

Europäisches Patentamt European Patent Office Office européen des brevets

(11) **EP 0 786 519 A2**

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication:30.07.1997 Bulletin 1997/31

(51) Int CI.6: C12N 15/00

(21) Application number: 97100117.7

(22) Date of filing: 07.01.1997

(84) Designated Contracting States:

AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

NL PT SE

Designated Extension States:

AL LT LV RO SI

- (30) Priority: 05.01.1996 US 9861
- (71) Applicant: HUMAN GENOME SCIENCES, INC. Rockville, MD 20850-3338 (US)
- (72) Inventors:
 - Kunsch, Charles A.
 Gaithersburg, Maryland 20882 (US)

- Choi, Gil H. Rockville, Maryland 20850 (US)
- Barash, Steven C.
 Rockville, Maryland 20850 (US)
- Dillon, Patrick J.
 Gaithersburg, Maryland 20879 (US)
- Fannon, Michael R.
 Silver Spring, Maryland 20906 (US)
- Rosen, Craig A.
 Laytonsville, Maryland 20882 (US)
- (74) Representative: VOSSIUS & PARTNER
 Postfach 86 07 67
 81634 München (DE)

(54) Staphylococcus aureus polynucleotides and sequences

(57) The present invention provides polynucleotide sequences of the genome of *Staphylococcus aureus*, polypeptide sequences encoded by the polynucleotide sequences, corresponding polynucleotides and polypeptides, vectors and hosts comprising the polynu-

cleotides, and assays and other uses thereof. The present invention further provides polynucleotide and polypeptide sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use.

Description

The present invention relates to the field of molecular biology. In particular, it relates to, among other things, nucleotide sequences of *Staphylococcus aureus*, contigs, ORFs, fragments, probes, primers and related polynucleotides thereof, peptides and polypeptides encoded by the sequences, and uses of the polynucleotides and sequences thereof, such as in fermentation, polypeptide production, assays and pharmaceutical development, among others.

The genus *Staphylococcus* includes at least 20 distinct species. (For a review see Novick, R. P., The *Staphylococcus* as a Molecular Genetic System, Chapter 1, pgs. 1-37 in MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R. Novick, Ed., VCH Publishers, New York (1990)). Species differ from one another by 80% or more, by hybridization kinetics, whereas strains within a species are at least 90% identical by the same measure.

The species Staphylococcus aureus, a gram-positive, facultatively aerobic, clump-forming cocci, is among the most important etiological agents of bacterial infection in humans, as discussed briefly below.

Human Health and S. Aureus

Staphylococcus aureus is a ubiquitous pathogen. (See, for instance, Mims et al., MEDICAL MICROBIOLOGY, Mosby-Year Book Europe Limited, London, UK (1993)). It is an etiological agent of a variety of conditions, ranging in severity from mild to fatal. A few of the more common conditions caused by S. aureus infection are burns, cellulitis, eyelid infections, food poisoning, joint infections, neonatal conjunctivitis, osteomyelitis, skin infections, surgical wound infection, scalded skin syndrome and toxic shock syndrome, some of which are described further below.

Burns

Burn wounds generally are sterile initially. However, they generally compromise physical and immune barriers to infection, cause loss of fluid and electrolytes and result in local or general physiological dysfunction. After cooling, contact with viable bacteria results in mixed colonization at the injury site. Infection may be restricted to the non-viable debris on the burn surface ("eschar"), it may progress into full skin infection and invade viable tissue below the eschar and it may reach below the skin, enter the lymphatic and blood circulation and develop into septicaemia. *S. aureus* is among the most important pathogens typically found in burn wound infections. It can destroy granulation tissue and produce severe septicaemia.

Cellulitis

Cellulitis, an acute infection of the skin that expands from a typically superficial origin to spread below the cutaneous layer, most commonly is caused by *S. aureus* in conjunction with *S. pyrogenes*. Cellulitis can lead to systemic infection. In fact, cellulitis can be one aspect of synergistic bacterial gangrene. This condition typically is caused by a mixture of *S. aureus* and microaerophilic *streptococci*. It causes necrosis and treatment is limited to excision of the necrotic tissue. The condition often is fatal.

40 Eyelid infections

S. aureus is the cause of styes and of sticky eye" in neonates, among other eye infections. Typically such infections are limited to the surface of the eye, and may occasionally penetrate the surface with more severe consequences.

45 Food poisoning

Some strains of *S. aureus* produce one or more of five serologically distinct, heat and acid stable enterotoxins that are not destroyed by digestive process of the stomach and small intestine (enterotoxins A-E). Ingestion of the toxin, in sufficient quantities, typically results in severe vomiting, but not diarrhoea. The effect does not require viable bacteria. Although the toxins are known, their mechanism of action is not understood.

Joint infections

S. aureus infects bone joints causing diseases such osteomyelitis.

Osteomyelitis

S. aureus is the most common causative agent of haematogenous osteomyelitis. The disease tends to occur in

2

15

20

25

30

35

50

55

5

10

children and adolescents more than adults and it is associated with non-penetrating injuries to bones. Infection typically occurs in the long end of growing bone, hence its occurrence in physically immature populations. Most often, infection is localized in the vicinity of sprouting capillary loops adjacent to epiphysial growth plates in the end of long, growing bones.

Skin infections

5

10

15

20

25

30

35

40

45

50

S. aureus is the most common pathogen of such minor skin infections as abscesses and boils. Such infections often are resolved by normal host response mechanisms, but they also can develop into severe internal infections. Recurrent infections of the nasal passages plague nasal carriers of S. aureus.

Surgical Wound Infections

Surgical wounds often penetrate far into the body. Infection of such wound thus poses a grave risk to the patient. S. aureus is the most important causative agent of infections in surgical wounds. S. aureus is unusually adept at invading surgical wounds; sutured wounds can be infected by far fewer S. aureus cells then are necessary to cause infection in normal skin. Invasion of surgical wound can lead to severe S. aureus septicaemia. Invasion of the blood stream by S. aureus can lead to seeding and infection of internal organs, particularly heart valves and bone, causing systemic diseases, such as endocarditis and osteomyelitis.

Scalded Skin Syndrome

S. aureus is responsible for "scalded skin syndrome" (also called toxic epidermal necrosis, Ritter's disease and Lyell's disease). This disease occurs in older children, typically in outbreaks caused by flowering of S. aureus strains produce exfoliation(also called scalded skin syndrome toxin). Although the bacteria initially may infect only a minor lesion, the toxin destroys intercellular connections, spreads epidermal layers and allows the infection to penetrate the outer layer of the skin, producing the desquamation that typifies the diseases. Shedding of the outer layer of skin generally reveals normal skin below, but fluid lost in the process can produce severe injury in young children if it is not treated properly.

Toxic Shock Syndrome

Toxic shock syndrome is caused by strains of *S. aureus* that produce the so-called toxic shock syndrome toxin. The disease can be caused by *S. aureus* infection at any site, but it is too often erroneously viewed exclusively as a disease solely of women who use tampons. The disease involves toxaemia and septicaemia, and can be fatal.

Nocosomial Infections

In the 1984 National Nocosomial Infection Surveillance Study ("NNIS") S. aureus was the most prevalent agent of surgical wound infections in many hospital services, including medicine, surgery, obstetrics, pediatrics and newborns.

Resistance to drugs of S. aureus strains

Prior to the introduction of penicillin the prognosis for patients seriously infected with *S. aureus* was unfavorable. Following the introduction of penicillin in the early 1940s even the worst *S. aureus* infections generally could be treated successfully. The emergence of penicillin-resistant strains of *S. aureus* did not take long, however. Most strains of *S. aureus* encountered in hospital infections today do not respond to penicillin; although, fortunately, this is not the case for *S. aureus* encountered in community infections.

It is well known now that penicillin-resistant strains of *S. aureus* produce a lactamase which converts penicillin to pencillinoic acid, and thereby destroys antibiotic activity. Furthermore, the lactamase gene often is propagated episomally, typically on a plasmid, and often is only one of several genes on an episomal element that, together, confer multidrug resistance.

Methicillins, introduced in the 1960s, largely overcame the problem of penicillin resistance in *S. aureus*. These compounds conserve the portions of penicillin responsible for antibiotic activity and modify or alter other portions that make penicillin a good substrate for inactivating lactamases. However, methicillin resistance has emerged in *S. aureus*, along with resistance to many other antibiotics effective against this organism, including aminoglycosides, tetracycline, chloramphenicol, macrolides and lincosamides. In fact, methicillin-resistant strains of *S. aureus* generally are multiply drug resistant.

The molecular genetics of most types of drug resistance in *S. aureus* has been elucidated (See Lyon *et al., Microbiology Reviews* <u>51</u>: 88-134 (1987)). Generally, resistance is mediated by plasmids, as noted above regarding penicillin resistance; however, several stable forms of drug resistance have been observed that apparently involve integration of a resistance element into the *S. aureus* genome itself.

Thus far each new antibiotic gives rise to resistance strains, stains emerge that are resistance to multiple drugs and increasingly persistent forms of resistance begin to emerge. Drug resistance of *S. aureus* infections already poses significant treatment difficulties, which are likely to get much worse unless new therapeutic agents are developed.

Molecular Genetics of Staphylococcus Aureus

5

10

15

20

35

40

45

50

Despite its importance in, among other things, human disease, relatively little is known about the genome of this organism.

Most genetic studies of *S. aureus* have been carried out using the the strain NCTC8325, which contains prophages psi11 psi12 and psi13, and the UV-cured derivative of this strain, 8325-4 (also referred to as RN450), which is free of the prophages.

These studies revealed that the *S. aureus* genome, like that of other *staphylococci*, consists of one circular, covalently closed, double-stranded DNA and a collection of so-called variable accessory genetic elements, such as prophages, plasmids, transposons and the like.

Physical characterization of the genome has not been carried out in any detail. Pattee *et al.* published a low resolution and incomplete genetic and physical map of the chromosome of *S. aureus* strain NCTC 8325. (Pattee *et al.* Genetic and Physical Mapping of Chromosome of *Staphylococcus aureus* NCTC 8325, Chapter 11, pgs. 163-169 in. MOLECULAR BIOLOGY OF THE *STAPHYLOCOCCI*, R.P. Novick, Ed., VCH Publishers, New York, (1990) The genetic map largely was produced by mapping insertions of Tn551 and Tn4001, which, respectively, confer erythromycin and gentamicin resistance, and by analysis of Smal-digested DNA by Pulsed Field Gel Electrophoresis ("PFGE").

The map was of low resolution; even estimating the physical size of the genome was difficult, according to the investigators. The size of the largest Smal chromosome fragment, for instance, was too large for accurate sizing by PFGE. To estimate its size, additional restriction sites had to be introduced into the chromosome using a transposon containing a Smal recognition sequence.

In sum, most physical characteristics and almost all of the genes of *Staphylococcus aureus* are unknown. Among the few genes that have been identified, most have not been physically mapped or characterized in detail. Only a very few genes of this organism have been sequenced. (See, for instance Thornsberry, J., *Antimicrobial Chemotherapy* 21 Suppl C: 9-16 (1988), current versions of GENBANK and other nucleic acid databases, and references that relate to the genome of *S. aureus* such as those set out elsewhere herein.)

It is clear that the etiology of diseases mediated or exacerbated by *S. aureus* infection involves the programmed expression of *S. aureus* genes, and that characterizing the genes and their patterns of expression would add dramatically to our understanding of the organism and its host interactions. Knowledge of *S. aureus* genes and genomic organization would dramatically improve understanding of disease etiology and lead to improved and new ways of preventing, ameliorating, arresting and reversing diseases. Moreover, characterized genes and genomic fragments of *S. aureus* would provide reagents for, among other things, detecting, characterizing and controlling *S. aureus* infections. There is a need therefore to characterize the genome of *S. aureus* and for polynucleotides and sequences of this organism.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome. The primary nucleotide sequences which were generated are provided in SEQ ID NOS: 1-5,191.

The present invention provides the nucleotide sequence of several thousand contigs of the *Staphylococcus aureus* genome, which are listed in tables below and set out in the Sequence Listing submitted herewith, and representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan. In one embodiment, the present invention is provided as contiguous strings of primary sequence information corresponding to the nucleotide sequences depicted in SEQ ID NOS:1-5,191.

The present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

The nucleotide sequence of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence which is at least 95%, preferably 99% and most preferably 99.9%, identical to the nucleotide sequence of SEQ ID NOS:1-5,191 may be provided in a variety of mediums to facilitate its use. In one application of this embodiment, the sequences of the present invention are recorded on computer readable media. Such media includes, but is not limited to:magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/ optical storage media.

The present invention further provides systems, particularly computer-based systems which contain the sequence

information herein described stored in a data storage means. Such systems are designed to identify commercially important fragments of the Staphylococcus aureus genome.

Another embodiment of the present invention is directed to fragments, preferably isolated fragments, of the Staphylococcus aureus genome having particular structural or functional attributes. Such fragments of the Staphylococcus
aureus genome of the present invention include, but are not limited to, fragments which encode peptides, hereinafter
referred to as open reading frames or ORFs," fragments which modulate the expression of an operably linked ORF,
hereinafter referred to as expression modulating fragments or EMFs," and fragments which can be used to diagnose
the presence of Staphylococcus aureus in a sample, hereinafter referred to as diagnostic fragments or "DFs."

Each of the ORFs in fragments of the *Staphylococcus aureus* genome disclosed in Tables 1-3, and the EMFs found 5' to the ORFs, can be used in numerous ways as polynucleotide reagents. For instance, the sequences can be used as diagnostic probes or amplification primers for detecting or determining the presence of a specific microbe in a sample, to selectively control gene expression in a host and in the production of polypeptides, such as polypeptides encoded by ORFs of the present invention, particular those polypeptides that have a pharmacological activity.

The present invention further includes recombinant constructs comprising one or more fragments of the *Staphylococcus* aureus genome of the present invention. The recombinant constructs of the present invention comprise vectors, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus* aureus has been inserted.

15

20

25

30

35

40

45

50

The present invention further provides host cells containing any of the isolated fragments of the *Staphylococcus* aureus genome of the present invention. The host cells can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic cell, such as a yeast cell, or a procaryotic cell such as a bacterial cell.

The present invention is further directed to polypeptides and proteins, preferably isolated polypeptides and proteins, encoded by ORFs of the present invention. A variety of methods, well known to those of skill in the art, routinely may be utilized to obtain any of the polypeptides and proteins of the present invention. For instance, polypeptides and proteins of the present invention having relatively short, simple amino acid sequences readily can be synthesized using commercially available automated peptide synthesizers. Polypeptides and proteins of the present invention also may be purified from bacterial cells which naturally produce the protein. Yet another alternative is to purify polypeptide and proteins of the present invention can from cells which have been altered to express them.

The invention further provides polypeptides, preferably isolated polypeptides, comprising *Staphylococcus aureus* epitopes and vaccine compositions comprising such polypeptides. Also provided are methods for vacciniating an individual against *Staphylococcus aureus* infection.

The invention further provides methods of obtaining homologs of the fragments of the *Staphylococcus aureus* genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. Specifically, by using the nucleotide and amino acid sequences disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

The invention further provides antibodies which selectively bind polypeptides and proteins of the present invention. Such antibodies include both monoclonal and polyclonal antibodies.

The invention further provides hybridomas which produce the above-described antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

The present invention further provides methods of identifying test samples derived from cells which express one of the ORFs of the present invention, or a homolog thereof. Such methods comprise incubating a test sample with one or more of the antibodies of the present invention, or one or more of the Dfs or antigens of the present invention, under conditions which allow a skilled artisan to determine if the sample contains the ORF or product produced therefrom.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the above-described assays.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the antibodies, antigens, or one of the DFs of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of bound antibodies, antigens or hybridized DFs.

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents capable of binding to a polypeptide or protein encoded by one of the ORFs of the present invention. Specifically, such agents include, as further described below, antibodies, peptides, carbohydrates, pharmaceutical agents and the like. Such methods comprise steps of: (a)contacting an agent with an isolated protein encoded by one of the ORFs of the present invention; and (b)determining whether the agent binds to said protein.

The present genomic sequences of *Staphylococcus aureus* will be of great value to all laboratories working with this organism and for a variety of commercial purposes. Many fragments of the *Staphylococcus aureus* genome will be immediately identified by similarity searches against GenBank or protein databases and will be of immediate value to *Staphylococcus aureus* researchers and for immediate commercial value for the production of proteins or to control gene expression.

The methodology and technology for elucidating extensive genomic sequences of bacterial and other genomes

has and will greatly enhance the ability to analyze and understand chromosomal organization. In particular, sequenced contigs and genomes will provide the models for developing tools for the analysis of chromosome structure and function, including the ability to identify genes within large segments of genomic DNA, the structure, position, and spacing of regulatory elements, the identification of genes with potential industrial applications, and the ability to do comparative genomic and molecular phylogeny.

FIGURE 1 is a block diagram of a computer system (102) that can be used to implement computer-based systems of present invention.

5

15

20

25

30

40

45

FIGURE 2 is a schematic diagram depicting the data flow and computer programs used to collect, assemble, edit and annotate the contigs of the Staphylococcus aureus genome of the present invention. Both Macintosh and Unix platforms are used to handle the AB 373 and 377 sequence data files, largely as described in Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, 585, IEEE Computer Society Press, Washington D.C. (1993). Factura (AB) is a Macintosh program designed for automatic vector sequence removal and end-trimming of sequence files. The program Loadis runs on a Macintosh platform and parses the feature data extracted from the sequence files by Factura to the Unix based Staphylococcus aureus relational database. Assembly of contigs (and whole genome sequences) is accomplished by retrieving a specific set of sequence files and their associated features using extrseq, a Unix utility for retrieving sequences from an SQL database. The resulting sequence file is processed by seq_filter to trim portions of the sequences with more than 2% ambiguous nucleotides. The sequence files were assembled using TIGR Assembler, an assembly engine designed at The Institute for Genomic Research (TIGR") for rapid and accurate assembly of thousands of sequence fragments. The collection of contigs generated by the assembly step is loaded into the database with the lassie program. Identification of open reading frames (ORFs) is accomplished by processing contigs with zorf. The ORFs are searched against S. aureus sequences from Genbank and against all protein sequences using the BLASTN and BLASTP programs, described in Altschul et al., J. Mol. Biol. 215: 403-410 (1990)). Results of the ORF determination and similarity searching steps were loaded into the database. As described below, some results of the determination and the searches are set out in Tables 1-3.

The present invention is based on the sequencing of fragments of the *Staphylococcus aureus* genome and analysis of the sequences. The primary nucleotide sequences generated by sequencing the fragments are provided in SEQ ID NOS:1-5,191. (As used herein, the "primary sequence" refers to the nucleotide sequence represented by the IUPAC nomenclature system.)

In addition to the aforementioned *Staphylococcus aureus* polynucleotide and polynucleotide sequences, the present invention provides the nucleotide sequences of SEQ ID NOS:1-5,191, or representative fragments thereof, in a form which can be readily used, analyzed, and interpreted by a skilled artisan.

As used herein, a "representative fragment of the nucleotide sequence depicted in SEQ ID NOS:1-5,191" refers to any portion of the SEQ ID NOS:1-5,191 which is not presently represented within a publicly available database. Preferred representative fragments of the present invention are *Staphylococcus aureus* open reading frames (ORFs"), expression modulating fragment (EMFs") and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in sample ("DFs"). A non-limiting identification of preferred representative fragments is provided in Tables 1-3.

As discussed in detail below, the information provided in SEQ ID NOS:1-5,191 and in Tables 1-3 together with routine cloning, synthesis, sequencing and assay methods will enable those skilled in the art to clone and sequence all "representative fragments" of interest, including open reading frames encoding a large variety of Staphylococcus aureus proteins

While the presently disclosed sequences of SEQ ID NOS:1-5,191 are highly accurate, sequencing techniques are not perfect and, in relatively rare instances, further investigation of a fragment or sequence of the invention may reveal a nucleotide sequence error present in a nucleotide sequence disclosed in SEQ ID NOS:1-5,191. However, once the present invention is made available (*i.e.*, once the information in SEQ ID NOS:1-5,191 and Tables 1-3 has been made available), resolving a rare sequencing error in SEQ ID NOS:1-5,191 will be well within the skill of the art. The present disclosure makes available sufficient sequence information to allow any of the described contigs or portions thereof to be obtained readily by straightforward application of routine techniques. Further sequencing of such polynucleotide may proceed in like manner using manual and automated sequencing methods which are employed ubiquitous in the art. Nucleotide sequence editing software is publicly available. For example, Applied Biosystem's (AB) AutoAssembler can be used as an aid during visual inspection of nucleotide sequences. By employing such routine techniques potential errors readily may be identified and the correct sequence then may be ascertained by targeting further sequencing effort, also of a routine nature, to the region containing the potential error.

Even if all of the very rare sequencing errors in SEQ ID NOS:1-5,191 were corrected, the resulting nucleotide sequences would still be at least 95% identical, nearly all would be at least 99% identical, and the great majority would be at least 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191.

As discussed elsewhere hererin, polynucleotides of the present invention readily may be obtained by routine application of well known and standard procedures for cloning and sequencing DNA. Detailed methods for obtaining

libraries and for sequencing are provided below, for instance. A wide variety of *Staphylococcus aureus* strains that can be used to prepare *S aureus* genomic DNA for cloning and for obtaining polynucleotides of the present invention are available to the public from recognized depository institutions, such as the American Type Culture Collection (ATCC*).

The nucleotide sequences of the genomes from different strains of *Staphylococcus aureus* differ somewhat. However, the nucleotide sequences of the genomes of all *Staphylococcus aureus* strains will be at least 95% identical, in corresponding part, to the nucleotide sequences provided in SEQ ID NOS:1-5,191. Nearly all will be at least 99% identical and the great majority will be 99.9% identical.

Thus, the present invention further provides nucleotide sequences which are at least 95%, preferably 99% and most preferably 99.9% identical to the nucleotide sequences of SEQ ID NOS:1-5,191, in a form which can be readily used, analyzed and interpreted by the skilled artisan.

Methods for determining whether a nucleotide sequence is at least 95%, at least 99% or at least 99.9% identical to the nucleotide sequences of SEQID NOS:1-5,191 are routine and readily available to the skilled artisan. For example, the well known fasta algorithm described in Pearson and Lipman, *Proc. Natl. Acad. Sci. USA* <u>85</u>: 2444 (1988) can be used to generate the percent identity of nucleotide sequences. The BLASTN program also can be used to generate an identity score of polynucleotides compared to one another.

COMPUTER RELATED EMBODIMENTS

5

10

15

20

25

30

35

40

45

50

55

The nucleotide sequences provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide sequence of SEQ ID NOS:1-5,191 may be "provided" in a variety of mediums to facilitate use thereof. As used herein, Oprovided refers to a manufacture, other than an isolated nucleic acid molecule, which contains a nucleotide sequence of the present invention; *i.e.*, a nucleotide sequence provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a polynucleotide of SEQ ID NOS:1-5,191. Such a manufacture provides a large portion of the *Staphylococcus aureus* genome and parts thereof (*e.g.*, a *Staphylococcus aureus* open reading frame (ORF)) in a form which allows a skilled artisan to examine the manufacture using means not directly applicable to examining the *Staphylococcus aureus* genome or a subset thereof as it exists in nature or in purified form.

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories, such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. Likewise, it will be clear to those of skill how additional computer readable media that may be developed also can be used to create analogous manufactures having recorded thereon a nucleotide sequence of the present invention.

As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently know methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially- available software such as WordPerfect and MicroSoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data-processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium. Thus, by providing in computer readable form the nucleotide sequences of SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably at least 99% and most preferably at least 99.9% identical to a sequence of SEQ ID NOS:1-5,191 the present invention enables the skilled artisan routinely to access the provided sequence information for a wide variety of purposes.

The examples which follow demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol. 215:403410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993)) search algorithms on a Sybase system was used to identify open reading frames (ORFs) within the *Staphylococcus aureus* genome which contain homology to ORFs or proteins from both *Staphylococcus aureus* and from other organisms. Among the ORFs discussed

herein are protein encoding fragments of the Staphylococcus aureus genome useful in producing commercially important proteins, such as enzymes used in fermentation reactions and in the production of commercially useful metabolites.

The present invention further provides systems, particularly computer-based systems, which contain the sequence information described herein. Such systems are designed to identify, among other things, commercially important fragments of the *Staphylococcus aureus* genome.

5

15

20

25

30

35

40

50

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based system are suitable for use in the present invention.

As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means.

As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

As used herein, "search means" refers to one or more programs which are implemented on the computer- based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of the present genomic sequences which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems.

As used herein, a "target sequence" can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that searches for commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzymic active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences):

A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. A preferred format for an output means ranks fragments of the *Staphylococcus aureus* genomic sequences possessing varying degrees of homology to the target sequence or target motif. Such presentation provides a skilled artisan with a ranking of sequences which contain various amounts of the target sequence or target motif and identifies the degree of homology contained in the identified fragment.

A variety of comparing means can be used to compare a target sequence or target motif with the data storage means to identify sequence fragments of the *Staphylococcus aureus* genome. In the present examples, implementing software which implement the BLAST and BLAZE algorithms, described in Altschul *et al.*, *J. Mol. Biol.* 215: 403-410 (1990), was used to identify open reading frames within the *Staphylococcus aureus* genome. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer-based systems of the present invention. Of course, suitable proprietary systems that may be known to those of skill also may be employed in this regard.

Figure 1 provides a block diagram of a computer system illustrative of embodiments of this aspect of present invention. The computer system 102 includes a processor 106 connected to a bus 104. Also connected to the bus 104 are a main memory 108 (preferably implemented as random access memory, RAM) and a variety of secondary storage devices 110, such as a hard drive 112 and a removable medium storage device 114. The removable medium storage device 114 may represent, for example, a floppy disk drive, a CD-ROM drive, a magnetic tape drive, etc. A removable storage medium 116 (such as a floppy disk, a compact disk, a magnetic tape, etc.) containing control logic and/or data recorded therein may be inserted into the removable medium storage device 114. The computer system 102 includes appropriate software for reading the control logic and/or the data from the removable medium storage device 114, once it is inserted into the removable medium storage device 114.

A nucleotide sequence of the present invention may be stored in a well known manner in the main memory 108, any of the secondary storage devices 110, and/or a removable storage medium 116. During execution, software for

accessing and processing the genomic sequence (such as search tools, comparing tools, *etc.*) reside in main memory 108, in accordance with the requirements and operating parameters of the operating system, the hardware system and the software program or programs.

5 BIOCHEMICAL EMBODIMENTS

10

15

20

25

40

45

50

55

Other embodiments of the present invention are directed to fragments of the *Staphylococcus aureus* genome, preferably to isolated fragments. The fragments of the *Staphylococcus aureus* genome of the present invention include, but are not limited to fragments which encode peptides, hereinafter open reading frames (ORFs), fragments which modulate the expression of an operably linked ORF, hereinafter expression modulating fragments (EMFs) and fragments which can be used to diagnose the presence of *Staphylococcus aureus* in a sample, hereinafter diagnostic fragments (DFs).

As used herein, an "isolated nucleic acid molecule" or an "isolated fragment of the *Staphylococcus aureus* genome" refers to a nucleic acid molecule possessing a specific nucleotide sequence which has been subjected to purification means to reduce, from the composition, the number of compounds which are normally associated with the composition. Particularly, the term refers to the nucleic acid molecules having the sequences set out in SEQ ID NOS:1-5,191, to representative fragments thereof as described above, to polynucleotides at least 95%, preferably at least 99% and especially preferably at least 99.9% identical in sequence thereto, also as set out above.

A variety of purification means can be used to generated the isolated fragments of the present invention. These include, but are not limited to methods which separate constituents of a solution based on charge, solubility, or size.

In one embodiment, Staphylococcus aureus DNA can be mechanically sheared to produce fragments of 15-20 kb in length. These fragments can then be used to generate an Staphylococcus aureus library by inserting them into lambda clones as described in the Examples below. Primers flanking, for example, an ORF, such as those enumerated in Tables 1-3 can then be generated using nucleotide sequence information provided in SEQ ID NOS: 1-5,191. Well known and routine techniques of PCR cloning then can be used to isolate the ORF from the lambda DNA library of Staphylococcus aureus genomic DNA. Thus, given the availability of SEQ ID NOS:1-5,191, the information in Tables 1, 2 and 3, and the information that may be obtained readily by analysis of the sequences of SEQ ID NOS:1-5,191 using methods set out above, those of skill will be enabled by the present disclosure to isolate any ORF-containing or other nucleic acid fragment of the present invention.

The isolated nucleic acid molecules of the present invention include, but are not limited to single stranded and double stranded DNA, and single stranded RNA.

As used herein, an "open reading frame," ORF, means a series of triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

Tables 1, 2 and 3 list ORFs in the *Staphylococcus aureus* genomic contigs of the present invention that were identified as putative coding regions by the GeneMark software using organism-specific second-order Markov probability transition matrices. It will be appreciated that other criteria can be used, in accordance with well known analytical methods, such as those discussed herein, to generate more inclusive, more restrictive or more selective lists.

Table 1 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are at least 80 amino acids long and over a continuous region of at least 50 bases which are 95% or more identical (by BLAST analysis) to an *S. aureus* nucleotide sequence available through Genbank in November 1996.

Table 2 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that are not in Table 1 and match, with a BLASTP probability score of 0.01 or less, a polypeptide sequence available through Genbank by September 1996.

Table 3 sets out ORFs in the *Staphylococcus aureus* contigs of the present invention that do not match significantly, by BLASTP analysis, a polypeptide sequence available through Genbank by September 1996.

In each table, the first and second columns identify the ORF by, respectively, contig number and ORF number within the contig; the third column indicates the reading frame, taking the first 5' nucleotide of the contig as the start of the +1 frame; the fourth column indicates the first nucleotide of the ORF, counting from the 5' end of the contig strand; and the fifth column indicates the length of each ORF in nucleotides.

In Tables 1 and 2, column six, lists the Reference" for the closest matching sequence available through Genbank. These reference numbers are the databases entry numbers commonly used by those of skill in the art, who will be familiar with their denominators. Descriptions of the numenclature are available from the National Center for Biotechnology Information. Column seven in Tables 1 and 2 provides the gene name" of the matching sequence; column eight provides the BLAST identity" score from the comparison of the ORF and the homologous gene; and column nine indicates the length in nucleotides of the highest scoring segment pair" identified by the BLAST identity analysis.

In Table 3, the last column, column six, indicates the length of each ORF in amino acid residues.

The concepts of percent identity and percent similarity of two polypeptide sequences is well understood in the art. For example, two polypeptides 10 amino acids in length which differ at three amino acid positions (e.g., at positions

1, 3 and 5) are said to have a percent identity of 70%. However, the same two polypeptides would be deemed to have a percent similarity of 80% if, for example at position 5, the amino acids moieties, although not identical, were "similar" (i.e., possessed similar biochemical characteristics). Many programs for analysis of nucleotide or amino acid sequence similarity, such as fasta and BLAST specifically list per cent identity of a matching region as an output parameter. Thus, for instance, Tables 1 and 2 herein enumerate the per cent identity" of the highest scoring segment pair" in each ORF and its listed relative. Further details concerning the algorithms and criteria used for homology searches are provided below and are described in the pertinent literature highlighted by the citations provided below.

It will be appreciated that other criteria can be used to generate more inclusive and more exclusive listings of the types set out in the tables. As those of skill will appreciate, narrow and broad searches both are useful. Thus, a skilled artisan can readily identify ORFs in contigs of the *Staphylococcus aureus* genome other than those listed in Tables 1-3, such as ORFs which are overlapping or encoded by the opposite strand of an identified ORF in addition to those ascertainable using the computer-based systems of the present invention.

10

15

20

25

30

40

45

50

As used herein, an "expression modulating fragment," EMF, means a series of nucleotide molecules which modulates the expression of an operably linked ORF or EMF.

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are fragments which induce the expression or an operably linked ORF in response to a specific regulatory factor or physiological event.

EMF sequences can be identified within the contigs of the *Staphylococcus aureus* genome by their proximity to the ORFs provided in Tables 1-3. An intergenic segment, or a fragment of the intergenic segment, from about 10 to 200 nucleotides in length, taken from any one of the ORFs of Tables 1-3 will modulate the expression of an operably linked ORF in a fashion similar to that found with the naturally linked ORF sequence. As used herein, an "intergenic segment" refers to fragments of the *Staphylococcus aureus* genome which are between two ORF(s) herein described. EMFs also can be identified using known EMFs as a target sequence or target motif in the computer-based systems of the present invention. Further, the two methods can be combined and used together.

The presence and activity of an EMF can be confirmed using an EMF trap vector. An EMF trap vector contains a cloning site linked to a marker sequence. A marker sequence encodes an identifiable phenotype, such as antibiotic resistance or a complementing nutrition auxotrophic factor, which can be identified or assayed when the EMF trap vector is placed within an appropriate host under appropriate conditions. As described above, a EMF will modulate the expression of an operably linked marker sequence. A more detailed discussion of various marker sequences is provided below.

A sequence which is suspected as being an EMF is cloned in all three reading frames in one or more restriction sites upstream from the marker sequence in the EMF trap vector. The vector is then transformed into an appropriate host using known procedures and the phenotype of the transformed host in examined under appropriate conditions. As described above, an EMF will modulate the expression of an operably linked marker sequence.

As used herein, a "diagnostic fragment," DF, means a series of nucleotide molecules which selectively hybridize to *Staphylococcus aureus* sequences. DFs can be readily identified by identifying unique sequences within contigs of the *Staphylococcus aureus* genome, such as by using well-known computer analysis software, and by generating and testing probes or amplification primers consisting of the DF sequence in an appropriate diagnostic format which determines amplification or hybridization selectivity.

The sequences falling within the scope of the present invention are not limited to the specific sequences herein described, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequences provided in SEQ ID NOS:1-5,191, a representative fragment thereof, or a nucleotide sequence at least 95%, preferably 99% and most preferably 99.9% identical to SEQ ID NOS:1-5,191, with a sequence from another isolate of the same species.

Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the nucleic acid sequences mentioned above. In other words, in the coding region of an ORF, substitution of one codon for another which encodes the same amino acid is expressly contemplated.

Any specific sequence disclosed herein can be readily screened for errors by resequencing a particular fragment, such as an ORF, in both directions (*i.e.*, sequence both strands). Alternatively, error screening can be performed by sequencing corresponding polynucleotides of *Staphylococcus aureus* origin isolated by using part or all of the fragments in question as a probe or primer.

Each of the ORFs of the Staphylococcus aureus genome disclosed in Tables 1, 2 and 3, and the EMFs found 5' to the ORFs, can be used as polynucleotide reagents in numerous ways. For example, the sequences can be used as diagnostic probes or diagnostic amplification primers to detect the presence of a specific microbe in a sample, particular Staphylococcus aureus. Especially preferred in this regard are ORF such as those of Table 3, which do not match previously characterized sequences from other organisms and thus are most likely to be highly selective for Staphylococcus aureus. Also particularly preferred are ORFs that can be used to distinguish between strains of Sta-

phylococcus aureus, particularly those that distinguish medically important strain, such as drug-resistant strains.

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Information from the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides. Polynucleotides suitable for use in these methods are usually 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription, for triple-helix formation, or to the mRNA itself, for antisense inhibition. Both techniques have been demonstrated to be effective in model systems, and the requisite techniques are well known and involve routine procedures. Triple helix techniques are discussed in, for example, Lee et al., Nucl. Acids Res. 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Antisense techniques in general are discussed in, for instance, Okano, J. Neurochem. 56: 560 (1991) and OLIGODEOXYNUCLE-OTIDES AS ANTISENSE INHIBITORS OF GENE EXPRESSION, CRC Press, Boca Raton, FL (1988)).

The present invention further provides recombinant constructs comprising one or more fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention. Certain preferred recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a fragment of the *Staphylococcus aureus* genome has been inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. For vectors comprising the EMFs of the present invention, the vector may further comprise a marker sequence or heterologous ORF operably linked to the EMF.

15

20

30

35

40

45

50

Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Useful bacterial vectors include phagescript, PsiX174, pBluescript SK and KS (+ and -), pNH8a, pNH16a, pNH46a (available from Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (available from Pharmacia). Useful eukaryotic vectors include pWLneo, pSV2cat, pOG44, pXT1, pSG (available from Stratagene): pSVK3, pBPV, pMSG, pSVL (available from Pharmacia).

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacl, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein- I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art.

The present invention further provides host cells containing any one of the isolated fragments of the *Staphylococcus* aureus genomic fragments and contigs of the present invention, wherein the fragment has been introduced into the host cell using known methods. The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or a procaryotic cell, such as a bacterial cell.

A polynucleotide of the present invention, such as a recombinant construct comprising an ORF of the present invention, may be introduced into the host by a variety of well established techniques that are standard in the art, such as calcium phosphate transfection, DEAE, dextran mediated transfection and electroporation, which are described in, for instance, Davis, L. *et al.*, BASIC METHODS IN MOLECULAR BIOLOGY (1986).

A host cell containing one of the fragments of the *Staphylococcus aureus* genomic fragments and contigs of the present invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the Genetic Code, encode an identical polypeptide sequence.

Preferred nucleic acid fragments of the present invention are the ORFs depicted in Tables 2 and 3 which encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. This is particularly useful in producing small peptides and fragments of larger polypeptides. Such short fragments as may be obtained most readily by synthesis are useful, for example, in generating antibodies against the native polypeptide, as discussed further below.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily employ well-known methods for isolating polpeptides and proteins to isolate and purify polypeptides or proteins of the present invention produced naturally by a bacterial strain, or by other methods. Methods for isolation and purification that can be employed in this regard include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immunochromatography, and immunochromatography.

no-affinity chromatography.

10

15

20

25

30

45

55

The polypeptides and proteins of the present invention also can be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein which it normally does not produce or which the cell normally produces at a lower level. Those skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, CV-1 cell, COS cells, and Sf9 cells, as well as prokaryotic host such as *E. coli* and *B. subtilis*. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level.

"Recombinant," as used herein, means that a polypeptide or protein is derived from recombinant (e.g., microbial or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial"defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation. Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern different from that expressed in mammalian cells.

"Nucleotide sequence" refers to a heteropolymer of deoxyribonucleotides. Generally, DNA segments encoding the polypeptides and proteins provided by this invention are assembled from fragments of the *Staphylococcus aureus* genome and short oligonucleotide linkers, or from a series of oligonucleotides, to provide a synthetic gene which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon.

"Recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. The expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic regulatory elements necessary for gene expression in the host, including elements required to initiate and maintain transcription at a level sufficient for suitable expression of the desired polypeptide, including, for example, promoters and, where necessary, an enhancers and a polyadenylation signal; (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate signals to initiate translation at the beginning of the desired coding region and terminate translation at its end. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an N-terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

"Recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extra chromosomally. The cells can be prokary-otic or eukaryotic. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed.

Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, MOLECULAR CLONING:A LABORATORY MANUAL, 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference in its entirety.

Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, *e.g.*, the ampicillin resistance gene of *E. coli* and *S. cerevisiae* TRP1 gene, and a promoter derived from a highly expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), alphafactor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, when desirable, provide amplification within the host.

Suitable prokaryotic hosts for transformation include strains of Staphylococcus aureus, E. coli, B. subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus. Others

may, also be employed as a matter of choice.

10

15

20

25

30

40

45

50

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (available form Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (available from Promega Biotec, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, where it is inducible, is derepressed or induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period to provide for expression of the induced gene product. Thereafter cells are typically harvested, generally by centrifugation, disrupted to release expressed protein, generally by physical or chemical means, and the resulting crude extract is retained for further purification.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described in Gluzman, *Cell* 23: 175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa and BHK cell lines.

Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements.

Recombinant polypeptides and proteins produced in bacterial culture is usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

An additional aspect of the invention includes Staphylococcus aureus polypeptides which are useful as immunodiagnostic antigens and/or immunoprotective vaccines, collectively "immunologically useful polypeptides". Such immunologically useful polypeptides may be selected from the ORFs disclosed herein based on techniques well known in the art and described elsewhere herein. The inventors have used the following criteria to select several immunologically useful polypeptides:

As is known in the art, an amino terminal type I signal sequence directs a nascent protein across the plasma and outer membranes to the exterior of the bacterial cell. Such outermembrane polypeptides are expected to be immunologically useful. According to Izard, J. W. et al., Mol. Microbiol. 13, 765-773; (1994), polypeptides containing type I signal sequences contain the following physical attributes: The length of the type I signal sequence is approximately 15 to 25 primarily hydrophobic amino acid residues with a net positive charge in the extreme amino terminus; the central region of the signal sequence must adopt an alpha-helical conformation in a hydrophobic environment; and the region surrounding the actual site of cleavage is ideally six residues long, with small side-chain amino acids in the -1 and -3 positions.

Also known in the art is the type IV signal sequence which is an example of the several types of functional signal sequences which exist in addition to the type I signal sequence detailed above. Although functionally related, the type IV signal sequence possesses a unique set of biochemical and physical attributes (Strom, M. S. and Lory, S., J. Bacteriol. 174, 7345-7351; 1992)). These are typically six to eight amino acids with a net basic charge followed by an additional sixteen to thirty primarily hydrophobic residues. The cleavage site of a type IV signal sequence is typically after the initial six to eight amino acids at the extreme amino terminus. In addition, all type IV signal sequences contain a phenylalanine residue at the +1 site relative to the cleavage site.

Studies of the cleavage sites of twenty-six bacterial lipoprotein precursors has allowed the definition of a consensus amino acid sequence for lipoprotein cleavage. Nearly three-fourths of the bacterial lipoprotein precursors examined contained the sequence L-(A,S)-(G,A)-C at positions -3 to +1, relative to the point of cleavage (Hayashi, S. and Wu, H. C. Lipoproteins in bacteria. J Bioenerg. Biomembr. 22, 451-471; 1990).

It well known that most anchored proteins found on the surface of gram-positive bacteria possess a highly conserved carboxy terminal sequence. More than fifty such proteins from organisms such as *S. pyogenes*, *S. mutans*, *E. faecalis*, *S. pneumoniae*, and others, have been identified based on their extracellular location and carboxy terminal amino acid sequence (Fischetti, V. A. Gram-positive commensal bacteria deliver antigens to elicit mucosal and systemic immunity. ASM News 62, 405410; 1996). The conserved region is comprised of six charged amino acids at the extreme carboxy terminus coupled to 15-20 hydrophobic amino acids presumed to function as a transmembrane domain. Immediately adjacent to the transmembrane domain is a six amino acid sequence conserved in nearly all proteins ex-

amined. The amino acid sequence of this region is L-P-X-T-G-X, where X is any amino acid.

5

10

15

20

25

40

45

50

Amino acid sequence similarities to proteins of known function by BLAST enables the assignment of putative functions to novel amino acid sequences and allows for the selection of proteins thought to function outside the cell wall. Such proteins are well known in the art and include "lipoprotein", "periplasmic", or "antigen".

An algorithm for selecting antigenic and immunogenic *Staphylococcus aureus* polypeptides including the foregoing criteria was developed by the present inventors. Use of the algorithm by the inventors to select immunologically useful *Staphylococcus aureus* polypeptides resulted in the selection of several ORFs which are predicted to be outermembrane-associated proteins. These proteins are identified in Table 4, below, and shown in the Sequence Listing as SEQ ID NOS:5,192 to 5,255. Thus the amino acid sequence of each of several antigenic *Staphylococcus aureus* polypeptides listed in Table 4 can be determined, for example, by locating the amino acid sequence of the ORF in the Sequence Listing. Likewise the polynucleotide sequence encoding each ORF can be found by locating the corresponding polynucleotide SEQ ID in Tables 1, 2, or 3, and finding the corresponding nucleotide sequence in the sequence listing.

As will be appreciated by those of ordinary skill in the art, although a polypeptide representing an entire ORF may be the closest approximation to a protein found *in vivo*, it is not always technically practical to express a complete ORF *in vitro*. It may be very challenging to express and purify a highly hydrophobic protein by common laboratory methods. As a result, the immunologically useful polypeptides described herein as SEQ ID NOS:5,192-5,255 may have been modified slightly to simplify the production of recombinant protein, and are the preferred embodiments. In general, nucleotide sequences which encode highly hydrophobic domains, such as those found at the amino terminal signal sequence, are excluded for enhanced *in vitro* expression of the polypeptides. Furthermore, any highly hydrophobic amino acid sequences occurring at the carboxy terminus are also excluded. Such truncated polypeptides include for example the mature forms of the polypeptides expected to exist in nature.

Those of ordinary skill in the art can identify soluble portions the polypeptide identified in Table 4, and in the case of truncated polypeptides sequences shown as SEQ ID NOS:5,192-5,255, may obtain the complete predicted amino acid sequence of each polypeptide by translating the corresponding polynucleotides sequences of the corresponding ORF listed in Tables 1,2 and 3 and found in the sequence listing.

Accordingly, polypeptides comprising the complete amino acid of an immunologically useful polypeptide selected from the group of polypeptides encoded by the ORFs identified in Table 4, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto, and most preferably at least 99% identical thereto form an embodiment of the invention; in addition polypeptides comprising an amino acid sequence selected from the group of amino acid sequences shown in the sequence listing as SEQ ID NOS:5,191-5,255, or an amino acid sequence at least 95% identical thereto, preferably at least 97% identical thereto and most preferably at least 99% identical thereto, form an embodiment of the invention. Polynucleotides encoding the foregoing polypeptides also form part of the present invention.

In another aspect, the invention provides a peptide or polypeptide comprising an epitope-bearing portion of a polypeptide of the invention, particularly those epitope-bearing portions (antigenic regions) identified in Table 4. The epitope-bearing portion is an immunogenic or antigenic epitope of a polypeptide of the invention. An "immunogenic epitope" is defined as a part of a protein that elicits an antibody response when the whole protein is the immunogen. On the other hand, a region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." The number of immunogenic epitopes of a protein generally is less than the number of antigenic epitopes. See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).

As to the selection of peptides or polypeptides bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in that art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts with the partially mimicked protein. See, for instance, Sutcliffe, J. G., Shinnick, T. M., Green, N. and Leamer, R. A. (1983) "Antibodies that react with predetermined sites on proteins", Science, 219:660-666. Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., immunogenic epitopes) nor to the amino or carboxyl terminals. Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. See, for instance, Wilson et al., Cell 37:767-778 (1984) at 777.

Antigenic epitope-bearing peptides and polypeptides of the invention preferably contain a sequence of at least seven, more preferably at least nine and most preferably between about 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. Non-limiting examples of antigenic polypeptides or peptides that can be used to generate S. aureus specific antibodies include: a polypeptide comprising peptides shown in Table 4 below. These polypeptide fragments have been determined to bear antigenic epitopes of indicated S. aureus proteins by the analysis of the Jameson-Wolf antigenic index, a representative sample of which is shown in Figure 3.

The epitope-bearing peptides and polypeptides of the invention may be produced by any conventional means. See, e.g., Houghten, R. A. (1985) General method for the rapid solid-phase synthesis of large numbers of peptides:

specificity of antigen-antibody interaction at the level of individual amino acids. Proc. Natl. Acad. Sci. USA 82: 5131-5135; this "Simultaneous Multiple Peptide Synthesis (SMPS)" process is further described in U.S. Patent No. 4,631,211 to Houghten et al. (1986). Epitope-bearing peptides and polypeptides of the invention are used to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).

5

15

20

40

45

50

Immunogenic epitope-bearing peptides of the invention, i.e., those parts of a protein that elicit an antibody response when the whole protein is the immunogen, are identified according to methods known in the art. See, for instance, Geysen et al., supra. Further still, U.S. Patent No. 5,194,392 to Geysen (1990) describes a general method of detecting or determining the sequence of monomers (amino acids or other compounds) which is a topological equivalent of the epitope (i.e., a "mimotope") which is complementary to a particular paratope (antigen binding site) of an antibody of interest. More generally, U.S. Patent No. 4,433,092 to Geysen (1989) describes a method of detecting or determining a sequence of monomers which is a topographical equivalent of a ligand which is complementary to the ligand binding site of a particular receptor of interest. Similarly, U.S. Patent No. 5,480,971 to Houghten, R. A. et al. (1996) on Peralkylated Oligopeptide Mixtures discloses linear C1-C7-alkyl peralkylated oligopeptides and sets and libraries of such peptides, as well as methods for using such oligopeptide sets and libraries for determining the sequence of a peralkylated oligopeptide that preferentially binds to an acceptor molecule of interest. Thus, non-peptide analogs of the epitope-bearing peptides of the invention also can be made routinely by these methods.

Table 4 lists immunologically useful polypeptides identified by an algorithm which locates novel *Staphylococcus aureus* outermembrane proteins, as is described above. Also listed are epitopes or "antigenic regions" of each of the identified polypeptides. The antigenic regions, or epitopes, are delineated by two numbers x-y, where x is the number of the first amino acid in the open reading frame included within the epitope and y is the number of the last amino acid in the open reading frame included within the epitope. For example, the first epitope in ORF 168-6 is comprised of amino acids 36 to 45 of SEQ ID NO:5,192, as is described in Table 4. The inventors have identified several epitopes for each of the antigenic polypeptides identified in Table 4. Accordingly, forming part of the present invention are polypeptides comprising an amino acid sequence of one or more antigenic regions identified in Table 4. The invention further provides polynucleotides encoding such polypeptides.

The present invention further includes isolated polypeptides, proteins and nucleic acid molecules which are substantially equivalent to those herein described. As used herein, substantially equivalent can refer both to nucleic acid and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between reference and subject sequences. For purposes of the present invention, sequences having equivalent biological activity, and equivalent expression characteristics are considered substantially equivalent. For purposes of determining equivalence, truncation of the mature sequence should be disregarded.

The invention further provides methods of obtaining homologs from other strains of Staphylococcus aureus, of the fragments of the Staphylococcus aureus genome of the present invention and homologs of the proteins encoded by the ORFs of the present invention. As used herein, a sequence or protein of Staphylococcus aureus is defined as a homolog of a fragment of the Staphylococcus aureus fragments or contigs or a protein encoded by one of the ORFs of the present invention, if it shares significant homology to one of the fragments of the Staphylococcus aureus genome of the present invention or a protein encoded by one of the ORFs of the present invention. Specifically, by using the sequence disclosed herein as a probe or as primers, and techniques such as PCR cloning and colony/plaque hybridization, one skilled in the art can obtain homologs.

As used herein, two nucleic acid molecules or proteins are said to "share significant homology" if the two contain regions which prossess greater than 85% sequence (amino acid or nucleic acid) homology. Preferred homologs in this regard are those with more than 90% homology. Especially preferred are those with 93% or more homology. Among especially preferred homologs those with 95% or more homology are particularly preferred. Very particularly preferred among these are those with 97% and even more particularly preferred among those are homologs with 99% or more homology. The most preferred homologs among these are those with 99.9% homology or more. It will be understood that, among measures of homology, identity is particularly preferred in this regard.

Region specific primers or probes derived from the nucleotide sequence provided in SEQ ID NOS:1-5,191 or from a nucleotide sequence at least 95%, particularly at least 99%, especially at least 99.5% identical to a sequence of SEQ ID NOS:1-5,191 can be used to prime DNA synthesis and PCR amplification, as well as to identify colonies containing cloned DNA encoding a homolog. Methods suitable to this aspect of the present invention are well known and have been described in great detail in many publications such as, for example, Innis *et al.*, PCR PROTOCOLS, Academic Press, San Diego, CA (1990)).

When using primers derived from SEQ ID NOS:1-5,191 or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5,191, one skilled in the art will recognize that by employing high stringency conditions (e.g., annealing at 50-60°C in 6X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC) only sequences which are greater than 75% homologous to the primer will be amplified. By employing lower stringency

conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences which are greater than 40-50% homologous to the primer will also be amplified.

When using DNA probes derived from SEQ ID NOS:1-5,191, or from a nucleotide sequence having an aforementioned identity to a sequence of SEQ ID NOS:1-5,191, for colony/plaque hybridization, one skilled in the art will recognize that by employing high stringency conditions (e.g., hybridizing at 50-65°C in 5X SSPC and 50% formamide, and washing at 50-65°C in 0.5X SSPC), sequences having regions which are greater than 90% homologous to the probe can be obtained, and that by employing lower stringency conditions (e.g., hybridizing at 35-37°C in 5X SSPC and 40-45% formamide, and washing at 42°C in 0.5X SSPC), sequences having regions which are greater than 35-45% homologous to the probe will be obtained.

Any organism can be used as the source for homologs of the present invention so long as the organism naturally expresses such a protein or contains genes encoding the same. The most preferred organism for isolating homologs are bacterias which are closely related to *Staphylococcus aureus*.

ILLUSTRATIVE USES OF COMPOSITIONS OF THE INVENTION

Each ORF provided in Tables 1 and 2 is identified with a function by homology to a known gene or polypeptide. As a result, one skilled in the art can use the polypeptides of the present invention for commercial, therapeutic and industrial purposes consistent with the type of putative identification of the polypeptide. Such identifications permit one skilled in the art to use the *Staphylococcus aureus* ORFs in a manner similar to the known type of sequences for which the identification is made; for example, to ferment a particular sugar source or to produce a particular metabolite. A variety of reviews illustrative of this aspect of the invention are available, including the following reviews on the industrial use of enzymes, for example, BIOCHEMICAL ENGINEERING AND BIOTECHNOLOGY HANDBOOK, 2nd Ed., Macmillan Publications, Ltd. NY (1991) and BIOCATALYSTS IN ORGANIC SYNTHESES, Tramper *et al.*, Eds., Elsevier Science Publishers, Amsterdam, The Netherlands (1985). A variety of exemplary uses that illustrate this and similar aspects of the present invention are discussed below.

1. Biosynthetic Enzymes

10

15

20

30

40

45

50

Open reading frames encoding proteins involved in mediating the catalytic reactions involved in intermediary and macromolecular metabolism, the biosynthesis of small molecules, cellular processes and other functions includes enzymes involved in the degradation of the intermediary products of metabolism, enzymes involved in central intermediary metabolism, enzymes involved in respiration, both aerobic and anaerobic, enzymes involved in fermentation, enzymes involved in ATP proton motor force conversion, enzymes involved in broad regulatory function, enzymes involved in amino acid synthesis, enzymes involved in nucleotide synthesis, enzymes involved in cofactor and vitamin synthesis, can be used for industrial biosynthesis.

The various metabolic pathways present in *Staphylococcus aureus* can be identified based on absolute nutritional requirements as well as by examining the various enzymes identified in Table 1-3 and SEQ ID NOS:1-5,191.

Of particular interest are polypeptides involved in the degradation of intermediary metabolites as well as non-macromolecular metabolism. Such enzymes include amylases, glucose oxidases, and catalase.

Proteolytic enzymes are another class of commercially important enzymes. Proteolytic enzymes find use in a number of industrial processes including the processing of flax and other vegetable fibers, in the extraction, clarification and depectinization of fruit juices, in the extraction of vegetables' oil and in the maceration of fruits and vegetables to give unicellular fruits. A detailed review of the proteolytic enzymes used in the food industry is provided in Rombouts et al., Symbiosis 21: 79 (1986) and Voragen et al. in BIOCATALYSTS IN AGRICULTURAL BIOTECHNOLOGY, Whitaker et al., Eds., American Chemical Society Symposium Series 389: 93 (1989)

The metabolism of sugars is an important aspect of the primary metabolism of Staphylococcus aureus. Enzymes involved in the degradation of sugars, such as, particularly, glucose, galactose, fructose and xylose, can be used in industrial fermentation. Some of the important sugar transforming enzymes, from a commercial viewpoint, include sugar isomerases such as glucose isomerase. Other metabolic enzymes have found commercial use such as glucose oxidases which produces ketogulonic acid (KGA). KGA is an intermediate in the commercial production of ascorbic acid using the Reichstein's procedure, as described in Krueger et al., Biotechnology 6(A), Rhine et al., Eds., Verlag Press, Weinheim, Germany (1984).

Glucose oxidase (GOD) is commercially available and has been used in purified form as well as in an immobilized form for the deoxygenation of beer. See, for instance, Hartmeir et al., Biotechnology Letters 1: 21 (1979). The most important application of GOD is the industrial scale fermentation of gluconic acid. Market for gluconic acids which are used in the detergent, textile, leather, photographic, pharmaceutical, food, feed and concrete industry, as described, for example, in Bigelis et al., beginning on page 357 in GENE MANIPULATIONS AND FUNGI; Benett et al., Eds., Academic Press, New York (1985). In addition to industrial applications, GOD has found applications in medicine for

quantitative determination of glucose in body fluids recently in biotechnology for analyzing syrups from starch and cellulose hydrosylates. This application is described in Owusu et al., Biochem. et Biophysica. Acta. 872: 83 (1986), for instance.

The main sweetener used in the world today is sugar which comes from sugar beets and sugar cane. In the field of industrial enzymes, the glucose isomerase process shows the largest expansion in the market today. Initially, soluble enzymes were used and later immobilized enzymes were developed (Krueger *et al.*, Biotechnology, The Textbook of Industrial Microbiology, Sinauer Associated Incorporated, Sunderland, Massachusetts (1990)). Today, the use of glucose- produced high fructose syrups is by far the largest industrial business using immobilized enzymes. A review of the industrial use of these enzymes is provided by Jorgensen, Starch 40:307 (1988).

Proteinases, such as alkaline serine proteinases, are used as detergent additives and thus represent one of the largest volumes of microbial enzymes used in the industrial sector. Because of their industrial importance, there is a large body of published and unpublished information regarding the use of these enzymes in industrial processes. (See Faultman et al., Acid Proteases Structure Function and Biology, Tang, J., ed., Plenum Press, New York (1977) and Godfrey et al., Industrial Enzymes, MacMillan Publishers, Surrey, UK (1983) and Hepner et al., Report Industrial Enzymes by 1990, Hel Hepner & Associates, London (1986)).

Another class of commercially usable proteins of the present invention are the microbial lipases, described by, for instance, Macrae *et al.*, Philosophical Transactions of the Chiral Society of London 310:227 (1985) and Poserke, Journal of the American Oil Chemist Society 61:1758 (1984). A major use of lipases is in the fat and oil industry for the production of neutral glycerides using lipase catalyzed inter-esterification of readily available triglycerides. Application of lipases include the use as a detergent additive to facilitate the removal of fats from fabrics in the course of the washing procedures.

The use of enzymes, and in particular microbial enzymes, as catalyst for key steps in the synthesis of complex organic molecules is gaining popularity at a great rate. One area of great interest is the preparation of chiral intermediates. Preparation of chiral intermediates is of interest to a wide range of synthetic chemists particularly those scientists involved with the preparation of new pharmaceuticals, agrochemicals, fragrances and flavors. (See Davies et al., Recent Advances in the Generation of Chiral Intermediates Using Enzymes, CRC Press, Boca Raton, Florida (1990)). The following reactions catalyzed by enzymes are of interest to organic chemists:hydrolysis of carboxylic acid esters, phosphate esters, amides and nitriles, esterification reactions, trans-esterification reactions, synthesis of amides, reduction of alkanones and oxoalkanates, oxidation of alcohols to carbonyl compounds, oxidation of sulfides to sulfoxides, and carbon bond forming reactions such as the aldol reaction.

When considering the use of an enzyme encoded by one of the ORFs of the present invention for biotransformation and organic synthesis it is sometimes necessary to consider the respective advantages and disadvantages of using a microorganism as opposed to an isolated enzyme. Pros and cons of using a whole cell system on the one hand or an isolated partially purified enzyme on the other hand, has been described in detail by Bud *et al.*, Chemistry in Britain (1987), p. 127.

Amino transferases, enzymes involved in the biosynthesis and metabolism of amino acids, are useful in the catalytic production of amino acids. The advantages of using microbial based enzyme systems is that the amino transferase enzymes catalyze the stereo- selective synthesis of only L-amino acids and generally possess uniformly high catalytic rates. A description of the use of amino transferases for amino acid production is provided by Roselle-David, *Methods of Enzymology* 136:479 (1987).

Another category of useful proteins encoded by the ORFs of the present invention include enzymes involved in nucleic acid synthesis, repair, and recombination. A variety of commercially important enzymes have previously been isolated from members of *Staphylococcus aureus*. These include Sau3A and Sau96I.

45 2. Generation of Antibodies

5

10

15

20

25

30

35

40

50

As described here, the proteins of the present invention, as well as homologs thereof, can be used in a variety procedures and methods known in the art which are currently applied to other proteins. The proteins of the present invention can further be used to generate an antibody which selectively binds the protein. Such antibodies can be either monoclonal or polyclonal antibodies, as well fragments of these antibodies, and humanized forms.

The invention further provides antibodies which selectively bind to one of the proteins of the present invention and hybridomas which produce these antibodies. A hybridoma is an immortalized cell line which is capable of secreting a specific monoclonal antibody.

In general, techniques for preparing polyclonal and monoclonal antibodies as well as hybridomas capable of producing the desired antibody are well known in the art (Campbell, A. M., MONOCLONAL ANTIBODY TECHNOLOGY: LABORATORY TECHNIQUES IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, Elsevier Science Publishers, Amsterdam, The Netherlands (1984); St. Groth et al., J. Immunol. Methods 35: 1-21 (1980), Kohler and Milstein, Nature 256: 495-497 (1975)), the trioma technique, the human B- cell hybridoma technique (Kozbor et al., Immunology Today)

4: 72 (1983), pgs. 77-96 of Cole et al., in MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc. (1985)).

Any animal (mouse, rabbit, etc.) which is known to produce antibodies can be immunized with the pseudogene polypeptide. Methods for immunization are well known in the art. Such methods include subcutaneous or interperitoneal injection of the polypeptide. One skilled in the art will recognize that the amount of the protein encoded by the ORF of the present invention used for immunization will vary based on the animal which is immunized, the antigenicity of the peptide and the site of injection.

The protein which is used as an immunogen may be modified or administered in an adjuvant in order to increase the protein's antigenicity. Methods of increasing the antigenicity of a protein are well known in the art and include, but are not limited to coupling the antigen with a heterologous protein (such as globulin or galactosidase) or through the inclusion of an adjuvant during immunization.

For monoclonal antibodies, spleen cells from the immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 myeloma cells, and allowed to become monoclonal antibody producing hybridoma cells.

Any one of a number of methods well known in the art can be used to identify the hybridoma cell which produces an antibody with the desired characteristics. These include screening the hybridomas with an ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al., Exp. Cell Res. 175: 109-124 (1988)).

Hybridomas secreting the desired antibodies are cloned and the class and subclass is determined using procedures known in the art (Campbell, A. M., Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1984)).

Techniques described for the production of single chain antibodies (U. S. Patent 4,946,778) can be adapted to produce single chain antibodies to proteins of the present invention.

For polyclonal antibodies, antibody containing antisera is isolated from the immunized animal and is screened for the presence of antibodies with the desired specificity using one of the above-described procedures.

The present invention further provides the above- described antibodies in detectably labelled form. Antibodies can be detectably labelled through the use of radioisotopes, affinity labels (such as biotin, avidin, etc.), enzymatic labels (such as horseradish peroxidase, alkaline phosphatase, etc.) fluorescent labels (such as FITC or rhodamine, etc.), paramagnetic atoms, etc. Procedures for accomplishing such labelling are well-known in the art, for example see Sternberger et al., J. Histochem. Cytochem. 18:315 (1970); Bayer, E. A. et al., Meth. Enzym. 62:308 (1979); Engval, E. et al., Immunol. 109:129 (1972); Goding, J. W. J. Immunol. Meth. 13:215 (1976)).

The labeled antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays to identify cells or tissues in which a fragment of the *Staphylococcus aureus* genome is expressed.

The present invention further provides the above-described antibodies immobilized on a solid support. Examples of such solid supports include plastics such as polycarbonate, complex carbohydrates such as agarose and sepharose, acrylic resins and such as polyacrylamide and latex beads. Techniques for coupling antibodies to such solid supports are well known in the art (Weir, D. M. et al., "Handbook of Experimental Immunology" 4th Ed., Blackwell Scientific Publications, Oxford, England, Chapter 10 (1986); Jacoby, W. D. et al., Meth. Enzym. 34 Academic Press, N. Y. (1974)). The immobilized antibodies of the present invention can be used for *in vitro*, *in vivo*, and in situ assays as well as for immunoaffinity purification of the proteins of the present invention.

3. Diagnostic Assays and Kits

10

15

20

25

30

40

45

50

The present invention further provides methods to identify the expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using one of the DFs, antigens or antibodies of the present invention.

In detail, such methods comprise incubating a test sample with one or more of the antibodies, or one or more of the DFs, or one or more antigens of the present invention and assaying for binding of the DFs, antigens or antibodies to components within the test sample.

Conditions for incubating a DF, antigen or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the DF or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the Dfs, antigens or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G. R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry; PCT publication WO95/32291, and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985), all of which are hereby incorporated herein by reference.

The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based

on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention.

Specifically, the invention provides a compartmentalized kit to receive, in close confinement, one or more containers which comprises:(a) a first container comprising one of the Dfs, antigens or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following:wash reagents, reagents capable of detecting presence of a bound DF, antigen or antibody.

In detail, a compartmentalized kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody, antigen or DF.

Types of detection reagents include labelled nucleic acid probes, labelled secondary antibodies, or in the alternative, if the primary antibody is labelled, the enzymatic, or antibody binding reagents which are capable of reacting with the labelled antibody. One skilled in the art will readily recognize that the disclosed Dfs, antigens and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

4. Screening Assay for Binding Agents

5

10

15

20

25

30

35

40

45

50

55

Using the isolated proteins of the present invention, the present invention further provides methods of obtaining and identifying agents which bind to a protein encoded by one of the ORFs of the present invention or to one of the fragments and the Staphylococcus aureus fragment and contigs herein described.

In general, such methods comprise steps of:

- (a) contacting an agent with an isolated protein encoded by one of the ORFs of the present invention, or an isolated fragment of the Staphylococcus aureus genome; and
- (b) determining whether the agent binds to said protein or said fragment.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention.

Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like capable of binding to a specific peptide sequence in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W. H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific or element specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control.

One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods usually contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251: 1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated

to be effective in model systems. Information contained in the sequences of the present invention can be used to design antisense and triple helix-forming oligonucleotides, and other DNA binding agents.

5. Pharmaceutical Compositions and Vaccines

5

10

15

20

25

30

35

40

45

55

The present invention further provides pharmaceutical agents which can be used to modulate the growth or pathogenicity of *Staphylococcus aureus*, or another related organism, *in vivo* or *in vitro*. As used herein, a "pharmaceutical agent" is defined as a composition of matter which can be formulated using known techniques to provide a pharmaceutical compositions. As used herein, the "pharmaceutical agents of the present invention" refers the pharmaceutical agents which are derived from the proteins encoded by the ORFs of the present invention or are agents which are identified using the herein described assays.

As used herein, a pharmaceutical agent is said to "modulate the growth or pathogenicity of *Staphylococcus aureus* or a related organism, *in vivo* or *in vitro*," when the agent reduces the rate of growth, rate of division, or viability of the organism in question. The pharmaceutical agents of the present invention can modulate the growth or pathogenicity of an organism in many fashions, although an understanding of the underlying mechanism of action is not needed to practice the use of the pharmaceutical agents of the present invention. Some agents will modulate the growth or pathogenicity by binding to an important protein thus blocking the biological activity of the protein, while other agents may bind to a component of the outer surface of the organism blocking attachment or rendering the organism more prone to act the bodies nature immune system. Alternatively, the agent may comprise a protein encoded by one of the ORFs of the present invention and serve as a vaccine. The development and use of vaccines derived from membrane associated polypeptides are well known in the art. The inventors have identified particularly preferred immunogenic Staphylococcus aureus polypeptides for use as vaccines. Such immunogenic polypeptides are described above and summarized in Table 4, below.

As used herein, a "related organism" is a broad term which refers to any organism whose growth or pathogenicity can be modulated by one of the pharmaceutical agents of the present invention. In general, such an organism will contain a homolog of the protein which is the target of the pharmaceutical agent or the protein used as a vaccine. As such, related organisms do not need to be bacterial but may be fungal or viral pathogens.

The pharmaceutical agents and compositions of the present invention may be administered in a convenient manner, such as by the oral, topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal routes. The pharmaceutical compositions are administered in an amount which is effective for treating and/or prophylaxis of the specific indication. In general, they are administered in an amount of at least about 1 mg/kg body weight and in most cases they will be administered in an amount not in excess of about 1 g/kg body weight per day. In most cases, the dosage is from about 0.1 mg/kg to about 10 g/kg body weight daily, taking into account the routes of administration, symptoms, etc.

The agents of the present invention can be used in native form or can be modified to form a chemical derivative. As used herein, a molecule is said to be a "chemical derivative" of another molecule when it contains additional chemical moieties not normally a part of the molecule. Such moieties may improve the molecule's solubility, absorption, biological half life, etc. The moieties may alternatively decrease the toxicity of the molecule, eliminate or attenuate any undesirable side effect of the molecule, etc. Moieties capable of mediating such effects are disclosed in, among other sources, REMINGTON'S PHARMACEUTICAL SCIENCES (1980) cited elsewhere herein.

For example, such moieties may change an immunological character of the functional derivative, such as affinity for a given antibody. Such changes in immunomodulation activity are measured by the appropriate assay, such as a competitive type immunoassay. Modifications of such protein properties as redox or thermal stability, biological half-life, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers also may be effected in this way and can be assayed by methods well known to the skilled artisan.

The therapeutic effects of the agents of the present invention may be obtained by providing the agent to a patient by any suitable means (e.g., inhalation, intravenously, intramuscularly, subcutaneously, enterally, or parenterally). It is preferred to administer the agent of the present invention so as to achieve an effective concentration within the blood or tissue in which the growth of the organism is to be controlled. To achieve an effective blood concentration, the preferred method is to administer the agent by injection. The administration may be by continuous infusion, or by single or multiple injections.

In providing a patient with one of the agents of the present invention, the dosage of the administered agent will vary depending upon such factors as the patient's age, weight, height, sex, general medical condition, previous medical history, etc. In general, it is desirable to provide the recipient with a dosage of agent which is in the range of from about 1 pg/kg to 10 mg/kg (body weight of patient), although a lower or higher dosage may be administered. The therapeutically effective dose can be lowered by using combinations of the agents of the present invention or another agent.

As used herein, two or more compounds or agents are said to be administered "in combination" with each other when either (1) the physiological effects of each compound, or (2) the serum concentrations of each compound can

be measured at the same time. The composition of the present invention can be administered concurrently with, prior to, or following the administration of the other agent.

The agents of the present invention are intended to be provided to recipient subjects in an amount sufficient to decrease the rate of growth (as defined above) of the target organism.

The administration of the agent(s) of the invention may be for either a "prophylactic" or "therapeutic" purpose. When provided prophylactically, the agent(s) are provided in advance of any symptoms indicative of the organisms growth. The prophylactic administration of the agent(s) serves to prevent, attenuate, or decrease the rate of onset of any subsequent infection. When provided therapeutically, the agent(s) are provided at (or shortly after) the onset of an indication of infection. The therapeutic administration of the compound(s) serves to attenuate the pathological symptoms of the infection and to increase the rate of recovery.

The agents of the present invention are administered to a subject, such as a mammal, or a patient, in a pharmaceutically acceptable form and in a therapeutically effective concentration. A composition is said to be "pharmacologically acceptable" if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a "therapeutically effective amount" if the amount administered is physiologically significant. An agent is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient.

The agents of the present invention can be formulated according to known methods to prepare pharmaceutically useful compositions, whereby these materials, or their functional derivatives, are combined in admixture with a pharmaceutically acceptable carrier vehicle. Suitable vehicles and their formulation, inclusive of other human proteins, *e. g.*, human serum albumin, are described, for example, in REMINGTON'S PHARMACEUTICAL SCIENCES, 16th Ed., Osol, A., Ed., Mack Publishing, Easton PA (1980). In order to form a pharmaceutically acceptable composition suitable for effective administration, such compositions will contain an effective amount of one or more of the agents of the present invention, together with a suitable amount of carrier vehicle.

Additional pharmaceutical methods may be employed to control the duration of action. Control release preparations may be achieved through the use of polymers to complex or absorb one or more of the agents of the present invention. The controlled delivery may be effectuated by a variety of well known techniques, including formulation with macromolecules such as, for example, polyesters, polyamino acids, polyvinyl, pyrrolidone, ethylenevinylacetate, methylcellulose, carboxymethylcellulose, or protamine, sulfate, adjusting the concentration of the macromolecules and the agent in the formulation, and by appropriate use of methods of incorporation, which can be manipulated to effectuate a desired time course of release. Another possible method to control the duration of action by controlled release preparations is to incorporate agents of the present invention into particles of a polymeric material such as polyesters, polyamino acids, hydrogels, poly(lactic acid) or ethylene vinylacetate copolymers. Alternatively, instead of incorporating these agents into polymeric particles, it is possible to entrap these materials in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization with, for example, hydroxymethylcellulose or gelatine-microcapsules and poly(methylmethacylate) microcapsules, respectively, or in colloidal drug delivery systems, for example, liposomes, albumin microspheres, microemulsions, nanoparticles, and nanocapsules or in macroemulsions. Such techniques are disclosed in REMINGTON'S PHARMACEUTICAL SCIENCES (1980).

The invention further provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.

In addition, the agents of the present invention may be employed in conjunction with other therapeutic compounds.

6. Shot-Gun Approach to Megabase DNA Sequencing

The present invention further demonstrates that a large sequence can be sequenced using a random shotgun approach. This procedure, described in detail in the examples that follow, has eliminated the up front cost of isolating and ordering overlapping or contiguous subclones prior to the start of the sequencing protocols.

Certain aspects of the present invention are described in greater detail in the examples that follow. The examples are provided by way of illustration. Other aspects and embodiments of the present invention are contemplated by the inventors, as will be clear to those of skill in the art from reading the present disclosure.

55

5

10

15

20

25

30

35

40

45

50

ILLUSTRATIVE EXAMPLES

LIBRARIES AND SEQUENCING

1. Shotgun Sequencing Probability Analysis

The overall strategy for a shotgun approach to whole genome sequencing follows from the Lander and Waterman (Landerman and Waterman, Genomics 2: 231 (1988)) application of the equation for the Poisson distribution. According to this treatment, the probability, P_0 , that any given base in a sequence of size L, in nucleotides, is not sequenced after a certain amount, n, in nucleotides, of random sequence has been determined can be calculated by the equation $P_0 = e^{-m}$, where m is L/n, the fold coverage." For instance, for a genome of 2.8 Mb, m=1 when 2.8 Mb of sequence has been randomly generated (1X coverage). At that point, $P_0 = e^{-1} = 0.37$. The probability that any given base has not been sequenced is the same as the probability that any region of the whole sequence L has not been determined and, therefore, is equivilent to the fraction of the whole sequence that has yet to be determined. Thus, at one-fold coverage, approximately 37% of a polynucleotide of size L, in nucleotides has not been sequenced. When 14 Mb of sequence has been generated, coverage is 5X for a .2.8 Mb and the unsequenced fraction drops to .0067 or 0.67%. 5X coverage of a 2.8 Mb sequence can be attained by sequencing approximately 17,000 random clones from both insert ends with an average sequence read length of 410 bp.

Similarly, the total gap length, G, is determined by the equation $G = Le^{-m}$, and the average gap size, g, follows the equation, g = L/n. Thus, 5X coverage leaves about 240 gaps averaging about 82 bp in size in a sequence of a polynucleotide 2.8 Mb long.

The treatment above is essentially that of Lander and Waterman, Genomics 2: 231 (1988).

2. Random Library Construction

25

30

45

50

15

20

In order to approximate the random model described above during actual sequencing, a nearly ideal library of cloned genomic fragments is required. The following library construction procedure was developed to achieve this end. Staphylococcus aureus DNA was prepared by phenol extraction. A mixture containing 600 ug DNA in 3.3 ml of 300 mM sodium acetate, 10 mM Tris-HCl, 1 mM Na-EDTA, 30% glycerol was sonicated for 1 min. at 0°C in a Branson Model 450 Sonicator at the lowest energy setting using a 3 mm probe. The sonicated DNA was ethanol precipitated and redissolved in 500 ul TE buffer.

To create blunt-ends, a 100 ul aliquot of the resuspended DNA was digested with 5 units of BAL31 nuclease (New England BioLabs) for 10 min at 30°C in 200 ul BAL31 buffer. The digested DNA was phenol-extracted, ethanol-precipitated, redissolved in 100 ul TE buffer, and then size-fractionated by electrophoresis through a 1.0% low melting temperature agarose gel. The section containing DNA fragments 1.6-2.0 kb in size was excised from the gel, and the LGT agarose was melted and the resulting solution was extracted with phenol to separate the agarose from the DNA. DNA was ethanol precipitated and redissolved in 20 ul of TE buffer for ligation to vector.

A two-step ligation procedure was used to produce a plasmid library with 97% inserts, of which >99% were single inserts. The first ligation mixture (50 ul) contained 2 ug of DNA fragments, 2 ug pUC18 DNA (Pharmacia) cut with Smal and dephosphorylated with bacterial alkaline phosphatase, and 10 units of T4 ligase (GIBCO/BRL) and was incubated at 14°C for 4 hr. The ligation mixture then was phenol extracted and ethanol precipitated, and the precipitated DNA was dissolved in 20 ul TE buffer and electrophoresed on a 1.0% low melting agarose gel. Discrete bands in a ladder were visualized by ethidium bromide-staining and UV illumination and identified by size as insert (i), vector (v), v+i, v+2i, v+3i, etc. The portion of the gel containing v+i DNA was excised and the v+i DNA was recovered and resuspended into 20 ul TE. The v+i DNA then was blunt-ended by T4 polymerase treatment for 5 min. at 37° C in a reaction mixture (50 ul) containing the v+i linears, 500 uM each of the 4 dNTPs, and 9 units of T4 polymerase (New England BioLabs), under recommended buffer conditions. After phenol extraction and ethanol precipitation the repaired v+i linears were dissolved in 20 ul TE. The final ligation to produce circles was carried out in a 50 ul reaction containing 5 ul of v+i linears and 5 units of T4 ligase at 14°C overnight. After 10 min. at 70°C the following day, the reaction mixture was stored at -20°C.

This two-stage procedure resulted in a molecularly random collection of single-insert plasmid recombinants with minimal contamination from double-insert chimeras (<1%) or free vector (<3%).

Since deviation from randomness can arise from propagation the DNA in the host, *E.coli* host cells deficient in all recombination and restriction functions (A. Greener, Strategies 3 (1):5 (1990)) were used to prevent rearrangements, deletions, and loss of clones by restriction. Furthermore, transformed cells were plated directly on antibiotic diffusion plates to avoid the usual broth recovery phase which allows multiplication and selection of the most rapidly growing cells.

Plating was carried out as follows. A 100 ul aliquot of Epicurian Coli SURE II Supercompetent Cells (Stratagene 200152) was thawed on ice and transferred to a chilled Falcon 2059 tube on ice. A 1.7 ul aliquot of 1.42 M beta-

mercaptoethanol was added to the aliquot of cells to a final concentration of 25 mM. Cells were incubated on ice for 10 min. A 1 ul aliquot of the final ligation was added to the cells and incubated on ice for 30 min. The cells were heat pulsed for 30 sec. at 42° C and placed back on ice for 2 min. The outgrowth period in liquid culture was eliminated from this protocol in order to minimize the preferential growth of any given transformed cell. Instead the transformation mixture was plated directly on a nutrient rich SOB plate containing a 5 ml bottom layer of SOB agar (5% SOB agar: 20 g tryptone, 5 g yeast extract, 0.5 g NaCl, 1.5% Difco Agar per liter of media). The 5 ml bottom layer is supplemented with 0.4 ml of 50 mg/ml ampicillin per 100 ml SOB agar. The 15 ml top layer of SOB agar is supplemented with 1 ml X-Gal (2%), 1 ml MgCl₂ (1 M), and 1 ml MgSO₄/100 ml SOB agar. The 15 ml top layer was poured just prior to plating. Our titer was approximately 100 colonies/10 ul aliquot of transformation.

All colonies were picked for template preparation regardless of size. Thus, only clones lost due to "poison" DNA or deleterious gene products would be deleted from the library, resulting in a slight increase in gap number over that expected.

3. Random DNA Sequencing

10

15

20

25

30

35

45

50

55

High quality double stranded DNA plasmid templates were prepared using an alkaline lysis method developed in collaboration with 5Prime → 3Prime Inc. (Boulder, CO). Plasmid preparation was performed in a 96-well format for all stages of DNA preparation from bacterial growth through final DNA purification. Average template concentration was determined by running 25% of the samples on an agarose gel. DNA concentrations were not adjusted.

Templates were also prepared from a *Staphylococcus aureus* lambda genomic library. An unamplified library was constructed in Lambda DASH II vector (Stratagene). *Staphylococcus aureus* DNA (> 100 kb) was partially digested in a reaction mixture (200 ul) containing 50 ug DNA, 1X Sau3Al buffer, 20 units Sau3Al for 6 min. at 23 C. The digested DNA was phenol-extracted and centrifuges over a 10- 40% sucroce gradient. Fractions containing genomic DNA of 15-25 kb were recovered by precipitation. One ul of fragments was used with 1 ul of DASHII vector (Stratagene) in the recommended ligation reaction. One ul of the ligation mixture was used per packaging reaction following the recommended protocol with the Gigapack II XL Packaging Extract Phage were plated directly without amplification from the packaging mixture (after dilution with 500 ul of recommended SM buffer and chloroform treatment). Yield was about 2.5x10⁹ pfu/ul.

An amplified library was prepared from the primary packaging mixture according to the manufactureer's protocol. The amplified library is stored frozen in 7% dimethylsulfoxide. The phage titer is approximately 1x10⁹ pfu/ml.

Mini-liquid lysates (0.1ul) are prepared from randomly selected plaques and template is prepared by long range PCR. Samples are PCR amplified using modified T3 and T7 primers, and Elongase Supermix (LTI).

Sequencing reactions are carried out on plasmid templates using a combination of two workstations (BIOMEK 1000 and Hamilton Microlab 2200) and the Perkin-Elmer 9600 thermocycler with Applied Biosystems PRISM Ready Reaction Dye Primer Cycle Sequencing Kits for the M13 forward (M13-21) and the M13 reverse (M13RP1) primers. Dye terminator sequencing reactions are carried out on the lambda templates on a Perkin-Elmer 9600 Thermocycler using the Applied Biosystems Ready Reaction Dye Terminator Cycle Sequencing kits. Modified T7 and T3 primers are used to sequence the ends of the inserts from the Lambda DASH II library. Sequencing reactions are on a combination of AB 373 DNA Sequencers and ABI 377 DNA sequencers. All of the dye terminator sequencing reactions are analyzed using the 2X 9 hour module on the AB 377. Dye primer reactions are analyzed on a combination of ABI 373 and ABI 377 DNA sequencers. The overall sequencing success rate very approximately is about 85% for M13-21 and M13RP1 sequences, and 65% for dye-terminator reactions. The average usable read length is 485 bp for M13-21 sequences, 445bp for M13RP1 sequences, and 375 bp for dye-terminator reactions.

4. Protocol for Automated Cycle Sequencing

The sequencing was carried out using Hamilton Microstation 2200, Perkin Elmer 9600 thermocyclers, ABI 373 and ABI 377 Automated DNA Sequencers. The Hamilton combines pre-aliquoted templates and reaction mixes consisting of deoxy- and dideoxynucleotides, the thermostable Taq DNA polymerase, fluorescently-labelled sequencing primers, and reaction buffer. Reaction mixes and templates were combined in the wells of a 96-well thermocycling plate and transferred to the Perkin Elmer 9600 thermocycler. Thirty consecutive cycles of linear amplification (i.e.., one primer synthesis) steps were performed including denaturation, annealing of primer and template, and extension; i.e., DNA synthesis. A heated lid with rubber gaskets on the thermocycling plate prevents evaporation without the need for an oil overlay.

Two sequencing protocols were used: one for dye-labelled primers and a second for dye-labelled dideoxy chain terminators. The shotgun sequencing involves use of four dye-labelled sequencing primers, one for each of the four terminator nucleotide. Each dye-primer was labelled with a different fluorescent dye, permitting the four individual reactions to be combined into one lane of the 373 or 377 DNA Sequencer for electrophoresis, detection, and base-

calling. ABI currently supplies premixed reaction mixes in bulk packages containing all the necessary non-template reagents for sequencing. Sequencing can be done with both plasmid and PCR-generated templates with both dye-primers and dye- terminators with approximately equal fidelity, although plasmid templates generally give longer usable sequences.

Thirty-two reactions were loaded per ABI 373 Sequencer each day and 96 samples can be loaded on an ABI 377 per day. Electrophoresis was run overnight (ABI 373) or for 2 1/2 hours (ABI 377) following the manufacturer's protocols. Following electrophoresis and fluorescence detection, the ABI 373 or ABI 377 performs automatic lane tracking and base-calling. The lane-tracking was confirmed visually. Each sequence electropherogram (or fluorescence lane trace) was inspected visually and assessed for quality. Trailing sequences of low quality were removed and the sequence itself was loaded via software to a Sybase database (archived daily to 8mm tape). Leading vector polylinker sequence was removed automatically by a software program. Average edited lengths of sequences from the standard ABI 373 or ABI 377 were around 400 bp and depend mostly on the quality of the template used for the sequencing reaction.

INFORMATICS

15

20

30

35

45

50

55

1. Data Management

A number of information management systems for a large-scale sequencing lab have been developed. (For review see, for instance, Kerlavage et al., Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences, IEEE Computer Society Press, Washington D. C., 585 (1993)) The system used to collect and assemble the sequence data was developed using the Sybase relational database management system and was designed to automate data flow whereever possible and to reduce user error. The database stores and correlates all information collected during the entire operation from template preparation to final analysis of the genome. Because the raw output of the ABI 373 Sequencers was based on a Macintosh platform and the data management system chosen was based on a Unix platform, it was necessary to design and implement a variety of multi- user, client-server applications which allow the raw data as well as analysis results to flow seamlessly into the database with a minimum of user effort.

2. Assembly

An assembly engine (TIGR Assembler) developed for the rapid and accurate assembly of thousands of sequence fragments was enployed to generate contigs. The TIGR assembler simultaneously clusters and assembles fragments of the genome. In order to obtain the speed necessary to assemble more than 104 fragments, the algorithm builds a hash table of 12 bp oligonucleotide subsequences to generate a list of potential sequence fragment overlaps. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Beginning with a single seed sequence fragment, TIGR Assembler extends the current contig by attempting to add the best matching fragment based on oligonucleotide content. The contig and candidate fragment are aligned using a modified version of the Smith-Waterman algorithm which provides for optimal gapped alignments (Waterman, M. S., Methods in Enzymology 164: 765 (1988)). The contig is extended by the fragment only if strict criteria for the quality of the match are met. The match criteria include the minimum length of overlap, the maximum length of an unmatched end, and the minimum percentage match. These criteria are automatically lowered by the algorithm in regions of minimal coverage and raised in regions with a possible repetitive element. The number of potential overlaps for each fragment determines which fragments are likely to fall into repetitive elements. Fragments representing the boundaries of repetitive elements and potentially chimeric fragments are often rejected based on partial mismatches at the ends of alignments and excluded from the current contig. TIGR Assembler is designed to take advantage of clone size information coupled with sequencing from both ends of each template. It enforces the constraint that sequence fragments from two ends of the same template point toward one another in the contig and are located within a certain ranged of base pairs (definable for each clone based on the known clone size range for a given library).

3. Identifying Genes

The predicted coding regions of the *Staphylococcus aureus* genome were initially defined with the program zorf, which finds ORFs of a minimum length. The predicted coding region sequences were used in searches against a database of all *Staphylococcus aureus* nucleotide sequences from GenBank (release 92.0), using the BLASTN search method to identify overlaps of 50 or more nucleotides with at least a 95% identity. Those ORFs with nucleotide sequence matches are shown in Table 1. The ORFs without such matches were translated to protein sequences and and compared to a non-redundant database of known proteins generated by combining the Swiss-prot, PIR and GenPept databases. ORFs of at least 80 amino acids that matched a database protein with BLASTP probability less than or equal to 0.01 are shown in Table 2. The table also lists assigned functions based on the closest match in the databases.

ORFs of at least 120 amino acids that did not match protein or nucleotide sequences in the databases at these levels are shown in Table 3.

ILLUSTRATIVE APPLICATIONS

5

1. Production of an Antibody to a Staphylococcus aureus Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells using any one of the methods known in the art. The protein can also be produced in a recombinant prokaryotic expression system, such as *E. coli*, or can by chemically synthesized. Concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows.

2. Monoclonal Antibody Production by Hybridoma Fusion

15

20

25

10

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or modifications of the methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as ELISA, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and modified methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. *et al.* Basic Methods in Molecular Biology Elsevier, New York. Section 21-2 (1989).

3. Polyclonal Antibody Production by Immunization

30

35

40

45

50

55

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than other and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigenadministered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al., J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in:Handbook of Experimental Immunology, Wier, D., ed, Blackwell (1973). Plateau concentration of antibody is usually in the range of 0. 1 to 0. 2 mg/ml of serum (about 12M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as described, for example, by Fisher, D., Chap. 42 in:Manual of Clinical Immunology, second edition, Rose and Friedman, eds., Amer. Soc. For Microbiology, Washington, D. C. (1980)

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. In addition, they are useful in various animal models of Staphylococcal disease known to those of skill in the art as a means of evaluating the protein used to make the antibody as a potential vaccine target or as a means of evaluating the antibody as a potential immunothereapeutic reagent.

3. Preparation of PCR Primers and Amplification of DNA

Various fragments of the Staphylococcus aureus genome, such as those of Tables 1-3 and SEQ ID NOS:1-5,191 can be used, in accordance with the present invention, to prepare PCR primers for a variety of uses. The PCR primers are preferably at least 15 bases, and more preferably at least 18 bases in length. When selecting a primer sequence, it is preferred that the primer pairs have approximately the same G/C ratio, so that melting temperatures are approxi-

mately the same. The PCR primers and amplified DNA of this Example find use in the Examples that follow.

4. Gene expression from DNA Sequences Corresponding to ORFs

A fragment of the *Staphylococcus aureus* genome provided in Tables 1-3 is introduced into an expression vector using conventional technology. Techniques to transfer cloned sequences into expression vectors that direct protein translation in mammalian, yeast, insect or bacterial expression systems are well known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism, as explained by Hatfield *et al.*, U. S. Patent No. 5,082,767, incorporated herein by this reference.

The following is provided as one exemplary method to generate polypeptide(s) from cloned ORFs of the *Staphylococcus aureus* genome fragment. Bacterial ORFs generally lack a poly A addition signal. The addition signal sequence can be added to the construct by, for example, splicing out the poly A addition sequence from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene) for use in eukaryotic expression systems. pXT1 contains the LTRs and a portion of the gag gene of Moloney Murine Leukemia Virus. The positions of theLTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex thymidine kinase promoter and the selectable neomycin gene. The *Staphylococcus aureus* DNA is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the *Staphylococcus aureus* DNA and containing restriction endonuclease sequences for Pstl incorporated into the 5' primer and Bglll at the 5' end of the corresponding *Staphylococcus aureus* DNA 3' primer, taking care to ensure that the *Staphylococcus aureus* DNA is positioned such that its followed with the poly A addition sequence. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and ligated to pXT1, now containing a poly A addition sequence and digested Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600 ug/ml G418 (Sigma, St. Louis, Missouri). The protein is preferably released into the supernatant. However if the protein has membrane binding domains, the protein may additionally be retained within the cell or expression may be restricted to the cell surface. Since it may be necessary to purify and locate the transfected product, synthetic 15-mer peptides synthesized from the predicted *Staphylococcus aureus* DNA sequence are injected into mice to generate antibody to the polypeptide encoded by the *Staphylococcus aureus* DNA.

Alternativly and if antibody production is not possible, the *Staphylococcus aureus* DNA sequence is additionally incorporated into eukaryotic expression vectors and expressed as, for example, a globin fusion. Antibody to the globin moiety then is used to purify the chimeric protein. Corresponding protease cleavage sites are engineered between the globin moiety and the polypeptide encoded by the *Staphylococcus aureus* DNA so that the latter may be freed from the formed by simple protease digestion. One useful expression vector for generating globin chimerics is pSG5 (Stratagene). This vector encodes a rabbit globin. Intron II of the rabbit globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis *et al.*, cited elsewhere herein, and many of the methods are available from the technical assistance representatives from Stratagene, Life Technologies, Inc., or Promega. Polypeptides of the invention also may be produced using *in vitro* translation systems such as *in vitro* ExpressTM Translation Kit (Stratagene).

While the present invention has been described in some detail for purposes of clarity and understanding, one skilled in the art will appreciate that various changes in form and detail can be made without departing from the true scope of the invention.

All patents, patent applications and publications referred to above are hereby incorporated by reference.

26

55

5

10

15

20

25

30

35

40

45

50

10	
15	
20	
25	
30	
35	
40	
45	

55

		ORF nt length	663	822	768	369	1461	819	948	843	501	947	171	213	1476	507	164	474	2769	3132	1515	387	1173	2085
5		HSP nt length	663	808	223	216	424 7	715	251	843	342	£3	137	110	948	309	126	430	2769	711	1351	258	372	2085
10		percent	100	66	96	81	95	86	96	66	66	100	91	100	100	100	100	66	66	100	66	86	100	100
15						leucocidins	leucocidins	ubunit (grlA and	erase (1gt) gene,	erase (lgt) gene,	erase (lgt) gene,	nplete cds;	complete cds;	complete cds;	te cds	te cda	e, partial cds	e, partial cds		activity			(0)	10
20			agr gene		8	of Panton-Valentine leucocidin	of Panton-Valentine leucocidins	aureus gyrasse-like protein alpha and beta subunit (grlA and complete cds	aureus prolipoprotein discylglyceryl transferase (1gt)	aureus prolipoprotein dlacyiglyceryl transferase (1gt)	aureus prolipoprotain diacylglyceryl transferase	sequence encoding three ORPs, complete cds; homology, 5' flank	three ORFs,	three ORFs,	lase gene, complete	lase gene, complete	hetase (iles) gane,	hetase (iles) gene,	9	class II promoter activity			ol ester hydrolase	encoding lipase (glycerol ester hydrolase)
25	n sectuences		nd for part of	genes	and HSP60 genes	components of	and F components of	e-like protein	poprotein disc	poprotein diac	poprotain diac	sequence encoding homology, 5' flank	sequence encoding homology, 5' flank	sequence encoding homology, 5' flank	aureus peptidoglycan hydrolase gene.	aureus peptidoglycan hydrolase	aureus isoleucyl-tRNA synthetase (iles)	aureus isoleucyl-tRNA synthetase (iles)	-tRNA synthetase	fragment with c			lipase (glycer	encoding lipase (glycerol
30	ontaining know	ane.	S. aureus DNA for hld gene and for part	, agrs and hid genes	s aureus HSP10 and HSP60	for S and F	for s	s aureus gyras complete cds				aureus DNA	aureus DNA 11 sequence	aureus DNA 11 sequence			s aureus isole	r aureus isole	gene for isoleucyl-tRNA	aureus DNA	8 Pl and P2	s Pl and P2	S. aureus geh gene encoding lipase (glycerol	
35	- Coding regions containing known sequences	match gene name	S.aureus DNA	S. aureus agrA.	Staphylococcus	S.aureus genes	S. aureus genes	Staphylococcus grlB) genes, c	Staphylococcus complete cds	Staphylococcus complete cds	Staphylococcus complete cds	Staphylococcus prophage phi-1	Staphylococcus av prophage phi-ll	Staphylococcus av prophage phi-11	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcur	S. aureus gene	Staphylococcus	S. aureus genes	S. aureus genes Pl	S. aureus geh	S.aureus geh gene
40	S. aureus - Co	match	emb x17301 5AHD	enb x52543 SAAG	dbj D14711 STAH	emb X72700 SAPV	emb x72700 SAPV	gb L25288	96 03573	gb U3573	£772£U dg	gb[L19300]	1006617 95	95 119300	9b H'6714	gb H7C714	gb!U41072	gb U41072	emb X74219 SAIL	ab u6665	emb X73889 SAP1	emb x73889 SAP1	gb H12715	dp r/2/12
45		Stop (nt)	757	2452	1 5651	439	1756	906	6246	7091	7584	549	æ 	1798	3825	4282	145	557	3531	4392	13463	13855	113112,	15518
		Start (nt)	1419	1 3273	6418	1 807	5031	98	5302	6249	7084	985	1011	2010	5300	4788	2	84	1 763	1261	114977	114241	114284	13434
50		g ORP	<u> </u> -	-	-	-	-		<u>~</u>						-	-	-	~	-	-	=	51	117	2
		Contig	-	_	-	5	2	9	9	91	191	2	2	02	02	2	92	76	36	29	- F	<u>-</u>	38	38

S. aureus - Coding regions containing known sequences

ORF nt length	1209	576	924	1326	1185	336	954	1542	594	1683	744	495	3087	101	423	1305	300	1755	7	1 5001
HSP nt length	1209	576	924	1283	1185	278	954	89	540	1668	720	463	3087	69	423	1305	300	1755	4 4 4	673
percent ident	66	60	92	86	80	66	66	100	86	001	66	100	100	1 68	66	66	100	66	801	- 66
match gene name	itaphylucoccus autous type 8 capsulo genes, cap8A, cap8B, cap8C, cap8D, cap8C, cap8N,	Staphylococcus aureus type 8 capsule genes cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H, c	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8I, cap8I, cap8I, cap8O, cap8P, complete cds	Staphylococcus aureus type 8 capsule genes, cap8A, cap8B, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H, cap81, cap8J, cap8K, cap8L, cap8H, cap1.:, cap8O, cap8P, complete cds	Staphylococcus aureus type 8 capsule genes, cap8h, cap8b, cap8C, cap8D, cap8E, cap8F, cap8F, cap8H, cap8I, cap8J, cap8C, cap8H, cap8N, cap8O, cap8P, complete cds	Staphylococcus aureus type 6 capsule genes cap8h, cap8b, cap8c, cap8D, cap8E, cap8F, cap8F, cap8H, cap8I, cap8J, cap8K, cap8L, cap8N, cap8N, cap8O, cap8O, cap8P, complete cds	Staphylococcus aureus rec's gene, complete cds	S.aureus AhpC gene	S.aureus AhpC gene	S.aureus inbB gene for fibronectin binding protein B	<u></u>	S.au	S.aureus (lbronectin-binding protein (fnbk) mRNA, complete cds	S.aureus mdr, pbp4 and teqD genes (SG511-55 isolate)	S.aureus abch, pbp4, and tagD genes	S.aureus abch, pbp4, and tagD genes	Staphylococcus aureus ABC transporter-like protein AbcA (abcA) gene, partial cds	S.auraus abch, pbp4, and tagD genes	S. auraus agr gene encoding an accessory gene regulator protein, complete	amb;X52543 SAAG S.aureus agrA, agrB and hld genes
match	gb u73374	gb U73374	95(073374(gb U73374	gb U73374	26 073374	[gb L25893]	emb x85029 SAAH	emb x85029 SAAH	emb x62992 SAFN	emb K62992 SAFN	emb K62992 SAFN	95 504151	ent X87104 SADN	emb x91786 SAPB	emb x91786 SAPB	gb U29478	emb x91786 SAPB	ap .121824	emb X52543 SAAG
Stop (nt)	1727	2295	3182	4498	5720	6120	955	2924	3515	3392	4122	4562	8300	2819	3280	4701	5378	6840,	445	1453
Start (nt)	S. S.	1720	2259	1173	4536	6455	~	4465	4108	5074	4865	\$056	11386	1743	2858	9009	5677	5086	888	2457
ORF	e:	e		<u>~</u>	9	~	-	-	7		9	\$	9	_	-	5	9	-	-	~
Contig ORF ID ID	.5 .5	9	86	9		ş	æ	20	50	54	54	25	54	5.8	- 88	58	82	88	22	27

10	100
	s, complete
for tibosomal protein ted RNA polymerase beta setial cds sattial c	p) gene
directed RNA podirected RNA cap88, cap84, cap84, cap84, cap84, cap84, cap84, cap84, cap84, cap88, cap84, cap84, cap84, cap84, cap88, cap84, cap84, cap88, cap84, cap88, cap84, cap84, cap84, cap88, cap84, cap84, cap84, cap84, cap84, cap84, cap84, cap88, cap84,	complete cds Staphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete cds
training known sequences orf202, rpoB(rif) and rpoC genes for setical protein ORF202, DNA-directed aureus ribosomal protein S12 (rpsL) ain S7 (rpsG) and ORF 1 genes, partiaureus ribosomal protein S12 (rpsL) aureus type & capsule genes, cap8A, cap8G, cap8H,	olipoprotein aign
Coding regions containing known sequences "atch gene name "Interest to the containing known sequences "Interest to the containing to the containing sector "Interest to the containing sector containing sector containing sector containing and the containing sector containing sector containing and the containing sector containing	
ding regions cording regions cording regions cording for the following for the following for the following	complete cds Staphylococcu
8. auraus - C acession acession acession abl	gb M83994
Strop St	1958
Start (nt) 357 237 237 237 237 237 237 237 237 237 23	1278
	117

5
10
15
20
25
30
35
40
45
50

55

Contig 10 11 13 14 14 14 14 14 14 14 14 14 14	0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 1	Start (nt) 3787 2597 2597 4171 4171 3100 4254 4254 6977 6977	Stop (nt) 4254 4265 5172 5172 5173 5173 5174 6207 6207 6207 6207 6207 6207 6207 6207	f. aureus - Codession du) 103699 STAM emb X13290 STAM emb X1442 SADI emb X71437 SADI emb	Haureus - Coding regions containing known sequences acch match gene name match genes for ONF37, HSP20; HSP30; HSP40; HSP40; ONF35, Complete Cataphylococcus aureus multi-resistance plasmid pSKI DNA containing transposon Th400 match gene for dihydrofolate reductase transposon Th400 match genes for DNA gyrase A and B. Complete cds match genes gyrB, gyrA and reef (partial) match genes gyrB, gyrA and reef (partial) match gyrase A and B. Complete cds match gyrase Complete cds match gyrase Complete cds match gyrase (match gyrathytase (match gyrase (match gyrase (match gyrase (match gyrathytase (match gyrathytae catal gyrathytase (match gyrathytae catal gyrathytae catal gyrathytae catal gyrathytae (match gyr	Dercent dercen	HSP nt length 467 467 467 467 1947 1947 1947 1947 1969 449 449 449 449 1104	00F nt 1044 1044 1044 1044 1044 1162 1305 1162 1162 1162 1165 1165 1165 1165 1165	
17	2	10739	10320	gb US1132		100	332	420	
152	w w	3513	3437	emb X58434 SAPD 	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase	88	305	1308	
152		4818	6230	emb X58434 SAPD	S. aureus pdhB. pdhC and pdhD genes (or pyruvate docarboxylaso, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenase recF cluster: dnaA-replisome assembly proteingyrB-DNA gyrase beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt)	66	1413	1413	
153	~	1877	2152	95 277055	recf cluster: dnaAereplisome assembly proteingyrB-DNA gyrase beta subunit (Staphylococcus aureus, YB886, Genomic, 5 genes, 3573 nt)	100	276	276	

5
10
15
20
25
30
35
40
45

55

_		ORF nt length	147	1479	321	225	1413	984	327	702	510	4344	1002	1578	1440	1671	4 20	330	186	948	534	471	768	
5		HSP nt length	113	154	229	123	1326	11	203	702	127	3470	1002	1158	1440	1731	420	330	987	948	534	471	768	
10		percent ident	66	16	66	94	66	100	92	100	96	66	100	66	100	66	100	100	100	100	100	100	100	
15			yyrase beta 3573 nt]	, complete cds	, complete cds	, complete cds	, complete cds	1, complete cds	Scaphylococcus aureus prolipoprotein signal peptidase (1sp) gene, complete cds	complete cds	gene, complete	cds	X genes, complete	X genes, complete	phospho-beta-	phospho-beta-	and phospho-beta-	phospho-beta-				cds and lack	cds and lacA	
20			gyrB=DNA g	molog (put?) gene,	nolog (put?) gene,	nolog (putP) gene,	homolog (putP) gene,	gene for penicillin-binding protein 1, complete cds	al peptidase (lsp		Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) cds	ase III, complete cds	(cbf1) and ORF	ORF	enzyme II-lac (lacE), and phospho-beta- plete cds	<pre>III-lac (lacF), enzyme II-lac (lacZ), and phospho-beta- lacG) genes, complete cds</pre>	II-lec (lacE), and ds	II-lac (lacE), and phospho-beta- ds			ene, complete cds	gene, complete	repressor (lack) gene, complete cds and cds	· · · · · · · · · · · · · · · · · · ·
25	sednences		assembly proleus, YBB86, G	e permease hos	e permease hor	e permease hor	e permease hos	or penicillin	oprotein sign	onate lyase ()	idone carboxy	r DNA polymera	cmp-binding-factor l	nding-factor	F), enzyme II complete cds	ic (lacF), enzyme II. genes, complete cds	P), enzyme II- complete cds	F), enzyme II- complete cds	nd lacD genes	nd lacb genes	e isomerase g	repressor (lack)	pressor (lack)	
<i>30</i>	- Coding regions containing known sequences	a de	ecf cluster: dnaA-replisome assembly protein subunit (Staphylococcus aureus, YBB86, Genomic,	aureus proline permease homolog		Staphylococcus aureus proline permease homolog		aureus gene fo	aureus prolip	Staphylococcus aureus hyaluronate lyase (hysA) gene,	aureus pyrrol	Staphylococcus aureus DNA for DNA polymerase III,		Staphylococcus aureus cmp-binding-factor 1 (cbf1) and cds	.aureus enzyme III-lac (lacF), enzyme II galactosidase (lacG) genes, complete cds		.aureus enzyme III-lac (lacf), enzyme II galactosidase (lacG) genes, complete cds	.aureus entyme III-lac (lacf), entyme II galactosidase (lacG) genes, complete cds		Staphylococcus aureus lacC and lacD genes	S.aureus tagatose 6-phosphate isomerase gene.	aureus lac		
35	ding regions co	match gene name	recf cluster: subunit (Stap	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus aureus	Staphylococcus cds	Staphylococcus	Staphylococcus	Staphylococcus	Staphylococcus aureus cds	Staphylococcus cds	S.aureus enzyme galactosidase	S.aureus enzyme III-16 galactosidase (lacG)	5. Aureus entyme galactosidase	S.aureus enzyme galactosidase	Staphylococcus	Staphylococcus	S.aureus tagat	Staphylococcus repressor (lac	Staphylococcus aureus lac r repressor (lacA), partial	
40	S. sureus - Co	match	95 577055	95 1106451	Bb U06451	gb U06451	ab u06451	db; D28879 STAP	gb M83994	96 [021221]	07.610[46]	1980 LZL980 59P	196)1216161	gb U21636	gb[J03479]	gb J03479 	61,003479	 1 1 1 1 1 1 1 1 1 	emt X14827 SALA	emb x14827 SALA	gb H64724	gb 1132103	gb fi32103	
45		Stop (nt)	2289	9314	9615	110167	11501	1212	2270	705	1772	9117	6447	1961	7801	9522	8704	9839	110829	11774	112305	12773,	13866	
		Start (nt)	2143	10792	9935	9943	10089	2195	2596	1406	1263	4774	7448	9538	9240	11252	8285	10168	11815	12721	12838	13243	14633	•
		03.F		01	=	77	-	~		-	4	_		8		-	=		<u>;</u> –	=	122	2		•
50		Contig	153	154	154	154		159	161	162	163	164	16R	168	173	173	671	173	173	173	573	173	173	

			•	·	+ ——			•	.	•	• •			• —	• —	· — ·		. — .	. —			_		
5		ORF nt length	654	720	453	303	594	270	\$25	339	1623	1611	823	1920	17.1	1203	870	324	306	1143	1 873	1557	108	342
•		HSP nt length	115	720	(53	303	165	270	669	772	1332	119	132	1920	177	250	870	324	304	1143	444	1552	684	157
10		percent	100	100	100	100	66	66	66	96	97	66	8	66	66	66	66	66	97	66	94	66	66	96
15		; 	and LrgB (lrgB) genes,	and LrgB (lrgB) genes,	Lrg8 (lrg8) genes,	aureus holin-like protein LrgA (lrgA) and LrgB (lrgB) genes,		6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			# # # # # # # # # # # # # # # # # # #		eoside diphosphate ie (aroB) and genes, partial cds	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			complete cds, transfer RNA					cds and other ORFs	autolysin (atl) genes,	eron ditA, ditB,
20		1 	(lrgA)	(lrgA)	aureus holin-like protein LrgA (lrgA) and LrgB (lrgB)	LrgA (lrgA) and	s, complete cds	s, complete cds	complete cds	in A	complete csd	in A	and nucl synthas (gerCC)	1456	oagulase	oagulase	gene, gene, gene					complete	ORF3,	nction and dit op
25	nown sequences		aureus holin-like protein LrgA	aureus holin-like protein LrgA	lin-like protein	lin-like protein	aureus lyts and lyth genes,	lyts and lyth genes,	(plac) gene, compl	a gene for protein A	for protein A.	a gene for protein A	orismate synthase (arct) plete cds, dehydroaulnate phate synthetase homolog	a gene for coagulase	gene for staphylocoagulase	ne for staphyloc	syl-tRNA sythetase mal RNA (55 rRNA) o al RNA (135 rRUA)	genes	genes			gene for aut	Fl, partial cds,	ne for unkown fur plete cds
30	- Coding regions contaming known sequences	match gene name	Staphylococcus aureus ho	Staphylococcus aureus ho complete cds	occus ods	Staphylococcus aureus ho	Staphylococcus aureus ly	Staphylococcus aureus ly	sigma factor	Staphylococcul aureus spa	sus spa gene coding	Staphylococcus aureus spa	coccus aureus (ndk) genes, geranyl pyrop	Staphylococcus aureus coa	Staphylococcus aureus ge	Staphylococcus aureus gene for staphylocoagulase	Staphylococcus aureus lysyl-tRNA sythetas (tRNA) genes, 55 ribosomal RNA (55 rRNA) rRNA) gene, 235 ribosomal RNA (215 rRNA)	S.aureus ptsH and ptsI g	S.aurcus pts# and pts g	S.aureus orfs 1,2,3 & 4	S.aureus genes Pl and P2	Staphylococcus aureus atl	spo cds	Staphylococcus aureus gene for unkown function and dit operon ditA, ditC and ditD genes,complete cds
35	oding r		Staph	Staphy	Staphyloc	Staphy	Staphy	Staphy	S.aureus		S. aureus	_	Staphylc kinase geranyl	; :			Staphy1 (rRNA) rRNA)			_		السلة	Staphyloco	
40	S. aureus - (match	11962501961	ab U52961	95 052961	gb U52961 	gb .42945	gb L42945	gb H63177	emb x61307 SASP	98/101/96	emb X61307 SASP	62 18 19 19 19 19 19 19 19	emb x17679 sAC0	[emb X16457 SAST	emb X16457 SAST	95 [136472]	emb X93205 SAPT	(cm) X93205 SAPT	emb x97985 SA12	emb(X73889 SAP1	dbj D17366 STAA	gb C41499	dbj D86240 D862
45		Stop (nt)	655	1482	1909	1853	רררב	3025	290	341	2312	4251	824	2760	3143	4566	872	2011	2310	1305	2175	1558	2232	0777
45		Start (nt)	7	2201	2361	1551	3541	3294	1114	î	069	5861	c	141	2967	5768	1741	1688	2002	163	1303	3314	2939	7429
		ORC		~			2	9	-		~			- -	-	- 5		_	-	-	~	-	7	==
50		Contig ID	178	178	178	8.C1	178	178	181	182	182	182	1 BS	191	191	191	196	198	g-	202	202	210	210	514
	•					- - -		•	•	•	•	•												

Contig lo	OHF St	Start (nt)	Stop (nt)	match ,	, match gene name	percent	HSP nt length	OkF nt length
216	3 39	398	1318	emb x72700 SAPV	emb X72700 SAPV S.aureus genes for S and P components of Panton-Valentine leucocidins	ec 20	265	921
219	2 18	1810	1073	dbj D30690 STAN	Staphylococcus sureus genes for ORF37; HSP10; HSP10; HSP40; ORF35, complete cds	100	9	738
219	3 - 29	2979	2035	db; D30690 STAH	Staphylococcus aureus gones for ORF37; HSP20; HSP70; HSP40; ORF35, Complete cds	66	945	945
219	4	4359	3196	dbj D30690 STAN	Staphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete cds	66	1164	1164
219	5 - 70	7044	9/14	wv.1 030690 STAN	Staphylococcus aurens gonus for ORP37; HSP20; HSP70; HSP40; ORF35, Complete cds	86	1869	1869
219	9	6557	5883	db3 D30690 STAN	Staphylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; ORF35, complete cds	66	675	675
219		6801	6334	db} n30690 sTAN	Stanhylococcus aureus genes for ORF37; HSP20; HSP70; HSP40; OAF35, complete cds	86	468	468
221		10016	10034	gb 1.19298	Staphylococcus aures phosphatidylinositol-specific phospholipase C (plc) gene, complete cds	16	67	783
223		2855	1506	90/073374	Staphylococcus aureus type B capsule genes, cap8A, cap8B, cap8C, cap8C, cap8C, cap8C, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8C, cap8C, cap8P, cap8C, cap8C, cap8C, cap8F, cap8F, cap8F, cap8C, cap8F, cap8F, cap8C, cap8F, cap8C, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8F, cap8C, cap8F,	66	102	0350
777	-	2	1357	emb x97985 SA12	S.aureus orfs 1, 2, 3 & 4	100	176	1356
737	7 - 7	1694	2485	emb x97985 SA12	S. aureus orfs 1, 2, 3 & 4	100	792	792
234	~ ~	2648	3148	emb x97985 SA12	S.aureus orfs 1,2,3 & 4	66	201	1 501
234	4	3120	4604	emb(x97985 SA12	S.aureus orfs 1,2,3 & 4	66	1305	1485
236	9	3826	5322	95 048826	Staphylococcus aureus elastin binding protein (abpS) gene, complete cds	96	648	1497
248	-	2	403	emblx62288 SAPE	S. aureus DNA for penicillin-binding protein 2	100	103	402
268	~ ~	388	852	90 (125426)	Stabhylococcus aureus penicillin-binding protein 2 (pbp2) gene, complete cds	6	465	465
253	2 1	1539	1093	gb U46541{	Staphylococcus aureus sark gene, complete cds	96	447	447
284	7 - 7	150	1835	ap 051060	Staphylococcus aureus scdx gene, complete cds	94	142	1686
254	-	1973	2728	951057060	Staphylococcus aureus scdA gene, complete cds	99 1	756	954
260	-	7	1900 gb	Qb H90693	Staphylococcus aureus glycerol ester hydrolasa (11p) gone, complete cds	66	1213	1899
265	-	-	342	db: 021131 STAS	Staphylococcus aureus gene for a participant in homogeneous expression of	66	941	945

_	ORF nt Jength	213	654	1017	525	987	168	153	666	213	456	867	975	795	1353	1314	852	966	237	300	741
5	IISP nt Jength	213	69	743	110	952	80 4	712	979	187	338	867	978	793	1343	1314	150	966	106	259	137
10	percent	66	86	98	100	001	88	100	6	86	66	6	100	66	66	86	4	86	100	96	97
15		s expression of	s expression of	6	59, Genomic, 1087	59, Genomic, 1087	on (pcrA) gene,	on (pcrA) gene.	on (pcrA) gene,	on (pcrA) gene,	-enzyme genes,	c (higA, higB,	c (hlgA, hlgB,	c (hlgA, hlgB,	and other ORFs		i) gene and	nase (ddh) gene,			
20		ticipant in homogeneous complete cds	ticipant in homogeneous expression complete cds	886	synthase (Staphylococcus aureus, SA1959,	hemB-porphobilinogen synthase (Staphylococcus aureus, SA1959, Genomic, 1087 ntl	aureus helicase required for T181 replication (pcrA)	Staphylococcus aureus helicase required for T181 replication (pcrA) complete cds	for T181 replication	aureus helicase required for TiBl replication (pcrA)	S.aureus SaulaI-restriction-enzyme and SaulaI-modification-enzyme genes, complete cds	B and	A. Band	B and	autolysin, complete cds and	s, complete cds	methicillin-resistance protein (mecR)	D-2-hydroxyacid dehydrogenase (ddh)	gene	f leucocidin R	component of leucocidin R
seouences u				and HSP60 ga	se (Staphyloc	se (Staphyloc	sse required	ase required	ase required	ase required	enzyme and S	-hemolysin co	hemolysin co	gamma-hemolysin components A, cds	gene for autol	and lyth gene	cillin-resist	cific D-2-hyd	rine protease	F component a	F component o
50 00 Coding regions containing known sequences	nane	aureus gene thicillin res	aureus gene hicillin res	us aureus HSP10	ilinogen syntha	ilinogen syntha		us aureus helica	us aureus helicase required is		3AI-restriction	Staphylococcus aureus gamas-hemolysin components A, hglCl ganus, complute cds	us aureus gamma-hemolysin components	aurous	aureus atl	Staphylococcus aureus lytS and lytR genes, complete cds	taphylococcus aureus methic	us aureus D-specific	Staphylococcus aureus V8 serine protease gene	F-PB3 gene for	
35 Jing regions	match gene name	Staphylococcus high-level me	Staphylococcus high-level met	Staphylococc	hemB=porphobilinogen nt]	hemB=porphob	Staphylococcus complete cds	Staphylococcu complete cds	Staphylococcus complete cds	Staphylococcus complete cds	S.aureus Sau3/ complete cds	Staphylococcu hglCl genus,	Staphylococcus hglCl genes, o	Staphylococcus hglC) genes, o	Staphylococcus	Staphylococc	Staphylococcus aureus unknown ORF, complete	Staphylococcus complete cds	Staphylococc	S.aureus leu	S.aureus lauf-PB)
04 O aureus - Coo	match	dbj[021131]STAS	db	db	gb[£72488]	gb S72488	gb H63176	9Б Н63176{	gb M63176	gb M63176	gb H32470	gb L01055	gb[t.01035]	95 101055	dbj D17366 STA	gb[L42945]	gb[1,14017]	95[131175]	emb Y00356 SASP	emb;X64389 SALE S.aureus leuF-P83 gene for F component of leucocidin R	cmb X543189 SALE S.aureus lauf-PR) genc (ur
	Stop (nt)	476	1765	1018	525	1502	170	1034	2026	2202	1661	898	23H3	3161	1355	1315	7870	1003	237	388	
45	Start	688	2418	~		516		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1028	0661	1536	~	1409	2367	2707	2628	7019	1998	-	687	2 1828 1088
	:	2		-		~		~					~		-	-	9		-	-	~
50	Contig	265	265	266	282	282	284	284	284	284	289	303	202	203	305	311	312	323	326	338	338

		ORF nt length	1176	732	228	201	537	672	903	405	1146	657	540	507	762	216	216	1248	324	432	708	807	168	657
5		HSP ot Length	1176	732	172	187	537	671	747	89	1146	349	389	8/1	163	216	188	1248	200	432	151	556	134	657
10	•	percent	100	86	96	100	66	15	86	9.7	- 66	97	66	66	66	100	100	66	96	100	100	100	100	9.
15			6 / 2 5 5 5 5 5 5 5 5 5	· • • • • • • • • • • • • • • • • • • •		gene, complete	gene, complete		ipase C (plc)	ipase C (plc)					phylococcus	sin (atl) genes,	and other ORFs	(from		complete cds	complete cds	operon dita, dita,	operon ditA, ditB,	stance (femA)
20		P	, complete cds		ite (attB)	Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, cds	l peptidase (lsp)	gene, complete cds	phosphatidylinositol-specific phospholipase	Scaphylococcus auxes phosphatidylinositol-specific phospholipase gene, complete cds	n 2	uo	œ.	molysin	shock protein 23 (methicillin resistant) (Staphylococcus enomic, 1360 nt)	Staphylococcus aureus ORF1, partial cds, ORF2, ORF3, autolysin (atl) genes, complete cds	in, complete cds and other	and insertion sequences ISIIB1 and ISII82 (from reus) DNA	nsertion site	binding protein 1,	Staphylococcus aureus gene for penicillin-binding protein 1,	tion and dit oper	function and dit oper	S.aureus factor essential for expression of methicillin resistance (femA) gene, complete cds, and trpA gene, 3' and
25	own sequences	1 1 1 1 1 1 1 1 1 1 1 1 1 1	Fts2 (fts2) gene,		i-11 attachment site (attB)	lipoprotein signa	aureus prolipoprotein signal	aureus MHC class II analog gene,	ohatidylinositol-	ohatidylinositol-	for penicillin-binding protein	site DNA for IS431 insertion	gene encoding sphingomyelinase	Staphylococcus aureus hlb gene for beta-hemolysin	oin 23 (methicill 50 ntl	l, partial cds, O	gene for autolysin,	ertion sequences	S.aureus (strain RN450) transposon fn554 insertion site	gene for penicillin-binding	for penicillin-	gene for unkown function and dit	r unkown cds	for expression of
30	Coding regions containing known sequences	9886 96	Staphylococcus aureus SA4 Frs2 (fts2)	mRNA for nuclease	S.aureus bacteriophage phi-11	occus aureus prol		occus aureus MHC	aures cds	ococcus aures phosi complete cds			hlb gene encoding	occus aureus hlb	sp23-alkaline shock protein 23 aureus, 912. Genomic, 1360 ntl	occus aureus ORFI cds	Staphylococcus aureus atl	rensposon Tn5404 and inser Staphylococcus aureus) DNA	(strain RN450) tr	aureus	occus aureus gene	aureus genes.c	aureus genes, c	s factor essential for complete cds, and trpA
35	ding region	match gene name	Staphyloc	aureus	S.aureus	Staphyloc	Staphylococcus	Staphylococcus	Staphylococcus gene, complete	Staphyloc gene, co	S.aureus DNA	S.aureus target	S.aureus hlb	Staphyloc	asp23=alkaline aureus, 912. G	Staphylococcu complete cds	Staphyloc	Transposon Tn5404 Staphylococcus au	S.aureus	Staphylococcus	Staphyloc	Staphylococcus dlcc and dltD	Staphylococcus dltc and dltD	S.aureus gene, cor
40	S. aureus - Co	match	gb;U06462	emb. V01281 SANU	gb H20393	gb NH3994	gb M83994	ab u20503	95 (119298)	95 119298	emb x62288 5APE	emb x62282 SATS	em); X61716 SAHL	emb X13404 SAHL	95/576213/	gb :41499	dbj b17366 STAA	gb 143098	gb[K02985]	dbj 028879 STAP	dbj 028879 STAP	db.j [086240] 0862	duj n86240 p862	emb x17688 SAFE
		Stop (nt)	!	:	230	516	1046	674	903	1507	1148	1248	540	1187	1049	217	639	2509	325	434	1122	808	666	685
45		Start (nt)	675	517	457	1016	1582		-	1103	_	1904	-	1693	1810	7	854	1262		865	1829	~	832	12
	,	03.F	~	~	<u>-</u>		7	-	-	~	-		-	~			~	~_	-	-	~		~	
50		Contig	342	346	1 349	1353	383	356	361	196	1 373	1 389	400	400	408	418	418	431	422	427	427	435	435	Ş

			*	- +				+		+					- +	+					+	
5	1	ORF nt length	747	954	273	912	609	2991	2418	1329	324	363	291	201	1368	483	630	423	540	366	1059	
		HSP nt length	294	204	187	21,	597	653	2418	1328	96	250	224	72	1368	108	323	423	540	221	641	
10		percent ident	100	96	86	100	96	75	66	66	100	100	100	86	66	190	84	96	66	66	66	
15	Coding regions containing known sequences		methicillin resistance (femA)	leucocidins	I C (higA, higB,	oj gene, complete) gene, complete		subunit (grlA and	subunit (grlA and		iomal protein Nymerasa beta 6	iomal protein Nymerase beta 6	ip) gene, complete	complete cds	ip) gene, complete	R) gene and	Staphylococcus			complete cds and other ORFs	
20		-	1 for expression of methicillin of trpA gene, 3' and	S.aureus genes for S and F components of Panton-Valentine leucocidins	aureus gamma-hemolysin components A, B and complete cds	Staphylococcus aureus pyrrolidone carboxyl peptidase (pcp) cds	Staphylococcus aureus pyrrolidane carboxyl peptidase (pcp) cds	ng factor	gyrase-like protein alpha and beta subunit cds	aureus gyrase-like protein elpha and beta subunit (grlA and complete cds	hld genes	rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein hypothetical protein ORF202, DNA-directed RNA polymerase beta ains rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein hypothetical protein ORF202, DNA-directed RNA polymerase beta	ooc genes for ribos on-directed RNA pa	Staphylococcus aureus prolipoprotein signal peptidase (lsp) gene, complete cds	Staphylococcus aureus hyaluronata lyasa (hysA) gene, comp	Staphylococcus suraus prolipoprotein signal peptidase (lsp) gene, cds	Staphylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	rotein 23 (mechicillin resistant) (Staphylococcus 1360 nt)	ng protein	19 protein		
25													pob(rif) and ry otein ORF202, I						brinogen-bindir	fibrinogen-bindir	l gene for autolysin,	
30		, matter gene name S.aureus factor essential for gene, complete cds, and trpA	sus genes for S and	Staphylococcus aureus gamm hglC) genes, complete cds	lococcus aureus p	lococcus aureus p	S.aureus gene for clumping factor	Staphylococcus aureus gyra- grlB) genes, complete cds	Staphylococcus aureus gyrai grlBl genes, complete cds	ous agra, agra and hld		rplL, orf202, hypothetical nains	lococcus aureus p	lococcus aureus h	lococcus auraus p	taphylococcus aureus meth	kaline shock p 912, Genomic,	S. aureus fib gene for fibrinogen-binding protein	s fib gene for	Snoune snoopo		
35	oding re	. match	<u></u>		Staphy hg1C)	Staphy	Staphy		Staphy	Staphy grlB]	S.aureus			Staphy	Staphy	Staphy	Staphy	aureus,	-	S.aureu		
40	S. aureus - C	natch	cub X17688 SAFE 	omb x72700 SAPV	gb L01055	gb U19770	orein dp	emb 218852 SACF	 qb L25288 	qb L2\$288	emb X52543 SAAG	em's x64172 SARP	emb X64172 SARP	gb NB3994	gb U21221	gb M83994	195 514017	gb 576213 	emb X72014 SAFI	emb x72013 SAF	db; D17366 STAA	
		Stop (nt)	1657	1300	2178	1078	1784	4319	5479	6792	889	1560	1534	1188	1370	653	2242	2700	1297	1801	1092	
45		Start (nt)	2403	347	1906	167	1176	1309	7896	8120	995	1922	1244	1388	1 2737	1135	191	3122	1 758	1436	2150	
		0aF 10	62		~	-	~	_	-	•	~	4	ve.	~	-	~	~	4	~	12	-	
50		Contig	436	442	445	447	44	454	4 22	472	475	184	=======================================	487	489	503	115	511	520	520	526	
			•	• —					•		• -		•		• —		•	• 	• —	• —	· - ·	

	·	ORF nt Jength	906	6771	432	1185	193	795	1161	591	336	192	363	924	201	315	2814	1929	
5	•	HSP nt	260	B66	432	1185	187	75	905	196	336	189	\$	816	122	306	2588	1873	
10		percent	6	66	66	91	88	100	66	100	66	100	100	66	96	66	- 98	66	
15			umplete cds;	complete cds;	and nucleoside diphosphate synthase (aroB) and (gerCC) genes, partial cds	and nucleoside diphosphate s synthase (aroB) and (gerCC) genes, partial cds	and nucleoside diphosphate s synthase (arob) and (gerCC) genes, partial cds	a, 3' and cds; 3- complate cds;	3' end cds; 3- omplete cds;	a, 3' end cds; 3- complete cds;			copAC, capBD, capbH, capBN,	сар8С, сар8D, сар8Н, сар8N,	cap8C, cap8D, ap8M, cap8N,	ete cds		1, complete cds	
20		-	sequence encoding three ORFs, complete cds; homology, 5' flank	three ORFs.			(aroC) sauinat	Staphylococcus aureus dehydroquinate synthase (arob) gene, 1 phosphoshikimate-l-carboxyvinyltransferase (arob) gene, compORP), complete cds	Staphylococcus sureus dehydroquinate synthase (arob) gene, 1' end cds. phosphoshikimate-1-carboxyvinyltransforase (arob) gene, complete cds. ORF), complete cds.	synthase (aroB) gene, ferase (aroA) gene, c			cap8B,	cap8A, cap8B, cap8K, cap8L, c	cap8A, cap8B,	Staphylococcus aureus hyaluronate lyase (hysk) gene, complete eds		dbj D28879 STAP Staphylococcus aureus gene for penicillin-binding protein 1, complete cds	
25	known sequences		NA sequence encor ce homology, 5' 1	5. 5.	s chorismate synthas complete cds, dehyc phosphate synthatase	horismate synthas mplete cds, dehyc sphate synthetase	complete cds, dehycomplete synthas	ehydroquinate syr boxyvinyltransfer	ehydroquinate syr boxyvinyltransfor	dehydroquinate syr irboxyvinyltransfer	nd gink genes	and glnR genes	type 8 capsule genos, cap8A, cap8H, cap8I, cap8J, cap8K, e cds	s capsule,		yaluronate lyaso	for clumping factor	ene for penicilli	
30	Coding regions containing known sequences	h gene name	Staphylococcus aureus DNA sequence prophage phi-11 sequence homology,	Staphylococcus avreus DNA sequence prophage phi-11 sequence homology,	Staphylococcus aureus chorismate synthase (aroc) and nuckinase (ndk) genes, complete cds, duhydroauinate synthas geranylgeranyl pyrophosphate synthetase homolog (gerCC)	Staphylococcus aureus chorismate synthase (aroc) and nucl kinase (ndk) genes, complete cds, dehydroauinate synthas geranylgeranyl pyrophosphate synthetase homolog (gerCC)	Staphylococcus aureus chorismate synthase kinase (ndk) genes, complete cds, dehydro ip-ranylgeranyl pyrophosphate synthetase	taphylococcus aureus dehydroquinate synthase (arob) gene phosphoshikimate-1-carboxyvinyltransferase (arok) gene, ORP3, complete cds	taphylococcus aureus d phosphoshikimato-1-car OKF3, complete cds	lococcus aureus hoshikimate-1-ca complete cds	S. aureus (bb270) glmA and glnR genes	(bb270) glnA	coccus aureus cap8F, cap8G, cap8P, complet	ococcus aureus cap8F, cap8G, cap8P, complet	ococcus aureus cap8F, cap8G, cap8P, complet	rlococcus aureus h	S.aureus gene for clump	ylococcus aureus g	
35		. Restoh	Staph	Staph	Staph	Staph kina gera	Staph	Staphy phosp ORF3.	Staph phore	Staphy phospl	- :	L S.aureus	Staphyl cap8E,	Staphyl cap8E, cap80,	Staphy] cap8E, cap80,	Staphy	-	P (Staph	
40	- sneine	match acession	gh L19300{ 	 95 L19300 	dp n31979	dp (n31979	96/031979	ap r05004	gb L05004	gb L05004 	emb X76490 SAGL	emb X76490 SAGL	95/073374	gb U73374	gb U73374	gb;U21221	em:) 218852 SACF	dl.j D28879 5.1	
45		Stop (nt)	963	2870	434	2395	2801	3484	4792	5380	338	527	365	1252	1374	705	4288	1953	
45		Start (nt.)	88	1098	-	1211	2409	2690	3482	4790	~	336	רבו	2175	1574	, 1019	1475	3881	
	•	28 CI	۲۰	-	-	~		4	5	٠	-	<u>-</u>		~		~	-	-	
50	•	Cont 1g 1D	528	528	530	530	530	530	530	530	539	539	554	554	554	584	587	S98	

TABLE 1

5		ORF nt length	744	613	639	1254	1032	666	213	1688	549	795	840	969	453	246	654	477	165	\$64	\$25	900
3		HSP nt length	338	495	639	225,	838	066	194	489	549	795	478	456	369	246	653	136	534	564	195	280
10		percent	86	001	66	001	66	66	88	82	66	66	66	æ	100	100	1 66 1	100	98	96	100	6
15			ron ditA, ditB,		cds and lach	on (pcrA) gene,	on (pcrA) gene,	sistance (femA)	methicillin resistance (femA)		potential	potential	aplete cds;	gene and					gene, and type-I	gene, and type-1		
20		-	Staphylococcus aureus gene for unkown function and dlt operon dlth, ditt and dltu genes, complete cds		l gene, complete cds	Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds	Staphylococcus aureus helicase required for T181 replication (pcrA) gene, complete cds	of methicillin resistance (fem.)			transporter and potential	for potential ABC transporter and pin	aureus DNA sequence encoding three OHFs, complete cds l sequence homology, 5' flank	Stabhylococcus aureus methicillin-resistance protein (mecR) gene and unknown ORF, complete cds	emolysin	emolysin	emolysin	complete cds	SpsA (spsA)	SpsA (spsA) cds	te cds	te cds
25	sednences	·	or unkown fun e cds	nR genes	pressor (laced	se required f	se required f	r expression of A gene, 3' end	r expression of A gene, 3' end	Actor	for potential ABC in	potential ABC	quence encoding mology, 5' flank	illin-resista	ne for beta-h	ne for beta-hemolysin	gene for beta-hemolysin	gene,	signal peptidase) gene, complete c	signal gene,	gene, complete	gene, complete cds
<i>30</i>	- Calling regions containing known sequences	а пе	s aurons gene for un D genes, complete cds	S.aureus (bb270) glnA and glnR genes	Staphylococcus aureus lac repressor (lack) gene, repressor (lack), pertial cds	s aureus helica	s aureus helica	or essential for te cds, and trpA	or essential for Le cds, and trpA	Staureus gene for clumping factor	.aureus (RN4220) genes for membrane spanning protein	genes g prote		s aureus methic complete cds	Staphylococcus aureus hib gene for beta-hemolysin	aureus hlb gene	aureus hlb	S.aureus signa factor (plaC)	coccus aureus type-I peptidase SpsB (spsB)	s aureus type-I lase SpsB (spsB)	s factor (plac)	factor (plac)
35	coing regions c	match gene name	Staphylococcus dltC and dltD	S.aureus (bb2	Staphylococcu repressor (1	Staphylococcus complete cds	Staphylococcus complete cds	S.aureus factor gene, complete	S.aureus factor gene, complete	S.aureus gene	S.aureus (RN4)	S.aureus (RN4220)	Staphylococcus prophage phi-	Staphylococcus unknown ORF,	Staphylococcus	Staphylococcus	Staphylococcus	S.aureus signa	Staphylococcus signal peptida	Staphylococcus aux	S.aureus sigma factor	S.aureus sigma
40	S. aureus - Co	match	db; p86240 p862	emo X76490 SAGL	96,1932103	gb 863176	gb H63176	emb X17688 SAFE	emb X17688 SAFE	emb 218852 SACF	emb 230568 SAST	emb 230568 5AST	95[119300]	95 114017	emb X13404 SAHL	emb [X1 3404 SAHL	e nb X13404 SAHL	pb tt63177	1000590.116	000590 q6	195 14631.77	gb #63177
45		Stop (nt)	745	816	642	1255	2284	1001	1195	3228	551	1323	1070	1105	456	475	1399	480	592	1153	527	784
	1	Start (nt)	~	1628	1280	2508	3315	1999	1407	5126		625	1908	1800	808	230	746	956	1182	1716	-	-;
50		ORF 11D		-			~		<u></u>	~		~	 1	~_	- -	~	2	<u>-</u>		~-	- -	~
30		Contig	605	609	614	626	626	629	629	631	632	769	651	657	662	662	662	682	6.85	685	697	697

14 2		ORF	Start	Stop	natch	match gene name	Ident	MSP nt length	ORF nt length 1
<u> </u>		- :	22	203	DB62	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes, complete cde	88	217	489
7	-		76	205	gb H80252	Staphylococcus aurous norAll99 gene (which mediates active efflux of fluoroquinalones), complete cds	97	140	180
	<u> </u>		1736	1197	dbj b83951 STAL	Stephylococcus aureus DNA (or LukM component, LukF-PV like component, compile cds	18	\$22	540
752	<u> </u>	-	-	909	emb Y00356 SASP	Staphylococcus aureus VB serine protesse gens	- 66	618	636
152	-	7	588	926	emb Y00356 SASP	Staphylococcus aureus VB serine protesse gene	66	340	369
1 756	-	-	1308	709	emb x01645 SATO		- 88	567	009
7.7	-	-	1582	950	emb 249245 SA42	S. aureus partial sod gene for superoxide dismutase	- 66	429	613
180	-	-	=======================================	557	gb u20503	Staphylococcus aureus MHC class II snalog gene, complete cds	98	550	555
784	-	-	2	1 687	gb 063529	Staphylococcus aureus novel antigen gene. complete cds	66	568	615
797	-	-	182	544	dbj D14711 STAH	Jbj D14711 STAH Staphylococcus aureus HSP10 and HSP60 genes	86	363	363
198	i		\$32	705	emb X58434 SAPD	S.aureus pdhB. pdhC and pdhD genes for pyruvate decarboxylass, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	95	196	231
823			-	467	gb 577055	recF cluster: dnaAereplisome assembly proteingyrB=DNA gyrase beta subunit (Staphylococcus aureus, YBB86, Genomic, 5 genes, 3573 nt)	66	156	465
		 -	348	27.	gh L25208	Staphylococcus aureus gyrase-like protoin alpha and bota subunit (grlA and grlB) gones, complete cus	66	174	174
£		~	476	318	 9b L25288	Staphylococcus aureus gyrase-like protein alpha and beta subunit (grlA and grlB) genes, complete cds	001	161	159
99			792	397	emb x64172 SARP	S.aureus rpli, orf202, rpos(r1f) and rpoc genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 4 beta' chains	66	395	396
883	-	 - -	-	285	NAT2 6110901 db	S. aureus nork gene	- 66	131	285
RR	_	-	909	24	emb X52543 SAAG	S.aurcus agrA, agrB and hld genes	86	265	273
384	_		716	525	emb x52543 SAAG	S. aureus agrA, agrB and hid genes	100	195	195
912		~-	517	681	emb z30588 SAST	S.aureus (RN4220) genes for potential ABC transporter and potential membrane spanning protein	66	163	165
1 917	-	<u>-</u>	~	265	gb H64724	S. aureus tagatose 6-phosphate isomerase gene, complete cds	- 66	247	264
1 917		~	238	396	gb N64724	S. aureus tagatose 6-phosphate isomerase gene, complete cds	9.6	147	159
918		-	2426	1215	emt x93205 SAPT	S. aureus ptsH and ptsI genes	1 66 1	1212	1212

		ORF nt length	411	336	273	234	285	327	195	588	228	267	186	144	34)	135	360	282	240	162	528	210	432
5		IISP nt Length	395	336	190	234	224	205	180	131	228	267	186	124	243	127	360	282	240	124	495	210	299
10		percent	6	66	7.0	66	66	88	66	100	66	100	001	88	66	1 97	66	100	100	1 6	66	100	66
15					() gene and	ron dltA, dltB,	complete cds	leucocidins	lese, Jehydrogenase		operon dltA, dltB,	eron dltA, dltB,	sron ditA, ditB,	lase, Jehydrogenase			rtion, 1820 nt}	stein, complete			iron ditA, ditB,	Insartion, 1820 nt]	
20				•	methicillin-resistance protein (mecR)	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB, ditC and ditD genes,complete cds	(hysA) gene, comp	components of Panton-Valentine leucocidins	laureus pdhB, pdhC and pdhD genes for pyruvate decarboxylese, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	S.aureus (strain RN450) transposon Th554 insertion site	for unkown function and dit op-	Staphylococcus aureus gene for unkown function and dit operon ditA, ditC and ditD genes, complete cds	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB,	aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	complete eds		aureus, NCTC 8325, Insertion, 1820 nt	agr gene encoding an accessory gene regulator protein, complete		986	for unkown function and dit operon ditA, ditB.	aureus, MCTC 8325, Insc	
25	sodneucas			d genes	icillin-resista	for unkown fur ete cds	uronate lyase (pdhD genes for py transferase and c	ansposon Th554	for unkown fur ete cds	for unkown fur ete cds	for unkown fur ete cus	pdhD genes for py	gene,	merase III		an accessory ç	d genes	coa gene for coagulas	for unkown fur ete cds	Staphylococcus aureus	gink genes
30	- Couling regions containing known sequences	name	rA gene	S. aureus agra, agra and hid genes	aureus	us aureus gene for un tD genes, complete cds	Staphylococcus aureus hyaluronate lyese	es for S and F	B, pdhC and pd	rain RN4501 tr	us aureus gano for un tD genes, complete cds	us aureus gene for tD genes, complete	us aureus gene for un til genes, complete cus	B. pdhC and pdiamide acetyltr	S.aureus sigma factor (plac)	gene for DNA polymerase III	norA-NorA (18P794) (Staphylococcus	gene encoding	S.aureus agrA, agrB and hld genes	aureus	us aureus gene for uni tD genes, complete cds	SP794) Staphy	270) glnA and
35	suojāai hijju	match gene name	S. aureus norA gene		Staphylococcus unknown ORF, o	,	Staphylococc	S.aureus genes for		S.aureus (st	:				S.aureus sig	S.aureus	norA=NorA (I	S. sureus agr		Staphylococcus	Staphylococcus dltc and dltD	HOFA HOFA (ISP794)	S. aureus (bb
40	S. aurous - C	match ocession	dbj 190119 STAN	emb x52543 SAAG	95 114017	dbj D86240 D862	95 021221	emb x72700 SAPV	emb X58434 SAPD	gb K02985	db.j D86240 D862	db5 D86240 D862	dh. DN6240 D862	emb x58434 SAPD	[gh[M63177]	cmb 248003 SADN	gb \$74031	gb M21854	cmh x52543 SAAG	eat: X17679 SACO	dbj D86240 D862	90 574031	emb X76490 SAUL IS aureus (bb270) glaA and glaR genes
45		Stop (nt)	=	13.7	84.5	265	285	330	286	589	230	9	645	146	243	136	361	283	888	163	\$29	210	472
45		Start (nt)	_	672	1111	498	_	959	087	1176		218	0,7	289	-	~	720	~	7211	~	~	-	=
		OKF	-	-			-			-		7					-		7	-		-	-
50		Contig ORF	696	991	1000	1001	1010	1046	1060	1073	1079	1079	1073	1092	1143	1157	1 1189	1190	1190	1225	1243	1244	1301

TABLE 1

		ORF nt length	309	174	672	321	192	180	345	402	207	402	153	399	381	396	291	369	787	237	171
5		HSP nt length	277	139	672	321	192	180	345	402	207	1161	153	199	358	272	250	347	83	178	120
10		percent	88	96	86	66	86	100	- 66	001	66	- 66	66	66	601	-6	86	86	- 87	88	-6
15			mal protein ymerase beta £	1, complete cds	ron ditA, ditB,	сар8С, сер8D, ар8М, сар8N,		sistance (femA)		ron dltA, dltB,	·	activity	sistance (femA)	gene, complete	; ORF35, complete	(mene), and o- cds	and nucleoside diphosphate synthase (aroB) and (gerCC) genes, partial cds		ne RRNV30 165-23S	; ORF15, complete	ONF35, complete
20			rpoC genes for ribosomal protein DNA-directed RNA polymerase beta	aureus gene for penicillin-binding protein 1,	aureus gene for unkown function and dit operon ditA, ditB. genes,complete cds	ев, сарвА, сарвВ, сарвС, ј, сарвК, сарвL, сарвМ,	ne, J' end	S. aureus factor essential for expression of mathicillin resistance (fem.) gene, complete cds, and trpA gene, 1' end	, complete cds	Staphylococcus aureus gene for unkown function and dit operon ditA, ditB ditC and ditD genes, complete cds	complete cds	class II promoter activity	factor assential for expression of methicillin resistance (femA) maplete cds, and trpA gene. 1' end	protein 2 (pbp2) gene,	genes for ORF37; HSP20; HSP70; HSP40; ORF35,	o-succinylbenzoic acid CoA ligase (me synthetase (menc) genes, complete cds		1088	methicillin-resistant ATCC 33952 clone RRNV30 16S-23S	Staphylococcus aureus genes for ORF37; HSP20; HSP40; ORF35, cils	Staphylococcus aureus genes for ORF37; HSP20; HSP40; HSP40; ORF35, complete cds
25	sadnences		rpoB(rif) and rpoC protein ORF202, DNA-	for penicilli	for unkown fu	8 capsule genes, 1H, cap81, cap8J,	aureus alpha-hemolysin gene, 3' end	for expression or rpA gene, 3' and	antigen gene, complete	for unkown fu	C) gene, comp	aurous DNA fragment with class II	essential for expression o	Staphylococcus aureus penicillin-binding protein 2 cds	se for ORF37; H	o-succinylbenzoic synthetase (menc)	2 G E	Staphylococcus aureus coa gene for coagulase	nicillin-resist	s for ONF37; F	38 for ORF37; h
30	- Coding regions containing known sequences	nome	orf202,			us aureus type 8 F, cap8G, cap8H, P, complete cds		tor essential for ete cds, and trpA	us aureus novel	us aureus gene for un tD genes, complete cds	S.aureus signa factor (plac) gene,		tor assential ete cds, and t	us sureus peni	us aureus gene	aureus ic acid	aureus genes, I pyrop	us aureus coa	aureus	us aureus gene	ens surens sen
35	oding regions	match gene name	S.aureus rplL, L7/L12, hypot	Staphylococcus	Staphylococcus dltC and dltD	Staphylococcus cap8E, cap8F, cap80, cap8P,	Staphylococcus	S.aureus factor gene, complete	Staphylococcus	Staphylococcus dltc and dltD	S.aureus sig	Staphylococcus	Aureus ene, co	Staphylococc	Staphylococcus aureus cds	Staphylococcus aureus succinylbenzoic acid	Staphylococcus kinase (ndk) geranylgerany	. — :	Staphylococcus aurel rRNA spacer region		: :
40	S. aurous - Co	match acession	emb x64172 SARP	db; D28879 STAP	db. DA6240 D862	pp U73374	dp H80536	emb X1768R SAFE	68509n q6	db3 D86240 D862	gb H63177	1951066641	cat) X17688 SAFE	gb 1,25426	dbj p30690 STAN	65 051132	626131919 	emb X17679 SACO	622110 195	dbj! D30690 STAN	dbj 030690 STAN
		Stop (nt)	326	175	678	324	192	181	346	402	208	402	156	400	398	398	328	464	1784	238	281
45		Start (nt)	87	7	1346	44	-	~-	7		-	-	308	~	977		618	832	2170	474	451
		108F		-			-		-		<u>-</u>	=						-			~
50		Contig lost	1315	1519	1663	197	1857	1921	1957	1988	1 2100	2199	7685	2891	2950	2971	2978	2985	3006	3008	3008

		ORF nt length	396	234	153	B61	147	258	213	261	258	396	237	201	153	171	231	174	210	378	210	141
5		HSP . Jength	72	234	100	135	215	183	213	234	229	250	215	160	142	88	192	154	197	16	22	141
10		percent	93	6	1 87	001	92	7	66	86	66	96	95	97	-6	80	98	96	89	96	86	96
15				and phospho-bets-	gene, complete cds	(pcka) gene,	(pcka) gene,	(pcka) gene,	rplL, or1203, rpoBirit) and rpoc genes for ribosomal protein hypothetical protein ORF202, DNA-directed RNA polymerase beta is in the contract of the contract	aureus genes for OAF37: HSP20: HSP70; HSP40; OAF35, complete	ene, complete cds	rpli, orizoz, rpobirii) and rpoc gones for ribosomal protein hypothetical protein ORF202, DRA-directed RRA polymerase beta i lains	complete cds		nd phospho-beta-	xylase, e dehydrogenase			complete cds	xylase, e dehydrogenase	and phospho-beta-	plete cds
20		·	ng protein B		somotog (putP) g	aureus phosphoenolpyruvate carboxykinase (pcka) gene	aureus phosphoenolpyruvate carboxykinase (pcka) gene	e carboxykinase	oc genes for rib A-directed RNA	1SP20: HSP70: HS	omolog (putP) g	oc genes for rib A-directed RMA	srase III, compl		II-lac (lacE), a	pyruvete decarboxylase, dihydrolipoamide dehyd				oyruvate decarboxylase dihydroliposmide dehyd	-lac (lacE),	peptidoglycan hydrolese gene, complete cds
25	nown sequences		for fibronectin binding	(lacf), entyme II	oline permesse }	osphoenolpyruvat	osphoenolpyruvat	osphaenolpyruvat	poB(rif) and rpo ptein ORF202, DA	nes for ORF37; I	oline permease)	poB(ril) and rpo otein ORF202, Di	A for DNA polyme	for DNA polymerase III	c (lacf), enzyme II genes, complete cds	pdhD genes for ; transferase and	90	ng factor	nes for DNA gyra	pdhD genes for p	(lacf), enzyme II-lac nes, complete cds	ptidoglycan hydr
30	Coding ragions containing known sequences	match gene name	(nbB gene	.aureus enzyme III-lac (lac?), enzyme II-lac (lac£), galactosidase (lacG) genes, complete cds	Staphylococcus aureus proline parmesse homolog (put?)			Staphylococcus aureus phosphoenolpyruvate carboxykinase (pcka) gene, complete cds		coccus aureus ge	Staphylococcus aureus proline permease homolog (putP) gene,	rplL, orf202, r hypothetical pr hains	dbj D86727 D867 Staphylococcus aureus DNA for DNA polymerase III,	gene	S. auraus enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta galactosidase (lacG) genes, complete cds	pdhB, pdhC and lipoamide acetyl	cmb[3,89233 SAHP S.auraus DNA for rpoC gene	gene for clumping	Staphylococcus aureus genes for DNA gyrase A and B,	S.aureus pdhs, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	entyme III-lac sidase (lacG) ge	aurous
35	oding regi	match g	S.aureus	S.aureus galactos	Staphylo	Staphylococcus complete cds	Staphylococcus complete cds	Staphylococcu	S.aureus L7/L12, beta' ch	Staphylococcus cds	Staphylo	S.aureus rplt, L7/L12, hypotl beta chains	Staphylo	S.Auraus	S.aureus galacto	<u>~</u>	S.auraus	S.auraus gene	Staphylo	- -	S.aureus galacto	Staphylococcus
40	S aurous + Co	match acession	emb x62992 SAFN	gb J03479	gb U06451	65(1130)	66 051133	 95 051133	emb X64172 SARP	db; 030690 STAN	gb U06451	emb x64172 SARP	dbj p86727 p867	cmb 248003 SAER	[9b[J03479]	emb[x58434 SAPD	cmb 389233 SAHP	emb 218852 SACF	db3 910489 STAG	emb. 7:58434 SAPO	gb J03479	gb :176714
		Stop Int)	398	235	533	287	791	327	215	261	284	397	239	244	155	398	62	175	1 211	378	17.	2
45		Start (nt)	793	7	18	96	87	70		-	27	7	_	444	307	8995	463	~	420		420	
		PRO CI	1-		-						=		-	-			=	-	-	<u></u>		-
50		Contig ORF	1 3011	1 3019	1 3023	3029	9000	3039	3056	3059	1 3073	3074	3088	1 3097	3102	1216	3125	1 3133	3160	3176	3192	3210

5	
10	
15	
20	
25	
30	
35	
40	
45	

55

	OKF nt	825	193	243	318	180	219	138	165	420	261	890	378	393	486	234	192	336	240	462	360	402
5	HSP nt	257	3,5	102	307	141	174	62	162	175	253	345	346	319	403	231	112	229	- 18	367	333	387
10	percent	17	66	66	66	100	86	100	88	86	6	66	72	86	84	100	100	100	- 55	112	82	88
15		R) gene and		eq.				ferase (lgt) gene,	ferase (1gt) gene,		82 (from	phospho-beta-				omal protein lymerase beta f	omal protein lymerase beta &				i) gane and	omel protein lymerase beta f
20		methicillin-resistance protein (mecR)		sequence with two FRNAs		ulase	coagulasa	aureus proli: protein diacylolyceryl transferase (19t)	Staphylococcus aureus prolipoprotein diacyllylyceryl transferase (lgt) complete cds	coagulase	Transposon To5404 and Insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DNA	S. aureus curyma III-lac (lacF), curyme II-lac (lacF), and phospho-betagalactosidase (lacG) genes, complate cds				poc genes for ribosomal protein DNA-directed RNA polymerase beta	.eureus rpli, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta beta' chains	ing protein B	RMA sequence with two rRMAs		methicillin-resistance protein (meck)	.aureus rplL, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7LL1, hypothetical protein ORF202, DNA-directed RNA polymerase beta beta' chains
saouanbas un		icillin-resis		transfer RMA sequ	factor	gene for coagulase	coa gene for coag	ir protein di	ipoprotein di	aureus gene for staphylocosgulase	rtion sequenc	acF), onzyme 11- s, complete cds	factor	factor	factor		B(rif) and rpo ein ORF202, D	ronectin bind	sfer RHA seque	factor	icillin-resis	B(rif) and rpc sin ORF202, D
50 05 55 COULDING KNOWN Sequences	amen anag	s aurous complete	S. aureus DNA for rpoC gene	Staphylococcus aureus tran	ene for clumping factor	s aureus coa	aureus		ccus aureus prol		Th5404 and inser	aureus enzyme III-lac (lace	gene for clumping factor	gene for clumping factor	ne for clumping factor	orf202. hetical	ili, orf202, rpof pothetical prote ns	S. aureus fnbB gene for fibronectin binding protein	Staphylococcus aureus transfer	gene for clumping factor	aureus	ll, orf202, rpoE pothetical prote
35 Jing region	match gene	Staphylococcu unknown ORF,	S. aureus Di	Staphylococ	S.aureus gene		Staphylococcus	Staphylococcus complete cds	Staphylococ complete	Staphylococcus	Transposon Tn540	S.aureus er galactosic	S.aureus ge	S.aureus ge	8	S.aureus rplL, L7/Ll2, hypot beta' chains	S.aureus rplb, L7/Ll2, hypotl beta' chains	S.aureus fn	Staphylococ	S.aureus ge	Staphylococcus unknown ORF,	S.aureus rplL, L7/L12, hypot beta' chains
o) - sne.ns - S	natch	610111 611	cmb X89233 SARP	86 111530	emp 218852 SACF	emt: X17679 SACO	emb X17679 SACO	c77250 de 	186 135773	emb X16457 SAST	ab L43098		emb 218852 SACF	emb 218852 SACF	eml> 218852 SACP	0.ab X64172 SARP	emb x64172 SARP	emb x62992 SAFN	gh r.11530	emb 218852 SACF	ab L14017	emt X64172 SARP
	Stop (nt)	1282	324	634	320	182	313	14.	363	422	262	150	381	396	528	236	415	423	154	463	450	402
45	Start (nt)	2106		392	637	~	95	278	527	-	~	-	758	788	1013	~	224	758	593	924	808	
	ORF		<u>-</u>	-	-	-	~	 -	~	-		-	-	-	- -	-	~	<u>-</u>	-	-		
50	Contig	3232	1 353R	3543	1355	1359	1559	3563	1563	1 3566	1588	3593	1600	3602	1656	36A2	36R2	1691	3702	1 3725	13761	3767

5		ORF nt Jength	285	228	171	249	396	219	465	E.	399	477	324	252	285	237	171	183	177	68	417	192	213
3		HSF nt length	227	204	123	249 ,	396	161	204	356	192	347	299	217	209	155	171	170	96	480	413	159	88
10		percent	001	100	95	66	86	66 }	8.7	*	76	85	001 1	001	97	96	96	100	96	6	66	001	-6
15			rpoB(rif) and rpoC genes (or ribosomal protein protein ORF202, DNA-directed RNA polymerase beta 4	complete cds	complete cds		complete cds		gene, complete cds	xylase, le dehydrogenase	secR) gene and		complete cds	complete cds	enzyme II-lac (lacE), and phospho-beta- plete cds	nyjaso, le dehydrogenase				genes for ribosomal protein directed RNA polymerase beta £	etr cds	gene, 3' end cds; 3- ne, complete cds;	ne, 3' end cds; 3-
20			orf202, rpoB(rif) and rpoC genes for ribosomal protein stical protein ORF202, DNA-directed RNA polymerase bet	A and B.	n i	coagulase	nbA) mRNA, compl		rotein (abpS) ge	pdhC and pdhD gones for pyruvate decarboxylase, de acetyltransferase and dihydrolipoamide dehyd	methicillin-resistance protein (mecR)			A and B.	II-lac (lacE), a cds	pdhc and pdhD genes for pyruvate decarboxylaso. do acctylcransferase and dlhydrollpoamide dehy	coagulase				(Cuba) mRNA, compl	<u> </u>	nthase (arob) gerase (aroA) gens
25	cnown sequences		pob(rif) and rp rotein ORF202, D	genes for DNA gyrase	genes for DNA gyr	coa gene for coag	oding protein (f	WA	astin binding p	puhD ganes for transferase and	thicillin-resis	ng factor	ptidoglycan hyd	genes for DNA gyrase		pdhD genes for Lransferase and	aureus gene for staphylocoagulase	91	депа	orf202, rpoB(rif) and rpoC netical protein ORF202, DNA	ding protein (C	dehydroquinate syr rboxyvinyltransfe	hydroquinate sy loxyvinyltransfe
30	Coding ragions containing known sequences	gene nome	S.aureus rplt, orf202, 1 L7/L12, hypothetical pr beta' chains	2	Staphylococcus auraus genes for DWA gyrase A and	Staphylococcus aureus co	S.aureus fibronectin-binding protein (fnbA) mRNA,	gene for 235 rl	Staphylococcus aureus elastin binding protein (abpS)	S. sureus publb, pohC and pubb gones for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase	us suraus	S.aureus gene for clumping factor	Staphylococcus aureus paptidoglycan hydrolase gene,	Staphylococcus aureus ge	enzyme III-la idase (lacG)	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrolipoamide acctyltransfersse and dihydrolipoamide dwhydrogenase	Staphylococcus aureus gene	s DNA for rpoC gene	S. aureus DuA for rpoC ge		S. uureus (ibronectin-binding protein ((nbA) mRNA, complete cds	Staphylococcus aurous dehydroquinate synthase (aroft phosphoshikimate-1-carboxyvinyltransferase (aroA) ORF), complete cds	Staphylococcus aureus dehydroquinate synthsse (arob) gene, phosphoshikimate-1-carboxyvinyltransfersse (aroA) gene, coONF), complete cds
35	oding reg	metch ' ' '	S.aureu L7/L12 beta'	Staphyl	: - :	Staphyl	S.aureu	S. aureus	Staphyl	S. aureu dihydr	Staphyl	: - :	Staphyl	Staphyl	S.aureus galactos	S. aureu dihydi	Staphyl	S.aureus DNA	S.aureu	S. aureus L7/L12, beta' c	S.aureu	Staphyl phosph ORF1.	Staphyl phosph ORF3,
40	O - unume	match	emb X64172 SARP	dbj D10489 STAG	dbj D10489 STAG	emh X17679 SACO	ap J04151	emb X68425 SA23	96 048826	emb x58434 SAPD	gb 1.14017	emb[218852 SACP	db N76714	dbj D10489 STAG	[gb]J03479]	Cmb X58434 SAPD	emb X16457 5AST	emb x89233 SARP	emb[x89233 SARP	emb X64172 SARP	1915 1911	95 105004	gh 1.05004
		Stop (nt)	286	529	366	251	398	402	468	381	60	573	127	253	288	7.22	173	183	357	485	420	239	400
45		Start (nt)	~	456	5.12		793	184	932		798	1049	650	~	572	-	~	-	Ę		H 36	æ	88
					~	-	-	-	-			-	-	-	-			- -	~		- -		~
50		Contig	27.6	3786	3786	1379R	1 3813	3819	3844	3845	3856	3859	3871	3,476	3877	3R7B	3888	1 3893	1 3893	3894	1 3895	3905	3905

5

		ORF nt longth	157	0.00	345	192	169	345	1 276	429	303	345	300	276	402	381	162	213	264	357	294
5		HSP nt longth	278	175	295	163 ,	339	221	172	429	861	127	227	276	207	157	98	200	150	297	240
10		percent	66	25	100	98	66	18	96	66	75	89 66	66	66	74	96	100	66	- 68	66	86
15			lase, dehydrogenase	R) gene and	P	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ete cds				R) gene and	clone RRWV42 165-235	82 (from	lase, dehydrogenase		gene, 3' end cds; 3- gene, complete cds;	cap8M, cap8N,	e cds	R) gene and	omal protein	omal protein lymerase beta 6
20			.auxeus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydrollpoamide acetyltransferase and dihydrolipoamide dehydrogenase	aureus mothicillin-resistance protein (mecR) gene and omplete cds		gulase	gyrase A and B, complete				aureus methicillin-resistance protein (mecR)	ATCC 33952	Transposon 155404 and insertion sequences ISII81 and ISII82 (from Staphylococcus aureus) WiA	aureus pdhb, pdhC and halb genes for pyruvate decarboxylass, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase			cap8A, cap8B,	A mRNA, complete	methicillin-resistance protein (mecR); cds	ort202, rpoBirif) and rpoC genes for ribosomal protein setical protein ORF202, DNA-directed RNA polymerase beta	.aureus rpli, orf202, rpoB(rif) and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORP302, DNA-directed RNA polymerass beta beta' chains
25	m seguences		D genes for pyr	cillin-resister	erase III	for staphylocoagulas	for DNA gyrase	factor	factor	erase III	cillin-resistan	cillin-resistan	tion sequences	D genes for pyr nsferase and di	factor	roquinate synth vinyltransferas	8 capsule genes, , cap81, cap8J,	g protein (fnbA	cillin-resistan	(rif) and rpoC in ORF202, DNA-	(rif) and rpoC in ORF202, DNA-
30	- Coding regions containing known sequences	name	B, pdhC and pdhD amide acetyltrans		S. aureus gene for DNA polymerase III	aureus	us aureus genes	S.aureus gene for clumping factor	gene for clumping factor	s for DNA polym	s aureus methi complete cds	Staphylococcus aureus methicillin-resistant FRMA spacer region	ransposon Th5404 and inser Staphylococcus aureus) DHA	 pdhC and [k]^h smide Acetyltra. 	for clumping factor	taphylococcus aurous dohydroquinate synthase (aro) phosphoshikimate-1-carboxyvinyltransferase (aroA) ORF), complete cds	Staphylococcus aureus type 8 cap8E, cap8E, cap8E, cap8E, cap8E, cap8E, complete cds	(ibronectin-binding protein (fnbA)	aureus omplete		, orf202, rpoB
35	oding regions	match gene name	<u>~</u> -	Staphylococcus unknown ORF, o		Staphylococcus	Staphylococc		S.aureus	S.aureus gent	Staphylococcus unknown ORF, c	Staphylococcus aure	Transposon Tr Staphylococc	S.aureus pdhB, dihydroliposm	S.aureus gene for	Staphylococcu phosphoshiki ORF3, comple	Staphylococcus cap8E, cap8F, cap8O, cap8P,	S.aureus fibr	Staphylococcus unknown ORF, c	S.aureus rplL, L7/Ll2, hypot beta' chains	S.aureus rplL, L7/L12, hypotl beta' chains
40	S. aureus - Co	match	emb X58434 SAPD	96 114017	emb 248003 SADN	emb. X16457 SAST	dbj D10489 STAG Staphylococcus sureus genes for DNA	emb 218852 SACF	emb :18852 SACF	emb 248003 SADN S.aureus gene for DNA polymerase III	95 L14017	gb U11786 	gb [.43098	cml X58434 SAPD	emb 218852 SACP	95 1.05004 [95)304151	gb L14017	emb x64172 SARP	emb x64172 5ARP
45		Stop (nt.)	359	330	347	390	171	348	375	432	304	402	101	17.2	402	402	101	247	366	398	294
70	, , ,	Start (nt)	n	-	691	199	-	:69	-	860	909	88	2	~	-	2	240	35	629	754	-
		98.P			-	-	-	-	-	-			-	-	-			-			-
50		Cont. ig 10	3910	3915	3964	4007	4036	4046	4060	1901	4062	4085	4088	4093	4097	4116	4125	4149	4151	4154	4179
					:	:	:	:	:	-			· :		- :	:			:		:

Contig ORF ID IU	10 10	Start (nt)	Stop (nl.)	match reession	match yene name	percent ident	HSP nt length	ORF nt length
4203	-	-	255	emb [X89233 SARP	S.aureus DNA for rpoC gene	1 66	239	255
; -	-	-	303	emb 218852 SACF	S.aureus gene for clumping factor	100	236	303
4206	7	195	346	entb 218852 SACF	S.aureus gene for clumping factor	9.6	99	150
4208		108	914	emb (258434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylsse, dihydrolipoemida acetyltransferase and dihydrolipoemide dehydrogenese	69	96	207
4216		959	000	emb X58434 SAPD	S.aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylass, dihydrolipoamide acetyltransferase and dihydrolipoamide dehydrogenese	80	326	327
4226	-	594	298	ap r11230	taphylococcus aureus transfer RNA sequence with two rRNAs	97	132	297
4260		216	383		Staphylococcus aureus methicillin-resistant ATCC 31952 clone RRWV40 165-215 rRWA spacer region	8	7	168
4272	-	355	179	emt: 248003 SAUN	S.avreus gene for DNA polymerase III	100	164	177
4276	-	-	17.	X16457 SAST	Staphylococcus avreus gene for staphylocoagulase	1 66	150	174
4277			270	emt x64172 SARP	32.	66	265	07.2
42R2	 -	691	7.7.5	emb X64172 SARP	S.aureus rplL, or(202, rpoB rif and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta 4 beta' chains	80	282	315
4291		379	191	emb x64172 SARP	S.aureus rplL, orf202, rpoBfriff and rpoC genes for ribosomal protein L7/L12, hypothetical protein ORF202, DNA-directed RNA polymerase beta & beta: chains	66	183	189
4295	-	_	329	emb X16457 SAST	Staphylococcus aureus gene for staphylocoagulase	94	144	327
4313	-	÷3	280	de L11530	Staphylococcus aureus transfer RNA sequence with two rRMAs	001	96	156
4315		~	185		S. suress enzyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- malactosidase (lacG) genns, complete cds	100	158	183
4315	~-	101	310	gb[303479]	S.aureus entyme III-lac (lacF), enzyme II-lac (lacE), and phospho-beta- galactosidase (lacG) genes, complete cds	98	75	210
4327		-	294	gb 1.43098	Transposon Thistot and insertion sequences ISI181 and ISI182 (from Stephylococcus aureus) DNA	B6	294	294
4360	-	603	319	016700 96	hylococcus a	100	116	285
4364		e	146	emb x64172 SARP	S.aureus rplL, or[202, rpoBiri[) and rpoc genes for ribosomal protein 1.7/L12, hypothetical protein ORF202, DMA-directed RNA polymerase beta 6 beta' chains	26	140	166
-								

5	ORF nt length	312	246	291	246	270	240	312	261	327	267	171	300	159	219	144	195	231	198	189	722	1 591
	HSP nt	243	112	165	139	270	231	265	259	701	213	151	157	126	213	127	168	169	152	LB1	1 001	156
10	percent	97	1001	85	100	66	66	66	86	SB SB	- 66	001	100	84	84	98	92	86	66	86	84	98
15))) 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			mal protein ymerase beta ƙ	mel protein ymerase beta t		phospho-beta-	2 (from	Staphylococcus aureus DNA gyrase B subunit (gyrB) RecF homologue (recF) and DNA gyrase A subunit (gyrA) gene, complete cds		mel protein ymerase beta &	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ase, ehydrogenase		cds	phospho-beta-		cds
20		protein B	bosomal RIA		rplL, orf202, rp08(rif) and rpoC genes for ribosomel protein hypothetical protein ORF202, DNA-directed RNA polymerase beta hains	.aureus rpli, orf202, rpoB(rif) and rpoC genes for ribosumal protein L7/L12, hypothetical protein ORP202, DNA-directed RNA polymerase beta beta' chains		S.aureus ensyme III-lac (lacF), ensyme II-lac (lacE), and phospho-beta-galactosidase (lacG) genes, complete cds	Transposon Th3404 and insertion sequences IS1181 and IS1182 (from Staphylococcus aureus) DNA	t (gyrB) RecF hom		rpli, orf202, rpo8(rif) and rpoC genes for rlbosomel protein hypothetical protein ORF202, DNA-directed RNA polymorase beta lains	g protein D	9 3 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10 10 10 10 10 10 10 10 10 10 10 10 10 1) aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase. dihydrolipoamide acecyltransfersse and dihydrolipoamide dehydrogenase		S.aureus fibronectin-binding protein (inbA) mRNA, complete cds	ensyme III-lac (lacf), enzyme II-lac (lacf), and phospho-beta- idase (lacG) genes, complete cds		S. aureus fibronectin-binding protein (fnbA) mRNA, complete cds
25 sednances		nectin binding	ane for 23S r	sctor	rif) and rpoC n ORF202, DNA-	rif) and rpoC	sctor	sc (lac?), enzyme II. genes, complete cds	insertion sequences	rase B subunit (gyr. gene, complete cds	actor	rif) and rpoC n ORF202, DNA	nectin bindin	actor	sctor	actor	genes for py sferase and d	actor	protein (Inb	F), enzyme II. complete cds	actor	protein (fnb
Coding regions containing known		gene for fibronectin binding protein	Staphylococcus aureus rrnA gene for 215 ribosomal RNA	S.aureus gene for clumping factor	or1202, rpoB(rif) and thetical protein ORF202,	orf202, rpoB(1	for clumping factor	me III-lac (lac) e (lac6) genes.	ransposon Tn5404 and insert	s aureus DNA gy: subunit (gyrA)	S. aureus gene for clumping factor	, orf202, rpob() thetical protein	S. aureus into gene for fibronectin binding protein	gene for clumping factor	for clumping factor	S.aureus gene for clumping factor	, pdhC and pdhD genes for mide acetyltransferase and	S. aureus gene for clumping factor	onectin-binding	saureus enzyme III-lac (lacF), enzyme galactosidase (lacG) genes, complete	Saureus gene for clumping factor	onectin-binding
35 suo i Sa	match gene name	S.aureus fnbB	Staphylococcu	S.aureus gene	S.aureus rplt, L7/L12, hypot beca' chains	S.aureus rplL, L7/L12, hypor beta' chains	S.aureus gene	S.aureus enzyme III-1 galactosidase {lacG}	Transposen Tn Staphylococc	Staphylococcus aureus DNA gyrase A subunit	S. aureus gene	S.aureus rplL, L7/Ll2, hypoth beta' chains	S.aureus Enbū	S.aureus gene	S.auraus gene for	S.aureus gene	S.aureus pdhB, dihydrolipoam	S.aureus gene	S.aureus fibr	S.aureus enzy gelectosides	S.aureus gene	S.aureus fibr
90 - snane 'S	match acession	emt X62992 SAFN	db) 012572 STAZ	emb 218852 SACF	emh x64172 SARP	em) X64172 SARP	emb 219852 SACF	gb J03479	gb L43098	gb M86227	emb 218852 SACF	emb x64172 SARP	cmb x62992 SAFN	emb 218852 SACF	emb 218852 SACF	emb 218852 SACF	emb X58434 SAPD	emb 218852 SACF	gb J04151	gb,303479	emb 218852 SACF	gb J04151
45	Stop (nt)	1313	1 281	1 293	248	271	240	312	263	00¢ ——	1 269	27.1	1 300	160	1 227	223	216	234	1 302	206	1 222	166
	Start (nt)	7	3,4	-	6	~	-	-		24	515	~	-	318	6	62	~ 	797	- 105	B1	-	~
50	ORF	-	-				-				-		-	-	-	-		-	-		-	
	Contig	100+	1 4421	4426	4 2 3 8	4462	4466	4469	4485	4492	1 4497	4529	1547	1 4554	1 4565	6957	4608	4614	1 4623	1 4632	4646	4687

		ath —	156	
5		ORF		
3		percent HSP nt ONF nt Ident length	155	6
10		percent	27	86
15		aatch match gene name ONF nt ONF nt Session Ident length length length		ddhC and pdhD genes for pyruvate decerboxylame, 153 153 153 154 155 156 157
20			Staphylococcus aureus methicillin-resistance protein (meck) gene snd unknown ORF, complete cds	aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase, dihydroliposmide acetyltransferase and dihydroliposmide dehydrogenase
25	sednouces u	8 6 9 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	cillin-resistan	D genes for pyra
30	aureus - Coding regions containing known sequances	9 E 9 L	staphylococcus aureus methic unknown ORF, complete cds	
35	oding regions	match gene name	Staphylococci unknown ORF	S.eureus pdhi dihydrolipo
40	S. aureus - CC	match	4695 1 313 158 Qt [L14017]	4703 1 1 153 cmb X58414 SAPD S. aureus pdhB, pdhC and pdhD genes for pyruvate decarboxylase,
45		Stop (nt)	158	153
		Start (nt)	313	
50		ORF TD	-	-
<i>50</i>		Contig ORF Start Stop B	4695 1 313 158 Qt L1	4703

Contig	ORF I T	Start (nt)	Stop (nt)	match acession	rastch gene name	e sin	ident	length (nt)
02	•	6805	4679	91 511839	ORF1 (Staphylococcus bacteriophage phi 11)	100	100	110
149	_	2032	1577	pir 849703 8497	int gene activator Rina - tacteriophage phi 11	1001	100	456
149	<u>s</u> _	2109	1912	91 166161	Baccerlophage phi-11 int gene activator (Staphylococcus actarlophage phi	100	100	198
349	- 2	558	409	91 166159	integrase (int) (Staphylococcus bacteriophage phi 11)	100	100	150
398	-	1 1372	707	81 166159	Integrase (int) Staphylococcus bacteriophage phi 111	100	66	999
398	-	783	1001	91 455128	excisionase (xis) (Staphylococcus bacteriophage phi 11)	001	100	219
503	-	1914	1744	91 1204912	H. influenzae predicted coding region H10660 [Heemophilus influenzee]	100	11.	171
698	-	~ _	262	191 1373002	polyprotein (Been common mosaic virus)	100	9	192
1349	-	772	140	91 (143359	procein synthesis initiation (actor 2 (infb) (Bacillus subtilis) gi 49319 172 gene product (Bacillus subtilis)	100	69	138
2880	-	21	308	01 862933	protein kinase C inhibitor-I (Homo saplens)	100	86	289
3085	-	42B	216	191 1354211	PET112-like protein (Bacillus subtilis)	100	100	213
4168	~	1 571	398	91 (1354211	[PET112-like protein [Bacillus subtilis]	100	100	174
100	-	2	247	g1 426473	nusG gene product (Staphylococcus carnosus)	86	95	246
207	-	1 1272	1463	g1 460259	enolage (Bacillus subtilis)	97	06	192
1 331	-	1 395	H 50	191 581638		97	5,	456
366		39	215	91 : 66161	Bacteriophage phi-11 int gene activator (Staphylococcus acteriophage phi	- 6	95	77.1
089	-	1 718	936	91 426473	nusG gene product (Staphylococcus carnosus)	97	97	219
NCSE	-	1 284	=======================================	91 1339950	large subunit of NADH-hypendent glutamate synthese (Picctonema boryanum)	97	7.9	141
157	-	1321	518	91 (1022726	unknown Staphylococcus haemolyticus	96	88	198
1 205	12	116470	16147	91 1165302	[SIO [Bacillus subtilis]	96	- 16	324
1 3919	-	# + #	401	91,971784	Cip-like ATP-dependent protesse binding subunit (Bos taurus)	96	ĩ	354
4133	-	A30	417	91,1022726	[unknown [Staphylococcus haemolyticus]	96	84	717
4168	-	1 708	355	91,1354211	PET112-like protein (Bacillus subtilis) .	96	98	354
4207		312	157	91602031	similar to trimethylamine DH Nycoplasma capricolum pir S49950 S49950 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma capricolum [SGC3] [fragment]	96	98	156

TABLE 2

Cont lg 1D	TD at	Start (nt)	Stop (nt)	scession .	makeh gene name	E	1 ident	length (nt)
4227	~	152	33	91 871784	Cip-like ATP-dependent protesse binding subunit (80s taurus)	96	91	180
4416	-	570	286	91 1022726	unknown (Staphylococcus haemolyticus)	96	8	285
22	-	858	430	gi 511070	UreG (Staphylococcus xylosus)	95	• e	429
22	-	4362	4036	1911581787	urease gasma subunit (Staphylococrus xylosus)	95	79	327
82	-	8794	9114	pir JG0008 JG00	omal protein S7	- 36	83, 1	321
2.	6	9280	1 7838	91 1354211	PET112-11ke protein (Bacillus subtilis)	98	92	1443
186	-	2798	2055	gi 1514656	serine O-acetyltransferase (Staphylococcus xylosus)	56	87	744
502	- 2	4406	4074	91 142462	ribosomal protein S11 (Bacillus subtilis)	95	98	29.
205	~		6793	91 142459	factor 1	95	78	225
205	<u> </u>	11365	16601	91 1044974	1 514	- 56	93	375
259	<u>.</u>	7288	6644	sp P47995 YSEA_	HYPOTHETICAL PROTEIN IN SECA 5'REGION (ORFI) (FRAGHENT).	86	95	645
302		795	1097	91 40186	homologous to E.coli ribosomel protein L27 (Bacillus subtilis) i 143592 L27 ribosomal protein [Bacillus aubtilis] ir C21895 C21895 ribosomal protein L27 - bacillus subtilis p Pu5657 RL27_BACSU 50S RIBOSOMAL PROTEIN L27 (8L30) (8L24). i 40175 L24 gene prod	\$ 6	68	303
310	_	678	1523	91 1177684	chorismate mutase (Staphylococcus xylosus)	- 36	92	945
414	_	7	163	pir C48396 C483	ribosomel protein L34 - Bacillus stearothermophilus	56	06	162
4185	~	125	712	gi 1276841	syntha	36	98	153
22	7	1028	223	91 511069	Uref [Staphylococus xylosus]	76	16	306
22		5046	3310	lgi 410516	urease alpha subunit (Staphylococcus xylosus)	36	88	1737
9	-	818	1372	191 666116	glucose kinase (Staphylococcus xylosus)	36	87	558
205	18	110011	9536	gi 1044978	ribosomal protein S8 (Bacillus subtilis)	*	76	
326	-	3378	2542	191 557492	dihydroxynapthoic acid (DHNA) synthetase (Bacillus subtlis) gl 143186 dihydroxynapthoic acid (DHNA) synthetase (Bacillus ubtlis)	***	88	rt8
414	2	737	955	1911467386	thiophen and furan oxidation (Bacillus subtilis)	76	11	219
426	_	2260	1623,	91 1263908	putative (Staphylococcus epidermidis)	- 36	97	4. 8.
\$34	-	~	355	191 633650	onlyme II(mannitol) (Staphylococcus carnosus)	96	84	354
1017	7	2	229	Q1 149435	putative (Lactococcus lactis)	76	1.2	228

55

5	length (nt)	315	171	363	363	1 2619	- 6111	435	471	360	486	192	273	312	174	572	210	606	249	531	966	534	858	354	102	342	159
3	1 Ident	8	81	83	83	8.5	86	18	88	83	77	93	83	76	88	28	9	80	53	0B -	1 86	85	82	88	85	81	8
10	ela .	96	1 93	93	66	6	66	93	93	93	83	2	93	6	68	92	92	92	92	1 92	92	92	92	92	93	92	1 92
15											arothermophilus]) OTEIN) FRAGHENT).		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
S S S S S S S S S S S S S S S S S S S			hermophilus	1692		-	losus)		carnosus		translation initiation factor 173 (AA 1-172) [Bacillus tearothermophilus]	sapiens)	subtilis)			[Bacillus subtilis] SUBUNIT B (DINA PROTEIN)					(Staphylococcus heemolyticus)	[\$na]					us stearothermophilus
52 el proteins s		haemolyticus)	- Bacillus stearothermophilus	(Plasmid pSX		a carnosus]	Staphylococcus carnosus	molyticus)	[Staphylococcus ce	haemolytícus)	or 173 (A. 1-		se [Bacillus	molyticus)	emolyticus!	putative LEASE ABC	sapiens)			emolyticus)	Staphylococc	ococcus carno	llus subtilis		eusl	llus subtilis	cillus stearo
30 salons of nov	name	unknown (Staphylococcus has		argenic efflux pump protein (Plasmid pSK267)	SOS RIBOSONAL PROTEIN 116.	sech protein (Staphylococcus carnosus)		unknown (Staphylococcus haemolyticus)		unknown (Staphylococcus hae	initiation fact	ribosmal protein small subunit [Homo	carbamyl phosphate synthetase	(Staphylococcus haemolyticus)	(Staphylococcus haemolyticus)	putative cytoplasmic protein; putative sp p37954 UVRB_BACSU EXCINUCLEASE ABC	- Ношо	[Bacillus subtilis]	trophoblastin (Ovis aries)	(Staphylococcus haemolyticus	d transaminese	gene product (Staphylococcus carnosus)	protein LS (Bacillus subtilis)	lus subtilis]	CspC protein (Bacillus cereus)	ne product (Bacillus subtilis)	ribosomal protein [19 - Becillus stearchermophlius
s G Lative coding	match gene name	unknown (Sta	ribosomal protein L33	arsenic eff	508 RIBOSON	secA protein	enzyme II(marmitol)	unknown (St.	ribosomal protein Ull	unknown (St.	translation	ribosmal pr	carbamyl ph	unknown (St	unknown (St	putative cy sp P37954	KIAA0185 protein	unknown [Ba	trophoblast	unknown (St	D-amino aci	sect gene p	ribosomal	Yqev (Bacillus	CspC protes	ipa-75d gene	
nd - sneune .s	match ,	01 1022725	pir B48396 B483	1911155345	sp P14577 RL16_	1911499335	191 633650	01 1022726	ai 46912	91 1022726	191 580890	191 306553	191 143390	gi 1022725	191 1023725	91 142781	[gi 1136430	91 467401	91 530200	91 1022725	191 517475	191 49189	gi 1044976	9, [1303812	191 1405474	gi 413999	pir A45434 A454
	Stop	316	2259	1383	111865	5673	1114	1 573	622	2033	488	194	300	965	621	374	6124	127391	6130	2038	2362	6962	110255	1 357	1805	361	091 -
45	Start	630	2089	1745	12221	1 8291	1 2226	6207	152	1 1674	576	_	82	907	1 794		\$165	26483	5882	1 2568	2760	7495	110812	710	1575	20	~
	ORF	-	5	~	24	-	-	9	-	9	-	-	-	-			-	119	9	-	-	=======================================	61	-	-	-	-
50	Contig	3332	7	101	205	1 259	275	₹ -	5	607	653	1864	2997	3232	1976	91	- -	\$6	69	145	=======================================	205	205	219	**	669	1343

TABLE 2

		length (nc)	261	333	321	399	165	177	231	222	552	1125	348	954	183	282	2079	1560	1494	1014	177	1437	747	\$	1536	339
5		1 ident	80	78	81	19	76	82	08	78	7.4	7.8	80	80	1 79	83	83	B7	67	18	B2	88	67	79	62	99
10		s is	92	92	92	92	88	92	92	92	9.1	9.1	9.1	91	91	91	91	9.1	16	16	16	16	16	16	16	16
15	proteins			[Plectonema boryanum]	[Plactonema boryanum]		hedM gene of Ecopril gene product (Escherichia coli) pir S18417 518417 hadM protein - Escherichia coli pir S09629 S09619 hypothetical protein A - Escherichia coli (SUB 40-520)						38.]					9 4 4 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	\$ 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			29326 W285DS	fructoss-bisphosphate aldolase (Staphylococcus carnosus) pir A49943 A4994		
20	similar to known			te synthase [Plec	te synthase [Plac		erichia coli) pir S09629 hypothetic					~	glucose kinase (Staphylococcus xylosus)	258)	megaterium]		ena)			69]	us]	t () ()	Bacillus subtilis] pir C29326 W2BSDS 2.2) - Bacillus ubtilis	hylococcus carnosus 4.1.2.131 - taphylo		
25	novel proteins	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	kylosus)	glutama	spendent glutama	haemolyticus]	ri gene product (Eschehia coli pir S09629	haemolyticus	haemolyticus]	haemolyticus		ymechocystis sp.	ose kinase (Stap	tein (Plasmid pi	(Bacillus	Dacillus subtili	hylococcus carno	s subtilis)	llus subtilis]	[Staphylococcus xylosus	hylococcus xylos	ta (Becillus sub		dolase Staphy aldolase (EC 4.1	s subtilis!	118}
30	Putative coding regions of novel proteins similar to known proteins	match gene name	Ellacr (Staphylococcus xylosus)	subunit of NADH-dependent	large subunit of NADH-dependent glutamate synthase	unknown [Staphylococcus haemolyticus]	sdM gene of Ecopuri ger protein - Escherichia Escherichia coli (SUB	unknown (Staphylococcus haemolyticus)	unknown [Staphylococcus haemolyticus]	unknown [Staphylococcus haemolyticus]	Codw [Bacillus subtills]	hypothetical protain (Symechocystis sp.)	atream of	arsenic efflux pump protein (Plasmid p1258)	ATP synthase alpha subunit	protein (AA 1-87) [Bacillus subtilis]	gick gene product [Staphylococcus carnosus]	GMP synthetase (Bacillus subtilis)	IMP dehydrogensse [Bacillus subtilis]	ccpA gene product (Stap	sucrose repressor (Staphylococcus xylosus)	ATP synthese subunit beta (Bacillus subtille)	adenylosuccinate lyase (PUR-B) adenylosuccinate lyase (EC 4.	ructoss-bisphosphate aldolase (Stap fructoss-bisphosphate aldolase (EC (strain TM300)	CTP synthetase [Bacillus subtilis]	unknown (Bacillus subtills)
35	utative o	match	Ellect	14rge	Jarge	unknow	hedh g	unknom	unknom	unknom	Codw	hypoth	!	arsent	ATP 89	S17 pr	glch g	GMP 8y	IMP de	ccpA g	sucros	ATP BY	adenyl	fructo fructo fructo	CTP 6Y	unknow
40	S. aureus - P	match	lgi;407908	1911133950	B1 133950	91 1022726	91 450688	G 1022725	191 1022726.	91 1022725	91(535349	191 1001376	91 1226043	[a1]150728	91 142559	91 40149	91 1072418	91 143012	91 467399	91 1177685	gi 949974	191 (433991	91 143366	gi 297874	[0, [143597	191 385178
		Stop (nt)	264	386	324	402	178	182	232	1 224	4531	1126	10/1	1036	1194	11298	10262	1326	3826	3207	3150	3042	1280	615	1536	1 359
45		Start (nt)	\$24	718	644	-	3	358	462	-	1 1980	~	1354	1989	412	11579	8184	3885	5319	2194	2974	1606	2026	1064	-	21
		100	-	~	-	-		-	-	-	-	-	-	-	~	22	-	- 2	-	-	-	-	-		-	-
50		Cont 19	1958	13578	3585	3640	4362	4446	1549	4626	~ _	28	09 -	<u> </u>	187	205	902	306	306	310	1 343	1 480	536	552	637	859

${\sf TABLE}$ 2

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

	ORF Start	Stop (at)	match	match gene name	E 9	1 1dent	length (nt)
1327 1	1 339	530	191 496558	orfx (Bacillus subtills)	6	1,1	192
2515 1	1 466	275	91 51 1070	UreG (Staphylococcus xylosus)	6	85	192
2594 1	- 2	707	91 146824	beta-cystathionase [Escherichia coli]	16	75	201
3764 1	847	425	91 1022725	unknown (Staphylococcus haemolyticus)	16	78	423
4011 1	721	1 495	gi 1022726	unknown Staphylococcus haemolyticus	16	èι	369
4237 1	-	117	gi 296464	Arpase (Lactococcus lactis)	16	99	177
42 3	H15	1033	oi 520401	catalage [Heemophilus influentae]	90	9.6	219
51 8	1178	1 4607	191 580899	OppF gene product [Bacillus subtilis]	90	24	891
129 3	1 5317	1 4001	91 1146206	[glutamate dehydrogenase [Bacillus subtilis]	90	9,	1317
164 17	16628	116933	sp P05766 RS15_	JOS RIBOSOMAL PROTEIN S15 (BS18).	06	74	306
2 171	1 2983	1 2819	191(517475	D-amino acid transaminase (Staphylococcus haemolyticus)	06	78	165
205	4497	1 3550	91 142463	[RNA polymerase alpha-core-subunit (Bacillus subtilis]	96	96	948
205 6	1 4748	1 4410	91 104 4989	ribosomal protein S13 (Bacillus subtilis)	90	7.3	339
205 10	7165	1 6404	gi 49189	secY gene product [Staphylococcus carnosus]	90	81	762
205 [11	6645	6472	gi 49189	sect gene product Staphylococcus carnosus	06	7.8	174
205 [27	13692	113345	91 786157	Ribosomal Protein S19 (Bacillus subtilis)	06	79	348
205 31	115858	15496	91 1165303	[L3 [Bacillus subtilis]	90	79	363
260 5	1 7023	5773	91 1161380	[IcaA [Staphy]ococcus epidermidis]	06	78	1251
299 6	97.00	3947	91 467440	'phosphoribosylpyrophosphate synthetase (Bacillus subtilis) gi 40218 PRPP synthetase (AA 1-317) [Bacillus subtilis]	06	78	570
-	1 1025	1171	91 31243	carbamoyi-phosphate synthase (glutamine-hydrolysing) (Bacillus aldolyticus)	06	75	693
330 4	1 1581	1 1769	[gi 986963	beta-tubulin (Sporidiobolus pararoseus)	06	80	189
369	1 954	523	pir s34762 s347	L-serine dehydratase beta chain - Clostridium sp.	06	77	432
557 1	 -	1 168	91 1511589	M. jannaschii predicted coding region MJ1624 [Mathanococcus jannaschii]	06	75	186
663 2	667	1200	91 143786	tryptophanyl-tRMA synthetase (EC 6.1.1.2) (Bacillus subtilis) pir JT0481 YWDS tryptophantRMA ligase (EC 6.1.1.2) - Bacillus ubtilis	06	2	534
11 711	-	261	91 143065	hubst (Bacillus stearothermophllus)	06	79	261
745 4	1059	865	61 1205433	(H. influenzae predicted coding region HI1190 [Heemophilus Influenzae]	8	18	195

Cont 19 1D	10 GF	Start (nt)	Stop (nt)	match ,	, majch gene name	eis -	1 Ident	length (nt)
1001		386	265	1011143366	adenylosuccinate lyase (PUR-B) (Bacillus subtilis) pir(C29)26 WZBSDS adenylosuccinate lyase (EC 4.3.2.2) - Bacillus ubtilis	06	77	180
1054	1-	579	125	91 1033122	ONF_C729 (Escharichia coli)	06	05	249
1156	=	11.7	707	91(1477776	Cipp [Bacillus subtilis]	06	08	591
1180	-	408	205	161 (1377831	unknown [Bacillus subtilis]	06	9,	204
1253			462	91 40046	phosphoglucose isomerase A (AA 1-449) [Bacillus steerothermophilus] if [S15916]kuBsSA giucose-6-phosphate isomerase (EC 5.3.1.9) A - cillus steerothermophilus	g 	22	4 62
2951			269	911144816	[complementable foliate synthetase (FTHFS) (ttg start codon) (EC .3.4.3) [Moorells thermoscetics]		92	267
3140	1-	132	166	191 1070014	protein-dependent Bacillus subtilis	06	52	162
4594	-		1 23	01 871784	Clp-like ATP-dependent protesse binding subunit (Bos taurus)	06	94	231
87	-	1028	1750	191 467327	unknown (Bacillus subtilis)	689	25	123
112	-	~	505	gi 153741	ATP-binding protein [Streptococcus mutans]	68	רר	504
118	-	120	1398	gi 1303804	YqeQ (Bacillus subtilis)	69	2T	279
128	-	3545	7578	91 460257	triose phosphate Isomerase (Bacillus subtilis]		84	213
164	12	111667	12755	q1 39954	[F2 (aa 1-741) (Bacillus stearothermophilus)	- 89	80	1089
205	1=	7875	7405	ni 216338	ONF for L15 ribosomal protein (Bacillus subtilis)	- 89	9/	4.1
205	132	16152	115823	Bi 1165303	L) [Becillus subtilis]	69	80	330
270	-	2407	1 2207	pir c41902 c419	arsenate reductage (EC 1) - Staphylococcus xylosus plasmid pSX267	88	18	201
395	-	157	672	91 520574	(glutamate racemase (Staphylococcus heemolyticus)	- 89	8	916
767	-	-	839	91 396259	protease (Staphylococcus epidermidis)	88	7.7	1 837
510			=	9: 40046	phosphoglucose (somersse A (AA 1-449) [Bacillus stemrothermophilus Ir S15936 NUBSSA glucose-6-phosphata isomersse (EC 5.3.1.9) A - clilus stearothermophilus	60	7	3
615	-	1 2124	1210	91 1303812	YqeV Bacillus subtilis	69	74	918
1	-	B1 -	, E	gi 1165303	[L] [Bacillus subtilis]	- 89	80	324
=	-	352	- 813	91 47146	thermonuclease [Staphylococcus intermedius]	- 89	0,	1 662
1875	-	7 -	1 256	91 1205108	ATP-dependent protesse binding subunit (Haemophilus influenzae)	- 89	83	552
	:::::							

TABLE 2

5	
10	
15	
20	
25	
30	
35	
40	
45	

_		Jength (nt)	173	199	210	396	399	396	213	171	300	159	1347	381	1668	009	468	339	1206	213	501	1704	- 480	346	804	843	672	1974
5	1 1 1 1 1	1 ident	99	75	82	78	75	25	n l	16	80	7.3	96	94	980	17	נג	74	79	17	7.2	77	72	18	O C	82	78	76
10		1 sim	68	89	- 89	68	68	68	- 89	89	68	68	88	88	888	88	88	88	88	88	98	88	88	88	œ œ	88	88	88
15	roteiss							Plectonema boryanum)														1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			ilial alpha ain -			
20	lar to known p		· · · · · · · · · · · · · · · · · · ·	118)	15.3	otilis]		synthase (Plect	bc i 118)						losus)			nocytogenes!	Bacillus subtilis	{sndeu				aemolyticus)	(Becillus subt			
25	Putative coding regions of novel proteins similar to known proteins	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	lus subtilisi	[Bacillus subtilis	gamme (Bacillus subtilis)	Respiratory nitrate reductase [Bacillus subtilis	dehydrogenase (Bacillus subtilis)	glutamate	Respiratory nitrate reductase (Bacillus subtilis)	(a)	molyticus	molycicus]			alpha-D-1,4-glucosidase (Staphylococcus xylosus)	lus subtilis]	cus xylosus)	in (Listeria monocytogenes)	1	serine/threonine kinase receptor (Brassics napus)	molyticus)		eilis]	(Staphylococcus haemolyticus)	phenylalany-tRNA synthetase alpha subunit (Becillus subtilia) tr Sillyo YFBSA phenylalaninetRNA ligase (EC 6.1.1.20) alpha Bacillus subtilis			llus subtilis)
30	regions of nove		protein (Bacillus subtilis)	dihydroxy-acid dehydratase	synthase subunit gamma	nitrate reducts	hydrogenase [Ba	large subunit of NADH-dependent	nitrate reducta	putative [Lactococcus lactis]	[Staphylococcus haemolyticus]	unknown (Staphylococcus haemolyticus	putative (Bacillus subtilis)	1.11.1.61.	glucosidase (St	recombination protein [Bacillus subtilis]	glucose kinase (Staphylococcus xylosus)	initiator protain	pir A60663 A606 translation elongation factor	nine kinase rec	unknown (Staphylococcus hasmolyticus)	us subtilis)	transketolase (Bacillus subtilis)	dihydropteroate synthase (S	renna synthetas FBSA phenylalar btilis	subtilis)	YqfS [Bacillus subtilis]	valy1-tRNA synthecese (Bacillus subtilis)
35	utative coding	match gene name	hypothetical	dihydroxy-ac	ATP synthase	Respiratory	glutamate de	large subuni	Respiratory	putative [La	FAOR	unknown (Sta	putative (Ba	CATALASE (EC 1.11.1.61.	alpha-0-1,4-	recombinatio	glucose kina	replication	translation	serine/threo	unknown (Sta	YqeQ (Bacillus	transketolas	dihydropterd	phenylalanyl-tRNA ir S11730 YFBSA p Bacillus subtills	L2 (Bacillus	YqfS [Bacill	Valy1-tRNA
40	S. aureus - P	match	91 1239988	9111256635	91 580832	911009366	91 1146206	91 1339950	99(6001)16	91 149426	91 1022725	191 1022725	191 520754	sp P42321 CATA_	91 474177	91 467411	91,666116	191 44095	pir A60663 A60	1011167181	91 1022726	9111303804	01 1405446	191 111 18002	191140053	19111165306	10111303840	191 (452309
		Stop (nt)	362	00	314	399	007	399	216	301	302	162	2676	848	4722	118617	843	1245	12719	4391	8232	2011	1136	6116	2231	114185	868	1975
45		Start	906	~	105	194	7	794	42B	15	109	320	1330	168	6389	18018	376	1583	11514	4179	2677	308	657	5873	1428	15027	1569	2 1975
		98 T	-	-	1-	-	-	-	-	-	-	-	- 5	~	- 2	1.6	-	-	-	-	8-	-	1-			128	-	
50		Cont ig	3020	3565	3586	3629	3688	3699	4016	4177	4436	4635	2	42	2	95	9	70	82	101	114	118	141	148	165	205	225	235
			•	: _	•	•	: _	: _		<u>.</u>		•				. —			• -		• —	-		• -		• -		

Contin	ORF	Start (nt)	Stop	metch	match gene name	e is	1 ident	length (nt)
1339		2060	1566	91 1118002	dihydroptercate synthase (Staphylococcus haemolyticus)	88	1.5	495
443	-	4325	2928	91 558559	pyrimidine nucleoside phosphorylase (Bacillus subtilis)	88	ני	1398
532			419	91 143797	VALYI-TRNA SYNTHETASE (EC 6.1.1.9) VALINE-TRNA LIGASE) (VALKS)	88	92	417
534		2504	2968	91 153049	mannitol-specific ensyme-III (Stephylococcus carnosus) pir 1,00088 100088	&	, 82	465
705	-	584	388	191 710018	nitrite reductase (nirB) (Bacillus subtilis)	88	70	186
1000		1824	1309	19: 1022726	unknown Staphylococcus haemolyticus	88	78	516
1299	-	SA7	324	1011401786	pliosphomannomutase [Mycoplasma pirum]	88	55	264
1341	~	170	400	191 139963	ribosomal protein L20 (AA 1-119) (Bacillus stearothermophilus Ir S05148 R5BS20 ribosomal protein L20 - Bacillus earothermophilus	80	83	231
1386	-	=	214	pir 847154 8471	signal recognition particle 54K chain homolog Fih - Bacillus subtilis	88	7.1	174
1 1386	~	183	533	pir 047154 6471	signal recognition particle 54K chain homolog Ffh - Bacillus subtilis	88	. 67	351
2949	=	1 704	1399	1911535350	CodX [Bacillus subtilis]	88	13	306
2984	-	5	169	19:1218277	O-acetylserine(thiol) lyase (Spinacia oleracea)	88	70	165
1 3035	-	-	138	191 149 3083	dihydroxyacetone kinase Citrobacter freundii	66	67	138
1 3089	=		152	[qi 606055	ORP_[146 [Escherichia coli]	88	88	150
7166	-	1 817	410	91 143378	pyruvate decarboxylase (E-1) beta subunit (Bacillus subtilis) gi[1377836] pyruvate decarboxylase E-1 beta subunit (Bacillus ubtilis)	88	۲۲	408
4199	-	680	1 342	91 1405454	acontase [Bacillus subtilis]	88	82	339
4201		734	1 369	91/515938	glutamate synthsse (ferredoxin) (Symechocystis sp., pir 546957)546957 glutamate synthsse (ferredoxin) (EC 1.4.7.1) - ynechocystis sp.	88	28	366
4274			336	gi 515938	glutamate synthase (ferredoxin) (Synechocystis sp.) pir S46957 S46957 glutamate synthase (ferredoxin) (EC 1.4.7.1) - ynechocystis sp.	88	8	336
80C+ T	-	1 794	139	91 1146206	glutamate dehydrogenase (Bacillus subtilis)	8	11	396
~	5	1 4570	9009	91 535350	Codx (Bacillus subtilis)	87	70	1431
52	e -	1879	6482	01 1064791	[function umknown (Bacilius subtills]	87	99	300

TABLE 2

_	i ; ; ; ;	length (nt)	6897	288	1278	426	819	1101	1023	825	1785	240	699	927	303	294	1 892	969	219	174	210	534	1112	351	765	150	450
5	1	1 ident	27	62	۲,	99	0.	7.2	7.8	1,	80	92	75	70	80	11	22	00	080	رد	69	27	79	7.5	18	87	79
10		1 sim	87	87	87	87	87	8.1	1 87	87	1 87	1 67	1 87	1 87	69	67	1 87	- 87	1 97	8.1	87	87	87	- B7	69	1 87	B7
15	proteins		1.10) [Bacillus subtilis] pir B45868 B45868 - Bacillus subtilis sp P18157 GLPK_BACSU (ATP:GLYCEROL - PHOSPHOTRANSFERASE)		549363 549363						Bacillus subtilis		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		1			carbamoyl-phosphate synthase (glutamine-hydrolysing) (Bacillus aldolyticus)									
20	- Putative coding regions of novel proteins similar to known proteins		illus subtilis! subtilis sp[Pii ROL -PHOSPHOTRA		erine hydroxymethyltransferase (Bacillus aubtilis) pir 549161 549163 serine hydroxymethyltransferase - Bacillus ubtilia			[80]										lydrolysing) (Ba		bt [11s]			megaterium)		subtilisi	subtilis))c[][s]
25	vel proteins si		2.7.1.30) (Bacillus .30) - Bacillus subti .30) (ATP:GLYCEROL -P	-	erase (Bacillus ferase - Bacill	-	C	[Bacillus stearothermophilus]	-	lus subtilis]	SC 1.3.99.1) (1e	Bacillus subtilis		llus subtilis!	1158]	cillus subtilis	ermidis	se (glutamine-)	scillus firmus)	tion (Bacillus su	na genitalium]	subtilis	Bacillus mega	(8L1).	olase (Bacilius	olase (Bacillus	hatase (Bacillus sub
30	g regions of no	9E9U	kinase (glpk) (EC 2.7. kinase (EC 2.7.1.30) KINASE (EC 2.7.1.30) KINASE) (GK).	unknown (Bacillus subtilis	erine hydroxymethyltransferase serine hydroxymethyltransferase	[Bacillus subtilis]	unknown [Bacillus subtilis]	1-741) [Bacillus a	unknown (Bacillus subtilis)	iron-sulfur protein (Bacillus subtilis)	succinate dahydrogenase (EC 1.3.99.1) (lavoprotein	ribosomal protein 1.29 [Bacillus subtilis]	subtilis)	rec233 gene product (Bacillus subtilis	ferredoxin (Bacillus subtilis)	ribosomal protein S18 (Bacillus subtilis)	Icoc (Staphylococcus epideraldis)	phosphate synthi	c subunit (furan oxida	pilin repressor (Mycoplasma genitalium)	acetate kinase (Bacillus subtilis)	ATP synthage alpha subunit (Bacillus	SOS RIBOSOMAL PROTEIN L1 (BL1)	fructose-bisphosphate aldolase [Bacillus subtilis	fructose-bisphosphate aldolase (Bacillus subtilis)	asparaginyl-thia synthetase (Bacillus subtilia)
35	tative codin	match gene name	glycerol kinase glycerol kinase Glycerol kinase GLYCEROK KINASE (GLYCEROKINASE)	unknown (Ba	serine hydr	Unknown (Ba	unknown (84	IF2 (aa 1-7	unknown (Ba	iron-sulfur	succinate	ribosomal	S3 (Bacillus	rec233 gene	ferredoxin	ribosomal	IceC (Stap)	carbamoy1-	ATP syntha	thiophen and	pilin repr	acetate kin	ATP syntha	• -	fructose-b	fructose-b	asparaginy
40	o aureus - Pu	match	91 142992	01 467433	91 556886	gi 556883	gi 467460	91 39954	191 467385	91(143527	; 	91 1044972	91 1165309	91/1177249	91 1146198	191/467373	gi 1161382	191 312443	1911142570	gi 467386	9111046166	91 405134	[91]142559	sp 006797 HL1_B	gi 460911	1911460911	[gi 1146247
		Stop (nt)	2480	9100	2988	1 4032	1 6559	13810	1 2126	1158	1 2933	111543	112607	11107	1333	1 2292	3422	2391	1383	1073	1 794	122	122	1 352	955	1284	452
45		Start (nt)	1584	1 8813	4265	1 4457	3741	112710	1104	1982	1 4717	111782	13275	2033	1635	2585	4189	1696	1165	906	1003	1255	-	~ -	1359	934	-
		ORF	2	12	-	9	- 5	==	7	-	- 2	123	125	-	-	-	-	-	-	-	- 2	-	-	-	-	-	-
50		Contig ORF	2	88	124	124	148	164	111	199	661	205	205	222	236	346	260	320	280	=	425	448	480	187	677	677	876
		•		•						-				_		_											•

TABLE 2

													ΕP	0 7	786	519	9 A	2									
	• • • • • •	length	213	372	288	181	399	172	1692	453	1 606	624	2100	222	147	11212	909	375	375	324	345	462	354	192	1320	381	71111
5		1 ident	- 57	72	69	72	- 08	- 62	72	- 62	100		15	73	75	12	- 08	"	. sr	- 0,	- 07	86	- 59	11.	78	1.1	22
10	•	e is	- 6	87	87	87	87	87	9.6	986	986	98	96	98	9.6	98	98	98	98	98	86	98	986	86	86	86	98
15	proteins			_			_				_	pir \$49364 \$49364			1118]				stearothermophilus ir S10612 S10612 s earothermophilus			lisi gi 40218 PRPP					to the Escherichia coli GTP-binding protein Era; putative
20	ar to known										:1118]	ubtilis pin			scillus subt	1118)			ophilus ir ophilus			cillus subti	1118]		-	aenolyticus}	TP-binding p
25	Putative coding regions of novel proteins similar to known proteins		norhabditis elegans]		llus subcilis)	us subtilis)	118)	Hutu protein, urocamase (Bacillus subtilis)	Huty protein, urocanase [Bacillus subtilis]	(Staphylococcus xylosus)	pyrophosphorylase (Bacillus subtilis)	Bferase [Bacillus subtilis]	division protein [Bacillus subtilis]		1 alpha subunit (Bacillus subtilis)	polynucleotide phosphorylase (Bacillus subtilis)	protein S4 (Bacillus subtilis)	ribosomal protein L17 [Bacillus subtilis]	Bacillus stearothermophilus - Bacillus earothermophilus	protein S6 (Bacillus subtilis)	spovG gene product (Bacillus megaterium)	phosphoribosylpyrophosphate synthetase (Bacillus subtilis) gi 40218 PRPP synthetase (AA 1-117) (Bacillus subtilis)	nit (Bacillus subtilis	chorismate mutase (Staphylococcus xylosus)	isocitrate dehydrogenase (Bacillus subtilis)	dihydroneopterin aldolase (Staphylococcus haemolyticus)	Escherichia coli G
30	regions of no	ame	product (Caer	Bacter i ophage	rotein (Baci)	nase [Bacillo	icilius subti	urocanase (1	urocanase [subunit (Stap	yrophosphory	iracil phosphoribosyltransferase uracil phosphoribosyltransferase	protein [Ba	unknown (Bacillus subtilis)	decarboxylase E-1	de phosphoryl	otein S4 Bac	otein L17 (Ba	<u>.</u>	otein S6 (Bac	roduct (Bacil	sylpyrophosph (AA 1-317) (B	putative ATP binding subunit	utase (Staphy	ehydrogenase	erin aldolase	ntity to the ubtilis!
35		match gene name	F46H6.4 gene product (Caenorhabditis	excisionase [CTP-binding protein (Bacillus	IMP dehydrogenase [Bacillus subtilis]	aconitase (Bacilius subcilis)	HutU protein,	Hutu protein,	urease beta subunit	UDP-glucose p	uracil phosph	cell division	unknown (Bact	pyruvate deca	polynucleotid	ribosomal pro	ribosomal pro	ribosomal protein L22	ribosomal pro	spovG gene pr	phosphoribosylpyropho synthetase (AA 1-317)	putative ATP	chorismate m		dihydroneopte	28.3% of identity [Bacillus subtili
40	S. aureus -	match	91 1065555	91 215098	9i 508979	gt 467399	gi 1405454	191 603769	191 603 769	91 410515	91 289287	u: 556887	91 467 458	91 467460		91 1184680	gi 143467	191 142464	1,1 40107	91 467375	çi 39656	191 467440	91 666983	191 1117684	151 487 434	gi 1118003	0 i 1146219
		Stop (nt)	214	374	290	308	401	27.5	8736	3738	1572	1713	3448	3859	2086	19467	1159	•	12990	2140	1540	4365	2523	1678	3405	1109	3440
45		Start	426	-	-	126	-	547	10427	4190	2480	2336	1349	3638	1340	117347	554	2966	13364	3463	1196	3884	2170	1487	2086	1489	2124
		98 T	-	-	<u>-</u>	7	-	1-	; –	-	~	2	-	-	-	- 82	- 2	-	92_				- 5	- 2	- 5	- 2	
50		Cont ig	1376	2206	2938	3081	1535	4238	4	77	3	124	148	148	152	164	180	205	205	246	299	299	304	310	337	339	358
		<u></u>	<u>:</u> –	: –	<u>:</u> —	<u> </u>	:-	<u>-</u>	: –	÷ —	<u>: –</u>	:	: -	<u>:</u> —	<u>-</u>	÷ —	÷-	÷ –	: ——	: —	<u>: —</u>	·	·-	i	· –	÷	·

55

1	85 74	- ;
10	269	CP I
15		
	;	1
s similar to known proteins subtilis] cerevisiee cerevisiee scalilus stearcthermophlius is] is] is Becillus subtilis line Bacillus subtilis line Bacillus subtilis line subtilis spipials GLB4 line subtilis s		
proteins simila idis] idis] idis] idis] ce [Bacillus subtili bacillus subtili amide) [Bacillus amide) [Bacillus in reductase [Bacillus ce subtilis] iolyticus) iolyticus]	ccus carnosus	***************************************
ons of nover the state of the s	glcB gene product (Staphylococcus carnosus)	unknown (Bacillus subtilis)
utative coding regit fatch gene name regit fatch gene name regit fatch gene name regit fatch gene produce regit fatch gene regit fatch gene regit fatch gene regit fatch gene regit fatch general regit f	glcB gene pr	unknown (Bac
	01 1072419	pi 467385
Stop (ar.) 2058 452 452 452 453 1103 1103 1103 1103 1103 1103 1103 11	5673	169
45	3475	2
*		- i - i
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	138	189

	•	length (nt.)	519	333	390	6171	111	2709	336	2478	2115	654	399	309	603	408	237	1 780	273	297	315	387	384	306	180	246
5		1 ident	75	72	99	ا ٥٠	12	73	72	69	89	89	ני	- 88	7.1	62	- 62	1 12	24	88	1 69	98	02 .	86	19	59
10		e i m	982	982	85	88	85	88	85	- BS	68	- BS	8	88	1 85 1	88	85	88		88	85	8.5	85	88	88	88
15	S C												upplied by		ubtilis	sp P41023 DCDA_BACHT BOXYLASE .			1501788			nfluenzael	1r 524997 524997 as reinhardtil	nfluenzae)		
20	o known protei		1 1 1 1 1 1 1 1 1	llus					[Bacillus subtilis] - Bacillus subtilis IN L21 (8L20).		subunit (Bos taurus)		Method: conceptual translation supplied by		fh - Bacillus subtilis	licus) sp P4103 P DECARBOXYLASE			a coli) ir S01788 cherichia coli			I M protein [Heemophilus influenzae]	<u> </u>	(Heemophilus		
25	eins similar t		tilis]	- Bacillus stearothermophilus	[8]		subtilis)		in L21 (Bacillus in L21 - Bacillus PROTEIN L21 (BI	illus subtili			nod: conceptua	litica]	hain homolog F	cillus methano		formis)	(Escherichia 2.3.1.54) - ch	11us)	fragil	/3 f M protein		/3 I M protein	carnosus)	apsulatus)
23	of novel prot	, , , , , , , , , , , , , , , , , , ,	(Bacillus sut		(Bacillus subtilis)	118)	(Bacillus sut	subtilis	ribosomal protein Ribosomal protein SU 50S RIBOSOMAL P	osphatase (Bac	protess	lius subtilis]		inia enterocolitica	article 54K c	rboxylase (Bac	ophage 154a]	(Bacillus licheniformis	ise (AA 1-760) insferase (EC	in (Gallus ga	of HDT Pseudomonas fragi	nzyme ECOR124	cetyltransferase (Chlamydomonas r. C-acetyltransferase (EC 2.3.1.54)	enzyme ECORI24	Š	Rhodobacter c
30	- Putative coding regions of novel proteins similar to known proteins	h gene name	ribosomal protein S5 (Bacillus subtilis)	ribosomal protein L24	۵	Huts (Bacillus subtilis)	7r gene product (Bacillus	aconitase (Bacillus subtilis)	of E.coli 139 S18439 08 RL21_BAC	ClpC adenosine triphosphatase [Bacillus subtilis]	Clp-like ATP-dependent	acetate kinase (Bacillus subtilis)	orf-X; hypothetical protein; author (Bacillus subtilis)		signal recognition particle 54K chain homolog Fih	diaminopimelate decarboxylase [Bacillus methanolicus] sp[941023] DIAMINOPIMELATE DECARBOXYLASE [EC 4.1.1.20] DAP DECARBOXYLASE]	excisionase (Bacterlophage 154a)	Pyruvate Kinase (Ba	pyruvke formate-lyase (AA 1-760) (Escherichia coli) ir So1788 So1786 formate C-acetyltransferase (EC 2.3.1.54) - cherichia coli	limb deformity protein (Gallus gallus	beta-subunit of HDT	type I restriction enzyme ECOR124/3		type I restriction enzyme ECOR124/3 I M protein [Heemophilus influenzae]	gene product	fructose ensyme II (Shodobacter capsulatus)
35	Putative	natch	ribos		secA	Mucs	ipa-87r	acont	homolog ir S1B p P269	CIPC	C1p-1	aceta	orf-X	hemin	• •	diami	excis	Pyruv	pyruvate	QW 11	bata	type	formate	type	3	fruct
40	S. aureus -	Batch	91 1044981	pir A02819 R5BS	d: 48980	91 1002520	91 414011	gi 1405454	91 (40173	91 442360	91 871784	91 405134	gi 1373157 	191 541768	pir 847154 8471	91,304155	191 215098	191 1041099	91 42370	91 63568	91 391840	91 1204472	171 118178	91 1204472	191 1072418	911151932
		Stop (nt)	8106	110596	6101	3159	8783	3186	475	1 2968	1 8196	6001	853	467	909	409	1 251	390	275	299	316	1 387	386	3.60	181	330
45		Start (nt)	8624	10928	6490	1 4877	6013	5894	Ş	5445	1 6082	1 1992	1251	1 1 5 9	1208	816	487	924		1 595	630	-	-	35	- 2	575
		9 ORF	115	130	9-	-	6-	7		-	9	-	- -	~	-		-	-		-	-	-	-	:-	<u>:</u> –	-
50		Contig	205	205	220	1231	2	249	302	<u> </u>	364	448	747	988	1089	1163	1924	1 2932	2030	1111	1 3778	1 3835	4042	1 4053	4108	807

	length (nc)	273	234	288	252	240	168	ננו	2850	609	252	453	1290	351	1800	1773	823	1275	951	393	228	336	726	570	£13
5	l ident	74	62	- 89	25 ,	65	6A L	56	67	73	- 19	- 89	ı.	- 89	- br	99	- 87	- 89	69	0 	_ 99	- 12	1 00	11	70
	! ·	85	95	85		88	-	1	-	-	-	-		-	-	# -	-		-		-	-	-	-	-
10	E .		-	_		-	_		_		_	_		_	_	_		_			_	_			
). Succeeding	\$ 6 7 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		(sn.)		ady gane of Ecopril gene product [Escherichia coli] pir SB417 538437 hadu protein - Escherichia coli pir S09629 S09629 hypothetical protein A - Escherichia coli SUB 40-520								s subtilis]		(Bacillus ubtilis)					subtilis (EC 1.2.4.1) lpha					
S S S S S S S S S S S S S S S S S S S	4 6 7 7 1 5 7 5 7 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		Cip-like ATP-dependent protesse binding subunit (Bos taurus)	subtilis!	serichia coli) pir S09629 hypothetic	abtilis)	epidermidis)		urans)				branched chain alpha-kano acid dehydrogenase E2 (Bacillus subtilis) gi[1303944 BrasB (Bacillus subtilis)		glycerol-j-phosphate dehydrogenase (glpD) (EC 1.1.99.5) (Bacillus ubtilis)	otilis]			[8]	yruvate decarboxylase (E.i) alpha subunit [Bacillus sub pir Bl6718 HEBSPA nyruvate dehydrogemase (lipoamido) (E chain - Bacillus subtilis	-	transaminose (Staphylococcus haemolyticus)		:1118)	xylogue
supposed by States		haemolyticus	protesse binding	Respiratory nitrate reductase [Bacillus subtilis]	ne product (Esch coll pir S09629 40-520)	dihydroxy-acid dehydratase (Bacillus subtilis)	(Staphylococcus epide	subtilis	[Deinococcus radiodurans	losus	cerevisiae)	_	in alpha-koto acid dehydrog BfmBB (Bacillus subtilis)	cus aureus)	hydrogenase (glp	methionyl-tRMA synthetase (Bacillus subtilis)	aureus}		cysteine synthetase A (Bacillus subtilis)	(E-1) alpha subv vate dehydrogene lis	hypothetical protein (Synechocystis sp.)	se (Staphylococo	158}	ORF for adenylate kinase (Bacillus subtilis	fructofuranosidase [Staphylococcus xylosus]
30 Signary Of the state of the	ne name	unknown (Staphylococcus haemolyticus)	ATP-dependent	ry nitrate red	hadwar of Ecopril gene product protein - Escherichia coll pir SO Escherichia coli (SUB 40-520)	-acid dehydrat	gene product (Stap	ahrC protein (Bacillus subtilis)	repair protein (Dei	UreP (Staphylococcus xylosus)	Yer082p [Saccharomyces cerevisiae]	Yqiw (Bacillus subtilis)	chain alpha-ke 44 BimBB (Baci	(repE) (Staphylococcus	J-phosphate de	-tRNA syntheta	(Staphylococcus au	Srb [Bacillus subtilis]	synthetase A (e decarboxylasa (E-1) 6718 DEBSPA Dyruvate - Bacillus subtilis	cal protein (S	acid transaming	unknown (Dacillus subtilis)	denylate kinas	beta-fructofuranosidase
Putative cod	match gene name	unknown (Clp-like	Respirato	hadw gene protein Escheric	dihydroxy		ahrC prot	DNA repai	UreP ista	Yer082p (Yqiw (Bac	branched cha	ORF (rep	glycerol-	methionyl	i	Srb (Baci	cysteine	pyruvate pir B367 chain -	hypotheti	D-amino e	unknown	ORF for &	beta-fruc
- snoune	match	181 1022725	91 871784	01 1009366	91 450688	91 1256635	(1) 469H2	91 142450	9617721 198	91 511069	91 603320	1911303948	4 142613	91/46647	91 142993	91 467427	921)1340128	91 1237019	gi 467462	[q: [143377	91 1001342	191 517475	91 467475	91 216340	91 288269
	Stop (nt)	355	235	291	253	242	10591	1172	4652	1128	5306	11145	12770	983	4331	9609	8680	3208	5670	2456	3861	2657	6216	5695	1361
45	Start	-	; –	578	2	£91	: -	1348	1803	1535	_	11597		1332	2512	4324	9501	1934	4720	2064	3634	- :	6941	1979	915 139
	ORF	-	-	-		-	; —		-	_	-	=		-	-	_	•		9	-	-	- -	9	_	~
50		4392	4408	4430	4555	4611	•	61	16	22	23	s	ß	0,	13	8 6	100	111	148	152	169	171	186	205	;

5		length (nt)	297	1161	180	1887	294	19B	1 060	605	297	282	198	1 610	954	255	151	293	1 450	255	321	203	1 363	891	1 906	246
3		Lident	\$9	25	62	70	0,	9	53	69	46	69	77	74	89	38	57	4	70	26	73		22	54	122	1, 1,
10		E S I	84	8 0	96	84	8	9.6	84	88	6.4	84	84	*	84	84	84	2	84	96	84	88	8	84	1 84	8
15	roteins	1		ubtilis] se (EC .4.3.8) -						1r A25364 A25364						11		recombination protein (ttg start codon) (Bacillus subtilis) gi 1303923 RecN [Bacillus subtilis]				S24997 S24997 reinhardtii	tococcus yogenes)			
20	putative coding regions of novel proteins similar to known proteins	3		lehyde 2,1-aminotransferase [Bacillus subtlifs] glutamate-1-semialdehyde 2,1-aminomutase (EC		subtilis]			na genitalium)	threonine synthase (thrC) (AA 1-352) (Bacillus subtilis) ir A25364 A25364 threonine synthase (EC 4.2.99.2) - Bacillus btills	ida albicansi	stearothermophilus	nermophilus			[Methanococcus jannaschil]		[Bacillus subtil			115)	acetyltransferase [Chlomydomonas reinhardtil] ir \$24997 \$24997 C-acetyltransferase [EC 2.3.1.54] - lamydomonas reinhardtii	Myosin-crossreactive streptococcal antigen (Streptococcus yogenes	. lsil	tus	sus
25	ovel proteins s	 	; ; ; ; ; ; ; ; ; ; ;	2, 1-aminotransi sta-1-semialdel	is subtilis)	Bacillus	semolyticus)		tein (Mycoplass	(AA 1-352) (Ba	ha Intip (Cand	Bacillus stearot!	- Bacillus stearothermophilus	caldolyticus	caldotenax)	otein N (Metha	iisi	g start codon)		F (Lactococcus lactis)	Bacillus subti	(Chlamydomonas ase (EC 2.3.1.54	ve streptococc	Bacillus subti	bacter capsula	lococcus carno
30	ing regions of no	зе паже	[Bacillus subtilis]	glutamate-1-semialdehyde 2,1-aminotranaferase pir[042728]p42728 glutamate-1-semialdehyde 2, Becillus subtilis	protein-dependent [Bacillus subtilis]	phosphate synthetase	(Staphylococcus haemolyticus)	YbbQ (Bacillus subtilis)	osmotically inducible protein (Mycoplasma genitalium)	hreenine synthase (thrC)	integrin-like protein alpha Intip (Candida	ribosomal protein S9 - Ba	protein S9	macil permease [Bacillus caldolyticus]	DNA polymerase [Bacillus caldotenax]	cobalamin blosynthesis protein N	aconitaso (nacillus subtilis)	tion protein (tt s subtilis)	ClpB (Synechococcus sp.)	eptidase F [Lact	HutU protein, urocanase [Bacillus subtilis]	cetyltransferase (Chlam) C-acetyltiansferase (EC	osin-crossreacti	glucamate dehydrogenase (Bacillus subtilis)	fructose enzyme II (Rhodobacter capsulatus	gica gene product (Staphylococcus carnosus)
<i>35</i> ,	stative codi	match gene name	Yqel (Bacı	glutamate pir 04272 Bacillus	protein-de	carbamyl	known	YbbQ (Baci	osmotical	threening	integrin-	. —	• -		DNA polym	cobalamin	acontraso	recombinati	ClpB (Sýn	1 igoendopept i dase	Hutu prot	formate ac	67 kDa Hy	glucamate	(ructose e	glcA gene
40	S. aureus - P.	match	191 1303790	gi 143040	191 1070014	91 143390	193 1022725	91 1256146	91 1046173	91 40211	91 11144531	pir 508564 R3BS	S08564 R3F	qi 431231	01 912445	yi 1510953	91 1405454	gi 143402	g: 885934	1-11 510140	191 603769	91 18178	13: 517205	Gi 1146206	91 151932	91 1072418
		Stop (IIL)	388	2836	2959	4229	296	1341	392	2270	299	506	1033	341	1748	1 257	156	395	452	1 257	1333	248	375	169	215	151
45		Star(26	1526	3138	2343		1022		1362		624	8.6	-	2701	2	308	<u></u>	2	2	-	059	7.67	2	620	106
		ORF	-		- 2	-	-	-	-		-	~	12	- - -	-	-	=		-	-	-		-	-	-	~
50		Contig ORF	152	282	1 307	320	572	413	439	461	1 487	169	164	548	728	1 769	954	957	876	1585	2954	2996	3366	1 4022	4058	4108

rable 2

ć

5		length int)	306	180	1 468	978	984	846	1476	342	1050	1455	627	1 899	480	1 848	1611	1 399	678	099	216	R5A	348	1323	1963	181
		1 ident	72	2	79	89	99	3	89	در	6	70	۲۲	9	69	99	99	09	- 64	72	7	09	- 65	99	89	
10		e	.	~	6	6	£	63	- 83	63	æ	9	83	- 83	- 8	- 83	- B3	83	- B3	83	6	8	8	83	- 8	8
15	proteins			chia coli) .13) large hain -		acillus ubtilis)	cus)) - Bacillus				mobilis) - Zymomonas obilis			3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ns.]	1						imidazoleglycerol-phosphate synthase (cyclase) (Methanococcus jannaschil)	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
20	inllar to known	, , , , , , , , , , , , , , , , , , ,	[8]	1.53) [Escherichia ADPH) (EC 1.4.1.13)		nase El-beta (B	illus caldolyticuse (EC 1.1.1.27)			monocytogenes)	2ymomones 1.1.1.1.1	1181	us subtilis)		amyloliquefacie					ilisi	subtilisi	clase) (Methano			[11s]	
25	novel proteins si	, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	urocanase [Bacillus subtilis]	large subunit (EC 2.6.1.53) glutamate synthase (NADPH) ([Bacillus sp.]	o acid dehydroger	dehydrogenase (AC 1.1.1.27) (Bacillus caldolyticus) 704 529704 L-lactate dehydrogensse (EC 1.1.1.27) - icus				(adha) (EC 1.1.1.1) ol dehydrogenase (EC	(Bacillus subtl	plicaton [Bacill		(b-subunit) [Bacillus amyloliquefaciens]		lus subtilis)	lus subtilis)		e (Bacillus subt	protein (Bacillus subtilis)	ate synthase (cy	16)	illus subtilis)	(2) (Bacillus sub	_
30	- Putalive coding regions of novel proteins similar to known proteins	gene name		1thase 129617 coli	urease accessory protein [Bacillus sp.]	branched chain alpha-keto acid dehydrogenase El-beta (Bacillus ubtilis)		Yqhw (Bacillus subtills)	Yqhx [Bacillus subtilis]	replication initiator protein [Listeria	alcohol dehydrogenase I (adha) (EC 1.1.1.1) (pir a35260 a15260 alcohol dehydrogenase (EC	phospho-beta-glucosidase [Bacillus subtilis]	initiation protein of replicaton [Bacillus subtilis]	kdpB (Escherichia coli)	synthase	ORF75 (Bacillus subtilis)	gene product (Bacillus subtills	gene product (Bacillus subtilis)	orf4 (Bacillus subtilis)	cysteinyl-tRNA synthetase (Bacillus subtilis)	for L10 ribosomal pr	Jeglycerol-phosph	unknown [Bacillus subtills]	GTP-binding protein [Bacillus subtills]	[umarase citG] (be 1-462) [Bacillus subtilis]	ORFU [Lectococcus lactis]
35	utative co	Tarch -	Hutu protein.	glutamate syr pir A29617/1 Escherichia	urease	branche	lactate dehy pir B29704 aldolyticus	Yqhu (B	Yqhk (B	replica	alcohol pir A3	oudsould	initiat	kdpB (E	lumazine	ORF75 (ORF2 98	۰	orf4 (B	cystein	ORP for	imidazo	unknow	GTP-bin	Cumares	JORFU L
40	S aureus - P	match	gi 603769	qi 146208	di 393297	91 142612	91 1143132	Qi 1303894	101 1212730	01 44095	91 155571	191 506381	93 467391	91 634107	91 1212776	191 903307	91 49316	91 580902	91 520844	@i 289284	pi 216337	oi 1510488	51 467419	gi 508979	101139844	17111039479
		Stop (nt)	308	234	1576	13745	12872	2274	463	1523	1429	1 2162	1 694	2742	1 2989	9699	11070	114546	1 2467	07.61	1 7607	4540	638	2743	1 3571	352
45		Start.	_	\$\$	2043	14722	13357	3119	6118	1864	377	1 708	89	3209	3468	5749	9880	114148	314	1 2029	7822	3683	988	1421	1 3933	2
		<u>\$</u> 0	-		-	===	2	-	2	-		-	-	-	-	=	6	=	~	- 2	===	9	-	-	-	-
50		Contig	4183	4726	22	Ş	53	99	99	70	8	95	137	140	142	191	164	797	02.1	- 386	502	762	301	205	321	367

5	length (nt)	999	651	771	180	858	162	177	489	147	324	363	261	243	270	222	165	1.68	909	921	1032	006	1656	342	2433
	1 ident	7.0	.9	99	6	72	28	9/	67	69	895	9	65	19	78	74	79	67	02	85	0.2	69	09	99	7.0
10	E is	E83	83	£	8	83	83	8	93	8	83			8	83	83	83	82	82	82	83	82	82	83	1 82
15		; ; ; ; ; ; ; ; ;		ophilus) Bacillus	9326 WZBSDS		cus jannaschill			brilis) - Bacillus ubtilis			pir S48578 S48578 fragment						-						
S S S S S S S S S S S S S S S S S S S		hilus		stearothers 1.4.1.1) -	[Bacillus subtilis]; ir C29326 W28SDS		M. jannaschil predicted coding region NJECL28 [Methanococcus	t111s1		(Bacillus su			_	minophilumi			(87)			nfluenzae!					bt.1148)
52 52 wel proteins s		stearothermop	pidermidis	1.4.1.1) [Bacillus dehydrogenase (EC		lus subtilis!	ding region NJ	(Bacillus sub		ise (EC 6.1.1.2) intRNA ligase		=	tein 1 (Nycoplasma capricolum) - Mycoplasma capricolum SGC3)	seterium acida	foccus aureus)	emolyticus}	soccens carnoscs	cus pneumoniae	cus pneumoniae	[Naemophilus i	1116]	lus subtilis}	: 11 lus cereus}		te (Bacillus su
30 30 bu	กอติ	UNA polymerase I (Bacillus stearothermophilus)	protesse (Staphylococcus epidermidis)	lanina dehydrogenase (EC 14.1.1) (Bacillus pir[B34261[B34261 alanina dehydrogenasa (EC cerothermophilus	adenylosuccinate lyase (PUR-B) [Bacil adenylosuccinate lyase (EC 4.3.2.2)	DNA topolsomerase I (Bacillus subtilis)	il predicted co	ORTHININE AMINOTRANSFERASE (Bacillus subtilis)	lexA (Bacillus subtilis)	tryptophanyl-tRNA synthetase (EC 6.1.1.2) pir JT0481 YMBS tryptophantRNA ligase	Bacillus subtilis	ORF_0294 (Eschorichia coll)	hypothetical yeast protein 1 hypothetical protein - Mycop	thioredoxin reductase [Eubacterium acidaminophilum]	factor (Staphylococcus aureus	unknown (Staphylococcus haemolyticus)	gleB gene product (Staphylococcus	uvs402 protein (Streptococcus pneumoniae)	uvs402 protein (Streptococcus pneumoniae)	N-acetyineuraminate lyase [Haemophilus influenzae]	(Bacteroides fragilis)	sporulation protein (Bacillus subtilis)	oligu-1,6-glucosidase (Bacillus	unknown [Bacillus subtilis]	transfer RNA-Leu synthetese (Bacillus subtilis)
25 Putative coding	patch gene name	UNA polymera	protesse (St	alanine dehydrogen pir B34261 B34261 tearothermophilus	adenylosucci	DNA topoison	M. jannaschi	ORTHININE A	18xA (8acil	tryptophany pir J10481	Pro2 Bacil)	ORF_0294 (E:	hypothetica hypothetica	thioredoxin	mping	unknown (Sta	glcB gene pr	uvs402 prote	uvs402 prote	N-acetylneus	catalase (Ba	sporulation	oligo-1,6-g	unknown (Bac	transfer RN
- gnaine .s	match	91 806281	91 396259	91 142455	9: 143366	91 520753	gi 1522665	(gi 1064807	91 289288	91 143786	19111109687	01 H82532	yi 950062	[91 [1353197	1211397526	91 1022726	91 1072419	91 153854	91 153854	151 1204400	91 841192	191,143607	91 39431	191 467410	91143148
	Stop (nt)	662	1566	179	1438	859	361	296	491	150	326	366	305	309	17.2	223	261	1811	1798	8724	2019	3489	13925	18014	3313
45	Start (nt)		916	355	191	7	700	120	~	296	649	7.28	45	62	540	4	۲6	295	1193	9644	988	2590		: :	981
	lose	-	~			-	~	=	-		-		~	-	_	_	-	~		~	-	9	-	52	- 5
50	Contig	387	527	23	536	652	977	R97	6121	2529	2973	1001	3035	1906	445R	4570	4654	36	16	۳.	7	15	26	95 	19

		Jength (nt)	2157	2211	1719	252	1557	954	1440	1092	1 899	231	099	918	216	615	2010	576	288	357	972	1368	1233
5		* ident	29	99	65	s,	99	62	67	65	- 65	1.0	20	69	69	19	1 69	3	1,	- 89	6.8	67	69
10		e i i	83	82	82	B2	B2	# F	82	82	82	82	22	82	82	82	82	8 8	82	82	82	83	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
15	roteins		thermophilus] Thermus aquaticus	(PUR-Q) [Bacillus ubtilis)				subtilis] esterase - acillus					ipopeptide antibiotics iturin A (Bacillus subtilis) sp PJ9144 LP14_BACSU Lipopeptide antibiotics Iturin A AND Surractin Iostathesis Protein.	67 kDa Myosin-crossreactive streptococcal antigen [Streptococcus yogenes]	SARA17, artial.],		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a potential ron- um ruhrum nd [lus] [on] -					lactis] pir S35129 S35129 - actococcus lactis subsp.
20	- Putative coding regions of novel proteins similar to known proteins		aquaticus thermophilus] factor G - Thermus aqua (EF-G).		1118)		- s	(Bacillus phosphodi		ibt1118)			ipopeptide antiblotics fourin A (Bacillus subtilis) sp PJ9144 LP14, Lipopertide antiblotics Iturin A AND SURFACTIN IOSTRTHESIS PROTEIN	antigen (Strept	from			containing hodospirill arothermoph gldA 3: reg					
25	ovel proteins si			phosphoribosylformyl glycinamidine synthetase II	dihydroxy-acid dehydratase [Bacillus subtilis]	subtilis	phosphoglycerate mutase (Bacillus subtilis)	diester phosphodiesterase glycerophosphoryl diester	-	oxidation (Bacillus subtilis)	ORP (19K protein) (Enterococcus fascalis)	nocytogenesi	turin A (Bacillu ITURIN A AND SUR	ve streptococcel	IS200 insertion sequence a typhimurium]	ernidis]	subtilisi	OFF5: This ORF includes a region (4823-103) sulphur centre homologous to a region of R Chromatium vinosum; putative [Bacillus stepir]PQ0299[PQ0299 hypothetical protein 5 (illus subtilis)			٠	subunit [Lactococcus 4.2.1.20] beta chain
30	g regions of no	9 5 5 5 5	factor C EFTWG tra	sylformyl glyci	cid dehydratase	orf1 5' of Ffh - Bacillus subtilis	erate mutase (F	phoryl diester	cillus subtilis	and furan oxidat	rotein) (Entero	in (Listeria monocytogenes)	antiblotics to	sin-crossreactiv	typhimurium t (Salmonell	IcaB (Staphylococcus epidermidis)	quinol oxidase (Bacillus subtilis]	RFS; This ORF includes a regisulphur centre homologous to Chromatium vinosum; putative pir P00299 PQ0199 hypothetica	ribosomal protein L1 (Bacillus	Ygel (Bacillus subtilis)	YqfE (Bacillus subtilis)	YqhX (Baci)lus subtilis)	
35	stative codin	match gene name	elongation ir 515928 p P13551 E	phosphoribo	dihydroxy-a	-	phosphoglyc	glyceraphosphoryl pir S37251 S37251 subtilis	Unknown (Bacillus	ophen	ORP (19K pr	Cspt protein	lipopeptide Lipopeptid	67 kDa Hyos	[Salmonella gene produc	IcaB (Stap)	quinol oxic	OMFS: This sulphur ce Chromatium pir P00295	ribosomal	Ygel (Bacil	YqfE (Bacil	YqhX (Bacil	tryptophan tryptophar lactis
40	S. aureus - P	match	51 48240	91 143369	91 1256635	pir A47154 A471	91 460258	91 403373	 gi 1377831	gi 467386	911153566	191 1001878	191 473916	191 517205	qi 439619	[91]1161381	91 (143397	9: 1142981	91 436574	9.11303793	91 1303821	Q1 1303913	91 149521
		Stop (nt.)	11318	3260	5380	3493	5933	2182	151	1094	4039	4225	20707	1722	3651	4296	2855	7945	1342	618	4024	3073	2864
45		Start	9162	\$470	3662	3242	4377	1229	2		3572	4455	21366	805	3866	5207	4864	8520	1055	292	3053	4440	4096
		PR CT		- 7	9		- 9	2	<u>-</u>	1	-		6	-				2	1	7	-	-	2
50		Cont ig	85	9.5	102	113	128	129	170	177	184	1.89	206	221	223	260	315	321	150	370	† 0 †	405	436
		<u>:</u>	·		÷ —		•		٠ –					•		• —	• —	·		• -		• -	· :

		length (nt)	822	813	189	204	177	294	180	210	282	1002	1 665	390	306	153	327	150	219	1 081	138	651	1237	207
5		1 ident	1 69	67	99	3	61	69	89	35	69	5	72	90	69	11	72	89	5	-	09	82	78	3
10		e i s	82	83	82	8	1 82	82	82	85	85	28	82	82	82	82	82	88	85	83	82	83	85	88
15	proteins		thermophilus)	vegetative growth protein (Haemophilus influenzae)		pyrimidine photolysse (Bacillus subtilis) pir[AJ7192[AJ7192 uvr8 Bacillus subtilis sp[P14951[UVRC_BACSU EXCINUCLEASE ABC SUBUNIT	lus ubcilis)		ormyltransferase/inosine illus subtilis]			s] pir B47045 B47045 acillus subtilis						nilus] thermophilus	APP SYNTHASE EPSILON CHAIN (EC 3.6.1.34).					1, 140 maj btilis SION (ORFY)
20	milar to known		(Bacillus tearo	rotein (Haemoph	1116]	s subtilis! pir RC_BACSU EXCINU	nsferase (Bacillus		<pre>cerboxy formyl ormyltransfera (PUR-H(J)) Bacillus subtilis)</pre>			subtilis] pir E	_	c111s)		colll		stearothermophilus] Bacillus earothermophilus	ermophilus sp					Peptide Partial - Bacillus sul N IN COMK 3'REC
25	el proteins sin		dehydrogenase	ative growth p	(Bacillus subt	lyase (Bacillus s sp P14951 UV	arboxyvinyltra	(Staphylococcus carnosus)	le carboxy forses (PUR-H(J))	llius subtilis]	subtilis!	lase (Bacillus subt	ita burgdorferi	e (Bacillus sub	occus aureus]	se (Escherichia	osus]	1-66) (Bacillus 1 protein L35 -	cillus stearoth W (EC 3.6.1.34)		llus subtilis]	llus subtilis!	us carnosus)	subtilis, E26, Lical protein Y THETICAL PROTEI
30	Putative coding regions of novel proteins similar to known proteins	раве	glyceraldehyde-1-phosphate dehydrogenase (Bacillus tearothermophilus)	ation and veget	aspartate transcarbamylase (Bacillus subtilis)	decxyrlbodipyrimidine photolysse protein - Bacillus subtilis sp[P: C	UDP-N-acetylglucosamine 1-carboxyvinyltransfersse (Bacillus ubtilis)		phosphoribosyl aminoimidazole carboxy formyl monophosphate cyclohydrolass (PUR-H(J)) Baci	cell division protein (Bacillus subtilis)	function unknown (Bacillus	ucoporphyrinogen decarboxylase (Bacillus subtilis) pir B47045 B47045 uroporphyrinogen decarboxylase (EC 4.1.1.37) - acillus subtilis	ATP binding protein [Borrelia burgdorferi]	transfer RNA-Tyr synthetase [Bacillus subtilis]	gamma-hemolysin (Staphylococcus aureus)	NH3-dependent NAD synthetase [Escherichia coll]		ibosomal protein 135 (AA 1-66) (Bacillu ir S05347 R5BS35 ribosomal protein L35	e subunit epsilon (Baci SYNTHASE EPSILON CHAIN	unknown (Bacillus subtilis)	ribososal protein L9 (Bacillus subtilis)	ribosumal protein 1.9 (Bacillus subtilis)	seck protein (Staphylococcus	orfy 3. of comk (Becillus subtilis, E26, Peptide Partial, 140 aal pir S43612 S43612 hypothetical protein Y - Bacillus subtilis ap P40398 YHXD_BACSU HYPOTHETICAL PROTEIN IN COMK 3.REGION (ORF) PRAGMENT).
35	Putative coding	motch gene name	glyceraldeh	spore germination and	aspartate tr	deoxyribodig protein - E C.	UDP-N-acety	seck gene product	phosphoribosyl monophosphate	cell division	function un	uroporphyria uroporphyr	ATP binding	transfer RN	gamena-hemol	NH3-depende	Eliser (Sta	ribosomal p ir s05347	ATPase subu	unknown (Ba	[ribosomal p	ribosumalp	sech protei	orfy 3. of pir \$43612 ap P40398 FRAGHENT).
40	S. AUTOUS -	motch	91 142952	19111204354	911143387	91 142521	191,853767	91 426472	 qi 143373	91 467458	91 1064787	91 143043	191 1027507	191 143795	91 577647	191 146974	911407908	91 9962	91 534855	91 467402	[91 467335	[51 467335	µ1 499335	gi 546918
		Stop (nt)	2573	11227	191	1210	784	700	386	213	283	1176	868	399	306	155	375	150	349	224	139	00	238	210
45		Start	3394	10415	_	1007	1560	402	565	422	564	175		2	-	307	64		567	\$	276	558	474	4 16
		ORF	-	112	-		<u>-</u>	~	~	-	-		-	<u>-</u>	-	1-	1		~	-	-	7	1-	
50		Cont ly 1D	3	ļ.	446	462	537	680	724	763	818	858	R95	929	196	1192	1317	1341	2990	3024	3045	1045	1608	3107
			• -		•		• —		•		•	•									-	_		- •

5		length (nt)	318	702	318	300	1002	1131	1449	639	1575	618	492	372	1578	1494	7.38	1029	819	183	225	67A	933	981	1062
		1 ident	27	99	59	62	\$\$	67	99	59	99	**	\$5	0,	64	69	\$ 9	69	13	9	\$	63	69	59	9
10		a .	95	a	81	81	81	81	18	18	93	68	81	8	81	91	18	81	B1	81	8	81	£	19	18
15	roteins		CO11) D P09152 NARG_ECOLI (EC 7.99.4). (SUB 2-1247)	· # # # # # # # # # # # # # # # # # # #		enitalium]									subtilis sp P42176 NARH_BACSU 4).				Al7, artial.],	sp P49668 RS2_PEDAC 30S	e receptors in a		succinateCoA ligase (GDP-forming) (Arabidopsis thaliana) tr \$30579 \$30579 succinateCoA ligase (GDP-forming) (EC 6.2.1.4) pha chain - Arabidopsis thaliana (fragment)		
20	lar to known p					[Mycoplasma genitalium]			te coli			- Bacillus subtilis	(a)		btilis sp P42		rlum]		vence from SAR		-protein kinas bditis elegans		opsis thaliana 2.1.4) pha cha		(RF-2) (FRAGMENT)
25	proteins simi		It (Escherichia E 1 ALPHA CHAIN		(Escherichia coli)	coding region MG246			ase (Escherichia		btilisl	(EC 1.1.1.27) - Bac	llus influenza	s subtilis)			(Bacillus megate	us subtilis]	insertion seq himurium)	occus acidilac	ty to tyrosine main (Caenorha		rming) (Arabid orming) (EC 6.	otilis	E FACTOR 2 (RF
30	Putative coding regions of novel proteins similar to known proteins	944	itrate reductase alpha subunit (Escherichia RESPIRATORY NITRATE REDUCTASE 1 ALPHA CHAIN	nonas sp. 1			- Bacillus subrilis	s subtilis)	onate dehydrogenase	Bacillus subtilis]	gluconate kinase (Bacillus subtills)		protein (Maemophilus influenzae)	ipa-93d gene product [Bacillus subtilis]	itrate reductase beta subunit (Bacillus NITRATE REDUCTASE BETA CHAIN (EC 1.7.99.	s subtilisj	triose phosphate isomerase (Bacillus megaterium)	Beci	Salmonella typhimurium 15200 insertion sequence from SARA17, artial.1, gene product (Salmonella typhimurium)	procein (Pediococcus acidilactici)	of weak similarity to tyrosine-protein kinase type III-like domain (Caenorhabditis elegans)	llus subtilis)	i ligasa (GDP-fol od ligase (GDP-fol igment)	in - Bacillus subtilis	PROBABLE PEPTIDE CHAIN RELEASE FACTOR 2 (RF-2) (FRAGHENT).
35	tative coding	match gene name	nitrate reductase alpha	span (Sphingomonas sp.)	lysine specific permease	N. genitalium predicted	delac protein	YqjJ (Bacillus subtilis)	6-phosphogluconate	9869	gluconate kin	L-lactate dehydrogenase	Nifu-related	spa-93d gene	nitrate reductase beta	GbsA (Bacillus subtilis	triose phosph	alanine dehyd	Salmonella ty	305 ribosomal procein RIBOSOMAL PROTEIN S2	short region of fibronectin	unknown [Bacillus	succinateCoA ligatesuccinateCoA ligatesuccinateCoA ligatesuccinatesuc	spoilie protein	
40	S. aureus - Pu	match acession	gi 42086	61 1199573	91 466778	(gi 1045937	pir S16649 S166	194 1303961	93 146930	91 143016	91 141015	pir A25805 A258	91 [1223302	101 414017	91 971342	gi 1524392	[9: [143319	0: [299163	9: 439619	91 [897795	gi 1125826	gi 467404	gi 16510	pir 509411 5094	sp P28367 RF2_B
45	;	Stop (nt.)	319	2574	321	4350	2579	1494	1767	61101	11786	13366	2217	374	4861	12338	4413	9280	5471	825	226	2677	2149	186	2691
45		Start (nt)	~	3275	638	4051	1578	354	9419	10757	13360	13983	2708	745	6438	10845	3676	10308	6098	Ç	450	2000	3081	-	3752
		ORF 1D			- -	2	•	~	<u> </u>	6	<u> </u>	-	~	-	• •	21	\$	- 1	۰			- \$	~	-	2
50		Cont 19 1D	4332	62	42	48	25	63	65	3	54	52	18	. A6	103	120	128	131	143	169	230	233	241	1 256	259

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

2	Contig ORF ID ID	Stort (nt)	Stop (nt)	match	match gene name	E is	• ident	length (nt)
275	-	1728	3581	191 726480	L-glutamine-D-fructose-6-phosphate amidotransferase [Bacillus ubtilis]	81	99	1854
285	-	1466	235	91 1204844	H. influenzae predicted coding region HIG594 [Haemophilus influenzae]	18	63	732
296	-	66	1406	91 467328	edenylosuccinate synthetese (Bacillus subtilis)	18	67	1308
207	6	5590	5889	gi 147485	queh (Bacherichia coll)	10	9	300
317	~	1137	1376	91 154961	resolvase (Transposon 1n917)	81	5.	240
343	~	1 1034	1342	191 405955	yeeD [Escherichie coli]	81	9	309
360	~	1404	1742	19111204570	i 46	61	67	1068
364	2	6251	5706	19111204652	methylated-DAAprotein-cysteine methyltransferase (Haemophilus influentee)	81	69	546
372	-	1 1707	201	Q1 467416	unknown (Becillus subtilis)	81	65	573
392	-	7	609	p1r S09411 S094	spoile protein - Bacillus subtilis	181	65	561
*0	-	5252	6154	gi 606745	Bex [Bacillus subtllis]	81	99	903
426	2	1727	1119	gi 39453		6 0	99	609
4.80		1,683	5889	pix c37083 c370	hypothetical protein If (ompil)' region) - Salmonella typhimurium (fragment)	189	57	237
625	-	11105	0,02	191 1262360	protein kinase PknB [Hycobacterium leprael	91	95	996
754	- 2	504	1064	191 1303902	Yqhu (Bacillus subtilis)	91	7.1	196
B42	-	- B6	430	91 1405446	transketolase (Bacillus subtilis)	18	е9	345
953	-	1 798	604	01 1205429	dipeptide transport ATP-binding protein [Haemophilus influenzae]	81	57	399
196	~_	252	5	91 487686	symergohymenotropic toxin Staphylococcus intermedius pir 544944 544944 symergohymenotropic toxin - Staphylococcus ntermedius	9	22	150
1035	-	-	189	gi 1046138	N. genitalium predicted coding region MG623 (Mycoplasma genitalium)	18	\$	189
1280		670	449	91 559164	halicase [Autographa californica nuclear polyhedrosis virus] sp[p24107]v143_NPVAC HELICASE.	E .	\$	222
3371	-	89	241	gi 1322245	mevalonate pyrophosphate decarboxylase [Rattus norvegicus]	18	62	174
3715	-	1 475	239	[61 537137	ORF_1388 Escherichia coli	83	88	762
390R		~	325	 gi 439619 	[Salmonella typhimurium 15200 insertion sequence from SARA17, artiel.], gene product (Salmonella typhimurium)	£	89	324
3940	-	-	1 401	10, 1296464	ATPase [Lactococcus lactis]	=	69	199

		length (nt)	318	16R	324	306	210	276	139	747	234	1290	102	165	1308	1.65	342	1200	195	240	816	099	2343	123	732	403
5		. Ident	6.8	89	88	2.2	- 65	67	99	62	40	69	55	62	62	68	65	99	1 89	99	19	5	99	88	- 29	13
10		n sin	91	8	18	83	81	i.	91	98	08	80	90	80	80	80	80	0.00	- 80	0.8	80	80	0.8	08	80	80
15	roteins			subtilies se Bacillus	tiliai erase - acillus	16013 S16013 cloacae					(87								1							
20	- Putative coding regions of novel proteins similar to known proteins			imidatolone-5-propionate hydrolase (Bacillus subtilis) I protein, imidatolone-5-propionate hydrolase Bacillus	dlycerophosphoryl diester phosphodiesterase (Becillus subtilia) pir[537251[53725] dlycerophosphoryl diester phosphodiesterase subtilis	er cloacael pir S16013 S16013					nuclear polyhedrosis virus)			18]	hilus)						us subtilis)		eurianum)			1110)
25	vel proteins si		ulis]	-5-propionate hy imidazolone-5-pr	phosphodiesters	ndolepyruvate decarboxylase (Enterobacter indolepyruvate decarboxylase (EC 4.1.1)	igaris)	herculosis	[Bacillus subtilis]	subtilis)	fornica nuclear ICASE.			gluconate permease (Bacillus licheniformis)	system (Bacillus alcalophilus		1.1		8]	[9	high level kasgamycin resistance (Bacillus subtilis	[Bacillus subtilis]	pyruvate-formate-lyase (Clostridium pasteurianum)	, (en	us)	aspartate 1-decarboxylase (Bacillus subtilia
30	g regions of no		raxella catarrhalis	imidazolone Li protein,	phoryl diester		TVG [Thermoactinomyces vulgaris]	unknown (Mycohacterium tuherculosis	inase (Bacillus	function unknown [Bacillus subtilis]	helicase (Autographa californica sp p24307 v143_NPVAC HELICASE.	Prov (Bacillus subtilis)	Proz (Bacillus subtilis)	Sermesse (Bacil)	orter system (Ba	aptens]	ORF_£356 (Escherichia coli)	llus subtilis!	unknown (Bacillus subtilis	unknown (Bacillus subtilis)	kasgamycin res	product	ormate-lyase [C	CapC (Staphylococcus aureus)	Staphylococcus aureus)	aspartate 1-decarboxylase
35	Putative codin	, match gene name	amidase [Horaxella	Huti protein, g1 603768 Hu	glycerophos pir(S37251 subtilis	indolepyruvate	TVG (Thermo	unknown (My	gluconate kinase	function un	helicase [A sp P24307	Prov (Bacil	Proz [Bacil	(gluconate p	Na/H antiporter	ORF (Homo saptens)	ORF_£356 (E	YqkN (Bacillus	unknown (Ba	unknown (Be	high level	ipa-57d gene	pyruvate-fe	CapC (Stap)	; –	aspartate
40	S. aureus -	match	191 1224069	91 603768	94 403373	91(216677	191 460689	gi 1524193	1911143015	91 1064786	91 559164	gi 1109684	91 1109687	gi 563952	91 854655	(17655 19	191 305002	91 1303995	Vi 46742B	191 (467430	01 467431	91 580875	91 1072361	191 506699	91 506698	91 1146242
		Stop (nt.)	318	170	324	322	228	306	Ę.	847	ī.	2448	4733	9502	7545	8683	14122	10296	7130	i	18737	14813	16636	726	1448	2870
45		Start	-	755	-	627	19	5H1	_	1593	544	1159	4032	10266	8852	8087	13781	11495	6336	7294	7820	14154	14294	1448	6212	1726
		I ORF	-				-	=	-	-		- 2	- 8	-	2	=	91	12		=	Ē	1=	=	-	-	-
50		Contig	1 3954	4049	4209	4371	4387	4191	4425	6	17	\$	\$	1 54	- 62	62	(9	0,	86	86	86	109	112	139	139	134

5	
10	
15	
20	
25	
30	
35	
40	
45	

		Jength (nt)	741	213	1494	657	1176	513	294	1263	264	336	1197	1749	1704	276	633	300	270	321	651	639	654	792	249	1257	732
5	•	• ident	- 02	46	9	99	64	61	 	65	- 75	58	67	67	1 69	40	55	107	69	65	65	65	99	20	- 69	- 89	61
10	,	E	08	1 08 1	90	90	08	0.8	08	O6	80	80	80	80	80	80	90	- 80	- 80	- 80	80	80	80	8	88	80	80
15	e ins	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2					3		I SYV_BACST LRS).	s) acillus						1	1	11 11 11 11 11 11 11 11 11 11 11 11 11			to longation ichia colij						
20	ar to known prote	; ; ; ; ; ; ; ; ; ; ;				hilus)			philus) sp P1193 TRNA LIGASE) (VA	tearothermophilu port protein - B					occus mutans]			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0		TOR_GTP; similar proteins Escher		sus]				1(0)
25	Putative coding regions of novel proteins similar to known proteins	! ! ! ! ! ! !		[Trypanosoma cruzi]	glutamyl-tRNA synthetase [Bacillus subtilis]	lus stearothermophilus	D		VALYL-TRNA SYNTHETASE [Becillus stearothermophilus] sp[F11331 SYV_BACST VALYL-TRNA SYNTHETASE (EC 6.1.1.9) VALINE-TRNA LIGASE) (VALNS).	proton glutamate symport protein (Bacillus stearothermophilus) pir 826247 826247 glutamate/aspartate transport protein - Bacillus tearothermophilus	lus subtilis]		coccus xylosus)	llus subtilis)	formyl-tetrahydrofolate synthetase (Streptococcus mutans)	irus sp. 1				subtilis)	PSO0017: ATP_GTP_A and PS00301: EFACTOR_GTP; similar to longati G, TetH/TotO tetracycline-resistance proteins Escharichia colli		beta-fructofuranosidase [Staphylococcus xylosus]	9)	rculosis)	subt[]is]	putative ATP binding subunit (Bacillus subtilis)
30	regions of nove	name	unknown (Bacillus subtilis)	antigen	A synthetase Ba	protein L4 (Bacillus	enolase (Bacillus subtilis)	lus subtilis]	SYNTHETASE (EC	mate symport pro S26247 glutamate	hypothetical protein [Bacillus subtilis]	illus subtilis!	acut gene product (Staphylococcus xylosus	acetyl-CoA synthetese (Bacillus subtilis)	shydrofolate syn	outer capsid protein (Rotavirus sp.	ORF_o470 (Escherichia coli)	YneF [Bacillus subtilis]	(Bacillus subtilis)	function unknown (Bacillus subtilis)	0017: ATP_GTP_A fetH/TetO tetrac	putative (Bacillus subtilis)	luranosidase (St	spec (Streptococcus pyogenes)	(Mycobacterium tuberculosis	function umknown (Bacillus subtilis	P binding subuni
35	Putative coding	. ratch gene name	unknown (Bac	85-kDa surface	glutamyl-tRN	ribosomel pr	enolase (Bac	ORPX7 [Bacillus	VALYL-TRNA 9	proton glutamate s pir \$25247 \$256247 tearothermophilus	hypothetical	unknown [Bacillus	acuc gene pr	acetyl-CoA	formyl-tetre	outer capsic	ORF_O470 (E	YneF Bacil	unknown (Bac	function um	matches PSO(putative (B	beta-fructo	spec (Strep)	unknown (Hyo	[function um]	putative AT
40	S. aureus -	match	91 467385	gi 161953	91 289282	!	91 460259	[gi 410131	91110797	91 143000	[91 709993	191 467418	91 117 686	gi 348053	gi 1103865	91 310325	gi 537049	91 1405448	[g1 467448	191 1066791	91 304976	[5:]1146183	01 288269	ui 529754	[gi 1483545	191 1064791	1011666983
		Stop (nt)	2842	5913	3875	15140	1315	1590	2255	1263	2461	1111	4501	7006	6119	1389	636	1228	1331	587	629	1263	654	2240	1871	1257	638
45		Start (nt)	2012	6124	5368	15796	140	1078	1962	-	2724	1446	5697	5258	7410	1114	126R	929	3062	1 267	6	625	-	1449	1623	-	107
		08 C	-	-	-	2	-		~		- 2		-	9	-	2	-	~	- 2	-		-	-	~	-	-	
50		Cont ig	17.1	184	186	205	207	117	235	239	272	301	010	310	310	325	337	374	375	388	394	456	475	544	622	719	739
		:	-	-	÷ —	: —	.		:	<u></u>	-	-							-	-	•	• -			•	• -	• •

5
10
15
20
25
30
35
40
45

Contig ORP	RF Start	rt Stop	8:	match	match gane name	E 0 1	1 ident	length (nt)
745 2	i-	414	1	-	coentyme PQQ synthesis protein III (Methanococcus jannaschii)	80	61	168
822 1	1 1	619	1	91 410141	ORFXI7 (Bacillus subtilis)	80	6.8	663
827 2	2 991	836	1-	11205301	leukotoxin secretion ATP-binding protein (Haemophilus influenzae)	80	24	156
1044	1 - 3	149	Ī	91 60632	vp2 [Narburg virus]	08	55	147
1220 2	2 571	1 413	Ī	pir A61072 EPSG	gallidermin precursor - Staphylococcus gallinarum	80	۲	159
2519	27 1	1 275	1	1 147556	dpj (Escherichie coli)	90	45	201
2947	1 503	279	<u> </u>	91 1184680	polymuclectide phosphorylase (Bacillus subtilis)	80	62	225
3120	1 2	1 226	1	91 517205	67 kDa Myosin-crossreactive straptococcal antigen (Straptococcus yogenes)	80	65	225
1616	1 294		<u> </u>	91 151259	HMG-COA reductass (EC 1.1.1.88) [Pseudomonas mayalonii] pir A44756 A44756 hydroxymathylgiutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	80	65	147
3560	2 285	434	1	91 217130	photosystem I core protein B (Symethococcus valcanus)	80	70	150
3655	1 47	1 346	-	91 415855	deoxyribose eldolase (Mycoplasma hominis)	080	96	300
3658	2 1 324	1 584	i –	91 551531	2-nitropropane dioxygenase [Williopsis saturnus]	80	54	261
3769	1 798	400	<u> </u>	01 1339950	large subunit of NADH-dependent glutamate synthase [Plectonema boryanum]	80	89	399
3781	1 692	368	<u> </u>	01 166412	1 5	80	62	345
3988	1 48	1 287	<u> </u>	91 1204696	fructose-permease IISC component (Meemophilus influenzae)	80	69	240
4030	1 571	1 287	i –	91 1009366	Respiratory nitrate reductase (Bacillus subtilis)	80	09	285
4092	1 547	275	1-	91 1370207	or[6 [Lactobacillus sake]	080	69	273
4103	1 680	342	i –	959956	IIGIc [Bacillus subtilis]	080	99	339
4231	1 692	348	-	91 289287	UDP-glucose pyrophosphorylase (Bacillus subtilis)	0.60	\$9	345
4265	1 595	239		91 603768	Hutt protein, imidatolone-5-propionate hydrolase (Bacillus subtilia) gi 601768 Huti protein, imidazolone-5-propionate hydrolase Bacillus subtilis)	OB	63	297
4504	1 498	1 250	i –	91 1339950	large subunit of NADH-dependent glutemate synthase [Plectonema boryanum]	80	68	548
7	8665 9	i –	6798	0 535351	Cody (Bacillus cubtilis)	64	63	10B
	7 8295		705 £	91 603768	Hurr protein, imidazolone-5-propionate hydrolase (Bacillus subtilis) gi 603768 Hurl protein, imidazolone-5-propionate hydrolase Bacillus subtilis]	29	3	1245
-			ï					

TABLE 2

5	(nt)	252	204	1413	519	1107	1083	1374	1581	558	1 689	570	375	453	116	390	519	1383	1020	609	1383	966
3	ident	75	09	9.	9	35	3	99	89	\$\$	4.7	65	61	\$ 9	•	70	62	09	09	65	62	09
10	E	79	92	79	79	79	19	79	61.	79	79	94	79	79	23	79	79	79	79	79	79	62
15			xylosus) pir 552351 552351		[Bacillus ubtilis]	J.Biol.Chem. 1988) roxide eductase from pen reading frame A	sp[P37253]ILVC_BACSU KETOL- :Y-ACID ISOHEROREDUCTASE)				moniae)	wbtilis] [Bacillus		oir A49943 A49943	from Haemophilus enes]							pir S48578 S48578 fragment
25 25 Society of reflect and for society of reflect and society of r		[Escherichia coli]	(Staphylococcus xylosus) p lococcus xylosus	•)	(PUR-E)	reduct hemologous to E.coli thioredoxin reductase: J.Biol.Chem. 263:9015-9019, and to F32a protein of alkyl hydroperoxide educta S.typhimurium: J.Biol.Chem. (1990) 265:10535-10540; pen reading [Clostridium pasteurianum]					[Streptococcus pneumonias]	hypoxanthine-guanine phosphoribosyltransferase [Bacillus subtilis] gi[467457 hypoxanthine-quanine phosphoribosyltransferase [Bacillus ubtilis]		fructoss-bisphosphate aldolass (Staphylococcus carnosus) pir/A49943/A49943 fructoss-bisphosphate aldolass (EC 4.1.2.13) - taphylococcus carnosus (strain TM300)	proteins	18:		olytical	-		subtilis]	
25		(EC 4.2.1.16)	kinasa (Staphylococcus - Staphylococcus xylosus	[Mycobacterium leprae]	aminofmidazole cerboxylase I	us to E.coli thioredoxin reductase: and to F52a protein of alkyl hydrope J.Biol.Chem. (1990) 265:10535-10540. isteurianum)	se (Bacillus s C 1.1.1.86) AC LACIL EDUCTOIS	tis]	odosus]	s aureus)	ido reductase	phoribosyltran uanine phospho	6.)	olase (Staphyl dolase (EC 4.1	similar coli [Li	cillus subtili		Entamoeba hist	illus subtilis	{Bacillus subtilis}	ease (Bacillus	n 1 (Mycoplasz lycoplasma capr
30	name	~	of glucose protein 1	_C2_189 [Mycob		product homologous to E.col 263:9015-9019, and to F52a S.typhimurium: J.8iol.Chem [Clostridium pasteurianum]	RECO!-acid reduccoisomerase (Bacillus subtilis) ACID REDUCTOISOMERASE (EC 1.1.1.86) ACETOHYDRO (ALPHA-KETO-BETA-HYDROXYLACIL EDUCTOISOMERASE)	putative (Lactococcus lactis)	heloba	CapA (Staphylococcus aureus)	peptide methionine sulfoxido reductase	ne-guanine phos hypoxanthine-g	unknown (Bacillus subtilis	bisphosphate ald -bisphosphate al TW3001	RF5; putative Sms protein; influenzee and Escherichia	ribosomal protein Lis (Bacillus subtilis)	YQKM (Bacillus subtilis)	alcohol dehydrogenase 2 (Entamoeba histolytica)	1pa-88d gene product (Bacillus subtilis)	product	glycerol 3-phosphate permease (Bacillus subtilis	hypotherical year procein 1 (Mycoplasma capricolum) hypotherical procein - Mycoplasma capricolum SGC3)
35	match gene name	threonine dehydratase	orfl upstream	pps1; B1496_C2_189	phosphoribosyl	product homologic 263:9015-9019, S.typhimurium: (Clostridium pu	ketol-acid ACID REDUC (ALPHA-KET	putative (L	PrfC/RF3 (D	CapA Staph	peptide met	hypoxenthin gi 467457 ubtilis	unknown (Ba	fructosa-bi fructosa-bi	ORFS; putative influenzee and	ribosomal	YqkM [Bacs]	alcohol de	itpa-88d ger	ipa-6d gene	glycerol 3-	hypotherical hypotherical
40	match	91 147923	91 999 19	91 466882	gi 143364	91 144906	qi 143093	gi 149428	91 458688	91 506697	191 1498296	91 467457	91 755 602	91 297874	9111114298	91 1044980	lui 1303994	gi 488430	[91 580883	101 413930	[91 403372	1911950062
	Stop (nt)	1424	204	1590	6505	4554	8571	12563	9372	1983	1156	1098	591	587	6874	8498	519	2801	7896	4329	1393	1935
45	Start (nt)	173	-	3002	1023	2660	7489	1	7792	2540	1644	259	965	1039	7584	8887	-	4183	8915	1272	=	2930
	10 C	2	-		-	·	=	Ξ	6 -		~	~	-		-	91	-	~	-	-	-	
50	Contig	65	9	18	1 85	£	102	102	127	621	7	## **	0\$1	176	186	205	117	1 223	243	279	300	307

TABLE 2

Start Stap Start Start Stap Stap Start		length (nt)	1221	576	504	351	1032	624	420	579	300	714	199	156	384	285	210	183	312	219 [291	282	474	267	243	297	133	926
Start Stop	5	1 ident	59	- 15	9.9	48	61	67	19	62	62	62	61	58	72	1 19	59	19	09	99	55	59	63	12	64	65	54	63
Start Stop	10	e in	62	64	1 62	79	- 29	66	62	62	62	62	1 62	64	62	67	96	62	62	1 66 1	P 79	79	67	67	97	96	62	66
Start Stop match match			7				s subtilis] o-ligase BC		ocytogenesi					nt.)	1	subtilis)			, , , , , , , , , , , , , , , , , , ,		onema boryanum]	onema boryanum)	(sa)					
Start Stop match match	inilar to known pr	. 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		1	_		(PUR-M) (Bacillu		Listeria	(B)		ene)	lus subtilis!			ē,	[118]	sritima]	[uenzae]	ens)		te synthase (Plect	subunit (Bos taux	subsp.	subtilis)		(1)	
S. cureus - Pute (nr) (nr) (nr) (nr) (nr) (nr) (nr) (nr)	52 el proteins s	1 1 1 1 1 1 1 1 1 1 1 1	hisl		llus subtilis		le synthetase ibosylformylo		-binding subu	la typhimuric	subtilis!	ylococcus au	r OpuD (Bacil)	,	[8]		Bacillus subt	Thermotoga ma	emophilus inf	dium perfring	ndent glutama	ndent glutame	tease binding	actococcus la	ase (Bacillus	erculosis	plasma homini	subt111s]
S. cureus - Pute (nr) (nr) (nr) (nr) (nr) (nr) (nr) (nr)	S cegions of nov	nome	lomonas chlororap	acillus subtilis	rotein L10 [Baci		syl aminoimidato	bacillus sakel	rmease substrate	protein (Salmone)	oknown (Bacillus		taine transporter	ductase alpha che	Lactococcus lacti	rate dehydrogenas	(nirB)	lycerate kinase	ormate-lyase Ha	product (Clostric	nit of NADII-deper	nit of NADH-deper	TP-dependent prot		y nitrate reduct	ycobacterium tube	e aldolase (Myco	kinase (Bacillus
S. oureus Start Stop (nt) (nt) (nt) acession 1153 578 [gi 143177 631 1124 [gi 143177 2457 1426 [gi 143711 2457 1426 [gi 143711 2457 1426 [gi 143711 2457 1426 [gi 143711 2457 1426 [gi 143711 2457 1426 [gi 143711 2457 1426 [gi 143711 2457 1416 [gi 14367 25 220 [gi 114366 25 220 [gi 114966 26 270 126 [gi 139950 27 1476 [gi 1319950 28 1476 [gi 131784 29 1476 [gi 131885 20 1416 [gi 1524193 20 1314 [gi 1524193 215 1415855 217 1415855	35 setive codin	match gene	P47K [Pseud		Ribosomal	Nist Lacto	phosphoribo pir H29326 6.3.3.1)	orff Lacto	arginine pe	transport	function ur	orf-1; nove	glycine be	nitrate re		2-oxogluta	nitrite re	3-phosphog	pyruvate f	hypD gene	large subu	large subu	Clp-like A	leus prote	Respirator	unknown (M	deoxyribos	gluconate
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40 and 40	match	91 216854	91/143177	1911786163	91 805090	91 143371	91 1370207	91 476160	01 153898	gi 1064795	[gi] 1407784	[gi 1524397	pir S52915 S529	191 169429	gi 143267	191 710020	191 450686	91 1204436	191 1149662	19: 11339950	911339950	191 871784	pir C36889 C368	191 1009366	21 1524193	gi 415855	91 143015
2 2 457 1153		Stop (nt.)	8886	578	1124	352	1426	2825	421	3241	374	3987	401	202	385	286	212	332	314	220	411	326	476	270	401	312	334	341
	45	<u>:</u>	10106	1153	 -	-	2457	3448	-	-	-	:-		1 357	1 768	570		514			107	607		536	159	809	~	_
		-	9	-	-	-	~	-	-	8	-	-	-	; –	<u>:</u> —	<u> </u>	-	-	-	-	! –	-	-	-	<u>:</u> —	<u> </u>	-	-
05 05 05 05 05 05 05 05 05 05	50	Contig	352	412	1 483	916	\$25	538	0.5	\$	683	816	2929	75.62	2940	2946	2999	3022	3064	3083	3126	3181	3345	3718	3724	3836	1941	4

TABLE 2

	length (nt)	198	237	1212	1047	252	006	198	1464	1548	987	348	885	1557	924	628	456	375	963	792	435	657	1653	309	
5	* ident	99	- 85	99	72	57	63	53	88	6.5	1 69	1.1	50	61	95	09	1.1	56	63	63	- 88	52	29	-	
10	E is	79	- 65	78	82	78	78	78	96	78	18	78	78	78	78	94	78	- BL	78	92	7.8	78	9.6	78	
75 Skoteins					codon) [Bacteriophage SP02] gi 579197 Bacteriophage SP02] pir A21498 DJBPS2 DNA- 7.7) - phage P02			_					1		-							(Bacillus subtilis)	deoxyribodipyrimidine photolysse (Bacillus subtilis) pir hall92 hall92 avrB protein - Bacillus subtilis sp P14951 UVRC_BACSU EXCINUCLEASE ABC SUBUNIT C.	partial.], ene	
00 Similar to known p					start codon) [Bacterlophage SP02] 48) [Bacterlophage SP02] pir A2145 2.7.7.7) - phage P02		ia coli)			sus)									us mutans]	r1118}		8 subunit (Bacill) sase (EC 1.3.99.1)	printidine photolysse (Bacillus subtilis) pir[AJ7192 AJ7 Bacillus subtilis sp[P1495][UVRC_BACSU EXCINÚCLEASE ABC	ince from ECOR63,	· · · · · · · · · · · · · · · · · · ·
55 G Tovel proteins		haemolyticus)	vulgaris)	(Bacillus subtilis)	tg start 1-648) [(EC 2.7.	llus subtilis!	synthetase (Escherichia coli)	permease (Escherichia coli)	[8	(Staphylococcus carnosus)	9		cillus subtilis)	lactis	[Klebsiella oxytoca]	11141	:11is)	ans]	rase [Streptococcus mutans]	ase (Bacillus sub	capsulatus	e cytochrome b-5 cinate dehydroger	photolyase (Bacil	0 insertion seque	
OS 22 OS	ch gene name	unknown (Staphylococcus haemolyticus)	TVG [Thermoactinomyces vulgaris]	DNA topoisomerase I (B	CNA polymerase (gene L) t SP02 DNA polymerase (as directed DNA polymerase	function unknown (Bacillus subtilis)	NH3-dependent NAD synt	glutamate permease (6s	Yqiv (Bacillus subtilis)	gene product	YqhJ (Bacillus subtilis)	(Escharichia coli)	stage 0 sporultion (Bacillus subtilis)	putative (Lactococcus lactis)	gene product	unknown [Bacillus subtills	putative (Bacillus subtilis)	lams (Emericella niculans	Mannosephosphate Isomerase	cysteinyl-tRNA synthetase (Bacillus subtilis)	wn (Rhodobacter	succinate dehydrogenase cytochrome b-558 eubunit pir A29843 DEBSSC succinate dehydrogenase (EC 1. Bacillus subtilis	eoxyribodipyrimidine protein - Bacillus su C.	[Escherichia coli IS200 insertion sequence from ECOR63, partial.], ene product [Escherichia coli]	
- Putative	match	unkn	5 <u>7</u>	DNA	SPO	Cund	CHN	glut	Vaiv	91CA	Vah	nika	stag	puta	Cyang	Luku	puta	14HB	Mari	cyst	unku	succi pir	deox oro	Esc	
40 an	natch	92/2201 16	91 460689	94 520753	91 216151	91 1064787	91 146974	191 290503	191 1303941	91 1072418	191 (1212729	91 466612	91 467380	91 149426	91 854234	191 405622	10: 11256636	91 168060	91 451216	191 289284	191 1353874	d1 143525		011139596	
45	Stop (nt)	502	238	1213	1220	1089	17702	3138	116221	12067	5812	4376	110942	10130	465	1001	1 2260	1377	6163	795	1 2315	3623	\$557	3523	•
45	Start (nt)	406	7	~	2266	1340	6803	1 2941	117684	10520	679A	4029	10058	B574	1 3540	1888	1 1805	132	1.125	1586	2749	4279	7209	1831	
	ORF ID	-	-	-	~	-	<u>_</u>	-	135	===	-	-	6	=	9	-	_	-	-	-	-				
50	Contig	4501	4612	7	œ	6	32	36	2	52	99 –	- 63	126	102	112	134	067 -	= -	991	186	S61	661	199	22	
								. —	_			_		_											

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

aureus + Putative coding regions of novel proteins similar to known proteins

Contig	08. TD	Start (nt)	Stop	match	metch gene name	s im) ident	length (nt)
662	-	1 1865	2149	91,467439	temperature sensitive cell division [Bacillus subtilis]	78	63	285
326		134	1315	91 1142979	ORF) is homologous to an ORF downstream of the spot gene of E.coll, RFJ (Becillus stearothermophilus)	96	55	420
1 352	-	1 3714	1 3944	91 349050	actin 1 (Pneumocystis carinii)	78	42	231
352	<u></u>	7592	6093	91 903587	NADH dehydrogensse subunit \$ [Becilius subtilis] sp[93975]NDH_BACSU NADH DEHYDROGENASE SUBUNIT \$ [EC 1.6.5.3] NADH-UBIQUINONE OXIDOREDUCTASE CHAIN \$1.	86	86,	1500
376	-	~	- 583	[91 551693	dethioblatin synthase (Bacillus sphaericus)	78	34	582
424	- 2	1595	1768	91 1524117	alpha-acetolactate decarboxylase [Lectococcus lectis]	78	89	174
439	-	1914	988	101 1030068	NADIPJH oxidornductase, isoflavone reductase homologue (Solanum tuberosum)	78	63	927
1 558	-	1 762	295	91 1511588	bifunctional protein [Methanococcus jannaschii]	78	9	201
670	-	11152	1589	91 1122759	unknown (Bacillus subtilis)	78	79	438
717	-	1 64	1 732	01 113460	17 kd minor sigma factor (rpof, sigB; ttg start codon) (Bacillus ubtilis)	78	57	699
#1#	-		_ 368	91 1377833	unknown (Bacillus subtilis)	78	65	996
981	-	1381	692	91 143802	Gerc2 Bacillus subtilis	B.L.	P9	069
566	- 2	978	1 727	QI 296947	uridine kinase (Escherichia coli)	78	64	252
1045	-		- (0)	91 1407784	orf-1; novel antigen [Staphylococcus aureus]	78	19	399
1163	-	368	1.86	[gi 410117	Ulaminopimeleta decarboxylase (Dacillus subtilis)	7.8	*	183
1612	-	1 794	1 399	51 215098	excisionase (Bacteriophage 154e)	7.8	9	396
1 2933	-	~	181	1204436	pyruvate formate-lyase (Haemophilus Influenzae)	92	3ر ا	180
1 3041	-	6:1	1317	91 624632	GltL {Escherichia coli}	78	53	189
13581	-	105	6	1911763186	3-ketoacy1-coA thiolase (Saccharomyces cerevisiae)	9,	\$\$	297
1 3709	-	-	1 230	01 460689	TVG (Thermoactinomyces vulgaria)	78	58	228
3974	-	528	1 265	9: 558839	unknown (Becillus subtilis)	7.8	69	264
1 3980	-		407	191 39956		92	62	399
4056	-	647	354	gi 1256635	dihydroxy-acid dehydratasa [Bacillus subtilis]	78	\$5	294
7110	-	630	1 316	ptr 509372 5093	pir 509372 5093 hypothetical protein - Trypanosome brucei	82	62	215
4185	-	-	671	911133950	large subunit of NADH-dependent glutamate synthase (Plectonems boryanum)	78	88	177

Contig	ORF	Start (nt)	Stop (nt)	match acession	match gene name	e in	1 ident	length (nt)
4235	1	\$59	329	91 558839	unknown [Bacillus subtilis]	78 1	09	327
4052		241	302	91 (603768	Hurr protein, imidazolone-5-propionate hydrolase (Becillus subtilis) gi 601768 Hurr protein, imidazolone-5-propionate hydrolase Bacillus subtilis]	82	£0	240
4368	-	612	1 307	91 1353678	heavy-metal transporting P-type ATPage (Proteus mirabilis)	78	59	306
1 4461	1-	428	1 216	91 1276841	purpurea)	78	36 •	213
4530	-	474	238	19956	[IIGIc [Bacillus subtilis]	78	65	237
	7	1 2969	1 2073	101 1109684	Prov [Bacillus subtilis]	77	96	897
21	- 2	1 2426	1965	gi 467335	ribosomal protein 19 (Bacillus subtilis)	77	59	462
1 27	-	~ _	1 388	91 1212728	Yqhi (Becillus subtilis)	77	63	387
66	~	1 590	1252	191 40054	phenylalanyl-tRNA synthetese beta subunit (AA 1-804) (Bacillus btilis)	1.4	09	663
42		2704	2931	91 606241	10S ribosomal subunit protein S14 [Eacherichia coli] sp P02370 RS14_ECOLI	1.	9	228
ş 	=	15459	116622	qi 297798	mitochandrisi formate dehydrogensse precursor (Solanum tuberosum) pir J02272 J022772 formate dehydrogensse (EC 1.2.1.2) precursor, itochandrisi - poteto	۲.	\$\$	1164
100	-	4562	4002	91 1340128	ORF1 Staphylococcus aureus	11	54	561
102	8	1 5378	5713	91/1311482	acetolactate synthase (Thermus aquaticus)	77	57	336
109	- 1	4742	5383	1911/110637	Unknown (Becilius subtilis)	7.2	56	642
1117	-	2	1228	191 1237015	ORF4 (Becillus subtilis	7.7	S	1227
124	100	8323	1 7688	g1 405819	thymidine kinase (Bacillus subtilis)	7.1	63	636
147	1-	1146	988	191 849027	hypothetical 15.9-kDa protein (Bacillus subtilis)	7.	37	162
152	<u> </u>	7354	1953	91,1205583	speraidine putrescine transport ATP-binding protein (Haemophilus influenzae)	۲۲	55	600
169	-	1004	1282	gi 473825	elongation factor EF-Ts' (Escherichia coli)	۲۲	5.8	279
184	-	380	11147	191 216314	esterase [Bacillus stearothermophilus]	7.1	09	768
681	-	3296	3868	[91 853809	ORP3 (Clostridium perfringens)	7.1	48	573
193	-	1 132	290	gi 130378B	YqeH (Bacillus subtilis)	7.	3	159
195	-	8740	9414	91 1499520	N. jannaschii predicted coding region MJ0798 [Methanococcus jannaschii]	7.	7	327
1 205	-	5428	5204	91 216340	ORP for adenylate kinase [Bacillus subtilis]	- 77	19	225

TABLE 2

		length (nt)	294	171	939	732	474	363	702	186	431	1029	909	1293	903	1071	522	1020	708	564	1347	\$10	17.1	261
5		• ident	62	47	*	57	61 .	32 –	- 55		57	09	- 09		- 88	65	5.7	62	61	63	9	- 79	88	- 69
10	•	e e	77	1,1	77	۱ در	1.4	11	1,1	-	1.1	1.4	1, 1,	£	۱ در	17.	1.1	77	1 - 1-	77		- 1.1	1	11.
15	oroteins				pyogenes					pir S48605 S48605 (fragment)				EC 1.1.1.38) (Bacillus stearothermophilus) pir A13307 DEBSXS ogenaso oxaloacetate-decarboxylating) (EC 1.1.1.38) - othermophilus		1		codon) Bacillus			SB (EC .3.2.8)			mophilus
20	- Pulative coding regions of novel proteins similar to known proteins				(Streptococcus py	reus]				capricolum)				alic ensyme (EC 1.1.1.38) (Bacillus stearothermophilus) malate dehydrononaso oxaloacetate-decarboxylating) (EC Bacillus tearothermophilus	subunit (Symechococcus PCC7942)	bc1118]	3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	glycinamide synthetase (PUR-D; gtg start codon) Bacillus			UDP-N-accey) muramere-laning ligase (Becilius subtilis) sp[p40778 murc_bacsu udp-n-acetylmuramatealanine Ligase (udp-n- acetylmuranoyl-l-alanine strthetase) (Fraghent).		ceticus]	- Bacillus stearothermophilus
25	novel proteins		Ribosomal Protein L23 (Bacillus subtilis)	-	fibranectin/fibrinogen-binding protein (Streptococcus	orf-1, novel antigen (Staphylococcus sureus)	[18]	Sus scrofa]	118]	ATP-bind, pyrimiding kinase (Mycoplasma hypothetical protein - Mycoplasma capri		la coli]	llus subtilis)	18) (Bacillus st kaloacetate-deca ilus	s subunit (Symec	(aa 1-462) (Bacillus subcilis)		ide synthetase ([Bacillus subtilis]	(Bacillus subtilis)	LYI MUKAMACO-Alaning ligase (Becillus 8 kurc_bacsu udp-n-acetylmuramateal acetylmuranoyl-l-alanine synthétase)		gene product [Acinetobacter calcoaceticus]	EC 6.1.1.1) - Be
30	ling regions of	9896 9896	Protein L23 (E	ONFX8 (Bacillus subtilis)	in/fibrinogen-t	vel antigen (St	unknown (Bacillus subtilis)	unconventional myosin (Sus scrofa)	unknown [Bacillus subtills]	pyrimidine kir ical protein -	pheB (Bacillus subtilis)	ruvB protein [Escherichia coli]	protein-dependent (Bacillus		carboxyltransferase beta		Yman (Dacillus subtilis)	lbosyl glycinam	olase [Bacillus	ease III (Bacil	DEYL MURAMATO-A 78 KURC_BACSU UI ACETYLMURANOYL	(Bacillus subtilis)	e product [Acin	tyrosine-tRNA ligase (EC 6.1.1.1)
35	II Ative cod	match 98	Ribosomal	ONFX8 (Ba	fibronect	or f-1; no	unknown	unconvent	unknown	ATP-bind, pyr hypothetical	pheB (Bac	ruvB prot	protein-c	malic enzyme malate dehyd Bacillus tea	carboxylt	fumarase (citG)	Ymon (Dac	phosphoribosyl subtilis	transketolase	endonuclesse III	UDP-N-ace sp[P407] (UDP-N-	Yqhw (Bac	•	: - :
40	S. aureus - Pu	match	gi 786155	91 410132	gi 496254	91 1407784	91 467408	91/516155	191 467436	91 950071	1911508980	91111783	191 1070015	91 143165	91 1399855	01/39844	91/1154634	gi 143374	91 1405446	961 533099	91/556014	91 1303912	gi 432427	pir A01179 578S
		Stop (nt)	14502	2084	4416	966	1346	2299	1 769	1283	1121	4863	4797	1391	1 2443	4596	\$68	1021	708	1 565	1940	3570	1472	295
45		Start (nt)	14795	1908	3478	1 267	1619	2661	89	1468	2741	1 3835	5403	66	1541	9995	4	2	-	11128	594	4079	1302	2
		8 <u>0</u>		5 -	2	-	~	-	-		- 2		-		-	- 2	-		-	-	7	2	-	-
50		Contig	1 205	1 211	217	232	1 233	243	1 299	301	302	302	307	313	1112	1321	134	365	374	385	392	405	1 487	225

5	
10	
15	
20	
25	
30	
35	
40	
45	

55

Contig	ORF	Start (nt)	Stop (nt)	match	match gene name	s in	1 tdent	length (nt)
523	~	1587	1351	91 1387979	444 Identity over 102 residues with hypothetical protein from Synechocystis sp. accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transferases; two potential membrane-spanning helices [Bacillus subtil	7	æ	762
536	~_	983	612	oi 143366 -	adenylosuccinate lyase (PUR-B) (Bacillus subtilis) pir (C29326 W2BSDS adenylosuccinate lyase (EC 4.3.2.2) - Bacillus ubtilis	"	19	372
548	7	139	872	91 143387	aspartate transcarbamylase (Bacillus subtilis)	7.6	26	534
1 597	-	2	481	91 904198	hypothetical protein (Bacillus subtilis)	7.2	33	480
633	-	1747	6767	191 387577	ORFIA [Bacillus subtilis]	7.7	64	435
642	-	88	360	gi 46971	epip gene product (Staphylococcus epidermidis)	11	19	276
659	-	125	1219	91 1072381	glutamyl-aminopeptidase [Lactococcus lactis]	7.7	62	1095
029	-	1587	1820	91 1122760	unknown (Bacillus subtilis)	7.7	88	234
789	-	2	391	91 1377823	aminopeptidase (Bacillus subtills)	7.7	65	390
1 815	-	01	573	1910111101861	YqgN (Bacillus subtilis)	7.7	49	564
	_	-	522	gi 1204844	II. influenzaa prodictod coding region H10594 (Haemophilus influenzae)	11	\$\$	225
1 1083	-	_	188	91 460828	B969 [Saccharomydes cerevisiae]	7.7	99	186
1942		415	500	91 160047	p101/acidic basic repeat antigen (Plasmodium faltiparum) pir A29212 A29212 101K malaria antigen precursor - Plasmodium alciparum (strain Camp)	ננ	98	207
1 2559	-	-	<u></u>	91 1499034	M. jannaschil predicted coding region MJ0255 [Nethanococcus jannaschil]	77	61	171
2933		243	5	91 42370	pyruvate formate lysse (AA 1-760) [Escherichia coli] ir 501788 501788 formate C-ecetyltransfersse (EC 2.3.1.54) - cherichia coli	7.1	72	159
2966	-	95	262	91 1524397	glycine betaine transporter OpuD (Bacillus subtilis)	7.7	45	237
2976		614	300	91 40003	oxoglutarate dehydrogenase (NADP» (Bacillus subtilis) p[P23129]0D01_BACSU	7.1	9	306
1 2979	- 2	678	400	91 1204354	spore germination and vegetative growth protein (Haemophilus influenzae)	7.7	19	279
298R		601	7.6	91 438465		77	\$\$	225
2990		331	167	491 142562	ATP synthase epsilon subunit (Bacillus megaterium) pir B28599 PWBSEM H+- transporting ATP synthase (EC 3.6.1.34) psilon chain - Bacillus megaterium	77	3	165
1 3032	-		389	91 488430	alcohol dehydrogenase 2 [Entamoeba histolytica]	77	95	387
3057	-	-	195	91 469764	mack gene product [Rhizobium meliloti]	77	80	195
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

\mathtt{TABLE} 2

Cont ig ORP	ORP	Start Int)	Stop (nt)	match	netch gane name	a sim	1 ident	length	
4008		726	400	91 603768	Hut! protein, imidazolone-5-propionate hydrolase (Becillus subtilis) g1 603768 Hut! protein, imidazolone-5-propionate hydrolase Bacillus subtilis)	£	25	327	
4048	-	703	386	91 216278	Gramicidin S synthetase 1 [Bacillus brevis]	1 74	35	318	
4110	-		368	5 5529	intrate reductase alpha chain - Bacillus subtilis (fragment)	1.1	61	366	_
4115	-	-	348	191 517205	67 kDa Myosin-crosoreactive streptococcal antigen (Streptococcus yogenes)	۲۲	65	348	
4225	-	290	1 297	[gi 1322245	mevalonate pyrophosphate decarboxylase (Rattus norvegicus)	77	09	294	
4611	7	767	1 327	191 508979		77	-25	168	
4668	1	361	182	pir S52915 S529	intrate reductase alpha chain - Bacillus subtilis (fragment)	77	61	180	
1 25	-	7	1627	gi 1150620	HinsA (Streptococcus pneumoniae)	96	85	1626	
£	2	1488	7552	pir A43577 A435	regulatory protein pfoR - Clostridium parfringens	96	57	1050	
2	-	2962	1 4041	91 1161061	diaxygensse [Hethy]obacterium extorquens]	76	62	1080	
99	- 50	27389	127955	91 467402	unknown [Bacillus subtilis]	76	96	1 295	
52	12	12046	112219	91 1206040	weak similarity to koratin (Genorhabditis elegans)	76	0\$	174	
- 6	- 2	1062	1 2261	91 475715	acetyl coonsyme A acetyltransferase ithiolass) [Clostridium cetobutylicum]	16	57	1200	-
66	-	818	1624	91 467422	Junknown (Bacillus subtilis)	76	62	R07	
86	-	2962	3228	101 897793	y98 gene product [Padlococcus acidilactici]	16	52	264	
86	-	5925	6326	91 467427	methionyl-tRNA synthetase (Bacillus subtilis)	76	53	405	_ ^
, 0,		1322	1885	gi 216151	INNA polymersse (gene L; ttg start codon) (Becteriophage SPO2) gi[379197 SPO2 DNA polymersse (as 1-648) (Bacceriophage SPO2) pir A21498 DJBPS2 DNA-directed DNA polymersse (EC 2.7.7.7) - phage PD2	91	63	564	
124		8134	7055	91/853776	peptide chain release factor 1 Bacillus subtilis pir 555427 855437 peptide chain release factor 1 - Bacillus ubtilis	92	88	1080	
164	-	2832	11161	91 1204976	proly -thm synthetese (Heemophilus influentee)	76	ß	480	
168	-	2617	1841	94 (1177253	putative ATP-binding protein of ABC-type (Bacillus subtilis]	76	88	111	
189	~	163	1 688	gi 467384	unknown [Bacillus subtilis]	76	63	726	
235		2253	3518	101 142936	[Goly-polyglutamate synthetase [Bacillus subtilis] pir 840646 840646 fold - Bacillus subtilis	91	53	1266	
236	-	335	925	gi 1146197	putative (Bacillus subtilis)	76	24	591	
12	-	5323	1 5541	91 1279261	[F13G3.6 (Ceenorhabditis elegans)	91	•	219	

	:		-	;	:	<u>.</u> :	_:	:		-	_;	<u>.</u>	= :		= ;	-	= :	258	25.	225	183	579	243	264	- BE	387	
5		length (nt)	906	744	1014	1035	1293	1236	222	528	471	900	1503	723	498	720	624	- 25	7	22		25	ř	~		Ž	
) ident	69	09	\$6	. 69	7.2	88	61	61	90	\$5	57	36	19	*	52	42	55	58	67	98	86	52	38	9	
10		E in	16	92	76	1 96	92	96	76	96	76	76	16	92	92	92	92	92	9,	16	97	94	92	94	92	1 76	
15	oreins		2 5 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	552382 852382	acilius			n; putative	1	(Bacillus ubtilis)				Streptococcus							PURA_BACSU	us jannaschii}			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
20	- Futalive coding regions of novel proteins similar to known proteins	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	us jannaschill	Bacillus subtilis pir 552382 552382 - Bacillus ubtilis	6-phospho-1-fructofinase (qtg start codon; EC 2.7.1.11) [Bacillus tearothermophlius]		co111	19.01 identity to the Escherichia coli 31 ribosomal protein; putative [Bacillus subtilis]	gene name mgt; CG Site No. 497 (Escherichia coli) 8 S56468 mgtA protein - Escherichia coli	EC 2.3.1.61) [Bac				pyrogenic exotoxin type C (speC) precursor &				rus)			adenylosuccinate syntherese (Bacillus subtilis) sp P29726 PURA_BACSU ADENYLOSUCCINATE SYNTHETASE (EC 6.3.4.4) IMPASPARTATE LIGASE).	M. Jannaschil predicted coding region MJ1322 (Methanococcus	leprae)				
25	vel proteins si	6 6 7 1 1 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	dihydrodipicolinate synthase [Methanocu.cus jannaschil]	subunit (gtg start codon		e [Escherichia	erichia coli Si	iternate gene name mpt; CG Site No. 497 [Escheric] pir SS6468 SS6468 mgta protein - Escherichia coli	transsuccinylase (odhB)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	Cerevisiae)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	cotoxin type C			sp.]	major capsid protein (Human cytomegalovirus)	llus subtilis)	lus subtilis]	se (Bacillus su	oding region MJ	[Mycobacterium leprae]	•	(81)	ella typhimurium	
30	regions of nov	name	olinate synthag	putetive membrane spanning subunit probable membrane spanning protein	fructokinase (philus)	ichia colij	deacetylas	ty to the Esch	so name mgt; C		YqfG [Bacillus subtilis]	ORF YKL027w [Saccharomyces	AlsT Dacillus subtilis	al pyrogenic ex	Muts (Bacillus subtills)	Synechococcus sp.]	OppD homologue (Rhizoblum sp.)	d protein (Huma	hypothetical protein [Bacillus subtilis]	gene product (Bacillus	inate synthetas CIMATE SYNTHETA	il predicted co	No definition line found	YqkG (Bacillus subtilis)	(Staphylococcus aureus	transport protein (Salmonella	
35	utalive coding	match gene name	dihydrodipic	putetive mem	6-phospho-1-fructok	yesE [Escherichia coli]	acetylornithine	19.01 identity to th	alternate ge pir S56468	dihydroliposmide	YqfG [Bacil]	ORF YKLO27W	Alst [Bacil]	streptococcal pyogenes	Muts (Bacil	i .	Oppd homolog	major capsie	hypothetica	spoof gene	adenylosucc ADENYLOSUC	H. Jannasch	No definiti	YqkG (Bacil	CapJ (Staph	transport protein	
40	S. anreus .	match	gi 1510348	91 666982	01 143312	1911405956	191 396304	9111146215	191 537084	91 143268	91 1303823	gi 186025	191 1405464	91 153821	91 1002520	gi 885934	01 1486422	91 330613	B1 904199	191 40177	91 142443	1911151133	1911467154	91 1303984	191 506706	51 153898	
		Stop (nt.)	4585	1794	4624	1036	1701	1907	222	4858	4492	100	2854	566	557	235	798	290	3302	228	206	580	244	366	182	785	
45		Start	5490	1051	3611	- ~	409	672		4331	4022	~	4356	273	1054	16	175	547	-	452	77	1158	486	529	361		
		÷	· i —			-	-			-	- i	-	; -		_	-	7	~	-	_		_	-	-	-	-	
50		Contig ORF	263		312	343	-	358	128	379	-	411	-	546	588	591	602	619	999	677	962	978	1 66	1563	2184	2572	

	length (nt)	372	162	276	324	162	159	378	312	399	372	315	246	312	231	189	921	189	1992	963	1038	273	873	204	261	1000
5	. Ident	65	47	53	61	92,	3	\$5	52	59	99	95	48	47	5	70	59	36	57	- 55	26	45	9	5	21	61
10	E io	76	92	76	76	16	76	76	9.	96	1 76	96	96	91	16	92	25	27	25	- 25	25	75	52	75	٤٢	75
15 su 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8						596 A38596								nems boryanum]		0 3 3 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1) gi 1303923 RecN	
S S S S S S S S S S S S S S S S S S S		11.8	hypothetical protein (SP:P42404) [Mathanococcus jannaschil]		bt1118]		(Zes mays) pir A38596 A38596 .7.1) - aize		ferripyochelln binding protein [Methanococcus jannaschii]		RAGMENTS) .			lenterum!	large subunit of NADM-dependent glutamate synthase (Plectonema boryanum)					mes eutrophus)					recombination procein (ttg start codon), (Bacillus subtilis) gi 1303923 RecN (Bacillus subtilis)	lus influenzael
5 9 vel proteins s		Bacillus subti	42404) Methan	; ; ; ; ; ; ; ;	e (Bacillus su	_	mate synthase doxin) (EC 1.4		tein (Methanoc	6.]	ACE PROTEIN (F	_	sapiens!	actobacillus p	ndent glutamat	octer xylinum)	_		-	se B (Alcaligenes		es pompe]	[Synechococcus sp.]	lus subtilis!	start codon),	rase Raemophi
30 30 tegions of no	name	nitrite reductase (nir8) (Bacillus subtilis)	l protein (SP:P	lus subtilis]	ornithine acetyltransferase (Bacillus subtilis)	ORF_0401 [Escherichia coli]	erredoxin-dependent glutamate synthase (Zea s glutamate synthase (ferredoxin) (EC 1.4.7.1)	IIGIC (Bacilius subtilis)	11n binding pro	permease [Bacillus subtilis]	HETHICILLIN-RESISTANT SURFACE PROTEIN (FRACHENTS)	ATPase [Lactococcus lactis]	Nenkes disease gene (Homo sapiens)	D-lactate dehydrogenase (Lactobacillus plantarum)	it of NADH-depe	cellulose synthase Acetobacter xylinum	ORF_0294 [Escherichia coli]	OTCase [Escherichia coli]	unknown (Bacillus subtilis)	ine sulfhydrylase	Plax [Bacillus subtilis]	unknown (Schizosaccharomycas pombel	porter	sporulation protein (Bacillus subtilis)	on protein (ttg subtilis)	ornithine carbamoyltransferase [Haemophilus influenzae]
S G utative codin	astch gene name	nitrite red	hypothetica	Alst (Bacillus	ornithine a	ORF_0401 (E	[erredoxin-dependent glutamate synthase	IIGle (Baci	terripyoche	permease IB	ř	ATPASE (Lac	Nenkas dise	D-lactate d	large subun	cellulose s	ORF_0294 IE	OTCase [Esc	unknown (Be	0-acetylserine	Plsx [Bacil	unknown (Sc	ate	sporulation	recombination protes	ornithine c
40 · sneight	match	91 710020	91 1511251	91 1405464	91 408115	91 882705	91 168477	91 39956	1011110398	91 143016	sp P80544 HRSP_	91 296464	91 987255	91 216746	91 1339950	gi 560027	01 882532	191 40960	91 467336	91 1296433	9111502419	91 1256517	91 48972	gi 113607	91/143402	911204847
	Stop (nt)	00+	316	279	326	174	161	379	314	400	386	331	249	313	347	191	_	952	3944	17310	1393	6037	!	3677	16590	2568
45	Start	29	377	554	649	=		2		798	757	1.1	494	~	477	1 671	5257	164	5935	18272	2356	5765	Ţ	3474	16850	3572
	08.0	1-	1	-	-	-		-	-	==	-	-	<u>-</u>	<u>-</u>	=======================================	<u>-</u>	- 2	-		# <u>-</u>	-	=	=	1	2	
50	Contig	2942	1 2957	1 2980	1 3015	3124	8718	3789	3892	3928	4159	4204	4398	4506	4546	1 4596	-	•	173	23	- 25	96	97	15	2	7.

