Jenisha Thevarajah 400473218 thevaj5

Surface Area:	
r=2	$S_{4} = \int_{\tau_{4}}^{\tau_{2}} \int_{0}^{2} r \sin \theta dr d\theta$
$S_1 = \int_{N_4}^{N_2} \int_{N_{14}}^{r-2} r^{-2} \sin \theta d\theta d\theta$	$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{r^2}{2} \Big _{0}^{2} + \rho \Big _{\frac{\pi}{\sqrt{4}}}^{\frac{\pi}{2}}$ $\sin \left(\frac{\pi}{4}\right) \rightarrow \frac{1}{\sqrt{2}} \cdot \frac{r^2}{2} \Big _{0}^{2} + \rho \Big _{\frac{\pi}{4}}^{\frac{\pi}{4}}$
= 22 5 sin odo 5 do	$sin\left(\frac{\pi}{4}\right) \rightarrow \sqrt{2}$
= 4 x (-(0.5 A) x (0 x/2	
(7 7) ($S_{y} = \Lambda$
= 4 x (-(05 1/2 + (05 1/4)) x (2-4) 252
0 + 1/2	*/4
$= \mathcal{H} \times \left(\frac{\sqrt{2}}{2}\right) \times \left(\frac{\Lambda}{\mathcal{H}}\right)$	$S_5 = \frac{3}{8} \frac{3}{n/4} dr \cdot rsm \theta d \theta = \frac{\pi}{2}$
$S_1 = \sqrt{2}\pi m^2$	= sin 0 S r. dr 5 dp
	$= \left(S_{1}N_{1}\left(\frac{\pi}{2}\right)\right)\left(\frac{(1)^{2}}{2}\right)\left(\frac{\pi}{2}-\frac{\pi}{4}\right)$
$S_2 = \int_{\pi/4}^{\pi/2} \int_0^2 r d\theta dr$	= 1 x x x x/4 z
$= \int_0^2 r dr \times \int_{R/4}^{R/2} d\theta$	S5 = 1/2
$= \frac{r^2}{2} \Big _{0}^{2} \times \Theta \Big _{\pi/\mu}^{\pi/2}$	
7	
$=\frac{1}{2}(2^2-6^2) \times (\frac{\pi}{2}-\frac{\pi}{4})$	Sciosed = S1 + S2 + S3 + S4 + S5
= 2 x <u>π</u>	$\frac{\sqrt{2}}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2}$
$S_{\lambda} = \frac{\pi}{2} m^2$	= 2.221 + 1.51 + 1.51 + 1.11 + 1.51
$S_2 = S_3$	Sclosed = 8.041 m2

MatLab Code:

```
1
                                                                         Move here to reveal toolstrip
  2
          %intialize
  3
          V = 0:
  4
  5
          S1 = 0;
  6
          S2 = 0;
          S3 = 0;
  8
          S4 = 0;
          S5 = 0;
  9
 10
 11
          radius = 0;
          theta = pi/4;
 12
 13
          phi = pi/4;
 14
          radius_discretization = 100;
 16
          theta_discretization = 100;
          phi_discretization = 100;
 17
 18
 19
          dradius = (2 - 0)/radius\_discretization; %the radial increment
          dtheta = (pi/2 - pi/4)/theta_discretization; %the theta increment
 20
 21
          dphi = (pi/2 - pi/4)/phi_discretization; %the phi increment
 22
 23
          % Calculates the volume of the enclosed surface
          for k = 1:radius_discretization
 24
 25
             for j = 1:theta_discretization
 26
                  for i = 1:phi_discretization
                     dV = (radius^2) * sin(theta) * dradius * dtheta * dphi; % add contribution to the volume
 27
 28
                     V = V + dV;
 29
                 end
 30
                 theta = theta + dtheta; % increment
 31
              radius = radius + dradius; % increment
 32
 33
             theta = pi/4; % reset theta
 34
          end
 35
 36
 37
          radius1 = 2; %radius of S1
          for k = 1:theta_discretization
 38
 39
              for i = 1:phi_discretization
 40
                S1 = S1 + (radius1^2) * sin(theta) * dphi * dtheta;
             end
 41
 42
             theta = theta + dtheta;
 43
 44
          %the following routine calculates the area of S3 and S4
 45
          radius = 0; %reset radius to it's lower boundary
 46
          theta1 = pi/4;
          theta2 = pi/2;
 47
 48
```

```
for j=1: radius_discretization
  for i=1: phi_discretization
       S4 = S4 + radius * sin(theta1) * dphi * dradius; %get contribution to the area of S4
       S3 = S3 + radius * sin(theta2) * dphi * dradius; %get contribution to the area of S3
  radius = radius + dradius;
%%the following routing calculate the area of S2
radius = 0; %reset radial to it's lower boundary
for k=1:theta_discretization
   for j=1:radius_discretization
      S2 = S2 + radius * dtheta * dradius;%S2 area
  radius = radius + dradius;
S5=S3;%area of S5 is equal to S3
%Total surface
S=S1+S2+S3+S4+S5;%the area of the closed surface and volume of closed surface
disp(['Volume of Surface: ' num2str(V)]);
disp(['Area of Closed Surface: ' num2str(S)]);
```

Output:

⊞ S	7.9827
⊞ S1	2.2178
⊞ S2	1.5551
⊞ S3	1.5551
⊞ S4	1.0996
⊞ S5	1.5551

>> assignment2
Volume of Surface: 1.4564
Area of Closed Surface: 7.9827

There is a very small discrepancy between my theoretical calculations and MatLab calculated answers; however, this may have occurred due to rounding calculations within my theoretical calculations. Matlab answers are more precise compared to my written calculations as matlab accounts of all decimal points.