PERTEMUAN 2:

ARRAY DAN POINTER

A. TUJUAN PEMBELAJARAN

Pada bab ini akan dijelaskan mengenai larik(array) dan pointer pada struktur data. Di modul ini, Anda harus mampu:

2.1 Merepresentasikan array dan pointer dalam bahasa pemrograman .

B. URAIAN MATERI

Tujuan Pembelajaran 2.1:

Array dan Pointer

Struktur Data Terdiri dari:

1. Struktur Data Linear:

Struktur data yang menggambarkan hubungan tentang elemen-elemen yang berdekatan

Aplikasi Array:

- Stack(tumpukan)
- Queue(antrian)
- ❖ Double Ended Queue/Deque(antrian dg 2 pintu)

Aplikasi Linked List:

- Linked Stack
- Linked Queue

Pengelolaan Memori:

☐ Secara STATIS

Menempati lokasi memeori yang tetap(fixed size), tidak dapat dikembangkan atau diciutkan.

Misal: array

☐ Secara DINAMIS

Menempati lokasi memeori yang dapat dikembangkan atau diciutkan sesuai dengan kebutuhan. Pengelolaan memori secar dinamis ditunjukan oleh pointer.

Misal: link list

Array:

Array adalah tipe terstruktur yang terdiri dari sejumlah komponen-komponen dengan tipe yang sama. Banyaknya komponen dalam suatu array adalah tetap dan lokasi dalam suatu array ditunjukan oleh suatu INDEKS.

Pengalamatan array → Statik

Karakteristik pemakaian array:

- Jumlah elemen array terbatas
- Semua elemen array dapat diakses secara acak
- Panjang elemen sama

1. Array 1D

Contoh: Sebuah array A[4] menyimpan data tipe int

Jum elemen array = 4 elemen

Panjang array = 4 elemen * 4 byte/elemen = 16 byte

Modul Struktur Data

Contoh Soal:

- 1.Suatu array dideklarasikan dengan A[9], setiap elemen terdiri dari 8 byte. Jika alamat elemen pertama sama dg 16FFH, ditanyakan :
 - a.Jumlah elemen array
 - b.Panjang array dalam byte
 - c.Alamat A[5]

Jawab:

1.
$$&A[0] = 16FFH$$

Lebar elemen = 8 byte/elemen

- a. Jumlah elemen array = 9 elemen
- b. Panjang array = 9 elemen x 8 byte/elemen = 72 byte
- c. &A[5] = ?

Perpindahan =
$$(5-0)$$
 elemen x 8 byte/elemen
= 40 byte = 28 H byte
&A[5] = 16 FFH + 28 H = 172 7H

Soal:

- 1.Suatu array dideklarasikan dengan int Angka[12]. Jika alamat elemen pertama 2C3EH, ditanyakan:
 - a.Jumlah elemen array
 - b.Jumlah byte seluruhnya (panjang array)
 - c.Alamat Angka[6]

2. Array 2D

Deklarasi A[I]{J]

- I: Jumlah baris
- J : Jumlah kolom

Urutan elemen dalam memori:

Urutan baris per baris (Row Major Order/RMO)

A[3][4]1 2 3 0 2 3 4 0 1 7 1 5 6 8 2 10 11 12

Urutan kolom per kolom (Column Major Order/CMO)

A[3][4] 0 1 2 3 7 1 4 0 10 1 2 5 8 11 2 3 6 9 12

Contoh:

int A[3][4]

&A[0][0]=1000H

a. Jika matrik diatas disimpan dengan urutan RMO, maka:

17	14	75	10	20	50	80	11	35	60	90	12
Baris O			Baris 1			Baris 2					

Tipe data int memerlukan 4 byte/elemen.

