Séptima Práctica Dirigida Grupo N°3

Análisis y Modelamiento Numérico I CM4F1 B

Profesor Ángel Enrique Ramírez Gutiérrez.

Aldo Luna Bueno Alejandro Escobar Mejia Carlos Aznarán Laos

Brian Huaman Garcia Khalid Izquierdo Ayllon Carlos Malvaceda Canales

Facultad de Ciencias

Universidad Nacional de Ingeniería

4 de julio del 2023

Lista de N° de pregunta / estudiante

Khalid Zaid Izquierdo Ayllón

Pregunta N°5

Pregunta N°9

Alejandro Escobar Mejia Pregunta N°17 Brian Alberto Huamán Garcia

Pregunta N°23 Carlos Alonso Aznarán Laos

Aldo Luna Bueno

Pregunta N°28

Pregunta N°29

Carlos Daniel Malvaceda Canales

5. El pentóxido de dinitrógeno gaseoso puro $N_2\,O_{5\,\mathrm{(g)}}$ reacciona en un reactor intermitente según la reacción estequiométrica

 $N_2O_5 \Longrightarrow 2N_2O_4 + O_2$

Calculamos la concentración de pentóxido de dinitrógeno existente en ciertos instantes, obteniendo los siguientes datos:

Tiempo (s)	0	200	400	650	1100	1900	2300
Concentración (mm)	5.5	5.04	4.36	3.45	2.37	1.32	0.71

Si lo tenemos en el reactor un tiempo máximo de 35 minutos (2100 segundos), determine la concentración de pentóxido de dinitrógeno que queda sin reaccionar, usando el polinomio de Taylor, Lagrange y Newton por diferencias divididas implementado.

Solución

9. Dada la tabla de valores

x_i	-1	0	1
y_i	13	7	9

- a) Determine el spline cúbico natural que interpola estos datos, imponiendo las condiciones requeridas y resolviendo el sistema.
- b) Dibujar el spline completo que interpola los datos, suponiendo que las derivadas primeras del spline en los nodos inicial y final son -5 y 5, respectivamente.

Solución

ı) .

- 17. Sea $f(x) = \exp(x)$ para $0 \le x \le 2$.
 - a) Aproxime f(0.25) mediante la interpolación lineal con $x_0 = 0$ y $x_1 = 0.5$. b) Aproxime f(0.75) mediante interpolación lineal con $x_0 = 0.5$ y $x_1 = 1$.
 - c) Aproxime f(0.25) y f(0.75) mediante el segundo polinomio de Lagrange con $x_0 = 0$, $x_1 = 1$ y $x_2 = 2$.

Solución

Polinomio de interpolación

Sean n+1 puntos distintos $\{(x_k,y_k)\}_{k=0}^n \subset [a,b] \times \mathbb{R}$ y $f \colon [a,b] \to \mathbb{R}$ una función de modo que $y_k = f(x_k)$ para $0 \le k \le n$.

Definición (Polinomio de interpolación en la forma de Lagrange)

$$\Pi_{n}f\left(x\right):=\sum_{k=0}^{n}y_{k}\ell_{k}\left(x\right)\in\mathbb{P}_{n},$$

donde $\ell_k\left(x\right)\coloneqq\prod_{\substack{j=0\\j\neq k}}^n\frac{x-x_j}{x_k-x_j}$ para $0\leq k\leq n$ son los *polinomios característicos* que satisface $\ell_k\left(x_j\right)=\delta_{kj}$.

La evaluación de $\Pi_n f(x)$ requiere $O\left(n^2\right)$ sumas y productos, en general, el algoritmo es numéricamente inestable.

Definición (Polinomio de interpolación en la forma de Newton)

$$\Pi_{n}f\left(x\right):=\sum_{k=0}^{n}a_{k}\omega_{k}\left(x\right)\in\mathbb{P}_{n},$$

lacksquare $a_k \coloneqq f\left[x_0,\ldots,x_k
ight]$ es la k-ésima diferencia dividida de Newton, y

$$k-1$$

 $ightharpoonup \omega_{k}\left(x
ight)\coloneqq\prod_{j=0}^{k-1}x-x_{j}$ es el polinomio nodal de grado k.

La evaluación de $\Pi_n f(x)$ requiere O(n).

donde

Definición (Interpolación baricéntrica de Lagrange)

Con el fin de realizar menos operaciones en la interpolación polinomial de Lagrange, multiplicamos por $\frac{1}{\omega_{n+1}(x)}$ y resulta

$$\frac{1}{\omega_{n+1}(x)} \Pi_{n} f(x) = \frac{1}{\omega_{n+1}(x)} \sum_{k=0}^{n} y_{k} \ell_{k}(x) = \frac{1}{\omega_{n+1}(x)} \sum_{k=0}^{n} y_{k} \prod_{\substack{j=0 \ j \neq k}}^{n} \frac{x - x_{j}}{x_{k} - x_{j}}.$$