Contig ORF	01	Start (nt)	Stop (nt)	metch acession	match gane nome	e is	• ident	length (nt)
£		4628	3930	91 143368	phosphoribosylformyl glycinamidine synthetase I (PUR-L; gtg start odon) [Bacillus subtilis]	75	63	669
85	<u>~</u> _	5588	4878	91 143367	phosphoribosyl aminoidasole succinocarboxamide synthetase (PUR-C; tg start codon) (Bacillus subtilis)	72	\$5	5
85	-	6625	7530	91 1303916	Yqia (Bacillus subtilis]	75	53	906
R.	2	2340	3590	91 1064813	homologous to sp:PHOR_BACSU [Bacillus subtilis]	75	36	1251
8,	9	6084	9689	9111064810	function unknown (Bacillus subtilis)	75	19	813
108	~	1844	1503	91 1001824	Inypothetical protein (Synechocystis sp.)	75	51	342
91	2	1 1748	1272	91,1147593	putative ppGpp synthetase Streptomyces coelicolor	75	\$5	1980
=======================================	-	4153	5252	91/11/7251	CIWD gong product [bacillus subtilis]	57	75	900
120	=	111266	10649	9111524394	ORF-2 upstream of gbsAB operon [Bacillus subtilis]	75	55	618
121	5	2050	4221	91 1154632	NrdE [Becilius subtilis]	75	24	2112
124	-	283	5	191 405 622	unknown (Bacillus subtilis]	75	56	143
128	-	81	1139	91 143316	[gap] gene products [hacillus megaterium]	75	49	1059
130	œ	5760	5903	[gi 1256654 	54.84 identity with Neisseria gonorrhoese regulatory protein PilB; putative [Bacillus subtilis]	27	62	7
136	7	4480	3185	gi 467403	seryl-tRNA synthetase (Bacillus subtilis	75	54	1296
191	01	5439	5798	191 1001195	liypothetical protein (Synechocystis sp.)	1.8.	\$	360
27	-	3819	2995	[01]755153	ATP-binding protein (Bacillus subtilis)	35	52	825
179	-	2024	1107	91 143037	porphobilinogen desminase (Bacillus subtills)	75	58	918
195	2	9529	9374	5 125745 YCFn_	HIVPOTHETICAL PROTEIN IN PURB S'REGION (ORF-15) (FRAGMENT).	25	09	156
200	-	2605	4596	91 142440	ATP-dependent nuclease (Bacillus subtilis)	- 51	95	1992
206		0069	5620	91,1256135	YbbP (Becillus subtilis)	75	53	1281
216	~	651	389	gi 1052800	unknown (Schizosaccharomyces pombe)	1.5	58	231
229		53	847	91 1205958	branched chain aa transport system II carrier protein (Haemophilus influentee)	2.	64	919
230	~	818	1714	191 (971337	initrice extrusion protein (Bacillus subtilis)	75	53	1197
231	-	1 2240	1122	q: 1002521	Huth (Bacillus subtilis)	15	54	1119
233	_	1314	1859	91 467405	unknown (Becillus subtilis)	75	59	546
	1							

Contig ORF	10 CE	Start (nt.)	Stop (nt)	match acession	sackth gene name	e s	* ident	Jength (nt.)
269	-	325	164	19111511246	component A2 [Methanococcus janna	25	20	162
292	-	1389	1772	19111511604	M. jannaschii predicted coding region HJ1651 (Methanococcus jannaschii]	27	46	919
304	-	1773	1 2261		surfactin (Heemophilus influentee)	75	55	689
312	-	2437	1 3387	01 285621	undefined open reading frame (Bacillus stearothermophilus)	25	62	951
216	2	4622	6403	91 1041097	Pyruvate Kinase (Bacillus psychrophilus)	1 75	57,	1782
319	-	353	1 877	qi 1212728	Vqhi (Bacillus subtilis)	25	\$4	\$28
320	- 5	4321	1 5031	191 1070361	OMP decarboxylase (Lactococcus lactis)	27	26	7117
320	- 9	5010	5642	gi 143394	OMP-PRPP transferase (Bacillus subtilis)	27	09	633
- 755	-	1519	2088	91 487433	citrate synthase II (Bacillus subtilis)	27	28	570
394	~	699	1221		matches PS00017: ATP_GTP_A and PS00101: EFACTOR_GTP; similar to longation factor G, TetH/TetO tetracycline-resistance proteins Escherichia coli!	25	51	603
423	<u> </u>	127	570	01 1183839	unknown [Pseudomonas aeruginosa]	25	88	101
5	- 2	1603	1929	0i 149211	acatolactate synthase [Klebsiella pneumoniae]	3ر ا	63	720
97	~	176	1540	gi 312441	dihydroorotase Bacillus caldolyticus	1 75	62	1365
486	-	494	249	91 1149682	potF gene product [Clostridium perfringens]	57	\$\$	246
196			194	gi 143582	spoiliEA protein (Bacillus subtilis)	2r	65	792
498	-	R24	1504	91 143328	phop protein (put.); putetive (Bacillus subtilis)	5۲	47	189
669	~	1061	1624	g1 1387979	14% identity over 302 residues with hypothetical protein from Synechocystis ep, accession D64006_CD; expression induced by environmental stress; some similarity to glycosyl transferases; two potential membrane-spanning helices (Bacillus subtil	25	ដ	\$9. \$9.
268		641	£\$	ptr JC4110 JC41	<pre>[rriscylglycerol lipsse (EC 3.1.1.3) 2 - Mycoplasma mycoides subsp. mycoides (SGC3)</pre>	۶۲	20	189
613	-	430	1 233	gi 330993	Legument protein (Saimiriine herpesvirus 2)	7.5	75	198
623	-	-	525	gi 529754	speC (Streptococcus pyogenes	56	43	\$25
642	5	1809	2474	01 1176401	EpiG (Staphylococcus epidermidis)	25	5.1	999
949	~	454	1 657	· gi 172442	ribonuclease P (Saccharomyces cerevisiae)	25	13.	1 204
657	-		35	91 882541	ONF_0236 (Eschorichia coll)	75	4,	345

5		length (nt)	480	171	480	180	159	958	165	316	153	156	135	162	399) B4	180	168	207	309	354	378	255	261
3		* ident	52	15	63	5.	34.	9	05	88	67	£.	63	52	54	54	57	ĝ	99	88	89	S	85	29
10		e sim	75	75	75	75	75	75	75	75	75	2T	75	75	75	7.5	75	25	7.5	\$t	75	75	7.5	25
15	roteins				(strain IL1403)						llus ubtilis!	cillus subtilis] - Bacillus subtilis Synthesis Sensor Protein Hor (EC	mochilus) RASE (EC 2.3.1.35) ORNITHINE (OATASE) / HINO-ACID ATE YATHA			luenzae)	_	pir S49111 S49111 aeruginosa (fragment)				- Inclucoccus lactis	_	
20	Putative coding regions of novel proteins similar to known proteins			protein (Haemophilus influentae)	- Lactococcus lactis subsp. lactis (strain IL1403)						1-glutamine-D-fructose-6-phosphata amidotransferase (Bacillus ubtilis	akaine phosphatase regulatory protein (Becillus subtilis) pir A27650 A27650 regulatory protein phoR - Bacillus subtilis sp P21545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PR 2.7.3).	ornithine scetyltransferase (Bacillus stearchermophilus) sp[007908 ARG_BACST GLUTAMATE N-ACETYLTRANSFERASE (EC 2 ACETYLTRANSFERASE) (ORNITHINE TRANSACETYLASE) (OATASE) / ACETYLTRANSFERASE (EC 2.3.1.1) (N-ACETYLGLUTAMATE TYTHA	influenzael		enzyme (Maemophilus influenzae)		aeruginosa) pir S49111 S49111 - icrocystis aeruginosa (fragment)	erichia colil	subtilis]	ilisi	4.2.1.33) chain louC -	lantarum]	1
25	l proteins s			(Haemophilu	tococcus lac	(Bacillus megaterium)	ulinodensj	-	ç	ocystis sp.}	sphate amido	ory protein V protein ph NE PHOSPHATA	(Bacillus st ATE N-ACETYL NE TRANSACET 1) (N-ACETY	B (Haemophilus influenzae)		sting enzyme	rchrophilus]		ferase (Esche	(Bac111	scillus subt		tobacillus p	sma hominia
30	regions of novel	1976	s subtilis]	istance protein	inactive - Lact	products (Bacillus	NFRA protein (Azorhizobium caulinodans)	(Bacillus subtilis)	illus caldovelox)	protein (Synechocystis sp.)	-fructose-6-phos	lkaline phosphatase regulatory protein [Be pir]A27650 A27650 regulatory protein phoR sp[P2)545 PHOR_BACSU ALKALINE PHOSPHATASE 2.7.31.	rnithine acetyltransferase (Bacillus stearothermophilus sp[q07908 ARCJ_BACST GLUTAMATE N-ACETYLTRANSFERASE (EC ACETYLTRANSFERASE) (ORNITHINE TRANSACETYLAS) (OATASE) ACETYLTRANSFERASE (EC 2.3.1.1.) (N-ACETYLGLUTAMATE YNTHE		s subtilis)	pyruvate formate-lyase activating	Pyruvate Kinase (Bacillus psychrophilus)	tase o aci	adenine phosphoribosyl-transferase (Escherichia coli	1 1	ATP synthase subunit beta (Bacillus subtilis)	3-isopropylmalate deliydrateso (EC subsp. lectis (strain IL1403)	D-lactate dehydrogenase (Lactobacillus plantarum)	deoxyribose aldolasa (Mycoplasma hominis)
35	utative coding	match gene name	YqhT (Bacillus	multidrug resistance	leud protein, inactive	[gap] gene pr	NFRA protein	o Factor	arginase (Bacillus	hypothetical	L-glutamine-D	alkaline phos pir A27650 A sp P23545 PH	ornithine acetyltra sp q01908 ARGJ_BAC ACETYLTRANSFERASE) ACETYLTRANSFERASE	excinuclesse AGC subunit	NutL [Bacillus subtilis]	pyruvate form	Pyruvate Kina	peptide synthe probable amin (SUB 144-528)	adenine phosp	Respiratory n	ATP synthase		D-lactate dah	deoxyribose a
40	S. aureus - P	match	191 1303901	g1 1205145	pir b36889 b368	gi 143316	gi 509411	91 143434	91 1276985	191 1001373	1011726480	91 143331	gi 304135	[91]1205488	[gi 1002521	19111204435	[gi 1041097	91 899317	gi 145294	[91 [1009366	gi 43391	 	191 216746	01 415855
45		Stop (nt)	481	393	482	180	160	\$60	329	252	232	374	137	163	00 7	187	180	212	345	310	401		259	333
70		Start (nt)	~	563	961	-	318	7111	493	7.5	384	219	271	324	867	07.6	-	&	139	618	£	~	٠	5
		ORF ID	_ _	7	<u>-</u>	_	-		-	~	-	~		-		-	_		~	_	_	-	-	-
50		Contig 1D	754	763	275	793	800	 	940	971	1059	1109	126R	1500	1529	3010	3105	7110	3139	3880	3911	1957	4005	4080 1
	-									-									-		-			

Contig	ORF	Start (nt)	Stop (nt)	match	י שפלכן לפטים טששים	mis .	1 irlent	length (nt)
1		-	·	191 149435	putative (Lectococcus lactis	75	57	339
4136		602	505	91 450688	IssiM gene of Ecopril gene product [Eacharichia coll) pic[S18437 S1847 hsdM protein - Eacharichia coli pir[S09629 S09629 hypothetical protein A - Escherichia coli (SUB 40-520)	25 	96	90°
4146		668	336	g1 48972		75	6	333
4237		664	374	91 (1339950	large subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	75	55,	291
4306	~		318	91 294260	major surface glycoprotein (Pneumocystis carinii)	75	6.8	246
55		715	359	91 1204652	methylated-DNA protein-cysteine methyltransfersse (Haemophilus influentae)	75	52	157
4552	-	620	216	911296464		75	55	309
38	6	37.6	6126	gi 443793	Nupc Escherichia coli	74	80	351
50	60	6910	6221	[g1 1239988	hypothetical protein (Bacillus subtilis)	7.	55	069
5.6	-	110770	12221	91 1000451		7.	57	1052
6.4	-	2266	1622	gi 41015	aspartate-tRNA ligase (Escherichia colil	74	52	645
99	9	5063	4848	91 1212729	Yqh. Bacillus subtilis	7.	47	216
63	81	14334	114897	gi 1510631	endoglucanase (Methanococcus jannaschii)	74	52	1 564
102	12	12561	13136	gi 149429	[mtative [dectococcus lactis]	74	67	576
102	- 9	13121	114419	gt 149435	[putative [Lactococcus lactis]	74	57	1299
108		4873	3902	91 39478	ATP binding protein of transport AfPases (Bacillus (irmus) ir S15486 S15486 ATP-binding protein - Bacillus (irmus p P26946 YATR_BACF1 HYPOTHETICAL ATP-BINDING TRANSPORT PROTEIN.	4	65	972
116	- 2	8574	1 7093	 gi 1205430	dipeptide transport system permease protein (Haemophilus influenzae)	74	69	1482
120		4342	4803	gi 146970	ribonucleoside triphosphate reductase [Escherichia coll] pir a47331 A47331 anaerobic ribonucleotide reductase - Escherichia oli	24	88	462
121	-	1965	1859	91 1107528	ttg start (Campylobacter coli)	14	15	621
128	-	2320	1531	91 143318	phosphoglycerate kinase [Bacillus megaterium]	72	57	1312
130	-	1 5237	1672	91 1256653	DIA-binding protein (Becillus subtilis	7	99	555
136	-	6745	5150	191 143076	histidase (Sacillus subtilis)	7.	88	1596
51	- 7	199	1368	191 (40773)	devk gene product [Anabaena sp.]	74	ţ.	105
							3	י אני

5	length (nt)	312	486	453	1008	561	1137	1188	507	1239	309	1050	855	612	1065	747	432	768	942	1191	234	- 656	552	1005	1293
	ident	52	*	46	\$5	. 19	63	52	79	55	42	\$4	S	57	09	95	59	\$6	52	51	99	62	52	88	\$1
10		74	74	*	**	~	74	74	7.4	74	74	7,4	7.	74	7.	74	74	74	74	74	96	74	74	74	24
<i>15</i>				_							_				s) olyzing) (EC lis			1	1 1 1 1 1 1 1		5364 A25364				is} C .4.3.8} -
G G G G G G G G G G G G G G G G G G G				philus	s influenzae)			(su	subtilis]	ubcilisj			[Haemophilus influenzae]		carbamyl phosphate synthetase (Bacillus subtilis) 845 carbamoyl-phosphate synthase glutamine-hydrolyzing) midine-repressible, small hain - Bacillus subtilis			lactisl			(AA 1-352) (Becillus subtilis) ir A25364 A25364 2.99.2) - Bacillus btilis		schii)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	glutamate-1-semialdehyde 2,1-aminotransferase (Becilius subtilis) pir D42728 D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC . Bocilius subtilis
o G G el proceins simil		subtilis]		Na/H antiporter system ORF2 (Bacillus alcalophilus)	hypothetical protein (SP:P25745) (Haemophilus influenzae)	lus subtilis)	_	malate thickingse (Hethylobacterium extorquens)	DNA binding protein (Bacillus	glycine betaine transporter OpuD (Bacillus subtilis)	panthem!]	ATP-binding protein [Haemophilus influenzae]		ubtilisi	fluteminase of carbamyl phosphate synthetase (Ba pir(E39845 E39845 carbamoyl-phosphate synthase 6.3.5.5), pyrimidine-repressible, small hain	stearothermophi lus		alpha-acetolactate synthase (bectococcus lac		homoserine dehydrogenase (Bacillus subtilis)	(AA 1-352) [Bacillus subt. 2.99.2) - Bacillus btills	1118)	glycyl-tRNA synthetase (Methanococcus jannaschii)	acid glycopratein (Streptococcus pyogenes)	, 1-aninotransfera te-1-semialdehyde
S O regions of nov	1888	gene product (Bacillus subtilis)	obium mellloti	er system ORF2	protein (SP:P2	ribosomal protein L6 [Bacillus subtilis]	putative (Bacillus subtilis)	inase (Methylot	1 DNA binding p	ine transporter	Chra protein (Brwinia chrysanthemi)	protein [Haemop	hypothetical protein (GB:U14003_302)	oxidasa (Bacillus subtilis)	of carbamyl pho E39845 carbamo) yrimidine-repr	it a (Bacillus	us subtilis}	actate synthas	ipa-58r gene product (Bacillus subtilis)	ehydrogenase [threonine synthase (thrC) (AA 1-3) threonine synthase (EC 4.2.99.2)	thioredoxin [Bacillus subtilis]	synthetase (He	otein (Strepto	semialdehyde 2 D42728 glutama btilis
58 58 state of the second of t	satch gene name	in	unknown (Rhizobium	Na/H antiport	[hypothetics]	ribosomel pro	putative Bac	malate thioki	single strand	glycine beta	CbrB protein	ATP-binding	[hypothetica]	quinol oxida	glutaminase pir E39845 6.3.5.51. p	ATPase subunit	YqhZ (Bacillus	alpha-acetol	ipa-58r gene	homoserine d	threonine sy threonine s	thioredoxin	glycyl-tRNA	acid glycopr	qlutamate-1-semial pirt D42728 D42728 Bacillus subtilis
40 S. aureus - S.	match	g1 580900	gi 642656	91 854656	91 1204430	g1;1044979	91 1146207	91 694121	91 467374	911524397	gi 809542	gi 1204872	191 1205579	gi 143398	91 143389	91 534857	 gi 1303915	gi 473902	191 413982	191 558494	gi 40211	91 142520	9 1499005	91 217040	91,143040
45	Stop	57611	2624	5612	10339	9059	6710	3334	2799	5313	180+	4665	999	862	1065	1128	1111	3270	942	1193	1407	734	320	1740	2791
	Start (nt)	!	3109	1 9909	11346	9619	5574	4521	3305	6551	4389	5714	1220	1473	-	382	1742	2503	7	-	1174	405	1 574	667	4083
50	108F	01	~	-	==	12	1-		9-	-	-	•	-	~			7	- 5	-	-		- 2	-	7	
	Contig	164	275	571	195	205	236	142	246	249	261	278	109	15	320	380	405	3	452	194	194	462	478	501	\$51

S. aureus - Putative coding regions of novel proteins similar to known proteins

Contig	ORF	Start (nt)	Stop (nt)	match	match gene namo	e is	, ident	length (nt)
1 573	-	-	477	[gi 1006605	hypothatical protein (Symechocystis sp.	74	45	477
965	- 2	1780	1298	91 1303853	YqgF (Bacillus subtilis)	74	55	483
619	~	2924	1758	91 1146237	21.4% of identity to trans-acting transcription factor of Sacharomyces cerevisiae; 25% of identity to sucrose synthase of Zea mays; putative [Bacillus subtilis]	ş.	\$	1167
659	-	1269	1595	gi 1072380	ORF3 [Lactococcus lactis]	74	62	327
724		55.	188	gi (143374	phosphoribosyl glycinamide synthetase (PUR-D, grg start codon) Bacillus subtilis:	74	S C	186
25	1 2	604	1209	191 153833	ORF1; putative (Streptococcus parasanguis)	74	20	909
936	-	~	259	gi 143458	ORP V (Bacillus subtilis)	74	4.1	358
989	-	445	724	91 1303994	YqkH (Bacillus subtilis)	74	9 +	282
1106	-	-	1 492	191146970	apiD gene product (Staphylococcus epidermidis)	74	24	492
5611	- 2	575	528	gi 413948	ipa-24d gene product (Bacillus subtilis)	7.	80 7	156
1234	-	1 817	452	91 495245	recj gene product (Ervinia chrysanthemi)	74	36	366
1 2586	-	~ -	238	01 1149701	sbcC gene product [Clostridium perfringens]	74	63	137
1 2959	-	1 798	004	91 1405454	aconitase [Bacillus subtilis]	74	9	399
1 2962	-	059	363	g1 450686	J-phosphoglycorate kinase (Thermotoga maritima)	74	5.8	288
2983	-	-	161	91 1303893	Yqht (Bacillus subtilis)	74	96	189
3018		7	223	g1;143040	glutomate-1-semialdehyde 2,1-aminotransferase [Bacillus subtilis] pir[D42728 D42728 glutamate-1-semialdehyde 2,1-aminomutase (EC .4.3.8) - Bacillus subtilis	7.4	%	222
3038	-	510	1 256	pir S52915 S529	Initrate reductase alpha chain - Bacillus subtilis (fragment)	74	57	255
3062	-	1 374	189	9411107528	ltg start [Campylobacter coli]	74	15	186
1 4035	-	184	360	91 1022725	unknown (Staphylococcus haemolyticus)	24	3	771
4045	-	1 607	1 305	gi 1510977	 M. jannaschii predicted coding region MJ0938 (Methanococcus jannaschii) 	74	7	303
4283	-	1 471	304	91 520844	orf4 (Bacillus subtilis)	74	5.8	168
6999	-	-	1221	191 580910	peptide-synthetase ORF1 [Bacillus subtilis]	74	54	219
4587	-	1 458	1 231	19111370207	orf6 [Lactobacillus sake]	25	65	228

						1	1	1
Contig	9 01 01	Start (nt)	Stop (nt)	match	match gene name	e sta	1 Ident	length (nt.)
6 603		29	214	91 116208	glucamate synthase large subunit (EC 2.6.1.53) [Escherichie coli] pir A29617 A29617 glutamate synthase (NADPH) (EC 1.4.1.13) large hain = Escherichia coli	74	09	186
1 4670	-	366	184	91 1256135	YbbF [Bacillus subtilis]	74	61	183
5	2	7953	1 7162	191 143727	putative [Bacillus subtilis]	7.3	42	792
=	-	2454	1372	91 166338	dihydroorotate dehydrogenase (Agrocybe aegerita)	73	55	1083
7		2024	1020	91 143373	iphosphoribosyl aminoimidazole carboxy formyl ormyltransfersse/inosine monophosphate cyclohydrolase (PUR-H(J)) Bacillus subtilis	٤٢	\$6	1005
5	<u></u>	5426	4635	01 1468939	meso-2,3-butanadiol dehydrogenase (D-acetoin forming) (Klebsiella pneumonies)	67	58	792
23	=	97571	116360	191 297060	ornithine cyclodeaminase (Rhizobium mellloti)	73	37	1020
29	7	692	1 1273	91 467442	stage V sporulation (Bacillus subtilis)	73	54	582
31	5	6467	4914	gi 414000	ipa-76d gene product (Bacillus subtilis)	73	55	1554
7.6	8	8698	7402	gi .429259	pepT gene product (Bacillus subtilis)	٤٢	59	1257
76	6	8677	17562	91,168367	alpha-isopropylmalate isomerase (put.); putative [Rhizomucor ircinelloides]	73	52	177
38	~	3931	1 4896	191 105885	yein (Escherichia coli)	٤٢ ا	58	946
4	-	5041	4238	gi 580895	unknown (Bacillus subtilis)	٤٢	53	R04
7	=	1767	8306	191 42009	moaB gone product [Escherichia coli]	۱3	20	240
45	_	2439	3080	gi 1109685	Prow (Bacillus subtilis)	13	42	642
54		14036	113794	gi 413931	ipa-7d gene product [Bacillus subtilis]	73	19	243
1 59	-	1430	2248	q1 147923	threonine dehydratase 2 (EC 4.2.1.16) [Escherichia coli]	- 67	53	819
59	<u>-</u>	1458	730	191 677944	Appr (Bacillus subtilis)	٤٢	56	729
80	~	27.61	1 860	gi 580932	murD gene product (Bacillus subtilis)	7.3	53	516
102	2	10124	11179	91 580891	1-isopropylmalate dehydrogenase (AA 1 - 365) [Bacillus subtilis] pir[A26522]A26522]-isopropylmalate dehydrogenase (EC 1.1.1.85) - acillus subtilis	٤٢	25	1056
109	~	3493	7 2600	91 1510849	M. Jannaschii predicted coding region MU0775 (Methanococcus jannaschii)	7.3	40	894
120		4782	5756	91 146970	ribonucleoside triphasphate reductase [Escherichia coli] pir A47331 A47331 anegrobic ribonucleotide reductase - Escherichia oli	23	99	975
120	6	5726	6223	91 1204333	anaerobic ribonucleoside-triphosphate reductase (Haemophilus influenzae)	73	62	498

${ t TABLE}$ 2

		length (nt)	213	1629	1122	150	1431	R28	360	1101	555	408	255	999	1392	369	432	1185	510	192	486	639	168	792	495	1668	381	672
5		% ident	43	59	57		57	\$\$	95	89	26	10	53	63	58	63	SR	53	43	51	55	54	96	96	44	52	57	88
10		a in	13	13	ני	5	67	13	13	. 23	1 73	13	67	1 23	ςτ	13	וני	13	13	13	57	13	13	ι,	13	13	13	22
15	roteins		stinelis]			a) - mouse gi 220434										(Methanococcus jannaschii)								us subtilis)	3.1			
20	 Putative coding regions of novel proteins stailar to known proteins 		- heavy chain potential motor protein (Giardia intestinalia)			Peptide, 360 a in-44 precursor		ketopantoate hydroxymethyltransferase [Bacillus subtilis]	alcalophilus]		us subtilis]		virus)	s coli!	(9	nase (Methanococc		illus subtilis)				lactis]		NAD+ dependent glycerol-1-phosphate dehydrogenase (Bacillus subtilis)	[Methanococcus jannaschii]	[1]		
25	lovel proteins s		itial motor prote		us subtilis)	Pu Bu	171	/ltransferase [B	(Bacillus	[8]	glycine betaine transporter OpuD [Bacillus subtilis]		ican swine fever virus	hypothetical 23.3 kd protein (Escherichia coli)	isochorismate synthase [Bacillus subtilis]	glutaminefructose-6-phosphate transaminase	- 18	sensitive cell division (Bacillus subtilis)	ss cerevisiae)	s subtilis]		ise [Lactococcus lactis]	[8]	-phosphate dehy		Escherichia coli]		-
30	ing regions of n	gene name	eavy chain poter	(Escherichie coll)	gene product [Bacillus subtilis]	181 181	ORF_f560 [Escherichia coli	ate hydroxymethy	porter system ORF3	unknown [Bacillus subtilis	etaine transport	lus subtilis]	220 kDa polyprotein (African	cal 23.3 kd prot	mate synthase [E	fructose-6-pho	unknown (Bacillus subtilis)		ORF YBR244w (Saccharomyces	ures amidolyase [Bacillus subtilis]	YneJ (Bacillus subtilis)	alpha-acetolactate synthase	unknown (Bacillus subtilis)	ndent glycerol-1	cal protein (SP:P42297)	protein (AA 1-520) [Escherichia	CinA [Bacillus subtilis]	ORFX13 (Bacillus subtilis
35	utative cod	' natch ge	HPSH2 - h	kdpB (Esc	rib) gene	heperin binding pir Jux0281 Jux02	ORF_ \$560	ketopanto	Na/H antiporter	unknown [glycine b	U3 (Bacillus	220 kDa p	hypotheti	isochoris	glutaminef	unknown {	temperature	ORF YBR24	ures amid	YneJ (Bac	alpha-ace	unknown (NAD+ depe	hypothetical	hedM prot	CinA (Bac	ORFX13 (B
40	S. aureus - F	match	91 87 1048		101/410125	g1 460892	91 882 504	91 1146240	91 854657	191 467477	911524397	01 39848	191 780461	g1 1208965	gi 1185288	gi 1511440	91 467437	gi 467439	91 536655	91 790943	91 1405451	91 473902	gi 467483	91 1146220	191 1510605	191, 41748	 gi 1314847	91 410137
45		Stop (nt)	4363	4324	5939	7171	1431	4525	5178	5493	5729	2280	582	3618	3593	1575	1166	3234	728	1036	1874	2554	1028	918	, сег	2815	382	675
		Start	4151	5952	7060	1866		5352	5537	6593	6283	1873	328	4283	4984	1207	1 255	2050	1237	1827	1389	1 9161	1795	1709	239	1148	762	1346
50			- 2	9	9		-	9	=	2	9	-	_	-	_	4	~	5	-		2		2	-	~	~	_	-
50		Cont 1g 1D	132	140	142	149	158	174	27.1	186	249	265	270	2.7R	279	291	299	299	334	336	374	433	509	513	533	546	549	567
		·	-	-	÷		• —	• -			•	• -	• —			• —		+	•	•	•	+	+	•	• —		÷ :	• — ÷

TABLE 2

Ŭ	
10	
15	
20	
25	
30	
35	
40	
45	

:					S. aureus - Pul	- Putative coding regions of novel proteins similar to known proteins			
:	Cont ig	10 GH F	Start (nt)		match	, match gene name	E is	1 Ident)ength (nt)
÷ —	716	-	654	11112	91 1256623	exodeoxyribonuclease (Bacillus subtilis)	23	95	1 659
: 	21.2			677	[gi 142010	Shows 70.3% statisticy and 48.6% identity to the EnvH protein of almonella typhimurium (Anebaene sp.)	در	53	675
· -	17.4	-	-	502	gi 409286	baru (Becillus subtilis)	62	52	100
: —	782	-	7	407	91 143320	[gap] gene products [Bacillus megaterium]	در	56	402
·	789	~	151	762	91 1063246	low homelogy to P14 protein of Heamophilus influenzar and 14.2 kDa protein of Escherichia coll (Bacillus subtilis)	£ .	26	312
· —	396	-	-	116	91 853754	ABC transporter [Bacillus subtills]	23	88	606
	806	-	1209	949	91 143786	tryptophanj-trnA synthetes (EC 6.1.1.2) [Becillus subtilis] pir[JT0481]YWBS tryptophantRNA ligase (EC 6.1.1.2) - Bacillus ubtilis	٤٢	51	261
· -	816	~	4839	1 3097	191141748	hsdw protein (AA 1-520) [Escherichie coli!]	13	52	1743
÷	639		798	604	gi 886906 	argininosuccinate synthetese [Streptomyces clavuligarus] plr[S57659] argininosuccinate synthetese [EC 6.1.4.5] - treptomyces clavuligarus	٤	\$	199
• -	857	-		1 290	91 348052	scetoin utilization protein [Bacillus subtilis]	23	05	288
	1008		790	398	91 40100	rodc (teg3) polypopide (AA 1-746) (8acillus subillis ir S06049 S06049 rodc protein - Bacillus subillis p P13485 TAGF_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	t t		363
	1018			223	qi 529357	No definition line found (Ceenorhebditis elegans) sp P46975 STT3_CAEEL OLIGOSACCHARYL TRANSFERASE STT3 SUBUNIT OHOLOG.	5	3	213
	1031	-		491	91 142706	comcl gana product Uacillus subtiliu	13	7	411.3
	1174	-	1 395	204	91 1149513	alphala subunit of laminin 5 (Nomo sepiens)	22	09	192
	2711	-	655	1 329	191 (13817	ORP' [Escherichia coli]	1, 1,	57	1 756
• -	1187	-	-	1 209	191 580870	ipa-17d qoxA gene product (Bacilius subtilis)	73	52	207
•	1206		72	- 245	91 144816	[cormy)teershyddofolata synthetase (FTHFS) (ttg start codon) (EC .3.4.3) [Hoorella thermoscetics]	5	\$	7.
• —	1454	-	423	1 241	[91]1213253	unknown (Schitosaccharomyces pombe)	5	SS	183
	1469	-	- 215	1 260	191 1303787	YqeG (Bacillus subtilis)	5	\$	258
	1761	-	374	189	5616]18]	Hst26Aa gene product [Drosophile simulans]	ני	7	186
• —	1849	-	467	200	91 162307	DNA topolsomerase II [Trypenosome cruzi]	£	09	225
• —	2055	-	~	007	191 (559381	P47K protein (Rhodococcus erythropolis)	1 23	34	660
• —	2556	-	~	344	91 145925	[facB (Escharichia coli]	13	62	265
٠									

TABLE 2

5
10
15
20
25
30
35
40
45

55

_	length	150	372	327	192	174	399	282	180	762	228	315	351	771	195	192	261	1071	1218	1029	1059	870	£ 873	
5	1 ident	51	58	55	es .	48	52	59	89	cs -	38	25	48	9	38	-	- 43	23	2	25	6.	\$	23	
10	sia -	7.3	2.	1 2	23	2		73	73	73	7.3	נר	67	33	73	ετ	52	72	22	72	12	72	22	
15 							pir 538437 538437 hadw			(fragment)		p P23129 ODO1_BACSU ALPIIA- KETOGLUTARATE		pir S49455 S49455 lus subtilis		philus) EC .5.1.14)	•		pir S49950 S49950 Hycoplesme cepricolum					
20		subtilis!			protein (Eggplant mosaic virus)	precursor (Mus musculus)	ne product [Escherichia coli) pir 538437 53843 coli pir 509629 509629 hypothetical protein A 40-520)		planterum)	4.1.3.5) - Chicken		illus subtilis] plient (EC 2.4.2) (AL	tus musculus]	subtilis .6) - acil		of the stearothermoning AMIDOHYDROLASE		us subtilis]	pricolum ; . 5.99.7) -	8)		(en)	ophilus influenzael	
25		- Backline	beilis	llus subtili	otein (Eggpl PROTEIN.	precursor (M	gene product [Esch ia coli pir 509629 18 40-520	rculosis	ctobacillus	yathase (EC		(NADP+) (BAC	precursor It	lase (Bacilly		drolase (Bac L-L-AHINO AC)		ase [Bacilly	OH (Mycoplasma shydrogenase (f			terium halob	rotein (Haem	
30	ractive county regions of the county for the county	St. Indian and And	oxidas enilias subtilis		overlapping out-of-phase protein [E sp p20129 v70x_EPHV 70 KD PROTEIN.	dehydrogenese	of Ecoperi ge Escherichia	unknown (Mycobacterium tuberculosis)	D-lactate dehydrogenase (Lactobacillus plantarum)	Hydroxymethylglutaryl-CoA synthase (EC 4.1.3.5)	unknown (Bacillus subtilis)	oxoglutarate dehydrogenase (NADP:) [accillus subtilis] p[P2]129[obol_BACSU 2-oxoglutarate dehydrogenase el component (EC 2.4.2) (alpha- ketoglutarate dehydrogenase).	-CoA dehydrogenase precursor [Mus musculus	deoxyribose-phosphate aldolase (Bacillus deoxyribose-phosphate aldolase (EC 4.1.2	unknown (Bacillus subtilis)	N-acyl-L-amino acid amidohydrolase [Bacillus stearothermophllus) sp p77112 AMA_BACST N-ACYL-L-AMINO ACID AMIDOHYDROLASE (EC .5.1 (AMINOACYLASE).	ORF2 (Bacillus megaterium)	phosphoglycerate dehydrogenase [Bacillus subtilis]	similar to trimethylamine DH (Mycoplasma ca probable trimethylamine dehydrogenase (EC ISGC3) (fragment)	ipa-44d gene product (Bacillus	unknown (Bacillus subtilis)	pyruvate synthase [Halobacterium halobium]	proton glutamata symport protein (Haemophilus influenzae)	
35	i match go		ipotymort ionipol	acetolac	over lapp	glutary1-CoA	hedM gene protein Escherich	unknown	D-lactat	: -	unknovm	oxogluta 2-0x0GL DEHYDRO	glutary1-CoA	deoxyrib deoxyrib	unknown	N-acyl-L Sp P371 (AMINOA	JORF2 (Be	phosphog	similar probabl	ipa-44d	unknown	pyruvate	proton	•
	'	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	19111184660	160(111309)	91 323866	gi 14.9521	91 450688	[91]1524193	91 216746	pir S13490 S134	[91 528991	01 140003	91 1439521	91 809 660	191 528991	91 136797	91 216267	91 1146196	c 602031	91 413968	91 516272	[91]43499	191 (1205399	
46	Stap	(E)	90	1 329	134	527	007	359	181	239	33	31.	365	177	378	193	1 263	1973	17877	119162	112953	(1117	1 5691	
45	Start	(35)	549	559	388	700	798	049	7 -	475	570		715		572		- n	903	19094	118134	11895	6248	1 6563	
	ORF	<u>a</u>	~ -	- -		-		-	-	-	~	<u>-</u>	-		- -		-	-	=======================================	- 2	- 62	-	_	
50	Contig	2	2947	5101	Sur.	3603	3743	3752	3852	3914	3914	4069	4165	4196	4202	914	4393	35	87		=	#	05	

	:		-	-:	- ;	;	-:	-;		:	-:	-:	-:	_;	;	-;	-;	_;	_;	_;		_;	_:	_:	_;
5		length (nt)	1263	447	1176	909	855	888	1593	2598	939	285	228	210	88	725	2409	645	1224	471	243	789	162	1266	1338
		1 ident	52	47	9	\$,65	20	99	ន	3.6	3	\$3	0.	5	62	63	45	20	9	9	54	52	52	4
10		e in	72	72	72	72	72	72	72	27	72	12	72	22	72	72	27	72	72	72	2	22	22	12	22
15	oteins	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	P P P P P P P P P P P P P P P P P P P						45111 145111	a typhimurium) 2.7.7.7) III lpha chain					e] - Bacillus		ao)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(0)	pir S\$7245 S\$7245 elanogaster (SUB 46-		acilius subtilis]		
20	- Putative coding regions of novel proteins similar to known proteins	. R d d d d d d d d d d d d d d d d d d	! ! ! ! ! ! !	: : : : : : : : : : : : : : : : : : :			ocilis)		carrier protein (thermophilic bacterium PS3) prr[A45111[A45111], transport protein - thermophilic acterium PS-3	(Salmonel) erase (EC			us clone OTU4]	enzae)	hermophilu 2.5.1.10)		virulence associated protein homolog (Haemophilus influentae)		tilis	(Haemophilus influentae)	anogaster) pir S57 rosophila elanogas	8)	SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis)		hypothetical protein (GB:U06949_1) [Haemophilus influenzae]
25	proteins si	; ; ; ; ; ; ;			; ; ; ; ;	s subtilis]	(Bacillus subtilis)		mophilic bacthermophili	unit (dnaE) ed DNA poly	114.		phycodnavir	(Haemophilus influenzae)	e synthase (Becillus stearot geranyltranstransferase (EC	(0)	homolog [Ha	cystis sp.]	acillus sub	24_53) (Hae	Drosophila melanogaster - fruit fly (Drosophila	ccus xylosu	ECOLI hypot		149_1) [Haem
30	regions of novel	DB ille	us subtilis]	unknown [Bacillus subtilis]	onema pallidum)	protein (Bacillus subtilis)	glycerol uptake facilitator (unknown (Bacillus subtilis)	lanine carrier protein (ther alanine transport protein -	polymerase III polymerase subunit (dnaE) (Salmonellapir)A45315 A45315 DNA-directed DNA polymerase (EC - Salmonella typhimurium	• [Bacillus subcilis]	Ichia colil	DNA polymerase [Unidentified phycodnavirus clone OTU4]	protein	hosphate synthase 3X0257 geranyltra philus	(Saccharomyces cerevisiae)	sociated protein	hypothetical protein (Synechocystis sp.)	ORTHININE AMINOTRANSPERASE (Bacillus subtilis)	hypothetical protein (GB:X73124_53)	insulin receptor homolog [Drosophila melanogaster] insulin receptor homolog - fruit fly (Drosophila 1 2146)	aucrose repressor (Staphylococcus xylosus		ORF_at70 [Escherichia coli]	protein (GB:U06949_1) [Haemophilus in
35	Putative coding	match gene name	YqjE (Bacillus subtilis]	unknown (Bac	pfoS/R Treponema	hypothetical	glycerol upt	unknown (Bac	alanine carr	polymerase I pir A45915 - Salmonell	transketolase	secY (Escherichia coli)	DNA polymera	ferritin like	farnesyl diphosphat pir JX0257 JX0257 tearothermophllus	A180 (Saccha	virulence as	hypothetical	ORTHININE AN	hypothetical	insulin rece insulin rece 2146)	aucrose repr	homologous to	ORF_0470 (E	hypothetical
40	S. aureus - 1	match	1911303956	191 467471	191 1354775	191 904198	gi 142997	91 467435	91/217144	91 153952	191 1405446	gi 606234	91 1304472	91 1205620	gi 391610 	gi 433630	19111205110	91 :001730	91 1064807	91 120466	191 681513	191,949974	191 1408493	gi 537049	191,1204578
45		Stop (nt)	9259	29995	4123	4982	856	10258	1593	2600	1978	2535	5245	210	1320	328	3553	1279	15869	932	\$22	790	1 765	1485	1340
40		Start	10521	29549	5298	1710	2	9371	-	5197	1040	2819	5472	-	2207	~	1145	1923	14646	462	764	~	1526	220	^
		- Δ - Δ - Δ - Δ - Δ - Δ - Δ - Δ - Δ - Δ	. –	2	-	5	-	12			-	-	12	-			-	- 2	= =	7	~	-	-		-
50		Contig	2	\$6	- 69	69	5	86	127	161	141	149	149	154	155	180	1	195	506	209	215	224	233	240	245
		1	. : _		١	١	١_	١.	!	:	:	<u>:</u> —	·-	:	:	÷	: -	: —	: —	:	:	·	·	÷	

5
10
15
20
25
30
35
40
45

55

	1	length (nt)	864	810	288	258	315	684	2046	924	\$8 kg	150	624	1626	420	105	1104	744	570	165	957	663	1 502	639	303	1 162	430	
5		1 ident	59	52	53	\$5	, şç	55	53	67	*	- 02	- 15	09	53	20	75	86	96	=	52	6	35	55	58	49	29	
10		e ta	72	72	72	72	72	7.2	72	12	72	72	12	72	12	72	72	72	73	127	72	27	12	2,	72	22	22	
15	teins		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(04							licum] cetobutylicum			eptibility to logy to acetyl~								supress; putative				yphimurium	ubt[116]	
20	- Putative coding regions of novel proteins similar to known proteins	·	6 B F F F 6 B B B F F B B F F B B F F B B F F B B F F B B F F B B F F B B F F B B F F B B F F B B F B B F B B B F B	glutamine-binding periplasmic protein (Naemophilus influentae)			lus influenzae)		ferrous iron transport protein B (Methanococcus jannaschil)		among subacteria (Clostridium scetobutylicum) 2 hypothatical protein V - Clostridium cetobu	aemolyticus	xa]	gene is associated with usceptibility to gene product has light homology to acetyl-	ubtili#]					ius influenzae)	(Dichelobacter nodosus)	44% identical amino acids with the Escherichia coll amba su [Bacillus subtilis]				NADPH-sulfite reducatase flavoprotein component (Salmonella yphimurium)	UDP-N-acetylglucosamine 1-carboxyvinyltransferese (Becillus ubtilis)	
25	el proteins sim			olc protein (Nae	subtilis]	1051118)	17857) (Haemophi	lus subtilis]	ein B (Methanoc	lus subtilis)	sceria (Clostri ical protein V	Staphylococcus haemolyticus	ranophora parado	8 gene	on (Becillus sub			bacter coli!		otein (Haemophi	a	with the Escheri	-6	-	er vinelandii	lavoprotein com	carboxyvinyltra	
30	regions of nov		ORP1 (Staphylococcus aureus)	Inding peripless	protein-dependent (Bacillus subtilis)	ase [Bacillus subtilis]	hypothetical protein (SP: P27857) [Haemophilus influenzae]	citrate synthase II [Bacillus subtilis]	n transport prot	orfRM1 gene product [Bacillus subtilis]	lighly conserved among subacteria (Clostri pir S34312 S34312 hypothatical protein V	antibacterial protein 3 - 5	transporter subunit [Cyanophora paradoxa]	(RFLP) tension. [Homo sa	ATP synthase subunit epsilon (Bacillus subtilis)	ORF2 (Synechococcus sp.)	[Bacillus subtills]	ceub gene product (Campylobacter coli)	Yogs [Bacillus subtilis]	protein-export membrane protein (Haemophilus influentae)	ssociated protein	al amino acida subtilis]	putative (Bacillus subtilis)	unknown (Bacillus subtilis)	unknown protein (Azotobacter vinelandii)	te reducatase f	iglucosamine 1-	
35	stative coding	adch gene name	ORF1 (Staph)	glutemine-bi	protein-depe	quinol oxidase	hypothetica	citrate synt	ferrous tro	orfRH1 gene	highly cons	† –	ABC transpor	The polymorphysm essential hyper CoA synthetase	ATP synthas	ORF2 [Synec]	1 64	ceub gene p	Yogs [Bacil	protein-exp	virulence-associated	44% identical amino [Bacillus subtilis]	putative (B	unknown (Ba	unknown pro	NADPH-sulf!	UDP-N-acety	
40	S. aureus - P.	match	gi 1340128	[91 1205330	191 (1070015	91 [143399	01 120445	gi 487433	91 1510643	91 1402944	91 312379	pir 500601 BXSA	91 1016162	91 666014	[gi]433992	1911310859	gi 1303704	191 1107530	91 1303866	8: 1204497	ar 563258	91 1146214	91 1146183	91 1377842	191 1088269	91 153929	191 853767	
45		Stop (nt)	1245	1094	5039	260	9308	1609	10493	1263	1590	2505	625	1628	3466	586	1184	746	573	592	1251	957	435	788	432	238	5	
43		Start	2308	285	5326	517	9622	926	12538	340	7718	2654	7	3253	3047	1086	18	_	1142	~	295	295	-	150	130	7	840	
		ORP	7	~	=	1-	=	-		7		9	-		-	-		-	-	-	- 2	~_	-	-				
50		Contig	259	304	307	315	316	7.55	364	600	441	453	460	69	480	\$02	519	559	575	119	679	687	937	898	922	941	.980	

TABLE 2

		length (nt)	171	1 861	363	399	171	153	183	138	285	342	222	360	345	270	492	1188	165	567	1 686	213	3186	1011	837
5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	dident	- 49	69		20,	30.	99	55	45	52	63	38	57	SS	5	1.4	52	\$	- 65	50	20	- 69	58	97
10		e it	72	72	~	72	52	72	7.2	12	2	2	72	72	72	ı,	12	12	7	12	12	12	7.1	12	7
15	stains			-	typhimurium) system regulatory rotein uhpB		pir A42712 A42712 um formicicum				6957 S46957 is ap.	n 3	s jannaschii!	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 t t t t t t t t t t t t t t t t t t t			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	kal pir[C32840]C32840 Leptospira biflexa		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			illus ubtilis)	
20	- Putative coding regions of novel proteins similar to known proteins			(GB:D26562_47) [Haemophilus influenzael	mella typhimurium) sport system regul						[Synechocystis sp.] pir S46957 S46957 [EC 1.4.7.1] - ymachocystis sp.	amidohydrolase of Bacillus	M. Jannaschil predicted coding region MJ1519 (Methanococcus jannaschil)		subtilis	hla colli		hirae)	[Leptospira biflexa] pir[C32840]C32840			gingivalis)		chain alpha-keto acid dehydrogenase El-alpha (Bacillus ubtills)	
25	el proteins s		B (Clostridium botulinum)	D26562_47) [Hael	rotein [Salmonhosphate tran		anobacterium 1.2.1.2) - et		(Bacillus subtilis)	[Bacillus subtilis]		no acid amidoh lus subtilis]	ding region KJ		reductase [Bacillus subtilis]	rana (Euchorie	a colil	Enterococcus hirae	2.7		cillus firmus		subtilis	scid dehydroge	bc1110]
30	regions of nov	name	type B [Clostrid	protein (GB:D2	hexosephosphate transport protein (Selmonelle pir[84]83)[84]83 hexose phosphate transport - Selmonelle typhimurium	Yqir [Bacillus subtilis]	formate dehydrogenase (Methanobacterium formicicum) formate dehydrogenase (EC 1.2.1.2) - ethanobacteri	us subtilis]	protein (Bacil		glutamate synthase (ferredoxin) [Synechocystinglutamate synthase (ferredoxin) (EC 1.4.7.1)	homologous to N-acyl-L-amino acid amido stearothermophilus (Bacillus subtilis)	il predicted con	IIGIc (Bacillus subtilis)	nitrate reduct	minichine carbamyltransforent (Ruchorichia colif	25 kDa protein (Escherichia coli)	D-alanine:D-alanine ligase	anthranilate synthase component anthranilate synthase (EC 4.1.1	Yqkr (Bacillus subtilis)	glutamate-rich protein [Bacillus	ppeptidase (Por	tein - Bacillus subtilis	ain alpha-keto	gnt repressor [Bacillus subtilis]
35	stative coding	match gene name	neurotoxin t	hypothetical protein	hexosephosph pir B41853	YqiY Bacill	formate dehy	YqhJ (Bacillus subtilis]	hypothetical protein	ipa-44d gene product	glutamate sy	homologous t	[M. Jannaschi	IIGIC (Bact)	Respiratory nitrate	ounithing co	25 kDa prote	D-elanine:D-	anthranilate	YqkF Bacil	glutamate-r	arginyl endopeptidase	spoilig protein	branched ch	ont repress
40	S. aureus - P.	Batch	91 144735	91 1205458	91 154409	91 1303950	91 149713	91 1212729	91 665999	91 413968	91 515938	91 1408501	gi 1500409	91 39956	191 1009366	191 537095	gi 532309	gi 1244574	91 149629	9111303983	01 1209681	91 927645	pir 509411 5094	91 142611	[91 143014
		Stop (nt)	213	474	365	4 01	399	155	185	7	287	367	222	362	347	1200	10859	2435	1488	567	2806	12462	4431	14760	12625
45		Start (nt)	383	671	727	-	569	-	367	278	-	56	-	121		=	11350	1248	898	-	3192	12250	1246	15770	13461 126
		180 az	-	~		-		-		-	-	-	<u></u>	<u></u>		-	12	- 2	~	=		81	-	=	
50		Contig	<u> </u>	1469	1956	2101	2503	2967	3000	3109	3171	3771	1981	4190	4444	9	11	19	21	34	37	38	39	53	7
		÷	· -	<u>:</u> —	÷	÷ —	·	• –	÷ —					• -	•-			•		• -	•	• —			•

5	
10	
15	
20	
25	
30	
35	
40	
45	

Contig	ORF	Start	Stop	match	match gane name	- e te	• ident	length (nt)
	,	7152	2860	91 508175	EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia colii	17	8	1293
52	81	13897	14334	91 1063247	high homology to flavohemoprotein (Heemoglobin-like protein) of Alcaligones eutrophus and Sacharomyes cerevisiae [Bacillus subtilis]	1,	26	438
62	91	9831	10955	91 1303926	YqiG (Becillus subtilis)	1.	54	1125
10	112	8505	9968	91 147198	phnE protein (Escherichia coll)	11	38,	797
98	2	2394	2089	91 904205	hypothetical protein [Bacillus subtilis]	7.1	51	306
96	2	7601	8269	91 709991	hypothetical protein (Bacillus subtilis)	7.1	6	699
100	9	4822	5931	91 1060848	opine dehydrogenase (Arthrobacter sp.)	7.1	\$	1110
103	-	1062	532	gi 143089	lep protein (Bacillus subtilis)	11	=	531
109	118	15312	56951	191 413985		7.1	57	384
113	-	630	316	gi 663254	[probable protein kinase [Saccharomyces cerevisies]	7.1	57	315
114	- 2	6598	5603	1911143156	membrane bound protein (Bacillus subtilis)	11	40	966
133	7	1 3087	1723	gi 1303913	Yqhx (Bacillus subtilis)	7.1	- 83	1365
149	13	6335	1 5895	gi 529650	G40P Bacteriophage SPR1	71	51	441
154	2	3635	1 3087	1911425488	protein (Streptococcus s	71	4.	549
164	==	11354	111689	91 49318	ONF4 gene product (hacillus subtilis)	71	5.5	136
169	-	1936	1 2745	91 1403403	unknown (Mycobacterium tuberculosis)	7.1	96	810
193	~	272	1234	91 1303788	YqeH Becillus subtilis	11	49	963
205	-	1743	1 895	91 1215694	Glng Mycoplesma pneumonlee}	71	90	849
233	-	1849	2022	91 633732	ORF1 Campylobacter jejuni	11	05	174
237	- 7	4501	1 5169	gi 149384	HisIE (Lactococcus lactis]	11	54	699
272	-	2848	[2273	191 709993	hypothatical protein (Bacillus subtilis)	11	48	929
274	7	618	1496	91 143038	NAD(P)H:glutamyi-transfer RNA reductase [Bacillus subtilis] pir A3522 A15232 5-aminolevulinate synthase (EC 2.3.1.37) - acillus subtilis	1,	es .	619
276	- 5	3349	1 2720	gi 303562	ORF210 (Escherichia coli)	17	05	630
1 287	-	136	099	1011310634	20 kDs protein (Straptococcus gordonii)	1,	53	525
288	9	1 3322	1772	gi 1256625	putative (Bacillus subtilis	1,5	47	552

TABLE 2

		length (nt.)	1032	1386	612	648	1302	177	375	1212	543 [187	1020	(32 -	1278	429	1 (69	948	252	156	654	621	585	486	279	609	504
5		dident	57	» —	45 –	- 15	46.	5.7	55	5.7	- 0	49	5.7	99	49		43	- 55	- +	55	20 -	52	- 65	- 12		53	52 -
10		esia –	1.7	- 11	- "	12	71	11	- 12	12	11.	11.	71	12	-	11	7	12	12	71	- 12	12	11	11		12	12
15	oteins													- Bacillus subtilis		4.2.14) Bacillus		1				_	_		ir s10197 s10197		
20	Putative coding regions of novel proteins similar to known proteins		s subtilis)			bc1118}					[mn]	subtilis)	lantarum]			phosphortbosylpyrophosphete amidotransferase (PUR-F; EC 2.4.2.14) Bacillus subtilis]				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	co11)				(Gallus gallus) .5.3) chain - ch		
25	l proteins s		sse (Sacillu	subtilis]		(Bacillus subtilis)	ocystis sp. l				llus megater	acillus subt	tobacillus p	somerase (EC		amidotransfe			ons]	murium)	(Escherichia co	subtilis		ī.	(AA 1-605)		
30	regions of nove		similar to lysine decarboxylase (Bacillus subtilis)	(Bacillus	lasma capricolum)	acetoin utilization protein	hypothetical protein Symechocystis sp.	(Bacillus subtilis)	ORF 1 (Lactococcus lactis)	unknown (Bacillus subtilis)	e b subunit (Bacillus megaterium)	homologous to E.coli rnpA (Bacillus	L-lactate dehydrogenase (Lactobacillus plantarum)	phosphoribosylanthranilate isomerase (EC 5.3.1.24) (fragment)	ORFXIS (Becillus subtilis)	sylpyrophosphate	(Escherichia coli)	ORF4 (Bacillus subtilis)	725G3.2 (Caenorhabditis elegans)	[Salmonella typhimurium]	480	polymerase (Bacillus subtilis)	unknown (Bacillus subtilis)	(Bacillus subtilis)	NADH dehydrogenase subunit V (AA 1-605) NADH dehydrogenase (ubiquinone) (EC 1.6 (SGC1)	YqfL (Bacillus subtilis)	unknown (Bacillus subtilis)
35	tative coding	models gene name	similar to	transport p	orfc [Mycoplasma	acetoin uti	hypothetica	Ę	ORF 1 (Lact	unknown (Ba	ATP synthase	homologous	L-lactate d	phosphoribo	ORFX18 (Bec	phosphoribo subtilis)	ORP_(309 (E	ORF4 (Bacil	T25G3.2 [Ca	ries Z	lysine spec	poly(A) pol	unknown (Ba	E ORF1	NADH dehydr NADH dehyd (SGC1)	Yqft (Bacil	unknown (Bacillus
40	S. sureus - Pu	match	191 467417	191 1256618	91 602683	91 348052	191 1001619	91 167473	91 551879	91 467447	91 142557	91:580904	91 581305	pir PNOSO1 PNOS	191 410142	91 143370	191 606150	191 1237015	91 1301730	91 153968	91 466778	191 1146238	Jgi 1486243	1911389260	126/12971	191 1303830	91 1377843
45		Stop (nt)	2461	5222	925	5146	1303	3995	923	1700	2102	637	1 1354	3270	1280	1864	1 2047	696	255	913	654	623	1 586	641	427	777	970
,,		Start (nt)	3492	6607	1536	5793	- 7	14171	548	1860	1560	1 251	335	3701	-	2272	68.72	- 22	905	1068	-	1243	1170	1126	149	169	143
50		g ORF	9	-	- 2	- 5	-	-	-	-	-	- 5	-	-	-		<u> </u>	-	-	-	-	-	-	-		-	1-1
		Contig	30.	306	307	916	322	<u> </u>	350	375	380	₹	424	\$	487	222	529	563	581	612	613	618	630	169	69	215	746

1 1417 802 91 14054559 1 1 1018 524 91 1510389 1 1 1203 703 91 536655 1 1 1203 703 91 536655 1 1 1203 703 91 1204326 1 1 12 262 91 1409073 1 1 2 172 91 170993 1 1 2 172 91 151016 1 1 36 184 91 66311 1 1 36 139 91 151050 1 1 2 187 91 1008177 1 1 2 187 91 1008171 1 1 2 187 91 1001016 1 1 2 187 91 1001341 1 1 770 387 91 1001341 1 1 637 320 91 1205363 1 1 637 320 91 1205363 1 1 631 1320 91 1105677	Cont ig	ORF	Start (nt.)	Stop (nt)	match	match gene name	e is	• ident	length (nt)
1 1018 524 91 1510389 1 1 1 1 1 1 1 1 1			1437	802	91 1405459	YneS (Bacillus subtilis	11,	67	636
1 3 215 91 475972 15 1 1203 703 94 536655 1 1 1 1 1 1 1 1 1	53	-	1018	524	91 1510389	M. jannaschil predicted coding region MJ0296 [Methanococcus jannaschil]	1.2	53	495
1 1203 703 91 536655 1 1202 987 94 536655 1 1 1 1 1 1 1 1 1	19	-	-	215	91 475972	pentafunctional enzyme (Pneumocystis carinii)	1.	4.7	213
3 1292 987	83	7	1203	703	91 536655	ORP YBR244w [Saccharomyces cerevisiae]	1,1	52	105
1 116 286 91 1419075 1 2 262 91 1408507 1 2 262 91 1408507 1 1 2 262 91 1408507 1 1 3 290 91 151259 1 456 184 91 1608177 1 2 217 91 1046088 1 2 217 91 1046088 1 2 217 91 1046088 1 2 217 91 1046088 1 2 217 91 1046088 1 2 217 91 1046088 1 2 217 91 1046088 1 2 217 91 262135 1 2 2184 91 262135 1 2 2184 91 262135 1 2 2184 91 262135 1 2 2 2 2 2 2 2 2 2	0		1292	- 86	911204326	LRNA delta(2)-isopentenylpyrophosphate transferase [Haemophilus influenzae]	ונ	`8 .	306
1 273 488 91 893358 1 2 262 91 1408507 1 2 122 91 709993 1 356 134 91 46971 1 366 134 91 46971 1 3 290 91 153016 1 3 290 91 153016 1 3 290 91 153016 1 3 320 91 1249771 1 3 320 91 1499771 1 3 320 91 1499771 1 3 330 91 401716 1 3 330 91 401716 1 3 330 91 401716 1 341 272 91 401741 1 541 272 91 1262335 1 541 272 91 126235 1 637 320 91 126353 1 637 320 91 126353 1 637 329 91 1203567	90	-	116	1 286	[g1 1419075	cbiM gene product [Hethanobacterium thermosutotrophicum]	11.	20	171
1 2 262	15	-	573	488	01 893358	PgsA (Bacillus subtilis)	11	95	989
1 2 172 91 709993 1 57 365 91 151259 1 366 184 94 166971 1 3 290 94 160917 1 2 217 94 1046088 1 2 217 94 1046088 1 2 217 94 1046088 1 2 217 94 1046088 1 2 217 94 1046088 1 2 217 94 1046088 1 2 243 94 1046088 1 2 243 94 1046088 1 2 243 320 94 201362 1 2 2 2 2 2 2 2 2	041	-	2	292	91 1408507	[pyrimidine nucleoside transport protein (Bacillus subtilis)	11	45	261
1 57 365 91 151259 1 366 184 93 46931 1 366 184 94 46931 1 366 184 94 1602683 1 456 229 94 1602683 1 2 217 94 1008177 1 2 187 94 1008177 1 2 187 94 1008178 1 2 184 94 1262335 1 2 243 244 94 2452335 1 270 387 94 1401341 1 541 272 94 1001341 1 637 320 97 142695 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 239 94 1205363 1 633 64 1407667 1 64 64 64 64 64 64 64	070	1	2	172	[91]709993	hypothetical protein (Bacillus subtilis)	11.	46	171
1 366 184 91 46971 1 366 184 91 46971 1 456 229 91 60265 1 756 379 91 1046088 1 2 217 91 1149771 2 67 306 91 710020 1 2 187 91 262135 1 770 387 91 401716 1 541 272 91 401741 1 637 320 91 412635	1176	-	52	365	gi 151259		<u> </u>	3	309
1 3 290 91 153016 1 456 329 91 602653 1 756 379 91 1046088 1 2 217 91 1046088 1 2 187 91 71020 1 2 184 91 71020 1 318 91 71020 1 770 387 91 47382 1 541 272 91 1201341 1 637 320 91 1205363	1181	-	366	184	191 46971	epip gene product [Staphylococcus epidermidis]	12	20	183
1 456 229 91 602683 1 756 379 91 1008177 1 2 217 94 1046088 1 3 320 91 1499771 1 2 187 91 11499771 1 3 306 91 1262335 1 3 338 91 401716 1 541 372 91 401541 1 637 320 95 1263563	1281	-	2	1 290	1911153016	ORF 419 protein (Staphylococcus aureus)	12	20	289
1 756 379 91 100 91 1 1 1 2 217 91 104 688 1 1 1 1 1 1 1 1 1	1348	-	456	229	91 602683	orfc [Hycopleans capricolum]	וג	48	228
1 2 217 [01] 1046088 1 3 320 [91] 1499771 1 2 187 [91] 11499771 1 2 187 [91] 11262335 1 3 3 9 [91] 1262335 1 3 3 9 [91] 126395 1 541 272 [91] 1001541 1 637 320 [91] 12655 1 637 320 [91] 1197667 1 637 257 [91] 1197667	2002	-	756	379	ci 1008177	ORF VJLO46w (Saccheromyces cerevisiae)	11.	8.	B7C
1 3 320	1119	-	- 2	217	(01)1046088	arginyl-tRNA synthetasa (Mycoplasma genitalium)	1,	20	216
1 2 187 91 312443 2 187 91 312443 3 3 3 3 3 3 3 3 3	418	-	7	320	(g1 1499771	H. jannaschil predicted coding region MJ0936 (Mathanococcus jannaschil)	11	52	318
2 67 306 91 710020 1 2 184 91 7102335 2 743 338 91 401716 3 770 387 91 1001541 1 541 272 91 1001541 1 637 320 91 1205563	2961	-	2	187	[91]312443	carbamoyl-phosphate synthase (glutenine-hydrolysing) (Bacillus aldolyticus)	1,1	57	186
1 2 184 91 1262335 1 3 338 91 401716 1 3 3 3 91 401716 1 3 3 91 401841 1 541 272 91 401841 1 637 320 91 1205363 1 63 239 91 1205363 1 63 239 91 1205363 1 63 239 91 1205363 1 63 239 94 1205363 1 63 239 94 1205363 1 63 239 94 1205363 1 63 239 94 1205363 1 63 239 94 1205363 1 64 24 24 24 24 24 24 24	2999	7	67	306	91 710020		1,	43	240
1 3 338 91 401716 12 743 399 91 563952 13 13 13 14 15 15 15 15 15 15 15	2033	-	7	184	g1 1262335	Ymaa Bacillus subtitis	17	57	183
1 770 387 91 563952 1 770 387 91 47382 1 541 272 91 1001541 1 637 320 95 1205363 1 63 239 91 1205363	3584	-	-	338		beta-isopropyimalate dehydrogenase (Neurospora crassa)	12	55	336
1 770 387 91(47382 1 541 272 91(1001541 1 637 320 91(12695 1 63 239 91(1205363	21.5	- 2	743	399	911563952	gluconate permease [Bacillus licheniformis]	12	65	1 345
1 541 272 91 1001541 1 637 320 91 142695 1 63 239 91 1205363	3785	-	770	387	91 47382	acy -CoA-dehydrogenase Streptomyces purpurascens	2	52	384
1 637 320 0: 142695 1 63 239 9: 1205363	3875	-	543	272	91 1001541	hypothetical protein (Symachocystis sp.	17	38	270
1 63 239 [91]1205363	1135	-	637	320	191: 142695	S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase Bacillus megaterium	12	25	318
	1249	-	63	239	191 1205363	deoxyribose aldolase [Hasmophilus influentae]	2	63	7.11
	4508	-	530	1 267	191 1197667	vitellogenin (Anolis pulchellus)	נג	97	264

	Contig	IORF	Start (nt)	Stop (nt)	match	match gene name	e is -	* ident	length (nt)
1 5772 1486 94 216854 P47K Pseudomona chlorocaphis 1 2890 1481 14 45730 replicative DNA hailcase Baciliu 1 1756 893 94 457356	9	-	1237	12721	1	ornithine	70	24	1485
1 1956 1481	11	=	6572	7486	1	P47K [Pseudomonas chlororaphis]	70	7	916
1 1756 893 91 451216	12	-	1 2890	1481		replicative DNA helicase (Bacillus subtilis)	70	67	1410
2 1277 1050 91 476992 Unknown Bacillus subtilis 2 2132 1150 91 145092 Choline dehydrogenase (Escherichi 2 925 92 14950 91 149516 anthranilate synthase alpha subun 1 2 925 92 1198549 ORF1 Bacillus subtilis 12580 6551 92 1198549 ORF1 Bacillus subtilis 12580 6551 92 1198549 ORF1 Bacillus subtilis 12 959 11994 92 92 92 92 92 92 92	15	-	1756	689		Streptococcus	70	46	864
1 2 925 91 145502 Cholline dehydrogenase (Escherichichichichichichichichichichichichichi	15	-	7721	1050		unknown Bacillus aubtilis	70	50,	228
1 2 925 gi 149516 anthranilate synthase alpha subun 1 2 5580 6251 gi 1399549 ORPJ [Bacillus subtilis] 1 5580 6251 gi 1300875 YqhB [Bacillus subtilis] 2 959 1594 gi 1300875 Mathyl purine glycosylase [Mus mu specifical speci	1,1	- 2	2132	1350		choline dehydrogenase [Escherichia coli]	70	53	783
7 5580 6251 91 1303875 YqhB [Bacillus subtilis] 2 959 1594 91 1303875 mathyl purine glycosylase (Mus mu	21		~	925	1	(Lactococcus alpha chain	70	05	926
6 6071 7423 91 1303875 YqhB [Bacillus subtilis]	25	-	1 5580	6251	01 1389549	ORF3 (Bacillus subtilis)	01	52	672
2 959 1594 Gi 500755 methyl purine glycosylese [Mus en	33	-	6071	7423	91 1303875	YqhB [Bacillus subtilis]	0,0	51	1353
8 4901 5860 gi 1408507 pyrimidine nucleoside transport p 10 8950 10020 gi 1403126 czcD gene product (Alcaligenes eu 10 8950 10020 gi 146247 unknown [Bacillus subtilis] 2 2727 1900 gi 146247 unknown [Bacillus subtilis] 1 48 290 gi 14202 A competence protein 2 Bacillus 1 48 290 gi 14202 A competence protein 2 Bacillus 1 1080 541 gi 1204377 mclybdopterin biosynthesis protein 2 545 gi 1204377 mclybdopterin biosynthesis protein 4 7793 5466 gi 886471 methionine synthese (Catherenthus 5 5139 3595 gi 1204374 adenine phosphatase (EC 3.1.3.1) 2 767 1300 gi 14594 adenine phosphatase (EC 3.1.3.1) 1 1 1 1 1 1 1 1 1	36	~	656	1594	gi 500755	methyl purine glycosylese (Mus musculus)	7.0	-	636
8 5312 5989 gi 1006620 hypotherical protein Synachocyst 10 8950 10020 gi 1403126 czcD gane product Alcaligamas et 2 2727 1900 gi 1486247 unknown Bacillus subtilis 2 2727 1900 gi 1486247 unknown Bacillus subtilis 2 8460 9962 gi 1339951 small subunit of NADH-dependent 1 48 290 gi 142702 A competence protein 2 Bacillus 1 1080 541 gi 1204377 molybdopterin biosynthesis protein 2 5139 556 gi 886471 methionine synthese Catharanthu 4 7793 5466 gi 886471 methionine synthese Catharanthu 5 8754 7255 pir B37096 B380 alkaline phosphatises EC 3.1.3.1 2 767 1300 gi 145394 admine phosphatises EC 3.1.3.1 8 6401 6988 gi 1107528 ttg start Campylobacter colii 8 6401 5986 gi 1150454	38	8	1 4901	5860	9111408507	[pyrimidine nucleoside transport protein [Bacillus subtilis]	20	7	096
10 8950 10020 gi 1468147 unknown Bacillus subtilis 2 2727 1990 gi 1486147 unknown Bacillus subtilis 8 8460 9962 gi 1339951 small subunit of NADH-dependent 1 48 290 gi 142702 A Comparence protein 2 Bacillus 1 1080 541 gi 1204347 malybdopterin blosynthesis protein 2 55139 3546 gi 886471 methionine synthase (Catheranthus 3 8754 7255 pir B39096 B390 alkaline phosphatase (EC 3.1.3.1) 4 7793 5466 gi 886471 methionine synthase (Catheranthus 5 100 gi 145394 adenine phosphatase (EC 3.1.3.1) 6 7026 7976 gi 143607 aporulation protein Bacillus subunit 8 6401 6988 gi 1107528	7	-	5312	5986	91 1006620	hypothetical protein (Synechocystis ap.)	7.0	49	678
2 2727 1900 gi 1486247 unknown [Bacillus subtills]	94	120	!	10020	gi 1403126	cscD gene product (Alcaligenes eutrophus)	70	45	101
6 4048 4656 91 244501 esterase II=carboxylesterase (EC 218 as) 218 as) 218 as) 218 as) 218 as) 218 as) 219 219 20 91 142702 A competence protein 2 [Bacillus 2 2 3 3 3 2 2 2 2 2	52	- 2	1 2727	1900	91 1486247	unknown (Bacillus subtilis)	20	53	828
8 8460 9962 91 133951 1 48 290 91 142702 1 1080 541 91 1204377 4 7793 5466 91 886471 5 8734 7255 pir B39906 B390 6 7026 7976 94 143697 6 7026 7976 94 143697 8 6401 6988 94 1107528	52	9-	4048	4656		<u>မ</u>	0,	05	609
1 48 290 g 112702 5 5139 3595 g1 1204377 4 7793 5466 g1 886471 5 8754 7255 p1r p39996 b390 2 767 1300 g1 145394 6 7026 7876 g4 144607 8 6401 6988 g1 1107528	56	8 -	8460	1 9962	91 1339951	small subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	70	51	1503
1 1080 541 91 1204377 1 1080 541 91 1204374 1 1 1 1 1 1 1 1 1	62	-	1 48	1 290	91 142702		70	- 47	243
5 5119 1595 g1 1204834	- 64	-	1080	541	91 1204377	molybdopterin blosynthesis protein [Heemophilus influenzae]	70	47	540
4 7793 5466 g 888471 methionine synthase [Catheranchus roosus] 5 8754 7255 pir B39096 B390 alkaline phosphatase (EC 3.1.3.1) III precursor 2 767 1300 g 145294 adenine phosphoribosyl-transferase [Escherichle 6 7026 7976 g 143607 sporvlation protein (Bacillus subtilis) 8 6401 6988 gi 1107528 ttg start (Campylobecter coli! 8 6842 7936 gi 1350454 prolidase PepO [Lectobacillus delbrusckii]	70	- 5	1 5139	1 3595	gi 1204834	[2',]'-cyclic-nucleotide 2'-phosphodiesterase (Maemophllus influenzee)	70	÷	1545
5 8754 7255 pir 839096 8390 alkaline phosphatase [EC 3.1.3.1) III precursor 2 767 1100 gill45294 adeniae phosphoribosyl-transferase [Escherichia 6 7026 7976 gill41607 sporulation protein (Bacillus subtilis) 8 6401 6988 gill107528 ttg start (Campylobecter coli) 8 6842 7936 gi 1150454 prolidase PepQ [Lectobacillus dalbrueckii]	16	-	1 7793	5466	91 886471	methionine synthese [Catheranthus roseus]	70	95	2328
2 767 1100 91 145294 6 7026 7976 91 141607 8 6401 6988 91 1107528 8 6842 7936 91 1150454	96	-	8754	1 7255	pir B39096 B390	alkaline phosphatase (EC 3.1.3.1) III precursor	70	24	1500
6 7026 7976 91 143607 8 6401 6988 91 1107528 8 6842 7936 91 1150454	110	7	1 767	1300	gi 145294	adenine phosphoribosyl-transferase [Escherichia coli]	70	- 15	534
8 6401 6588 91 1107528 8 6842 7936 91 1150454	116	9	1 7026	1976	[91]143607	sporulation protein (Bacillus subtilis)	70	05	951
8 6842 7936 95 1150454	121	8	1 6401	6988	91 1107528	trg start [Campylobacter coli]	20	45	588
	121		6842	7936	91 1150454	prolidase PepQ Lactobacillus delbrusckii	70	87	1095

	1	length (nt)	1488	297	531	993	933	11.0	417	1128	906	627	1 6711	1107	291	627	504	1242	318	882	306	117	1074	1957	681	175	414
5	1	1 tdent	6	99	- 5	50,		88	9	51	- 05	9	55	46	48	7	23	7	-	44	45	22	- 15	50	5	- 63	•
10	1	E18	o _c	- 02	- 00	- 00	70	0,	70	107	10	0,	- 02	10	1 07	5	70	_ 0r	P	- 02	0,	0,	0,	02	2	- 02	5
15	oteins		of ro-Ser-Ala at			(a)	SapF homolog (Mycoplasma	9]					a coli		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	mzae)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pir B29091 B29091 ciens (fragment)			(Bacillus ubtilis)					
20	- Pytative coding regions of novel proteins similar to known proteins		putative membrane-bound protein with four times replifition the N-terminus; function unknown [Alcaligenes utrophus]			hypothetical protein (GB:Dio483_18) [Haemophilus influenzas]	nolog; Sapr homolo	Hacmophilus influenzae				171	2.4.2.29) - Escherichia	90)			protein (Haemophilus influenzae)		emyloliquefaciens] pir B29091 B2909 Bacillus myloliquefaciens (fragment)	sterium)				[Nethanococcus jannaschil]			
25	l proteins si		ein with four known [Alcali	(Bacillus subtilis)	subtilis)	483_18) (Hae	system protein Sapf homolog;		54a]	- · d		cherichia co	32 3	lus influenzae)	subtilis)				100	Bacillus meg		ormyltransfe		1002) (Methan	1dolyticus)		
30	g regions of nove	9880	utative membrane-bound protein with four times resitities the N-terminus; function unknown [Alcaliganes utrophus]	protein	gene product (Bacillus subtilis)	1 protein (GB:D10		l protein (GB:X73124_26)	excisionase (Bacteriophage 154a)	aspartokinase II (Bacillus sp.)	ORF1 [Staphylococcus aureus]	in (gtg start) [Escherichia coli)	queuine tRNA-ribosyltransferase	lase a/i [Haemophilus	protein-dependent (Bacillus subtilis)	Gunf (Kanthomones campestris)	high affinity ribose transport	[Bacillus firmus]	ng frame; putative (Bacil	ATP synthase gamma subunit [Bacillus megaterium]	RCH2 protein (Brassica napus)	phosphoribosyl glycinamide formyltransferase (PUR-N)	ORFP (Bacillus subtilis)	1 protein (SP: P37002)	uracil permesse (Bacillus caldolyticus)	unknown (Bacillus subtilis)	Y.(72 (Bacillus subtilis)
35	tative codin	match gene name	putative me	hypothetical	1 5	hypothetica	peptide transport pneumoniae]	hypothetical	excistonase	aspartokina	ORF1 (Staph	ruvA protein	queuine tRh	aminopeptidase a/i	protein-der	Gunf (Kant)	high affini	9	open reading hypothetical	ATP synthag	RCH2 protei	phosphoribo	ONFP (Bacil	hypothetical	uracil perm	unknown (Be	Y-tg2 [Back]
40	S. Aureus - Pu	match Acession	qi 31309	91 504181	g1 49315	91/1205212	91 1215695	91 1204665	91 215098	91 142540	91 1340128	91 147782	pir c38530 c385	91 1205934	91 1070013	191 733147	iii 1204752	01 619724	1011727145	91/142560	191 602292	191 143372	91 881434	gi 1511524	91 (431231	91 467340	91 1303873
4.5		Stop (nt)	1489	714	9874	116618	1803	1386	756	6749	4117	3827	7051	1414	699	629	9273	1243	320	1608	307	\$	2552	1284	703	1309	417
45	•	Start	~	418	9344	15626	2735	910	340	1876	3212	3201	5879	2520	179	1255	A770	~	637	727	~	623	3625	829	1383	1683	930
		08. 10.			-	116	7			-	-	9	92	-		-	2	-		- 2	-	<u>-</u>	-	-	<u>-</u>	-	-
50		Contig	135	138	164	164	205	209	246	263	268	302	302	313	355	403	40.0	449	472	4 80	524	525	595	607	633	646	663
				•		+ —				•	-	• -	• —	•	• -					• -	+			• -	• —	• —	· ·

)			5	auraus - Put	of G Putative coding regions of novel proteins similar to known proteins	of novel prote	o ins similar to	known proteins	5	0		;
Contig	ig ORF	:	Start	Stop (nt)	match	match gene name	• • • • • • • • • • • • • • • • • • •	, 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	 		e ia	1 ident	length (NI)
681	-	· i –	-	781	1911 1001678	hypothetical protein (Symechocystis sp.	Synachocystia	sp.)			70	53	708
708	-	7	-	448	sp p33940 YOJK_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION	ROTEIN IN ECC	-ALKB INTERGE	HC REGION.		70	5.1	447
725	-	-	- 15	712	91 1001644	hypothatical protein (Symechocyatis sp.)	Synechocystia	sp.)			70	87	672
776	-	-	1,100	787	01 145165	putative (Escherichia coli)	co111				70	43	585
834		÷-	- 05	783	191 552971	NADH dehydrogenase (ndhF) [Vicia faba]	the) [Vicia fa	lba)			7.0	47,	534
965	7	;-	1585	1379	19111204636	ATP-dependent helicase [Haemophilus influentae]	[Haemophilu	influenzae]			0,	45	207
894		-	535	269	91 467364	DNA binding protein (probale) (Bacillus subtilis	probale) (Baci	llus subcilis			7.0	17	267
916	-	; –	-	317	01 3314847	CinA (Bacillus subtilis	[8]				0,	0	315
944		-	-	572	di 709991	hypothetical protein (Bacillus subtilis)	(Bacillus subt	11115			0,	*	870
986	-	÷-	- 211	605	91;112441	ORF 3; putative [Bacillus subtilis]	llus subtilis				1 70	20	168
1055		-	-	335	 gi 529755	spec Streptococcus pyogenes	yogenes)	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			70	1 37	233
1093	-	-	~	904	191/853754	ABC transporter (Bacillus subtilis	llus subtilis	_			70	69	803
1109	i –	_	7	310	19111001827	hypothetical protein	protein (Synechocystis sp.)	sp.)			70	42	109
1220	<u>;</u> -	-	468	235	pir 523416 5234	epin protein - Staphylococcus epidermidis	lococcus epid	ermidia			70	9	234
1279	<u> </u>	-	ت ا	348	191 153015	FemA protein [Staphylococcus aureus]	ococcus aureu	8)			10	4.1	276
1336	-	-	195	542	sp P31776 PBPA_	PENICILLIN-BINDING PROTEIN 1A (PBP-1A)	OTEIN IA (PBP	1	PENICILLIN-BINDING PROTEIN	IN A).	0,	05	34#
1537	-	2 2	232	402	[91]1146181	putative [Bacillus subtilis]	btilis)				70	20	171
1574	-	1	451	272	91 219630	endothelin-A receptor [Homo sapiens]	or [Homo sapien	-			0,	-	180
1640			069	346	91 1146243	22.4% identity with Escherich putative (Bacillus subtilis)	scherichia co ubtilis]	li DNA-damage	with Escherichia coli DNA-damage inducible protein		٥٢	\$	345
2504	-	-	2	286	01 495179	transmembrane protein (Lactococcus lactis)	[Lactococcus	lactis)			0,	51	285
1900		1	564	301	91 508175	EIIC domain of PTS-dependent Gat transport and phosphorylation Escherichia coli)	pandent Gat t	ransport and p	hosphorylation E	scherichia	70	-	264
3128	† -	-	2	199	gi 1340096	unknown (Mycobacterium tuberculosis)	m tuberculosi	8)			٥٢	51	198
3218	<u> </u>			488	01 515938	glutamate synthase (ferredoxin) glutamate synthase (ferredoxin)	erredoxin) (S (erredoxin) (synthase (ferredoxin) (Synechocystls sp.) synthase (ferredoxin) (EC 1.4.7.1) - yne	<pre>p. pir 546957 546957 ynechocystis ep.</pre>	46957	70	°2	486
3323	<u> </u>	1	194	399	[91 1154891	ATP binding protein (Phormidium laminosum)	Phormidium la	minosum)			02	52	396
1 3679	:-	1 - 5	599	399	131 529385	chromosome condensation protein (Ceenorhabditis elegans	on protein (C	aenorhabditia	el egans l		0ر ا	90	102
	1		•			****************							

5
10
15
20
25
30
35
40
45

Cont ig	08¢	Start (nt)	Stop (nt)	match	match gene name	e in	ident	length (nt)
3841	-	706	1 396	91 1208965	hypothetical 23.3 kd protein (Escherichia coli)	1 00	47	309
3929	-	-	107	gi 149435	putative [Lactococcus lactis]	1 00	69	399
* * * * * * * * * * * * * * * * * * *		595	374	91 602031	similar to trimethylamine DH (Mycoplasma capricolum) pir 549950 549950 probable trimethylamine dehydrogenase (EC .5.99.7) - Mycoplasma cepricolum (SGC3) (fragment)	0,	9	222
4329	-	558	1 280	91 1339951	small subunit of NADH-dependent glutamate synthase (Plectonema boryanum)	102	1,64	279
4422	-	576	289	gi 296464	ATPAGE [Lactococcus lectis]	70	57	288
4647	-	1 361	200	91 166412	NADH-glutamate synthase [Wedicago sativa]	70	59	162
16		1757	1 9031	91 1499620	H. Jannaschii predicted coding region MJ0798 (Methanococcus Jannaschii)	69	3	1461
16	6	0806	110033	191(1353197	thloredoxin reductase [Eubacterium acidaminophilum]	69	24	954
30	-	1452	727	91/1204910	hypothetical protein (GB:U14003_302) [Haemophilus influenzae]	69	52	726
38	-	1023	1298	191 407773	deva gene product (Anabeena sp.)	69	41	276
3		5987	6899	91 1205920	molybdate uptake system hydrophilic membrane-bound protein (Haemophilus	69	45	609
62	=======================================	9104	9475	91 385178	unknown (Becilius subtilis)	69	**	372
99	-	2402	1 2803	191 (1303893	Yout [Bacillus subtilis]	69	\$1	402
19	115	114124	113627	91 149647	ORFZ Listeria monocytogenes	69	37	498
67	=======================================	14053	14382	191 305002	ORF [156 (Escherichia coli)	69	63	330
67	61	15130	115807	191 1109684	prov (Bacilius subtilis)	69	45	678
78	-	1 1447	2124	qi 1256633	putative (Bacillus subtilis)	69	53	678
78	-	4513	3725	Qi 1103958	vqjg (Bacillus subtilis)	69	32	789
98	-	1 4521	1 4213	pir E29326 E293	hypothetical protein (pur operon) - Bacillus subtilis	69	32	309
98	9	1 3253	2654	gi 973332	(orfc (Bacillus subtilis)	69	95	909
95		96	210	91 78646A	[411 antigen, sperm toil membrane antigen-putative sucrose-specific hosphotransferase enzyme II homolog [mice, testis, Peptide Partial, 72 es]	69	5	519
100	-	6023	1 7426	911205355	Na+/II+ antiporter (Haemophilus influentae)	69	39	1404
102	~	2678	1650	gi 561690	sialoglycoprotesse (Pasteurelle heemolytica)	69	47	1029
101	-	112241	1 8537	1009366	Respiratory nitrate reductase (Bacillus subtilis)	69	54	3705
103	=	14987	112552	gi 710020	nitrite reductase (nirB) (Bacillus subtilis)	69	15	2436
	-	-						

TABLE 2

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

Cour 19 08F	03F	Start	Stop	match	match gene name	e s	' ident	յտղմի (nt.)
2	=	8708	10168	95 154111	haxosephosphate transport protein (Salmonella typhimurium) pir[p41851] D41853 haxose phosphate transport system protein uhpT - almonella typhimurium	69	13	1461
211	116	116644	117414	91 1204435	pyruvate formate-lyase activating enzyme (Haemophilus influentae)	69	80	122
611	7	133	1 953	gi 290509	ol07 Escherichia col1]	69	5	921
=======================================	~	1537	1058	pir A42771 A427	reticulocyte-binding protein 1 - Plasmodium vivax	69	39.	087
121	9-	4309	5310	[91]:154633	NrdF Bacillus subtilis	69	l cs	1002
125	- 7	1 267	854	21 413931		69	\$	588
149	72	110666	10400	pir 528089 5280	hypothetical protein A - yeast (Zygosaccharomyces bisporus) plesmid pSB1	69	39	267
161	-	1598	813	gi 1205538	hypothetical protein (GB:U14003_302) (Maemophilus influenzae)	69	47	986
165	-	2222	1 4633	191 40054	phenylalany1-tRNA synthetase bets subunit (AA 1-804) (Bacillus btilis]	69	52	2412
691	-	1210	1941	191 (296031	elongation factor Ts (Spirulina platensis)	69	\$	582
571	112	1 8686	8339	91 732682	Fine protein (Escherichia coli)	69	- 69	348
190		484	1671	sp P1731 HIS8_	HISTIDINOL-PHOSPHATE AMINOTRANSFERASE (EC 2.6.1.9) (IMIDAZOLE ACETOL-PHOSPHATE TRANSAMINASE).	69	8	1188
306	-	1 5551	1 2777	191 41750	hadh protein (AA 1-1033) [Escherichia coll]	69	67	2775
1 206	-	6038	1 5796	91 1256135	YbbF [Bacillus subtilis]	69	84	243
249	-	979	6F	191 1405456	(Ynce (baciling subtills)	69	9	=
302	-	1 4820	1 5776	gi 1001768	hypothatical protein (Synechocystis sp.)	69	48	756
324	~	1 7384	1 3893	9111256798	pyruvate carboxylase Rhizobium etli	69	53	3492
1351	-	1 2098	1808	91 1491664	[TO4H].4 [Caenorhabditis elegans]	69	30	291
1 369	-	2075	1 2305	191 336458	ORP Balaenoptera acutorostrata	69	19	ī
392	-	1 1999	2424	191 556015	ORPI (Bacillus subtilis)	69	- 45	456
410	-	- 87	677	[91]155611	phosphoglyceromutase [Zymomonas mobilis]	69	88	(69)
421	-	2085	1129	91 1276985	arginase [Bacillus caldovelox]	69	24	756
**	- -	6713	1 7741	gi 1221782	purine synthesis repressor (Haemophilus influentes)	69	9	1029
\$	-	828	415	gi 1122758	unknown (Bacillus subtilis	69	57	414
469	~	3286	1 2246	01 1458228	[mury homolog [Homo sapiens]	69	4	1041

langt)ı (nt.)	360	201	135	147	195	363	312	279	432	336	195	942	1206	255	142	267	1 64	504	657	213	199	222	399	1 555
* ident	1 60	96	- 56	52	89	45	47	39	7	50	9	55	\$	9	-	47	- 53	12	95	87	7	36	\$	46
E is	69	69	69	69	69	69	69	69	69	69	69	69	69	69	63	69	69	69	69	69	69	69	69	69
		Caenorhabdicis				2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					evisiae) 1370340		s jannaschii)	elegans CDNA elimans			-		us influenzae)	ccus jannaschii)				
		ein (PIR:S34154	-	isum sativum]						subtilis)	scharomyces cer		LE [Methanococcu	coded for by C. (Caenorhalklitis			nilus influenzae	virilis	IIISI (Haemophil	JOSEB (Methanoco		hilus influenzae	erranei)	
		r MST101-2 prot	iophage Tuc2009	In (hsp17.9) [P	£irmus]	illus subtilis)	slegans)	es cerevisiae)	[8]	ctase (Bacillus	cytoplasmic) (Sa	subtilis]	system S subun	cDNA yk34a9.5; (nanylate kinase	hamulon sp. J	lus subtilis!	factor [Haemop]	ein [Drosophila	coding region H	coding region M.	erichia coli]	a chain (Haemop	olatopsis medit	uberculosis]
ne name	nechococcus sp.		protein (Bacte)	heat shock prote	lyase (Bacillus	ne product (Bac)		5c (Saccharomyc	Bacillus subtil	ry nitrate redu	NA synthetase (stase (Bacillus	on modification	E .	product Antil	ependent (Bacil	tion elongation	trithorax prot	nzae predicted	chil predicted	permasse (Esch	erase III, alph	ynthetese (Amyc	unknown (Mycobacterium tuberculosis)
l datch ger	URF 4 15yr	similar t	repressor	17.9 KDa	DNA photo	lipa-6d ge	[W08D2.3 [ORF YBR27	unknown	Respirato	Leucyl-tR ORF YPL1	ferrochel	restricti	coded for yk34a9.3	secA gene	protein-d	transcrip	predicted	H. influe	H. Jannas	glutamate	DNA poly	peptide-8	unknom
natch	91 49224	91 72 6427	gi 509672	gi 169101	gi 142783	81 413930	[91]1236103	191 536715	91 467327	191 1009367	19113508	gi 143044	gi 1510268	91 1255371	191 288998	91 1070014	94 1205569	01 899254	gi 1205434	gi 1510646	g1 290503	91 1204987	gi;1483199	91 1524193
Stop	1121	2823	1 760	253	1391	2114	517	312	1 433	338	286	1013	1368	187	1005	269	1 478	1 506	659	097	401	223	400	1 335
Start	1730	3023	1 26	107	1 597	2476	7	590	1 864	-	392	22	1 2573	<u> </u>	1 745	535	1 954	1009	1315	248	-	444	- 2	1 667
			-	-	- 7	-	-	- 2		-		-	-	~-	-	-	-	-	-	-	-	-	-	-
Cont 19	809	520	531	589	594	604	609	609	734	759	761	805	816	838	158	1 867	966	666	1127	1138	292R	3090	3817	3833
	ONF Start Stop match datch gene name 1 ident 10 (nt) (nt) dession 10 (nt) (nt)	ONF Start Stop match datch geno name Library Start Stop match datch geno name Library Librar	ONF Start Stop match datch gene name Usin Us	ONF Start Stop match datch gene name Unit Un	ONF Start Stop match datch gene name 1 thirst lung 1 thirst lung	ONF Start Stop match datch geno name Usin Us	ONF Start Stop match datch gene name	ONF Start Stop match datch geno name UNF datch geno name Int Int	Ouf Start Stop match datch geno name University Int. Int	OKF Start Stop match datch geno name V sim V ithuit lung Lung	ONF Start Stop match datch gene name N sim V ident Iung Iung	Okt Start Stop match datch geno name Nithunt lung	OKF Start Stop match "datch gene name N	Okt Start Stop match datch gamo name 1 min 1 min 1 min 1 min	1710 1171 1174 448¢¢¢ geno name	OHT STACK STOOL match datch gano name OHT OHT	1 12 12 12 12 12 12 12	1 126 1271 1272	1 172 1731 131 131 132 1732	172 172	10 10.10	1 125 127	1 125 121	1 127

		length (nt)	348	186	333	22A	285	291	1110	519	2445	366	1530	240	597	1 186	810	1068	1038	957	174	1215	171	1011	
5		• ident	3	- 65	36		4	\$	9 \$	45	8	5.5	7	47	39	99	0,	63	57	55	48	9.	45	50	
10		e in	9	69	69	69	69	69	69	89	89	B9	89	В9	89	89	89	B9 -	5	89	89	89	89	69	
15	oteins		. 140 aal cilis ION (ORFY)	coccus yogenes]		pulmonis] (SGC1)		is colij Ponent				start; possible rameshift,			genitalium)				r A29277 A29277 cus				C 1.8.1.2) (SIR-		
20	imilar to known proteins		rff 3' of comk (Bacillus subtilis, 226, Peptide Partial, 140 aal pir[543612 543612 hypothetical protein Y - Bacillus subtilis sp[P40398 YHXD_BACSU HYPOTHETICAL PROTEIN IN COHK 3'REGION (ORFY)	67 kDa Myosin-crossreactive streptococcal antigen (Streptococcus yogenes)		MI [Mycoplasma pulmonis] plasma pulmonis (SGC3)		similar to phosphorransferase system ensyme II (Escherichie coll) ap[P12672 PTWC_ECOLI PTS SYSTEM, FRUCTOSE-LIKE-2 IIC COMPONENT PHOSPHOTRANSFERASE ENZYME II, C COMPONENT).				إسا		irus)	G246 [Mycoplesma g				obacter calcoaceticus) ir A29277 A29277 - Acinetobacter locaceticus				SULFITE REDUCTASE (MADPH) FLAVOPROTEIN ALPHA-COMPONENT (EC 1.8.1.2) PP).	11)	
25	vel proteins		subtilis, E26, tical protein THETICAL PROTE	e streptococc	chocystis sp.	enzyme subunit Ml protein - Mycoples	llus subtilis	sas system enzyme SYSTEM, FRUCTOSE- II, C COMPONENT)		cerevisiae)	÷	ben far upstre Escherichia c	[Vibrio cholerae]	em grooving v	oding region M		coli)	la coli)) Acinetobacter 5.1.3.3 - Acinet	oniae)	llus subtilis)		FLAVOPROTEIN	Sscherichia co	
30	- Putative coding regions of novel proteins similar	gene name	of comk (Bacilius subtilis, 1812 843612 hypothetical prot 1998 YHXD_BACSU HYPOTHETICAL P YT).	osin-crossreactiv	hypothetical protein (Synechocystis sp.)	restriction-modification enzyme subunit Mi [Mycoplasma pir 849395 849395 HedMl protein - Mycoplasma pulmonis	ipa-43d gene product (Bacillus subtilis)	imilar to phosphorransferase s sp p32672 PTMC_ECOLI PTS SYSTE PHOSPHOTRANSFERASE ENZYHE II,	Prow [Bacillus subtilis]	aromyces	ATPase (Enterococcus hirae)	RF 0622; reading frame open far upstream o linking to previous ORP (Escherichia coli)	aldehyde dehydrogenase [V	241k polyprotein (Apple stem grooving virus)	M. genitalium predicted coding region MG246 (Mycoplesma	fillus subtilis]	phnE protein (Escherichia coli)	35 kDa protein (Escherichia coli)	(as -20 to 381 epimerase (EC	MalC (Streptococcus pneumoniae)	sporulation protein (Bacillus subtilis)	YqeR (Bacillus subtilis)	REDUCTASE (NADPH)	argininosuccinate lysse (Escherichia coll)	
35	itative cod	Tat ch	orfy 3 of pir S4361 sp P40398 FRAGMENT)	67 kDa My	hypotheti	restricti	ipa-43d g	sp P3267	Prow Bac	unknown	ATPase	ORF_0622; linking	aldehyde	241k poly	M. genite	YqjA (Bacillus	phnE prot	35 kDa p	precursor aldose 1.	Malc (St	sporulat	YqeR (Bac	SULPITE FP).	arginino	
40	S. sureus - P.	match	91 546918	91 517205	91 1208451	1911496158	01 413967	91 396296	91 1109685	91 807973	01 290642	91 606342	91 155276	91 285608	91 1045937	94 1303952	91 147198	91 145173	91 38722	91 153724	01 143608	91 1303805	sp P36036 CYSJ_	191 396307	
		Stop (nt)	000	400	333	230	374	293	1193	2074	8772	750	8415	3404	4132	10685	8155	2966	1150	3622	8638	3698	1594	1011	
45		Start	747	215	-	457	90		2302	2832	6328	1115	6886	3643	3536	11671	7346	1899	2187	2666	7865	2484	1424	1	1111111
		ORF		~	-					-	8	7	•		-	2	6	-	-	5		1	~	-	
50		Contig	4079	4115	4139	4258	4317	4465	-	15	31	40	9+	48	48	53	7.0	89	108	112	116	118	120	129	
							+		+ —	• -	•	•	-	• -	• -	•	• —	• -	•	• -	• -	•		•	۰

Cont. ig	- dag	Start (nt)	Stop (nt)	match	match gene name	ais •	1 ident	length (nt)
133		1867	9675	gi t16267	ORF2 (Bacillus megaterium)	89	99	673
134	~	848	1012	gi 147545	DNA recombinase (Escherichia coli)	99	- 20	165
141		372	1919	91 872116	sti (stress inducible protein) [Glycine max]	2	36	243
149		2454	1 2260	gij145774	hsp70 protein (dnaK gene) (Escherichia coli)	99	48	195
155	7	1776	1534	 gi 216583	ORF1 Escherichie coli	89	36	243
158	100	1826	1	ap p33940 YoJH_	HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.	99	- 35	1464
691	9	2749	3318	gi 1403402	unknown (Mycobacterium tuberculosis)	89	9.	570
175	- 0:1	9128	7365	gi {1072395	phaA gene product [Rhizobium maliloti]	89		1794
188		4184	5434	gi 1173843	[]-ketoacyl-ACP synthase II [Vibrio harveyi]	99	8.7	1251
189	F -	1 907	1665	91 467383	DNA binding protein (probable) (Bacillus subtilis)	89	1 88 1	759
206	5	7683	6009	9111256138	[Ybbf [Bacillus subtilis]	89	48	975
1 206	- -	110425	97121	01 452687	pyruvate decarboxylase (Saccharomyces cerevisiae)	89	- 69	1752
212		3421	3648	101 1369941	cl gene product (Bacteriophage B1)	89	39	228
214	=	5457	1	[91 1420467	ORF YOR196c (Saccharomyces cerevistae)	89	65	1026
237	-	2507	3088	gi 149381	HisH (Lactococcus lactis)	89	46	582
52	5	5540	4542	91 1235684	mevalonate pyrophosphate decarboxylase (Saccharomyces cerevision)	89	47	666
262	-	7	1 164	91 150974	4-exalocrotonate tautomerase [Pseudomonas putida]	1 68	42	162
262	~	1984	1118	91 1147744	PSR [Enterococcus hirae]	89	49	867
1 276	9	3702	3139	8p P30750 ABC_E	ATP-BINDING PROTEIN ABC (FRAGRENT).	89	1 00 1	564
1 306	9	6345	1 5725	91 1256617	denine phosphoribosyltransferase [Bacillus subtilis]	89	53	621
1 333	2	4599	1 3850	91 467473	unknown Bacillus subtilis	69	45	750
1 365	9	5017	1 4638	gi 1130643	1228].] Caenorhabditis elegans	1 68	45	180
376	~	549	1646	gi 1277026	[DAPA aminotransferase [Bacillus subtilis]	89	- 53	1098
1 405	-	1741	872	[01]1303917	[YqiB (Dacillus subtilis]	89	6	H.10
406	~	853	539		ABC transporter, probable ATP-binding subunit [Methenococcus jenneschil]	89	**	315
426	9	3558	1 3391	191 (624632	GltL (Escherichia coli)	99	48	168
438	-	108	329	01 146923	introgenase reductase [Bacherichia coli]	89	\$	222

				,	S. aureus - Put	Putative coding regions of novel proteins similar to known proteins			1
•	Contig ORF	ORF	Start (nt)	Stop (nt)	match	match gene name	E	* ident	length (nt)
•	\$	-	476	240	91 535810	hippuricase (Campylobacter jejunil	89	42	237
•	÷	7	818	1015	91 1204742	H. influenzae predicted coding region H10491 (Haemophilus influenzae)	69	48	488
•	Ç	5	4447	9776	191140960	deoxyribose-phosphate aldolase (Bacillus subtilis) pir 549455 549455 deoxyribose-phosphate aldolase (EC 4.1.2.4) - acillus subtilis	89	55	699
•	476	2	240	1184	91 571345	unknown, similar to E.coli cardiolipin synthase [Becillus subtilis] sp[b45860 YMIE_BACSU HYPOTHETICAL 58.2 PROTEIN IN NARI-ACDA NTERGENIC HEGION.	89	\$	945
•	486	2	1876	1046	91 147328	transport protein [Escherichia coli)	89	5	831
:	517	-	1764	2084	911:523809	orf2 [Bactoriophage A2]	89	79	321
<u>:</u> —	572	-	7	1.21	sp P39237 Y05L_	HYPOTHETICAL 6.8 KD PROTEIN IN NRDC-TK INTERGENIC RECION.	89	4.7	570
·	646	<u> </u>	914	459	01 413982	ipa-58r gene product (Bacillus subtilis)	89	\$2	456
·	659	<u></u>	1668	1901	01 1107541	C11D9.8 (Caenorhabditia elegans)	89	36	234
	R64	5	1510	1716	91 145774	hsp70 protein (dnaK gene) (Escherichia cull)	68	4	207
	920	-	860	432	01 110416	hypothetical protein (SP:P31466) [Hethanococcus janneschii]	68	54	429
<u> </u>	952		1096	119	91 603456	reductase [Leishmenia major]	89	90	486
	970	<u>-</u>	16	405	91 1354775	pfoS/R [Treponema pallidum]	89	9	312
	1028	=	1064	534	191 10111	diaminopimelate threathoxylase (Bacillus subtilis)	89	47	531
	1029	-	428	216	gi 1335314	Plasmodium falciparum mRNA for asparagine-rich antigun (clone 1701) [Plasmodium falciparum]	89		213
· _	1058	-	692	1 348	gi £81649	epic gene product (Staphylococcus epidermidis)	89	9	345
	1096	2	999	465	91 143434	Rho Factor (Bacillus subtilis)	89	63	201
	1308	-	2	1 694	gi 1.69939	group B oligopeptidase, PepB (Streptococcus agalactiae)	1 68	05	693
	1679		2	1 238	91 117205	67 kDa Hyosin-crossreactive streptococcal antigen (Streptococcus yogenes)	89	cs I	237
	2039	-	E	1 383	gi 153898	transport protein (Salmonella typhimurium)	89	15	381
• -	2077	<u>-</u>	-	1326	pir c33496 c334	hisC homolog - Bacillus subtilis	89	42	324
	2112	<u>-</u>	[613	1374	gi 64884	lamin Lii (Xenopus laevis)	в9	05	240 1
	2273	-	793	1 398	91 581648	epiB gene product (Staphylococcus epidermidis)	B9 -	45	396
	2948		7	385	91 216869	branched-chain amino acid transjort carrier (Pseudomonas asruginosa) pir haasaaa kanched-chain amino acid transport protein braz Pseudomonas aeruginosa	e .	=	384
ź		4		********					

5
10
15
20
25
30
35
40
45

	;	;	-;	-;	-;		_:	-:	_;	:	-:		_:	_;		_;	7:	;	-:	<u>-</u> ;	<u>;</u>	_;	;	_;
5	•	length (nt)	369	285	291	168	156	459	330	390	276	342	198	141	151	381	249	171	1194	486	1596	801	1083	813
J	•	1 ident	6+	9.	45	53	1,.87	47	48	54	5	88	47	5.5	15	87	20	‡	46	7	9 +	51	88	3
10		e sia	68	69	99	68	68	89	- B9	5	6.8	89	89	69	89	1 89	68	89	67	67	67	67	69	67
15	oteins							111		subtilis] u Bacillus		38437 538437 hsdM protein A -			colil pir S18417 S18417 hsdM lynothotical protoin A -			pir S38437 S38437 hsdM			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		winia herbicola	
20	putative coding regions of novel proteins similar to known proteins				subtilis	component [Haemophilus influenzae]		[Methanococcus jannaschii]	campestris)	<pre>int procein, imidazolone-5-propionate hydrolese (Bacillus subtilis) gi 603768 Hutl protein, imidazolone-5-propionate hydrolesu Bacillus subtilis)</pre>		of Ecopril gene product (Escharichia coli) pir 538437 538437 - Escharichia coli pir 509629 509629 hypothetical protein A - iia coli (SUB 40-520)	Proteus mirabilis	is.	ne product (Escherichia coll) pir 538417 53842 coll pir 509629 509629 hynothotical protoin A 40-520)		1	colil		lantarum)	cotransporter (Homo sapiens)	nnaschii)	438 identity with the product of the ORF6 gene from the Erwinia herbicola carotenoid biosynthesis cluster; putative [Bacillus subtilis]	
25	el proteins si		llus subtilis]	lus subtilis)	operon (Bacillus	ponent (Haemoph	protein [Arabidopsis thaliana]	protein [Metha	nthomonas campe	5-propionate hy midazolone-5-pr	is]	product [Escher i pir S09629 SC 520)	heavy-metal transporting P-type ATPase (Proteus	urocanase (Bacillus subtilis)	ne product (Escherichia coli pir S09629 S09629 h 40-520)	Pyruvate Kinase (Bacillus psychrophilus)	pa-44d gene product (Bacillus subtilis)	hady gene of Ecopril gene product (Escherichia protein - Escherichia coli pir(S09629 S09629 b Escherichia coli (SUB 40-520)	[8	D-lactate dehydrogenase (Lectobacilius planterum)		praphenate dehydratase [Methanococcus jannsschii]	is identity with the product of the ORF6 greatened blosynthesis cluster; putative	hypothetical protein (Symechocystis sp.)
30	regions of nov	ane	protein (Bacillus subtilis	GTP-binding protein [Bacillus subtilis]	of gbsAB		otein (Arabid	nitrate transport permease protein	fructose (Xanthomonas	imidazolone- uti protein, ir	putative [Lactococcus lactis]	sdw gene of Ecopril gene prod protein - Escherichia coli pi Escherichia coli (SUB 40-520)	transporting P	•	စီးခွ	ase (Bacillus	product (Baci	Ecopril gene scherichia col coli (SUB 40-	[Bacillus subtilis]	hydrogenase (L		ehydratase [Me	with the prod biosynthesis c	ical protein (Syne
35	stative coding	match gene name	pothetical	GTP-binding p	ORF-2 upstream	fructose-permeass IIBC	heat-shock pr	nitrate trans	PTS enzyme-II	ut protein, gi 603768 Hu subcilis	putative (Lac	hsdw gene of protein - Er	heavy-metal	Hucu protein,	hadw gane of Ecopril ge protein - Eacherichia Escherichia coli (SUB	Pyruvate Kin	ipa-44d gene	hady gene of Ecopi protein - Escheri Escherichia coli	· putative (Ba	D-lactate del	renal sodium	prephenate d	45% identity carotenoid	hypothetical
40	S. aureus - P	march	101 904179	191 508979	91 1324394	91 1204696	91 217855	9111510490		91 603768 	91 149435	91 450688	94)1353678	191 603769	gi 450688	gi 1041097	gi 413968	91 450688	101 163727	91 216746	91 1098557	91 1510720	91 : : 46216	191 11006621
45		Stop (nt)	007	1	294	169	258	461	330	391	712	342	209	187	352	382	250	318	8300	9833	3155	4145	4268	5304
		Start	768	572	-	336	101	919	-	780	~		121	- 63	~~~	2	498	89	9493	10318	1560	4945	5350	4492
		 	-	-	-	-	-	-	-	<u></u>	-		-	-		-	-	~	=======================================	=	-	5	5	-
50		Contig 0	2955	2981	3014	3082	3108	3639	3657	3823	3982	4051	4089	4143	4148	4173	4182	4362	5	170	32	32	36	\$

5
10
15
20
25
30
35
40
45

55

sim tident length	1 67 . 52 4539 efn - 67 . 52 4539	67 48 756	t, 112 67 45 336	67 49 1233	67 50 1203	67 51 1462	67 48	67 49	67 29	67 54	67 35 1149	67 47	67 30	67 45	67 55 1212	67 44 540	67 48	67 47 1044	67 47 1440	67 53	67 48 1263	67 47	67 46 1386	•
match gene namo	glutemate synthase large subunit precursor (Azospirillum brasilense) pir Ba6602 Ba6602 glutamate synthase (NADPH) (EC 1.4.1.13) alphe hain Asospirillum brasilense	Trem (Bacillus subtilis)	orf3 (Bacillus, C-125, alkali-sensitive mutant 18224, Peptide Mutant, 112		hypothetical protein (GB:GB:D90212_3) [Haemophilus influenzae]	putative [Lactococcus lactis]	LP9D gene product (Bacillus subtilis)		ipa-59d gene product (Bacillus subtilis)	Yman (Bacillus subtilis)	ORFB Becilius subtilis	Unknown (Bacillus subtilis)	hypothetical protein (GB:D26185_10) (Mycoplesme genitalium)	kdpC Escherichia coli	Gre cyclohydrolase II (Bacillus amyloliquefaciens)	[YrkJ [Bacillus subtilis]	unknown (Bacillus subtilis)	SphX (Symechococcus sp.)	[2-oxoglutarate/malate translocator (Spinacia oleracea)	shikimate 5-dehydrogenase [Methanococcus jannaschii]	ATP-dependent nuclease (Bacillus subtilis	HYPOTHETICAL 21.8 KD PROTEIN IN ASPS 5'REGION.	branched-chain amino acid carrier [Lectobacillus delbrueckii]	
match	91 304131	91 1000453	91 1113949	91 634655	gi 1204349	gi 149432	gi 1408497	91 413976	 gi 413983	19111262335	101 143047	[91 556885	91 1046081	91 146549	19111212775	19111303709	19: 1377841	91 496319	gi 595681	191 1511101	191 142439	sp P37347 YECD_	[41 13261]	
Stop (nt)	8481	14678	4757	6338	1321	7176	14049	113982	115194	2153	1149	3518	3589	1 2297	4198	2374	6673	1 3763	3428	1626	2179	112801	114432	
Start (nt)	3943	13923	1	1570	2119	5695	14549	114821	114811	6171	-	4060	4584	2899	5409	2913	6341	2720	1989	1351	1917	12445	13047	
ORF ID		2		2	-	-	=======================================	51	12	-	-	- 5	~	1-	-	s -	-	-	9		~		Ξ	
Cont ig 10			!	:	i	i	i	109	109	1	•	1	1	:	:	147	152	:	163	193	200	506	206	

5	
10	
15	
20	
25	
30	
35	
40	
45	

2			length (nt)	192	849 1	834	1035	993	621	261	1287	1299	828	1 765	909	1 006	897	20.5	306	864	216	1 660	\$61	492	1 1.21	765	594	338	1 659
1 18 19 19 19 19 19 19	5			37	- 05	- 97	5	52	49	-	-	9	1 14	-	55 -	99	- 4	6	-	47	- 4	- 15	37	\$	_ ec	- 0	- \$	7	
1 10 10 10 10 10 10 10	10		e is	- 67	67	67	67	67	67	6.1	6.7		- 69	67	67	67	67	63	- 69	1 69	67	- 69	67	67	- 69	67	67	67	1 69
1 10 10 10 10 10 10 10				_		_			_	_	SKS).	A44756		_	-		-			_	_	-			_	_	-	_	-
1 10 10 10 10 10 10 10	15	proteins										pir A44756 domonas sp.			96)			pir S\$7655 lavul igerus				1					zael	1	1
1 10 10 10 10 10 10 10	20	to known i							cus hirael		JINETRNA	sevaloniii 1.88) Pseu			s influenz			avuligerus) eptomyces c			influenzae						lus influen		
1 10 10 10 10 10 10 10		ins similar					8]	quens)	Enterococ	visiael	21) (IIISTII	eudomonas s e (EC 1.1.	lveticus		[Haemophile	-		tomyces cl	1 1 1 1 1 1		aemophilus			[8]		rmis)			ania major
ORF Start Stop accession 2 176 1867 gal 115098 177 176 1867 gal 115098 177 176 1867 gal 115098 177	25	novel prote	 	10 1540]		rens]	lus subtili	arium extor	rotein ftsW	omyces 'cere		1.1.88) [Ps	bacillus he		.000014_4)	richia coli	lis)	tase (Strep aso (EC 6.)	tilis]	·	: P21498) (F			llus subtil	elegans)	s lichenifo	1,19201_15		in - Leish
ORF Start Stop accession 2 176 1867 gal 115098 177 176 1867 gal 115098 177 176 1867 gal 115098 177	30	egions of r	9	acteriophas	tchia colf	Bacillus f	ent (Bacil)	ethylobacto	division p	e (Sacchare	SYNTHETASE	ase (EC 1. glutary1-C		cus lactis	protein (GB	739 [Esche		nate synthe	cillus sub	subtilis]	orotein (SP	subtilis)	occus sp.)	stein (Baci	orhabditis	on (Bacillo	protein (GB	subtilis)	tase prote
ORF Start Stop accession 2 176 1867 gal 115098 177 176 1867 gal 115098 177 176 1867 gal 115098 177	35	ative coding r	gene	excisionase B	17.	Ctak protein (protein-depend	dioxygenase (H	putative cell	urea amidolyas	HISTIDYL-TKNA	HHG-CoA reduct hydroxymethyl	orf2 gene prod	ORFU (Lactococ	hypothetical p	CG Site No. 29	putative (Baci	argininosucci	Rho Factor (Ba	YqgF [Bacillus	hypothetical	Appc (Bacillus	lrrA (Synechoo	regulatory pro	2K970.2 (Caeno		hypothetical	Yage (Bacillus	probable reduc
1 1 1 1 1 1 1 1 1 1	40		match		. —				1 —	1	1	. —	. —	011039479	. —	. —	, —	· -	91 143434	[91;1303853				, —				gi 1303850	ptr A32950 A329
ORF Start	45		Stop (nt)	1 367	1412	1 3056	4186	1028	1 5030	1 264	1 1394	13592	1 2113	918	1121	1 901	1 903	196	1 2226	1 865	1 218	1 647	006	916	667	1 850	1 597	319	1 460
	70		Start (nt)	176	1 2260	1 2223	5220	36	1 \$650	524	#81 —	4890	1 2940	1 325	999	1800	1799	3	1921	1 1728	1 433	1 249	340	1407	1555	11614	1190	636	938
20 00 00 00 00 00 00 00 00 00 00 00 00 0			:	- 2	- 2	9	-	-	-	-	-		-	~	-	-	-		-	-	-	- 2	- 2	-	-	-	-	<u>; – </u>	 -
	50		Contig	246	276	297	307	316	324	336	34.0	364	365	1 367	395	415	419	47.4	485	965	100	908	R28	833	#56	888	1034	1062	1067

EP 0 786 519 A2

5		length (nt)	291	300	507	231	204	155	336	612	261	264	339	315	915	270	234	22.5	1095	1269	1593	1251	174	969	1305	1032	546
		1 ident	**		95	46	44	55	. Se	45	45	46	7	46	7	7.6	7	4	47	46	40	41	40	\$5	42	63	7
10		e ia	19 .	.9	69	69	69	67	67	69	67	67	67	67	99	99	99	99	99	99	99	99	99	99	99	99	99
15	eine				ccus yogenes]	6 6 6 9 5 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	uenzae)		A44756 A44756 mas sp.					ifluenzae]					-	jannaschil]				5 S49455 11s			
20	- Putative coding regions of novel proteins similar to known proteins	į		ccus jannaschii]	antigen (Streptococcus))))))) () () ()	oligopeptide transport ATF-binding protein (Macmophilus influenzas)	mays)	nas mevalonii) pir A44756 A44756 1.1.1.88) Paeudomonas sp.		Bacillus subtilis (fragment)	ana)	nel)	ribonucleotide transport ATP-binding protein [Haemophilus influenzae]				uenzae)	lus)	molybdenum cofector biosynthesis moeA protein (Methanococcus jannaschil)				us subtilis] pir[S49455 S49455 1.2.4) - acillus subtilis		ena)	us influentae)
25	el proteins simi		hocystis sp.	hypothetical protein (SP:P31466) [Methanococcus jannaschii]		s lactis]	binding protein	methyltransferase (200	10 D			cystathionine beta-lyase (Arabidopsis thelians)	(Amycolatopsis mediterranel)	P-binding protei		-		mercury scavenger protein (Masmophilus influenzae)	hase (Gallus gallus)	hesis mosa prote		lus subtilis]	m melilotij	ase (Bacillus sub-	illus subtilis)	cystathionine beta-lyase (Arabidopsis thalians	protein (SP:P31805) (Haemophilus influentae)
30	g regions of nov	name	hypothetical protein (Symechocystis sp.	1 protein (SP:P3	67 kDa Myosin-crossreactive streptococcal	GTG start codon [Lactococcus lactis]	e transport ATP-		MG-CoA reductase (EC 1.1.1.88) (Pseu hydroxymethylglutaryl-CoA reductase	lus subtilis]	nitrate reductase alpha chain	ne beta-lyase (A		ide transport AT	Codv [Bacillus subtilis]	[Synechococcus PCC7942]	supjens)	venger protein (inducible nitric oxide synthase	cofactor blosynt	ORF 1 (Mycoplasma mycoides)	protein (Bacilius subtilis)	phaD gene product (Rhizobium	decxyribose-phosphate aldolase (Bacill deoxyribose-phosphate aldolase (EC 4.	ATP-dependent nuclease (Bacillus	ne beta-lyase (A	
35	utative codin	match gene name	hypothetica	hypothetica	67 kDa Myos	GTG Start c	oligopepeld	uroporphyrinogen III	HMG-CoA red hydroxymet	menD (Bacillus		cystathioni	peptide-synthetase	ribonucleot	Cody [Bacil	SmtB (Syner	mucin (Homo sapiens)	nercury sca	inducible n	molybdenum	ORF 1 (Myco	hypothetical	phaD gene p	decayribose decayribos	ATP-depende	cystathioni	hypothetical
40	S. auraus - E	match acession	191 1001369	9111510416	91 517205	911308861	81 1205366	19111531541	01 151259	1011557489	pir \$52915 \$529	1911704397	[Qi 1483199	191 1205337	191 535348	101 46491	101 (292046	191 1204545	Qi 998342	191 1510751	[91]150209	1011665999	191 1072398	91 809660	91-1142440	1911704397	gi 1204323
45		Stop (nt)	293	302	507	234	251	356	282	366	398	1 265	340	396	1989	1 2542	1 7826	925R	5253	10124	1 2868	6428	4370	10998	1305	8205	3265
		Start (nt)		^	-	1 464	454	~	728) SR4	658	7	2	82	3075	1 2273	8059	1 9034	6347	8856	1276	1 7178	5143	11693	-	9236	3810
50		9 ORF	_	-	-	-	-	-		~	-	-	-	-	-	9	_	9	9	=	-	-	-	=_	-	9	5
		Cont fg	1358	2181	3000	3066	3087	3101	3598	3765	3788	3883	3926	4417	~	15	=	=	32	\$	87	es -	62	<u>-</u> -	9/	16	707

EP 0 786 519 A2

10	
15	
20	
25	
30	
35	
40	
45	

llength	- I		5	222	2031	201	399	0.8	330	1 750	1353	207	228	666	Not I	1050	105	759	1065	102	1047	879	1677	192	192
1 ichent		æ	\$	33	Ç	0.0	=	67	29	43	40	42	36	47	7	5	0	47	7	47	48	45	8	42	30
sin.		99	99	99	99	99	99	99	99	99	99	99	9,9	99	99	99	99	99	99	99	99	99	99	99	99
- Charth none name		intrate reductase gamma subunit (Bacillus subtilis) ap/P42177 NARI_BACSU NITRATE REDUCTASE CAMMA CHAIN (EC 1.7.99.4). gi 1009369 Respiratory nitrate reductase (Bacillus subtilis) (SUB -160)	glucosamine-6-phosphate deaminase [Candida albicans] pir A46652 A46652 algucosamine-6-phosphate isomerase (EC 5.3.1.10) - east (Candida albicans)	ORP YGRIILM [Saccharomyces cerevisiae]	gamma-glutamyltranspeptidase (Bacillus subtilis	[putative (Bacillus subtilis)	highly hydrophobic integral membrane protein [Bacillus subcilis] sp p42953 thGC_BACSU TEICHOIC ACID TRANSLOCATION PERHEASE PROTEIN AGG.		unknown Rhizobium meliloti	Na/H antiporter system (Becillus alcalophilus)	di-tripeptide transporter [Lactococcus lactis]	unknown (Mycobacterium tuberculosis)	alternative stop codon (Rattus norvegicus)	[F08F].4 gene product (Caenorhabditis elegans)	ChrA protein (Ervinio chrysantiwal)	[peptidoglycan hydrolase [Staphylococcus aureus]	H. jannaschil predicted coding region MJ0790 (Methanococcus jannaschil)	tetrahydrodipicolinate N-succinyltransferase (Haemophilus influentee	high affinity nickel transporter (Alcaligenes autrophus) sp P23516 IOXW_ALCEU HIGH-AFFINITY NICKEL TRANSPORT PROTEIN.	hypothetical 23.3 kd protein (Escherichia coli)	[phosphatase-associated protein (Bacillus subtilis)	ORF771 Escherichia coli)	2-succiny1-6-hydroxy-2,4-cyclohexadiene-1- carboxylate synthase [Bacillus subtilis]	(putetive (Bacillus subtilis)	[M. jannaschil predicted coding region MJ1651 [Methanococcus jannaschil]
40.44	acession	91 971344	91 170886	gi 1323179	91 1491813	91 1146224	91 755152	91 1146241	1011642655	91 854655	91 451072	91 1322411	gi 1143542	191 (1458327	191 809541	91 153067	gi 1510859	91 1205865	 91 882101 	gi 1208965	gi 1488662	191 303560	91 1185289	gi 1256625	191 1511604
000	12	2732	4674	17712	2637	2983	3662	1 3723	1 2880	1994	1 5727	(13713	2595	6135	1041	1053	1 648	2973	5484	2104	1784	2952	2218	2275	962
	(ut)	3418	4243	117491	4667	3189	3264	4592	3209	8743	6707	113919	2822	££££	F	2012	1178	1575	6548	2805	2830	3830	3894	2535	6611
	5 6			12	2	5	5	-5	-	=	- 5	51		-	-	-	-	-		-	~	-	2	-	~
		103	109	112	116	150	172	174	175	571	130	195	217	133	E .	241	192	763	272	276	278	278	279	288	292

TABLE 2

5	; ; ; ;	length (nt.)	558	936	630	159	1 087	961	252	624	552	798	462	429	636	540	#5#	196	866	677	318	714	288	330	105	21.5
		1 ident	\$	\$	9	28	52	47	53	05	38	0.5	9	51	=	49	9,	9.	51	5.	52	6	52	1 48	53	S
10	1	e is	99	99	99	99	99	99	99	99	99	99	99	99	99	99	ę.; —	99	99	99	99	99	99	99	99	99
15	teins			OXX_BACSU			lus ubtilis)						-d 163010 168				Jannaschii)		A25881 A25881 LSTP_STASI		genitalium)	5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(ORPU).	3 3 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
20	Putative coding regions of novel proteins similar to known proteins			subtilis] sp P24009 COXK_BACSU			8-dihydro-6-hydroxymethylpterin-pyrophosphokinasa (Bacillus ubtilia	dis		H).		ia coli]	griseus pir JN0531 JN0531 riseus			[#1	pradicted coding region MJ1154 (Muthanococcus Jannaschii)		codon) (Staphylococcus simulans) pir A25881 A25881	I (Haemophilus influenzae)	2 [Mycoplasma ger			HYPOTHETICAL 46.7 KD PROTEIN IN MSBB-RUVB INTERGENIC REGION (ORFU)	8K5-T)	18)
25	proteins sim		mophilus]	facto (Bacillus subtilis C OXIDASE ASSEMBLY PACTOR	seruginosa)	phaericus)	terin-pyropho	[Staphylococcus epidermidis]	pombe]	1.3.1.12) (PO		se Escherichia	(Streptomyces	subtilis)	ulosis)	isma genitalium]	ng region KJ11		codon) (Staphylococos si - Staphylococcus si (EC 3.5.1).		ng region MG37		cystis sp.]	IN MSBB-RUVB	(Lactococcus lactis phage BKS-T)	ococcus aurer
30	egions of novel	0 5	esterase (Bacillus stearothermophilus)	assembly facto (alginate lyase (Pseudomonas a	biotin synthetase (Bacillus sphaericus)	5-hydroxymethylp	duct [Staphyloco	[Schlzosaccharomyces pombe]	PREPHENATE DEHYDROGENASE (EC 1.3.1.12) (PDH)	unknown (Bacillus subtilis)	purine nucleoside phosphorylase	acid synthase	desminase (Bacillus subtilis)	unknown (Mycobacterium tuberculosis)	hunit J (Hycoplasma		s subtilis]		DNA-3-methyladenine glycosidase	M. genitalium predicted coding ragion MG372 (Mycoplasma	ORF_0234 (Escherichia colil	hypothetical protein (Synechocystis sp.)	46.7 KD PROTEIN		novel antigen; orf-2 (Staphylococcus aureus)
35	tative coding r	efetch gene name	esterase (Baci	Cytochrome & ssembly PROBABLE CYTOCHROHE	alginate lyase	blotin synthet	7, 8-dihydro-	epiC gene product	Ę	. —	unknown (Bacil	purine nucleo	p-aminobenzoic a	cytidine deam	unknown (Mycol	Na ATPase subunit	H. Jannaschii	MrgA (Bacillus subtilis)	lygostaphin (ttg start lysostaphin precursor LYSOSTAPHIN PRECURSOR	DNA-3-methylad	M. genitalium	ORF_0234 (Esci	hypothetical	•	ORF266; putative	novel antigen; o
40	S. aureus - Pu	match acession	91 216314	91 994794	91 1107839	gi 520750	91 467468	91 581649	91 1103505	Sp P20692 TYRA_	91 467416	91 147309	gi 388263	91 606744	91 1460081	• -	91 1500008	91 852076	91 153047	91 1204905	91 1046082	91 305014	91 1001353	sp P24204 YEBA_	gi 928839	91 148695
45	•	Stop (nt)	559	1978	2682	! –	735	863	483	<u>; </u>	;-	1000	462	Ϊ-	1103	541	:-	5299	2413	480	1383	<u> </u>	;	1 1 1 1	1 206	720
		Start (nt)	11116	2913	2053	2460	1 1214		232	2468	2150	212	-	1 4826	8671	~	-	6.95	3405	956	9901	= -	0611	7 7	0171	1433
50		<u> </u>	-	-	-	-	-	-	-	-	-	-	 		- 2	-	-	-		-	-	-	-	-	-	
50		Contig	1 294	1 297	316	338	1339	1 363	1 366	1 367	372	378	5	707	117	420	157	3	÷	1 561	562	576	577	584	592	109

ative coding regions of novel proteins similar to known proteins **Ath years name**	66 53
15 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	99 99
known proteins known proteins orhabditis elegans! Ctis] pir[S19119 S19119 Ctis] pir[S19119 S1919 S199 S1919 S199 S19	
20 kg chi	
of novel proteins similar to know transport system membrane protein transport system membrane protein inding immunoglobulin heavy chain anding immunoglobulin heavy chain the protein [Lactococcus actis of the monophosphokinase] [Haemophilus auteus] aureus] coli] saureus] corevisiae] cerevisiae] ded coding region MJ0255 [Methanoc [Baccillus subtilis]]	ystis sp.]
ative coding regions of novel proteins similar to known prot "Askth gene name similar to M. musculus transport system membrane protein, Nr and S. cerevisiae SMF1 protein (PR:MASIS4) Ceenorhaditis unknown protein (Rattus norvegicus) phosphatidylcholine binding immunoglobulin heavy chain IgM v Phus masculus argininosuccinate.lyase (Campylobacter 15)uni) atkaline phosphatase-like protein (Lectococcus actis atkaline phosphatase-like protein (Bacillus subtilis) putetive (Helicobacter pylori) prictive (Helicobacter pylori) rhopty protein (Plarmadium yoolii) rhopty protein (Plarmadium yoolii) rhopty protein (Saccharomyces cerevisiae) mathylgalectoside parmases APP-binding protein (Mycoplemm ghypothetical protein (Synechocystis sp.) H. jannaschii prodicted coding region HJO255 (Hethanococcus pyna-binding protein (Bactlius subtilis) DAN-binding protein (Bactlius subtilis)	hypothetical protein (Symechocystis sp. tail fiber protein (Becteriophage T3)
Putative coding regions of noval proteins similar to known proteins which gene name istaliar to N. musculus transport eyetem memberare protein. Nrampland & cerevisiae SMT protein (PR.MSISI) Ceanorhabdits elleg unknown protein (Rattus norvegicus) [MR.MSISI) Ceanorhabdits elleg unknown protein (Bactus in the protein (Lattococcus actis alkaline phosphatese like protein (Lattococcus actis alkaline phosphatese like protein (Lattococcus actis alkaline phosphatese like protein (Bactilius aubtilis) [MR.MU.77 (AA 1-642) (Muman cytomagalovirus) [MR.MU.77 (AA 1-642) (Muman cytomagalovirus) [MR.MI.77 (AA 1-642) (Muman cytomagalovirus) [MR.MI.77 (AA 1-642) (Muman cytomagalovirus) [MR.MI.78 (Mathino autis) [MR.M. 1-642) (Muman cytomagalovirus) [MR.M. 1-642) (Mr.M. 1-642) (Mr.M.M. 1-642) (Mr.M. 1-642) (Mr.M.M. 1-642) (Mr.M. 1-642) (Mr.M.M. 1-642) (Mr.M. 1-642) (Mr.M.M	hypothetical pr tail fiber prot
A 200202 10004490	1 1208474
45 25 25 25 25 25 25 25 25 25 25 25 25 25	398 19
20	1342

Cont ig	108 10	Start (nt)	Stop (nt)	match	makah gene nama	e sin	I ident	length (nt)
1983	-	660	251	91 1045935	DMA helicase II (Mycoplasma genitalium)	99	00	249
2103	~	9/1	400	gi 929798	precursor for the major merosoite surface antigens [Plasmodium alciparum]	99	46	125
2341	- -	εν (188	[91 [125 6623	exodeoxyribonuclesee (Bacillus subtilis)	99	38	186
2458	-	328	164	91 1019410	Junknown (Schizosecheromyces pombe)	99	47	162
2505	-	468	235	191 1510394	putative transcriptional regulator (Nethanococcus jannaschii)	99	39,	234
2525	-	558	280	191 1000695	cytotoxin L (Clostridium sordelliii	99	*	279
2935	-	r -	275	191 765073	autolysin (Staphylococcus auraus)	99	47	273
3005	-	1114	305	[gi 1205784	heterocyst maturation protein (Haemophlius influenzae)	99	90	192
3048	-	80	נוב	1911303813	Yqew [Bacillus subtilis]	99	42	198
3071	-	~	189	gi 1070014	protein-dependent (Bacillus subtilis)	99	4	189
3081	_	404	225	gi 984212	unknown {Schizosaccheromyces pombe}	99	44	180
3090	- 2	580	386	= 1	DNA polymerase III. alpha chain (Haemophilus influenzae)	99	- 87	195
3318	-	-	187	191 1009366	Respiratory nitrate reductase (Bacillus subtilis)	99	64	387
3739	-	1 798	400	91 1109684	Prov [Bacillus subtilis]	99	47	399
3796	<u>-</u>	402	202	191 853760	acyl-CoA dehydrogenase [Bacillus subtilis]	99	09	201
1934	-	.23	347	1911563952	gluconate purmease (Bacillus Licheniformis)	99	46	249
4240			350	gi 151259	IMG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir[A44756]A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) pseudomonas sp.	99	;	348
4604	-	۲-	234	pic A26713 BHHC	A26713 BHHC hemocyanin subunit II - Atlantic horseshoe crab	99	1 99	228
J	<u>.</u>	8845	9750	91 145646	cynR [Escherichia col1]	1 59	35	906
9	S	2708	3565	91 887824	ORF_0310 [Escharichia coli]	1 59	47	858
2		1993	866	gi 143402 	recombination protein (ttg start codon) [Bacillus subtilis] gi 1303923 RecN [Bacillus subtilis]	65	4	966
<u>₹</u>	-	2493	3524	91 1103126	crcD gene product (Alcaligenes eutrophus)	1 59	38	1032
8 2	_ 	1908	1372	gi 349187	acyltransferase (Saccharomyces cerevisiae)	9	05	537
12		1467	2492	91 149518	phosphoribosyl anthranilate transferase (Lactococcus lactis) pir[5]5126[5]5126 anthranilate phosphoribosyltransferase (EC .4.2.18) - Lactococcus lactis subsp. lactis	65	52	1026
ž							4	

5
10
15
20
25
30
35
40
45

		length (ni.)	237	654	357	957	525	954	924	129	282	852	930	477	756	639	1275	192	381	138	087	786	1011	321	879	360	1431
5		1 ident	45	=	7	9.	20	90	45	45	7	42	37	80	46	37	6+	40	38	45	99	32	43	51	4	7	7
10		e is a	65	99	65	9	65	1 65	65	65	65	65	9	- 65	59	9	69	65	69	65		65	\$	65	65	9	9
15	eins			11)			20100							nfluenzae)	genicalium)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 0 0 0 0 0 0	0 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		coccus	nfluenzael	ase Bacillus			uenzae)	
20	- Putative coding regions of novel proteins similar to known proteins			D-hydroxyisoceproate dehydrogenase (Lactobacillus delbrueckii)			molybdenum cofactor biosynthesis protein [Haemophilus influentee]			influenzael			(0)	(Haemophilus influentee)	(Mycoplesma gen			ns]		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N-terminal acetyltransferase complex, subunit ARD1 Nethenococcus janneschii	8 (Haemophilus influentae)	S-edanosyl-L-mothionine;uroporphyrinogen III methyltransferase Bacillus megaterium;		f 6 8 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9	glucosamine-6-phosphate deaminase protein [Haemophilus influenzae]	
25	l proteins simil		P	genase (Lactobac	e i i i		esis protein (199	himurium)	subcilis)	NAD(P)II-flavin oxidoraductase (Haemophilus i	1 c	s subtilis	lysophospholipase L2 [Haemophilus influenzas]	H. influenzae predicted coding region H10594	H. genitalium predicted coding region MG372 (Mycoplesma	[86211	socystis sp.}	cystathionine beta-lyase [Emericalla nidulans]			complex, subun	coding region HI0388	oorphyrinogen II	(nirD) (Bacillus subtilis)	subtilis!	ninase protein [1 00111
30	regions of nove		s subtilis]	aproate dehydro	H-protein [Plaveria cronquistil]	chia coli)	factor blosynth	ApbA protein (Salmonella typhimurium)	Opps gene product (Bacillus subtills)	n oxidoreductas	te InT-5 - rabbit	sporulation protein (Bacillus subtilis)	pase L2 [Haemop	predicted codi	predicted codi	permease [Haemophilus influentae]	hypothetical protein (Synechocystis sp.)	beta-lyase [Em	[Bacillus subtilis]	unknown (Bacillus subtilis)	etyltransferase	predicted codi	methionine:urop	reductase (nirD) (Ba	(A 1-311) (Bacillus subtilis)	-phosphate dear	361 [Bacherichla coli]
35	itative coding	natch gene name	YqhJ Bacillus	D-hydroxyisoc	H-protein [Fl	yelx [Escherichla coll]	molybdenum co	AppA protein	OppB gene pro	NAD(P)11-£1av\$	troponin T beta InT-5	sporulation p	lysophospholi	H. influenzae	M. genitalium	permesse (Hae	hypothetical	cystathioning	unknown (Baci	unknown (Baci	N-terminal ac	H. influenzae predicted	S-adenosyl-L- megaterium	Initrite reduc	ORP 311 (M.	glucosamine-6	CG Site No. 3
40	S. aureus - P.	match	91 1212729	91 (509245	91 547: .)i 405882	191 1205905	91 493074	91 580897	91 1205518	pir A44459 A444	91 143607	01 1204896	91 1204844	91 1104 6082	91 1222116	gi 1001708	91 1399263	gi 467423	91 467424	91 1511532	gi 1204637	91 142695	91 710021	gi 39881	91 1204399	01 536955
45		Stop	626 9	10387	Ĭ _	1746 19	1	1 7588	1 1503		1 1056	8272	5375	1 478	1 757	1433	3454	6357	1 1988	2987	2119	2862	1586	10119	1140	4268	8595
		Start (nt)	1 390	111040	119172	1 790	9386	1 6635	1 5R0	1 225	1339	1 7421	1 4446	1 954	- 3	1 795	4728	8548	1 1608	-1 2250	2598	3647	10851	110439	262	1 3909	7165
50		Contig ORF ID ID	- 2	112	24	7	77	8	- 5	-	-	6 -	-	-	-	7	-	-	-	-		-		2	-	-	0.7
		Contig	12	=	82	4	±	\$	3	3	25	69	2	24	7,	17		<u> </u>	85	86	102	102	103	9	106	109	601

			- •	- •	- •	+	- •			- •		- •	:				-:	:				•				
5	length (nt.)	228	414	150	579	762	201	430	1926	540	252	642	1161	984	¥6.1	2637	2496	1296	630	1515	1383	612	1,14	611	1 987	
	1 ident	\$	50	56	25,	32	39	46	7	95	27	1,0	05	9,	9	3	98	53	41	9	46	99	0,5	o ,	63	
10	min —	9	1 59	65	65	65 -	65 -	65	- 59	65	65	65	65	9	99	59	1 69 1	9	1 65	\$	9	6.5	69	65	9	
15 sc;e p102d		similis - Streptococcus			s influenzae)								pir A42296 A42296				1			rodo (gran) polypeptide (Am 1-673) [Bacillus subtilis] pir 506048 506048 probably roll) protein - bacillus subtilis sp p13484 rAGR_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCOSYLTRAMSFEMASE (EC 2.4.1.52) [TECHOIC ACID BIOSYMTHESIS ROTTIN E).	tilis		fluenzae)	1992		
20 km 00 181		cus equisimil protein - Str			8 (Haemophilu	brevis	udi)		lisi	hia coll]							11)	118]		sp Pl3484 TAC	Bacillus sub		(Naemophilus influenzae	ilus influen		
95 59 08 08 08 08 08 08 08 08 08 08 08 08 08		stringent response-like protein (Streptococcus equisimilis) pir (S19975 S19975 Strept quisimilis) quisimilis	[115]		coding region HI0318 (Haemophilus influentee	transcriptional activator protein (Bacillus brevis)	repeat organellar protein (Plasmodium chabaudi)		homologous to sp: IITRA_ECOLI (Bacillus subtilis)	mutator mut7 (AT-GC transversion) [Escherichia coll]	moniae]	-	•	capsulatus)	mosaic vitual	herichla culti	(Escherichia coli)	ornithing acetyltransferase (Bacillus subtills	5'guanylate kinase (Haemophilus influentae)	odD (gtea) polypeptide (AA 1-673) [Bacillus subti) probably roul protein - bacillus subtilis sp P1346 polyiciycerol-phosphate) Lpha-glucosyltransfenase acid biosynthesis rothin E).	DNA or KNA helicase, DNA-dependent ATPAse (Bacillus subtilis)	1 1 1 1 1 1 1 1 1 1 1	(RNASE HII)	hypothetical protein (GB:U00022_9) [Haemophilus influentee]	, , , , , , , , ,	•
OS regions of nove	ane.	ponse-like prot 19975 stringent	coccus equisimilis	[Straptomycas griseus]	predicted cod	al activator p	llar protein [mo sapiens!	Sp: IITRA_ECOL1	(AT-GC transve	D02_orf569 [Mycoplasma pneumoniae]	illus subtilis	Seta-1,4-N-acetylmuramoylhydrolase lysozyme 2 (EC 3.2.1) precursor	putative (Rhodobacter capsulatus)	OHF IV (AA 1-489) (Flgwort	synthetase (Escherichla cult	V alpha-subunit	atyltransferase	kinase (Haemoph	odo (graa) polypeptide (AA probable roll) protein - bac poly(glycerol-phosphate) LP acid biosymphesis rothin E)	elicase, DNA-de	HisBd (Lactococcus lactis)	ribonuclease HII (EC 31264)	protein (GB:U0	ichia colil	
58 coding	match gene name	stringent res pir S19975 S quisimilis	ORP1 (Streptococcus	Orf2 (Strapto	H. Influenzae predicted	transcription	repeat organe	precursor (Nomo sapiens	homologous to	mutator mut7	D02_orf569 [H	putative [Bacillus	beta-1,4-N-ac	ORF3; putativ	OHF IV (AA 1-	alanyl-tRNA	exonuclease \	ornithing ace	5'guanylate	rodo (gtaA) polypeptide probable roil protein PoLY(GLYCEROL-PHOSPHAT ACID BIOSYNTHESIS ROTT	DNA OF KNA h	Hisbd (Lactor	ribonuclease	hypothetical	fecD (Escherichia	
40 - 50 - 50 - 50 - 50 - 50 - 50 - 50 -	match	91 407881	gi 407880	101 1139574	91 1204571	91 710496	91 1151158	91 37589	gi 1064809	91 216513	91 1209768	91 11146225	g: 148304	gi 151943	91158812	191 145220	gi 882711	9: [468115	gi 1205974	gi 580920	gi 1146200	gi 149379	19111205308	0111204989	gx 145927	
45	Stop	3915	4295	4380	8640	111288	202	422	12658	7004	3838	2841	1948	4178	4785	5272	8104	18191	3215	3751	3709	2513	4195	940	3794	
	Start	3688	3882	4231	9218	112049	2		110733	7543	3587	3482	3858	3195	4982	7.908	10599	96891	3844	5265	2327	1 2021	4968	1278	4780	
	0 KF	·	-	;-	-	112	-	-	Ξ	- 8	- 5	7	-	-	-	·•	-	16	-	-	5	-	7		-	
50	Contig 10	0 1	- 011	110	112	22	125	126	127	143	145	150	166	188	189	195	195	206	217	220	236	71.2	17.	252	261	
	ت :	;	:	1	:	1	1	1	:	1	· ! _	1_	· <u> </u>	. i _	. 	<u> </u>	. <u>.</u> _	. i _	1_	1	. <u>i </u>	٠ ـ ـ		- : -	. : _	_ :

5		Jength (nt)	276	168	723	8 8 8	156	1311	231	102	462	576	681	297	267	916	291	588	516	1326	429	679	456	627	237	
•		1 ident	42	45	0	Š.,	64	8	34	47	5.1	Og	80	45	¥	47	7	39	40	48	77	53	96	\$	9	
10		E 20	65	65	65	\$9	65	65	65	65	9	\$	9	59	65	65	65	65	9	\$9	Ş	65	65	\$9	9	
15	roteins					Escherichia coll) pir 829895 MQEC2N EC .7.1.69), N-acetylglucosamine- PTAA_ECOLI PTS SYSTEM, N- NEMT (EliA				us subtilis)		cillus subtilis) - Bacillus subtilis Synthesis sensor protein Hor (EC	2.3.1.61 {Bacillus ubtilis}							tobacter				7754 537754 1		
20	Putative coding regions of novel proteins similar to known proteins					(Escherichia coli) (EC .7.1.69), N-acet 3 PTAA_ECOLI PTS SYS ONENT (EIIA		tilist	-	dependent glycerol-3-phosphate dehydrogenase (Bacillus subtilis)		akaline phosphetase regulatory protein (Becillus subtilis pir A27650 A27650 regulatory protein phoR - Bacillus subt sp P21345 PHOR_BACSU ALKALINE PHOSPHATASE STITHESIS SENSO 2.7.31.	EC 2.3.1.61) (Ba				[8]	lium]		UDP-N-scety/glucosamine 1-carboxyvinyl transferase (Acinatobacter	colij			[Escherichia coli] ir 537754 537754 region) - cherichia coli		
25	vel proceins si				s subtilis]	transport protein (Essystem enzyme II (EChia coli sp P09323 PT.	subtilis	n (Bacillus sub	(Lupinus luteus	phosphate dehyd	8)	atory protein ory protein pho LINE PHOSPHATAS		cerevisi	(1)	fluenzael	[Lactococcus lactis]	coplasma genita	aeruginosa)	carboxyvinyl tr	D) (Escherichia	-	[en		(H)	
30	g regions of no	паме	lus subtilis)	cillus subtilis	protein-dependent [Bacillus subtilis]		biotin synthase (Bacillus subtilis)	membrane-associated protein [Bacillus subtilis	tRNA-glutamine synthetase (Lupinus luteus)	ant glycerol-3-	ORF1 (Staphylococcus aureus)	lkaline phospherase regulatory protein (Be pir[A27650]A27650 regulatory protein phoR sp[P23545]PHOR_BACSU ALKALINE PHOSPHATASE 2.7.31.	dihydrolipoamide transsuccinylase (odhB;	ORF YOR195w (Saccharomyces	degs protein (Dacillus subtilis)	ribokinase [Haemophilus influentae]	Na/H antiporter homolog (L	glycyl-tRNA synthetase Hycoplasma genitalium	(Pseudomonas aeru	lglucosamine 1- us)	transmembrane protein (kdpD) [Escherichia coli)		OafA (Salmonella typhimurium)	open reading frame upstream glnE hypothecical procein XE (glnE 5'	RAP-2 (Plasmodium falciparum)	
35		match gene name	orfx (Bacillus	unknown (Bacillus	protein-dep	N acetylgucosamina phosphotransferase specific - Escheric ACETYLGUCOSANINE-	biotin synt	membrane-as	tRNA-glutam	NAD depend	(ORF1 (Staph	alkaline ph pir A27650 sp P23545 2.7.31.	dihydrolipo	ORF YOR195w	degs protei	ribokinase	Na/H antipo	glycyl-trua	putative (P	UDP-N-acetylgl	transmembra	reductase	OafA (Salmo	open reading hypothetic	RAP-2 (Plasi	
40	S aureus -	match	91 496558	911.67418	19111070114	91 146913	91 1277029	91 143264	-	91 1146220	91 1340128	91 143331	gi 143268	191 1420465	[gi 143498	91 1204756	91 599848	191 1045942	91 1498192	91 41562	1911116551	191 603456	91 1518853	01 49399	gi 10961	
45		Stop (nt.)	278	815	2864	1399	31.70	2800	2531	3621	669	576	4346	483	838	10215	1531	865	517	5637	430	932	459	983	270	
70		Start	_	9.82	3586	2286	4)20	1490	19.2	3421	238		3666	187	272	9280	1241	1452	1032	4312	~	25	916	1509	905	
		OR C	-	~	-	7	\$		-	-	-		_	-	-	Ξ	- 2	~	-		-	-	_	~	~	
50		Contig	274	100	1 307	se	338	243	344	1 358	364	33	379	428	43#	÷.	449	8 C 0	479	98	484	499	505	175	611	

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Contig	ORF	Start	Stop	match	march gene name	sin .	1 ident	Jengt h
2	- :	(116)	(nt)	acession				Cam
705	_	564	283	191 710020	nitrite reductase (nirB) (Bacillus subtilis)	69	\$2	282
712	_	7	177	gi 289272	ferrichrome-binding protein (Bacillus subtilis)	99	1 76	1 771
512	- 2	196	354	191 289272	[errichrome-binding protein (Bacillus subtilis)	65	37	159
743	-	1 2	631		ATP binding protein (Streptococcus gordonii)	59	45	630
749	~	1 393	677	91 167374	single strand DNA binding protein [Bacillus subtilis]	65	29′	187
762	-	1 1698	850	. —	multidrug resistanca protein (Plasmodium falciparum)	65	8 9	849
788	-	- 85	315	91 1129096	unknown protein (Bacillus sp.)	9	35	231
850	<u>-</u>	-	408	9111006604	hypothetical protein (Symechocystis sp.)	59	37	408
908	-	- 1	44		[2362 Saccharomyces cerevisiae]	65	9+	777
928	-		174	gi 1256653	DNA-binding protein (Bacillus Subtilis)	9	54	1 1/4
1691	-	26	232	gi 238657	AppC=cytochrome d oxidase, subunit I homolog (Escherichia coli, Kl2, eptide, 514 as)	65	4.3	201
1037	-	414	1 262	191 1491813	gamma-glutamyltranspeptidasa (Bacillus subtilis)	99	9.	153
1053	-	348	175		unknown (Rhizobium meliloti]	99	7	174
1149	-	1 1399	1752	. —	ribulose-5-phosphate 1-epimerase (Spinacia .leracea	65	6.0	648
1214	-	- 881	1 495	gi 1205959	lactam utilization protein Haemophilus influenzae	99	\$	387
1276		476	276	pir 535493 5354	site-specific DNA-methyltransferase Sts1 (EC 2.1.1) - Streptococcus sanguis	59	£ .	201
1276	~	006	157	91 (473794	'ORF' [Escherichia coli]	59	34	324
7205	-	272	138	91 633699	TrsH (Versinia enterocolitica)	99	21	135
1252	:-	1 336	169	9: 1045789	hypothetical protein (GB:U14001_76) [Mycoplasma genitalium]	59	4	168
2974	-	1 590	297	gi 152052	enantiomerase-selective amidase (Rhodococcus sp.)	59	45	294
1696		306	154	pir 191024 3910	Inypothetical 30k protein (DmRD140 5' region) - fruit fly (Drosophila nelanoguster)	53		23
3069			278	91 144906	product homologous to E.coli thioredoxin reductase: J.Biol.Chem. 1988] 261:9015-9019, and to F52a protein of alkyl hydroperoxide eductase from S.typhimurium: J.Biol.Chem. (1990) 265:10535-10540; pen reading frame A [Clostridium pasteurlanum]	59	9	276
3146	-	282	142	[gi 49315	ORF1 gene product (Bacillus subtills)	59	47	141
0716	-	629	=======================================	11150711	indolepyruvate decarboxylase (Ervinia herbicola)	59	3	339
	;							

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	o		5	S. aureus - Pu	G G G PULALIVE CODING REGIONS OF NOVEL PROTEINS SIMILAT TO KNOWN PFOLEINS	o ns of novel prot	seins similar c	O o known protein	5	0		5
Contig ORF	ORF	Start (nt)	Stop (nt)	metch acession	match gene name	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 1 1 1 1 1 1 1 1 1	1		60 E	% ident	length (nt)
3546		-	303	U1 450688	hsdM gene of Ecopri gene product (Escherichia coll) pir 53847 5384 protein - Escherichia coli pir 509629 509629 hypothetical protein A Escherichia coli (508 40-520)	rl gene product chia coli pir 50 (SUB 40-520)	[Escherichia coll] 9629[S09629 hypoch	oli) pir S38437 pothetical prot	pir S38437 S38437 hsulf stical protein A -	65	Ĉ.	303
3782	-	7	328	gi 166412	[NADH-glutamate synthase [Medicago sativa]	thase (Medicago	sativa)		-	\$9	42	327
3990	-	374	189	gi 1009366	Respiratory nitrate reductase (Bacillus subtilis)	e reductase (Bac	illus subtilis	_	—	65	53	186
4032	-	613	308	191 1323127	ONF YGROB7C [Saccharomyces cerevisise	aromyces cerevis	iae)		_	65	20	306
1 4278	~ -	1 726	1 364	91 1197667	vitellogenin (Anolis pulchellus)	is pulchellus)			—	65	42	363
61	-	4259	5518	gi 145727	deaD [Escherichia coli)	coli)				70	45	1260
61	9	1 7639	9269	91 1016232	yef27 gene product	gene product (Cyanophora paradoxa	adoxa)		_	79	36	714
02		1053	6454	gi 765073	autolysin [Staphylococcus aureus]	ococcus aureus]				64	47	009
7	133	112706	111537	91 414009	ipa-85d gene product (Bacillus subtilis)	ct (Bacillus sub	tilis)		_	9,9	5	1170
33	-	1 2388	4364	91 1204696	fructose-permease IIBC	component	[Haemophilus influenzae	fluenzael	_	64	47	1977
36	-	1871	1 3013	91 290503	glutamate permease (Escherichia coli)	(Escherichia co	111)		-	99	Ç	1143
1 37	9	1 4065	4409	191 39815	orf 2 gene product	gene product (Bacillus subtilis	11s]			99	9.0	345
45	6	7852	8760	gi 1230585	nucleotide sugar e	epimerase (Vibrio	cholerae 0139			9	3	606
53	-	1540	1899	91 1303961	YqjJ (Bacillus sub	subtilis]			- •	99	20	360
95	9	4793	3855	gi 457514	gltC (Bacillus sub	subtilis]				99	45	91.6
95	124	30002	30247	91 < 70331	similar to zinc fingers [Caenorhabditis elegans	ngers (Caenorhat	ditis elegans			64	£3	246
- 62	-	1 2759	1 2421	191 642655	[unknown [Rhizobium meliloti]	melilotil			(6.4	28	339
 82		7178	6027	91 457702	5-aminoimidazole ribonucleotide-carboxilase [Pichia methanolica pir 519112 519112 phosphoribosylaminoimidazole carboxylase (EC yeast [Pichia methanolica]	ribonucleotide-carboxilase [Pichia methanolica 2 phosphoribosylaminoimidazole carboxylase (EC thanolica)	rboxilase (Pic minoimidazole	hia methanolica carboxylase (EC	1.1.21) -	ري 4	46	1152
96	6 -	9251	10030	91/1511513	ABC transporter, probable ATP-binding	robable ATP-bind		subunit (Methanococcus jannaschii)	nnaschii)	64	42	780
100	-	-	009	gi 765073	autolysin (Staphylococcus aureus)	ococcus aureus]		; ; ; ;	_	64	4	009
901	- 5	3868	4854	gi 166778	lysine specific permease [Eschurichia	rmease (Eschuric	hia colil		_	64	46	987
123	-	838	554	91 467484	unknown (Bacillus subtilis)	subtilis]				64	47	285
127		7514	7810	190017 161	serotype-specific antigen (African horse sickness virus) pir S27891 S27891 capsid protein VP2 - African horse sickness virus	antigen (African horse sickness 2 - African horse sickness virus	horse sicknes e sickness vir	s virus) pir S: us	7891 527891	99	28	297
131	- 1	1134	6721	91 1511160	H. jannaschii pred	predicted coding region NJ1163 (Methanococcus jannaschil)	10n NJ1163 (He	thanococcus jar	naschii]	64	46	414
							1					

_		Jength	619	354	161	828	1026	159	1512	459	222	\$10	279	891	486	231	666	1161	1278	1266	797	180	1116	630	282	549	1 858
5	•	* ident	4	52	99	20	٠,	38	42	45	47	69	39	69	38	52	80	44	43	45	33	35	45	41	43	38	++
10		E	64	64	9	64	64	99	64	64	79	64	- 64	- 64	64	64	20	64	64	64	9	64	64	64	64	64	64
15	oteins		eumoniae)	7 1 1 1 1 1 5 5 5 6 6 6 7 6 6 7												s jannaschii)	: (EC .2.1.11)				iis) taphylococcus						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20	lar to known pr		cillus pleuropn	J. 0	riniil											7 (Nethanococcus	lus subtilis) E DEHYDROGENASE				lococcus homini ing protein - t			brevis]	ocytogenes)		
25	Putative coding regions of novel proteins similar to known proteins		ribofiavin synthase alpha subunit (Actinobacillus pleuropneumonlae)	Leishmania major	(Pneumocystis carinii)				melilotil	MHC class II analog (Staphylococcus aureus)	found (Escherichia coli)	hilus	11	us subtilis!		M. Jannaschil predicted coding region MJ0837	Sparate semialdehyde dahydrogensse (Bacillus subtilis) spiqo4797 nims_bacsu aspartate-semialdehyde dehydrocenase (EC (ASA Dehydrocenase).	(Mycobacterium leprae)		richia colil	spanning protein (Staphylococcus hominis) potential membrane spanning protein - tap	us subtills]	tilis)	activator protein (Bacillus bravis)	ONF2; putative 19 kDa protein [Listeria monocytogenes		
30	egions of nove	94	thase alpha su	tase protein -	surface antigen MSG2 (hia coli)	(Bacillus subtilis)	lus subtilis!	phaD gene product (Rhizobium melliloti)	nalog (Staphyl		argC (Bacillus stearothermophilus)	cter vinelandii)	Spe-90d gene product (Bacillus subtilis)	Pl7 (Listeria monocytogenes)	predicted codi	gemialdehyde dehydrogenase hHAS_BACSU ASPARTATE-SEHIA DROGENASEI.		[Bacillus subtilis]	primosomal protein n' [Escherichia coli]		lysine decarboxylase [Bacillus subtilis]	quinol oxidase (Bacillus subtilis)	,	19 kDa protei	(Bacillus subtilis)	erichia coli)
35	tative coding r	match gene name	riboflavin syn	probable reductase protein	major surface	DinP (Escherichia coli)	F72	[unknown [Bacillus subtilis]	phan gene prod	MHC class II a	No definition line	argC (Bacillus	ORF 6 (Azotobacter	ipa-90d gene p	Pl7 (Listeria	M. Jannaschii	aspartate semialdehyd sp Q04797 NHAS_BACSU (ASA DEHYDXOGENASE).	hflx; B2235_C2_202	YqfR [Bacillus	primosomal pro	Potential membrane pir \$42932 \$42932 hominis	lysine decarbo	quinol exidase	transcriptional	ORF2: putative	ftsA (Bacillus	ORP_0470 [Escherichia colf]
40	S. aureus - Pu	match	91 1173517	pir A32950 A329	91/398151	91 984587	91 903304	gi 467483	91 1072398	1961001161	gi 396380	91 304134	gi 142359	91 414014	: <u> </u>	qi 1499663	gi 142828	1 =	gi 1303839	i <u></u>	91 459266	91 580835	91 143396	gi 710496	91 131 4295	• —	91 537049
45		Stop	i —	356	3295	2307	Ϊ_	•	9:29	Ì	13446	16938	282	1	1	232	5567	1163	1450	1267	1488	;	3949	605	4239	į	2324
		Start	5455	709	3555	3134	3855	2	6355	2042	13667	16429	095	7818	1330	462	9999	-	671	2532	742	1625	5064	1264	4520	-	2878
50		ORF	5	-	2	7	- 2	-	9		=	115	1-	-	2	1-	9	1-	-	-	~	2	-	-	5	12	2
<i>50</i>		Cont ig 1D	142	143	149	154	161	165	175	188	195	206	215	243	258	259	263	172	280	293	295	301	315	321	333	342	353

9 200		Crart	· -		the free name name	a cim	in industrial	J. Sport
01	2	(nc)	(uc)	acession	2000 1000 1000			(nt)
978	~	827	1658	pir 525295 A328	oxoglutarate dehydrogenase (lipoamide) (EC 1.2.4.2) - Bacillus subtilis	64	47	2832
\$	9	1 4429	4839	pir A36933 A369	diacylglycerol kinsse homolog - Streptococcus mutans	99	35	411
404	-	1 2020	6611	gi 969026	orfx [Bacillus subtilis]	64	4	888
425	-	1 1109	1 591	gi 1146177	phosphotransferase system glucose-specific enzyme II (Bacillus subtilis)	64	44	519
\$	9	4082	4798		purine nucleoside.phosphorylase (Escherichia coli)	64	51,	111
\$ \$	7	1035	1604	91 606376	ORF_0162 [Escherichia coll]	9	38	570
470	- 2	1680	6107	91 1369948	host interacting protein (Bacteriophage Bl)	9	45	1428
486		1161	1471	91 1205582	spermidine/putrescine transport system pormense protein (Haemophilus	64	35	441
497	-	1 22 17	1159	Sp P36929 FMU_E	FMU PROTEIN.	99	38	1059
105	-	7	410	91 142450	ahrC protein (Bacillus subtilis)	9	38	804
514	-		1 290	120	H. influenzae predicted coding region H10238 (Haemophilus influenzae)	99	34	288
252	-	3162	1333	gi 1204511	bacterioferritin comigratory protein [Haemophilus influenzae]	- 64	4	162
603	4	1759	926	91 755823	NADH dehydrogenase F (Streptogyna americana)	9	35	198
653	~	940	1 746	gi .213234	dicarboxylic amino acids Dip5p permease (Saccharomyces cerevisiae)	3	4	195
099	- 3	3801	1 2257	sp P46133 YDAII_	HYPOTHETICAL PROTEIN IN OGT 5 REGION (FRAGMENT).	64	39	1545
569	-	=	205	gi 1001383	hypothetical protein (Synechocystis sp.)	64	4.	492
702	-	-	1 752	9i 142865	DNA primase (Bacillus subtilis)	64	46	150
826	-	-	1339	gi 971336	arginyl tRNA synthetase [Bacillus subtilis]	64	20	139
838	-	1831	716	gi 1354775	pfos/R (Treponema pallidum)	99	41	915
864		675	944	91 39833	cyclomaltodextrin glucanotransferase [Bacillus stearothermophilus] 1 19815 cyclomaltodextrin glucanotransferase [Bacillus earothermophilus]	3	\$	270
887			677	qi 153002	enterotoxin type E precursor (Staphylococcus aureus) pir A28179 A28179 enterotoxin E precursor - Staphylococcus aureus sp P12993 ETXE_STAAU ENTEROTOXIN TYPE E PRECURSOR (SEE).	8	8	675
928	~_	11.72	963	91 311976	[ibrinogen-binding protein Staphylococcus aureus pir 534270 534270 fibrinogen-binding protein - Staphylococcus ureus	20	£	210
1049	-	800	909	91 1049115	Rap60 (Bacillus subtilis)	99	42	195
1067	-	666	748	91 1151072	HhdA precursor (Reemophilus ducreyi)	64	05	252
		+			.			

Contig	ORF C	Start (nt)	Stop (nt)	match.	march gene name	e is	1 ident	length (nt)
1120	-	50	202	ni 142439	-dependent nuclease	1 99	30	153
1125	1 - 1	751	377	gi 581648	epi8 gene product (Staphylococcus epidermidis)	- 64	99	375
1688		402	214	65 TVMS	(transforming protein K-ras - mouse	- 64	47	189
2472	-	2	358	91 487282	Na+ -ATPase subunit J (Enterococcus hirae)	- 64	36	357
2989	1 - 2	520	356	91 304134	arge (Bacillus stearothermophilus)	- 64	20,	165
2013	1	630	352	011551699	subunit I Bacillus	- 69	51	279
3034	- 2	546	274	91 1204349	hypothetical protein (GB:GB:D90212_3) [Haemophilus influenzae]	- 64	20	273
1197	! –	613	308	01 1009366	spiratory nitrate reductase (99	46	306
3303		90	362	 gi 1107839	alginate lyase [Pseudomonas aeruginosa]	99	43	273
3852	- 2	82	288	191 216746	D-lactate dehydrogenase (Lactobacillus plantarum)	99	42	207
3868	-	- 1	312	91 149435	putative [Lactococcus lactis]	- 64	48	312
3918	7	099	331	91 5532	acetyl-CaA acyltransferase (Yarrowia lipolytica)	99	46	330
4000	-	112	378	91 94688	E S	1 99	44	267
4009		<u>.</u>	368	91 39372	gene	99	43	288
4166	-	7	349	gi 149435	putative [Lactococcus lactis]	- 39	1 91	348
4366	-	7	307	191 216267	•	9	7	306
4457		7	00.7	94 1197667	vitellogenin (Anolis pulchellus)	- 64	Ç	399
-	-	1539	2438	[91 438228	סאר כ (Staphylococcus aureus)	63	32	006
-	2 - 5	1195	5423	qi 1369943	al gene product (Bacteriophage Bl)	- 63	7	189
			390	gi 467441	expressed at the end of exponential growyh under conditions in which he enzymes of the TCA cycle are repressed [Bacillus subtilis] gi 467441 expressed at the end of exponential growyh under ondtions in which the enzymes of the TCA cycle are repressed Bacil	5	£	390
<u> </u>	9	6329	5112	gi 496943	ORF (Saccharomyces cerevisiae)	[9]	47	618
-	23 14	14669	15019	pir A04446 QQEC	, α,	63	36	351
-	9	4403	6250	91 43498	pyruvate synthase (Halobacterium halobium)	69	42	1848
-	2	3869	4738	91,113967	ipa-41d gene product (Bacillus subtilis)	63	- 63	870
-	! .		! ! ! ! ! ! ! !		· · · · · · · · · · · · · · · · · · ·			

	15880	(nt)	acession	match gene name		t ident	length (nt)
	1 7945	17607	91 467409	DRA polymerase III subunit (Bacillus subtilis)	63	0	1728
	1 2479	17376	[91]:37036	ORF_0158 [Escherichia coli]	63	39	570
		2114	911 142656	unknown (Rhizobium meliloti)	69	5	366
	6562	1 7353	91 1399821	PhoC (Rhizobium meliloti)	63	46	192
	1 223	1 927	911149376	HisG (Lactococcus lactis)	63	45	705
	4912	4403	91,413950	[pa-26d gene product [Bacillus subtilis]	63	£	510
	9006	17220	91 466997	metH2; B2126_C1_157 (Mycobacterium leprae)	63	‡	1857
	10566	9448	91 1204344	cystathionine gamma-synthase (Haemophilus influenzae)	63	45	1119
-	12	1508	91 882657	sulfite reductass (NADPH) flavoprotein beta subunit (Escherichia oll)	63	46	1488
	2272	4125	91 665994	hypothetical protein (Bacillus subtilis)	63	34	1404
127 7	6064	1566	191 40162	murE gene product [Racillus subtilis]	63	4	1503
149 6	2321	1 2106	1911148503	dnaK Erysipelothrix rhusiopathiae	[63	40	216
149 26	10445	10170	91 4870	ORF 2, has similarity to DNA polymerase (Saccharomyces kluyveri) r[S15961 S15961 hypothetical protein 2 - yeast (Saccharomyces yveri) plasmid pSKL	6	42	276
164 2	507	1 1298	191 145476	CDP-diglyceride synthetase [Escherichia coli]	69	\$	192
9 991	6061	H164	191 1151932	enzyme II (Rhadoba	3	Ę	1746
169 4	1704	1886	91 152886	elongation (actor 7s (tsf) (Spiroplasma citri)	6	8	183
188 5	3145	1 2951	91 1334547	GIY COI 114 grp IB protein (Podospora anserina)	63	45	195
195 13	11767	12804	191,606100	ORP_0335 Escherichia coli	63	40	1038
201 2	607	2283	gi 433534	arginyl-tRNA synthetase [Corynabacterium glutamicum] pir A49916 A49936 argininetRNA ligase (EC 6.1.1.19) - orynabacterium glutamicum	3	46	1677
206 14	15893	16489	91 580828	N-acetyl-glutamate-gamma-semialdehyde dehydrogenase (Bacillus ubtills)	63	49	597
220 5	17769	1 5766	gi 216334	secA protein (Bacillus subtilis)	63	42	2004
221 1	74	1 907	lgi 677945	AppA (Bacillus subtilis)	63	42	834
227 3	944	1 1708	91/1510558	cobyric acid synthase (Methanococcus jannaschii)	63	46	765
261 2	804	1070	91 486511	ORF YKRO54c (Saccharomyces cerevisiae)	63	45	267
269 2	3606	1960	91 148221	DNA-dependent ATPASE, DIA helicase (Escherichia coli) pir JS0137 BVECRO recO protein - Escherichia coli		~	1647

		length (nt)	1242	966	747	987	411	726	387	235	1671	897	849	573	614	213	228	1 060	399	285	300	396	537	540	480	615
5		1 ident	=	38	7	36	38	35	42	\$	-	39	- 04	35	45	29	52	41	35	41	27	2.7	38	39	*	45
10		e sim	63	63	63	63	63	63	63	3	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63
15	oteins		JEPTAR) SP P46807 METB MYCLE O-SUCCINYLHOMOSERINE (THIOL)-			ir S11497 S11497 eudomonas aeruginosa			,	us sp. PCC 7942)		pneumoniae] sp P42162 P29K_STRPN 29 KD F1).										[Methanococcus jannaschii]	[0]			
20	imilar to known pr		leprael o-SUCCIN			aeruginosa ain braß -	.1.1.951 (PGDH).			chococcus PCC6301) tein - Symechococcus	us influenzae)	umoniae) sp P42362		92 aa)	i)	annaschii}	8.)		(8)				(CB:U00019_14) [Haemophilus influenzae]			cus faecalis]
25	proteins		[Mycobacterium 2 (EC 4.2.99.9)		is subcilisi	(Pseudomonas aerugino	ENASE (EC 1			codon) [Synechoco transport protein	(Haemophil			Peptide, 1	delbruecki	[Methanococcus jannaschii]	us japonicus	trificans	ces lividans	ulosisi		coding region MJ1232	19_14) (Hae	cilis]	Bacillus subtilis	(Enterococ
30	Putative coding regions of novel proteins similar to known proteins	a name	ystathionine gamma-synthase Hycobacterium CYSTATHIONINE GAMMA-SYNTHASE (EC 4.2.99.9) LYASE).	putative (Bacillus subtilis)	al protein (Bacillus	otein (AA 1 - 437) (chain amino acid ti.	D-3-PHOSPHOGLYCERATE DEHYDROGENASE (EC 1.1.1.95) (PGDH)	llus subtilis)	YqhY [Bacillus subtilis]	gtg start sulfate	transport ATP-binding protein [Heemophilus influentae]	29-kiloDalton protein [Streptococcus NEMBRANE PROTEIN IN PSAR 5'REGION OF	[Lactobacillus sake]	comk Bacillus subtilis, E26, Peptide, 192	nif5-like gene (Lactobacillus delbrueckli)	serine aminotransferase (Met)	reductase (NADH) [Lotus	NorQ protein [Paracoccus denitrificans]	ng frame (Streptomyces	unknown (Mycobacterium tuberculosis)	ORF1 (Lacrococcus lactis)	predicted	protein	lyase (Bacillus subtilis)		endocarditis specific antigen (Enterococcus faecalis)
35	tative codi	match gene name	cystathionine CYSTATHIONINI LYASE).	putative (1	hypothetical	carrier protein branched-chain	D-3-PHOSPH	Yqez (Bacillus	Yqhy (Baci	A C	transport	29-kiloDal MEMBRANE	orf4 Lack	comk Baci	nits-like	serine ami	nitrate re	Norg proce	open reading frame	unknown (M	ORFI (LACE	M. jannaschii	hypothetical	urea amidolyase	regulation protein	endocardit
40	S. aureus - Pu	match	[gi o99273	191 405133	91,1239983	gi 45302	sp +35136 SERA_	9111303816	91 1303914	91,112152	gi 1205402	91 393268	91 1418999	191 546917	[gi 43985	91 1510994	91,517356	91 881940	91 47168	91 1261932	91 149445	191 1511235	191 1204277	191 790943	pir S49892 S498	Ui 493017
45		Stop (nt)	6176		748	3134	1216	1051	1715	227	2718	2679	2195	574	1084	215	230	392	400	782	321	399	618	542	482	617
		Start Int)	7417	738	2	2148	1,26	326	2101	451	1048	3575	1347	7	1.16	427	-	3	7	1,75	22	794	1154		•	1231
		ORF	œ	~	1	~	7			-	- 2	-	<u> </u>	-	-	-	-	-	-	-	-	-	-	-	-	-
50		Contig	278	287	295	328	362	404	405	406	415	426	\$05	507	562	675	989	101	720	97.	907	972	1085	1094	1106	1113
			·		÷		-	• —	• —		٠		· —	٠ ــ	٠ ــ	• —	+	•	·	÷			• —	· —		. — :

${ t TABLE}$ 2

		length	693	204	243	249	192	195	225	225	402	291	132	1 681	210	216	767	399	1 660	360	168	174	195	312	303	066	234
5		1 ident	46 –	- or	34 –	- 9		47	33	52 -	20	35	- 2	- 0	36	\$	₽	3.7	48	×	54	57	30		Je	44	- 15
10	•	e s	63	- 69	- 69	63	G	63	63	- 6	- 63	63	63	63	63	G	63	63	63	69	63	63	63	63	63	62	62
15	eins.			_		_	coccus ureus	_	_	us aldolyticus!		_	phaeroides		_	1916 A49916 11ense				Jer P16467]		_	_	A44756 A44756 mas s:	_	_	
20	- Putative coding regions of novel proteins similar to known proteins		HYPOTHETICAL 54.3 KD PROTEIN IN ECO-ALKB INTERGENIC REGION.				of transposon Th554 from Staphylococcus ureus	rferi)		carbamoyl-phosphate synthase (glutamine-hydrolysing) [Bacillus aldolyticus]	-		e (Rhodobacter pha	hia colij	inis)	[Azospirillum brasilense] pir[A49916 A49916 [EC 1.4.1.13] - zospirillum brasilense				ot. accession number P16467)	BETA-ANYLASE (EC 3.2.1.2) (1,4-ALPHA-D-GLUCAN MALTOHYDROLASE)	rsor - chicken		as mevalonii) pir A44756 A44756			
25	l proteins simi	, 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IN ECO-ALKB II	orferi]		llis	f transposon Tr	orrelia burgdo	yoelii	(glutamine-hy	lococcus aureci	101	c ketoisomeras	nase (Escheric	(Mycoplasma hominis)	Azospirillum bi (EC 1.4.1.13)	nge th-181			me 2 (Swiss Prot.	, 4-ALPHA-D-GLU	e Ng-CAM precu	astoris]	88) (Pseudomonas eductase (EC, 1.1		coccus mutans]	
30	regions of nove	* · · · · · · · · · · · · · · · · · · ·	54.3 KD PROTEIN	pl00 protein (Borrelia burgdorferi)	s subtilis!	- Bacillus subtilis	۲ď	flagellar MS-ring protein (Borrelia burgdorferi)	rhoptry protein (Plasmodium yoelli)	sphate synthase	orf-1; novel antigen (Staphylococcus aureus)	xella caterrhalis!	phosphoribosylformimino-praic ketoisomerase (Rhodobacter	phenylacetaldehyda dehydroganasa (Escherichia coli)	intrinsic membrane protein [glutamate synthase (NADPH) (Azospirillum b glutamate synthase (NADPH) (EC 1.4.1.13)	ORP360; part at ive Bacter lephage El-19	s subtilis]	s subtilis]	yruvate decarboxylase isozyme [Saccharomyces cerevisiae]	(EC 3.2.1.2) (1	neural cell adhesion molecule Ng-CAM precursor	product [Pichia pastoris]	HHG-COA reductase (EC 1.1.1.88) [Pseudomonas meval hydroxymethylglutaryl-CoA reductase (EC.1.1.1.88)	ATPase [Lactococcus lactis]	6-P kinase (Streptococcus mutans)	apiens)
35	itative coding	match gene name	HYPOTHETICAL	pl00 protein	YqhY Bacillus subtilis	hisc homolog	product is similar to fr	flagellar MS-	Irhoptry prote	carbamoyl-pho	orf-1; novel	smidase [Horaxella	phosphoribosy	phenylacetald	intrinsic mem	glutamate syn	Our 160; put at	YrkA (Bacillus subtilis)	YbbF (Bacillus subtilis	Pyruvate deca	BETA-ANYLASE	-	Perfp gene pr	HHG-COA reduc	ATPase [Lactor	tagatose 6-P	hiski (Homo saplens)
40	S. aureus - Pu	match	sp P33940 Y0JII_	· —	01 1303914	pir(c)3496 c)34	91 436132	91 1184298	gi 1041785	01 312443	91 1407784	91 1224069	91 836646	01 1480237	9111487982	91/439126	: =	91 1303697	91/1256135	91 1256902	sp 110537 AHYB_	pir A37967 A379	91 1121932	91 151259	191 296464	gi \53675	91 1490521
45		Stop (nt)	-		245	250	193	195	227	360		293	561	252	8	217	:	399	395	361	17.1		195	312	!	2400	6218
40		Start	-	-	-	498		-	451	136	-	583	266	440	609	~	. (%	-		720	338	_	-		9	1411	5985
		ORF	-	-	-	-		1	-	~	<u>-</u>	-	-	-	-		<u>-</u>	<u>-</u>	-		-	-	=		<u>-</u>		6
50		Contig	1300	1325	1814	2021	2325	2335	2406	2961	2962	2987	2994	3043	3078	3139	1625	3658	3659	3783	3900	4309	4367	4432	4468	F	36

5		length (nc)	720	678	804	744	762	858	765	822	474	2172	963	\$19	(09	704	1911	852	531	1 698	150	960	282	3006	612
J		1 ident	33	38	4.1	\$25	35	34	Z	4	£	æ	42	7	17	ж	37	4	30	1,0	42	38	86	3	7
10		sin	62	62	62	62	62	62	63	62	62	62	62	62	C9	62	62	62	62	62	62	62	62	62	62
15	corașns			s influenzael			EIIB domain of PTS-dependent Gat transport and phosphorylation Escherichia	btilis) E PROTEIN AGG.	ABC-transport porons, P24136 Escherichia	_	subtilis]			3667 C28667 DWA	_	_	_	8 3 HEMK_BACSU	_		_) unidentified	-	***************************************
20	nilar to known p		6 1 1 1 1 1 1 1 1 1	region HIN1279 [Haemophilus			and phosphoryl	highly hydrophobic integral membrane protein [Bacillus subtilis] sp[P41953]TAGG_BACSU TEICHOIC ACID TRANSLOCATION PERMEASE PROTEIN AGG	from other ABC 107, P04285, P24	lori	UDP-N-acetylmuramoylalaninaD-glutamate ligase (Bacillus subtilis)	nolyticus)	cus jannaschii)	mismatch repair protein (Streptococcus pneumoniae) piric28667 c28667 DAA mismatch repair protein hexA - Streptococcus neumoniae		[]venzae]		protein (Bacillus subtilis) - Bacillus subtilis sp P45873 HEHK_BACSU [DASE (EC .3.3).		uenzae]		colil	phonylalanyl-tRMA synthetase alpha subunit (Gly294 variant) unidentifiad cloning vector)		ma genitalium)
25	il proceins sir	1 1 1 1 1 1 1 1 1 1 1 1	cter coli)				Gat transport	membrane prote	nding proteins s P24137, P080	omyces coelic	-D-glutamate	(Vibrio parahaen	dehydrogenase (Methanococcus	eptococcus pne A - Streptococ	coccus mutans	aemophilus in		Z i S		emophilus inf	aericus)	(Eschor	alpha subunit	lactis	049) (Hycoplas
30	egions of nove		uct (Campyloba	predicted coding	eutroph	lus influenzae)	PTS-dependent	obic integral	hows similarity with ATP-binding proteins from other Swiss Prot Accession Numbers P24137, F08007, P04285, colil	gene product (Streptomyces coelicolor)	ramoylalanina-	e precursor (V		ismatch repair protein (Stre mismatch repair protein hexA	otein (Strepto	n activator [H	subtilis	milar to E.coli PRFA1 8 555418 ywkE protein PROTOPORPHYRINGGEN OXI	lus subtilis)	A helicase (Ha	(Dacillus sph	3	WA synthetese	(Lactococcus	rocein (SP: P32
35	- Putative colling regions of novel proteins similar to known proteins	match gene name	ceuE gene product (Campylobacter coli)	influentae	ORF2 (Alcaligenes	orfl (Maemophilus	EIIB domain of	highly hydropho ppp42953 TAGG	Shows similarity with ATP-binding proteins from other Swiss Prot Accession Numbers P24137, 108007, P04285, coli)	actVA 4 gene p	UDP-N-acetylmu	S'-nucleotidase precursor [Vibrio parahaemolyticus]	phosphoglycerate	mismatch repair	ATP-binding protein (Streptococcus mutans)	L-fucose operon activator [Haemophilus influenzae]	Appc (Bacillus subtilis)	product similar to pir 555438 555438 POSSIBLE PROTOPORE	unknown (Bacillus	[replicative DNA helicase [Haemophilus influenzae]	x gene product (bacillus sphaericus)	P35 gene product	phenylalanyl-tRi cloning vector	GTG start codon (Lactococcus lactis)	hypothetical protesin (SP. P32049) (hycoplasma
40	5. auraus -	match	[91 1107531	191 1222058	91 695280	91 171234	gi 508174	91 755152	91 470683	191 46816	191 39993	161/12/16/	91 1511047	91 153655	91 153741	91 1204866	91 677947	7,4,653,10	gi 467456	gi 1205807	191140067	91 12219	94 403936	91 308861	9111046053
45		Step (nt)	127	111589	120329	1 1780	6350	529	9014	7494	1320	9205	3089	520	1068	1 7562	5633	6004	554	6725	6511	15632	1447	5089	614
	:	Start (nt)	~	110912	119526	2523	6646	~	R250	9315	1793	1034	4051		1 466	6855	6823	6855	1 24	1 7591	1503	114673	1166	2084	1225
50	•	1086	<u>-</u>	12	<u>~</u>	~			9		_	-	_		- 2	- 1	-	.	-	02	-	51	~	~	-
		Contig	۲,	E	<u> </u>	52	5	85	69	69	8	ę	100	102	21.	114	911	124	148	149	191	164	365	166	17.1

5		length (nt)	1212	954	1032	1404	3	1200	261	939	264	369	177	1119	162	46B	789	999	1119	1467	171	180	069	2154	450	570
		* ident	45	32	3	42		43	SE 	39	36	32	54	7	37	35	40		**	43	- 15	37	39	35	17	5
10		sim /	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62	62
15	rcins						conditions in which he subtilis gi 467441		133960 A33960 IROHE AA3									obium	- Plasmodium falciparum			topsis haliana]		lus]		
20	- Putative coding regions of novel proteins similar to known proteins						condtions s subtilis) r ondtions		controlling protein (Bacillus subtilis) pir All960(All960 Bacillus subtilis sp[P12946[CTAA_BACSU CYTOCHROHE AA] OTEIN.	ia colil	synthase [Methanococcus jannaschii]			ingens		Influenzae)	-	protein; homology to Rhizobium		9.]		ribulose bisphosphate carboxylase/oxygenase activase (Arabidopsis haliana)	ns.]	transcriptional regulator (Bacillus atearothermophilus)	cter jajuni)	
25	Fotoins simi			s subtilis]		(8)	exponential growyh undur- e are repressed [Bacillus exponential growyh under e are repressed Bacil	reus	ein (Bacillu s sp[P12946]	Escheri	se Nethanoc		subtilis	Clostridium perfringens	thermocel tum)	Haemophilus	a genicalium		ce antigen 2	(Beta vulgaris		se/oxygenase	es glaucescens	tor (Bacillu	n (Cempyloba	ıreus)
30	gions of novel p	&	subtilis)	nuclease [Bacillus	scherichia colil	putative (Bacillus firmus)	end of ICA cycl a end of ICA cycl	Fem. protein (Staphylococcus aureus)	3 controlling prot- Bacillus subtili PROTEIN.	5	phosphate syntha	ia colij	(Bacillus		Clostridium	protein	nit J (Mycoplasma genitalium	odulation gene; integral membrane eguminosarum nodi (Rhizobium loti)	ring-infected erythrocyte surface antigen 2, RESA-2	dehydrogenase []	us lactis)	sphate carboxyla	rase (Streptomyces	riptional regular	ferric uptake regulation protein (Campylobacter jejuni	enterotoxin B (Staphylococcus sureus)
35	talive coding re	matth gene name	hemY (Bacillus subtilis)	ATP-dependent n	hisc protein [Escherichia	ORF A; putative	expressed at the enzymes of the enzymes of the	FemA protein [S	cytochrome as3 cta protein -		uridine 5'-monophosphate	fecb (Escherichia coll)	ipa-19d gene product	regulatory protein pfoR	heta-glucosidase	transport ATP-b	Na • AfPase subunit	nodulation gene eguminosarum no	ring-infected ea	betaine aldehyd dehydrogenase	ORF1 (Lactococcus lactis)	ribulose bisphos	O-methyltransferase	acive	ferric uptake re	enterotoxin B [5
40	S. aureus - Pu	match acession	91 143045	91 142439	gi 41695	91/143121	gi 467441	91153015	91 142717	91 581088	91 1499960	91 145925	gi 413943	pir A43577 A435	91 40665	91 1205401	911:046024	91 581510	pir A4840 A484	191117934	gi 149445	91 166835	Pg1 153491	91 1480429	[gi[stitt3	91/153600
45		Stop (nt)	1310	956	1966	2605	6779	3819	262	1207			6804		264		790	1369	1869	1707	1311	1313	882	2522	4820	570
		Start (nt)	12821	ſ	935	4008	4477	5018	7	269	4894	7	6628	2744	ř	2709	1578	704	150	241	1141	1134	193	369	4371	-
50		ORE ID	-	_	~	- 3		9		7	9	-	8	7	-	_	-	~	-	-	<u>~</u>	2	-	7	9	-
		Contig	183	200	765	261	299	304	324	328	332	355	365	369	07.6	415	429	÷	477	485	487	494	518	534	152	574

EP 0 786 519 A2

Contig 1D	ID	Start (nt)	Stop (nt)	match acession	וישוני) לקיושור ו	e sin	t ident	length (nt)
290	~	344	1711	191 40367	ORFC [Clostridium acetobutylicum]	62	37	8119
655	-	396	830	91 147195	phnB protein (Escherichie coli)	62	\$	435
959	-	~	478	91 [1205451	cell division inhibitor (Hemophilus influenzae)	62	36	677
676	-	692	348	191/1511613	methyl coenzyme H reductase system, component A2 (Hethanococcus jannaschil)	62	36	345
687	-	493	248	gi 49272	Asparaginase (Bacillus licheniformis)	62	8.8	246
700	~	267	944	91 1205822	hypothetical protein (GB:X75627_4) [Haemophilus influenzae]	62	Ç	879
840	~	1715	1041	gi 1045865	M. genitalium predicted coding region MGI81 [Mycoplasma genitalium]	62	36	519
A64	-	898	1491	gi 1144332	deoxyuridine nucleotidohydrolase (Homo sapiens)	62	3.8	594
916	-	35	007	911413931	lipa-7d gene product (Dacillus subtilis)	62	45	366
101	-	-	177	91 1510649	aspartokinasa I (Methanococcus jannaschii)	62	0	177
1084	-	61	609	91 688011	Agx-1 antigen (human, infertile patient, testis, Peptide, 505 aa]	62	39	591
1103		-	203	91 581261	ORF homologous to E.coli metB (Horpecosiphon aurantiacus) pir S14030 [S14030 Hypothetical protein - Horpetosiphon aurantiacus (resment)		51	201
נובו	_	463	233	91 460025	ONF?, putative (Streptococcus pneumoniae)	62	4	231
1533	-	644	3	1911413968	ipa-44d gene product (Bacillus subtilis)	62	8.9	231
1537	-	_	257	91 1510641	alany1-tRNA synthetase [Methanococcus jannaschii]	62	23	255
22.87	-	_	191	191 485956	mipC gune product [Proteus mirabilis]	63	45	651
2386	-	2	245	1911285708	nontoxic component (Clostridium botulinum)	62	7	243
2484	-	133	167	gi 142092	DNA-repair protein (recA) (Anabaene variabilis)	62	35	165
2490	_	867	Q	91 581648	epiB gene product (Staphylococcus epidermidis)	62	45	399
3016	-	5,16	300	101/110022	uraparphyrinagen III (Bacillus subtills)	62	ĩ	297
3116	-	-	213	191 466883	nif5; Bi496_C2_193 (Mycobacterium leprae]	62	\$	213
3297	-	823	Ę.	191 475715	acetyl coenzyme A acetyltransferase (thiolase) (Clostridium cetobutylicum)	62	~	117
3609		<u> </u>	276	91 1408501	homologous to N-acyl-L-amino acid amidohydrolage of Bacillus stearothermophilus [Bacillus subtilis]	62	₩	246
3665	~	584	402	gi{151259 	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	62	Q	183
ננינ	-	-	374	191 1353197	[thioredoxin reductase [Eubacterium acideminophilum]	62	42	27.6

TABLE 2

5	
10	
15	
20	
25	
30	
35	
40	
45	

	length (nt)	782	141	363	303	264	255	189	222	150	159	948	\$19	492	957	387	996	\$35	438	7111	1897	1098	717	\$76	465	1101	864
5	ident	45	7	45	-	55,	75	-	- \$7	36	2	7	- 05	41	45	£	42	32	- 86	36 -	-	7	-	-	18	.——— ———	\$
		-	-	-	-	_	-	-	62	-	-	-	- :	_	-	_	-	-	-	-	-	-	_	-	-		-
10		62	62	62	. 62	62	62	62	9	61	19	5	19	19	19	19	19	19	19	19	19 61	19	19	19	19	19	19
15 8 0 193			B 43			istae)								Jannaschill)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			jannaschii!			lus subcilis] sp p19153 YWLC_BACSU REGION.	
S S S S S S S S S S S S S S S S S S S) 1 1 1 1 1 1 1 1 1 1		1-59); putative [Bovine herpesvirus			denarboxylase (Saccharomyces cerevisiae)		-		BK5-T]	- human (fragment)	(Maemophilus influenzas)	onumi	Q [Methanococcus ja				philus influenzael	lophilus			objum etli]	183 (Methanococcus				(8)
5 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(Streptococcus mutans)		[Escherichia colf]			occus eureus)	yces violaceorube	(Escherichia coli	ccus lactis phage			Cochliobolus carb			ngens)		protein (GB:U00011_3) [Haemophilus influentae	AF2 (Bacillus alcalophilus)		hilus influenzael	ferase Purf (Rhiz	coding region MJ1083		(Dacillus subtilis)	myces cerevisiae SUAS spc-29d protein - Baci KD PROTEIN IN SPOIIR-G	Chloroffexus aurantiacus
00 Oding regions of	match gene name	6-P kinase	homologue to gene 30 (aa	protein (AA 1-520) [Escherichia coli]	Yqew (Bacillus subtilis)	ate pyrophosphate	enterotoxin H (Staphylococcus aureus)	ORF4; putative [Streptomyces violaceoruber	hadw protein (AA 1-520) (Escherichia coli)	putative [Lactococcus lactis phage BK5-T]	alpha	hypothetical protein (SP: P33995)	exo-bata 1,3 glucanase (Cochliobolus carbonum)	glutamine transport ATP-binding protein	[Bacillus subtilis]	(Clostridium perfringens)	(Plasmid pADI)		antiporter system ONF2	nika (Escherichia coli)	carbamate kinase Husmophilus	amidophosphoribosyltransferase PurF [Rhizobium etli]	M. jannaschii predicted coding	orf [Bacillus subtilis]	ipa-34d gene product [Da	to Saccharo 358 S49358 TICAL 37.0	product
sective c	mauch	Lagatose	homolog	hadw pr	Yqew (B	mevalonste	enterot	ORF4: p	hadm pr	3	-	hypothe	exo-bat	glutani	ķ	ORF2 (C	່	hypothetical	Na/H an	nika (E	carbana	amidoph	H. jann	orf 18	1pa-34d	Similar to 6 pir S49358 HYPOTHETICA	ORFA gene
7 - 8 nreus - 8.	match	91 153675	91 330705	91 41748	(91)1303813	91 1235684	41 510692	91 763513	gi 41748	1911928831	pir c33356 C333	191 1205391	91 1066504	19111510864	911109686	191 498839	191 388269	91 1205893	91 854656	gi 466612	19111204846	91 1498756	g1 1499931	19111518679	1911413958	91 556881	91 1491643
	Stop (nt)	237	163	365	303	267	256	223	222	3912	162	11938	A01	1107	4038	7504	5570	2243	5112	5646	1504	1101	1582	649	0661	\$123	2531
45	Start	-	283	727	-	530	~	13	-	428B	320		283	616	3082	1 8117	4605	1689	5559	4330	2400	2198	1995	7.	2454	6223	4 1668
	10 OF F	-	<u>-</u>	-	<u>-</u>		-	-	-	~		=	_ _		-	-	_	-	6	<u>~</u>	- 2	- -	-	_ 	~	~.	-
50		3898	4027	4109	4303	4380	4494	4598	4624	5	=	16	2		\$	£	15	9	62	- 69	7.	88	98	. 6	66	124	125
		<u>: </u>	: –	÷ —	: –	· –	: —	-	<u>: </u>	: —	- –	-	: -		-	-	: –	: —	-	: —	-	· —	÷ —	-	÷ —	:	·

${ t TABLE}$ 2

Societive coding regions of novel proteins similar to known proteins	sin ident length sin ident length	btilis] 61 42 489	960 99 19	colori	phosphatidylinositol-4,5-diphosphate 1-kinase [Dictyostelium iscoideum] 61 30 789	gene product (Caenorhabditis elegans) 61 38′ 225	(Bacteriophage LL-H) 1281 47 1281	55 19	anthranilate synthase glutamine amidotransferase (Acinetobecter 61 42 621	um leprae] 61 47 855	1.	1 32 1	cus] 61 33 315	Escherichia coli DNA-damage inducible protein; 61 37 1233	lycerophosphoryl diester phosphodiestersse (Bacillus subtilis) plr[5]7251[5]7251 glycerophosphoryl diester phosphodiesterase - acillus subtilis	1] 61 32 828	s stearothermophilus) 61 39 813	illus subtilis) 61 38 258	riophage HK97]	18 19 540	61 6	alium] 61 32 273	phosphatidylinositol-4,5-diphosphate 3-kinase (Dictyostelium iscoideum) 61 34 273	U14003_297) [Mycoplesma genitalium] 61 31 288	COCCUS aureus) 61 55 807	1 61 41 246
00 ative coding regions of r	match gene name	Onab protein (Bacillus subtilis)	YqgF [Bacillus subtilis]	AbsA2 (Streptomyces coelicolor	phosphatidylinositol-4,5	C5387.5 gene product (Cae	ORF360, putative (Bacter	unknown (Bacillus subtilis)	anthranilate synthase glu alcoaceticus)	B2235_C2_195 [Nycobacterium leprae	SURVIVAL PROTEIN SURE HONOLOG (FRAGMENT	immunity repressor prote	Hmp (Vibrio parahaemolyticus	22.4% identity with Escherich putative (Bacillus subtills)	glycerophosphoryl diester pir S37251 S37251 glycer subtilis	ORF_f470 (Escherichia coli)	DNA polymerase I [Bacillus stearothermophilus]	hypothetical protein [Bacillus subtilis]	portal protein gp3 (Bacteriophage HK97)	putative (Bacillus subtilis	C33D9.8 [Caenorhabditis elegans]	unknown [Mycoplasma genitalium]	phosphatidylinositol-4.5	hypothetical protein (GB:U14003_297) [Mycoplasma	clumping factor (Staphylococcus aureus)	ORF 1 [Lactococcus lactis
5. surgus - Put	match acession	91 533098	91 1303853	91 1293660	91 733522	91 1123120	91 (623073	91 467484	9i 141800	91 467090	sp P36686 SURE_	91 1221 602	91 507738	91 1146243	g1 403373	91 537181	91 [80628]	gi {709992	911609310	91 (143213	91 1107541	91 406397	91 733522	91 1045964	91 397526	91 1169373
45	Stop (nt)	1025	399	1421	1 792	260		279	1296	857	803	-	1 357	1235	1101	829	918			542	370			290	808	248
		1513	1 794	1 810	1580	1 784	1 6077	554	1916	1171	1 961	1694	Ş	2467	805	9591	1 1628	- 61	1 2313	1081	- 59	548	46	577	7	_
50	9 01 10	~	-	_	-	~	-	-		_	~	-	<u>-</u>	-		_	_	-	-	-	_	-	-	_	-	-
	Cont ig	385	426	438	\$	797	470	509	\$55	695	\$85	592	603	699	675		128	821	856	626	1124	1492	1602	2500	1 2968	3076

5		length (nt)	195	738	4	219	396	399	381	101	273	405	345	306	231	270	171	267	107	1128
J		, ident	19	42	\$0	7	46	47	\$	24	ec ec	42	46	0.5	80	000	35	Ç	- 20	\$
10		e in	19	61	61	61	61	9	61	61	9	19	19	5	19	19	19	3	19	09
15	oteins		8 7		As6390 As6390 C 3.2.1.961			A56390 A56390 C 3.2.1.96}	A56390 A56390 C 3.2.1.96	nema boryanum]				(A56390 A56390 C 3.2.1.961	colil pir S38437 S38437 hsdM sypothetical protein A -	A56390 A56390 C 3.2.1.96}		A56390 A56390 C 3.2.1.963		83
20	- Putative coding regivns of novel proteins similar to known proteins		ydrolase of Bacillus		beta-N-ecetylherosaminidase (Streptococcus pneumoniae) pir A56390 A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	subtilis]		beta-N-acetylhexosaminidase (Streptococcus pneumoniae) pir[A56190]A56190 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	beta-W-acetylhexosaminidase (Streptococcus pneumoniae) pir A5690(A56390 mannosyl-glycoprotein ndo-beta-W-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	e synthase (Plectonema boryanum)				eca-N-acetylhexosaminidase (Streptococcus pneumoniae) pir [A56390[A56390] mannosyl-glycoprotein ndo-hata-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae	sdw yene of Ecopril gene product [Eschetichia colil pir 53843 protein - Escherichia coli pir 509629 509629 hypothetical protein A Eschetichia coli (508 40-520)	beta-W-ecetylhexosamindase (Streptococcus pneumoniae) pir A55390 A55390 nannosyl-glycoprotein ndo-beta-W-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae		beta-N-acetylhexosaminidase Streptococcus pneumoniae pir A56390 A56390 mannosyl-glycoprotein ndo-beta-N-acetylglucosaminidase (EC 3.2.1.96) precursor - treptococcus pneumoniae		homologous to N-acyl-L-amino acid amidohydrolese of Bacillus stearothermophilus [Bacillus subtilis]
25	proteins s	; ; ; ; ; ; ; ; ;	acid amidoh subtilisi		Streptococc ta-N-acetyl umoniae	(Bacillus		Streptococta - N-acetyl	Streptococc ta-N-acetyl	nt glutemate	s subtilis			Streptococc ta-N-acetyl	duct [Esche ir S09629 S	Streptococcita-N-acetyl		Streptococcita-N-acetyl	٠	acid amidoh subtilisi
30	regions of novel	9 H G	omologous to N-acyl-L-amino acid amidohydrolase stearothermophilus (Bacillus subtilis)	s subtilis]	ylhexosaminidase (Strepton lycoprotein ndo-beta-N-ac-	Respiratory nitrate reductase (Bacillus subtilis)	s subtilis)	yhexosaminidase (Streptoni)ycoprotein ndo-beta-N-ac-	yhexosaminidase (Streptorilycoprotein ndo-beta-N-ac-	large subunit of NADH-dependent	ipa-29d gene product [Bacillus subtilis]	unknown (Bacillus subtills)	chia coli)	neta-N-scetylhexosaminidase Strepton mannosyl-glycoprotein ndo-heta-N-ace precursor - treptococcus pneumoniae	hady yene of Ecopril gene product [Escherichia protein - Escherichia coli pir 509629 509629 h Escherichia coli (SUB 40-320)	ylhexosaminidase (Strepto lycoprotein ndo-beta-N-ac- treptococcus pneumoniae	ribokinase (Escherichia coli)	ylhexosaminidase [Strepton lycoprotein ndo-beta-N-aco - treptococcus pneumonlae	chia coli}	omologous to N-acyl-L-amino acid amidostearothermophilus (Bacillus subtills)
35	utative coding	qatch gene name	homologous to stearothermo	YqeW [Bacillus subtilis]	beta-N-acetyll mannosyl-gly precursor -	Respiratory n	AppD (Bacillus subtilis)	beta-N-acetyl mannosyl-gly precursor -	beta-N-acetyll mannosyl-gly precursor -	large subunit	lipa-29d gene	unknown (Beci	HrsA (Escherichia coli)	heta-N-acetyll mannosyl-gly	hadm yene of protein - Es Escherichia	beta-N-acetyl mannosyl-gly precursor -	ribokinase [E	beta-N-acetyll mannosyl-gly precursor	HrsA [Escherichia coli]	homologous to
40	S. aureus - P	match	9111408501	9111303813	Q1 /84697	91 1009366	191 677943	191 784897	g1 784897	19111339950	191 413953	191 528991	191 976025	41 784897	91 450688	91 784897	91 147516	gi 784897	976025	01 1408501
45		Stop (nt)	401	740	75	220	398	401	383	359	2.74	402	345	136	233	273	172	268	227	5536
		Start (nc)	20.7	1477	2	~	_			199	546	-	-	-	463	542	2	~	22	6663
		OR TO	~	-						-	-	-	-				-		-	9
50		Contig 1D	3,609	3662	3672	3724	3728	3884	1760	4038	104	4047	4102	4155	4268	4374	4389	4621	4663	-
						•				• —	• — •	_		•			• —		• -	• •

5		length (nc)	000	123	1014	444	186	159	1023	1134	1014	102	1413	216	1263	166	1188	855	1074	474	213	858	273	1389	1158	1497
		1 dent	7	28	7.6	14	0,	47	39	07	52	7	35	33	£	36	30	37	38	27	30	42	r.	28	4.1	45
10		H 28	9	09	09	9	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	09	9	09	09	9
15	ıroteins		ing-infosted erythicocke surface antigen (Plasmodium falciparum) pir A25526 A25526 ring-infected erythicocke surface antigen recursor - Plasmodium falciparum (strain FC27/Papua New Guinea) sp P13830 RESA_PLAFF RING-INFECTED ERYTHROCYTE SURFACE ANTIGEN RE														philus)			coenzyme F420-reducing hydrogenase, beta subunit (Methanococcus jannaschil)			F (EC .1.3.18)	lurous]		
20	lar to known p		antigen (Plasmodium fal erythrocyte surface anti 27/Papus New Guines) spi E ANTIGEN RE	18]						8							s stearothermophilus			bunit (Methand	-		us subtilis SMALL SUBUNIT UBUNIT) (ALS)	aphylococcus		
25	Putative coding regions of novel proteins similar to known proteins		ring-infested erythrocyte surface antigen (Plasmodium falciparum) pir[A25526[A25526 ring-infected erythrocyte surface antigen recu Plasmodium falciparum (strain FC27/Papua New Guinea) sp[P13830[R RING-INFECTED ERYTHROCYTE SURFACE ANTIGEN RE	(Rattus norvegicus	hocystis ep. 1	regulatory protein (Enterococcus faecalis)		ri]	D-alanine recemase cds (Bacillus subtilis)	esterase (Bacillus subtilis)		erovisiae)	un meliloti}		erium leprael	- E	regulator (Bacillus	merichia colil		ogenase, beta subu			acetolacrate synthmse small subunit [Bacillus subtilis] sp[p37252]ILVM_BACSU ACETOLACTATE SYNTHASE SWALL SUBUNIT (AMAS) (ACETOHYDROXY-ACID SYNTHASE SWALL SUBUNIT) (ALS).	(OSB) CoA ligase (Staphylococcus aurous)	enes eutrophus)	tuberculosis)
30	regions of nov	₽ #4C	ing-infessed erythrocyte surface pic[A25526[A25556 ring-infected Plesmodium falciparum (strain FC RING-INFECTED ENYTHROCYTE SURPA	ctase	protein [Symechocystis ep.]	rotein (Enterod	us subtilis]	[Saccharomyces kluyveri]	cemase cds (Bac		ichia colij	var1(40.0) (Saccharomyces cerevisiae)	gene product (Rhizoblum meliloti	(Bacillus subtilis)	B229_C3_234 [Mycobacterium leprae]	[Salmonella typhimurium]	putative transcriptional re	transmembrane protein [Escherichia coli]	[Escherichia coli]	0-reducing hydi	ntein (Carnobac	illus subtilis)	tate synthsee small subunit 52 ILVN_BACSU ACETOLACTATE S (ACETOHYDROXY-ACID SYNTHASE		beta-ketothiolase (Alcaligenes sutrophus	
35	Putative coding	march gene	ring-infester pir A25526 Plasmodium RING-INFECT	carbonyl red	hypothetical	regulatory p	orti inacillus	7	D-alanine racema	pere-nitrobenzyl	thir [Escherichia	[var1(40.0) [mocR gene pr	Yqg0 (Bacill	ureD; B229_C	OafA [Salmon	putative tra	transmembran	nika (Escher	coenzyme F42	accessory pr	unknown (Bacillus	acetolactate synthase sp P37252 ILVN_BACSU (ANIAS) (ACETOHYDROXY-	o-succinylbenzoic acid	beta-ketothi	unknown (Mycobacterium
40	S. aureus -	match	[gi]410748	91 1217651	91 1001453	91 388109	911336656	191 4872	9 1142822	91 468046	191 414234	9: [343949	91 468764	91 1303864		gi 1518853	gi 1480429	91 349227	91 466613	91 1510925	91 (472715	91 467425	91 143092	191 1255259	91 141954	94 1524280
45		Scop (nt)	3725	10313	12930	469	9834	4522	1025	3607	1769	9074	26430	388	1619	395	1188	13881	4923	476	E 52	4069	7430	110515	111656	3134
		Start (nt)	3426	11035	11911	36	10417	4364	2047	2474	6756	8874	127842	271	1357	787	~	4735	9665	949	7366	3212	7158	1 9127	10499	4630 3134
50		9 OKF		7.7	22	-	=	-	-	-	2	01	=	~	-	_	-	9	-	_	_	9		=	77	~
		Contig	=	=	91	2	1 37	29	=	7	2	\$	3.6	9	9	69	£	26	- 82	2	26	86	105	601	109	119

EP 0 786 519 A2

	1	length (nt)	069	1692	102	594	429	357	255	1029	28.	780	1623	1011	993	933	858	282	198	1089	936	669	567	1215	1407	792	928
5	1	1 ident 1	35	45	23	40	30, 1	36	-	-	~~~	- [[7	-	-	1	÷	-	- 50	36	- 0	- "	35	53	27	. St	2
10		e in	- 09	- 09	9	- 09	- 09	- 09	- 09	- 09	09	- 09	- 09	- 09	09	09	99	- 69	- 09	- 09	- 09	- 09	09	- 09	- 09	09	09
				_		_					ctococcus	_		1	_	SOR.	_		rug 3)				rianum]			lactis	fingers
15	n proteins		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							enzae]	ogy with La ellulosirup			(Sus scrofa)		GION PRECUR			influenza i	.uenzae)		ium)	idium asteu			1	-type zinc
20	lar to know		; ; ; ; ; ;							(Maemophilus influenzae	ed on homol		subtilis]	nydrogenase		TERGENIC RE	iae)	ON.	(Human para	philus infl		sema genitalium	(_S) (Clost:			Lactococcus lactis subsp.	intains C2H2
25	- Putative coding regions of novel proteins similar to known proteins		acter colil		rculosis}			tuberculosis)	subtilis	(GB:L19201_29) (Haemop	putative oligoendopptidase based on homology with Lactococcus (GenBank Accession Number 232522) (Caldicellulosiruptor (Icus)	28.2 kDa protein (Streptococcus pneumoniae)	glycine betaine transporter OpuD (Bacillus subtilis)	NADP dependent loukotreine bf 12-hydroxydehydrogenase (Sus	(Bacillus subtilis)	HYPOTHETICAL 29.4 KD PROTEIN IN HEML-PPS INTERGENIC REGION PRECURSOR	D9719.34p; CA1: 0.14 [Saccharomyces cerevisiae]	N IN ASPS 5'REGION	hemagglutinin-neuraminidase fusion protein (Human parainfluenza irus	(GB:U14003_130) [Haemophilus influenzae]		ŝ	similar to a B.subtilis gene (GB: BACHEHEHY_5) (Clostridium asteurianum)	ccus aureus]	NaH-antiporter protein (Enterococcus hirae)		elegans CDNA ykl)0el2.5; contains C2H2-type zinc fingers elegans
30	regions of nove	95	ceuc gene product (Campylobacter coli)	hia coli)	unknown (Mycobacterium tuberculosis)	putative (Bacillus subtilis)	subtilis)	bacterium tuber	murD gene product (Bacillus subtilis)	protein (GB:L19	utative oligoer (GenBank Access cus)	ein (Streptocod	ne transporter	t loukotreinu l		29.4 KD PROTEIN	1: 0.14 [Saccha	21.8 KD PROTEIN	-neuraminidase	protein (GB:U14	ccus lactis)	protein (GB:U00	B.subtills gene (G	or (Staphylococcus aureus)	r protein (Ente	leub 3'-region hypothetical protein (strain 161403)	C. elegans cDN/ tis elegans]
35	ative coding :	match gene name	ceut gene proc	kdpA (Escherichia	unknown (Myco)	putative (Bac	Yqjx (Bacillus subtilis)	unknown [Mycobacterium	murb gene pro	hypothetical protein	ORF3; Pepy; putat lactis PepF (Gen saccharolyticus)	28.2 kDa prot	glycine betain	NADP depandon	ipa-19d gene product	HYPOTHETICAL	D9719.34p; CA	HYPOTHETICAL 21.8 KD	hemagglutinin	hypothetical protein	HisD (Lactococcus lactis)	pothetical	similar to a	clumping factor	NaH-antiporte	leub 3'-region h (strain 161403)	coded for by C. elegans c [Cavnorhabditis elegans]
40	5. aureus - Put	acession	91 1107529	91 146547	91 1460077	91 1146230	91 1303975	91 1449288	gi 580932	91 1204512	91 1496003	91 485280	91 1524397	91[1100737	95 413943	sp P37028 YADT_	91 927798	sp P37347 YECD_	91 332711	91 1204366	91 149377	91 1046160	91 431950	91 397526	91 148316	p1r F36889 F368	911208889
		Stop (nt)	9		103	2216	961	4769	257		7866	2110	2460	4953	966	6573	2415	112515	_	1153	1 937	4998	6485	_	1409	4595	1198
45		Start	6957	1704		2809	1389	5125	1115	1 88	#249 	1331	4082	191.5	_	3641	3269	12234	1233	65	2	9695	5919	2432		3804	960
		10 KF	- 6	-	-		~	- 5	-	-	=	-	-	-	-	-		6	-	-	-	9	•	-	-		
50		Contig	121	1 140	145	150	157	158	159	160	3	77	=======================================	2 -	198	201	92	902 -	212	214	1 237	2	7 260	797	792	275	291

EP 0 786 519 A2

gth	246	867	489	525	531	267	351	162	324	219	324	489	231	1326	5	165	726	1053	486	624	528	462	252	150
length (nt)	_	-		-	-		_	-	-		_	_	_	_			-	_	-	-	_	_	-	<u> </u>
• ident	36	7	39	37	Ş	47	37	35	36	ñ	ñ	36	~	36	;	0	\$	42	ţ	45	7	2	4	
	99	9	09	1 09	- 09	09	9	60	60	60	60	60	09	09	09	60	60	60	- 09	60	- 09	60	- 09	-
. match gene neme	[protein-dependent (Bacillus subtilis]	ipa-28d gene product [Bacillus subtilis]	membrans-associated component, branched amino acid transport system	colicin V production protein (pur reguion) (Maemophilus influenzes)	single-stranded DNA-specific exonuclesse [Escherichia coli]	adenyly1 cyclase gene product [Saccharomyces kluyveri] r[JQ1145 OYBYK adenylate cyclase [EC 4.6.1.1] - yeast ccharomyces kluyveri]	Glucarate dehydratase (Bacillus subtilis)	dsoud usbo	unknown protein (Stephylococcus auraus)	HYPOTHETICAL 226 KD PROTEIN (ORF 1901).	pir S10782 S107 integrin homolog - yeast (Saccharomyces cerevisiae)	unknown (Becillus subtilis)	myosin heavy chain [Dictyostellum discoideum]	NADH oxidase (Methanococcus jamaschii)	alkaline phosphatose regulatory protein (Bacillus subtilis) pir A27650 A27650 regulatory protein phoR - Bacillus subtilis sp p23545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHESIS SENSOR PROTEIN HOR (EC 2.7.31).	cobalt transport ATP-binding protein 0 [Methanococcus janusschii]	(Pseudomonas ae	tex gene product (Bordetella pertussis)	H. influenzae predicted coding region H10882 (Haemophilus influenzae)	adanylyl cyclase (Aeromonas hydrophila)	[fecB [Escherichia coll]	bicyclomycin resistance protein (Haemophilus influentae)	unknown (Bacillus subtilis)	
match acession	91 1070014	91 41 3952	91 1204484		91 87842	91 1057	91 709999	91 499700	91 1196899	sp P12222 YCF1_	pir 530782 5307	91 467407	91 167835	91 1510732	gi 143331	91 1511103	91 1498192		91 1205129	91 1212755	91 145925	91[1205483	91 1486242	
Stop (nt)	3176	5823	3484	4363	532	362	416	163	1237	3620	945	909	982	3563	1043	465	726	1054	489	624	530	465	1122	
Start (nt)	3421	4957	2996	4887	1062	9,	99	~	914	3838	622	8.1	752	2238	m	_	-	~	974	-	-	926	11.8	
:	-	-		: – :	-	~-	-		-	-	- - -	-	-	-		<u>-</u>	 - -	-	-	-	-	-	7	-++
<u>R</u> 01	9	:	<u></u> .	· —								. '		. '										-

TABLE 2

Cont 19 10	10 CE	Start (nt)	Stop	match	netch gene name	eis ·	1 Ident	length (nt)
684	1-	1082	843	gi 1205538	hypothetical protein (GB:U14003_302) [Haemophilus influenzee]	09	66	240
786	-	1 967	485	91 1402944	orfRM1 gene product (Bacillus subtilis)	09	9.0	483
344	-	588	346	q1 790943	urea amidolyase (Bacillus subtilla)	09	0	243
851	-		126	1911159651	GMP reductase (Ascaris lumbricoides)	09	7	726
871	=	1746	874	91 1001493	hypothetical protein (Symechocystis sp.)	09	39,	873
A96		1558	839	91 604926	NADH dehydrogenese, subunit 5 [Schitophyllum commune] sp P50368 NUSH_SCHCO NADH-UBIQUINONE OXIDOREDUCTASE CHAIN 5 (EC .6.5.3).	09	6	720
908	- 5	448	1.53	91 662880	novel hemolytic factor (Bacillus cereus)	09	31	306
979	-	1 2	1 595	gi 1429255	putative; orfl [Bacillus subtilis]	09	30	\$65
1078		699	503	91 581055	Inner membrane copper tolerance protein [Escherichia coli] gi g1129 disulphide isomerase like protein [Escherichia coli] pir [\$47295 \$47295 inner membrane copper tolerance protein - scherichia coli	09	0	16A
1112	-	1150	029	01 407885	ONF3 (Streptomyces griseus)	09	•	531
1135	-	484	275	91/1171407	Vps8p Saccharosyces cerevisiae	09	36	210
1146	-	11	562	gi 1239981	pothetical protein	09	36	546
1291	-	1 716	360	pir ss7530 ss75	carboxyl esterase -	9	30	357
1332	-	1 336	169	91 1222056	aminotransferase [Haemophilus influentae]	09	77	168
1429	-		146	91 1205619	(derritin like protein (Heemophilus influenzae)	9	39	144
1722		570	286	gi 240052	dihydrollavonol-4-reductaso, DFR (Hordaum vulgare-barley, cv. Gula, eptide,	9	36	285
2350	-	385	200	911497626	ORF 1 [Plasmid pAQ1]	09	02	186
2916	_	519	310	191 508981	prephenate dehydratase (Bacillus subtilis)	09	8	210
3027	-	1 568	1 302	191,1146199	putative [Bacillus subtilis]	09	rt	267
3084	_	50	1 208	gi 1407784	-	09	15	189
3155	-	7	1 226	gi 1046097	cytadherence-accessory protein (Mycoplasma genitalium)	09	34	225
3603		368	186	91 510108	attochondrial long-chain encyl-CoA hydratase/3-hydroxycyl-CoA ehydrogenase alpha-subunit [Rattus norvegicus]	0	45	183
3665		486	24	91 151259	HHG-CoA reductase (EC 1.1.1.88) [Pseudomonas mevalonii] pir A44756 A44756 hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88) Pseudomonas sp.	9	3	243

TABLE 2

_	,	length	333	270	159	276	8 6	312	171	219	171	1 966	177	1203	910	192	300	180	1059	492	1 606	984	1449	1206
5	,	/ ident	-	2	28	\$	42	28	42	48	≎	. 39	33		τ,	0	3	37	9	7	- 7.6	94	6	\$
10		e is	09	09	9	9	9	09	09	09	09	89	65	65	65	65	59	65	65	65	65	65	£	29
15	sroteins	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			1 g1[780656	pir S49950 S49950 - Mycoplasma capricolum	peptide synthetase module (Microsystis aeruginosa) pir (569111 569111 probable sanno acid activating domain - icrocystis seruginosa (fragment) (SUB 144-528)		ong-chain encyl-coA hydratase/3-hydroxycyl-CoA ehydrogenase [Rattus norvegicus]		long-chain encyl.Coa hydratass/3-hydroxycyl.CoA ehydrogenase [Rattus norvegicus]		gment)					1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			s subtilis) ACDA NTERGENIC	
20	Putative coding regions of novel proteins similar to known proteins	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87		chemoreceptor protein (Rhizobium leguminosarum bv. vicias) gi[780656 chemoreceptor protein (Rhizobium leguminosarum bv. iclas]	pricolum)	ruginosa) pir Si icrocystis serug		ase/3-hydroxycy	ourascens)	ase/3-hydroxycy		capricolum (SGC3) (fragment)					[8]	111				unknown, similar to E.coli cardiolipin synthase (Bacillus subtilis) sp[p15860]ywie_bacsu hypothetical \$8.2 protein in Nari-Acda Ntergenic recion.	
25	ovel proteins si		antigen; orf-2 (Staphylococcus aureus)	9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	izobium legumino hizobium legumin		(Microcystis as		enoyl-CoA hydrat rvegicus]	acyl-CoA-dehydrogenase (Streptomyces purpurascens)	enoyl-Coa hydrat rvegicus)	typh! }		legansl		nutum)	1)	transcription regulator [Bacillus subtilis]	Gat-1-P-DH, NAD dependent [Escherichia coll			meifloti	i cardiolipin sy OTHETICAL 58.2 I	
30	ng regions of no	9 14 19 4	gen; orf-2 (Stay	yeiH [Escherichia coli]	tor protein (Rh	to trimethylamine DH (Mycoplasma e trimethylamine dehydrogensse (fragment)	nthetase module smino acid activ 528)	llus subtilis]	itochondrial long-chain encyl-Con alpha-subunit [Rattus norvegicus]	ehydrogenase (Si		VipB protein (Salmonella typhi)	hypothetical protein - Mycoplasma	F59B2.3 [Caenorhabditis elegans]	llus subtilis!	BiP (Phaeodactylum tricornutum)	ORF_090a (Escherichia coli)	ion regulator [, NAD dependent	[Bacillus subtilis]	nikC [Escherichia coli]	rsor (Rhizobium meliloti	fmilar to E.col	LORP F [unidentified]
35	Putative codir	match gene name	novel antig	yeiH Escho	chemorecep	similar to trimeth probable trimethy (SGC3) (fragment)	peptide synthe probable amin (SUB 164-528)	[pheB [Bacillus	mitochondrial l alpha-subunit	acyl-CoA-d	mirochondrial alpha-subuni	Vipa prote	• •	F5982.3 C	ORF2 [Dacillus	Bir (Phaeo	ORF_090& (transcript	Gat-1-P-DH	<u>.</u>	nikc (Esch	PhoD precursor	unknown, s sp P45860 REGION.	LORP P (un
40	S Aureus -	match	91 :488695	gi 405879	91,180656	91 602031	0i 899317	191 308980	901015 10	91 47382	91,510108	91 426446	548604	191 6721	142833	91 912576	191 536972	91 483940	971805116	1303901	91 912461	9111399822	91 971345	01 490328
		Stop (nt)	335	272	352	402	324	51	221	1 280	223	3523	1483	5853	2299	16593	2349	113402	3339	495	7460	9969	0.00	115534
45		Start (nt)	-		510	677	127	624	343	498	22	4518	100	14651	1328	16784	2648	14181	4397	986	6552	5383		114329
			-	-		~		-		-		-	~	-	-	- 72	-	77	-	-	-	-		2
50		Contig	1 3912	1 4072	7	4207		\$	4345	1 4382	4474	2	3	2	2	#.	22	- 25	1 57	99	1 67	70	82	6

		1 1
1	7 5 5	35
	8 8 8	59
When the state of		
20 g g g g g g g g g g g g g g g g g g g	111	
of novel proteins similar to notion (Rhodobacter capsular table) unction (Rhodobacter capsular table) is Dnah (Bacillus subtilis) is Dnah (Bacillus subtilis) is Dnah (Bacillus subtilis) loti) iter jejuni) loti) lot	rq.v. (Bacillus subtilis) transmembrane protein (kdpD) (Escherichia coll) year (Escherichia coll)	
ative coding regions of novel proteins siminately gene name unknown (Saccharomyces cerevisiae) protein of unknown function (Rhodobacter camplar to B. subtilia Dnah (Bacillus subtilia) ORF 55.9 (Bacteriophage T4) Bach (Rhisobium mellioti) catalase (Campylobacter jajuni) 25.8% identity over 120 as with the Symenor (Bacillus subtilia) hypothetical protein (SP:P4227) (Hethanochypothetical protein (SP:P4227) (Hemmophings gene product (Anabaena azollae) hypothetical protein (GB:X73124_53) (Hasmoln permease (Methanococcus jannaschii) N: jannaschii predicted coding region N314 hypothetical protein (GB:X73124_53) (Hasmoln permease (Methanococcus jannaschii) dy (GG Site No. 18430) (Escherichia coll) iliah (Lactococcus lactis)	TQU (Becillus subtills) transmembrane protein (kdp:	llus subtilis)
Autative coding regions inatch gene name lunknown (Saccharomyor lunknown (Saccharomyor laimilar to B. subtilialore Back (Rhisoblum mell catalase (Campylobac (Catalase (Campylobac (Catalase (Campylobac (Bacillus subtilia) hypothetical protein hypothetical protein lundertified gene product (Mifs gen	You Bacillus You Escherich	YqeH (Bacillus
91 1510240 91 1510566 91 151050 91 91 91 91 91 91 91 9	91 303791 91 146551 91 46551	· + +
Stop (mt) 958 920 820 1557 1557 195 645 645 645 195 197 197 197 197 197 197 197 197 197 197	960 812 3860	761
45 (int) 19602 19603 196	376	1 1
2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
20 20 20 20 20 20 20 20 20 20 20 20 20 2	251 286 286	5,0

_	length (nt)	\$04	348	1011	558	366	594	924	1323	249	1341	1080	954	151	492	244	282	163	387	174	810	1095	372	186
5	1 idunt	7.	3,	ř	36	42	37	37	ê.	Q	32	90	33	45	36	e C	66	42	99	7.6	4	5	96	37
10	e is	65	65	65	59	65	65	88	65	- 29	65	29	- 59	59	89	65	- 59	89	65	59		53	- 59	89
15 surpora			, , , , , , , , , , , , , , , , , , ,		наеторћ 1 из					mophilus		i pir C44798 C44798 mutans		ntae)		(Escherichie coll) KD Protein in Soxr-ACS ntergenic	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		cus jannaschii)	1912 BPAL_STRAU EROXIDASE) (BPO1).			
25 50 00 00 00 00 00 00 00 00 00 00 00 00			6 6 7 1 1 1 1		dicitrate transport ATP-binding protein FECE (Meemophilus	btilis]		pneumoniae)		(3R) hydroxymyristol acyl carrier protein dehydrase (Heemophilus influenzae)	s (fragment)	Streptococcus mutans MtlD - treptococcus mu	us agalactise)	bacterioferritin comigratory protein (Haemophilus influentae)		(Escherichie coli) KD PROTEIN IN SOXR	ureus	# 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		MJIS77 (Methanococcus jannaschil)	bromoperoxidase BPO-A1 [Streptomyces aureofaciens] sp P13912 BPA1_STRAU HON-HAEM BROHOPEROXIDASE BPO-A1 (EC 1.11.1) BROHIDE PEROXIDASE) (BPO (SUB 2-275)			
52 Government over proteins s		[ae]	[8]	illus subtilis]	port ATP-bindin	LI (Bacillus su	acterium leprae	Streptococcus	is colij	carrier protei	Staphylococcus sureus (fragment)	(Strep Mt3D	pB (Streptococcus	ory protein (Ha	cerevisiae)	Na+/H+ exchangers HYPOTHETICAL 60.5	component (Staphylococcus aureus	8)	phi-tci)	oding region MJ	treptomyces aur BPO-Al (EC 1.1	coccus aureus)	118]	hyra purpureal
30 30 M	gene name	orf3 (Hacmophilus influenzae)	ORF 3 [Spirochasta surantia]	il protein (Bacillus	dicitrate trans	homologous to sp.HTRA_ECOLI (Bacillus subtilis)	pps1; B1496_C2_189 [Nycobacterium lepras]	homoserine kinase homolog (Streptococcus	factor (Escherichia coli)	kymyristol acyl		mannitol-phosphate dehydrogenase [Stregmannitol-phosphate dehydrogenese MtlD	oligopeptidase PepB	rritin comigrat	ORF YALO22 (Saccharomyces cerevisiae)	sryotic E_ECOLI	ke component (S	unknown (Bacillus subtilis)	integrase (Bacteriophage phi-LC3)	H. Jannaschil predicted coding region	romoperoxidase BPO-Al [Streptomyces Now-HAEM BROHOPEROXIDASE BPO-Al (EC (SUB 2-275)	clumping factor (Staphylococcus	comE ORP3 (Bacillus subtilis)	ONF138 gene product (Porphyra purpureal
Putat i ve cudin	match gene	orf3 (Haemo	ORF 3 ISple	hypothetical	Iron(III) di	homologous	pps1; B149	homoserine	! !	(3R) -hydroxy influenzael	i6 staphylocoagulase	mannitol-pl mannitol-j		bacteriofe	ORF YALO22	similar to euk. sp P32703 VJCI REGION (0549)	Luke-PV like	unknown (B	Integrase	H. jannasc	bromoperoxid NON-HAEM BR (SUB 2-275)	clumping f	COME ORP3	ORF238 gen
40 .5	match	91 547513	91 152901	gi 709992	91 1204610	191 1064809	91 466882	91 1498295	91 147989	91 1205311	pir A25620 A256	91 153746	191 1469939	101 1204511	191 386681	191 396400	91 1262748	gi 1122758	gi 293033	gi 1500472	91 522150	191 397526	91 289262	9111276668
	Stop	206	1273	1705	3245	1148	1301	3135	1607	6110	1354	4073	954	3186	940	748	285	455	929	176	1461	1097	223	188
45	Start	6001	1620	2805	3802	1513	108	2212	2929	5862	-	2994	-	2836	449	<u>د</u>	266	_	55	349	2270	2191	1094	676
	ORF	-			5_		~	-	-		-		=		-		-	<u>-</u>		-	~	<u> </u>	~	
50	Contig	382	391	900	426	1 429	09+	197	1 473	480	125	\$34	\$05	. 155	573	650	1 664	0.9	674	758	164	825	1052	1152

5
10
15
20
25
30
35
40
45

		length (nt)	246	234	186	396	201	204	246	399	399	348	360	294	109	62	1176	393	1171	1212	330	405	552	222	426	165
5		• ident	56	37	33	38	89	44	31	42	42	42	36	42	39	43	20	32	29	37	1 1	- 55	5	32	35	25.
10		e i e	65	59	59	59	59	89	59	59	59	- 65	- 65	- 65	59	88	58	88	88	88	88	5.8	88	88	88	88
15	roteins			_		_	abile ubunit	_	_			_			_	colii pir 829895 WQEC2N N-acetylglucosamine- PTS SYSTEM, N-	ulusi			aeruginosa			S12460 S12460			e cds.l, ene
20	ar to known pi			[e	hum)		omplex acid-1						ubtilis]			herichia colil 7.1.69), N-acer. A_ECOLI PTS SYS	-27 to 1127) (Mus musculus	otoga maritim		- Pseudomonas		18)	sapiens) ir	locularis	isi	ence, complet
25	roteins simil.		(Bacillus subtilis)	sma genitalium]	myces geotric		ling protein c		ix asperse]	ylicum)	ylicum]	ylicum]	e Bacillus s	ylicum)	[0818]	t protein (Esche nzyme II (EC 7. sp p09323 PTAA_ IIABC OMPONENT (merase (Therm	18)	4.1.1.20)	sativa]	cillus subtil	chain (1085 AA) (Homo sapiens) ir S12460 S12460 .n - human	protein (Echinococcus multilocularis)	[Bacillus subtilis]	Led mRNA sequ
30	- Putative coding regions of novel proteins similar to known proteins	94		glycyl-tRNA synthetase [Mycoplasma	triacylglycerol lipase (Galactomyces geotrichum)	subrilis)	growth factor binding protein complex acid-labile ubunit.	subtilis)	neurofilament protein NF70 [Hellx asperse	[Clostridium acetobutylicum]	crotonase (Clostridium acetobutylicum)	Clostridium acetobutylicum	homologous to penicillin acylase Bacillus subtilis]	crotonase [Clostridium acetobutylicum]	acterium tuberculosis]	transport system en chia coli SPECIFIC I	chain precursor (AA	anthranilate isomerase (Thermotoga maritima)	EpsG (Streptococcus thermophilus)	diaminopimalata decarboxylasa (EC	reductase (Medicago	ferrichrome-binding protein (Bacillus subtilis)	in heavy chain (10 eavy chain - human	ted protein (Echi	protein B	Arabidopsis thallans unidentified mRNA sequence, complete cds.1, product (Arabidopsis thallans)
35	tative coding re	match gene name	ATP-dependent nuclease	glycyl-tRNA syr	triacylglycaro	You (Bacillus subtilis	insulin-like gi (rats, liver,	YqhK [Bacillus subtilis]	neurofilament	onase	crotonase (Clo	tonase	homologous to	crotonase [Clo	unknown (Mycobacterium	N-acety]glucosamine phosphotransferase specific - Escheri ACETYLGLUCOSAMINE-	collagen alpha	phosphor (bosy)	EpsG (Streptoc	diaminopimalar	Lone	ferrichroma-bi	embryonic myosin heavy ch myosin beta heavy chain	glucose regulated	kinase-associated	Arabidopsis thalians product (Arabidopsis
40	S. aureus - Pu	match acossion	91 142439	91 1045942	91 459250	91 1303794	91 258003	91 1212730	172677 129	91 1055218	91 1055218	91 (1055218	91 1408494	gi 1055218	91 1524193	gi 146913	gi 50502	91 1054860	91 1276880	pir A31133 A311	qi 973249	gi 289272	91/29464	91 158852	91 (975353	gi 166926
45		Stop (nt.)	247	235	186	398	284	348	-	-	107	351	363	296	310	622	5845	3626	1669	0608	22884	406	552	538	8908	1717
		Start [nt]	492	468	-	79.3	484	145		_		869	227	~	619	1262	1 7020	3234	2841	1016	22555	~		1 759	1 8493	1553
50			-	-	1-	-		~	-	-	-	-	-	-	-		-	- 2	~	2	53	-		~	=======================================	
		Contig	1198	3	2103	2205	2578	1 2967	3012	3544	3548	3580	3720	4171	4305	**************************************	2	7	2	2	<u>۾</u>	₹	\$	\$	2	6

EP 0 786 519 A2

_	1	length (nt)	789	096	702	1095	816	867	234	1369	741	378	52A	237	639	237	1518	156	105	180	813	342	858	834	774	(99	222
5		1 ident	#	42	57	38,	38	5	31	4	39	34	56	25	34	29	15	45	39	32	7	34	30	41	7	36	S
10		E 18	- 58	58	88	28	88		88	88	88	85	88	85	88	88	88	85	85	- 58	- 58	- 58	85	- 58	88	28	88
15	proteins				Secherichia coli hrpA gene for A protein similar to yeast PRP16 and RP22 (Escherichia coli)	pir A42289 A42289 sor - Zymomonas mobilis		SA - Plasmodium																			illus ubtilis]
20	imilar to known		s parallelus]		similar to yes	as mobilis pir		face antigen ME		t is i	11			subtilis]	111	ra purpurea)			elegans]								component I (pab) Bacillus ubtilis
25	vel proteins s		~	llus subtilis]	for A protein	oxidoreductase (Zymomonas oxidoreductase (EC 1.1	-	rythrocyte sur	erculosis)	mydia trachoma	6.5.1.2) (Escherichla coli)		llus subtilis)	ble) (Bacillus	III (Methanococcus jannaschii)	eptide Porphy	occus aureus)		Caenorhabditis	-				protein (Bacillus subtilis)	las aeruginosa!	-	
30	Putative coding regions of novel proteins similar to known proteins	name	dehydrogenese subunit	hypothetical protein (Bacillus subtilis)	coli hrpA gene ia colij		(Bacillus subtilis)	mature-paramite-infected erythrocyte surface antigen HESA falciparum	unknown (Mycohacterium tubarculosis)	pcTHom1 gene product [Chlamydia trachomatis]		lus subtilis)	hypothetical protein (nacillus subtilis)	DNA binding protein (probable) (Bacillus subtilis)	e III (Methanoc	phycobilisome linker polypeptide Porphyra purpureal	clumping factor (Staphylococcus aureus)	MutS (Bacillus subtilis)	No definition line found (Caenorhabditis elegans)	ORF_(277 (Escherichia coli)	(Staphylococcus aureus	ORF X (Bacillus subtilis)	YqfU (Bacillus subtilis)	l protein (Baci	ORF 6; putative (Pseudomonas	unknown [Bacillus subtilis]	ac.td
35	utative codin	match gene neme	NADH dehydr	hypothetica	Escherichia coli hi (Escherichia coli	glucose-fructose	Ę		unknown (Hy	pcTHom1 gen	DNA ligase (EC	YqiB (Bacillus	hypothetica	DNA binding	endonuclease	phycobilise	clumping fa	HutS (Bacil	No definiti	ORF_ (277 (E	1	ORF X (Bac)	YqfU (Bacil	hypothetical	ORF 6; pute	unknown (Ba	para-aminobenzoic
40	S. aureus - P	match	gi 1228083	191 709 992	191 806327	91 1155588	91 1377843	pir A45605 A456	91 1370261	91 1209277	91 146613	19111303917	ni 904198	pi 467383	gi 1511453	gi 1276729	gi 397526	191 1002520	91 1463023	1911537207	gi 1340128	91 (40174	91 1303842	gi 1239996	1911454838	91 467478	1911143407
		Stop (nt)	111229	9167	1364	5613	6503	1395	950	4627	13541	1 1892	623	1769	1 3307	238	13058	1474	3497	10082	611	1801	1 6127	1 2747	1 3497	663	509
45	;	Start (nt)	112017	8208	2065	4519	7318	2261	717	6015	14281	6922	1056	1533	2669	~	14575	1629	1024		133	1 460	6984	1914	1724	-	384
		ORF ID	}	8	~		-		-	-	91		-	-		-	Ξ		9	=	1-	7	=	1	-	-	~
50		Contig	19	96	101	112	=======================================	143	121	154	154	155	174	189	702	20A	220	122	533	243	755	305	1 307	321	342	348	4 01

5	length	(F)	1230	1338	7.11	702	714	363	1164	363	1218	177	192	231	504	363	138	846	651	240	309	507	309	933	\$
	1 ident	_	35	32 ا		0	36,	36	30	29	37	34	6 7	41	;	Ç	7	2	7	39	1 60	28	32	36	37
10	e is	-	58	88	88	2.8	85	80	58	58	χ, 20	85	5.8	8	58	5.8	58	8¢	58	58	58	58	58	58	58
15 2			_				othetical	pir S06048 S06048 AGE_BACSU PROBABLE 2.4.1.52) (TECHOIC			11 91 886052		_	_	_	_		icus) gi 677882 icus)			llus ubtilis]	_	luenzael	_	.5.1.8) ISOPENTENTL- ASE) (IPPT).
20 52 30 32 Putative coding coding to many of relials schedul form to sections of relials schedul.					ı		a Thermophilic becterium hypothetical subtilis]	subtilis) P13484 T/			5-	niaej						leal sodium-dependent bile acid transporter [Rattus norvegicus] ileal sodium-dependent bile acid transporter (Rattus orvegicus)		hypothetical protein (GB:L10128_61) [Haemophilus influenzae]	ORFB; homologous to small subunit of phage terminases (Bacillus ubtilis)		coenzyme PQQ synthesis protein III (pqqIII) (Haemophilus influenzae)		cerevisiae) TERASE (EC 2 IPP RANSFER
25		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		(87)	ombe)	co11]		673) (Bacillus lus subtilis s -GLUCOSYLT:ANSF		hominis)	a S subunit ea S subunit	iella pneumo	[e	ystis sp.]	o saptens)	ystis sp.]	annaschii)	bile acid transporter bile acid transporter	subtilis)	8_61} [Haemo	nit of phage	co11]	III (pqqIII	enzae)	Saccharomyce: PENTENYLTRAN: TRANSFERASE)
30 Sections of novel	96		subtilisj	A (Staphylococcus aureus)	unknown (Schizosaccharomyces pombe)	yjjG gene product (Escherichia coli)	identity in 165 as to 6; putative (Bacillus	polypeptide (AA 1-673) dD protein - Bacillus (GL-PHOSPHATE) LPHA-GLU	ELICASE MG018.	oduct (Hycoplasma	restriction modification system restriction modification system	nifS protein (AA 1-400) [Klebsiella pneumoniae]	omonas aeruginosa	protein (Symechocystis	integral membrane protein (Homo sapiens)	hypothetical protein (Synechocystis	transaldolase (Methanococcus jannaschii)	ependent bile ac dependent bile a	protein (Bacillus	rotein (GB:L1032	us to small subunit	Escheri	ynthesis protein	collagenase [Haemophilus influenzae]	trna isopentenyl transferase (Saccharomycos carevi sp p01884 mdd5,Yeast trna isopentenytransferase Diphosphate: Trna isopentenytransferase) (IPP Ra
35 oction octive	match gene name	-	YqgS (Bacillus subtilis)	protein A (Sta	unknown (Schiz	lyjjG gene prod	26.7% of ident protein 6; pu	rodD (gtaA) polypeptide (Mprobable rodD protein - E POLY(GLYCERGL-PHOSPHATE) ACID BIOSYNTHESIS ROTEIN	HYPOTHETICAL HELICASE MG018	orf268 gene product	restriction modification s	nifs protein (unknown (Pseudomonas	hypothetical p	[integra] membrane p	hypothetical p	transaldolase	ileal sodium-dependent	hypothetical p	hypothetical p	ORFB; homologo	D9 1	coenzyme PQQ s	collagenase (H	LRNA 1sopenten sp P07884 MOD
าส - รถงาก - 40	•	acession	gi 1303866	91 581583	91 1009455	91 537214	91 1256621	gi 580920	sr-1947264 Y018_	gi 453422	91 886052	91 43831	gi 1183839	gi 1001353	gi 903748	91 1208474	91 1510995	91 677882	gi 1239999	91 1204262	91 498817	91 42181	91 1205432	91 1204669	91 171963
45	Stop	(35)	1554	1442	965	2047	1444	547	1164	4544	4019	179	1156	1001	504	364	755	B 4 6	1556	532	327	806	310	1174	614
	Start	(15)	125	105	789	2748	133	606	-	4182	2802	-	1347	1231	-	~	1492		906	11.1	635	1312	618	242	1096
50	ORF	91	-	-	<u>-</u>	- s	~	-	- -	9		-	- - -	~	-	-	- -	-	_	-	- -	~	-	~	~
30	Contig	9	437	1 445	453	453	479	064	1 517	517	246	562	009	604	619	625	635	645	645	665	674	675	745	799	800

		length (nt)	504	240	525	465	432	361	162	240	156	294	399	144	225	210	197	381	402	174	204	456	792	2400	816	984
5		• ident	7	- 66	16	30	36,	о́.	34	38	<u>د</u>	29	31	38	١٠٢	- 60	- BC	- #	32	2.	2.	- E	29	32		25
10		e is	88	- 88	- 88	- 88	- 85	 85	58	- 85	88	- 88	58	- 58	- 58	58	5.8	- 58	85	88	88	57	57	57	57	57
15	oteins			vulgarel			-	8 SYIP_STAAU) (ISOLEUCINE		nema boryanum]) YLX7_CABEL				ceticus)	[luenzae]			0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Itransferase	sapiens] gi 182737 ens} tein - human					
20	Putative coding regions of novel proteins similar to known proteins		7	(Hordeum				60)eacyl trna syntherase (Staphylococous auraus) sp e41)68 SYIP_STANU ISOLEUCYL-TRNA SYNTHETASE, HUPIROCIN RESISTANT EC 6.1.1.5) (ISOLEUCIN TRNA LIGASE) (ILERS) (HUPIROCIN RESISTANCE ROTEIN).	1	glutamate synthase (Plectonema boryanum)	No definition line found (Caenoxhabditis elagans) sp 446503 YLX7_CAEEL HYPOTHETICAL 7.3 KD PROTEIN F23F12.7 IN HROHOSONE 111.				catabolic dehydroquinate dehydratase (Acinetobacter calcoaceticus)	transport ATP-binding protein [Heemophilus influenzae]				ribulose-1,5 bisphosphate carboxylase large subunit -methyltransferase [Pisum setivum]	34) (Homo sapi (Homo sapi elated pro					
25	vel proteins sim		lysine specific permesse (Escherichia coli)	protoporphyrin IX Mg-chelatase subunit precursor	olorj		reus]	ase (Staphylococcus aureus) si Tase, Hupirocin Resistant ec (Hupirocin Resistance Rotein)	similar to Acc. No. D26185 (Escherichia coli)	ndent glutamate	found [Caenorhabditis e		chocystis sp.}	ligoendopeptidase F [Lactococcus lactis]	ehydratase (Actr	-binding proteir	isochorismate synthase [Bacillus subtilis]	psis thelianal		carboxylase larg	ant i	chocystis sp.1	-	lorl	gens)	(Symechocystia ap.)
30	regions of no	ពស់រាទ	ic permease (in IX Mg-chela	[Streptomyces coelicolor]	1 psk41)	preLUKM (Staphylococcus aureus)	NA synthetase NA SYNTHETASE (ILERS) (MUP	CC. NO. D26185	of NADII-dependent	1 line found (as subcilia)	hypothetical protein Synechocystis	Idase F Lacto	hydroquinate d		synthase Ba	inase (Arabidopsis	human gcp372 (Homo sapiens)	bisphosphate vum]	cerebellar-degeneration-related and cerebellar degeneration-associated pir a 19770 A 29770 cerebellar degene	protein (Symechocystis	cherichia coli	omyces coelicolor	ORF B (Clostridium perfringens	i i
35	utative coding	match gene n	llysine specif	protoporphyri	AbsA2 (Strept	tran (Plasmid pSK41)	preLUKM (Stap	I SOLEUCYL TRNA I SOLEUCYL-TRNI TRNA LIGASE)	similar to Ac	small subunit	No definition HYPOTHETICAL	YneR [Bacillus subtilis]	hypothetical	1 igoendopept	catabolic del	oligopeptide	isochorismate	mevalonate kinase	human gcp372	ribulose-1,5 bis Pisum sativum	cerebellar-d cerebellar pir A29770	hypothetical	ORF_f256 (Escherichia	ORF3 (Streptomyces	ORF B (Clost	hypothetical protein
40	S. aureus - P	match	01 (466778	91 861 199	01 1293660	91 405567	91 577649	91 581558	91 971394	1911133951	gi 529216	Di 1405458	91 1001801	91 510140	gi 644873	91 1205367	91 1185288	91145614	91 808869	91 508551	91 180189	gi 1001516	991909176	o1 153146	91 144859	91 1001319
45		St.op (nt.)	605	242	527	467	521	261	463	241	158	401	10+	145	228	211	263	383	7 0 7	224	206	7363	8872	2402	10796	13046
		Start	1108	481	-	931	952		7	480	_	108	_	288	\$3	~	_	_	-	15		7818	9663	4801	11911	14 12063 13046
50		0 KF	-	-	-	12	-		-	-	-	<u>-</u>	-	-	=	=	-	-	-				=	-	=	Ξ
50		Contig	854	885	168	942	1002	1438	1442	1873	1876	1989	2109	203	1523	3041	3094	3706	3854	40A2	4278	61	22	ñ	86	ş

_		length (nt)	225	453	237	195	768	597	594	10201	7755	624	261	468	009	471	234	924	066	1 651	1218	444	726	240	066	234	813
5	•	1 ident	38	31	42	35	34,	4.2	=	ű	re.	37	38	- 04	37		28	38	32	1,1	32	32	42	40	32	99	35
10	•	E in	57	57	57	57	57	5.7	57	5.1	57	57	57	57	57	57	57	57	57	57	- 52	52	57	57	57	57	57
15	roteins	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			_		pir 837202 837202 harolyticum				bacterium		us jannaschil)									pir s33850 s33850	tabacil				
20	Putative coding regions of novel proteins similar to known proteins	1 2 4 1 5 7 7 7 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	aricus	A (Staphylococcus aureus			saccharolyticum) pir B37202				of formate dehydrogenease (Nethanobacterium	1	M. Jannaschii predicted coding region MJ1163 (Methanococcus Jannaschii)		(88						(a			111		(8	hypothetical protein (SP.P33644) (Haemophilus influenzae)
25	lovel proteins si	1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- Bacillus sphaericus	regulator A (Sta	slegans	illus subtilis]	cellum (XynC)		[8]	[8]	formate dehydre	lus megaterium]	coding region MJ		(Haemophilus influentae)	[8]	[Neurospora crassa]	richia coli}	lus subtilis)	erovisiae)	carboxypeptidase (Sulfolobus solfataricus)		dihydrodipicolinate reductase [Pseudomonas syringae pv.	found (Escherichia coli)	ubtilisj	ower mosaic virus	:Р33644) (Наемор
30	g regions of r	name	hypothetical 80K protein	staphylococcal accessory regulator	C27B7.7 (Caenorhabditis elegans)	sporulation protein [Bacillus	(Xync) (EC 3.1.	o cholerae)	Unknown (Bacillus subtilis)	unknown [Bacillus subtilis]	#	ORF2 gene product (Bacillus	nnaschii predicted	YqhW (Bacillus subtilis]	amidolyase (Haem	cillus subtilis]	: :	rarD gene product [Escherichia coli]	33kDa lipoprotein (Bacillus subtilis)	Yer164p (Saccharomyces cerevisiae)	idase (Sulfol	ibronecin binding protein fibronecin-binding protein	colinate redu		BirA protein (Bacillus subtilis)	me V (Cauliflower	1 protein (SP
35	utative coding	match gene name		staphylococ	C2787.7 (Cac	sporulation	acetyl esterase	TagE (Vibrio cholerae)	Unknown (Ba	unknown (Ba	putative alpha subun	ORF2 gene p	H. Jannasch	Yqhw (Bacil	(urea?) ami	unknown (Bacillus	chitin synthase 2	rarD gene p	33kDa lipop	Yer164p (Sa	carboxypept	fibranecin	dihydrodipi	No definition line	BirA protei	reading frame	liypothetica
40	S aureus - P	match	pir B33856 B338	B 684950	91 1000470	91 143607	91 144297	lgi 460955	Ui;1438846	91 1486250	 01 871456 	91 288301	91 11211160	191 1303912	91 1221884	91 467469	91 558604	01 145580	91 39782	gi 603404	91 1136221	01 288969	91 1185002	21 396380	[gi 773349	91 1334820	01 1204431
45		Stop (nt)	11187	1 453	1 239	1 3061	6773	1 2076	5933	1 7701	4108	1053	7729	1 2201	1 2784	1694	1000	1 4764	1 5325	1 3455	6809	1641	3686	1 255	1324	236	2805
75		Start (nt)	141	-	-	3885	4006	1480	5340	6679	6384	430	1 6537	2668	3383	2164	1293	5687	1 4336	1 3297	9208	1348	4411	1 494	23.5	694	1993
		ORF	-	-	-	- 5		-		6		- 2	- 5	-	-	-	-	-	9	-	9		-	-	7	-	-
50		Contig ORF 1D 1D	15	3	35	9.5	96	107	109	112	71	126	12.	2	2	163	091	163	168	170	221	22A	263	276	283	297	342

EP 0 786 519 A2

Centig ORF	9 S	Start (nt)	Stop (nt)	metch aceston	match gene nome	e in	• ichent	length (nt)
375	9	3340	1 3741	gi 385177	cell division protain (Bacillus subtilis)	57	36	402
433	9	3286	1107		alpha-scetolectate decarboxylase [Lactococcus lactis]	57	- 0 ,	726
420	12	903	1145		protein serins/threonine kinase (Toxoplasma gondii)	57	30	243
487	2	1391	6271	191 507323	ORF! (Bacillus stearothermophilus)	57	28	333
498	-	274	852	191 1334549	NACH-ubiquinone oxidoreductase subunit 4L (Podospora anserina)	57	34.	579
503	-	343	173	191 1502283	organic cation transporter OCT2 [Rattus norvegicus]	57	30	171
505		1619	1284	91 466884	B1436_C2_194 [Mycobacterium Leprae]	57	40	336
519	- 7	11182	2549	191 1303707	Yrkk (Bacillus subtilis)	57	7	1368
522	~	3234	1945	91 1064809	homologous to sp:HTRA_ECOLI [Bacillus subtilis]	57	36	1290
538	2	606	1415	91 153179	phosphorincthyrcin n-acetytransfersse [Streptomyces coelicolor] pir_JH0246[JH0246 phosphinothricin N-acetyltransfersse (EC 2.3.1) Streptomyces coelicolor	۶۲	ê	507
1 547	-	968	1 486	191 467340	unknown (Bacillus subtilis)	57	20	483
1 599	-	1062	532	sp P20692 TYRA_	PHEPHENATE DEHYDROGENASE (EC 1.3.1.12) (PDH).	57	7	531
620	7	1.257	572	9111107894	unknown (Schizosaccharomyces pombe)	57	38	186
622	7	1 1600	1 1130	91113028	thioredoxin II (Saccharomyces cerevisiae)	57	39	431
625	7	1 362	1114	91 [1262366	hypothetical protein (Mycobacterium leprae)	. 72		753
680		-	204	91 143544	RNA polymerase sigma 10 factor (Bacillus subcilis) pir[A38625 A28625 transcription initiation factor sigms H - acillus subtilis	52	30	204
069	-	-	629	191 466520	pock (Selmonelle typhimurium]	57	29	627
969	-	-	433	gi 413972	ipa-48r gene product [Bacillus subtilis]	52	2	432
704	-	36	638	qi 1499931	M. jannaschil predicted coding region AJ1083 (Methanococcus jannaschii)	57	36	603
732	-	2316	1 1621	ui 1418999	orf4 (Lactobacillus sake)	57	37	969
746	-	451	1 227	gi 392973	Rab) (Aplysta californica)	52	42	225
727		2	997	91 43979	1. curvetus small cryptic plasmid gene for rep protein (Lactobacillus rvetus)	52	45	447
862	-	7	1 295	gi 1303827		57	21	294
1049	-	1 907	455	91 1510108	ORP-1 Agrobacterium tume(sciens)	57	35	453
1117	-	1387	1 695	91 896286	NH2 terminus uncertain (Leishmania tarentolae)	52	3.8	693

			-	- :	-	- :	-	-	- :	- :	- :		- :		- :		- :	- :	- •	-:	-:	-:	:	:	- :	:
5		lengch (nt)	321	423	735	189	261	199	228	180	360	623	1351	284	396	297	285	297	300	183	231	285	255	240	213	678
		1 ident	3.8	2	28	35	,10	23	96	9	17	o ,	36	39	31	43	90	38	32	37	35	77	Ç	38	35	18
10		sim.	57	5.7	57	57	57	52	52	5.	57	52	57	52	57	57	53	57	57	57	57	. 57	52	57	57	95
15	oteins			orvegicus)	s jannaschii)						es laucescens!	42289 A42289 Zymomonas mobilis		mevalonii) pir A44756 A44756 1.88) Pseudomonas sp.	coli								6957 S46957 is sp.	uenzae)	jannaschii]	IT A 36730 A 36730 A 96730 A 96730 A 968 A
20	- Putative coding regions of novel proteins similar to known proteins			voltage-activated calcium channel alpha-i subunit (Rattus orvegicus)	Hetha	Bacillus subtilis]			enzac)		tetracenomycin C resistance and export protein (Stroptomyces	mobilis) pir A			- Escherichia	elegansj					(Streptomyces pristinaespiralis)		Synechocystis sp. pir S46957 S46957 (EC 1.4.7.1) - ynechocystis sp.	protein (Haemophilus influenzae)	subunit Mi (Methanococcus jannaschil)	isation repressor G (Klabsiella aerogenes) pir A36730 A36730 - Klabsiella pneumoniee (fragment) sp P19452 HUTG_KLEAB 'AAMSE (EC 3.5.3.8) FORMININGGLATAMATE HYDROLASE) (HISTIDINE ROTEIN G) FRACHENT).
25	I proteins si			annel alpha-1	region	utative (Baci	co111		ophilus influ		and export pr	ase (Zymomona tase (EC 1.1.	us subtilis)	88) [Pseudomo eductase (EC	.4) alpha chain					richia coli)	Streptomyces		_		yme, subunit	0 5 5
30	egions of nove	ŧ.	subtilis]	ted calcium ch	predicted coding	ane protein; p	e (Escherichia	subtilis)	isochorismate synthase (Haemophilus influentee)	erichia colii	C resistance	glucose-fructose oxidoreductase (Zymomonas glucose-fructose oxidoreductase (EC 1.1	ipa-29d gene product (Bacillus subtilis)	HING-COA reductase (EC 1.1.1.88) [Pseudomonas meval- hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88)	ASG (EC 1.7.99	gene product (Caenorhabditis	um tuberosum)	llus subtilis!	cus suis}	okinase (Esche	synthase 1	hia coli!	glutamate synthase (ferredoxin) glutamate synthase (ferredoxin)	retion ATP-bi	restriction modification enzyme,	histidine utilitation repressor hutc protein - Klebsiella pneur FORHIMINGGUTAMASE ICC 3.5.3.8 UTILIZATION PROTEIN G) FRACHENI
<i>35</i>	tative coding r	metch gene name	YogF (Bacillus subtilis	voltage-activa	jannaschii	putative membrane protein; putative (Bacillus subtilis)	uracil permease	ORF4 [Bacillus subtilis]	isochorismate	ORF_0464 (Escherichia coli)	tetracenomycin	glucose-fructo glucose-fruct	ipa-29d gene pr	HNG-CoA reduct hydroxymethyl	nitrate reductase (EC 1.7.99.4) alpha	T06C10.5 gene	patatin (Solanum tuberosum)	SpoiliaG (Bacillus	EF (Streptococcus suis)	1-phosphofructokinase (Escherichia coli)	isti	yein (Escherichia coli)	glutamate synt	leukotoxin sec	restriction mo	histidine utilitation re hutG protein - Klebsial FORMININGGLUTANASE (EC UTILIZATION PROTEIN G)
40	S. aureus - Pu	match	91 1303853	[91]310083	9111511146	91 142780	qi 313777	91 1237015	91 1204540	gi 882472	91,153490	911155588	gi 413953	911151259	pir JV0037 RDEC	91 (1086633	91 21512	91 1000365	91 298032	91 405894	91 1483603	91 405879	91 515938	[91,1205301	[91 151122	91 149204
45		Stop (nt)	322	611	738	558	399	400	230	181	1961	\$	354	384	398	300	247	335	302	290	232	288	258	242	256	11524
		Start	2	1033	1472	1 746	689	2		1 360	7	9 \$ 6	704	-	193	965	172	631	-	108	7	1 572	512	4.8.1	468	12201
50		ID	=	~	-	~	-		-	=	_		-				_	~	-	~	_	-		-		=
50	•	Contig	1136	1144	1172	1500	1676	24B1	1099	3122	3560	3850	1661	1993	4065	0017	4163	4267	4358	4389	4399	187	4486	4510	4617	•
		<u>:</u>	<u>: </u>	<u>:</u>	٠	<u> </u>	: _	<u>:</u> —	<u>: </u>	<u>: </u>	·	· ——	: _ :	: :	:	<u>: </u>	<u> </u>	: <u> </u>	: —	<u>: </u>	· _	<u>: </u>	·	- -	<u>: </u>	· :

EP 0 786 519 A2

5	
10	
15	
20	
25	
30	
35	
40	
45	

5	length	(15)	930	1086	561	\$05	362	897	939	555	111	405	1068	1305	168	1 669	294	573	222	297	363	372	1596	645	252	193	006
3	1 ident	_		34	16	39	, 8 ,	00	32	66	35	27	07	30	ű	12	ا دد	35	00	26	30	35	35	7	39	ī	14
10	wis .	_ ;	95	96	96	36	95	26	95	26	56	26	95	26	95	26	56	95	36	56	95	26	95	95	96	96	99
15			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					AARP_PROST		obacillus		[6]	42289 A42289 Zymomonas mobilis				italium]										
5 5 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0))))))))	lum}		hypothetical protein (GB:L19201_1) [Haemophilus influenzae]		[Providencia stuartii] sp P43463 AARP_PROST		protein with homology to pail repressor of B. subtilis [Lactobacillus elbrucckii]	0111	(GB:U14003_278) [Haemophilus influenzae]	mobilis) pir A		,		M. genitalium predicted coding region MG309 (Mycoplasma genitalium)	1	-				111		toum)		
25 25 July 2010 I				plasma caprico	-	201_1) [Наетор	rus type 5}	rovidencia stu ARP.		l repressor of	(Escherichia c	003_278) [Haem	ase (Zymomonas tase (EC 1.1.		us subtilis!	us subtilis)	ng region MG30	subunit (Bacteriophage LL-II	oides tragilis		se (Zea mays)		Escherichia co	jannaschii)	ium acetobutyl		reus
30 30 suo i ba	96	1	sapiens	n ligase (Myco	Y gene product (unidentified)	rotein (GB:L19	fiber protein [Human adenovirus type 5]		his coli]	omology to pai	protein (crp)	protein (GB:U14	lucose-fructose oxidoreductase (Zymomonas glucose-fructose oxidoreductase (EC 1.1	firmus)	roduct (Bacillus	roduct [Bacill	predicted codi		hetase (Bacter	monas putidal	ing ATP synthase	subtilis]	A synthetase (Methanococcus 1	tein (Clostrid	coccus aureus]	phylococcus au
35 avi ve codina	match gene name	-	RACHI [Homo sa	lipoate-protein ligase (Mycoplasma capricolum)	Y gene product	hypothetical p	fiber protein	transcriptional activator	nik8 Escherichia coli	protein with h	CAMP receptor protein (crp) [Escherichia coli]	hypothetical p	glucose-fructo glucose-fruct	MgtE (Bacillus firmus)	ipa-24d gene product	ipa-22r gene product [Bacillus subtilis]	M. genitalium	terminase small	gluramine synthetase (Bacteroides tragilis)	ORFIS4 (Pseudomonas putida	H(+)-transporting	Prox (Bacillus subtilis)	acyl coentyme A synthetase (Escherichia coli)	lagenase	heat shock protein (Clostridium acetobutylicum)	sarA (Staphylococcus aureus	autolysin (Staphylococcus aureus
40 - S		acession .	94 1322222	91 1480705	91 490320	9111205099	ai 209931	91 623476	91 466613	91 (482922	gi 145594	Bi 1204367	91 155588	91 619724	91 413948	91 580868	91 1046009	01 945380	gi 143947	gi (405792	91 311237	91 1109686	91 581070	91 1510242	91 40363	91,1477533	91 765073
45	Stop	(ut)	15177	22264	2421	10606	5161	2972	6594	1810	913	17846	6678	5100	232	1521	447	1067	223	6449	393	27.5	9943	647	2072	3775	1712
	Start	(nt.)	4248	62112)	1861	10103	4820	2076	9595	2364	203	118250	5613	6404	65	823	740	1639	2	6745	ñ	7	11538	1291	2323	3383	813
50	ORF	9	80	78	_	51	9	- -	•		-	<u>2</u>	œ	_	~	-	7	~	-	<u>~</u>	-	_				s -	-
50	Contig	2	22	38	4	\$	os _	2	67	æ	96	109	112	181	138	138	146	149	163	166	187	190	161	195	230	238	270

5	
10	
15	
20	
25	
30	
35	
40	
45	

20 12 12 12 12 12 12 12		length (nt)	1590	234	1149	639	1464	648	189	372	579	168	612	870	1284	603	228	366	291	198	165	378	405	912	513	465	318	219
1 122 142	5	1 ident	70	0,	31	92	39 ' [ž	.	31	32	36	37	38	3.7	\$	30	38	38	35	35		34	28	66	37	1.	7
1 3221 1632 91 1511156 1140 1373 91 1511156 1239 94 1501801 13221 1632 94 1501801 13221 1633 94 1501801 13221 1633 94 1501801 13221 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 95 95 95 95 95 95 95 9	10	eis.	95	96	56	96	56	95	95	95	95	95	36	95	95	95	98	95	95	95	95	96	98	95	95	95	95	- 56
1 3221 1632 91 1511156 1140 1373 91 1511156 1239 94 1501801 13221 1632 94 1501801 13221 1633 94 1501801 13221 1633 94 1501801 13221 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 95 95 95 95 95 95 95 9	15	; ; ; ; ; ; ; ; ; ; ;										zae				; 229_C1_170		lla yphimurium]				ccus jannaschil)			hypothetical			
1 3221 1632 91 1511156 1140 1373 91 1511156 1239 94 1501801 13221 1632 94 1501801 13221 1633 94 1501801 13221 1633 94 1501801 13221 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 95 95 95 95 95 95 95 9	ilar to known p										118]	philus influen				ityltransferase		onent (Salmone	ous jannaschiil		Je BK5-T)	unit (Methanoco	: _ :		llic bacterium			
1 3221 1632 91 1511156 1140 1373 91 1511156 1239 94 1501801 13221 1632 94 1501801 13221 1633 94 1501801 13221 1633 94 1501801 13221 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 95 95 95 95 95 95 95 9	52 9 el proteins sim		e)	ing region HJ15	hocystis sp.1	m meliloti]	co11)		0.8.)	s subtilis]	Bacillus subti	cosylase [Haemo		ice)	phiraurium.)	S18 alanine ace	gans)	avoprotein comp	in [Methanococo	lus subtilis]	cus lactis phag	TP-binding subv	ophilus influer	enzael	ខ្ទ		- q	
1 3221 1632 91 1511156 1140 1373 91 1511156 1239 94 1501801 13221 1632 94 1501801 13221 1633 94 1501801 13221 1633 94 1501801 13221 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 1323 94 1501801 1323 95 95 95 95 95 95 95 9	00 regions of nov	ame.	ilus influenza	predicted cod	protein (Synec	duct (Rhisobiu	e (Escherichia	protein [Synec	or (Nomo sapie	oduct [Bacillu	decarboxylase		cteriophage SP	rella heemolyt		somal protein um leprae	norhabditis ele	reducatase fl	ccessory prote	product (Bacil		er, probable A	protein (Haer	mothilus influ		ilus influenza		apiens)
1 1 1 1 2 2 2 2 2 2	galbos evilus rulus	metch gene n	orf3 (Haemoph	M. Jannaschil	hypothetical	900	L-ribulokinas	hypothetice1	5-HT4L recept	HS74A gene pr	acetolactate	tormanidopyri	terminase (Be	Lpp38 (Pasteu	brn@ protein	rim; 30S Ribo Mycobacteri	ZK930.1 Caen	NADPII-sulfite	hydrogenase	ipa-24d gene		ABC transport	cell division	permease (Hac		orf3 (Haemop)	Hexa (Pseudos	HHG-1 (Homo a
45	40 °S. aureus - P	match	[91 547513	91 151 1556	91 1001801	191 46336	91 145304	91 1 1 0 0 1 6 3 4	91 1438904	91 11408486	91 142471	gi 1205194	191115466	gi 1142681	[91 217049	91 467 109	91 1229106	[01[153929	gi 1510801	91 413948	928836	[91 151151)	91 1205382	91 1222161	189952118	91 547513	91 886022	91 184251
1 100 1 100 1 100 1 100		Stop (nt)	1632	5751	1799	641	1823	2409	192	2109	2334	1017	1812	1283	1284	1701	3774	400	1095	495	677	399	407	930	515	466	732	223
	45	Start	1228	1140	2947	1279	360	1762	380	2480	1756	1907	2423	2152	-	6601	3547	35	1385	-	B	3.5		19		7 7	1049	5
20 Contigue 297 297 297 297 297 297 297 297 297 297			-	- 5	~	7	- 2	-	-	-	-	-	~		=		- 2	-	~	-	-	-		-		-	-	- -
:	50	Contig	230	297	321	359	17.6	180	402	416	424	1 457	458	504	=	- - -	099	107	109	71.8	7.51	790	795	813		968	676	1203

		length (nt)	216	399	180	210	201	150	144	960	1 090	124	252	321	099	873	1 009	441	1749	1521	762	549	645	978	768	939
5		1 ident	æ	27	26	- 0	29	30	37	7	31	36	Ç		52	7.7	26	25	20		39	33	- 72	31	12	98
10		V sim	95	95	96	95	\$6	96	98	99	96	95	95	95	\$5	55	55	- 55	55	ss	55	55	- 55	- 55	- 55	\$5
15	oteins		ij nodium baudi			us influenzae)	shaeroides)						42289 A42289 Zymomonas mobilis		r 553591 553591					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						esterase - acillus
20	Putative coding regions of novel proteins similar to known proteins		protein (Plasmodium chabaudi) c acid-rich protein - Plasmodium		11)	growth protein (Haemophilus	phosphoribosylformimino-praic ketoisomerase (Rhodobacter phaeroides)		(Caenorhabditis elegans)	a indice!	(*)	musculus]	mobilis) pir A -) recursor -		cerevisiae) s evisiae)	8p.1										[Bacillus phosphodi
25	vel proteins s		rich protein [Escherichia co	tative growth	aic ketoisomer	llus sphaericu	ogenase (Caeno	se (Mangifera	hilus influenza	enase (Nus	widoreductase (Zymomonas oxidoreductase (EC 1.1	us lactis!		-1 [Horaxella sp.	-	chocystis sp.)	chia colil	erculosisi			-	protein (Synechocystis sp.)	schocystia sp.)	phosphodiester phosphoryl die
30	regions of no	name	ysine-rich aspartic acid-rich protein (Plasmodium r S22183 S22183 lysine/aspartic acid-rich protein	ORF4 (Bacillus subtilis)	definition line found (Escherichia coli)	germination and vegetative	sylformimino-pr	penicillin V amidase (Bacillus spheericus)		C-acyltransferase [Mangifera indica]	Na+/H+ antiporter [Haemophilus influenzae]	acyl-CoA dehydr	glucosa-fructosa oxidoreductasa (Zymomonas glucosa-fructosa oxidoreductasa (EC 1.1	GTG start codon [Lactococcus lactis]	utative orf YCLX8c, len:192 (hypothetical protein - yeast	haloacetate dehalogenase N-1	unknown [Bacillus subtilis]	hypothetical protein (Symechocystis ap.	gene product (Escherichia	unknown [Hycobacterium tuberculosis]	YqjQ (Bacillus subtilis)	YqjK (Bacillus subtilis)	ORF_oll8 [Escherichia coli)		hypothetical protein (Symechocystis sp.)	glycerophosphoryl diester phosphodissterase pir[337251 837251 glycerophosphoryl diester subtilis
35	Putative coding	match gene name	1ysine-rich r 522183 52	ORF4 (Bacill	No definition	spore germir	phosphoribos	peniciliin	Similar to	y1-CoA	Na+/H+ antig	long-chain	glucose-fructose o	GTG start co	Putative orf YCLX8c. hypothetical protein	haloscetate	unknown (Ba	hypothetica	iuch gene p	unknown [Hy	YqjQ (Bacil	[YqjK [Baci]	ORF_0118 (E	hypothetical	hypothetica	glycerophos pir s37251 subtilis
40	S. aureus -	match	91 9806	191 1237015	Bi 466685	91 1204354	91 836646	91 143306	91 1166604	91 1129145	91 1205355	91 726095	91 155588	91 308861	91 5341	91 216773	91 467337	191 1001719	91 474190	0111340096	181 1303968	gi 1303962	911606045	19111001341	for 1001819	91 403373
		Stop (nt)	237	400	183	212	326	328	146	107	196	324	254	355	3436	8505	4534	5844	12339	6888	1808	3412	647	5243	3821	1127
45		Start (nt)	452	~	362	421	526	173	289	3	720	-	505	675	4095	9377	1 1015	2404	ī —	5368	2569	3960	1291	6220	3054	2065
		:		-	<u>-</u>	-	- 2		<u>-</u>	-	- 7	-		=		12	-	5	; -	-		- 2	-	9		
50		Contig ORF ID ID	1976	2161	2958	2979	2994	3026	3189	0776	4054	4145	4200	4273	-	=	13	19	ຊ	32	ž	ň	36	36	67	ş
				• -		-		•				• —				• -		• -	•	•	• -	• -	•		•	•

EP 0 786 519 A2

5	
10	
15	
20	
25	
30	
35	
40	
45	

50

55

	Contig ID	10 OR F	Start	Stop (nt)	match	match gene name	E	1 ident	Length (nt)
1 181 1777 1911 1911 1911 1912 1911 1912	1.9	=	9968	9865	gi 153053	norAll99 protein (Staphylococcus aureus]	\$5	23	009
1 122 1517 16174 511135221 Identification unknown (lastillus aubtilis) 55 1517 1616 511 512 516 512	7.5	7	1 881	1273		L-histidinol: NAD: oxidoreductase [EC 1.1.1.23] (sa 1-414) scherichia coli]	\$\$	33	393
1 137 1586 151066812 Innection unknown (lacilita) sabtilish 55 1172 1586 151066812 Innection unknown (lacilita) sabtilish 55 1172 1586 1511076813 Inneced (lacilita) sabtilish 151107681 Inneced (lacilita) sabtilish sabtilish 151107681 Inneced (lacilita) sabtilish sabtilish sabtilish sabtilish sabtilish sabtilish sabtilish sabtilish sabt	82	6	15387	114194		carboxypeptidase Sulfolobus solfataricus	\$\$	35	1194
1 177 156 691 88345) protetic-Wipil-phosphohistidine sugar phosphoremeteraee [Ercherfchis cill] 55 1 177 156 691 177322 inhonom lacelline abbilled 55 2 152 205 691 177322 inhonom poper reading frame [buchmer applidicola] 55 3 1266 206 1956660 unhonom open reading frame [buchmer applidicola] 55 3 1266 206 1956660 unhonom open reading frame [buchmer applidicola] 55 3 1266 206 191100797 inhonom lacelline cereliated 55 4 1315 1566 191100797 inhonom lacelline cereliated 55 5 126 206 191100797 inhonom lacelline cereliated 55 6 1316 6657 191100797 inhonom lacelline cereliated 55 7 126 206 191100797 inhonom lacelline cereliated 55 8 1316 6657 191100797 inhonom lacelline cereliated 55 9 126 1	87	-	1 3517	4917		function unknown (Bacillus subtilis)	55	26	1401
1 137 516 [411137937 [Auchroom [Bactlius subtilis] 55 517 4528 [411170274 [Accessarith populates [Hicctians Dlumbagini(olis] 55 518 4528 [411170274 [Accessarith populates [Hicctians Dlumbagini(olis] 55 52 52 52 52 52 52 5	8.6	-	1172	1636		protein-Nipi)-phosphohistidine-sugar phosphotransferase [Escherichia oli]	55	, 50	465
2 836 2035 GI 1170277 Trescentifin eposition to Number of Helicotina plumbagini(Gila) 55 5137 4558 GI 1170277 Trescentifin eposition (Gilage englishment) 55 5137 4558 5148 611110278 H. Janaschil predicted coding region MIO24 (Helibnococcus Januacchill) 55 5218 5148 611110277 Uniboun Saccharosyces caravillas 55 5218	92.		127	516		;	55	36	390
5 5137 4658 91 35660 Unknown open reading frame lauchmera aphidicolal 55 55 55 55 56 61 142966 H. Jannaschili predicted coding region MJ024 (Methanococcus Jannaschili 55 55 55 65 61 151167 Icraale dehydrogenese cerevisiael 55 55 55 65 61 151167 Unknown Saccharosyces cerevisiael 55 52 52 52 52 52 65 61 15156 H. genitalium predicted coding region MJ09 (Mycoplasma genitalium) 55 52 52 52 52 52 52 5	001	-	1 836	2035		seawanthin epoxidase (Nicotiana plumbaginifolia)	\$\$	36	1200
1 4266 2366 Galidophia H. Jannaschil predicted coding region Milo24 (Methonococcus Jannaschill 55 1865 1864 1864 1865 1476 191111367 Indoom Isaccharomyces cerevitiae 55 5205 5206	90.	-	1 5137	4658		[unknown open roading frame [Buchnera aphidicola]	55	29	480
3 2616 1134 91 1511567	104	-	4266	1 2986		N. janneschii predicted coding region MJ1024 (Methanococcus jannaschii)	55	1.6	1281
1 1805 1476 gil 1100787 Unkhown Saccharomyces cerevisiae 5 6212 5508 gil 1407884 H. genitalium predicted coding region MGJ99 (Hycopleana genitalium) 55 1 1 1 1 1 1 1 1	114	-	2616	1834			52	29	783
5 2205 3576 91 1005884 IN. Genitalium predicted coding region MO199 [Mycoplasma genitalium] 55 1 1 1 1 1 1 1 1	7	-	1 1805	1476		unkown Saccheromyces cerevisiae	- 55	35	330
5 2305 2376 91 143569 ATP synthage a subunit (Bacillus firmus) 55 55 51 51 51 51 51 5	165	- 2	1 6212	5508		H. genitalium predicted coding region MG199 [Hycoplasma genitalium]	55	27	705
6 9116 6857 31 559411 B00272.3 [Ceanorhabditis elegans] 55 2 364 636 91 145768 K7 kinesin-like protein (Dictyostellum discoldeum] 55 3 1637 1145 91 1145768 K7 kinesin-like protein (Dictyostellum discoldeum] 55 4 1375 1646 91 145768 K7 kinesin-like protein (Dictyostellum discoldeum] 55 5 1693 1145 91 140130 ORFK6 (Bacillus aubtilis) 55 6 1444 5481 91 1000793 hypothetical protein (Synechocystis sp.) 55 7 11473 9197 91 1207063 pocR (Salmonella typhimurlum) 55 8 5908 4837 91 1237063 unknown (Mycobaccertum tuberculosis) 55 9 1375 2340 91 146199 putative (Bacillus subtilis) 55 9 1865 91 1453907 macruric reductase (Plasmid pi288) 55 9 186 91 1453907 homologous to SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis) 55 9 1323 2102 91 146447 Luxh homologue (Rhitoblum sp.) 55 9 1323 2344 91 1396824 proline iminopspridase (Lactobacillus helveticus) 55	149	- 5	1 2305	1 2576	gi 142569	ATP synthage a subunit (Bacilius firmus)	55	35	372
2 164 616 Gil 1145766 K7 Kinesin-like protein [Dictyostellum discoldens] 55 169 1115 1676 Gil 11157 (1141 1115 1676 Gil 11157 (1141 1115 111671) (1141 1115 111671) (1141 1115 111671) (1141 1141671) (1141 1141671) (1141 1141671) (1141 1141671) (1141	191	9	9136	1 6857		B0272.3 (Ceenorhabditis elegens)	55	39	2280
4 1315 1576	194	- 2	1 364	636		K7 kinesin-like protein [Dictyostellum discoideum]		70	273
2 1693 1145 gi 410130 ORFY6 [Bacillus subtilis] 55 2 644 1372 gi 65362 TraA [Versinia entercolitica] 55 7 444 5481 gi 1001793 hypothetical protein [Symechocystis sp.] 55 8 5908 4817 gi 1237063 unknown [Mycobacterium tuberculosis] 55 9 1375 2340 gi 14699 putative [Bacillus subtilis] 55 1 786 394 gi 455006 orf6 [Rhodococcus fascians] 55 1 786 394 gi 455006 orf6 [Rhodococcus fascians] 55 1 126 938 gi 140893 homologous to SwissProt:YIDA_ECOLI hypothetical protein [Bacillus subtilis] 55 1 126 938 gi 1486447 [LuxA homologous to SwissProt:YIDA_ECOLI hypothetical 55 1 1274 gi 1256824 proline iminopaptidase [Lactobacillus helveticus] 55	209	-	1335	1676		thid gene product [Schizosaccharomyces pombe]	- 55	35	342
2 644 1372 GI[633692 TreA [Versinia entercoolitica] 55	117	-	1 1693	1145	, –	ORFX6 [Bacillus subtilis]	- \$\$	33	615
7 1144 5481 GI 1001793 hypothatical protein (Synechocyetis sp.) 55 1 1 1 1 1 1 1 1	12	- 2	644	11372		TrsA (Yersinia enterocolitica)	- 85	28	729
7 11473 9197 91;466520 pocR [Salmonella typhimurlum] 55 8 5908 4817 91;146199 junknown [Mycobacterium tuberculosis] 55 1 1375 2340 91;146199 juntative [Bacillus subtilis] 55 1 786 394 91;455006 juntative [Bacillus subtilis] 55 1 786 394 91;455006 juntative [Bacillus subtilis] 55 1 126 938 juli40843 homologous to SwissProt:YIDA_ECOLI hypothetical protein [Bacillus subtilis] 55 1 132 2302 91;1486447 junxA homologue [Rhizoblum sp.] 55	214	-	4144	5481	, —	hypothetical protein (Symechocystis sp.)	- \$\$	90	1338
8 5908 4817 gi 1237063	221	-	[11473	1 9197	,	pocR [Selmonella typhimurium]	55	32	7722
4 1375 2340 gi[1146199 putative [Bacillus subtilis] 55 1 1 1 1 1 1 1 1	18	-	1 5908	1 4817	盂	unknown Mycobacterium tuberculosis	55	38	1092
2 380 1885 91 455907	236	-	1375	1 2340	. —	putetive [Bacillus subtilis]	\$5	32	996
1 186 394	243	-	1 380	1885	, —	[mercuric reductase (Plasmid pl258]	55	1 29	1506
1 126 938 94 1408493	258	-	1 786	394	, —	orf6 [Rhodococcus fascians]	1 55	36	1 393
3 1323 2102 g1 1486447 LuxA homologue (Rhizobium sp.) 55	281	-	1 126	938		homologous to SwissProt:YIDA_ECOLI hypothetical protein (Bacillus subtilis)	55	35	813
5 2968 2744 gi 1296824 proline iminopeptidase [Lactobacillus helveticus]	316	-	1323	2102		LuxA homologue (Rhizobium sp.)	1 55	000	180
•	326	2	1 2968	2744	[gi 1296824	[proline ininopeptidese [Lectobacillus helveticus]	- 55	36	225

	•	langth (nt.)	894	216	366	231	936	684	423	345	504	102	300	204	1260	1 673	915	345	309	228	1 629	384	507	276	282	762	174
5	•	ident	28 -	- 05	1 - 7.0	36	30 , –	27	76	33	28	- 17	J6	 \$2	36	- oc	30	38 –	29	- 22	32	- 60	38	26	29	88	30
10	• ·	s is	35	55	- 55	55 +	- 55	55	- 88	- 55	55	55	 SS	 SS	- 55	5.5	- 55	55	- 55	- 52	- 55	- 55	- 55	55	55	\$	25
	•		_	-	-	-	-	-	_	-		-		NzBA (strain	hit:	_	-	_	-	_	_	_					-
15	proteins	P 1 1 2 2 3 4 4 4 4 7	enzae)	; ; ; ; ;							(pab) [Bacillus ubtilis]		major	r JQ1481 VC	cus jannaso											[Mycoplasma genitalium	
20	r to known	; ; ; ; ; ; ; ;	hilus influ		• • • • • • • • • • • • • • • • • • •	-	h11.	luenzae)			(pab) [Baci	ulosis)	Leishmania	il virus) pi atory sync)	(Methanoco							enzael				Hycoplasma	
25	eins simila	* * * * * * !	tor (Haemop	ns)	egaterium)	lus subtilis	cus jannasc	[Haemophilus influenzae]	11118)		component I	seudotubero	nase of the subtilisi	ory syncytla sovine espir	11on NJ1322		11.	=	discoldeum)	lciparum		shilus influ	itica]	nur1um]		coding region MG369 (Mycop	ot i 1 i s i
	novel prot	 	ible activa	ella nidula	[Bacillus a	tein [Bacil	(Kethanocoo		acillus sub	011)	acid synthase, o	(Yersinia p	H dehydroge e (Bacillus	ccursor - k	coding res	co111	erichia col	us subtilie	tyostelium	antigen (Plasmodium falciparum)	butylicum]	e I (Haemo)	a enteroco	C (AA1-301) (Salmonella typhimurium)	reus)	coding re	acillus sub
30	regions of	9446	oxide-induc	ase (Emeric	i subunit	binding pro	, putative	sistance pr	product (B	cherichia c	nzoic ecid	epimerase	ty with NAD on; putativ	in F (Bovin oprotein pr	1 predicted	[Escherichia o	18166 (Esch	own [Bacill	nase A (Dic	antigen (P)	Idium aceto	ate synthas	se (Yersini	Ol) (Salmon	lococcus au	genitalium predicted	product (B
35	tative coding	match; gene name	hydrogen peroxide-inducible activator (Haemophilus influenzae)	chitin synthase (Emericella nidulans)	ATP synthese i subunit (Becillus megaterium)	ferrichrome-binding protein [Bacillus	DNA helicase, putative (Methanococcus jannaschii)	multidrug resistance protein	ipa-10r gene product (Bacillus subtilis)	ORF_(109 (Escherichia coli)	para-aminobenzoic	CDP-tyvelose epimerase (Yersinia pseudotuberculosis)	20.24 identity with NADH dehydrogenase of the Leishmania major mitochondrion; putative (Bacillus subtilis)	fusion protein F (Bovine respiratory syncytial virus) pri/J01481 (VGNZBA fusion glycoprotein procursor - bovine espiratory syncytial virus (strain A51908)	H. jannaschii predicted coding region MJ1322 (Methanococcus jannaschii)	F_ (1379	CG Site No. 18166 [Escherichia colii]	product unknown [Bacillus subtilis]	histidine kinese A (Dictyostellum discoideum)	1 ymorphic	ORFC (Clostridium acetobutylicum)	pseudouridylate synthase I (Haemophilus influentee)	beta-lactamase (Yersinia enterocolitica	Opp C (AA1-3	sarA (Staphylococcus aureus)	H. genitaliu	ipa-44d gens product (Bacillus subtilis]
40	 aureus - Putative coding regions of novel proteins similar to known proteins 	match	91 1204820	81 1272475	91 142554	11 389272	91 1510251	91 1205144	91 (13934	91 606150	91 143407	91 1223961	gi 1256643	pi 210824	91 151 133	11537007	911536963	91 304160	91 1136289	91 558073	91 40367	91 1205875	91 48563	91 47804	91 1477533	gi 1046078	97 413968
		Stop	1 1429	2412	976	232	938 1	1681	833	1433	585	202	452	2057	1 2216	1 479	1 945	572	1 903	355	1724	386	625	335	1 282	985	254
45		Start (nt)	1 2322	1 2197	11	1 462	-	1208	=======================================	1777	1088	1 402	151	2260	1 957	1 955	1859	1 228	11211	582	1 1152	1 769	2 -	09	-	224	1 427
		9 ORF	-	-	-	-	-	-	-	-	-	-			7	-	-	- 2	-	-	~	-	-	-	-	<u>~</u>	-
50		Cont ig	351	1 353	380	1 33	386	430	48	529	555	565	s#2	645	672	730	13.	742	817	819	832	8	1021	1026	1525	1814	3254

				•		+		•	•		- •									•	-:	:	-:	-:	-:	-:	
5		length (nt)	342	312	270	402	384	195	243	342	195	367	243	216	207	417	1002	1761	97.8	177	168	780	534	939	618	23	
J) ident	32	31	38	45	38	36	38	38	36	86	32	42	27	27	30	7	96	1 38	37	28	7	32	29	31	
10		e is	- 55	1 55	\$\$	55	55	55	- 55	- 55	55	\$\$	55	1 55	55	54	. 54	\$\$	ž	54	54		54	54	- 54	- 54	
15	eins		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									s) gi 182737 human			, eptide				us sp.]	٠		ive Bacillus	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	asciculata)	1		
20	ir to known prote		• • • • • • • • • • • • • • • • • • •			- e					echocystis sp.)	34) (Homo sapiens) (Homo sapiens) slated protein - h	,	- 60	subfragment) [rabbits, masseter, eptide	 	fluenzael		(AA 1-384) [Symechococcus (EC 1.12) small chain			coli Prow; putat		ase (Crithidis f			
25	- Putative coding regions of novel proteins similar to known proteins	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	haloacetate dehalogenase H-1 [Moraxella sp.]	A col1)	a coli)	acetyl-CoA C-acyltransferase (Mangifera indica)		enterica)	a colil	ulosisi	ferredoxin-dependent glutamate synthese (Synechocystis sp.)	cerebellar-degeneration-related antigen (CDR34) [Homo sapidererbellar degeneration-associated protein (Homo sapiens) pir/A29770/A29770 cerebellar degeneration-related protein	haloacetate dehalogenase H-1 (Moraxella sp.)	[Mangifera indica	subfragment) [rd	srevisiae)	[Naemophilus influenzae]	(a col1)	mall subunit of soluble hydrogenase (AA 1-384) [Synir So6919 HQYCSS soluble hydrogenase (EC 1.12) nachococcus sp. (PCC 6716)		palmitoyl-protein thioesterase [Homo saplens]	protein is hydrophobic, with homology to E. coli ProW; putative Bacillus subtilisi		inosine-uridine preferring nucleoside hydrolese (Crithidie fesciculate)			
30	egions of novel	# P P P P P P P P P P P P P P P P P P P	halogenase H-1	luct (Escherichia	gene product (Escherichia coli)	cyltransferase	[Streptococcus pyogenes]	[lagellin (Salmonella	gene product (Escherichia coli)	unknown [Hycobacterium tuberculosis	pendent glutomat	egeneration-relate degeneration-assoc A29770 cerebellar	shalogenase H-1	acetyl-CoA C-acyltransferase	alpha heavy chain (S2 il, 214 aal	ORF YBL047c (Saccharomyces cerevisiae)	homoserine acetyltransferase	ivec gene product (Escherichia coli)	small subunit of soluble hydrogenase ir S06919 HQYCSS soluble hydrogenase inchococcus sp. (PCC 6716)	ORF_f277 (Escherichia coli)	tein thiossters	drophobic, with	s subtilis!	ne preferring n	Cap (Drosophila melanogaster)	um meliloti)	
35	tative coding r	indich gene name	haloacetate de	ORF1 gene product	ORF1 gene prod	acetyl-CoA C-a	spec (Streptoc	phase 1 flagel	ORF1 gane prod	unknown [Mycob	ferredoxin-dep	cerebellar-deg cerebellar de	haloacetate de	acetyl-CoA C-8	12	ORF YBL047c (\$	homoserine ace	lived gene proc	small subunit ir S06919 HQN nechococcus 8	ORF_£277 [Esc)	palmitoyl-prot	protein is hyc	Ybb [Bacillus subtilis]	Inosine-uridir	Cap Drosophi	PhoE (Rhizobium meliloti)	
40	S. Aureus - Pu	match	gi 216773	01 42029	91 42029	91 1129145	911529754	91 476252	gi 42029	91 1524267	91 1100774	91 180189	91 216773	91 1129145	gi 386120	91 536069	91 1205504	91 474192	gi 48054	93 537207	911160967	gi 438473	91 1256139	91 1151248	91 1335781	91 1399823	
		Stop (nt)	345	312	272	423	385	198	346	343	208	378	244	217	210	4932	6165	15326	979	8667	8332	13804	736	10179	133	8646	
45		Start	686	-	-	-	~	-	488	-	-	644	- 2	- 25	416	5348	7166	17086	~	9437	8165	13025	203	11117	516	8116	
		<u>:</u>	-	-	-	-	-	-	-	-	-		-	<u>-</u>		-	-	16 11		=	- 21	15 - 1	-	Ϊ_	-	01	
50		Contig ORF	3695	3721	1799	3889	3916	-	4074	4184	4284	4457	4514	4599	4606	-		2 2	2	1, 1,	37	9	-	52	99	70	
		1 5		1	1_	!_		!_	-		!_	i		1_	!	!_	:_	!_	:	<u>!</u> _	!	<u> </u>	<u>!</u> _	!_	<u>:</u> _	!_	፥

Contig	ORF	Start (nt)	Stop (nt)	match	'match gene name	e is	1 ident	length (nt)
0,	115	12556	11801	sp P02983 TCR_S	p[P02983]TCR_S TETRACYCLINE RESISTANCE PROTEIN.	\$	29	756
1 87	5	4915	9025	gi 1064811	[function unknown (Bacillus subtilis)	24	33	792
26	4	3005	2289	191 1205366	oligopeptide transport ATP-binding protein (Haemophilus influenzae)	54	33	717
103	~	1 2596	1 1556	91 710495	protein kinase [Bacillus brevis]	54	4	1041
105	7	3565	2095	Q1 143727	[putative (Bacillus subtilis]	54	30,	1491
1 112	-	2337	27.7.2	[91]153724	HalC (Streptococcus pneumoniae)	54	43	396
127	~	1720	2493	91 144297	scetyl esterase (XynC) [Caldocellum saccharolyticum] pir B37202 B37202 acetylesterase (EC 3.1.1.6) (XynC) - Caldocellum accharolyticum	Š	34	774
138	2	1600	1 3306	91 42473	pyruvate oxidase (Escherichia coli)	54	36	1707
1 152	7	525	1172	gi 1377834	unknown (Bacillus subtilis)	54	23	648
191	6	4831	5469	[01]903305	ORF73 (Bacillus subcilis)	54	28	639
191	=	1 6694	1 7251	191 1511039	phosphate transport system regulatory protein (Methanococcus jannaschii)	\$4	32	558
164			4543	101 1204976	[prolyl-tRNA synthetaso (Haemophilus influenzae)	54	34	1281
164	2	21602	22243	91 143582	[spoilifa protein [Bacillus subtilis]	54	32	642
	9	5683	4250	191 436965		ķ	7.6	1434
506	=	19208	119720	91 1240016	R09E10.3 (Caenorhatxditis elegans)	. 54	38	513
1 218	~	1090	1905	911467378	unknown (Bacillus subtilis)	54	792	816
1 220	-	1322	663	191 1353761	myosin II heavy chain (Naegleria fowleri)	54	22	099
220	Ξ	12655	13059	pir S00485 S004	gone 11-1 protein precursor - Plasmodium (alciparum (fragments)	54	35	405
122	-	2030	3709	101 1303813	Yqew (Bacillus subtilis]	54	*	1680
272	-	5055	4219	gi 62964	arylamine N-acetyltransferase (AA 1-290) [Gallus gallus] ir S06652 XVCHY3 arylamine N-acetyltransferase (EC 2.3.1.5) (clone NAT-3) - chicken	26	2	837
1 316	-	4141	104	(gi 682769	(accE gene product (Escherichia coli)	54	Ē	561
316	91	6994	8742	Ui 413951	[ipa-27d gene product (Bacillus subtilis)	94	28	1749
338	<u>م</u>	1337	2214	[91]490328	[LORF F unidentified]	54	28	1164
~ ·	-	3201	3614	101 111959	myosin-like protein (Saccharomyces cerevisiae)	*	25	414

TARIE?

