Paradigmas de Programación

Unificación Inferencia de tipos

1er cuatrimestre de 2025 Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Introducción

Algoritmo de unificación

Algoritmo de inferencia de tipos

Corrección del algoritmo de unificación

Problema de inferencia de tipos

Notación

Términos sin anotaciones de tipos:

$$U := x \mid \lambda x. U \mid UU \mid \text{True} \mid \text{False} \mid \text{if } U \text{ then } U \text{ else } U$$

Términos con anotaciones de tipos:

$$M ::= x \mid \lambda x : \tau . M \mid M M \mid True \mid False \mid if M then M else M$$

Notamos erase(M) al término sin anotaciones de tipos que resulta de borrar las anotaciones de tipos de M.

Ejemplo:
$$erase((\lambda x : Bool. x) True) = (\lambda x. x) True.$$

Problema de inferencia de tipos

Definición

Un término U sin anotaciones de tipos es **tipable** sii existen:

```
un contexto de tipado \Gamma un término con anotaciones de tipos M un tipo \tau
```

tales que erase(M) = U y $\Gamma \vdash M : \tau$.

El problema de inferencia de tipos consiste en:

- Dado un término U, determinar si es tipable.
- En caso de que U sea tipable: hallar un contexto Γ, un término M y un tipo τ tales que erase(M) = U y Γ ⊢ M : τ.

Veremos un algoritmo para resolver este problema.

Problema de inferencia de tipos

El algoritmo se basa en manipular tipos parcialmente conocidos.

Ejemplo — tipos parcialmente conocidos

- ▶ En x True sabemos que x: Bool $\rightarrow X_1$.
- ▶ En if x y then True else False sabemos que x : $X_2 \rightarrow Bool$.

Incorporamos incógnitas $(X_1, X_2, X_3, ...)$ a los tipos.

Vamos a necesitar resolver ecuaciones entre tipos con incógnitas.

Ejemplo — ecuaciones entre tipos

- ► $(X_1 \to Bool) \stackrel{?}{=} ((Bool \to Bool) \to X_2)$ tiene solución: $X_1 := (Bool \to Bool)$ y $X_2 := Bool$.
- ► $(X_1 \to X_1) \stackrel{?}{=} ((\mathsf{Bool} \to \mathsf{Bool}) \to X_2)$ tiene solución: $X_1 := (\mathsf{Bool} \to \mathsf{Bool})$ y $X_2 := (\mathsf{Bool} \to \mathsf{Bool})$.
- $(X_1 \to \mathsf{Bool}) \stackrel{?}{=} X_1$ no tiene solución.

Introducción

Algoritmo de unificación

Algoritmo de inferencia de tipos

Corrección del algoritmo de unificación

Suponemos fijado un conjunto finito de constructores de tipos:

- ► Tipos constantes: Bool, Int,
- ► Constructores unarios: (List •), (Maybe •),
- ▶ Constructores binarios: $(\bullet \to \bullet)$, $(\bullet \times \bullet)$, (Either \bullet •),
- (Etcétera).

Los tipos se forman usando incógnitas y constructores:

$$\tau ::= \mathbf{X}_n \mid C(\tau_1, \dots, \tau_n)$$

La **unificación** es el problema de resolver sistemas de ecuaciones entre tipos con incógnitas.

Veremos primero un algoritmo de unificación.

Luego lo usaremos para dar un algoritmo de inferencia de tipos.

Una **sustitución** es una función que a cada incógnita le asocia un tipo.

Notamos:

$$\{\mathbf{X}_{k_1} := \tau_1, \ldots, \mathbf{X}_{k_n} := \tau_n\}$$

a la sustitución **S** tal que $\mathbf{S}(\mathbf{X}_{k_i}) = \tau_i$ para cada $1 \le i \le n$ y $\mathbf{S}(\mathbf{X}_k) = \mathbf{X}_k$ para cualquier otra incógnita.

Si τ es un tipo, escribimos $\mathbf{S}(\tau)$ para el resultado de reemplazar cada incógnita de τ por el valor que le otorga \mathbf{S} .