$$= \sum_{k=0}^{n} \left\{ \frac{y_{k}}{\prod_{\substack{j=0 \ j \neq k}}^{n} x_{k} - x_{j}} \prod_{\substack{j=0 \ j \neq k}}^{n} x - x_{j}}{\omega_{n+1}(x)} \right\} = \sum_{k=0}^{n} \left\{ \frac{y_{k}}{\prod_{\substack{j=0 \ j \neq k}}^{n} x_{k} - x_{j}} \frac{1}{x - x_{k}} \right\}.$$

$$\Pi_{n} f(x) = \sum_{k=0}^{n} y_{k} \widetilde{\ell}_{k}(x) \in \mathbb{P}_{n},$$

donde

$$ightharpoonup \widetilde{\ell}_k(x) = \omega_{n+1}(x) \frac{b_k}{x-x_k}$$
, y

$$b_j = \frac{1}{\prod\limits_{\substack{j=0\\ i \neq k}}^n x_k - x_j} \text{ son los } \textit{pesos baricéntricos}.$$

Teorema

Para $0 \le k \le n$ se cumple $w'_{n+1}\left(x_k\right) = \prod\limits_{\substack{j=0\\j \ne k}}^n x_k - x_j.$

Demostración.

Si $\omega_{n+1}\left(x\right) \stackrel{\text{def}}{=} \prod_{i=0}^{n+1-1} x - x_{j} = \prod_{i=0}^{n} x - x_{j}$, entonces $\ln\left(\omega_{n+1}\left(x\right)\right) = \ln\left(\prod_{i=0}^{n} x - x_{j}\right) = \sum_{i=0}^{n} \ln\left(x - x_{j}\right)$. Derivando,

$$(\ln(\omega_{n+1}(x)))' = \left(\sum_{j=0}^{n} \ln(x - x_j)\right)' = \sum_{j=0}^{n} (\ln(x - x_j))'.$$

$$\frac{\omega'_{n+1}(x)}{\omega_{n+1}(x)} = \sum_{j=0}^{n} \frac{(x - x_j)'}{x - x_j} = \sum_{j=0}^{n} \frac{1}{x - x_j}.$$

$$w'_{n+1}(x) = \omega_{n+1}(x) \sum_{j=0}^{n} \frac{1}{x - x_j}.$$

$$w'_{n+1}(x) = \prod_{j=0}^{n} (x - x_j) \sum_{j=0}^{n} \frac{1}{x - x_j} = \prod_{j=0}^{n} x - x_j.$$

Si x_k un punto nodal cualesquiera, donde $0 \leq k \leq n$, entonces $w'_{n+1}\left(x_k\right) = \prod\limits_{j=0}^n x_k - x_j$.

Teorema

Si
$$\Pi_n f(x)$$
 el polinomio de Lagrange, entonces $\Pi_n f(x) = \sum_{k=0}^n \frac{\omega_{n+1}(x)}{(x-x_k)\omega_n^{k}(x_k)} y_k$.

Demostración.

$$\sum_{k=0}^{n} \frac{\omega_{n+1}(x)}{(x-x_{k}) \omega_{n+1}'(x_{k})} y_{k} = \sum_{k=0}^{n} y_{k} \frac{\prod_{\substack{j=0 \ j\neq k}}^{n} x-x_{j}}{(x-x_{k}) \prod_{\substack{j=0 \ j\neq k}}^{n} x_{k}-x_{j}} = \sum_{k=0}^{n} y_{k} \frac{\prod_{\substack{j=0 \ j\neq k}}^{n} x-x_{j}}{\prod_{\substack{j=0 \ j\neq k}}^{n} x_{k}-x_{j}} = \sum_{k=0}^{n} y_{k} \prod_{\substack{j=0 \ j\neq k}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}} = \sum_{k=0}^{n} y_{k} \ell_{k}(x) = \prod_{n} f(x).$$

Teorema

.

Teorema (Teorema de las diferencias divididas de orden superior)

Para $0 \le k \le n$ se cumple

$$a_k = f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}.$$

La evaluación de a_n requiere n^2 restas y $\frac{n^2}{2}$ divisiones.

Demostración.

Demostración

Teorema (Representación explícita de a_n)

¿Usar la identidad entre
$$\omega_{k}\left(x\right)$$
 y $\ell_{k}\left(x\right)$?

$$a_n = \sum_{k=0}^{n} \frac{f(x_k)}{w'_{n+1}(x_k)}.$$

Demostración.

$$\sum_{k=0}^{n} \frac{f(x_k)}{w'_{n+1}(x_k)} = \sum_{k=0}^{n} \frac{f(x_k)}{\prod_{\substack{j=0\\i\neq k}}^{n} x_k - x_j}$$

23. Using the functions ℓ_i defined in Section 6.1 (p. 312) and based on nodes x_0, x_1, \ldots, x_n , show that for any f

 $\sum_{k=0}^{n} f(x_k) \ell_k(x) = \sum_{k=0}^{n} f[x_0, x_1, \dots, x_k] \prod_{j=0}^{k-1} (x - x_j).$

(Continuation) Prove this formula:

$$f[x_0, x_1, \dots, x_n] = \sum_{k=0}^n f(x_k) \prod_{\substack{j=0 \ j = 0}}^n (x_k - x_j)^{-1}.$$

