x0	8
0x1	20
0x2	40
0x3	80
0x4	160
0x5	320
0x6	640
0x7	1280

Code	RSNS = 1 (in mV)	(RSNS = 0 (in mV)					
0x0	17	8					
0x1	22	11					
0x2	28	14					
0x3	33	17					
0x4	39	19					
0x5	44	22					
0x6	50	25					
0x7	56	28					
0x8	61	31					
0x9	67	33					
0xA	72	36					
0xB	78	39					
0xC	83	42					
0xD	89	44					
0xE	94	47					
0xF	100	50					

B.芯片类型为1(凹凸7717),2(松下49522), 3(中颖309)4(中颖303)5(集澈DC10XX)寄存器分布如下 短路保护值及其延时

BIT	7	6	5	4	3	2	1	0
NAME	SCD T3	SCD T2	SCD T1	SCD TO	SCD D3	SCD D2	SCD D1	SCD DO

凹凸芯片-芯片类型1:短路值16档, SCD_T3:0的值等于SCD_T,最小是0, 最大是15, 最后对应的短路电压值(mV)20*SCD_T+20 短路值延时16档, SCD_D3:0的值等于SCD_D,最小是0, 最大是15, 最后对应的短路延时值(uS)62.5*SCD_D+62.5

松下芯片-芯片类型2:短路值16档, SCD_T3:0的值等于SCD_T,最小是0, 最大是15, 最后对应的短路电压值(mV)40*SCD_T+20 短路值延时16档, SCD_D3:0的值等于SCD_D,最小是0, 最大是15, 最后对应的短路延时值(uS)62.5*SCD_D+31.25

中颖芯片(309-芯片类型3):短路值16档, SCD T3:0的值等于SCD T,最小是0,最大是15,最后对应的短路电压值(mV)

SCD_T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应短路	50	80	110	140	170	200	230	260	290	320	350	400	500	600	800	1000
值(mV)																

短路值延时16档, SCD_D3:0的值等于SCD_D,最小是0, 最大是15, 最后对应的短路延时值(uS) 64*SCD_D (集澈DC10XX = 芯片类型5)

短路保护值:16档对应如下,单位mV:

/—/A	1-	<i>, , , , , , , , , , , , , , , , , , , </i>	, , ,													
SCD_T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应短路	19	30	41	53	64	75	87	98	110	120	132	143	155	166	177	190
值(mV)																

短路保护延时:对应4挡,单位uS

SCD_D	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应短路	560	800	1600	3200	\	\	\	\	\	\	\	\	\	\	\	\
值(mV)																

(OZ3714 = 芯片类型6)

短路保护值:16档对应如下,单位mV:

SCD_T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应短路	40	80	120	160	200	240	280	320	360	400	440	480	520	560	600	640
值(mV)																

短路保护延时:对应16挡,单位uS;计算方式62.5*(i+1)uS

二级过流保护及延时

BIT	7	6	5	4	3	2	1	0
NAME	OCD_T3	OCD_T2	OCD_T1	OCD_TO	OCD_D3	OCD_D2	OCD_D1	OCD_D0

凹凸芯片-芯片类型1:二级过流值16档, OCD_T3:0的值等于OCD_T,最小是0, 最大是15;最后对应的过流电压值(mV)10*OCD_T+5二级过流延时16档, OCD_D3:0的值等于OCD_D,最小是0, 最大是15;最后对应的过流延时值(mS)

松下芯片-芯片类型2:二级过流值16档, OCD_T3:0的值等于OCD_T,最小是0, 最大是15;最后对应的过流电压值(mV)20*OCD_T+10 二级过流延时16档, OCD_D3:0的值等于OCD_D,最小是0, 最大是15;最后对应的过流延时值(mS) 20*OCD_D+10

中颖芯片(309芯片类型3):二级过流值16档, OCD_T3:0的值等于OCD_T,最小是0, 最大是15

1 10 1 1 1 1																
OCD_T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应过流值 (mV)	20	30	40	50	60	70	80	90	100	110	120	130	140	160	180	200
OCD_D	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应过流延 时值(mS)	50	100	200	400	600	800	1000	2000	4000	6000	8000	10S	15S	20S	30S	40 S

集澈芯片(DC10XX,芯片类型5):二级过流值16档, OCD_T3:0的值等于OCD_T,最小是0, 最大是15

OCD_T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应过流值 (mV)	4	10	16	21	28	33	38	44	50	55	61	67	73	78	84	90
OCD_D	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

对应过流延 时值(mS)	32	80	160	320	640	1280	2560	5120	١	١	١	\	\	١	\	\
OZ3714 = 芯	OZ3714 = 芯片类型6: 二级过流值16档, OCD_T3:0的值等于OCD_T,最小是0, 最大是15															
OCD_T	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应过流值	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160
(mV)																
OCD_D	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
对应过流延	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30	32
时值(mS)																

六:控制命令说明:

6.1控制指令(0x0A指令)

