EXAMEN DE MATEMÁTICA DISCRETA II

Ejercicio 1.

- A. Enunciar el teorema de Bezout.
- **B.** Sean a, b y c números enteros no nulos. Demostrar que la ecuación ax + by = c tiene al menos una solución entera si y solo si mcd(a, b)|c.
- C. Hallar $x, y \in \mathbb{Z}$, $x \ge 5$, $y \le 16$ tales que 35x 15y = 80.

Ejercicio 2. Sean G y H grupos y considérese $K = G \times H = \{(g,h) : g \in G, h \in H\}$ con la operación * definida como

$$(g,h)*(g',h') = (gg',hh')$$
 si $g,g' \in G$ y $h,h' \in H$.

- **A.** Probar que K es un grupo con la operación *.
- **B.** Probar que $N = \{(g, e_H) : g \in G\}$ es un subgrupo normal de K.
- C. Probar que N es isomorfo a G. [Sugerencia: encontrar un isomorfismo entre ambos grupos.]
- **D.** Probar que K/N es isomorfo a H. [Sugerencia: considerar $\varphi \colon K \to H$, $\varphi(g,h) = h$.]

Ejercicio 3.

- **A.** Hallar el menor $x \in \mathbb{N}$ que verifica $\begin{cases} x \equiv 10 \mod 13 \\ x \equiv 91 \mod 101 \end{cases}$
- **B.** Si E es la función de encriptado con el método RSA con clave (n, e), descibir D la función de desencriptado y demostrar que desencripta.
- **C.** Si (n, e) = (1313, 271) calcular E(10).

Ejercicio 4.

- **A.** Sea $G = \langle g \rangle$ un grupo cíclico de orden n.
 - (i) Probar que $\forall m \in \mathbb{Z}, \langle g^m \rangle = \langle g^{\operatorname{mcd}(m,n)} \rangle$.
 - (ii) Si d|n, hallar el orden de g^d .
 - (iii) Probar que si H y K son dos subgrupos de G tal que |H| = |K|, entonces H = K.
- **B.** Sea $k \in \mathbb{Z}$, k > 2.
 - (i) Probar que $5^{2^{k-3}} \equiv 1 + 2^{k-1} \mod 2^k$. [Sugerencia: inducción en k.]
 - (ii) Hallar el $o(1+2^{k-1})$ y o(5) en $U(2^k)$.
- C. Concluir que no existen raíces primitivas módulo 2^k . [Sugerencia: encontrar dos subgrupos de orden 2 en $U(2^k)$].