

Global United Technology Services Co., Ltd.

Report No.: GTSE15070137001

FCC Report (WIFI)

Applicant: SK Telecom Co., Ltd.

Address of Applicant: SK T-Tower, 65, Eulji-ro, Jung-gu, Seoul, South Korea

Equipment Under Test (EUT)

Product Name: JETCAST wi-fi display device

Model No.: JET-1111AI

Trade Mark: JETCAST

FCC ID: 2ADMB-1111AI

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2014

Date of sample receipt: July 20, 2015

Date of Test: July 21-22, 2015

Date of report issued: July 23, 2015

Test Result: PASS *

Authorized Signature:

Robinson Lo Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS or testing done by GTS in connection with, distribution or use of the product described in this report must be approved by GTS in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 23, 2015	Original

Prepared By:	Sam. 900	Date:	July 23, 2015
	Project Engineer		
Check By:	hank. yan	Date:	July 23, 2015

Reviewer

3 Contents

			Page
1	cov	ER PAGE	1
2	VER	SION	2
3	CON	TENTS	3
4		T SUMMARY	
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	6
	5.5	TEST FACILITY	7
	5.6	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	
	7.4	CHANNEL BANDWIDTH	
	7.5	POWER SPECTRAL DENSITY	
	7.6	BAND EDGES	
	7.6.1	Conducted Emission Method	24
	7.6.2	Radiated Emission Method	27
	7.7	Spurious Emission	32
	7.7.1		
	7.7.2		
8	TES	T SETUP PHOTO	52
9	EUT	CONSTRUCTIONAL DETAILS	54

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)
Radiated Emission	1GHz ~ 26.5GHz	± 4.68dB	(1)
AC Power Line Conducted Emission 0.15MHz ~ 30MHz ± 3.45dB (1			
Note (1): The measurement unce	ertainty is for coverage factor of k	=2 and a level of confidence of 9	95%.

5 General Information

5.1 Client Information

Applicant:	SK Telecom Co., Ltd.
Address of Applicant:	SK T-Tower, 65, Eulji-ro, Jung-gu, Seoul, South Korea
Manufacturer:	Shenzhen Sunchip Technology Co., Ltd
Address of Manufacture:	Room 818-831, Building B1, Mingyou Purchasing Center, Baoyuan Road, Bao'an District, Shenzhen.

5.2 General Description of EUT

JETCAST wi-fi display device
JET-1111AI
802.11b/802.11g/802.11n(HT20): 2412MHz~2462MHz
802.11n(HT40): 2422MHz~2452MHz
802.11b/802.11g /802.11n(HT20): 11
802.11(HT40): 7
5MHz
802.11b: Direct Sequence Spread Spectrum (DSSS)
802.11g/802.11n(H20)/802.11n(H40):
Orthogonal Frequency Division Multiplexing (OFDM)
Integral antenna
2.0dBi(declare by Applicant)
Input: DC 5V/1A

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note: The frequencies band for 802.11n(HT40) are from channel 3 to channel 9.

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)		
rest channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)	
Lowest channel	2412MHz	2422MHz	
Middle channel	2437MHz	2437MHz	
Highest channel	2462MHz	2452MHz	

5.3 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
Demond Demonstration	die test elle en est en difere 050/ te 4450/ ef the eneminate test en est

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

5.4 Description of Support Units

Manufacturer	Description	Model	Serial Number	FCC ID/DoC
Emerson Network Power	USB Charger	A1299	N/A	DoC
PHILIPS	LCD TV	19PFL3120/T3	AU1A1212002906	DoC

Page 6 of 60

5.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 28, 2013.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, June 26, 2013.

5.6 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 27 2015	Mar. 26 2016		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	Spectrum Analyzer	Agilent	E4440A	GTS533	Dec. 4 2014	Dec. 3 2015		
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 30 2015	June 29 2016		
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 30 2015	June 29 2016		
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 26 2015	June 25 2016		
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 27 2015	Mar. 26 2016		
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
9	Coaxial Cable	GTS	N/A	GTS213	Mar. 28 2015	Mar. 27 2016		
10	Coaxial Cable	GTS	N/A	GTS211	Mar. 28 2015	Mar. 27 2016		
11	Coaxial cable	GTS	N/A	GTS210	Mar. 28 2015	Mar. 27 2016		
12	Coaxial Cable	GTS	N/A	GTS212	Mar. 28 2015	Mar. 27 2016		
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 30 2015	June 29 2016		
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 30 2015	June 29 2016		
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 26 2015	June 25 2016		
16	Band filter	Amindeon	82346	GTS219	Mar. 28 2015	Mar. 27 2016		
17	Power Meter	Anritsu	ML2495A	GTS540	June 30 2015	June 29 2016		
18	Power Sensor	Anritsu	MA2411B	GTS541	June 30 2015	June 29 2016		

Cond	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	Sep. 07 2013	Sep. 06 2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 30 2015	June 29 2016		
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 30 2015	June 29 2016		
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 30 2015	June 29 2016		
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	June 30 2015	June 29 2016		
6	Coaxial Cable	GTS	N/A	GTS227	June 30 2015	June 29 2016		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

Gen	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Barometer	ChangChun	DYM3	GTS257	July 07 2015	July 06 2016		

