Examen

Durée 1h30. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte.

Exercice 1.

Soit $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'application linéaire définie par f(x,y) = (x+y, x-y, x+y).

1. Déterminer le noyau $\operatorname{\mathsf{Ker}} f$ de f. L'application f est-elle injective?

Commençons par déterminer le noyau de f. On a $(x,y) \in \operatorname{\mathsf{Ker}} f$ si et seulement si f(x,y) = (0,0,0) si et seulement si

$$\begin{cases} x + y = 0 \\ x - y = 0 \\ x + y = 0 \end{cases} \iff \begin{cases} x + y = 0 \\ 2x = 0 \end{cases}$$

On en déduit que $Ker(f) = \{(0,0)\}$, et en particulier que f est injective.

2. Déterminer l'image $\operatorname{Im} f$ de f et en donner une base. L'application f est-elle surjective?

Déterminons maintenant l'image de f. Un vecteur (u, v, w) est dans l'image de f si et seulement si

$$\exists (x,y) \in \mathbb{R}^2, (u,v,w) = f(x,y) \Longleftrightarrow \exists (x,y) \in \mathbb{R}^2, \begin{cases} u = x+y \\ v = x-y \\ w = x+y \end{cases}$$

$$\iff \exists (x,y) \in \mathbb{R}^2, \begin{cases} u = x+y \\ u+v = 2x \\ w-u = 0 \end{cases}$$

$$\iff \exists (x,y) \in \mathbb{R}^2, \begin{cases} \frac{u-v}{2} = y \\ \frac{u+v}{2} = x \\ w-u = 0 \end{cases}$$

On en déduit que $\text{Im}(f) = \{(u, v, w) \in \mathbb{R}^3; u - w = 0\}$. En particulier, (1, 1, 0) n'est pas dans Im(f), et donc f n'est pas surjective. On peut aussi utiliser le théorème du rang.

Exercice 2.

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
.

1. Exprimer A^2 en fonction de A.

On a
$$A^2 = A + 2I$$
.

2. En déduire l'inverse de A.

On a
$$A(A-I)/2 = I$$
 qui donne $A^{-1} = (A-I)/2 = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix} \frac{1}{2}$.

Exercice 3.

Soit M la matrice réelle 3×3 suivante :

$$M = \begin{pmatrix} 0 & 2 & -1 \\ 3 & -2 & 0 \\ -2 & 2 & 1 \end{pmatrix}$$

1. Déterminer les valeurs propres de M.

Ce sont les racines du polynôme caractéristique

$$P_M(X) = \begin{vmatrix} -X & 2 & -1 \\ 3 & -2 - X & 0 \\ -2 & 2 & 1 - X \end{vmatrix} = -1 \begin{vmatrix} 3 & -2 - X \\ -2 & 2 \end{vmatrix} + (1 - X) \begin{vmatrix} -X & 2 \\ 3 & -2 - 2X \end{vmatrix}$$
$$= (1 - X) (X^2 + 2X - 8)$$
$$= (1 - X)(X + 4)(X - 2)$$

La matrice M admet donc trois valeurs propres distinctes qui sont : 1,2, et -4.

2. Montrer que M est diagonalisable.

Nous venons de voir que M, matrice réelle 3×3 , admet trois valeurs propres réelles distinctes, cela prouve que M est diagonalisable.

3. Déterminer les vecteurs propres associés aux valeurs propres.

Les trois sous-espaces propres distincts sont de dimension 1, il suffit de déterminer un vecteur propre pour chacune des valeurs propres. $\lambda=1$: Le vecteur \vec{u} de coordonnées (x,y,z) est un vecteur propre pour la valeur propre 1 si et seulement si

$$\begin{cases} 3x - 2y = y \iff \begin{cases} -x + 2y - z = 0 \\ 3x - 3y = 0 \\ -2x + 2y + z = z \end{cases} \iff \begin{cases} x = y \\ -2x + 2y = 0 \end{cases}$$

Le sous-espace propre associé à la valeur propre $\lambda=1$ est la droite vectorielle engendrée par le vecteur $\overrightarrow{e_1}$ de coordonnées (1,1,1). $\lambda=2$: Le vecteur \overrightarrow{u} de coordonnées (x,y,z) est un vecteur propre pour la valeur propre 2 si et seulement si

$$\begin{cases}
-2x + 2y - z = 0 \\
3x - 4y = 0 \\
-2x + 2y - z = 0
\end{cases} \iff \begin{cases}
3x - 4y = 0 \\
-2x + 2y - z = 0
\end{cases}$$