Contig	ORF	Start (nt)	Stop (nt)	acession	natch gene name	E E	1 ident	length (nt.)
346		1820	912	91 396400	similar to eukaryotic Na+/H+ exchangers [Escherichia coll] sp 932703 VJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOKR-ACS NTERGENIC REGION (0549).	\$	0	606
348	~	623	1351	191 537109	ORF_E343a (Escherichia coli)	a a	34	729
378	~	1007	1942	sp P02983 TCR_S	Sp[P0398] TCR_S TETRACYCLINE RESISTANCE PROTEIN.	54	3:	936
408	9	4351	5301	91 474190	lucA gene product	54	762	951
444	-	7934	8854	91 216267	ORF2 Bacillus megaterium	\$	32	921
1 463	~	7172	2229	91 304160	product unknown (Bacillus subtilis)	54	80	489
1 502	~	9691	1133	191 1205015	hypothetical protein (SP:P10120) [Haemophilus influenzae]	54	38	564
1 505	9	6262	1 5357	191 1500558	[2-hydroxyhepta-2,4-diene-1,7-dioate isomerase [Methanococcus jannaschii]	54	41	906
250		2736	1522	91 40100	rodc (teg3) polypaptide (AA 1-746) [Bacillus subtilis] ir S06649 S06049 rodc protein - Bacillus subtilis p P13485 TACP_BACSU TECHOIC ACID BIOSYNTHESIS PROTEIN F.	25	S.	1215
1 551	- 5	50CF	1 4279	191950197	unknown Corynebacterium glutamicum	54	34	975
1 558	- 2	1356	958	gi 485090	No definition line found (Caenorhabditis elegans)	54	32	399
580	-	16	936	91 331906	(tused envelope glycoprotein precursor (Friend spleen focus-forming trus)	54	45	846
603	-	554	1 757	gi 1323423 `	ORF YGR2344 (Saccharomyces cerevisiae)	\$\$	36	204
617	-	25	249	01/219959	ornithine transcarbamylase lomo sapiens	54	0.7	225
632	-	1097	08+1	91 1303873	(Yqg2 (Bacillus subtilis)	25	25	384
623	-	-	\$	91,1063250	low homeology to P20 protein of Bacillus lichiniformis and bleemycin acetyltransferace of Straptomyces verticillus (Bacillus subtilis)	₹	\$	403
689		1547	101	91 552446	NADH dehydrogenase subunit 4 Apis mellifera ligustica pir 552968 552968 NADH dehydrogenase chain 4 - honeybee itochondrion (SGC4)	\$	90	537
1725	-	686	1441	191 987096	sensory protein kinase (Streptomyces hygroscopicus)	54	26	756
956	-	1	1 249	pir S30782 S307	integrin homolog - yeast (Saccharomyces cerevisiae)	24	24	249
978	-	1137	AS9	1911301994	ORP YNLO91w Saccharomyces cerevisiae	54	33	279
1314	-	_	1381	[gi 1001108	hypothetical protein (Symechocystis sp.)	54	33	279
2450	-	-	1 228	gi 1045057	ch-100 (Homo septens	\$4	32	228
2934	-	-	1 387	191 580870	ipa-17d goxA gene produr. (Bacillus subtilis)	54	36	387
2970	-	1499	1 251	ap P3734P YECE_	HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGMENT).	3.6	42	249
					,			

5
10
15
20
25
30
35
40
45
50

		•						•	+	- •	•	+	+	- +	- •		- +	+	- •	:	:	-:	-:	-:	-:	
5	length (nt)	309	456	330	399	273	207	282	270	219	1854	1263	501	108	1163	1575	225	465	1584	723	744	1029	336	615	816	
	• ident	33	35	36	29	30	34	30	38	38	35	32	36	37	0,	29	32	39	30	16	30	32	36	25	29	
10	ala .	54	54	3	>5	54	¥5	24	54	1 54	53	53	53	S	S	- 68 -	53	3	25	- 68 -	23	- cs	53	- 53	53	
15 15			nil] pir A44756 A44756 Pseudomonas sp.	8437 S38437 hadM protein A -			orescens subsp.				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	accharomyces	ıl lus]	jannaschii]	sion culture		0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
S S S S S S S S S S S S S S S S S S S		5	ā	hadM gene of Ecopril gene product [Escherichia coli] pir S)8437 S38437 hadM protein - Escherichia coli pir S09629 S09629 hypothetical protein A - Escherichia coli (SUB 40-320)	ttus norvegicus]		- Pseudomonas fluorescens subsp		(Mycoplasma genitalium)							as norvegicus)	chicken	dehydrogenase (EC 1.1.1.1) - fission yeast (Schizosaccheromyces	putative transcriptional regulator (Bacillus stearothermophilus)	(Methanococcus ja	arabinogalactan-protein, AGP (Micotlana alata, cell-suspension culture filtrate, Peptide, 461 aa)					
50 97 vel proteins sim		actis)	MG-CoA reductase (EC 1.1.188) [Pseudomonas meval hydroxymethylglutaryl-CoA reductase (EC 1.1.1.88)	product Escheri pir 509629 509 520	decarboxylase (Rattus norvegicus)		glucan 1,4-beta-glucosidase (EC 3.2.1.74) callulosa	a pneumoniae)			chia coll)	chia coli)	phage Bil			thyroid sodium/iodide symporter NIS [Rattus norvegicus]	protein -	1.1.1.) - fissi	regulator (Bacil)	quinolona rasistance norA protein protein (Methanococcus	AGP (Nicotiona a)	bilisi	falciparum)	[1]	11	
OS regions of no	name	Tms protein [Lactococcus lactis]	ctase (EC 1.1. ylglutaryl-CoA	Ecopiri gene scherichia col coli (SUB 40-	mevalonate pyrophosphate d	sepiens]	eta-glucosidas	unknown protein (Mycoplasma	hypothatical protein (GB:D26185_10)	ORF2 [Bacillus megaterium]	gene product (Escharichia	oduct (Escherichia	gene product (Bacteriophage Bl)	unknown [Bacillus subtilis]	ichia coli)	un/lodide symp	Ilan associated	drogenase (EC	nscriptional	sistance norA	rabinogalactan-protein, AG filtrate, Peptide, 461 aal	glucanuse (Anabaena variabilis	asmodium falc	ORP_o488 (Escherichia coli)	Escherichia coli	
tative coding	- maçch gene name	The protein	HMG-CoA redu	hadw gene of protein - Es	mevalonate	CENP-E (Homo sapiens)	glucan 1,4-b	unknown prot	hypothetical	ORF2 [Bacill	lucc gene pr	ORF1 gens product	c2 gene prod	unknown [8ac	yelf (Escherichia coll)	thyroid sodi	110k actin filan.	alcohol dehy pombel	putative tra	quinolone re	arabinogalac filtrate, P	glucar: 18e (A	ATPase 3 (Plasmodium	ORP_0488 (Es	ORP_0488 (Es	
า น - ธกอมาง 3	match	91 44027	gi 151259	gi 450688	91 1322245	91 29865	pir 524325 5243	gi 1196657	gi 1046081	91 216267	gi 474192	gi 42029	91 1369947	91 1486247	91 405880	91 1399954	pir A54592 A545	pir A00341 DEZP	91 1480429	91 1511555	91 1087017	91 1523802	91 452428	91 137034	91 537034	
45	Stop	309	794	100	400	273	509	285	272	221	10685	13579	3940	4618	3998	7806	12100	4583	8932	10218	2382	1001	338	2524	3282	
	Start (nt)	-	6	72	1 798			1 566	- 3	- 3	112538	:	1 4440	1 3818	1 2856	9380	112324	5047	110515	1 9496	3125	-	673	1 1910	2467	
50	ORF	-		<u></u>	-	-		-	-	-	22	=	-	-	9	2	2	<u>-</u>	122	112		-	-	-	-	•
	Contig	3002	3561	3572	3829	3909	3921	4438	1 4459	4264	2 -	2 -	77	1 26	, m	38	95	52	52	1 67	69	62	80	88	88	
	•		•		-				_	_				. —					_						. •	

		length (nc)	366	1179	1227	624	1641	1209	101	450	297	1605	564	768	201	231	531	1650	240	684	2289	381	357	261
5		i dent	33	25	30	35	33.	32	34	32	34		29	98	28	34	34	- 52	33	31	-	32	30	22
10		e is	53	- 53	53	- 8	53	53	3	53	53	S3	53	£	53	53	. 53	53	\$	63	53	- 53	53	S
15	proteins	1	us.)		PROTEIN).					mucoidy regulatory protein AlgR (Pseudomonas aeruginosa) pir (A32802 A32802 regulatory protein algR - Pseudomonas aeruginosa sp P26275 ALGR_PSEAE POSITIVE ALGINATE BIOSYNTHESIS REGULATORY ROTEIN.	aschii!	cetoacetate decarboxylase [Clostridium acetobutylicum] pir 849346 849346 butyrate-acetoacetate CoA-transferase (EC .8.3.9) small chain – Clostridium acetobutylicum sp P33752 CTFA_CLOAB BUTYRATE-ACETOACETATE COATANSFERASE SUBUNIT (EC 2.8.3.9) (COAT A)		acetyjglutamate kinase [Bacillus stearchermophilus] sp[007905 ARGB_BACST ACETYLGLUTAMATE KINASE (EC 2.7.2.8) (NAG INASE) (AGK) N-ACETYL-L-GLUTAMATE 5-PHOSPHOTRANSFERASE),			utana	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	um] ARGEST UBUNIT (EC			G10N (ORF104).		Streptococcus mutans
20	nilar to known	, , , , , , , , , , , , , , , , , , ,	sttus norvegic	:	IDE RESISTANCE		s subtilis)		idisj	nas seruginosa ruginosa sp P2 Y ROTEIN.	anococcus jann	cetobutylicum] EC .8.3.9) sma A_CLOAB BUTYRA A)	subtilis]	ermophilus) sp INASE) (AGK)			- Streptococcus mutans	1	odium falcipar LYMERASE III L			INTERGENIC RE	18	region) - Strept
25	Putative coding regions of novel proteins similar to known proteins	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	amphotropic murins retrovirus receptor [Rattus norvegicus]	tropomyosin (TPM1) [Saccharomyces cerevisiae]	BICYCLOHYCIN RESISTANCE PROTEIN (SULFONAHIDE RESISTANCE PROTEIN)		glycine betains transporter OpuD (Bacillus subtilis)		epiB gene product [Staphylococcus epidermidis]	uccidy regulatory protein Aign (Pseudomonas aerus regulatory protein aign - Pseudomonas aeruginosa positive Alginate Biosynthesis Regulatory Rotein	hypothetical protein (GP:D64044_18) [Methanococcus jannaschii	lase [Clostridium ace e CoA-transferase (EC licum sp P33752 CTFA_ (EC 2.8.3.9) (COAT A)	rpoE protein (ttg start codon) [Bacillus subtilis]	acillus stearoth EC 2.7.2,8) (NAG FERASE).	n falciparum)	omitis]		1.1	polymerase III largest subunit [Plasmodium falciparum] P27625[RPC1_PLAFA DNA-DIRECTED RNA POLYNERASE III LARGEST UBUNIT .7.6).	ces pombe!	11	HYPOTHETICAL 42.7 KD PROTEIN IN TBPA-LEUD INTERGENIC REGION (ORFID4)	MHC class II analog (Staphylococcus aureus)	sor (sr 5'
30	ig regions of no		murine retrovi	(TPM1) (Saccha	N RESISTANCE PR	o anguillarum)	aine transporte	putative (Bacillus subtilis)	product [Staphy]	ucoidy regulatory proteir regulatory protein sigR - POSITIVE ALGINATE BIOSYNY	al protein (GP:	cetoscetete decarboxylase (Clostridium buykateacetoscetete CoA-transferase Clostridium acetobutylicum sp Pl3752 CT TRANSFERASE SUBUNIT (EC 2.8.3.9) (COA	In ittg start co	smate kinase [Bacillus FAHATE KINASE (EC 2.7. 5-PHOSPHOTRANSFERASE)	protein kinase (Plasmodium falciparum)	paramyosin [Dirofilaria immitts	hypothetical protein (gtfD 3' region)	(Escherichia coll	rase III larges RPC1_PLAFA DNA	unknown (Schizosaccharomyces pombe)	ORF1 [Campylobacter jejuni	AL 42.7 KD PROT	II analog (Stap)	OK cell wall protein precursor (strain OMZ175, serotype f)
35	stative codin	match gene name	amphotropic	tropomyosin	• —	ORF1 [Vibrio	glycine bet	putative	epiB gene	mucoldy regrees POSITIVE	hypothetice	acetoscetate butyrate-ac Clostridium TRANSFERASE	rpoE prote	acetylglute ACETYLGLUT GLUTANATE	protein kir	paramyosin		ORP_0696 (1	RNA polymer sp 927625 2.7.7.6).	unknown (S	ORP1 [Camp)		MHC CLASE	40K cell w
40	S. aureus - Pu	natch	91 399598	91173038	sp P28246 BCR_E	91 576655	91 1524397	91,1256530	91 581648	91 151004	91 1510669	9; 298085	91 143456	01 304136	1,1 987A	gi 537506	pir A33161 A331	191 606292	91 160596	di 854601	1911633732	sp P31675 YABH_	[ai 1001961	pir A60328 A603
		Stop (nt)	5205	13239	5433	2362	1 8897	5895	557	4256	5421	11483	4326	18971	4221	1350	3249	1 2576	5884	106	1 2500	383	4731	88
45		Start (nt)	5870	4417	4207	1639	1 7257	1 6893	1 255	4705	1 5717	13087	1 3763	18204	1 4021	1580	2719	1 927	5645	218	1 212	763	5087	1240
		ORF.	6	5	2	_	=	•	~		- 7	<u></u>	-		9	- 5	9	-		-	~	-	-	~
50		Cont.ig	92	36	66	120	120	127	147	158	121	ī6.	202	506	212	231	27.2	308	320	720	¥.	150	Ę	\$

5		length (nt)	639	216	744	204	282	729	672	333	543	606	588	183	396	105	432	450	396	447	399	327	261	193
3		• Ident	30	:;	88	32 ′	92	89	45	36	25	30	30	29	8	28	36	33	30	27	33	35	53	33
10		6 6 E	- 53	53	ç	53	S	ន	53	53	53	53	53	53	53	53	53	53	S	53	53	£	53	22
15	e ins			1108]	aureus) aphylococcus	_		eus] - taphylococcus	enes]	-	_				11) NLPA NTERGENIC					_	rotein;	8437 S38437 hsdM protein A -		
20	Putative coding regions of novel proteins similar to known proteins			putative transcriptional regulator (Bacillus stearothermophilus)	NF 1 (AA 1 - 121) (1 is 2nd base in codon) (Staphylococcus eureus) r S15765 S15765 hypothetical protein 1 (hlb 5' region) - aphyloco aureus (fragment)			toxic shock syndrome toxin-1 precursor (Staphylococcus aureus) pir A24606 XCSAS1 toxic shock syndrome toxin-1 precursor - ta aureus	forms an operon with orfal [Listeria monocytogenes]	uenzae)			1		imilar to unidentified ORF near 47 minutes [Escherichia coli] sp pji4j6 yick_ecoli hypothetical 4j.5 kD protein in selc-nlpa ntergenic region.						Escherichia coli DNA-damage inducible protein subtilis]	of Ecopril gene product (Escherichia coli) pir[538437 538437 hsdM Escherichia coli pir[509629 509629 hypothetical protein A - .a coli (SUB 40-520)		elegansl
25	el proteins sim))) 1 1 1 1 4 6 6 6 7		gulator (Bacill	d base in codon		[sr	1 precursor (Stock syndrome to	n with orfal (L	pilin biogenesis protein [Haemophilus influenzae]	co11]	enes eutrophus		s pombe}	near 47 minute HETICAL 43.5 KD	subtilis)	myosin heavy chain (Entamosba histolytica)	transmembrane protein [Lactococcus lactis]	Synechocyatis sp.1		chia coll DWA-d	roduct (Escheri . pir S09629 S09 120)	epacial	ine found [Caenorhabditis elegans]
30	regions of nov		GCP360 [Rattus rattus]	nscriptional re	- 121) (1 1s 2n 15765 hypotheti gment)	eriophag	Hmp [Vibrio parahaemolyticus]	syndrome toxin- XCSAS1 toxic sh	forms an opero	esis protein [H	Escherichia	🗒	occus suis)	[Schizosaccharomyces pombe]	similar to unidentified ORF near 47 sp p31436 vick_ECOLI HYPOTHETICAL 4 REGION,	ORP 3; putative (Bacillus s	chain (Entamos	e protein (Lact	protein	us subtilis]	ty with Eacheri	Ecopril gene p scherichia coli coli (SUB 40-5	(Burkholderia cepacia)	No definition line found [Caenorhabditis
35	utative coding	f mat qh gene neme	rat GCP360 [putative tra	ORF 1 (AA 1 - 121) ir S15765 S15765 aureus (fragment)	res gene [Ba	Hmp (Vibrio pa	toxic shock pir A24606	orfA2; orfA2	pilin biogen	SapA protein	lipase-like	EP (Streptococcus suis)		similar to u sp P31436 Y REGION.	ORF 3; putat	myosin heavy	transmembran	hypothetical	Yqix Bacillus subtilis	22.4% identity with putative [Bacillus	hsdw gene of Ecopiri ge protein - Escherichia Escherichia coli (SUB	transposase	No definitio
40	S. sureus - P	metch	91 516826	9111480429	91 46587	[01]15140	911507738	91 153123	91 687600	91 1204551	911279400	91 695278	gi 298032	g1 1044936	94 390508	91 142441	191 305080	911308852	91 1001774	91 1303949	91 1146243	91 450688	91 1477486	191 868224
45		Stop (nt)	1761	1 217	1259	3754	620	941	673	335	545	910	290	184	399	504	Š	452	397	5	8	327	1 397	3441
		Start (nt)	1123	432	516	1 3957	1339	1669	7	1 667		7	1177	~	794	1004	-		1 792	-	798		1137	3049
50		D ORF	-	-	-	130	- 3		-	-	-	-	-	-		-	-	-	-	-	 		- 2	~
		Contig	470	483	345	558	603	693	166	187	108	803	872	910	95	988	1064	1366	1758	1897	2381	3537	3747	7

	length (nt)	165	1380	3459	921	606	450	519	750	1143	678	495	195	1608	1224	189	099	636	753	1569	432	816	1149	582	273
5	1 ident	34	 	32	25,	29	36	25	32	23	27	25	1 72	30	25	36	56	42	39	30	32	38	36	33	35
10	E it s	52	- 25	25	- 25	25	52	25	52	25	52	52	52	52	52	52	52	52	52	52	52	52	22	52	52
15		_	_		-	-		_	_		_	-	-	111)		57 A44357	_	_		-	_	-	n, putative		aschii]
		 	Jenzae)	ophage 15) hage L5 2-837)						piens) - human EPTOR EDG-1.				ccus jannasch	nzae)	discoideum; r[A44357 A44357 yostalium discoideum)				phimurium)			MpeV protein; putative		ococcus jann
imilar to kno	1	hage T41	apphilus influ	rived [Mycobacterlophage Mycobacterlum phage L5 (QUB 2-837)				trinkaei			18]		42]	subunit alpha (Methanococcus jannaschil)	philus influe	tellum discoideum mold ctyostellum		subtilis]	_	Salmonella ty		118)	over 120 as with the Symenococcus sp.		U0272 (Methan
52 92 el proteins		n) (Bacterio	thetase (Haen	otein; 52Kd observed gene 26 protein - Myc ILS HINOR TAIL PROTEIN	Jannaschii]	s coelicolor	this coli]	6 (Anopheles		ntiation protein (adg-1) [Homo s G protein-coupled receptor adg-1 AM PROSABLE G PROTEIN-COUPLED RE	cillus subtil		ococcus PCC79	, subunit alp	31122) (Haemo	hain [Dictyos olic - slime	s subtilis)	ase (Bacillus	(Mycobacterium leprae	ike protein	evisiael	(Porphyromonas gingivalis)	with the Syn	ubc i 1 i s]	ding region
SO O regions of nov	16m6	G41 protein (gtg start codon) (Bacteriophage 74	UDP-murnac-pentapeptide synthetase [Haemophilus influenzae]		Pil5 protein [Mathanococcus jannaschii]	se (Streptomyces	gene product (Escherichia coli)	NADH dehydrogenase subunit 6	d pabil	endothelial differentiation protein pir A35300 A35300 G protein-coupled sp P21453 EDG1_HUMAN PROSABLE G PRO		phat gene product (Rhizobium	NADH dehydrogenase (Synechococcus PCC7942)	glutamate synthase (NADPH),	hypothetical protein (SP:P31122) (Haemophilus influentee)	cytoplesmic dynein heavy chain (Dictyostellum dynein heavy chain, cytosolic - slime mold ct	B65G gene product (Becillus subtilis)	Respiratory nitrate reductase (Bacillus subtilis)	•	amino acid permesse Yeef like protein (Salmonella typhimurium)	unknown (Saccharomyces cerevisiae)	product (Porphyro	ty over 120 aa ubtilis]	PBGX terminase (Bacillus subtilis)	januachii predicted coding region MJ0272 [Mathanococcus januaschii]
G G G G G G G G G G G G G G G G G G G	metch gene name	G41 protein	UDP-murnac-pe	predicted 86.4kd pr pir 530971 530971 sp 005233 vG26_8PP	Pil5 protein	glucose kinase	moaE gene pro	NACH dehydrog	trac (Plasmid	endothelial differe pir A35300 A35300 sp P21453 EDG1_HUM	sorbitol deh	phas gene pr	NADH dehydro	glutamate sy	hypothetical	cytoplasmic dynein heav	B65G gene pr	Respiratory	ImbE gene product	amino acid p	unknown (Sac	put gene pro	25.8% identity over	PB5X termina	M. Janneschi
40 snanne · s	march acession	91 215966	91 1205379	91 579124	gi 1500543	gi 46851	191 42012	91 1040957	gi 388269	01 181949	gi 304153	91 1072399	191146485	19111511365	gi 1204393	91 7227	9111408485	191 1009368	191 699274	[91 1526981	qi 732931	91 1296975	91 1256634	91 1225943	01 1510368
45	Stop (nt)	2369	3808	3462	3935	9703	111066	521	6280	2826	6113	1 2870	3651	112962	18158	1661	10664	3351	3350	17300	981	1680	1807	583	4415
4 5	Start (nt)	2205	2429	6920	3015	8795	110617	-	5531	3968	4850	3364	4445	111355	116935	2185	10005	3986	4102	15732	1412	1 865	659	1164	4687
	ORF	5	_		- 5	13	116	-	100	5	- 5	- 5	9	114	121	-	2	- 5	-	61	-	-		-	=
50	Contig	15	13	24	22	38	\$	97		98	52	62	62	69	67	92	96	601	109	109	121	125	130	149	149

5
10
15
20
25
30
35
40
45

5		length (nt)	786	7611	402	- C-8	606	402	1404	228	1053	300	402	408	279	1008	1539	843	573	1017	006	537	630	243
3		1 ident	-	9,	52	35	52	24	32	23	38	30	56	34	£	E.	28	34	28	7.	36	32	25	38
10		e e	52	32	52	52.	52	52	52	52	52	52	52	55	52	52	52	52	52	52	23	22	52	22
15	roteins			lomycin esistance 37 544207	sal - rospora crassa										aemophilus	og [Hycoplasma					cillus subcilis) - Bacillus subcilis Symthesis Senson Protein Hor (EC	11us subtilis] PERMEASE PROTEIN AGG.	1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	
20	nilar to known pa			W: BCR_ECOLI bicyclomycin e. burnetil) pir S44207 S44207 rnetil (SUB -318)	protein [Neurospora crassa			•		ent)	1118)				deformylase) (H	olog; SapF homol			erythraea (fragment)	s subtilis)	Bacillus subtilis] R - Bacillus subtilis E SYNTHESIS SENSOR PR	integral membrane protein (Bacillus subtilis) SU TEICHOIC ACID TRANSLOCATION PERMEASE PROTE	uenzae]	1
25	vel proteins sin		herichia coli)	similarity to SW: BCR_coli [Coxiella burneti 17 - Coxiella burnetii	ne 72K protein hondriel outer	cillus subtilis		(Entamoeba histolytica)		ic - dog (fragment)	(Bacillus subt	protein (Synechocystis sp.)	lum]	eus vulgaris]	ormylmethionine	orotein Sapf hom	subtilis)	erculosis)	Saccharopolyspora ery	cylase [Bacillu	atory protein [ory protein pho LINE PHOSPHATAS	HOIC ACID TRANS	[Haemophilus influenzae]	cillus subtilis
30	Putative coding regions of novel proteins similar to known proteins	gene name	division protein [Escherichia coli	translated orf of Escherichia ical protein 33	nitochondrial outer membrane 72K protein r[A16682 A36682 72K mitochondrial outer	ATP-dependent nuclease (Bacillus subtilis)	BltD (Bacillus subtilis)	chain	Emry (Escherichia coli)	cytochrome P450 1A1, hepatic	penicillin-binding protein (Bacillus subtills	tical protein (Syne	orf L3 [Mycoplasma capricolum]	GTP phosphohydrolase [Proteus vulgaris]	polypeptide deformylase (formylmethionine deformylase) [Haemophilus influenzee]	transport system protein Sapf homolog; Sapf homolog (Mycoplasma niae)	to SpovB [Bacillus	unknown (Mycobacterium tuberculosis	to orf405 -	homologous to penicillin acylase (Bacillus subtilis)	alkaline phosphatase regulatory protein [Bacillus pir A27650 A27650 regulatory protein phoR - Bacillus sp P213545 PHOR_BACSU ALKALINE PHOSPHATASE SYNTHEE 2.7.31.	ighly hydrophobic integral membrane sp P41951 TAGG_BACSU TEICHOIC ACID	transcription activator (P	ATP-dependent nuclease (Bacillus subtilis)
35	stative co	match	=	orf 337; protein hypothe	initochor r A366	ATP-depe	B CD (B	myosin heavy	Emry (Er		penici 1	hypothetical	orf L3	GTP pho	polypeptide influenzae	preumoniae	similar	unknown	orth 5	homolog	alkaline pir A276 sp P2354	h19h1y ep P42	transcr	ATP-dep
40	S. aureus - P.	match	91/146025	gi 474915	91 3028	91 142439	[91]1303698	91 305080	191 1060877	pir C37222 C372	91 143290	91 1001610	91 416235	91 150900	91 1204874	91 1215695	191 467446	191 1478239	pir A42606 A426	91 1408494	91 143331	 gi 755152	81 1204607	191 ; 142440
45		Stop (nt)		1256	8760	2607	3684	5651	1424	4753	1055	3664	4055	1449	279	1010	1878	3262		3712	903	4169	633	5762 9
	·	Start (nt)	216	120	9161	2065	2,776	5250	72	4526	2107	3963	4456	1856		2017	340	4104	_	4728	1802	4705	1262	7 6004
50	•	ORF	-		•	-	=		-	2			-	7				-	-	-		5	; —	-
		Contig ORF 1D 1D	167	88	195	200	203	227	242	249	255	276	276	289	325	340	375	424	430	444	465	469	495	\$05

5
10
15
20
25
30
35
40
45

	length (nt)	453	852	336	423	231	345	324	282	258	294	306	219	267	312	786	249	219	210	573	198	999	234	264	279
5	• Ident	35	25	36	30,	35	28	<u>~</u>	30	35	34	36	36	20	<u>-</u>	42	47	32	40	28	32	25	31	35	37
10	el s	52	52	52	52	52	52	25	52	52	52	52	52	52	25	52	52	52	52	15	1 51	53	51	15	51
proteins 51		Becteriophage phi-11 int gene activator (Staphylococcus acteriophage phi						tg start codon) [Bacteriophege \$P02] gi[579197 1-648] [Bacteriophage SP02] pir[A21498 DJBPS2 DNA- [EC 2.7.7.7] - phage P02							er (Haemophilus	p P23129 ODO1_BACSU (ALPHA- KETOGLUTARATE					naschiil				
5 5 0 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 -		Staphylococcus	umoniae)	midis)		8.1		n) (Bacteriophege SP02) riophage SP02 pir A214 - phage P02				subtilis)			Na. and Cl. dependent gamma-aminobutryic acid transporter [Haemophilus influentae]		vani]	1111		subtilis)	indole-1-glycerol phosphate synthase [Nethanococcus jannaschii]				
ovel proteins s		gene activator	putative orf, GT9_orf434 [Mycoplesme pneumoniae]	lococcus epidermidis)	Fdhc (Methanobacterium thermoformicicum)	ATP-dependent nuclease (Bacillus subtilis)	116)	tg start codon) 1-648) [Bacteri (EC 2.7.7.7)		merichia coli)		hypothetical 64.7-kDa protein [Bacillus subtilis]	nis)		ma-aminobutrylo	**************************************	ornithine decarboxylase (Leishmania donovani	definition line found (Escherichia coli)	avisiae)	operon regulator (Bacillus subtilis)	ste synthase [Ne		pombel	richia colil	bacter pylori]
ng regions of n	gene name	age phi-11 int	rt, GT9_orf434	epiB gene product Staphylococcus	Anobacterium th	ent nuclease (B	Bacillus subtilis	DNA polymerase (gene L; ttg start SP02 DNA polymerase (aa 1-648) [1 directed DNA polymerase (EC 2.7	llus subtilis]	hisa ONF (AA 1-245) [Escherichia coli]	EF (Streptococcus suis)	al 64.7-kDa pro	Bacillus licheniformis	U87 Human herpesvirus 6]	- dependent gam	oxoglutarate dehydrogensse 2-oxoglutarate dehydrogens DEHYDROGENASE).	decarboxylase	ion line found	Adrép (Saccharomyces cersvisias)		lycerol phosphe	Yqin (Bacillus subtilis)	Srpl (Schizosaccharomyces pombe	moab gene product [Escherichia coli]	vacuolating toxin [Helicobacter pylori]
35 online	match gen	Bacterioph 111	putative	ерів депе	Fdhc (Meth	ATP-depend	COME ORF)	DNA polyme SP02 DNA directed	YbbG (Bacillus	hisa orr (EF (Strept	hypothetic	BAA (Bacil	U87 INUMER	Na+ and Cl- influenzae	oxoglutarate de 2-0xogLUTARATE DEHYDROGENASE)	ornithine	No definit	Adrep Sac	putative cel	indole-3-g	YQIN (Bac)	Srp1 (Schi	moab gene	vacuolating
40	natch	91 166162	91 1215693	91 581648	91,1279769	91 142439	91 289262	191/216151	91,1256136	191 11713	91 298032	91 849025	91 1218040	pi 854064	91 1205919	g1 40003 	91 159388	191 109795	191 965077	. —	91 1510962	191 1303933	91 1519460	191 42011	91 495471
	Stop (nt)	1614	1295	336	426	330	347	324	285	320	295	307	260	347	5 0	389	249	220	212	575	3276	5966	1283	11305	6731
45	Start (nt)	1162	444	-	848	001	169		995	577	588	612	478	613	06		-	438			2479	5301	9151	11042	6453
	98. 0.	~_		-	-	~	-		-	-	-	-	-			=	-	-	-	-	-	- 6	-	117	=
50	Contig	517	543	985	1 773	1120	1614	2495	2931	1 2943	2993	1 3667	3944	1 3954	3986	4002	4020	1 4098	4248	,	~	22	\$	4	51

5
10
15
20
25
30
35
40
45
50

					- •	- •	- •		+		 •	-+			:		-:	-:	-:	:		:	-:	-:	-:
5	length (nt)	459	489	1083	786	342	1194	174	684	1425	687	1287	1578	759	912	109	\$63	579	954	104	162	639	672	657	1092
	1 Ident	32	32	33	34	36	32	28	25	23	23	42	29	30	23	37	38	36	27	32	33	23	27	ñ	53
10	e in	ı.	215	51	51	51	51	51	21	15	51	15	51	15	5	15	51	51	51	18	15	3.	15	16	15
0 te 5 15		ve (Bacillus	phosphorylation Escherichia		s jannaschiil					SD6048 SD6048 BACSU PROBABLE						influenzael		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				- Plasmodium			
O O O O O O O O O O O O O O O O O O O	† • • • • • • • • • • • • • • • • • • •	258 identity to the E.coli regulatory protein MprA; putative (Bacillus subtilia)	5		M. jannaschii predicted coding region MJ0938 [Methanococcus jannaschii			a clava)		rodb (gtan) polypeptide (An 1-673) [Sacillus subtilis pir S06048 S06048 probable rodb protein - Bacillus subtilis sp P11464 TAGE_BACSU PROBABLE POLY(GLYCEROL-PHOSPHATE) LPHA-GLUCGSYLTRANSFERASE (EC 2.4.1.52) (TECHOI ACID BIOSYNTHESIS ROTEIN E).	hypothetical protein (SP:P12662) (Haemophilus influenzae)	Enterobacter aerogenes				1056 (Haemophilus influenzae				(Neemophilus influenzae)		mature-parasite-infected erythrocyte surface antigen MESA falciparum			:h11)
97 97 97 proteins si	3 3 3 3 4 4 4 5 7 7 7 7 7	regulatory pro	t Gat transport	llus subtilis)	ing region MJ0			antigen (Styel	sapiens)	(1-673) [Bacil edillus subtili PHA-GLUCOSYLTR	12662) (Haemopt	scursor - Enter		ē	cerevisiael	ling region HIC	/coplasma sp.}	arculosisl		3918) (Haemop)	n leprae]	rythrocyte suri	melanogaster	heni formis)	ococcus jannas
55 00 GE		to the B.coli	BIIA domain of PTS-dependent coli)	alanine dehydrogenase (Bacillus	predicted cod	unknown (Bacillus subtilis)	occus sute)	proliferating cell nuclear antigen (Styela clava)	TFIID subunit TAFIISS (Homo sapiens)	odb (gtaa) polypeptide (AA probable rodb protein - Bac poly(glycerol-PHOSPHATE) LP ACID BIOSYNTHESIS ROTEIN R)	protein (SP:P)	maltose-binding protein precursor -	(Escherichia coli)	same capricolum	ORF YILOBSW [Saccharomycus curuvistau]	H. influenzae predicted coding region H10056	Huni regulatory protein [Mycoplasma sp	unknown (Mycobacterium tuberculosis)	us subtilis)	hypothetical protein (SP:P33918)	[Mycobacterium leprae]	ite-infected en	nuclear protein Drosophila melanogaster	Asperaginase (Bacillus licheniformis)	melvalonate kinase [Methanococcus jannaschii]
95 Cative coding	match gene name	25% identity subtilis	EIIA domain o	alanine dehyd	H. jannaschil	unknown (Baci	EF (Streptococcus suis)	proliferating	TFIID subunit	rodb (gtaA) r probable rod POLY(GLYCERG ACID BIOSYN	hypothetical	maltose-bind	yehU (Escher	orfl (Mycoplasma	ORF YDLOBSW	H. influenza	MunI regulate	unknown (Myc	bmrU (Bacillus subtilis)	hypothetice1	B1496_C3_206	mature-paras falciparum	nuclear prot	Asparaginase	melvalonate
on Feus - Pu	match	91 1256652	91 508173	01 299163	191 1510977	101 467359	91 298032	91 1161242	gi 642795	1911580920	91 1204815	pir s05330 s053	911405857	911435098	011111110	911204314	gi 431929	91 1237044	191 409286	191 1205484	911466886	p1r A45605 A456	91 8204	191 49272	91 1511102
45	Stop (nt)	2995	6843	1111	16576	1218	1196	176	4040	1428	6693	2352	112855	8967	912	10477	7356	1153	5634	6236	291	2139	1378	7481	3546
	Start (nt)	2537	7331	29	15791	1559		349	3357	2852	6007	9901	114432	9725	-	9647	6814	575	6587	6943	-	1501	707	8137	4637
	ORF		2	-	20	-	-	-	-		-		1 = 1	-	: -	9	-	~	_	-	[-	5	~	-	-
50	Contig O	52	57	-	67 2	69	-	78 –	- 66	601	- 601	112	112	114	=======================================	127	152	154	154	171	184	212	228	236	243
		!	!	!_	!_	<u>:</u> _	!_	<u>:</u> _	1_	:	<u>:</u> _	<u>:</u> _	<u>i</u> _	<u>:</u> _		<u>:</u> _	<u>:</u> _	! —	<u>:</u> _	: _	1_	1	<u>:</u> _	i_	<u>! </u>

5
10
15
20
25
<i>30</i>
35
40
45

		length (nt)	168	789	1173	231	1233	1719	1176	712	111	570	420	492	456	474	198	477	330	321	243	351	228	381	966	315
5		• ident	22	e R	32	36	39	36	32	72	41	52	33	e E	0,	30	\$	34	23	39	29	32	36	27	12	33
10		e is	51	12	- 15	51	51	51	15	15	15		51	51	15	125	22	- 51	23	15	15	15	15	1 51	15	15
15	proteins		[Haemophilus influenzae]	54514 A54514 arum						r[S01407 XUVKG marxianus var				pir S48818 S48818	411	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r S06049 S06049	visiael		cus jannaschii)				
20	 Putative coding regions of novel proteins similar to known proteins 		10326 [Haemophilu	glutemic acid-rich protein [Plasmodium falciparum pix A54514 A54514 glutamic acid-rich protein precursor - Plasmodium alciparum						687) [Kluyveromyces lactis] r[501407 XUVKG 5.1.3.2) - yeast uyveromyces marxianus var		ica]		orf, len: 201, CAI: 0.16 (Saccharomyces cerevisiae) pir hypothetical protein - yeast (Saccharomyces erevisiae)	hypothetical protein (SP:P37002) (Methanococcus jannaschii)	ccus faecalis)	1	bt1118]	lypeptide (AA 1-746) (Bacillus subtliis) ir S06049 S06049 - Bacillus subtilis p P13485 TAGF_BACSU TECHOIC ACID PROTEIN F.	hypothetical phosphoglycerate mutase (Saccharomyces cerevisiae		M. jannaschii predicted coding region MJ117 (Methanococcus jannaschii)	ORF 3).		.1.35) - mouse	
25	vel proteins		coding region H10326	[Plasmodium n precursor		ciae)	llus subtilis	thermophilus!	7		reanthem!	meba histolyt	p4]	(Saccharomyces cerevisiae) east (Saccharomyces erevisi	37002) (Metha	lgen (Enteroco	marinus)	dehydratase (Bacillus subtilis)	A 1-746) {Bac subtilis p Pl]	rate mutase (S	[Escherichia coli)	oding region M	1) (S-1 DNA OR	/santhemi]	genase (EC 1.1	(Escherichia coli)
30	ng regions of no	9840	H. influenzae predicted co	lutanic acid-rich protein [Plasmodiun glutanic acid-rich protein precursor	F1 (Bacillus subtilis)	SCPB (Streptococcus agalactiae)	ipa-29d gene product (Bacillus subtilis)	ticus	unknown (Bacillus subtilis)	(GAL10) (AA 1 4-epimerase (F	G [Erwinia chrysanthemi	serine rich protein [Entamoeba histolytica]	cil protein (Bacteriophage P4)	201, CAI: 0.16 [cal protein - ye	al protein (SP:P	endocarditis specific antigen (Enterococcus faecalis)	unknown [Prochlorococcus =	nate dehydratase	rodc (tag3) polypeptide (AA 1-746) rodc protein - Bacillus subtilis p BIOSYNTHESIS PROTEIN F.	al phosphoglycer	glycosyltransferase [Esche	thi predicted co	DNA POLYNERASE (EC 2.7.7.7) (S-1 DNA	CbrC protein [Erwinia chrysanthemi]	3-hydroxyacy1-CoA dehydrogenase (EC 1.1.1.35)	acyl-CoA synthetese (Escherichia
35	tative codi	hatch gene name	III. influen	glutamic a	F1 (Bacill	SCPB (Stre	ipa-29d ge	muts Ther	unknown 18	transferase UDPglucose lactis)	protease G	serine ric	cll protei	orf, len: 201, hypothetical p	hypothetic	endocardit	unknown [P	dehydroquinate	rodc (tag3) po rodc protein BIOSYNTHESIS	hypothetic	glycosyltr	M. Jannaso	DNA POLYNE	ChrC prote	3-hydroxy	acyl-CoA 8
40	S. aureus - Pu	match	91 :204579	91 160299	gi 580841	91 1336162	91 113953	at 1209012	91 528991	91 2819	01 297861	9111513317	91 455320	91 587532	91 1511524	91 493017	19111353851	91 410145	91 40100	191 1279707	191 510257	91/1511175	sp P10582 DPOH_	191 809543	pis JC4210 JC42	191;145906
		Stop (nt)	1373	1609	3591	748	7049	2057	4991	684	7711	1718	421	983	934	009	230	652	393	322	624	352	230	1399	1399	316
45		Start	3540	2397	2419	518	5817	3775	3816	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1353	2287	840	1474	479	127	2	176	782	642	866	702	457	611	-	71
		ORF	-		- 2	~	-	- 2	-	7	- 7	-				~	-	-		-		-	-	-	-	-
50		Contig	257	258	1 265	1 298	316	332	1 364	440	495	1 495	905	009	1 607	989	726	1 861	998	1000	1046	1 1467	2558	1000	3604	3732

_	1	length (nt)	273	291	306	183	204	1284	1122	1014	1017	081	585	B34	576	1272	585	1059	1134	910	345	237	197	1443	189	1230
5		• Ident	٠,	38	52	60	35	4	35	39	29	28	29	36	25	29	2	1 29	1 29	22	25	33	35	32	42	72
10		e is	15	15	51	15	15	05	05	50	50	05	20	05	05	50	05	05	- 50	20	05	20	05	05	05 -	98
15	proteins				04776 XXECPL		Similar to hydroxymethylglutaryl-CoA	present pstream; s irus]						* * * * * * * * * * * * * * * * * * *	tomato)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	start overlaps f174, ther			tomato)		[4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
20	lar to known				nia colii ir 504776) - cherichia col	subc1118)	lar to hydroxy	promoter motifs pre						1	ize, petunia,		ases, start ov	comycetel		ize, petunia,		lum falciparus		btilisj	enow!	s lactis]
25	- Putative coding regions of novel proteins similar to known proteins		family homolog (Homo sapiens)	lus subtilis]	ibosomal protein L12 (AA 1-179) [Escherichia coli] ir S04776 [XXECPL peptide N-acetyltransferase rimL (EC 2.).1) - cherichie coli	homologous to penicillin acylase [Bacillus subtilis]	;	RAIL score: null; cap site and late promoter motifs present putative (Autographa californica nuclear polyhedrosis irus		hocystis sp.	lus subtilis)	cerevistae]	protein Bacteriophage Tuc2009		to dihydroflavonol-4-reductase (maize, petunia, tomato) habditis elegans!	s aureus]	of oldo by 14 bases; him coli!	dehydrogenase [unidentified hemisscomycete]		dihydroflavonol-4-reductase (maize, petunia, tomato) oditis elegans)	ra purpurea)	carbamoyl phosphate synthetase II (Plasmodium falciparum)	tuberculosis	operon regulator [Bacillus subtilis	circumsperozoite protein (Plasmodium reichenowi)	membrane protein [Lactococcus lactis]
30	regions of nove	one.		surfactin synthetase (Bacillus subtilis)	protein L12 (AA 1- 1-acetyltransferas	penicillin ac	oded for by C. elegans cDNA cm0le synthase (Caenorhabditis elegans)	null; cap site utographa calif	cillus subtilis]	hypothetical protein [Synechocystis sp.	ipa-42d gene product (Bacillus subtilis)	ORF YGR103W Saccharomyces cerevisiae	rotein Bacteri	us subtilis)	imilar to dihydroflavonol- [Caenorhabditis elegans]	FemA protein [Staphylococcus aureus]	overlaps end ble (Escheric	drogenase (unid	putative (Bacillus subtilis)	imilar to dihydroflavonol- [Caenorhabditis elagans]	gene product (Porphyra purpurea)	osphate synther	[Mycobacterium tube	operon regulat	oite protein (i	l membrane prot
35	utative coding	match gene name	semaphorin III	surfactin syr	ribosomal pro	homologous to	coded for by C.	GRAIL score: null; cap putative (Autographa	putative (Bacillus	hypothetical	ipa-42d gene	ORF YGR103W	tural	Yqjo Bacillus subtilis	Similar to d	FemA protein	ONF_f167; end starts possil	xylitol dehy	putative (Ba	Similar to d	ORF174 gene	carbamoy1 ph	Ę	putative cel	circumsporoz	LarP integral
40	S. aureus - P	match	91 1061351	gi 216346	ai 42749	01 1408494	9111458280	91 (559160	gi 1146207	gi 1208451	gi 413966	91 1323159	91 496280	191 1303966	91 1072179	91 153015	91 606096	91 640922	91 143725	91 1072179	91 1276658	91 476024	91 140341	gi 895747	81 160229	9: 1052754
		Stop (nt)	274	336	307	185	239	4859	5165	9496	1018	8407	4824	57.29	23440	2976	15841	1077	1761	3884	3356	239	626	9623	5096	129555
45		Start	- 2	46	612	367	442	3576	4044	10509	2034	8586	5408	1926	22865	1705	15290	2135	628	4393	3700		186	11065	5284	30784 29555
		TO	-	-		<u>-</u>	=	-		=======================================		Ξ	-	-	<u> </u>	- 2	==	-	7		- 5	-	-	-	9-	72
50		Contig	1976	3995	4193	4539	4562	-	====	11	61	02	54	~	g T	+	95	52	85	6	1 89	141	151	166	102	206

TABLE 2

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

5	length (nt)	405	885	663	1326	633	903	1668	459	738	225	1176	165	555	519	405	1668	1494	423	627	225	189	750	4.50
ŭ	/ ident	29	37	35	22 ,	28	26	27	35	29	27	DR	29	23	27	8	æ	33	32	59	33	12	27	25
10	s in	50	50	000	20	50	80	20	05	80	05	05	05	05	05	os .	os .	20	20	05	05	05	20	80
proteins				pir 535835 535835 (fragment) (SUB 1-												E.coli regulatory protein MprA; putative (Bacillus	it AC40 of DNA	a family of opoisomerases	o. 4, Peptide, 23 aal	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	EC 1.10.2.2) [Paracoccus denitrificans gl 45465 [Paracoccus denitrificans pir C29413 C29413 reductase (EC 1.10.2.2) ytochrome cl precursor - sp e13627 CY1			Jenzae)
ilar to know			GMENT).	irus type 1] virus ype 1		cerevisiae]			deun]				_			cein MprA; pu	mutant of the subunit AC40 (Saccharomyces cerevisiae)	ith a family	reus, MRSA No		racoccus deni itrificans p 10.2.2) ytoch	ena sp. l		ophilus influ
G G G G G G G G G G G G G G G G G G G			HYPOTHETICAL PROTEIN IN ASPS 5'REGION (FRAGHENT)	nvelope protein (Human immunodeficiency virus type 1) envelope protein - human immunodeficiency virus ype 1 77)	subtilis]	ccharomyces cer	(luenzae)	polymerase family X (Thermus aquatious)	G-box binding factor [Dictyostellum discoldeum]	megaterium]	pha]	ichia colil	J (Enterococcus hirae)		-	regulatory pro	\$ II .	sequence similarity with	component (Staphylococcus aureus, MRSA No.		(EC 1.10.2.2) (Paracoccus den reductase (EC 1. sppp13627 CY1	heterocyst differentiation protein (Anabaena sp.)	s subtitis!	tyrosine-specific transport protein [Haemophilus influenzae]
0. Or regions of nov	name	us subtilis]	PROTEIN IN ASP	ein (Human imm tein – human i	B65G gene product [Bacillus subtilis]	phosphoglycerate mutase (Saccharomyces	lipoprotein [Haemophilus Influenzae]	e family X [Th	lactor (Dicty	ORF2 gene product (Bacillus megaterium	ORF2136 (Marchantia polymorpha)	UDP-sugar hydrolase (Escherichia coli	subunit J (Ente	BglR (Lactococcus lactis)	CapE (Staphylococcus aureus	to the B.coli	a weak suppressor of a polymerase I and III	shares sequence		occus suis]	precursor (1 (AA 1-450) ytochrome-c	ifferentiation	865G gene product Bacillus subtilis	cific transport
ge 56 tative coding	satch gene n	ORFX7 (Bacillus subtilis)	HYPOTHETICAL	envelope protein	B65G gene pro	phosphoglycer	lipoprotein	(- (G-box binding	ORF2 gene pro	ORF2136 (Marc	UDP-sugar hyd	Na+ -ATPase	Bolk Lactor	CapE (Staphy)	25% identity to the subtilis	ted as	Trai protein shares [Plasmid pSK41]	leukocidin F	EF [Streptococcus suis]	cytochrome cl cytochrome c ubiquinolc	heterocyst d	B65C gene pro	tyrosine-spec
OP O	match	[91 410131	sp P37348 YECE_	91 313580	gi 1408485	101 384186	gi 148896	91 1526547	gi 456562	gi 288301	91 11665	911757842	91 487282	91 551875	gi 567036	91 1256652	911295671	91 405568	gi 410007	91 3 8 0 3 2	91 150572	[91 142020	91 : 408485	[91]1:04727
45	Stop (nt)	1927	3295	900	1723	984	1605	3802	1931	741	5523	1825	1 591	864	541	000	6509	1497	1.11	627	1711	1 683	1 752	1 887
	Start	1523	2411	5068	3048	1616	2507	\$469	3473	1478	5299	059	-	1418	23		7726	2990	1133	-	947	1363	-	438
50	ORF	-	-		- 2	- 7	-	4	- 2	-		-	-	- 2	-		\$		<u>-</u>	<u>-</u>		-	<u>-</u>	~
30	Contig ID	211	214	228	272	273	328	332	342	352	408	420	464	472	520	529	534	647	664	678	257	827	892	910

EP 0 786 519 A2

aureus - Putative coding regions of novel proteins similar to known proteins

913 1 973 1 1009 1 1027 1 1153 2					- 4	- 1	(ut)
:-:-:-:	1 524	09/	94 1205451	cell division inhibitor (Maemophilus influenzae)	05	32	7237
1-1-1-	1 424	236	91 886947	orfl gene product (Saccharomyces cerevisiae)	20	Q .	189
1-1-	1 653	429	gi 153727	H protein (group G streptococcus)	05	28	225
:-	1 1 511	257	91 433934	ipa-10r gene product [Bacillus subtilis]	1 50	25	255
	2 556	326	91 773676	ncck (Alcaligenes xylosoxydans)	05	36	231
1221	1 798	400	gi 1408485	[865G gene product (Bacillus subtilis]	05	21	399
1350 1	1 692	1 399	gi 289272	[errichrome-binding protein [Bacillus subtilis]	05	32	294
2945	1 366	184	gi 171704	hexaprenyl pyrophosphate synthetase (COQ1) [Saccharomyces erevisiae]	- 50	34	183
2968 2	2 1604	804	91 397526	clumping factor (Staphylococcus aureus)	- 50	33	108
2998 2	2 657	1394	gi:495696	[F34E7.] gene product [Caenorhabditis elegans]	20	Q	264
3046 2	2 506	306	BE13 618E13 11d	acyl carrier protein - Anahaena variabilis (fragment)	05	32	201
3063	1 547	275	gi 174190	[ucA gene product [Escherichia coli]	20	29	273
3174	F 1 3	1 1 4 6	91 151900	alcohol dehydrogenase Rhodobacter sphaeroides	20	16	144
1792	1 625	314	91 1001423	hypothetical protein (Synachocystis sp.)	05	35	312
3800	1 - 2	262	91 144733	[NAD-dependent beta-hydroxybutyry] coensyma A dehydrogenase Clostridium acetobutylicum]	20	2.B	261
3946	1 373	188	91 576765	cytochrome b [Myrmecia pilosula]	05	38	186
3984 1	1 578	162	sp P37348 YECE_	HYPOTHETICAL PROTEIN IN ASPS S'REGION (FRAGMENT).	20	37	268
37 [10	0 8250	7885	gi 1204367	hypothetical protein (GB:U14003_278) [Haemophilus influenzae]	49	30	366
46 16	6 113802	14848	121 466860	acd; B1308_F1_34 [Mycobacterium leprae]	60	34	1047
59	5 2267	1 3601	G1 606304	ORF_0462 [Escherichia coli]	49	1 27	1335
112 118	8 117884	118615	gi 559502	ND4 protein (AA 1 - 409) Caenorhabditis elegans]	49	25	732
138	6 6973	1 7902	gi{303953	[esterase [Acinetobacter calcoaceticus]	49	29	930
217	6 4401	5138	91 496254	[fibronectin/fibrinogen-binding protein [Streptococcus pyogenes]	49	15	138
220 12	2 11803	112657	gi 397526	clumping factor (Staphylococcus aureus)	49	31	858
228	4 1842	2692	pir s23692 s236	pir 523692 5236 hypothetical protein 9 - Plasmodium faltiparum	49	24	651
268	1 5016	2614	gi 143047	ORFB [Bacillus subtilis]	\$	56	2403

		Jength (nt)	210	1161	1140	945	189	612	639	4.11	210	171	375	270	672	609	1407	14751	909	336	318	\$22	135	1338	1812	384
5	•	I ident	- 80	76	29	26	29	32	29	29	21	28	36	25	36	28	20	28	30	29	52	29	23	76	29	25
10	•	eis	69	49	\$	49	49	69	6.4	6.	6.	6	- 64	6)	48	48	48	89	48	- 48	89	4.8	48	8	æ	88
15	ñ	; ; ; ; ; ; ; ; ; ; ; ;			ature							JRG_BACSU RANSFERASE).			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Jenzae]	1		gchii]	1	fable a virilis)		uenzae)		NTERGENIC	jannaschii
20	Putative coding regions of novel proteins similar to known proteins	; ; ; ; ; ; ; ; ; ; ; ; ; ;		jannaschii]	Bacterial regulatory proteins, arac family ignatur							PEPT (dog)ycan synthesis enzyme (Becillus subtilis) sp p37585 HURG_BACSU HURG PROTEIN UPD-N-ACETYLGLUCOSANINEN-ACETYLHURAMYL- PENTAPEPTIDE) PYROPHOSPHORYL-UNDECAPRENOL N-ACETYLGLUCOSANINE RANSFERASE)	NIC REGION.		omo sapiens]	H. influenzae predicted coding region H11555 (Haemophilus influenzae	9		quinolone resistance norA protein protein (Methanococcus jannaschii)		su(s) homolog: similar to Drosophila melanogaster suppressor of (su(s)) protein, Swiss-Prot Accession Number P22293 Drosophila		H. influenzae predicted coding region H11738 [Haemophilus influenzae]		Na•/H• exchangers [Escherichia coli] Hypothetical 60.5 kD Protein in Soxr-Acs Ntergenic	M. jannaschii predicted coding region KJ0419 (Methanococcus jannaschii)
	ins similar to		sp.)	hypothetical protein (GP:X91006_2) [Methanococcus jannaschii]	ry proteins,					(e		SYNTHESIS ENTYME (BECILIUS SUBTILIS) SP P UPD-N-ACETYLGLUCOSANINEN-ACETYLMURANYL- PYROPHOSPHORYL-UNDECAPRENOL N-ACETYLGLUCO	HYPOTHETICAL 16.2 KD PROTEIN IN NOK-GCPE INTERGENIC REGION	1119)	gamma (HNF4gamma) (Homo sapiens)	on H11555 (Ha			rotein (Metha		a melanogaste ion Number P2		on H11738 (Ha	sp.)	to eukaryotic Na·/H· exchangers [Escherichia coli] 103 YJCE_ECOLI HYPOTHETICAL 60.5 KD PROTEIN IN SOXR 10549).	on MJ0419 (He
25	novel prote		hypothetical protein (Symechocystis sp.)	3P:X91006_21	rial regulato	[3	orinus)	1115)	- 19	phosphomannomulase (Mycoplasma pirum)		s enzyme (Bac ETYLGLUCOSAHI PHORYL-UNDECA	ROTEIN IN NDK	surfactin synthetase (Bacillus subtilis)	-	d coding regi	unknown (Mycobacterium tuberculosis)	ma hominis)	orA protein p	(1	to Drosophil s-Prot Access	588]	d coding regi	hypothetical protein [Symechocystis sp.]	Na+/H+ exchan HYPOTHETICAL	d coding regi
30	ng regions of	e name	al protein (3	al protein (G		YqgP (Bacillus subtilis)	ONFI (Streptococcus sobrinus	unknown (Bacillus subtilis)	[Bacillus subcilis]	momutase (My	YgeN (Bacillus subtilis)	ren synthesi. TEIN UPD-N-AC	AL 36.2 KD P	synthetase	hepatocyte nuclear factor	nzae predicte	Mycobacterium	Lmpl protein (Mycoplasma hominis)	resistance n	illus subtilis)	olog; similar protein, Swis	unknown (Sphingomonas	nzae predicte	cal protein [imilar to eukaryotic sp p32703 YJCE_ECOLI REGION (0549).	chii predicte
35	utative codi	match gene	hypothetic	hypothetic	metches PS00041: Escherichia col	YqgP (Baci	ONF! (Stre	unknown (E		phosphomar	YqeN (Baci	pept idoglycan HURG PROTEIN PENTAPEPTIDE		surfactin	hepatocyt	H. influer	unknown ()	Lmp3 prot	quinolone	Yqht (Bacillus	su(s) home (su(s)	unknown (H. influe	hypotheti	similar to sp[P3270] REGION (H. jannas
40	S. aureus - P	match	91 1001257	101 1510796	91 396301	. —	. —		911143830	gi 401786	91 1303799	gi 216300	sp P27434 YFGA_	91 516360	91 1217963	gi ;205790	191 1524267	91,1197336	[gi]1511555	ai - 1303893	91 671708	911314584	91:1205968	gi 1208454	911396400	91,1510493
45		Stop (nt)	5751	3180	1142	947	161	1014	795	433	213	172	376	273	3100	609	6427	31096	809	3646	415	610	1280	1 9557	181	385
45		Start (nt)	1164	4340	2281		379	403	1433	943	422	342	~	542	1771	-	5021	16346	_	311	86	1131	2014	8220	3625	7
		ORF		-		===	-		-	-	-		-	-	-	-	9		-		-	=	-	91		-
50		Cont ig	172	300	381	466	999	670	709	831	1052	1800	2430	3096	22	æ.	45	83	61	19	ž	121	136	171	175	194
		<u>:</u>	: _	: _	:	-	: —	-		- –	<u> </u>	·	÷ —						÷ —		•	• —	•	•	•	:

S. aureus - Putative coding regions of novel proteins similar to known proteins

Centig 10	10 P.F.	Start (mt)	Stop Int)	match	match gene name	e is	1 ident	Jength (nt)
197	-	106	452	gi 1045714	spermidine/putrescino transport ATP-binding protein [Mycoplasma genitalium]	88	25	650
203			396	gi 940288	procesin localized in the nucleois of pea nucles; ORF; putative Pisum sativum	80	59	396
204	-	1 1363	869	91 529202	No definition line found (Caenorhabditis elegans)	87	25	999
1 206	120	134815	127760	91 511490	gramicidin S synthetase 2 [Bacillus brevis]	8	23	1056
212	-	2	166	1911295899	nucleolin [Xenopus laevis]	8	34	165
220	- 02	112652	111426	19114073	SecY protein (Lactococcus lactis)	8	2	1227
243	9	6450	5491	91 1184118	mevalonate kinase [Methanobacterium thermoautotrophicum]	87	or I	096
264	-	5434	1 3308	gi 1015903	ORF YJR151c (Saccharomyces cerevisiae)	8.7	56	7212
441		1532	768	91 142863	replication intiation protein - Bacillus subtilis pir 826580 B26580 replication initiation protein - Bacillus ubtilis	φ φ	23	365
444		3898	1 5298	gi 145836	putative (Escherichia coli	8	24	1401
484	- 2	388	1110	91 146551	transmembrane protein (kdpD) [Escherichia coli]	88	18	123
542	_	1425	2000	pir S28969 S289	N-carbamoylsarcosine amidohydrolase (EC 3.5.1.59) - Arthrobacter sp.	æ	1.2	576
995	_	-	1019	91 153490	tetracenomycin C resistance and export protein (Streptomyces laucescens)	60	24	1017
611	-	7	730	191 1103507	unknown (Schirosaccharomyces pombe)	68	38	729
624	-	1255	999	1911144859	ONF B [Clostridium perfringens]	8.	26	591
1 R46	-	1014	1 508	91 537506	paramyosin Dirofilaria immitis	æ	2.1	507
1 1020	-	9	950	19111499876	magnesium and cobalt transport protein [Methanococcus januaschii]	4.0	20	885
1227	-		174	gi 493730	lipoxygenase [Pisum sativum]	84	35	174
1266			405	qi 882452	ORF (211, alternate name yggA; orf5 of X14436 [Escherichia col1] g1[41425 ORF5 (AA 1-197) (Escherichia col1) (SUB 15-211)	80	24	405
1 202	-	1 707	381	gi 1408486	HS74A gene product (Bacillus subtilis)	48	25	127
2398	-	463	233	91,1500401	reverse gyrase (Methanococcus jannaschii)	80	6	231
2425	-	476	246	pir H48563 H485	Gl protein - fowlpox virus (strain HP444) (fragment)	89	ę	231
2432	-	446	225	gi 1353703	Trio (Homo sapiens)	8	33	222
2453	<u>-</u>	194	1399	91 142850	division initiation protein (Bacillus subtilis)	48	29	396
2998	-	469	236	191 577569	PepV [Lactobacillus delbrueckii	9		234
	:	-			2			

TABLE 2

5	
10	
15	
20	
25	
30	
35	
40	
45	

_	length (nt)	267	405	192	1410	486	009	1689	101	432	744	273	849	1086	942	642	945	249	831	702	963	1065	480	519	816
5	ident	35	25	32	24	28	26	27	31	29	24	38	32	59	34	=	28	32	19	17	29	2.8	23	25	28
10	e is	80	4 8	89	47	47	4.7	67	47	47	47	47	47	47	47	47	47	47	47	47	47	47	\$	47	5
ote ins	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 1 5 1 1 1 1 1 1 1 1						annaschii]	e atabase;						subtilis men Orf3 Rowland approximately 1 minutes on sp[P3735]YFBB_ECOLI							inkey, eptide, 407		pothetical
G G G G G G G G G G G G G G G G G G G			• • • • • • • • • • • • • • • • • • •	Equine infectious anemia virus					quinolone resistance norA protein protein (Methanococcus jannaschii)	Hydrophilic, no homologue in the atabase;	-	visiae)		:11:81	[8]	a - =		oideum]	omyces pombe)	gans			ECRF3 [herpesvirus salmiri HVS, host-squirre] monkey, eptide,		a Thermophilic bacterium hypothetical subtilis!
ivel proteins				Equine infect		ia hygide]	offiil	uberculosis]	protein prote		(Mycobacterium leprae		cerevisiael	hypothetical EcsB protein (Bacillus subtilis)	[Bacillus subtilis	2 predicted membrane helices, homology with B. et. al. unpublished Accession number M74183), updated Rudd map; putative [Escharichia coli] HYPOTHETICAL 26.7 KD PROTEIN IN MEND-MENB	nfluenzae]	G-box binding factor (Dictyostellum discoldaum)	myo-inositol transporter [Schizosaccharomyces pombe]	Cl3G8.2 gene product (Caenorhabditis elegans)		llus subtilis)	rus saimiri HV	1811	
regions of no	папе	sapiens)	putative (Escherichia coli	tor protein -	us subtilis]	gene product (Bradysia hygida	esterase (Acinetobacter lwoffii)	acterium	sistance norA	Possible operon with orfG. Hy putative [Bacillus subtilis]	189	AI: 0.12 (Sacc	ORF YKL094w [Saccharomyces cerevisiae]	EcsB protein		membrane helic ublished Acces d map; putativ L 26.7 KD PROT	hippuricase [Haemophilus influenzae]	g factor (Dict	transporter [product (Caer	us subtilis)	processing protease (Bacillus subtilis)	RF3 [herpesvir	40 kDa protein (Plasmid pJM1)	26.7% of identity in 165 as to protein 6; putative (Bacillus
58 stative coding	match gene	mucin (Homo	putative [Es	trans-activator protein	Yqki (Becillus	PC4-1 gene p	esterase (Ac	unknown INycob	quinolone re	Possible ope putative [B.	pps1; B1496_C2	D9509.27p; C	ORF YKLO94w	hypothetical	D-alanine racemase cds	2 predicted membraset. al. unpublish updated Rudd map;	hippuricase	G-box bindin	myo-inositol	C33G8.2 gene	YqjV (Bacillus	processing p	ORF 5' of EC	40 kDa prote	26.7% of identity in protein 6; putative
- sneens - S	match	gi 945219	91 145836	pir.S51177 S511	gi 1303989	1911540083	[91]1209223	91 1403455	gi 1511555	91 (438466	91 466882	91 927340	101 486143	gi 1177254	lg1 142822	91 51 6608	91 1204835	91 456562	91 1420856	91 1255425	[91 1303973	gi 142824	gi 243353	101 150756	91 1256621
45	Stop (nt)	280	405	301	2232	1084	6925	1884	115108	6710	4279	8863	1174	1093	943	\$61	1676	00 .	831	2773	3107	1257	£83	633	819 -
	Start (nt)	2	-	492	3641	665	1524	196	16118	7141	5022	9135	2022	2178	1884	1109	2620	152	-	2072	2145	2321	962	115	1634
50	ORF	-	-	7		2	2	~	72		-	=	-	-	-		7	-	-		- 2	7		-	
-	Contig	3042	3686	4027		~	91	\$	\$	5	2	120	142	168	263	279	145	3.89	191	404	529	\$95	654	692	765
		•	• -																						+

TABLE 2

<u>a</u>	I D	Start (nt)	Stop (nt)	satch acession	matth gene name	e is	• ident	length (nt)
825	۲.	112	1023	91,397526	clumping factor (Staphylococcus aureus)	-	32	813
914	-	-	615	gi 558073	polymorphic antigen [Plasmodium falciparum]	69	58	615
1076	-	-	153	[gi 1147557	Aspartate aminotransferase [Bacillus circulans]	- 6	2	753
1381	-	793	398	[gi]755153	ATP-binding protein (Bacillus subtilis)	- 6	20	396
	-		293	91 145836	[putative [Escherichia coli]	47	24.	291
ν	9	807.	4361	911305080	Imyosin heavy chain [Entamoeba histolytica]	46	30	348
=	-	2777	3058	gi 603639	[YelO40p (Saccharomyces cerevisiae]	46	28	282
46	=	10518	10300	gi;1246901	ATP-dependent DNA ligase (Candida albicens)	46	28	219
13	-	3941	7930	1911298032	[EF [Streptococcus suis]	46	35	3990
132	-	5028	4093	gi 1511057	etical protein SP:P45869 (Met	46	25	916
170 1	-	4719	3652	pir (\$\$1910 \$\$19	C4 protein - Sauroleishmania tarentolae	90	56	1068
16.	_	9543	8284	91 1041334	F54D5.7 [Caenorhabditis elegans]	46	52	1260
253	-	-	396	gi 1204449	dihydrolipoamide acetyltransferase [Haemophilus influenzae]	9.	35	396
264	~	437	973	91 180189	cerebellar degeneration-related antigen (CDR34) [Homo sapiens] gi [182737 cerebellar degeneration-associated protein [Homo saplens] pir[A29770] A39770 cerebellar degeneration-related protein - human	\$	29	537
273	-	485	285	1911607573	envelope glycoprotein C2V3 region (Human immunodeficiency virus type	46	35	201
350	-		563	gi 537052	ORF_[1286 [Escherichia coli]	46	35	561
384	-		1862	91 11221884	(urea?) amidolyase [Naemophilus influenzae]	99	7.0	A61
610	-	1876	2490	9111110518	proton antiporter efflux pump (Mycobacterium smegmatis)	99	77	615
432	-	2663	1455	91 1197634	orf4; putative transporter; Method: conceptual translation supplied by author (Mycobacterium smegmatis)	46	7.2	1209
458	-	2419	1211	91115470	portal protain (Bacteriophaga SPP1)	1 99	90	1309
517	\$	2477	4192	91 1523812	orf5 (Bacteriophage A2)	9	23	1.716
_	_	1512	1285	911215635	pacA (Bacteriophage Pl)	46	30	228
-	~	649	1242	91,537148	ORF_(181 (Escherichia coli)	94	29	594
1218	-	747	161	1-: 1: 000 466				

EP 0 786 519 A2

								_							_										
5	length	(uc)	4 03	336	1110	306	099	967	186	1023	1365	885	657	1014	1212	456	219	429	943	495	468	471	375	262	333
	* ident		2	ır	34	24	23	22	23	20	27	27	23	23	30	20	26	7.2	22	24	30	\$2	35	28	28
10	Eis		•	46	45	45	45	45	45	45	45	45	45	45	45	45	45	2.	45	45	45	\$	45	45	45
15	teins	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	pir S38437 S38437 hsdM rtical protein A -			-			nfluenzae)		oli, K12,		14 A54514 m					pir B26580 B26580	janna schill		and 37C12.5) ans		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
20	Putative coding regions of novel proteins similar to known proteins		nne product (Escherichia coli) pir S18437 S1841 coli pir S09629 S09629 hypothetical protein A 40-520)			type 2) [Homo sapiens]	subtilisj		influenzae predicted coding region H10131 (Haemophilus influenzae)		subunit I homolog (Escherichia coli, K12		glutemic acid-rich protein [Plasmodium falciparum] pir A54514 A54514 glutamic acid-rich protein precursor - Plasmodium alciparum	l su			evisiaej		M. Jannaschil predicted coding region MJ323 (Methanococcus jannaschil)		elegans proteins F37C12.8 and 37C12.5	(Caenorhabditis elegans) B - Caenorhabditis elegans HAIN B (MHC B).	odium falciparum)	0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
25	el proteins sim		gene product (Escherichia coli) a coli pir/S09629{S09629 hypothe B 40-520}	(Xenopus laevis)			[Bacillus subt	(Synechocystis sp.)	fing region HIOI	sculus	subunit I homolo	us influenzael	(Plasmodium falo	Caenorhabditis elegans	chia colij	gans)	kinesin-related protein (Saccharomyces cerevisiae)	ein (Bacillus subtilis) btein - Bacillus ubtilis	ling region MJ13.		ن		antigen (Plasmodium	ra purpures)	
30	regions of nav		rI ge chia (SUB	product	ORF_£408 [Escherichia coll]	tyrosine phosphatase (PTP-BAS,	to sp:PHOR_BACSU [Bacillus	protein	se predicted con	open reading frame (Mus musculus)	ă	aminotransferase (Maemophilus influenzae)	lutamic acid-rich protein (Plasmodium	product	NADH dehydrogenase (Escherichia colif	(Caenorhabditis elegans)	sted protein [Sa	replication initiation protein replication initiation protein	il predicted cod	ORF_f310 (Escherichia coli)	to protein kinases and habditis elegans]	yosin heevy chain (isozyme unc-54) pir a93958 MWKW myosin heavy chain sp P02566 MYSB_CAEEL MYOSIN HEAVY C	ransmission-blocking target	ORF287 gene product (Porphyra purpurea)	richia coli)
35	Putative coding		hsdw gene of Ecopr protein - Escheri Escherichla coli	FIM-C.1 gene	ORF_ 6408 E	teln	homologous	hypothetical	R. influenze	open reading	AppCacytochrome d eptide, \$14 aa)	aminotransfe	glutamic ac	C33G8.2 gene	NADH dehydro	F47A4.2 (Car	kinesin-rel	replication replication	M. Jannasch	ORF_(1)10 (E)		.yosin heavy pir A93958 i sp P02566 M	ransmission	ORF287 gene	HrsA (Escherichia coli)
40	S. aureus -	ression	91 450688	91 351460	1911606064	91 452192	9:11064813	19111001307	[gi 1204389	191 220578	101 238657	191 1222056	91 160299	91 1255425	1911581140	1911870966	[gi [171225	91 142863	91,1511334	91 606180	91726426	91 156400	gi 441155	gi 1276705	qi 976025
	Stop	(at)	402	338	5922	12004	2407	13385	13811	3462	4365	4346	116	1015	3128	459	221	1073	982	851	R46	473	376	285	374
45	Start	(nt.)		673	4813	11699	1748			4483	6329	5230	09	7	4339	914		1501	2	1345	379		2	4	42
	ORF	9		_	-	16	7	12	-	•	•	7		-	~	-	-	~	-	_			-	-	-
50	Contig	;	3685	4176	-	-	87	103	112	145	170	206	228	288	610	332	344	441	672	763	986	8	1158	2551	3967
	÷ _	:		: - :	:	: :	: — :		:	: _ :		_ :		: _ :	<u>. </u>	: :	· ·	·	: <u> </u>	: _ ·	:	:	:		

		length (nt.)	621	193	492	723	978	738	762	11011	474	402	258	303	501	2343	4530	1 5601	1626	
5		• ident	19	25	 B	22	92	18	24	21	30	02	18	12	25	24	1 61	22	27	
10		sim .	42	42	4	41	41	\$	7	=	=	Ç	Ç	39	37	36	96	35	32	
15	proteins		_		Mus saxicola pir S43430 S43430 - spiny ouse (Nus saxicola)	_			conceptual translation supplied by			pir S27826 S27826 (fragment)		by C. elegans cDNA alternatively spliced form					191 CSP_PLAFL	
20	ailar to known g			im discoldeum)	Mus saxicola - spiny ouse ()		151		eptual translat			(Plasmodium falciparum)		coded for by C. e ykla9.5, alterna	ans)				procein [Plasmodium falciparum] sp[P05691 CSP_PLAPL : PROTEIN (CS) (FRACHENT).	
25	l proteins sin	. 2 4 8 8 8 8 8 8 7 7 7 8 8 8 7 7 8 8 8 8 8		Dictyosteliu	ltransferase yltransferase	rcina barkeri	obacteriophag	(e)	ö	yoeli!}		! —	- towlpox virus	<	rhabditis eleg	el chenow1]		erevisiael	Plasmodium falc (CS) (FRAGHENT)	
30	 c. aureus - Putative coding regions of novel proteins similar to known proteins 		s subtilis)	protein tyrosine phosphatase (Dictyostelium discoldeum)	spermidine/spermine NI-acetyltransferase spermidine/spermine NI-acetyltransferase	orf4 gens product [Methanosarcina barkeri]	observed 35.2kd protein (Nycobacteriophage 15)	TrsA [Yersinia enterocolitica	orf4; putative transporter; Meth author (Mycobacterium smegmatis)	rhoptry protein (Plasmodium yoelii)	rat	asparagine-rich antigen Pfa35-2 asparagine-rich antigen Pfa35-2		elegans ci for by C. senorhabdil	gene product (Caenorhabditis elegans)	STARP antigen (Plasmodium reichenowil	occus suis)	ORF YJRISIC (Saccharomyces cerevisiae)	ircumspordicite protein (P)	
35	stative coding	match gene name	YqeD (Bacillus subtills)	protein tyros	spermidine/sp	orf4 gens pro	observed 35.2	TrsA (Yersini	orf4; putativ	rhoptry prote	nucleolin -	asparagine-ri	hypothetical protein 5	coded for by C. yksc9.5; coded	C33G8.2 gene	STARP antiger	EF [Streptococcus suis]	ORF YJR151c	circumsporozoite	
40	S. aureus - Pu	match	91,1303784	91 1022910	91 309506	911124957	gi 15873	91 633692	91 1197634	gi 457146	pir JH0148 JH01	91 552184	pir S42251 S422	91 1055055	gi 1255425	gi 535260	91 298032	191 11015903	91 552195	
45		Stop (nt)	1739	395	884	114075	3127	2000	3386	1103	475	402	261	305	503	10636	8079	1098	3574	
		Start	2359	787	2751	114797	2150	1263	2625	-	7	-	818		E001	8294 10636	3550	2507	1949	
50		ORF	-	-	~_	112	-			-	-		-		-	112	- \$	-		
		Contig	689	4132	98	161	212	213	408	542	924	1562	2395	4077	95.8	59	63	544	2	

c	

- Putative coding regions of novel	egions		
Contig	: -	Start	Stop
01	<u>.</u>	(at)	(nt)
_	<u>:</u> —	1234	692
-	_	1712	2278
-	-		3032
+		13073	112585
5	• -	2539	1091
-	~	1532	1771
	-	4741	455
-	6	9867	642
-	- 22	111.6	8547
9	-	2359	
	-	349	1 176
	8	5146	1 5983
11	6	5968	6498
11	2	6472	6284
-	116	. 6	111271
1 12	<u>~</u>	5352	1 4942
1 12	9	4596	4862
15	_	1895	1650
16	91		110835
18	2		917
•	-	9125	7764
1 20		1758	6230
	22	9201	8803
50	2	12258	10470
53	-	674	339
23	9	6138	5485
	·		5942

5
_

S. aureus - Putative coding regions of novel proteins not similar to known proteins

1	S	ا ف ا		4185	5241	2402	849	1524	3005	1388	8575	8728	6766	10087	1049	5801	7261	7621	2964	980	6868	16371	20804	21264	627	707	428	2324
		7651		4556	5642	1824	505	1177	2454	765	7952	8591	9738	10797	1315	\$226	7575	7424	3158	1585	6425	16982	20253	20722	-	900		2674
	통 a	•	2	-	-	~	~	_	-	~	6	2	Ξ	2	~	-	=	2	•	~	=	20	92	27	-	-	-	4
:	. Ocupt 19	23	23	34	7.	52	12	7.	16	32					34	36	36		7.6	36			38	38	39	Q.	2	77

_
5
~

S. auruus - Putative coding regions of novel proteins not similar to known proteins

													_		. — .					. <u> </u>		• •					
Stop	326	i N	353	13994	6297	6520	10976	15424			. ~	1316	370	2245	287	6319	8709	326	186	1 261	1228	1560	118712	352	5822	in	3
Start (nt)	2484	10587	13724	13596	6575	6365	10449	15032		2		1621	38	2520	5	2		1 6	8	-	1551		19092	3694	5436	00	1366
ID OR		:	20	7	_		2	12		0	-	7	-	5	_	~	_		_	-	_	-	=	•	-	6	_
Contig	4		7	4	45	46	46	46	47	9		20	53	22	53	53	*	55		95	95	95	95	52	1 57		65
	• —	• —	• —	-	-	+	+	•	• —	• —	• —	• —	-	• —	• —	• –	• –	• —	• —	• –	-		-	-	-		

3	t	
	3	,

S. aururs - Putative coding regions of novel proteins not similar to known proteins

										_						_											
Stop (nt)	180	3570	4563	8378	16403	1521	5757	336	1961	. =	iò	6955	-	5199	8645	1192	1228	1921	603	8653	8781	1232	9366	1922	191	1 00	550
Start (nt)	3026	3770	4946	7518	10401	2696	5440	-	90	1774	1 6	1 =	78	6761	8935	1590	2 :	141		8300	96	2	9187	1620			: 6
<u>8</u> ::	9		_	Ξ	2		=	-						9	=	2	~	_		6	91	2	-	_	-	_	-
Contig	59	59	29	59	59	62	62	63	67	63	67	67	89	70	70	r.	79	79	83	85	85	98	87	88	89	6.0	16
	'					-	-			-						_								-			-

S. aureus - Putative coding regions of novel proteins not similar to known proteins

•		•	• —		•			. –			. —		. —		. —	•	•										
Stop	3141	928	1467	6024	332	1813	2197	11050	4523	4784	7287	4368	2035	694	1277	693	2655	221		542	3651	11996	12268	17688	760	9384	309
Start	1 2	1.6	1958	5638	199	2445	2583	10901	4672	5014	7658	4697	2496	~	669	1235	3233		1209	1 00	4025	. ~	11981	17401	۱ ~	8764	١,,
980	-	~	_	6	_	_	-	=	-	-	-	_	-	_	~	_	-	-	_	-	7	12	1	20	-	2	-
Contig		35	32	92	36	:	96		66	66	100	102	62	104	904	105	105	10.8	106	107	109	109	109	109	011	=	116
•		•-	• —	• —		•-	• –	•	•	• —	• —	• –	• —	• —	• —	• —			• –	• —	•	•	• —	•	• —	• —	۰-

_
-5
v

S. auraus - Putative coding regions of novel proteins not similar to known proteins

Stop (nt)	4462	9976	10156	3320	3869	9844	569	818	5	5	6438	1695	667				6463	1032	1513	2743	2388	7586	6502	040	511	1350	2540
Start (nt)	6273	11049	61601	5070	4370	9290	417	1090	2648	4084	6773	715	. ~	512	1	1		2060	2019	2367	1360	8830	7290	1227	. ~	502	
ORF	-	-	5	5	9	2	7	-	-	2	9	~	-	~		-	_	_	~	\$	~	_	_	-	-	_	-
. Contig	116	116	116	120	120	120	121	126	127	127	101	132	134	135	135	138	138	140	140	140	142	142	G-1	***	146	146	146
		• —	• —	• —	• —	-	•	•	•	•	+	-	• —		-			-	_	-	•				•		-

5	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

Stop (3071	900	3615	3785	4145	4610	5049	5491	7054	8521	9106	9897	1587	1508	6398	12147	12803	593	2232	1064	808	18081	4279	4540	- 616	\$638	
Start	2874	-	3956	4036	4507	4807	5495	5739	7416	9216	9681	10679	2303	1795	6586	12704	1531	315	1183	1471	1 25	1 9/8	(653	4803	4896	5817	
98 E	2		=	=	2	51	16	81	12	52	7	25	7		6	7	57	1	_	~	_	~	9	_	. —	-	
Cdnp.ig	146	147	149	149	149	149	149	149	149	149	149	149	150	154	154	154	154	156	157	158	159	161	191	161	161	161	
•	•	• —	-		• -	• –	•	• –	•-	•	• —	•	•	• —	•	• —	• —	• —	• —	• –	• —	. —	• —	•	. — .	• —	• -

4			
	5	ī	
	•		

S. aureus - Putative coding regions of novel proteins not similar to known proteins

							_										_											
٠	Stop (nt)	2344	2647	5133	1147	4854	2868	4158	7.7.2	1450	11125	278	1149	708	6114	1105	2890	3335	4506	4986	5702	1755	2994	3039	2564	153	699	13039
-	Start (nt)	2796	2952	4905	1338	ciès	2500	3595	2517	7722	12576		1940	1289	1007	593	2552	3820	5)42	5477	6043	1210	2647	2614	1998	-	950	11786
1	ORF	s	_	•	2	2	-	5		~	=	-		-		~	2	\$		-	s		-	9	_	_		2
	Contig	163	163	163	164	166	168	168	170	171	171	173	173	67.1	173	174	175	175	175	182	184	188	188	189	190	191	191	191
•	-:	-	• —	• -	-	-	• –	-	-	• —	-	•	•	• —	•	• —	•	-	-	•		• –	• -	• -	•	• –	•	. –

;	5	,	

S. aureus - Putative coding regions of novel proteins not	coding re	gions	of nove	1 protein	s not similar to known proteins
•					
-	Coutig	<u> </u>	Start (nt)	Stop (nt)	
	161	Ξ	12902	12363	
•	192	-	16 -	426	
•-	195	-	2306	1932	
• —		2	2899	5606	
• —	198	~	1016	1591	
•-	107	-	170	625	
•	203	7	1 783	1466	
•-	306	9	1 8930	182	
•-	306	122	113947	13636	
•	302	12	128208	27960	
• -	212	-	170	817	
•	212		1 796	1167	
•-	213	-	3128	3436	
	212	-	3749	4015	
•-	213	-	-	1 705	
•-	214	~	1076	570	
• -	214	و	4064	8676	
	214	-	0099	\$669	
-	214	2	1 7864	1469	
	1 217	_	1927	596	
	218	-	178	657	
	218	-	1776	2156	
•	1 220	- 5	1851	1369	
•	220	_	13251	2922	٠.
•	220	_	8275	7208	
	220		10244	1998	
	220	6	11796	10216	

5	
10	
15	n proteins
20	similar to know
25	l proteins not
30	regions of nove
35	us - Putative coding regions of novel proteins not similar to known protein
40	S. aureus -

Stop (nt)	2613	10757	629	1459	1961	487	975	2121	2345		6367	2877		3762		1961	905	4334	1363	576	647		1258	215	1. ((7.1	
Start (nt)	3095	1428	-	3196	1476	~	460	1855	2052	4760	5591	2503	2846	3944	808		1417	4495	1677	127	1291	3035	1614	69	738	3906
ORF C	-	~	_	~	_	-	7	-	5	9	6	-	9	-	7	-	~	\$	~	-	-	~	7	-	-	
9	221	221	226	226	326	227		227	227	722	1 ~	228	228	233	236			•	242	243			345	246	246	249

	•	1 1 1 1 1 1 1 1	
Cont 19	10 01	Start (nt)	Stop (nt)
254	-	-	156
326	- 2	1 0	3
257	-		13227
360	-	906	4580
261	-	2196	9092
192		3214	1691
264	~	155	60
364	- 2		4533
264	9	4739	5107
1 0	~		166
268	-	2140	4100
272	-	862	977
272	_	1200	103
272	6	1694	6067
272	2	6469	6035
276	-		1901
278	-	324	553
278	- 5	3299	3448
278	-	4849	5127
285	-	1551	336
288	-	1756	1950
288	-		2276
289	-	2107	1055
290	~	2234	1932
291	- 5	;	622
291	- 2	1545	
295	-	1606	1349

5	
10	
15	ı proteins
20	similar to known
25	al proteins not
30	regions of nove
35	S. Jureus - Putative coding regions of novel proteins not similar to known proteins
40	S. aurrus .

																									•		
Stop	214		591	205	1928	2624	194	654	4257	339	3995	654	599	2332	1919	702	1341	3165	1114	3458	5217	6140	6794	543	7111	1467	469
	2728	2220	788	1 2	2380	2794		601	4036	1.09	3645		1120	2643	2314	2	982	2758	~	4570	\$645	6319	7450	827	165	1117	936
OXF	-	5	~	-	~	_	-	1-	~		8	_	~	-	~	_	~	9	-	_	9	_	60	~	~	_	-
	295	295	297	298	300	101	704	306	306	207	307		308	308	313	717	316	316	117	711	321	321	321	323	326	326	328
•,	• -	• –	• –	•	• –	•-	• –	•	• –	• –	• –			• —	•	• —		• —	• —	• –	• –		• —	•-	• —	• —	• –

_	

S. aurous - Putntive coding regions of novel proteins not similar to known proteins

																							·					
				1212	1833	289	1623	2204	5138	3328	433	526	1356	281	3192	3944	4558		768	292	1598	1765	1 965+	8404	9247	9854	546	656
	ں تھ	3452		781	1431	576	1447	2353	4971	3295	864	1 56	1658		2476		3929	3197	1532	221	1410	2178	7316	1 7967	9068	17101		-
	980 10 1	<u>_</u>	-	~	-	~	-	_	-	7	-	~	~	-		5		~	_	~		~	_	_	-	-	-	_
-	D.	78	53	329	329	330	330	332	332	66	335	7.00	3.40	341	341	341	341	344	345	346	350	352	352	352	352	352	1 00 1	362
•				•	• –	• –	• –		• –	• –	• -	•	•	•	•		• —	•	-			-	-		_		•	_

	ì	Ė		
			١	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

											_						_												
1	ū	֓֡֜֜֜֜֜֜֜֜֜֜֓֓֓֡֜֜֜֜֡֓֓֡֡֜֜֜֡֡	1808	10714	-	4090	6239	1719	1085	494	52	1097	276	677	1549	260	• 6	1068	1411	699		465	5370	2269	2672	53	1890	488	320
,	· ŭ	(ut)	2158		1612	4680	4980	520	906	748		1381		~	. 6761	751	391	2132	1344	17.6	566	001	5561	3507	2875	3524	2111	880	607
1	ORF	21	~	-	~	5	-	_	-	-		- -			7	~								~	-	٠	-	-	_
	Contig	•	364	364	365	365	365	990	1367	368		380	369	390	390	1 0	1 395	396	398	199	401	402	404	408	\$ 0	\$0	410	413	917

10	
15	own proteins
20	t similar to kn
25	ovel excteins no
30	burstius coding regions of novel exclesins not similar to known proteins
35	bon estimated a
40	, and a second

oroce.																									٠.
known proces																									
2																									
8 18 1 6 8 T																									
not s																									
3118	;	; - ;	-	. – ·	-	; - ;	-	-	- 1		-	: -	-	. –	-		- ;	-	-	-	-	-	-	-	_
proteins	Stop (nt)	847	1590	179	616		677	1407	1084	417	2033	535	2		3320	1520	969	9919	614	636	4786	4512	4731	219	930
8	 -	-	-	-	-	-	-	-	-	-	-	-	•	-		-	-	_	_	_		_	_	_	_
of nove1	Start (nt)	578	2195	-	161	788	357	856	446	-	2311	942		-	1269	1873	-	6761	9	968	3833	4718	4937	434	472
	ORF	~	_	_	~	~	~	~	~	_	-	-	~	-	~	_	-	-	-	~		•	2		~
reg	:	<u> </u>	<u> </u>	_	-	<u> </u>	-	_	<u> </u>	-	<u> </u>	-	-	i –	_	_	_	_	_		-				_
Putative coding regions	Contig	416	416	÷	Ę		422	431	432	\$	5	=	Ş	740	442	\$	1 7	446	4 81		453	3	£5.	455	455
Ŭ 9	•		-	• —	• —	• —	-		• —	•	• —	• —	• —	• –		• —	•		•	• —	• —	• —	•		• —
3																									
Pet																									
auscus																					•				
2																									,

_

S. aureus - Putative coding regions of novel proteins not similar to known proteins

Stop	(ac)	349	250	925	3372	3706	538	3694	5686	8181	6778	200	1017	267	160	2081	2332	4261	480	174	2112	359	675	520	1242	1571	346	4150
Start	(nt.)		~	1488	2386	3464	١ در	8609	6330	1387	8175	016	1562	2.	~	1764	5006	4016	956	613	1795	715	127	~	960	1149	069	4566
ORF	2	-	-	-	-	-	-	9	-	_	9	_	~	_	_		-	5	~	_	9			-	~	_	-	~
Contig	ar E	467	468	469	469	469	470	0.7	470	470	470	471	471	476	477	477	477	480	481	486	487	488	492	493	493	502	504	505
	•	•																										

	4		
	5	١	١

S, aureus - Putalive coding regions of novel proteins not similar to known proteins

Stop	1232	747	812	2511	2360	3669	496	335	1104	5534	156	736	2480	3121	11676	664	1601	433	432	1272	734	1129	704	1154	1458	83	1000
Start		583	609	2179	2097	3908	-	637	1679	5298	308	1362	2203	3531	4348	986	1495	89	719	1048	1012	2145	892	1357	1760	2105	7776
ORF	~	~		-	-		-	_	~	~	_	_	2	5	•	_	_	1	~	~	~	-	~	_	-	5	
cont in		7	515	517	520	520	527	528	529	530	536	538	\$3.R	538	538	240	540	541	541	542	545	551	555	558	558	558	
÷	• • -	•-	•-	• –	• —	• —	•-	•	• –	• —	• —	• —	•		-		•-	• –	• —	•-	• —	• –	•	• –	• -	-	• •

	£		١	
•		,	۱	

Contin	: -	Start	Stop
or -	9	(1)	(20)
558	7	2636	2322
558		1053	
828	6	3986	3453
260	-	475	921
1 565	-	1706	1485
	-		156
11.5	-	984	
1 577	-		9
115	~	163	453
3.1	-	-	1 477
678	~	1784	1200
583	-	1988	966
585	-	946	539
1 587	-	22	573
588	7		. ~
588	_	1742	1554
290	-	Ç	7
20	~	1455	1141
593	<u>-</u>	7	
1 593	~		2 :
295	-	- 87	1 890
	-	1593	1435
602	-		169
603	s	101	46
909	-	332	168
607	- 2		1226
610	-	1029	243

5							•																					
10																												
15	un proteins																									, .		
20	S. aurous - Putative coding regions of movel proteins not similar to known proteins																											
25	proteins no	Stop (nt)	300	650	491	342	2549	210	452	4004	759	368	1063	1994	1081	261	811	-	1001	1847	809	1758	2321	2488	1045	601	872	961
	of novel	Start (nt)	-	991	736	36	2046	67	106	4789	1448	189	1929	2323	722	518	1377	118	1615	2260	_	1534	2025	2940	7	١ ، د	576	1725
30	egions	2 <u>0</u>	-	-	~	-	-	-	-		-	-	7	~			- 2	- -	- -	- -	<u>-</u>	- ·	-	-	-	-	- -	-
	oding r	Contis	612	616	617	622	625	627	628	631	53	636	616	617	6.38	639	619	179	642	642	643	645	645	645	648	099	660	661
35	ative c	• ÷-	÷ ÷	· — ·	•	• –	• —		•	· —	. ·	. —	• –	. —		-	· —	•	-	-	-	• —	• —	•	•	i i		
	- Put																											
40	aurous.																										_	
	vi																										-	
45																												
50																												

5	
10	
15	ı proteins
20	similar to known
25	al proteins not
30	regions of nave
35	aurous - Putativo combing regions of nevel proteins not similar to known proteins
40	S. Aureus -

_
э

•	_

í	5	
,	•	

2	0	

2	Ŀ	5	
	-		

S. sureus - Putative coding regions of novel proteins not similar to known proteins

30

л	7	1	

45

50

Stop (nt)		464	\$	452	525	918	004	97.	9	373	3	905	1023	5	22	26	117	089	. ~		1442		358	110	1032	1419	1064
ں تھ	1148	2			1 00	2		1033	• 1	~		1 1 1	iō	1260	-	15	304	-	2	52	1774	38	714	487	1529	1748	195
10 PF	_	~	_	-	-	7	7	7	-	-	-	_	_	_	-	-		-	-	-	~	_	-	~	~	_	-
Contig	745		749		755	755	758	764	792	768	171	977	785	787	191	199	804	808	808	810	810	812	817	818	. ~	619	820
 -	•	•	• –		• –	-	-	• –	• —	• –	•	•	• —	• —	• —	• –	• –	• –	• —	• –	• –	-	• —	• –	• –	• —	. –

S. aureus - Putative coding regions of novel proteins not similar to known proteins

																										. .	
Stop (nt)	255	800	291	298	962	709	457	449	359	952	01.	21.5	1828	588	\$\$	234	1020	544	785	243	909	\$08	398	544	188	290	547
Start int)	206	\$	578	594	320	491	912	203	21.5	~	18	383	1676	-	906	584	1991	981	1567		389	2	793	852	373	•	1092
ORF	-	-	-	-	-	_	_	~		-	7	~	-	_	_		-	-		-	~	7	-	-	7	-	~
Contig	828	829	830	832	835	840	845	850	653	960	864	B64	864	870	673	875	678	878	879	881	882	890	508	906	912	616	616
·-	• —		• –	• -	• —	• –		• —	-		• — .		. –	-	-	-	•		-						-		

10	
	ŭ
15	, aureus - Putative coding regions of novel proteins not similar to known proteins
20	ir to knov
	ot simila
25	proteins r
	l level l
30	regions
	ne coding
35	- Putatis
40	. aureus
	S

																								•	•		
Stop (nt)	161		386	808	385	400	00	384	528	616	645	1242	950	270	362	=	001	162	-	909	302	170	161	348	112	982	
(nt)	-	-	126	578	7	-	~	-	1052	-	220	649	- 0	-	-		123			1079	-	13	319	692	7	1926	
9	 -	~	-	-	-	-	-	-	-	-	-	~	-	-	-	-	_	- -		-	-	-	-	-	-	-	
gi.	915	915	921	927			932	934	936	937	945	945	946		951	956	096	963	965	996	969	971	97.6	976	7.6	982	

_
_
•

			-:	-	_	-	-	-	-	-	-		; - ;	-	-	-		- -	_	-	- ;	-	-	- :	-	-	-	-	_
,	Stop (nt)		467	~ 1		. ~ !		3	-	•		299	3	38	: 2 :		269	~ .	- 1	Š	P 1		-	3		405	438		5
•	Start		_	1	920	i in	~ 1	1 1	288	17	, m		276		355		-	115	-	704		2	~	96	2			-	246
	10		-		-	-	1	_	-	7	-	-	~	~	-	-	-	~	-	-	7		-	~		-	-	-	~
	Contig	4	987			1004	2	1015	2		. 0	2	1024		- :	10	1043	1044			1051				1075	1077		1086	1087
•	 -	-•			,			•				-	•	•			,		. == .	,	. — •			. — .	. — •	. — .			

S. aureus - Putativo coding regions of novel proteins not similar to known proteins

																					_						
Stop (nt)	174	238	\$09	511	1158	153	194	SRO	22	268	267	342	Ē	376	225	280		818	330	186	254	240	299	379	97(169	197
Start (nt)	1 1	\$7	1015	2	1520	20.	385	~	-				360		446	1 10		~		2	427	61	901		355	• ~	2
ORF	-	_	-	-	~	_	-	-	-	-	~	_	-	-	-	-	-	-	-	-	-	_	~	_	_	-	-
Contig	1088	9601	9601	1100	1100	1011	2011	1107		1115	1119	1129	102	1133	1144	1147	1153	1154	1159	1, 1161	1164	1111	1711	1 1183	1195	1196	1200

_
J

•	Contig	38.	Start	Stop
- •	1203	~	129	100
•-		~	- 20	1 0 7
• -	1232	-	-	387
	1240	-	8	175
• —	1247	-	\$20	110
•	1271	-	;	221
•	1286	-	7	595
-	1295	-	_	165
•-	1306	-		
•-	1314	~	158	63.1
• —	1316	-	58	570
• —	1359		384	
• –	1370	-	-	402
•	1371	-	-	345
•	1374	-		157
		_	~	400
•-		_	_	£
•	1411	_	202	432
•-	1433	_	12.	167
•-	1450	_		256
	1453	-	295	69.
-		-	127	398
. –	1477	-	869	629
-		-	784	399
_	1518		126	449
	1534	-	283	143
_	1546	-	_	101

_	
5	

S. auraus - Putative codiny regions of novel proteins not similar to known proteins

Stop	255	350	563	679	4 05	235	214	200	286	976	007	183	401	167	263	399	283	0	166	367	167	166	398	352	343	152	1 50
Start	206	-		1.00	-	168	625	_	119	~	198	115	282	166	523	794	564	218	492	26.7	_	330	622	Ç	679	301	296
ORF -		-	-	~	_	-	-	-		-		~	~	-	1		-	1	-	-	-	_	~	-	-	-	-
Cont. 19 ID	1547	1583	1587	1602	1629	1665	1760	1762	1876	1895	161	1976	2055	2056	2150	2157	2164	21.75	2212	2338	2342	2352	2352	2355	2356		2421
:	<u>:</u> –	:	-	<u>:</u> —	! —	<u>:</u> –	<u>:</u> –	<u>-</u>	-	! –	<u>:</u> –	<u>:</u> —	<u>:</u> —	<u>-</u>	! —	: —	-	<u>:</u> —	- -	-	' –	: —	: —	÷ —	: —	<u>: —</u>	· —

Ç																												
ra L																												
similar																												
8																												
70																												
							_																			. — .	. — .	_
eîn	1	-	-	-			-	-	[]													!					!	
proteins	Stop (nt)	85	84	=	5	5	8	2	5	62	ŝ	5	5	7	5	Ç	5		98			2	\$	S	8	8	8	5
		=	~			-	1 =				~	<u> </u>	<u> </u>		[]			2	<u> </u>	-	<u> </u>	<u>: -</u>	- 1		7			_
novel	12-	_	-	[-	-	[]	-	Ϊ_	-									_				į						
2	1 2 2	367	۱ چ	_	8		5	\$		20	i =	22	5	2					3		8	2	8	_	5	=	2	3,5
Jo	, o =	7	<u>.</u>	l	2	!_!	2	1	<u>:</u>	_	_	<u>:</u>	<u>.</u>	Ξ.	<u>.</u>	_					~	<u>:</u> _	<u> </u>	<u>.</u>	~	2	_ !	
8	1	-	-	1			-	[]						!		!	_		!	!	١ ــ		!	! _	_	! ~ !	!	
regions	8 8		!	<u>. </u>	!	Ξ.	-	!_	:-:	17		: =	Ξ.	Ξ.	ΙΞ.	Ξ.	Ξ.	_	Ξ.	Ξ.	_	=	ξΞ.	Ξ.	-		_	-
5	5		!_	! .	!	!		! _	!	١ ~	_				_										-	_		
5	F	3	3	. 6	8		10		8	6	3	1 0	10	1	12	2	1 =	7	314	2	12	3168			330	33	25	
coding	Contig	7	17	ľ	-	. ~	-	17	-	; ~	-	. ^		-		. ~		, "	"	"	;	-	;	i '''			i ' i	ľ
	÷ ——	-		• -	•	• —	•	•	• —·	• —	-	• –				-	•	+	•		•		•	•	• —			_
Putativa																												
rat																												
Ž																												
•																												
2																												

_
0

S. aurous - Putative coding regions of novel proteins not similar to known proteins

150
36 2 31 3
3282 3303 3371 3558
:

,	ř	١	,	

S. aureus - Putative coding regions of novel proteins not similar to known proteins

								_																			
Stop (nt)	377	380	238	402	358	398	63	398	ž	637	402	11	703	269	256	357	135	7.6	375	262	298	389	00	320	392		324
Start (nt)	151	757	~	130	98	999	926	781	625	467	\$	619	-	535	510	554	366	667	63	7	453	3	198	_	187	11.9	-
<u>8</u> 0	-	-	_	~	-	~	-	-	-	-	-	-	-	-	-	-	-	~	~	-	_	-	-	-	-	-	-
Contig	3568	3595	3618	3618	3622	3622	3642	3649	3651	3664	3674	1677	3704	3726	3765	3779	3794	3794	3796	1080	3806	3807	3815	3827	3842	3853	3855
•										•						-	-	-	-		-						. —

10																													
15	nown protelus															•										٠.			
20	- Putalive coding regions of novel proteins not similar to known proteins																									•			
25	protein	Stop	235	297	199	173	400	401	į		234	382	1 648	344	400	116	356	296	335	259	107	345	344	344	150	:	390	285	372
	of novel	Start (nt)	~	290	569		<u>5</u>	225	101	٥	94	651	105	979	795	_	_	£9.	8	7	186	_	-	~		-	187	-	127
30	ions	8 o	-	-	-	-	~	~	~	-	-	~	~	_	-	-	-	_	_	_	~	_	-	-	-	-	~	-	~
	oding req	Cont 19	3857	3863	3865	3897	3897		3921	3927	3930	3946	3951	3965	3973	3981	3998	100+	4003	4018	4018	4021	4043	4054	9907	4070	4072	4073	4077
35	aureus - Putalive c	•	•	•	•	•	•	• -	•-	• -	• -	•-	• -	• –	•	• -	• =	• =	· -	• —		• -		•			, —		
40	S.																									•	•		

	ı	ī	
٠		,	

aureus - Putative coding regions	oding re			
•	Contig	ORF	Start	Stop
_ • _	4083	-	26.	359
• -	4090	-	27	1 368
• —	4101	-	103	297
•	4105	-	7	306
•	4107	_	570	286
• —	4119	-		339
• =	4121	_		372
•	4123	-	•	230
•	4127	-	_	
•-	4128	-	~	186
• -	4130	1	768	415
	4146	-		1381
•		-	-	506
	4186	7	505	254
• -	4224	-	\$10	256
•	4239	-	-	348
• =	4242	-	709	356
	4253	-	\$89	396
	4253	-	7	174
-	4256	7	568	1 323
• —	2 :	7	498	5.0
-	4267	-	284	144
	4271	-	~	304
	4287	-	303	163
, —	4289	-	4 2	319
	4302		153	305
_	1304	-		186

5							•																						
10																													
15	9																												
15	roteir																												
	S. aureus - Putative coding regions of novel proteins not similar to known proteins																												
20	, C																												
	inila																												
	not s																												
25	ot e ins	8	_	_	-	-	_	_	-	-	_	_	-	-	_	_	-	-	-	_	_	-	-	-	-	-		_	_
	el pro	<u> </u>	314	151	- 289	148	122	364	1 399	772	116	268	926	309	=	5€3	1 328	716	1 280	398	1 364	730	398	1 215	22	1 271	289	362	1 206
	you ja	Start (nt)	96	~	576	s	439	528	728	471	117	7	574	614	•	-	909		~	697	~	-	601	427	643	540	Š	601	13
30	lons	98.51	~	-	-	-	-	~	-	-	~	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-
	ng reg	Fontig ORF	4304	4306	816	4322	4331	- - -	6338	366	4367	1373	4381	438¢	4397	4402	50.	4406	4411	4411	4412	4418	4624	÷	4471	4478	4482	4489	4491
	t codi	<u>&_</u>	_	_	-	-	-	_	_	_	1 (367	-	4381	-	_		_	4406	_	-	_	-	-	£	_	4478		_	_
35	tative	-																											
	- Fu			•																									
40	aureu																												
40	ń																									•	••		
45																													
50																													

5	

S. aurous - Putative coding regions of novel proteins not similar to known proteins

;		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-
	Stop (nt)	179	252	306	248	346	241	163	239	175	200	231	322	180	176	246	157	183	174
4	Start (nt)	-	200	130	£		689	~	-	=	97	-	642	_	349	-	2	28	344
	ORF 1D	-	-	-	-	-	-	_	-	_	_		-	-	-	-	-	-	1
•	Contig	4495	4496	4500	4511	4518	4526	4527	4532	4542	4567	4573	4578	4619	4620	4662	4669	4680	7690
•		• —	+	• —	• —	• —	•	• —	•	• –	• -		-	•	•	•	• —		_

Table 4

_	ORF	SEQ ID NO	BLAST	Antigenic	Regions		
5		!	HOMOLOG	Region 1	Region 2	Region 3 :	Region 4
	168_6	5192	lipoprotein	36-45	84-103	152-161	176-185
ŀ	238_1	5193	chrA :	21-39	48-58	84-95	232-249
ľ	51_2	5194	OppB gene product (B. sub	20-36	70-79	100-112	121-131
ľ	278_3	5195	lipoprotein 1	20-29	59-73	85-97	162-171
10	276_2	5196	lipoprotein	21-33	65-74	177-186	211-220
ŀ	45_4	5197	ProX	28-37	59-69	85-100	120-129
ŀ	315_8	5198	hypothetical protein	45-54	88-97	182-192	243-253
	154_15		unknown	31-40	48-58	79-88	95-104
j	228_3	5200	unknown	25-38	40-52	64-74	80-89
15	228_6	5201	unknown	29-41	89-101	128-143	173-184
,,	50_1	5202	unknown	21-33	52-61	168-182	197-206
Ì	112_7	5203	iron-binding periplasmic	21-31	58-67	92-101	111-120
j.	442_1	5204	unknown	30-39	91-100	122-137	182-192
ŀ	66_2	5205	unknown	50-59	104-116	127-136	167-182
1	304_2	5206	Q-binding periplasmic	19-28	48-57	75-84	103-116
20	44_1	5207	hypothetical protein	27-36	86-95	129-138	192-201
į	161_4	5208	SphX	27-44	149-161	166-175	201-210
İ	46_5	5209	cmpC (permease)	21-33	61-70	83-92	100-109
Ì	942_1	5210	traH [Plasmid pSK41]	83-92	109-118	127-142	
,	5_4	5211	ORF (S. aureus)	12-22	87-96	111-120	151-160
25	20_4	5212	peptidoglycan hydrolase (S.	24-34	129-138	141-150	161-171
	328_2	5213	lipoprotein (H. flu)	81-90	123-133	290-299	
	520 <u>2</u>	5214	fibronectin binding protein	44-54	63-79	81-90	95-110
	771_1	5215	emm1 gene product (S. pyc		65-82	96-106	112-121
}	999_1	5216	predicted trithorax prot. (D	7-16	120-129	157-166	
30	853_1	5217	ORF2136 (Marchantia polyr	43-52	88-97	102-111	
•		5218	psaA homolog	13-22	28-44	72-82	114-124
	287_1 288_2	5219	cell wall enzyme	14-23	89-98		
	596_2	5220	penicillin binding protein 2b	40-49	59-68	76-87	106-115
	217_5	5221	fibronectin/fibrinogen bindi	28-37	40-49	62-71	93-111
	217_6	5222	fibronectin/fibrinogen bp	10-19	31-40	54-62	73-92
35	528_3	5223	myosin cross reactive prote	4-13	29-47	60-73	90-99
	171_1		EF	20-31	91-110		
	63_4	5225	penicillin binding protein 2b	12-21	59-68	95-104	
	353_2	5226	- Detricuit Dinaing process 25	46-55	62-71	30,0.	
		5227	29 kDa protein in fimA regi	23-32	68-79	94-103	175-184
40	743 <u>1</u> 342_4	5228	Twitching motility	10-19	48-60	83-92	111-121
	69_3	i 5229	arabinogalactan protein	97-106	132-141	158-167	180-189
	70_6	5230	nodulin	36-45	48-57		179-188
	129_2	5231	glycerol diester phosphodie	8-17	41-50	55-74	97-106
	58_5	5232	PBP (S. aureus)	26-35	70-79	117-126	152-161
45	188_3		MHC class II analog (S. aure	72-81	94-103	115-124	136-145
	236_6		histidine kinase domain (Dic	24-33	52-67	81-94	106-121
	310_8		clumping factor (S. aureus)	59-71	77-86		118-127
				45-54	91-104	108-117	186-195
	601_1		novel antigen/ORF2 (S. aur ORF YJR151c (S. cerevisae)	76-90	101-111	131-140	154-164
50	544_3			22-32	71-80	89-98	114-122
50	662_1		MHC class II analog (S. aure 5' nucleotidase precursor ('	29-45	62-71	105-114	125-137
	87_7	5239		102-111	02-71	. 103-114	123-131
	120_1	5240	B65G gene product (B. sub	104-111			

Table 4

5	ORF		Antigenic	Regions	(cont)		
5		Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
	168_6	244-272	303-315				:
	238_1	260-269	291-301	308-317			
	51_2	140-152	188-208	211-220	256-266	273-283	:
10	278_3	198-209			1		·
,,,	276_2	255-268		1			<u>i</u>
	45_4	177-199	221-230	234-243	268-279	284-293	304-313
	316_8	!		<u></u>	<u>i</u>		<u> </u>
	154_15	148-157	177-187	202-211	<u> </u>		: !
15	228_3	101-119	139-154	166-181			!
	228_6					·	<u> </u>
	50_1					<u> </u>	
	112_7	136-149	197-211	218-229	253-273		!
	442_1	199-210	247-257	264-277	287-309		
20	66_2		<u> </u>		<u> </u>		
	304_2	178-187	250-259	ļ			
	44_1		! ,	ļ	 		<u> </u>
	161_4	!	<u>: </u>	ļ			
	46_5	131-141	162-176	206-215	243-252	264-273	- 285-294
25	942_1		·	ļ. <u></u> .		242.254	1 222 222
	5_4	189-205	230-239	246-264	301-318	340-354	378-387
	20_4	202-212	217-234	260-275	314-336	366-373	380-391
	328_2	<u> </u>	:			<u> </u>	! -
	520_2	<u> </u>	·	ļ		1	
30	771_1	145-154		 			:
	999_1		· · · · · · · · · · · · · · · · · · ·			· !	<u>i</u>
	853_1					<u>i </u>	
	287_1	154-164					
	288_2	101 100		<u> </u>		!	<u>-</u>
35	596_2	121-130	250 200	200 207	202.211	!	!
	217_5	244-253	259-268	288-297	302-311	226 242	·
	217_6	144-158	174-183	188-197	207-216	226-242	:
	528_3	<u> </u>					
40	171_11		•	-		1	1
40	63_4	1	· ·				
	353_2	107 207				!	<u> </u>
	743_1	197-207				:	
	342_4	195-211		 	 	:	<u>:</u>
45	69 <u>3</u> 70_6		252 272	291-301	331-340	358-371	390-414
	129_2	206-215 117-127	263-272 141-157	168-183	202-211	222-231	261-270
	58_5		260-269	275-299	330-344	372-381	424-433
	188_3	184-203	200-203	. 213-233	330-344	:	. 121 133
	236_6	138-147	163-172	187-198	244-261	268-278	308-317
50	310_8	131-140	144-153	177-186	190-199	204-213	216-227
			177-133	111-100	130-133		
	<u> </u>		194 102	1 224 225	: 274 207	327-336	352-361
	544_3	170-179	184-193	224-235	274-287	361-336	332-301
	662_1	:				:	
5 <i>5</i>	87_7			<u> </u>	 		
	120_1	·		<u>.</u>		,	

Table 4

	ORF		Antigenic	Regions	(cont)	.	!
5		Region 11	Region 12	Region 13		Region 15	Region 16
	168_6	i	:			;	i
	238_1	:					
	51_2	: :				1	
	278_3	i			 		Ţ
10	276_2	i			 		
	45_4	!	:			:	
	316_8		· · · · · · · · · · · · · · · · · · ·		i		
	154_15	i			 	†	
45	228_3	i	i			i	
15	228_6	İ				1	
	50_1	 			 	-i	1
	112_7		 				·
	442_1	 			·	<u> </u>	t
00	66_2					-	
20	304_2					:	
	44_1	i			 	:	
	161_4				 		
	46_5	306-315				-	
05	942_1	300-313	· - 			-	
25	5_4	393-407	416-426	456-465	+	<u>:</u>	
	20_4	396-405	410-419	461-481			
	328_2	350-403	1 410-413	401-401			
	520 <u>2</u>	<u> </u>	l i			1	
00		 	<u> </u>			<u>.</u>	
30	771_1	<u> </u>	<u>!</u>		 	-	
	999_1	<u> </u>	 				<u>-</u>
	853_1	 	<u></u>	<u></u>		:	 -
	287_1	<u> </u>	<u>:</u>		 	:	
35	288_2		·		1	:	-
33	596_2	 	·		 	<u></u>	
	217_5	· · · · · · · · · · · · · · · · · · ·					-
		!				•	
	528_3	ļ	<u> </u>				
40	171_11				ļ		
70	63_4		· · · · · · · · · · · · · · · · · · ·				-
	353_2	<u> </u>		ļ		<u> </u>	<u> </u>
	743_1		<u> </u>			· · · · · · · · · · · · · · · · · · ·	
	342_4	1	, 		 	·	; ;
45	69_3			<u></u>	<u> </u>		<u> </u>
45	70_6	453-471	506-515	1			
	129_2	296-315		İ	<u> </u>		
	58_5	!		<u> </u>	<u> </u>		
	<u> 188_3</u>	·		l 			<u> </u>
50	236_6	358-377	410-423	428-439	442-457	467-476	480-493
50	310_8	238-251	256-275	281-290	!296-310	314-333	338-347
	601_1	j		! !	!		1
	544_3	:		l			
	662_1						-
55	87_7			i			:
J S	120_1	 -			:		
		·			· · · · · · · · · · · · · · · · · · ·		

Table 4

_		!	Antigenic	Regions	(cont)	1	
5		Region 17	Region 18	Region 19	Region 20	Region 21	Region 22
	168_6	<u> </u>		<u> </u>	:	<u> </u>	<u> </u>
	238_1			1		1	
	51_2	•			1		
	278_3	1			i		i
10	276_2	i		1	!		
	45_4	l					Ţ
	316_8	!			·		
	154_15	 					1
16	228_3	!					
15	228_6	•			:	1	i
	50_1	<u> </u>	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
	112_7	i					
	442_1	i			·		
	66_2		i				
20	304_2	<u> </u>					
	44_1			 	1		+
	161_4	 				·- 	- -
				i	!	-	
	46_5	ļ		<u> </u>		 	 -
25	942_1	 		!		- 	
	5_4	!	·	 			
	20_4	<u> </u>			<u> </u>	 	
	328_2	<u> </u>	·	<u> </u>	<u>!</u>	 	
	520_2			 		J	-!
30	771_1_	ļ	, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>		ļ	<u> </u>
	999_1	!	-i		_i		<u> </u>
	853_1	1			:		<u> </u>
	287_1				:	<u> </u>	<u> </u>
	288_2	!			:	j	<u> </u>
35	596_2	i				Ī	1
	0.5						
	217_6	:					
	528_3				,	!	:
	171_11	 		 	1	i	
40	63_4			1	:	 	<u> </u>
	353_2	1			† ·	 	
	743 <u>-</u> 1	 	- 		:	-	
	342_4	 		:	÷		
		:			······		
45		<u> </u>		· · · · · · · · · · · · · · · · · · ·		!	
	70_6	:		 		:	<u>-i</u>
	129_2	<u>.</u>		<u> </u>		 	
	58_5	!		-		<u>:</u>	
1	188_3	<u>:</u>					<u>:</u>
50	236_6	257 222	270 272	400 400	442 452	470 407	FE1 500
	310_8	357-366	370-379	429-438	443-452	478-487	\$\$1-560
	601_1	!		·		·	
1				<u>:</u>		<u>:</u>	
:	662_1					_ 	
55	87_7						
	120_1						

Table 4

_	ORF	i	Antigenic	Regions	(cont)		i
5		Region 23	Region 24	Region 25	Region 26	Region 27	Region 28
	168_6	1	<u>gion e i</u>	Acgion 23	!	i itegion zi	!
	238_1	:			i	:	i
	51_2				 		
	278_3			<u> </u>		· · · · · · · · · · · · · · · · · · ·	
10	276_2				 	:	
	45_4	 		 	 	<u>:</u> :	ļ
	316_8	- !			!	:	
	154_15	<u>:</u>		¦		•	
	228_3	!	· 	<u>-</u>			
15	228_6	1	<u></u>		 	<u>:</u>	
						<u> </u>	
	. 50_1	<u>!</u>	· -			 	
	112_7	 	 -	ļ	 	!	
	442_1		 		 	 	
20	66_2	<u></u>	<u> </u>	l	 	<u> </u>	
	304_2		<u></u>			!	
	44_1			ļ		i	····
	161_4	<u> </u>		! - 	<u> </u>	<u> </u>	
	46_5	!	: 	 			ļ- -
25	942_1	 			 	!	ļ
	5_1	i 			 		
	20_4	<u></u>	i :	<u> </u>		 	<u> </u>
	328_2		!			<u> </u>	ļ
	520_2	<u>i</u>	·	ļ		<u> </u>	
30	771_1	<u>i</u>	. 		ļ		<u> </u>
	999_1	!		<u> </u>		<u>i</u>	<u></u>
	853_1			<u> </u>		<u>:</u>	
	287_1	!				· 	
	288_2	!				:	
35	596_2	1				:	i
	217_5	!	·	1	!		<u>i</u>
	217_6	:					
	528_3	1	!				
	171_11					:]
40	63_4		!			Ī	
	353_2		:			Ī	
	743_1	·	•			i	
	342_4	· 	·	·		:	
	69_3	:					
45	70_6		•		:		1
40	129_2			:			;
	58_5				:		:
	188_3			:			
50	236_6	.		·	·		···
		622-632	670-685	708-718	823-836	858-867	877-886
	310_8		0/U-003	1,00-110	:023-030	030-001	;011-000
	601_1	·	<u> </u>	<u></u>			!
	544_3	1	_	<u> </u>	_i	1	<u> </u>
	662_1				<u> </u>		<u> </u>
	87_7			 	_:	 	<u> </u>
<i>55</i>	120_1				·	<u>, , , , , , , , , , , , , , , , , , , </u>	· · · · · · · · · · · · · · · · · · ·

Table 4

_	ORF	Antigenic	Regions	(cont)
5		Region 29	Region 30	
	168_6			
	238_1			i
	51_2			<u> </u>
10	278_3			i
10	276_2			
	45_4			
	316_8			:
	154_15			
15	228_3			
,,	228_6			
ļ	50_1]
	112_7			
	442_1			
20	66_2			
	304_2			
	44_1			
	161_4			
•	46_5			
25	942_1			į
	5_4			
	20_4			i
	328_2			
	520_2			:
30				. i
	999_1			İ
	853_1			i
	287_1			1
	288_2			
35	596_2		L	1
	217_5		, <u></u>	†
		 !		i
	528_3			·
	171_11			i
40	63_4	<u> </u>		· j
	353_2	 !		
	743_1			
	342_4	<u> </u>	i	
	69_3			
45	70_6			!
	129_2	,		
	58_5		·	:
	188_3		· 	
	236_6			:
50				-!
				-;
	601_1		<u> </u>	···
	544_3		<u>:</u>	
	662_1			
55	87_7			.:
!	120_1		·	

Table 4

5	ORF :	BLAST	Antigenic	Regions		
>		HOMOLOG	Region 1	Region 2	Region 3	Region 4
	46_1 :5241	aldehyde dehydrogenase	8-17	36-52	83-96	112-121
	63_4 5242	glycerol ester hydrolase (P.	9-26	57-73	93-107	123-133
	174_6 : 5	243 ketopantoate hydroxymeth	71-80	203-212	242-254	265-274
	206_16:5244	ornithine acetyltransferase	1-10	34-43	54-63	194-210
0	267_1 5245	NaH-antiporter protein (E. h	120-129	332-347	398-408	;
	322_1 5246	acriflavin resistance protein	58-75	153-164	203-231	264-284
	415_2 5247	transport ATP-binding prote	108-126	218-227	298-308	315-334
	214_3 5248	2-nitropropane dioxygenase	123-136	216-233	283-292	297-306
	587_3 5249	clumping factor	5-14	43-54	59-68	76-95
5	685_1 5250	signal peptidase	59-68	72-81	86-95	99-108
	54_3 5251	fibronectin binding protein I	23-32	37-46	50-59	89-98
	54_4 5252	fibronectin binding protein I	43-52	66-75	95-104	147-156
	54_5 5253	fibronectin binding protein I	49-60	81-90		
	54_6 5254	fibronectin binding protein I	55-71	82-97	139-158	175-186
0	328_1 5255	lipoprotein (H. flu)	11-20	61-70	96-105	· · · · · · · · · · · · · · · · · · ·

Table 4

ORF	•	Antigenic	Regions	(cont)	1	<u> </u>
	Region 5	Region 6	Region 7	Region 8	Region 9	Region 10
46_1	215-242	333-352	376-385	1 416-432	471-487	!
63_4	145-154	191-202	212-223	245-265	274-283	291-300
174_6		!				<u> </u>
206_16	239-259	275-284				
267_1		!				<u> </u>
322_1	298-319	350-359				<u></u>
415_2	344-353	371-380	395-404	456-465	486-495	518-527
214_3	318-337	365-375			<u> </u>	<u> </u>
587_3	106-115	142-151	156-166	173-182	186-198	204-213
685_1	113-122	130-145	<u> </u>		<u> </u>	
54_3	128-138	185-194	217-226	251-260	1268-277	295-305
54_4	175-188	191-200	203-212	220-229		
54_5	1				<u> </u>	<u> </u>
54_6	220-230	287-304	317-326	344-353	364-373	378-387
328 1	1		I		-	1

Table 4

ORF Antigenic Regions (cont) 5 Region 11 Region 12 Region 14 Region 15 Region 17 Region 13 46_1 453-462 63_4 306-315 319-328 366-376 395-420 467-476 174_6 206_16 10 267_1 322_1 539-555 415_2 214_3 278-287 318-327 332-342 351-360 377-386 15 217-226 587_3 685_1 316-325 329-345 355-372 416-425 438-448 54_3_ 387-396 54_4 54_5 20 514-531 541-550 569-578 612-622 396-407 427-436 54_6 328_1

25 Table 4

30

35

40

45

50

55

Antigenic: Regions ORF (cont) Region 22 Region 23 Region 18 Region 19 Region 20 Region 21 46_1 485-500 63_4 513-525 174_6 206_16 267_1 322_1 415_2 214_3 531-562 485-494 505-514 587_3 396-405 426-442 459-470 685_1 472-491 517-536 54_3 455-462 54_4 54_5 723-732 749-760 772-788 673-681 703-715 639-648 54_6 328_1

Table 4

ORF Antigenic Regions (cont) 5 Region 24 Region 25 Region 26 Region 27 Region 28 Region 29 46_1 63_4 174_6 206_16 10 267_1 322_1 415_2 214_3 587_3 :567-578 584-601 607-840 844-854 858-870 877-886 15 685_1 54_3_ 54_4 54_5 907-918 <u>54_6</u> 793-802 811-826 834-848 866-876 893-903 20 328_1

ORF

Table 4

'(cont)

25

30

35

40

45

50

55

		7 110 30110		
	Region 30	Region 31		
46_1			:	
63_4			:	
174_6				
206_16		:		
267_1				
322_1		!		
415_2				
214_3		i	i	
587_3	889-911	927-936		
685_1	ı	!		
54_3	!			
54_4	i	T	T	
54_5		i		
54_6	925-944	951-997		
328_1]		T	

Antigenic Regions

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	(i) APPLICANT:(A) NAME: Human Genome Sciences, Inc.(B) STREET: 9410 Key West Avenue(C) CITY: Rockville
15	(D) STATE: Maryland (E) COUNTRY: US (F) POSTAL CODE: 20850
20	(ii) TITLE OF INVENTION: Staphylococcus aureus Poly- nucleotides and Sequences
	(iii) NUMBER OF SEQUENCES: 5255
25	 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4 Mb storage (B) COMPUTER: HP Vectra 486/33 (C) OPERATING SYSTEM: MSDOS version 6.2 (D) SOFTWARE: ASCII Text
30	
	<pre>(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: (B) FILING DATE:</pre>
35	<pre>(vii) PRIOR APPLICATION DATA: (A) APPLICATION NUMBER: US 60/009,861 (B) FILING DATE: 05-JAN-1996</pre>
40	
	(2) INFORMATION FOR SEQ ID NO:1:
45	
50	
55	

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5895 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

10							
	TCCATTATGA	AGTCACAAGT	ACTATAAGCT	GCGATGTTAC	CAATGTTTTT	TAAAATCCCA	60
	GTAATAAAAT	САААААТАА	GTTAAATAAT	GTATTCATTT	TAAGTCCTCC	TTAATAAAGa	120
15	aaataGGTAA	TAATGTAATA	GCTTCTATTA	TGATGCCTAA	TTGAATGAAT	TGGGCAAATG	180
	GCTCTTTGAT	GATAAGTGTG	ATAATGAAAA	GGGTTAAACT	AACAATAATC	GCATAATATT	240
	TTTTTCGTTT	AATAAGTCGC	ACAGGAATGG	GCTTCTTTTT	AGTTGCTGCA	GGAGCATATA	300
20	CTGAGATTAC	ACCTAAAGAA	ATAACTGTTA	AAATAATCAT	AATTAAAAAG	TTAATATGAA	360
	AATTTACTAT	TACTAAAGGT	AAAAGTATAA	ATAGTATAAT	ACTTTCTACA	TAACACCAAA	420
05	AAGAAGAAGG	TGCATGTGCa	CCATGTGCAT	GECTTCTTAT	TAAATAAAAT	GTTAAATTCG	480
25	TAATTAACGT	AAACAGAAAA	ATGTTTAAAA	TATAGGCAAT	AGTATACATA	ACAATTAATT	540
	TACCTATATT	TTTAGCTAAG	ACCTGCATCC	CTAATCGTAC	TTGCAAAAAT	TGAATATGAT	600
30	CTAAGTTATT	TCTCTTTTGA	AGATACGTGG	CAAACTGGTC	AATTTTATTA	TCAAAATAAT	660
	TCAATTTTAC	ACCACTCTCC	TCACTGTCAT	TATACGATTT	AGTACAATCT	TTTATCATTA	720
	TATTGCCTAA	CTGTAGGAAA	TAAATACTTA	ACTGTTAAAT	GTAATTTGTA	TTTAATATTT	780
35	TAACATAAAA	AAATTTACAG	TTAAGAATAA	AAAACGACTA	GTTAAGAAAA	ATTGGAAAAT	840
	AAATGCTTTT	AGCATGTTTT	аататааста	GATCACAGAG	ATGTGATGGA	AAATAGTTGA	900
	TGAGŤTGTTT	AATTTTAAGA	ATTTTTATCT	TAATTAAGGA	AGGAGTGATT	TCAATGGCAC	960
40	AAGATATCAT	TTCAACAATC	GGTGACTTAG	TAAAATGGAT	TATCGACACA	GTGAACAAAT	1020
	TCACTAAAAA	ATAAGATGAA	TAATTAATTA	CTTTCATTGT	AAATTTGTTA	TCTTCGTATA	1080
45	GTACTAAAAG	TATGAGTTAT	TAAGCCATCC	CAACTTAATA	ACCATGTAAA	ATTAGCAAGT	1140
	GAGTAACATT	TGCTAGTAGA	GTTAGTTTCC	TTGGACTCAG	TGCTATGTAT	TTTTCTTAAT	1200
	TATCATTACA	GATAATTATT	TCTAGCATGT	AAGCTATCGT	AAACAACATC	GATTTATCAT	1260
50	TATTTGATAA	ATAAAATTT	TTTCATAATT	AATAACATCC	CCAAAAATAG	ATTGAAAAAA	1320
	TAACTGTAAA	ACATTCCCTT	AATAATAAGT	ATGGTCGTGA	GCCCCTCCCA	AGCTCGCGGC	1380
	CTTTTTTGTA	ATGAAGAAGG	GATGAGTTAA	TCATCATTAT	GAGACCCGCC	GTTAAAATAT	1440

55

	TCATTTGCAA	AGGGCGAAAT	GGGTTCTTAC	TGAGTTATCT	ATTATAAAA	AATAAACATA	1560
	GACTTATGAA	AAATCTCTCA	TAAATCTATG	TTTAGTCATG	aCATGTGTTA	AATATTATTT	1620
5	CGGGCGCTTC	TTATTTATAC	AAATCTAATT	TAATACTTTT	AAATACAGGT	ATATTTTCgC	1680
	GTTGCTGTTC	TACTTCATTT	AAGTTTAAAT	CTACAGTCAA	AATATCTGCG	GATTCATTTA	1740
10	ATTCTCCAAC	TAAATCTCCA	TTTGGGTTTA	TAACTATCGA	ATGACCAGCA	TATTCTGTGT	1800
	TACCATCGAA	TCCAGTGCTA	TTAGTTCCAA	TGACAAACAT	ATTATTTTCA	ATTGCACGTG	1860
	CCTTTAGTAA	TGAATGCCAA	TGTTGAAGAC	GTGACATAGG	CCATTGCGCC	ACATAAAATG	1920
15	CAATTTTAGC	ACCACTACGA	GCAGGATATC	TTAATAATTC	TGGAAAACGT	AAATCATAAC	1980
	AGATAAGTTG	GGTCACATAA	GTACCGTCAG	ACAATTGAAA	GGGTTCAGCT	ACGTATTCGC	2040
	CAGCGGTTAA	AAATTCATGC	TCTCTTAACA	TAGGAACTAA	ATGAACTTTG	TCGTATTCaT	2100
20	TAATCAGCTG	GCCACTTTTA	TTCACACTAA	AAGCTGTATT	AAATATTTGA	TTGTTTCTAA	2160
	TGTTAGAAAC	TGACCCAGCT	ACGATATCGA	CTTTATATTT	TTCAGCTAAA	TGTTTAATAA	2220
25	ATGAAAAACT	TTGTCCTAGA	TTATTATCTG	CTTTTTCATT	TAAATGCTCT	AAATCATAGC	2280
20	CATTATTCCA	CATTTCAGGT	AAAACGACTA	CATCTACTTC	AGCATTCATA	TTTTTTTCGA	2340
	ACCATTGCGT	TATTTGAGTT	TCATTTTTAG	AACTATCTCC	AAAAACAATC	GGTAATTGAT	2400
30	AAATTTGGAC	TTTCATAACA	TCACATCCTT	GATAGATCTT	ATATATAACT	TACTAAAAGT	2460
	TATGTTGAAA	CGCAAAAAAC	GAGCACAAGA	CATAAAATCA	AAGTCCTAGG	CTCTACAAAG	2520
	TTATATTGAC	AGTAGTTGAT	GGGGCCCCAA	CATAGAGAAA	TTGGAACACC	AATTTCTACA	2580
35	GACAATGCAA	GTTGGGGTGG	GCTCTAACAT	AAAGAAATAC	TTTTTCTTTA	GAAATTAGTA	2640
	TTTCTTATAC	ATGAGTTTTA	CTCATGTATT	CCTATTCTTA	AGTGCACATT	AGCAGCGGCT	2700
40	AATGTGTAAG	AACTACTACA	TAATGAATAA	CTAATGATTC	TTTATCATTT	CTGTCCCATT	2760
40	CCTAACAATA	TATTGATTAT	TTTTTTATTA	CGAAACGATC	TTCCACTGGA	TTAAATGTTT	2820
	TTTCGCCAGC	AGCTTCACGA	ATATCACCAA	ATGGCATTTG	AGCAATAAGT	TTCCAACTTT	2880
45	TAGGAATATT	AAATTCATTT	GAAGTCATCT	CATCAACAAG	TGGATTATAG	TGTTGTAATG	2940
	AAGCACCTAT	GCCTTTAGTA	GCTAATGCAG	TCCAAATTGC	AAATTGATGC	ATGGCATTTG	3000
	TTTGAGTTGA	CCATATTGCA	AAATTATCAT	AGTAGTTTGG	CATTTGTTCT	TGTAAACCAC	3060
50	TTACAACATC	TTGATCTTCA	TAAAACAAAA	TTGTACCGTA	TGAATGTTTG	AAGTTATCAA	3120
	TTTTTTGTTC	AGTTGGCTCG	AAATCACGAT	TCTCTCCCAT	GACTTCTTTT	AAAATTGCTT	3180
EE	TTGTGTTATC	CCAAAATTTA	TTATTGTTGT	CATTTAACAA	GAGAACAATT	CTAGTTGATT	3240
55							

	CATCGCTAAT	TGATATCGAA	TCTTTCAAAT	TATATATTGA	ACGTCTTTCT	TCCATTGCAT	3360
	TGTCAAAAGT	CATTGCTTTT	TTATCTTTTT	TAAATAAGCC	CATAATTATT	GCTCCTTCTT	3420
5	TAGTAAAGAA	TACTTAATAG	ACTAAGTATA	AAATTTATAC	TCGTACTTGT	AAAGCAATAT	3480
	TTACGAAAAT	TTCAAGAATA	TTAATATTCA	TTTTCAAATT	ССАААТАТАА	ATGCATTTTC	3540
10	AACGCATATT	TATTATACTT	AGATTAATAC	TTACATGAAA	AAGGGAGGTG	TCTCGTGAAA	3600
	TGTCATATCA	TTGGTTTAAG	AAAATGTTAC	TTTCAACAAG	TATTTTAATT	TTAAGTAGTA	3660
	GTAGTTTAGG	GCTTGCAACG	CACACAGTTG	AAGCAAAGGA	TAACTTAAAT	GGAGAAAAAC	3720
15	CAACTACTAA	TTTGAATCAT	AATATAACTT	CACCATCAGT	AAATAGTGAA	ATGAATAATA	3780
	ATGAGACTGG	GACACCTCAC	GAATCAAATC	AAACGGGTAA	TGAAGGAACA	GGTTCGAATA	3840
	GTCGTGATGC	TAATCCTGAT	TCGAATAATG	TGAAGCCAGA	CTCAAACAAC	CAAAACCCAA	3900
20	GTACAGATTC	AAAACCAGAC	CCAAATAACC	AAAACTCAAG	TCCGAATCCT	AAACCAGATC	3960
	CAGATAACCC	GAAACCAAAA	CCGGATCCAA	AACCAGACCC	AGATAAACCA	AAGCCAAATC	4020
25	CGGATCCAAA	ACCAGATCCA	GATAACCCGA	AACCAAATCC	AGATCCAAAA	CCAGACCCAG	4080
	ATAAACCAAA	GCCAAATCCG	GATCCAAAAC	CAGATCCAGA	TAAACCAAAG	CCAAATCCGA	4140
	ATCCAAAACC	AGACCCTAAT	AAGCCAAATC	CTAACCCGTC	ACCAGATCCC	GATCAACCTG	4200
30	GGGATTCCAA	TCATTCTGGT	GGCTCGAAAA	ATGGGGGGAC	ATGGAACCCA	AATGCTTCAG	4260
	ATGGATCTAA	TCAAGGTCAA	TGGCAACCAA	ATGGGAATCA	AGGAAACTCA	CAAAATCCTA	4320
	CTGGTAATGA	TTTTGTATCC	CAACGATTTT	TAGCCTTGGC	AAATGGGGCT	TACAAGTATA	4380
35	ATCCGTATAT	TTTAAATCAA	ATTAATAAGT	TGGGCAAAGA	TTATGGAGAA	GTTACTGATG	4440
	AAGACATTTA	TAATATTATT	CGAAAACAAa	ATTTCAGCGG	AAATGCATAT	TTAAATGGAT	4500
40	TACAÁCAGCA	ATCGAATTAC	TTTAGATTCC	aatatttcaa	TCCATTGAAA	TCAGAAAGGT	4560
40	ACTATCGTAA	TTTAGATGAA	CAAGTACTCG	CATTAATTAC	TGGTGAAATT	GGATCAATGC	4620
	CAGATTTGAA	AAAGCCCGAA	GATAAGCCGG	ATTCAAAACA	ACGCTCATTT	GAACCGCATG	4680
45	AAAAAGACGA	TTTTACAGTA	GTTAAAAAAC	AAGAAGATAA	TAAGAAAAGT	GCGTCAACTG	4740
	CATATAGTAA	AAGTTGGCTA	GCAATTGTAT	GTTCTATGAT	GGTGGTATTT	TCAATCATGC	4800
	TATTCTTATT	TGTAAAGCGA	AATAAAAAGA	ААААТАААА	CGAATCACAG	CGACGATAAT	4860
50	CCGTGTGTGA	TTCGTTTTTT	TTATTATGGA	ATAAAAATGT	GATATATAAA	ATTCGCTTGT	4920
	TCCGTGGCTT	TTTTCAAAGC	CTCAGGATTA	AGTAATTGGA	ATATAACGAC	AAATCCGTTT	4980
<i>E C</i>	TGTAACATAT	GGATAATAAT	TGGAACAGCA	AGCCGTTTTG	TCCAAACATA	TGCTAATGAA	5040
55							

	AATATTAATG	AACTTACTGT	TGTAGCAATA	ATAAATGCCA	CGATACGATT	ACCTTTAATC	5160
	GCATTAAATA	ATTCTCCAAA	GATTACTTTT	CTGAATACAT	ATTCTTCTAA	TAAAGGACCA	5220
5	ATAATAGATA	CAAAGAAGAT	AAATATAGGT	ATTTTTCGAG	CAATAATAAT	TAGCTTTTCT	5280
	GTATTAGGAC	TTACTTGTTG	TCCACCATAA	ATTTGCGTTA	ATACAATGCT	CACTACCATT	5340
10	TGATAAATCA	TTACCAATGC	AAATCCAAGC	AATGCCCATG	GAATGATATA	TTTTTTAGGT	5400
	TCTTTAACTT	CTAATTCTAA	TTTTGTTGGA	TTTTTAATTT	TTAAATTAAT	TAAAATAATC	5460
	GTCGTGGCGG	CGATTAAAAA	TAGAACAAGT	TGTATGTAAA	TGACTGCTTT	AGTCAGTTCT	5520
15	ATGCCACTAT	ATTGTACAAA	TGGTAATTTT	TTTACAATGA	GAAGCGGTAA	AAATTGAGAC	5580
	AATATATAAA	TAATAACAGT	TAGCAATGAT	GCCCATAATC	tTGTCATAAT	TTTCCTCCAA	5640
20	ATATTTGTTT	ATAATTTATT	TTATCGTAAA	TAACTTGAAG	TTACAAAACT	TAATTAAAAG	5700
20	GTTATGACTT	GAAATTTTGA	CCAAATTTGA	TTATTATAAA	TGTATGTTAG	CACTCTTTAA	5760
	TGTTAAGTGC	TAAACTTTAG	GTTTTTTAAG	GAGGAACAAT	CATGCTAAAA	CCAATTGGAA	5820
25	ATCGTGTGAT	TATTGAGAAA	AAAGAACAAG	AACAAACAAC	TAAAAGTGGn	ATTGTTTAAC	5880
	TGATAGTGCT	AAAGA					5895

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6796 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

35

40

45

50

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

TTTGAAAAA CAAGGTACGA TTGGTTTAAT AACATATATG AGAACCGATT CTACACGTAT 60 TTCaGATACT GCCAAAGTTG AAGCAAAACA GTATATAACT GATAAATACG GTGAATCTTA 120 CACTTCTAAA CGTAAAGCAT CAGGGAAACA AGGTGACCAA GATGCCCATG AGGCTATTAG 180 ACCTTCAAGT ACTATGCGTA CGCCAGATGA TATGAAGTCA TTTTTGACGA AAGACCAATA 240 CCGATTATAC AAATTAATTT GGGAACGATT TGTTGCTAGT CAAATGGCTC CAGCAATACT 300 TGATACAGTC TCATTAGACA TAACACAAGG TGACATTAAA TTTAGAGCGA ATGGTCAAAC 360 AATCAAGTTT AAAGGATTTA TGACACTTTA TGTAGAAACT AAAGATGATA GTGATAGCGA 420 AAAGGAAAAT AAACTGCCTA AATTAGAGCA AGGTGATAAA GTCACAGCAA CTCAAATTGA 480 ACCAGCTCAA CACTATACAC AACCACCTCC AAGATATACT GAGGCGAGAT TAGTAAAAAC 540

	AAAGCGTAAC	TATGTCAAAT	TAGAAAGTAA	GCGTTTTGTT	CCTACTGAGT	TGGGAGAAAT	660
5	AGTTCATGAA	CAAGTGAAAG	AATACTTCCC	AGAGATTATT	GATGTGGAAT	TCACAGTGAA	720
3	TATGGAAACG	TTACTTGATA	AGATTGCAGA	AGGCGACATT	ACATGGAGGA	AAGTAATCGA	780
	CGGTTTCTTT	AGTAGCTTTA	AACAAGATGT	TGAACGTGCT	GAAGAAGAGA	TGGAAAAGAT	840
10	TGAAATCAAA	GATGAGCCAG	CCGGTGAAGA	CTGTGAAATT	TGTGGTTCTC	CTATGGTTAT	900
	AAAAATGGGA	CGCTATGGTA	AGTTCATGGC	TTGCTCAAAC	TTCCCGGATT	GTCGTAATAC	960
	AAAAGCGATA	GTTAAGTCTA	TTGGTGTTAA	ATGTCCAAAA	TGTAATGaTG	GTGACGTCGT	1020
15	AGAAAGAAAA	TCTAAAAAGA	ATCGTGTCTT	TTATGGATGT	TCGAAATATC	CTGAATGCGA	1080
	CTTTATCTCT	TGGGATAAGC	CGATTGGAAG	AGATTGTCCA	AAATGTAACC	AATATCTTGT	1140
	TGAAAATAAA	AAAGGCAAGA	CAACACAAGT	AATATGTTCA	AATTGCGATT	ATAAAGAGGC	1200
20	AGCGCAGAAA	TAATATTTT	ATTTCCTAGA	TACATTTTAA	GATTGTTAAA	TAGAATCATT	1260
	AGTGAATCTT	ATTTTAAAGA	TAGTAAAGGA	ТТААТСТААА	TAAGTGCGGA	TAATATAAAC	1320
25	ATAACAACAT	AATTAAmAGA	CATAAATGAC	aataaaagga	GTATAGAAAT	GACTCAAACT	1380
	GTAAATGTAA	TAGGTGCTGG	TCTTGCCGGT	TCAGAAGCGG	CATATCAATT	AGCTGAAAGA	1440
	GGAATTAAAG	TTAATCTAAT	AGAGATGAGA	CCTGTTAAAC	AAACACCAGC	GCACCATACT	1500
30	GATAAATTTG	CGGAACTTGT	ATGTTCCAAT	TCATTACGCG	GAAATGCTTT	AACTAATGGT	1560
	GTGGGTGTTT	TAAAAGAAGA	AATGAGAAGA	TTGAATTCTA	TAATTATTGA	AGCGGCTGAT	1620
	AAGGCACGAG	TTCCAGCTGG	TGGTGCATTA	GCAGTTGATA	GACACGATTT	TTCAGGTTAT	1680
35	ATTACTGAAA	CACTTAAAAA	TCATGAAAAT	ATCACAGTTA	TTAATGAAGA	AATTAATGCC	1740
	ATTCCAGATG	GATACACAAT	TATCGCAACA	GGACCACTTA	CTACAGAAAC	CCTTGCGCAA	1800
40	GAAATAGTGG	ACATTACTGG	TAAAGATCAA	CTTTATTTCT	ATGATGCGGC	TGCTCCAATT	1860
	ATTGAAAAAG	AATCTATTGA	TATGGATAAA	GTTTACTTAA	AGTCCCGTTA	TGATAAAGGT	1920
	GAAGCTGCAT	ATTTAAACTG	TCCTATGACT	GAGGATGAAT	TTAATCGCTT	TTATGATGCA	1980
45	GTATTAGAAG	CTGAAGTTGC	GCCTGTAAAT	TCATTTGAAA	AAGAAAAATA	TTTCGAGGGT	2040
	TGTATGCCTT	TTGAAGTAAT	GGCAGAACGC	GGACGCAAGA	CATTACTATT	TGGACCAATG	2100
	AAACCAGTAG	GATTAGAAGA	TCCAAAGACT	GGGAAACGTC	CTTATGCGGT	GGTTCAATTA	2160
50	AGACAAGATG	ACGCTGCTGG	TACACTCTAC	AATATTGTTG	GCTTCCAAAC	GCATTTAAAA	2220
	TGGGGAGCTC	AAAAAGAAGT	CATTAAATTA	ATTCCAGGCT	TAGAAAATGT	TGATATTGTT	2280
55	AGATATGGTG	TGATGCATAG	AAATACCTTC	ATTAATTCAC	CGGACGTATT	AAACGAGAAA	2340

	TATGTAGAAA	GCGCAGCTAG	CGGCTTAGTT	GCAGGTATCA	ATCTTGCGCA	TAAAATATTA	2460
5	GGCAAGGGTG	AGGTAGTATT	TCCGAGAGAA	ACAATGATTG	GAAGTATGGC	TTACTATATT	2520
3	TCTCATGCTA	AAAACAATAA	GAATTTCCAA	CCTATGAATG	CTAACTTCGG	GTTATTACCA	2580
	TCTTTAGAAA	CTAGAATTAA	AGATAAAAAA	GAACGCTATG	AAGCACAAGC	TAATAGAGCT	2640
10	TTGGATTACT	TAGAAAATTT	CAAAAAAACT	TTATAAAATA	GTTAGAAAGA	CTAGATATGC	2700
	TATTCATTCT	TAAGTCATCA	ACGAGTAAGT	AATGACTTTC	TAAATGGAAA	ATACTTATCC	2760
	TAGTCTTTTT	AATTTTGGAA	TTGTTACGTA	TTTCTGACAA	TTTAGAATTC	GCATTCAAAA	2820
15	AATATCTAAA	TAAATAACAC	GCAATAAGTT	GATTGATGTA	ACATGTAAGA	GAATGTTTTA	2880
	AATAAACTTT	ATTTAAAAGG	CAATGAAATA	ATAAATGGCA	AGGCTATTAA	TAAAGACTTT	2940
20	TAGTAATTAA	TTTAAAAAAG	AGGTATTCTA	ATTAACAGGT	TTTCCGATTA	GTTACAATTA	3000
20	TTTAATTCTC	AAAAGATTTA	GAATTGATTA	TCAAATTACT	GTAAGCCCTT	TGCTGTATAT	3060
	GCTACAATTC	TTATTGATGG	AGGGTAAATG	TATTGAATCA	TATTCAAGAT	GCGTTTTTAA	3120
25	ATACATTGAA	AGTTGAACGG	AATTTTTCGG	AACACACATT	GAAATCATAT	CAAGATGACT	3180
	TAATTCAGTT	TAATCAATTT	TTAGAACAAG	AACATTTAGA	GTTGAATACT	TTTGAATACA	3240
	GAGATGCTAG	AAATTATTTG	AGCTATTTAT	ATTCAAATCA	TTTGAAAAGA	ACATCTGTTT	3300
30	CTCGTAAAAT	CTCAACGTTA	AGAACTTTCT	ATGAATATTG	GATGACGCTT	GATGAGAACA	3360
	TTATTAATCC	ATTTGTTCAA	TTAGTACATC	CGAAAAAAGA	AAAATATCTT	CCGCAATTCT	3420
	TTTACGAAGA	AGAAATGGAA	GCGTTATTCA	AAACTGTAGA	AGAGGACACT	TCAAAAAATT	3480
35	TACGGGATCG	AGTTATTCTT	GAATTGTTGT	ATGCTACAGG	CATCCGTGTT	TCGGAATTAG	3540
	TAAATATTAA	AAAACAAGAT	ATAGATTTTT	ACGCGAATGG	TGTTACCGTA	TTAGGAAAAG	3600
40	GGAGCAAAGA	GCGCTTTGTA	CCGTTTGGTG	CTTATTGTAG	ACAAAGCATC	GAAAATTATT	3660
	TAGAACATTT	CAAACCAATT	CAGTCATGCA	ATCATGATTT	TCTTATTGTA	AATATGAAGG	3720
	GTGAAGCAAT	CACTGAACGC	GGTGTACGAT	ATGTTTTAAA	TGATATTGTT	AAACGAACAG	3780
45	CAGGCGTAAG	TGaGATTCAT	CCCCACAAGC	TCAGACATAC	ATTTGCAACG	CATTTATTGA	3840
	ATCAAGGTGC	AGACCTAAGA	ACAGTACAAT	CGTTATTAGG	TCATGTTAAT	TTGTCAACAA	3900
	CTGGTAAATA	TACACACGTA	TCTAACCAAC	AATTAAGAAA	AGTGTATCTA	AATGCACATC	3960
50	CTCGAGCGAA	AAAGGAGAAT	GAAACATGAG	TAATACAACA	TTACATGCAA	CAACAATTTA	4020
	TGCTGTAAGA	CATAATGGGA	AAGCAGCTAT	GGCTGGAGAT	GGGCAAGTAA	CGCTTGGTCA	4080
55	ACAAGTCATC	ATGAAACAAA	CGGCAAGAAA	AGTGCGACGT	TTATATGAAG	GTAAAGTGTT	4140

	ATTACAACAG	TTTAGTGGTA	ACTTAGAAAG	AGCTGCTGTT	GAATTGGCAC	AAGAATGGCG	4260
5	AGGCGATAAA	CAATTACGTC	AATTAGAAGC	TATGCTAATT	GTAATGGATA	AAGATGCTAT	4320
3	TTTAGTTGTC	AGTGGAACTG	GCGAAGTTAT	TGCTCCAGAT	GATGACCTTA	TCGCTATTGG	4380
	ATCAGGAGGC	AACTACGCAT	TAAGCGCAGG	ACGTGCATTG	AAACGCCATG	CATCGCATTT	4440
10	GTCTGCTGAA	GAAATGGCAT	ATGAGAGCTT	GAAAGTAGCG	GCTGATATTT	GTGTCTTTAC	4500
	CAACGATAAT	ATTGTTGTCG	AAACACTATA	ATAATCAGAG	CACGATAAAT	AATTACGAGC	4560
,	AATTAATTTT	AGTTAAAAGA	CGGAGGAATG	AAATTAATGG	ATACAGCTGG	AATAAGATTA	4620
15	ACTCCAAAAG	AAATCGTATC	TAAATTAAAT	GAATACATCG	TTGGACAAAA	TGATGCTAAA	4680
	CGTAAAGTGG	CAATTGCCCT	ACGTAATCGA	TACAGAAGAA	GTTTATTAGA	TGAGGAATCA	4740
20	AAGCAAGAAA	TTTCACCTAA	AAATATTTTG	ATGATTGGAC	CAACCGGCGT	TGGTAAAACT	4800
20	GAAATTGCAA	GAAGAATGGC	CAAAGTTGTC	GGCGCGCCAT	TTATAAAAGT	AGAAGCTACT	4860
	AAATTTACTG	AGGTAGGTTA	TGTAGGACGA	GATGTTGAAA	GTATGGTTAG	AGATCTTGTT	4920
25	GATGTTTCAG	TAAGATTAGT	CAAGGCGCAG	AAAAAATCAT	TGGTACAAGA	TGAAGCAACA	4980
	GCTAAGGCCA	ATGAAAAACT	TGTTAAGTTA	TTAGTTCCAA	GTATGAAAAA	GAAAGCGTCT	5040
	CAAACGAATA	ATCCTTTAGA	GTCACTTTTC	GGAGGTGCAA	TTCCAAATTT	CGGACAAAAT	5100
30	AACGAAGATG	AAGAAGAACC	ACCTACTGAG	GAAATTAAAA	CAAAACGTTC	TGAAATTAAG	5160
	AGACAGCTAG	AAGAAGGCAA	acttgaaaaa	gaaaaggtaa	GAATTAAAGT	CGAACAAGAT	5220
	CCTGGTGCTT	TAGGTATGCT	AGGTACAAAT	CAAAATCAGC	AAATGCAAGA	GATGATGAAT	5280
35	CAATTAATGC	CTAAAAAGAA	AGTTGAGCGA	GAAGTTGCTG	TTGAGACGGC	AAGGAAAATC	5340
	TTAGCTGATA	GTTATGCGGA	TGAACTAATT	GATCAAGAAA	GCGCTAACCA	AGAAGCGCTT	5400
40	GAATTAGCAG	AACAAATGGG	TATCATCTTT	ATAGATGAAA	TCGACAAAGT	TGCGACGAAT	5460
	AATCATAATA	GTGGTCAAGA	TGTCTCAAGA	CAAGGTGTTC	AAAGAGATAT	TTTACCTATA	5520
	CTTGAAGGTA	GCGTTATTCA	AACCAAATAT	GGTACTGTGA	ATACTGAACA	TATGCTGTTT	5580
45	ATAGGTGCTG	GAGCTTTCCA	TGTATCTAAG	CCGAGTGACT	TGATACCAGA	ATTGCAAGGT	5640
	CGTTTTCCGA	TTAGAGTTGA	ACTTGATAGT	TTATCGGTAG	AAGATTTTGT	AAGAATTTTG	5700
	ACAGAACCAA	AATTGTCATT	AATTAAACAA	TATGAAGCAT	TGCTTCAAAC	AGAAGAAGTT	5760
50	ACTGTAAACT	TTACCGATGA	AGCAATTACT	CGCTTAGCTG	AGATTGCTTA	TCAAGTAAAT	5820
	CAAGATACAG	ACAACATTGG	TGCACGTCGA	CTTCATACAA	TTTTAGAAAA	GATGCTAGAA	5880
55	GATTTATCAT	TCGAAGCACC	AAGTATGCCG	AATGCAGTTG	TAGATATTAC	CCCACAATAT	5940

	AAATATACAA AAGGAGAAAA ATTCATGAGC TTATTATCTA AAACGAGAGA GTTAAACACG	6060
	TTACTTCAAA AACACAAAGG TATTGCGGTT GATTTTAAAG ATGTAGCACA AACGATTAGT	6120
5	AGCGTAACTG TAACAAATGT ATTTATTGTA TCGCGTCGAG GTAAAATTTT AGGATCGAGT	6180
	CTAAATGAAT TATTAAAAAG TCAAAGAATT ATTCAAATGT TGGAAGAAAG ACATATTCCA	6240
10	AGTGAATATA CAGAACGATT AATGGAAGTT AAACAAACAG AATCAAATAT TGATATCGAC	6300
,,	AATGTATTAA CAGTATTCCC ACCTGAAAAC AGAGAATTAT TCATAGATAG TCGTACAACT	6360
	ATCTTCCCAA TTTTAGGTGG AGGGGAAAGA TTAGGTACAT TAGTACTTGG TCAAGTACAT	6420
15	GATGATTTTA ATGAAAATGA TTTGGTACTA GGTGAATATG CTGCTACAGT TATTGGTATG	6480
	GAAATCTTAC GTGAGAAGCA TAGTGAAGTA GAAANAGAAG CGCGCGATAA AGCTGCTATT	6540
	ACAATGGCAA TTAATTCATT ATCTTATTCT GAAAAAGAAG CGATTGAACA TATCTTTGAA	6600
20	GAACTTGGCG GTACGGAAGG CCTATTAATC GCATCAAAAG TTGCAGATAG AGTTGGTATT	6660
	ACTAGATCTG TAATTGTAAA TGCACTACGT AAATTAGAAA GTGCTGGTGT AATTGAATCA	6720
25	CGTTCTTTAG GAATGAAAGG TACTTTCATT AAAGTTAAAA AAGAAAAATT CTTAGATGAA	6780
25	TTAGAAAAA GTAAAT	6796
	(2) INFORMATION FOR SEQ ID NO: 3:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2073 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
	ATCCTAAAAT THAAAATTAT CACGCCTTTT GAACAGCTTT GTAACCATCL GGACGATCAT	60
40	kAAATTCCaA TGTAAATCCT GGTTTAAaGT TGATCTTTAA CCTTATTTAA AYCACCAATT	120
	GTACGTATAT TATGTTGTTT AGCAAAATCA CGTTTTACAG CTAAAGCATA CGTATTGTTA	180
45	TACTTCATTG GTTTTAACAT AGTCATTTGA TATTTCTTTT CAAGACTTTG CTTAGCTTGT	240
	TCATAAACTT TTTTCTCTTC TTTTGACTTC AATGGTTCTT TTGTTAATTC ACCTAAAACT	300
	GTTCCAGTAA ATTCTAAATA CCCATCTATA TCGTCAGATT TTAAAGCATT AAATAAAAAT	360
50	GCTGTTTTGC CCATACCATC TTTCACTTCT ACAGTATTTT TGGTCTCTTC TTCTATTAAA	420

224

TTATCACCTT TTTGTGCAAA CATAGGAATA GCGATAGCCA GTATAATAAT CATCACTATA

55

	ICANATATAA	TIGCCAATAA	GGCIGCIGGA	ATTGCACCTA	ATAATATCAA	CGATGCATIG	660
	TTACGGTCTA	TACCTAATAA	AATTAAATCT	CCTAGTCCGC	CTGCACCAAT	TAATGCTGCT	720
5	AGTGTTGCTG	TACCTATAAT	TAATACCATA	GCCGTTCTTA	CACCAGCCAT	TATAACAGGC	780
	ATTGCTATCG	GAAGTTCGAC	TTTAGTTAAA	CGTCTAAATG	GTTTCATACC	TATACCTTTA	840
10	GCCGCTTCAA	TGAGTGATGG	ATCAACTTCT	TTAATTCCAG	TATACGTATT	CCTTAAAATT	900
10	GGTAACAACG	CATACACTAC	AAGTGCAATA	ATTGCTGGCA	CACGACCGAT	ACCAAATAAA	960
	GGAATCATTA	AACCTAATAA	TGCCAACGAT	GGTATGGTTT	GAAGAATTGC	CGCAATATTC	1020
15	ATTACGATTT	CAGATATCGT	TTTAGTCTTC	GTTAATAAAA	TACCTAATGG	TACCGCAATA	1080
	GCAGTTGCAA	TCAATAATGC	GATAAATGAT	ATTTGAATAT	GTTCTATCAT	TGTCGAAAAG	1140
	AGTTGCCCCT	TACGTTCACT	CAATATGTCg	AAAAAGTTAG	TCATGTTGAG	CTACCTCCTT	1200
20	TTTCTGGGAC	AAATATTTGA	AGATATCTTT	CCTATCAATA	ACATATTGAC	CTACGCTATC	1260
	TTCTTGCATG	ACAATGACAC	GCTCGCTCTC	TGATAAAAGT	TGATACAATA	CTTCAATTGG	1320
0.5	TTGATTGTCA	TAAACAATTG	GATAAGCGCT	CATAGATGTA	ACCTCATCGA	TTGGTTTCAT	1380
25	AATAŢCCAAG	TCACGGATAA	TTGCGTTCTC	TTCAACACAT	GGCGCATCAT	CTTCTAAATG	1440
	ACTACCCATA	AATTGTTTAA	CAAATTCACT	TTGAGGATTA	TTTTTAAATC	CTTCTGGTGT	1500
30	GTCAATTTGT	TCAATATGCC	CTTCATTCAA	AAGACAAATC	TTATCACCAA	GTTTCATCGC	1560
	CTCTTGAATA	TCATGTGTAA	CAAATATGAT	TGTCTTCTTA	ATTTTAGTTT	GTAATTCAAT	1620
	TAAATCATCT	TGAAGTTTTT	CTCGGCTGAT	TGGGTCTAAT	GCACTAAACG	GTTCATCCAT	1680
35	TAAAATAACT	GGTGGATCAG	CTGCTAACGC	ACGTATAACT	CCTACACGTT	GTCGTTGCCC	1740
	CCCTGACAAT	TCATCAGGTT	TTCTGTTTTT	ATATTTTTCA	GGTTCTAATC	CAACCATTTC	1800
	AAGTAATTCA	TCTACTCTTT	TATCTATATC	TTTTTCTTTC	CACTTTTTCA	TTTGTGGCAC	1860
40	TTGTGCAAtA	TTTTCTTTGa	wTGTCaTATG	TGGGAATAAT	GCAATCTGCT	GCAATACGTA	1920
	TCCAATATCC	CAACkCATTT	CGTATACTGG	ATAATCACTT	ATTGGTTTAT	СТТТААААТА	1980
45	AATATAACCT	TCACTTAAGT	GAATGAGTCG	ATTAATCATT	TTTAATGTCG	TAGTTTTTCC	2040
	ACAACCTGAA	GGTCCAATTA	GCACAAAAAA	TTC			2073

(2) INFORMATION FOR SEQ ID NO: 4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 13321 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	ACTATTCTAG	CTTCATCAGT	TATCATATAT	TCTTTGAAAC	ACTTGTAAGA	AAATATAATG	60
5	AGTATTTACT	ACATAATGAT	ATTTCAAATT	AGAAAAAAGG	AAGTTATGAT	TTAATGGCCT	120
	TGAGCCTATC	ATAACTTCCT	TTTATCATTT	TATTGTTGTG	TTGATGTTTC	GATAACGTGG	180
	TACATCTTAT	CAAACATCAA	TTCGAAACCA	TGCACCATGG	CATCATGATA	TTCTTTTTTC	240
10	TTTTGCTTGT	ATTCTAAATT	AGTAAATCGT	CTTTCTTTTT	CAACTAATGA	ACGATAATAA	300
	AATAGCATTT	GGGTGCCACC	TGTTTCACGT	TCAAAAAATT	CTACCTCAAT	GACATCTTGC	360
15	GTTTCACTTA	GTCCAGGCAT	ACCGATAGTC	ATCTTAACGT	ATTCATCCAT	AACTAAAGAT	420
	TCATAAATGC	CTTCAATCAC	ATTTACTTTG	CCATTACGTT	GTTGATCTAC	AATACGATAT	480
	TTACCGCCTT	CTTTAACGTC	CGCTTCAATC	TCTTTATTCG	TTCTGGCTGA	TGTCATAAAC	540
20	CATTGTTTCA	ACAAATCTTT	CTTTGTCCAA	GCTTCGTATA	CTAACTCTGG	AGAAAATTTA	600
	TAAAGCTTTT	CAATTTCAAC	TTCGACATGT	TCATTCTCTA	CATTAAATTT	TGCCACTGTT	660
25	GTCCACCCAC	TTTCGCTCTT	ACTTTTATTT	TAACGTATTT	TTGCTCAGTT	CCAAACATAG	720
25	ATGATCATCA	TTTTTAAAAG	ATTAGCGTTA	TACGGTGAGT	ACAACATGAT	CTGTTAATAT	780
	AACAAGCCAC	CTTACTTGGC	TACATCGATA	TATTGTTAAG	CATTAATGTT	TCATTTCTTG	840
30	ACTAGTGTTC	TTTTTTAGCT	TTGGAAAATT	AAATAAAATC	GCAATAAGTC	CGCATACACC	900
	TAATAATATA	GGATAAATGC	TGTATGGGAA	TAACATTAAC	GGTGAAATAC	CAGCTACACC	960
	AGCCGCTGaA	ATGACTTGCG	GGCTATATGG	TAATAAACCT	TGGAAGCAGC	CTCCAAATAT	1020
35	ATCAAGAATA	CTTGCTGATT	TCCTTGAATC	TACATCATAT	TCATCTGCAA	TATTTTTAGC	1080
	TAAAGGACCT	GACATAATAA	TAGAGATGGT	GTTGTTTGCC	GTGGCAATAT	CTGCGACACT	1140
	TACCĀAACTA	GCAATTCCTA	ATTCTGCGCC	ACGCTTTGAT	TTCACTTTAG	AGCGAACAAA	1200
40	TTGCAACAAC	CATTCAATAC	CACCATTGTG	TTGAATAATA	CCGACTAAAC	CACCAATTAG	1260
	CAACGCAATC	ATAGCAATAT	CTTCCATGCT	TATAATACCT	TTGGACACTG	CATCTAGTAG	1320
45	CCCCATCCAA	CCGAATGAAC	CATCTATGAG	ACCAATGATT	CCGGCTAATA	ATGTTCCGCC	1380
	AATCAATACG	ATAATGACAT	TTACACCTAA	TAATGCTAAT	ACCAATACTA	AGATATACGG	1440
	TACAACTTTA	ATTAGATTAT	AATCATAGTt	TTTAGCATGA	TTTAAAGAAA	TGCCATTCGT	1500
50	TAAGAAATAC	AGAATAATAA	TCGTTAAAAT	AGCACCTGGC	AATACAATTT	TAAAGTTTAC	1560
	TCTGAATTTA	TCTTTCATTT	TCGTATGTTG	TGTTCTAACC	GCAGCAATTG	TTGTATCTGA	1620
	AATCATTGAT	AGATTATCGC	CGAACATTGC	ACCTCCAACA	ACTGTAGCCa	tTGctAGCGC	1680

	ICCIACAGAC	GICCCCATAG	ATATAGAAAC	AAACATACAA	ATCACAAACA	ATCCIACAAI	1800
_	AATTAAATTT	TCTGGGATTA	ATGATAGTCC	TAAATTAACT	GTCGACTTTA	CGCCACCCAT	1860
5	TTTTTCAGCT	GTATTTGAAA	ATGCACCTGC	ТААААТАААА	ATCAACATCA	TTAAAACAAT	1920
	GTTTGAATGG	CCTGCACCTT	TCGTGAAGAC	CTCAACTTTT	TTAGCAAATG	ATTCTTTTCG	1980
10	ATTCATTAAT	AACGCCACAA	TTACCGTTAT	CGTAATTGCA	ACATTTAATG	GCATTGAAGT	2040
	AAAATCACCT	GTGATAATAC	CTACGCCTAA	AAACAACGCC	ACAAATAATA	ACAAGGGGAA	2100
	TAATGCCCAA	GCATTGCTCT	TTTTATGTAC	TTCCATCCTT	TTTACCTGCT	TTCCAATTAA	2160
15	AAATACCTCT	TTCTCACAAA	CGATGAAGAA	AGAGGTTTTC	ATGTGCTTTA	CCTGCTTATC	2220
	TTCAAACCAT	TACGGTTACT	GGAATTGGCA	CATTCGAGAT	GTTGCCGAGG	CTTCATAGGG	2280
	CCAGTCCCTC	CACCTCTCTA	GATAAGTGAT	GCTTATTTAC	GTTTACGTTA	CAAGATAATC	2340
20	CTTAGTACGT	CAATCATAAA	TTAATCAGGA	GTCGTATAAT	ATTTTTCATA	AACAATCATT	2400
	GCTACTGTAA	TAATAATCAA	AACAATAATG	CTAATAACAA	GTAAAAGCCA	CCATTTAAGC	2460
25	ATTAATGCAA	TAAAAATGAA	CACGATAGAC	ACACTTACTA	ATATTAATGA	TATGACTTTA	2520
	AATTGCTGAA	CACGTTGCTT	GGAGATGACT	TTCAACTGTT	TGTTTGATAG	ACGCGTATTT	2580
	TTTATACTGA	TTCCCAGTAT	ATTTTCTAAT	ATTTGAACCA	ATACGATACT	TATTGCAAAT	2640
30	ATAATAATTG	GTAAAACATC	ATAGCTCCCT	ATAGTTAATG	TATAAATTAC	AAATCCAATG	2700
	TAAAGTAACC	CTGAGACAAA	GGATAAAAAG	TATGCGACGT	ATTTGTTAAA	CTTAATGATA	2760
	TGCTTTTTAA	CGTTTTGATG	TGTAAACCAT	ACATTCGAAA	CGATCGCAAC	TGCTACAAAT	2820
35	AATGTGAATA	СТАТАТАТА	TGGTAATTTT	TGTTCAGGAA	AAACAGTCGC	TATTCCAAAA	2880
	GCTAATGCTA	AAATCAAAAA	TAATATAGCT	CTAGATACTA	TTAATGCCAT	AATAACAACC	2940
40	CCTTTGTTTA	ATATCGAGTT	TGCAAATTTA	CGTTTATCAG	CGTTTCTATG	ATCAGTACTT	3000
	CTACGGGTAG	CGTTTCTATG	TAATTTACAT	CATCTTAACA	TATAAATACT	TCGCTATTTA	3060
	ATTGAAAACA	TATCCTATTA	TTCTTTGTCC	GTTCTGACGT	TTAATATCTA	GCCTTAGGCA	3120
45	TTTCACTTGT	TAATGAATTT	AACTTTCTTC	CACTAACCGT	CCCTAAACCC	AATCCCGCAA	3180
	CAGTTTTTAA	CTTTTTCGTT	GTTGTCCTGA	CATCCTCATT	AAGAAAGTTT	ATTCTGCTTA	3240
	AAACTTATAA	TCCACACCCT	GAGCAAACGC	TCCTTATGAC	AGAGTATTAA	AATAAGCCGA	3300
50	TAAAGATACA	CACCTTTACC	GACTATTTAA	AATACACTTC	ACCAATTCAT	TTTAATTTAA	3360
	TGGATTGAAG	TAACTAAATT	AATATTATGT	TGTTCAATTA	AAAGCTTCAT	ACAAACCTAA	3420
55	TCTATTTGCA	CTCCACCGCT	AACACCGAAC	ACTTGTCCGG	TTGTATAACT	TGATTCTTCT	3480

	GTTTTTTGAC	CAAATGTTGG	GATTTTACTT	TGAGGTTGTC	CACCAGAAAT	TTGTAATGGT	3600
	GACCAGAATG	GACCAGGCGC	TACACAGTTC	ACTCTAATTC	CTTTTGGTCC	TAATTCTTCT	3660
5	GAAAAACTTT	TAGTTAATGA	AATAATTGCT	GCTTTTGAAG	CGGCATAATC	ATGAAGAATA	3720
	GGACTAGGAT	TATAACCTTG	TACAGATGAT	GTCGTTGTAA	TTGACGCACC	CGGTTTTAAA	3780
10	TATTCCAATG	CTTTTTGAAC	TGTCCAAAAT	AGCGGATAGA	CATTCGTTTC	AAATGTTTCT	3840
,,,	GTAAATGCCT	CAGTTGTAAA	TCCATGAATA	TCATCATGAT	ACTGTTGATG	TCCAGCAACT	3900
	AAAGTAACAT	TATCTAAGCC	ACCTAATTGT	TGATATGCTT	GTTCAACAAG	GTCATAGTTG	3960
15	AACTGTTCAT	CTCTTATATC	ACCAGGAATT	AACACTGCCT	TTTGACCACT	TTCTTCAATC	4020
	ACTTGGCGTA	CTTCTTGTGC	ATCTTGTTCT	TCACTCGGAA	GATAGTTAAT	CGCTACATCT	4080
	GCACCTTCTT	TAGCATACGC	AATTGCTGCT	GCACGCCCTA	TTGCTGAGTC	ACCACCTGTG	4140
20	ACTAATATTT	TATAGCCTTG	TAAGCGTTGA	TGACCTTGGT	AAGACGTTTC	GCCACAATCG	4200
	GGTGCTGGCG	TCATTTCAGA	TTGTAAACCC	GGTACCTCTT	GTTCTTGTTT	TTCATAATCC	4260
25	GTTGTTTTAA	ATTTTGTTCT	AGGATCTTGA	GCTGCCATTT	TTTTACATCT	CCTTATTCGC	4320
25	TTAATGGTTA	TTATTTACCC	AATCTTCCTA	GGAACTTAAT	CATGATTACA	СТАААААТТА	4380
	CTTTCTTCTT	TATAAAAACA	AGCTCGAATT	ATTCATGCAA	TAGTCTCTTT	ACAAATTCAA	4440
30	CAAAATACTC	AGGTACTTTT	TCCAGAATCC	TTTCATCCGG	TTTATATTGA	GGATGATGTA	4500
	AATCATATTC	ACTATGAGAA	CCAATTAACG	CAAATACACT	TGGAAAATGT	TGACTATAAC	4560
	CTGAAAAATC	TTCTCCAATC	GTAAGCGGCT	GTTCCATCAT	TCCCACCTTA	TATCCAACAT	4620
35	GTTGGGCTAC	TGCAATTGCT	TTATGCGTCA	ATGCCTCATC	ATTCATCACA	GCGCCAGGTA	4680
	AATGCGTATA	ATTTAAATTA	ATTTTCATAT	TATATGCTTG	AGCCAATCCG	TCCGCAATAT	4740
40	CTTGTAATCG	TGTTTCTACA	AGCTTTCGTA	CCACAGGATC	AAAACTACGC	ACTGTGCCTT	4800
40	GTACATACGC	ATGATCAGCA	ATGACATTCC	AAGTATTACC	ACATGATATT	TGTCCAATTG	4860
	TTACTACCGC	TTCATCAAAC	GCAGATAGAT	TTCTACTAAC	TATGGATTGA	ATACTATTAA	4920
45	TCAATTGCGC	CAACACAATA	ACTGGATCGT	TGCATTGTTC	TGGcTTTGCA	GCATGACCAC	4980
	CCACGCCTTT	AATATGAAAC	TCAAAACGAT	CTACTGCTGA	TGTAATTGCC	CCTGTTTTGA	5040
	TTGCAAATGT	ACCTACCGAA	CGCGATGGGT	CATTATGAAA	ACCCAATACT	GCTTGTACAT	5100
50	CTTTTAATGC	ATGTGTTTCA	ATAATTTTAA	AAGCGCCATG	TCCTAGTTCT	TCTGCTGATT	5160
	GAAAAATGAA	TTTAACACGC	CCAGTAAGAG	TGCCCTCAAT	TTCTTTTAAT	TTTACAGCTG	5220
	TAGCCAAAAT	ACTAGCCATG	TGAATATCAT	GACCACACGC	ATGCATAACA	CCTTCATTTT	5280

	CAGCTATACA	ACTCAGACCT	TGTCCCACTT	CAGCAACAAG	CCCAGTCGCA	AGTGGTAAGT	5400
5	CTAATATTCT	AATATGATGT	TCTGTTAAAA	TATCTTTAAT	TTTTTGTGTA	GTCTTAAATT	5460
3	CTTTATCGGA	TAGTTCTGGA	AATTGATGAA	AATACCTTCT	CCAGGTAACA	GCTTGATCTT	5520
	TTAATCCCAT	CGGTCATTCC	CCTTCCTTAA	GTCAATGATA	TGTTGTCTAC	CCTACGATGA	5580
10	TCATCTTTGA	CTATTAAACG	ATGATTTCAC	AACAATGTAC	TCTTGTTAAT	TGCTTTCGTT	5640
	AATGATAGAC	AGTTGTTTAA	TAATATCGTA	ACACTGTTGT	CAAACTATTC	TAACTTTTAT	5700
	AATTGAGACT	СТАТАСАААА	ACGTGTTCTC	GAATATACTT	GTTTTTACAA	ACCACAAAAA	5760
15	GCTCTAAACA	TTAGTTTAAA	CCAATGCTTA	GAGCTTTCTA	ATTATTTTAT	GCTTTAAAAG	5820
	ATACTGTGTT	ATCTACGATG	ACCTTACCGT	CTTTAATAAC	TTTTTCTGCG	TGATTGATAC	5880
	CAAAATGATA	TGGAATATAT	TCATGATTTG	GTGCATCCCA	AATTACTAAA	TTAGCCTTAT	5940
20	CACCTGTGTT	AATTGTACCC	GCGTTAATGT	CTATTGCTTT	AGCAGCATTG	ACCGTAACAG	6000
	CATTCCAAAC	TTCATTAGGT	GATAGCTTTA	ATTTCAAGGC	TGCAATCGCC	ATAACAAGTT	6060
25	GTAAGTTGTT	TGTGACACTA	CTACCAGGGT	TATAATCAGT	TGCTAATGCA	ATCGCACCGT	6120
	TATTGTCAAG	CATGCCTCTT	GCATCTGCAT	AATCTTCTTT	ACCTAAATAG	AACGTCGTTG	6180
	CAGGTAAGAG	GACAGCTACA	GTATCACTAT	TTCGCAACTT	TTCTTTTCCT	TTATCACTAG	6240
30	AAGCTACTAA	GTGGTCTGCT	GATATTGCTT	GTTCATCAAT	TGCTAATTCC	AGTCCGCCTA	6300
	ACGGATCAAT	TTCATCCGCA	TGTATTTTCA	CTTTAAAACC	TGCTTCTTTG	GCTTTTTGCA	6360
	TATAATGTTG	CGATTGTTCT	ATTGTAAATA	CACCTGTTTC	ACAGAAAATA	TCCGCAAAGT	6420
35	CTGCATATTG	TTTTACTTCC	GGAAGTAACG	CAATCATTTC	TTCTAAAAAT	GCCTCATTTG	6480
	AACTTGCCTC	TTTAGGTACA	GCATGAGGCC	CTAGGAAAGT	ATGTTTCATG	TCTAAATCAT	6540
40	ATTTCTCAGC	TAAACGATTA	GACACTTTCA	ATTGCTTCAG	TTCATTTTCT	CTATCTAATC	6600
	CATAACCACT	CTTACTTTCA	ACTGCAAGCA	CGCCGTGTTT	AATCATAGTA	AGCAAATCAT	6660
	GCTCTGCTTT	TTTAAACAAG	TCATCTTCGG	ATGTTTCTCT	AGTAGCATTA	ACGGTAGATA	6720
45	ATATGCCACC	ACCCATTTCT	AATATTTCAA	GGTAAGACTT	ACCTTGACGT	TTTAATGACA	6780
	TCTCATGTTC	TCGAGATCCA	CCAAATGTTA	AATGGGTATG	TGCATCTACT	AATGCTGGGG	6840
	ACACTACCTT	CCCACTAGCA	TCAATCGTCT	CAGTCGCATC	GTAGTCATCT	GTATGTGTTC	6900
50	CAGCATATAC	AATTTTGCCA	TCTTTAATGA	CAACTGTACC	ATTTTTCACA	ACATTTAATT	6960
	CATCTAATTC	CTTACCCTTC	AAAGGTTTAT	CTGTTGATCT	CGGTAAAATT	AATTCTGCTA	7020
55	TATGATTAAT	TATTAAATCA	TTCATTACTT	ATCACCTGCT	TTATCAATCA	TTGGAATATG	7080
55							

	AACACCCATA	CCTGGGTCAG	TCGTCAATAC	ACGTTCCAAT	CTTCTTTCAG	CACGCTCTGA	7200
	TCCATCTGCT	ACAACAACCA	TACCCGCATG	AAGTGAATAT	CCCATGCCAA	CACCGCCACC	7260
5	GTGATGGAAT	GAAATCCATG	AACCACCTGC	AGCTGTGTTA	ATGAGTGCAT	TCAATACAGC	7320
	CCAATCACCA	ACCGCGTCAC	TACCATCTTT	CATACTTTCT	GTTTCACGGT	TAGGACTAGC	7380
10	AACTGAACCA	GCATCTAAAT	GGTCTCGTCC	AATAACAATT	GGTGCTGAAA	TTTCACCGTC	7440
	ACGTACAAGA	CGATTTAAAG	CTAAGCCCAT	TTTCGCTCTT	TCTCCATAGC	CTAACCAAGC	7500
	AATACGTGAT	GGTAGTCCTT	GATATGAAAT	TTTTTCTTCA	GCTAAATCAA	GCCATCTTAA	7560
15	TAACTTTTCA	TTTTCTGGGA	AAAGTTTGCG	CATTTCTTCA	TCCGCACGCT	CGATATCTTT	7620
	TGGATCACCA	CTCAACGCAG	CAAAGCGGAA	TGGCCCTTTA	CCTTCACAGA	ATAATGGTCT	7680
	AATGTAAGCT	GGTACAAAGC	CTGGGAAGTC	AAAAGCATTT	TTCACTCCGT	TATTGAAGGC	7740
20	TACTTGACGA	ATATTGTTAC	CATAATCAAA	TGCTACAGCG	CCACGTTTTT	GGAATTCAAG	7800
	CATTAATTCA	ACATGCTTTG	CCATTGAAGC	TTGTGACAGT	TCAACATATT	TTTTCGGATC	7860
25	TTTTTCACGC	AATACTTTCG	CTTCTTCTAC	AGAGTATCCT	TGTGGCACAT	ATCCATTTAG	7920
	CGGATCATGT	GCACTTGTTT	GGTCAGTAAT	AATGTCAATT	TTAAATCCTT	TTTCTAGAAT	7980
	CGCTTGATGG	ATGTCTACAG	CATTTCCAAC	TAACCCGATT	GATAATCCTT	CTCCACGTTC	8040
30	TTTCGCCTCT	TCTGCTAATT	TTAATGCTTC	ATCTAAATCA	GCTGTTTTAA	CATCACAGTA	8100
	TTTCGTATCA	ATTCGCTTAT	CAACACGTGT	TTCATCAACA	TCCACGCAAA	TTGCTACCCC	8160
	ATGATTCATA	GTAATTGCTA	ACGGTTGCGC	ACCACCCATA	CCACCTAAAC	CTGCTGTCAG	8220
35	TGTAACAGTG	CCTGCTAAAT	CTCCATTAAA	GTGTTGATTA	CCTAGCTCGG	CAAATGTCTC	8280
	ATAAGTACCT	TGCACAATAC	CTTGAGAACC	AATATATATC	CAACTACCGG	CTGTCATCTG	8340
40	TCCATACATG	ATTAAACCTT	TTTTATCTAA	TTCATTAAAA	TGATCCCAGT	TTGCCCATTC	8400
40	AGGCACTAAT	ACTGAATTTG	AAATTAATAC	ACGTGGCGCT	TCTTCATGTG	TTTTAAATAC	8460
	AGCAACTGGC	TTTCCTGATT	GTACTAACAT	TGTCTCATCT	GATTCTAATT	CTCGTAACGT	8520
45	TTTCTCTATT	GCTTCAAAAG	CTTCCCAATT	ACGTGCTGCT	TTTCCAATAC	CACCATAAAC	8580
	AACTAAATCT	TCTGGTCTTT	CAGCAACTTC	TGGGTCTAAA	TTGTTGTATA	ACATTCTAAG	8640
	TACTGCTTCT	TGTTCCCAAC	CTTTACACTC	AATACTCAAA	CCTTTTTTTG	CTTGAATTTT	8700
50	TCTCATAAAA	TTCGCTCCTG	TTCTTTTAAG	AAGTTAATTC	CACTAAATTT	AAAACGCTTA	8760
	CATTATTATC	TTCAATATTC	ATTATAGTAT	GTTAAAATAT	AGCCAACAAA	TATAAATAAA	8820
55	CTAATTATCC	ATAGCTTGAA	TCTATAAATA	AAAGGAGCAA	AACACATGAA	AATTATTCAG	8880
JJ							

	CATATTAGCC	AGCCATCTTT	AACTGCTACG	ATTAAAAAAA	TGGAAGCAGA	TTTAGGTTAT	9000
5	GACTTATTTA	CACGTTCAAC	AAAAGACATC	AAGATTACCG	AAAAAGGAAT	ACAGTTTTAT	9060
	CGTTATGCGA	GCGAATTAGT	TCAACAATAT	CGATCCACGA	TGGAAAAAAT	GTATGATTTA	9120
	AGCGTTACAT	CAGAACCAAG	GATAAAAATT	GGGACTCTTG	AATCTACGAA	TCAATGGATT	9180
10	GCGAATTTAA	TTCGAAAGCA	CCATTCCGAC	TACCCTGAAC	AGCAATATCG	TTTATATGAA	9240
	ATACATGATA	AACATCAATC	TATAGAGCAA	TTACTGAATT	TTAATATTCA	TTTAGCTATA	9300
	ACAAATGAAA	AAATAACCCA	CGAAGATATA	AGATCCATTC	CTTTATATGA	GGAATCTTAC	9360
15	ATTTTATTAG	CACCCAAGGA	AACATTTAAA	AATCAAAATT	GGGTAGATGT	TGAAAATTTG	9420
	CCACTCATAT	TACCAAACAA	AAATTCTCAA	GTGCGCAAAC	ACTTAGATGA	CTATTTTAAT	9480
20	AGAAGAAATA	TTCGTCCAAA	TGTCGTTGTA	GAAACAGATC	GATTCGAATC	AGCAGTTGGA	9540
20	TTTGTTCATC	TCGGCTTAGG	TTACGCTATC	ATTCCGAGAT	TTTATTACCA	ATCATTTCAC	9600
	ACGTCTAATT	TAGAATATAA	AAAAATTCGT	CCAAACTTAG	GCCGAAAAAT	TTATATCAAT	9660
25	TACCATAAAA	AACGCAAACA	CTCCGAACAA	GTACATACAT	TCGTACAACA	ATGCCAAGAT	9720
	TATTTATATG	GACTTTTAGA	GGCTCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9780
•	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9840
30	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9900
	CTCAGTCAAC	TGTATACCTT	TTTCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	9960
	CTCAGTCAAC	TGTATACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGTGCCTCT	TATGTAGTTG	10020
35	CGTAGTCAaC	TGTaTACCTT	TTGCCTTTAA	CTTAAGTTAT	TAGAGCCTCT	TATGCAGTTG	10080
	CGCAGATCAT	CGTATAAAAA	TTAATGACGT	CATTTCAAAA	ATCGATACAA	AAATAATTTA	10140
40	TTATÄAAAAT	TCTAAGAAAG	AAGTGAAGCA	GATGTTAAAA	TCTATTAATC	ATATATGCTT	10200
	TTCAGTCAGA	AATTTAAACG	ATTCAATACA	TTTTTATAGA	GATATTTTAC	TTGGGAAATT	10260
	GCTATTGACT	GGTAAAAAAA	CTGCTTATTT	TGAGCTTGCA	GGCCTATGGA	TTGCTTTAAA	10320
45	TGAAGAAAA	GATATACCAC	GTAATGAAAT	TCACTTTTCA	TATACACATA	TAGCTTTCAC	10380
	TATAGATGAC	AGCGAATTTA	AATATTGGCA	TCAGAGGTTA	AAAGATAATA	ACGTGAATAT	10440
	TTTAGAAGGA	AGAGTTAGAG	ATATTAGAGA	TAGACAATCA	ATTTACTTTA	CCGACCCTGA	10500
50	TGGTCATAAG	CTAGAATTAC	ATACTGGCAC	ACTTGAGAAC	AGATTAAATT	ATTATAAAGA	10560
	GGCTAAACCA	CATATGACAT	TTTACAAATA	AGGTGTCATT	ATAAAAAGGC	CTCTTGAACT	10620
55	CCGTTAAAAT	TTTAATTAAT	TATTATATAA	TAAGAGAACT	TTTCAAACAA	TACAGTTGTT	10680

	TTACTGCAAT	TATTTTTCAA	ATATATCAAC	GTTAATATAA	CTTCTATTAA	GAAATACTCA	10800
	CATTCTGCCC	TGCAATGCAA	ATCTCGTCAC	ATATAAATAT	TTTTAATTAT	TAAAAATTT	10860
5	GATGCACTAA	ATTAGCAACG	AGCTTAGCAG	TTCTATTGTC	AGCGTCATAT	GTTGGATTCA	10920
	TCTCAGCAAT	ACTAACTGAA	GACACCTTAT	CACTTGGAAT	AATACGTTTT	GCTAATTCAA	10980
10	GAACAGTATG	TGGATACAAA	CCTAACACTG	CCGGCGCACT	TACCCCAGGC	GCAAACGCAC	11040
	TATCAATGAC	ATCCATACAA	ATCGTAAACA	TAATGACATC	ATGTTCATGT	ACAAAACGTT	11100
	CAATCATATC	TTTAATTGTT	GGTGATACGT	GACTCAATAA	TTCATCTGCA	AAGACATAAT	11160
15	CAATCTTTTT	CTCTTTAGCA	TAATCAAATA	AACTTTGCGT	ATTACCACCT	TGAGCAATAC	11220
	CAAGCACTAA	ATAATCTGTG	TTTTCATCTT	CTTCTAAAAT	TTGTCTAAAG	CTCGTTCCAG	11280
	ATGTAGATTG	TTGTTCAGCA	CGTGTATCAA	AATGCGCATC	AATATTTATC	ACACCAATAG	11340
20	ATTGTGTTGG	ATAGACTTTA	CGTGTTGCTA	AATATTGAGC	ATACGCAATA	TCATGTCCAC	11400
	CACCTAATAA	AAATGTTTGT	CTATGATTAG	CAATTGACTT	CGCTGCAAGC	ATAGCAAATT	11460
25	CTTTTTGAGT	ATCAATTAAT	TCCTCATGAT	CATGATAAAC	ATTTCCGTAA	TCGACTAAAG	11520
	TTCACATTGA	TTCAAATCCG	GCAAACCTGC	AAATGCTTGT	TTAATCGCAT	CTGGTCCTTC	11580
	TTTTGCACCA	ATGCGCCCCT	TGTTTAAAGC	AACACCTTTG	TCAACAGCAT	AGCCTAATAT	11640
30	ACCGACCCCT	GATGGCATAC	TACTCTTTTC	CAGCTTAGAC	AAATCTTCAA	ATGTTACTGT	11700
	TTGAAAATGT	CTAAATTTTT	TCGGGTCTGT	TTCACTATCT	AACCTTCCAG	TCCATAAATT	11760
	TGGTTCACCT	TGCTTGTACA	CAGCATTTCC	CCCTCTTATT	TATGTGGCTT	ATTAACAATT	11820
35	AAAGTATAAC	GTATAGGAAA	TTTTGAATTC	AATTCATAGT	TAAATCCGTA	TCTTAAAAAT	11880
	ACTTATCTAC	ATTACTTTTA	CCCCTATTTT	CTATGTAATA	ACGAATACTT	AGCTGATTTA	11940
40	TGTŢĀĀTĀĀĀ	ATACGTCAAG	ACTATTACAT	TTTCATTAAT	ATTGACATAG	ACAATTTATC	12000
	TCTCGGCTTG	TAATATGTAT	AATTGTTACT	AAAAGATATT	TTGCTTGTTA	CCTAATGGAG	12060
	GTTACATATA	ATGAAGAACA	ATAAAATTTC	TGGTTTTCAA	TGGGCAATGA	CGATTTTCGT	12120
45	CTTCTTTGTC	ATTACAATGG	CGTTATCCAT	TATGCTCAGA	GATTTCCAGT	CTATAATTGG	12180
	TGTCAAACAC	TTTATATTTG	AAGTTACAGA	TCTAGCACCA	TTAATTGCTG	CAATCATTTG	12240
	TATACTCGTT	TTCAAATATA	AAAAGGTCCA	ACTTGCAGGT	TTAAAATTCT	CAATCAGCCT	12300
50	GAAAGTAATT	GAACGTCTAT	TGCTAGCTTT	AATTTTACCT	TTAATTATTC	TAATTATTGG	12360
	TATGTACAGC	TTTAATACAT	TTGCAGATAG	CTTTATTTTA	TTACAATCAA	CAGGCTTATC	12420
55	AGTACCTATT	ACACACATTC	TGATTGGACA	TATTCTGATG	GCGTTCGTAG	TAGAATTCGG	12480

	TGTTGTTGGT	TTGATGTATT	CAGTTTTCTC	AGCAAATACA	ACTTATGGTA	CAGAATTTGC	12600
_	TGCTTATAAC	TTCCTTTATA	CATTCTCATT	CTCTATGATT	CTTGGTGAAT	TAATTAGAGC	12660
5	GACTAAAGGA	CGTACAATTT	ATATTGCAAC	GACATTCCAT	GCTTCAATGA	CATTCGGACT	12720
	TATTTTCTTG	TTTAGCGAAG	AAATCGGCGA	TCTATTTTCA	ATCAAAGTCA	TCGCCATTTC	12780
10	AACAGCAATC	GTTGCAGTAG	GATACATTGG	TTTAAGCTTA	ATTATCCGAG	GTATTGCATA	12840
	TTTAACAACA	AGACGAAACC	TTGAAGAACT	TGAGCCTAAT	AATTATTTAG	ACCATGTCAA	12900
	TGACGATGAA	GAAACTAATC	ATACTGAGGC	TGAAAAATCT	TCTTCAAATA	TTAAAGATGC	12960
15	TGAAAAAACA	GGTGTAGCTA	CTGCATCAAC	GGTTGGTGTT	GCTAAAAATG	ATACTGAAAA	13020
	TACAGTGGCT	GACGAACCAA	GCATTCATGA	AGGTACTGAA	AAAACAGAAC	CTCAACATCA	13080
	CATAGGTAAT	CAAACTGAAT	CTAATCATGA	TGAAGATCAt	GACATCACTT	CGGAGTCAGT	13140
20	AGAATCAGCm	Gaatcagtta	AACAAGCACC	ACMAAGTGAC	gATTTaACAA	ACGATTCAAA	13200
	TGAAGATGAA	ATAGAGCAAT	CATTANAAGA	ACCTGCGACT	TATAAAGAAG	ACAGACGTnC	13260
25	ATCAGTTGTA	ATTGATGCAG	AAAAACATAT	CGAAAAAGCT	GAAGAnCAAT	CTTCAGATAA	13320
	A ·					Ÿ.	1332

(2) INFORMATION FOR SEQ ID NO: 5:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8549 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

ATGTGTTGTA AACTTTTATG TTGAAAAAGC TACTTATCTC AATGAAAACA AGTAGCATTT 60 40 AATAAATTAA TTAGTATACA GCTAGTTTTT CTAATTGTTC TTTAACTTGA ATTAAGTTTG 120 ACCGTATTAG AGAGGCAGAT TGATCCATCG TTTGAATTGC TTGTCCTTCA TTTTCGTTCA 180 AGCCATTACA AACAACTTCA AACTGTTGTG CCATTTGATC AAGACGCGCA TGAGCTTGTG 240 45 TGTTTAAAAT AAACATATCG TCATAATGTG ATGGCGAATA GATAATTCGT CGTTGTATAC 300 AAACGTATAA AAACCTTGTC ATATCAACGG TTTTGGCATT TTTAAACCTC TGTGTTTTCC 360 50 ACGCATGTTT GCCCTTATTT AAATAATTTG CCCTTTTTTC GCCCCGAAAA AAAAACACAA 420 AAAAATAACC ACACTCCTAA ATTAATAGGT GGTGTGGTTT TGTTGATTGT AGGGGTATAA 480 AAATAACCGC ATTATTAAAG ATACGGTTAC TCTGTTATCT GTAAATATAA TAGTAGTTTA 540

	AAACAGGACT	CCACATAAAA	ATCAACTCCT	TTATATACCA	TAATGATACT	ATATTTTCTA	660
_	GTTTATTTCA	ATTTTTCAGT	TTTTAAAAAT	GAGTTTCTGT	TTTTATTTAT	ACGCTTTTCT	720
5	GTTTTCTTTT	TAAATTTTAT	CTTTTTGTTA	TTCCATTCAT	TGTAAAATTC	TATTAAATTA	780
	ACATAAAATT	TTTCATGCCC	TATTTTATTT	GTTGATGAGA	TATCAATGTA	AAGACTCAAT	840
10	ATTGTTTTTA	AATAGATTTG	ATGCAACGAC	TGATAAACCG	TATTACTATC	TGCTATGTTA	900
	TTGGTAAAAT	GCATAGAAAA	ATATTCTAAT	TTATTCATGC	AATATATATG	GGTTTCATTA	960
	TACTTCTTAA	TGAGTGTATT	TATACCTTGC	AATACGTCAT	TACTTTTAAT	AACAATTTCT	1020
15	TTTTCACCTG	TCGAAAAAGT	CCACTGTTTA	TCTCCTATAT	TTTCTTTAAT	TGTTTTCTTG	1080
	TTGTCAAATT	CTAAAATTAT	AGCCCGTAAA	CACTCTTCTT	TATAATTCTC	GTTCTTGAAA	1140
	GTACGAAGCA	AAATTTTTAT	AAATTCGGTA	TTGGTGACTT	TTTTATAAGT	GTGATATTTT	1200
20	GCAATCTCTT	TATCAGTAAA	GACTGTTCTT	AGTTCGTGAT	TATCAAAACT	TAAATTCATC	1260
	TTATTCTCTA	ATTCATTAAT	TTTATCTTGC	AAACCAACAT	TTTCTAAAAT	TTTCTTGTTT	1320
25	ATCTCCCCTA	TATCAAAACT	CCTTTTCGAA	ATTAATTTTG	AAAACTCGTC	TGCCATTTCA	1380
	ACAGCCTTTT	CTTTCCTTTT	ATACCTTTTG	TTAAATTTAT	GAACCACCGT	TGCAGCATAA	1440
	TACGATATCC	CACCAGATAA	AATAGATGaT	ATTATCGGTA	TGTATATATC	ACCTTTCATA	1500
30	TTTCCACCTC	TTTTAACACA	ATTAAGTATT	ATGATACACA	ACTTGCGCAA	AAAGATGTAG	1560
	ACAGAACATA	ATGGCGAACA	AAAACAACCA	CCCAGTAACT	AGTATGGGTG	GCGTAGACTA	1620
	TAACAACTCT	ATGTTATCAA	GATATATGTA	TCGAGTGATG	GCAAGGAAGA	AGTCTCCTGC	1680
35	GGGACCAACA	GTCAGATATA	TGGCCTCTGC	CGGGCTATAT	AGTTCACTCC	TACTATATAA	1740
	AAGTAAGTAT	AACATAAAAA	GCACCCCGTA	AACTGTTATA	CGGGAATGCT	AAAGTCATAT	1800
40	ATACTACGGG	GAGTAGTATG	AAAACTATGC	TCTCTATCGT	AAGAAAAAAC	ACCCAGTGAC	1860
	ATGCTTGGGT	GAACAAGGAT	AGATGTAAAT	AGTTGATGCA	TGTGTACACA	TCATAACAAA	1920
	AAACTAGCCC	GAAGCTAGCT	ATAACATAAA	AAAATAGGCA	AGTACCGAAG	TACCTGCCAG	1980
45	TTACGCACAT	TTAAATCTTG	AGAGTAATGT	TAAAAAGTGT	ATAGGAATAT	TAACATCCAT	2040
	CCAAATAGTT	ATTTAATAAC	TGTAAGATTC	CCTATAATTA	ATGTAGCAAA	ATTTTTATTC	2100
	TAAGTAAATA	CTAAATCGTG	CTAAACTTAC	CAAAACTACT	TATTCTATTA	CCTGCCTTGT	2160
50	CTACCTCTCC	TGTCGCTATA	TAACGACGTT	GTCCACTATT	AGCAATATAA	GTAATCCATC	2220
	TATAGCCATT	GATGCAATAT	GCGCCGTCAT	ATTTAATTGT	TGCGTTATTA	GGTAATACAC	2280
55	CTGTAATTCT	TGAATTAGTT	GAATAGCCGT	CCCTTACGTT	ATTACCTTTA	ACATTGGCAA	2340

	CTGGCACTGG	TGGATTTTTT	TGGTTTTTAG	CTGATGTTTT	AACATTACCA	GCTACCAAAC	2460
	CACCTATAGG	CTTACCATGA	ATCGCACCGG	CTATTAATTT	AGAATACAAG	TCATAGTTTT	2520
5	TCTTAATCCA	ATCCATATCA	TTTTTATTAG	TAATAAAACC	TAATTCAGAT	AAACGATAGT	2580
	TTATATTTAT	TTCTGCTGAT	ACATTAACGT	TTAGTAAATC	ATTACGAGGT	GTTACACCTC	2640
10	TTATTTGTCC	TAAGTTATTT	TTAATAACAT	CTTGTATACT	TTTATCAATA	GTATCTGCAT	2700
	TGAATTGACT	TGAAATAATA	ACATGCCCAC	CACTTGCACT	TTCTCCTGCT	GCGTCTAAAT	2760
	GAATCTCTAG	AACAATGTCA	TACCCATGTG	ATTTAACCCA	ATATAAGCCA	TAATCTTTAT	2820
15	TATTTCCTAC	ATTAACACCG	TAAGCAGTAT	CTTGATACAT	ATCTTGTGAT	TGACTTGAGC	2880
	CACCATATAA	TGCAACTTCG	TGACCTGCAT	GTCTTAAATA	CTTAGCGATA	TTTGGTGTTA	2940
	TATATTTACG	GATAAAATCA	CGTTCATTTG	TTCCGTTTCC	GACTGCTCCA	GGATCGTTAT	3000
20	AACCATGACC	GGCTACAAGC	ATAATTTTTT	TAGGTTTAAT	TACTGCTTGC	TTTTTGGCAG	3060
	TTGCTTGCTT	AATAACGCTT	TTAGCTTTAT	CTCCAACACT	TACTTTATCT	GGGAAATTTA	3120
25	ATCTAATAAA	ATACATTGGG	TCATCGTAAT	AATGAACATG	TCTTGTAACG	GTTTCGGGAC	3180
	CCCAACCAGG	TTGCGCAACG	CCATTTGTCC	AACCTTTACC	ATTCCAATTT	TGGCCAAACG	3240
	ATGTGAAAGT	GTTTAGATTA	GCGCTCTCAA	CAATTTCAAC	ATGTCCaGct	CCGCCACCAT	3300
30	ACTTTGACGG	GAAAACGACA	ATGTCCAACT	TTTGCGGTAA	AAAGCTATCA	TAGTTTTTAA	3360
	TTATTTGCCC	GTATTTTTCA	ATCCTTGCTT	TATTATCAAA	TGGAATATTA	TAAGCGTATA	3420
	AACCTTGTAA	CcTTTCGCCT	GTTGCTATCA	TAAAAAACAT	ATTTGCGTAA	TCGTAACACT	3480
35	GAAATCCATA	AAACAAATCA	GGATTGAACT	GCTTCCCTAA	TGAATTATCA	AACCATTTTT	3540
	CTGCTTGGTT	TTTTGTTATC	AACATTGGTC	AACACCTACC	CTAAATCATT	TGTGTCGTTC	3600
40	ATATTCGTAG	GTGTCATTAC	TTCTTTAATT	GGCGCTTGCC	CTGTTGCTTT	TCTATACTTG	3660
-	TTTTCAGCTT	TATATTTCTT	TAGCTTTTGA	TTTGCCCATT	TACCTTCTTG	AGATGTTGGA	3720
	TTATCTTTAT	ATGTAGTATA	TAAAGCAACA	ACTGTTAAGA	TAATCGATGA	AACACTTTCT	3780
45	TCATCTACTG	GTATCGGACT	TATACCTTTA	TTCGCTAAAA	ACTGATTGAC	TAATGCTAAG	3840
	ATCAATACGA	TGTATCTTGT	TATTACTTTT	GCATCCATTT	GTTTGCTCCT	TTTATCCAAA	3900
	ATAAAAAGCC	AGTGCCGAAG	CACTGACTCT	TAACTATTAC	TTACACTTAC	TAAACCAGAA	3960
50	ACACGACCAA	AAGCTATATC	CTAAAATTCC	CTTAAGCATG	GTAATCACCT	CCTTTAAATG	4020
	CCAAAAATAG	TTTTTAACAA	GGCTATAACA	AATGTACTTA	GAATCGTCCC	TATTAATCCT	4080
55	AGAATCCACA	TCTTGATGTC	TCTAATATTT	TTAGCATTTT	TCTCTTTATT	TTTTTCATCT	4140

	TGCGTTCTCA	GACTGTCTTC	TATTCTGTCG	AATTTTCAA	ACATAGTCTT	ATCATTTTCT	4260
	TCTAATCGCG	TTAAACGCCA	ATCTTGTTCG	TGTCGTTTGG	ТАААТССААА	CATTACACCA	4320
5	CCCACTTTAT	TCAAATTAAA	AAGCCATAAG	ATTATAACCT	ATGACTCTAG	ATTTTCTGGA	4380
	TACTTTTCTC	CTGTAATAAT	TGCATATTCC	TCTTTATCTA	TAACTTCCAT	ATCTACATAC	4440
10	CACGCTATAT	CTTCTTTACT	ATATTCTTTC	AATTGATACC	ATGTTTTAAT	ATCTTCGAAT	4500
	GTTGGTGAAA	TTAATTTAAG	CATTTTCAGT	CTCTCCTTTA	ACCTCTTCTA	ATTTTTTTATT	4560
	AAGTGTCACA	AGTTGTTTTG	CCATTAGTGC	ATTTTGCTTA	TTAACTTGCA	TCGATAACTT	4620
15	TGTACTTTGA	ACAACTTGTT	TCTGCATACT	AGCAACCATT	TTTCGTAAGA	TGTCATCAGA	4680
	AGCGACTGTG	TTTTGTTCTT	CACTGTCAAT	CTGTTGATGC	AAGTCATCTT	TTTCTTCTGA	4740
	ATAATCTTCG	TTAAAAACTA	TTTCCCCATT	TGAATATTTA	AAGGCTTTAG	GTCTAAAAAC	4800
20	TTGAGAGAAA	TTTTCTGGTA	AATTTTCAAT	ATCAATACCT	TCTTCAAAGC	CACCAATGAT	4860
	AGCGTATGAA	ATTATCTCAT	TACGCTTGTT	AACTAATATT	TGCATTATTT	TCTCACTCCT	4920
25	ATAATTTTGT	TAATTGTCCC	TCTATTTGCG	TTCGCACCAG	AGCCTCTTTG	ACTTCCTAAG	4980
	TCGAAATAGA	CATCGTTTGA	TATAGTTAAA	GATGTACGAC	TAGATTTAGT	TAATCCAAAC	5040
	TCATAAACAC	CTCCACCATT	TCCATCACCA	TCTGGAAGAT	TTGAGGGATT	CAATGAAATC	5100
30	TTTCCTCCTC	CAAAAGGACT	GCCAAACTCT	GTAAAGTCAC	CACCTGGAAA	AGTCCCATAA	5160
	AAAATTAATA	AAATAAATTG	GTCTAAACTC	TCATTTAAGT	ACAATGTAGA	GCCCACACCA	5220
	TTTGCTGTTC	CATCAAAAAT	AACCGAATAC	CTTTTATTAA	ACTTGTCATC	TGCGTATAAT	5280
35	TTAGCGTTAC	TTTCGGCCAT	ATTAGCTTTT	GATTGGGCAC	TTTGAACAGT	TTCAAAAGGT	5340
	GTATTGTAAT	CATTAATAGC	TAATTCTGAC	CACTCAGACC	ATGAACCCGC	TTCTTTTCTT	5400
40	TTAACAAATA	CTTTATTTGT	ACCGTTCGGT	CGATAAGTCA	TACGCTTGTA	ATCTGAAGTT	5460
	ACTACTAAAT	ATTCGACAGT	ACCGTTAGTA	CTAACACCTC	TTGGATAATT	TATAGCTTGC	5520
	GAAACATAAA	TAAATTGGGT	TGAATCACCT	ATTCTTTGTT	CTGGATTATT	AAAATCAAAT	5580
45	CCAGTAATCT	GCATTATCTT	ACCATCATCT	TTAGTAATCT	TAGCTTTTTG	CCAATTTGAA	5640
	GTAGAACCAC	TTGTGACTAA	ACCACCACTA	TTCACTGACT	GCTTGAAGGC	TTCATGTTTC	5700
	TCATCCATAT	ATCGCTTTTG	CTCATCGAAT	GTTCTTGAAT	ATGCTTGCGC	TTTATTTTCC	5760
50	AAATCAGATA	TATGGCTATT	AGCAAGTTGC	TTTAATTCAT	CTATACTTGA	AGATTTTGCT	5820
	ATTTGAATAT	CTGATAGACC	TTTTTCTTTA	GCTTTTTCAA	TCAGACTCGC	ATAATCTTCA	5880
<i>55</i>	CCATTTTTTA	TAGCCTCGTC	CATTGCTTTC	GCACGATCCA	TAATAGTTTT	TTCTAATTCC	5940

	TCAACGTTAA	ATGTGATAGT	TCTCTCGACA	ACTACCACGT	CTGAATTACC	TAATTCTGCA	6060
_	ACCGAAACTT	GAGCTTGATA	ACTTCCATCT	CGTTTAATTA	CATCATTAGG	TAATTGAAAT	6120
5	TTTAAAATAC	CTTTAAATGG	ATCTAATATT	TCTAGTGGAG	CAACTACCAT	GACTCCTTTA	6180
	CCTCGAATCG	CTATTCGTGC	kttgatattt	tCTTCACTCA	ATAATAACGG	TTGATTATTT	6240
10	TTAGTGATAT	TAAAAAGAAG	AACAGAAGAA	TCACTCTCTC	CTGTTCTAAA	AGTTATATCT	6300
	AGATTTGAAA	TATTTCCATA	ATGCGCTGTG	TTTTCTAAAT	TTATAGCTAC	AGATTTCTCT	6360
	AAATTACTCA	TTAACTTATA	ATTCTCCCTT	CGTGTAAAGT	CCATGGCCCT	GAACTTGTTT	6420
15	TACTATCATA	ATTTTTCAAT	AGTATCTCAG	CAGATGCTGT	AACACTATTA	CGAACTAGCC	6480
	TATGAACAAA	GCCACCTGTG	TTTGAAGCTT	CTACATATAA	GTTCCAACCA	GCTACCCCTT	6540
	TACGTTCAGT	TGGAAAATCT	GTAAAACGTT	TTGTATCATC	CGTAGTTAAA	TAAAACGACA	6600
20	TGCCTACTAT	GTTAATATCT	GACATTTTTG	TGATGAATGA	AGGTACTCTC	TCCCATTTAC	6660
	CACTATTTTT	AGGCACATAA	TTCCAGTCCG	AAATGTCTCC	AGTTCTTCCA	GAAAGCACCC	6720
25	TTTCAAAAGT	CATCATATTC	CTTGCATAAC	TATTACGCGT	CAATATCTGA	ATTACATCAC	6780
	CGCCAGTTTG	TGGTGGCTTA	ACTTCCAAGA	ACCAACCTGC	ATCACGCCAT	TCTCTTGGTA	6840
	ATGGGAAATC	ATCGATTTGA	ACTGTATGAT	CAGTGTATAA	ATAGTAAAGA	CCTGGCTCTG	6900
30	TTAACATCCC	AAGATTCTTA	AGTTTATCAG	GCCTCATTGG	TAAAGGTTTA	ACTCTACCAC	6960
	CTGTGTCACT	Catgataaaa	GGAACGCCTC	TTGAGTGAAG	TATTTCTAAA	ATACCTCTTT	7020
	GCCCAATCAT	GAAAATACGA	TGTGTTCTAT	TTCCaTCACC	ACCGACAGTA	ACACCTAGCA	7080
35	TCAAAGCTTT	TTTACCACTA	TCTTTGTCAT	AGTATATTTG	CAAACCTTtC	TgCTTCCGCA	7140
	AATTCGCCAG	GAAATGAATC	tAgTGTTCCA	CCATAGTCAG	CATTAACCTG	ATACGCTTCT	7200
40	TCTCETGTTT	CTAAATCGAA	AGCCGTTAAA	TAGTTTCTAT	TATTTGGATT	ACTGTCTCCT	7260
40	GTATACCAAT	ACAAGTATTT	TTCATCAAAA	GTCACACCCT	GCATTGGTTG	GGTTTCGTTT	7320
	GTTAGTCTCA	TAGGGATACT	GATTTTATGC	AAAACTTTAT	CAATATTTTT	ATCAACATCG	7380
45	TCTAAACTTC	TTATCTCTAT	ATAAnTCATT	GAGTTTTCAA	GTTCCCACTG	ACTTCTAGGT	7440
	CTCTCaATTC	TGTATAGAAT	TTTATTTTCT	TTTTCATTTA	TGACAGGGGT	GATGTAGGGT	7500
	TTTTCTGGGT	GTCCTGTAAA	TACATCTTGC	ATACCATACT	TGCCATAGCT	AATTTCCACA	7560
50	TTAGGCGTAT	ACTTGAAACG	AACTAATGTA	TTCTCATTAT	TACCATTTAA	GATAAAACTA	7620
	TAAATCCATA	ACTCATCATC	AATATATCTA	TAACCGTTAT	GTGTACCATG	ACCCCCACCT	7680
55	ACAATCAATG	AGCTGTCTAT	AAATTGACCA	TTAGGTCTTA	GACGACTTAG	CATATAGCCA	7740
33							

ATTACTGCAT TTGTAAGAGG TGCAAGTTCT GTCACAAATA AAAATTCTTG CTTATCAGGT 7860 TCAAAACGAT ACTCGATATC AAGAATTTCT TGTTTGGTCT TATTTAATTC TCTTATAGTT 7920 5 TCCTCTTTAT TAATTTGAGT TITGGTTTCC CAATCGTCTA AATGTTCTTT TAATGTGTCA 7980 AAGGTTTCGC CGTTTACATT AACTCGAGCT TGAACAATCT CATTAGCACT GTTATTACGT 8040 GGTGCCACAA CAAGTGCGTT AATTTGACTT TGTAAAGATT TGTTTACTGC TGCTTGCGAT 8100 10 CTACCATTAT AATAAATTTG CTCAGCGAAG TGTTGAATTG TTTTAGCTyT CTGATGCAAC 8160 TTAAACTCTG TTGTCAAGCC AAGCGCAAAT TGCTCTATTC TTTGTAAGTT TTGTATTTCC 8220 15 TTAGCTCTAT AATCTCGACC TGCTAAAGCT CCCAAATCCT TTATTAAATA CAAATTTTCC 8280 ATAATGCACC TTCCTTTCTA ATAAAATAGC ACTGTACCAA GTTTCCCACT ATCGTCAACT 8340 GTTATTTTCC ACAATTTACC GTTTGGGGAT TTCTGTACAA TGCTATTTTG AATAATTgcC 8400 20 TGCtTCGCCT ATTTTTAAAT TATCTAATTT ATTTKTATCA TTTACCGAAA TGATACCGTC 8460 TTGAGGCAAT CCATCAATAn CACTACTGCC TGCATAAGGT ATCCCATTTA TAGCTTTCCA 8520 ATGTGTAGCT GGAAAGTACT GTTTATCGT 8549 25

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3601 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

30

40

45

50

AGGCGTGTAG TGACTTACGG nTAGGAAACT ATGTATCCGA ATGATTTATT GAGACCAAAA 60 AGGCATTAAA GTCCATTGAA ATATCNGGTA GCGMGTTGGT ACGTGGACGT GGGGGCCCTA 120 GATGTATGAG TCAACCATTA TTCAGAGAGG ACATTTAACG TAATAAATTA TAGAMACGAG 180 GGTGAAAATA ATGACAGAAA TTCAAAAACC GTATGATTTA AAAGGCAGAT CATTATTAAA 240 AGAAAGTGAT TTTACCAAAG CAGAATTCGA AGGACTTATT GATTTTGCAA TTACATTAAA 300 AGAGTATAAG AAAAACGGTA TTAAGCATCA CTACTTATCT GGAAAAAATA TTGCACTACT 360 ATTCGAAAAG AATTCGACGA GAACGCGTGC TGCGTTTACA GTTGCGTCTA TTGATTTAGG 420 TGCGCATCCA GAATTTTTAG GAAAAAATGA TATTCAATTA GGCAAAAAAG AATCTGTAGA 480 GGATACTGCG AAAGTATTAG GTAGAATGTT CGATGGTATT GAATTCCGTG GTTTTTCACA 540 ACAAGCTGTT GAAGATTTAG CGAAGTTCTC TGGTGTACCG GTGTGGAATG GATTAACAGA 600

	TCTAGAAGGA	ATAAACTTAA	CTTACGTTGG	AGATGGACGT	AATAATATTG	CGCATTCATT	720
	AATGGTAGCA	GGTGCTATGT	TAGGTGTTAA	TGTAAGAATT	TGTACACCTA	AATCATTAAA	780
5	TCCAAAAGAG	GCATATGTTG	ATATTGCAAA	rGAAAAaGCG	AGTCAaTATG	GTGGTYCAGT	.840
	CATGATTACG	GATAATATTG	CAGArcCAGT	TGAAAaTwCm	GATGCTATAT	ATmCAGATGT	900
10	TTGGGTATCG	ATGGGTGAAG	AAAGTGAATT	TGAACACGTA	TTAATTTATT	AAAAGACTAT	960
	CAAGTGAATC	AACAGATGTT	TGATTTAACA	GGTAAAGATT	CAACGATATT	CTTACATTGT	1020
	TTACCAGCAT	TCCATGATAC	AAATACACTT	TATGGACAAG	AAATTTATGA	AAAATATGGA	1080
15	TTAGCTGAAA	TGGAAGTTAC	AGACCAAATC	TTTAGAAGTG	AACATTCAAA	AGTGTTTGAT	1140
	CAAGCTGAAA	ATAGAATGCA	TACAATTAAG	GCAGTAATGG	CAGCAACATT	GGGGAGTTAA	1200
	TCACTAAATG	GAACGATATG	AATATGATGT	GTCTGATGAT	ATAAGTGTCA	TGTACAGACA	1260
20	CCTCATATTG	GTATTAAAGG	AGAAATGAAT	ATGAACGAAT	CAGGAGATAA	CAAACTCAGT	1320
٠	AAATCTTCTT	TAATTGGACT	AGTTATAGGA	TCCATGATTG	GTGGCGGTGC	GTTCAATATA	1380
25	ATGTCTGATA	TGGGCGGTAA	AGCCGGTGGA	TTAGCCATTA	TTATTGGTTG	GATTATTACA	1440
20	GCTATAGGAA	TGATTTCATT	AGCGTTCGTA	TTTCAAAATT	TAACCAATGA	ACGGCCGGAG	1500
	CTAGACGGTG	GTATTTATAG	TTATGmTCAA	GCAGGATTTG	GCGATTTTGT	AGGATTTATC	1560
30	AGTGmTTGGG	GATATTGGTT	CTCAGCGTTT	TTAGGCAATG	TTGCCTATGC	AACACTATTG	1620
	ATGTCAGCAG	TAGGTAACTT	TTTCCCGATT	TTTAAAGGAG	GCAACACATT	ACCAAGTGTT	1680
	ATTGTCGCCT	CGTTACTACT	CTGGGGTGTC	CATTTCTTGA	TTTTAAAAGG	CGTTGAAACA	1740
35	GCAGCATTTA	TCAATAGTAT	TGTTACTGTT	GCAAAGTTAA	TACCGATTTT	ACTTGTAATC	1800
	ATATGCATGA	TAATTGCATT	CAATTTTGAC	ACTTTTAAAA	CAGGCTTTTT	CAGTATGACG	1860
40	TCAÇÃGGGTG	TATTGCCATT	TAGTTGGGCG	AGCACAATGA	GCCaaGTtAA	AAGTACGTTG	1920
40	CTAGTGACAG	TTTGGGTGTT	TATCGGTATC	GAAGGTGCAG	TAATTTTTTC	TAGTAGAGCT	1980
	naaaatgaga	AAGATGTAGG	TAGTGCCACG	GTTATAGGAC	TTATATCAGT	TTTAATTATC	2040
45	TATYTCTTAT	TAACTGTATT	AGCTCAAGGC	GTGATTTTGC	AAAATCATAT	TTCGCAATTA	2100
	GATTCGCCAA	GTATGGCACA	GGTGCTTGCA	ACTATTGTAG	GTGGTTGGGG	ATCTACACTT	2160
	GTAAATATTG	GTTTAATTAT	TTCGGTACTA	GGTGCATGGT	TAGGATGGAC	ACTGCTTGCT	2220
50	GGTGAATTAC	CTTTCATTGT	TGCAAAAGAT	GGATTATTTC	CAAAATGGTT	TGCTAAAGAA	2280
	AATAAAAATG	GAGCACCTGT	AAATGCACTG	CTTATTACCA	ATATATTAGT	ACAATTATTT	2340
	TTAATAAGTA	TGCTATTTAC	ACAGAGTGCG	TATCAATTTG	CATTTTCACT	AGCATCAAGT	2400

	CGACAGCAAG	CAACTACTAA	ACAATGGACG	ATTGGTATCA	TAGCCTCAAT	TTATGCTATA	2520
5	TGGCTTATAT	ATGCAGCAGG	TATCAATTAC	TTATTATTGA	CGATGTTACT	TTATATTCCA	2580
3	GCTCTTCTTG	TTTATACAAT	CGKTCMAAAG	rATwATCAGa	CACGTTTGAT	TAAATCAGrC	2640
	TATATTCtTT	TTATGATTAT	tATCGTACTT	GCAGTTATCG	GGTTAATTAA	GTTATTGATG	2700
10	GGAACGATAA	ATGTTTTTTA	AAAGGAGCGA	CAAAAATATG	AAAGAGAAAA	TTGTCATTGC	2760
	ATTAGGCGGT	AATGCGATAC	AGACAACAGA	AGCAACAGCT	GAAGCACAAC	AAACAGCTAT	2820
	TAGATGTGCG	ATGCAAAACC	TTAAACCTTT	ATTTGATTCA	CCAGCGCGTA	TTGTCATTTC	2880
15	ACATGGTAAT	GGTCCACAAA	TTGGAAGTTT	ATTAATCCAA	CAAGCTAAAT	CGAACAGTGA	2940
	CACAACGCCG	GCAATGCCAT	TGGATACTTG	TGGTGCAATG	TCACAGGGTA	TGATAGGCTA	3000
20	TTGGTTGGAA	ACTGAAATCA	ATCGCATTTT	AACTGAAATG	AATAGTGATA	GAACTGTAGG	3060
20	CACAATCGTT	ACACGTGTGG	AAGTAGATAA	AGATGATCCA	CGATTTGATa	ACCCAACTAA	3120
	Accaattggt	CCTTTTTATA	CGAAAGAAGA	AGTTGAAGAA	TTACAAAAAG	AACAGCCAGA	3180
25	CTCAGTCTTT	aAAGAAGATG	CAGGACGTGG	TTATAGAAAA	GTAGTTGcGT	CACCACTACC	3240
	TCaATCTATA	CTAGAACACC	AGTTAATTCG	AACTTTAGCA	GACGGTAAAA	ATATTGTCAT	3300
	TGCATGCGGT	GGTGGCGGTA	TTCCAGTTAT	AAAAAAAGAA	AATACCTATG	AAGGTGTTGA	3360
30	AGCGGTTATA	GATAAAGATT	TTGCTAGTGA	GAAATTAGCA	ACGCTGATTG	AAGCAGATAC	3420
	CTTAATGATT	CTTACGAATG	TAGAAAATGT	ATTTATTAAC	TTTAATGAAC	CTAATCAACA	3480
35	ACAAATCGAT	GATATTGATG	TAGCAACACT	GAAAAAAtAC	GCGGCACAAG	GTAAGTTTGT	3540
55	GGAAGGATCG	tGTTGCCAAA	AATAGAAGCT	GCGtACgtTT	GTTGAaAGtG	GGGaAACCAA	3600
	Α						3601
40	(2) INFORM	ATION FOR SI	EQ ID NO: 7	:			
	•	EQUENCE CHAI (A) LENGTH: (B) TYPE: nu	573 base pa				
45		(C) STRANDER (D) TOPOLOGY	NESS: doub	le			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

CGACACTATT AAATGAATTA GAGCACAATC TAACAAATCA AATTCATTTT TCAAAAAGATG 60
AACGACTCAC ACATATCGCT TTAAAGTTAT TCGAAACAAC CGATCCTGTT TCAACAAAGC 120
AACTTGCGCA AGATGTTAAT GTTTCGCGTC GGACAATTGC AGATGATATT AAAATGATTC 180

	TTATTGGTGA GGAAGATCAT TATCGTAAAG CGTATGCACA CTTTATACAT CAATATATGA	300
	AACAAGCTGC ACCTTTTATA GAGGCGGATA TCTTTAATTC AGAATCAATC GCATTGGTTC	360
5	GCCGTGCCAT TATTAAGACA TTAAATAGTG AAAATTATCA TTTAGTTCAG TCGGCTATCG	420
	ATGGCTTAAT CTATCATATA CTCATTGCCA TTCAGCGTTT AAATGAAAAT TTTTCGTTCG	480
	ATATACCTAT CAATGAAATT GATAAATGGC GACATACTAA TCAGTATGCn ATTGCTTCAA	540
10	AAATGATAGA AAACTTAGAA CGCAGTGTAA TGT	573
	(2) INFORMATION FOR SEQ ID NO: 8:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1221 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	TTGATATTTA TAACGTTATA TTTTAATAGT TCACCTGGAT TATTAAATAA ATAGTCCGCC	60
25	AAATTTTCTT TTTCTTTATC AATCTGaTkG TAATTAACaC TTTCGaCTTC TGTAGGAATT	120
	CTAATGTCAA CAGAAGCATT GATATAAGCT TGATGTTGCA TGCAATCACA CTCCTAATCC	180
30	TTCATmTmAA ACGGAGAAGT AAACCCGTCA CTATTCAAAT TCAATCCTTT TGCCCAATCA	240
	ACAGGCTTAT TCATGATAGT TTCGATTTCC TTAAGTCCAT TTGAACCTCT AGGTATTTCT	300
	ACAATTACTT CATCATGGAC ATGGCCAACT ATTTTAAAAC CTAATGCTTC AAGCCTTGCT	360
35	ATAGAAATCG CAAGTAAATC CCTTGCAGTT GCTTGAACAA TATTCTCGAC TAACTTCCCA	420
	CCATACGTTT TTAACTTTGA CCATTTACGG TTAAGATCTA ACCCCATAAA TTCAACAACT	480
	TGACTACCCC AACTATTTC ACCAACTAAA GCTTTTGGAT AAGCTAAAGC TCTTCCACTA	540
40	GGCAGTTCAA TCATTAGAAA ACCTTTTTTC ATATAAAATC TAAGTCCATG TGTATGATGC	600
	GTCTTTCGGG ATTTTACAGT ATTAATTGCA GCCTCTTGGC AAGCCTTCCA AAAATTAACT	660
45	ATGTTAGGAT TTGCGTTACG CCAACTATCA ACTAAACCTT GTAACTCGTT TTCTTCAATG	720
	CCCATTTCCA ATGCACCCAT TGCTTTTAAA GCTCCAGCGC CACCTTGATA GCCTAAAGCT	780
	AATTCGGACA CTTTTCCTTT TTGTCTGAGA GGGTCGCCTT TAGTTATGCT TTCTACCGGT	840
50 、	ACATTAAACA TTTGAGAAGC CGATGCTTCA TATATCTTTC CGTGTGTGTT GAATACATCT	900
	AAACGCCATT GTTCTTTTGC ATACCATGCT ATGACTCTTG CCTCTATTGC AGAAAAATCA	960

241

CTTACTGCTA GTTCATTACC TTCTTCAGCA GTAAATGTCG TCCTAACTAA TTGACTTAAT 1020

	AGATCTCTTG CTATTTCTAA TTCAGTATCT GAAATATAAT GCTTTGTTAA ATTCTGAAGT	1140
	TGTACACCTC TACCTGCCCA TCTTCCAGTA CCGGCACCGT AAAATTGAAA CAGACCTCTT	1200
5	ACCCGTTCAT CACTGCACAT C	1221
	(2) INFORMATION FOR SEQ ID NO: 9:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1090 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	TTTTGTTTGG TATGAGGTAG CAATGACGAC GTGTCATTGG TGGAGATTGT AAAAATACAT	60
20	AATAAAAAGA AGCGGCAATG TATACCGCTC CTTTTTTATA CTACATACCG ATTTTCAACC	120
	ATCTCTTTCT ACTTAGTAAT AAGACAATAG TATTAACTAT AAATAGAAGA ACGAAGAATG	180
25	ATACTATATT TATAATTTCA GTAGGACACA TAAATGTTGA CTCGTTATTC AATATTTTTT	240
25	CTACGGCACG ATACATCGTA TTGCTCGCCT CAAATGGAGC AACGATACCA AATATATTTT	300
	TATTAATGGC AACTAAGATG ACTGAACCAA TCCAATATAC AATGCTGATA CCTAAGCTGA	360
30	TTAAAATGTT AGGTGAAACC ATACTAATCG TTCCAACAAC TAAGATATAT TGTAAGATAA	420
	CGAGTGAAAA TAAGATTATT AATAGTAAGT AATGTGAGAA ATCCGAATAT ATAATTGAAA	480
	TAATAGTGAT ACTTAGAATT ATGAACACTA AACATTCAAA AAATAACACT GCTACCTTTT	540
35	TATAGAAGAA GGTAAAGATA TTATCGCCAA TCAATTTATA AAACAGGATA TTTTTATTCG	600
	AATACTCTTT ATTAATAAAA TATGCAATAA CAAATGAAAA TAGTAAGAAC CCTAATTGCG	660
	TTGCAACAGT ATATGAACTG AAGAAAAACT GGCTATAGCT TAAACTTTTA ACTTTGTCTA	720
40	TACCTATTGG TAAAAAATAC CCAAGTAAGA AAAGGAATGT GAATAGCACA ACAAGCGTGT	780
	AAATAATTTT ATTGGAAATA CTTTTTTTAA ATTCTAATTT CAAAGTGGAC ACCTCAATTA	840
45	TAAATTAATG TAATCATTTA TGACTTCTTC TTTTGATTGG TACTCTTCTA TTTGAAGGTC	900
	TTTAAAAATA AAGTATTTAC CCGGCAAAGC ACTTAAATCG GATAAATTAT GTGTAATATT	960
	GATAATAGTT TTAGTTTGAT GGCTTTGAAT AAAATCATTT AAAAATTCAT AAATTTCATT	1020
50	AACTGTTTTC TTGTCTAAAG CGTTTGTAAC TTCATCTAAT ATGATTAAAT CATGATCTTC	1080
	CAATAAGAAA	1090

55

(2) INFORMATION FOR SEQ ID NO: 10:

(A) LENGTH: 904 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
10	TTAGGACTAT TTTATCATAT TCATTTAAAT TACGGCTAAA AATTTTAAAA ACGGGGATTA	60
	ATATATGGAA TTAAGCTATG AAAGTTAATT GATACTTGCA TTTTACGCTG ATTTATATAA	120
	GAATAACTAT TGTATAGTTT TAAAAACGAA CGTACGTTTG CAGGAGGCGA AATCATTGGC	180
15	AATGAATAAA CAAAATAATT ATTCAGATGA TTCAATACAG GTTTTAGAGG GGTTAGAAGC	240
	AGTTCGTAAA AGACCTGGTA TGTATATTGG ATCAACTGAT AAACGGGGAT TACATCATCT	300
20	AGTATATGAA ATTGTCGATA ACTCCGTCGA TGAAGTATTG AATGGTTACG GTAACGAAAT	360
	AGATGTAACA ATTAATAAAG ATGGTAGTAT TTCTATAGAA GATAATGGAC GTGGTATGCC	420
	AACAGGTATA CATAAATCAG GTAAACCGAC AGTCGAAGTT ATCTTTACTG TTTTACATGC	480
25	AGGAGGTAAA TTTGGACAAG GCGGCTATAA AACTTCAGGT GGTCTTCACG GTGTTGGTGC	540
	TTCAGTTGTA AATGCATTGA GTGAATGGCT TGAAGTTGAA ATCCATCGAG ATGGTAATAT	600
	ATATCATCAA AGTTTTAAAA ACGGTGGTTC GCCATCTTCT GGTTTAGTGA AAAAAGGTAA	660
30	AACTAAGAAA ACAGGTACCA AAGTAACATT TAAACCTGAT GACACAATTT TTAAAGCATC	720
	TACATCATTT AATTTTGATG TTTTAAGTGA ACGACTACAA GAGTCTGCGT TCTTATTGAA	780
	AAATTTAAAA ATAACGCTTA ATGATTTACG CnwGGGTAAA GAGCGTCAAG AGCATTACCA	840
35	TTATGAAGAA GGGAtCaAAG rGTTgTTAGT atGTCCAaTG ArGGAAAAGA AGTTTTGCCT	900
	GACG	904
40	(2) INFORMATION FOR SEQ ID NO: 11:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 11271 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:	
50	GATTTCTAAA TCAAGATCTG TTTTACGATA ACCATTCAAA CCTTGACGTT CATCTTCTTC	60
	AGGTTGATTT TGTTGCTGTG TGTCTTTGTT GTCAGAAGTC GCTACTGTTT TTTTATTATC	120
55	TGTTTCTTTA GTCATAACAA ACGCCTCCGT TATAAAACGC TATATTTAAT GATATGTGAT	180

	TTAATAAGAC	GATTCAGCAA	GTTTTAAAGT	ATTATTTGAC	TATGTTGGAT	TAGGCATCTA	300
	GTCCTATAAT	ATCACTGACA	TTGTCAAAAT	GATGATCTTT	TAAGTAACGT	GCGATGCCTT	360
5	TGTTCATTTT	CTTAGTTAAA	CCTGGGCCTT	CAATAACAAG	TGATGAATAA	ATTTGAATAA	420
	GTGACGCACC	GTGACGCATC	ATTTTGATTG	CATCTTCAGT	ACTGAATACG	CCGCCTGTAC	480
10	СТАТААТТАА	AAATTCACCA	TTTGTTTGCT	GATAAgCATa	CTTAATCAAT	TTTAAATTAC	540
	GTTCAAATAA	TGGACGACCA	CTCAAACCGC	CTTCTTCGAC	TTTATTAGCA	GAAGTTAAAC	600
	CATCTCGTTG	TCGCGTTGTG	TTTGCTAAGA	TGATACCGTC	AAATGTCTCA	GTAATCGCTG	660
15	GTAATAGTGC	TTTTAAGCCA	TCGAAATCCA	TATCAGACGT	TAGTTTTAAA	TAAATTGGCA	720
	CTGTTACATC	ATGTTGTTTT	TTAAATGCTG	TTAAAGCTTG	GCATAACATT	GAAAATTCAT	780
	CTTTATCATG	GAAGTTTTGA	AGATTTTCAG	TATTTGGAGA	ACTGATGTTG	ACTGTGAAAA	840
20	ATGAAACGTC	GTGTTTAAAC	GTATCAATAA	CCTTTATATA	ATCTTGATAA	CGCGCTTCAT	900
	AAGGTGTCAT	TTTATTCACA	CCAACATTGA	TACCAACAGG	TACTTGATAA	GCATTTTTAC	960
	GCAAATGACT	TAGTGCTTTG	TTCATACCAA	TATTATTGAA	GCCCATTCGA	TTTATCAAGG	1020
25	CGTCATCTTC	TAATAATCTA	AACATGCGTG	GTTGAGGGTT	ACCCGGTTGA	GGTTTAGGTG	1080
	TGATACCACC	TAATTCTAAA	GCACCGAATC	CAAGGTGTTC	CAATGCTTTT	GGTACTTCGC	1140
30	AAGATTTGTC	GAAACCAGCT	GCTAAgCCAA	TTGGATTGTC	GTACGTATTA	CCTTGTATCG	1200
	TTTGTGATAA	CGTTGGATTC	TTATAAGTAA	ATAGTTTATC	GACGACTGGG	AATAAAACCG	1260
	Gaaacttttg	TaACGTTTTT	AATGCATCGA	TAGTTAGTCC	GTGTGCTTTT	TCGGGTTCGA	1320
35	TTTTGAATAA	GAAAGGTTTA	ATTAATTTGT	ACATGAGTAT	GCTCCTATTT	CATTATATTT	1380
	GAGGCTTACT	ATCCTCAACT	TAATATATGT	GAAATATATT	CTTTTAATAG	ACTAGCATTT	1440
	CCATĂCATAA	TTTCCTAGTT	AAAACTAAAA	AGTTTTGAAA	ATTGACGCAA	gtttgaataa	1500
40	CGTTTTTAAG	ATTAAATCAT	CCTAATTAGG	CAATATTATA	GTATAAAGTA	AGTAGATTGG	1560
	AAGGTGTTTG	TATGAATGAA	CAATGGTTAG	AGCATTTACC	TTTAAAAGAT	ATTAAAGAGA	1620
45	TTTCACCAGT	GAGTGGTGGT	GATGTAAACG	AAGCATATCG	AGTCGAAACA	GATACGGATA	1680
	CATTTTTCTT	ACTTGTCCAA	CGTGGACGTA	AAGAATCATT	TTATGCTGCA	GAAATTGCAG	1740
	GTTTAAATGA	ATTTGAACGT	GCAGGTATCA	CGGCACCTAG	AGTAATTGCA	AGTGGCGAGG	1800
50	TTAACGGTGA	TGCGTATTTA	GTGATGACGT	ATTTAGAAGA	AGGGGCTTCA	GGGAGTCAAC	1860
	GCCAATTAGG	GCAACTCGTA	GCTCAATTAC	ACAGTCAGCA	ACAAGAAGAA	GGCAAATTTG	1920
	GCTTCTCATT	ACCTTATGAA	GGTGGCGATA	TTTCTTTTGA	TAATCATTGG	CAAGACGATT	1980

	GGCTATGGGA	TGCCAACGAT	ATCAAAGTAT	ATGACAAAGT	GCGACGTCAA	ATTGTGGCGG	2100
_	AATTAGAAAA	GCATCAAAGT	AAACCGTCTT	TATTACATGG	TGACCTATGG	GGTGGTAATT	2160
5	ATATGTTCTT	ACAAGATGGT	CGTCCGGCGT	TATTTGATCC	AGCGCCATTA	TATGGTGACA	2220
	GAGAATTCGA	TATCGGTATT	ACAACGGTAT	TTGGTGGTTT	TACGAGCGAA	TTTTATGATG	2280
10	CGTATAATAA	ACATTATCCA	CTCGCAAAAG	GTGCATCCTA	TAGACTTGAA	TTTTATCGTT	2340
	TATATTTATT	GATGGTCCAT	TTATTGAAAT	TTGGTGAGAT	GTACCGTGAT	AGTGTTGCGC	2400
	ATTCTATGGA	TAAGATTTTA	CAAGATACAA	CAAGTTAGTT	AAGACGTTAG	ATTGAGATAA	2460
15	ATAGATAATA	TGCACAGATA	TTTTTACAAT	GAGAAGCGAT	ACAGCTGCCT	CAATAAAAAT	2520
	ATTTGTGCGT	TTTTATTGTT	GGAAAATAAA	ATTTTAATCG	CTATTGTTAA	TTTCTGTAAT	2580
	GTAAAACAAG	GTTGAGTTAC	AATAAAAGTG	ATTTTATAAC	TTTTTGTTCA	ATAAAATTCT	2640
20	AGGAATGATA	CATATTTATT	GATACAATAA	TTTTGAATAT	AATCATAAAA	CAATATTTAA	2700
	GTATAATTGA	ATGTTTGAAT	ATCATATATT	GATACAGTTT	CTAATAATTT	TAAAATAATT	2760
25	TAAATGGAGA	GAGGTGTAAA	TGATGAGTAC	AGTTCAAAGT	GATATTTTTA	AGACCAATAG	2820
25	TGCATCATCA	TCTATTAAAA	GCGCTGTTGA	AACATGTAAT	AATGTGTCGA	AACCGGATAA	2880
	AGATGAAAGT	ACAACAGTAA	GTGGAAATAA	TAATGCTCAT	AGTGTGATAG	ATGATTTGAT	2940
30	GAGTAAGAAT	CAATCTGTTG	CTGAAGCAAT	ACGAACTGCG	AGCGATAATA	TACAAAAAGT	3000
	TGGTGAGGCT	TTTGACCAAA	CTGACGTAAT	GATTGGTAAT	GAAATTGGTA	AAAATTAAAA	3060
	CGTGGTGAAA	TGATGTCGAA	TAAACTGGAT	GAAATCAATA	AAATAATCAC	AGCGAAACAT	3120
35	GAGCAAATGG	ATGACTTATA	TGATGAAAAG	CGAGAGGTTA	AAGCATTGAT	AGATGAAAGT	3180
	GATGCGCTTA	ATCATTCGAT	AGATCAATTA	TATCAACATT	TAGGTGAGCG	TTATTATAGT	3240
	AGCAÃTATGG	CTAGTCGTAT	GGAACAGTTC	CGCGATGAAT	TTCATTTTGC	GAAACGACGT	3300
40	TCAACGGAAG	CGTTATACGA	GCAGCAACAG	CAAATTCAAC	ATGGCATTCG	TAAAGTGGAA	3360
	GAAGAGATGA	TTGACTTGGA	AATGCGAAGG	AATGTTGAAA	TTGAGACGGT	GACAAAGGAG	3420
45	GAAAATAAAT	GGAAACAATA	GGAAGCATTA	TTTATTTAAA	AGAAGGTTCG	CAAAAGTTAA	3480
	TGATTATTAA	TAGAGGmCCA	aTTGTAGAAA	TTGAAAATCA	AAAGTATATG	TTTGACTATT	3540
	CTGCATGTAA	ATATCCGATT	GGTGTTGTAG	AAGATGAAAT	TTATTATTTT	AACGAGGAAA	3600
50	ATATAGATTC	AGTTATTTTT	AAAGGTTATT	CTGATCAAGA	TGAGGTTAGA	TTTCAAGAGT	3660
	TGTTTGAAAA	TATGAAACAA	AATTTGGATA	GTGAAATACA	ACGTGGAGAA	GTTACACAAC	3720
	AATAAAGAAA	TACTTTTTCT	TTATTGGGGT	GGGACGACGA	AATAAATTTT	GTAAAAATAT	3780

	ATGTCATTCA	TAATCATTTG	AACTAAACGT	AGCAGCCTTA	AAATTTTAAAA	AAAGACACAT	3900
	ACCAACTTCC	GAAATGTAGA	TGAATTCTCT	ACAATAACGG	AAGTTTTTCT	TTTAATATTG	3960
5	AAATTTCTCA	AGGATAGGTC	TATACTTTAT	AAATCGTAAT	TATTACGATT	TATAATCAAA	4020
	AACAATAACT	TGAAATAGAT	CATTGAGGGA	GTGTTAATAT	GCAACATCAT	AAAGTGGCTA	4080
10	TTATCGGTGC	CGGTGCTGCA	GGTATAGGTA	TGGCCATTAC	CTTAAAAGAT	TTCGGTATAA	4140
	CAGATGTCAT	TATTTTAGAA	AAAGGAACAG	TAGGACATTC	ATTTAAACAT	TGGCCGAAAT	4200
	CGACCCGTAC	GATCACGCCA	TCATTTACGT	CTAATGGATT	TGGCATGCCT	GATATGAATG	4260
15	CAATTTCCAT	GGATACTTCA	CCAGCATTTA	CATTTAATGA	AGAACATATT	TCCGGAGAAA	4320
	CATATGCTGA	ATATTTACAA	GTGGTTGCCA	ACCATTACGA	GCTGAATATC	TTTGAAAATA	4380
	CAGTTGTCAC	AAATATATCT	GTAGATGATG	CATATTATAC	GATTGCAACG	ACAACAGAGA	4440
20	TATATCACGC	GGATTATATC	TTTGTCGCAA	CAGGTGATTA	TAATTTCCCT	AAAAAgCCAT	4500
	TTAAATATGG	TATTCATTAT	AGTGAAATTG	AAGACTTTGA	TAACTTTAAT	AAGGGGCAAT	4560
05	ATGTGGTTAT	CGGAGGTAAT	GAAAGTGGCT	TTGATGCTGC	ATATCAACTT	GCAAAAAATG	4620
25	GCTCTGACAT	CGCACTTTAT	ACTAGCACAA	CCGGTTTAAA	TGATCCGGAT	GCTGATCCTA	4680
	GTGTTAGATT	GTCACCTTAT	ACACGTCAGC	GACTAGGTAA	TGTCATTAAG	CAAGGTGCTC	4740
30	GCATCGAAAT	GAATGTACAT	TATACAGTTA	AAGATATTGA	TTTTAACAAT	GGACAGTATC	4800
	ATATCAGTTT	TGATAGCGGA	CAAAGTGTGC	TTACACCTCA	TGAACCAATA	CTAGCAACTG	4860
	GCTTTGATGC	AACAAAAAAT	CCAATCGTTC	AACAATTATT	TGTGACAACA	AATCAAGATA	4920
35	TTAAATTAAC	AACACATGAT	GAATCGACAC	GTTATCCGAA	TATTTTTATG	ATTGGTGCAA	4980
	CAGTTGAAAA	TGATAATGCC	AAATTATGCT	ATATCTATAA	ATTTAGAGCG	CGATTTGCAG	5040
	TACTITGCACA	TCTTTTAACA	CAGCGGGAAG	GCTTACCAGC	TAAACAAGAT	GTCATTGAAA	5100
40	ATTATCAAAA	AAATCAAATG	TATTTAGATG	ATTATTCATG	TTGTGAAGTG	TCATGCACAT	5160
	GTTAGAAGTG	AAATATGATA	TGAGAACTGG	GCATTATACG	CCCATACCTA	ATGAACCTCA	5220
45	TTATTTGGTT	ATTAGTCATG	CGGATAAACT	TACCGCAACA	GAAAAAGCGA	AATTAAGATT	5280
.0	ATTAATCATA	AAACAGAAAT	TAGATATTTC	ATTGGCAGAA	AGTGTAGTTT	CTTcGCCTAT	5340
	AGCGAGTGAA	CATGTGATAG	AACAATTGAC	ACTATTTCAA	CATGAGCGAC	GACATTTAAG	5400
50	ACCTAAAATA	AGTGCGACAT	TTTTAGCCTG	GTTGTTGATA	TTTTTAATGT	TTGCATTGCC	5460
	AATCGGTATC	GCTTATCAAT	TTTCAGATTG	GTTTCAAAAT	CAGTATGTGT	CAGCATGGAT	5520
	AGAATATTTA	ACTCAAACAA	CATTGCTCAA	TCACGATATA	TTACAGCATA	TATTATTTGG	5580

	ATTGATTAGT	TTATCAACTG	CTATAATTGA	TCAAACAGGA	CTCAAATCAT	GGATGATATG	5700
_	GGCAATTGAA	CCGTCAATGT	TATGGATAGG	ATTACAAGGT	AATGATATCG	TGCCACTATT	5760
5	AGAAGGGTTT	GGATGTAATG	CAGCAGCTAT	TTCACAAGCA	GCACACCAAT	GCCATACCTG	5820
	CACGAAGACA	CAGTGTATGA	GTTTAATAAG	CTTTGGTAGT	TCTTGTAGTT	ATCAAATAGG	5880
10	TGCGACATTA	TCTATTTTTA	GTGTAGCTGG	AAAGTCATGG	CTATTTATGC	CGTACTTAAT	5940
	ATTAGTACTT	TTAGGTGGCA	TCTTACATAA	AGGATATGGT	TGAAAAAGAA	TGATCAACAA	6000
	CTTAGCGTTC	CGCTACCTTA	TGATAGGCAA	TTACATATGC	CAAATATACG	TCAAATGTTG	6060
15	CTACAAATGT	GGCAAAATAT	ACAAATGTTT	ATCGTTCAAG	CGCTACCTAT	TTTTATCACA	6120
	ATCTGTCTTA	TTGTTAGTAT	TTTATCACTA	ACGCCAATTT	TGAATGTTTT	ATCACAAATA	6180
	TTTACACCTA	TATTATCGTT	ATTAGGCATC	TCGTCAGAAT	TGTCACCAGG	GATTTTATTT	6240
20	TCAATGATTC	GAAAAGACGG	CATGCTCTTG	TTTAATTTGC	ATCAGGGCGC	CTTATTACAA	6300
	GGAATGACAG	CAACACAGTT	ACTACTACTT	GTGTTTTTTA	GTTCAACATT	TACAGCGTGC	6360
25	TCGGTCACAA	TGACGATGCT	TTTGAAACAT.	TTAGGTGGTC	AGTCAGCACT	TTAATTAAAA	6420
20	GGAAAGCAAA	TGGTGACATC	ATTGTCTTTA	GTTATTGGTG	TAGGCATCAT	TGTTAAAATA	6480
	GTAATGCTGA	TTATTTAAAA	AAAATGAACT	ATAACTGAAT	ATAGAGTCAT	GTCAGTCAAT	6540
30	AGGAGATCTA	TCTTGGAATA	TGCTATTCAT	ATGAAGTATA	AGAGGAGAGT	CGCAGATGAA	6600
	AATAGTTATT	ATAGGTGGGT	TTTTAGGTGG	CGGTAAAACG	ACTGTCTTAA	ATCATTTGCT	6660
	CGCTGAATCA	TTAAAGGAAT	CGCTGAAACC	AGCAGTCATC	ATGAATGAAT	TTGGGAAAAT	6720
35	GAGTGTTGAT	GGTGCCTTAG	TATCTGAAGA	CATACCTTTA	AGTGAACTGA	CAGAGGGGTG	6780
	TATCTGTTGT	GCAATGAAAG	CAGATGTATC	AGAACAGTTA	CATCAATTAT	ATTTAAAAGA	6840
	GCAACCAGAC	ATTGTATTTA	TTGAATGTAG	TGGGATTGCA	GAACCGGTCT	CTGTCTTAGA	6900
40	TGCTTGTTTA	ACGCCTATTT	TAGCTCCGTT	TACAACAATT	ACACATATGA	TTGGTGTAAT	6960
	AGACGCAAGC	ATGTATAAAC	ACATTAAATC	ATTCCCTAAA	GACATCCAAG	GCTTATTTTA	7020
45	TGAGCAATTA	GCATATTGTT	CTGTCTTATT	TGTTAATAAA	ATAGATTCAG	CAGATGTTGA	7080
	AACAACGAGC	AAACTATTGA	AAGATTTAGA	AGTTATTAAC	CCAGAGGCCG	ATATACAAGT	7140
	CGGTATGCAT	GGCAGCGTCA	CTTTGCCAAT	ATCAGTTAGA	CAAATGACAG	CAACTTCTGA	7200
50	CAATAAACAT	AAGTCTTTAC	ATCAAATGAT	TAATCATCAA	TTTGTGCAAT	CACCAGTCAA	7260
	ATGTACTAAA	GCAGAGTTTA	TAAAACGTTT	AGCATGCCTT	CCGTCTCATA	TTTATAGGTT	7320
	GAAAGGGTTT	ATGACATTTG	AAGACACCGC	ACATACGTAT	CTCATTCAAT	TTACACAAGG	7380

	CGGAAAGGGT	ATTTCAAAAG	AAGACTATCA	ATGTTTGGAA	CAGTAGTGTT	TTCAGTGGAA	7500
	GAGAATGGTT	AACATGCCTT	CATGTATAAT	AACGAGTTGA	TTTGAACGTT	TAAGCGTAAA	7560
5	TAAAAATAAG	CTTGGTCAGC	CATCAAATAT	AATTTGAAAA	CTGTCCAAGC	TGTTTTATTA	7620
	GAGAACAATC	AATTAACCCC	ACATATTTAA	TAATACATCA	GCAAAGCCTT	CAGGTTTTTG	7680
10	AATATAACCT	AAGTGACCGC	CTGGAATATC	TACAATAGGT	ATGCCAGTTT	CTTTATTTAT	7740
10	ATAAAAGTTA	ACATCTTGTG	GGAAGGAGCC	TCTAGAATCT	GTCCCATTTA	GTAGGGTGAT	7800
	TTTATCGCTG	TATTTTGTGA	AATCATCCAA	AGTAATATCT	GAATGCGTAT	ATTGTCTAAT	7860
15	TTCAAATTCT	GACCAGAACA	TCGTACGTTT	GTACTGTTCT	ATACGTCCTT	CTTCAGTATC	7920
	AGCAGGTTGA	GACATCATTT	TTGCATCAAT	TGGTGCGATA	TTTAATGTTT	CGCCAAATGT	7980
	TTTCATGCCT	TTTTCTAAGC	CTTCTGTTAA	AATTTGATGC	ACAATGTCAT	CATTTTTATC	8040
20	TTTCCAATAA	GTACTGTCTG	GTAAAAATGT	ATTAATTGGT	GGTTCGTGAA	ATGCAATCTT	8100
	TTTAACGACT	TCAGGGTAAT	CTTTTAACAC	ATGCATCGCA	ACGATTGAAC	CTGAACTTGA	8160
	ACCTAATATA	TAGACAGGTT	CATCACTTAA	TGACTTTGCA	AGTTCGGCAA	TGTCCTGTGC	8220
25	GTCGCGTTTG	ACACGATAAT	CACTGTCAGG	GTTTGAAGCG	GAATCAGGGA	GTGGTTCAGT	8280
	TAACTCGCTT	TCTCCATAAT	CACGACGATC	AACGGCTACA	ACAGTAAAAT	GGTCTTTTAA	8340
30	CTGTTCTGCA	AGAGGCAGAA	AAATGTCTCC	GGTACCGTTT	GCACCAGGAA	TAAAGATGAG	8400
	CACGGGTCCT	TGTCCGACTT	GGTGGTATCG	TAATTTAGCG	CCTTGTAATT	CTAAAGTTTC	8460
	CATATTCAAT	GACCTCCATT	TGTTAATTGT	TAGGTGATAA	ACCTAATAAT	TTAGCACCAT	8520
35	TTGTATAACT	TATTTTCTCT	TTTTCTTCAT	CTGTTAAACC	CAGTTCATCT	AAAAATACAC	8580
	CTAATTTTTC	AGGCTCAATA	TATGGATAAT	CAGCAGCATA	AAGAATTCTA	TCAATACCTA	8640
	CTTCTTTCTT	GACTAAATCA	AACTGTGGCT	TCGTTAACAT	GCCACTCGGT	GTGATATAAA	8700
40	AATTATTTTT	AAAGTAATAG	CTTACAGGGT	GGTTCAAATG	TTCAGCGAAT	AAAGCTTCAT	8760
	CCATACGTTC	TAAGAAGAAT	GGGATAAACT	CACCCCAATG	TCCAATAATC	ATATTTAACT	8820
45	TTGGATAACG	ATCAAAAATA	CCAGATAATA	CTAGATGTAT	TGTATGAATG	CCGACATCAA	8880
	TGTGCCAACC	ATAACCAAAA	CAAGCAAATG	TTGCCGCAGT	TACTTCAGGA	TAATTTCCTT	8940
	TATAGTATGA	TTGATAAATG	TCACTGTTAA	CTGGCGCGGG	ATGTAGATAA	ATCGGTACGT	9000
50	CTAAATTTTC	AGCTGTTTTG	AAAATAATGT	CATATTTGTC	TTGATCAAGA	AAACCATCTT	9060
	GTGCACGTCC	CATAATGAGC	GCACCTTTGA	ATCCTAAATC	ATTGATGCAA	CGTTCGAATT	9120
	CTCGCGCTGC	GGCTTCAGGC	TCATTGATAG	GTAAAGTTGC	AAAGCCTACA	AAGCGATTGG	9180

	TCTGACCAAC	CAAATTTGAA	GGAGAACCAT	TTCCATAAGA	TAAGACTTGA	ATTTGAACGT	9300
_	CITGATTATT	CATAAATTGG	ATACGTTCAT	CATGATGTGA	TAATTCGTCG	GCATTTGTAA	9360
5	AACCTGTCTT	TTTTTCAAGG	CCTTCTAACA	TTACTTTCAT	CGGTACACCT	TTAGGATCTG	9420
	CTGATATCGC	ATTCATCGTT	TCTTTTTGAA	TATCTTCAAT	GACATAATGT	TCTTCAAACG	9480
10	TAATACTTTT	CATTTACTTC	GCCTCCATAT	TGTATTGCAT	GTTTATTGCA	TCTATTGCAG	9540
	AAGCATTTTT	TATATACCTC	TAATTTCAAT	GTTTGTAACA	TAAAATTGAT	CTACCAAGGC	9600
	ATCTCTCCAT	CGCCATTAAT	AAATGTACCT	GTTGGGCCAT	CTGCACCAAT	CGTTGCTAAT	9660
15	TGAATGATTG	GCTTGATTCC	TTCAGAAACG	TGTTTGGAAT	TATTACTAAA	ATCACCAACT	9720
	AAATCAGTAT	TTGTAGCGCC	TGGATCAGCA	GCATTGATTT	GCATGTTAGG	TAATCCTTTA	9780
	GCGTATTGTA	GCGTTAGCAT	TGTTACTGCC	GATTTAGACG	AACAATAAGC	TAATGAATTC	9840
20	ACTTTAGATT	CAGCTGTTTC	GGGGTTTGTA	ACCATTCCAA	ATGAACCTAA	ACCACTTGAT	9900
	ACGTTGACGA	CAACAGGTTG	TTCAGATTTT	TCTAAGAGAG	GGACGAATGT	ATTCATCATT	9960
25	CGTACGATAC	CGAATACATT	CGTTTGATAT	ACTTCTTCAA	CGTCACGAGG	TGTCAATTTG	10020
23	GAAGGTGCTG	AAAATTGACC	AGATATACCT	GCATTGTTAA	TGAGGATATC	AAGACGGCCT	10080
	TCTTTTTCAG	CAATCATGTT	ATAAGCATTT	TTGACTGAGT	AGTCACTTGT	AACATCTAAT	10140
30	TGTACATAAT	GAACACCTAA	TTTTTGTGAT	GCTTGTTGTC	CTCTTACATC	ATTCCGAGAA	10200
	CCTATATAAA	CTTTGTAACC	CAATGCTTTA	AGTGCCTCTG	CACTTGCATA	GCCTAACCCT	10260
	TTATTGCCTC	CTGTGATTAA	CACAATTTTA	GTCATTACGT	CCCACCTCAT	CTAAATAAAT	10320
35	GTTTAATAAA	TAATTTCTGT	ACGCTTCAAT	TGAAATATGG	CGATGCTCTA	TTTGGAAGGC	10380
	AAATACACTA	GTTGATAATG	ATTGCAACAG	CATATCTGTT	TTGAAtTCGT	GTAAGTGTCG	10440
	TCATÉGCTTT	TAAATAAGTC	АТААТАААА	TCAAATAATT	CTTGATAAAA	TGCGCTTTGG	10500
40	TAAAAACGTA	ATTTATTGTT	GCCTGCTTCA	ATACATTGCA	GTAGTGCCTT	ATTATCGATT	10560
	TTAAATTGTA	AAAGATAATC	TAACGACACT	TGCATAACCT	CATAATTAGA	ATGATAGTCA	10620
45	TCTTTAATTT	GCTTAAAATG	agtgataaaa	ATATCAAGGT	CTCTTTGTAT	GACGTAGTAG	10680
	CATAAATCGC	TTTTATCTTT	GAAATGTCGA	TACAATGTCC	CCATACCGAT	ACCTAGTTCT	10740
	TTAGCAATAC	GATTCATACT	AATGTTTTCA	ACGCCTTCTT	CATCAAAAAG	TTTGTGCGCT	10800
5 0	ATTTCTTCAA	TTCGTTGCCT	ATTCTCTTTT	GCATCTTTTC	GCATGATTAC	ACCTACTTAA	10860
	AATTCTCTAA	AATTGACAAA	CGGATAACTC	TCCGTTTATT	ATAAAACGTG	TTAAGAAAGT	10920
	TAGCAATGAA	TTTGCAATAA	СТАТТАААТА	TCATAAAAGA	AAAGAGTGTT	GATAATGTCT	10980

ACCTTATCGG TTCAAATGAT TGCTGAAAAA CTGAATGTCA CTACAGAAGA TGTGGAAAAA 11100
GTATTAGCTA TGACAGCGCC ACTAGGCATT TTTAGTCATC AATTACAACG ATTTATTCAT 11160
TTAGTATGGG ATGTCAGAGA TGTAATAAAC GACAATATTA AAGGAAATGG ACAAACACCA 11220
GAACCATATA CGTATTTAAA AGGTGAAAAA GAGGACTATT GGTTTTTAAG A 11271

(2) INFORMATION FOR SEQ ID NO: 12:

10

15

20

25

30

35

40

45

50

5

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6261 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

CAACCCGTTC	AGAACAAAAT	AAAAACCGTA	CAATTTTATC	ATCTTAATGA	TTATTGTACG	60
GAAAAACTTT	TTTACATCAT	ATCTGCATGT	GCATAATCGA	TATCGGTAAA	TTTATTATAT	120
TGTTTCATAA	AATGTAACTT	AACTGTGCCT	GTTGGACCGT	TACGTTGCTT	AGCAATGATA	180
ATTTCAATTT	CACCGTTTTC	ATCATTCGTT	TGTGGCTCGA	AACCACCATC	ATCGTCATCA	240
TCTTCATCGC	CGCCACGGTT	ATAGTAATCA	TCACGGTATA	AGAATGCAAC	GATATCGGCA	300
TCTTGCTCAA	TCGAACCAGA	TTCACGAATA	TCACTCATCA	TTGGACGTTT	ATCTTGTCGT	360
TGTTCAACAC	CACGAGATAA	CTGACTTAAT	GCGATAACTG	GACATTTTAA	TTCACGGGCT	420
AATGCTTTTA	ATGTACGAGA	GATTTCAGAA	ACTTCCTGTT	GTCTGTTATC	GGACGCACGT	480
GAACCACTAC	CTTGAATCAA	CTGTAAGTAG	TCAATCACAA	TCATGTCTAA	GCCATGTTCT	540
TGCTTTAATC	GACGACATTT	AGAACGTAAA	TCATTAATTC	GAATACCCGG	TGTATCATCA	600
ATAAAAATCT	TCGTACGTGA	TAATTTACCT	ACCGCTATAG	TAAAACGACT	CCAATCTTCC	660
TCAGTCATAG	TACCCGTTCT	TAAGCGGTTT	GAGTCAACAT	TTCCAGAACT	ACAAATCATA	720
CGTGTGGCTA	ACTGATCAGC	ACCCATCTCT	AGCGAGAAAA	TACCAACTGT	ATACATATCT	780
TCATGCGTTG	CAACTTTTTG	TGCAATATTA	AGTGCGAACG	CAGTCTTACC	TACAGATGGA	840
CGCGCTGCAA	GGATAATTAA	ATCATTTCGG	TTGAACCCTG	CTGTCATTTG	GTCTAAATCT	900
CGATATCCTG	TAGGTATACC	TGGTGTTTGA	CCACTATTTT	GATCAAGCTC	TTCAGCTGTT	960
TCATACACTT	GTCCTAAGAC	GTCTCGAATG	TCTTTAAAGC	CATCGCTTTC	ACGAGAAGAT	1020
GATAGCTCTA	AAATTCGACG	TTCTGCATCA	CTTAAAATCG	CATCTAGTTC	AAGTTCATCA	1080
TTATATCCAT	CATTGGCAAT	ACTATCTGCA	GTTTGAATCA	ATCTACGTTT	TAATGCATGC	1140

	TCTGCAAGAT	ATTGCGGGCC	ACCCGCTTCA	TTCAACGTAC	CTTCCGTCGA	TAATTGATCC	1260
	ATCAATGTTA	CAACATCAAT	TTCTTTATTA	TCTTCATTTA	AGTGCATCAT	TGCACGGAAA	1320
5	ATATGTTGAT	GGGCACCCCT	ATAAAACGAC	TCAGGAAGCA	AAACTTCCTG	AGTAGTATTA	1380
	ATCAATTCTG	GATCTATAAT	AATTGAACCT	AAGACAGACT	GTTCAGCTTC	ATTGTTATGC	1440
10	GGCATTTGAT	TTTGCTCATA	CATTCTATCC	ATGAATGGTT	ACACCTCTTA	TTTCAATCCA	1500
	ACTTTATTGT	TCAACTGTGT	GTACGCGAAT	TGTACCTTCA	ACTTCTTTAT	CTAATTTAAC	1560
	AGGTACATTC	GTATATCCTA	GGGAATGAAT	TCCATTTGGT	AAATCCATTT	TACGTTTATC	1620
15	AATTTTAATA	TCATGTTGTG	CTTTTAGTGC	TTCGGCAATT	TGTTTTGTAC	TTACTGACCC	1680
	AAACAATTTA	CCACCTTCAC	CAGTTTTTGC	TGaTACTTCA	ACTTCAATGT	TTGATAACGT	1740
	TTCTTTTAAT	GCTTTAgCAT	CTTCAATTTC	TTGTTGGCGT	TCTTGTTTTG	CACGTTTTTT	1800
20	CTGTAACTCT	AATTGTTTAA	GGTTACCTGG	TGTTGCTTCT	ACAGCATAAT	TCTTTTTCAA	1860
	TAAGAAGTTA	TTTGCATAAC	CTACTGGTAC	TTCTTTAACT	TCACCTTTTT	TACCTTTACC	1920
25	TTTACCTTTA	ACATCTTGTG	TAAAAATTAC	TTTCATGCAT	CTTCACTCCT	ACTTAATTGT	1980
25	TCTGTAATTG	CTTGTTGTAA	TTGTGCTATC	GCCTCTTCGA	CTGTCACACC	TTTAAGTTGT	2040
	GTTGCCGCAT	TGGTTAAATG	TCCACCGCCA	CCAAGTGCTT	CCATTGTTAA	CTGGACATTT	2100
30	ACTGAACCGA	GTGAACGCGC	AGATATACCA	ATCAGATTAT	CTTCACGTCT	CGCAACAACA	2160
	TATGATGCTT	CAATACCTTC	TAAACTTAAC	AGTTCATCTG	CTGCTTGTGC	AACTGTTACT	2220
	GGATGATAAA	TTTTATCGTC	TGAACCATGC	GCAATGGCTA	TGCCATTATC	TTCAACTTTT	2280
35	ACAGTTCGAA	TTAATTCAGA	TCGATTAATG	TAAGTATCCA	CATCATCTTT	TAAGAAATGT	2340
	TGCGTTAAAA	TCGTATCTGC	ACCATGTGCA	CGTAAATAAC	TCGCTGCATC	GAATGTTCTT	2400
	GATCCTGTTC	GTAATGTAAA	GTTTCTTGTA	TCTACAATAA	TACCTGCATA	CATCACTGTT	2460
40	GATTCAAGAC	GTGTTAAACG	TTGTTCTGTT	GGTTGATATT	CCAGTAACTC	TGTTACCAAT	2520
	TCAGCTGTCG	AACTTGCGTA	TGGTTCCATA	TATATCAACA	ATGGATTAGA	GATGAAGCTT	2580
45	TCACCACGTC	TATGATGATC	GATAACAACT	TTACGGTTTG	CTTTATTTAA	GACATTTTCA	2640
	TCTAAAACCA	GTTCCGGTTT	ATGCGTATCA	ACAATCACTA	CGGTTGTCTT	AGATGTCATC	2700
	ATATCCCAAG	CATCATCTGA	TGTAATAAAT	CGCTCTCTTA	ACTCTGGCTT	TTTATCTATT	2760
50	TCGTTCATCA	CGCGTCGTAA	TGTTGGATCA	ATGTCAGTCT	CATTTAATAC	GATGTATGCT	2820
	TCTAAATTAT	TCATCATTGC	AAATCTAGAC	ACACCGATTG	CTGCACCAAT	TGCATCTAAG	2880
	TCAGGACGTT	TATGTCCCAT	GATAATGACT	TTGTCACCCT	CTGCAAGGAT	ATCTTTTAAC	2940

	CCATAGAAAC	GCACATTACC	ATTAATACTT	TTAATTGCAA	CTTGGTCGCC	ACCGCGTCCT	3060
	AATGCTAAGT	CTAGGCCTGA	TTGTGATAAT	TCACCTAAGT	CGATTAAATT	TTCAGTACCT	3120
5	TCACCAACAC	CGATACTTAA	TGTTAATTGG	GCACGATAAC	CAACACTTTT	TTCACGTAAT	3180
	TGACTCAAGA	TATCAAATTT	AGATTCTTCT	AAGTCAGCTA	ATATTTTTTG	ATTTAAATAG	3240
10	GCTACGAATT	GATCGGAACT	GTATCTTTTG	AAAAATATAT	TATACTCAGT	TGCCCATCGA	3300
	CTAATGACAC	GCGTTACCAT	TGAGTTGATT	TCCGAACGCT	GCGTATCATT	CATATTTTGC	3360
	GTAATCTCAT	CGTAGTTATC	TAAAAAAT	GTCGCAATGA	TTGGTTTAGA	ATTTTCATAT	3420
15	AGTTCATTTG	TTTGTACTTG	TTCAGTTATA	TCAAAGAAAT	AGAGGCAGTG	ATCATTCTCA	3480
	GAATAACGTA	CTTGGAAATG	ATACTGATTA	TATTCTATTT	CAACGGATTT	CACTCTATCT	3540
	AATTGCTTTA	AAATGTTTGG	AAATACTTCA	TTTACAGATT	CAGAAATGAC	ATTCGCTTCC	3600
20	ATATGATCTG	TCATAAATTG	GTTAACCCAT	TCGATGTGAT	CATTTTCATC	TAAAACAATG	3660
	ATACCAATTG	GTAAATGTTT	GATTGCTTTA	TTATTTGTTG	TTGAAATTTG	AGCACTCAAA	3720
	CCATCTACAT	AACTATCCAT	TTTCATTAAA	GCTTGTCTGA	ATAAAATGAT	GCTAACAATA	3780
25	ATCATCACGA	CAAGAACGAT	AGATGCAATT	AGTGCTATAA	GACTATTAAA	GATAAACCAT	3840
	ACACCCATTA	AAACAATTGC	TGTGATGATC	ATGATGACAA	ATGGTATTAG	TAAAGCTTTC	3900
30	TTAGTGGACT	GCCGATTCAT	TATTCCACCT	CTATTCACTT	TTTAGAATTA	TTTTTCATGA	3960
	TTCGCTTCAA	ATTCAAACTT	AAATCGATAA	CACCAAGTAG	TCCTACAATA	TGTGTCGTAG	4020
	GTGTCAGTAT	TGTACCGATA	ACCAATAGTA	AAATCGTTAC	TGCATTCGGC	AAACCTTTCG	4080
35	CTTTACCAAA	GAAATGAATA	ACACTTAAAC	CTTGAATATA	CATTACTAAT	GATAACACAA	4140
	GTTGGAAGTT	TAAAAGAATG	CTCTGGAACA	CACTCGGTTG	ACCTGTAAAT	AATAAACATA	4200
	TGAŢAACAAT	AATGTATATC	CATAATAAAA	TACCGCTCAT	TTGCCACGCG	AAAAGTGGCT	4260
40	TAAATACAGG	TGTAGCGATT	TTAAATTTTC	GTAAAATCGG	AAATGTAACG	ATTAAGTTAA	4320
	TTAAGACGAT	TAAAAATGTA	ATGATAATGA	TGAAACCTGG	TAATTGAACG	GTCGCTTGTC	4380
45	TAAACCCTTC	TTCTAATATT	TGGGTCATAT	TCGCATCGGC	ACCGCTCATC	GTAATCGCTT	4440
45	CATGTAATGT	TTGCTTGAAA	GGTTTTACTA	TGCTCGCTGA	TGGTGGAATC	CTTCCGAATG	4500
	TTTGTAGTAA	CATAAAAGCG	ATTAATGAAA	TTnArcTCAT	CGCTACTGTT	GTTACGTATA	4560
50	ATATTCTTTC	TTTAGACGTT	CTTTCTTTGA	GCAATTGACC	AATAATTAAA	CTTGCAATTA	4620
	AGACTAATAT	GATGGCACTT	AAAACGAAAG	TATTACCTAA	AACAGTTGTT	ATAATTACTG	4680
	TAATAAGTGC	ACTAATCCCG	AAAGATTGTA	TTGATTTATT	CCATAAAACG	ATACCTGGTA	4740

	CAAATACCAA	CGCAATCGTT	GCAATTATTG	TTGCTTTAGG	TTGTATTTTT	GAAAACACAT	4860
	AAGCCACTCC	CATATTTTTA	ACTATAGCTA	TTATTTTAAC	CTCTTTAATG	AAAATTAACA	4920
5	ATTTATAGAT	TGTATGCTTC	TATTTCATTT	AATTGAATAA	TAACTTTCAT	GTTTTATAAG	4980
	TAATTAACAT	ACTCATTTGA	ATCGCTTTTG	TGTGCTTTCA	TTTTCAACAT	GATTATTTAA	-5040
	TCCCACTACA	TAGCAATCAA	GCTTGATTTA	GATTTACAAT	ACATTTCCAC	TCTCATGTAC	5100
10	TCTAGATGTT	TTTGAATATG	ATAACTGTGA	TTTAGTGGCT	TCATTCTTTG	ААААТАТАТА	5160
	TTATTACTTA	CGCTTAAAAT	GCTTTAAATT	TAAGAAATGA	TATAAGTTAG	GTGCCCAGGT	5220
15	ACTAAAGTTT	AGTAGGAATC	CATCATGCCC	AACATTATCA	GGCACGAAGA	AATGACGATG	5280
	ATATTTAAAA	CGTTCACCTA	ATGCACGAAC	TTGATCATCC	GGATATAGCA	AATCATCTAT	5340
	GAACCCCATC	GTTAACACTT	TTGTTTCTAA	ATTTTTAAAA	ACATGCGTTA	CGTCTGTGCG	5400
20	ACCTCGGTCA	ATGTTGTGAC	TATCCAATAC	ATCTAGCAGT	GTCAGATAAC	AATTCAAATC	5460
	AAAATGTTCT	TTAAATTTAT	TACCTTGATG	TTGTTGGTAT	GCGACTACTT	CATCCGGCGT	5520
	AAAACGTTCA	TCATAACTTT	TTGATGATCG	ATATGTCAAA	AAACCTAATT	GGCGTGCAAT	5580
25	ACTTAGACCT	TCCTTACCAC	CAAGATGAAT	GGCTTGCCTT	GCAATTTCAT	TGAAAGCTCT	5640
	ACTATAAGAT	GATGTTCGAC	TTGTTGCAGC	AAGGATAATG	GCTTTATCTA	CTTCAAACTG	5700
30	TTGATTGTAG	AGTAGTTCCA	TTGCTTGCAT	ACCTCCAAGA	CTTCCCCCTA	TTAAAATATT	5760
30	AATCTTATCA	TAACCAAGGG	CTTGTATACC	TCGTTCATTC	GCTCTGACTA	TATCTCTTAA	5820
	TGTTAATTTT	TTAGGAAAAT	GAGGGTCGTT	TAAAGGTGAA	CTTGAACCGA	AAGGACTACC	5880
35	AATAACATCA	AATGTTAAAA	ATTGATAATC	GTGAATGGGT	ATATATCCCC	CATCAATAAT	5940
	TTCTCGCCAC	CAACCCGGAT	AATCATCTGT	TCCATATGTT	AAATGATTGC	CAGTTAATGC	6000
	ATGAÇAAACT	ACAACTAATG	GTTGTCCATG	ATAACCGACA	TGCTCATATC	TCAAACGCAA	6060
40	GTNATCTATG	ACTTCCCCAG	ATTCTGTAAT	AAATTCCCCT	AAATTTAAAG	TATCTACTGT	6120
	GTAATTTGTC	ATTGTTCTTT	CCTCCTTAAA	CAAAAAAACT	TCTCACCCTA	TTGAAAAGTA	6180
	AGAAGTCTTT	ATACTTATCA	TTCGAGTAAC	TCGTTGGTTT	TAGCACCGTG	CTATAAAGTC	6240
45	GGTTGCTGAA	GTATCACAGG	G				6261

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1222 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

	ATGCGATTAA	CTCTGGAAAT	ATCTTTTCCA	TATTTACGTn	TTAAATTATT	CAGCAAATTC	60
5	ATACGAGATT	CATACTCGTT	YAACACTTGT	TCGTCGAATT	CTGTATTAGC	CATTTCATCA	120
	TATAACTCAT	GTTTTGCATC	TTCTAAAATG	TAGTAAAATT	GATCAATATC	TTCTTTTAAT	180
	TTGTCATATT	TGTTTGGAAC	TATATCGTTT	ATTGTTAACA	AATGGTTGCT	TAGTTCATAT	240
10	AAACGATCAG	TGATAGCATT	TTCATCCGTT	AATGTCATAT	ATGCGTTATT	AAGCGCTAAG	300
	CTTAATTTTT	CAGAGTTTTG	AATGCGTTTA	ATATCTATTT	CAAGTTGCTC	TATTTCGCCT	360
15	TCTTTTAGAT	GTGCTTCAGA	CAATTCTTCT	AATTGGAATT	TCATTAAATC	TAAACGCTGT	420
	AGCAATGCTT	GGTCTGCTGA	TTCTAAATCT	TCTAACTCTT	GCTTTTTGGC	TTTATAATTT	480
	TGAAAAGTTT	GGTGATATTT	ATCCAACAAA	TCTTGATAAC	GTGATTCTGC	GTAATTATCC	540
20	AATAATGTTA	AATGGTATTT	TTGTTTCAAC	AAAGACTGCG	TTTCATGTTG	GCCATGAATA	600
	TCTAATAATT	CTTGCATAAC	TTTTCGTAAA	TCTTGTAAAG	TAACTGTTTG	ATTATTAATT	660
	TTACAAAGAC	TTTTACCAGA	GCTGAAAATT	TCCCGTTTAA	CTAATAAAAA	ATCTTCATCT	720
25	ACATCAATAT	CCATATTTTT	CAATATATGT	ATAGCATCTT	TACTCTCGTC	AATATCAAAT	780
	ATACCTTCGA	TGACAGCCTT	TTTTTCACCA	TGTCTTACAA	AATCAGATGA	AGCTCTCATT	840
30	CCAATTAATT	GTCCAATTGC	ATCTATAATA	ATTGACTTAC	CTGAACCCGT	TTCACCACTT	900
30	AAAACAGTTA	AACCATCAGA	AAATTGAATT	TCTAATTCTT	CAATAATAGC	AAATTGCTTG	960
	ATTGATAAGG	TTTGTAACAT	AAACTCATCG	CATCCTTATA	ACAAATTGAA	AATTCTTGAC	1020
35	TTGATTTCAT	CACTTGCCTC	TTTGCTTCGA	CAAATAATTA	AACAAGTATC	ATCACCACAA	1080
	ATTGTGCCTA	GTACTTCTTC	CCAATTGATT	TGGTCTAATA	TAGCTCCAAT	AGATTGTGCA	1140
	TTACEAGGTA	TGTTTTTAGA	ACAAGTAAAT	TATCAGTACC	ATCTATATTA	ACAAAGGAAT	1200
40	CCATTAAATA	ACGTCCCAAT	TT				1222

(2) INFORMATION FOR SEQ ID NO: 14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1021 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

TTTGTTATTA TTACHTHAAA TAATTGCATT ACTTTTACT GATGGTACAA CTTTCCATCC 60

	TTCTTTTGGC ACGACATAAT TGTCTTTATC TTGAACTAAA TATCCGCCAG ATACTGAAAC	180							
	AAACTCTTCT TCGTTACTGT CTATAGTCAT ATCAATTTCT AATAATCTTA CATTCTTCTT	240							
5	TTGTTTTAAA ATATCTAATG CTTCATCTGT AAATTTTGGT GCAATAATGA CTTCCAAAAA	300							
	GATACTATGC AATTGCTCTG CTAACTCAGG TGTTACAGCT CGGTTTAATG CAACAATTCC	360							
10	ACCAAATATT GATTGACTAT CCGCTTCATA CGCATGTTGA AATGCTTGTT CTATCGTGTC	420							
,,,	ACCGATACCA ACACCACATG GATTCATGTG TTTAACCGCA ACTGTAGCAG GTGTATCAAA	480							
	CTTTTTAACT AAAGCTAGTG TAGCATCTGC ATCTTTAATA TTGTTATAGC TTAATTGTTT	540							
15	CCCATGTAAT TGTTTAGCGC CTGCAATCGT GTGCTTAGCA TTCGAAGTTC TCACAAAATA	600							
	CGCTGATTGT TGTGGATTTT CTCCATATCT TAAAGTTTCT TTATCCCCTT TAAAGAAACG	660							
	TACAATCGCT TCATCATATT CTGCAGTATG CTCAAAAACT TTAATCATTA ATGATTGTCT	720							
20	ATATGACTCA TCTAACGAAT CGTTTCTTAA TCGCGTCAAT ACTTCTTGAT AATCTGCCGG	780							
	ATGTACAATT GTTGTTACAT GTTTATAGTT TTTAGCTGCA GCACGTAACA TTGTTGGACC	840							
	ACCAATATCA ATATTTTCAA TTGCTTCGTC CATCGTCACA TCAGGGTTTG CAACAGTTTG	900							
25	TTGGAATGGA TATAAATTAA CTACTACCAT ATCAATTAAA TCTATATGTT GTTCTGATAA	960							
	TTCATTTAAA TGCTGCGGTT TATTTCGATC AGCTAAAATG CCACCATGAA CAGCCGGATG	1020							
30	T	1021							
00	(2) INFORMATION FOR SEQ ID NO: 15:								
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3759 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear								
	<u>g</u>								
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:								
	TCATTCACTC CTAAATTGTT ATTACACTAT TACACATAGC TAATCATCAA TGTGAAATCA	60							
	CCTTCAAAGA CACTATCCAA ATCTTCAGAA GTCAAAATAA AGTTTGTACC AGTAGTCAGT	120							
45	TTGAAAATTT CACCATCGAC AATCATTTGC CCTTCGCCTT CCAACACTGT AACTAAACAG	180							
	AACTCTCTAG GCTTCATATA ATTTAACGTG CCAGAAATTT CCCATTTAAC CAATGTAAAG	240							
50	AAATCATTCG ATACAATGTG TGTACACTTA TGGTTTTCAA TAATTTCGCT TTCAGGCAAA	300							
	ATATTAGGTA ATGGTGCATT GTACTGAATA ACGTCTAAAG CTTTTTCAAT ATTTAACGGT	360							

5**5**

420

CTATCATTAT ATTGATTATC TTGACGATTG AAATCATAAA GTCTATATGT AATGTCTGAC

	ATAAAAtAGa	ATTCYCCAGG	kTTTACtTTA	AtatATCyAA	gTAtCGaCtC	tATCGTTCCG	54
	TGTTGAACAT	GATTCGCAAC	TTCTTCTCTA	GACTCTGCTA	ATGTCCCLAT	AACTATTTCT	60
5	GCATCTTCTT	CTGCATCTAT	AATATACCAA	CATTCAGATT	TGCCATATTG	CCCgTTTTCA	66
	TGCTCATAAG	CATAAGAATT	ATCAGGGTGC	ACATGAATAG	AAAGTGATTC	TCTTGCATCC	72
10	ACTATTTTAG	TTAGAAGCGG	AAAATCTTTG	CTTGGGAAAT	CACCAAACAA	TTCACGATGT	78
70	TCTGACCAAA	TACGGTCTAA	TGTTTGACCT	TGATATGGTC	CATTAATAAT	CTCGCTCGTA	84
	CCATTTGGAT	GTGCTGACAC	ACACCAACAT	TCCCCCAGTT	GTATCATTGT	CTAATTGATA	90
15	TCCAAACTCA	CTTAGACGTT	GACCGCCCCA	TAATTTTGTT	TTTAAAATTG	GTTGTAAAAA	96
	TAATGGCATT	GTTGCACCTC	CATTGTGATT	AAGTAAGCAA	TAGAACTCTG	ATGTTGTTGT	102
	TCCATTATAT	TTTGATTTTG	TTCTCATTTA	CATCGTATTA	TTAACTTCCA	CATTTCAAAT	108
20	TAACTATTAG	TGATTGTACC	ATATTTACTA	ACATTGCAGT	ACTGCCAATT	AAAAGnGCTT	114
	CACTTAAATT	TACAGTACTT	TAACATTTTC	AAAAATTTAT	AGCATAGAGA	TTATATCTCT	120
	CTTACATTTG	TACATATTTC	CCTTTAAATT	TACTCGCCCA	TTATACCAAT	TAATAAACAA	126
25	CTTTAATAGT	TGTGCCATAC	ATTGTTCAAA	TTCTTTGTAA	AACGCATAGA	CAATACGTAC	132
	TTATTCATAC	TTATAATTCA	TCATTTTCAA	AAAATAACGA	GTTACGAAAA	AGTAACCCGC	138
30	TTCAAATCAT	ATTTACTATC	CTTATTAATC	CGTTTCATTT	TCAAATTGAG	TTAAAGCATC	144
	TTTAATGTCC	TGATCACCAC	TAATAATTTG	AAACTCTTGG	TGATTAAAAT	GATTGGATGT	150
	GACAATTTCT	TTTAATACTG	TCGCAACATC	TTCTCTAGGA	ATTTCACCTT	TACCATCAAA	156
35	ATATTGTGCA	GCTTCTATCT	TTCCAGATCC	TGCTGCATTT	GTAAGTGCCC	CTGGATGTAA	162
	AATTGTATAA	TTCAAACCTG	naacgtctta	AATAGTCATC	AGCGTAATGT	TTAGCTATTG	168
	TATATGGCTT	TAAATCACCG	CTATCATCAA	AAGCCTGACG	TCTCGAATCA	TATGTTGAAA	174
40	CCATGACATA	GTGTTTAATA	TTGGCCTCTT	TACTCGCAAT	CATTGATTTA	ACAGCACCAT	180
	CTAAATCGAC	AATAATTGTT	TTATCTGCAC	CCGTGTTCCC	TCCAGAACCT	ACTGAAAAGA	186
	TAACTTTATC	GAATGGTTTA	AACGTCTCAG	TTAAAGTCTC	TATTGAATCA	TTTTCAACAT	192
45	CAACAAGAAT	TGCTTTCATA	CCTTGTGATT	TTAACGCATT	AAGTTGATCT	GATTGCCTAA	198
	CACCAGCAGT	AAATGGTACA	TTTTCTTTTG	CTAATTGTTG	CACTAGTAAC	GAACCTACAC	204
50	CGCCATTAGC	ACCTATAACC	AAAATATTCA	TTTACAACAC	TCTCCTATKT	ATTATTCTCT	210
J.	ATGCCATACC	ACTTTATGAG	ATATGTAAAA	CTTGTTACAA	CTATAAAAAT	CAATTGACAT	216
	ACTACTGGGA	ACGTATTAAA	TTAATATATG	AACAAATATT	CATATGAAAG	GATTGTCATA	222

	tCaAGGCATT	AGCGATTACA	ATCGAATACG	TATCATGGAA	TTGTTATCaG	TCAGCGAAgC	2340
	AAGTGTTGGT	CACATTECAC	ATCAATTGAA	TTTATCTCAA	TCAAATGTCT	CGCACCAATT	2400
5	AAAATTACTT	AAAAGTGTGC	ATCTTGTGAA	AGCAAAACGA	CAAGGCCAAT	CAATGATTTA	2460
	TTCATTAGAT	GACATCCACG	TAGCAACTAT	GTTAAAGCAA	GCCATACATC	ACGCGAATCA	2520
10	TCCTAAAGAA	AGTGGGTTAT	AATATGTCTC	ATTCACATCA	TCATCATGAC	CATATGCATA	2580
	GTCATGTAAC	TACAAATAAT	AAGAAAGTAT	TGTTTATATC	GTTTTTAATA	ATCGGTCTAT	2640
	ATATGTTTAT	CGAAATCATC	GGCGGTCTCC	TTGCTAACAG	CTTGGCATTA	CTATCTGACG	2700
15	GTATCCATAT	GTTTAGCGAC	ACATTCTCAT	TAGGTGTTGC	ACTTGTCGCA	TTTATTTATG	2760
	CTGAAAAGAA	TGCCACAACT	ACAAAAACAT	TTGGTTATAA	ACGTTTCGAA	GTACTCGCAG	2820
	CGTTATTTAA	CGGTGTAACG	CTTTTTGTAA	TAAGTATTTT	GATTGTTTTT	GAAGCGATTA	2880
20	AACGTTTCTT	TGTTCCTTCT	GAAGTTCAAT	CAAAAGAAAT	GTTAATCATT	AGTATTATCG	2940
	GTTTAATTGT	CAATATCGTT	GTTGCATTCT	TTATGTTTAA	AGGCGGCGAC	ACTTCACACA	3000
	ATTTAAATAT	GCGTGGTGCT	TTTCTACATG	TTATCGGAGA	CTTATTAGGT	TCAGTTGGCG	3060
25	CCATTACTGC	AGCTARTTTA	ATTTGGGCAT	TTGGATGGAC	AATCGCCGAT	CCTATCGCAA	3120
	GTATTTTAGT	TTCCGTTATT	AAAAATTTTA	GTGCTTGGGG	TATCACAAAA	TCTTCAATTA	3180
30	ACATTTTAAT	GGaAGGCACA	CCAAGTGATG	TTGATATAGA	TGAAGTTATA	ACTACTATTA	3240
30	AAAAGGATTC	ACGAATACAA	AGTGTGCATG	ATTGCCATGT	TTGGACAATT	TCAAATGATA	3300
	TGAATGCATT	GAGTTGTCAT	GTTGTTGTAG	ACCATACATT	GACAATGAAA	GAATGTGAAT	3360
35	TATTATTAGA	AAaCATTGAG	CATGATTTAT	TACATTTAAA	TATTCACCAT	ATGACTATTC	3420
	AATTAGAAAC	GCCTAATCAC	AAACATGATG	AATCGATTAT	ATGTTCAGGA	ACACATAGTC	3480
	ATTCĀCATAA	CCATCATGCT	CATCATCACG	CGCATGTACA	TTAATAATTT	TAACCTACTG	3540
40	CCATTGCATC	GATTAAACTT	TTCAATGGCA	GTAGGTTTTT	TATGTCTTTA	TGGCGACTTG	3600
	TTTGGTCTTT	GATGATGCAA	TGTTTATTAA	CAAATTTTCA	ACTATTATTT	CTTACATTAG	3660
	TCATATTTT	GACAATTTAC	TATTATAATT	CTCTAACTTT	AGTCACTTTA	ATTAATTTT	3720
45	ATTAGATATT	AATATGAAAA	TAACGTGTTT	TTTGTTATT			3759

(2) INFORMATION FOR SEQ ID NO: 16:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 13086 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:

	TAATTATCGC	GCATAACAAA	ACATTAGCAG	GACAATTATA	TAGTGAGTTT	AAAGAATTTT	60
5	TTCCTGAAAA	CAGGGTGGAA	TACTTTGTAA	GTTACTATGA	TTATTATCAn	CCAGAGGCAT	120
	ACGTACCGTC	TACTGACACT	TTTATTGAAA	nAGATGCCTC	AATCAnTGAT	GAAATTGATC	180
	AACTACGACA	TTCTGCTACA	AGTGCATTAT	TTGAACGCGA	TGATGTAATT	ATTATTGCTA	240
10	GTGTAAGTTG	TATATATGGT	TTAGGTAATC	CTGAAGAATA	TAAAGATTTA	GTAGTAAGTG	300
	TTCGAGTTGG	TATGGAAATG	GATAGAAGTG	AATTACTTAG	AAAACTTGTC	AGATGTGCAA	360
15	TATACACGAA	ATGACATCGA	TTTcCAACGA	GGAACGTTTC	GAGTGCGTGG	TGATGTAGTG	420
	GAAATATTCC	CAGCCTCTAA	AGAAGAACTT	TGTATAAGGG	TTGAGTTTTT	CGGCGATGAG	480
	ATTGACCGTA	TCCGAGAAGT	TAACTACCTA	ACAGGTGAAG	TGTTGAAAGA	AAGAGAACAT	540
20	TTTGCGATAT	TCCCAGCTTC	TCACTTCGTA	ACACGTGAAG	AAAAGTTGAA	AGTTGCGATT	600
	GAACGTATTG	AAAAAGAATT	GGAAGAACGA	TTGAAAGAAT	TACGAGATGA	GAATAAATTA	660
	CTAGAAGCGC	AAAGGTTAGA	ACAGCGTACC	AACTATGATT	TAGAAATGAT	GCGAGAGATG	720
25	GGATTCTGTT	CAGGAATTGA	AAACTATTCC	GTACATTTAA	CTTTGCGACC	ACTGGGTTCG	780
	ACACCATATA	CTTTATTGGA	TTACTTTGGC	GATGATTGGT	TAGTAATGAT	TGATGAATCA	840
	CATGTGACAT	TACCGCAAGT	TCGAGGCATG	TATAACGGAG	ACAGAGCGCG	TAAACAAGTT	900
30	TTGGTGGATC	ATGGGTTTAG	ATTACCGAGT	GCATTAGATA	ACCGTCCACT	TAAATTTGAA	960
	GAATTTGAAG	maaagacaaa	ACAACTTGTG	TATGTATCTG	CAACGCCTGG	ACCATACGAA	1020
05	ATTGAACATA	CGGATAAGAT	GGTTGAACAA	ATTATTCGTC	CTACTGGTTT	ACTGGATCCT	1080
35	AAGATTGAGG	TTAGACCTAC	TGAAAATCAA	ATTGACGATT	TATTAAGTGA	AATTCAAACA	1140
	AGAGTGAGCG	TAATGAACGC	GTACTTGTTA	CAACGCTCAC	TAAAAAGATG	AGTGAAGATT	1200
40	AACCACATAC	ATGAAAGAaG	CGGGTATTAA	aGTtAATTAT	CTGCATTCAG	AAATCAAGAC	1260
	ATTAGAACGA	attgaaataa	TTAGAGACTT	ACGAATGGGT	ACATATGATG	TTATCGTAGG	1320
	TATTAATTTA	TTAAGAGAGG	GTATTGATAT	ACCAGAAGTT	TCTCTAGTTG	TCATATTAGA	1380
45	TGCAGATAAA	GAAGGGTTTT	TACGTTCTAA	CCGCTCATTA	ATTCAAaCAA	TAGGTAGAgC	1440
	TGCGCGTAAC	GATAAaGGTG	AAGTCATTAT	GTATGCCGAT	AAAATGACTG	ATTCGATGAA	1500
	GTATGCAATT	GATGAGACAC	AACGTCGTCG	AGAAATACAG	ATGAAACATA	ATGAAAAACA	1560
50	TGGTATTACA	CCTAAAACAA	ттаатааааа	AATACATGAT	TTAATTAGTG	CTACTGTTGA	1620
	AAATGACGAA	AATAATGACA	AAGCACAAAC	TGTGATACCT	AAGAAGATGA	CGAAAAAAGA	1680

	TTTCGAGAAA	GCTACAGAAT	TAAGAGATAT	GTTATTTGAA	TTAAAAGCAG	AAGGGTGACA	1800
	AGTAAATGAA	AGAACCATCC	ATAGTAGTAA	AAGGTGCTCG	TGCGCATAAC	TTGAAAGATA	1860
5	TTGATATCGA	ACTACCTAAA	AATTAAATTAA	TTGTTATGAC	AGGTTTATCT	GGGTCAGGTA	1920
	AATCGTCATT	AGCATTCGAT	ACTATATATG	CTGAAGGACA	ACGACGTTAT	GTTGAATCAT	1980
	TAAGTGCCTA	TGCGCGTCAA	TTTTTAGGCC	AAATGGACAA	ACCAGATGTT	GATACAATTG	2040
10	AAGGATTATC	GCCAGCAATT	TCAATAGATC	AAAAAACAAC	AAGTAAAAAT	CCAAGATCAA	2100
	CTGTAGCAAC	AGTAACAGAA	ATATATGATT	ATATACGTTT	GTTATATGCA	CGTGTTGGTA	2160
15	AACCTTACTG	TCCAAATCAC	AATATAGAAA	TTGAATCGCA	AACAGTACAA	CAAATGGTTG	2220
	ACCGCATTAT	GGAATTAGAG	GCACGTACAA	AGATTCAATT	ATTAGCACCT	GTCATCGCTC	2280
	ATCGTAAAGG	TAGTCATGAA	AAGCTAATCG	AAGATATTGG	TAAAAAAGGT	TATGTACGTT	2340
20	TAAGAATCGA	TGGCGAAATT	GTTGATGTAA	ATGATGTACC	TACTTTAGAT	AAGAACAAGA	2400
	ATCATACAAT	AGAAGTTGTT	GTAGACCGAT	TAGTTGTTAA	AGATGGAATT	GAAACACGAC	2460
	TAGCTGACTC	TATAGAAACT	GCCTTAGAGC	TTTCAGAAGG	ACAATTAACA	GTCGATGTCA	2520
25	TTGACGGGGA	AGACCTTAAG	TTTTCAGAAA	GCCATGCTTG	TCCTATATGT	GGATTTTCAA	2580
	TCGGAGAGTT	AGAACCAAGA	ATGTTTAGCT	TTAACAGTCC	TTTTGGTGCT	TGTCCGACAT	2640
	GTGATGGCTT	AGGCCAAAAG	TTAACAGTCG	ATGTAGACTT	GGTTGTTCCC	GACAAAGATA	2700
30	AGACGCTAAA	CGAAGGTGCA	ATAGAACCTT	GGATACCGAC	GAGTTCTGAT	TTTTATCCAA	2760
	CATTGTTAAA	ACGTGTTTGT	GAAGTTTATA	AAATCAATAT	GGATAAACCT	TTTAAAAAGT	2820
35	TAACAGAACG	TCAACGTGAT	ATTTTATTGT	ATGGTTCTGG	TGACAAAGAA	ATTGAATTTA	2880
33	CATTTACACA	ACGTCAAGGT	GGTACTAGAA	AACGAACAAT	GGTTTTCGAG	GGTGTAGTTC	2940
	CTAATATAAG	TAGACGATTC	CATGAATCTC	CTTCAGAATA	TACACGTGAA	ATGATGAGTA	3000
40	AATATATGAC	TGAACTACCT	TGCGAAACTT	GTCATGGAAA	GCGATTGAGT	CGTGAAGCkT	3060
	TATCTGTTTA	TGTAGGTGGT	TTAAATATTG	GTGAAGTAGT	CGAATATTCA	ATCAGTCAAG	3120
	CGCTGAACTA	ттатааааас	ATTGATTTGT	CAGAACAAGA	TCAAGCGATT	GCAAATCAAA	3180
45	TATTGAAAGA	AATTATTTCC	CGACTCACTT	TTTTAAATAA	TGTGGGACTT	GAATATTTAA	3240
	CGTTAAACAG	AGCTTCAGGT	ACACTTTCAG	GTGGTGAAGC	ACAACGTATT	CGATTAGCAA	3300
	CGCAAATTGG	GTCGCGTTTG	ACTGGTGTCT	TATATGTATT	AGATGAGCCA	TCAATTGGAC	3360
50	TGCATCAAAG	AGATAATGAT	CGATTAATTA	ATACACTTAA	agaaatgaga	GATTTAGGAA	3420
	ATACTTTAAT	TGTAGTTGAA	CACGATGATG	ATACAATGCG	TGCGGCTGAT	TACTTAGTGG	3480

	AGGTAATGAA	AGATAAAAAA	TCATTAACAG	GACAATACTT	GAGTGGTAAG	AAACGTATTG	3600
	AAGTACCTGA	ATATCGCAGA	CCGGCTTCAG	ATCGTAAAAT	TTCTATACGT	GGAGCTAGAA	3660
5	GCAACAATCT	TAAAGGGGTT	GATGTGGACA	TACCACTATC	AATCATGACG	GTTGTTACAG	3720
	GTGTATCAGG	TTCTGGTAAA	AGCTCATTAG	TAAATGAAGT	ATTATACAAA	TCATTAGCTC	3780
	AAAAAATTAA	ТАААТСТААА	GTAAAGCCAG	GATTGTACGA	TAAGATTGAA	GGTATTGATC	3840
10	AACTTGATAA	AATTATTGAT	ATTGATCAAT	CACCAATAGG	TAGAACGCCA	CGCTCTAATC	3900
	CAGCAACATA	TACTGGTGTG	TTTGATGATA	TACGTGATGT	GTTTGCGCAA	ACAAATGAAG	3960
15	CTAAAATTCG	AGGATATCAA	AAAGGCCGTT	TTAGTTTTAA	TGTAAAAGGT	GGACGCTGTG	4020
	AAgcTTGTAA	AGGTGACGGT	ATTATTAAAA	TTGAAATGCA	TTTTTTACCT	GATGTTTATG	4080
	TTCCTTGTGA	AGTGTGTGAT	GGTAAACGAT	ATAATCGTGA	GACACTAGAG	GTTACTTACA	4140
20	AAGGTAAAAA	TATTGCTGAC	ATTTTAGAAA	TGACTGTTGA	AGAAGCAACA	CAATTTTTTG	4200
	AAAATATTCC	TAAGATTAAG	CGCAAGTTAC	AAACACTAGT	TGATGTTGGT	CTTGGATACG	4260
	TCACATTAGG	TCAACAAGCT	ACAACGTTAT	CAGGTGGTGA	GGCTCAACGT	GTGAaacttg	4320
25	CATCTGAACT	TCATAAACGT	TCAACTGGTA	AATCTATTTA	TATCCTAGAT	GAACCGACAA	4380
	CAGGGTTACA	TGTTGACGAT	ATTAGTAGAT	TATTAAAAGT	ATTAAACCGA	TTAGTTGAAA	4440
	ATGGTGATAC	TGTTGTAATT	ATTGAACATA	ACCTAGATGT	TATCAAAACA	GCAGACTATA	4500
30	TTATAGACTT	AGGTCCTGAA	GGTGGTAGTG	GCGGTGGTAC	TATTGTTGCG	ACTGGCACAC	4560
	CCGAAGATAT	TGCTCAGACA	AAGTCATCAT	ATACAGGAAA	GTATTTAAAA	GAAGTACTTG	4620
25	AACGAGATAA	ACAAAATACT	GAAGATAAAT	AAGATTAAAA	GAAGTGAAGG	ATGTTATAAA	4680
35	TTTATCCTTC	GCTTCTTTTT	ATTAATTTAG	TAATGAATAG	TAGAAAGAAA	AGATGCGTAA	4740
	AAAGĀATTAT	GTTAAGATAG	GGTCAATCTA	GAGTAGTTAA	ACATAAATCG	AACTGGGAGT	4800
40	GGGACAGAAA	TGATAAAGAA	TCACTAATGA	TTTATTATGT	AGTGGTTCTT	TGTCATTAGC	4860
	CACAGCTATT	GTGTACTTAA	AAATAGGaat	GCaTgAGTGC	AACTCATGCA	TAAGAAATAC	4920
	TAATTTCTAA	AGAAAAAGTA	TTTCTTTATG	TTGGGGCCCC	GCCAACTTGC	ATTGTTTGTA	4980
45	GAATITCTIT	TCGAAATTCT	TTATGTTGGG	GCCCCGCCAA	CTTGCATTGT	TTGTAGAATT	5040
	TCTTTTCGAA	ATTCTTTATG	TTGGGGCCCC	GCCAACTAAT	TCCAATATAT	CATTGTAGAG	5100
	CTTAGGTCAT	TGATTTTTGG	CTCGGACTTT	TATGGCGATA	TGAACCATGT	AAATTAAGCA	5160
50	AGCAATAAAT	TAATGATTGA	TATTGACTTG	ТААААТААТА	ACAATAATGA	ACAATTAATA	5220
	TTTATTTTAG	CTTTTCAATG	TAGATTGGTG	TTATATTTT	GATATGATAA	GAAGAGATGT	5280

	ACATTAAAGT	TAGATTTAAT	CGCTGGTGAA	GAAGGACTAT	CGAAGCCAAT	TAAAAATGCT	5400
	GATATATCAA	GACCGGGCTT	AGAGATGGCA	GGTTATTTTT	CACATTATGC	GTCAGATAGA	5460
5	ATACAACTAT	TAGGAACAAC	GGAACTATCG	TTTTACAATT	TATTACCAGA	TAAGGATCGC	5520
	GCAGGTCGTA	TGCGTAAACT	ATGCAGACCA	GAAACGCCTG	CAATTATTGT	GACACGTGGA	5580
	TTGCAGCCAC	CAGAAGAATT	AGTTGAAGCT	GCAAAAGAAT	TAAATACCCC	ACTTATAGTT	5640
10	GCTAAAGATG	CGACTACAAG	TTTAATGAGT	CGCTTAACAA	CGTTTTTAGA	GCATGCACTT	5700
	GCAAAGACGA	CATCTTTACA	TGGTGTTTTA	GTAGATGTTT	ACGGTGTTGG	TGTACTAATT	5760
15	ACCGGTGATT	CAGGAATAGG	TAAAAGTGAG	ACTGCGTTGG	AATTAGTTAA	ACGTGGGCAT	5820
	AGATTAGTAG	CAGATGATAA	TGTAGAAATA	CGTCAAATTA	ATAAAGATGA	ACTAATAGGG	5880
	AAACCACCAA	AGTTAATAGA	ACATCTATTA	GAAATACGTG	GACTAGGTAT	TATCAATGTT	5940
20	ATGACTTTAT	TTGGCGCGGG	TTCAATATTA	ACTGAAAAAC	GAATTAGATT	AAATATTAAT	6000
	TTGGAAAACT	GGAACAAGCA	AAAGTTATAT	GACCGCGTAG	GTCTTAATGA	AGAGACGCTA	6060
	AGTATTTTAG	ATACTGAAAT	CACTAAAAAA	ACAATACCTG	TAAGACCTGG	TAGAAATGTT	6120
25	GCGGTAATTA	TTGAGGTCGC	TGCAATGAAC	TATCGATTAA	ATATCATGGG	CATTAACACG	6180
	GCCGAAGAAT	TTAGTGAAAG	ATTAAATGAA	GAAATTATCA	AGAACAGTCA	TAAGAGTGAG	6240
	GAGTAGGTTG	AATGGGTATT	GTATTTAACT	ATATAGATCC	TGTGGCATTT	AACTTAGGAC	6300
30	CACTGAGTGT	ACGATGGTAT	GGAATTATCA	TTGCTGTCGG	AATATTACTT	GGTTACTTTG	6360
	TTgCACAACG	TGCACTAGTT	AAAGCAGGAT	TACATAAAGA	TACTTTAGTA	GATATTATTT	6420
25	TTTATAGTGC	ACTATTTGGA	TTTATCGCGG	CACGAATCTA	TTTTGTGATT	TTCCAATGGC	6480
35	CATATTACGC	GGAAAATCCA	agtgaaatta	TTAAAATATG	GCATGGTGGA	ATAGCAATAC	6540
	ATGGTGGTTT	AATAGGTGGC	TTTATTGCTG	GTGTTATTGT	ATGTAAAGTG	AATTTAA	6600
40	ACCCATTTCA	AATTGGTGAT	ATCGTTGCGC	CAAGTATAAT	TTTAGCGCAA	GGAATTGGAC	6660
	GCTGGGGTAA	CTTTATGAAT	CACGAGGCAC	ATGGTGGATC	GGTGTCACGC	GCTTTTTTAG	6720
	AACAATTACA	TTTGCCTAAT	TTTATAATAG	AAAATATGTA	TATTAACGGC	CAATATTATC	6780
45	ATCCAACATT	CTTATATGAA	TCCATTTGGG	ATGTCGCTGG	ATTTATTATC	TTAGTTAATA	6840
	TTCGTAAACA	TTTAAAATTA	GGAGAAACAT	TCTTTTTATA	TTTAACTTGG	TATTCAATTG	6900
	GTCGATTCTT	TATAGAAGGA	TTACGTACAG	ATAGCTTAAT	GCTCACAAGT	AATATTAGAG	6960
50	TTGCACAATT	AGTATCAATT	CTTTTAATTT	TAATAAGTAT	AAGTTTAATT	GTATATAGAA	7020
	GGATTAAGTA	TAATCCACCG	TTGTATAGCA	AAGTTGGGGC	GCTTCCATGG	ССРУСУУУУ	7080

	TTATGGCGTG	TATACCGTCT	TGTTAAATTT	TCGAAAGTTT	TTAAGAATGT	AATTATCATT	7200
	GAATTTTCGA	AATTTATTCC	AAGTATGGTA	CTGAAAAGAC	АТАТАТАТАА	ACAACTTTTA	7260
5	AATATTAATA	TCGGTAATCA	ATCGTCGATA	GCTTATAAAG	TAATGTTAGA	TATTTTTTAC	7320
	CCAGAACTGA	TTACGATTGG	TAGTAACAGT	GTTATTGGTT	ACAATGTAAC	AATTTTGACG	7380
	CATGAAGCAT	TAGTTGATGA	ATTTCGTTAT	GGACCAGTGA	CGATAGGATC	TAACACTTTG	7440
10	ATTGGTGCAA	ATGCTACCAT	TTTACCCGGT	ATAACGATTG	GTGACAATGT	AAAAGTTGCA	7500
	GCTGGTACGG	TTGTTTCAAA	AGATATACCG	GATAATGGAT	TTGCATATGG	CAACCCTATG	7560
15	ТАТАТАААА	TGATTAGGAG	GTGACAATTT	TATGGCGCAA	AAGAATAATA	ATGTAATTCC	7620
	AATGACTTTT	GATGATGCAT	TTTATCGTAA	AATGGCTAAA	CAGAAGTTTA	AACAAAGAGA	7680
	ATATAAACGA	GCTGCTGAAT	ACTTTGAAAA	AGTGTTAGAA	TTGTCACCTG	ATGATCTGGA	7740
20	AATTCAAATT	GATTATGCAC	AATGTCTAGT	GCAACTTGGT	ATTGCTAAAA	AAGCAGAACA	7800
	TTTATTTTAT	GACAATATTA	TTTATAATAG	GCATCTAGAA	GATAGCTTTT	ATGAATTGAG	7860
	TCAGCTCAAC	ATTGAAGTTA	ACGAACCAAA	CAAGGCATTC	TTGTTTGGTA	TTAATTATGT	7920
25	TATTGTTAGC	GACGACCAAG	ATTATAGAGA	TGAATTAGAT	CAAATGTTTG	ATGTGAAATA	7980
	TCAAAGTGAA	GAACAAATTG	AACTTGAAGC	TCAATTGTTT	GTAGTTCAAA	TACTATTCCA	8040
	ATATCTTTTT	TCTCAAGGTC	GATTAAAAGA	TGCAAAGAAT	TATGTCTTAC	ATCAACCACA	8100
30	AGAAGTTCAA	GATCATCGTG	TAGTACGTAA	TTTATTGGCA	ATGTGTTATT	TATATCTCGG	8160
	TGAATATGAT	ACGGCTAAAG	CATTGTACGA	aGCACtATTA	CAAGAGGATA	GTACaGATAT	8220
25	ATATGCATTA	TGCCATTATA	CTTTGCTACT	TTATAACACT	AAGGAAAATG	AACAATATCA	8280
35	ATATTATA	AAAATATTAA	ACAAAGTTGT	ACCTATGAAT	GACGATGAAA	GTTTTAAATT	8340
	AGGTATTGTA	TTAAGTTATT	TAAAGCAGTA	TCGTGCATCA	CAACAATTGT	TGTACCCTTF	8400
40	АТАТААААА	GGGAAATTTT	TATCAATTCA	AATGTACAAT	GCTTTAGCAT	ATAATTATTA	8460
	TTATTTAGGT	GAAGAAGACG	AAAGTCATTA	CTACTGGGAT	AAATTGAAGC	AAATTTCTAA	8520
	AGTGGAAATT	GGACATGCGC	CTTGGGTAAT	TGAAAATAGC	AAAGAAGTTT	TTGACCAACA	8580
45	TATTTTGCCA	TTACTTCAAA	GTGATGACAG	TCATTATCGT	TTATATGGTA	TTTTTTTATT	8640
	GGATCAATTA	AATGGTAAAG	AAATTGTGAT	GACGGAAAGT	ATTTGGCAGG	TTTTGGAAAA	8700
	TCTAAATAAT	TATGAGAAAT	TGTATTTAAC	GTATTTAGTT	CAAGGTTTAA	CGCTCAATAA	8760
50	ATTAGACTTC	ATTCATCGCG	GCTTATTAAC	GCTTTACCAT	AATGAATTAT	TTGTAAGTGA	8820
	AAATGATGTA	ATGGTTGCAT	GGATTAATCA	AGGTGAACTC	ATAATTGCTG	AAAAAGTAGA	8880

	TCGAAACGTT	ACAAAGAAGC	AAATTACAAC	ATGGTTAGGC	ATAACACAAT	ATAAACTGAA	9000
	CAAAATGATT	GAATTTCTCT	TGAGCATATA	GATTTATGAA	AAGTTAGATT	TATTATATAA	9060
5	TGCGCATAAT	GATTAATAAT	GAGGAGGCGT	TAATAAAATG	ACTGAAATAG	ATTTTGATAT	9120
	AGCAATTATC	GGTGCAGGTC	CAGCTGGTAT	GACTGCTGCA	GTATACGCAT	CACGTGCTAA	9180
	TTTAAAAACA	GTTATGATTG	AAAGAGGTAT	TCCAGGCGGT	CAAATGGCTA	ATACAGAAGA	9240
10	AGTAGAGAAC	TTCCCTGGTT	TCGAAATGAT	TACAGGTCCA	GATTTATCTA	CAAAAATGTT	9300
	TGAACACGCT	AAAAAGTTTG	GTGCAGTTTA	TCAATATGGA	GATATTAAAT	CTGTAGAAGA	9360
15	TAAAGGCGAA	TATAAAGTGA	TTAACTTTGG	TAATAAAGAA	TTAACAGCGA	AAGCGGTTAT	9420
,,	TATTGCTACA	GGTGCAGAAT	ACAAGAAAAT	TGGTGTTCCG	GGTGAACAAG	AACTTGGTGG	9480
	ACGCGGTGTA	AGTTATTGTG	CAGTATGTGA	TGGTGCATTC	TTTAAAAATA	AACGCCTATT	9540
20	CGTTATCGGT	GGTGGTGATT	CAGCAGTAGA	AGAGGGAACA	TTCTTAACTA	AATTTGCTGA	9600
	CAAAGTAACA	ATCGTTCACC	GTCGTGATGA	GTTACGTGCA	CAGCGTATTT	TACAAGATAG	9660
	AGCATTCAAA	aatgataaaa	TCGACTTTAT	TTGGAGTCAT	ACTTTGAAAT	CAATTAATGA	9720
25	AAAAGACGGC	AAAGTGGGTT	CTGTGACATT	AACGTCTACA	AAAGATGGTT	CAGAAGAAAC	9780
	ACACGAGGCT	GATGGTGTAT	TCATCTATAT	TGGTATGAAA	CCATTAACAG	CGCCATTTAA	9840
	AGACTTAGGT	ATTACAAATG	ATGTTGGTTA	TATTGTAACA	AAAGATGATA	TGACAACATC	9900
30	AGTACCAGGT	ATTTTTGCAG	CAGGAGATGT	TCGCGACAAA	GGTTTACGCC	AAATTGTCAC	9960
	TGCTACTGGC	GATGGTAGTA	TIGCAGCGCA	AAGTGCAGCG	GAATATATTG	AACATTTAAA	10020
	CGATCAAGCT	TAATTCGAAG	TCGAATTAAG	ATGTTGAGCT	GTAAATTATT	TGGATATTTA	10080
35	TTTTAATAGT	GTCATCACAG	CGTTAAAATA	ATGTCTTACT	TTTAAATTAA	AGCAAATTAT	10140
	ATAGAAACT	AGAACTTAGT	ACGTATCATT	TGTGCGTTTC	AATGAGTTCT	AGTTTTTTTA	10200
40	TATGTTATAT	TAAACTTATA	ACTTTATGGG	AGTGGGACAG	AAATGATAAA	GAGCCACTAA	10260
	TGATTTATTA	TGTAGTGGTT	CTTAAACATT	AGCCACAGCT	AATGTGTACT	TAAAAATAGG	10320
	AATACATGAG	TAAAACTCAT	GCATAAGAAA	TACTAATTTC	TATAGAAAAA	GTATTACTTT	10380
45	ATCGTTGTCC	CACCCCAACT	TGCACATTAT	TGTAAGCTGA	CTTTCCGCCA	GCTTCTGTGT	10440
	TGGGGCCCCG	CCAACTTGCA	CATTATTGTA	AGCTGACTTT	TCGTCAgCTT	CTGTGTTGGG	10500
	GCCCGCCAA	CTTGCACATT	ATTGTAAGCT	GACTTTTCGT	CAGCTTCTGT	GTTGGGGCCC	10560
50	CGCCAACTTG	CATTGTCTGT	AGAAATTGGG	AATCCAATTT	CTCTATGTTG	GGGCCCACAC	10620
	CCCAACTCGC	ATTGCCTGTA	GAATTTCTTT	тссаааттст	СПСТСТТССС	GCCCACACCC	10680

	ACTCGCATTG	CCTGTAGAAT	TTCTTTTCGA	AATTCTCTGT	GTTGGGGCCC	CTGACTAGAG	10800
	TTGAAAAAAG	CTTGTTGCAA	GCGCATTTTC	ATTCAGTCAA	CTACTAGCAA	TATAATATTA	10860
5	TAGACCCTAG	GACATTGATT	TATGTCCCAA	GCTCCTTTTA	AATGATGTAT	ATTTTTAGAA	10920
	ATTTAATCTA	GACATAGTTG	GAAATAAATA	TAAAACATCG	TTGCTTAATT	TTGTCATAGA	10980
	ACATTTAAAT	TAACATCATG	AAATTCGTTT	TGGCGGTGAA	AAAATAATGG	ATAATAATGA	11040
10	AAAAGAAAAA	AGTAAAAGTG	AACTATTAGT	TGTAACAGGT	TTATCTGGCG	CAGGTAAATC	11100
	TTTGGTTATT	CAATGTTTAG	AAGACATGGG	ATATTTTTGT	GTAGATAATC	TACCACCAGT	11160
15	GTTATTGCCT	AAATTTGTAG	AGTTGATGGA	ACAAGGAAAT	CCATCCTTAA	GAAAAGTGGC	11220
	AATTGCAATT	GATTTAAGAG	GTAAGGAACT	ATTTAATTCA	TTAGTTGCAG	TAGTGGATAA	11280
	AGTCAAAAGT	GAAAGTGACG	TCATCATTGA	TGTTATGTTT	TTAGAAGCAA	GTACTGAAAA	11340
20	ATTAATTTCA	AGATATAAGG	AAACGCGTCG	TGCACATCCT	TTGATGGAAC	AAGGTAAAAG	11400
	ATCGTTAATC	AATGCAATTA	ATGATGAGCG	AGAGCATTTG	TCTCAAATTA	GAAGTATAGC	11460
	TAATTTTGTT	ATAGATACTA	CAAAGTTATC	ACCTAAAGAA	TTAAAAGAAC	GCATTCGTCG	11520
25	ATACTATGAA	GATGAAGAGT	TTGAAACTTT	TACAATTAAT	GTCACAAGTT	TCGGTTTTAA	11580
	ACATGGGATT	CAGATGGATG	CAGATTTAGT	ATTTGATGTA	CGATTTTTAC	CAAATCCATA	11640
	TTATGTAGTA	GATTTAAGAC	CTTTAACAGG	ATTAGATAAA	GACGTTTATA	ATTATGTTAT	11700
30	GAAATGGAAA	GAGACGGAGA	TTTTCTTTGA	AAAATTAACT	GATTTGTTAG	ATTTTATGAT	11760
	ACCCGGGTAT	AAAAAAGAAG	GGAAATCTCA	ATTAGTAATT	GCCATCGGTT	GTACGGGTGG	11820
35	ACAACATCGA	TCTGTAGCAT	TAGCAGAACG	ACTAGGTAAT	TATCTAAATG	AAGTATTTGA	11880
-0	ATATAATGTT	TATGTGCATC	ATAGGGACGC	ACATATTGAA	AGTGGCGAGA	AAAAATGAGA	11940
	CAAA.TAAAAG	TTGTACTTAT	CGGTGGTGGC	ACTGGCTTAT	CAGTTATGGC	TAGGGGATTA	12000
40	AGAGAATTCC	CAATTGATAT	TACGGCGATT	GTAACAGTTG	CTGATAATGG	TGGGAGTACA	12060
	GGGAAAATCa	GAGATGAAAT	GGATATACCA	GCACCAGGAG	ACATCAGAAA	TGTGATTGCA	12120
	GCTTTAAGTG	ATTCTGAGTC	AGTTTTAAGC	CAACTTTTTC	AGTATCGCTT	TGAAGAAAAT	12180
45	CAAATTAGCG	GTCACTCATT	AGGTAATTTA	TTAATCGCAG	GTATGACTAA	TATTACGAAT	12240
	GATTTCGGAC	ATGCCATTAA	AGCATTAAGT	AAAATTTTAA	ATATTAAAGG	TAGAGTCATT	12300
	CCATCTACAA	ATACAAGTGT	GCAATTAAAT	GCTGTTATGG	AAGATGGAGA	AATTGTTTTT	12360
50	GGAGAAACAA	ATATTCCTAA	AAAACATAAA	AAAATTGATC	GTGTGTTTTT	AGAACCTAAC	12420
	GATGTGCAAC	СВВТССВВСВ	ACCAATCCAT	COTTTALACOO	A A C C A C A TENOR	N N TCC TTTCTT	12400

	GCGTTAATTC	ATTCTGATGC	GCCTAAGCTA	TATGTTTCTA	ATGTGATGAC	GCAACCTGGG	12600
	GAAACAGATG	GTTATAGCGT	GAAAGATYAT	ATCGATGCGA	TTCATAGACA	AGCTGGACAA	12660
5	CCGTTTATTG	ATTATGTCAT	TTGTAGTACA	CAAACTTTCA	ATGCTCAAGT	TTTGAAAAAA	12720
	TATGAAGAAA	AACATTCTAA	ACCAGTTGAA	GTTAATAAGG	CTGAACTTGA	AAAAGAAAGC	12780
10	ATAAATGTAA	AAACATCTTC	AAATTTAGTT	GAAATTTCTG	AAAATCATTT	AGTAAGACAT	12840
,,,	AATACTAAAG	TGTTATCGAC	AATGATTTAT	GACATAGCTT	TAGAATTAAT	TAGTACTATT	12900
	CCTTTCGTAC	CAAGTGATAA	ACGTNAATAA	TATAGAACGT	AATCATATTA	TGATATGATA	12960
15	ATAGAGCTGT	GAAAAAAATG	AAnATAGACA	GTGGTTCTAA	GGTGAATCAT	GTTTTAAATA	13020
	AGAAAGGAAT	GACTGTACGA	TGAGCTTTGC	ATCAGAAATG	AAAAATGAAT	TAACTAGAAT	13080
	AGACGT						13086

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1350 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

	CATTAGTCAT	GAAAATAGCC	GACAACTTCA	TCTGTGAAAT	CACCGGCCTT	TTATTTTAGC	60
	TAACTTTATT	TCTGATTTTA	CGATTTTAAT	TGATCATACA	GAGAAAGTGA	TCTTTTTACA	120
	ATTTCTAAAA	ACTCATGATC	TATATTGGAC	ATTTGATGAA	AATAAGACAA	AATGTTTTCT	180
	GTTAGCTTCT	CTTGTTTTGG	GAATGAATCA	TCTTCTTTAA	TCCAAATCGC	TAATTCGCCT	240
	aatgetettt	TATCATCTTT	AAATGTTTGT	ATATATTCGT	AAAAGCTCAT	AGTATTCCTT	300
	CTCTCAATTT	ACTTATATAA	ATCCTACCAC	GAAAGCTTTC	AAGAAAACAC	AATTAAATGT	360
	CTATTTAGTG	AACTTTTTAA	GGTTGTGCAC	TCTTTTAATG	TCTGCCAATT	AGGTCAATTA	420
	ATCATCACAA	TGTACAATTA	ACTCTATTTT	CAGTTCATAT	ACTCACACAC	CGTTTTTGAA	480
	CAACACATTA	ACTTCTCATT	TAGATAAAAC	GCAAAAAAGC	CTGGCACCAA	TACAATAGAT	540
,	GCCAGACTAA	GAGTCTACTA	TATAAATTTA	TTTAGCGTAT	GGTTTTACTT	CGATTGCACC	600
•	TTCATTTTCA	TCATGAACAC	CATGCTTATA	ATAATCAATA	TATTGTGGCT	CTAAAGGCTT	660
•	TCTGCCACGT	ATAATGTCTG	CTGCTTTTTC	AGCTAACATT	AAAACAGGTG	CGTGTATATT	720
1	GCCATTTGTC	GTACGTGGCA	TAGCTGATGC	ATCAACTACA	CGTAAATTTT	CCATACCGTG	780

55

50

20

25

30

35

40

ACTACAAGAT GGGTGTAATG CTGTTTCACC ATCTCTACGA ACCCAATCAA GAATTTCTTC 900 GTCTGTTTGC ACTTCTGGTC CTGGTGAAAT TTCTCCACCA TTGAATGGAT CCATTGCTTT 960 5 TTGAGATAAG ATATTTCTTG CTACACGAAT TGCTTCTACC CATTCTTTTT TATCTTCTTC 1020 TGTTGATAAA TAATTAAAGC GGATACTTGG TTTTTCGAAT GGATCTTTAG ATTTGATTTT 1080 CAAGCTACCA CGAGAGTTTG AATACATTGG TCCTACGTGA ACTTGATAAC CATGTGCGAC 1140 10 CGCTGCCTTT TGACCATCAT ATCTTACAGC TATTGGTAAG AAATGGAACA TTAAGTTAGG 1200 ATAALCAACT TCGTTATTTG AACGTACAAA TCCGCCACCT TCAAAATGGT TAGATGCTGC 1260 TGCACCTGTA CGTGTGAAAA TCCATTGTAA ACCAATAAAT GGCATGCGCT TGALATCTAA 1320 15 GCTTGGCtGt AATGATACAG GTTCCTTACA 1350 (2) INFORMATION FOR SEQ ID NO: 18:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1376 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25

30

35

40

45

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:

TAATGCTATT GGCAACACCA TATATGAAAn CTCCAAACGA TCCTAAACCG ACTATAGATT 60 CACCAAATTT nACAATCCAT GAATAAAGTA GTGGCCATAA GAATAACAAT ATGACAACTA 120 AAAATGTACA GTAAAATGCA GTCATAATTG GAACTAGACG TTTACCACTA AAAAATGATA 180 ATGCTAATGG TAATTCTGTT TCACTAAACT TATTGTATGC ATAAGCTGCT ATTAAACCTA 240 TTACAATACC AACAAAGACA TTGCCATTAT TCATCTTTTC AAAAGCTGAA TTTATTTCCG 300 Argetteat tectaataaa geegetaatt teattgetga taatacaact gtaactaaaa 360 AATATCCTAA CGTrGCTGCA rGCGsGACTG CACCATCATT TTTCTTTGCC ATTCCTATAG 420 CTACACCAAT TGCAAATAAA ATACCTAATT GCTCTAAAAT CGTAGTACCT ACCGTAGTAA 480 AGAACATTGC GATTTTCGGC GTCGCATGAA GTGCATTTAA CGTATTACCA ATTCCGGCAA 540 TAATTGCTGC AGCCGGTAAA ATGGCAACTG GTAACATTAA CGAACGCCCT AAATTTTGGA 600 AAAATTTATA CATTGAATGT CATCCTTCTT AAAATAATGT AGAAATATAA AGATTACTAA 660 TGTAACTAGA ATAACTACTT CGATACTCCG TTATAGTCAC CTAGGCTTAC TAACCAGCTA 720 TATTTCTACC TCAAGTTATT TTATAAACTT TTTACAATTT CATGCAATTC TTGTTGTAAC 780 TTTGCTGTTC GTGTTTCAAT CTCTTTTGTA ATATAATCGA TACGCTCGTT TCGTTTTAAA 840

55

	AAAGACCGTG	AATCTTAGTA	GGACCAACAT	AAGCAACAGG	TAATATTGGT	GACTTACTTA	960
	ACATTGCAAT	TGTTGAAGCA	CCaCGTTTCA	AAGGTGCACC	TTCTTGCGAT	GTGCGAGAAC	1020
5	CTGTTGGGAA	GATACCAACT	GTCTTATTAT	CTTTCAACAA	ATTGATTGGG	CGTTTTAAAG	1080
	TACTAGGTCC	TGGATTTTCA	CGATCTACAG	GAAATGCATT	TAAAGACGTT	AAAAATTTAC	1140
	CAATCCATTT	ATTTTTGAAT	AATTCTTTTT	TAGCCATATA	ATGAATTTGA	TTAGGATATA	1200
10	ATGCCATACC	TAGCATAATG	ACTTCGTTAT	AACTTTCATG	CGTACAAGTT	ACGACATATT	1260
	TACTATCCTT	AGGAATATTA	TCTTTACCGA	TTACGTATAA	TGATTTTGAC	ATTTTAACTA	1320
15	AAATGAAATT	CAAAATCTTA	CTAATCACTG	AATACATTGT	GCCACCTACT	TAACTT	1376
	(2) THEODING	TTON BOD OF	0 TD NO 10				

(2) INFORMATION FOR SEQ ID NO: 19:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7363 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19: 25

TT	GTCATACC	AATATTTTGT	AAAATATGGA	ACACAAGTAA	AGTGACGAAA	CCAACGATAA	60
AG	ATTTTGTT	AAATTGATCT	TCAATTTTCG	CAGCTAATCT	TATTAGATGG	AAGATTAAAA	120
ΑT	AAAAATAT	TAAGATCAAT	ATGACAGAAC	CGATAAAGCC	AAGTTCCTCT	CCAATCACTG	180
AA	AAGATAAA	GTCAGTATGA	TTTTCAGGTA	TATAAACTTC	ACCGTGATTG	TATCCTTTAC	240
CT	AGTAACTG	TCCAGAACCG	ATAGCTTTAA	GTGATTCAGT	TAAATGaTAG	CCATCACCAC	300
TA	CTATATGT	ATAGGGGTCA	AGCCATGAAT	TGATTCGTCC	CATTTGATAC	AGTTGGaCAC	360
CT.	AATAAATT	TTCAATTAAT	GCGGGTGCAT	ATAGAATACC	TAAAATGACT	GTCATTGCAC	420
CA	ACaATACC	TGTAATAAAG	ATAGGTGCTA	AGATACGCCA	TGTTATACCA	CTTACTAACA	480
TC.	ACACCTGC	AATAATAGCA	GCTAATACTA	ATGTAGTTCC	TAGGTCATTT	TGCAGTAATA	540
TT	AAAATACT	TGGTACTAAC	GAGACACCAA	TAATTTTGAA	AAATAATAAC	AAATCACTTT	600
GG.	AATGATTT	ATTGAATGTG	AATTGATTAT	GTCTAGAAAC	GACACGCGCT	AATGCTAAAA	660
TT.	TAATAAAA	TTTCATGAAT	TCAGATGGCT	GAATACTGAT	AGGGCCAAAC	GTGTACCAAC	720
TT"	TTGGCACC	ATTGATAATA	GGTGTAATAG	GTGACTCAGG	AATAACGAGC	AAGCCTATTA	780
AT	AATAGACA	GATTAAGAAA	TACAATAAAT	ATGTATAATG	TTTAATCTTT	TTAGGTGAAA	840
TA	AACATGAT	GATACCTGCA	AAAATTGCAC	CTAAAATGTA	ATAAAAAATT	TGTCTGATAC	900

55

20

30

35

40

45

	TTGCTAAAAC	AGCTATAGTG	GCTACTAATA	CCCAGTCTAC	TTTGCGAAnC	AATGCTTATC	102
	CGGCTGTTGA	CGAGATGAAT	AATTCATTGC	AAACTCCTTT	TATACTCACT	AATGTTTATA	108
5	TCAATTTTAC	ATGACTTTTT	AAAAATTAGC	TAGAATATCA	CAGTGATATC	AGCTATAGAT	114
	TTCAATTTGA	ATTAGGAATA	AAATAGAAGG	GAATATTGTT	CTGATTATAA	ATGAATCAAC	120
10	ATAGATACAG	ACACATAAGT	CCTCGTTTTT	AAAATGCAAA	ATAGCATTAA	AATGTGATAC	126
10	TATTAAGATT	CAAAGATGCG	AATAAATCAA	TTAACAATAG	GACYAAATCA	TTTAATTATA	132
	ATATTAAGGT	AGCAAACCCT	GATATATCAT	TGGAGGAAAA	CGAAATGACA	AAAGAAAATA	138
15	TTTGTATCGT	TTTTGGAGGG	AAAAGTGCAG	AACACGAAGT	ATCGATTCTG	ACAGCACAAA	144
	ATGTATTAAA	TGCAATAGAT	AAAGACAAAT	ATCATGTTGA	TATCATTTAT	ATTACCAATG	150
	ATGGTGATTG	GAGAAAGCAA	AATAATATTA	CAGCTGAAAT	TAAATCTACT	GATGAGCTTC	156
20	ATTTAGAAAA	TGGAGAGGCG	CTTGAGATTT	CACAGCTATT	GAAAGAAAGT	AGTTCAGGAC	162
	AACCATACGA	TGCAGTATTC	CCATTATTAC	ATGGTCCTAA	TGGTGAAGAT	GGCACGATTC	168
	AAGGGCTTTT	TGAAGTTTTG	GATGTACCAT	ATGTAGGAAA	TGGTGTATTG	TCAGCTGCAA	174
25	GTTCTATGGA	CAAACTTGTA	ATGAAACAAT	TATTTGAACA	TCGAGGGTTA	CCACAGTTAC	180
	CTTATATTAG	TTTCTTACGT	TCTGAATATG	AAAAATATGA	ACATAACATT	TTAAAATTAG	186
	TAAATGATAA	ATTAAATTAC	CCAGTCTTTG	TTAAACCTGC	TAACTTAGGG	TCAAGTGTAG	192
30 .	GTATCAGTAA	ATGTAATAAT	GAAGCGGAAC	TTAAAGAAGG	TATTAAAGAA	GCATTCCAAT	198
	TTGACCGTAA	GCTTGTTATA	GAACAAGGCG	TTAACGCACG	TGAAATTGAA	GTAGCAGTTT	204
	TAGGAAATGA	CTATCCTGAA	GCGACATGGC	CAGGTGAAGT	CGTAAAAGAT	GTCGCGTTTT	210
35	ACGATTACAA	ATCAAAATAT	AAAGATGGTA	AGGTTCAATT	ACAAATTCCA	GCTGACTTAG	216
	ACGAÃGATGT	TCAATTAACG	CTTAGAAATA	TGGCATTAGA	GGCATTCAAA	GCGACAGATT	222
40	GTTCTGGTTT	AGTCCGTGCT	GATTTCTTTG	TAACAGAAGA	CAACCAAATA	TATATTAATG	228
	AAACAAATGC	AATGCCTGGA	TTTACGGCTT	TCAGTATGTA	TCCAAAGTTA	TGGGAAAATA	234
	TGGGCTTATC	TTATCCAGAA	TTGATTACAA	AACTTATCGA	GCTTGCTAAA	GAACGTCACC	240
45	AGGATAAACA	GAAAAATAAA	TACAAAATTG	ACTAACTGAG	GTTGTTATTA	TGATTAATGT	246
	TACATTAAAG	CAAATTCAAT	CATGGATTCC	TTGTGAAATT	GAAGATCAAT	TTTTAAATCA	252
	AGAGATAAAT	GGAGTCACAA	TTGATTCACG	AGCAATTTCT	AAAAATATGT	TATTTATACC	258
50	ATTTAAAGGT	GAAAATGTTG	ACGGTCATCG	CTTTGTCTCT	AAAGCATTAC	AAGATGGTGC	264
	m aacaaamaam					GGGGGT	

	AAACCCTAAA	GTAATTGCCG	TCACAGGGTC	TAATGGTAAA	ACAACGACTA	AAGATATGAT	2820
	TGAAAGTGTA	TTGCATACCG	AATTTAAAGT	TAAGAAAACG	CAAGGTAATT	ACAATAATGA	2880
5	AATTGGTTTA	CCTTTAACTA	TTTTGGAATT	AGATAATGAT	ACTGAAATAT	CAATATTGGA	2940
	GATGGGGATG	TCAGGTTTCC	ATGAAATTGA	ATTTCTGTCA	AACCTCGCTC	AACCAGATAT	3000
10	TGCAGTTATA	ACTAATATTG	GTGAGTCACA	TATGCAAGAT	TTAGGTTCGC	GCGAGGGGAT	3060
,,	TGCTAAAGCT	AAATCTGAAA	TTACAATAGG	TCTAAAAGAT	AATGGTACGT	TTATATATGA	3120
	TGGCGATGAA	CCATTATTGA	AACCACATGT	TAAAGAAGTT	GAAAATGCAA	AATGTATTAG	3180
15	TATTGGTGTT	GCTACTGATA	ATGCATTAGT	TTGTTCTGTT	GATGATAGAG	ATACTACAGG	324
	TATTTCATTT	ACGATTAATA	ATAAAGAACA	TTACGATCTG	CCAATATTAG	GAAAGCATAA	3300
	TATGAAAAAT	GCGACGATTG	CCATTGCGGT	TGGTCATGAA	TTAGGTTTGA	CATATAACAC	336
20	AATCTATCAA	AATTTAAAAA	ATGTCAGCTT	AACTGGTATG	CGTATGGAAC	AACATACATT	342
	AGAAAATGAT	ATTACTGTGA	TAAATGATGC	CTATAATGCA	AGTCCTACAA	GTATGAGAGC	348
	AGCTATTGAT	ACACTGAGTA	CTTTGACAGG	GCGTCGCATT	CTAATTTTAG	GAGATGTTTT	354
<i>25</i>	AGAATTAGGT	GAAAATAGCA	AAGAAATGCA	TATCGGTGTA	GGTAATTATT	TAGAAGAAAA	360
	GCATATAGAT	GTGTTGTATA	CGTTTGGTAA	TGAAGCGAAG	TATATTTATG	ATTCGGGCCA	366
	GCAACATGTC	GAAAAAGCAC	AACACTTCAA	TTCTAAAGAC	GATATGATAG	AAGTTTTAAT	372
30	AAACGATTTA	AAAGCGCATG	ACCGTGTATT	AGTTAAAGGA	TCACGTGGTA	TGAAATTAGA	378
	AGAAGTGGTA	AATGCTTTAA	TTTCATAGAG	ATTAGTCGAG	GGACCTTTTA	CTTATAAAAA	384
35	TGATTTGAAT	TAATACTAAA	AGATTACAAA	GAAGAGGTGG	TTTTGTGTGT	AAATACAAAA	390
33	TTGCCTTTTT	CTTTTTATGT	TAAATCTATA	AATTTGAAAC	TAAATCAAGG	TTAATTCTAT	396
	GTAÇÃCACTT	TATATAGGAA	GTAGTTTGAA	TGTTTATATA	ATGTTTTACA	AAAAGATGTA	402
40	GTATTATAAT	GTCTAATTTC	ACATGTGTTT	CAGTAAAATT	TGTTGTGGAA	TGTTAACGAT	408
	ATACGTATTT	TATAAAAAT	TTTTTTATAAT	GATTATTCGA	ATGATGCGTA	ACGCTTACAT	414
	CTTATCTAAT	GCTAGCTTTT	TGACAAAAAT	ATGACAATCA	ATTAATGTGA	TTCTAATAAA	420
45	TATTCGCAAA	TTGCTTTATT	GCGATTAAAT	TTTTTTGGTG	GTACTATATA	GAAGTTGATG	426
	AAATATTAAT	GAACTTATAT	GCAAAAGTAT	ATTGAGAAAT	AAACAGGTAA	AAAGGAGAAT	432
	TATTTTGCAA	AATTTTAAAG	AACTAGGGAT	TTCGGATAAT	ACGGTTCAGT	CACTTGAATC	438
50	AATGGGATTT	AAAGAGCCGA	CACCTATCCA	AAAAGACAGT	ATCCCTTATG	CGTTACAAGG	444
	አ አመመረገ አመአመረገ	COTO CO CO A CO	CTCNNNCCCC	TACACCTAAA	ACACCACCAT	エ ククライン	450

