Localizare temporală

- dacă o locație de memorie este accesată la un moment dat, este foarte probabil să fie accesată din nou în viitorul apropiat
- exemple
 - variabilele sunt folosite în mod repetat
 - bucle de program instrucţiunile se repetă

Localizare spaţială

- dacă o locație de memorie este accesată la un moment dat, este foarte probabil ca şi locațiile vecine să fie accesate în viitorul apropiat
- exemple
 - parcurgerea tablourilor
 - execuţia secvenţelor de instrucţiuni aflate la adrese consecutive

Ordine fizică și ordine logică

- instrucțiunile de executat se află în memorie în ordinea fizică
- sunt citite din memorie și executate
 - regula: în ordinea în care sunt memorate (fizic)
 - excepția: sărind peste un număr de instrucțiuni
- astfel rezultă ordinea logică a instrucțiunilor
 - poate diferi de la o rulare la alta
 - o instrucțiune se poate executa de 0, 1, 2, ... ori

II. Circuite combinaționale și funcții booleene

Semnal analogic și semnal digital

- semnal analogic continuu
 - dacă poate lua valorile a și b, atunci poate lua orice valoare din intervalul [a,b]
- semnal digital discret
 - are câteva niveluri (valori) distincte pe care le poate lua
 - calculator semnal digital cu 2 niveluri (0 și 1)
 - există și alte sisteme de calcul în afară de PC

Tipuri de circuite

- circuite combinaționale
 - valorile ieşirilor depind exclusiv de valorile intrărilor
 - aceleași valori pe intrare produc întotdeauna aceleași valori la ieșire
- circuite secvențiale
 - în afară de intrări, valorile ieşirilor depind şi de starea în care se află circuitul
 - evoluează în timp

Tabele de adevăr

- cum putem descrie funcționarea unui circuit combinațional?
- se aplică fiecare combinație posibilă de valori ale intrărilor
- și se observă valorile ieșirilor pentru fiecare astfel de combinație
- ansamblul acestor corespondențe formează un tabel de adevăr

Circuite și funcții booleene

- fiecărui tabel de adevăr îi corespunde o funcție booleană
 - deci fiecărui circuit combinațional îi corespunde o funcție booleană

	intrări		ieşiri					
\mathbf{I}_1	I _n		O_1	•••	O_{m}			
0	00	0	?	??	?			
0	00	1	?	??	?			
•••	•••		•••	•••				
1	11	1	?	??	?			

II.1. Funcții booleene

Structura algebrică

- mulțimea nevidă B, care conține cel puțin două elemente: $a, b, a \neq b$
- mulţimea de operaţii binare { +, · }
- o operație unară { }
- închidere: $a+b \in B$ $a \cdot b \in B$ $\bar{a} \in B$

Funcții booleene

- $B = \{0,1\}$
- $f: B^n \to B^m$
 - funcție: *n* variabile, *m* valori
 - circuit: *n* intrări, *m* ieșiri
- există $(2^m)^{2^n}$ astfel de funcții
 - -n=1, m=1: 4 funcții unare cu o valoare
 - -n=2, m=1: 16 funcții booleene de 2 variabile și cu o valoare

Tabele de adevăr

а	$f_0(a)$	$f_1(a)$	$f_2(a)$	$f_3(a)$
0	0	0	1	1
1	0	1	0	1
	= 0	= a	$=\bar{a}$	= 1

a	b	F_0	F_1	F_2	F_3	F_4	F_5	F_6	F ₇	F ₈	F_9	F_{10}	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Axiome și teoreme în algebra booleană (1)

identitate	X + 0 = X	$X \cdot 1 = X$
constante	X + 1 = 1	$\mathbf{X} \cdot 0 = 0$
idempotență	X + X = X	$X \cdot X = X$
involuție	$\overline{\overline{X}}=X$	
complementaritate	$X + \overline{X} = 1$	$\mathbf{X} \cdot \overline{\mathbf{X}} = 0$
comutativitate	X + Y = Y + X	$X \cdot Y = Y \cdot X$
asociativitate	(X + Y) + Z = X + (Y + Z)	$(X \cdot Y) \cdot Z = X \cdot (Y \cdot Z)$
distributivitate	$X \cdot (Y+Z) = (X \cdot Y) + (X \cdot Z)$	$X+(Y\cdot Z)=(X+Y)\cdot (X+Z)$

