Coordenadas esféricas

Dado um ponto $(x,y,z) \in \mathbb{R}^3 \setminus (\{0\} \times \{0\} \times \mathbb{R})$, consideremos:

- $\rho = \sqrt{x^2 + y^2 + z^2}$, ou seja, ρ é a distância de (x, y, z) à origem;
- ullet com o mesmo significado que nas coordenadas cilíndricas;
- φ é o ângulo que o semi-eixo positivo do eixo OZ faz com a semi-recta que une (0,0,0) a (x,y,z). Note-se que $\varphi \in [0,\pi]$.

Temos assim a função

$$\begin{array}{ccccc} \Phi: & \mathbb{R}_0^+ \times [0, 2\pi[\times[0,\pi] & \longrightarrow & \mathbb{R}^3. \\ & (r, \theta, \varphi) & \mapsto & (x, y, z) \end{array}$$

$$\operatorname{Com} \left\{ \begin{array}{l} x = \underbrace{\rho \operatorname{sen} \varphi}_{=r} \cos \theta \\ y = \underbrace{\rho \operatorname{sen} \varphi}_{=r} \operatorname{sen} \theta \\ z = \rho \cos \varphi \end{array} \right.$$

Coordenadas esféricas

Vejamos algumas observações:

- como nas coordenadas polares e nas coordenadas cilíndricas, poderíamos ter considerado a variação de θ em qualquer intervalo de amplitude 2π ;
- a restrição de Φ a $\mathbb{R}^+ \times]0, 2\pi[\times]0, \pi[$ é uma bijecção de classe C^1 sobre $\mathbb{R}^3 \setminus (\mathbb{R}^+_0 \times \{0\} \times \mathbb{R})$ (ou seja, o complementar do semiplano de equação $y=0, x \geq 0$);
- para efeitos de cálculo de integrais, podemos "pensar" em Φ como uma mudança de variável em \mathbb{R}^3 , uma vez que o conjunto $\mathbb{R}^+_0 \times \{0\} \times \mathbb{R}$ tem "volume zero".

$ho= ho_0$, $arphi\in[0,arphi_0]$ e heta qualquer

$ho= ho_0$, $heta\in[0, heta_0]$ e hickappi qualquer

$$\theta = \theta_0$$

O conjunto dos pontos (x,y,z) "cujo" θ é igual a θ_0 (ou seja, o conjunto $\Phi(\mathbb{R}^+ \times \{\theta_0\} \times \mathbb{R}))$ é o semi-plano

$$\rho = \rho_0$$

O conjunto dos pontos (x,y,z) "cujo" ρ é igual a ρ_0 (ou seja, o conjunto $\Phi([0,2\pi[imes\{\rho_0\} imes\mathbb{R}))$ é a superfície esférica centrada na origem e de raio ρ_0

$\varphi = \varphi_0$

Se fixarmos $\varphi=\varphi_0$, obtemos o cone vertical infinito cujo vértice é a origem e em que o ângulo que a "altura" faz com a "geratriz" é φ_0

Unidade de volume (1)

Área da região sombreada $pprox
ho\,darphi\,r\,d heta$.

Unidade de volume (2)

Unidade de volume = $\rho^2 \operatorname{sen} \varphi \, d\theta \, d\varphi \, d\rho$.

Unidade de volume (3)

$$J_{(\rho,\theta,\varphi)}\Phi = \left(\begin{array}{ccc} \sin\varphi\cos\theta & -\rho\sin\varphi\sin\theta & \rho\cos\varphi\cos\theta \\ \sin\varphi\sin\theta & \rho\sin\varphi\cos\theta & \rho\cos\varphi\sin\theta \\ \cos\varphi & 0 & -\rho\sin\varphi \end{array} \right)$$

 $\mathsf{e} \mid \det J \, \Phi | = \rho^2 \, \mathrm{sen} \, \varphi.$

Como nos casos anteriores, esta última observação permite-nos concluir que, se $\Phi(B)=A$ (sendo A e B conjuntos com volume) e $f:\mathbb{R}^3\longrightarrow\mathbb{R}$ uma função integrável em B, então

$$\iiint_A f(x,y,z)\,dx\,dy\,dz = \iiint_B \rho^2 \sin\varphi\,f(\rho \sin\varphi \cos\theta,\rho \sin\varphi \sin\theta,\rho \cos\varphi)d\rho\,d\theta\,d\varphi.$$

Volume da esfera

A esfera centrada na origem e raio R é definida em coordenadas esféricas por $ho \leq R$.

$$\operatorname{vol}(S_R) = \int_0^{2\pi} \int_0^{\pi} \int_0^R \rho^2 \operatorname{sen} \varphi \, d\rho \, d\varphi \, d\theta = \frac{4}{3} \pi R^3.$$

Volume do cone

Em coordenadas esféricas temos $\rho \leq \frac{h}{\cos \varphi}$ e $0 \leq \varphi \leq \varphi_0$ (atenção!).

$$\operatorname{vol}(C_{h,\rho}) = \int_0^{2\pi} \int_0^{\varphi_0} \int_0^{\frac{h}{\cos \varphi}} \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = 2\pi \int_0^{\varphi_0} \frac{h^3}{3 \cos^3 \varphi} \sin \varphi \, d\varphi$$
$$= \frac{\pi h^3}{3} \left[\frac{1}{\cos^2(\varphi_0)} - 1 \right] = \frac{\pi h^3}{3} \operatorname{tg}^2(\varphi_0) = \frac{1}{3} \pi R^2 h,$$

uma vez que $\operatorname{tg}(\varphi_0) = \frac{R}{h}$.