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is Integral antenna, the best case gain of the antenna is 2dBi

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:		Limit (c	IRu\/\		
Lilliit.	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.			
Test setup:	Reference Plane		_		
	ver				
Test procedure:	The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling impe	n network (L.I.S.N.). Thedance for the measuri	nis provides a ing equipment.		
	2. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs).				
	Both sides of A.C. line are of interference. In order to find positions of equipment and according to ANSI C63.10::	d the maximum emission all of the interface cab	on, the relative bles must be changed		
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Measurement data

Line:

Condition : FCC PART15 CLASSB QP LISN-2013 LINE

Job No. Test mode : 1370RF : WiFi mode

Test Engineer: Song

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	d₿	dBuV	dBu₹	dB	
1	0.389	49.25	0.11	0.11	49.47	58.08	-8.61	QP
2	0.389	37.19	0.11	0.11	37.41	48.08	-10.67	Average
3	0.461	47.43	0.12	0.11	47.66	56.67	-9.01	QP
4	0.461	31.96	0.12	0.11	32.19	46.67	-14.48	Average
4 5 6	1.021	42.71	0.14	0.13	42.98		-13.02	
6	1.021	29.40	0.14	0.13	29.67	46.00	-16.33	Average
7	1.449	42.82	0.12	0.13	43.07	56.00	-12.93	QP
8	1.449	29.35	0.12	0.13	29.60	46.00	-16.40	Average
9	2.962	41.52	0.15	0.15	41.82	56.00	-14.18	QP
10	2. 962	28.73	0.15	0.15	29.03	46.00	-16.97	Average
11	7.606	40.91	0.27	0.18	41.36	60.00	-18.64	QP
12	7.606	28.05	0.27	0.18	28.50	50.00	-21.50	Average

Neutral:

Condition : FCC PART15 CLASSB QP LISN-2013 NEUTRAL

Job No. : 1370RF Test mode : WiFi mode

Test Engineer: Song

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	d₿	dBu₹	dBu₹	dB	
1	0.398	48.05	0.06	0.11	48.22	57.90	-9.68	QP
2	0.398	36.10	0.06	0.11	36.27	47.90	-11.63	Average
2	0.471	48.24	0.06	0.11	48.41	56.49	-8.08	QP
4 5	0.471	35.03	0.06	0.11	35.20	46.49	-11.29	Average
5	0.672	42.69	0.07	0.13	42.89	56.00	-13.11	QP
6	0.672	29.71	0.07	0.13	29.91	46.00	-16.09	Average
7	1.021	42.39	0.07	0.13	42.59	56.00	-13.41	QP
8	1.021	29.68	0.07	0.13	29.88	46.00	-16.12	Average
9	1.698	39.01	0.09	0.14	39. 24	56.00	-16.76	QP
10	1.698	26. 24	0.09	0.14	26.47	46.00	-19.53	Average
11	7.175	41.62	0.18	0.17	41.97	60.00	-18.03	QP
12	7.175	29. 25	0.18	0.17	29.60	50.00	-20.40	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss
- 4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

7.3 Conducted Peak Output Power

Measurement Data

Test CH		Peak Outp	Limit(dBm)	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Lilliit(GDIII)	Result
Lowest	14.53	12.55	12.40	10.70		
Middle	14.55	12.35	12.42	10.63	30.00	Pass
Highest	14.68	12.23	12.73	10.40		

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	>500KHz		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Channel Ban	Limit(KHz)	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Lilliit(KHZ)	Nesuit
Lowest	9.640	15.992	15.178	33.893		
Middle	10.060	16.355	15.156	35.348	>500	Pass
Highest	9.575	16.133	15.378	35.323		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

Page 18 of 60

7.5 Power Spectral Density

Test Requirement:	FCC Part15 C Section 15.247 (e)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	8dBm		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data

Test CH		Power Spectra	Limit(dBm/3kHz)	Result		
	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(dBin/3Ki12)	Nesuit
Lowest	3.90	2.98	2.72	-1.55		
Middle	3.70	3.05	2.63	-0.84	8.00	Pass
Highest	3.79	2.87	2.59	-1.52		

Test plot as follows:

Test mode: 802.11b

Lowest channel

Middle channel

Highest channel

Test mode: 802.11g

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT20)

Lowest channel

Middle channel

Highest channel

Test mode: 802.11n(HT40)

Lowest channel

Middle channel

Highest channel

7.6 Band edges

7.6.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)		
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03		
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Test plot as follows:

Lowest channel

Test mode: Peak Search Agilent R T Next Peak Next Pk Right Next Pk Left Min Search Stop 2.422 00 GHz Sweep 10.72 ms (601 pts) 2.310 00 GHz BW 100 kHz Pk-Pk Search Mkr → CF More 1 of 2

