Efficent Stan Code and Generated Quantities

Lecture 3b

https://jonathantemplin.com/bayesian-psychometric-modeling-fall-2024/

Today's Lecture Objectives

- 1. Making Stan Syntax Shorter
- 2. Computing Functions of Model Parameters

Making Stan Code Shorter

The Stan syntax from our previous model was lengthy:

- A declared variable for each parameter
- The linear combination of coefficients multiplying predictors

Stan has built-in features to shorten syntax:

- Matrices/Vectors
- Matrix products
- Multivariate distributions (initially for prior distributions)

Linear Models without Matrices

The linear model from our example was:

WeightLB_p =
$$\beta_0 + \beta_1$$
HeightIN_p + β_2 Group2_p + β_3 Group3_p + β_4 HeightIN_pGroup2_p- β_5 HeightIN_pGroup3_p + e_p

with:

- $Group2_p$ the binary indicator of person p being in group 2
- Group 3_p the binary indicator of person p being in group 3
- $e_p \sim N(0, \sigma_e)$

Path Diagram of Model

Linear Models with Matrices

Model (predictor) matrix:

Model (predictor) matrix:

$$\mathbf{X} = \begin{bmatrix} 1 & -4 & 0 & 0 & 0 & 0 \\ & \vdots & & & \\ 1 & 12 & 0 & 1 & 0 & 12 \end{bmatrix} \qquad \boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \alpha \end{bmatrix}$$

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \alpha \end{bmatrix}$$

Coefficients vector:

$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \beta_3 \\ \beta_4 \\ \beta_5 \end{bmatrix}$$

```
1 head(model.matrix(FullModelFormula, data = DietData))
  (Intercept) Height60IN factor(DietGroup)2 factor(DietGroup)3
1
2
            1
 Height60IN:factor(DietGroup)2 Height60IN:factor(DietGroup)3
1
3
5
```

6 0 0

http://localhost:4497/?print-pdf=#/title-slide

Linear Models with Matrices

Using matrices, we can rewrite our regression equation from

$$WeightLB_p = \beta_0 + \beta_1 HeightIN_p + \beta_2 Group2_p + \beta_3 Group3_p + \beta_4 HeightIN_p Group2_p - \beta_2 Group3_p + \beta_3 Group3_p + \beta_4 HeightIN_p Group3_p + \beta_4 HeightIN_p Group3_p + \beta_5 Group3_p + \beta_6 HeightIN_p + \beta_6$$

$$\beta_5$$
HeightIN_pGroup3_p + e_p

To:

WeightLB =
$$X\beta$$
 + e

Where:

Example: Predicted Values

```
1 P=6
 2 beta = matrix(data = runif(n = 6, min = 0, max = 10), nrow = P, ncol = 1)
 3 X = model.matrix(FullModelFormula, data=DietData)
 4 X %*% beta # R uses %*% for matrix products
          [,1]
1
     3.5041870
     4.2407897
     4.9773925
3
     5.7139952
5
     6.4505980
     3.1358856
     4.6090911
     5.1615432
     5.1615432
10
     6.0822966
11 -1.5318296
12
     5.4390386
13 12.4099067
14 19.3807748
15 26.3516430
16 -5.0172636
17
   8.9244726
18 14.1526237
19 14.1526237
20 22.8662089
   05 4100000
```

http://localhost:4497/?print-pdf=#/title-slide

Syntax Changes: Data Section

Old Syntax Without Matrices

```
1 data {
2   int<lower=0> N;
3   vector[N] weightLB;
4   vector[N] height60IN;
5   vector[N] group2;
6   vector[N] heightXgroup2;
7   vector[N] heightXgroup2;
8   vector[N] heightXgroup3;
9 }
```

New Syntax With Matrices

Page 10 of 29

Syntax Changes: Parameters Section

Old Syntax Without Matrices

```
parameters {
    real beta0;
    real betaHeight;
    real betaGroup2;
    real betaGroup3;
    real betaHxG2;
    real betaHxG3;
    real clower=0> sigma;
}
```

New Syntax With Matrices

http://localhost:4497/?print-pdf=#/title-slide

Defining Prior Distributions

Previously, we defined a normal prior distribution for each regression coefficient