	AGAATTGGCA	ATGCAGGTAG	CTGAACAATT	AAGAGAATTT	AGCCGTGGAC	AAGGTGTCCA	4620
	AGTTGTTACT	GTATTCGGTG	GTATGCCTAT	CGAACGCCAA	ATTAAAGCCT	TGAAAAAGG	4680
5	CCCACAAATC	GTAGTCGGAA	CACCTGGGCG	TGTTATCGAC	CATTTAAATC	GTCGCACATT	4740
	AAAAACGGAC	GGAATTCATA	CTTTGATTTT	AGATGAAGCT	GATGAAATGA	TGAATATGGG	4800
10	ATTCATCGAT	GATATGAGAT	TTATTATGGA	TAAAATTCCA	GCAGTACAAC	GTCAAACAAT	4860
10	GTTGTTCTCA	GCTACAATGC	CTAAAGCAAT	CCAAGCTTTA	GTACAACAAT	TTATGAAATC	4920
	ACCAAAAATC	ATTAAGACAA	TGAATAATGA	AATGTCTGAT	CCACAAATCG	AAGAATTCTA	4980
15	TACAATTGTT	AAAGAATTAG	agaaatttga	TACATTTACA	AATTTCCTAG	ATGTTCATCA	5040
	ACCTGAATTA	GCAATCGTAT	TCGGACGTAC	AAAACGTCGT	GTTGATGAAT	TAACAAGTGC	5100
	TTTGATTTCT	AAAGGATATA	aagctgaagg	TTTACATGGT	GATATTACAC	AAGCGAAACg	5160
20	TTtAGAAGTA	TTanAGAAAT	TTAAAAATGA	CCAAATTAAT	ATTTTAGTCG	CTACTGATGT	5220
	AGCAGCaAGA	GGACTAGATA	TTTCTGGTGT	GAGTCATGTT	TATAACTTTG	ATATACCTCA	5280
	AGATACTGAA	AGCTATAÇAC	ACCGTATTGG	TCGTACGGGT	CGTGCTGGTA	AAGAAGGTAT	5340
25	CGCTGTAACG	TTTGTTAATC	CAATCGAAAT	GGATTATATC	AGACAAATTG	AAGATGCAAA	5400
	CGGTAGAAAA	ATGAGTGCAY	TCGTCCACCA	CATCGTAAAG	AAGTACTTCA	AGCACGTGAA	5460
	GATGACATCA	AAGAAAAAGT	TGAAAACTGG	ATGTCTAAAG	AGTCAGAATC	ACGCTTGAAA	5520
30	CGCATTTCTA	CAGAGTTGTT	AAATGAATAT	AACGATGTTG	ATTTAGTTGC	TGCACTTTTA	5580
	CAAGAGTTAG	TAGAAGCAAA	CGATGAAGTT	GAAGTTCAAT	TAACTTTTGA	AAAACCATTA	5640
05	TCTCGCAAAG	GCCGTAACGG	TAAACCAAGT	GGTTCTCGTA	ACAGAAATAG	TAAGCGTGGT	5700
35	AATCCTAAAT	TTGACAGTAA	GAGTAAACGT	TCAAAAGGAT	ACTCAAGTAA	GAAGAAAAGT	5760
	ACAÃAAAAAT	TCGACCGTAA	AGAGAAGAGC	AGCGGTGGAA	GCAGACCTAT	GAAAGGTCGC	5820
40	ACATTTGCTG	ACCATCAAAA	ATAATTTATA	GATTAAGAGC	TTAAAGATGT	AATGTCTTGA	5880
	GCTCTTTTTT	GTTTTCAATA	ATTGATTCTC	TGTAGATATC	aAAGTaCTAA	CGTTTTAAAG	5940
	GTTAAATATT	TAATTGGATT	GAGATCTGTA	TGCGGTTATA	TCaTTCTGTG	TAAATATGGT	6000
45	TCTCCACCAA	ATGTGGTGAG	TATATAATTT	AAAGAACTAT	TTTTAAATTA	AGAATAATCG	6060
	аасатааата	AACTTTATGA	AATTTCAGTA	TCATGTTCTT	ATAAAAAACA	ATAGGGCTTT	6120
	TTGctGACGC	TAGTGCGCGA	ТАААТААТАА	GTTGAATATA	AAAAAGATCA	CTGCCAATCA	6180
50	TTCGTTTAAT	GGCAGCGATC	TTTTTTATTT	AATTATTTCT	CTTTCCACTG	CAACATTTGA	6240
	TARCCARTCC	CTCCATCTCT	מיד מ מיד מידי די	ФОТРЕМЕНТАТИ	ССТСАТСАСА	ተተርተርል እ አርተ	6300

	CCATATATTC	GTTTTAATAT	CATCTCATAA	GTGAGTACTT	TTCCTTTATG	ATTTGACAAT	6420
_	AGTTCTAACA	AGCTAAATTC	ATTTGGCGTC	AAATGTACCT	CCTGATTATT	AATAACAACA	6480
5	GATTTGGAGC	CAAAGTCGAT	GCTTAGCAAA	CCGTTAGTAA	ATACAATGTT	AGTTTCTTGA	6540
	TGTGACTTAG	CGATTCTCTC	GATGACTCGT	ATTCGTGCCC	GAAGCTCATC	AACATTAAAA	6600
10	GGTTTAGTCA	TATAGTCATT	CGCACCGTTA	TCTAAAGCTT	GAATAATTGT	TTGTTCTTCT	6660
70	TGTCTTGCAC	TTATTACAAT	GATAGGAATG	TCAGTATGTT	GCCTGATTTC	TGAAATCAAA	6720
	CATAATCCAT	CTTTATCTGG	TAAACCTAAA	TCTAATAAAA	TGACATCTGG	TTTATCAATT	6780
15	TGAATTTTAA	AGTGTGCTTG	TGTGGCATTG	TCGGCTGTAG	TTACATTGTA	ATAATCTAAA	6840
	GTTAATGCAA	CATCAAGTAA	ATGTGTGATT	GCGTGATCAT	CTTCAATTAT	CAATATTTTA	6900
	GATTGCATTA	TACGTCTCCT	TCGTTAAAGT	CTGTATATAT	ATTGAAATAG	AATATACTGC	6960
20	CGTGTGGTTG	GTTCGGTTTA	TATTGTAAGT	TTGATTGATG	TTTGTGTAGG	ATAGTCTGTA	7020
	СТАААТАТАА	GCCTAGTCCC	ATGCTTTCTT	TTTGGTTATC	TTTAAAATAT	TTATTTGATC	7080
	CTGTGTAAAA	AGGCTCGAAT	ATCTTTTGTt	GTTCTTCTAA	ACTAATTCCA	GGTCCTTCGT	7140
25	CTATAACGGC	AAATTCGATT	TGTTCATAGC	TAGCATAACG	AATAGATAAA	TTGATTTTGG	7200
	TGTCAGTAGA	AGTGTGTTTA	ACTGCATTTT	CAATCAAATT	GAAtAAAgCT	TGTAAAATCA	7260
	ACTTACTGTC	AATGTGTATA	AACtGTAAAT	TTACTGAGGA	TGATACAGTT	ATACGCTTTT	7320
30	TTAAATGGCG	ACGTTCTAAA	ATACATATCG	ATTTCTTATA	CTA		7363
	(2) INFORMA	TION FOR SE	EQ ID NO: 20):			
35	(A) LENGTH: B) TYPE: nu	NESS: doub	pairs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:

TTAACAATCG ATAACCACAA TACTTCTATT GTAATTGTTT AACGATTTCn CGATTAAAAT 60
CATCTAAATC GTCTGGTACT CGACTTGTTA CAATATTGTT GTCTACACTA CTGACTCATC 120
AACTACATGT GCGCCTGCAT TTGATAAATC TTTGCGTACA TTTAATACTG CTGTTAACGT 180
ACGACCTTTT AAATCGTCTG TATCTATTAG TATTTGTGGC CCATGACAAA TGGCAAATGT 240
TGGTACATCA TTTTTAGTAA AGTATTTAGC AAATGTGCCA TATCGACCTT CTGTATCTCC 300
ACGTAAATGA TCTGGTGAAA ATCCTCCAGG AATTAATAAT GCATCATAAT CTTCTGGTTT 360

	ATTTGCAGTA	TCTCCAATCA	CTACAGTATT	AAAGCCTGCA	TTCTCTAATG	CCTCTTTAGG	480
	GCTTGAATAT	TCTATATCTT	CAAATTCGTT	TGCTAGAATA	ATTGCTACTT	TTTTAGTCAT	540
5	TGAAAATCAC	CTTTCTATAT	ATCATTGATA	TAATTACTAT	AGACAAGTAA	ATCAGTGATT	600
	AAACATACAA	GATATAAAAA	ATATTAAGCG	ACTGTCGCGA	TATCTAACCC	TAACACATCT	660
10	TATGTGGCAT	TTACTTAGAT	ACTAATTTAA	CCTTTTCTTC	AAGCTGATCT	AACAATCCAA	720
10	TCCATTCATC	TATATCTTCA	ACACGTACTT	CATCAGGATT	TACATGATCG	ATATCCTCAA	780
	TAAACTTATT	TAAACGCGCT	TTTATCTGTT	CGATTGTTTG	CTGTTCATTC	ATAAAAAGTT	840
15	AACTCCTTTT	ATTTTGTTTT	CTTTTTCATT	ATTATCCTAA	CAGAAATTGC	GTTAAAGCGA	900
	TATAATCTTA	GCTATATTTA	TGACATTCAA	ATTATTTTGA	CTTTTAAAAA	TCCCCTTTTC	960
	AATTAACTAA	aattaagaga	TAATTTGTTA	CGAGTGATAA	TACGAaGkGG	TaTCATACCG	1020
20	ATATGAACCA	AATAGAAAGA	AGGAAGTTTA	AGACGATGAA	TAGCGTCAAA	TTGAAGCAAC	1080
	CTGTTAGCAT	TTACAATGAT	CCATGGGAAG	TGAAATTTAT	ATACATTTAA	ATTTCATGAG	1140
	ACAATAAACG	TTGATTTAAT	GCGTTTTTTT	GCCTTTTTTA	TTTTCCTTAT	TTTTTCTGTT	1200
25	TTACAACAAA	ATGGTATCAA	AAATGGTATC	ATTTGTAGTT	ATTTTAGCTT	CACATATTAA	1260
	AACAACCACA	CTCCTAAATT	AATAGGTGGT	GTGGTTTTGT	TGGTTGTGTG	GGGATAAAA	1320
	TAACCGCATC	AGTTAAGATG	CGGTTATCTA	GCAAGGGCCA	CGTATTTATA	AATACGTTTA	1380
30	GAATCTCTTC	GGCAACTTTG	CTATAGACAG	TCTATGCTGT	TACTAAATTA	TACCACCACA	1440
	CAAACCTACT	CCCATTCAGG	AACACAGAGC	TTTGTCGCTC	GTCAGCAACG	TCATATGAAT	1500
35	TCTCAGTTCA	TGTTGTGGTG	ACACTTTAAA	CGGTCTGTGC	CAGTAGCGAC	CGAGTCATTT	1560
55	CAAGAATGAC	CATTTCACAT	TTATATTATA	ACACTTGTCG	TGCGTAACTG	TATAGTTTTT	1620
	CAGTTGTATT	TAAAGTTAAG	TTATCTACTT	CGCGCTTTCC	TTGCCTTAAT	TGTGAAATTA	1680
40	CATATTGCGC	TACGCCAGTT	TGTTTGTGAA	TTTGGTAACC	TGTTATATCA	CTTTTGATCA	1740
	ATTCAATTAT	TTTTAATTTA	TAATCACTCA	TATTATCTAC	GTCCATTCTT	TTTATCTAAA	1800
	CAATAAAAAT	GTGTCTTTCT	CCCGATAAAT	AATAACAATG	GTAGGCTTAA	TAAAAACAAT	1860
45	ATTAAATACA	TTTGTTCTGT	CATAATTGAA	AACCTCCAAA	TAATATTATA	TTATATAAGT	1920
	GTAAGGAGGA	GCCATCAGGC	TCCAAGCATA	ATGTTAATCT	TTGTTGTTTG	GCTTTCGGTC	1980
	TAGGTAGCCG	AGATGCCaTT	CTCTAAGTTG	TTTTAACACT	TCTGGAATTA	TCAGTACTGC	2040
50	CAATACTTGA	TGTTCTAGAA	GTGTTTTTAT	TATGTCTAGC	ATGAGGCTTT	TCACCTCCTT	2100
		mama a amas =	03 3 0m3 3 0cm	20222000	mm.m		

	GTTATCTACA	TTTAAATCTT	GAGAGAAATG	TTAAAAAGTT	CTAGTAAAAT	AATAGCACAT	2280
	TTTATCTTTA	AATGTAAATA	GAAAGCAGGT	ATGTAACGCA	CCTGCTTAAA	TAGACATGAC	2340
5	TATGTCATTC	TAACTGATTT	CTCCCCATAA	GTCACCTAAT	ATCTGATTAG	GTGGGGCAGA	2400
	ACCATTCCAT	GTTCTAATAG	GCAAGTAATA	ACGTTGCCCC	TCCCATGTAT	ATCCTACCCA	2460
10	AACATGACCA	TCTTGTAACA	TCACTTCTGT	ATAATCACAA	TACCCACCAG	GTTGGAACTG	2520
,,,	ATAACCCACT	GGACAAGATA	AGAATGGCCC	CACTTTTCTT	ACTGTGATTG	GTTGATTGCC	2580
	GTTTGTGAAT	CTAGCACTTT	CTTCCATGTA	GTAAGTACCA	TATTTATTAC	GTTTCCATGC	2640
15	ACTTGCAACT	GGTTTAACTG	TATTACTTGA	AGCGCTTGAC	TCATTAGAGA	CAGTGGCAAC	2700
	CGGTATTTTA	CCATCCATGT	ACGCCCTAAT	CTGCTTGATA	AAGTAGTCTT	TAAGTTGCAA	2760
	CCGCTTGTCT	TCTGGCAATA	GACCGCGAGT	TACTGGGTCA	AAACCAGTGT	GTAAAACCGA	2820
20	ACTTCTATGA	GGGCATGATG	TTGAAGTAAA	TTCATTGTGC	AATCTGATTG	TATTTCTGTT	2880
	TGCTGGTAAT	CCCCATTTTT	TCAACAATCT	AGCGCATTCT	TGGAAAGTTG	CCTGTTCATT	2940
	TTTTAAGAAT	GTCGCGTTAT	CTGCGCCCAT	TGATTGACAT	ACTTCAATAC	CGTAATAATA	3000
25	TTTATTACCT	ATTTGATTAG	CGGTATGCCA	ACCTACTTGT	GATTCATCTA	AGGCTTGCCA	3060
	AACTGTGTTG	CCTGATACGT	AACTATGCGC	AATGCCCGCT	TCTAATCTTG	ATAAAGGTGC	3120
	ATTTACTAAT	CCGTTACGAT	ATGCTTCAGC	AGTCGCCCCT	TTGCTCCCTG	CGTCGTTGTG	3180
30	TATAACTATA	CCTTTAGGGT	TACTACCACG	CTTAGGTAGG	TCATAACCTT	TAACCACATC	3240
	TTTGATGATT	TTAAGTTCTA	CTGCTTTAGG	TTGTGGCTTA	GCTGTTTCTT	TTTTAGGTGC	3300
9 <i>5</i>	TTGTGTAGGA	GATTGAACTG	ATCGTGGCGC	TGTCTCACTT	TTAAAATTCG	GACGGATAAA	3360
,,	CCACATAGGG	AAATCATAAG	CATGTTGTCG	TCTTGTAACT	TTTTCCCAAC	CCCAGCCGGG	3420
	TIGTICGATT	CCGTCAGTCC	AGCCACCGCC	TAGCCAATTC	TGCTCATATA	CAATGATGTA	3480
10	ATCTAAAGTT	GCTTCAATTA	CCCATGCAAC	GTGACCATAT	CCAGCACCGT	AGTTGCTACC	3540
	GAATACCACC	ATGTCGCCAG	GTTGTGCTAA	GAAGTCCGGT	GTATTTTGGT	ATACAGTAGC	3600
	TAATCCGTCG	AAGTTGTTAG	CGAACGGAAT	ATCTTTTGCA	CCTAAACCTT	TTAGAAGTAA	3660
15	TCCAAACAAA	ACTTTCCAAC	CAGCATTGGC	ATAATCAAAG	CATTGAAATC	CATACCATAA	3720
	GTCCACATTG	AATTGTTTTC	CCTCAGAAGT	TTTCAACCAC	TCTATAAACT	CATTTTTAGT	3780
	TAATTTTGCT	TGCATTGTCG	CCACCTCCAT	GATGATACTC	ATTCACATCA	AAGCCAACAT	3840
50	CGTTAGAGGC	GTCTGTGAAA	GGTTGTGATG	TATCATATTC	TTTTGGTGcT	TTCGCGCTTA	3900
	ATTCCCCCCCT	таластастс	TOTTOTOATO	ATTTCCACGT	AACTTCTTCT	ԱՐՎԻՐՎԻՆԻ	3960

	TTGGGTCAGT	AATAACGCCA	ATACCTGTAA	GTAACGTGAG	GATAGCGCCT	ATAATTGCGC	4080
	TAGCTTGATT	TAATTGAGTA	GATAAATCTA	ATCCGAATAA	ATCCGTGACT	TGCTTGATAA	4140
5	ATAGCAACAA	TGCTCCAACT	AAACCAGTTA	GTACTGCTTT	GTTTTTGAAT	CTCAATTTCC	4200
	AGTTAATATC	CATTTGTTTG	CTCCTTTTAT	ССААААТААА	AAAACGACTA	AAAATTAGTC	4260
	GTTTAAAATT	ATTCAATGGT	CAATGTCGGA	GATCCTGAAT	AAACATCACT	TATAGTGACG	4320
10	TACAACATCC	CTGAAGGATT	ACTAAAGTTG	ATATTTTTAC	TTGCAACTCC	GCTATTGACT	4380
	CCTGATATTC	CTAAATCACT	TGACCCTAAA	TTAGTTTGCG	AAATCCTCAT	TATACCGCTA	4440
15	CGTACATTTT	CTATTGTCAC	CTGATAACTT	TTATTGGGTT	CAACTCCATT	TATTGTCCAT	4500
	TTTGCTGTTG	ATTCTTCTAT	GCTATCCGGA	TATTTATTTT	TAGGTAAGGG	TTTTATTACA	4560
	AAAGATGAAG	GCTTTTTCCA	TACTTGGATA	TTTCCAGCAT	ATACTTTTGT	ATATTCTTCA	4620
20	CCTTCGTAAA	TAAACTTCTT	TACATTTTTA	AAATTACCTT	CCATAAAAAT	CACCCTTTAA	4680
	TTAAATATAA	CGTATTCGGG	TCTTTTTGAT	ATATATAGTT	ATATTCATTT	TCTGTTCCTG	4740
	TCCAAATTTT	AACCGTCGGT	TGAGATGCGC	TTTTTAGTTG	ATATAAATTA	TCCGCTTGTT	4800
25	GTTTAGTAAA	AGCTTGAGAT	GACAAAACAT	ACCGCTCGTC	ATGATTATGA	TTTTTTGGAG	4860
	CATATAAATC	ATTTAGTGTT	TGTTTGAATT	CCTCAAAATC	TTCTGTATTA	ACTTTTGAGC	4920
	CAATCTGTTG	CAATACACTT	TCTGAAATAG	AGTTGTTTTG	TATTGCTTCT	GCTAATTCTC	4980
30	TTAATGTGTT	CATAGATTCA	GGCGCGCTAT	CAACTAGTTC	AGCAATTTTT	GTATCCGTAT	5040
	ACGTTTTAGA	GTCGTTGAGA	GTTGTATCTT	TGATTTTTC	AACTTCTTGC	AATTTATTTT	5100
	CTAACCCTTC	AACATTTGCG	ATATTGATTT	TGTCCAATAA	CTCAGGTTCT	GCTTTGATAT	5160
35	CTGTATCTTT	ACCATCAATT	TGCCACATTT	TAGTGTCAGG	ATTGATTGAT	ACTACAGTAC	5220
	CGTTTTTACC	GGGTGCGCCT	TGTTCTCCTT	TTTTACCTGC	TTCACCTTTT	GCTCCAGGTT	5280
40	GTCCCGGTTC	ACCTTTATCA	CCTTTCGCAC	CTTTAAATCT	ACTTTCATTC	TTTTCGATGT	5340
	AAGAAATGAC	ATCTTTATCT	ATTTTCTCTT	TAAAGTCTTT	GCTCAATAAA	TCTGTCGCGT	5400
	TATCTTTTAA	AATTCTCGTA	ATAGCATCAT	CTACCAATTT	AACATCGATT	TCTTTTGCTA	5460
45	CAGCAGATTC	AATACCACTA	TCAACGATAT	TGAAAGAAAA	GTTTGCGACA	TGTATTTTTT	5520
	CTTCTTCTTT	CTCTAAAAAC	AGCTTACAGC	GAACATAACC	AGCGTGTTTG	ATAACCTTTT	5580
	TAGGTATCTT	GTAGGTAAGG	AAACCTTTTA	CAACATCGTC	GATAATAAGG	GGCTCATTTT	5640
50	TGAATATAGA	GCCATCTTCC	ATAAACAAAT	GTAATCTAGG	TGTTAAGCCA	TGTGCTTTTA	5700
	CATCGATACG	y Countainantic	TCATTCATAC	СПУЛТСТТУТ	ACATCCTCTA	ייים אייים א	E760

	CAACATCTTT	TATTTTGTAC	ATTTACACAC	CTCTTTATTT	ATATTTATCC	CTTGTGAAGT	588
_	AGATACCTTT	TAAGCCGATT	TGTTTATATA	ACTTAGCGAT	TGTACTTGCT	TGATGTTGGC	594
5	ACCACTCTAT	AGCAGTAGCG	TATTGGTGGG	TAGCTGGATT	CTTAGGATTC	CATCTAATTC	600
	GGTACAATGT	GTTTTGACCT	TTATTGATGT	AATCCTTTCT	TACGAAGCTA	GCACCGCCCA	606
10	TGATTGCTTT	TGCTGGAGAT	GTCCAACCTT	TATTCCTTGC	AAACGTCATT	GCGTAGTTAG	612
,,,	GATTGTTGTC	GTAAGCGCCA	ATGCCGAAGT	AGTTGTATAC	TCCATCTTTT	CCGTTAGCGA	618
	AGTTACTTGT	TCCATATCCA	CTTTCTAAGA	AAGCATGCGC	GATTAAATAA	ATTTCATTAA	624
15	TGTTGTGCTT	TTTACAAGCT	TCTGCGAACG	CTTTACCTTG	ATTATTCAAT	GTTCCCTTAC	630
	CTTTAAGTAT	CTTATTAAGT	GCGCTAACTG	AAACACCTTG	ATACTTGCCT	AAATTAAGCA	636
	TTTGGTAGCA	TTGTGTGTTA	CTTTCCCATA	TACGCTTTAC	ATTCATTGCT	GAACTCGTTT	642
20	GTGCTCGTGT	AGCGTTAscC	AACCCCAAGC	ATTAGATTTT	TTCGGGTTAC	CTCTTGCCAT	648
	TTGTTTATCC	AGTGCTTGTT	TGAATGTATA	AGGACTCGTT	TCTGTTATGA	TCTGCGGTTG	654
	TTTAGATGCC	GAACCATTGT	TGGCTGTTGG	TGACGAGTCT	CTTACATTAG	CTATATCAGC	660
25	GTTTTTATTA	TCTACCATAA	CTTTTATTCT	AGATTTTGTT	ACTGTTGGCT	TAGTTATAGA	666
	ATTTAATAAT	TTTTCTCTGT	TTTTAAATAT	ATTAAGTAAT	GCCTTTTCTA	ATGCTTCGTA	672
	TTTATCTTTA	GGAGGAACAC	CGTTGTCAAT	CATATTCCAA	TTAACATGTT	CCAACATTGA	678
30	ACGCCAAATG	CTGTCGTCTA	CTTTTAAATT	TTCAATACTT	AGAGGTATCT	CATATTTGGC	684
	CATCATATCT	ACAGCTACAA	CCATTGCGTG	AATCTCATTA	TTAAATAAAA	CATTTTTACT	690
	CGCACTATAA	TCTTCACATA	CGTCTATAAC	TATATAATCA	GGTTCATTAG	GAACTTCAAA	696
35	TACAGCTCTT	CTAGGTGCCC	AAATATTATG	TCTATCAACA	TAAAAGTGGG	GATATTCTAC	702
	ATCCTGTTTG	TATTTCTTCC	TACTGTTATA	TAAACTTTCT	ACCGAGCTCA	TCGTTTGTGC	708
40	GTTTCTAATC	ATTATTCCTT	TAGGTTTTTC	GAGTCGTCGA	TTACCTTCTA	CTATAAAGTG	714
	ATAAATATAT	TCTGGATAAT	TAACCTCTTG	GCTAGAAATA	GTGTACTTTA	TAGTTGTTAC	720
	ATCTTTCCAA	ATTGGAACTT	TTTTATTATT	TTTTTCGTTA	TCATCACTAT	CATCTTCTGG	726
45	TTTAGGTGCC	GGTGTAGTTT	TGTCTGGATG	ATATGGTGGT	CTAACAAAAT	ATTTAACCCC	732
	TCCACCTGGT	CCATCATGAT	AAGAGTGTTT	AATTTTATAA	GGTGGACTTC	CTGTTGCGTT	738
	ATTTGTATAC	CAGTTTTGAT	CTACGCCATA	CCAATAGTCT	TTTGTGCATG	GTCCCACTAC	744
50	AATGTTTACA	TGTCCTGCCC	AACCACCAGT	CCAAACACCC	CAGTCGCCTG	GTTGTGGTAC	750
	ስ ስ ል ስ ጥ ተመመመጣ ለ ል ል ል	СФАФФФОФА A	መጥስ ጥርጥጥር አ አ	እጥርጥርጥአ ርርጥ	СТАТАВТТСС	እጥጥጥጥር አ ር ር	756

	TAAATCCCAG	CATTGTGCTC	CCATTCCAGA	ACCAGGTACA	TCAATAGCTA	TTTTGTTTTT	7680
	AGCGATATAT	AACGCCCATT	CAACCACTTC	ACTAGCTGTG	GGCTTTCTAT	TTTTCGGATT	7740
5	AGGTAATCCC	ATGTATGCAC	CTCATTTCAA	TCAAAATAAA	AAGCCAGTGC	CGAAGCACTG	7800
	ACTCTTAACT	GTTATTTACA	TTTACCAAAC	CAGAAGCACG	CCCAGAAGCT	ATATCCTAAA	7860
	ATCCCTTTAA	GCATGGTAAT	CACCTCCTTT	AAATACCAAA	AACAGTTCTT	AGTAAAGCTA	7920
10	TGACAATCGT	ACTGAAGATA	GTCCCTATCA	AACCTAGAAT	CCACATTTTT	ATGTCTCTAA	7980
	TATTCTTGGC	ATTCTTTTCT	TTATTCTTTT	CATCTTCTAC	CTTGTCGCGC	TTTAATTCTT	8040
15	CAAAATTTCT	ATCTAATTTG	TCATAAATCT	TTTCTTGCGC	TCTAAGACTA	TCTTCTATTC	8100
	TGTCGAATTT	TTCAAACATA	GTCTTATCAT	TTTCTTCTAA	TCGCGTTAAA	CGCCAATCTT	8160
	GTTCATGTCG	TTTGGTAAAT	CCAAACATTA	TGCCACCCAC	TTTATTCAAA	TTAAAAAGCC	8220
20	ACAAGCATTA	CACCTGTGAC	TTTTCATCTT	TTGTTTCTGG	ATATTTTTCT	CCAGTGATTA	8280
	AAGCGTATTC	TTCTTTATCG	ATTAAACCCT	TGTCTACGTA	CCACTTAATT	TGCTCGTTTT	8340
	TATAGTAACC	CCAAACATAA	AAAGTTTTAA	TGTCTTTAAA	AGTTGGATAA	ATCATCTTCA	8400
25	TTATTTAAAC	GTCCCCCTCA	GTACTTGTTT	TGTTAGTTTT	CAGTTCAGTC	AACTGTTGTG	8460
	TTAACATAGC	GTTTTGTTGA	GCTAATTCCA	TTGTTAATAC	GTTTACTTGT	GCCACCTGCA	8520
	TTTGCATACT	CGCAACCATT	CCGCGAAGTT	CCTCATCACT	TAAATCTGAC	GCACTTTGTT	8580
30	GGTTTGATGC	ATTCGGTACG	TCTTCTTTTT	CGAAATTGCT	ATTGTATTTA	ATTTCGCCGT	8640
	TAGTGAAAAC	AAACTTTCTA	GGTTCGAACT	CTTCTTTAAA	TTTAATAGGC	ACATTGTTAT	8700
	CATCTACATC	TAAACTATTG	CGTAAACCGC	CAGTATTAAC	GAATCCGATA	ACTTCGTTTT	8760
35	TATCGTTTAC	TGTGATTTTC	ATTATTTCCA	CCCCATAATT	TTAGTTATAG	TAACTTTGTT	8820
	GGCATTCGCT	CCAGAACCTG	ATGTTTTACC	TAAATCAAAG	TACACATCGT	TATCTATTCT	8880
40	TAAAGTAGTG	CTACTTGTTT	TGGATAGTAA	GCACTCATAA	ATACCGCCAC	CGTTGCCGTC	8940
4 0	TGAGTCAACT	ACATTCGCTT	TACTCAATTG	AATCGCGTTA	GGTAATGCGG	TTAGTCCGAA	9000
	TCCCTCAATA	ACGCCACCTG	GATAAGTTCC	ACTTACCAAC	AAAATAGAAT	AGTTTGTGTA	9060
45	CGGTTCAGTT	AGATTGATTG	TTGTACCTAC	ACCATTTGCG	CCACCGTCGA	ACAATACCGT	9120
	TGATTTATGT	TCATTAGGAA	CTGTCCACTG	TTGCTCAAGT	CTGCCGTTTG	TGATTGATCG	9180
	TGTGTAAATC	TTTTTAGAGT	TATAAGGTGT	GAAGTTAAAT	AGCTTGTTTG	TATCATCTTT	9240
50	AACGAATACC	GATAAATAAC	CCTCATAACT	TTCAACGCTA	CCTGGTAAAT	CCGGCACTCT	9300
	mamma an ma a	ma a mma con o	CACOOR A AOS	TOCON NATION	COMMOCOORM	תיא מידוערי א א ביימוני	9360

	GAATTTATCA TCTACATACT GCTTAGCTT	G ATTTAAAGCG TTGTTAGACG	TTTCTTCAAC 948					
	AAATTGCTTA GTTAAGTTTC CATCATTCT	T TTTATAAAAC GGGTACCATG	TGCCGTAGAT 954					
5	TTTGTATTTT GTGTACTCAT CGTTTGAAT	C GTCTGGGTAC CATGTTGCAC	GAGCAGTATT 960					
	ATTATCAACA ACATAAACAA CTAACACAC	C AGATTTGCTT GATGTATAAG	TTGATTCATC 966					
10	GAACGAAGAA CCGTCATCAA CACCATCTT	G TCCAGGCTTC TCTAACGTGC	CTATATCCGT 972					
70	CTTTTCTGGC GCATCTGTTG CATTAGTAA	I ATGAATAATC CTAGATGTGT	TAACTGCGCT 9780					
	TAAAACGCTA TCTATGGACT GCTCATACG	A TTCAATTGCT TTACCGTAAT	CATCTGTAAG 984					
15	TTTAGACTTT TGCCAATTCG TTGTTGAAT	I ACCTTTAACA AGGTCAGCGC	CATTGATTTG 9900					
	TTGTTCAACT TCGTTAACAC GTTCAAAAA	T CGCTTGCTCT TTTTCAACTA	TTTTATCGAA 9960					
	TTCAGCTGTA ACAGCTTGTG TTGCACTAG	T TTGCGTCGCA GTAATAGCTT	GTATAGCTTC 10020					
20	GTTTTGCTTG ATTTCGATTT GTTGAATGC	C TTTTGTCGCA CTATCATTCA	CTTTTGCTAT 10080					
	TAACGTTTGT GTATCAGCCA TATTTTGCT	T TAATTGGTTA AAATCTTTAC	CGACAGCTTC 1014					
	GATAGTATCT TGAATAGATT TGATATAAA	C AAGCTTTGTT ATACCATCAA	ACCCACTAAC 10200					
25	TAAATCATTT TCAATATTGA AGCTAAATT	G ACGTTCAACA ACAACATTAT	TACTCCCGTT 1026					
	TTGTGTAAAG AATGCCTGAG CATGCACCT	I GCCTGAATGT TTTAAAAATT	CATTCGGTAT 10320					
	CACATACTGC AAACGCCCAT TAATTGCGT	C TACTATCGTT AATTCGTCTG	AAATATAAGC 10386					
30	GCCTCTATCT ACGTTATAAT CATCGGTTT	r taanacgata gatgttttaa	CATGTTCAGA 10440					
	ACTTATAGAT AAGGGTCTGT TATTCTTAG	r	10470					
	(2) INFORMATION FOR SEQ ID NO:	21:						
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3647 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double							
40	(D) TOPOLOGY: linear							
	(xi) SEQUENCE DESCRIPTION:	SEQ ID NO: 21:						

ATCAGATCTT GAGAATCGAG TTATTAAGTC TATCGAAGAC TTAACTAAAA TCCAACCATT 60
CATGCCTACA CAAGATTTTG ATTTTAAAAC TAAAGAAATT CAATCAAACA TTTCTGAAGA 120
AAGATTTATC GAAATGATTC AGTATTTCAA AGAGAAAATA ACAGAAGGGG ATATGTTCCA 180
50 AGTTGTGCCA TCAAGAATTT ACAAATATGC GCATCATGCT AGTCAGCATT TAAATCAACT 240
TTCGTTTCAA CTGTATCAAA ATTTAAAACG ACAAAACCCA AGTCCATATA TGTATTATCT 300

	TCAAATTGTA	ACAACTAATC	CTATTGCAGG	TACGATTCAA	CGTGGTGAGA	CGACACAAAT	420
	AGATAATGAG	AATATGAAAC	AACTACTTAA	TGATCCAAAA	GAATGCAGCG	AACATCGTAT	480
5	GCTAGTTGAT	TTAGGACGTA	ATGATATTCA	TAGAGTAAGT	AAAATCGGTA	CCTCAAAAAT	540
	TACTAAATTA	ATGGTTATTG	AAAAATATGA	ACATGTTATG	CATATCGTAA	GTGAAGTCAC	600
	AGGTAAAATA	AATCAAAATT	TATCGCCAAT	GACAGTTATT	GCGAATTTAT	TACCAACAGG	660
10	TACCGTTTCA	GGTGCACCAA	AATTACGTGC	AATTGAAAGA	ATATATGAAC	AATATCCACA	720
	TAAACGGGGC	GTTTATAGTG	GTGGTGTTGG	ATACATAAAT	TGTAATCATA	ACTTAGATTT	780
15	TGCATTAGCA	ATTCGAACGA	TGATGATAGA	TGAGCAGTAT	ATCAACGTAG	AAGCTGGTTG	840
	TGGCGTTGTA	TATGATTCTA	TTCCTGAAAA	AGAACTGAAT	GAAACGAAAT	TGAAAGCTAA	900
	AAGCTTATTG	GAGGTGAGCC	CATGATCTTA	GTTGTAGATA	ATTATGATTC	CTTTACATAT	960
20	AACCTAGTGG	ATATTGTTGC	TCAACATACT	GACGTCATTG	TTCAATACCC	TGATGATGAT	1020
	AATGTGCTGA	ATCAATCGGT	GGACGCTGTT	ATTATATCTC	CTGGTCCAGG	GCATCCATTA	1080
	GACGATCAAC	AGTTAATGAA	AATCATATCA	ACCTATCAAC	ACAAACCCAT	TTTAGGTATT	1140
25	TGTTTAGGGG	CTCAGGCACT	GACTTGTTAC	TACGGTGGAG	AAGTCATTAA	AGGCGACAAG	1200
	GTTATGCACG	GCAAAGTTGA	TACACTAAAG	GTTATATCGC	ATCATCAACA	TCTGTTATAT	1260
	CAAGATATAC	CAGAACAGTT	TTCAATTATG	AGATATCATT	CATTAATAAG	TAACCCTGAC	1320
30	AATTTTCCAG	AAGAATTGAA	AATTACTGGA	CGTACCAAAG	ATTGTATACA	GTCATTCGAG	1380
	CATAAAGAAA	GACCGCATTA	TGGTATTCAG	TACCATCCTG	AATCATTTGC	TACAGACTAT	1440
	GGTGTCAAAA	TAATTACAAA	TTTCATTAAT	CTAGTGAAGG	aaggatgaaa	ACCATGACAT	1500
35	TACTAACAAG	AATAAAAACT	GAAACTATAT	TACTTGAAAG	CGACATTAAA	GAGCTAATCG	1560
	ATATĀCTTAT	TTCTCCTAGT	ATTGGAACTG	ATATTAAATA	TGAATTACTT	AGTTCCTATT	1620
40	CGGAGCGAGA	AATCCAACAA	CAAGAATTAA	CATATATTGT	ACGTAGCTTA	ATTAATACAA	1680
40	TGTATCCACA	TCAACCATGT	TATGAAGGGG	CTATGTGTGT	GTGCGGCACA	GGTGGTGACA	1740
	AGTCAAATAG	TTTCAACATT	TCAACGACTG	TTGCTTTTGT	TGTAGCAAGT	GCTGGCGTAA	1800
45	AAGTTATAAA	ACATGGLAAT	AAAAGTATTA	CCTCaAATTC	aGGTAGTACG	GATTTGTTAA	1860
	ATCAAATGAA	CATACAAaCA	ACAACTGTTG	ATGATACACC	TAACCAATTA	AATGAnAAAG	1920
	ACCTTGTATT	CATTGGTGCA	aCTGAATCAT	ATCCAATCAT	GAAGTATATG	CAACCAGTTA	1980
50	GAAAAATGAT	TGGAAAGCCT	ACAATATTAA	ACCTTGTGGG	TCCATTAATT	AATCCATATC	2040
	ACTTAACGTA	TCAAATGGTA	GGCGTCTTTG	ATCCTACAAA	GTTAAAGTTA	GTTGCTAAAA	2100

	AAGCAACACT	ATCTGGTGAT	AATTTGATAT	ATGAATTGAC	TGAAGATGGA	GAAATCAAAA	2220
	ATTACACATT	AAATGCGACT	GATTATGGTT	TGAAACATGC	GCCGAATAGT	GATTTTAAAG	2280
5	GCGGTTCACC	TGAAGAAAAT	TTAGCAATCT	CCCTTAATAT	CTTGAATGGT	AAAGATCAGT	2340
	CAAGTCGACG	TGATGTTGTC	TTACTAAATG	CGGGTTTAAG	CCTTTATGTT	GCAGAGAAAr	2400
	TGGATACCAT	CGCAGAAGGC	ATAGAACTTG	CAACTACATT	GATTGATAAT	GGTGAAGCAT	2460
10	TGGAAAAATA	CCATCAAATG	AGAGGTGAAT	AATATGACGA	TTTTATCAGA	AATTGTTAAA	2520
	TATAAACAGT	CACTTTTACA	AAATGGCTAT	TATCAAGACA	AACTTAATAC	CTTGAAAAGT	2580
15	GTGAAGATTC	AGAATAAAA	ATCTTTTATA	AACGCAATTG	AGAAAGAACC	AAAGCTAGCA	2640
	ATTATTGCAG	AAATTAAATC	GAAGAGTCCT	ACAGTTAATG	ACTTACCTGA	ACGAGATTTA	2700
	TCGCAACAAA	TCTCAGATTA	TGACCAATAT	GGTGCAAATG	CCGTGTCCAT	TTTAACTGAT	2760
20	GAAAAGTACT	TTGGTGGTAG	TTTTGAAAGA	TTACAAGCAT	TGACGACAAA	AACAACATTA	2820
	CCCGTATTAT	GCAAAGACTT	TATTATAGAC	CCGCTTCAAA	TTGATGTTGC	TAAACAAGCT	2880
	GGTGCATCTA	TGATTTTATT	GATCGTTAAC	ATCTTATCTG	ATAAACAATT	GAAAGATTTA	2940
25	TATAACTACG	CTATATCGCA	AAATCTAGAA	GTGTTAGTTG	AAGTACATGA	TCGCCATGAA	3000
	TTAGAACGTG	CCTATAAGGT	TAATGCTAAA	TTGATTGGTG	TAAATAACAG	GGACTTAAAA	3060
	CGATTTGTTA	CAAATGTGGA	ACATACAAAT	ACTATTTTAG	AAAATAAAA	AACAAATCAT	3120
30	TATTATATTT	CTGAAAGTGG	TATTCACGAT	GCATCTGATG	TAAGAAAAAT	CTTGCATAGT	3180
	GGTATCGATG	GCTTACTAAT	AGGTGAGGCG	CTTATGCGTT	GTGACAATCT	ATCTGAATTT	3240
	TTACCACAAC	TGAAAATGCA	AAAGGTGAAG	TCATGATGAA	ATTGAAATTT	TGTGGCTTTA	3300
35	CATCAATAAA	GGATGTTACA	GCGGCCAGTC	AATTACCTAT	TGATGCGATA	GGTTTCATCC	3360
	ATTATGAAAA	AAGTAAAAGG	CATCAAACAA	TTACCCAAAT	AAAAAAGTTA	GCGTCTGCTG	3420
40	TTCCAAATCA	TATCGATAAA	GTATGTGTCA	TGGTAAATCC	TGATTTAACA	ACAATTGAAC	3480
40	ACGTATTAAG	CAATACGTCA	ATTAACACAA	TACAGTTACA	CgGCACAGAA	TCTATTGATT	3540
	TTATACAGGA	AATTAAAAAG	AAATATTCAA	GCATTAAAAT	CACTAAAGCT	TTAGCTGCaG	3600
45	ATGGAAAACm	TWATCCCAAA	caTtAAtnAA	tnTTAgGGGG	TCCGTGG		3647

(2) INFORMATION FOR SEQ ID NO: 22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5966 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:

	CcAcCTTGAC	CACCTTTACG	TGGAATCTTT	TCmCCTkGAG	CAACaTCGaT	AATATATATT	60
5	GAAAgTCAAC	AAGTTCTGGA	CTAAATGTTG	CTGCTAAGTT	ATCGCCACCA	GATTCTATGA	120
	AAATTAGTTC	TATATCGTCA	TGACGTTCTA	ATAATTCGTC	TATTGCTGCA	AAGTTCATAG	180
10	ATGCATCTTC	ACGAATCGCA	GTATGAGGAC	ATCCACCAGT	TTCAACACCA	ATGATACGAC	240
10	TTTCAGGTAG	AACTCCTGAA	TTTACTAATA	TCTTTTCGTC	TTCTTTTGTA	TATATATCAT	300
	TTGTAATAAC	GCCGATACTC	ATTTCTTTTG	AAAGACGTTT	TACAACTTTT	TCAATTAATT	360
15	GTGTTTTACC	TGCACCTACA	GGACCACCAA	TACCAATTTT	AATCGGATTT	GCCACAATTA	420
	TAACCTCCTA	TGATATGAAA	tTCTAACATT	GaCGTTCTCA	TGCGCCATTT	GATTTAGTTC	480
	TAAACCAGGC	GCTGTCATGC	CAAAATCTGC	TTCTTTTAAT	TCGAAAATCT	GCTTTCTTGT	540
20	TCCTTCTATA	TAAGGAATCA	TGTGAGTAAC	TATCTTTTGA	CCAGCAGTTT	GTCCAAGTGG	600
	AATAGCACGA	ACAGCATTTT	GAGTTAAACT	TGAAACATTT	TGATATAAAT	AGTAATCAAT	660
	AATCGTTTCA	ATATCTACAC	CTAAATGATG	GCCTAGCATA	GTAAAACAAA	TAGCTGGATT	720
25	ThACTTTGCT	TTCTTATCTT	GCATTTGTTG	ATGATACCAA	GCAATCCATG	GGCTATTATA	780
	AAGTTCTAAA	GCCAATTTAA	CCATGCGAGT	CCCCATTTGT	KTTGCACCAA	CACGTGTTTC	840
30	TTTAGGTAAG	TTTTGrACAr	ACATCAGTTT	ATCTATGTGT	AATACTTTTT	GTGTATCATC	900
	ATTTTCCAAT	GCATCATAAA	CTAAACGCAT	GGCTAAACCA	TCAGAATAGG	TAAGTTGCTC	960
	TTGTAAAAAC	ATTTTTAACC	AAGCAATAAA	AGTATGATCG	TCATGAATTA	TATTTCGTTG	1020
35	AATATATGTT	TCAAGACCAA	ATGAATGACT	GAAAGCACCT	GTTGGAAACT	GTGAATCACA	1080
	GAACTGAAAT	AATCTTAAGT	GTGTATGATC	AATCATGAGA	ATGCCCTATA	TGTCTGAAAG	1140
	CCTTATTAAC	TTTACGGTCT	TCTCGAACAT	ATGGGATGCC	TAAACTTTTT	AATAAATCTT	1200
40	CAACTAAATA	ATCATATTGT	ACTAGCATTT	CAGTCTCTGT	AAATTGTGCT	GGCAAATGAC	1260
	GATTTCCTAA	TTGATGGGCT	ATATCTCCCA	TTTCTTGCAA	TGTTCTTGGT	TGAATCACTA	1320
45	AAAGATCTTC	TGAATTAACA	TCCACAATAA	TCATATTATG	GTCATCTGCG	TATAAAATAT	1380
45	CTCCATATTG	TAAGTCAATA	GGTTGTTTTA	AACGAATGCC	TATTTCAGTG	CCATGGTCTG	1440
	TAACGACTCT	TTGAATACGT	TTAACAAGAT	CTGAATTTTC	AAGGTATACT	TTTTCGACGT	1500
50	GCTTTTGTTT	TTCTGAATTT	GACAAATTGG	CAATATTGCC	TTGGATTTCT	TCAACAATCA	1560
	TTCTATGTTC	CTCCTAGAAT	AAGAAGTATC	TTTGAGTTAA	TGGTAACTCA	GTTGCTGCAT	1620
	TACTTGTAAT	TTTTTCTCCA	TCTACATATA	CTTCATATGT	TTGTGGATCA	ACGTCTAATT	1680

	GACGCACCAT	GCGTTTTAAA	TTTAATGCAC	GATTGATACC	ATTTTCATAA	GCAGTTTTAG	1800
_	ACACGAATGT	CATTGACGTA	CTTGTAAGGT	TTCCGCCGTA	TTGACCATAC	ATTTTACGGT	1860
5	ACTTCATCGG	TTCAGATGTA	GGTATAGAAC	CATTTGCATC	GCCATTTACG	GCAGAGTTAA	1920
	TTAATCCGCC	CTTTACAACT	AATTCAGGTT	TAACCCCAAA	GAAAATTGGG	TCCCATAAGA	1980
10	CAATGTCAGC	TAGTTTGCCC	GGCTCGATAG	ATCCTACATA	TTCAGAAATA	CCATGTGTAA	2040
	TTGCTGGGTT	AATTGTATAT	TTAGCGATAT	AACGTTTGAT	GCGATTATTA	TCATTATGTT	2100
	CAAAATCACC	ATCTAAAGGA	CCACGTTGTT	CTTTCATGCG	ATGTGCTACT	TGCCATGTTC	2160
15	GTGTAATTAC	TTCACCTACA	CGGCCCATTG	CTTGTGAATC	GGAACTAATC	ATACTGAATA	2220
	CACCCATATC	TTGCAGAACA	TCTTCTGCTG	CAATCGTTTC	TTTACGAATA	CGTGAATCTG	2280
	CGAATGCGAT	ATCTTCAGGA	ATAGCCGCAT	TTAAATGGTG	AGTAATCATT	ACCATATCTA	2340
20	AATGTTCATC	TACAGTATTA	TGTGTATAAG	GCAAAGTTGG	ATTTGTAGAT	GAAGGTAAAA	2400
	TATTTGAAAA	TGCAGCGGAT	TTAATTAAAT	CAGGCGCATG	ACCGCCACCA	GCACCTTCAG	2460
25	TATGGTACAT	ATGAAGTACA	CGGTCTTTAA	CAGCAGCCAT	TGTGTCTTCC	ATAAATCCTG	2520
25	CTTCATTTAA	AGTATCTGCA	TGTAATGCAA	TTTGAACATC	AAATTCATCA	GCAACATCTA	2580
	ATGCATGACT	CAAAGCAGAT	GGTGTTGCAC	CCCAGTCTTC	ATGTACTTTT	AATCCAATTG	2640
30	CTCCGGCATT	GATTTGTTCA	ATGAGTGCAG	TTGGATTTGT	TGCTTGTCCT	TTACCTGTAA	2700
	AACCGACATT	AATCGGTAAA	CcTTCGGCAG	CTTCTAACAT	TCTATGAATA	TGCCATGGAC	2760
	CTGGAGTTAC	AGTTGTTGCT	TTAGAACCTT	CTGAAGCACC	AGTACCACCA	CCAATATGAG	2820
35	TCGTAATACC	ACTTTCTAAT	GCGACCTCTG	CTTGTTCAGG	ATTAATAAAA	TGAACATGAG	2880
	TATCAATACC	ACCAGCAGTG	ACGATTTTAC	CTTCAGCGGC	AATGATATCT	GTTGTTGAAC	2940
	CTATÃATAAT	GTCGACATTA	TCCATTATAT	CTGGGTTGCC	GGCATTACCT	ATGGCGAAAA	3000
40	TATAACCATT	TTTAATGCCT	ATATCAGCTT	TAACCACTTT	ATCGTAATCG	ATAATAACGG	3060
	CATTAGAAAT	GACAAGGTCT	GCAACGTTCA	CGTCATCACG	TGTTACACGA	GGATTTTGCG	3120
45	CCATACCGTC	TCTAATAGAT	TTACCACCAC	CAAAAGTAGC	TTCTTCACCA	TAAACCGCAT	3180
	AGTCTTTTTC	TATTTGAGCA	AATAGATTCG	TATCACCTAA	ACGAATGGAA	TCTCCAACAG	3240
	TTGGACCGTA	TAAGCTCGTA	TATTGATTTT	GCGTCATTTT	AAAGCTCATG	ATCTTTTTCC	3300
50	TCCTTTTTTA	TTCACGTTTT	CAGCACCGTT	ATCTCCGAAT	ACACCTGCAT	ATTCATCATT	3360
	TTCATCAGTT	GGGCGATAGA	CACGTGACTC	ATCGATAGGA	CCATTGACCA	TACCACGAAA	3420
	ACCAAAAATT	TTACGTTTGC	CAGCATATTC	AACTAATTGA	ACTTCTTTTT	TATCCCCAGG	3480

	TTCGAAATCT	AATGCTGCAT	TTGCTTCATA	AAAATGAAAA	TGTGAGCCCA	CTTGAATTGG	3600
_	TCGATCTCCT	GTATTTTCAA	CTTCGATAAC	TGTTTCAGGA	TGATGGTTAT	TAATTTCAAC	3660
5	CTCTGTACTT	TTTGTAATAA	TTTCTCCTGG	TATCATTTGA	CTGCCTCCTT	TAAACAATAG	3720
	GGTGATGTAC	TGTGATTAAC	TTAGTACCAT	CGGGGAACGT	AGCCTCGATT	TCGATATCTG	3780
10	TAATCATGTG	TTCGACACCA	TCCATGACAT	CTTCTTTGTT	TAGAATTTGT	CTACCATAAC	3840
	TCATTAACTC	TGCAACGGTC	TTACCATCGC	GTGCACCTTC	TAATAATTCA	TCGCTGATTA	3900
	AAGCTAATGC	CTCAGGATGA	TTTAGTTTCA	AACCACGTGC	TTTACGACGA	CGTGCAACTT	3960
15	CCGCCGCCAC	TACAATCATT	AATTTGTCTT	GCTCTCGTTG	TGTAAAATGC	AAATTAAAAC	4020
	CCCCAATTTC	ATATTAGATA	Caatttacaa	AATTTATATT	AATCCTAATT	GTTGTGATAA	4080
	ACAAGTAATA	TACAAAGTTC	AATGTGTAAT	TAGAAAATTA	TATTTTTAGC	ATATCCGATA	4140
20	TTGAAGCAAA	CAATCTAATC	GAAAACAAAT	AGTGGAATAT	ATTTATGTAA	AAACCAAAAT	4200
	AGTTTTTAAT	ATAACTTTTC	ATAGAATAGT	AGTATATTAA	TGAGTAATGA	TTCAAAGGAA	4260
25	AGGTGAAAGA	TTTGAAGATA	ATAGATGTGC	TTTTGAAAAA	TATATCTCAG	GTTGTGTTAA	4320
	TTAGTAATAA	ATGGACAGGA	TTATTTATCT	TAATAGGATT	ATTTGTAGCC	GATTGGACAA	4380
	TTGGATTAGC	GGCTATTGTA	GGTAGCATCA	TCGCCTATAC	TTTTGCGCGT	TTTATAAATT	4440
30	ATAGTGAGGC	AGAGATTAAT	GATGGGTTAG	CTGGATTTAA	TCCAGTGCTA	ACTGCCATTG	4500
	CGTTAACAAT	CTTTTTAGAT	AAGTCAGGAT	TAGATATTGT	TATAACAATG	ATAGCAACTT	4560
	TATTAACGTT	ACCAGTTGCT	GCTGCAGTGA	GAGAAGTTTT	AAGACCATAT	AAAGTTCCGA	4620
35	TGCTGACGAT	GCCTTTTGTC	ATTGTGACTT	GGTTTACAAT	TTTACTTTCA	GGACAGGTTA	4680
	AATTTGTAGA	TACATCGTTA	AAGTTAATGC	CTCAAAACAT	TGAAACGGTT	AATTTTAGCA	4740
40	ACAATGATAG	AATaCATTTC	ATTCAGTCAT	TATTTGAAGG	ATTCAGTCAA	GTATTTATCG	4800
40	AAGCGAGTGT	AATTGGTGGC	GTATGTATTT	TAATCGGCAT	ATTGATAGCA	TCAAGAAAAG	4860
	CAACACTCTT	AGCTGTTATA	GCTAGTTTGT	TAAGCTTTAT	CATTGTAGCT	CTATTAGGTG	4920
45	GTAATTATGA	TGATATTAAT	CAGGGATTAT	TCGGTTATAA	CTTTGTATTA	ATGGCAATCG	4980
	CACTAGGATA	TACATTTAAA	ACAGCGATTA	ACCCTTATAT	TTCGACTTTT	TTAGGTGTGT	5040
	TATTAACAGT	AGTGGTGCAA	CTAGGTACAA	CAACATTGCT	TGAACCGTTT	GGCTTACCTG	5100
50	CATTAACATT	GCCATTTATT	ATCGTGACAT	GGATTTTATT	ATTTGCTGGT	ATTAAACATG	5160
	ACAAAGTAGA	TGCTTGATAG	TTAAATCAAA	CCTAATATTG	TTTGAATATC	ACCTTAAACT	5220
	ATACAGCGAA	TTGTATAGTT	TAAGGTGTAT	TTTTATGGAT	AAAATTAAGT	GCATACTTAA	5280

	GTGTTAAACT	AGGAATAAAT	AATTTATATT	GTGTGTTGTG	TGGGGTGACT	AATATGAATG	5400
	ATATGGATAA	TTCCTTTTTA	ATAACAACGG	AAATTCAAAG	AAAATGGATT	GAAAAATTCA	5460
5	AAGTAATTAG	AGATACATTT	AAGGCTAAAG	CTGAATATAA	TGATCAACAT	AGCCAATTTC	5520
	CATATAAAAA	TATTGAATGG	TTAATTAAAG	AAGGTTATGG	AAAATTAACG	TTACCAAAAG	5580
10	CATATGGTGG	TGAAGGTGCG	ACCATAGAAG	ACATGGTTAT	TTTGCAATCA	TTTTTAGGCG	5640
10	AACTTGATGG	TGCCACAGCA	TTATCTATTG	GTTGGCATGT	GAGTGTCGTA	GGACAAATTT	5700
	ATGAACAGAA	ATTATGGTCT	CAAGATATGT	TGGAGCAATT	TGCTGTTGAA	ATTAATAATG	5760
15	GTGCATTAGT	TAATAGAGCA	GTTAGTGAAG	CTGAAATGGG	TAGTCCAACA	AGAGGGGGAA	5820
	GACCAAGTAC	ACATGCTGTT	AAAGCTGATG	ATGGGTATAT	TTTAAATGGT	GTGAAGACAT	5880
	ATACATCAAT	GAGTAAAGCA	CTAACACATA	TTATTGTTGC	TGCTTATATA	GAAGAATTAG	5940
20	AAAGTGTTGG	TTTTTTCTTA	GTAGAC				5966

(2) INFORMATION FOR SEQ ID NO: 23:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 17310 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

CTGTGTCATC GCGAAATAGT TAGGGTCATT CATTAATCCT TTTGAACGTA TTTCATCAAA 60 ATATAACAAT TTCATTAGTA AAGGGGACTT GTTCAAACCA GCTATAATAC AAAATAGACC 120 TATAGTCACA CTGCTTATAA TATAAGAGGT AACGATCACT TITTTGCTAT TACCTAACTT 180 AAAGATGATC ATCCCTAAAT AGAAATAAAT GACTACAAAT GCATATTTAA CTGTAGATGC 240 AAGAACTTCC TTAACCGTAA TAAATATCAA ATCATCAAAA AATAGCAAAC AAYGCGTAAT 300 AATCATACGA TATGTATACA AAATAATGAM AAACTGTMAA AAATGATTTG CCTTTAATAA 360 ATGGTTAGCG AAAAACAGTA AATAAACTAA TATTAGTAAT GTGATAAAGT CAGCTATAGA 420 AACATTCACA CCGGCAATAA CCGAAGATTG CTGAATAAAA ACCGCTAAAC CGATAAGTAA 480 CAATGTTAGT AATTTACTAT TGTGTTGATT TTCCATTATA AACGTCTTCC ACTTCTTTAA 540 TCATTTTCTC CTCAGTAAAA CATTCTAAAT AACGTTTTCT AGATTGATTA CTCATTTTGA 600 TGTAATCACT GTCTATTAAA TATTTTTCCA GGACTTTAGC AATAGTTTCG GGTTGGTTGT 660 TCATCATACA TATACCATTA TCAGCTACTA ATTCTGAAAT ACCGCCAACA TGACTGGCTA 720

55

	TTATTAAAAT	AAACGTATCG	TATTGTGATA	ATAAATGACT	CGCATTAATG	ACATTGCCCA	840
	AAAATGTGAC	ATCATTTTCT	AACCCAGCTT	GTACAACTTG	TTGCTGACAA	TCATTTAATG	900
5	TAGGTCCATC	GCCTATAAAT	GTAAAATGCG	CATGATTACT	GTTATGTAAT	TTCAATATCT	960
	CTATTGCCGC	GATTAGATTT	TGTGGCAATT	TTGGATAAGC	AAATCTTGCA	ATCATAACAA	1020
10	ATTGATGCTT	TGTCGGGGCA	TTAATCTGTA	AATCTTGTTT	ATTAGGCAAC	ATTCCAACTA	1080
	CTTCGCCAAT	ATTGTTATGT	GATTGGCTTT	TTAGCGTTTG	CTTAACAGCG	GGAACATCTG	1140
	CAATACCATT	ATGTATTGTG	GTTAATTTCA	ATCGATTAAA	TCGATATTTT	AACGCTAACT	1200
15	GTTTATCGAA	ATCTGAAACA	CAAATAATGC	TATCTGTAAT	AAGTGACATT	AATTTTTCGA	1260
	таастааата	TAGAAATTTT	TTAGCTGGTT	TAACACCCTC	TGTAAAAGCC	CATCCATGTG	1320
	CAGTAAAAAC	TATACGTGTG	TCTTTCGATT	TCGAAATGAa	CTtCGCAATT	CGTCcGACCG	1380
20	TECCAGCTTT	GGAAGAATGT	AAATGGATAA	CATCAGGTTT	AATTTTCGAG	AATAACTGTG	1440
	CTAACACTTT	GACAGCTAAA	ATATCTTGTT	TAAAGTCAAT	TGGACCTACT	AAATGTTCGA	1500
25	TAATAATTAC	ATTAACTCTT	GCATCTAGTT	GTTCAATCAT	TGGTCCATGA	TTGCCTACAA	1560
25	TGACATAAAC	ATCATTGTGT	ACGCAAAAAT	GGTTGGCGAG	TTGAATGAGA	TGTGTTTGTG	1620
	CACCACCATT	GTCTGCTTTA	GTAATACAAT	ATATAATTT	CAACTGTTAC	AAACCCCTTT	1680
30	AATGCTATAC	TTTCAATTTC	TTAACATGGC	TATCTCATCA	GATGAATAGT	ATTTATAGCC	1740
	ATGCAAATCA	ATGATGGCAC	ATATTTCTTA	ATGCCATTTG	ATACTGTCTC	AAGGGATTCC	1800
	TCGTTATACT	GTAACAATTG	GTCACAATCT	TTAAAATATA	ACTTTTATTT	GAACTTATTA	1860
35	AGTAAATTAA	GACTACCTTG	AGCCTTCCCC	TGTAATAACA	ACCATCAATG	TTCTAATTGA	1920
	TATATATAGT	TCCATCATTA	AACTACCTTT	ATGTATATAT	TTCATGTCAT	ATTTCAGTTT	1980
	$\mathtt{TTGT}\overline{\mathtt{f}}\mathtt{GCGGT}$	GTTAAGTCAT	ATCCACCTTG	AATTTGCGCA	AGTCCTGTTA	ACCCTGGTGT	2040
40	AACAAGACAT	CTTTGCTCGA	AACCTATCAC	TTCTGAACTA	AATAATTCTA	CAAATTCCGG	2100
	ACGTTCCGGG	CGTGGTCCAA	TAAAACTCAT	TTCCCCTTTA	ACAACATTAA	TTAGTTGTGG	2160
45	TAATTCATCA	ATGCGTGTTT	TACGAATAAA	CTTCCCGACA	TTTGTTATAC	GATCATCATC	2220
	TTTATCAGCC	CATTGCGCAC	CGTTTTTCTC	TGCGTTTTTG	CACATCGAAC	GTAATTTGTA	2280
	TATTTTAATT	AATTTACCCA	TCTTCCCAAC	TCTAACCTGA	CTATAAATAG	GGTTTCCTGG	2340
50	CGAATCTATG	ACGATAGCAA	TGGCGAATAT	AACCATAATC	GGTAAAGTTA	AAAATAATAA	2400
	AACAATGCTT	AAAATTAAGT	CAATCGCACG	TTTAATTGGG	TAATAGCTTT	TTCTCACTTC	2460
	TTCTAGTTTG	TCTAATTTTC	TTTGATAGGC	ATAACCCTTA	TTATTATGGA	CAGCTTCAAT	2520

	AATTAAAGTA	ATCCTTTAAA	CCTGTTTCTA	CTGTATATTT	AGGAACAAAT	CCTAATGCCT	2640
_	TTAAGTTAGA	AATATCTGCA	TAAGAATGCT	TAATATCTCC	TTTTCGTGCT	TCTTTAAATT	2700
5	CATGCTCGAC	TGATTTTCCA	TATAATTCAC	CAATAATACG	ATAAACCTCT	AATAAATTAG	2760
	TAAAAGTGCC	TGTACCAATG	TTATAACCGT	GTCCAATTGC	ATCTTTGTGT	TCCATAATTA	2820
10	AGCGTACAGA	TTGAACAACA	TCATATACAT	ATACAAAATC	TCTAGTTTGC	AGTCCGTCAC	2880
	CAAAAAATGT	AAATGGCTTG	TTATGCTCAA	ATGAATCGAA	CATCTTTGAA	ATCACACCTG	2940
	AATATTGTGA	CTTAGGATCC	TGTCTTGGCC	CAAATACATT	ATTTAAAAAA	ACAACCGCTG	3000
15	TTGGTATGTT	ATATAACGAA	CAATAATTTA	ATGTCGTCCG	TTCGCCGTAA	TATTTATCTA	3060
	TTGCATATGG	TGATAATGGT	AAGATTAATG	ATTGATCACT	TTTAGGCAAA	TCAGGAAGAT	3120
	CACCATAAAC	AGCTGCTGAC	GAAGCAAAGA	TAAAACGTTT	TATATGATTA	TTATATTTT	3180
20	TAATGATTTC	TAACAATCTT	AATGTTGCTA	CGACGTTTAT	TTCTTGAGAT	AAGATAGGTT	3240
	TCTCAACCGA	CTCAGCAACA	CTAACTAATG	CTGCTAAATG	AATAACATAA	TCAAATTGAT	3300
25	ATGTCTTCAT	GATTTGTTCA	ACTGCATCAT	ATTCACGAAT	ATCTAATTCA	AACACATGAT	3360
	CGTCAGCCAA	ACTTTTAATA	TTTTCTCGTT	TACCTGTTCT	ATAGTTATCT	AGAACATAAA	3420
	CATCATAATC	TTGTTGTAAA	TCATCTACTA	AATGCGACCC	AATAAAACCA	GCCCCACCAG	3480
30	TTATCAAAAC	TCTTTCCAAA	TCTTCCACCT	CATTTATACA	TTAAAAATAT	ATCATAAAAA	3540
	CATAAAGTAT	TGTAAGCTTT	TTATCGATAT	TTTTTTTTTA	AAAAAATAAA	ATGAGATAAC	3600
	TTTGTGAATT	TTTATTGAGA	TAAATTAGAT	AGTGGTGTTT	TTGTGATGTT	TTATAATATC	3660
35	TTGGGTGTGT	TAATACTAAT	AATGCTTTCA	ACTGATGCAT	TAGACTGTGA	CATCATAACT	3720
	CACTTAAGAA	CTTCGCTTAT	TAATTTTCTA	CCAATACACT	CCCTTCTAAG	TGCACTAAAA	3780
	AATCETTACT	GCTAAGTGAT	TAAACTTAAC	AATAAGGATT	TATTTATCAT	TAGTGGATGA	3840
10	TTATTAACGG	AATCTCATAC	CACCATCTAC	AATAATTGTT	TGTCCAGTAA	TGTAATCAGA	3900
	GTCTTTACCA	GCTAAGAAGC	TCACTACATT	TGAAACATCT	TCTGGTTGAG	AAACTCTGCC	3960
15	CAAAGCAATC	TGACTTGTAA	ATTGTTCCCA	ACCCCATGCT	TCAGGTTTAC	CTGCTTCTTC	4020
	GGCTGTTGCC	ACTGCGATAC	TTTCCATCAT	TGGTGTTTGA	ACGATACCAG	GTGCGAATGC	4080
	ATTCACAGTA	ATACCTTCAG	ACGCTAAATC	TTGTGCGGCT	ACTTGTGTTA	AACCTCGCAC	4140
50	TGCGAATTTT	GTACTGCAAT	ATAAAGACAA	GCCTGGGTTA	CCCTCAACGC	CTGCTTGAGA	4200
	TGTTGCATTG	ATAATTTTAC	CGCCATGATT	GAATTTTTTA	AATTGTTCAT	GTGCGGCTTG	4260
	AATACCCCAT	AGCACACCTG	CAACGTTCAC	GCCATATACT	GTTTTAAACT	GTTCTTCAGT	4320

	GCCAAATTGC	GCGGCAGTTT	GTCTTACTGC	GTTAAATACA	TCATCACGGT	TTGATACATC	4440
	TGCTTTGATA	GCAATAGCTT	TTGTACCATC	ACTTGATAAT	TTAAGTGCAG	CTGCTTTTGC	4500
5	CCCTTCTTCA	TTGAAATCAA	CAACTGCTAC	TTTGAAACCA	TCTTCCACTA	AACGTTCTGC	4560
	AATTTTAAAA	CCAATCCCTT	GTGcTCCGCC	AGTTACTAAT	GCTACTTTGT	TGTTTGTCAT	4620
10	AAAGATCACT	CCTCAAATTT	CTTTCCTTTA	ATTACATTTT	ACTCCTCTTC	ATTTGAATAG	4680
	TACAACAAAG	GTAGCTCCAT	TTAACAAAAT	ATTCAGATAT	TTAAGGTATA	GTTAAACGCA	4740
	CTACCATTAG	TGATTGGCAA	TGCGTTTAAA	TGTCGTTTTA	AAAGTTCTTA	TGTTGAATAT	4800
15	TATTTTTTTA	AGTCTCTCGA	TTAGTTTGTC	ATCAATCTTT	TTTCGAGACA	TGGTCTTTTG	4860
	ATTCAATAGG	CGGTTCCGTG	TTATCACTGA	CAACTTTAGT	TGTAGCTTCA	TCTTTATGTA	4920
	TTTCTTCGTT	AAATCCTTCA	AGGTTTTTAG	TCGTGGGATT	TTTAACCTCA	GGATGTTCCA	4980
20	TCATGTCTTG	ACTATCAAGT	TCCTTTTTAC	ACGTGTCTTT	ATGTGATGCT	TGATTTGCGT	5040
	TCCCTTTACT	TTTTTGAATA	GTGGTAGTAT	CTGCTGCAGC	TACTAATTTT	TTTCTACCTA	5100
	AAATAGATAT	GGCTGAAACA	AACCAGAGTA	TTGCAGATAC	AAAGTTGCAT	AATACTAAAG	5160
25	CGATAATAGC	CAATACAATT	AATATGACAC	CTTTTGAAAT	CCTTTCTTTA	AATAAGTCAG	5220
	ATGCCAATAC	GATGACAGGT	ACGATTGAAA	GTATAATTAC	AAATATAGAA	ATTATTGCCG	5280
30	ATATAACTAT	TGTTACTATT	AAATAATCAG	CTCTGCTACC	TGATAATAAA	TAGAAAAGGC	5340
	CGAAAATTAG	TCCATAGCAA	ATTACAAACC	CACATAAAGT	TATAGCCATG	AGTACTATAT	5400
	AAGCTATTTG	AAAATATAAA	CCTATCTTTA	TGAATGATTT	TTCTACATTT	TTTTCCATGT	5460
35	CTATTCCCCA	TTTATTTAAA	ATTTATACTT	TACCTTAAAT	ATTCTCTTTA	TTCTTTAGTG	5520
	ATTTTATCTT	TAGATTCAAA	TTGATTCTCT	GTACTTTCAA	TATCAACTTT	TTCATTTTCG	5580
	TCTGTCGATT	CATCTTTTGA	GTATTTATTC	CAAATCAGCA	AAATACCACC	AATCAGCCAT	5640
40	AAAATTGACG	AAAGGAAATT	ATATAAACAC	AGTGCAATAA	TAGCATAAAC	AATAAAAAGT	5700
	GCACCTCCGA	TTACAGAGTA	ACTTTCCATA	TAAATCGCAG	TAAAGATGGT	TGGTAAAACA	5760
45	GTGAAAAGAG	ССААТАТТАА	TCCTAATAAA	AAAATTGTTT	CGTAATCAGA	TCCTCCAGCA	5820
	ATATTAATAG	ATATCATCCT	AACAAAAACG	ACACTAAAAT	ATATTTGAGC	TACGATGCCT	5880
	ATCCAAATTG	CTATTTTTCC	TATAATTGAG	CTCATACTCA	TTCCCCATTT	ATTTAAAATT	5940
50	TATACTTTAC	CTTAATATAC	CTTATTTTAT	TTAATTTTTA	TATGCAAAAT	ACAAAAATGG	6000
	AGAACTTCAA	татттатааа	ATATCAAAAG	TTCTCCACAC	TATATTGTTT	TATTATATTT	6060
	TCGCTATCAA	TACGCTAAAT	CATCATATTT	CCCTCAACAT	CACAGTAAAA	CTATTGCTCC	6120

	TTCCAATTGC	GCAGTTGTTC	AACATCATCA	TCTTGTTTAA	GTAATGCCAG	TGGTACTTGA	6240
	AGATTAAGAC	ATCGTCCTGA	AATATTAAAG	CGTGTCACAC	CTGCTGGCAC	AGTTTCCCCT	6300
5	TTATGAACAA	CCGCTTCAAT	TTCCTTATAA	CTCAATGGCT	GATACTTCAT	GAGTACATCT	6360
	TGTTGAGAAA	GACAAGGATA	TGTACCTTGT	GCAATTCTCT	CTACAGAACA	ACAACCACTA	6420
10	TAACTTGCGA	CAACCTTTTC	CCATACTTGA	AAATGTGCTT	CGCCTAAATC	TTTTGTATAC	6480
,,	AAATATTGTT	CTGTATCACC	ATGACACATT	GTAATAAATG	GCGCTTCTTG	TCTTGTCTCA	6540
	GTAGTCCATG	GCAAGCGATG	TTCTTGTTGT	AACGTTTCCC	ACCACACACC	AAATGGAACT	6600
15	TTATGTTGCC	ATGTACTAAT	TGAATATTGT	GTTTCATGGA	TTTCTTGCAC	TGGAACTTTC	6660
	TTACATCCTA	ACGCTTTCAA	ACTTGTATAC	CGATGCACAC	CATCTATAAC	CATATATCTA	6720
	CCATGTTGCA	TCGCTGTCAC	TAAAATAGGA	TGACGTATAA	AATCATCTGC	TTCAATACTA	6780
20	CTTTTCGTTT	TTTCCAATCT	TAAAGGTTCG	AATGTTTCGT	GAAGATCAAT	CTTATCTACT	6840
	GGTACCAATT	TTAAATGTTC	ATGAATATGA	TTCAATAGTT	ATTCATCCTC	CTTTGTTTGT	6900
05	GTTAAATAAA	TAAATTCAGG	ATGTGGATGG	CTTAAGAAAT	CGTGATGTGA	AATAGACCAT	6960
25	CCGTATGCAC	CTGCATATTT	GAAAACAATA	ACGTCGCCTG	TACTGATTGC	GTCTATCTGT	7020
	ACTTCTCTAG	CAAAGACATC	TTTCGGTGTA	CATAATTGAC	CGACTAACGT	TGTGTCCTGT	7080
3 0	CTCGAAATTG	AAACTTTTTC	AAATGAATAT	GGATTGTCCT	TATAGCGATA	AATGTCAAAA	7140
	GGATGGTTAT	GTTGCCAAGA	TACCGGCAGT	CTAAATTGTT	GCGTACCTCC	TCTTAATATG	7200
	GCATACCAAG	CACCATGTAC	TTTCTTAATG	TCTAGCACTT	CTGTCACATA	GTAACCAATA	7260
35	TGTGCCACAA	TAAAGCGCCC	ACATTCAAAG	TTCAATGTCA	CATCTTCCAT	TTCTTGCTCA	7320
	ACGATAAGTG	TTTTAAAACG	TTCTACAAAA	TTATCCCATT	CAAATTGGTT	AGTTAAATCT	7380
	GCATĀGTTAA	CGCCTATGCC	ACCACCAAGA	TTGATATGTT	TGAGTGGAAA	TCGATGTTTT	7440
40	TCAGACCATG	CCTTTGCTTT	TTTAAAATAA	AGTTTCACTA	CATCGACATG	TAAATTCGAG	7500
	TCTAAATTGT	TAGAAATAGA	ATGAAAATGA	AATCCATCTA	GATGAATCTT	TGGCATTGCG	7560
15	AGCGCAgcTT	CAATGACATC	ATCAACTTCG	TCTTCAGAAA	TACCAAATTG	TGTTGGGCGT	7620
	CCTGCCATAT	GCAACGTTGC	ATTGGGAAAT	GGTCCTGCTA	AATTAACACG	CAATAAAATG	7680
	TGTTGTGTCT	TATCTTCATC	TTCTAAGATG	GCATTTAGCC	GTTGTAATTC	ATGCATACTT	7740
50	TCAACATGAA	TACGCTGAAC	ACCTTCACTT	ACTGCATATC	TTAGTTCCTC	GTCTGTCTTA	7800
	CCAGGGCCAC	САААААТААТ	ATGATTTGCT	GGTTTAAAAG	CAAGACCTTT	TGCTATTTCA	7860
	CCTTGAGATG	CAACTTCGAA	TCCTTCAACA	TACTGACTAA	TTGTATCTAG	GATTTTTCGT	7920

	TGTTGCAAAT	GATGTTCCAG	TCCGACTAAA	TCATAGATAT	AATGACAAAC	TGGATGAGAT	8040
5	TGTGCTTTTA	ATTGTTCAAT	AACAGGTTGA	ACTATACGCA	TTAGCCTTCA	TCCCCTTTCT	8100
	GTTTAGACGT	CGCTAGAGAT	GCACTTAAAT	GGCGATATAT	TTTTCCGCGA	TCATCACCTA	8160
	AAATAAATGT	TTGTACACCT	TGTGCCTGCC	ATTTTGCAAT	ATCTTCATCT	TCACGTGGTA	8220
10	ATGCACAAAA	ATGTTTACCA	TGTGCATTCA	CAACTTCAAA	AATATGTTGA	ACATGTGATG	8280
	TTACTTGATC	ATCACGCGTT	TGCCATGGTA	TGCCAAGTGA	CTGCGATAAA	TCTGCGGCAC	8340
	CTTCGACTAT	CATGTCTAAA	CCTTCGACTT	GTGCTATATC	GTCAATGGCC	ATAACCCCTT	8400
15	CAACATCTTC	TATCATGGCA	ATCACCATAA	TATGCTCATT	AGCCATCTCC	ATTGCATCAA	8460
	GTAATGGTGT	ACGTCCAAAT	CTTGCCATGC	GACCACCATT	CAAACTTCTT	AATCCTTGCG	8520
	GGTAATAACG	ACTTAATTTC	ACAATATGCT	CAACTGTCTC	ACGATCTTTA	ACGTGTGGCA	8580
20	CAATAATACC	TCTCGCACCC	ATATCCAACA	CTTTAATGAT	ATCTCTATCT	ATCACTGCAG	8640
	TGACACGTAC	AATTGGTATA	ATATGCGCTG	CTTCAGCTGC	ACGAATTAAA	TGCGCTAGTG	8700
25	TCTCATCATT	AATCGCCACG	TGTTCTGTAT	CAATCACAAC	AAAGTCATAC	CCGCTTGCTG	8760
	CGATAACCTC	GATCATCAAT	GGGTCCGGTA	TAGAATTAAA	AATGCCATAA	ACTGAATCAC	8820
	CATTGTTTAA	TCTATGTTTC	AGAGATAGTT	GTTGCATCAT	TGATACCTCC	TACACCTAAT	8880
30	GGATTTGTAA	CATGATGAAT	TCTTAACTCG	GAGTCACTTA	ATAATCGACG	TGTCGTTAAC	8940
	TTTTCAACTT	GAATCGTAGG	TTCAAACAAA	TCGAAATGTT	GATAGTTATT	CAACTCTGGA	9000
35	AATGCTTCTT	GATACGCCTC	GATGATGCCT	TTAACCCATT	GCCATTGCAG	CTCCTCATCG	9060
	ATACCATATT	GCTTTTCAAT	AAATAAGATG	ATTTCGGCGA	TATTAATAAA	GAAAAATGCA	9120
	TCATGTAAAA	AGTCGCGTAC	TAAACGTTCG	TCATCTGTTT	CAATAAATGA	ATTACTATTC	9180
	ACTTÉTTTAT	GTGCTTCTGG	CATTGGCTTT	AATGTCAGGT	GTGAAGCAGC	TTCACTTAAA	9240
40	TGCtCACGCT	TAAAACGAAC	ACCATCATGG	AAATCTTTTA	AGGCAATACG	TGTAGGCCAA	9300
	CCATTTTCAT	GAATGAGCAT	CATATTTTGT	GCATGCGATT	CAAAGGCAAT	ACCGTGATAA	9360
45	TAAAGCATAT	GAATCATTGG	ACGAATCGCT	ACAGCTAAAA	ATTGCTTTGT	CCAAGCTTCA	9420
	GAACCATATT	GTTTAATCCA	ATTTTCAATG	AATGGTACAC	CATCCTTATC	ACTTGCATAA	9480
	AGTGCATTAA	ATGGTATCGC	ATCCTCTTCA	TCGATTAACA	TATGATATAT	ATTTTCACGC	9540
50	CATATAACAC	CTAACGCACC	ATAAACTTGA	GTTTGTTTAT	AAGGCGAAAG	TTGTGTATTT	9600
	AAATAAGACT	GTCCTAAGAC	TTCCCCTAGA	AAAACTGTCT	TTAATTCATC	TTTTAAATAC	9660
	ATATCTTGTT	GCTGTATCTG	CTTTAACCAA	TCCGTAATTT	GCGCTGCATT	TTCAATTGTA	9720

	TATTTTGTCG	TGTCTATTGG	CGACATCGTA	CGAATCGATT	GTTGAGGGTG	ATATAGCTCA	9840
	TCACTTTCCC	CTAACCATAG	TACTGTGCCA	TTAAGCCTTT	CTTCAGCCAA	ATCAACTTGG	9900
5	ATGACATGTT	CAAACTGCCA	TGGGTGTACA	GGTATCATCT	CAACATCATT	TACATGTTTG	9960
	CCAGATGCTT	CAATTTGCTG	TACAAAATGT	TCATAAGTCT	TATCGCCAAC	TTGTTGACGT	10020
	AACATTTCGT	TAACTACAAC	ATTTCTTGAT	ACCGTCGTTT	CTACTTTATC	TTTGTCGATA	10080
10	GCTAACCACT	GCAGTTTAAC	GTTTGGTACA	AAATCAGGAC	CAAATTTCAA	ATTATCACTC	10140
	AACGTAAATC	CTAAACGTGA	TTTGTAACTT	GGATGATACT	GATGCCCTTC	CATCGCATAA	10200
15	AATTCATAGT	CGTTAAATGT	CTCAGGTGTT	GCTGGTGGGT	TTGATTCTCG	ATACTGCATA	10260
	CTTTGCGTAT	CTTTTAATTC	TGTCTGTAAT	AACTCGACAA	TAAATTGTTC	TAGCTTTTCA	10320
	TCATTTTTAG	GAAATGTAAA	TACAACCTCT	CTCAATAATT	GTGTATAGTC	TGTTGTTGTA	10380
20	TCTGCCTCAT	CTCCTACGAC	ACGCTCAATT	GGTGATGTGA	TACGTATACG	ATCAAAGCTA	10440
	TGTGTCTTTT	CAGCAGTAAA	ACGATACTCT	GAATCATGTC	CTTCTATTGT	AAAATGACCG	10500
	ACACCGTCTT	GATATGACGC	TTTATACACA	ACAATATTCT	CATAAATAAG	TGATGATACC	10560
25	AGTTGGTGCA	TCACTCTAGT	CTTTACACGA	TTAAGAATTG	TTTGATTCAC	AATACGATAC	10620
	CTCCTTGTTA	TGACAAATTG	GATTTGGTAT	ATGTGTATAA	ATAGGGTTTG	CACCACAATC	10680
30	ATTCAATTTA	CTCATCAAAT	TCGCTTTAGC	CGcAATGGTC	GGCGTTTGAT	ATAAATCTTC	10740
	TACACAGTCA	ACAAATACTG	CGTTATTCGC	GTATTCTTTT	TTCCAAGTCA	TAAGACGATG	10800
	CGCTACAAGT	TGCCATAACA	CAACTTCATT	TCTAGTCGCT	TTACCAATAG	TTGATACTAA	10860
35	ATGTCCTAAG	TGATTTACTA	CAACGTAATA	TTTAAGACGA	TGCCATGCTT	CATCATGTGC	10920
	ATATACAACA	GGGCTTGATG	CTGCCACAAC	ATTTGGCACA	AGCTGTTTTT	CAGTAGCAAT	10980
	CGTTCTAGAT	AGACAAATGC	CTTCAAGATC	TCTGACAAAG	CATACGTCGG	GTATGCCATC	11040
40	TTTTAATTCA	ATTAATGTAT	TTTGTACATG	TGCTTCTAGA	CTAATGCCTG	TGTTACTAAA	11100
	CAGCTTTAAT	ATCGGCAATA	ATGTACGATT	CAAATAACAT	TCAAGCCATG	CTTCTGGTGC	11160
45	TAAACCACTT	TGCTCAATCA	CTTGTGATAA	CTTAGACATC	GGTGAATCAG	GCATCGTTTC	11220
40	AAATAATGAC	GCCAATACAT	GAATATCTTT	ATCAGCATGG	TAATTCGGTA	TCCCTTCACG	11280
	AACAATCATG	GCACTATTTG	TTAATAAATC	CATTTCAGGT	TCAACTGTTT	GCCCTAATGG	11340
50	ATTCGGTAAC	AATGCACGAT	ATCCTTCTTC	AAACATCAAT	TTAAAATGGG	GTGTTTCAAC	11400
	CTCATCTTTG	ACTGATGCGA	TAACTTGCGC	GGCATCAATT	GTCCGTTCAA	TCTGTTCAAG	11460
	GTCATTCGTA	CGTATAAAAT	TAGTGATTTT	AACGTGTATC	GGTAATTTTA	AATAAATGTT	11520

	GCCAAGGTCT	TTTATTAAAC	CTTGTTCACT	ATATTGCATA	TACTGTGGAT	GCTGTCGCAA	11640
	CACATTGATT	TGATAAGGAT	GTGTTGGTAA	ТААААТАААА	TCTTTGGGTA	TCTCTGATAT	11700
5	ATCTATGTCT	GCTAATTGAT	ACAACACTTT	CTCAACCTGA	TCTTCTTTAC	CTTCTACATA	11760
	GCGCGTGAGC	AGAACATCTT	GATGCACAGC	TAAATAATGC	AATTGGAATG	ATGTATGACA	11820
10	TTCGGGTGCA	TATTTCTCTA	AATCTGCTTC	TGAAAACCCA	CTTGCACTCT	TAGGAGTCGG	11880
. •	ATGAAATGGA	TGACCTAAGT	ATAAAGATTG	TTCTGAAACG	ATATAACGAT	CCTCTACGTA	11940
	GTCTATTGTG	TTACTTTGCA	AATAACGTGC	CGTGCGATGA	ATGCTATTAT	CGATGTCAGA	12000
15	CATAATTTGC	GCCATATGTT	GTTGCACTGC	CGTTTGATTA	TCTGCACTTT	GAGCCATATG	12060
	TTGCAAAATA	CGCGCAATTG	CTTCTTTATA	AGTTGTTATT	TTTTTACTTT	TTCCATCGAT	12120
	AAGCCATACC	TCTGGATGAT	ACATATGATG	CCCCATCGCA	GACCAATAGC	GAAATTCACC	12180
20	CGTTAAAGTT	TCGAGCTCTG	ATAATTGTAT	AGACCATTGA	TGATTTTGAG	GTGGTACTTG	12240
	ATATAAATTT	TCTTCTCTAA	AATATTCATT	TAAAATGCGT	TCGATAGCCG	CATACGCTGC	12300
25	ATGTTGTATT	AATTCTTTAT	TTTGCACTTT	TTTGTTTCAA	CTCCCATAAT	TTCATTAATG	12360
25	TGTGATCGTT	GATTTGATTA	GTGATGGTTG	AACAAATTAA	AAATAAACTA	CTTACTGCAA	12420
	ATACTACGCC	CATAACGATA	AACGTAGTAG	CTGGTGTAGT	ATAACTTGTA	ATGGCAGCGC	12480
30	CACTAAGACT	GCCAATAATT	TGACCAACAA	CTAACATACT	GTTCGTCGTT	CCAACAAATG	12540
	TGCCTTTAAG	TTGTTGATGA	CACGCATTCA	CGACAACAAA	CATGACACTT	TGAATCAATG	12600
	CACTATATGT	TAATCCTTGA	AGTATTCTTG	CAGCCATTAA	AAACTCTATA	TTCGTCGCTA	12660
35	AACCTTGCAG	TATCGCACTA	CAACCACATG	CAATCGTGGC	AAATATATAT	ACTGATTTAA	12720
	CATATGATTT	ATCATTAAAG	CGTCCCCATA	AAGGCGCGCT	TAATATCGAA	GCCGTCCAAA	12780
	ATGCGGACTG	TAAAAATCCA	ATCACACTAC	GGTCATCTAT	CGCTGTATGA	TTCACTGATG	12840
10	AAGCÄAGTGG	TGATAATGCA	GTTAGCATGC	CATACATAGC	AAAGTTTGCT	AAAACGCCAA	12900
	CGATAATAAA	TCGACATGTT	TGTTGTGTGC	ATAATAGACA	TTGAAATGAA	CGGCGAATAC	12960
1 5	CTTTATTAAT	ATTTGGTGTT	TGTGATTTTG	GCATATGTGT	CGTTTCAATC	AATTTTAATG	13020
. •	CACCGAAAAT	ACAGACAATA	AAAGTAATAA	CGGCAATACT	CATCAGTAAC	GCACTAAAAC	13080
	CTAATATCGA	AGCTGTAACA	CCGCCAATTA	ATGGCCCCAC	AAGAGACCCT	GCGCTGACTG	13140
50	AACTTTGCAG	TCTTCCTAAT	ACCTTTCCAC	GATCTTCAGC	TGGCGCCTCT	GCACTCGCAA	13200
	ACGCACTTGA	TGCATCAACA	ACACCACCAA	ATAGTCCCTG	CAATAACCTC	ACAAGTACAA	13260
	ACTGTAATGG	TGTCGTACAC	AATGCCATTA	AAAATAAGCA	TACCGCCAAA	CCAAGTAACG	13320

	CTATCATCGT	CGTTACAGCT	GGAGCAGCAA	TCGCTATACC	ACTCCACAAC	TGTATTTCTA	13440
5	CGACTGATAG	ATTTTGTAGT	GATGCCATAT	AAATTGGCAA	TAATGGCACA	AGTACTGTCA	13500
	GTCCAGCAAT	CGCTATAAAC	TGACTGAGCC	ATAAAATGCG	AAAGTTACTG	CGCCATATAG	13560
	ACTGATTAAT	CATATGTCAC	CATTGGATTT	GGTACGGTAG	TTAAACCTGA	AGGCATACTA	13620
10	CCTCCACCAC	TATCACGTTG	ATATAGCAAT	GGTAATAAAA	TTTGTTTGAA	TGGCCACGTC	13680
	TGTTTATCAA	ATAAAATGTG	TCTGACAGCT	AGCTGATCAG	TTGTAACCCA	GGAAATAGTT	13740
	GCCACTTCAT	TTTTTAAAAT	TTGTTTTAAC	AACGACATAA	GTTCATGCTC	ACTTACACCA	13800
15	AATAAATCTT	GAATTGCATC	AATAATGGCA	TATAGATTTA	CCGATACAGC	TAATGTTTGA	13860
	AAATAAGCAA	AGAATGTTTC	CAAATCCTCA	TTAATTAGCG	TATTAGGTGT	ATCTTCTCTG	13920
	ACGACATACT	TCGGCAATGA	AAGCTGATGT	GCTGTTAGCC	ATGGTTTATA	AATTCTGACA	13980
20	GTATCATGAT	CACGTAACAC	GCATTTTTGT	ACACGTCCAT	CTTCAAATGA	CAACAATATA	14040
•	TTTTGACCAT	GCAACTCTGG	TAATGCGCCG	TATTGCATAA	ATGATAGTGT	TACCTTTAAA	14100
25	AAGACTTGCG	CGATATCTTC	AAATAACGTC	ATGACATCAT	TTTTAGAAAT	ATTATCTTTT	14160
	CCACÀAATCA	TTTGATATAA	AGTGCGATCA	TTTGCCGCGA	GTGCTGCCAT	TGACACTAGC	14220
	TGTTGCGTAT	CATTTTTGGC	TAGCACTTCG	GGATACTTTC	TTAGCTGAAC	AGTTAGATGA	14280
30	CCTAATTGAT	CTTTGAAAAT	ATCATTATCT	TGACCCATAT	ATGACCACCA	AGCTGTTTCA	14340
	TCACAAACCA	TGACATACTT	AGCTAGTGCT	TCATCTTTTT	CTATAAGCTG	ACGTAATAAT	14400
	TGTTCTGCTT	GTTCTCCGTT	TTTCATGTAA	CGCGTAGGCG	TTAGCCTTAA	TGCGCCTAAT	14460
35	GACTGCATTG	CAAATGGTAC	TTTGACATGG	TTATACGGTG	CGCCAATATC	AATTAATGAA	14520
	CGCATACTTG	AAGACGACAG	ATAATCTCCA	AATTTTAACG	GTAATAGTAC	AACCAACTTT	14580
40	TCACTAATCT	CTTTCGCAAA	GACGTTCGGC	AGAATATGCT	GATATTGCCA	AGGATGTACC	14640
40	GGAAATAGTA	CATAGTCATC	TATTGATAAC	CCTTGATCAT	TTAACATGTC	TGTCGCTTGT	14700
	TCTTTTATAG	GTACTGTCAA	ATTTTCTAAT	TCATCGATAT	TTGCAGTATC	GCCATGAATC	14760
45	ATATGTGTCT	TTTTAACTGC	TGCAACCATT	AAAGGAAATG	ATTGATTTAA	TTCAGCTTGA	14820
	TACACTTGAT	AATCCGCTTC	TCTTAATCCT	CTTTTTTCTT	TAGCTAATGG	ATGAAATGGA	14880
	CGATCTTTTA	AACTTGCAAA	CTGCTCTGAC	ATCACAAAAG	GATGTGACGC	TAAATCTAAT	14940
50	TCTGATAATT	GTTTAGCAAG	CTGTGTGGCA	GCAGTAGTCA	GTCCTTCTTC	AACGCGAGCC	15000
	ACTTCCCATT	CATGACTTAG	ATCACAATTC	ATATTAGCAA	TTGTTTGCCA	AAATTCAGCT	15060
	GCCGTTAAAG	GTTGCTTAGA	CACCCTTCCC	TCTATCGTAA	TTGGTTGTGA	ACTTTCGTAA	15120
<i>55</i>							

	TATATCAAAA	GCGTTTGTCC	GTTTTCTTTA	GTAATCTCAC	TATTCGATAC	AATTCCGGCT	15240
-	ATATCTTCAA	ATAATAATGC	ATCAACTAAA	TCTCTTAATA	TTATCGCTTG	TGCTGTATTG	15300
5	ACTGCTGTAT	GATTCTGCAA	TGTTCAGACA	CCTCGCATTC	TTAATATAGG	TTCAATGTTG	15360
	TCCCAATATT	TTGTTGTTGT	GCCTGTTGAT	AAATAAAATA	AGCACTTGAA	ATATCTTCGA	15420
10	TAGCCATACC	CATCGGATTA	AGTAATATGA	TCTCATCATC	GTCTTCACGT	CCTGGTATGT	15480
	CACCTGTCAC	AAGTTGTCCT	AGTTCAGCAT	GAAGAGCTTC	TTTGCTGAAT	TTACCTTCTA	15540
	ACACCAATTG	GTTAATAGTT	TTCTTTTCTC	GATTACATTG	TGACCAGTCA	TCTACTACGA	15600
15	CTTTGTCAGC	TTTAATAAAG	ACTTCTTTAT	GCACATCCAT	GATAGAAATG	TTGCTAATAA	15660
	ATGCACCCTT	TTGTAACCAA	TCATATTCAA	TGTATGGTTG	ATCCGTTACG	GTACATGTAA	15720
	TGACTACTTC	ACCATTTGAT	ACTGCTTCTT	TAGCATTTTC	TGTCGCAATA	AAATTAATTT	15780
20	CCGGACGCTG	TTGTTGCCAT	CTATCAACAA	AGCGTGCACA	TGCTTCAGAG	AATTGATCGT	15840
	AAACAAACAC	GCGTTCAATA	TGATCGAATT	GCTCTAACAT	ACTTTGTAAT	TGCTTGTCTC	15900
25	CGATTAGCCC	GCATCCAATG	ATTGTTAAGT	CTTTAAATCC	TTTTTTAGCC	AAATGCTTTG	15960
	CTGCAATCAC	TGAAACTGCT	GCAGTACGCA	TACTACTAAT	TAAACTTGCT	TCCATAACTG	16020
	CAATTGGATA	ATTCGTTTCT	GGATCATTCA	AAATAATGAC	GCCACTTGCA	CGCTCCATAT	16080
30	TACGTTTCGA	TGGATTGTCG	TGCTTACTAC	CTATCCACTT	AATACCTGAA	ATTGCGTGTT	16140
	CACCACCGAT	ATGACTTGGC	ATTGCAATAA	TTCGATCTGC	GATGTGTCCA	TTTTCAGGAT	16200
	CCtGTCTTAA	ATACGGCTTA	AGCGGTTGTA	CAAAATCATT	GTGCGCATGG	GCTGTTAATG	16260
35	CTTCTGTTAA	TGCGTCCACA	TAAACTTGTG	AATGATTACC	TCCCGCTTGT	TCAATATCTG	16320
	ATCTATTTAA	ATACAACATC	TCTCTatTCa	TTCTGaTTTA	ACTCCTTGTC	TTGATTTCAT	16380
40	TTTŢŢĊŢĀĀĊ	CATGTATCTG	AATAAACTAA	ATCTAAGTAA	CGATCGCCTC	GATCTGGTAA	16440
40	AATCGTGACA	ATTGTTGCAC	CTTCTTCAAT	TGACGTTATC	AACTGCTCAA	TCGCTGCAAT	16500
	AATCGAACCT	GTTGAACCTC	CGGCAAATAT	GCCTTCATAA	TCAATCAGTT	TTCGACAGCC	16560
45	CAAAGCAGAT	TGATAATCAT	CTACATGGAT	CACTTGATTA	ATTTCTGATC	TATTCAATAT	16620
	TTCGGGTACA	CGACTAGCAC	CGATACCAGG	TAATTCTCTA	TTAATAGGTT	TGTCACCAAA	16680
	AATGACTGAC	CCTTTCGCAT	CAACAGCAAC	AATTTGTGCG	TTTGGATGCA	CTTCTTTTAT	16740
50	TTTTCTACTC	ATACCCATAA	TGCTACCTGT	CGTGCTGACT	GGCGCGACAA	AATAATCTAT	16800
	AGGTTGCTTA	ATTGTTTCAA	CAATCTCTGT	GCCTGCACCA	TGATAATGGG	ATTGCCAATT	16860
	TAACTCATTC	GCATATTGAT	TAATCCAATA	TGCATCGTCA	ATAGTGGCTA	ACAGTTCTTG	16920

TACATTGGCA CCATAACTTT TAATAATTTT CAAATTTGTT GGTGATATTT TAGGATCAAC 17040

AACACACGTG AGTTTTAATC CCTTGATTTT AGCTATCATT GCCAACGCAA TGCCTAAATT 17100

ACCAGAAGTA CTTTCAATTA AATGTGTATT CTCAGTGATT AAACCATGTT TAATACCATG 17160

TTCAATGATG TACTTGGCAG GTCGATCTTT CATGCTGCCT CCAGGATTCA TATACTCTAA 17220

CTTTGCAAAC ACTTCATGTT TCGGAAATAG TTGATGAAGT TGAACCATAG GTGTTTGCCC 17280

TACAGAATCT AACAATGAAT CGTGCACATG 17310

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5423 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20

25

30

35

40

45

50

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

ATACTAGTAA GCGCATCGGT TATTGACATC GAATTCAACT TTAACAGTTT TCATGTTCGG	. 60
TGATGTTTCa ATAGAATGTG TGTGTTGTAC TTGCGCATTT ATATTTCCAC CTAAATTACT	120
TAAGTTTCCT GTAATACTAG AAATGTCAGG TGCGTTTAAT GTAGGTTGAA ATGCATCAAC	180
TACTITATCT GCAACATTAG AAACATTACG GATAACTTTA CTTGAATGAT TATCTATACC	240
TTTAACGAAA CCTAACATTG AATACATACC AACATCCATG AATTCACGTG AAGGTGAGTG	300
AATACCTAGC GCTCTTTTGG CTGCATTTAA AGCACCTTTT GCTACACTAG CTGCTTTTTC	360
AGCTAAGTCT CTAGCCATAT TACCAATACC TCTCATCAAA CCACGGATCA TATCAGCACC	420
TGCTGATACA AAGTCATCCA CAAAGCTTTT AACTTTATTT ACTGCATTTG TCATACCTTG	480
ACTAACTTTG TTTACAACAT TAACGAATCC TTGAACAACT CTATTAACAA rGTTAATTAG	540
CGTACLTGTL ATAGTAGATA CCCATNGCAT ACCTTTAGTG ACMATGAAGT TCCAAGCTTG	600
AGACATTTTG TCTGATATAG TTGAAACAAC TTGTGTGAAT ATGCTTACAA CTTTATTCCA	660
AATTGTCGTT AATATACCAG ATAAGAAACT CCAAATCGTA TTCCATATAT TAGAAATAAA	720
ACTCCATGCC GCTTGTAACG CAGTAGATAT AGCTGTAGTG ATAGCGTTCC AAACCTTAGT	780
TGCCACAGTA ACTATAGTGT TCCACAACGT TTGTAAGAAC GTCCAAATAG CGTTCCAAAT	840
TGTTATTGCG ATAGTCATAA TTGTGGTAAA CACTGTAGTT ATTACAGTGA CTAACAAATT	900
CCAAATCGTA GTAGCGATTG TAATTATCGT ATTCCAGATT GTACTTAAGA ACGTCCAAAT	960
AGCTGTCCAT ATCGTCATAA CTATTGTCAT TATCGTCGTG AAAACAGTTG TAATGATTGT	1020

	ATAAGCGACT	ATTTGATTCC	AAACAATCAT	TATAAAATTG	TAAACATTCG	ATACTGCTGT	1140
_	AGTGATAGCT	GTTAAAATAG	CATTCCATAC	AACCGAAGCT	ACAGCTTTTA	ATACATTCCA	1200
5	AACATTAACC	ATAAACGTTT	TTATCGCATT	CCAAGCATTT	ATAATAAAGT	TTCTGAATCC	1260
	TTCATTTTTA	TTCCACAATA	AAACGAATAT	AGCTATTAAT	GCAGCAATTA	CACCAATTAC	1320
10	TATTGTTATT	GGACCGCCTA	AAATACCAAA	CACAGTTACT	AGTCCTGTGA	TAGCATTTCT	1380
	AATTAATCCA	ATCTTACCGA	ATAACAATTG	GAATATAACT	GATATAATTT	TTAATGGTCC	1440
	TTTTAATAAC	ATGAACGCAC	CTTTTAAAAT	TGTTAATCCC	GCTCTTAATA	AACCGAACTT	1500
15	ACTTACTAAT	GCAATGTTTC	TACCTATTAA	TCCGCCACCC	ATAAAGTTAG	ATACAGCAAG	1560
	AATAATCGGT	ATTAAAAATC	TAAATGCACC	AACTAAAGTT	ATAATGACAC	CAACTAATTG	1620
	TGCTGTAGCT	GGATGCGCCT	CAAACAAGTT	AGCTATCCAA	CCAGTTATTG	CAACTGCAAC	1680
20	GCGTAATACT	GCACTAGCTA	TAGGAGCCAT	TGCTGTTGCG	AATGCArmTA	ATCCTCTTGC	1740
	GATGTTTCCA	ATCAATTGCA	TTATTAGTGG	TCCATTTGTT	TGTATATAAC	TGACAAAGTC	1800
25	TTTAAACCCT	TGAGATTGTC	CTACTTGTTC	AGACCATTCC	CTAAACTTAG	CTGTCATTTG	1860
	TTCAAGAGAT	TGGAATATGC	CAGTTGATGA	TCCGCTGAAT	GCATTCATCA	AATTGTTAAT	1920
	TCCAACGAAA	ACATTTTTGA	AAATATTACC	AATGATAGGT	AAGTTTGTTT	TTGTGTATTC	1980
30	AATAAAACGA	GTTATCGAAT	TTTCTCCAGC	TGCACTATTA	GCCCAGTTAG	AGAAAGATTG	2040
	ACCTAATCTA	TCCAACCAAT	CAGCCGACCA	TTGAAACAGT	GGTGCTAATT	GCGTGAATAC	2100
	ATTGACTAAT	CCGTCACCAA	AACCACCTGC	AGCACTTAAT	AGCTTGTTAA	ATACCGAAAC	2160
35	ACCCGTTGTA	TTCATCATAT	TAAAGAATCT	TGAAGCTACA	CTGCTATTTT	CAGCCCATTT	2220
	AAGCACGCTT	TGAGACGCTT	CTTCCATTCC	TCTTGAAATA	CCACTAAAAA	ACGGTTGTAA	2280
40	GCTCTGCATT	GCAGTTTTAA	CAGTATTTAA	ACCATTTGCA	AGAGTTGTGA	AGATAGCGGA	2340
40	TTGATTTTGC	TTTATAATAT	CAGTCCATGC	TGACTTTACG	CCATCTAACG	CTTTTTTGTA	2400
	TTCGTTTGTT	GCTGAGCTAG	CTTGTAAAGT	GCCATCATTA	AGCATCTTTA	TAGCGCTGAT	2460
45	AGCCATTGCG	CCAAACGCTA	CAAATCCTGC	TCCCGCTATT	GCTACGGCAC	CACCTAAAGC	2520
	AAGTACACCA	CCAGTTAACA	CTTTGATAGC	GTTTAATAGC	GCAAATACTA	CAGGTACTAC	2580
	GCTCGCTATT	ACAGGTATTA	AGATACTAAA	AGATGATGTA	AGTAATCCAC	CAACCATATT	2640
50	AGAACCTACA	GTACCGAACA	CACGGAACAT	ATTAGCTAAA	TTCCCCATCT	GTCTTTGAAA	2700
	ATTGTCATTT	GCTTTTATTA	TGTAGGCATA	AGCTTTCTTT	AAACCATTAG	TATCGACATC	2760
	TACCTTTGTT	GTTTTTTGT	TCGGCAATGC	GTCTAATGAT	TTTTTAAACG	CATAAATAGT	2820
<i>55</i>							

	AAGTTCTTCT	TTAGTACGTT	TGATTTTAGA	GTTAGCAACA	CCATTGTCCA	CGTCTATAAT	2940
	AGCTTTGGCT	TTAGACCTAT	TTAATGCTTC	GAGACTAGCT	TTAGATACTT	TTAACACTCG	3000
5	ATTGAATTTA	CTGTTATCTG	CATTGACGTC	AATATTGACA	CGTTTCTTTT	CTAATTCTGA	3060
	TAATTTAGCT	TCTGTTTCAG	CGATATCTTT	AATCAACTTT	TGTTTTTGCA	ACTTAACTTC	3120
10	TGGTGTAACT	TCTTTAGAGT	TTAGTTTGTC	TAGTTCAAAA	TTCGATTCTA	GTACCTTTTG	3180
	TTGTAAATCT	TGTATACTAG	CATCTAATTT	AGCTTTTACA	TTTTTGTTAC	TAAAGGCATC	3240
	TAAAGACTTT	TTAGCAACTT	TGATAGTTTT	TTGTAAATTT	TTATCGTTAG	CGTTTAATTC	3300
15	AACATCTTTA	GTTTGATCTG	CTACTCGTTT	AAATCTTTGC	ACAGACTTAA	CCGCACTATC	3360
	AATTTGCCTT	TTGAATTTGG	CTACACTAGC	TTCAATAGTC	GCTTTAATTT	TATATTCCGT	3420
	CACATTAACA	CCTCTCTTTC	TATTGCTTAT	TAAATTCTGC	TATAACTTTA	AAGAATTCAT	3480
20	TATTTTGTGG	TTCGTATTCA	TCACGTTCGC	TACTAAATCT	TATATCTTTA	CCTTCGTTAA	3540
	GCCGTTGGAT	ATTTTCTTCA	TAAGGCAATA	CGTCGTTTGC	ATTGTTAAAA	ACATATTCCT	3600
25	CTTTAGGTTT	ATTTTCTGTC	CCAACATTTT	TAGTAGCTGC	AGCATCACGA	ATAGCAAACG	3660
25	CAAGTTTGTA	ACGTTCGAAT	TCTTGGGTTA	GCATTTCATA	CTCTTTCGCA	TACATTCGAT	3720
	AGTTATATTC	TGTTAATGTC	ATTTGCTCAA	TAACGTTCAA	ATCTGTAATA	CCAAGTGTTG	3780
30	ACATACAAGT	TATAACGATT	CTGTCGTAAG	TTATTAGGCT	TCCGCTGGTT	TTTCTTCCGT	3840
	TTCCACTACT	TCGACTAGGT	TTCGGGTCAT	AGGTCGCTTT	CCCAACTCCG	TTAAAATATC	3900
	CGAACCGAAT	TCTTCTAGTC	CGATATTTTC	TGCGATTTCA	TCTAATGCTT	CATCAATGTT	3960
35	ATTAATAGTA	ATTGCTTGTT	TTTTTAAGTG	AGATGTAGCT	GCGATTAAAA	CTTCGCCAAT	4020
	CACAACCGGA	TTTCCACTTT	CTAAACCTAC	AGGCAACATT	GATACACCTT	GACCGATAGA	4080
	AGCTŦGTTCA	ACTTTTAAAC	CTAATCGGTT	ATCGATTTCT	CTTAAAAATT	TAAAACCAAA	4140
40	ACTTAATTCT	AATGACTTTC	CGTTAATTTC	TACATTCATA	ACTTAAAATC	TCCATTCATA	4200
	ATTAATTTAA	ACAAAATAAA	mArGCTTAAC	GCCCTATTTT	TATACCTCTC	TTGGTGCAAC	4260
45	CGGTGGTGAA	TCTACTTTAG	GTTGTGGAAT	TGCTGTTAAA	TCTTCGCCAG	TTAATGCATC	4320
	TGCTTTTGTA	GTGTCGTGGA	ATCTGTATCC	AGTCGCCTTA	AGTTTCTTTG	TTACAGCCTC	4380
	AGGTAGTGTT	GCAAATCCAC	GTTGGAAACG	ACCATTCACT	CCATATTCAT	ATTCATATTC	4440
50	ATCAATACCG	TTAGCTTCTG	CTTTTAATTC	AAATTTATTG	TGGAAACCTT	GGAAATATTT	4500
	CGCTTTAAAT	TTAGCGGAAT	CCCCATTTTT	GCCTGGTATT	CTACTTTCAA	CTTCCCAAGC	4560
	TTCATACAAT	ACGCGATCTA	CAACTGCATC	TTCAATTTCA	TCTGCAAAAT	CGTCACCATA	4620

	GTCCATTGTA	TCCTCTGTAT	CTGTATCAGC	TTCATGTGAT	AAGCCGTATT	CAGTTAAAAA	4740
	AAGCATTTTA	GTAGCATCTA	CTTTTTCGCC	AGCTTTTCTA	AATAAAATAA	TACGATCATT	4800
5	ACTATTTTC	ATATTTGCCA	TTCAATATTC	CTCCGTTTTT	TAAAATGTTT	TGTAAGATAT	4860
	CGTTACTGAT	GTGTGTAGCA	ATTCTTGATT	GGTAGTATCA	TCAACTAACT	GTGTGATGTT	4920
10	AGTATCTTCT	TCTTCAAAGT	CATAATCGTT	TGTTTTAACG	CTAGGTGTTA	AATCATCAAT	4980
	ACATCTTTTA	ACAAGTCCGT	CATGATGTCC	TAAATCATCG	CTTACACTCC	AAATATCAAT	5040
	AACTAAATTC	GTATCGCCAG	AATAACTATC	AAACGTGTAC	TTACTTCTAT	TTGACTCCGG	5100
15	CATTTTTATT	ACAAAAAAAG	GATACGGAAT	CTCTTGTTGC	ATCTCTTTAC	GAGAAATAAC	5160
	AGGGAATCCA	TATCCTTGTA	GCGTTTCATA	CGCTTTATTA	TAAAGTTGTA	AGTTCGGTGT	5220
	CATGCTTTTA	TCTCCTATTC	AAACAACGCT	TTCAATTCTT	CTACAGTTGA	TTTCCTAATC	5280
20	ACTTCGTATA	CCGGCCACAT	AAAAGGTTCA	GCCTCCATGT	ATCGAGTACC	AAATTCTAAG	5340
	AAACCACTAT	AAGCTGCGTG	CGATGTGATA	GTGTATTGCA	AATCGCCAGT	TTTTTTATAT	5400
25	CTGATATTGC	GTGATAAATT	ACC				5423
	(2) INFORMA	ATION FOR SE	EQ ID NO: 25	5:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6251 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

AAACGCAGAT GTTCAATTAG AACCAGTCTA TCGTATTAAG GAAGGTATTA AACAAAAGCA 60 AATACGAGAC CAAATTAGAC AAGCGTTAAA TGATGTGACA ATTCATGAAT GGTTAACTGA 120 TGAACTAAGA GAAAAATATA AATTAGAGAC CTTGGACTTT ACTTTGAACA CATTACATCA 180 TCCTAAAAGT AAAGAGGATT TATTACGTGC TCGTAGAACC TATGCATTTA CTGAACTGTT 240 TTTATTCGAA TTACGTATGC AATGGCTAAA TAGATTAGAA AAGTCATCTG ACGAAGCAAT 300 TGAAATTGAT TATGACATAG ACCAAGTTAA ATCATTTATT GATCGTTTAC CTTTTGAACT 360 AACTGAAGCA CAGAAATCCA GTGTTAATGA AATTTTTAGA GATTTAAAAG CACCAATACG 420 TATGCATCGA TTACTTCAAG GTGATGTAGG TTCAGGAAAA ACAGTAGTTG CTGCAATTTG 480 TATGTATGCG TTAAAAACTG CTGGTTATCA ATCAGCATTG ATGGTACCAA CTGAAATTTT 540 AGCAGAGCAA CATGCTGAAA GTTTAATGGC TTTATTTGGA GATTCTATGA ACGTTGCATT 600

55

30

40

45

	TACGATTGAT	TGTTTAATTG	GAACCCATGC	TTTGATTCAA	GATGATGTGA	TTTTCCATAA	720
	TGTTGGTTTA	GTAATTACAG	ATGAACAACA	TCGATTTGGT	GTGAATCAAC	GCCAGCTTTT	780
5	AAGAGAAAAA	GGTGCAATGA	CGAATGTGTT	ATTTATGACA	GCAACGCCGA	TACCAAGAAC	840
	ACTAGCAATA	TCAGTTTTTG	GTGAGATGGA	TGTGTCTTCA	ATTAAACAAT	TACCAAAAGG	900
10	TCGTAAACCT	ATCATTACTA	CTTGGGCAAA	GCATGAGCAA	TACGATAAAG	TTTTGATGCA	960
	AATGACCTCA	GAGTTGAAAA	AAGGTCGTCA	AGCATATGTC	ATTTGCCCGC	TAATAGAAAG	1020
	TTCTGAGCAT	CTCGAAGATG	TTCAAAATGT	TGTCGCATTG	TACGAGTCTT	TACAACAGTA	1080
15	TTATGGTGTT	TCCCGTGTAG	GGTTATTGCA	TGGTAAGTTA	TCTGCCGATG	AAAAAGATGA	1140
	GGTCATGCAA	AAGTTTAGTA	ATCATGAGAT	AAATGTTTTA	GTTTCTACTA	CTGTTGTTGA	1200
	AGTAGGTGTT	AATGTACCGA	ATGCAACTTT	TATGATGATT	TATGATGCGG	ATCGCTTTGG	1260
20	ATTATCAACT	TTACATCAGT	TACGCGGTCG	TGTAGGTAGA	AGTGACCAGC	AAAGTTACTG	1320
	TGTTTTAATT	GCATCCCCTA	AAACAGAAAC	aggaattgaa	AGAATGACAA	TTATGACACA	1380
25	AACAACGGAT	GGATTTGAAT	TGAGTGAACG	AGACTTAGAA	ATGCGTGGTC	CTGGAGATTT	1440
25	CTTTGGTGTT	AAACAAAGTG	GaTTGCCAGA	TTTCTTAGTT	GCCAATTTAG	TTGAAGATTA	1500
	TCGTATGTTA	GAAGTTGCTC	GTGATGAAGC	AGCTGAACTT	ATTCAATCTG	GCGTATTCTT	1560
30	TGAAAATACG	TATCAACATT	TACGTCATTT	TGTTGAAGAA	AATTTATTAC	ATCGTAGTTT	1620
	TGACTAATTG	CCATGCTGAT	TTGTCAATTT	GAGTGCAACa	CTTCGTTAAT	TGAGTGATAT	1680
	GACACTTGAA	CTATTTAAAT	GTAAAGTGGT	ATTTTAACAA	TTTATAAATT	TTCGACTAAA	1740
35	TAATAGCTAA	ATATTACAGT	TATTTGTTGA	GTCGGTTAAA	TAGAAAGTGT	TATGATATGT	1800
	GAGGAATGTT	TAAGACTAGG	TACTAAAAA	TGAGGGGTGA	GACGTTGAAA	CTAAAGAAAG	1860
	ATAĀĀCGTAG	AGAAGCAATC	AGACAACAAA	TTGATAGCAA	TCCCTTCATC	ACAGACCATG	1920
40	AACTAAGCGA	CTTATTTCAA	GTGAGTATAC	AAACAATTCG	TTtAGaTCGC	ACTTATTTAA	1980
	ACATACCAGA	ATTAAGGAAG	CGTATTAAAT	TAGTTGCTGA	AAAGAATTAT	GACCAAATAA	2040
45	GTTCTATTGA	AGAACAAGAA	TTTATTGGTG	ATTTGATTCA	AGTCAATCCa	AATGTTAAAG	2100
	CGCAATCAAT	TTTAGATATT	ACATCGGATT	CTGTTTTTCA	TAAAACTGGA	ATTGCGCGTG	2160
	GTCATGTGCT	GTTTGCTCAG	GCAAATTCGT	TATGTGTTGC	GCTAATTAAG	CAACCAACAG	2220
50	TTTTAACTCA	TGAGAGTAGC	ATTCAATTTA	TTGAAAAAGT	AAAATTAAAT	GATACGGTAA	2280
	GAGCAGAAGC	ACGAGTTGTA	AATCAAACTG	CAAAACATTA	TTACGTCGAA	GTAAAGTCAT	2340
	ATGTTAAACA	TACATTAGTT	TTCAAAGGAA	ATTTTAAAAT	GTTTTATGAT	AAGCGAGGAT	2400

	TTAGAAGCCG	TACAAAAGGC	TGTTGAAGAC	TTTAAAGATC	TAGAAATTAT	ACTTTTCGGT	2520
	GACGAAAAA	AGTATAATCT	GAACCATGAA	CGAATCGAAT	TTAGACATTG	TTCTGAAAAG	2580
5	ATTGAAATGG	AAGATGAGCC	TGTTAGAGCG	ATTAAACGTA	AAAAAGATAG	CTCAATGGTA	2640
	AAAATGGCTG	AAGCTGTGAA	ATCTGGTGAA	GCAGATGGAT	GTGTGTCAGC	AGGTAATACT	2700
10	GGTGCTTTAA	TGTCAGCTGG	TTTATTCATT	GTTGGACGTA	TTAAAGGTGT	AGCTAGACCG	2760
	GCTTTAGTAG	TAACATTGCC	AACGATTGAT	GGAAAAGGTT	TTGTCTTTTT	AGACGTTGGT	2820
	GCAAATGCTG	ATGCTAAACC	TGAACACTTA	TTACAGTATG	CGCAACTAGG	GGATATTTAT	2880
15	GCTCAAAAAA	TTAGAGGTAT	TGATAATCCG	AAAATCTCAT	TATTAAATAT	AGGAACCGAG	2940
	CCAGCTAAAG	GTAATAGTTT	AACGAAAAA	TCATATGAGT	TATTAAATCA	TGATCATTCA	3000
	TTGAATTTTG	TTGGGAATAT	TGAAGCGAAG	ACATTAATGG	ATGGCGATAC	AGATGTTGTA	3060
20	GTTACCGATG	GCTATACTGG	GAACATGGTC	CTTAAAAATT	TAGAAGGTAC	TGCAAAATCA	3120
	ATCGGTAAAA	TGTTAAAAGA	TACGATTATG	AGTAGTACTA	AAAATAAATT	AGCAGGTGCA	3180
25	ATATTGAAGA	AAGATTTAGC	TGAATTCGCT	AAAAAGATGG	ATTACTCAGA	ATACGGTGGT	3240
.5	TCCGTATTAT	TAGGATTGGA	AGGTACTGTA	GTTAAAGCAC	ACGGTAGTTC	AAATGCTAAA	3300
	GCTTTTTATT	CTGCAATTAG	ACAAGCGAAA	ATCGCAGGAG	AACAAAATAT	TGTACAAACA	3360
30	ATGAAAGAGA	CTGTAGGTGA	AtCAAATGaG	Taaaacagca	ATTATTTTTC	CGGGACAAGG	3420
	TGCCCAAAAA	GTTGGTATGG	CGCAAGATTT	GTTTAACAAC	AATGATCAAG	CAACTGAAAT	3480
	TTTAACTTCA	GCAGCGAACA	CATTAGACTT	TGATATTTTA	GAGACAATGT	TTACTGATGA	3540
95	AGAAGGTAAA	TTGGGTGAAA	CTGAAAACAC	ACAACCAGCT	TTaTTGaCGC	aTAGTTCGGC	3600
	ATTATTAGCA	GCGCTAAAAA	ATTTGAATCC	TGATTTTACT	ATGGGGCATA	GTTTAGGTGA	3660
	ATATTCAAGT	TTAGTTGCAG	CTGACGTATT	ATCATTTGAA	GATGCAGTTA	AAATTGTTAG	3720
10	AAAACGTGGT	CAATTAATGG	CGCAAGCATT	TCCTACTGGT	GTAGGAAGCA	TGGCTGCAGT	3780
	ATTGGGATTA	GATTTTGATA	AAGTCGATGA	AATTTGTAAG	TCATTATCAT	CTGATGACAA	3840
15	AATAATTGAA	CCAGCAAACA	TTAATTGCCC	AGGTCAAATT	GTTGTTTCAG	GTCACAAAGC	3900
	TTTAATTGAT	GAGCTAGTAG	AAAAAGGTAA	ATCATTAGGT	GCAAAACGTG	TCATGCCTTT	3960
	AGCAGTATCT	GGACCATTCC	ATTCATCGCT	AATGAAAGTG	ATTGAAGAAG	ATTTTTCAAG	4020
50	TTACATTAAT	CAATTTGAAT	GGCGTGATGC	TAAGTTTCCT	GTAGTTCAAA	ATGTAAATGC	4080
	GCAAGGTGAA	ACTGACAAAG	AAGTAATTAA	ATCTAATATG	GTCAAGCAAT	TATATTCACC	4140
	AGTACAATTC	ATTAACTCAA	CAGAATGGCT	AATAGACCAA	GGTGTTGATC	ATTTTATTGA	4200

	AACATCAATT	CAAACTTTAG	AAGATGTGAA	AGGATGGAAT	GAAAATGACT	AAGAGTGCTT	4320
	TAGTAACAGG	TGCATCAAGA	GGAATTGGAC	GTAGTATTGC	GTTACAATTA	GCAGAAGAAG	4380
5	GATATAATGT	AGCAGTAAAC	TATGCAGGCA	GCAAAGAGAA	AGCTGAAGCA	GTAGTCGAAG	4440
	AAATCAAAGC	TAAAGGTGTT	GACAGTTTTG	CGATTCAAGC	AAATGTTGCC	GATGCTGATG	4500
10	AAGTTAAAGC	AATGATTAAA	GAAGTAGTTA	GCCAATTTGG	TTCTTTAGAT	GTTTTAGTAA	4560
	ATAATGCAGG	TATTACTCGC	GATAATTTAT	TAATGCGTAT	GAAAGAACAA	GAGTGGGATG	4620
	ATGTTATTGA	CACAAACTTA	AAAGGTGTAT	TTAACTGTAT	CCAAAAAGCA	ACACCACAAA	4680
15	TGTTAAGACA	ACGTAGTGGT	GCTATCATCA	ATTTATCAAG	TGTTGTTGGA	GCAGTAGGTA	4740
	ATCCGGGACA	AGCAAACTAT	GTTGCAACAA	AAGCAGGTGT	TATTGGTTTA	ACTAAATCTG	4800
	CGGCGCGTGA	ATTAGCATCT	CGTGGTATCA	CTGTAAATGC	AGTTGCACCT	GGTTTTATTG	4860
20	TTTCTGATAT	GACAGATGCT	TTAAGTGATG	AGCTTAAAGA	ACAAATGTTG	ACTCAAATTC	4920
	CGTTAGCACG	TTTTGGTCAA	GACACAGATA	TTGCTAATAC	AGTAGCGTTC	TTAGCATCAG	4980
25	ACAAAGCAAA	ATATATTACA	GGTCAAACAA	TCCATGTAAA	TGGTGGAATG	TACATGTAAT	5040
25	ATATTTGAGC	TAAAGCTCAT	TGACGCAGTG	GTTGACTGGT	CATCCAATGG	AGAATTGTCT	5100
	GACCTAGTCA	ACTTTGCGGG	GGAAATTCTA	AGCAACCTAG	ATAAGGTTCC	AGAATTTCTC	5160
30	CCTAAGAAAC	ACTAATCAAT	aaattgwtaa	GTGTTTCTAA	AATTTCTACT	TGTTTTTTAG	5220
	AATTTAAAAT	GGGAAAATAT	AGTAGTCTAT	GTATAGGCAT	TTTTAAAGGA	GGTGAATCGA	5280
	CGTGGAAAAT	TTCGATAAAG	TAAAAGATAT	CATCGTTGAC	CgTTTAGGTG	TAGACGCTGA	5340
35	TAAAGTAACT	GAAGATGCAT	CTTTCAAAGA	TGATTTAGGC	GCTGACTCAC	TTGATATCGC	5400
	TGAATTAGTA	ATGGAATTAG	AAGACGAGTT	TGGTACTGAA	ATTCCTGATG	AAGAnGCTGA	5460
	AAAAATCAAC	ACTGTTGGTG	ATGCTGTTAA	ATTTATTAAC	AGTCTTGAAA	ТАААТААТАА	5520
40	CTTACATCTG	GGTCGTCAGT	ATTGTCGACT	CAGTTTTTTT	CTTTAATTAT	CAATAGTTTT	5580
	AACGTAAAAT	TAAAGATGAT	TCAAGAGCAA	CACATAAAGG	AGATAAAATA	ATGTCTAAAC	5640
45	AAAAGAAAAG	TGAGATAGTT	AATCGTTTTA	GAAAGCGCTT	TGATACTAAA	ATGACAGAGT	5700
	TAGGCTTTAC	TTATCAAAAT	ATTGATTTAT	ACCAACAAGC	ATTTTCGCAT	TCGAGTTTTA	5760
	TTAATGATTT	TAATATGAAT	CGTTTAGACC	ATAATGAGCG	TTTAGAGTTT	TTGGGTGATG	5820
50	CGGTATTAGA	ATTGACGGTT	TCACGATATT	TATTTGATAa	ACATCCCAAC	TTGCCAGAAG	5880
	GGAATTTAAC	AAAAATGCGT	GCCaCTATTG	TATGTGAGCC	CtCACTkGTA	ATATTTGCGA	5940
	ATAAAATTGG	ATTGAACGAA	ATGATTTTAC	TTGGTAAAGG	TGAAGAGAAA	ACAGGGGGAC	6000

ATCAAGGACT AGATATAGTT TGGAAATTTG CTGAGAAAGT CATTTTCCCA CATGTAGAAC 6120

AAAATGAGTT ATTAGGCGTG GTAGATTTTA AAACACAATT CCAAGAATAT GTGCACCAGC 6180

AAAATAAAGG TGATGTAACC TATAATTTAA TAAAAGAAGA GGGACCGGCA CATCATCGTC 6240

TATTCACTTC A 6251

(2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4920 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:

ACCTACTGAA GTTGCTAATT TTTTGGAGCA ACTAAGCACT GAAATTGAAC GTCTTAAAGA 60 AGATAAAAA CAACTTGAAA AAGTAATCGA AGAGAGAGAT ACTAATATTA AGTCTTATCA 120 AGACGTGGCA TCAATCTGTA AGTGATGCTT TGATACAAGC TCAAAAAGCT GGTGAAGAAA 180 CTAAGCAAGC TGCAGAGAAA CAAGCTGAAG CGATTATAGC TAAGGCAGAA GCGCAAqcTA 240 ATCAAATGGT TGGTGACGCG GTAGAAAAAG CACGCCGTTT AGCATTCCAG ACTGAAGATA 300 TGAAACGTCA ATCAAAAGTA TTTAGATCGC GTTTCCGTAT GTTAGTTGAA GCGCAATTAG 360 ACTTATTAAA AAACGAAGAT TGGGATTACT TGTTGAATTA TGATTTAGAC GCTGAACAAG 420 TGACGCTTGA AAATATTCAT CATTTGCATG AAAATGATTT AAAGCCAGAT GAAGTTGCAG 480 CARATGCACA ARATRATGCA TCARATACAC CAGACAATAA TCARCAATCC ARTGATTCAG 540 AAACAACTAA GAAGTAAGAA TTAAATAAAG ACAGACGCGT AATATACATT TAACTTTTCA 600 CAGCGAATTA GGTAATGGTG AGAGCCTAGT AAAAGCATGT ATGTTATATC ACTGGCTTTT 660 TAATATTTAA ATAATGTAAT GAGAGAACTC TAAGTTGAGT TAATAAGGGT GGTACCGCGA 720 GCAATCGTCC CTTTTAATTT AACTTAGAGT TTTTTAAATT TTTAAGGAGT GAAAAAAATG 780 GATTACAAAG AAACGTTATT AATGCCTAAA ACAGATTTCC CAATGCGAGG TGGTTTACCA 840 AACAAGGAAC CGCAAATTCA AGAAAAATGG GATGCAGAAG ATCAATACCA TAAAGCGTTA 900 GAAAAAATA AAGGTAACGA AACATTCATT TTACATGATG GCCCACCATA CGCGAATGGT 960 AACTTACATA TGGGACATGC CTTGAACAAA ATTTTAAAAG ACTTTATTGT ACGTTATAAA 1020 ACTATGCAAG GGTTCTATGC ACCATACGTA CCAGGTTGGG ATACACATGG TTTACCAATT 1080 GAACAAGCAT TAACGAAAAA AGGTGTTGAC CGAAAGAAAA TGTCAACAGC TGAATTCCGT 1140

55

5

10

15 .

20

25

30

40

45

	TTAGGTGTTC	GTGGTGACTT	TAATGATCCA	TATATTACAT	TAAAACCTGA	ATACGAAGCT	1260
_	GCACAAATTC	GTATTTTTGG	AGAAATGGCA	GATAAAGGTT	TAATTTATAA	AGGTAAAAAG	1320
5	CCAGTTTATT	GGTCTCCTTC	AAGTGAGTCT	TCATTAGCAG	AAGCAGAAAT	TGAATATCAC	1380
	GATAAACGTT	CAGCATCAAT	TTACGTTGCA	TTTGACGTTA	AAGATGACAA	AGGTGTCGTT	1440
10	GATGCAGATG	CTAAATTTAT	TATCTGGACA	ACAACGCCAT	GGACAATTCC	ATCAAATGTT	1500
	GCGATTACCG	TTCATCCTGA	ATTAAAATAT	GGTCAATACA	ATGTAAATGG	CGAAAAATAT	1560
	ATTATTGCAG	AAGCCTTGTC	TGACGCTGTA	GCAGAAGCAC	TGGaTTGGGA	TAAAGCATCA	1620
15	ATCAAATTAG	AAAAAGAATA	CACAGGTAAA	GAATTAGAGT	ATGTTGTAGC	ACAACATCCA	1680
	TTCTTAGACA	GAGAATCGTT	AGTGATTAAT	GGTGATCATG	TTACTACAGA	TGCTGGTACA	1740
	GGTTGTGTAC	ATACAGCACC	AGGTCACGGG	GAAGATGACT	ATATTGTTGG	TCAAAAATAT	1800
20	GAATTGCCAG	TAATTAGTCC	AATCGATGAT	AAAGGTGTAT	TTACTGAAGA	AGGCGGCCAA	1860
	TTTGAAGGGA	TGTTCTATGA	TAAAGCTAAT	AAAGCCGTTA	CTGATTTATT	AACAGAAAAA	1920
25	GGTGCACTAT	TAAAATTAGA	CTTTATTACA	CATAGCTATC	CACACGACTG	GAGAACAAAA	1980
25	AAACCTGTAA	TCTTCCGTGC	TACACCACAA	TGGTTTGCCT	CAATCAGTAA	AGTAAGACAA	2040
	GATATTTTAG	ATGCAATCGA	AAATACAAAC	TTCAAAGTAA	ATTGGGGTAA	AACACGTATT	2100
30	TACAATATGG	TTCGTGACCG	TGGCGAATGG	GTTATTTCTC	GTCAACGTGT	GTGGGGTGTA	2160
	CCGTTACCAG	TATTTTATGC	TGAAAATGGC	GAAATTATCA	TGACGAAAGA	AACAGTGAAT	2220
	CATGTTGCTG	ATTTATTTGC	AGAACACGGT	TCAAATATTT	GGTTTGAAAG	AGAAGCGAAA	2280
35	GACTTACTAC	CAGAAGGATT	TACACATCCA	GGCAGCCCTA	ACGGTACATT	TACTAAAGAA	2340
	ACAGACATTA	TGGACGTTTG	GTTTGATTCT	GGTTCATCAC	ACCGTGGCGT	GTTGGAAACA	2400
	AGAÇCGGAAT	TAAGTTTCCC	AGCGGATATG	TATTTAGAAG	GTAGTGACCA	ATATCGTGGT	2460
40	TGGTTCAACT	CTTCTATCAC	AACTTCAGTT	GCTACAAGAG	GAGTATCACC	TTATAAATTC	2520
	TTACTTTCTC	ATGGTTTTGT	TATGGACGGT	GAAGGTAAGA	AAATGAGTAA	ATCTTTAGGT	2580
45	AATGTGATTG	TACCTGACCA	agtggttaaa	CAAAAAGGTG	CTGATATTGC	GAGACTTTGG	2640
	GTAAGTAGTA	CGGACTATTT	AGCTGATGTT	AGAATTTCTG	ATGAAATTTT	AAAACAAACA	2700
	TCTGATGTTT	ATCGTAAAAT	CAGAAATACA	TTAAGATTTA	TGTTAGGTAA	CATTAACGAT	2760
50	TTCAATCCTG	ACACAGATAG	CATTCCTGAA	TCAGAGTTAT	TAGAAGTGGA	TCGTTACTTG	2820
	CTAAATCGTT	TACGTGAATT	TACTGCAAGT	ACGATTAACA	ACTATGAAAA	CTTTGACTAC	2880
	TTAAATATTT	ATCAAGAAGT	TCAAAACTTT	ATCAATGTTG	AGTTAAGTAA	TTTCTATTTG	2940

	CAAACAGTGT	TATATCAAAT	TTTAGTTGAT	ATGACGAAGT	TGTTAGCACC	AATCTTAGTG	3060
5	CATACAGCTG	AAGAAGTTTG	GTCTCATACA	CCACATGTTA	AAGAAGAAAG	TGTTCACTTA	3120
-	GCAGACATGC	CTAAAGTTGT	AGAAGTAGAT	CAAGCTTTAT	TGGATAAATG	GCGTACATTT	3180
	ATGAATTTAC	GTGATGATGT	GAACCGTGCA	TTAGAAACTG	CTCGTAATGA	AAAAGTTATT	3240
10	GGTAAATCAT	TAGAAGCTAA	AGTTACGATT	GCTAGTAACG	ATAAATTTAA	TGCATCTGAA	3300
	TTCTTAACTT	CATTTGATGC	ATTACATCAA	TTATTTATCG	TGTCACAAGT	TAAAGTTGTA	3360
	GATAAGTTAG	ACGATCAGGC	AACAGCTTAT	GAACATGGTG	ATATTGTCAT	CGAACATGCA	3420
15	GATGGTGAAA	AATGTGAAAG	ATGTTGGAAC	TATTCAGAGG	ATCTTGGTGC	TGTTGATGAA	3480
	TTGACGCATC	TATGTCCACG	ATGCCAACAA	GTTGTAAAAT	CACTTGTATA	ATTGAAATTG	3540
	TATAAAGTAC	TCATACAGAT	GATATAAATT	AAAGCTCTCT	TCATAATCAT	GTTGTAGTTT	3600
20	TTGTTGACAT	GATGAAGAGA	GTTTTTTTGT	GAATAAAAA	ATGACCAAGT	TACCGGTCAT	3660
	ATATGTAAAA	AATGTGCGAT	TTACTAAAAT	AAAAATTATT	CAGGAATGGT	ACAAATTCTC	3720
25	TGAGGCATAT	AAATGCGTTA	TAGTTGCTAT	TCTCAATTAT	GTTCGCGATA	ATTTTAAGTA	3780
	AAAGTAAGCA	CAGATATTGA	ATTTGATAGG	AGTTAATTGA	ATGTATCATA	ACAGTAACGC	3840
	AAACTTTGTC	AATGGTATCA	CTTTAAATGT	GAGAGATAAG	AATGAATTAA	AGCCATTTTA	3900
30	TGAGGACATA	TTAGGATTAA	АТАТТАТААА	TGAGACATTA	ACATCGATAC	AATATGAAGT	3960
	AGGTCAAAAT	AATCATGTCA	TTACACTTGT	TGAATTACAA	AATGGACGTG	AACCTTTAAT	4020
	GTCCGAAGCG	GGACTGTTTC	ATATCGCAAT	TAAACTACCT	CAAATTAGTG	ATTTAGCTAA	4080
35	TTTACTAATT	CATTTAAGCG	AATATGATAT	TCCAGTTAAC	GGAGGTATAC	AGCCTGCTTC	4140
	GTTATCATTA	TTTTTTGAAG	ACCCGGAAGG	AAACGGTTTT	AAATTTTATG	TTGATAAAGA	4200
	CGAAGCGCAA	TGGACGAGGC	AAAATAATTT	AGTAAAAATT	GATATTAGAC	CATTAAATGT	4260
40	ACCGAGATTA	GTGAGTCATG	CAACAAAATT	GTTATGGTTA	GGTATTCCAG	ATGACGCTAT	4320
	TATAGGTGCA	TTGCATATTA	AGACAATTCA	TTTATCAGAG	GTAAAAGAGT	ACTACCTCGA	4380
45	TTATTTTGGA	TTAGAGCAAT	CGGCATATAT	GGATGATTAT	TCAATATTTT	TAGCATCGAA	4440
	TGGCTATTAT	CAACATTTGG	CCATGAATGA	TTGGGTATCA	GCAACGAAAC	GTGTAGAAAA	4500
	TTTTGATACG	TATGGATTAG	CAATTGTTGA	CTTTCATTAT	CCTGAAACAA	CACATTTAAA	4560
50	TTTACAAGGT	CCGGATGGTA	TCTATTATCG	CTTTAATCAT	ATCGAAGTTG	AAGATTAGTA	4620
	TATACTTTGA	ATGGACGAAC	CATATAATGA	ATCGTTTTTA	ATGATCTTTT	TATACAAGTT	4680
	ATGAAGGAGG	CTGGGACATT	AAGTTCTTAG	GCAATGTAAA	AAGCTGATTT	СТАТТААТТА	4740
<i>55</i>							

	TTTTCCTTAT ATTAATTGCC ATTAATACAA AACCTAGCTC TCGTTTAACT TTATTTATTC	4860
	CTCGAACTGA CATTCGnGTG AACTCAAAAT nGCCTACTTn CTTAAATTAC CAATATCTAT	4920
5	(2) INFORMATION FOR SEQ ID NO: 27:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 626 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	TGGATTGCCA TTACATGGAC AAGATTTAAC TGAATCAATT ACACCATATG AAGGTGGTAT	60
	CGCTTTTGCA AGTAAACCAT TAATTGATGC TGATTTTATT GGTAAATCTG TATTAAAAGA	120
20	TCAAAAAGAA AATGGTGCAC CAAGAAGAAC AGTGGGATTA GAATTACTTG AAAAAGGAAT	180
	TGCAAGAACT GGTTATGAAG TTATGGATTT AGATGGAAAT ATTATTGGAG AAGTAACTTC	240
25	AGGAACACAG TCTCCATCAT CAGGAAAATC AATTGCACTT GCAATGATAA AAAGAGATGA	300
	GTTTGAAATG GGTAGAGAGT TGCTTGTTCA AGTTCGTAAG CGTCAATTAA AAGCGAAAAT	360
	TGTTAAGAAA AATCAAATTG ATAAATAATT AAAAAGGGGT GTGCATTGTG AGTCATCGTT	420
30	ATATACCTTT AACTGAAAAA GACAAGCAAG AAATGTTACA AACAATTGGT GCAAAATCTA	480
	TAGGAGAATT ATTCGGTGAT GTACCAAGTG ACATTTTATT AAATAGAGAT TTAAATATTG	540
	CTGAAGGCGA ACGGAGAACA ACGTTACTTA GAAGATTMAA TCGCATTGCA AGCAAGAGTA	600
35	TCACTAGAGG AACGCGTACA TCGTTT	626
	(2) INFORMATION FOR SEQ ID NO: 28:	
40	<pre>(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear</pre>	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
	nGGAAGTGGT GTATATATT GTAATGAGTG TATTGAATTA TGCTCAGAAA TCGTCGAAGA	60
50	AGAATTAGCT CAAAACACTT CTGAAGCGAT GACAGAATTA CCTACTCCTA AAGAAATTAT	120
	GGATCATTTA AACGAATATG TTATTGGTCA AGAAAAAGCT AAAAAATCTT TAGCTGTAGC	180
	TGTTTATAAC CACTATAAGC GTATTCAACA ATTAGGACCA AAAGAAGATG ATGTTGAATT	240
55		

	AACCTTAGCC AAGACGTTGA ATGTACCATT TGCAATTGCA GATGCGACAA GTTTAACTGA	360
5	AGCTGGTTAT GTAGGCGATG ATGTTGAAAA TATCTTGTTG AGATTAATTC AAGCAGCTGA	420
5	CTTTGACATT GATAAAGCCG AAAAAGGTAT TATTTATGTA GATGAAATTG ATAAAATTGC	480
	ACGTAAATCT GAAAACACAT CTATAACACG TGACGTTTCA GGTGAAGGTG TTCAACAAGC	540
10	ATTGCTTAAA ATCTTAGAAG GTACGACTGC AAGTGTTCCG CCACAAGGTG GACGCAAACA	600
	TCCAAACCAA GAAATGATTC AAATTGATAC AACAAATATC TTATTTATTC TTGGTGGTGC	660
	CTTTGATGGT ATTGAAGAAG TGATTAAGCG CCGTCTTGGT GAAAAAGTTA TTGGTTTCTC	720
15	AAGCAATGAA GCTGATAAAT ATGACGAACA AGCATTATTA GCACAAATTC GCCCAGAAGA	780
	TTTGCAAGCC TATGGTTTGA TTCCTGAATT TATCGGACGT GTGCCAATTG TAGCTAATTT	840
	AGAAACATTA GATGTAACTG CGTTGAAAAA CATCTTAACG CAACCTAAAA ATGCACTTGT	900
20	GAAACAATAT ACTAAAATGC TGGAATTAGA TGATGTGGAT TTAGAGTTCA CTGAAGAAGC	960
	TTTATCAGCA ATTAGTGAAA AAGCAATTGA AAGAAAAACA GGTGCGCGTG GTTTACGTTC	1020
25	AATCATAGAA GAATCGTTAA TCGATATTAT GTTTGATGTG CCTTCTAACG AAAATGTAAC	1080
	GAAGGTAGTT ATTACAGCAC AAACMATTAA TGrAGAACTG AACCAG	1126
	(2) INFORMATION FOR SEQ ID NO: 29:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4392 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:	
	ATTGACTTCT TAGCAATNAA TATGAGTGAA GAACGTACTG TTGAAGTACC AGTTCAATTA	60
40	GTTGGTGAAG CAGTAGGCGC TAAAGAAGGC GGCGTAGTTG AACAACCATT ATTCAACTTA	120
	GAAGTAACTG CTACTCCAGA CAATATTCCA GAAGCAATCG AAGTAGACAT TACTGAATTA	180
45	AACATTAACG ACAGCTTAAC TGTTGCTGAT GTTAAAGTAA CTGGCGACTT CAAAATCGAA	240
	AACGATTCAG CTGAATCAGT AGTAACAGTA GTTGCTCCAA CTGAAGAACC AACTGAAGAA	300

55

50

GAAATCGAAG CTATGGAAGG CGAACAACAA ACTGAAGAAC CAGAAGTTGT TGGCGAAAGC

AAAGAAGACG AAGAAAAAC TGAAGAGTAA TTTTAATCTG TTACATTAAA GTTTTTATAC

TTTGTTTAAC AAGCACTGTG CTTATTTTAA TATAAGCATG GTGCTTTTTG TGTTATTATA

AAGCTTAATT AAACTTTATT ACTTTGTACT AAAGTTTAAT TAATTTTAGT GAGTAAAAGA

360

420

480

	CTTACTAAGC	TAAAGAATAA	TGATAATTGA	TGGCAATGGC	GGAAAATGGA	TGTTGTCATT	660
_	ATAATAATAA	ATGAAACAAT	TATGTTGGAG	GTAAACACGC	ATGAAATGTA	TTGTAGGTCT	720
5	AGGTAATATA	GGTAAACGTT	TTGAACTTAC	AAGACATAAT	ATCGGCTTTG	AAGTCGTTGA	780
	TTATATTTTA	GAGAAAAATA	ATTTTTCATT	AGATAAACAA	AAGTTTAAAG	GTGCATATAC	840
10	AATTGAACGA	ATGAACGGCG	ATAAAGTGTT	ATTTATCGAA	CCAATGACAA	TGATGAATTT	900
	GTCAGGTGAA	GCaGTTGCAC	CGATTATGGA	TTATTACAAT	GTTAATCCAG	AAGATTTAAT	960
	TGTCTTATAT	GATGATTTAG	ATTTAGAACA	AGGACAAGTT	CGCTTAAGAC	AAAAAGGAAG	1020
15	TGCGGGCGGT	CACAATGGTA	TGAAATCAAT	TATTAAAATG	CTTGGTACAG	ACCAATTTAA	1080
	ACGTATTCGT	ATTGGTGTGG	GAAGACCAAC	GAATGGTATG	ACGGTACCTG	ATTATGTTTT	1140
	ACAACGCTTT	TCAAATGATG	AAATGGTAAC	GATGGAAAAA	GTTATCGAAC	ACGCAGCACG	1200
20	CGCAATTGAA	AAGTTTGTTG	AAACATCACG	ATTTGACCAT	GTTATGAATG	AATTTAATGG	1260
	TGAAGTGAAA	TAATGACAAT	ATTGACAACG	CTTATAAAAG	AAGATAATCA	TTTTCAAGAC	1320
25	CTTAATCAGG	TATTTGGACA	AGCAAACACA	CTAGTAACTG	GTCTTTCCCC	GTCAGCTAAA	1380
	GTGACGATGA	TTGCTGAAAA	ATATGCACAA	AGTAATCAAC	AGTTATTATT	AATTACCAAT	1440
	AATTTATACC	AAGCAGATAA	ATTAGAAACA	GATTTACTTC	AATTTATAGA	TGCTGAAGAA	1500
30	TTGTATAAGT	ATCCTGTGCA	AGATATTATG	ACCGAAGAGT	TTTCAACACA	AAGCCCTCAA	1560
	CTGATGAGTG	AACGTATTAG	AACTTTAACT	GCGTTAGCTC	AAGGTAAGAA	AGGGTTATTT	1620
	ATCGTTCCTT	TAAATGGTTT	GAAAAAGTGG	TTAACTCCTG	TTGAAATGTG	GCAAAATCAC	1680
35	CAAATGACAT	TGCGTGTTGG	TGAGGATATC	GATGTGGACC	AATTTCTTAA	CAAATTAGTT	1740
	AATATGGGGT	ACAAACGGGA	ATCCGTGGTA	TCGCATATTG	GTGAATTCTC	ATTGCGAGGA	1800
40	GGTATTATCG	ATATCTTTCC	GCTAATTGGG	GAACCAATCA	GAATTGAGCT	ATTTGATACC	1860
40	GAAATTGATT	CTATTCGGGA	TTTTGATGTT	GAAACGCAGC	GTTCCAAAGA	TAATGTTGAA	1920
	GAAGTCGATA	TCACAACTGC	AAGTGATTAT	ATCATTACTG	AAGAAGTGAT	CAGCCATCTT	1980
45	AAAGAAGAGT	TAAAAACTGC	ATATGAAAAT	ACAAGACCCA	AAATAGATAA	ATCAGTGCGC	2040
	AATGATTTGA	AAGAAACGTA	TGAAAGCTTT	AAATTATTCG	AAAGTACATA	CTTTGATCAT	2100
	CAAATACTAC	GTCGCTTAGT	AGCGTTTATG	TATGAAACAC	CTTCGACAAT	TATTGAGTAT	2160
50	TTCCAAAAAG	ATGCAATCAT	TGCAGTTGAT	GAATTTAATC	GTATTAAAGA	AACTGAAGAA	2220
	`AGTTTAACAG	TAGAGTCTGA	TTCGTTTATT	AGCAATATTA	TTGAAAGTGG	TAATGGATTT	2280
	ATAGGACAAA	GTTTTATAAA	ATATGATGAT	TTTGAAACAT	TGATTGAAGG	CTATCCTGTC	2340

	TCATGTAAAC	CTGTCCAACA	ATTTTATGGG	CAATATGACA	TTATGCGTTC	TGAATTTCAA	2460
	CGATATGTTA	ATCAAAACTA	TCATATCGTG	GTTTTGGTCG	AAACCGAAAC	TAAAGTTGAA	2520
<i>5</i> ·	CGTATGCAAG	CGATGTTAAG	TGAAAtGCAT	ATTCCATCAA	TAACAAAATT	GCATCGCTCA	2580
,	ATGTCATCGG	GGCAAGCAGT	GATTATTGAA	GGCAGTTTAT	CTGAAGGATT	TGAACTACCT	2640
10	GATATGGGAT	TAGTTGTCAT	TACTGAGCGT	GAGCTTTTTA	AATCAAAACA	GAAAAAGCAA	2700
	CGAAAACGTA	CGAAAGCTAT	CTCAAATGCT	GAAAAAATTA	AGTCTTACCA	AGATTTAAAT	2760
	GTGGGAGATT	ATATTGTTCA	TGTGCATCAT	GGTGTTGGTA	GATATTTAGG	TGTTGAGACG	2820
15	CTCGAAGTGG	GGCAAACGCA	TCGTGATTAT	ATTAAATTGC	AATATAAAGG	TACGGATCAA	2880
	CTATTTGTTC	CAGTAGATCA	AATGGATCAA	GTTCAAAAAT	ATGTAGCTTC	GGAAGATAAG	2940
	ACGCCAAAAT	TAAATAAACT	CGGTGGCAGT	GAATGGAAAA	AAACAAAAGC	TAAAGTTCAA	3000
20	CAAAGTGTTG	AAGATATTGC	TGAAGAGTTG	ATTGATTTAT	ATAAAGAAAG	AGAAATGGCA	3060
	GAAGGTTATC	AATATGGGGA	AGACACAGCT	GAGCAAACAA	CATTTGAATT	AGATTTTCCA	3120
25	TATGAACTTA	CGCCTGACCA	AGCTAAATCT	ATCGATGAAA	TTAAAGATGA	CATGCAAAAA	3180
25	TCGCGTCCAA	TGGATCGCTT	GCTATGTGGT	GATGTTGGTT	ATGGTAAAAC	TGAAGTTGCA	3240
	GTGAGAGCAG	CATTCAAAGC	TGTAATGGAA	GGAAAGCAGG	TTGCATTTTT	AGTTCCTACA	3300
30	ACTATTTTAG	CTCAGCAACA	TTATGAGACG	TTAATTGAGC	GTATGCAAGA	TTTTCCTGTT	3360
	GAAATTCAAT	TAATGAGTCG	TTTTAGAACG	CCTAAAGAGA	TAAAACAAAC	TAAGGAAGGA	3420
	CTTAAAACTG	GATTTGTTGA	CATAGTTGTT	GGTACACACA	AATTACTTAG	TAAAGATATA	3480
35	CAGTATAAAG	ATTTAGGGCT	GTTGATTGTA	GATGAAGAAC	AACGATTTGG	TGTACGCCAT	3540
	AAAGAGCGTA	TTAAAACATT	AAAACATAAT	GTAGATGTAC	TAACATTGAC	TGCAACCCCA	3600
	ATAGCTAGAA	CATTGCATAT	GAGTATGCTA	GGTGTGCGGG	ATTTGTCAGT	GATTGAAACG	3660
40	CCGCCAGAAA	ATCGTTTCCC	AGTTCAAACA	TATGTATTAG	AACAGAACAT	GAGTTTTATC	3720
	AAAGAAGCTT	TAGAAAGAGA	ACTATCCCGT	GATGGCCAAG	TGTTTTATCT	TTATAATAAA	3780
45	GTGCAATCCA	TTTATGaAAA	ACGAGAACAA	CTCCAGATGT	TAATGCCAGA	TGCTAACATT	3840
	GCAGTTGCTC	ATGGACAAAT	GACAGAGCGC	GATTTAGAAG	AAACGATGTT	AAGTTTTATC	3900
	AATAATGAAT	ATGATATTTT	AGTAACGACG	ACGATTATTG	AAACAGGTGT	CGATGTCCCA	3960
50	AATGCAAATA	CTTTGATCAT	TGAAGATGCA	GATCGCTTTG	GATTGAGTCA	GTTGTATCAA	4020
	TTAAGAGGTC	GTGTTGGTCG	TTCAAGTCGT	ATTGGTTATG	CATACTTCTT	ACATCCAGCA	4080
	AATAAGGTAC	TAACTGAGAC	TGCAGAAGAT	CGATTACAAG	CGATTAAAGA	ATTTACGGAG	4140

	TTAGGTAAAC AACAGCACGG CTTTATTGAT ACAGTTGGAT TTGATTTGTA CAGTCAAATG	4260
	TTAGAAGAAG CTGTAAATGA AAAACGTGGT ATTAAGGAAC CAGAATCTGA GGTGCCAGAA	4320
5	GTCGAAGTTG ATTTAAACTT GGATGCATAT TTGCCAACAG AATATATTGC AAATGAACAA	4380
	GCTAAAATTG AA	4392
10	(2) INFORMATION FOR SEQ ID NO: 30:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 729 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:	
20	TTTCTTTTGA ATCTATATCG AGGTGGTTGG TAGGTTCATC TAAAATAAGT ACATTGTCAC	60
	GTTGCAACAT AAGTAGTGCT AGTTGTAAAC GTGCTTTTTC ACCACCAGAT AAATCATTAA	120
05	TTATCTTTTT AACATCGTCT TGTACAAATA AGAAACGTCC AAGAACTGCT CGAATATCTT	180
25	TTTCATTCAT TAACGGATAT TGATCCCACA CATAATCTAA AATCGTTTTA CTAGATTTAA	240
	ATTCTGCTTG CTTTTGATCA TAATAACCAA TTTGTAAATT TGCGCCGAAA GTAATATCGC	300
30	CATTAAGCGC TTTTTGTTGA TTAGCAATAG TTTTAATTAA GGTCGATTTT CCAATACCAT	360
	GTCGAAGTTG ATTTAAACTT GGATGCATAT TTGCCAACAG AATATATTGC AAATGAACAA GCTAAAATTG AA (2) INFORMATION FOR SEQ ID NO: 30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 729 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30: TTTCTTTTGA ATCTATATCG AGGTGGTTGG TAGGTTCATC TAAAATAAGT ACATTGTCAC GTTGCAACAT AAGTAGTGCT AGTTGTAAAC GTGCTTTTTC ACCACCAGAT AAATCATTAA TTATCTTTTT AACATCGTCT TGTACAAATA AGAAACGTCC AAGAACTGCT CGAATATCTT TTTCATTCAT TAACGGATAT TGATCCCACA CATAATCTAA AATCGTTTTA CTAGATTTAA ATTCTGCTTG CTTTTGATCA TAATAACCAA TTTGTAAATT TGCGCCGAAA GTAATATCGC	420
	TTGCAGTTTG ATAACCGATT TCTAAATTTT TTACATGCAT GACGTCATTA CCTGTATTCC	480
35	GGTCAAAGCC AAATTGAATA TTTGCACTTT TGGCATCTAA CATTGGTTTA TCAATGCGTT	540
	CCATTTTTC TAAAATCTTA CGTCTACTTT TTGCCATTCC ACTTGTTGAA GCACGGGTAA	600
	TATTTTTCTC AACAAAAGTT TCTAATCGTT TTATTTCTGC TTGTTGACTT TCATATTCTT	660
40	GCATTCGTTT TTGATAATAT AAATCCCGTT GCTGTATAAA TTCCTCGTAA TTACCAACAT	720
	AGCGTTTGA	729
45	(2) INFORMATION FOR SEQ ID NO: 31:	
50	(A) LENGTH: 13856 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31:

	TGATGTTTCG	ATACATTTGT	TGCACCTTGT	GGATATACTT	TAAAGGTTGT	GTCGTATGTT	120
	TCCTTACTAT	CTTTAGCTTC	AGATTCCTGT	GATTCAACCG	TTTTATATTT	TTCAAGTGCA	180
5	TGTCCTTCAA	TATCAACTCG	TGGAATAATG	CGATTCAACC	ATGCTGGTAA	ATACCACGAA	240
	CCTTTtCCAA	ACAATTTCGt	TAATGCAGGA	ATTAACATCA	TECTGACTAC	GAAGGCATCA	300
10	AAGAGTACAC	CAAACGCTAA	TGCCATACCC	ATTGATTTAA	TCATGACATC	TTCTTGGAAT	360
.•	ACAAACGCAA	AGAAGACACT	AAACATAATT	AATGCAGCTG	CTACAATAAC	AGGACCGCTT	420
	TCTTTCAATC	CTACTTTGAT	AGAATAATCA	TTATCCCCTG	TTTTACTATm	yyCTTCATGr	480
15	ATTCGCGACA	TAAGGAAGAC	TTCATAATCC	ATCGCTAATC	CAAATAAGAT	ACCTATAGTA	540
	ATAACCGGTA	AAAATGCTAG	CATTGGTCCT	GTCGTTTCAA	TACCAAACAG	ACCTTTCATA	600
	AAACCATCTT	GCATTACTAA	TGTTGTAAAT	CCTAATGTTG	CCATTAATGA	CAAGACGAAT	660
20	CCTAAAACTG	CTTTTAATGG	TATTAGAATT	GAACGGAAGA	CAATCATTAA	TAAGAAAAAT	720
	GCTAATACAA	CAATGACTGA	GGCAAATAAA	GGTATCGCCT	CATTTAACTT	TTTAGACATA	780
05	TCAATATTAA	TGACACTTTG	TCCCGAAATC	TCCGTTTTGA	ACCCATATTT	ATCTTGTGCA	840
25	TCTTTATGAT	AATCTCGTAA	ATCATGCACT	AAATCATTTG	TACTCTCTGC	ATTAGGCCCT	900
	TGCTTAGGTA	TCACGACCAT	CAAAGCGTAA	TCATTATCTT	TACTCATTTG	TGGTGGCGTA	960
30	ACGATATCTA	CATTTTTCTT	ATCTTTAATA	TCTTTATATA	CAGACTGTAA	ATCTTGTTGT	1020
	AATCCTTGTG	GATCATCCTT	TTTATCTTTC	ACATTTATCA	ACATCGGTAT	TTGGCCATTA	1080
	AATCCTTCAC	CAAATTTATC	CGAGATAATA	TCGTAAGCTT	TTTTCTGTGT	AGAATCTGCT	1140
35	GGTTTAACAC	CGTCATCTGG	AATACCAAGT	CGCATATGAC	TAACTGGTAT	TGCAGCTGCT	1200
	ACTAATATGA	TTAAACCTAG	TAATACTGCC	GCAAGTGCAT	TTCCTGTAAT	AAATTTAGAC	1260
	CATGGCGTAT	CAATATCTTT	TTTGAATTTA	GACTGTAATT	TATTCACTTT	AATGCGTTLA	1320
40	TGGAAAATGC	TTATTAATGC	AGGTAATAAA	GTTAAAGCGC	TAAGTACTGC	AAAAACAACA	1380
	CTAATTGCCG	AAGCAAATCC	CATTACCGCT	AAGAAGTCAA	TGCCTACTAA	TGATAAACCA	1440
45	CATACTGCAA	TTACAACTGT	TACACCAGCA	AAAACAACTG	CACTACCTGC	TGTTCCTATT	1500
	GCAAGACCAA	TGCCTTTAAT	GTAATCTGTT	TCAGTTTTCA	TAACTTGTCG	ATATCTGAAT	1560
	AAAATAAATA	ATGCATAATC	GATACCAACT	GCTAGTCCAA	TCATTACGGC	TAATGTCAGT	1620
50	GTGACATTTG	GTATATCGAA	TGCATAAGTT	AACAAACTGA	TAATACCTAC	ACCAGAGGCT	1680
	AGACCAATCA	ATGCACTTAT	AATTGGTAAT	CCTGCAGCAA	TGACTGAACC	GAATGTGATT	1740
	AACAGTACAA	CAAATGCAAC	AATAATACCA	ACTAGTTCAG	AATTACCGCC	TACTTCTGTA	1800

	AAATGACTTT	TAACATTATC	TCTAGAGCCA	TCTTTTAAAG	ATGTTTGACT	AACGTCATAT	1920
	GTGATATCTG	CAAATGCAGT	TGTTTTATCT	TTACTAATTT	GCTTATTTTC	ATAAGGATCT	1980
5	GATATTTTAT	CAATGTGCTT	GTCATCTTTT	TTAATATCAT	CTAACGTTTT	CTTAATATCT	2040
	TTAGTAATGT	TCGGTTGCAC	AATACCATCA	TCTTTAGTCG	TCTTAAAGAC	AACACGTATT	2100
10	TGTGCCTTTT	CACTATCTTG	ATTAAAATGT	TTTTCAATCT	TTTTATTCGT	ATCTAACGAC	2160
	TCTAATCCTG	TCATTTTAAT	ATCATTGTCA	AATTTCGGTG	CATTTGTAGC	AAGTGGTATC	2220
	AATATTGCAG	CTACAATCAC	TATCCATGCA	ATGACCGCGG	ACCATTTATG	TTTTGCGATG	2280
15	AATGTCCCCA	TCTTATATAA	AAATTTTGCC	AAAGTATATT	GCCTCCTTTT	AAAATCAACG	2340
	TTATAGTTTA	AATATACAGT	GTAGATTATT	GTTCGATTAT	AGTATCTATC	CCCGACCTCT	2400
	TAAAGAATCA	ATTGGAAAAT	TTTGTATATT	AAACTACACA	CAAAGGAGAA	ATGTAGATGA	2460
20	AAGAGACTGA	TTTACGAGTT	ATAAAGACAA	AAAAAGCATT	GTCGAGTAGC	TTGCTACAAT	2520
	TGTTAGAACA	GCAATTATTC	CAAACGATTA	CTGTCAATCA	AATTTGCGAC	AACGCACTCG	2580
25	TACACCGTAC	AACATTTTAT	AAACATTTTT	ATGATAAATA	TGATCTTCTA	GAGTACTTGT	2640
20	TCAATCAATT	GACTAAAGAC	TACTTTGCTA	GAGATATCAG	TGACCGTCTT	AATCATCCAT	2700
	TCCAAACGAT	GAGTGATACG	ATTAATAATA	AAGAGGATTT	GAGAGAAATC	GCAGAATTCC	2760
30	AAGAAGAAGA	CGCTGAATTT	AATAAAGTAT	TAAAAAATGT	CTGCATTAAA	ATTATGCATA	2820
	ACGATATCAA	aaataataga	GACCGTATCG	ATATTGACAG	CGACATCCCA	GATAATCTCA	2880
	TATTTTATAT	TTATGACTCG	TTGATTGAAG	GTTTTATACA	TTGGATAAAA	GATGAAAAA	2940
35	TTGATTGGCC	TGGCGAAGAT	ATTGATAACA	TTTTCCATAG	ATTAATCAAT	ATTAAGATTA	3000
	AATAGTAGAT	GAGAAACTCA	TGAGCGTTAC	CAACATTCAT	AATAAAAACG	ATAGTGKACA	3060
	CGTTÄATGAA	TTCGTGTACT	ACTATCGTTT	TTTATTTTTA	TCGTGCTTAT	CGCTATTAAA	3120
40	ACAACTGATA	CACAACACAT	AAACTATGAA	GAAAAAAATA	AATCCGCTAT	CTAAATGACT	3180
	TTGACTCAGT	TGTTTAAATG	ACCAAATTGC	TAATACAATT	CCCATTATTA	TTGAAATAAC	3240
45	GTATCTCACA	TTCTTATACC	TATAATCCTT	TTCTAAAAAT	ATGGTTGCTA	TTACTTAATT	3300
	TTTAAAGTTA	TAAATAAAA	GAGCCAACCG	CAATGGATGG	CCCTTGTTCA	TTATGAAGCA	3360
	TTAGAACATT	TCTGAAACAA	CCTTTTGTTC	TAAGAAGTGT	AATAAGTAGT	CTGGACTACC	3420
50	TGTTTTAGCG	TCCGTACCTG	ACATTTTGAA	ACCACCAAAT	GGATGGTATC	CAACAACTGC	3480
	TGAAGTACAG	CCTCTGTTAA	GGTATAAATT	GCCTACATCA	AATTCGTTTA	CCGCTTTAAT	3540
	CCX XTCCTCC	ביים אינים א	TAATCACTCC	ACCAGTTAAA	СССТАВТСТС	ተ ልተርልሞሞፕሩር	3600

	TTCTTCTTGC	ATGATTCTAT	CTTTAGATTT	AAGTCCTGAA	ATGATTGTTG	GTTCTACAAA	3720
	GTAACCTTTT	GAATCATCAG	TGCCGCCACC	TTGTTCTAAT	TTACCTTCTT	CTTTACCAAT	3780
5	CTCAATATAA	TTTTTAATCT	TATCAAATTG	TTTTTTATTA	ATAACTGGGC	CCATATACGT	3840
	ATTGTCTACA	GTATTGCCCA	ACGTTAATTC	TTTTGTTAAT	TTGATTGATT	TCTCTAATAC	3900
10	TTCGTCATAA	ACGTCTTTAT	GCACAATTGC	ACGTGAACAT	GCTGAACATT	TTTGACCAGA	3960
	AAAACCAAAT	GCTGACGTTA	CAATAGCTTC	TGCTGCCATA	TCTGTATCAA	TATTTTCATC	4020
	AACTACAATG	GCATCTTTAC	CACCCATTTC	AGCGATAACA	CGTTTCAAGA	AGTTTTGACC	4080
15	TTCTTGAACA	ACGGCACTAC	GTTCATAAAT	TCTAGTACCT	GTCGCACGTG	ATCCTGTAAA	4140
	TGTAACGAAA	TGCGTATCTT	TATGATCAAC	TAAGTAATCA	CCAATTTCTT	TCGGATCACC	4200
	AGGAACAAAG	TTAACTACGC	CTTTTGGTAA	TCCTGCTTCT	TCTAAAATTT	CCATTAATTT	4260
20	ATAAGCGATA	TAAGGTGTAT	CCTCAGCAGG	TTTCAATAAC	ACTGTATTAC	CTGCCACAAC	4320
	TGGTGCTAAA	GTTGTACCAG	CCATAATCGC	AAACGGGAAG	TTCCACGGCG	GAATTGTAAC	4380
25	ACCTGTACCA	ATTGATTTAT	AGAAATATTT	ATTGTGTTCA	CCTTCACGAT	CAAGTACTGG	4440
25	CTTACCTTGA	GCCAAGTCCA	TCATTGAACG	TGCATAGTAT	TCAATAAAAT	CAATACCTTC	4500
	AGCTGCATCA	CCAACTGCTT	CATCCCATGG	CTTACCTGCT	TCATAAACCA	TAATTGCTGC	4560
30	AATTTCCGCT	TTTCGACGAC	GAATAATTGC	CGAAACACGT	AACATAAGCT	CTGCACGATC	4620
	ATTTGCTGAC	CATGTTTTCC	AAGATTTATA	AGCTTCGTTT	GCTGCTTTAA	ACGCATCTTC	4680
	AACATCTTGT	TTTGTTGCCT	TTGATGCATT	TGCAATCACT	TGTGATGTGT	CTGCAGGATT	4740
35	GATTGATTTA	ATTTTGTCAT	CTTTGAAAAT	CTTCTCTCCA	TTAATCACTA	ATGGTATGTC	4800
	TTGACCTAAT	TCTTTTTCCA	CGTCTTTCAA	TGCTTTCTTA	AACATATCCA	CATTTTCTTG	4860
	GACTGAAAAA	TCGTAACCAG	GTTCATTTTT	AAATTCTACT	ACCATGTACA	CTTACCCCCT	4920
40	ATAAATTTTG	AAAGTGGTTT	AACCCTTTGA	TTTAATGATA	TAACATCATT	TAAACTCATT	4980
	TTACTATGAT	TAAGGTTAGT	TTTGCAATCG	CTTTCATTTT	TATGTTTTAT	CACTTATTCT	5040
45	CAAGTATTTT	GAAATTGATT	GGTTACTTTT	TAAAATTTAT	ATGGGTCGCA	ACTGCTACTT	5100
	TATCGTTTCG	TCATTTAATG	TTTCGGATGG	TAGGTCATTA	TCAATTTTAC	GAACGACTTT	5160
	ACAAGGGTTT	CCAACCGCTA	AGCTGTGTGG	CGGAATATCT	TTAGTGACAA	CACTACCAGC	5220
50	ACCAATCACA	CTGCCTTCTC	CAATCGTCAC	CCCTGGTAAC	ACGGCTACAT	GACCGCCAAA	5280
	CCAAGTATTA	CTGCCAATAT	GAATGGGTCC	GGCTTTTTCA	AAACCTTCAT	TTCTATGATG	5340
	GAAATTAAGT	GGATGTGTCG	CTGTGTAGAA	TCCACAATTA	GGTCCTATAA	AAACATTATC	5400

	TCCTAGTTTA	ACGTTCCAAC	CATAATCTGT	ATCAAAAGGA	ATCGAAATAC	TTACATTGTC	5520
5	TGTTGTTGTT	TGAAATAATT	GATCAATTAA	TTCCTTTCTT	TTATTTGTAG	CACTCGGTCT	5580
5	TGTATGATTT	AATTCAAAGC	AAATATCTTT	CGCTCGTGCA	CGTTCATTGA	TTAAGTATTG	5640
	ATCAAAGTTT	GCATCGTACC	ATTTTTCTGC	TAACATTTTT	TCTTTTTCAG	TCATTACACC	5700
10	TTTCAACTCC	TAATAACTTA	TTTACTTGTT	TAAAAGTTAA	TCAAATAAAC	CTTCGCCTAT	5760
	GCAACTAATA	CGCTATAACA	TTATGAAATC	ATGACCTTAT	CACCCTTATC	TATACAATTC	5820
	TCGCATCAAA	TACTGCTAAA	GTAGTAGATA	AATTCAATAC	TACAGACGCA	TTCATTTTTT	5880
15.	AATCTATTAA	CGTACAATGT	GAGTAAGAGA	AATATAAAGG	AGTATGATAG	CGATGAGAAT	5940
	ATTAATTACA	GGCACAGTTG	CTATCTTAAT	CATTCTAGGT	TTGGTCAAAA	CGATACAAGA	6000
	TTACGAAATG	ACAAACGACA	CGAGTCGTcA	GTTGTCAGAC	AACAAAGATG	ATGATAAAGT	6060
20	CATCCATCTT	AATAATTTTA	AAAATTTACA	TGCGAAAGAA	TTTAACCCAT	CTGATTTCTT	6120
	TTAAGTCACC	TAAGAATTGC	AAATCCAGAA	GTCATTTAAG	TTTTACCTTT	CATTCATACA	6180
25	TCCTTTAATA	TTAATTACGA	CTTCTTTTAT	ATAGATGCTA	AGTAGAGAGA	TTGTTGTGCA	6240
	ATGTTTGCAC	GGCAATCTCT	CTTTTTCTTT	TTAAAATTGG	TAAAAGTAAA	ACGCAACGAT	6300
	TGACTTATAT	ACCTATAGGG	GGTACATTAG	ACGTGTAACA	ATGAATCACA	GGGAGGCAAT	6360
30	AATGTGGCTA	ATACGAAAAA	AACAACATTA	GATATCACTG	GTATGACTTG	TGCCGCATGT	6420
	TCAAATCGTA	TCGAAAAGAA	ACTGAATAAA	CTTGATGACG	TTAATGCCCA	AGTGAATTTA	6480
	ACTACAGAGA	AAGCAACTGT	TGAGTATAAC	CCTGATCAAC	ATGATGTCCA	AGAATTTATT	6540
35	AATACGATTC	AACATTTAGG	TTACGGTGTC	GCTGTAGAAA	CTGTCGAATT	AGACATTACA	6600
	GGTATGACTT	GTGCTGCATG	CTCAAGCCGT	ATTGAAAAAG	TGTTAAATAA	AATGGACGGC	6660
40	GTTCAAAATG	CAACGGTCAA	TTTAACAACA	GAGCAAGCTA	AAGTTGACTA	TTATCCTGAA	6720
40	GAAACAGATG	CTGATAAACT	TGTCACTCGC	ATTCAAAAAT	TAGGTTATGA	CGCGTCTATT	6780
	AAAGATAACA	ATAAAGATCA	AACGTCACGC	AAAGCTGAAG	CGCTACAACA	TAAATTGATT	6840
45	AAGCTTATCA	TATCAGCAGT	ATTATCTTTA	CCACTATTAA	TGTTAATGTT	TGTACATCTT	6900
	TTCAATATGC	ATATACCAGC	ACTATTTACG	AATCCATGGT	TCCAATTTAT	TTTAGCTACA	6960
	CCTGTACAAT	TTATTATTGG	ATGGCAATTT	TATGTAGGTG	CTTATAAAAA	CTTAAGAAAT	7020
50	GGTGGCGCCA	ATATGGATGT	ACTTGTTGCT	GTTGGTACAA	GTGCAGCATA	TTTTTACAGT	7080
	ATTTATGAAA	TGGTTCGTTG	GCTAAATGGC	TCAACAACGC	AACCGCATTT	ATACTTTGAA	7140
	ACAAGCGCCG	TACTAATTAC	CTTAATCTTA	TTCGGTAAGT	ATTTAGAAGC	TAGAGCGAAG	7200

	TTAAAAGATG	GTAATGAAGT	GATGATTCCT	CTAAATGAAG	TACATGTTGG	AGATACACTT	7320
	ATCGTTAAAC	CAGGTGAAAA	GATACCTGTT	GATGGCAAAA	TTATTAAAGG	TATGACTGCC	7380
5	ATCGACGAAT	CTATGTTAAC	AGGTGAATCT	ATCCCTGTTG	AGAAGAATGT	TGATGATACT	7440
	GTAATTGGTT	CAACGATGAA	CAAAAACGGT	ACTATTACTA	TGACAGCAAC	AAAAGTTGGC	7500
10	GGGGACACTG	CGTTGGCAAA	TATTATTAAA	GTTGTCGAAG	AAGCTCAAAG	TTCTAAAGCG	7560
	CCGATTCAAC	GATTGGCAGA	TATTATTTCT	GGTTATTTCG	TTCCTATCGT	TGTTGGTATC	7620
	GCACTATTAA	CATTTATCGT	GTGGATTACT	TTAGTTACAC	CAGGTACATT	TGAACCTGCA	7680
15	CTTGTTGCGA	GTATTTCCGT	TCTCGTCATT	GCTTGTCCAT	GCGCATTGGG	ACTTGCTACA	7740
	CCAACTTCTA	TTATGGTAGG	TACTGGTCGC	GCTGCTGaAA	ATGGTATTTT	ATTTAAAGGT	7800
	GGCGAGTTTG	TTGAACGCAC	ACATCAAATT	GATACCATCG	TTTTAGATAA	GACGGGTACC	7860
20	ATTACAAATG	GTCGTCCAGT	CGTGACAGAT	TATCATGGTG	ACAATCAAAC	GCTACAACTA	7920
	CTTGCTACTG	CTGAAAAAGA	TTCTGAACAC	CCATTGGCAG	AAGCCATTGT	CAATTATGCA	7980
25	AAAGAAAAGC	AATTAATATT	AACTGAGACA	ACAACATTTA	AAGCAGTACC	TGGCCATGGT	8040
	ATTGAAGCAA	CGATTGATCA	TCACCATATA	TTGGTTGGTA	ACCGTAAATT	AATGGCTGAC	8100
	AATGATATTA	GCTTGCCTAA	GCATATTTCT	GATGATTTAA	CACATTATGA	ACGAGATGGT	8160
30	AAAACTGCTA	TGCTCATTGC	TGTTAATTAT	TCATTAACTG	GTATCATCGC	AGTGGCAGAT	8220
	ACTGTCAAAG	ATCATGCCAA	AGATGCTATA	AAACAATTGC	ATGATATGGG	CATTGAAGTT	8280
	GCCATGTTAA	CTGGCGATAA	TAAAAACACT	GCTCAAGCCA	TTGCAAAACA	AGTAGGCATA	8340
35	GATACTGTTA	TTGCAGATAT	TTTACCAGAA	GAAAAAGCTG	CACAAATTGC	GAAACTACAG	8400
	CAACAAGGTA	AGAAGGTTGC	GATGGTTGGT	GACGGTGTAA	ATGATGCACC	TGCATTAGTT	8460
	AAAGCTGATA	TCGGTATCGC	CATTGGTACA	GGTACAGAAG	TTGCCATTGA	AGCAGCTGAT	8520
40	ATTACTATTC	TTGGTGGCGA	CTTGATGCTT	ATTCCTAAAG	CCATTTATGC	AAGTAAAGCA	8580
	ACCATTCGTA	ATATTCGTCA	AAATCTATTT	TGGGCATTCG	GCTATAATAT	TGCCGGTATC	8640
15	CCTATAGCTG	CATTGGGCTT	ACTTGCGCCA	TGGGTTGCTG	GTGCTGCAAT	GGCACTAAGT	8700
	TCAGTAAGTG	TTGTCACAAA	CGCACTTAGA	TTGAAAAAGA	TGCGATTAGA	ACCACGCCGT	8760
	AAAGATGCCT	AGATTCCTTA	ATAATGAAGG	ATTCGTTGGT	GATTCTGAGA	TAGGCTAGTG	8820
50	ATTGGCTCTA	TAATGTCGCG	GTTTAyaGTt	GGATCTTCGC	TCCAACTGCA	TATATAGTNA	8880
	CACTTTTCGC	TTGGCGAATT	AGTGTATCTT	ACCTAATAGC	TCCGCCTATT	AGGTTCCATC	8940
	ATTATTATAA	ATAATAAGTA	CACTACGGtT	TACAGTTGGA	TCTTCGCTCC	AACTGCATAA	9000

	GAAATTTTAA	ATGTTGAAGG	TATGAGCTGT	GGTCACTGCA	AAAGTGCTGT	TGAATCTGCA	9120
	TTAAATAATA	TTGACGGTGT	CACTTCAGCT	GACGTTAACC	TTGAAAATGG	TCAAGTAAGT	9180
5	GTTCAATATG	ATGACAGTAA	AGTTGCTGTA	TCTCAAATGA	AAGACGCAAT	TGAAGATCAA	9240
	GGTTACGATG	TCGTTTAATT	AGGCAATATT	CAACGTCATC	AACACCAAAT	TAAAAAATCG	9300
10	AACTGATGAG	AATCCCAACA	ATCCAAATTA	TCTCATCAGT	TCGATTTTTA	ATTTACTCGT	9360
	AACCTAGTAT	CTCCAGTCTG	CAATACATCT	AATGTTGCAT	CTAATGCATC	GACAATTAGA	9420
	TTTTTAACTG	CAGCTTCAGT	ATAAAACGCA	ATATGTGGTG	TTAATATGAC	ATCTTCCCTG	9480
15	TCAATCAACG	ATTCTAACAA	TGGATCGTTC	AGTGTTTTGC	CCCTTTGATC	ACTTGGGAAA	9540
	AGTTTGCGTT	CAAATTCATA	CGTATCAAGT	GCTGCACCTT	TAATCACACC	ATTGTCTAAT	9600
	GCGTCTAATA	ACGCCTTAGT	ATCTACTAAA	GAACCTCTCG	CACAATTGAC	AAATACTGCG	9660
20	CCCTTTTTAA	AATGTTTAAA	TAATTCAGCA	TTAAATAGAT	AATGATTATA	TTTCGTTGCA	9720
	GGTACATGTA	ATGTCACGAT	ATCAGCACCT	TCAACCGCTT	CCTCAATCGT	ATCTTTGTAA	9780
n <i>E</i>	TCGACATACG	TTGCAATTTT	AGCATTAGGA	AACGGtCGTA	TGCGACCACA	TCACTTTGAT	9840
25	AACCATTGGC	AAATATATCG	GCTACTACAC	GGCCAATTCG	ACCTGTACCA	ATAACAGCTA	9900
	CTTTTAAATC	TTTAATGGAT	TTCGATAAAA	TAGTAGGTTC	CCATCTAAAA	TCATGCTCCC	9960
30	GCACTTTCGT	TTGAATTTGA	TTAAAATGAC	GAACCACATT	AATAGCCTGG	TTCACAGCAA	10020
	ACTCCGCAAT	TGAATTCGGA	GAGTATGACG	GCACATTTGA	CACAATAAAG	TTATACTTGT	10080
	TTGCTAACTC	CAAATCATAT	GTATCAAATC	CAGCACTACG	TTGTGCGATT	TGTTTAATAC	10140
35	CTAGTTCATT	TAATCGTTTA	TAAACATGCT	CTGATAATGG	TATTTGTTGT	GATAGCGATA	10200
	AGCCATCATA	ACCAGCGACA	CCTTCAACAT	TGTCATCAGT	TAATGCTTCT	TTAGTAATAT	10260
	CTACCTCAAC	ATGATGTTTC	TCTGCCCACG	CCTTGATATA	AGGCATATCT	TCATCACGTA	10320
10	CACTCATGAT	TTTAATTTTT	GTCATTTTAA	CATCACCCTT	AACTTTATTA	TTCATATAAA	10380
	TATGCTAGTT	CTGTTAATCT	TATTGCAGCT	TCGTCTAATT	TCTGGTCATC	TAACGCCAAT	10440
15	GAAATTCTCA	CATAACGATT	ACCATTCTCT	CCAAATGGTT	TCCCTGGAGC	AACAAGTATT	10500
	GACTTCTCTT	GCACTAAAAA	TTGCTCAAAT	TGCTCGCTGT	CATAACCAGG	CGGTGTTTCC	10560
	AACCATACAT	ATATGCCACC	TTTAGCATGA	ACAAATGGCA	AATCAGCTTT	TGCAAGCATG	10620
50	GCTTCGAATC	GGTCACGACG	TGTTTTAAAT	ACATTGCTTT	GTTCTTCTAA	AAAATCATCA	10680
	TAATGATTCA	AAGCATATAT	TGCGGCATCT	TGTAATGCAC	CAAACATCCC	AGCATTTGTG	10740
	TGCGTTTGGT	ACTITITITCAA	AGCTTGAATC	ልጥልጥርግግግግል ጥ	TACCAACTYCC	AAAACCCACT	10800

	CCATTTTCCG	AAGCAAGTAT	ACTAGGATTT	TTAGCGTCGA	AACCGAAAGC	ACCATAAGCA	10920
	AAATCATGCA	CGATTTTAGT	GTCTGTACCT	TTAAATTTAG	CTATCGCTTC	ATCAAAAACT	10980
5	TCTTTCGTAG	CTGTCGATCC	AGTTGGATTA	TTTGGATACG	TTAAATAAAT	GAGTTTTGTT	11040
	TTATCTATTA	TTTGTGAATC	AACTTTGGAC	CAATCTGGCA	AATAATGTGG	CGGTTCTAAA	11100
10	TTAAGCGGGA	CTGGCTTGCC	ATCAGCTAAA	AGTACACCTG	СТАААТААТС	CGTGTAGCCT	11160
	GGATCAGGTA	GTAATACATA	GTCTCCTGGA	TTGATAACAC	ATGTTGGTAC	TGCCACTAAT	11220
	CCATTTTTTG	TACCATATAA	AATGCATACT	TCATCTTCTT	TATCTAACGT	CACATTATAT	11280
15	TGTCTTTGAT	AAAAATCTAC	AATAGCTTGC	TTGAACGCTT	CTTTACCATG	AAAAGCACCA	11340
	TATTTTTGAT	TTTCAGGAAT	AGTTAGTGCT	TTTTGAAAAT	GATCAATAAT	ACCITGTGGC	11400
	GTGGGCCCAT	CAGGGATTCC	AACTGCCATA	TTAATTAATG	GCAATGGTCC	ATGTTCGATT	11460
20	TTACGTCCCA	TCGTTTTCCC	GAAATAACTA	TCAGGGATAT	TTGCTAATTT	GTTAGAGATC	11520
	ATCAAATTCC	TCCTCTATCA	TTAAACATAG	CCTGGGCGAC	TATCATAATC	CTAACAACTT	11580
25	GTATCACTCT	CATTTAGATG	GTTACAATGA	CATCGCCATT	CACCGTTATG	TTCAACAGAA	11640
25	CTTATGACAC	ACGTTGTATT	GAATGAATTT	ATTTTCATTT	TAGGTAGGTA	TAATATTATT	11700
	GTCAATATTA	GGAATTTTCA	GATTAATATG	CACTCAATCG	TTATGATTTA	ACTGTCATGC	11760
30	ATATCCGCAT	GCGCAACCAG	TTAGATATGC	TTATATAAAG	TATAACGCCC	ATCAAGGTAC	11820
	GTATTCAAAC	GTGAACCTTA	ACAGGCGTCA	TTCATTGTTA	AATAAAACTT	CTTAAGCACA	11880
	TACTTATTTC	ACTATGCCTT	TTACGTTCCC	CTTATACTTT	TCTCACATCT	TTCTCTTAGA	11940
35	CTACTCCCTT	ATACGCCCCG	CTCAATATCT	TTAATCATTT	CATCTACAGT	TATTTTCGCA	12000
	CTCGTTAAGA	CAATAGGAAC	GCCTGCACCT	GGATGCGTAC	TTGCACCTGC	AAATATAAA	12060
	TCTTTATAAT	CTCGCGATAC	ATTTTGTGGA	CGATAATAAT	TACTTTGCGC	TAAAGTTGGC	12120
40	ATTAAACCGA	ATGCCGAACC	AAATTTCGCA	TGATACGTTT	GCTCAAAATC	ATTTGGCGTA	12180
	AAGATTGTTT	CTGAAACAAT	ATGCGATTTT	ATATCTTCAA	ATACTTCAAT	CGTTGCTAAT	12240
45	TTACGATAAA	TAATTTCCTT	TATTTGTTGC	GTCAAAGCTT	CATCTGACCA	ATCGATTCCG	12300
	CTACCTGTTT	TAAGTTCCGG	CGTCGGCATT	AGCACATAAA	TACCAGTTTT	GCCTTCTGGC	12360
	GCAAGTGATT	TATCAGCGAC	CGCTGGTACA	TACACATAAA	TAGAAGGATC	ATATGATAAA	12420
50	CGTCCCTCAA	ATATTTCTTC	AATATTGCCT	CTAAAGTCAT	CTGAAAAAAT	AACATTATGA	12480
	AGTCTCACTT	GATCTGTCAC	ATCAATATCT	ATACCGATAT	ACATTAAAAA	TGCTGAACAA	12540
	GAGTAATCTA	AGTCTGCAAT	TTTATGTGGT	GGATACTTTT	TAATAGGTGC	AAAATCTGGC	12600

TCAATTTCAG CATTTAGTTC AATATTAACG CCTAAGTCTT TATTTAATTG CGCTAGCCCT TGAGCCATGC CATACATACC GCCTTTAATA AAATGCACAC CAAACATCAT TTCAATCATA GGAATAATTG AATATAGTGA CGGGCCTCGT TTTGGATCAA TTCCTATGTA TAACGTTTGA AACGCTAAAA GCTTTTGTAT CTTTTCGTTA TCAATATAAT GTTCAATTAG CTGATCTGCA TGATTTAACG TTTTTAACTT AGCACCTTGC ACAAGTGACG TCATATTATA AAAGTCACTC GGTTTGCGAT ACGTTCTTC TAAGAAATAG CGACCTGCAA TTTCATATTT TTTATAAACA TCCGTTAAAA AGGACATAAA ACCATGCGTT GAACCAGGTT CTATACTTTC TAGCATTTGC TGTAATTCAG CTAAATCTGT AGGCACCGTT ATACGATCAT CGTGGTCAAA ATACACATCG TAAATATAAC GTAATTGTCT CAATTCAATA TAATCTTCAT AATTTTACC ACACGCTGTA AAAACACTCT TAATAGACACC TGGCATCATG ACAATTGTGG GACCCATATC AAATTTCCG ACTTCATGAC CTTGAGAAGC AATACGGCCG CCTACATTAT TATTTTTTC AAATACACAC ACTTCATGAC CTTGAGAAGC AATACGGCCG CCTACATTAT TATTTTTTCA TAATATCGTC ACTTCATGAC TCTCCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACACC TTGAAAAACCT TTGTATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACACC TTGAAAAACCT TTGTACCTT 35 CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATAATC CGTTCATTGT CAAAATCTT ACCGACATCT CTTAATATAT TAATGGGGCT CTCTAGGGCC GACCTG (2) ĨNFORMATION FOR SEQ ID NO: 32:		ATGTCACCAT	TCACTTTTAT	CGCATCGGCC	CGTTTGAATT	TAGGATCAAT	AATAATTTGC	12720
TGAGCCATGC CATACATACC GCCTTTAATA AAATGCACAC CAAACATCAT TTCAATCATA GGAATAATTG AATATAGTGA CGGGCCTCGT TTTGGATCAA TTCCTATGTA TAACGTTTGA AACGCTAAAA GCTTTGTAT CTTTTCGTTA TCAATATAAT GTTCAATTAG CTGATCTGCA TGATTTAACG TTTTTAACTT AGCACCTTGC ACAAGTGACG TCATATTATA AAAGTCACTC GGTTTGCGAT ACGTTCTTC TAAGAAATAG CGACGTGCAA TTTCATATTT TTTATAAACA 15 TCCGTTAAAA AGGACATAAA ACCATGCGTT GAACCAGGTT CTATACTTTC TAGCATTTGC TGTAATTCAG CTAAATCTGT AGGCACCGTT ATACGATCAT CGTGGTCAAA ATACACATCG TAAATATAAC GTAATTGTCT CAATTCAATA TAATCTTCAT AATTTTTACC ACACGCTGTA 20 AAAACATCTT TATAAACATC TGGCATCATG ACAATTGTGG GACCCATATC AAATGTAAAG CCGTCTTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTTC AAATATCGTC ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA 25 ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG 30 CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT 35 CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG		TCAATTTCAG	CATTTAGTTC	AATATTAACG	CCTAAGTCTT	TATTTAATTG	CGCTAGCCCT	12780
AACGCTAAAA GCTTTTGTAT CTTTTCGTTA TCAATATAAT GTTCAATTAG CTGATCTGCA TGATTTAACG TTTTTAACTT AGCACCTTGC ACAAGTGACG TCATATTATA AAAGTCACTC GGTTTGCGAT ACGTTCTTC TAAGAAATAG CGACCTGCAA TTTCATATTT TTTATAAACA 15 TCCGTTAAAA AGGACATAAA ACCATGCGTT GAACCAGGTT CTATACTTTC TAGCATTTGC TGTAATTCAG CTAAATCTGT AGGCACCGTT ATACGATCAT CGTGGTCAAA ATACACATCG TAAATATAAC GTAATTGTCT CAATTCAATA TAATCTTCAT AATTTTTACC ACACGCTGTA 20 AAAACATCTT TATAAACATC TGGCATCATG ACAATTGTGG GACCCATATC AAATGTAAAG CCGTCTTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTTC AAATATCGTC ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG 30 CCTGTCCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT 35 CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATAC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG	5	TGAGCCATGC	CATACATACC	GCCTTTAATA	AAATGCACAC	CAAACATCAT	TTCAATCATA	12840
TGATTTAACG TITTTAACTT AGCACCTTGC ACAAGTGACG TCATATTATA AAAGTCACTC GGTTTGCGAT ACGTTCTTC TAAGAAATAG CGACGTGCAA TITCATATTT TITATAAACA 15 TCCGTTAAAA AGGACATAAA ACCATGCGTT GAACCAGGTT CTATACTTTC TAGCATTTGC TGTAATTCAG CTAAATCTGT AGGCACCGTT ATACGATCAT CGTGGTCAAA ATACACATCG TAAATATAAC GTAATTGTCT CAATTCAATA TAATCTTCAT AATTTTTACC ACACGCTGTA 20 AAAACATCTT TATAAACATC TGGCATCATG ACAATTGTGG GACCCATATC AAATTATACG CCGTCTTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTC AAATTACGTC ACTTCATGAC CTTGAGAAGC AATACGGCCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGGTTG GTGCTTCAAT ACTACATACT TTGATTTGAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTACATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT 25 CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATTATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG		GGAATAATTG	AATATAGTGA	CGGGCCTCGT	TTTGGATCAA	TTCCTATGTA	TAACGTTTGA	12900
GGTTTGCGAT ACGTTCTTC TAAGAAATAG CGACGTGCAA TTTCATATTT TTTATAAACA TCCGTTAAAA AGGACATAAA ACCATGCGTT GAACCAGGTT CTATACTTTC TAGCATTTGC TGTAATTCAG CTAAATCTGT AGGCACCGTT ATACGATCAT CGTGGTCAAA ATACACATCG TAAAATATAAC GTAATTGTCT CAATTCAATA TAATCTTCAT AATTTTTACC ACACGCTGTA AAAACATCTT TATAAACATC TGGCATCATG ACAATTGTGG GACCCATATC AAATGTAAAG CCGTCTTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTC AAATATCGTC ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG	10	AACGCTAAAA	GCTTTTGTAT	CTTTTCGTTA	TCAATATAAT	GTTCAATTAG	CTGATCTGCA	12960
TCCGTTAAAA AGGACATAAA ACCATGCGTT GAACCAGGTT CTATACTTTC TAGCATTTGC TGTAATTCAG CTAAATCTGT AGGCACCGTT ATACGATCAT CGTGGTCAAA ATACACATCG TAAATATAAC GTAATTGTCT CAATTCAATA TAATCTTCAT AATTTTTACC ACACGCTGTA AAAACATCTT TATAAACATC TGGCATCATG ACAATTGTGG GACCCATATC AAATGTAAAG CCGTCTTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTTC AAATATCGTC ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG		TGATTTAACG	TTTTTAACTT	AGCACCTTGC	ACAAGTGACG	TCATATTATA	AAAGTCACTC	13020
TGTAATTCAG CTAAATCTGT AGGCACCGTT ATACGATCAT CGTGGTCAAA ATACACATCG TAAATATAAC GTAATTGTCT CAATTCAATA TAATCTTCAT AATTTTTACC ACACGCTGTA AAAACATCTT TATAAACATC TGGCATCATG ACAATTGTGG GACCCATATC AAATGTAAAG CCGTCTTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTC AAAATATCGTC ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAAGGGATC CTCTAGAGTC GACCTG		GGTTTGCGAT	ACGTTCTTTC	TAAGAAATAG	CGACGTGCAA	TTTCATATTT	TTTATAAACA	13080
TAAATATAAC GTAATTGTCT CAATTCAATA TAATCTTCAT AATTTTTACC ACACGCTGTA AAAACATCTT TATAAACATC TGGCATCATG ACAATTGTGG GACCCATATC AAATGTAAAG CCGTCTTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTC AAATATCGTC ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACCTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG	15	TCCGTTAAAA	AGGACATAAA	ACCATGCGTT	GAACCAGGTT	CTATACTTTC	TAGCATTTGC	13140
20 AAAACATCTT TATAAACATC TGGCATCATG ACAATTGTGG GACCCATATC AAATGTAAAG CCGTCTTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTC AAATATCGTC ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAANGGGATC CTCTAGAGTC GACCTG		TGTAATTCAG	CTAAATCTGT	AGGCACCGTT	ATACGATCAT	CGTGGTCAAA	ATACACATCG	13200
CCGTCTTCT TATATACATC TGGCATCATG ACAATGTGG GACCCATATC AAATGTAAAG CCGTCTTCT TTAATTGATT CATACGCCCG CCTACATTAT TATTTTTTC AAATATCGTC ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG		TAAATATAAC	GTAATTGTCT	CAATTCAATA	TAATCTTCAT	AATTTTTACC	ACACGCTGTA	13260
ACTTCATGAC CTTGAGAAGC AATACGGGCT GCCGCTGCTA ATCCTGTGAC ACCTGCACCA ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG	20	AAAACATCTT	TATAAACATC	TGGCATCATG	ACAATTGTGG	GACCCATATC	AAATGTAAAG	13320
ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG		CCGTCTTTCT	TTAATTGATT	CATACGCCCG	CCTACATTAT	TATTTTTTC	AAATATCGTC	13380
ATTACTGCAA TCTTCATTAT TCAACCACCT ATATTCTATG ATATTACTA TTTATTTCAT GAAACAACTT TGCCTTTTC CTCTTATCCA CAAAAACACG TTCATGTAAT GTATAGTTAG CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG	25	ACTTCATGAC	CTTGAGAAGC	AATACGGGCT	GCCGCTGCTA	ATCCTGTGAC	ACCTGCACCA	13440
20 CCTGTCTCAC TTCGTCCAGT ATTTCAATAT ATATACGTGC TGCTAATTCT ATGATTGGTT GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT 25 CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAnGGGATC CTCTAGAGTC GACCTG	23	ATTACTGCAA	TCTTCATTAT	TCAACCACCT	ATATTCTATG	ATATTTACTA	TTTATTTCAT	13500
GTGCTTCAAT ACTAAATACT TTGATTTGAT CCATAACATC TTGAAAATCT TTTTCTGCGA TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAAGGGATC CTCTAGAGTC GACCTG		GAAACAACTT	TGCCTTTTTC	CTCTTATCCA	CAAAAACACG	TTCATGTAAT	GTATAGTTAG	13560
TAGCTGCATA ATATTCCCAT AAGTCAATAT AATGATTATT AACACCATTT TGGTACACTT CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAAnGGGATC CTCTAGAGTC GACCTG	30	CCTGTCTCAC	TTCGTCCAGT	ATTTCAATAT	ATATACGTGC	TGCTAATTCT	ATGATTGGTT	13620
CAGCAATATC AACTTCATAT TGCTTTAATC GTTGCTTACT AAAATATATC CGTTCATTGT CAAAATCTTC ACCGACATCT CTTAATATAT TAANGGGATC CTCTAGAGTC GACCTG		GTGCTTCAAT	ACTAAATACT	TTGATTTGAT	CCATAACATC	TTGAAAATCT	TTTTCTGCGA	13680
CAAAATCTTC ACCGACATCT CTTAATATAT TAAnGGGATC CTCTAGAGTC GACCTG		TAGCTGCATA	ATATTCCCAT	AAGTCAATAT	AATGATTATT	AACACCATTT	TGGTACACTT	13740
-	35	CAGCAATATC	AACTTCATAT	TGCTTTAATC	GTTGCTTACT	AAAATATATC	CGTTCATTGT	13800
(2) INFORMATION FOR SEQ ID NO: 32:		CAAAATCTTC	ACCGACATCT	CTTAATATAT	TAAnGGGATC	CTCTAGAGTC	GACCTG	13856
46	40	(2) INFORMA	ATION FOR SE	EQ ID NO: 32	2:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10088 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

ATATATAAAT ATAGATTAAG TATATAGATT AATCAACTTT TTTGGAAGAG CAAATCACGC 60 AATCAACAAA TAATATAAGA AGTTTTTGCG ATAGTTTTAA AATAGCTGTA ATAGAATACT 120 AAATGTGACA AACTTAGAAC TAATATCAAG TGTTGATGTT TTGAATATAA AAATGCTAAT 180

	ATAATTGGTT	AATATATGAG	TAATTAGAAA	ATAGACAAAG	GATGACGATT	TATGTATATC	300
	AATATGAAAG	ATTATGGGTT	AACAGGCATA	AACAAAACTA	AAGATACTCG	AGCAATACAA	360
5	CGTGCGTTAA	ATCGTGGAAG	ATGTAAACCA	ACGACAGTTT	ATATACCGAA	AGGGACGTAT	420
	GATATTTGCA	AACCATTAAC	GATATATGGC	AATACAACAC	TTTTGTTAGA	TAATGAAACT	480
10	ATTTTACGCC	GATGTCATTC	TGGTCCTTTA	TTAAAAAATG	GTCGTCGCTT	TGGTTTTTaT	540
,,	CGTGGTTATA	ATGGACACAG	TCATATTCAT	ATTAAAGGCG	GCAAGTTTGA	TATGAATGGT	600
	GTATCGTATC	CTTATAACAA	TACAGCTATG	TGCATTGGGC	ATGCTGAAGA	TATTCAATTA	660
15	ATAGGTGTGA	CCATTAAGAA	TGTAGTGAGT	GGTCATGCAA	TTGATGCTTG	TGGGATTAAC	720
	GGACTCTATA	TTAAAAGCTG	TTCATTTGAA	GGATTCATAG	ACTATAGTGG	CGAACCTTTT	780
	ATTCTGAAGC	AATACAATTA	GACATTCAAG	TACCTGGTGC	TTTTCCAAAA	TTCGGAACGA	840
20	CAGATGGTAC	GATAACGAAA	AATGTCATTA	TCGAAGATTG	TTATTTTGGA	CCTTCAGAAT	900
	TGCCCGAAAT	GGGAAGTTGG	AATCGTGCTA	TTGGCTCACA	TGCAAGTAGA	CATAATCGAT	960
	ACTATGAGAA	TATTCATATT	AGAAATAATA	TATTTGAAGA	TATACAAGGT	TATGCATTAA	1020
25	CTCCCTTGaA	GTATAAAGAT	GCTTTCATTA	TTAATAATAA	GTTTATTAAC	TGTGaGGGTG	1080
	GCATTAGATA	TTTAGGAGTT	AGAGATGGTA	AAAATGCAGC	AGATGTGaTG	ACAGGaAAAG	1140
30	ACTTAGGTTC	CCAAGCAGGC	ATAAATATGA	ATATAATTGG	AAATGAATTT	AAAGGATCAA	1200
	TGTCTAAAGA	TGCGATACAT	GTACGTAATT	ATAATAATGT	TAAACATAAA	GATGTATTAA	1260
	TCGTTGGGAA	TACATTCAAT	AATTCGACTC	AATCAATTCA	TTTAGAAGAT	ATTGATACAG	1320
35	TGTTTTTAAG	TCCTGTTGAA	GCGGGTATTC	AAGTTACTAC	AATCAATGTA	GATGAAATAA	1380
	AAAAGTAAAA	AGTTTCGCAT	GACATTAGGA	TTAAGAATAG	TAGATAATTT	TTGAAAGCGC	1440
	ATTÉATAAAA	CGGTATAAAT	ATGCTATAAT	AAACCCAATT	ATCTGATAAA	AGGGGTATTT	1500
40	TGACGGTAAT	GATAATACAA	GATAGACAAC	TTTCTATACT	CTAATATAGT	GAGTTGAAGT	1560
	AGCTTGTCAT	AATCATCATG	AGGGGGAAAT	TTATGGCTTA	TTTCAATCAA	CATCAATCAA	1620
45	TGATATCGAA	AAGGTATTTA	ACATTCTTTT	CAAAATCAAA	GAAAAAGAAA	CCGTTTAGTG	1680
40	CGGGACAACT	TATTGGACTA	ATATTAGGTC	CATTACTTTT	CCTATTAACA	TTATTATTCT	1740
	TTCATCCACA	AGACTTACCT	TGGAAAGGCG	TCTATGTTTT	AGCGATTACT	TTATGGATTG	1800
50	CGACTTGGTG	GATTACTGAA	GCAATTCCTA	TTGCAGCAAC	GAGCTTATTA	CCAATTGTGT	1860
	TATTACCATT	AGGTCATATA	CTTACACCAG	AACAAGTATC	ATCCGAATAT	GGCAATGATA	1920
	TTATCTTTTT	GTTTTTAGGT	GGATTTATTT	TGGCAATTGC	AATGGAAAGA	TGGAATTTAC	1980

	TTGGATTCAT	GGTGGCAACA	GGATTCTTAT	CTATGTTTGT	ATCGAACACT	GCAGCTGTAA	2100
	TGATTATGAT	TCCGATTGGT	TTAGCAATTA	TTAAGGAAGC	ACATGATTTA	CAAGAAGCCA	2160
5	ATACGAATCA	AACAAGTATT	CAAAAGTTTG	AAAAATCTCT	AGTTTTAGCA	ATTGGCTATG	2220
	CAGGTACGAT	TGGTGGCTTG	GGTACATTAA	TCGGAACCCC	GCCATTAATT	ATTTTAAAAG	2280
10	GACAATACAT	GCAACATTTT	GGACATGAAA	TTAGTTTTGC	TAAATGGATG	ATTGTAGGGA	2340
10	TTCCAACGGT	CATTGTTTTG	TTAGGTATTA	CTTGGCTCTA	TTTAAGATAT	GTTGCGTTTA	2400
	GACATGATTT	GAAATATTTa	CCTGGTGGTC	AGACGTTAAT	TAAACAAAAG	TTAGACGAGC	2460
15	TTGGCAAAAT	GAAGTATGAA	GAAAAGGTAG	TACAAACTAT	CTTTGTACTT	GCTAGCTTAT	2520
	TATGGATTAC	AAGAGAGTTT	CTTCTGAAAA	AATGGGAAGT	TACGTCATCT	GTTGCAGATG	2580
	GTACGATTGC	TATTTTTATA	TCAATATTAT	TATTTATTAT	TCCAGCTAAA	AATACTGAAA	2640
20	AACATCGCCG	TATCATTGAC	TGGGAAGTTG	CAAAAGAGCT	CCCTTGGGGT	GTATTAATTT	2700
	TATTTGGTGG	CGGTTTAGCA	TTAGCGAAAG	GTATTTCTGA	AAGTGGTTTA	GCAAAATGGT	2760
	TAGGCGAACA	GTTGAAATCA	TTAAATGGTG	TTAGTCCGAT	TCTTATTGTA	ATTGTCATAA	2820
25	CAATCTTTGT	CTTATTTTTA	ACTGAAGTGA	CATCTAATAC	TGCAACTGCA	ACGATGATTT	2880
	TACCGATTTT	AGCAACGTTG	TCTGTTGCTG	TTGGAGTGCA	TCCATTACTA	CTTATGGCAC	2940
30	CTGCAGCTAT	GGCGGCTAAC	TGTGCATACA	TGTTACCAGT	AGGGACACCA	CCGAATGCAA	3000
	TTATCTTTGG	TTCTGGTAAA	ATATCTATCA	AACAAATGGC	ATCAGTAGGA	TTCTGGGTAA	3060
	ACTTAATCAG	TGCAATAATT	ATTATTTTAG	TCGTGTATTA	TGTAATGCCT	ATAGTTTTAG	3120
35	GTATTGATAT	AAATCAACCA	CTGCCATTGA	AATAGTAATT	GCAGATTAGA	ACGAAAAATA	3180
TATGGATTAC AAGAGAGTTT CTTCTGAAAA AATGGGAAGT TACGTCATCT C GTACGATTGC TATTTTATA TCAATATTAT TATTTATTAT TCCAGCTAAA A 20 AACATCGCCG TATCATTGAC TGGGAAGTTG CAAAAGAGCT CCCTTGGGGT G TATTTGGTGG CGGTTTAGCA TTAGCGAAAG GTATTTCTGA AAGTGGTTTA G TAGGCGAACA GTTGAAATCA TTAAATGGTG TTAGTCCGAT TCTTATTGTA A 25 CAATCTTTGT CTTATTTTTA ACTGAAGTGA CATCTAATAC TGCAACTGCA A TACCGATTTT AGCAACGTTG TCTGTTGCTG TTGGAGTGCA TCCATTACTA C CTGCAGCTAT GGCGGCTAAC TGTGCATACA TGTTACCAGT AGGGACACCA C TTATCTTTGG TTCTGGTAAA ATATCTATCA AACAAATGGC ATCAGTAGGA T ACTTAATCAG TGCAATAATT ATTATTTTAG TCGTGTATTA TGTAATGCCT A	CAGCATCGTG	3240					
	TAASAACAAT	ACAAACAAAA	GAAAGTCAAC	CAAGGATGGA	TTCCTATTTT	AATCCTTGGT	3300
40	TGACTCTTTA	TTTTATTTAA	ATTGTAGAAC	CTAGAAAATA	AAGTTTAATT	AAAAGCACCA	3360
	ATCATTTCTA	CTTTGAAATC	TAAGGTTTCT	AAAATAGCAA	TGACTTTCTT	TATATCGGTT	3420
45	GTAATTGCAG	AATCAGCCTG	AACGAAAAAT	CGATACATAC	CTAATTGTGT	TTTTAAAGGA	3480
	CGAGACTCAA	TCCAGGATAA	ATTAATATTA	AACAAAGCAA	ATGTATTAAG	CACACTTGCT	3540
	AACAACCCAG	GTTTATCATG	CATTGGTGTA	ATTAAAAACA	TCAATGATGT	CGCATTTTGA	3600
50	TCAAATTGCT	GCTGATTTTT	TATAACTAAA	AAACGTGTCA	CGTTATGTGG	ATAGTCTTCA	3660
	ATATGTGTAT	CAATAGGTGT	AAAACCATAA	GCTTCGCCAC	TACCTAAAGG	TGCAATTGCT	3720
	GCAACGCCAT	TTTCAATTTT	AGTCAAACTT	TGAATTGTAC	TGTCGACATA	ATCATAGTCA	3780

	TTTTTAATAT	CAGAAATGGA	ATCTGTTCCA	TTACCATATA	ATGCAAAGTT	AATATCTAAA	3900
_	CGTATTTCAC	CGTGTGCAAA	GACATCTTGC	TGTGCAAGTG	CATCTGCCAC	AATGTTGATT	3960
5	GTTCCTTCTA	TAGAATTTTC	AATAGGGACA	ACACCAATCG	ATGTGTCATC	ATCTGCAACT	4020
	GCCTTGATGA	CTTCAAATAA	ATTTGACTTT	GGTTGAAAAG	TTGCTTCATT	TTCAGAAAAA	4080
10	TACTGACGAC	AAGCCAAATA	TGAAAATGTA	CCTTTAGGGC	СТАААТААТА	TAATTGCATA	4140
	TGCTACACCT	CTACTAACTT	AATGATGGAA	AGGGCACTGG	TTAGCATTTG	ATTCTTTCTT	4200
	TTTATAGAAA	AAGTTTGGAT	CTTTTACTGT	ATTGTCATAT	CCGTGATGAT	AATTTGACGT	4260
15	CAATGTTGGA	GATAATGGCG	GTGCTAGCCA	AGACCATTTT	CCGGTAACTT	GACGACCTTG	4320
	TTGTGCTTCG	TTACGTTCGA	ATAGTTCGAA	TTGCTTTGCA	GCGGTCAAAT	GATCGACAAT	4380
	TGATACGCCT	TCTTTTTTAA	AGGAATGATA	CACAGCATAG	TTCAATTCAA	CAAGTGCTCG	4440
20	ATCTTTATTA	AATGAATTAT	TTTTAAGTGT	ATCAAATTCA	AACGCATCTG	CAACTTTTTC	4500
	TAGTAAATTG	TAACGGTAAT	CATCAATAAA	GTTACGTACG	CCAATTTCAG	TTACCATATA	4560
25	CCAACCGTTA	AAGGGTGCAG	TTGGATATAC	AATGCCACCG	ATTTTTAAGT	CCATATTGGA	4620
	AATGATAGGG	ACTGCATACC	ATTTTAAGTT	CAATTTTCTT	AATTTTGGAT	AATGATTATG	4680
	TTCAATAGGT	ACTTCTTTAA	TTAATGAAGT	AGGATATTCG	TAAAATTTAA	CTGACTCATT	4740
30	AGGTAATTGG	TAAATCAGTG	GTAACACGTC	AAAATTAGTA	CCTTTTCCTT	TCCAACCTAA	4800
	GTGATTTGCT	AAGCGTGTAA	CTTCTTTTTC	AGCAGGATCA	CCACAATTGT	CATAGCCAGC	4860
	ATAGCGAATT	AATTGATTGT	TGAAAATTTT	AGGTCCATCC	TTTGGAGCAT	ATATAGTAAT	4920
35	ATACGGCTTT	AATTTACCTT	CATTTGTAGC	CTGTGTAATA	TGATAAGTAA	TTGATGATAA	4980
	GAACGATGCT	TCGTCAGTAA	CATCTCTTGC	ATCAATGACA	TTTAACGAAT	CCCAAAATAA	5040
	ACGACCAATG	CAACGATTTG	AATTACGCCA	AGCCATTTTA	GCACCATAAA	TAAGTTCTTC	5100
40	TTCTGTATGT	GTATATGTCC	CAGTTTCTTT	TATTTCTAGT	TCAATGTCAT	GTAAACGTTT	5160
	ATTGATAATT	TGCGTTTCAT	AATGACACTC	TTTATACATG	TTTTCTATGA	AAGCTTGAGC	5220
4 5	CTCTTTAAAT	AACATTAACA	ACACCTCGCT	TTATATTATA	GTCTACATTA	TTAAAATACT	5280
	CTTAAAAATT	ATGTATATGT	CATTAAATTG	TTGGTTGATT	TTAATTAAAA	GTATGGAAAT	5340
	TAAGGGGCTC	TTATGTATAT	Aaaaaatga	ATTATGATAA	AATGTAAGAA	AATATTTAGG	5400
50	TCGATTGGAG	AGATACAAGT	GTACCAATTA	GAAGACGACA	GTTTAATGTT	ACATAATGAC	5460
	TTATATCAAA	TAAATATGGC	TGAAAGTTAT	TGGAATGATA	ATATTCATGA	AAAAATGGCT	5520
	GTATTTGATT	TGTATTTTAG	AAAAATGCCA	TTTAATAGTG	GCTATGCTGT	TTTTAATGGT	5580

	TTAAAGTCTA	TTGGCTACAA	GGATGATTTC	TTATCATATT	TAAAAGATTT	AAAATTCACA	5700
5	GGCAGCATCC	GTTCGATGCA	AGAAGGCGAA	TTATGCTTTG	GTAACGAACC	ATTGTTACGC	5760
3	GTAGAAGCAC	CATTGATTCA	AGCGCAATTA	ATAGAAACAA	TTTTATTAAA	CATTGTAAAT	5820
	TTCCATACAT	TAATTACAAC	AAAGGCTAGC	AGAATTCGTC	AAATTGCATC	AAATGATAAA	5880
10	TTAATGGAGT	TTGGTACACG	TCGTGCGCAA	GAAATTGATG	CAGCATTGTG	GGGCGCTAGA	5940
	GCTGCTTACA	TCGGGGGCTT	TGATTCTACA	AGTAATGTTA	GGGCGGGGAA	ATTATTTGGT	6000
	ATACCTGTGT	CTGGTACACA	TGCACATGCA	TTTGTCCAAA	CTTATGGAGA	CGAATATGTT	6060
15	GCCTTCAAAA	AATATGCTGA	AAGACATAAA	AATTGTGTGT	TCCTAGTAGA	TACATTCCAT	6120
	ACTTTAAAAT	CTGGCGTGCC	AAATGCAATA	AAAGTTGCAA	AAGAATTAGG	TGACAAAATT	6180
	AACTTTGTAG	GTATTCGATT	AGATTCTGGA	GATATCGCTT	ATTTATCTAA	AGAGGCAAGA	6240
20	CGTATGCTTG	ATGAAGCAGG	ATTTACTGAA	ACTAAAATTA	TCGCGTCTAA	TGATTTGGAT	6300
	GAAGAAACGA	TTACGAGTTT	GAAAGCACAA	GGTGCAAAAG	TAGATTCTTG	GGGCGTTGGT	6360
25	ACAAAGCTGA	TTACAGGATA	CGATCAACCA	GCATTAGGTG	CAGTATATAA	ACTTGTAGCT	6420
	ATTGAAAATG	AAGATGGTTC	ATATAGTGAT	CGTATTAAAT	TATCAAATAA	CGCTGAAAAG	6480
	GTTACGACGC	CAGGTAAGAA	AAATGTATAT	CGCATTATAA	ACAAGAAAAC	AGGTAAGGCA	6540
30	GAAGGCGATT	ATATTACTTT	GGAAAATGAA	AATCCATACG	ATGAACAACC	TTTAAAATTA	6600
	TTCCATCCAG	TGCATACTTA	TAAAATGAAA	TTTATAAAAT	CTTTCGAAGC	CATTGATTTG	6660
	CATCATAATA	TTTATGAAAA	TGGTAAATTA	GTATATCAAA	TGCCAACAGA	AGATGAATCA	6720
35	CGTGAATATT	TAGCACTAGG	ATTACAATCT	ATTTGGGATG	AAAATAAGCG	TTTCCTGAAT	6780
	CCACAAGAAT	ATCCAGTCGA	TITAAGCAAG	GCATGTTGGG	ATAATAAACA	TAAACGTATT	6840
40	TTTGAAGTTG	CGGAACACGT	TAAGGAGATG	GAAGAAGATA	ATGAGTAAAT	TACAAGACGT	6900
40	TATTGTACAA	GAAATGAAAG	TGAAAAAGCG	TATCGATAGT	GCTGAAGAAA	TTATGGAATT	6960
	AAAGCAATTT	ATAAAAAATT	ATGTACAATC	ACATTCATTT	ATAAAATCTT	TAGTGTTAGG	7020
45	TATTTCAGGA	GGACAGGATT	CTACATTAGT	TGGAAAACTA	GTACAAATGT	CTGTTAACGA	7080
	ATTACGTGAA	GAAGGCATTG	ATTGTACGTT	TATTGCAGTT	AAATTACCTT	ATGGAGTTCA	7140
	AAAAGATGCT	GATGAAGTTG	AGCAAGCTTT	GCGATTCATT	GAACCAGATG	AAATAGTAAC	7200
50	AGTCAATATT	AAGCCTGCAG	TTGATCAAAG	TGTGCAATCA	TTAAAAGAAG	CCGGTATTGT	7260
	TCTTACAGAT	TTCCAAAAAG	GAAATGAAAA	AGCGCGTGAA	CGTATGAAAG	TACAATTTTC	7320
	AATTGCTTCA	AACCGACAAG	GTATTGTAGT	AGGAACAGAT	CATTCAGCTG	AAAATATAAC	7380

	TAAACGACAA	GGTCGTCAAT	TATTAGCGTA	TCTTGGTGCG	CCAAAGGAAT	TATATGAAAA	7500
_	AACGCCAACT	GCTGATTTAG	AAGATGATAA	ACCACAGCTT	CCAGATGAAG	ATGCATTAGG	7560
5	TGTAACTTAT	GAGGCGATTG	ATAATTATTT	AGAAGGTAAG	CCAGTTACGC	CAGAAGAACA	7620
	AAAAGTAATT	GAAAATCATT	ATATACGAAA	TGCACACAAA	CGTGAACTTG	CATATACAAG	7680
10	ATACACGTGG	CCAAAATCCT	AATTTAATTT	TTTCTTCTAA	CGTGTGACTT	AAATTAAATA	7740
	TGAGTTAGAA	TTAATAACAT	TAAACCACAT	TCAGCTAGAC	TACTTCAGTG	TATAAATTGA	7800
	AAGTGTATGA	ACTAAAGTAA	GTATGTTCAT	TTGAGAATAA	ATTTTTATTT	ATGACAAATT	7860
15	CGCTATTTAT	TTATGAGAGT	TTTCGTACTA	TATTATATTA	ATATGCATTC	ATTAAGGTTA	7920
	GGTTGAAGCA	GTTTGGTATT	TAAAGTGTAA	TTGAAAGAGA	GTGGGGCGCC	TTATGTCATT	7980
	CGTAACAGAA	AATCCATGGT	TAATGGTACT	AACTATATTT	ATCATTAACG	TTTGTTATGT	8040
20	AACGTTTTTA	ACGATGCGAA	CAATTTTAAC	GTTGAAAGGT	TATCGTTATA	TTGCTGCATC	8100
	AGTTAGTTTT	TTAGAAGTAT	TAGTTTATAT	CGTTGGTTTA	GGTTTGGTTA	TGTCTAATTT	8160
	AGACCATATT	CAAAATATTA	TTGCCTACGC	ATTTGGTTTT	TCAATAGGTA	TCATTGTTGG	8220
25	TATGAAAATA	GAAGAAAAC	TGGCATTAGG	TTATACAGTT	GTAAATGTAA	CTTCAGCAGA	8280
	ATATGAGTTA	GATTTACCGA	ATGAACTTCG	AAATTTAGGA	TATGGCGTTA	CGCACTATGC	8340
30	TGCGTTTGGT	AGAGATGGTA	GTCGTATGGT	GATGCAAATT	TTAACACCAA	GAAAATATGA	8400
	ACGTAAATTG	ATGGATACGA	TAAAAAATTT	AGATCCGAAA	GCATTTATCA	TTGCGTATGA	8460
	ACCTCGAAAC	ATACATGGTG	GATTCTGGAC	TAAAGGCATT	CGTCGTAGAA	AGCTTAAAGA	8520
35	TTATGAACCA	GAAGAACTGG	AAagtgtagt	AGAaCATGAA	aTTCmAAGTA	AaTGAGAaTG	8580
	AAmCAATtGC	TGATTGTTTG	TCACGAATGA	AAtGCAAGGG	TATATGCCGG	TAAAACGTAT	8640
	TGAAAACCC	GTGTTTCAAG	AGCAAAAAGA	TGGCACGGTT	GAAGTATCAC	ATCAAGAAAT	8700
40	CGTTTTTGTA	ggtaagaaaa	TCCAATAACA	TAATCCAATT	TAAATAAAGA	CTATTTGAAG	8760
	AGGAAAGGCT	ATTCAAAGTT	TGAGTAATTT	TACTTTGAAT	AGCCTATTTG	TTTATACATG	8820
45	CAAGATGCTC	GATCCATATT	GTATGAGAAA	CCCCCAGCAA	GCTATATAAA	GCATATGCTG	8880
- -0	GGGGTTCTTA	ATATTTTAAA	AATTATTGTT	AGATTATATA	TATCGTCGCT	TTTTCTAAAA	8940
	CAATCTCATC	GCATGAAATT	TTTTCTTCCT	AGAGACCTTT	AATAAGATTA	ATAGTTTACT	9000
50	TAATCATATC	TAGATAGTCT	TATGACTTAT	GCTTAATGAA	AGTCATTCTA	GGAGAAGTTC	9060
	CCAAAGCTTC	TGTGTTCATA	ATTGTTAGTA	GTATTTTATT	ATCATTTGGT	ATAAATATTT	9120
	СААТААСААТ	TGAGCTATTA	TTTTTATTAT	ATAATGTGAG	TTGTTTGTGT	TCTGTATTTA	9180

	CATTTAAATC	TTGAGGATGC	CATTCTCCCT	CAATAATATT	AAGATAATAC	TTAGCCTCTG	9300
	AATTACATTT	GAATTTATCA	ATACTAAATA	ATTCAATTTG	TTCCATAATA	TTATTTACCT	9360
5	TTCTAAAATA	CAAATTTTAA	TAACCATAAA	TAGATGAATA	CCATCGATAA	TGGTCGCCAT	9420
	TGGATACTGG	AATAACATTG	TTTTTAGCAT	CTTGAGTCAT	AAAACCATTA	TCCCATGGAT	9480
10	TCCATATAAT	TATAACCTCT	TGTCCATTAT	CTAATTTAGC	GTTCCCAACA	ACTGCCATGG	9540
	CATGCCCTGC	GTGCATACCA	TTTCTTGATT	CTACTCTACT	ACCTAAAACA	GCAATTCCTT	9600
	TATTATTTTT	AGTAAGATTG	TCAACTTCAT	TATATGTAGT	CATTCTATTA	AGAAGTTGTG	9660
15	GACTTCTTCC	CTGAGTTTGT	CCAAAATAAA	TCATCTCTCT	TGGCGTTAAA	CCAGTAAATT	9720
	GGAATCGTTG	TCCTTGTAAG	TTTGGGTGTA	AAAATCTCAT	CACAGCTTCT	GCATGATATT	9780
	TGTTAGTATT	ATAAGTCGCA	TTTAGTAATT	CAGACATCGT	ATAGCCTGCA	CACCAACCAT	9840
20	TGTTACCTTG	AGTTTCTCTT	ATCTTGAAAT	TCTCAAGTTT	ATTTATATAT	TGSTCGTTGT	9900
	AAGTATAATT	ATTACTTTTA	AATTGACTAG	TTGGCATAGT	GACAGAAGCT	TTTTGCTTTA	9960
	GTTGCGTTAC	ATTATTGCCA	GTAGGTATAC	TCTCAGTCTT	TnTnAACTnT	nTATCTTCTA	10020
25	GACGTGGTGT	TTTTAGTACT	AGTTTAGCTT	TATGATTTTG	AGTACCACAT	AGTAACCTTT	10080
	TGAGTTGT						10088

(2) INFORMATION FOR SEQ ID NO: 33:

30

35

40

45

50

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7563 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

C (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

CGGAAACGNA CCCNATGCGT ATGCTTGACG TGCCAAAATT AAATACGAAG TTCATAGCTT 60 TGAGGTACCA GAAGAACATT TATCTGGTCA AGAAGTCGCA GIACTCATAC AAGCAAATGT 120 TAAAACAGTA TTTAAAACGC TTGTTCTAGA AAATACAAAA CATGAACATT TTGTATTTGT 180 TATCCCAGTA AGTGAAACTT TAGATATGAA AAAGGCAGCT GCTTTGGTTG GAGAGAAGAA 240 ATTGCAGCTT ATGCCTTTAG ATAATTTGAA AAATGTAACG GGATACATTC GTGGTGGGTG 300 TTCGCCTGTT GGTATGAAAA CATTGTTTCC AACAGTCGTT GACAAATCGT GTGAAAATTA 360 TAGTCATATC AGTGTGAGTG GTGGGCTTCG AACAATGCAA ATCACAATAG CTGTTGAGGA 420 TTTGATTACA ATAACTAAAG GCAAAATTGG AGCAGTTATC CATGAATGAT TAATAACAAC 480

	TGCCACACTC	CTTTTTGATT	GAATTAGCAT	TTTACGATCA	TAAACAGTCA	TTATAATTGA	600
	GTATTTGAAC	ATAAAAATGT	AATTTTATCG	TAACAATTTG	AGTGTTTGTG	ATTGTTTTTG	660
5	GTAATTTATG	ATTGAAAAGT	GAAAGCGTAC	TCATTATAAT	ACAAAGTGAG	ATGGGGTGAT	720
	GATGATAATT	ACTGAAAAA	GACACGAGTT	AATATTAGAA	GAACTTTCGC	ACAAAGATTT	780
10	TTTGACTTTA	CAAGAATTAA	TAGATCGAAC	TGGTTGCAGT	GCTTCAACAA	TACGArGAGA	840
	TTTATCTAAA	CTACAACAAT	TAGGGAAATT	GCAACGTGTG	CATGGTGGTG	CAATGTTAAA	900
	AGAAAATCGT	ATGGTTGAGG	CGAATTTAAC	TGAAAAATTA	GCAACGAATC	TTGATGAAAA	960
15	GAAAATGATT	GCTAAAATAG	CAGCTAATCA	AATCAACGAT	AATGAATGCT	TATTTATCGA	1020
	TGCTGGTTCA	TCTACATTGG	AGCTAATTAA	ATATATTCAA	GCGAAAGATA	TCATTGTGGT	1080
	AACCAATGGT	TTAACACATG	TAGAAGCTTT	ACTTAAAAAA	GGTATTAAAA	CAATTATGCT	1140
20	AGGTGGTCAA	GTTAAAGAAA	ATACACTTGC	TACGATTGGT	TCTAGTGCTA	TGGAGATATT	1200
	AAGACGATAT	TGTTTCGATA	AAGCTTTTAT	CGGGATGAAT	GGATTAGATA	TTGAACTTGG	1260
	ATTAACTACT	CCCGATGAGC	AAGAGGCATT	AGTTAAACAA	ACAGCAATGT	CATTAGCCAA	1320
25	TCAATCATTT	GTACTTATAG	ATCATTCTAA	GTTTAATAAA	GTATATTTTG	CTCGTGTACC	1380
	TTTGCTAGAA	AGTACGACAA	TCATCACATC	TGAAAAAGCA	TTAAATCAAG	AATCGTTAAA	1440
30	AGAATACCAA	CAAAAGTATC	ACTTTATAGG	AGGGACTTTA	TGATTTATAC	AGTGACTTTC	1500
	AATCCTTCAA	TTGACTATGT	CATTTTTACG	AATGATTTTA	AAATTGATGG	TTTGAACAGA	1560
	GCAACAGCAA	CATATAAATT	CGCTGGGGG	AAAGGTATTA	ATGTCTCGCG	CGTCTTAAAG	1620
35	ACATTGGATG	TTGAGTCAAC	TGCCTTGGGA	TTTGCAGGTG	GATTTCCTGG	GAAATTCATT	1680
	ATAGATACAT	TAAATAACAG	TGCAATTCAA	TCGAATTTTA	TTGAAGTTGA	TGAAGATACA	1740
	CGTATTAATG	TGAAATTAAA	AACAGGACAA	GAAACAGAAA	TCAATGCACC	GGGTCCTCAT	1800
40	ATAÄCGTCAA	CACAATTTGA	ACAACTGTTA	CAACAAATTA	AAAATACAAC	AAGCGAAGAT	1860
	ATAGTTATTG	TTGCTGGAAG	TGTACCAAGT	AGTATTCCAA	GCGATGCGTA	TGCGCAAATT	1920
	GCACAAATTA	CAGCACAGAC	AGGTGCTAAA	TTAGTAGTCG	ACGCTGAAAA	AGAATTGGCT	1980
45	GAAAgCGTTT	TACCATATCA	TCCACTATTT	ATTAAACCTA	ATAAAGATGA	ATTAGAAGTG	2040
	ATGTTTAATA	CAACAGTGAA	CTCAGACACA	GATGTTATTA	AATATGGTCG	TTTGTTAGTT	2100
50	GATAAAGGTG	CGCAATCTGT	TATTGTCTCG	CTTGGCGGTG	ATGGTGCTAT	TTATATTGAT	2160
	AAAGAAATCA	GTATTAAAGC	AGTTAATCCA	CAAGGGAAAG	TGGTTAATAC	AGTTGGCTCT	2220
	GGTGATAGTA	CAGTTGCAGG	CATGGTGGCT	GGAATTGCTT	CAGGTTTAAC	GATTGAAAAA	2280

	CGGGACGCTA	TAGAAAAAAT	AAAATCACAA	GTTACGATTA	GCGTACTTGA	TGGGGAGTGA	2400
	AAATAATGAG	AGTAACAGAG	TTATTAACAA	AAGATACAAT	AGCAATGGAT	TTAATGGCAA	2460
5	ATGACAAAAA	TGGTGTTATT	GATGAGTTAG	TAAATCAATT	AGACAAAGCA	GGTAAATTAA	2520
	GTGATGTCGC	GTCATTTAAG	GAAGCGATTC	ACAATCGAGA	ATCACAAAGT	ACAACTGGTA	2580
	TCGGCGAAGG	TATTGCCATT	CCACATGCCA	AAGTGGCCGC	AGTTAAGTCA	CCAGCTATTG	2640
10	CGTTTGGTAA	ATCTAAAGCA	GGCGTAGATT	ATCAAAGTTT	GGATATGCAA	CCAGCACACT	2700
	TATTCTTTAT	GATTGCAGCG	CCAGAAGGTG	GCGCCCAAAC	ACATCTAGAT	GCTTTAGCTA	2760
15	AGTTGTCTGG	TATTTTAATG	GATGAAAATG	TACGTGAGAA	ATTATTACAT	GCTTCATCAC	2820
	CTGAAGAAGT	ACTAGCGATC	ATAGATGAGG	CTGATGATGA	AGTGACAAAA	GAAGAAGAGG	2880
	CAGAAGCTGA	AGCACAACAA	GTTGCAACTG	CAGAACAATC	ATCTAAACAA	TCTAATGAGC	2940
20	CATATGTGTT	AGCAGTAACT	GCTTGTCCAA	CAGGTATTGC	ACACACATAT	ATGGCACGTG	3000
	ATGCATTGAA	AAAGCAAGCG	GATAAAATGG	GTATTAAAAT	TAAAGTAGAA	ACGAATGGTT	3060
	CAAGCGGCAT	TAAAAACCAT	TTAACTGAAC	AAGATATTGA	AAATGCAACA	GGTATCATTG	3120
25	TTGCTGCTGA	TGTTCATGTT	GAGACGGATC	GCTTCGATGG	TAAAAATGTC	GTAGAAGTAC	3180
	CAGTAGCAGA	TGGTATTAAA	CGCCCAGAAG	AATTAATTAA	TAAAGCATTA	GATACAAGTC	3240
30	GTAAACCTTT	TGTTGCCCGT	GATGGTCAAA	GAAAAGGTAA	CTCAAATGAC	AGTCAAGAAA	3300
30	AATTAAGCCC	AGGTAAAGCA	TTCTATAAAC	ACTTAATGAA	CGGTGTTTCT	AACATGTTGC	3360
	CACTTGTAAT	ATCTGGTGGT	ATTTTAATGG	CAATTGTATT	TTTATTTGGA	GCAAATTCAT	3420
35	TTAATCCAAA	AAGCTCAGAG	TACAATGCGT	TTGCAGAGCA	GCTTTGGAAC	ATTGGTAGTA	3480
	AAAGTGCATT	CGCGTTAATC	ATTCCAATTT	TATCTGGATT	CATTGCACGT	AGTATTGCGG	3540
	ATAAACCTGG	TTTCGCTTCA	GGTCTTGTAG	GTGGTATGTT	AGCAATTTCA	GGTGGTTCAG	3600
40	GATTTATTGG	TGGTATTATT	GCAGGTTTCT	TAGCAGGTTA	CTTAACACAA	GGTGTTAAAG	3660
	CCATGACACG	TAAGTTACCA	CAAGCATTAG	AGGGATTAAA	GCCAACATTA	ATTTATCCAC	3720
	TATTAACAGT	GACGGCTACA	GGCTTATTGA	TGATTTATGC	CTTTAATCCA	CCAGCATCTT	3780
45	GGTTAAATCA	TTTGTTATTA	GATGGATTAA	ACAATTTATC	AGGTTCTAAT	ATTGTATTAT	3840
	TAGGTTTAGT	TATTGGCGCT	ATGATGGCGA	TTGATATGGG	CGGTCCATTC	AACAAAGCGG	3900
50	CATATGTTTT	TGCAACAGGT	GCGTTGATTG	AAGGTAATGC	AGCACCAATT	ACAGCTGCAA	3960
	TGATTGGTGG	TATGATTCCA	CCGTTAGCAA	TTGCGACAGC	GATGTTAATT	TTTAGACGTA	4020
	AATTTACAAA	AGAACAACGT	GGTTCAATTA	TCCCTAACTA	TGTGATGGGT	ATGTCATTTA	4080

	TGATTGGTTC	AGGTATAGGT	GGCGCAATTG	CTTTAGGCTT	AGGTTCACGA	ATTACTGCGC	4200
	CACATGGTGG	TATTATTGTA	ATTGTTGGTA	CTGATGGTGC	ACACTTACTT	CAAACTCTTA	4260
5	TTGCACTTCT	AGTTGGCACA	TTAGTTTCAG	CATTAATTTA	CGGTTTAATC	AAACCAAAGT	4320
	TAACTGAAAC	AGAAATCGAA	GCTTCAAAAT	CAATGGACGA	GTAGTTTTAA	TGATGTAAAA	4380
10	TGATTGTTAG	CAAAGAGCTT	CATATTAAGT	TGTATGTTCA	ATGAATATAT	GTTAGTTTTA	4440
	TATATCGTGT	TAACGGTAGC	TTATACAAAG	CTGTAAAAAC	ACTTTCTATT	AATTCAGTTT	4500
	TTATGAATTG	ATATGAAAGT	GTTTTTATTT	TTAGATAAAT	GAATGAAGAA	ATAGACACCA	4560
15	CAAATGTATA	GACTTTTTTA	ATATTTTGCA	AAAAGTTATG	CCAAACGAAG	CAGATATAGT	4620
	AAAATATGAG	TGTCTTAAAG	TGAAAATTTA	TAAATAAAGA	AGGGTTTATA	CGTGTCAGAA	4680
	TTAATTATAT	ATAACGGCAA	AGTTTATACT	GAAGATGGCA	AAATCGATAA	TGGTTACATT	4740
20	CATGTGAAAG	ATGGACAGAT	TGTTGCAATT	GGAGAAGTGG	ATGATAAAGC	AGCAATTGAT	4800
	AATGATACGA	CAAATAAAAT	TCAAGTGATT	GATGCTAAAG	GTCATCATGT	ATTACCAGGT	4860
	TTTATTGATA	TACATATTCA	TGGTGGTTAT	GGTCAAGATG	CAATGGATGG	GTCATACGAT	4920
25	GGCTTAAAAT	ATCTATCCGA	AAATTTGTTG	TCTGAAGGGA	CGACATCATA	CTTGGCCACT	4980
	ACAATGACGC	AATCGACTGA	TAAAATAGAT	AATGCACTTA	CAAATATTGC	TAAATATGAA	5040
30	GCGGAgCAAG	ATGTTCACAA	TGCAGCGGAA	ATTGTAGGTA	TACATTTAGA	AGGACCATTT	5100
	ATATCTGAAA	ATAAAGTTGG	TGCTCAACAT	CCGCAATACG	TTGTACGCCC	ATTTATCGAT	5160
	AAAATTAAAC	ATTTTCAAGA	GACTGCTAAC	GGATTAATAA	AGATTATGAC	GTTTGCACCT	5220
35	GAAATTGAAG	GTGCAAAAGA	AGCGCTTGAA	ACGTATAAAG	ATGACATTAT	TTTTTCAATT	5280
	GGTCATACAG	TAGCAACATA	CGAAGAAGCA	GTTGAAGCTG	TTGAGCGAGG	AGCTAAACAT	5340
	GTCACGCATT	TATATAATGC	AGCGACGCCA	TTCCAACATA	GAGAACCAGG	TGTTTTTGGA	5400
40	GCAGCATGGT	TGAATGATGC	TCTACATACC	GAAATGATTG	TTGATGGCAC	TCATTCTCAT	5460
	CCGGCATCGG	TTGCAATTGC	TTACCGTATG	AAAGGTAATG	AACGTTTTTA	TTTAATTACC	5520
	GATGCAATGC	GTGCAAAAGG	TATGCCTGAA	GGAGAATATG	ATTTGGGTGG	ACAAAAAGTA	5580
45	ACTGTTCAAT	CGCAACAAGC	ACGTCTTGCA	AATGGTGCGC	TTGCTGGTAG	TATTTTAAAA	5640
	ATGAATCATG	GGTTACGTAA	CTTAATATCA	TTTACAGGTG	ATACATTAGA	TCATTTATGG	5700
50	CGAGTAACAA	GTTTAAATCA	AGCCATTGCA	TTAGGTATCG	ATGATAGAAA	AGGTAGTATT	5760
	AAAGTAAATA	AGGATGCAGA	TCTTGTTATT	CTAGATGATG	ATATGAATGT	AAAATCTACA	5820
	атаааасаас	CCA ACCITICA	CACATTERACC	ጥ አ አ ጥ አ አ ጥ አ አ	TO A TO A STATE A A	ADCULATION A	

	TTTTCTGGGG	GTGTCTAAAT	GGGAAGGCGA	TAACATGTAG	TTGTAATTTA	AGTCATAGTG	6000
	ATAAATTTGA	ATGCGTGTTA	CCCATGAGTG	ACACATATAA	CATGGAGGTG	AATCCCTAGA	6060
5	AATAGGGAAT	TAATTGGAAA	CTTCGACCAT	AATTAGTTTG	ATTATATTTA	TTCTATTAAT	6120
	TGCATTAACC	ACTGTATTTG	TTGGTTCAGA	ATTTGCATTA	GTAAAAATTA	GAGCAACAAG	6180
10	AATTGAACAG	CTAGCAGATG	AAGGAAATAA	ACCTGCTAAA	ATAGTAAAAA	AGATGATTGC	6240
10	TAATCTAGAT	TATTATCTTT	CTGCTTGTCA	GTTAGGTATA	ACAGTAACAT	CTTTAGGGTT	6300
	AGGTTGGCTT	GGTGAACCAA	CGTTTGAAAA	GCTATTACAC	CCAATATTTG	AAGCAATCAA	6360
15	TTTACCAACT	GCATTAACGA	CGACGATTTC	GTTTGCAGTG	TCATTTATAA	TCGTTACGTA	6420
	TTTGCATGTA	GTACTTGGTG	AATTAGCGCC	TAAATCTATA	GCTATTCAAC	ATACTGAAAA	6480
	GCTTGCTTTA	GTATATGCAA	GACCATTGTT	CTATTTCGGT	AACATTATGA	AACCATTGAT	6540
20	TTGGCTGATG	AATGGTTCTG	CACGTGTTAT	TATTAGAATG	TTTGGTGTAA	ATCCTGATGC	6600
	CCAAACTGAT	GCAATGTCAG	AAGAAGAAAT	CAAAATTATT	ATTAACAATA	GTTATAATGG	6660
	TGGAGAAATC	AACCAAACTG	AATTGGCATA	TATGCAAAAT	ATCTTTTCAT	TCGATGAAAG	6720
25	ACATGCAAAA	GATATAATGG	TACCTAGAAC	TCAAATGATT	ACACTAAATG	AACCTTTTAA	6780
	TGTAGACGAA	TTACTAGAAA	CAATAAAAGA	ACATCAATTT	ACGCGTTATC	CAATTACTGA	6840
30	TGATGGTGAT	AAAGACCACA	TTAAAGGATT	TATTAACGTC	AAAGAATTTT	TAACTGAATA	6900
00	CGCTTCTGGA	AAAACGATTA	AAATAGCAAA	CTATATACAT	GAGTTGCCAA	TGATTTCAGA	6960
	GACAACACGT	ATCAGTGATG	CATTAATTAG	AATGCAACGT	GAACATGTAC	ATATGAGTCT	7020
35	TATTATAGAT	GAATATGGTG	GAACGGCAGG	TATTTTAACG	ATGGAAGATA	TTTTAGAAGA	7080
	AATCGTTGGA	GAAATTCGTG	ATGAATTTGA	TGATGATGAA	GTGAATGATA	TCGTTAAAAT	7140
	TGATAATAAG	ACATTCCAAG	TAAATGGCAG	AGTACTATTG	GATGATTTAA	CTGAAGAGTT	7200
40	CGGTATAGAA	TTTGATGACT	CTGAGGATAT	TGATACGATA	GGTGGATGGT	TACAATCTCG	7260
	TAATACCAAT	TTACAAAAAG	ATGATTACGT	GGATACAACT	TATGATCGCT	GGGTTGTTTC	7320
	AGAAATCGAT	AACCACCAAA	TTATTTGGGT	GATATTAAAC	TATGAATTTA	ATGAAGCGAG	7380
45	ACCTACTATC	GGACAGTCTG	ATGAAGATGA	AAAATCAGAA	TAGATATTAA	TATATAAACC	7440
	AACTAAGAAT	GATTTAATTC	ATTTTTGGTT	GGTTATTTTT	TTGACTAAAA	TTAAnGAAAA	7500
50	GTGAAAATAG	TATTGGAACT	CAATATCTTT	AATGATTTAA	TGAATAAnTT	TTATTGAAAG	7560
	CGA						7563

(2) INFORMATION FOR SEQ ID NO: 34:

(A) LENGTH: 3492 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

10	TTATATCAAC	TTCATGGCGG	AACCATTGAT	GACCCATTAG	ACGAAACAAT	AAGCGCATTT	60
	satgaattga	AACAAGAAGG	AATTATACGT	GCTTACGGTA	TTTCTTCTAT	TCGCCCAAAT	120
	GTAATTGATT	ATTATTTAAA	ACATAGTCAA	ATCGAAACGA	TAATGTCTCA	ATTCAATTTG	180
15	ATTGATAATC	GTCCAGAATC	ATTATTAGAT	GCAATTCACA	ACAATGATGT	TAAAGTATTG	240
	GCAAGAGGAC	CTGTGTCTAA	AGGATTATTA	ACTTCAAACA	GTGTTAATGT	GCTCGACAAT	300
	AAATTTAAAG	ATGGTATTTT	TGATTATTCT	CATGATGAAT	TGGGTGAAAC	AATAGCCTCT	. 360
20	ATTAAAGAAA	TTGAAAGTAA	TTTATCTGCA	TTGACATTTA	GTTATTTAAC	ATCACATGAC	420
	GTGCTTGGTT	CCATCATTGT	AGGTGCAAGT	AGCGTCGACC	AATTAAAAGA	AAATATTGAA	480
25	AACTATCATA	CTAAAGTTAG	TTTAGATCAG	ATTAAAACAG	CAAGAGCTCG	TGTAAAGGAT	540
20	TTGGAATATA	CCAATCATTT	AGTGTAGAAG	TCATTTTCAG	TAATAAAAAC	AGCAGCATGA	600
	GGCGTTTCAT	TATAAAAATG	CCTTACTGCT	GTTGTTTATG	TACAATTCGC	TATAATTTAT	660
30	GATTATGATT	ACTCACTTAT	GATAGAAATT	AAAGCGTTGT	CCTCACGCAT	CAGTATTTAG	720
	TAATTTCGCC	TTGCGGCATT	GCCTTAAGCA	AACTTCTGCC	ACTTCATCTC	TTAATAATTT	780
	TATTAAAACA	TCTTTCTATA	TTTCACTTCG	CATGTTGATT	CATCATTATT	AGTTATTATT	840
35	TGTACACCCA	GCACATTTCC	TTGCAACACA	AGTAGTTTGA	ATTTTTCACA	AGTATAATAT	900
	AATGTACCGT	CTGAAATTTG	GTCTACAGAA	ATATCGCCTA	AAATATCCAG	CACTGTAAAT	960
	TCTTCAAATA	CTGATAGTTG	TTCCGCATAT	CGTACACAAA	GTCTTACCAC	ACTCTCCGAT	1020
40	TGACAGTTCA	TTGCCATCCC	ACCTATTTAT	GCTTTATTTT	TAAATAATTT	AGGGAAACAT	1080
	CGTTCAAAAA	ATCTAGGCGC	AATTTGATAC	ATTTTCAACG	CATGATGCAT	CCATTTAGGC	1140
45	CGATTAATTT	CCAATTGTTT	TGTTTTAATG	CCATAAATGA	TATCTTCTGC	AAGCTGATTA	1200
40	GCATCAAGCA	TAATTTCCCC	CATCTTTTTA	gCATACTTCA	TTGATGGGTC	GGCTTTTTGA	1260
	TGAAAAGGTG	TATCAATCGG	GCCAACATTA	ACTGTCATGA	TATGTAAGTT	TGGTGACTCT	1320
50	AGTCTTAAAG	CATTCATTAA	TGCATAAAAC	CCTGCTTTCG	ATGCCCCATA	ATGTGCAGCA	1380
	TTTGCTTGTG	TGGAAAATGC	AGCTTGACTT	GAAATACCTA	CAATATGTGC	GTTAGATGTT	1440
	AAATATGGTC	TCAACACAGT	ATATAAAACA	ттаааастаа	TTAAATTAAG	CTGATACGTT	1500

	TAAATGAATC	CATCGAATGA	TGTATTGTCT	TCAAATTGCA	GTGCCTGTAT	CGACTTCAAA	1620
_	TCATTTAAGT	CACAAGGAAT	AACATTTATA	GTTTTCCCCA	ATTCCTGTTC	AAAGATTCTA	1680
5	GTTGCTTTAT	CAACATCACG	CACCAACAAC	GTTACATGCA	CTTTATTTTC	TAGTAACTTT	1740
	CGGACAATCG	ATAAACCTAA	ACCACTCGTA	CCACCAGTCA	CTATAAAATG	TTGTCCTTTC	1800
10	ATCAATTAAC	CTTCCTTTTC	AATTATATAG	AATGCAATTT	ATCAACTTTA	CATAATTGAG	1860
	ACAAGTTGAT	TATCTTTCCT	ATATATATA	CAATAATAAG	AAAATATAAC	ATACAAATCA	1920
	AAAACTAAAG	GGATGTGaCG	TTAATGrAAC	TCGTATTTTA	TGGAGCTGGT	AATATGGCAC	1980
15	AAGCTATATT	TACAGGrATT	ATTAACTCMA	GCAACTTAGA	TGCCAATGAT	AATTTATATA	2040
	CAAATAAATC	TAATGAACAA	GCTTTAAAAG	CATTCGCTGA	AAAACTAGGT	GTTAACTATA	2100
	GTTATGAtGA	TGCGACATTA	TTAAAAGATG	CAGAYTATGT	ATTTTTAGGT	ACCAAACCAC	2160
20	ATGACTTTGA	TGCTCTAGCA	ACACGCATCA	AACCACATAT	TACAAAAGwC	AATTGCTTCA	2220
	TTTCAATTAT	GGCAGGTATT	CCGATTGATT	ATATTAAACA	ACAATTAGAA	TGCCAAAATC	2280
	CAGTTGCTAG	AATTATGCCA	AACACAAATG	CGCAAGTTGG	ACACTCTGTT	ACTGGCATTA	2340
25	GTTTTTCAAA	CAACTTTGAC	CCTAAATCTA	AAGATGAAAT	TAACGATTTA	GTTAAAGCAT	2400
	TTGGTTCTGT	AATTGAAGTA	TCAGAAGATC	ATTTACATCA	AGTAACAGCT	ATCACCGGAA	2460
30	GCGGCCCAGC	ATTTTTATAT	CATGTATTCG	AGCAATATGT	TAAAGCTGGT	aCsAAACTTG	2520
	GTCTAGAAAA	AGAACAAGTT	GAAGAATCTA	TACGCAACCT	TATTATAGGT	ACAAGTAAGA	2580
	TGATTGAACG	TTCAGALTTG	AGCATGGCTC	AATTAAGAAA	AAATATTACC	TCTAAAGGTG	2640
35	GTACGACACA	AGCTGGCCTT	GATACATTGT	CACAATATGA	TTTAGTATCT	ATTTTCGAAG	2700
	ATTGTCTAAA	CGCTGCCGTC	GACCGTAGTA	TTGAACTTTC	TAATATAGAA	GACCAATAAA	2760
	AACABACCCG	CCAACACATG	TATGCATCAT	CGCAAGCACT	GTGTTTGACG	GGTTATTTTT	2820
40	ATAATTTATT	GTTATTTGGC	AAGCATTGTT	TATTACTTTG	TCATTAGATT	TTAAAACTAT	2880
	CAAAATCTTT	TACAAAATTA	AAATTAGGTG	TATCTTCATT	TTGTATCAAT	GTTTGATAAA	2940
	TTTCATTTAT	ATCTTCTGTA	TTATAGCGAT	TGCTCAAATG	TGTAATCAAC	GTACGTTTAA	3000
45	CATTGGCTTC	TTTTATCAAT	GCAAATACGT	CTTCAATATG	GCTATGATGA	TAATTGTTGG	3060
	CTAAATGCTT	TTCACCATCT	ATATAGGTCG	CTTCATGTAC	CATCACATCA	GCATCTCTAG	3120
50	AAATCACACG	TTCATTAGAA	CATGGTTTTG	TATCACCAAA	AATTGCTACA	ACTGGACCCT '	3180
₹	GTTTGGACTC	ACCTCTAAAA	TCTTTTGATT	GATAAACTTG	ACCATTATGT	TCAAATGTAT	3240
	CATGAGATTT	TACTTCTTGA	TATTTAGGAC	CTGGTTCAAG	ACCAATGTTT	TTTAACGCTT	3300

	CATGATTAAG TAAATGCGCC TCTACAGTAA AACCATCCAT GATGATATGT CAGATGATCA	3420
	TCGATTTCAA TATATGLAAT TGGATAGTTT AAATGTGACT CTGATAAATT CATAGACATT	3480
5	TCCACATATG CT	3492
	(2) INFORMATION FOR SEQ ID NO: 35:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1973 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
	ATCTAGCGGT ACAAGCGTCT TGGAGGCTAG TATGTTGAAC ATTGTAAACC CTGAAGATCA	60
20	CTTCGTTGTC ATTGTTTCAG GTGCCTTTGG TAACCGATTT AAACAAATTG CACAAACTTA	120
	TTACAAAAAT GTGCATATTT ATGACGTAAC ATGGGGAGAA GCTGTAGATG TCAAAGATTT	180
	CATCAATTTC CTTTCAACTT TAAATGTTGA AGTTAAAGCA GTATTTAGTC AATATTGCGA	240
25	AACATCTACG ACAGTGCTAC ACCCTATTCA CGAGTTAGGA AATGCCATTA ATCAATTTAA	300
	TAGTAATATT TATTTTGTAG TTGACGGCGT AAGTLGCATT GGTGCTGTTG ATGTTGACAT	360
	TAACAAAGAT AAAATTGATG TACTTGTTTC TGGTAGTCAA AAAGCAATTA TGTTACCTCC	420
30	AGGATTAGCT TTTGTAGCTT ATAGCCACCG TGCAAAAGAA CATTTCAAAG AAGTAACTAC	480
	GCCAAAATTT TATCTAGACT TAAATAAATA CATTTCGTCA CAAGCTGACA ATTCTACACC	540
35	GTTCACACCA AATGTGTCTT TATTTAGAGG TGTAAATGCA TACGTTGAAA CCGTAAAAGC	600
	AGAAGGTTTC AATCACGTAA TAGCACGACA CTATGCAATT AGAAATGCAT TAAGAAGCGC	660
	CTTAAAAGCA TTAGATTTAA CTTTATTAGT CAATGATAAA GATGCATCTC CAACGGTTAC	720
40	AGCATTCAAA CCTAATACAA ATGATGAAGT GAAAATAATC MAAGATGAAC TTAAAAATmG	780
	CTTTAAAATA ACAATTGCnG GTGGTCAAGG CCATCTTAAA GGTCAAATTT TNAGAATTGG	840
	TCATATGGGG AAAATTAGTC CTTTCGATAT TTTATCGGTA GTATCTGCTT TAGAAATTAT	900
45	TITAACTGAA CACCGTAAAG TTAACTATAT CGGTAAAGGT ATATCAAAAT ATATGGAGGT	960
	TATTCATGAA GCAATTTAAT GTACTCGTTG CAGATCCCAT ATCAAAAGAT GGTATCAAAG	1020
	CATTATTAGA TCACGAACAA TTCAATGTAG ATATTCAAAC TGGCTTGTCC GAAGAAGCAT	1080
50	TAATCAAAAT TATACCTTCA TACCATGCTT TAATCGTTCG TAGTCAAACT ACGGTTACTG	1140
	AAAATATCAT AAATGCTGCT GATTCTTTAA AAGTAATCGC ACGCGCCGGT GTTGGTGTAG	1200

	GTAATACGAT TTCAGCTACT GAACATACAC TGGCAATGTT ATTATCAATG GCACGAAATA	1320
	TTCCGCAAGC ACACCAATCA CTTACAAATA AAGAATGGAA TCGAAATGCA TTTAAAGGTA	1380
5	CTGAGCTTTA TCATAAAACA TTAGGTGTCA TTGGTGCTGG TAGAATTGGT TTAGGTGTTG	1440
	CTAAACGTGC GCAAAGTTTC GGAATGAAAA TACTAGCTTT TGACCCTTAC TTAACGGATG	1500
10	AAAAAGCAAA ATCTTTAAGC ATTACGAAGG CAACAGTTGA TGAGATTGCC CAACATTCTG	1560
	ATTTCGTTAC ATTACATACA CCACTAACAC CTAAAACAAA AGGCTTAATT AATGCTGTCT	1620
	TTTTTGCCAA AGCAAAACCT AGTTTGCAAA TAATCAATGT GGCACGTGGT GGTATTATTG	1680
15	ATGAAAAGGC GCTAATAAAA GCATTAGACG AAGGACAAAT TAGTCGGGCA GCTATCGATG	1740
	TGTTTGAACA TGAACCTGCA ACTGACTCGC CTCTTGTTGC ACATGATAAA ATTATTGTTA	1800
	CACCTCATTT GGGTGCTTCA ACAGTCGAAG CTCAAGAAAA AGTGGCAATT TCTGTTTCAA	1860
20	ATGAAATCAT CGAAATTTTA ATTGATGGTA CTGTAACGCA TGCAGTGAAT GCACCTAAAA	1920
	TGGACTTAAG CAATATAGAT GATACTGTAA AATCATTCAT CAATTTAAGC CAA	1973
	(2) INFORMATION FOR SEQ ID NO: 36:	
25 30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7620 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
35	GGTGTTTCAG ATGTCACTGG TTGATTTTTA ATTGTAGACG GGTATTTTGG GCTTTCGCCA	60
	TATTTATTTG CCGGCTTACT GTCAAAGCAT AGGAATACTA TCATAACAAT TGTTAGGCCT	120
	AAATAAACAA AATAAAGAAG TACTAACAAA ATATTAAGAC CCATCGGCAT TAATGTAAAA	180
40	TCACTGTCAT AATAACTATC GATAATCTGT AATACTATAT AAAATATAAT ACTGAATACT	240
	GTCATAATCA TTGGAAATAA CATTGTTCTT GATATATCGT GAAATCTTCG AACGCACAAC	300
	GCTAAATTTG GAATAAACGT TGCCAAACTA TAGACAAAAG TATACACAGA TGTAAGGATA	360
45	ATCATCAATA TACTCATAAC TATTAATGTT TCGTTATCCG CCGCTATAGA AATAAAGAAT	420
	AGAAATAGGT TTATTATTAG CACACACA GCTGGAACCA TAAGTATCAA ATGCCATAGT	480
50	GCCATATACC AATATTCACT ACGTCTTGAT CTCCCCTTAA AATTTACATA ATTTTTCCAA	540
	AATAAAACGA ATGATTTCAT AAAACCTACT TGAGGTAATT GTTCCATTGT AATCTCCCTT	600
	TCGTTAATCA TATTTATATT TTTAATTATT GTTACCGTTA TAATTTACAA GATTCATTAT	660

	GTAAAATGAA	AACCCGCTAC	AAGTACACAT	CTATATGGAG	ACTCATTTGA	AAGTCAACGC	780
	TTCGTTAACT	АТАСТААААА	TATGTCATAC	TGCAATGTTC	ACGTTTAAAA	GAGTCTCAAT	840
5	CTATGCAAAT	AAAATATTCC	ATAACAAAGT	ATATACTTTA	CATTTTTATA	ATTCTTAACA	900
	ATACTATTTT	ATCAAACATT	TACCACAATA	AAAATATCTT	TTTCATTTTT	ATTTAAATTA	960
10	ATCATATAAT	TGCGAGGAGA	ATATTATGGA	TTTCGTTAAT	AATGATACAA	GACAAATTGC	1020
	TAAAAACTTA	TTAGGTGTCA	AAGTGATTTA	TCAGGATACC	ACTCAAACGT	ATACAGGCTA	1080
	CATCGTGGAA	ACGGAAGCTT	ACTTAGGTTT	GAATGATCGT	GCGGCTCATG	GCTATGGCGG	1140
15	TAAAATAACA	CCTAAAGTCA	CGTCATTATA	TAAACGTGGT	GGTACAATTT	ATGCACATGT	1200
	CATGCATACG	CATTTACTCA	TTAATTTTGT	AACAAAATCT	GAAGGTATAC	CTGAAGGCGT	1260
	ACTTATCCGC	GCAATTGAAC	CAGAAGAAGG	TTTATCCGCT	ATGTTCCGTA	ACAGAGGTAA	1320
20	GAAAGGCTAC	GAGGTAACGA	ATGGCCCAGG	AAAATGGACT	AAGGCATTTA	ACATTCCACG	1380
	GGCTATCGAT	GGCGCTACGT	TAAATGACTG	TAGATTGTCT	ATTGATACTA	AGAATCGTAA	1440
	ATATCCTAAA	GATATTATTG	CTAGTCCACG	AATCGGTATT	CCAAATAAAG	GTGATTGGAC	1500
25	ACATAAATCT	TTACGTTACA	CAGTGAAAGG	TAATCCATTT	GTGTCTCGCA	TGCGTAAATC	1560
	AGATTGTATG	TTTCCCGAAG	ATACTTGGAA	ATAAATGCCA	TCTTTCATTG	ATTACTATCA	1620
30	TGAAAATGAA	ATCTATCTCC	TTATAAGTCA	ATCAATCGTG	CCGTCAACAT	GCGGATGGGT	1680
50	TGATTGTTTT	TCTTTGTATC	CATCATATTT	TTTGATTCAT	CTCCTCTTAT	TGAACTTGTT	1740
	CTTAATTATA	AAATATAACA	ATAGAATTAT	TTATAATTAT	TAAATTTAGA	TGCATTAATA	1800
35	TTATTGATAT	TATTTTCAAA	AACTAGAAAT	ATTGATTTGT	TGCATGTATA	ATGTTAAAAG	1860
	CGCCCTTTTA	TAACGCTTAC	ATATAAAAGC	TTATTTAGGG	AGAGGGATAT	TCAACAAGGG	1920
	GGATTTGAAA	ATGATAGAAC	TTAATGCAAT	TACAACATTA	TGTTTAGCTT	GTATCCTTTA	1980
40	TTTACTTGGT	AAGGCTATCG	TTAATCACGT	TAATTTTTTA	AAACGTATTT	GTATACCAGC	2040
	ACCAGTGATT	GGCGGCTTAA	TCTTTGCTAT	TTTAGTTGCG	GCTTTGGATT	CATTTGGCAT	2100
	GGTTAAGATT	AAATTAGATG	CTTCATTCAT	TCAAGATTTC	TTCATGTTAG	CATTCTTTAC	2160
45	GACAATCGGT	CTTGGTGCAT	CATTGAAATT	ATTTAAATTA	GGTGGCAAAG	TCTTGCTATT	2220
	ATACTTTATG	TTTTGTGCTA	TCATTTCAGT	CATTCAAAAC	ATAGTTGGTG	TATCACTAGC	2280
50	AAAAGTATTA	AATATTAAAC	CTTTGTTAGG	ATTAACAGCA	GGTTCCATGT	CTATGGAAGG	2340
50	CGGTCATGGT	AATGCTGCTG	CTTATGGTAA	GACAATTCAA	GATTTAGGTA	TTGATTCGGC	2400
	ACTGACAGCG	CCTCTTCCAC	СПССВАСТИТ	ACCTCTTCTA	TTTCCACCC	TTATOGGTGG	2460

	ATTTAAAGAT	TATAGCCAAG	TAGCATATAA	CGAACATTTA	CATAGTAAAT	TTAATGCCAC	2580
5	TGAAGTATTC	TTCATTCAAT	TTACAATCGT	TGTATTCTGT	ATGGCAGTTG	GAAGTTATTT	2640
3	CAGTCATTTG	TTTACAGCTC	AAACAGGGAT	TAATGTTCCA	ATTTACGTTG	GCTCATTATT	2700
	TGTAGCTGTT	ATTGTCCGAA	ATATCTCTGA	AAGTTTTAAT	TTTAATATTG	TAGATTTAAA	2760
10	AATTACTAAT	CAAATTGGCG	ATGTCGCATT	AGGTATTTTC	TTATCTCTTG	CGCTAATGAG	2820
	CATTCAATTA	ATCGAAATTT	ATAAACTTGC	TATACCTCTT	ATTATTATCG	TTTTAGTTCA	2880
	AGTTGTCGTT	ATGATTTTAT	TTGCTGTTTT	AATTTTATTT	AGAGGTTTAG	GAAAAGATTA	2940
15	TGATGCTGCA	GTAATGGTAG	GTGGTTTTAT	CGGTCATGGG	CTTGGTGCAC	GCCAAATGCC	3000
	ATGGCAAATT	TAGATGTTAT	TACTAAAAA	TATGGAAACT	CACCTAAAGC	ATATTTAGTT	3060
	GTACCTATTG	TTGGTGCATT	CTTAATCGAT	TTAATTGGTG	TTATAGTCAT	TATGGGATTC	3120
20	ATACAATGGT	TTAGTTAAAC	ACCAAACTCA	TAAATAAAAG	AGGAGGCCTT	CGCCTCcTcT	3180
	TTTATTTATC	CTCGATGTAT	ATTCAAGTTA	CGTTGTTCTA	TCCATGACAA	TATTTCCGGA	3240
05	CTAAATACGA	TTTGTTTTTG	TGTTAAGTCG	TCAATATTTT	TAGCATCTAA	CATCGTCATT	3300
25	ATTGATTTCA	TGTGTTCAAT	AAATGATTCT	ACATAAGCTA	CTGTATGTGC	AATGCCATTA	3360
	TTTTCAACTT	GATTTAAAAA	CGGACGTGAC	ATACCAGTTG	CCTTTGCACC	AAGTGCTAAA	3420
30	CTTTTAATTG	CATCGAGTGG	TGTACGTAAA	CCACCACTCG	CGAAAACTGA	AATTTCGCTT	3480
	TGATAAGCCG	TTGTTTCAAG	TAATGACTCA	ACTGTAGACT	GTCCCCATGA	TGATAAGTAA	3540
	TCCATATCTT	TATTTGCACG	ACGTTCATTT	TCAATATCTA	CAAAGTTAGT	ACCACCTTTG	3600
35	CCACTAACAT	CGACATACTT	GACGCCTATT	TGTTGTAAGT	CATGCATTAA	TTCTTTGCTC	3660
	ATACCAAATC	CAACTTCTTT	TATAATGACT	GGAACAGACA	CTCGTGATAC	AATCGACGCT	3720
	ATATTATCTA	ACCAAGTCAC	AAATTCACGA	TTCCCTTCAG	GCATAACTAA	TTCTTGAGGA	3780
40	GAATTAACAT	GGATTTGTAA	CGCTTGTGCC	TCAAGTAATT	CAACTGCTTC	CAAAGCCTTT	3840
	TCTACTGGTA	CGTCCGCACC	AACATTGCTA	AAAATCATGC	CTTCAGGATT	CATTTTTCGC	3900
	GCAATCGTAA	ACGTCTCAGC	CATGCGTGGA	TTTCTCAATG	CCGCATGTGT	TGATCCAACT	3960
45	GCCATCGCTA	AGCCAGTTTC	TCTTGCAACT	ACAGCTAGCT	TTTCATTGAT	GTTTTTCGTC	4020
	CACTCGCTAC	CACCCGTCAT	TGCATTAATA	TAAACCGGAT	ATGCCATCGT	TAAGTCAGGC	4080
50	GTCTGTGATG	TCAAATCGAT	ATCATTTACA	TTAATTGATG	GGATAGAATG	ATGCACAAAA	4140
	CGCATCTTAT	CAAAATCTGA	ATGCATTGCG	TCAGATTGGG	CCATTGCTAT	TTCAACATGT	4200
	TCATTTTTC	TCTGTTCTCT	TTGAAAATCA	CTCATGATTA	AACCTACCTT	TTCGTCATTT	4260

	ATTACAGCTA	AGCAAATATA	ATATCCATAA	TGTAAATGTA	ATGCCGGCAT	ATTTACAAAG	4380
5	TTCATACCAT	AAATCCCAGC	TATGAATGTT	AACGGTGAAA	ATATAACTGA	TACTAATGTC	4440
3	AGTACTTGCA	TAATACTATT	CATTCTAAAT	GACGTGTATG	ACTCAAAATT	TTCTCGTATT	4500
	TCGTTTGTCA	TTTCTTGAGC	AGTACGAATG	ATATTACGTT	GCTTAATCAA	GTGGTCATCG	4560
10	ATATGTTGAA	TGTATAGCGA	ATGTTTATTA	TCTATAATCA	AATCACCATT	TTGTTTCATT	4620
	GTATCAATTA	GCTCTTGCAT	AGGAAACAGT	ACACGTTTTA	CTTTAATCAA	ATCCGAACGT	4680
	AACTTAAAGA	CACTATCCAT	GACCATTTTA	TTAAAGCGAT	CATCTACATG	GCGGTCTTCA	4740
15	AAATGATAAA	CACTATCTTC	AAGTGCATAT	ACAAAGTTGA	AATATTTATC	AACCATCATA	4800
	TCTAAAATTA	ATATGACGAC	ATCTGCACAA	TCTAATTCTG	CATCTAATGT	ATTCATATAC	4860
	TTATAGACTA	CTTTATTTAA	TGATTCCAAC	GTTTGATGAT	GATATGTTAC	TAATACATTG	4920
20	TCTTGTATAA	AAATATTTAG	TGCTATTGGT	GAATAGTTTG	ACCCCATAAT	ACTATGGAAT	4980
	ACTAAGTATT	GATAATCTTT	ATAAGATTTA	TATTTAGCTC	GTGGCATACC	GTTAATTGCA	5040
05	TCATCCACTT	CTAAATCATT	AAAATTAAAA	TGTGCTTTAA	ACCATTCATT	TTCTTGTTCA	5100
25	TTCGGTTCAT	CAAAATCATA	CCAAACAATA	GTCGCATCTT	TTGGTATCTC	TTTGATATCA	5160
	TCAACTACTT	TAAACGGTTC	ATATGTAGTT	TGATACCGTA	TCTTTAAAGC	CATCGATACT	5220
30	CCCCCTAAAT	AACGAATTCT	CTATTATTTT	ATCATGAATT	AAATAACGTG	TATGTCTTAA	5280
	TTTATTTTAG	TATGATAGTC	ACTAAGGAGA	TGGTTATTAT	CAAACAACTT	TTTACACATA	5340
	CTCAAACCGT	AACATCTGAA	TTCATTGACC	ATAACAATCA	TATGCATGAT	GCAAATTATA	5400
35	ATATCATTTT	TAGTGACGTC	GTGAATCGTT	TTAATTACAG	CCACGGTCTT	TCTTTAAAAG	5460
	AACGCGAAAA	TTTAGCATAT	ACGCTATTTA	CACTAGAAGA	ACATACGACA	TACCTCTCAG	5520
	AATTGTCTCT	TGGCGATGTA	TTTACTGTTA	CTTTATATAT	TTATGATTAC	GATTATAAGC	5580
40	GGTTGCATTT	ATTTTTAACA	TTAACTAAAG	AAGATGGTAC	ACTAGCATCA	ACAAATGAAG	5640
	TAATGATGAT	GGGAATTAAT	CAGCACACAC	GTCGTTCTGA	TGCTTTTCCT	GAATCATTTT	5700
	CAACACAAAT	AGCACACTAT	TATAAAAATC	AATCAACTAT	CACTTGGCCT	GAACAATTAG	5760
45	GACATAAAAT	AGCAATTCCA	CACAAAGGAG	CATTAAAATG	ACAGATGCAT	TACAACAAAA	5820
	GATTCATATC	GAATTACTAG	ATTTATTAGA	TGATGTTAAG	TTTGAATTAA	CAGAATTAAA	5880
50	TGCACAAAAA	GGGTTATACA	TTAACGGACC	AGCAAATCAG	CTACTTAAGC	GTGGCGTGCA	5940
	TATGGCTTAT	GTTCAAGGAC	AAAAGCAAGC	CATCGATAAT	ATTATGACTA	TTGTGGAACA	6000
	ACAGCTTGAA	AGATCAACAT	TTCCTAGAAC	ATTATGATAA	ATTTCAAAAT	GAGGTTGCTC	6060

	ATAATTTTTT	AGATCAATTT	TATCAAATTA	AAGGGCAATA	CTTTATCATC	ACACATATCA	6180
,	ATACACTTAT	TGGTGATTTT	CACTCAGAAG	CTCATTAACA	ATTAGTCTAT	ATAACCCTTG	6240
5	CTATATTTTC	AAAAACAAAA	CCCAATTACG	TTTTCATGTC	AAATATCATC	TTGCATGAAA	6300
	TCGTAACTGG	GTCATTTATA	TGTTATTAGT	TATTTTGTGT	TACATCCTCA	TCTATCGATT	6360
10	TGGCAATTTG	TTTAATAGCT	TTATGTGATT	GTCTAATTGG	ATAAATTGGA	AAATCATGTA	6420
	CCATCTTAGG	ATAATCATAA	AACTCAATGT	ATTGATGATG	TTGCAACATC	ATTTGTTCAA	6480
	ATAGCTTCAT	ATCAGGATGT	GTCATTTCAC	GTCCACCACC	AAACATATAA	ACTGGTGGCA	6540
15	ATCCTTCTAT	TGTGCCATTA	ATTGGCGATA	TGCGCTTATC	TGTTAATGGT	AGGCCATTCG	6600
	CCCATTTTTT	CATAATCTCA	TTGACACCAA	ACTGACTTAG	aACCGCATCT	TGTTCGATTA	6660
	AGGCGTCCGA	AATATCTTTA	TTAGATAGTG	TTGCATCTAA	AATTGGTGAG	ATTAAATACA	6720
20	ATTTATTCGG	TAATGGCTGT	TGATTAKCTA	AAAGAGATTG	TACAAAGGAT	AATGCCAGTG	6780
	CACCACCTGA	ACCATCACCC	ATGACTACGA	CATTTTGATG	TCCTACTTCA	GAȚACTAATT	6840
25	Gatcataaac	ACGTTGTATC	GCTTGGnAAA	GTATCGTCaA	TATGRAAACT	CTGGTGTCTT	6900
25	TGGATAGATA	GGCAGTACAA	CCTCATATAA	TGLACTTAAA	GTGATTTTAT	CCCAACAATC	6960
	TCCAATGGAA	CGGTGATGGT	TGTAGTGCAT	TGAATCCACC	GTGAATATAT	AAAATTTTCT	7020
30	TATCAATTTG	ATGTCTGAAA	TTAAAGCGAA	AGACTTGCAT	ATCATCTAAT	GACAATTTTT	7080
	CTAAATTTGC	TTTAACATTT	AATGTTGAAG	GCTGCTTATG	TTTTTTTCTA	TTTTCAATTT	7140
	CTCTTTTATA	AAAAAATCTT	TCAACATCTT	GATCATTTTT	AAACATAATC	GAGCGATTGT	7200
35		TTTATTGACA					7260
	ACCTTTATAT	ATTTTATGTA	TCCAATGATK	GTCTATCCCC	TACATTCTTT	GCCAAAAAA	7320
	GTATATAATG	TAGAAGATAT	TTTCTTTTTC	ACTTTCAAAT	TTAAGACTAC	AATTGAACAG	7380
40		TCATTATAAC					7440
	TACGGAGGTA	CCTTGCATGA	CAAATCCAAA	TCAACGATTA	GAACCATTTG	ATGAGACATT	7500
45	TCAACAACCG	AATATTCATC	GTGGTAAGCG	ATATGGTAAG	AAAAAACGTT	CATTGGTAAG	7560
45	CATGATTATT	CAAATCATTG	TTGTWATATT	AACCACCATC	GCTGGAATAC	AGCATGGTGG	7620

ſ.p

(2) INFORMATION FOR SEQ ID NO: 37:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9834 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:

	GTCATtACCG	amTTTCtTAG	Aatcatttaa	AGATGATAAA	TATACAAACG	TTGGTAATTT	60
5	AAAAGAAGTG	AATTTTGATA	AAATTGCTGC	GACGAAACCC	GAAGTAATCT	TTATCTCTGG	120
	ACGTACAGCT	AATCAAAAGA	ATTTAGATGA	ATTCAAAAAA	GCTGCACCTA	AAGCGAAAAT	180
	TGTTTATGTT	GGTGCAGATG	AAAAGAACTT	AATTGGTTCA	ATGAAACAAA	ACACTGAAAA	240
10	TATCGGAAAA	ATTTACGATA	AAGAAGATAA	AGCTAAAGAA	TTAAATAAAG	ATTTAGATAA	300
	CAAAATTGCT	TCAATGAAAG	ATAAAACGAA	AAACTTCAAT	AAAACTGTTA	TGTATTTACT	360
15	AGTTAACGAA	GGTGAATTAT	CAACATTTGG	ACCTAAAGGT	CGTTTTGGTG	GATTAGTTTA	420
	CGATACATTA	GGATTCAATG	CAGTTGATAA	AAAAGTAAGT	AATAGCAATC	ATGGACAAAA	480
	TGTTTCTAAC	GAATATGTTA	ATAAAGAAAA	TCCAGATGTT	ATTTTAGCGA	TGGATAGAGG	540
20	TCAAGCGATA	AGTGGTAAAT	CAACTGCGAA	ACAAGCATTA	AATAATCCTG	ТАТТАААААА	600
	TGTTAAAGCA	ATTAAAGAAG	ACAAAGTATA	TAATTTAGAT	CCTAAATTAT	GGTACTTTGC	660
	AGCTGGATCA	ACTACAACTA	CAATTAAACA	AATTGAGGAA	CTTGATAAAG	TTGTAAAATA	720
25	ATTTTAAAAG	AGGGGAACAA	TGGTTAAAGG	TCTTAATCAT	TGCTCCCCTC	TTTTCTTTAA	780
	AAAAGGAAAT	CTGGGACGTC	AATCAATGTC	CTAGACTCTA	AAATGTTCTG	TTGTCAGTCG	840
	TTGGTTGAAT	GAACATGTAC	TTGTAACAAG	TTCATTTCAA	TACTAGTGGG	CTCCAAACAT	900
30	AGAGAAATTT	GATTTTCAAT	TTCTACTGAC	AATGCAAGTT	GCCGGGCCC	AAACATAGAG	960
	AATTTCAAAA	AGGAATTCTA	CAGAAGTGGT	GCTTTATCAT	GTCTGACCCA	CTCCCTATAA	1020
35	TGTTTTGACT	ATGTTGTTTA	AATTTCAAAA	TAAATATGAT	AGTGATATTT	ACAGCGATTG	1080
35	TTAAACCGAG	ATTGGCAATT	TGGACAACGC	TCTACCATCA	TATATTCATT	GATTGTTAAT	1140
	TCGTGTTTGC	ATACACCGCA	TAAGATTGCT	TTTTCGTTAA	ATGAAGGCTC	AGACCAACGC	1200
40	TTAATGGCGT	GCTTTTCAAA	CTCATTATGG	CACTTATAGC	ATGGATAGTA	TTTATTACAA	1260
	CATTTAAATT	TAATAGCAAT	AATATCTTCT	TCGGTAAAAT	AATGGCGACA	scgTGTTTCA	1320
	GTATCGATTA	ATGAACCATA	AACTTTAGGC	ATAGACAAAG	CTCCTTAACT	TACGATTCCT	1380
45	TTGGATGTTC	ACCAATAATG	CGAACTTCAC	GATTTAATTC	AATGCCAAAT	TTTTCTTTGA	1440
	CGGTCTTTTG	TACATAATGA	ATAAGGTTTT	CATAATCTGT	AGCAGTTCCA	TTGTCTACAT	1500
	TTACCATAAA	ACCAGCGTGT	TTGGTTGAAA	CTTCAACGCC	GCCAATACGG	TGACCTTGCA	1560.
50	AATTAGAATC	TTGTATCAAT	TTACCTGCAA	AATGACCAGG	CGGTCTTTGG	AATACACTAC	1620
	CACATGAAGG	АТАСТСТААА	GGTTGTTTAG	ATTCTCTACG	ттстсттала	TCATCCATTT	1680

	AGTGTTCTTT	TTGAATAATG	CTATTACGAT	AATCTAACTC	TAATTCTTTT	GTTGTAAGTT	1800
	TAATTAACGA	GCCTTGTTCG	TTTACGCAAA	GCGCATAGTC	TATACAATCT	TTAACTTCGC	1860
5	CACCATAAGC	GCCAGCATTC	ATATACACTG	CACCACCAAT	TGAACCTGGA	ATACCACATG	1920
	CAAATTCAAG	GCCAGTAAGT	GCGTAATCAC	GAGCAACACG	TGAGACATCA	ATAATTGCAG	1980
	CGCCGCTACC	GGCTATTATC	GCATCATCAG	ATACTTCGAT	ATGATCTAGT	GATAATAAAC	2040
10	TAATTACAAT	ACCGCGAATA	CCACCTTCAC	GGATAATAAT	ATTTGAGCCA	TTTCCTAAAT	2100
	ATGTAACAGG	AATCTCATTT	TGaTAGGCAT	ATTTAACAAC	TGCTTGTACT	TCTTCATTTT	2160
15	TAGTAGGGGT	AATGTAAAAG	TCGGCATTAC	CACCTGTTTT	AGTATAAGTG	TATCGTTTTA	2220
	AAGGTTCATC	AACTTTAATT	TTTTCATTTG	GGATAAGTTG	TTGTAAAGCT	TGATAGATGT	2280
	CTTTATTTAT	CACTTCTCAG	TACATCCTTT	CTCATGTCTT	TAATATCATA	TAGTATTATA	2340
20	CCAATTTTAA	AATTCATTTG	CGAAAATTGA	AAAGAAAGTA	TTAGAATTAG	TATAATTATA	2400
	AAATACGGCA	TTATTGTCGT	TATAAGTATT	TTTTACATAG	TTTTTCAAAG	TATTGTTGCT	2460
	TTTGCATCTC	ATATTGTCTA	ATTGTTAAGC	TATGTTGCAA	TATTTGGTGT	TTTTTTGTAT	2520
25	TGAATTGCAA	AGCAATATCA	TCATTAGTTG	ATAAGAGGTA	ATCAAGTGCA	AGATAAGATT	2580
	CAAATGTTTG	GGTATTCATT	TGAATGATAT	GTAGACGCAC	CTGTTGTTTT	AGTTCATGAA	2640
	AATTGTTAAA	CTTCGCCATC	ATAACTTTCT	TAGTATATTT	ATGATGCAAA	CGATAAAACC	2700
30	CTACATAATT	TAAGCGTTTT	TCATCTAAGG	ATGTAATATC	ATGCAAATTT	TCTACACCTA	2760
	CTAAAATATC	TAAAATTGGC	TCTGTTGAAT	ATTTAAAATG	aTGctACCGC	CAATATGTTT	2820
35	TGTATATTTT	ACTGGGCTGT	CTAAGAGGTT	GAATAATAAT	GATTCAATTT	CAGTGTATTG	2880
55	TGATTGAAAA	CAATTAGTTA	AATCACTATT	AATGAATGGT	TGAACATTTG	AATACATGAT	2940
	AAACTCCTTT	GATATTGAAA	ATTAATTTAA	TCACGATAAA	GTCTGGAATA	CTATAACATA	3000
40	ATTCATTTTC	ATAATAAACA	TGTTTTTGTA	TAATGAATCT	GTTAAGGAGT	GCAATCATGA	3060
	AAAAAATTGT	TATTATCGCT	GTTTTAGCGA	TTTTATTTGT	AGTAATAAGT	GCTTGTGGTA	3120
	ATAAAGAAAA	AGAGGCACAA	CATCAATTTA	CTAAGCAATT	TAAAGATGTT	GAGCAAAAAC	3180
45	AAAAAGAATT	ACAACATGTC	ATGGATAATA	TACATTTGAA	AGAAATTGAT	CATCTAAGTA	3240
	AAACTGATAC	AACTGATAAA	AATAGTAAAG	AATTTAAGGC	ACTACAAGAA	GATGTTAAAA	3300
	ACCATCTCAT	ACCTAAATTT	GAAGCATATT	ATAAGTCAGC	AAAAAATTTG	CCTGATGATA	3360
50	CAATGAAAGT	TAAGAAATTA	AAAAAAGAAT	ATATGACGCT	TGCAAATGAG	AAGAAGGATG	3420
	CCAMAMAMCA	**************************************	שיייים איים לישים	תיאים איניים איניים	አጥር-ምስመር አ እ ረ	ጥአጥአ አርርኒ አር	2400

	AATTAGCTGA	TAATAAAAGT	GAAGCAACTA	ATCTTACGAC	AAAATTAGAA	CATAATAATA	3600
	AAGCGTTAAG	AGATACTGCG	AAGAAGAACC	TAGATGATAG	TAAAGAAAAT	GAAGTAAAAG	3660
5	GCGCGATTAA	AAATCACATT	ATGCCAATGA	TTGAAAAGCA	AATTACCGAT	ATTAACCAAA	3720
	CTAATATTAG	TGATAAGCAT	GTTAATAATG	CAAGGAAAAA	CGCAATAGAA	ATGTATTACA	3780
10	GTCTGCAGAA	CTATTATAAT	ACACGTATTG	AAACAATAAA	GGTTAGTGAG	AAGTTATCAm	3840
10	AAGTCGATGT	AGATAAGTTG	CCGAAAAAGG	GTATAGATAT	AACTCACGGC	GATAAAGCCT	3900
	TTGAAAAAA	GCTTGAAAAA	TTAGAAGAAA	AATAACTATA	ATCATTTTC	AAAGTTAAAA	3960
15	ATTTTGAATT	TATGGTTAAC	ATGTCAACTT	ACTATGTGTA	TAATGGTAAA	CATTGATATT	4020
	AACTATATGT	ATAAAAATGT	CACGCAGATG	CTATTTAAAT	GTGATAAATA	TTTTTAGAGG	4080
	TGAATAGAGT	GGCTATAAAG	CTAAGTTCAA	TTGACCAATT	TGAACAGGTT	ATTGAGGAAA	4140
20	ATAAATATGT	TTTTGTATTA	AAACATAGTG	AAACTTGTCC	AATATCGGCA	AATGCGTACG	4200
	ATCAATTTAA	TAAATTTTTA	TATGAACGCG	ATATGGACGG	TTATTATTTG	ATTGTCCAAC	4260
	AAGAACGCGA	TTTGTCAGAT	TATATTGCTA	AAAAAACGAA	CGTTAAACAT	GAATCACCTC	4320
25	AAGCATTTTA	TTTTGTAAAT	GGTGAAATGG	TTTGGAATCG	AGACCACGGT	GATATCAATG	4380
	TGTCGTCATT	AGCACAAGCA	GAAGAATAAT	GAAACTATAG	GGTTGGAACA	TTTTGCCTTA	4440
	CACTACTAGA	CGTGAATAGC	ACAACTTAAA	TTCGTGTGAA	TCAGAGTAGT	TTGGCTATAA	4500
30	TGATGTTCTG	ACCTTTTATT	TTATGTCACC	TTTAGAAGCA	GTTAAGTTAG	TACTTTTTTA	4560
	CAAACATATG	TATAATATAT	TCGAGTATTT	TTATTGAAAa	tATTTTGGAA	AACGACGAAT	4620
35	CCAATAAGAA	AATTTAAACA	TGATTTGTAA	GTTAGTTTAA	TAGGAAATAT	ATGCTAAACC	4680
	AAAAGAAGCA	TATTGTTATT	TACTGGAATA	ATTAATAATC	ATGTCATGTT	AAATGTTAGC	4740
	ATATAATCAC	GAGATAAAAT	СТААААТТТА	AGATTAATCT	TTTATGAATA	AAAAACGTAT	4800
40	CACAACAAAT	AATAAAGTAA	GGTGGTCAAG	GTTATGAAAG	TATTAGTAGC	CATGGATGAG	4860
	TTTCATGGAA	TTATTTCAAG	TTATCAAGCT	AATAGATATG	TTGAAGAGGC	AGTTGCAAGC	4920
	CAAATTGAAA	CTGCAGATGT	AGTTCAAGTA	CCATTGTTTA	ATGGAAGACA	TGAATTATTA	4980
45	GATTCTGTAT	TTTTATGGcm	ATCTGGGcaA	AAGTATCGTA	TACCAGTACA	TGATGCAGAT	5040
	ATGAATGAAG	TTGAAGGTGT	TTACGGACAA	ACTGATACAG	GGATGACCGT	TATCGAGGGG	5100
	AATTTATTTT	TAAAAGGTAA	AAAACCAATT	GTTGAACGAA	CAAGTTATGG	TTTAGGAGAA	5160
50	ATGATTAAAC	ATGCATTAGA	TAACGACGCA	AAACATGTTG	TAATTTCACT	AGGTGGGATT	5220
	GATACTTTTC	ATCCTCCTCC	ACCTATCTTA	СУУССУДТВО	CTCCTCAATT	CTATCATCAC	E200

	GATATGTCGA	ACTTACACCC	TAAAATGGAA	ACAGCAAGAA	TTCAAGTAAT	GTCGGATTTT	5400
	TCAAGTCGAT	TATATGGTAA	GCAAAGTGAA	ATCATGCAAA	CTTATGATGC	GCATCAGTTG	5460
5	AATCATAATC	AAGCAGCAGA	AATCGATAAT	TTAATTTGGT	ATTTTAGTGA	GTTATTTAAA	5520
	AGTGAATTGA	AAATTGCAAT	TGGTCCAGTT	GAACGTGGTG	GTGCTGGTGG	TGGAATTGCA	5580
	GCAGTCTTGA	ATGGACTGTA	TCAAGCTGAA	ATATTAACCA	GTCATGCATT	AGTAGACCAA	5640
10	CTAACACATT	TAGAAAATTT	AGTTGAACAA	GCGGATTTAA	TTATTTTTGG	AGAAGGATTA	5700
	AATGAAAATG	ATCAGTTGCT	AGAAACGACA	ACATTGCGTA	TTGCAGAACT	TTGTCATAAA	5760
15	CATCAAAAGG	TTGCCATTGC	AATTTGTGCA	ACTGCTGAAA	AGTTTGATTT	ATTTGAATCA	5820
	CAAGGGGTTA	CAGCAATGTT	TAATACATTT	ATCGATATGC	CAGAAACTTA	TACTGACTTT	5880
	AAAATGGGtT	ACAAATTAGG	CATTATACGG	TTCAGTCTTT	AAAACTGTTG	AAAACACATT	5940
20	TTAATGTTGA	GGTTTAGTAA	AGAAGGACTA	AATTGGTGAT	GCTGTCATGA	TGGTTAATAA	6000
	CATTTATGAT	GGTTAGCAAA	ACGAATTAGA	AGATCGAAAG	TATACGTAAA	AAATATGAAA	6060
	AATCACGCTA	TCATTGCACT	GAATGTTAGC	GTGATTTTTA	TATATTAATT	AAGCCTGAGT	6120
25	TGAACTAGTA	TATAATCGTT	GGTTTTTAGT	GATTTTCAGC	GATATCTTCT	ACAATTCCAA	6180
	TGATTACTTG	TACTGCTTTT	TCCaTAACAT	CAATGGATGC	aTATTCATAT	GGGCCGTGGA	6240
	AGTTACCGCA	ACCTGTAAAG	ATGTTTGGAG	TTGGTAACCC	CATAAATGAC	AATTGTGAAC	6300
30	CATCTGTACC	ACCGCGAATA	GGTTCAGTGT	TTGCTGGAAT	ATCTAATTTG	GCAAAGACAC	6360
	GTTTAGGTAT	ATCAATAATA	TGAGGCAATG	GTAATATTTT	TTCTGCCATA	TTGAAATATT	6420
	GATCCGATAT	ATCAACTTTA	ACTGGATAAT	TTTCAAAATG	GGCATTGATA	TCGTCACGTA	6480
35	TTTCTAAAAT	ACGTTTCTTA	CGCAATTCGA	ATTGTTTTTT	ATCATGATCA	CGAATAATGT	6540
	ATTGCAAAGT	TGCTTTTTCA	ACAGTTCCTT	CAAAGTTCAT	TAAGTGATAA	AAGCCTTCGT	6600
40	ATCCTTCTGT	TCGCTCCGGA	ACTTCACTAT	CAGGTAGCAA	ACTATCGAAT	TGTTCACCTA	6660
	AACGTATTGC	GTTTACCATT	GCATTTTTAG	CTGAACCAGG	ATGAACATTT	ACACCGTGGC	6720
	ATGTAATAAC	CGCTTCAGCA	GCGTTAAAGC	TTTCATATTG	TAATTCTCCA	TATTGACTAC	6780
45	CATCCATAGT	ATAAGCAAAA	TCAGCATTGA	AGCGGTCAAC	ATCAAATTTA	TGTGGACCAC	6840
	GACCGATTTC	TTCGTCTGGT	GTAAATCCAA	TGCGAATGGT	ACCATGTTTA	ATTTCTGGAT	6900
	GTTCTTGTAA	ATAACAAATA	GCTTCCATAA	TTTCCACAAT	ACCCGCTTTA	TCGTCTGCAC	6960
50	CTAGTAACGA	TGTACCATCA	GTTACCATTA	ATGTATGACC	AACTAAACTG	TTAAGTTCTG	7020
	САААТАСТТТ	<u>እር</u> ርል ፓር ፕአአር	a ca commitae	ጥል ምጥር ር ር ር ጥ አ ር .	TTTCTT	ም ሞአር ርአጥር እጥ	7000

	GCGCCAAAAA	TCCAACTGTT	GGGACGTCGA	CATCGATGTT	ACTITCTAAT	GTAGCAAATA	7200
	AGTAGCCATT	TTCATCTAAA	TCAGTTGGCA	ATCCTAATTG	TTGTAATTCT	TTTTCTAATA	7260
5	AATGTAACAA	ATCCCATTGC	TTTTCAGTTG	AAGGTGTTGT	TGTAGATTTT	GGATCAGATT	7320
	GCGTATCAAT	TGTCGTATAT	CTTGTTAATC	TATCTATCAA	TTGGTTCTTC	ATTATATTCG	7380
10	ACCCCTTAAA	CTCTATTATT	CATGTTGTAA	GATTTTTTAT	ATGTCTTACC	TTTGATTTTA	7440
10	CCATACAGTT	GTTTGATACG	TGTGTATAGG	TAATATAGAA	TTTCAGAAAC	TAATATACCG	7500
	AAAGCAATCG	CACCTGAAAT	CAGTGTACTT	CTAAAAATGT	ATTTACAGCA	CTTGTATAAT	7560
15	CATTTGATAC	TAAAAAACGA	GTCGCTTGAT	AAGCTGCACC	ACCAGGTACT	AATGGTATAA	7620
	TGCCTGGCAC	TATGAATATA	ATTACCGGTC	GTTTATATCT	GCGACTCATA	GTATGACTCA	7680
	TTAAGCCTAA	AATTAAGCTT	CCCAAAAATG	AAGCGCCAAC	TTTTCCAAAC	TCTAAATCTA	7740
20	CCGTTAATTG	GTAAATCGTC	CATGCAATGG	CACCCACAAA	TCCACATGCT	ACTAAGAGGC	7800
	GTTTGGGTGC	ATTGAAAATG	ATAGAGAAAA	GTACTGTTGA	TATAAAGCTG	ATTGTAAAAT	7860
	GAAATAAATA	AAATAGCATG	CTTTAACAGT	CCTTCCTTAA	ATGATTAATA	AAACGATTGC	7920
25	GACACCAGCA	CCGATTGCGA	ATGCTGTTAA	TGCAGCTTCA	ACACCGCGAG	ACATACCTGC	7980
	AAGTAATTCA	CCCGCTAATA	AATCTCGAAT	GGCATTGGTA	ATTAATATAC	CAGGGACAAG	8040
	TGGCATGACA	CTGGCTATAG	TAATGATATC	TTGATTGGTT	GCAATGCCTA	ATTTAGTAAA	8100
30	TGTGGCTGCA	ATGGATATGA	CCACAGCGGC	TGCAACAAAC	TCTGAGAAAA	ATTTAATTTG	8160
	TATATAGCGT	tGCACAAAGC	TGAATGTTAA	AAATGCGGAT	CCGCCAGCAA	TGACTGCAAT	8220
35	CCAACAATCT	GATGCGACAC	CACCAAACAT	AAATAGGAAG	AAGCCACATG	CAATGGCAGC	8280
55	TGCAAAGAAA	TTCGTTAAAA	AAGAATATTG	TAATGATGCA	TGCTGTAAAT	GAATAAATTC	8340
	AGATTTAGCT	TCATCAATTG	TGAGTTCTTT	ATTTGATATT	TTACGTGAAA	GACTATTCGT	8400
40	TAAAGCGATT	TTCTCTAAAT	CTGTTGTACG	CTCTTGTACA	CGAATTAATC	TTGTACTTGT	8460
	TCGATCGTTT	AATGAAAAA	TAATTGCAGT	TGAACTGACA	AAACTATATG	TATTATGAAG	8520
	ACCATAACTA	TGTGCGATAC	GGTTCATTGT	ATCTTCAACT	CGATATGTTT	CAGCACCTGA	8580
45	TTCaAGTAAA	ATTCTACCTG	CAATTAATAC	AACATCAATC	ACTITGTTTT	CATCTATAAT	8640
	TGTGATTGAA	TCTGGCATAT	CAATTCACCT	CCAATGATAT	GTGTTATTTA	TTTGAACAAT	8700
	TGAAGTTTAC	AACTTGTTGT	TACAACTTTC	AATAGTGAGA	CTTTGTGTTA	GTATGATGAA	8760
50	CTTGTATGGT	TCAAATTTAA	ATAAGAAAAA	CTGTTAATCT	TTGCTATTAT	ACTATGATTT	8820
	*****	********	3.000000000000				

	TTTACGCTGT	GATTTTGGAT	CGTCATCTGT	TAAATAACCA	ACACCGATAG	ACACTGACAA	9000
	TTTAATAACT	TCTTTGTTTG	GTAAATGGAA	TGATGATTTT	TCAACACCCG	AACGAATATT	9060
5	TTCAGCTAAT	TTAACACTTT	GATCAAGTGA	ATAATTGTGA	ATGACAACTG	AGAACTCTTC	9120
	GCCACCATTT	CTAAAAATTT	TAAATTGATT	CGGCACATAG	TTTTTAAGTA	ATTGAGACAT	9180
	TTGTTTTAAT	ACAGCATCAC	CTGATTTGTG	TGAGTAGGTA	TCATTGaCAT	CTTTAAATCC	9240
10	ATCGATATCG	ATTAATAATA	ATGCGATACT	TTGATGTTCT	TTTTCAGCTT	TTCGTGAAAT	9300
	TTCATTTAAA	TGTCTATCAA	ATTCTTTTAC	ATTACCTAAG	CCTGTTAAGT	AATCATATTT	9360
15	ATCTTCGTTT	TCATAACGAT	TTACGAGTGA	GAAGAAATGC	CAAATATCGA	CAAATGTTAT	9420
	CGCTGAAGCT	AAAGTGATAA	TTAATGAAAT	TGGTATTAAA	ATGATAACTT	CCGATAGTGT	9480
	GTAAATAGGA	CTCACTAACG	CGACACCAAA	TAAAATGATT	ATTGTAACAA	CATTAAGTAT	9540
20	TAATAATGAT	AGCACATCAT	TTTGTTTTAA	AAATGGTCCA	ATAGCACTTG	TTACTGCAGC	9600
	AATAACAATC	AACGTAACAC	CGTACATAAT	CGAGTTGTTA	AATACTACAA	TTTCAACAAT	9660
	TGCTACAATT	ACTGTGGCAG	ATAATGTATA	GACCATATTT	GTAAATCTAC	СТАААААСАА	9720
25	TAAAGGAACG	AATGTTAAGT	GAATTAAATA	ATCTTCACGA	TAAGGGATAG	GGTAGACAGA	9780
	TAATAATAAT	GATACGATTG	TCATTAAAAC	AGTGACATAA	GCCTTAGAAA	AAAC	9834
			_				

(2) INFORMATION FOR SEQ ID NO: 38:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23439 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

35

40

45

30

C(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:

TCTCAATCAG	ATGAAAAATT	GCATATCGTA	GGTTTTACAG	AAAGTGCAAA	ATATAATGCG	60
TCATCAGTCA	TTTTCACGAA	TGACGCTACC	ATTGCCAAGA	TCAATCCTAG	ATTGACTGGA	120
GATAAAATTA	ATGCAGTTGT	TGTACGTGAT	ACAAATTGGA	AAGACAAAAA	ATTAAACCAA	180
GAGCTTGAAG	CGGTAAGTAT	TAATGACTTT	ATTGAAAATT	TACCAGGTTA	TAAACCACAG	240
AACTTAACAT	TAAACTTTAT	GATTTCATTC	TTATTTGTCA	TTTCAGCTAC	AGTTATAGGC	300
ATTTTCCTAT	ATGTCATGAC	ATTACAAAAG	ACGAGTTTAT	TTGGCATATT	AAAAGCTCAA	360
GGATTTACGA	ATGGCTATTT	GGCGAATGTG	GTAATTTCGC	AGACGGTCAT	ATTAGCACTA	420
TTTGGTACGG	CATTTGGCTT	ACTGTTAACA	GGCGTTACAG	CTCCATTTT	а сетеа теса	400

55

	TCTGTATTAG	GAAGTTTATT	CTCCATTTTA	ACAATTAGAA	AAATAGATCC	GTTAAAGGCG	600
	ATTGGGTAGG	AGGTGTAGCA	aatgttgaaa	TTTGAAAATG	TAACAAAGTC	ATTTAAAGAT	660
5	GGGAATCGTA	ACATTGAAGC	GGTTAAAGAT	ACAAATTTTG	AGATAAATAA	AGGTGATATT	720
	ATAGCATTGG	TTGGACCTTC	TGGCTCTGGT	AAAAGTACAT	TTCTAACTAT	GGCAGGTGCT	780
	TTACAAACAC	CGACATCTGG	GCACATTTTA	ATCAATAACC	AAGATATTAC	GACAATGAAG	840
10	CAAAAAGCAT	TGGCAAAAGT	TAGAATGTCT	GAAATAGGTT	TTATTTTACA	AGCTACAAAC	900
	CTTGTACCAT	TTTTAACGGT	AAAGCAACAA	TTTACATTAT	TGAAAAAGAA	AAATAAGAAT	960
15	GTTATGTCTA	ATGAAGACTA	TCAGCAACTT	ATGTCACAAT	TAGGTCTAAC	TTCATTGCTT	1020
	AATAAGTTAC	CTTCAGAAAT	TTCAGGTGGT	CAGAAACAAC	GTGTGGCGAT	AgCaAAGCGT	1080
	TATATACGAA	TCCGTCGATT	ATTTTAGCGG	ATGAACCTAC	CGCGGCGTTA	GATACTGAAA	1140
20	ATGCGATTGA	AGTCATTAAA	ATTCTACGTG	ATCAAGCCAA	ACAAAGAAAG	AAAGCATGTA	1200
	TTATTGTTAC	ACATGATGAA	CGACTTAAAG	CATATTGTGA	TCGTTCATAT	CATATGAAAG	1260
	ATGGCGTCCT	TAATCTTGAA	AATGAAACAG	TAGAATAGTT	TTATTAAGCC	GGTACATCAT	1320
25	GTGCCGGTAT	TTTTATGTTT	ATGTATTATT	TGAATAAACT	TTCACATTCA	ATTAATAATA	1380
	ATTATTATCG	AAAATCAGAA	ATATTCCGTG	AAATATAATA	TTTTTTGTAG	TAAAATGGCC	1440
	TCTAAGTATT	CAATATTTAA	ATATGGGGAT	TGAATATAAA	ATTATCGTAA	TGGGGGTCAA	1500
30	TGGTTATGGA	TTTATTGATA	GGTACTTTAT	TTTTATTTTT	GGTCTTAGTG	ATTTTTACAT	1560
	TATTTACATA	TAAAGCGCCT	AATGGTATGC	GTGCCATGGG	AGCATTAGCT	AATGCAGCAA	1620
35	TCGCAACATT	TTTAGTGGAA	GCATTTAATA	AATATGTTGG	TGGCGAAGTA	TTCGGTATTA	1680
35	AATTTTTAGA	AGAGCTAGGA	GACGCTGCGG	GAGGTCTAGG	TGGTGTCGCT	GCCGCTGGAT	1740
	TAACĀGCATT	AGCTATCGGT	GTGTCACCAG	TATATGCATT	AGTTATAGCA	GCCGCGTGCG	1800
40	GTGGTATGGA	TTTATTACCA	GGTTTCTTTG	CGGGTTATAT	GATTGGATAT	GTGATGAAAT	1860
	ATACAGAGAA	ATATGTGCCG	GATGGTGTCG	ACTTAATTGG	ATCGATTGTC	ATCTTAGCGC	1920
	CATTAGCTCG	TCTTATTGCA	GTATTATTAA	CGCCAGTAGT	GAATAGTACA	TTGATTCGAA	1980
45	TTGGTGATAT	TATCCAAAGT	AGTACGAATA	CGAATCCAAT	TATCATGGGT	ATCATTTTAG	2040
	GTGGTATTAT	TACGGTTGTC	GGCACAGCGC	CATTGAGTTC	AATGGCATTG	ACAGCATTAT	2100
	TAGGTTTAAC	GGGTGTACCT	ATGGCTATTG	GTGCCATGGC	AGCATTTAGT	TCGGCATTTA	2160
50	TGAATGGGAC	GCTATTCCAT	CGCTTAAAAT	TAGGTGATCG	TAAGTCTACG	ATTGCAGTAA	2220
	רייוי א יייידירי א א ריכי	ምምምእም <i>ር</i> እ <i>ር</i> እ እ	CCACATATTTC	TATCACCCAA	TOOR APPROPR	a more a ma mm a	2200

	ATGCGACAGG	TACAGCTACA	CCGATTGCAG	GATTTTTAGT	TATGTTTGGA	TTTAATCATC	2400
	CGACGACAAT	TGTGATTTAT	GGTGTAGTAA	TGGCGATTGT	AGGTGCGCTT	GCAGGTTATC	2460
5	TTGGTTCAAT	TGTATTTAAA	AAATATCCAA	TTGTTACTAA	GCAAGACATG	ATTAATCGAG	2520
	GTGCAGTAGA	CGCATAGCAT	CATCATATTG	AATAGTAAAA	ACAAATAAAA	CATAGTAACG	2580
	TGATTCAGTC	GATGTAACAG	TCGATAATGA	GTCACGTTTT	TTTATAGAAA	AATACAAGAC	2640
10	ATAAAAATGT	CATAATTTAT	TGTCGACAAA	TATCATACTG	TATAAACATT	TATCATTTTC	2700
	TCAAGTACCT	TTTACACGAT	GGAATGAACT	TACTTTTTAC	GAAATTATGC	GTATTTTATA	2760
	AACAAATATC	ATTGATATAA	CGGTAAATGT	AAGCGTTTAC	AACAGAAATA	ACAGCATGCT	2820
15	ACGATATTTT	TGTAAATTCA	CTGATTCAAG	TATTTTAAGT	CAATATGAGG	AGGGATGTTA	2880
	TGAGCGATTC	TGAGAAAGAA	AAAAATTTTA	GAATTAAAGA	TAATCCGTTT	ATTTCACAAC	2940
20	GTGAACTTGC	TGAGGCAATT	GGATTATCTA	GACCCAGCGT	AGCAAACATT	ATTTCAGGAT	3000
	TAATACAAAA	GGAATATGTT	ATGGGAAAGG	CATATGTTTT	AAATGAAGAT	TATCCTATTG	3060
	TTTGTATTGG	CGCAGCGAAT	GTAGATCGTA	AGTTTTATGT	GCATAAAAAT	TTAGTTGCAG	3120
25	AAACATCAAA	TCCTGTAACG	TCAACACGCT	CTATTGGTGG	CGTAGCAAGA	AATATTGCTG	3180
	AGAACTTAGG	TAGGCTTGGC	GAAACGGTCG	CTTTTTTATC	TGCTAGTGGA	CAAGATAGTG	3240
	AATGGGAAAT	GATTAAACGA	TTGTCCACAC	CATTTATGAA	TTTGGATCAT	GTTCAACAAT	3300
30	TTGAAAATGC	GAGTACAGGT	TCATATACAG	CTTTAATTAG	TAAAGAAGGC	GACATGACAT	3360
	ATGGCTTaGC	AGATATGGAA	GTGTTTGACT	ACATTACGCC	TGAATTTTTA	ATTAAGCGTT	3420
	CACACTTATT	GAAAAAGGCT	AAGTGCATTA	TTGTAGATTT	GAATTTAGGC	AAAGAGGCAT	3480
35	TAAACTTCTT	ATGTGCCTAT	ACCACGAAAC	ATCAAATCAA	ATTAGTTATC	ACCACGGTTT	3540
	CTTCCCCAAA	AATGAAAAAT	ATGCCTGATT	CATTACATGC	TATTGATTGG	ATTATCACGA	3600
4.0	ATAAAGATGA	AACAGAAACA	TACTTAAATT	TAAAAATAGA	ATCTACTGAT	GATTTAAAAA	3660
40	TAGCTGCTAA	ACGCTGGAAT	GATTTAGGTG	TTAAAAATGT	TATTGTGACA	AATGGCGTGA	3720
	AAGAACTCAT	TTATCGAAGT	GGTGAGGAAG	AAATCATTAA	GTCAGTTATG	CCATCAAATA	3780
15	GTGTGAAAGA	TGTTACAGGT	GCAGGCGATT	CATTCTGTGC	TGCAGTAGTG	TATAGCTGGT	3840
	TAAATGGGAT	GTCTACTGAA	GATATATTAA	TTGCTGGTAT	GGTTAACGCA	AAGAAAACGA	3900
	TAGAAACGAA	ATATACAGTT	AGGCAAAACC	TAGATCAACA	GCAACTTTAT	CACGATATGG	3960
50	AGGATTATAA	AAATGGCAAA	TTTACAAAAG	TATATTGAGT	ATTCTCGAGA	AGTTCAGCAA	4020
	CCACCCCACA	3 C 3 3 T C 3 3 C C	CATOCOACCA	TTTD CD DOCK D	~~~~		