Lowest channel

Highest channel

Lowest channel

Highest channel

Lowest channel

Highest channel

7.6.2 Radiated Emission Method

7.6.2 Radiated Emission Me	tiiou						
Test Requirement:	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:20	ANSI C63.10:2013					
Test Frequency Range:	All of the restrict 2500MHz) data		tested, only	the worst b	and's (2310MHz to		
Test site:	Measurement D						
Receiver setup:	Frequency	Detector	RBW	VBW	Value		
ricocitor cotap.		Peak	1MHz	3MHz	Peak		
	Above 1GHz	RMS	1MHz	3MHz	Average		
Limit:	Freque		Limit (dBuV/		Value		
		-	54.0		Average		
	Above 1	GHz	74.0		Peak		
Test setup:	EUT 3m <	m v v v v v v v v v v v v v v v v v v v	Antenna T Horn Anter Spectrum Analyzer Amplifie	nna			
Test Procedure:	the ground a determine the 2. The EUT was antenna, whi tower. 3. The antenna ground to de horizontal an measuremer 4. For each sus and then the and the rota the maximun 5. The test-rece Specified Ba 6. If the emission the limit specified be EUT where 10dB measuremer 7. The radiation And found the second	t a 3 meter care position of the set 3 meters ch was mounted the major that the m	mber. The tall e highest race away from the don the top of the top	ble was rotadiation. The interferer of a variable of the field one antennal was arrange has from 1 ragrees to 360 ak Detect Full discounting the emission of the emission of the media of t	r meters above the distrength. Both are set to make the ed to its worst case meter to 4 meters 0 degrees to find find unction and 10dB lower than and the peak values sions that did not using peak, quasi-		
Test Instruments:	Refer to section						
Test mode:	Refer to section	5.3 for details					
Test results:	Pass						

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test mode:	mode: 802.11b			Test channel:			Lowest		
Peak value									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	or (di	Level BuV/m)	Limit Line	i imit	Polarization
2390.00	51.92	27.59	5.38	34.01	1 !	50.88	74.00	-23.12	Horizontal
2400.00	61.02	27.58	5.39	34.01	1 !	59.98	74.00	-14.02	Horizontal
2390.00	53.62	27.59	5.38	34.01	1 !	52.58	74.00	-21.42	Vertical
2400.00	62.89	27.58	5.39	34.01	1 (61.85	74.00	-12.15	Vertical
Average value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	or (di	Level BuV/m)	Limit Line	I I imit	Polarization
2390.00	38.60	27.59	5.38	34.01	1 ;	37.56	54.00	-16.44	Horizontal
2400.00	46.93	27.58	5.39	34.01	1 4	45.89	54.00	-8.11	Horizontal
2390.00	40.44	27.59	5.38	34.01	1 ;	39.40	54.00	-14.60	Vertical
2400.00	48.07	27.58	5.39	34.01	1 4	47.03	54.00	-6.97	Vertical
Test mode:		802.1	1b		Test ch	nannel:		Highest	

Test mode: 802.11b	Test channel:	Highest
--------------------	---------------	---------

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	52.69	27.53	5.47	33.92	51.77	74.00	-22.23	Horizontal
2500.00	48.43	27.55	5.49	29.93	51.54	74.00	-22.46	Horizontal
2483.50	55.01	27.53	5.47	33.92	54.09	74.00	-19.91	Vertical
2500.00	50.99	27.55	5.49	29.93	54.10	74.00	-19.90	Vertical

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	39.01	27.53	5.47	33.92	38.09	54.00	-15.91	Horizontal
2500.00	35.06	27.55	5.49	29.93	38.17	54.00	-15.83	Horizontal
2483.50	40.98	27.53	5.47	33.92	40.06	54.00	-13.94	Vertical
2500.00	36.95	27.55	5.49	29.93	40.06	54.00	-13.94	Vertical

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 28 of 60

802.11g

Test mode:

Report No.: GTSE15070137001

Lowest

Peak value:	•							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.65	27.59	5.38	34.01	49.61	74.00	-24.39	Horizontal
2400.00	59.33	27.58	5.39	34.01	58.29	74.00	-15.71	Horizontal
2390.00	52.26	27.59	5.38	34.01	51.22	74.00	-22.78	Vertical
2400.00	60.86	27.58	5.39	34.01	59.82	74.00	-14.18	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.70	27.59	5.38	34.01	36.66	54.00	-17.34	Horizontal
2400.00	45.89	27.58	5.39	34.01	44.85	54.00	-9.15	Horizontal
2390.00	39.44	27.59	5.38	34.01	38.40	54.00	-15.60	Vertical
2400.00	46.94	27.58	5.39	34.01	45.90	54.00	-8.10	Vertical
Test mode:		802.1	1g	Tes	st channel:	F	lighest	
Peak value:				_				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.88	27.53	5.47	33.92	49.96	74.00	-24.04	Horizontal
2500.00	47.03	27.55	5.49	29.93	50.14	74.00	-23.86	Horizontal
2483.50	52.94	27.53	5.47	33.92	52.02	74.00	-21.98	Vertical
2500.00	49.35	27.55	5.49	29.93	52.46	74.00	-21.54	Vertical
Average value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
		27.52	5.47	33.92	36.99	54.00	-17.01	Horizontal
2483.50	37.91	27.53	J. + 1	00.02				
2483.50 2500.00	37.91 34.21	27.55	5.49	29.93	37.32	54.00	-16.68	Horizontal
					37.32 38.85	54.00 54.00	-16.68 -15.15	Horizontal Vertical
2500.00	34.21	27.55	5.49	29.93				

Test channel:

Global United Technology Services Co., Ltd.