Método - coordenadas esféricas versus coordenadas cilíndricas

Calculamos a variação máxima de θ (se for possível).

- fazemos o desenho de S_{θ} no semi-plano OZr;
- trabalhamos neste semi-plano como se fossem coordenadas cartesianas em \mathbb{R}^2 e obtemos os limites de integração originais em coordenadas cilíndricas, **o**u;
- ullet trabalhamos neste semi-plano como se fossem coordenadas polares com a excepção de que o ângulo considerado ser medido a começar no semi-eixo positivo OZ em vez de no semi-eixo Or e obtemos os limites de integração originais em coordenadas esféricas.

Note-se que conhecer φ é o mesmo que conhecer $\cos \varphi$ pois $\varphi \in [0,\pi]$.

Volume do cone $C_{h,R}=\{(x,y,z)\in\mathbb{R}^3: \frac{h}{R}\sqrt{x^2+y^2}\leq z\leq h\}$

Em coordenadas:

- ullet cilíndricas temos $rac{h}{R}r \leq z \leq h$;
- ullet esféricas temos $0 \le heta \le heta_0$ e

$$ho \leq rac{h}{\cos arphi}$$
, em que $\cos(arphi_0) = rac{h}{\sqrt{h^2 + R^2}}.$

$$\operatorname{vol}(C_{h,R}) = \int_0^{2\pi} \int_0^{\varphi_0} \int_0^{\frac{h}{\cos \varphi}} r^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \frac{1}{3} \pi \, R^2 h.$$

$$vol(C_{h,R}) = \int_0^{2\pi} \int_0^R \int_{\frac{h}{L}r}^h r \, dz \, dr \, d\theta = \frac{1}{3}\pi \, R^2 h.$$

Coordenadas esféricas: $x^2 + y^2 \le R^2$, $a \le z \le b$, com a < 0 < b e 0 < R

Em coordenadas esféricas temos $\rho \sin \varphi \le R$, $a \le \rho \cos \varphi \le b$. Deste modo $\varphi \in [0, 2\pi[$.

Note-se que ${\rm tg}(\alpha)=\frac{R}{b},\,{\rm tg}\,\beta=\frac{R}{a}$, etc.. Olhando apenas para o desenho obtemos

$$\int_{0}^{2\pi} \int_{0}^{\alpha} \int_{0}^{\frac{b}{\cos \varphi}} \rho^{2} \sin \varphi f(\cdots) d\rho d\varphi d\theta$$

$$+ \int_{0}^{2\pi} \int_{\alpha}^{\beta} \int_{0}^{\frac{R}{\sin \varphi}} \rho^{2} \sin \varphi f(\cdots) d\rho d\varphi d\theta$$

$$+ \int_{0}^{2\pi} \int_{\beta}^{\pi} \int_{0}^{\frac{a}{\cos \varphi}} \rho^{2} \sin \varphi f(\cdots) d\rho d\varphi d\theta$$

Experimente não usar a figura!

$$S = \{(x, y, z) : x^2 + y^2 + z^2 \le 2, \ z \le x^2 + y^2\}$$

O ponto de intersecção das duas linhas do desenho da direita corresponde a ho=1 e z=1 e daqui obtemos que.

$$\operatorname{vol}(S) = \int_0^{2\pi} \left(\int_0^{\frac{\pi}{4}} \int_0^{\sqrt{2}} \rho^2 \operatorname{sen} \varphi \, d\rho \, d\varphi + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \int_0^{\frac{\cos \varphi}{\sin^2 \varphi}} \rho^2 \operatorname{sen} \varphi \, d\rho \, d\varphi \right) d\theta$$

$$= \cdots = 2\pi \left(\frac{2}{3} \sqrt{2} - \frac{7}{12} \right)$$

$$\operatorname{vol}(S) = \int_0^{2\pi} \int_0^1 \int_{-2}^{\sqrt{2-r^2}} r \, dz \, dr \, d\theta.$$

$$S = \{(x, y, z) : x^2 + y^2 \le z \le y\}$$

S é definido por $r^2 \le z \le r \sin \theta$ e, portanto, o "desenho" vai depender de θ . É também claro que $\theta \in [0,\pi]$.