Axiome și teoreme în algebra booleană (2)

unificare	$X \cdot Y + X \cdot \overline{Y} = X$	$(X + Y) \cdot (X + \overline{Y}) = X$				
absorbție	$X + X \cdot Y = X$ $(X + \overline{Y}) \cdot Y = X \cdot Y$	$(X \cdot (X + Y) = X)$ $(X \cdot \overline{Y}) + Y = X + Y$				
De Morgan	$\overline{X+Y+\ldots}=\overline{X}\cdot\overline{Y}\cdot\ldots$	$\overline{X \cdot Y \cdot \ldots} = \overline{X} + \overline{Y} + \ldots$				
generalizare (dualitate) $\overline{f(X_1,,X_n,0,1,+,\cdot)} = f(\overline{X_1},,\overline{X_n},1,0,\cdot,+)$						

Calculatorul - operații elementare

- în calculatoarele actuale, operațiile elementare sunt operațiile logicii booleene
 - care simulează (între altele) şi operaţiile
 aritmetice elementare în baza 2
- un circuit combinațional implementează de fapt o funcție booleană
 - cum obținem expresia funcției booleene pornind de la tabelul de adevăr?

Forme normale

- forma normală disjunctivă (FND)
 - pentru fiecare linie care produce valoarea 1 la ieșire - termen conjuncție (·)
 - conține fiecare variabilă a funcției: negată dacă variabila este 0 pe acea linie, nenegată dacă este 1
 - acești termeni sunt legați prin disjuncție (+)
- forma normală conjunctivă (FNC): dual
- exemplu: $F_9(x,y) = \overline{x} \cdot \overline{y} + x \cdot y = (x + \overline{y}) \cdot (\overline{x} + y)$

II.2. Diagrame logice

Alfabetul diagramelor logice (1)

- porțile logice reprezintă implementările unor funcții booleene
- deci funcționarea fiecărei porți poate fi descrisă printr-un tabel de adevăr
 - corespunzător funcției booleene asociată porții
- porți elementare: AND, OR, NOT
- alte porți utile: NAND, NOR, XOR, NXOR

Alfabetul diagramelor logice (2)

A	NOT
0	1
1	0

A	В	AND	OR	NAND	NOR	XOR	NXOR
0	0	0	0	1	1	0	1
0	1	0	1	1	0	1	0
1	0	0	1	1	0	1	0
1	1	1	1	0	0	0	1

Simbolurile porților

 operațiile binare asociative pot fi extinse la operații cu orice număr finit de operanzi

Set minimal de generatori

- set de generatori mulţime de tipuri de porţi prin care se poate implementa orice funcţie booleană
 - set minimal de generatori set de generatori cu numărul minim de tipuri de porți
- se poate cu 3 (NOT, AND, OR)
 - formele normale (disjunctivă, conjunctivă)
 - se poate și cu 2 (NOT și AND, NOT și OR)
 - minimal 1 (NAND, NOR)

Temă

- arătați că următoarele mulțimi de tipuri de porți sunt seturi de generatori:
 - NOT, AND
 - NOT, OR
 - NAND
 - NOR

II.3. Implementarea circuitelor prin funcții booleene

Definirea funcțiilor booleene

- moduri de definire
 - tabel de adevăr
 - expresii conţinând variabile şi operaţii logice
 - în formă grafică
 - sigma-notație (Σ)
- în final, ne interesează să avem o expresie booleană
 - care permite implementarea prin porți

Σ -notația (1)

- exemplu "majoritatea dintre k intrări"
 - valoarea funcției: 1 dacă majoritatea
 variabilelor au valoarea 1, 0 în caz contrar
 - pentru 3 variabile: $f(x_1, x_2, x_3) = \Sigma(3, 5, 6, 7)$
- Σ-notaţia corespunde formei normale disjunctive
 - fiecare număr din paranteză reprezintă un termen conjuncție
 - $-\Sigma$ denotă disjuncția termenilor

Σ -notația (2)