起始位	状态位	命令码	长度	数据内容	校验	停止位
0Xdd	0X5A	0X0A	0X02	0XAA <mark>0xBB</mark>	CHECKSUM_H CHECKSUM_L	0X77

BMS响应控制模式指令,如果操作成功,则带响应内容长度,如果不成功响应错误码

0Xdd	0x0A	0x00-响应码	0x01	0XAA	Checksum_HChecksum_L	0x77

例子: DD 5A 0A 02 01 00 FF F3 77 返回: DD 0A 00 00 00 77, 表示重置容量指令

功能码序号 (0xAABB)	功能说明	说明
0100	重置容量	重置容量按照电压参数重新估算容量
0200	清除记录	清除历史保护次数
0300	复位	复位一次单片机

清除保护状态	清楚保护状态和告警状态
进入休眠	保护板进入到休眠状态
进入掉电模式	进入超低功耗,需要充电唤醒。
自动均衡	自动均衡模式,发送该指令自动开启均衡
进入储运模式	发送指令后进入储运模式,
设置 SOC-20% 开关功 能	双聚版本,设置为1之后则低于20%会关闭放电
低于20%强制打开指 令	当SOC_20%功能有效,并且SOC<20%,可发送此指令强制打开
强制启动-启动模式	启动电池模式时强启启动输出
强制加热	加热到15℃自动停止
	进入休眠 进入掉电模式 自动均衡 进入储运模式 设置SOC-20%开关功能 低于20%强制打开指令

七、增加电池内阻指令(F6)-暂时没有加

读取内阻指令详情

起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0xA5	0Xf6	0	(没有时为空)	checksum	0x77

BMS响应读取基本信息0xf6指令

0xDD	0xf6	状态, 0表正确	表示数据长度, 数据长度为0x1E	数据内容,长度为0时,此处跳过	checksum	0x77
		错误则返回0x80			checksum	0x77

红色为被校验字节, 为所有的字节的总和; 后面2个为校验结果, 为前面所有校验的总和取反+1的结果

数据内容解释

数据长度	数据长度为电池串数N乘以2		
第一串单体的内阻值	2Byte,单位0.1mR, 高位在前, 带符号型, 有正负值		
第二串单体的内阻值	2Byte,单位0.1mR, 高位在前, 带符号型, 有正负值		
第三串单体的内阻值	2Byte,单位0.1mR, 高位在前, 带符号型, 有正负值		
0 0 0	000		
第N串单体的内阻值	2Byte,单位0.1mR, 高位在前, 带符号型, 有正负值		

暂时固定长度, 最长30串, 所有的内阻都需要上传。

数据解析,例如:内阻值为0x0064 =100,表示以该串内置10mR ,如果值为0xfffb = -5,表示内阻值为-0.5mR,

关于计算方式:内置为正值时:充电的时候电压为测量的电压减去电流乘以内阻之后的值,如果电池电压实际电压还是偏大,则需要继续调大此值。 放电时最终电压为测量的电压 + 电流乘以内阻之后的值。

如果内阻为负值,充电时加法运算,放电时减法运算

写入内阻指令详情

起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0x5a	0Xf6	60(十进制)	30串每一串的内阻值,一串2个字 节	checksum	0x77

BMS响应读取内阻0xf6指令

OxDD	0xf6	状态, 0表正确	表示数据长度,不包括本身,响应写时长度为0	数据内容,长度为0时,此处跳过	checksum	0x77
		错误则返回0x81	0		checksum	0x77

时间参数说明:总共6个字节,分别表示静态上报间隔,充电上报间隔,放电上报间隔。每2个字节表示一个时间参数,单位是S

八: 蓝牙密码协议

8.1:密码配对

密码配对指令详情

•							
起始位	状态位	命令码	长度	数据内容	校验	停止位	
0xDD	0x5a	0X06	7	6+6BYTE	checksum	0x77	

例如设置密码: 765828: 实际指令为DD 5A 06 07 06 07 06 05 08 02 08 FF C9 77

BMS响应密码配对指令

0xDD	0x06	状态, 0表正确	表示数据长度,不包括本身,响应写时长度为0	数据内容,长度为0时,此处跳过	checksum	0x77
		错误则返回0x83	0		checksum	0x77

8.1:密码修改

密码配对指令详情

_	3 3							
	起始位	状态位	命令码	长度	数据内容	校验	停止位	
	0xDD	0x5a	0X07	13	12+旧密码(6位)+新密码(6位)	checksum	0x77	

例如设置密码: 765828-> 123456:实际指令:DD 5A 07 0D 0C 07 06 05 08 02 08 01 02 03 04 05 06 FF A7 77

BMS响应密码配对指令

0xDD 0x07 状态, 0表正确		状态, 0表正确	表示数据长度, 不包括本身, 响应写时长度为0	数据内容,长度为0时,此处跳过	checksum	0x77
		错误则返回0x83	0		checksum	0x77

8.3: 重置蓝牙密码

置蓝牙密码配对指令详情

起始位	状态位	命令码	长度	数据内容	校验	停止位	
0xDD	0x5A	0X08	03	奇数位截取,再偶数位截取 例如: 036c4d	checksum	0x77	+
+ + ·						K, 34	

