

Prof. Vitor Cardoso (responsável)

Prof. Ana Martins

Prof. Pedro Sacramento

Prof. Rúben Conceição

Eng. Informática e de Computadores (LEIC) Electromagnetismo e Óptica: Exame 2 (4 Julho 2016)

Duração: 1:30 + 1:30 horas

Justifique cuidadosamente todas as respostas e raciocínios Exprima as unidades no sistema S.I. no final de cada resposta Não é permitido o uso de formulários ou calculadoras

Teste I

PROBLEMA 1 Uma esfera condutora de raio \mathbf{a} encontra-se imersa no vácuo e foi carregada electricamente com uma carga total \mathbf{Q}_1 .

- a) (1.0 val.) Determine, detalhando os cálculos, a expressão do campo eléctrico dentro e fora da esfera.
- b) (1.0 val.) Determine a capacidade $C = Q_1/V$ da esfera, com V a diferença de potencial entre a esfera e o infinito..
- c) (1.0 val.) Qual o trabalho realizado para carregar a esfera condutora?
- d) (1.0 val.) Envolve-se em seguida a esfera condutora por uma coroa esférica também condutora e de raio interno \mathbf{b} e raio externo \mathbf{c} ($\mathbf{c} > \mathbf{b} > \mathbf{a}$). A coroa esférica possui uma carga total $\mathbf{Q_2}$. Determine como se encontra distribuída a carga na coroa esférica condutora.

PROBLEMA 2 Um fio infinito cilindrico é feito de material condutor de condutividade σ_c . O fio tem raio \mathbf{R} e é atravessado por uma corrente \mathbf{I} uniforme.

- a) (1.0 val.) Qual a densidade de corrente que atravessa o fio?
- b) (1.0 val.) Qual o campo eléctrico no interior do fio?

- c) (1.0 val.) Usando a lei de Ampère, calcule o campo magnético em pontos a uma distância $\mathbf{r} < \mathbf{R}$? E para $\mathbf{r} > \mathbf{R}$?
- d) (1.0 val.) Repita as alíneas b, c e d para um fio que é atravessado por uma densidade de corrente $J = r^2$.

Problema 3 Um electrão com velocidade segundo \vec{u}_x entra numa região onde existe:

- a) (1.0 val.) Um campo eléctrico $\mathbf{E} = E_0 \vec{u}_x$. Esboce o movimento desse electrão no tempo.
- b) (1.0 val.) Um campo magnético $\mathbf{B} = B_0 \vec{u}_y$. Esboce o movimento desse electrão no tempo.

Teste II

Problema 4

Um condensador de capacidade C está ligado a uma resistência R, num circuito fechado sem bateria.

- a) (1.0 val.) Qual a equação diferencial que rege a corrente I(t) que passa no circuito?
- b) (1.0 val.) Resolva a equação e calcule o tempo ao fim do qual a carga no condensador se reduz para metade.
- c) (1.0 val.) Calcule a energia total dissipada na resistência.

Problema 5

As bobinas projectadas para campos magnéticos fortes têm problemas mecânicos de construção devido às pressões as que ficam sujeitas. Considere uma bobina de comprimento ℓ e raio $\mathbf{r_b}$ ($\ell \gg \mathbf{r_b}$), com $\mathbf{N_1}$ espiras, preenchida com ar e percorrida por uma corrente $\mathbf{I_1}$.

- a) (1.0 val.) Determine o campo magnético no interior da bobina, usando a lei de Ampère.
- b) (1.0 val.) Derive o coeficiente de auto-indução da bobina.
- c) (1.0 val.) Determine a pressão sobre os enrolamentos da bobina em função da intensidade da corrente I_1 .

Inseriu-se agora no centro do solenóide, e coaxialmente, uma bobina com N_2 espiras de área \mathbf{A} , resistência $\mathbf{R_2}$ e comprimento $< \ell$.

- d) (1.0 val.) Calcule o coeficiente de indução mútua entre as duas espiras.
- e) (1.0 val.) Calcule a corrente induzida na bobina interior para $\mathbf{I_1} = I_0 \sin(\omega t)$.

Problema 6

Uma onda plana monocromática de frequência $\mathbf{f}=100$ MHz viaja no vácuo na direcção positiva do eixo dos zz, estando o campo magnético polarizado segundo a direcção xx com uma amplitude \mathbf{B}_{max} .