1.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:

Peak value:

Report No.: GTSE15070137001

Lowest

Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	50.55	27.59	5.38	34.01	49.51	74.00	-24.49	Horizontal
2400.00	59.19	27.58	5.39	34.01	58.15	74.00	-15.85	Horizontal
2390.00	52.15	27.59	5.38	34.01	51.11	74.00	-22.89	Vertical
2400.00	60.69	27.58	5.39	34.01	59.65	74.00	-14.35	Vertical
Average va	lue:				•			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.62	27.59	5.38	34.01	36.58	54.00	-17.42	Horizontal
2400.00	45.80	27.58	5.39	34.01	44.76	54.00	-9.24	Horizontal
2390.00	39.36	27.59	5.38	34.01	38.32	54.00	-15.68	Vertical
2400.00	46.84	27.58	5.39	34.01	45.80	54.00	-8.20	Vertical
Test mode:		802.1	1n(HT20)	Te	st channel:	F	lighest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	50.73	27.53	5.47	33.92	49.81	74.00	-24.19	Horizontal
2500.00	46.91	27.55	5.49	29.93	50.02	74.00	-23.98	Horizontal
2483.50	52.76	27.53	5.47	33.92	51.84	74.00	-22.16	Vertical
2500.00	49.21	27.55	5.49	29.93	52.32	74.00	-21.68	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.82	27.53	5.47	33.92	36.90	54.00	-17.10	Horizontal
2500.00	34.14	27.55	5.49	29.93	37.25	54.00	-16.75	Horizontal
2483.50	39.67	27.53	5.47	33.92	38.75	54.00	-15.25	Vertical
2500.00	35.97	27.55	5.49	29.93	39.08	54.00	-14.92	Vertical
Remark:								

Test channel:

802.11n(HT20)

Global United Technology Services Co., Ltd.

Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building, No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:

Report No.: GTSE15070137001

Lowest

rest mode.		002.1	111(11170)	10.	ot charmer.	_	OWCSL	
Peak value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	49.76	27.59	5.38	34.01	48.72	74.00	-25.28	Horizontal
2400.00	58.14	27.58	5.39	34.01	57.10	74.00	-16.90	Horizontal
2390.00	51.31	27.59	5.38	34.01	50.27	74.00	-23.73	Vertical
2400.00	59.43	27.58	5.39	34.01	58.39	74.00	-15.61	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2390.00	37.07	27.59	5.38	34.01	36.03	54.00	-17.97	Horizontal
2400.00	45.16	27.58	5.39	34.01	44.12	54.00	-9.88	Horizontal
2390.00	38.73	27.59	5.38	34.01	37.69	54.00	-16.31	Vertical
2400.00	46.14	27.58	5.39	34.01	45.10	54.00	-8.90	Vertical
Test mode:		802.1	1n(HT40)	Tes	st channel:	ŀ	lighest	
Peak value	:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	49.61	27.53	5.47	33.92	48.69	74.00	-25.31	Horizontal
2500.00	46.04	27.55	5.49	29.93	49.15	74.00	-24.85	Horizontal
2483.50	51.48	27.53	5.47	33.92	50.56	74.00	-23.44	Vertical
2500.00	48.19	27.55	5.49	29.93	51.30	74.00	-22.70	Vertical
Average va	lue:	_			_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	37.14	27.53	5.47	33.92	36.22	54.00	-17.78	Horizontal
2500.00	33.61	27.55	5.49	29.93	36.72	54.00	-17.28	Horizontal
2483.50	38.92	27.53	5.47	33.92	38.00	54.00	-16.00	Vertical
2500.00	35.41	27.55	5.49	29.93	38.52	54.00	-15.48	Vertical
Remark:						_		

Test channel:

802.11n(HT40)

Global United Technology Services Co., Ltd.
Room 301-309, 3th Floor, Block A, Huafeng Jinyuan Business Building,
No. 300 Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen 518102

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

The emission levels of other frequencies are very lower than the limit and not show in test report.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.7 Spurious Emission

7.7.1 Conducted Emission Method

Test Requirement:	FCC Part15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V03					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 6.0 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Pass					

Test plot as follows:

Test mode:

802.11b

Lowest channel

30MHz~10GHz

10GHz~25GHz

Middle channel

Highest channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Copyright 2000-2012 Agilent Technologies

Page 33 of 60

Test mode:

802.11g

Lowest channel

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:

802.11n(HT20)

Lowest channel

30MHz~10GHz

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Test mode:

802.11n(HT40)

Lowest channel

30MHz~10GHz

R T Peak Search 14.300 GH: -45.38 dBm Atten 30 dB Next Peak Ref 20 dBm Next Pk Right Offst Next Pk Left Min Search Stop 25.000 GH: Sweep 1.434 s (601 pts) Res BW 100 kHz Pk-Pk Search #VBW 300 kHz Type Freq Amplitude -45.38 dBm X fixis 14.300 GHz Mkr → CF More 1 of 2 Copyright 2000-2012 Agilent Technologies