	GCCATTCCAG	CAACCATAGO	CATTATAGAT	GGCAAAATTA	AAATTGGTTI	AGAAAGCGAA	4200
	GATTTAGAAA	TACTGGCAAC	TAGTAAAGAG	GTTGCTAAAG	TATCTAGAAG	GGATTTAGCA	4260
5	GAAGTTATTG	CGATGAAGTG	TGTTGGTGCT	CACTACTGTAG	CGACGACGAT	GATATGTGCT	4320
	GCAATGGCTG	GTATTCAATT	TTTTGTTACA	GGAGGTATTG	GGGGCGTCCA	TAAAGGTGCA	4380
40	GAACATACGA	TGGACATTTC	AGCAGACTTA	GAAGAACTGT	CTAAAACAAA	TGTCACTGTT	4440
10	ATCTGTGCAG	GTGCCAAATC	AATTTTAGAC	TTACCTAAGA	CGATGGAGTA	TTTAGAAACA	4500
	AAAGGCGTTC	CAGTTATTGG	ATATCAAACG	AATGAATTGC	CAGCATTCTT	CACTCGCGAA	4560
15	AGCGGTGTTA	AGTTAACAAG	TTCGGTTGAA	ACGCCAGAAC	GACTTGCTGA	CATTCATTTA	4620
	ACAAAACAGC	AGTTAAATCT	TGAAGGTGGC	ATTGTTGTTG	CTAATCCAAT	TCCATATGAG	4680
	CATGCCTTAT	CAAAAGCATA	TATTGAGGCA	ATCATAAATG	AAGCTGTTGT	TGAAGCGGAA	4740
20	AATCAAGGTA	TTAAAGGTAA	GGACGCCACA	CCGTTCTTGT	TAGGGAAAAT	TGTAGAAAAA	4800
	ACGAATGGTA	AAAGTTTAGC	AGCAAATATA	AAACTTGTTG	AAAACAATGC	GGCGTTGGGT	4860
	GCTAAAATTG	CTGTCGCTGT	TAATAAATTA	TTGTAGGTGA	TGATACATGA	ATATTTTATT	4920
25	CGCTATCACA	GGGATAGCAT	TTGCACTATT	TGTTGCGTTT	TTATTCAGTT	TTGATCGTAA	4980
	AAAAATAGAC	TTCAAAAAGA	CGTTAATAAT	GATATTTATT	CAAGTGTTGA	TCGTGTTATT	5040
	TATGATGAAC	ACAACGATTG	GTTTGACAAT	TTTAACTGCA	CTAGGTTCAT	TTTTTGAAGG	5100
30	GCTAATAAAT	ATTAGTAAAG	CAGGCATAAA	TTTTGTTTTT	GGAGATATAC	AAAATAAAA	5160
	TGGCTTTACG	TTCTTTTTAA	ACGTATTACT	GCCATTAGTT	TTTATTTCTG	TATTAATAGG	5220
35	CATCTTTAAT	TATATTAAGG	TATTACCATT	TATTATCAAA	TATGTAGGTA	TCGCTATTAA	5280
33	TAAAATAACT	AGAATGGGGC	GCTTAGAAAG	TTATTTTGCT	ATTTCAACAG	CAATGTTTGG	5340
	GCAACCAGAA	GTATATTTAA	CAATAAAAGA	TATTATTCCA	AGATTATCTA	GAGCGAAATT	5400
40	ATATACAATT	GCGACGTCTG	GTATGAGTGC	TGTTAGTATG	GCAATGCTAG	GTTCATATAT	5460
	GCAGATGATT	GAACCCAAGT	TCGTAGTTAC	AGCAGTAATG	TTAAATATTT	TTAGTGCGCT	5520
	TATCATCGCC	AGTGTAATCA	ATCCCTATAA	ATCTGATGAT	ACTGATGTTG	AAATTGATAA	5580
45	CTTAACGAAA	TCCACAGAAA	CTAAAACATT	GAATGGAAAA	ACAGGAAAAC	CTAAGAAAGT	5640
	TGCCTTTTTC	CAAATGATTG	GTGATAGTGC	GATGGATGGG	TTTAAAATCG	CTGTTGTAGT	5700
	AGCCGTAATG	TTGTTAGCAT	TTATTTCATT	AATGGAAGCA	ATTAATATCA	TGTTTGGTAG	5760
50	TGTTGGTTTG	AACTTTAAAC	AGCTTATTGG	CTATGTGTTT	GCACCAATCG	CATTCTTAAT	5820
	GCCCATTCCA	TCCACCCAAC	TOTTO		madada ama a	1 mm 1 nom 1 no	

	CAAGGTATCA	TTTCAGTTTA	CTTAGTAAGC	TTCGCTAATT	TTGGTACGGT	TGGTATCATC	6000
_	GTAGGTTCAA	TTAAAGGCAT	TAGTGATAAA	CAAGGAGAA	AAGTTGCATC	CTTTGCAATG	6060
5	AGGTTGCTAC	TTGGTTCAAC	TCTAGCTTCA	ATCATTTCAG	GATCAATCAT	TGGCTTAGTA	6120
	TTGTAAATGA	ATCGAAGTAC	CTAAATTAAA	TTCATGGCA	AGCTAAACCC	CGTCACCAAG	6180
10	TTGGCGCAAC	AGCGcATgcA	TAACTTAGTG	ACGGGGTTTT	ATCATAACAA	TCTACTTTTT	6240
	CGTAGCCGTT	TTTGAAATGT	ATGTTGATGG	TTTATCTTTT	TCAAAAATTG	TTAATCCCGT	6300
	TATATCTTTT	TTATGTTTTG	AAGGGACAAT	GAAGCTAAGT	ATATAAGCAA	AGACAAAAGC	6360
15	AACTGTAAAT	GAAATGGTAG	ATACATAGAA	AGGTGAGTTA	CCTTTGCCAA	CACCATTATA	6420
	GACATAAGCA	AAGATGATAC	CCAATATTAA	TCCACAAATA	ACACCGAATG	TATTCGTACG	6480
	TTTAGTGAAA	ATACCAACTG	CAAATACACC	AGCCAATGGA	ACGCCGAATA	ATCCAGTCAC	6540
20	AAACAAGAAT	AAATCCCATA	AGTCATTTGA	ATTAGAAGCA	ATTAAGTATA	GTGACATTCC	6600
	AAAACCGAAA	ATACCTGCAA	TGATAATAAT	GAAACGTGCA	AAGTTAACTT	CGTGTCGCTC	6660
	GCTACCTTTT	CCGAAGAAGC	GTTGCTTAAT	GTCGATTGAA	ATACAAGCAG	ATATAGAATT	6720
25	TAAACTAGAT	GAAATGGTAG	ACTGTGCAGC	GGCGAAAATG	GCTGCAATAA	GTAATCCTGC	6780
	TACAAATGGT	GGCATCTCAG	TCAAAATGAA	ATATGGCACT	ACAGATGATG	TATTGAAGCC	6840
20	TTTTGGTAAA	ACAGCTTCAT	GTGTATAAAA	TGAATACAGC	ATTGTACCCA	TACCATAAAA	6900
30	TAAGGGTGCT	GAAATTAAAG	CTAGGATACC	ATTTGTCCAT	AACGATTTAT	TTGTTTCTTT	6960
	TAAACTATCA	GAAGCTTGAT	AACGCTGCAC	GACGTCTTGA	CTCGCTGTGT	ATTGATACAA	7020
35	GTTGTTGAAA	ATATTTCCTA	GGAAAATAAT	TGGAATGGCA	GCTGCCGCAG	TATTTAGTTT	7080
	CCAATTGTCT	GCACTAATTA	ATTTTTTGTG	CTCAATCGCA	TCTGCAAAGA	CAGTGCCGAA	7140
	ACCGČCTTTA	ATGTTCACAA	CACCTAGAAT	AATAATAACT	AAAGCGCCGC	СТААТААААТ	7200
40	GACGCCTTGA	ATGAAATCAC	TCCAAACCAC	ACCTTCGAAA	CCACCTAAAA	ATGTATATAA	7260
	AATACATAGT	AAACCAACGA	GTGATGCAAC	GATATAAGGG	TTCATGTCTG	ATACAGATGT	7320
	GATTGCTAAT	GTTGGTAAGT	AGATAACAAT	TGCAACACGC	CCTAAATGGT	AAACGACAAA	7380
45	TAATAATGAG	CCAATGACAC	GTATGCTAGG	GCCAAATCTA	GCTTCTAAAT	ATTCATATGC	7440
	AGATGTTACC	TTTAACTTTT	TAAAGAAAGG	GACATAGAAA	TAAATAAGTA	ATGGAATAAT	7500
	TGCGACGATA	GCAATGTTAC	CAGCGATATA	TGACCAATCT	GTTAAAAATG	CTTTCTCTGG	7560
50	TGTCGACATA	AATGTAATCG	CACTTAACGT	AGTAGCATAA	ATTGAAAAGC	CAACTACCCA	7620
	AGATGGCAAG	CGACCACTTG	CGGTAAAGAA	ACTATTGGTA	CTTTGGCTCG	CGCGCTTGGT	7680

	TGTGCCAAAT	CCAACTTCTT	TCATGGGCAA	CATCCCCTTT	ACAATGTATT	GATTCTTTGA	7800
	TGTCTATAAA	TCGTATTTTG	CAATGAGTTG	ATCTAATGTT	TGTCGATGTG	CTTCGTTAAA	7860
5	AGGTTTGAAA	GGTCTTTTCG	GTAATCCTGC	ATCAATGCCA	CGATGACGTA	ATATTTCTTT	7920
	CAATGTTGGA	TAAATCCCCA	TTGATAACAC	TGTTTCGATA	ATGTCGTTTG	AATCATGTTG	7980
	CAGTTGGTAA	GCTTCTTGAA	TTTGACCTTG	TCGTGCTAAG	TCGAAGATTT	TTCTTGCACG	8040
10	GCGACCATTA	ACGTTATATG	TAGAACCAAT	TGCACCATCT	ACGCCAGAAA	TCGTAGCTTG	8100
	AACTAACATT	TCATCAAAGC	CAGATAAGAT	TAATTTGTCT	GGGAATGCTT	TTCTAATACG	8160
15	TTCGAGTAGG	AAGAAGTTTG	GCGCTGTATA	TTTAACACCA	ACAATTTTTT	CATGATTAAA	8220
	TAGCTCGCTG	AATTGTTCAA	TAGAAATATT	CACACCTGTT	AAATCTGGTA	TTGCATAAAT	8280
	AATCATATTG	TTCTGAGTTG	CTTCGATAAT	ATCGAAATAG	TAATCTCTAA	TTTCTTCAAA	8340
20	AGTAAATGGA	TAGTAGAATG	GTGTTACGGC	AGAAAGTGCA	TCATAACCGA	GTTCTGTGGC	8400
	ATATTTTCCA	AGTTCAATGG	CTTCATTTAA	ATCTAACGAA	CCTACTTGAG	CAATCAATTT	8460
	CACTTTATCC	CCAACTGCCT	CTTTGGCAAC	CTTGAAAACT	TGCTTCTTCT	GCTCTGTATT	8520
25	TAATAAAAAG	TTTTCGCCTG	AGCTACCATT	TACATAAAGA	CCGTCTAATT	CTTCAGTTTC	8580
	AATGGCATTT	TGAGCAATTT	GTTTAAGTCC	TTGTTCATTT	ACTTGACCAT	TTTCATCAAA	8640
	AGGAACGAGT	AACGCTGCAT	ATAAACCTTT	TAAATCTTTG	TTCATTATGA	AGTCCCTCCA	8700
30	AAAATCATTT	GATAATATAG	TTTACAGCTA	TAATTGTAAA	CGCTATCATA	AAATGTAACA	8760
	ATATCTTTTT	GAAAATTGTA	GTCATATTTA	TGTATAATTA	ATGAAAATGT	TTTTCAAAAT	8820
	CAATAGAAAT	GGAGTGAGTA	AGGTGTATTA	CATCGCAATC	GATATTGGAG	GCACTCAAAT	8880
35	TAAATCGGCA	GTTATTGATA	AGCAATTGAA	TATGTTTGAC	TATCAACAAA	TATCAACGCC	8940
	GGACÃACAAA	AGTGAGCTTA	TTACTGACAA	AGTATATGAG	ATTGTAACAG	GATATATGAA	9000
40	GCAATATCAG	TTGATCCAAC	CTGTCATAGG	TATTTCATCA	GCAGGCGTTG	TTGATGAACA	9060
	AAAAGGCGAA	ATTGTATACG	CAGGGCCAAC	CATTCCGAAT	TATAAAGGTA	CTAATTTTAA	9120
	GCGATTATTA	AAATCACTGT	CTCCTTATGT	CAAAGTAAAA	AATGATGTAA	ACGCTGCATT	9180
45	ACTAGGCGAA	TTGAAATTAC	ATCAATATCA	AGCAGAACGG	ATCTTTTGTA	TGACGCTTGG	9240
	TACAGGCATT	GGGGGTGCGT	ACAAGAATAA	TCAAGGTCAT	ATTGATAATG	GTGAGCTTCA	9300
	TAAGGCAAAT	GAAGTTGGGT	ATTTATTGTA	TCGTCCAACT	GAAAATACAA	CGTTTGAGCA	9360
50	ACGTGCTGCA	ACGAGTGCAT	TGAAAAAGCG	CATGATTGCC	GGAGGATTTA	CGAGAAGCAC	9420
	ACATGTGCCA	СТАТТСТТТС	AAGCAGCTGA	ACAACCTCAT	CATATTCCAA	እ እ <i>ር</i> እ እ አጥ አጥጥ	0400

	AGGGCTTATA	TTAATTGGGG	GCGGTATATC	TGAACAAGGA	GATAATCTCA	TTAAATATAT	9600
_	CGAGCCGAAA	GTTGCACACT	ATTTACCAAA	AGACTATGTT	TATGCACCAA	TACAAACGAC	9660
5	TAAGAGTAAA	AATGATGCAG	CATTATATGG	CTGTTTGCAA	TGATAGTTGA	AAGAAGGAGT	9720
	CATTCTAAAA	TAGAATTTGA	AACCGTTACG	AGAGATGAGA	GCTGTTGTTA	GTTCCACACA	9780
10	TCACACTCTA	TCTAGGACCA	ATCTAAACTA	TATCAACCAA	CAGTGTGCCA	CGGGCAAATT	9840
	AAATTGAAGA	AGCTGAGATA	TTAAAATTTT	AGAAAATGTA	AAAAAATATT	TGGTATTGAA	9900
	attaaaaag	CACCTAGCAA	CTCGTTGGGA	CAATCACGAT	GATTGTCTAC	AGTTGCAGGT	9960
15	GGATTTGAAT	ATACTACTAG	TTATTTGTTG	TCTAGGATAA	TAGATTTAGT	ATGTTGATAA	10020
	GTTTGACTCA	GATTCGTATT	ТТСТААТААА	TGATAACTCA	CGATATCGAT	TAAAAAGAGT	10080
	GTCGCAATTT	GTGTGTTGAT	AAATTGATGG	TCGGTATTAC	GCGATTGATC	CGTTGTTAAA	10140
20	AGTACTAAAT	CTGCACAATC	TGTAAGTTTA	CTACCTTCAA	AATTTGTGAT	GGCAACGACA	10200
	TATGCACCAT	GAGATTTGGC	GACTTCCGCT	GCAGAAATTA	ATTCCGAAGT	ATTACCACTA	10260
	TTTGACATAG	CAATAAACAT	ATCCGAATGA	GATAGTAGGG	ATGCCGATAT	TTTCATTAAA	10320
25	TGTGAATCGG	TAGTAACATT	ACCTTTTAGC	CCCATACGAA	TCATACGATA	ATAAAATTCA	10380
	GTCGCTGATA	AACCAGAGCT	ACCTAGTCCA	GCAAAGAGTA	TATGTCGACT	TGATTGAAGT	10440
	TTGTCGATAA	AGGTTTGGAT	AATGTCGTTA	TCAATAAATT	CACCAGTTTG	TTGAATGATT	10500
30	TGTTGATGAT	ATTTATGAAT	TCTTTGAATA	ATTGGGCTAT	TTTCAATAAC	TGTCTCTGTC	10560
	ATTTCTTGTT	GAATATTAAA	TTTTAAATCT	TGGAAATTCT	CATAATCCAG	CTTATGACTA	10620
35	AAGCGTGTCA	TCGTTGCTGG	TGATGTACCA	ATCGCATGGG	CTAAGGAGTT	AATCGTTGAA	10680
	AAGGCATCGC	TATAACCATT	TTGTCTTATA	TAATTGACGA	TGCGTTTATC	AGTTTTTGTA	10740
	AATAAATGTT	GATAACGTTG	AACACGATTC	TCAAATTTCA	TTGTGTCACC	CCTTCATCTT	10800
40	AATGATTACT	ATTATATATG	AAAAATATTT	TCAAGATAGT	AAAAAGCATT	GATAAAAATT	10860
	ATCTTAATGA	TATATTGTAA	ATGACTTTAC	GTGAAAAAAC	GACTTATGGA	GTGAGGAATA	10920
	ATGTTACCAC	ATGGATTAAT	AGTATCTTGT	CAGGCACTAC	CAGATGAACC	ATTGCATTCA	10980
45	TCTTTTATTA	TGTCGAAAAT	GGCATTAGCT	GCGTATGAAG	GTGGTGCTGT	TGGTATTCGC	11040
	GCAAATACTA	AGGAAGACAT	TTTAGCAATT	AAAGAAACGG	TAGATTTACC	AGTTATTGGC	11100
	ATTGTGAAAC	GTGACTATGA	TCACTCAGAT	GTTTTCATTA	CTGCAACGTC	AAAAGAAGTT	11160
50	GATGAACTGA	TAGAAAGCCA	ATGTGAAGTC	ATTGCATTGG	ATGCAACGTT	ACAGCAACGT	11220
	CCGAAAGAAA	CGTTAGACGA	カ エエカ C エカ エ C カ	ጥልጥልጥጥል	CACATICCACC	CAACCOMOCAA	11200

¹ EP 0 786 519 A2

	TATATTGGCA	CGACGTTACA	TGGCTATACT	AGTTATACGC	AAGGACAATT	ACTTTATCAA	11400
	AATGACTTCC	AATTTTTAAA	AGATGTACTA	CAAAGTGTTG	ATGCAAAAGT	TATTGCGGAA	11460
5	GGTAATGTCA	TTACACCGGA	TATGTATAAA	CGTGTGATGG	ACTTAGGCGT	TCATTGTTCA	11520
	GTCGTTGGTG	GTGCGATAAC	ACGACCAAAA	GAAATTACGA	AACGTTTTGT	TCAAATTATG	11580
	GAAGATTAAA	TGATAACGAT	AAAAAAACGA	GATGACCATC	ATTAATTAAA	GGCACCTAAT	11640
10	TATCTTAGGT	GGCTGAATGA	ATGTAATGGG	TTCATCTCGT	TTTGTTTGTT	TATGATAGTG	11700
	ATTTTATTTT	CAACTTTATC	CAAAAATAAG	TAAAGCGACG	GGGATGGTGA	TTAATAGCGA	11760
15	CAACGCCACG	CGTAAAAACC	AAATGATGAT	GAGTTTCCAG	ACAGGTATTT	TAATTTCAGT	11820
	TGCTAGTATA	CATGGCACTA	ATGCTGAGAA	AAAGATAATG	GCTGATACGC	TTACTACACC	11880
	GACGACAAAT	TTAGTACTCA	TTGCAGCTTT	AGTTACTAAC	AAAGATGGTA	GAAACATCTC	11940
20	TACAATAGAA	AckCTGACGC	TTTTGCTAGT	AAAGCCTGAT	CAGCAATTGG	GAAAATATAA	12000
	ATAAATGGAT	AGAAGATATA	GCCAAGCCAA	TCAATGAATG	GTGTATAGTT	CGCTACAATC	12060
	AGTCCTAAAA	AACCAATCGA	TAATATAGAA	GGTAAAATAC	CAACAGTCAT	TTCTAAACCG	12120
25	TCTTTCAAAT	TGTCCCAAAC	GTTCTTCACG	AGAGATGGTG	TTAATGCATT	TTGTTTCATC	12180
	GCCTCTGCAT	ATGCAGTTTT	CAGTCTGCTT	CCTTCAATAG	CAACTTCTTG	TTCTCCTTCT	12240
	TGTCCGTTAT	AATATTCTGT	TGATTCATTG	CTGATTGGCG	GTAGCCATGC	AGTAATTGCA	12300
30	GTCACGACAA	ATGTGATGAC	TAAAGTTATC	CAAAAGTATA	AATTCCAATG	CGGCATTAAT	12360
	CCTAAAGTTT	TAGCAACGAT	AATCATAAAA	GTTGCTGAAA	CTGTTGAAAA	GCCAGTCGCA	12420
25	ATAATCGTGG	CTTCTCGTTT	GTTGTACATC	CCTTGCTTAT	AGACACGATT	AGTAATCAAT	12480
35	AATCCTAAGG	AATAACTGCC	GACAAACGAA	GCCACTGCAT	CGACAGCGGA	TTTTCCTGGT	12540
	GTTTTAAAAA	TAGGTCTCAT	AATAGGCTCC	ATATAAACAC	CGACAAATTC	TAATAAGCCA	12600
40	TAGCCCACTA	ATAAAGAAAG	CGCAATTGCA	CCTACTGGAA	TTAAGATACT	TAATGGCATC	12660
	ATTAATTTTT	CAAACAAAAA	CGGACCATAG	TTAGCTTTAA	ATAGTATTGA	TGGACCGATT	12720
	TTAAATACAT	ACATTATACC	GATCATTGCA	CCTGCAACTT	TAAATAATGT	AATGACCAAG	12780
15	TTTGTGATTG	AAGTCATAAA	AGTACGTCTC	ACTATTGGTA	ACGCTGTACC	AATTAAAATC	12840
	ATAATCAGTG	CAACATAGGG	CATAAGTGGA	CCTATGATTG	AGCGAATGGC	TAGATGAACA	12900
	TGATCGACGA	AAATAGTGTT	GTTACCATTA	ATCGTAAAAG	GAATAAAGAA	ACATAGTATG	12960
50	CCCACTAAAC	TATAGACAAA	AAAACGCCAT	GCACTTGGTT	GTTGTGCATT	AGAATGATAT	13020
	mc a mmc a mma	******	mmm	man n m n a n a n			

	ATAGTTTGAA	TTATTTTCAT	ACCAATACAA	ATTAACTAAT	TATATATAGA	TTGAAACTAT	13200
	ATTACTTAAT	ATTTATAAAA	TCTTAAATGT	TGTTGTGTTG	ATTCAACACC	ACAACTAAAA	13260
5	GTGTTTATAA	ATTATTTGGA	AATACACATA	TTTGTAAATG	ATTAGTATCG	ATTTAATATC	13320
	GTATTATTAA	ATTTTTATTA	ATTTTGTAGT	CTTAATCMAA	АААТААТАТА	TGTCATGTTA	13380
	TATTGAAGGT	GCAGTTGTTT	TTCATTCTCA	AGAGGGGGTC	AAAAAAATAC	TTTTGAGGTG	13440
10	ATTATATGTT	AAGAGGACAA	GAAGAAAGAA	AGTATAGTAT	TAGAAAGTAT	TCAATAGGCG	13500
	TGGTGTCAGT	GTTAGCGGCT	ACAATGTTTG	TTGTGTCATC	ACATGAAGCA	CAAGCCTCGG	13560
15	AAAAAACATC	AACTAATGCA	GCGGCACAAA	AAGAAACACT	AAATCAACCG	GGAGAACAAG	13620
	GGAATGCGAT	AACGTCACAT	CAAATGCAGT	CAGGAAAGCA	ATTAGACGAT	ATGCATAAAG	13680
	AGAATGGTAA	AAGTGGAACA	GTGACAGAAG	GTAAAGATAC	GCTTCAATCA	TCGAAGCATC	13740
20	AATCAACACA	AAATAGTAAA	ACAATCAGAA	CGCAAAATGA	TAATCAAGTA	AAGCAAGATT	13800
	CTGAACGACA	AGGTTCTAAA	CAGTCACACC	AAAATAATGC	GACTAATAAT	ACTGAACGTC	13860
	AAAATGATCA	GGTTCAAAAT	ACCCATCATG	CTGAACGTAA	TGGATCACAA	TCGACAACGT	13920
25	CACAATCGAA	TGATGTTGAT	AAATCACAAC	CATCCATTCC	GGCACAAAAG	GTAATACCCA	13980
	ATCATGATAA	AGCAGCACCA	ACTTCAACTA	CACCCCCGTC	TAATGATAAA	ACTGCACCTA	14040
	AATCAACAAA	AGCACAAGAT	GCAACCACGG	ACAAACATCC	AAATCAACAA	GATACACATC	14100
30	AACCTGCGCA	TCAAATCATA	GATGCAAAGC	AAGATGATAC	TGTTCGCCAA	AGTGAACAGA	14160
	AACCACAAGT	TGGCGATTTA	AGTAAACATA	TCGATGGTCA	AAATTCCCCA	GAGAAACCGA	14220
	CAGATAAAAA	TACTGATAAT	AAACAACTAA	TCAAAGATGC	GCTTCAAGCG	CCTAAAACAC	14280
35	GTTCGACTAC	AAATGCAGCA	GCAGATGCTA	AAAAGGTTCG	ACCACTTAAA	GCGAATCAAG	14340
	TACAACCACT	TAACAAATAT	CCAGTTGTTT	TTGTACATGG	ATTTTTAGGA	TTAGTAGGCG	14400
40	ATAÁTGCACC	TGCTTTATAT	CCAAATTATT	GGGGTGGAAA	TAAATTTAAA	GTTATCGAAG	14460
	AATTGAGAAA	GCAAGGCTAT	AATGTACATC	AAGCAAGTGT	AAGTGCATTT	GGTAGTAACT	14520
	ATGATCGCGC	TGTAGAACTT	TATTATTACA	TTAAAGGTGG	TCGCGTAGAT	TATGGCGCAG	14580
45	CACATGCAGC	TAAATACGGA	CATGAGCGCT	ATGGTAAGAC	TTATAAAGGA	ATCATGCCTA	14640
	ATTGGGAACC	TGGTAAAAAG	GTACATCTTG	TAGGGCATAG	TATGGGTGGT	CAAACAATTC	14700
	GTTTAATGGA	AGAGTTTTTA	AGAAATGGTA	ACAAAGAAGA	AATTGCCTAT	CATAAAGCGC	14760
50	ATGGTGGAGA	AATATCACCA	TTATTCACTG	GTGGTCATAA	CAATATGGTT	GCATCAATCA	14820
	CAACATTACC	B B C B C C B C B C B C	N N TO COTTO N C	*************	M3.3.00000000		

	ATTTAGGATT	AACGCAATGG	GGCTTTAAAC	AATTACCAAA	TGAGAGTTAC	ATTGACTATA	15000
	TAAAACGCGT	TAGTAAAAGC	AAAATTTGGA	CATCAGACGA	CAATGCTGCC	TATGATTTAA	15060
5	CGTTAGATGG	CTCTGCAAAA	TTGAACAACA	TGACAAGTAT	GAATCCTAAT	ATTACGTATA	15120
	CGACTTATAC	AGGTGTATCA	TCTCATACTG	GTCCATTAGG	TTATGAAAAT	CCTGATTTAG	15180
10	GTACATTTTT	CTTAATGGCT	ACAACGAGTA	GAATTATTGG	TCATGATGCA	AGAGAAGAAT	15240
,,	GGCGTAAAAA	TGATGGTGTC	GTACCAGTGA	TTTCGTCATT	ACATCCGTCC	AATCAACCAT	15300
	TTGTTAATGT	TACGAATGAT	GAACCTGCCA	CACGCAGAGG	TATCTGGCAA	GTTAAACCAA	15360
15	TCATACAAGG	ATGGGATCAT	GTCGATTTTA	TCGGTGTGGA	CTTCCTGGAT	TTCAAACGTA	15420
	AAGGTGCAGA	ACTTGCCAAC	TTCTATACAG	GTATTATAAA	TGACTTGTTG	CGTGTTGAAG	15480
	CGACTGAAAG	TAAAGGAACA	CAATTGAAAG	CAAGTTAAAT	TCATCTTCTG	AATTTAATAT	15540
20	GCTATGTAAA	TCGTGCTGTT	ATCATGGCAC	ATCAGATATA	AGTAGCATCA	CAGTGTTGAA	15600
	TTTAAAAATA	GTAAAGTGAA	ATAAAGCGCC	TGTCTCATTA	GCGAAAACTA	AAGGGACAGG	15660
	CGTATCTGTT	TATGAGCTTA	ATAAATTGTA	TGAATAATAT	GGTTGATCGA	ATAACTGTTT	15720
25	ATCATGATGA	TAAATTGAGT	TTTTTAAAAT	AATGATATAT	TACATCATTG	TTATAGCGTT	15780
	TAAGAAATCA	ACAACTTTAC	GATAAATAGT	GATTGCTTCG	TCATTAGGTC	TACGATCAAA	15840
	ATCATGCTCG	TTTTTATTCA	CGCGTTCAAA	TGTTGAATGT	GGAACATGAT	TCATGATATG	15900
30	TTCGCTTTCC	TCAACGGGAA	CATCATAATC	GCCATTACAA	TGCGCAATGA	AAACAGGTGG	15960
	AAGTGTTTTA	AGTTCATCTG	GTGCAATATT	ATATTTTGAA	TTAGTATAAT	CAGCAATGTT	16020
35	AATCATATTT	ATCCATTTAC	CTGTGCCACG	TGCATAAACG	TAGATTAAAA	AACGTTGTGC	16080
00	GATTTGATCT	TGAACAACCG	GTGTTGGTGA	AGTGAGTTGT	GCAATCATTG	TTTCGTTTAC	16140
	GCTTTGAGCT	ATTTTTGCGT	AATAACTATT	AGTTGTTTTA	AAAGGTTCAG	TGTTGATGCG	16200
40	ACTATAACCA	TAAAAATCAA	TAACACCATC	AATATCTCTG	TCTCGTGCAA	TTAATAGACT	16260
	TAAATATGCA	CCTGATGATC	TGCCAAAGGT	AAAAATAGGG	CAATTAGAAT	ATTGTGATTG	16320
	AATCGCATCG	AATGA tGCgn	AGNACATCCT	CAATAATGCA	ATCGAGACTT	ACTTCTGGTA	16380
45	ATAAACGATA	ACTTAGTTGA	ATTAAATCGT	AATGTTCCGT	AAGATATCGA	TATACTGTGG	16440
	GGATAAATCG	TTAGCTTTAC	CGAACATTAA	TCCACCACCG	TGGATGTAGA	CAATAGCGCC	16500
	TTTTGTTGGT	TGATTTTTTG	CTTTAATAAT	TGTGTAAGGT	AATGCAAATG	CATCTTTAGT	16560
50	AATTACTTTA	TCTTTAATTT	CAGTCACGAT	TTAATAGGCT	CCTTATTTTT	GATATTGATG	16620
	max mmx mx x a	1 CMCMCMVD 1 1	3 mmm-c-3 mc-3	3 3 3 3 M3 CMCM	maagaggamg	NOMON TO A TO	16600

	CATCATTTTA	ACAATATCTT	TAAAAGCAGC	ATGTGGAATG	GCTAAATCTT	CTAAATCTGC	16800
_	CATAGAAAAT	TCAAGATTGA	TATCATGTGG	TCGCTGTTCA	GCAAGTTTAT	GCACAAAGTC	16860
5	AGGTTCTGTG	ACAAAAGGCG	AAGACATGCC	GACCATATCT	GCATGTTGTA	AAGCATCTAA	16920
	AGCAGACTCT	GGAGAATTAA	TCCCGCCACT	TGCAATTAAA	GGGATACGAC	CTGCTAAATG	16980
10	TTCATAGACA	ATTTGGTTAA	CTGGTCGACC	GAAATGATCA	CCTGGTGTAC	GAGACGTATT	17040
	TTGATAAATA	TGTCGACCCC	AGCTAGCGAT	TGCTAAGTAT	TGGATGTTTG	AAACGTCCAT	17100
	GACCCAATTG	ATTAATTGGT	TGAACTCGTC	AATGGTATAT	CCTAAATCAC	TGCCTCTGGT	17160
15	TTCTTCTGGC	GTTGCTCGAA	ATCCTAAAAT	AAAATTGTCA	GGTGCTTCTT	TATCAATCAC	17220
	TTCTTGTACC	GCACGCATAA	CTTCTAAACA	TAATCTTGCA	CGATTTTTTA	ATGAGTCGGC	17280
	ACCGTAATGG	TCTGTACGTT	TATTCGAAAA	AGTTGAGAAA	AATGTTTGAA	TCAGCAAACG	17340
20	TTGTGCAATC	GAAATTTCCA	CACCATCAAA	ACCTGCTTTA	ATCGCGCGTA	ATGTAGCATC	17400
	GCGATACTGC	TGAATGATGC	TATTGATTTT	CTCATGAGAC	ATGGCGATAA	CATCGTGTTC	17460
	AATCGGTGAA	TGCAATGTCA	TAGGGCTTGG	TCCATACACC	TTTCCAAAAT	TTAAAATGGC	17520
25	TTGATTTGAA	AAACGACCAG	CATGCGCTAg	CTGGATAATA	GCGAGGCTAC	CATGTTGTTT	17580
	CATCGTAGAT	GCCATGTTAG	TTAATCCAGG	GATACAAGCA	TCATGATCAA	TATTAAAGCC	17640
	ATATTCAAAC	AATTGACCAT	AAGGTTCAAT	GTAAGCAGCG	CCGGTGACTT	GCATTCCAGC	17700
30	TGAATTAGAG	CGACGTGCAG	CATAAGCCAA	GTCTTCTTTT	GTAATATAGC	CTTCTTTTGT	17760
	TGATGTGTTT	ACGGTCATTG	GTGATAATAC	AAAGCGATTC	GAAATTTTGA	TGCCATTAGG	17820
35	TAAGTGGATT	GATTGTAAAA	GTGGTTTGTA	TCGGTACATA	CTATGATTCC	TTTTCTATTC	17880
	AATATTGTTT	TCAAAGTACC	ATGGAAAGAA	TGAATAATCA	ATGATGAACA	GTCTTGATAG	17940
	AATAGAATTG	GTACATGGAA	AGTATTTTTA	AAATTAAACT	AATGAATGGC	ATTTGTAGGT	18000
40	CTGAAAATAT	GAATATGAAA	AAGAAAATA	AAGGCGAAAA	GATATAAAAG	TTAATTGAAA	18060
	AACGTTATCA	TATACGTGGG	TATATGAAGA	GGGAATGGTA	TTAAGAACGC	TAAAATGTTA	18120
	TGTCGGTTTG	ACATGACAGG	ATAAGTTTGG	AGATGACGGA	TTGGTTAAAT	TAAGCGTATT	18180
45	AGACTATGCC	TTAATAGATG	aaggtaagga	TGCACAAAAG	GCATTGCAAG	ATTCAGTGAC	18240
	ACTTGCAAAA	TTAGCAGATC	GACTTGGCTT	TAAGCGAATT	TGGTTTACGG	AACATCATAA	18300
	TGTACCAGCG	TTTGCGTGTA	GTAGTCCAGA	ACTITTGATG	ATGCATACAT	TGGCGCAGAC	18360
50	AAATCACATA	CGAGTTGGCT	CTGGTGGTGT	GATGCTGCCG	CACTATCGAC	CTTATAAAAT	18420
	TOTALO	THE THE CAN BE THE B	TOCO NO COUTT	מיי מ מייי מייי מייי	CCTTATTTCATTT	ሞልርርሞልሞፕሮር	10400

	TAGTTACGAT	GAATCGATTT	CGTTATTACG	TGATTATCTT	ACAATAAAGG	ATAAACCAAG	18600
	TGCGCATACG	TTAGGTGTCC	AACCACACAT	TGATCATTTT	CCAGAAATGT	GGTTATTAAG	18660
5	TAGTAGCGCA	ACATCTGCCA	AAATAGCTGC	CGAACTAGGT	ATAGGGCTTT	CTGTTGGAAC	18720
	ATTTTTGCTA	CCAGATATAA	ATGCGATACA	TACAGCGAAG	GATAACATTG	ATATTTACAA	18780
	AAAACATTTC	CAAGCATCAA	CGATTAAAAT	GGACGCAAAG	GTGATGGCAT	CTGTATTTGT	18840
10	CATTGTAGCT	GATAACGAAG	CGGAAGTAGC	AGCATTACAA	CATGCCTTAG	ATGTTTGGTT	18900
	ATTAGGTAAA	TTACAATTTG	CAGAATTTGA	AGATTTTCCT	TCAGTAGACA	CAGCACAAAA	18960
15	GTATAAGCTT	AATGATCGAG	ACAAAGAGAT	GATTCAAGCA	CATCAAGCAC	GCATCATTGC	19020
	AGGTACACAA	GAAAAGGTTA	AAGCACAATT	AGATGATTTC	ATTGCTACGT	TTGAAGTTGA	19080
	TGAGGTGTTA	GTAGCACCGC	TTATTCCAGG	TATTGAACAG	CGTTGTAAAA	CATTAAAATT	19140
20	ACTCGCGGAA	ATTTATTTGT	AGCATTTTAA	ATAGAAGAGA	AAGGATGAAG	ATAAGATGAA	19200
	AAAGTTAGCC	AATTATTTAT	GGGTAGAAAA	AGTAGGAGAT	TTGTATGTGT	TTAGTATGAC	19260
	ACCTGAATTG	CAAGATGATA	TTGGGACAGT	AGGTTATGTT	GAATTCGTAA	GTCCAGATGA	19320
25	AGTTAAAGTG	GATGATGAAA	TTGTGAGTAT	CGAAGCATCG	AAAACGGTCA	TTGATGTGCA	19380
	AACGCCATTG	TCAGGAACGA	TTATTGAGCG	AAATACAAAA	GCGGAAGAAG	AACCGACAAT	19440
	TTTAAACTCT	GAAAAACCAG	AAGAAAATTG	GTTGTTCAAA	TTGGATGATG	TCGATAAAGA	19500
30	AGCATTCCTA	GCATTACCGG	AGGCTTAAAT	GGAAACGTTA	AAATCAAATA	AAGCGAGACT	19560
	TGAATATTTA	ATCAATGATA	TGCATCGAGA	GAGAAATGAC	AATGACGTAT	TGGTAATGCC	19620
45	ATCTTCATTT	GAAGATTTGT	GGGAATTATA	TCGAGGCTTA	GCAAATGTCA	GACCGGCATT	19680
35	ACCTGTAAGT	GATGAATATT	TAGCTGTACA	AGATGCTATG	TTAAGTGATT	TGAATCGTCA	19740
	ACATGTTACG	GATTTGAAGG	ATTTGAAGCC	GATAAAAGGT	GACAATATCT	TTGTTTGGCA	19800
40	AGGTGATATC	ACGACGTTAA	AAATCGATGC	TATTGTTAAT	GCTGCAAATA	GTCGTTTTCT	19860
	AGGATGTATG	CAAGCTAATC	ATGACTGCAT	TGATAATATT	ATTCATACAA	AAGCGGGTGT	19920
	TCAAGTTCGA	CTTGATTGTG	CAGAGATCAT	TCGACAACAA	GGGCGCAATG	AAGGTGTAGG	19980
45	TAAAGCCAAA	ATAACACGTG	GATATAATTT	GCCAGCAAAG	TATATAATTC	ATACGGTTGG	20040
	TCCGCAAATA	CGTCGATTGC	CTGTTTCAAA	GATGAATCAG	GACTTGTTAG	CTAAATGTTA	20100
	TCTTAGCTGT	CTTAAATTGG	CTGATCAACA	TAGTTTAAAT	CATGTCGCTT	TTTGCTGTAT	20160
50	ATCTACAGGT	GTATTTGCTT	TTCCTCAAGA	TGAAGCAGCA	GAAATTGCTG	TTCGAACAGT	20220
	AGAAAGCTAT	СТСВВВСВВВ	СВВВТТСВВС	ATTGAAAGTC	CTCTTCAATC	לים איידיים איים איידיים איים איידיים איים א	20280

	CAATGTCTCT	GTTAATGGAT	GACAAGACAA	AGCAGGCTGA	AGTATTGCGT	ACTGCGATTG	20400
	ATGAAGCAGA	TGCGATAGTG	ATTGGAATTG	GTGCAGGCAT	GTCTGCATCT	GACGGATTTA	20460
5	CATATGTAGG	AGAGCGTTTT	ACGGAAAATT	TCCCAGATTT	TATTGAAAAA	TATCGCTTCT	20520
	TTGATATGTT	GCAAGCGAGT	TTACATCCTT	ATGGCAGTTG	GCAAGAGTAT	TGGGCATTTG	20580
10	AGAGTCGTTT	TATTACATTA	AACTATTTAG	ATCAACCTGT	AGGTCAGTCT	TACCTCGCTT	20640
10	TAAAATCCTT	GGTGGAAGGT	AAACAGTACC	ACATTATAAC	TACGAATGCA	GATAATGCTT	20700
	TCGATGTAGC	TGATTATGAT	ATGACTCATG	TATTTCATAT	ACAAGGGGAG	TATATACTGC	20760
15	AACAGTGTAG	cTCAGCATTG	TCATGCTCAA	ACGTATCGCA	ATGATGATTT	AATTCGTAAA	20820
	ATGGTTGTTG	CGCAACAAGA	TATGCTTATA	CCTTGGGAGA	TGATTCCAAG	ATGTCCAAAA	20880
	TGTGATGCCC	CAATGGAAGT	GAATAAACGT	AAAGCGGAAG	TTGGGATGGT	TGAAGATGCT	20940
20	GAATTTCATG	CGCAACTACA	TCGTTATAAT	GCTTTTCTAG	AGCAACATCA	AGATGATAAA	21000
	GTGTTGTATT	TGGAAATTGG	AATTGGTTAT	ACTACACCAC	AATTTGTGAA	GCATCCTTTT	21060
	CAGCGTATGA	CACGTAAAAA	TGAAAATGCC	CTTTATATGA	CGATGAATAA	AAAGGCATAT	21120
25	CGCATTCCGA	ATTCAATTCA	AGAACGTACC	ATACATTTAA	CTGAGGATAT	CTCAACATTG	21180
	ATTACAGCAG	CACTCCGGAA	CGACAGCACA	ACGAAAAATA	ACAACATTGG	AGAGACAGAA	21240
	GATGTACTTA	ATAGAACCGA	TTAGAAATGG	AGAATATATT	ACTGATGGTG	CGATTGCACT	21300
30	CGCTATGCAA	GTTTATGTTA	ACCAGCATAT	CTTTTTAGAT	GAAGATATTT	TATTCCCTTA	21360
	TTATTGTGAT	CCAAAAGTGG	AAATTGGACG	TTTTCAAAAT	ACTGCTATAG	AAGTGAATCA	21420
05	AGATTATATA	GATAAACACA	GTATTCAAGT	AGTTCGCCGA	GATACTGGTG	GTGGCGCTGT	21480
35	GTATGTTGAT	AAAGGTGCCG	TTAATATGTG	TTGTATTTTA	GAACAAGACA	CTTCAATTTA	21540
	TGGTGATTTT	CAACGATTTT	ATCAACCAGC	TATAAAGGCG	TTGCATACAT	TAGGTGCAAC	21600
40	AGATGTGGTA	CAAAGCGGTA	GAAATGATTT	AACATTGAAT	GGTAAAAAAG	TGTCAGGCGC	21660
	CGCAATGACA	TTAATGAATA	ATCGTATTTA	TGGCGGTTAT	TCGCTATTAC	TTGATGTTAA	21720
	TTATGAAGCA	ATGGATAAAG	TGTTAAAGCC	TAATCGCAAA	AAGATTGCAT	CGAAAGGGAT	21780
45	TAAATCTGTG	CGCGCACGTG	TTGGTCATCT	TAGAGAAGCA	CTGGATGAAA	AGTATCGTGA	21840
	TATAACCATT	GAAGAATTTA	AAAATTTAAT	GGTGACGCAG	ATTTTGGGAA	TCGATGACAT	21900
	TAAAGAGGCG	AAACGATATG	AATTAACGGA	TGCAGATTGG	GAAGCGATTG	ATGAATTAGC	21960
50	TGATAAAAAG	TATAAAAATT	GGGATTGGAA	TTATGGCAAG	TCACCCAAAT	ATGAATACAA	22020
	moca a omoa a		CACCHACCC	3 C 3 C 3 C 3 C 3 C 3		2262222006	22080

	AGAAGCATTA	CAAGGAACAA	AAATGACAAG	AGAAGATTTA	ACGCATCAGT	TAAAGCAATT	22200
	AGACATCGTT	TATTATTTTG	GCAATGTTAC	GGTAGAAGCA	TTAGTGGATA	TGATTTTAAG	22260
5	TTAATATTGT	TATTTTATGT	ATGCTGAATC	ATTGGAAGTG	TTTGCTTGCT	CTTGAAAAGG	22320
	TGACAATAGT	GTTTGGTGAA	GGTTGAACAT	ATGAGTGGAA	ATTATTGCCT	TTAACTATTC	22380
10	AAAGTATGAT	ATATATATGG	TTTTTGTTTC	TAAATGATTG	GGTATTTGAA	AATAGATGAG	22440
70	TTTAATATTT	TAAGGAATAT	AATGATGTTT	ACTTTTATAA	TTCATATAGA	ATATTAAGCA	22500
	ATATAAGTCT	GTTGATATAT	ACAAAATATA	ATGACTGCTA	TAATGAGTAA	TCAATAGACA	22560
15	CAAAGAGGAG	ATTATGTGAT	GAATAATAAA	GTATTAGTAA	CCGGTGGTAC	AGGGTTTGTT	22620
	GGCATGCGAA	TTATTTCACG	ATTATTAGAA	CAAGGTTATG	ACGTACAAAC	GACGATACGT	22680
	GATTTAAGTA	AAGCTGATAA	agtaattaaa	ACAATGCAAG	ACAATGGCAT	TTCCACAGAG	22740
20	CGATTAATGT	TTGTCGAAGC	GGATTTATCA	CAAGATGAAC	ATTGGGATGA	AGCAATGAAA	22800
	GATTGCAAGT	ATGTCTTGAG	TGTAGCATCT	CCGGTGTTTT	TCGGTAAAAC	AGACGATGCA	22860
	GAAGTGATGG	CGAaCTGcAA	TTGAAGGTAT	ACAACGTATT	TTAAGAGCTG	CAGAACATGC	22920
25	GGGTGTTAAA	CGTGTGGTAA	TGACTGCAAA	CTTTGGTGCA	GTTGGTTTTA	GTAATAAAGA	22980
	TAAAAATTCA	ATCACAAATG	AAAGTCATTG	GACAAATGAA	GATGAACCAG	GCTTATCAGT	23040
	ATATGAAAAA	TCAAAATTGT	TAGCTGAAAA	GGCAGCGTGG	GATTTTGTTG	AGAATGAAAA	23100
30	TACAACAGTA	GAATTTGCCA	CAATCAATCC	AGTTGCAATT	TTTGGGCCAT	CATTAGATGC	23160
	ACACGTTTCA	GGAAGCTTTC	ATTTATTAGA	AAATTTATTG	AATGGTTCAA	TGAAACGTGT	23220
35	ACCGCAAATT	CCGTTAAATG	TTGTTGATGT	GAGAGACGTA	GCTGAACTGC	ACATTTTGGC	23280
00	AATGACAAAT	GAACAAGCTA	ATGGCAAGCG	ATTTATTGCG	ACGGCTGATG	GACMAATTWA	23340
	tTTGTTGGGA	ATTGcCAAAt	TAATTAAAGA	AAAGGGCCTG	GAAATAGCTC	CAAAAGTTCC	23400
40	TACTAAAAAA	TTACCCAGCT	TTATTTTGAG	CnAnGnGCC			23439
	(2) INFORMA	TION FOR SE	Q ID NO: 39	':			
		QUENCE CHAR A) LENGTH:					
		B) TVPE - nu					

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:

CCCTTTGAGA GTATATCATC TAGTCAAATT ATGCCTGTCA TTAGAGCGAC TAGCTTTGAT 60

	TATTATGCAG	TCGATTTAGG	GAAATCATAT	CGTCTAATTG	ACGAAAGCAT	GTTAGAGGAT	180
	TTGAAGTTAA	CTGAACAACA	AATAAGAGAA	ATGTCTCTGT	TTAATGTTAG	AAAATTGTCA	240
5	AATTCATATA	CGACTGATGA	AGTAAAAGGT	AATATTTTTT	ATTTTATTAA	CTCAAATGAC	300
	GGGTATGATG	CAAGTAGGAT	ACTAAATACT	GCATTTTTAA	ATGAAATTGA	GGCACAATGT	360
	CAAGGCGAAA	TGCTCGTAGC	AGTGCCACAC	CAAGATGTGT	TAATTATTGC	AGATATACGC	420
10	AATAAAACAG	GATATGATGT	GATGGCACAT	TTAACAATGG	AATTTTTCAC	TAAAGGTCTA	480
	GTTCCAATTA	CATCATTATC	CTTTGGATAT	AAACAGGGTC	ATCTTGAACC	GATATTTATT	540
15	TTAGGTAAAA	ATAATAAACA	AAAAAGAGAT	CCAAACGTGA	TTCAGCGTTT	AGAAGCAAAT	600
,	CGTCGTAAAT	TTAATAAAGA	TAAATAGAAA	TAATTGGATA	AGGAGTTTTG	TCATAATGAA	660
	TTTATTTTAC	AATCCTAAAT	ATGTAGGAGA	TGTCGCATTT	TTACAAATTG	AACCAGTTGA	720
20	AGGTGAATTA	AACTACAATA	AAAAAGGTAA	TGTTGTTGAA	ATTACLAATG	AAGGTAATGT	780
	TGTAGGTTAT	AATATTTTTG	AAATTTCAAA	AGATATAACA	ATTGAAGAAA	AAGGTCATAT	840
	TAAATTAACT	GATGAACTTG	TAAATGTATT	CCAAAAGCGT	ATTTCAGAAG	CTGGTTTTGA	900
25	TTATAAATTA	AATGCTGATC	TATCACCGAA	ATTTGTAGTT	GGCTACGTTG	AAACTAAAGA	960
	CAAACATCCT	GATGCAGATA	AATTAAGTGT	ACTAAATGTA	AACGTTGGAA	ATGACACATT	1020
	ACAAATTGTA	TGTGGCGCGC	CTAACGTTGA	AGCTGGACAG	AAAGTTGTTG	TTGCTAAAGT	1080
30	AGGTGCAGTG	ATGCCTAGCG	GTATGGTAAT	TAAAGATGCT	GAATTACGTG	GTGTTGCCTC	1140
	AAGCGGTATG	ATTTGTTCAA	TGAAAGAATT	GAATTTACCT	AATGCACCTG	AAGAAAAAGG	1200
	TATTATGGTA	TTAAATGACA	GCTATGAAAT	TGGACAAGCA	TTtTTTGAAT	AATTAAGGAA	1260
35	GGTAGTGAAA	ATATGAGCTG	GTTTGATAAA	TTATTCGGCG	AAGATAATGA	TTCAAATGAT	1320
	GACTIGATIC	ATAGAAAGAA	AAAAAGACGT	CAAGAATCAC	AAAATATAGA	Tracgatcat	1380
40	GACTCATTAC	TGCCTCAAAA	TAATGATATT	TATAGTCGTC	CGAGGGGAAA	ATTCCGTTTT	1440
70	CCTATGAGCG	TAGCTTATGA	aaatgaaaat	GTTGAACAAT	CTGCAGATAC	TATTTCAGAT	1500
	GAAAAAGAAC	AATACCATCG	AGACTATCGC	AAACAAAGCC	ACGATTCTCG	TTCACAAAAA	1560
15	CGACATCGCC	GTAGAAGAAA	TCAAACAACT	GAAGAACAAA	ATTATAGTGA	ACAACGTGGG	1620
	AATTCTAAAA	TATCACAGCA	AAGTATAAAA	TATAAAGATC	ATTCACATTA	CCATACGAAT	1680
	AAGCCAGGTA	CATATGTTTC	TGCAATTAAT	GGTATTGAGA	AGGAAACGCA	CAAGCCAAAA	1740
50	ACACATAATA	TGTATTCTAA	TAATACAAAT	CATCGTGCTA	AAGATTCAAC	TCCAGATTAT	1800
	CACAAAGAAA	CITTUTENACAC	TTCNCNCCTN	CCCTCTCTCTTT	TOTOTOGOGO	11ma111am	

	AAACAAAAAT	ATGATAAATA	TGTAGCTAAG	ACGCAAACGT	CTCAAAATAA	ACAATTAGAA	1980
	CAAGAAAAAC	AAAATGATAG	TGTTGTCAAA	CAAGGAACTG	CATCTAAATC	ATCTGATGAA	2040
5	AATGTATCAT	CAACAACAAA	ATCAATGCCT	AATTATTCAA	AAGTTGATAA	TACTATCAAA	2100
	ATTGAAAATA	TTTATGCTTC	ACAAATTGTT	GAAGAAATTA	GACGTGAACG	AGAACGTAAA	2160
	GTGCTTCAAA	AGCGTCGATT	TAAAAAAGCG	TTGCAACAAA	AGCGTGAAGA	ACATAAAAAC	2220
10	GAAGAGCAAG	ATGCAATACA	ACGTGCAATT	GATGAAATGT	ATGCTAAACA	AGcGGAACgC	2280
	TATGTTGGTG	ATAGTTCATT	AAATGATGAT	AGTGACTTAA	CAGATAATAG	TACAGATGCT	2340
. -	AGTCAGCTTC	ATACAAATGG	CATAGAGAAT	GAAACTGTAT	CAAATGATGA	AAATAAACAA	2400
15	GCGTCAATAC	AAAATGAAGA	CACTAATGAC	ACTCATGTAG	ATGAAAGTCC	ATACAATTAT	2460
	GAGGAAGTTA	GTTTGAaTCA	AGTATCGACA	ACAAAACAAT	TGTCAGATGA	TGAAGTTACG	2520
20	GTTTCGAATG	TAACGTCTCA	ACATCAATCA	GCACTACAAC	ATAACGTTGA	AGTAAATGAT	2580
	AAAGATGAAC	ТААААААТСА	ATCCAGATTA	ATTGCTGATT	CAGAAGAAGA	TGGAGCAACG	2640
25	aATAAAGAAG	AATATTCAGK	AAGTCAAATC	GATGATGCAG	AATTTTATGA	ATTAAATGAT	2700
	ACAGAAGTAG	ATGAGGATAC	TACTTCAAAT	ATCGAAGATA	ATACCAATAG	AAACGCGTCT	2760
	GAAATGCATG	TAGACGCTCC	TAAAACGCAA	GAGTACGCAG	TAACTGAATC	TCAAGTAAAT	2820
	AATATCGATA	AAACGGTTGA	TAATGAAATT	GAATTAGCAC	CGCGTCATAA	AAAAGATGAC	2880
30	CAAACAAACT	TAAGTGTCAA	CTCATTGAAA	ACGAATGATG	TGAATGATAA	TCATGTTGTG	2940
	GAAGATTCAA	GCATGAATGA	Aatagaaaag	AATAACGCAG	AAATTACAGA	AAATGTGCAA	3000
	AACGAAGCAG	CTGAAAGTGA	ACAAAATGTC	GAAGAGAAAA	CTATTGAAAA	CGTAAATCCA	3060
35	AAGAAACAGA	CTGAAAAGGT	TTCAACTTTA	AGTAAAAGAC	CATTTAATGT	TGTCATGACG	3120
	CCATETGATA	AAAAGCGTAT	GATGGATCGT	AAAAAGCATT	CAAAAGTCAA	TGTGCCTGAA	3180
	TTAAAGCCTG	TACAAAGTAA	GCAAGCTGTG	agtgaaagaa	TGCCTGCGAG	TCAAGCCACA	3240
40	CCATCATCAA	GATCTGATTC	ACAAGAGTCA	AATACAAATG	САТАТААААС	AAATAATATG	3300
	ACATCAAACA	ATGTTGaGAA	CAATCAACTT	ATTGGTCATG	CAGAAACAGA	AAATGATTAT	3360
45	CAAAATGCAC	AACAATATTC	AGAGCAGAAA	CCTTCTGTTG	aTTCAACTCA	AACGGAAATA	3420
15	TTTGAAGAAA	GTCAAGATGA	TAATCAATTG	GAAAATGAGC	AAGTTGATCA	ATCAACTTCG	3480
	TCTTCAGTTT	CAGAAGTAAG	CGACATAACT	GAAGAAAGCG	AAGAAACAAC	ACATCCAAAC	3540
50	AATACTAGTG	GACAACAAGA	TAATGATGAT	CAACAAAAAG	ATTTACAGTC	ATCATTTTCA	3600
	בידממממדממ	AACATACACC	TAATCAAAAT	እርአሮርሞርርርአ	CCAACCAACA	101mammaa1	2660

	CCAAGTGTTT CATTACTAGA AGAACCACAA GTTATTGAGT CGGACGAGGA CTGGATTACA	3780
	GATAAAAAGA AAGAACTGAA TGACGCATTA TTTTACTTTA ATGTACCTGC AGAAGTACAA	3840
5	GATGTAACTG AAGGTCCAAG TGTTACAAGA TTTGAATTAT CAGTTGAAAA AGGTGTTAAA	3900
	GTTTCAAGAA TTACGGCATT ACAAGATGAC ATTAAAATGG CATTGGCAGC GAAAGATATT	3960
	CGTATAGAAG CGCCTATTCC AGGAACTAGT CGTGTTGGTA TTGAAGTTCC GAACCAAAAT	4020
10	CCAACGACAG TCAACTTACG TTCTATTATT GAATCTCCAA GTTTTAAAAA TGCTGAATCT	4080
	AAATTAACAG TTGCGATGGG GTATAGAATT AATAATGAAC CATTACTTAT GGATATTGCT	4140
15	AAAACGCCAC ACGCACTAAT TGCAGGTGCA ACTGGATCAG GGAAATCAGT TTGTATCAAT	4200
,,,	AGTATITIGA TGTCTTTACT ATATAAAAAT CATCCTGAGG AATTAAGATT ATTACTTATC	4260
	GATCCAAAAA TGGTTGAATT AGCTCCTTAT AATGGTTTGC CACATTTAGT TGCACCGGTA	4320
20	ATTACAGATG TCAAAGCAGC TACACAGAGT TTAAAATGGG CCGTAGAAGA AATGGAACGA	4380
	CGTTATAAGT TATTTGCACA TTACCCATGT ACGTANTATA ACAGCATTTA ACNAAAAAGC	4440
	CCCATATGAT GAAAGAATGn CAAAAATTGT CATTGTAATT GATGAGTTGG CTGATTTAAT	4500
25	GATGATGGTC CGCAAGAAGT TG	4522
	(2) INFORMATION FOR SEQ ID NO: 40:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 751 base pairs(B) TYPE: nucleic acid	

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:

TCAAGTITAC	GGATACGTAT	ATATTTTGCA	TGACATTTAG	TGCAATAATA	TTCATAATTT	60
GCCCGTTGTT	GATAGCTTTC	AATGCTGTTA	CAAAATCTAG	GCGCTCCAAC	CTGTTGGCTC	120
AATCGTTTAA	AATCTTGATC	TTTATGTTGA	TAACCTTTAC	CAGCAATATG	CAAGTGATAA	180
TGACACAATT	CGTGCAGTAT	AATTTTTACA	ACAGCATCTT	CTCCATAATG	CTCATATTGT	240
TTTGGATTAA	TTTCAATATC	ATGGGACTTT	AAAAGATAAC	GTCCGCCTGT	TGTACGTAAC	300
CTTTTATTAA	AATATGCACA	ATGTCGAAAC	GTACGTCCAA	ATTTTTCTTC	CGAAAGATTC	360
TCAACCATTC	GCTGAAGTTT	GTCATTATTC	ATGTGGATCA	ATCATCGTTA	ATGATACTTT	420
GTCTTTATTT	TTGTCAATAC	TGTAAATCCA	AACGTCAACG	ATATCACCAA	CACTGACAAT	480
ATCCATTGGA	TTTTTTACGA	ACTTCTTAGA	AAGTTTCGAA	ACATGGACAA	GTCCATCTTG	540

	TTTCATTCCT TCTTGTAAAT CTTCAATTGA TAGCACATCG GATTTAAGGA TTGGTGTTTC	660
	AAACTCGTCC CTTGGATCTC GATTAGGTGC GTTCAAGGAT TTAATAATAT CCTCTAATGT	720
5	AGGTACACCG ACTTGTAATT CAATCGCCAG T	751
	(2) INFORMATION FOR SEQ ID NO: 41:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1076 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
	TCTCCAGCTT TAACTTGATC TGGCACTTTA ACAATTGTCT GATCCATACA TACGCGACCA	60
20	ATAACTTCGC ATTGATGACC ATTTACATTT ACAAAGCTAC CTTGCATTAT GCGTAAATGG	120
	CCATCTGCAT ATCCAATAGG TAACAATGCT ATTGTAGTTG GGTCAGTAGC TGTATAAGTT	180
	GCACCATAAC TTACAGACTC ACCCGCTTGT AGCGTCTTTG TTTGAACTAC ATTAGCAATT	240
25	AATTGCACAC TTGGTTTAAG GTGTACTTTA ACTTTTTGCT GTACATACTC TGATGGATAA	300
	TATCCATAAA GGGAAATTCC TGGTCTTATT GCATTACAGA ATTGGCAATC CATTAATAGA	360
	GAGCCTGCTG AGTTCTGACA ATGTATATAT TCAGGTTTAA TTGCTTCATT GACCATATCT	420
30	TTAAAACGTT GATATTGTTC AGTTGTCATA TCTCCTGGTT CGTCAGCACA GGCAAAGTGT	480
	GTAAACACGC CTTCAAATAC AAGTTGCTCA TATTGTTGAA TGATTTCAAT CACTTCTTGA	540
	TACGTTTTAG TATCTTTAAT ACCTAAACGT CCCATTCCTG TATCTAATTT AATGTGCAAC	600
35	CATAACTTTT TCTCTTGCTC ACCAGAAATG TTTTTAATTG CTTCTTTCAA CCACTGTTTA	660
	GACGGAACCG TTAAGGCAAC TCGGTGTTGT ATCGCTTTAT CAATATCTTT AGCTGGTAAC	720
	ACACCTAAGA CTAAAATTTT AGCAGTAATC CCATGCATTC TAAGTTCTAT CGCTTCATCT	780
40	AACGTTGCTA CAGCAAAAAA TGTGGCGCCA TTTTCCATTA AATGACGTGC TACTTTAACA	840
	CTACCTAGTC CATAGGCATT GGCTTTAACG ACAGCCATCA CTGTTTTATT TGGATGCAAT	900
45	GTACTGAATA CTTTGAAATT TGATGCAACA GCGTTTAAAT CTACATTCAT ATACGCAGAT	960
+0	CTATAATATT TATCCGACAT ATTACTTCCT CCTGTAATTC CCACACGTTT TAAAACTAGA	1020
	TCTTAATTAT CATTGTATAA CAAATTTAAA ATGCTGACTT TTCTAAAACA ACTTGG	1076
50	(2) INFORMATION FOR SEQ ID NO: 42:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2930 base pairs	

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42: TGACCACAAT GCCCAATACA ACCATCCCAT GGTAAAGCCA AGAGATGAGT CAATAAAGCG 60 TGTTGAATAA GAGCTGAATG AACCTGATAC TGGATAAAAT GTTGCCAACT CTCCAATTGA 120 10 TGACATTAAG AAATATAGCA TGACACCAAT AACAAGATAA GCGAGTATAG CGCCTCCAGG 180 ACCAGCTTGA GAAATGATAT TACCAGTAGC TACAAATAGA CCAGTCCCAA TTGCACCACC 240 TATAGCAATC ATGGAAATGT GTCTTGAGTT AAGACTACGG TTCATTTTAT TATCTTCCAT 300 15 ATTTAGTCTC CCATCTATTT AAATATACCC ATTATTGTAA GCTTTTTAAG TGTACTATTC 360 AATAACTATT TAGTACTGTA AAGCGAAAAA ATTAAAATTT TCTGATTTTT TAATCATCTT 420 GAGCATGTIT AATTGTAATT TTGATGGGGT TAAATTATAA TATGTATTAA ATTATAATTA 20 480 Thataaattg tggagggatg actatgtcac aacaagacaa aaagttaact ggtgtttttg 540 GGCATCCAGT ATCAGACCGA GAAAATAGTA TGACAGCAGG GCCTAGGGGA CCTCTTTTAA 600 25 TGCAAGATAT TTACTTTTTA GAGCAAATGT CTCAATTTGA TAGAGAAGTA ATACCAGAAC 660 GTCGAATGCA TGCCAAAGGT TCTGGTGCAT TTGGGACATT TACTGTAACT AAAGATATAA 720 CAAAATATAC GAATGCTAAA ALATTCTCTG AAATAGGTAA GCAAACCGAA ATGTTTGCCC 780 30 GTTTCTCTAC TGTAGCAGGA GAACGTGGTG CTGCTGATGC GGACGTGACA TTCGAGGATT 840 TGCGTTAAAG TTCTACACTG AAGAAGGGAA CTGGGATTTA GTAGGGAATA ACACACCAGT 900 ATTCTTCTTT AGAGATCCAA AGTTATTTGT TAGTTTAAAT CGTGCGGTGA AACGAGATCC 960 35 TAGAACAAAT ATGAGAGATG CACAAAATAA CTGGGATTTC TGGaCGGGTt TCCAGAAGCA 1020 TTGCACCAAG TAACGATCTT AATGTCAGAT AGAGGGATTC CTAAAGATTT ACGTCATATG 1080 CATGGGTTCG GTTCTCACAC ATACTCTATG TATAATGATT CTGGTGAACG TGTTTGGGTT 1140 40 AAATTCCATT TTAGAACGCA ACAAGGTATT GAAAACTTAA CTGATGAAGA AGCTGCTGAA 1200 ATTATAGCTA CAGATCGTGA TTCATCTCAA CGCGATTTAT TCGAAGCCAT TGAAAAAGGT 1260 GATTATCCAA AATGGACAAT GTATATTCAA GTAATGACTG AGGAACAAGC TAAAAACCAT 1320 45 AAAGATAATC CATTTGATTT AACAAAAGTA TGGTATCACG ATGAGTATCC TCTAATTGAA 1380 GTTGGAGAGT TTGAATTAAA TAGAAATCCA GATAATTACT TTATGGATGT TGAACAAGCT

GCGTTTGCAC CAACTAATAT TATTCCAGGA TTAGATTTTT CTCCAGACAA AATGCTGCAA

GGGCGTTTAT TCTCATATGG CGATGCGCAA AGATATCGAT TAGGAGTTAA TCATTGGCAG

55

50

1440

1500

	GGTCAAATGC	GCGTAGTTGA	CAATAACCAA	GGTGGAGGAA	CACATTATTA	TCCAAATAAC	1680
	CATGGTAAAT	TTGATTCTCA	ACCTGAATAT	AAAAAGCCAC	CATTCCCAAC	TGATGGATAC	1740
5	GGCTATGAAT	ATAATCAACG	TCAAGATGAT	GATAATTATT	TTGAACAACC	AGGTAAATTG	1800
	TTTAGATTAC	AATCAGAGGA	CGCTAAAGAA	AGAATTTTTA	CAAATACAGC	AAATGCAATG	1860
	GAAGGCGTAA	CGGATGATGT	TAAACGACGT	CATATTCGTC	ATTGTTACAA	AGCTGACCCA	1920
10	GAATATGGTA	AAGGTGTTGC	AAAAGCATTA	GGTATTGATA	TAAATTCTAT	TGATCTTGAA	1980
	ACTGAAAATG	ATGAAACATA	CGAAAACTTT	GAAAAATAAA	TTTGATATGT	AGTTTCTATA	2040
.=	TTGCGTAGTT	GAGCAGTTTA	TGATATCATA	ATAAATCGTA	AAGATTCCTA	ACAAGAGAGG	2100
15	GTGTTTAACG	TGCGCGTAAA	CGTAACATTA	GCATGCACAG	AATGTGGCGA	TCGTAACTAT	2160
	ATCACTACTA	AAAATAAACG	TAATAATCCT	GAGCGTATTG	AAATGAAAAA	ATATTGCCCA	2220
20	AGATTAAACA	AATATACGTT	ACATCGTGAA	ACTAAGTAAT	TCTTATCATT	CAAATACGAC	2280
20	GATTTGAAAA	TAAAGCGGGC	TTACCTATTA	TATTGGGGAG	CTCGCTTTTT	TATGAAATTT	2340
	TTGTGAAGAG	TGATTAATGG	ATTGAGTTTC	ATCGGTAGAA	CAATATATGA	TTATATTAGT	2400
25	TGTTACTTTA	TTAAAATTTG	AGAATATTTA	TAGAAGGAAA	TAGATTACTG	AAATATTTTA	2460
	GTCACTTTGT	TAGCGAATGC	TTGAAAGAGT	ATTTAATATA	GTAGAATTTA	AAATTTCAAA	2520
	GCGGAATTTA	ATAAGTACGA	AGTAGTTCTG	GGTATGTTTT	ATAAATGTTC	GATAATACAC	2580
30	TTTAATCTTA	AATATGATGG	TTTAGAAAAT	GATTTAACAA	AGAAATGAAA	CTTTACTGTT	2640
	GAATTATGTG	AGGATTGTGT	TATTATATAA	ATCGTAATAA	TTACGATTTG	ATAAAAAGTG	2700
	AGGTAACTAT	ATATGGCTAA	GAAATCTAAA	ATAGCAAAAG	AGAGAAAAAG	AGAAGAGTTA	2760
35	GTAAATAAAT	ATTACGAATT	ACGTAAAGAG	TTAAAAGCAA	AAGGTGATTA	CGAAGCGTTA	2820
	AGAAAATTAC	CAAGAGATTC	ATCACCTACA	CGTTTAACTA	GAAGATGTAA	AGTAACTGGA	2880
	AGAĆCTAGAG	GTGTATTACG	TAAATTTGAA	ATGTCTCGTA	TTGCGTTTAG		2930
40	(2) INFORMA	TION FOR SE	Q ID NO: 43) :			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3606 base pairs
- (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

50 CTTCTTGCCA TGGCTCTCTT TATTTAAAAA TGCTTCCAAC TTGTCCATTT GATTGTTTCT 60

55

	TTATAAAAAA	CTAATTTTAC	AAATGCTTTT	GCGTTCTTAC	AAAAAATGCA	TTTGACTATT	180
	ATTATAATAA	GCGTATAATT	GTCGCATATT	ATTTTTTGTA	TTTTTGGCAA	TAACGAAGGA	240
5	GTATTTATGA	ATAAAGACAA	GCAATTGCAC	AACGACAAAA	TCAATCTATC	CCAATTAGTC	300
	TTATTAGGGT	TAGGCTCTTT	AATAGGATCT	GGTTGGCTAT	TTGGTGCGTG	GGAAGCATCA	360
	TCAATAGCTG	GACCAGCAGC	AATCATATCA	TGGGTTCTTG	GATTCCTAGT	CATTGGAACC	420
10	ATTGCCTATA	ACTACATTGA	AATCGGCACA	ATGTTTCCTC	AATCAGGTGG	CATGAGTAAC	480
	TATGCCCAGT	ATACACATGG	CTCATTATTA	GGCTTTATTG	CTGCTTGGGC	GAATTGGGTG	540
	TCTTTGGTGA	CAATAATACC	TATCGAAGCT	GTGTCAGCTG	TTCAATATAT	GAGTTCTTGG	600
15	CCGTGGCATT	GGGCGAAACC	AATGAGATAT	TTAATGGAAA	ATGGCTCTAT	TAGCACATAC	660
	GGATTGCTAG	CTGTATATCT	CATCATTGTT	ATTTTTTCAT	TATTAAACTA	TTGGTCCGTA	720
	AAACTTTTAA	CATCATTTAC	GAGTTTAATT	TCTGTATTTA	AATTAGGCGT	ACCCATGTTA	780
20	ACCATCATCA	TGTTGATGCT	ATCAGGATTC	GACACTTCAA	ATTACGGCCA	TTCGGCAAGC	840
	ACATTTATGC	CTTACGGAAG	TGCACCGATT	TTTGCTGCAA	CAACAGCATC	AGGGATTATT	900
25	TTTTCATTCA	ATTCATTCCA	GACAATTATT	AATATGGGTT	CAGAAATTAA	AAATCCTGAA	960
20	AAAAATATCG	CAAGAGGCAT	CGCTATCTCA	CTGTCAATCA	GTGCAGTGTT	GTACATCATT	1020
	TTACAAAGTA	CGTTTATCAC	TTCTATGCCT	CAATCAATGT	TACAACATAG	TGGATGGAAT	1080
30	GGCATCAACT	TCAATTCACC	ATTTGCTGAT	TTAGCTATCT	TATTAGGAAT	TAATTGGCTC	1140
	GCAATTTTAC	TATACATTGA	AGCTTTTGTA	TCACCATTCG	GTACTGGCGT	GTCATTTGTC	1200
	GCCGTTACAG	GTCGAGTTTT	ACGAGCAATG	GAGAAAAATG	GACATATCCC	TAAATTTCTT	1260
35	GGGAAGATGA	ATGAAAAATA	TCATATCCCA	CGTGTAGCAA	TCATCTTTAA	TGCCATCATT	1320
	AGTATGATTA	TGGTTACATT	ATTTAGAGAT	TGGGGTACGC	TAGCAGCAGT	TATTTCTACT	1380
	GCAACTTTAG	TAGCCTATTT	AACTGGCCCA	ACGACAGTGA	TTGCATTAAG	AAAAATGGGA	1440
40	CCAACAATGA	CTCGTCCATT	TAGAGCAAAA	ATTTTAAAAG	TAATGGCACC	ATTATCATTT	1500
	GTATTAGCTT	CATTAGCTAT	ATATTGGGCA	ATGTGGCCAA	CAACGGCTGA	AGTTATTTTA	1560
	ATCATTATAC	TTGGATTACC	AATCTACTTC	TTCTATGAAT	ATCGTATGAA	TTGGCGTAAT	1620
45	ACAAAGAAAC	AAATTGGTGG	TAGCTTATGG	ATTATTGTAT	ATTTAATCGT	GCTATCAATA	1680
	CTGTCATTTA	TAGGAAGCAA	AGAATTTAAA	GGCTTAAATA	TGATTCACTA	TCCATTTGAC	1740
	TTTATCGTTA	TTATTATTGT	GGCACTTATC	TTCTATTACA	TCGGTACAAC	GAGTTCATTT	1800
50	GAAAGCGTCT	ATTTCCGTCG	CGCAACACGA	ATCAATACGA	AGATGCGTGA	GTCACTAAAT	1860

	CACACACATT	AACCAACCAT	TGATTTCAAC	ATCTTGGTTG	GTTTTTTATT	TTGAAAATCG	1980
5	GTTATAAATA	ACTAACATAA	CAAGATGATG	ATCAGGCTGG	GACATAAATC	AATGTTCTAT	2040
	GCTCTACGAA	gTTATATTGG	CAGTAGTTGA	CTGAACGAAA	ATGCGCTTGT	AACAAGCTTT	2100
	TTTCGATTCT	AGTCAGGGGC	CCCAACACAG	AGAATTTCGA	AAAGAAATTC	TACAGGCAAT	2160
10	GCAAGTTGGG	GTGGGACGAC	GATAAAGAAA	TACTTTTTCT	ATAGAAATTA	GTATYCCTTA	2220
	TGCATGAGTT	TTACTCATGT	ATTCATATTT	TTAAGTACAC	ATTAGCTGTG	GCTAATGTAT	2280
	AAGAACCACT	ACATAATAAA	TCATTTGTGG	CTCTTTATCA	TTTCTGTCCC	ACTCCCGTAG	2340
15	AAGTACATCA	TATAATGCTG	AAAATGGTTT	GAGTTAAAAC	AGATATCAAG	CTCGTCTGAT	2400
	TCAGTCACAA	AATTGTCTTG	TTATACTTGT	CACCTATCAT	CTATAGACCG	TGGTATGATT	2460
	AAATTGGGGA	TGATAAAGGA	GGTTAATAAA	TATGAAGATT	AATACTACAG	GTGGTCAAAT	2520
20	TCATGGTATT	ACACAAGATG	GTTTAGATAT	CTTCTTAGGC	ATTCCTTATG	CAGAACCACC	2580
	AGTTCATGAC	AATCGCTTTA	AACATTCTAC	GTTAAAAACA	CAATGGTCAG	AGCCAATTGA	2640
25 30	TGCAACTGAA	ATACAACCCA	TCCCACCGCA	ACCAGACAAC	aaattagaag	ATTTTTTCTC	2700
	CTCACAATCT	ACAACTTTTA	CTGAACATGA	AGACTGTTTA	TATCTAAATA	TTTGGAAACA	2760
	ACATAATGAT	CAGACGAAGA	AACCTGTCAT	CATTTATTTT	TATGGTGGTA	GTTTTGAAAA	2820
	TGGTCATGGT	ACAGCCGAAC	TCTATCAACC	GGCACATTTA	GTACAAAATA	ACGACATTAT	2880
	CGTTATTACA	TGCAATTATC	GTTTAGGCGC	ATTAGGATAT	TTAGACTGGT	CATATTTTAA	2940
	TAAAGATTTT	CATTCCAATA	ATGGCCTTTC	AGATCAAATC	AATGTCATAA	AATGGGTGCA	3000
35	TCAATITATT	GAATCCTTCG	GTGGCGACGC	TAATAACATT	ACTTTAATGG	GTCAGTCTGC	3060
	AGGCAGTATG	AGCATTTTGA	CTTTACTTAA	AATACCTGAC	ATTGAGCCAT	ACTTCCATAA	3120
	AGTÇGTTCTA	CTAAGTGGCG	CACTACGATT	AGACACCCTT	GAGAGTGCAC	GCAATAAAGC	3180
	ACAACATTTC	CAAAAAATGA	TGCTCGATTA	TTTAGATACA	GATGATGTTA	CATCATTATC	3240
10	GACAAATGAT	ATTCTTATGC	TGATGGCGAA	gctaaaacaa	TCTCGAGGAC	CTTCTAAAGG	3300
	GCTTGATTTA	ATATATGCGC	CTATTAAAAC	AGATTATATA	CAAAATAATT	ATCCAACAAC	3360
	GAAACCAATT	TTTGCATGTT	ATACAAAAGA	TGAAGGCGAT	ATTTATATTA	CTAGTGAACA	3420
1 5	GAAAAAATTA	TCGCCGCAAC	GCTTTATCGA	CATTATGGAA	TTAAATGATA	TTCCTTTAAA	3480
	ATACGAAGAT	GTTCAGACGG	CGAAGCAACA	ATCTTTAGCG	ATTACACATT	GTTATTTCaA	3540
	ACAGCCGATG	aAGCAATTTT	TACmACmACT	CAATATACMA	GATTCCAACC	GCACCAACTA	3600
50	TGGCTT						3606

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 15109 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:

10	GAAATTAAAA	AAGCAATTGG	nACAAGATGC	AACAGTGTCA	TTGTTTGATG	AATTTGATAA	60
	AAAATTATAC	ACTTACGGCG	ATAACTGGGG	TCGTGGTGGA	GAAGTATTAT	ATCAAGCATT	120
	TGGTTTGAAA	ATGCAACSAG	AACAACAAAA	GTTAACTGCA	AAAGCAGGTT	GGGCTGAAGT	180
15	GAAACAAGAA	GAAATTGAAA	AATATGCTGG	TGATTACATT	GTGAGTACAA	GTGAAGGTAA	240
	ACCTACACCA	GGATACGAAT	CAACAAACAT	GTGGaAGAAT	TTGAAAGCTA	CTAAAGAAGG	300
20	ACATATTGTT	AAAGTTGATG	CTGGTACATA	CTGGTACAAC	GATCCTTATA	CATTAGATTT	360
20	CATGCGTAAA	GATTTAAAAG	Amaaattaat	TAAAGCTGCA	AAATAATTCA	GCTATATAAG	420
	TTAGTGAAAT	GAGAGTCTGA	AACATATCAA	TCTTTTGATA	TTGTATTAGG	CTCTTATTTT	480
25	TATAGCTAGA	AAGTTAGATA	TTTGTATTTT	TTTAAATAAT	AAGTGCCGTT	GTTATCGTTC	540
	AATTTAATTA	ATGATAGATT	AGTATTATTA	TAGCTAAAGT	AGTATACCTG	AGAAAATAGC	600
	TCAATGTATC	TCTTTATTAA	TAAGTTATAT	CATAATTATT	TTAGTGCATA	CTTTATGGAA	660
30	GGGATATCAG	GGAATGGCTT	TCAATTAAAG	AAGAGGTTTA	AAAGGATTAC	AACAGAATGT	720
	TATGATTTTG	TAGAAAGATA	TATAACAACG	TTTTATAAAA	ACATAATATT	GTTAATGGAA	780
	AATGAAATGT	AAGGGGGATT	TCGAGTGACT	AAGAAAGTTT	ATTTTAACCA	CGATGGTGGT	840
35	GTAGATGATT	TAGTATCTCT	ATTTTTTATTA	TTACAAATGG	AAAACGTTCA	ATTGATAGGG	900
	GTCAGTACAA	TTGGTGCTGA	TTGTTATTTA	GAGCCATCTT	TGAGCGCATC	AGTAAAAATT	960
	ATTAATCGTT	TTTCAAATGA	AGATATTCAA	GTTGCGCCAT	CATATGAACG	AGGAAAAAAT	1020
40	CCATTTCCTA	AAGAATGGCG	TATGCATGCC	TTTTTTATGG	ACGCATTGCC	AATTTTAAAT	1080
	GAGCCAGTCA	AACATGTTGC	TTCAAATGTG	AGCGACAAAG	AAGCCTTTGA	AGACATTATT	1140
	CAAACTTTAA	AGAGACAATC	AGAAAAGTA	ACATTATTAT	TTACAGGCCC	GCTTACAGAT	1200
45	TTAGCAAAAG	CACTACAAAA	AGATTCATCT	ATCGTTCAGT	ATATAGAAAA	ATTAGTTTGG	1260
	ATGGGTGGCA	CCTTTTTACC	AAAAGGAAAT	GTTGAAGAAC	CTGAGCATGA	TGGTTCTGCA	1320
	GAATGGAATG	CATATTGGGA	TCCAGAAGCG	GTTAAAATTG	TTTTTGATAG	CGATATAGAG	1380
50	ATTGATATGG	ттссттаса	AAGTACGAAT	CAAGTACCGC	ТААССТТАСА	TCTTACACAA	1440

55

	GTACCACCAT	TAACACACTT	TATAACAAAT	TCTACTTACT	TTTTATGGGA	TGTTTTAACG	1560
	ACTGCTTATA	TTGGTAACAA	GGACTTGGTT	CATTCAATTG	AGAAAAAGT	CGATGTAATA	1620
5	AGTTATGGAC	CAAGTCAAGG	TAAGACATTT	GAGTGTAAAG	ATGGGCGCAA	AATTAATGTC	1680
	ATAAATCATG	TAGATAACAA	CGCATTTTTT	GATTATATAA	CTGCACTTGC	TAAAAAGTA	1740
	AATTAACAGC	TGTGTAGAAT	AATTAAGGTT	TTAATTTATA	TAGAACAACT	TATTGTAAAC	1800
10	TTTTCATTTC	TTAAAGTTTA	CAATGGTGCT	ATAATAATGG	TCATGAAATA	CGAAAGGAAG	1860
	TAAAAAATGA	CAACAAAACA	GTTAGTATAT	ACAGCTTTAA	TGACAGCGAT	TATCGCTATT	1920
	TTAGGATTGG	TACCGGTAAT	TCCACTACCA	TTTTCTTCAG	TACCAATTGT	ACTTCAAAAC	1980
15	ATTGGTATTT	TCTTAGCAGG	TGCGATTTTA	GGACGTAAAT	ATGGCACATT	AAGTGTTATC	2040
	GTCTTTTTAT	TATTAGTAGT	TGCTGGCTTG	CCATTGTTAT	CAGGTGGTCG	CGGTGGCATC	2100
00	GGTGTATTCG	CAGGTCCTTC	AGCAGGGTTT	TTACTATTAT	ATCCAGTTGT	AGCATTCATG	2160
20	ATTGGGGCGA	TTCGAGATAG	ATTCATCAAT	GAAATTAATT	TCTGGATTTT	ATTCGTTGGT	2220
	ATTTTAGTTT	TTGGTGTTAT	AGCATTAGAT	GTTATTGGTA	CATTGATTAT	GGGCATGATT	2280
25	ATTAACATAC	CATTTACGAA	AGCTATTTCA	ATTTCATTAG	CTTATTTGCC	TGGTGATATA	2340
	TTAAAAGCAA	TTGTAGCAAG	TTTGATTGGT	ACAGCTTTAC	TTAATCACTC	GCAGTTTCGT	2400
	CAAATTATGG	GAATAAAATA	ATCATATTTA	AGATAGTAAA	GTAATTGAAT	AAGTTGCTTT	2460
30	GAAATTTATA	AAAGTGAAAG	GAGTAGGTGT	CAATGGCTAG	TATAAGTATG	TCAGATATAT	2520
	ATTGTAACGG	CACTATATTT	GAAAATGACG	ACGAGCAGTT	GATTTATTTA	ACGCCTTCTT	2580
	TTCCACAACG	ATACACAAGT	AACACATGGA	TATATAAAAA	GACGCCTACC	CAAGAGCGAT	2640
35	GGCTGAAAGA	CTTAGAACGT	CAACATCAAT	TACATACAAA	TCAAGGTTCA	AATCATTATG	2700
	CGTTTAGTTT	CCCGGAAAAT	GAACAACTTG	ATAATCATTG	GATGGCTATG	TTTAAAGATA	2760
	TGAATTTTGA	ACTAGGTATT	ATGGAATTGT	ATGCCATAGA	AAGTGATGCG	CTTGCCAATT	2820
40	TGCCGCGTAA	CTCTGACGTT	GAAATTGCCA	TCGTTGACGA	GTCGCATATA	GATGCCTATT	2880
	TAAAAGTTGC	ATATCAGTTT	AGTTTGCCAT	TTGGAAAAGA	CTATGCAGAT	GCACATGAAG	2940
	AAATGGTAAG	GGAACATTAT	CAAAAAGATG	TGATTAAACG	CTTAGTAGCT	TATTTAAATA	3000
45	ATGAACCTAT	TGGCGTTGTA	GATGTCATTG	AAAGTGAAAA	TTACATTGAA	TTAGATGGAT	3060
	TTGGTGTATT	AGAACAATTT	CGGCACCAAG	GAATTGGATC	TACAATTCAA	TCGTTGATAG	3120
	GTGAATACGC	CATATCAAAA	AATCACAAAC	CAATCATATT	AGTTGCAGAT	GGTGAAGATA	3180
50	CAGCAAAAGA	ፕ ልፐርፕል ፐር ርኣ	እ እርር እ እርርጥጥ	א ברינה עינה אינה להיה עינה ע	***********	T2MC222M2M	3340

	TAAGCTGGTT	TCGAGTAGAA	ATCAACTTAC	TGCTTTTTAA	ATTGTTTTGA	GCTACTTATA	3360
	CTTATAAAA	TAGTGCGTTT	AAATTGTTGA	TTCATGTAGA	ATATCGTTCA	TTATGACACA	3420
5	CTATAATGAA	TATGTTATTG	TTCAGAATCA	ATGATACGTT	CTGGATGACT	GTATATATTA	3480
	AAGCCACCAT	TTCGAATAAA	TCCAACTGCC	GTAATATTTA	GGTCATTAGC	TAAGGTTACA	3540
10	GCAAGCGTTG	TCGGAGCTGA	TTTAGATAAA	ATGACGCCAA	CACCAATTTT	TGCGGCTTTA	3600
,0	TTTAAAATTT	CTGATGAAAT	ACGTCCACTA	AAAATTAATA	CTTTATCTCG	GACAGTAATA	3660
	TGTCGCTGAA	TACAAAATCC	ATATAATTTA	TCTAGAGCGT	TATGTCTACC	AATGTCTTGT	3720
15	CGATGTACAA	AAAATGTCAA	ACCATCGCTT	ATAGCAGCAT	TATGTAAGCC	ACCTGTTTCT	3780
	TGGTAAATAT	GACTTGCACT	TTGTAATCGA	GTCATCATGT	TAATAATTTG	CATTGGAGTT	3840
	AAAGTGATTT	TAGACATAGA	TGTTTTAGCG	ATAGCAGCAT	CATTTTGAAA	ATAAAACTCA	3900
20	CGACTCTTTC	CGCAACAAGA	TGCAATCATT	CGTTTTGTGG	AATATTGAAA	GCGATCGCCT	3960
	AAATCTTTAT	TAAGTTCAAC	ATGGGCAAAA	CCTTTACTAT	CATCAATCAG	TACAGATTTT	4020
	AATTCATCTC	GCTTTAAAAT	GGCACCTTCC	GAAGCCAGAA	ATCCAATGAC	TAACTCCTCA	4080
25	AGGTTTGTTG	GACTGCATAT	AACAGTCGCA	AATTCTTCAC	CATTCACCAT	AATTGTAAGT	4140
	GGAAATTCTG	TCACATATTG	ATCTGTTGTA	TTGAATAATT	TTCCATCTTC	ATATCTAACA	4200
	ATTGGTTGAC	CTAAAGATAC	ATCTTTGTTC	ATTATCTAAC	CCCTTTAATT	AGCTTAAACT	4260
30	TTATTTTAAA	GCAATTTGCT	TAAAATTTTA	ACATATTTGC	TTAAGTTTGA	AATTTGATTG	4320
	ATAAAAATTA	ATAGCGAGCA	ATCTGTTTGA	TTTAAATTGA	ATTCGAGAAT	ATACATACTA	4380
<i>35</i>	GGGCATCAAT	TAATAAATAT	CAATCTTATG	CAAATTTGAC	AATTGTTTGA	ATCAATATAT	4440
	AAACAGGCAA	CGGTTCTTTT	CAAATATAAT	AGTAAGTGTA	TAATGAAAAT	GTAAATATTA	4500
	TTAĀĀAATGG	GGGTTCACTC	AATGAAATTG	AAACGTTTAT	TIGCIGTIGT	GATTGCAATG	4560
40	CTTTTAGTAT	TAGCTGGTTG	CTCTAATTCT	AACGATAATA	ATGAAAGTAA	AAAAGATGAC	4620
	GCAGACAATG	GTAAGAAACA	AGAGATTCAA	GTTGCAGCGG	CAGCAAGTTT	AACAGATGTA	4680
	ACCAAGAAAT	TAGCTTCAGA	ATTTAAAAAA	GAGCATAAAA	ATGCTGATAT	TAAATTTAAC	4740
45	TATGGTGGAT	CAGGGGCATT	AAGAAAACAA	ATTGAATCAG	GCGCACCTGT	TGACGTATTT	4800
	ATGTCTGCAA	ATACTAAAGA	TGTAGATGCA	TTAAAAGACA	AGAATAAAGC	GCATGATACA	4860
	TATAAATATG	CGAAAAATAG	TCTAGTATTA	ATTGGTGATA	AAGATTCAAA	TTACACTTCA	4920
<i>50</i>	GTAAAAGACT	TAAAAGACAA	TGATAAATTA	GCATTAGGTG	AAGTGAAAAC	TGTACCAGCA	4980
	CCAAAATATC	CCDAACACTA	ጥጥጥ እርግ ጥ አ ຈ 🗢	N N TO N COTTON	TTT	CC111Cm111	

	CAAGGTTTTG	TGTATAAAAC	TGACTTATAT	AAACAAAATA	AAAAAATTGA	TACTGTAAAA	5160
	GTAATTAAAG	AAGTAGAACT	TAAGAAGCCA	ATCACATACG	AAGCTGGTGC	TACATCAGAT	5220
5	AGTAAATTAG	CAAAAGAGTG	GATGGAATTC	TTAAAATCAG	ATAAAGCTAA	AGAAATACTA	5280
	AAAGAATACC	ACTTTGCAGC	ATAAGGAGTT	GTAATCCATG	CCTGACTTAA	CACCTTTTTG	5340
	GATATCAATA	CGAGTTGCTG	TAATCAGTAC	GATTATTGTA	ACGGTTTTAG	GTATTTTTAT	5400
10	ATCTAAATGG	TTGTATCGTC	GTAAGGGTTC	GTGGGTTAAA	GTATTGGAAA	GTTTATTGAT	5460
	ATTACCTATT	GTTTTGCCGC	CAACGGTATT	AGGTTTTATT	CTATTAATCA	TCTTCTCGCC	5520
15	AAGAGGACCA	ATCGGTCAAT	TCTTTGCGAA	TGTACTACAT	TTACCTGTAG	TGTTCACTTT	5580
15	GACAGGTGCT	GTGATAGCAT	CTGTCATTGT	TAGTTTTCCA	CTAATGTATC	AACATACTGT	5640
	GCAAGGCTTC	AGAGGTATAG	ACACGAAAAT	GATTAATACA	GCTAGAACGA	TGGGAGCAAG	5700
20	TGAAACGAAA	ATTTTCCTCA	AATTAATTTT	ACCATTAGCT	AAACGCTCTA	TTTTAGCAGG	5760
	TATAATGATG	AGTTTTGCTC	GTGCATTAGG	TGAGTTTGGT	GCTACATTAA	TGGTTGCAGG	5820
	ATATATTCCA	AATAAAACGA	ATACACTACC	TTTAGAAATA	TACTTCTTAG	TGGAACAAGG	5880
25	TAGAGAAAAT	GAAGCGTGGT	TATGGGTATT	AGTGCTAGTC	GCATTCTCTA	TTGTGGTTAT	5940
	ATCTACAATT	AATTTATTGA	ATAAAGATAA	ATATAAGGAG	GTCGACTAGA	TGCTTAAAAT	6000
	CAATGTGAAA	TATCAATTAA	AGAACACTTT	AATTCGCATC	AATATAGATG	ATACTGAACC	6060
30	TATTTAAAAA	GCAGTTCGTG	GTCCATCTGG	CATTGGTAAA	ACTACTGTTT	TAAATATGAT	6120
	TGCCGGATTA	CGTAAAGCAG	ATGAAGCTAT	TATCGAAGTG	AATGGGCAAT	TACTTACTGA	6180
	TACGGCAAAA	AACGTGAATG	TTAAAATTCA	ACAACGACGT	ATTGGATATC	TGTTTCAAGA	6240
35	CTACCAATTG	TTTCCTAATA	TGACGGTCTA	TAAAAATATT	ACTTTTATGG	CTGAACCATC	6300
	TGAACACATC	GATCAATTAA	TTCAAACTTT	AAACATTGAT	CATTTGATGA	AACAATATCC	6360
40	TATGACATTG	TCAGGTGGAG	AGGCACAACG	TGTAGCACTT	GCACGTGCAC	TTAGCACrAA	6420
	ACCAGATTTA	ATTTTATTAG	ATGAACCTTT	TTCTAGTTTG	GATGATACTA	CAAAAGATGA	6480
	GAGTATTACA	TTAGTTAAAC	GTATTTTCAA	CGAATGGCAA	ATACCAATCA	TATTTGTGAC	6540
45	ACATTCAAAC	TATGAAGCAG	AACAAATGGC	TCATGAAATT	ATTACAATTG	GGTAATCATT	6600
	TATTTGCCAT	TAAAGAGTTT	AGAACGTATT	TAAAATTGTA	GAAGTGAATG	CTTCTATCAG	6660
	CATTTTAATG	ATGTTTTAAA	CTCTTTTTTA	GGGGCAGTTT	TTTTGAGAGA	CATTGACGCG	6720
50	CGTCATATAA	TGAAAGTAAT	GATAAAAAGA	AAGGATAACT	TAATGTGAGT	CAAGAACGTT	6780
	ATTCAAGGCA	AATTTTATTT	AAACAAATAG	GTGAAATAGG	TCAAAGCAAA	АТАААТСААА	6840

	GAGCAGGCAT	TGCCAAACTA	ATCATTGTTG	ATAGAGATTA	TATTGAATTT	AGTAATTTAC	6960
	AAAGACAAAC	ATTGTTTACT	GAAGAAGATG	CTTTGAAAAT	GATGCCTAAG	GTGGTTGCAG	7020
5	CTAAAAAGCA	TTTGCTAGCG	TTACGTAGTG	ATGTTGATAT	TGATGATTAT	ATTGCCCATG	7080
	TGGATTATTA	TTTTTTGGAA	ACACATGGAC	AGGACGTTGA	CGTTATTATT	GATGCAACCG	7140
	ATAACTTTGA	AACACGACAA	CTGATTAATG	ATTTTGCATA	TAAATATCGT	ATACCTTGGA	7200
10	TTTATGGTGG	TGTTGTACAG	AGTACATATA	CAGAAGCTGC	ATTTATACCT	GGTAAAACAC	7260
	CTTGCTTTAA	CTGTTTGGTA	CCACAATTGC	CAGCATTAAA	TTTAACATGT	GATACAGTAG	7320
15	GGGTCATTCA	ACCTGCCGTG	ACGATGGCAA	CAAGTTTACA	ATTAAGAGAT	GCGATGAAAG	7380
	TATTAACGGA	ACAACCAATT	GACACAAAAA	TAACTTATGG	CGATATTTGG	GAAGGTAGTC	7440
	ATTATTCATT	TGGTTTCAGT	AAAATGCAAC	GTTCAGACTG	TACAACTTGT	GGAGATGTAC	7500
20	CAAGTTATCC	GTATTTAAAC	AAGAATGAAC	AACGTTATGC	AACATTGTGT	GGTAGAGACA	7560
	CTGTACAGTA	TGAAAATGCA	TCAATTACAC	ACGACATTCT	TGTTCAATTT	TTAAAACAAC	7620
	ATCAGTTAAA	TTATCGCAGT	AATTCGTATA	TGGTTATGTT	TGAATTTAAA	GGACACCGCA	7680
25	TTGTTGCTTT	TAAAGGTGGA	AGGTTTTTAA	TACATGGCAT	GACACGCACA	TCAGATGCCA	7740
	CACATCTAAT	GAATTTATTG	TTTGGATAAA	AAAAGATAAG	ACAAAAGGAG	TGTAATATTA	7800
	TGGGCGAACA	TCAAAACGTT	AAATTGAATC	GTACAGTTAA	AGCAGCCGTA	CTAACGGTAT	7860
30	CAGATACTAG	AGACTTTGAT	ACAGATAAAG	GTGGTCAATG	CGTGCGCCAA	CTATTACAAG	7920
	CAGATGACGT	TGAAGTGAGT	GACGCACATT	ATACAATTGT	GAAAGATGAA	AAAGTAGCCA	7980
35	TCACGACGCA	GGTGAAGAAG	TGGTTAGAAG	AAGATATTGA	TGTCATCATT	ACGACTGGTG	8040
00	GAACAGGTAT	TGCACAACGT	GATGTGACGA	TTGAAGCAGT	AAAACCACTT	TTAACTAAAG	8100
	AGATAGAAGG	CTTTGGGGAA	TTGTTTAGAT	ATTTGAGTTA	TGTTGAAGAT	GTTGGCACGC	8160
40	GTGĊATTATT	GTCTCGTGCT	GTAGCAGGTA	CAGTTAATAA	TAAATTGATA	TTTTCGATTC	8220
	CAGGATCAAC	AGGCGCAGTT	AAATTAGCAT	TAGAAAAGCT	CATTAAACCA	GAATTAAATC	8280
	ATCTGATTCA	TGAGCTTACA	AAATAATTTA	TTGATTTGAT	TGGCGTTGAA	AATCTCCAGA	8340
45	TTTACCGCCA	GACTTGCTTT	CAAGGTAGGT	TTCGCCAATA	ATCATACCTT	TATCAACTGC	8400
	TTTCGTCATG	TCGTAAATGG	TTAAAGCCGT	TGCTGATGCA	GCGGTTAAAG	CTTCCATTTC	8460
	AACACCGGTT	TTGCCAGTTG	TAGAGACAGT	TGTTTGAATG	TTTAAAGTAT	AAAGGGGTGC	8520
50	ATTTGTTTCA	TCCCAGCTGA	AGTGAACATC	TATGCCAGTC	AATGGTAATG	GATGGCACAT	8580
	CCCAATAACT	CTTCATCTAT	TOTAL CONTRACTOR CO	CATA ATA COA	CCCAMMOCAC	CA COCODO A	0640

	AATGCTTGAA	TGAGCGACAG	CAGTTCTTTT	TGTAATTTGT	TTGTCTGATA	CATCGACCAT	8760
	TTTGGCGTGG	CCTTGTTGAT	TAATATGAGT	AAACTCAGTC	ATTTTACCCC	TCCTAGTGCA	8820
5	TCTAGTATAT	CATGAAAAAA	TAAAAGTTTT	GGAGATGATT	TTTAATGGTA	GTAGAAAAA	8880
	GAAACCCAAT	CCCAGTTAAA	GAAGCAATTC	AACGTATCGT	TAATCAGCAG	AGTTCAATGC	8940
10	CGGCAATTAC	GGTAGCACTT	GAAAAAAGTC	TAAATCATAT	CTTAGCAGAA	GATATTGTAG	9000
,0	CTACTTATGA	TATACCAAGG	TTTGATAAAT	CACCTTATGA	TGGTTTTGCA	ATTCGCAGTG	9060
	TTGATTCACA	AGGGGCAAGT	GGTCAGAATC	GCATTGAGTT	TAAAGTGATT	GATCATATTG	9120
15	GTGCAGGTTC	AGTTTCTGAT	AAATTAGTTG	GGGATCACGA	AGCGGTGCGT	ATTATGACTG	9180
	GAGCACAAAT	ACCTAATGGC	GCAGATGCTG	TTGTTATGTT	TGAACAAACG	ATTGAACTAG	9240
	AAGATACATT	TACAATTCGT	AAACCATTTT	CAAAAAATGA	AAATATATCT	TTAAAAGGTG	9300
20	AAGAAACAAA	GACAGGCGAT	GTTGTTCTAA	AAAAAGGACA	AGTAATTAAT	CCAGGGGCTA	9360
	TCGCGGTCCT	TGCAACATAT	GGCTATGCAG	AGGTTAAAGT	TATTAAGCAA	CCGAGTGTCG	9420
	CTGTTATTGC	AACAGGAAGC	GAATTATTAG	ATGTTAATGA	TGTATTAGAA	GATGGGAAAA	9480
25	TTCGTAACTC	TAATGGCCCA	ATGATTCGTG	CCTTAGCAGA	AAAATTAGGT	CTTGAAGTTG	9540
	GTATTTACAA	AACACAAAAA	GATGATTTAG	ATAGTGGCAT	CCAAGTCGTT	AAAGAAGCTA	9600
	TGGAAAAACA	TGATATCGTT	ATTACAACGG	GCGGAGTTTC	TGTTGGAGAT	TTTGACTATT	9660
30	TACCTGAGAT	TTATAAGGCT	GTAAAGGCGG	AAGTGTTATT	TAATAAAGTA	GCAATGCGTC	9720
	CTGGTAGCGT	AACAACGGTT	GCATTTGTAG	ATGGAAAGTA	TTTGTTTGGa	TTATCTGGAA	9780
35	ATCCATCAGC	TTGTTTTACA	GGATTTGAAC	TATTTGTGAA	nCCAGCTGTT	AAACATATGT	9840
	GTGGCGCACT	AGAAGTCTTC	CCGCAAATAA	TTAAAGCAAC	ATTAATGGAA	GATTTTACCA	9900
	AGGGAAACCC	ATTCACACGA	TTTATACGTG	CTAAAGCAAC	GTTAACAAGT	GCTGGAGCTA	9960
40	CTGTAGTACC	TTCAGGATTC	AATAAATCAG	GTGCGGTTGT	AGCGATTGCA	CATGCTAACT	10020
	GTATGGTCAT	GTTACCAGGA	GGGTCACGTG	GTTTTAAAGC	GGGGCATACA	GTAGATATTA	10080
	TATTGACTGA	ATCTGACGCT	GCTGAAGAGG	AACTTCTTTT	ATGATTTTAC	AAATTGTAGG	10140
45	TTACAAAAAG	TCTGGTAAGA	CAACATTGAT	GAGGCATATT	GTCTCTTTCT	TAAAGTCACA	10200
	TGGTTATACA	GTTGCTACTA	TTAAACATCA	TGGGCATGGT	AAGGAAGATA	TTCAATTACA	10260
	GGATTCAGAC	GTCGATCACA	TGAAGCATTT	TGAAGCGGGG	GCAGATCAAA	GTATTGTACA	10320
50	AGGTTTTCAA	TATCAGCAAA	CTGTAACACG	TGTAGATAAT	CAAAATCTTA	CTCAAATTAT	10380
	TONNARATOR	ביייים איני איניים איניים	2 C2 CC2 2 T2 T2	OCT A TITLE OTT	a		

	GAATGTTTGT	TATAGCATTA	ATGTAAGGGA	GCATGAAGAT	TTTACAGCAT	TTGAGCAATG	1056
	GTTATTAAAT	AAAATTAAAA	ATGATTGTGA	TACACAATTA	ACATAGAGGA	TTGAAATGAA	1062
5	TGAAACAATT	TGAAATCGTG	ACAGAACCGA	TACAAACAGA	ACAATATCGT	GAATTCACTA	1068
	TAAATGAATA	TCAAGGTGCA	GTAGTTGTTT	TTACCGGTCA	TGTTCGCGAA	TGGACTAAAG	1074
	GCGTCAAAAC	GGAATATTTA	GAATATGAAG	CGTATATTCC	AATGGCTGAA	AAGAAATTGG	1080
10	CACAAATTGG	AGATGAAATA	AATGAAAAAT	GGCCTGGAAC	GATAACGAGT	ATTGTTCATA	1086
	GAATAGGGCC	ATTACAAATT	TCAGATATCG	CTGTATTAAT	TGCGGTTTCT	TCACCGCATC	1092
15	GTAAAGATGC	CTATCGAGCA	AATGAATATG	CAATTGAGCG	TATAAAAGAA	ATTGTTCCGA	1098
,,,	TTTGGAAAAA	AGAAATTTGG	GAAGATGGTT	CAAAATGGCA	AGGGCATCAA	AAAGGGAATT	1104
	ATGAAGAAGC	AAAGAGGGAG	GAATAAGAGA	GATGAAGGTA	CTTTACTTCG	CAGAAATTAA	1110
20	AGATATATTA	CAAAAAGCAC	AGGAAGATAT	TGTGCTTGAA	CAAGCATTGA	CTGTACAACA	1116
	ATTTGAAGAT	TTATTGTTTG	AACGTTATCC	GCAAATCAAT	AATAAAAAGT	TTCAAGTTGC	1122
	TGTAAATGAG	GAATTTGTAC	AAAAATCGGA	TTTCATTCAA	CCTAATGATA	CTGTTGCATT	1128
25	AATTCCACCG	GTTAGTGGAG	GTTAAGGGAG	CATGAAAGCA	ATAATTCTTG	CAGGTGGTCA	1134
	TTCAGTGCGA	TTTGGTAAGC	CCAAAGCTTT	TGCGGAAGTG	AACGGTGAGA	CCTTTTATAG	1140
	TAGAGTAATT	AAGACATTAG	AATCAACAAA	TATGTTCAAT	GAAATTATTA	TTAGTACAAA	1146
30	TGCGCAATTG	GCAACGCAAT	TTAAATATCC	AAATGTTGTT	ATAGATGATG	AGAATCATAA	1152
	TGATAAAGGT	CCATTAGCAG	GAATTTATAC	AATCATGAAG	CAACATCCTG	AAGAAGAATT	1158
	GTTTTTTGTC	GTTTCTGTTG	ATACACCAAT	GATTACTGGT	AAAGCTGTAA	GCACGTTGTA	1164
35	TCAGTTTTTA	GTTTCTCATC	TTATTGAAAA	TCATTTAGAT	GTCGCAGCTT	TTAAAGAAGA	1170
	TGGACGTTTT	ATTCCAACAA	TTGCATTTTA	TAGTCCGAAT	GCATTAGGCG	СТАТААСТАА	1176
40	AGCACTACAT	TCTGATAATT	ACAGTŤTTAA	AAATGTATAT	CATGAATTAT	CAACGGATTA	1182
40	TTTGGATGTA	AGGGATGTAG	ATGCGCCCTC	ATATTGGTAC	AAAAATATAA	ATTATCAGCA	1188
	TGATTTGGAC	GCTTTAATTC	AAAAATTGTA	AGCTGTTAGG	AGGTCCACAA	ATGGTAGAAC	11940
45	AAATAAAAGA	TAAACTAGGA	CGTCCCATCC	GTGACTTACG	GTTATCTGTG	ACAGATCGGT	12000
	GTAACTTTAG	GTGTGATTAT	TGCATGCCTA	AAGAGGTATT	TGGAGATGAT	TTCGTATTTT	12060
	TACCTAAAAA	TGAACTTTTA	ACGTTTGATG	AAATGGCTAG	AATCGCTAAG	GTATATGCAG	12120
50	AATTAGGTGT	AAAAAAATA	CGCATTACAG	GTGGAGAACC	ATTGATGCGA	CGGGATTTAG	1218
	ልጥርጥልርጥ ልጥ	Δασταάλττα	AATCAAATCG	ΔΤΟΟΤΔΤΤΟΔ	АСАТАТТССТ	ጥጥርልርጥልሮልል	1224

	ATGTCAGTTT	GGATGCTATT	GATGATACGC	TATTTCAATC	AATCAATAAT	CGTAATATTA	12360
	AAGCGACTAC	GATTTTAGAA	CAAATTGATT	ACGCGACGTC	TATTGGTTTG	AATGTAAAAG	12420
5	TAAATGTTGT	TATACAAAAA	GGTATTAACG	ATGATCAAAT	CATACCAATG	CTTGAATATT	12480
	TTAAAGATAA	ACATATAGAG	ATTCGATTTA	TAGAATTTAT	GGATGTTGGT	AATGATAATG	12540
	GATGGGATTT	CAGTAAAGTT	GTAACTAAAG	ATGAAATGCT	TACAATGATA	GAGCAGCACT	12600
10	TTGAAATCGA	TCCTGTAGAA	CCAAAATATT	TTGGGGAAGT	AGCAAAATAT	TATCGCCATA	12660
	AGGATAATGG	TGTTCAATTT	GGTTTGATTA	CAAGTGTTTC	ACAATCATTT	TGTTCTACAT	12720
15	GTACACGCGC	AAGGCTGTCA	TCAGATGGGA	AGTTTTACGG	ATGTTTATTT	GCAACTGTCG	12780
	ATGGATTTAA	CGTTAAAGCG	TTTATTCGTT	CTGGCGTGAC	CGACGAAGAA	TTAAAAGAAC	12840
	AATTTAAAGC	TTTATGGCAA	ATAAGAGATG	ATCGATATTC	AGATGAGAGA	ACTGCTCAAA	12900
20	CAGTTGCCAA	TCGTCAACGT	AAAAAGATAA	ACATGAATTA	TATTGGTGGT	TAATGTGTAG	12960
	GGACCACTAC	ATATTAAATC	ATTAGAGATG	TTTTAATATT	TCTGTCTTAC	TCCCTAAAAT	13020
	ACAATATTAT	TTATTAAAGT	AAAAACGGTC	ATATCTATGC	CAGATTTAAT	AGAAATGATC	13080
25	GTTTTTAAAG	TTTTTACAAG	TTGGCGGGGC	CCCAACACAG	AAGCTGACAG	AAAGTCAGCT	13140
	TACAATAATG	TGCAAGTTGG	CGGGGCCCCA	ACATAGAGAA	TTTCAAAAAG	AAATTCTACA	13200
	GACAATGCAA	GTTGGGGAAC	GGGGCCCCAA	CACAGAAGGT	GACGAAAAGT	CAGCATACAA	13260
30	TAATGTGCAA	GTTGGCGGGG	CCCCAACATA	GAGAATTTCA	AAAGAAATTC	TACAGACAAT	13320
	GCAAGTTGGG	GATCAACGAA	ATAAATTTTA	TGAGAATATC	ATTTCTATCC	CACTCTTAAG	13380
	AATCACTACA	TAATAAATCT	TTAGTGGTTC	TTTAACATTG	ATGTCACACT	CCATGCCATT	13440
35	GAGTTGTAAT	ATATCTTTTT	TAGGTATAAA	TGTTGTCGAA	TAAACAACAA	GTTGTCCAAA	13500
	AGATATAAAT	CTAAACAAGA	TATAGCCAGC	AATTTAATAT	TTGTAATAGA	TAAAATGCTA	13560
40	AGTTTGATAT	ATAATAAATT	TAAGTAATTG	TATAATAATA	TGAATTACAA	ACATCTAAGA	13620
40	AGAAACATAG	GAGGCATCAT	ATTATGAGTA	ATAAAGTTCA	ACGTTTTATA	GAAGCAGAAA	13680
	GGGAGTTAAG	TCAGTTAAAG	CACTGGTTAA	AAACAACACA	TAAGATTTCA	ATTGAAGAAT	13740
45	TTGTAGTCCT	TTTTAAAGTG	TATGAAGCTG	AAAAGATTAG	CGGTAAAGAA	TTGAGGGATm	13800
	CATTACATTT	TGAAATGCTA	TGGGATACAA	GTAAAATCGA	TGTGATTATC	CGTAAAaTCT	13860
	ATAAAAAAGA	GCTTATTTCT	AAATTGCGTT	CTGAAACGGA	TGAAAGACAA	GTATTCTATT	13920
50	TCTATAGTAC	TTCTCAAAAG	AAATTGTTAG	ATAAAATTAC	TAAAGAAATA	GAAGTGTTAA	13980
	GCGTTACAAA	СТАВАВАСТТ	aAAAAgcaTG	ССААТСТСТА	ТТСАТСАТА	ттасатстта	14040

	GTTCATGGCA	TTTCTAGTTA	CATGACGTCC	ATGAATTAAG	AAGTAAACAA	GCATAGTAAT	14160
	GATTGCTAAA	GCGGCCATAA	AGCCGAAGAT	TTCACTATAT	GAAAACATAT	GAGTAAATAA	14220
5	CCCAAGGAAT	GATGGACCGA	AGCCGACACC	TGCATCTAGA	CCAACGTAAA	AAGTAGATGT	14280
	CGCGATACCA	TATTTAATCG	GGGGTGAGAC	TTTTATCGCA	ATAGATTGCA	TTGCAGATGA	14340
	TAAATTTCCA	TACCCTAAAC	CTAGGCAAGC	ACCAGCAAGT	AATATTAACC	AGCTTTGATA	14400
10	GCTTGAAATT	AAGCATACAA	ATGAAAGGAA	AAGCATGATA	AATGCTGGGT	AGACAATAAT	14460
	ATTTTCATTT	TTATCATCCA	TCAATCTACC	AGCAATAGGT	CTAGTAATTA	ACGATGCTAT	14520
15	AGCATAGCAA	ATAAAGAAAT	AGCTTGCTGC	AGTGACTAGG	TGTCGCTCTA	AAGCAAATGC	14580
	TTGTAAATAA	GTTAGGATGG	ACGCATAGGT	AACGCCAATT	AAAAGCATAA	TTACAGCAAC	14640
	AGGAATGGCC	TCTTTTGCAA	TAAATTGATG	AATACTAAAT	CTTGGTTTAT	CAATGACATT	14700
20	AGTTTCAGTT	TTGTTATTTG	TTACTTCGAA	ATCAACTTTT	ATAAATAATG	AGATAATGAG	14760
	TCCGAGTATG	CCTAATATGA	CACAAATAAT	AAACAGTAAG	TCAATTGCGT	ATTTTGTAAT	14820
	AAGTAACATG	CCTAGAAATG	GGCCAATCGC	TGTACCTAAT	ACTAAACTTA	AGGAAAATAA	14880
25	ACTGATGCCT	TCACTTTTTC	TATTAACAGG	GGTAACGTAT	GCCGCAATAG	TACCTGTTGC	14940
	AGTTGTCACA	ACTGCAGTTG	CGATACCGTT	TATGAGACGT	ACAAAGATTA	AAAAAGCTAA	15000
	AGATCCATCA	АТААААТААА	GTAATTGCGT	GATAATTAAA	GCAATTAAAC	CAATAAATAA	15060
30	TAATCGTTTA	GGTCCTATTT	SATTTACAAA	TTTACCTGTA	GCAAATCGA		15109

(2) INFORMATION FOR SEQ ID NO: 45:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 9072 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

40

45

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:

GAGAGTCAAT	GGCAAGAAGA	ATATAAATAT	TTGAGAGCGT	TAATCTTTAA	TGAAACAGAA	60
TTAGAGGAAG	CGTATAAATG	GATGCATCCT	TGTTACACGT	TGAATAATAA	AAATGTAGTA	120
CTTATCCATG	GCTTCAAAAA	TTATGTTGCA	CTATTATTTC	ATAAAGGTGC	CATTTTGGAG	180
GATAAATATC	ATACACTCAT	TCAACAGACT	GAAAAGGTGC	AAGCAGCTCG	TCAGTTACGA	240
TTTGAAAATT	TAACAGAGAT	TCAAGCACGT	ACCGAAGAAA	TTAAATATTA	TCTAGCCGAA	300
GCAATTAAAG	CTGAAAAAGC	TGGTAAAAA	GTTGAAATGA	AGAAAACAGA	GGAATATGTT	360

55

	AAATTAACGC	CAGGCAGACA	ACATCAATAT	ATATATCATA	TTGGACAAGC	TAAACGCAgT	480
	GgAACAAGAC	AAAAGCGTGT	TGAAAAGTAT	ATTAACCAAA	TACTAGAAGG	TAAAGGGATG	540
5	CATGATAAGT	AATTAATGAG	TAAAGCATAC	CGGTTATACA	ACAACATACA	AGATGACACG	600
	AAACAACCAA	TGGCTCATGC	TGTTGGTTGT	TTTTTTAGGT	GTGTCTGTCA	TGGGCAACAC	660
	TTTGACGTTG	GAATTCCGTT	ACAGGCTTGG	GAGTAGAAAA	TGTTAGCAAA	AGGCAAGGGT	720
10	GTCTACAATG	AATGATGAAG	ATATTAAAAT	ATAAGGATGA	CTTTGTGAGT	GGCGGATGGG	780
	CGGTTGTCCG	TCTGTAACAA	TGGATGCGTG	TGCATTATTA	CAAAAATTCG	ACTTTTGTAA	840
15	TAATATTTCA	CATTTTCGAC	ACTITITIGC	TATAAAACAA	CCAATTGAGC	GATAATAAAT	900
15	TCGCTTTTAA	AAAATATGAG	TTATCTATTT	AGTTGCCAAA	GATAAAATAA	TAATGTTTAA	960
	TAACATCATA	TAGAGTATGT	TAGTTTTAAA	TGTCGAATAT	ACGAATGTGC	AAACAAAGTA	1020
20	ATCGGTAGAA	ATTCAACATA	CATAGCGCCG	TTTACTGTTA	AGTATTCACA	TTACAGATGA	1080
	AAATATAAA	ATTCTACATA	ATCAAGACCA	TGATGTGTAC	TTGTTTAACT	TATGACTCTA	1140
	TTTGTTTAAC	AATTGCGATA	ATGGTCTTTT	TATTTTATGC	GTATCATTCG	TCATATTTTT	1200
25	TATGAGGAAG	GAGAAATGAT	TATGTTAAGT	ATTAAGCATT	TAACGAAAAT	TTATTCTGGT	1260
	AATAAAAAGG	CAGTAGATGA	CATCTCTTTA	GATATTCAAT	CTGGGGAATT	TATCGCATTT	1320
	ATTGGAACCA	GTGGAAGTGG	CAAAACGACT	GCTTTAAGAA	TGATAAACCG	TATGATTGAA	1380
30	GCGACAGAAG	GACAAATTGA	AATTGATGGT	AAAGATGTTC	GGAGTATGAA	TCCTGTCGAA	1440
	TTGCGTAGAA	ATATTGGCTA	TGTTATTCAA	CAAATTGGCT	TAATGCCTCA	TATGACGATT	1500
	AAAGAGAATA	TTGTGTTGGT	ACCCAAATTG	TTGAAATGGA	CTAAAGAGGA	AAAGGATAAA	1560
35	CGTGCAAAGG	AATTAATTAA	ACTTGTGGAT	TTACCGGAGT	CATTTTTAGA	GCGTTATCCA	1620
	GCAGAACTAT	CAGGTGGGCA	ACAACAACGT	ATCGGTGTTG	TAAGAGCACT	TGCGGCCGAA	1680
	CAAGATATTA	TTTTAATGGA	TGAACCTTTT	GGTGCATTGG	ATCCTATTAC	GAGAGATACG	1740
40	TTACAAGATT	TAGTTAAAAC	GTTACAACGA	AAATTAGGCA	AGACGTTTAT	CTTTGTAACA	1800
	CATGATATGG	ATGAAGCGAT	TAAATTAGCA	GACAAAATTT	GTATTATGTC	AGAAGGTAAG	1860
45	GTGGTGCAAT	TTGATACGCC	AGACAATATT	TTAAGACATC	CCGCAAATGA	TTTTGTACGT	1920
	GATTTTATAG	GACAAAATAG	ACTGATTCAA	GACCGTCCCA	ATGACAAGAC	TGTAGAAGGT	1980
	GTAATGATTA	AACCAATCAC	GATACAAGCA	GAAGCAACAC	TGAATGACGC	CGTTCATATT	2040
50	ATGAGACAAA	AACGTGTTGA	TACTATTTT	GTAGTAGATA	GTAATAACCA	TTTACTAGGT	2100
	TTCTTAGACA	TTGAAGATAT	AAATCAGGGT	ATACGTGGAC	ACAAAAGTTT	ACGAGACACC	2160

	ATTTTAAAAA	GAAACGTTAG	GAATGTACCT	GTCGTAGATG	ATCAACAGCG	TTTAGTAGGA	2280
	CTGATTACGC	GTGCCAATGT	TGTTGATATT	GTATATGACA	CGATTTGGGG	CGATAGTGAG	2340
5	GATACAGTGC	AAACAGAACA	TGTGGGGGAA	GACACTGCGT	CCTCAAAAGT	GCATGAGCAA	2400
•	CACACTACTA	ATGTCAAAGT	ACGTGACATA	GGAGATGATA	AATCATGATT	GAGTTCCTAC	2460
	ATGAACATGG	TGGACAGTTG	ATGTCGAAAA	CACTGGAACA	TTTCTATATT	TCTATAGTGG	2520
10	CATTATTACT	TGCCATCATT	GTTGCAGTAC	CTATAGGCAT	TTTATTATCA	AAAACAAAGC	2580
	GAACTGCCAA	TATTGTATTA	ACTGTGGCAG	GTGTCTTACA	AACTATTCCA	ACACTAGCTG	2640
15	TACTTGCTAT	TATGATACCG	ATTTTTGGTG	TTGGTAAAAC	GCCTGCAATT	GTAGCGCTAT	2700
	TTATTTATGT	ATTATTACCT	ATTTTAAATA	ACACGGTACT	CGGTGTTCAA	AATATTGATA	2760
	GCAACATTAA	AGAAGCTGGA	AAAAGTATGG	GAATGACACA	ATTTCAATTG	ATGAAGGATG	2820
20	TTGAATTGCC	GTTAGCATTG	CCGCTTATCA	TTGGTGGCAT	TCGTTTGTCA	TCTGTGTATG	2880
	TAATTAGTTG	GGCTACACTT	GCAAGTTATG	TAGGTGCGGG	TGGATTAGGT	GATTTCATTT	2940
	TCAATGGTTT	AAATTTATAT	GATCCACTGA	TGATTGTAAC	TGCAACGGTA	CTCGTTACTG	3000
25	CACTAGCATT	AGGTGTTGAT	GCCTTATTAG	CTTTAGTTGA	AAAATGGGTA	GTTCCCAAAG	3060
	GCTTAAAAGT	ATCTGGATAA	TTAGGAGGCT	AAGATAATGA	AGAAAATTAA	ATATATACTT	3120
	GTCGTGTTTG	TCTTATCGCT	TACCGTATTA	TCTGGATGTA	GTTTGCCCGG	ACTAGGTAGT	3180
30	AAGAGCACGA	AAAATGATGT	CAAAATTACA	GCATTATCAA	CAAGCGAATC	GCAAATTATT	3240
	TCACATATGT	TACGGTTGTT	AATAGAGCAT	GATACACACG	GTAAGATAAA	GCCAACATTA	3300
	GTAAATAATT	TAGGGTCAAG	TACGATTCAA	CATAATGCCT	TAATTAATGG	GGATGCTAAT	3360
35	ATATCAGGTG	TTAGATATAA	TGGCACAGAT	TTAACGGGAG	CTTTGAAGGA	AGCACCAATT	3420
	AAAAATCCTA	AGAAAGCAAT	GATAGCAACA	CAACAAGGAT	TTAAAAAGAA	ATTTGATCAA	3480
40	ACGTTTTTTG	ATTCGTATGG	TTTTGCGAAT	ACGTATGCAT	TCATGGTAAC	GAAGGAAACC	3540
40	GCTAAAAAAT	ATCATTTAGA	GACAGTTTCA	GATTTAGCAA	AGCATAGTAA	AGATTTACGT	3600
	TTAGGTATGG	ATAGTTCATG	GATGAATCGT	AAAGGCGATG	GCTATGAAGG	AAAAATTTA	3660
45	GAGTATGGTT	TTGACTTTGG	TACAGTGAGA	CCAATGCAAA	TAGGTCTAGT	CTACGACGCA	3720
	TTAAACTCAG	AGAAGTTAGA	CGTTGCATTA	GGTTATTCTA	CAGATGGTCG	AATTGCGGCG	3780
	TATGATTTGA	AAGTACTTAA	AGATGATAAA	CAATTTTTCC	CACCTTATGC	TGCGAGTGCT	3840
50	GTTGCAACAA	ATGAATTATT	ACGGCAACAC	CCAGAACTTA	AAACGACGAT	TAATAAGTTG	3900
	ACAGGAAAGA	TTTCGACTTC	AGAGATGCAA	CGCTTGAATT	ATGAAGCGGA	ፕሮሬሞል እ አርረጥ	2060

	AAAGGTGGTC	ATAAGTAATG	GAAGGTAATT	TATTACAGCA	ATTATTCAAT	TATTATGTTA	4080
	CGAACTTTGG	TTATCTATGG	GATTTATTTT	TCAAACACTT	ATTAATGTCT	GTCTATGGTG	4140
5	TGCTGTTTGC	AgCTTTAATT	GGTATTCCAT	TGGGAATCTT	GCTTGCaAGA	TACACAAAAC	4200
	TTTCTGGATT	TGTAATTACA	ATTGCAAATA	TAATTCAAAC	AGTTCCAGTC	ATTGCAATGT	4260
10	TAGCTATTTT	AATGTTAGTC	ATGGGCTTAG	GTTCAGAAAC	AGTAGTITTA	ACAGTGTTTT	4320
10	TATATGCGTT	ACTTCCAATT	ATAAAAAACA	CTTATACTGG	TATAGCTAGT	GTTGATGCGA	4380
	ATATTAAGGA	TGCTGGCAAA	GGTATGGGAA	TGACACGCAA	TCAAGTGCTA	CGAATGATTG	4440
15	AATTACCGTT	ATCTGTTTCG	GTTATTATCG	GTGGCATTCG	TATTGCCTTG	GTTGTTGCGA	4500
	TAGGTGTTGT	TGCCGTTGGA	TCATTTATAG	GAGCACCTAC	GCTTGGTGAC	ATTGTGATTC	4560
	GTGGTACAAA	TGCGACGGAT	GGCACAACGT	TTATTTTAGC	AGGTGCGATT	CCGATTGCTA	4620
20	TCATTGCAAT	CGTCATTGAT	GTACTATTAA	GATTTTTAGA	AAAACGATTA	GACCCAACAA	4680
	CACGACATCG	TAAAAATCAA	TCTAATCATC	GGCCGCAAAG	TATTAATATG	TAATAGTAGA	4740
	AGATGTTTAT	AATTTAGCGA	TTTCGTTTCA	TGATTTATAA	AAAATGAGGC	TACTCAAGGA	4800
25	GCTCAAATAA	TCTTTGAGTA	GCCTTTTTAT	AGGTTGTGTT	TGTATGCGTT	TACACTAAAA	4860
	TAGCAATTAT	TATCATGAAA	GTTTTTGGAT	AAAAAGCGTT	AATTATTGTA	AAAATACTAA	4920
	AAAATGAGAT	GTTTTATTTA	TAATTTTCTG	CAAATTTATG	ATATTGTTTC	TTAATATATC	4980
30	ATATTAAAAA	TTTGTTTTTC	TTAAACATAG	GAGGCTTATC	TAATTCATGG	ACACATCAAA	5040
	ACAATTTAGA	GGTGACAACC	GATTGCTTTT	GGGTATCGTT	TTAGGGGTTA	TTACCTTTTG	5100
	GCTATTCGCG	CAGTCACTTG	TTAATCTTGT	TGTCCCATTA	CAATCAACAT	ATAGTAGTGA	5160
35	CGTTGGAACG	ATAAATATCG	CTGTTAGCTT	ATCTGCCTTA	TTTGCTGGTT	TGTTTATCGT	5220
	AGGTGCTGGT	GATGTTGCTG	ATAAATTTGG	TCGCGTCAAA	ATTACTTATG	TAGGATTGAT	5280
40	ATTAAATGTT	GTAGGTTCAT	TACTCATCAT	CATTACACCT	TTGCCAGCAT	TTTTAATTAT	5340
40	AGGTAGAATA	ATTCAAGGTT	TGTCTGCAGC	ATGTATTATG	CCATCAACAC	TTGCTATTAT	5400
	TAACGAATAT	TATATTGGTA	CAAGAAGACA	ACGTGCCTTA	AGCTATTGGT	CTATTGGTTC	5460
45	TTGGGGTGGT	AGTGGTATTT	GTACGTTGTT	TGGTGGCTTA	ATGGCTACAT	ATATAGGTTG	5520
	GCGTTCAATA	TTTGTTGTTT	CAATTCTATT	AACATTATTA	GCAATGTACT	TAATCAAACA	5580
	TGCACCTGAG	ACTAAAGCAG	AACCAATCAA	AGGTATGAAA	GCAGAAGCTA	AAAAGTTTGA	5640
50	CGTTATTGGT	TTAGTCATTT	TAGTAGTGAC	GATGTTAAGT	TTAAATGTAA	TCATCACACA	5700
	GACGTCTCAT	TTTGGTTTAG	TTTCACCGTT	AATTCTAGGT	יאיייטאיייעעעייי	ጥርያምምምም	5760

	AATTTTTAAA	AATAGAGGAT	ACAGTGGTGC	AACTATTTCA	AACTTCTTAT	TAAATGGTGT	5880
	AGCAGGTGGT	GCACTTATCG	TTATTAACAC	GTATTATCAA	CAACAATTAG	GATTTAATTC	5940
5	TTCGCAAACG	GGTTATATTT	CATTAACGTA	TTTAATAACA	GTGTTGTCAA	TGATTCGTGT	6000
	AGGTGAAAAG	ATTTTATCTC	AACATGGTCC	GAAGCGCCCA	CTATTACTAG	GAAGTGGCTT	6060
	TACAGTGATT	GGGTTAATCT	TATTGTCGTT	AACATTTTTA	CCAGAAGTGT	GGTATATCAT	6120
10	ATCTAGTATA	GTTGGATATT	TATTGTTTGG	TACTGGTTTA	GGATTATATG	CTACACCATC	6180
	AACTGATACA	GCAGTTGCTA	GTGCGCCAGA	TGATAAGTCG	GGTGTTGCTT	CAGGTGTGTA	6240
	TAAAATGGCG	TCATCATTAG	GAAATGCATT	TGGAGTAGCA	GTATCTGGTA	CGGTTTATAC	6300
15	TGTGTTAGCA	GCTAATTTAA	ATTTGAACTT	AGGTGGTTTC	ACAGGTATGA	TGTTTAATGC	6360
	CTTGCTAGCA	ATTGTTGCAT	TTTTAGTCAT	TTTACTATTA	GTTCCTAAAA	ATCAAACGAA	6420
20	TTTGTAAAAC	TGAAATGAAA	GCAAGTTATT	ATGTAGGGAT	TTTAAAGGAA	ATTTTGTGAA	6480
	AGTAAGTTTA	TCATACACAC	TTAATGTTGC	GTATTGACGT	TTAATGTTAG	GTGTGTTCTT	6540
	TTATAGACGA	TAAAAGCTGT	GTGCATATTA	AGCGAATGAT	TTTCAAATTG	ACGCTAATAT	6600
25	GCGAAAGTAG	TATTTTTAAA	ATGAACAACA	ACGATGAAGA	GGGGTTTATA	GGATGAAAAT	6660
	TGCAATTGCT	GGATCGGGTG	CATTAGGTAG	TGGCTTTGGT	GCCAAACTAT	TTCAAGCAGG	6720
	ATATGATGTC	ACACTTATTG	ACGGATATAC	ATCTCATGTT	GAAGCGGTTA	AGCAACATGG	6780
30	ATTAAATATA	ACGATTAATG	GAGAGGCATT	CGAGTTAAAC	ATTCCGATGT	ATCATTTTAA	6840
	TGATCAACCG	GACGAAAGCA	TTTACGATGT	TGTCTTTCTA	TTTCCAAAGT	CTATGCAATT	6900
	AAAAGAAGTG	ATGGAAGATA	TGAAGCCACA	TATTGATAAT	GAAACGATCG	TCGTATGTAC	6960
35	GATGAATGGT	CTGAAGCATG	AAGAAGTCAT	TGCGCAGTAT	GTTGCTCAAT	CACAAATTGT	7020
	CAGAGGTGTT	ACGACTTGGA	CGGCAGGTCT	TGAAAGCCCT	GGACACAGTC	ATTTACTTGG	7080
	TAGTGGACCA	GTTGAAATAG	GTGAACTAGT	GGATGAAGGT	aaagaaaatg	TTATAAAAGT	7140
40	TGCTGATTTA	CTTAACGAAG	CGGAATTGAA	TGGTGTCATT	AGTAAAGATT	TATACCAATC	7200
	GATTTGGAAA	AAGATTTGTG	TTAATGGTAC	GGCAAATGCA	TTAAGCACAG	TGTTGGAGTG	7260
45	TAATATGGCA	TCGCTGAATG	aaagtagtta	TGCGAAGTGT	TTGATTTATA	AATTAACGCA	7320
	AGAAATAGTG	CATGTAGCGA	CGATTGATAA	TGTTCATTTA	AATGTTGATG	AAGTATTTGA	7380
	ATATTTAGTT	GATTTAAATG	AAaAAGTTGG	TGCGCATTAT	CCATCCATGT	ATCAAGATTT	7440
50	AATTGTTAAT	AATAGAAAAA	CTGAAATTGA	TTATATTAAT	GGCGCAGTTG	CAACATTAGG	7500
	TAAACAACGT	Catattgaag	CGCCAGTCAA	TCGCTTTATT	ACTGATTTAA	TTCATACTAA	7560

	CAATCACGTG	ATATTACGGT	CATTATTAAG	ATTGAAATGT	AATAAATAAA	GAACAGCAGT	7680
	AAGGTACTTT	CAAATTGAAA	TGATCTTGGT	GCTGTTTTC	TTGATTGATC	TTCGTCATAA	7740
5	TTCAGATTTG	TCATAGGCTA	CGACATACTA	TTAGTATTTA	CTAGACAGTT	TTTACGACGA	7800
	CACTTTGAAA	AATTTTGAGG	CAAATCATTT	GGAAGTCTCA	CGTGAATTTT	GTAAACTCAT	7860
10	CAAGCAAGTA	ATTATATTAA	AAAGACAAAT	AGAGAAAAGG	TGTTTATAAT	GAGTAAAATT	7920
10	TTTGTAACTG	GTGCAACGGG	CCTTATTGGC	ATTAAATTAG	TTCAAAGACT	AAAAGAAGAG	7980
	GGGCATGAGG	TTGCTGGTTT	TACTACATCT	GAGAATGGTC	AACAAAAGCT	AGCTGCTGTT	8040
15	aatgt aaaa g	CATATATTGG	TGATATATTA	AAAGCTGATA	CTATTGATCA	AGCGTTAGCA	8100
	GATTTTAAAC	CAGAAATCAT	TATCAATCAA	ATTACGGATT	TAAAAAATGT	TGATATGGCA	8160
	GCAAATACGA	AAGTACGTAT	TGAAGGTTCT	AAAAACCTAA	TTGATGCGGC	GAAAAAGCAT	8220
20	GACGTTAAGA	AAGTAATTGC	CCAAAGTATT	GCCTTTATGT	ATGAACCTGG	CGAAGGATTA	8280
	GCAAATGAGG	AAACTTCACT	TGATTTTAAC	TCAACTGGCG	ATAGAAAAGT	AACGGTTGAT	8340
	GGTGTGGTTG	GTTTAGAAGA	AGAAACGGCT	CGTATGGATG	AATACGTTGT	TTTACGTTTT	8400
25	GGCTGGTTAT	ATGGCCCAGG	TACTTGGTAC	GGAAAAGATG	GCATGATTTA	TAATCAATTT	8460
	ATGGATGGTC	AAGTGACACT	TTCAGATGGC	GTAACATCAT	TTGTGCATCT	TGATGATGCA	8520
	GTTGAAACAT	CTATTCAAGC	TATTCATTTT	GAAAATGGTA	TCTATAATGT	AGCAGATGAT	8580
30	GCACCTGTTA	AAGGTTCTGA	ATTTGCAGAA	TGGTATAAAG	AACAACTTGG	TGTTGAACCA	8640
	AATATTGATA	TTCAACCTGC	GCAACCATTT	GAACGTGGCG	TAAGCAATGA	GAAGTTTAAA	8700
0.5	GCGCAAGGTG	GTACTCTGAT	TTATCAAACT	TGGAAAGATG	GCATGAATCC	AATTAAATAA	8760
35	TAATTTATCC	GTTTAATATA	CAAAGAATAA	AGACTTGGTC	GAATCGTGGA	TGATATATTA	8820
	TCAAACGCAC	GGCTCGAACA	AGTCTTTTTT	ATTATGTCTT	CGTTATCTTT	GTATGAAGGA	8880
40	ATAACAGAAT	TACAATTAAT	GTACTGAATA	ATGCAATTAA	TGTTGTGATT	AGTGCTAATT	8940
	TAATTTCTAT	TGGTAGCCAA	GTCAGTACAA	AAGACCAATT	ATTGCTACCG	AGAATGAGAT	9000
	ATGGTAATGC	ATATAATATG	AGCGCTAAAG	CGATACATAT	ACATAATGAT	AACCAACTCA	9060
45	ATACAGCAAT	CC					9072

(2) INFORMATION FOR SEQ ID NO: 46:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16826 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:

	GTGGAACAGC	TGTAACTATA	TCATTTCTTT	CAACATTTAT	TGGGAAAATG	TTAGCTACAT	60
5	TTCTATATCC	GATTAATAAT	GTAGTACTT	CATATATNTC	TGTAAATGAA	AGTGACAATA	120
	TAAAGAAGCA	ATATTTGaAA	ACTAATCTAA	TTGCTATAGC	TGCCCTATGT	TTAGTCATGA	180
	TTATATGTTA	TCCAATTACA	ATAATTATTG	TCTCTTTACT	GTATAACATT	GATTCAAGTT	240
10	TATATTCGAA	GTTTATTATT	TTAGGTAATA	TAGGTGTTTT	ATTCAATGCA	GTGAGTATTA	300
	TGATCCAAAC	TTTAAATACA	AAACACGCAT	CAATAACATT	ACAAGCGAAT	TATATGACGC	360
15	TTCACACGAT	TACATTTATA	TTCATAACTA	TTTTAATGAC	AATTGCGTTT	GGTCTAAATG	420
,,	GATTCTTTTG	GACAACGCTG	TTCAGCAACA	TTATTAAGTA	TGTGATTTTA	AATATTATAG	480
	GTTTAAAGTC	TAAATTCATT	AATAAAAAGG	ACGTCGATTA	GATGAGTGAA	AAAAAGATTT	540
20	TGATTTTATG	TCAGTATTTT	TATCCGGAAT	ATGTATCTTC	TGCGACGTTA	CCAACTCAAT	600
	TGGCGGAAGA	TTTAATTGCG	AATCACATTA	ATGTCGATGT	CATGTGTGGA	TGGCCATATG	660
	AATATAGTAA	TCATAAACAG	GTTTCTAAAA	CCGAGATGCA	TCGTGGTATT	CGCATTCGAC	720
25	GTCTCAAGTA	TTCGAGGTTT	ААТААСАААА	GTAAGGTTGG	AAGGATCATC	AATTTCTTTA	780
	GTTTATTTTC	AAAATTCGTG	ATTAATATAC	CTAAAATGTT	GAAATATGAT	CAGATTCTTG	840
	TTTACTCTAA	TCCACCAATC	TTGCCATTAA	TACCAGACGT	TTTACACAGA	CTGCTTAAGA	900
30	AAAAATATTC	TTTTGTGGTG	TATGATATAG	CACCTGATAA	TGCGATTAAG	ACAGGTGCAA	960
	CTCGTCCAGG	TAGCATGATT	GATAAGCTGA	TGCGTTACAT	TAATAGACAT	GTCTACAAGA	1020
	ATGCTGAAAA	TGTCATTGTC	CTTGGTACGG	AAATGAAAAA	CTACTTACTA	AATCATCAAA	1080
35	TTTCTAAAAA	TGCTGACAAT	ATCCATGTGA	TTCCTAACTG	GTATGACATG	CGTCAATTAC	1140
	AAGACAATCG	TATCTATAAT	GACACATTTA	AAGCTTACCG	TGAGCAATAC	GACAAAATTT	1200
	TATTGTATAG	CGGTAATATG	GGGCAGTTAC	AGGATATGGA	GACACTTATC	TCATTTTTAA	1260
40	AATTAAATAA	GGATCAGTCT	CAAACGTTAA	CAATACTTTG	TGGTCATGGT	AAGAAATTTG	1320
	CAGATGTCAA	AACGGCAATA	Gaagaccatc	GTATTGAAAA	TGTTAAAATG	TTTGAGTTTT	1380
45	TAACAGGTAC	AGACTATGCT	GACGTATTAA	AAATTGCGGA	TGTATGTATT	GCATCGCTGA	1440
	TTAAAGAAGG	CGTCGGTTTA	GGCGTGCCGA	GCAAGAATTA	TGGCTATCTT	GCAGCTAAGA	1500
	AAGCGTTGGT	ACTCATCATG	GATAAGCAAT	CTGATATCGT	TCAACATGTT	GAACAATATG	1560
50	ATGCGGGTAT	CCAAATTGAT	AATGGCGATG	CACATGCCAT	TTATAACTTC	ATCAACACTC	1620
	ACTCGAGTAA	GGAATTGCAC	GAGATGGGTG	AGCGCGCACA	тсаастетт	ΔΑΔΩΤΑΔΑΤ	1680

	AAGCGATTAT	TCGATGTAGT	GAGTTCAATA	TATGGTTTAG	TAGTTTTAAG	TCCGATTCTG	1800
	TTAATTACAG	CATTACTAAT	TAAAATGGAa	TCACCTGGAC	CAGCCATTTT	САААСААААА	1860
5	AGACCGACGA	TTAATAATGA	ATTGTTTAAT	ATTTATAAGT	TTAGATCAAT	GAAAATAGAC	1920
	ACACCTAATG	TTGCAACTGA	TTTAATGGAT	TCAACATCGT	ATATAACAAA	GACAGGGAAG	1980
	GTCATTCGTA	AGACCTCTAT	TGATGAATTG	CCACAATTAT	TGAATGTTTT	AAAAGGAGAA	2040
10	ATGTCAATTG	TAGGTCCTAG	ACCAGCGCTT	TATAATCAAT	ACGAATTAAT	CGAAAAACGT	2100
	ACAAAAGCGA	ACGTGCATAC	GATTAGACCA	GGTGTGACAG	GACTAGCTCA	AGTGATGGGG	2160
15	AGAGATGATA	TCACTGATGA	TCAAAAAGTA	GCGTATGATC	ATTATTACTT	AACACATCAA	2220
	TCTATGATGC	TTGATATGTA	TATCATATAT	AAAACAATTA	AAAATATCGT	TACTTCAGAA	2280
	GGTGTGCATC	ACTAATGAGA	AAAAATATTT	TAATTACAGG	CGTACATGGA	TATATCGGTA	2340
20	ATGCTTTAAA	AGATAAGCTT	ATTGAACAAG	GACATCAAGT	AGATCAAATT	AATGTTAGGA	2400
	ATCAATTATG	GAAGTCGACC	TCGTTCAAAG	ATTATGATGT	TTTAATTCAT	ACAGCAGCTT	2460
	TGGTTCACAA	CAATTCACCT	CAAGCAAGGC	TATCTGATTA	TATGCAAGTG	AATATGTTGC	2520
25	TGACGAAACA	ATTGGCACAA	AAGGCTAAAG	CTGAAGACGT	TAAACAATTT	ATTTTTATGA	2580
	GTACTATGGC	AGTTTATGGA	AAAGAAGGTC	ATGTTGGTAA	ATCAGATCAA	GTTGATACAC	2640
	AAACACCAAT	GAACCCTACG	ACCAACTATG	GTATTTCCAA	AAAGTTCGCT	GAACAAGCAT	2700
30	TACAAGAATT	GATTAGTGAT	TCGTTTAAAG	TAGCAATTGT	GAGACCACCA	ATGATTTATG	2760
	GTGCACATTG	CCCAGGAAAT	TTCCAACGGT	TAATGCAATT	GTCAAAGCGA	TTGCCAATCA	2820
	TTCCCAATAT	TAACAATCAG	CGCAGTGCAT	TATATATTAA	ACATCTGACA	GCATTTATTG	2880
35	ATCAATTAAT	ATCATTAGAA	GTGACAGGTG	TGTACCATCC	TCAAGATAGT	TTTTACTTTG	2940
	ATACATCGTC	AGTAATGTAT	GAAATACGTC	GCCAATCACA	TCGTAAAACG	GTATTGATCA	3000
40	ACATGCCTTC	AATGCTAAAT	AAGTATTTTA	ATAAGTTGTC	GGTCTTTAGA	AAATTATTCG	3060
40	GCAATTTAAT	ATACAGCAAT	ACGTTATATG	AATAATAAA	TGCACTTGAA	ATTATTCCTG	3120
	GAAAAATGTC	ACTTGTTATT	GCGGACATCA	TGGATGAAAC	GACAACCAAA	GATAAGGCAT	3180
45	AAGTCATCTA	ТТАААТАААА	TCAACATACA	AATCGTTTTA	TTTGGAGGTT	ATAGTATGAA	3240
	GTTAACAGTA	GTTGGCTTAG	GTTATATTGG	TTTACCAACA	TCAATTATGT	TTGCAAAACA	3300
	TGGcGTCGAT	GTGCTTGGTG	TTGATATTAA	TCAGCAAACG	ATTGATAAGT	TACAAAGTGG	3360
50	TCAAATTAGT	ATTGAAGAAC	CTGGATTACA	AGAGGTTTAT	GAAGAGGTAC	TGTCATCGGG	3420
	AAAATTGAAG	GTATCTACAA	CGCCAGATGC	ATCTGATGTT	TTTATCATTC	CCGTTCCGAC	3480

	TAGTATITTA	TCATTTTTAG	AAAAAGGAAA	TACCATTATT	GTAGAGTCGA	CAATTGCGCC	3600
	TAAAACGATG	GATGATTTTG	TAAAACCAGT	CATTGAAAAT	TTAGGGTTTA	CAATAGGTGA	3660
5	AGATATTTAT	TTAGTGCATT	GTCCAGAACG	TGTACTGCCA	GGAAAAATTT	TAGAAGAATT	3720
	AGTTCATAAC	AATCGTATCA	TTGGCGGTGT	GACTGAAGCT	TGTATTGAAG	CGGGTAAACG	3780
10	TGTCTATCGC	ACATTCGTTC	AGGGAGAAAT	GATTGAAACA	GATGCACGTA	CTGCTGAAAT	3840
10	GAGTAAGCTA	ATGGAAAACA	CATATAGAGA	CGTGAACATT	GCTTTAGCTA	ATGAATTAAC	3900
	AAAAATTTGC	AATAACTTAA	ATATTAATGT	ATTAGATGTG	ATTGAAATGG	CAAACAAACA	3960
15	TCCGCGTGTT	AACATCCATC	AGCCTGGTCC	AGGTGTAGGC	GGTCATTGTT	TAGCTGTTGA	4020
	TCCGTACTTT	ATTATTGCTA	AAGACCCTGA	AAATGCAAAG	TTAATTCAAA	CTGGACGTGA	4080
	AATTAATAAT	TCAATGCCGG	CCTATGTTGT	TGATACAACG	AAGCAAATCA	TCAAAGTGTT	4140
20	GAGCGGGAAT	AAAGTCACAG	TATTTGGTTT	AACTTATAAA	GGTGATGTTG	ATGATATAAG	4200
	AGAATCACCA	GCATTTGATA	TTTATGAGCT	ATTAAATCAA	GAACCAGACA	TAGAAGTATG	4260
	TGCTTATGAT	CCACATGTTG	AATTAGATTT	TGTGGAACAT	GATATGTCAC	ATGCTGTCAA	4320
25	AGACGCATCG	CTAGTATTGA	TTTTAAGTGA	CCACTCAGAA	TTTAAAAATT	TATCGGACAG	4380
	TCATTTTGAT	AAAATGAAGC	ATAAAGTGAT	TTTTGATACA	AAAAATGTTG	TGAAATCATC	4440
	ATTTGAAGAT	GTATCGTATT	ATAATTATGG	CAATATATTT	AATTTTATCG	ACAAATAAAA	4500
30	TGTGTCAAAC	TAGGGCATAC	ATGATTAAGG	AAAGATAAGC	TGTCATGTGT	TTGAACTTCA	4560
	GAGAGGATAA	TGTTATGAAA	AAAATTATGG	TTATTTTCGG	TACGAGACCC	GAAGCAATAA	4620
	AAATGGCACC	ATTAGTAAAA	GAAATTGATC	ATAATGGGAA	CTTTGAAGCG	AACATTGTGA	4680
35	TTACAGCACA	ACATAGAGAT	ATGTTAGATA	GTGTGTTAAG	TATATTTGAT	ATTCAAGCTG	4740
	ATCATGATTT	AAATATTATG	CAAGATCAAC	AAACATTAGC	AGGCCTTACG	GCGAATGCAC	4800
10	TTGCTAAACT	TGATAGCATC	ATTAATGAGG	AACAACCGGA	TATGATTTTA	GTACATGGTG	4860
	ATACTACAAC	GACTTTTGTA	GGAAGTTTGG	CAGCATTTTA	TCATCAAATT	CCGGTCGGAC	4920
	ATGTAGAAGC	TGGACTTCGA	ACACATCAGA	AATACTCACC	ATTTCCTGAA	GAGTTAAATC	4980
1 5	GAGTCATGGT	AAGTAATATT	GCTGAATTGA	ATTTTGCGCC	AACAGTAATT	GCAGCTAAAA	5040
	ATTTACTTTT	TGAAAACAAA	GACAAAGAGC	GTATCTTTAT	TACTGGAAAT	ACAGTTATTG	5100
	ACGCATTGTC	AACAACAGTT	CAAAATGATT	TTGTTTCAAC	GATTATTAAT	AAACATAAAG	5160
50	GCAAGAAAGT	TGTTTTACTA	ACAGCGCATC	GTCGTGAAAA	TATTGGGGAA	CCGATGCATC	5220
	ACATETETE A	ACCACTAACA	GATTTGGCAG	ב אר בר בר בר בר בר בר בר בר בר בר בר בר בר	AGATGTTGTC	ጥጥ ር እ ጥጥጥ እ ጥር	5280

	GGATTGAATT	AATTGAGCCA	TTAGATGCGA	TTGAGTTCCA	TAATTTTACA	AATCAATCGT	5400
	ACCTCGTGCT	GACAGATTCT	GGTGGTATTC	AAGAGGAGGC	TCCTACATTT	GGAAAACCTG	5460
5	TGTTGGTATT	AAGGAATCAT	ACAGAGCGTC	CCGAAGGCGT	TGAGGCGGGA	ACATCGAGAG	5520
	TAATTGGCAC	AGATTATGAC	AATATTGTTC	GAAATGTGAA	ACAATTGATT	GAGGATGATG	5580
	AAGCGTATCA	ACGTATGAGT	CAAGCGAATA	ATCCATATGG	TGATGGACAA	GCATCACGAC	5640
10	GTATTTGTGA	AGCAATAGAA	TATTATTTTG	GATTGCGCAC	AGACAAGCCG	GATGAATTCG	5700
	TACCTTTACG	TCACAAATAA	TAAAAAACCC	CTAATCATGA	AGTTGGTTTA	GACAACCAGC	5760
15	GGTGACTAGG	GGTTTTTAAT	ATATTTATTT	TTGATAGTGG	TAGCCAATAT	CATATTIGAA	5820
	TACTTTATTT	GATAATATTG	GACTTTGCTG	TCCATCGTCA	TCACTTTTTA	AACGTACATT	5880
	TTTATGAGCT	TCTTTAAATA	CATCGGAATT	CAACCAATTA	TTAAAGCTAT	CTTCAGATTC	5940
20	CCAAATAGTT	AAGATTTTAA	CTTCGTCTGT	ATCCTCGGTA	TTTAATGTTT	TAGTGACAAA	6000
	CATTTGTTGG	AAGCCTTCAA	TAGTTTCAAT	ACCTTGTCTA	TTGTAAAAAC	GTTCAATCGT	6060
	TTCTTCCGCA	CTGCCTTTTT	GTAATTGTAA	TCTATTTTCT	GCCATAAACA	TGGGCAATCA	6120
25	CTCCTCTATT	TTATGATTTG	ATTTGGGTAA	TGTTTTTACA	AATGTAAAGA	GTACAGCGGT	6180
	TTGTATGATA	ACCATTATGA	TTAATCCTAC	ACGGACTGCA	AGAACATCCA	CCATATAAAT	6240
	TGAAAAACCT	ATTACAATGT	ATAAGCTAAT	TAAAATTTTA	ATTTTCTGTT	GTAGCGTGTA	6300
30	GCCTCGATGT	AAATAAAAGT	TTTCTACATA	TTCTTTATAA	ATTTTTTGAT	TAATAAGCCA	6360
	ATTGTAAAAG	CGATCTGAAC	TTCGAGCAAA	GCAAAAAACT	GCTACGAGTA	AAAAAGGGGT	6420
	CGTTGGCAGT	AAAGGTAATA	CGGCACCTGC	AATACCAAGC	GCTGTAAATA	TTAAGCCAAT	6480
35	GACGATTAAA	ATAAGTCGCA	TTGAAAAAAC	TCCATTCTAG	TACTAATGCG	CATGTAATAT	6540
	TGTT-TTAGTA	ATATAACTCA	TGCTAAATAT	AATGTGTATG	ATAAGTGCAA	TGACTCAGTA	6600
40	AAATGAAACG	ATGTTGAATT	ATCCTTGTCA	CATTAACGCA	TTTTAAGCGC	GACTTTCATA	6660
	ACAACCAAAC	TATTTAATGA	GAATTATTCT	CAAGTATTAT	AGTTATATTA	TGTGTTTTAT	6720
	TTTTGAAAAG	TGCAATATGT	TTTCGAAAAT	AAGATTATTT	TTATGTGCAA	AAACGACGCA	6780
45	AAAGTTTTAA	AAATGAGACT	TCTGTGAGCT	GATTATTTTA	TAAAATGTAA	ACGCTTACTA	6840
	TATAATGTGA	ATCATATCGT	TTAAAAGCAT	TATTAAATAT	GATGCTAAGA	GATTTATATT	6900
	ATAGCCAATA	AACAAAGGAG	AGATAATATG	GCAGTAAACG	TTCGAGATTA	TATTGCAGAG	6960
50	AATTATGGTT	TATTTATCAA	TGGGGAATTT	GTTAAAGGTA	GCAGTGACGA	AACAATCGAA	7020
	GTGACTAATC	CAGCAACTGG	AGAAACACTA	TCACATATTA	CAAGAGCAAA	AGATAAAGAT	7080

	TCAGAACGTG	CACAAATGTT	GCGTGATATT	GGTGATAAAT	TAATGGCACA	AAAAGATAAA	7200
	ATTGCAATGA	TTGAAACATT	AAATAATGGT	AAACCGATTC	GTGAGACAAC	AGCAATTGAT	7260
5	ATTCCATTTG	CTGCAAGACA	TTTCCATTAT	TTCGCAAGTG	TTATTGAAAC	AGAAGAAGGT	7320
	ACAGTGAATG	ATATCGATAA	AGACACAATG	AGTATCGTAC	GACATGAGCC	GATTGGCGTC	7380
10	GTAGGTGCTG	TTGTTGCTTG	GAACTTCCCA	ATGCTATTAG	CTGCATGGAA	GATTGCGCCA	7440
10	gCCATTGCTG	CAGGTAATAC	AATTGTGATT	CAACCTTCGT	CTTCAACACC	ATTAAGTTTA	7500
	TTGGAAGTTG	CTAAAATTTT	CCAAGAGGTA	TTACCTAAAG	GTGTTGTCAA	TATACTAACG	7560
15	GGTAAAGGTT	CAGAATCAGG	TAATGCAATT	TTCAATCATG	ATGGTGTAGA	TAAATTATCA	7620
	TTTACGGGCT	CAACTGATGT	AGGTTATCAA	GTTGCCGAAG	CTGCAGCAAA	ACATCTAGTA	7680
	CCCGCTACAT	TAGAGCTTGG	TGGTAAAAGC	GCCAATATCA	TATTAGATGA	TGCTAATTTA	7740
20	GACCTTGCAG	TTGAAGGTAT	TCAGTTAGGT	ATTTTATTCA	ACCAAGGTGA	AGTATGTAGT	7800
	GCAGGTTCTC	GATTATTAGT	TCATGAAAAA	ATTTATGATC	AATTGGTGCC	ACGTTTACAA	7860
	GAGGCATTTT	CAAATATTAA	AGTTGGAAAT	CCACAAGATG	AAGCTACACA	AATGGGTAGT	7920
25	CAAACTGGTA	AGGATCAATT	AGATAAAATT	CAATCATATA	TTGATGCAGC	AAAAGAATCA	7980
	GATGCACAAA	TTTTAGCAGG	CGGTCATCGC	TTAACTGAAA	ATGGATTAGA	TAAAGGGTTC	8040
	TTCTTTGAGC	CGACATTAAT	TGctGTGCCA	GACAATCATC	ACAAATTAGC	ACAAGAAGAA	8100
30	ATATTTGGAC	CAGTGTTAAC	agtgattaaa	GTGAAGGACG	ATCAAGAAGC	AATTGATATA	8160
	GCTAATGATT	CTGAGTATGG	TTTAGCAGGC	GGTGTATTTT	CTCAAAATAT	CACACGTGCA	8220
	TTAAATATTG	CTAAAGCTGT	ACGTACAGGA	CGTATTTGGA	TTAACACTTA	CAACCAAGTA	8280
35	CCAGAAGGCG	CACCATTTGG	TGGTTATAAA	AAATCAGGTA	TCGGTCGAGA	AACTTATAAA	8340
	GGTGCGTTAA	GTAACTATCA	acaagttaaa	AATATTTATA	TTGATACAAG	CAATGCTTTA	8400
40	AAAGGTTTGT	ACTAGAATAA	ATATCGTTTC	TGAAGCGTGT	TTGTAGGTCA	GTCTAGCGGT	8460
,,	AAGTCTTAAC	ATTTAACGGC	GTTGTTTAGA	TTTTAAGCAA	AACAAAATAT	ATAGGAACAC	8520
	GTATCATGAT	ATTAGGATAT	AATGACTAAA	ATAATAGCAG	TAGGATGGTT	TTTAATTGCA	8580
45	AATCATCTTA	CTGCTGTTTT	TAATTATGCT	AATTTGCGAT	GCGGCTATTA	TAAGGACAGA	8640
	GTTGTTTATT	AATTATGGTG	ATTTAGAAAT	ATGAAGTTCA	ATATGCAAAG	TCATCGTTTG	8700
	TTTTAATATG	CGGAACAATC	ATTAAAGTTA	TTGCGATTTT	TTGAACTTAA	TGAAACTAAA	8760
50	CAATAAATTT	GAGATACTTT	TTTGTCATTT	TTATGTAACT	AACACAATAA	TCTCGTACAT	8820
	TATTAAAATT	TTCTATATGA	TAGGAATAAA	GCAAAGCGCG	AGTGTGCTGT	AAAAGTTTTC	8880

	GATGATGTAT	AAATCATGGT	TAATTACGGA	AGCATTAATA	TTAACCTGAG	AAGCTATAAA	9000
	GAATTATTTT	TAAAAGCGAC	AATATTAAAT	ACGACGCATT	TATTTAGGAG	TGGCAAACGT	9060
5	ATGAATGGGA	AAAAGGCGAA	TACGATAAAC	AGATACAAAT	ATTTTCATCA	TGTCAATCAT	9120
	CAAAAAATTC	AACAAAGTTC	TAAAAAGACG	CTGTGGGCAT	CACTAATCAT	CACATTGTTA	9180
10	TTTACAGTGA	TTGAATTTGT	CGGAGGTTTA	GTATCTAATt	CATTGGCATT	ACTGTCAGAT	9240
10	TCATTTCATA	TGCTTAGTGA	TGTATTAGCA	CTTGGTTTAT	CTATGTTGGC	CATTTATTTT	9300
	GCAAGTAAAA	AGCCGACTGC	ACGATACACA	TTTGGATATT	TAAGATTTGA	GATATTAGCT	9360
15	GCATTTTTAA	ATGGTTTAGC	ATTAATTGTA	ATTTCAATCT	GGATTTTATA	TGAAGCTATT	9420
	GTACGTATTA	TTTATCCGCA	ACCAATTGAA	AGTGGCATTA	TGTTTATGAT	TGCTAGTATT	9480
	GGTTTACTCG	TCAATATTAT	TTTGACTGTT	ATCCTTGTAA	GGTCTTTAAA	ACAAGAAGAC	9540
20	AATATCAATA	TTCAAAGTGC	ATTATGGCAT	TTCATGGGAG	ACTTATTGAA	CTCTATTGGT	9600
	GTCATCGTTG	CAGTTGTATT	GATTTACTTT	ACAGGATGGC	GCATCATCGA	CCCAATCATT	9660
	AGTATTGTAA	TTTCACTCAT	CATTTTACGT	GGTGGTTATA	AAATTACGCG	TAATGCgTGG	9720
25	tTAATTTTAA	TGGAAAGTGT	GCCTCAACAT	TTGGATACTG	ATCAAATTAT	GGCAGATATT	9780
	AAAAACATAG	ATGGCATATT	AGATGTACAT	GAATTTCATT	TGTGGAGTAT	TACAACAGAG	9840
	CATTATTCAT	TAAGTGCCCA	TGTTGTGTTA	GATAAAAAAT	ATGAGGGTGA	TGATTATCAA	9900
30	GCGATTGATC	AAGTATCATC	ATTGTTGAAA	GAAAAATATG	GCATTGCACA	TTCAACGTTG	9960
	CAAATTGAAA	ACTTGCAATT	GAATCCATTA	GATGAGCCAT	ACTTCGACAA	ATTAACATAA	10020
	ATAAAACATT	GTAGCGCCTA	AAACATTAAT	CTATGTCATA	GGCGCACGTT	TCGTTTTATA	10080
35	CTTATGTTGC	ATCATTTAAA	TGATTTTCGT	CAATTTCTTT	GATGCTATCT	ACATCTAACA	10140
	CGACATCTTT	AGGTTTCAAA	ATATGAATAT	GTTTTTCATC	ATTTGTATGT	AAAATGCGTT	10200
40	CTATGATGTA	CCTTTGACCG	GCCATTGTTT	CTACAGCAAT	CTTTTTGTTT	CTAGCTAAAC	10260
40	TTGCTACGAC	AGATTCTTTA	TCCATAATGA	TAGCCCCCTA	TATATATGTT	TATTTACTTA	10320
	TACCCTAACA	TGATTTTTAT	ACTCTTTGAA	AATATATTTT	ACAGAATTTT	ATCTAAATAT	10380
45	TAAAAAAAT	ATCTTAATAT	CCTTGTAATC	CGATAAGAAT	TATAGTAATA	TTTTTCAAC	10440
	CATTGTTATA	GGAGGTCTTA	TTAATGACAT	TATTTTTATT	AGAAGCTAAC	AATCTTGATT	10500
	TTGCATCAAC	GAAAGAAGAA	CTAGAAGCAA	AGGCAGCATC	ACTATCTACG	AAGACAATTC	10560
50	CAACATTAAT	TGAAGTACAA	GCTACTGAAA	ATTTAACTCA	TGGTTATTTT	ATTGTGGAAG	10620
	CAAATGACGA	aGCAGAAGCT	יויידייני באר בא מ	TAACAGAAGC	ልርልጥልጥጥልርጥ	ስጥጥ/ ስጥጥስ/ ·	70690

	TTGATTACCT	TGTAACTTGG	AACATTCCGG	AAGGCATTAC	GATGGATCAA	TATTTAGCAC	1080
_	GTAAAAAGAA	AAATTCTGTT	CATTATGAAG	AAGTGCCAGA	AGTTGAATTT	AAACGCACAT	10860
5	ATGTATGTGA	AGATATGTCT	AAATGTATTT	GTTTATACAA	CGCACCTGAT	GAAGAAGCGG	10920
	TACGTCGCGC	GCGCAAAGCA	GTTGATACAC	CGATTGATGG	CATCGAAAAA	CTTTAATAAG	10980
10	ACAACAAGTT	GATGAGATAT	ATGTATATAG	GTTTGGCATG	GATTTCGATT	GCAGTTAATT	11040
	AGAATAGCTC	AATGCTATAA	ATGTAAGTAG	TTGATATGAA	GAAACTAATG	AACTAAATGC	11100
	AAGTATTGTC	TAAAACAATC	ATTTTATTGA	AATTTAGTAG	AGCTGAAATT	AATATAACGT	11160
15	CGTTAATTGA	ATAACGCTTA	TGTTATAAGA	GCACTCATAC	CAAACCATAA	TCATCTATAG	11220
	ATATAACAAT	TCACGATATA	AGGGCTGTGT	TTGGCATAGC	CCTTTAGATA	TACACTTAAT	11280
	TCCTATTAAA	ATAGTAGGGA	TTAAAAGGGG	GCTTGTCATG	ATTAAAATTC	AACAATTACA	11340
20	ACATCACTTT	GGATCACATA	AAGTAATTCA	TAACTTTAAT	TTGGACATTA	GCAAGGGAGA	11400
	AATAGTCACT	TTCATAGGGA	AAAGTGGTTG	CGGAAAGTCT	ACTTTACTCA	ATATTATCGG	11460
	TGGATTTATT	CATCCATCGT	CTGGTCGTGT	CATTATTGAT	AACGAAATTA	AACAACAGCC	11520
25	ATCTCCAGAT	TGTTTAATGC	TATTTCAACA	TCATAATTTG	CTGCCATGGA	AAACGATTAA	11580
	TGACAACATT	AGGATTGGAT	TACAACAGAA	AATTAGTGAT	GAAGAGATTA	ACGCACAGCT	11640
	TAAATTAGTT	GATTTAGAAG	ACAGGGGAAA	GCATTTTCCC	GAGCAACTGT	CCGGGGGTAT	11700
30	GAAACAACGT	GTGGCACTAT	GTCGAGCGCA	TGTGCATAAG	CCTAACGTTA	TATTGATGGA	11760
	TGAGCCATTA	GGTGCATTAG	ATGCATTTAC	ACGTTATAAA	CTTCAGGATC	AACTAGTGCA	11820
	aCTAAAACAT	AAAACGCAAT	CAACTATTAT	TTTAGTGACG	CATGACATTG	ATGAAGCTAT	11880
35	TTATCTTTCC	GACCGCATTG	TTCTGTTAGG	TGAAGGGTGC	AATATTATTT	CTCAATATGA	11940
	AATTACAGCA	TCACATCCAC	GCAGTCGTAA	TGATAGCCAC	CTACTTAAGA	TTCGTAATGA	12000
40	AATTATGGAA	ACATTTGCAT	TGAATCATCA	TCAAGTTGAA	CCTGAATATT	ATTTATAAGG	12060
	AGTGAGTGAC	GATGAAAAGG	TTAAGCATAA	TCGTCATCAT	TGGAATCTTT	ATAATTACAG	12120
	GATGTGATTG	GCAAAGGACG	TCTAAAGAAC	GGTCTAAAAA	TGCCCAAAAT	CAGCAAGTGA	12180
45	TTAAAATTGG	ATATTTGCCG	ATTACACATT	CAGCTAATTT	GATGATGACT	AAAAAATTAT	12240
	TATCACAATA	CAATCATCCG	AAATATAAAC	TAGAATTAGT'	TAAATTCAAT	AATTGGCCAG	12300
	ATTTAATGGA	CGCATTAAAC	AGTGGTCGTA	TTGATGGTGC	ATCAACTTTA	ATAGAGCTAG	12360
50	CGATGAAATC	AAAACAGAAG	GGCTCAAATA	TAAAGGCTGT	GGCATTGGGC	CATCATGAAG	12420
	CON NECTOR IN	mamoooa oa a	********	A COURT A R POCK	3 mmm 3 m 3 m 3 m	*************	10400

	GTAAACAATT	AAAGATTAAA	CCGGGGCATT	TTAGCTATCA	TGAAATGTCG	CCAGCAGAAA	12600
	TGCCAGCCGC	ATTGAGTGAA	CACAGAATTA	CAGGGTATTC	TGTAGCCGAA	CCATTCGGTG	12660
5	CACTGGGTGA	AAAGTTAGGC	AAAGGTAAGA	CTTTGAAACA	TGGTGATGAC	GTTATACCTG	12720
	ATGCGTATTG	CTGTGTGCTA	GTACTGAGAG	GGGAATTGCT	TGATCAACAC	AAGGATGTAG	12780
	CGCAAgCATT	TGTACAAGAT	TATAAAAAGT	CTGGCTTTAA	AATGAATGAT	CGCAAGCAAA	12840
10	GTGTAGACAT	TATGACGCAT	CATTTTAAAC	AAAGTCGTGA	CGTTTTAACA	CAGTCAGCGG	12900
	CATGGACATC	CTATGGTGAT	TTAACAATTA	AGCCATCCGG	CTATCAAGAA	ATTACGACAT	12960
15	TGGTAAAACA	ACATCATTTG	TTTAATCCAC	CTGCATATGA	TGACTTTGTT	GAACCGTCAT	13020
,,	TGTATAAGGA	GGCATCGCGT	TCATGACACG	TCCCACAAAT	AACAAATTTA	TATTACCTAT	13080
	TATCACATTT	ATTATTTTCT	TAGGCATTTG	GGAAATGGTC	ATTATTATTG	GGCATTACCA	13140
20	ACCTGTATTG	TTACCGGGTC	CTGCTCTTGT	AGGAAAAAGT	ATATGGTCTT	TCATTGTTAC	13200
	TGGAGAAATT	TTCCAACATT	TAGCAATTAG	TTTATGGAGA	TTTGTAGCGG	GCTTTGTTGT	13260
	CGCATTGTTG	GTTGCTATTC	CATTGGGCTT	CTTGCTTGGA	AGGAATCGTT	GGCTATACAA	13320
25	CGCTATCGAA	CCGCTATTTC	AATTGATTAG	GCCGATATCT	CCGATAGCAT	GGGCACCATT	13380
	TGTTGTTCTA	TGGTTTGGTA	TTGGTAGTTT	GCCAGCGATT	GCGATTATTT	TTATCGCTGC	13440
	TTTTTTCCCA	ATTGTGTTCA	ATACTATTAA	AGGCGTTAGA	GACATTGAAC	CTCAATATTT	13500
30	AAAAATAGCA	GCAAATTTAA	ATTTAACTGG	GTGGTCATTG	TATCGCAATA	TATTATTTCC	13560
	CGGGGCATTT	AAACAAATCA	TGGCTGGGAT	ACATATGGCG	GTAGGAACAA	GTTGGATATT	13620
	TTTAGTTTCT	GGTGAAATGA	TTGGTGCACA	ATCGGGATTA	GGTTTTTTAA	TCGTTGATGC	13680
35	ACGAAATATG	TTGAACTTAG	AAGATGTTTT	AGCAGCAATA	TTCTTTATCG	GATTATTTGG	13740
	TTTTATTATT	GATCGATTCA	TTAGTTATAT	TGAGCAGTTT	ATACTTAGAA	GATTTGGTGA	13800
	ATAAGGAGAG	ATGATGATGA	CTTTAGAAAC	GCTTATCAAA	GAACAATTAG	ATCCTCATTT	13860
40	AGTAGAAGTT	GATGAAGGGA	CGTATTATCC	GAGAACATTT	ATTCAGCAAT	TATTTGTAGA	13920
	TGGTTATTTC	GGTGAGGCGG	CATTGAGAAA	AAATGCTGAA	GTAATCGAAG	CTGTATCGCA	13980
45	GTCTTGTTTG	ACAACAGGAT	TTTGTTTATG	GTGCCAATTA	GCTTTTTCAA	CGTATTTAGA	14040
45	AAATGCCACG	CAGCCACATT	TAAATAATGA	CTTACAACAG	CAATTGTTAT	CTGGAGAAAT	14100
	ATTAGGTGCT	ACCGGATTGT	CTAATCCGAT	GAAGTCATTT	AATGATTTAG	AAAAGTTGAA	14160
50	CCTTGAACAC	ACTTATGTTG	ATGGACAATT	GGTTGTCAGT	GGACGTATGC	CAGCTGTAAG	14220
	TAATATTCAA	GAAGACCATT	ATTTTGGTGC	GATTTCGAAA	CATGAATCAT	CAGATGAATT	14280

	TTTAGGAGTC	AACGGGTCAG	CAACGTATCA	AATCACATTG	AATCAAGTCG	TAGTGCCACA	1440
	ATCACAAATT	ATCACGCATG	ATGCGAAGCA	GTTTGCGGCA	ACTATTCGCC	CGCAATTTAT	1446
5	TGCTTACCAA	ATTCCAATAG	GATTAGGCTC	AATTAAAAGT	TCTTTAGAGT	TAATTGATGC	1452
	ATTTTCAAAT	GTGCAAAACG	GAATAAATCA	ATATTTAGAG	TATGATGTTG	AAGCTTTTAA	1458
10	AAAACGTTAT	CGTCAACTTA	GAGAGGAATA	TTATGCAATA	TTAGATGACG	GTAACTTAAC	1464
10	TTCACATTTA	AATGAATTAA	TATCATTGAA	GAAGGACATC	GGCTATTTAT	TGTTAGATGT	1470
	AAATCAAGCT	TCTGTTGTCA	ATGGTGGTTC	TAGAGCGTAC	ACACCATATT	CGCCACAAGT	1476
15	TCGCAAGTTA	AAAGAAGGAT	TCTTCTTCGC	AGCATTGACA	CCGACATTAA	GACATTTAGG	1482
	TAAACTTGAA	GCAGAGTTGA	AGGGGTAAGT	GTGATAAGCT	GATTTTTTGT	TTAGATGCGT	14880
	TTGTTGAAAC	ATTTTTTAAA	ATAATATAAA	TCTTAGTTTA	TAAACATTTT	CTGTTAATTT	1494
20	GTTATATCCT	TTTAACTAGG	AAAATATACA	TTTCGTAATA	ATAATAATCG	TTATCATTGA	15000
	AAAAGTGTTA	ATAAGGTGTA	TAATGAAAAT	GTGAACAATT	AATGAACTTC	TTATTTTAAA	15060
	GAAGGTGAAT	ACTATAGATA	CGCATACTAA	AGAACAACAA	TTCTCGAATC	TAGTAAGATC	15120
25	TTATCGTAAA	GAATACGTGG	GTAAAGGACC	CAATAGTATT	CGAGTGTCGT	TTAAAGATAA	15180
	TTGGGCGATT	GCACATATGA	CAGGTGTTTT	GAGTAAAGTT	GAGAGTTTTT	ACCTAAACGA	15240
	CAAACGCAAT	GAATCGATGC	TCCATTATAC	ACGCACAGAG	AAGATTAAAC	AGATGTATAA	1530
30	AGAAATAGAT	GTAAATGAGA	TGGAAAGTCT	TGTAGGCGCT	AAGTTTGTAA	AATTATTTAC	15360
	AGATATTGAT	TTGAATGATG	ATGAAGTCAT	TTCAATATTT	GTTTTCGATA	AGTCAATAGA	15420
	ATAAGTGTTG	CTGGTGTAAG	GTACACGGTG	CTGTTTGCTA	ACTTCGCTTT	GAATTTAACA	15480
35	ATAATTCAAG	GGGGTGGTAT	GTCAAACGGT	GCCGTTTTTT	TGTCATATTT	TTAAAACAAG	1554
	CAACATGCAA	CACGTACTTT	AAGGAAGTCA	AAATTTATCA	TTTAGGAGAG	ATGGATATGA	15600
40	AAAŤCGTAGC	ATTATTTCCA	GAAGCAGTAG	AAGGTCAAGA	AAATCAATTA	CTTAATACTA	15660
4 0	AAAAAGCATT	AGGATTAAAA	ACATTTTTAG	AGGAAAGAGG	ACATGAGTTC	ATTATATTAG	15720
	CAGATAATGG	TGAAGACTTA	GATAAACATT	TACCAGATAT	GGATGTGATT	ATTAGTGCGC	1578
1 5	CATTTTATCC	TGCATATATG	ACTCGTGAAC	GTATTGAAAA	AGCACCGAAC	TTGAAATTAG	15840
	CAATTACAGC	AGGTGTAGGA	TCTGACCATG	TAGATTTAGC	GGCAGCAAGT	GAACACAATA	1590
	TTGGTGTCGT	TGAAGTTACA	GGAAGTAATA	CAGTTAGTGT	GGCAGAACAT	GCGGTTATGG	15960
50	ATTTATTAAT	ACTTCTTAGA	AACTATGAAG	AAGGTCATCG	TCAATCAGTA	GAAGGTGAAT	16020
	CC3.3.00000000	max 2 am2 aam	***********	3 mg 3 3 mm 3 g 3		3 mmc cm3 mmm	1.000

TACAACACTA TGATCCAATC AATCAACAAG ACCATAAATT GTCTAAATTT GTAAGCTTTG 16200 ATGAACTTGT TTCAACAAGT GATGCGATTA CAATTCATGC ACCATTAACA CCAGAAACTG 16260 ATAACTTATT TGATAAAGAT GTTTTAAGTC GTATGAAAAA ACACAGTTAT TTAGTGAATA 16320 CTGCACGTGG TAAAATTGTA AATCGCGATG CGTTAGTTGA AGCGTTAGCA TCCGAGCATT 16380 TACAAGGATA TGCTGGTGAT GTTTGGTATC CaCAACCtGC ACCTGCTGAT CATCCATGGA 16440 GAACAATGCC TAGAAATGCT ATGACGGTTC ACTATTCAGG TATGACTTTA GAAGCACAAA 16500 AACGTATTGA AGATGGAGTT AAAGATATTT TAGAGCGTTT CTTCAATCAT GAACCTTTCC 16560 AAGATAAAGA TATTATTGTT GCAAGTGGTC GTATTGCTAG TAAAAGTTAT ACAGCTAAAT 16620 AGAATAAGGA TGCTGGGCTA GCGATTAACG CTTTCAATTT TATATAAATG AATCATATAA 16680 GCACTACTGC TGTTGTAAAG ATGGCAGTAG TTTTTTTATG ATTACATCTA AGTATAGTCA 16740 CGGCTATGTT AGGACAATGA TTTAACATTT ACGCACATAT GTGTTCACTT ACGCAATTAT 16800 TGANAAATNT CATTCATGTG GNAATC 16826

(2) INFORMATION FOR SEQ ID NO: 47:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4012 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30

35

40

45

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:

TTCAATGAGA GTAGTGGGCT GATGTTTAGC GATATCGCGT AAGATTAACC ATTGGCCATA 60 ATATATTG TGTTTTCTA AAATCGGCTC GGCTAATTTT AAATAGGGGC GATATATTGT 120 TATAAAACTA TTGAAAAATT CTTGTGATAG CATAGTGACA TCTCCTAAGA CAAAATAGTT 180 AGCTTAGCTA MCCTTTTTAC AACAATAGTA ATTATAAAAC GGGAGCAATT AGAAATCAAT 240 ATATAATTAT TAAGAGCAAA AATAATTATA CTTTGTTAAA ATAAGCGTAA TTACATGTAA 300 ATAGGGGGAT ACTAATGATA TTGAAATTTG ATCACATCAT TCATTATATA GATCAGTTAG 360 ATCGGTTTAG TTTTCCAGGA GATGTTATAA AATTACATTC AGGTGGGTAT CATCATAAAT 420 ATGGAACATT CAATAAATTA GGTTATATCA ATGAAAATTA TATTGAGCTA CTAGATGTAG 480 AAAATAATGA AAAGTTGAAA AAGATGGCAA AAACGATAGA mGGCGGAGTC GCTTTTGCTA 540 CTCAAATTGT TCAAGAGAAG TATGAGCAAG GCTTTAAAAA TATTTGTTTG CGTACAAATG 600 ATATAGAGGC AGTTAAAAAT AAACTACAAA GTGAGCAGGT TGAAGTAGTA GGGCCGATTC 660

55

	ATCAGGATGA	TGATGAAATT	AAGCCACCAT	TTTTTATTCA	ATGGGAAGAA	AGTGATTCCA	780
	TGCGTACTAA	AAAATTGCAA	AAATATTTTC	AAAAACAATT	TTCAATTGAA	ACTGTTATTG	840
5	TGAAAAGTAA	AAACCGATCA	CAAACAGTAT	CGAATTGGTT	GAAATGGTTT	GATATGGACA	900
	TTGTAGAAGA	GAATGACCAT	TACACAGATT	TGATTTTAAA	AAATGATGAT	ATTTATTTTA	960
	GAATTGAAGA	TGGTAAAGTT	TCAAAATATC	ATTCGGTTAT	CATAAAAGAC	GCACAAGCAA	1020
10	CTTCACCATA	TTCAATTTTT	ATCAGAGGTG	CTATTTATCG	CTTTGAACCA	TTAGTATAAA	1080
	TATACGTAAG	TGCTATGAGC	GAGAATGCCC	ATATGAATAA	TGACAAGCAC	AATGGAAAGA	1140
	ATCGTTAATA	TATTATTTAA	TCGTGATGAC	TTAATTAAAA	TGAAAAAGAT	TGATAATATA	1200
15	AATGTGAAAA	AGATAAGTAT	AACCCGTAAA	CTAAAGTAAT	TCACGGTGAG	AGGTTGACTC	1260
	AATGTCATAA	TGATTGCAAC	GATGTTCATA	ATTATAAATA	GACTTAAAAT	AATTGTTCTC	1320
20	ATATCAAACA	CCTCATTGTT	AGATTATTGA	CATTATAACA	GGGGTAATTG	TATATGAACA	1380
	TTAATGTGGT	TGCTTGAGGA	AAAATTTATT	CATTGAAGTC	AAGTTGGTTC	ATTTTAGAAA	1440
	TGAATATCGT	GTTAGATGAT	GAAAGTATAT	TGAAGTATAG	GTAACTAGTT	GAAAAGTATT	1500
25	AATTGTACGA	TAACATTAAA	TTTAACACGA	AACATAGATA	TAAAATGATT	CACAATTAAA	1560
	ATGGGTAAAT	TTGAACTTGC	TAAACTATTA	ATTGGAGCAT	GGACATTICA	AAAATAAGAG	1620
	TTCAAATCTT	ACACAAGCTC	TGAATCGACA	CTATAAGATA	CAAACTGTAT	AATTAAAGGT	1680
30	ATTGTTAAAT	AGAAGGAGAT	ATCATAAATC	ATGGAAAAGA	TGCATATCAC	TAATCAGGAA	1740
	CATGACGCAT	TTGTTAAATC	CCACCCAAAT	GGAGATTTAT	TACAATTAAC	GAAATGGGCA	1800
	GAAACAAAGA	AATTAACTGG	ATGGTACGCG	CGAAGAATCG	CTGTAGGTCG	TGACGGTGAA	1860
35	GTTCAGGGTG	TTGCGCAGTT	ACTTTTTAAA	AAAGTACCTA	AATTACCTTA	TACGCTATGT	1920
	TATATTTCGC	GTGGTTTTGT	TGTTGATTAT	AGTAATAAAG	AAGCGTTAAA	TGCATTGTTA	1980
	GACAGTGCAA	AAGAAATTGC	TAAAGCTGAG	AAAGCGTATG	CAATTAAAAT	CGATCCTGAT	2040
40	GTTGAAGTTG	ATAAAGGTAC	AGATGCTTTG	CAAAATTTGA	AAGCGCTTGG	TTTTAAACAT	2100
	AAAGGATTTA	AAGAAGGTTT	ATCAAAAGAC	TACATCCAAC	CACGTATGAC	TATGATTACA	2160
	CCAATTGATA	AAAATGATGA	TGAGTTATTA	AATAGTTTTG	AACGCCGAAA	TCGTTCAAAA	2220
45	GTGCGCTTGG	CTTTAAAGCG	AGGTACGACA	GTAGAACGAT	CTGATAGAGA	AGGTTTAAAA	2280
	ACATTTGCTG	AGTTAATGAA	AATCACTGGG	GAACGCGATG	GCTTCTTAAC	GCGTGATATT	2340
50	AGTTACTTTG	AAAATATTTA	TGATGCGTTG	CATGAAGATG	GAGATGCTGA	ACTATTTTTA	2400
50	GTAAAGTTGG	ATCCAAAAGA	AAATATAGCG	AAAGTAAATC	AAGAATTGAA	TGAACTTCAT	2460

	CAAAATATGA	TTAATGATGC	GCAAAATAAA	ATTGCTAAAA	ATGAAGATTT	AAAACGAGAC	2580
_	CTAGAAGCTT	TAGAAAAGGA	ACATCCTGAA	GGTATTTATC	TTTCTGGTGC	ACTATTAATG	2640
5	TTTGCTGGCT	CAAAATCATA	TTACTTATAT	GGTGCGTCTT	CTAATGAATT	TAGAGATTTT	2700
	TTACCAAATC	ATCATATGCA	GTATACGATG	ATGAAGTATG	CACGTGAACA	TGGTGCAACA	2760
10	ACTTACGATT	TCGGTGGTAC	AGATAATGAT	CCAGATAAAG	ACTCAGAACA	TTATGGATTA	2820
	TGGGCATTTA	AAAAAGTGTG	GGGAACATAC	TTAAGTGAAA	AGATTGGTGA	ATTTGATTAT	2880
	GTATTGAATC	AGCCATTGTA	CCAATTAATT	GAGCAAGTTA	AACCGCGTTT	AACAAAAGCT	2940
15	AAAATTAAAA	TATCTCGTAA	ATTAAAACGA	AAATAGATTA	ACGACTGAAA	TCTGAACGCT	3000
	CATAAGACTG	TCATTTGCGT	TCAGATTTTT	TTACACAATA	TAGAATGGTT	GAGTAAAATA	3060
	TTTTTGAATA	TAGTGAAAGA	GGGGGAAGTA	CTGTGATAAA	AAAGCTATTA	CAATTTTCTT	3120
20	TAGGGAATAA	GTTTGCTATC	TTTTTAATGG	TTGTTTTAGT	TGTCTTGGGC	GGTGTATATG	3180
	CGAGTGCTAA	ATTGAAATTA	GAATTACTAC	CAAATGTACA	AAATCCAGTT	ATTTCAGTTA	3240
	CAACAACAAT	GCCGGGTGCA	ACGCCACAAA	GTACCCAAGA	TGAAATAAGT	AGTAAAATTG	3300
25	ACAATCAAGT	AAGATCATTG	GCATATGTGA	AAAATGTTAA	AACGCAATCC	ATACAAAATG	3360
	CTTCAATTGT	AACAGTTGAA	TATGAAAATA	ATACAGATAT	GGATAAAGCA	GAAGAACAGC	3420
	TTAAAAAAGA	AATCGATAAA	ATTAAATTTA	AAGATGAAGT	TGGTCAACCA	GAATTAAGAC	3480
30	GTAATTCGAT	GGATGCTTTT	CCGGTTTTAG	CATATTCATT	TTCAAATAAA	GAGAATGACT	3540
	TGAAAAAAGT	AACGAAAGTA	CTGAATGAAC	AATTAATACC	AAAATTGCAA	ACGGTAGATG	3600
	GTGTGCAAAA	TGCGCAATTA	AATGGGCAGA	CGAACCGTGA	AATCACCCTT	AAATTTAAGC	3660
35	AAAATGAACT	TGAAAAATAT	GGGTTGACTG	CTGATGATGT	AGAAAACTAT	CTAAAAACGG	3720
	CAACÃAGAAC	AACGCCACTT	GGATTGTTCC	AATTTGGTGA	TAAAGATAAT	CAATTGTTGT	3780
40	TGATGGTCAA	TATCAATCTG	TTGATGCTTT	TAAAAACATA	AATATTCCAT	TAACGTGGCA	3840
40	GGAGGACCAA	GGGCATCTCA	TCCCAAAGTG	ACCATAAACC	AAATTCAGCC	ATGTCAGACG	3900
	TTATCAGGCA	TCACCACAGC	AAATTCAAAG	CGTCAGCnCC	AATATATAGT	GGATGCCGCA	3960
45	nGAACTAGGG	GTTTAGCGnT	ATCAGTGGTG	TGGCGACTCT	ATTCTAAACG	AT	4012

(2) INFORMATION FOR SEQ ID NO: 48:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7778 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

	CAATATAGGT	CGCCGAGTTT	CAACTACATC	AACTGGTTCA	GTTACATTAG	ATAATGCGCT	60
5	AGGTGTAGGT	GGCTATCCTA	AAGGACGAAT	TATTGAAATT	TATGGTCCTG	AAAGTTCTGG	120
	TAAGACAACA	GTAGCGCTTC	ACGCTATTGC	TGAAGTACAA	AGTAATGGCG	GGGTGGCAGC	180
	ATTTATCGAT	GCTGAACATG	CTTTAGATCC	AGAATATGCT	CAAGCATTAG	GCGTAGATAT	240
10	CGATAATTTA	TATTTATCGC	AACCGGATCA	TGGTGAACAA	GGTCTTGAAA	TCGCCGAAGC	300
	ATTTGTTAGA	AGTGGTGCAG	TTGATATTGT	AGTTGTAGAC	TCAGTTGCTG	CTTTAACACC	360
15	TAAAGCTGAA	ATTGAAGGAG	AAATGGGAGA	CACTCACGTT	GGTTTACAAG	CTCGTTTAAT	420
	GTCACAAGCG	TTACGTAAAC	TTTCAGGTGC	TATTTCTAAA	TCAAATACAA	CTGCTATTTT	480
	CATCAACCAA	ATTCGTGAAA	AAGTTGGTGT	TATGTTCGGT	AATCCAGAGA	CTACACCAGG	540
20	TGGACGTGCA	TTAAAATTCT	ATAGTTCAGT	AAGACTAGAA	GTACGTCGTG	CAGAACAGCT	600
	TAAACAAGGA	CAAGAAATTG	TAGGTAATAG	AACTAAAATT	AAAGTCGTTA	AAAATAAAGT	660
	GGCACCACCA	TTTAGAGTAG	CTGAAGTTGA	TATTATGTAT	GGACAAGGTA	TTTCTAAAGA	720
25	GGGTGAACTT	ATTGATTTAG	GTGTTGAAAA	CGACATCGTT	GaTAAATCAG	GAGCATGGTA	780
	TTCTTACAAT	GGCGAACGAA	TGGGTCAAGG	TAAGGAAAAT	GTTAAAATGT	ACTTGAAAGA	840
	AAATCCACAA	ATTAAAGAAG	AAATTGATCG	TAAATTGAGA	GAAAAATTAG	GTATATCTGA	900
30	TGGTGATGTT	GAAGAAACAG	AAGATGCACC	AAAGTCATTA	TTTGACGAAG	AATAGTACAC	960
	AAATTTATAT	CTATAGTTAA	ACTTAGCAAA	TATCCTTATA	GGATTGATTG	AAAGTGATAT	1020
	TCATCTCATA	AAGCTAGAAT	AATATCTAAC	TTTATGGGAT	ACACTACAAA	TCGAGACTAT	1080
35	AAGGTTTTTT	ATTTTATTTA	TTATTACATT	ATCAATAGTT	TTATAATCGA	GCTTCAAAAC	1140
	TTTAĞAAAAT	AGTAGAAATA	GCATTCAATA	TAGTGCAAAA	GTGCAAATTG	ATAACTTGAC	1200
	ACTTATCTCC	TATAAACCGT	ACAATTAATT	TGTATGATTT	ATATATAATT	TCATAAAGTC	1260
40	ATATTGAATT	TCATATAAAG	AGCAAACCCT	agaaaaggag	GTGTTTGTGT	GAATTTATTA	1320
	AGCCTCCTAC	TCATTTTGCT	GGGGATCATT	CTAGGAGTTG	TTGGAGGGTA	TGTTGTTGCC	1380
45	CGAAATTTGT	TGCTTCAAAA	GCAATCACAA	GCTAGACAAA	CTGCCGAAGA	TATTGTAAAT	1440
	CAAGCACATA	AAGAAGCTGA	CAATATCAAA	AAAGAGAAAT	TACTTGAGGC	AAAAGAAGAA	1500
	AACCAAATCC	TAAGAGAACA	AACTGAAGCA	GAACTACGAG	AAAGACGTAG	CGAACTTCAA	1560
50	AGACAAGAAA	CCCGACTTCT	TCAAAAAGAA	GAAAACTTAG	AGCGCAAATC	TGATCTATTA	1620
	GATAAAAAAG	ATGAGATTTT	AGAGCAAAA	GAATCAAAA	ттсаасаааа	ACAACAACAA	1690

	CGCATCTCCG	GTCTCACTCA	AGAAGAAGCT	ATTAATGAGC	AACTTCAAAG	AGTAGAGGAA	1800
_	GAACTGTCAC	AAGATATTGC	AGTACTTGTT	AAAGAAAAAG	AAAAAGAAGC	TAAAGAAAAA	1860
5	GTTGATAAAA	CAGCAAAAGA	ATTATTAGCT	ACAGCAGTAC	AAAGATTAGC	AGCAGATCAC	1920
	ACAAGTGAAT	CAACGGTATC	AGTAGTTAAC	TTACCTAATG	ATGAGATGAA	AGGTCGAATC	1980
10	ATTGGACGAG	AAGGACGAAA	CATCCGCACA	CTTGAAACTT	TAACTGGCAT	TGATTTAATT	2040
	ATTGATGACA	CACCAGAAGC	GGTTATATTA	TCTGGTTTTG	ATCCAATAAG	AAGAGAAATT	2100
	GCTAGAACAG	CACTTGTTAA	CTTAGTATCT	GATGGACGTA	TTCATCCAGG	TAGAATTGAA	2160
15	GATATGGTCG	AAAAAGCTAG	AAAAGAAGTA	GACGATATTA	TTAGAGAAGC	AGGTGAACAA	2220
	GCTACATTTG	AAGTGAACGC	ACATAATATG	CATCCTGACT	TAGTAAAAAT	TGTAGGGCGT	2280
	TTAAACTATC	GTACGAGTTA	CGGTCAAAAT	GTACTTAAAC	ATTCAATTGA	AGTTGCGCAT	2340
20	CTTGCTAGTA	TGTTAGCTGC	TGAGCTAGGC	GAAGATGAGA	CATTAGCGAA	ACGAGCTGGA	2400
	CTTTTACATG	ATGTTGGTAA	AGCAATTGAT	CATGAAGTAG	AAGGTAGTCA	TGTTGAAATC	2460
	GGTGTAGAAT	TAGCGAAAAA	ATATGGTGAA	AATGAAACAG	TTATTAATGC	AATCCATTCT	2520
25	CATCATGGTG	ATGTTGAACC	TACATCTATT	ATATCTATCC	TTGTTGCTGC	TGCAGATGCA	2580
	TTGTCTGCGG	CTCGTCCAGG	TGCAAGAAAA	GAAACATTAG	AGAATTATAT	TCGTCGATTA	2640
	GAACGTTTAG	AAACGTTATC	AGAAAGTTAT	GATGGTGTAG	AAAAAGCATT	TGCGATTCAG	2700
30	GCAGGTAGAG	AAATCCGAGT	GATTGTATCT	CCTGAAGAAA	TTGATGATTT	AAAATCTTAT	2760
	CGATTGGCTA	GAGATATTAA	AAATCAGATT	GAAGATGAAT	TACAATATCC	TGGTCATATC	2820
	AAGGTGACAG	TTGTTCGAGA	GACTAGAGCA	GTAGAATATG	CGAAATAATT	TTTGTCTCCC	2880
35	TCACAAATTA	GTGAGGGAGC	TTTTTTAAGT	TGTAGTCTTA	Atctagttag	ACAGCACTTT	2940
	ATCGGTAATA	ACTATATTAA	ACAGTAGTTA	TTTGAAAGTA	AGACGGACCT	TATATTAAAT	3000
40	AAGAAGTTAT	TGCTTTTAAT	AAAAATGTTT	TAGGCTTCGT	AATTACTATA	TTTATATTAT	3060
40	GTAAACCTAT	AAAGATGATT	GGTTTTCTAT	CCAATAAAAA	AGAAGAGAAG	ATGTAACACA	3120
	TCTTCTCTTC	yGCAATATTA	ATTAGGATTT	ATTTCTAAGT	TGAGTTATTT	TAATTGTAAA	3180
45	TCTGTTTTCT	TTAATTCTTT	TATAACTTCT	GCAGTATCAT	AACAATTTGT	TGCAATTGTT	3240
	GAATATCTCT	CTGCTAAACG	ATATGCATTA	ATGTAAAGCT	TTAAACTTTC	TTTAGCTATA	3300
	TCCTCTGCAT	CTTCGAATTT	TGATGGGTTA	GACATAACCA	CTAATTCTGC	AAATTTTTCT	3360
5 <i>0</i>	GGATCAATAT	TAATAGACAT	GTATTTATTT	ACAACTCCTA	TTTATTTTGA	TGTCTTAATA	3420
	CTAACATATT	GAAGTTTTCA	GACAAAGTAA	TGTCTCTCTA	TAATTGAAGA	AAAATAATTC	3480

	GGATGAACAA	AACATGAGAA	TAATGTTTAT	AGGGGATATC	GTAGGTAAAA	TTGGACGAGA	3600
	CGCAATTGAA	ACGTACATAC	CTCAACTGAA	GCAAAAGTAT	AAACCAACAG	TTACAATTGT	3660
5	AAATGCTGAA	AATGCAGCAC	ATGGTAAAGG	TTTGACTGAA	AAAATATATA	AACAATTACT	3720
	AAGAAATGGT	GTAGATTTCA	TGACTATGGG	TAATCACACA	TATGGTCAAC	GTGAAATTTA	3780
	TGATTTTATA	GATGAAGCAA	AACGACTAGT	AAGACCAGCG	AATTTTCCGG	ATGAAGCGCC	3840
10	GGGAATTGGT	ATGAGATTTA	TACAAATTAA	TGATATTAAA	CTTGCAGTTA	TTAATCTGCA	3900
	AGGAAGAGCG	TTTATGCCAG	ATATTGATGA	TCCTTTTAAA	AAGGCAGATC	AATTAGTCAA	3960
15	GGAAGCACAA	GAACAAACTC	CGTTTATATT	TGTTGATTTT	CATGCAGAAA	CAACTTCTGA	4020
	AAAGTATGCA	ATGGGATGGC	ATTTAGATGG	TAGASTAGCG	CTGTTGTTGG	AACGCATACA	4080
	CACATTCAAA	CAGCAGATGA	ACGTATTTTA	CCAAAGGGGA	CAGGGTATAT	AACGGATGTT	4140
20	GGTATGACAG	GTTTTTATGA	TGGCATTTTA	GGAATAAATA	AAACAGAGGT	AATTGAGCGT	4200
	TTTATCACTA	GTTTGCCACA	AAGACATGTT	GTTCCAAATG	AAGGTAGAAG	TGTATTATCT	4260
	GGTGTTGTTA	TTGATTTAGA	CAAAGAAGGT	AAAACAAAGC	ACATCGAACG	TATATTGATA	4320
25	AATGATGACC	ATCCATTTTC	AACATTTTAA	AATTACGTAA	GTAAACATTC	GAATTGGACC	4380
	CTATCGTCCA	TTAGTATGAA	TTTAATATAG	TACCACTGTT	TACATAGTAA	ATCGGTGGTT	4440
	CTTTTTGTTA	TCATTTAATA	TGAAATATAT	CCATAGGAGG	CATATAACTA	TGAAACCACA	4500
30	ATTATCGTGG	AAAGTTGGCG	GTCAACAAGG	CGAAGGTATT	GAATCAACTG	GGGAAATCTT	4560
	CGCTACGGCT	ATGAATAGAA	AAGGATATTA	TTTATATGGA	TATAGACATT	TTTCAAGTCG	4620
	TATCAAAGGT	GGACATACGA	ТААААТААТА	TAGAGTTTCT	ACGACGCCTG	TTCATGCAAT	4680
35	TAGTGATGAT	TTAGATATTT	TGATTGCATT	TGACCAAGAA	ACAATTGATG	TTAACCATCA	4740
	TGAAATGAGA	GAAGACAGTA	TTATTTTATC	TGATGCCAAG	GCTAAACCTG	TGAAaCCAGA	4800
	AGGATGTCAT	GCACAGCTTA	TTGAATTACC	TTTTACAGCA	ACCGCTAAAG	AATTAGGTAC	4860
40	AGCATTAATG	AAAAACATGG	TTGCAATAGG	TGCTACTAGC	GCATTGATGA	ATTTGAATAC	4920
	AAATACATTT	GAAGAACTTA	TTACTAATAT	GTTTTCTAAA	AAAGGTGACA	AGGTAGTTGA	4980
45	AGTCAATATC	CAAGCATTAA	ACGAAGGTTA	TCAATTAATG	CAATCTCGCT	TACCTGAAAT	5040
	CTACGGGGAC	TTTGAATTAG	AGTCAACAGA	TGCACTACCA	CATCTATATA	TGATTGGTAA	5100
	CGATGCCATT	GGATTAGGTG	CAATTGCTGC	AGGTTCACAA	TTTATGGCGG	CATATCCTAT	5160
5 <i>0</i>	TACACCTGCG	TCTGAAGTTA	TGGAATATAT	GATTGCCAAT	ATATCTAAAG	TAAACGGAGC	5220
	ע ערטעבוי עינובוי ע	ACACA ACATC	א א א יויייני (ייייניני	יייי אייי א אייי אייי	COTATECOTO	CAAATTATCC	5290

	IGGALIAICI	GGIAIGACIG	AAACGCCATT	AGTCATTATT	AATACCCAAC	GAGGTGGACC	5400
5	TTCTACTGGA	TTACCTACGA	AACAAGAACA	GTCAGATTTA	ATGCAAATGA	TTTATGGTAC	5460
	ACATGGTGAT	ATTCCAAAAA	TTGTTGTAGC	ACCAACAGAT	GCAGAAGATG	CATTTTATTT	5520
	AACTATGGAA	GCATTTAATT	TAGCAGAACA	ATATCAATGC	CCTGTTATAG	TTCTAAGTGA	5580
10	TTTGCAATTA	TCTTTAGGTA	AACAAACTGT	TGAAAAATTA	GATTATAATC	GTATTGAAAT	5640
	TAAACGTGGT	GAAATCATTC	AATCTGATAT	TGAACGTGAA	GAAGATGATA	AAGGTTATTT	5700
	CAAGCGTTAT	GCGTtAACAT	CCGATGGTGT	TTCTCCTAGA	CCTATCCCCG	GTGTTAAAGG	5760
15	AGGTATTCAT	CATATAACTG	GTGTGGAaCa	CAATGAAGAA	GGTAAACCTA	GTGAATCTGC	5820
	GTCAAATAGA	CAACAACAAA	TGGAAAAACG	AATGCGTAAA	ATTGAGCAGT	TACTAATTGA	5880
20	ATCGCCAGTA	GAAGCTAACT	TACAACATGA	GGATGCAGAT	ATTCTTTATA	TCGGTTTTAT	5940
20	TTCTACAAAA	GGTGCAATTC	AAGAAGGTAG	TAACCGTTTG	AATCAACAAG	GCATAAAAGT	6000
	TAACACTATA	CAAATTAGAC	AATTGCATCC	ATTCCCAACA	AGCGTTATTC	AAGATGCAGT	6060
25	TAATAAAGCG	AAGAAAGTCG	TTGTAGTGGA	GCACAATTAT	CAAGGACAAT	TGGCTAGTAT	6120
	TATAAAAATG	AATGTCAATA	TTCATGATAA	GATTGAAAAT	TATACAAAGT	ATGATGGGAC	6180
	ACCTTTCCTA	CCACATGAAA	TCGAAGAAAA	AGGCAAAATA	ATTGCTACTG	AAATAAAGGA	6240
30	GATGGTATAG	ATGGCGACAT	TTAAAGATTT	TAGAAATAAT	GTTAAGCCTA	ACTGGTGCCC	6300
	CGGATGTGGC	GATTTCTCAG	TACAAGCTGC	AATTCAAAAA	GCAGCCGCAA	ATATAGGGTT	6360
0.5	AGAACCTGAA	GAAGTAGCTA	TCATCACCGG	TATAGGATGT	TCTGGCCGTC	TTTCAGGATA	6420
35	TATTAATTCT	TATGGCGTTC	ATTCTATTCA	CGGACGTGCA	TTACCTTTAG	CTCAAGGTGT	6480
	AAAAATGGCG	AATAAAGATT	TAACTGTTAT	TGCATCGGGA	GGAGATGGTG	ATGGTTATGC	6540
40	TATAGGTATG	GGGCATACAA	TCCATGCTTT	AAGAAGAAAT	ATGAACATGA	CGTATATAGT	6600
	CATGGATAAT	CAAATTTATG	GTTTGACAAA	GGGACAAACA	TCGCCGTCAT	CAGCAGTAGG	6660
	ATTTGTTACT	AAAACAACGC	CAAAAGGTAA	TATAGAAAAA	AATGTTGCGC	CTTTAGAATT	6720
45	AGTATTATCA	TCTGGTGCCA	CATTTGTAGC	CCAAGGTTTT	TCAAGCGATA	TTAAAGGATT	6780
	AACAAAACTA	ATTGAAGATG	CAATTAATCA	TGATGGATTT	TCATTCGTTA	ATGTCTTTTC	6840
	ACCATGTGTG	ACTTATAATA	AAATTAACAC	ATACGATTGG	TTTaAAGAAC	ATTTAACAAG	6900
50	TGTTGATGAC	ATTGAAAATT	ATGATTCTAC	AGATAAACAA	TTAGCGACTA	AAACTGTTAT	6960
	TGAACATGAA	TCTTTAGTAA	CTGGTATTGT	TTATCaAGAT	AAAGAAACAC	CATCATATGA	7020
55	ATCtCAAATT	AAAGAGTTAG	ATGATmCACC	ACTTGCTAAA	AGAGATATCa	AAATTaCTGA	7080

	TGTATTTATA ACAGATCCAT TTATGCTACT CAGTTTTTTA CTATTACAAA AAATAAAGGA	7200
•	GTTTTTAAAA ATGAAAGACA CATTAATGAG TATACAAATA ATTCCTAAAA CACCAAACAA	7260
5	TGACAATGTT ATACCTTACG TAGACGAGGC GATTAAAATA ATTGACGAAT CTGGTTTGCA	7320
	TTTTAGAGTA GGTCCGTTAG AAACGACAGT ACAAGGAAAT ATGAATGAAT GTTTAATTTT	7380
10	AATACAATCA TTAAATGAAC GAATGGTGGA ACTTGAATGT CCAAGTATTA TTAGCCAAGT	7440
	TAAGTTTTAT CATGTGCCAG ATGGCATCAC TATTGAAACT TTAACTGAAA AATATGATGA	7500
	ATAACATTAA AAGTGAAGTA AACTGGATTT GAATTGGCTT GTTAGAGATG ACGTATAACT	7560
15	TTAACTGTTT TTGCACTTTA TAGTTAAATT TAATATAATT ATTAAATGAT ACGGGCAAAT	7620
	AGAAAGGATT TTGTAAAGTG AACGAAGAAC AAAGAAAAGC AAGTTCTGTA GATGTTTTAG	7680
	CTGAGAGAGA TAAGAAAGCA GAAAAAGATT ATAGTAAATA TTTTGAACAT GTTTATCAGC	7740
20	CGCCTAATTT AAAAGCAAGC GCAAAAAAAG AGGTnAAA	7778
	(2) INFORMATION FOR SEQ ID NO: 49:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1128 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
30	(D) TOPOLOGY: linear	
30	(D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	•
30		. 60
<i>30</i>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	60 120
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC	120
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT	120 180
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT	120 180 240
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG	120 180 240 300
<i>35</i>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC	120 180 240 300 360
<i>35</i>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC AAATCAATGC CTTTAAAATG AGTAGGCATT TGGAACGTTT GTGCTAATGG TTGGTAGTAC	120 180 240 300 360 420
<i>35</i>	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC AAATCAATGC CTTTAAAATG AGTAGGCATT TGGAACGTTT GTGCTAATGG TTGGTAGTAC CTACCACCTA ATAAATGATA TTTTAAAAAT GCTTCTGTAA CTTCCTGTTG GCTAGCACCA	120 180 240 300 360 420 480
<i>35 40 45</i>	(XI) SEQUENCE DESCRIPTION: SEQ ID NO: 49: AGATGAAGTT GTTACGAAAA TTGCGTACGC TGTTTCAGAA CATGTCAAAA TAGAAACAGG TAATCCATTC TTTCAAACAT CACATAGTGG TTGTGCGACG GGCGGATCCT GTAATTGTTC ATTATAAAAA ACATCGAGTC AGAAAAAGGT GGTTATTGAA CCACTAACTA GCATCTGACT CGATGTTTTT ATTTATTCGG GATTGTTTGT TTGAATTGTT GTGCTAAATC TGGTCGATCT GTCACAATCG TGTGTGCACC TTTTTGGTAT AAATCATTCA TCAGATTTAT ACTATTTACG CCATAATAGC CTGGAATGAT ATTCATATCA TTTAACCATT TGATAAAACG AGATGAAGTC AAATCAATGC CTTTAAAATG AGTAGGCATT TGGAACGTTT GTGCTAATGG TTGGTAGTAC CTACCACCTA ATAAATGATA TTTTAAAAAAT GCTTCTGTAA CTTCCTGTTG GCTAGCACCA ATTGCGACGG ATCCTTGTGC AATTTTATTA AAACGAACGA TTTGTTCTTT ATAAAAACTT	120 180 240 300 360 420 480 540

	AATGTATGGG CACTAACTTT TCCAGAGCCG TTCGTCGTTC TATCAACAGT TGCGTCATGA	840
_	AAAACGATAA GCTGTTGATC TTTTGTGAGT CTCACATCTG TTTCAAAGCC ATCAACGCCT	900
5	AATTGTTTAG CATAGTCAAA TGCAAGTTGC GTTTGCTCTG GTCTTAAAGC CATACCACCG	960
	CGATGCGCAA ATATATATGG TGCATTGCCT TTGAAAAAAG CAGGGATGGT TTGCTTTTTA	1020
10	GTAATCACTT TATTTTATT GATCATTAAT AGACTACTTA AAAATCCAGC ACCGACTAGT	1080
	ACCGCATTTA AAATGTTTCT GTTTACnTTT TTCATAAAAA ATTCCTCC	1128
	(2) INFORMATION FOR SEQ ID NO: 50:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6252 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEO ID NO: 50:	
	CAAGCAAACA ATCGTCGATA AAATTGCTAA AATAATAAAA GTAATTCGAA CTTTCATCAT	60
25	GATCATCCTT TGTTTATAGA GTCAATATAA GTATGGAATA TGTTAGGTAT ATAGTCAAAT	120
	GCGTCAACTA ATGGGAATTT TGGCATAGAT AGAGAATTTA AGGCAATTAA AAAGGCATCA	180
3 <i>0</i>	AACAGTAATA TGCTGCTTGA TGCCCAAATG ATGACTTTAG CTAAATTGAT TAGTCACTTT	240
50	TAAAGATAAA GAATTGTCAT GAATTAAAAC TCATGTAATG ATGTGTTACA TTTCGCAATG	300
	ATGGCTTTCA GTTATTTATC GATAACATCA CTCTTGATAC CTTTAGATTT TAAGAAATCT	360
35	TTAATTTTAT CTTGTTGCTT TTTATTAACA TCACCGGCAT ATTTTGTTGG CACGTCGACA	420
	ACATTGATTT TATTTTGCGG TTGATAGCTA AGCTTTTCAA TATCTTCATC AACATTGGCG	480
	ATTOFACTAT TTAAAGCTTT GAAGTAATTC ATCATTAATT CAACGGGTTT CTTATATTCT	540
10	TTAGGAATAT TGTTTTCAGT GACAAATTTC TTGAAATGCA AATCGTTTTT AACAGCTAAG	600
	TTAGATAAGT GGCTAAGTGT TTCTGCTTGT TTTTCAGTCA CTTTTGTTTG ACTGTCAATT	660
15	TGTTTATCTA GTTTATGTTG CATAATATAT TTGTTATCAA GTATATCGCT ATTTACAGAC	
~	AAATACTTTT CTATAGCTTG CTTCATCTCT GCATCACTAA TATCACTATT TTTCTTATCT	780
	GAGTTAAAGA TATCTTTTGT LTCTAATTTT TTAGCGCTTT TAGGTGCATG GATGCCAGTA	840
50	CTTGTATGAT GATCTTCGTT ATCAGATTGA TCGGACGCGC AACCTGTAAG AATTAATGTC	900
	GATGCTAAAA ATGTACTTAG TAGTAATCTC TTTTTCATAA TGTAATATAA CTCCTTAGTT	960
	TATCTTTAAT TGAAAAAATA TGTATTCATG TTTAATAGAG TAACATTGAA TTAGTTTGGA	

	ICIAICAAIA	AIGCATCATT	TIGGACGTIG	TTAAGGATAG	CTTTATCTAT	AAATAACTGC	1140
_	ATAATTGGTT	GTACTAATTT	AGACGTAGGT	ATCGTACGTA	AAAGCATAAT	AATTTCGTTC	1200
5	ACATACTTTT	CTTTCTCAAT	ATCATTTTTC	ATATTGATTT	GTTTGCGAGA	GGTACATACT	1260
	TTAAGCATTA	TCGCACATCT	CGTTGTATAT	ATTAAGTTTA	TCATAACATG	ATTTTATGTC	1320
10	GGGATAAAA	AATAACAGCA	TCTTAACAAA	TGTAAGATAC	TGTCAGTGAA	ATGAATGAAA	1380
	CTTTAGTTTC	TGaTAATATA	GTCAAAGGCA	TTTAATGCTG	CATTTGCACC	AGCGCCCATT	1440
	GAAATGATAA	TITGTTTGTT	CTTCTGATCT	GTGACATCGC	CAGCAGCAAA	TATTCCAGGA	1500
15	ACATTCGTAT	TATTGTTACG	ATCAATCACA	ATTTCACCAC	GTTCGTTTAA	TTCAACAGCA	1560
	TCGTTTAACC	ATGATGTGTT	TGGAAGTAAA	CCAATTTGAA	CAAAGATACC	ATCTAAGTTA	1620
	AGTAGATGTT	CTTCGCCGGT	GTTCATGTCT	TCGTAACGTA	TACCTGTAAC	ATGGTCTTCT	1680
20	CCGACAACTT	CAGTAGTTTT	GGCATTTGTT	TTGATATCAA	CATTTGATAA	AGAACGTAAA	1740
	CGATCTTGTA	ACACGTTGTC	TGCTTTTAAT	TCGCTAGCGA	ATTCGAATAA	TGTAACATGA	1800
25	TTAACGATAC	CAGCAAGGTC	AATTGCTGCT	TCAACCCCAG	AGTTACCGCC	ACCGATAACT	1860
	GCTACGTCTT	TATTTTCAAA	TAGAGGTCCG	TCACAGTGAG	GGCAGAATGC	AACACCTTTA	1920
	TTAATCAATT	GCTCTTCACC	TGGAATGTTT	AGCTTACGCC	AACCTGCACC	AGTAGCAATA	1980
30	ATGACTGTTT	TACTTTCTAA	GACAGCACCG	TTTTCTAACG	TAACTTTAAT	TGCTTCGTCA	2040
	GTCTTTTCGA	TATCTGTAGC	ACGTATACCT	GTCATTGCAT	CAATGTCATA	TTGATCAATG	2100
	TGCGCTGCTA	AGTTAGAAGA	AAATTCAGAA	CCAGTTGTTT	CTTTAACAGT	AATGAAGTTC	2160
35	TCAATACCAG	CAGTATCATT	AACTTGGCCA	CCGATACGAT	CAGCAACTAT	ACCAGTACGT	2220
	AAACCTTTAC	GTGCTGTGTA	AATCGCTGCA	CTACCACTAG	CAGGACCACC	ACCAACGATT	2280
40	AAGĀCATCAT	AAGGTTCTTT	ATTTTCAAAC	TCAGATGCAT	CTGCCGTACT	GCCTAGTTTC	2340
	GAAAGAATAT	CTTGGATTGT	CATACGACCA	TTGCCAAATT	CTTCGCCATT	TAAAAAGACA	2400
	GCAGGGACTG	CCATGATGTT	TTCAGATTCT	TCACGGAACA	CTGCACCATC	AATCATAGAA	2460
45	TGCGTGATGT	TAGGGTTGAT	CACACTCATT	AAGTTAAGTG	CTTGAACGAC	ATCAGGACAT	2520
	TTTTGACACG	TTAAACTAAT	GAATGTTTCA	AAATGGAATG	AACCTTCTAA	TTTTTTAATT	2580
	TGGTCAATGA	TTGACTGTTT	TTCTTTAGGT	GCACGACCAC	TAACCTGTAA	AATTGCTAAA	2640
50	ACAAGTGAGT	TAAACTCGTG	ACCTAATGGA	ATACCTGCAA	ATGTTACACC	TGTTTCTTCG	2700
	CCAGGACGAT	TGACTGAGAA	ACTTGGTGTA	CGTTTTAAAG	ATTTTTCAGA	AAGAGATAGT	2760
r.r	CTAGGTGACA	TATCAGTAAT	TTCTGTCAAC	AAATCTTTAA	GTTCTTTGGA	TTTATCATCT	2820

	IGIIGIIIIA	AMICAGCATI	AAGCATGGTT	GTAATGCCTC	CTTAGATTT	ACCTACTAAA	2940
5	TCTAAACCAG	GTTGCAATGT	TTTAGCGCCT	TCTTCCCATT	TAGCTGGGCA	TACTTCGCCA	3000
5	GGGTTTTTAC	GAACATATTG	AGCTGCTTTG	ATTTTGTGAG	CTAATGTACT	AGCGTCACGG	3060
	CCAATTCCGT	CAGCGTTAAT	TTCAGATGCT	TGTACAACAC	CGTCTGGGTC	GATAATGAAT	3120
10	GTACCACGTT	GAGCTAAACC	AGTAGCTTCA	TCTAATACAT	CAAAATTACG	AGTGATTGTT	3180
	TGTGATGGGT	CACCAATCAT	AGTGTAAGTG	ATTTTGCTAA	TTGCATCTGA	ATGGTCATGC	3240
	CATGCTTTGT	GTACGAAGTG	AGTATCAGTT	GATACTGAGA	ATACATTTAC	GCCTAATTTT	3300
15	TGTAATTCTT	CATATTGGTT	TTGTAAGTCT	TCTAATTCAG	TTGGACAAAC	GAATGAGAAG	3360
	TCAGCAGGAT	AGAAGCATAC	TACGCTCCAA	GAACCTTTTA	AATCTTCTTG	TGTAACTTCT	3420
	TTAAATTGAT	CTTTTTTTGG	ATCGAAArCT	TGCGCTGTAA	ATGGTAAGAT	TTCTTTGTTA	3480
20	ATTAATGACA	TAAATATCTT	CCTCCTAAGA	ATTTAAGTAT	GAATTAGAAC	TATCAATTGA	3540
	TTGCGCTTAA	TTATAATAAT	TCTAATCTCT	TAGTTAGCAT	TATTACATTT	TGATCCAGAA	3600
25	TAGTCAACTG	GATAACTTTG	TAAAGTGAAT	GATTACTTTT	AAAATAAAGA	AAGATAATAT	3660
	AAAGTGCTTT	GATAATGGAT	TTTGTAGTTG	ATGATTTAAA	AGGTTGTGTC	TATATTTAAT	3720
	ATCTTGATTT	TAATGTAAAA	AATGTAAAAA	AAGAAGATTT	GTATTCTCAA	CTAAGTCAAC	3780
30	CTTATTGATA	ATGGTATGAG	AATATTTGTT	CGAGATGGAT	GAAGGTAATG	AGTGAGAAAC	3840
	TGGATTTTTA	AAGTATGAGA	CAATATTTTA	AAAAGTTCAA	TTATTAACTT	ATAAGCAAAT	3900
	AATTGCTATA	AAAAAGTTTG	GACGTGTACA	ATTGCAATAT	GAAGATTTTA	AATTAATTGT	3960
35	AAAGTATCGA	GGAGTGGGTA	ACGTGTCAGA	ACATGTATAT	AATCTTGTGA	AAAAGCATCA	4020
	TTCTGTTAGA	AAATTTAAGA	ATAAACCTTT	AAGTGAAGAC	GTTGTTAAGA	AATTGGTAGA	4080
40	AGCTGGACAA	AGCGCTTCGA	CGTCAAGTTT	CCTGCAAGCA	TACTCAATTA	TTGGTATCGA	4140
	CGATGAGAAG	ATTAAAGAAA	ATTTACGAGA	AGTTTCTGGA	CAACCTTATG	TTGTAGAAAA	4200
	TGGCTATTTA	TTCGTCTTTG	TTATTGATTA	TTATCGTCAT	CATTTAGTTG	ATCAACATGC	4260
45	TGAAACTGAT	ATGGAAAATG	CATATGGTTC	AACGGAAGGT	TTGCTAGTAG	GTGCAATCGA	4320
	TGCAGCATTA	GTTGCCGAAA	ATATTGCGGT	AACTGCTGAA	GATATGGGGT	ATGGCATTGT	4380
	CTTTTTAGGA	TCATTAAGAA	ATGATGTTGA	ACGCGTTCGA	GAAATTTTAG	ACTTACCTGA	4440
50	CTATGTCTTC	CCGGTATTTG	GTATGGCAGT	AGGGGAACCC	GCAGATGACG	AAAATGGTGC	4500
	AGCCAAGCCA	CGCTTACCAT	TTGACCATGT	CTTCCATCAT	AATAAGTATC	ATGCTGATAA	4560
5.E	GGAAACACAG	TATGCACAAA	TGGCAGATTA	CGACCAGACA	ATCAGCGAGT	ACTATGATCA	4620

	CAAAGCAAGA	TTAGATATGT	TAGAACAATT	GCAAAAATCA	GGCTTAATAC	AGCGATAGCA	4740
	AGATACCAAA	ATAACCCGCC	CCCCTCTAGC	TTAAAATGAT	AAGTATAGCT	AGAGGGGGCG	4800
5	GGTATTTCTT	GCAATGAATT	AGTGTGAAGT	TAATGCAGCA	TTATCATTTG	AATCGAAAGT	4860
	ATCTTTATCC	CAATGTTTAG	TTAACTTGGC	GGTACCTGTA	CCAGCTAGCA	TTGAATCGTT	4920
10	CACGTTTAAT	GCTGTTCTAC	CCATGTCAAT	CAATGGTTCA	ACGGAGATGA	GCACGCCGGc	4980
	TAAAGCGACT	GGCAAGTTTA	ACGTTGACAA	CACCAATATG	GATGCAAATG	TAGCCCCGCC	5040
	ACCGACGCCA	GCAACGCCGA	ATGAACTAAT	AATCACGACA	GCGATTAACG	TTACAATAAA	5100
15	TTGTAAATCA	ATTTCTACAT	TAGCGACGGG	TGCGACCATA	ATTGCAAGCA	TGGCAGGGTA	5160
	AATGCCTGCA	CAACCATTTT	GTCCAATCGA	CAATCCAAAT	GTCGCAGCGA	AATTGGCAAT	5220
	ACCTTCTGGC	ACGCCTAGAC	GTCTTGTTTG	TGTTTGTACA	TTCAATGGTA	AGGCACCCGC	5280
20	GCTTGAGCGT	GATGTGAATG	CAAAGATTAA	TACTTCCAAA	GTCTTTTTAA	CATAGCGAAT	5340
	TGGGCTAATA	CCTAACAGGC	TTAAAATAAT	TAAGTGAATG	ATATACATCG	TAATTAATGC	5400
25	AGCGTACGAT	GCGATTAAGA	ATTTTCCTAA	AGTCCAAATG	GCGCCAAAGT	CACTTGTCGA	5460
20	TAATGTGTTG	GCCATAATTG	CTAATACACC	GTATGGCGTT	AAACGTAAGA	CGAACGTCAC	5520
	AATCGCCATT	ACTAGTGAAT	AGATAGCGTC	AATCGCACGC	TTAAGCAATT	CACCATGATC	5580
30	AGGTTGTTTG	CGTnTACGCG	TAAATAAGCA	AATCCTATAA	ACGAAGCAAA	TATCACGACA	5640
	GCAATCGTGG	aAGTTGCACG	TTGTCCaGTG	AAATCTAAGA	ATGGATTTTT	AGGCAATAAT	5700
	TCCAAAATTT	GTTGTGGTAA	CGTATGTGCT	GTTAAATCTT	TCGCTTGTTT	AGCAATTTCG	5760
35	CTTCCACGTG	CTTGTTCAGC	GTTACCAAGG	TTAATTGTTG	ATGCATCTAA	ACCAAACACC	5820
	AAGGCATACA	CAACACCAAC	AATCGCAGCA	ATGGTGACAG	TGCCAATTAA	AAAGATAAAA	5880
	ATGAGACTAC	CAATTTTAGC	AAACTTTTCT	CCGATTTGAA	TTTTAGTGAA	TGCAGCTACA	5940
40	ATAGAAATGA	AAATTAAAGG	CATAACAATC	ATTTGCAACA	ATGCAACGTA	ACCTTGTCCG	6000
	ACAATGTTGA	ACCAGTCACT	TGTTGATGTA	ATAACATTCG	AATGTGTGCC	ATAAATAAGA	6060
45	TGCAATAACA	CACCGAATAC	TATACCAATC	CCTAAAGCTG	TAAACACACG	TTTCGCAAAA	6120
	GATATATGTT	TGCGAGCCAT	CATGTGCAAT	ATTACGATGA	AAATCACCAA	TACAATAATA	6180
	TTAATCAGTG	TAAGAAAAGC	ATTCATGAAC	GTCACTCCTT	AAATTTTTGA	ATATAATTCC	6240
50	GACTAGTATG	CT					6252

(2) INFORMATION FOR SEQ ID NO: 51:

55

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6730 base pairs

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51: ATCAAATCnC AAAATATTTA TTAATnanaa GGGGATTATC CaTGTGAGAA ACAAAGTAAT 60 GCTCTTTTT TACCTCTTGT GGGTTGAAAA aTGGATCATC AGAGATAGAC TTCTTCTTTT 120 10 TCGAAGATGA CATTTGATAC TTTAATCTTC TAAAACCATA ACTTGTCGCA TCAAAAATGC 180 CTTCTTGTAC AAGTAAAATC AAAAATATGC TAATAAAAAT AATTAATGAA ACATAAAACA 240 15 ATATATTAA ATATGTAATG ATAGTATGGC TATTAAAAAG CCATATAATA AACGTTAATA 300 TTGGCGTTAT TAGTGCCATT CCAAGCCATT TTTTCAACAT TTGATCACTC CCACTTATAG 360 AAAACTCTTA CGCATAGTTT ACATTAAAAT CAGACATTGA GGAATGATTT TTTAATTTCT 420 20 TCAGCTTTAT TGAAATTCTA AAATCAATCA TTCTTCATTA GTTTAAAGCA AAAAAATATT 480 GATATATAGT AAATATTGTA TATATAATAT TAGTTAAGAT TTCaGAAAAT TTTGAAGGGA 540 ATGGAAATTT AGAAATCGGA ATTTGTTAGA GGAGGGGATT AGATGGGGAA ATATATTTTC 600 AAACGATTTA TTTATATGCT TATTTCTTTA TTTATTATTA TTACAATTAC ATTTTTCTTA 660 ATGAAATTAA TGCCAGGTTC GCCATTTAAC GATGCTAAAT TAAATGCTGA ACAAAAAGAA 720 30 ATTITAAATG AAAAATATGG ATTAAATGAT CCTGLAGCTA CGCAGTATTT ACATTATTTA 780 AAAAATGTTG TTACAGGCGA TTTTGGTAAT TCATTCCAGT ATCATAATCA ACCTGTGTGG 840 GATTTGATTA AACCGAGACT ACTACCTTCT TTTGAAATGG GTCTTACAGC AATGTTCaTC 900 35 GGTGTGATAC TGGGACTTAT TTTAGGTGTT GCAGCAGCTA CTAAACAAAA TTCTTGGGTT 960 GACTATACAA CTACAGTTAT TTCAGTTATT GCAGTATCTG TACCATCTTT TGTACTTGCT 1020 GTACTTTTAC AATATGTATT TGCAGTTAAA TTAAGATGGT TCCCAGTAGC TGGATGGGAA 1080 40 GGTTTTTCGA CCGCGGTATT ACCGTCACTT GCATTATCTG CAGCTGTTTT AGCAACTGTC 1140 GCCAGATACA TAAGAGCAGA GATGATAGAG GTATTAAGTT CAGACTATAT TTTATTAGCG 1200 AGAGCTAAAG GTAATTCGAC AATGCGTGTA CTTTTTGGAC ATGCACTTAG AAATGCTTTA 1260 45 ATTCCAATTA TTACAATTAT CGTTCCCATG TTAGCAAGTA TTTTAACAGG CACTTTAACA 1320 ATTGAAAATA TTTTTGGAGT TCCTGGATTA GGGGATCAAT TCGTACGTTC AATTACAACA 1380 50 AATGATTTCT CAGTAATCAT GGCAATCACA CTATTATTTA GCACACTGTT TATCGTTTCT 1440 ATTTTTATTG TAGATATTTT GTACGGTGTG ATAGATCCAC GAATTCGTGT TCCAAGGAGG 1500

1560

TAAAAAATAA TGGCTGAAAA TAAAAACAAT TTGTCGATTA ACGACGATCA TTCTAATGCA

	TGAATCAGGA	ACCTGAAATG	CAACGAGAAA	GCAAAAACTT	TTGGCAAGAT	GCTTGGGCTC	1680
5	AGTTAAAACG	AAATAAGTTA	GCTGTTGTCG	GTATGATAGG	TTTAATTATC	ATTGTAATAT	1740
	TTGCTTTTAT	CGGTCCAGTT	ATAAATAAAC	ATGATTATGC	TGAACAAAAT	GTAGAACATA	1800
	GAAATCTTCC	GGCAAAAATA	CCTGTATTAG	ACAAAGTTCC	ATTTTTACCT	TTTGATGGTA	.1860
10	AAGATGCAGA	TGGCAAGGAT	GCTTATAAAG	CAGCAAATGC	TAAAGAAAAT	TATTGGTTTG	1920
	GTACTGATCA	GTTGGGTCGA	GATTTATGGA	CAAGAACATG	GAAAGGTGCT	CAAATTTCAT	1980
	TGTTTATCGG	TGTTGTTGCA	GCGATGTTAG	ATATTTTTAT	TGGTGTTGTA	TATGGTGCGA	2040
15	TTTCTGGATT	CTTCGGTGGA	CGTGTCGATA	CGATTATGCA	ACGTATACTT	GAAGTCATAG	2100
	CATCTATTCC	GAATTTAATT	GTCGTAATTT	TATTTGTATT	AATTTTTGAA	CCATCCATTT	2160
	GGACAATTAT	ATTGGCTATG	TCTATCACAG	GCTGGTTAGG	CATGAGCAGA	GTTGTACGTG	2220
20	GAGAATTTTT	AAAATTAAAA	AATCAAGAGT	TTGTCATGGC	TTCGAAAACA	TTGGGGGCTT	2280
	CAAAATTCAA	ATTGATATTT	AAGCATATTT	TACCTAATAC	ATTAGGTGCT	ATCGTGGTTA	2340
25	CATCAATGTT	TACAGTACCT	AGTGCTATTT	TCTTCGAAGC	ATTTTTAAGT	TTCATTGGTA	2400
	TAGGTGTACC	CGCACCTCAA	ACATCGTTAG	GGTCATTAGT	AAATGATGGG	CGCGCAATGT	2460
	TATTAATTTA	TCCACATGAA	TTATTTATAC	CAGCAATGAT	TTTAAGTTTA	TTAATTCTAT	2520
30	TCTTTTACTT	ATTTAGTGAT	GGATTACGTG	ATGCATTTGA	TCCGAAAATG	CGTAAATAAA	2580
	AAGGGGGCAT	AGCATATGAC	TGAAAGAATA	TTAGAAGTAA	ATGATTTGCA	TGTTTCCTTT	2640
	GATATTACAG	CAGGGGAAGT	GCAGGCAGTG	AGAGGCGTAG	ATTTTTATTT	GAACAAAGGG	2700
35	GAAACATTGG	CAATTGTTGG	TGAATCAGGT	TCAGGTAAAT	CTGTAACAAC	AAAAGCAATT	2760
	ACAAAATTAT	TCCAAGGGGA	CACAGGAAGA	ATTAAAAAGG	GAGAAATTTT	ATTTTTAGGG	2820
10	GAAGÁTTTAG	CAAAAAAACC	TGAAAATGAG	TTGATTAAAT	TACGTGGCAA	AGATATTTCA	2880
40	ATGATCTTTC	AAGATCCAAT	GACATCTTTA	AACCCAACGA	TGCAAATTGG	TAAACAAGTC	2940
	ATGGAACCAT	TAATTAAGCA	CAAAAATTAT	AGTAAAGCAC	AAGCTAAAAA	GCGCGCATTG	3000
45	GAAATACTAA	ATCTTGTAGG	TTTACCAAAT	GCAGAAAAA	GATTTAAAGC	ATATCCTCAT	3060
	CAATTTTCAG	GTGGACAAAG	GCAAAGAATT	GTTATTGCAA	CCGCATTAGC	TTGTGAACCT	3120
	AAAGTGCTCA	TTGCTGATGA	ACCAACGACT	GCATTAGACG	TAACGATGCA	GGCACAAATT	3180
50	TTAGATTTAA	TGAAAGAACT	АСААСААААА	ATCGATACAG	CAATTATTTT	TATAACGCAT	3240
	GATTTAGGGG	TTGTTGCGAA	TATTGCTGAT	AGAGTGGCAG	TTATGTATGG	TGGTCAAATG	3300
	GTTGAAACAG	GAGATGTTAA	CGAAATATTT	TATGATCCAA	AGCATCCATA	TACATGGGGA	3360
<i>55</i>							

	GGAGCGCCAC	CTGATTTATT	ACACCCACCT	AAAGGTGATG	CATTTGCGAG	ACGTAGCAAT	3480
5	ATGCATTAGA	TATTGATTTT	AAAGTAGAAC	CACCGTGGTT	TAAAGTTTCA	CCGACACATT	3540
•	TTGTGAAATC	TTGGTTATTA	GACGCACGTG	CACCAAAAGT	TGAACTACCC	GAGCTGGTAA	3600
	AACAACGTAT	GAAACCGATG	CCTAATAATT	ATGAAAAACC	ACTCAAGGTA	GAAAGGGTGT	3660
10	CGTTCAATGA	AAAATGATGA	AGTGCTATTA	TCTATTAAAA	ATTTAAAGCA	ATATTTTAAC	3720
	GCAGGAAAGA	AAAACGAAGT	GgaGCGATTG	AAAATATTTC	GTTTGATATA	TACAAAGGGG	3780
	AAACATTAGG	TTTAGTAGGA	GAATCGGGGT	GTGGTAAATC	TACAACTGGT	AAATCAATTA	3840
15	TTAAACTTAA	TGATATTACA	AGTGGAGAAA	TTTTGTATGA	GGGTATTGAT	ATACAAAAGA	3900
	TTCGTAAACG	TAAAGATTTG	CTTAAATTTA	ATAAAAAGAT	ACAGATGATT	TTTCAAGACC	3960
00	CATATGCGTC	TTTAAATCCT	AGGTTAAAAG	TAATGGATAT	AGTAGCTGAA	GGTATTGATA	· 4020
20	TCCATCATTT	AGCAACTGaT	AAGCGTGACC	GAAAAAAACG	TGTCTATGaT	TTACTTGaAA	4080
	CTGTTGGATT	AAGTAAAGAA	CATGCCAATC	GCTATCCTCA	TGAATTTTCA	GGTGGaCAAC	4140
25	GCCAACGTAT	TGGaATTGCC	CGTGCATTAG	CCGTTGaACC	AGAATTCATT	ATCGCGGACG	4200
	AACCAATATC	GGCATTGGAT	GTTTCAATCC	AAGCTCAAGT	AGTTAATTTA	TTATTAAAAT	4260
	TACAACGTGA	AAGAGGGATT	ACGTTCCTAT	TTATAGCTCA	TGATCTATCA	ATGGTGAAGT	4320
30	ATATTTCAGA	TCGTATTGCA	GTCATGCATT	TTGGGAAAAT	AGTTGAAATT	GGACCGGCAG	4380
	AAGAAATTTA	TCAAAATCCA	TTACACGATT	ATACTAAGTC	TTTATTATCA	GCCATTCCAC	4440
	AACCTGATCC	TGAATCAGAA	CGCAGTCGCA	AACGATTTAG	TTATATTGAT	GATGAAGCAA	4500
35	ATAATCATTT	AAGACAATTA	CATGAAATTA	GACCGAATCA	CTTTGTCTTT	AGTACTGAAG	4560
	AAGAAGCGGC	ACAACTACGA	GAAAATAAAT	TGGTGACACA	AAATTAAGGG	GAAGGGGGAA	4620
40	ATGCAATGAC	GAGAAAATTT	AGAACACTTA	TTTTAATTTT	GATTGCTACA	ATTGCATTAA	4680
	GTGGTTGTGC	TAATGACGAT	GGTATTTATT	CAGATAAAGG	TCAAGTATTC	AGAAAAATTT	4740
	TGTCATCAGA	CTTAACATCC	CTTGATACAT	CATTAATAAC	GGATGAAATA	TCTTCTGAAG	4800
45	TGAcTGCGCA	AACATTCGAA	GGTTTATACA	CATTAGGAAA	AGGTGACAAA	CCGGTGTTAG	4860
	GTGTTGCGAA	AGCTTTTCCT	GAAAAGAGTA	AAGATGGTAA	AACTTTAAAG	GTTAAATTAA	4920
	GAAGCGATGC	TAAATGGAGC	AATGGTGACA	AAGTGACTGC	ACAAGACTTT	GTTTATGCTT	4980
50	GGAGAAAAAC	AGTTGACCCT	AAAACAGGTT	CTGAATTTGC	ATACATTATG	GGGGACATTA	5040
	AAAATGCGAG	TGATATTAGT	ACTGGTAAGA	AACCTGTAGA	GCAATTAGGT	ATCAAAGCAT	5100
55	TAAATGATGA	AACATTACAA	ATTGAATTAG	AAAAGCCGGT	TCCATATATT	AATCAATTAT	5160
JJ							

	ACGGTACGGC	AGCTGATAGA	GCGGTATACA	ATGGTCCaTT	TAAAGTTGAT	GATTGGAAAC	5280
5	AAGAAGATAA	AACCTTACTA	TCTAAAAATC	AGTATTATTG	GGATAAAAAG	AATGTAAAAT	5340
	TAGATAAAGT	GAATTATAAA	GTTATTAAAG	ACTTACAAGC	CGGTGCATCA	TTGTATGATA	5400
	CTGAATCAGT	AGATGACGCA	TTTATTACTG	CAGATCAAGT	AAATAAATAT	AAAGACAACA	5460
10	AAGGATTAAA	CTTTGTGTTA	ACGACTGGGA	CATTTTTTGT	AAAAATGAAT	GAAAAACAAT	5520
	ATCCTGATTT	TAAAAACAAA	AATTTAAGAT	TGSTATCGCA	CAAGCAATAG	ATAAAAAAGG	5580
	ATACGTTGAT	TCAGTGAAAA	ACAATGGCTC	AATTCCTTCC	GATACACTAA	CAGCCAAAGG	5640
15	AATTGCGAAA	GCGCCTAATG	GCAAAGATTA	TGCGAGTACC	ATGAATTCGC	CTTTAAAATA	5700
	TAATCCTAAA	GAAGCAAGAG	CACACTGGGA	CAAAGCTAAA	AAAGAGTTAG	GTAAAAATGA	5760
20	AGTGACATTT	TCAATGAACA	CAGAAGATAC	ACCAGATGCA	AAAATATCTG	CTGAATATAT	5820
20	CAAATCGCAA	GTTGAGAAAA	ATTTACCAGG	AGTTACTTTG	AAAATTAAGC	AATTACCGTT	5880
	TAAACAAAGA	GTATCACTAG	AACTGAGTAA	CAATTTTGAA	GCATCACTTA	GTGGTTGGTC	5940
25	TGCAGATTAC	CCTGATCCTA	TGGCTTATTT	AGAAACAATG	ACCACAGGTA	GCGCACAAAA	6000
	TAATACAGAC	TGGGGTAATA	AAGAATATGA	TCAATTACTT	AAAGTAGCAA	GAACCAAATT	6060
	GGCACTTCAA	CCGAACGAAC	GATATGAAAA	CTTGAAAAAA	GCAGAAGAAA	TGTTCCTAGG	6120
30	AGATGCACCG	GTAGCACCAA	TTTATCAAAA	AGGTGTLGCA	CATTTAACAA	aTCCTCAAGT	6180
	AAAAGGATTA	ATTLACCATA	AATTTGGTCC	AAATAACTCA	CTTAAACATG	TATATATTGA	6240
	TAAATCGATA	GATAAAGAAA	CAGGTAAGAA	GAAAAAATAA	TATGCTTTGT	AAATTAGGCT	6300
35	GGAGACATAT	CTCCAGTCTT	TTTGTGTTGG	ATAAAAaCTT	TGGGAATAAA	AATTTAAAAT	6360
	AAGTCGTTTT	TTAAATTACT	GAAATTGATT	AAATGCATAA	ATAACTGAAT	ATTCTAAAAA	6420
40	TAAACTTGTA ·	ATAATTTTTT	CTATGAGTAA	ACTAAAAAGA	AAAAATTAGA	TTGAAAGTAG	6480
	GAGĞCATATG	TATGGGGAAG	CTAATTAAAT	ATATTTCAAT	ACTTCTTATT	GTCGTTTTAG	6540
	TGTTGAGTGC	TTGCGGAAAA	AGCAGTAATA	AAGATGAAGG	AGTAAAAGAT	GCTACTAAAA	6600
45	CGGAAACCTC	AAAACATAAA	GGTGGTACCT	TAAATGTAGC	ATTAACAGCA	CCGCCAAGTG	6660
	GTGTTTATTC	TTCGTTATTA	AATAGTACAC	ATGCAGATTC	TGTAGTTGAG	GGATATTTTA	6720
	ACGAAAGCTT						6730

(2) INFORMATION FOR SEQ ID NO: 52:

50

55

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 6482 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

5	AATTTTTGTC	ATTATTAAAA	ACCTCGCTTT	TAAAAGATTG	AAAAGTAAAT	GAGTGAAATT	60
	AAAGATTATG	CACATTAAAA	TCACGCCACA	ATTTAATTGT	GAAAAATATC	ACAAATATAT	120
	TATAACACTA	AATTTCCCAA	AATTCAAAAG	TGTGTTTTAT	TGCAGAAAAC	TTATAACAyG	180
10	TGCACAAGTT	ATAGTGAATT	GCAAACGGAT	TACTTTAGTC	TTTTTAAAAC	ATGAAGTATA	240
	ATTTGTATAG	CAATAAATAT	AAAAATGGGA	GGCTATGTTC	AATGAGCAAT	ATGAATCAAA	300
	CAATTATGGA	TGCATTTCAT	TTCAGACATG	CGACTAAGCA	ATTCGATCCA	CAAAAGAAAG	360
15	TTTCGAAAGA	AGATTTTGAA	ACAATATTAG	AGTCAGGTAG	ATTGTCTCCA	AGTTCTCTTG	420
	GGTTAGAACC	TTGGAAGTTT	GTCGTGATTC	AAGATCAAGC	GTTACGTGAT	GAATTAAAAG	480
22	CGCACAGTTG	GGGCGCAGCA	AAACAATTAG	ATACAGCGAG	CCATTTTGTG	CTAATTTTTG	540
20	CGCGTAAAAA	TGTAACGTCA	AGATCACCGT	ATGTACAACA	TATGTTAAGA	GATATTAAAA	600
	AATATGAGGC	ACAAACGATT	CCAGCTGTTG	AACAAAAATT	CGATGCATTC	CAAGCAGATT	660
25	TCCATATTTC	TGATAATGAT	CAAGCCTTGT	ATGACTGGTC	AAGTAAACAA	ACGTATATTG	720
	CATTAGGCAA	TATGATGACG	ACAGCCGCAT	TGTTAGGTAT	TGATTCATGT	CCGATGGAAG	780
	GTTTTAGTCT	GGATACAGTG	ACAGACATTT	TAGCAAATAA	AGGGATCTTA	GATACTGAGC	840
30	AATTTGGTTT	ATCAGTGATG	GTCGCATTTG	GCTACAGACA	ACAAGAGCCA	CCGAAAAATA	900
	AAACACGCCA	AGCTTATGAA	GATGTTATTG	AATGGGTTGG	ACCAAAAGAA	TAAATAGAAT	960
	ACCGTATGTC	TAAATATATA	AAATTAAAA	GTTAGCAATA	AAAAAGCCTG	CGATTACATA	1020
35	AATGAATCGC	AGGCTTTTGC	GTGAAAAAAT	TGTATTAATA	AAGTATGGAT	GATTATTTTT	1080
	CTGGÆACAAG	GTCAGTATTT	GAATGAACTG	TGATGTCAAA	CCCTTCTGGT	GCCGTAAATG	1140
40	TATGTGTTGA	GCCGTCGGGT	TGATAAATAT	CAACATGTGT	TAATCCATAA	CTTTGTGAAT	1200
40	TGTTTTGTCT	TGCTTGATTG	GATTGCCAAG	TATTAGCAGC	AATATGATGG	TGATAATGAT	1260
	TCGTTGACAT	AAATAGCGCA	CGTGGAAAAT	CAGACACATG	TTGGAATCCT	AATTGTTCAA	1320
45	TGTAACATTG	ATATGCTGCG	TCTAAATCAT	GTGTTTTTAA	ATGTAAGTGT	CCAATCATGC	1380
	CTTTTGCTGG	CATTCCTTGC	CAACCTTCAT	CAGTACGATG	TGTTAATAAG	GTTTGGCTAT	1440
	CAACTTCTAA	AGTATCCATT	TTAACTTTGC	CATTTTGCCA	TTCCCATGAA	GATGAAGGTC	1500
50	TATCGCGATA	GACTTCAATA	CCATTACCTT	CGGGGTCGTT	GAAATATAAA	GCTTCACTTA	1560
	CTR N N TO N TO C	**************************************	አጥጥርርርአጥአጥ		CACCA A A TAT	A A C A A COTTA C	1620

	aAGTCTGACG	GCCGTCTTCT	AATAAATGTA	ACGTTAGAGT	ATGGCCACCA	GTCCCAACAG	1740
_	ATAATACGGT	TGTATTATCG	TCAGAACTTT	TAACGGATAG	TCCTAAAATG	TTTTTGTAAA	1800
5	ATGTTGTCAT	TAAGTCTAAG	TCTCTTACGT	TCAGTACAAT	GTTTGTCACT	TGTGTTGCTG	1860
	TTTTATCGTG	AAATGCCATT	ATGCATCGCC	TCTTTTTCTA	TTTTTCTATA	AGTTAGTATA	1920
10	AAAAGTATAC	CAGAAAAGAA	AATGAATTGA	TAGCATAAAG	TTTGAAATGC	ААААТААСТА	1980
	GTCGTTTTGC	AATTTTALAT	TGATGCGAAC	AAAAAAGCGA	TGGTACAGTT	GCACCATCGC	2040
	AAAATTTATT	TAACCAAGAT	ATACATCTTG	ATATGAATCT	TCTTTTTCTA	ACATATGTTT	2100
15	GGCAAATGAA	CATGAGGCAA	TAATTTTCAA	ATTATTTTCT	CGAGCGTGTT	CAACAACTGC	2160
	TTTAAGTAGT	TTTTTGCCAA	CACCTTGACC	ACCAAGTTCA	TCAGATACGC	CTGTATGATC	2220
	AATGTTAATT	TCATTATTAT	CCACAAAACG	GTATGTGATT	TCAGCTAAAG	CATTATTTTC	2280
20	ATCATCACCA	ATATAGAATT	TGTTCTCGCC	TTGTTTGATT	TCAAGGTTAC	TCATACATAT	2340
	CAACTCCTAT	CATGATTGAT	TATAGTATTT	CCCTATTCTA	TTTTAACTTA	AACGAAGTCA	2400
05	AAGGTGCATG	ACAGTCATGT	GACGACATTG	CCACATCTAT	GTAGTCGTTT	TTATTAAGCA	2460
25	CAGTTTGAAA	TGAAGATGAA	AACACGTATC	TTGACATTAA	ATCTATTCAG	CTATATAATT	2520
	TATCTCGAAA	TCGAAATAAA	ATAAAAAAGT	TGGTGATCAT	ATGGATCGAA	CGAAACAATC	2580
30	TCTCAATGTT	TTTGTCGGAA	TGAATAGGGC	GTTAGACACA	TTAGAGCAAA	TTACAAAAGA	2640
	AGACGTAAAG	CGATATGGCT	TAAATATTAC	TGAATTTGCA	GTGCTCGAGT	TGCTTTATAA	2700
	TAAAGGTCCG	CAACCAATTC	AACGTATTAG	AGACCGCGTA	TTAATTGCAA	GTAGCAGCAT	2760
35	TTCATATGTT	GTAAGTCAAT	TAGAGGACAA	AGGTTGGATT	ACACGTGAAA	AGGATAAAGA	2820
	TGATAAACGT	GTATATATGG	CTTGTTTAAC	TGAAAAAGGT	CAAAGTCAAA	TGGCAGATAT	2880
	TTTCCCTAAG	CATGCTGAGA	CATTAACAAA	AGCGTTTGAT	GTGTTAACAA	AGGATGAATT	2940
40	AACAATCTTA	CAACAAGCGT	TTAAGAAACT	AAGTGCACAA	TCTACAGAAG	TGTAAGGCGT	3000
	GCACTAAAAA	TTTACATTAA	AGTATCTCGA	TTTCGAGATA	AATGCACTAA	AAATATAAAG	3060
45	AGGGTATATA	AAATGATAAA	TAATCATGAA	TTACTAGGTA	TTCACCATGT	TACTGCAATG	3120
43	ACAGATGATG	CAGAACGTAA	TTATAAATTT	TTTACAGAAG	TACTAGGCAT	GCGTTTAGTT	3180
	AAAAAGACAG	TCAATCAAGA	TGATATTTAT	ACGTATCATA	CTTTTTTTGC	AGATGATGTA	3240
50	GGTTCGGCAG	GTACAGACAT	GACGTTCTTT	GATTTTCCAA	ATATTACAAA	AGGGCAGGCA	3300
	GGAACAAATT	CCATTACAAG	ACCGTCTTTT	AGAGTGCCTA	ACGATGACGC	ATTAACATAT	3360
	TATGAACAGC	GCTTTGATGA	GTTTGGTGTT	AAACACGAAG	GTATTCAAGA	ATTATTTGGT	3420

	TTAAATGAAG	GGGTAGCACC	TGGTGTACCT	TGGAAGAATG	GACCGGTTCC	AGTAGATAAA	3540
	GCGATTTATG	GATTAGGCCC	CATTGAAATT	AAAGTAAGTT	ATTTTGACGA	CTTTAAAAAT	3600
5	ATTTTAGAGA	CTGTTTACGG	TATGACAACT	ATTGCGCATG	AAGATAATGT	CGCATTACTT	3660
	GAAGTTGGCG	AAGGAGGCAA	TGGTGGCCAG	GTAATCTTAA	TAAAAGATGA	TAAAGGGCCa	3720
10	GCaGCACGTC	AAGGTTATGG	tGAGGTACAT	CATGTGTCAT	TTCGTGTGAA	AGATCATGAT	3780
	GCAATAGAAG	CGTGGGCAAC	GAAATATAAA	GAGGTAGGTA	TTAATAACTC	AGGCATCGTT	3840
	AATCGTTTCT	ATTTTGAAGC	ATTATATGCA	CGTGTGGGGC	ATATTTTAAT	AGAAATTTCA	3900
15	ACAGATGGAC	CAGGATTTAT	GGAAGATGAA	CCTTATGAAA	CATTAGGCGA	AGGGTTATCC	3960
	TTACCACCAT	TTTTAGAAAA	TAAAAGAGAA	TATATTGAAT	CGGAAGTTAG	ACCTTTTAAT	4020
	ACGAAGCGTC	AACATGGTTA	ATTGGAATGA	GGAGGATTTG	TGATGGAACA	TATTTTTAGA	4080
20	GAAGGACAAA	ATGGTGCGCC	AACACTAATA	TTATTGCATG	GTACAGGTGG	TGATGAGTTC	4140
	GATTTATTAC	CGTTAGGCGA	Agcattgaat	GAAAATTATC	ACTTGTTAAG	TATTAGAGGA	4200
	CAAGTTTCAG	AAAATGGGAT	GAACCGTTAT	TTCAAACGTC	TTGGTGAAGG	TGTTTATGAT	4260
25	GAAGAAGATT	TGGCATTTCG	TGGACAAGAA	TTGTTGACGT	TCATTAAAGA	AGCTGCTGaA	4320
	CGTTATGATT	TTGaTATTGA	AAAAGCAGTA	CTTGTTGGAT	TTTCAAATGG	ATCAAATATA	4380
30	GCGATTAACT	TAATGTTGCG	TTCAGAAGCA	CCATTTAAAA	AAGCATTGTT	ATATGCACCG	4440
	TTATACCCAG	TTGAAGTAAC	GTCAACAAAG	GATTTATCAG	ATGTCAGTGT	GTTGCTTTCT	4500
	ATGGGGAAAC	ATGATCCAAT	TGTGCCATTA	GCTGCAAGTG	AACAAGTCAT	TAACTTGTTT	4560
35	AATACACGTG	GGGCACAAGT	CGAAGAAGTT	TGGGTGAAGG	GCCATGAAAT	TACAGAAACT	4620
	GGATTAACGG	CTGGTCAACA	AATACTTGGG	AAATAACAGT	TCTATTAAGA	AGCGGACAGA	4680
	TGGAÃAAGAT	TTTTACTTTT	CATCTGCCCG	CTTTTTTGAT	TTTGAAGTGC	TGTACTAAAT	4740
40	TTTACAATAG	TATAGATATT	TTAATCGATA	TGAGATTTGC	CGGTAATACG	CTTAATTAAA	4800
	CCTTTATAGA	GTACAGGTAT	GAGTAAGATG	AAACCGAACA	ATCCCATAAT	AGGGAATACT	4860
	TTTCCAATTA	ATGAAATGAa	ACCGATAAAT	GTACTAATAT	AAGTGATGAC	AGCCATTGTA	4920
45	ATAATAATGA	TGAAGTAACG	TCTGCTGAAT	GGAACGCTGA	AACGTGACGC	AAATGCATAC	4980
	ATTAATCCAA	CAACAGTATT	GTAGATGACA	AGTATCATAA	TGACAGACAT	AATAATACCA	5040
50	ATTGACGGAG	ACATTTGTGT	CGCTAATTTT	AATGTAGGTA	GATCTACGTG	TTTAATTTTA	5100
	TCGAATTGAG	AAATTAAACC	TAGATTAATC	ATCATGAGTA	AAAATGTAAT	GATTAAACCG	5160
	CCAATCAAGC	СССССТАТАА	CCTTCACTCA	Λάταττα	Стттастасс	CATCACTGAT	5220

	CCAGGTGATA A	ATGATTTCTG	CTTATGAATC	TGAGCATCAT	TATTAGCGGC	AGTAAAATCA	5340
_	AGATGACTTG T	TGTGAAATA	GTAGACCGCA	ATCATAATGA	CAATCGCAAT	TAAAAATGGG	5400
5	GTAACACCGC C	CAAGCACAGC	AATTAAACGA	TCGAATTTTA	GAAACAGTGT	TGCTAAAATA	5460
	AAGGCGACTA A	TATGAGTGC	GCTCAGCCAA	TACGGTAAGT	TGAAACTTTG	ATGAATGGTT	5520
10	GACGCACCAC C	TGCAGTCAT	AATAATAGCT	AAAGACAACA	TAAACATTGT	TAAAATA	5580
	TCAAAACCTC T	TGCAATAGA	GGGGTATAAG	AAATAGTTAA	TTGAATCAGA	ATGATTTCTG	5640
	GACTTTAGAT G	SATGACCTGT	ATGCATGACA	ACCATTCCAC	CTAAAGTAAT	CAATAGTCCT	5700
15	GTTACAATAA T	GCCTGAAAT	GCTATATGCG	CCATGACTTG	TGAAAAACTG	GAAAATTTCT	5760
	TGACCAGTAG C	CAAAGCCGGC	ACCAACGACA	ACACCAACAA	AGGCAAATGC	CACAATAATG	5820
	GACTCTTTTA A	GATACGCAT	GATTTAAAAA	TGTCCCTTCG	TAATTTTAAG	TAATATAGAA	5880
20	AATGTAACAT A	CATGTTAAT	GAAAAATATA	GTACTAATAT	AGTATTTTGT	TAAATTGGAG	5940
	TAGAAGCGAG G	GTGTCGGTC	ATTTCATTAA	TTTATTAGTT	GATTTTGCAT	TTTTTTGCTG	6000
	TAAAGTTGTT A	TAATACAGT	TAACAGGAAT	TAGCATAGAT	ACACCAATCC	CCTCACTACT	6060
25	CGCAATAGTG A	GGGGATTTT	TTTCGGTGTA	GCTAGGTCGC	CTATTTATCA	TCGTGTTTGC	6120
	GTAGCaATGC G	TAAACACAG	TACCACTAAA	TAAGTGCACG	ATACATGCAT	CAAATGTCGT	6180
30	CTTTAGTCTA A	GTAACGATC	ATGCATTAAC	ATTTTCAAAA	TATCTATTTG	AGCTTGAAGA	6240
	TCTTTACCAA T	ATTGGTATC	ACGAATCTTC	TTACGTTGTA	ATTCTTTATC	TACGACGCGC	6300
	TTTATAGAAA G	TTCATCGAT	ACCTTCGGAA	AGTATTTT n	CTTTAGCGTT	AAATTGTTGG	6360
35	TGTGCAACGA G	TTGCATACC	GAATGAATTA	TACAATAGTG	TATAGCCTGC	AATGCCAGTn	6420
	GTTGACTGAT A	AGCTTTTGA	AAAGCCACCA	TCAATGACAA	GCATCTTTCC	ATCAGCCTTG	6480
	AT =						6482
40	(2) INFORMAT	ION FOR SE	Q ID NO: 53):			
		-	ACTERISTICS				
45	(E) TYPE: nu	cleic acid NESS: doubl	-			

55

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

ATTTAAGGCG ATTGCTTGTG TATTTCTCTC TTTTGTAGGC AAACCTGCAC TCGTTCCAAA

AAATGTAACT TCCATATATG CCCCTCCTTT TCTTCAATTC ATTTTATCAT AAAATTTGTA

60

	AATTTTTCTA	ACTTTAACGT	AGACATAACT	ATATAAATTT	TGATAATTAC	GTTATACTTA	240
_	TCATTAATAA	GTATCACATT	AAACATGATA	CATGAATCGA	TATTTCATTT	AAGACACTGC	300
5	ATACAGTCGA	GCATATTGTA	TGACCTACTG	AATGGATTAT	СТТАТААТАА	TAAATCATAT	360
	ATCTAATTAA	GAATTGAGGT	TTTAATCTTG	AGTACTAAAA	ACAAACACAT	CCCATGTTTA	420
10	ATCACAATCT	TTGGTGCACT	GCGTGACTTA	AGCCATCGTA	AGTnGTTTCC	ATCAATATTC	480
	CATCTCTACC	AACAAGACAA	TTTAGATGAA	CATATTGCCA	TcATCgGTAT	TGGACGTCGT	540
	GACATkwnTA	ATGATGATTT	CCGTAATCAA	GTAAAATCAT	CAATTCAAAA	GCACGTAAAA	600
15	GATACAAACA	AAATTGACGC	GTTTATGGAA	CATGTCTTCT	ATCATAGACA	TGATGTTAGT	660
	AATGAAGAAA	GCTATCAAGA	ATTACTAGAT	TTTAGTAATG	AATTAGATAG	CCAATTTGAA	720
	TTAAAAGGTA	ATCGACTATT	CTATTTAGCA	ATGGCACCAC	AATTCTTTGG	CGTTATTTCT	780
20	GATTATCTAA	AATCTTCTGG	TCTTACTGAT	ACAAAAGGAT	TTAAACGCCT	TGTTATCGAA	840
	AAACCATTCG	GTAGTGATTT	AAAATCAGCC	GAAGCATTAA	ACAATCAAAT	TCGTAAATCA	900
	TTTAAAGAAG	AAGAAATTTA	TCGTATTGAC	CACTATTTAG	GAAAAGACAT	GGTTCAAAAT	960
25	ATCGAGGTAT	TACGTTTTGC	GAATGCGATG	TTTGAACCAT	TATGGAATAA	CAAATATATT	1020
	TCAAACATCC	AAGTTACATC	TTCTGAAATA	CTAGGTGTTG	AAGATCGTGG	TGGTTATTAT	1080
30	GAATCAAGTG	GCGCGCTAAA	AGATATGGTG	CAAAACCACA	TGTTACAAAT	GGTTGCATTA	1140
	TTAGCTATGG	AAGCACCTAT	TAGTTTAAAT	AGTGAAGATA	TCCGTGCTGA	GAAAGTAAAA	1200
	GTACTTAAAT	CACTGCGTCA	TTTCCAATCT	GAAGATGTTA	AAAAGAACTT	TGTTCGTGGT	1260
35	CAATATGGCG	AAGGCTATAT	CGATGGTAAA	CAAGTTAAAG	CATACCGTGA	TGAAGATCGC	1320
	GTTGCAGATG	ACTCTAACAC	ACCTACCTTT	GTTTCAGGTA	AATTAACAAT	TGATAACTTT	1380
	AGATGGGCTG	GTGTACCATT	CTATATTCGT	ACTGGTAAAC	GTATGAAATC	TAAAACAATT	1440
40	CAAGTTGTCG	TTGAATTTAA	AGAAGTACCA	ATGAACTTAT	ACTATGGAAA	CTGaTAAACT	1500
	GTTAGATTCA	AACCTATTAG	TAATCAATAT	CCAACCTAAT	GAAGGTGgTA	TCTTTLACAT	1560
	Ctaaatgcta	AGaAAAATAC	ACAAGGTATC	gAAACAGrAC	CTGtCCmATT	GtCTTACTCm	1620
45	ATGAGCGcTC	aAGaTAAAAT	Gaatactgta	GATGCATATG	AAAATCTATT	ATTTGATTGT	1680
	CTTAAAGGTG	ATGCCACTAA	CTTCACGCAC	TGGGAAGAAT	TAAaATCAAC	ATGGAAATTT	1740
50	GTTGATGCAA	TTCAAGATGA	ATGGAATATG	GTTGaTCCAG	AATTCCCTAA	CTATGAATCA	1800
	GGTACTAATG	GTCCATTAGA	AAGTGATTTA	CTACTTGCTC	GTGATGGTAA	CCATTGGTGG	1860
	GGACGATATT	CAATAATTGA	ATTAAAACGC	ACATGTTAAA	CAAAAATAAA	TGAGCGAATG	1920

	TATATTATGA	AATTATATTT	TACAATGCCC	AAAACTATTT	TAATAATCAT	TGAACAAATG	2040
	GGTGTATAAT	TTATAGAAAT	AATGTAGAAT	AAAAATAAAT	GATTGAATTA	ATTGGAGTGA	2100
5	AAGTTTTGGA	CGTTATCAAG	CAAATACAAC	AGGCAATTGT	TTATATTGAA	GATCGTTTAT	2160
	TAGAGCCTTT	CAATTTGCAA	GAATTAAGTG	ATTACGTTGG	TCTTTCGCCA	TACCATCTTG	2220
10	ATCAATCATT	TAAAATGATT	GTCGGCTTAT	CTCCAGAAGC	TTATGCACGC	GCGCGTAAAA	2280
10	TGACACTCGC	TGCAAATGAT	GTGATTAATG	GTGCTACACG	ACTTGTAGAT	ATCGCTAAAA	2340
	AATATCACTA	TGCAAATTCA	AATGATTTTG	CAAATGATTT	TAGTGATTTT	CACGGCGTAT	2400
15	CACCTATTCA	AGCCTCTACT	AAAAAAGATG	AATTACAAAT	TCAAGAGCGA	TTATATATCA	2460
	AATTATCAAC	TACTGAGAGA	GCACCTTATC	CATACAGATT	AGAAGAGACA	GATGATATTT	2520
	CATTGGTTGG	ATATGCACGA	TTTATAGACA	CTAAGTATTT	GTCACATCCT	TTTAATGTTC	2580
20	CGGATTTTTT	AGAAGACTTG	CTCATTGATG	GTAAAATTAA	AGAGTTACGA	CGATATAATG	2640
	ACGTTAGTCC	ATTTGAACTA	TTTGTTATTA	GTTGTCCTCT	TGAAAATGGT	TTAGAAATAT	2700
	TTGTAGGTGT	ACCAAGTGAA	CGTTATCCTG	CACACTTAGA	AAGTCGATTT	TTACCTGGCA	2760
25	AACATTGTGC	GAAATTCAAT	TTACAAGGTG	AAATTGATTA	TGCAACTAAT	GAAGCTTGGT	2820
	ACTATATTGA	ATCAAGTTTG	CAGTTAACAT	TGCCATATGA	ACGAAATGAT	TTATATGTTG	2880
30	AAGTGTACCC	TCTCGATATT	TCATTTAATG	ACCCATTCAC	TAAAATTCAG	CTTTGGATTC	2940
50	CTGTTAAACA	GAGTCCTTAT	GACGAAGATT	AAATAATAAA	AAACAAAGAA	GCCCCTAAT	3000
	ATATCTATAG	GTCTACAAAT	GGCCTTAGAT	TCTATTAGGG	GGCATATTAA	TATGTTAATT	3060
35	TAGTTCGATA	ACACATGCTT	CATATGGACG	TAACTGTTTT	AAATTAACTT	TGGCATCATA	3120
	ATTAAATAGC	TTTACTTCTC	CATGGCTTAA	ATCAAATGGT	ACAGTTAATT	CTGCTTCGTG	3180
	GTTAGTAAGA	TTACCTACAA	TAAGAACTTG	CTTTTCATTT	AATGTTCTCG	TGTACGCAAA	3240
40	AACTTGTGAA	TTTTCAGCAT	CTACTAAATC	AAATTGACCA	TATACGTATA	CATCATTAGA	3300
	CTTTCTTAAT	TGAATTAAAT	CTTTATAAAA	TTGTAATACT	GAATGCTCAT	CTTCTAATTG	3360
	TTGTGCAACA	TTGATAGTTT	TATAATTCGG	ATTCACTGGG	AACCACGGTT	CACCATTTGT	3420
45	AAATCCTCCA	TTTAACGTAT	CATCCCATTG	CATTGGTGTG	CGAGAATTAT	CTCGGTTCTC	3480
	ATCTTTATAT	TTCGCAAGTA	AAGCGTCTAC	ATCTCCACCT	TGAGCTTTCA	CTATTTGATA	3540
50	GTCATTTTTA	ACAGCAACAT	CGTTAAACGT	TTCAATACTT	TCAAATGGAT	AATTCGTCAT	3600
	ACCAATTTCT	TGACCTTGAT	AAATGAATGG	CGTACCTTGT	TGCAAGAAAT	AAACAGCTGC	3660
	ATGACTTGTT	GCTGATTCAT	ACCAATACTT	GTCATCGTCA	CCCCACGTCG	ATACACGTCG	3720

	CCATCTATTT	AATACAGATT	TATACGAATT	TACATCAAAG	TGAGAATCAC	CACTATTCCA	3840
	CAGTCCCAAA	TGTTCAAATT	GGAATATCAT	ATTAAATTTA	CCATTTTCTT	CCCCGACCCA	3900
5	GTCATCAGCA	TCATCAGGGC	TTACACCATT	CGCTTCACCA	ACAGTCATAA	TGTCATACTT	3960
	ACTTAATGAG	CGATCTTTCA	TCTCTTGTAA	CCAAGTTTGT	ATACCTGGCT	GATTCATATC	4020
	TACATCAAAT	GCTGGGGCAT	ATGTTTTACC	CTCAGGTACA	GGTAAGTCAC	CCGCTTCAAA	4080
10	CGTCTTCTTA	ATATGCGTAA	TTGCATCTAC	TCTAAATCCA	TCAATGCCTT	TATCAAACCA	4140
	CCAGTTCATC	ATTTCAAATA	CAGCATCTCT	AACTTCCGGA	TTACCCCAAT	TCAAATCAGG	4200
15	TTGTTTTTTA	CTGAATAAAT	GGAAATAATA	TTGCTCAGTA	TTAGCATCAT	ATTCCCATGT	4260
	AGATCCATTA	AATATACTTT	CCCAGTTGTT	AGGTTCAGAG	CCATCTGGCT	TTGGATCTTG	4320
	CCAAATGTAC	CAATCACGTT	TGGGATTGTC	TITACTAGAT	TTGGATTCTA	TAAACCAAGG	4380
20	ATGTTCATCA	GATGTATGAT	TTACAACTAA	ATCTAAAATA	AGCTTCATGC	CTCTATCATG	4440
	AACACCTTTT	AATAAACGAT	CAAAGTCTTC	CATCGTTCCA	AATTCATCCA	TAATCTCTTG	4500
	GTAGTCACTA	ATATCATAAC	CATTGTCATC	ATTAGGTGAT	TTAAACATTG	GACTGAGCCA	4560
25	AATGACATCG	ATACCGAAAT	CTTTTAAGTA	GTCCAATTTA	TCAATCATTC	CAGGTAAATC	4620
	CCCAATACCA	TCGTGATTAC	TATCATTAAA	ACTTCTTGGA	TATACTTGAT	ATGCTACTGC	4680
22	TTCTTTCCAC	CATTGCTTAT	TCATTTTAAA	ACTCCTTTGC	TATCGCTGTG	TTGATTTTCT	4740
30	TATTTTTAAT	TCTGTATCTA	TAATGACGAG	TTCAATAACA	TCCTGTGCTT	TGTTTTTCAA	4800
	TATATTTAAA	ATTGCTGCAC	CAGCCTGTTG	ACCTAACATT	CGAGGCTTGA	TGTCAATACA	4860
35	GGTTTGTGGT	GGTGACGCAA	TTTCGGTTAA	ATAAGAATCA	TTGAACGTTG	CTGTCATTAC	4920
	ATCTTTCGGA	ATTTCAATAT	TAAGTTCATA	TAGGACACTT	AAAATCGCTA	AATGTAACAT	4980
	AGCATCTAAC	GAAATGATTG	CCTGTTTAAT	ATTTGGGTCC	TTCAAACGCG	TATGTAGATT	5040
40	TTGCATGTAA	TTAAAAATAA	CTTCTCTTTC	ATTACTAGTC	TCAATAATTT	GATAATTAAT	5100
	TTTATTTTGA	GAAGCTATCG	TTTCAAATCC	TTGAATTCTA	TCTTTTGAAA	CTTCAAAATT	5160
	TCCTTTTTCT	GTAATAAATA	TTAATTCATC	TACACCTTGT	TCAATAACAT	GTCGTGTCAA	5220
45	ATTTTCAGAA	GCTAATATAT	TATCATTATC	TATATGTGTA	AATTGATGAT	CTATATCCGA	5280
	TGTAGGCTTA	CCAATCACAA	TAAATGGCAT	GCTTTCATCA	ATTAACATTT	GTTTAATCGG	5340
50	ATCATTTTCT	TTTGAATAGA	GCAGTATAAA	CGCATCAACC	ATTCGTTGTT	TAATCATTTT	540
50	ATAAACTTCA	TCCATTAAAT	CATTCATATT	ATTTGAGACT	GTCGTTTGTG	TACCATAGCC	546
	ልጥርርጥርርጥጥል	СУССТТТСУС	AAATTCCTAC	CAATACATTC	ATGTAGAATG	GATTCAGTCG	552

	AGTTCTAGCA	GCGGTATTAG	GAAAATAATT	CAATTCTTCC	ATAACTTTCT	TCACTTTTGA	5640
	AATTGTCGCT	TCGCTAATAC	GTTGATTTCC	TTTTATAACT	CTTGAAACTG	TCGAAGGAGA	5700
5	AACACCGGCT	TTTAGTGCAA	CATCTTTAAT	CGTAACCATT	TAATCACCTC	CTGTTAATTT	5760
	CTGCATCGGA	AAACGCTTCC	AACCACTGTA	TAATACCAGT	TTAGTCACAC	TTTCTAAAAA	5820
10	AGTCAAAAGA	TTTGTGCAAA	CGATTGCATA	AAACGATAAA	AATAAAACCT	TCATACTGAA	5880
	ATTCAATCCG	AAAATCAATA	TAAAGGTTTG	TATAAATATT	AAAATCGATT	GTTTAGTCAC	5940
	TAACTGCAAA	ATAGTTACCT	TGGCCATCTT	GAAAATTAAA	TACACGTTGA	CCATTCATTT	6000
15	CTACTATATC	ATGCCCAGTT	AAACCTAAAT	CATTTAATTT	TGAGTATAAT	GCATCAAAGT	6060
	TTTTCTCTTT	AAACATTAAA	GATGGTGTTC	CTAGGTTCAC	TTCCGGGCTA	TGCTTTTCAA	6120
	TAAATTCTTT	TGCCATAATC	GTCAATGACG	TTTCAGCATC	TTTGGTAGGT	GATACTTCAA	6180
20	CTGCAACATA	GTCCTCAGCT	AACGGTGTTT	CACTTACAAC	AACAAATTCT	AAAGTTTCTG	6240
	TCCAAAATGC	TTTCGCTTTT	TCGACATCAT	CAACATATAA	CATAACTTGA	TTTAACTTTT	6300
	CCATAAAATA	GTACCTCTAT	TTCTCTATAG	TACATGCTAT	CATAACACAG	TAAATATTT	6360
25	ATTACTTCAC	AAAATGCTTA	AAAATATGGC	GGGATGCTTT	TAAGGTCAAG	GATAATACTT	6420
	GTGTAATTTT	TTATAGGTTG	TAGCTACTCT	ATCACACTCT	CTTTTATATT	TATCAAAAGA	6480
30	TATAAAAAAG	GATAGTATCT	TTCAACTATC	CTTTAATCAA	TATTATTCTT	CAATCCATTG	6540
J 0	TGTATGGAAT	ACGCCLTCTT	TATCTTTTCT	TTCGTACGTA	TGAGCACCGA	AGTAGTCACG	6600
	TTGTGCTTGA	ATTAAGTTTG	CAGGTAAATC	AGCAGCACGG	TAACTATCAT	AGTAATTAAT	6660
35	ACTTGATGAG	AAACCAGGTG	TTGGTACACC	ATTTTGAACA	CCAGTTGCGA	CAACATCACG	6720
	TAACGCATCT	TGATATTCAG	TAACGATGTT	TTTAAAGTAA	GGATCTAGCA	ATAAGTTTTG	6780
	TAATCCTGGA	TTATTATCGT	AAGCATCTTT	GATCTTTTGT	AAGAATTGTG	CACGGATAAT	6840
40	GCAACCTTCT	CTCCAAATCA	TAGCTAAATC	ACCAAGTTTT	AAATTCCATT	CATTATCTTC	6900
	ACTTGCTTTA	CGCATTTGcG	CGAAACCTTG	TGCATAAGAA	CAAATTTTAC	TCATATATAA	6960
	TGCTTTACGA	ATTTTTTCTA	AAAAGTCTTT	CTTGTCACCA	TCAAATGATG	CTTTTGGACC	7020
15	ATTTAATTCT	TTAGAAGCAT	TTACGCGCTC	TTCTTTGaTT	GAAGAGATAA	AACGTGCAAA	7080
	TACAGATTCA	GTAATGATTG	TTAATGGAAT	ACCTAATTCT	AATGCGTTAA	TTGAAGTCCA	7140
50	TTTTCCTGTA	CCTTTTTGaC	CTGCAGTATC	AAGAATTTTT	TCAACTAATG	CTTCTTTATT	7200
50	TTCATCTAAT	TTCATGAAAA	TATCACCAGT	GATTTCAATT	AAATAACTTT	CTAATTCACC	7260
	AGCATTCCAG	TCTTTGAACG	TTTGAGCAAT	GTCTTCATGA	GACATGCCTA	ATAATTCTTT	7320

	CATTTTCACA	TAGTGTCCAG	CACCATTAGG	TCCAATATAA	GTAACACATG	AAGCACCGTC	7440
	TTTTGCCTTT	GCAGCAATTG	CATCAAGAAT	ATCTGCAACT	TTGTTATAAG	CTTCTTCTTG	7500
5	TCCACCCGGC	ATTAATGACG	GACCAGTTAA	CGCTCCAATT	TCACCACCAG	AAACGCCCAT	7560
	ACCAATAAAG	TTGATTGCAC	TTTGTGywaa	TGCTTTATTA	CGTCTGATAG	TATCTTGATA	7620
	GTTTGTATTA	CCACCATCAA	TTAAAATATC	TCCATCATCT	AATAAAGGTA	ACAAACTATC	7680
10	AATCGTTGCG	TCCGTAGCTT	TACCTGCTTG	AACCATTAAT	AAAATTTTAC	GTGGTTTTTC	7740
	TAAAGAATTA	ACAAATTCTT	CCAATGAATA	CGTTGGATGA	ATATTTTTCC	CTTTTGATTC	7800
15	TTCAACCATT	AAATCAGTTT	TTTCACTTGA	GCGGTTAAAT	ACAGATACAC	TATATCCGCG	7860
	TGATTCAATA	TTCCAAGCTA	GGTTTTTACC	CATAACGGCT	AAACCAATAA	CTCCAATTTG	7920
	TTGTGTCATA	TTACTTACCT	CACTTGTTGA	TTTTTCATTA	GTATTGTATC	ACAAAATAGA	7980
20	CATACACTAC	ACTAAATCAT	TTCGAATGTC	GCGCAACTAT	TTTGATTATT	TCTAACACTT	8040
	GACTTGCAAG	CAAGTTCAAT	GATTTAATCG	GCATTCTCTC	ATTTGTTGTA	TGGATTTTTT	8100
	CATAACCCAC	TCCTAAAATG	ACTGAAGGAA	TACCAAATGT	ATTAATAATA	CTGCCGTCTG	8160
25	AACCGCCACC	AGAAATAATT	GTATTTGCAG	ATAATCCTAA	ATTACGAGCA	CTTTCTTGTG	8220
	CAATTTTAAC	AACCGCTTCA	TTATCATTAA	TTTTAAATCC	TGGATAACTT	TGCTCCACTG	8280
	TAACTACTGC	TTTCCCACCT	AATTCTGATG	CAGTAGTTTC	AAACACATCA	GTCATATGTT	8340
30	TGACTTGTGT	TTTTATTCTT	TCTGGATCGT	GAGAACGTGC	CTCTGCTTCT	AAAATGACTT	8400
	CATCTGCAAC	AATATTCGTA	GCTGAACCGC	CATGAAACTT	ACCAATATTG	GCAGTAGTTA	8460
35	TTTCATCAAC	TTGTCCTAAT	TTCATTCGAC	TAATTGcTTT	CGCCGCAATA	TTAATAGCAC	8520
00	TAACACCCTC	TTTTGGCGTA	CTTGCATGAG	CCGTTTTGCC	AAAAATTTTA	GCTGAAATTA	8580
	ACATTTGCGT	CGGTGCACCT	ACAACCGTAG	TACCGACATC	AGCACTTGCA	TCAATAGCAT	8640
40	AACCAAAGTC	CGCGTCCAAC	AACTCTGAAT	TTAATTCTTT	AGCACCAATT	AAACCTGATT	8700
	CTTCTCCAAC	AGTAATCACA	AATTGAATTT	GTCCATGTGG	GATTTGTTGT	TCCTTTATCA	8760
	CTTGCAAAAC	TTCAAGCATC	GCTGATAATC	CTGCTTTATC	ATCTGCACCT	AGAATAGTCG	8820
45	TACCATCAGA	GTATATGTAG	CCGTCATCTT	TTACAATTGG	CTTTACATTA	ATTGCGGGTA	8880
	CAACAGTATC	CATATGGCTC	GTCAAATATA	ATTTAGGTAC	TTCGCCTTCT	TCGATAGTAC	8940
	TATTCATTGT	ACACACTAGA	TTATTGGCAC	CTAATTTAGG	ATGTTTAGCC	GCTTCATCTT	9000
50	CTTTAACATC	TAACCCTAAT	GCTATGAATT	TTTCTTTTAA	AATAGGTTGG	ATTGTTGATT	9060
	CATTCCCTCT	CTCACAATCC	አ <i>ጥጥ</i> ጥንጥ አ <i>ጣ</i> አ	~~~~~~~~~~	CCTATTAACT	N N TOTAL	9120

	GATGAAATAA	AATGTTACAG	TAATTGACGT	TACACAGATT	TATCAGGTTT	GTAAATTGTG	9240
	TCATATTATT	TTCAATTTAT	TATATATAAT	TATTGTAACT	CAAACTAAGC	TTTGTCAAAA	9300
5	ATATATTGAT	TGATTTTTCA	AAGATATCGT	ATAATGAGGA	AAATGACATA	AGCAAACTTA	9360
	CTCATGTTTT	TTATTATATT	CCTTTATGAT	GATTGCTAGT	TATATCGTCT	CAAGTTAAAA	9420
10	GTTTTATATC	TTATGTCGTA	ATTATTAATA	CAAAGGTTAT	TCATTTGGAG	GCACACAAAA	9480
,,	TGCAAAATAA	AGTTTTAAGA	ATTATCATTA	TCGTTATGCT	TGTATCAGTT	GTATTAGCAT	9540
	TGTTATTAAC	GAGTATCATT	CCAATTTTAT	AAACTATATC	TCAACTACCT	ATACAAAATC	9600
15	ATACAATTAA	AAATCCATCC	ATTATAAACG	CATGTATTAA	TAAGTTATCG	TATTGCAACG	9660
	ATTACTTTCA	AACATGGGTC	ATACGGATGG	ATTATTTTT	AAGCTACTTC	ACTATGCATT	9720
	TTCAATGAAC	CAAATTGCGA	TITGATTTGT	AAATATTCTT	CTAATTCATT	TAATATTTGA	9780
20	ATAATACTTG	CTCTCGAGTT	AAGCGCTTTG	TGTGTTGTTG	GCAATGGCAG	TTCATCCAAT	9840
	TTCAAACGCG	TCTCATACAA	ATTGTGTAAA	CGCATTGCTG	TATAGTCATT	ACTATTCACA	9900
	TTTAGACCAA	TTTCTTTCAG	CAGTGACGCA	ACATCATTTA	AAAGCGGATC	TTTATGACAG	9960
25	ATACTTTCGA	TGAGCGGTTT	CATTCTCATT	AACAATTCCA	CTTGCTCTTC	TCGCATATCA	10020
	AAATAATGAT	AGTATGAATT	TTCGTTTCTA	ACAAAATGAT	TTTTAACATC	TCGGAACGCG	10080
	ATAGACTTCG	CCTTTTTAAT	ATTTAAAAGT	AACACTTCAA	ATTCAATCGC	AATGGTATCT	10140
30	TCATATTTTT	CACAAATATA	ACTATATTTA	CTAAAAATAT	CAGCAATTTG	TTGCTCAATT	10200
	TTACATTTGT	ATTCGTCtAG	TTGTTTGTCT	AAACTTGGCA	TCATTAAATT	Cattgtaaat	10260
35	GCAATGCTTA	GTCCAATTAA	CAGTAATAAT	GTTTCATTAA	CAATTAAATG	TGCATCAATT	10320
	GATTTTGCAT	TAAAAACATG	AAGTAATATA	ACGCAACTCG	TAATGACACC	TTCTTGTACT	10380
	TTTAATACGA	CAGTTAATGG	TATAAATAAC	AATACGATAA	TACCGAGTAC	AATTGGACTC	10440
40	TGACCTAATA	AACTAAATAT	TGCTGAACCT	AAAAACAATA	CTAAAAAACA	TGATACTAAT	10500
	CTTGAAATAA	TCGCTTGTAG	CGAATGTACT	TTTGTATGTT	TAATACATAA	TACGACTAAT	10560
	ATGGCGCTTG	AAGCATAATT	ATCTAAACCT	AACAGCTTAC	TAATAATTAC	ACCTAAAGTC	10620
45	ATACCCACTG	CTGTTTTAT	TGTTCTAAAT	CCAATCTTGT	AAGGATTTAA	CTTTAACATG	10680
	GGTTAGCGCC	TCTTATCTTT	CTTCACAATA	TTTATTGAAT	AATGTTTGTA	ATTGATTAAT	10740
	TACGTTCATC	ACATCATGAC	CTTCGATTTG	ATGTCTTTCA	ATCATTTCTG	TAATCTTTCC	10800
50	ATCTTTTACT	AATGCAAATG	ACGGACTTGA	AGGCGCATAA	CCTTCGAAGT	ATTCACGCGC	10860
	The state of the s	പ്രസ്ഥാനന്നു സ	CTTCTCCACC	3 3 7 7 7 CTCTC	3.000 A CO 3.00	CACCERAMAC	10000

	AGAATTGATC	ATAACTAGTG	TTGTACCATC	TTGTTTAAGA	ACTTTGTCAA	CATCTTCTGC	11040
5	AGTAGTTAAT	TGCTCATATC	CCGCAGATTC	AATTTCATTC	CTTGCTTGTT	CTACAACACC	11100
5	GTTCATGTAT	AAATCGAAAT	TCATGnCCAT	AAGTTCAATC	ACCTATCCCT	TTATATTTAA	11160
	ACTATCCTCA	TTCTACTAAT	TAATAACATA	TTGTTCAATA	AACTAATCTG	AATCACACCT	11220
10	ATATTTAGAC	ACAATTTTAA	CAATATACCA	AACATTATTG	TGCTTAAAAT	CATGGTAACT	11280
	AATTTGTTCA	CATGTTTTCA	TTAATATGTT	TCAAGTATGA	TGTCTTATTT	TGACTTTACT	11340
	GCAAAAATGC	ATTCAACCAT	GTTGATTATT	GTTCTTTATC	TTTTTTGAAT	ATATTGCACA	11400
15	TATTTTAGTG	ССАААААТА	ATACATCCAT	CGACAAGAAC	AAGATAAAAC	AAGTTGTCGA	11460
	TAGATGCATC	TATGTTATCA	СТААТАТАТА	TTTGTATTTT	CTAAAGTATA	CTGTTCGATA	11520
	CGCTGTTTAA	TATGATTCAT	Aratttacct	GTTTGTAAAC	CATCTAAAAT	ACGATGATCA	11580
20	ATTGAAATAC	ATAAATTAAC	CATGTTACGA	ATTGCAATCA	TATCATTAAT	TACTACTGGC	11640
	TTTTTAACGA	TTGATTCTAC	TTGTAAAATC	GCTGCTTGTG	GATGATTTAT	AATACCCATT	11700
	GATGATACTG	AACCAAATGT	ACCAGTATTA	TTTACCGTAA	ATGTACCGCC	CTGCATATCT	11760
25	TCAGCTGTCA	ATTGCTTATT	ACGCGCTTTC	GTTGCTAAAG	TATTAATTTC	TCTAGCTATA	11820
	CCTTTGATTG	ACTTTTCGTC	TGCATGCTTA	ATCACAGGTA	CGTATAATTT	ATTTTCATCA	11880
30	GCAACAGCAA	TTGAAATATT	AATGTCTTTA	TGTAAGACAA	TTTCATTTCC	TTGCCAGCTA	11940
	CTATTTAATA	AAGGATATGC	TTTTAAAGCA	TCTGCTACAG	CTTTTACAAA	GAAAGCAAAG	12000
	AACGTTAGAT	TATATCCTTC	TTTATTTTTA	AAGCTGTTTT	TATAATGATT	TCTCGTATTC	12060
35	ACAAGATTTG	TAGCATCTAC	TTCAATCATC	ATCCATGCAT	GTGGAATCTC	TGTTACACTA	12120
	TTAACCATAT	TTTGCGCAAT	TGCTTTACGC	ACACCATTTA	CTGGTATTGT	GCTGTTTTCA	12180
	CTATTGTCTT	CAGATGATTG	GTTACTTGAT	GTATCTACTG	ATGTTGATTT	TGTTTGAACT	12240
40	TGTTTGTCAG	ATTGAGCTGT	GGTACCACCA	TTTTCAATAA	CTGACATTAT	ATCCTTCTTA	12300
	GTTACACGAC	CTTCAAATCC	ACTACCTACA	ACTTGTGATA	AATCAATGTC	ATGCTCTGAA	12360
	GCGAGTTTAA	ATACAACAGG	TGAAAAGCGA	CCATTATTAC	GTGGTTGATT	TTGTTTAGCA	12420
45	GTAGATGTCT	GTTCCACTGT	TGCACTAGCT	TTTTTAGTAG	ATTTCTGAGT	ATGCTCATCC	12480
	ACTTTTGCTT	GTATCTCTTC	AGTTGTTTCA	TTTGTCTTTT	CATCAGCAGT	TTCAATTTTA	12540
50	CAGATAATTG	TATCAATAGC	TACTGTCTGC	CCCGCTTCAA	CTAAAATTTC	TGTAATTGTT	12600
	CCTGATATCG	TGGAAGGGAC	TTCAGCTGTC	ACTTTATCTG	TAATAACTTC	ACATAATGGT	12660
	TCATATTCAT	CAATATGATC	ACCAACAGAA	ACTAACCATT	GTTCAATGGT	GCCTTCATGA	12720

	AATTCACGCA	TTTTATTTAA	GATTTTTTCT	GGATTCATCA	TAATTTCATT	TTCTAATACA	12840
-	GGAGAAAATG	GCATAGATGG	TACALCTGGA	GCAGCTAAAC	GCATGATTGG	TGCATCTAAA	12900
5	TCGAACAAGC	AATGCTCTGC	AATAATCGCT	GACACTTCTG	ACATAATACT	ACCTTCTAAA	12960
	TTATCTTCAG	TTACAAGTAA	AACTTTACCT	GTATGTTTAG	CACGATCAAT	AATTGTTTCT	13020
10	TTATCTAATG	GATAAACAGT	TCGTAAATCA	ACGACTTCAA	CATTGATACC	GTCTGCAGCT	13080
	AAAATATCCG	CTGCTTGTAA	ACAATAATTG	ACCATTAATC	CATAACAAAA	TACTGTTAAA	13140
	TCTTCACCTT	CACGTTTCAC	ATCTGCTTTT	CCTAAAGGTA	CAGTGTAATA	TTCTTCTGGC	13200
15	ACTTCTTCCT	TTAAGAAACG	ATAAGCTTTT	TTATGCTCAA	AGTACAATAC	TGGATCATTT	13260
	GATTCGATAG	ATGATAATAA	AAGCCCTTTA	GCATCATACG	GTGTGGAAGG	AATAACAATT	13320
	GTTAAACCTG	GCGATGAAGC	AAATATACTT	TCAATACTTT	GTGAATGATA	TAGTCCTCCG	13380
20	TGAACACCGc	CACCAAATGG	TGCACGAATC	GTTAATGGGC	ATTGCCAATC	ATTATTTGAA	13440
	CGATAACGCA	TTTTCGCAGC	TTCACTAATA	ATTTGATTTG	TCGCAGGTAA	AATAAAATCT	13500
	GCAAATTGAA	TTTCTGCAAT	TGGTCTTTTA	CCTACCATAG	CTGCACCAAT	GGCAGTTCCA	13560
25	ACAATATTTG	ACTCAGCTAA	TGGCGTATCG	ATAACTCTGT	CTTCACCATA	TTTTTGTTGC	13620
	AGTCCTTGAG	TAGTACCAAA	TACGCCACCT	TTTCTACCAA	CATCTTCACC	AAGAATAAAC	13680
30	ACATCTTTAT	TTTGTTGTAA	TGCTAAGTCT	TGTGCCtGcG	TATCGCCTCT	AAATAAGATA	13740
	ATTTAGCCAT	TAGTTAAGAC	TCCCTTCTTC	GTACACAAAT	GCATAGGCTT	CTTCGACACT	13800
	TGGATATGGC	GCGTCTTCAG	CAGCCTTTGT	CGCTTTATTG	ATGATGTCTT	TnATgTCCGC	13860
35	TTCTATTTCT	GCCAACCAAG	CATCATCGAT	AATGCCAGCT	GAAAGCAACT	CTTTTTTGAA	13920
	CTTTTCATTG	CAGTCTGCTT	TTTTAAGCGT	TTCACGCTCT	TCTTTCGTAC	GATATTGGTC	13980
	GTCATCATCT	GATGAATGAG	CTGTCATACG	ACTTGTTACT	GCTTCAATCA	AAGTTGAACC	14040
40	TTGÁCCAGAA	ATAGCTCGAT	CTCTTGCTTC	TTTCATCGCT	TTATACATTG	CTAATGGATC	14100
	ATTACCATCT	ACTTGTTCAC	CATGTATACC	GTAACCAAGT	GCTCTATCCG	ATAATTTTTC	14160
	AGCTGCGTAT	TGTAATGAAT	CAGGTACTGA	AATTGCATAT	TTATTATTTA	TAATGACACA	14220
45	TACAAAAGGA	AGTTTGTGTA	CACCCGCGAA	GTTTAAACCT	TCATGGAAGT	CACCTTGGTT	14280
	TGAGCTACCT	TCACCAACAG	TTGCTGTTGC	AATTTTCTTC	TTACCATCCA	TTTTTAAAGC	14340
50	TAAAGCAGCA	CCAACAGCAT	GGGGTATTTG	AGTTGCTACC	GGTGAACTTT	GAGACAAAAT	14400
50	ATTCTTAGCT	CTACTACTAA	AGTGTGATGG	CATTTGTTTT	CCACCAGAGT	TAACATCGTC	14460
	TTTCTTTCCA	AACGCTGATA	AAAACGTATC	ATACGCTGAG	АТАСССАТАТ	AAGTAACCAA	14520

	AATCTGAGTT	GCTTCTTGTC	CTTGACCACT	TACAACAAAT	GGAATTTTAC	CTGCACGGTT	14640
_	CAATAACCAC	AGTCTTTCAT	CTATTTTTCT	ACCTAAATCC	ATCCATTTAT	ATATTACTTT	14700
5	TAGGTCTTCT	TCGCTAAGGC	CTAATGATTT	ATAATCAATC	ATGTTAAATC	CTCCTATTTA	14760
	TACGTGAATA	GCTCTACTTT	CTGCTTTCAA	TCCTAATTCC	ATCAACACTT	CAGAGATGGA	14820
10	AGGATGTGCG	TGTGTTGTTA	GTCCTAATTC	TAATGCCGAG	CCATTCATGA	ACTGTAACAG	14880
	TGATGCCTCA	TTAATCAATT	CTGTTACATG	TGGACCAATC	ATATTAATAC	CCACAATTTC	14940
	TTCAGTTGAT	TGATCAATCA	CCATTTCGCT	ATACCCTTCG	TTTGTGTCAT	GGCTATCAAT	15000
15	CACTGCTTTA	CCAATTGCTT	TAAATGGTAC	TTTAAAACTT	TTAACTTTCA	TTCCCTCTGC	15060
	CTTTGCTTGT	TCAATGTTTA	AACCGATAGA	AGCAATTTCA	GGTTGTGAAT	AAATACACTT	15120
	AGGCATCATG	TTATAGTTTA	CTGGGATTGG	GTTCCCCTCA	AACATATGAT	CAACAGCCAC	15180
20	AACACCTTCT	TTTGATCCAA	CATGTGCCAA	TTGTAATTTT	CCTATACAAT	CACCAGCTGC	15240
	ATAAATATGT	TTATCTTCAG	TTTGTTGAAA	TTCGTTCGTT	AAAATATGTC	CTGATGTTGa	15300
	AAGETTTATT	TTAGTGTTGT	TTAAACCAAT	ATCTGATGTG	TTAGGTTTTC	TACCAATCGA	15360
25	TAGCAACACT	TTATCTACTT	TAATTATGTC	TGAGGAAATT	TCAAACGTAA	CACCATCTTC	15420
	GTTAACATTT	ATATCATTTT	CAGAAAGTTT	TATTCCCTCA	TAGAATTTAA	CACCACGTGC	15480
30	TGACAATGAT	TTTTTTAATA	GTTGTGAAGC	TTGTTTACTT	TCAGTTGGTA	AAATTCTTTC	15540
00	ACCTGCTTCT	ATAACTGTTA	CGTCAACACC	TAAATCTATC	ATCAATGATG	CAAATTCCAT	15600
	TCCGATAACA	CCACCACCAA	TAATACCAAT	ACTTGATGGT	AACGTCTTTA	ATGATAATAT	15660
35	ATCATCGCTA	GATAAAATTT	TATCATGATC	AAATGATAAG	AATGGCAACT	CTGCAGGCGA	15720
	AGAACCAGTT	GCAATTAATA	CAAATTGGTT	GGGTAATAAG	TCTGATTCAC	CATCTTCATA	15780
	TTCGACAGAA	ATTGTGCCAC	TTTGAGGTGA	AAATATAGAT	GTACCTAGAA	TACGTCCCGT	15840
40	GCCATTATAA	ATGTCAATGT	GATTGTGTTG	CATTAAATGC	TTTACACCTT	GATACATTTG	15900
	ATTAATAATG	TCTTCTTTTC	GTGCCAACAT	ATTTTCAAAA	TTAACATTAG	CATCTTTGAC	15960
	ATCAACGCCA	AACATTGCTG	CCTGTTTTAC	TGTTTGAAAT	ACTTCAGCAG	ATTTAAGCAG	16020
45	CGATTTAGTA	GGAATACAAC	CTTTATGGAG	ACAAGTACCT	CCTAATAGTT	GTCGTTCTAC	16080
	TATTGCCACT	TTTTTACCTA	ATTGAGACGC	ACGTATCGCA	GCAACATATC	CTGCAGTACC	16140
50	TCCACCGAGA	ACGACTAAAT	CATATTGTTT	CTCTGACATG	TTCTTACTCC	TAACTAATGA	16200
50	TATATATCCA	TTGAAAATTT	ATTAATACAT	AGTTTTCATG	TCCATTAATT	ACCTATTTTA	16260
	CATGATTGTC	TATTTAGTTT	GAATGCACAT	AAATAAATCC	ATAAATGAGT	ATTCAACACA	16320

	TAAATCAGTA ACACTTGCAC CTGAAATCAT TCGTGCAATT TCATCTACTT TATCATCGCT	16440
5	AATTAACTCT TGAACTTGTG TTGTTGTACG ATCATCTTTT GATGATTTCG AAATTAATAA	16500
	ATGATGGTCG CTCATCGATG CAACTTGTGG TAAGTGAGAG ATACAAATAA CTTGTATATA	16560
	TTCTGCTaTA TCTCGCATTT TCTCTGCCAT TT	16592
10	(2) INFORMATION FOR SEQ ID NO: 54:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13794 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:	
20	CCAATACAAC GTAAAAAGAT TGCTTGTGTT ATTAATGAGT TAGATAAAAT AATTAAAGGA	60
	TTTAATAAGG AAAGAGACTA CATAAAATAT CAATGGGCTC CAAAATATAG CAAAGAnTTT	120
	TTTATACTTT TTATGAACAT TATGTACTCA AAAGATTTTT TAAAATATCG ATTTAATTTA	180
25	ACATTTCTTG ATTTATCTAT CTTATATGTA ATATCATCTC GAAAAAATGA GATACTAAAT	240
	TTAAAAGATT TGTTTGAAAG TATTAGATTT ATGTATCCTC AAATTGTTAG GTCAGTTAAT	300
30	AGATTAAATA ATAAAGGTAT GCTAATCAAA GAACGATCCC TTGCAGATGA AAGGATTGTG	360
50	TTAATCAAAA TAAATAAAAT ACAATATAAC ACTATTAAAA GCATATTCAC AGATACTTCC	420
	AAGATTCTCA AACCAAGAAA ATTTTTCTTT TAAATTTAAA CAGATTTACC TCTTGATAAA	480
35	ATAAATAAGC AATCATACTA CTTCTCAATT TAGTATAAAT AAAAATACAT AATTAACTTT	540
	CTTTTGTTTT TATATTATTT CAATACCCTA CTATATATCA CAACACATAA ATTAAGCATG	600
	ACAGTCATTC AATTTAGTTC ACCATTTCGT GTTCCAATTT TACTGAGTAT CATGCTTTTA	660
40	ATGTTATAAA CCTAATGCTT TAATAAATCG TGTTAATTCT TCTCGCATAC TGTCATCTTT	720
	CAATGCATAT TCTATGGTAG TTTTAACGAA GCCTAATTTT TCTCCAACGT CATAACGTTC	780
	GCCTTCGAAG TCATATGCAT ACACTTGGTT ATCATTATTC ATACGTTCAA TCGCATCTGT	840
45	TAACTGAATT TCGTTACCTG CGCCTTCTTT TTGCGTTTTT AAATAATCGA AAATTTCAGG	900
	CGTTAATACA TAACGTCCCA TAATAGCTAG GTTTGATGGT GCCGTACCTT GTGCTGGCTT	960
	TTCAACAAAC TTTTTCACTT CATACTGACG TCCGTTTTTA GTTAATGGGT CAATAATTCC	1020
50	ATAACGATGA GTATCTGCTT CCGGAACTTC TTGGACACCT ATAACTGAGT GCCCTGTTTC	1080
	TTCATAAACG TCAATCAACT GTTTCACTGC TGGCACTTCA GATTCAACAA TATCGTCACC	1140

	TAAACCTTTT	TGTTCTTTCT	GCCTTACATA	AAAAATATTC	GCAAGTTCCG	TTGAATACTG	1260
	AACTTTCTCT	AGTAATTCAG	ATTTACCTTT	TTCTTTTAAC	ACCATTTCTA	ATTCTTTTTG	1320
5	ACTATCAAAA	TGATCTTCAA	TCGCGCGTTT	GTGGCGACCT	GTCACTATAA	TAATATCTTC	1380
	AATTCCAGCT	CTTGCAGCTT	CTTCAACGAT	ATATTGTATT	GTGGGTTTAT	CTAAGATAGG	1440
	AAGCATTTCC	TTTGGCATCG	CTTTAGTTGC	TGGTAAAAAT	CTAGTCCCTA	AACCAGCAGC	1500
10	GGGAATGATT	GCCTTTTTTA	TTTTTTTCAA	AGTTAATGTG	CTCCTTTTCC	TAAGTATTAA	1560
	ATCTATGTAT	CAACGTCATT	TTAACACTAA	TTAGAACGCC	TTCATAGTGT	CATTGAGTAT	1620
15	GTAATTATTT	CTTGGGAAAT	TTGTTTTAAT	TTTAAAAAAC	AGGCTTACTT	CATATAATTT	1680
	ATGAAATAAA	CCTGTCAATT	TTGGATTGAT	TATGCTTTGT	GATTCTTTTT	ATTTCTGCGT	1740
	AATAACGCTA	AACCTAAAAT	GCTAAATAAT	CCGCCGAACA	ACATGCCGTT	GTTTGTTGAT	1800
20	TCTTCTCCAC	CTGTTTCAGG	TAGTTCAGAT	TTCTTAGATT	GTGCTTTTTT	AGTTGGTACC	1860
	ACTGCTTTAA	CCTTTTCATT	GATTTCAATA	ACAGGTGTTA	CTACTTTACC	TTGTTCCACT	1920
	GGTTTAGAAG	GTTTTTTAGG	TTCTTCTTTA	GCAGGTGGTA	TTGGTTTACC	AGGTTCAGTT	1980
25	GGTACCTCTG	GCGTTGGCGG	TGTTGGTGTT	TCCGGCTCGC	TTGGTACTTC	TGGTGTCGGT	2040
	GGTGTTGGTG	TTTCCGGCTC	GCTTGGTACT	TCTGGTGTCG	GTGGCGTTGG	TGGCACGATT	2100
	GGAGGTGTTG	TATCTTCTTC	AATCGTTTGT	TGACCTTCAT	TATGACCACT	TACTTGTGGA	2160
30	AGTGTATCTT	CTTCAAAGTC	AACACTATTG	TGTCCACCGA	ATTGATAATT	TGGTTTATCT	2220
	TTATTTGTAT	CTTCTTCAAT	AATTTCAGTG	TGCTTATTGA	ATCCGTGAAT	ATGTGGCACA	2280
35	CTGTCGAAGT	CGATATCAAT	GATATTACCA	CCTTGTTCAT	ACTTAGGTTT	GTCTTTCTCT	2340
	GTATCTTCTT	CGAATGATTG	GTTACCATTA	TTTTGACCAT	GAATTTGAGG	TACACTATCG	2400
	AAATCGATAT	CTACGATATT	GCCACCTTGT	TCATATTTCG	GTTTATCTTC	TTCTGTGTCT	2460
40	TCCTCAAATG	ACTGATTACC	GCTATTTTGG	CCACCTTCGT	AACCTAATTC	ACTCTTAATA	2520
	TCCACGTGGC	TATTTTCTTC	GATTTCTTCA	ATCACGCCAT	AATTACCGTG	ACCATTTTCA	2580
	GTTCCTAAAC	CAGAATGAGA	AATATGATGA	TTGTTTTCAG	TAATTTCCTC	GATTGGTCCT	2640
45	TGCGCTTGAC	CATGTTCTTC	AGGTAGTTCA	TCTACTAGTT	CAATCAGATT	ACTTTCAGTC	2700
	GTATATTCTT	TCGTATCTTC	AATTGTTGTA	TGATCGCTAA	CAGCACCAGT	TACAATACCT	2760
	TTTGTAGAAT	CTTCGTCAAA	TTCAACTAGG	TTAGACTCAG	TAGTAACCTG	ACCACCACCT	2820
50	GGGTTTGTAT	CTTCTTCATA	TTCAACAACA	TCAGCATGAT	GTTTTGAATT	TTCATGTGTC	2880
	САТТСТТС В В	ልርጥርጥልሮልጥር	ልልጥል ሮልልጥርጥ	ФИТОВОТНО	СМАТИЗСТАСС	TTCTCCATCA	2940

	TCTTCGATTG	TACCAGTCAA	TTCATGCTTC	TCCACTGGCG	GCTCTGATTT	AAATTCAAGT	3060
5	TCGATAGGAG	TACTATGTTC	TATAATAGGT	TCCTTTAGTT	TATCTTTGCC	GTCGCCTTGA	3120
3	GCGTTATTAG	AGTAAAATGC	AACGCCATTT	TTCCaAGTTA	AATTACTTGT	ATAATAATAG	3180
	TTATAATATC	CAAAAAGGTG	TGTTTGAAAT	TCTAAGTTGC	TAGCATTTGA	ATCATAATAC	3240
10	CCTTCATATT	TTATTACATA	ATTTTTACTT	TGGTCTAAAT	TATTAAAGTT	TAAAGAATAA	3300
	CCACCATTAG	TATCAAAATC	TAAACTCATA	TTATCAGTCA	CATCTTCAAA	TTTGCTGACA	3360
	TCATCAAGCT	TTGCATAnTn	AgctTTCAGC	TAAATCGTCT	GAACCAATGT	GTTTATATAC	3420
15	CTTAACTGTT	GGATTATTAA	CCCCTGGTTT	ATTTCCTTTA	GTTACTTGAC	CAGTTACTGT	3480
	CACAGAGCTT	AACGACTGGT	TGTTAGGTTT	CATGTACGCA	AAATGACTAA	ATTTCCCATC	3540
	TACTTTATTT	AAAGTATCAA	TTCGACCATT	AGCTGTTACT	CCCCAATTAT	CTCTAACTCC	3600
20	ACCTAAATAT	TGAATATTAA	ATATTTTGCT	AACCGTAGTC	TCACCCAATT	TAACTTCAAC	3660
	ATTTTGGTTA	CCTTTTTGCG	TCACTGTTGT	AGGATCAATA	AATAGATTTA	AAGATAATTC	3720
	AGCAGTTAAA	TCTTTCTTTT	CTTGTACATA	TTCTTTAAAC	GTATATCTAA	CTTTTCTTTC	3780
25	TCCAATTATT	TCTCCTGTCG	CCATAACTTG	ACCATCTGTA	CTTTTTATCT	CCGGAACTTT	3840
	ACGCAGTGTT	GAGATACCAT	GAGTTTCAAC	ATTATCGCTT	AATGTGAAAT	CAAAATAATC	3900
30	TCCCGCCTTA	ATTCCTTCTC	CAAATTTCCA	TTTATATTTC	AAGGTTACTC	TTTCTGCGTT	3960
	ATGAGGATTT	ACAACATTCG	TATCTTGTTT	ATGTCCTACA	ATTTCACTAC	CTTCTTCTAC	4020
	TTCCACTTTA	TTTGTTACAT	CTGTACCTGT	CGCTTTAGTT	TCTTCCACTA	CTTCTTTCTC	4080
35	TGCAACTGCT	GTAACGTCAt	TGatCTTTTC	ATTCTTGGTT	TAATTTCTGA	GACGTTACTT	4140
	GGTTGAGCTA	TGTCAACTTG	AGTTCCTGTA	GTTTCCTTAT	CAGCAACTTT	TTCCGATGGC	4200
	AAAŢCAACTC	GCGAAgTTTC	TACTTTTGGT	GCTTGCAcAG	TTTTCGGTGC	TTCTTCTGTT	4260
40	GTTACTTGTG	TTGATTGTGA	TGGTTGCTCA	GTTGATGTCG	CGCTGTATGA	TTGTGTTTCA	4320
	TCTATTGTAT	TAACGTTATT	TGTAGTTGTT	TGTGTTTCGC	TTGCTTTACT	TTCAGTAGCT	4380
	GAACTCCCAC	TTTCCTCTAC	TGTAGTATTG	TTTTGTTCCG	ATGCTGCAGC	TTCTTTTTCT	4440
45	TGTCCCATTC	CAACAACGAT	CATTGTTCCT	AAGAATACTG	AGGCCGCTCC	CAATTTGTGT	4500
	TTTCTTATGC	CGTATCTAAG	ATTGCTTTTC	ACTATAATAT	TCTCCCTTAA	ATGCAAAATT	4560
50	CATTTATTTT	TAAAACTCAA	TAAATGCAAT	TCTATATTGT	TCGGTTTTTA	AAAGCAATGA	4620
	AAAAAAGCGA	GTTAATAAAA	AGTTAAGATT	GTTGTTAACT	TTATGTATAA	TGAGTTTTTT	4680
	እ መተገለ መመመር ' እ እ	አርጥር አር አጥአጥ	ልጥል ተተርርልምል	СУУРСТСТТ	GAACACCTTY	ATATAACAGG	4740

