

BlockEmulator

黄华威研究组 中山大学 软件工程学院 2024年 6 月

报告提纲

- 一、解决什么问题
- 二、影响力
- 三、设计原理

解决什么问题?

解决的痛点

对象: 区块链方向 的 研究者、研究生

- 可选实验平台 少
- 开源区块链系统 难用

传统区块链系统 (e.g., 比特币、以太坊)

- 不方便 创新
- 不支持 分片

分片区块链系统

我们的方案 —— BlockEmulator

容易上手

无需复杂设置,科研人员与学生就能进行实验 并收集数据绘制图表。

功能便捷

支持主流区块链历史交 易数据回放,自动输出、 保存实验指标。

支持云端

不仅可以在本地进行实 验,还可以远程部署到 云端运行。

可定制化

采用Go语言实现,能够 定制化二次开发,满足 不同需求。 影响力

使用 BlockEmulator 发表的高水平论文

Account Migration across Blockchain Shards using

Fine-tuned Lock Mechanism

BrokerChain: A Cross-Shard Blockchain Protocol for Account/Balance-based State Sharding

BrokerChain: A Cross-Shard **Blockchain Protocol for** Account/Balance-based State Sharding

INFOCOM 22

CCF A

Broker2Earn: Towards Maximizing Broker Revenue and System Liquidity for Sharded Blockchains

Broker2Earn: Towards Maximizing Broker Revenue and System Liquidity for Sharded **Blockchains**

INFOCOM 24 CCF A

INFOCOM 24 CCF A

Account Migration across

Blockchain Shards using Fine-

tuned Lock Mechanism

Scheduling Most Valuable Committees for the Sharded Blockchain

Scheduling Most Valuable Committees for the Sharded Blockchain

> **ToN 23 CCF A**

Achieving Scalability and Load Balance across Blockchain Shards for State Sharding

Achieving Scalability and Load Balance across Blockchain Shards for State Sharding

SRDS 22

tMPT: Reconfiguration across Blockchain Shards via Trimmed Merkle Patricia Trie

Broker2Earn: Towards Maximizing Broker Revenue and System Liquidity for Sharded **Blockchains**

IWQoS 23

社区用户访问

主页: blockemulator.com

从2023年5月至 2024年6月

来自超过 50 国家与地区研究者的访问

GitHub 175星、64 clone, 200+日访问量

社区反馈、共同进步

GitHub issues

日常讨论问题

社区用户 满意度调查

设计原理

存储层和数据层

数据层

- 交易结构: coinbase交易, 片内交易, 跨分片交易, broker类型交易
- 区块:区块头记录shardID
- 账户状态: 账户所在分片信息

存储层

- MPT+RLP: 存储交易树, 状态树
- 数据库:存储区块信息, stateDB 存储 MPT

网络层

分片网络

- 分片内通信: N个节点分成S个分组, 分组内使用P2P协议
- 分片间通信: Leader间 全连接, 分片间使用TCP通信

运行网络

- 单机运行: 本地运行多个节点 (本地ip+不同端口)
- 云端运行:每个虚拟机运行多个节点(不同ip+不同端口)

共识层

- 分片委员会的形成
 - 采用 PoW, 实现节点的身份验证
- 分片委员会的共识
 - 采用 PBFT, Leader 打包生成区块
- 支持分片委员会的重组

谢谢!

黄华威研究组: http://xintelligence.pro

Email: huanghw28@mail.sysu.edu.cn

感谢各位专家! 敬请批评指正!