Ejemplo — aplicación de una sustitución a un tipo

Si
$$\mathbf{S} = \{X_1 := \text{Bool}, X_3 := (X_2 \rightarrow X_2)\}$$
, entonces:

$$\textbf{S}((\texttt{X}_1 \rightarrow \texttt{Bool}) \rightarrow \texttt{X}_3) = ((\texttt{Bool} \rightarrow \texttt{Bool}) \rightarrow (\texttt{X}_2 \rightarrow \texttt{X}_2))$$

Un **problema de unificación** es un conjunto finito E de ecuaciones entre tipos que pueden involucrar incógnitas:

$$E = \{ \tau_1 \stackrel{?}{=} \sigma_1, \tau_2 \stackrel{?}{=} \sigma_2, \dots, \tau_n \stackrel{?}{=} \sigma_n \}$$

Un **unificador** para *E* es una sustitución **S** tal que:

$$\mathbf{S}(au_1) = \mathbf{S}(\sigma_1)$$

 $\mathbf{S}(au_2) = \mathbf{S}(\sigma_2)$

$$\mathbf{S}(au_2) = \mathbf{S}(\sigma_2)$$

. . .

$$S(\tau_n) = S(\sigma_n)$$

En general, la solución a un problema de unificación no es única.

Ejemplo — problema de unificación con infinitas soluciones

$$\{ \chi_1 \stackrel{?}{=} \chi_2 \}$$

tiene infinitos unificadores:

- $ightharpoonup \{X_1 := X_2\}$
- $ightharpoonup \{X_2 := X_1\}$
- $ightharpoonup \{X_1 := X_3, X_2 := X_3\}$

- **...**

Una sustitución S_A es **más general** que una sustitución S_B si existe una sustitución S_C tal que:

$$S_B = S_C \circ S_A$$

es decir, S_B se obtiene instanciando variables de S_A .

Para el siguiente problema de unificación:

$$E = \{ (X_1 \to \mathsf{Bool}) \stackrel{?}{=} X_2 \}$$

las siguientes sustituciones son unificadores:

- ▶ $\mathbf{S}_1 = \{X_1 := \mathsf{Bool}, X_2 := (\mathsf{Bool} \to \mathsf{Bool})\}$
- ▶ $S_3 = \{X_1 := X_3, X_2 := (X_3 \rightarrow Bool)\}$
- ▶ $S_4 = \{X_2 := (X_1 \to Bool)\}$

¿Qué relación hay entre ellas? (¿Cuál es más general que cuál?).

Dado un problema de unificación E (conjunto de ecuaciones):

- Mientras $E \neq \emptyset$, se aplica sucesivamente alguna de las seis reglas que se detallan más adelante.
- La regla puede resultar en una falla.
- ▶ De lo contrario, la regla es de la forma $E \rightarrow_S E'$. La resolución del problema E se reduce a resolver otro problema E', aplicando la sustitución S.

Hay dos posibilidades:

- 1. $E = E_0 \rightarrow_{S_1} E_1 \rightarrow_{S_2} E_2 \rightarrow \ldots \rightarrow_{S_n} E_n \rightarrow_{S_{n+1}} falla$ En tal caso el problema de unificación E no tiene solución.
- 2. $E = E_0 \rightarrow_{\mathbf{S}_1} E_1 \rightarrow_{\mathbf{S}_2} E_2 \rightarrow \ldots \rightarrow_{\mathbf{S}_n} E_n = \emptyset$ En tal caso el problema de unificación E tiene solución.

$$\{ \mathbf{X}_{n} \stackrel{?}{=} \mathbf{X}_{n} \} \cup E \quad \xrightarrow{\mathrm{Delete}} \qquad E$$

$$\{ C(\tau_{1}, \dots, \tau_{n}) \stackrel{?}{=} C(\sigma_{1}, \dots, \sigma_{n}) \} \cup E \quad \xrightarrow{\mathrm{Decompose}} \qquad \{ \tau_{1} \stackrel{?}{=} \sigma_{1}, \dots, \tau_{n} \stackrel{?}{=} \sigma_{n} \} \cup E$$

$$\{ \tau \stackrel{?}{=} \mathbf{X}_{n} \} \cup E \quad \xrightarrow{\mathrm{Swap}} \qquad \{ \mathbf{X}_{n} \stackrel{?}{=} \tau \} \cup E$$

$$\mathrm{si} \tau \text{ no es una incógnita}$$

$$\{ \mathbf{X}_{n} \stackrel{?}{=} \tau \} \cup E \quad \xrightarrow{\mathrm{Elim}} \{ \mathbf{X}_{n} := \tau \} (E)$$

$$\mathrm{si} \mathbf{X}_{n} \text{ no ocurre en } \tau$$

$$\{ C(\tau_{1}, \dots, \tau_{n}) \stackrel{?}{=} C'(\sigma_{1}, \dots, \sigma_{m}) \} \cup E \quad \xrightarrow{\mathrm{Clash}} \qquad \mathrm{falla}$$

$$\mathrm{si} C \neq C'$$

$$\{ \mathbf{X}_{n} \stackrel{?}{=} \tau \} \cup E \quad \xrightarrow{\mathrm{Dccurs-Check}} \qquad \mathrm{falla}$$

$$\mathrm{si} \mathbf{X}_{n} \neq \tau$$

y X_n ocurre en τ

Teorema (Corrección del algoritmo de Martelli-Montanari)

