Support Vector Machines

Nipun Batra June 22, 2020

IIT Gandhinagar

Non-Linearly Separable Data

Data not separate in $\mathbb R$ Can we still use SVM? Yes!

How? Project data to a higher dimensional space.

Non-Lineary Separable Data

Non-Lineary Separable Data

Another Example Transformation

Projection/Transformation Function

```
\phi: \mathbb{R}^d \to \mathbb{R}^D where, d = original dimension D = new dimension In our example: d=1; D=2
```

Linear SVM:

Maximize

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \overline{x_i}. \overline{x_j}$$

such that constriants are satisfied.

Transformation (ϕ)

$$L(\alpha) = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \phi(\overline{x_i}).\phi(\overline{x_j})$$

Trivial Example (Again)

Steps

1. Compute $\phi(x)$ for each point

$$\phi: \mathbb{R}^d \to \mathbb{R}^D$$

- 2. Compute dot products over \mathbb{R}^D space
- Q. If D >> dBoth steps are expensive!

```
Can we compute K(\bar{x}_i, \bar{x}_j) s.t. K(\bar{x}_i, \bar{x}_j) = \phi(\bar{x}_i).\phi(\bar{x}_j) where, K(\bar{x}_i, \bar{x}_j) \text{ is some function of dot product in original dimension } \phi(\bar{x}_i).\phi(\bar{x}_j) \text{ is dot product in high dimensions (after transformation)}
```


$$\phi(x) = <\sqrt{2}x, x^2 >$$
 $K(x_i, x_j) = (1 + x_i x_j)^2 - 1$ where $x_i x_j$ is dot product in lower dimensions

$$(1 + x_i x_j)^2 - 1 = 1 + 2x_i x_j + x_i^2 x_j^2 - 1$$

$$= \langle \sqrt{2}x_i, x_i^2 \rangle \cdot \langle \sqrt{2}x_j, x_j^2 \rangle$$

$$= \phi(x_i) \cdot \phi(x_j)$$

Oniginal Datoset				
#	N -2	707		
1 2	-1	-1		
3	0	1		
1	1			

Tamsformed	D40	.set
# 527	ж ² 4	B
1 -2/2	4	ĭ
2 - 52	1	-1
3 0	0	1
	\ !	1

 $\phi(x_1) = <-2\sqrt{2}, 4>; \phi(x_2) = <-\sqrt{2}, 1>$ Transformation $\phi(x_1)\phi(x_2) = -2\sqrt{2} \times -\sqrt{2} + 4 \times 1 = 8$ Dot product in 2D $K(x_1, x_2) = \{1 + (-2) \times (-1)\}^2 - 1$ Dot product in 1D

Q) Why did we use dual form? Kernels again!!

Primal form doesn't allow for the kernel trick $K(\bar{x}_1,\bar{x}_2)$ in dual and compute $\phi(x)$ and then dot product in D dimensions

Gram Matrix: (Positive Semi-Definite)

Another Example

Q) What is $\phi(x)$?

$$K(\bar{x}, \bar{x'}) = \phi(\bar{x})\phi(\bar{x'})$$

$$K(\bar{x}, \bar{x'}) = \left\{ \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} x'_1 \\ x'_2 \end{bmatrix} \right\}^2 = (x_1x'_1 + x_2x'_2)^2$$

$$\implies \phi(x) = \langle x_1^2, \sqrt{2}x_1x_2, x_2^2 \rangle = x_1^2x_1'^2 + x_2^2x_2'^2 + 2x_1x_1'x_2x_2'$$

Another Example

Some Kernels

- 1. Linear: $K(\bar{x}_1, \bar{x}_2) = \bar{x}_1 \bar{x}_2$
- 2. Polynomial: $K(\bar{x}_1, \bar{x}_2) = (p + \bar{x}_1 \bar{x}_2)^q$
- 3. Gaussian: K(\bar{x}_1, \bar{x}_2) = $e^{-\gamma||\bar{x}_1 \bar{x}_2||^2}$ where $\gamma = \frac{1}{2\sigma^2}$ Also called Radial Basis Function (RBF)

Kernels

Q) For
$$\bar{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 what space does kernel $K(\bar{x}, \bar{x'}) = (1 + \bar{x}\bar{x'})^3$ belong to? $\bar{x} \in \mathbb{R}^2$ $\phi(\bar{x}) \in \mathbb{R}^?$
$$K(x,z) = (1 + x_1z_1 + x_2z_2)^3 = \dots = <1, x_1, x_2, x_1^2, x_2^2, x_1^2x_2, x_1x_2^2, x_1^3, x_2^3, x_1x_2 > 10 \text{ dimensional?}$$

Kernels

Q) For $\bar{x} = x$; what space does RBF kernel lie in?

$$K(x,z) = e^{-\gamma||x-z||^2}$$
$$= e^{-\gamma(x-z)^2}$$

Now:

$$e^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha^n}{n!}$$

 $\therefore e^{-\gamma(x-z)^2}$ is ∞ dimensional!!

SVM: Parametric or Non-Parametric

Q) Is SVM parametric or non-parametric?

SVM: Parametric or Non-Parametric

Q) Is SVM parametric or non-parametric?
 Yes and No
 Yes → Linear kernel or polynomial kernel (form fixed)
 No → RBF (form changes with data)

$$\hat{y}(x_{test}) = sign(\bar{w}\bar{x}_{test} + b)$$

$$= sign(\sum_{j=1}^{N_{SV}} \alpha_j y_j \bar{x}_j \bar{x}_{test} + b)$$

$$\hat{y}(X_{test}) = sign(\sum_{j=1}^{N} \alpha_j y_j K(\bar{x}_j, \bar{x}_{test}) + b)$$

 $\alpha_j = 0$ where $j \neq S.V.$

Now $K(\bar{x}_j, \bar{x}_{test})$ for RBF is:

$$e^{-\gamma||\bar{x}_j-\bar{x}_{test}||^2}$$

 \therefore Hypothesis is a function of "all" train points Closer \bar{x} is to \bar{x}_N ; more is it influencing $\hat{y}(\bar{x})$ - hypothesis

function

 $\boldsymbol{\cdot}$ Now if we add a point to the dataset

- \cdot Now if we add a point to the dataset
- Functional form can adapt (similar to KNN)

- Now if we add a point to the dataset
- Functional form can adapt (similar to KNN)
- · .:. SVM with RBF kernel is non-parametric

•
$$\hat{y}(x) = sign(\sum \alpha_i y_i e^{-||x-x_i||^2} + b)$$

$$\hat{y}(x) = sign(\sum \alpha_i y_i e^{-||x-x_i||^2} + b)$$

 $\cdot -||x-x_i||^2$ corresponds to radial term

•
$$\hat{y}(x) = sign(\sum \alpha_i y_i e^{-||x-x_i||^2} + b)$$

- $\cdot -||x-x_i||^2$ corresponds to radial term
- $\sum \alpha_i y_i$ is the activation component

•
$$\hat{y}(x) = sign(\sum \alpha_i y_i e^{-||x-x_i||^2} + b)$$

- $\cdot -||x-x_i||^2$ corresponds to radial term
- $\sum \alpha_i y_i$ is the activation component
- $e^{-||\mathbf{x}-\mathbf{x}_i||^2}$ is the basis component

RBF: Effect of γ

 γ : How far is the influence of a single training sample