- Univariate priors univariate normal distribution
- Each parameter had a prior that was independent of the other parameters

When combining all parameters into a vector, a natural extension is a multivariate normal distribution

• https://en.wikipedia.org/wiki/Multivariate_normal_distribution

- Mean vector (meanBeta; size $P \times 1$)
 - Put all prior means for these coefficients into a vector from R
- Covariance matrix (covBeta; size $P \times P$)
 - Put all prior variances (prior SD^2) into the diagonal
 - With zeros for off diagonal, the MVN prior is equivalent to the set of independent univariate normal priors

Syntax Changes: Model Section

Old Syntax Without Matrices

```
model {
     beta0 \sim normal(0,1);
    betaHeight ~ normal(0,1);
   betaGroup2 ~ normal(0,1);
   betaGroup3 ~ normal(0,1);
     betaHxG2 \sim normal(0,1);
     betaHxG3 \sim normal(0,1);
8
9
     sigma ~ exponential(.1); // prior for sigma
     weightLB ~ normal(
10
11
       beta0 + betaHeight * height60IN + betaGroup2 * group2 +
       betaGroup3 * group3 + betaHxG2 *heightXgroup2 +
12
       betaHxG3 * heightXgroup3, sigma);
13
14 }
```

New Syntax With Matrices

```
1 model {
2  beta ~ multi_normal(meanBeta, covBeta); // prior for coefficients
3  sigma ~ exponential(sigmaRate); // prior for sigma
4  y ~ normal(X*beta, sigma); // linear model
5 }
```

See: Example Syntax in R File

Summary of Changes

- With matrices, there is less syntax to write
 - Model is equivalent
- Output, however, is not labeled with respect to parameters
 - May have to label output

```
# A tibble: 8 × 10
  variable
               mean
                     median
                                 sd
                                      mad
                                               q5
                                                       q95
                                                            rhat ess bulk ess tail
                       <dbl> <dbl> <dbl>
  <chr>
              <dbl>
                                            <dbl>
                                                     <dbl> <dbl>
                                                                      <dbl>
                                                                                <dbl>
            -78.0
                     -77.7
                              2.09 1.93
                                           -82.0
                                                   -75.3
                                                             1.00
                                                                      2840.
                                                                                4327.
1 lp
2 beta[1]
            147.
                     147.
                              3.17
                                    3.09
                                          142.
                                                   152.
                                                             1.00
                                                                      3044.
                                                                                4196.
3 beta[2]
             -0.349 \quad -0.352 \quad 0.485 \quad 0.475
                                            -1.15
                                                     0.455
                                                            1.00
                                                                      3258.
                                                                                4432.
            -24.0
                     -24.0
                              4.46
                                    4.40
                                           -31.3
                                                   -16.6
                                                                      3340.
                                                                                4801.
4 beta[3]
                                                             1.00
5 beta[4]
             81.5
                      81.5
                              4.22
                                   4.14
                                            74.6
                                                    88.5
                                                             1.00
                                                                      3438.
                                                                                4785.
              2.45
                       2.45
                                                     3.54
                                                                      3579.
                                                                                4813.
6 beta[5]
                              0.683 0.680
                                             1.33
                                                             1.00
7 beta[6]
              3.53
                       3.53
                              0.640 0.630
                                             2.48
                                                     4.58
                                                             1.00
                                                                      3550.
                                                                                4266.
              8.24
                             1.22 1.16
8 sigma
                       8.10
                                             6.51 10.4
                                                             1.00
                                                                      4444.
                                                                                4860.
```

Computing Functions of Parameters

Computing Functions of Parameters

- Often, we need to compute some linear or non-linear function of parameters in a linear model
 - Missing effects (i.e., slope for Diet Group 2)
 - Simple slopes
 - $\blacksquare R^2$
- In non-Bayesian analyses, these are often formed with the point estimates of parameters
- For Bayesian analyses, however, we will seek to build the posterior distribution for any function of the parameters
 - This means applying the function to all posterior samples

Example: Need Slope for Diet Group 2

Recall our model:

WeightLB_p = $\beta_0 + \beta_1$ HeightIN_p + β_2 Group2_p + β_3 Group3_p + β_4 HeightIN_pGroup2_p-

$$\beta_5$$
HeightIN_pGroup3_p + e_p

Here, β_1 is the change in WeightLB_p per one-unit change in HeightIN_p for a person in Diet Group 1 (i.e. _p and Group3_p = 0)

Question: What is the slope for Diet Group 2?