- a) (0.5 val.) Calcule o vector de onda \vec{k} . Escreva as expressões que descrevem os campos magnético e eléctrico.
- b) (0.5 val.) Calcule a direcção, sentido e magnitude do vector de Poynting.
- c) (0.5 val.) Admita que usa uma espira condutora para detectar o campo magnético da onda. Em que plano deve ser colocada a espira para que a eficiência de detecção seja máxima?
- d) (0.5 val.) Se a espira, de diâmetro muito menor que o comprimento de onda, tiver uma área **A** e resistência **R**, qual a amplitude da corrente induzida?

Tabela 1: Formulário

Electrostática:	Magnetostática:	Campos variáveis e indução:
$ec{E}=rac{1}{4\piarepsilon_0}rac{q}{r^2}ec{u}_r$	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{u}_r}{r^2}$	$\oint_{\Gamma} \vec{E} d\vec{l} = -\frac{d}{dt} \int_{S} \vec{B} \cdot \vec{n} dS$
$k = \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \text{Nm}^2 \text{C}^{-2}$	$\frac{\mu_0}{4\pi} = 10^{-7} \text{Hm}^{-1}$	$ec{ abla} imesec{E}=-rac{\partialec{B}}{\partial t}$
$\oint \vec{E} \cdot d\vec{l} = 0$	$\oint \vec{B} \cdot \vec{n} dS = 0$	$\Phi_i = L_i I_i + M_{ij} I_j$
$\nabla \times \vec{E} = 0$	$d\vec{F} = Id\vec{l} \times \vec{B}$	$U_M = \frac{1}{2} \sum_i \Phi_i I_i$
$\oint \vec{D} \cdot \vec{n} dS = Q_{\rm livre}$	$\vec{\nabla} \cdot \vec{B} = 0$	$u_M = \frac{B^2}{2\mu}$
$\vec{\nabla} \cdot \vec{D} = \rho_{\rm livre}$	$\oint_{\Gamma} \vec{H} d\vec{l} = \int_{S} \vec{J} \cdot \vec{n} dS$	$\oint_{\Gamma} \vec{H} d\vec{l} = \int_{S} \vec{J} \cdot \vec{n} dS + \frac{d}{dt} \int_{S} \vec{D} \cdot \vec{n} dS$
$\sigma_{ m pol} = \vec{P} \cdot \vec{n}_{ m ext}$	$\vec{B} = \mu_0 (1 + \chi_m) \vec{H} = \mu \vec{H}$	$ec{ abla} imesec{H}=ec{J}+rac{\partialec{D}}{\partial t}$
$\vec{D} = \vec{P} + \varepsilon_0 \vec{E} = \varepsilon \vec{E}$	$ec{B} = \mu_0(ec{M} + ec{H})$	Interacção de partículas e campos:
$V_B - V_A = -\int_A^B \vec{E} \cdot d\vec{l}$	$ec{J}_M = ec{ abla} imes ec{M}$	$ec{F} = q \left(ec{E} + ec{v} imes ec{B} ight)$
Q = CV	Ondas electromagnéticas:	Óptica:
$u_E = \frac{1}{2} \varepsilon E^2$	$ec{S} = ec{E} imes ec{H}$	$n_1 \sin \theta_1 = n_2 \sin \theta_2$
	$ec{n} = rac{ec{k}}{k} = rac{ec{E}}{E} imes rac{ec{B}}{B}$	$ an heta_B=rac{n_2}{n_1}$
Corrente elétrica estacionária:	$\vec{E} = v\vec{B} \times \vec{u}_k, \vec{B} = \frac{\vec{u}_k \times \vec{E}}{v}$	Interferência entre ondas:
$\vec{J} = Nq\vec{v}$	$v = \frac{1}{\sqrt{\varepsilon \mu}}$	$d\sin\theta_{\rm max} = m\lambda$
$ec{J}=\sigma_cec{E}$	$u = u_E + u_M$	$d\sin\theta_{\min} = m\lambda + \frac{\lambda}{m'}$
$I = \frac{dQ}{dt} = \int_{S} \vec{J} \cdot \vec{n} dS$	$\tan \theta_B = n_2/n_1$	$a\sin\theta_{\min} = m\lambda \text{ (difracção)}$
$P = \frac{V^2}{\frac{1}{R_{\text{paralelo}}}} = RI^2 = VI$ $\frac{1}{R_{\text{paralelo}}} = \sum_{i} \frac{1}{R_i}$	Circuitos eléctricos: $V = RI$ $U = \frac{1}{2}CV^2 = \frac{1}{2}QV$	$R_{serie} = \sum_{i} R_{i}$ $V_{L} = L \frac{dI}{dt}$
$A_{ m esfera} = 4\pi r^2$	Geometria: $V_{\mathrm{esfera}} = \frac{4}{3}\pi r^3$	$A_{ m circulo} = \pi r^2$