第十四章 电磁场

一 选择题

- 1. 对位移电流,有下述四种说法,请指出哪一种说法正确。()
- (A) 位移由流是由变化电场产生的。
- (B) 位移电流是由线性变化磁场产生的。
- (C) 位移电流的热效应服从焦尔—楞次定律。
- (D) 位移电流的磁效应不服从安培环路定理。

解: 本题选(A)。

- 2. 在感应电场中电磁感应定律可以写成 $\oint_L E_K \cdot dI = -\frac{d\Phi}{dt}$,式中 E_K 为感应电场的电场强度。
- 此式表明: (
 - (A) 闭合曲线 $l \perp E_K$ 处处相等。
 - (B) 感应电场是保守场。
 - (C) 感应电场的电力线不是闭合曲线。
 - (D) 在感应电场中不能像对静电场那样引入电势的概念。

解: 本题选 (D)。

3. 在非稳恒情况下, 电流连续性方程可以写成: (

$$A. \quad \oiint \boldsymbol{J} \cdot d\boldsymbol{S} = 0$$

B.
$$\iint \mathbf{J} \cdot d\mathbf{S} = \frac{dq}{dt}$$

C.
$$\iint (\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}) \cdot d\boldsymbol{S} = 0$$

C.
$$\oiint (\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}) \cdot d\boldsymbol{S} = 0$$
 D.
$$\oiint (\boldsymbol{J} + \frac{\partial \boldsymbol{D}}{\partial t}) \cdot d\boldsymbol{S} = -\frac{dq}{dt}$$

解: 本题洗(C)。

4. 由两个圆形金属板组成的平行板电容器, 其极板面积为 A, 将该电容器接于交流电源时, 极板上的电荷随时间变化,即 $q=q_0\sin\omega t$,则电容器内的位移电流密度为: (

A.
$$q_0 \omega \cos \omega t$$

A.
$$q_0 \omega \cos \omega t$$
 B. $\frac{q_0 \omega}{A} \cos \omega t$ C. $\frac{q_0}{A} \cos \omega t$ D. $q_0 \omega A \cos \omega t$

C.
$$\frac{q_0}{A}\cos\omega t$$

D.
$$q_0 \omega A \cos \omega t$$

1

 \mathbf{m} : 当电容器极板上的电荷为 q 时,电荷面密度 $\sigma = \frac{q}{\Lambda}$,这时电容器内电位移矢量 $D = \sigma = \frac{q}{\Lambda}$ 。

因为 $q=q_0\sin\omega t$,所以 $D=\frac{q_0\sin\omega t}{\Delta}$:: $J=\frac{\partial D}{\partial t}=\frac{\omega q_0\cos\omega t}{\Delta}$ 所以选(B)。

二 填空题

1. 平行板电容器的电容 C 为 20.0 μ F, 两板上的电压变化率 $dU/dt=1.50 \times 10^5 \text{V} \cdot \text{s}^{-1}$. 则该平 行板电容器中的位移电流为____。

解:
$$I_d = C \cdot \frac{dU}{dt} = 3A$$

2. 圆形平行板电容器,从q=0开始充电,试画出充电过程中,极板间某点P处电场强度的

方向和磁场强度的方向。

3. 一般电磁场的能量密度表达式为____。

$$\mathbf{M}: \ \frac{1}{2}\varepsilon_0\varepsilon_{\mathrm{r}}E^2 + \frac{1}{2}\mu_0\mu_{\mathrm{r}}H^2$$

三 计算题

1. 在一对平行圆形极板组成的电容器(电容 $C=1\times10^{-12}$ F)上,加上频率为 50Hz 的峰值为 1.74×10^{5} V 的余弦交变电压,计算极板间的位移电流的最大值。

- 2. 一平行板电容器,极板是半径为 R 的两圆形金属板,极间为空气,此电容器与交流电源相接,极板上带电量时间变化的关系为 $q = q_0 \sin \omega t$ (ω 为常量),忽略边缘效应,求:
 - (1) 电容器极板间位移电流及位移电流密度:
 - (2) 两极板间离中心轴线距离为r(r < R) 处的磁场强度H的大小;
- (3) 当 $\omega t = \pi/4$ 时,离中心轴线距离 r(r < R) 处的电磁场能量密度(即电场能量密度与磁场能量密度之和)。

M: (1)
$$I_d = d q / d t = q_0 \omega \cos \omega t$$

$$J_{\rm d} = I_{\rm d} / S = q_0 \omega \cos \omega \, t / (\pi \, R^2)$$

$$(2) \quad \oint_{L} \boldsymbol{H} \cdot d\boldsymbol{l} = \iint_{S} \boldsymbol{J}_{d} d\boldsymbol{S}$$

$$\therefore 2\pi \ rH = q_0 \omega \pi r^2 \cos \omega t / (\pi R^2)$$

 $H = q_0 \omega \pi \ r \cos \omega t / (2\pi R^2)$

(3)
$$D = \sigma = q/(\pi R^2)$$
, \underline{H} . $q = q_0 \sin \omega t = \frac{\sqrt{2}}{2} q_0$

$$\therefore E = D/\varepsilon_0 = \sqrt{2} q_0 / (2 \pi R^2 \varepsilon_0)$$

$$w = \frac{1}{2} \mu H^2 + \frac{1}{2} DE = \frac{1}{2} \mu H^2 + \frac{1}{2} \varepsilon_0 E^2 = \frac{{q_0}^2}{4\pi^2 R^4} (\frac{\mu_0 \omega^2 r^2}{4} + \frac{1}{\varepsilon_0})$$

3. 一内导体为半径为 R_1 ,外导体半径为 R_2 的球形电容器,两球间充有相对电容率为 ε_r 的介质,在电容器上加电压,内球对外球的电压为: $U=U_0\sin\omega t$ 。假设 ω 不太大,以致电容器电场分布与静态场情形近似相同,求介质中各点的位移电流密度,再计算通过半径为 r ($R_1 < r < R_2$) 的球面的总位移电流。

解:
$$E = \frac{q(t)}{4\pi \varepsilon_0 \varepsilon_r r^2}$$
 $U = \frac{q(t)}{4\pi \varepsilon_0 \varepsilon_r} (\frac{1}{R_1} - \frac{1}{R_2}) = \frac{q(t)(R_2 - R_1)}{4\pi \varepsilon_0 \varepsilon_r R_1 R_2}$ $E = \frac{UR_1R_2}{r^2(R_2 - R_1)}$ 位移电流密度: $\mathbf{J}_{\mathrm{d}} = \frac{\partial \mathbf{D}}{\partial t} = \varepsilon_0 \varepsilon_r \frac{\partial \mathbf{E}}{\partial t} = \frac{\varepsilon_0 \varepsilon_r R_1 R_2}{r^2(R_2 - R_1)} U_0 \omega \cos \omega t \mathbf{r}_0$ $I_{\mathrm{d}} = \int \mathbf{J}_{\mathrm{d}} \cdot \mathrm{d}\mathbf{S} = J_{\mathrm{d}} \cdot 4\pi \ r^2 = \frac{4\pi \varepsilon_0 \varepsilon_r R_1 R_2}{R_2 - R_1} U_0 \omega \cos \omega t$