&A[0][1]=1004H, &A[0][2]=1008H, &A[0][3]=100BH &A[1][0]=1010H, &A[1][1]=1014H, &A[1][2]=1018 &A[1][3]=101B, &A[2][0]=1020, &A[2][1]=1024

B. Jika matrik disimpan dengan urutan CMO, maka:

17	20	35	14	50	60	75	80	90	10	11	12
K	olom	0	K	olom	1	K	olom	2	Ko	olom	3

&A[1][0]=1004H, &A[2][0]=1008H, &A[0][1]=100BH &A[1][1]=1010H, &A[2][1]=1014H

Modul Struktur Data

Penyelesaian tanpa melihat gambar:

a. Jika matrik diatas disimpan dengan urutan RMO, maka:

Jumlah elemen/baris = 4 elemen/baris

Pindah baris = 2 baris x 4 elemen/baris = 8 elemen

Pindah kolom = 1 kolom = 1 elemen

Total perpindahan = 8 + 1 = 9 elemen

= 9 elemen x 4 byte/elemen

= 36 byte = 24 H byte

Jadi &A[2][1] = 1000H + 24H = 1024H

b. Jika matrik diatas disimpan dengan urutan CMO, maka:

Jumlah elemen/kolom = 3 elemen/kolom

Ditanya : &A[2][1]

Diketahui : &A[0][0] _

2 1

Pindah kolom = 1 kolom x 3 elemen/kolom = 3 elemen

Pindah baris = 2 baris = 2 elemen

Total perpindahan = 3 + 2 = 5 elemen

= 5 elemen x 4 byte/elemen

= 20 byte = 14H byte

Jadi &A[2][1] = 1000H + 14H = 1014H

Soal:

Diketahui suatu array 2D yang dideklarasikan dengan int A[6][7]. Alamat elemen pertama 10CCH. Ditanyakan :

a.Jumlah elemen

b.Jumlah byte seluruhnya

c.Alamat A[2,5] (Penempatan dlm memori secara RMO dan CMO)

Modul Struktur Data

3. Array 3D

Diketahui array A[2][3][3] dengan lebar elemen 2 byte. Alamat elemen pertama 1000H. Ditanya &A[1][2][1]?

Jawab:

	0	1	2			
0	10	30	50			
1	25	15	17			
2	32	35	36			
Blok O						

	0	1	2			
0	50	12	17			
1	24	22	37			
2	46	11	18			
	Blok 1					

a.RMO

Jumlah elemen tiap baris = 3 elemen/baris Jumlah elemen tiap bolk = 9 elemen/blok

Ditanya : &A[1][2][1]

Diketahui : &A[0][0][0] _

1 2 1

Pindah kolom = 1 kolom = 1 elemen Pindah baris = 2 baris x 3 elemen/baris = 6 elemen Pindah blok = 1 blok x 9 elemen/blok = 9 elemen

Total perpindahan = 1 + 6 + 9 = 16 elemen x 2 byte/elemen = 32 byte = 20H byte

Jadi &A[1][2][1] = 1000H + 20H = 1020H

b. CMO

Jumlah elemen tiap kolom = 3 elemen/kolom Jumlah elemen tiap bolk = 9 elemen/blok

Ditanya : &A[1][2][1]

Diketahui : &A[0][0][0] _

1 2 1

Pindah kolom = 1 kolom x 3 elemen/kolom = 3 elemen

Pindah baris = 2 baris = 2 elemen

Pindah blok = 1 blok x 9 elemen/blok = 9 elemen

Tatal magning labors = $\frac{2}{3} + \frac{2}{3} + \frac{$

Total perpindahan = 3 + 2 + 9 = 14 elemen x 2 byte/elemen

= 28 byte = 1 CH byte

Jadi &A[1][2][1] = 1000H + 1CH = 101CH

C. DAFTAR PUSTAKA

Buku

- Esakov, Jeffrey, Tom Weiss, Data Structures An Advanced Approach Using C, Prentice-Hall, Inc. 1989
- 2. Hariyanto, Bambang, Struktur Data, Informatika Bandung, Pebruari 2000
- Kadir, Abdul, Pemrograman Dasar Turbo C, Andi Offset, Yogyakarta, 1991
- 4. Kruse, Robert L. Data Structures & Program Design, Prentice-Hall, Inc. 1987
- Standish, Thomas A. Data Structures, Algorithms & Software Principles In C, Addison Wesley, 1995