Solución

Sean n+1 puntos distintos $\{(x_k,y_k)\}_{k=0}^n\subset [a,b]\times \mathbb{R}$ y $f\colon [a,b]\to \mathbb{R}$ una función de modo que $y_k=f(x_k)$ para $0\leq k\leq n$.

$$\sum_{k=0}^{n} f(x_{k}) \ell_{k}(x) = \sum_{k=0}^{n} y_{k} \prod_{\substack{j=0 \ j \neq k}}^{n} \frac{x - x_{j}}{x_{k} - x_{j}}$$

por el teorema X

$$=\sum_{k=0}^{n}a_{k}\omega_{k}\left(x\right) .$$

$$\sum_{k=0}^{n} f(x_k) \prod_{\substack{j=0\\ i \neq k}}^{n} (x_k - x_j)^{-1} =$$

por el teorema Y

$$= a_k$$

Partiendo de la fórmula de interpolación de Lagrange y definiendo

resonad ac sa	.oa.a ac	ter peraeren	ac Lagrange y	acimiciac	
		n	1	1	

 $\lambda_i = \prod_{\substack{j=0 \ i \neq j}} \frac{1}{(x_i - x_j)} = \frac{1}{\prod_{\substack{j=0 \ i \neq j}}^n (x_i - x_j)} \qquad \mu_i = \frac{\lambda_i}{x - x_i}, i = 0, 1, \dots, n.$

que se denomina fórmula baricéntrica del proceso de interpolación de Lagrange.

 $p(x) = \frac{\sum_{i=0}^{n} \mu_i y_i}{\sum_{i=0}^{n} \mu_i}$

demostrar que si x no es un nodo, entonces el polinomio de interpolación se puede calcular mediante la fórmula:

Sabemos que

$$p(x) = \sum_{i=0}^{n} y_i \prod_{j=0}^{n} \frac{x - x_j}{x_i - x_j} = \sum_{i=0}^{n} y_i \frac{1}{x - x_i} \left(\prod_{j=0}^{n} \frac{1}{x_i - x_j} \right) \prod_{k=0}^{n} (x - x_k)$$

y por otra parte

$$\lambda_i = \prod_{\substack{j=0 \ j
eq i}}^n rac{1}{(x_i - x_j)} = rac{1}{\prod_{\substack{j=0 \ j
eq i}}^n (x_i - x_j)}, i = 0, 1, \dots, n$$

que depende solo de las abcisas x_k , y además

$$\mu_i = rac{\lambda_i}{x-x_i}, i=0,1,\ldots,n$$

que depende del valor x. Con estas definiciones, (1) se puede escribir en la forma

$$p(x) = \left(\sum_{i=0}^{n} \mu_i y_i\right) \prod_{k=0}^{n} (x - x_k)$$

Esta última forma (4) es válida para cualquier valor de los y_i , en particular cuando $y_i=1, i=0,1,\ldots,n$. Para estos valores de la función la única solución posible es p(x)=1 por el teorema 1.1. Por tanto, aplicando (4)

$$1 = \left(\sum_{i=0}^{n} \mu_i\right) \prod_{k=0}^{n} (x - x_k), \quad \forall x \Longrightarrow \prod_{k=0}^{n} (x - x_k) = \frac{1}{\sum_{i=0}^{n} \mu_i}$$

A partir entonces de (4) y (5) deducimos

 $p(x) = \frac{\sum_{i=0}^{n} \mu_i y_i}{\sum_{i=0}^{n} \mu_i}$

28. Encuentre la aproximación del polinomio lineal de cuadrados a $f(x) = x^2 + 3x + 2$ en el intervalo $[0,1]$.
Solución

29. Utilice los ceros de T_3 para construir un polinomio interpolador de grado 2 para $f\left(x\right)=\exp\left(x\right)$ en el intervalo $[-1,1]$.
Solución

Referencias

▶ Libros

- Günther Hämmerlin y Karl-Heinz Hoffman. *Numerical Mathematics*. Springer New York, 1991. DOI: 10.1007/978-1-4612-4442-4.
- David R. Kincaid y E. Ward Cheney. Numerical Mathematics and Computing. 7^a ed. Cengage Learning, 2012.
- David R. Kincaid et al. Análisis Numérico: las matemáticas del cálculo científico. 1ª ed. Addison Wesley Iberoamericana, 1994.
- Rainer Kress. Numerical Analysis. Springer New York, 1998. DOI: 10.1007/978-1-4612-0599-9_1.
- Alfio Quarteroni, Riccardo Sacco y Fausto Saleri. *Numerical Mathematics*. Springer Berlin Heidelberg, 2007. DOI: 10.1007/b98885.
- Artículos científicos
 - David Goldberg. "What Every Computer Scientist Should Know about Floating-Point Arithmetic". En: ACM Comput. Surv. 23.1 (mar. de 1991), págs. 5-48. ISSN: 0360-0300. DOI: 10.1145/103162.103163.
- Sitios web
 - $\label{eq:python Software Foundation. Python 3.11.4 documentation. URL: $$ $$ https://docs.python.org/3/library/functions.html#int (visitado 20-06-2023). $$$