Note-se que
$$\cos \alpha = \frac{\sin \theta}{\sqrt{1 + \sin^2 \theta}}$$
 e $\sin \alpha = \frac{1}{\sqrt{1 + \sin^2 \theta}}$
$$\operatorname{vol}(S) = \int_0^\pi \int_\alpha^{\frac{\pi}{2}} \int_0^{\frac{\cos \varphi}{\sin^2 \varphi}} \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \dots = \frac{1}{32} \pi$$

$$\operatorname{vol}(S) = \int_0^\pi \int_0^{\sin \theta} \int_r^{r \sin \theta} r \, dz \, dr \, d\theta.$$

$$B = \{(x, y, z) : x, y, z \ge 0, z \le 4 - y^2, x \le 6\}$$
 - cartesianas (z)

É claro que $0 \le z \le 4$.

$$vol(B) = \int_0^4 \int_0^6 \int_0^{\sqrt{4-z}} dy \, dx \, dz = \dots = 32.$$

$$B = \{(x, y, z) : x, y, z \ge 0, z \le 4 - y^2, x \le 6\}$$
 - cartesianas (y)

É claro que $0 \le y \le 2$.

$$vol(B) = \int_0^2 \int_0^6 \int_0^{4-y^2} dz \, dx \, dy = \dots = 32.$$

$$B = \{(x, y, z) : x, y, z \ge 0, z \le 4 - y^2, x \le 6\}$$
 - cartesianas (x)

É claro que $0 \le x \le 6$.

$$vol(B) = \int_0^6 \int_0^2 \int_0^{4-y^2} dz \, dy \, dx = \dots = 32.$$

$$B = \{(x, y, z) : x, y, z \ge 0, z \le 4 - y^2, x \le 6\}$$
 - cilíndricas (z)

É claro que $0 \le z \le 2$.

$$\operatorname{vol}(B) = \int_0^2 \left(\int_0^{\operatorname{arctg}} \frac{\sqrt{4-z}}{6} \int_0^{\frac{6}{\cos \theta}} r \, dr \, d\theta + \int_{\operatorname{arctg}}^{\frac{\pi}{2}} \int_0^{\frac{\sqrt{4-z}}{\sin \theta}} r \, dr \, d\theta \right) dz = \dots = 32.$$

$$B=\{(x,y,z): x,y,z\geq 0,\ z\leq 4-y^2,\ x\leq 6\}$$
 - cilíndricas (θ)

Temos $0 \le z \le 4 - r^2 \sin^2 \theta$, $r \cos \theta \le 6$ e $0 \le \theta \le \frac{\pi}{2}$.

Separação: $arctg \frac{1}{3}$.

$$B = \{(x,y,z) : x,y,z \geq 0, \ z \leq 4-y^2, \ x \leq 6\}$$
 - (θ) - continuação

Temos $0 \le z \le 4 - r^2 \sin^2 \theta$, $r \cos \theta \le 6$ e $0 \le \theta \le \frac{\pi}{2}$.

Separação: $arctg \frac{1}{3}$.

$$B = \{(x,y,z) : x,y,z \ge 0, \ z \le 4 - y^2, \ x \le 6\}$$
 - (θ) - continuação

Temos $0 \le z \le 4 - r^2 \operatorname{sen}^2 \theta$, $r \cos \theta \le 6$ e $0 \le \theta \le \frac{\pi}{2}$.

$$vol(B) = \int_0^{\arctan \frac{1}{3}} \int_0^{\frac{6}{\cos \theta}} \int_0^{4-r^2 \sin^2 \theta} r \, dr \, dz \, d\theta + \int_{\arctan \frac{1}{3}}^{\frac{\pi}{2}} \int_0^{\frac{2}{\sin \theta}} \int_0^{4-r^2 \sin^2 \theta} r \, dr \, dz \, d\theta.$$

$$B = \{(x, y, z) : x, y, z \ge 0, z \le 4 - y^2, x \le 6\}$$
 - esféricas

$$\operatorname{vol}(B) = \int_{0}^{\operatorname{arctg}} \frac{1}{3} \int_{0}^{\operatorname{arctg}} \frac{\frac{3 \cos \theta}{20 \cos^{2} \theta - 18}}{\int_{0}^{\infty}} \int_{0}^{-\cos \varphi + \sqrt{\cos^{2} \varphi + 16 \sec^{2} \varphi \sec^{2} \theta}} \rho^{2} \sin \varphi \, d\rho \, d\varphi \, d\theta$$

$$+ \int_{0}^{\operatorname{arctg}} \frac{1}{3} \int_{\operatorname{arctg}}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} \int_{0}^{\frac{6 \cos \theta \sec \varphi}{\varphi - 18}} \rho^{2} \sin \varphi \, d\rho \, d\varphi \, d\theta$$

$$+ \int_{\operatorname{arctg}}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} \int_{0}^{-\cos \varphi + \sqrt{\cos^{2} \varphi + 16 \sec^{2} \varphi \sec^{2} \theta}} \rho^{2} \sin \varphi \, d\rho \, d\varphi \, d\theta.$$