10GHz~25GHz

Middle channel

30MHz~10GHz

10GHz~25GHz

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Pa

7.7.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209										
Test Method:	ANSI C63.10:201	13										
Test Frequency Range:	30MHz to 25GHz	30MHz to 25GHz										
Test site:	Measurement Dis	Measurement Distance: 3m										
Receiver setup:	Frequency	Frequency Detector RBW VBW Value										
	30MHz-1GHz	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak										
	Above 4CU	Above 1GHz Quasi-peak 120KHz 300KHz Quasi-peak 120KHz 300KHz Quasi-peak 1MHz 3MHz Peak 1MHz 3MHz Average										
	Above IGHZ	RMS 1MHz 3MHz Average										
Limit:	Frequer	Frequency Limit (dBuV/m @3m) Value										
	30MHz-88	30MHz-88MHz 40.00 Quasi-peak										
	88MHz-216	88MHz-216MHz 43.50 Quasi-peak										
	216MHz-96	216MHz-960MHz 46.00 Quasi-peak										
	960MHz-1	960MHz-1GHz 54.00 Quasi-peak										
	A1	54.00 Average										
	Above 10	Above 1GHz 74.00 Peak										
	EUT	Antenna Tower										
Test Procedure:	Turn v 1.5m A A 1. The EUT was	in in	Spectrum Analyzer		200 for l							

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

	1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
	2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
	The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.
	7. The radiation measurements are performed in X, Y, Z axis positioning. And found the Y axis positioning which it is worse case, only the test worst case mode is recorded in the report.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Remark:

Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement Data

■ Below 1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
44.28	40.53	15.55	0.71	30.02	26.77	40.00	-13.23	Vertical
79.24	35.52	10.43	1.02	29.80	17.17	40.00	-22.83	Vertical
162.61	38.30	10.74	1.65	29.35	21.34	43.50	-22.16	Vertical
332.52	39.11	15.86	2.53	29.82	27.68	46.00	-18.32	Vertical
517.25	42.44	18.94	3.38	29.30	35.46	46.00	-10.54	Vertical
716.68	38.61	21.00	4.15	29.20	34.56	46.00	-11.44	Vertical
38.48	31.37	15.20	0.65	30.05	17.17	40.00	-22.83	Horizontal
62.65	34.70	13.63	0.88	29.90	19.31	40.00	-20.69	Horizontal
132.22	43.08	10.77	1.45	29.50	25.80	43.50	-17.70	Horizontal
274.19	41.08	14.50	2.24	29.83	27.99	46.00	-18.01	Horizontal
434.07	39.70	17.53	3.02	29.43	30.82	46.00	-15.18	Horizontal
677.58	40.50	20.73	4.00	29.22	36.01	46.00	-9.99	Horizontal