	TACTAAACCA	TACATAATAA	TCGCCTGTAC	AATGCATCAT	TAACAAGTCA	CTGAAACGCC	4860
	TTTCATTGTA	TTAATAACGT	CACTATAATT	TTTATATCGT	TCGGTTTTTG	TTTGATTTTA	4920
5	ATGATTATTT	ATACAAAAAC	AGCCGTATTT	CAAGCCGACA	TTTTAAATTT	AACTAAATTT	4980
	GCATCTAGTT	AATAATTGCA	TTTATCAAAT	TTGTCTTATT	GATCCAATCT	AATTTGTACT	5040
10	CACAAACTAG	TTTAAAATTC	TAACTTTATC	TCTCAGTTCG	TTATCAATCA	TCAGACATAA	5100
70	ACCAATGAAG	CAATCAGAAA	ACACTCTAAT	TTTCTATTAG	AAATTTGATT	TAATATAAAA	5160
	AAACAGGCTT	ACTTCATATA	ATTTATGAAA	TAAACCCGTC	AATTTTTGTT	TAATTATGCT	5220
15	TTGTGATTCT	TTTTATTTCT	GCGTAATAAT	GCTAAACCTA	GAATGCTGAA	TAATCCGCCG	5280
	AACAACATAC	CTTTGTTTGT	TGATTCTTCT	CCACCTGTTT	CAGGTAGTTC	AGATTTCTTA	5340
	GATTGTGGTT	TTTTAGTTGG	TGCCACTGCT	TTAACCTTTT	CATTGATTTC	AATAACAGGT	5400
20	GTTACTACTT	TACCTTGTTC	CACTGGTTTA	GAAGGCTTTT	TAGGTTCTTC	TTTGGCAGGT	5460
	GGTACTGGTT	TACCAGGTTC	AGCTGGTACC	TCTGGTGTTG	GCGGTGTTGG	AGTTTCTGGC	5520
	TCACTCGGCA	CTTCTGGTGT	CGGTGGTGTT	GGTGTTTCCG	GCTCACTTGG	TACTTCTGGT	5580
25	GTTGGTGGCG	TTGGTGTTTC	CGGCTCACTT	GGTACTTCTG	GTGTCGGTGG	CGTTGGTGGC	5640
	ACGATTGGAG	GTGTTGTATC	TTCTTCAATC	GTTTGTTGAC	CTTCATTTTG	GCCGCTTACT	5700
22	TTTGGAAGTG	TATCTTCTTC	AAAGTCAACA	CTATTGTGTC	CACCGAATTG	ATAACTTGGT	5760
30	TTATCTTTAT	TTGTATCTTC	TTCAATAATT	TCAGTGTGCT	TATTGAATCC	GTGAATATGT	5820
	GGCACACTGT	CGAAGTCGAT	ATCAATGATG	TTACCGCCAT	GTTCATACTT	AGGTTTGTCT	5880
35	TTTTCTGTAT	CTTCCTCGAA	TGACTGATTA	CCTTTATTTT	GACCATGAAT	TTGAGGTACA	5940
	CTATCAAAAT	CGaTATCTAC	GATATTGCCA	CCTTGTTCAT	ATTTAGGTTT	GTCTTCTTCT	6000
	GTGTCTTCCT	CGAATGACTG	GTTACCGCTA	TTTTGGCCAC	CTTCATAACC	TAATTCACTC	6060
40	TTAATATCAA	CGTGGCTATT	TTCTTCGATT	TCTTCAATCA	CGTCATAATT	CCCGTGACCA	6120
	TTTTCAGTTC	CTAAACCAGA	ATGAGAAATA	TGATGATTGT	TTTTAGTAAT	TTCCTCGACT	6180
	GGTCCTTGTG	CTTGACCATG	CTCTTCAGGT	AATTCATCCA	CTAATTCAAT	CAGATTACTT	6240
45	tCAGTTGTAT	ATTCTTTCGT	ATCTTCAACT	GTTGTATGAT	CGCTCACtGC	GCCAGTTACA	6300
	ATACCTTTTG	TAGACTCTTC	GTCAAATTCA	ACTAAGTTAG	ACTCAGTAGT	AACCTGACCA	6360
	CCACCTGGGT	TTGTATCTTC	TTCATATTCA	ACAACATCAG	CGTGATGTTT	TGAATTTTCA	6420
50	TGTGTAGATT	CTTCAAAGTC	AATTGGATTT	GATTCCTCAG	AGGACTCAGT	GTATCCTCCA	6480
	ACGTGACCTG	CTTCGCTATC	CACAGCAGTA	TGGTAATCGA	ТАТСААТАСС	TCATCAATCC	6540

	TGGTAATCAA	TGTCAAGAGT	TGATGAATCA	TATTCCTCTT	CAACAGTAGT	TACTAAATTC	6660
	TTATCATATT	GACCTGTAAG	AGTTTCTTTA	ATTGTATCTT	CTTTATATTC	AAATTTATTA	6720
5	TTTTGAATAA	TCGGACCATT	TTTCTCATTT	CCGTTCGCTT	TATTACTGTA	TAAAACTAAA	6780
	CCATTATCCC	AAGTTAAGGT	ATATCCTCTA	TCATAATAAT	ACTTATAAAG	TTGCTCTGGA	6840
10	TGTCCTACCA	TTTGTGTTCT	AAAATCAACT	TCATCAGTAC	CATTTAAATA	CTCTCCATCA	6900
	TAGTGAACAA	CATAAGTTTT	ATCTAGATTT	TCTATATTCA	ATGAATAGCT	TCCATTATTT	6960
	TGTAAATTCA	AATTCCCACT	CATATTACTT	GTGACTTCTT	TAAATTTAGA	AGTATCTGTC	7020
15	GTATTTGCAT	ATACACTCTT	CGCTATGTCT	TCATTATTAC	CCAAGTATTC	AAATATCCTA	7080
	ACTTTTGGTT	GATTTCCATT	CTGATTACTA	CCTTTCATTA	AAGTTCCAGT	AACAGTCACA	7140
	CTTGTCGTTT	TACCATTATT	AGGTTTAATA	AATGCAACAT	GCGAAAATCT	ATTATTCGCT	7200
20	TTATTAAATG	TCTCAATCGA	TCCATTTAAA	TTGGCATAAT	AATTCCCAAT	ACCATCTTTA	7260
	TATTTAACAT	CTAATTCCTT	TGAAGTTTGT	TCTTCATTTA	GTGTTGAAGT	TATAGTTTGA	7320
	TTTCCATTAG	TTTGTACAGT	TTTAGGATCA	ATAAATAAAT	TAATTTCTAG	TTCAGCCGTT	7380
25	ACATCAACCT	TATCTTCAAT	ATCATTTGTA	AATGTATATC	TAATCTTTCC	ACCTTCTAAA	7440
	ACTTCACCTG	TCGCCATTAC	GACTGAACCA	TTTTTAATTT	CTGGTACTTT	TCTAGCAGTT	7500
30	GATACGCCAT	GCGTATTTAC	ATTATTTGAT	AAAGTAAAGT	CAAAGTAGTC	ACCTTGATGT	7560
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	AAACCATTCT	CAAATTTCAA	CTTATATTTT	AGTACCGCTC	GTTGTCCTGC	ATGAGGTTCT	7620
	ACTTTATTTG	TATTGTTATG	CCCCTCAATA	GAACCAATTT	CTACTGTAAC	TTTACTTGTT	7680
35	ACATCTGTAC	CCGTTTCCAC	TTTCGCGTTA	CTAGCTTCCT	TAGCTTCCGC	TACATCTGCT	7740
	GATCTTGTCA	CACGTGGCTT	ACTTTCTGAT	GCCGTTCTTG	GCTGTGCCAC	TTCAACTTGT	7800
	GTTTCTGCGA	CTTGATTTTG	TGTAGCCTTT	TTAGGTGTTA	AATCTACTTG	TCTTTGATCT	7860
40	CCGCTATTGT	CTTGAGATTG	TGTTGTTTCC	TTAACTTGAG	GTTTCGCTTC	TTCCTTAACT	7920
	ACCTCTTCTT	TAACTGTTTC	TATATTTGCT	GGTTGTGCAG	TTTGTGGTGC	TTGTACTGCT	7980
	TTTGGTGCTT	CTTCAGTTGT	TACTTGTGTT	GCGTTTGACG	GTTGTTCTGT	TACTGTTGCG	8040
45	TTATATGATT	GAGTTTCTTC	TATATGATTA	ACGTTAGTTG	CAGTTGTTTG	TGTTTCACTT	8100
	GTTTTATTAT	CAGTAGCTGA	ATTCCCATTT	TCTTCTACTG	TAGTTGTCTT	TTGTTCTGAT	8160
	GCTGCAGCTT	CTTTGTCTTG	TCCCATCCCA	ACAACGATCA	TTGTTCCTAA	GAATACTGAT	8220
50	GCTGCTCCCA	ATTTATGTTT	TCTAATGCCG	TACCTAAGAT	TGTTTTTCAC	TATAATATCT	8280
	CCCTTTAAAT	GCAAAATTCA	TTAATTTTTTT	AAACTTAATA	AATGCAAGTC	ТАТАТТСТТС	8340

	ATGTTAATTG	ATAATTTTAT	TATTTGAAAT	ATACCTATAA	ATTGTATTCA	AGTCATCAGA	8460
	AACCCTTGTC	ACACAAGGCT	TGTATTTTT	ATACTTATTT	TTTAAATTAA	ATTCATCATT	8520
5	ATCTAATTTA	AAACAATATA	CTAAACGTTT	CATAATTATC	GCCTGTACAA	TACGCACAAA	8580
	AACATGTCTT	GAAACGCCTT	TCATTACTCT	AAAATACCCA	ATATACTTTT	TATATCGTTC	8640
10	GGATTCTGAG	TATTTCAGAC	GATTTTCTGC	АТАААААТАА	ACGTGTTTCA	AGGCAATATA	8700
10	TTGCAATTAC	CTAAAAACAC	GTTTACTTAA	TATTTAGTTA	AACAAATAAG	CTAATGAATA	8760
	AAATGAAGAT	GATACCTGAA	ACGGAAATAA	TCGTTTCTAA	TAATGACCAT	GTTAAGAATG	8820
15	TTTCTTTTAC	AGTTAAACCA	AAATATTCTT	TAAACATCCA	AAATCCTGCG	TCATTTACAT	8880
	GAGACAAAAT	CACACTACCT	GCACCTATCG	CAAGTACAAC	TAATGCAACA	TTTACATCTG	8940
	ATGATTGTAA	TAATGGTAAG	ACAATACCTG	TAGTTGAAAT	CGCAGCTACT	GTAGCCGAAC	9000
20	CTAATGCGAT	ACGTAGCACA	GCTGCAACAA	TCCATGCTAG	TAAAATCGGA	GACATCTCTG	9060
	TACCTTCAAA	CATTTTAGCA	ATTGTATTTC	CGACACCGCC	GTCAATTAAT	ACTTGTTTAA	9120
	ATGTACCGCC	ACCGCCAATA	ATCAATAACA	TCATTCCGAT	TGGATAAATC	GCATTCGTCA	9180
25	CTGATTCCAT	AATATGATTC	ATCTTACGCT	TTCTCATTAA	TCCCATCGTA	ACGATTGCAA	9240
	ATAATACTGC	TATTAGCATG	GCTGTCCCTG	CTGTTCCTAT	CATATAAATG	ATAGATTCAA	9300
	ATAGATTTGT	AGGTTTGTCA	TGCCCAGTTA	CAAGTTGCGT	TATCGTAGAC	ACTAACATTA	9360
30	ATATGACTGG	TAATGTTGCT	GTTAATAAAC	TCATACCAAA	TCCTGGCATC	TCTTGATCCG	9420
	TAAATTCTTT	TTGTGCACCT	AACGCTGAAA	TATCGCCTTC	TCGTGTATAC	GCAGACGGAA	9480
35	TCATTTTTTG	TGCAcTTTGT	TAAATATAGG	CCCTGCAATG	AGTGTAACTG	GaATGGCAAT	9540
	AATCATACCA	TACAGTAATA	CATCTCCAAC	ATTTGCCTTT	AATTCTTTTG	CGATGACTAC	9600
	CGGTCCTGGA	TGTGGTGGTA	AAAAGCCATG	TGTCACTGAT	AAAGCTGTTA	CCATAGGTAG	9660
40	TCCTAGTTTT	AACACTGAAA	CATTTGCGCG	TTTTGCTACT	GTAAATACTA	ATGGAATCAG	9720
	TAAGACTAAA	CCTACTTCAA	AGAACAATGC	AATACCGACG	ATAAATGCTG	CAACAAGCAT	9780
	TGCCCATTGT	ACATGTTTTT	GACCAAATTT	TTGAATCAAC	GTGTCTGCGA	TTCGAGTTGC	9840
45	ACCACCACCA	TCAGCAAGCA	ATTTCCCAAG	TATGGCACCT	AAACCGAATA	TCAGTGCAAT	9900
	GTGGCCGAGC	GTACTGCCCA	TTCCTTTCTC	AATCGTCTCC	ATAATTTTAG	TCAATGGTAT	9960
	ACCTAGCATT	AACGCTGTAA	TCATCGATGT	GATAATTAAT	GAAATAAATG	TATTTAATTT	10020
50	AAACCCAATA	АТТААТАСТА	ATAAAATAAC	GATACCTAAA	ACAACACTGA	TTAACGGCCA	10080
	ጥልጥጥጥርሚጥጥል	A A C A T C A C A T	тесестетт	СТСТТТСАА	тасаатстаа	CACCCTCCTC	10140

	GAGTGACGTA	TTTATTGTGT	TTTATTTTCA	GCGATATGTT	GGCGTTGAAA	ATCTGCAATT	10260
	TGTTCATAAT	TCTCTGTTAA	AGAACGACTT	AAATTGATAA	AAATGGATAC	GATCTCTTGG	10320
5	TAAACAGTGA	CATTTTCTTC	AATCGGCGTA	TGATTGTTTG	TGGCACCGAC	CATCGATGAA	10380
	ACGATTGAAA	AATCTTCAAT	GTCACCTACA	GCTTTAAGTC	CGAGCACGCA	GGCACCTAAG	10440
10	CATGAACTTT	CATAACTTTC	AGGAACCACT	AACTCTGTGT	CAAATATATC	TGACATCATT	10500
	TGACGCCATA	CTTCACTTTT	CGCAAAACCA	CCTGTTGCTT	TTATCATCTT	AGGTGTTTCA	10560
	TTCATTACTT	CAATAAGCGC	AAGATAGACG	GTATACAAAT	TGTAAAGAAC	ACCTTCTAAT	10620
15	GCAGCGCGAA	TCATATGTTC	TTTTTTATGA	GATAAAGTTA	AACCGAAGAA	TGAACCTCTT	10680
	GCATTTGCGT	TCCAAAGCGG	CGCACGTTCT	CCTGCTAAAT	AGGGATGGAA	TATTAAACCA	10740
	TCTGCACCTG	GTTTAACACG	CTTTGCAATT	TGAGTTAAGA	CATCATAAGG	ATCAACACCG	10800
20	AGACGTTTCG	CAGTTTCGAC	TTCACTCGCT	AGCAACTCGT	CGCGCAACCA	TCTCAATACG	10860
	ACACCACCAT	TATTTACAGG	ACCTCCGATG	ACGTAGTGGT	CCTCTGTTAA	GACATAACAA	10920
	AATATTCTAC	CTTTGTAATC	AGTACGCGGT	TTATCTATCA	CAGTACGAAT	CGCCCCAGAT	10980
25	GTACCGATTG	TGACAGCAAC	TTCTCCTTTA	CCAACACTAT	TGACACCTAA	ATTAGAAAGG	11040
	ACCCCATCAC	TCGCACCAAT	AACAAACGGT	GTATCTTTAT	TAAGCCCCAT	TAATGTTGCA	11100
30	TAACGTTCTT	TCATACCTTT	CALCACATAC	GTTGTTGGAA	CTAATTCCGG	CAACATTTCC	11160
	TTGGAAATAC	CCAGCAGTTC	TAATGCCTCA	ACATCCCAAT	CTAATGTTTC	TAAATTAAAC	11220
	ATCCCTGTTG	CGGAAGCCAT	TGAATAATCA	ATGATATATG	TATCAAATAA	ATGATAGAAA	11280
35	ATGTATGTTT	TAATATCTGC	AAACTTAGCA	GTACGTTGAA	ATACATCTTG	CCATTCATGT	11340
	TTCATCCAAA	AAATCTTCGC	TAATGGCGAC	ATAGGATGAA	TCGGTGTGCC	TGTTCGCTGG	11400
	TAAÃTCGCAT	TGCCATCATG	CACTTCATTT	ATTACTGTTG	CATATTTTGC	AGCGCGGTTA	11460
40	TCTGCCCAAG	TAATATTATT	TGTTAATCTT	TGATGTTGCT	GATCCATCGC	AATCAAGCTA	11520
	TGCATTTGCG	CACTAAATGA	CACAAACTTA	ATGTCGTCTT	TATTAACTTT	GGATTCTCTC	11580
	ATAACATATT	TAATAGTCAT	TAGTACTGCA	TCAAATAATT	CATCTGGGTT	TTCTTCTGAG	11640
45	ACATCAACGT	TTGGTGTGTG	TAAATCATAG	CCTATTTGAT	GTTTCATGAT	AAAAGTTCCA	11700
	TTTTCATCAT	ATAAGACTGA	CTTGGTACTC	GTCGTTCCAA	TGTCGACACC	AATCATATAT	11760
50	TTCATGATAA	ATCCTTCTTT	CTTTCATTTT	AATTCAACCA	AAATCCTTCA	ATATCTTTAC	11820
	CAACATCGTC	GAAATTTAAA	TGAAACGCTT	CTTTCAAAAT	TTGACTGTCG	TATTGTTCCA	11880
	CTGCATCAAT	AAACACTTGA	TGATTATGAT	GTATGCGTTC	AAAATCTTGC	GGGTTCTGTT	11940

	AAAATGAGTT	TAAATATTGA	TGATTAGATG	CTTTGATTAA	TGTTTCATGA	AATTCAAAGT	12060
	CATGCTTCGT	AAATGATTCT	GCATCCTCAA	ATTTTACTGC	CACTTTCATC	ATTTCAAGTT	12120
<i>5</i> .	GTTTCTTCAT	TTCTTTTACG	ATAGGTAGTC	GCTCTTGATT	TTTAACTCTT	GAAAATGCAA	12180
	ATGACTCTAA	CATCAGTCGC	AAATCATACA	TTTCTTTCTT	TTCTTGTTCC	CCAAACGGCA	12240
10	ACACATGTGC	ACCCATTCTT	TCTAATTGGA	TGAGTTGATT	TTGTTGCAAT	AATTTAAATG	12300
70	CATCTCGAAT	TGGCGAACGA	CTCACATTAA	ATTGCTTTGC	CATTTGATTT	TCAGTGAGTA	12360
	ACGTACCTTC	AGCTATGTGA	CCATTCACAA	TGCCTAAGCG	TAATTCTGCC	GCGATACCTT	12420
15	CTCCAGTTGT	CATACCTICC	AACCATTTCT	CTGGATATCC	ATACATCATC	AAAGTCACTC	12480
	CTTCATTACA	CGACATACTT	GTATACAAGT	ATGTTAATAT	AGTTATTATG	AGTTTGCAAG	12540
	CGCTTTCTTT	ACGAGCACTA	AAATAGTGAC	CACCCCTTTT	CGATTTAAAT	TTAAAGGAAA	12600
20	TGGTCACTAT	CACACGAATG	ATTTAATTGT	TATGTTGTAT	GTGGGATATT	TCTAATTGTT	12660
	CTGTACTCAT	ATGCGCTTTA	GGTACTTCAA	TGCAATAATG	CGTTTCATGA	CAGTTTGGAC	12720
	ATTCGAATCG	ACGTGTTGTC	GCTGTATGTT	TCGCTTTGAT	AACTGCCCAC	AAAGATGGTG	12780
25	AGAATATATG	CTGGCAGTTA	GGACATAAAT	AGGCAACCTT	TTGTTGGTAA	TAAAAAGTAA	12840
	CACCAATGCC	ATAACCAATC	ATAAATGGTA	AAGCAATTAA	AAACGGCCAT	TTATTTTTCA	12900
	TCAAAATTGC	ACTTATAATG	CTAGAATATT	GAATTATTCC	TATAATACCA	GCACTAATCC	12960
30	AAATGTTACG	ACGAATACTT	TTCATTTCAG	CTGATTTACT	CATGACATGC	TCTATGTCTT	13020
	TTAAGTGTGT	GATTGGAGAC	GTCGACGCTT	CATTTACGTA	ATATTGAACA	TTTTTAATTT	13080
35	TGTTTAATAC	CGCTTGTTGC	TGTTTAACTT	GTTGGTTAAT	TTCTTGTTGT	TTCATAGTTA	13140
	GTAAAGTATT	GAGCGTCTTC	AAAGTACCTT	CACCTTTTAG	CAACATATCT	ATATCGCTTA	13200
	ACGCACAACC	TAAATCTTTA	AGCAATAAGA	TTAACTCTAA	TGTTTGTCGC	TGTTGTTCTG	13260
40	TATACACACG	ACGCTTTCCT	TCTGTAAATC	CTTGTGGTTT	CAAAATACCT	TTGCGATCAT	13320
	AATATTGAAT	CGTTCGTGTT	GTCACATTGC	ATAATTTTGC	GAGTTCTCCA	GTCGAATAGT	13380
	TAGACATAGA	TTCCACCTCC	TATAATTACC	ATAGTTGATG	ACCCGACGTC	ACGAGCAAGT	13440
45	ACAATTTCCA	CATTTTAAAG	AAATTTATTA	TACTAGGCGT	CTTATTTTTA	TGATTTCGTA	13500
	CCATGTTGAT	TTACAAACTC	ACTCAAACTA	AGTAACACAC	CTACTAAACA	TCTACTCTGT	13560
	TATTTCAGAA	TGAATTTGTT	GTAATTTATC	TTCAACTTCA	GTAATCTCTG	TCGCACATTC	13620
50	TTTCAGTAAA	TCTCGATACT	TTTCCGTCTC	TGCATTGTTT	TTATAACGTA	TTTTATGTTC	13680
	TA A A CTTC AC	CACATATCCA	тасстатест	тсть вттсь	АТТТСААСА С	GCAATACCTC	13740

(2) INFORMATION FOR SEQ ID NO: 55:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1059 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

10

15

20

25

30

35

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:

GGATAAGTTC	AGGTAAATTC	ATTTCTTTTT	CAATTTTGAT	TTTCATTGTT	TCCGCCCTTT	60
TAAAATAAAG	TTAGTTGCTT	CTGTTCCTCA	TATTCCAAAT	CACTTTGCTT	TATATATGTT	120
TCAAGCTCTT	CCGCTGTATC	AAATGTCTTT	TTCACACCTT	GCCAACCTGG	CACGATATGA	180
CCGTGAAAGT	AATAAGTGCC	ATTTACTACA	TGGATATGTG	CCACTCGTTC	GTTATCCTGA	240
TACAGATATC	TCTTAGATCC	aaagaattga	TTTAGGTATT	CTTTACGCGC	GCTATCTGTC	300
ATGGTCATCA	CTCCTTTTAA	CAATTAGGCA	GACCAAACGA	CATGCATTCG	TCGTATAGCT	360
CTTCATTACT	TATGCTTGCC	TTATAGTTTT	CAATCACATT	GCTAACTTCT	TTATGACTCA	420
TTGCTTTAAC	TTGTTCGTCT	GTATATTTTT	CGCAGTCTTC	TAATTCCAGT	TGCTCCTGTA	480
ATGACATCAC	ATATTCAACT	TGTCTTTGGG	TTGCCATCGT	TAACCCTCCC	ACAAGTCAAA	540
AGCTCTTTGG	ACGTAAAACT	TCGCCTTTGC	TAAATCCTCA	TGACCATTCT	TTAACGGTGC	600
TCTAGACATG	TATTTGATTG	CATTACCTAT	TGCGAATGCT	AGTTGAGGTG	GATACTGTGC	660
CGTAACCTGT	TCGATAAAAT	CTATAATTTC	AATGTCGCCG	TATGTGTAGT	GCGCTGGTTG	720
CTTAACATTG	TCTTGCGCTT	CGTTCATATC	TACTTTTCTG	TTACTGATTA	CGCTCATTAT	780
GCTTCACTCC	ATTTCTTGAA	CATTTGGTTA	TAAGTGACAT	CGAACCAGTA	CGGATCACGT	840
GAATGTTTTT	GTGGCGTTCC	ATCATAAAGC	CATGGTCTTA	ATCTTCTCTT	TCTTTCCTGT	900
TCATATTCCG	CTCTCACATT	TCGTTGGTAT	CGGTTCAAAA	TCGCTTTTTT	TCTGATTTTT	960
TCTCTCCCTT	TTTCTTCATC	TTTnATtTGA	CTCTnCATAT	ATTCAACTTC	TTCTGTAGAT	1020
nTTGAGTCCT	TTCTTCCACA	CAATAATTCA	nCGCCGCGC			1059

(2) INFORMATION FOR SEQ ID NO: 56: 45

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 30246 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

55

	GAAGTAAAAG	AAGAATTAAA	TTTAACATTA	ACAATGGATG	AAATTGAATA	TGTCGGGACA	60
	ATTGTAGGTC	CTGCATATCC	ACAACAGGAT	ATGTTAACTG	AGTTAAATGG	ATTTCGCGCA	120
5	TTAACCAAAA	TCGATTGGGA	AAACGTAACT	ATCAATAATG	AAATTACGGA	TATACGCTGG	180
	ATTGATAAAG	ATAATGATGC	GTTGATTGCG	CCTGCTGTCA	AAGTTTGGAT	TGAAACTTAT	240
10	GGTGGTAAAC	ATGACAAATA	ATGACACCAT	CATGTTACGA	CATTATGTCC	CACAAGATTA	300
	TTCGATGTTA	GAAGCTTTTC	AATTAAGTGA	AAGTGATTTG	AAGTTTGTTA	AAACGCCAGA	360
	GGAAAATATT	ACAGCTGCAA	TGTCTGATAA	TGAAAGGTAT	CCCATCGTTG	TAATGGATGG	420
15	CAGGCAATGT	GTGGCCTTTT	TTACATTACA	TCGTGGAAAA	GGGGTCGCAC	CATTTAGCGA	480
	TAACCAAGAT	GCAGTATTTT	TCAGGTCATT	TAGTGTTGAT	CAACGTTATC	GTAATAGAGG	540
	AATAGGTAAA	GTGGTAATGG	AAAAATTGGC	GTCATTTATC	ACTTCAACAT	TTCAGGATAT	600
20	TAATGAGATT	GTGTTAACGG	TTAATACTGA	CAATCCACAT	GCCATGGCAC	TTTATCGCCA	660
	ACAAGGATAT	CAATATATGG	GAGATAGTAT	GTTCGTCGGA	AGACCTGTTC	ATATTATGGC	720
	GTTAACTATA	AAATAAATTA	AATTTAAAAG	CATCTTTACT	CATCGTCGAC	CACAACAATT	780
25	AATGATGAAT	AAAGGTGCTT	TTTGTTATAG	ATCATCGGAC	AATTTACTAT	AGTAAAAAGC	840
	GACCTAGTGA	ACAATTGACA	TATATCCACA	GGTCGCTTAA	CTTAAGTTAT	ATTGCTAGTT	900
	GCGATTAATT	GATAGACTCA	TCATTTTTGC	GCTGTCGAGA	TGGTCTTTTT	ATTAAAAATG	960
30	CCGTAATCCA	AGCCGTAATC	GGAATACTGA	TTGCAACGGC	AATACCGCCT	AAAATAATAG	1020
	AAATAAATTC	TTGGGCAAAT	ATTITCGAGT	TTATAATATG	ACCAAATGAA	TATITAAGTT	1080
35	TGAAAAACCA	AATAAATAAA	GCAAGTTGGC	CACCAAAAAA	GGCAAGGTAA	ATCGTGTTCG	1140
	CAGATGTCGC	TAAAATTTCT	CTACCAACAC	GCATGCCAGA	TTGGAATAAT	TCGTATTGCG	1200
	TAACGTTgGA	TTCACTTGAT	GCAATTCATA	AATGGGTGAA	CTAATGGTAA	TTGTTAAATC	1260
40	TATCACAGCT	GCAATAACAG	CAAGAATAAT	AGTGAACACC	ataaattgaa	CCATATCAAT	1320
	GCCAATATTC	ATTGAATACA	CATATGTTTC	ATCTTGTTGT	TCGGTTGaAA	AGCCTTGTAG	1380
	ATGACCGAAG	TAGACCGATA	AATAAATGAG	TGTAATCAAC	AATATTGTTG	TAACGATAgT	1440
45	GCtGgATAAA	TGCaGCTTGT	GTTTTAACAT	TGTAACTATT	GAGTACGAAT	AAATTACAAG	1500
	CGCCAATAAT	AATGCAGAAA	AAGAATGTGA	CGACATAAAT	CGGTACGCCA	AAAATAATCA	1560
	ATACAATACT	ААТААТТААА	ATAGCGAAAT	TTAAAAATAG	GGTTAAATAA	GAGATGAATC	1620
50	CCTTTTTACC	TCCGAAAATT	ATCATCAGAA	AGAGGAGCAA	TAACGCCAAT	ATAAATACAG	1680
	Саттеаттет	TTCCCCCTCC	ריוויייייייייייייייייייייייייייייייייי	እ እ አጥአ ምምም <i>ር</i> ር	3 T	TTCTC STS CC	1740

	CATCGAAATA	GTATAAGTCA	CTGTATTGGC	ATTTTTTAAA	AAGATTAAAA	ACATAGGTAG	186
	TGCACCGGAT	AAATATGAGA	ATAATAAGAT	GTTAGTCATT	GTTCCCATAA	TATCTTGGCC	192
5	GATGTTTCGC	CCAGCAAGCG	CCCATCTCCT	CATTGAAATG	TGTGGCGTAC	GCTGTAAAAT	198
	TTCATGCATA	CCACTAGCAA	TTGTAATTGC	AACATCCATA	ATAGCGCCAA	GTGAACCTAT	204
	TAACACTGAG	GCTAGGAAGA	TATCTTTCGG	TGGTAATGAT	AAAAAGTTCA	TCGTTTCATA	210
10	TTTAATGCCT	TTACCATCTG	TCATATATAT	GATTAATTCT	GTTAAACCTA	TACTCAAAAA	216
	AGTTCCGATA	ATTGTACTGG	CTATGGTAAT	GAGTGTACGC	ATATGCCAGC	CTGTAACGAG	222
15	CAATAAAGTG	AGTATTGTTG	AACAGATCAT	GGCAATGGTC	ATGAGTAAGA	ATAAATTAAT	228
,	ATTGCTATGT	TGAATATGAA	TGTAAATTGC	GATTAATATG	GCAATAGAAT	TCAAGATTAA	234
	CGATAAAATC	GATTGCAGTC	CGACTTTGCG	ACCAACCAAT	AATACAGTTA	ATAAGAACAA	240
20	ACCAGTGATG	ATAACCGTTA	AGGTATCACG	CTTCTTTTCT	ATAATATAAG	CATCACTCGG	246
	CTTGTTAGAA	ATATGTAATA	ATACTTTTTC	GTGTGTGCGA	AATGCCTCAG	AATCTGCTTG	252
	CGATTTGACG	TACTGATGAT	TAATCGTCGT	CGTTTCTCCA	GCAAATTGAC	CATTTAATAT	2586
25	TTTGACTTTT	AATTGATTTT	TATATTTAAT	ATCACGATTA	TTTTGTGCAT	CTTTTGTAGG	264
	TGTCGAAGAA	ACATGTTTGA	CATCTATAAT	TTGACCAATT	GGTTTGTTGT	AAAAGTTCTC	270
	ATTATTGAAT	GTAAATAAAA	TAGCACCAAT	GAATGCGATG	CAGAACAAAC	CTAAAATTAT	276
30	ATTAAATGGC	TTTGTAAATA	AATTTCTATA	TTTCAAAAAC	AAAACCCCAA	TTCTATGAAT	2820
	GAATTAATAT	GGTGATTATA	CGCCCTTAAT	TTTTTATTTT	CAAAGATATT	ACTGCTAAGT	2880
	GTAAAACGAA	AATCATCATT	GATAGCATCG	AATTACTTAA	TGGAATGTAG	ACGTTTTAGT	2940
35	CATTAATTGC	TGAATAAGTG	TTAATAATAT	GCCAATATCA	CTCTTTGTAT	AAGGCTCCTT	3000
	TGTAATAGCA	CATATCGTTC	TTTTTAATTC	AGTATGATCT	AATTTTATAT	CTATCCATGA	3060
10	TTTÄGATTCT	GGTAAATGTA	TATTTTGTGA	TGAAATGATG	TAACCTTCTT	TTTGACGAAG	3120
+0	GAGATACTGC	GCAAGTGGTT	GGCTACTGAT	TGTGTATACA	TCTGATTTAG	TAATCTTGCG	3180
	CAATTGTTTT	TTTACAGTTT	CGGCAAATGG	TGCCAAGCAA	TAAATATGAC	TATGCTCAAA	3240
15	CTGAATTAAT	GGTGGGTGTG	TCGCCATCGT	AATTGGATCG	TCTGAAGGCG	CATATAAATG	3300
	ATAGTGCTCT	TCGAATAAAG	GTAGCATATG	TAATTGTTTG	TGTTTACGTA	TTTCTGGTGT	3360
	AAGTTCCGTG	AAACCAATGT	CTATATTCCC	ATTTAATACG	CTATTTATAA	TTGTGTCATG	3420
50	TTCTAATAAG	CTCGGTATGA	CATGTGTATC	ATTTTGTAAA	TGAAACGTTT	GGATAAGTGG	3480
	TACTA & CATC	TOCONTROCT	C3 CTCTC3TC	3 T 3 C C C 3 3 T C	TACAMA COMO	The components can	3544

	TTCATTAAAT	AATAATTTCC	CTTCAGATGT	GAGCGTAATA	TTGCGTCCTT	GCTTTTTAAA	3660
_	TAAAGACACA	TTAAGTTCTT	GTTCTAATAA	TGTAATTTGA	CGGCTTATCG	CTGATTGAGC	3720
5	AATGTTTAGT	TCAAGTGCTG	TTTCGGAGAT	ATGTTCTCTT	TTAGCGACCT	CGATAAAATA	3780
	TCTTAATTGT	TTAATTTCCA	TAGCGATATA	GGCACCTCCA	AAAATGAGTG	TTTTGTAACT	3840
10	ATTATAGCAA	TATTATTGAT	AAATGTTCTA	TTTTTTAGAT	GAATATCTTC	TATTTTATAT	3900
	ATTGAACAGA	TAAATTTTTT	AGATTATAGT	AATTATCATT	AATAACTAAT	ATCAGAATAT	3960
	TCTAAAAAAG	GGGTGTGCAT	CATGCACAAT	GAGAAATTAA	TTAAAGGCTT	ATATGACTAT	4020
15	CGTGAGGAAC	ATGATGCGTG	TGGTATTGGT	TTTTATGCGA	ATATGGATAA	TAAAAGGTCT	4080
	CACGACATCA	TTGATAAATC	GCTTGAAATG	TTGCGACGCT	TAGATCACAG	GGGCGGGGTC	4140
	GGCGCAGATG	GCATCACTGG	TGATGGCGCA	GGTATTATGA	CTGAAATACC	TTTTGCATTT	4200
20	TTCAAACAAC	ATGTAACGGA	CTTTGATATC	CCAGGTGAAG	GTGAATATGC	CGTGGGGTTA	4260
	TTTTTTTCCA	AAGAACGCAT	TTTAGGTTCT	GAACATGAAG	TAGTTTTTAA	AAAATATTTT	4320
	GAAGGCGAAG	GGTTATCAAT	TCTTGGTTAT	CGTAATGTAC	CAGTTAATAA	AGATGCCATT	4380
25	GCTAAACATG	TAGCAGATAC	GATGCCAGTC	ATTCAACAAG	TGTTTATTGA	TATTAGGGAC	4440
	ATTGAAGATG	TTGAAAAGCG	TTTGTTTTTA	GCGAGAAAAC	AATTAGAGTT	CTATTCGACT	4500
	CAGTGCGATT	TAGAATTGTA	TTTTACGAGC	TTATCACGCA	AAACAATTGT	ATATAAAGGT	4560
30	TGGTTACGAT	CAGACCAAAT	тааааааста	TATACAGATT	TATCGGATGA	TTTATATCAA	4620
	TCAAAGCTAG	GGTTAGTGCA	TTCGAGATTT	AGTACGAATA	CATTCCCGAG	TTGGAAAAGG	4680
35	GCACATCCTA	ACCGTATGTT	AATGCATAAT	GGTGAGATTA	ACACGATTAA	AGGTAATGTA	4740
33	AACTGGATGC	GAGCACGCCA	ACATAAATTA	ATCGAAACAT	TATTTGGCGA	GGATCAACAT	4800
	AAAGTGTTTC	AAATTGTCGA	TGAGGATGGT	AGTGACTCTG	CCATTGTAGA	TAATGCGCTA	4860
40	GAGTTCTTAT	CGTTAGCCAT	GGAGCCAGAA	AAGGCAGCGA	TGTTACTCAT	ACCTGAACCT	4920
	TGGTTATATA	ATGAAGCGAA	TGATGCAAAT	GTACGTGCGT	TTTATGAATT	TTATAGTTAT	4980
	TTAATGGAAC	CGTGGGATGG	TCCTACAATG	ATTTCGTTCT	GTAACGGTGA	CAAACTTGGC	5040
45	GCGCTTACAG	ATAGAAATGG	ATTACGTCCA	GGTCGTTATA	CGATTACTAA	AGATAACTTT	5100
	ATTGTCTTTT	CATCTGAAGT	GGGTGTTGTG	GACGTACCTG	AAAGTAATGT	TGCTTTTAAA	5160
	GGTCAATTGA	ATCCTGGAAA	GTTATTGCTT	GTTGATTTTA	AACAGAATAA	AGTCATTGAA	5220
50	AATAATGATT	TAAAAGGTGC	GATTGCTGGA	GAATTACCAT	ATAAAGCGTG	GATTGATAAC	5280
	CAMBAACOOO	A COMMON A TOTAL	man a a a mama	C2200200220	30000003300	CAAAGAMGAG	E340

	CAGGAACTTG	TAGAAGGTAA	GAAGGATCCT	ATCGGTGCAA	TGGGATATGA	TGCGCCAATT	5460
5	GCAGTGTTGA	ACGAGCGACC	AGAATCACTA	TTTAATTACT	TTAAACAGCT	GTTTGCACAA	5520
3	GTTACGAATC	CACCAATTGA	TGCGTATCGT	GAAAAAATCG	TAACGAGTGA	ACTTTCTTAT	5580
	TTAGGTGGCG	AAGGTAACTT	ACTAGCACCT	GACGAAACGG	TTTTAGATCG	TATTCAATTG	5640
10	AAAAGGCCGG	TATTGAATGA	ATCACACTTA	GCAGCGATTG	ATCAGGAACA	TTTTAAATTA	5700
	ACTTATTTAT	CAACGGTATA	TGAAGGGGAT	TTGGAAGATG	CGTTAGAAGC	ATTAGGCCGA	5760
	GAAGCAGTGA	ATGCTGTAAA	GCAAGGCGCT	CAAATTCTAG	TGTTAGATGA	TAGTGGATTA	5820
15	GTTGATAGCA	ATGGCTTTGC	AATGCCGATG	TTACTCGCAA	TAAGTCATGT	GCATCAATTA	5880
	CTTATTAAAG	CAGATTTACG	TATGTCTACA	AGTTTAGTCG	CTAAATCTGG	TGAGACACGA	5940
	GAAGTGCATC	ATGTTGCTTG	TTTACTCGCA	TATGGCGCGA	ATGCAATTGT	GCCATACCTA	6000
20	GCGCAACGTA	CAGTTGAACA	ACTGACATTG	ACAGAAGGGT	TACAAGGCAC	CGTTGTCGAT	6060
	AATGTTAAGA	CATATACGGA	TGTATTGTCA	GAAGGTGTCA	TTAAAGTAAT	GGCTAAGATG	6120
	GGAATTTCGA	CAGTGCAAAG	TTATCAAGGG	GCACAAATAT	TTGAAGCGAT	TGGCTTGTCT	6180
25	CATGATGTGA	TTGATCGTTA	TTTTACTGGG	ACACAGTCTA	AGTTATCTGG	TATTTCGATT	6240
	GATCAAATTG	ATGCTGAAAA	TAAAGCACGT	CAACAAAGTG	ATGATAATTA	TCTTGCATCA	6300
20	GGTAGTACAT	TCCAATGGAG	ACAACAAGGT	CAACATCATG	CTTTTAATCC	GGAATCTATT	6360
30	TTCTTATTGC	AGCACGCATG	TAAAGAAAAT	GACTATGCGC	AATTTAAAGC	ATACTCTGAA	6420
	GCGGTGAACA	AAAATAGAAC	AGATCACATT	AGACATTTAC	TTGAATITAA	AGCATGTACA	6480
35	CCGATTGACA	TCGACCAAGT	TGAACCGGTA	AGTGACATTG	TCAAACGCTT	TAATACAGGG	6540
	GCGATGAGTT	ATGGATCGAT	TTCAGCGGAA	GCACATGAAA	CGTTAGCACA	AGCCATGAAC	6600
	CAATTAGGTG	GAAAGAGTAA	TAGTGGTGAA	GGTGGCGAAG	ATGCAAAACG	TTATGAAGTA	6660
40	CAAGTTGATG	GAAGCAACAA	AGTAAGTGCG	ATTAAACAAG	TTGCTTCTGG	GCGTTTTGGT	6720
	GTAACTAGTG	ATTATTTACA	ACATGCCAAA	GAAATTCAAA	TTAAAGTTGC	GCAAGGTGCA	6780
	AAGCCTGGTG	AAGGTGGTCA	ATTACCTGGT	ACTAAGGTAT	ATCCGTGGAT	TGCGAAGACA	6840
45	AGAGGGTCAA	CGCCAGGTAT	CGGTCTGATT	TCACCACCGC	CACATCATGA	TATTTATTCA	6900
	ATAGAAGATT	TAGCGCAACT	GATACATGAT	TTGAAAAATG	CGAATAAAGA	TGCAGATATC	6960
	GCGGTAAAAT	TAGTTTCGAA	AACAGGTGTT	GGTACCATTG	CATCTGGGGT	GGCAAAAGCA	7020
50	TTTGCAGATA	AAATTGTCAT	CAGTGGTTAC	GATGGTGGTA	CAGGGGCTTC	ACCCAAAACG	7080
	AGTATTCAGC	ATGCCGGTGT	TCCTTGGGAG	ATTGGTTTAG	CAGAAACACA	TCAAACATTA	7140

	AAAGATGTAG	CGTACGCATG	TGCGCTTGGA	GCGGAAGAAT	TTGGATTTGC	AACTGCACCA	7260
	TTAGTGGTGT	TGGGCTGTAT	TATGATGCGT	GTATGCCATA	AAGATACATG	TCCAGTAGGA	7320
5	GTTGCAACTC	AAAACAAAGA	TTTACGTGCT	TTATATAGAG	GTAAAGCACA	TCATGTTGTT	7380
	AATTTTATGC	ATTTTATTGC	ACAAGAATTA	AGAGAAATTT	TAGCATCTTT	AGGTTTGAAA	7440
	CGTGTAGAAG	ACTTAGTTGG	AAGAACTGAT	TTATTACAAC	GATCATCAAC	ATTAAAAGCG	7500
10	AATAGCAAAG	CGGCTAGTAT	TGATGTTGAA	AAACTGTTAT	GTCCTTTCGA	TGGGCCAAAC	7560
	ACAAAAGAAA	TTCAACAAAA	TCATAATCTT	GAGCATGGAT	TTGATTTAAC	AAATTTATAT	7620
15	GAAGTAACGA	AGCCATATAT	TGCTGAAGGG	CGTCGCTATA	CAGGTAGCTT	TACAGTAAAT	7680
	AATGAACAAC	GTGATGTAGG	GGTTATTACA	GGTAGTGAGA	TTTCGAAACA	ATATGGAGAA	7740
	GCAGGACTTC	CTGAAAATAC	AATTAATGTT	TATACGAATG	GTCATGCTGG	TCAAAGTCTT	7800
20	GCAGCATATG	CACCGAAAGG	CTTAATGATT	CATCATACTG	GAGATGCGAA	TGACTATGTT	7860
	GGTAAAGGAT	TATCTGGTGG	TACGGTCATT	GTCAAAGCAC	CTTTTGAAGA	ACGACAAAAT	7920
	GAAATTATTG	CTGGTAACGT	CTCATTCTAT	GGTGCGACAA	GTGGTAAGGC	ATTTATTAAC	7980
25	GGTAGTGCAG	GAGAAAGATT	CTGTATTAGA	AATAGTGGTG	TAGATGTTGT	CGTTGAAGGT	8040
	ATCGGCGACC	ATGGATTAGA	GTATATGACT	GGTGGACATG	TCATTAATTT	AGGTGATGTA	8100
	GGTAAGAACT	TCGGTCAAGG	TATGAGTGGT	GGTATTGCTT	ACGTTATCCC	GTCTGATGTA	8160
30	GAAGCTTTTG	TTGAAAATAA	TCAACTAGAT	ACGCTTTCGT	TTACAAAGAT	TAAACACCAA	8220
	GAAGAAAAAG	CATTCATTAA	GCAAATGCTG	GAAGAACATG	TGTCACACAC	GAATAGTACG	8280
	AGAGCGATTC	ATGTGTTAAA	ACATTTTGAT	CGCATTGAAG	ATGTCGTCGT	TAAAGTTATT	8340
35	CCTAAAGATT	ATCAATTAAT	GATGCAAAAA	ATTCATTTGC	ACAAATCATT	ACATGACAAT	8400
	GAAGATGAAG	CGATGTTAGC	TGCATTTTAC	GATGACAGTA	AAACAATCGA	TGCTAAACAT	8460
40	AAACCAGCCG	TTGTGTATTA	AGGAAAGGGG	GAGATACGAT	GGGTGAATTT	AAAGGATTTA	8520
40	TGAAGTATGA	CAAACAGTAC	TTAGGTGAAT	TATCACTGGT	AGACCGTTTG	AAGCATCATA	8580
	AAGCATATCA	ACAACGATTT	ACTAAAGAAG	ATGCCTCTAT	CCAAGGTGCA	CGATGTATGG	8640
45	ATTGTGGAAC	GCCGTTTTGT	CAAACCGGAC	AACAGTATGG	TAGGGAAACA	ATAGGTTGTC	8700
	CAATTGGAAA	CTACATTCCT	GAATGGAACG	ACTTAGTGTA	TCATCAAGAT	TTTAAAACTG	8760
	CTTATGAACG	CTTAAGCGAA	ACAAATAACT	TTCCTGACTT	TACAGGGCGT	GTATGTCCTG	8820
50	CACCATGCGA	AAGTGCTTGT	GTGATGAAGA	TTAATAGAGA	ATCGATTGCG	ATTAAAGGTA	8880
	TTC3 3 CCC3 C	א היים אינוים אינוים אינוים אינוים אינוים אינוים אינוים אינוים אינוים אינוים אינוים אינוים אינוים אינוים אינוים	CN NCCOMPONIC	A A A TOCOTO	COTACCCCC	A A A CITTO COA	8940

	CTGAAGAACT	TAATCTACTA	GGATATCAAG	TAACTATTTA	TGAACGTGCT	AGAGAATCAG	9060
	GCGGTTTATT	AATGTATGGT	ATTCCGAATA	TGAAACTTGA	TAAAGATGTG	GTTCGACGTC	9120
5	GTATTAAGTT	AATGGAAGAA	GCGGGCATTA	CTTTCATTAA	TGGTGTTGAA	GTCGGTGTTG	9180
	ATATTGATAA	AGCAACGTTA	GAATCTGAGT	ATGATGCCAT	TATATTATGT	ACTGGTGCAC	9240
	AAAAAGGTAG	AGATTTACCT	TTAGAAGGAC	GCATGGGTGA	TGGTATACAT	TTCGCTATGG	9300
10	ATTATTTAAC	TGAACAAACG	CAGTTGTTAA	ATGGAGAAAT	TGATGATATA	ACAATAACTG	9360
	CAAAAGATAA	GAATGTCATT	ATCATTGGTG	CTGGTGATAC	AGGGGCAGAC	TGTGTAGCGA	9420
15	CAGCATTAAG	AGAAAATTGT	AAATCGATTG	TTCAATTTAA	TAAATATACG	AAATTGCCAG	9480
	AAGCAATTAC	ATTTACAGAA	AATGCATCAT	GGCCTTTAGC	AATGCCGGTG	TTTAAAATGG	9540
	ACTATGCGCA	CCAAGAGTAC	GAAGCTAAGT	TTGGTAAGGA	ACCACGTGCA	TATGGTGTTC	9600
20	AAACAATGCG	TTACGATGTT	GACGATAAAG	GACACATACG	TGGTTTGTAT	ACTCAAATTT	9660
	TAGAGCAAGG	CGAAAATGGT	ATGGTCATGA	AAGAAGGACC	TGAAAGATTT	TGGCCTGCTG	9720
	ACCTTGTATT	ATTATCAATC	GGCTTCGAAG	GTACAGAACC	AACAGTACCG	AATGCTTTTA	9780
25	ACATTAAAAC	GGATAGAAAT	CGAATCGTGG	CGGATGATAC	AAACTATCAA	ACTAATAATG	9840
	AAAAGGTATT	TGCTGCTGGA	GATGCTAGAC	GTGGTCAAAG	TTTAGTTGTA	TGGGCAATTA	9900
	AAGAAGGTAG	AGGCGTAGCG	AAAGCAGTAG	ATCAGTATTT	AGCTAGTAAA	GTTTGTGTAT	9960
30	AATCTTTGTA	TGGAAATGGT	GGTTACGTTG	ACGTTGTGAC	ATGCTGAATC	GAGTTTGAAA	10020
	AAATCTAGTA	TCTATCAACG	TCACATGCCA	TCTTTGTAAC	CTAAAAACAA	AGGTTTGTAA	10080
	GACAACAAAT	AGATTAATTA	TAAGTAGTGA	TTTTTTACAT	TCGTTTATAG	GTCAACTGTA	10140
35	GTGGAAGACA	ATGATTTGTG	GTAATCATGT	AATGCTTAAA	AACAATATTG	ACTTTTACAG	10200
	AACGTTCATA	TATGATAAAT	ATTGTGTTTA	GGAGGAATAC	CCAAGTCCGG	CTGAAGGGAT	10260
	CGGTCTTGAA	AACCGACAGG	GGCTTAACGG	CTCGCGGGGG	TTCGAATCCC	TCTTCCTCCG	10320
40	CCATCAATAT	TTATATTAAA	TTCTATATAT	AATGAAGGTA	AGTGCTCAAA	TTTTGAGTAT	10380
	TTACCTTTTT	TATTTGTCTT	TGAATGGCTC	GTAATTTTTG	ataatagaaa	TGATAAGGCA	10440
45	TTGAGATTGG	AAGGGCATTT	GGCTTGTGCA	ATATACATAG	CTAAATGTCT	TTTTTGTTTT	10500
	GTGAAATATG	ATGGATGGCT	TGTGTGGACA	AGTTTGCTAT	TTATAGATAT	GCATTTTTCA	10560
	ATTTAGGAGT	TGGCCATGCA	TCTACACTTT	ATAATGGTGA	GAGCGTGGTG	AGGTATTGTT	10620
50	AATAACGCAA	TTGTAGCGAG	GAGTTATTGC	TACATATGTC	GTTATGGCTC	ATTGATTTTC	10680
	тсаватсест	ACCCCAGATA	ΔήτιζηςΔολΔ	בדממממדממ	ተተተተርተተር እ አ	אכררייידיארא	10740

	TAAAAAGAGA	AGATGTAAAA	GCCATCGTAA	CCGCTATTGG	GGGAAAAGAA	AATCTTGAAG	10860
	CTGCAACGCA	TTGTGTAACA	CGATTACGTT	TAGTGCTGAA	GGATGAAAGT	AAAGTTGATA	10920
5	AAGACGCATT	AAGTAATAAC	GCGTTGGTCA	AGGGGCAGTT	TAAAGCAGAC	CATCAATATC	10980
	AAATTGTCAT	TGGTCCAGGA	ACAGTCGATG	AAGTGTATAA	GCAGTTTATT	GATGAAACAG	11040
	GTGCTCAAGA	AGCTTCGAAA	GATGAAGCGA	AACAAGCAGC	TGCACAAAAA	GGGAATCCAG	11100
10	TACAACGTTT	GATCAAATTG	TtGGGGGATA	TTTTTATACC	AATATTACCT	GCGATTGTGA	11160
	CAGCTGGTTT	GTTAATGGGA	ATCAATAATT	TACTTACAAT	GAAAGGTTTA	TTTGGTCCAA	11220
.=	AAGCACTTAT	TGAGATGTAT	CCACAAATTG	CTGATATTTC	AAACATCATT	AATGTGATTG	11280
15	CGAGTACGGC	ATTTATTTTC	TTACCAGCAT	TAATTGGTTG	GAGTAGTATG	CGTGTATTTG	11340
	GTGGTAGTCC	GATTCTAGGC	ATAGTCTTAG	GTTTGATTTT	AATGCATCCG	CAATTAGTAT	11400
20	CTCAGTATGA	TTTGGCAAAA	GGGAATATTC	CGACGTGGAA	CTTATTTGGC	TTAGAGATTA	11460
	AGCAGTTGAA	TTACCAAGGT	CAAGTGTTGC	CAGTETTAAT	TGCAGCTTAC	GTTCTAGCTA	11520
	AAATTGAAAA	AGGATTAAAT	AAAGTCGTTC	ACGATTCGAT	AAAAATGTTG	GTCGTTGGAC	11580
25	CCGTAGCGCT	TTTAGTTACT	GGATTTTTAG	CATTTATTAT	CATTGGACCA	GTTGCGTTAT	11640
	TGaTTGGTAC	AGGTATTACA	TCTGGTGTTA	CATTTATATT	CCAACATGCA	GGATGGCTTG	11700
	GCGGAGCAAT	ATATGGATTG	TTATATGCAC	CACTTGTAAT	TACAGGACTA	CACCATATGT	11760
30	TTTTAGCAGT	AGATTTCCAA	TTGATGGGTA	GCAGCTTAGG	CGGTACGTAT	TTATGGCCAA	11820
	TTGTTGCGAT	TTCCAATATT	TGTCAGGGCT	CTGCAGCATT	TGGAGCATGG	TTTGTCTATA	11880
	AACGTCGTAA	AATGGTTAAA	GAAGAAGGCT	TGGCATTAAC	ATCTTGTATT	TCTGGTATGT	11940
35	TAGGTGTTAC	TGAACCAGCC	ATGTTCGGTG	TGAACTTACC	TCTGAAATAT	CCATTTATCG	12000
	CTGCGATATC	AACGTCTTGT	GTATTGGGGG	CAATCGTTGG	TATGAATAAC	GTACTTGGAA	12060
	AAGTTGGTGT	TGGTGGCGTG	CCAGCATTCA	TTTCAATTCA	AAAAGAATTT	TGGCCAGTAT	12120
40	ATCTTATTGT	GACAGCTATT	GCTATTGTTG	TACCATGTAT	ACTAACAATT	GTGATGTCTC	12180
	ATTTTAGTAA	ACAAAAAGCG	AAAGAAATTG	TTGAAGATTA	ATAAAATAAA	AAAGGGGCGT	12240
	TCGTTATTTG	GACGTCCTTT	ATTACGTTAT	AAGGTGGTAA	TTGTGTGTCG	AAAGAAATAG	12300
45	ATTGGAGAAA	ATCCGTTGTA	TATCAAATTT	ATCCTAAGTC	GTTTAATGAT	ACGACGGGGA	12360
	ATGGTATAGG	AGATATCAAT	GGAATTATAG	AAAAATTGGA	TTATATCAAG	TTATTGGGTG	12420
50	TTGATTATAT	TTGGTTAACA	CCAGTGTATG	AATCACCGAT	GAATGATAAT	GGCTATGATA	12480
- -	TCAGCAATTA	TTTAGAAATC	aATGAAGACT	TTGGAACGAT	GGATGATTTT	Gaaaagttaa	12540

	CGACGGAGCA	TGaATGGTTT	AAAGAAGCCC	GTAAATCTAA	AGATAACCCy	TATAGAGATT	12660
	ATTACTTTTT	CAGATCATCT	GAAGACGGGC	CGCCAACAAA	TTGGCATTCT	AAATTCGGTG	12720
5	GTAATGCATG	GAAGTATGAT	TCTGAGACAG	ATGAATATTA	TTTACATTTA	TTTGATGTCA	12780
	GTCAAGCTGA	TTTAAATTGG	GATAATCCGG	AAGTACGTCA	ATCGTTATAT	CGCATAGTCA	12840
	ATCATTGGAT	AGACTTCGGC	GTTGATGGTT	TTCGATTTGA	TGTCATTAAC	TTAATTTCTA	12900
10	AAGGTGAATT	TAAGGACTCT	GACAAAATAG	GTAAAGAATT	TTATACGGAT	GGTCCTAGAG	12960
	TGCATGAGTT	TCTGCATGAA	TTAAATCGTC	AAACGTTTGG	TAACACTGAC	ATGATGACTA	13020
	TAGGAGAAAT	GTCTTCGACG	ACGATTGAAA	ATTGTATTAA	GTATACACAA	CCAGAACGCC	13080
15	AAGAATTGAA	TAGTGTTTTT	AATTTTCATC	ATCTAAAGGT	TGATTATGTT	GATGGTGAAA	13140
	AGTGGACAAA	TGCGAgcTTG	nATTTTCATA	AGTTAAAGGA	AATTCTGATG	CAATGGCAAC	13200
20	GAGGTATTTA	TGACGGTGGC	GGATGGAACG	CGATTTTCTG	GTGTAATCAT	GATCAGCCAC	13260
	GGGTAGTGTC	TAGATTTGGT	GATGATACGT	CGGAAGAGAT	GAGGATACAA	AGTGCTAAAA	13320
	TGTTAGCTAT	CGCACTGCAT	ATGTTGCAAG	GGACGCCATA	TATTTACCAA	GGTGAAGAAA	13380
25	TTGGTATGAC	GGACCCACAT	TTTACATCAA	TAGCACAATA	TCGTGATGTT	GAATCGATTA	13440
	ATGCCTACCA	TCAGTTGTTA	AGTGAAGGGC	ATGCTGAAGC	GGATGTGTTA	GCGATTTTAG	13500
	GACAGAAGTC	ACGAGACAAT	TCGAGAACGC	CTATGCAATG	GAGTGATGAT	GTTAATGCTG	13560
30	GATTTACAGC	TGGTAAnCCT	TGGATTGATA	TTTCGGAAAA	TTATCATCAG	GTCAACGTTA	13620
	GACAAGCACT	TCAGAATAAA	GAGTCTATTT	TCTATACGTA	TCAAAAATTA	ATACAATTAA	13680
	GACATACGCA	TGATATTATT	ACGTATGGAG	ACATTGTGCC	ACGTTTTATG	GATCATGATC	13740
35	ATTTATTTGT	TTATGAACGT	CATTATAAGA	ATCAACAATG	GCTAGTAATT	GCGAATTTCT	13800
	CAGCATCGGC	TGTTGATTTG	CCAGAAGGAT	TGGCTAGAGA	AGGTTGTGTT	GTGATTCAAA	13860
	CAGGCACAGT	GGAAAATAAT	ACGATAAGCG	GGTTTGGTGC	AATTGTAATC	GAAACAAACG	13920
40	CGTAAAATAA	ATTGAGTGGA	TGCGTTTATA	TGGCGAAACA	AAAAAAGTTT	ATGAAGATTT	13980
	ATGAGGCGTT	GAAAGAAGAT	ATATTAAACG	GGCAGATTCA	ATATGGTGAA	CAAATTCCGT	14040
45	CTGAACATGA	TTTGGTGCAA	TTGTACCAGT	CATCTCGAGA	GACCGTGCGT	AAGGCATTAG	14100
45	ATTTGTTGGC	ATTAGACGGC	ATGATTCAAA	AGATTCATGG	TAAAGGGTCA	CTTGTCATTT	14160
	ATCAGGAGGT	TACAGAGTTT	CCATTTTCTG	AACTTGTTAG	TTTTAAAGAA	ATGCAAGAAG	14220
50	AAATGGGCGT	CGCATATTTA	ACTGAAGTTG	TTGTGAATGA	GGTTGTTGAA	GCGCATGAAG	14280
	TTCCAGAAGT	TCAACATGCT	TTAAACATCA	ATTCTAGTGA	ATCACTCATT	CATATTGTTA	14340

	TTGTTTCAGA	TATAGGTAAT	GATGTTGCGA	GTGATTCTAT	TTATGATTAT	TTGGAAAAGG	14460
	TATTAAATCT	TAATATTAGT	TATTCAAGTA	AGTCTATTAC	TTTTGAACCG	TTTGATGAAC	14520
5	AAGCATATCA	ATTGTTTGGT	GATGTATCGG	TGGCTTATTC	AGCAACAGTT	CGAAGTATTG	14580
	TGTATTTAGA	AAATACAATG	CCGTTTCAAT	ATAATATTTC	AAAACATCTT	GCAAATGAAT	14640
	TTAAATTTAA	TGACTTCTCA	AGACGTCGTA	TAAAGTAAAC	AATGATATAA	ATGATTTATA	14700
10	CTTGCAATTA	ACTATTAAAA	TATAGTAATA	TATATCTTGC	CGTGCTAGGT	GGGGAGGTAG	14760
	CGGTTCCCTG	TACTCGAAAT	CCGCTTTATG	CGAGGCTTAA	TTCCTTTGTT	GAGGCCGTAT	14820
	TTTTGCGAAG	TCTGCCCAAA	GCACGTAGTG	TTTGAAGATT	TCGGTCCTAT	GCAATATGAA	14880
15	CCCATGAACC	ATGTCAGGTC	CTGACGGAAG	CAGCATTAAG	TGGATCATCA	TATGTGCCGT	14940
	AGGGTAGCCG	AGATTTAGCT	AACGACTTTG	GTTACGTTCG	TGAATTACGT	TCGATGCTTA	15000
20	GGTGCACGGT	TTTTTATTTT	TTAAATATTA	AACCGATTAT	TAAGAGTTGA	AAATATATAA	15060
20	TTATAGAAGC	TACTTTCTTG	AAGACAATTC	AGCGTATTAT	ACGTGGAACA	TGTTTGTGGG	15120
	AAGTAGCTTT	TTTATATGTG	AAGTTTGATT	CAAGTGAACT	CGATGTGCAG	TTTGAATGAT	15180
25	TTTTGTGTCA	ATGAAAAGTA	AGAAGTTATA	ATTTGATGAT	AAAGAAATGA	TGGTGAAATG	15240
	AGGGGGAGTA	TCTTACAATA	GAATTATTAA	TGAGATACGT	TATGATTATT	GACAATCAAA	15300
	TGCCTACGGA	GGACATATGC	AAATATATTT	AAGTACTTTA	ACAGAGTTAG	ATTATGATAA	15360
30	ATCTTTAAAT	agtattgaag	AAAGTTTTGA	TGATAATCCT	GAAACGAGTT	GGCAAGCACG	15420
	TGCGAAAGTA	AAACATTTAA	GAAAATCTCC	TTGCTATAAT	TTTGAATTAG	AAGTAATAGC	15480
	GAAAAATGAA	AATAACGATG	TCGTTGGACA	CGTTTTATTA	ATTGAAGTAG	AAATTAATAG	15540
35	TGATGATAAG	ACGTATTATG	GTTTGGCGAT	TGCCTCTTTA	TCAGTTCATC	CTGAATTACG	15600
	TGGAÇAAAAA	TTAGGTCGTG	GCTTGGTTCA	AGCAGTAGAA	GAGCGTGCCA	AAGCACAAGA	15660
	GTATAGTACG	GTTGTTGTAG	ACCATTGTTT	TGACTACTTT	GAAAAGTTGG	GTTATCAAAA	15720
40	TGCTGCTGAG	CATGACATTA	AATTAGAATC	TGGTGATGCA	CCGTTACTTG	TAAAATATTT	15780
	ATGGGATAAT	TTGACGGATG	CACCACACGG	AATCGTAAAA	TTTCCAGAAC	ATTTTTATTA	15840
	ATTGTTCAAT	TAAGAAGTAA	AGGTATTATC	ATGCTATAAT	GAGAGGTAAT	TGTTTATGGA	15900
45	GGTGCTAACT	TGAATTATCA	AGCCTTATAT	CGTATGTACA	GACCCCAAAG	TTTCGAGGAT	15960
	GTCGTCGGAC	AAGAACATGT	CACGAAGACA	TTGCGCAATG	CGATTTCGAA	AGAAAAACAG	16020
50	TCGCATGCTT	ATATTTTAG	TGGTCCGAGA	GGTACGGGGA	AAACGAGTAT	TGCCAAAGTG	16080
	TTTGcTAAAG	CAATCAACTG	TCTAAATAGC	ACTGATGGAG	AACCTTGTAA	TGAATGTCAT	16140

	AATAATGGCG	TTGATGAAAT	AAGAAATATT	AGAGACAAAG	TTAAATATGC	ACCAAGTGAA	16260
	TCGAAATATA	AAGTTTATAT	TATAGATGAG	GTGCACATGC	TAACAACAGG	TGCTTTTAAT	16320
5	GCCCTTTTAA	AGACGTTAGA	AGAACCTCCA	GCACACGCTA	TTTTTATATT	GGCAACGACA	16380
	GAACCACATA	AAATCCCTCC	AACAATCATT	TCTAGGGCAC	AACGTTTTGA	TTTTAAAGCA	15440
	ATTAGCCTAG	ATCAAATTGT	TGAACGTTTA	AAATTTGTAG	CAGATGCACA	ACAAATTGAA	16500
10	TGTGAAGATG	AAGCCTTGGC	ATTTAtcgCT	AAAGCGTCTG	AAGGGGGTAT	GCGTGATGCA	16560
	TTAAGTATTA	TGGATCAGGC	TATTGCATTT	GGTGATGGTA	CGTTAACATT	GCAAGATGCG	16620
15	TTGAATGTCA	CAGGTAGCGT	ACATGATGAA	GCGTTGGATC	ACTTGTTTGA	TGATATTGTA	16680
70	CAAGGTGACG	TACAAGCATC	TTTTAAAAAA	TACCATCAGT	TTATAACAGA	AGGTAAAGAA	16740
	GTGAATCGCC	TAATAAATGa	TATGATTTAT	TTTGTCaGAG	ATACGATTAT	GAATAAAACA	16800
20	TCTGAGAAAG	ATACTGAGTA	TCGAGCACTG	ATGAACTTAG	AATTAGATAT	GTTATATCAA	16860
	ATGATTGATC	TTATTAATGA	TACATTAGTG	TCGATTCGTT	TTAGTGTGAA	TCAAAACGTT	16920
	CATTTTGAAG	TGTTGTTAGT	AAAATTAGCT	GAGCAGATTA	AGGGTCAACC	ACAAGTGATT	16980
25	GCGAATGTAG	CTGAACCAGC	ACAAATTGCT	TCATCGCCAA	ACACAGATGT	ATTGTTGCAA	17040
	CGTATGGAAC	AGTTAGAGCA	AGAACTAAAA	ACACTAAAAG	CACAAGGAGT	GAGTGTCGCT	17100
	CCTGTTCAAA	AATCTTCGAA	AAAGCCTGCG	AGAGGCATAC	AAAAATCTAA	AAATGCATTT	17160
30	TCAATGCAAC	AAATTGCAAA	AGTGCTAGAT	AAAGCGAATA	AGGCAGATAT	CAAATTGTTG	17220
	AAAGATCATT	GGCAAGAAGT	GATTGATCAT	GCCAAAAATA	ATGATAAAAA	ATCACTCGTT	17280
	AGTTTATTGC	AAAATTCGGA	ACCTGTGGCG	GCAAGTGAAG	ATCACGTACT	TGTGAAATTT	17340
35	GAGGAAGAGA	TCCATTGTGA	AATCGTCAAT	AAAGACGACG	AGAAACGTAG	TAGTATAGAA	17400
	AGTGTTGTAT	GTAATATCGT	TAATAAAAAC	GTTAAAGTTG	TTGGTGTACC	ATCAGATCAA	17460
	TGGCAAAGAG	TTCGAACGGA	ATATTTACAA	AATCGTAAAA	ACGAAGGCGA	TGATATGCCA	17520
40	AAGCAACAAG	CACAACAAAC	AGATATTGCT	CAAAAAGCAA	AAGATCTTTT	CGGTGAAGAA	17580
	ACTGTACATG	TGATAGATGA	AGAGTGATAC	ATGACAAGCG	ATATAATCGT	ATGTATAATG	17640
45	AAAGAAACAT	CATTTTATTG	ATAAATATTT	ATTGATTTTC	AAGGAGGAAA	TGGAATATGC	17700
45	GCGGTGGCGG	AAACATGCAA	CAAATGATGA	AACAAATGCA	AAAAATGCAA	AAGAAAATGG	17760
	CTCAAGAACA	AGAAAAACTT	AAAGAAGAGC	GTATTGTAGG	AACAGCTGGC	GGTGGCATGG	17820
50	TTGCAGTTAC	TGTAACTGGT	CATAAAGAAG	TTGTCGACGT	TGAAATCAAA	GAAGAAGCTG	17880
	TACACCCACA	CC S CS CCC S S	NTCCTN CN NC	> 00000 0000000	1.001.00m1.cm	*******	

	TCCCTGGaAT	GTGATCATAG	ATGCATTATC	CAGAACCTAT	ATCAAAACTT	ATTGATAGCT	18060
						CATACCTTAG	18120
5	ATATGAAAGA	AGACGATGTT	GTTCAGTTTG	CCAAAGCATT	AGTAGATGTT	AAGAGAGAAT	18180
	TAACATATTG	TAGCGTATGT	GGTCACATTA	CTGAAAATGA	TCCATGTTAT	ATTTGTGAAG	18240
	ATAAGCAAAG	AGATCGTTCA	GTTATTTGTG	TTGTGGAAGA	TGACAAAGAT	GTCATAGCTA	18300
10	TGGAAAAAAT	GAGAGAATAC	AAAGGTTTAT	ATCACGTTTT	ACATGGGTCT	ATTTCGCCTA	18360
	TGGATGGCAT	TGGACCAGAA	GATATTAATA	TTCCTTCATT	GATTGAACGC	TTGAAAAACG	18420
	ATGAAGTTAG	CGAATTAATC	TTAGCTATGA	ACCCGAACTT	AGAGGGGGAA	TCTACAGCCA	18480
15	TGTATATTTC	TAGATTAGTT	AAGCCTATAG	GTATCAAAGT	GACGAGATTA	GCACAAGGGT	18540
	TATCGGTAGG	TGGCGATTTA	GAGTATGCTG	ACGAAGTAAC	ATTATCTAAA	GCAATCGCAG	18600
	GTAGAACAGA	AATGTAATKT	СТТСТАТТАА	ACATTTTTGA	TTTTAATACT	ATAGTAAGAA	18660
20	AAGTCACAGT	GTAATCATTG	TGGCTTTTTT	TATGGTGTGG	TGTGATGTAC	TACTTTATTT	18720
	GCGGTGTGGC	GGTGGTATGG	TTTACCTAGT	TTTACTGAGG	GATGGGTAAT	CTTTAGGAAG	18780
25	CAAGCCGTTG	GTTGTGATTT	GTTACTTCTA	ATAGTAATGA	TGTGAATTGG	ATTATCGAAT	18840
20	TAGATCTATG	GTTATGGTGT	GTTGGTGCTA	TTAATTTGAT	AAATGCGGTT	AATGACTATG	18900
	CAAATGAAAT	TCTTTTGTAA	TTGAAATGAT	AGATGCTGGC	TTAGTAAGTT	GTACTTCTTT	18960
30	GGTCTAAAGC	TTATTAAATC	AGCCTGTATA	GCGGTGTTTT	GAGAGATTAT	TTAAAACTTG	19020
	TAAATTTATT	TTTAATTTCT	GGTAAAAAA	TAACGTTCTG	TTTTGCGTTT	TTTTTGATTG	19080
	ATATGGTTAG	AGAAAAATCT	GTTTCTTGTT	CTAAAAAACG	TACTATTTAT	AAGTGGGGAT	19140
35	TTTTTAAGTT	CGATTTTTAG	GATAAGGGCG	TTCAGTACAG	ATGACAAAGG	TGTAATTTTT	19200
	ACTGTTGTTA	AGCAGTTTGA	AAGCCTGTAT	AGTATTTATT	TGTTGAGGCA	AACAAAACAA	19260
	CTCAACTTAA	GAAATAACTT	GAATTACTAA	CGAAAATTAA	TTTTAAAAAG	TTATTGACTT	19320
40	AAATGTTAAT	AAAATGTATA	ATTAATTCTT	GTCGGTAAGA	AAAATGAACA	TTGAAAACTG	19380
	AATGACAATA	TGTCAACGTT	AATTCCAAAA	AACGTAACTA	TAAGTTACAA	ACATTATTTA	19440
	GTATTTATGA	GCTAATCAAA	CATCATAATT	TTTATGGAGA	GTTTGATCCT	GGCTCAGGAT	19500
45	GAACGCTGGC	GGCGTGCCTA	ATACATGCAA	GTCGAGCGAA	CGGACGAGAA	GCTTGCTTCT	19560
	CTGATGTTAG	CGGCGGACGG	GTGAGTAACA	CGTGGATAAC	CTACCTATAA	GACTGGGATA	19620
50	ACTTCGGGAA	ACCGRAGCTA	ATACCGGATA	ATATTTTGAA	CCGCATGGTT	CAAAAGTGAA	19680
50	AGACGGTCTT	GCTGTCACTT	ATAGATGGAT	CCGCGCTGCA	TTAGCTAGTT	GGTAAGGTAA	19740

	GAGACACGGT	CCAGACTCCT	ACGGGAGGCA	GCAGTAGGGA	ATCTTCCGCA	ATGGGCGAAA	19860
	gCtGaCGGAG	CAACGCCGCG	TGAGTGATGA	AGGTCTTCGG	ATCGTAAAAC	TCTGTTATTA	19920
5	GGGAAGAACA	TATGTGTAAG	TAACTGTGCA	CATCTTGACG	GTACCTAATC	AGAAAGCCAC	19980
	GGCTAACTAC	GTGCCAGCAG	CCGCGGTAAT	ACGTAGGTGG	CAAGCGTTAT	CCGGAATTAT	20040
	TGGGCGTAAA	GCGCGCGTAG	GCGGTTTTTT	AAGTCTGATG	TGAAAGCCCA	CGGCTCAACC	20100
10	GTGGAGGGTC	ATTGGAAACT	GGAAAACTTG	AGTGCAGAAG	AGGAAAGTGG	AATTCCATGT	20160
	GTAGCGGTGA	AATGCGCAGA	GATATGGAGG	AACACCAGTG	GCGAAGGCGA	CTTTCTGGTC	20220
	TGTAACTGAC	GCTGATGTGC	GAAAgCGTGG	GGATCAAACA	GGATTAGATA	CCCTGGTAGT	20280
15	CCACGCCGTA	AACGATGAGT	GCTAAGTGTT	AGGGGGTTTC	CGCCCCTTAG	TGCTGCAGCT	20340
	AACGCATTAA	GCACTCCGCC	TGGGGAGTAC	GACCGCAAGt	TGAAACTCAA	AGGAATTGAC	20400
20	GGGGACCCGC	ACAAGCGGTG	GAGCATGTGG	TTTAATTCGA	AGCAACGCGA	AGAACCTTAC	20460
20	CAAATCTTGA	CATCCTTTGA	CAACTCTAGA	GATAGAGCCT	TCCCCTTCGG	GGGACAAAGT	20520
	GACAGGTGGT	GCATGGTTGT	CGTCAGCTCG	TGTCGTGAGA	TGTTGGGTTA	AGTCCCGCAA	20580
25	CGAGCGCAAC	CCTTAAGCTT	AGTTGCCATC	ATTAAGTTGG	GCACTCTAAG	TTGACTGCCG	20640
	GTGACAAACC	GGAGGAAGGT	GGGGATGACG	TCAAATCATC	ATGCCCCTTA	TGATTTGGGC	20700
	TACACACGTG	CTACAATGGA	CAATACAAAG	GGCAGCGAAA	CCGCGAGGTC	AAGCAAATCC	20760
30	CATAAAGTTG	TTCTCAGTTC	GGATTGTAGT	CTGCAACTCG	ACTACATGAA	GCTGGAATCG	20820
	CTAGTAATCG	TAGATCAGCA	TGCTACGGTG	AATACGTTCC	CGGGTCTTGT	ACACACCGCC	20880
	CGTCACACCA	CGAGAGTTTG	TAACACCCGA	AGCCGGTGGA	GTAACCTTTT	AGGAGCTAGC	20940
35	CGTCGAAGGT	GGGACAAATG	ATTGGGGTGA	AGTCGTAACA	AGGTAGCCGT	ATCGGAAGGT	21000
	GCGGCTGGAT	CACCTCCTTT	CTAAGGATAT	ATTCGGAACA	TCTTCTTCAG	AAGATGCGGA	21060
	ATAACGTGAC	ATATTGTATT	CAGTTTTGAA	TGTTTATTTA	ACATTCAAAT	ATTTTTTGGT	21120
40	TAAAGTGATA	TTGCTTATGA	AAATAAAGCA	GTATGCGAGC	GCTTGACTAA	AAAGAAATTG	21180
	TACATTGAAA	ACTAGATAAG	TAAGTAAAAT	ATAGATTTTA	CCAAGCAAAA	CCGAGTGAAT	21240
	AAAGAGTTTT	AAATAAGCTT	GAATTCATAA	GAAATAATCG	CTAGTGTTCG	AAAGAACACT	21300
45	CACAAGATTA	ATAACGCGTT	TAAATCTTTT	TATAAAAGAA	CGTAACTTCA	TGTTAACGTT	21360
	TGACTTATAA	AAATGGTGGA	AACATAGATT	AAGTTATTAA	GGGCGCACGG	TGGATGCCTT	21420
	GGCACTAGAA	GCCGATGAAG	GACGTTACTA	ACGACGATAT	GCTTTGGGGA	GCTGTAAGTA	21480
50	AGCTTTGATC	CAGAGATTTC	CGAATGGGGA	AACCCAGCAT	GAGTTATGTC	ATGTTATCGA	21540

	GAGGAAGAGA	AAGAAAATTC	GATTCCCTTA	GTAGCGGCGA	GCGAAACGGG	AAGAGCCCAA	2166
	ACCAACAAGC	TTGCTTGTTG	GGGTTGTAGG	ACACTCTATA	CGGAGTTACA	AAGGACGACA	2172
5	TTAGACGAAT	CATCTGGAAA	GATGAATCAA	AGAAGGTAAT	AATCCTGTAG	TCGAAAATGT	2178
	TGTCTCTCTT	GAGTGGATCC	TGAGTACGAC	GGAGCACGTG	AAATTCCGTC	GGAATCTGGG	2184
	AGGACCATCT	CCTAAGGCTA	AATACTCTCT	AGTGACCGAT	AGTGAACCAG	TACCGTGAGG	2190
10	GAAAGGTGAA	AAGCACCCCG	GAAGGGGAGT	GAAATAGAAC	CTGAAACCGT	GTGCTTACAA	2196
	GTAGTCAGAG	CCCGTTAATG	GGTGATGGCG	TGCCTTTTGT	AGAATGAACC	GGCGAGTTAC	2202
	GATTTGATGC	AAGGTTAAGC	AGTAAATGTG	GAGCCGTAGC	GAAAGCGAGT	CTGAATAGGG	2208
15	CGTTTAGTAT	TTGGTCGTAG	ACCCGAAACC	AGGTGATCTA	CCCTTGGTCA	GGTTGAAGTT	2214
	CAGGTAACAC	TGAATGGAGG	ACCGAACCGA	CTTACGTTGA	AAAGTGAGCG	GATGAACTGA	2220
20	GGGTAGCGGA	GAAATTCCAA	TCGAACCTGG	AGATAGCTGG	TTCTCTCCGA	AATAGCTTTA	2226
	GGGCTAGCCT	CAAGTGATGA	TTATTGGAGG	TAGAGCACTG	TTTGGACGAG	GGGCCCCTCT	22320
	CGGGTTACCG	AATTCAGACA	AACTCCGAAT	GCCAATTAAT	TTAACTTGGG	AGTCAGAACA	22380
25	TGGGTGATAA	GGTCCGTGTT	CGAAAGGGAA	ACAGCCCAGA	CCACCAGCTA	AGGTCCCAAA	22440
	ATATATGTTA	AGTGGAAAAG	GATGTGGCGT	TGCCCAGACA	ACTAGGATGT	TGGCTTAGAA	22500
	GCAGCCATCA	TTTAAAGAGT	GCGTAATAGC	TCACTAGTCG	AGTGACACTG	CGCCGAAAAT	22560
30	GTACCGGGGC	TAAACATATT	ACCGAAGCTG	TGGATTGTCC	TTTGGaCAAT	GGtAGGAGAG	22620
	CGTTCTAAGG	GCGTTGAAGC	ATGATCGTAA	GGACATGTGG	AGCGCTTAGA	AGTGAGAATG	22680
	CCGGTGTGAG	TAGCGAAAGA	CGGGTGAGAA	TCCCGTCCAC	CGATTGACTA	AGGTTTCCAG	22740
35	AGGAAGGCTC	GTCCGCTCTG	GGTTAGTCGG	GTCCTAAGCT	GAGGCCGACA	GCGTAGGCGA	22800
	TGGAŢAACAG	GTTGATATTC	CTGTACCACC	TATAATCGTT	TTAATCGATG	GGGGGACGCA	22860
	tAGGATAGGC	GAAgcGTGcG	ATTGGATTGC	ACGTCTAAGC	AGTAAGGCTG	AGTATTAGGC	22920
40	AAATCCGGTA	CTCGTTAAGG	CTGAGCTGTG	ATGGGGAGAA	GACATTGTGT	CTTCGAGTCG	22980
	TTGATTTCAC	ACTGCCGAGA	AAAGCCTCTA	GATAGAAAAT	AGGTGCCCGT	ACCGCAAACC	23040
	GACACAGGTA	GTCAAGATGA	GAATTCTAAG	GTGAGCGAGC	GAACTCTCGT	TAAGGAACTC	23100
45	GGCAAAATGA	CCCCGTAACT	TCGGGAGAAG	GGGTGCTCTT	TAGGGTTAAC	GCCCAGAAGA	23160
	GCCGCAGTGA	ATAGGCCCAA	GCGACTGTTT	ATCAAAAACA	CAGGTCTCTG	CTAAACCGTA	23220
- 0	AGGTGATGTA	TagGGcTGAC	GCCTGCCCGG	TGCTGGAAGG	TTAAGAGGAG	TGGTTAGcTT	23280
50	CTGCGAAGCT	ACGAATCGAA	CCCCCACTAA	Nececca con	ጥአ አ ርጥአ ጥጹ አ ረ	COTCOTTATO	22240

	TGTCTCAACG	AGAGACTCGG	TGAAATCATA	GTACCTGTGA	AGATGCAGGT	TACCCGCGAC	23460
	AGGACGGAAA	GACCCCGTGG	AGCTTTACTG	TAGCCTGATA	TTGAAATTCG	GCACAGCTTG	23520
5	TACAGGATAG	GTAGGAGCCT	TTGAAACGTG	AGCGCTAGCT	TACGTGGAGG	CGCTGGTGGG	23580
	ATACTACCCT	AGCTGTGTTG	GCTTTCTAAC	CCGCACCACT	TATCGTGGTG	GGAGACAGTG	23640
	TCAGGCGGGC	AGTTTGACTG	GGGCGGTCGC	CTCCTAAAAG	GTAACGGAGG	CGCTCAAAGG	23700
10	TTCCCTCAGA	ATGGTTGGAA	ATCATTCATA	GAGTGTAAAG	GCATAAGGGA	GCTTGACTGC	23760
	GAGACCTACA	AGTCGAGCAG	GGTCGAAAGA	CGGACTTAGT	GATCCGGTGG	TTCCGCATGG	23820
15	AAGGCCATC	GCTCAACGGA	TAAAAGCTAC	CCCGGGGATA	ACAGGCTTAT	CTCCCCCAAG	23880
	AGTTCACATC	GACGGGGAGG	TTTGGCACCT	CGATGTCGGC	TCATCGCATC	CTGGGGCTGT	23940
	AGTCGGTCCC	AAGGGTTGGg	CTGTTCGCCC	ATTAAAGCGG	TACGCGAGCT	GGGTTCAGAA	24000
20	CGTCGTGAGA	CAGTTCGGTC	CCTATCCGTC	GTGGGCGTAG	GAAATTTGAG	AGGAGCTGTC	24060
	CTTAGTACGA	GAGGACCGGG	ATGGACATAC	CTCTGGTGTA	CCAGTTGTCG	TGCCAACGGC	24120
	ATAGCTGGGT	AGCTATGTGT	GGACGGGATA	AGTGCTGAAA	GCATCTAAGC	ATGAAGCCCC	24180
25	CCTCAAGATG	AGATTTCCCA	ACTTCGGTTA	TAAGATCCCT	CAAAGATGAT	GAGGTTAATA	24240
	GGTTCGAGGT	GGAAGCATGG	TGACATGTGG	AGCTGACGAA	TACTAATCGA	TCGAAGACTT	24300
	AATCAAAATA	AATGTTTTGC	GAAGCAAAAT	CACTTTTACT	TACTATCTAG	TTTTGAATGT	24360
30	ATAAATTACA	TTCATATGTC	TGGTGACTAT	AGCAAGGAGG	TCACACCTGT	TCCCATGCCG	24420
	AACACAGAAG	TTAAGCTCCT	TAGCGTCGAT	GGTAGTCGAA	CTTACGTTCC	GCTAGAGTAG	24480
	AACGTTGCCA	GGCAAAAAAT	GGATGCGATG	AGCCGCATTG	AGACCGCAAG	GTCTCTTTTT	24540
35	TTTATGTCTA	AAACGTCAAA	ATAAAAAGCA	AACACAAAGA	AAAATGGCTT	GGCGAAGTGA	24600
	AAACGTTTGA	ATCTGACGAA	ACGAGAAAAG	Arcgcaacga	GTTTAGTAGA	GCTAAATGAG	24660
	TAAGyGAGAG	CCGAAGTAGA	GGAAAGAAGC	AAGCGATTGT	CACAAGTCAA	GAAAGGTTCT	24720
40	TAGCGASGAT	GGTAGCCAAC	TTACGTTCCG	CTAGAGTAGA	ACTGGAAATG	ATAATTTAAT	24780
	AATGTACACT	TTCGATTGTC	TAAGTATGTA	CAACTTTAAT	TTTGTGTTTA	TATAAATTTA	24840
	AAATGATATC	ATCGAAAACA	AAATATTGTA	TAAATAGAGA	AGAGCAGTAA	GACGGTATCT	24900
45	AATTGAAAAT	GATCTTACTG	CTCTTTTATA	TACTITATTG	AAATACAAAA	AGGAAATTAA	24960
	TTATTATACA	ATAGACAAGC	TATTGCATAA	GTAACACTAA	CTTTTATCAA	AGAAGTGTTA	25020
50	CTTTATAATT	AATGATTTTA	TTAGAGCGTC	TACATGCGGT	TTTAAAGCAT	CATCGTCTAT	25080
50	ACCGCCAAAG	CCTAATATAA	ATTTAGGGGT	TTTCTTATAG	TCTTGATCAT	CATCAAAATT	25140

	TCCATTTTTT	ACTGTAATTG	TAAAATGCAT	ACCCGTTTCA	GCACCTTGAA	TATCAAGCTG	25260
	CTCTTTGTAA	GGTTTCAATC	TTTTTAAAAT	ATAGGTTAGT	TTTCTACGAT	AAATTCGTCT	25320
5	CATTTTATTT	AAATGCCTTT	CAAAACCACC	GGAAGATATA	AACGTTGCAA	TAAGGTTTTG	25380
	CATATGAACA	GGTACAGTGT	TGCCTTCAAT	GTGATTTTGA	GAATGATATT	TITTCATTAT	25440
	AGAATAGGGT	AACACCATAT	ATGCAACTCG	ACAGCTAGGA	AAAATAGACT	TTGAAAATGT	25500
10	ACTGATATAA	ATCACTTTTT	CTCCTCTTGA	ATATAGACCT	TGAATTGCTG	GAATGGGTTT	25560
	GCCGAAATAT	CTAAACTCGG	AATCATAATC	ATCTTCTATA	ATAAATCGTT	CTTCTTTTTC	25620
	TTGAGCCCAT	TGTATTAATT	GAGTTCGTTT	TTTTAAGTCC	ATCACATATC	CAGTTGGAAA	25680
15	TTGATGGGAA	GGCGTTATAT	ATAÇTATATT	TTTTTGTGAT	TTAATAACTT	CATCTACGTT	25740
	TATTCCATTA	TCTTCAACTT	CAATTTGTTC	ATATTCAACT	TGTTTTTTAT	CTAAAATATT	25800
20	TTTGATTGGT	GGATAACTAG	GTTTTTCGAT	AATAAATGTT	GAAGTATAAA	GTAAATCGAC	25860
20	TAATTGATTT	ACTAATTGTT	CGGTAGATGA	GCCAATTATA	ATTTGATTAG	GATCACAAAT	25920
	TACGCCACGA	TTAGTAAATA	AATAAAATGC	CAGTTGAAAC	CGCAAATGTA	ATTCTCCTTG	25980
25	AAAATGTCCT	CTACGTAATT	GATTTAAATG	ATTTGTATCA	TAAAGATCTT	TGGAATACTT	26040
	TCTGAAAAGT	TCTATAGGGA	AATGTTTCGT	ATCTATTTCA	TCCAAATTAA	AAGCATAATC	26100
	ATAAGCTTCA	TCACTCGCTT	TTGGTTTATA	TGAATCATCA	TCAAAAAGAG	AGGGGATAGG	26160
30	TTGATTGTTT	AAAATTGTTA	AAGATTCAAT	TTCGGACACA	AAATATCCAG	AGCGAGGTCT	26220
	TGAATAAATG	TAACCTTCGT	CTAATAGAAG	TTGATATGCA	TGCTCTACGG	TTGTTTGGCT	26280
	AATAGATAAA	TGTTTGCTTA	ATTGTCTTTT	agaataaaat	TTATCGCCTT	CTTTAAATTG	26340
35	ACCTTCAATT	ATTTGTTTTT	TTAATTTTTC	ataaagttga	TGGTATAAAG	TGTTTTTCAA	26400
	TTTTATAACT	GACCTCCTAA	ATTTATCTTA	TTTTGTACCT	TTTTAAATAT	CAGTTTATAC	26460
	ATTACAATGT	ATTTAATCAA	CTTGAAAAGG	GGTTTTATGT	ATAATGAGTA	AAATTATTGG	26520
40	ATCAGACAGA	GTCAAAAGAG	GTATGGCTGA	AATGCAAAAA	GGCGGCGTTA	TTATGGATGT	26580
	CGTTAATGCT	GAGCAAGCAA	GAATTGCAGA	AGAAGCTGGC	GCGGTAgCAG	TTATGGCATT	26640
	AGAACGAGTA	CCTTCTGATA	TTAGAGCTGC	TGGTGGTGTT	GCACGTATGG	CAAACCCTAA	26700
45	AATTGTAGAA	GAAGTAATGA	ATGCTGTTTC	TATTCCAGTC	ATGGCTAAAG	CACGTATTGG	26760
	TCATATCACT	GAAGCAAGAG	TATTAGAGGC	GATGGGTGTT	GACTATATTG	ATGAATCAGA	26820
	AGTGTTAACA	CCAGCAGATG	AGGAATATCA	CTTAAGAAAA	GATCAATTTA	CAGTACCATT	26880
50	TGTATGTGGA	TGTCGTAATT	TAGGTGAAgm	TGCGCGTAGA	ATTGGTGAAG	GTGCTGCTAT	26940

	ACAAGTTAAT	TCAGAAGTTA	GTCGATTGAC	TGTAATGAAT	GATGATGAGA	TTATGACTTT	27060
	TGCGAAAGAT	ATCGGTGCGC	CTTATGAAAT	TTTAAAACAA	ATTAAAGACA	ATGGTCGTTT	27120
5	ACCGGTAGTT	AACTTTGCAG	CTGGTGGCGT	TGCGACTCCT	CAAGATGCTG	CTTTAATGAT	27180
	GGAATTAGGT	GCTGACGGTG	TATTCGTTGG	ATCAGGTATT	TTTAAATCAG	AAGATCCAGA	27240
10	AAAATTTGCT	AAAGCAATTG	TTCAAGCAAC	AACACATTAC	CAAGACTATG	AACTAATTGG	27300
10	AAGATTAGCA	AGTGAACTTG	GCACTGCTAT	GAAAGGTTTA	GATATCAATC	AATTATCATT	27360
	AGAAGAACGT	ATGCAAGAGC	GTGGTTGGTA	AGATATGAAA	ATAGGTGTAT	TAGCATTACA	27420
15	AGGTGCAGTA	CGTGAACATA	TTAGACATAT	TGAATTAAGT	GGTCATGAAG	GTATTGCAGT	27480
	TAAAAAAGTT	GAACAATTAG	AAGAAATCGA	GGGCTTAATA	TTACCTGGTG	GCGAGTCTAC	27540
	AACGTTACGT	CGATTAATGA	ATTTATATGG	ATTTAAAGAG	GCTTTACAAA	ATTCAACTTT	27600
20	ACCTATGTTT	GGTACATGCG	CAGGATTAAT	AGTTCTAGCG	CAAGATATAG	TTGGTGAAGA	27660
	AGGATACCTT	AACAAGTTGA	ATATTACTGT	ACAACGAAAC	TCATTCGGTA	GACAAGTTGA	27720
	CAGCTTTGAA	ACAGAATTAG	ATATTAAAGG	TATCGCTACA	GATATTGAAG	GTGTCTTTAT	27780
25	AAGAGCCCCA	CATATTGAAA	AAGTAGGTCA	AGGCGTAGAT	ATCCTATGTA	AGGTTAATGA	27840
	GAAAATTGTA	GCTGTTCAGC	AAGGTAAATA	TTTAGGCGTA	TCATTCCATC	CTGAATTAAC	27900
	AGATGACTAT	AGAGTAACTG	ATTACTTTAT	TAATCATATT	GTAAAAAAG	CATAGCTTAA	27960
30	TGTATGCTAA	ATCAACGAAT	TATTGATATT	TATAGATTTG	TTGAGAAGAA	AATATCTCCT	28020
	TCAAACTTAG	CTTTGGAGGA	GTTATTTTTT	ATGTCAAAAT	TAAAAATGAT	AAAAAATAAA	28080
35	GCTATACATA	AGAAAAAAAC	CCTTCAAAGA	GACTGAGAAT	AGTCAAAATT	TTGAAGGGGT	28140
	TAATTCGATG	TTGATGTATT	TGTTAAATAA	AGAATCcAGC	GATTGCAGCT	GAAATGAAAG	28200
	ATACTAGTGT	tGCACCGAAT	AATAATTTCA	AACCAAAGCG	GGCAACTGTA	TCTCCTTTTT	28260
40	TGTCATTAAG	TGATTTAATC	GCACCTGAAA	TAATACCGAT	AGAGCTAAAG	TTAGCAAATG	28320
	ATACTAAGAA	TACAGATGTA	ACACCTTTTG	CGTGTTCAGA	TAAATCACTA	AGTTTACCAA	28380
	GTGCTTGCAT	TGCTACAAAT	TCGTTAGATA	ATAGTTTTGT	CGCCATAACT	GAACCGGCTT	28440
45	GAACTGCATC	TTGCCATGGC	ACACCGACTA	AGAATGCAAA	TGGTGCAAAG	ACAAAACCAA	28500
	TTAATGTTTG	GAAATCCCAA	GAAATAGCGC	CACCTGAAAC	TGTACTAAAG	ATATTGCTTA	28560
	CAATTCCATT	TAATAGAGCG	ATAATGGCAA	TGTATCCGAT	TAACATTGCG	CCTACAATGA	28620
50	CAGCTACTTT	AAATCCATCT	AAAATATATT	CTCCTAGCAT	TTCGAAGAAT	GATTGTTGTC	28680
	TTTCTTCAGT	TTCTTCAACT	AATAATTTGT	CATCTTCTTC	ATTAACTTTA	TAAGGGTTAA	28740

	TAGGTTCAAT	TAAGGTAAAG	TATGCACCGA	TAATTGAAGC	AGAAACAGTC	GACATTGCTG	28860
	AAGCTGTTAA	TGTGTATAAA	CGTTGCTTAG	GTATGTATGG	TAATTGTTTT	TTAATTGAAA	28920
5	TAAATACTTC	AGATTGTCCC	AAAATTGCTG	CAGCAACTGC	ATTGTATGAT	TCTAAACGTC	28980
	CCATACCATT	AATTTTAGAA	ATTAAGAATC	CTAAAACATT	AATGATTAAA	GGTAAAATCT	29040
	TTGTGTATTG	AAGGATACCG	ATAATCGCTG	AAATAAATAC	GATAGGTAAT	AATACACTGA	29100
10	AGAAGAATGG	TGGTTGCTTA	GGATCGATAT	ATTGAATACC	ACCGAATACA	AAGTTAACAC	29160
	CATCTGCTGC	TTTTAATAAT	AAGTAGTTAA	AACCGTTTGA	AATACCACCA	ATAACCTTGA	29220
15	TTCCCATTGT	AGTTTTAAGC	AAGATAAATG	CAAAGATAAG	CTGAATTGCA	AGTAAAATTC	29280
	CTACATATTT	CCAGCGAATA	TTTTTCCTGT	CTGAGCTAAA	TAGAAACGCA	AGTGCTAAAA	29340
	AGAAGATAAT	TCCGATAATC	CCAATTAGAA	TATGCATATA	TTTCTCATTC	CTTTAGTTTT	29400
20	TTCTACaATc	TATCATACAA	TAAAATGGAA	GGGCTAACAT	CATAAATTTT	TGAAAATATA	29460
	AAAACAAATT	AATTGAAAAA	GGTCAAAATA	GGTCATATAA	TATAGTCAAA	GAAGGTCAAA	29520
	AAGGGGTGAT	ATACATGCAC	AATATGTCTG	ACATCATAGA	ACAATAaTCA	AACGTTTATT	29580
25	TGAAGAGTCG	AATGAAGATG	TCGTTGAAAT	TCAGAGAGCG	AATATCGCAC	AGCGTTTTGA	29640
	TTGCGTACCA	TCACAATTAA	ATTATGTAAT	CAAAACACGA	TTCACTAATG	AACATGGTTA	29700
	TGAAATCGAA	AGTAAACGTG	GTGGTGGTGG	TTACATCCGA	ATCACTAAAA	TTGAAAATAA	29760
30	AGATGCAACA	GGTTATATTA	ATCATTTGCT	TCAGCTGATT	GGACCTTCTA	TTTCTCAACA	29820
	ACAAGCTTAT	TATATTATTG	ATGGGCTTTT	AGATAAAATG	TTAATAAATG	AACGTGAAGC	29880
35	TAAAATGATT	CAAGCAGTTA	TTGATAGAGA	AACGCTATCA	ATGGATATGG	TTTCTAGAGA	29940
33	TATTATTAGA	GCAAATATTT	TAAAACGTTT	GTTACCAGTT	ATAAATTATT	ACTAAATGAA	30000
	ATGAGGTGTT	GAAGTGCTTT	GTGAAAATTG	TCAACTTAAT	GAAGCGGAAT	TAAAAGTTAA	30060
40	AGTTACAAGT	AAAATAAAAA	CAGAAGAAAA	AATGGTGTGT	CAAACTTGTG	CTGAGGGGCA	30120
	CCATCCGTGG	AATCAAGCTA	ATGAACAACC	TGAaTATCAA	GAACATCAAG	ATAATTTCGA	30180
	AGAAGCATTT	GTTGTTAAGC	AAATTTTACA	ACATTTAGCT	ACGAAACATG	GAATTAATTT	30240
45	TCAAGA						30246

(2) INFORMATION FOR SEQ ID NO: 57:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 14333 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:

	TATTCCCCCA TCGGTTTATT AAATCGTCCA TTTCAATACT GTTTTTCCCC AAGATGTCGA	60
5	TAAATCCATT TCAAACGCTT GGACGATATC TTGCATCGTA CATACATTAA TTTCATGTCC	120
	TTTTAATAAT GCTAACTTTT CAACTATGTC TGGGTACTTA CGATATAAAT CAACAACTTG	180
10	CTCAAAATCT TTAGAGCCGC TTCGACTACT ACCAATCAAC GTTAATCCTT TTTCAAGTAC	240
,0	TAATCGTGTA TTCACTTCCA CGGGTAATTC ACTTACGCCT AACAAAGCAA TACTGCCTTC	300
	TGGTGAAATA TGTTCAACTA TTTGTTGAAG TGCAACTTGA CTTCCTTTAC CTCCAACACA	360
15	TTCAAATGCA TGATCAATTT TAAGATCATC TGGTATTTGA TTTACTGTAA AGATGTCATC	420
	TACAAATGAA AAATGACTTA ATTTATAGTC TGTCTTACCA AATACATAAG TTTTAGCTTC	480
	TGGGTACAAC TTACGTAGCA AAATAGCAGT AATATAACCT AAGTTACCAT CACCCCAAAT	540
20	ACCAAAGCTG GTTTTCAAAG GTATAGATTT ACGTTCAAAT CGTTGTATAG CATGATAACT	600
	TACTGACACT AACTCTGTGT ATGAAATCGT ACTCAAATCA ATGTCATTAG GCAGCGGAAC	660
	GATACGATCA TGTGCCATCA CAACGTAGTC TTGCATAAAA CCATCATAAC CACTAGATCT	720
25	AAAATAACTA GAGGCTAAGT AATTCTCCGC AATAATATGA TGTTGCTCTG TAGGTGTATT	780
	CGGTACCATT ACTACTTTCG TACCTTTTTC AAATACCCCT TTACTATCAA ATACAACTTC	840
30	ACCAACAGCT TCATGAACTA ATGACATTGG TAATTTTTTTG CGTAGTACAT TTTCATCTCT	900
30	TCGACCTGTG TAATACCTTT GATCAGCTGC ACAAATAGAC AAGTATAAAG GTCTTACGAT	960
	GACATGATTA CCATAAATAT CAACATTATT ATATGTGACG TCGAACTGTC TCGGTGCAAC	1020
35	GAGTTGATAT ACTTGATTAA TCATCGGCAA TATCACCTTG AATAATGGCA TTTGCTACTT	1080
	TTAAATCATA CGGTGTTGTC ACTTTAATGT TGTATAGTTC TCCACGTACC AATTTAACTG	1140
	CATGTCCAGA TTCGACAATG ATTTTACATG CATCTGATAA GATTTCTTTT TGTTCACTAC	1200
40	TTAAGGCGCG ATAACTATCT TGTAATAATT TAATATTAAA TGATTGTGGT GTTTGGCCTT	1260
	GATACATTTC ATTCCTTACA GGGATACTGT GTATGTTCTG TTTATCTTTA GACATTACAA	1320
	TCGTATCAAT TGCTTCAATG ACTGTATCTA CTGCACCATA TTTTGCTGCT ACTTCAATGT	1380
45	TCTCTTTAAT AATACGTTGA GTTAAAAATG GTCTTACGGC ATCATGAGTT ACAATCACAT	1440
	CATCATTATT AATTCCATTT ACATTGCGAA TATGGTCGAT AATGTTCATA ATTGTTTCAT	1500
50	TTCGATCCGT ACCACCTGCA ACTACTTTGA CACGTTGATC TGTAATGTTA TATTTTTTTA	1560
50	AAATATCCTG TGTATGGGAA ATCCACTGTG CTGGCGTTGC GATAATAATC TCATTAAATT	1620
	CACTCACTAA AATGAACTTC TCAATTGTAT GGATTAAAAT CGGTTTATTA TCAATATCTA	1680

	CTGCATAAAT	CATGTTGTCC	TCCATTCTGT	CATTACATCA	TTTCCATTTA	TACATTACTG	1800
	ACCTATGCCC	GCACATAAGC	CTAACCTATT	GCTCACTTGC	CTCTTTTATT	AATCCAAAGA	1860
5	TAGTTGTCAC	AATAGTGTGA	TAATTTTTA	TAAAAATGTA	TTTTTGTAAC	TGACCATTCT	1920
	AAGTTGTTTT	GCCATGCAGT	TAATCATTAA	CTCTGACGAT	ATTAAATTGT	TAAAGGTATT	1980
10	AATGTTTACT	CTTTTTCAAA	TTCATTATTA	CTGCCATCAT	TTTACCATAT	ATTATAATAA	2040
	ATTTATCTTA	TTAAGTGGCT	GTACTTGATT	TTCACTTTAA	AAATTATCAA	ATATTGCCAT	2100
	CTCATTTTAA	GTATACAAAA	TGCAAAACAA	CCGATTCACA	AGCATATTTC	ACACAAGTAA	2160
15	ACCGGCTATT	TATCAACGTA	TATTCGAAGA	TGAATTATTT	CGATAGTATC	TATAGACCAG	2220
	ACGGCATTCG	CACTTTCATA	GCTATAACTA	TACCAGCGTT	TTCGTCCTCA	AAGGTGCATA	2280
	CTAATAAATC	GTAAACATGA	CTTTATCAAA	TCGTTCTTTC	TTGTTAACTA	ATTTATCAAA	2340
20	TGTCTCCGGG	CCTTTTTCTA	ACGGTAAAAA	ATGAGAAATA	ATAGGCTTTA	CATTAATATC	2400
	TTTCGTCTTC	ATATAATGTA	AGGTTGCCGT	CCACTCTTTG	CCCGGAAAAT	TACTGGACAA	2460
	ACAGTTCCAA	GAGCCACATA	CTGTCAACTC	GTTACGCAGA	ATTTTTTCAA	AATGAACGCG	2520
25	ATCAATCTCA	ATATCATCAT	ATGGTATTCC	GAGTAATACC	ACCTCGCCAC	CTTTTTTAGG	2580
	TAGCGTCAAT	ATTTGACCAA	TCGTAACTTT	AGCACCTGAT	GATTCTATAG	CTAAATCGAT	2640
30	TTGATTGGCG	TAATGATTTT	CGATGAATTT	CTCAAGATTT	TCTTCTTTTG	AATTGATTGT	2700
	TTGATGTGCG	CCCAATGATG	TTGCAATATC	TAGTTTATGC	GCATCTATAT	CTATAGCGAT	2760
	GATATGTGCA	GCACCAAATA	TTCGTGCCCA	TTGAATAGCT	AACAAACCTA	TACTGCCACA	2820
35	CCCCATTACT	GCAACAGTCA	TACCAGGTTG	TATATTCGAT	TTATAAAACC	CATGCGCAAC	2880
	AACGGCTGAT	GGCTCAACCA	TTGCTGCTTC	AATGTAATCA	ACATTGTCTG	GAACCTTTAA	2940
	AACATTTTGC	GCTGGCAATT	TGACATATTC	CGCGAACGAT	CCAGGTTCAT	ATGAGCCAAT	3000
40	GACGAATAAC	TTTTCACATC	GTGCATATTC	ACCTTTTAAA	CAATACTCGC	ATTGATAACA	3050
	AGGTATTGCT	GGGCAACCTG	TCACTTTGTC	GCCCACATTA	ACATGCGTAA	CATCACTTCC	3120
	AATGGCATCT	ACTACACCTG	AAAATTCATG	ACCAAATGGC	ATACCTTTAA	TGTATGGCCC	3180
45	CATTTTTTTG	TATCGTGACG	TGTCTGAACC	ACATATGCCA	GTCGCTCGTA	CTTTAATAAT	3240
	AACGTCATTC	GCACTTTCAA	TGACTGGCTT	TTCATTATCC	TCATACCGTA	AATCTTCCAC	3300
50	GCCATATAAT	TTCAATGCTT	TCACTTGTAA	ATCACCTCAA	ATTTGATTTA	ATTCACAACT	3360
<i>.</i>	TTTTTCTTTT	TAAAAATACC	TGTCGCAAAA	TAACCTGCAA	TGACAATGGA	ATTACTTACG	3420
	AGTAAATGTT	~~~~~~	አጥሮአርጥሮአ ሞም	ጥርጥርጥጥን አጥር	CCCCNACCAM	11110mm100	2400

	TGCTTTAATA	CCTTCGCCGG	ATTTTAAATG	TTGATACGCC	TCGTCCCATT	TCGAAATATC	3600
	ATATATTTT	GTCACCAAAG	CTTCAGCATT	TACTAAACCA	TCCGCCATAA	GTTGCAATGA	3660
5	AGGTTCCCAA	TCTGCTGGCT	TTTGACTTCT	ACTACCAACA	ACTGTTATTT	CTTTTTGAAT	3720
	CACTTTTTCC	ATATCAAATG	GAATTTCAGC	ATCCTTAAAA	ATACCTATTT	GACTGTAGAA	3780
	ACCTTTTTTG	CGTAAAATAT	CCAAACCTTG	TCGTGCTGCT	GGAACTGCAC	CTGAACATTC	3840
10	AACAACAACA	TCTGCACCGT	AACCGTCTGT	AATTCCATTG	ATATACGTTT	TTAAGTCTGT	3900
	TTGTTGTAAA	TTGACTACAT	AATCCATGTG	CAATGCTTCT	GCTTTATCTA	ATCTGACTTT	3960
15	GTCATTGTCC	AATCCAGTTA	CCACAACAGT	TGCGCCTTTA	CTTTTTAACA	CTTGTGCTAC	4020
	AAGTAATCCG	ATTGGCCCAG	GTCCCATTAC	AACTGCTACA	TCGCCTGAAT	TGACTTGAAT	4080
	CTTAGAAACG	CCATGATGTG	CACATGCTAA	TGGTTCTGTC	ATAGCTGCAG	ACTGATACGA	4140
20	TALTCGTCTG	GAATATGATG	CAAACTTTCT	TCACGTGCAA	TGACATAATT	AGTAAATGCG	4200
	CCATCAACTT	GTGTTCCAAT	ACCTTTTCGA	TGGTTGCATA	AATTATAGTC	TTTTGATTTA	4260
	CAGTATTCAC	ACTCATTACA	AACATAGAAT	GTCGTTTCAG	aTGtGACACG	GTCACCAACT	4320
25	TTAAAATCTT	TAACGTCTGC	TCCAACTTCA	ACGATTTCAC	CAGAAAATTC	ATGACCTAAT	4380
	GTCACTGGAA	AATTAACTTT	ATAATGACCT	TCATAAGTAT	GAATATCTGT	GCCACAAATT	4440
	CCTGCATAAT	GTACTTTAAT	CTTTACTTTA	TCATCTAGCG	GTGTTGCAAC	TTCTTTATCA	4500
30	AGAAGTTCTA	AGTTGCCATG	TCCTTCTCTT	GTTTTTACTA	AAGCTTTCAC	CACAAACACC	4560
	TCGATTTTTA	ATTGAATAGA	CTAAATAGTT	TAAAGATAAG	ATAGTTAACG	ATATTACCAC	4620
05	CTTGATCAAT	ACTTGAAATT	TCAGATGAAC	CTTTTGGCAT	TTGTACATTC	GTACCTTTCG	4680
35	CCATATCTGT	GAAAATGGGT	GCTACGTCTG	TTGCAATATA	TAGTGAAATT	GCAATCATAA	4740
	TCGTACCCAC	AATGACAGAA	TGAATAATGT	TICCTCTTGC	TGCACCAACA	ATAAACGCGA	4800
40	CAACAAATGG	TATCGTTGCT	AAGTCACCAA	AAGGTAGTAC	TTGGTTTCCT	GGTAAAATAA	4860
	CGGCTAATAA	AACAGTGATA	GGTACTAAAA	TTAATGCTGT	CGAAATAACT	GCTGGATGAC	4920
	CTAATGCTAC	AGCCGCATCC	AATCCAATAT	AAATTTCACG	TTCGCCAAAA	CGTTTATTTA	4980
45	GCCATGTTCT	TGCAGACTCT	GAAACTGGCA	TTAAACCTTC	CATTAAGATT	TTTACCATTC	5040
	TAGGCATTAA	TACCATTACT	GCAGCCATTG	ACATTCCTAA	ATTAATGATG	TCTCCAGGTT	5100
	TGTAACCTGC	TAACACACCA	ATACCTAAAC	СТААААТТАА	GCCGACAAAT	ATAGACTCTC	5160
50	CAAATGCGCC	AAAACGTTTT	TGAATTGTTT	CAGGATCAGC	ATCTAACTTA	TTCAGACCGG	5220
	СТАСТТТТТС	יידיד ארים ארידי א	ስ <i>ር</i> ጥልልርጥል እ	ጥ ል ርርጥርርጥር ር	77777C7777	OTTA COMPOSITION	5220

	CTACTTTCAA	ACAGATAATT	TGGAAAATAA	CTGCTGCTAA	TAACGCTTGC	CAAATACTGC	5400
_	CTGATACGGC	ATAAACCATT	GCTGCTGTAA	ACGTATAATG	CCAAAAATTC	CAAATATCTA	5460
5	CATTCATCGT	CTTTGTCACT	TTAGTTACTA	GCAATACAAC	GTTAACTATG	ATTCCGAGTG	5520
	GAATAATAAA	TGCTGCGACA	GATGATGCCC	AAGCGATAGA	TGATGTTGCT	GGCCAACCTA	5580
10	CATCAATCAC	ATTCAGACTG	ACGCCTAAAT	TTTTAACCAT	CGCTTGTGCT	GCTGGCCCTA	5640
	AATTTTTAAC	TAATAAATCG	ATGACTAAGA	AAATCCCTAC	AAAAGCCACA	CCTATTGTTA	5700
	AACCAGACCT	AAATGCCGCT	CCAATTTTCT	GCCTAAAGAA	TAGGCCAAGC	AAGAATATGA	5760
15	CAACCGGTAA	AATAACAGTt	GCACCTAAAT	CTAAAAATCC	CCTTACAAAA	TCAGTGAAGT	5820
	AACTCATATT	TAAACCCTCC	CTGTTATATA	TGCATTGTCA	CGATACTTTC	CGATTGTGAT	5880
	TACATTTGAC	GTTACAGTCA	TTTCAACGAC	AACCCTTGCT	AAATTCGACT	GCAGTCCTTT	5940
20	TGAATTACAG	tCACTGCGTT	TCTATGTCAT	CAACAATCAT	TTGTCGTGAT	AGTCATTTAT	6000
	ATGCAATTTG	CATATATTAA	TATGTTATCG	ACCCACGTTA	CATATCAATT	CCGTTATTTT	6060
	TGTAACTCTG	TTAAGATTTG	TTGTTTTGTT	TCTTCAATAC	CAATACCAGT	TAAGAAATTA	6120
25	CGTGCGTTGA	TAACTGGGAA	TTTATATTCT	TTTTTTGTCA	TTGCAGTTGT	ААСТААТААА	6180
	TCTGCAGTGT	CTTCATAAGG	TCCAACTTCT	GTAATTTTGA	TTTGTTTAAT	ATCTACTTTA	6240
30	ATATTGTGTT	CCTTTGCCAT	TTCTTCAATT	GCATTATTTA	CTACTGTTGA	CGTTGCAATA	6300
	CCTGCACCAC	ACGCTACTAA	TACTTGTTTC	ATTTTCAATT	CCTCCAATTA	ATTTTTAGTT	6360
	ATATTCCAAA	TAATCATTGA	TTAGTGTTGC	TAAAATTGTT	TCATCTTTCG	TTCGTAGAAT	6420
35	CTGCTCCAAT	TTTTCTTCAC	TTTGAAAAAT	TTGCATCAAC	TGTTGTAACA	GCTTAAGTTG	6480
	ATCATCTACT	TTATCCATTG	CTAACATAAA	AACGATTTTC	ACTTCTGTCT	GTTGATCAAG	6540
	TGTTCCCATT	TCAATAAACG	GCACTTCTTT	TTCTAGAACA	GCCACACCTA	TCGTTCTATG	6600
40	GTTAATATGT	TCGACATCTG	TATGCGGTAT	AGCGACCGAA	CATAGATGCG	TTGGTAAACC	6660
	AGTAGCAAAT	TCTTTTTCTC	TGTCGATGAC	TGCATCTTTA	AACGTTGACT	TCACGAACCC	6720
	ATTTTGAAAT	AACACATCTG	ACATTTGTGA	CAATACGGAT	TCTTTATCAG	TTGCCGACAA	6780
45	ATTGAGCATT	ATATTTTCTT	TATGCACTAA	TTGCTGTCCC	ATCCATTTTC	CCTCGCTTCT	6840
	TTATTTGAAT	AATTTTTTAA	AATCTCATTT	ACATCAGAAT	TTTTGCGACT	TTGTATGATG	6900
50 ·	CGCTTAATTG	CGTCATTGTC	TTGCGCCACA	TCTCTCAATT	GTAGTAACGC	TCTTAAGTGT	6960
50	GTCACTTTAT	CAACAGCAGC	AATAGGTACA	ATAATATGGA	TTGCTGTGCC	ATCTGACATG	7020
	ጥልጥልጥጥር-ር ምም	ביים איים איים איים איים	СВВСВТВСТС	y incorporation	татстасато	CONTONO	7090

	TGCATCTCAT	GAATATATTT	AATATCAATA	AAATGATTAG	CAACTAACAC	ATCACTTGCT	7200
5	TTAGCAATAG	CTTCATCAAT	ATTTTCAACA	TGATGCATTC	TTTTCACGTG	CCTTGCCGGT	7260
J	ATCAAGTCAG	CTAAATCTAA	TGYCTWATTT	tGTGtGACaA	TCGATCCATT	AATGGTTGAA	7320
	ATTGAATTAT	AATTGGCAAT	AAAATCTTCT	AAACCATCAC	GTAGTCTGTA	ATGTCATTAA	7380
10	CTGTCGTTGT	GCGTTCAATT	AATGCCATTA	ACTTGTTTAT	TTCCTTATCA	ATGTCAGCCG	7440
	ATTCCTTATT	AATGTACTTC	ATCACTTCTT	TACGTAACTT	TCGTTGCTCA	TTTTCAGATA	7500
	AAGCTACTTT	TGTGATAAAT	AATTTTTTAT	GTGTTAGGAC	AAACATTGGT	GAAAAGACGA	7560
15	TGTCATAATC	TAATGTGTAA	TTTTCAAATG	TTCTAAGTGA	AATCGCATCT	AAGAAAATAA	7620
	TTTCTGGAAA	TAAGTTTCGC	AACTCGTATA	ACATCATTTG	TGATACTGAC	GTGCCTTGTG	7680
	TACACACGAT	AATAGCTTTT	ATCTTGCCAT	CGAAGTTTTC	ATCTTGACGT	CTCAAACTAC	7740
20	CTCCGAACAA	CATGGTTAAA	TATGCTATTT	CATTATCAGG	CAACGATTTT	CCGAAATATT	7800
	CAGTTAACGA	TTGACATGAT	TGTTTCACCA	TATGAAATAA	GGATTGATAA	TTTCCTTGTA	7860
	AAGGATTTAT	TAATTCATCA	CGATCCGTTA	AGTTATATTT	AATCCTATAA	AAAGCAGGCG	7920
25	TTAAATGTAA	CAAGAGTTGC	TGTGATAATT	TCTCCTTATC	TTCAATGTTA	ATAAAAGTGA	7980
	TTTGTTCAAA	ATGGTGAATC	ATTTGAGCGA	TGGCCATCGT	TAAATTCGAT	ATGCTATCTG	8040
30	ATTCTTGCAA	ATCAGTCCAT	TGCACACTTG	TTGAAAGTAA	GTGTAATGTC	AAATATAACT	8100
	TTTCCGCTTC	TGGCAAATCC	GGCTCATGTT	GCGTCATAAT	CTCCGTTGCT	TGATATTCTT	8160
	TCGTATCCCT	CAAATACTGA	TAATTAATAT	TTAATGGATT	CATCACATGA	CCACTTTGAA	8220
35	TTCGTCTACG	AATCACACAA	AGGACATAAG	GCAATGAACT	AAGTGATTTG	TCTATAAAGC	8280
	GACTCTTCAA	AAATTGTTCT	ACCTGTTTGA	TCTTGTCTTT	TTGATATGCG	ATATCTTCGA	8340
	ATGTTAAGTT	GAGCGCCTTT	AAAACTTCAC	TTTTAGTAAT	ATCATGATTC	AACCTTTGAT	8400
40	CAAŤCAACTT	AATGAAGAAA	CGGCGAACTT	CAAATTCATC	ACCAACAATT	TCATAACCAT	8460
	GTTTTCGAGA	ATACTTAAGT	GACAAACCAT	GATTTTCCAA	TTGCTCTTTC	ACATGATTTA	8520
	TATCGTGAAT	GACAGTATTT	TTACTGACTT	GTAAATCAAT	TGAAAAATGG	TTTAGAGACA	8580
45	TTGCGTTTTC	СТТАСТАААА	AGCATGAGCA	ттааатаата	ACGACGTGTT	TCTATGCTAA	8640
	AAATGACATT	GTTGCCGTTT	AACATTTGCT	GCTCCGATAC	ATCTCGCTTG	AATAACGTCA	8700
50	TGATTTCAGA	ACTTACAATA	AAATTTCCTT	GGCTTGTTCT	TTCAAGTTTT	GGATAACCCT	8760
50	CTTGTTCAAG	CCACAAATTG	ATTTTTTGAA	TGCGATATCC	TAGTTGTCTA	CGAGACAAAC	8820
	CAAATATCGA	TTCAAGTTCT	TTACCATGAA	TAGTAGGATT	СВАТАСВАТТ	ጥርጥር አር ሞል	8880

	TCAATCGTCA	CACCGATGTA	CACACTTTGA	ACACATATTT	TCAAAATGAG	CATGTACATC	900
	ATTGTGATGT	TTTAACAACA	TTTCAATTAT	ATCTATATTT	TTTGTGATTT	TAATCTTTTA	906
5	AAATAAAGCA	ATTGAAATTT	TTGCATATAT	TTTTGTGTTT	TGTGTTTTTT	TGAAGCATTT	912
	TTAACATACA	TATCTCAATC	ATTATCAAAT	TGTCATGACC	ATTGTAACCC	AATACAAAAA	918
10	CCCTAAGGAC	GCTTATATCA	GGCGCCTTAG	GGTTAACTGT	ATCTATTTAA	TTAAGTATTA	924
70	TTATTCGTAT	GTACGTAACT	TATGGTCTAT	CAAGTTCCAC	ACTTCTTCAA	CATCAACTGC	930
	TGTAGCAAAA	TAAGCATTGG	CAGGCTTACC	TGTAACATGA	TTTAAATCGA	CAGCCATAGT	936
15	GCCATAAGTT	AGTGGACTTT	GATGTTCAAT	GTCGATATTA	ACGGGTACCA	TTGTAAACAA	942
	TTCTGGTTGT	AACAAATACA	AAATTGTACA	AGCATCATGT	ATTGGACCAC	CATCCATATT	948
	AAAGTGAGTC	TTGTATGTCT	TCTTAAAGAA	TTGCAATAAT	TCTACGACGA	ACTGTGCAAC	9540
20	AGGATTATTG	ATACTTTCAA	AGCGTTCAAT	CACGTGATCG	TCGGCTAAAA	CTTGATGTGT	9600
	TACATCTAAA	CCAAACACAT	TTATAGTAAT	CCCACTTTCA	AAAACACGCT	TCGCTGCTTC	9660
	AGCATCTACC	CAAATATTGA	ATTCTGCTGT	AGGCGTCCAA	TTTCCAAATG	TACCACCACC	9720
25	CATCAAAGTA	ATAGATTCAA	TATGCTCAGC	GATTCTTGGC	TCACGAATCA	ATGCCGTTGC	978
	TACATTCGTA	AGAGGACCTG	TCGCTACAAT	TGTTACAGGT	GTATCACTCG	TCATCACTTT	9840
	GTTTATAATC	ACATCTGATG	CTGGCATTGC	AACTGCTTGA	CGTGATGGTG	TCGACGGTAG	990
30	TTTCGGACCA	TCTAATCCAG	ATTCCCCATG	TATTTCAGAA	GCAAAGGCAG	CTGGTTTAAT	996
	TAACGGCCTA	TCCGCACCTT	TCGCTACTGC	TATATCTTGG	CGTCCCATAA	TATCCAATAC	1002
35	GTTCAAGGCG	TTTGTCGTAT	TCTTGTCAAC	TGATTGATTA	CCTGCGACTG	TTGTTACAGC	1008
	TAATATCTCT	AGTGGACTGT	CAATTGCCCC	CGCTAAAATT	AATGCTATTG	CATCATCGTG	1014
	TCCTGGATCA	CAATCCATAA	TAATCTTTCT	TTTCATTTAT	ATATCCACCT	TTCTTAAGTT	1020
40	GTTATCGATA	GCTTATGTAT	ATTTATTTAT	GTGGTGAATC	ATGTTTATTT	TGAAAAATAG	1026
	TTTTAACTTT	CTCATATTTT	TGGATACAAA	CACTATTTAT	CTATTTTATG	GCTTATAAAT	10320
	TTATCCGATA	TGCCTTATCA	ACCTACCTCG	CTAAAAATAG	GATGTCTACA	TATCTATACC	10380
45	GACTTTTGTC	AACTCATTTT	CACAACAATA	TAAACAGCAA	TTTATATGAT	TGTTACATGA	10440
	TTCAAACAAT	TTTTATGAAA	AATATTTTCA	TACACAGAAT	ATATATTGAT	ATTAAATTTC	10500
	TCAAAAGCTA	TATTGAGAAT	AATTAGGAGG	GATGTTGATG	AAATCTTTAT	TTGAAAAAGC	10560
50	ACAGCAGTTC	GGCAAGTCCT	TTATGTTACC	TATCGCAATC	TTACCAGCTG	CAGGTCTATT	10620
	CTTCCCTATC	сстсстссат	ТАВСТВВТСС	AAACACCGTT	AAAGCATACC	מבושידידים	10686

	AAATTTACC	GTCATCTTTG	CAATTGGTGT	CGCAATCGG	TTATCTAGAA	GCGATAAAGG	10800
	TACTGCAGG	T tTAGctGCGC	TGCTCGGTTT	CTTAATTATO	AACGCAACTA	TGAATGGCTT	10860
5	ATTAACTATO	ACGGGCACAT	TGGCAAAAGA	TCAGCTTGCA	CAAAATGGAC	AAGGCATGGT	10920
	GCTCGGTATA	CAAACGGTTG	AAACCGGTGT	TTTTGGCGGG	ATTATCACAG	GTATTATGAC	10980
10	CGCAATACTT	CACAACAAAT	ATCACAAAGT	GGTATTACCA	CCGTATTTAG	GTTTCTTTGG	11040
10	TGGCTCTAGA	TTTGTCCCTA	TTGTCACAGC	ATTTGCCGCA	ATCTTTTAG	GTGTATTGAT	11100
	GTTTTTCATT	TGGCCAAGCA	TACAAGCCGG	CATTTATCAT	GTTGGTGGAT	TTGTAACGAA	11160
15	AACAGGTGCC	ATCGGTACTT	TTGTTTATGG	CTTCATCTTA	AGATTGTTAG	GTCCACTCGG	11220
	TTTACACCAT	ATTTTTTACT	TACCGTTTTG	GCAGACGGCA	CTTGGTGGTA	CTTTAGAAGT	11280
	CAAAGGGCAC	TTAGTTCAAG	GTACGCAGAA	CATCTTCTTT	GCTCAACTTG	GTGATCCAGA	11340
20	TGTGACGAAG	TATTATTCAG	GTGTGTCACG	CTTTATGTCA	GGCCGTTTTA	TTACGATGAT	11400
	GTTCGGCTTA	TGTGGTGCCG	CACTTGCAAT	TTATCACACA	GCTAAACCTG	AACATAAAAA	11460
	AGTTGTCGGC	GGTTTAATGT	TATCCGCTGC	ACTCACTTCA	TTTTTAACAG	GTATTACCGA	11520
25	ACCTTTAGAG	TTTAGTTTCT	TGTTTGTCGC	ACCTATTCTT	TATGTAATCC	ATGCCTTCTT	11580
	TGATGGATTA	GCATTTATGA	TGGCAGACAT	TTTCAACATT	ACAATTGGTC	AAACCTTCAG	11640
	TGGAGGCTTT	ATCGATTTCT	TACTCTTTGG	TGTGCTACAA	GGTAATAGTA	AAACAAACTA	11700
30	CCTATACGTC	ATACCTATTG	GAATTGTGTG	GTTCTGTTTG	TATTACATCG	TTTTCAGATT	11760
	CTTAATTACG	AAATTTAATT	TCAAAACACC	TGGTCGAGAA	GATAAAGCTG	CAGCACAACA	11820
35	AGTTGAGGCT	ACTGAAAGAG	CACAAACTAT	TGTTGCTGGT	TTGGGAGGCA	AAGATAACAT	11880
	TGAAATCGTT	GACTGTTGTG	CAACGAGACT	ACGCGTCACA	CTTCATCAAA	ATGACAAAGT	11940
	CGAT <u>A</u> AAGTA	TTACTCGAAA	GTACTGGTGC	CAAAGGTGTA	ATCCAGCAAG	GCACTGGTGT	12000
40	GCAAGTAATT	TATGGGCCTC	ACGTTACAGT	TATCAAAAAT	GAAATTGAAG	AATTGCTCGG	12060
	GGATTAAGAC	TAACCGAAAT	ATCAACAGAA	CTAATGGCAA	CGATGTACGA	AGTAAGAAGT	12120
	GACATCGTTG	CTTTTATTTT	TAATGTTACA	TTTGAAGCAT	TAAGTTCATC	ATGCACTGTA	12180
45	GTGAGCCCGC	AAATCGCCTC	TGCTAGACAA	TCATCTTAAT	GCTATGATTA	AAGCTTAAGT	12240
	GCCAGATTTG	AATTTAATTT	CAACAACGAC	TTTCACTACA	TTAAAAATAG	GGCCACTCGA	12300
	CACATATAGT	TGTATCAAAT	AGCCCTTTAT	ACAATTTTTT	GGGTAAGGTT	TTACAATTTT	12360
50	TGGGATGGTA	TAGATTTTAT	AAAAAGTTAT	TTAAGTTCTT	CTGCTTCAGC	CATAATATCT	12420
	TTTAATGTTT	TAGCTGAATG	TGCGAACTTG	CTTTGTTCTT	CGTCGTTTAA	TGGGATTTCT	12480

	TCCTCATATT	CGCCTTCTAA	TAATGCTGAT	ACAGTCAATA	CGGCATCTTC	ATTTCTGAAA	12600
_	ATCGCTTCAG	TAATTCTAGC	TAATCCCATT	GCAACACCAT	AATAAGTGGC	ACCTTTAGCT	12660
5	TGAATAATGT	CATATGCTGC	ATCACGTGTT	TGAACAAAAA	TTTGTTCAAT	TTGCGCTTTG	12720
	CCCTCAGGAC	GTTGTTCAAG	TAATGTCTTC	AAAGGTTGAC	CCGCAATATT	AGCGTGTGAC	12780
10	CATACTGGTA	ATTCAGTGTC	ACCATGTTCA	CCAATAATTT	GAGCATCGAC	GCTACGTGGC	12840
	GCAACATCGn	AcgyTcGCTT	AACAATAATC	TAAAGCGTGC	AGAGTCTAAA	ATTGTACCAG	12900
	AACCTATAAC	ACGTTCTTTA	GGTAAACCAG	AGAATTTCCA	TGTTGCATAC	GCTAAAATAT	12960
15	CAACAGGATT	TGTAGCTACC	AAGAAAATAC	CATCAAATTT	TGATGCCATT	ACTTCACCAA	13020
	CAATTGATTT	GAATATTTTC	AAGTTTTTAG	ATACTAAATC	TAAACGTGTT	TCTCCAGGTT	13080
	TTTGTGCAGC	ACCAGCACAG	ATGACAACTA	GATCCGCATC	ATGACAATCA	CTGTATTCGC	13140
20	CAGCTTTCAC	ACGAACTGTT	GTTGGAGAAT	ATGGTGTGGC	ATGTTTTAAA	TCCATAACAT	13200
	CTCCTCGAAC	TTTTTCAGTG	TCTAAATCAA	TGATGACTAA	TTCATCAACA	ATGCTTTGGT	13260
	TCACTAATGA	AAATGCGTAG	CTTGAACCTA	CTGCACCATT	ACCTATTAAT	ACAACTTTGT	13320
25	TCCCTTTAAA	TTTGTTCATT	ACAAAAACTC	CCTTATGATT	AATTCACTAA	CATACATGTA	13380
	GCTTCAAATA	TGTTAGTTTA	ATGCTGCTTA	TTGACGATAC	AAAAGCAAAT	AAACATCTCT	13440
30	TTTATTTTCA	ACGCATAACT	TAAAAGGTCA	TGTGTCATCC	GCTTTTAAGT	TTGTGATTTA	13500
,,,	TTTCACATAT	AAAATGTAAC	ATGCATTAAG	TACTGGGTCA	ATATTAAATT	GTGATTTATT	13560
	TCACATTTTA	TTTTAATTTT	TACACCTTTT	TAATTTGTAT	mCGATTACAT	CTTAGATGTC	13620
35	TTTAGTCTTC	GTACTTCGCC	AGTGATTATT	TACACTTTCA	CATTTTTATT	ATCATGTTTA	13680
	CTTTTTTCTA	GGAAAACAAC	AATGTTTTTT	GAATTAGTCA	AATAAATGCG	CTCAATCGTC	13740
	GGTGŦGCAAA	CAGACAATTG	TACACAATGC	TTATTGATAA	GTATTTAAAA	AATTAAAAAT	13800
40	GTCATACAAT	TATCAAATTT	GCCATTTTAT	TTATATTTTC	TCAAACCAAT	TAATTGAATA	13860
	TCGAAATTTT	TAGTAGAATA	ATCAAAATAT	ACAGATTAAA	GGAGGAGTAT	CATGCTTACA	13920
	GAACAAGAGA	AAGACATTAT	CAAACAAACG	GTGCCTTTAC	TTAAAGAGAA	AGGGACAGAA	13980
15	ATTACGTCAA	TCTTTTATCC	AAAAATGTTT	AAAGCGCATC	CTGAACTTTT	AAACATGTTT	14040
	AATCAAACGA	ACCAAAAACG	AGGCATGCAA	TCTTCAGCAT	TAGCACAAGC	TGTAATGGCC	14100
	GCAGCGGTTA	ATATCGATAA	CTTAAGTGTT	ATTAAACCAG	TCATTATGCC	AGTCGCATAT	14160
50	AAACACTGCG	CACTACAAGT	TTATGCTGAA	CATTATCCAA	TTGTGGGGAA	AAATTTATTA	14220
	AAAGCCATTC	AAGACGTGAC	AGGATTAGAA	GAAAATGACC	СТСТСАТТСА	AGCTTGGGCA	14280

(2) INFORMATION FOR SEQ ID NO: 58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8779 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

GGTATTTTnG	GAnGGGTACC	TAAAGCAATT	CCGGCAAAGG	GTnAATCCAG	GTACCGAAAT	60
GGACTTCCCG	TTATCGATAA	TACCGACATA	TATTGTGACA	AGTAGATTTT	ATGGACATTT	120
AGGCTTACTT	TTACTTGTGA	TAATTGCATG	TATGTTTACT	GGTATTTALC	CaTCaATACA	180
TATCATTCAA	TTATTGATAT	ATGTACCGTT	TIGTTTTTTC	TTAACTGCCt	CGGTGACGTT	240
ATTAACATCA	ACACTCGGTG	TGTTAGTTAG	AGATACACAA	ATGTTAATGC	AAGCAATATT	300
AAGAATATTA	TTTTACTTTT	CACCAATTTT	GTGGCTACCA	AAGAACCATG	GTATCAGTGG	360
TTTAATTCAT	GAAATGATGA	AATATAATCC	AGTTTACTTT	ATTGCTGAAT	CATACCGTGC	420
AGCAATTTTA	TATCACGAAT	GGTATTTCAT	GGATCATTGG	AAATTAATGT	TATACAATTT	480
CGGTATTGTT	GCCATTTTCT	TTGCAATTGG	TGCGTACTTA	CACATGAAAT	ATAGAGATCA	540
ATTTGCAGAC	TTCTTGTAAT	ATATTTATAT	GACGAAACCC	CGCTAACCAT	TAATAAATGG	600
AAGTGGGGTT	CATTTTTGTT	TATAATTTAA	GTAAATAACA	TATTAAGTTG	GTGTATTATG	660
AACGTTTTAA	TAAAGAAATT	TTATCATTTG	GTAGTTCGAA	TACTTTCTAA	AATGATTACG	720
CCTCAAGTGA	TTGATAAACC	GCATATCGTA	TTTATGATGA	CTTTTCCAGA	AGATATTAAG	780
CCTATCATCA	AAGCATTAAA	TAATTCGTCG	TATCAGAAAA	CTGTTTTAAC	AACACCAAAA	840
CAAGCGCCTT	ATTTATCTGA	ACTTAGCGAC	GATGTTGATG	TGATAGAAAT	GACTAATCGA	900
ACATTGGTAA	AACAAATTAA	GGCTTTGAAA	AGCGCGCAGA	TGATTATTAT	CGATAATTAT	960
TACCTATTGC	TAGGTGGATA	TAATAAGACT	TCTAATCAAC	ACATTGTTCA	AACGTGGCAT	1020
GCAAGTGGTG	CATTAAAAAA	CTTTGGCTTA	ACAGATCATC	AAGTCGATGT	GTCTGACAAG	1080
GCAATGGTTC	AGCAGTACCG	TAAAGTTTAT	CAAGCGACGG	ATTTTTACTT	AGTGGGTTGT	1140
GAACAAATGT	CACAATGTTT	TAAACAGTCT	TTAGGTGCAA	CAGAAGAGCA	AATGCTGTAT	1200
TTTGGGCTTC	CGAGAATTAA	TAAATATTAC	ACAGCTGATA	GAGCAACGGT	TAAGGCAGAG	1260
TTAAAGGATA	AATATGGAAT	TACAAATAAG	TTGGTATTAT	ATGTACCAAC	ATATAGAGAA	1320
GATAAAGCAG	ATAATAGGGC	TATTGATAAA	GCTTATTTTG	AAAAATGTTT	ACCAGGATAT	1380

	ATCGACACGT	CTACATTAAT	GCTAATGTCA	GATATAATTA	TTAGCGACTA	TAGTTCGCTG	1500
	CCAATAGAAG	CTAGCTTGTT	AGATATTCCA	ACTATATTTT	ATGTGTATGA	TGAAGGAACA	1560
5	TATGATCAGG	TGAGAGGCCT	GAATCAATTT	TACAAAGCAA	TACCGGATAG	CTACAAAGTG	1620
	TATACTGAAG	AAGATTTAAT	AATGACGATA	CAAGAAAAAG	AACATCTATT	AAGTCCGTTA	1680
	TTTAAAGATT	GGCATAAGTA	TAATACTGAT	AAAAGTTTAC	ATCAGCTCAC	AGAATATATA	1740
10	GATAAGATGG	TGACAAAATG	AGGTTTACGA	TAATCATACC	TACATGTAAT	AATGAGGCAA	1800
	CAATTCGACA	ATTGTTAATA	TCTATTGAGA	GTAAAGAACA	CTATAGAATC	CTTTGTATTG	1860
15	ATGGTGGTTC	TACTGATCAA	ACAATTCCTA	TGATTGAACG	GTTACAAAGA	GAACTCAAGC	1920
	ATATTTCATT	AATACAATTA	CAAAATGCTT	CGATAGCTAC	GTGTATTAAT	AAAGGTTTGA	1980
	TGGATATCAA	AATGACAGAT	CCACATGATA	GTGACGCATT	TATGGTCATA	AAACCAACAT	2040
20	CAATCGTATT	GCCAGGTAAA	TTAGATAGGT	TAACTGCTGC	TTTCAAAAAT	AATGATAATA	2100
	TTGATATGGT	AATAGGGCAG	CGAGCTTACA	ATTACCATGG	TGAATGGAAA	TTGAAAAGTG	2160
	CTGATGAGTT	TATTAAAGAC	AATCGAATCG	TTACATTAAC	GGAACAACCA	GATTTGTTAT	2220
25	CAATGATGTC	TTTTGACGGA	AAGTTATTCA	GTGCTAAATT	TGCTGAATTA	CAGTGTGACG	2280
	AAACTTTAGC	TAACaCATAC	AATCACGCAA	TACTTGTCAA	GGCGATGCAA	AAAGCTACGG	2340
	ATATACATTT	AGTTTCACAG	ATGATTGTCG	GAGATAACGA	TATAGATACA	CATGCTACAA	2400
30	GTAACGATGA	AGATTTTAAT	AGATATATCA	CAGAAATTAT	GAAAATAAGA	CAACGAGTCA	2460
	TGGAAATGTT	ACTATTACCT	GAACAAAGGC	TATTATATAG	TGATATGGTT	GATCGTATTT	2520
0.5	TATTCAATAA	TTCATTAAAA	TATTATATGA	ACGAACACCC	AGCAGTAACG	CACACGACAA	2580
35	TTCAACTCGT	AAAAGACTAT	ATTATGTCTA	TGCAGCATTC	TGATTATGTA	TCGCAAAACA	2640
	TGTTTGACAT	TATAAATACA	GTTGAATTTA	TTGGTGAGAA	TTGGGATAGA	GAAATATACG	2700
40	AATTGTGGCG	ACAAACATTA	ATTCAAGTGG	GCATTAATAG	GCCGACTTAT	AAAAAATTCT	2760
	TGATACAACT	TAAAGGGAGA	AAGTTTGCAC	ATCGAACAAA	ATCAATGTTA	AAACGATAAC	2820
	GTGTACATTG	ATGACCATAA	ACTGCAATCC	TATGATGTGA	CAATATGAGG	AGGATAACTT	2880
45	AATGAAACGT	GTAATAACAT	ATGGCACATA	TGACTTACTT	CACTATGGTC	ATATCGAATT	2940
	GCTTCGTCGT	GCAAGAGAGA	TGGGCGATTA	TTTAATAGTA	GCATTATCAA	CAGATGAATT	3000
	TAATCAAATT	AAACATAAAA	AATCTTATTA	TGATTATGAA	CAACGAAAAA	TGATGCTTGa	3060
50	ATCAATACGC	TATGTCGATT	TAGTCATTCC	AGAAAAGGGC	TGGGGACAAA	AAGAAGACGA	3120
	TGTCGDAAAA	ተሞተርል ቸርጥልር	ארביייייייייייייייייייייייייייייייייייי	татесеаехт	CACTCCCA AC	GTGAATTCGA	3180

	TAAAATCAAA	CAAGAATTAT	ATGGTAAAGA	TGCTAAATAA	ATTATATAGA	ACTATCGATA	3300
	CTAAACGATA	AATTAACTTA	GGTTATTATA	AAATAAATAT	AAAACGGACA	AGTTTCGCAG	3360
5	CTTTATAATG	TGCAACTTGT	CCGTTTTTAG	TATGTTTTAT	TTTCTTTTTC	TAAATAAACG	3420
	ATTGATTATC	ATATGAACAA	TAAGTGCTAA	TCCAGCGACA	AGGCATGTAC	CACCAATGAT	3480
	AGTGAATAAT	GGATGTTCTT	CCCACATACT	TTTAGCAACA	GTATTTGCCT	TTTGAATAAT	3540
10	TGGCTGATGA	ACTTCTACAG	TTGGAGGTCC	ATAATCTTTA	TTAATAAATT	CTCTTGGATA	3600
	GTCCGCGTGT	ACTTTACCAT	CTTCGACTAC	AAGTTTATAA	TCTTTTTTAC	TAAAATCACT	3660
15	TGGTAAAACA	TCGTAAAGAT	CATTTTCAAC	ATAATATTTC	TTACCATTTA	TCCTTTGCTC	3720
,,,	ACCTTTAGAC	AATATTTTTA	CATATTTATA	CTGATCAAAT	GAGCGTTCCA	TTAATGCATT	3780
	CCCCATCATA	TTACGTTGCT	TCTCGCCACC	AAGGTTTTTA	TAGTCTCCTG	CACCCATGAT	3840
20	AACTTGATTA	ATTCTAAATT	TACCTCGTTT	GGTAGTAATC	GTATGGTTGT	AATTTGCTGT	3900
	ATCACTTGAT	CCAGTTTTTA	AACCATCTGT	ACCCGGCAAA	CTCATTTTTG	CACCTTCCAA	3960
	TGAAAAGTTG	AATGTGTAAT	ACGTAACTGC	ATGCGTTGTT	GGTGCTAACT	GCTTTGTAAA	4020
25	GTCTAATATT	TTAGGTGTCT	CTTTAATCAC	GTGTAAATCT	AAAATGGCAT	AGTCTCTAGC	4080
	AGTCGTTACA	GTACGTTCTT	GGTCTTTATA	CTTTGTTGGT	GCAAATGTAC	GTAATCTTGA	4140
	ATTTTCAGCA	CCCGTTGGAT	TGACGAAATG	TGTATTTTTC	ATTCCGATAG	CTTTAGCTTT	4200
30	GTTATTCATT	AAATCAACGA	AATCGCTGGT	GTTTTTTGAA	ACCTTCTTAG	СТААААТТАА	4260
	TGCCGCGGCA	TTACTAGAAT	TAGATACTGT	AATTTGTAAT	AGGTCTGCGA	TTGTCCATAC	4320
	TTGTCCAGGA	TATAGTTTCG	TATTACTCAA	CTCAGGTAGT	GTAGACATAA	TATATTCTTT	4380
35	GTTCGTCATT	GTGACTGTGT	CATCAAGTGA	AAGCTGCCCC	TTATTTACAG	CTTCCAATGT	4440
	TAAGTACATT	GTCATTAATT	TAGTCATAGA	CGCTGGALTC	CACTTAGTAT	CGATATTGTA	4500
40	TTGATACAGT	AATTGTCCAG	TTTGACTTAC	ATTAACAGCA	CTCGTCGGTT	CGTATGCAGC	4560
	CGACAAACCT	GCATAACCAT	ATTGATTTGC	TGCTTGTACA	GGGGTTACGT	CACTGTTAGT	4620
	AGCTTGTGCA	TATGGTGTCA	TAATACTTAA	TGTTAAACAT	AAAATGATGA	TAATAGATAT	4680
45	TAAATTTTTC	ATAAAGCGTT	AATCTTCCCT	TTTCCAATTC	TTAAATATTC	CCTAAAAGCA	4740
	ATGGTTATTC	CTACTTACGG	AAATCATTGC	TAATTCACTT	CACCTTAATT	AAATTGTTGA	4800
	AAATAAAGTT	TTCTGCAGTT	AATTTGAAAA	ATAATGCAAA	TATATTACGT	GTGTAGCTAA	4860
50	AGGTGTTATA	ATGTTTGTAC	GAAGAGCAAA	CTTACTCAAA	AGCGATTAAT	TTTCATGTTT	4920
	TAATATAAAG	ACTTTGAGAA	GTTATTACAA	AAAATGCAAT	AGAAATATTC	ΤΑΤΓΑΤΑΤΑ	4980

	AAGTATATGA	TAGAAATGCA	TGTATCTATC	TAAATGAATT	AACTATAAAT	TTCAAACAGA	5100
	AGAGGTAAAA	CTATGAAACG	AGAAAATCCA	TTGTTTTTCT	TATTTAAAAA	ACTATCATGG	5160
5	CCAGTGGGTC	TTATCGTTGC	AGCTATCACT	ATTTCATCAC	TAGGGAGCTT	AAGTGGACTA	5220
	TTAGTGCCAC	TGTTTACTGG	ACGAATTGTA	GATAAATTTT	CCgTGAGCCA	TATCAATTGG	5280
	AATCLAATCG	CATTATTTGG	TGGTATCTTT	GTCATCAATG	CTTTATTAAG	CGGATTAGGT	5340
10	TTATATTTAT	TAAGTAAAAT	TGGTGAAAAG	ATTATTTATG	CGATACGCTC	AGTTTTATGG	5400
	GAGCATATCA	TACAATTAAA	AATGCCATTC	TTTGACAAAA	ATGAAAGTGG	TCAATTAATG	5460
15	AGTCGATTAA	CTGACGATAC	GAAAGTGATA	AATGAATTTA	TTTCACAAAA	GCTACCTMAC	5520
	TTATTACCAT	CAATCGTTAC	ATTAGTTGGG	TCACTAATCA	TGTTATTTAT	TTTAGATTGG	5580
	AAAATGACAT	TATTAACATT	TATAACGATA	CCGATATTCG	TTTTAATTAT	GATTCCTCTA	5640
20	GGTCGTATTA	TGCAAAAGAT	ATCGACAAGT	ACACAATCTG	AAATTGCAAA	CTTCAGTGGT	5700
	TTGTTAGGGC	GTGTCCTAAC	TGAAATGCGT	CTTGTTAAAA	TATCAAATAC	AGAGCGTCTT	5760
	GAATTAGATA	ATGCACATAA	AAATTTGAAT	GAAATATATA	AATTAGGTTT	AAAACAGGCT	5820
25	AAAATTGCGG	CAGTTGTACA	ACCAATTTCA	GGTATAGTTA	TGTTGCTAAC	AATTGCAATT	5880
	ATTTTAGGTT	TTGGTGCATT	AGAAATTGCG	ACTGGTGCAA	TCACTGCAGG	TACATTAATT	5940
	GCAATGATAT	TTTATGTTAT	TCAGTTATCT	ATGCCTTTAA	TCAATCTTTC	CACGTTAGTT	6000
30	ACAGATTATA	AAAAGGCAGT	CGGTGCAAGT	AGTAGAATAT	ACGAAATCAT	GCAAGAACCT	6060
	ATTGAACCGA	CAGAAGCTCT	TGAAGATTCT	GAAAATGTAT	TAATTGATGA	CGGTGTATTG	6120
35	TCATTTGAAC	ATGTAGACTT	TAAATATGAT	GTGAAGAAAA	TATTAGATGA	TGTGTCGTTC	6180
35	CAAATCCCAC	AAGGTCAAGT	GAGTGCTTTT	GTAGGCCCTT	CTGGGTCTGG	TAAAAGTACG	6240
	ATATTTAATC	TGATAGAACG	TATGTATGAA	ATTGAGTCAG	GTGATATTAA	ATATGGCCTT	6300
40	GAAAGTGTCT	ATGATATCCC	GTTATCTAAG	TGGCGACGCA	AAATTGGATA	TGTTATGCAA	6360
	TCAAATTCGA	TGATGAGTGG	TACAATTAGA	GACAATATTT	TATACGGAAT	TAATCGTCAT	6420
	GTTTCAGATG	AAGAACTTAT	TAATTATGCT	AAATTAGCGA	ACTGTCATGA	TTTTATCATG	6480
45	CAATTTGATG	AAGGATATGA	CACGCTTGTA	GGTGAACGAG	GATTGAAACT	GTCTGGCGGA	6540
	CAACGTCAAC	GTATTGATAT	TGCTAGAAGT	TTTGTTAAAA	ATCCTGATAT	TTTGTTACTT	6600
	GATGAAGCAA	CAGCTAATCT	CGATAGTGAA	AGTGAATTGA	AAATTCAAGA	AGCTTTAGAA	6660
50	ACATTGATGG	AAGGTAGAAC	AACGATTGTC	ATTGCGCATC	GTTTGTCTAC	ААТТААААА	6720
	GCCGGTCAAA	TTATATTCTT	AGACAAAGGA	CAGGTAACAG	GTAAAGGTAC	GCATTCAGAA	6780

	TTTTATATAT	TATAAGTAAGC	TTGGAGCAAA	A TACACATATA	CCATCGAGGA	AATTAAAGTG	6900
	TGGCACATTC	ATGGATATAG	ATGTTAATAA	ATTGCTTCAA	GCTTTTGTCT	ATTTTAAATC	6960
5	ATTTGAGAAG	TTACGACATA	ATAATTCTTA	AATTAATGAA	ATCGATATTT	TAAGAAAAA	7020
	ATGCTCATGG	TATAATACAA	GTTATAAGCA	AACATACATA	TATTAAATAC	TGTAGCCACG	7080
	AGTCATAATT	CTTCATATTT	TACATAGCAA	TTTAACTGAT	TTTAGAGTCC	ACGGTACAGA	7140
10	AGTTTGATAT	TTCAATGTTT	CTAAATTTTT	AAAAAATTAA	ATCATAGGTG	GGTGCCAAAT	7200
	GTTTTTATTA	ATCAACATTA	TTGGTCTAAT	TGTATTTCTT	GGTATTGCGG	TATTATTTTC	7260
15	AAGAGATCGC	AAAAATATCC	AATGGCAATC	AATTGGGATC	TTAGTTGTTT	TAAACCTGTT	7320
70	TTTAGCATGG	TTCTTTATTT	ATTTTGATTG	GGGTCAAAAA	GCAGTAAGAG	GAGCAGCCAA	7380
	TGGTATCGCT	TGGGTAGTTC	AGTCAGCGCA	TGCTGGTACA	GGTTTTGCAT	TTGCAAGTTT	7440
20	GACAAATGTT	AAAATGATGG	ATATGGCTGT	TGCAGCCTTA	TTCCCAATAT	TATTAATAGT	7500
	GCCATTATTT	GATATCTTAA	TGTACTTTAA	TATTTTACCG	AAAATTATTG	GAGGTATTGG	7560
	TTGGTTACTA	GCTAAAGTAA	CAAGACAACC	TAAATTCGAG	TCATTCTTTG	GGATAGAAAT	7620
25	GATGTTCTTA	GGAAATACTG	AAGCATTAGC	CGTATCAAGT	GAGCAACTAA	AACGTATGAA	7680
	TGAAATGCGT	GTATTAACAA	TCGCAATGAT	GTCAATGAGC	TCTGTATCGG	GAGCTATTGT	7740
	AGGTGCGTAT	GTACAAATGG	TACCAGGAGA	ACTGGTACTA	ACGGCAATTC	CACTAAATAT	7800
30	CGTTAACGCG	ATTATTGTGT	CATGCTTGTT	GAATCCAGTA	AGTGTTGAAG	AGAAAGAAGA	7860
	TATTATTTAC	AGTCTTAAAA	ACAATGAAGT	TGAACGTCAA	CCATTCTTCT	CATTCCTTGG	7920
	AGATTCTGTA	TTAGCAGCAG	GTAAATTAGT	ATTAATCATC	ATCGCATTTG	TTATTAGTTT	7980
35	TGTAGCGTTA	GCTGATCTAT	TTGATCGTTT	TATCAATTTG	ATTACAGGAT	TGATAGCAGG	8040
	ATGGATAGGC	ATAAAAGGTA	GTTTCGGTTT	AAACCAAATT	TTAGGTGTGT	TTATGTATCC	8100
40	ATTTGCGCTA	TTACTCGGTT	TACCTTATGA	TGAAGCGTGG	TTGGTAGCAC	AACAAATGGC	8160
	TAAGAAAATT	GTTACAAATG	AATTTGTTGT	TATGGGTGAA	ATTTCTAAAG	ATATTGCATC	8220
	TTATACACCA	CACCATCGTG	CGGTTATTAC	AACATTCTTA	ATTTCATTTG	CAAACTTCTC	8280
15	AACGATTGGT	ATGATTATCG	GTACATTGAA	AGGCATTGTT	GATAAAAAGA	CATCAGACTT	8340
	TGTATCTAAA	TATGTACCTA	TGATGCTATT	ATCAGGTATC	CTAGTTTCAT	TATTAACAGC	8400
	AGCTTTCGTT	GGTTTATTTG	CATGGTAATA	TGTCGAAGAG	TGACTATGAT	AATACATTTT	8460
50	AACTAATAAA	TATGTCCAGG	CATGTCGTCT	ATTGATATAG	GTGAGATGCT	TGGACTTTTT	8520
	TATTATTGAT	ATAAAGGTAT	nTAAATATTT	TTAAAGTTAC	CGAAATTGAA	GCATTATAAA	8580

	GACAGTAAGG ACTAGGTACA GTCATAGTAC TTCGAGCAAA ATTTGTTTTG TTATTATAAA	8700
	CAACACAAAG GAGATAACTT CTCTAnTGAA GAAGTTAAAA ACATTATAGC AGACAATGAA	8760
5	ATGAAAGTAA ATTAAAAAT	8779
	(2) INFORMATION FOR SEQ ID NO: 59:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31096 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
	GTTGCAGTAG TCAAAGAATT AAACAAGGTG AAGGCGTGTA GCTTGCACAC CCGAAAATGT	60
20	GCGTAAGTTA aCGGATGCAG GACATAAAGT AATTGTTGAA AAAAATGCTG GCATTGGTTC	120
	AGGATTTTCT AACGATATGT ATGAAAAAGA AGGCGCTAAG ATCGTAACTC ACGAACAAGC	180
	ATGGGAAGCT GATCTTGTTA TCAAAGTAAA AGAACCTCAT GAAAGCGAAT ATCAATATTT	240
25	CAAAAAGAAT CAAATTATCT GGGGATTTTT ACATCTAGCA TCTTCAAAAG AAATAGTAGA	300
	AAAAATGCAA GAAGTTGGTG TAACTGCGAT TAGTGGTGAA ACCATTATAA AAAATGGAAA	360
	AGCAGAATTA TTAGCGCCAA TGAGTGCTAT AGCAGGTCAA CGCTCAGCAA TTATGGGAGC	420
30	TTACTACTCT GAAGCACAAC ATGGTGGTCA AGGTACTTTA GTGACTGGTG TACATGAAAA	480
	TGTGGATATA CCTGGTAGTA CATATGTGAT TTTCGGTGGT GGAGTAGCAG CAACAAATGC	540
35	AGCAAATGTT GCCTTGGGAC TAAATGCTAA AGTAATCATT ATCGAGTTAA ACGATGACCG	600
	CATTAAATAT CTTGAAGATA TGTATGCAGA AAAAGATGTC ACAGTAGTCA AATCAACACC	660
	AGAAATTTA GCAGAACAAA TTAAGAAAGC AGATGTATTT ATTTCTACAA TTTTAATTTC	720
40	AGGTGCGAAA CCGCCAAAAT TGGTTACTCG TGAGATGGTT AAATCAATGA AAAAAGGTTC	780
	AGTATTAATC GATATAGCTA TTGACCAAGG TGGAACTATT GAAACAATTA GACCAACTAC	840
	AATTTCTGAT CCAGTGTATG AAGAAGAAGG TGTGATTCAT TATGGTGTAC CAAATCAACC	900
45	AGGAGCAGTC CCAAGAACTT CAACAATGGC ATTAGCACAA GGAAATATTG ATTATATATT	960
	AGAAATTTGT GACAAAGGCT TAGAACAAGC AATTAAAGAT AATGAAGCCT TAAGTACTGG	1020
	TGTAAACATT TACCAAGGAC AAGTGACAAA TCAAGGATTA GCTTCATCAC ATGACCTAGA	1080
50	TTATAAAGAA ATATTAAATG TTATCGAATA GATAGTAATT TAAATGAAAT TGAGTGAAAT	1140
	GAATATTTTA AATATAGCAT TATAGTTTGG ACTAAAAATT TACAAAACGG AAGGATGTAA	1200

	TCGAAGAAGC	TAAAGCAAGC	ATTAAACCAT	TTATTCGTCG	AACACCTCTA	ATTAAATCAA	1320
	TGTATTTAAG	CCAAAGTATA	ACTAAAGGGA	ATGTATTTCT	AAAATTAGAA	AATATGCAAT	1380
5	TCACAGGATC	TTTTAAATTT	AGAGGCGCTA	gCAATnAAAA	TTAATCACTT	AACAGATGAA	1440
	CAAAAAGAAA	AAGGCATTAT	CGCAGCATCT	GCTGGGGAAC	CATGCACAAG	GTGTTGCTTT	1500
	AACAGCTAAA	TTATTAGGCA	TTGATGCAAC	GATTGTAATG	CCTGAAACAG	CACCACAAGC	1560
10	GAAACAACAA	GCAACAAAAG	GCTATGGGGC	AAAGGTTATT	TTAAAAGGTA	AAAACTTTAA	1620
	CGAAACTAGA	CTTTATATGG	AAGAATTAGC	GAAAGAAAAT	GGCATGACAA	TCGTTCATCC	1680
15	ATATGACGAT	AAGTTTGTAA	TGGCAGGCCA	AGGAACAATT	GGTTTAGAAA	TTTTAGATGA	1740
	TATTTGGAAT	GTGAATACAG	TCATCGTACC	AGTTGGCGGT	GGAGGATTAA	TTGCAGGTAT	1800
	TGCCACCGCA	TTAAAATCAT	TTAACCCTTC	AATTCATATT	ATCGGTGTTC	AATCTGAGAA	1860
20	TGTTCATGGT	ATGGCTGAGT	CTTTCTATAA	GAGAGATTTA	ACTGAACATC	GAGTGGATAG	1920
	CACAATAGCA	GATGGTTGTG	ATGTAAAAGT	TCCTGGTGAA	CAAACATATG	AAGTAGTTAA	1980
	ACATTTAGTA	GATGAATTTA	TTCTTGTTAC	TGAAGAAGAA	ATTGAACATG	CTATGAAAGA	2040
25	TTTAATGCAG	CGTGCCAAAA	TTATTACTGA	AGGTGCAGGC	GCATTACCAA	CAGCTGCAAT	2100
	TTTAAGTGGA	AAAATAAACA	ATAAATGGCT	TGAAGATAAA	AATGTTGTTG	CATTAGTTTC	2160
	AGGCGGGAAT	GTTGACTTAA	CTAGAGTTTC	AGGTGTCATT	GAACATGGAC	TGAATATTGC	2220
30	AGATACAAGC	AAGGGTGTGG	TAGGTTAAAA	CATTTAATCT	TAAAAATGAG	GTGTAATTAT	2280
	GTCAAATGGT	AAAGAATTAC	TATAAAAAA	AGGTTTCTTC	TCAGCGTTTG	CTATTGTTAT	2340
05	GGGGACAGTT	ATTGGTTCAG	GAGTATTCTT	TAAAATATCA	AACGTAACAG	AAGTAACAGG	2400
35	AACAGCAGGA	ATGGCCTTGT	TTGTATGGTT	CCTAGGCGGC	ATCATTACCA	TTTGTGCGGG	2460
	GTTAÃCAGCA	GCAGAACTTG	CTGCTGCAAT	CCCTGAAACA	GGTGGCTTAA	CGAAGTATAT	2520
40	AGAATATACA	TACGGTGATT	TCTGGGGCTT	CCTATCAGGT	TGGGCGCAAT	CATTTATTTA	2580
	TTTTCCAGCT	AACGTAGCAG	CATTGTCTAT	CGTATTTGCG	ACACAGCTAA	TTAATTTATT	2640
	CCATTTATCT	ATAGGTTCGT	TAATACCAAT	AGCAATCGCA	TCTGCGTTAT	CTATTGTGTT	2700
45	GATAAATTTC	CTAGGTTCAA	AAGCAGGCGG	AATTTTACAA	TCAGTTACTT	TAGTAATTAA	2760
	ACTGATTCCA	ATCATCGTTA	TTGTAATTTT	TGGTATTTTT	CAATCTGGAG	ATATCACTTT	2820
	TTCATTAATT	CCAACTACAG	GTAATTCaGG	AAATGGCTTC	TTTACAGCAA	TTGGTAGTGG	2880
50	TTTATTAGCA	ACTATGTTTG	CATATGATGG	TTGGATTCAT	GTAGGAAATG	TTGCGGGGGA	2940
	ACTTAAAAAT	CCTAAACGCG	ATTTACCTTT	AGCGATTTCA	СТТССТАТСС	יים מיזיים מידיבוים:	2000

	TGGTAATTTA	AATGCAGCTT	CAGATACATC	AAAAATATTA	TTTGGTGAAA	ATGGCGGTAA	3120
	GATTATTACA	ATCGGTATAT	TAATTTCTGT	TTATGGTACG	ATCAATGGCT	ATACTATGAC	3180
5	TGGTATGCGC	GTACCATATG	CAATGGCTGA	AAGAAAATTA	TTGCCATTTA	GCCATTTATT	3240
	CGCAAAATTA	ACAAAATCTG	GCGCACCATG	GTTTGGCGCA	ATTATACAAC	TTATAATCGC	3300
	TATCATCATG	ATGTCAATGG	GAGCATTTGA	TACAATTACA	AATATGTTAA	TCTTTGTTAT	3360
10	TTGGTTGTTC	TATTGTATGT	CATTTGTTGC	GGTAATAATT	TTAAGAAAAC	GTGAACCAAA	3420
	TATGGAACGA	CCATATAAAG	TACCGTTATA	TCCGATCATA	CCTTTAATTG	CTATTTTGGC	3480
15	AGGATCATTT	GTATTAATTA	ATACACTGTT	TACACAATTT	ATATTAGCAA	TCATTGGAAT	3540
	TCTAATAACA	GCACTTGGTA	TACCAGTTTA	TTACTATAAA	AAGAAACAAA	AAGCAGCATA	3600
	AGGTAAGATA	ACTAGCATTG	AGAATAAATG	GATGGACTAC	TAATAAATTT	AAAGTTTTAC	3660
20	ACATTAAAAT	CAAAAACCAT	TCAATTATTC	TATGGAACAG	ACAAATTTCT	GTTATGGAAT	3720
	TTGTCTGTTT	TTCAAAAGTA	TAGGGAGGCA	AATAGAGATG	GAAAAGCCGT	CAAGAGAGGC	3780
	ATTTGAAGGC	AATAATAAGT	TGTTAATAGG	AATTGTTCTA	AGTGTAATAA	CGTTTTGGCT	3840
25	ATTTGCACAA	TCATTGGTTA	ATGTTGTACC	AATACTTGAA	GATAGTTTCA	ATACAGATAT	3900
	TGGAACGGTT	AATATCGCCG	TTAGTATAAC	TGCTTTATTT	TCAGGAATGT	TTGTAGTAGG	3960
	AGCAGGTGGT	CTTGCTGATA	AATATGGCAG	AATTAAACTC	ACGAACATTG	GTATTATCTT	4020
30	AAATATATTA	GGTTCATTAT	TAATCATTAT	TTCAAATATT	CCTTTATTAC	TTATTATAGG	4080
	AAGATTAATT	CAAGGACTTT	CAGCAGCATG	TATTATGCCT	GCAACTTTGT	CTATTATTAA	4140
	GTCATATTAC	ATTGGGAAAG	ATAGACAACG	CGCTTTAAGT	TATTGGTCAA	TTGGCTCATG	4200
35	GGGCGGCTCT	GGTGTTTGTT	CATTTTTTGG	AGGTGCAGTT	GCAACGCTTT	TAGGTTGGCG	4260
	TTGGÄTTTTC	ATCCTATCAA	TTATAATTTC	ATTAATTGCA	CTGTTTCTTA	TTAAAGGCAC	4320
40	ACCTGAAACT	AAATCTAAAT	CGATTTCTCT	AAATAAATTT	GACATTAAAG	GTCTGGTTCT	4380
	TTTAGTCATT	ATGCTCCTCA	GTTTAAATAT	TTTAATTACT	AAAGGATCAG	AATTAGGTGT	4440
	AACCTCACTT	CTTTTTATTA	CTTTATTAGC	TATTGCAATT	GGATCTTTTA	GTTTATTTAT	4500
45	AGTTCTTGAA	AAGCGTGCTA	CAAATCCTTT	AATCGATTTT	AAATTATTTA	AAAATAAAGC	4560
	TTACACAGGT	GCAACAGCTT	CAAACTTTTT	GTTAAATGGT	GTTGCAGGAA	CATTAATAGT	4620
	AGCCAACACA	TTTGTTCAAA	GAGGTTTAGG	ATATTCTTCA	TTGCAAGCAG	GAAGTTTATC	4680
50	AATCACTTAT	TTAGTAATGG	TACTAATTAT	GATTCGTGTT	GGTGAAAAGT	TACTTCAAAC	4740
	ACTCGGATGC	AAGAAACCAA	יייייי א אייייניני	ል እ C A C C A C T T	רידיים מידיים מידיים	CACAATCTCT	4800

	ATTCTTTGGT	TTAGGACTAG	GGATATATGC	TACACCATCA	ACAGATACAG	CAATTGCAAA	4920
	TGCACCGTTA	GAAAAAGTAG	GCGTTGCTGC	AGGTATCTAT	AAAATGGCTT	CTGCATTAGG	4980
5	TGGAGCATTT	GGCGTCGCAT	TGAGTGGTGC	AGTATATGCA	ATCGTATCAA	ATATGaCAAA	5040
	CATTTATACA	GGTGcAATGa	TTGnCATTAT	GGTTaAATGC	AGGTATGGGa	ATATTATCAT	5100
	TCGTTATCAT	TTTGtTACTT	GTGcCTAAAC	mAAACGACAC	TCAATTATGA	TAATTGAGAA	5160
10	TTAAATTGAA	ATCATACAAG	TCGCTACAAT	ATTAAACAAA	AATATAAACC	GATTCTTATG	5220
	TGTCATTATT	TTAAATGAAC	ATAGGGATTG	GTTTTTTATT	ACTCTTTTAC	GCTACTTTAT	5280
15	TTATAATTAT	TATAAATTGT	CACAAATTCA	ATTTACCTTA	CAATATATTT	TGTGTTATTA	5340
	TATTCTGGAG	САТАААТААА	TTGTTCAACA	CATAGTTGTA	ATGTGTTTCA	ATACTTTTTG	5400
	GATAGATTGC	GAAATTGTAT	TGAATCGTCA	TCGTTTTAAA	TTTTTAAATG	AGAATGGAAT	5460
20	GAGCATTACA	ATACACAAGC	AATCAAAAGT	AAATACATTC	ACAACACAAC	AGAGACATAA	5520
	CAACAAGATA	AGGAGTGAAC	AATAGCTGTG	AATTATCGTG	ATAAAATTCA	AAAGTTTAGT	5580
	ATTCGTAAAT	ATACAGTTGG	TACATTTTCA	ACTGTCATTG	CGACATTGGT	ATTTTTAGGA	5640
25	TTCAATACAT	CACAAGCACA	TGCTGCTGAA	ACAAATCAAC	CAGCAAGCGT	GGTTAAACAG	5700
	AAACAACAAA	GTAATAATGA	ACAGACTGAG	AATCGAGAAT	CTCAAGTACA	AAATTCTCAA	5760
	AATTCACAAA	ATGGTCAATC	ATTATCTGCT	ACTCATGAAA	ATGAGCAACC	AAATATTAGT	5820
30	CAAGCTAATT	TAGTAGATCA	AAAAGTAGCG	CAATCATCTA	CTACTAATGA	TGAACAACCA	5880
	GCATCTCAAA	ATGTAAATAC	AAAGAAAGAT	TCGGCAACGG	CTGCGACAAC	ACAACCAGAT	5940
35	AAAGAACAAA	GTAAGCATAA	ACAAAACGAA	AGTCAATCTG	СТААТАААА	TGGAAACGAC	6000
33	AATAGAGCGG	CTCATGTAGA	AAATCATGAA	GCAAATGTAG	TAACAGCTTC	AGATTCATCT	6060
	GATAATGGTA	ACGTACAACA	TGACCGAAAT	GAATTACAAG	CGTTTTTTGA	TGCAAATTAT	6120
40	CATGATTATC	GCTTTATTGA	CCGTGAAAAT	GCAGATTCTG	GCACATTTAA	CTATGTAAAA	6180
	GGCATTTTTG	ATAAGATTAA	TACGTTATTA	GGCAGTAATG	ATCCAATAAA	CAATAAAGAC	6240
	TTGCAACTTG	CATACAAAGA	ATTGGAACAA	GCTGTTGCTT	TAATTCGTAC	AATGCCTCAA	6300
45	CGTCAACAGA	CTAGCCGACG	TTCAAATAGA	ATTCAAACGC	GTTCGGTTGA	GTCAAGAGCT	6360
	GCAGAGCCTA	GATCAGTATC	AGACTATCAA	AATGCAAATT	CATCATATTA	TGTTGAAAAT	6420
	GCTAATGATG	GTTCGGGCTA	TCCTGTTGGT	ACATATATCa	ATGCTTCTAG	TAAAGGGGCG	6480
50	CCATATAATT	TACCAACTAC	ACCATGGAAT	ACATTGAAGG	CCTCTGACTC	AAAGGAAATT	6540
	GCTCTTATCA	CAGCGAAACA	AACTGGAGAC	GGGTACCAAT	CCCTTATTAA	CTTTAATAAA	6600

. 55

	GTAGGAAGAA	CTGACTTTGT	AACAGTTAAT	TCAGATGGAA	CAAATGTACA	ATGGAGTCAT	6720
	GGAGCAGGAG	CAGGTGCAAA	TAAACCACTT	CAACAAATGT	GGGAATATGG	AGTAAATGAT	6780
5	CCTCATCGTT	CACATGACTT	TAAAATAAGA	AATAGAAGTG	GCCAAGTAAT	ATATGACTGG	6840
	CCAACTGTCC	ATATTTATTC	TTTAGAAGAT	TTATCTAGAG	CGAGTGATTA	TTTTAGTGAA	6900
	GCTGGAGCGA	CACCTGCTAC	TAAAGCTTTT	GGTAGACAAA	ATTTTGAATA	TATTAATGGT	6960
10	CAAAAACCTG	CTGAATCACC	GGGTGTTCCT	AAAGTTTATA	CTTTCATCGG	TCAAGGTGAT	7020
	GCAAGTTATA	CAATTTCATT	TAAAACACAA	GGTCCAACTG	TTAATAAATT	GTACTATGCA	7080
15	GCAGGTGGGC	GTGCTTTAGA	GTACAATCAA	TTATTTATGT	ACAGTCAACT	ATACGTCGAA	7140
15	TCAACGCAAG	ACCATCAACA	ACGTCTTAAT	GGTTTAAGAC	AAGTGGTTAA	TCGTACATAT	7200
	CGCATAGGTA	CAACTAAACG	TGTAGAAGTG	AGTCAAGGAA	ATGTACAAAC	GAAAAAGGTA	7260
20	TTAGAAAGTA	CAAACCTAAA	TATAGATGAT	TTTGTTGATG	ATCCTTTAAG	TTATGTTAAG	7320
	ACGCCGAGTA	ATAAAGTGTT	AGGATTTTAT	TCGAATAATG	CAAATACTAA	TGCTTTTAGA	7380
	CCGGGTGGAG	CCCAACAATT	AAATGAATAT	CAATTAAGTC	AATTATTTAC	TGATCAAAAA	7440
25	TTACAAGAAG	CAGCAAGAAC	TAGAAACCCA	ATAAGATTAA	TGATTGGTTT	CGACTATCCT	7500
	GATGCTTATG	GTAATAGTGA	Actitagtic	CTGTTAACTT	AACGGTATTA	CCTGAAATCC	7560
	AACATAATAt	TaAATTCTTT	AAAAATGACG	ATACTCAAAA	TATTGCTGAA	AAACCATTTT	7620
30	CAAAACAAGC	TGGGCATCCA	GTTTTCTATG	TATATGCAGG	TAACCAAGGG	AATGCTTCCG	7680
	TGAATTTAGG	TGGTAGCGTA	ACATCTATTC	AACCATTACG	TATTAATTTA	ACAAGTAATG	7740
	AGAATTTTAC	AGATAAAGAT	TGGCAAATTA	CAGGTATTCC	GCGTACATTA	CACATTGAAA	7800
35	ACTCGACAAA	TAGACCTAAT	AATGCCAGAG	AACGCAATAT	TGAACTTGTT	GGTAACTTAT	7860
	TACCAGGGGA	TTACTTTGGA	ACGATACGTT	TTGGACGTAA	AGAACAATTA	TTCGAAATTC	7920
40	GTGTTAAACC	ACATACACCA	ACAATTACAA	CGACAGCTGA	GCAATTAAGA	GGTACAGCAT	7980
40	TACAAAAAGT	GCCTGTTAAT	ATTTCGGGAA	TACCGTTGGA	TCCATCGGCA	TTGGTTTATT	8040
	TAGTTGCACC	AACAAATCAA	ACTACGAATG	GTGGTAGTGA	GGCAGATCAA	ATACCATCTG	8100
1 5	GTTATACGAT	ACTTGCGACT	GGTACACCTG	ATGGGGTGCA	TAATACAATT	ACTATACGAC	8160
	CGCAAGATTA	TGTTGTATTC	ATACCACCTG	TAGGTAAACA	AATTAGAGCA	GTAGTTTATT	8220
	ATAATAAAGT	AGTTGCATCT	AATATGAGTA	ATGCTGTTAC	TATTTTGCCA	GATGACATTC	8280
50	CACCAACAAT	CAATAATCCT	GTTGGAATAA	ATGCCAAATA	CTATCGAGGC	GACGAAKCAA	8340
	CTTTACAATG	GGTGTCTCTG	ATAGACATTC	тсстатаааа	AATACAACTA	ም ምል ድርጊ እርጉ ጥጥ	8400

	TACAGGTAGA	GTGAGTATGA	ATCAGGCATT	TAACAGTGAT	ATTACATTTA	AAGTGTCAGC	852
	GACAGaCAAT	GTCAATAATA	CGACAAATGA	TAGTCAATCT	AAACATGTTT	CAATTCATGT	858
5	AGGTAAAATT	AGTGAAGATG	CTCATCCGAT	TGTATTAGGA	AATACTGAGA	AAGTTGTAGT	864
	AGTCAATCCG	ACTGCTGTAT	CTAATGATGA	AAAGCAAAGC	ATAATTACTG	CCTTTATGAA	870
	TAAAAACCAA	AATATAAGAG	GATATTTAGC	ATCAACTGAT	CCAGTAACTG	TCGATAATAA	876
10	TGGTAATGTC	ACATTACATT	ACCGTGATGG	CTCATCGACA	ACGCTTGATG	CTACAAATGT	882
	GATGACATAC	GAACCAGTTG	TGAAACCTGA	ATACCAAACT	GTCAATGCTG	CTAAAACAGC	888
15	AACGGTAACG	ATTGCTAAAG	GACAATCATT	TAGTATTGGT	GATATTAAAC	AATATTTTAC	894
	TTTAAGTAAT	GGACAACCTA	TTCCAAGTGG	CACATTTACA	AATATTACAT	CTGATAGAAC	900
	TATTCCAACT	GCACAAGAAG	TTAGTCAAAT	GAACGCAGGC	ACGCAGTTAT	ACCATATAAC	906
20	TGCTACAAAT	GCGTATCATA	AAGATAGTGA	AGACTTCTAT	ATTAGTTTGA	AAATCATCGA	912
	TGTGAAACAA	CCAGAAGGCG	ATCAACGTGT	ATATCGTACA	TCAACATATG	ATTTAACTAC	918
	TGATGAAATC	TCAAAAGTAA	AACAAGCATT	TATTAATGCA	AATAGAGATG	TAATTACGCT	924
25	TGCCGAAGGT	GATATTTCAG	TTACAAATAC	ACCTAATGGT	GCTAATGTAA	GTACTATTAC	930
	AGTAAATATT	AATAAAGGTC	GATTAACGAA	ATCATTCGCG	TCAAACCTAG	CTAATATGAA	936
	TTTCTTGCGT	TGGGTTAATT	TCCCACAAGA	TTATACAGTG	ACATGGACGA	ATGCAAAAAT	9420
30	TGCAAACAGA	CCAACAGATG	GTGGTTTATC	ATGGTCTGAT	GACCATAAAT	CTTTAATTTA	9480
	TCGTTATGAT	GCTACATTAG	GTACTCAAAT	TACGACGAAT	GATATTTTAA	CAATGTTAAA	9540
25	AGCAACAACT	ACAGTGCCTG	GATTGCGAAA	TAACATTACT	GGTAATGAAA	AATCACAAGC	9600
35	AGAAGCTGGC	GGAAGACCTA	ACTTTAGAAC	GACTGGTTAT	TCACAATCAA	ATGCGACAAC	9660
	TGATGGTCAA	CGTCAATTTA	CGTTGAATGG	TCAAGTGATT	CAAGTGTTAG	ACATCATCAA	9720
40	CCCTTCAAAC	GGTTATGGTG	GGCAACCTGT	TACAAATTCA	AATACTCGTG	CAAACCATAG	9780
	TAACTCAACT	GTTGTTAACG	TAAACGAACC	GGCAGCTAAT	GGTGcTGGCG	CATTTACAAT	9840
	TGACCACGTT	GTAAAAAGTA	ATTCTACACA	TAATGCAAGT	GATGCAGTTT	ATAAAGCACA	9900
45	GTTATACTTA	ACGCCATATG	GTCCAAAACA	ATATGTTGAA	CATTTAAATC	AAAATACAGG	9960
	AAATACTACT	GACGCTATTA	ACATTTATTT	TGTACCAAGT	GACTTAGTGA	ATCCAACAAT	10020
	TTCAGTAGGT	AATTACACTA	ATCATCAAGT	GTTCTCAGGT	GAAACATTTA	CAAATACTAT	10080
50	TACAGCGAAT	GATAACTTTG	GTGTGCAATC	TGTAACTGTA	CCAAATACAT	CACAAATTAC	10140
	AGGTACTGTT	CATAATAACC	ATCAACATCT	ттстссаасс	GCACCAAATG	TCACATCACC	10200

	GTTCAATGTA	ACAGTGAAAC	CTTTGCGTGA	TAAATATCGA	GTTGGTACTT	CATCAACGGC	10320
	TGCTAATCCT	GTGAGAATTG	CCAATATTTC	GAATAATGCG	ACAGTATCAC	AAGCTGATCA	10380
5	AACGACAATT	ATTAATTCGT	TAACGTTTAC	TGAAACAGTA	CCAAATAGAA	GTTATGCAAG	10440
	AGCAAGTGCG	AATGAAATCA	CTAGTAAAAC	AGTTAGTAAT	GTCAGTCGTA	CTGGAAATAA	10500
	TGCCAATGTg	CACAGTAACT	GTTACTTATC	AAGATGGAAC	AACATÇAACA	GTGACTGTAC	10560
10	CTGTAAAGCA	TGTCATTCCA	GAAATCGTTG	CACATTCGCA	TTACACTGTA	CAAGGCCAAG	10620
	ACTTCCCAGC	AGGTAATGGT	TCTAGTGCAT	CAGATTACTT	TAAGTTATCT	AATGGTAGTG	10680
15	ACATTGCAGA	TGCAACTATT	ACATGGGTAA	GTGGACAAGC	GCCAAATAAA	GATAATACAC	10740
,,	GTATTGGTGA	AGATATAACT	GTAACTGCAC	ATATCTTAAT	TGATGGCGAA	ACAACGCCGA	10800
	TTACGAAAAC	AGCAACATAT	AAAGTAGTAA	GAACTGTACC	GAAACATGTC	TTTGAAACAG	10860
20	CCAGAGGTGT	TTTATACCCA	GGTGTTTCAG	ATATGTATGA	TGCGAAACAA	TATGTTAAGC	10920
	CAGTAAATAA	TTCTTGGTCG	ACAAATGCGC	AACATATGAA	TTTCCAATTT	GTTGGAACAT	10980
	ATGGTCCTAA	CAAAGATGTT	GTAGGCATAT	CTACTCGTCT	TATTAGAGTG	ACATATGATA	11040
25	ATAGACAAAC	AGAAGATTTA	ACTATTTTAT	CTAAAGTTAA	ACCTGACCCA	CCTAGAATTG	11100
	ACGCAAACTC	TGTGACATAT	AAAGCAGGTC	TTACAAACCA	AGAAATTAAA	GTTAATAACG	11160
	TATTAAATAA	CTCGTCAGTA	AAATTATTTA	AAGCAGATAA	TACACCATTA	AATGTCACAA	11220
30	ATATTACTCA	TGGTAGCGGT	TTTAGTTCGG	TTGTGACAGT	AAGTGACGCG	TTACCAAATG	11280
	GCGGAATTAA	AGCAAAATCT	TCAATTTCAA	TGAACAATGT	GACGTATACG	ACGCAAGACG	11340
	AACATGGTCA	AGTTGTTACA	GTAACAAGAA	ATGAATCTGT	TGATTCAAAT	GACAGTGCAa	11400
35	CAGTAACAGT	GACACCACAA	TTACAAGCAA	CTACTGAAGG	CGCTGTATTT	ATTAAAGGTG	11460
	GCGACGGTTT	TGATTTCGGA	CACGTAGAAA	GATTTATTCA	AAACCCGCCA	CATGGGGCAA	11520
40	CGGTTGCATG	GCATGATAGT	CCAGATACAT	GGAAGAATAC	AGTCGGTAAC	ACTCATAAAA	11580
	CTGCGGTTGT	AACATTACCT	AATGGTCAAG	GTACGCGTAA	TGTTGAAGTT	CCAGTCAAAG	11640
	TTTATCCAGT	TGCTAATGCA	AAGGCGCCAT	CACGTGATGT	GAAAGGTCAA	AATTTGACTA	11700
45	ATGGAACGGA	TGCGATGAAC	TACATTACAT	TTGATCCAAA	TACAAACACA	AATGGTATCA	11760
	CTGCAGCATG	GGCAAATAGA	CAACAACCAA	ATAACCAACA	AGCAGGCGTG	CAACATTTAA	11820
	ATGTCGATGT	CACATATCCA	GGTATTTCAG	CTGCTAAACG	AGTTCCTGTT	ACTGTTAATG	11880
50	TATATCAATT	TGAATTCCCT	CAAACTACTT	ATACGACAAC	GGTTGGAGGC	ACTTTAGCAA	11940
	GTGGTACGCA	AGCATCAGGA	ምልጥርር ስር ልጥ ል	TOCADADTOC	תיא בתביב בתיים מיוים	CCNNCNCNTC	12000

	TGAATAAACC	GAATGTGGCT	AAAGTCGTTA	ACGCAAAATA	TGACGTCATC	TATAACGGAC	12120
	ATACTTTTGC	AACATCTTTA	CCAGCGAAAT	TTGTAGTAAA	AGATGTGCAA	CCAGCGAAAC	12180
5	CAACTGTGAC	TGAAACAGCG	GCAGGAGCGA	TTACAATTGC	ACCTGGAGCA	AACCAAACAG	12240
	TGAATACACA	TGCCGGTAAC	GTAACGACAT	ACGCTGATAA	ATTAGTTATT	AAACGTAATG	12300
10	GTAACGTTGT	GACGACATTT	ACACGTCGCA	ATAATACGAG	TCCATGGGTG	AAAGAAGCAT	12360
10	CTGCAGCAAC	TGTAGCAGGT	ATTGCTGGAA	CTAATAATGG	TATTACTGTT	GCAGCAGGTA	12420
	CTTTCAACCC	TGCTGATACA	ATTCAAGTTG	TTGCAACGCA	AGGAAGCGGA	GAGACAGTGA	12480
15	GTGATGAGCA	ACGTAGTGAT	GATTTCACAG	TTGTCGCACC	ACAACCGAAC	CAAGCGACTA	12540
	CTAAGATTTG	GCAAAATGGT	CATATTGATA	TCACGCCTAA	TAATCCATCA	GGACATTTAA	12600
	TTAATCCAAC	TCAAGCAATG	GATATTGCTT	ACACTGAAAA	AGTGGGTAAT	GGTGCAGAAC	12660
20	ATAGTAAGAC	AATTAATGTT	GTTCGTGGTC	AAAATAATCA	ATGGACAATT	GCGAATAAGC	12720
	CTGACTATGT	AACGTTAGAT	GCACAAACTG	GTAAAGTGAC	GTTCAATGCC	AATACTATAA	12780
	AACCAAATTC	ATCAATCACA	ATTACTCCGA	AAGCAGGTAC	AGGTCACTCA	GTAAGTAGTA	12840
25	ATCCAAGTAC	ATTAACTGCA	CCGGCAGCTC	ATACTGTCAA	CACAACTGAA	ATTGTGAAAG	12900
	ATTATGGTTC	AAATGTAACA	GCAGCTGAAA	TTAACAATGC	AGTTCAAGTT	GCTAATAAAC	12960
	GTACTGCAAC	GATTAAAAAT	GGCACAGCAA	TGCCTACTAA	TTTAGCTGGT	GGTAGCACAA	13020
30	CGACGATTCC	TGTGACAGTA	ACTTACAATG	ATGGTAGTAC	TGAAGAAGTA	CAAGAGTCCA	13080
	TTTTCACAAA	AGCGGATAAA	CGTGAGTTAA	TCACAGCTAA	AAATCATTTA	GATGATCCAG	13140
35	TAAGCACTGA	AGGTAAAAAG	CCAGGTACAA	TTACGCAGTA	CAATAATGCA	ATGCATAATG	13200
00	CGCAACAACA	AATCAATACT	GCGAAAACAG	AAGCACAACA	AGTGATTAAT	AATGAGCGTG	13260
	CAAÇACCACA	ACAAGTTTCT	GACGCACTAA	CTAAAGTTCG	TGCAGCACAA	ACTAAGATTG	13320
40	ATCAAGCTAA	AGCATTACTT	CAAAATAAAG	AAGATAATAG	CCAATTAGTA	ACGTCTAAAA	13380
	ATAACTTACA	AAGTTCTGTG	AACCAAGTAC	CATCAACTGC	TGGTATGACG	CAACAAAGTA	13440
	TTGATAACTA	TAATGCGAAG	AAGCGTGAAG	CAGAAACTGA	AATAACTGCA	GCTCAACGTG	13500
45	TTATTGACAA	TGGCGATGCA	ACTGCACAAC	AAATTTCAGA	TGAAAAACAT	CGTGTCGATA	13560
	ACGCATTAAC	AGCATTAAAC	CAAGCGAAAC	ATGATTTAAC	TGCAGATACA	CATGCCTTAG	13620
	AGCAAGCAGT	GCAACAATTG	AATCGCACAG	GTACAACGAC	TGGTAAGAAG	CCGGCAAGTA	13680
50	TTACTGCTTA	CAATAATTCG	ATTCGTGCAC	TTCAAAGTGA	CTTAACAAGT	GCTAAAAATA	13740
	GCGCTAATCC	таттаттаа	ΔΔασσΔΔΤΑΔ	GAACAGTACA	ACA ACTICCA A	ጥርጥር ርርጥጥን እ	12000

	CTGATAATAG	TGCTTTAAAA	ACTGCTAAGA	CGAAACTTGA	TGAAGAAATC	AATAAATCAG	13920
	TAACTACTGA	TGGTATGACA	CAATCATCAA	TCCAAGCATA	TGAAAATGCT	AAACGTGCGG	13980
5	GTCAAACAGA	ATCAACAAAT	GCACAAAATG	TTATTAACAA	TGGTGATGCG	ACTGACCAAC	14040
	AAATTGCCGC	AGAAAAAACA	AAAGTAGAAG	AATATAAAA	TAGCTTAAAA	CAAGCAATTG .	14100
	CTGGATTAAC	TCCAGACTTG	GCACCATTAC	AAACTGCAAA	AACTCAGTTG	CAAAATGATA	14160
10	TTGATCAGCC	AACGAGTACG	ACTGGTATGA	CAAGCGCATC	TATTGCAGCA	TTTAATGAAA	14220
	AACTTTCAGC	AGCTAGAACT	AAAATTCAAG	AAATTGATCG	TGTATTAGCC	TCACATCCAG	14280
15	ATGTTGCGAC	AATACGTCAA	AACGTGACAG	CAGCGAATGC	CGCTAAATCA	GCACTTGATC	14340
	AAGCACGTAA	TGGCTTAACA	GTCGATAAAG	CGCCTTTAGA	AAATGCGAAA	AATCAACTAC	14400
	AACATAGTAT	TGACACGCAA	ACAAGTACAA	CTGGTATGAC	ACAAGACTCT	ATAAATGCAT	14460
20	ACAATGCGAA	GTTAACAGCT	GCACGTAATA	AGATTCAACA	AATCAATCAA	GTATTAGCAG	14520
	GTTCACCGAC	TGTAGAACAA	ATTAATACAA	ATACGTCTAC	AGCAAATCAA	GCTAAATCTG	14580
	ATTTAGATCA	TGCACGTCAA	GCTTTAACAC	CAGATAAAGC	GCCGCTTCAA	ACTGCGAAAA	14640
25	CGCAATTAGA	ACAAAGCATT	AATCAACCAA	CGGATACAAC	AGGTATGACG	ACCGCTTCGT	14700
	TAAATGCGTA	CAACCAAAAA	TTACAAGCAG	CGCGTCAAAA	GTTAACTGAA	ATTAATCAAG	14760
	TGTTGAATGG	CAACCCAACT	GTCCAAAATA	TCAATGATAA	AGTGACAGAG	GCAAACCAAG	14820
30	CTAAGGATCA	ATTAAATACA	GCACGTCAAG	GTTTAACATT	AGATAGACAG	CCAGCGTTAA	14880
	CAACATTACA	TGGTGCATCT	AACTTAAACC	AAGCACAACA	AAATAATTTC	ACGCAACAAA	14940
	TTAATGCTGC	TCAAAATCAT	GCtGCGCTTG	AAACAATTAA	GTCTAACATT	ACGGCTTTAA	15000
35	ATACTGCGAT	GACGAAATTA	AAAGACAGTG	TTGCGGATAA	TAATACAATT	AAATCAGATC	15060
	AAAATTACAC	TGACGCAACA	CCAGCTAATA	AACAAGCGTA	TGATAATGCA	GTTAATGCGG	15120
40	CTAAAGGTGT	CATTGGAGAA	ACGACTAATC	CAACGATGGA	TGTTAACACA	GTGAACCAAA	15180
	AAGCAGCATC	TGTTAAATCG	ACGAAAGATG	CTTTAGATGG	TCAACAAAAC	TTACAACGTG	15240
	CGAAAACAGA	AGCAACAAAT	GCGATTACGC	ATGCAAGTGA	TTTAAACCAA	GCACAAAAGA	15300
45	ATGCATTAAC	ACAACAAGTG	AATAGTGCAC	AAAACGTGCA	AGCAGTAAAT	GATATTAAAC	15360
	AAACGACTCA	AAGCTTAAAT	ACTGCTATGA	CAGGTTTAAA	ACGTGGCGTT	GCTAATCATA	15420
	ACCAAGTCGT	ACAAAGTGAT	AATTATGTCA	ACGCAGATAC	TAATAAGAAA	AATGATTACA	15480
50	ACAATGCATA	CAACCATGCG	AATGACATTA	TTAATGGTAA	TGCACAACAT	CCAGTTATAA	15540
	CACCAAGTGA	TGTTAACAAT	GCTTTATCAA	ATGTCACAAG	TAAAGAACAT	GCATTGAATG	15600

	ATTTAAATAA	TGCACAACGT	CAAAACTTAC	AATCGCAAAT	TAATGGTGCG	CATCAAATTG	15720
	ATGCAGTTAA	TACAATTAAG	CAAAATGCAA	CAAACTTGAA	TAGTGCAATG	GGTAACTTAA	15780
5	GACAAGCTGT	TGCAGATAAA	GATCAAGTGA	AACGTACAGA	AGATTATGCG	GATGCAGATA	15840
	CAGCTAAACA	AAATGCATAT	AACAGTGCAG	TTTCAAGTGC	CGAAACAATC	ATTAATCAAA	15900
	CAACAAATCC	AACGATGTCT	GTTGATGATG	TTAATCGTGC	AACTTCAGCT	GTTACTTCTA	15960
10	ATAAAAATGC	ATTAAATGGT	TATGAAAAAT	TAGCACAATC	TAAAACAGAT	GCTGCAAGAG	16020
	CAATTGATGC	ATTACCACAT	TTAAATAATG	CACAAAAAGC	AGATGTTAAA	TCTAAAATTA	16080
15	ATGCTGCATC	AAATATTGCT	GGCGTAAATA	CTGTTAAACA	ACAAGGTACA	GATTTAAATA	16140
	CARCGATGGg	TAACTTGCAA	GGTGCAATCA	ATGATGAACA	AACGACGCTT	AATAGTCAAA	16200
	ACTATCAAGA	TGCGACACCT	agtaagaaaa	CAGCATACAC	AAATGCGGTA	CAAGCTGCGA	16260
20	AAGATATTTT	AAATAAATCA	AATGGTCAAA	ATAAAACGAA	AGATCAAGTT	ACTGAAGCGA	16320
	TGAATCAAGT	GAATTCTGCT	AAAAATAACT	TAGATGGTAC	GCGTTTATTA	GATCAAGCGA	16380
	nCAAaCAGCA	AAACAGCAGT	TAAATAATAT	GACGCATTTA	ACAACTGCAC	AAAAAACGAA	16440
25	TTTAACAAAC	CAAATTAATA	GTGGTACTAC	TGTCGCTGGT	GTTCAAACGG	TTCAATCAAA	16500
	TGCCAATACA	TTAGATCAAG	CCATGAATAC	GTTAAGACAA	AGTATTGCCA	ACAAAGATGC	16560
	GACTAAAGCA	AGTGAAGATT	ACGTAGATGC	TAATAATGAT	AAGCAAACAG	CATATAACAA	16620
30	CGCAGTAGCT	GCTGCTGAAA	CGATTATTAA	TGCTAATAGT	AATCCAGAAA	TGAATCCAAG	16680
	TACGATTACA	CAAAAAGCAG	AGCAAGTGAA	TAGTTCTAAA	ACGGCACTTA	ACGGTGATGA	16740
35	AAACTTAGCT	GCTGCAAAAC	AAAATGCGAA	AACGTACTTA	AACACATTGA	CAAGTATTAC	16800
33	AGATGCTCAA	AAGAACAATT	TGATTAGTCA	AATTACTAGT	GCGACAAGAG	TGAGTGGTGT	16860
	TGATACTGTA	AAACAAAATG	CGCAACATCT	AGACCAAGCT	ATGGCTAGCT	TACAGAATGG	16920
40	TATTAACAAC	GAATCTCAAG	TGAAATCATC	TGAGAAATAT	CGTGATGCTG	ATACAAATAA	16980
	ACAACAAGAG	TATGATAATG	CTATTACTGC	AGCGAAAGCG	ATTTTAAATA	AATCGACAGG	17040
	TCCAAACACT	GCGCAAAATG	CAGTTGAAGC	AGCATTACAA	CGTGTTAATA	ATGCGAAAGA	17100
45	TGCATTGAAT	GGTGATGCAA	AATTAATTGC	AGCTCAAAAC	GCAGCGAAAC	AACATTTAGG	17160
	TACTTTAACG	CATATCACTA	CAGCTCAACG	TAATGATTTA	ACAAATCAAA	TTTCACAAGC	17220
	TACAAACTTA	GCTGGTGTTG	AATCTGTTAA	ACAAAATGCG	AATAGTTTAG	ATGGTGCTAT	17280
50	GGGTAACTTA	CAAACGGCTA	TCAACGATAA	GTCAGGAACA	TTAGCGAGCC	AAAACTTCTT	17340
	CCATCCTCAT	CACCAAAAAC	СТААТССАТА	CAATCAACCT	GTATCAGCAC	CCCAAACCAT	17400

		TGTTAATAAT	GCGAAACATG	CATTAAATGG	TACGCAAAAC	TTAAACAATG	CGAAACAAGC	17520
		AGCGATTACA	GCAATCAATG	GCGCATCTGA	TTTAAATCAA	AAACAAAAAG	ATGCATTAAA	17580
	5	AGCACAAGCT	AATGGTGCTC	AACGCGTATC	TAATGCACAA	GATGTACAGC	ACAATGCGAC	17640
		TGAACTGAAC	ACGGCAATGG	GCACATTAAA	ACATGCCATC	GCAGATAAGA	CGAATACGTT	17700
		AGCAAGCAGT	AAATATGTTA	ATGCCGATAG	CACTAAACAA	AATGCTTACA	CAACTAAAGT	17760
1	10	TACCAATGCT	GAACATATTA	TTAGCGGTAC	GCCAACGGTT	GTTACGACAC	CTTCAGAAGT	17820
		AACAGCTGCA	GCTAATCAAG	TAAACAGCGC	GAAACAAGAA	TTAAATGGTG	ACGAAAGATT	17880
	15	ACGTGAAGCA	AAACAAAACG	CCAATACTGC	TATTGATGCA	TTAACACAAT	TAAATACACC	17940
	.5	TCAAAAAGCT	AAATTAAAAG	AACAAGTGGG	ACAAGCCAAT	AGATTAGAAG	ACGTACAAAC	18000
		TGTTCAAACA	AATGGACAAG	CATTGAACAA	TGCAATGAAA	GGCTTAAGAG	ATAGTATTGC	18060
2	20	TAACGAAACA	ACAGTCAAAA	CAAGTCAAAA	CTATACAGAC	GCAAGTCCGA	ATAACCAATC	18120
		AACATATAAT	AGCGCTGTGT	CAAATGCGAA	AGGTATCATT	AATCAAACTA	ACAATCCGAC	18180
		TATGGATACT	AGTGCGATTA	CCCAAGCTAC	AACACAAGTG	AATAATGCTA	AAAATGGTTT	18240
2	?5	AAACGGTGCT	GAAAACTTAA	GAAATGCACA	AAACACTGCT	AAGCAAAACT	TAAATACATT	18300
		ATCACACTTA	ACAAATAACC	AAAAATCTGC	CATCTCATCA	CAAATTGATC	GTGCAGGTCA	18360
		TGTGAGTGAG	GTAACTGCTA	CTAAAAATGC	AGCAACTGAG	TTGAATACGC	AAATGGGTAA	18420
3	30	CTTGGAACAA	GCTATCCATG	ATCAAAACAC	AGTTAAACAA	AGTGTTAAAT	TTACTGATGC	18480
		AGATAAAGCT	AAACGTGATG	CGTATACAAA	TGCGGTAAGC	AGAGCTGAAG	CAATTCTGAA	18540
		TAAAACGCAA	GGTGCAAATA	CGTCTAAACA	AGATGTTGAA	GCGGCTATTC	AAAATGTTTC	18600
3	15	AAGTGCTAAA	AATGCATTGA	ATGGTGATCA	AAACGTTACA	AATGCGAAGA	ATGCAGCTAA	18660
		AAATGCATTA	AATAACTTAA	CGTCAATTAA	TAATGCACAA	AAACGTGACT	TAACAACTAA	18720
4	10	AATTGATCAA	GCAACAACTG	TAGCTGGTGT	TGAAGCTGTA	TCTAATACGA	GTACACAATT	18780
		GAALACAGCG	ATGGCTAACT	TGCAAAATGG	TATTAATGAT	AAAACAAATA	CACTAGCAAG	18840
		TGAAAACTAT	CATGATGCTG	ATTCAGATAA	GAAAACTGCT	TATACTCAAG	CCGTTACGAA	18900
4	5	CGCAGAAAAT	ATTTTAAATA	AAAATAGTGG	ATCAAATTTA	GACAAAACTG	CCGTTGAAAA	18960
		CGCGTTGTCA	CAAGTTGCTA	ATGCGAAAGG	TGCCCTAAAT	GGTAACCATA	ATTTAGAGCA	19020
		AGCTAAATCA	AATGCAAACA	CTACTATAAA	CGGACTTCAA	CATTTAACAA	CTGCTCAAAA	19080
5	0	agataaattg	AAACAACAAG	TGCAACAAGC	ACAAAATGTT	GCAGGTGTAG	ATACTGTTAA	19140
		ATCAAGTGCC	AACACATTAA	ATGGTGCTAT	GGGTACGTTA	AGAAATAGCA	TACAAGATAA	19200

	TAACAATGCT	GTTGATAGTG	CTAATGGTGT	' CATTAATGCA	ACAAGCAATC	CAAATATGGA	19320
	TGCTAATGCA	ATTAACCAAA	TCGCTACACA	AGTGACATCA	ACGAAAAATG	CATTAGATGG	19380
5	TACACATAAT	TTAACGCAAG	CGAAACAAAC	AGCAACAAAT	GCCATCGATG	GTGCTACTAA	19440
	CTTAAATAAA	GCGCAAAAAG	ATGCGTTAAA	AGCACAAGTT	ACAAGTGCGC	AACGTGTTGC	19500
	AAATGTAACA	AGTATCCAAC	AAACTGCAAA	TGAACTTAAT	ACAGCTATGG	GTCAATTACA	19560
10	ACATGGTATT	GATGATGAAA	ATGCAACAAA	ACAAACTCAA	AAATATCGTG	ACGCTGAACA	19620
	AAGTAAGAAA	ACTGCTTATG	ATCAAGCTGT	AGCTGCTGCG	AAAGCAATTT	тааатаааса	19680
15	AACAGGTTCA	AATTCAGATA	AAGCAGCAGT	TGACCGTGCA	TTACAACAAG	TAACAAGTAC	19740
	GAAAGATGCA	TTGAATGGTG	ATGCAAAACT	GGCAGAAGCG	AAAGCGGCAG	CTAAACAAAA	19800
	CTTAGGCACT	TTAAACCATA	TTACGAATGC	ACAACGTACT	GACTTAGAAG	GCCAAATCAA	19860
20	TCAAGCGACG	ACTGTTGATG	GCGTTAATAC	TGTAAAAACA	AATGCCAATA	CATTAGACGG	19920
	CGCAATGAAT	AGCTTACAAG	GTTCAATCAA	TGATAAAGAT	GCGACATTAA	GAAATCAAAA	19980
	TTATCTTGAT	GCGGATGAAT	CAAAACGAAA	TGCATATACG	CAAGCTGTCA	CAGCGGCTGA	20040
25	AGGCATTTTA	AATAAACAAA	CTGGTGGTAA	CACATCTAAA	GCAGACGTTG	ATAATGCATT	20100
	AAATGCAGTT	ACAAGAGCGA	AAGcGgCTTT	AAATGGTGCT	GACAACTTAA	GAAATGCGAA	20160
	AACTTCAGCA	ACAAATACGA	TTGATGGTTT	ACCTAACTTA	ACACAATTAC	AAAAAGACAA	20220
30	CTTGAAGCAT	CAAGTTGAaC	AAGCGCAAAA	TGTAGCAGGT	GTAAATGGTG	TTAAAGATAA	20280
	AGGTAATACG	TTAAATACTG	CCATGGGTGC	ATTACGTACA	AGTATCCAAA	ATGATAATAC	20340
	GACGAAAACA	AGTCAAAATT	ATCTTGATGC	ATCTGACAGC	AACAAAAATA	ATTACAATAC	20400
35	TGCTGTAAAT	AATGCAAATG	GTGTTATTAA	TGCAACGAAC	AATCCAAATA	TGGATGCTAA	20460
	TGCGÁTTAAT	GGCATGGCAA	ATCAAGTCAA	TACAACAAAA	GCAGCGTTAA	ATGGTGCACA	20520
40	AAACTTAGCT	CAAGCTAAAA	CAAATGCGAC	GAACACAATT	AACAACGCAC	ATGACTTAAA	20580
	CCAAAAACAA	AAAGATGCAT	TAAAAACACA	AGTTAACAAT	GCACAACGTG	TATCTGATGC	20640
	AAATAACGTT	CAACACACTG	CAACTGAATT	GAACAGTGCG	ATGACAGCAC	TTAAAGCAGC	20700
45	TATTGCTGAT	AAAGAAAGAA	CAAAAGCAAG	CGGTAATTAT	GTCAATGCTG	ATCAAGAAAA	20760
	ACGTCAAGCG	TATGATTCAA	AAGTGACTAA	CGCTGAAAAT	ATCATTAGTG	GTACACCGAA	20820
	TGCGACATTA	ACAGTCAATG	ACGTAAATAG	TGCGGCATCA	CAAGTCAATG	CGGCTAAAAC	20880
50	AGCATTAAAT	GGTGATAACA	ACTTACGTGT	AGCGAAAGAG	CATGCCAACA	ATACAATTGA	20940
	CGGCTTAGCA	СВВТТСВВТВ	ATGCACAAAA	ልርር እ እ እ አ ጥጥ እ	****	TTTC3 & S CTTCC	21.000

	GAAAGGCTTA	AGAGATAGTA	TTGCGAATGA	AGCAACAATT	AAAGCAGGTC	AAAACTACAC	21120
	TGACGCAAGT	CCAAATAATC	GTAACGAGTA	CGACAGTGCA	GTTACTGCAG	CAAAAGCAAT	21180
5	CATTAATCAA	ACATCGAACC	CAACGATGGA	ACCAAATACT	ATTACGCAAG	TAACATCACA	21240
	AGTGACAACT	AAAGAACAGG	CATTAAATGG	TGCGCGAAAC	TTAGCTCAAG	CTAAGACAAC	21300
	TGCGAAAAAC	AACTTGAATA	ACTTAACATC	AATTAACAAT	GCACAAAAAG	ATGCGTTAAC	21360
10	GCGTAGCATT	GATGGTGCAA	CAACAGTAGC	TGGTGTAAAT	CAAGAAACTG	CAAAAGCAAC	21420
	AGAATTAAAT	AACGCAATGC	ATAGTTTACA	AAATGGTATC	AATGATGAGA	CACAAACAAA	21480
15	ACAAACTCAG	AAATACCTAG	ATGCAGAGCC	AAGTAAGAAA	TCAGCTTATG	ATCAAGCAGT	21540
70	AAATGCAGCG	AAAGCAATTT	TAACAAAAGC	TAGTGGTCAA	AATGTAGACA	AAGCAGCAGT	21600
	TGAACAAGCA	TTGCAAAATG	TGAACAGTAC	GAAGACGGCG	TTGAACGGTG	ATGCGAAATT	21660
20	AAATGAAGCT	AAAGCAGCTG	CGAAACAAAC	GTTAGGTACA	TTAACACACA	TTAATAATGC	21720
	ACAACGTACA	GCGTTAGACA	ATGAAATTAC	ACAAGCAACA	AATGTTGAAG	GTGTTAATAC	21780
	AGTTAAAGCC	AAAGCGCAAC	AATTAGATGG	TGCTATGGGT	CAATTAGAAA	CATCAATTCG	21840
25	TGATAAAGAC	ACGACGTTAC	AAAGTCAAAA	TTATCAAGAT	GCTGATGATG	CTAAACGAAC	21900
	TGCTTATTCT	CAAGCAGTAA	ATGCAGCAGC	AACTATTTTA	AATAAAACAg	CTGGCGGTAA	21960
	TACACCTAAA	GCAGATGTTG	AAAGAGCAAT	GCAAGCTGTT	ACACAAGCAA	ATACTGCATT	22020
30	AAACGGTATT	CAMAACTTAG	ATCGTGCGAA	ACArGCTGCT	AACACAGCGA	TTACAAATGC	22080
	TTCGGACTTA	AATACAAAAC	mAAAAGAAGC	ATTAAAAgCA	CAAGTAACAA	GTGCAGGACG	22140
	TGTATCTGCA	GCAAATGGTG	TTGAACATAC	TGCGACTGAA	TTAAATACTG	CGATGACAGC	22200
35	TTTAAAGCGT	GCCATTGCTG	ATAAAGCTGA	GACAAAAGCT	AGTGGTAACT	ATGTCAATGC	22260
	TGATGCGAAT	AAACGTCAAG	CATATGATGA	AAAAGTTACA	GCTGCCGAAA	ATATCGTTAG	22320
40	TGGTACACCA	ACACCAACGT	TAACACCAGC	AGATGTTACA	AATGCAGCAA	CGCAAGTAAC	22380
70	GAATGCTAAG	ACGCAGTTAA	ACGGTAATCA	TAATTTAGAA	GTAGCGAAAC	AAAATGCTAA	22440
	CACTGCAATT	GATGGTTTAA	CTTCTTTAAA	TGGTCCGCAA	AAAGCAAAAC	TTAAAGAACA	22500
45	AGTGGGTCAA	GCGACGACGT	TGCCAAATGT	TCAAACTGTT	CGTGATAATG	CACAAACATT	22560
	AAACACTGCA	ATGAAAGGTC	TACGAGATAG	CATTGCGAAT	GAAGCAACGA	TTAAAGCAGG	22620
	TCAAAACTAC	ACAGATGCAA	GTCAAAACAA	ACAAACTGAC	TACAACAGTG	CAGTCACTGC	22680
50	AGCAAAAGCA	ATCATTGGTC	AAACAACTAG	TCCATCAATG	AATGCGCAAG	AAATTAATCA	22740
	AGCGAAAGAC	CAACTCACAC	CTA	ACCOMPANA A	CCTCAACAA	3.0000 3.03 3.0	

	AGATGCAGT	G AAACGTCAAA	TCGAAGGTG	AACGCATGT1	r aatgaagtaa	CACAAGCACA	22920
	AAATAATGC	G GATGCATTAA	ATACAGCTAT	GACGAACTTO	AAAAATGGTA	TTCAAGATCA	22980
5	GAATACGAT	r aagcaaggtg	TTAACTTCAC	TGATGCCGAC	GAAGCGAAAC	GTAATGCATA	23040
	TACAAATGC	A GTGACGCAAG	CTGAACAAA1	AAATAAATTT	GCACAAGGTC	CAAATACTTC	23100
40	AAAAGACGGT	GTCGAAACTG	CGTTAGAaAA	TGTACAACGT	GCTAAAAACG	AATTGAACGG	23160
10	TAATCAAAAT	GTTGCGAACG	CTAAGACAAC	TGCGAAAAAT	GCATTGAATA	ACCTAACATC	23220
	AATTAATAAT	GCACAAAAAG	AAGCATTGAA	ATCACAAATT	GAAGGTGCGA	CAACAGTTGC	23280
15	AGGTGTAAAT	CAAGTGTCTA	CAACGGCATC	TGAATTAAAT	ACAGCAATGA	GCAACTTACA	23340
	AAATGGTATT	AATGATGAAG	CAGCTACAAA	AGCAGCGCTT	AATGGTACTC	AAAACCTTGA	23400
	AAAAGCTAAA	CAACACGCAA	ATACAGCAAT	'TGACGGTTTA	AGCCATTTAA	CAAATGCACA	23460
20	AAAAGAGGCA	TTAAAACAAT	TGGTACAACA	ATCGACTACT	GTTGCAGAAG	CACAAGGTAA	23520
	TGAGCAAAAA	GCAAACAATG	TTGATGCAGC	AATGGACAAA	TTACGTCAAA	GTATTGCAGA	23580
	TAATGCGACA	ACAAAACAAA	ACCAAAATTA	TACTGATGCA	AGTCAGAATA	AAAAGGATGC	23640
25	GTACAATAAT	GCTGTCACAA	CTGCACAAGG	TATTATTGAT	CAAACTACAA	GTCCAACTTT	23700
	AGATCCGACT	GTTATCAATC	AAGCTGCTGG	ACAAGTAAGC	ACAACTAAAA	ATGCATTAAA	23760
	TGGTAATGAA	AACCTAGAGG	CAGCGAAACA	ACAAGCGTCA	CAATCATTAG	GTTCATTAGA	23820
30	TAACTTAAAT	AATGCGCAAA	AACAAACAGT	TACTGATCAA	ATTAATGGCG	CGCATACTGT	23880
	TGATGAAGCA	AATCAAATTA	AGCAAAATGC	GCAAAACTTA	AATACAGCGA	TGGGTAACTT	23940
25	GAAACAAGCG	ATAGCTGACA	AAGATGCTAC	GAAAGCGACA	GTTAACTTCA	CTGATGCAGA	24000
35	TCAAGCAAAA	CAACAAGCAT	ATAACaCTGC	TGTTACAAAT	GCTGAAAATA	TCATTTCAAA	24060
	AGCTAATGGC	GGCAATGCAA	CACAAGCTGA	AGTTGAACAA	GCAATCAAAC	AAGTTAATGC	24120
40	TGCAAAACAA	GCATTAAATG	GTAATGCCAA	CGTTCAACAT	GCAAAAGACG	AAGCAACAGC	24180
	ATTAATTAAT	AGCTCTAATG	ACCTTAACCA	AGCACAAAAA	GACGCATTAA	AACAACAAGT	24240
	TCAAAATGCA	ACTACTGTAG	CTGGTGTAAA	CAATGTTAAA	CAAACAGCAC	AAGAGTTAAA	24300
45	CAATGCTATG	ACACAATTAA	AACAAGGCAT	TGCAGATAAA	GAACAAACAA	AAGCTGATGG	24360
	TAACTTTGTC	AATGCAGATC	CTGATAAGCA	AAATGCATAT	AATCAAGCAG	TAGCGAAAGC	24420
	TGAAGCATTA	ATTAGTGctA	CGCCTGATGT	TGTCGTTACA	CCTAGCGAAA	TTACTGCAGC	24480
50	GTTAAATAAA	GTTACGCAAG	CTAAAAATGA	TTTAAATGGT	AATACAAACT	TAGCAACGGC	24540
	GAAACAAAAT	GTTCAACATG	CTATTGATCA	ATTGCCAAAC	TTAAACCAAG	CGCAACGTGA	24600

	AGCGGCGACA	ACGCTTAATG	ACGCGATGAC	ACAATTGAAA	CAAGGTATTG	CGAATAAAGC	24720
	ACAAATTAAA	GGTAGCGAGA	ACTATCACGA	TGCTGATACT	GACAAGCAAA	CAGCATATGA	24780
5	TAATGCAGTA	ACAAAAGCAG	AAGAATTGTT	AAAACAAACA	ACAAATCCAA	CAATGGATCC	24840
	AAATACAATT	CAACAAGCAT	TAACTAAAGT	GAATGACACA	AATCAAGCAC	TTAACGGTAA	24900
	TCAAAAATTA	GCTGATGCCA	AACAAGATGC	TAAGACAACA	CTTGGTACAC	TAGATCATTT	24960
10	AAATGATGCT	CAAAAACAAG	CGCTAACAAC	TCAAGTTGAA	CAAGCACCAG	ATATTGCAAC	25020
	AGTTAATAAT	GTTAAGCAAA	ATGCTCAAAA	TCTGAATAAT	GCTATGACTA	ACTTAAACAA	25080
15	TGCATTACAA	GATAAAACTG	AGACATTAAA	TAGCATTAAC	TTTACTGATG	CAGATCAAGC	25140
,,,	TAAGAAAGAT	GCTTATACTA	ATGCGGTTTC	ACATGCAGAA	GGTATTTTAT	CTAAAGCAAA	25200
	TGGCAGCAAT	GCAAGTCAAA	CTGAAGTGGA	ACAAGCGATG	CAACGTGTGA	ACGAAGCGAA	25260
20	ACAAGCATTG	AATGGTAATG	ACAATGTACA	ACGTGCAAAA	GATGCAGCGA	AACAAGTGAT	25320
	TACAAATGCA	AATGATTTAA	ATCAAGCAAT	GACACAATTG	AAACAAGGTA	TTGCAGATAA	25380
	AGACCAAACT	AAAGCAAATG	GTAACTTTGT	CAATGCTGAT	ACTGATAAGC	AAAATGCTTA	25440
25	CAACAATGCG	GTAGCACATG	CTGAACAAAT	AATTAGTGGT	ACACCAAATG	CAAACGTGGA	25500
	TCCACAACAA	GTGGCTCAAG	CGTTACAACA	AGTGAATCaA	GCTAAGGGTG	ATTTAAACGG	25560
	TAACCATAAC	TTACAAGTTG	CTAAAGACAA	TGCAAATACA	GCCATTGATC	AGTTACCAAA	25620
30	CTTAAATCAA	CCACAAAAAA	CAGCATTAAA	AGACCAAGTG	TCGCATGCAG	AACTTGTTAC	25680
	AGGTGTTAAT	GCTATTAAGC	AAAATGCTGA	TGCGTTAAAT	AATGCAATGG	GTACATTGAA	25740
	ACAACAAATT	CAAGCGAACA	GTCAAGTACC	ACAGTCAGTT	GACTTTACAC	AAGCGGATCA	25800
35	AGACAAACAA	CAAGCATATA	ACAATGCGGC	TAACCAAGCG	CAACAAATCG	CAAATGGCAT	25860
	ACCAÁCACCT	GTATTGACGC	CTGATACAGT	AACACAAGCA	GTGACAACTA	TGAATCAAGC	25920
40	GAAAĞATGCA	TTAAACGGTG	ATGAAAAATT	AGCACAAGCG	AAACAAGAAG	CTTTAGCAAA	25980
	TCTTGATACG	TTACGCGATT	TAAATCAACC	ACAACGTGAT	GCATTACGTA	ACCAAATCAA	26040
	TCAAGCACAA	GCGTTAGCTA	CAGTTGAACA	AACTAAACAA	AATGCACAAA	ATGTGAATAC	26100
45	aGCaATGAGT	AACTTGAAAC	aAGGTATTGC	aaacaaagat	ACTGTCAAAG	CAAGTGAGAA	26160
	CTATCATGAT	GCTGATGCCG	ATAAGCAAAC	AGCATATACA	AATGCAGTGT	CTCAAGCGGA	26220
	AGGTATTATC	AATCAAACGA	CAAATCCAAC	GCTTAACCCA	GATGAAATAA	CACGTGCATT	26280
50	AACTCAAGTG	ACTGATGCTA	AAAATGGCTT	AAACGGTGAA	GCTAAATTGG	CAACTGAAAA	26340
	GCAAAATGCT	AAAGATGCCG	ТААСТСССАТ	ርልሮርርስጥጥላ	AACCATCCTC	*****	26400

	AGCAACGAGC	CTAGATCAAG	CAATGGATCA	ATTATCACAA	GCTATTAATG	ATAAAGCTCA	26520
	AACATTAGCG	GACGGTAATT	ACTTAAATGC	AGATCCTGAC	AAACAAAATG	CGTATAAACA	26580
5	GGCAGTAGCA	AAAGCTGAAG	CATTATTGAA	TAAACAAAGT	GGTACTAATG	AAGTACAAGC	26640
	ACAAGTTGAA	AGCATCACTA	ATGAAGTGAA	CGCAGCGAAA	CAAGCATTAA	ATGGTAATGA	26700
	CAATTTGGCA	AATGCAAAAC	AACAAGCAAA	ACAACAATTG	GCGAACTTAA	CACACTTAAA	26760
10	TGATGCACAA	AAACAATCAT	TTGAAAGTCA	AATTACACAA	GCGCCACTTG	TTACAGATGT	26820
	CACTACGATT	AATCAAAAAG	CACAAACGTT	AGATCATGCG	ATGGAATTAT	TAAGAAATAG	26880
15	TGTTGCGGAT	AATCAAACGA	CATTAGCGTC	TGAAGATTAT	CATGATGCAA	CTGCGCAAAG	26940
75	ACAAAATGAC	TATAACCAAG	CTGTAACAGC	TGCTAATAAT	ATAATTAATC	AAACTACATC	27000
	GCCTACGATG	AATCCAGATG	ATGTTAATGG	TGCAACGACA	CAAGTGAATA	ATACGAAAGT	27060
20	TGCATTAGAT	GGTGATGAAA	ACCTTGCAGC	AGCTAAACAA	CAAGCAAACA	ACAGACTTGA	27120
	TCAATTAGAT	CATTTGAATA	ATGCGCAAAA	GCAACAGTTA	CAATCACAAA	TTACGCAATC	27180
	ATCTGATATT	GCTGCAGTTA	ATGGTCACAA	ACAAACAGCA	GAATCTTTAA	ATACTGCGAT	27240
25	GGGTAACTTA	ATTAATGCGA	TTGCAGATCA	TCAAGCCGTT	GAACAACGTG	GTAACTTCAT	27300
	CAATGCTGAT	ACTGATAAAC	AAACTGCTTA	TAATACAGCG	GTAAATGAAG	CAGCAGCAAT	27360
	GATTAACAAA	CAAACTGGTC	AAAATGCGAA	CCAAACAGAA	GTAGAACAAG	СТАТТАСТАА	27420
30	AGTTCAAACA	ACACTTCAAG	CGTTAAATGG	AGACCATAAT	TTACAAGTTG	СТААААСААА	27480
	TGCGACGCAA	GCAATTGATG	CTTTAACAAG	CTTAAATGAT	ССТСАААААА	CAGCATTAAA	27540
	AGACCAAGTT	ACAGCTGCAA	CTTTAGTAAC	TGCAGTTCAT	CAAATTGAAC	AAAATGCGAA	27600
35	TACGCTTAAC	CAAGCAATGC	ATGGTTTAAG	ACAGAGCATT	CAAGATAACG	CAGCAACTAA	27660
	AGCAÃATAGC	AAATATATCA	ACGAAGATCA	ACCAGAGCAA	CAAAACTATG	ATCAAGCTGT	27720
40	TCAAGCCGCA	AATAATATTA	TCAATGAACA	AACTGCAACA	TTAGATAATA	ATGCGATTAA	27780
40	TCAAGCAGCG	ACAACTGTGA	ATACAACGAA	AGCAGCATTA	CATGGTGATG	TGAAGTTACA	27840
	AAATGATAAA	GATCATGCTA	AGCAAACGGT	TAGTCAATTA	GCACATCTAA	ACAATGCACA	27900
45	AAAACATATG	GAAGATACGT	TAATTGATAG	TGAAACAACT	AGAACAGCAG	TTAAGCAAGA	27960
	TTTGACTGAA	GCACAAGCAT	TAGATCAACT	TATGGATGCA	TTACAACAAA	GTATTGCTGA	28020
	CAAAGATGCA	ACACGTGCGA	GCAGTGCATA	TGTCAATGCA	GAACCGAATA	AAAAACAATC	28080
50	CTATGATGAA	GCAGTTCAAA	ATGCTGAGTC	TATCATTGCA	GGATTAAATA	ATCCAACTAT	28140
	CAATAAAGGT	AATGTATCAA	GTGCGACTCA	AGCAGTAATA	тсатстаааа	ልጥርሮልጥጥልርል	28200

	TCAATTAACA	CCAGCTCAAC	AACAAGCGCT	AGAAAATCAA	ATTAATAATG	CAACAACTCG	28320
	TGATAAAGTG	GCTGAAATCA	TTGCACAAGC	GCAAgCATtA	AATGAAGCGA	TGAAAGCATT	28380
5	AAAAGAAAGT	ATTAAGGATC	AACCACAAAC	TGAAGCAAGT	AGTAAATTTA	TTAACGAGGA	28440
	TCAAGCGCAA	AAAGATGCTT	ATACGCAAGC	AGTACAACAC	GCGAAAGATT	TGATTAACAA	28500
	AACAACTGAT	CCTACATTAG	CTAAATCAAT	CATTGATCAA	GCGACACAGG	CAGTGACAGA	28560
10	TGCTAAAAAC	AATTTACATG	GTGATCAAAA	ACTAGCTCAA	GATAAGCAAC	GTGCAACAGA	28620
	AACGTTAAAT	AACTTGTCTA	ACTTGAATAC	ACCACAACGT	CAAGCACTTG	AAAATCAAAT	28680
15	TAATAATGCA	GCAACTCGTG	GCGAAGTAGC	ACAAAAATTA	ACTGAAGCAC	AAGCACTTAA	28740
,,,	CCAAGCAATG	GAAGCTTTAC	GTAATAGCAT	TCAAGATCAA	CAGCAAACGG	AAGCGGGTAG	28800
	CAAGTTTATC	AATGAAGATA	Aaccacmaaa	AGTTGCTTAC	CAAGCAGCAG	TTCAAAATGC	28860
20	AAAAGATTTA	ATTAATCAAA	CTAACAATCC	AACGCTTGAT	AAAGCACAAG	TTGAACAATT	28920
	GACACAAGCT	GTTAACCAAG	CTAAAGATAA	CCTACACGGT	GATCAAAAAC	TTGCAGACGA	28980
	TAAACAACAT	GCGGTTACTG	ATTTAAATCA	ATTAAATGGT	TTGAATAATC	CGCAACGTCA	29040
25	AGCACTTGAA	AGCCAAATAA	ACAACGCAGC	AACTCGTGGC	GAAGTAGCAC	AAAAATTAGC	29100
	TGAAGCAAAA	GCGCTTGATC	AAGCAATGCA	AGCATTACGT	AATAGTATTC	AAGATCAACA	29160
	ACAAACAGAA	TCTGGTAGCA	AGTTTATCAA	TGAAGATAAA	CCGCAAAAAG	ATGCTTACCA	29220
30	AGCAGCAGTT	CAAAATGCAA	AAGATTTAAT	TAACCAAACA	GGTAATCCAA	CACTCGACAA	29280
	ATCACAAGTA	GAACAATTGA	CACAAGCAGT	AACAACTGCA	AAAGATAATC	TACATGGTGA	29340
	TCAAAAACTT	GCTCGTGATC	AACAACAAGC	AGTAACAACT	GTAAATGCAT	TGCCAAACTT	29400
35	AAATCATGCA	CAACAACAAG	CATTAACTGA	TGCTATAAAT	GCAGCGCCTA	CAAGAACAGA	29460
	GGTTGCACAA	CATGTTCAAA	CTGCTACTGA	ACTTGATCAC	GCGATGGAAA	CATTGAAAAA	29520
40	TAAAGTTGAT	CAAGTGAATA	CAGATAAGGC	TCAACCAAAT	TACACTGAAG	CGTCAACTGA	29580
	TAAAAAAGAA	GCAGTAGATC	AAGCGTTACA	AGCTGCAGAA	AGCATTACAG	ATCCAACTAA	29640
	TGGTTCAAAT	GCGAATAAAG	ACGCTGTAGA	CCAAGTATTA	ACTAAGCTTC	AAGAAAAAGA	29700
45	AAATGAGTTA	AATGGTAATG	AGAGAGTCGC	TGAAGCTAAA	ACACAAGCGA	AACAAACTAT	29760
	TGACCAATTA	ACACATTTAA	ATGCTGATCA	AATTGCAACT	GCTAAACAAA	ACATTGATCA	29820
	AGCGACGAAA	CTTCAACCAA	TTGCTGAATT	AGTAGATCAA	GCAACGCAAT	TGAATCAATC	29880
50	TATGGATCAA	TTACAACAAG	CAGTTAATGA	ACATGCTAAC	GTTGAGCAAA	CTGTAGATTA	29940

	TGCAAAACAA	GCATTAAATG	GTGATGAACG	TGTAGCACTT	GCTAAAACAA	ATGGTAAACA	30120
	TGACATCGAC	CAATTGAATG	CATTAAACAA	TGCTCAACAA	GATGGATTTA	AAGGTCGCAT	30180
5	CGATCAATCA	AACGATTTAA	ATCAAATCCA	ACAAATTGTA	GATGAGGCTA	AGGCACTTAA	30240
	TCGTGCAATG	GATCAATTGT	CACAAGAAAT	CACTGACAAT	GAAGGACGCA	CGAAAGGTAG	30300
	CACGAACTAT	GTCAATGCAG	ATACACAAGT	CAAACAAGTA	TATGATGAAA	CGGTTGATAA	30360
10	AGCGAAACAA	GCACTTGATA	AATCGACTGG	TCAAAACTTA	ACTGCAAAAC	AAGTTATCAA	30420
	ATTAAATGAT	GCAGTCACTG	CAGCTAAGAA	AGCATTAAAT	GGTGAAGAAA	GACTTAATAA	30480
15	TCGTAAAGCT	GAAGCATTAC	AAAGATTGGA	TCAATTAACA	CATCTAAACA	ATGCTCAAAG	30540
	ACAATTAGCA	ATCCAACAAA	TTAATAATGC	TGAAACGCTA	AATAAAGCAT	CTCGAGCAAT	30600
	TAATAGAGCA	ACTAAATTAG	ATAATGCAAT	GGGTTCAGTA	CAACAATATA	TTGACGAACA	30660
20	GCACCTTGGT	GTTATCAGCA	GCACAAATTA	CATCAATGCA	GATGACAATT	TGAAAGCAAA	30720
	TTATGATAAT	GCAATTGCGA	ATGCAGCACA	TGAGTTAGAT	AAAGTGCAAG	GTAATGCAAT	30780
	TGCaAAAGCT	GAAGCAGAGC	AATTGAAACA	AAATATTATC	GATGCTCAAA	ATGCATTAAA	30840
25	TGGAGACCAA	AACCTTGCAA	ATGCCAAAGA	TAAAGCAAAT	GCGTTTGTTA	ATTCGTTAAA	30900
	TGGATTAAAT	CAACAGCAAC	AAGATCTTGC	ACATAAAGCA	ATTAACAATG	CCGATACTGT	30960
	ATCAGATGTA	ACAGATATTG	TTAATAATCA	AATTGACTTA	AATGATGCAA	TGGAAACATT	31020
30	GAAACATTTA	GTTGACAATG	AAATTCCAAA	TGCAGAGCAA	ACTGTCAATT	ACCAAAACGC	31080
	TGACGATAAT	GCTAAA					31096

(2) INFORMATION FOR SEQ ID NO: 60:

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2243 base pairs
- (B) TYPE: nucleic acid (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:

ATGACAGAAT GGGAGCGAGG ACTTAGAATG TTTCCTAAAT CAGGTTTATT AAATTTTGAG 60 TTAGCGATAG MAAATCGTTC ATTAAATGAT GATGAAAAAG CATTAAAATA TGTGCGTAAA 120 GCATTAAATG CAGACCCTAA AAATACAGAT TATATTAACT TAGAAAAAGA GTTGACTAAA 180 TCAAATGAGT CGAAAAATAA ATAACTTTTA TGATGTACAA CAGTTATTGA AAAGTTACGG 240 ATTTCTAATA TATTTTAAAA ATCCAGAAGA TATGTACGAA ATGATTCAAC AGGAGATTTC 300

	TAATCAGAGA	AGGAATGAAC	AGAAATGACA	AAAATTATTT	TAGCAGCTGA	TGTAGGCGGG	420
	ACGACTTGTA	AATTAGGTAT	TTTCACACCT	GAATTAGAAC	AATTACATAA	ATGGTCTATT	480
5	CACACTGATA	CATCTGATAG	TACAGGATAT	ACACTTTTGA	AAGGAATTTA	TGATTCGTTT	540
	GTTGAAAAAG	TAAATGAAAA	TAATTATAAT	TTTTCAAATG	TACTTGGCGT	AGGTATTGGT	600
40	GTACCAGGTC	CTGTTGACTT	TGAAAAAGGT	ACAGTAAATG	GAGCAGTAAA	CTTATATTGG	660
10	CCAGAAAAAG	TTAATGTACG	TGAGATTTTT	GAACAATTCG	TTGATTGTCC	AGTGTATGTA	720
	GATAATGATG	CTAACATAGC	TGCTTTAGGG	GaGAAACACA	AAGGTGCTGG	TGAAGGTGCC	780
15	GATGATGTTG	TTGCCATCAC	ACTTGGTACA	GGTCTAGGTG	GAGGAATTAT	TTCCAAATGG	840
	TGAAATCGTA	CATGGTCATA	ATGGCTCtGG	CGCAGAAATA	GGTCATTTTA	GAGCAGACTT	900
	CGATCAACGA	TTTaAATGTA	ATTGTGGTCG	TTCTGGATGT	ATTGAAACAG	TTGCTTCaGC	960
20	GACAGGCGTT	GTTAACTTAG	TTAACTTCtA	CTATCCGAAG	TTGACGTTTA	GATCTTCTAT	1020
	ATTAGAATTG	ATTAAAGAAA	ATAAGGTtAC	aGCAAAAGCT	GTTTTTGATG	CGGCAAAAGC	1080
	TGGTGACCAA	TTCTGTATTT	TCATTACTGA	AAAGGTTGCA	AACTATATTG	GATATTTATG	1140
25	TAGTATTATT	AGTGTTACAA	GTAATCCGAA	ATATATCGTT	CTAGGTGGAG	GAATGTCTAC	1200
	TGCAGGACCT	ATTTTAATTG	AAAATATTAA	AACAGAATAT	CATAATTTAA	CATTTGCACC	1260
	TGCTCAATTT	GAAACTGAAA	TTGTACAAGC	GAAATTAGGT	AATGATGCAG	GTATTACAGG	1320
30	AGCAGCAGGA	TTAATCAAGA	CCTATGTATT	AGATAAAGAG	GGGGTAAAAT	AATGGCTATT	1380
	GTTGATGTGG	TTGTTATTCC	AGTTGGAACG	GAAGGTCCGA	GTGTTAGTAA	ATATATTGCA	1440
35	GATATTCAGA	AAAAACTTCA	AGAATATAAA	GCAATGGGTA	AAATTGATTT	TCAATTAACA	1500
33	CCAATGAATA	CTCTAATTGA	AGGTGAATTA	AGCGATGTAT	TAGAAGTTGT	GCAAGTGATA	1560
	CATGAATTAC	CTTTTGATAA	AGGTTTAAGT	AGAGTTTGTA	CAAATATCCG	TATTGATGAC	1620
40	CGACGAGACA	AATCTAGAAA	AATGAATGAT	AAACTAACAT	CAGTACAAAA	ACATTTAGAA	1680
	AATAGTGGTG	AAAACCTATG	AGGATTTCAA	GCTTAACTTT	AGGCTTAGTT	GATACTAATA	1740
	CGTATTTCAT	CGAAAATGAC	AAAGCTGTTA	TTCTGATTGA	CCCTTCAGGT	GAAAGTGAAA	1800
45	AAATTATTAA	AAAATTAAAC	CAAATAAATA	AACCGTTAAA	AGCTATTTTA	TTAACACATG	1860
	CACACTTTGA	TCATATCGGA	GCAGTCGATG	ATATAGTTGA	TCGATTCGAT	GTCCCGGTTT	1920
	ATATGCATGA	AGCAGAGTTT	GATTTTCTAA	AAGATCCCGT	TAAAAATGGG	GCAGATAAAT	1980
50	TTAAGCAATA	TGGATTACCA	ATTATTACAA	GTAAGGTAAC	TCCTGAAAAG	TTAAmCGAAG	2040
	GTAGCACAGA	AATAGAAGGA	TTTAAGTTnT	nAyrTGTaCA	CACACCTGGA	CATTCACCAG	2100

	GAATCGGACG TACAGATTTA TATAAAGGTG ATTATGAAAC GCTAGTTGAT TCTATTCAAG	2220
	ATAAAATATT TGAATTAGAA GGC	2243
5	(2) INFORMATION FOR SEQ ID NO: 61:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 8009 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
15	TTGGnATCAT tyAcgGTAAA AAGAATAAaG CAAGATTLAT TTCATTAGTA CTAATTTGTG	60
	CAATGTTTGC AATTTGTTGG GTTGCATATA TTCAATGGGA GTCTACAATC GCTTCATTTA	120
20	CACAATCTAT TAATATTTCa ATGGCACAAT ATAGTGTTTT ATGGACAATT AACGGAATAA	180
	TGATTTTAGT AGCACAACCA TTAATTAAAC CGATTCTCTA TCTGTTAAAA GGAAACTTAA	240
	AGAAGCAAAT GTTTGTCGGC ATCATCATTT TTATGTTGTC GTTCTTTGTC ACGAGTTTTG	300
25	CCGAAAACTT TACAATATTT GTTGTCGGTA TGATTATTTT AACTTTTGGA GAAATGTTTG	360
	TATGGCCAGC AGTTCCAACT ATAGCCAATC AGTTAGCGCC AGATGGTAAG CAAGGACAGT	420
	ACCAAGGTTT TGTGAATTCA GCTGCTACAG TAGGAAAAGC ATTTGGTCCA TTTCTTGGTG	480
30	GTGTATTAGT TGATGCGTTT AATATGCGCA TGATGTTTAT CGGTATGATG CTACTACTTG	540
	TATTTGCATT AATATTATTA ATGGTTTTCA AGGAGAATAA TACGCAACCT AAAAAAATAG	600
35	ATGCATAATG AGTAAATAGA ATTAACGTTA TAGACTTGAA ATAAATGTCG TTATAACATA	660
33	ATATTAATTT GTATAATTTA ATTTCGTTTG GAGCTTTTCT ACAGAAAGCT AGTGATGCTG	720
	AGAGCTAGTG TTAAGGACTA AATGTAAATC GTATTAATTT TAAATTGAAT GAATGACATC	780
40	TCTTACTATT AAAATGAGTG CACAATTTTT GTGAAATAGG GTGGTAACGC GGCAAATGTC	840
	GTCCCTATGT AAATAGAATA GTTAGAGGTG TCTTTTTTAT TGAATAGGAG GAAATGTGTT	900
	GAATTACAAC CACAATCAAA TTGAAAAGAA ATGGCAAGAC TATTGGGACG AAAATAAAAC	960
45	ATTTAAAACA AATGATAACT TAGGTCAAAA GAAATTTTAT GCTTTAGACA TGTTTCCATA	1020
	TCCATCAGGT GCTGGTTTAC ATGTTGGACA TCCTGAGGGC TATACAGCAA CAGATATCAT	1080
	TTCAAGATAT AAAAGAATGC AAGGATATAA TGTATTACAT CCGATGGGGT GGGATGCATT	1140
50	CGGATTACCA GCAGAGCAAT ATGCTTTAGA CACTGGCAAC GACCCACGTG AATTTACAAA	1200
	GAAAAATATC CAAACTTTTA AACGACAAAT TAAAGAATTA GGGTTCAGTT ATGATTGGGA	1260

	GTTATATAAC	AAAGGTTTAG	CATACGTTGA	TGAAGTTGCA	GTTAACTGGT	GTCCAGCATT	1380
	AGGCACTGTT	TTATCTAACG	AAGAAGTGAT	TGATGGTGTC	TCTGAACGTG	GTGGACATCC	1440
5	AGTTTATCGT	AAGCCGATGA	AACAATGGGT	ACTTAAAATC	ACAGAATATG	CAGATCAATT	1500
	ATTAGCAGAT	TTAGATGATT	TAGATTGGCC	TGAGTCTTTA	AAAGATATGC	AGCGCAATTG	1560
	GATTGGACGT	TCTGAAGGGG	CCAAAGTTTC	ATTTGATGTA	GATAATACGG	AAGGAAAAGT	1620
10	AGAAGTATTT	ACGACTAGAC	CAGATACAAT	CTATGGTGCA	TCATTCTTAG	TCTTAAGTCC	1680
	TGAACATGCA	TTAGTTAATT	CAATTACAAC	AGATGAATAT	AAAGAAAAAG	TAAAAGCTTA	1740
15	TCAAACAGAA	GCTTCTAAAA	AGTCAGATTT	AGAACGTACA	GATTTAGCAA	AAGATAAATC	1800
	AGGTGTATTT	ACTGGTGCAT	ATGCAACTAA	TCCTTTATCT	GGTGAAAAAG	TACAAATTTG	1860
	GATTGCTGAT	TATGTATTAT	CAACATATGG	TACTGGAGCA	ATTATGGCAG	TACCAGCGCA	1920
20	TGATGACAGA	GATTATGAAT	TTGCTAAAAA	GTTTGATTTG	CCAATCATTG	AAGTCATCGA	1980
	AGGTGGAAAT	GTTGAAGAAG	CAGCATACAC	TGGTGAAGGT	AAACATATTA	ATTCTGGTGA	2040
	ACTTGATGGT	TTAGAAAATG	AAGCGGCAAT	TACTAAAGCT	ATTCAATTAT	TAGAGCAAAA	2100
25	AGGTGCTGGC	GAAAAGAAAG	TTAATTACAA	ATTAAGAGAT	TGGTTATTCA	GTCGTCAGCG	2160
	TTATTGGGGC	GAACCAATTC	CTGTCATTCA	TTGGGAAGAT	GGAACAATGA	CAACTGTTCC	2220
	TGAAGAAGAG	CTACCATTGT	TGTTACCTGA	AACAGATGAA	ATCAAGCCAT	CAGGGACTGG	2280
30	TGAGTCTCCA	CTAGCTAATA	TTGATTCATT	TGTAAATGTT	GTAGATGAAA	AAACAGGTAT	2340
	GAAAGGACGT	CGTGAAACAA	ATACAATGCC	ACAATGGGCA	GGTAGTTGTT	GGTATTATTT	2400
	ACGTTACATC	GATCCTAAAA	ATGAAAATAT	GTTAGCAGAT	CCTGAAAAAT	TAAAACATTG	2460
35	GTTACCTGTT	GATTTATATA	TCGGTGGAGT	AGAACATGCG	GTTCTTCACT	TATTATATGC	2520
	AAGATTTTGG	CATAAAGTCC	TTTATGATTT	GGCTATCGTA	CCTACTAAAG	AACCTTTCCA	2580
40	TTTATTAAAA	AACCAAGGTA	TGATTTTAGG	AGAAGGTAAT	GAGAAGATGA	GTAAATCTAA	2640
	AGGAAATGTA	ATCAATCCTG	ATGATATAGT	ACAGTCTCAT	GGTGCAGATA	CTTTGCGTCT	2700
	TTACGAAATG	TTTATGGGAC	CTTTAGATGC	TGCAATTGCA	TGGAGTGAAA	AAGGATTAGA	2760
45	TGGGTCTCGT	CGATTCTTAG	ATCGCGTATG	GCGTTTAATG	GTAAATGAAG	ATGGGACATT	2820
	GAGTTCAAAA	ATTGTAACTA	CAAATAATAA	ATCTTTAGAT	AAAGTTTATA	ACCAAACTGT	2880
	TAAAAAGGTA	ACAGAAGACT	TTGAAACATT	AGGATTTAAT	ACTGCTATTA	GTCAATTAAT	2940
50	GGTATTTATT	AATGAGTGTT	ATAAAGTTGA	TGAAGTTTAT	AAACCTTACA	TTGAAGGCTT	3000
	CGTTAAAATG	TTAGCACCTA	TTGCACCACA	ТАТСССТСАА	СААТТАТССТ	CAAATTAGG	3060

	TGATGAAGTA	GAAATCGTTG	TTCAAGTGAA	TGGTAAATTG	AGAGCTAAAA	TTAAAATTGC	3180
	TAAAGATACA	TCAAAAGAAG	AAATGCAAGA	AATTGCCTTA	TCTAATGACA	ATGTTAAAGC	3240
5	GAGTATTGAA	GGTAAAGACA	TCATGAAAGT	CATCGCTGTT	CCTCAAAAAT	TAGTCAATAT	3300
	TGTAGCTAAA	TAATGTTTTA	AGGAGGACTT	TGAAATGAAG	TCAATTACTA	CAGATGAATT	3360
	AAAAAAAAA	CTTTTAGAAT	CTAAACCAGT	TCAAATTGTT	GATGTTCGTA	CTGATGAAGA	3420
10	AACAGCAATG	GGATATATTC	CTAATGCAAA	GTTAATTCCA	ATGGATACCA	TTCCGGATAA	3480
	TTTAAATTCA	TTTAATAAAA	ATGAAATATA	TTATATTGTA	TGTGCTGGTG	GAGTTCGAAG	3540
15	CGCTAAAGTT	GTAGAATATT	TAGAGGCAAA	TGGCATTGAT	GCCGTAAATG	TCGAAGGCGG	3600
	CATGCACGCA	TGGGGCGATG	AAGGTTTGGA	AATAAAAAGT	ATTTAAAGTA	GTGACATAAT	3660
	TTAAAATAAT	ATTACATTTG	TAATGACACC	AAGTAACGTT	TCGGTTGCTT	GGTGTTTTT	3720
20	GGTATGAATT	ACTTTCTGTT	ACAAAACAAT	CTAAAGCGTT	CTTGTTATGT	TTTATTAAGA	3780
	TTTTAATTAC	AAAACGGAAA	CTAAATTGTA	ATAAAATAA	ACTTTATTTT	ATAAAATGAT	3840
	GATGATAAAA	TTGAGTGAAC	TTAAAATATT	GTACAAAATA	ATATAGCTAT	AAATATAATA	3900
25	TAGCTATAAA	TATAATATGA	GGGAGCGTAT	ATTTTTAGCA	TAATTCTTAA	CAACACAGCA	3960
	GAGAACAGAC	AACCAGGAGG	AAAATGAAAT	GAATTTGTTA	AAGAAAAATA	AATATAGTAT	4020
	TAGGAAGTAT	AAAGTAGGCA	TATTCTCTAC	TTTAATCGGA	ACAGTTTTAT	TACTTTCAAA	4080
30	CCCAAATGGT	GCACAAGCCT	TAACTACGGA	TAATAATGTA	CAAAGCGATA	CTAATCAAGC	4140
	AACACCTGTA	AATTCACAAG	ATAAAGATGT	TGCTAATAAT	AGAGGTTTAG	CAAATAGTGC	4200
	GCAGAATACA	CCTAATCAAT	CTGCAACAAC	CAATCAAGCA	ACGAATCAAG	CATTGGTTAA	4260
35	TCATAATAAT	GGTAGTATAG	TAAATCAAGC	TACGCCAACA	TCAGTGCAAT	CAAGTACGCC	4320
	TTCAGCACAA	AACAATAATC	ATACAGATGG	CAATACAACA	GCAACTGAGA	CAGTGTCAAA	4380
40	CGCTAATAAT	AATGATGTAG	TGTCGAATAA	TACCGCATTA	AATGTACCAA	СТААААСААА	4440
	TGAAAATGGT	TCAGGAGGAC	ATCTAACTTT	AAAGGAAATT	CAAGAAGATG	TTCGTCATTC	4500
	TTCAAATAAA	CCAGAGCTAG	TTGCAATTGC	TGAACCAGCA	TCTAATAGAC	CGAAAAAGAG	4560
45	AAGTAGACGT	GCGGCACCGG	CAGATCCTAA	TGCAACTCCA	GCAGATCCAG	CGGCTGCAGC	4620
	GGTAGGAAAC	GGTGGTGCAC	CAGTTGCAAT	TACAGCGCCA	TATACGCCAA	CAACTGATCC	4680
	TAATGCCAAT	AATGCAGGAC	AAAATGCACC	TAACGAAGTG	CTGTCATTTG	ATGACAATGG	4740
50	TATTAGACCA	AGTACCAACC	GTTCTGTGCC	AACAGTAAAC	GTTGTTAATA	ACTTGCCGGG	4800
	CTTCACACTA	ATCAATGGTG	GCAAAGTAGG	GGTGTTTAGT	CATGCAATGG	TAAGAACGAG	4860

	TCGTATACAT	GGAACTGATA	CGAATGACCA	TGGCGATTTT	AATGGTATCG	AGAAAGCATT	4980
	AACAGTAAAT	CCGAATTCTG	AATTAATCTT	TGAATTTAAT	ACAATGACTA	CTAAAAACGG	5040
5	TCAAGGCGCA	ACAAATGTTA	TTATCAAAAA	TGCTGATACT	AATGATACGA	TTGCTGAAAA	5100
	GACTGTTGAA	GGCGGTCCAA	CTTTGCGTTT	ATTTAAAGTA	CCTGATAATG	TGAGAAATCT	5160
	CAAAATTCAA	TTTGTACCTA	AAAATGACGC	AATAACAGAT	GCGCGTGGCA	TTTATCAACT	5220
10	AAAAGATGGT	TACAAATACT	ATAGCTTTGT	TGACTCTATC	GGACTTCATT	CTGGGTCACA	5280
	TGTTTTTGTT	GAAAGACGAA	CAATGGATCC	AACAGCAACA	AATAATAAAG	AGTTTACTGT	5340
15	AACAACATCA	TTAAAGAATA	ATGGTAATTC	TGGTGCTTCT	CTAGATACAA	ATGACTTTGT	5400
,,,	ATATCAAGTT	CAATTACCTG	AAGGTGTTGA	ATATGTGAAC	AATTCATTGA	CTAAAGATTT	5460
	TCCAAGTAAC	AATTCAGGCG	TTGATGTTAA	TGATATGAAT	GTTACATATG	ATGCAGCAAA	5520
20	TCGTGTGATA	ACAATTAAAA	GTACTGGAGG	AGGTACAGCA	AACTCTCCGG	CACGACTTAT	5580
	GCCTGATAAA	ATACTCGATT	TAAGATATAA	ATTACGTGTA	AATAATGTGC	CGACACCAAG	5640
	AACAGTAACA	TTTAACGAGA	CATTAACGTA	TAAAACATAT	ACACAAGATT	TCATTAATTC	5700
25	AGCTGCAGAA	AGTCATACTG	TAAGTACAAA	TCCATATACT	ATCGATATCA	TCATGAATAA	5760
	AGATGCATTA	CAAGCCGAAG	TTGACAGACG	TATTCAACAA	GCTGATTATA	CATTTGCGTC	5820
	ATTAGATATC	TTTAATGGTC	TGAAACGACG	CGCACAAACG	ATTTTAGATG	AAAATCGTAA	5880
30	CAATGTACCA	TTAAATAAAA	GAGTTTCTCA	AGCATATATT	GATTCATTAA	CTAATCAAAT	5940
	GCAACATACG	TTAATTCGAA	GTGTTGATGC	TGAAAATGCA	GTTAATAAAA	AAGTTGACCA	6000
	AATGGAAGAT	TTAGTTAATC	AAAATGATGA	ATTGACAGAT	GAAGAAAAAC	AAGCAGCAAT	6060
35	ACAAGTTATC	GAGGAACATA	AAAATGAAAT	AATTGGTAAT	ATTGGTGACC	AAACGACTGA	6120
	TGATEGCGTT	ACTAGAATCA	AAGATCAAGG	TATACAGACC	TTAAGTGGGG	ATACTGCAAC	6180
40	ACCGGTTGTT	AAACCAAATG	CTAAAAAAGC	AATACGTGAT	AAAGCAACGA	AACAAAGGGA	6240
	AATTATCAAT	GCAACACCAG	ATGCTACTGA	AGACGAGATT	CAAGATGCAC	TAAATCAATT	6300
	AGCTACGGAT	GAAACAGATG	CTATTGATAA	TGTTACGAAT	GCTACTACAA	ATGCTGACGT	6360
45	TGAAACAGCT	AAAAATAATG	GCATCAATAC	TATTGGAGCA	GTTGTTCCTC	AAGTAACTCA	6420
	TAAAAAAGCT	GCAAGAGATG	CAATTAACCA	AGCAACAGCA	ACGAÄAAGAC	AACAAATAAA	6480
	TAGTAATAGA	GAAGCAACTC	AGGAAGAGAA	AAATGCAGCA	TTGAACGAAT	TAACTCAAGC	6540
50	AACCAACCAT	GCTTTAGAAC	AAATCAATCA	AGCAACAACA	AATGCTAATG	TTGATAACGC	6600
	CAAAGGAGAT	GGTCTAAATG	ССАТТАВТСС	AATTGCTCCT	GTAACTGTTG	TTAAGCAAGC	6660

	TGATGCGACT	CAAGAAGAAA	GACAAGCAGC	AATTGACAAA	GTGAATGCTG	CTGTAACTGC	6780
	AGCAAACACA	AACATTTTAA	ACGCTAATAC	CAATGCTGAT	GTTGAACAAG	TAAAGACAAA	6840
5	TGCGATTCAA	GGAATACAAG	CAATTACACC	AGCTACAAAA	GTAAAAACAG	ATGCAAAAA	6900
	TGCCATCGAT	AAAAGTGCGG	AAACGCAACA	TAATACGATA	TTTAATAATA	ATGATGCGAC	6960
	GCTCGAAGAA	CAACAAGCAG	CACAACAATT	ACTTGATCAA	GCTGTAGCCA	CAGCGAAGCA	7020
10	AAATATTAAT	GCAGCAGATA	CGAATCAAGA	AGTTGCACAA	GCAAAAGATC	AGGGCACACA	7080
	AAATATAGTA	GTGATTCAAC	CGGCAACACA	AGTTAAAACG	GATACTCGCA	ATGTTGTAAA	7140
15	TGATAAAGCG	CGAGAGGCGA	TAACAAATAT	CAATGCTACA	ACTGGCGCGA	CTCGAGAAGA	7200
10	GAAACAAGAA	GCGATAAATC	GTGTCAATAC	ACTTAAAAAT	AGAGCATTAA	CTGATATTGG	7260
	TGTGACGTCT	ACTACTGCGA	TGGTCAATAG	TATTAGAGAC	GATGCAGTCA	ATCAAATCGG	7320
20	CGCAGTTCAA	CCGCATGTAA	CGAAGAAACA	AACTGCTACA	GGTGTATTAA	ATGATTTAGC	7380
	AACTGCTAAA	AAGCAAGAAA	TTAATCAAAA	CACAAATGCA	ACAACTGAAG	AAAAGCAAGT	7440
	GGCTTTAAAT	CAAGTGGATC	AAGAGTTAGC	AACGGCAATT	AATmATATAA	ATCAAGCTGA	7500
25	TACAAATGCG	GAAGTAGATC	AAGCGCAACA	ATTAGGTACA	AAAGCAATTA	ATGCGATTCA	7560
	GCCAAATATT	GTTAAAAAAC	CTGCAGCATT	AGCACAAATC	AATCAGCATT	ATAATGCTAA	7620
	ATTAGCTGAA	ATCAATGCTA	CACCAGATGC	AACGAATGAT	GAGAAAAATG	CTGCGATCAA	7680
30	TACTTTAAAT	CAAGACAGAC	AACAAGCTAT	TGAAAGTATT	AAACAAGCTA	ACACAAATGC	7740
	AGAAGTAGAC	CAAGCTGCGA	CAGTAGCAGA	GAATAATATC	GATGCTGTTC	AAGTTGATGT	7800
	agtaaaaaa	CAAGCAGCGC	GAGATAAAAT	CACTGCTGAA	GTGGcGAacG	TATTGaAGCG	7860
35	GTTAAACAAA	CACCTAATGC	AACTGACGAA	GAAAAGCAGG	CTGCTGTTAA	TCAAATCCAA	7920
	TCAĄCTITAA	AGATTCAAGC	AATTTAATCC	AAATTTAATC	CAAAACCCAA	ACAAATGGAT	7980
	TCAGGGTAGG	ACACCACTTA	CAAATCCAA				8009

(2) INFORMATION FOR SEQ ID NO: 62:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 10953 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:

ACCCACCCON TGGGGATANT TTACCTGGTG GGGCCTTCGA TTGCCTTTAG GTGAAACCAG 60

55

50

	AGATGAATGC	TAACCATATI	CATTCTGCTA	AAGATGGTC	TGTTACTGCG	ACAGCTGAAA	180
	TTATTCATCG	AGGTAAGTCG	ACACATGTAT	GGGATATAA	AATTAAGAAT	GACAAAGAAC	240
5	AATTAATTAC	AGTTATGCGT	GGTACAGTTG	CTATTAAACC	AATAAAATTT	AAGAACTGCT	300
	AGCTGAAATG	TTATGAGATA	TTCATAACTA	CGGCTAGCAG	TTTTTTTATG	CGCTATATTG	360
	TTGTAGTTTT	AGAAATGCTT	GTTCAATGCG	TTCGGCAGCT	TTACGGCCAC	CCATAACATT	420
10	TCTACCAAAT	GGTCCTAATT	CTAAGTCTGC	AAAGCATCCT	GCGACAAATA	GATTTGGTAT	480
	CCATTCTAAT	TTTTCGGAAA	TAACAGGGTA	ATTACATTCG	TTGATAGGTG	CATCATAATT	540
15	TTGTATTAAT	TGCTTAATAA	GTGGTTGTGA	CATAAAATCI	TGTTCAAAAC	CAGTTGCAAC	600
	CATAATCTGT	TGATATGGAA	CAGAATCATT	TTCAGTGTTA	ATTACACCAC	CACTAATTTG	660
	AGTGATAGGT	GTTTTATGCa	CATTTATACG	ACCATTTTTA	ATATGTTTTT	TAAGGCGTAA	720
20	GTACAGTTCG	TGAGGCATTG	ATCCTTTATG	ACGTTCGCGT	TGTACAATGG	CATTTCTTTC	780
	AGGCATGCTT	TTAGTACTTA	AAAATGAAGA	CATATTTTTC	GGACCTAACC	AACCAGGATC	840
	AGCATCAAAG	TCATGTATTT	CAATATCTTT	ATTTAGCCAT	AAATGAATCT	TTTTATCGTT	900
25	ATCATGATTT	AACAATTTAA	GTGCAAGATG	TGCAGCAGTa	ATGCCGCTAC	CAACGATATG	960
	ATCGGTCTTA	TCATATACTA	CTTGATCAAG	TTCTTTCTCG	AAGATATGAT	TTACATTCTG	1020
	TTTGTCTTTT	AAAATGTCAG	GCATAAACGG	AATATTTGTA	CTGCCTATTG	CAATAACGAC	1080
30	GCAATCTGTA	GTGATAATTT	GTCCATCTTC	TAACTTGATA	TGCCATTTGT	CTTCTTGTTT	1140
	ATCTAAAGTT	TGAACTAAAC	CTTGAACCAA	GCAATCCTCT	AATTGATATT	GTTTAGAAGC	1200
	ATGTGCAATA	TGATCCATAA	ACATTGTCAA	TTCAGGTCGT	TGATAAGGAC	CATAAAAAGC	1260
35	ATTTGTATAT	TGGTGCTGTT	TAGCGAATTG	TTTTAGATGG	AACGGTTGTG	GATGTACGTG	1320
	ATGTACAATC	GGTGATCTTA	AATAAGGCAT	TTCTATTCGA	TTTGTATATG	AGTTAAACCT	1380
40	TTGGCAAAAA	GTTTCGTGTG	GGTCAATGAT	TGTTAATCGG	TCTGTTGTTA	ATCCGCTTGA	1440
	TAATAGTTTT	TGTGCGATTG	CAGTTCCCTG	TATGCCACCG	CCGATAATTG	TCCAATGCAT	1500
	AATAAAACCT	CTCTCTTTTT	AAAACGTAAT	AGTTACGATT	TATAATTATT	ATTATCATAA	1560
45	TACATAACGA	CATGAAAGGC	AATTAAATTA	AAGAGATATA	TGTAGATAGG	GCGAATCTGT	1620
	AGTCAAAGAA	AAAATCATTG	AAAAAGAGGT	AACAATGTCA	AAAGAWAACA	GCAGTAAAAT	1680
	CATTCCTAAT	TTGGAATCAT	CTTACTGCTG	TTTGTTGTTG	ATTTATATTC	ATGATTTTGT	1740
50	TATATAATCT	ACAATTTTGT	GTCTTTTAAG	TCTTCCGAAA	TTTCATCGAC	TTTAGTCTTT	1800
	TTAGTATAAG	GCGTTTTAAT	ΔΤΤΑΤΑΤΩΤΩ	ССТТТСАТА	ጥሮአጥአጥርአርጥ	TCAAACACCA	1860

	GCAATAAAAT	ATAAAAACGT	ACCAAATAGT	AATGACATTG	CACCTAATGT	TGATGCTTTT	1980
	CCGGCAGCAT	GTGCACGTGA	ATATACATCT	TCAAGTCTCA	ATAATCCTAT	AGCTGCTAGG	2040
5	GCGCTAATTA	AAGCACCGAT	GATAACAAAG	ATAAGTGCAA	GACTAATCAG	TATGATTTTG	2100
	ATCATGTTCA	ATCACCTTAC	CTTTGTCCAT	AAATTTAGAG	AATACTGCAG	TACCTAAAAA	2160
	AGCTAATATA	CCAATCATCA	TAATAACGAC	AATCATGTAT	TTAATATTTA	ATAAAATACT	2220
10	GAATAATGCT	ATAACTGCCA	TTAATTGAAG	ACCAATCGCA	TCTAATGCGA	CAACACGATC	2280
	GGCAAGTGAT	GGGCCTAGCA	CAACGCGAAT	GAGCATAGCT	AACATAGAAA	TGACAACTAT	2340
15	GATTAATGCA	ATAACGATAA	TAACATTATG	ATTCATTATA	TTTCGCCCAC	CTCTCTTACA	2400
	ATTTTCTCTA	ATGATGTTTT	AATACTTTCT	ACTTCTTGCT	CTTTAGTTGA	AAAATCTATG	2460
	GCATGAATAT	AAATTTTTGT	ACGATCGTCA	CTTACACCAA	GCACTACAGT	ACCAGGTGTT	2520
20	AATGTAATTA	AATTAGACAG	CAAGACAATT	TGCCAATCTT	TTTTTAAATC	TGTGTGATAA	2580
	ACAAAGAATC	CTGGTTCATT	TTTAATCGAA	GGTTTAATAA	TAATTTTCAA	AACATCAAAA	2640
	TTAGCTTTAA	TCAGTTCGAT	TAAGAAAATA	ATAACTAATT	TAATAATACG	ATATAGCGTG	2700
25	ATGACATAAA	ATCTACCTGG	TAACACTCTG	TGTAAGAGGT	AAACAAGAAC	TAGGCCAAAG	2760
	ATGAAACCTA	ACACAAAGTT	ATTTGTTGTG	TAACTATTTG	TCACAAACAA	CCAAAACACT	2820
	GCGATAATAA	AGTTTAATAC	TAATTGTACA	GCCATGTTAT	TTACCTCCTA	ATACAGCTTT	2880
30	AACGTAGGTT	GATGGATTGT	AGAATGTTTC	TGCACCAGCT	TTTACCATTG	GATATAAGTA	2940
	ATCTGCTGAC	AATCCATATA	AAACAGTTAT	CACAACTGCA	ACGATTGCAA	TCGTAGTTAA	3000
35	ATATTTGACG	TCGACTTTGT	TATTAAGATC	ATATCCTTTT	GGTTGACCGA	AAAAGCCTTG	3060
33	TAGGAATATG	CGAATGACAG	AATATAATAC	GACTAAACTT	GATAATAAGA	CGATGACACC	3120
	ACTTAAATAA	AATCCTCTTT	CAAATGTTGA	TTGGACAATA	AAAAATTTTC	CATAAAAGCC	3180
40	ACTGAGTGGG	GGAATGCCAG	CTAAACTTAA	TGCTGCGATA	AAGAATGACC	AACCAAGTAC	3240
	AGGATATCGT	TTAATTAAGC	CACCAAATTG	TCTTAAATCA	GCAGTGCCTG	TAATTTTAAT	3300
	CATAATTCCG	ATAAGCAAGA	ATAATGCAAG	TTTTACTAAC	ATGTCGTGCA	ATGTATAGTA	3360
45	AATAGCCCCA	ATCATACCTG	ACTCTGTCAT	CATTGCAACG	CCGACTAAGA	TCACACCTAC	3420
	AGCAATCATG	ACATTGTATA	GGATGATTTT	TTTAATGTTG	GCATATGCAA	CAGCACCGAC	3430
	ACAACCAAAG	ATGATCGTTA	ATAGTGCTAA	GAATAAAATG	ACATAATGTG	AAAAGCTTAC	3540
50	ATTATCACTA	AAGAATAGGC	TCAATGTTCT	AGCGATTGCA	TAAACACCAA	CTTTTGTTAA	3600
	CAAAGCACCA	AAGAATGCAA	TGATTGGAAT	TGGTGGGCAT	AGTATGCACT	AGGTAACCAA	3660

	ATATTGACTA	AGCCACTGTC	ATGCGCTGAA	AGGTTAGCTA	ATTTATTGCT	TATATCTGCT	3780
	AGATTCAATG	TTCCTACTAC	TGAATATAAA	ATCGCTACAC	CCATTACGAA	GAAGGATGAC	3840
5	GATACAACGT	TAACAAGAAC	ATATTTTATT	GTTTCTTGTA	GTTGAATTTT	TGTAGAACCA	3900
	ATTACTAATA	AGAAATAAGA	TGACATTAAA	AATACTTCGA	AAAATACGAA	TAGGTTGAAA	3960
	ATGTCACCAG	TTGTGAATGC	ACCAATGATA	CCTATTAACA	TAAATAGTAC	TGAAAAATAA	4020
10	TAATAATATC	TTTCACGTTC	AATACCAATT	GTTTGGTATG	AATATAAAAT	CACAATAGCT	4080
	GTAATAATAA	TACTAGTAAT	TATTAGTAGG	GCACTGAATA	TGTCTAATAC	AAAGACAATA	4140
15	CTGTATGGTG	CTTTCCATGA	ACCTAGCTCT	ACGCGTATTG	GTCCATGTTT	AACAACATTT	4200
	GCTAAATTGA	TAATTGCCGC	GACCAAGGTT	AATAATGTAC	CGCCTAGTGC	GACATAACGC	4260
	TTTATAATAG	GACGCTTTCC	AATAAAGACA	AGTAATATGG	CTGTAATTAC	TGGAATAACT	4320
20	AGCGTTAACA	CAAGCATATT	ACTTTCAATC	ATCTTCTGGA	ACTCCTTTCA	TACTCTCAAC	4380
	GTTATCTGTG	CCTAATTCTT	TATATGTTCT	AAATGCTAAT	ACTAAGAAAA	AGGCTGTTGT	4440
	CGCAAgGCGA	TAACGATTGC	TGTTAAAATA	AGTGCTTGCG	GGaTAGGaTC	AACATAGCTT	4500
25	TTTACGTTCG	CTTCATAAAT	TGGAACAGTA	CCATGTTTAA	GTCCGCCCAT	AGTTATTAAA	4560
	AATAAATTTG	CTGCATGTGT	TAATAGTGTA	GTTCCCATAA	CAATTCGTAT	CAGACTTTTA	4620
	GACAAAACGA	GATAGACACT	AATTGCTGTG	AGAATACCAC	TAACAAAAAT	CATAATAATT	4680
30	TCCACTATTC	GTTCTCTCCA	ATCGAAATAA	TAATTGTCAT	GACAGTACCA	ACTACTGCAC	4740
	ATAAAACACC	GAAATCAAAG	AATACTGCTG	TTGTCATATG	AACAGGTTCT	ATATAAATA	4800
	ACGGTATATC	AAATGTGACA	TGCGTAAAGA	AATTTTTGCC	TAAAAACCAA	CTTGCGATAG	4860
35	GCGTCGCAAT	ACAAAAAACT	AATCCGATAC	CTATCAAGAT	TTTAAAATCT	AATGGGAAAA	4920
	TTTŢĀCGCAT	TGTTTCTATA	TCAAATGCAA	TCGTAATGAT	AACAAGTGAA	CTTGCGAATA	4980
40	ATAATCCGCC	GACGAAACCG	CCACCAGGTG	TATAATGTCC	TGCTAAGAAA	AGTGAAAAAC	5040
	CAAAGACCAT	TACCATGAAA	AAGATAATAA	CTGCAGCAAA	TTGCAAAATT	AGATCATTTT	5100
	GTTGTCTATT	CATGATTTTT	CACCTCGTTA	CCTTGCGTTT	GACGCTTTTT	ACGTAATTTA	5160
45	ATCATTGTAT	ATACAGCTAA	TCCTGCGATA	CCAAGCACAG	ATGACTCGAA	TAAAGTATCC	5220
	ATACCACGGA	AATCAACAAG	TATGACGTTT	ACCATGTTTT	TACCGTGAGC	taaatcataa	5280
	ACGTGCTCTT	GATAAAACTT	AGATATCGAT	TCAAAATGTC	TATTTCCGTA	TGCAATTAAA	5340
50	CCGATAATAA	TGACGGACAA	ACCAACACCA	CCAGCAATTA	AAGCATTAGT	AAGCTGGAAT	5400
	GAGCGCTTTT	CATTATAACG	ATTTAAATTT	ССТААСТССТ	AGAAGCATAA	ТАВСАВСАВТ	5460

	ATAAACAATA	CAGACACAGC	ATATCCAACT	GCACTTAACA	TAATGATGCT	AAATAATCTT	5580
	GATTTAGCGA	AAAGAATTAA	AAAGGCAGCA	СТТААТААТА	AAATTACGAT	ACAAACTTCG	5640
5	AAAATTCTAA	TCGGACTAAC	GTCTTTAAAA	TTAATGTTGA	AAGGTACTGA	GAATATAGTG	5700
	ACAAATGTTA	ATAAAATTAA	TGCACCAAAA	ATGATAACTA	AATTATTACG	TGAATAATCG	5760
	GTAACATAGC	TATTCGTCAT	CTTTTCAGAG	TAGTTTGGAA	TAACATTTGC	ACTTCTGTTG	5820
10	TACCAATAAT	TGAATGTTAG	TTTACCAGGT	TGTCGTTGCA	ACAATTTCAC	CCAATAACTA	5880
	AATGTCACAA	TTAGTAAGAT	ACCTAAAATA	TAAATCACTA	ATGTTGATAA	AAAGGCAGGC	5940
15	GTTAATCCAT	GGAACATATG	GAATTCAACA	TCATCAATTA	CCGTATGATT	AATCGAAGag	6000
	TnAGCTGGTT	CAATAATCGA	ATTAGTTAAA	ATGCCAGGGA	ATAAACCAAA	TACAATTACT	6060
	AATGTAGCTA	AAATAGCTGG	TGATAAAAGC	ATTAATATTG	ATACTTCGTG	TGCTTTTTTA	6120
20	GGTAATTGTT	CAGGTTTATA	TTGTCCGAAA	AATATATGCA	TTATAAATTT	AATTGAATAT	6180
	ACAAATGTGA	AGACACTGCC	CACTATACCA	ATGATTGGGA	ATAGGTAGCC	TAATGTATCA	6240
	ACACTGAATA	AATTTGCTTG	GCTTGCTGTA	AATGTTGTTT	CTAAAAATGA	TTCTTTTGAT	6300
25	AAGAAACCAT	TGAACGGTGG	TACACCAGCg	CATACTTAAT	GCTGTAATAA	CAGTGATTGT	6360
	AAATGAAATA	GGCATAATTG	TTAGTAAGCC	ACCTAATTTC	TTAACATCAC	GTGTACCAGT	6420
	AGAATGATCC	ACTGCACCTG	TAATCATAAA	TAGGGCACCT	TTAAATGTTG	CATGGTTGAT	6480
30	TAAATGGAAT	ATTGCAGCCG	TAAATGCAGC	AGCATATATT	TTGCTATCAT	CGCCTTGATA	6540
	GTGATAACTA	ATGGCACCGA	TTCCAAGCAT	CGCCATAATC	ATACCTAATT	GGGATACTGT	6600
25	TGAAAATGCC	AGTATACCTT	TCAAGTCTTG	TTGTTTTGTT	GCGTTTAGCG	AAgCCCAGAA	6660
35	TAATGTAATT	AAACCAACGA	GTGTGACAGT	CCATACCCAA	CCTTGCGATG	CTGCGAAGAT	6720
	TGGTGTCATT	CGAGCGATTA	AATATAACCC	TGCTTTAACC	ATTGTTGCTG	AATGAAGATA	6780
40	AGCACTGACT	GGTGTAGGTG	CTTCCATTGC	ATCTGGTAGC	САААТАТААА	ATGGAAACTG	6840
	AGCAGATTTT	GTAAAAGCAC	CAATCATGAT	TAAAATCATC	GCAAAAATGA	AGAATGGGCT	6900
	ATTTTGAATT	TCAGAAGCAT	GTTGAATCAT	GTACTGAATG	CTAAATGATT	GTGTTGGTAT	6960
45	AGCGAGTAAG	ATGATACCAC	CTAATAATGA	TAGACCACCA	AATACTGTGA	TTATGAGCGA	7020
	TTTTTGAGCA	CCATATATAG	ATGCTTGTCG	TTCGCGCCAG	aatgaaataa	GTAAAAAACT	7080
	AGAAAATGAC	GTTAGCTCCC	AGAATAAATA	TAGAATAATA	ACATTATCTG	AAAGTACGAC	7140
50	ACCTAACATT	GCACCCATAA	ATAGTAATAA	АТААСААТАА	AAATTCCCTA	GTTGTTCTGA	7200
	CTT A CTT A A C	でみ ここことの かかっこ	*****	ሞአርሞአአአ ርሞር	CCCATTCCTC	3330330033	7260

	CCAATTTAAG	GTTTTCATTA	CAGTATTACC	TGACATCGTC	GTTTTAATTA	ATGTAAGCAT	7380
	ATAAATAAAT	ATGACGATAG	GGACAGGTAA	TACGAACCAT	CCTAAATGTA	TACGTTTAAA	7440
5	AAATCTATAC	AGGATAGGAA	TAATGAGTGC	GAATATTAAC	GGTAATATCA	CCGCAATATG	7500
	TAACAAACTC	ACTATGTTGT	CCTCCTTTAA	AAAATATTTA	TGTTATTCAT	TATACATGAA	7560
	TGATATAGTT	CTGAAAAACG	TACACACTCC	TTGTTGTGCT	TTATTTTCAG	Aagtatttaa	7620
10	ATAAGAAGAA	ACACGTCATT	TTTTATTTAA	AATTTTCTTT	GTATTGAAGT	GAATAATCTT	7680
	CTTTTAAGCG	TGCTAAACTA	GCTAAAGACA	TTTCAGCATG	TTTTGTTTGC	TGAGCTTTAA	7740
15	GTTTAGTTTC	TAAATCTGTA	ATTGCTTGTT	GAAGTGAATC	TTCATAGCGC	AATACATCAA	7800
,,,	CATTGAAGTC	GCGTAATTGT	GAACGTTTCG	TATAGCGTTT	TTCAAAATGG	CTTAATGCTT	7860
	TGCGGTCATG	GAAAAATACA	CCTTCAGTTT	CAGTAGGGTT	ATGTAAATCA	CCTTGTTTCG	7920
20	GGTGTTTGAT	AACTTGTTCA	ACTTTAACAA	GGACATCGTC	TCCATTTTCT	TCAACAATCG	7980
	TGACACCATA	GCTACCTGTT	TTGTGTGAAA	ATCGATATAG	CTTCATGCTA	TTTTCCTCCC	8040
	TTAAAAGTAT	GTTAATATAT	ATGTATCATA	ACATGAATGG	AGAATATAAA	TGGCTAACTA	8100
25	TCCACAGTTA	AACAAAGAAG	TACAACAAGG	TGAAATCAAA	GTGGTTATGC	ACACAAATAA	8160
	AGGTGACATG	ACATTCAAAT	TATTTCCAAA	TATTGCACCA	AAAACAGTTG	AAAATTTTGT	8220
	GACACATGCA	AAAAATGGTT	ATTATGATGG	AATCACATTC	CACCGTGTCA	TTAATGACTT	8280
30	CATGATTCAA	GGTGGCGATC	CAACAGCTAC	TGGTATGGGT	GGCGAAAGTA	TTTATGGCGG	8340
	TGCTTTTGAA	GATGAATTTT	CATTAAATGC	ATTTAACTTA	TATGGCGCAT	TATCAATGGC	8400
	TAACTCAGGA	CCTAATACTA	ATGGTTCACA	ATTTTTCATT	GTTCAAATGA	AAGAAGTACC	8460
35	TCAAAATATG	TTAAGTCAAC	TTGCAGATGG	TGGCTGGCCT	CAACCAATCG	TTGATGCATA	8520
	TGGCGAAAAG	GGTGGTACAC	CATGGTTAGA	TCAAAAACAT	ACAGTATTCG	GTCAAATCAT	8580
40	TGATGGTGAA	aCTACATTAG	AAGATATTGC	АААТАСАААА	GTGGGACCAC	AAGATAAACC	8640
	ACTTCATGAT	GTTGTAATTG	AATCTATTGA	TGTTGAAGAA	TAATATCTAA	ACATAATTAA	8700
	CTACCAACAT	TTTAAACTCG	GATAAAGCTA	ATTTATGAAT	GGATTAGTAT	ATATTCCAAC	8760
45	gaaaataaat	AAACTAATAT	GATGAGCAAT	CTCAATATAT	TTATCaAGAA	AGCACAGTTT	8820
	TTAAATAGAT	GTGTATTTTA	AAGATAATAG	TTGAGGTTGC	TTTTTATGTT	TTTACAGAGA	8880
	ATTGCTATTC	AAATAGTAAA	TAAATTGAAA	ACAAAGTAGC	TGGATATCAT	ATTGATTTAG	8940
50	ATAGGAATTT	GTTGCTAATT	TTATTTGTAA	ATCCAAGTTT	GTAGAATTCT	TATTCATTTA	9000
	TAAAATAATA	TTCGTATGAT	TTGATTTTTT	AATTAGTCCA	CCATTTCGAT	ТТСТССТАТС	9060

	AACATATCAA	GGTGCGTGTA	CTGGTATTCA	ACCATACGGT	GCGTTTGTTG	AGACCCCTAA	9180
	TCATACTGAA	GGACTGATTC	ATATATCAGA	AATTATGGAT	GACTACGTTC	ATAATTTGAA	9240
5	GAAATTTCTA	TCAGAAGGCC	AAATTGTTAA	AGCTAAAATT	TTGTCTATAG	ATGATGAAGG	9300
	AAAGCTTAAT	CTATCATTAA	AGGATAATGA	TTACTTCAAA	AATTATGAGC	GTAAGAAGGA	9360
	AAAACAATCA	GTATTAGATG	AAATCAGAGA	AACAGAAAAA	TATGGGTTTC	AAACACTTAA	9420
10	AGAACGCTTA	CCAATCTGGA	TAAAACAGTC	AAAGCGAGCA	ATTCGAAACG	ACTAAAGGAA	9480
	CAGATAAATC	GTACCGAAAA	TCATACAAAG	GGTCTGAAAT	GAAAGTTTCT	TAGACTATAA	9540
15	AAGAGATTAG	TATCTATTAA	ATTTTATTAG	ATACTAATCT	CTTTTTGTCT	ACGATAACGT	9600
	AATATGaTTG	ATTCTATTTA	CACGTACAAA	TGGTTTAAGG	TGACATATCC	ATTATCTTTG	9660
	TTAGATAGAA	TCGTTGATTT	GCaATATTGT	ATGTGGATTT	GTTTTTTTA	TTTATTTTAG	9720
20	AAATGAGAAC	TACAACTTAA	AGTATTAAAC	GAATTGCAAC	TATATAAACA	GATAATTGGA	9780
	GAATGAAAAA	ATTACATGTT	ATAGTCAACT	CAATAATTTT	AAGGAGGAAT	TAAGTAATGA	9840
	AAAGTAAATA	CGAACCATTG	TTTGATAAAG	TAGAATTACC	AAATGGAGTA	GAGTTGAGAA	9900
25	ATCGATTTGT	GTTAGCCCCT	TTAACACATA	TTTCTTCAAA	TGATGATGGT	ACTATTTCAG	9960
	ATGTAGAACT	TCCTTATATT	GAAAAGCGTT	CACAAGATGT	TGGTATTACA	ATTAATGCTG	10020
	CGAGTAATGT	GAGTGATGTC	GGAAAAGCAT	TTCCAGGACA	GCCATCAATC	GCGCATGACA	10080
30	GTAATATTGA	AGGACTAAAA	CGATTAGCTA	CAGCAATGAA	GAAAAACGGT	GCCAAAGCAC	10140
	TCGTACAAAT	ACATCATGGC	GGTGCACAAG	CATTGCCTGA	ATTAACACCT	GATGGAGACG	10200
	TCGTAGCACC	AAGTCCAATT	TCTTTAAAAA	GTTTTGGTCA	GAAACAAGAA	CATAGTGCTA	10260
35	GAGAAATGAC	GAATGAAGAG	ATTGAACAAG	CAATCAAGGA	TTTTGGTGAA	GCAACGCGAC	10320
	GTGCÄATTGA	AGCAGGGTTT	GATGGTGTTG	AAATACATGG	CGCGAATCAT	TACTTAATTC	10380
40	ATCAATTTGT	ATCACCATAC	TATAATAGAA	GAAATGATGT	ATGGGCAAAT	CAATATAAAT	10440
	TCCCGGTCGC	TGTGATTGAA	GAAGTACTTA	AAGCGAAAGA	AGCGTATGGC	AATAAAGACT	10500
	TTATAGTTGG	ATACAGATTA	TCTCCAGAGG	AAGCGGAGTC	TCCAGGAATC	ACAATGGAAA	10560
45	TTACAGAGGA	ACTCGTTAAT	AAAATTAGCC	ATATGCCAAT	CGACTATATT	CATGTTTCAA	10620
	TGATGGATAC	GCATGCAACG	ACACGTGAAG	GTAAATACGC	TGGACAAGAA	AGACTGCCTT	10680
	TAATTCACAA	ATGGATAAAT	GGTCGTATGC	CACTTATCGG	TATTGGTTCA	ATTTTCACAG	10740
50	CTGACGAAGC	TTTAGATGCA	GTTGAAAATG	TTGGTGTTGA	CTTAGTAGCC	ATTGGTAGAG	10800
	AGCTACTACT	ССАТТАТСАА	ΤΤΤΩΤΤΩΔΔΔ ΔΔΕΩΤΤΩΤΩΔΔΔ	ΔΔΔΤΤΔΔΔΩΔ	TCCACCCAA	CATCAAATTA	10860

AATTTAATGA AGGGTTTTAT CCATTACCAC GTA

(2) INFORMATION FOR SEQ ID NO: 63:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8155 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:

60	GAATTTACAA	CTAATGAAGT	TCGATTCAAC	ATTAAATGTA	AACTGAATnA	TTTGATAnAA	
120	AGGTAGTTTA	TTAAACAGAA	AAAGTAAATG	CAnAAAGGTT	AGCCTTTTAG	GTTAAAGTAG	
180	AATCTTCGGT	AAGAAATTGA	TTAGAAGATA	TTCGATTGAT	AAGAGTTAAG	GCAGATGATA	
240	AGATGGTATT	AAGTAGATTT	GTTGATGCAG	TATAAGCGAA	ACTTACAAAA	AGTCGAGATG	
300	TAAAGCACAA	AACATGTCAC	AATTTWCCAG	TGTAAAAATC	CTGAAAAGAC	TCAGAATCAA	
360	GGAGAGTAAA	CTAAATTAAA	AAATAAATAG	TATAAATGTA	CGMAGGCTTA	CCAAGTGAAA	
420	GAACTAACAC	CGCAAACCAA	TAAGAGGTGT	ACAGACGGAg	ATATTTTGGT	CAATGGGAAA	
480	AATAAAGGTG	TCTAGCaCAT	GTGGCTATGT	GGAAGATACG	ATTTAAATTA	CTGAATTGGC	
540	ATGTTAGAAT	TTCAGGTGAA	ATACTAGAGT	GTAGGTCGCG	ACGTGTACTT	AAAAACACCC	
600	GGTATTATTT	GATGCGATTA	GTGCAGAAGT	ATTTCAATTG	AGCTGGTTTG	CAGCATTAAT	
660	GTAATGATTT	AGAGTTAGGT	ATATGGGTGC	TTAACACGCG	TGTTGCATAT	CAACACCAGG	
720	GATGGTTTTA	CTTTGGATCA	GTATTAAATT	GCAGATAATG	TAATCCAGTT	CAGCCTCTCA	
780	AACCCAGAAT	GGATCAAGAA	AAGCATTATT	AATGAAATTG	TGAACAAGAA	AACTATCAGA	
840	GGGGCACAAA	TTACTTTGAA	ATTATTCAGA	GATATTGTAC	AGTTGGCAAT	TACCAAGACC	
900	AAAATTGCTT	TGAAGGTTTG	ATGTTAACTT	TCAACAGTAG	СТАТТТАААА	AATATTTGAG	
960	GACTTAGAAG	CTTATTTGGT	TAGCGCCATT	ACATCATCAC	AAATGGTTCA	TAGATGGTGC	
1020	AAATGTGGCT	TATCAATGAG	ATGGATATAA	TGTAGTCCTG	AACAATTGGA	CAGATACTGA	
1080	TTTGGGTTAG	TGAAAGTGAT	TAGTTGAAAC	GCTGAAAAAG	TGAAAAATTA	CTACACATCC	
1140	ATCGTTGACG	GAATGGTCAA	CAGTAGATGA	AGAATCATAG	CGATGGAGAC	CATTTGACGG	
1200	TTGAATAATG	AAATCAAGAA	AAATGCATAA	ATTGGTCAAG	TATGTTTATT	GTGACCAAAT	
1260	GAACAAGAAG	CAAAGCGCTT	TAGGTTTTTA	ATGAGTAATT	TTCTACTGTT	ACATGATTGT	
1320	ATGCGTCGCG	AGTAGAAGAA	ACAGATATGT	AAAGTTGGCG	TAATAAAACT	GAATTAAATC	

	CTGGTGATGG	TTTATTAACT	GGTATTCAAT	TAGCTTCTGT	AATAAAAATG	ACTGGTAAAT	1440
	CACTAAGTGA	ATTAGCTGGA	CAAATGAAAA	AATATCCACA	ATCATTAATT	AACGTACGCG	1500
5	TAACAGATAA	ATATCGTGTT	GAAGAAAATG	TTGACGTTAA	AGAAGTTATG	ACTAAAGTAG	1560
	AAGTAGAAAT	GAATGGAGAA	GGTCGAATTT	TAGTAAGACC	TTCTGGAACA	aACCATTAGT	1620
	TCGTGTCATG	GTTGAAGCAG	CAACTGATGA	AGATGCTGAA	aGATTTGCAC	AACAAATAGC	1680
10	TGATGTGGTT	CAAGATAAAA	TGGGATTAGA	TAAATAAATA	CTGTATTACA	AATGAGCCGA	1740
	TGCGTATGCA	nTcgtTTTTT	GTGTTTGTAG	AAATAATTTA	TAGTACAAAC	GTAAAATGAT	1800
15	ATAAACAAAA	TAAAAACAAA	GTAATCAATA	TGTAATATAA	AATACACTGG	TACTCAATAT	1860
	ATAATGATGA	TAAAATTAAT	TTTAATTAGA	TAGAGTTGCT	TTGTGTTTTT	AACGCAGATG	1920
	CTACTACTTA	TCTTAACAGT	TGATTAAGTG	AAATCATTTA	ACAGCGAGAA	TAATCAACCA	1980
20	GGAGGATGAC	TTAATGAATT	TATTCAGACA	ACAAAAATTT	AGTATCAGAA	AATTTAATGT	2040
	CGGTATTTTT	TCAGCTTTAA	TTGCCACTGT	TACTTTTATA	TCTACTAACC	CGACAACAGC	2100
	GTCTGCAGCA	GAGCAAAATC	AGCCTGCACA	AAATCAACCA	GCACAACCAG	CTGATGCCAA	2160
25	TACACAGCCT	AACGCAAATG	CTGGTGCTCA	AGCTAATCCT	ACAGCACAGC	CAGCTGCACC	2220
	TGCCAACCAA	GGACAACCAG	CAGTACAACC	AGCAAACCAA	GGTGGACAGG	CTAATCCAGC	2280
`	AGGAGGAGCA	GCACAACCAA	ATACACAACC	AGCTGGACAA	GGTGATCAAG	CTGATCCGAA	2340
30	TAACGCTGCA	CAAGCACAAC	CTGGAAATCA	AGCAACACCG	GCAAACCAAG	CAGGTCAAGG	2400
	AAATAACCAA	GCAACACCTA	ATAATAATGC	AACACCGGCA	AATCAAACAC	AGCCAGCGAA	2460
25	TGCTCCAGCA	GCAGCGCAAC	CAGCAGCACC	TGTAGCAGCA	AACGCACAAA	CTCAAGATCC	2520
35	AAATGCTAGC	AATACTGGTG	AAGGCAGTAT	TAATACGACA	TTAACATTTG	ATGATCCTGC	2580
	CATATCAACA	GATGAGAATA	GACAGGATCC	AACTGTAACT	GTTACAGATA	AAGTAAATGG	2640
40	TTATTCATTA	ATTAACAACG	GTAAGATTGG	TTTCGTTAAC	TCAGAATTAA	GACGAAGCGA	2700
	TATGTTTGAT	AAGAATAACC	CTCAAAACTA	TCAAGCTAAA	GGAAACGTGG	CTGCATTAGG	2760
	TCGTGTGAAT	GCAAATGATT	CTACAGATCA	TGGTAACTTT	AACGGTATTT	CAAAAACTGT	2820
45	AAATGTAAAA	CCAGATTCAG	AATTAATTAT	TAACTTTACT	ACTATGCAAA	CGAATAGTAA	2880
	GCAAGGTGCA	ACAAATTTAG	TTATTAAAGA	TGCTAAGAAA	AATACTGAAT	TAGCAACTGT	2940
	AAATGTTGCT	AAGACTGGTA	CTGCACATTT	ATTTAAAGTA	CCAACTGATG	CTGATCGTTT	3000
50	AGATTTACAA	TTTATTCCTG	ACAATACAGC	AGTTGCTGAT	GCTTCAAGAA	TTACAACAAA	3060
	TAAAGATGGT	TATAAATACT	ATTCATTCAT	TGATAATGTA	GGTCTATTCT	CAGGATCACA	3120

	TAATACTGAA	ATCGGTAACA	ATGGTAATTT	TGGTGCTTCA	TTAAAAGCAG	ATCAATTTAA	3240
	ATATGAAGTA	ACATTACCAC	AAGGTGTAAC	TTACGTTAAT	AATTCATTAA	CTACAACATT	3300
5	CCCTAATGGT	AATGAAGACA	GTACAGTATT	GAAAAATATG	ACTGTTAATT	ATGATCAAAA	. 3360
	TGCAAATAAA	GTTACATTTA	CAAGCCAAGG	TGTGACAACG	GCACGTGGTA	CACACACTAA	3420
	AGAAGTTTTA	TTCCCAGATA	AATCTTTAAA	ATTATCATAT	AAAGTTAATG	TTGCGAATAT	3480
10	CGATACACCT	AAAAATATTG	ATTTTAATGA	AAAATTAACA	TATCGTACTG	CTTCAGATGT	3540
	TGTAATTAAT	AATGCGCAAC	CAGAAGTACA	CTAACTGCAG	ATCCATTTTC	AGTAGCGGTT	3600
15	GAAATGAACA	AAGATGCGTT	GCAACAACAA	GTAAACTCAC	AAGTTGATAA	TAGTCATTAC	3660
10	ACAACAGCAT	CAATTGCAGA	ATACAATAAA	CTTAAACAAC	AAGCAGATAC	TATTTTAAAT	3720
	GAAGATGCGA	ATCATGTTAA	AACTGCAAAT	CGTGCATCTC	AAGCGGATAT	TGATGGTTTA	3780
20	GTAACTAAAT	TACAAGCTGC	ATTAATTGAT	AATCAAGCAG	CAATTGCTGA	ATTAGATACT	3840
	AAAGCTCAAG	AAAAGGTTAC	AGCAGCACAA	CAAAGTAAAA	AAGTTACGCA	AGATGAAGTT	3900
	GCAGCACTTG	TAACTAAAAT	TAACAATGAT	AAAAATAATG	CAATCGCAGA	AATTAATAAA	3960
25	CAAACTACAG	CACAAGGTGT	CACAACTGAA	AAAGATAATG	GTATCGCAGT	GTTAGAACAA	4020
	GATGTGATTA	CACCAACAGT	TAAACCTCAA	GCGAAACAAG	ATATTATCCA	AGCAGTTACA	4080
	ACTCGTAAAC	AACAAATTAA	AAAGTCAAAT	GCATCATTAC	AAGATGAAAA	AGATGTAGCA	4140
30	AATGATAAAA	TTGGTAAAAT	TGAAACAAAG	GCAATTAAAG	ATATTGATGC	AGCAACAACA	4200
	AATGCACAAG	TAGAAGCCAT	TAAAACAAAA	GCAATCAATG	ATATTAATCA	AACTACACCT	4260
	GCTACAACAG	CTAAAGCAGC	AGCTCTTGAA	GAATTTGACG	AAGTTGTTCA	AGCACAAATT	4320
35	GATCAAGCAC	CTTTAAATCC	TGATACAACA	AATGAAGAAG	TAGCGGAAgC	TATTGAACGT	4380
	ATTAATGCAG	CTAAAGTTTC	TGGTGTTAAA	GCAATTGAAG	CGACAACGAC	TGCACAAGAT	4440
40	TTAGAAAGAG	TTAAAAACGA	AGAAATCTCA	AAAATTGAAA	ATATTACTGA	CTCTACGCAA	4500
10	ACAAAAATGG	ATGCCTATAA	TGAAGTTAAA	CAAGCTGCAA	CAGCTAGAAA	AGCTCAAAAT	4560
	GCTACAGTTT	CAAATGCAAC	Aaatgaagaa	GTAGCAGAAG	CTGATGCAGC	AGTAGATGCA	4620
45	GCTCAAAAGC	AAGGTTTACA	TGACATCCAA	GTTGTTAAAT	CAAAACAGGA	AGTTGCTGAT	4680
	ACAAAATCAA	AAGTATTAGA	TAAAATCAAT	GCAATTCAAA	CACAAGCAAA	AGTTAAACCT	4740
	GCAGCTGATA	CGGAAGTAGA	AAACGCATAT	AATACACGTA	AACAAGAAAT	TCAAAATAGC	4800
50	AATGCTTCAA	CTACAGAAGA	AAAACAAGCT	GCATATACAG	AATTAGATAC	TAAAAAGCAA	4860
	GAAGCAAGAA	САААТСТТСА	ፐርርፖርር እ ልልም	асавасаете:	ארכידא א רא א ר	ACCTABACAC	4920

	GCGGAAATCG	CTCAAAAAGC	AAGTGAACGT	AAAACAGCAA	TTGAAGCAAT	GAATGATTCG	5040
	ACTACTGAAG	AACAACAAGC	AGCGAAAGAC	AAAGTGGATC	AAGCAGTAGT	TACTGCAAAC	5100
5	GCTGATATAG	ATAATGCTGC	AGCAAACAAT	GATGTGGATA	ATGCAAAAAC	TACAAATGAA	5160
	GCTACAATCG	CAGCCATTAC	ACCTGATGCA	AATGTTAAAC	CAGCAGCAAA	ACAAGCAATT	5220
	GCAGATAAAG	TACAAGCTCA	AGAAACAGCA	ATTGATGGAA	ATAACGGCTC	AACAACTGAA	5280
10	GAAAAAGCAG	CTGCTAAACA	ACAAGTTCAA	ACTGAAAAA	CAACAGCTGA	TGCCGCAATA	5340
	GATGCAGCAC	ATACAAATGC	GGAAGTTGAA	GCGGCTAAAA	AAGCAGCAAT	TGCTAAAATT	5400
15	GAAGCGATTC	AGCCAGCAAC	AACAACTAAA	GATAATGCGA	AAGAAGCAAT	TGCTACGAAA	5460
15	GCGAATGAAC	GTAAAACAGC	AATCGCTCAA	ACGCAAGACA	TTACTGCTGA	AGAAATTGCA	5520
	GCGGCTAATG	CGGACGTAGA	TAATGCTGTG	ACACAAGCAA	ATAGCAACAT	TGAAGCTGCT	5580
20	AATAGTCAAA	ATGATGTAGA	CCAAGCGAAA	ACGACAGGTG	AAAATAGTAT	TGATCAAGTA	5640
	ACACCAACAG	TTAATAAAA	AGCAACTGCA	CGTAATGAAA	TCACAGCAAT	TTTAAATAAC	5700
	AAATTGCAAG	AGATTCAAGc	tACGCCAGAT	GCAACAGATG	AAGAAAAACA	AGCAGCTGAT	5760
25	GCTGAAGCAA	ATACTGAAAA	TGGTAAAGCA	AATCAAGCCA	TTTCAGCAGC	AACTACTAAC	5820
	GCACAAGTTG	ATGAAGCTAA	AGCAAATGCA	GAAGCAGCGA	TTAATGCGGT	AACACCAAAA	5880
	GTTGTGAAGA	AACAAGCGGC	TAAAGATGAA	ATTGATCAAT	TACAAGCAAC	GCAAACAAAT	5940
30	GTTATCAATA	ATGATCAGAA	CGCTACAACA	GAAGAAAAAG	AAGCAGCTAT	TCAACAATTA	6000
	GCAACAGCAG	TTACAGACGC	GAAAAATAAT	ATTACAGCTG	CAACTGATGA	TAATGGTGTA	6060
	GATCAGGCGA	AAGACGCTGG	AAAGAATTCA	ATTCAAAGCA	CGCAACCAGC	AACAGCGGTT	6120
35	AAATCAAATG	CTAAAAATGA	TGTTGATCAA	GCTGTGACAA	CTCAAAATCA	AGCAATTGAT	6180
	aataēaactg	GTGCTACAAC	TGAAGAGAAA	AATGCAGCAA	AAGATTTAGT	TTTAAAAGCT	6240
40	AAAGAAAAAG	CGTATCAAGA	TATCTTAAAT	GCACAAACAA	CTAATGATGT	TACGCAAATT	6300
40	AAAGATCAAG	CAGTTGCTGA	TATTCAAGGT	ATTACTGCAG	ATACAACAAT	TAAAGATGTT	6360
	GCGAAAGATG	AATTAGCAAC	AAAAGCAAAC	GAACAAAAAG	CGCTTATTGC	ACAAACTGCA	6420
45	GATGCGACTA	CTGAAGAAAA	AGAACAAGCA	AATCAACAAG	TAGACGCACA	ATTAACACAA	6480
	GGTAATCAAA	ATATTGAAAA	TGCACAGTCA	ATCGATGATG	TAAACACTGC	AAAAGATAAT	6540
	GCAATTCAAG	CAATTGACCC	AATTCAAGCA	TCAACAGATG	TTAAAACGAA	TGCAAGAGCG	6600
50	GAATTGCTAA	CTGAAATGCA	ATAAAATAAA	ACTGAAATAC	TTAATAATAA	TGAGACTACT	6660
	AATGAAGAAA	AAGGTAACGA	ጥልጥጥርርል ርርል	CTTACACCAC	Сататсааса	ስርርምም አስጥ	6720

	AAAGTTCAAC	AACTTCATGC	AAATCCTGTT	AAGAAACCAG	CAGGTAAAAA	AGAATTAGAT	6840
	CAAGCTGCAG	CTGATAAGAA	AACACAAATA	GAACAAACAC	CAAATGCATC	ACAACAAGAA	6900
5	ATTAATGATG	CAAAACAAGA	AGTTGATACT	GAATTAAATC	AAGCGAAAAC	AAATGTCGAT	6960
	CAATCATCAA	CAAATGAATA	TGTTGATAAT	GCAGTTAAAG	AAGGAAAAGC	TAAAATTAAT	7020
	GCAGTTAAAA	CATTTAGTGA	GTACAAAAAA	GATGCTTTAG	CTAAAATTGA	AGATGCATAT	7080
10	AATGCTAAAG	TAAACGAAGC	GGATAACTCT	AACGCATCGA	CTTCAAGTGA	AATTGCTGAA	7140
	GCGAAACAAA	AACTTGCTGA	ATTAAAACAA	ACTGCGGATC	AAAATGTTAA	TCAAGCTACT	7200
15	TCTAAAGATG	ACATTGAAGT	TCAAATTCAT	AATGACTTAG	ATAATATTAA	CGATTACACA	7260
,,,	ATTCCAACAG	GTAAAAAAGA	ATCAGCTACA	ACAGATTTAT	ATGCTTATGC	AGATCAGAAG	7320
	ATAATAATA	TTTCAGCTGA	CACTAATGCA	ACACAAGATG	AAAAGCAACA	AGCAATTAAG	7380
20	CAAGTTGACC	AAAATGTTCA	AACTGCATTA	GAAAGCATTA	ATAATGGTGT	GGATAATGGT	7440
	GACGTTGATG	ATGCATTAAC	ACAAGGTAAA	GCAGCAATTG	ATGCTATTCA	AGTAGATGCT	7500
	ACTGTTAAAC	CTAAAGCGAA	CCAAGCTATT	GAAGTTAAAG	CAGAAGATAC	GAAAGAATCT	7560
25	ATTGATCAAA	GTGACCAGTT	AACTGCTGAA	GAAAAAACTG	AAGCATTAGC	AATGATTAAA	7620
	CAAATTACAG	ATCAAGCTAA	ACAAGGTATT	ACTGATGCAA	CAACAACTGC	TGAAGTTGAA	7680
	AAAGCGAAAg	cTCaAGGACT	TGAAGCATTT	GATAACATTC	AAATCGACTC	AACAGAAAAA	7740
30	CAAAAAGCTA	TCGAAGAATT	AGAAACTGCA	CTAGACCAGA	TTGAAGCAGG	TGTAAATGTC	7800
	AACGCTGATG	CTACAACTGA	AGAAAAGAA	GCGTTTACGA	ATGCTTTAGA	AGACATTTTA	7860
	TCAAAAGCAA	CTGaAGATAT	TTCTGATCAA	ACTACAAATG	CAGAAATCGC	TACTGTCAAA	7920
35	AATAGTGCGC	TTGAACAACT	TAAAGCACAA	CGTATTAATC	CTGAAGTTAA	GAAAAATGCT	7980
	TTGGAÃGCAA ·	TCAGAGAAGT	GGTTAACAAG	CAAATAGGAA	taattaaaaa	TGCAGATGCA	8040
40	GATGCATCGG	CGGAAAGATIA	TTGCACGTAC	GGGATTTAGG	TAGATATTTT	GGACCGATTT	8100
70	GCTGGATAAA	TTTAGGGTnA	AACCCCAACC	AATGCCGAAG	TTGCCTGAAT	TACCA	8155

(2) INFORMATION FOR SEQ ID NO: 64:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1630 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:

55

50

	CTGTTTTATT	TGCAGCACCC	ATACTGGAAA	TCACTTTAAT	CCCTCGGTCA	AGACACTCTT	120
	TCATTAAGTG	TACTTTGTAC	ATTATTGTAT	CACTTGCATC	TACAAAATAA	TCTATATCGT	180
5	AGTTATCGAA	AATTTCTTCA	TATGTCTCTT	CTGTATAAAA	CATATGTAAG	GGCGTGACTT	240
	TACAATCTGG	ATTAATTAAT	TTAATACGTT	CTTCCATCAA	AGAAACTTTA	CTTTGTCCTA	300
	CCGTTGTAGT	TAAAGCGTGT	AATTGTCTGT	TTACATTTGT	AATATCAACA	TCATCTTTAT	360
10	CTATTAATAT	AATATGACCA	ATATTCGTTC	TTGCTAATGC	TTCAGCAGCA	AATGAACCAA	420
	CACCTCCAAC	GCCAAGTATG	ACAACAGTTT	GTTGCTTCAA	TAAATCTAAA	CCTTGTTGTC	480
15	CAATCGCTAG	TTCATTTCTT	GAAAATTGAT	GTTTCATTAT	TTTACCTCTT	TCACTGATTT	540
,5	ATACATAAGT	ACATAGTAAC	TTAAAATTT	ATATTTAGCA	TTATCACTTT	GATTATTTTC	600
	CCAAAATTCA	ACGAGGAAAC	AAATTATTAA	CGCTATAAAA	CCCAACTAAT	TCTTTATTAA	660
20	AAACTTAAAG	AAACGCATAA	AAATACGCAA	GACAAAGTCT	TGCGTATCGA	TAGAGTCCGT	720
	ATTGCCGTAG	TTATAATAGC	TTGATCATTC	GGCCTGTTAT	ATACAGGTGG	GTGCCCTGTT	780
	TCTTGTTTTG	TACGTCCTTC	ATATAAGGCG	TGTACGCTGC	AAGAAAACCC	ATTGGGCTCC	840
25	CTTGATCAAA	GAGTGTTAGG	CCCAAATTAA	AAAGCAAACT	TACGAACAAC	TCAGATGACT	900
	ATCTTATGAT	GTTATATTAC	CACATAATTA	AAATTAATGA	AATTATAACA	AACCAAAGTT	960
	TATTGATTTT	TTAAAATTTA	GTGACGAATT	CGCAAAGAAA	GTTCTTCTAA	TTGTTTATCA	1020
30	GAAACTTCAC	TAGGCGCATT	CGTTAATAAA	CATGTAGCAG	ATGCTGTTTT	AGGGAATGCG	1080
	ATTGTATCTC	TCAAGTTTGT	TCTATTAGTC	AATAACATGA	CTAATCGGTC	LAATCCTAAT	1140
	GCAATACCGC	CATGTGGTGG	TGCACCATAT	TTAAATGCAT	CTAGTaAGAA	GCCGAACTGT	1200
35	TCCTgTGCTT	GTTCTTTAGT	AAATCCAAGA	ACTTCGAACA	TTTTTTCTTG	TAACTCACCA	1260
	TCATGAATTC	TGATTGAACC	GCCACCTAAT	TCATAACCAT	TTAATACTAT	GTCATAAGCA	1320
40	TTTGCCTCAG	CTTCLTCTGG	CGCAGTGCCA	AGCTTAGCAA	TATCAGCTTC	TTTTGGAGAT	1380
40	GTAAATGGAT	GATGTGCTGC	AACGTAACGT	TTCGCATCTT	CATCATATTC	TAATAATGGC	1440
	CAATCTGTCA	CCCATAAGAA	GTTTAATTTT	GTTTCATCGA	TTAAACCTAA	TTCTTTAGCT	1500
45	AATTTGACAC	GTAATGCACC	TAAACTTTGT	GCAACGACAT	TTGGTttGTC	TGCAACAAAC	1560
	ATTACTAAGT	CACCAGCTTC	AGCACCAGTT	AATGTAAGTA	ATGTTTCAAC	ATTTTCTGTT	1620
	CAAAGAAACG						1630

(2) INFORMATION FOR SEQ ID NO: 65:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 732 base pairs

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 65:	
	CAATTGGACA TCTTGTATGA AAAGGACAAC CTTGCGGCGG ATTACTTGGC GAAGGTAATT	60
10	CTCCTTTTAA TATAATTCTA TTGTTATTAT GTTTATCAAT TTGTGGTATT GATGAAATCA	120
	ACGCTTTTGT ATATGGATGT TTGGGATTTT CATAAATTTC TTTATCAGAT GCGATTTCAA	180
	CTATATGACC TAAATACATA ACTCCAATGA CATCACTTAT ATGTTTTACT ACACTTAAAT	240
15	CATGTGCGAT AAATAAATAG CTTAAGTTAA ATTGTTCTTG TAAATCTTTT AATAAATTCA	300
	GTACTTGAGA TTGAACAGAT ACATCTAATG CACTTACAGG CTCATCAGCA ACAATTAAAC	360
	TCGGACGCAA AGCCAATGCT CTTGCAATTC CCACTCTTTG TCTCTGTCCA CCTGAAAATT	420
20	CATGTGCATA TTLATAATAT GCATCTTCAC TTAGGCCAAC ACATTTTAAT AAATATAGTA	480
	CTTCTTTTT TATTTCTTCT TTTGGCAATT TTTTATAATT TAAAATAGGT TCTGAAATGA	540
	TATCTCCAAC CATTTGCATC GGATTCAATG ATGCATACGG ATCTTGAAAT ATCATCTGAT	600
25	ATTGTTGTCG TGATTTTCTG AGTTTTTTAC CTTGTAATCT TGTTATATCT TCACCATTAA	660
	CAATTATTGA GCCTGAAGTT GCATCTTCAA GCCTGATAAT CACTTTACCT AACGTTGACT	720
30	TACCACAACC CG	732
	(2) INFORMATION FOR SEQ ID NO: 66:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5838 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	.	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 66:	
	AATATATTCA TATGTTTCAT CAACAATATT AGCTGCTTTT TGAATTAAAG CAATTTCGTC	60
	AGCATCTTTG ACGTCTCTAA TTTTATCTAC AGTATTAGAA ATGCTTATTA ATGATATACG	120
45	GCTTTTATTT AATTCAAGGT ATGTATCATA ACTTACATGA TGCCCCTCAA AACCTACATT	180
	TTCAAAATTT TCTTGGTGTA GCAATTCTTT AATCTCACCA ATAATAGTAG ATTTACGATT	240
50	AATAATTTCA TAATTTGGCG CCTGCTTAGT TGCTTGATCA ATATATCTAA AGTCTGTTAT	300
	CAAATATTGT TTATCTTTAG ATATGATAAG TGCTCCACTG GTACCAGTAA AACCTGATAA	360
	ATATCTTCTA TTGTAATCCG AAAGAATGAT AATCGCATCT AAATGTTTTT GTTCTAAAAT	420
55		