Le sous-espace propre associé à la valeur propre $\lambda=2$ est la droite vectorielle engendrée par le vecteur $\overrightarrow{e_2}$ de coordonnées (4,3,-2). $\lambda=-4$: Le vecteur \overrightarrow{u} de coordonnées (x,y,z) est un vecteur propre pour la valeur propre -4 si et seulement si

$$\begin{cases}
-4x + 2y - z = 0 \\
3x + 2y = 0 \\
-2x + 2y + 5z = 0
\end{cases} \iff \begin{cases}
x - z = 0 \\
2y + 3x = 0
\end{cases}$$

Le sous-espace propre associé à la valeur propre $\lambda = -4$ est la droite vectorielle engendrée par le vecteur $\overrightarrow{e_3}$ de coordonnées (2, -3, 2).

4. Donner alors la matrice P inversible et la matrice diagonale D telles que $M = PDP^{-1}$. (On ne demande pas de calculer P^{-1}).

HAI702I

Les vecteurs $\overrightarrow{e_1}$, $\overrightarrow{e_2}$ et $\overrightarrow{e_3}$ forment une base de E composée de vecteurs propres, la matrice de passage P est égale à

$$P = \left(\begin{array}{ccc} 1 & 4 & 2 \\ 1 & 3 & -3 \\ 1 & -2 & 2 \end{array}\right)$$

Exercice 4.

On effectue l'ACP du nuage de points (en 2d) suivant :

	l .																								20
y	2	10	5	8	10	2	13	9	5	8	14	7	12	10	11	6	14	15	17	7	13	13	17	19	20

La matrice de covariance associée est $C = \begin{pmatrix} 19.4656 & 14.9616 \\ 14.9616 & 23.0976 \end{pmatrix}$. Les valeurs propres de C sont

 $\lambda_1 = 36.35300772$ et $\lambda_2 = 6.21019228$ et les vecteurs propres associés sont $v_1 = (0.6631391, -0.74849618)$ et $v_2 = (-0.74849618, -0.6631391)$ respectivement.

1. Comment est calculée la matrice C?

Notons $p_i=(x_i,y_i)$ le vecteur (ligne) de \mathbb{R}^2 ayant pour coordonnée la *i*ème colonne du tableau. On a $i=1,\cdots,25$ et

$$C = \frac{1}{25} \sum_{i=1}^{25} (p_i - \bar{p})^t (p_i - \bar{p})$$

avec $\bar{p} = \frac{1}{25} \sum_{i=1}^{25} (x_i, y_i)$.

2. Quelle propriété vérifie les vecteurs propres de C?

Ils forment une base orthonormée de \mathbb{R}^2 .

3. Quelle est la proportion de variance expliquée par chaque vecteurs propre?

Pour le premier axe principal $\text{Vect}(v_1)$, on a $\lambda_1/(\lambda_1 + \lambda_2) \simeq 6/7$ de la variance expliquée. Pour le second axe principal $\text{Vect}(v_2)$, on a $\lambda_2/(\lambda_1 + \lambda_2) \simeq 1/7$.

4. La somme des vecteurs propres est égale à quelle quantité?

Le premier plan principale $\text{Vect}(v_1, v_2)$ explique donc 100% de la variance (on est dans $\mathbb{R}^2...$). La somme des deux valeurs propres est donc égale à la variance (aussi appelée inertie totale) du nuage de point. C'est aussi la trace de C...

Exercice 5.

Soit A une matrice carrée de taille $n \times n$. On suppose que A est inversible et que $\lambda \in \mathbb{R}$ est une valeur propre de A.

1. Démontrer que $\lambda \neq 0$.

Si $\lambda = 0$ est valeur propre de A, alors $\operatorname{Ker} A \neq \{0\}$, donc A n'est pas injective et sa matrice ne peut pas être inversible. Par conséquent, $\lambda \neq 0$.

2. Démontrer que si x est un vecteur propre de A pour la valeur propre λ alors il est vecteur propre de A^{-1} de valeur propre $\frac{1}{\lambda}$.

Comme A est inversible, on a $A\vec{x} = \lambda \vec{x} \iff A^{-1}(A\vec{x}) = A^{-1}(\lambda \vec{x}) \iff \vec{x} = \lambda A^{-1}\vec{x}$, d'où $A^{-1}\vec{x} = \lambda^{-1}\vec{x}$. Ce qui prouve que \vec{x} est vecteur propre de A^{-1} de valeur propre λ^{-1} .