■ Above 1GHz

Test mode:		802.11b		Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.88	31.79	8.62	32.10	49.19	74.00	-24.81	Vertical
7236.00	34.59	36.19	11.68	31.97	50.49	74.00	-23.51	Vertical
9648.00	32.98	38.07	14.16	31.56	53.65	74.00	-20.35	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	39.46	31.79	8.62	32.10	47.77	74.00	-26.23	Horizontal
7236.00	34.29	36.19	11.68	31.97	50.19	74.00	-23.81	Horizontal
9648.00	32.54	38.07	14.16	31.56	53.21	74.00	-20.79	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.92	31.79	8.62	32.10	38.23	54.00	-15.77	Vertical
7236.00	23.44	36.19	11.68	31.97	39.34	54.00	-14.66	Vertical
9648.00	23.31	38.07	14.16	31.56	43.98	54.00	-10.02	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.97	31.79	8.62	32.10	37.28	54.00	-16.72	Horizontal
7236.00	22.86	36.19	11.68	31.97	38.76	54.00	-15.24	Horizontal
9648.00	22.28	38.07	14.16	31.56	42.95	54.00	-11.05	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.84	31.85	8.66	32.12	48.23	74.00	-25.77	Vertical
7311.00	34.60	36.37	11.71	31.91	50.77	74.00	-23.23	Vertical
9748.00	33.95	38.27	14.25	31.56	54.91	74.00	-19.09	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	40.24	31.85	8.66	32.12	48.63	74.00	-25.37	Horizontal
7311.00	33.20	36.37	11.71	31.91	49.37	74.00	-24.63	Horizontal
9748.00	33.82	38.27	14.25	31.56	54.78	74.00	-19.22	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.65	31.85	8.66	32.12	39.04	54.00	-14.96	Vertical
7311.00	22.90	36.37	11.71	31.91	39.07	54.00	-14.93	Vertical
9748.00	23.20	38.27	14.25	31.56	44.16	54.00	-9.84	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	30.33	31.85	8.66	32.12	38.72	54.00	-15.28	Horizontal
7311.00	22.28	36.37	11.71	31.91	38.45	54.00	-15.55	Horizontal
9748.00	23.53	38.27	14.25	31.56	44.49	54.00	-9.51	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11b			Test o	channel:		Highe	est	
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dE	tor	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
4924.00	45.72	31.90	8.70	32.	15	54.17	74.0	00	-19.83	Vertical
7386.00	35.49	36.49	11.76	31.8	83	51.91	74.0	00	-22.09	Vertical
9848.00	37.41	38.62	14.31	31.	77	58.57	74.0	00	-15.43	Vertical
12310.00	*						74.0	00		Vertical
14772.00	*						74.0	00		Vertical
17234.00	*						74.0	00		Vertical
4924.00	44.89	31.90	8.70	32.	15	53.34	74.0	00	-20.66	Horizontal
7386.00	34.33	36.49	11.76	31.8	83	50.75	74.0	00	-23.25	Horizontal
9848.00	33.55	38.62	14.31	31.	77	54.71	74.0	00	-19.29	Horizontal
12310.00	*						74.0	00		Horizontal
14772.00	*						74.0	00		Horizontal
17234.00	*						74.0	00		Horizontal
Average val	ue:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Prea Fac (dE	tor	Level (dBuV/m)	Limit (dBu\		Over Limit (dB)	polarization
4924.00	36.57	31.90	8.70	32.	15	45.02	54.0	00	-8.98	Vertical
7386.00	25.39	36.49	11.76	31.8	83	41.81	54.0	00	-12.19	Vertical
9848.00	25.89	38.62	14.31	31.	77	47.05	54.0	00	-6.95	Vertical
12310.00	*						54.0	00		Vertical
14772.00	*						54.0	00		Vertical
17234.00	*						54.0	00		Vertical
4924.00	35.21	31.90	8.70	32.	15	43.66	54.0	00	-10.34	Horizontal
7386.00	23.70	36.49	11.76	31.8	83	40.12	54.0	00	-13.88	Horizontal
9848.00	22.79	38.62	14.31	31.	77	43.95	54.0	00	-10.05	Horizontal
12310.00	*						54.0	00		Horizontal
14772.00	*						54.0	00		Horizontal
17234.00	*						54.0	00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	lowes	st	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	39.95	31.79	8.62	32.10	48.26	74.00	-25.74	Vertical
7236.00	34.00	36.19	11.68	31.97	49.90	74.00	-24.10	Vertical
9648.00	32.56	38.07	14.16	31.56	53.23	74.00	-20.77	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.67	31.79	8.62	32.10	46.98	74.00	-27.02	Horizontal
7236.00	33.78	36.19	11.68	31.97	49.68	74.00	-24.32	Horizontal
9648.00	32.15	38.07	14.16	31.56	52.82	74.00	-21.18	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val			,					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.06	31.79	8.62	32.10	37.37	54.00	-16.63	Vertical
7236.00	22.87	36.19	11.68	31.97	38.77	54.00	-15.23	Vertical
9648.00	22.91	38.07	14.16	31.56	43.58	54.00	-10.42	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertica
4824.00	28.23	31.79	8.62	32.10	36.54	54.00	-17.46	Horizontal
7236.00	22.36	36.19	11.68	31.97	38.26	54.00	-15.74	Horizontal
9648.00	21.90	38.07	14.16	31.56	42.57	54.00	-11.43	Horizontal
12060.00	*	_				54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.06	31.85	8.66	32.12	47.45	74.00	-26.55	Vertical
7311.00	34.11	36.37	11.71	31.91	50.28	74.00	-23.72	Vertical
9748.00	33.60	38.27	14.25	31.56	54.56	74.00	-19.44	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.59	31.85	8.66	32.12	47.98	74.00	-26.02	Horizontal
7311.00	32.77	36.37	11.71	31.91	48.94	74.00	-25.06	Horizontal
9748.00	33.50	38.27	14.25	31.56	54.46	74.00	-19.54	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	29.94	31.85	8.66	32.12	38.33	54.00	-15.67	Vertical
7311.00	22.43	36.37	11.71	31.91	38.60	54.00	-15.40	Vertical
9748.00	22.86	38.27	14.25	31.56	43.82	54.00	-10.18	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.71	31.85	8.66	32.12	38.10	54.00	-15.90	Horizontal
7311.00	21.86	36.37	11.71	31.91	38.03	54.00	-15.97	Horizontal
9748.00	23.22	38.27	14.25	31.56	44.18	54.00	-9.82	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11g		Tes	t channel:	High	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.38	31.90	8.70	32.15	52.83	74.00	-21.17	Vertical
7386.00	34.65	36.49	11.76	31.83	51.07	74.00	-22.93	Vertical
9848.00	36.80	38.62	14.31	31.77	57.96	74.00	-16.04	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.77	31.90	8.70	32.15	52.22	74.00	-21.78	Horizontal
7386.00	33.59	36.49	11.76	31.83	50.01	74.00	-23.99	Horizontal
9848.00	32.99	38.62	14.31	31.77	54.15	74.00	-19.85	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.34	31.90	8.70	32.15	43.79	54.00	-10.21	Vertical
7386.00	24.58	36.49	11.76	31.83	41.00	54.00	-13.00	Vertical
9848.00	25.32	38.62	14.31	31.77	46.48	54.00	-7.52	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.16	31.90	8.70	32.15	42.61	54.00	-11.39	Horizontal
7386.00	22.99	36.49	11.76	31.83	39.41	54.00	-14.59	Horizontal
9848.00	22.26	38.62	14.31	31.77	43.42	54.00	-10.58	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*					54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Lowe	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	40.11	31.79	8.62	32.10	48.42	74.00	-25.58	Vertical
7236.00	34.10	36.19	11.68	31.97	50.00	74.00	-24.00	Vertical
9648.00	32.63	38.07	14.16	31.56	53.30	74.00	-20.70	Vertical
12060.00	*					74.00		Vertical
14472.00	*					74.00		Vertical
16884.00	*					74.00		Vertical
4824.00	38.81	31.79	8.62	32.10	47.12	74.00	-26.88	Horizontal
7236.00	33.87	36.19	11.68	31.97	49.77	74.00	-24.23	Horizontal
9648.00	32.22	38.07	14.16	31.56	52.89	74.00	-21.11	Horizontal
12060.00	*					74.00		Horizontal
14472.00	*					74.00		Horizontal
16884.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4824.00	29.21	31.79	8.62	32.10	37.52	54.00	-16.48	Vertical
7236.00	22.97	36.19	11.68	31.97	38.87	54.00	-15.13	Vertical
9648.00	22.98	38.07	14.16	31.56	43.65	54.00	-10.35	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4824.00	28.36	31.79	8.62	32.10	36.67	54.00	-17.33	Horizontal
7236.00	22.45	36.19	11.68	31.97	38.35	54.00	-15.65	Horizontal
9648.00	21.97	38.07	14.16	31.56	42.64	54.00	-11.36	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	Midd	le	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	39.20	31.85	8.66	32.12	47.59	74.00	-26.41	Vertical
7311.00	34.19	36.37	11.71	31.91	50.36	74.00	-23.64	Vertical
9748.00	33.66	38.27	14.25	31.56	54.62	74.00	-19.38	Vertical
12185.00	*					74.00		Vertical
14622.00	*					74.00		Vertical
17059.00	*					74.00		Vertical
4874.00	39.70	31.85	8.66	32.12	48.09	74.00	-25.91	Horizontal
7311.00	32.85	36.37	11.71	31.91	49.02	74.00	-24.98	Horizontal
9748.00	33.56	38.27	14.25	31.56	54.52	74.00	-19.48	Horizontal
12185.00	*					74.00		Horizontal
14622.00	*					74.00		Horizontal
17059.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4874.00	30.06	31.85	8.66	32.12	38.45	54.00	-15.55	Vertical
7311.00	22.51	36.37	11.71	31.91	38.68	54.00	-15.32	Vertical
9748.00	22.92	38.27	14.25	31.56	43.88	54.00	-10.12	Vertical
12185.00	*					54.00		Vertical
14622.00	*					54.00		Vertical
17059.00	*					54.00		Vertical
4874.00	29.82	31.85	8.66	32.12	38.21	54.00	-15.79	Horizontal
7311.00	21.94	36.37	11.71	31.91	38.11	54.00	-15.89	Horizontal
9748.00	23.28	38.27	14.25	31.56	44.24	54.00	-9.76	Horizontal
12185.00	*					54.00		Horizontal
14622.00	*					54.00		Horizontal
17059.00	*					54.00		Horizontal