	CAACTTTATA	. CATTAAAATA	ATATCATAAT	AAGGATAAAA	AATAATAGAT	ATTGATTTTA	540
	GGGAGATAGT	AATGAAAAA	TTGGTTTCAA	TTGTTGGCGC	AACATTATTG	TTAGCTGGAT	600
5	GTGGATCACA	AAATTTAGCA	CCATTAGAAG	Anaaaacaac	AGATTTAAGA	GAAGATAATC	660
	ATCAACTCAA	ACTAGATATT	CAAGAACTTA	ATCAACAAAT	TAGTGATTCT	AAATCTAAAA	720
	TTAAAGGGCT	TGAAAAGGAT	AAAGAAAACA	GTAAAAAAAC	TGCATCTAAT	AATACGAAAA	780
10	TTAAATTGAT	GAATGTTACA	TCAACATACT	ACGACAAAGT	TGCTAAAGCT	TTGAAATCCT	840
	ATAACGATAT	TGAGAAAGAT	GTAAGTAAAA	ACAAAGGCGA	TAAGAATGTT	CAATCGAAAT	900
15	TAAATCAAAT	TTCTAATGAT	ATTCAAAGTG	CTCACACTTC	ATACAAAGAT	GCTATCGATG	960
	GTTTATCACT	TAGTGATGAT	GATAAAAAA	CGTCTAAAAA	TATCGATAAA	TTAAACTCTG	1020
	ATTTGAATCA	TGCATTTGAT	GATATTAAAA	ATGGCTATCA	AAATAAAGAT	AAAAAACAAC	1080
20	TTACAAAAGG	ACAACAAGCG	TTGTCAAAAT	TAAACTTAAA	TGCAAAATCA	TGATAGGAGT	1140
	CTTTTAATGC	GTAATATAAT	ATTTTATCTT	GTACTTATTA	TTGCTGCGAT	TGGATTAGTA	1200
	ATGAATCTAG	ATGCCTTTAT	TTTTTCAATC	GTCAGAATGT	TAATCAGCTT	TGcgTAaTAG	1260
25	CTGGTATTAT	TTATCTGATT	TATTATTTCT	TCATCTTAAC	TGAAGACCAA	CGCAAATATC	1320
	GCAAAGCAAT	GCgTrAaGTA	TAAAAGAAAT	CAAAGAAGAA	AATAGATAAA	AAAACGGAAG	1380
	CACITGTAGG	TAAAATAGTC	TACGTGCTTC	CATTTTTTAT	TCTAAAAACT	ACTTTCTAAA	1440
30	CATCCATTCA	TCTGAACGAT	ATTTTTCAGT	TAATTCTTCC	ACTTCTGCCA	ATTGAGCTTC	1500
	TGTTAATTCA	AGTGGCTTTA	ATTCTATATT	TAAACCTTTC	TTAAAACCTT	TCTCGAAAGC	1560
35	TTCTTCCATT	TGACTAATAG	TAATGTGTTC	ATCTGAAATA	TCATTGATGG	CAACTGCTTT	1620
0.5	TTCAACGAAT	GCCTCTTTCA	TTTTTAATTT	TAATCTTTCA	TTTTTATAAA	Traacatatc	1680
	AAACÃGTTCA	TCAATATCAA	TATCTTGTAA	AATCGAACCG	TGTTGGAGGA	TTACGCCCTT	1740
40	TTGTCTCGTT	TGAGCACTCC	CAGCAATCTT	ACGGCCTTCA	ACAACTAGCT	CATACCAACT	1800
	TGGTGCATCA	AAACACACTG	AACTTCGAGG	TTGTTTTAAT	TTTTGACGCT	CTTCAGGCGT	1860
	TTTAGGTACC	GCAAAATAAG	TATCAAATCC	TAAGTTTTTA	AATCCTTCTA	ATAATCCTTG	1920
45	TGAAATCACT	CTGTACGCTT	CTGTAACTGT	AGAAGGCATA	TTCGGATGCG	ATTCAGGCAC	1980
	AATCACACTG	TAAGTTAACT	CTTTATCATG	TAGCACCCCA	CGGCCACCAG	TTTGACGCCT	2040
	TACGAGACCA	AAACCTTTCT	CTTTAACCTT	ATCAATATCA	ATTTCTTTTT	GTAGCCTTTG	2100
50	GAAATACCCT	ATTGATAATG	TTGCAGGATT	CCATGTGTAA	AAACGTATAA	CTGGATCAAT	2160
	ттелестета	GAGACAAAAT	ттаатаассс	ምምር አጥር ር አጥ ም	こことのできませんか	እ አጥአጥ <u>ርርርጥር</u>	2220

	AAATGTATAA	TATTTGATTC	GCTAATTAAT	CAATTTAACT	AAATGAATAA	TAATTGCAAT	2340
	TCTTTAGTGA	AATATTTTGA	TAATTTGACC	TAACAGTCTT	ATAATTATAT	TATCGTTTAA	2400
5	TTAGGGAGGA	TGCAAGATGA	GTGCTAGTTT	GTACATCGCA	ATAATTTTAG	TTATAGCAAT	2460
	TATTGCTTAT	ATGATTGTTC	AACAAATTCT	TAACAAGCGA	GCTGTTAAAG	AATTAGATCA	2520
10	AAATGAATTC	CATAATGGGA	TTAGAAAAGC	TCAAGTCATC	GATGTTAGAG	AGAAAGTTGA	2580
,,	CTATGACTAC	GGTCACATTA	ATGGGTCTCG	CAATATTCCT	ATGACAATGT	TCAGGCAACG	2640
	ATTCCAAGGA	TTAAGAAAAG	ATCAACCGGT	ATACTTATGT	GATGCCAATG	GGATTGCTAG	2700
15	CTATAGAGCC	GCTCGTATTT	TGAAAAAGAA	TGGATATACA	GATATCTATA	TGTTAAAAGG	2760
	CGGCTATAAA	AAATGGACTG	GAAAAATAAA	GTCTAAAAAA	TAGTTTTTGT	ATATTTAAA	2820
	TACGATTTAA	TAAAATCTGA	GTGTTAATTG	ATCATCAATA	ACAATACTCA	GATTTTAATT	2880
20	TTTTAACAAA	GTCTGTTACT	ATATTTCTCT	AGCTTCACTG	ATCATTAAAC	TTAGTTTCAG	2940
	CATAATAAAG	AAAGTTCAGC	TCATTTTCAA	TACGATTCAA	TTACCGCAAT	CTAAAAAATG	3000
	AAAAGACAAT	TTCTATGAAA	GAATAATACC	AAACCCTAAG	AGTTATTACT	TCGGTTTAGT	3060
25	TTTCTTGTTT	AAATAGAAAT	TGTCTTTTTC	AATTGATTTT	GAAACCATTA	TCCTTAAATC	3120
	TTCATACAAA	GTTAGAATAA	TAATTCTCGG	AATATGTGTT	TAATACTTTA	TTTTTCCTGT	3180
30	TTAAGATTTT	CAAACTTTAA	TATTGGTTTA	CGAGCAGCTG	TAGCTTCGTC	TAATCGATCA	3240
50	ATCACAGTTG	TATGTGGTGC	TTCTAGCacT	TTATCAGGAT	CATTTTTAGC	TTCTTCAGCA	3300
	ATACTAATTA	ATGTATCGAT	AAAATAATCA	AGTGTTTCTT	TAGACTCTGT	CTCAGTCGGT	3360
35	TCAATCATCA	TACCTTCTTC	AACATTTAAT	GGGAAGTATA	TTGTTGGTGG	ATGTACACCG	3420
	AAATCTAATA	ATCGCTTAGC	CATGTCTAAA	GTACGTACAC	CAAATTCTTT	TTGACGCACA	3480
	CCACTTAACA	CAAACTCGTG	TTTACAATAT	TGTTTATAAG	GTATTTCAAA	GTGTTTAGAT	3540
40	AAACGTGCTT	TAATATAATT	CGCATTAAGA	ACCGCTGCTT	CAGAAACCTC	TTTAAGTCCA	3600
	GTTGCTCCCA	TAGTTCGAAT	ATACGTATAA	GCTCTTAAGT	AAATACCAAA	GTTACCATAA	3660
	AATGGTTTTA	CACGTCCGAT	AGAATTTTTA	ATGTCATTAT	CATATTTAAA	TTTGTCGCCA	3720
15	TCTTTAATAA	CCATTGGCTT	TGGTAAGTAA	CTTGCTAGTT	CTTTTACTAC	ACCGACTGGA	3780
	CCTGAACCAG	GACCGCCACC	ACCATGTGGA	CCAGTAAATG	TTTTATGCAA	GTTTAAATGA	3840
50	ACAGCATCAA	ATCCCATATC	TCCTGGGCGA	ACTTTGTCCA	TAATAGCGTT	TAAATTCGCA	3900
50	CCATCATAAT	ATAATAGACC	ACCAGCATTA	TGGACGATTT	CACGGATTTC	CATAATATTT	3960
	TOTAL CONTRACTOR	TIN COTTO A ROTT	CONTRACTATOR	CTTNACATAA	TACCTC CTCT	አ ጥጥተጥ ሌ ጥጥጥ	4020

	GATTTAAATC	CTGCAAATGa	AGCTGAGGCT	GGaTTCGTAC	CATGCGCAGA	ATCTGGCACA	4140
	ATGACTTCAT	CACGATGACC	TTCACCATTA	TTCTCATGGT	AAGCTTTAAA	TATCATCAAT	4200
5	GCAGTCCATT	CACCATGTGC	GCCAGCAGCT	GGTTGTAATG	TCACCTCATC	CATACCAGTA	4260
	ATTTCTTTTA	ATTCTTCTTG	CAAACTATAA	ATAATTTCTA	ATGAACCTTG	AACTTGATCT	4320
	TCATCTTGTA	ATGGATGTGA	TTCACTAAAT	CCTGGTATTC	TAGCAACCTT	TTCATTAATT	4380
10	TTAGGGTTAT	ACTTCATCGT	ACATGAACCC	AATGGATAAA	ATCCGTTGTC	TACACCGAAA	4440
	TTTTTATTTG	AAAGTTCAGT	ATAATGACGT	ACTAAGTCTA	GTTCAGCAAC	TTCAGGAAAC	4500
15	TCCGCTTTGT	TTTTACGAAT	AAATTTATCA	TCTAACAATG	ACTCAACAGA	ATTTGTTTTA	4560
	ATATCACTTT	TTGGTAATGA	ATATGCATAT	CTGCCTTCAC	GAGATCTTTC	AAAAATTAAT	4620
	GGACTTGATT	TACTAGTCAT	TTAACTCACC	AGCCTTTTCT	ACAAATGTAT	CGATTTCATC	4680
20	TTTTGTTCTT	AATTCAGTTA	CAGCTATTAA	CATGTGATTT	TTAAAGTCGT	CTGAAACAAC	4740
	ACCTAAATCA	AAACCACCGA	TAATATTGTA	CTTCACTAAT	TCCTCGTTAA	CTTGTTGAAT	4800
	TGGTTTGTCA	AATTTGACTA	CAAACTCATT	GmnAAGnTGT	ACCATCTAAT	ACTTCAAAAC	4860
25	CITITTTAAT	AAATTGTTGT	TTAGCATAGT	TAGCATGTTC	TATATTTTGA	ACTGCAATAT	4920
	CATAGATACC	TTGTTTACCA	AGTGCTGACA	TTGCAATTGA	TGaCGcTAAA	GCATTTAATG	4980
	CTTGGTTAGA	ACAAATATTA	GATGTCGCTT	TATCGCGTCG	AATATGTTGT	TCACGTGCTT	5040
30	GTAATGTTAA	TACAAAGCCA	CGATTACCTT	CATCATCTTG	TGTTTGACCG	ACTAATCTAC	5100
	CTGGCACTTT	ACGCATTAAC	TTTTTCGTCG	TTGCAAAATA	TCCACAATGT	GGCCCACCGA	5160
35	ATTGAGCAGG	AATTCCGAAT	GGCTGAGTAT	CACCTACAAC	AATATCTGCA	CCAAATGAAC	5220
<i>33</i>	CTGGAGGTGT	AAGTAATCCC	AATGCTAATG	GATTTGCATA	TACGATAAAT	AATGCTTTTT	5280
	TATCFICAAT	AAAGCTATGA	ATCTTTTCAA	GATCTTCAAT	TGAACCGTAA	AAGTTTGGAT	5340
40	ATTGTACTGC	AACAGCTGCT	GTTTCATCAT	CCACTGCTGC	TTCTAATTTT	TTCAAATCTG	5400
	TAACAGTGCC	ATCTAAATCG	ATTTCCACTA	CTTCGAATTC	CTTACGCGTC	TTAGCATAAG	5460
	TATGAAGTAC	TTGTAATGCT	TGATAATGTA	AACCTTTTGA	GACTACAATT	TTATTTTCT	5520
45	TTGTTTGACT	AAATGCTAAG	ATACATGCTT	CAGCAAAGCT	AGTCATCCCA	TCATACATAG	5580
	AAGAATTTGC	TACATCCATA	TCTGTTAATT	CACAAATTAA	AGTTTGGAAC	TCAAAAATGG	5640
	CTTGTAATTC	ACCTTGAGAA	ATTTCCGGTT	GATATGGCGT	ATATGCTGTG	TAAAATTCTG	5700
50	ATCTTGAAAT	CATAGCATCC	ACAACTGATG	GCGCGTAATG	ATCATAAACA	CCAGCACCCA	5760
	TAAATGATGT	ATGCGTTTCT	ттастсатат	+ CTTGCTkGC	አልፕሃ ርርርርልጥጥ	ጥ እ እ ር _ግ ምርጥ እ	5020

(2) INFORMATION FOR SEQ ID NO: 67:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18355 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:

60	AAACGAAATA	aAGTATTAGC	CCTGAATTAC	TAATTACTTC	GCTTTGCTAA	ATRATAATTG
120	TTaAAGCTTT	ATTTAAATTT	TGATATTTT	ATTAAAACAA	TGGCTAGTTC	AAATCTGATA
180	TGACGATGAA	GGCAACAACT	GTATTGTATG	TTTTTGGTGC	GTACAAAGCT	GTACGAAATT
240	CCATTGTAGA	ACAAGGGTAT	TTAGCGAAAG	ATAGGAAATG	AGGATTGGTA	AATCCGTTAC
300	CGCAGAGACA	TAAAGCAATA	TTATTCTCAC	CAAGTGTGGG	GACGTTTCCA	TTAACAAAAG
360	GATAAAAATT	CTCAATTATT	GGAACTTCTA	TGACTAGAAC	AATTTTGAAC	ACTTACGTAA
420	СААААТАТАА	GAAGGATTAT	GAAGTTTATG	CTGAGAATAC	CTTGAATGTG	TTCAAAAAGA
480	TATATAATCA	ACTAATATAG	ATGATTCTCA	TTTATTGACA	ATTTACAACC	ATGTGCATTC
540	GAGGTGAAAA	AGTTTTAGTT	ACTTTTTTGA	GTTTTCTGCA	GTTACGATTT	AATCGTAATA
600	TAGAGCCACA	CATTCGCTTG	CGGACAACTG	ATGTAGTTAA	ATCTAAGTGA	CAATAAAAGC
660	TTACTAAGTC	CAACAACCGA	CATTTTGATA	TTTACGGTTG	TTAAATAAGG	AGAAGCAACT
720	TAGGTTCAGC	ATAGAGCTAT	TACCTAATAG	TAGCATGACT	CTTTGCGGGT	ATGCTTTCCA
780	CTGCATAAGA	tTCGCAACAA	AGTTGcTTGc	AGAGGAATAC	TTACAGTTTT	TTCTAAAAAA
840	CTATTAGGTT	CTAGATAGAG	GACTTACCTA	GAATTAGCAT	TCGCTTTTGC	GCCATGGTTT
900	ACAACTGCAT	TTGcTTCGCA	ATACAGTTGT	GTTTAGAGGA	AAAATTACAG	CATCTTCTAA
960	GAGTGTCGTA	ACATCTAAAG	CTCTAAAAAT	ATTACAGAGG	AGTAATTAAA	AAGAGCCTCT
1020	ACGATACTTG	GGGGAATATG	ATAATCCTTC	TTTTCTAAGT	GGTTATAGAA	TGAATCGGCA
1080	ATGGCCGCAA	CAATCAGTTG	CATCTATCGC	AGTGAATATG	ACATGATGCT	TTCATTCAAA
1140	GATGGTAATG	ACAAAATGAT	TAGrATCAAC	GTAGGCTTTA	CTGTGAACAG	CACATGTATG
1200	TCATATATAC	TGCGACGATG	TTTGCGGTAA	GGTAATGAAT	AGTTATGAGC	ATTTTCACTT
1260	GTGTCTGGCT	TAAGGTGAAG	ACCAACAGTT	TTGCTTAAAG	GGAAAGTCAT	ATCATTTGCA
1320	CAAATGCCAC	CTATGAAGTT	ATTGCCAATA	GCAATTCATG	AGTGCAATGC	GTTCGGATTT
1380	AAAGCAATAG	TCATTCATGG	ATATGGGTAA	ACAACAATTA	TGTTGTGCCA	AAGCCCATCG

	TTCAACATTT	GGTTGAAGCG	TTTGTGCGTG	AgcAACAATG	GAGTCACAAA	TATAAAACAG	1500
	TAGGTATGAT	GCTTTTTGAT	GAACAACGTC	AATTTTTACA	GCCATTAATC	TATATACCAG	1560
5	AAATTCAAAG	TTTAATTTGG	GAAAATAGCT	GTGGTTCTGG	TACAGCATCA	ATTGGGGTTT	1620
	TTAATAATTA	TCAACGTAAT	GACGCATGCA	AAGATTTTAC	AGTACATCAG	CCAGGGGGCA	1680
	GTATTTTAGT	GACATCAAAG	CGATGTCATC	AATTGGGATA	TCAAACTTCA	ATTAAAGGAC	1740
10	AGGTTACAAC	TGTAGCTACA	GGaAAAGCAT	ATATAGAATA	AGGAGCCTAC	AATGAATAAC	1800
	TTTAATAATG	AAATCAAATT	GATATTACAA	CAATATTTAG	AAAAGTTTGA	AGCGCATTAC	1860
15	GAGCGTGTAT	TACAAGACGA	TCAATATATC	GAAGCATTAG	AAACATTGAT	GGATGACTAT	1920
	AGTGAATTTA	TTTTAAATCC	TATTTATGAA	CAACAATTTA	ATGCTTGGCG	TGACGTTGAA	1980
	GAAAAAGCAC	AATTAATAAA	ATCACTGCAA	TATATTACAG	CGCAGTGTGT	TAAACAAGTG	2040
20	GAAGTCATTA	GAGCGAGACG	TCTATTAGAC	GGACAGGCGT	CTACCACAGG	TTACTTTGAC	2100
	AATATAGAAC	ATTGTATTGA	TGAAGAGTTT	GGACAATGTA	GTATAGCTAG	CAATGACAAA	2160
	TTATTGTTAG	TTGGTTCAGG	TGCATATCCA	ATGACGTTAA	TTCAAGTAGC	AAAAGAAACA	2220
25	GGTGCTTCAG	TTATCGGTAT	TGATATTGAT	CCACAAGCCG	TTGACCTAGG	GCGCAGAATC	2280
	GTTAACGTCT	TAGCACCAAA	TGAAGATATA	ACAATTACGG	ATCAAAAGGT	ATCTGAACTT	2340
	AAAGATATCA	AAGATGTGAC	GCATATCATA	TTCAGCTCGA	CAATTCCTTT	AAAGTACAGC	2400
30	ATTTTAGAAG	AATTATATGA	TTTAACAAAT	GAAAATGTCG	TAGTTGCAAT	GCGCTTTGGT	2460
	GATGGCATCA	AAGCAATATT	TAATTATCCG	TCACAAGAAA	CAGCGGAAGA	TAAGTGGCAA	2520
35	TGTGTGAATA	AACATATGAG	ACCACAGCAA	ATTTTTGATA	TAGCACTTTA	TAAAAAGCA	2580
33	GCTATAAAGG	TAGGTATTAC	GGATGTCTAA	ATTATTAATG	ATAGGCACTG	GTCCgGTCGC	2640
	AATCCAATTA	GCGAATATTT	GCTATTTAAA	ATCAGATTAT	GAGATTGATA	TGGTTGGACG	2700
40	TGCCTCAACA	TCAGAAAAAT	CAAAACGCTT	ATATCAAGCG	TATAAAAAAG	AGAAACAATT	2760
	TGAAGTCAAA	ATACAAAACG	AGGCGCATCA	ACATCTGGAA	GGTAAGTTTG	AAATTAATCG	2820
	TTTGTATAAA	GATGTTAAAA	ACGTTAAGGG	TGAATACGAA	ACGGTTGTCA	TGGCATGCAC	2880
45	AGCAGATGCT	TATTATGACA	CACTACAGCA	ATTGTCGTTA	GAAACTTTGC	AAAGTGTCAA	2940
	ACATGTCATT	TTAATATCAC	CGACATTTGG	TTCGCAAATG	ATTGTCGAAC	AATTTATGTC	3000
	TAAATTTAAT	AAAGATATCG	AAGTGATTTC	ATTCTCAACT	TATCTTGGCG	ATACACGTAT	3060
50	TGTTGATAAA	GAAGCGCCTA	ATCATGTGTT	GACAACAGGT	GTAAAAAAGA	AATTGTACAT	3120
	GGGATCGACA	CATTCAAACT	CAACAATGTG	TCAACGAATC	TCTGCTTTAG	CTGAGCAATT	3180

	TTATGTGCAC	CCACCACTAT	TTATGAATGA	CTTTTCATTG	AAAGCCATTT	TCGAAGGAAC	3300
	AGATGTACCG	GTTTATGTGT	ATAAGTTATT	TCCTGAAGGA	CCGATAACGA	TGACACTAAT	3360
5	CCGTGAAATG	CGTTTAATGT	GGAAGGAAAT	GATGGTTATT	TTACAAGCAT	TTAGAGTGCC	3420
	GTCAGTCAAC	CTGCTTCAAT	TTATGGTGAA	GGAAAATTAT	CCAGTACGTC	CTGAAACTTT	3480
40	GGATGAAGGT	GATATTGAGC	ATTTCGAAAT	CTTGCCAGAT	ATCTTACAAG	AATATCTGCT	3540
10	TTATGTAAGA	TATACCGCAA	TCCTCATTGA	TCCATTTTCA	CAGCCAGACG	AAAACGGACA	3600
	TTACTTTGAT	TTTTCAGCTG	TACCATTTAA	GCAAGTCTAT	AAAAATGAAC	AGGATGTTGT	3660
15	TCAAATTCCA	AGAATGCCAA	GTGAAGATTA	TTACAGAACG	GCGATGATTC	AGCATATTGG	3720
	GAAAATGCTA	GGTATCAAAA	CGCCAATGAT	TGATCAGTTC	CTAACTCGCT	ATGAAGCAAG	3780
	TTGCCAGGCG	TACAAGGATA	TGCATCAAGA	TCAACACTTA	TCTTCTCAAT	TTAATACAAA	3840
20	TCTATTTGAA	GGAGATAAAG	CACTCGTCAC	AAAATTTTTG	GAAATCAATA	GAACGCTTTC	3900
	ATAATAAGGG	TTTGAAGTTT	TATAATAGAA	AAAAATTATT	GAATTATGTT	TGACATTTAC	3960
	ATAAAAATA	GCAAATAATT	GAGAAAAATA	ATCATTACGA	TTTGATTAAG	TAATGCAACT	4020
25	TATCAATTTA	GAAAGAGGAA	AAGCAAATGA	GAAAACTAAC	TAAAATGAGT	GCAATGTTAC	4080
	TTGCATCAGG	GCTAATTTTA	ACTGGTTGTG	GCGGTAATAA	AGGTTTAGAG	GAGAAAAAG	4140
	AAAACAAGCA	ATTAACGTAT	ACGACGGTTA	AAGATATCGG	TGATATGAAT	CCGCATGTTT	4200
30	ACGGTGGATC	AATGTCTGCT	GAAAGTATGA	TATACGAGCC	GCTTGTACGT	AACACGAAAG	4260
	ATGGTATTAA	GCCTTTACTA	GCTAAAAAGT	GGGATGTGTC	TGAAGATGGG	AAGACATACA	4320
35	CGTTCCATTT	GAGAGATGAC	GTTAAATTCC	ATGATGGTAC	GCCATTTGca	TGCtGACGCA	4380
	GTTAAGAAAA	ATATTGACGC	Agttcaagaa	AACAAAAAAT	TGCATTCTTG	GTTAAAGATT	4440
	TCGĀCATTAA	TTGACAATGT	TAAAGTTAAA	GATAAGTACA	CGGTTGAATT	GAATTTGAAA	4500
40	GAAGCATATC	AACCTGCATT	GGCTGAATTA	GCGATGCCTC	GTCCATATGT	ATTTGTGTCT	4560
	CCAAAAGACT	TTaAAAACGG	TACAACAAAA	GATGGCGTTA	AAAAGTTCGA	TGGTACTGGT	4620
	CCATTTAAAT	TAGGTGAACA	CAAAAAAGAT	GAGTCTGCAG	ACTTTAACAA	AAATGATCAA	4680
45	TACTGGGGCG	AAAAGTCTAA	ACTTAACAAA	GTACAAGCAA	AAGTAATGCC	TGCTGGTGAA	4740
	ACAGCATTCC	TATCAATGAA	AAAAGGTGAA	ACGAACTTTG	CCTTCACAGA	TGATAGAGGT	4800
	ACAGATAGCT	TAGACAAAGA	CTCTTTAAAA	CAATTGAAAG	ATACAGGTGA	CTATCAAGTT	4860
50	AAGCGTAGTC	AACCTATGAA	TACGAAAATG	TTAGTTGTCA	ATTCTGGTAA	AAAAGATAAC	4920
	CCTCTCACTC	ACAAACAGT	CAGACAAGCG	ል ምተርርጥርልጥል	TOCTABACAC	አር እጥለ አ አ አጥጥ	4000

	ACAGACATTA	ATTTCGATAT	GCCAACACGT	AAGTATGACC	TTAAAAAAGC	AGAATCATTA	5100
	TTAGATGAAG	CTGGTTGGAA	GAAAGGTAAA	GACAGCGATG	TTCGTCAAAA	AGATGGTAAA	5160
5	AACCTTGAAA	TGGCAATGTA	CTATGACAAA	GGTTCTTCAA	GTCAAAAAGA	ACAAGCAGAA	5220
	TACTTACAAG	CAGAATTTAA	GAAAATGGGT	ATTAAGTTAA	ACATCAATGG	CGAAACATCA	5280
	GATAAAATTG	CTGAACGTCG	TACTTCTGGT	GATTATGACT	TAATGTTCAA	CCAAACTTGG	5340
10	GGATTATTGT	ACGATCCACA	AAGTACTATT	GCAGCATTTA	AAGAGAAAAA	TGGTTATGAA	5400
	AGTGCAACAT	CAGGCATTGA	GAACAAAGAT	AAAATATACA	ACAGCATTGA	TGACGCATTT	5460
15	AAAATCCAAA	ACGGTAAAGA	GCGTTCAGAC	GCTTATAAAA	ACATTTTGAA	ACAAATTGAT	5520
,,,	GATGAAGGTA	TCTTTATCCC	TATTTCACAC	GGTAGTATGA	CAGTTGTTGC	ACCaAAAGAT	5580
	TTAGAAAAAG	TATCATTCAC	ACAATCACAG	TATGAATTAC	CATTCAATGA	AATGCAGTAT	5640
20	AAATAAAGGA	GCAATTAGAT	GTTCAAATTT	ATCTTAAAAC	GTATTGCGCT	CATGTTTCCA	5700
	TTGATGATTG	TAGTAAGTTT	TATGACATTT	CTATTGACGT	ATATTACAAA	TGAAAATCCA	5760
	GCTGTGACAA	TTTTACATGC	ACAAGGGACG	CCAAATGTAA	CACCAGAGTT	GATTGCAGAA	5820
25	ACGAATGAGA	AGTACGGTTT	CAATGATCCA	TTATTAATTC	AATATAAAA	TTGGTTACTT	5880
	GAAGCGATGC	AATTTAATTT	TGGTACAAGC	TACATTACAG	GTGACCCAGT	TGCTGAACGT	5940
	ATTGGTCCAG	CATTTATGAA	TACATTGAAA	TTAACAATAA	TTTCAAGTGT	TATGGTGATG	6000
30	ATTACATCAA	TTATTTTAGG	TGTAGTTAGT	GCATTAAAAA	GAGGAAAGTT	CACTGATCGT	6060
	GCGATACGTT	CAGTGGCTTT	CTTTCTAACT	GCATTACCAT	CATATTGGAT	AGCTTCAATA	6120
0 5	CTTATTATTT	ACGTTTCAGT	GAAGTTAAAC	ATATTGCCGA	CTTCTGGATT	AACAGGTCCA	6180
35	GAAAGTTACA	TATTGCCAGT	GATCGTTATT	ACGATTGCCT	ATGCTGGTAT	TTACTTTAGA	6240
	AATGTTAGAC	GCTCGATGGT	GGAACAATTA	AATGAAGATT	ATGTACTTTA	TTTAAGAGCA	6300
40	AGCGGTGTGA	AATCTATCAC	ATTAATGTTG	CATGTGTTGC	GTAATGCTTT	ACAAGTTGCG	6360
	GTATCAATCT	TTTGTATGTC	TATACCAATG	ATAATGGGTG	GACTAGTTGT	TATCGAGTAT	6420
	ATCTTTGCAT	GGCCTGGACT	AGGTCAATTA	AGTTTAAAAG	CAATACTTGA	ACACGATTTT	6480
45	CCAGTCATTC	AAGCATATGT	ATTAATTGTA	GCGGTATTAT	TTATTGTATT	TAATACATTA	6540
	GCAGATATCA	TTAATGCGCT	ATTAAATCCA	AGATTAAGGG	aGGGCGCACG	ATGATAATTT	6600
	TAAAmCGATT	ATTmCArGwT	AAAGGTGCAG	TAATTGCTTT	AGGCATTATT	GTATTATATG	6660
50	TCTTTTTAGG	ATTAGCAGCA	CCACTTGTGA	CATTTTATGA	TCCTAACCAT	ATCGATACAG	6720
	CAAACAAATT	TGCTGGCATG	AGTTTTCAAC	ATCTACTAGG	TACTGACCAT	TTAGGTAGAG	6780

	TATTTGTTTC	TGTACTTATT	GGATCTATTT	TAGGATTCTT	ATCAGGATAT	TTCCAAGGGT	6900
	TTGTTGACGC	CTTAATCATG	CGTGCGTGTG	ATGTTATGTT	GGCATTCCCA	AGTTATGTTG	6960
5	TAACGTTAGC	ATTAATTGCA	TTGTTTGGAA	TGGGTGCCGA	AAATATTATC	ATGGCATTTA	7020
	TTTTGACGCG	TTGGGCATGG	TTCTGTCGTG	TTATACGTAC	AAGTGTTATG	CAGTACACTG	7080
	CTTCTGACCA	TGTAAGATTT	GCTAAAACAA	TCGGTATGAA	TGATATGAAA	ATTATTCACA	7140
10	AACATATTAT	GCCATTAACA	TTAGCAGATA	TTGCTATCAT	CTCTAGTAGC	TCGATGTGTT	7200
	CAATGATCTT	GCAAATATCT	GGCTTTTCAT	TTTTAGGATT	AGGTGTCAAA	GCGCCTACTG	7260
15	CAGAGTGGGG	CATGATGCTT	AACGAaGCTA	GAAAAGTGAT	GTTTACACAT	CCTGAAATGA	7320
	TGTTTGCGCC	AGGTATTGCC	ATAGTGATTA	TAGTGATGGC	ATTTAACTTC	TTATCCGATG	7380
	CTTTACAAAT	TGCTATTGAT	CCCCGCATCT	CTTCTAAAGA	TAAACTTCGT	TCTGTGAAAA	7440
20	AAGGAGTGGT	GCAATCATGA	CATTGTTAAC	AGTTAAACAT	TTGACGATTA	CAGATACCTG	7500
	GACAGATCAA	CCACTCGTGA	GTGATGTGAA	TTTTACATTA	ACTAAGGGTG	AAaCTTTAGG	7560
	CGTTATTGGA	GAAAGTGGTA	GTGGTAAATC	AATCACTTGT	AAATCGATTA	TTGGTTTGAA	7620
25	TCCCGAACGA	CTCGGGGTGA	CAGGTGAAAT	TATCTTTGAT	GGTACAtCAA	TGTTGTCATT	7680
	ATCTGAATCG	CAATTGAAAA	AGTACCGTGG	TAAAGACATT	GCGATGGTCA	TGCAACAAGG	7740
	TAGTCGTGCC	TTTGACCCAT	CAACTACTGT	CGGTAAACAA	ATGTTTGAGA	CTATGAAAGT	7800
30	ACATACGTCA	ATGTCTACAC	AAGAAATTGA	AAAGACATTG	ATTGAATATA	TGGATTATTT	7860
	AAGTTTGAAA	GATCCTAAAC	GTATATTAAA	ATCATACCCT	TACATGTTAT	CAGGAGGAAT	7920
	GTTACAGCGA	TTGATGATTG	CTTTAGCGTT	AgcTTTgAAA	CCAAAGTTAA	TCATTGCTGA	7980
35	TGAGCCGACA	ACGGCTTTAG	ATACAATTAC	ACAATATGAT	GTACTGGAAG	CATTTATAGA	8040
	TATTAAAAAA	CACTTTGACT	GTGCGATGAT	TTTCATTTCA	CATGATTTAA	CGGTTATTAA	8100
40	CAAGATTGCA	GACCGTGTTG	TTGTGATGAA	AAATGGTCAG	CTTATTGAAC	AAGGGACACG	8160
	TGAATCAGTC	TTGCATCATC	CAGAACATGT	TTATACGArt	ATTKTATTAT	CAACGAAGAA	8220
	GAAGATTAAT	GATCATTTTA	AACATGTGAT	GAGGGGTGAT	GTACATGATT	AAAATTAAAG	8280
45	ATGTTGAAAA	GTCATATCAA	AGCGCACATG	TTTTTAAGCG	TCGTCGAACA	CCTATCGTGA	8340
	AAGGTGTGTC	ATTTGAGTGT	CCAATCGGTG	CGACGATTGC	GATTATCGGA	GAAAGTGGTA	8400
	GCGGTAAATC	GACGTTGAGT	CktATGATAT	TAGGTATTGA	GAAACCGGAT	AAAGGTTGTG	8460
50	TAACCTTAAA	TGATCAACCG	ATGCATAAGA	AGAAAGTGAG	ACGTCATCAA	ATTGGTGCTG	8520
	שארים ארים ארים ארים ארים ארים ארים ארים	יייי אייי איייי איייי איייי	TO A TOTAL CATE	CATOTORCACAC	ጥርጥጥክ (* እር እ እ	A COUNTY OFFICE	0500

	TGTTGGAAGA	AGTCGGTCTA	TCTAAGGCAT	ACATGGATAA	ATATCCTAAT	ATGTTATCAG	8700
	GTGGAGAGGC	GCAACGTGTT	GCGATTGCGC	GTGCAATATG	TATTAACCCT	AAATATATTT	8760
5	TGTTTGATGA	AGCCATTAGT	TCACTCGACA	TGTCAATTCA	AACACAAATA	TTAGATTTAT	8820
	TGATTCATTT	ACGTGAAACG	CGTCAGTTGA	GTTATATTTT	TATCACACAT	GATATTCAAG	8880
	CTGCCACGTA	TTTATGTGAT	CAATTAATTA	TTTTTAAAAA	CGGAAAAATA	GAAGAACAAA	8940
10	TTCCGACAAG	CGCATTGCAT	AAAAGTGACA	ATGCTTATAC	AAGAGAATTA	ATAGAAAAAC	9000
	AACTATCATT	CTAAGGAGTG	AGATAATGAA	AGGTGCAATG	GCTTGGCCCT	TTTTGAGATT	9060
15	ATATATATTA	ACATTGATGT	TCTTTAGTGC	CAATGCAATC	TTAAACGTGT	TTATACCTTT	9120
	ACGAGGGCAT	GATTTAGGCG	CAACGAATAC	GGTTATCGGT	ATCGTTATGG	GGGCATACAT	9180
	GTTAACAGCA	ATGGTATTTC	GACCATGGGC	AGGACAAATT	ATTGCTCGTG	TCGGTCCCAT	9240
20	TAAAGTATTA	AGAATTATTT	TGATTATCAA	TGCCATAGCT	TTAATTATTT	ATGGTTTTAC	9300
	TGGCTTAGAA	GGTTATTTCG	TAGCACGTGT	TATGCAAGGT	GTGTGTACGG	CATTCTTTTC	9360
	TATGTCTTTA	CAGCTAGGTA	TTATTGATGC	ATTACCAGAG	GAACATCGTT	CTGAAGGTGT	9420
25	ATCATTGTAC	TCGCTATTTT	CAACGATTCC	AAACTTAATC	GGACCATTAG	TTGCCGTAGG	9480
	TATTTGGAAT	GCAAATAATA	TTTCACTATT	TGCAATTGTC	ATTATCTTTA	TCGCATTAAC	9540
	AACAACATTC	TTTGsTATCG	CGTGACCTTT	GCTGAACAGG	AACCCGATAC	GTCAGATAAG	9600
30	ATTGAAAAAA	TGCCGTTTAA	CGCTGTAACT	GTTTTTGCGC	AATTTTTCAA	AAATAAAGAG	9660
	TTGTTGAACA	GTGGTATTAT	CATGATTGTT	GCATCGATTG	TATTTGGTGC	AGTTAGTACA	9720
35	TTTGTACCGT	TATACACAGT	GAGTTTAGGA	TTCGCGAATG	CGGGAATCTT	TTTGACAATA	9780
33	CAGGCCATCG	CAGTTGTTGC	GGCAAGATTT	TACTTAAGGA	AATACATTCC	GTCAGATGGT	9840
	ATGTGGCATC	СТАААТАТАТ	GGTATCTGTA	CTATCATTAT	TAGTAATCGC	GTCATTTGTA	9900
40	GTGGCATTTG	GTCCGCAAGT	AGGTGCAATT	ATTTTCTATG	GTAGTGCGAT	ATTAATAGGA	9960
	ATGACGCAAG	CAATGGTGTA	CCCAACATTA	ACATCATACT	TAAGCTTCGT	CTTACCAAAA	10020
	GTAGGTCGTA	ATATGTTGTT	AGGTTTATTT	ATTGCCTGTG	CAGACTTAGG	TATATCGTTA	10080
45	GGTGGCGCAT	TGATGGGACC	TATTTCCGAT	TTAGTAGGAT	TTAAATGGAT	GTATCTAATT	10140
	TGTGGTATGT	TAGTCATTGT	AATAATGATT	ATGAGTTTCT	TGAAAAAGCC	AACACCACGT	10200
	CCAGCGAGTA	GTCTTTAATG	AAGTGAATTA	AAGCATATTA	AGTTAATGAA	TATTTAAATT	10260
50	TTAAAAGGTA	TATTGaGCAT	GGCGATTCAT	GTGCTTCATG	CTAGGACATG	AAACATTCTA	10320
	TATGGCTCGT	TTTTAGAACG	ል ሮልተልጥልጥርጥ	AAATAAAGCA	СССТТАТАВС	תבאריייייים א	10380

	TTACATGAAA	ATATGCAAAA	CGAGTATAAC	TGCTAATTGA	TAGAAATAGC	TCACCATAAA	10500
	ATTACGGTAT	GATTTTAAAT	ATAAGTAAGT	CGCACTACCT	GCTAGTATCA	ATGCTGGAAT	10560
5	GAATTCCCAC	CATGTATTAA	TGTATGGATA	GTAGAACAGA	GTTTCAAGGA	TAATGGACAA	10620
	TACTATTGTA	ATCTTTAAAG	GTATTAATCT	GCTTAATTCT	TGAATTAAAA	TATGACGGAA	10680
10	AATAAGTTGA	CAAATCAAAG	TATTTAATAT	AATGGTTAAC	GAAAATATAG	CTATTAAACT	10740
10	GATGGAACCA	TACCCTTTAA	TGAGCGGGTA	AATGTCAAAG	ACAGTAAAGG	AATCTACATT	10800
	TAGTGCGAAA	ATATTGAAAT	GATTTAAAAG	TAAAAAGAGT	ACGACACTTA	GTGTAAATGA	10860
15	TATAAGAATA	TGCCATTTAT	ATTTAGCACT	AGCAACGATT	TGCGAACGTA	TCATTGGAAT	10920
	AAACGCATCT	TCATGCATCA	GACGAAAAAT	AGCTAGTGAA	ATAATAACTG	CGAGTAAATA	10980
	GCTAATGTTC	ATTGAAATAG	GAAAAGAGAA	ACCCCACGGA	GCTTGTTGAG	TGAATACAGC	11040
20	TACTAACCCA	AAAGTTAAAA	AGACGATAAT	GATCGGCAAG	ATGTTAACCA	AAAATATGTA	11100
	AAGGAAAATA	AATCCAATAT	CACGTTTGAA	AAAACGCGAT	TGTTCGGTAG	CGTATTCTTC	11160
	TTCTATGTAA	TGTTTATTTG	TATTTGACAT	AGTATACCTC	TTAAATAGTT	GTATTATATA	11220
25	GATACTTTAG	CACATATTAC	TTTGTATTGT	ATGTTTTATA	CATTAAAATT	TAAAATGAAA	11280
	AACATATCAT	AAAATTGTTT	TATAAAATGA	AGCGCTTCCA	TTGTGTTTTG	TTTTGTAAGG	11340
	TGTATCATAA	ATATTGAATT	GAAATTTTGG	GGGGAGGTAT	TGTAATGACG	TTTCTTACAG	11400
30	TCATGCAATT	TATAGTTAAC	ATTATCGTTG	TAGGATTCAT	GCTTACGGTT	ATTGTTATCG	11460
	GGCTTATTTG	GTTAATTAAA	GATAAAAGAC	AATCACAACA	TAGTGTATTA	AGGAATTATC	11520
35	CTTTACTAGC	ACGTATTAGA	TATATTTCAG	AAAAAATGGG	ACCGGAATTA	CGTCAGTATT	11580
55	TATTTTCTGG	GGATAATGAA	GGGAAACCTT	TTTCACGTAA	TGATTATAAA	AATATCGTTT	11640
	TGGCTGGAAA	ATATAACTCT	CGTATGACCA	GCTTCGGTAC	TACTAAAGAT	TATCAAGACG	11700
40	GCTTTTACAT	ACAGAACACA	ATGTTTCCGA	TGCAACGTAA	TGAGATTTCA	GTAGATAATA	11760
	CAACATTGTT	ATCAACATTC	ATTTATAAAA	TCGCGAATGA	GCGTTTATTT	AGTCGTGAAG	11820
	AATATCGTGT	GCCGACAAAG	ATTGATCCGT	ATTACTTAAG	TGATGACCAT	GCAATAAAAT	11880
45	TAGGTGAACA	TTTAAAACAT	CCATTTATTT	TAAAACGTAT	CGTAGGACAA	TCTGGTATGA	11940
	GTTATGGCGC	TTTAGGAAAA	AATGCCATTA	CAGCTTTATC	TAAAGGTCTA	GCTAAAGCGG	12000
	GCACTTGGAT	GAATACAGGT	GAAGGTGGCT	TATCAGAATA	TCATTTAAAA	GGTAATGGGG	12060
50	ATATCATTTT	CCAAATTGGT	CCCGGTTTAT	TTGGTGTTCG	TGATAAAGAA	GGTAATTTTA	12120
	GTGAAGGTTT	АТТТАВАСАС	GTTGCACAGT	ТАТСТА АССТ	አ <i>ርርርርር</i> አተምም	CACCECAACE	12100

	TTGCTAAAAT	' CCGAAATGTT	GAACCTTATA	AAACAATCAA	TTCACCTAAC	CGTTACGAAT	12300
	TTATTCATAA	TGCTGAAGAT	TTGATTCGTT	TCGTCGATCA	GTTGCAGCAA	TTAGGTCAAA	12360
5	AACCAGTAGG	ATTCAAAATT	GTAGTAAGCA	AAGTTTCAGA	AATTGAAACA	CTTGTACGTA	12420
	CGATGGTGGA	ACTAGATAAG	TATCCAAGCT	TTATTACGAT	TGATGGTGGT	GAAGGTGGTA	12480
	CTGGTGCAAC	ATTCCAAGAA	TTACAAGATG	GTGTTGGCTT	ACCGCTATTT	ACAGCTCTAC	12540
10	CTATTGTGTC	TGGCATGTTA	GAAAAATATG	GTATTCGAGA	TAAAGTGAAA	TTGGCGGCAT	12600
	CTGGTAAGTT	AGTGACACCA	GATAAAATTG	CGATTGCACT	AGGTTTAGGT	GCAGATTTTG	12660
15	TAAATATCGC	ACGTGGGATG	ATGATTAGTG	TCGGTTGTAT	AATGAGTCAA	CAATGTCACA	12720
	TGAATACGTG	TCCTGTAGGT	GTTGCAACGA	CAGATGCGAA	GAAAGAAAAA	GCATTGATTG	12780
	TTGGAGAAAA	GCAATATCGT	GTCACAAACT	ATGTAACAAG	TTTGCATGAA	GGCTTATTCA	12840
20	ATATTGCAGC	AGCTGTTGGC	GTATCCAGTC	CTACAGAAAT	TACTGCTGAT	CATATTGTAT	12900
	ATCGAAAAGT	CGATGGTGAG	TTACAAACGA	TACATGATTA	TAAATTAAAA	CTCATTAGTT	12960
	AACTTAATTA	TTTCGGGAAA	TTGAAAGCAG	CGGATTTTAG	CGTTACTGCA	AATAATTTTA	13020
25	TATTAGTAGT	GGATGCTGGT	CACACAAGAA	CTTCAAATAT	TAAAGCCCTC	AGAATATGAA	13080
	TTAAGGTTTG	TAACCTTAGT	CTTATCTGAG	GGCATTTTTA	AGTTATAAAC	TATTTGTCGT	13140
	CCATTTTATC	TTTTTCTTTT	AAACCTCTGT	GCTTTAATTG	CTTTTCAAGT	TTTTCAAAAC	13200
30	TAATATCTTT	ATTTTCTTTA	GTCGAAACAC	CAAGACGTTT	ATTTAATTTT	TTCATGTCAA	13260
	CTTCTGTGTA	ATCTATGTCT	AAGTGYTCAA	TTGCTTTTTT	ATCTTTATAG	TCTACTTTGT	13320
35	ATTTTACGCC	TTTAAGGTCT	TTGAAAATAC	TTTCAGATTT	GGCGAATAAC	TTTTTGGCTT	13380
33	CGTCTTTATC	CATACCTAGA	TCGTCATATT	TAATTGTGTT	GATTGTAGAC	TGTTTTAAAA	13440
	CTTTATCATC	TTTATATGTG	ATAGAAGTTA	GTACATGTTT	ACCACTAACA	TCACCWTCAT	13500
40	ATGTTTTGGT	TTGTTCTTTA	CCACAAGCTG	ATAATGCAAT	GATACAAACT	AATGCTACTA	13560
	CAATTAATGA	ACATAATTTT	TTCAAAGTCA	GTCGCCTTCT	TTCGATATTT	GTATTATAAA	13620
	GAAATTATAA	CATTTACTAA	AAAATGATGT	TATTCAAAAA	TTTAAATTTT	GTCATTTTTT	13680
45	TTGAAGATAT	GAGTTTTTTT	AAGCGGATTC	CTCACAAAAT	TTTAAAAATA	TTTAAGCCTk	13740
	AAAATGATAA	AGCGKTAGGG	AACGTTTTTC	TGAAAGTTAG	TGATACAATA	GTTTTAAGTT	13800
	GAAATACAGG	AGGATGAATA	ACATGAATCA	GTCAGTCAAA	TTACTTAAAC	ATTTAACAGA	13860
50	TGTAAACGGC	ATTGCTGGTT	ATGAAATGCA	AGTTAAAGAA	GCAATGCGTa	ACTATATAGA	13920
	GCCTGTCAGT	GATCAAATTA	TTGAAGATAA	СТТСССТССС	מ ערביידיידיידים מ	ACA A A A ATCC	12000

	AACAAAGATT	GATAAACATG	GTTTTATTTC	ATTTACGCCA	. kTgGTGGATG	GTGGAATCAA	14100
	GTCATGCTAT	CTCAAAAAGT	AACGATTACA	ACAGATTCGG	GCAAAGAAAT	TAGAGGTATC	14160
5	ATCGGTTCTA	AACCGCCACA	TGTCTTAACG	CCTGAAGAAC	GTAAAAAGCC	AATGGAAATC	14220
	AAAAATATGT	TTATAGATAT	TGGTGTTAGT	AGCAAGGAAG	AAGCTGAAGA	AGCTGGCGTT	14280
10	GAAGTAGGCA	ATATGGTTAC	GCCATATAGT	GAATTTGAAG	TGCTTGCAAA	TGATAAATAT	14340
,,,	TTAACTGCGA	ArCATTTGAT	AATCGCTATG	GCTGTGCATT	AGCTATTGAG	GTATTAAAAC	14400
	GTTTAAAAGA	TGAAAATATT	GGCATTAACT	TATACAGTGG	TGCCACAGTG	CAAGAAGAAG	14460
15	TTGGTTTGCG	TGGTGCGAAA	GTGGCAGCGA	ATACGATTAA	ACCAGACTTG	GCGATAgcTG	14520
	TCGATGTAGG	TATTGCTTAT	GATACCCCAG	GTATGTCAGG	TCAAACGAGC	GATAGTAAAC	14580
	TAGGCGGTGG	TCCAGTTGTC	ATTATGATGG	ATGCTACAAG	TATTGCTCAC	CAAGGTTTGC	14640
20	GAAAgcATaT	TAAAGATGTA	GCTAAGGAAC	ATAACATCGA	AGTACAATGG	GATACGACAC	14700
	CAGGTGGAGG	TACAGATGCG	GGAAGTATTC	ATGTCGCAAA	TGAAGGTATT	CCAACGATGA	14760
	CAATCGGTGT	TACGCTGCGA	TACATGCATT	CTAATGTTTC	AGTGCTCAAT	GTAGATGATT	14820
25	ATGAAAATTC	TATCCGTCTT	GTTACTGAAA	TTGTCCGTTC	ATTGAATGAT	GAAAGTTATA	14880
	AAAATATCAT	GTGGTAATCA	AATCCATAAA	TAATAAAGAA	TCCTTTTAAT	ATGGTAGGTT	14940
	GTTAAACAAT	TGTCTAATTT	TAATTCTTAG	TCATTAGACA	GTATCCATGT	TAATAGGATT	15000
30	TTTTGTTTTT	AATTTAAATG	CTGAAAATCA	ATTATGCCTA	AATTTTGATA	TTACAAGAAA	15060
	ATGATTTTTT	CTTAAATGTA	ATTGCACTAA	AAACCAAAAA	AACGGGAATA	ATATACCTGA	15120
35	TATATTACAT	GAGGAGCGGT	GCAAATGTTG	TTAGAAATTA	AAGATTTAGT	GTATAAAGCG	15180
	AGCGATAGAA	TCATACTAGA	TCATATCAGT	CTAAAAGTAG	ATAAAGGCGA	GAGTATTGCC	15240
	ATTATAGGTC	CATCAGGTAG	TGGTAAAAGT	ACATTTCAAA	AGCAAATATG	TAATTTGTTT	15300
10	AGTCCAACTA	GTGGAGAACT	TTATTTTAAA	GGTAAACCCT	ATAATGATTA	TGACCCGGAA	15360
	GAATTGCGTC	AACGAATCAG	TTATTTGATG	CAGCAAAGTG	ACTTGTTTGG	TGAAACGATT	15420
	GAAGATAACA	TGATATTCCC	ATCACTTGCA	CGTAATGATA	AATTTGATAG	AAAACGTGCA	15480
15	AAGCAATTAA	TTAAAGATGT	CGGTTTGGGA	CATTATCAAT	TAAGTTCGGA	AGTGGAAAAT	15540
	ATGTCGGGTG	GTGAGCGGCA	AAGAATTGCT	ATAGCGCGCC	AACTGATGTA	TACACCGGAT	15600
	ATTCTTTTAT	TAGATGAATC	GACCAGTGCA	TTAGACGTTA	ATAATAAAGA	AAAGATAGAA	15660
50	AATATCATTT	TTAAATTAGC	AGATCAAGGC	GTGGCAATTA	TGTGGATTAC	CCACAGCGAT	15720
	GACCAAAGTA	TGCGACACTT	TCAAAAGCGT	ATAACAATTG	ттсатсстса	አ ልጥጥጥልልጥ	15790

	CATTCCGATT	ATCATTTCAT	ATAAAGAAGG	TTTACATATT	ATTAAAGATT	TAATTGTTGC	15900
	GACATTACGA	GCAGTTGTGC	AATTAATCAT	TTTGGGATTT	TTGCTGCATT	ATATTTTTAA	15960
5	AATAAACGAT	AAATGGCTGC	TTATTTTATG	TGTATTGGTC	ATTATTATTA	ATGCATCATG	16020
	GAATACAATT	AGTCGAGCAT	CACCAGTGAT	GCATCATGTG	TTTTGGATAT	CATTTCTAGC	16080
	TATCTTCATT	GGAACGGCAT	TACCGCTTGC	AGGTACTATT	GCGACAGGGG	CCATTCAATT	16140
10	TACCGCAAAT	GAAGTTATAC	CTATCGGCGG	CATGCTTGCA	AATAATGGCT	TGATTGCAAT	16200
	TAATTTAGCT	TACCAGAATT	TAGATCGTGC	ATTCGTACAA	GATGGTACTA	ATATTGAATC	16260
15	TAAATTATCA	CTTGCAGCTA	CACCTAAATT	GGCTTCTAAA	GGTGCAATAC	GTGAAAGTAT	16320
	TCGTTTAGCT	ATAGTGCCAA	CTATTGATTC	GGTTAAAACA	TATGGGCTTG	TGTCGATTCC	16380
	TGGTATGATG	ACAGGCTTAA	TTATTGGTGG	CGTACCACCT	TTACAAGCGA	TTAAATTTCA	16440
20	ATTGTTAGTC	GTGTTTATTC	ATACAACTGC	GACCATTATG	TCTGCTTTGA	TTGCGACATA	16500
	TTTAAGCTAT	GGTCAATTTT	TCAATGCAAG	ACATCAATTA	GTAGCACGAA	ATACTGATGT	16560
	TAAGAGTGAA	TCATGATAGA	TTTTACTGCA	TCAGATTTAG	GCATTAGTTT	TAATTGGAAA	16620
25	TGAAGTGACG	CGCACATATA	GTATCGCTAT	TCATTAGCGC	AGCGAAAATA	TTCATAAAGG	16680
	CACGCATACT	TTGTAGTCAG	TTATCTGTTC	TGACATATAA	AGCGTGCGTG	CTTTTTTGGA	16740
	GTTATTGTTG	AAACTGAAGT	AATTATACAT	AATTATTAAA	TGACATACTT	GTGTTAATTT	16800
30	TTCAAATACT	GAAAAACAAT	TTCaATAATT	TTCCaATTAA	GCACAGAAAA	TTAAAGCAAA	16860
	ATATTATATA	ATAGAACGGT	татататааа	nATTngTgCA	CACATTTTTT	AATAAATCGT	16920
	TATTCTAAGG	GAAATGAATA	TCGGAAATTT	TGTTTGAAAG	GAGTTTTAAA	TTGTCAATCA	16980
35	TGCGACTATT	TACATTCATT	TTAAGTATTT	TTATCGTAGG	aatggttgaa	ATGATGGTTG	17040
	CAGGÃATTAT	GAACTTGATG	AGTCAGGACT	TACATGTATC	AGAAGCTGTC	GTTGGTCAAT	17100
40	TAGTGACAAT	GTACGCTTTA	ACATTTGCGA	TATGTGGACC	TATTCTGGTT	AAATTAACGA	17160
	ACCGTTTTTC	ATCAAGGCCT	GTATTATTAT	GGACATTACT	TATATTTATC	ATTGGTAATG	17220
	GCATTATTGC	TGTAGCGCCA	AATTTTTCaA	TATTAGTAGT	TGGTAGAATT	ATCTCATCTG	17280
45	CAGCAGCAGC	ACTAATTATC	GTAAAAGTAT	TAGCTATTAC	AGCGATGTTA	TCAGCACCTA	17340
	AAAATCGTGG	TAAAATGATT	GGACTTGTCT	ATACAGGGTT	TAGTGGTGCT	AATGTTTTTG	17400
	GTGTACCAAT	TGGAACGGTT	ATCGGCGATT	TAGTAGGTTG	GCGCTATACA	TTTCTATTCT	17460
50	TAATTATTGT	GAGTATTATT	GTTGGCTTCT	TGATGATGAT	CTATTTACCG	AAGGATCAGG	17520
	AAATACAACG	AGGCCCTGTG	AATCATGAGA	CACCATCTCA	ጥሮ እ እ እ ጥሮ እጥ	CTTT ACTTCC A	17500

CAAACTCAGT GACATTCGTC TTTATAAATC CACTTATTTT ATCTAATGGT CATGATATGT 17700 CATTCGTTTC ATTAGCACTT CTAGTAAATG GAATCGCTGG CGTTATTGGA ACATCATTAG 17760 GTGGTATATT CTCCGATAAA ATTACAAGTA AGCGTTGGTT AATGATTTCT GTTTCTATTT 17820 TTATCGTCAT GATGTTACTT ATGAATTTAA TCTTACCTGG TTCAGGTCTA TTGTTAGCAG 17880 GACTATTTAT TTGGAATATC ATGCAATGGA GTACTAATCC AGCAGTGCAA AGCGGTGTGA 17940 10 TTCAACATGT TGAAGGCGAC ACAAGCCAAG TAATGAGTTG GAACATGTCT AGTTTAAACG 18000 CTGGTATTGG TGTTGGAGGC ATTATTGGAG GCTTGGTCAT GACACATGTT TCTGTTCAAG 18060 CTATCACATA TACGAGTGCC ATCATTGGCG CATTAGGATT AATCGTTGTT TTCACATTGA 18120 15 AAAATAATCA TTATGCTAAA ACATTTAAAT CATCATAATT CTCATATGAm AAGCACGCCT 18180 GCTATCAAAT TCAGGTGTGC TTTTTTAGAT GCGATAACGT TATTGATATG TGCGATAATA 18240 GCGACGTTCA TTATGATACA TCGGCCAAGG CATTTTACCG CTTTTAGCAA AATTAGCTAA 20 18300 ATCATTTTGC ATTTGTCGAC TTAAAAATTT AAGGTGAGCA GTTGTTGGAT ATGAT 18355 (2) INFORMATION FOR SEQ ID NO: 68:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1192 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

25

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

CGCAAAGAAG TACAAAAAAT GTTTTTACAA GAAGGTATTA AAACACCTCA ACCAATTATG 60 ACTGCTTATA ATCATAGTGA AAACGGTGTT TAGTAGTTTA TAATACATGG AGGTCATATT 120 TAATGGCGTC AAAATATGGA ATAAATGATA TAGTAGAAAT GAAAAAACAA CATGCGTGTG 180 GAACAAACCG TTTTAAGATT ATTAGAATGG GTGCAGACAT AAGAATTAAA TGTGAAAATT 240 GTCAAAGAAG TATTATGATT CCACGTCAAA CGTTTGATAA AAAACTTAAA AAAATCATCG 300 AATCTCATGA TGATACACAA AGATAGGAGA ATGATTAATG GCTTTAACAG CAGGTATCGT 360 TGGATTGCCA AACGTTGGTA AATCAACATT ATTTAATGCA ATAACAAAAG CAGGTGCTTT 420 AGCAGCGAAC TATCCATTCG CTACGATTGA TCCTAATGTA GGGATAGTAG AAGTGCCAGA 480 TGCTAGATTA CTTAAATTAG AAGAAATGGT TCAACCTAAA AAGACATTGC CGACTACATT 540 TGAATTTACA GATATCGCTG GTATTGTGAA AGGTGCTTCA AAGGGAGAAG GGTTAGGTAA 600 TAAATTCTTA TCACATATTA GAGAAGTAGA TGCGATTTGT CAGGTCGTTC GTGCATTTGA 660

	TAATATGGAA TTAGTACTAG CGGACTTAGA ATCTGTTGAG AAACGTTTGC CTAGAATTGA	780
	AAAATTAGCA CGTCAAAAAG ATAAGACTGC TGAAATGGAA GTACGTATTT TAACAACTAT	840
5	TAAAGAAGCT TTAGAAAATG GTAAACCCGC TCGTAGTATT GACTTTAATG AAGAAGATCA	
		900
	AAAATGGGTG AATCAAGCGC AATTACTGAC TTCTAAAAAA ATGCTTTATA TCGCTAATGT	960
10	TGGTGAAGAT GAAATTGGTG ATGATGATAA TGATAAAGTA AAAGCGATTC GTGAATATGC	1020
	AGCGCAAGAA GACTCTGAAG TGATTGTTAT TAGTGCAAAA ATTGAAGAAG AAATTGCTAC	1080
	ATTAGATGAT GAAGATAAAG AAATGTTCTT AGAAGATTTA GGTATCGAAG AACCAGGATT	1140
15	AGATCGTTTA ATTAGGAMCA CETATGAATT ATTAGGNTTA TCCACCATAA TT	1192
,,,	(2) INFORMATION FOR SEQ ID NO: 69:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7494 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
	AATATAGCTG CAATAGCATC TCGTTTCATT TGTATAATCA ATTCCGGTTT AAATATCAGT	60
	GTGAACGTAA GCACGACACA GATTAAAAAT AACACTGCCG GAATGAGTCG TTTCAATCGT	120
30	CGCTtCCAAA ACTCTAGCAA ATCGATTTTT TGCGTCCGAT AATACTCACT TATCAACAAA	180
	CTTGTTATTA AATAACCTGA AATAACGAAG AATGTATCTA CTCCTAAAAA GCCCCCACTT	240
	AACCATTGTG CATTCAAGTG ATAAATAATG ATTCCTATAA CTGCGAATGC CCTCAATCCA	300
35	TCTAATCCAG GTAAGTATCG CGGGGAATAC ATTTTTTCTA AACGTTTAAA GTCTTTTGTA	360
	TCCATGTTAA TAAACGCCCC ATTTATTTTT CTCTATTTTG TAGTATATCA CAATATTTTT	420
	GAAAATAAAA TATTGCACTG ATTTTCATTA ATTGATTTAA CCCTTAATTA AGATAGTTTT	480
40	AAATTTTTTA TTAAGTAGAA AACAATTATT ACAGTTGATT TCATTACTGC AAACCACATA	540
	TAAATTTGTC GATTTTACTA CATAACATAG ATTATCATAG ATTCTTGAAT TTTTAGCAAA	
		600
45	ATAACTGTTA TTTTCATTAT ATTTTTACAA AAAAAGGTTC GTTTTATATT TTATGCATCT	660
	TACTGTAACA GAATCATTAA GATATGCTAT TCGAATATAC TTTTTCAAAA TTTATATAAT	720
	GAATAAATTA ACATGTATTG AAAAAAAAGC GAAATGCAGC CTATCCTCTA ATGTAAACCA	780
50	AACGATATAT CTCGTCAGAC TTTATATTTA AACGCTATGT GTCACTTTTA AAATGAATAT	840

55

TACTAAGATT GTCATATCAA TTATTATTGC ATCGAATTAA TCTTTTAAAT TTCTGTAATA 900

	ACGGAAGTCA	TTATTAGAAT	AAAAATACTG	TGCACTAATA	AATTTATCAA	TTGTTCCTAA	1020
	ATAAATACCA	TCGATATTTT	GTTCTTTACA	TGTCATTATA	ACTITATCTA	AAAGTTTTTT	1080
5	ACCTATTTT	· AAATTCCTAT	AACCTTTATO	AACAAACATT	TTTTTAAGTG	CAGACATATT	1140
	ATTATCTAGI	CTAATCAAAC	CTATAGTACC	AACAATATTT	TGaTGATTGT	TTATTGCAAG	1200
10	CCAAAATgCC	CTCCATTATT	CAAATAGTTA	TGTTCGATGT	TCTCCAAATC	AGGTTGATCA	1260
70	TCTCTATCAA	TTTTTATATA	AATTCATTTT	TTTGAATCGA	TAAAATAAAC	TCGATTAGCT	1320
	CTTCCTTATA	AGACCTATTA	TATTCAATTA	TGTTTATAGC	CATTTTTATC	TCCTTTTTCA	1380
15	TTTAATTTAA	TTATAAAATG	TGCGTTTAGT	TTGTATCTAG	TGTACTCAGT	ACAGCCTCAA	1440
	ATGAAGTTTC	ATTCCACTTG	GCACTTAATA	AAGACAAGTA	TTTTAGCAGT	AATACAATAA	1500
	AGTCCAATAA	ATTTCCCTAA	CTTCAATATC	CACTTTTTAA	AAAATGTATT	TTTAATTAAT	1560
20	AAAAAAACTC	TCCCCAATTT	CTATGGGAAG	AGCTATATAT	TTAATGTCTA	AACATTACTT	1620
	TTATTTATTA	TGAAGGAATT	AGAATCCCCA	AGCACCTAAA	CCTTGTGCTT	TGTATGCTTT	1680
	AACAGCTGCG	TTGATTTGTT	GGTCAACAGT	GTTTGTTGGA	CCCCAACCTG	GCATAGTTTG	1740
25	GAATAAACCT	GAAGCACCTG	ATGGGTTGTA	AGCATTTACT	TGACCATTTG	ATTCACGAGC	1800
	GATGATTGCA	GCCCATGTAG	AAGCTGAAAC	ACCAGTACGT	TGAGCCATGA	TTTGAGCTGC	1860
	TGATGAACCA	GTAGCACCTG	CAGTATTACC	ATTGCTTAAT	CTCACTGAAC	TTGAAGTAGT	1920
30	TGAAGTGCTG	TAGTTATGGT	AAGTTGGAGC	TGAAACAGCT	TCAACGTtTG	AGTTACTTGA	1980
	TTGTGCATTG	TAGCTTACTG	ATTGTACATT	TGAACCTTGG	TTGTATGAAG	TAGTGTAGTC	2040
35	TGCACCTGCA	ACGTTTGAGA	AACCAGCAGT	TTGACCATTA	GCTGCTTCAT	AGCTCCATGA	2100
33	CCATGTAGTA	CCATTTGAAG	TGAAGTTATA	TTGGAAACCA	TCTTTTACAA	AGTGGATGTC	2160
	ATATGCACCA	TCTTTGATTG	GAGCTGCATT	TAATTGATCT	TGGTGATTAT	GCGCTAAGTC	2220
40	AACTAAGTGT	GCTTGATCAA	CGTTTACTTC	AGCAGCGTGT	GCTTGATGTC	CTGTACCTGC	2280
	TGCGTAACCT	GTTACACCTA	ATGCCACTGC	TAATGATGAT	GCCATAATTG	TCTTTTTCAT	2340
	AGTAAAAAAT	CCTCCAGTAA	TAATTGTnAG	TTTATGTTTT	TAGTAATTAT	AtTTTGaATT	2400
45	TGAATGTCGT	AGTgCAAGTT	TAAATTGTCT	TTTATTTCTT	TCaACGGTAC	TCACTATATC	2460
	ACABAAAACC	AGCCAGTAAA	TTACACTTTC	TTTACAAAAC	ATTACAATAT	CAAGTGTTAT	2520
	TTGtAATGTT	GAAATATGGC	TGTTTTATAC	TGTAATGTGA	AATATGTGCC	CTTTAGAATC	2580
50	CAATCAACCC	TTGAAATAGT	CTTTAACACA	TAAGATTTTT	ACTATATTTA	GCTCAACTAT	2640
	TACAGCTTTC	GTAATATTAC	AGATTGTATT	TTTGTTACAT	AGCTGTAATA	TATCTGACAT	2700

	TACACATGTA	TTGATTGCTA	TTATTGTTGT	ATATTCAAAG	TTTTAAAACA	CACATCTTTT	2820
	GTGAATTGTC	TTATCTTTTA	TTAGCGCAAA	TAAACTGCAG	CTCAATTATA	TTGTTCAACT	2880
5	TCATTCTCGC	AATTCACAAT	AACATTAAAT	AATTTTTGGT	CTCATATTTT	CAAAAAACAT	2940
	ACTGTTATTA	TCCCATGAAT	TTAAAAATAT	CATTAGTATA	TAAACGAAAC	ACTTTACGAT	3000
10	AAATGATATC	TGCAAGCCAA	GCTGTTACAA	ATGGTACAAC	AAAGAACGCT	ACTACAATTA	3060
10	GTAAGACACT	CAACCAAGCA	GAATCAACCT	CCATAAATTT	AAATGCATTA	ATCGGTCCTA	3120
	CCATTCCTAT	AAAACCAAAT	CCAGCTGACT	CTTTCGTTCC	ATGAATACCT	ACTAATGCTG	3180
15	ATACCAAACC	TGATACAATG	GCTGTCGTTA	ATATTGGTAA	CATAAGAATT	GGATATTTCA	3240
	CCATATTAGG	TATCATCATT	TTAACGCCTC	CAAAGAAGAC	GGATAACGGC	ACCCCTAAAC	3300
	GATTCACTTT	ACTTGTACCA	ATTATCAATA	CTGCTTCAGT	CGCGGAGATA	CCAATTGACG	3360
20	CTGATCCAGC	TGCTAAACCT	GTAATACCTA	TCGCAAAGGC	AATGGCCACA	GTTGATAGTG	3420
	GCGAAATAAT	AATAAGACTA	AATACCATTG	AAATCAAAAT	ACTCATGACA	ATCGGTTGTA	3480
	ATTCTGTAAA	ACCATTAACC	ATATTACCGA	TGGCTGTTGT	AATCATTTTC	GTATACGGCA	3540
25	ATATTAAAAC	ACCAATTGCA	CCTGAAATAC	CGCCAACAAC	TGTTGGGAAT	ACAATCAATG	3600
	CCATACTACC	TACGCGATGT	TGAATAAGTA	AAATGAATAA	CACTGCAATC	GCTGCTGTAA	3660
	TCATTGTATT	AATTAAATCA	CCAATACCCG	TAATCATCCA	AGCACCATTT	TTAAACTGCG	3720
30	CTGCACCGCT	TCCTACATAT	GCTGCACTTG	CCACAACAGC	AATTGCTAAT	GGCGATAGGT	3780
	CAAATTTCAT	GGCAACCAAT	GCACCAATCA	AAGCAGGTAC	TGTAAATTGA	ATTGCAACGA	3840
35	CAACGCCTAA	TAACGTTTTA	AAAATCGGAT	GATAATCCAT	AAAGTATTTA	AAAATTTCTC	3900
55	CAAGTATCGC	ATTAGGAACT	AAACCCGCAA	CAATACCTAT	GGCGACACCT	GATAAAACTC	3960
	TAAATATAAA	ATCTTTGGGT	GTAATTGTTT	TAATTGATGT	CATAATATCA	TCCTTCCATT	4020
40	TATGTATATA	CATCTGTATG	CAAATAATAA	AGAGCCTTAA	GTTATAAGCT	GCCACTAGCT	4080
	TAAATTCTAA	GATGTGCATG	CCGATGTTGT	TATATTTAGG	CTAGCAGTAT	CATCTATAAC	4140
	TCAAGACTAT	GAAAAATAGT	ATATCACAAA	ATTCTGAATT	TTTAGATAAA	TAAATTGGCA	4200
45	ATTTTTCAAA	CATATTGTTA	CAATACACTT	TTATTTTATC	TTCATTTTTA	AAATCCATTA	4260
	ATACAATAGA	AGAAAGACAT	TCAAATGCTT	ACCAAAAAGG	TACATTATTT	GTTAGGAGCG	4320
	TATCAGCaCT	TACATATCAT	CAACACAATT	GACAATATAA	TAGAAGATAC	TGATAATAAG	4380
50	TGTTAAAACA	ACAGATGTTA	GGTAGTGAAC	AAATGATGGA	AAGTAAATCC	ATAGATCCAA	4440
	CAATCGTTAG	AACCAAACAA	TTCCTTCTCC	8 TO COTOTO TO TO	ጥ አ አ አ አ ጥጥጥር ጥ	3C8C3333C3	4500

	TTTACGCTCA	TTTCGCTGAT	AAAGAAGACC	TCCTAGACTA	CACATTATCT	GTAACCATTT	4620
_	TAAAAGACTT	GAATGATAAT	TTGAGCATTT	CTAATGTCAT	TAATGAAAAG	GTTCTGCGTA	4680
5	ATATTTTCAT	TTCAATTGCG	AGTTATATCA	AAGATGCTGC	AAAGTCTTGC	GAATTAAATA	4740
	GTGAAGCATT	TTGCAACAAA	GCACATCAAC	GTATTAATAA	TGAATTAGAA	GATATTTTTG	4800
10	CGATTATGTT	AGAAAACAGC	TATCCGGAGC	ATCAACGAGA	TATCATTGTA	AATAGTGCGA	4860
	GTTTTTTAGC	AGCTGGTATC	TCAGGCTTAG	CATTACATTG	GTTTAACACG	AGTCAAGAGA	4920
	CAGCCGATGT	GTTTATCGAT	CGCAACCTTC	CATTTTTAAT	TCATCATATA	GCACATTTTT	4980
15	AATAAAACTT	GGTATTTAGT	CATGCATCTT	GAAATCACTA	TGTGACTTAG	GTTCATACTT	5040
	GTACACACAA	TAAAATTTAA	CGTATTACGA	TTGATTAGCC	GTGTCTAGGA	CATAAATCAA	5100
	CGTCCTATAC	TCTACAATGT	CATATTAGCA	GTCGTTAACT	GAATGAAAAT	AAGCTTGTCA	5160
20	TTAAAACATA	TAGATTTTAG	TGACAAGCAT	TTTTGTTTTT	GCGTACTTAA	ACAACACTTC	5220
	AGGCAATATG	TTGTTTAGGC	AACAAATGAT	ATGTGCGTGT	TTATTGGCAA	ACGTACGACA	5280
	TAGTAGTATA	GTATGTCTAA	ACAACATATG	TTGCATAGTT	GATATGCGTT	GTITAAATAC	5340
25	TAAGATAGGA	GGGATTGACG	TGAGCGAGAC	AGATGAACCT	CAGGGGTTTG	AACGCACGCA	5400
	TAATATATTA	AATATTAATC	AGAGTAGTCT	GGGTGTAGTG	ACATACATTA	CAAATAAATT	5460
	AAAGTCGACG	TTGAAGCAAC	ACATAATAAT	TGCTCGTGGT	AAAAAGCGAA	TCGACTATCG	5520
30	ACTGTCGTAT	AACTTTTACA	TACGTATTAT	GATAATGTAG	AAATCAAGAA	AATCGACTGT	5580
	GAATATACCT	ATGCTATGCC	CATTGCAATT	TTAATAAGAC	ACACGATGTC	ATTCGACAAT	5640
35	GCTCATTTCT	TTGCTCAGTT	ACGTCATCCT	GTCTTATAAA	ACAACATTGC	AGACATGTAT	5700
	ATCAAACGAC	ACTTCAATAA	CATCACTTTG	CCCATCGTAC	TACTAGTAAA	ATCGTGTCTC	5760
	AAATECCTTA	TTTTAATTCC	AAAAAtCTGC	TGGTCAAAAG	ACCGAGAAAC	TAAAAACATT	5820
40	ACTTAATGTG	TTGATAAATT	ACCATATAAA	AATAATCTCA	AAATATATCA	ACACTTGATT	5880
	CTAAGGAGGA	TATGACAATA	TGAAAATTTT	AGATAGAATT	AATGAACTTG	CAAATAAAGA	5940
	AAAAGTACAA	CCACTTACTG	TAGCTGAAAA	ACAAGAACAA	CATGCATTGC	GTCAAGAcTA	6000
45	CTTAAGCATG	ATCCGAGGAC	AAGTATTAAC	AACATTTTCC	ACAATAAAAG	TGGTTGATCC	6060
	AATCGGTcAG	GATGTCACAC	CAGATAAAGT	TTATGATCTT	CGCCAACAAT	ACGGTTATAT	6120
	TCaAAATTAA	tATTTGCTCA	CGAGGTATTG	CACTTAAGGT	GCCAACTGAC	CTCATAAACA	6180
50	AAGCCCATAC	TGATTGAAGA	CACTAATGTG	tCsaCCATGG	TGCACATTAC	GCTTCATCTC	6240
	TGTATGGGCT	TTTTATTTAT	TCTTTTGAGA	ATTTCATTTT	AGCAGACCAA	AAAATTAAAA	6300

	TGAACGACTG	TGCCACCCGC	TTCTTTCACT	TTATTCACCA	ACTGGTCAAC	TTCTTCATTT	6420
	GTGTTCACAC	CTAGAGAAAT	CATCACTTCA	TTTGGTTCAG	TATTAAGGCT	TTGCTGACTT	6480
5	ACATTTTGAA	AATGCTTGTn	TTCTATTAAA	ATTACGGRTG	tTTGACCTAT	tTGAATGCCG	6540
	ACCATTTTAT	CTAACATTTG	TGGGTTTCTA	TTTATTTTAA	ATCCTAACGC	TTTATAAAAC	6600
	TGTGCGCTCT	TTTCTAAATC	TTGCACATGC	AAATTAAACC	ACATTGATTG	AATCATGATT	6660
10	GCACCCCATT	CATTACTTAT	TATAGTTTTG	GACTTTAAGC	CAATCACTTA	ATGATAATCT	6720
	TGTTGGATTT .	ATTTCAGCCA	TTAATTCAAA	GTCTACTTCA	TAACCTTTTT	CTTCCAACCA	6780
15	TTGCTTTTCT	GCAACACCAC	TAACAAATTC	TCCTTCTATA	ACAGTAGATT	TACCTGTCAC	6840
	TTCACTAAAA	ATTGTTGCTG	CTTCACTTAA	TGTAACTTCA	TCGGAACCAA	TCTCTATTGA	6900
	TTGATGCGTA	AAGCTTTGTG	GATGTGCAAA	AATATACGAT	GCAATTTTAG	CTATATCAAT	6960
20	AGAAGAAATC A	ATTGTGAATT	TTATATTCGG	ATTAATAAAT	TCTGGTAATG	TAATACGTTC	7020
	ATCTTCGACT	TTAGCAATGC	GTAAAAAATT	ATCCATAAAG	AATGATGGTT	TGATAACTGT	7080
	TGCATTTATA	TTAGATTCCA	TTAATCTATT	TTCTATTTTT	GCTAGTACTT	CAAAGTGTGG	7140
25	GCCAGTTCGA :	TTTCGATTAA	CCCCTCCCGC	AGTACTATAC	ACAATATGTT	GAATATTTTC	7200
	TTGCTCAGCT A	ATTTCAATTA	TCTTCATACC	TTGTCTTAAT	TCTTCGCTAA	CATCATCTTT	7260
	AACGATTGGC	TGAATACTGT	ATAAGCCATA	CTTACCTTTC	ATCGCTGATT	GCAAACTAAC	7320
30	ATTATCACTC A	AGATCACCTT	CArcgattga	TAAATGCGGA	TGTCCTATGT	CTGAAAGTTT	7380
	ACGATTATTC :	TTATTTCTAG	TTAATGCACT	TACATACCAT	CCATCCTCTA	ACAACTGTTT	7440
	TACAACTGCA	TTACCTTGCT	TCCCTGTTGC	GCCTATTACn	AAAATATCTT	TCAT	7494
35	(2) INFORMAT	TION FOR SE	Q ID NO: 70):			
40	. (2 (E	A) LENGTH: B) TYPE: nu	NESS: doubl	pairs			

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

AATTTATTTC GCCGTCCCAC CCCAACTTGC ATTGTCTGTA GAAATTGGGA ATCCAATTTC 60
TCTTTGTTGG GGCCCGCCC CAACTCGCAT TGCCTGTAGA ATTTCTTTTC GAAATTCTCT 120
GTGTTGGGGC CCCTGACTAG AATTGAAAAA AGCTTATTAC AAGCGCATTT TCGTTCAGTC 180
AATTACTGCC AATATAACTT CGTAGATCAT AGAACATTGA TTTATTTCCC AGCCTATTCT 240

55

	AGCAAAGGTA	ATAATGATAT	TAATAATGTA	CAAAAAATAT	AAATCAAATC	GACATCCTTA	360
	TAAAACATCA	GAACCACTAA	AAACAAAAA	GCACAAAATA	AAATTAAATT	TAAAATAAAC	420
5	GACCACTTTT	CAAAAAAATC	TCtTTTCaTa	TTTCCACCCC	TAATTTTAAT	AAGCATTATT	480
	TTATATTCTC	TTTTAAGTTT	ATTATTCAAA	AGGAAAACAG	AAATATCTTT	Caatattatt	540
10	ATAAACATTT	CAACTACTTT	TAAAAACCAA	САААААААТА	СТТАТТТТАА	GTAGATGAGC	600
	ATAAGTGAAC	ATAGTTCTTT	AGTTATAATA	ATTAATTCAA	CCAAAAGTCG	ATTTGTTTTT	660
	GCAATTGGTT	TTCATTTCCT	CTTAAAGATA	TTTTCATTAA	ATCTGTCAAA	TCAATAGACG	720
15	CTATATTTTT	CAACTTATCT	CTATATTTAT	TTTTAGTACG	TCTTTCTAAA	TTTCCCCATT	780
	CCTCTTCTTC	GTGAGTTAAT	AAATGAAGCA	TTGCTCGTTC	TTGTATATTT	TCAATCATTT	840
	TTAAATTCGG	TTTTAAAATA	TGCAAATCAT	CAAAACAATC	TTTCCAACAA	TCAACCATAT	900
20	CTCGTTTTAA	TTCAATTTCC	ACACGCCATA	GAAATGTTGA	ATCAATTTCA	ACATCTGCAT	960
	TATCTTTACG	TTCTTGTTTT	TATTATAAAT	CCGAATAAAC	CTATCACTAT	TACGCACACC	1020
or.	AAAATATTTT	GTTTCTGGTT	TTACATTACG	TCCATAAAAT	ATAGTTTTCT	TTACCGACTT	1080
25	ATCTGACAAT	GCATAATAGT	CATTTAAATC	AAATTCAAAA	TCAAAAGCCA	AATCTAATCT	1140
	CGTAAAACTA	ACATCGTCCA	AATAACTGAT	GATATTTTGT	TTTAACCAAA	GCACTTCATC	1200
30	ATGCGAAAGC	TTATTAGGAT	TAAATTCAAC	GCGCATALAC	GTCTATTCCA	AAGAGTTGCT	1260
	TTTATTTTGT	CATATTCAAT	ATAAACTTTT	TCTTTAAGAG	CTTTAGCTTT	AAAGTTTGTT	1320
	TGTAAAATAT	CCCAAAGCCG	AATTTCAGGA	TTAGTACTCA	TAAAATGTGA	AAGTCTCTCT	1380
35	GCGTTAGACA	TGCTAAGATT	CCCAACAATC	GTTATAGCGT	CAAAAGACAA	TTTTGGAATA	1440
	GCTAGTGACA	TCCTATGTCG	ATTTAACCGG	CTATTACCGG	ATATTAGAGT	ATCCAGTTTT	1500
	ACAAATGGAT	GAAACGAAAT	TCAAAACACT	AAAAAATATG	TTCCACTAAC	AGCAAAAAAA	1560
40	TACCATTATG	TTCCTACTAA	ААААСУАААА	ATACTGGAGA	ACAAATGTCA	GGATATAACT	1620
	TAGGATACTA	TGTAATAAAA	ATTTACAATA	AAAAAACAGG	AAAACAAATT	TCAAGTAAAA	1680
45	GMATACCCAT	ACAAAGAGGA	ТААААТАААА	AACCTCGAAC	TGAAATGATG	ATCTTTTCAG	1740
	CTCGAGGTTT	AAATATTGGT	GCCTTATTTA	TATAGATTCG	TTATATTATA	TTCTCTATTT	1800
	TCATTAACmT	AATCCTTAAA	GAGTTTTAAA	TTAATACCTG	CTAGATGATT	CAAAAATGTT	1860
50	TCATCAACTT	TTAAATAATT	CAATAATTTT	TGTGGTGTCA	GTAAATnTCT	ATCAAAATAC	1920
	AACTTTAATA	AACTATTCAT	TTTGACAGGA	CGTGACATTT	CAATCACGTC	GTCTAAAGAT	1980
	AATACTTTCT	CGCTTTAnAC	AAAnacaaaa	ACTTACCCGA	TTAAAATCAA	GTAAGTTTTA	2040

	TATTTGATAA	AAAATCAATA	AGTAATTGTG	CGCCTTCAAC	TTGAATATCT	TTTACAACTG	2160
_	GCGCGTCGAT	ATACATATCA	TACTGACCAC	CGCCTACTGC	ACGATAATTA	TTTACACAAA	2220
5	TTGTATATGT	CTGCTTTAAA	TCAACTGCGT	GACCTTGAAT	CATCATATTG	CTCACACGTT	2280
	GTCCCTTTGG	TCTTCCAACA	TGAATGGTAT	AACTTACGCC	ACCATATATA	TCATAATTAA	2340
10	AGTGTTGTGG	TTTGGGTTCA	AGGAAGTCTG	CGCTCACACT	AACTTCATCA	TTTTTCACGT	2400
	CAAAATATTC	TGCTGATCGT	TCAATGGCTT	CTTTAAGTTT	GGCACCACTT	ACAGCTAAAA	2460
	CTTTAAATGT	ATTTGGAAAT	GGGTAATTGT	TAATAACATC	TCGCATCGTC	ACGACTTGCT	2520
15	TGAAACCACT	AGCAGAATCA	AACAAAGCTG	TACAGGCAAC	ATCTGCGTCA	CTTTTTTCTA	2580
	ATAAAGCGTA	ATTCATAAAA	TTTGTAAAAG	GATGCGGTGC	CACACGTGCC	TCAAATGCAT	2640
	GATTAATCGT	CATATCATAT	GGCAATGTAG	TAATTTCGTA	ATCTAACCAG	TCCTCTAACT	2700
20	GCTTTCGTAA	ATGTTGGTCA	TCTTCATCAA	TAGTAAATGT	GGAATCATCT	ATAACAGGAA	2760
	GTAATTCACA	TGATTCAACG	GATAGATTTT	CATATTCATC	AGTACTCAAG	ACTACTCTGC	2820
25	CTACAGTTGT	ACCTCTCGTA	CCAGGTTGAA	TCACAGCCGT	TTGCTTAAAC	CTTTCAGCAA	2880
	TTTGTCGATG	TTGGTGACCC	GTAATAAAGA	TATCTATATC	TTTAGAAAAC	GCTTCTAACA	2940
	TGGCATATCC	TTCATTTTCA	CCCGTTAATA	CTTCGGTCGG	CGTACCACTT	TCTAAATCCT	3000
30	TTTCAAATCC	ACCATGGTAA	CAAACCACAA	TGATATCTGC	ATGTCGCTTC	ATTTCAGGTA	3060
	AGTATTGTTG	AAGTATTTCA	AAAGCACTAT	GAAACGTArT	GnCnTGAATA	TGCTCTGGTT	3120
	GTTCCCAATG	GGGAATAAAT	TGTGTCGTTA	AACCTATCAC	ACCAACAGTT	TGATCTCCAA	3180
35	CCTGAAAATA	CTTCACACCG	TTATCAGTCA	ATGTACTATC	ATTTTCATAT	ATATTAGCGC	3240
	ACAAAACTGG	ATAATTGAGT	CTGCGTAAAG	TGTCTTTTAA	GTATGGTAAT	CCATAATTAA	3300
40	ATTCATGATT	ACCAAGCGTA	CCAAAGTCGA	ATGCCATTCG	ATTATAAAAA	TCAACTAAAG	3360
,,	GCTGGCTACT	GCCGCTATGC	GCGATTAAGT	AATTACAAAA	TGGTGACCCT	TGCAAAAAAT	3420
	CACCATTATC	TATTTTAAAA	CTTTGGTCAT	ACTGCCTTCT	GTSTTGTTCT	ATAACATGAT	3480
15	TCGCTAGTAA	CAATCCCATA	GGTTGATATT	GATTTCTACT	CGTAAAATCT	GTTGGGAAAA	3540
	TATAACCATG	TACGTCACTC	ACGACATAAA	ATGCTATGTT	TGACATCCTC	ACTCACTCCT	3600
	TCAATCACAA	ACATCTTTCT	TATTTCTATT	ATATATTTAT	TTGAAGTCTG	TTGTAATCAA	3660
50	GGTTTTGTCA	CCGAGTTTTA	AACGAATCTT	TGAACCTTCC	ATACTTTCAA	GTACTTTAGC	3720
	ATTGACCTTA	ATTGTGACAT	TTCCGTTTTC	ATCTGCTTTA	ACTGTTGGCA	AAGTACTGTA	3780
	ACCTGGTGGG	TTATAATCGT	TATCTTTACT	TGAAAATTGT	CCGATTTGAC	GTCCGCCTTC	3840

	TATTGTCATT	TCAAATGGCT	CATTTACAGA	AACATTTTG	GGGATATCAA	ATGTTACTTT	3960
E	TTCGTTCTGA	TTTGGTGGTG	TATGATCATC	TGGTGTGTT	GGCTGAGGAT	CTGCGCCTTT	4020
5	TTCGCTGCCA	TAACTACCTG	CTTTAAATGI	TGTTGGATCA	TACCATTTAT	AACCACTCGG	4080
	CGGTTGTGAC	CATGGCTCTT	TTTCAGGCTC	AGTTGAACGC	TCTGGTCGTT	CAAAATCAAG	4140
10	CAACTTAGTC	TTTGTATCTA	ATGTTAGGCT	ACTCGCCTTA	AGTGATTTCC	CATCATTATC	4200
	TTTAGACATC	CAAGCCGTTA	TATTATTTAA	TAGCTTACCG	TTGTCTTGTT	CTTTAAAACC	4260
	ATCATATGTT	TTCTTCTTTT	CTCCATTATC	TTCTCTTACA	TATTTGGGCG	AACTATCTTC	4320
15	CACAAGTGAT	GAATCACCGA	TAAATGCTGC	TTTACCTTTT	CCAACTTTAG	AAATTGCTAC	4380
	ATAGGGGCCT	TCTGCTTTAC	CGCCCCATT	ATAAATACCT	TGATCTACAG	CATGTGACCA	4440
	TTTACTTTTC	GCTGGCAATT	GTTCTGGTGT	ATACACAATA	CCTTTTGCTT	TCTCTGGATT	4500
20	AGTAATTGCT	AATGTCGATC	CGGCATGCAT	AGAGACAGAT	TTCACACCTT	CAGTAATACC	4560
	GAAACTTTCT	TTTGAAGAAA	CAATATTGCT	CGTATTTAAA	TCACCTAGTG	CATTATATCG	4620
25	AAAACGTACG	CCAAAGTTTG	TAGATAACCA	ATCTGAACTT	TTCACACCTT	GCATTGCAGT	4680
	AGAACTTTTT	TCTTCTGCAT	TCATACCTTT	CGACATATCT	TCATATGCTC	CACGTCGATA	4740
	ACCATTCATT	GCCTCCGATG	AATCAATACG	ATTTAAATTT	CGGTCAGCAT	TGTAATGATC	4800
30	TGAAATAAAG	ACAACATTGC	CACCTTGTTt	CACATATTTA	ACAATTGCTG	CCTGTTCTGA	4860
	TTCTTTGAAA	GGAATGTTAG	CCTCAGGAAT	TACAAATATT	TTGGAACTTT	TCAAACTTGC	4920
	TTCTGTTATG	TTCGAATGAC	CATCAATAGC	TTTAACGTCA	TAACCTTGTT	TTTGTATTGA	4980
35	ATCCGCATAA	TCTGAAAATG	CACCATCACT	AACCCAATCT	GCAGCACCAG	CTGTTTGACC	5040
	ATGAGAACGA	TCGAATAATA	CCGTTCGCTG	TTGCTTTGTA	GGTTGCGATT	CATGCGTTAT	5100
40	AGCTAAAGAT	TGCGGTAAAG	CACTTAATGA	TACCGTTGCA	ACAATTGCAG	AGACAGTTAA	5160
40	TGACTTATAT	ATTTTTTCA	TTTTGTGAGG	CTCCTTTTAA	AATAAATTTG	TTCTTGAATT	5220
	ATAGGATAAA	AATTCGTTGC	ATATGAGCAA	TTTAACGAAA	AATTTACAAA	ATCTTATCAA	5280
45	ACTCTTAAAG	AAAGTTATTA	AAATTCATTT	TTATAAAATA	CTTTTTAACA	TTTAAATGTG	5340
	GTACGCTATA	AGTGTAATTT	CATTGCATAC	ATATTACACG	ATTAAGAATG	TGAAGGGGAC	5400
	AGTTATCAAA	TGAAAAATTT	TAAGTGTTTA	TTTGTATTAA	TGTTAGCAGT	CATTGTTTTT	5460
50	GCAGCAGCAT	GTGGAAACTC	AAGTTCTTTA	GATAATCAAA	AGAACGCTAG	TAATGATTCG	5520
	GATTCTAAAT	CAGGAGGATA	CAAACCTAAA	GAATTAACCG	TTCAATTTGT	ACCTTCGCAA	5580
**	AATGCTGGAA	CATTAGAAGC	TAAAGCAAAA	CCATTAGAAA	AATTACTATC	TAAAGAATTA	5640
55							

	TCTAAAAAAG	TTGATGTTGG	TTTCTTACCA	CCAACGGCAT	ACACATTAGC	ACATGATCAA	5760
	AAAGCAGCTG	ATTTATTATT	ACAAGCACAA	CGTTTCGGTG	TAAAAGAAGA	TGGTTCAGCA	5820
5	AGTAAAGAAC	TTGTAGATAG	TTATAAATCA	GAAATTCTTG	TTAAAAAAGA	CTCAAAAATT	5880
	AAAAGCTTGA	AAGATTTAAA	AGGTAAGAAA	ATTGCCTTAC	AAGATGTAAC	ATCAACTGCT	5940
10	GGATATACAT	TCCCACTTGC	GATGTTAAAA	AACGAAGCAG	GTATTAATGC	AACTAAAGAT	6000
	ATGAAAATTG	TGAATGTTAA	AGGTCATGAC	CAAGCAGTTA	TCTCATTATT	AAATGGAGAt	6060
	GTAGATGCTG	CGGCTGTATT	TAACGATGCA	CGTAATACTG	TGAAAAAAGA	CCAACCAAAT	6120
15	GTATTTAAAG	ACACACGAAT	TTTAAAATTA	ACACAAGCTA	TTCCGAATGA	CACAATTTCT	6180
	GTAAGACCAG	ATATGGATAA	AGATTTTCAA	GAAAAATTGA	AAAAAGCTTT	TATAGACATT	6240
	GCTAAATCAA	AAGAAGGTCA	CAAAATTATT	AGCGAAGTTT	ATTCACATGA	AGGATACACA	6300
20	GAAACGAAAG	ATTCAAATTT	CGACATTGTA	AGAGAGTACG	AAAAATTAGT	TAAAGATATG	6360
	AAATAATCAT	TATTTAACAA	ATGAATCATT	AGCGAATTTG	GTATTAAAAG	CTTTCGTTCA	6420
25	ATAGATATAT	TCTAGATTAA	TATTGAAAAG	CTAGGCGCTA	AACTGAAACA	GATATAGAAA	6480
20	GGTGTCGCTG	TACATTTGAA	ACCATTTGTA	CACAGAAACC	CAATGTCTAT	GATATTTCAG	6540
	TTTACCTTGG	CTTTTCTTTA	TTAAAGAAAG	GTGTCAAACA	TGAGTCAAAT	CGAATTTAAA	6600
30	AACGTCAGTA	AAGTCTATCC	TAACGGTCAT	GTAGGCTTGA	AAAATATTAA	CTTAAATATT	6660
	GAAAAAGGTG	AATTTGCAGT	TATTGTCGGA	CTATCTGGTG	CTGGGAAATC	CACGTTATTA	6720
	AGATCTGTAA	ATCGTTTGCA	TGATATCACG	TCAGGTGAAA	TTTTCATCCA	AGGTAAATCA	6780
35	ATCACTAAAG	CCCATGGTAA	AGCATTATTA	GAAATGCGCC	GAAATATAGG	TATGATTTTC	6840
	CAACATTTTA	ATTTAGTTAA	ACGGTCAAGT	GTATTACGAA	ATGTACTAAG	TGGACGTGTA	6900
	GGTTÄTCACC	CTACTTGGAA	AATGGTATTA	GGTTTATTCC	CAAAAGAAGA	CAAAATTAAG	6960
40	GCAATGGATG	CACTAGAACG	CGTCAATATC	TTAGATAAAT	ATAATCAACG	CTCTGATGAA	7020
	TTATCAGGTG	GCCAACAACA	ACGTATATCT	ATTGCACGTG	CGCTATGCCA	AGAATCTGAA	7080
45	ATTATTCTTG	CAGATGAACC	AGTTGCTTCA	TTAGACCCAT	TAACTACGAA	ACAGGTTATG	7140
	GATGATTTAA	GAAAAATCAA	CCAAGAATTA	GGCATCACAA	TTTTAATTAA	TTTACATTTT	7200
	GTTGACTTGG	CAAAAGAATA	TGGCACACGC	ATCATTGGTT	TACGTGATGG	TGAAGTTGTC	7260
50	TATGATGGTC	CTGCATCTGA	AGCAACAGAT	GACGTATTTA	GTGAAATATA	TGGACGTACA	7320
	ATTAAAGAAG	ATGAAAAGCT	AGGAGTGAAC	TAACATGCCT	TTAGAAATAC	CTACAAAGTA	7380
	TGACTCCCTT	TTAAAGAAAA	AGGTTTCTTT	AAAAACGAGT	TTTACCTTCA	TGTTAATCAT	7440

	AATACCTCAZ	ATAGGTGATO	TATTCAAAC	A AATGATTCCA	CCTGATTTCG	GAGTATTTACA	7560
	ACAAATTACA	ACGCCAATGT	TAGATACCAT	TCGAATGGCT	TATCGTAAGTA	CAGTATTAGG	7620
5	TAGCATCGTT	TCAATACCAA	TTGCGTTAT	T ATGTGCTAGO	AATATCGTTC	ATCAAAAGTG	7680
	GATTTCAATA	CCCTCGCGCT	TTATTTTAA	TATAGTTCGT	ACTATTCCAG	ATTTGTTATT	7740
10	AGCAGCAATC	TTTGTGGCTG	TATTTGGAA1	CGGTCAAATT	CCAGGGATAT	TAGCACTGTT	7800
	TATTTTAACT	ATCTGTATTA	TTGGAAAATT	ATTATATGAA	TCATTGGAAA	CGATAGATCC	7860
	AGGTCCAATG	GAAGCAATGA	CGGCTGTTGG	CGCTAATAAA	ATAAAATGGA	TTGTTTTCGG	7920
15	TGTTGTACCA	CAAGCCATAT	CGTCATTTAT	GTCATACGTA	TTATATGCAT	TTGAAGTAAA	7980
	TATACGTGCT	TCAGCTGTGC	TTGGATTAGT	CGGCGCTGGC	GGTATTGGAT	TGTTTTATGA	8040
	TCAAACACTT	GGTTTATTTC	AATATCCAAA	AACAGCAACG	ATTATTTTAT	TTACTTTAGT	8100
20	TATCGTCGTC	GTCATTGATT	ACATCAGTAC	GAAAGTGAGG	GCACATCTCG	CATGACACAG	8160
	GAAATAGCAA	AATATAATGT	TCACACAAAA	GCACACAAAC	GAAAATTGAT	TAAAAGATGG	8220
0.5	CTTATTGCAA	TTGTCGTCTT	AGCTATTATC	ATCTGGGCAT	TTGCAGGTGT	ACCAAGTTTA	8280
25 ,	GAACTTAAAA	GTAAATCATT	AGAAATCTTA	AAATCCATAT	TCAGCGGATT	ATTCCATCCT	8340
	GATATCAGCT	ATATCTATAT	ACCAGATGGC	GAAGACTTAT	TACGTGGTTT	ACTTGAAACC	8400
30	TTTGCGATAG	CCGTTGTAGG	TACTTTCATC	GCCGCAATTA	TCTGTATTCC	ATTAGCATTT	8460
	CTAGGTGCAA	ATAATATGGT	AAAGCTACGC	CCAGTTTCAG	GTGTTAGCAA	ATTTATTTA	8520
	AGTGTTATAC	GTGTCTTCCC	AGAAATTGTA	ATGGCACTTA	TATTTATCAA	AGCTGTTGGC	8580
35	CCAGGTTCAT	TTTCAGGTGT	ATTAGCTTTA	GGTATCCATT	CCGTAGEATG	CTTGGGAAAC	8640
	TTTTAGCTGA	AGATATTGAA	GGTCTAGATT	TCAGTGCTGT	AGAATCATTA	AAGGCCAGTG	8700
	GTGCGAATAA	GATTAAAACA	CTCGTATTTG	CAGTCATACC	ACAAATTATG	CCTGCCTTTC	8760
40	TATCACTCAT	ACTITATCGC	TTTGAACTAA	ACTTACGTTC	AGCTTCTATA	CTGGGGCTAA	8820
	TTGGGGCTGG	TGGTATCGGG	ACACCACTCA	TATTTGCCAT	TCAAACACGT	TCTTGGGACC	8880
45	GTGTAGGTAT	TATATTAATC	GGTTTAGTAC	TAATGGTCGC	AATTGTCGAT	TTAATTTCCG	8940
45	GTTCAATCCG	AAAACGTATT	GTTTAACATT	AAATCAGGAT	ACTCCTAAAT	AAGAAGTCCT	9000
	ACCGTCTTAC	GTTTCTCTAT	TATAATAAAA	ACAGCAGTGA	AGAAAACTAT	TGTTATAGTT	9060
50	AACTTCACTG	CTGTTTTTAT	AATATCTAAA	TTTATTCTAT	TTCAATTCCT	TTAAATAACT	9120
	TTTACCGAAC	TCTGGTAATG	TTACGTTGAA	ATTATCTGCT	ATAGTTGCAC	CGATAGAACT	9180
	GAATGTAGTA	TCACTTTCTA	GTGCATGACC	ACCTTTAAAT	ттсссастст	እ ሮልሞልል ም ዋልሮ	9240

	TGTAATAATT	ACTAAATCGT	CTTCTTTTAA	GTTGCTAAAC	AGTTCTGGCA	AGCGATCATC	9360
	GAAATCTTTA	ATTGCTTGTG	CATAACCTGG	TTTATCACGA	CGATGACCGT	ATAATGCATC	9420
5	AAAGTCTACT	AAGTTTAAGA	AGCTAATACC	TGTGaAATCT	TTCTTAACAA	TTTTCATCAA	9480
	TTGATCCATA	CCGTCCATGT	TACTCTTCGT	ACGAACCGCT	TCTGTTACAC	CTTCACCATC	9540
	ATAAATGTCA	TTAATTTTAC	CGATGGCAAT	AACATCATAA	CCACCGTCTT	TCAAATGATC	9600
10	TAAGACAGTT	TTACCAAAAG	GTTTTAACGC	ATAGTCATGT	CGATTAGATG	TACGTGTAAA	9660
	GTTTCCTGGT	TCACCAACAT	ATGGACGTGC	GATAATACGA	CCAATTAAAT	ATTTAGGGTC	9720
15	TTTTGTCAAC	TCACGAACCT	TTTCACAAAT	ATCATATAAC	TCTTCTAATG	GGATAATGTC	9780
·	TTCATGTGCA	GCAATTTGCA	ATACTGGGTC	TGCACTTGTA	TAAACAATTA	AGTCACCAGT	9840
	TTTCATTTGG	TGCTCGCCCC	ACTCATCGAT	AATTTGCGTA	CCCGATGCCG	GTTTGTTAGC	9900
20	AACAACTTTA	CGACCTGTCA	TTTCTTCAAT	TTGTTGAATT	AACTCTTCAG	GGAATCCATT	9960
	AGGGTATACT	TTAAAAGGTT	GCATAATATT	TAATCCCATA	ATTTCCCAGT	GACCAGTCAT	10020
	TGTATCTTTA	CCAACTGAAG	CTTCACTCAA	TTTAGTATAG	TATGCTTCTG	GTTGTTCAAC	10080
25	TGCATTTACT	ACTGGTAATT	TATCGATGTT	CCCTAGACCT	AACTTTTCAA	GGTTTGGTAA	10140
	AGTTTGATCG	AAACCTTCTA	AGGTATGTCT	TAAAGTATGT	GAACCTTCAT	CTTTAAAATC	10200
20	AGCTGCGTCT	GGCGCTTCAC	CAATACCTAC	TGAATCCATT	ACGATTAAAT	GTACACGATT	10260
30	AAATGGTCTT	GTCATAGCTA	TCACTCCCAA	AATTTATATA	TATTAGTAAT	CTGAATCTGC	10320
	TTCTAAACCT	TGCATAATTT	GAACACCTGC	GCTCGCACCA	ATACGTGTCG	CACCTGCTTC	10380
35	AACCATTTTA	TTGAAATCTT	CTAAATTACG	TACGCCACCT	GATGCTTTTA	CTTCTACATC	10440
	AGCACCTACT	GTATCTTTCA	TTAATTTAAC	GTCTTCTGCA	GTCGCACCGC	CACCTGCAAA	10500
	ACCTGTTGAA	GTTTTAACGA	AGTCCGCACC	AGCCGCTTTT	GTTAATTCAC	TCGCTTTTAC	10560
40	AATTTCGTCA	TGGTCCAACA	ATACCGTCTC	AATAATCACT	TTTACTGTGT	GACCTTTCGC	10620
	AGCTTTAACC	ACTGCTTCAA	TGTCTTGTTG	TACATCATCA	AAACGTCCAT	CTTTTAATGC	10680
	GCCGATGTTG	ATGACCATGT	CAATTTCATC	TGCACCATTT	TGAATTGCAT	CTTCTGTTTC	10740
45	AAATGCTTTC	GTTGCAGTTG	TCGACGCACC	TAATGGGAAT	CCTATTACCG	TACAAACGAG	10800
	CACCTCTGAA	TCAGCTAGTC	GCTCTGCTGC	ATATTTAACA	TGTGTTGGAT	TCACACATAC	10860
50	AGATTTAAAA	TTGTATGctT	TCGCTTCATC	GATGATTTGA	TCGATTTGCG	TACGTGTTGA	10920
J.	CTCAGGCTTC	AATAAAGTGT	GATCTATATA	TTTCTCAAAT	TTCATACTTA	CTACTCCTCG	10980
	TGTTATATAA	TCTCTTTATT	TAATTTTACT	ATAAATACGA	ATATATCTCG	CGAATTTATA	11040

	ATACTCATTA AACCTAAAAT AATTAAAATA ATACCGAAAT GTGAACTTAA TGCATCATTG	11160
5	CCTGGGAAAT TTAATGCTTT AAAATCGATT AGAGCCGCAG CAATCGCAAT ACCTACAGAT	11220
5	ACCGCCACAT TAATAATTAA ATTATAAAAA CCAATAGCCA CACCTGTCAT ATTAAGATCT	11280
	ATTGTTTTAA TGGCTTCGTT AAGTAAAGGT GCATACATTA AAGCAAAGCT ACCTGCAAAG	11340
10	AATATCATAG AAATGACGAA GATTGAAATG TGATTACCTA CTGCAAATGC AGGTAAAATC	11400
	AAGCTCAGTG CTATTAAAAT AATTGCTGTG ATAATCGCTT GTTTTGAATT CAGATATTCG	11460
	CCGATTTTAC CACTTAGTGC ACCAACAATG ACTGCTACTA TATAACCCGG TACTAATAAC	11520
15	AGTGATGTTG TGTCTAGTTG CAGATGATAA ATTTGCTCCA TTATGAATGG GAACGTAAAA	11580
	ATATAACCCA ATTGGATAGC ATACATTACA AATACTATAA ATAAAAATGA AGCATAACGT	11640
	TTATTTTGGA AAAATGATTT ATTTACTAAT GGACGTTGCG CATTTTTAAT ATATAGCGCA	11700
20	AAAACGATAA TCGCAATTAA GGCACCAATC ATATATAACC AATTAAAGTT CGTAATAAAC	11760
	AGCATGACTG TTGTAGCAGG GGATCCTCTA GAGTCGAnCC TG	11802
	(2) INFORMATION FOR SEQ ID NO: 71:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1196 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 71:

CTAAAGAAGA	TGCGAAACAA	GATGTTGATA	AACAAGTTCA	AGCTTTAATT	GACGAAATCG	60
ATCAAAATCC	AAATCTAACA	GATAAGGAAA	AACAAGCACT	TAAAGATCGT	ATTAATCAAA	120
TACȚTCAACA	AGGTCATAAC	GACATTAACA	ATGCGATGAC	AAAAGAAGCA	ATTGAACAAG	180
CAAAAGAACG	TTTAGCGCAA	gCATTGCAAG	ACATCAAAGA	TTTAGTGAAA	GCTAAAGAAG	240
ATGCGAAAAA	TGATATTGAT	AAACGTGTAC	AAGCTTTAAT	TGACGAAATC	GATCAAAATC	300
CAAATCTAAC	AGATAAGGAA	AAACAAGCAC	TTAAAGATCG	AATTAATCAA	ATACTTCAAC	360
AAGGTCATAA	CGACATTAAC	AATGCGCTGA	CTAAAGAAGA	AATTGAGCAG	GCAAAAGCAC	420
AACTTGCACA	AGCATTGCAA	GACATCAAAG	ATTTAGTGAA	AGCTAAAGAA	GATGCGAAAA	480
ATGCAATAAA	AGCCTTAGCT	AATGCGAAgc	GTGATCAAAT	CAATTCAAAT	CCAGATTTAA	540
CACCTGAGCA	AAAAGCAAAA	GCGCTCAAAG	AAATTGACGA	AGCTGAAAAA	CGAGCACTAC	600
AAAACGTTGA	GAATGCTCAA	ACTATAGATC	AATTAAATCG	AGGATTAAAC	TTAGGTTTAG	660

TTGAAGCAAC ACCTGAGCAA ATCCTAGTTA ATGGTGAACT CATTGTACAT CGTGATGACA 780 TCATTACAGA ACAAGATATT CTTGCACACA TAAACTTAAT TGATCAGCTT TCAGCAGAAG 840 TCATCGATAC ACCATCAACT GCAACGATTT CTGATAGCTT AACAGCAAAA GTTGAAGTTA 900 CATTGCTTGA TGGATCAAAA GTGATTGTTA ATGTTCCTGT AAAAGTTGTA GAAAAAGAAT 960 TGTCAGTAGT CAAACAACAG GCAATTGAAT CAATCGAAAA TGCGGCACAA CAAAAGATTA 1020 ATGAAATCAA TAATAGTGTG ACATTAACAC TGGAACAAAA AGAAGCTGCA ATTGCGnAAG 1080 TTAATAAGCT TAAACAACAA GCAATTGGAT CATGTThAAC AATGGCACCT GGATGTTCCA 1140 TTCAGTTGAA GGAAATTTCA ACAACAAGGA ACAAGCGCCn GATTGGAACA ATTTGA 1196

(2) INFORMATION FOR SEQ ID NO: 72:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1519 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25

30

35

40

45

50

5

10

15

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 72:

CAATCGTTTC AACGCTATTA TCTTTAGACA ACAATTGTAA GCGTGTATGT GCAGTTTCTA 60 AACAGTCTAT AATTCGAGTT CTTAATTCAG CTGGATCATC TTTAAAAATA AAATCCATCG 120 CTGCAACTTT GTAGACAAAT GTTAAATAGG TAAGTTCACT GTGACTCGTA ACGAAAATAA 180 TGTTACCAAC TGGGTCATGC TTACGAATTT CACTGCCTAA TTTGATACCA TTAATATCAG 240 TTGAAAGTTG AATATCTAAA AAGTAACAGC CTATGTCATT CATATTTTTA GCTTGCTCAA 300 GCACCTCATA AGGATTATCA GTTGCGAGGG CAATTTCCAT AGGCTTTTCT TCTATCATTA 360 TATAATTTTT AATAATGGTA ACCATGTTTT CTCTTTGTTT TGGATCGTCT TCGCAAATGA 420 AAATTTTCAT ACATTCACAT CCTTATGGCT AGTTGTTAAT AATTTCAACT TTTTGAATAA 480 AGAAACCATT TTCGATAATT GTATCTAATA AGACATTGTC TGCATTATCA GCAATTTCTT 540 TTAAAGTTGA TAGACCTAAA CCACGACCTT CACCTTTAGT AGAAAAACTT TCTTGGAACA 600 ATTCATGAAT GCGTGGTATA TCATCAGCGC ATTTATTCAT AACAATAAAC GTTACTGAAT 660 TTTCACTTC AATAAATGCA ACGCGAATGA TAGGGTCATC AATTTCAGTT GATGCCTCAA 720 TTGCATTATC AAGAATAATA CCAATACTGC GACTTAAATC GATCATATTC AAGTTAATGC 780 TACTTACTTC ATCGGGTATT TCGATACTAA TCGGAATATT CATTTCTTGT GCACGTAAAA 840 TTTTCGCAGT AATTAAGCCT TTAATITCAC GTACTTTAAG ATTCTCGATA CCATTTAATT 900

	GTAGGCCAGG CATGTCATCT TCTCGAATGT ATTCTGAAAG TGTCGTTAAG ATATTGACAT	1020					
	AATCATGACG GAACTTGCGC ATTTCGTTGT TGATAGCTTC AATCTTCAAT GTATATTCAT	1080					
5	AATAGGTTTC AATTTCTTCT TGATTACGTT TATATTTCAT CTCTTTAAGG AGAAATTGAG	1140					
	AAATAACAAA TGTTAATATA CTTAAAAATA TAGTGATACC AATAAAAATA AAAGAATACT	1200					
	GCCTTATTAC TTTAGCTTCA TCCGAGTTTA TTTGTGAATA AAAGAAAAAT AATGAAAAAG	1260					
10	TAAGCAGTAA GATAGTCGAA ATAACTATTA AAAATCCTTT GTTTAGTATT AGATATGGTG	1320					
	TGCTAATTTT TTTGAGAACT CTATTTATTA TATATGAGAA TAGTATACTA ATAGTCACAT	1380					
15	AAACTACAAA AAAGCTAGGG AATATTACAA ATATACTATC AGAAATTTTG GTGGATATAT	1440					
	GCATATATAA CTATATACCT GTAGTTAGCA CNGTNATAGG AATAATCNGG CGAGGTCCAT	1500					
	AATCCACCAA AATAGAATA	1519					
20	(2) INFORMATION FOR SEQ ID NO: 73:						
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5445 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double						
25	(D) TOPOLOGY: linear						

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

GTAGGAATCT	CTTTGTCTTT	TTGGGAGGAC	ATTTAATATG	AATGTATATT	TAGCAGAATT	60
CCTAGGAACT	GCAATCTTAA	TCCTTTTTGG	TGGTGGCGTT	TGTGCCAATG	TCAATTTAAA	120
GAGAAGTGCT	GCGAATGGTG	CTGATTGGAT	TGTCATCACA	GCTGGATGGG	GATTAGCGGT	180
TACAATGGGT	GTGTTTGCTG	TCGGTCAATT	CTCAGGTGCA	CATTTAAACC	CAGCGGTGTC	240
TTTAGCTCTT	GCATTAGACG	GAAGTTTTGA	TTGGTCATTA	GTTCCTGGTT	ATATTGTTGC	300
TCAAATGTTA	GGTGCAATTG	TCGGAGCAAC	AATTGTATGG	TTAATGTACT	TGCCACATTG	360
GAAAGCGACA	GAAGAAGCTG	GCGCGAAATT	AGGTGTTTTC	TCTACAGCAC	CGGCTATTAA	420
GAATTACTTT	GCCAACTTTT	TAAGTGAGAT	TATCGGAACA	ATGGCATTAA	CTTTAGGTAT	480
TTTATTTATC	GGTGTAAACA	AAATTGCCGA	TGGTTTAAAT	CCTTTAATTG	TCGGAGCATT	540
AATTGTTGCA	ATCGGATTAA	GTTTAGGCGG	TGCTACTGGT	TATGCAATCA	ACCCAGCACG	600
TGATTTAGGT	CCGAGAATTG	CACATGCGAT	TTTACCAATA	GCTGGTAAAG	GTGGTTCAAA	660
TTGGTCATAT	GCAATCGTTC	CTATCTTAGG	ACCAATTGCC	GGTGGTTTAT	TAGGTGCAGT	720
GGTATACGCT	GTATTTTATA	AACATACATT	TAATATTGGT	TGTGCAATTG	Crattgttgt	780

	CGAATCAATT	TACTAAAATA	AAAAGAAACG	TAAATAGCAT	AATTTAACAT	GTTTGATTCA	90
	TGGATTATGC	TATTTTTTCG	CCAAAATTTA	ACAGATTTTG	TACAATGGGT	TAGCGATTAT	96
5	TTTTTAATAA	AGGAGATACT	ACTAATGGAA	AAATATATTT	TATCTATAGA	CCAAGGAACA	102
	ACAAGCTCAA	GAGCGATTTT	ATTCAATCAA	AAAGGGGAAA	TTGCAGGGGT	AGCACAACGT	108
	GAGTTTAAGC	AATATTTTCC	ACAATCAGGT	TGGGTTGAAC	ATGATGCAAA	TGAAATTTGG	114
10	ACATCTGTGT	TAGCTGTAAT	GACGGAAGTA	ATTAATGAAA	ATGATGTTAG	AGCTGATCAA	1200
	ATTGCAGGTA	TCGGTATTAC	AAACCAACGT	GAAACAACGG	TTGTTTGGGA	CAAaCATACT	1260
15	GGCCGCCCAA	TTTATCACGC	AATTGTTTGG	CAATCACGTC	AAACACAATC	AATTTGTTCA	1320
	GAATTAAAAC	AACAAGGATA	TGAACAAACA	TTTAGAGATA	AGACAGGATT	ACTTTTAGAT	1380
	CCGTATTTTG	CAGGTACAAA	AGTTAAATGG	ATTCTAGACA	ATGTTGAAGG	TGCACGAGAA	1440
20	AAAGCAGAAA	ATGGCGATCT	ATTATTTGGA	ACGATTGATA	CTTGGTTAGT	ATGGAAATTA	1500
	TCaGGaAAAg	CtGCGCATAT	TACTGATTAT	TCaAATGCGA	GTCGTACATT	AATGTTTAAT	1560
	ATCCATGATT	TAGAATGGGA	CGATGAGTTA	TTAGAACTAt	TACAGTACCT	AAAAATATGT	1620
25	TGCCAGAAGT	TAAAGCTTCG	AGTGAAGTAT	ATGGTAAGAC	AATTGATTAC	CACTTCTATG	1680
	GTCAAGAAGT	ACCAATCGCT	GGAGTAGCTG	GTGATCAACA	AGCAGCATTA	TTTGGACAAG	1740
	CTTGCTTCGA	ACGTGGTGAC	GTGAAAAACA	CATATGGAAC	TGGTGGCTTC	ATGTTAATGA	1800
30	ATACAGGTGA	CAAAGCGGTT	AAATCTGAAA	GTGGTTTATT	AACAACAATT	GCTTATGGTA	1860
	TTGATGGAAA	AGTAAATTAT	GCGCTTGAAG	GTTCCATCTT	TGTTTCGGGT	TCAGCAATCC	1920
35	AATGGTTACG	TGATGGATTA	AGAATGATTA	ATTCAGCACC	ACAATCAGAA	AGTTATGCGA	1980
	CACGAGTTGA	CTCTACTGAG	GGTGTTTATG	TTGTTCCAGC	TTTTGTAGGT	TTAGGAACAC	2040
	CATATTGGGA	TTCTGAAGCA	CGTGGTGCGA	TTTTCGGTTT	AACACGTGGA	ACTGAAAAAG	2100
40	AGCACTTTAT	CCGTGCAACT	TTAGAATCAC	TATGTTACCA	AACTCGTGAC	GTTATGGAAG	2160
	CAATGTCAAA	AGACTCTGGT	ATTGATGTCC	AAAGTTTACG	TGTCGATGGT	GGTGCAGTTA	2220
	AAAATAACTT	TATTATGCAG	TTCCAAGCAG	ACATTGTTAA	TACTTCTGTT	GAAAGACCTG	2280
15	AAATTCAAGA	AACTACAGCT	TTAGGTGCTG	CATTTTTGGC	AGGTTTAGCA	GTTGGATTCT	2340
	GGGAGAGTAA	AGATGATATC	GCTAAAAACT	GGAAATTAGA	AGAAAAATTC	GATCCGAAAA	2400
	TGGATGAAGG	CGAAAGAGAA	AAATTATATA	GAGGTTGGAA	AAAAGCTGTT	GAAGCAACAC	2460
50	AAGTTTTTAA	AACAGAATAA	ACTTGTAGAT	TAGACTTTTG	TATAAACATT	GTGATACAAT	2520
	רים אידידי א אכידי	ע האהתה ענה ענה	3TCC3C33CC	CACACATERC	TTTCC N N C N TTC	ma ca a mmca a	3500

	GCATTGTCTA	CTTTTAAGAG	AGAACATATT	AAAAAGAATT	TAAGAAATGA	TGAATATGAT	2700
	TTAGTAATTA	TTGGTGGCGG	TATTACAGGT	GCAGGTATTG	CACTAGACGC	GAGTGAAAGA	2760
5	GGAATGAAAG	TTGCATTAGT	TGAAATGCAA	GACTTTGCAC	AAGGAACAAG	CTCAAGATCT	2820
	ACAAAATTAG	TCCATGGTGG	TTTGCGTTAC	TTAAAACAAT	TCCAAATTGG	AGTAGTTGCC	2880
10	GAAACTGGTA	AAGAACGTGC	GATTGTTTAT	GAAAATGGGC	CTCATGTTAC	GACTCCAGAG	2940
,,	TGGATGCTTT	TACCAATGCA	TAAAGGTGGA	ACATTTGGTA	AATTCTCAAC	ATCAATTGGT	3000
	TTAGGAATGT	ATGATCGTTT	AGCAGGTGTT	AAGAAGTCTG	AACGTAAAAA	AATGTTATCT ·	3060
15	AAAAAAGAAA	CTTTAGCTAA	AGAACCATTA	GTTAAAAAAG	AAGGTCTAAA	AGGCGGCGGT	3120
	TACTATGTTG	AATATCGTAC	TGACGATGCG	CGTTTAACTA	TTGAAGTTAT	GAAGCGTGCT	3180
	GCTGAAAAAG	GCGCAGAAAT	TATCAACTAT	ACTAAATCTG	AACACTTCAC	TTATGATAAA	3240
20	AATCAACAAG	TAAATGGTGT	TAAAGTTATA	GATAAATTAA	CTAATGAAAA	TTATACAATT	3300
	AAGGCTAAAA	AAGTGGTTAA	TGCAGCAGGT	CCATGGGTTG	ATGATGTTAG	AAGTGGTGAT	3360
	TATGCACGCA	ATAATAAAA	ATTACGTTTA	ACTAAAGGTG	TACATGTTGT	TATTGATCAA	3420
25	TCAAAATTCC	CATTAGGTCA	AGCAGTATAC	TTTGATACTG	AAAAAGATGG	AAGAATGATT	3480
	TTTGCAATTC	CACGTGAAGG	AAAAGCGTAT	GTAGGTACTA	CAGATACATT	CTATGACAAT	3540
20	ATCAAATCTT	CACCATTAAC	TACACAAGAA	GACAGAGACT	ATTTAATCGA	TGCGATTAAT	3600
30	TACATGTTCC	CTAGTGTTAA	TGTTACAGAT	GAAGATATTG	AATCAACATG	GGCAGGAATT	3660
	AGACCATTAA	TTTACGAAGA	AGGCAAAGAC	CCTTCTGAAA	TCTCTCGTAA	GGATGAAATT	3720
35	TGGGAAGGTA	AATCAGGTTT	ATTAACTATT	GCAGGTGGTA	AATTAACAGG	CTATCGTCAC	3780
	ATGGCTCAAG	ACATTGTTGA	TTTAGTATCT	AAACGCTTGA	AAAAAGACTA	CGGTTTAACA	3840
	TTTAGTCCAT	GTAATACAAA	AGGTCTGGCA	ATTTCAGGTG	GCGATGTAGG	TGGTAGCAAG	3900
40	AACTTTGATG	CGTTTGTAGA	GCAAAAAGTA	GATGTAGCTA	AAGGATTCGG	CATTGATGAA	3960
	GATGTTGCAA	GACGTTTAGC	ATCTAAATAT	GGTTCAAATG	TTGATGAATT	GTTCAACATT	4020
	GCGCAAACAT	CTCAATACCA	TGATAGCAAG	TTACCATTAG	AAATTTATGT	AGAACTTGTT	4080
45	TATAGTATTC	AACAAGAAAT	GGTATACAAA	CCTAACGATT	TCTTAGTTCG	TCGTTCTGGT	4140
	AAAATGTATT	TCAATATTAA	AGATGTATTA	GATTATAAAG	ATGCTGTCAT	CGATATTATG	4200
	GCAGATATGC	TTGATTACTC	TCCAGCTCAA	ATTGAAGCAT	ATACTGAAGA	AGTTGAGCAA	4260
50	GCAATTAAAG	AAGCGCAACA	TGGaAATAAT	CAACCAGCAG	TTAAAGAATA	Attaatttgt	4320
	ACAATCATAA	ACTGGTGTCC	TGTTTTAAGG	GCATCAGTTT	TTTTATACGA	GATACATTAG	4380

	GTTATTAAAG	GTGTGAGATG	ATGACTGAAA	AACAATTTAA	ATTAACTGTA	CAAGATAATA	4500
	CGAATATTGA .	AGTTAAAGTG	AATTTTACAG	ATGTAGATTC	AAAAGGAATT	ATTCATATAT	4560
5	TTCATGGTAT	GGCTGAACAT	ATGGAACGTT	ACGATAAATT	AGCACATGCA	CTTTCAAAGC	4620
	ATGGCTTCGA	TGTGATACGT	CATAATCATC	GAGGACATGG	TATTAATATT	GATGAATCAA	4680
	CAAGAGGGCA	TTACGATGAT	ATGAAACGAG	TTATCGGTGA	TGCCTTTGAA	GTAGCGCAAA	4740
10	CAGTGAGAGG	CAATGTTGAT	AAACCATACA	TTATAATCGG	ACATTCAATG	GGATCCGTTA	4800
	TAGCTAGATT	GTTTGTAGAA	ACATATCCGC	AATATGTTGA	TGGTCTAATT	TTAAGTGGTA	4860
15	CTGGTATGTA	TTCATTATGG	AAAGGTTTAC	CAACCGTTAA	AGTGTTACAA	CTGATTACAA	4920
15	AAATTTATGG '	TGCTGAGAAA	CGAGTTGAAT	GGGTTAACCA	GTTAGTATCA	AATAGTTTTA	4980
	ATAAAAnnAT	ACGTCCATTA	CGTACACAAA	GTGATTGGAT	TTCTAGTAAT	CCAATTGAAG	5040
20	TAGATAACTT	TATTAAAGAT	CCATATAGTG	GaTTTAATGT	GTCAAATCAA	TTATTATATC	5100
	AAACAGCCTA '	TTATATGCTA	CATACATCAC	AATTAAAAAA	TATGAAAATG	TTAAaTCATG	5160
	CCATGCCTAT	ATTATTAGTT	TCAGGATATG	ACGATCCTTT	AGGTGATTAT	GGTAAAGGGA	5220
25	TTTTAAAATT (GGCGAATATA	TATAGAAACG	CTGGCATnAA	AAATGTTAAA	GTGAATCTTT	5280
	ATCATCATAA A	ACGTCATGAA	GTGTTATTTG	AAAAnGATCA	TGAChAAATT	TGGGAAGACT	5340
	TGTTTAAATG	GTTGAATCAA	TTTTATAAAA	AATAAAGAAA	GTGGAATTAA	ATATGAATAA	5400
30	AAATAAGCCT	TTTATTGTAG	TAATTGTGGG	GCCAACTGCT	TGCAG		5445
	(2) INFORMA	TION FOR SE	Q ID NO: 74	ŀ:			
35	() ()	A) LENGTH: B) TYPE: nu	ACTERISTICS 2569 base p cleic acid NESS: doubl ': linear	pairs			
40							
	(xi) SI	EQUENCE DES	CRIPTION: S	SEQ ID NO: 7	4:		
	TGGCTTGAAC 1	TACGCCAATA	AGTCCCCCTA	GTACAAGAAT	GAATACCATG	ATATCGACCG	60
45	CTTCTATCGT A	ACCTTCAACC	ATGCTACTTG	TTATTTGTTC	TGGTCCAGCT	GGATGTTGCT	120

TTAATCTTTC ATAAGTATTC GGAATTGATA CCGGCTTATT AATTGCACCT GATTTAAATT

GTTCAATCTT AATTTTAACC CCCATTTTGT CTAGTTCCTG TTGCGTACCC GGAACCTTTT

TCACTTGGTT ATGAGGGTTA ACTATCTTTA GTTCTTGGGA TGAAGGTTCG TAAGAAAGTT

TAGAATATGC ACCAGCAGGA ATAACCCATG TTGCTATAAC TGCAACAACC GTTAAAATGA

180

240

300

360

55

	TAATTGTATT	TTCCACGGTT	TCATCTCCTT	CGACATTTAA	CCTAGCATTT	CTACCTTAAA	480
	GATTTTATAA	ATATAAATTA	AGAAAGTGCA	CCCCGCATCA	AAATAGAGGC	ATTATTTTCA	540
5	GGGGTGCAC	ATAAATAATA	AAAATCATGC	ATTTGACATA	TAGTAATTGA	AAAGCGTTTC	600
	AATTCAATTA	CTTTTTAATC	ACAGTACCTA	CTTTACCCTC	TAAGGCAGCA	TCTAATTCAT	660
10	TTAATGATGT	TATAAGCACA	CTTCCTTTTG	GATTGTTTTC	AATAAATGAT	ATGGCTGCTT	720
70	CAATTTTTGG	TAACATACTT	CCTTTTGCAA	ATTGATTTTC	GTCTATATAT	CGTTTTAATT	780
	CATCAACATT	TGTTGTTTTC	AAAGGCTGTT	GGTTTTCAGT	GTTAAAATTA	ATATATACAT	840
15	AATCAATTGC	TGTTAAAATA	ATCAATTGAT	CGCATTGAAT	ATTAGCACCC	AACAACGCAC	900
	TTGTTTTATC	TTTGTCTATA	ACTGCATCAA	TACCTTTAAA	ACCATCATGT	TGCTCTCTAA	960
	TTACTGGTAT	ACCTCCACCA	CCAGCAGCAA	TAACGAGTGT	ATCATTTTTA	ATAAGTGTTT	1020
20	TAATACTCTC	TAATTCAATA	ATAGAGATGG	GTTGTGGTGA	AGGAACAACG	CGTCTATATC	1080
	CTCTTCCAGC	ATCTTCAACA	AATATAAATC	CTTTTTCTTT	TTGAATTTGT	TCAGCTTCTT	1140
	CTTTGTTGTA	AAATAACCCA	ATTGGTTTTG	AAGGATTGTT	AAATGCCGGA	TCATTTTCAT	1200
25	CAACTTCAAC	TTGTGTCACT	AGTGTTACCA	CTTGTTTATC	CATTCCAATA	GAATGCAATT	1260
	CATTTTGTAA	GCTTTCTTGT	AATTGATAGC	CGATGTAAGC	TTGACTCATT	GCGCCACATT	1320
30	CAGCAAATGG	AAATGCCGGA	CCTTGGTTAT	GTTCTGCAGC	ATAGTTAAGT	CCCAAATTAA	1380
	TGCTTCCAAC	CTGTGGTCCA	TTACCATGAC	TAATAACAAT	CTCATGTCCT	TTTGTnATTA	1440
	АУССТАСТАА	TGATTt CGCA	GTATTTTTAA	CAAGCTCGAG	TtGgTyCTTG	aGGTGATTTn	1500
35	CCTAAAGCAT	TACCACCTAA	TGCTACTACT	ATTTTCGCCA	TCATATTCAC	TTCCTTATAT	1560
	CATTTAAAAT	TCACCCAATG	TAGCAACCAT	GaCTGCTTTG	ATTGTATGCA	TTCTGTTCTC	1620
	AGCTTCTTGG	AATACAACTG	AAGCTTTACT	TTCGAATACT	TCATCTGTAA	CTTCCATTTC	1680
40	TCGAATACCA	TATTTTTCAA	AAATTTGTTG	ACCTATTTTC	GTATCAGCAT	TATGGAAAGA	1740
	TGGTAAGCAA	TGCTCAAAAA	TAACATTTGG	ATTACCAGTT	TTATCCATTA	TTTCTTTATT	1800
	TACTTGATAT	GGTTTCAATA	ATTCAAGTCG	TTCTTTCCAT	ACTTCATCAG	GTTCACCCAT	1860
45	TGATACCCAA	ACATCAGTGT	AAATTACATC	CGAACCTTTT	ACaCCTTGGT	Caatatcatc	1920
	TGTGATTAAT	ATGTTGCCaC	CATTTTCaGC	GGCAATATTT	TTACAGCGAT	TTAATAATTC	1980
5 <i>0</i>	ATCTGTTGGA	TTTAATTCTT	TTGGACAAAC	TAAATGGAAG	TTCATACCCA	TAATGGCAGC	2040
	ACCTTGCATT	AATGCATTTG	CAACGTTATT	ACGACCATCT	CCAACATATG	TAAAGTTAAT	2100
	ATCTGCATAA	TCTTTTTTTA	AGACTTCTTT	TGCTGTTAAG	AAATCAGCAA	GAACTTGAGT	2160

	TTCTACTGTT CTTTGTGAAA AACCACGGTA TTCAATGCCA TCATACATTC CACCAAGCAC	2280
	ACGTGCAGTA TCTTTAGTTG TTTCTTTTTT ACCCATTTGT GATCCAGTTG GGCCTAAATA	2340
5	AGTTACATTT GCACCTTGAT CATGCGCTGC AACTTCAAAT GCACATCGCG TTCTTGTAGA	2400
	ATCTTTTCA AATAACAGTG CAATATTTT ATTTTTTAAC ATAGGCTTTT CAGTGCCAAT	2460
	ATATTTAGCA CGTTTTAAAT CCTCGGAGAG TGTTAATAAG GTTCTACCTC TTGTCGTGAA	2520
10	AAGTCTAATA AAGTTAAAAA ACTTCTGTTT CGTAnATTTT TCATTAANA	2569
	(2) INFORMATION FOR SEQ ID NO: 75:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1273 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:	
	CCTGGAACCA TCCAATCGEG CAAATCETGA AAGAGAATAC GCAACAACAA TTAAATGTAT	60
25	TGGAACACTA TATTCCAAAT GACCATCCAG CACTCGTTGA ATTAAAAATA TGGGAACGTT	120
	GGTTACATAA ACAAGGTTAC AAAGACATCC ATTTAGATAT TACTGCGCAC CACCTAGATC	180
30	CTATTACACA GGTTTATTTA TTCAATGTCA TTTTGCTGAA AATGAATCTC GAGTTTTAAC	240
	AGGTGGTTAT TACAAAGGAA GCATCGAAGG GTTTGGATTA GGATTAACAC TTTAAGTAAG	300
	GGAGTATGCA CAATGTTAAG AATCGCCATA GCCAAAGGAC GTCTAATGGA TAGTTTAATT	360
35	AACTATTTAG ATGTAATTGA ATATACGACA TTATCAGAAA CATTAAAAAA TAGAGAACGC	420
	CAATTATTAT TAAGTGTAGA TAATATTGAA TGCATTTTAG TAAAAGGAAG TGACGTGCCA	480
	ATCTATGTGG AACAAGGAAT GGCAGACATA GGCATTGTTG GTAGCGACAT ATTAGATGAG	540
40	CGCCAATATA ATGTTAATAA TTTGTTGAAT ATGCCTTTTG GAGCATGTCA TTTTGCGGTT	600
	GCAGCGAAAC CTGAAACGAC CAATTATCGT AAAATCGCAA CGAGTTATGT TCATACTGCT	660
	GAAACATATT TTAAATCAAA AGGTATTGAT GTCGAATTGA TTAAATTGAA TGGCTCTGTT	720
45	GAATTGGCCT GTGTTGTAGA TATGGTAGAC GGAATTGTCG ACATCGTTCA AACAGGTACT	780
	ACGCTAAAAG CGAACGGACT GGTTGAAAAG CAACATATTA GTGATATCAA TGCAAGATTA	840
	ATAACTAATA AAGCAGCTTA TTTTAAAAAA TCACAATTAA TAGAGCAATT TATTCGCTCT	900
50	TTGGAGGTGT CTATTGCCAA TGCTTAATGC ACAACAATTT TTAAATCAAT TTTCATTAGA	960
	AGCACCATTA GATGAGTCAT TGTATCCAAT TATTCGCGAT ATTTGTCAGG AAGTTAAAGT	1020

	TTTAGAAATT AGTCATGAMC AAATTAAAGC AGCATTTGAC ACATTAGATG AAAAAACAAA	1140
	ACAAGCATTA CAACAAAGTT ATGAAAGAAT TANAGCATAT CAAGAAAGTA TtaAACAGAC	1200
5	GAATCAACAG TTAGAAGAAT CAGTGGAGTG tTrTGAAATA TACCATCCmC taGaAAGTGT	1260
	CGGTATTTAT GTG	1273
	(2) INFORMATION FOR SEQ ID NO: 76:	
10 15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1308 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
20	GTTGATAAAT TAAAAATGTT TTTATCAGAT ATTCAAAGTT ACCAACAATA TAGTAAAGAT	60
	CATCCGGTGT ATCAGTTAAT TGATAAATTT TATAATGATC ATTATGTTAT TCAATACTTT	120
	AGTGGACTTA TTGGTGGACG TGGACGACGT GCAAATCTTT ATGGTTTATT TAATAAAGCT	180
25	ATCGAGTTTG AGAATTCAAG TTTTAGAGGT TTATATCAAT TTATTCGTTT TATCGATGAA	240
	TTGATTGAAA GAGGCAAAGA TTTTGGTGAG GAAAATGTAG TTGGTCCAAA CGATAATGTC	300
	GTTAGAATGA TGACAATTCA TAGTAGTAAA GGTCTAGAGT TTCCATTTGT CATTTATTCT	360
30	GGATTGTCAA AAGATTTTAA TAAACGTGAT TTGAAACAAC CAGTTATTTT AAATCAGCAA	420
	TTTGGTCTCG GAATGGATTA TTTTGATGTG GATAAAGAAA TGGCATTTCC ATCTTTAGCT	480
35	TCGGTTGCAT ATAGAGCTGT TGCCGArAAA GAACTTGTGT CAGAAGAAAT GCGATTAGTC	540
	TATGTAGCAT TAACAAGAGC GAAAGAACAA CTTTATTTAA TTGGTAGAGT GAAAAATGAT	600
	AAATCATTAC TAGAACTAGA GCAATTGTCT ATTTCTGGTG AGCACATTGC TGTCAATGAA	660
40	CGATTAACTT CACCAAATCC GTTCCATCTT ATTTATAGTA TTTTATCTAA ACATCAATCT	720
	GCGTCAATTC CAGATGATTT AAAATTTGAA AAAGATATAG CACAAATTGA AGATAGTAGT	780
	CGTCCGAATG TAAATATTTC AATTGTGTAC TTTGAAGATG TGTCTACAGA AACCATTTTA	840
45	GATAATGATG AATATCGTTC GGTTAATCAA TTAGAAACTA TGCAAAATGG TAATGAAGAT	900
	GTTAAAGCAC AAATTAAACA CCAACTTGAT TATCGATATC CATATGTAAA TGATACTAAA	960
	AAGCCCTCAA AACAATCTGT TTCTGAATTG AAAAGACAAT ATGAAACAGA AGAAAGTGGC	1020
50	ACAAGTTACG AACGAGTAAG GCAATATCGT ATCGGTTTTT CAACGTATGA ACGACCTAAA	1080
	TTTCTAAGTG AACAAGGTAA ACGAAAAGCG AATGAAATTG GTACGTTAAT GCATACAGTG	1140

	GATGGATTAA TCGATAAACA TATTATCGAA GCAGATGCGA AAAAAGATAT CCGTATGGAT	1260
	GAAATAATGA CATTTATCAA TAGTGATTAT ATTCGATATT GCTGAAGC	1308
5	(2) INFORMATION FOR SEQ ID NO: 77:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1431 base pairs(B) TYPE: nucleic acid	
10	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
,-	GATGCCATTN ATNNGTATGC AAGAAGTTGT TCCGGGTTCA GGTGGATTAC CAGTTGGTAC	60
	TGGTGGTAAG ACGTTACTAA TGCTTTCAGG CGGTATAGAC TCACCAGTTG CTGGGATGGA	120
20	AGTGATGAGA CGTGGCGTAA CAATTGAAGC GATTCATTTC CATAGTCCAC CATTTACAAG	180
	TGATCAAGCA AAAGAAAAAG TTATTGAATT GACACGTATT TTAGCTGAAC GTGTTGGACC	240
	AATTAAATTG CATATTGTAC CATTTACAGA ATTGCAAAAA CAGGTAAATA AAGTTGTACA	300
25	TCCAAGATAT ACAATGACTT CAACGAGACG TATGATGATG CGTGTTGCTG ATAAATTAGT	360
	ACATCAAATA GGGGCTTTAG CTATTGTAAA TGGTGAAAAC CTAGGGCAGG TAGCCAGTCA	420
	AACACTTCAT AGCATGTATG CAATTAATAA TGTAACTTCT ACTCCTGTAT TACGTCCTTT	480
30	ATTAACTTAC GATAAAGAAG AAATTATTAT TAAATCGAAA GAAATTGGTA CATTTGAAAC	540
	ATCTATTCAA CCATTTGAAG ATTGTTGTAC AATTTTCACC CCTAAAAATC CAGTAACCGA	600
35	ACCAAACTTT GATAAGGTAG TCCAATATGA AAGTGTCTTT GATTTTGAAG AGATGATTAA	660
-	TCGTGCTGTT GAAAATATTG AAACACTTGA AATAACTAGT GATTATAAAA CTATTAAAGA	720
	ACAGCAAACA AACCAATTAA TAAACGACTT TTTATAAATA AAATCCTAGA GTAAATTTAA	780
40	ACATAAGGGG ATGTTAAACT ATGGATTTGA ACTTAACGAT GATTATAATC ATAATTTTAT	840
	TTGGTTTTAT CGCGGCGTTT ATAGATTCGG TTGTAGGGGG TGGCGGTTTA ATTTCTACGC	900
	CAGCATTATT AGCAATCGGT CTACCACCAT CTGTGGCTTT AGGTACAAAT AAATTGGCAA	960
45	GTTCGTTTGG TTCTTTAACT AGTACGATAA AGTTTATAAG GTCCGGTAAA GTGGACTTAT	1020
	ATGTTGTTGC CAAATTATTT GGTTTTGTAT TTTTGGCATC TGCATGTGGC GCATATATTG	1080
	CAACGATGGT TCCGTCACAA ATATTGAAAC CTTTAATCAT CATTGCACTT TCGTCGGTGT	1140
50	TTATATTCAC ATTACTTAAA AAAGATTGGG GCAATACACG CACGTTTACT CAATTTACAT	1200
	TTAAGAAAGC CATAATATTT GCAGCACTTT TTATATTAAT CGGCTTTTAT GATGGATTTG	1260

TAAGTGCAGC AGGAAATGCT AAAGTTTTGA ACTTTGCTTC TAATATAGGT GCGCTTGTAT	1380
TATTTATGGT ATTAGGACAA GTAGATTATG TAATAGGTTT AATTATGGCT A	1431
(2) INFORMATION FOR SEQ ID NO: 78:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4403 base pairs	

(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(B) TYPE: nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

AATATTATTT TAAATTCAAT ATTTATTGGT GCATTTATTT TAAACTTATT ATTCGCCTTT 60 ACCATTATTT TCATGGAAAG ACGTTCTGCC AATTCTATCT GGGCTTGGTT ACTAGTCTTA 120 GTTTTCTTGC CTTTATTCGG CTTCATTTTA TACTTACTAT TAGGACGACA AATTCAACGT 180 GACCAAATTT TCAAAATTGA TAAGGAAGAT AAAAAAGGAT TAGAGTTAAT CGTTGATGAG 240 CAATTAGCTG CTTTAAAAAA TGAAAACTTT TCAAATTCCA ATTATCAAAT TGTAAAATTT 300 AAAGAAATGA TTCAAATGTT GTTATATAAT AACGCAGCAT TTTTAACAAC AGACAACGAT 360 TTATITITAT ACACAGACGG CCAAGAAAAA TTTGATGACC TAATACAAGA CATCCGTAAT 420 GCTACTGATT ATATTCATTT TCAGTACTAT ATTATTCAAA ATGATGAATT AGGTCGTACC 480 ATTITAAATG AACTIGGTAA AAAAGCGGAA CAAGGTGTAG AAGTTAAAAT TCTTTATGAT 540 GACATGGGTT CTCGTGGACT GCGTAAAAAA GGCTTACGCC CGTTTCGCAA TAAAGGTGGA 600 CATGCTGAAG CATTTTCCC ATCAAAATTA CCTTTAATTA ACTTGCGTAT GAACAATCGA 660 AACCATCGAA AAATTGTTGT AATAGATGGG CAAATTGGAT ATGTTGGTGG TTTTAATGTT 720 GGTGATGAGT ACTTAGGTAA ATCAAAAAAA TTCGGCTATT GGCGAGATAC GCATTTACGA 780 ATTGTCGGGG ATGCAGTGAA TGCATTGCAA TTACGATTTA TTCTAGATTG GAATTCACAA 240 GCCACACGTG ACCACATCTC CTATGATGAT CGTTATTTCC CAGATGTAAA TTCTGGTGGA 900 ACAATTGGCG TTCAAATAGC TTCTAGTGGT CCTGACGAAG AATGGGAACA GATTAAATAC 960 GGCTATTTGA AAATGATTTC ATCTGCTAAA AAATCGATTT ATATTCAATC TCCCTATTTC 1020 ATACCTGATC AAGCCTTTTT AGATTCTATT AAAATTGCGG CATTAGGTGG TGTTGATGTC 1080 AATATCATGA TTCCTAATAA ACCTGACCAT CCGTTTGTTT TTTGGGCTAC TTTAAAAAAT 1140 GCAGCATCCT TATTAGATGC CGGTGTTAAA GTATTTCACT ACGACAATGG CTTTTTACAC 1200 TCAAAAACAC TTGTTATAGA TGATGAAATT GCAAGTGTGG GAACAGCTAA TATGGACCAT 1260

55

5

10

15

20

25

30

35

40

45

	AAATTAAAAC	AAGCTTTTAT	AGATGATTTA	GCAGTATCTT	CTGAATTAAC	AAAAGCACGT	1380
	TATGCTAAGC	GAAGTCTTTG	GATTAAATTT	AAAGAAGGTA	TTTCACAATT	ATTGTCACCT	1440
5	ATCTTATAAA	ATAGAAATAT	GAGGAGTGTA	aCTTTAATGC	AACAATCAGA	CGTCATTAGT	1500
	GCTGCCAAAA	AATATATGGA	ATCTATTCAT	CAAAATGATT	ATACAGGCCA	TGATATTGCG	1560
10	CATGTATATC	GTGTCACTGC	TTTAGCTAAA	TCAATCGCTG	AAAATGAAGG	TGTTAATGAT	1620
,,	ACTTTAGTCA	TTGAACTCGC	ATGTTTGCTT	CATGATACCG	TTGACGAAAA	AGTTGTAGAT	1680
	GCTAACAAAC	AATATGTTGA	ATTGAAGTCA	TTTTTATCTT	CTTTATCACT	ATCAACCGAA	1740
15	GATCAAGAGC	ACATTTTATT	TATTATTAAT	AATATGAGCT	ATCGCAATGG	CAAAAATGAT	1800
	CATGTCACTT	TATCTTTAGA	AGGTCAAATT	GTCAGGGATG	CAGATCGTCT	TGATGCTATA	1860
	GGCGCTATAG	GTGTTGCACG	AACATTTCAA	TTTGCAGGAC	ACTTTGGTGA	ACCTATGTGG	1920
20	ACAGAACATA	TGTCACTAGA	TAAGATTAAT	GATGATTTAG	TTGAACAGTT	GCCACCATCT	1980
	GCAATTAAAC	ATTTCTTTGA	AAAATTACTT	AAGTTAGAAT	CTTTAATGCA	TACAGATACG	2040
	GCGAAGATGA	TTGCTAAAGA	ACGTCACGAC	TTTATGATGA	TGTACTTGAA	ACAGTTTTTT	2100
25	ACGGAATGGA	ATTGTCACGA	CTAGACATTG	AAGTTGTAGT	ATGATGATGC	GATGTAATGG	2160
	CGTGTTGTTG	TGGAAGCTTG	GTGTCATGCC	ATGTTACTTT	GATGTGTTGT	TGTGGGAGCT	2220
30	TGGTGACATG	TCATGCTACT	TTGATGTGCT	GGTACCACGA	TGCGTCTTGA	TGTAGTGCTA	2280
30	TGATGTGGCA	TTGCGGTGTT	ATGGTGTTAT	AGACAGGTTT	GGCGTTGATG	CCATGTTACT	2340
	TTGATGTGCT	GGTACCACGA	TGCGACTTGA	TGTAGTGCTA	TGATGTGGCA	TTGCGGTGTT	2400
35	ATGGTGTTAT	AGACCGGTTT	GATGTTGATG	CCATGTTACT	TTGATGTGCT	GGTGCTACGA	2460
	TGCGACTTGA	TGTAGTGCTA	TGATGTGGCG	TTGCGCTGTT	ATGGTGTTAT	AGCCAGGTTT	2520
	GGTGTTGATG	TCATGCCGTT	ACGATTCTAT	GATATGTTGT	TGGGACGTTG	CAATGTGTAT	2580
40	TATGCCGTTG	TGACGTTATT	ATTTCACACT	GTTACATGTA	TAAGTGAATT	GCTGTGGAAA	2640
	TTTGCGACAT	ATACTGCTAC	ACTGATGAAT	CATTGTGTCA	AGATGACATT	GCGATGAAGA	2700
	ATGACAACTC	TGTTATTAAC	CACTTTTTAC	ATACTGAAAA	CTCGTTAATA	TTATTTCAAA	2760
45	TAAAAACAGC	AGTAGGATGA	CTTTCACATT	TGAAATCATC	TTACTGCTGT	TTCTATTTAT	2820
	CACATATTGT	ATAATGTGAC	ACTAAGTTTC	GCTATTGAAG	CGAAAAATAA	TGTGCGCCCT	2880
50	ATAAAGTTAA	AATTATCTTC	AACTTTTAGG	GTGCACATTA	TTTGGACTTG	CTAAGGTTAT	2940
<i>5</i> 0	TTCTTTTTCT	TTTTAGACAC	AACTTGTGTG	TTTTTGCCTT	TTTTATTGct	GCCGCCGTTG	3000
	TGCTCTCTTT	CATACGCTTC	AATGAAAGGT	TGTACTTCTT	TTTTAGCGAC	TTTTTCATAA	3060

	CCAAGTGCTG	ATGCTGAGCT	TAATGAAATC	CAGATAATCA	TAATTGGTGA	AATGACCATC	3180
	ATCATGTAAC	CCATTTGACG	TTGTTCGTCT	GGCATCGTTT	TACTTGATAC	ATATGCTTGG	3240
5	ATAAAGTATA	AAACACCGGC	AATAATTGTA	ATCCAAATAT	CAGGACGTCC	TAAATCGAAC	3300
	CATAAGAAGT	GTGGATATTT	AAACAAACCA	TCTACAAGTT	GGTCTTTAAG	TACAAAGTAT	3360
10	AATCCCATGA	TGATTGGTAA	TTGGATTAGC	ATTGGTAAAC	AACCCAACAT	ACTCTTAATC	3420
,,,	GGGTTCATGT	CATACTTTTT	ATATACTTGC	ATTAATTCTT	GGTTTGCAGC	CATTTTTTCT	3480
	TCTTGTGTAC	GCGnCaCGTT	cACTTTTTCT	TGAATTTTTT	CAACTTCTGG	CTTTGCAACT	3540
15	TTCATTTTTT	GACGCATCAT	ATGACTATTT	TTATAGTTTG	ACAACATGAA	TGGTAATAAA	3600
	ATAATACGAA	TTACCAATAC	AAGGATAATA	ATAGCTAAAC	CATAATTGTC	GTTTAATAAG	3660
	TTATTTCCCA	ACCAATCCAA	TACATTTTTC	ATTGGATCTA	CGAATGTATT	GTAGAAAAAy	3720
20	CWCtACGTTT	TTCAGGTTTA	GAATAGTCAC	AACCAGCCAA	AAAGACCATA	ATACCTAAAA	3780
	ATAATGGTAG	TAACGCTTTT	TTCTTCATTT	TTCCACCTCT	ATCATTATAT	TCACATAGGA	3840
	TTTATTCTAT	CACATTAATG	AGTACGTATG	AAACAATAAG	TGGAAAAATT	TAACTAATTA	3900
25	TTAAAAAAAT	CTTTGAATCG	ATTAACAGTC	TTTTCAATAT	TTTCACTTTT	AGAAATGGCT	3960
	GAAATGACTG	AAATTCCATT	GGCACCTGCT	TCTACAATCG	GCGCCACATT	ATTAGTATTG	4020
30	ATACCGCCAA	TAGCTACAAT	CGGTAGTTGC	GGATTCATTT	CTTTAAACGT	TGCAATCATT	4080
	TCTGGACCTA	CTGGTATATG	CGCGTCATGC	TTCGACGGCG	TAGGATAGAT	TGGTCCAACA	4140
	CCTATATAAT	CMACATGAGT	TAAATCAGAT	TTTGCATACT	CATCTAAATC	ACTAATACTA	4200
35	AGTCCAATAA	TTTTATCAGT	GAAATATTGT	GCTATCTCTT	TGACTTTCGC	ATCATCTTGA	4260
	CCGACATGTA	TACCATCCGC	GTTAATTTCT	TTTGCCAAGG	ATACATCATC	ATTAACGATA	4320
	AAAGGCACAT	CATATTGATG	ACAGAGATGC	TGTAATTCTT	TAGCTAATAC	AAGTTTATCG	4380
40	TTTCCTTTTA	AAGCTGATTC	ACC				4403
	(2) INFORMA	TION FOR SE	Q ID NO: 79	:			
	(i) SE	QUENCE CHAR	ACTERISTICS	:			

(A) LENGTH: 1808 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

50

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

TGGAnCCAAT ATTAGAAATG ATTAAAACAT TAACAGGTAT TAATAGTCCT TCAGGAGNCA

55

	TAACAAATAA	AGGTGCGTTA	TTAATAACAG	TGCCAGGCAA	AAATGATGAA	GTACAACGCT	180
-	GTATTACTGC	TCATGTTGAT	ACTTTAGGTG	Caatggttaa	AGAAATTAAA	GAAGATGGTC	240
5	GCTTaGCAAT	AGAATTAATT	GGAGGATTCA	CGTATAACGC	GATTGAGGGT	GAATATTGCC	300
	AAATTAAAAC	TGATGCTGGT	CAAATATATA	CAGGAACAAT	TTGTCTGCAT	GAAACAAGTG	360
10	TTCATGTATA	TAGAAATAAT	CATGAAATAC	CTAGAGATCA	AAAGCATATG	GAAATAAGAA	420
	TTGATGAAGT	AACTACATCA	GAAGAAGATA	CAAAGAGTTT	AGGTATTTCA	GTAGGTGATT	480
	TTGTTAGCTT	TGATCCACGT	ACAGTTATCA	CGTCATCAGG	TTTTATTAAA	TCTCGTCATT	540
15	TAGATGATAA	AGCTAGCGTA	CGgTtGATAC	TACAATTACT	AAAGAAATTA	AAAGAAGAGC	600
	AAATAATATT	ACCACATACA	ACGCAATTTT	ATATTTCTAA	TAACGAAGAA	ATAGGTTACG	660
	GTGCAAATGC	ATCAATTGAT	TCGAAAATCA	AAGAATATAŢ	TGCATTAGAT	ATGGGCGCGT	720
20	TGGGAGACGG	TCAAGCATCG	GATGAATATA	CAGTTTCTAT	TTGTGCCAAA	GATGCTTCAG	780
	GTCCATATCA	TAAGCAATTG	AAATCGCACC	TAGTTAATCT	TTGCAAAATA	AATAACATTC	840
	CATATAAAGT	AGACATATAT	CCATATTATG	GTTCAGATGC	TTCAGCAGCT	TTACATGCTG	900
25	GTGCGGATAT	CAGACATGGT	TTATTTGGCG	CTGGCATTGA	ATCATCTCAT	GCAATGGAAC	960
	GAACACATAT	TGATTCTATT	AAAGCGACAG	AGAAATTACT	ATATGCATAT	TGCTTATCAC	1020
30	CAATTGAGTA	AACAATTAGT	GTTGACAAAT	GTGaACGACC	TATGTAATAT	AATGAACTAT	1080
	TTAATAAAAA	AGAATTTTCT	aaagaaatag	TAGCAGATAT	GAAACGTAGC	AAATAGAAAG	1140
	CTAATGGGTG	ATGGGAATTA	GCACGCCATA	TCTTGTGAAT	TGGACTTTGG	AAAACAATTG	1200
35	AATGAGTTTT	GAAAGTGAAC	ATGAATTATG	TTAACTAAGG	TGGCACCACG	GTAACGCGTC	1260
	CTTACAGGTA	TATGCGTTAT	GTGGTGTCTT	TTTATTTAGA	CAAAATGTAG	TAGTTAATTA	1320
	AAGGTAGCAA	CAGAAAGTTA	GTGGATGATG	TGAACTAACA	CCGAGATTAA	TGAAATTGGG	1380
40	TTTTGTCTGC	AACAGAAAAA	TTATATATAG	TAAAGAGTGA	ACTATGAATA	TTTCGAATAT	1440
	TCGGTTAATT	TAGGTGGTAC	CACGCGTCAC	nTCCTTTATA	TTGATAAGGA	TGCTGGCGCT	1500
	TTTTTGAAAG	GAGCGTATAG	AATGGATATA	TTTTATAAAA	AAATAAAAGC	AAATGTAACG	1560
45	CCCGAAGTTT	TAGCACAACT	TCATTCCAAG	AAGaTCATTT	TGGAAAGTAC	AAATCAACAA	1620
	CAAACTAAAG	GTCGCTATTC	AGTTGTTATT	TTTGATATTT	ATGGCACTTT	AACTTTAGAT	1680
50	AATGATGTAT	TATCAGTAAG	TACTTTAAAA	GAATCGTATC	AAATCACTGA	AAGACCGTAC	1740
	CATTATTTAA	CGACTAAnAT	AAATGAAGAC	TACCATAATA	TTCCAAGATG	AGGCAACTTA	1800
	AGTCATTA						1808

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1320 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

TGGTCGTCAA	TTTCTTGATT	ATATCTATAA	TCCTCATTTT	CAATATTAGA	GTCTGTAGAA	60
TCATCGATAT	TATTATCATT	CGCATGACTA	GAAGCAGAAT	CATTATTTTT	ATCATTGCTT	120
TCTTCTTTTT	TGAAGTCTTT	ATTTATCAAG	TAAATTTCTT	CATCAAAATC	AGCTTGTTGA	180
GATGTATCAT	CTTTATTTTG	ATTAGAAAAA	TGTGTAGCCT	TTGATCTTTT	TCTTTGCCGT	240
CTTTTCTTAG	ATGTATTCCT	CGTAAATAAT	TCTAATTCAT	CTTTATCTTC	ATTTGATTCT	. 300
TGTTGATCGT	TCTTCGTTTT	ATCATCCATC	AATACTCACA	CCCTTTAATA	AGATGGTAAA	360
TGGGCACGGA	ATCTTTCAAT	AAATTTCTCT	CCACGCTCTT	CAAAAGTACT	ATATTGATCC	420
CAACTCGCAC	AAGCAGGTGA	CAATAATACA	ACATCATTTG	GTTCTATAAT	ATCTTGTACT	480
TTATCAACAG	CGTCTTCGAC	ATTGTTCGCT	TCAATGACCG	ATTTCCCTTG	ACTATTACCT	540
AGTTTAGCAA	ACTTAGCTTT	CGTTTGTCCG	AATACAACCA	TCGCGCGAAC	ATTTTCCATA	600
TAAGGAATGA	GTTCGTCAAA	TTCATTCCCT	CGATCCAAAC	CACCACATAA	CCAAATGATT	660
GGTTGATTAA	ATGAATTTAA	GGCAAACTGT	GTTGCTAGCG	TGTTTGTTGC	TTTGGAATCA	720
TTATAATATT	TATTAGTTCT	ATTAGTACCA	ACATATTGCA	ATCTATGCTC	TATTCCTGAA	780
AATGTAGTTA	AACTATCAAT	AATTGCtTTA	ATAGGTACAC	CAGCanAATA	CAAGCAAGCA	840
CAGCTGCTAA	TATATTTCTA	AATTATGTTC	ACCAGGCAAT	ACTAGATCTT	CAGTGTTAAT	900
AATaCGAACA ·	CCTTTATAAA	CGATAAAACC	ATCTTLAATA	TAAaTACCAT	CArCTtCTTG	960
TTGAGTTGAG	AAATACAATG	TCTTAGCTTT	TAATTCTTCC	GACTCTATCA	CTTGTCTTTG	1020
ATGATAATTA	CAAATCAAAT	AATCCTCTTC	CGTTTGATTT	TTATATATTT	GCTTTTTAGC	1080
ATTTTGATAG	TTTTCTAAAT	TTTCATGGTA	ATCTAGATGC	GCCGAATAAA	TGTTAGTAAT	1140
TATAGCAATG	TGTGGTTTAT	ACTTTTCGAT	TCCAAGTAAC	TGGAATGACG	ACAACTCTGT	1200
AACTAAATAA	TCTGTAGGCT	TTACTTCTTG	TGCTACTTTA	GATGCAACAT	AACCAATATT	1260
GCCGGATAAT	CTTCCAGTTA	AGCGACTTTT	TTTAAACATA	TCTCCAATTA	GAGAAGTAAC	1320

(2) INFORMATION FOR SEQ ID NO: 81:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4280 base pairs

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81: TTTACACCAA TCAAAAAATC GAACTGATAT AAATAAGTAC AAAGCTTATC TATCAATCCG 60 ATTTAGTTAT AAAACAAAAA AAGCCACAGT AATGTGGCTT TTTGTTATAT TCAGTATCAA 120 10 AATGGTATCA ATAGCCATTT TCGGAAGTCA AGAATGGCTT AACAACGCGG TTTAAAGCTA 180 TCCAATACTA CCTTCCATTT CGAACTTGAT TAAACGGTTC ATTTCGACCG CGTATTCCAT 240 15 TGGAAGTTCT TTTGTAAATG GTTCGATGAA TCCCATAACA ATCATTTCTG TCGCTTCTTC 300 TTCAGAAATA CCACGACTCA TTAGATAGAA TAATTGTTCT TCAGAAACTT TTGAAACCTT 360 GGCTTCATGT TCTAATGATA TTTGATCGTT GAATACTTCG TTATATGGAA TTGTATCTGA 420 20 TGTTGATTCG TTATCTAAGA TTAATGTATC ACATTCAATA TTTGAACGAG CACCTTTTGC 480 TTTACGTCCA AAATGAACAA TACCGCGATA AATAACTTTA CCACCATTTT TAGAAATAGA TTTAGAAACA ATTGTAGAAG ATGTATTAGG TGCTTTATGA ATCATTTTAG CACCGGCATC 600 25 TTGAACTTGT CCTTTACCAG CAAATGCAAT AGATAATGTA CTACCTTTTG CACCTTCACC 660 TAAAAGAACA CAGTTTGGAT ATTTCATCGT TAACTTAGAA CCTAAGTTAC CATCTACCCA 720 TTCCATATTT CCGTTTTCAT AAACAAAAGT ACGTTTTGTA ACTAAATTGT ATACATTGTT 780 30 CGCCCAGTTT TGAATCGTAG TATAACGAAC GTGCGCATCT TTATGCACAA TGATTTCCAC 840 AACAGCAGAG TGTAAAGAAC TAGTTGTATA AACTGGTGCA GTACAACCTT CTACGTAATG 900 TACAGAAGCA CCTTCATCAG CAATGATTAA TGTACGTTCA AATTGACCCA TGTTCTCAGA 35 960 GTTAATACGG AAATAAGCTT GTAGTGGCGT ATCTAGTTTG ATATTTTTAG GTACATAAAT 1020 GAAGGAACCA CCTGACCATA CTGCTGAGTT TAACGCCGCA AATTTGTTAT CTGCTGCAGG 1080 40 TACTACAGAA GCAAAGTATT TTTTGAATAA TTCTTCATTT TCTTGTAAAG CACTATCTGT 1140 ATCTTTAAAG ATAATACCTT TTTCTTCAAG TTCTTTTTCC ATATTATGGT AAACAACTTC 1200 AGATTCATAT TGAGCAGAAA CACCAGCTAA ATATTTTTGT TCAGCTTCAG GAATTCCTAA 1260 45 TTTATCGAAA GTTCTTTTAA TTTCTTCTGG CACTTCATCC CATGAACGTT CAGCTTGTTC 1320 TGAAGGCTTT ACATAGTAAG TAATGTCATC GAAATTCAAT TCTGATAAGT CGCCACCCCA 1380 TTGAGGCATT GGCATTTTAT AAAACAATTT TAATGATTTA AGACGGAAAT CTAACATCCA 1440 50 TTCCGGCTCA TTTTTCATGT TAGAAATTTC TCTAACGATA TTCTCAGTTA AACCACGTTC 1500 TGATCTGAAA ATGGACACAT CATCGTCGTG GAATCCATAT TTATAATCCC CAACATCAGG 1560

	TTTAATTCAT	GATGTAAACC	ATATTATAAC	AATGACATGA	CATCTTATAA	AAATTTTTAT	1680
	ACTTTTATAT	GTCTAATATC	AAAATTATCT	ATGATTAACA	GCATTCTATT	CTTCTTCAGT	1740
5	CGTACCTTCT	GCTTTACCTT	CTTTAGCAAC	AGTACCTTTT	TCCAATGCTT	TCCAAGCTAA	1800
	TGTGGCACAT	TTAATACGAG	CTGGGAATTG	AGATACACCT	TGCAATGCTT	CAATATCTCC	1860
10	CATTTCTTCT	GTAATCACAT	AGTCTTCACC	AAGCATCATT	TTCGTAAATT	CTTGGCTCAT	1920
10	TTGCATTGCT	TCTCCAAGTG	AATGACCTTT	AACAGCTTGT	GTCATCATCG	ATGCACTTGC	1980
	CATTGAAATC	GAACAACCTT	CACCTTCAAA	CTTAGCATCT	TTTATAATGC	CGTCTTCTAT	2040
15	ATCAAATGTT	AGTCGTATAC	GGTCACCGCA	TGTCGGGTTA	TTCATATCTA	CTGTCATAGA	2100
	CCCGTTATCT	AATACACCTT	TATTTCTAGG	ATTTTTATAA	TGATCCATAA	TGACAGATCT	2160
	ATATAATTGA	TCTAGATTAT	TAAAATTCAT	AAGAGAAAA	CTCCTTCGTT	TGTTTCAAGG	2220
20	CATTTATTAA	CTGATCAACG	TCTTCTTTCG	TGTTGTATAT	ATAAAAACTC	GCTCTAGCTG	2280
	TTGAAGACAC	ATTTAACCAT	TTCATTAACG	GTTGCGCACA	ATGATGCCCA	GCTCTAACCG	2340
	CTACACCTTC	TGTATCTACG	GCTGTAGCAA	CATCGTGTGG	ATGTACATCT	TGTAAATTAA	2400
25	ACGTTATTAC	ACCTGCACGA	CGATCCTTTG	GCGGGCCATA	AATTTCAATT	CCTTCAATTG	2460
	CAGACATTTG	CTCATAAGCA	TATATCGTTA	ATTCTTGTTC	ATATTTATGA	ATTGCATCAA	2520
	AACCTATGCG	TTCTAAATAG	CGAATAGCTT	CTGCAAGCCC	AATTGCTTGA	GCAATTAATG	2580
30	GAGTACCCGC	CTCAAATTTA	GTAGGTAAAT	CAGCCCATGT	TGCATCATAC	TTACTTACAA	2640
	AATCAATCAT	GTCGCCACCG	AACTCAATCG	GTTCCATTTT	TTGTAGTAAC	TCACGTTTAC	2700
35	CAAATAATAC	GCCAATACCT	GTTGGTCCAA	GCATTTTATG	ACCACTAAAA	СТАТАААААТ	2760
	CAGCATTCAT	TTCTTGCATA	TCAAGTTTCA	TATGTGGTGC	TGctTGCGCC	CCATCAACAC	2820
	TGATAATTGC	ACCATGTTGA	TGAGCTATTT	CTGCAATGGT	TTTAACATCA	TTAATTGTAC	2880
10	CGAGCACATT	AGATATATGT	GCAATAGCAA	CGATCTTTGT	TTTATCATTA	ATCGTTTGCT	2940
	TAATATCCTC	GATGTTTAAT	TCACCGTCAG	CTGTCATTGG	TATAAATTTC	AATGTCGCAT	3000
	TTTTACGCTT	TGCTAACTGT	TGCCAAGGAA	CAATATTGGC	ATGATGTTCC	ATTTCAGTGA	3060
15	CAACAATTTC	ATCGCCCTCT	TCAACATTTG	CATCACCATA	GCTATGTGCT	ACAAGGTTAA	3120
	TCGACGCAGT	TGTTCCGCGT	GTAAAAATGA	TTTCTTCAAA	ATACTTCGCA	TTAATAAAAC	3180
	GACGAACGGT	TTCACGGGCA	TTTTCATAAC	CATCAGTTGC	CAATGATCCT	AATGTATGAA	3240
50	CACCACGATG	AACGTTTGAA	TTATAACGCT	TGTAGTAATC	TTCTAAAACA	TTTAACACTT	3300
	GCACAGGCGT	TTGACTTGTC	GCTGTTGAAT	CAAGATATGC	TAAACGTTTC	ССУДТСУСТТ	3360

	CTTCATTCAC GACCTTTCTT AAATAAAAAT CCTAATCATT TAAATACTGA CGTTGTATTA	3480
	GTCTTATACC AATATCGACA GTCTATATCT ATTACAAACT TTTATTTTCA AAATATTATT	3540
5	TAGAAACTTT GCGTTCAATT ACTTCTCTCA ATTGACGTTT AACGTCTTCG ATAGGTAATT	3600
	CACGTACTAC TGGATCTAAG AAACCATGTA TAACAAGACG TTCCGCTTCT CTTTGAGAAA	3660
10	TACCACGACT CATTAAATAG TAAAGTTGAT CTGGATCAAC ACGACCTACT GATGCAGCAT	3720
70	GACCAGCTTG TACATCATCT TCATCAATTA ATAAAATAGG ATTCGCGTCA CCACGAGCAT	3780
	GTTCAGATAA CATTAATACA CGTGATTCCT GATTAGCAAT TGATTTAGTT CCACCATGCT	3840
15	TAATGTAGCC GATACCATTA AATACAGACG ATGCATGTTC TTTCATAACA CCATGTTTAA	3900
	GGATATAACC ATCTGTTTCT TTACCATATT GTACGATTTT AGATGTTAGA TTAATTTTTT	3960
	GTTCGCCTGT ACCTACAACT ACTGATTTAA GTGAACTTGT TGAACGATCA CCAAATAAAT	4020
20	TTGTTGTATT ATCAATAATT TGGCTACCCT CATTCATTAA ACCTAGTGCC CAATTAATTG	4080
	AGGCATCCGC TTCAGTAATA CCACGTCGAA TGATATGACC TGTAAAGCCT TTATCCATAT	4140
	AGTCCACTGA GCCATATGTG ATATTTGAAT TTGCACCAGC AATCACTTCA GAAATAATAT	4200
25	TLAATTGATT TCCTTCACCA GATGCATTTG mTAAGTAATT TTCAACATAT GTGACTTCGG	4260
	CGCTTTCTTC AGTAACGATG	4280
	(2) INFORMATION FOR SEQ ID NO: 82:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35	· · · · · · · · · · · · · · · · · · ·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 82:	
40	TCnGACTCGA ACGGTGMAAC TAttCCGTTG TAATTCCGGA GGAASCAAGG TATGCCCATC	60
	TGCaAAGAAA gaATGsAATG AACTTTTTGG AAATGTAGAA GTGGTAAATA AAGATAAAGG	120
	ATATTACATT CTGAGAAGTA TAAAAGCTTG AAATGAAATG	180
45	TAATGTAAAA ATTTATGTTC AATAAGTGTG TACTTTTACG TTAAATAGAT AAGTTAATTA	240

AGAATAAATA TAGAATCGAA AATGGTGTCA TCATTAGTGT TGCCGTTTTC TTTTTGTCTT

TTTATTAATA TGCTTATGGT ATTTAGCTAA AAGCGGATCA CATAATTTTT GAGGGGTGAA

TCTGTTTGGC AGGTCAAGTT GTCCAATATG GAAGACATCG TAAACGTAGA AACTACGCGA

GAATTTCAGA AGTATTAGAA TTACCAAACT TAATAGAAAT TCAAACTAAA TCTTACGAGT

300

360

420

480

55

	CTGGTAATTI	GTCATTAGAG	TTTGTGGATT	ACCGTTTAGG	AGAACCAAAA	TATGATTTAG	600
	AAGAATCTAA	AAACCGTGAC	GCTACTTATG	CTGCACCTCT	TCGTGTAAAA	GTGCGTCTAA	660
5	TCATTAAAGA	AACAGGAGAA	GTTAAAGAAC	AAGAAGTCTT	' TATGGGTGAT	TTCCCATTAA	720
	TGACTGATAC	AGGTACGTTC	GTTATCAATG	GTGCAGAACG	TGTAATCGTA	TCTCAATTAG	780
	TTCGTTCACC	ATCCGTTTAT	TTCAATGAAA	AAATCGACAA	AAATGGTCGT	GAAAACTATG	840
10	ATGCAACAAT	TATTCCAAAC	CGTGGTGCAT	GGTTAGAATA	TGAAACAGAT	GCTAAAGATG	900
	TTGTATACGT	ACGTATTGAT	AGAACACGTA	AACTACCATT	AACAGTATTG	TTACGTGCAT	960
15	TAGGTTTCTC	AAGCGACCAA	GAAATTGTTG	ACCTTTTAGG	TGACAATGAA	TATTTACGTA	1020
	ATACTTTAGA	GAAAGACGGC	ACTGAAAACA	CTGAACAAGC	GTTATTAGAA	ATCTATGAAC	1080
	GTTTACGTCC	AGGTGAACCA	CCAACTGTTG	AAAATGCTAA	AAGTCTATTG	TATTCACGTT	1140
20	TCTTTGATCC	AAAACGCTAT	GACTTAGCAA	GCGTGGGTCG	TTATAAAACA	AACAAAAAT	1200
	TACATTTAAA	ACATCGTTTA	TTTAATCAAA	AATTAGCTGA	GCCAATTGTA	AATACTGAAA	1260
	CTGGTGAAAT	TGTAGTTGAA	GAAGGTACAG	TGCTTGATCG	TCGTAAAATC	GACGAAATCA	1320
25	TGGATGTACT	TGAATCAAAT	GCAAACAGCG	AAGTGTTTGA	ATTGCATGGT	AGCGTTATAG	1380
	ACGAGCCAGT	AGAAATTCAA	TCAATTAAAG	TATATGTTCC	TAACGATGAT	GAAGGTCGTA	1440
	CGACAACTGT	AATTGGTAAT	GCTTTCCCTG	ACTCAGAAGT	TAAATGCATT	ACACCAGCAG	1500
30	ATATCATTGC	TTCAATGAGT	TACTTCTTTA	ACTTATTAAG	CGGTATTGGA	TATACAGATG	1560
	ATATTGACCA	TTTAGGTAAC	CGTCGTTTAC	GTTCTGTAGG	TGAATTACTA	CAAAACCAAT	1620
05	TCCGTATCGG	TTTATCAAGA	ATGGAAAGAG	TTGTACGTGA	AAGAATGTCA	ATTCAAGATA	1680
35	CTGAGTCTAT	CACACCTCAA	CAATTAATTA	ATATTCGACC	TGTTATTGCA	TCTATTAAAG	1740
	AATTCTTTGG	TAGCTCTCAA	TTATCACAAT	TCATGGACCA	AGCAAACCCA	TTAGCTGAGT	1800
40	TAACGCATAA	ACGTCGTCTA	TCAGCATTAG	GACCTGGTGG	TTTAACACGT	GAACGTGCTC	1860
	AAATGGAAGT	ACGTGACGTT	CACTACTCTC	ACTATGGCCG	TATGTGTCCA	ATTGAAACAC	1920
	CTGAGGGACC	AAACATTGGA	TTGATTAACT	CATTATCAAG	TTATGCACGT	GTAAATGAAT	1980
45	TCGGCTTTAT	TGAAACACCA	TATCGTAAAG	TTGATTTAGA	TACACATGCT	ATCACTGATC	2040
	AAATTGACTA	TTTAACAGCT	GACGAAGAAG	ATAGCTATGT	TGTAGCACAA	GCAAACTCTA	2100
	AATTAGATGA	AAATGGTCGT	TTCATGGATG	ATGAAGTTGT	ATGTCGTTTC	CGTGGTAACA	2160
50	ATACAGTTAT	GGCTAAAGAA	AAAATGGATT	ATATGGATGT	ATCGCCGAAG	CAAGTTGTTT	2220
	CAGCAGCGAC	Agcatgtatt	CCATTCTTAG	AAAATGATGA	CTCAAACCGT	GCATTGATGG	2280

	CAGGTATGGA	ACACGTTGCA	GCACGTGATT	CTGGTGCGGC	TATTACAGCT	AAGCACAGAG	2400
	GTCGTGTTGA	ACATGTTGAA	TCTAATGAAA	TTCTTGTTCG	TCGTCTAGTT	GAAGAGAACG	2460
5	GCGTTGAGCA	TGAAGGTGAA	TTAGATCGCT	ATCCATTAGC	TAAATTTAAA	CGTTCAAACT	2520
	CAGGTACATG	TTACAACCAA	CGTCCAATCG	TTGCAGTTGG	AGATGTTGTT	GAGTATAACG	2580
10	AGATTTTAGC	AGATGGACCA	TCTATGGAAT	TAGGAGAAAT	GGCATTAGGT	AGAAACGTAG	2640
	TAGTTGGTTT	CATGACTTGG	GACGGTTACA	ACTATGAGGA	TGCCGTTATC	ATGAGTGAAA	2700
	GACTTGTGAA	AGATGACGTG	TATACTTCTA	TTCATATTGA	AGAGTATGAA	TCAGAAGCAC	2760
15	GTGATACTAA	GTTAGGACCT	GAAGAAATCA	CAAGAGATAT	TCCTAATGTT	TCTGAAAGTG	2820
	CACTTAAGAA	CTTAGACGAT	CGTGGTATCG	TTTATATTGG	TGCAGAAGTA	AAAGATGGAG	2880
	ATATTTTAGT	TGGTAAAGTA	ACGCCTAAAG	GTGTAACTGA	GTTAACTGCC	GAAGAAAGAT	2940
20	TGTTACATGC	AATCTTTGGT	GAAAAAGCAC	GTGAAGTTAG	AGATACTTCA	TTACGTGTAC	3000
	CTCACGGCGC	TGGCGGTATC	GTTCTTGATG	TAAAAGTATT	CAATCGTGAA	GAAGGCGACG	3060
	ATACATTATC	ACCTGGTGTA	AACCAATTAG	TACGTGTATA	TATCGTTCAA	AAACGTAAAA	3120
25	TTCATGTTGG	TGATAAGATG	TGTGGTCGAC	ATGGTAACAA	AGGTGTCATT	TCTAAGATTG	3180
	TTCCTGAAGA	AGATATGCCT	TACTTACCAG	ATGGACGTCC	GATCGATATC	ATGTTAAATC	3240
	CTCTTGGTGT	ACCATCTCGT	ATGAACATCG	GACAAGTATT	AGAGCTACAC	TTAGGTATGG	3300
30	CTGCTAAAAA	TCTTGGTATT	CACGTTGCAT	CACCAGTATT	TGACGGTGCA	AACGATGACG	3360
	ATGTATGGTC	AACAATTGAA	GAAGCTGGTA	TGGCTCGTGA	TGGTAAAACT	GTACTTTATG	3420
35	ATGGACGTAC	AGGTGAACCA	TTCGATAACC	GTATTTCAGT	AGGTGTAATG	TACATGTTGA	3480
	AACTTGCGCA	CATGGTTGAT	GATAAATTAC	ATGCGCGTTC	AACAGGACCA	TATTCACTTG	3540
	tTAÇÃCAACA	ACCACTTGGC	GGTAAAGCGC	AATTCGGTGG	ACAACGTTTT	GGTGAGATGG	3600
40	AGGTATGGGC	ACTTGAAGCA	TATGGTGCTG	CATACACATT	ACAAGAAATC	TTAACTTACA	3660
	AATCCGATGA	TACAGTAGGA	CGTGTGAAAA	CATACGAGGC	TATTGTTAAA	GGTGAAAACA	3720
	TCTCTAGACC	AAGTGTTCCA	GAATCATTCC	GAGTATTGAT	GAAAGAATTA	CAAAGTTTAG	3780
45	GTTTAGATGT	AAAAGTTATG	GATGAGCAAG	ATAATGAAAT	CGAAATGACA	GACGTTGATG	3840
	ACGATGATGT	TGTAGAACGC	AAAGTAGATT	TACAACAAAA	TGATGCTCCT	GAAACACAAA	3900
	AAGAAGTTAC	TGATTAATAC	GCAATTTACA	AAACAGGCAA	AAAGATACTA	AGCTGAATTT	3960
50	TATTGATGAT	TCAGTTTAGT	ACTTTAAGCC	АТТТТАААТА	AATGCAAATC	AATCAAATAG	4020
	СРСРССТРУТ	СТАВАТТСЬВ	CCACCTACCC	ביייי באייים	አጥርጥልልልጥ ልል	ጥጥጥር ሶልጥጥልጥ	4080

	AAACCTGAAA	CAATCAACTA	CCGTACATTA	AAACCTGAAA	AAGATGGTCT	ATTCTGTGAA	4200
	AGAATTTTCG	GACCTACAAA	AGACTGGGAA	TGTAGTTGTG	GTAAATACAA	ACGTGTTCGC	4260
5	TACAAAGGCA	TGGTCTGTGA	CAGATGTGGA	GTTGAAGTAA	СТАААТСТАА	AGTACGTCGT	4320
	GAAAGAATGG	GTCACATTGA	ACTTGCTGCT	CCAGTTTCTC	ACATTTGGTA	TTTCAAAGGT	4380
10	ATACCAAGTC	GTATGGGATT	ATTACTTGAC	ATGTCACCAA	GAGCATTAGA	AGAAGTTATT	4440
,0	TACTTTGCTT	CTTATGTTGT	TGTAGATCCA	GGTCCAACTG	GTTTAGAAAA	GAAAACTTTA	4500
	TTATCTGAAG	CTGAATTCAG	AGATTATTAT	GATAAATACC	CAGGTCAATT	CGTTGCAAAA	4560
15	ATGGGTGCAG	AAGGTATTAA	AGATTTACTT	GAAGAGATTG	ATCTTGACGA	AGAACTTAAA	4620
	TTGTTACGCG	ATGAGTTGGA	ATCAGCTACT	GGTCAAAGAC	TTACTCGTGC	AATTAAACGT	4680
	TTAGAAGTTG	TTGAATCATT	CCGTAATTCA	GGTAACAAAC	CTTCATGGAT	GATTTTAGAT	4740
20	GTACTTCCAA	TCATCCCACC	AGAAATTCGT	CCAATGGTTC	AATTAGATGG	TGGACGATTT	4800
	GCAACAAGTG	ACTTAAACGA	CTTATACCGT	CGTGTAATTA	ATCGAAATAA	TCGTTTGAAA	4860
	CGTTTATTAG	ATTTAGGTGC	ACCTGGTATC	ATCGTTCAAA	ACGAAAAACG	TATGTTACAA	4920
25	GAAGCCGTTG	ACGCTTTAAT	TGATAATGGT	CGTCGTGGTC	GTCCAGTTAC	TGGCCCAGGT	4980
	AACCGTCCAT	TAAAATCTTT	ATCTCATATG	TTAAAAGGTA	AACAAGGTCG	TTTCCGTCAA	5040
	AACTTACTTG	GTAAACGTGT	TGACTATTCA	GGACGTTCAG	TTATTGCAGT	AGGTCCAAGC	5100
30	TTGAAAATGT	ACCAATGTGG	TTTACCAAAA	GAAATGGCAC	TTGAACTATT	TAAACCATTC	5160
	GTAATGAAAG	AATTAGTTCA	ACGTGAAATT	GCAACTAACA	TTAAAAATGC	GAAGAGTAAA	5220
35	ATCGAACGTA	TGGATGATGA	AGTTTGGGAC	GTATTGGAAG	AAGTAATTAG	AGAACATCCT	5280
33	GTATTACTTA	ACCGTGCACC	AACACTTCAT	AGACTTGGTA	TTCAAGCATT	TGAACCAACT	5340
	TTAGTTGAAG	GTCGTGCGAT	TCGTCTACAT	CCACTTGTAA	CAACAGCTTA	TAACGCTGAC	5400
40	TTTGACGGTG	ACCAAATGGC	GGTTCACGTT	CCTTTATCAA	AAGAGGCACA	AGCTGAAGCA	5460
	AGAATGTTGA	TGTTAGCAGC	ACAAAACATC	TTGAACCCTA	AAGATGGTAA	ACCTGTAGTT	5520
	ACACCATCAC	AAGATATGGT	ACTTGGTAAC	TATTACCTTA	CTTTAGAAAG	AAAAGATGCA	5580
45	GTAAATACAG	GCGCAATCTT	ТААТААТАСА	AATGAAGTAT	TAAAAGCATA	TGCAAATGGC	5640
	TTTGTACATT	TACACACTAG	AATTGGTGTA	CATGCAAGTT	CGTTCAATAA	TCCAACATTT	5700
	ACTGAAGAAC	AAAACAAAAA	GATTCTTGCT	ACGTCAGTAG	GTAAAATTAT	ATTCAATGAA	5760
50	ATCATTCCAG	ATTCATTTGC	TTATATTAAT	GAACCTACGC	AAGAAAACTT	AGAAAGAAAG	5820
	*******	Camammoam	003.00003.03	3 000000 a a a a a a			

	GAAGTATTCA	ACAGATTTAG	CATCACTGAT	ACATCAATGA	TGTTAGACCG	TATGAAAGAC	6000
	TTAGGATTCA	AATTCTCATC	TAAAGCTGGT	ATTACAGTAG	GTGTTGCTGA	TATCGTAGTA	6060
5	TTACCTGATA	AGCAACAAAT	ACTTGATGAG	CATGAAAAAT	TAGTCGACAG	AATTACAAAA	6120
	CAATTCAACC	GTGGTTTAAT	CACTGAAGAA	GAAAGATATA	ATGCAGTTGT	TGAAATTTGG	6180
10	ACAGATGCAA	AAGATCAAAT	TCAAGGTGAA	TTGATGCAAT	CACTTGATAA	AACTAACCCA	6240
10	ATCTTCATGA	TGAGTGATTC	AGGTGCCCGT	GGTAACGCAT	CTAACTTTAC	ACAGTTAGCA	6300
	GGTATGCGTG	GATTGATGGC	CGCACCATCT	GGTAAGATTA	TCGAATTACC	AATCACATCT	6360
15	TCATTCCGTG	AAGGTTTAAC	AGTACTTGAA	TACTTCATCT	CAACTCACGG	TGCACGTAAA	6420
	GGTCTTGCCG	ATACAGCACT	TAAAACAGCT	GACTCAGGAT	ATCTTACTCG	TCGTCTTGTT	6480
	GACGTGGCAC	AAGATGTTAT	TGTTCGTGAA	GAAGACTGTG	GTACTGATAG	AGGTTTATTA	6540
20	GTTTCTGATA	TTAAAGAAGG	TACAGAAATG	ATTGAACCAT	TTATCGAACG	TATTGAAGGT	6600
	CGTTATTCTA	AAGAAACAAT	TCGTCATCCT	GAAACTGATG	AAATAATCAT	TCGTCCTGAT	6660
	GAATTAATTA	CACCTGAAAT	TGCTAAGAAA	ATTACAGATG	CTGGTATTGA	ACAAATGTAT	6720
25	ATTCGCTCAG	CATTTACTTG	TAACGCACGA	CATGGTGTTT	GTGAAAAATG	TTACGGTAAA	6780
	AACCTTGCTA	CTGGTGAAAA	AGTTGAAGTT	GGTGAAGCAG	TTGGTACAAT	TGCAGCCCAA	6840
	TCTATCGGTG	AACCAGGTAC	ACAGCTTACA	ATGCGTACAT	TCCATACAGG	TGGGGTAGCA	6900
30	GGTAGCGATA	TCACACAAGG	TCTTCCTCGT	ATTCAAGAGA	TTTTCGAAGC	ACGTAACCCT	6960
	AAAGGTCAAG	CGGTAATTAC	GGAAATCGAA	GGTGTCGTAG	AAGATATTAA	ATTAGCAAAA	7020
35	GATAGACAAC	AAGAAATTGT	TGTTAAAGGT	GCTAATGAAA	CAAGATCATA	CCTTGCTTCA	7080
33	GGTACTTCAA	GAATTATTGT	AGAAATCGGT	CAACCAGTTC	AACGTGGTGA	AGTATTAACT	7140
	GAAGGTTCTA	TTGAACCTAA	GAATTACTTA	TCTGTTGCTG	GATTAAACGC	GACTGAAAGC	7200
40	TACTTATTAA	AAGAAGTACA	AAAAGTTTAC	CGTATGCAAG	GTGTAGAAAT	CGACGATAAA	7260
	CACGTTGAGG	TTATGGTTCG	ACAAATGTTA	CGTAAAGTTA	GAATTATCGA	AGCAGGTGAT	7320
	ACGAAGTTAT	TACCAGGTTC	ATTAGTTGAT	ATTCATAACT	TTACAGATGC	AAATAGAGAA	7380
45	GCATTTAAAC	ACCGTAAGCG	TCCTGCAACA	GCTAAACCAG	TATTACTTGG	TATTACTAAA	7440
	GCATCACTTG	AAACAGAAAG	TTTCTTATCT	GCAGCATCAT	TCCAAGAAAC	AACAAGAGTT	7500
	CTTACAGATG	CAGCAATTAA	AGGTAAGCGT	GATGACTTAT	TAGGTCTTAA	AGAAAACGTA	7560
50	ATTATTGGTA	AGTTAATTCC	AGCTGGTACT	GGTATGAGAC	GTTATAGCGA	CGTAAAATAC	7620
	GAAAAAACAG	CTAAACCAGT	TGCAGAAGTT	GAATCTCAAA	CTGAAGTAAC	GGAATAACAA	76B0

	ATGTTGACGA	ATTCTCTTGT	TCAATGTTAA	TATATTAAAG	GTTGATGCAA	GCAGAACTTT	780
	GGAGGATAAA	TTATTGTCTA	AGGAAAAAGT	tGCACGCTTT	AACAAACAAC	ATTTTGTAGT	786
5	TGGTCTTAAA	GAAACGCTTA	AAGCGTTAAA	GAAAGATCAA	GTTACATCTT	TGATTATTGC	792
	TGAAGACGTT	GAAGTATATT	TAATGACTCG	CGTGTTAAGC	CAAATCAATC	AGAAAATAT	798
10	ACCTGTATCT	TTTTTCAAAA	GCAAACATGC	TTTGGGTAAA	CATGTAGGTA	TTAACGTCAA	804
10	TGCGACAATA	GTAGCATTGA	TTAAATGAGA	ATTAGTAAGT	GTTTTACTTA	CTAAATTTTA	810
	TTTAACCTAA	AAATGAACCA	CCTGGATGTG	TGGGATTAAA	AAGTGAAGAG	AGGAGGACAT	816
15	ATCACATGCC	AACTATTAAC	CAATTAGTAC	GTAAACCAAG	ACAAAGCAAA	ATCAAAAAAT	822
	CAGATTCTCC	AGCTTTAAAT	AAAGGTTTCA	ACAGTAAAAA	GAAAAAATTT	ACTGACTTAA	828
	ACTCACCACA	AAAACGTGGT	GTATGTACTC	GTGTAGGTAC	AATGACACCT	AAAAAACCTA	8340
20	ACTCAGCGTT	ACGTAAATAT	GCACGTGTGc	gTtTATCAAA	CAACATCGAA	ATTAACGCAT	840
	ACATCCCTGG	TATCGGACAT	AACTTACAAG	AACACAGTGT	TGTACTTGTA	CGTGGTGGAC	846
	GTGTAAAAGA	CTTACCAGGT	GTGCGTTACC	ATATTGTACG	TGGAGCACTT	GATACTTCAG	8520
25	GTGTTGACGG	ACGTAGACAA	GGTCGTTCAT	TATACGGAAC	TAAGAAACCT	AAAAACTAAG	8580
	AATTTAGTTT	TTAATTAAAT	CTTAAACTTA	AATTTTAAA	TATAAGGAAG	GGAGGATTTA	8640
	CATTATGCCT	CGTAAAGGAT	CAGTACCTAA	AAGAGACGTA	TTACCAGATC	CAATTCATAA	8700
30	CTCTAAGTTA	GTAACTAAAT	TAATTAACAA	AATTATGTTA	GATGGTAAAC	GTGGAACAGC	8760
	ACAAAGAATT	CTTTATTCAG	CATTCGACCT	AGTTGAACAA	CGCAGgtTCG	TGATGCATTA	8820
35	GAAGTATTCG	AAGAAGCAAT	CAACAACATT	ATGCCAGTAT	TAGAAGTTAA	AGCTCGTCGC	888
33	GTAGGTGGTT	CTAACTATCA	AGTACCAGTA	GAAGTTCGTC	CAGAGCGTCG	TACTACTTTA	8940
	GGTTTACGTT	GGTTAGTTAA	CTATGCACGT	CTTCGTGGTG	AAAAAACGAT	GGAAGATCGT	9000
40	TTAGCTAACG	AAATTTTAGA	TGCAGCAAAT	AATACAGGTG	GTGCCGTTAA	GAAACGTGAG	9060
	GACACTCACA	AAATGGCTGA	AGCAAACAAA	GCATTTGCTC	ACTACCGTTG	GTAAGATAAA	9120
	AGCTTTTACC	CTGAGTGTGT	TCTATATTAA	TGAATTTTCA	TTAAGCGTTC	ATGCTTAGGG	9180
45	CATCGCCATA	TCTATCGTAT	TTATTCAGTA	ATATAAACTG	GAAGGAGAAA	AAATACATGG	9240
	CTAGAGAATT	TTCATTAGAA	AAAACTCGTA	ATATCGGTAT	CATGGCTCAC	ATTGATGCTG	9300
	GTAAAACGAC	TACGACTGAA	CGTATTCTTT	ATTACACTGG	CCGTATCCAC	AArGknGGTG	9360
50	AAaCACACGA	AGGTGCTTCA	CAAATGGACT	GGATGGAGCA	AGAACAAGAC	CGTGGTATTA	9420
	CTATCACATC	TOTOTOTATO	ACACCACCTT	CCCAACCTCA	ссетета а а с	ATT ATT CONTA	9496

	CAGTTACAGT	ACTTGATGCA	CAATCAGGTG	TTGAACCTCA	AACTGAAACA	GTTTGGCGTC	9600
	AGGCTACAAC	TTATGGTGTT	CCACGTATCG	TATTTGTAAA	CAAAATGGAC	AAATTAGGTG	9660
5	CTAACTTCGA	ATACTCTGTA	AGTACATTAC	ATGATCGTTT	ACAAgCTAAC	GCTGCTCCAA	. 9720
	TCCAATTACC	AATTGGTGCG	GAAGACGAAT	TCGAAGCAAT	CATTGACTTA	GTTGAAATGA	9780
	AATGTTTCAA	ATATACAAAT	GATTTAGGTA	CTGAAATTGA	AGAAATTGAA	ATTCCTGAAG	9840
10	ACCACTTAGA	TAGAGCTGAA	GAAGCTCGTG	CTAGCTTAAT	CGAAGCAGTT	GCAGAAACTA	9900
	GCGACGAATT	AATGGAAAAA	TATCTTGGTG	ACGAAGAAAT	TTCAGTTTCT	GAATTAAAAG	9960
15	AAGCTATCCG	CCAAGCTaCt	Actaacgtag	AATTCTACCC	AGTACTTTGT	GGTACAGCTT	10020
	TCAAAAACAA	AGGTGTTCAA	TTAATGCTTG	ACGCTGTAAT	TGATTACTTA	CCTTCACCAC	10080
	TAGACGTTAA	ACCAATTATT	GGTCACCGTG	CTAGCAACCC	TGAAGAAGAA	GTAATCGCGA	10140
20	AAGCAGACGA	TTCAGCTGAA	TTCGCTGCAT	TAGCGTTCAA	AGTTATGACT	GACCCTTATG	10200
	TTGGTAAATT	AACATTCTTC	CGTGTGTATT	CAGGTACAAT	GACATCTGGT	TCATACGTTA	10260
	AGAACTCTAC	TAAAGGTAAA	CGTGAACGTG	TAGGTCGTTT	ATTACAAATG	CACGCTAACT	10320
25	CACGTCAAGA	AATCGATACT	GTATACTCTG	GAGATATCGC	TGCTGCGGTA	GGTCTTAAAG	10380
	ATACAGGTAC	TGGTGATACT	TTATGTGGTG	agaaaaatga	CATTATCTTG	GAATCAATGG	10440
	AATTCCCAGA	GCCAGTTATT	CACTTATCAG	TAGAGCCAAA	ATCTAAAGCT	GACCAAGATA	10500
30	AAATGACTCA	AGCTTTAGTT	AAATTACAAG	AAGAAGACCC	AACATTCCAT	GCACACACTG	10560
	ACGAAGAAAC	TGGACAAGTT	ATCATCGGTG	GTATGGGTGA	GCTTCACTTA	GACATCTTAG	10620
	TAGACCGTAT	GAAGAAAGAA	TTCAACGTTG	AATGTAACGT	AGGTGCTCCA	ATGGTTTCAT	10680
35	ATCGTGAAAC	ATTCAAATCA	TCTGCACAAG	TTCAAGGTAA	ATTCTCTCGT	CAATCTGGTG	10740
	GTCGŦGGTCA	ATACGGTGAT	GTTCACATTG	AATTCACACC	AAACGAAACA	GGCGCAGGTT	10800
40	TCGAATTCGA	AAACGCTATC	GTTGGTGGTG	TAGTTCCTCG	TGAATACATT	CCATCAGTAG	10860
	AAGCTGGTCT	TAAAGATGCT	ATGGAAAATG	GTGTTTTAGC	AGGTTATCCT	TTAATTGATG	10920
	TTAAAGCTAA	ATTATATGAT	GGTTCATACC	ATGATGTCGA	TTCATCTGAA	ATGGCCTTCA	10980
45	AAATTGCTGC	ATCATTAGCA	CTTAAAGAAG	CTGCTAAAAA	ATGTGATCCT	GTAATCTTAG	11040
	AACCAATGAT	GAAAGTAACT	ATTGAAATGC	CTGAAGAGTA	CATGGGTGAT	ATCATGGGTG	11100
	ACGTAACATC	TCGTCGTGGA	CGTGTTGATG	GTATGGAACC	TCGTGGTAAT	GCACAAGTTG	11160
50	TTAATGCTTA	TGTACCACTT	TCAGAAATGT	TCGGTTATGC	AACATCATTA	CGTTCAAACA	11220
	CTCAAGGTCG	CGGTACTTAC	ACTATGTACT	TCGATCACLA	TGCTGAAGTT	CCAAAATCAA	11280

	GCCTAGGTTA	AAATACAAGG	TGAGCTTAAA	TGTAAGCTAT	CATCTTTATA	GTTTGATTTT	11400
	TTGGGGTGAA	TGCATTATAA	AAGAATTGTA	AAATTCTTTT	TGCATCGCTA	TAAATAATTT	11460
5	CTCATGATGG	TGAGAAACTA	TCATGAGAGA	ТАААТТТААА	TATTATTTT	AATTAGAATA	11520
	GGAGAGATTT	TATAATGGCA	AAAGAAAAT	TCGATCGTTC	TAAAGAACAT	GCCAATATCG	11580
	GTACTATCGG	TCACGTTGAC	CATGGTAAAA	CAACATTAAC	AGCAGCAATC	GCTACTGTAT	11640
10	TAGCAAAAA	TGGTGACTCA	GTTGCACAAT	CATATGACAT	GATTGACAAC	GCTCCAGAAG	11700
	AAAAAGAACG	TGGTATCACA	ATCAATACTT	CTCACATTGA	GTACCAAACT	GACAAACGTC	11760
15	ACTACGCTCA	CGTTGACTGC	CCAGGACACG	CTGACTACGT	TAAAAACATG	ATCACTGGTG	11820
	CTGCTCAAAT	GGACGGCGGT	ATCTTAGTAG	TATCTGCTGC	TGACGGTCCA	ATGCCACAAA	11880
	CTCGTGAACA	CATTCTTTTA	TCACGTAACG	TTGGTGTACC	AGCATTAGTA	GTATTCTTAA	11940
20	ACAAAGTTGA	CATGGTTGAC	GATGAAGAAT	TATTAGAATT	AGTAGAAATG	GAAGTTCGTG	12000
	ACTTATTAAG	CGAATATGAC	TTCCCAGGTG	ACGATGTACC	TGTAATCGCT	GGTTCAGCAT	12060
	TAAAAGCTTT	AGAAGGCGAT	GCTCAATACG	AAGAAAAAT	CTTAGAATTA	ATGGAAGCTG	12120
25	TAGATACTTA	CATTCCAACT	CCAGAACGTG	ATTCTGACAA	ACCATTCATG	ATGCCAGTTG	12180
	AGGACGTATT	CTCAATCACT	GGTCGTGGTA	CTGTTGCTAC	AGGCCGTGTT	GAACGTGGTC	12240
	AAATCAAAGT	TGGTGAAGAA	GTTGAAATCA	TCGGTTTACA	TGACACATCT	AAAACAACTG	12300
30	TTACAGGTGT	TGAAATGTTC	CGTAAATTAT	TAGACTACGC	TGAAGCTGGT	GACAACATTG	12360
	GTGCATTATT	ACGTGGTGTT	GCTCGTGAAG	ACGTACAACG	TGGTCAAGTA	TTAGCTGCTC	12420
	CTGGTTCAAT	TACACCACAT	ACTGAATTCA	AAGCAGAAGT	ATACGTATTA	TCAAAAGACG	12480
35	AAGGTGGACG	TCACACTCCA	TTCTTCTCAA	ACTATCGTCC	ACAATTCTAT	TTCCGTACTA	12540
	CTGAÉGTAAC	TGGTGTTGTT	CACTTACCAG	AAGGTACTGA	AATGGTAATG	CCTGGTGATA	12600
40	ACGTTGAAAT	GACAGTAGAA	TTAATCGCTC	CAATCGCGAT	TGAAGACGGT	ACTCGTTTCT	12660
	CAATCCGTGA	AGGTGGACGT	ACTGTAGGAT	CAGGCGTTGT	TACTGAAATC	АТТАААТААТ	12720
	TTCTAATTTC	TTAGATTTTA	TATAAAAAGA	AGATCCCTCA	ATCGAGGGGt	CTTTTTTTAA	12780
45	TGTGTAAATT	TTGTAATGGC	TATTCGATTT	AGAAGAACAA	TAATTGATGA	AAGACTGACT	12840
	AATAAAACTT	ATAACTGATA	ATACTGTTTA	AATAAAATTG	TTGAGTCTTG	GACATTGTAA	12900
	AATGCTCCCT	TCAAAGTTTT	CATTTTTTCa	ATGTCTACTT	TGAAGGGAGC	ATTTCATTAG	12960
50	TTTATGTCTC	AGATTCATAT	CTTTCAATTA	ATTTAAATGC	TTAATTTGTT	TTAAATACTT	13020
	GCTCTAATTC	TATGATTTTT	AAAAATACAG	CTACAGCGTA	TTTTAATGAT	TTTTCATCAA	13080

	TCAGAAAGAA	TGCACCTGGT	CGTACTTTCA	AATAATGTGA	AAAATCTTCT	CCAATCATCA	13200
	TTAAATCTGA	TTCATTAAAG	CGTACATGTA	AGTCATTTGT	TGCTTCTTTA	ATAACTTGAT	13260
5	ATGCTTTCTC	GTTATTATGG	ACAGGCAAAT	ACCCTTTAAT	ATAATTCAAA	TCATAGTTAA	13320
	TATCATTTGC	TATTGCTAAA	CCTTGTAGAA	GCTTATCCAT	TTTGTCCATT	ACATGATTCT	13380
	GTATATCTGA	ATCGAAAGTT	CTAACTGTAC	CTTTACAAAA	TGCTTGATCA	GGAATAACGC	13440
10	TATCTGTGGT	GCCTGCTTGA	ATCATTCCAA	ATGAAAGTAC	AGCTTGTTTA	ACTGGATCGA	13500
	TCGTACGTGA	AATTATTTT	TGTGCACTTA	AAATGAACTC	TGCCATGATT	ACTATTGGGT	13560
15	CAATGGTTTC	ATGAGGTTTG	GCACCATGAC	CACCACGACC	TTTAAATGTG	ACGCTAAATT	13620
	CATCTGGAGA	GGCCATGATT	GCCCCGCAC	GTGAATGAAT	AGTTCCAGTA	GGATAACCAC	13680
	TCCATAAATG	TGTACCGTAA	ATTCTATCTA	CATTTTCCAG	ACATCCAGCA	TCTATCATTT	13740
20	CTTGAGAACC	ACCTGGCATG	ATTTCTTCAC	CGTACTGGAA	TATTAATACA	ACATTACCTT	13800
	CTAATAAATG	TTTATGTTCA	TCTAAAATCT	CTGCTACAGT	AAGTAAAATT	GCTGTATGAC	13860
	CATCATGCCC	ACACGCATGC	ATACATCCTG	GATTTTTAGA	CTTATAAGGC	ACATCGTTTA	13920
25	ATTCCTCGAC	AGGTAACGCA	TCAAAGTCAG	CTCTTAATGC	AATGGTAGGT	CCTGTGCCCA	13980
	AGCCTTTAAA	TGTGGCTTTG	ATACCATTGC	GGCCGATAGG	AGTTTCAATA	TCACAAGATA	14040
	ACTGGCTTAA	TTGGTTAACA	ATATAATCAT	GTGTTTGAAA	TTCTTCAAAA	GATAACTCAG	14100
30	GATATTGGTG	TAAATAACGT	CTGAGTTGAA	TTGTTTTATT	TTCTTTATTA	TTTGCTAGTT	14160
	GGAACCAATC	TAACACCCTT	ATCACTACTT	TCTAAAATAA	TGTTTATAGT	ATAACATTTT	14220
	ATGAAATTAT	CGTACTAAAT	GATTGCTTTG	AGATATTTTA	TCTATGAATG	ATAAGGCTTT	14280
35	CAAGTTATGT	AGAATTACTG	TATGATAAAG	GTATTACCAA	ACAATACTTA	AGGGGGATTA	14340
	TATACTGTGG	TTCAATCATT	ACATGAGTTT	TTAGAGGAAA	ATATAÄATTA	TCTAAAAGAA	14400
10	AATGGTTTGT	ATAATGAAAT	AGATACAATT	GAAGGTGCAA	ACGGACCAGA	AATCAAAATC	14460
.•	AATGGGAAAT	CATACATTAA	CTTATCTTCA	AATAATTATT	TAGGACTAGC	AACAAATGAA	14520
	GATTTGAAAT	CaGctGCAAA	AGCAGCTATT	GATACACATG	GTGTAGGTGC	AGGCGCTGTT	14580
1 5	CGTACAATCA	ATGGTACATT	AGATTTACAC	GACGAATTAG	AAGAAACACT	AGCAAAATTT	14640
	AAAGGAACAG	AAGCTGCAAT	AGCTTATCAA	TCAGGATTTA	ATTGTAATAT	GGCTGCTATT	14700
	TCAGCTGTCA	TGAATAAAA	TGATGCTATT	TTATCAGATG	AGCTTAATCA	TGCATCAATT	14760
50	ATTGATGGAT	GTCGCTTATC	TAAAGCTAAA	ATTATTCGAG	TTAACCATTC	AGACATGGAT	14820
	C S THEFT S COMO	CC2220C2222	10110010mm	C3.3 MC3.00mg			

GGTACGCTTT CTAAAGCAAT TGGTGTCGTT GGCGGTTATG TAGCAGGTAC AAAAGAGTTA ATAGATTGGT TAAAAGCACA ATCACGACCA TTCTTATTCT CTACATCATT AGCACCTGGG GATACCAAAG CAATAACTGA AGCAGTTAAA AAGTTAATGG ATTCAACTGA ATTACATGAT AAATTATGGA ACAATGCACA ATATTTAAAA AATGGATTGT CAAAATTAGG ATATGATACA GGTGAGTCAG AAACTCCAAT TACACCAGTA ATTATTGGTG ATGAAAAAAA AACTCAAGAA 15 TTTAGTAAGC GTTTAAAAGA CGAAGGTGTC TATGTGAAAT CTATCGTTTT CCCAACAGTA 15 CCAAGAGGTA CAGGACGTGT AAGAAATATG CCTACAGCTG CACATACAAA AGACATGTTA 15 GATGAAGCAA TTGCGGCTTA TGAAAAAGTA GGAAAAGAAA TGAAGTTGAT TTAATATTTA 15	ATTGCAGAAG	AATTTGGTTT	ATTAACTTAT	GTTGACGACG	CTCATGGTTC	AGGTGTTATG	15000
ATAGATTGGT TAAAAGCACA ATCACGACCA TTCTTATTCT CTACATCATT AGCACCTGGG 15 GATACCAAAG CAATAACTGA AGCAGTTAAA AAGTTAATGG ATTCAACTGA ATTACATGAT 15 AAATTATGGA ACAATGCACA ATATTTAAAA AATGGATTGT CAAAAATTAGG ATATGATACA 15 GGTGAGTCAG AAACTCCAAT TACACCAGTA ATTATTGGTG ATGAAAAAAC AACTCAAGAA 15 TTTAGTAAGC GTTTAAAAGA CGAAGGTGTC TATGTGAAAT CTATCGTTTT CCCAACAGTA 15 CCAAGAGGTA CAGGACGTGT AAGAAATATG CCTACAGCTG CACATACAAA AGACATGTTA 15 GATGAAGCAA TTGCGGCTTA TGAAAAAGTA GGAAAAGAAA TGAAGTTGAT TTAATATTTA 15 TTTATTCCCA CGGCAAATAT TGTCGTGGGC TTTTTTTAAT GTTTAGTTTA	GGTAAAGGCG	CTGGTACGGT	TAAACATTTT	GGTTTACAAG	ATAAAATCGA	TTTCCAAATA	15060
GATACCAAAG CAATAACTGA AGCAGTTAAA AAGTTAATGG ATTCAACTGA ATTACATGAT 15 AAATTATGGA ACAATGCACA ATATTTAAAA AATGGATTGT CAAAATTAGG ATATGATACA 15 GGTGAGTCAG AAACTCCAAT TACACCAGTA ATTATTGGTG ATGAAAAAAC AACTCAAGAA 15 TTTAGTAAGC GTTTAAAAGA CGAAGGTGTC TATGTGAAAT CTATCGTTTT CCCAACAGTA 15 CCAAGAGGTA CAGGACGTGT AAGAAATATG CCTACAGCTG CACATACAAA AGACATGTTA 15 GATGAAGCAA TTGCGGCTTA TGAAAAAGTA GGAAAAGAAA TGAAGTTGAT TTAATATTTA 15 TTTATTCCCA CGGCAAATAT TGTCGTGGGC TTTTTTTAAT GTTTAGTTTA	GGTACGCTTT	CTAAAGCAAT	TGGTGTCGTT	GGCGGTTATG	TAGCAGGTAC	AAAAGAGTTA	15120
AAATTATGGA ACAATGCACA ATATTTAAAA AATGGATTGT CAAAATTAGG ATATGATACA 15 GGTGAGTCAG AAACTCCAAT TACACCAGTA ATTATTGGTG ATGAAAAAAC AACTCAAGAA 15 TTTAGTAAGC GTTTAAAAGA CGAAGGTGTC TATGTGAAAT CTATCGTTTT CCCAACAGTA 15 CCAAGAGGTA CAGGACGTGT AAGAAATATG CCTACAGCTG CACATACAAA AGACATGTTA 15 GATGAAGCAA TTGCGGCTTA TGAAAAAGTA GGAAAAGAAA TGAAGTTGAT TTAATATTTA 15 TTTATTCCCA CGGCAAATAT TGTCGTGGGC TTTTTTTAAT GTTTAGTTTA	ATAGATTGGT	TAAAAGCACA	ATCACGACCA	TTCTTATTCT	CTACATCATT	AGCACCTGGG	15180
GGTGAGTCAG AAACTCCAAT TACACCAGTA ATTATTGGTG ATGAAAAAAC AACTCAAGAA 15 TTTAGTAAGC GTTTAAAAGA CGAAGGTGTC TATGTGAAAT CTATCGTTTT CCCAACAGTA 15 CCAAGAGGTA CAGGACGTGT AAGAAATATG CCTACAGCTG CACATACAAA AGACATGTTA 15 GATGAAGCAA TTGCGGCTTA TGAAAAAGTA GGAAAAGAAA TGAAGTTGAT TTAATATTTA 15 TTTATTCCCA CGGCAAATAT TGTCGTGGGC TTTTTTTAAT GTTTAGTTTA	GATACCAAAG	CAATAACTGA	AGCAGTTAAA	AAGTTAATGG	ATTCAACTGA	ATTACATGAT	15240
TTTAGTAAGC GTTTAAAAGA CGAAGGTGTC TATGTGAAAT CTATCGTTTT CCCAACAGTA 15 CCAAGAGGTA CAGGACGTGT AAGAAATATG CCTACAGCTG CACATACAAA AGACATGTTA 15 GATGAAGCAA TTGCGGCTTA TGAAAAAGTA GGAAAAGAAA TGAAGTTGAT TTAATATTTA 15 TTTATTCCCA CGGCAAATAT TGTCGTGGGC TTTTTTTAAT GTTTAGTTTA	AAATTATGGA	ACAATGCACA	ATATTTAAAA	AATGGATTGT	CAAAATTAGG	ATATGATACA	15300
CCAAGAGGTA CAGGACGTGT AAGAAATATG CCTACAGCTG CACATACAAA AGACATGTTA 15 GATGAAGCAA TTGCGGCTTA TGAAAAAGTA GGAAAAGAAA TGAAGTTGAT TTAATATTTA 15 TTTATTCCCA CGGCAAATAT TGTCGTGGGC TTTTTTTAAT GTTTAGTTTA	GGTGAGTCAG	AAACTCCAAT	TACACCAGTA	ATTATTGGTG	ATGAAAAAAC	AACTCAAGAA	15360
GATGAAGCAA TTGCGGCTTA TGAAAAAGTA GGAAAAGAAA TGAAGTTGAT TTAATATTTA 15 TTTATTCCCA CGGCAAATAT TGTCGTGGGC TTTTTTTAAT GTTTAGTTTA	TTTAGTAAGC	GTTTAAAAGA	CGAAGGTGTC	TATGTGAAAT	CTATCGTTTT	CCCAACAGTA	15420
TTTATTCCCA CGGCAAATAT TGTCGTGGGC TTTTTTTAAT GTTTAGTTTA	CCAAGAGGTA	CAGGACGTGT	AAGAAATATG	CCTACAGCTG	CACATACAAA	AGACATGTTA	15480
	GATGAAGCAA	TTGCGGCTTA	TGAAAAAGTA	GGAAAAGAAA	TGAAGTTGAT	TTAATATTTA	15540
(2) INFORMATION FOR SEQ ID NO: 83:	TTTATTCCCA	CGGCAAATAT	TGTCGTGGGC	TTTTTTTAAT	GTTTAGTTTA	TTAACAGT	15598
	(2) INFORMA	TION FOR SE	Q ID NO: 83):			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 661 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83:

AAGTAAATCA ACTTACTGGG ATAAGAATAA AGGCGATTAT AGTAACAAGT TGATTTTATT 60 CGAAAAACAT TTTGAACCGG TTCTGGGTAT CAAGATGCAA CATAGTGGAG GTCATAGCTT 120 TGGCCACACG ATTATTACGA TTGAAAGTCA AGGAGATAAA GCAGTTCATA TGGGTGATAT 180 ATTCCCAACT ACTGCACATA AAAATCCTCT ATGGGTAACG GCATATGATG ATTATCCTAT 240 GCAATCGATT CGTGAAAAAG AACGCATGAT ACCATATTTT ATTCAGCAAC AATATTGGTT 300 CTTGTTTTAT CATGATGAAA ACTACTTTGC TGTAAAATAC AGCGATAATG GTGAAAACAT 360 AGATGCATAT ATTTTACGTG AAACATTAGT TGATAATAAC TAAAATAAAG ATGTATTACT 420 AAACAATTT TCAAAAATAA AAAATTGAGC CACATCCAAT CTTACTAATT AGGGTGTGGC 480 TCATTTTTAA GTTTTACGAT CCAAATCAAA TATGGATAAA ATTCGTATTA ACGCTCTACA 540 ATGLTAATGA CTTCACCAGT ATATGCATCT GCATAAAAAT CATAATGAAT ATTTTGACCA 600 TTTTTAATAG TTGTAATTCC ACCTTGATAA ACTAAACGGT ATTTATCAGT TTCAGGATGA 660 A 661

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5738 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

10 GCAGACGGTA CAGCAGTTAA AGTCGCACCA AAACTGTAGT GAATCTAATC GGTGCATTCT 60 TTTTAGGATT AGTTGTCGCG CTTATATATA TCTTCTTCAA AGTAATTTTC GATAAGCGAA 120 TTAAAGATGA AGAAGATGTA GAGAAAGAAT TAGGATTGCC TGTATTGGGT TCAATTCAAA 180 15 AATTTAATTA AGGATGGTTG CTACTTATGT CAAAAAAGGA AAATACGACA ACAACACTAT 240 TTGTATATGA AAAACCAAAA TCAACAATTA GTGAAAAGTT TCGAGGTATA CGTTCAAACA 300 TCATGTTTTC AAAAGCAAAT GGTGAAGTAA AGCGCTTATT GGTTACTTCT GAAAAGCCTG 360 20 GTGCAGGTAA AAGTACAGTT GTATCGAATG TAGCGATTAC TTATGCACAA GCAGGCTATA 420 AGACATTAGT TATTGATGGC GATATGCGTA AGCCAACAC AAACTATATT TTTAATGAGC 480 25 AAAATAATAA TGGACTATCA AGCTTAATCA TTGGTCGAAC GACTATGTCA GAAGCAATTA 540 CGTCGACAGA AATTGAAAAT TTAGATTTGC TAACAGCTGG CCCTGTACCT CCAAATCCAT 600 CTGAGTTAAT TGGGTCTGAA AGGTTCAAAG AATTAGTTGA TCTGTTTAAT AAACGTTACG 660 30 ACATTATTAT TGTCGATACA CCGCCAGTTA ATACTGTGAC TGATGCACAA CTATATGCGC 720 GTGCTATTAA AGATAGTCTG TTAGTAATTG ATAGTGAAAA AAATGATAAY AATGAAGTTA 780 AAAAAGCAAA AGCACTTATG GAAAAAGCAG GCAGTAACAT TCTAGGTGTC ATTTTGAACA 840 35 AGACAAAGGT CGATAAATCT TCTAGTTATT ATCACTATTA TGGAGATGAA TAAGTATGAT 900 TGATATTCAT AACCATATAT TGCCTAATAT CGATGACGGT CCGACAAATG AAACAGAGAT 960 GATGGATCTT TTAAAACAAG CGACAACACA AGGTGTTACA GAAATCATTG TAACATCACA 1020 40 TCACTTACAT CCTCGATATA CCACACCTAT AGAAAAAGTG AAATCATGTT TAAACCATAT 1080 TGAAAGCTTA GAGGAAGTAC AAGCACTAAA TCTAAAGTTT TATTATGGTC AGGAAATAAG 1140 AATTACCGAT CAAATCCTTA ATGATATTGA TCGAAAAGTT ATTAACGGTA TTAATGATTC 1200 45 ACGCTATTTA CTAATAGAAT TTCCATCAAA TGAAGTTCCA CACTATACTG ATCAATTATE 1260 TTTCGAATLA CAGAGTAAAG GCTTTGTACC GATTATTGCA CATCCAGAGC GGAATAAAGC 1320 50 AATAAGTCAA AACCTTGACA TACTATACGA TTTAATTAAC AAAGGTGCTT TAAGTCAAGT 1380 GACAACGGCG TCATTAGCGG GTATTTCCGG TAAAAAAATT AGAAAATTAG CAATTCAAAT 1440

55

	GTTCTTAATG	AAAGACTTAT	TTAATGATAA	GAAATTACGT	GATTATTATG	AAGATATGAA	1560
	CGGATTTATT	AGTAATGCGA	AGTTAGTTGT	TGATGATAAA	AAAATTCCTA	AACGAATGCC	1620
5	ACAACAAGAT	TATAAACAGA	AAAGATGGTT	TGGGTTATAA	ACAGCAAATG	AGGGGTTTTA	1680
	TGGCACATTT	ATCTGTGAAA	TTGCGGCTTT	TAATACTAGC	ATTAATCGAT	TCACTGATAG	1740
	TGACATTTTC	AGTATTCGTA	AGTTATTACA	TTTTAGAACC	GTATTTCAAA	ACATATTCTG	1800
10	TCAAATTATT	AATATTGGCA	GCTATATCAC	TATTCATATC	GCATCATATT	TCaGCATTTA	1860
	TTTTTAATAT	GTATCATCGA	GCGTGGGAAT	ATGCCAGTGT	GAGTGAATTG	ATTTTAATTG	1920
15	TTAAAGCTGT	GACGACATCT	ATCGTTATTA	CGATGGTGGT	CGTGACAATT	GTTACAGGCA	1980
	ATAGACCGTT	TTTTAGATTG	TATTTAATTA	CTTGGATGAT	GCACTTGATT	TTAATAGGTG	2040
	GCTCAAGGTT	ATTTTGGCGT	ATTTATCGGA	AATACCTTGG	AGGTAAGTCA	TTTAATAAGA	2100
20	AGCCAACTTT	AGTTGTTGGT	GCTGGTCAAG	CAGGTTCAAT	GCTGATTAGA	CAAATGTTGA	2160
	AAAGTGACGA	AATGAAACTT	GAACCGGTAT	TAGCAGTCGA	TGATGACGAA	CATAAACGCA	2220
	ATATCACAAT	TACTGAGGGT	GTAAAAGTCC	AAGGTAAAAT	TGCGGATATT	CCAGAACTAG	2280
25	TGAGGAAATA	TAAGATTAAA	AAAATCATCA	TTGCAATTCC	AACTATTGGT	CAAGAGCGTT	2340
	TGAAAGAAAT	TAATAATATT	TGCCATATGG	ATGGCGTTGA	GTTATTGAAA	ATGCCAAATA	2400
	TAGAAGACGT	CATGTCTGGT	GAGTTAGAAG	TGAACCAACT	TAAAAAAGTT	GAAGTAGAAG	2460
30	ATTTACTAGG	CAGAGATCCT	GTTGAATTAG	ATATGGATAT	GATATCAAAT	GAATTGACGA	2520
	ATAAAACTAT	TTTAGTTACG	GGTGCAGGTG	GTTCAATAGG	ATCAGAAATT	TGTAGACAAG	2580
	TTTGTAATTT	CTATCCAGAA	CGTATTATTC	TACTTGGCCA	TGGTGAAAAC	AGTATTTATT	2640
35	TAATCAATCG	TGAATTGCGA	AATCGCTTCG	GWAAAAATGT	TGATATCGTT	CCTATTATAG	2700
	CGGATGTGCA	AAATAGAGCG	CGTATGTTTG	AAATTATGGA	AACGTATAAA	CCATACGCAG	2760
40	TTTATCATGC	AGCAGCACAC	AAGCACGTGC	CGTTAATGGA	AGACAACCCT	GAAGAAGCAG	2820
	TACGTAATAA	TATTTTAGGT	ACGAAAAATA	CTGCTGAAGC	TGCTAAAAAT	GCAGAGGTAA	2880
	AGAAATTCGT	TATGATTTCT	ACGGATAAAG	CCGTTAATCC	GCCTAATGTC	ATGGGAGCTT	2940
45	CAAAGCGAAT	TGCAGAAATG	ATTATTCAAA	GTTTAAATGA	TGAAACGCAT	CGAACAAATT	3000
	TTGTTGCAGT	GAGATTTGGT	AATGTACTTG	GATCGAGAGG	ATCTGTGATT	CCACTTTTCA	3060
	AAAGTCAAAT	TGAAGAAGGT	GGGCCAGTTA	CTGTGACACA	TCCTGAAATG	ACACGTTACT	3120
50	TTATGACAAT	TCCTGAAGCT	TCTAGACTAG	TTTTGCAGGC	AGGGGCATTA	GCAGAAGGTG	3180
	GCGAAGTATT	ТСТССТАСАТ	ATGGGAGAAC	САСТСАВАВТ	ТСТАСАТТТС	CCACCTAATT	3240

	CCGGCGAAAA	AATGTTTGAA	GAGCTTATGA	ATAAAGATGA	GGTTCATCCT	GAACAAGTAT	3360
	TTGAAAAAAT	TTATCGTGGC	AAAGTACAAC	ATATGAAATG	TAATGAAGTT	GAAGCGATTA	3420
5	TTCAAGACAT	CGTCAATGAC	TTTAGTAAAG	AAAAAATTAT	TAACTATGCC	AATGGCAAAA	3480
	AGGGAGATAA	TTATGTTCGA	TGACAAAATT	TTATTAATTA	CTGGGGGCAC	AGGATCATTC	3540
10	GGTAATGCTG	TTATGAAACA	GTTTTTAGAT	TCTAATATTA	AAGAAATTCG	TATTTTTCA	3600
,,	CGCGATGAGA	AAAAACAAGA	TGACATTCGA	ААААААТАТА	ATAATTCAAA	ATTAAAGTTC	3660
	TACATTGGTG	ATGTGCGTGA	TAGTCAAAGT	GTAGAAACAG	CAATGCGAGA	TGTTGATTAC	3720
15	GTATTCCATG	CAGCAGCTTT	AAAACAAGTG	CCGTCATGTG	AATTCTTTCC	AGTTGAGGCA	3780
	GTGAAGACAA	ATATTATTGG	TACAGAAAAT	GTCTTACAAA	GTGCTATTCA	TCAAAATGTT	3840
	AAAAAAGTCA	TATGTTTATC	TACAGATAAG	GCAGCGTATC	CTATTAATGC	TAGGGGTATT	3900
20	TCAAAAGCAA	TGATGGAAAA	AGTATTCGTA	GCCAAATCAA	GAAATATTCG	TAGTGAACAA	3960
	ACGCTTATTT	GTGGTACAAG	ATACGGTAAT	GTGATGGCTT	CAAGAGGATC	AGTAATACCT	4020
	TTGTTTATCG	ACAAAATCAA	AGCTGGAGAA	CCTTTAACGA	TTACAGATCC	TGATATGACA	4080
25	AGATTTTTAA	TGAGCTTAGA	AGATGCGGTA	GAACTAGTTG	TTCATGCATT	TAAGCATGCA	4140
	GAGACAGGAG	ATATTATGGT	TCAAAAAGCA	CCAAGCTCAA	CGGTAGGGGA	TCTTGCGACC	4200
	GCATTATTAG	AATTGTTTGA	AGCTGATAAT	GCAATTGAAA	TCATTGGTAC	GCGACATGGA	4260
30	GAGAAAAAAG	CAGAAACATT	GTTGACGAGA	GAAGAATACG	CACAATGTGA	AGATATGGGT	4320
	GATTATTTTA	GAGTGCCGGC	AGACTCCAGA	GATTTAAATT	ATAGTAATTA	TGTTGAAACC	4380
25	GGTAACGAAA	AGATTACGCA	ATCTTATGAA	TATAACTCCG	ATAATACACA	TATTITAACG	4440
35	GTGGAAGAGA	TAAAAGAAAA	ACTTTTAACA	CTAGAATATG	TTAGAAACGA	ATTGAATGAT	4500
	TATAAAGCTT	CAATGAGATA	GGAGAGATTG	ACGTTGAATA	TTGTAATTAC	AGGAGCAAAA	4560
40	GGTTTTGTAG	GAAAAAACTT	GAAAGCAGAT	TTAACTTCAA	CGACAGATCA	TCATATTTTC	4620
	GAAGTACATC	GACAAACTAA	AGAGGAAGAA	TTAGAGTCAG	CATTGTTGAA	AGCAGACTTT	4680
	GTCGTGCATT	TAGCGGGTGT	TAATCGACCT	GAACATGACA	AAGAATTCAG	CTTAGGAAAC	4740
45	GTGAGTTATT	TAGATCATGT	ACTTGATATA	TTAACTAGAA	ATACGAAAAA	GCCAGCGATA	4800
	TTATTATCGT	CTTCAATACA	AGCAACACAA	GATAATCCTT	ATGGTGAGAG	TAAGTTGCAA	4860
	GGGGAACAGC	TATTAAGAGA	GTATGCCGAA	GAGTATGGCA	ATACGGTTTA	TATTTATCGC	4920
50	TGGCCAAATT	TATTCGGCAA	GTGGTGTAAG	CCGAATTATA	ACTCAGTGAT	AGCAACATTT	4980
	TGTTACAAAA	44TOCACOTT	CGAAGAGATT	ר מערדים מידים	АТСССА АТСТ	ጥር እ እ ርጥእ እ ርር	E040

ATTGAAAATG GTGTACCTAC AGTACCAAAC GTATTTAAAG TGACATTGGG AGAAATTGTA 5160 GATTTATTAT ACAAGTTCAA ACAGTCACGT CTCGATCGAA CATTGCCGAA ATTAGATAAC 5220 5 TTGTTTGAAA AAGATTTGTA TAGTACGTAT TTAAGCTATC TACCTAGTAC aGACTTTAGT 5280 TAYCCCTTAC TTATGAATGT GGATGATAGG GGTTCTTTTA CAGAATTTAT AAAAACACCG 5340 GATCGTGGTC AAGTTTCTGT AAATATTTCT AAACCAGGTA TTACTAAAGG TAATCACTGG 5400 10 CATCATACTA AAAACGAAAA ATTTCTAGTC GTATCAGGTA AAGGGGTAAT TCGTTTTAGA 5460 CATGTTAATG ATGATGAAAT CATTGAATAT TATGTTTCTG GCGACAAATT AGAAGTTGTA 5520 GACATACCAG TAGGATACAC ACATAATATT GAAAATTTAG GCGACACAGA TATGGTAACT 5580 15 ATTATGTGGG TGAATGAAAT GTTTGATCCA AATCAGCCAG ATACGTATTT CTTGGAGGTA 5640 5700 TAGCGCATGG AAAAACTGAA rTTAATGACA ATAGTTGGTA CAAGGCCTGA AATCATTCGT TTATCATCAA CGATTAAAGC ATGTGATCAA TATTTTAA 5738 20 (2) INFORMATION FOR SEQ ID NO: 85:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9062 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:

ATCATCAACA AGAATGATAT TTTTCCCATC TACTATATCT TTTACCGCAG ATAACTTCAC 60 TCTCACACCT TGCTCACGTA ATTCTTGAGT TGGTTGAATA AATGTTCTTG CAACATATTG 120 ATTTTTAACT AGTCCCATTT CATATGGCAA ACCTATTTCT TCAGCATAAC CACTCGCAGC 180 TGATAGCGAT GAATTGGGTA CACCGATGAC CATATCAGCA TTTACAGGGC TTTCTTGGGC 240 TAATTTTTTA CCAGAAGCTT TACGTACTGC ATGGACATTT TTACCAGCTA TTGTTGAGTC 300 TGGTCTAGCA AAATAAATAT ATTCCATCGC AGAAATTGCA GTTGTCGTAT GATGTGTATA 360 AGATTTAACT GTAATACCTT TATCGTTAAT CACGACATAT TCACCTGCAT GAATATCTTG 420 AACAAATTCT GCACCTAACA CATCTATTGC ACATGTTTCA CTTGCAAGGA TGTATGTCCC 480 ATCTTCATT TTACCTACAA CAAGTGGTCT GATAGCATTT GGATCTACTG CGCCATATAA 540 CGCATCTTTA GTTAAAATCG CAAATGTAAA ACCGCCTTTA ACTTTTCGCA AACTTTCTTT 600 CAACGCTTCC TCAAAAGTAG GAGCTTTACT TCGACGTATC AAATGCATAA TGACTTCAGT 660 ATCAGAAGAC GAATGGAAGA TAGCACCTTG TTTTTCTAAA TTCTGACGCA ATGATTTAGC 720

	CGGTTGAATA	TTTTCAATAC	CTTTATTACC	TGAAGTAGCA	TAACGGACGT	GACCAATTGC	840
	ATGTTGATAT	CCTTTTAATC	GTTCCATTTG	ATCATCTTTA	ATCGCTTCAG	TTAGTAAGCC	900
5	TAATCCTCGC	TCGCCTTTTA	ATTCATTTTG	ATCAGAAACA	ACTATACCTG	CACCTTCTTG	960
	ACCACGATGT	TGCAAACTAT	GAAGTCCCAT	ATACGTTAGT	TGCGCTGCtT	CaGGATGATT	1020
	CCAAATACCA	AACACGCCAC	ATTCTTCGTT	TAATCCTGAG	TAGTTAAACA	TTGaGCAATT	1080
10	GCCCCtTCCC	ATATTTGTTT	AATATCTGAA	ACATTTTCAC	TAATCTCTGT	aTATGGTGTT	1140
	GTTACCTTGr	aATTATCACT	ATCTGTTAAA	AGTCCAATTT	CTATTGCATT	ATCAATATTT	1200
15	AAAGTTTTAC	CTGATTTAAC	AGAAACAACA	TATCGGCCTT	GCGTCTCACT	AAACAATTGT	1260
	GCATTTGTTA	TATCTATTGA	AGATTTTAAT	CCTAAACCGT	AATGCGCACT	TAGTTTAGCT	1320
	AAGGTAATCA	GTAAGCCACC	TTTACCAACT	GTTTGAACAT	GTGATAATAG	TCCTTCACGA	1380
20	ATAGCGGTCT	TGATTGATTC	ACCTTTTTCA	ACTTCTGAAC	TCAAATCTAA	TGACTCAAAT	1440
	TCATGATTAA	CTTTGCCATA	AATTAACTTT	TCAAGTTGAC	TACCACCAAA	GTCGTCCTTA	1500
	GTATCACCGA	TTAAATATAA	TTTATCTCCA	ACTTGAGGTT	CAAAATCATT	TTAATAATTT	1560
25	ACATITICAA	TCAAACCTAC	CATTCCAACA	ACTGGTGTTG	GGAAAATAGA	AGTACCTTTC	1620
	GTTTCGTTAT	ATAAAGATAC	ATTACCAGAA	ACTACTGGTG	TCTTAAGAAT	GTCGCATGCT	1680
	TCTGCCATAC	CTTTCGTTGA	ATCTATCAAC	TGTTGATAGA	TTTCTTTCTT	TTCAGGAGAA	1740
30	CCATAATTTA	AACAATCTGT	CATTGCTAAT	GGTGTTGCAC	CCACGGCAAT	TAAATTTCGA	1800
	TAAGCTTCAG	CTACTACCAT	CTTTCCACCT	TCATATGGAT	TGTTATATAC	ATAACGCGCT	1860
o.c	TCACCATCAA	TTGTTGAAGC	AATTGCCTTA	TTTGTGCCTT	CCACACGTAC	TACCGATGCT	1920
35	TGAAGTCCTG	GCTTAATTAT	CGTATTGGCA	CCAACTTGTT	GGTCGTATTG	ATCATATAAA	1980
	TAGTGTTTAG	ATGCTATAGT	CGGATGCTTA	AGTAATTTAA	AGAAAGTATC	TTTAACATCG	2040
10	ATGTGTGTAT	AATCATTTTT	AGAAGTATTA	TAATCTTTTT	CTTCTCCTTC	TAAAATATAT	2100
	ACAGGTGCTT	CATCAGCTAG	TGGTTCAACT	GGAATGTCAG	CATAAACTTC	GTCATCATAT	2160
	GTTAAAACAA	AACGATTTGT	ATCTGTAACT	TCACCTATAA	CAGCACTATC	CAATTCGTGC	2220
15	TTATCAAATA	AATCTAAGAA	TTTTTGTTCA	GTACCTTTTT	CAACAACTAG	TAACATACGT	2280
	TCTTGAGTTT	CTGAAAGCAT	CATTTCATAA	GGAGAAATAC	CTGGCTCACG	TGTTGGCACT	2340
	TGTTCTAATC	TCAAATGTAA	CCCACTACCA	CCTTTTGCCG	CCATTTCAGA	CGATGAAGAT	2400
50	GTTAAACCAG	CAGCACCCAT	ATCTTGAATA	CCAACTAATT	CATCAAATGT	AATTGCTTCA	2460
	AGTGTTGCTT	CCATTAATTT	TTTACCTACA	AATGGATCAC	CGATTTGTAC	AGAAGGTCGT	2520

	CGACCAGTTT	TCAAACCAAC	ATAAATGACC	GAATTACCTA	CACCTTTTGC	TGTGCCTTTT	264
	TGAATCATGT	CGTGATTGaT	AACACCAACA	CACATTGCAT	TAACAAGTGG	ATTGCCATCA	270
5	TAACGTTCAT	CAAATTCGAT	TTCACCAGCA	GTTGTTGGaA	TACCAATGCA	GTTACCATAA	276
	CCTCCGATAC	CCTTTACAAC	ACCTTTAAGT	AATCTTTGGT	TTTGTTTATT	ATCTAATTCT	282
	CCAAATCTAA	GACTGTTTAA	CAAATTAATA	GGTCTAGCCC	CAATAGAGAC	AATGTCACGA	288
10	ATGATTCCAC	CAACGCCTGT	AGCAGCCCCT	TGATATGGTT	CAATTGCTGA	TGGATGATTG	294
	TGAGACTCTA	CTTTAAATAC	TACGGCTTGA	TTATCACCTA	TATCGACTAC	CCCTGCACCT	300
15	TCACCAGGCC	CCATAAGCAC	ATGGTcACCT	GACGTAGGAA	ATTGCTTTAA	AAACGGTTTA	306
	GAATGTTTAT	AAGAGCAATG	TTCACTCCAC	ATAACAGAAA	AGATACCTGT	TTCTGTAAAG	312
	TTAGGTTGTC	TGCCTAAAAT	ATCGCAAACT	TTTTCATATT	CTTGATCaCT	TAATCCCATA	318
20	TCTTGATATA	CTTTTTCAAG	TTTAATTTCT	TCAACGCTTG	GTTCGATAAA	TTTAGACATG	324
	TTGTTCCCTC	CAACTTTTTA	CCATCGCTTC	AAATAATTTC	ACACCACTAT	CAGTACCTAA	330
	CAACGTTTCT	AAAGCTCTTT	CagGATGtGG	CATCATGCCA	CATACATTGC	CTTTTTCGTT	336
25	AACAATTCCT	GCAATATCAT	CATATGAACC	GTTCGGATTA	TTCACATATT	TCAGAATAAT	342
	TTGATTGTTA	GCTTTTAATT	GTTGATATAT	TTCATCAGTA	CAATAATAAT	GACCTTCACC	348
	GTGAGCTACA	GGATATATAA	CTTTTTCACC	TTGTTCATAA	AGATTTGTAA	ATGCCGTTTG	354
30	ATTATTCACT	ATTTCTAACT	CTTCATTTCT	ACTAATAAAT	AAATGTGAAT	CGTTATGCAA	360
	TAATGCACCA	GGTAATAAGC	CTATTTCAGT	TAAAATTTGA	AACCCATTAC	AAACACCTAA	366
	TACTGGCTTA	CCTTCAGCTG	CAAGACGTTT	AACTTCCGAA	ATAATCGGsG	CTACACTAGC	372
35	CATTGCCCCA	GATCTTAAGT	AATCCCCGAA	TGAAAATCCA	CCAGGAATAA	GTACGCCATC	378
	AAATĒCACTT	AGTGATGTTT	CTCTATAATC	TACATATTCC	GCTTCAACAC	CACTTTTAAT	384
40	AGCAGCATTA	AACATGTCTC	TATCACAATT	CGAACCTGGA	AAAACAAGAA	CCGCAAATTT	390
	CATTTTATGC	ATTCTCCTTT	TCATCATCTA	ACACTTTATA	GCTATATTCT	TCAATCACTG	396
	TATTTGCAAA	CAATTTTTCA	CTTAGAGTTG	TAATAATGTT	GTGTACCTTT	TCATCACTAA	402
45	CCTCATCCAC	TGTCATATAT	AATACTTTTC	CTACACGAAT	ATCATTCACT	TGTGCATAAC	408
	CTAAGTCATG	TACAGCTCGA	GTAAGCGTTT	GTCCTTGCGT	ATCTAATACT	TGTGGTTGTA	414
	ATGTGATATG	TAGTTCAATT	GTTTTCATTA	TTTTAAATCC	TCCAATTTGT	TTAAAAATAT	420
50	TTGATATGTT	TCAATCAGTG	ATCCAGTGTT	ATTTCTATAT	ACATCTTTAT	CAAAGTTTGC	426
	АТТССТАССТ	ттатессала	ттесьевтет	АТСТССАСАТ	ATTTCATCC	СТАВСАВАВТ	432

	ATCCATTAAT	TGTTTCAACA	CATTATTAAT	CTTTAATGCT	TTGGATTTTA	GTATTTCAAT	4440
	ATCTTCATCT	GATGCTATAT	TGAGCAATTT	AACATGGTCA	TCCGTTATCA	ACGGATCATT	4500
5	TAACGCATCA	TTTTTATAGA	AAAATTCTAC	AAGTGGTTCT	CTAAAAACTT	CACCATTTTC	4560
	AAAACCTAAA	. CGCTTTGTAA	TAGATCCACT	AGCAATATTA	CGAACAACTA	CTTCTAATGG	4620
	AATTATTTTC	ACAGGCTTAA	CTAATTGTTC	TGTTTCAGAT	AATTGTTTAA	TAAAGTGACT	4680
10	TTCTATTCCA	TTTTCTTGTA	AATATTTAAA	TATAATAGAA	GTAATTTGAT	TATTTAATCG	4740
	CCCCTTACCT	GCCATTGTGT	CTTTCTTAGC	CCCGTTTCCA	GCAGTAACTT	CATCTTTATA	4800
15	TTCAACTCTT	AATTCATTTT	CTTGATTTGT	TGAGAAAATG	CGCTTCGCTT	TTCCTTCATA	4860
	TAATAATGTC	ATGCTTTAAT	TACTCCCCTC	AAATTTAGCG	TACATATCTT	GTTCAGTTTG	4920
	GTTTACATCA	TTCGTTAGTA	CAGTCATATG	CCCCATTTTT	CTGCTATCTT	TACGCTCAGA	4980
20	CTTACCATAA	ATATGTAAGT	GCCACTCTGG	ATGTTCATTA	AATTCATTTT	CCAATAAATC	5040
	TAAATCTTTA	CCTAGTAAGT	TCATCATGAC	TGCTGGCTTT	AATAATTCAA	TTGAATTTGG	5100
	TAATGATTGT	CCGGTAACTG	CTAAAATATG	AGTATCAAAT	TGTGAATAAT	CACATGCTTC	5160
25	AATTGAATAA	TGTCCGGAAT	TGTGAGGCCT	TGGTGCTATC	TCGTTCACAT	ACAATTGGTT	5220
	GTTACTATCT	TTAAAAAATT	CAACTGTAAA	TGTTCCAATG	AAATGAATCG	ATTGGATAAT	5280
	TTTATTAACT	TGCTCTTTCG	CCTCAGCTGT	TTTATCTATT	CTCGCTGGAA	CAATTGTTTT	5340
30	GAAAAGTATT	TGATTTCTAT	GCTCATTTTC	TTGTAATGGG	AAAAAGTGA	TTTGATTGTT	5400
	GTTTCCTCTT	GTAACAGTAA	GAGATACTTC	TTTCTTGATA	TTCAAATATT	TTTCAGCTAC	5460
	GCATTCACTA	GTTTCAATTA	ATTTAAAACC	TTCTTGTAAG	TCTTTTTCGT	TGTTAATTAA	5520
35	AACTTGACCT	TTGCCATCGT	AGCCACCAAA	TCTAGTTTTT	ACAATAAAAG	GATATCCTAA	5580
	TGTTTCAATT	GCTTTGTCAA	TATCTGTAGA	TTCTTTTACT	GAAATGAACG	GGACAACTTT	5640
40	GGTACCAGCA	CTTTTTAATG	TTTCTTTTTC	AGTTAAGCGA	TCTTGTAATA	ACTGTATAGC	5700
	TTGGTAACCT	TGCGGAATAT	TGTACTTTTC	ACATAATAGT	TTTAATTGTT	GGGCTGAAAT	5760
	GTTTTCAAAT	TCATAAGTAA	TCACATCACA	TTTTTGTCCT	AATTGATTGA	GTGCCTTTTC	5820
45	ATCGTCATAC	TTGGCTTGTA	TAAATTCGTG	TGCAACGTAT	CTACATGGAC	AATCTTCAGA	5880
	AGGATCCAAT	ACAACCACTT	TATAACCCAT	TTTTTGAGCT	GATTGTGCCA	TCATCTTTCC	5940
	AAGCTGACCA	CCACCAATAA	TGCCAATAGT	CGCACCAAAC	TTTAATTTAT	TGAAGTTCAT	6000
50	TTTGCATGTC	CTCCACTTTT	TGAATTAACG	AAGATTCATA	CTGATTTAGT	TTTTCAACTA	6060
	AAGAAGGATT	TTGAATACTT	AACATTCTTG	CTGCAAGTAT	ACCTGCGTTT	TTAGCACCTG	6120

	AAGAATCTAT	ACCCTTTAAA	CTTTTTGTTT	CAATCGGCAC	TCCAATAACT	GGTAGCGTCG	6240
	TTAATGATGC	AACCATACCT	GGTAAATGTG	CCGCACCGCC	AGCGCCTGCA	ATGATAATGT	6300
5	TTATACCTCT	TTCTCTCGCT	TCAGAAGCAA	ATTGAACCAT	CATTTTTGGC	GTACGATGTG	6360
	CGGATACTAC	TTGTTTTTCG	TACGGAATTT	CAAAATAATC	CAACATGTTA	CAACTCTCTT	6420
	GCATAATTTT	CCAATCGGAA	GAACTGCCCA	TAATGACTGC	TACTTTCACT	TTGTACACCC	6480
10	TTTCAAAAGT	TTGAATTGTG	AATTACTTTA	GTTGTATATT	ATAGATATAG	CATAACAAGC	6540
	AATTTCTGCT	TTTTCAATCA	AAAATCGAAC	TTTATTTTGA	TTTTTTTTT	GAATTTACGT	6600
15	CTTTTGCTAT	GTAAATTAGT	TTTATAAACT	AACAAAGTTA	GGATATTGAC	AATAGGAGGA	6660
	GAAGTTTTTA	TGGTTGCTAA	AATTTTAGAT	GGTAAACAAA	TTGCCAAAGA	CTACAGACAG	6720
	GGGTTACAAG	ATCAAGTTGA	AGCGCTAAAA	GAAAAGGGTT	TTACACCTAA	ATTATCCGTT	6780
20	ATATTAGTTG	GTAATGATGG	CGCTAGTCAA	AGTTATGTTA	GATCAAAAA	GAAAGCAGCT	6840
	GAAAAAATTG	GTATGATTTC	AGAAATCGTA	CATTTGGAAG	AAACAGCTAC	TGAAGAAGAA	6900
	GTATTAAACG	AACTAAATAG	ACTAAATAAT	GATGATTCTG	TAAGTGGTAT	TTTGGTACAA	6960
25	GTACCATTAC	CAAAACAAGT	TAGCGAACAG	AAAATATTAG	AAGCAATCAA	TCCTGAAAAA	7020
	GATGTGGACG	GTTTTCATCC	ATAAATATA	GGGAAATTAT	ATATCGATGA	ACAAACTTTT	7080
	GTACCTTGCA	CACCGCTCGG	CATCATGGAA	ATATTAAAAC	ATGCTGATAT	TGATTTAGAA	7140
30	GGTAAAAATG	CAGTTGTAAT	TGGACGAAGT	CATATTGTCG	GACAACCAGT	TTCTAAGTTA	7200
	CTACTTCAAA	AAAATGCATC	AGTAACAATC	TTACATTCTC	GTTCAAAAGA	TATGGCATCA	7260
05	TATTTAAAAG	ATGCTGATGT	CATTGTCAGT	GCAGTTGGTA	AGCCTGGTTT	AGTAACAAAA	7320
35	GATGTGGTCA	AAGAAGGAGC	AGTAATTATC	GATGTTGGCA	ATACGCCAGA	TGAAAATGGC	7380
	AAATTAAAAG	GTGACGTTGA	TTATGATGCG	GTTAAAGAAA	TTGCTGGAGC	TATTACACCA	7440
40	GTTCCTGGTG	GCGTTGGTCC	ATTAACAATT	ACTATGGTAT	TAAATAATAC	TTTGCTTGCA	7500
	GAAAAAATGC	GTCGAGGTAT	TGATTCGTAA	AGAGCCTGAG	ACATAAATCA	ATGTTCTATG	7560
	CTCTACAAAG	TTATAATGGC	AGTAGTTGAC	TGAACGAAAA	TTCGCTTGTA	ACAAGCTTTT	7620
45	TTCAATTCTA	GTCAACCTTG	CCGGGGTGGG	ACGACGAAAT	AAATTTTACG	AAAATATCAT	7680
	TTCTGTCCCA	CTCCCTAATA	ACTGAGTTTT	AATGAAGTCT	TTTAACCCAC	ATTAAATTT	7740
	ATTTTGCAAT	TGCAATGAAT	AACAAGAAAA	ATCTGGGACA	TTAATCGATC	AAATGCTCCC	7800
50	TTCAAAGTAG	ACATTGAATA	AATGAAGGCT	TTGAAGGGAG	CATTTCACTT	TGTACTTGGC	7860
	тсаасааттт	ТАТАТАСАСА	בייי א מיייי א איייי	ごれるがでるみるるか	A A C COMO CON A	CA a Communica	

	GTTGGGGATG	GGCCCCAACA	CAGAAGCTGT	GACTATGATA	AAGTACTACT	ACATAGTTAA	8040
_	TCATTAGTGG	TTCTTTATCA	TTTTCGCCTC	CCTTTTCTTA	TTGTTTTGAT	ACACAAAAAT	8100
5	TTAAGTTCAA	ACTGTCGAAT	AAAGTTATAT	TTGATTTCAA	ATTATCCCTA	AATTATTAAT	8160
	TKTACAATTG	TGGCAGATTT	TCAAAATAAT	AATTATTTCC	TCATTATTTA	TAAATTTATA	8220
10	TTTAAATTTC	ATTCTTTATA	GGGTAAGATT	AGGACTATAG	TATGATGTGT	Arataatata	8280
	AATTAAGGTA	TAGTAAAGCT	AACTCAGAAA	TGACTTATCA	TTCGGAGGTT	ACATTATGAA	8340
	TAAACTATTA	CAGTCATTAT	CAGCCCTCGG	TGTTTCTGCT	ACACTAGTAA	CACCAAATTT	8400
15	AAATGCAGAT	GCAACGACGA	ATACTACACC	ACAAATTAAA	GGCGCTAATG	ATATCGTTAT	8460
	TAAGAAAGGT	CAAGATTATA	ACCTTCTAAA	CGGCATAAGT	GCATTTGATA	AAGAAGATGG	8520
	AGATTTAACC	GATAAAATTA	AAGTCGATGG	CCAAATTGAT	ACATCTAAAT	CTGGTAAATA	8580
20	TCAAATTAAA	TATCATGTCA	CTGATTCAGA	TGGTGCAATT	AAAATTTCCA	CTAGGTATAT	8640
	TGAGGTTAAA	TAGCCCTCAT	CACTATACTG	CAAATAAAAT	GGTAGCAAAC	GAACATGTTT	8700
	TGCTACCATT	TTATTTGTTA	TTCTAACTTC	ATCTGCAACT	TTAACCCAAA	TATTGTATTT	8760
25	TTTCTGTATA	CCAAAGGACT	ACCTATCAAA	TTATTAAAAC	TTAACTGCTC	TTTTTAAAAA	8820
	AATGTTTTGA	TTTTGAACAA	ACAAATTTCC	ACTTTTCATT	GTTTAACGAT	AAATTACTTT	8880
	TGGCAAATTC	CTTATTAAAA	TGTTTGCGCT	TCCTTTCAAT	CAACTAGCCA	TCATTTTCAA	8940
30	TTTATTAGAC	AATTTCAAAC	TTTTTTTATT	TTCATTCAAT	TAACCTTTAA	TTGAAAGCTA	9000
	TTCTCAACTT	TCCTTTTAAA	TATGAAGCAA	TTTTTCAAA	AACGCTATTA	GTCACAAAAT	9060
35	GT						9062

(2) INFORMATION FOR SEQ ID NO: 86:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2738 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:

AAATATTTT TCAAAACTAT GTGAAAATGG aCCATGTCLA AATCATGTAA TAATGCAGYA 60 CATAATGCCA ACGGTCTmTC TTTATTGTCC CATGCATCAT GACCAATAAA TGACTCATCA 120 ATTAATCGTC TAACTATTTC ATACACACCT AAAGAATGTC CAAAGCGACT ATGTTCTGCT 180 GTGTGAAAAG ATAGGTACAG TGTTCCTAGT TGTCTAATTC GACGTAACCT TTGGAATTCC 240

55

40

45

	TCTTTAAAAA	CTTTTTCTTC	TACTAATTTT	AAATCTACAT	ATGCGTTAGT	CATTATTCCC	360
	CTCCTTTTCG	TTTAATATAA	TATTTAATTT	ACTTAAAATG	CTTTGTACAT	AAGTGCTAAG	420
5	TCTAACTTTT	CGCCATACAT	TTCTGGCTCA	TAAGAGCGTA	AGATTGTAAA	ACCTTGCTCT	480
	TTATAGTAAG	CTACTGCTTC	TTCATTTTTA	TTATCTACTT	CTAAGTAAAC	ACCTTCAAAT	540
	TTATCTTCAA	AACGTGATAA	TCCTTCATTT	AACAATGCTG	TACCATAACC	TGTATGTTGC	600
10	GATTCTGGTT	TAACATAATG	AGCTGATAAA	TATAATTCTT	CACCGTAAAT	AAAGTTAGCA	660
	AAGCCAACGA	TGTCATTACC	TTCTTCAACG	ACTAAGAATA	ATTGTTCTTG	AAGTCTTTTC	720
15	TTTAAATGAT	GTTCATTATA	TGAAGCTECT	AACAAGTGAT	TAACTGTTGT	CGCAGCGTAT	780
.0	ATATTTAAGT	ATGTATTAAA	CCAAGCTTTA	GTTGCGACAT	CTCTAATTTG	AACAACATCT	840
	TTTTCAGTTG	CTTGTCTTAC	CTTGAACATG	ACTTTCTCCC	CTTATTAACA	AGTTTTAATA	900
20	ACGGCATTAT	ACCACAACTT	GCTCAATACT	TAATAAACAA	TGATTGTCTA	TTCAATTTAT	960
	ATATETATAT	TTTCCGTTAA	AATTAAAAAT	AAAAAATAAC	GAAGCAAAAA	AtCACTTCGT	1020
	TTAGTATGAG	GTATGTCTTA	TTGCAATATA	CTATTCCACT	CAGTTGCACG	TGCTAAGGCA	1080
25	TAGTTGTCTT	TCATGATGTC	ACCAGGCTTT	TCAGCAGTTC	CAATAATATA	ACCATTTAAA	1140
	GTGGCACCTA	raaagtctaa	ACTATATTTC	ATTTGCGTAA	TTGCTGGTTC	GCTTTTATTT	1200
	TTGGACAATC	TCCACCAACT	AAAATAACTC	TAAAATCCTT	TTCGGCCATT	TGTGCCTTAA	1260
30	AATTAGGATA	TCGTTTATCT	TGTAATGTTT	CTGACCAATG	TTCGATAAAT	GCTTTCAATG	1320
	GTGCTGAAAT	GCTATACCAA	TACACTGGTG	ATGCAAAAAT	AATTGTATCA	CTAGCCAATA	1380
	TTTTATCTAG	AATCGGCAAA	TAGTCATCGT	CATATGAAGT	AATAGTCTCT	GCTGTATGTC	1440
35	TCACGTCACG	TATCGGTTTA	AACTGATGTT	GTGTCACGTC	AATCCATTGA	TACTCTAAAT	1500
	CTTGCAAAGC	GAATTTTGTT	AATTGTGCAG	TATTACCGTT	TGGTCTACTC	CCACCAAACA	1560
40	AAACAGTAAT	CATTTTAGCC	TAACCTCACT	TTTGATTAAT	AAATATCTGT	GTTTTTCGTT	1620
40	ACCTAATTAT	ACTATCATAA	GCTTTGCCTA	CCGAATAGTA	AAACGCTTAC	AACTTTTATA	1680
	TAAATTTGAC	GAAATTTCGT	CATGCCTTAT	ATAACGTCGT	TTGTGATACG	GGGCTAATTC	1740
45	ATGATGAAAT	TAGATACATA	TATCACCATT	AAATACAATT	CATTTAGTCT	TCAATCGGAA	1800
	ACAGTTCATC	GATATATTGA	ATCTCATCAT	CTGATAAAAC	GATATCTGCA	GCTTTAATAT	1860
	TTTCAACGAC	TTGTTCTGCA	CGTTTTGCAC	CAGGAATAAT	CACATCGATA	GCTGGTCTCG	1920
50	TTAAATAAAA	TGCTAATACA	ATGTTCGCAA	TTGAAGTTTG	ATGTGCTGCA	GCTATGCTTT	1980
	CCNNNCCTTT	TROCCOROCC		CN N N T N C N C C	TO COTTO NA NA NA	MC3 CC3 CCMC	. 2040

	GCTAATGGGA	AATATGGAAT	AAATGTGATT	TGGTGATCAA	CACAATATTG	TAATACTGCC	2160
	TCATTTTCGC	GATGCAATAA	ATTATATTCT	AACTGTACAA	CATCAACGTA	ACCATCTTTA	2220
5	TTTGCTTCTT	TAAGTTGATC	TAATGTGAAA	TTTGATACAC	CAATTGCTTT	AATCTTCCCT	2280
	TGTTCCTTAA	GCTCTTGTAA	TGCTGCAACT	GCTTGATCTT	TCGGAGTGTT	GTTATCCGGA	2340
	AAATGAATAT	AATATAAATC	GATATAATCA	GTTTGTAGAC	GTTTCAAACT	ATTCTCAACT	2400
10	TGTTGTTTTA	AATATTCCGG	TTGATTGTTC	TGATGTACTT	CTTGATTTTC	ATCAAATTCA	2460
	TGAGACCCTT	TCGTAGCAAT	TTTAATTTGC	TCTCGCGGAT	ATTCTTTAAC	AACTTCTCCA	2520
15	ACCAATTCTT	CTGATCGTTC	TGGCCCATAA	ATATATGCCG	татстаатаа	ATTAATACCA	2580
-	TGATTAATGG	CTTGACGAAC	AACATCTTTT	CCTTGTTCTT	CATCTAAGTT	CGGATATAAA	2640
	TTATGCCCAa	CCTAtGCGTT	CGTCCCAAGT	GCGATTGGAA	ACACTTCAAC	ATCAGATTTA	2700
20	CCTAAGTTTA	CAAATTGCTn	CATTAGACCC	AGCnCCTT			2738
	(2) INFORMA	ATION FOR SE	Q ID NO: 87	':			
	4						

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 9425 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30

35

40

45

50

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

GATTAGATGA TATTTAACGA AAATTAaGrT GMAATACTtG AATGTArGAa GTCTGATGTC 60 GAAAATAGCT ATTAAAATAG AGTAGACGTA ATGLAAATGA AAGCACCTAA AATAGAAAAA 120 TTTCAAAAAT AGCGTAATTA TTATAATAAA TAGACTGCCA ATAAAATGCA ATTTTTCACT 180 TATAACATTC TTCAAAAAAT AATAGCAAAA TTATGTAAAA AATATCTTGT CATGGCAAGA 240 TTGGCTGTGC TATAATCTAT CTTGTGCTTA AGAACGGCTC CTTGGTCAAG CGGTTAAGAC 300 ACCGCCCTTT CACGGCGGTA ACACGGGTTC GAGTCCCGTA GGAGTCACCA TTTTTTAGGT 360 CTCGTAGTGT AGCGGTTAAC ACGCCTGCCT GTCACGCAGG AGATCGCGGG TTCGATTCCC 420 GTCGAGACCG TACAAATGCC TATCCAAGAG GATAGGCATT TTTTTGCGTT TAATATTATA 480 TTAATAAAAG ATATATGGAC GAATGATAAT CATATTGATT TATCTGTTCG TCCATTTTCT 540 TTAAAATGTA TGAACCTCAA GTAACTTAGT GGTTGGATAT GAAAGATAAA CGTAGACAAT 600 AAAATCTTTA TTAGACGTAC AAACATATGC TACTGTCAAC ATATTTCTTC GTTGTGATAT 660 GCCACCAGTC CTCCATAACA TCAATTGTTA AAGTAACGAA TAACGAATAA TGATATTTAT 720

	GACCTCATCA	TTGTGTTAAA	TATCATTGTC	ACAATCCGCC	GTGAGAAACT	TAAAAAAA	840
	AGTAATATAT	AAGTTTATAT	TGGAAAATAG	AATTAATAGC	TTATAAATGG	TAAATTATAT	900
5	AATAGGTTAC	TATACGTTAT	AAGACGGAAA	ATGCGCACAA	TAACAAAAAT	AGTAAGCGAC	960
	ATCCTGTGAT	TTTTTACACA	AACATAAACG	ATAAAGAACA	AAAAATGATA	AAATAATATT	1020
	AATGATTTAA	GAAAAGAGGT	TTATGCAAAT	GGCTAGAAAA	GTTGTTGTAG	TTGATGATGA	1080
10	AAAACCGATT	GCTGATATTT	TAGAATTTAA	CTTAAAAAAA	GAAGGATACG	ATGTGTACTG	1140
	TGCATACGAT	GGTAATGATG	CAGTCGACTT	AATTTATGAA	GAAGAACCAG	ACATCGTATT	1200
15	ACTAGATATC	ATGTTACCTG	GTCGTGATGG	TATGGAAGTA	TGTCGTGAAG	TGCGCAAAAA	1260
	ATACGAAATG	CCAATAATAA	TGCTTACTGC	TAAAGATTCA	GAAATTGATA	AAGTGCTTGG	1320
	TTTAGAACTA	GGTGCAGATG	ACTATGTAAC	GAAACCGTTT	AGTACGCGTG	AATTAATCGC	1380
20	ACGTGTGAAA	GCGAACTTAC	GTCGTCATTA	CTCACAACCA	GCACAAGACA	CTGGAAATGT	1440
	AACGAATGAA	ATCACAATTA	AAGATATTGT	GATTTATCCA	GACGCATATT	CTATTAAAAA	1500
	ACGTGGCGAA	GATATTGAAT	TAACACATCG	TGAATTTGAA	TTGTTCCATT	ATTTATCAAA	1560
25	ACATATGGGA	CAAGTAATGA	CACGTGAACA	TTTATTACAA	ACAGTATGGG	GCTATGATTA	1620
	CTTTGGCGAT	GTACGTACGG	TCGATGTAAC	GATTCGTCGT	TTACGTGAAA	AGATTGAAGA	1680
	TGATCCGTCA	CATCCTGAAT	ATATTGTGAC	GCGTAGAGGC	GTTGGATATT	TCCTCCAACA	1740
30	ACATGAGTAG	AGGTCGAAAC	GAATGAAGTG	GCTAAAACAA	CTACAATCCC	TTCATACTAA	1800
	ATTTGTAATT	GTTTATGTAT	TACTGATTAT	CATTGGTATG	CAAATTATCG	GGTTATATTT	1860
	TACAAATAAC	CTTGAAAAAG	AGCTGCTTGA	TAATTTTAAG	AAGAATATTA	CGCAGTACGC	1920
35	GAAACAATTA	GAAATTAGTA	TTGAAAAAGT	ATATGACGAA	AAGGGCTCCG	TAAATGCACA	1980
	AAAAGATATT	CAAAATTTAT	TAAGTGAGTA	TGCCAACCGT	CAAGAAATTG	GAGAAATTCG	2040
40	TTTTATAGAT	AAAGACCAAA	TTATTATTGC	GACGACGAAG	CAGTCTAACC	GTAGTCTAAT	2100
	CAATCAAAAA	GCGAATGATA	GTTCTGTCCA	AAAAGCACTA	TCACTAGGAC	AATCAAACGA	2160
	TCATTTAATT	TTAAAAGATT	ATGGCGGTGG	TAAGGACCGT	GTCTGGGTAT	ATAATATCCC	2220
15	AGTTAAAGTC	GATAAAAAGG	TAATTGGTAA	TATTTATATC	GAATCAAAAA	TTAATGACGT	2280
	TTATAACCAA	TTAAATAATA	TAAATCAAAT	ATTCATTGTT	GGTACAGCTA	TTTCATTATT	2340
	AATgCACAGT	CATCCTAGGA	TTCTTTATAG	CGCGAACGAT	TACCAAACCA	ATCACCGATA	2400
50	TGCGTAACCA	GACGGTCGAA	ATGTCCaGAG	GTAACTATAC	GCAACGTGTG	AAGATTTATG	2460
	GTAATGATGA	AATTGGCGAA	TTAGCTTTAG	CATTTAATAA	CTTGTCTAAA	CGTGTACAAG	2520

	GTGATGGTAT	TATTGCAACA	GACCGCCGTG	GACGTATTCG	TATCGTCAAT	GATATGGCAC	264
	TCAAGATGCT	TGGTATGGCG	AAAGAAGACA	TCATCGGATA	TTACATGTTA	AGTGTATTAA	270
5	GTCTTGAAGA	TGAATTTAAA	CTGGAAGAAA	TTCAAGAGAA	TAATGATAGT	TTCTTATTAG	276
	ATTTAAATGA	AGAAGAAGGT	CTAATCGCAC	GTGTTAACTT	TAGTACGATT	GTGCAGGAAA	282
10	CAGGATTTGT	AACTGGTTAT	ATCGCTGTGT	TACATGACGT	AACTGAACAA	CAACAAGTTG	288
70	AACGTGAGCG	TCGTGAATTT	GTTGCCAATG	TATCACATGA	GTTACGTACA	CCTTTAACTT	294
	CTATGAATAG	TTACATTGAA	GCACTTGAAG	AAGGTGCATG	GAAAGATGAG	GAACTTGCGC	300
15	CACAATTTTT	ATCTGTTACC	CGTGAAGAAA	CAGAACGAAT	GATTCGACTG	GTCAATGACT	306
	TGCTACAGTT	ATCTAAAATG	GATAATGAGT	CTGATCAAAT	CAACAAAGAA	ATTATCGACT	312
	TTAACATGTT	CATTAATAAA	ATTATTAATC	GACATGAAAT	GTCTGCGAAA	GATACAACAT	318
20	TTATTCGAGA	TATTCCGAAA	AAGACGATTT	TCACAGAATT	TGATCCTGAT	AAAATGACGC	324
	AAGTATTTGA	TAATGTCATT	ACAAATGCGA	TGAAATATTC	TAGAGGCGAT	AAACGTGTCG	330
	AGTTCCACGT	GAAACAAAAT	CCACTTTATA	ATCGAATGAC	GATTCGTATT	AAAGATAATG	336
25	GCATTGGTAT	TCCTATCAAT	AAAGTCGATA	AGATATTCGA	CCGATTCTAT	CGTGTAGATA	3420
	AGGCACGTAC	GCGTAAAATG	GGTGGTACTG	GATTAGGACT	AGCCATTTCG	AAAGAGATTG	3480
	TGGAAGCGCA	CAATGGTCGT	ATTTGGGCAA	ACAGTGTAGA	AGGTCAAGGT	ACATCTATCT	3540
30	TTATCACACT	TCCATGTGAA	GTCATTGAAG	ACGGTGATTG	GGATGAATAA	TAAGGAGCAT	3600
	ATTAAATCTG	TCATTTTAGC	ACTACTCGTC	TTGATGAGTG	TCGTATTGAC	ATATATGGTA	3660
35	TGGAACTTTT	CTCCTGATAT	TGCAAATGTC	GACAATACAG	ATAGTAAGAA	GAGTGAAACG	3720
00	raacctttaa	CGACACCTAT	GACAGCCAAA	ATGGATACAA	CTATTACGCC	ATTTCAGATT	3780
	ATTÇATTCGA	AAAATGATCA	TCCAGAAGGA	ACGATTGCGA	CGGTATCTAA	TGTGAATAAA	3840
40	CTGACGAAAC	CTTTGAAAAA	TAAAGAAGTG	AAGTCCGTGG	AACATGTTCG	TCGTGATCAT	3900
	AACTTGATGA	TTCCTGATTT	GAACAGTGAT	TTTATATTAT	TCGATTTTAC	GTATGATTTA	3960
	CCGTTATCAA	CATATCTTGG	TCAAGTACTG	AACATGAATG	CGAAAGTACC	AAATCATTTC	4020
45	AATTTCAATC	GTTTGGTCAT	AGATCATGAT	GCTGATGATA	ATATCGTGCT	TTATGCTATA	4080
	AGCAAAGATC	GCCACGATTA	CGTAAAATTA	ACAACTACAA	CGAAAAATGA	TCATTTTTTA	414
	GATGCATTAG	CAGCAGTGAA	AAAAGATATG	CAACCATACA	CAGATATCAT	CACAAACAAA	4200
50	GATACAATTG	ATCGTACGAC	GCATGTTTTT	GCACCAAGTA	AACCTGAAAA	GTTAAAAACA	4260
	TATCCCATCC	ייי אריי אריי אריי אריי אריי אריי	CATTACTCTT	GAGAAAATGA	лтсстатаст	ATTTCACCAT	4320

	GCAAACTATA	ACGATAAAAA	TGAAAAATAT	CATTATAAAA	ACCTGTCCGA	AGATGAAGCG	4440
	AGTTCCAGCA	AAATGGAAGA	AACGATTCCA	GGAACCTTTG	ATTTTATTAA	TGGTCATGGT	4500
5	GGTTTCTTAA	ACGAAGACTT	TAGATTGTTT	AGTACGAATA	ATCAGTCAGG	CGAGTTAACA	4560
	TATCaACGTT	TCCtTAATGG	TTATCCAACG	TTTAATAAAG	AAGGTTCTAA	TCAAATTCAA	4620
	GTCACTTGGG	GTGAAAAAGG	CGTCTTTGAC	TATCGTCGTT	CGTTATTACG	CACCGACGTT	4680
10	GTTTTAAATA	GTGAGGATAA	TAAATCGTTG	CCGAAATTAG	AGTCTGTACG	TTCAAGCTTA	4740
	GCGAACAATA	GTGATATTAA	TTTTGAAAAA	GTAACAAACA	TCGCTATCGG	TTACGAAATG	4800
15	CAGGATAATT	CAGATCATAA	TCACATTGAA	GTGCAGATTA	ACAGTGAACT	CGTACCGCGT	4860
	TGGTATGTAG	AATATGATGG	CGAATGGTAT	GTTTATAACG	ATGGGAGGCT	TGAATAAATG	4920
	AACTGGaAAC	TGACAAAGAC	ACTTTTCATT	TTCGTGTTTA	TTCTTGTCAA	CATCGTGTTA	4980
20	GTATCGATTT	ATGTTAATAA	AGTCAATCGC	TCACACATTA	ATGAAGTCGA	GAGTAACAAT	5040
	GAAGTTAATT	TTCAGCAAGA	AGAAATTAAA	GTACCGACTA	GTATATTGAA	TAAATCAGTT	5100
	AAAGGTATAA	AATTAGAGCA	AATTACAGGG	CGATCAAAAG	ACTTTAGTTC	TAAAGCTAAA	5160
25	GGCGATTCGG	ATTTGACCAC	ATCAGATGGT	GGAAAATTAT	TGAATGCGAA	CATTAGTCAA	5220
	TCGGTAAAGG	TCAGTGACAA	TAACTTAAAA	GATTTGAAAG	ATTATGTTAA	CAAGCGCGTA	5280
	TTTAAAGGTG	CTGAATATCA	ATTAAGCGAG	ATTAGTTCAG	ATTCTGTAAA	ATATGAACAA	5340
30	ACGTATGATG	ATTTTCCGAT	TTTAAATAAC	AGTAAAGCGA	TGTTAAACTT	TAATATAGAA	5400
	GATAACAAAG	CGACTAGTTA	TAAACAATCA	ATGATGGATG	ACATTAAGCC	CACAGATGGT	5460
0.5	GCAGATAAGA	AGCATCAAGT	GATTGGTGTG	AGAAAAGCAA	TCGAGGCATT	ATATTATAAT	5520
35	CGTTACTTGA	AAAAAGGTGA	TGAAGTCATT	AATGCTAGAC	TCGGTTACTA	CTCAGTCGTG	5580
	AATGĀAACGA	ATGTTCAATT	GTTACAACCA	AACTGGGAAA	TTAAAGTGAA	GCATGACGGT	5640
40	AAGGATAAAA	CGAATACTTA	CTATGTCGAA	GCGACAAATA	ATAACCCTAA	AATTATTAAT	5700
	CATTAATATG	AATCGTAATA	AGCTAGCATT	GCAAGCTCAT	CATATGTGAG	AAGCGGTGCT	5760
	AGCTTTTTTG	CTGGTACGGT	TTATTATGGC	TGATGTTTTT	GCGTCTCCAA	CGTGCGCATT	5820
45	TATTCATATT	TTAAGTAGAA	CCGCATTGTA	AAATTAGTGT	AACTGTTATT	TTAAAAACTT	5880
	TAGTATTTGT	CTAATCATTG	TAATAATATT	TAAGAAATTC	ATTGCACGTG	ATTATCAAAA	5940
	TTTAAATATA	AGAAACCGGT	CGATGAACTA	AAGTTACATA	ATAGGAAAGG	TATACAAAAC	6000
50	AGCTAATATA	CTGATAGTTT	CTGTAGGGAA	AATCGTATAT	TTGCACTGAT	GTATATTGCA	6060
	CTCATATACA	CACAMMOACT	CHALLYNY	AAACCATCAC	CCCCTTCATA	CCCATCACTC	6120

	TAGTTGATGT	TGGTTTGACT	GGAAAGAAAA	TGGAAGAATT	GTTTAGTCAA	ATTGACCGTA	6240
	ATATTCAAGA	TTTAAATGGT	ATTTTAGTAA	CCCATGAACA	TATTGATCAT	ATTAAAGGAT	6300
5	TAGGTGTTTT	GGCGCGTAAA	TATCAATTGC	CAATTTATGC	GAATGAAAAA	ACTTGGCAGG	6360
	CAATTGAAAA	GAAAGATAGT	CGCATCCCTA	TGGATCAGAA	ATTCATTTTT	AATCCTTATG	6420
	AAACAAAATC	TATTGCAGGT	TTCGATGTTG	AATCGTTTAA	CGTGTCACAT	GATGCAATAG	6480
10	ATCCGCAATT	TTATATTTTC	CATAATAACT	ATAAGAAGTT	TACGATTTTA	ACGGATACGG	6540
	GTTACGTGTC	TGATCGTATG	AAAGGTATGA	TACGTGGCAG	CGATGCGTTT	ATTTTTGAGA	6600
15	GTAATCATGA	CGTCGATATG	TTGAGAATGT	GTCGTTATCC	ATGGAAGACG	AAACAACGTA	6660
	TTTTAGGCGA	TATGGGTCAT	GTATCTAATG	AGGATGCGGC	TCATGCAATG	ACAGACGTGA	6720
	TTACAGGTAA	CACGAAACGT	ATTTACCTAT	CGCATTTATC	ACAAGACAAT	AACATGAAAG	6780
20	ATTTGGCGCG	TATGAGTGTT	GGCCAAGTAT	TGAACGAACA	CGATATTGAT	ACGGAAAAAG	6840
	AAGTATTGCT	ATGTGATACG	GATAAAGCTA	TTCCAACGCC	AATATATACA	ATATAAATGA	6900
	GAGTCATCCG	ATAAAGTTCC	GCATTGCTGT	GAGACGACTT	TATCGGGTGC	TTTTTTATGT	6960
25	TGTTGGTGGG	AAATGGCTGT	TGTTGAGTTG	AATCGGCTTG	ATTGAAATGT	GTAAAATAAT	7020
	TCGATATTAA	ATGTAATTTA	TAAATAATTT	ACATAAAATC	AATCATTTTA	ATATAAGGAT	7080
	TATGATAATA	TATTGGTGTA	TGACAGTTAA	TGGAGGGAAC	GAAATGAAAG	CTTTATTACT	7140
30	TAAAACAAGT	GTATGGCTCG	TTTTGCTTTT	TAGTGTAATG	GGATTATGGC	AAGTCTCGAA	7200
	CGCGGCTGAG	CAGCATACAC	CAATGAAAGC	ACATGCAGTA	ACAACGATAG	ACAAAGCAAC	7260
	AACAGATAAG	CAACAAGTAC	CGCCAACAAA	GGAAGCGGCT	CATCATTCTG	GCAAAGAAGC	7320
35	GGCAACCAAC	GTATCAGCAT	CAGCGCAGGG	AACAGCTGAT	GATACAAACA	GCAAAGTAAC	7380
	ATCCÁACGCA	CCATCTAACA	AACCATCTAC	AGTAGTTTCA	ACAAAAGTAA	ACGAAACACG	7440
40	CGACGTAGAT	ACACAACAAG	CCTCAACACA	AAAACCAACT	CACACAGCAA	CGTTCAAATT	7500
	ATCAAATGCT	AAAACAGCAT	CACTTTCACC	ACGAATGTTT	GCTGCTAATG	CACCACAAAC	7560
	AACAACACAT	AAAATATTAC	ATACAAATGA	TATCCATGGC	CGACTAGCCG	AAGAAAAAGG	7620
45	GCGTGTCATC	GGTATGGCTA	AATTAAAAAC	AGTAAAAGAA	CAAGAAAAGC	CTGATTTAAT	7680
	GTTAGACGCA	GGAGACGCCT	TCCAAGGTTT	ACCACTTTCA	AACCAGTCTA	AAGGTGAAGA	7740
	AATGGCTAAA	GCAATGAATG	CAGTAGGTTA	TGATGCTATG	GCAGTCGGTA	ACCATGAATT	7800
50	TGACTTTGGA	TACGATCAGT	TGAAAAAGTT	AGAGGGTATG	TTAGACTTCC	CGATGCTAAG	7860
	TACTAACGTT	TATAAAGATG	GAAAACGCGC	GTTTAAGCCT	TCAACGATTG	TAACAAAAAA	7920

	IGANGGCATI	AAAGGCGTTG	AATTTAGAGA	TCCATTACAA	AGTGTGACAG	CGGAAATGAT	8040
	GCGTATTTAT	AAAGACGTAG	ATACATTTGT	TGTTATATCA	CATTTAGGAA	TTGATCCTTC	8100
5	AACACAAGAA	ACATGGCGTG	GTGATTACTT	AGTGAAACAA	TTAAGTCAAA	ATCCACAATT	8160
	GAAGAAACGT	ATTACAGTTA	TTGATGGTCA	TTCACATACA	GTACTTCAAA	ATGGTCAAAT	8220
10	TTATAACAAT	GATGCATTGG	CACAAACAGG	TACAGCACTT	GCGAATATCG	GTAAGATTAC	8280
	ATTTAATTAT	CGCAATGGAG	AGGTATCGAA	TATTAAACCG	TCATTGATTA	ATGTTAAAGA	8340
	CGTTGAAAAT	GTAACACCGA	ACAAAGCATT	AGCTGAACAA	ATTAATCAAG	CTGATCAAAC	8400
15	ATTTAGAGCA	CAAACTGCAG	AGGTAATTAT	TCCAAACAAT	ACCATTGATT	TCAAAGGAGA	8460
	AAGAGATGAC	GTTAGAACGC	GTGAAACAAA	TTTAGGAAAC	GCGATTGCAG	ATGCTATGGA	8520
	AGCGTATGGC	GTTAAGAATT	TCTCTAAAAA	GACTGACTTT	GCCGTGACAA	ATGGTGGAGG	8580
20	TATTCGTGCC	TCTATCGCAA	AAGGTAAGGT	GACACGCTAT	GATTTAATCT	CAGTATTACC	8640
	ATTTGGAAAT	ACGATTGCGC	AAATTGATGT	AAAAGGTTCA	GACGTCTGGA	CGGCTTTCGA	8700
	ACATAGTTTA	GGCGCACCAA	CAACACAAAA	GGACGGTAAG	ACAGTGTTAA	CAGCGAATGG	8760
25	CGGTTTACTA	CATATCTCTG	ATTCAATCCG	TGTTTACTAT	GATATAAATA	AACCGTCTGG	8820
	CAAACGAATT	AATGCTATTC	AAATTTTAAA	TAAAGAGACA	GGTAAGTTTG	AAAATATTGA	8880
	TTTAAAACGT	GTATATCACG	TAACGATGAA	TGACTTCACA	GCATCAGGTG	GCGACGGATA	8940
30	TAGTATGTTC	GGTGGTCCTA	GAGAAGAAGG	TATTTCATTA	GATCAAGTAC	TAGCAAGTTA	9000
	TTTAAAAACA	GCTAACTTAG	CTAAGTATGA	TACGACAGAA	CCACAACGTA	TGTTATTAGG	9060
35	TAAACCAGCA	GTAAGTGAAC	AACCAGCTAA	AGGACAACAA	GGTAGCAAAG	GTAGTAAGTC	9120
	TGGTAAAGAT	ACACAACCAA	TTGGTGACGA	CAAAGTGATG	GATCCAGCGA	AAAAACCAGC	9180
	TCCAGGTAAA	GTTGTATTGT	TgtAGCGCAT	AGAGGAACTG	TTAGTAGCGG	TACAGAAGGT	9240
40	TCTGGTCGCA	CAATAGAAGG	AGCTACTGTA	TCAAGCAAGA	GTGGGAAACA	ATTGGCTAGA	9300
	ATGTCAGTGC	CTAAAGGTAG	CGCGCATGAG	AAACAGTTAT	TTCATAATCA	ACAGTCATTG	9360
	ACGTAGCTAA	GTAATGATAA	ATAATCATAA	ATAAAATTAC	AGATATTGAC	AAAAAATAGT	9420
45	AAATA						9425

(2) INFORMATION FOR SEQ ID NO: 88:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3886 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:

	AGTTGTAATG	TCACATTTCC	AGAGTCTGAA	ATTATCTTTA	TCACGTTACA	TTTACTAGGC	60
5	TCTAAAATGA	CTGAACATAC	AGCATCTTCA	ATTACCTTTG	AATACCATGA	TTTATCGCAA	120
	AATATACATG	AATTGATCAC	TTGTGTTAGC	CAAGAATTAG	GCATTGATAT	GTCAAAAGAC	180
	AACAAGTTAC	ATACCAGTCT	GATCACACAT	ATCAAACCAG	CTATACATCG	TATTAAATAC	240
10	GATATGCTAC	AACCTAATCC	TTTGAGGCAA	GAAGTTATGC	GTCGCTATCC	TCAAATCATT	300
	GAAGCCGTTA	GCAAGCATAT	TAGTCCAATT	GAACAAGATG	CTGCTATTCG	CTTCAACGAA	360
15	GATGAATTAA	CATACATTAC	AATTCACTTC	GCATCAAGTA	TAGAGCGTGT	TGCAACACAT	420
,,,	AAACAATCAA	TGATTAAGGT	TGTCTTACTA	TGTGGTTCTG	GTATAGGCAC	GTCACAACTT	480
	TTAAAATCAA	AACTAAATCA	CCTGTATCCT	GaGTTnCACA	TTTGGGAtGc	CTATTCCATT	540
20	TaTcAATTGG	aAGaAAGTCG	ATTATTGCAA	GATAACATTG	ATTATGTCAT	TTCAACAGTA	600
	CCTTGTGAAA	TATCAGCTGT	ACCAGTTATT	CATGTCGATC	CATTTATCAA	TCAACAATCT	660
	CGTCAAAAAT	TGAATCAAAT	TATCAATGAC	TCAAGAGAAC	AACGAGTCAT	GAAAATGGCA	720
25	ACTGATGGCA	AGTCACTCGC	AGATTTATTG	CCTGAACATC	GCATCATTAT	АААТАААСАА	780
	CCATTATCAA	TTGAATCCGC	AATTGCAGTG	GCTGTGCAAC	CTTTAATCAA	TGATGGCATT	840
	GTCTATTCAA	ATTATACAGC	TGCAATTTTA	AAACAATTTG	AACAATTCGG	GTCATATATG	900
30	GTCATTAGTC	CACATATTGC	ACTTATTCAC	GCTGGTACTG	ATTATGTACA	GAATGGTGTA	960
	GGTTTCGCAC	TAACATATTT	CACTGAAGGG	ATTATCTTTG	GTAGTAAAGC	TAACGATCCC	1020
	GTTCACCTTG	TAATTACATT	AGCAACGGAC	CACCCCAATG	CACATTTAAA	GGCATTGGGA	1080
35	CAGTTAAGCG	AATGCTTAAG	CAACGACTTA	TATCGACAAG	ATTTCTTAGA	TGGGAATATT	1140
	TTTAAAATTA	AACAACACAT	TGCTTTAACT	ATGACAAAGG	AGGCTTAATA	ACGTGTCATT	1200
40	AGACATTTTG	TCAACAACAC	GCATCATTGT	AAAAGAACAA	GTAAATGATT	GGACTGAAGC	1260
40	TATAACTATA	GCTTCTCAGC	CATTACTACA	AGAACAAATT	ATTGAACAAG	GCTATGTTCA	1320
	AGCAATGATT	GATAGCGTTA	ATGAACTTGG	ACCTTATATC	GTTATCGCAC	CTGAAATTGC	1380
45	AATTGCACAT	GCAAGACCGA	ACAATGACGT	ACATCAAGTT	GGTTTAAGTC	TATTAAAGTT	1440
	GAATCAACAT	GTGGCATTTT	GTGATGAAGA	TCACTACGCA	TCTCTCATTT	TTGTATTGAG	1500
	TGCCATCGAC	AATCATTCAC	ACTTATCTGT	ATTACAAAAT	TTAGCAACCG	TACTGGGCGA	1560
50	TAACCAAACA	GTCCAGCAAC	TATTAACTGC	AACAAATGCA	CAAGACATTA	AAAACATTTT	1620
	AAAGGAGCAT	GATTAATATG	AAAATTTTAG	TAGTATGTGG	CCACGGTTTA	GGAAGTAGTT	1680

	AAGTTGAACA	TAGTGACATT	ATGACAGCAA	GTCCAGAGAT	GGCTGACTTG	TTTATTTGTG	1800
	GTAGAGATTT	AGCTGAAAAT	GCCGAACGTC	TAGGGGATGT	CTTAGTTCTT	GATAATATTT	1860
5	TAGATAAAGC	TGAATTACAA	CAAAAGCTCT	CAGAAAAATT	ACAACAACTT	AACATGATTT.	1920
	AAAGGAGGTA	CGACCTATGC	AAGCAATCCT	TAATTTTATA	GTCGATATTT	TAAGTCAACC	1980
10	AGCCATTCTT	GTTGCACTGA	TTGCCTTTAT	AGGTTTAATC	GTTCAGAAAA	AACCTGCCGC	2040
	AACGATCACT	TCAGGAACCA	TTAAAACGAT	ATTAGGCTTC	TTAATTTTAA	GTGCAGGTGC	2100
	TGATGTCGTC	GTTCGATCTC	TTGAACCATT	CGGCAAAATA	TTCCAACACG	CATTTGGTGT	2160
15	GCAAGGTATC	GTACCTAACA	ACGAAGCTAT	CGTCTCACTA	GCCTTAAAAG	ATTTTGGAAC	2220
	AACAGCTGCA	CTCATCATGG	TCTGTGGCAT	GATTGTTAAT	ATTTTAATTG	CCCGCTTCAC	2280
	AAAATTTAAAA	TATATCTTTT	TAACAGGTCA	TCATACATTT	TACATGGCTG	CGTTTTTAGC	2340
20	AATCATTTTA	ACAGTCAGTC	ATATTAAAGG	CTGGCTAACG	ATTGTTATCG	GCGCACTCGT	2400
	ATTAGGATTA	ATCATGGCAG	TATTACCTGC	ATTACTCCAA	CCTACGATGC	GAAAAATTAC	2460
	AGGGAATGAC	CAAGTAGCTT	TAGGTCATTT	TGGCTCAATC	AGTTACTTTG	CCGCAGTGCT	2520
25	GTAGGTCAAT	TATTCAAAGG	TAAGTCTAAA	TCAACGGAAG	AGATTAAATT	TCCAAAAGGC	2580
	TTAAGTTTCT	TACGAGAAAG	TACAATTAGT	ATCTCGATTA	CGATGGCATT	ACTTTACTTC	2640
	ATCGCATGCT	TATTTGCGGG	CGTTAGTTAT	GTACACGAAT	CTATTAGTGA	TGGTCAAAAC	2700
30	TTTATTGTCT	TTTCATTAAT	TCAAGGTGTG	ACATTTGCTG	CTGGTGTATT	TATTATTTTA	2760
	ACGGGCGTTC	GTTTAATCTT	AGCTGAAATC	GTCCCAGCAT	TTAAAGGAAT	TTCTGAAAAG	2820
35	CTTGTACCAA	ATTCTAAACC	TGCATTAGAC	TGCCCTATTG	TGTTCCCTTA	TGCACAAAAT	2880
	GCAGTATTAA	TTGGATTCTT	TGTCAGCTTT	ATTACAGGTG	TCATCGGTAT	GTTTATCTTA	2940
	TTCTTATTTG	GTGGCGTCGT	CATTTTACCT	GGCGTAGTTG	CACACTTCTT	CTTAGGTGCA	3000
40	ACGGCTGCTG	TATTCGGTAA	TGCAAGAGGC	GGTATTAAAG	GTGCTATTGC	TGGCGCCGCT	3060
	CTAAATGGTA	TCCTAATCAC	GTTTTTACCA	TTATTATTCT	TGCCATTTTT	AGGCGAATTA	3120
	GGTGGTGCTG	CAACAACATT	CTCAGATACA	GACTTTTTAG	CTGTCGGTAT	CGTGTTCGGT	3180
45	AACGCAGTAA	AATATATGGG	ATTATTTGGT	GCGATTCTAT	TTATTATTAT	CGTAGGTGCG	3240
	ACAACAATTT	TATTAAAAGG	CCGTCAAAAA	GAACAGCAAT	AGTGTTAACG	TAGAAATATA	3300
	AAACACCGTC	ACATATTGAG	TGAATGCCCC	TTTLATCAAG	AGGAAAGCCA	CTTACTTATG	3360
50	GACGGTGTTT	TGTATTATAT	TAAATGATAC	TTAGCCATAC	TATCGACAGC	TGCTAAAATT	3420
	GCTTCTTCTT	GTGTCGCAAT	CGGTTCCCAA	CCAAGTAATG	TTTTTgCACG	TTCGTTACTT	3480

CCTAGACTCA AAATAAAGTC TGGTAATTTT TTAGTAGAAA CTTTTTGAGC TATTTCAGGT 3600 CTCTTTTCTT TAATTAATTT TGCAATTTCC AACAAATTAA TTTGTCCATC AGCCGTCGCA 3660 ATAAATCGCT TGCCATTAGC TTGTTCATTT GTCATTGCCA AAATGTGCAG TTCAGCTACG 3720 TCTCTCACAT CAACAACATT TAACGGAATT TGCGGTACAC GTTTCATTGA ACCATTCAAT 3780 AAATTTTCTA ATAAATGAAA GCTTCCTGAA ACGTGTGCAT CTAATGATGG CCCAAAAATT 3840 GCAACTGGAT TGATTGTGGC AAATTCTACT GTTGTATTTT CATTCT 3886

(2) INFORMATION FOR SEQ ID NO: 89:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4879 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20

25

30

35

40

45

50

5

10

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:

GTCATCTATC AAAAATTTGG TATACAGACC GACAATTATT AATTAATAAT TTAATTTCCC 60 AGGCAATACC AGTGATTAAA TATCCACAAA TACAACATAA AGAACAACCA TTAGAATCTA 120 TTTCACAACT TATATTGTCT AAGATGACAT CTAATCAATA GTGTTTAAAT TTCTCAGTGG 180 CTGTGAATGA GGTTTAAAAG TACTATAAAA CGTAAACTTT GATACTTTAA AATACGCAAA 240 AAACGGTAAA CCCTAATTCA TATTATAGAG TTTACCGTTT TATTTTTAA CTTGCATCAT 300 AGTTATATTA ACATTATTGT TGGTAGTTTG GATCAGTAAC CATTGCTTGT CCAGTATAAT 360 CAACCGTTAC AATTGAATAT TTTCCATTTG CATTTGGGTC TTTAAAACTA AACACATACT 420 TATAGTTGCC ATTATGTTCT TCAATAGAAT AATCATTATA CACTTTATTA TTACTACCAA 480 ATTTATTTGC TTCATTATTA GCCGCATTTA AAGCTGTTTG GAAATTTGGC AATTGCTGTA 540 AAGCTTGATT TTTATTTCCA TTAAACGGAT AAATTTGACG TGCAACCGGC GCGGCATTTT 600 GNCCATAATA TGGTGCAACG TAACTTGATT TTTGATTATT ATTCGCTTGG TTATTACTTG 660 ATTGGTTATT ATTTGTTTGG TTTTGGTCAT TGTTTGTTGC ATTTGAATTA GATTGTTGCT 720 GGTTATCGTT TGCACTATTA TCTTTATTAT CTTTGTTTAC GTCTTTACTA TCATCTTTAT 780 TATCTTTCTT ATCTTTAGAT GAATCATTTG TTTTTTTATC TTGTTGTTCA GTTTTCGCTT 840 TATCATCTTT TTCTTTATTA CCGTCTTTTT GTTGGTCACT ATCTTGACCA CATGCAGCTA 900 AAAATAATGA TAATGCTAGT AACCCTGTAA CTAATCTTTT CATACATATC TCCTCCTATA 960 1020 ATTCGATATT CATTGAATAA TCTTGAAATA CATATCTACC ATGTGTATCT TTTCATGGCT

	TAAGGTTCTT	TTTATTATAC	CCTAATTTTT	GTTCATTATT	ATTTAATTTT	TGTGAATTTT	1140
	ATGETTRCTA	TAAATTTAAT	TATTTTACTT	TAACAATTCA	TTACGCATTT	AGCATTTCAA	1200
5	GGTATACACA	ATATTTATTA	CTATGATTTC	ATTTTATCTG	CTGCAAAAAC	AATCATTATA	1260
	ACTCTTTTTC	CATAATTAAA	TCTGTATCCG	TTACATCACC	TGTTTGAAAA	TGATGTTCAC	1320
	CAACCACTTT	AAATCCATGA	CGTTTATAAA	ATGCTTGAGC	ACGAGGATTA	TGCTCCCAAA	1380
10 •	CTCCTAGCCA	AATTTTATGT	TTATTATGTT	CTTGAGCAAT	TTTTTCGGCC	AATTCTATCA	1440
	ATTGTGAACC	TCTTCCGCCA	CCTTGAAAGT	СТТТСААААА	ATATATGCGC	TGCACTTCTA	1500
15	AATAGGTCTC	CCCCATTTCT	TCAGTTTGAG	CACTATTAAT	ATTCATCTTT	ATATAACCAA	1560
	CATTCGCACC	ATCTTCTTGa	TAAAAATAAT	GAAATGAATC	TACATGGTTA	ATCTCTTGTG	1620
	TAAATTTCTC	TACAGTATAA	TTGTCTTTAA	AAAATTGATC	AAAATCTTTG	TCATCATAGT	1680
20	AAGAACCAAA	CGTGTCATAA	AATGTTCTAG	TTGCTAATTC	AACTAATTCA	CTAGCATTTT	1740
	GTTCTGAAAT	TTCTTTGATT	ATCCCAGCCA	TATAAATCCT	CCAATAAACA	GTGATCGAAT	1800
	CAAAATATTA	CTTATGTTAT	TTTTCAGCCA	AAACTATTTA	AAAATACATT	AACACAAATC	1860
25	AATTACAAAT	TGTATTGATT	GTGTGTAACA	TCAATAAATG	ATACATTTAT	TCCAGTAAAA	1920
	TGGCCGTATT	TTCAAAAGAG	AAAAAGAGAG	GATGTATCGT	TGTGATAGAA	ACATTTAAAG	1980
	CGTTTGTAAT	TGATAAAGAT	GAGAGTGGTA	AAGTGACACC	AACTTTCAAA	CAATTATCGC	2040
30	CTACTGATTT	ACCTAAAGGA	GATGTGCTGA	TTAAAGTACA	TTACTCTGGT	ATAAATTATA	2100
	AAGATGCTTT	AGCGACTCAA	GATCATAATG	CAGTCGTAAA	ATCGTATCCT	ATGATTCCAG	2160
	GAATAGATTT	AGCTGGAACA	ATTGTTGAAT	CCGAAGCACC	AGGCTTTGAa	AAAGGAGAAC	2220
35	AAGTAATTGT	AACGAGTTAT	GACCTAGGTG	TCAGCCATTA	TGGCGGTTTT	AGTGAATATG	2280
	CGCGTGTAAA	ATCAGAATGG	ATTATCAAGC	TTCCTGATAC	TTTAACATTA	GAAGAATCAA	2340
40	TGATATATGG	CACAGCTGGT	TATACTGCCG	GTTTAGCAAT	TGAAAGACTT	GAAAAGTTG	2400
	GAATGAATAT	TGAAGATGGT	CCTGTACTCG	TTCGCGGTGC	TTCAGGTGGT	GTCGGTACTT	2460
	TAGCAGTACT	CATGCTTAAT	GAACTTGGTT	ATAAAGTTAT	CGCAAGTACA	GGTAAACAAG	2520
45	ATGTTAGCGA	TCAATTACTT	GAACTTGGTG	CCAAAGAAGT	TATCGATCGA	CTTCCTGTTG	2580
	AAGATGATCA	TAAAAAGCCA	CTCGCATCAT	CAACTTGGCA	AGCTTGTGTA	GACCCTGTTG	2640
	GTGGCGAAGG	TATTAATTAT	GTTACAAAGC	GTTTAAATCA	TAGTGGGTCA	ATTACAGTTA	2700
50	TTGGTATGAC	TGCCGGTAAT	ACTTATACTA	ATTCTGTATT	CCCTCACATT	TTAAGAGGTG	2760
	TAAACATTTT	AGGAATTGAC	TCGGTATTTA	CTGCTATGAA	ATTANGACAG	CGCGTTTGGC	2820

	TTGATGAACT	TCCAGAACAA	CTTAACAAAG	TAATTAAACA	TGAAAATAAA	GGGCGCATTG	2940
	TTATCGATTT	CGGTGTAGAT	AAATAGTATT	CATGAAAAAG	ACATCCCGTT	ATGCGAGATG	3000
5	TCTTTTTTAA	TTTAGTATTT	GATATACATA	CCGCCTGAAT	CTGGTTCGGT	AGGTATAAAT	3060
	CCAAATTTTG	TATATAATTT	ATCCGCTGGG	TAGTCTGCAA	TCAGAcTAAC	GTATGTACTC	3120
	TCAACAGCCA	CACCTTTAAT	ATATTGCATA	ATATGCTCCA	TAATTAGACT	GCCGTAACCT	3180
10	TGACCTTGGT	AACTTTTCAA	AACTGCAATA	TCAACAATTT	GAAAAACAGT	TCCGCCATCG	3240
	CCAATCACTC	TACCCATACC	AATTAACCGA	TCTTTATCAT	ACAAGGTTAC	TGTAAATAAG	3300
15	GCATTAGGTA	ATCCTTTTTC	aGCTGTTCGC	GCGTCTTTGG	ACTCATACCT	GCGTTAATCC	3360
15	TTAATGCGCA	ATAATCCTCG	CAAGTCGGAA	TATCATATGT	CACTTTAACC	ATTATTTACC	3420
	CCACTTTTCA	TCACACAATA	TATCAACCTA	GTATAAATGT	TTATTTACAA	TAGTCTTATT	3480
20	CGCTTCTTTA	AACACTTCAT	GATGACTTGA	AACATAACCC	TCTGCATTCG	CATCTGGTTG	3540
	GATATATGTT	TTAGCAAGGT	TCGCTGCATT	TGCACCATCA	CTAAATGCAC	TTGCAATTAG	3600
	ATGTGATTTT	GCATCATGAT	AAACAATATC	TCCACACGCA	TAGATACCAG	GTATACTAGT	3660
25	TGTCGTATTA	CCAAATCCTT	TAACACGACA	ATCATCATGC	ATATCTAGCT	TTGAAGATGT	3720
	TECACTCAAT	AATGTATTAC	AACGATCAAA	CCCATGACTA	ATAATGACAT	CGTCAAATTT	3780
	AACTGTATGC	CTATCGCCAC	TTTCAACATG	TTCCAAAACA	ACTTCACTTA	TATGCGTTTC	3840
30	ATCATCATTG	CCGACCAAGT	ATTTAATACG	TGTTTTTGGG	CATAGTTTCA	CATTTAAATC	3900
	TGTCACCAAC	GTTTTCATCG	CTTCATGACC	ACTTACATCT	TCTTTTCGAT	AAACAACTGT	3960
	CACGCTTTTA	GCAATCTTGG	CAATATCATG	CGCCCAATCT	AATGCTGTAT	TTCCTCCACC	4020
35	TGATATTAAT	ACATCTTTAT	CTTTGAAACG	TCTGTAACTT	TGTACAACAT	AATGTAAATT	4080
	AGTTAATTGA	TATCTCTCTA	CACCTTTAAC	ATCTAATTGT	TTTGGATTAA	TAATACCCGC	4140
40	ACCAATTGCA	ATGATAACTG	CTTTCGATGT	ATATATTTCT	CCCGCTTCTG	TTTCAACTTC	4200
40	GAAATGACGT	TCTGCCTTTT	TCCTAATATC	TACCACACGT	TCATTCAAAT	GAACTTCCGG	4260
	TTTAAAATAT	AATCCTTGCT	TAATTGTATC	TTTTAAAATT	TCATGACAAG	GTTTTGGCGC	4320
45	AATGCCGCCA	ATATCCCAAA	TAATTTTTC	AGGGTAAATT	CTCATCTTAC	CCCCTAATTC	4380
	AGATTGAACA	TCTATCAATC	TTACAGACAT	ATCTCGCAAT	CCAGCATAAA	AGCTTGCATA	4440
	CAAACCAGAC	GGACCGCCAC	CAATGATTGT	AACATCTTTC	ATTATGTGCC	TCCTATGACT	4500
50	CTCTATATTC	ATTTCTTTCA	TTAACGTGCT	CAAATTGATA	ATTATTATCA	TTTAAAGCCA	4560
	ייייי איניה איניה איניה	አአጥአጥሞኮአጥኣ	ጥምር ምም A A A ም	*******	CTTACCCATC	ስ ልጥተልጥሮል ልጥ	4620

GAAAGATGTG TATATTTTTT AGTTCTAGTT ATATTATTTT TTAAAAGACT CATCACGTGG 4740 TTCTTTAAGA ATTGCTTGTC TTAAAAGGAA AAATAGCAAC AATAAACCTG CAAGCATACC 4800 5 TGTGTGCCCA ATACCTGCAA AGCCTGCnAA TGCTTCTGGA GAGTATGATT TACCAGTGAC 4860 TTGGAAGAAT CCTTTTGTC 4879 (2) INFORMATION FOR SEQ ID NO: 90: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1560 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90: 60 ATAATGTCTT AGATTGATTG GGAGTTTTTT TAATTTTTTT GAAATTAAAT TAATCTGTAS 20 YTAATAAAA ATTTGAATAA CTGACACAYT TTTTTGATCA TAGCTAYATA CTTTGTGAAT 120 TAATTCACAT TATAATAAGA GTGAAGATAA GAGTATTATA AATnATCTTT AAATAAATAT 180 25 ATGTGAAGTA AAAATTACAC GTTAGCATAT CGATTATGGT CATTTCKTTT AACATATTAA 240 CTGGGGAACG TTAAAAGTTA ACGGKTGATA TCYAACLAAA AACAAGGTCA CAGTAGTATG 300 TTTTAATCTG GCGTCTATTA CAAATAAAAA TTACATCTAT AATTATTCGT TTTCTTTTTT 360 30 GAAAGTAATA GCCAATTAAT ATCATACATA CTGGAGTGAC TATAAGGAGG ACATTATTAT 420 GAGAGCAGCA GTTGTAACGA AAGATCACAA AGTAAGTATT GAGGACAAAA AGTTAAGAGC 480 TTTAAAACCT GGTGAAGCGT TGGTACAAAC GGAATATTGT GGCGTTTGTC ATACCGATTT 540 35 ACATGTTAAG AATGCTGATT TTGGTGATGT TACAGGCGTT ACTTTAGGTC ATGAAGGTAT 600 TGGTAAAGTC ATCGAAGTTG CGGAAGATGT AGAATCATTA AAAATTGGAG ACCGTGTGTC 660 TATCGCTTGG ATGTTCGAAA GCTGTGGAAG ATGTGAATAT TGTACAACAG GTCGTGAAAC 720 40 ACTTTGCCGT AGTGTGAAAA ATGCTGGTTA TACAGTAGAT GGTGCAATGG CTGAACAAGT 780 TATTGTTACT GCAGACTATG CTGTGAAAGT ACCTGAAAAA TTAGATCCAG CAGCAGCGTC 840 TTCTATTACA TGCGCAGGTG TGACAACTTA TAAAGCTGTA AAAGTAAGTA ATGTAAAACC 900 45 TGGACAATGG TTAGGTGTTT TTGGTATAGG TGGTTTAGGT AACCTAGCTT TACAATATGC 960 TAAAAACGTT ATGGGGGCTA AAATTGTTGC CTTCGACATC AATGATGATA AATTAGCATT 1020 50 CGCGAAAGAA TTAGGTGCTG ATGCTATTAT TAATTCTAAA GATGTTGATC CAGTTGCAGA

55

AGTTATGAAA TTAACTGATA ACAAAGGATT AGATGCAACA GTGGTAACTT CAGTTGCTAA

1080

TTTACCTGTT GATAAAATGA ACTTAGATAT CCCAAGATLA GTGCTTGATG GTATTGAAGT 1260
AGTAGGTTCA CTTGTTGGTA CAAGACAAGA CTTACGTGAA GCGTTTGAAT TTGCTGCTGA 1320
AAATAAAGTA ACACCTAAAG TTCAATTAAG AAAATTAGAA GAAATCAATG ATATTTTTGA 1380
AGAAATGGAA AATGGTACTA TAACTGGTAG AATGGTTATT AAATTTTAAA AATATCAACT 1440
GACTATATAG ATAAAGAAGG TAGTGCTCTG AACACTATCA TTATTAATCA AACCCCGAGG 1500
TTTTCCTGAA AAGATAGTGG NAAATCCCCG TGTTTTTTGG GTTTGAGGNG GTTGTNTGTA 1560
(2) INFORMATION FOR SEQ ID NO: 91:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 11014 base pairs

(B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

20

25

30

35

40

45

5

10

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:

