• Common-Source (CS):

- > Biasing circuit not shown
- \triangleright Body at ground \Rightarrow No body effect

> By inspection, *Voltage Gain*:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{-g_{m}v_{1}(R_{D} || r_{0})}{v_{i}} = -g_{m}(R_{D} || r_{0})$$

- The *negative sign* in front implies 180° phase shift between v_i and v_0
 - v_i and v_0 are exactly out of phase
- For discrete circuits, in general, $R_D \ll r_0$ $\Rightarrow A_v = -g_m R_D$ (moderate)
- **► Input Resistance**: $R_i \rightarrow \infty$
- $ightharpoonup Output Resistance: R_0 = R_D || r_0 \approx R_D$
- > Note the remarkable similarity with CE stage

- For example If R_D >> r₀: $A_{v} = -g_{m}r_{0} = -k_{N}V_{GT}/(\lambda I_{D}) = -2/[\lambda(\Delta V)]$ $(assuming \lambda V_{DS} < 0.1)$
- Thus, for small λ and small ΔV , A_v can be large
 - Keep in mind that $\Delta V(min) = 3V_T$
- > Also, $A_v \propto 1/\sqrt{I_D}$ ⇒ Lower I_D , higher A_v
- ightharpoonup Recall: For CE stage, $A_v(max)$ was independent of I_C , and dependent only on T

- Common-Collector (CC):
 - ➤ Also known as *Emitter-Follower*

 $\begin{array}{c|c}
& + \\
& v_1 \\
& + \\
& v_2 \\
& v_0 \\
& + \\
& v_0 \\
&$

ac Schematic

ac Low-Frequency Equivalent

Simplified ac Low-Frequency Equivalent

> Biasing circuit not shown

> Voltage Gain:

$$A_{v} = \frac{v_{0}}{v_{i}} = \frac{i_{0}(R_{E} || r_{0})}{v_{1} + v_{0}} = \frac{(\beta + 1)i_{i}(R_{E} || r_{0})}{i_{i}r_{\pi} + (\beta + 1)i_{i}(R_{E} || r_{0})}$$
$$= \frac{R_{E} || r_{0}}{r_{\pi}/(\beta + 1) + (R_{E} || r_{0})} = \frac{R_{E} || r_{0}}{r_{E} + (R_{E} || r_{0})}$$

 \triangleright Now, in general, $r_0 >> R_E$

$$\Rightarrow A_v = R_E/(r_E + R_E)$$

- > Two important observations:
 - $A_v \leq 1$
 - No phase shift between v_i and v_0