Introduction to ML

Machine Learning is the study

and production of algorithms

and make predictions on data

that can learn from

https://www.fokus.fraunhofer.de/en/fame/workingareas/ai

Supervised Learning

Formalism

- Hypothesis space: H
- Vector spaces: **X**, **y**
- Data: X_{train}, y_{train}
- Performance metric: L(f(X), y)
- **Assumption:** H is rich enough such that the true f^* exists, $f(X) \approx y$.
- Goal:

Find f' in **H** such that

$$L(f'(X), y) \approx L(f^*(X), y) \approx \min_{f \text{ in } H} L(f(X), y)$$

Data Representation

one feature

outputs / labels

Approximation

• First idea, minimize

$$L(f(X_{train}), y_{train}).$$

⇒ **Trivia:** what can go wrong?

Generalization

• "Memorizing" the information we have can be optimistic but misleading.

Our model should be able to work well on unseen circumstances.

 Provided that our training data is a representative sample of the problem space, how can we do that?

Supervised Learning

Cross Validation

Holdout Validation

Supervised Learning Taxonomy

- Response type:
 - Classification
 - Binary classification
 - Multi-class
 - Regression
 - Single-output
 - Multi-objective
- Approximating family
 - Parametric
 - Non-parametric

Examples

Unsupervised Learning

Unsupervised Learning

Examples

Anomaly/change detection

Customer Segmentation

Clustering

Reinforcement Learning

Reinforcement Learning / Black-box Optimization

• Interaction of an agent in an unknown, difficult to describe environment.

• Sparse signal / Credit assignment problem

Requires access to real world (or at least to a simulator).

Policy methods

• Parameterize the behaviour of the agent as a function of the state.

Calculate obtained reward (or incurred loss).

Generate a new parameter with an update rule that depends on the reward.

Recap

Three types of machine learning

Different input/output structure.

Many applications!