- Σ-notație dată câte variabile sunt necesare?
 - cea mai mică putere a lui 2 care cuprinde cel mai mare număr dintre paranteze
 - pentru exemplul nostru: $2^2 < 7 < 2^3 \rightarrow n = 3$
- termenul corespunzând unui număr conține
 - toate variabilele, legate prin conjuncție
 - fiecare variabilă este: negată dacă îi corespunde un 0; nenegată pentru 1
 - exemplu: $3_{(10)} = 011_{(2)} \rightarrow \overline{x_1} \cdot x_2 \cdot x_3$

Minimizare (1)

• forma normală disjunctivă a funcției majoritate din 3

$$f(A,B,C)=\overline{A}\cdot B\cdot C+A\cdot \overline{B}\cdot C+A\cdot B\cdot \overline{C}+A\cdot B\cdot C$$

- număr mare de aplicări ale funcțiilor elementare
- o expresie echivalentă (aceeași funcție booleană) mai simplă ar face circuitul
 - mai rapid
 - mai ieftin
 - mai fiabil

Minimizare (2)

- cum putem simplifica expresia dată de forma normală disjunctivă?
 - rescriere echivalentă
 - utilizarea legilor și axiomelor algebrei booleene
 - inducţie perfectă
 - metoda Veitch-Karnaugh
 - metoda Quine-McCluskey
 - hibridizare (combinarea metodelor de mai sus)

Minimizare - rescriere algebrică

același exemplu

$$f = \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C$$
(idempotență)
$$= \overline{A} \cdot B \cdot C + A \cdot \overline{B} \cdot C + A \cdot B \cdot \overline{C} + A \cdot B \cdot C + A \cdot B \cdot C + A \cdot B \cdot C$$
(unificare)
$$= B \cdot C + A \cdot C + A \cdot B$$

• dificil pentru expresii complexe

Temă

- determinați forma normală disjunctivă și studiați minimizarea prin rescriere algebrică pentru funcția "imparitate"
 - valoarea funcției este: 1 dacă numărul de intrări cu valoarea 1 este impar; 0 în caz contrar

II.4. Minimizarea funcțiilor booleene prin metoda diagramelor Karnaugh

Metoda Veitch-Karnaugh

- oferă posibilitatea de a grupa vizual termenii conjuncție din FND pentru care se poate aplica unificarea
- pentru unificarea a doi termeni, aceștia trebuie să difere pe o singură variabilă
 - la un termen apare negată, la celălalt nenegată
- asemenea termeni devin vecini într-o diagramă Karnaugh

Structura diagramei Karnaugh

- tabel bidimensional
- numele variabilelor
 - pe linii, respectiv coloane
- zona etichetelor
 - etichetă şir de n biţi
 - fiecare bit corespunde unei variabile (intrări)
 - apar toate combinațiile posibile de valori
- zona valorilor funcției (ieșiri)

Exemple de diagrame

Codul Grey

- etichetele nu se scriu în ordinea naturală, ci în ordinea Grey
- oricare două etichete consecutive, inclusiv prima și ultima, diferă printr-un singur bit
 - 2 biţi: 00, 01, 11, 10
 - 3 biţi: 000, 001, 011, 010, 110, 111, 101, 100
 - 4 biţi: 0000, 0001, 0011, 0010, 0110, 0111,
 0101, 0100, 1100, 1101, 1111, 1110, 1010,
 1011, 1001, 1000

Adiacențe în diagrame (1)

- două poziții sunt adiacente dacă etichetele corespunzătoare diferă pe un singur bit
 - codul Grey translează adiacența în vecinătate
- pentru o funcție de n variabile, o locație are n locații adiacente
 - -n < 5: locațiile adiacente locației date se determină vizual (sus, jos, stânga, dreapta)
 - $-n \ge 5$: și alte adiacențe decât cele vizibile direct

Adiacențe în diagrame (2)

- pot fi mai mult de 2 locații adiacente
 - extinderea unificării la mai mult de 2 variabile
- în diagramele Karnaugh, acesta corespund unor blocuri de 2^k locații
 - putere a lui 2 atât pe linii, cât și pe coloane
 - inclusiv puterea 0
 - formă dreptunghiulară
 - pentru fiecare locație, blocul trebuie să conțină exact k locații adiacente cu ea

