

Conjuntos Relaciones y operaciones

¿Qué es un conjunto?

Un conjunto está bien definido si no hay ambigüedad en cuanto a los elementos que lo componen.

Conjunto de especies vegetales nativas del Parque Nacional Nahuel Huapi

Conjunto de especies con flores lindas del Parque Nacional Nahuel Huapi

¿Qué es un conjunto?

Es una colección de objetos considerada como un todo.

Por ejemplo:

- Las letras del alfabeto español
- Las especies de insectos
- Los números pares
- Los vertebrados acuáticos
- Las personas de esta clase que tienen DNI par

¿Cómo se escribe un conjunto?

Los objetos que componen a los conjuntos son llamados elementos. Los elementos de un conjunto pueden ser cualquier cosa: números, personas, letras, otros conjuntos, etc.

Los conjuntos se denotan por letras mayúsculas: A, B, C, etc.

La notación usual es encerrar entre llaves aquello que contiene el conjunto:

$$A = \{a, e, i, o, u\}$$

$$B = \{ \}$$

C = {letras de la palabra "camino"}

Relación entre elementos y conjuntos

Los elementos pertenecen o no pertenecen a los conjuntos. Si un elemento x pertenece a un conjunto A, simbólicamente escribimos $x \in A$

La relación entre un elemento y un conjunto es una relación de pertenencia:

 $x \in A$ o $x \notin A$

Conjunto Referencial o Universal

El **conjunto referencial** (o **universal**) es el conjunto formado por todos los objetos posibles de la clase de elementos de los conjuntos con los que trabajamos en un contexto dado. Se denota por ${\bf R}$ (o ${\bf U}$) .

Ejemplos:

En un problema que involucra **letras** el conjunto referencial es ... el alfabeto.

Si sólo involucra **personas de Bariloche** el referencial podría ser... el conjunto de personas que viven en esta ciudad.

Conjunto	¿Qué hay?	Relación	En símbolos	Relación	En símbolos
A: letras del alfabeto español	Letras	"a" es un elemento de A	$a \in A$	" π " no es un elemento de A	$\pi \notin A$
B: Las especies de insectos	Especies	Musca domestica es un elemento de B	Musca domestica ∈ B	Nothofagus dombeyi no es un elemento de B	Nothofagus dombeyi ∉ B
D: Las personas de esta clase que tienen DNI par	Personas	Juan Pérez un elemento de D	Juan Pérez ∈ D	Mónica no es un elemento de D	Mónica ∉ D

Inclusión Ejemplos A: Conjunto de personas que viven en América del Sur C: conjunto de personas del mundo que viven en países en los que el español es idioma oficial $C \not\subset A$ $A \not\subset C$

Formas de expresión de un conjunto

Hay dos formas de expresar un conjunto:

Por extensión: Enumerando sus elementos

 $A = \{a, e, i, o, u\}$

Por comprensión: Indicando alguna propiedad que cumplen sus elementos (solo estos), y un referencial

 $A = \{ x \in R / x \text{ es una vocal} \}$

Que se lee:

A es un conjunto formado por todos los elementos x pertenecientes al referencial R tales que (/)

x (cumple con la propiedad de ser) una vocal

Representación gráfica de un conjunto

Si tenemos tres conjuntos, quedan determinadas ocho regiones:

Tres regiones en las que ponemos los elementos de cada conjunto que no comparte con ningún otro

Si tenemos tres conjuntos, quedan determinadas ocho regiones: Una región donde ponemos los elementos que son comunes a los tres conjuntos

Si tenemos tres conjuntos, quedan determinadas ocho regiones: Tres regiones en las que ponemos los elementos comunes a dos de los conjuntos pero que no comparten con el tercero

Si tenemos tres conjuntos, quedan determinadas ocho regiones:

Una región donde ponemos los elementos de referencial que no pertenecen a ninguno de los tres conjuntos.

Evitando poner regiones innecesarias Representación gráfica de un conjunto ¿Y si tenemos más de tres conjuntos? Hay que usar la imaginación Evitando poner regiones innecesarias Evitando poner regiones innecesarias

COMPLEMENTO

El complemento de un conjunto A es un nuevo conjunto que denotaremos \overline{A} al cual pertenecen todos los elementos del referencial que no pertenecen a A. En símbolos:

$$\overline{A} = \{x \in R / x \notin A \}$$

Que se lee: El complemento del conjunto A es un conjunto formado por todos los elementos x pertenecientes al referencial R tales que (/) x no pertenece a A

Operaciones entre conjuntos

- Complemento
- Unión
- Intersección
- Diferencia (y diferencia simétrica)
- Producto cartesiano

COMPLEMENTO EJEMPLO

$$A = \{x \in R / x \text{ es un divisor de } 12\} = \{1,2,3,4,6,12\}$$

$$R = \{x \in N \mid x \le 20\} = \{1, 2, 3, 4, 5, \dots, 19, 20\}$$

$$\bar{A} = \{x \in R / x \text{ no es } \text{un divisor de } 12\} =$$

$$\bar{A} = \{5,7,8,9,10,11,13,14,1516,17,18,19,20\}$$

Operaciones entre conjuntos

UNIÓN

La **unión** de los conjuntos A y B es un nuevo conjunto que anotaremos como $A \cup B$ al que pertenecen todos los elementos pertenecientes a A o a B (o a ambos). En símbolos:

Que se lee: La unión de A y B está formada por los elementos x pertenecientes al referencial R tales que x pertenece a A o x pertenece a B (o a ambos)

Operaciones entre conjuntos

INTERSECCIÓN

La intersección de los conjuntos A y B es un nuevo conjunto que llamaremos A B al que pertenecen todos los elementos que pertenecen tanto a A como a B (es decir, sólo los elementos comunes a ambos conjuntos). En símbolos:

$$A \cap B = \{ x \in R / x \in A \mathbf{y} x \in B \}$$

Que se lee: La intersección de A y B está formada por los elementos x pertenecientes al referencial R tales que x pertenece a A y (también) x pertenece a B

Operaciones entre conjuntos

UNIÓN Ejemplo

$$A = \{1, 2, 3, 4, 5, 6\}$$
 $B = \{1, 3, 5, 7, 9\}$

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 9\}$$

Operaciones entre conjuntos

INTERSECCIÓN Ejemplo

$$A = \{1, 2, 3, 4, 5, 6\}$$
 $B = \{1, 3, 5, 7, 9\}$

$$A \cap B = \{1, 3, 5\}$$

Operaciones entre conjuntos

DIFERENCIA

La **diferencia** de los conjuntos A y B es un nuevo conjunto que llamaremos A B al que pertenecen todos los elementos que pertencen a A y no a B. En símbolos:

$$A - B = \{x \in R \mid x \in A \mathbf{y} x \notin B\}$$

Es decir en A – B están sólo los elementos de A que no son comunes con B

Operaciones entre conjuntos

DIFERENCIA Ejemplo

$$A = \{1, 2, 3, 4, 5, 6\}$$
 $B = \{1, 3, 5, 7, 9\}$

$$B - A = \{7,9\}$$

