End-to-End PPO-Based Reinforcement Learning Framework for Scalable 0/1 Knapsack Problem Solving

From Data Generation to Large-Scale Generalization

Gang Lin Student ID: 2874886

University of Birmingham

19/08/2025

The 0/1 Knapsack Problem: Definition & Context

(a) The Knapsack Problem Analogy.

(b) Computational Complexity Classes.

The 0/1 Knapsack Problem

Given n items with weights and values, choose a subset.

- Objective: Maximize the total value.
- Constraint: The total weight must not exceed the knapsack's capacity.
- Rule: Each item is either taken (1) or left (0), no fractions

Applications & Complexity

- Real-world Applications: Portfolio selection, resource allocation, logistics.
- Problem Variants: Many variants exist by altering constraints or item properties. The 0/1 version is the most common.
- Computational Hardness: KP is NP-complete. There is no known polynomial-time exact solution.

Knapsack Problem Solvers: A Comparative Overview

1. Exact and Approximate Algorithms							
Algorithm	TC.	SC.	Limitations				
Dynamic Programming Branch & Bound	$O(n \cdot C)$ $O(2^n)$ (worst-case)	$O(n \cdot C)$ $O(n^2)$	High memory usage; infeasible for large capacity ${\it C}$ Exponential runtime in worst case; performance depends on bounding quality				
Greedy Genetic Algorithm Simulated Annealing	$O(n \log n)$ $O(G \cdot P \cdot n)$ $O(\text{iter} \cdot n)$	$O(n) \\ O(P \cdot n) \\ O(n)$	No performance guarantee; poor approximation in worst case Parameter-sensitive; may converge prematurely Slow convergence; sensitive to cooling schedule				

2. Modern Neural Network Approaches (for Knapsack Problem)

Work	Type & Gen.	Architecture / Algorithm	Key Results (Accuracy / Speed)
Bello (2017)	C / Fixed	PtrNet / REINFORCE	Near-optimal on small scale; Faster than exact algorithms ~92.7% accuracy; ~40x faster than DP Near-optimal but slower inference than heuristics Proves optimality; Outperforms standalone RL/CP
Yildiz (2022)	C / Fixed	Transformer / DQN	
Abid (2023)	C / Fixed	MLP / SL	
Cappart (2021)	I / Yes	DRL + CP Solver	

Note: TC. = Time Complexity, SC. = Space Complexity. n: number of items, C: knapsack capacity, G: generations, P: population size, iter: iterations. C = Constructive; I = Improvement; Gen. = Generalization. PtrNet = Pointer Network; MLP = Multi-Layer Perceptron; SL = Supervised Learning; CP = Constraint Programming.

My Contribution: A generalizable RL framework that solves knapsack problems of arbitrary size (train on N, test on > N) with 70% accuracy using PPO, enabling scalable and robust decision-making.

From Dynamic Programming (DP) to Reinforcement Learning (RL)

1. Dynamic Programming Recurrence for KP

State value is the maximum value by:

- **Skip item** *i*: Value is the future reward from the remaining state, V(i-1, w).
- Take item i: Value is the immediate reward v_i + future reward from the new state, $V(i-1, w-w_i)$.

$$V(i, w) = egin{cases} V(i-1, w) & ext{if } w_i > w \ \max(V(i-1, w), \ v_i + V(i-1, w-w_i)) & ext{if } w_i \leq w \end{cases}$$

2. The Bellman Equation (Element-wise)

State value is the expected immediate reward plus the discounted expected future reward.

$$V_{\pi}(s) = \sum_{a \in A} \pi(a|s) \Big[\sum_{r \in R} p(r|s,a)r + \gamma \sum_{s' \in S} p(s'|s,a) V_{\pi}(s') \Big]$$

 DP recurrence is a specific, deterministic instance of the Bellman equation.

Modeling KP as an RL Problem

- **State** (s_t) : The set of available items and the current remaining knapsack capacity.
- **Action** (a_t) : The selection of one item from the available set.
- **Reward** (R_{t+1}): The value (v_i) of the selected item.
- Policy $(\pi_{\theta}(a|s))$: A neural network mapping states to action probabilities.

Bellman Equation

$$V^{\pi}(s) = \mathbb{E}[r + \gamma V^{\pi}(s')]$$

Value Function Approx.

$$V_{\phi}(s) \approx V^{\pi}(s)$$

INTERPORT RESERVATION REINFORCE (Policy Gradient)

$$abla_{ heta}J = \mathbb{E}\left[
abla_{ heta}\log\pi_{ heta}(a|s)\cdot G_{t}
ight]$$

4 A2C (Actor-Critic)

$$abla_{ heta} J \propto \sum_t
abla_{ heta} \log \pi_{ heta}(a_t|s_t) \cdot \hat{A}_t$$

$$(\hat{A}_t = r + \gamma V_\phi(s') - V_\phi(s)$$
: TD-based)

5 PPO (Clipped Objective)

$$\mathcal{L}^{\mathsf{CLIP}}(heta) = \mathbb{E}\left[\min\left(r_t \hat{A}_t,\; \mathsf{clip}(r_t, 1 \pm \epsilon) \hat{A}_t
ight)
ight]$$

where
$$r_t = rac{\pi_{ heta}(a_t|s_t)}{\pi_{ heta_{ extsf{old}}}(a_t|s_t)}$$

The Evolutionary Path to PPO

Bellman o Value Approx. Replace exact V^{π} with a learnable $V_{\phi}(s)$ (e.g., neural net). Enables scalability to large or continuous state spaces.