- 1. El algoritmo termina para cualquier problema de unificación E.
- 2. Si E no tiene solución, el algoritmo llega a una falla.
- 3. Si E tiene solución, el algoritmo llega a \varnothing :

$$E=E_0 \rightarrow_{\textbf{S}_1} E_1 \rightarrow_{\textbf{S}_2} E_2 \rightarrow \ldots \rightarrow_{\textbf{S}_n} E_n=\varnothing$$

Además, $\mathbf{S} = \mathbf{S}_n \circ \ldots \circ \mathbf{S}_2 \circ \mathbf{S}_1$ es un unificador para E.

Además, dicho unificador es el *más general* posible. (Salvo renombre de incógnitas).

Definición (Unificador más general)

Notamos mgu(E) al unificador más general de E, si existe.

Ejemplo

Calcular unificadores más generales para los siguientes problemas de unificación:

- $\blacktriangleright \ \{(\mathtt{X}_2 \to (\mathtt{X}_1 \to \mathtt{X}_1)) \stackrel{?}{=} ((\mathsf{Bool} \to \mathsf{Bool}) \to (\mathtt{X}_1 \to \mathtt{X}_2))\}$

Introducción

Algoritmo de unificación

Algoritmo de inferencia de tipos

Corrección del algoritmo de unificación

Algoritmo \mathcal{I} — Inferencia de tipos

El algoritmo ${\mathcal I}$ recibe un término U sin anotaciones de tipos.

Consta de los siguientes pasos:

- 1. Rectificación del término.
- 2. Anotación del término con variables de tipo frescas.
- 3. Generación de restricciones (ecuaciones entre tipos).
- 4. Unificación de las restricciones.

Algoritmo \mathcal{I} — Paso 1: rectificación

Decimos que un término está rectificado si:

- 1. No hay dos variables ligadas con el mismo nombre.
- 2. No hay una variable ligada con el mismo nombre que una variable libre.

Ejemplo - Términos rectificados

$$x(\lambda x. xx)(\lambda y. yx)$$
 no está rectificado $x(\lambda z. zz)(\lambda y. yx)$ está rectificado $\lambda x. \lambda x. xy$ no está rectificado $\lambda x. \lambda z. zy$ está rectificado

Observación

Siempre se puede rectificar un término lpha-renombrándolo.

Algoritmo \mathcal{I} — Paso 2: anotación

Tenemos un término U, que suponemos ya rectificado.

Producimos un contexto Γ_0 y un término M_0 :

- 1. El contexto Γ_0 le da tipo a todas las variables libres de U. El tipo de cada variable es una incógnita *fresca*.
- 2. El término M_0 está anotado de tal modo que erase $(M_0) = U$. Todas las anotaciones son incógnitas frescas.

Ejemplo - Anotación del término

Dado el término rectificado $U = (\lambda x. y. x. x) (\lambda z. w)$, producimos:

- 1. $\Gamma_0 = (y : X_1, w : X_2)$
- 2. $M_0 = (\lambda x : X_3. y x x) (\lambda z : X_4. w)$

Algoritmo \mathcal{I} — Paso 3: generación de las restricciones

Tenemos un contexto Γ y un término M con anotaciones de tipos.

Recursivamente calculamos:

- 1. Un tipo τ , que corresponde al tipo de M.
- 2. Un conjunto de ecuaciones *E*.

 Representan restricciones para que *M* esté bien tipado.

Definimos un algoritmo recursivo:

$$\mathcal{I}\left(\underbrace{\Gamma \mid M}_{\text{contexto}}\right) = \underbrace{\left(\tau \mid E}_{\text{tipo}}\right)$$
entrada
salida
salida

con la precondición de que Γ le da tipo a todas las variables de M.