Minimizare Karnaugh

- se caută blocuri conţinând numai valori 1
 - corespunzătoare unor adiacențe (v. anterior)
 - blocuri cât mai mari şi mai puţine
- pentru fiecare bloc cu 2^k locații 1
 - avem un termen conjuncție cu *n-k* variabile
 - conține variabilele cu valori constante pentru toate locațiile din bloc
 - constant 0: variabilă negată; constant 1: nenegată
 - toți acești termeni sunt legați prin disjuncție

Exemple

Adiacența liniilor/coloanelor extreme

$$f = \Sigma(0,2,3,4,5,6)$$

Expresia depinde de grupare

Evitarea redundanțelor

simplificare neminimală

simplificare minimală

Combinații imposibile de valori

- anumite combinații de valori nu vor apărea niciodată la intrări
 - din definiția comportamentului dorit
 - dar diagrama trebuie completată pentru toate combinațiile de valori ale variabilelor
- în locațiile corespunzătoare acestor combinații se poate trece 0 sau 1
 - astfel încât să obținem o expresie cît mai simplă

Exemplu - afişaj zecimal

- afișaj cu 7 segmente
- selectarea segmentelor pentru fiecare cifră
 - -0 stins
 - 1 aprins
- comanda pe intrare 4
 variabile
 - o cifră zecimală se poate scrie pe 4 biți

Segmentul d - tabel de adevăr

Nr	A	В	C	D	d
0	0	0	0	0	1
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	1
7	0	1	1	1	0

Nr	A	В	C	D	d
8	1	0	0	0	1
9	1	0	0	1	1
10	1	0	1	0	*
11	1	0	1	1	*
12	1	1	0	0	*
13	1	1	0	1	*
14	1	1	1	0	*
15	1	1	1	1	*

Expresii mai simple

"funcționare de siguranță"

combinații imposibile

Temă: comparator pe 2 biţi

- 4 variabile: A, B, C, D
- formează 2 numere

$$-N_1 = AB$$

$$-N_2 = CD$$

• 3 ieşiri - corespund valorilor de adevăr

$$-LT = (N_1 < N_2)$$

$$- EQ = (N_1 = N_2)$$

$$-GT = (N_1 > N_2)$$

A	В	C	D	LT	EQ	GT
0	0	0	0	0	1	0
0	0	0	1	1	0	0
0	0	1	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	0	1	0	0	1
1	0	1	0	0	1	0
1	0	1	1	1	0	0
1	1	0	0	0	0	1
1	1	0	1	0	0	1
1	1	1	0	0	0	1
1	1	1	1	0	1	0

Temă: multiplicator pe 2 biţi

- 4 variabile: A, B, C, D
- formează 2 numere

$$-N_1 = AB$$

$$-N_2 = CD$$

4 ieşiri - formează
 produsul N₁ · N₂

A	В	C	D	P8	P4	P2	P1
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0
0	0	1	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	0	0	1
0	1	1	0	0	0	1	0
0	1	1	1	0	0	1	1
1	0	0	0	0	0	0	0
1	0	0	1	0	0	1	0
1	0	1	0	0	1	0	0
1	0	1	1	0	1	1	0
1	1	0	0	0	0	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	1	1	0
1	1	1	1	1	0	0	1

Temă: incrementare cu 1 BCD

- 4 variabile
 - formează un numărBCD
 - între 0 și 9
- 4 ieșiri numărul de la intrare incrementat
 - rezultatul este tot un număr BCD

I8	I 4	12	I 1	O8	O4	O2	O1
0	0	0	0	0	0	0	1
0	0	0	1	0	0	1	0
0	0	1	0	0	0	1	1
0	0	1	1	0	1	0	0
0	1	0	0	0	1	0	1
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	1
0	1	1	1	1	0	0	0
1	0	0	0	1	0	0	1
1	0	0	1	0	0	0	0
1	0	1	0	*	*	*	*
1	0	1	1	*	*	*	*
1	1	0	0	*	*	*	*
1	1	0	1	*	*	*	*
1	1	1	0	*	*	*	*
1	1	1	1	*	*	*	*