BMS 响应重置蓝牙密码配对指令

0xDD	0x08	状态,0表正确	表示数据长度,不包括本身,响应写时长度为 0	数据内容,长度为0时,此处跳	checksum	0x77
		错误则返回 0x83	0	过	checksum	0x77

九、芯片类型读取指令:

.读取芯片类型

密码配对指令详情

_							
	起始位	状态位	命令码	长度	数据内容	校验	停止位
	0xDD	0Xa5	0X00	0X00	空	checksum	0x77

BMS响应密码配对指令

0xDD	0x00	状态, 0表正确	表示数据长度, 不包括本身, 响应写时长度为0	数据内容	checksum	0x77
		错误则返回0x83	0x02	0x00 xx	checksum	0x77

当XX = 0或者发送该指令不回复时,默认BMS方案为TI方案,当XX=1时为凹凸方案 当XX = 2时为新塘松下方案 当XX = 3时为中颖309方案当XX=4时为中颖303方案, XX=5为集澈芯片

十、控制加热指令(Fc)

主机发送加热控制指令

10.3 预约加热时间指令

起始位	状态位	命令码	长度	数据内容	校验	停止位
0xDD	0X5A	0XFC	0X05	XX HH MM ZZ WW	CHECKSUM_H CHECKSUM_L	0X77

XX为指令码01为启动加热,02为关闭加热, HH为小时取值0~255, MM为分钟0~60; ZZ为启动温度-127~127, WW为加热停止温度~127~127。 温度采用直接正负值温度才表示, 如果时间为00, 则表示立即启动, 如果时间为非0, 则表示延时启动

BMS响应写入基本信息0xfc指令

0xDD	0xFC	0x00	0x00	 Checksum_HChecksum_L	0x77

例子: DD 5A FC 05 01 00 00 05 CHECKSUM_H CHECKSUM_L 77,返回: DD FC 00 00 00 00 77,表示指令发送成功。

十一、实际示例解析:

主机发送读取单体电压0x04指令, BMS返回数据说明:

DD -帧头,起始字节

04 --命令码,读取单体电压

00 --状态码,非0为错误,0为正确

22 --数据短长度,为34个数据,表示电池组有17串,一串2个数据

0EC8 -第1节单体电压3784

0EC8 -第2节单体电压

0ECB-第3节单体电压

0ECF-第4节单体电压

0ECA-第5节单体电压

0EC7 -第6节单体电压

0ECA-第7节单体电压

0ECD -第8节单体电压

0EC9-第9节单体电压

0ECA-第10节单体电压

```
0ECB-第11节单体电压
```

0ECB-第12节单体电压

0EC8 -第13节单体电压

0ECC -第14节单体电压

0EC8 - 第15节单体电压

0EC9 -第16节单体电压

0EC9 -第17节单体电压

F187 -校验码

77 --结束码

主机发送读取基本信息0x03指令, BMS返回数据说明:

DD -起始

03 - 命名码

00 - 状态码

1F -数据长度

19DF - 总电压 = 6623 = 66.23V,单位是10Mv

F824 - 总电流 = 63524, 最高位为1, 为放电, 电流值 = 65536-63524 = 2012, 单位是10Ma, 所以最终电流为-20.12A,如果最高不为1则为充电直接换算

0DA5 -剩余容量 = 3493, 单位10Mah, 最终剩余容量值为34930Mah

0FA0 -标称容量 =4000, 因为单位是10Mah, 所有最终容量是40000Mah

0002 - 循环次数。2次

2491 - 生产日期

0000 -均衡低

0000 -均衡高

0000 -保护状态

12 --软件版本

57 --剩余容量百分比87

03 --MOS状态

11 -- 电池串数 17

04 --温度探头个数

0B98 --第一个温度 2968 -2731 =247,单位为0.1℃ = 24.7℃

0BA9 --第2个温度

0B96 --第3个温度

0B97 --第4个温度

F89A --校验码

77 --结束码

十二、修订历史

版本说名	说明		
V0版本	初稿		
V1版本	修改0XE1指令为0XFB指令,		
V2版本	修改错误,修改参数列表的错误类型		
V3版本	在帧协议格式中增加callback_id,当主机在结束符0X77下发什么,从机就回复什么,长度固定为4BYTE,可为空		
V4版本	增加读取芯片类型的程序以及重新调整硬件过流短路值。		
V5版本	增加加热功能控制指令0xFC及强制启动功能指令。		
V6版本	增加芯片类型为5的放电过流2的短路值列表		
V7版本 优化芯片3的过流值列表			
V8版本	在0A控制指令中增加储运指令模式,进入深度休眠(17~28页)		
V9版本	增加电流、容量单位标识,默认为0, 具体看P15页中的功能配置BITE12		
V10版本	在0A里面加入强制启动按钮,做启动模式。		
V11版本	增加芯片类型为6的放电过流2和短路值列表 <mark>。以及修改密码部分指令例子以及描述</mark>		