Remark:

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2. &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT20)	Test	channel:	High	est	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	44.62	31.90	8.70	32.15	53.07	74.00	-20.93	Vertical
7386.00	34.80	36.49	11.76	31.83	51.22	74.00	-22.78	Vertical
9848.00	36.91	38.62	14.31	31.77	58.07	74.00	-15.93	Vertical
12310.00	*					74.00		Vertical
14772.00	*					74.00		Vertical
17234.00	*					74.00		Vertical
4924.00	43.96	31.90	8.70	32.15	52.41	74.00	-21.59	Horizontal
7386.00	33.72	36.49	11.76	31.83	50.14	74.00	-23.86	Horizontal
9848.00	33.09	38.62	14.31	31.77	54.25	74.00	-19.75	Horizontal
12310.00	*					74.00		Horizontal
14772.00	*					74.00		Horizontal
17234.00	*					74.00		Horizontal
Average val	ue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4924.00	35.55	31.90	8.70	32.15	44.00	54.00	-10.00	Vertical
7386.00	24.72	36.49	11.76	31.83	41.14	54.00	-12.86	Vertical
9848.00	25.42	38.62	14.31	31.77	46.58	54.00	-7.42	Vertical
12310.00	*					54.00		Vertical
14772.00	*					54.00		Vertical
17234.00	*					54.00		Vertical
4924.00	34.34	31.90	8.70	32.15	42.79	54.00	-11.21	Horizontal
7386.00	23.11	36.49	11.76	31.83	39.53	54.00	-14.47	Horizontal
9848.00	22.35	38.62	14.31	31.77	43.51	54.00	-10.49	Horizontal
12310.00	*					54.00		Horizontal
14772.00	*	_				54.00		Horizontal
17234.00	*					54.00		Horizontal

Remark:

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(HT40)			Test channel:			Lowe	st	
Peak value:		•								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)	polarization
4844.00	38.66	31.81	8.63	32.11		46.99	74.00		-27.01	Vertical
7266.00	33.18	36.28	11.69	31.94		49.21	74.00		-24.79	Vertical
9688.00	31.97	38.13	14.21	31.52		52.79	74.00		-21.21	Vertical
12060.00	*						74.	00		Vertical
14472.00	*						74.	00		Vertical
16884.00	*						74.	00		Vertical
4844.00	37.58	31.81	8.63	32.11		45.91	74.	00	-28.09	Horizontal
7266.00	33.06	36.28	11.69	31.94		49.09	74.	00	-24.91	Horizontal
9688.00	31.61	38.13	14.21	31.52		52.43	74.	00	-21.57	Horizontal
12060.00	*						74.	00		Horizontal
14472.00	*						74.	00		Horizontal
16884.00	*						74.	00		Horizontal

