Midterm Review

ECE4514 - Spring 2017

Midterm Format

Structure:

- T/F
- Multiple Choice
- Short problems

Focus on lecture material

Closed note, closed book, closed computer, closed smartphone, closed Apple Watch

Review

Question sets discussed in class Question sets posted on Canvas

Book Chapters:

1,2,3, 9,12,14

Logic Technology, No SystemVerilog (yet)

Logic Technologies

- Programmable Logic
 - Programmable Logic Devices (PLDs)
 - Field Programmable Gate Arrays (FPGAs)
- Pure ASIC
 - Gate Arrays (Mask Programmable) (MPGAs)
 - Standard Cell (Semi-Custom)
 - Full Custom

Performance

- High-Throughput Architectures
- Low-Latency Architectures
- Timing Optimizations
 - Adding Register Layers
 - Parallel Structures
 - Flatten Logic Structures
 - Register Balancing
 - Reorder Paths

Area

- 1. Rolling up the pipeline can optimize the area of pipelined designs with duplicated logic in the pipeline stages.
- 2. Controls can be used to direct the reuse of logic when the shared logic is larger than the control logic.
- 3. For compact designs where area is the primary requirement, search for resources that have similar counterparts in other modules that can be brought to a global point in the hierarchy and shared between multiple functional areas.
- An improper reset strategy can create an unnecessarily large design and inhibit certain area optimizations.
- 5. An optimized FPGA resource will not be used if an incompatible reset is assigned to it. The function will be implemented with generic elements and will occupy more area.
- 6. Improperly resetting a RAM can have a catastrophic impact on the area.
- 7. Using set and reset can prevent certain combinatorial logic optimizations.

Power

- Source of power consumption, and what is in your control as a designer
- The impact of clock control on dynamic power consumption
- Glitches
- Problems with clock gating
- Input control for power minimization
- Dual-edge triggered flip-flops

- Creating efficient decision trees
 - Trade-offs between priority and parallel structures
 - Dangers of multiple control branches
- Coding style traps
 - Usage of blocking and nonblocking assignments
 - Proper and improper usage of FOR-loops
 - Inference of combinatorial loops and latches
- Design partitioning and organization.
 - Organizing data path and control structures
 - Modular design
- Parameterizing a design for reuse
- Understanding relationship between HDL and resulting circuit

- Dynamic range, number density, and precision
- General floating point format
- IEEE 754 format
- Exponent bias
- Conversion
- Floating point arithmetic
 - Multiplication
 - Addition
 - Other

Synthesis Constraints

- Role of an SDC file
- Temporal constraints
- Resource constraints
 - E.g., resource sharing
- Technology-dependent constraints
 - Retiming, logic balancing

Clocks and PLLs

- Clock problems
- Clock distribution
- PLL principles, applications, limitations
- Pseudo arbitrary frequency generation

MORE EXAMPLE QUESTIONS

Example True or False

T or F: If pipeline registers can be added to a computation without incurring timing overhead, 6 pipeline stages would have higher or equal throughput than 5 stages.

T or F: A single 4-input LUT cannot be programmed to calculate the odd parity of a 4-bit number.

Example Multiple Choice

As a HDL designer, which of the following factors do you have the least control over?

- Dynamic power consumption
- Leakage power consumption
- Power consumption due to glitches
- Throughput
- Latency
- Circuit size

Example Short Answer

(3 points) Create a <u>behavioral</u> Verilog model for the circuit below. In your model, do not use the assign keyword. Also, refrain from using structural instantiations.


```
module circuit1 (
   input a, input b, input c,
   output reg d );
```

endmodule