• To answer, we need to first form the model when $Group2_p = 1$:

WeightLB_p =
$$\beta_0 + \beta_1$$
HeightIN_p + $\beta_2 + \beta_4$ HeightIN_p + e_p

• Next, we rearrange terms that involve $HeightIN_p$:

WeightLB_p =
$$(\beta_0 + \beta_2) + (\beta_1 + \beta_4)$$
HeightIN_p + e_p

- From here, we can see the slope for Diet Group 2 is $(\beta_1 + \beta_4)$
 - Also, the intercept for Diet Group 2 is $(\beta_0 + \beta_2)$

Computing Slope for Diet Group 2

Our task: Create posterior distribution for Diet Group 2

- We must do so for each iteration we've kept from our MCMC chain
- A somewhat tedious way to do this is after using Stan

```
1 model05 Samples$summary()
# A tibble: 8 × 10
 variable
              mean median
                                sd
                                     mad
                                                         rhat ess bulk ess tail
                                              a5
                                                     q95
  <chr>
             <dbl>
                      <dbl> <dbl> <dbl> <dbl>
                                                   <dbl> <dbl>
                                                                    <dbl>
                                                                             <dbl>
1 lp
           -78.0
                    -77.7
                             2.09
                                  1.93 -82.0
                                                 -75.3
                                                           1.00
                                                                   2840.
                                                                             4327.
           147.
                    147.
                             3.17
                                   3.09
                                        142.
                                                 152.
                                                           1.00
                                                                   3044.
                                                                             4196.
2 beta[1]
            -0.349 \quad -0.352 \quad 0.485 \quad 0.475
                                          -1.15
                                                   0.455
                                                          1.00
                                                                   3258.
                                                                             4432.
3 beta[2]
4 beta[3]
           -24.0
                    -24.0
                             4.46
                                  4.40
                                         -31.3
                                                 -16.6
                                                           1.00
                                                                   3340.
                                                                             4801.
                     81.5
                             4.22 4.14
                                           74.6
                                                                             4785.
5 beta[4]
            81.5
                                                  88.5
                                                           1.00
                                                                   3438.
                                           1.33
                                                   3.54
                                                                             4813.
6 beta[5]
             2.45
                      2.45
                            0.683 0.680
                                                           1.00
                                                                   3579.
7 beta[6]
             3.53
                      3.53
                            0.640 0.630
                                           2.48
                                                   4.58
                                                           1.00
                                                                   3550.
                                                                             4266.
             8.24
                      8.10
                            1.22 1.16
                                            6.51
                                                 10.4
                                                                             4860.
8 sigma
                                                           1.00
                                                                   4444.
 1 slopeG2 = model05 Samples$draws("beta[2]") + model05 Samples$draws("beta[5]")
 2 summary(slopeG2)
# A tibble: 1 × 10
 variable mean median
                                  mad
                                               q95 rhat ess bulk ess tail
                             sd
                                                             <dbl>
                                                                       <dbl>
 <chr>
           <dbl>
                   <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <
            2.10
                    2.10 0.481 0.463 1.31 2.88
                                                             7569.
                                                                       6251.
1 beta[2]
```

http://localhost:4497/?print-pdf=#/title-slide

Computing the Slope Within Stan

Stan can compute these values for us—with the "generated quantities" section of the syntax

```
1 generated quantities{
2  real slopeG2;
3  slopeG2 = betaHeight + betaHxG2;
4 }
```

The generated quantities block computes values that do not affect the posterior distributions of the parameters—they are computed after the sampling from each iteration