Average value:

Average var								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4844.00	27.87	31.81	8.63	32.11	36.20	54.00	-17.80	Vertical
7266.00	22.09	36.28	11.69	31.94	38.12	54.00	-15.88	Vertical
9688.00	22.35	38.13	14.21	31.52	43.17	54.00	-10.83	Vertical
12060.00	*					54.00		Vertical
14472.00	*					54.00		Vertical
16884.00	*					54.00		Vertical
4844.00	27.20	31.81	8.63	32.11	35.53	54.00	-18.47	Horizontal
7266.00	21.67	36.28	11.69	31.94	37.70	54.00	-16.30	Horizontal
9688.00	21.38	38.13	14.21	31.52	42.20	54.00	-11.80	Horizontal
12060.00	*					54.00		Horizontal
14472.00	*					54.00		Horizontal
16884.00	*					54.00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT40)	Test channel:		channel:	Middle			
Peak value:										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)		Over Limit (dB)	polarization
4874.00	38.00	31.85	8.66	32.12		46.39	74.	00	-27.61	Vertical
7311.00	33.43	36.37	11.71	31.91		49.60	74.	00	-24.40	Vertical
9748.00	33.12	38.27	14.25	31.56		54.08	74.	00	-19.92	Vertical
12185.00	*						74.00			Vertical
14622.00	*						74.00			Vertical
17059.00	*						74.00			Vertical
4874.00	38.69	31.85	8.66	32	.12	47.08	74.00		-26.92	Horizontal
7311.00	32.18	36.37	11.71	31.91		48.35	74.00		-25.65	Horizontal
9748.00	33.06	38.27	14.25	31.56		54.02	74.00		-19.98	Horizontal
12185.00	*						74.00			Horizontal
14622.00	*						74.00			Horizontal
17059.00	*						74.	00		Horizontal
Average val										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Fa	amp ctor IB)	Level (dBuV/m)	Limit (dBu		Over Limit (dB)	polarization
4874.00	28.96	31.85	8.66	32	.12	37.35	54.	00	-16.65	Vertical
7311.00	21.78	36.37	11.71	31	.91	37.95	54.	00	-16.05	Vertical
9748.00	22.40	38.27	14.25	31	.56	43.36	54.	00	-10.64	Vertical
12185.00	*						54.	00		Vertical
14622.00	*						54.	00		Vertical
17059.00	*						54.	00		Vertical
4874.00	28.87	31.85	8.66	32.12		37.26	54.	00	-16.74	Horizontal
7311.00	21.29	36.37	11.71	31.91		37.46	54.	00	-16.54	Horizontal
9748.00	22.79	38.27	14.25	31	.56	43.75	54.	00	-10.25	Horizontal
12185.00	*						54.	00		Horizontal
14622.00	*						54.	00		Horizontal
17059.00	*						54.	00		Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. "*", means this data is the too weak instrument of signal is unable to test.

Test mode:		802.11n(H	IT40)	Test c		hannel:	Higl	nest	
Peak value:									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)		Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	42.55	31.88	8.68	32.13		50.98	74.00	-23.02	Vertical
7356.00	33.49	36.45	11.75	31.86		49.83	74.00	-24.17	Vertical
9808.00	35.97	38.43	14.29	31.68		57.01	74.00	-16.99	Vertical
12310.00	*						74.00		Vertical
14772.00	*						74.00		Vertical
17234.00	*						74.00		Vertical
4904.00	42.22	31.88	8.68	32.13		50.65	74.00	-23.35	Horizontal
7356.00	32.58	36.45	11.75	31.86		48.92	74.00	-25.08	Horizontal
9808.00	32.23	38.43	14.29	31.68		53.27	74.00	-20.73	Horizontal
12310.00	*						74.00		Horizontal
14772.00	*						74.00		Horizontal
17234.00	*						74.00		Horizontal
Average val									
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Pream Facto (dB)	r	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4904.00	33.64	31.88	8.68	32.13	3	42.07	54.00	-11.93	Vertical
7356.00	23.46	36.45	11.75	31.86	3	39.80	54.00	-14.20	Vertical
9808.00	24.52	38.43	14.29	31.68	3	45.56	54.00	-8.44	Vertical
12310.00	*						54.00		Vertical
14772.00	*						54.00		Vertical
17234.00	*						54.00		Vertical
4904.00	32.70	31.88	8.68	32.13	3	41.13	54.00	-12.87	Horizontal
7356.00	22.00	36.45	11.75	31.86	6	38.34	54.00	-15.66	Horizontal
9808.00	21.52	38.43	14.29	31.68	3	42.56	54.00	-11.44	Horizontal
12310.00	*						54.00		Horizontal
14772.00	*						54.00		Horizontal
17234.00	*						54.00		Horizontal

Remark:

¹ Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

^{2 &}quot;*", means this data is the too weak instrument of signal is unable to test.

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

----end-----