Algoritmo \mathcal{I} — Paso 3: generación de las restricciones

- 1. $\mathcal{I}(\Gamma \mid \mathsf{True}) = (\mathsf{Bool} \mid \varnothing)$ 2. $\mathcal{I}(\Gamma \mid \mathsf{False}) = (\mathsf{Bool} \mid \varnothing)$ 3. $\mathcal{I}(\Gamma \mid x) = (\tau \mid \varnothing)$ si $(x : \tau) \in \Gamma$ 4. $\mathcal{I}(\Gamma \mid \text{if } M_1 \text{ then } M_2 \text{ else } M_3) =$ $(\tau_2 \mid \{\tau_1 \stackrel{?}{=} Bool, \tau_2 \stackrel{?}{=} \tau_3\} \cup E_1 \cup E_2 \cup E_3)$ donde $\mathcal{I}(\Gamma \mid M_1) = (\tau_1 \mid E_1)$ $\mathcal{I}(\Gamma \mid M_2) = (\tau_2 \mid E_2)$ $\mathcal{I}(\Gamma \mid M_3) = (\tau_3 \mid E_3)$ 5. $\mathcal{I}(\Gamma \mid M_1 M_2) = (X_k \mid \{\tau_1 \stackrel{?}{=} (\tau_2 \to X_k)\} \cup E_1 \cup E_2)$
 - donde X_k es una incógnita fresca $\mathcal{I}(\Gamma \mid M_1) = (\tau_1 \mid E_1)$ $\mathcal{I}(\Gamma \mid M_2) = (\tau_2 \mid E_2)$
- 6. $\mathcal{I}(\Gamma \mid \lambda x : \tau. M) = (\tau \rightarrow \sigma \mid E)$ donde $\mathcal{I}(\Gamma, x : \tau \mid M) = (\sigma \mid E)$

Algoritmo \mathcal{I} — Paso 4: unificación de las restricciones

Recordemos: Γ_0 y M_0 resultan de anotar un término rectificado U.

Una vez calculado $\mathcal{I}(\Gamma_0 \mid M_0) = (\tau \mid E)$:

- 1. Calculamos S = mgu(E).
- 2. Si no existe el unificador, el término U no es tipable.
- 3. Si existe el unificador, el término U es tipable y vale:

$$\textbf{S}(\Gamma_0) \vdash \textbf{S}(M_0) : \textbf{S}(\tau)$$

Algoritmo \mathcal{I} — Corrección

Sean Γ_0 y M_0 el resultado de anotar un término rectificado U. Supongamos que $\mathcal{I}(\Gamma_0 \mid M_0) = (\tau \mid E)$. Entonces:

Teorema (Corrección del algoritmo \mathcal{I})

- 1. Si U no es tipable, no hay unificador para E.
- Si U es tipable, existe S = mgu(E).
 Además, S(Γ₀) ⊢ S(M₀) : S(τ) es un juicio de tipado válido.
 Más aún, el juicio de tipado es el más general posible para U.
 Más precisamente, si Γ' ⊢ M' : τ' es un juicio válido y
 erase(M') = U, existe una sustitución S' tal que:

$$\Gamma' \supseteq \mathbf{S}'(\Gamma_0)$$
 $M' = \mathbf{S}'(M_0)$
 $\tau' = \mathbf{S}'(\tau)$

donde además ${\bf S}$ es más general que ${\bf S}'$.

Algoritmo ${\mathcal I}$ de inferencia de tipos

Ejercicio. Aplicar el algoritmo de inferencia sobre los siguientes términos:

- ▶ λx. λy. y x
- \triangleright $(\lambda x. x x)(\lambda x. x x)$

Introducción

Algoritmo de unificación

Algoritmo de inferencia de tipos

Corrección del algoritmo de unificación

Recordemos: algoritmo de unificación

$$\{x \stackrel{?}{=} x\} \cup E \xrightarrow{\text{Delete}} E$$

$$\{C(\tau_1, \dots, \tau_n) \stackrel{?}{=} C(\sigma_1, \dots, \sigma_n)\} \cup E \xrightarrow{\text{Decompose}} \{\tau_1 \stackrel{?}{=} \sigma_1, \dots, \tau_n \stackrel{?}{=} \sigma_n\} \cup E$$

$$\{\tau \stackrel{?}{=} x\} \cup E \xrightarrow{\text{Swap}} \{x \stackrel{?}{=} \tau\} \cup E$$
si τ no es una variable

$$\{x \stackrel{?}{=} \tau\} \cup E \xrightarrow{\text{Elim}}_{\{x := \tau\}} E\{x := \tau\}$$

$$\text{si } x \notin \tau$$

$$\{C(\tau_1, \dots, \tau_n) \stackrel{?}{=} C'(\sigma_1, \dots, \sigma_m)\} \cup E \xrightarrow{\text{Clash}} \text{falla}$$

$$C(au_1,\ldots, au_n)\stackrel{?}{=}C'(\sigma_1,\ldots,\sigma_m)\} \cup E \stackrel{ ext{Clash}}{\longrightarrow} ext{falla} ext{ si } C
eq C'$$
 $\{x\stackrel{?}{=} au\} \cup E \stackrel{ ext{Occurs-Check}}{\longrightarrow} ext{falla}$

si $x \neq \tau$ y $x \in \tau$

Terminación del algoritmo de unificación

Dado un conjunto de ecuaciones de unificación *E*, definimos:

- n₁: cantidad de variables distintas en E
- ▶ n_2 : tamaño de E, calculado como $\sum_{(\tau = \sigma) \in E} |\tau| + |\sigma|$
- ▶ n_3 : cantidad de ecuaciones de la forma $\tau \stackrel{?}{=} x$ en E

Podemos observar que las reglas que no producen falla achican la tripla (n_1, n_2, n_3) , de acuerdo con el *orden lexicográfico*:

	n_1	n_2	<i>n</i> ₃
Elim	>		
Decompose	=	>	
Delete	\geq	>	
Swap	=	=	>

Recordemos

- 1. Una sustitución es una función S que le asocia un término S(x) a cada variable x.
- 2. **S** es un **unificador** de *E* si para cada $(\tau \stackrel{?}{=} \sigma) \in E$ se tiene que $\mathbf{S}(\tau) = \mathbf{S}(\sigma)$.
- 3. **S** es **más general** que S' si existe **T** tal que $S' = T \circ S$.
- 4. S es un m.g.u. de E si S es un unificador de E y para todo unificador S' de E se tiene que S es más general que S'. Técnicamente, nos interesan los m.g.u. idempotentes, es decir S(S(τ)) = S(τ) para todo término τ.

Lema — corrección de la regla Delete

S m.g.u. de $E \implies$ **S** m.g.u. de $\{x \stackrel{?}{=} x\} \cup E$.

Lema — corrección de la regla Swap

S m.g.u. de $\{\tau \stackrel{?}{=} \sigma\} \cup E \implies$ **S** m.g.u. de $\{\sigma \stackrel{?}{=} \tau\} \cup E$.

Lema — corrección de la regla Decompose

S m.g.u. de
$$\{\tau_1 \stackrel{?}{=} \sigma_1, \dots, \tau_n \stackrel{?}{=} \sigma_n\} \cup E$$

 \implies **S** m.g.u. de $\{C(\tau_1, \dots, \tau_n) \stackrel{?}{=} C(\sigma_1, \dots, \sigma_n)\} \cup E$.

$$\Rightarrow$$
 S m.g.u. de $\{C(\tau_1,\ldots,\tau_n)=C(\sigma_1,\ldots,\sigma_n)\}\cup E$.

Lema — corrección de la regla Elim

S m.g.u. de
$$E\{x := \tau\}$$
 y $x \notin \tau$
 \implies **S** $\circ \{x := \tau\}$ m.g.u. de E .

Usar el hecho de que si $\mathbf{S}(x) = \tau$ entonces $\mathbf{S}(\sigma\{x := \tau\}) = \mathbf{S}(\sigma)$.

Probemos la corrección del algoritmo en caso de éxito.

Sea
$$E_0 \rightarrow_{\mathbf{S}_1} E_1 \rightarrow_{\mathbf{S}_n} E_2 \rightarrow \ldots \rightarrow_{\mathbf{S}_n} E_n = \varnothing$$
.

Veamos que $S_n \circ \ldots \circ S_1$ es un m.g.u. de E.

Por inducción en *n*:

- 1. Si n = 0, la sustitución identidad es un m.g.u. de \emptyset .
- 2. Si n > 0, se tiene:

$$E_0 \rightarrow_{S_1} E_1$$
 $E_1 \rightarrow_{S_2} \ldots \rightarrow_{S_n} E_n = \emptyset$

Por HI, $\mathbf{S}_n \circ \ldots \circ \mathbf{S}_2$ es un m.g.u. de E_1 . Aplicando alguno de los lemas anteriores, se concluye que $\mathbf{S}_n \circ \ldots \circ \mathbf{S}_2 \circ \mathbf{S}_1$ es un m.g.u. de E_0 .

La corrección en caso de falla se prueba de manera similar, con lemas que van "hacia adelante" en lugar de "hacia atrás".

Lectura recomendada

Capítulo 22 del libro de Pierce.

Benjamin C. Pierce. *Types and Programming Languages*.

The MIT Press, 2002.

Extra: teoría detrás del método de unificación

Sección 4.5 del libro de Baader & Nipkow.

Franz Baader y Tobias Nipkow. Term Rewriting and All That.

Cambridge University Press, 1998.