- The values are then added to the Stan object and can be seen in the summary
 - They can also be plotted using the bayesplot package

```
1 model04b Samples$summary()
# A tibble: 9 × 10
  variable
                        median
                                    sd
                                                   q5
                                                           q95 rhat ess bulk
                 mean
                                          mad
  <chr>
                <dbl>
                         <dbl>
                                <dbl>
                                                         <dbl> <dbl>
                                                                         <dbl>
                                       <db1>
                                                <db1>
                                        1.90 -153.
1 lp
             -150.
                      -149.
                                 2.05
                                                      -147.
                                                                 1.00
                                                                         1813.
2 beta0
                0.214
                         0.207
                                0.997 0.993
                                                -1.42
                                                         1.86
                                                                 1.00
                                                                         4119.
                                                 6.33
                                                                         2311.
3 betaHeight
             12.1
                        12.0
                                 3.54
                                        3.45
                                                        17.9
                                                                 1.00
4 betaGroup2 123.
                       123.
                                28.2
                                       28.0
                                                76.3
                                                       169.
                                                                 1.00
                                                                         3443.
```

http://localhost:4497/?print-pdf=#/title-slide Page 21 of 29

Computing the Slope with Matrices

To put this same method to use with our matrix syntax, we can form a contrast matrix

- Contrasts are linear combinations of parameters
 - You may have used these in R using the glht package

For us, we form a contrast matrix that is size $C \times P$ where C are the number of contrasts

• The entries of this matrix are the values that multiply the coefficients

- For $(\beta_1 + \beta_4)$ this would be
 - \circ A one in the corresponding entry for β_1
 - \circ A one in the corresponding entry for β_4
 - Zeros elsewhere
- $\bullet \ \mathbf{C} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 0 \end{bmatrix}$

The contract matrix then multiples the coefficents vector to form the values:

$$\mathbf{C}\boldsymbol{\beta}$$

Contrasts in Stan

We can change our Stan code to import a contrast matrix and use it in generated quantities:

```
1 data {
 2
     int<lower=0> N:
                            // number of observations
    int<lower=0> P;
                            // number of predictors (plus column for intercept)
    matrix[N, P] X;
                            // model.matrix() from R
     vector[N] y;
                            // outcome
 6
     vector[P] meanBeta;
                            // prior mean vector for coefficients
     matrix[P, P] covBeta;
                            // prior covariance matrix for coefficients
 9
                            // prior rate parameter for residual standard deviation
10
     real sigmaRate;
11
12
     int<lower=0> nContrasts;
13
     matrix[nContrasts,P] contrast; // contrast matrix for additional effects
14 }
```

The generated quantities would then become:

```
1 generated quantities {
2  vector[nContrasts] contrasts;
3  contrasts = contrastMatrix*beta;
4 }
```

See example syntax for a full demonstration

Computing R^2

We can use the generated quantities section to build a posterior distribution for R^2

There are several formulas for \mathbb{R}^2 , we will use the following:

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{\sum_{p=1}^{N} (y_{p} - \hat{y_{p}})^{2}}{\sum_{p=1}^{N} (y_{p} - \bar{y}_{p})^{2}}$$

Where:

- RSS is the regression sum of squares
- TSS is the total sum of squares
- $\hat{y} = \mathbf{X}\boldsymbol{\beta}$
- $\bullet \ \bar{y} = \sum_{p=1}^{N} \frac{y_p}{N}$

Notice: RSS depends on sampled parameters—so we will use this to build our

posterior distribution for R^2

Computing R^2 in Stan

The generated quantities block can do everything we need to compute R^2

```
generated quantities {
     vector[nContrasts] heightSlopeG2;
 2
     real rss;
     real totalrss;
 4
 6
     heightSlopeG2 = contrast*beta;
 7
 8
     { // anything in these brackets will not appear in summary
 9
       vector[N] pred;
10
       pred = X*beta;
       rss = dot self(y-pred); // dot self is a stan function
11
12
       totalrss = dot self(y-mean(y));
13
     }
14
15
     real R2;
16
17
     R2 = 1-rss/totalrss;
18
19 }
```

See the example syntax for a demonstration

Wrapping Up

Today we further added to our Bayesian toolset:

- How to make Stan use less syntax using matrices
- How to form posterior distributions for functions of parameters

We will use both of these features in psychometric models

Up Next

We have one more lecture on linear models that will introduce

- Methods for relative model comparisons
- Methods for checking the absolute fit of a model

Then all things we have discussed to this point will be used in our psychometric models