 $\mbox{Value Approx.} \rightarrow \mbox{REINFORCE Shift from value-based to direct policy optimization.} \mbox{ More suitable for stochastic or complex action spaces.}$

REINFORCE \rightarrow A2C Replace Monte Carlo return G_t with TD-based advantage \hat{A}_t . Reduces variance, enables online updates, and improves sample efficiency.

 $\mathsf{A2C} \to \mathsf{PPO} \ \ \mathsf{Replace} \ \mathsf{policy} \ \mathsf{gradient} \ \mathsf{with} \ \mathsf{clipped} \ \mathsf{surrogate} \ \mathsf{objective}. \ \mathsf{Prevents} \ \mathsf{destructive} \ \mathsf{updates} \ \mathsf{and} \ \mathsf{stabilizes} \ \mathsf{training}.$

PPO: Algorithm and Architecture

Training Algorithm start training Initialize Actor Network and Critic Network enough timesteps πθold (Actor) and Voold (Critic). For timesteps = 1, 2, Collect a set of partial trajectories for N steps using old policy POLLOUT BUILEED end training s t a t log m/a tis t) r t V/s t) Actor/Critic For each sten t, compute Advantage Estimate A 1 after K updatings For epoch = 1, 2,... K same minibatch in buffer Update Actor policy Update Critic value V(Φ) by maximizing the PPO by minimizing loss (e.g., MSE) objective L CLIP

Figure: The PPO training loop using an Actor-Critic framework.

■ Multiple optimization on the same minibatch.

Model Architecture

Figure: The model has two heads: one for the policy (Actor) and one for the value (Critic).

Actor and Critic share the same encoder.

Dataset Generation and Preprocessing

Dataset Specification

We generated three distinct datasets for training, validation, and testing to ensure a robust evaluation of the model's generalization capabilities.

Parameter	Training Set	Validation Set	Test Set
Item Count Range (n)	5 to 50	5 to 50	5 to 200
Step Size	5	5	5
Instances per Size	100	30	50
Total Instances	1,000	300	1,950

Item Properties

- Weights (w_i) and values (v_i) are integers sampled uniformly from U[1, 100].
- There is no correlation between an item's weight and its value.
- All inputs are normalized before being fed to the model

Problem Instance Constraints

- The knapsack capacity (C) is set relative to the total weight of all items ($\sum w_i$).
- The ratio $\frac{C}{\sum_{w_i}}$ is randomly sampled from U[0.1, 0.9].

Results: Accuracy and Inference Time

(a) Mean Relative Error (MRE) vs. Problem Size.

Key Findings: Accuracy

- Our PPO model maintains a low Mean Relative Error (MRE), demonstrating high solution quality and strong generalization.
- Pointer Network shows a higher error rate.
- The pure MLP model fails to generalize effectively.

Solver Performance: Time vs. Problem Size

(b) Inference Time vs. Problem Size.

Key Findings: Inference Time

- PPO's inference time is practical for large instances.
- Pointer Network is faster but less accurate.
- MLP is the fastest but provides poor solutions.

Performance Summary

- PPO vs. Pointer Network (Accuracy):
 - Algorithmic Superiority: PPO's Actor-Critic (TD) method provides low-variance updates.
 - Architectural Advantage: The Transformer encoder captures the global, combinatorial nature of the problem more effectively than a sequential LSTM.
 - Framework Robustness: Leveraging Stable Baselines 3 provides key stabilizations like adaptive observation normalization ('VecNormalize').
- PPO vs. Pointer Network (Speed):
 - Core Architecture: Transformer is more computationally intensive than LSTM.
 - Model Components: Extra Critic Network requires extra computation.
 - Evaluation Method: Stable_baseline3 cannot support batch evaluation.

Effective Training Techniques

The success of the framework relies on several key techniques:

- Input Normalization:
 - Normalizing item attributes (w_i, v_i) and the knapsack capacity (C) is crucial.
- Observation & Reward Normalization:
 Using 'VecNormalize' for both observations and rewards stabilizes the learning process significantly.
- Heuristic Preprocessing: Sorting items by value-density (v_i/w_i) before feeding them to the model provides a strong inductive bias and improves performance.

Future Work & Open Questions

Architectural Exploration

- The "Simple Critic" Anomaly:
 - A simple MLP Critic achieved higher accuracy (70%) than a more complex attention-based head (60%). Future work should investigate if this is due to optimization challenges or a regularization effect.
- Global State Representation ('[CLS]' Token):
 Initial experiments with a '[CLS]' token for global state representation surprisingly decreased performance.
 This warrants further investigation.
- Hyperparameter Tuning:

While a 3-layer MLP Critic works well, its optimal width and the interplay with network depth remain open questions for further tuning.

Problem Formulation & Reward Shaping

- Explore Alternative Formulation: Our model uses a "Decision" formulation (select one from all remaining items). An alternative "Selection" formulation (decide 'take' or 'skip' for items sequentially) could be investigated.
- Advanced Reward Shaping: For the current "Decision" model, an initial attempt at adding a final shaping reward (to encourage a fuller knapsack) decreased accuracy. Further research into more advanced shaping techniques (e.g., potential-based rewards) is needed.