

Research Article

Vector Solution for the Intersection of Two Circles of Equal Altitude

Andrés Ruiz González^{a1} c1

doi:10.1017/S0373463307004602

Article author query gonzález ar [Google Scholar]

Copyright © The Royal Institute of Navigation 2008

Abstract

A direct method for obtaining the two possible positions derived from two sights using vector analysis instead of spherical trigonometry is presented. The geometry of the circle of equal altitude and of the two body fixes is analyzed, and the vector equation for simultaneous sights is constructed. The running fix problem is also treated.

Key Words: Circle of Equal Altitude; Celestial Navigation; Sight Reduction; Vector Analysis

Correspondence:

c1 (Email: <u>aruiz4@euskalnet.net</u>)

back to top

^{a1} (Navigational Algorithms. San Sebastián.)

Vector Solution for the Intersection of two Circles of Equal Altitude

Andrés Ruiz González

http://www.geocities.com/andresruizgonzalez Navigational Algorithms. San Sebastián.

A direct method for obtaining the two possible positions derived from two sights using the vector analysis instead the spherical trigonometry is presented. The geometry of the circle of equal altitude and of the two body fixes is analyzed, and then the vector equation for simultaneous sights is constructed. Also the running fix problem is treated.

Finally the C++ source code for the algorithm is provided in an easy implementation, susceptible for being translated to other common programming languages.

KEY WORDS

1. Circle of Equal Altitude. 2. Celestial Navigation. 3. Sight Reduction. 4. Vector Analysis.

Paper published in The Journal of Navigation, The Royal Institute of Navigation

Submitted: 2007/05/14Accepted: 2007/10/09

• Published: Volume 61 - Issue 02, April 2008.

A3. EXAMPLES

Two simultaneous sights

Date	UT1	Body	GHA	Dec	Но	
10/10/1990	19:32:36	Eltanin	43.195708	51.49344	45.50248	
10/10/1990	19:33:03	Alphecca	78.832391	26.74654	31.17998	
results:						
GP1 (xyz)	0.453890851	-0.4261679	0.78253691			
GP2 (xyz)	0.172957212	-0.87609689	0.450044483			
Alpha	36.48192299					SETTING &
k1	0.840152453				5	
k2	-0.15779189				1.00	
OIc (xyz)	0.354046266	-0.21980502	0.586436933		\	J
L1	0.694570888					M Comment
L2	-0.69457089				1	The same
GP1xGP2_unit	0.830489865	-0.11592541	-0.54483748			
I1 (xyz)	0.930880349	-0.30032343	0.208008679		"	
I2 (xyz)	-0.22278782	-0.1392866	0.964865188			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
I1 (BL)	12.00568121	-17.8808959	12° 0.3' N	17° 52.9' W		
I2 (BL)	74.76697018	-147.98644	74° 46.01'N 1	47° 59.18'W	₽\$P .	مستحج فأو

Running fix

Date	ite UT1 Body		GHA	Dec	Но	
05/05/2007	10:15:28	Sun LL	334.687032	16.205374	54.314509	
05/05/2007	12:38:25	Sun LL	10.426691	16.233739	61.982844	
$C = 20^{\circ}$	S = 10 kt					

results:

iter	error	Be	Le	B1	L1	B2	L2	GHA1 (t2)	dec1 (t2)
0	9.117738163	43.3166	-2	-9.466394	0.845506	43.361622	-2.199485	334.450283	16.53628
1	0.049268529	43.361622	-2.199485	-9.46644	0.8454	43.361382	-2.198405	334.449808	16.53567
2	0.000266894	43.361382	-2.198405	-9.466439	0.845401	43.361383	-2.19841	334.449811	16.53568
3	1.44577E-06	43.361383	-2.19841	-9.466439	0.845401	43.361383	-2.19841	334.449811	16.53568
4	7.82877E-09	43.361383	-2.19841	-9.466439	0.845401	43.361383	-2.19841	334.449811	16.53568

05/05/2007 12:38:25 Fix: 43° 21.7'N 002° 11.9'W

A4. C++ Source code

```
#include <math.h>
#define PI ((double)3.14159265358979)
#define DegRad(ang) ((double)((ang)*PI/180.0))
#define RadDeg(ang) ((double)((ang)*180.0/PI))
#define SIN(x) (sin(DegRad(x)))
#define COS(x) (cos(DegRad(x)))
#define ACOS(x) (RadDeg(acos(x)))
#define ATAN2(x,y) (RadDeg(atan2(x,y)))
\#define SQ(x) ((double)((x)*(x)))
// General vector algebra functions
double Mod( double *x )
        return( sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]));
double* Add( double *x, double *y )
        double *z = new double[3];
        z[0] = x[0]+y[0];
        z[1] = x[1]+y[1];
        z[2] = x[2]+y[2];
        return(z);
double* aVector( double a, double *x )
        double *z = new double[3];
        z[0] = a*x[0];
        z[1] = a*x[1];
        z[2] = a*x[2];
        return(z);
}
double* Unit( double *x ) { return( aVector( 1.0/Mod(x), x ) ); }
double Dot( double *x, double *y )
{
        return( x[0]*y[0]+x[1]*y[1]+x[2]*y[2] );
double* Cross( double *x, double *y)
{
        double *z = new double[3];
        z[0] = x[1]*y[2]-x[2]*y[1];

z[1] = x[2]*y[0]-x[0]*y[2];

z[2] = x[0]*y[1]-x[1]*y[0];
        return( z );
}
```

// Coordinate transformation functions

```
double* VectorEquatorial2Cartesian( double Dec, double GHA )
{
       double *v = new double[3];
       // unit vector
       v[0] = COS( Dec )*COS( GHA );
v[1] = -COS( Dec )*SIN( GHA );
       v[2] = SIN(Dec);
       return( v );
}
void Cartesian2Geographical( double x, double y, double z, double* B, double* L )
       *B = ATAN2( z, sqrt(x*x+y*y));
       *L = ATAN2(y, x);
}
// Vector Solution
void Fix2CoP( double GHA1, double dec1, double HO1,
               double GHA2, double dec2, double HO2,
               double* B1, double* L1, double* B2, double* L2 )
{
       double *GP1, *GP2;
       double *OI1, *OI2;
       double alpha, k1, k2, l1, l2;
double *GP11, *GP21, *OIc;
double *IcI1, *IcI2, *GP1xGP2_unit;
       GP1 = VectorEquatorial2Cartesian( dec1, GHA1 );
       GP2 = VectorEquatorial2Cartesian( dec2, GHA2 );
       alpha = ACOS( Dot( GP1, GP2 ) );
       GP11 = aVector(k1, GP1);
       GP21 = aVector(k2, GP2);
       OIc = Add(GP11, GP21);
       11 = +sqrt(1.0-Dot(OIc,OIc));
       12 = -11;
       GP1xGP2_unit = Unit( Cross( GP1, GP2 ) );
       IcI1 = aVector( 11, GP1xGP2_unit );
       IcI2 = aVector( 12, GP1xGP2_unit );
       OI1 = Add( IcI1, OIc );
       {\tt Cartesian2Geographical(\ OII[0],\ OII[1],\ OII[2],\ B1,\ L1\ );}
       OI2 = Add(IcI2, OIc);
       Cartesian2Geographical( OI2[0], OI2[1], OI2[2], B2, L2 );
       delete[] GP1;
                              delete[] GP2;
       delete[] GP11;
                              delete[] GP21;
       delete[] OIc;
                              delete[] GP1xGP2_unit;
       delete[] IcI1;
                              delete[] IcI2;
       delete[] OI1;
                              delete[] OI2;
   }
```