หมู่บ้านสุนัข (dog_village)

ในดาวดวงหนึ่งอันไกลโพ้น มีหมู่บ้านสุขสันต์แห่งหนึ่งที่มีขนาด $N \times M$ ตารางเมตร ($4 \le N, M \le 1,000$) เป็นที่อยู่อาศัยของประชากรชาวสุนัข $N \times M$ ตัว โดยทุก 1 × 1 ตารางเมตร จะมี สุนัขอาศัยอยู่ 1 ตัวในบ้านของมัน และจะไม่สุงสิงกับสุนัขตัวอื่น เนื่องจากมีความรักสันโดษสูงมาก ทุกตัว จึงอาศัยอยู่ในบ้านของตัวเองอย่างมีความสุขมาเป็นเวลาซ้านาน

จนกระทั่งในวันที่ฟ้าสีคราม มีผู้บุกรุกเข้ามาในหมู่บ้าน และขโมยทรัพย์สมบัติไปมากมาย อีกทั้งยัง ทิ้งเชื้อโรคร้ายแรงที่ชื่อว่า DV ไว้ในหมู่บ้านอีกด้วย ทำให้สุนัขบางส่วนติดเชื้อ DV เข้า โดยเชื้อนี้จะแพร่พันธุ์ วันละ 1 ครั้ง ไปหาเพื่อนบ้านข้างเคียงที่อยู่ติดกันทางด้านบน ซ้าย ขวา ล่าง และกระจายต่อไปเรื่อย ๆ ในวันถัด ๆ ไป แต่เนื่องจากสุนัขในหมู่บ้านนี้มีการศึกษาที่สูงกันทุกตัว แต่ละตัวจึงพยายามสร้างวัคซีนขึ้น ก่อนที่เชื้อโรคจะเข้าถึงบ้านของตน แต่เนื่องจากทุกตัวมีความสามารถไม่เท่ากัน ทำให้บางตัวสร้างวัคซีน ได้ทัน บางตัวมีทำเลบ้านที่ดี เพื่อนบ้านที่อยู่ติดกันสร้างวัคซีนได้ทัน ทำให้เชื้อโรคไม่สามารถเข้าถึงบ้าน ตนเองได้ แต่น่าเสียดายที่บางตัวก็ต้องติดเชื้อนี้ไปและตายไปในที่สุด

งานของคุณ

จงเขียนโปรแกรมเพื่อหาว่า หลังจากที่เชื้อโรคไม่สามารถแพร่พันธุ์ได้อีกต่อไปแล้ว จะมีประชากร ชาวสุนัขที่ไม่ติดเชื้อทั้งหมดกี่ตัว

ข้อมูลนำเข้า

บรรทัดแรกประกอบด้วยจำนวนเต็ม N, M แทนความกว้างและความยาวของหมู่บ้านสุนัขนี้

อีก N บรรทัดต่อมา ในบรรทัดที่ i+1 ระบุตัวเลข M ตัวคั่นด้วยเว้นวรรค X_{ij} ($0 \le X_{ij} \le 2,000,000$) แทนจำนวนวันที่สุนัขในพื้นที่นั้นใช้ในการสร้างวัคซีน (ถ้า X_{ij} เท่ากับ 0 หมายถึง สุนัขในพื้นที่นั้นติดเชื้อเรียบร้อยแล้ว และนั่นหมายถึง ไม่มีสุนัขตัวใดสร้างวัคซีนเสร็จตั้งแต่วันที่เริ่มต้น)

	หน้าที่ 2 จากทั้งหมด 3 หน้า
	ชื่อโจทย์: dog_village

ข้อมูลส่งออก

จำนวนสุนัขที่ไม่ติดเชื้อ DV (รวมทั้งสุนัขที่ผลิตวัคซีนทันและเชื้อโรคเข้าไม่ถึง) โดยกำหนดให้วันที่ เริ่มต้นเป็นวันที่ 0 เชื้อโรคจะเริ่มแพร่ในวันถัดไป และถ้าเชื้อโรคแพร่ไปถึงพร้อมกับวัคซีนสร้างเสร็จพอดี ให้ ถือว่าสุนัขในพื้นที่นั้นปลอดภัยจากเชื้อ DV

ตัวอย่างข้อมูลนำเข้าและส่งออก

ตัวอย่างข้อมูลนำเข้าที่ 1	ตัวอย่างข้อมูลส่งออกที่ 1
4 4	9
0 1 3 2	
4 3 1 1	
2 0 1 1	
0 4 1 9	
ตัวอย่างข้อมูลนำเข้าที่ 2	ตัวอย่างข้อมูลส่งออกที่ 2
ตัวอย่างข้อมูลนำเข้าที่ 2 4 5	ตัวอย่างข้อมูลส่งออกที่ 2 9
_	
4 5	
4 5 0 3 4 1 3	

	หน้าที่ 3 จากทั้งหมด 3 หน้า
	ชื่อโจทย์: dog_village

อธิบายตัวอย่างข้อมูลนำเข้าและส่งออก

<u>ตัวอย่างที่ 1</u> แสดงสุนัขที่ติดเชื้อโรคด้วยตัวอักษร D, แสดงสุนัขที่ได้ผลิตวัคซีนแล้วด้วยตัวอักษร X และตัวเลขแทนจำนวนวันที่เหลือในการสร้างวัคซีน

ในวันที่ 0	ในวันที่ 1
D 1 3 2	D X 2 1
4 3 1 1	DDXX
2 D 1 1	D D X X
D 4 1 9	D D X 8

จะเห็นว่า เชื้อโรคไม่สามารถแพร่ต่อไปได้อีกแล้ว และมีสุนัขที่เป็น X 6 ตัว และมีตัวเลข 3 ตัว ดังนั้นจะมีสุนัขรอดทั้งหมด 6 + 3 = 9 ตัว

<u>ตัวอย่างที่ 2</u> แสดงสุนัขที่ติดเชื้อโรคด้วยตัวอักษร D, แสดงสุนัขที่ได้ผลิตวัคซีนแล้วด้วยตัวอักษร X และตัวเลขแทนจำนวนวันที่เหลือในการสร้างวัคซีน

ในวันที่ 0	ในวันที่ 1	ในวันที่ 2	ในวันที่ 3
D 3 4 1 3	D D 3 X 2	D D D X 1	DDDXX
9 3 3 3 1	D D 2 2 X	D D D 1 X	D D D X X
2 D 6 2 1	D D D 1 X	$D\ D\ D\ X\ X$	D D D X X
D 4 1 1 7	D D X X 6	D D X X 5	D D X X 4

จะเห็นว่า เชื้อโรคไม่สามารถแพร่ต่อไปได้อีกแล้ว และมีสุนัขที่เป็น X 8 ตัว และมีตัวเลข 1 ตัว ดังนั้นจะมีสุนัขรอดทั้งหมด 8 + 1 = 9 ตัว

การให้คะแนน

30% ของข้อมูลทดสอบ จะมี $4 \leq N,\, M \leq 100$

60% ของข้อมูลทดสอบ จะมี $4 \leq N,\, M \leq 500$

ข้อจำกัดของโปรแกรม

โปรแกรมของคุณต้องทำงานภายในเวลา 1 วินาที และใช้หน่วยความจำไม่เกิน 32 MB