数季电路与逻辑设计

Digital circuit and logic design

● 第三章 集成门电路与触发器

主讲教师 于俊清

■提纲

数字集成电路的分类

半导体器件的开关特性

门电路

触发器

半导体器件的开关特性

晶体二极管的开关特性

晶体三极管的开关特性

数字电路与逻辑设计

■晶体三极管

通过输入电压 v_I 对b点电压 v_I 对b点电压加以控制,可使三极管工作在截止、放大和饱和3种工作状态

NPN三极管共发射极开关电路

(1)截止状态

对应与(b)图中所示截止区,工作点位于A点, $i_{\rm b}\approx 0, i_{\rm c}\approx 0$,输出电压 $v_{\rm ce}\approx V_{\rm cc}$ 开关断开

(2) 放大状态

对应与 (b) 图中所示放大区 , i_c 大小受基极电流 i_b 的控制 , 即 $i_c \approx \beta i_b$

(3)饱和状态

三种工作状态:截止、放大、饱和

三极管的静态开关特性:在<mark>截止与饱和</mark>这两种稳态下的特性

由基极信号控制的无触点开关,其作用对应与开关的"闭合"和

三极管的开关等效电路

三级管的动态特性

动态特性

三极管在饱和与截止两种状态转换过程中的具有的特性

- 三极管内部存在着电荷的建立与消失过程

饱和和截止两种状态的转换需要一定的时间才能完成

晶体管内部载流子运动与外部电流

■三极管的动态特性

■三极管的动态特性

三极管的动态特性

延迟时间ta

当输入电压 v_1 由- V_1 跳变到+ V_2 时,三极管 从截止到开始导通所需要的时间

上升时间t

经过延迟时间 t_d 后, i_c 不断增大, i_c 上升到 最大值的90%所需要的时间

■三极管的动态特性

开通时间

$$t_{ON} = t_{d} + t_{r}$$

三极管从截止状态到饱和状态 所需要的时间

三极管的动态特性

存储时间ts

当输入电压 v_1 由 V_2 跳变到- V_1 时,集电极电流从 I_{CS} 开始下降到 $0.9\,I_{CS}$ 所需要的时间

下降时间4

集电极电流由 $0.9 I_{CS}$ 降至 $0.1 I_{CS}$ 所需的时间

三极管的动态特性

关闭时间

$$t_{\rm OFF} = t_{\rm S} + t_{\rm f}$$

开通时间和关闭时间是影响电路工 作速度的主要因素

数季电路与逻辑设计

Digital circuit and logic design

● 谢谢,祝学习快乐!

主讲教师 于俊清