GTCCTGTnGC TGCAATGAAT ACGCCTAAAA ATCCAGGGAT GTAATGGATA CTTTGTGGTA 60 GTACTAATGA TAGAAATGAT AAAAATGAAA TCACAAAGGC TACGCTCGCA AAAGCTTGAC 120 ATGTACGCTT ATCGCCATAA TCTAACCCTG TACGTATATG TAATAAATAC TGTAATCCGA 180 TACTTAAATA CATAATTGCC ACGCATAAGA AGAATGGGAA GAATGTCTTT TCAAAGTCCG 240 GATATAGGCT GTTAGATAGG AAGACCATGA TGAACATATT AAACATCATA AACGAGACGT 300 CTTTGAATGT AACTTGACCA AATCGATTTG TAAAAAATGT TTGATGAGAC CACATTAACC 360 ATAAGAACAA ACTCATGACG ATGTATTTGA AAAATAAATC AGCTGAAATG GAACCGTTTT 420 GTGTTGTTAA AATCACATGT GCAATTTTTT GAATGGCATA GACGAAAATT AAATCAAAGA 480 ACAACTCATG GAATCCTGCA CGCTTTTCAG CTAAATGTTT TGGTGTTAAT GCATTAACCA 540 TAAAATTITA ACTCCTITAA GATGTGTAAT TAATTTACTA AGTATACTAT TTATTTTTTC 600 TAGTGAATAG GGGCAGATTT GGCGATGAAG TGGAAGGAGA GGTGACTGCA AGGTAATTGC 660 GGAATTAACA ATCATCAGCG ATTTAATATT TGACTGGAGA CGTCATGGTA ATAAAAAATT 720 GATGAGAAAT TGATGGTGAA ACCAGCTGTG AATASCGATG CAATGATTSA TAGAATTTAA 780 TTAGAGTCAT TACGCGAAAT GATTAATGAT AATTTGTGGT AAATCAAAGC ATAATTTTGT 840 ACTATAGATG AGGATGATAG AGCATATTTA AGAGGGTGAA ATGTTAAAGT GAAACCGTTT 900 ACGTTTCCGA TTGCCCAAAC AAATTACATC ATTGTATAAT ATGATTTGTT AAATGCATAA 960 CAAGAATGAA AATGTAACAT ACGTAGCAAT TGGTTTCATA AATTGGATGT TAGTGGCGTA 1020

55

	TGACGAGAGT	CGTATTAGCA	GCAGCATACA	GGACACCTAT	TGGCGTTTTT	GGAGGTGCGT	1140
	TTAAAGACGT	GCCAGCCTAT	GATTTAGGTG	CGACTTTAAT	AGAACATATT	ATTAAAGAGA	1200
5	CGGGTTTGAA	TCCAAGTGAG	ATTGATGAAG	TTATCATCGG	TAACGTACTA	CAAGCAGGAC	1260
	AAGGACAAAA	TCCAGCACGA	ATTGCTGCTA	TGAAAGGTGG	CTTGCCAGAm	ACAGTACCTG	1320
10	CATTTACGGT	GaATAAAGTA	TGTGGTTCTG	GGTTAAAGTC	GATTCAATTA	GCATATCAAT	1380
,,,	CTATTGTGAC	TGGTGAAAAT	GACATCGTGC	TAGCTGGCGG	TATGGAGAAT	ATGTCTCAAT	1440
	CACCAATGCT	TGTCAACAAC	AGTCGCTTTG	GTTTTAAAAT	GGGACATCAA	TCAATGGTTG	1500
15	ATAGCATGGT	ATATGATGGT	TTAACAGATG	TATTTAATCA	ATATCATATG	GGTATTACTG	1560
	CTGAAAATTT	AGTAGAGCAA	TATGGTATTT	CAAGAGAAGA	ACAAGATACA	TTTGCTGTAA	1620
	ACTCACAACA	AAAAGCAGTA	CGTGCACAGC	AAAATGGTGA	ATTTGATAGT	GAAATAGTTC	1680
20	CAGTATCGAT	TCCTCAACGT	AAAGGTGAAC	CAATCGTAGT	CACTAAGGAT	GAAGGTGTAC	1740
	GTGAAAATGT	ATCAGTCGAA	AAATTAAGTC	GATTAAGACC	AGCTTTCAAA	AAAGACGGTA	1800
	CAGTTACAGC	AGGTAATGCA	TCAGGAATCA	ATGATGGTGC	TGCGATGATG	TTAGTCATGT	1860
25	CAGAAGACAA	agctaaagaa	TTAAATATCG	AACCATTGGC	AGTGCTTGAT	GGCTTTGGAA	1920
	GTCATGGTGT	AGATCCTTCT	ATTATGGGTA	TTGCACCAGT	TGGCGCTGTA	GAAAAGGCTT	1980
	TGAAACGTAG	TAAAAAAGAA	TTAAGCGATA	TTGATGTATT	TGAATTAAAT	GAAGCATTTG	2040
30	CAGCACAATC	ATTAGCTGTT	GATCgTGAAT	TAAAATTACC	TCCTGAAAAG	GTGAATGTTA	2100
	AAGGTGGCGC	TATTGCATTA	GGACATCCTA	TTGGTGCATC	TGGTGCTAGA	GTATTAGTGA	2160
35	CATTATTGCA	TCAACTGAAT	GATGAAGTTG	AAACTGGTTT	AACATCATTG	TGTATTGGTG	2220
33	GCGGTCnAAC	TATCGCTGCA	GTTGTATCAA	AGTATAAATA	ATAAGAAAAC	AGGTTATCAC	2280
	AACAGTATTA	ATTACATGTT	GGCATAACCT	GTTTTTATTT	GTTTATGGAT	TTATTGGGTA	2340
40	ATATTAGTCA	TTTGATGGTT	TAATTGCAAA	TGCTCTAACA	GGGAACCCAG	GTGCATCTTT	2400
	TGGTTTAGGG	CTGATAGCGT	AAATGATGGC	GCCACGAGTT	GGTAATTGAT	CTAAATTAGT	2460
	TAATAACTCG	ACTTGGTATT	TATCCTGACC	AAGAATATAA	CGTTCGCCAA	CTAAATCACC	2520
45	ATTTTTTACA	ACGTCCACAG	ATGCATCGGT	ATCGAATGTT	TCATGACCAA	CAGCTTCAAC	2580
	ACGACGTTCT	TCAATTAAGT	ACTTCAAAGC	ATCTAATCCC	CAACCCGGTG	CATGTTGTTG	2640
	TCCGTTCGCA	TCTTTGTTTT	CAAACTTTTC	AATATTAGGC	CAACGTTTTG	ACCAATCGGT	2700
50	ACGAAGTGCA	ACAAAAGTGC	CAGGTTCAAT	AGTACCATGC	TCTTTTTCCC	ATGCTTCTAT	2760
	ATGCGCACGT	GTTACGATGA	AATCATTGTT	GTTCGCTACT	тстсттсььь	ΔΩΤΌΤΑΔΤΑΟ	2820

	AAAGTGAATT	GGTGCATCAA	TGTGAGTACC	ATATTGCGTT	ACAATATTCC	AACGTTGCAC	2940
	ATAGAAACCA	TGATCTTTAA	CCGTGAATAA	AGTTGAAACT	TCGCCTTTTT	CAAACTCACT	3000
5	AAAACGTGGT	ATTTCCGGAT	CAAATGTATG	CGTTAAATCA	ACCCAAGTTG	CTTGTTTTAA	3060
	AGTATTTAAT	TGTTGCCATA	AAGGATATTG	TGTCATAAAA	TCACCCGTTT	TTAGTTTATT	3120
10	ATATGATAAA	TGCTGCGATT	ATTCTTGGCG	TTTAGCTTTA	ACAGCATTCA	CAAGCACAGT	3180
70	CAATGCATCT	TTAACTTCTT	CTTCTTTTCG	CGTTTTTAAA	CCACAGTCAG	GGTTTACCCA	3240
	GAATAATGAG	CGGTCGATTT	GTTGTAGTGA	ACGATTGATT	GCTGTAGTAA	TTTCTTCTTT	3300
15	TGTTGGAATA	CGTGGACTAT	GAATATCATA	TACACCTAGA	CCAATACCTA	AATCATAATT	3360
	AATATCTTCA	AAGTCTTTAA	TTAAATCACC	ATGGCTACGA	GATGTTTCAA	TTGAAATAAC	3420
	ATCAGCATCT	AAGTCATGAA	TAGCATGAAT	GATTTGACCG	AATTGAGAAT	AACACATATG	3480
20	TGTATGGATT	TGAGTTTCAT	CACGAACTGA	AGACGTTGCA	AGTTTAAATG	ATAAAACAGC	3540
	ATCTTTAAGA	TATTGTTCGT	GATATTCAGA	GCGTAATGGT	AAGCCTTCAC	GTAATGCAGG	3600
	TTCGTCAACT	TGGATAACTT	TGATTCCTGC	AGCTTCAAGT	GCTAATACTT	CTTCGTTGAT	3660
25	TGCTAAAGCA	ATTTGATCTT	GAACGACTTT	ACGTGGTAAA	TCAACACGTT	CAAATGACCA	3720
	GTTTAGAATT	GTTACAGGTC	CAGTTAACAT	ACCTTTAACT	GGTTTATCTG	TTAAGCTTTG	3780
	TGCATAAACT	GTTTCATCAA	CAGTTAAAGG	CGCTGTCCAT	TTTACATCAC	CATAAATGAT	3840
30	TGGTGGTTTT	ACGGCACGTG	AACCATATGA	TTGCACCCAA	CCGAATTTAG	TTACTAAGAA	3900
	ACCTTGTAAT	TTTTCTCCGA	AGAATTCAAC	CATGTCATTA	CGTTCAAATT	CACCGTGAAC	3960
35	TAATACATCT	AAGCCAATGT	CTTCTTGAAT	TTTAATCCAT	CGAGCAATTT	CATTTTTTAA	4020
33	GAATGTTTCA	TATGCTTCGT	CTGTAATGCG	TTTGTTCTTC	CAATCTGCAC	GGTATTTTCG	4080
	AACTTCTCGG	CTtTGTGGGA	ATGATCCAAT	AGTTGTTGTT	GGTAAATCCG	GTAAGTTCAA	4140
40	ACGTTTTTGT	TGTTGTTCAA	TACGTTGCGC	GAATGGTGAT	TGTCTTGAAG	TACGCACGCT	4200
	TTCGAAATCA	TAATCTAAGT	TTTTGAATGA	TTGATTTTGG	AAACGCTCAT	AACGTGCTTT	4260
	TAATTTATCA	TATTTAACAC	TATCGTTTTG	ATTAAATAGG	CGACGCAATG	CATCTAATTC	4320
45	GTCTAATTTT	TCAGTTGCAA	AGCTTAAGCC	TTCGCCAACA	CTTGTATCTA	ATGTTTCATC	4380
	ATCTAAAGAT	ACTGGAACAT	GTAATAATGA	AGATGATGGT	TGAATGACAA	GTTCATTAGT	4440
	GTGTGCTAAC	AATTTATCGA	TTAAGACTTT	TTTAGCTTCA	ATGTCACTTG	CCCATACATT	4500
50	ACGACCATCA	ATAATTCCAG	CGTATAATGT	TTTTGATTTA	TCAAAATCTC	CAGCTTCAAT	4560
	THE THE PARTY TH	TTT AT A C C C A TT	######################################	A A A COTOTA A A	COTATACCAC	СИИСИССТВВ	4620

	AACACCAGCT	TTTTCGAAAT	AGTCATAAGC	TTCACGTGTA	ATATTTTCAT	AGCTTTCGCT	4740
	GTCGTCTGTA	ACTAAGATTG	GCTCATCAAC	TTGAATGTAC	TCAGCACCTG	CATCAATTAA	4800
5	TGATTCAAAC	ACTTCTTTAT	AAAGTGGTAA	TAACGTTTTA	ACTTTTTCTT	CAAAAGTTTG	4860
	GTGACCGCCT	TTTGATAATT	TAACAAAAGT	AATCGGACCA	ACAATGACAG	GGTGAGCGTT	4920
10	AACGTTTAAA	GATTGGGCAT	ATTTAAAGCG	ATCTAATAAT	ACATTGCGAC	TCACTTTAGG	4980
,,,	CTCAACATTG	TCCCATTCAG	GTACGATGTA	ATGATAGTTA	GTGTTAAACC	ATTTTATAAG	5040
	TGCACTTGCA	ACATGGTCTT	TATTACCGCG	AGCAATATCA	AATAATAAAT	CATCATCAAT	5100
15	AGTTCTTCCT	TGGAAACGTT	CAGGGATGAT	GTTGAATAAT	AATGACGTAT	CTAATATATG	5160
	GTCATATAAA	GAGAAATCAC	CAACTGGGAT	GCTATCTAAG	TGATAGTACT	TTTGtAATAA	5220
	TAAATTTYCT	TTATGTAGAT	CAGTTAATGT	TTGATCTAAT	TCTTCTTTAG	AAATCTTCTT	5280
20	TGCCCAATAA	CTTTCGATGG	CTTTTTTCCA	TTCTCTTTTT	CTACCTAATC	TTGGGAATCC	5340
	TAAGTTTGAT	GTTTTAATTG	TTGTCATAAT	ATTGCCTCCT	TGTGAGCAGT	AATAGATTTT	5400
	GAGTATGCTG	CAAGTTCTAA	TGAATCTTCG	ACATTTTGAA	ACGGTGTGAT	AATGTATAAA	5460
25	CCATTAAAAT	ATTCATGAAC	AGTATCGATT	AAATCCTTTG	AAAGCTTAAG	ACTTAGTTCT	5520
	CGTGTTTTGG	CTTTATCATC	TTTAACTGCT	TCAAATTGTT	GTAAAATTTC	ATCTGACATC	5580
	TTGATTCCTG	GCACTTCATT	ATGCAAAAAG	AGTGCGTTTT	TGTAACTTGC	GATAGGCATA	5640
30	ATGCCTATGA	AAAATGGTTT	GTTCAAGTGC	TTAGTGGCAT	GGTAAATTTC	AATGATTTTC	5700
	TCTTTGCTGT	ACACGGGTTG	TGTTATAAAA	TAAGACATTC	CGCTTTCTAT	CTTTTTCTCT	5760
35	AATCTTTTGA	CGGCACCATA	TAATTTACGA	ACATTAGGGT	TAAAGGCGCC	AgcGATGTTG	5820
	AAGTGTGTAC	GTTTCTTCAG	CGCATCACCG	TCAGTGTTAA	TACCTTGATT	AAATCTTAGA	5880
	GCGAGTTCAG	TTAATCCTTT	AGAATTAACA	TCATAGACAT	TGGTTGCACC	TGGTAAGTGA	5940
40	CCAACTTTTG	AAGGATCACC	AGTTATGGCT	AATATTTCGT	TAACGCCAAT	GAGCGATAAT	6000
	CCAAGTAAAT	GGGACTGCAA	GCCGATTAAG	TTTCGGTCTC	GACATGTAAT	ATGTACGAGT	6060
	GGTTCAATAT	TGTAATATTG	CTTAATTAAG	CTAGCAGCAG	CAATATTGCT	AATTCTGACA	6120
45	GTTGCCAATG	AATTATCTGC	GAGTGTTACC	GCATCTACAT	TAGCTTTATC	AAGTTTAGCG	6180
	ATATTTTCAA	AAAATCTATC	CGTGTCTAAA	TGTTTCGGTG	TATCCAATTC	GATAATAACG	6240
	GTTGGACGTT	CTTGAACCTT	AGATGTTAAT	GATTGTCTAA	CTTTATTTTG	AGATGGATTG	6300
50	AAAAGTGCTT	TCGTTGGTAT	CGGAATCACT	TTTTTGTCAT	TAACAGGTTT	AAGTGTCTGA	6360
	3 TF 3 CF 3 TF TC CTTT	~~~~~~~~~~~~		CCCCTTCTAC	CACACCAACC	3.CC3.30003.33	6420

	TACTTAAATT	CACTATTTTC	AATATCTAAT	AAGCTGGCAT	TTGGATAACA	AGATAAGAAT	6540
	GCGTGCTCTG	GTAATTCAAT	ATGTGTGAAA	GACTCTTGCA	TATGGTGCGG	GCCATGATGA	6600
5	CAATTGAGTC	CCACGATGTT	TGCACCACAT	TGAACGAGTT	GTTTTAATCC	TTCATTGATT	6660
	GCCTGACCAT	TAACTAAGTA	ATTTGTGTTT	GAAGCGGTTA	ATTGAGCAAT	GATTGGAATG	6720
10	TCGTATTTCT	TTCTCGTTCG	TGAAATGACA	TTTGTTAACT	CTTCTAGGTC	GTAATACGTT	6780
10	TCGAAAAGTA	GCGCGTCAAC	GCCTTCTTCA	ATTAAGGTGT	CTATTTGAAT	TTCAGTATGA	6840
	TAAAGAATAG	TTTGTAAGCT	GATATCCTCT	TGTTTGATAC	CTCTAAACCC	ACCAACTGTG	6900
15	CCTAATATAT	ACGTATCTTT	ATTTGCTGCT	TTTTTTGCGA	TGCGAACGGC	GGCTTGATGT	6960
	ATTGCTTTAA	CTTTATCTTC	AAGACCGAAT	CGTTTTAACT	TTTCAAAATT	TGCACCATAA	7020
	GTATTGGTTT	GAATGACATC	AGCACCGGCT	TCAATATATG	AACGATGGAT	GCGTTCAACT	7080
20	TTATCTGGAT	GGCTAAGATT	ATATGCTTCT	GGACAGGTGT	CTAATCCTTC	AGAGTATAAA	7140
	ATGGTTCCTA	TAGCGCCATC	AGCTACTAAA	ACATTATCTT	TCAATTGTGT	GAGGAATTGA	7200
	CTCATTGAAT	GCCTCCTTTA	ATGCGTATTT	GATGTCTGCA	ATGAGTTCAT	CAGGATCTTC	7260
25	GAGACCAACA	CTTAATCGGA	ATAGACCGAA	AGTGATACCA	CGTTCTTGTC	TCACTTCTTC	7320
	AGGTAGTGCA	GCGTGAGACA	TTGTTGCTGG	ATGTGAAAGG	ATCGTTTCAA	CACCGCCCAG	7380
	ACTCACTGAA	ACGAGTGGTA	ATGTCAGTGC	ATCGACAAAT	TGTTGTGCTT	TAGACTCATC	7440
30	AGCTAAACGA	AAGCCAATAA	CGGCACCGCC	ATTTTTAGCT	TGTTCTAAAT	GAGCAGTAGT	7500
	GAGTCCCGGA	TAATAAACTT	CTGAAATTTC	ATCTTGCTTT	ATTAAAAATG	ACACGATTTT	7560
25	TTGAGCGTTT	TCGACAGATT	GTTTAAATCT	GATTGGAAAA	GTTTTTAAAT	GTTTAGCAAG	7620
35 ,	TGTCCAGCTA	TCCTGAGCAG	ATAACATATT	GCCTGTACCA	TTTTGTATTA	AATAAAGAGC	7680
	GTCĄCTAATT	GCCTCATTAT	TAGTTATGAC	AGCACCAGCA	ATTAAATCGC	TATGTCCACT	7740
40	TAAAAATTTT	GTAGCACTAT	GAATGACAAT	ATCAGCGCCA	agtaataaag	GTGATTGACc	7800
	TAACGGTGTC	ATAAATGTAT	TGTCCACAGC	TACCAGTAGT	TCATGCTTTT	CGGCTATTTT	7860
	AGAAACAGCT	TTGATATCAG	AAATTTTAAA	ACAGGGATTC	GATGGTGTTT	CGATATAAAT	7920
45	TAATTTTGTG	TTTGATTGAA	TGGCACCCTC	GATTTGTTCG	AGCTTTGTAG	TATCTACGGT	7980
	TGTAAATTCA	ATATTAAATC	GATTCAAAAT	TTGCTCAGTG	AGGCGAAAAG	TACCGCCATA	8040
	TACATCATCG	GGTAAGATGA	CATGATCACC	AGATTTGAAA	GTCAAAAGTA	CTGCTGAAAT	8100
50	AGCAGCAATA	CCTGATGCAA	AAGCAAAAGC	GAATTTTCCC	TGTTCTAATC	GTGCTAACTT	8160
	CTCTTCTAAA	AGTTCACGGT	TAGGGTTGCC	CTTCGTGCAT	AATCATATTT	AACATCGCCA	8220

	TCCACACCTC	TACGCCAATC	GAATATCACT	TCTGTCTCTT	TTGAAAGTGT	CATACAATCT	8340
c	CTCCAATCTG	AGCTTTATCT	AATGCTTGGA	TGATATCGCG	TTCGATGTCT	TCATAATTTT	8400
5	CAACACCTAG	TGATAAGCGG	ATTAAATACT	CATCAATGCC	ACGTTTATCT	TTTTCAGCAT	8460
	CTGGCATATC	AACATGTGTT	TGGGTGTAAG	GGAAGGTCAC	TAATGTTTCA	GTACCTCCTA	8520
10	AACTTTCTGC	AAAAATGCAA	ATGTCTAAAT	TTTCTAATAA	TTTAGCGACG	CTATAGGCCT	8580
	TGTTAAGTCT	TAAACTAAGC	ATGCCAGTTT	GCCCGCTATA	TAGTACTTCG	TCAATTGCTT	8640
	GAAGTGACTG	ACATTTTTTA	GCAAGTTTTC	TAGCGTTTGA	TTGCGCACGC	TCAATGCGTA	8700
15	AATGCAAAGT	TTTAAGTCCA	CGTAACAACA	AATAACTATC	TATTGGTGAA	AGTGTTGCGC	8760
	CAGTCATGTT	GTGAAAATCA	AACAACTGTT	GCGCGAGTGA	TTCATCTTTG	ACGGTTACGA	8820
	CACCTGCTAG	TACATCGTTA	TGTCCGCCAA	TATATTTCGT	GGCTGAATGT	AAGACTATAT	8880
20	CAGCACCTTC	TGCTAGTGGT	GTTGAAAGAT	AAGGTGTTAA	AAAAGTATTG	TCGATAATTG	8940
	ACAATAAGCC	TTTAGCTTTA	CAAAGTTGAT	AGTATGGCTT	TACATCAATA	GCAATCATTT	9000
	GTGGGTTAGA	TATTGGTTCA	ATGAATAATG	CAACTGTTTT	ATCAGTGATT	TCTTTTTCAA	9060
25	CTTGTTCATA	ATCTGTAAAA	TCAACGTACT	TAAATTTGAT	ATCGTATTGT	TGCTCGTAAA	9120
	ATTCAAATAA	TCTAAATGTG	CCACCATATA	AATCGAATGA	AACTAAAATT	TCATCATGAG	9180
	GTTTAAATAG	ATTACATATT	AATTGAATGG	CTGACATTCC	ACTTGATGTA	GCGAATGATG	9240
30	CAATACCATG	CTCAAGTTTG	GCAAAACAGG	TTTCAAATGT	TGAGCGTGTA	GGATTTTTAG	9300
	TACGTGTATA	ATCAAAACCT	GTCGATTGTC	CTAGTTTTGG	ATGCTTGTAG	GCAGTAGATA	9360
35	AATGGATTGG	ATTCGCTATA	GCACCGGTTG	AATCATCGGT	TAATGTGATT	TGGGCTAACT	9420
	GTGTATCCTT	CATATTAAGA	CCCTCCTATA	AGAAAAAATA	AAAAAAGCTT	CCGTCCTTCG	9480
	TACCCGAATG	AATCGGATAA	AAAGGACGAA	AGCTTATGTT	TCGCGGTACC	ACCTTTATTT	9540
40	GTTATTCCAT	CGCTGAAATA	ACCTTATTCA	GTACGCATTA	AAAGTAAATA	TGCTTACTGA	9600
	ACAATTATCA	CAATTAAAGT	CAGTAAGTAA	GGATATAGTA	ATGTGCTATC	CCATACTTAT	9660
	ТААСААААА	TCGTGCGTAA	AGAATCCAGT	ACGCCATTTA	ACATCAATGT	TAATACTGTA	9720
45	TCGCTATAAC	GGGCGAACCC	GTAGACACCT	CATATTGGCA	TCAACACTCC	AAGGCCATTT	9780
	TCAAACACGC	TTTCAAAATC	TTCTCTCAGC	TACTAAAGAC	TCTCTGTATA	AGCAGGGTGT	9840
	GTTTTACTTy	CCTCTTTATT	GTGTTTACGT	TTCATTAAAC	TGTTATAAGA	TATTAATTAG	9900
50	CTTACAGAGT	AAAAAAAGAT	TTGTCAACAA	TTATTCAGAA	AATTTTGATT	TAAAAGTTAA	9960
	TTTGTTTGTG	AAATTGTAAT	TGGTATCTTG	AAGTTGAAAA	ATGAATTATT	TTTTAAATAA	10020

	TCAAATAAAA AGTGATGTGA GTGAATTGTC AAAAAGTGAA GATCAACGTA TTACTAAAAC	10140
	AAAAGATGAA CAAATTAAGC AAATAGATAT ATCGGATATC AAACCGAATC CGTATCAGCC	10200
5	CCGAAAAACT TTCGATGAAA ATCATTTAAA TGATTTGGCA GATTCAATTA AGCAATATGG	10260
	AATTTTGCAA CCAATTGTGC TTAGAAAAAC AGTTCAAGGT TATTACATTG TAGTTGGTGA	10320
	AAGAAGGTTT AGAGCTTCGA AAATTGCTGG TCTAAAATAC GTATCAGCGA TTATCAAAGA	10380
10	TTTAACAGAT GAAGATATGA TGGAACTGGC GGTCATCGAA AATTTACAAC GAGAAGACTT	10440
	AAATGCGATT GAAGAAGCTG AAAGTTATCA ACGTTTGATG ACAGATTTGA AAATTACACA	10500
4.0	ACAAGAAGTA GCGAAACGAT TGAGTAAGTC GCGCCCGTAT ATAGCGAATA TGTTGAGGTT	10560
15	ATTACATTTG CCGAAAAAGA TTGCTGACAT GGTAAAAGAT GGGCGACTGA CAAGTGCACA	10620
	TGGACGAACG TTATTGGCAA TTAAAGATGA ACAACAAATG CTTAGGTTAG CGAAACGGGT	10680
20	TGTTAAAGAA AAGTGGAGTG TCAGATATTT AGAAAACCAT GTTAATGAAT TAAAAAATGT	10740
	TTCGTCAAAG TCGGAAACAG ACAAAGTAGA TATAACTAAG CCTAAATTTA TAAAGCAGCA	10800
	AGAACGACAG TTGCGAGAAC AGTATGGTAC CAAAGTAGAT ATATCAATAA AAAAATCGGT	10860
25	TGGTAAAATC TCATTTGAGT TTGATTCACA AGAAGATTTT GTGAGAATAA TTGAACAATT	10920
	AAATCGTAGG TATGGTAAAT AGTTACACAA TTTTATATAA TAACTCTTTG TGCAAGTGTA	10980
	AATAAATTGT AATCAGTGAC ATTTGATTCT AGAT	11014
30	(2) INFORMATION FOR SEQ ID NO: 92:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6022 base pairs	
35	(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	ε	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:	
40	TCCCCTTATG GAATTTCACA TTCTAGTTTA CATAATATAT ATTATAGGAA GTTATATGTG	60
	TGTAACGCAA AAGGTACCCT ACATCATAAT CATTATCTAA TATCGTCACA TAACTTACTT	120
	ATGCTATAAT CATGGTATTA TATTGTTTGG AGTGATTTGA TGAGATTTGT CTTTGATATT	180

GATGGTACGC TTTGTTTTGA CGGCCGATTA ATTGACCAGA CTATTATTGA TACATTGTTA

CAATTACAAC ATGATGGTCA TGAACTTATA TTTGCATCAG CACGTCCGAT TCGTGATTTG

TTGCCAGTTT TACCATCAGT ATTTCATCAG CACACATTAA TTGGCGCAAA TGGTGCTATG

ATTTCACAGC AATCAAAGAT TTCTGTTATC AAACCAATTC ATACTGATAC ATATCATCAT

	GCTGCACAAC	TTGACGCTGn	AGAACGCGAT	TTTTGAGCGT	TTAGATCCAC	ATAAGCTGGC	540
	CAGTTGTATT	GATGTTGCAA	ATATCGACAC	GCCAATCAAG	AKTATTTTAT	TAAATATAGA	600
5	CCCGGCACAA	ATTACAACTA	TATTAGACGA	GCTAGATAAA	TACCATCAAG	AATTGGAAAT	660
	GATTCACCAT	TCAAATGAGT	ATAACATTGA	TATAACAGCG	CAAAATATTA	ACAAATATAC	720
	TGCATTACAA	TATATATTTG	ATGCAGATGT	TAAATATATA	GCATTTGGTA	ATGACCACAA	780
10	TGATATTGTC	ATGTTACAAC	ATGCTAGTAG	TGGCTATATT	ATAGGACCAT	CAGAAGCATA	840
	CACACACGCA	ATATTGAAAC	TTGATAAAAT	CAAACACATC	AATAATAATG	CACAAGCTAT	900
15	TTGCAAAGTC	TTAAAATCAT	АТАААТАААА	ACACCCCTAT	CAAATGATAA	TCATTATCAA	960
,,,	TCGATAGGGG	CTATTTTAAT	AAAATTCGTC	CTCGAACATT	TCTTCCTCTT	CATCTAATCC	1020
	AAATAATTCT	GCCATTTCTC	CATGTTCAAT	TAACATGTTT	AAATATGCAT	CGCGGAGTTC	1080
20	TTCTTCACTC	ATATCATTAA	TCATTTCTTT	AAGACTATCA	ATCCACATAT	TTCTGCGTAA	1140
	TTGATAGTCT	TCTTCAACTT	CGTTTAACAT	CATTATATGT	TTATTTGCTG	CTTCTGGACT	1200
	AGCTGTAAAG	AGTAATGCAA	TCATATGTTT	ACATATCACT	CGTCTTCCAT	CAGCATGAGG	1260
25	ACAATTACAT	ATGGATTTTC	TAGGATGTTC	CATATCAATA	TAACAACGAT	ATACTTTGTT	1320
	GCCACTGCCC	TTTACTTCAG	CCTCATGCTG	CGTTTCTGAA	AATGATTTTA	AGTTAATGAC	1380
	GCATTCACTT	TGATAATAAT	TAAAGCCTCT	TTCTATAGAA	CGAATACTTG	CAATATCAAG	1440
30	TAATCCCATT	AATGaTACTC	CTTTTTATTA	TTATTTTTAA	ATAAAGAAAA	TAAAATAGAT	1500
	AAGTGTCTAG	ATTAAAATAC	TTGATTTATC	TATATTTTAT	AACAAGTCTA	GAATTATCGC	1560
	ATTCTTAAAT	AACTAATATG	AAAATGcTTG	CACTAATTCt	TTTGTATAAG	GGTGTCTATC	1620
35	AACATTAAAT	AATTCCtCTA	TTGCAAAATC	ATCGACTATC	ATGCCATCCT	TAAGAACGAT	1680
	AATTCTATTA	ACTAAGCGTT	GTAACACGGA	TAAATCATGA	GAAATAACGA	TAAAATGATT	1740
	TAAGTTCGTA	ATCGTTTGCG	CTTTTAATAT	ATTGATTACA	TTTTGTTCAG	CTATAACATC	1800
10	TAAATTTGAA	GTTATCTCAT	CACATATTAA	AACGCGAGGC	TGTGCTAATA	ACGAACGCAT	1860
	GACATTAAAT	CTTTGTAATT	GTCCGCCACT	CACTTCGCTT	GGTAATTTAG	TCAATAATTG	1920
15	CGCGTTTAAC	TCAAAAGTAG	ATAAATGTTG	TAATAATAAT	TGATCCTGAG	CAGTATTATC	1980
	AGTTAGACCT	CTGTAATAAT	ATAACGCTTC	TTTTAATGAG	GTCTCAATCG	TCCAATCAGG	2040
	GTTAAAGCTA	GTTAAAGGGT	GTTGGAAAAT	CGGTAACACA	GCATTGTCAC	TTAAGTAAAT	2100
50	CTCTCCTTTA	ACAGGTTTAA	ACAAGCCAAG	AACCAATGAA	GCGAGCGTAC	TTTTACCACA	2160
	CCCACTTTCC	ССТВВВВТВС	CAACATTTTC	тесателест	איים מיים מיים מיים	тсататетте	2220

	CCCTCTTTAA	TTGTGTTCTA	TATTTAATTA	GACGTTCAGT	ATACGGATGC	AAATGCTCAT	2340
5	ACTTGAAATG	ATTAATATTA	CCTCGTTCAA	TGATTTGACC	TTCTTTTAAA	ACATAAATGT	2400
	ACTGACAATA	TTTCAATACA	TGACTTAAGT	TATGTGTGAT	AATAAATAAT	GTTTGACCAT	2460
	GTTCTAATAC	AATATGCTGT	AATAAATCCA	TCACTTGATT	ACCGTTCAAA	GCATCCAATG	2520
	ATGCAACTGG	TTCGTCTGCA	ATGATTAATT	TAGGCTCCAA	CATGAGAACG	CTTGCTATGT	2580
10	ATACGCGTTC	AAGTTGGCCC	CCAGAAAGTT	GGAAACTATA	TTTATTTAAT	ATATCTTTGC	2640
	TTTGTAAATT	AACCCACGAC	AAAGCCTTAT	CAACTTTGGA	CAAAGCCTCT	TCTTTACTAC	2700
	CTTTATAATG	CTTACGATAA	ATCGCAGTTA	ACTGTTTACC	TAATTTAGTA	TGGTCGTTAA	2760
15	AACTTTCTGC	ATAATTTTGA	GAAATATAGC	CAATTGTATG	ACCATAATAT	TGACTCAATC	2820
	TACTAACATT	TTCCCCATCA	AATTGGTACG	AATCATACGT	GCAGCTTAAA	TCAAATGGTA	2880
20	AATATTCAAG	TAAAGCTTTA	GCAATCAAAC	TTTTTCCAGC	GCCGCTCTCT	CCAATCAAGG	2940
20	CATTAATCTG	TTGACTAAAA	ATTTTCAAAT	CAATCCCTTT	AATAAGAGAT	TTCTCACTAG	3000
	TATTCTTTAT	TGTTAAATTT	TGTATATCAA	TGAGACTCAT	CATATTCACC	CCGTTGTTTC	3060
25	AGCAATCTAT	CTCTTAGTGC	ATCACCGGTT	AAATTAAAA	TTAAAATAGT	TATAGCAATG	3120
	ACTGAAGCAG	GTGCAATCAA	CATAATTGGA	TGAGACGAAA	TAAAATCACG	ACCTTGTTGC	3180
	AACATAGCGC	CCCaCTCTGG	TGTTGGCGGT	TGTGCACCTA	ACCCAATAAA	TGATAGTGAA	3240
30	CTTATATATA	GAATGATTTT	ACCGAAATCA	ACGACCATCA	AAACGATAAT	AGCCGGTATA	3300
	ATTTTAGGTG	TTAAATGACG	TATTAATATT	GTTCTTGTTG	GTACATGAAA	TAATTGTGCC	3360
	ATTTTTATAT	AAGGCTTATT	CATTTCGCTA	TTAACTATAC	TTCTAGTCAA	CCTTGTGTAA	3420
35	TTCATCCATT	TTATTAATGT	AATTGAGATA	ACTAAATTCC	ATAAAGATGG	TTGAAAAAA	3480
	CTTGGTAAAG	CAATCATGAT	GATAAATTCT	GGAATACTTA	GACCAACATC	AATAAACCTT	3540
	AACACTAATC	GTTCAATCCA	CCCTTTTTTG	TATCCGGCAA	ATAGACCTAG	TGTAACACCT	3600
40	ATGACAACGA	TAGCTATTAA	TGTTAAAACA	GTAACAAACA	ATGTTGAACG	TGCACCGATA	3660
	ATAATTCGGG	TAAATAAATC	TCTCCCATAA	TCATCAGTTC	CTAATAAATG	CAACCAACTA	3720
	ATAGGTTCAA	AAGTTTGTGA	TAAATTGACT	TTGGTTGCAT	TTTCACTACT	GACAAAGAAT	3780
45	TGCAGTACAA	TTACCACAAA	AATAAATGCA	ACGAATACAA	AAAATATCAG	GTTATTCTTT	3840
	GAAAATATTT	TATGCATGAC	GGTCACTACT	TTCTGATATC	AATGGTGTAT	TGGTTTTGAT	3900
50	TTTTGGATTT	CCTAATTGTA	AACGCTGCTT	CGGATCAAGT	AATAACGTTA	ATAAATCAGC	3960
50	AATCGTATTG	ATAATAACAA	CGAAGAAGCC	AATAAATAAC	ACGCATCCTT	GAATAACAGG	4020

	ATTTTCAATC	ACTACAGTAC	CACCTATTAG	ACTGCCAAGT	GAAATCCCTA	GTAATGGGAT	4140
	AATCGGCAAA	ATTGTTGGTT	TTAGTAAATC	ATGAATTAAA	ATATAACGTT	CATTCATACC	4200
5	GCGTAATCTT	GATGCTTGTA	CGATATTACT	TTGCAATAAC	ATCAATAAAT	TAGAACGCAC	4260
	TAAACGAATG	ATGTATGCAC	ACATACCTAA	AGATAGCGTG	ATTACAGGTA	ATATAAACTG	4320
	ACTTAGTATA	ACGCTATCTA	TATTCATTAA	ATTTGTGACA	ATAAATAATA	AAATAATACC	4380
10	GATAAAGAAC	GCTGGTAAAC	TAATCGATAG	TGTTGAGATC	ACTCTAATCA	CTTTATCCGT	4440
	CCACTTATGA	AATCGTTTGG	CTGCTATAAT	GCCGAGCGGT	ATAGATATGC	ATAACGACAC	4500
15	TACTAATGTT	GAAAATGATA	TGAGTAATGT	TATGGGTGCA	TAGTTGAATA	ATATCTGTGT	4560
	TACCGGTTCT	TTTGATTCAA	AACTTTTTCC	TAAATTAAAA	TGTAATAAAT	GATTCATCCA	4620
	ATGCCACCAC	TGTACCAATA	AAGAATCATT	TAATCCCAAT	TTATCTTTGG	TTGCATTTAT	4680
20	TTGTTCCGTC	GACACTTGTG	CTACATCAAG	ATGTAATATT	TTATCAACAG	GATTGCCTGG	4740
	TGATAATTTC	attaaaatga	ATGTAAGTGT	AGAAATAACA	ААТААААСАА	CTATCATTTG	4800
	CATCAGTCTA	TACAACATAG	ACTTTATTAT	GAACATAATA	GTCCCCCTCC	TTGTGTAAGT	4860
25	TACTAACACT	TTCTTTTTAC	ATGAGAATGG	CGCATGTATA	TGCAACTTAC	ATATTAAGAA	4920
	CTAACGTTCA	TTATAGTATT	ATCCATAAAG	AAATTGAAGT	ATATTTAATT	TTTTAACAAA	4980
	ATCATTATAA	AATATAATAT	TTTGAATCAA	GTCAACCATG	TAAAATATAA	AAAAGTCAAA	5040
30	ACAAAAACAA	CTATAGCACT	GTATTCCATC	TCTTTCGAAA	TAATTGTTAC	TGCAGTGTAA	5100
	CTTAAAAGTC	GATGATTTTG	TGCATATAGT	TGTCGAATAT	TATTTTTTAT	CTTTACGGCG	5160
	AAGTTCAGCG	CCCTCATAGC	CGTATTTTTC	AATTTGCTTT	TCTAATTTAC	GCGCTTTTCT	5220
35	TTCTTTACGC	CAATTTCTAG	TAAAATACCA	TAATAGAAAA	CTAATTAATA	AACTCATAAT	5280
	CGCTAAAAAT	GCAGCGTATC	CTAATAATGG	TTGATATTTT	ATATCTTGAA	AATTTGGAAT	5340
	AAAAAATGCA	AGCACACCTA	ATATAACAAA	TGTAATTACT	GCAGATACAA	ACCATTTATT	5400
40	TAAAACTAAG	CAACAGAATA	TTGTTAATAA	AATCATTATT	AATGTTGTGA	TCCATAAATA	5460
	ATTAGGCATA	TCGAATAATG	TCATATTCAT	TCTCCTTTTA	TTTCATTACT	TTCCTTGTAT	5520
45	ACATTTTATT	ATAAATTTTT	AAAAACTTAA	ACAATAGCAG	TCAGTTTCAA	GCAATATTCT	5580
	ATCTACTAAT	AGAAAAATCA	TTGTTCCTTG	CGACATGGAA	ATCGTAACAT	TATCGTTTAG	5640
	GAGACAAAAT	TATGTATAAT	GAATGTATTA	TACCAAAGGA	GTGATTATAT	GTCTCAAGGT	5700
50	TTACCTTTAA	GAGAAGATGT	TCCTGTTTCA	GAAACATGGG	ATTTAGTAGA	CTTATTTAAA	5760
	CATCATCAAC	א לייטון א יושוי א יויט א	A A COTA TOTO A C	COTOTACTAC	AmCAACCAAA	ጥር እ አጥጥጥር እጥ	5920

	GAAAATATTT TAATTGCCTT AGATCGCTTA AGTAATTATG CAGAACTACG TTTAAGTGTA	5940
	GATACTAGTA ATATCGAGGC ACAAGTATTG AGCGCTAAAT TATCTACTAC ATACGGTAAA	6000
5	ATTGTTAAGC CAATTATCCT TT	6022
	(2) INFORMATION FOR SEQ ID NO: 93:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 476 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:	
	CCATCAATAA TGTATACATG ATTGGCATCA TATTCCCCTT TAATTAGAGA GCTACGTACA	60
20	GTTTGTYTTA TTAAAGTAGA ACTAATAAAT AACCATCTCT TATGTGCACA AACACTTCCC	120
	GCAACAATTG ATTCAGTTTT ACCAACCCGT GGCATACCTC TAATGCCAAT CAACTTATGA	180
	CCTTCTTCTT TGAACAATTC AGCTAAAAAG TCTACTAACA AGCCTAAATC TTCACGCTCA	240
25	AATCGAAAGG TTTTCTTATC TTTTGCATCT TGCTCAATAT ATCTTCCATG TCTTACTGCA	300
	AGACGGTCTC TTAATTCTGG TTTTTTAAGC TTTGTTATTT CAATTTCATT TATACCACGA	360
	GCTATTTGCT CAAAACGTTC AACTTTTTCA AGATTGTCTG TTTTAATTAA AAGGCCTCGT	420
30	TTACCTTGAT CAACACCATT AATTGTAACA ATACTTATAC CTAACATACC TAATAA	476
	(2) INFORMATION FOR SEQ ID NO: 94:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3633 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 94:	
	AGAAATACAA CGAAGCATAT AAATATAACC GATCTTTTTT CTAATTGAAT ATTAAGTAAG	60
45	TGTATGTACT TTCTGGAAGT AGCACCTAGT rGGATTGTLC CTCCTACAAC AGGCCAAAAA	120
45	TTTTTATTTT TAACTGGCTT AACAGTGTTC AGTTTTTCAT ACTCTTCTCT ACTAATTTTG	180
	GCGCACCTTT TTGGAATGAA CCAATTAATA AATGGAAAAA AGTATACAAG CCAAGTTCTT	240
50	ATTACATCGA CCATTAAATA CTCATCATCA TACTTAATAA CTCTGTATTT CGGATTTTTA	300
	TTGATAATTT CGGTTTCACA AAGCAATAAT TATCACTTCC TATTAATAAC AAATTCACAC	360

	TTATATGACC	TTAAATATAT	AACATGAATC	TTTTTGTCTA	TTATTGAAGA	CATATTTATA	480
_	AAGAAAAATA	GCATTGTCAT	AATAACCCAA	GCAATAAATA	CTATAATATT	TTGGATAGAT	540
5	AAACTAATCA	rracatetaa	GAACATGATT	gATAATCCAC	CACAGAAAAA	ATAAGAAAAT	600
	AGTACAAAGC	AAAGATTCTT	GAATGATGGA	AAAATCATAA	TTTTTCCATT	GCTACTCCGA	660
10	TCATTATAGA	TAGATAACTT	TACTTTCTGA	TTTAAATATA	TATAAAACAC	TAGAATACTT	720
	AATAATAAA	CCGAACAAAT	GATAATAACG	CAATTTTTTT	CTAAATGAGA	ATCAGGTATA	780
	TATATTTTAT	CTCTAAACAT	AGTGCCAAAT	AAAAGTATGC	TACCTATAGC	TGGCCATAAA	840
15	GCTTTaTTTT	TAACTGGTTT	GACAATATTT	AAATTATCAA	AATCTTCTCT	GCTGATTTGG	900
	ACATATTTTT	TTGGTATTAA	CCAATTAATA	AACGGAAAGA	ACAAAACTAA	CCAGGTGCTT	960
	ACTAAATCAA	TCATCAGATA	GTCGTTTTTA	TATTTAATAA	TTCTATATCT	GGGATTTTTG	1020
20	TTTACAACTC	TAACCTCGCA	AAGCAATATC	TCCACTTCCG	TCTCGTTGGT	TTTATATCTA	1080
	ATACACTTTC	AGATACTTTA	TAAGTGTTTT	GTATTTTAGT	AACATACTAT	TTTCCTGTTT	1140
25	ATTACTTAAC	TTACGAACTA	CAATCTAAGT	TTAGTAATTT	CTATTGCTTT	TTAAGTTTGG	1200
	CATAAACCTT	TTTATTACTA	ATTGAGCCCA	TGCTTATTAG	AAAGAAAAA	ATTGTAATAA	1260
	TAATCCACAT	AATAAATACC	AGTAGATTTT	GAGGTTTTAT	AGTCATTAGC	CATATTAAAA	1320
30	ATAATATAGA	ACAACCTCCT	AATAATAGAT	ATGTGAAAAC	TATAAAACTT	CCATCTTTAA	1380
	AAGTAGGCAC	TAATATAACC	CTATTTTCAT	TATCTAGATT	ATCATCATAT	ATCTTTAGTT	1440
	TAAGCTTTTT	ATTTAAGTAA	ATGTAAAATG	CTGCAATACC	TATAAATCCT	ATAAAACATA	1500
35	AAGATATTAA	AATCTTATTA	TCTAATTGAA	CTTCAAACGT	ATGTACATAT	TTCCGTAAAA	1560
	TAACTACAAA	TAAAAACGAA	CTACCAGTAA	CTGGCCAGAA	AATATTATTT	TTATTTTGTT	1620
	TATCAACATT	TAAATTTTCA	AGTTCCTTCT	CACTAAGTTT	TGCATACCTT	TTGGGAATGA	1680
40	ACCAATTAAT	AAAAGGAAAA	AAGTATACAA	GCCAAGTGCT	TACTAAATCA	ATTAACAAAT	1740
	ACTCATCATT	ATATTGAACG	ACTTTATATC	TCGGATTTTT	ATTAATAACC	TTAATATTAA	1800
45	AAAGCAAAAC	TCACCACGCC	CATTTCATTG	GATTTATATG	ATTGCTAATA	ATATTTTTAG	1860
	CTTCACTAAC	AGCATTCCCA	ACACTATCCA	TGGATTTTTC	TGTAGTTTTT	TTAACAACAT	1920
	CTATACTATT	ATCGATTTTA	TGCCCTACCC	AGTCTACTTT	ATCTTTTAAT	CCAAAAATAT	1980
50	TATTTTGATA	AATTAAATCT	GTTCCTAATG	CAAATACTGT	ACTCATAGCC	AAACCTGCTA	2040
	AAATCACCCA	TCCTACTGGA	TTACTTCCTA	AAACAAAAGT	CGCTAATCCA	GCTCCAACTG	2100
	CTGTCCCTGC	AGATCCAGCT	GCAAGCGTgC	ATACCATTAT	GCGACAACGC	CTCTCCAAAT	2160

	CCTTTACCTA	GGTATTTTCC	GCCTTTTGCA	AATTTACTAC	CATTTTCTAT	AAACACATTA	2280
	CCTGATGTAC	GTTTGACTTC	CACAAATGAA	TTTGGACCTG	CTGGGCCTTT	CACTCCACCT	2340
5	GCTGTATTGa	TAAATACACC	GAATTTACTT	GCATTTATAC	CGTCTTGCTC	TAAAAGTGTT	2400
	GACGTAATAT	CTAATCCTAT	ATCTCTTTTA	ATACTGTCTT	TATTGTCATT	TATATATTC	2460
10	AATATACTTT	TCGGGATATC	GTCTTCTGGA	TGTTCTTTGG	CATATGCCTT	TATAACAGCA	2520
70	AAGTCTGCTT	TATTTAAAGT	TTCTTTCTCT	GCTTTATGTT	CAATTTTCCC	CATAGCAACT	2580
	TTCAAATATT	TTTCATGACT	TGCTTTGGCC	CAATCAAGTT	CTTTACCTGA	AGGAATATTA	2640
15	AATTGATTTG	TTGAAAAGTT	CCAAAAATTC	TGCGCTTGGG	TAAGTCCTTG	TTGGACAATT	2700
	TTTTGAAATT	CTTÇAACTTC	TTAAATATT	TCTGGTGATT	TTTGATTAAA	CTCACGCAAT	2760
	TTGCGTAGCT	TCTCTTCTAA	TTCATGTTTT	TGTTGACCTA	ATGTTCGTAT	TATTTGTTGG	2820
20	TTCGATGAAA	TGGCTTGCTG	ATTATCGGAA	GCATGCTTTT	TCAAATTGTT	ATTCAAATTT	2880
	TCATATCGCG	TAATTTGTTG	ACTTAATGAT	CTGATATCTT	CTTCAAGCTC	TGATTCTTTT	2940
	AAAGATATGC	TATCAACCTC	ACTCGTATAA	CGTGACACAA	AATTaTCGCA	AGCTTGCTTC	3000
25	GTTAAATCAC	TCAATGTTTT	CATACTTGTT	GATAATGGAA	TTAACACCGT	ACTAAAAAAT	3060
	TGCTTAGCTG	ACGTATACGC	TTTCCCTTTA	AGCGCATCAT	CATTAATAAA	TTGAGTAATT	3120
30	GCTTTTTCCA	ACGCATCATA	ATTTGAATTC	ATTGTTTGAC	TCAAATTCCC	CACACTTGAA	3180
	GCTTGGTTTC	GAGATCTGTC	TAAATACATG	TCAATACTCA	TCGGCATGCT	CCTTTTTCAA	3240
	AAATATATGA	TTTTCAAACT	ATTTAAAATC	AAATGCTTTT	TACATCTACA	AAGTTGTAAA	3300
35	ATTTTAAAAC	TCGGCGATGA	TTATTTCTTA	TGTAAAGGAG	TCTAGATGCA	GGTAAATTGA	3360
	GATAACATGT	CGCCTTTTTT	CTTATTTTAG	CATATGGATA	TAATGGTGTC	TTTGTATATT	3420
	CGCAATTAAT	CAATAAAAAT	TATCTTTCAA	TATTTTAATT	TTATTGCGAC	AACATCCTTA	3480
40	ACATTAAATA	TATTAATATC	TCAAAATATA	TTCACTATTA	AAATATGTCA	TCAGTTGTTA	3540
	AAAGTATTTC	CTCATCATGC	GAAATATCAA	AACGTATCTA	AAATACGAAT	AAGTTTATAC	3600
	AATCACACAA	CATCATCATT	CAAAATTTTA	TTG			3633

(2) INFORMATION FOR SEQ ID NO: 95:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2365 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

55

	TGATACGAAL	GCATTACAAT	TCATATGCAA	CATACAATTC	CTTCTACAGC	AAATGAAGTG	60
	AAACAAATAG	TTGATGTGAC	ATCTGTAGCA	GAAAATGATA	CGCATTAGTC	ATAAAATTAA	120
5	ATGGAAATGT	CGATGAAGTG	TATCAGCAAT	TACAGCGATT	AATTAAGAAT	GCTAATGTCG	180
	AAGAGAGTGA	GAATACTGAC	AATATTAATA	GTCAAGATAC	AAGTTATACA	CCTCAAGTAA	240
10	AAGTAACAAC	ACCAATTTTA	GTGAAAGCAC	CAATCGCTGG	TCGTCGTATT	TTACTTAAAG	300
10	AAGTAAGAGA	TTCAATTTTT	AGAGAGAAAA	TGGTAGGTGA	AGGCTTAGCA	ATCAAAGCTC	360
	ATGAAGAATC	CAAAGTAATC	GCACCGTTCA	ATGGTTTAAT	ATCTATGATT	GTACCAACTA	420
15	AGCATGCAGT	TGGTATTCAA	TCAGAAGACG	GTGTGGACAT	AGTCATTCAT	ATTGGCGTGA	480
	ATACAGTTGA	CTTGGAAGGT	AAAGGGTTCA	AGTGCTTTGT	AAAGCAAAAT	GATCATGTTG	540
	AAGCAGGGCA	AACGTTGTTG	CAATTCGACC	AGCAATATAT	ACAACAACAA	GGCTACAATG	600
20	CTGACGTTAT	TGTCGTTATT	AGCAACTCTG	CCGATTTAGG	aaaagtagaa	CTGACAATGA	660
	ATGAAATCAT	TACGACTGAA	GATGTTATTT	TTAAAAATATT	TAAAAACTAG	GAGTGTGTTG	720
	TAATAATGAC	AAAATTACCG	CAAAATTTCA	TGTGGGGTGG	CGCTCTTGCC	GCAAATCAAT	780
25	TTGAAGGTGG	ATATGATAAA	GGTGGTAAAG	GGTTAAGTGT	AATTGATGTT	ATGACGAGTG	840
	GTGCACATGG	CAAAGCACGT	CAGATTACAG	AATCTATAGA	TCCCAATCAC	TATTATCCAA	900
30	ATCATGAAGG	TATTGATTTT	TATCATCGTT	ATAAGGAAGA	TATTGCCTTG	TTTAAAGAAA	960
50	TGGGATTGAA	ATGTTTACGT	ACGTCGATTG	CGTGGACACG	TATCTTTCCG	AATGGGGATG	1020
	AAGATGTGCC	AAATGAAGAA	GGACTCGCCT	TTTATGATCG	TATCTTTGAT	GAATTAATTG	1080
35	CACAAGGTAT	TGAACCTGTT	GTGACGTTAT	CACATTTTGA	GATGCCACTT	CATTTAGCGA	1140
	AACATTATGG	TGGATTTAGA	AATAGAGAAG	TTGTCGATTA	TTTTGTGCAT	TTTGCGCGTG	1200
	TTGTÄTTTGA	AAGATATAAA	GATAAAGTTA	CATATTGGAT	GACGTTTAAT	GAAATTAATA	1260
40	ATCAGATGGA	CACATCAAAT	CCTATCTTTT	TATGGACGAA	TTCTGGGGTA	GCATTGACAG	1320
	AAAATGATAA	TCCTGAAGAA	GTCYTGTATC	AAGTAGCACA	TCATGAACTT	TTAGCCAGTG	1380
	Cyttagcagt	TCGTCTTGGT	AAAGaGATtA	ATCCgAaGTT	TAAGATTGGr	ACmATGATTt	1440
45	CAmaTGTACC	CmTTTATCCa	TAWTCGTGTC	ATCCGAAAGA	TATGATGGAA	GCACAAATTG	1500
	CGAATCGCTT	ACGTTTCTTT	TTCCCGGATG	TCCAAGTGAG	AGGTTATTAT	CCAAGCTATG	1560
50	СТААААААТ	GTTGGCACGA	AAAGGATATG	ATGTTGGATG	GCAAGAAGGG	GACGACAGTA	1620
	TTTTACAGCA	GGGCACGGTT	GATTATATTG	GCTTTAGTTA	TTACATGTCT	ACGGCTGTAA	1680
	AACATGATGT	TGATACTACA	GTTGAAAACA	ACATCGTCAA	СССТССТТТС	ΔΑΤΟΑΤΤΟΤΟ	1740

	GATATACATT	GAATGTGTTA	TATGATCGTT	ATCAGTTACC	ACTTTTTATT	GTGGAAAATG	1860	
	GTTTTGGTGC	AGTTGATGAA	GTGGTAGATG	GACATATTCa	TGATGATTAT	CGCATTGAAT	1920	
	ATTTAAAAGC	ACATATTACA	GCAGCGATAG	AAGCAGTTGA	TCAAGATGGT	GTAGATTTAA	1980	
	TCGGTTATAC	ACCGTGGGGA	ATCATTGATA	TTGTTTCATT	TACAACCGGT	GAAATGAAGA	2040	
	AACGCTATGG	TTTAATATAT	GTTGATCGAG	ATAATGATGG	TCATGGCACG	ATGGAACGCT	2100	
	TGAAAAAAGA	TTCGTTCTAT	TGGTATCAAC	AAGTGATAGC	ATCAAATGGA	GATAAATTAT	2160	
	AAAGGTATAT	TATAAGTATT	TTAGGGTTAG	AGCCCGAGAC	ATAAATTAAT	ATAGTAGGAC	2220	
	CTACAGTGTT	ATAATGGCGG	gccccaaca	CAAAGAATTT	CGAAAAGAAA	TTCtAcAGGT	2280	
	aATGCaAGtT	GGCGGGGGCCC	AACACAGAGA	AATTCGAAAA	GAAATTCTAC	AGGTAATGCA	2340	
	AGTTGGGGAA	GGACAGAAAT	AAATT				2365	
	(2) INFORMA	TION FOR SE	Q ID NO: 96	i:				
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11050 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 								
	,	D) IOPOLOGI	· TINEAL					

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

CTGCGATACG	ATTTGTTGAA	AGTGGGGAAA	ACAAAAAAGT	TATCATTACC	AATTTAGAGC	60
AGGCATACGA	AGCTTTGATT	GGTAATAAAG	GTACACACAT	TCACATGTAG	CACTTTATCA	120
CGCGACAAAA	CATTAAATAT	GTTTCTCCGT	TGATTCAAAT	GAAAAAGTTG	TCTGCTGACA	180
CTTTGCAAGG	TTTGAAGGAG	TTTAACTTAT	GACAGAAAAC	TTTATTTTGG	GTAGAAATAA	240
TAAATTAGAA	CATGAACTAA	AGGCATTAGC	AGATTACATT	AATATACCAT	ATAGTATATT	300
ACAACCATAT	CAAAGTGAAT	GTTTTGTCAG	ACATTATACG	AAAGGCCAAG	TTATTTATTT	360
TTCGCCACAA	GAAAGTAGCA	ATATTTACTT	TTTAATTGAA	GGTAACATTA	TTAGAGAACA	420
TTACAATCAA	AATGGAGATG	TATATCGTTA	TTTTAATAAA	GAGCAAGTAT	TATTTCCAAT	480
CAGTAACTTA	TTTCATCCGA	AAGAGGTTAA	CGAATTGTGT	ACAGCATTAA	CCGATTGTAC	540
AGTTCTTGGA	TTGCCTAGAG	AATTGATGGC	CTTTTTGTGC	AAAGCTAATG	ATGATATATT	600
TTTGACACTT	TTTGCATTAA	TAAATGATAA	TGAGCAGCAA	CACATGAACT	ATAACATGGC	660
ATTAACAAGT	AAATTTGCTA	AAGATCGAAT	TATCAAATTG	ATATGCCATC	TATGTCAGAC	720
AGTAGGATAC	GATCAAGATG	AATTTTATGA	AATCAAACAG	מיויין ממיויידיידיידי	ፕፕሮ ልልርተ ርልፕ	780

	TGAAAAACTT	GTTGTTAAAG	ATCATAAAAA	TTGGTTAGTA	AGCAAACATT	TATTCAATGA	900
	TGTATGTGTT	TAATATACAA	TGTAAAATGA	ATAAGTTGAA	CATGAGGTCT	AACGTACATT	960
5	TATACGTTAG	GCCTTTTTTG	CTAGCATGAT	GAATAATTTA	AAATGTTAGT	TAAATTTGAT	1020
	TGTTGAAATT	ACAGTAAAAT	TTAAGGTGAT	GAAAAATTTA	GAACTTCTAA	GTTTTTGAAA	1080
	AGTAAAAAAT	TTGTAATAGT	GTAAAAATAG	TATATTGATT	TTTGCTAGTT	AACAGAaAAT	1140
10	TTTAAGTTAT	ATAAATAGGA	AGAAAACAAA	TTTTACGTAA	TTTTTTTCGA	AAAGCAATTG	1200
	ATATAATTCT	TATTTCATTA	TACAATTTAG	ACTAATCTAG	AAATTGAAAT	GGAGTAATAT	1260
15	TTTTGAAAAA	AAGAATTGAT	TATTTGTCGA	ATAAGCAGAA	TAAGTATTCG	ATTAGACGTT	1320
	TTACAGTAGG	TACCACATCA	GTAATAGTAG	GGGCAACTAT	ACTATTTGGG	ATAGGCAATC	1380
	ATCAAGCACA	AGCTTCAGAA	CAATCGAACG	ATACAACGCA	ATCTTCGAAA	AATAATGCAA	1440
20	GTGCAGATTC	CGAAAAAAAC	AATATGATAG	AAACACCTCA	ATTAAATACA	ACGGCTAATG	1500
	ATACATCTGA	TATTAGTGCA	AACACAAACA	GTGCGAATGT	AGATAGCACA	ACAAAACCAA	1560
	TGTCTACACA	AACGAGCAAT	ACCACTACAA	CAGAGCCAGC	TTCAACAAAT	GAAACACCTC	1620
25	AACCGACGGC	AATTAAAAAT	CAAGCAACTG	CTGCAAAAAT	GCAAGATCAA	ACTGTTCCTC	1680
	AAGAAGCAAA	TTCTCAAGTA	GATAATAAAA	CAACGAATGA	TGCTAATAGC	ATAGCAACAA	1740
20	ACAGTGAGCT	TAAAAATTCT	CAAACATTAG	ATTTACCACA	ATCATCACCA	CAAACGATTT	1800
30	CCAATGCGCA	AGGAACTAGT	AAACCAAGTG	TTAGAACGAG	AGCTGTACGT	AGTTTAGCTG	1860
	TTGCTGAACC	GGTAGTAAAT	GCTGCTGATG	CTAAAGGTAC	AAATGTAAAT	GATAAAGTTA	1920
35	CGGCAAGTAA	TTTCAAGTTA	GAAAAGACTA	CATTTGACCC	TAATCAAAGT	GGTAACACAT	1980
	TTATGGCGGC	AAATTTTACA	GTGACAGATA	AAGTGAAATC	AGGGGATTAT	TTTACAGCGA	2040
	aGTTACCAGA	TAGTTTAACT	GGTAATGGAG	ACGTGGATTA	TTCTAATTCA	AATAATACGA	2100
40	TGCCAATTGC	AGACATTAAA	AGTACGAATG	GCGATGTTGT	AGCTAAAGCA	ACATATGATA	2160
	TCTTGACTAA	GACGTATACA	TTTGTCTTTA	CAGATTATGT	AAATAATAAA	GAAAATATTA	2220
	ACGGACAATT	TTCATTACCT	TTATTTACAG	ACCGAGCAAA	GGCACCTAAA	TCAGGAACAT	2280
45	ATGATGCGAA	TATTAATATT	GCGGATGAAA	TGTTTAATAA	TAAAATTACT	TATAACTATA	2340
	GTTCGCCAAT	TGCAGGAATT	GATAAACCAA	ATGGCGCGAA	CATTTCTTCT	CAAATTATTG	2400
50	GTGTAGATAC	AGCTTCAGGT	CAAAACACAT	ACAAGCAAAC	AGTATTTGTT	AACCCTAAGC	2460
30	AACGAGTTTT	AGGTAATACG	TGGGTGTATA	TTAAAGGCTA	CCAAGATAAA	ATCGAAGAAA	2520
	GTAGCGGTAA	AGTAAGTGCT	ACAGATACAA	AACTGAGAAT	TTTTCAACTC	ል አጥር አጥል <i>ር</i> አጥ	2500

	ACCAATTTAA	AAATAGAATC	TATTATGAGC	ATCCAAATGT	AGCTAGTATT	AAATTTGGTG	2700
	ATATTACTAA	AACATATGTA	GTATTAGTAG	AAGGGCATTA	CGACAATACA	GGTAAGAACT	2760
5	TAAAAACTCA	GGTTATTCAA	GAAAATGTTG	ATCCTGTAAC	AAATAGAGAC	TACAGTATTT	2820
	TCGGTTGGAA	TAATGAGAAT	GTTGTACGTT	ATGGTGGTGG	AAGTGCTGAT	GGTGATTCAG	2880
	CAGTAAATCC	GAAAGACCCA	ACTCCAGGGC	CGCCGGTTGA	CCCAGAACCA	AGTCCAGACC	2940
10	CAGAACCAGA	ACCAACGCCA	GATCCAGAAC	CAAGTCCAGA	CCCAGAACCG	GAACCAAGCC	3000
	CAGACCCGGA	TCCGGATTCG	GATTCAGACA	GTGACTCAGG	CTCAGACAGC	GACTCAGGTT	3060
15	CAGATAGCGA	CTCAGAATCA	GATAGCGATT	CGGATTCAGA	CAGTGATTCA	GATTCAGACA	3120
	GCGACTCAGA	ATCAGATAGC	GACTCAGAAT	CAGATAGTGA	GTCAGATTCA	GACAGTGACT	3180
	CGGACTCAGA	CAGTGATTCA	GACTCAGATA	GCGATTCAGA	CTCAGATAGC	GATTCAGACT	3240
20	CAGACAGCGA	TTCAGATTCA	GACAGCGACT	CAGATTCAGA	CAGCGACTCA	GACTCAGATA	3300
	GCGACTCAGA	CTCAGACAGC	GACTCAGATT	CAGATAGCGA	TTCAGACTCA	GACAGCGACT	3360
	CAGACTCAGA	CAGCGACTCA	GACTCAGATA	GCGACTCAGA	TTCAGATAGC	GATTCAGACT	3420
25	CAGACAGCGA	CTCAGATTCA	GATAGCGATT	CGGACTCAGA	CAGCGATTCA	GATTCAGACA	3480
	GCGACTCAGA	CTCGGATAGC	GATTCAGATT	CAGATAGCGA	TTCGGATTCA	GACAGTGATT	3540
20	CAGATTCAGA	CAGCGACTCA	GACTCGGATA	GCGACTCAGA	CTCAGACAGC	GATTCAGACT	3600
30	CAGATAGCGA	CTCAGACTCG	GATAGCGACT	CGGATTCAGA	TAGCGACTCA	GACTCAGATA	3660
	GTGACTCCGA	TTCAAGAGTT	ACACCACCAA	ATAATGAACA	GAAAGCACCA	TCAAATCCTA	3720
35	AAGGTGAAGT	AAACCATTCT	AATAAGGTAT	CAAAACAACA	CAAAACTGAT	GCTTTACCAG	3780
	AAACAGGAGA	TAAGAGCGAA	AACACAAATG	CAACTTTATT	TGGTGCAATG	ATGGCATTAT	3840
	TAGGATCATT	ACTATTGTTT	AGAAAACGCA	AGCAAGATCA	TAAAGAAAAA	GCGTAAATAC	3900
40	TTTTTTAGGC	CGAATACATT	TGTATTCGGT	TTTTTTGTTG	AAAATGATTT	TAAAGTGAAT	3960
	TGATTAAGCG	TAAAATGTTG	ATAAAGTAGA	ATTAGAAAGG	GGTCATGACG	TATGGCTTAT	4020
	ATTTCATTAA	ACTATCATTC	ACCAACAATT	GGTATGCATC	AAAATTTGAC	AGTCATTTTA	4080
45	CCGGAAGATC	AAAGCTTCTT	TAATAGCGAT	ACAACTGTTA	AACCATTAAA	AACTTTAATG	4140
	TTGTTACATG	GATTATCAAG	TGATGAAACG	ACATATATGA	GATATACAAG	CATAGAAAGG	4200
50	TATGCGAATG	AACACAAATT	AGCTGTGATT	ATGCCCAATG	TGGATCATAG	CGCATATGCT	4260
50	AACATGGCAT	ATGGTCATAG	CTATTATGAT	TATATTTTGG	AAGTGTATGA	TTATGTTCAT	4320
	CAAATATTTC	CACTTTCCAA	AAAGCGTGAT	GACAATTTTA	TAGCAGGTCA	CTCTATGGGA	4380

	TTATCTGCTG	TGTTTGAAGC	GCAAAATTTA	ATGGATCTAG	AGTGGAATGA	TTTTTCAAAA	4500
	GAGGCCATAA	TTGGCAATCT	TTCAAGTGTI	AAAGGAACTG	AACATGATCC	GTATTACTTG	4560
5	CTAGACAAAG	CTGTAGCTGA	AGATAAACAA	ATTCCAAAAT	TGCTCATTAT	GTGTGGTAAA	4620
	CAAGACTTTT	TATATCAAGA	CAACTTAGAT	TTTATCGATT	ATTTATCACG	CATAAATGTT	4680
	CCTTATCAAT	TTGAAGATGG	ACCAGGAGAT	CATGATTATG	CATATTGGGA	TCAAGCGATT	4740
10	AAGCGTGCTA	TAACATGGAT	GGTGAATGAT	TAATTATTTC	TTGGAAAATA	TGTGGCTGCA	4800
	TTAAATACAC	AGAGTGAGAG	ATACAAACTA	TTTACGCACG	ACTAACATTT	CTAAGTGTTT	4860
15	AAATTATTT	TGTATTAATA	TGATTGGCGC	AATTTGCTGA	TACACAAAAA	TGTTTCTCGT	4920
	GAAACTTAGA	TTTAGCTTAT	AGTTTTATCA	TCATTTGTAT	GACTTACATT	ATAAATTTTA	4980
	TTATAATGAG	GTTAACGCTT	TGAAAGGAGT	CATCATCATG	TCGACCAATA	AAAACGATTA	5040
20	TGAGCATATG	TTGTTTTATT	TTGCATATAA	AACCTTTATT	ACTACCGCTG	ATGAAATTAT	5100
	AGAGAAGTAT	GGTATGAGTC	GTCAGCATCA	TCGTTTTTTG	TTTTTTATCA	ATAAATTACC	5160
	TGGTATTACT	ATTAAATCAT	TACTAGAAAT	ATTAGAAATT	TCTAAmCAAG	GATCACATGC	5220
25	AACACTTCAA	AAATTAAAAG	AGCAAGGTCT	CATTATTGAA	AAAGTTTTAG	AGACTGATCG	5280
	ACGTGTCAAA	TTATATAAA	CGACGGATAA	AGGCGATCAA	CTCATTGCTG	AATTGAACAA	5340
	GGCGCAAGAT	GAATTATTGC	AAAATATATA	TCAACAAGTC	GGTTCGGATT	GGTATGATGT	5400
30	GATGGAAGCA	TTGGCTAAAG	GgCGACCTGG	ctttgatttt	ATTAAGCATT	TGAAAGATGA	5460
	AAAAGAAAGC	TAGCATCAGA	AATGTTAAAA	ATCTTCGCAT	TCTTAAATTT	AAAAAATATG	5520
35	TCAAAAAGTG	TATAATAAAA	ACATATAATT	TAATTGAACT	CAGTTTCAAC	ACATCTTAGA	5580
	AAGGAGTTTG	AATGATGAAA	AAATTAGCAG	TTATTTTAAC	ATTAGTTGGC	GGTTTATACT	5640
	TCGCATTTAA	AAAATACCAA	GAACGTGTTA	ACCAAGCACC	TAACATTGAG	TACTAAATTA	5700
40	AACCATAAAA	AATTCCCGAA	CACCTTGTTA	TAGTGCTCGG	GAATTTTTTT	ATGCTTTACT	5760
	TGAATATATC	AAATATTATT	TTTGCGCTTT	CTGTATTTTC	GATATTACCA	CTAAATGATT	5820
	CTGATCTAGG	TCCGTAAGCG	TAgGTATTAA	CATCCTCGCC	TGTATGTCCA	TCGGAAGTCC	5880
45	ACCCTGTATA	AGATTTATCA	TTTACTGGCT	TCTGAATAGC	GTGTTGTAGG	GCTTTTGTTT	5940
	GCGTTTCTAC	TTCTGCGGAT	TTTTCGTCTT	TTTCTTTTTT	AAGTAGTCTT	TTTAGCTTTT	6000
50	TATTCTCTTT	TTTAACCTTT	TTCATATCAT	CTTGTGAAAA	TTCAAATCCA	TAACCTTCAT	6060
50	TAATAACTTT	TTCAGGGTCT	TCACCTTTAG	CCATTTTTTC	TGTCATATAT	GATCCAGAGT	6120
	GTTTCATAGA	TTTAATCGGT	TGAGGATTCC	ATTCGTATCC	TTTATCTTTA	ССАВТТСТТА	6180

	ATTGAATGGC	GTCATCGAAT	GCTTTTTCAA	AACCTTCCAT	TTCAGACATA	ACGCCTGTAA	6300
	TATCGTTGGA	ATGCGCTGAT	TTATCTATAG	AAGCACCTTC	GACCATTAAA	AAGAATCCTT	6360
5	TTTTATTGCG	CTCAAGCTTA	CTAAGTGCAC	TTTGTTGCAT	ATCAGCTAAT	GATGGTTCGT	6420
	CTTTAGAAGC	ATCTATTGCA	AGTGGCATAT	TTTTATCTGC	AAACAAACCA	AGAACTTTAT	6480
	CTTTATCAGA	TTTTGATAAC	TCCTTACTGT	TCGTGGCAAG	GTCGTAACCA	TCTTTTTTGA	6540
10	ATTTTTTATC	TAAATTGCCA	TTACTTTTAC	CGAAATATTT	AGCGCCGCCG	ССТААТАААА	6600
	CATCAACTTT	ATGCTTTCCG	TTGATTTTAT	СТТТАТАААА	TTGTTTAGCG	ATTTCGTTTT	6660
15	TATCATCTCT	AGAAGTCACG	TGTGCAGCAT	ATGCTGCTGG	TGTTGCATCT	GTTAATTCAG	6720
•	CTGTTGAAAC	AAGACCAGTC	GACTTACCTT	TTTCTTTTGC	ACGTTCAAGC	ACCGTCTTTA	6780
	CTTTCTGCTT	GTTACTGTCA	ACACCGATGG	CACCATTATA	TGTCTTATGA	CCAGAACTAA	6840
20	AGGCTGTTCC	GCCAGCTGCA	GAATCAGTAA	TATTCTGTTT	TGGGTCATTT	GAATATGTAC	6900
	GATTTGTGCC	TATAAATAT	GAATCAAAAG	CAGTAGGGGT	CATTTCTTTA	GCATGCGGAT	6960
	CATTTTTATA	ATAACGATAA	GCTGTGTTAA	ATGATGGACC	CATGCCATCG	CCAACTAAAA	7020
25	AGATAACATT	TTTTGGATTT	TTAGTATTAC	CAACCGCGAA	ACTTTCATCT	TTAGAACTTT	7080
	TATCGGATTG	CGCAATTGCA	GGTGTGACAG	AACTAAAAAC	CGTTGACACG	ATAATAAGGT	7140
20	TAGCAACTGC	AAATTTTGTG	GCTTTTTTAA	CTGATAACAT	AAGACATCCT	CCTGAGTATA	7200
30	TGACTATGTC	TTCAGTGTAA	AAGAGGAATT	TtGAGCAATT	ATGTAGTTTT	AGTTAnaaat	7260
	ATGTAAACAG	AGTGATTTAG	AATAACAAAA	aatgaatata	TATGACAATT	TGTTATAGAA	7320
35	AGCGTTAGAA	TAGAAGCGTG	TGAAAATATA	GAATTAAATA	TAATTTGAGG	TGGAAAAATG	7380
	ATACTAGTAA	TGTTATCTCC	ATTATTAATC	ATATTCTTTA	TAGTGTTGTC	TATTTTAGAA	7440
	GAGCGTAAAC	GTACGAAGAA	AAAGCAACTC	GAGAAAGAAA	AAGCAAATAC	ACTAAATCAA	7500
40	AATACAAATG	ACACGGAAAG	TTCAAATCAA	GAGCCGTCAT	TGCAGCAGGA	TAAAGAACAA	7560
	AAAGATAACA	AAGGATAATT	CAATTGAAGG	AAGAAGATTA	TAGATGAAAA	TATTAATTGT	7620
	TGAAGATGAT	TTTGTTATAG	CAGAGAGTTT	AGCATCTGAA	CTTAAAAAAT	GGAATTACGG	7680
15	TGTTATTGTC	GTTGAACAAT	TTGATGATAT	ACTGTCTATC	TTTAACCAAA	ATCAACCTCA	7740
	GCTTGTATTG	CTAGATATTA	ATTTGCCAAC	GTTAAATGGT	TTTCATTGGT	GTCAAGAAAT	7800
50	CCGAAAAACA	TCTAATGTGC	СААТТАТАТТ	TATTAGTTCC	CGTATTGATA	ATATGGACCA	7860
,U	AATTATGGCA	ATACAAATGG	GGGGAGATGA	TTTTATCGAA	AAGCCATTTA	ACTTGTCATT	7920
	AACGATTGCC	AAAATTCAAG	CATTATTGAG	ACGAACTTAT	GACTTGTCAG	TAGCTAATGA	7980

	ACAAAACATA	CAGCTATCTT	TGACTGAATT	ACAAATATTA	AAGTTATTAT	TTCAAAATGA	8100
	AGaTAAATAT	GTAAGTAGrA	CTGCTTTAAT	TGaAAAATGT	TGGGaATCAG	AAAACtTCAT	8160
5	AGATGATAAC	ACATTAGCTG	TTAACATGAC	GCGCCTGCTG	AAAAAATTAA	ATACTATTGG	8220
	CGTTAATGAT	TTTATCATTA	CAAAGAAAAA	TGTCGGATAT	AAAGTATAGG	GTGAATGCAA	8280
	TGACCTTTCT	TAAAAGTATT	ACTCAGGAAA	TAGCAATAGT	CATAGTTATT	TTTGCTTTGT	8340
10	TTGGCTTAAT	GTTTTACCTG	TATCATTTGC	CATTAGAAGC	ATATTTACTA	GCACTTGGCG	8400
	TTATTTTATT	ATTATTACTC	ATATTCATAG	GTATTAAATA	TTTAAGTTTT	GTAAAAACTA	8460
15	TAAGCCAACA	ACAACAAATT	GAAAACTTAG	AAAATGCGTT	GTATCAGCTT	AAAAATGAAC	8520
	AAATTGAATA	TAAAAATGAT	GTAGAGAGCT	ACTTTTTAAC	ATGGGTACAT	CAAATGAAAA	8580
	CACCCATTAC	TGCAGCACAA	CTGTTACTTG	AAAGAGATGA	GCCTAATGTT	GTTAATCGTG	8640
20	TTCGTCAAGA	GGTTATTCAA	ATTGaTAACT	ATACAAGTTT	AGCACTTAGT	TATTTAAAGT	8700
	TATTAAATGA	AACTTCTGaT	ATTTCTGTCA	CTAAAATTTC	GATTAATAAT	ATCATTCGCC	8760
	CAATTATTAT	GAAATATTCA	ATACAGTTTA	TTGATCAAAA	AACAAAAATC	CATTATGAAC	8820
25	CTTGTCATCA	CGAAGTATTA	ACTGACGTTA	GATGGACCTC	TTTAATGATA	GAACAATTAA	8880
	TAAATAATGC	ACTTAAGTAT	GCGAGAGGTA	AAGATATATG	GATTGAATTT	GATGAGCAAT	8940
20	CCAATCAATT	ACACGTAAAA	GATAATGGTA	TCGGTATTAG	TGAAGCGrAC	TTGCCTAAAA	9000
30	TATTTGATAA	GGGCTATTCA	GGTTATAATG	GCCAGCGCCA	AAGTAACTCA	AGTGGGaTTG	9060
	GTTTATTTAT	CGTAAAACAA	ATTTCAACAC	ACACAAACCA	TCCTGTTTCA	GTCGTATCTA	9120
35	AACAAAATGA	GGGTACAACA	TTTACGATTC	AATTTCCAGA	TGAATAAAAA	CTTTCAATAT	9180
	TGTAAGTATA	CTAGTAACAT	TTTTTTACTA	ATTTAAATGT	TATTAGTATT	TTTTTGTTTT	9240
	AATATAGAAC	TAACAAAGAA	ATGAGGTGCA	TGCCATGTTG	CTAGAAGTGn	AACATGTAAA	9300
40	AAAGGTTTAT	GGTAAAGGTT	TGAATGCTAC	GACAGCACTT	aatcaaatga	ATTTATCAGT	9360
	TGGAGCTGGT	GaATTTGTTG	CaATTATGGG	TGAGTCTGGG	tCAGGGAAGT	CTACACTACT	9420
	AAATTTAATT	GCtTCTTTTG	ATGGACTAAC	TGAAGGTGAC	ATTATTGTGG	ATGGCGCACA	9480
45	TTTAAATAAT	ATGAAAAATA	AAAGTAAAGC	ATTGTATCGT	Caacaaatgg	TAGGTTTTGT	9540
	TTTTCAAGAT	TTTAATCTTT	TACCAACAAT	GACGAATAAA	Gaaaatataa	TGATGCCATT	9600
50	AATTTTAGCT	GGTGCTAAAC	GAAAAGATAT	AGAACAAAGG	GTACATCAGT	TGGCAGTACA	9660
50	ATTACATTTA	GAGGGATTCT	TAAACAAGTA	TCCTTCTGAA	ATCTCTGGGG	GTCAGAAGCA	9720
	ACGCATTGCC	ATTGCACGTG	CATTAGTTAC	TAAGCCGACG	ATTTTACTAG	CCGATGAACC	9780

	TCAATTGGAA	CAGACAATTT	TAATGGTAAC	TCATTCAAAT	ATCGATGCGT	CTTATGCAGA	9900
	GCGAGTCATT	TTTATTAAAG	ATGGGCGTCT	ATATCATGAA	ATATATCGTG	GTGAAGAAAG	9960
5	TCAATTAGCT	TTTCAACAAC	GAATAACAGA	TAGCTTAGCA	CTTGTGAATG	GAGGAAGTGT	10020
	CAATATATGA	AGTTAAGATT	GTTATGNACA	TAGTGCGACG	TCAATTTATT	ACGCAGCGAC	10080
	TTGTAATCAT	TCCATTCATT	TTAGCGGTAA	GTGTACTATT	CATGATTGAA	TATACGCTTG	10140
10	TGTCAATTGG	GTTAAATAGC	TACATAAAAC	AGAAGAATGA	CTTCCTAGTA	CCATTTATTA	10200
	TCATAGCTAA	TTTTTTTATG	GCGCTTTTAA	CTTTTATTTT	TATTTTCTAT	GCAAATCACT	10260
15	TTATGATGTC	ACAAAGACGA	AAAGAGTTTA	GCATTTTTAT	GACATTGGGC	ATGACCAAGA	10320
	AAAGTATGCG	TTTAATTGTA	GTGATGGAAA	CTATCTTACA	ATTTGTGATA	ATTTCAGTCG	10380
	TTAGTATTGC	CGGCGGATAC	TTACTTGGTG	CGATATTTTT	CTTGTTTATA	CAGAAAATAA	10440
20	TGGGCAGTGA	AGTTGCGACG	TTAAGGTATT	ATCCATTTGA	CTCTGTAGCG	ATGTTTATTA	10500
	CTTTGATTAT	CATTGCTGTA	TTAATGGGCA	TGCTACTTAT	ATTCAACTTG	TTTAGTATTA	10560
	ATTTTCAACG	GCCGATAACT	TATCAACATC	GTTCCGATTC	TAGTGTCATA	TCACGATGGT	10620
25	TGCGTTACGT	TTTAATTGTT	ATAGGAAGCG	CANACTATAT	TTAGGTTACT	TTATTGCATT	10680
	ACAACAAGAT	ACGACGTTTG	GTGCCTTTTT	TAAAATATGG	ATTGTCATAG	GATTAGTTAT	10740
	TATCGGTACT	TATGCATTTT	TTGTAGGTAT	AAGTGAAATA	ATTATTAGTA	TATTGCAGCA	10800
30	GGTATCAAAA	GTTTACTATC	ATCCACGGTA	TTTTTTGTG	GTAGTTGGGA	TGCGTGTACG	10860
	TCTTAAAATG	AATGCAGTCA	GTCTTGCAAC	AATCACTTTG	CTGTGTACAT	TTTTGATTGT	10920
35	AACGCTCACA	ATGACATTAA	CAACCTATCG	TGATATGAAT	CATACCATTA	CGAAATTGAT	10980
	TACGAATGAT	TakGATTTGT	CATTTAGCGA	CAATTCTAAG	TCACAAaTAG	AACGTCAACA	11040
	AACĀATTGAG						11050

(2) INFORMATION FOR SEQ ID NO: 97: 40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 983 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:

CGACATAACG AGGCAAGGGT ACATGATACT TTAGCCTCGT TTTTGATATG TATTTTTCTG 60 AATATAAGGG CAATAGATGG TATTTTATAW TTTTTTTAAG GTAGTGATTA ACATAGATAT 120

55

45

	TCAAGCGGAA CAGCATTATG CACCAGTATT AACGCATTTT TTAGATCCAA GAGGGCAATA	240
	TATATTGGAA GTGATTTGTG GCAGTTATGA AGATTTAAAC GTATCTTTTT ATGGTGGACC	300
5	TAATGCTGAA AGAAAAAGAG CAATCATTTC GCCGAACTAT TATGAACCTA AAGAAAGCGA	360
	CTTTGAATTA ACTTTAATGG AAATAGATTA TCCTGAAAAA TTCGTCACTT TAAAACATCA	420
	ACATATTTTA GGGACATTAA TGTCTTTAGG TATCGAACGC GAACAAGTTG GAGATATAAT	480
10	TGTGAATGAA CGAATTCAAT TTGTTTTGAC AAGTAGATTG GAATCATTTA TTATGTTAGA	540
	ATTACAACGT ATTAAAGGCG CATCAGTTAA ACTTTATACT ATTCCAGTAA CAGATATGAT	600
15	ACAATCTAAT GAGAATTGGA AAAATGAAAG TGCaCAGTTA GTTCTTTAAG GTTAGATGTT	660
	GTTATTAAAG AAATGATACG TAAATCACGT ACGATTGCGA AACAACTAAT CGAAAAAAAA	720
	CGTGTTAAAG TGAATCACAC TATTGTTGAT TCAGCAGATT TTCAATTACA AGCAAATGAT	780
20	TTAATATCCA TCCAAGGTTT TGGTAGAGCA CACATTACTG ACTTAGGTGG TAAAACTAAA	840
	AAAGATAAAA CGCACATTAC CTATAGAACA TTATTCAAAT AGTAATGATT TAAGGAGGAT	900
	AACAAATGCC TTTTACACCA AATGAAATTA AGAATAAAGA GTTTTCACGT GTAAAGAATG	960
25	GTTTTAGAAC CTACTGNAGT TGG	983
	(2) INFORMATION FOR SEQ ID NO: 98:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10322 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	
	TTTTGCAAAG CTTATTTTAT GTCAAACAGA TAGTCAATGT GAAACAAAGG TTAGTACATA	60
40	TAATCATCCA GACTTTATGT ATATATCAAC AACTGAGAAT GCAATTAAGA AAGAACAAGT	120
	TGAACAACTT GTGCGTCATA TGAATCAACT TCCTATAGAA AGCACAAATA AAGTGTACAT	180
	CATTGAAGAC TTTGAAAAGT TAACTGTTCA AGGGGAAAAC AGTATCTTGA AATTTCTTGA	240
45	AGAACCACCG GACAATACGA TIGCTATTIT ATTGTCTACA AAACCTGAGC AAATTTTAGA	300
	CACAATCCAT TCAAGGTGTC AGCATGTATA TTTCAAGCCT ATTGATAAAG AAAAGTTTAT	360

55

50

AAATAGATTA GTTGAACAAA ACATGTCTAA GCCAGTAGCT GAAATGATTA GTACTTATAC

TACGCAAATA GATAATGCAA TGGCTTTAAA TGAAGAATTT GATTTATTAG CATTAAGGAA

ATCAGTTATA CGTTGGTGTG AATTGTTGCT TACTAATAAG CCAATGGCAC TTATAGGTAT

420

480

	GAATGGTTTC	TTCGAAGATA	TCATACATAC	AAAGGTAAAT	GTAGAGGATA	AACAAATATA	660
	TAGTGATTTA	AAAAATGATA	TTGATCAATA	TGCGCAAAAG	TTGTCGTTTA	ATCAATTAAT	720
5	TTTGATGTTT	GATCAACTGA	CGGAAGCACA	TAAGAAATTG	AmTCAAAATG	TAAATCCAAC	780
	GCTTGTATTT	GAACAAATCG	TAATTAAGGG	TGTGAGTTAG	ATGCCAAATG	TAATAGGTGT	840
10	TCAGTTTCAA	AAAGCGGGAA	AATTAGAATA	TTATACACCT	AATGATATAC	AAGTAGATAT	900
	AGAAGACTGG	GTAGTTGTCG	AATCTAAAAG	AGGCATAGAG	ATAGGTATTG	TTAAAAATCC	960
	ATTAATGGAT	ATTGCTGAAG	AGGATGTTGT	GTTACCTCTT	AAAAATATTA	TTCGCATTGC	1020
15	TGATGACAAA	GATATTGATA	AATTTAATTG	TAATGAACGA	GATGCTGAAA	ATGCATTAAT	1080
	ACTATGTAAA	GACATTGTAA	GAGAACAAGG	TTTGGACATG	CGTTTAGTCA	ATTGCGAATA	1140
	TACATTAGAT	AAATCGAAAG	TTATTTTTAA	TTTTACGGCG	GATGATCGTA	TTGATTTTAG	1200
20	AAAATTAGTA	AAAATATTAG	CGCAACATTT	AAAAACACGT	ATCGAGTTGA	GACAAATTGG	1260
	TGTAAGGGAT	GAAGCCAAAT	TGCTTGGCGG	TATCGGACCT	TGTGGTAGGT	CGTTATGTTG	1320
	TTCTACATTT	TTAGGGGATT	TTGAACCAGT	ATCGATTAAG	ATGGCTAAGG	ATCAAAATTT	1380
25	ATCATTAAAT	CCAACTAAAA	TTTCTGGTGC	ATGTGGTCGT	TTGATGTGTT	GTTTAAAATA	1440
	TGAAAATGAC	TATTATGAGG	AAGTACGTGC	ACAATTACCT	GATATTGGTG	AAGCAATTGA	1500
30	AACGCCTGAT	GGTAACGGGA	AAGTAGTTGC	TTTAAATATA	TTAGACATTT	CTATGCAGGT	1560
	GAAGCTTGAG	GGACATGAAC	AGCCACTTGA	ATATAAATTA	GAAGAAATAG	AAACTATGCA	1620
	TTAAGGAGGC	ATTATTACAT	TTGGATCGCA	ATGAAATATT	TGAAAAAATA	ATGCGTTTAG	1680
35	AAATGAATGT	CAATCAACTT	TCAAAGGAAA	CTTCAGAATT	AAAGGCACTT	GCAGTTGAAT	1740
	TAGTAGAAGA	AAATGTAGCG	CTTCAACTTG	AAAATGATAA	TTTGAAAAAG	GTGTTGGGCA	1800
	ATGATGAACC	AACTACTATT	GATACTGCGA	ATTCAAAACC	AGCAAAAGCT	GTGAAAAAGC	1860
40	CATTACCAAG	TAAAGATAAT	TTGGCTATAT	TGTATGGAGA	AGGATTTCAT	ATTTGTAAAG	1920
	GCGAATTATT	TGGAAAACAT	CGACATGGTG	AAGATTGTCT	GTTCTGTTTA	GAAGTTTTAA	1980
45	GTGATTAATC	AAGCACACTC	AAATAGTGTT	ATAATTATAA	ATGAATATGG	TTTGGATAAG	2040
45	TCTGAGACAA	TGCATGTTTC	AGGCTTTAAT	TGTGTATAAA	GTTTTGGTGA	TTGCATAAGA	2100
	GATGGCGGTA	CTAAATGTTA	TTATTAAGTG	TGCACGCAgT	ATCaTTAGTT	ATAAAATGTA	2160
50	GCTGTTAAAA	GTCAAAAATA	CATCGAATGT	AGTTAGGCAT	АТААТАТААА	AAGAGTTTTC	2220
	AATTACTCAA	TAGAAAAAGG	TTGTCTTCAT	AGGAGTTAAA	AATGTTAAAA	GAGAATGAAC	2280
	GATTTGATCA	ACTAATCAAA	GAAGATTTTA	GTATTATTCA	AAATGATGAT	GTTTTTTCAT	2340

	TGGACTTATG	TTCAGGCAAT	GGGGTGATAC	CCTTGTTATT	GTTTGCGAAA	CATCCACGAC	2460
	ATATAGAAGG	TGTTGAGATT	CAAAAAACAC	TTGTCGATAT	GGCGCGACGC	ACATTTCAAT	2520
5	TCAATGATGT	TGATGAATAT	TTAACAATGC	ATCACATGGA	TTTGAAAAAC	GTTACTAAAG	2580
	TATTTAAACC	TTCACAATAT	ACTTTAGTAA	CGTGTAATCC	GCCTTATTTT	AAAGAGAATC	2640
10	AGCAACACCA	ACATCAAAAA	GAAGCACATA	AGATAGCGAG	ACATGAGATT	ATGTGTACAC	2700
	TTGAAGATTG	CATGATTGCA	GCCCGTCATT	TATTAAAAGA	AGGTGGCAGG	CTAAACATGG	2760
	TACATCGTGC	AGAGAGACTA	ATGGATGTCT	TGTTTGAAAT	GAGAAAAGTG	AATATTGAAC	2820
15	CTAAGAAAGT	CGTTTTTATA	TATAGTAAAG	TAGGGAAATC	AGCACAAACG	ATAGTAGTAG	2880
	AAGGTCGAAA	AGGTGGAAAT	CAAGGTTTAG	AAATCATGCC	CCCATTTTAT	ATTTATAATG	2940
	AAGATGGTAA	TTATAGCGAA	GAAATGAAGG	AAGTATATTA	TGGATAGTCA	TTTTGTATAT	3000
20	ATTGTAAAAT	GTAGTGATGG	AAGTTTATAT	ACAGGATACG	CTAAAGACGT	TAATGCACGT	3060
	GTTGAAAAAC	ATAACCGAGG	TCAAGGAGCC	AAATATACGA	AAGTAAGACG	TCCGGTGCAT	3120
	TTAGTTTATC	AAGAAATGTA	TGAGACAAAG	TCTGAAGCAT	TGAAGCGTGA	ATATGAAATT	3180
25	AAAACTTATA	CCAGACAAAA	GAAATTGCGA	TTAATTAAGG	AGCGATAGTA	TGGCTGTATT	3240
	ATATTTAGTG	GGCACACCAA	TTGGTAATTT	AGCAGATATT	ACTTATAGAG	CAGTTGATGT	3300
30	ATTGAAACGT	GTTGATATGA	TTGCTTGTGA	AGACACTAGA	GTAACTAGTA	AACTGTGTAA	3360
	TCATTATGAT	ATTCCAACTC	CATTAAAGTC	ATATCACGAA	CATAACAAGG	ATAAGCAGAC	3420
	TGCTTTTATC	ATTGAACAGT	TAGAATTAGG	TCTTGACGTT	GCGCTCGTAT	CTGATGCTGG	3480
35	ATTGCCCTTA	ATTAGTGATC	CTGGATACGA	ATTAGTAGTG	GCAGCCaGAG	AAGCTAATAT	3540
	TAAAGTAGAG	ACTGTGCCTG	GACCTAATGC	TGGGCTGACG	GCTTTGATGG	CTAGTGGATT	3600
	ACCTTCATAT	GTATATACAT	TTTTAGGATT	TTTGCCACGA	AAAGAGAAAG	AAAAAAGTGC	3660
40	TGTATTAGAG	CAACGTATGC	ATGAAAATAG	CACATTAATT	ATATACGAAT	CACCGCATCG	3720
	TGTGACAGAT	ACATTAAAAA	CAATTGCAAA	GATAGATGCA	ACACGACAAG	TATCACTAGG	3780
45	GCGTGAATTA	ACTAAGAAGT	TCGAACAAAT	TGTAACTGAT	GATGTAACAC	AATTACAAGC	3840
45	ATTGATTCAG	CAAGGCGATG	TACCATTGAA	AGGCGAATTC	GTTATCTTAA	TTGAAGGTGC	3900
	TAAAGCGAAC	AATGAGATAT	CGTGGTTTGA	TGATTTATCT	ATCAATGAGC	ATGTTGATCA	3960
50	TTATATTCAA	ACTTCACAGA	TGAAACCAAA	ACAAGCTATT	AAAAAAGTTG	CTGAAGAACG	4020
	ACAACTTAAA	ACGAATGAAG	TATATAATAT	TTATCATCAA	ATAAGTTAAT	CACTTTATCG	4080
	ATTATATGAA	ATTTTAAACG	ATTTTATAAA	CGCAAGCTGT	AATTTTAAAT	GGTAAGTTAT	4140

586

. 55

	GTITTTTAAT	GTAAAATAAA	TACATTGAAA	GTAATAAATA	CCTTAACATT	GAATAAGATG	4260
_	AAAATGAGAT	GACGAGATAA	ATGTTCGCGT	CCGTTGAAAT	GCATAGAAAT	CTTAGATATT	4320
5	ATTTGAAGTG	AGACATTACG	AGGAGGAACA	GTTATGGCTA	AAGAAACATT	TTATATAACA	4380
	ACCCCAATAT	ACTATCCTAG	TGGGAATTTA	CATATAGGAC	ATGCATATTC	TACAGTGGCT	4440
10	GGAGATGTTA	TTGCAAGATA	TAAGAGAATG	CAAGGATATG	ATGTTCGCTA	TTTGACTGGA	4500
	ACGGATGAAC	ACGGTCAAAA	AATTCAAGAA	AAAGCTCAAA	AAGCTGGTAA	GACAGAAATT	4560
	GAATATTTGG	ATGAGATGAT	TGCTGGAATT	AAACAATTGT	GGGCTAAGCT	TGAAATTTCA	4620
15	AATGATGATT	TTATCAGAAC	AACTGAAGAA	CGTCATAAAC	ATGTCGTTGA	GCAAGTGTTT	4680
	GAACGTTTAT	TAAAGCAAGG	TGATATCTAT	TTAGGTGAAT	ATGAAGGTTG	GTATTCTGTT	4740
	CCGGATGAAA	CATACTATAC	AGAGTCACAA	TTAGTAGACC	CACAATACGA	AAACGGTAAA	4800
20	ATTATTGGTG	GCAAAAGTCC	AGATTCTGGA	CACGAAGTTG	AACTAGTTAA	AGAAGAAAGT	4860
	TATTTCTTTA	ATATTAGTAA	ATATACAGAC	CGTTTATTAG	AGTTCTATGA	CCAAAATCCA	4920
25	GATTTTATAC	AACCACCATC	AAGAAAAAAT	GAAATGATTA	ACAACTTCAT	TAAACCAGGA	4980
25	CTTGCTGATT	TAGCTGTTTC	TCGTACATCA	TTTAACTGGG	GTGTCCATGT	TCCGTCTAAT	5040
	CCAAAACATG	TTGTTTATGT	TTGGATTGAT	GCGTTAGTTA	ACTATATTTC	AGCATTAGGC	5100
30	TATTTATCAG	ATGATGAGTC	ACTATTTAAC	AAATACTGGC	CAGCAGATAT	TCATTTAATG	5160
	GCTAAGGAAA	TTGTGCGATT	CCACTCAATT	ATTTGGCCTA	TTTTATTGAT	GGCATTAGAC	5220
	TTACCGTTAC	CTAAAAAAGT	CTTTGCACAT	GGTTGGATTT	TGATGAAAGA	TGGAAAAATG	5280
35	AGTAAATCTA	AAGGTAATGT	CGTAGACCCT	AATATTTTAA	TTGATCGCTA	TGGTTTAGAT	5340
	GCTACACGTT	ATTATCTAAT	GCGTGAATTA	CCATTTGGTT	CAGATGGCGT	ATTTACACCT	5400
	GAAGCATTTG	TTGAGCGTAC	AAATTTCGAT	CTAGCAAATG	ACTTAGGTAA	CTTAGTAAAC	5460
10	CGTACGATTT	CTATGGTTAA	TAAGTACTTT	GATGGCGAAT	TACCAGCGTA	TCAAGGTCCA	5520
	CTTCATGAAT	TAGATGAAGA	AATGGAAGCT	ATGGCTTTAG	AAACAGTGAA	AAGCTACACT	5580
15	GAAAGCATGG	AAAGTTTGCA	ATTTTCTGTG	GCATTATCTA	CGGTATGGAA	GTTTATTAGT	5640
~	AGAACGAATA	AGTATATTGA	CGAAACAACG	CCTTGGGTAT	TAGCTAAGGA	CGATAGCCAA	5700
	AAAGATATGT	TAGGCAATGT	AATGGCTCAC	TTAGTTGAAA	ATATTCGTTA	TGCAGCTGTA	5760
50	TTATTACGTC	CATTCTTAAC	ACATGCGCCG	AAAGAGATTT	TTGAACAATT	GAACATTAAC	5820
	AATCCTCAAT	TTATGGAATT	TAGTAGTTTA	GAGCAATATG	GTGTGCTTAA	TGAGTCAATT	5880
	ATGGTTACTG	GGCAACCTAA	ACCTATTTC	CCAAGATTGG	ATAGCGACGG	An A Aጥጥር C Aጥ	5940

	AACCTCAAAT	TGATATTAAA	GACTTTGATA	AAGTTGAAAT	TAAGGCAGCA	ACGATTATTG	6060
	ATGCTGAACA	TGTTAAGAAG	TCAGATAAGC	TTTTAAAAAT	TCAAGTAGAC	TTAGATTCTG	6120
5	AACAAAGACA	AATTGTATCA	GGAATTGCCA	AATTCTATAC	ACCAGATGAT	ATTATTGGTA	6180
	AAAAAGTAGC	AGTTGTTACT	AACCTGAAAC	CAGCTAAATT	AATGGGACAA	AAATCTGAAG	6240
10	GTATGATATT	ATCTGCTGAA	AAAGATGGTG	TATTAACCTT	AGTAAGTTTA	CCAAGTGCAA	6300
	TTCCAAATGG	TGCAGTGATT	AAATAACTGT	ATTTTTAAAA	ATTAGGAGAG	ATAATTATGT	6360
	TAATCGATAC	ACATGTCCAT	TTAAATGATG	AGCAATACGA	TGATGATTTG	AGTGAAGTGA	6420
15	TTACACGTGc	TAGAGAAGCA	GGTGTTGATC	GTATGTTTGT	AGTTGGTTTT	AACAAATCGA	6480
	CAATTGAACG	CGCGATGAAA	TTAATCGATG	AGTATGATTT	TTTATATGGC	ATTATCGGTT	6540
	GGCATCCAGT	TGACGCAATT	GATTTTACAG	AAGAACACTT	GGAATGGATT	GAATCTTTAG	6600
20	CTCAGCATCC	AAAAGTGATT	GGTATTGGTG	AAATGGGATT	AGATTATCAC	TGGGATAAAT	6660
	CTCCTGCAGA	TGTTCAAAAG	GAAGTTTTTA	GAAAGCAAAT	TGCTTTAGCT	AAGCGTTTGA	6720
	AGTTACCAAT	TATCATTCAT	AACCGTGAAG	CAACTCAAGA	CTGTATCGAT	ATCTTATTGG	6780
25	AGGAGCATGC	TGAAGAGGTA	GGCGGGATTA	TGCATAGCTT	TAGTGGTTCT	CCAGAAATTG	6840
	CAGATATTGT	AACTAATAAG	CTGAATTTTT	ATATTTCATT	AGGTGGACCT	GTGACATTTA	6900
30	AAAATGCTAA	ACAGCCTAAA	GAAGTTGCTA	AGCATGTGTC	AATGGAGCGT	TTGCTAGTTG	6960
	AAACCGATGC	ACCGTATCTT	TCGCCACATC	CGTATAGAGG	GAAGCGAAAT	GAACCGGCGA	7020
	GAGTAACTTT	AGTAGCTGAA	CAAATTGCTG	AATTAAAAGG	CTTATCTTAT	GAAGAAGTGT	7080
35	GCGAACAAAC	AACTAAAAAT	GCAGAGAAAT	TGTTTAATTT	AAATTCATAA	AGTTAAAAGT	7140
	GAGAAAGATC	ACCGCCATAA	ATGTAAACGA	TGCTATATTC	GTTTAATATG	CTATGGTTCT	7200
	TTCTCACTTT	TTTAAATTAA	AATATCGTGC	ATGTGGAATA	CGTGCGATAG	AGATGGTTAG	7260
40	AGCTTTGAAA	TTAAGAATTG	TAGGAAGGCG	TTTTAAATGA	AAATCAATGA	GTTTATAGTT	7320
	GTAGAAGGAC	GAGATGATAC	TGAGCGTGTT	AAACGAGCTG	TTGAATGTGA	TACGATTGAA	7380
45	ACGAATGGTA	GTGCCATCAA	CGAACAAACT	TTAGAAGTAA	TTAGAAATGC	TCAACAAAGT	7440
45	CGAGGCGTTA	TTGTATTAAC	AGATCCAGAT	TTCCCAGGAG	ataaaattag	AAGTACAATT	7500
	ACTGAACATG	TCAAAGGTGT	TAAACATGCG	TATATTGATA	GAGAAAAAGC	AAAAAAT	7560
50	AAAGGGAAAA	TTGGTGTTGA	ACATGCCGAC	TTAATTGATA	TTAAAGAAGC	GTTAATGCAT	7620
	GTTAGTTCAC	CCTTTGATGA	AGCTTATGAA	TCAATTGATA	AATCTGTGCT	AATAGAGTTG	7680
	GGGTTAATTG	TTGGGAAAGA	TGCAAGGCGC	CGTAGAGAAA	TTTTAAGTAG	AAAATTGCGA	7740

	GCGGATGTAA	GGCAAGCTTT	AGAAGATGAA	TGAGGAAGTG	AAAATGTTGG	ATAATAAAGA	7860
_	TATTGCAACA	CCATCAAGAA	CGCGAGCGTT	GTTAGATAAA	TATGGCTTTA	ATTTTAAAAA	7920
5	AAGTTTAGGA	CAGAACTTTT	TGATAGATGT	GAATATCATT	AATAATATCA	TTGATGCAAG	7980
	TGATATTGAT	GCACAAACTG	GGGTGATTGA	AATTGGTCCA	GGCATGGGGT	CATTGACAGA	8040
10	ACAATTGGCC	AGACATGCTA	AAAGAGTATT	GGCATTTGAA	ATTGATCAAC	GTTTAATACC	8100
	TGTATTAAAT	GATACACTAT	CACCTTATGA	TAATGTGACG	GTGATTAATG	AAGATATTTT	8160
	AAAAGCGAAT	ATTAAAGAAG	CTGTTGAAAA	TCATTTACAA	GATTGTGAAA	AAATAATGGT	8220
15	TGTTGCAAAC	CTGCCGTACT	ATATTACGAC	GCCAATTTTA	TTAAATTTGA	TGCAACAAGA	8280
	TATACCAATT	GATGGCTACG	TGGTGATGAT	GCAAAAAGAA	GTGGGCGAAC	GCTTAAATGC	8340
	TGAAGTAGGT	TCAAAAGCAT	ATGGTTCGTT	ATCAATTGTC	GTACAATACT	ATACAGAGAC	8400
20	TAGTAAAGTA	TTAACGGTAC	CTAAATCTGT	ATTTATGCCA	CCACCTAATG	TTGATTCAAT	8460
	AGTTGTAAAA	CTGATGCAGA	GAACTGAACC	GTTAGTAACA	GTAGATAACG	AGGAAGCATT	8520
	CTTTAAGTTA	GCAAAAGCAG	CATTTGCACA	AAGAAGAAAG	ACAATTAACA	ATAACTATCA	8580
25	AAATTATTTT	AAAGATGGTA	AACAACACAA	AGAAGTGATT	TTACAATGGT	TGGAACAAGC	8640
	AGGTATTGAT	CCAAGACGTC	GCGGTGAAAC	GCTATCTATT	CAAGATTTTG	CTAAATTGTA	8700
30	TGAAGAAAAG	AAAAAATTCC	CTCAATTAGA	AAATTAAATG	ATTGACAAAG	CAAAGCACTA	8760
	TTGTTAAAAT	TTAAATTTTG	TTTGACGAAA	ACGTTGCAAA	TATGGTATTA	TGTAACTTGT	8820
	AGCGAGGTGG	AGCAATATGC	CAAAATCAAT	TTTGGACATC	AAAAATTCTA	TTGATTGTCA	8880
35	TGTAGGAAAT	CGTATTGTAC	TGAAaGCCAA	TGGAGGCCGT	AAGAAAACAA	TAAAACGTTC	8940
	TGGAATTTTA	AAAGAAACAT	ATCCGTCAGT	TTTCATTGTT	GAGTTAGATC	AAGACAAACA	9000
	CAACTTTGAG	AGAGTATCTT	ATACATACAC	TGATGTGTTA	ACTGAAAATG	TTCAAGTTTC	9060
40	ATTTGAAGAG	GATAATCATC	ACGAATCAAT	TGCACACTAA	ATAAGACATA	TAGAGATGTT	9120
	AGACGTTTCT	TAGTATAAGA	AGTAAATATT	ATGATAATTA	TTTGAGTGTT	GGGCATTATG	9180
45	TTCAATACTC	TTTTTTTTTA	CAAAATGTTT	AACACTGATG	TTTCGCTTAT	AGATTTTTCA	9240
45	GTAAATGGAT	AATTGTATTT	ATAAACACAA	ATACAAGTAA	ATACTAAGTA	ATTAGATGGA	9300
	GAAAATTACT	TTTTTATTAA	AAAAACACTA	AAAAACAAAT	TAAAATGTCA	AATATTAATT	9360
50	CTCTTTATGT	TAAAATCATC	ATATTAAGAT	AACGAAAAGA	GGGCGGAAAA	TGATATATGA	9420
	AACGGCACCA	GCCAAAATTA	ATTTTACGCT	CGATACACTT	TTTAAAAGAA	ATGATGGCTA	9480
	TCATGAGATT	GAAATGATAA	TGACAACAGT	TGATTTAAAT	GATCGTTTAA	CTTTTCATAA	9540

AAATCTCGCA TATCGTGCAG CGCAACTATT TATTGAGCAA TATCAACTAA AGCAAGGTGT 9660 AACAATTTCT ATCGATAAAG AAATACCTGT TTCTGCTGGC TTAGCTGGAG GTTCGGCTGA 9720 TGCAGCAGCA ACGTTAAGAG GATTGAATCG ACTTTTTGAT ATAGGGGCGA GTTTGGAAGA 9780 ATTGGCTCTA CTAGGCAGTA AAATCGGGAC AGATATTCCG TTTTGTATTT ATAATAAAAC 9840 TGCACTATGT ACTGGAAGAG GAGAGAAAAT CGAGTTTTTA AATAAACCAC CTTCAGCTTG 9900 10 GGTGATTCTT GCTAAACCAA ACTTAGGCAT ATCATCACCA GATATATTTA AGTTGATTAA 9960 TTTAGATAAG CGTTACGACG TACATACGAA AATGTGTTAT GAGGCCTTAG AAAATCGAGA 10020 TTATCAACAA TTATGTCAAA GTTTGTCTAA TCGATTAGAG CCAATTTCTG TTTCAAAACA 15 10080 CCCACAAATC GATAAATTAA AAAATAATAT GTTGAAAAGT GGTGCAGATG GTGCGTTAAT 10140 GAGTGGAAGC GGACCTACTG TGTATGGGCT AGCACGAAAA GAAAGCCAAG CAAAAAATAT 10200 20 TTATAATGCA GTTAACGGTT GTTGTAATGA AGTGTACTTA GTTAGACTAT TAGGATAGAA 10260 GGGTTGAAAA GATGAGATAT AAACGAAGCG AGAGAATTGT TTTTATGACG CAATATTTGA 10320 TG 10322 25

(2) INFORMATION FOR SEQ ID NO: 99:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5614 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:

GATTGATTAA ATGTTTTAAT CCACTTCAAT GCCTTCGATA AACTCTACAA TCGCGCTATT 60 CATATAATTA TTCGATTTCA TTTGTTCAGC ATATGTCTCA TTAAATCCAG ACATAACTTT 120 TTTAAAWGCG AAAATTGAAA TTGGTATCGT TACTAATAAG GCACTAGCCA TACGCCAATC 180 AATGAGCATT ATGTATAAAA AGATAGCAGC TGACAAAAGT AAGTTTCCTA TAACTTCAGG 240 AATCATATGT GCTAAAGGTA ATTCTATTGT TTCAACCTTA TCGACAAATA TATTTTTTAA 300 TTCACCTATT TTCTTAGATT CCaCTACGCC TAAAGGGAGA CGCATTAATT TTTGAGCTAA 360 TTTTTTACGA ATTTCAGATA AAATTTCATA TGCCGTAATA TGTGATAGCA TCGTTGACGC 420 TCCAAAACAA CACACTTGTG AAATATAAGC GATTAAAGCA ATAAAGATAT AAACCATAAT 480 CGAATTAATC GTATATGTAT TGTTAATCAT CATTAAAATA ATTTTAAATA CTGCCCAATA 540 AGGAACTAAT CCAGAAAAGA CACTGATGAT AGACAACAAA ATTGATAACA TAATTTTCCA 600

55

5

30

35

40

	ATATGTAACT	CCTRTCAATT	AATAATCTAA	ATTAAGCCGC	TTATATTATT	TATTTCACTG	720
	GATGATATAC	ATAATATAAA	TTTGTTATTT	GTTAAAAATT	AATACTTATT	ACAAGTACAT	780
5	CATATATTAG	TTGATAACGA	TTATCAATGT	CGCGTGGATT	TGTGACACAT	TTCTTTTAAA	840
	AATTCACAAG	GTTATGGGGC	AGAAATGATA	AAGAGCCACT	AATGATTTAT	TATGTAGTGG	900
10	TTCTGGGAGT	GGGACAGAAA	TGATATTTTC	ACAAAATTTA	TTTCGTCGTC	CCACCCCAAC	960
	TTGCATTGTC	TCTAGAAATT	GGGAATCCAA	TTTCTCTTTG	TTGGGTCCCT	GAATATAGCC	1020
	TTGTAGAGTC	TAGTACATTG	ATTTGTATCC	CAATGTCCCT	ATAATTGATT	ATTCGCTTTA	1080
15	TCTAATGATC	CTATGACTCA	ACTATTAAAT	CATTTTTCGA	AATACTTAAT	тстаататаа	1140
	TTAAATTCAT	TTATTGTAAT	ATTGCAAAAA	TACATTGCAC	ACCTTGTTCA	TCAATGCTAT	1200
	AATTAATTAC	ATAATAAATT	GAACATCTAA	ATACACCAAA	TCCCCTCACT	ACTGCCATAG	1260
20	TGAGGGGATT	TATTTAGGTG	TTGGTTATTT	GTCACCTTTT	TTATTGTTGC	GCGTTCGTAA	1320
	CCAATGTGCA	AAAAACGCAA	CAAGACAGCC	GCTTATAGCT	GAAGTCATGA	TGTTAATTAA	1380
	TAAATTGAAC	ATCCGTCATA	CACCTCCTCT	CTGCGTTAAA	GTAACGCCCG	AGATGTTAGG	1440
25	CGACCATCAT	ATTATATCAT	TTATTTATTA	TATTTCACGC	AATATTAAGG	CTTAAGTAAA	1500
	GTTTTTTTTA	GTGGTTTACG	CTACTTTAAT	TGCTATCTTT	TAAAATCCAT	TTAGATAATA	1560
30	TAAATGTGAT	GGGTATCGTA	ATAATTAAAC	CAGCAAATGG	TGCAATTTCT	GCTGGCAAAT	1620
	TTAGCCAGGA	TACAAATACA	TATAATAAAA	CTGTTTGTAA	GCTTACGTTG	ACAATCTGCG	1680
	TAATTGGAAA	ACTAATGAAT	TTTCTCCAAG	TAGGTTTTAC	CCTGTAAACA	AAATAACAAT	1740
35	TCAAATAATA	TGAAATCACA	AAAGCGACTA	GAAATCCGGT	AATATGACTA	ATCATATATT	1800
	CAATGTGTAA	TAATTTTAAC	AGCAATAAAT	AGACAACATA	ATAATTTAAC	GTATTAATGC	1860
	CGCÇÃACAAT	GATAAATTTT	AAAATTTCAG	CATGCGTTTG	TGTTAGTTTC	ATATGTGTAC	1920
40	TCCTCAACAT	CAAAATATAT	GCATAACTAC	GTTCTCGAAC	ATACTCGAAT	ATGCGAGCCA	1980
	ATCCGCTTCA	CTTCAAATAT	GCTTATTTCA	ATCTTTATAC	CCTTTCACAG	CAAATTTAGT	2040
	CTCTTTCCCC	TCATCCTTAT	ACGCCATTAT	AATGTAACTG	ATTTATCGCG	TGACTCATTA	2100
45	GCACTATAGA	GATTACTTTA	GTTCACTAGT	AATTTTATAT	ACAATAAGAG	CGACAACAGT	2160
	AATGAGAGGA	TGTCTACTAT	GCAATTACAA	AAAATTGTCA	TCGCTCCTGA	CTCATTTAAG	2220
50	GAAAGTATGA	CCGCACAGCA	AGTTGGCAAT	ATTATAAAAC	AGGCTTTTAC	TAATGTTTAT	2280
	GGGAATACCC	TTCATTATGA	TATCATTCCG	ATGGCTGATG	GTGGTGAAGG	TACCACAGAT	2340
	GCTTTAATGC	ATGCAACAGG	TGCCACTAAG	TATACAGTCA	TCGTTAATGA	CCCTTTAATG	2400

	GCGGCAGCGT	CAGGTTTGGA	TTTATTAGAA	AAAGAGGAAC	GTAATCCTTT	ATACACATCA	2520
	TCATATGGTA	CCGGTGAACT	AATTAAAGAT	GCATTAAATC	ATGGTGCTAA	GACCATTATT	2580
5	TTAGGGATTG	GTGGCAGTGC	AACAAATGAT	GGTGGTACAG	GTATGCTAAG	TGCACTAGGC	2640
	GTAAAGTTTA	CTGATGTAAA	CGGGGACTTA	TTACAAATGA	ATGGTGCTAA	TCTTGCTCAC	2700
	ATTGCACAAA	TCGATATAAC	CAATCTAGAT	TCGCGATTAA	AAGAGGTGAC	CTTTAAAGTG	2760
10	GCCTGTGATG	TTTCAAATCC	TTTATTGGGT	GAAAATGGTG	CTACCTATAT	TTATGGTCCT	2820
	CAAAAAGGCG	CTGATGCAAA	GATGATACCA	AAGTTGGATT	TCGCAATGTC	GCATTATCAT	2880
15	GATAAGATAA	AAATGTGCAC	AGGAAAGTCC	GTTAATCAAA	TACCAGGTTC	TGGTGCAGCT	2940
	GGCGGTATGG	GCGCAGCATT	ATTAGCGTTT	TGTGAGACAA	CTTTAACAAA	AGGTATTGAT	3000
	GTCGTCTTTG	ACATTACAGA	TTTTCATCAA	AGAATTAAAG	ATGCAGACCT	CGTTATTACT	3060
20	GGAGAAGGAC	GCATGGATTA	TCAGACCATC	TTTGGTAAAA	CACCCGTAGG	CGTTGCGTTA	3120
	GCTGCAAAAC	AATATCATAT	TCCTGTCATC	GCGATTTGTG	GCAGTCTAGG	CGAAAATTAT	3180
	CAACATGTTT	ACGATTTCGG	TATTGATAGT	GCCTATTCTA	TAATCTCTTC	ACCTAGCACT	3240
25	TTAGAAGATG	TCCTACAAAA	TAGCGAACAA	AATTTATTAA	ACACTGCAAC	TGACATTGCT	3300
	CGTATTCTGA	AATTACAATA	ATGTCAAAGT	AAATCATCAG	CTTTATTATT	TGCAGTTAAA	3360
	ACTTGAATGA	GGTGAAACCC	ATGAAAAGAA	CTGATAAATA	CCGTGATTCA	TATCAATACG	3420
30	ACAATCAAAA	CCAAAATCAT	CGTCGTCAAT	CTGAAGACGC	ATCGTATAGA	CAACAATATG	3480
	CTAAAGGCGA	TCCTGAAGAA	CACCCGGAAC	GATACTATAA	TGGTAGAGAT	TATCGAAGAG	3540
35	AACAAATTCT	TGAAGAAGAA	AACGAGAAAT	CCCGCCGTTC	AAAAAAATGG	TTATATATCA	3600
	TTATTGCCAT	TCTCTTAATT	ATTGTCGCTA	TTTTTGTCAC	ACGCGCCTTA	CTTAACAATG	3660
	ATAGÉGATAA	AGTTAGTAAT	GACCCTAAAG	TCTCTCAAAA	TTATAAAAAA	CAAGTTGAAA	3720
40	ATCÂAGACGG	CCAAATTAAC	CAGCAAGTAG	ATAATGCTAA	AGAAAATATT	AAAAACAACC	3780
	AAAAAACTGA	TGACATTATT	AAAAATTTAC	AAAATCAAAT	CGACAACTTG	AAGCAGCAAG	3840
	AACAAAACAA	AGCTGATTCT	AAGCTAACTC	AATTTTATCA	AGACCAAATC	AACAAATTGA	3900
45	CAGAGGCAAA	TAATGCACTT	AAAAACAATG	CAAGCCAAGG	TAAAATTGAA	AGCATGTTAA	3960
	ATGATATTAA	TACAAAATTC	GACAGTATTA	AATCTAAATT	AGAAAGCTTA	TTTAAAGATG	4020
	ACAATGGTGG	CGCTAATTAA	TTATTACACC	TGCTTTGATG	ATAAACATTA	ATTCCCTATA	4080
50	CTTTATCTGT	ATCACTACGT	TATTCGTGAT	GATGCATTAA	GAGTATAGGG	ATTTTTTATA	4140
	TAAACTTGTA	TTCTAACTAC	ATACAAATAC	ACACAAAACG	TATATAATTT	ATATAATTAT	4200

	TTATTGCTAA	TTACGTTAGG	CGTCATGACC	GCTTTTGGCC	CACTAACTAT	AGATATGTAC	432
	GTACCATCAT	TACCTAAAGT	GCAAGGTGAT	TTTGGTTCTA	CTACATCAGA	AATTCAATTA	4380
5	ACATTATCAT	TCACAATGAT	TGGTCTTGCA	CTAGGCCAAT	TTATCTTTGG	ACCTTTATCC	444
	GATGCTTTTG	GTCGCAAACG	GATTGCTGTA	TCCATTTTGA	TCATTTTCAT	TTTGGTATCA	4500
	GGTTTGTCTA	TGTTTGTTGA	TCAATTGCCA	TTATTCTTAA	CTTTACGATT	TATTCAAGGT	4560
10	TTAACTGGTG	GTGGCGTCAT	CGTGATTGCA	AAAGCCTCTG	CTGGTGATAA	ATTTAGTGGC	4620
	AACGCACTCG	CTAAATTTTT	AGCATCTTTA	ATGGTAGTTA	ATGGCATCAT	CACTATTCTT	4680
15	GCACCATTAG	CCGGTGGATT	AGCTTTATCC	GTAGCAACAT	GGCGTTCTAT	TTTCACAATT	4740
	TTAACTATTG	TGGCACTCAT	CATTTTAATT	GGCGTCGCTT	CTCAATTACC	TAAAACATCT	4800
	AAAGATGAAT	TAAAGCAGGT	GAATTTTAGT	AGCGTCATTA	AAGATTTTGG	AAGTCTTTTG	4860
20	AAAAAACCAG	CATTTATTAT	TCCAATGCTA	TTACAAGGwT	TAACTTATGT	AATGCTATTT	4920
	AGTTATTCAT	CTGCATCGCC	ATTTATTACT	CAAAAATTGT	ATAATATGAC	ACCCCAACAA	4980
	TTTAGTATCA	TGTTTGCTGT	TAACGGTGTA	GGTTTAATCA	TTGTCAGTCA	AGTCGTTGCT	5040
25	TTATTAGTAG	AAAAATTACA	TCGCCACATA	TTATTAATCA	TTTTAACTAT	TATACAAGTG	5100
	GTAGGTGTTG	CTTTAATTAT	CCTGACACTT	ACATTCCATT	TACCACTTTG	GGTCTTACTC	5160
	ATCGCATTCT	TCTTAAATGT	GTGTCCTGTG	ACGTCAATTG	GACCGCTTGG	TTTCACAATG	5220
30	GCTATGGAAG	AACGAACAGG	TGGCAGTGGT	AACGCATCAA	GTTTACTTGG	CTTATTCCAA	5280
	TTTATCTTAG	GTGGCGCTGT	TGCACCATTA	GTTGGCTTAA	AAGGCGAATT	TAATACATCA	5340
35	CCATATATGA	TTATTATCTT	CATTACAGCC	ATTCTATTAG	TCAGTCTACA	AATCATTTAC	5400
35	TTTAAAATGA	TTAAAAAGCA	ACATGTCGCA	TAACACTTCA	ACATAATTAG	AACCCTAGCA	5460
	AAGA TATCTA	TCTTTGTCAG	GGTTCTTCTT	TATGAATTAT	GAGATCGAAT	CTTCAACTAA	5520
40	AATTACGCCT	TCATAGCAAG	GACATTTCTA	TTCAATCACC	CTTTAACAGG	CATCCAAATT	5580
	TCTGTAATAT	ATTTTTCACT	TGTAGTATCA	CCAT			5614

593

(2) INFORMATION FOR SEQ ID NO: 100:

45

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9179 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:

	AAAGACAATG	ATATGAAGTA	TATGGATATC	ACAGAAAAA	G TGCCAATGTC	GGAATCTGAA	120
	GTTAACCAAT	TGCTAAAAGG	TAAGGGGATT	TTAGAAAATO	GAGGGAAAGT	TTTTCTAGAA	180
5	GCTCAAGAAA	AATATGAGGT	TAATGTCATT	TATCTTGTTA	GCCATGCATT	AGTAGAAACA	240
	GGTAACGGCA	AATCAGAATT	AGCAAAAGGC	ATTAAAGATG	GGAAAAAACG	CTATTACAAC	300
10	TTTTTTGGTA	TAGGAGCATT	CGATAGTAGT	GCTGTTCGTA	GTGGGAAAAG	TTATGCTGAA	360
10	AAGGAACAAT	GGACATCACC	AGATAAGGCG	ATTATTGGTG	GTGCAAAGTT	CATTCGTAAT	420
	GAATATTTTG	AAAACAATCA	ACTGAATTTA	TATCAAATGO	GATGGAATCC	AGAAAATCCT	480
15	GCGCAACATC	AATATGCGAG	TGACATTCGC	TGGGCAGATA	AAATTGCCAA	ATTAATGGAT	540
	AAATCCTATA	AGCAGTTTGG	TATAAAGAAA	GATGATATTA	GACAAACATA	TTATAAATAA	600
	GACATCGGTG	CTTAAAGGAG	CTGGAACAAT	TTATTGTTTC	GAGCTCCTTT	AGCGCATTCT	660
20	GAGTGTGTTA	GTTAAATGGA	TTTTAACCTA	ACAAAAAACG	CTATATAGCA	TCAAATATGC	720
	TATATCCCAC	ATCATTGTTA	CAAATGTACA	TGATGTAAAT	GAATATTGCT	GTCTAAATGT	780
	GCATGTAATA	TACAATGGTG	CAGATAATAC	ACTTAAGTCC	TTAAAAATGA	AACGTTAgTT	840
25	CCAAGAGTCA	TTTTTAAACA	ATAGTGCATG	TGATAAAATA	GAAAAGAATG	AAAAATATAG	900
	AGGTGACAAT	ATGAAGATAG	CAATTATAGG	TGCAGGCATC	GGTGGATTAA	CAGCTGCTGC	960
	ATTATTACAA	GAACAAGGTC	ATACTATTAA	AGTCTTTGAA	AAAAATGAGT	CAGTTAAAGA	1020
30	AATTGGCGCT	GGGATTGGTA	TCGGAGATAA	TGTGCTTAAA	AAACTAGGTA	ATCATGACTT	1080
	AGCTAAAGGT	ATTAAAAATG	CTGGGCAAAT	CTTATCTACA	ATGACAGTGT	TAGATGACAA	1140
35	AGATCGCCTG	TTAACTACTG	TTAAATTAAA	AAGTAATACA	TTGAATGTGA	CGTTACCACG	1200
	CCAAACATTA	ATTGACATTA	TTAAATCTTA	TGTAAAAGAT	GACGCAATAT	TTACAAATCA	1260
	TGAAGTCACG	CATATAGATA	ATGAGACAGA	TAAAGTTACC	ATACATTTCG	CGGAACAAGA	1320
40	AAGTGAAGCA	TTTGATTTAT	GTATTGGTGC	TGATGGAATT	CATTCTAAAG	TGAGACAATC	1380
	TGTAAATGCT	GACAGTAAAG	TATTATATCA	AGGGTATACA	TGCTTTAGAG	GTTTAATTGA	1440
	TGATATTGAT	TTAAAGCATC	CGGaTTGTGC	AAAAGAATAC	TGGGGaAGAA	AAGGaAGAGT	1500
45	AGGTATTGTT	CCGTTATTAA	ATAATCAAGC	ATATTGGTTC	ATTACAATTA	ACTCGAAGGA	1560
	AAACAATCAT	AAATATAGTT	CGTTTGGTAA	ACCTCATTTG	CAAGCATACT	TTAATCACTA	1620
	TCCAAATGAA	GTTAGAGAGA	TCTTAGACAA	ACAAAGTGAA	ACAGGTATCT	TATTGCATAA	1680
50	TATTTATGAT	TTGAAACCAC	TCAAATCTTT	TGTTTATGGT	CGTACTATTT	TACTAGGAGA	1740
	TGCAGCACAT	GCGACAACGC	CTAATATGGG	GCAAGGTGCT	GGACAAGCAA	TGGAAGATGC	1900

	TAAAATACGT	GTCAAACATA	CTGCAAAAGT	AATTAAGCGT	TCTAGAAAAA	TCGGTAAAAT	1920
_	TGCCCAATAT	CGTAGTCGTT	TATTTGTTGC	AGTTAGAAAT	CGTATTATGA	AAATGATGCC	1980
5	AAATGCATTA	GCAGCTGGAC	AAACTAAATT	СТТАТАТААА	TCGAAAGAAA	AATAATACAA	2040
	CAATATGAAA	ACCCCCGTAT	GTTGAAACGA	GAGCTCAACA	TATGGGGGTT	CTTGTTTTTA	2100
10	TAATGTTATT	ATAATAAATT	CAATTATTAG	TTAACGACAA	ATTGTGGTTT	CTCACCTTGA	2160
	ACGGCACTAA	TTGCAGCATT	AGCAACAATT	TTAGACATCA	TGTCACGTGC	TTCAAATGTA	2220
	GCATTACCAA	TATGCGGTGT	TAATACTACA	TTATTAAGTG	ATTTTAAGTC	ATCGGTAATA	2280
15	TCTGGTTCAA	ATTCATATAC	ATCAAGTGCA	GCACCTTCAA	TTTCATTATC	TTTCAATGCT	2340
	TGCACTAGTG	CTTGTTCGTG	CACGATTGGA	CCACGAGAGG	CATTGATTAA	ATACGCCGTA	2400
	GATTTCATCA	TTTTAAATTG	TTCTGTATCA	ATTAAATGAT	GCATTTTAGG	ATTATAAGCA	2460
20	GCGTTGATAG	TGATAAAATC	TGCATTCTTT	AATAGTGTAT	CTAAATCTAC	ATATTTTGCA	2520
	CCGATTTCTC	GTTCTTTTTC	TTCTTTGCGA	TTAGGTCCAG	TGTATAGCAC	ATCCATGTCA	2580
	AATGCTCTTG	CACGACGAGC	TACTGCACTA	CCAATTTCAC	CTAAACCGAT	AATGCCGATT	2640
25	GTTTTCCCAG	ATACTTCTCT	ACCTCTGAAA	AATAAAGGTG	CCCATCCATC	AAATCCAGTT	2700
	GTACGTGATA	ATTGGTCCCC	TTCAACAATA	CGACGCGCTA	CTGCAAGTAC	TAATCCAATT	2760
30	GTTAAATCAG	CAGTCGCGTT	TGTTGATGCT	TTAGGTGTGT	TTGTAACATC	TATACTTTTT	2820
	TCTCGGGCAT	ACTCGATATC	AATATTATTA	AAACCAGCGC	CATAGTTGGC	AATGATTTTT	2880
	AAGTCTTTAC	CAGCATCGAT	AACATCTTTA	TCAACGTTTG	TAGATAATAA	ACTAATTAAG	2940
35	GCAGTCGCGT	TTTTAACACC	TTTAATTAAA	GTGTCTTTAT	CGACTAATCC	TTTACCTTCA	3000
	TACATTTCAA	CTTCAAAATG	TTCTTGTAAA	AGTTTTAAAC	CTACTTCTGG	TATEGCACCA	3060
	gCAACATAAm	CTTTTtCCAT	AAAAGAtCAC	TCCTTTTATC	TTAGTATAGT	AGAAGATTAG	3120
40	ACAGTATACA	ACTATGTCAT	GATGTCTTGT	GTATCAATGA	TGTAAGCGCG	TACTTTTGAT	3180
	GGAGGCGATA	TAACTTAGGC	ACTGTAGAAC	TATGAATATT	GTAATGTGGA	AAAACTGGAT	3240
	CAATTAAATT	AGATAACGTA	GTTTTAAAGT	TAATAGTATT	AGAAAAATT	AATATTTTGA	3300
45	ATATGGGAGG	AAATATAAAT	AAGTAGGTGG	CAACGAAAAA	TAGCAAAAAA	AGAGCTTCTC	3360
	CTATAAAGGA	AAGCTCAAAG	TTTTTTGATG	ACATATGTAC	TAGAATTAAG	TTTCAAGACA	3420
50	ATATGTATCA	TCGTGTTTAT	ATTAAATATG	GATGTAGTTG	TAGTTACCTG	CTTCACTTGC	3480
50	AGAAATAGTT	CTAGAACTTA	CTGAGAAAGG	TCCGCCACTA	TAATTCATTT	CTGAAATTGT	3540
	AACTGAACCA	TCACTGTTTA	CACTTTCTAC	ATATGCAACG	TGACCAAATG	GTCCTTCAGA	3600

	AGCAGCAGCC	CAATTATTAG	CATTTCCCCA	AGTAGAACCG	ATTTCTCCGC	CAACTTTATC	3720
	ATATACATAC	CAAGTACATT	GTCCTGCAGT	GTATAAGTTA	CCAGAATGTG	AAATTGATGA	3780
5	TGTAGTTGTC	GTAGTTGTCG	TAGTCGTTGT	AGTTTGAGTC	GTGTTGTAGT	TATAGTTGTT	3840
	GTAATTTGTA	TAATTTTCAG	CAGCATCTGC	ATGATGTGCT	TGACCTACTA	ATGCTGTGCC	3900
10	GATTCCTGCT	GTTAACGTAG	TTGCTGTTAC	TAATTTTTC	ATGAATAAAG	TCCTCCAAAG	3960
10	TTCTATATCT	TTTTTTTAA	ATAAAACGTA	GCGACTGTTT	TATTCTCACA	TCTCGAATTG	4020
	ATGACAATAG	TTACTTTAAC	AAAATtAATG	cttcttgtgg	GGAATGTTAT	TGATTTGTAA	4080
15	AAGAATAAAA	AAACTTTGAC	TAATTTTGTA	ATAAAAATTA	GTCAAAGTTA	CAATGAGATT	4140
	AACAGATAAT	TAATAGGAAA	TATTTATTTG	TAATATGTTT	AAATAAATCG	AATTGTTAAA	4200
	GGTATTATAT	ATTCTTGGCC	ATTATAATAT	TTGACACACG	CAATAATTGT	GAATACAAAA	4260
20	GATAATATTG	AGAAAGCGAA	TATGGATAAA	ATACCGATAA	ACGTAATGAT	GAAACCTATA	4320
	ATAATAATGA	AATCAATATC	TGTAGCAATT	AGGAAAACGC	CTATTAAAGT	GATAACGACT	4380
	AAAACGATAG	ACCAAATAAT	ATAAGAAATC	GTATAGTTAA	GATAATTTTT	TCCAGCACGA	4440
25	TCAACTAGTT	TCGATTCATC	TTTTTTCAAT	AACCATATTA	TCAGTGGACC	AATAATAGAT	4500
	GTGAATAAAC	TTAATAAATA	GATAAGCATC	GCCATAATGT	TCTCATCATT	GGATTTGCGA	4560
30	TTCGGTTGAT	GATTTGTTAC	GTCGTTCATT	TCAGTTGTCA	TATTAGACAC	TCCTTTGAAA	4620
50	ATTGTAATAT	TATCTTTAAC	TATAACAAAA	TATAATCAAA	AATAAACATG	TTTATTAAAC	4680
	AAATTATTAA	AATAAAAATA	ATTGGTGGAC	GTCGGCGTTT	AAATAGGTTA	ATTTAAGGTT	4740
35	ATATATACTT	AACATTTATA	ATGATGCGTA	ATGAATTCGC	ATCATTTTTA	TATTGTCTTA	4800
	CGTATAATTT	GTITTTAATT	TTAACCAAAG	ATAGAAAGAG	GGTTGTTTAT	GAAAATAGCA	4860
	ATTGTAGGAT	CAGGAAATGG	CGCAGTTACG	GCAGCAGTAG	ATATGGTGAG	CAAAGGCCAC	4920
40	GATGTTAAAT	TATATTGTCG	TAATCAATCT	ATAAGTAAGT	TTCAAAACGC	AATCGAAAAG	4980
	GGCGGATTTG	ATTTTAATAA	TGAAGGTGAT	GAACGTTTCG	TAAAATTCAC	TGATATTAGT	5040
	GATGATATGG	AATATGTTTT	AAAAGATGCT	GAAATTGTTC	AAGTGATTAT	TCCATCTTCA	5100
<i>45</i>	TACATAGAGT	ATTATGCTGA	TGTAATGGCA	GAGCATGTAA	CTGATAATCA	GTTGATATTC	5160
	TTCAACATGG	CTGCAGCAAT	GGGGTCAATT	CGTTTTATGA	ATGTTTTAGA	AGATAGACAT	5220
5 <i>0</i>	ATTGAAACAA	AACCACAACT	AGCGGAAgcT	AATACGTTGA	CGTATGGTAC	GCGTGTCGAT	5280
	TTTGAAAATG	CAGCAGTTGA	ТТТАТСТСТА	AATGTACGTC	GTATCTTCTT	TTCAACATAT	5340
	GATAGAAGCT	GTCTAAATGA	TTGTTATGAC	AAAGTTTCAA	GTATTTATGA	TCATTTAGTA	5400

	CCAACATTAT	TGAATGTCGG	TCGCATTGAT	TATGCTGGCG	AGTTCGCTTT	ATATAAAGAA	5520
	GGAATTACTA	AACATACAGT	TAGATTACTT	CATGCAATCG	AATTAGAACG	TTTGAATTTA	5580
5	GGCCGTAGAT	TAGGTTTTGA	ATTATCAACA	GCTAAAGAAT	CACGTATTGA	ACGTGGTTAT	5640
	TTAGAACGTG	ATAAAGAAGA	TGAACCATTA	AATCGTTTGT	TTAATACAAG	CCCAGTATTT	5700
10	TCACAAATTC	CAGGACCAAA	TCATGTAGAA	AGCAGATATT	TAACTGAAGA	TATTGCATAT	5760
,,,	GGTTTAGTAC	TATGGTCAAG	CTTAGGTCGT	GTTATTGATG	TACCGACACC	AAATATAGAT	5820
	GCAGTAATTG	TAATTGCATC	AACCATTTTA	GAGAGAGACT	TCTTTGAGGA	AGGCTTAACA	5880
15	GTTGAAGAAA	TTGGTTTAGA	TAAGCTTGAT	TTAGAAAAAT	ATTTAAAATA	AATGATGGCT	5940
	TGAAGATAGA	AAAGGATATA	GCATTATGCA	AAAGCAATAA	ATTGAAGAAA	AGAGGTTTCT	6000
	CATCAATAAG	CGnAGGGGAC	GATAGATGAT	GAAAAGAAAA	CCCACCTTTT	TAGAATCAAT	6060
20	TTCGACAATG	ATTGTAATGG	TTATTGTTGT	TGTAACAGGC	TTTGTGTTTT	TTGATATTCC	6120
	AATTCAAGTA	TTATTAATTA	TTGCCTCAGC	ATATGCCACA	TGGATTGCAA	AACGTGTAGG	6180
	CTTAACATGG	CAAGATTTAG	AAAAAGGCAT	TGCAGAACGT	TTAAATACTG	CAATGCCTGC	6240
25	AATTTTAATT	ATACTAGCGG	TAGGAATTAT	AGTAGGCAGT	TGGATGTTTT	CTGGCACAGT	6300
	GCCAGCCTTG	ATTTATTATG	GCTTAGATTT	ATTGAATCCA	AGCTATTTTT	TAATATCAGC	6360
	CTTTTTTATA	AGTGCTGTTA	CATCTGTAGC	AACTGGTACA	GCATGGGGCT	CTGCATCAAC	6420
30	TGCAGGGATT	GCACTTATTT	CTATTGGTAA	TCAATTGGGG	ATTCCTCCAG	GGATGGCAGC	6480
	GGGTGCTATT	ATAGCAGGGG	CTGTGTTTGG	CGATAAAATG	TCACCATTAT	CAGATACAAC	6540
35	TAATTTAGCG	GCGCTTGTTA	CTAAAGTTAA	TATATTTAAA	CATATACATT	CGATGATGTG	6600
	GACGACGATA	CCTGCATCAA	TCATAGGTTT	ATTAGTATGG	TTTATTGCTG	GATTTCAATT	6660
	TAAAGGGCAT	TCAAATGATA	AACAGATTCA	AACTTTGTTA	TCAGAGCTTG	CACAGATTTA	6720
40	TCAAATTAAC	ATATGGGTCT	GGGTTCCCTT	AATTGTGATC	ATTGTTTGTT	TGCTATTTAA	6780
	AATGGCTACA	GTGCCAGCTA	TGCTAATATC	AAGCTTTTCT	GCCATTATAG	TGGGGACTTT	6840
	TAATCATCAT	TTCAAAATGA	CAGATGGTTT	CAAAGCAACA	TTTAGTGGTT	TTAACGAATC	6900
45	AATGATACAT	CAGTCTCATA	TTTCATCCAG	TGTGAAAAGC	TTGTTAGAAC	AGGGTGGTAT	6960
	GATGAGTATG	ACCCAAATAT	TAGTAACGAT	ATTTTGCGGA	TATGCATTTG	CAGGTATTGT	7020
	AGAAAAAGCA	GGATGTTTAG	AAGTCTTATT	AACTACTATT	TCTAAAGGCA	TCCATTCTGT	7080
50	AGGAAGTTTA	ATATGTATTA	CTGTTATTTG	TTGTATTGCG	CTTGTATTCG	CTGCAGGTGT	7140
	TGCTTCGATT	GTAATTATTA	TGGTCGGTGT	GTTAATGAAA	GATTTGTTCG	AAAATACCA	7200

	AATACCATGG	GGAACATCAG	GTATTTACTA	TACGAATCAA	CTTCATGTCT	CTGTTGAAGA	7320
	ATTTTTCATA	TGGACAGTAC	CATGTTATTT	ATGCGCAATI	ATAGCAATTA	TCTATGGTTT	7380
5	TACAGGGATA	GGTATTAAAA	AGTCATCGAA	TTCACGTTTA	ACTTAATGTG	AGCGTGGAAT	7440
	ATATATAATA	TGTTGAAACA	CTTTAATCAT	TTATAATTGT	AGCGGTTATA	ATTTGAAAAG	7500
10	GTTTTAACTT	AGAATAAATA	TCCTCTATGC	ATATACTGAA	TATGTTTTGT	AGCGGAACAT	7560
10	GTTGATATAT	GTAATGTAAG	TTTTATGTCA	TGATTTGTAA	TGACTAAATT	AATTGAGAAT	7620
	TTGAAGGCAA	GTATATTTGT	AAGTACTTTA	ACTAAAAATT	TATCAATGTA	TAGCCGATTT	7680
15	GACATGCCTA	AATTTGGGTG	TGTCAATGGC	TGTATGTTGT	TTATTCTTTA	TTACAGAGTG	7740
	AATCGGATTG	GTGAAAATCG	AAATTTTGAG	ATTTTTACCA	ATTCGATTTT	TTTCATAGAA	7800
	ATTAAAAAAG	CCAACAAGGC	TCTTGAAACC	TTGTTGGCGT	AAACATAGCC	ATCACTAATT	7860
20	AGTGAATGAA	GTTATAACCA	GCAGCTTGGC	TAGCTGAGAT	TGTACGTGAA	GTTACAACAC	7920
	CTGGGCCATA	ACCATAGTTC	ATTTCTGAAA	CTCTTACTGA	ACCATTGCTG	TTAACACTTT	7980
	CAACGTATGC	AACGTGACCG	TATGCACCTT	GAGTTGTTTG	CATAATTGCA	CCAGCTTTTG	8040
25	GTGTATTGTT	CACTGTGTAA	CCAGCTCTTG	CAGCTGCGTT	AGCCCAGTTA	CTTGCATTGC	8100
	CCCAAGTTGA	ACCGATTTTA	CCACCTACAC	GATCAAATAC	GTAGTATGTA	CATTGACCAG	8160
••	AAGTGTATAA	GTTACGTCCT	GAAGTATAAC	CACTTGAGAT	TGAACGGCCA	TTTGATGATG	8220
30	GAGCCATAGT	TGTAGTTACT	TGAACATTGT	TGCTTGAAGT	GCTGTAGCTT	GCACCTAAAC	8280
	CACCAGTACG	GTAGCTGTTT	GTGTTGTAAC	TATTATAGTT	ATTGTAGTTA	TATGATTGAT	8340
35	TATTATTTGA	GTAGTTGTTG	TAACGGCTGT	AGTTATTGTA	GCTATAACCG	TTGTTGTAAT	8400
	TGTTATAGTT	ATTGTAACCA	TTGTAGTAGT	AATAGCTGTA	GTAGCCATTA	TCTTGGTTTA	8460
	ATTGACTTGG	ATGCCAGTTA	CCTTTCCATG	TGTAATGGTA	GTTACCTTGT	GCATCAATAG	8520
40	TGTAAGTATA	GCTATATGAT	GTTGGGTCGT	TTGGATTATA	ACCGTAGTTA	TCTTGCTCAG	8580
	AAGCATGAGC	TTGATTTCCT	GATGCAATTG	CGATTGTAGC	GAATCCTGCA	GTTGCGATAG	8640
	TAGCTGTAGC	GATTTTCTTC	ATTTTAAAAA	TATCCTCCTA	AAAATTTTAA	ATCTAAAATA	8700
15	TTTTCGTAAT	GTCCGTGTGA	CAAAATTAAT	GTTATAAGTT	ATCTCTCGTA	ATTAAACGAC	8760
	AAGAAAGACT	ATAACAGAAA	TTAGCGTCCT	TGTGTGCTTT	GTTAACGTTT	TGTAATTTTT	8820
	TGCTAATATC	TTGACACAAT	AGAATTTTAA	aagtatagaa	ATTTGCATTT	TGCAAAACTT	8880
50	ATAACTACGG	CATTCTTTGT	GAAAACTGAA	TGTTTCGAAA	ATAAGTCTGT	TACAAATTTG	8940
	TAATATTACT	GAAAATTCTA	AATGTATATT	יייכייכר מייממ	ተ ልተልርረልር ተተ	ጥጥአ አጥር አር አ አ	0000

	GGATGAAAAT GTATATTTAA TGGATAAAAT ATCCTAATTT AGCATAAAAA AATGTTTTAA	9120
	TAAAAGTATT ATTTGATATA ATCGATTTAT GTTTTGTTAC TGCTAAAAAA CATGTGGCG	9179
.5	(2) INFORMATION FOR SEQ ID NO: 101:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1868 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
	CCTTCAGCCA TTTGACTTCG ACATGAGTTG CCTGTACATA TAAAATAAAT TGTTTTTTTTA	60
	GTCATAACAA TCTCCTAATT AATTAAAATA TGATAAGTGT TAGATACAAC CCTATGAGGG	120
20	TTATAAATAG TACTGGAATT GTAATGATGA TACCAGTTTT AAAGTATGTG CCCCAAGAAA	180
	TCTTAACATC TTTTTGLGTT AAGACGTGTA ACCACAGTAA TGTAGCTAAA GAGCCTATCG	240
	GTGTAATTTT TGGACCTAAA TCAGAACCGA TAACATTCGC ATAAATTAGG CCTTCTTTTA	300
25	ACATGCCATG GACATTTGAT TGACCAATAG CAATCGCATC TATTAAAACT GTAGGCATAT	360
	TATTCATTAT TGATGATAAA AACGCTGAAA TGAAGCCCAT TCCCAAAATA GTGCTAAATA	420
	GACCGTAATT GGAAATATAT TCTAATATTT TAGCCAATAT TAAAGTAATG CCAGCATTTC	480
30	TTAAGCCGAA TACGACGATA TACATACCAA TTGAAAATAA TACTATATTC CAAGGTGCGC	540
	CCTTAATGAC TTGCTTAATA TTTACAGCAT TTGATTTACG AGCCAACATT AGAAAAATAA	600
25	AAGCAATGAT TCCAGTGAAA ATTGATACCG GAATTTTAGT AAATTTACTG ATTAGATAGC	660
35	CGAAAAGTAA TATAACTAGA ACAATCCATG AAATTTTAAA TAGCTTTAAA TCATTAATGG	720
	CATCTTTAGG ATGCTTTATA TTATTATCAT CAAACGTTTT AGGTATCGCT TTTCTAAAAT	780
40	ATAACCACAA TACTATAATA CTTGCTAAAA GCGAGAATAA ATTAGGTATA ATCATTCTAC	840
	TAAAATATCG AACGAATCCT ACATGAAAAT AATCAGCAGA TATAATATTC ACTAGATTGC	900
	TCACGATTAA AGGTAAAGAA GTTGTGTCAG CTATAAAACC ACTCGCAATA ATHAAAGGGA	960
45	ATATGGCCCG CTTACTAAAA CCTATATTTT TAACCATCGC TAATACAATA GGCGTTAAGA	1020
	TTAACGTGCG CCATCATTTG CGAAAAATGC AGCAACAATG GCACCCAATA ATATGATATA	1080
	AACGAACATT TTTAAACCAT TGCCTTTTGA AGCATGAAGC ATGTGAATAG CTGACCATTC	1140
50	GAATAATCCA ACTTTATCTA ATATTAATGA AATAAGAATG ACTGAGACAA AAGTCAAAGT	1200

55

AGCATTCCAA ACAATACCTG TTACTTCGAA AACATCGGAA AAACTTACAA CACCAGTAAT 1260

	TAATACAAAT	AATAAAGTTA	CTAGAAAAAT	GAGTGTCGCT	AAAGTTGTCA	TCATTAGCAT	1380
	TCACCAGTCT	TAAGGTTATG	ACAAATACAT	CGTTGGTTAG	AGGTATGAAC	CTTAGACAAG	1440
5	TTATTAATTA	CGGACTCAAA	AATATTATGA	TTgAGCTGGT	ATAAATGTTT	ATTTCCGATT	1500
	TTTCGTGTCG	TAACTAAGTT	GGTTTTTACT	AATGCTTTCA	TATGYTAGCT	AAGTGTAGGT	1560
10	TGAGAGAATT	GAAAATGTGC	TAACAAATCA	CAAGCGCATA	ACTCTCCACA	AGAAAGTAAA	1620
10	TCTAGTATTT	CTAATCTGCT	TGAATCTGAT	AAAACTTTTA	AAAATGTTGC	TAGTTCTTTA	1680
	TACGTCATAA	CATACCTCCT	AGACGTTAAA	TAGATTATCA	TCTATATAGA	TGAATGTCTA	1740
15	TGTTCCTTTG	GTATATTACA	CGATATGACT	ATGTAATTTA	AATTTGGTTT	TAGTATTAAA	1800
	AGGGTATTAA	AGATAAATTA	TAGATATTGA	TTTTGCAAAA	TATACTCTTT	GTTCTGCATT	1860
	GAAAAAGG						1868
20	(2) INFORMA	ATION FOR SE	Q ID NO: 10	02:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 15249 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:

ATT	TATGAAA	TCCATAGCNA	TAAACATTAT	TCTTGCATCG	GCTATACAAA	CAGTTACCGC	60
AAG	CAAATTT	GTATATCAAC	CTGGAATTGT	GTTCACGTCA	ATGGCaAATG	CCGATGATGT	120
GTT	ATCAGGC	GATAGTTATT	TTATGGCTGA	ATTAAAATCT	ATTAAGCGTA	TTGTTGAAAT	180
TCC	AGATAAT	CAAAAAATAT	ACTGCTTTAT	AGATGAAATT	TTTAAAGGTA	CCAACACAAC	240
TGA	AÇGAATT	GCCGCTTCAG	AATCAGTACT	ATCATTTTTA	CATGAAAAAT	CTAACTTTAG	300
AGT	TATTGCA	GCAACACATG	ATATTGAGTT	AGCTGAACTC	TTAAAACAAC	GTTATGAAAA	360
TTA	CCATTTC	aatgaggtaa	TAGAAAATAA	TAACATACAT	TTTGATTACA	AAATTAAGCC	420
TGG	CAAAGCA	AATACACGTA	ATGCCATCGA	ATTATTAAAA	ATCACTTCAT	TTCCAGCAAA	480
AAT	ATATGAA	CGAGCAAAAG	ATAATGTCCC	GAAAATTTAG	CATTTAACTT	TAAACATAAA	540
AAC	GTCAGCT	ATCACATGAC	AGAAGACTAT	GAACAGTTTC	AATAATGTTC	ATAGTAATCA	600
TGT	TAATAAC	TGACGTTTAT	TTTATTCTGC	AGAATACTCT	TCTAAATCTA	TATTGCTGTG	660
ccc	TAATT	GCTAAATCAG	CAAATCGACC	TTGCTGATAC	AAATAGTGGC	CGGCAACGCC	720
TATO	CATTGCA	GCATTATCTG	TGCATAATTT	AGGACTTGGG	ATAGTTAATT	GAATGTCATT	780

55

25

30

35

40

45

	AACAATTAAT	CGCTGAACAC	CATATTCTTT	ACAAGCTTGA	ATAGCTTTAA	ACGTGAGCAC	900
	CTCTACAACA	CTGTTTTGAA	AGCTCGTTGC	TACGTTAGCT	TCAATGATTG	GaATATTTTT	960
5	TTGTCGTTGA	TTGTGAAGTT	GATTGATTAC	GGCACTTTTC	AACCCACTAA	AACTAAAATC	1020
	ATAACTATCT	TTATCCAACC	AAACACGAGG	GAATGAATAA	GTATCTTCAC	CTTCAGCAGC	1080
10	CAACCGATCA	ACTTGTGGAC	CACCTGGATA	ATTTAAACCA	ATTGTTCGTG	CCACTTTATC	1140
,,	ATAAGCCTCA	CCTACTGCGT	CATCTCGTGT	TTCACCAATG	ACTTCAAATG	ATAAATGATC	1200
	CTTCATATAA	ACTAATTCAG	TATGTCCACC	TGAAACAATA	AGTGCAATTA	GCGGGAATGT	1260
15	TAATGGCTCT	TCTATGTGAT	TAGCATATAT	ATGTCCTGCA	ATATGATGAA	CAGGAATAAG	1320
	TGGCTnATCG	TAAGCAAATG	CCAATGCTTT	GGCTGCATTA	ACACCTATTA	GTAACGCACC	1380
	AATTAGTCCA	GGGCCTTCTG	TAACCGCTAT	GGCATCAATA	TCTTCTATTG	ATACATCGGC	1440
20	ATCCCCTAGA	GCCTCGTTTA	TTGTTGCTGT	TATACCTTCA	ACGTGATGTC	TACTTGCCAC	1500
	TTCGGGAACG	ACACCGCCAA	ATCGTTTATG	ACTTTCAATC	TGACTTAAAA	CTGTATTTGA	1560
	TAAAATATCT	CTGCCATTTT	TTATAACACT	AACGCTTGTT	TCATCACAAC	TTGTTTCAAC	1620
25	AGCTAGTATT	AATATATCTT	TAGTCATTTA	AATTCACCCA	CATAACCATT	GCGTCCTCAC	1680
	CTTCACCATA	ATAATTTTTA	CGTTTACCAC	CATATTGAAA	TCCTAAATTT	TCATATACAT	1740
30	GTTGTGCCAC	TTTATTATTA	ACTCTTACTT	CTAAACTCAT	CACATCACAA	GTGTGACTTG	1800
30	CATAGTTTAT	TCCGTATTTT	AAAAGCATTT	GACCTAAACC	ATAGCCTCTA	TAATTATCAT	1860
	CGATTGCAAC	TGTTGTAATT	TGAGCTTGAT	CGATAACAAT	CCATAAACCT	AAATAACCAA	1920
35	TAATTTGTTG	TTCAAATTCt	AAGACAAAAT	ATTTCGCAAA	GTTATTTTGC	TCTATTTCAT	1980
	GATAAAATGC	GTCAATTGTC	CAAGAACTGT	CATTGAAACT	CCGACGCTCA	AGATCAAAGA	2040
	CTTGTGGCAC	ATCTTCTTTA	GTCATCTCTC	TAATGTTTAA	TTGTTCTTTT	GACTGTTGAT	2100
40	CCAATTTCGT	TCCGCCTCAG	CTAATTTATG	GTATTTAGGA	GTAAATGTAT	GTACGTCTGA	2160
	AGGTTTATCT	AGCAATTGAT	ACATGACTGA	TGCATTTGGT	AGCTGCGCAA	TCACTTCACC	2220
	TTGTAATTCA	TCTTGTAATT	TTACAGTATC	TTTCCCAATA	TAAATAAATG	GTTGGTTTAA	2280
45	ATCTTCTAAA	AAAGCTCGCA	ATGCCTCTAT	CGACATATAT	TGATCTTCTA	AAATAGTCAC	2340
	TAATTGACCA	TTTTGCCACT	GGAATATGCC	TGTATAAACT	GCTTGTCGTC	TTGCATCAAA	2400
	CACAGGAACC	AATAATTTAT	CAGTATGATC	GATTGTTGCT	GCCAATGCCT	TTAATGATGA	2460
50	AACACCATAT	AATTTAACAT	CTAACGCATA	CGCTAATGTT	TTAGCAACAG	TAACACCGAT	2520
	ACGTAAGCCA	GTATATGAAC	CAGGACCTTC	ACCAACAATA	み ずぐごぐみ ずぐずみ	א האיניי בייניים איניים	2580

	TTGTTTAGAA	TCCGTAGTTA	TTTCAGCTAA	AACTTCATCO	TTTTGCATCA	ATGCTACTGA	2700
	TAATGGTTGA	TTCGATGTAT	CAATGAGCAG	CGAATTCATG	GATAATTGCC	TCCTTAATTT	2760
5	GTTCATAATG	TTCTCCTTGC	GCGAACAACT	CAATTTGTCT	TGTATTTTCA	GATATTGTTG	2820
	AAATGTTAAT	AGATAAATGO	GTCGCTGGAA	GTAAATCTTT	TATAAATTGA	CTCCATTCAA	2880
10	TAACAGTAAT	TGCCTGATCT	TCGAAAAATT	CATCAAATCC	TAAATCTTCA	TCAGAATCTT	2940
	CTAAGCGATA	ACAATCCATA	TGATGCAATT	TTAAATTTT	ACCCCTATAT	GATTTAATGA	3000
	TGTTAAATGT	CGGGGAATTA	ATCGTACGTC	TTACACCAAG	AGCTTTTCCT	ATAAATTGCG	3060
15	TTAACGTTGT	TTTACCTGCT	CCTAAATCTC	CGTTAAGTAA	AATCAAATCA	CCACTTTTCA	3120
	ATTGCTCAAC	ТАААААТАТА	GCAAATTGAT	TCATTTCATC	TAAATTATTT	ATCTTTATCA	3180
	ATGTTGATTC	TCCTATATTA	TGCTTTTCAT	TCATAAAAAT	GATTATCCAT	TGTTCAATCG	3240
20	TATCTAACTT	TATATTTAAC	CTTTATATTG	TAACAAATTT	CAACTTAAAT	TTCTTATCTT	3300
	TGAAACAGAT	TATCTATTCA	AAGTTAATTG	TAAGAAAATT	TAAAATATTT	GTTGACATAC	3360
	TAAAGCAGAT	ATAGTAAATT	AAATTTATCA	AATTTTTAGA	CAATTCTAAC	TATTAAAGTG	3420
25	ATATATACCA	TTCACGGAAG	GAGTATAATA	AAATGCTTAA	TCAATATACT	GAACATCAAC	3480
	CGACAACTTC	TTATTATAAA	ATTTTATTAT	ACTCTTTAGG	ACTCGAACGT	TATAAATAT	3540
30	TTACTAAACG	CTTTAAGTCC	TATTTCTGTT	TGAATGGGAC	TTGTAAACGT	CCCAATAATA	3600
	TTGGGACGTT	TTTTTATGTT	TTATCTTTCA	ATTACTTATT	TTTATTACTA	TAAAACATGA	3660
	TTAATCATTA	AAATTTACGG	GGGAATTTAC	TATGCGAaCG	AgcATGATCA	AAAAAGGAGA	3720
35	TCACCAAGCA	CCAGCAAGAA	GTCTTTTACA	TGCCACGGGC	GCGCTAAAAA	GTCCAACTGA	3780
	TATGAACAAA	CCATTTGTAG	CTATTTGTAA	CTCTTATATT	GATATTGTTC	CTGGACATGT	3840
	TCACTTGAGA	GAGCTTGCAG	ATATAGCTAA	AGAAGCAATT	AGAGAAGCCG	GTGCCATTCC	3900
10	ATTTGAATTC	AATACAATTG	GTGTTGATGA	TGGAATAGCT	ATGGGACATA	TCGGAATGCG	3960
	ATATTCTCTA	CCATCACGTG	AAATTATTGC	AGATGCAGCT	GAAACTGTAA	TTAACGCTCA	4020
	TIGGTTTGAC	GGCGTATTTT	ACATTCCTAA	TTGTGACAAG	ATTACACCCG	GTATGATTTT	4080
15	AGCAGCCATG	AGGACAAACG	TACCAGCTAT	CTTTTGCTCT	GGTGGACCAA	TGAAAGCTGG	4140
	CTTATCTGCA	CATGGAAAAG	CATTAACACT	TTCATCAATG	TTTGAAGCAG	TCGGCGCATT	4200
50	TAAAGAAGGA	TCGATTTCTA	AAGAAGAATT	TTTAGATATG	GAACAAAATG	CCTGCCCTAC	4260
. •	TTGTGGTTCA	TGTGCTGGGA	TGTTTACTGC	AAATTCAATG	AACTGTTTGA	TGGAAGTTTT	4320
	AGGTCTAGCA	TTACCATACA	ACGGTACTGC	ACTTGCAGTC	AGTGATCAGC	GACGAGAAAT	4380

	TATCGTTACT	CGCGAAGCAA	TTGATGATGC	ATTTGCACTT	GATATGGCTA	TGGGTGGTTC	4500
	AACAAACACG	GTACTGCATA	CGTTAGCCAT	TGCCAATGAA	GCTGGTATTG	ATTATGACTT	4560
5	AGAGCGCATT	AATGCTATTG	CCAAACGCAC	GCCATATTTA	TCAAAAATAG	CACCTAGTTC	4620
	ATCGTATTCA	ATGCATGATG	TGCATGAAGC	TGGTGGCGTC	CCAGCAATTA	TTAATGAATT	4680
10	GATGAAGAAA	GATGGCACGT	TACACCCAGA	TAGAATCACA	GTTACTGGCA	AAACGTTACG	4740
70	TGAAAATAAC	GAAGGCAAAG	AAATTAAGAA	CTTTGATGTC	ATTCACCCTC	TTGATGCACC .	4800
	ATATGATGCA	CAAGGCGGTT	TATCTATCTT	ATTTGGTAAT	ATCGCCCCTA	AAGGCGCAGT	486Ö
15	TATTAAAGTT	GGCGGCGTTG	ATCCATCTAT	CAAAACATTT	ACTGGGAAAG	CAATTIGTTT	4920
	CAATTCGCAT	GATGAAGCTG	TTGAAGCAAT	AGACAATCGT	ACCGTTCGTG	CAGGCCACGT	4980
	CGTTGTCATT	AGATATGAAG	GACCTAAAGG	TGGACCAGGT	ATGCCTGAAA	TGTTAGCACC	5040
20	TACTTCCTCT	ATTGTTGGTC	GCGGCTTAGG	TAAAGATGTT	GCATTAATTA	CTGATGGGCG	5100
	TTTTTCCGGT	GCCACAAGAG	GTATTGCAGT	TGGTCATATT	TCCCCTGAAG	CTGCATCTGG	5160
	TGGACCAATT	GCCTTAATTG	AAGATGGTGA	TGAGATTACT	ATTGATTTAA	CAAATCGTAC	5220
25	ATTAAACGTA	AACCAGCCTG	AAGATGTTCT	AGCGCGTCGC	CGAGAATCTT	TAACACCATT	5280
	TAAAGCGAAA	GTAAAAACAG	GTTATCTAGC	TCGTTATACT	GCCCTAGTAA	CTAGCGCAAA	5340
20	TACAGGTGGC	GTCATGCAAG	TCCCTGAGAA	TTTAATTTAA	TTTATTTTTA	TATTGGAGAT	5400
30	GGTTAAAATG	TCTAAAACTC	AACATGAAGT	AAACCAAAAT	ATTGACCCTT	TAAAAATGGC	5460
	TGAATCACTT	GAACCTGAAC	AACTAAATGA	AAAAACTTTA	AATGATATGC	GTTCAGGATC	5520
35	AGAAGTGCTA	GTAGAAGCTC	TACTTAAAGA	AAATGTGGAT	TATTTATTCG	GTTATCCTGG	5580
	TGGTGCCGTA	CTACCTTTAT	ATGACACGTT	TTATGATGGT	AAAATCAAAC	ATATTTTAGC	5640
	AAGACACGAA	CAAGGTGCTG	TTCATGCTGC	AGAAGGTTAT	GCACGTGTAT	CTGGTAAamT	5700
40	GGCGTCGTTG	TAGTTACAAG	CGGTCCaGGT	GCAACTAATG	TAATGACAGG	TATTACGGAT	5760
	GCACATTGCG	ACTCTTTACC	TCTAGTTGTA	TTCACTGGAC	AAGTTGCTAC	ACCAGGCATT	5820
	GGTAAAGATG	CATTCCAAGA	AGCGGATATT	CTATCTATGA	CTTCACCAAT	TACAAAACAA	5880
45	AATTATCAAG	TGAAACGTGT	TGAAGATATC	CCTAAAATCG	TACACGAAGC	TTTCCATGTA	5940
	GCTAATTCTG	GACGCAAAGG	TCCTGTAGTG	ATTGATTTTC	CAAAAGATAT	GGGTGTTTTA	6000
	GCTACAAATG	TGGATTTATG	CGACGAAATC	AATATTCCAG	GTTATGAAGT	TGTTACAGAA	6060
50	CCAGAAAATA	AAGACATTGA	CACTTTCATC	TCACTTTTAA	AAGAAGCGAA	AAAGCCTGTC	6120
	CTR TTR CCCC	CCCCACCTAT	ጥአ አጥሮአ አጥሮኦ	አአአጥሮአአአጥሮ	አልመጥልመጥልል	እርእርጥጥጥርጥጥ	6180

	GATACACTAT	TTTTAGGTAT	GGGAGGAATG	CATGGTTCTT	' ATGCTAGTAA	CATGGCATTA	6300
	ACTGAGTGTG	ATTTACTCAT	TAATTTAGGT	AGCCGCTTCG	ATGATAGATT	AGCAAGCAAA	6360
5	CCTGATGCCT	TTGCACCTAA	CGCCAAAATT	GTACATGTAG	ATATTGATCC	TTCAGAAATC	6420
	AATAAAGTTA	TTCATGTAGA	TTTAGGTATT	ATTGCAGACT	GTAAAAGATT	TTTAGAATGT	6480
10	TTAAATGATA	AAAATGTTGA	GACTATAGAA	CACAGTGACT	GGGTTAAACA	TTGTCAAAAT	6540
,,	AATAAGCAGA	AACACCCATT	TAAACTTGGT	GAAGAAGATC	AAGTATTTTG	TAAGCCACAA	6600
	CAAACAATCG	AATATATCGG	CAAAATTACA	AATGGTGAAG	CAATTGTTAC	TACAGACGTG	6660
15	GGACAACATC	AAATGTGGGC	AGCTCAATTT	TATCCATTTA	AAAATCACGG	ACAATGGGTT	6720
	ACAAGCGGTG	GTTTAGGAAC	AATGGGATTC	GGTATTCCTT	CGTCAATTGG	TGCCAAATTA	6780
	GCTAATCCTG	ATAAAACAGT	CGTATGTTTC	GTCGGTGACG	GTGGTTTCCA	AATGACAAAC	6840
20	CAAGAAATGG	CACTTTTACC	CGAATATGGT	TTAGATGTCA	AAATCGTACT	AATCAATAAT	6900
	GGAACATTAG	GTATGGTTAA	ACAATGGCAA	GATAAGTTCT	TTAATCAACG	CTTCTCACAC	6960
	TCAGTATTTA	ATGGTCAACC	TGATTTTATG	AAAATGGCAG	AAGCATATGG	CGTCAAAGGT	7020
25	TTCTTAATCG	ATAAGCCAGA	ACAACTGGAA	GAACAATTAG	ATGCAGCGTT	TGCTTATCAA	7080
	GGACCAGCTT	TAATTGAGGT	TCGTATTTCC	CCTACTGAAG	CTGTAACCCC	AATGGTTCCG	7140
20	AGTGGCAAAT	CAAATCATGA	AATGGAGGGC	TTATAATGAC	AAGAATTCTT	AAATTACAAG	7200
30	TTGCGGATCA	AGTCAGCACG	CTAAATCGAA	TTACAAGTGC	TTTTGTTCGC	CTACAATATA	7260
	ATATCGATAC	ATTACATGTt	ACACATTCTG	AACAACCTGG	GATTTCTAAC	ATGGAAATTC	7320
35	AAGTCGATAT	TCAAGATGAT	ACATCACTTC	ATATATTAAT	TAAAAAATTA	AAACAACAAA	7380
	TTAATGTTTT	AACGGTTGAA	TGCTACGACC	TTGTTGATAA	CGAAGCTTAA	TTTTAAGACA	7440
	AAGGČAATGA	TGCGCTAATT	AGTTATAGAT	ATATCATAGG	CTGCTAGTTA	ACATCTGCCA	7500
40	CTATTACAAA	GTTATATTTC	AGAATTTTCG	AAACACAAAA	TATTTAATTA	TTTGGAGGAA	7560
	TTTATTATGA	CAACAGTTTA	TTATGATCAA	GATGTAAAAA	CGGACGCTTT	ACAAGGCAAA	7620
	AAAATTGCAG	TAGTAGGTTA	TGGATCACAA	GGTCACGCGC	ATGCACAAAA	CTTAAAAGAC	7680
45	AATGGATATG	ATGTAGTCAT	CGGCATTCGC	CCAGGTCGTT	CTTTTGACAA	AGCTAAAGAA	7740
	GATGGATTTG	ATGTGTTCCC	TGTTGCAGAA	GCAGTTAAGC	AAGCTGATGT	AATTATGGTG	7800
	CTATTACCTG	ATGAAATTCA	AGGTGATGTA	TACAAAAACG	AAATTGAACC	AAATTTAGAA	7860
50	AAACATAATG	CGCTTGCATT	TGCTCATGGC	TTTAACATTC	ATTTTGGTGT	TATTCAACCA	7920
	CCAGCTGATG	TTGATGTATT	TTTAGTAGCT	CCTAAAGGAC	CGGGTCATTT	AGTTAGACGT	7980

	CAAGCACGTA	ATATTGCTTT	AAGTTATGCA	AAAGGTATTO	GTGCAaCTCG	TGCAGGTGTT	8100
	ATTGAAACAA	CATTTAAAGA	AGAAACTGAG	ACAGATTTA1	TTGGTGAACA	AGCAGTACTT	8160
5	TGCGGTGGTG	TATCGAAATT	AATTCAAAGT	GGCTTTGAAA	CATTAGTAGA	AGCGGGTTAT	8220
	CAACCAGAAT	TAGCTTATTT	TGAAGTATTA	CATGAAATGA	AATTAATCGT	TGATTTGATG	8280
10	TATGAAGGCG	GTATGGAAAA	TGTACGTTAC	TCAATTTCAA	ATACTGCTGA	ATTTGGTGAC	8340
10	TATGTTTCAG	GACCACGTGT	TATCACACCA	GATGTTAAAG	AAAATATGAA	AGCTGTATTA	8400
	ACTGATATCC	AAAATGGTAA	CTTCAGTAAT	CGCTTTATCG	AAGACAATAA	AAATGGATTC	8460
15	AAAGAATTTT	ATAAATTACG	CGAAGAACAA	CATGGTCATC	AAATTGAAAA	AGTTGGTCGT	8520
	GAATTACGCG	AAATGATGCC	TTTTATTAAA	TCTAAAAGCA	TTGAAAAATA	AGATAGACCT	8580
	ACAATGAGGA	GTTGTTAAAT	ATGAGTAGTC	ATATTCAAAT	TTTTGATACG	ACACTAAGAG	8640
20	ACGGTGAACA	AACACCAGGA	GTGAATTTTA	CTTTTGATGA	ACGCTTGCGT	ATTGCATTGC	8700
	AATTAGAAAA	ATGGGGTGTA	GATGTTATTG	AAGCTGGATT	TCCTGCTTCA	AGTACAGGTA	8760
	GCTTTAAATC	TGTTCAAGCA	ATTGCACAAA	CATTAACAAC	AACGGCTGTA	TGTGGTTTAG	8820
25	CTAGATGTAA	AAAATCTGAC	ATCGATGCTG	TATATGAAGC	AACAAAAGAT	GCAGCGAAgC	8880
	CGGTcGTGCA	TGTTTTTATA	GCAACATCAC	CTATTCATCT	TGAACATAAA	CTTAAAATGT	8940
	CTCAAGAAGA	CGTTTTAGCA	TCTATTAAAG	AACATGTCAC	ATACGCGAAA	CAATTATTTG	9000
30	ACGTTGTTCA	ATTTTCACCT	GAAGATGCAA	CGCGTACTGA	ATTACCATTC	TTAGTGAAAT	9060
	GTGTACAAAC	TGCCGTTGAC	GCTGGAGCTA	CAGTTATTAA	TATTCCTGAT	ACAGTCGGCT	9120
35	ACAGTTACCA	TGATGAATAT	GCACATATTT	TCAAAACCTT	AACAGAATCT	GTAACATCTT	9180
	CAAATGAAAT	TATTTATAGT	GCTCATTGCC	ATGACGATTT	AGGAATGGCT	GTTTCAAATA	9240
	GTTTAGCTGC	AATTGAAGGC	GGTGCGAGAC	GAATTGAAGG	CACTGTAAAT	GGTATTGGTG	9300
10	AACGAGCAGG	TAATGCAGCA	CTTGAAGAAG	TCGCGCTTGC	ACTATACGTT	CGAAATGATC	9360
	ATTATGGTGC	TCAAACTGCT	CTTAATCTCG	AAGAAACTAA	AAAAACATCG	GATTTAATTT	9420
	CAAGATATGC	AGGTATTCGA	GTGCCTAGAA	ATAAAGCAAT	TGTTGGCCAA	AATGCATTTA	9480
15	GTCATGAATC	AGGTATTCAC	CAAGATGGCG	TATTAAAACA	TCGTGAAACA	TATGAAATTA	9540
	TGACACCTCA	ACTTGTTGGT	GTAAGCACGA	CTGAACTTCC	ATTAGGAAAA	TTATCTGGTA	9600
	AACACGCCTT	CTCAGAGAAG	TTAAAAGCAT	TAGGTTATGA	CATTGATAAA	GAAGCGCAAA	9660
50	TAGATTTATT	TAAACAATTC	AAGGCCATTG	CGGACAAAAA	GAAATCTGTT	TCAGATAGAG	9720
	ATATTCATGC	GATTATTCAA	GGTTCTGAGC	ATGAGCATCA	ACCA CTTTAT	እ እ አጥጥር ር እ አ አ	0700

	AAGAGGGTCA	TATTTACCAG	GATTCAAGTA	TTGGTACTGG	TTCAATCGTA	GCAATTTACA	990
	ATGCAGTTGA	TCGTATTTTC	CAGAAAGAAA	CAGAATTAAT	TGATTATCGT	ATTAATTCTG	996
5	TCACTGAAGG	TACTGATGCC	CAAGCAGAAG	TACATGTAAA	TTTATTGATT	GAAGGTAAGA	1002
	CTGTCAATGG	CTTTGGTATT	GATCATGATA	TTTTACAAGC	CTCTTGTAAA	GCATACGTAG	1008
10	AAGCACATGC	TAAATTTGCA	GCTGAAAATG	TTGAGAAGGT	AGGTAATTAA	TTATGACTTA	1014
10	TAACATTGTT	GCCCTACCTG	GTGATGGAAT	CGGTCCAGAA	ATTTTGAACG	GATCTCTATC	1020
	ATTGCTTGAA	ATTATAAGTA	ATAAATATAA	CTTTAATTAT	CAAATAGAGC	ACCACGAATT	1026
15	TGGTGGTGCC	TCTATTGATA	CATTCGGCGA	GCCTTTAACT	GAGAAAACCT	TAAATGCGTG	10320
	TAAAAGAGCA	GATGCTATTT	TACTGGGTGC	AATCGGTGGA	CCTAAATGGA	CAGATCCTAA	10380
	CAATCGACCA	GAACAAGGAT	TATTAAAATT	GCGTAAATCC	TTAAATTTAT	TTGTAAATAT	10440
20	ACGCCCCACT	ACCGTTGTCA	AAGGCGCTAG	TTCTTTATCA	CCTTTAAAGG	AAGAACGCGT	10500
	TGAAGGCACA	GATTTAGTTA	TAGTCCGTGA	ATTGACAAGT	GGTATTTATT	TTGGAGAACC	10560
	TAGACATTTT	AATAATCACG	AGGCCTTAGA	TTCTCTTACT	TATACAAGAG	AAGAAATAGA	10620
25	ACGCATTGTT	CACGTAGCAT	TTAAATTGGC	CGCTTCAAGA	CGAGGAAAAC	TAACATCAGT	10680
	TGATAAAGAA	AATGTATTAG	CTTCTAGTAA	ATTGTGGCGC	AAAGTCGTAA	ATGAAGTAAG	10740
	TCAATTATAT	CCAGAAGTAA	CAGTAAATCA	CTTATTTGTT	GATGCTTGTA	GTATGCATTT	10800
3 0	AATCACAAAT	CCAAAACAAT	TTGACGTCAT	CGTATGTGAA	AACTTATTTG	GCGATATTTT	10860
	AAGTGATGAA	GCTTCAGTGA	TTCCTGGTTC	ACTTGGTTTA	TCACCTTCTG	CTAGTTTTAG	10920
35	TAACGATGGT	CCAAGATTGT	ATGAGCCTAT	TCATGGATCA	GCACCAGATA	TTGCAGGTAA	10980
	AAACGTTGCC	AATCCATTTG	GAATGATTCT	ATCTTTAGCG	ATGTGTTTAC	GTGAAAGCTT	11040
	AAATCAACCA	GATGCTGCAG	ATGAATTAGA	ACAACATATT	TATAGCATGA	TTGAACATGG	11100
40	GCAAACGACA	GCAGATTTAG	GCGGCAAATT	GAATACTACT	GATATTTTCG	AAATTCTATC	11160
	TCAAAAATTG	AATCACTAAG	GGGGAGATGT	AAATGGGTCA	AACATTATTT	GACAAGGTGT	11220
	GGAACAGACA	TGTGTTATAC	GGGAAATTGG	GCGAACCGCA	ACTATTATAC	ATTGATTTAC	11280
45	ACCTTATACA	TGAAGTTACT	TCTCCTCAAG	CATTTGAAGG	ACTTAGGCTT	CAAAACAGAA	11340
	AATTAAGACG	CCCAGATTTA	ACATTTGCAA	CACTCGATCA	CAATGTTCCT	ACTATTGATA	11400
	TATTCAATAT	TAAAGATGAA	ATTGCAAACA	AACAAATCAC	AACATTACAA	AAAAACGCCA	11460
50	TAGATTTTGG	GGTGCATATT	TTTGATATGG	GTTCTGATGA	ACAAGGTATT	GTTCACATGG	11520
	TAGGACCTGA	GACAGGACTT	ACACAGCCTG	CCAACACAAT	പ്രവസ്താനം പ്രവ	CACTOTOLACA	11500

	ATGTTTTCGC	AACTCAAACG	CTATGGCAAA	CAAAACCCAA	AAACTTAAAA	ATCGATATTA	11700
	ATGGTACCTT	ACCAACAGGC	GTCTATGCTA	AGGACATTAT	TCTGCATTTA	ATTAAAACGT	11760
5	ATGGTGTTGA	CTTTGGTACA	GGCTATGCTT	TGGAATTTAC	TGGCGAAACA	ATTAAAAACC	11820
	TTTCAATGGA	TGGTCGAATG	ACTATTTGTA	ACATGGCTAT	CGAAGGTGGT	GCCAAATACG	11880
	GCATAATCCA	ACCTGATGAT	ATAACATTTG	AATATGTTAA	AGGGAGACCA	TTTGCCGATA	11940
10	ACTECGCTAA	ATCAGTTGAT	AAGTGGCGTG	AgCTATATTC	TGATGACGAC	GCGATATTTG	12000
	ATCGTGTAAT	TGAACTTGAT	GTTTCAACAT	TAGAACCACA	AGTGACATGG	GGAACTAATC	12060
15	CTGAAATGGG	TGTTAATTTC	AGTGAACCAT	TCCCTGAAAT	CAATGATATC	AACGATCAAC	12120
	GTGCGTATGA	TTATATGGGG	TTAGAACCAG	GTCAAAAAGC	TGAAGACATC	GACTTAGGGT	12180
	ATGTTTTTCT	CGGTTCATGT	ACAAATGCTA	GACTATCAGA	TTTGATTGAA	GCTAGTCATA	12240
20	TTGTTAAAGG	AAATAAAGTT	CATCCAAATA	TTACAGCTAT	TGTCGTACCA	GGTTCTCGTA	12300
	CAGTAAAAA	AGAAGCAGAA	AAATTAGGTC	TAGATACTAT	CTTTAAAAAT	GCAGGATTTG	12360
	AATGGCGTGA	ACCAGGATGT	TCAATGTGTT	TAGGCATGAA	TCCTGACCAA	GTACCTGAGG	12420
25	GCGTACATTG	TGCATCTACA	AGTAATCGAA	ACTTTGAAGG	ACGACAAGGC	AAAGGTGCAA	12480
	GAACACATTT	AGTATCCCcT	GCTATGGCAG	CAGCAGCAGC	TATTCATGGT	AAATTTGTGG	12540
	ACGTAAGAAA	GGTGGTTGTT	TAAATGGCAG	CAATCAAACC	TATTACAACA	TATAAAGGTA	12600
30	AAATAGTCCC	TCTCTTCAAC	GACAATATCG	ATACAGACCA	AATCATTCCT	AAGGTACACT	12660
	TAAAGCGTAT	TTCAAAAAGT	GGCTTTGGTC	CATTTGCTTT	TGATGAATGG	CGGTACTTAC	12720
35	CTGATGGTTC	AGATAATCCT	GATTTCAATC	CTAACAAACC	ACAATATAAA	GGGGCTTCTA	12780
	TTTTAATTAC	TGGAGATAAT	TTTGGATGTG	GTTCAAGTCG	TGAACATGCT	GCTTGGGCTC	12840
	TTAAGGACTA	TGGTTTTCAT	ATTATTATTG	CAGGAAGTTT	CAGTGACATA	TTTTATATGA	12900
40	ATTGCACTAA	AAATGCGATG	TTGCCTATCG	TTTTAGAAAA	AAGTGCCCGT	GAACATCTTG	12960
	CACAATATGT	TGAAATTGAG	GTCGATTTAC	CAAATCAAAC	TGTGTCATCA	CCAGACAAGC	13020
	GTTTCCATTT	TGAAATTGAT	GAAACTTGGA	AGAATAAACT	TGTAAATGGC	TTAGATGACA	13080
45	TTGCAATCAC	CCTACAATAT	GAATCATTAA	TAGAAAAATA	TGAAAAATCa	CTTTAAGGGA	13140
	GTTGAATATT	ATGACAGTCA	AAACAACAGT	TTCTACGAAA	GATATCGATG	AGGCATTTTT	13200
	AAGACTTAAA	GATATTGTCA	AAGAAACACC	TTTACAATTA	GACCATTACT	TATCTCAAAA	13260
50	GTATGATTGT	AAAGTCTATT	TAAAACGAGA	AGATTTACAA	TGGGTACGTT	CTTTTAAATT	13320
	AAGAGGTGCT	TACAACGCTA	TITCTGTTTT	ATCAGATGAA	GCTAAAAGTA	AAGGTATTAC	13380

	AAACGCTGTT	ATCTTTATGC	CAGTCACTAC	ACCTTTACAA	AAGGTAAATC	AAGTAAAGTT	1350
	CTTTGGAAAT	AGTAACGTTG	AAGTTGTACT	CACTGGTGAT	ACATTIGATO	ACTGTTTAGC	1356
5	TGAAGCTTTA	ACTTATACAA	GTGAACATCA	AATGAACTTT	ATAGATCCAT	TCAATAATGT	1362
	TCATACAATT	TCTGGACAAG	GTACGCTTGC	TAAAGAAATG	CTAGAACAAG	CAAAGTCTGA	1368
	CAATGTTAAC	TTTGATTATC	TATTTGCCGC	AATTGGTGGT	GGCGGTTTAA	TTTCAGGTAT	1374
10	TAGTACTTAC	TTTAAAACCT	ATTCACCTAC	CACGAAAATT	ATAGGTGTTG	AACCTTCAGG	1380
	TGCAAGTAGT	ATGTATGAAT	CTGTTGTGGT	AAATAATCAG	GTAGTCACAT	TGCCTAATAT	1386
15	CGATAAATTT	GTGGACGGTG	CATCTGTAGC	TAGAGTTGGC	GATATTACAT	TTGAAATTGC	1392
	AAAAGAAAAT	GTAGATGATT	ACGTTCAAGT	AGATGAAGGT	GCAGTTTGTT	CTACGATTTT	1398
	AGATATGTAT	TCAAAACAAG	CAATTGTAGC	AGAACCTGCT	GGCGCATTAA	GTGTAAGTGC	1404
20	GCTTGAAAAC	TATAAAGATC	ATATTAAAGG	TAAAACAGTG	GTTTGTGTCA	TTAGTGGTGG	1410
	TAATAATGAT	ATTAATCGAA	TGAAAGAAAT	TGAAGAACGT	TCATTACTAT	ACGAAGAAAT	14160
	GAAGCATTAC	TTTATCTTAA	ATTTCCCTCA	ACGTCCAGGT	GCATTGAGAG	AATTTGTAAA	14220
25	TGACGTATTA	GGACCTCAAG	ACGATATTAC	TAAATTTGAA	TACTTAAAAA	AATCTTCTCA	14280
	AAATACAGGT	ACTGTCATTA	TTGGTATTCA	ACTTAAAGAT	CATGATGATT	TAATACAACT	14340
	CAAACAACGT	GTAAAtCATT	TCGATCCTTC	CAATATTTAT	ATTAATGAAA	ATAAGATGTT	14400
30	ATATTCATTG	TTAATTTAAC	ACATAGTAAG	AAAAACAGTC	ATAAATTGAT	TTCTAATTGA	14460
	AATCATCTTA	TGACTGCTTT	TTATTATACT	TTACATTTCT	CGTTTCGTCA	GATTCAAACG	14520
35	TTTTCACTTC	GCCAAGCCAT	CTTTCTTTGT	GTTTGCTTTT	aTTTTGACGT	TTTAGACATA	14580
	AAAAAaGAGA	CCTTGCGGTC	TCAATGCGGC	TCATCGCATC	CACTTTTTGC	CTGGCAACGT	14640
	TCTACTCTAG	CGGAACGTAA	GTTCGaCTAC	CATCGACGCT	AAGGAGCTTA	ACTTCTGTGT	14700
40	TCGGCATGGG	AACAGGTGTG	ACCTCCTTGC	TATAGTCACC	AGACATATGA	ATGTAATTTA	14760
	TACATTCAAA	ACTAGATAGT	AAGTAAAAGT	GATTTTGCTT	CGCAAAACAT	TTATTTTGAT	14820
	TAAGTCTTCG	ATCGATTAGT	ATTCGTCAGC	TCCACATGTC	ACCATGCTTC	CACCTCGAAC	14880
45	CTATTAACCT	CATCATCTTT	GAGGGATCTT	ATAACCGAAG	TTGGGAAATC	TCATCTTGAG	14940
	GGGGGCTTCA	TGCTTAGATG	CTTTCAGCAC	TTATCCCGTC	CACACATAGC	TACCCAGCTA	15000
	TGCCGTTGGC	ACGACAACTG	GTACACCAGA	GGTATGTCCA	TCCCGGTCCT	CTCGTACTAA	15060
50	GGACAGCTCC	TCTCAAATTT	CCTACGCCCA	CGACGGATAG	GGACCGAACT	GTCTCACGAC	15120
	CTTCTCAACC	СМССТССССТ	א הייניים ביינים א	TOCOCONNON		TCCC3 0003 0	

GTGGAACTT 15249

(2) INFORMATION FOR SEQ ID NO: 103:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 14051 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:

15	GTGGCAATAT	TTCTAGTTCT	CGTTTTGATA	AGATTTTAAA	AGGATCTGTT	GTGTTTGCAG	60
	TGTCCTGATT	TGAATTAGAT	ACAAATTCAT	TCACTAAAGA	TGTTGTAAGT	TTCATATCTA	120
	CATATGTTTC	ACCTTTATAT	ACAGTTCGAA	TAGCTAACAA	TAATTGTTCA	TCAGGTGCAT	180
20	TTTTCAATAT	GTAACCTTTC	GCACCATTAC	GCAACACATG	GAACAAATAC	TCCTCATCAT	240
	CAAACATTGT	TAATATTAGT	ATTTTAGTTT	CAGGAAAACT	GTCAGCAATT	TTACTCGTAG	300
	CGATAAGACC	TGACTCACCT	GGTGGCATAC	TTAAATCCAT	TAGTAACACA	TCAGGTTTAL	360
25	ATTCCATTAC	TTTTTGGTAA	GCTTCGACGC	CATCTGCAGC	CGTTGCAACA	ACTTCCATAT	420
	CATTTTGATA	ATTTAAAATC	ATAGAGAACC	CCGTACGGAC	AACAGCGTGA	TCATCGGCAA	480
	TGACTATTTT	CAATTTTATT	CCCCCAATGT	ATGTTTCAAA	TTGGAATGTT	CAATGTAACA	540
30	TTGGTACCCT	CACCAATTTT	CGTTTCAATA	TTGACGCTAC	CGCTGACTAA	CTCAGCTCGC	600
	TCATTCATTC	CATATAAACC	GAGTCCAGAA	CCTTTAGGCT	TAGAACTTGG	ATCAAAACCA	660
35	TTTCCCGCAT	CTATCACTTC	TGCTACCAAA	TGGCGCCCAG	TTTGACGGAT	ACCTACATTT	720
55	ATTTCATTTA	CATCAGCGTA	TTTCAACGCA	TTTAAAATAG	CTTCTTGCAC	TACTCGATAA	780
	ACAACCGTTT	CAATATCACT	ATCAAAGCGA	GTATTTTTAA	TATTTGATGT	ATATATGATT	840
40	TTTATTCCAT	AATTTTCTTC	AAACTGTTTA	AAATATGATT	TAAAAGCTGC	TTCAAGGCCT	900
	AGATCATCCA	AAGAAGCGGG	TCTTAATTCA	ACCGACATAT	TACGTATATC	ATCAATTAAT	960
	TTAGCGACAA	TATATTCAAT	ATTTTCTGCG	TCTTCCAAAA	GCTTAGTTGT	ATCTTCTTGA	1020
45	TATTTTAATA	ATCTCAATTG	AACATCTACA	TTGAGCATTT	CTTGAATCAC	ACTATCATGT	1080
	AACTCTCTAG	AAATTCGCTT	TCTTTCATTT	TCTTGGGCTG	AGATTGTTTT	ACGCATCATA	1140
	CGTTGTTGAT	GCAATTTCTC	TTGCTGTTCA	ATTTGTGATG	AAACATTTTG	AAGCGTAAAT	1200
50	GCATGAATTC	CCCTGTCTTG	ATCAATCAAC	TGATATGTTG	CTGTAAATGG	CATCACTTTT	1260
	TGATCTTTCG	ΤΟΤΤΟΑΤΑΑ	ጥልር ጥጥን ርረል እ አ	ጥጥርርጥአርርጥጥ	CTR CTTCCAT	CONTROTANO	1220

	ATCGCATTCG	CCACAGCACT	GTAATTATCT	TCTTCAGATA	ATATATCTTT	AGCAGCATCA	1440
	TTCATTGCAA	TAATTTTACC	GTTATCATCA	GCAAAAACTA	TCTTTTCGAT	TGAATGCTCA	1500
5	TAATATTTTT	TCAATAAAGT	ATCTAACTGT	ATACTGTCCT	CATTAATCAT	GACTTACACC	1560
	CTAATTCATC	TCATTATTTA	TCATCATTGA	AAATACCAAA	CTTACGTTGA	ATATCATCAT	1620
	TATCAAATAT	TTTTGGTAAA	GGACGACCAT	CTCTTTGACC	AAATAATAGT	ACGCCATACA	1680
10	CTTGATTCTT	ATACCAAAGC	GGCACTGCTA	AAACTGCTGT	TAATGATTCG	СТСААТАААА	1740
	TTGGATAGTC	AATCTTTTCT	TCAGGCCCTA	AAGCTAAACC	AACATTGGCT	ATTACCATAC	1800
15	GCTTTCCTGT	TTTCATAACA	GTTCCAGCTA	ATCCACGACC	TTTTCTTAAA	ATAATCAATT	1860
	TAAATCGATT	ATTTTTATTA	CCTGAAACAT	AGTGCCATTT	TATTGGAGAT	GATGGTTTGT	1920
	TAGATTCATA	GAAAGCGATT	GCCGCAAAAT	CATAACCCTC	TTCTTTGCGT	ATTTTATCTA	1980
20	ATGTCTCTTG	AAATCTACGA	TCTTCAATTA	TTGCTTCTGG	TGTCAAATCC	TTTCACCTCT	2040
	TATGCTTACA	CTTTATTCTT	ACGGTAAATA	ATATATCTGC	GATTTATATA	TGTCAAAGGT	2100
	ACACTCCAAA	CATGCACCAA	ACGTGTAAAT	GGCCAACAAG	CCATAATAGT	GAAACCTAAC	2160
25	AATATATGCA	TTTTAAATGC	AATCGGCACA	CCACTCATCA	ATGACGCATC	TGGTTTTAAC	2220
	ATAAATAATT	GTCTAAACCA	AATTGATAAT	GAAGTTCTGT	AGTTAAAGTC	TGGATGTTGT	2280
	ATATTTGTTA	CTAATGTTGC	GTAACATCCC	ATAAATACGA	TAAGTAATAA	TAAGAAATTT	2340
30	ACAAATATAT	CCGACGCTGA	ACTTAATCTT	CGAATACTTT	TCGTAGTAAC	ACGTCTCGCT	2400
	GTTAATAAAA	ACATCCCTAT	CAAAGTTATT	ATACCAAAGA	TGCTACCAAT	ATAAACAGCG	2460
35	CCTATATGAT	ATAAATGCTC	AGACACACCC	ACTGCATCCA	TCCATGGTTT	CGGTATTAAC	2520
33	AATCCAACTA	CGTGTCCAAA	AAACACTGGA	ATAATACCTA	agtgaaataa	TAAACTTCCC	2580
	CACATCAACC	TTTTTCTTTC	TATTAATTCA	CTAGATTTAG	CTGTCCAAGA	AAATTTATCA	2640
40	TAACGATAAC	GTGCAATATG	ACCTGCGACA	AAGACAACTA	AACATAAATA	CGGAAATATA	2700
	ACCCATAAAA	ACTGATTAAG	CATGATGTTT	CACTCCTTTT	GGTGATGTCA	AACATAATTT	2760
	CAATGTTTTT	CTAAGTGCTT	GAATCACATA	GGCATATGGA	TTGTTATCTT	CACCAAGTGC	2820
45	ATTCGCCATC	ACATATGTTC	CATCCTCAAT	AATCATAATG	attaattgaa	TATTCTCTTC	2880
	AGCTCTTGGA	TCATTTCGCC	ATTCTGCCAC	TTGCAAAAAT	TGAAGCATCA	ACGGTAGATA	2940
	ATCAGAAAGT	TCATTATCTA	CCATTTCTAG	TCCAAACATT	TCATATAATA	CCTTTAATTT	3000
50	AGCTAACATT	TGCCCACGTT	CTTTTTGCGT	ATCAAATTTG	TTATACGTCA	TATATAATGG	3060
	TO CONTRACTOR	CT3 3 3 3 TC3 3	A TYPE A THOROUGH	3 m 3 3 3 m C C C m	THE RESIDENCE OF THE PERSON OF	3/P3 3/IV/3 3 3 3	7170

	TGTTTCTTCA	AAAGTTTTTG	GATGAAAAGT	TAATTTTTCT	GGAAAACATA	ACTGTTGTGC	3240
	CATATATCCA	AAACTTTCTT	GATATTTTT	AAAATTATCG	AAATTAATCA	CGGAAAATCC	3300
5	CTCCATAGAA	ATTCTCATTA	TAAATTTCTT	GACCAGTTTT	CCCTGAACCT	ACTGCAACGC	3360
	CACAGCCTTC	ACAGTTATCT	CCAAAATGCT	CGCCGCCGTA	ATTGTATCCT	GTACTACCTT	3420
10	GTGCGTGATA	CGTATCTAAA	TAGGTTTCTT	TGTGTGATGT	TGGAATAACA	AATCGATCTT	3480
,,,	CATATTTGGC	TAGTCCTAAT	AAACGATACA	TGTCTTTAGT	TTGGCGCTCG	GTTATACCTA	3540
	ATCGCTCTAA	TCGAGACGTG	TCAAATGGCT	GTTGAGTAAC	TTGAGATCTC	ATATAACTTC	3600
15	TCATCATTGC	CATACGTTGT	AGGGCTCCTT	TTACTGGCTC	TGTATCTCCT	GCAGTGAAAA	3660
	TATTAGCTAA	GTATTCAATA	GGTAAACGCA	TTTCTTCAAT	GGCTGGGAAA	ATCGCATCTG	3720
	GATTTTGAGT	TGTATTTTTA	CCTTCAAAAT	AGCTCATAAT	TGGGCTAAGT	GGTGGGCAAT	3780
20	ACCAAACCAT	CGGCATCGTT	CTAAATTCAG	GATGTAACGG	AAATGCAAGT	TTATATTCAA	3840
	TTGCTAACTT	ATAAATTGGA	GAGTTTTGTG	CAGCTTCAAT	CCAATCGTAA	CCAATACCAT	3900
	CTTTTTCAGC	TTGAGCAATG	ACTTCTTCGT	CAAATGGGTT	TAAGAATATA	TCTAATTGTT	3960
25	TTTCATATAA	ATCTTTCTCG	TCTACTGCTG	AAGCTGCTTC	ATGAACTCGA	TCTGCATCAT	4020
	ATAATAAAAC	ACCTAAGTAA	CGCATACGTC	CTGTACAAGT	TTCAGAGCAT	ACCGTAGGCA	4080
~~	TACCCGCCTC	GATTCTCGGG	AAACAGAAAG	TACACTTTTC	AGCTTTGTTC	GTTTTCCAAT	4140
30	TGAAGTAAAC	TTTCTTATAT	GGACAACCTG	TCATACAGTA	ACGCCATCCA	CGACATGCGT	4200
	CTTGGTCAAC	TAATACAATG	CCATCTTCAT	CACGTTTATA	CATAGCACCT	GAAGGACACG	4260
35	ATGCAACGCA	ACTTGGATTC	AAGCAATGTT	CACATAAACG	TGGTAAATAC	ATCATAAAAG	4320
	TTTCGTCAAA	TTGGAATTTA	ATATCTTCTT	CTATTTTTTG	gatgttagga	TCTTTTGGAC	4380
	CTGTAACATG	ACCACCTGCT	AAGTCATCTT	CCCAGTTAGG	TCCCCATTCA	ATTTCAATGT	4440
40	TATCCCCCGT	AATTTCTGAA	TACGCTCTAG	CAACTGGCGA	ATGCTTCCCT	GATTTCGCAG	4500
	TTGTTAAATG	TTCATAATTA	TAGTTCCATG	GCTCATAATA	ATCTTTAATT	AATGGCATAT	4560
	CTGGGTTATA	AAAAATTTTA	CCTAAAGCAA	TTTTTGAAAT	TCTACTTCCA	GATTTTAATT	4620
15	CAAGTTTCCC	TTTACGATTT	AGTACCCAAC	CACCTTTGTA	GTGTTCTTGG	TCTTCCCAAC	4680
	GTTTCGGATA	CCCTACACCT	GGCtTCGTTT	CTACGTTGTT	GAACCACATG	TACTCAGCAC	4740
	CTGGACGATT	TGTCCaAGTG	TTTTTACATG	TCACACTACA	CGTATGGCAT	CCTATGCATT	4800
50	TATCTAAATT	TAATACCATC	GCAACTTGCG	CTTTAATCTT	CAAGCCAATT	AACCTCCTTC	4860
	ATCTTTCTAA	CTGCTACATA	TAAATCCCTT	TGGTTCCCAA	TTGGTCCATA	АТААТТАААС	4920

	GGCGCGTTGT	GTGAACCACC	ACGTGTATCT	GTAATTTCTC	ACCCAGGCGT	TTGAATATGT	5040
5	TTATCTTGTG	CATGATACAT	AAACATTGTA	CCTTTAGGCA	TACGATGCGA	AATAACTGCT	5100
	CTTGCCGTTA	CAACACCATT	ACGGTTATAC	ACTTCTAGCC	AATCATTATC	TTGGATATCG	5160
	TGTTTTTCAG	CATCTTCATT	TGATATCCAA	ACCGTTGGAC	CACCTCTAAA	TAGTGTCAAC	5220
10	ATATGCTTAT	TATCTTGATA	CATTGAGTGT	ATATTCCATT	TTCCATGAGG	CGTTAAATAA	5280
	CGCAgTACCA	AAGCATCTGT	ACCACCTTTA	ATTTTCTTAT	CTCTATTCCC	AAATACCATT	5340
15	GGCGGCAATG	TCGGTTTATA	TACTGGTAAG	CTCTCCCCAA	ATTGTTGGAA	AACTTCGTGA	5400
	TCCACATAAT	AACTTTGACG	TCCTGTTAAT	GTTCTAAAAG	GTACTAGACG	TTCTATATTC	5460
	GTTGTAAATG	GTGAATATCG	TCGACCTTGT	TTATTTGAAC	CTGGGAATAC	TGCTGTCGGT	5520
	ATTACTTCTC	GTGGTTGTGA	AGTTATATTT	AAAAACGAAA	TTTTCTCAGC	AGCGCGTTCG	5580
20	CTAGAAATAT	CTTTTAACGG	CATTCCAGTT	TGTTCTTCGA	GATCTTCATA	TGATTTTTGT	5640
	GATAATTTAC	CATTCGTAGC	AGATGAAATA	CTTAGTATTG	CATCAGCTAC	ATTACGTGCT	5700
25	GTATCAATAC	GTGGACGATT	CGCTCTCACA	GAATCATCAT	TTGTATCACT	CCACGTACCT	5760
	AACATACTTT	TTAATTCTTC	ATATTGTTCA	CTGACACCGA	AACTTACACC	ATGTGCTCCA	5820
	ACTITCCCTT	TTTCAAGTAC	AGGACCAAGC	GTGACATATT	TGTCGTAAAT	TTTAGTGTAG	5880
30	TCGCGTTCTA	CAATTGCAAA	GTTAGGCATT	GTACGTCCAG	GTACCGCTTC	AATTTCACCC	5940
	TTCGACCAAT	CTTTCACTAC	GCCGTATGGT	GTTGAAATTT	CTTGCTTTGT	ATCATGACTA	6000
	AGTGGAGTTG	TCACAACATC	TTTAAACGTT	CCAGGTAAAT	AGTCTTTTGC	CATTTCTGAA	6060
3 <i>5</i>	AATGCTTTTG	CCAACGTTTT	ATAAATATCC	CAGTCTGAAC	GCGATTCCCA	TAACGGATCA	6120
	ATGGCAGGAT	TGAAAGGATG	TACATATGGA	TGCATATCCG	TTGATGATAA	ATCATGTTTT	6180
40	TCATACCAAG	TCGCTGCCGG	CAAAACAATG	TCAGAATATA	ACGGTGTTGC	CGTCATTCTG	6240
	AAGTCTAAAG	AGACCACTAA	ATCTAACTTA	CCTGTTGTTT	CTTCACGCCA	CGTAATTTCT	6300
	TCTGGCTTTT	CATCTTCATT	TGGTGTAGCT	AATAACCCTG	ATTTTGTGCC	AAGTAAATGC	6360
	TTCATAAAGT	ATTCTTGACC	TTTTGCAGAA	CTTGAAATTA	AGTTTGAACG	CCATATAAAT	6420
45	AATGATTTTG	GATGATTCTT	TTTCAAATCA	GGATCTTCTA	TTGCAAATTG	TGTTTGTTTT	6480
	GATTTCACTT	CATCAATTGC	ACGTTGCAAA	ATCGCTTCAT	TTGAATCTAT	ACCTTCATCT	6540
50	TTAGCTTCTT	CTGCAAACAA	CAAACTATTT	TTATTAAATT	GTGGATATGA	TGGTAACCAA	6600
	CCAAGTCTAG	CTGCTAAAAC	ATTATAATCA	GCTGGATGTT	GATGCTTTAA	CTCCTCTGTT	6660
	העע עברט א ידים	ת מייייייייייייי מ	ACCATCTACA	UMINIO S CANCELLAN	CAMA MOMOCOA	macanama ma	6000

	AATGCGACAG	TACTCCATCC	TTCAATCGGA	CGACATTTTT	CTTGTCCCAC	ATAGTGAGCC	6840
	CAACCGCCAC	CATTCACACC	TTGACAGCCA	CATAACATAA	CTAAGTTTAA	GATTGAACGA	6900
5	TAAATCGTAT	CTGAGTTAAA	CCAATGGTTA	ATACCCGCAC	CCATGATAAT	CATTGAACGC	6960
	CCTTCAGTAT	CGATAGCGTT	TTGCGCAAAT	TCTTTCGCTA	CTTGAATGAC	AACACTTTGT	7020
10	TTTACGCCTG	AAATGGCTTC	TTGCCAAGCA	GGTGTATATT	TTGATTCTGC	ATCGTCGTAT	7080
10	CCTTTTGATT	CTAATTTATG	ATCAAAACGA	CGCACGCCAT	ATTGACTTGC	CATTAAGTCA	7140
	AAAATTGTAG	CAATACGGAC	TTTGTCACCA	TTTGCTAAAG	TGACTTGTCG	AGTTGGAATT	7200
15	GGACGATTGA	ATATCCCATC	TCCATCACTA	TCAAAGTATG	GGAATTGAAT	TGTTTCTAAT	7260
	TCGTATCCAC	CTTCTGTCAT	TGATAATGTA	GGGTTAATTT	TAGAACCATC	TTCTGTTTCT	7320
	AGTTTTAAGT	TCCACTTCTT	ACCTTCTTCC	CAACGTTGAC	CCATTGTGCC	ATTAGGTACT	7380
20	ACTAAACTAT	CGCTGATTGC	ATCATGAATA	ACTGGCTTCC	ATTCGCCTTG	CTCTGTTGTT	7440
	TGACCTAAGT	CACTCGCTCT	TAAAAATCGA	CCCGCTTTAT	ATCCATTTTC	ATCTTCATCC	7500
	AGCATGATAA	GAAACGGCAT	ATCTGTATAT	TGTTTAGCGT	AATTTATAAA	GCGTTCATTA	7560
25	GGTTGATTAA	CATAATGTTC	TTGTAAAATA	ACATGCGTCA	TTGCTTGTGC	AATTGCAGCA	7620
	TCTGAACCAG	GATTCGGTGC	TAGCCAGTTA	TCTGCAAATT	TCACATTTTC	TGCGTAATCT	7680
	GGTGCTACTG	AAATGACTTT	TGTACCTTTA	TAGCGGACTT	CAGTCATAAA	ATGTGCATCC	7740
30	GGAGTACGTG	TTAAAGGTAC	ATTAGAGCCC	CACATAATAA	TGTATGATGC	GTTATACCAG	7800
	TCACTTGATT	CAGGCACATC	TGTTTGCTCT	CCCCAAATTT	GTGGAGAGGC	AGGTGGTAAA	7860
35	TCTGCATACC	AGTCATAAAA	ACTAAGCATT	TCACCACCAA	GCAAATTGAT	GAATCGAGCA	7920
	CCTGCTGCAT	AACTAATCAT	TGACATCGCT	GGAATAGGTG	TAAATCCTGC	GATTCGATCT	7980
	GGAČCATATT	TTTTTATTGT	ATACAGTAAT	TGTGCTGCGA	TTATCTCTGT	AACGTCTTTC	8040
10	CAATTTGAAC	GCACGTGCCC	TCCCATACCT	CGGGCTTGCT	TATATTGTTT	GGCTTTGTCT	8100
	TCATTTTCAA	CAATAGACGC	CCATGCAGCA	ACGCGATTAC	CATTGTTTTC	TTCTAATGCT	8160
	TCAGTCCATA	AATCCCAGAG	TTTTCCACGA	ATATATGGAT	ATTTGATTCG	AAGCGGACTG	8220
15	TATTCATACC	AAGAGAATGA	CGCACCTCGT	GGACATCCTC	TCGGTTCATA	TTCAGGCATA	8280
	TCCGGACCAC	AACTTGGATA	GTCAGTTTGT	TGATTTTCCC	AGGTAATCAC	ACCATTTTTC	8340
	ACAAATACTT	TCCAAGAACA	TGAGCCTGTA	CAGTTAACAC	CATGTGTTGT	TCTTACTTCT	8400
50	TTATCGTGGC	TCCAACGTTC	TCTGTACATT	TTTTCCCATT	CTCTACTTTT	ACTTTCTAGG	8460
	ATCGACCAAT	TCCCATTAAA	TTTTTCTGTT	GGCTTAAAGA	AATTCAATCC	AAATTTTCCC	8520

	TAAAATGCCC	AAGACTATTG	CTTTAATTAG	ATTGTACATT	TTTTCACAAA	CATAAAATAT	8640
	TAGGGAATCA	CCTAATTACT	TAAGGAATTT	CCCTATCAAT	AACGGGATTT	CATTGAAATA	8700
5	ATACACAATC	ATGTATGGTC	ATGCTTATTG	CCAATCTAAA	TCGTTCAAAT	TTGGCACAAC	8760
	GACAAATAAG	GCTTCAACAC	GAATATATTC	TCTCGGTTGA	AACCTTACTT	ATTCATTTAT	8820
	TTTTTATAAA	TTAGTGACAT	AACACTGTAT	TAGCATCTGC	ACGATCGGTT	GAAATATATG	8880
10	TTACATTTTC	TTGCTGCTTA	ATAAATGCAT	CATAGTAATC	ATATTGCGAC	GAATGATATG	8940
	TGCCATTCGA	TGTATCATTT	GGGTTTAGCA	AACAGCCATA	ACCTTCGTCA	TATAAATGTT	9000
15	CACAGAGCAT	AAGGGCGTCA	TGTTTAGAAC	CACTTACTAC	ATAAAATTGC	TTCATAGGAT	9060
	CATATGATTT	AGGAGTGTTT	TCAGTATAAT	CAACAACTTC	CCCTATAATA	CATATACCTG	9120
	GTTTCGCCTC	AATTGAATAG	TGTTGCAATT	TTGAAATAAT	ATTACTTAAA	CGCCCCTTAA	9180
20	CAACAAACTC	GTTAAAACAC	GATGCTTGAA	AGACAATCGC	TATCGGGTAA	TCAATATCTG	9240
	TGTATTGTTG	TATCTGTGTG	ATAATTTTCC	CTAAACGTTT	TACCCCCATA	TAAATTGCTA	9300
	ACGTGCCACC	ATTCACTAAG	GAATTGACAT	CCACTTCATT	TTCTTCTGAA	TCTTTAAAGT	9360
25	GACCTGTAGA	AAATGTCACA	CTTTTAGCAA	CTGTACGCAT	TGTCAAACCT	GTCTGCATAG	9420
	TAGCAACTGC	tGCGCTCGCT	GATGTCACCC	CTGGTACAAT	TTCAAACGCA	ATATGATGTT	9480
	CATTTAGTAT	GTCGACTTCT	TCTTGCACAC	GACCAAATAT	CGCTGGATCG	CCACCTTTAA	9540
30	GTCTAACAAC	CTTGTTATAT	CGACGCGCTG	CTTCCACGAT	ACAGTCATTT	ATTTTTTCTT	9600
	GCTGAATATG	TTTTGCATAC	GGCTTTTTAC	CAACATCGAT	AATTTCAGTA	GTCAAATTCG	9660
35	CATATTGTAA	AATTAACGGA	TTCACTAATC	GATCATATAG	AATGACATCC	gCTTCACGTA	9720
55	TTAAACGCTC	AGCCTTTTTC	GTCAAATAAT	TCGGATTACC	TGGACCCGCA	CCTATCAAGT	9780
	AAACETTGCC	ATATTCCTCT	ACAGACATAT	ATATACGTTC	CCGTCTGTAA	CTTCTACCTC	9840
40	ATAAACATCT	ACACAACCTT	CATCAGGTTC	TTGAACAATA	CCTGTATTTA	AATCAATTTT	9900
	TTGATCGTGG	AGCGGGCAAA	ATACATATTC	CCCACTCACT	GTCCCTTCAG	ACAATGGTCC	9960
	TTGTTTGTGT	GGACAGATAT	TGTGAATCGC	ATGAATTTTG	CCACTTTCTG	TTAAAAACAA	10020
. 45	CCCTACCTCT	TTGCCTTTGA	CAATAACCTT	TTTTCCAATT	AGGGGTGTTA	ATTCATCTAT	10080
	AGTTGTCACT	TTAATTTTTT	CTTTTGTTTC	CATGTATTAC	ACCTTCTCCA	CTTCAAAAAT	10140
	TCTACGTGCT	TGAGCATTGC	TAGTTATTGC	TTCCCAAGGT	TCAGCTTCGA	CTGCTTTTTT	10200
50	AGCATCCATA	ATGCGTTCAA	ATAGTTCATT	TTGTCTTTCT	GGGTCAAGTA	AGACTTCTTT	10260
	TACATTTTCA	AATCCAAGTC	ТТСТТАВССА	тесестетт	СтттСВССВТ	ል ጥል ጥል ር/ርጥረ -ጥ	10320

	AGTTGTTAAA	AATTCAGCTT	TTTCAACTTC	TGTACCACCA	TTACCACCGA	TATAGATTTG	10440
	GAATCCATTT	TCAACTGAGA	TAATACCAAA	ATCTTTAACA	CCTGATTCAA	CACAACTTCT	10500
5	TGGGCAGCCT	GATACACCCA	TTTTGAATTT	ATGAGGTGTA	TCGATGTATT	CAAATGTTTT	10560
	TTCTAAACGA	ATGCCAAGTC	GTGTCGTGTA	TTGCGTACCA	AATCGACAAA	ACTCTTTACC	10620
10	AACACAGCTT	TTAACTGAGC	GTGTTTTCTT	ACCATAAGCT	GATGCTGAAC	GCATACCTAG	10680
10	GTCTTCCCAT	ATATTTGGTA	ATTCTTCTTT	TTTAACTCCA	TACAAACCAA	CACGTTGTGA	10740
	ACCTGTCACT	TTAACTAGTG	GCACATGATA	TTTCTTAGCC	ACTTCTCCTA	GACGAATCAG	10800
15	TTGGTCTGCA	TCTGTAACAC	CCCCACGCAT	TTGAGGTATA	ACAGAAAATG	TACCATCATT	10860
	TTGAATATTC	GCATGGTAAC	GTTCGTTAGC	AAATCTTGAT	TCTCTTTCAT	CTTCATGATC	10920
	ATGTGGATAA	ACCATGTTTA	AATAATAGTT	GATTGCTGGT	CGACATTTTG	GACATCCACC	10980
20	TTTATTTTTA	AAGTTTAAAA	CATGTCGAAC	TTCTTTAGAT	GTTTTTAAAC	CTTTCGCTCT	11040
	TATTTGCGTT	ACTATTTGAT	CGCGTGTCAA	ATCAGTACAA	CCACATATAC	CAGCAGGTTT	11100
	TGCGGCAACA	AAGTCATCTC	CTAAGGTGTG	CTGCAATATT	TGAGCAATTT	GCGGTTTACA	11160
25	TTTACCACAT	GAATTCCCCG	CTTTTGTTTT	AGCCGTTACT	TCTTCAACTG	TTGTAAAGCC	11220
	ATTTTCCGTA	ATCGCATTTA	CTATAGTACC	TTTATCAACA	CCATTACAAC	CACAAATTGT	11280
	TTCATCATCA	GCCATATCAG	CAATTGATAG	CGATGCCTCT	TCTCCACCTT	TAGTAAGCAA	11340
30	TGATACAAGT	GTGTAATCTT	CAGTGGATTC	ACCTTTTTTC	ATCATGTTAT	AAAAGCGTGA	11400
	ACCATCATCG	ATATCACCAT	ATAGTACTGC	ACCAACTACA	TTACCGTCTT	TTAAAAAGAT	11460
35	TTTTTTATAG	TTATTATCAA	CACTATTAAA	TATTTCAATA	CCTTTAATTT	CTGCATTTTC	11520
	TACAATTTGA	CCAGCACTAT	ACAAGTCACA	CCCAGAAACT	TTTAATGACG	TAAATGTTGT	11580
	TGATCCCTTG	TATCCGTTCG	TTTCTTTATT	TGTTAAATGA	TCAGCTAATA	CTTTACCTTG	11640
40	TTCATATAGT	GGTGCAACGA	GTCCATAAAC	TTTGCCGTTA	TGTTCTGCAC	ATTCACCAAC	11700
	TGCATATACA	TTGCTATCAC	TTGTTTGCAT	CACATCATTG	ACAACAATAC	CACGATTAAC	11760
	ATCTAGACCT	GATTCTTTGG	CTACTTCTGT	GTATGGTCGT	ATACCTACTG	CCATAACAAC	11820
45	TAAGTCTGCC	GGAATCTCGC	GTCCATCAGC	CAATTTAACA	CCCTCAACAT	CATCTTCTCC	11880
	TAAGATTTCA	GTTGTGTTGG	CTTGCATTTC	AAACTTCATA	CCTTGCTTTT	CTAGATCTGC	11940
	TTTAAGCATA	TTTCCAGCTT	TACGGTCTAG	TTGCATTTCC	ATCAACCATT	CAGCTAAATG	12000
50	TAACACCGTT	ACTTCCATAC	CTTGATCTAA	TAAACCACGT	GCACACTCTA	AACCTAGTAA	12060
	TCCTCCACCA	ልጥጥል <i>ር</i> ልልጥጥር		NCTOTTACCA	ATCOMO ATCA	TENTO TOTAL COM	

	GAATGCTTTA	GAACCTGTCG	CAAAAATCAA	TTTATCGTAT	GATACTTCAA	TACCATTTGC	12240
	AGTAGTAACT	GATTGATTTG	CTCTATCTAC	TTCAATTACA	GGATCATTTG	TAATTAACTC	12300
5	GATACCATGT	TCCTCATACC	ACTCATATGG	ATTCATAATT	GTTTCTTCAA	CTGTCATTTT	12360
	ATTTTGTAAA	ATATTTGAAA	GCATGATGCG	GTTATAGTTT	GGATAAGGTT	CTTTACCTAT	12420
10	TACCGTAATA	TCATATAAAT	CGTTGGCGCG	CTCTAATATT	TCTTCGATTG	TTCGAATGCC	12480
10	CGCCATACCG	TTACCAATCA	TTACTAGTTT	TTGCTTTGCC	ATAAAATATG	CCCCTTTACT	12540
	CCATAATATT	TATTTCAAAA	AAAGGTATTA	ATTTTTCGTT	AGTGCTTTTA	TATTTTCATT	12600
15	GGAATCATTA	AGCTTTCTAA	TCTATCGTTA	ATGATTTGCT	TTAAAATTGG	GTCGAAGTTA	12660
	ATTGAAGGTG	TGAAGTGTAT	ATCTGTATTA	ATAACCATGT	CATTCATTTG	CTGCTTCACT	12720
	TTGTTAACAA	GTCTTCCGTC	ATATAAAAAT	AATGGTACGA	CAATCAATTT	TTGATACCGT	12780
20	TTCGAGATGC	TTTCTAAATC	ATGTGTAAAA	CTAATCTCTC	CATATAGCGT	TCTCGCATAT	12840
	GTCGGCTTGC	TAATTTGCAA	ATTTTGAGCG	CATATTTGTA	ACTCTTCGTG	TGCCTTAGTA	12900
	AACTTTCCAT	TAATATTGCC	GTGTGCAACA	ACCATAACTC	CAACTTGTTG	TTCGTCACCT	12960
25	GCTAATGCGT	CACAAATACG	TTGTTCAATT	AATCGTCTCA	TTAAAGGATG	TGTGCCAAGT	13020
	GGCTCGCTTA	CTTCTACCTT	TATGTCTGGA	TACCGTCGTT	TCATTTCATG	AACGATATTC	13080
	GGTATATCCT	TGAGATAATG	CATTGCACTA	AAGATTAGCA	ATGGTACAAT	TTTAAAATGG	13140
30	TCAACCCCAC	TTTGAATCAA	CGTCGTCaTT	ACCGTCTCTA	AATCCtGATG	CTCACTTTCt	13200
	AAAAACGCAA	TATCATAGTG	ATGTATATCA	TCTTTTACTA	ATTCAGAAAT	AAATGCTTCT	13260
35	AACGCTTGaT	TCTGTCGTCC	GTGCCTCATG	CCATGTGCAA	CAATGATATT	CCCATTCACA	13320
	TTTACCAACC	CTTTCACACG	TATTGTATAC	CAAATCATTT	TGTTTTTGTG	AAAAGAATCA	13380
	CATTĂTAATG	TAAAATCAGG	GAATTCCCTG	ATGCCTGTAG	TCATGCATAT	TCCTTATACA	13440
40	TTTTCCCTTT	TTGTTAAATC	AAAAAAAGCG	ACCGATATAT	GAATCCCTAC	TCAACATTTA	13500
	TTTGAGCAAG	CATTAATATA	TCGGTCGCTT	GTAGTGTATA	TTATTATCTT	AAAATGGTGG	13560
	TTGGCCTAAT	ATTGTTTCGT	CAAAGCGCTC	GGGTATCAAT	ACTTTGCGCA	TGATCACACC	13620
45	TAAATCGCCA	TCATCATTTT	CATGTTCGCT	GTATATTTCA	TAACCTCTTT	TTTCATAAAT	13680
	TTTAAGTAAC	CACGGATGCA	ATCTTGCAGA	TGTACCTAAA	GTAACTGCCG	CTGACTTTAA	13740
	CGTATCTCGC	AAAAATGCTT	CTTCAACATA	agtaagtaat	TGGCTACCAT	AGCCTTTCCC	13800
50	TTCATACTCA	GGATTTGTCG	CAAACCACCA	GACAAAAGGA	TAACCCGAAA	TACTTTTCAC	13860
	ACTTCCCCAA	GGATATCTAA	CCGTAATCGT	AGATATAATT	TCATCATCAA	TTGTCATGAC	13920

CCAATCAATA CCTAGTTCTC TTAGAGGCGT AAATGCTTCA TGCATGAGTT CTTGCAATTT 14040
TTCTGCATCT T 14051

(2) INFORMATION FOR SEQ ID NO: 104:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1885 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:

60	TAGTGTATGA	CTGCTTAGTT	CGCATATGAA	ATGGCTTGGG	CTTnGATTAT	TAATCCTCAA
120	CTACTGAAGA	GATAACTTTT	ACCTCGAATA	CTATCATACA	GTTCGCATGA	CATTCATACA
180	TAGCCAGACT	GTTAAACCCT	AACCGATTTT	TTCAATGGGG	TCAAGATTAC	GTTACCAATC
240	GTAAGATAAA	TGTAGATTCT	AGGTAGTCAT	AGTTTAAAGC	GGTGAAGGTG	TGCTTATAAC
300	CACCACATTT	CCTCAAAAGC	GCAAAATGTG	CAGAATACAT	AGAACACGTG	GCATTCATGT
360	AAAAATGGGC	CCTGATATCA	ATATAAACTG	CAGAACTTTT	GAAGAGATTG	GTTGAGTGAT
420	CGTATCCAGG	AATGATAAAA	AGCGAAAGAG	CGTTAGAACA	GAGAAATATG	TGATGAAGTA
480	CAGTCCGAGA	GATACAAAAG	AGTGATAACT	GTTCAAGGAG	GTCACGGGAC	TTGGAAGCTA
540	TACTTAGCAT	GAAACCAAGT	AGATATTACA	ATAAACCTGA	GAAGCGGGTT	CAGGTTAGTT
600	AAGGCTTTAT	AAAATTGCAG	AGCATTTTCT	TCGGCAAAAA	GAAAAATTAA	TACGAATTTA
660	CAGCTATAAA	GATAAACGAC	TACCGAGTCT	TAACACTTGC	CAAGGTAAAT	AGAAAAGCCG
720	TATATAAACA	AAAAGGACGG	ATAAAAATTA	TTGACAAACT	GAAGATGATT	GCAATCTGCT
780	GCATCATATG	AAAAGTAAGA	TGATTACAGG	AAAACTAAAG	AGTATTAAAT	TGAAAGCAAA
840	TCAATCAGTT	AGCAAAGTAT	AAGGGCAAGA	AGTATGCAAG	TGaACCTCAC	CACaTATTTT
900	ATAGAAGCTG	TGAACAAGCT	TAAAAGCCAT	ACAAGTACGA	Taaatcagat	TAATCATTCC
960	CTGAAACTTC	TCCTGCAAAT	GAGGCAAAGT	AGTAAGTTTG	AGGAAAAGTT	CTAAAGAAGA
1020	GCTTATTTTA	TTATCAAGAC	ATGATGTGAA	GAAAGAGAAG	TGGAGATACT	CATTACGTGA
1080	AGATTAACGG	AAACAAAATT	TTATTGACCA	GCACCTGGTA	AAGCAAACAA	TTAACGCATC
1140	TTTCCATTCA	AATCAATTTA	TTAGAGCTTC	GGTGACTATA	TATTGTAAGT	ATTCTGGAAC
1200	GTAGAAAAAG	CATTCAACTT	GATTGAACAA	ATCGCAGTTG	TAATAAGGGT	ACACAAATGG
1260	GACACTGATG	TGATGAATTA	AAGATGATTT	AGTGCAGCAG	TGGCGGTGCA	GCGAACCTCT

55

5

10

15

20

25

30

35

40

45

	TTGAGGTGTC	AAGAATTTGA	AATTTATGAA	TATAGATATT	GAAACATACA	GCAGTAACGA	1380
	TATTTCGAAA	TGTGGTGCCT	ATAAATACAC	AGAAGCTGAA	GATTTCGAAA	TTTTAATTAT	1440
5	AGCTTATTCG	ATAGATGGTG	GAGCGATTAG	TGCGATTGAC	ATGACTAAAG	TAGATAATGA	1500
	GCCTTTCCAC	GCTGATTATG	AGACGTTTAA	AATTGCTCTA	TTTGACCCTG	CTGTAAAAAA	1560
	GTATGCATTC	AATGCTAATT	TCGAAAGAAC	TTGTCTTGCT	AAACATTTTA	ATAAACAGAT	1620
10	GCCACCTGAA	GAATGGATTT	GCACAATGGT	TAATTCAATG	CGTATTGGCT	TACCTGCTTC	1680
	GCTTGATAAA	GTTGGAGAAG	TTTTAAGACT	ACAAAGCCAA	AAAGATAAAG	CAGGTAAAAA	1740
15	TTTAATTCGT	TATTTCTCTA	TACCTTGTAA	ACCAACAAAA	GTTAATGGAG	GAAGAACTAG	1800
	AAACCTACCT	GAACATGATC	TTGAAAAAtG	GCAACAATTT	ATAGATTaCT	GTATTCGAGA	1860
	TGTAGAAGTA	GAAATGGCGA	TTGCT				1885
20	(2) INFORMA	ATION FOR SE	EQ ID NO: 10)5:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2656 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

60	ATCCATAGAA	CTCTATCTGC	CACCAGTTCC	AATTTCAAAA	TTCACTGnCA	TAATCCTTAG
120	TCGATTAAGT	TGTTTGTAAC	ATTGTGATGn	ACCGGATTAT	TGTGTCAATA	ACTGnATGTT
180	CGAATAAACT	ACCTTTCCTT	TTATTCAACC	TCTACTACCA	CGAAAAATTA	TATCATCTTT
240	CAGACGGGAA	AATTGATGTG	TCTAACTAAA	TACCAAAGTT	ACKCCACCAG	CCATTTACCA
300	СТТСТААТАТ	TTCGATTTTA	ACCTGGTGTA	GTGTTGTATT	CTTAATACTT	GTTÄTTACGT
360	ATTCTTCAGT	AATCGGTTTG	AAAATCAGTA	AGTCTTTAGG	ATACCTTTAA	CCAACCTGCA
420	TACTCTTAGG	AATTITGTAA	TAAATCTGAT	CAACGATTTT	AAATCTAAAC	AGTGATATAG
480	TGTTTTTCTT	CATGCTCCGT	GCAGAAATTC	CGTTTTGCGG	CAATAACCGG	GATATGTTCC
540	TGTTTCTGGt	CTACCTGTGC	AAGCATATTT	GTTCGAATTT	TCAATGACAC	ATTGAAAATG
600	ACCACCCTGC	ACATCCAAGA	TCCAGGCAGT	CATTATAGTG	CTTAGAGCAC	AAGTACTTGT
660	GaCGTATAGA	TGTGTGTCTT	TAATGCATTT	ACGGGAAATC	GCTTTCGGTA	ATCTCTAAAC
720	ATTGGTAACG	TGGGTTCTGT	TTAGATATGC	GTAATATCAC	ACCAACTTCC	TATAGTAATG
780	TTCAAGAATT	TGCGATGTTT	ATACTTGAGG	TCAGTCATTG	TCCGCCTGAA	GTTTAACACG

5

	TAGTTACCCC	GATTAGAAGT	GCTTTACGTC	CTGTTTCTAG	ATCGTAATAC	ATATCTAGAC	900
	CCTCAGCCTC	TTGGAAATCT	CCTTTAAAGT	TGTTATTCAC	ACCGCCTATA	TCGATGCGAC	960
5	GTTTAAATAA	CAATTCTTTC	GTTTTGATAT	CGAAGCCTTG	TAAGTAGTTA	GGGTTGGCTG	1020
	TATTCGAATC	ACCTGTATAC	CAATATAAGA	TACCTGCATC	ATAAGTGATA	CCTTGCATAG	1080
	GTTGTGTATC	TGAAGTGTAT	TCCATAGGTA	TATCCATTTG	ATACAATACT	TTGTCTATAC	1140
10	CTTTATCAAT	ATCGTCAGCA	CTTCTAACCT	CAACAAAGTT	CAACGAATTC	TTAAGTTGTC	1200
	TTTCAGTGGG	TTTATATTCA	CGTCTAAAAA	TCATTAAATT	TTCTACCGGA	TTATAAATCG	1260
15	CTGACGTATA	TCTGTCGTTA	AATATATTCG	GCATGACATC	TTGCATTTCA	TTACCATAAG	1320
	TTATTTCTCC	AGTTCTATAT	TGGAAACGTA	CAAACTTGTT	GTTTTTGTTA	CTGTCCAATA	1380
	CAGCTGAATA	AATCCATAAT	TCTCCATCAA	TGTATCTATA	CGCATTGTGT	GTACCGTGAC	1440
20	CGCCGTTTTT	AACAAGCAAT	CTATCAATAA	ATTGTCCGTT	GGGCTTCAAT	CTAGATAACA	1500
	TGTAATGATT	ACCTGGACGA	GCTTGCGTCA	TATAAATAAT	TTTCGTTCTA	GGGTCTACCC	1560
	AAAATGATTG	CATTACTGCA	TTTGTATATG	GCGATAAATC	AGTGATAAAT	TCCGGTTCTT	1620
25	GCTCTTTTGG	TTCGAATCGG	TATTCTGTCG	CTCGATATTC	TTTATAGTGT	TCATCTACAG	1680
	CTTTCTCAAC	CTTTTTAGTG	AAAACATCTA	GTGTTGAATA	ATCATGATAC	AAACGATCTT	1740
	GCAATGTCTT	ATGACCATAA	CCTGTATTAT	CAACGCGCGC	GTCTTTTACT	TCGTTGATAC	1800
30	CGTCGCCGTT	ATGACCTAGT	ACCATGTTGC	TAAATCGACC	GTTTAAATAT	GTTAAAAAGT	1860
	CAGAGACGTT	ACTTGTAACA	TTTAAATGTT	CATACTTTAT	TTGTTCTCCA	TCATGTGCGA	1920
	ATACCTCTTT	ATTTCTGTGG	TATTCAAGAG	AGAAATTAAA	ATCCGTCAGC	ATGTCTGAAA	1980
35	TAAGTTTAAA	GTTATACTCA	TTTTCATCTA	CATATCTGTA	GTCAAAGACT	CTACTTAAAT	2040
	CTGTÄATTAG	TTTATTACTC	ATGTTTTCCT	CCTTTACTAT	CCATAAAACT	GATmATAATT	2100
40	TTTAATAAGC	TCATACATAA	TAACTTCATG	ACCTCTTTCA	TTAGGATGTA	ATCCATCAGG	2160
,,,	CATGCTAGAT	TTTCTAAATG	CTGGATTATA	TGGTTTGAAA	TAATCTGTGT	GATAAGCATC	2220
	ATATACTGGT	ACATCCAATT	CACTACAAGC	CAATATCTGA	GCATTGACAT	AATCCTCTAA	2280
45	AGTTAACCCT	AGTTTGTTTT	TGTCCGTATC	TTTACGGCGT	ATCGTTGTAC	CACTCATAGG	2340
	GCATTGCCTA	GTAGCTGTCA	TTACAAGTAT	TTTTGAAGCT	GGATTATTTT	TCCTGATAAC	2400
	TTCAATTGCA	GAACAAAAGG	CGCCGTAAAA	CGTTTTAGTG	TCGGTTTTAT	CAGTGCCTAT	2460
50	CGGTACGCCT	GCCCAATAAC	CATGTAACCA	GTCATCATCT	GTACCTTGTA	ATATGATTAG	2520
	CTCTCCTCTT	א חיידינורידיני	Сттстстата	እ እጥር: ርግ ናር ጥጥጥ	TPCTT- CCCCTT		2500

	CTIGCCTAAC ATTTCT	
	(2) INFORMATION FOR SEQ ID NO: 106:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4854 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(a) Iorosoft Tineur	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:	
15	AAAATGAGGG TTCTAGCGGA AATTACCAAA AGCGTGGTTC ATACTATGGG CAGCGTAATC	60
	GTATTTCAAA AGAAAAAACA CCTAAATGGT TAGAAAATAG AGATAAACCT AGTGAAGAAG	120
	ATTCGGCTAA AGATAATAGC GTAGATGATC AACAATTAGA GCAAGATCGA CAAGCATTTC	180
20	TAGATAAATT ATCTAAAAAA TGGGAGGAGG ACAGTCAATA ATGAAGCAAT TTAAAAGTAT	240
	AATTAACACG TCGCAGGACT TTGAAAAAAG AATAGAAAAG ATAAAnCAGA AGTAATCAAT	300
	GACCCAGATG TTAAGCAATT TTTGGAAGCG CATCGAGCTG AATTMACGAA TGCTATGATT	360
25	GATGAAGACT TAAATGTGTT ACAAGAGTAT AAAGATCAAC AAAAACATTA TGACGGTCAT	420
	AAATTTGCTG ATTGTCCAAA TTTCGTAAAG GGGCATGTGC CTGAGTTATA TGTTGATAAT	480
	AACCGAATTA AAATACGCTA TTTACAATGC CCATGTAAAA TCAAGTACGA CGAAGAACGC	540
30	TTTGAAGCTG AGCTAATTAC ATCTCATCAT ATGCAACGAG ATACTTTAAA TGCCAAATTG	600
	AAAGATATTT ATATGAATCA TCGAGACCGT CTTGATGTAG CTATGGCAGC AGATGATATT	660
25	TGTACAGCAA TAACTAATGG GGAACAAGTG AAAGGCCTTT ACCTTTATGG TCCATTTGGG	720
35	ACAGGTAAAT CTTTTATTCT AGGTGCAATT GCGAATCAGC TCAAATCTAA GAAGGTACGT	780
	TCGAČAATTA TTTATTTACC GGAATTTATT AGAACATTAA AAGGTGGCTT TAAAGATGGT	840
40	TCTTTTGAAA AGAAATTACA TCGCGTAAGA GAAGCAAACA TTTTAATGCT TGATGATATT	900
	GGGGCTGAAG AAGTGACTCC ATGGGTGAGA GATGAGGTAA TTGGACCTTT GCTACATTAT	960
	CGAATGGTTC ATGAATTACC AACATTCTTT AGTTCTAATT TTGACTATAG TGAATTGGAA	1020
45	CATCATTIAG CGATGACTCG TGATGGTGAA GAGAAGACTA AAGCAGCACG TATTATTGAA	1080
	CGTGTCAAAT CTTTGTCAAC ACCATACTTT TTATCAGGAG AAAATTTCAG AAACAATTGA	1140
	ATTTTAAAAT GATTGGTGTA TAATGAATAC AAATCTAAAT CGTTTAAATG ATTGAAGACA	1200
50	AGATGATCTA ATCAATATTA CACAGAAAGC CATTGTTTGA TGAGAATATG GTTAATAAAT	1260
	TAGATGATTA CTACTTCATT TATGGTATTT GTAATGAATA CCCGGATCAA GACCGTTATC	1320

	CTCGTCCCTT	GTATAGGGGC	GGGATTTTTT	GTTTTTTTCA	GACATAAATG	TTTGTTGGTG	1440
	TCATAAATTC	CCTGTTTATT	GTTAATAGGT	TTAATGTTAA	AACGATGATT	GTTGTTCAAT	1500
5	TTTTTAACGA	GGTCAGATAA	AAGTATTTAT	AAAGCAAATA	GGAGGGTTTA	ACATGGAACA	1560
	AATTAATATT	CAATTTCCAG	ATGGTAATAA	AAAGGCGTTT	GATAAAGGTA	CTACTACTGA	1620
10	AGATATAGCA	CAATCAATTA	GTCCTGGATT	ACGTAAAAA	GCTGTTGCCG	GCAAATTTAA	1680
	CGGGCAACTT	GTAGATTTAA	CTAAACCGCT	TGAAACTGAT	GGATCAATTG	AAATTGTGAC	1740
	ACCAGGTAGT	GAAGAagcGT	TAGAGGTATT	ACGTCATTCT	ACTGCACATT	TAATGGCACA	1800
15	CGCGATTAAA	AGGTTATATG	GTAATGTTAA	ATTTGGTGTA	GGTCCTGTAA	TAGAAGGTGG	1860
	ATTCTACTAT	GACTTCGACA	TTGACCAAAA	CATCTCATCT	GATGACTTTG	AACAAATTGA	1920
	AAAAACAATG	AAACAAATCG	TTAACGAAAA	TATGAAAATC	GAACGAAAAG	TGGTTTCACG	1980
20	AGATGAAGTG	AAAGAGTTAT	TCAGCAATGA	TGAATACAAA	TTAGAATTAA	TCGACGCGAT	2040
	TCCTGAAGAT	GAAAATGTAA	CATTATATAG	TCAAGGTGAT	TTTACTGATT	TATGTCGTGG	2100
	AGTTCACGTT	CCATCAACAG	СТААААТТАА	AGAGTTTAAA	CTATTATCTA	CAGCAGGTGC	2160
25	ATACTGGCGT	GGAGATAGTA	ACAACAAAAT	GTTACAACGT	ATATACGGTA	CTGCTTTCTT	2220
	TGATAAAAA	GAATTGAAAG	CACATTTACA	AATGTTAGAA	GAGCGTAAAG	AACGTGATCA	2280
	TCGTAAAATT	GGTAAAGAGT	TAGAACTATT	CACAAATAGC	CAATTAGTTG	GTGCTGGTTT	2340
30	GCCATTATGG	TTACCTAACG	GTGCAACAAT	TAGACGTGAA	ATTGAACGTT	ACATTGTTGA	2400
	TAAAGAAGTT	AGCATGGGAT	ATGACCACGT	TTATACACCA	GTACTTGCTA	ATGTTGATTT	2460
35	ATACAAAACA	TCTGGTCACT	GGGATCACTA	TCAAGAAGAT	ATGTTCCCAC	CAATGCAGTT	2520
	AGATGAAACT	GAATCTATGG	TATTACGTCC	AATGAACTGT	CCACATCATA	TGATGATTTA	2580
	TGCGÂATAAA	CCACATTCAT	ATCGTGAATT	ACCTATCCGT	ATCGCTGAGC	TAGGAACGAT	2640
40	GCATAGATAT	GAAGCAAGTG	GTGCTGTATC	AGGATTACAA	CGTGTTCGTG	GTATGACTTT	2700
	AAATGATTCA	CATATCTTTG	TTCGACCTGA	TCAAATTAAA	GAAGAATTCA	AACGCGTTGT	2760
	AAACATGATT	ATTGATGTGT	ATAAAGACTT	TGGTTTCGAG	GATTATAGCT	TTAGATTAAG	2820
45	TTATAGAGAC	CCTGAAGATA	AAGAAAAGTA	CTTTGATGAT	GATGATATGT	GGAATAAAGC	2880
	TGAAAATATG	CTTAAAGAGG	CAGCGGATGA	GCTTGGCTTA	TCGTACGAnG	AAgCGATTGG	2940
	TGAAgCGGCA	TTCTATGGTC	CGAAACTAGA	TGTTCAAGTT	AAAACAGCGA	TGGGTAAAGA	3000
50	AGAGACATTA	TCAACAGCAC	AACTTGATTT	CTTATTACCA	GAACGTTTTG	ATTTAACTTA	3060
	ም አ ምምረርምር አ አ	CATCCTCAAC	A TO A TO COTO CO	A COMPANIES OF	CATCOTOOTO	ምምር ጥ አ ጥር እ አ C	2120

	AGCGCCAAAA	CAAGTTCAAA	TCATTCCAGT	TAACGTTGAT	TTACATTATG	ATTATGCGCG	3240
	CCAATTACAA	GATGAATTGA	AATCTCAAGG	CGTTCGTGTA	AGTATTGATG	ACCGTAATGA	3300
5	AAAAATGGGT	TATAAAATCA	GAGAAGCTCA	AATGCAAAAA	ATACCTTATC	AAATCGTAGT	3360
	TGGGGATAAG	GAAGTTGAAA	ATAATCAAGT	GAATGTGCGT	CAATATGGAT	CGCAAGACCA	3420
10	AGAAACAGTT	GAAAAAGATG	AATTTATCTG	GAATCTAGTT	GATGAAATTC	GTTTGAAAAA	3480
.0	ACATAGATAG	ACAGTTGTCG	CAATAAAATG	CTTTAAAACT	TTTATTGCGT	ATCAAGTTTT	3540
	ACAGGGTTGA	TTATGCGTGA	TGAATCCTGT	ATATTACAAG	TTAGTTAAAA	TATTAAATTG	3600
15	AGTTAGAGGT	TGCATGTTTA	ATTAGTAACT	. TGTCAGAAGT	ATTTATGGTA	CATAAGTTGA	3660
	ACAAGTGAAA	GGTAAAGATG	CCGAAATAGA	TATAAACCAT	AAATTATATC	TATTGGGACA	3720
	GTTTTCGAAT	AGGAACTGTA	CTGTCACAGA	ATGTGATGTG	CTACCTTATA	TAGATAATTG	3780
20	CCAAAGTGGT	TGCATATCTT	AAAGGTATGT	AGCCACTTTT	TTACTTTTAA	TATCACTATG	3840
	TTCTGTAAAA	AAGGGTATGA	AAGTGAATAA	AGGTTATTTA	TTTCTTGGCC	TCTAAAACAT	3900
	GGAAAGGGAG	CTTATATGTC	AAAAGTTCAA	AATGAAAGTA	ACAATGTTGT	CAAAAGGGGA	3960
25	CTTAAAGATC	GTCATATTTC	TATGATTGCG	ATTGGGGGTT	GTATTGGTAC	AGGTTTATTT	4020
	GTAACTTCTG	GTGGAGCAAT	TCATGATGCA	GGTGCTTTGG	GTGCATTAAT	AGGATACGCA	4080
	ATTATCGGAA	TAATGGTATT	TTTCTTAATG	ACGTCACTTG	GCGAAATGGC	TACGTATTTG	4140
30	CCAGTATCAG	GTTCATTTAG	TACATATGCT	ACAAGATTTG	TTGATCCATC	TTTAGGGTTT	4200
	GCGCTTGGTT	GGAACTATTG	GTTTAACTGG	GTAGTGACTG	TAGCAGCAGA	TATTACGATT	4260
35	GCAGCACAAG	TCATTCAATA	TTGGACACCA	TTGCAAGGCA	TACCCGCTTG	GGCATGGAGT	4320
	GCGTTGTTCT	TAGTTATAAT	TTTTAGTCTG	AATTCGTTAT	CAGTTCGCGT	CTATGGTGAA	4380
	AGTGAATACT	GGTTGGCATT	GATAAAAGTG	GTTACAGTTA	TTGTTTTCAT	TGCAATTGGT	4440
40	TTATTAACGA	TTGTCGGAAT	CATGGGTGGT	CATGTTGTAG	GATTCGAAAT	ATTTAATAAA	4500
	GGTGAAGGTC	CAATTCTTGG	TGGCAACTTA	GGAGGAAGTT	TGTTATCAAT	TCTAGGTGTA	4560
	TTCTTAATCG	CTGGTTTCTC	ATTCCAAGGT	ACTGAGTTAA	TTGGTATTAC	GGCTGGTGAA	4620
45	TCAGAAAATC	CTGAACGTGC	TGTGCCGAAA	GCAATTAAAC	AAGTATTCTG	GAGAATTTTA	4680
	TTATTTTACA	TTTTAGCCAT	TTTTGTTATC	GGTATGTTAA	TTCCTTATGA	TAGTAGTGCA	4740
	TTAATGGGGG	GTAGTGATAA	TGTAGCAACG	TCTCCATTCA	CATTAGTGTT	TAAAAATGCT	4800
50	GGATTTGCGT	TTGCAGCATC	ATTTATGAAT	GCAGTCATTT	TAACGTCTGT	GTTA	4854
	(2) THEODMA	TION FOR SE	O TD NO. 10	١٦.			

(A) LENGTH: 2488 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 107:

10	ATCAAAAATT	GATTGTTTTC	nATTTTTTGT	TTCAGCGCGG	GATCTTTTAC	GTCTTTTGTG	60
	AAAACGaTTT	TATTATTAAC	TACTTTTACT	GGATAACTTT	TGTATGTCGA	GTCAGTAGCA	120
	TTTTTTCTAT	CGTTTGTAGT	TGTGTCATAT	TCACCAGTTA	TTTTATGTGT	GTTCTTATCT	180
15	ACCTTTAACA	ACATACGGTC	TTCTTTTAAA	AGCTCATCTG	ATCCAACAAC	TGAATAAGAG	240
	GATTCTATAT	ACCATGTGTC	TTGATCATTA	TTTTCATAAT	GGGGATTATC	GTGACCATCA	300
	ATTTCATAAA	GCGTTTCTAA	GTTTTTAATA	GGATACGTAC	TTAGTACTTT	TTTAAGACCA	360
20	TCTTTCAAAT	GAATTTGTTC	CCACTTCATT	GCCAAAAACA	TATCGCCACT	GACTACAATT	420
	GAAATAATAA	TAATTGCTGC	TAAGTTTAAC	CAGAAAATTT	TATGTGCTTT	CATACATTCC	480
25	CACCGTTTCT	CAAAATACTT	CATTAACACT	ATAATAATAT	ATTTTGAAAA	ATATTTACAT	540
25	CAGTATTAAA	GTGAATATCA	AATTTTAAAT	TTATGAAAAT	AATAGATATT	TATAAAAAGC	600
	GGAAAAGAGA	TACAATAAAA	AACTGCATGA	CGTTTGAGAC	GTCACACAGT	GTAACTAAAA	660
30	ATTTAAAAAG	TTGTTGCTAA	TTTTTCAGCA	TTATTAATAC	TAGTTGCTTT	AATTTCTTCA	720
	GTCTTATGAG	GTTCAGCATT	GTGTCCTTCA	ATAATGATTG	TTTCATATGA	TGGCACACCT	780
	AAGAATGTCA	TAATTGTTCT	TAAATAACGG	TCACCCATTT	CAAAATCAGC	AGCAGGTCCT	840
35	TCAGTATAAT	ATCCACCACG	TGATTGAATG	TGTAATACTT	TTTTGTCAGT	TAGTAAACCT	900
	TGTGGTCCTT	CAGCAGAATA	TTTAAAAGTT	TTACCTGCAA	TTGAAATAGC	ATCAATATAT	960
	GCTTTAACTA	CAGGTGGGAA	AGAAAGGTTC	CACATAGGCG	TTACAAATAC	ATATTTATCT	1020
40	GCACTTAAAA	ATTCTTCTAA	AATGTCACTC	AATCTTGAAA	CTTTCATTTG	TTCATCATCA	1080
	GTTAACGTTT	CGCCATTACT	CATTTTTCCC	CAACCAGTTA	ATACATCTTT	GTCAATAACT	1140
	GGAATATAAG	TTTCArATAA	ATCAATATGT	TTCACTTCAT	CATCAGGATG	TTGTTGTTGA	1200
15	TATGTTTCGA	TAAATGCTTT	ACCAGCCGCC	ATAGAATTTG	ATACCAGTTC	ATTAAAAGGG	1260
	TGTGCTGTAA	TATATAATAC	TTTTGCCATT	TGAAAATTCT	CCTCTGkTTC	TGTTATTTTC	1320
	TTAAGTATAA	TTATTATACT	CGATATAAAA	тттаататса	ATCAAAATAT	TCAAATTACC	1380
50	ATCATTTTCT	TCATCTATAT	nTGGCAGTAC	TACTAAAGTA	TGAGTGCATT	TAATTATGAa	1440
	ATAGTTGATT	TaGAATAtAT	ACTTAATACC	CAAAATATAT	GAAGGATGGA	TGCCACTATG	1500

55

	ATTATTTATA TAGATGACAT TCAAAAATGG TTTAACCAAT ATACCGATAA ATTGACACAA	1620
	AATCATAAAG GACAAGGACA CTCAAAATGG GAAGACTTTT TTAGAGGGAG TCGGATTACT	1680
5	GAGACTTTTG GTAAATATCA ACATTCACCA TTTGATGGTA AGCATTATGG CATTGATTTT	1740
	GCATTGCCAA AAGGTACACC AATTAAAGCG CCGACGAATG GTAAAGTAAC ACGTATCTTT	1800
10	AATAATGAAT TGGGCGGCAA GGTATTACAG ATTGCCGAAG ACAATGGAGA ATATCACCAG	1860
	TGGTATCTAC ACTTAGACAA ATATAATGTC AAAGTAGGTG ATCGAGTCAA AGCAGGTGAT	1920
	ATTATTGCAT ATTCAGGCAA TACAGGTATA CAAACGACAG GCGCACATTT ACATTTCAA	1980
15	AGAATGAAGG GTGGCGTAGG TAATGCATAT GCAGAAGATC CAAAACCGTT TATCGATCAG	2040
	TTACCTGATG GGGAACGTAG CCTATATGAT TTGTAGTTAT AGAAGGGTGC CCGCAGTCTA	2100
	AAAAATTAAG CAATCATTGT GTGAGTATGA TACTTACATA ATGGTTGCTT TTTTCAATGA	2160
20	AAATCGTAAT GCTAAGTCAT ACTTGTTTGA TTTAGATATT ACTTAAAATG TAAGACAAGG	2220
	TTGTTAGCAT TGGCAGTGAA ATATCGCACA TAAAAAACAT TATTGTCACA CTAGAAAATA	2280
25	GTTGTGCACT ATATCAATTT TCTGTATAAA AGTTTAATTC TGACAGTAAT GTAAACGTTT	2340
	ACAATTTATG ATTGACATTA ATAATGACTG AATATATGAT TTATGTAAGT ATTTGTGCAA	2400
	CGTTTTCACA AAGTGTATTG CACAAYCAAA CTGtAAACAA aGTATGGGGG GCCATAACAT	2460
30	GGCAGAACTA AGTTAGAGCn TATTAAAA	2488
	(2) INFORMATION FOR SEQ ID NO: 108:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4093 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	5	
40	-	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108:	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 108: TTTTCTTTAT TTCAAmCTGT ATATTAATGA TGTCACTTCA TTTGATACGA TTCTTGATAA	60
45		60 120
45	TTTTCTTTAT TTCAAmCTGT ATATTAATGA TGTCACTTCA TTTGATACGA TTCTTGATAA	
4 5	TTTTCTTTAT TTCAAMCTGT ATATTAATGA TGTCACTTCA TTTGATACGA TTCTTGATAA CCTATTCAAA ATTCCGCCAA ATAACATAAA TATTATATAA ATGCCGATAC TTTTAATCAT	120
45 50	TTTTCTTTAT TTCAAMCTGT ATATTAATGA TGTCACTTCA TTTGATACGA TTCTTGATAA CCTATTCAAA ATTCCGCCAA ATAACATAAA TATTATATAA ATGCCGATAC TTTTAATCAT TTTCTACTTT TTCTTCGATA CGGAAACTTG TTTTCGAATT GAACACTTCA CCAGCTTTTA	120 180
	TTTTCTTTAT TTCAAMCTGT ATATTAATGA TGTCACTTCA TTTGATACGA TTCTTGATAA CCTATTCAAA ATTCCGCCAA ATAACATAAA TATTATATAA ATGCCGATAC TTTTAATCAT TTTCTACTTT TTCTTCGATA CGGAAACTTG TTTTCGAATT GAACACTTCA CCAGCTTTTA AAATTGACGG TGCTTTTCA CCATATAAAT TAATATCATT TGGTAAAAAAT TGTGTTTCTA	120 180 240 300
	TTTTCTTTAT TTCAAMCTGT ATATTAATGA TGTCACTTCA TTTGATACGA TTCTTGATAA CCTATTCAAA ATTCCGCCAA ATAACATAAA TATTATATAA ATGCCGATAC TTTTAATCAT TTTCTACTTT TTCTTCGATA CGGAAACTTG TTTTCGAATT GAACACTTCA CCAGCTTTTA AAATTGACGG TGCTTTTTCA CCATATAAAT TAAATACATT TGGTAAAAAT TGTGTTTCTA ATGTAAAGCC AGAATGTGGT TTATAAATAT TAAATGGACT ATCCCACTCA TCAGGCTGGT	120 180 240 300 360

	TATCTTCAAA	CACTTCATGT	AAATCTAGAA	TATCACCTGT	AACAATATTT	CGCTCATCTA	540
_	ATACATACAT	ATCTAATTGA	TTACTTGAAA	TGCGATGATT	ATCAACGACA	TTATTATCTC	600
5	GATTCAAATT	GAAGTACACA	TGATTCGTAG	GACTAAACAA	TGTGTCTTCT	GATGCAACTG	660
	CTTCGTATTC	AATCGACCAT	TGGTGATCCG	CATCATAAAT	ATGTGTAATC	GTCACATCGA	720
10	TATCACCCGG	GAAATGATCA	TCAGCTGATT	TCAACACCGT	СТТАААТАТА	ACTTTAATTT	780
	GAGCAATTTC	ATTTCTAATT	TCATAATCAA	ATAACTTATT	GTCCAAACCA	TGACATCCAC	840
	CATGTAAATG	ATGTTCACCG	TTGTTTTTT	CTAACTGATA	TTCTTTACCT	TTCAACTTAA	900
15	ATTTAGCATT	ATCAATTCTA	CCGCTATATC	TTCCTATAGA	AGCACCAAAT	TTAAAAGGAT	960
	TACTATGATa	AAATTCATCC	GCTTCAACAA	CATTTCCAAG	AACAATATTA	TTATCATGAT	1020
	ATTTCCAAGA	CACTACTCTT	GCTCCATAAT	TCGTAAAAAT	AATTTTAGTT	TCATCATTAT	1080
20	CAATTTTGAT	TAAATCTACA	CCTTGTCTTT	GGTGCTCAAC	TTCAACTATC	ATTTTTACTT	1140
	CTCCCTTCTA	ACCACAAGTG	TTCAAGCTCT	GCTGGGTAGC	AACATTACTA	AAACACCTAC	1200
25	AATACAAATG	ATTGCACCGA	TAACATCATA	TTTATCTGGC	ATTTGTTTAT	CTACGACCAT	1260
	CGCAAAAATC	AAACTCATGA	TGATAAATAC	GCCACCATAT	GCTGCATATA	CTCTTCCGAA	1320
	TGATGGAAAT	GATTGAAATG	TCGCAATGAC	ACCATATAAC	ATGAGTATCG	CACCGCCTAT	1380
30	TAGCCCAACA	AGTGAAGACT	GTCCTTCCCT	AAGCCACAGC	CAAATCAGGT	ATCCCCCACC	1440
	TATTTCACAT	AAGCCAGCTA	TATAAATAT	AAAAATCGGA	TATAACATGA	AATCACTCCA	1500
	TCACACATTT	GCTATCAATA	ATCTATCGGC	TACATATCAT	TTGTTTACAT	TTCTTCTTAC	1560
35	TTCACATTCC	CATTTTAAAA	AGTTCGTTTT	CACATTCATA	TTGTACACTT	TTTTAGACAT	1620
	TATTCTATAG	СТАААТАТАА	AAAAATAAGA	GTAACACGCT	TTCATCATCA	TTTTATATGA	1680
40	TAAATGTGTG	TCACTCTCAT	CAATTTTATT	TTTTAAATAC	ACGTTTCATT	GAATTAAATA	1740
40	AGCCACGTTC	AAATGTAAGT	ACTGAATCTT	TATATGTTTT	AATTGCAATC	CATATCAAGA	1800
	CAGCTACCAT	TACAATTGAG	ATTAAAGAAC	TTAAGATGAC	CTCATATATT	TGAAGCCCTG	1860
45	AAGTTTGAGC	GCGTACAACT	AATTGAAATG	GCGCTAAAAA	CGGAATATAA	CTTGTGATTA	1920
	AAGCAAGTTG	TCCATCAGGA	TTATTTATCG	TGAATATCGC	GATATAAAAT	GCAATCATAC	1980
	CAAGTAATGT	CAGTGGCATC	AAAGATTGAT	TTAAATCTTC	TATTCTAGAT	GTTAATGATC	2040
50	CGAGGATGGC	TGCAAGTAAT	ACATACGCCG	TAATTCCAAC	AATACTACTT	ATAATTCCGA	2100
	CAATAATAAT	TTGCCAAGAC	AATTGATTCA	TTTCCACGTT	AAAACCTTGT	AGCAAGTCTT	2160
	TTAAGTCAAA	GGCAAAAATG	CATATAACTG	CCATCAATAC	AATTAAAATA	ATCTGAGTCA	2220

	TAATAATCAT	TTCAATGACA	CGCGATGTTT	TCTCACTAGC	AATTTCCATA	GCTATTTGAG	2340
	ATGCATAATT	TAAAACAATG	AAGAACATTA	GAAAGATAAT	GCCATmaGcT	AAAGCATAGT	2400
5	TGAAAATCTT	TTGTCCTTCT	GATACTTTAT	CGACTTCATC	ATTAGAAATC	ACCTTATTAT	2460
	CAACTTTACT	TTGTGCTTGT	AATTTTTGTA	AGTCTTCTTT	GTTGATATTT	ÄATTCCCCGG	2520
40	CTACCATATT	TGTTTGAATA	GCTGTAAGCA	GTGCTTGTAC	TTTTTGTGAA	TCTTCATGAC	2580
10	TTACTCGCTT	CTCACTAATG	ATTGTCCCTT	GTAACGTGCG	ATTTTGATTC	ACCTTGATAA	2640
	TATAAGCTTT	ATCAAGTTTA	TGTTTTTTTA	CTTCTTTTTC	AGCATCTTCT	ATAGAAACTT	2700
15	TAGTAAACTT	AGCATCACTA	TGAAATGTAT	TCGCCTGTTG	CTTGAAAACC	TTATAGATTT	2760
	GTTCATTCGG	TGCTGCTACA	CCAATTTTAT	CTGGACCATC	ATCAAACATG	TTAATAATCT	2820
	TATCAATGTT	AGATAGGCCA	ATCATTAAGG	CAGCAATAAT	AATCATAAAA	ATTACAAATG	2880
20	ATTTAGCTTT	AATTTTTTTG	ATATATGTCA	AAGTAAATGT	CGCCCAAAAC	TTATGCATCC	2940
	TTGCCACCAA	CCTTCTCAAT	GAATATATCT	TGTAATGATG	GTTCTACAAC	TTGGAATCGT	3000
	TTAACATAAC	CTTGATGTGC	CACAACTTGA	TAAATATCTT	TGGCTACGTC	TTCATTCTCA	3060
25	ATCGTCAACT	GAAGACCTTG	CTTCATGTTT	TCACTATGAA	TGATGCCTCT	AATGTTTGTT	3120
	AAATCTGGTA	GTGTTGTTTC	TGATTCAATG	ACAACTTTCT	TGTTACCATT	AGATGCACGT	3180
30	ACATGATTGA	TATCACCAGA	AACAACAAGT	TGACCTTTAT	СТААААТАСА	AACATCATCA	3240
	CATAATTCTT	CAACATGCTC	CATACGGTGA	GAACTATAAA	CGATTGTACT	GCCCCAATCA	3300
	TTTAAGTCTT	TAACTGCTTc	TTTTAATAAC	TCAACATTAA	CTGGGTCTAG	ACCACTGAAA	3360
35	GGCTCATCTA	ATATTAGTAA	TTCTGGTTTA	TGTAACATAC	TTGCTAACAG	CTGAATTTTT	3420
	TGTTGATTCC	CTTTTGATAG	ACTATCAATT	CGTTTTTTGC	GGTTTTCAGT	AATATCAAAA	3480
	CGCTCAAGCC	AATACGATAT	TTGCTGTTGT	ATTTCTGTTT	TTGACATTCC	CTTTAAAGTT	3540
40	GCCAAATATT	TCAATTCTTC	TTCAACTGTC	AATTTCCCAT	GTAAACCGCG	TTCTTCCGGT	3600
	AAATAACCAA	TACGATTGTA	CATTGTTTTA	TCTAGTTTTT	TACCGTTATA	CGTrrTGTGT	3660
45	CCTTCAGTTG	GTTCACTTAA	GCCTAAAATC	ATACGAAATG	TCGTTGTTTT	ACmTGCACCA	3720
~	TTTCTTCCTA	GAAAACCTAA	CATTTTACCT	GATTCTAACT	TTAATGAAAT	ATCATTTACT	3780
	GCCGTCATCT	TGCCAAAACG	TTTCGTAACA	TGTTCAATTA	CAAGTCCCAT	ACTTTGCCTC	3840
50	CTAAAAAnAT	ATGTATTTAT	СТТААТАТАА	CATTTCCATT	СТСТАТАААТ	GCAATATTTT	3900
	TAAAATGAAT	TTATTTTTAA	AATTTCTGAA	ATTGAAAAAT	TTAAATAGTG	CCATTTTTGC	3960
	ATGTTAAGTA	TCATTAGCAC	TAGATATGTT	TTTTCCATGC	CTTTATTGCC	TTATTTGTAA	4020

4093

CITACCGGTG TTT

	(2) INFORMATION FOR SEQ ID NO: 109:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 17846 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 109:	
15	TGCCAAACTA CCTTTTGACA GTCGTTGCTG TACTTCAGGA TGATCAATCA CATATNTTAC	60
	TTTATCAAAT AGGGCATCTT CATCATTTTT AGTAATTAAA TAACCATTGA AATCTGAAGT	120
	AATCAGTTCG TTAGGTCCAT ATTTAATATC ATAACTAATA ACTGGAACAC CATGTGCTAA	180
20	AGATTCAAGT AGCGCTAAAG AGAAACCTTC CATGTTACTT GTTATTAAAC TCAAATAGGC	240
	ATCGCTATAT TCTTGGTCTA GATTGCTTAA AAAGCCGCGT AAGTAAACAT GATTTTCCAA	300
	TCCATATTTT TGTATCAATT CATTTAATTT TTTACTTTCA GAACCAAAAC CATACATATG	360
25	AAGCTCTATT TTTGGGACAT ACGATACTAA GCGTTTAATT AATTCAATTT GTTGATGTAA	420
	TTGTTTTCA GGTGAATAAC GAGCAACGGA AATTAATTTA ACACTGCGCT GATCTAATGT	480
30	TTGGACTGGT GTATCAATTG TTTCACTATA GCCGACAGGA ATATTAACAA CTGGAATAGT	540
	ATGGTTAATA CGTTTTTCAA CATCTAATTT TTGCTGCTCA GTAGAAACGA TAATTGCACG	600
	ATATCGAGAT AAATTTTCAA ACATCGCTTT ATATACATTT TTAAATGGCG ATGAATCTAA	660
35	TGCATCAATA TTTTTAATGT GTGTACTGTG AAGCACAGCT ACTACTGGGA TTGACTCAGG	720
	CGTTAAGTTG AAAATAGGTG CTGTGTACAC ATTACGATCA CTGAAAAATA AATCCCCATG	780
	TTGATATAGT TGTTTAATGA AAAATGCGCC TAATTCCGTT TCATTATTAA AGAAATATTG	840
40	TTTGTTAGCA TAGTAAACAA TAATTTTTTG TACTTCTGGT TTGCCATCCT TGTAAGAAAA	900
	ATACTTTTCT AATTTTGTGT CACCTTCTGG ATTATAGAAA AATTCACATA ATGTTTGTTG	960
45	TTTATCAACA AGAATCCTAC TACAACTTAA AAAGCCACGC ACATCATAAA AATCACGTTT	1020
.•	TACTTETCGT CTTTGACTAT CAAAATGATT TACATAATCT AATATACGAT ATTTAGGATC	1080
	TTGAAAATGG GCATACATTA AGAAACGCTC TTGATCATAT ATTCTAAAGT CATGACTATT	1140
50	TTCAACATGT TTTAAAGTAT AATGACATTC ATCAGTCCAA TACGACAACC AGTCAAATGG	1200
	TTCATTGCGT TCTAAATATG TTGCTTCTTG GAAGAAATCA TACATATTAA TATAGTCAGA	1260
	ACTAGTAATA TAATTTTGGG CATTTCTATA TAAATATCTA TTCCATGACA GAAATACACA	1320
55		

	CCCAGTTAAA	TTAACACCTA	AACTATTACC	TACAAAATAA	TTCATTTACA	ACACCACTTA	1440
	TATCTATTTT	TTATAATTAT	ATCACATAAT	ATTTAATTAC	TTCTTTTAAC	TGGAAGATGT	1500
5	GTTTATTTAT	AAAACAACAA	ATTTTGATAT	TTATAATGAT	AGTAGTTATT	CAATCACTAC	1560
	GACCCAATAT	ATCATKGTAG	AGCTTAGGAT	ATTGATTTAT	GACTCAGGCA	CATCAAATGa	1620
10	GAgGATTTAT	AAArgagata	TACAACTCTA	GAAGGTATAA	TAAAAACGCG	CAACTAATGT	1680
	TACGCGTTTG	AATTAATCAT	ATGATATTAT	TTGCGATACT	TTAATTTAGC	GAAAgcATCA	1740
	TGTTGATGGA	TAGACTCTTC	ATTACGACAT	TCGATATCGA	AACCGTCTAA	CCAATCAAAT	1800
15	TCAACTAAGT	CCGCGGCAAT	TAAACGAATT	AAGTCTTCGA	CAAAACGTGG	ATTTTCATAT	1860
	GCACGCTCTG	TCACACGTTT	TTCATCAGGA	CGTTTTAAAA	TAGGGTATAG	AATTGAACTT	1920
	GCATTAGCTT	CCATTGCATC	TAAAATTTTA	TTTTTATAGT	CATCAACTAT	GTCTTGATCT	1980
20	TTATTAATAT	ATGTTTTAAC	AGTGACAACA	CCACGTTGGT	TGTGCGCTGA	ATACTCACTT	2040
	ATTTCTTTTG	AACAAGGGCA	TAGCGTTGTG	ACAGTTGCTT	CAATAGTAAG	TTCTTTACGT	2100
	GTAnCTTTAT	CACCGTCAAT	TGCTAATCCA	TAAGTGACAT	CGGCATTACC	AACTGCTTTA	2160
25	ATATTTGTGG	TTGGACTATA	GCGATCAAAG	AACCATTTCC	CAGAAACATC	AACGCCTGCC	2220
	GCATTTTGTT	TCATATTCGT	TTGTAAAGTG	CGTAACACCT	GATAAAGTGT	ATTAAATTCA	2280
30	AGTTCAATAC	CATTATCATA	GTGCTTTTCA	ACACTTTCGA	TTATACGGCT	CATATTAATA	2340
	CCTTTTTCGT	CTTTTGTTAA	ACTTGTTGAA	AAACTAAATG	TGCCAGCTGT	TTGATACTGG	2400
	TCAACAAGTA	CAGGGTACAC	TAAGTTTTTA	ATACCAACTT	CTTCTATTTC	AAATAAAAA	2460
35	TCTTTATGTG	TACTTTGTAA	ATCTGTCATT	TCGTTCTTAG	TAGTAGGTTT	CGTGCCTTCA	2520
	ATAGGATCTA	CGGAACCAAA	GTGTTTCCAA	CGACCTTCTC	GTGTCGATAA	ATCAAATTCA	2580
	GTCATTTTTT	TCCTCCGTTA	AGATTTAAAG	TGATATGTCC	AATATGGTTC	GACTGTTAAA	2640
40	AAGCTGTGTT	GTTTACCATC	GATTTCAGGA	CTTGCTAATT	GTTTTAAAAA	TGGACCTGTT	2700
	TGAGAAGCAT	GTGCTTCAAA	TGCCTTAATT	TTAAGTTCTT	TAAAATCTGT	AATATCATTT	2760
	TGAATATCAG	GTTCTCCAAG	AGCTTCGGTT	GCATCATTAC	TGAACGCAAC	TAAAGTTAAA	2820
45	CGAGGGCGTT	CTTCTTTAGG	CATGCGTTCA	ACCGTTCGAA	TTACAGCGTC	TGCTGTTGCT	2880
	TCGTGATCAG	GATGTACTGC	ATATCCAGGA	TAAAATGAAA	TAATCAATGA	TGGATTTGTA	2940
50	TCATCGATTA	AAGATTTAAT	CATACCATCT	ATATGTTCAT	AGGGTTCAAA	TTCGACAGTT	3000
	TTGTCACGTA .	AACCCATTTT	TCTTAAATCA	GTAATACCGA	TAACTTTACA	AGCTTCTTCT	3060
	AGTTCACGCT	CACGAATACT	TGGTAATGAT	TCGCGTGTTG	CAAATGGGGG	ልሞሞልሮሮሞልልል	3120

	TAATTTGCTA	ATGTGCCTGC	AGATGAGAAG	GTTTCATCAT	CAGGATGTGG	AAATATTACT	3240
	AATACATGTC	TTTCGTCAGT	CATGTTGATG	CCTCCTCTAT	AAATTAAATG	GTCGCTCACT	3300
5	AATTTGAAGT	GCTGCAGCGA	GTTGACCTTC	GTAATTAAAA	CCTGCAATTA	AAAATTCATC	3360
	ATGCTCATTG	ACCTCAAAAT	GCGTTAGACC	TTGTACATAA	ACCCAACCAC	CATTTGATAG	3420
10	TTTAAGACCA	ATGCGATAAG	GTTCTTTATT	ACCACCTTTT	AGTTGTGCAT	GCGTATATGT	3480
	TATTTGTATG	TTTCTTAAAA	AAGTACCAGC	ATTAAAAACA	CGTTGATCGA	AATGGTTCGC	3540
	ATAGGCCCCA	TTTGTCGTTT	CAACATGCAG	ATACACAGGT	TTATGTTCAA	AAGAAGCAAG	3600
15	TAAATCTATA	ACTTCTTGTT	CTTTAATTGG	TTCCAACACG	TTCACTCCTT	ACACTATCAA	3660
	TGTGTTTATC	TTTCTATTTT	ACTAAAAACT	ATTCGATAAT	TGTATACGAT	TGCTCAATTA	3720
	TTTATAAATT	AATTTTCATG	AAGGGTAATT	ACTCAGGATT	ACGTAATCAT	ACAGCATTAG	3780
20	TTTTTTACTT	TTAAAAATCA	AAAATTTGTT	GGAATTTGAA	AAGTGTTAAA	CATTAAAAAT	3840
	GATGCTATAT	TAATGGTGTA	TGAATGAATT	CATAAGTTTT	TAAAATGTAT	TAAATTTGTG	3900
05	GAGGCATGTA	AACAATGAAA	GTATTAAACT	TAGGATCGAA	AAAACAAGCA	TCATTCTATG	3960
25	TTGCATGTGA	GTTATATAAA	GAGATGGCAT	TTAATCAGCA	CTGTAAACTA	GGTTTAGCAA	4020
	CTGGTGGTAC	AATGACAGAT	TTGTATGAAC	AACTTGTTAA	GTTGTTAAAT	AAAAATCAGT	4080
30	TAAACGTAGA	CAATGTATCC	ACGTTTAATT	TAGACGAATA	TGTAGGTTTA	ACCGCATCAC	4140
	ATCCGCAAAG	TTATCACTAT	TATATGGATG	ACATGCTTTT	CAAACAATAT	CCTTATTTTA	4200
	ATAGAAAGAA	CATTCATATT	CCAAATGGAG	ATGCCGATGA	TATGAATGCG	GAAGCGTgCA	4260
35	AAATATAATG	ACGTTTTAGA	ACAACAAGGT	CAACGTGATA	TTCAAATTTT	AGGTATTGGT	4320
	GAAAATGGTC	ATATTGGATT	TAATGAACCT	GGTACGCCGT	TTGATAGCGT	TACTCATATC	4380
	GTTGATTTGA	CTGAAaGTAC	TATTAAGGCT	AATAGTCGAT	ATTTTAAAAA	CGAaGATGAT	4440
40	GTTCCAAAGC	AAGCCATTTC	GATGGGACTT	GCTAATATTC	TTCAAGCCAA	ACGTATCATT	4500
	TTACTCGCAT	TTGGTGAAAA	GAAACGTGCT	GCTATTACAC	ATTTATTAAA	TCAGGAAATT	4560
15	TCTGTTGATG	TTCCAGCCAC	ATTACTTCAC	AAACACCCGA	ATGTTGAGAT	ATATTTAGAC	4620
~	GACGAAGCTT	GCCCGAAAAA	TGTTGCGAAA	ATTCATGTCG	ATGAAATGGA	TTGATTGCAA	4680
	TGTTTAATTA	AGAAATGCCT	CGGGAAAGGT	TCCAATAGAA	AGATAAAAAG	CATTGGAAGG	4740
50	ATGATTTTTA	GTGGAATTAC	AATTAGCAAT	TGATTTATTA	AACAAAGAAG	ACGCGGCTGA	4800
	GTTAGCAAAT	AAAGTAAAAG	ATTATGTAGA	TATCGTAGAA	ATCGGTACGC	CAATCATTTA	4860
	CAACGAAGGT	TTACCAGCAG	TTAAACATAT	GGCAGACAAC	ATTAGTAATG	TAAAAGTATT	4920

	CGCGGATGTA	ATTACAATAC	TAGGTGTTGC	AGAAGATGCA	TCAATTAAAG	CAGCTATTGA	5040
	AGAAGCTCAT	AAAAATAATA	AACAATTACT	AGTTGATATG	ATTGCTGTTC	AAGATTTAGA	5100
5	AAAACGTGCA	AAAGAACTAG	ATGAAATGGG	TGCTGATTAT	ATTGCAGTAC	ACACTGGTTA	5160
	TGATTTACAA	GCAGAAGGGC	AATCACCATT	AGAAAGTTTA	AGAACCGTTA	AATCTGTTAT	5220
10	TAAAAATTCT	AAAGTTGCAG	TAGCAGGTGG	AATTAAACCA	GATACAATTA	AAGATATTGT	5280
	CGCTGAAAGT	CCTGATCTTG	TTATTGTTGG	TGGCGGAATC	GCAAATGCAG	ATGATCCAGT	5340
	AGAAGCTGCG	AAACAATGTC	GCGCTGCAAT	CGAAGGTAAG	TAATATGGCT	AAATTTAGTG	5400
15	ACTATCAATT	AATTCTAGAT	GAATTAAAGA	TGACTTTGTC	ACATGTTGAA	GCGGATGAGT	5460
	TTTCAACTTT	TGCATCCAAA	ATACTACATG	CTGAACATAT	ATTTGTAGCT	GGCAAAGGAC	5520
	GTTCAGGATT	CGTGGCGAAT	AGTTTTGCAA	TGCGCTTAAA	TCAGCTCGGC	AAACAGGCAC	5580
20	ATGTTGTTGG	AGAATCAACG	ACACCTGCGA	TTAAGTCGAA	TGATGTATTT	GTAATTATCT	5640
	CTGGTTCAGG	TTCCACGGAA	CATTTAAGAT	TATTAGCAGA	CAAAGCAAAA	TCAGTAGGTG	5700
	CTGACATCGT	ATTAATTACT	ACAAATAAAG	ATTCTGCAAT	AGGCAATCTA	GCTGGGACGA	5760
25	ACATCGTTTT	GCCTGCAGGT	ACAAAATATG	ATGAACAAGG	CTCGGCACAA	CCATTAGGAA	5820
	GTTTGTTTGA	ACAAGCATCT	CAATTATTTT	TAGATAGTGT	TGTAATGGGA	TTGATGACTG	5880
30	AAATGAATGT	TACGGAACAA	ACGATGCAAC	AAAATCATGC	TAATTTAGAA	TAAAATAAAG	5940
	ATAGTCGATA	ATATGATGCC	TAGGCAGAAA	TATTATCGAT	TATTTTTTA	TTTAAATAAT	6000
	AAATTATAGT	ATAATATCAA	TAATAAACGA	ATAGGGGTGT	TAATATTGAA	GTTTGACAAT	6060
35	TATATTTTTG	ATTTTGATGG	TACGTTGGCA	GACACGAAAA	AATGTGGTGA	AGTAGCAACA	6120
	CAAAGTGCAT	TTAAAGCATG	TGGCTTAACG	GAACCATCAT	CTAAAGAAAT	AACGCATTAT	6180
	ATGGGAATAC	CTATTGAAGA	ATCATTTTTA	AAATTAGCAG	ACCGACCATT	AGATGAAGCA	6240
40	GCATTAGCAA	AGTTAATCGA	TACATTTAGA	CATACATATC	AATCTATTGA	AAAGGACTAT	6300
	ATTTATGAAT	TTGCGGGTAT	AACTGAAGCC	ATTACAAGTT	TGTATAACCA	AGGGAAAAA	6360
45	CTTTTCGTGG	TGTCTAGTAA	GAAGAGTGAT	GTATTAGAAA	GAAATTTATC	GGCTATTGGA	6420
+0	TTAAATCACT	TGATTACCGA	AGCTGTTGGA	TCCGATCAAG	TAAGTGCATA	TAAACCAAAT	6480
	CCTGAAGGCA	TACACACAAT	TGTGCAACGC	TACAATTTAA	ATAGCCAACA	AACGGTGTAT	6540
50	ATTGGTGATT	CAACGTTTGA	TGTTGAGATG	GCACAACGTG	CTGGTATGCA	ATCTGCAGCT	6600
	GTCACTTGGG	GTGCACATGA	TGCAAGGTCA	TTACTTCATT	CAAATCCGGA	TTTTATTATT	6660
	AATGATCCAT	CAGAAATTAA	TACCGTATTA	TAAAACTTGT	TAAAACAGAG	AATACCATGG	6720

	ATTTAAAATT	AATATTTATT	AAACATTATG	AATTTTTAA	GAGTAATGTC	TGACTCGTTG	6840
	ATAATTTATT	TTTGTAAAAA	TAAATTAAAG	TAATGACAAA	GTTATTGAAG	TAAATTGAGT	6900
5	ATAAACATTT	AAATACGATG	TCGAAAATGG	CGATAGCATA	TCACTTACAT	GAAGTTGTGT	6960
	GCTATCGCTA	TTTTTAGTTA	TAATTCCAAA	AAGTTAATCG	TTCGATGATT	TAAGAATTAT	7020
10	TATTGTTTAA	TTCAAATGTA	TGAGGGTATA	AAATCATTGA	ATTTAATTCG	ATAAAGCGAA	7080
	ATTTTTGAAC	AAACATACTT	TTGTATTTAT	ATAAAAGTTT	AAATTCTTAT	AAATTTGACA	7140
	AAACTAATTA	ACTCCGTATA	ATTATGAAAC	ATACAAGAGG	GAGTGTATGA	ATTCATGGAT	7200
15	TTTAATAAAG	AGAATATTAA	CATGGTGGAT	GCAAAGAAAG	СТААААААА	CGTTGTTGCA	7260
	ACCGGTATCG	GTAATGCAAT	GGAATGGTTC	GATTTTGGTG	TCTATGCATA	TACAACTGCG	7320
	TACATTGGAG	CGAACTTCTT	CTCTCCAGTA	GAGAATGCAG	ACATTCGACA	AATGTTGACT	7380
20	TTCGCAGCAT	TAGCCATTGC	GTTTTTATTA	AGACCAATTG	GTGGTGTCGT	ATTTGGTATT	7440
	ATTGGTGACA	AATATGGACG	TAAAGTTGTA	TTAACATCTA	CAATTATTTT	AATGGCATTT	7500
	TCAACATTAA	CCATTGGATT	ATTGCCAAGC	TATGATCAAA	TTGGACTTTG	GGCACCAATA	7560
25	CTATTATTGC	TTGCAAGAGT	ACTACAAGGG	TTTTCAACAG	GTGGAGAGTA	TGCGGGGGCA	7620
	ATGACATATG	TTGCCGAATC	ATCTCCAGAT	AAGCGTCGTA	ACTCATTAGG	TAGTGGACTA	7680
30	GAAATTGGGA	CATTATCAGG	TTACATAGCT	GCTTCAATTA	TGATTGCTGT	ATTAACATTC	7740
	TTTTTAACAG	ATGAACAAAT	GGCATCATTT	GGTTGGAGAA	TCCCATTCTT	ACTCGGTTTA	7800
	TTCCTAGGAT	TATTCGGCTT	ATATTTACGT	CGTAAGCTGG	AAGAATCACC	AGTTTTCGAA	7860
35	AATGATGTTG	CAACACAACC	AGAAAGAGAT	AACATTAACT	TTTTACAAAT	CATCAGATTT	7920
	TATTACAAAG	ATATATTTGT	ATGTTTTGTA	GCTGTTGTAT	TCTTCaATGT	TACAAACTAT	7980
	ATGGTAACTG	CATATTTACC	AACCTATTTA	GAACAAGTTA	TTAAATTAGA	TGCAACGACA	8040
40	ACAAGTGTAT	TAATTACTTG	TGTCATGGCA	ATAATGATTC	CATTAGCATT	AATGTTTGGT	8100
	AAGTTAGCGG	ATAAAATAGG	TGAAAAGAAA	GTATTTCTAA	TTGGTACTGG	TGGGCTAACA	8160
45	TTATTCAGTA	TCATCGCATT	TATGTTATTA	CATTCACAAT	CATTTGTTGT	AATAGTAATC	8220
45	GGTATATTTA	TATTAGGATT	TTTCTTATCA	ACTTACGAAG	CGACAATGCC	AGGGTCGTTA	8280
	CCAACGATGT	TTTACAGTCA	TATAAGATAT	CGAACTTTAT	CAGTAACATT	TAATATCTCT	8340
50	GTTTCGATAT	TTGGTGGTaC	GaCGCCATTA	GTkGCAmCaT	GGTTaGTTAC	GAAAACTGGA	8400
	GATCCATTAG	CmCCTGCGTA	TTATTTAACA	GCAATCAGTG	TTATTGGCTT	TTTAGTTATT	8460
	ACATTCTTAC	ATTTAAGTAC	AGCAGGAAAA	ጥር ጥርጥልል ልልር	CTTCCTATCC	አ አአጥሮሞአሮአሞ	9530

	GAACGTAAGA	ATTAGAGATT	TTAATAAAA	GTATAAATCA	ATCGTATATA	AGCACTTTAA	8640
	AGCTAGTAGG	TTCTGCTAAC	TTTAAAGTGC	TTTTTAAATT	GAGAACTGTA	ATTAGCCGTA	8700
5	ATAAAGTTTT	TGTATATACA	TAAACCCCCA	CTGCAATGAT	TATCGCAATG	GGGGAAAGAG	8760
	GGGACTTAAA	GCATATGTTT	AGCTTTGAAT	ACTTAAAATT	CTCTTGCTAT	TGAAATGTTA	8820
10	GGATGTAAAT	ATGTCTTAGA	GTATTTTGTC	CAACGCAATT	AATATTGAGA	CTCTAACCTT	8880
10	CAATATTATT	' ATAGAGAACA	CAAACTTAAA	TAGATTGGGT	GACTTATTTG	TGTCAGTTAT	8940
	TGCGATTGCG	ATAACTTCTT	TTCTCTATAT	ACATATAGTA	ACGTCTTATC	ТААТААААА	9000
15	CATGGTACTA	CAGTATCAAA	TTTATCTAGG	GCTTAAGTTT	GATTTTTATA	ATAGGCAGGT	9060
	TTACCTGATA	AAAATACTTA	TTCATTATAT	AATGTTAACA	ATATGTATTT	TAAAGTTTAC	9120
	ATTGAGTGAG	GGATATTGAT	GAACGTAATT	TTAGAACAGT	TGAAAACACA	TACTCAAAAT	9180
20	AAACCTAATG	ACATAGCATT	ACATATCGAT	GATGAAACAA	TTACATATAG	TCAACTAAAT	9240
	GCCCGCATCA	CTAGCGCAgT	TGAATCTTTG	CAGAAATATT	CACTTAACCC	TGTCGTTGCT	9300
	ATTAATATGA	AATCACCGGT	GCAAAGTATT	ATTTGTTATT	TAGCTTTGCA	TCGTTTACAT	9360
25	AAAGTGCCTA	TGATGATGGA	AGGTAAATGG	CAAAGTACTA	TACATCGTCA	ATTGATTGAA	9420
	AAATATGGTA	TTAAAGATGT	AATTGGAGAT	ACAGGTCTCA	TGCAGAATAT	AGACTCACCG	9480
20	ATGTTTATTG	ATTCAACGCA	ATTACAGCAC	TACCCCAATT	TATTACATAT	TGGTTTTACT	9540
30	TCAGGGACAA	CTGGACTGCC	AAAAGCATAT	TATCGTGATG	AAGATTCATG	GTTGGCTTCT	9600
	TTTGAAGTTA	ATGAAATGTT	GATGTTAAAA	AATGAAAATG	CAATAGCAGC	CCCTGGACCA	9660
35	CTATCGCACT	CGTTAACATT	ATATGCGTTA	TTGTTTGCTT	TAAGTTCCGG	TCGTACTTTT	9720
	ATAGGACAGA	CCACTTTTCA	TCCTGAAAAG	TTACTTAATC	AATGTCATAA	AATATCATCA	9780
	TACAAAGTTG	CTATGTTTCT	TGTTCCAACG	ATGATTAAAT	CATTATTGTT	AGTTTACAAC	9840
40	AATGAACATA	CAATCCAATC	ATTTTTTAGC	AGTGGAGATA	AGCTGCATTC	TTCTATTTTT	9900
	AAAAAGATAA	AAAATCAAGC	AAATGACATA	AATTTGATTG	AATTTTTTGG	TACATCGGAA	9960
	ACCAGTTTTA	TCAGCTATAA	CTTGAATCAG	CAAGCACCAG	TTGAATCAGT	AGGTGTGCTA	10020
45	TTTCCAAATG	TGGAATTGAA	AACAACGAAT	CACGATCACA	ATGGTATAGG	AACTATTTGT	10080
	ATAAAAAGTA	ATATGATGTT	TAGTGGCTAT	GTAAGTGAAC	AATGTATAAA	TAATGATGAA	10140
50	TGGTTTGTTA	CTAATGATAA	TGGCTATGTA	AAAGAGCAGT	ATTTATATTT	AACGGGACGT	10200
50	CAACAGGATA	TGTTAATTAT	TGGTGGTCAA	AATATATATC	CAGCACATGT	TGAACGCCTT	10260
	TTAACGCAAT	СТТССАССАТ	TCATCAACCA	ል ምተልተረልተረር	ርሞስምምርርካ አ አ	T/- X - (10330

	CAATTTTTAA	AAAAGAAAGT	GAAaCgnTaT	GAAATTCCAT	CGATGATTCA	TCATGTAGAA	10440
	AAGATGTATT	' ACACTGCAAG	tGGTaAAATT	GCTAGAGAAA	AAATGATGTC	GATGTATTTG	10500
5	AGAGGTGAAT	TATAATATGA	ATCAAGCAGT	CATAGTTGCA	GCTAAACGAA	CTGCATTTGG	10560
	GAAATATGGT	GGCACTTTAA	AACATTTAGA	GCCaGAACAA	TTGCTTAAAC	CTTTATTCCA	10620
10	ACATTTTAAA	GAGAAGTATC	CAGAGGTAAT	АТСТААААТА	GATGATGTAG	TTTTAGGTAA	10680
10	TGTTGTTGGG	AATGGTGGCA	ATATTGCAAG	AAAAGCATTG	CTTGAAGCGG	GGCTTAAAGA	10740
	TTCAATACCT	GGCGTCACAA	TCGATCGGCA	ATGTGGGTCT	GGACTTGAAA	GTGTTCAATA	10800
15	TGCATGTCGC	ATGATCCAAG	CCGGAGCTGG	CAAGGTATAT	ATTGCAGGTG	GTGTTGAAAG	10860
	TACAAGTCGA	GCACCTTGGA	AAATCAAACG	ACCGCATTCT	GTGTACGAAA	CAGCATTACC	10920
	TGAGTTTTAT	GAGCGTGCAT	CATTTGCACC	TGAAATGAGC	GACCCATCAA	TGATTCAAGG	10980
20	TGCTGAAAAT	GTGGCCAAGA	TGTATGATGT	TTCAAGAGAA	TTACAAGATG	AATTTGCTTA	11040
	TCGAAGTCAT	CAATTGACAG	CGGAAAATGT	AAAGAATGGA	AATATTTCTC	AGGAAATATT	11100
	ACCTATAACC	GTTAAAGGAG	AAATATTCAA	CACTGATGAA	AGTCTAAAAT	CACATATTCC	11160
25	GAAAGATAAC	TTTGGCCGAT	TTAAGCCCGT	GATCAAAGGT	GGGACCGTTA	CCGCTGCGAA	11220
	TAGTTGTATG	AAAAATGATG	GTGCAGTTTT	ATTGCTTATT	ATGGAAAAAG	ATATGGCATA	11280
20	CGAATTAGGT	TTCGAGCATG	GTTTATTATT	TAAAGATGGT	GTTACGGTAG	GTGTTGATTC	11340
30	TAATTTTCCT	GGCATTGGTC	CAGTACCAGC	CATTTCCAAC	TTACTAAAAA	GAAATCAATT	11400
	AACGATAGAA	AATATTGAAG	TCATTGAAAT	TAACGAAGCG	TTCAGTGCAC	AGGTAGTTGC	11460
35	CTGCCAACAA	GCTTTAAATA	TTTCAAATAC	GCAATTAAAT	ATATGGGGTG	GTGCATTAGC	11520
	ATCAGGTCAT	CCATACGGTG	CAAGCGGTGC	CCAATTAGTG	ACTCGATTAT	TTTATATGTT	11580
	TGACAAAGAG	ACTATGATTG	CATCTATGGG	GATAGGGGGA	GGTCTAGGAA	ATGCAGCATT	11640
40	ATTTACTCGA	TTCTAACCAG	CGATTAAATG	TGTCATTTTC	TAAGGATAGT	GTGGCTGCAT	11700
	ATTATCAGTG	TTTTAACCAA	CCTTATAGAA	AAGAAGTACC	ACCATTAATG	TGTGCGTCAT	11760
	TATGGCCAAA	ATTTGATTTA	TTAAAAAAT	ATGCAAATAG	CGAACTGATT	TTAACAAAAT	11820
45	CAGCAATTAA	TCAAACTCAA	AAGATAGAAG	TAGACACAAT	ATATGTAGGG	CATTTAGAAG	11880
	ATATTGAATG	CCGACAGACT	CGCAATATCA	CACGTTATAC	AATGGCTTTA	ACATTAACTA	11940
	AAAATGATCA	ACATGTCATA	ACGGTTACAC	AAACTTTTAT	TAAGGCGATG	AAGTAGAGAT	12000
50	GGAGTTTAAT	GAGATATGGA	TAAATGAATA	TTTGGCGCTC	GTAAATGATG	ATAATCCAAT	12060
	ACATAATGAG	ATTGTGCCAG	GACAATTAGT	GAGTCAAATG	ATGCTGATGG	CTATGTCATT	12120

	ATTCATTGAA	CAACACGAAC	ACGAAATTAT	AGCAATTAAT	GACGATGGAG	AGATTAAAAT	12240
	AAAAATTTCT	TTGAGCACAA	AAAAATAACC	GATATTAGCT	GCATGAACGC	ATATTAATTA	12300
5	GGAGATGAAA	GGACAGCTAA	TATCAGTTAT	GTATTGTTAT	TATTATTGGG	AACAGAGATG	12360
	AATATAGGTT	ACGTTTCTTT	CTTTGCACGG	GGATGCATTA	ATCTAAAATA	ATAATAACAA	12420
10	CTATATCAAT	GTTTAATAAA	TTCTGGATTA	TTGGAACGAT	TAGTCAATTT	AACTAACTTT	12480
,,,	CATATGATCT	ATATCGTCTT	GTAATAAAGA	GAGCAATTTG	AATATTTCAG	TATCACTAAA	12540
	TGAATCGTCA	CATTTAATTG	AAACATGCTG	AAACGTTTTG	GTTATAATTT	CATAAACTGG.	12600
15	TGCGCCTTCA	TGGTGATACT	GTCGATAAAT	AATCATAACC	TATATTACCT	CCTTTGCTAC	12660
	TCTATGGTTA	TATTATAAAT	AACATTTTTA	TGTGTGACAT	CAACCTTAAG	TATCAACTTT	12720
	TTATCAGACA	TAGAACGTAT	GATTTACTAA	GACTATTTAT	GTATAAAAGT	TCTAAATAAA	12780
20	TATATATTTA	TAGAGTCGCC	TGGCAGTCAT	TTGGGaAATA	TAACATATAT	GATTAGAGAG	12840
	GCATCTATCG	CAAAAGAATG	ATAATGATAG	AGGTATTGAG	CATATAGATG	AGTTTAAGTT	12900
	CATCTTGAAA	ATAAAGGGTT	ATTTAGTCAT	AGATGTAGAT	GTATAGGAAA	TATTTGTATG	12960
25	TATTGTTCGA	TATGTATGAA	ATTTTCAATA	AAAGCTAATA	ACGCTTATAT	GTAACTTTCA	13020
	AATTTAAATT	ATATACAGAG	CATGATGATT	TAAAAAATA	AACCACATCA	CATAAATTGA	13080
30	GTTCATACCC	AATTTAAGTG	GTGTGGCTAA	TAATGTTGAT	TTATAGATGA	ACCGCCTAAT	13140
30	CGTTAAACCT	CTGTTACTTC	AACATCGATA	TGTTCAATAC	GGTTGTATGC	ACCGTGATCC	13200
	ACAGGACCAA	CAAAATCATT	CATTTTCCAA	CCGTTTTTAA	TAGCAGAAGC	GACGAAAGCT	13260
35	TTCGCGCTAA	TCACAGCTTC	TTTCGGTGAC	TTACCGTTAG	CTAAATATGC	AGTTGTTGCC	13320
	GCAGCAAATG	TACAACCAGC	ACCATGGTTA	TAACTTTGTT	GGAACATGTC	TGTTGTTAGT	13380
	TGATĀAAATG	TTTGACCATC	ATAGTATAAG	TCATACGATT	TATCTTGATC	TAAAGCTTTG	13440
40	CCACCTTTAA	TGATGACATG	CTGTGCGCCT	TTATCAAAGA	TAATTGTTGC	AGCCTTTTTC	13500
	ATATCTTCAA	TTGAATTTAA	TTTACCTAAT	CCTGATAATT	GACCCGCTTC	AAATAAGTTT	13560
	GGTGTCACTA	CCGTTGCTTT	AGGTAGTAAA	TATTTAATCA	TCGCCTCAGT	ATTTCCAGGA	13620
45	TTAAGCACTT	CATCTTCGCC	TTTACAAACC	ATGACAGGAT	CTACTACAAA	ATATTGTGCA	13680
	TTAGATGCCT	CATATACTTC	TCCAGCACGT	TTGATTATCT	CCTCAGTACC	TAACATACCT	13740
50	GTTTTAATAG	CATCAGGTCC	GATTGATAAA	GCCGTTTCAA	GTTGTTTTTC	AAATACATCC	13800
50	ATTGGTAATG	GTGTAACATC	GTGTGACCAT	GTATCTTTAT	CCATAGTAAC	GATGGCAGTT	13860
	AAAGCGACCA	TGCCATACGT	ATCTAATTCT	TGGAACGTTT	TCAAATCTGC	TTGCATACCT	13920

	CACTCCTACA	TAATAATATT	GTATTCATCA	TATCATTTTT	AACCTAATTG	ATTATAAAAA	14040
	AGCATTCAAT	ATTTGATGAT	TGTTGAAATG	AATCATTCAT	ACTATTGTAA	CTTTTGAAAA	14100
5	TGTCATTCAC	TTTAGATAAG	TGTGATATGT	TAAAATATGT	CCTGAGGTGA	GATTGAATGG	14160
	AATGGTCGCA	AATTTTTCAT	GACATAACAA	CGAAACATGA	CTTTAAAGCT	ATGCATGATT	14220
10	TTTTAGAAAA	AGAATATTCG	ACTGCAATCG	TATACCCTGA	TAGGGAAAAT	ATATATCAAG	14280
,0	CGTTTGATTT	AACACCGTTT	GAAAATATCA	AAGTTGTTAT	ATTAGGACAA	GACCCGTATC	14340
	ATGGTCCAAA	CCAAGCACAT	GGATTAGCAT	TTTCAGTGCA	ACCTAACGCA	AAATTCCCTC	14400
15	CATCTTTACG	TAATATGTAT	AAAGAATTAG	CAGATGATAT	TGGATGCGTT	AGACAAACAC	14460
	CGCATTTACA	AGATTGGGCA	AGAGAAGGCG	TCTTGTTATT	GAATACAGTT	TTAACCGTAA	14520
	GACAGGGTGA	AGCAAATTCT	CATCGTGATA	TTGGTTGGGA	AACATTTACT	GATGAAATTA	14580
20	TTAAAGCAGT	GTCTGATTAT	AAAGAACATG	TTGTCTTTAT	TTTGTGGGGG	AAACCTGCAC	14640
	AGCAAAAAAT	AAAGCTTATC	GATACATCTA	AACATTGTAT	TATAAAATCA	GTGCATCCTA	14700
	GTCCACTGTC	TGCATATAGA	GGATTCTTTG	GATCAAAACC	GTATTCCAAA	GCGAATGCCT	14760
25	ATTTAGAGTC	AGTAGGAAAA	TCACCAATTA	ATTGGTGTGA	AAGTGAGGCG	TAGATGTTGA	14820
	ATAGAGAAAC	TTTAATAGCA	CGAATTGAGC	AAGAATTAGT	ACAAGCAGAG	CAGGCACAGC	14880
20	ATGACCATGA	CTTTGAAAAA	CATATGTATG	CCATACATAT	ATTAACATCT	TTATATGCTT	14940
30	CAACATCAAA	TACACCACAT	ATTGGTGAAC	AACAAATGAA	TCGTCGTATT	GCTAACCATA	15000
	ATCAAATGCC	ACAATCACAA	ATAACGCAGC	CAACTCATCA	AGTGACAGTT	GCTGAAATTG	15060
35	AAGCGATGGG	TGGTAAAGTA	AATACGCATT	CAGCACATCA	TCATAATAAG	TCATATTCAC	15120
	AACCTTCAAA	CCAACAACAA	AGATTAGCGA	CAGATGATGA	CATTGGCAAT	GGTGAATCCA	15180
	TATETGATTT	TTAAAAAGCA	ACAATGAAAC	ATAATTACTT	AATAGCTTGT	TAAGTATGTA	15240
40	GGTŤAATAAT	CAAGACGCAT	ATACTTTTAT	TCGAGTGTTC	GGATTTAAAC	ATTTATTAAT	15300
	ACTGAATTAT	ATAAGGAGAG	GTAGCAATGA	AATTATTTAT	TATTTTAGGT	GCATTAAACG	15360
	CGATGATGGC	TGTCGGTACA	GGTGCATTTG	GTGCGCATGG	TTTACAAGGA	AAAATAAGTG	15420
45	ATCACTATTT	ATCAGTATGG	GAAAAAGCAA	CGACGTATCA	AATGTACCAT	GGCTTAGCAT	15480
	TATTAATTAT	AGGTGTAATT	AGTGGTACAA	CTTCAATCAA	TGTTAACTGG	GCTGGCTGGT	15540
50	TAATATTTGC	TGGTATTATT	TTCTTTAGTG	GATCATTATA	TATTTTAGTA	TTAACTCAAA	15600
50	TTAAAGTTTT	AGGTGCGATT	ACGCCAATTG	GTGGCGTATT	GTTCATCATT	GGATGGATAA	15660
	TGTTAATCAT	TGCGACATTC	AAATTTGCTG	GTTAAATTTT	AAAACTTTAG	ATTACCTATG	15720

	TGGGTATAGA	ATACCTTCGA	GGTGAGTTTT	TATTTATGGA	AAAAAAGAAT	AAGCAAATAG	15840
	ATAGAGGCGA	TTTAAAACAA	AACCTATCTG	AAAAGTTTGT	ATGGGCGATT	GCATATGGTT	15900
5	CATGTATCGG	ATGGGGCGCA	TTCATCTTAC	CAGGAGACTG	GATTAAGCAG	TCAGGTCCGA	15960
	TTGCAGCATC	AATTGGTATA	GTTATTGGTG	CATTATTAAT	GATATTAATT	GCGGTTAGTT	16020
10	ATGGCGCATT	AGTAGAGAGA	TTTCCAGTAT	CAGGGGGCGC	GTTTGCCTTT	AGTTTCTTAA	16080
70	GTTTCGGCAG	ATATGTGAGT	TTCTTCTCAT	CATGGTTTTT	AACTTTTGGT	TATGTCTGTG	16140
	TCGTTGCTTT	AAALGCGACC	GCATTCAGTT	TACTAGTTAA	ATTCTTATTG	CCAGATGTCT	16200
15	TAAATAATGG	GAAACTATAC	ACCATTGCGG	GCTGGGACGT	TTATATTACG	GAAATCATTA	16260
	TTGCGACCGT	ATTACTACTT	GTATTCATGC	TAGTAACGAT	TCGTGGCGCA	AGTGTATCTG	16320
	GATCATTACA	ATATTATTTC	TGTGTGGCGA	TGGTAATCGT	CGTATTATTG	ATGTTCTTTG	16380
20	GTTCATTCTT	TGGTAATAAT	TTTGCACTTG	AAAATTTACA	ACCGTTAGCT	GAACCTAGCA	16440
	AAGGATGGTT	AGTGTCTATT	GTGGTTATTG	TATCCGTGGC	ACCATGGGCA	TATGTTGGAT	16500
	TTGATAATAT	TCCACAAACA	GCAGAAGAGT	TTAACTTTGC	ACCAAACAAG	ACATTTAAGC	16560
25	TTATCGTGTA	CAGTTTATTA	GCAGCATCAT	TAACTTATGT	TGTCATGATT	TTATACACTG	16620
	GTTGGTTATC	AACAAGTCAT	CAAAGTTTAA	ATGGGCAGTT	GTGGTTAACA	GGTGCTGtTA	16680
30	CACAAACAGC	ATTTGGTTAT	ATTGGATTAG	GTGTATTAGC	AATTGCAATT	ATGATGGGTA	16740
30	TATTTACTGG	TTTAAATGGA	TTCTTGATGA	GTTCAAGTCG	CTTGTTATTT	TCTATGGGAC	16800
	GTTCAGGTAT	TATGCCAACA	ATGTTTAGTA	AATTACATAG	TAAATACAAA	ACACCATATG	16860
35	TCGCAATCAT	ATTCCTAGTA	GGAGTGTCGT	TAATTGCACC	TTGGCTAGGA	AGAACTGCAT	16920
	TGACTTGGAT	TGTAGATATG	TCATCTACTG	GTGTATCCAT	TGCCTACTTT	ATTACATGTT	16980
	TGTCTGCAGC ·	GAAATTATTC	AGTTATAACA	AACAAAGTAA	TACGTATGCA	CCGGTTTACA	17040
40	AAACGTTTGC	TATTATCGGC	TCATTTGTAT	CATTCATTTT	CTTAGCGTTG	TTATTAGTGC	17100
	CAGGTTCTCC	TGCAGCACTG	ACTGCACCGT	CTTATATTGC	ATTACTTGGA	TGGTTAATCA	17160
	TCGGTTTAAT	ATTCTTTGTG	ATTCGATATC	CTAAATTGAA	AAATATGGAT	AATGATGAAT	17220
45	TAAGTCGCTT	GATTTTAAAT	AGAAGTGAAA	ATGAAGTTGA	TGATATGATT	GAAGAACCTG	17280
	AAAAAGAAAA	AACTAAATAA	TAAAAGAATC	GCACAATAAA	CCTTCTTCAT	TCGGAGGCGT	17340
50	ATCGTGCGAT	TTTTTGTATT	ATAAATTGAC	ATTTAAGACG	AGGCAGCTGA	ACCTTATATA	17400
50	TAATTGCTAA	GAGTTAGGGC	TGAGCCATTT	CTAACAAATA	TTTATAATCG	TTTAAAAGAT	17460
	TTCACGAACC	CAGAAACAAT	TAATTTGGAA	ATTTGGTCGG	CGAATAATAA	ACCTAATGCG	17520

AAGACTAAAT TTTTTGTAGC ATCGTATGCT AAGCCACCAG GTACTAATGG AATGATACCC 17640
GTTACCATAA AAATGATGGC AGGTTCTTTT TGTTTACGAG CCATATAATG ACTTAACAAG 17700
CCTAATGCTA AACTACCAAA GAAACTAGAG TATATAGTGT GCACATTAAA GCCGTTGAAG 17760
AATAAGGTGT AAACCATCCA TCCACACGTA CCAACGAAAC CACATGATAG ATATAATTTT 17820
CTAGGTGCAT CAAAAATGAC GCAGAA 17846

10

5

(2) INFORMATION FOR SEQ ID NO: 110:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5544 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20

25

30

35

40

45

50

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 110:

ATTGACACTT	GGTGAAAGTA	ATATCGCCGC	GCTATTTTGG	CAAAATGGAC	ACTTAGAACC	60
TGAGTTACAA	GATGAACAGC	CAATTAATAT	ATTAGGATCT	GKTCAAATCA	ACGAATGGAA	120
TGGTAATCAA	TCACCGCAAA	TAATTATTCA	AGATATTGCG	ATGAATGAAC	AGCAAATATT	180
AGATTATAGA	AGTAAGCGAA	AAAGTTTACC	TTTTACAGAA	AATGATGAAA	ATATTGTCGT	240
GCTTATTCAT	CCTAAAAGTG	ATAAAGTAAA	TGCGAATGAA	TATTATTATG	GTGAAGAAAT	300
TAAACAACAA	ACTGATAAAG	TAGTATTAAG	AGATTTACCA	ACGTCAATGG	AAGACTTGTC	360
TAATTCCTTG	CAACAACTGC	AATTTTCTCA	ACTTTATATA	GTTTTGCAAC	ATAATCATTC	420
GATTTACTTC	GATGGTATAC	CTAATATGGA	TATTTTTAAA	AAGTGTTATA	AAGCATTAAT	480
AACTAAACAA	GAAACAAATA	TCCAGAAAGA	GGGTATGTTA	TTGTGTCAAC	ATTTAAGTGT	540
GAAACCAGAT	ACACTTAAAT	TCATGTTGAA	AGTTTTCTTA	GACTTAAAAT	TTGTAACACA	600
AGAAGATGGT	TTAATTCGAA	TCAATCAACA	ACCTGATAAA	AGATCGATTG	ATTCCAGCAA	660
AGTATATCAA	TTAAGACAAC	AACGTATGGA	TGTTGAAAAG	CAATTATTAT	ATCAAGATTT	720
TTCAGAAATA	AAAAATTGGA	TAAAGTCACA	ATTGTCGTGA	GCAATTTAGG	AGGAAATATT	780
AATGGATTTA	AAGCAATACG	TATCAGAAGT	TCAAGATTGG	CCGAAACCAG	GTGTTAGTTT	840
CAAGGATATT	ACTACAATTA	TGGATAATGG	TGAAGCATAT	GGCTATGCAA	CAGATAAAAT	900
TGTAGAATAC	GCAAAAGACA	GAGATGTTGA	TATCGTTGTA	GGACCTGAAG	CGCGTGGCTT	960
TATCATTGGC	TGTCCTGTAG	CTTATTCAAT	GGGGATTGGC	TTTGCACCTG	TTAGAAAAGA	1020
AGGGAAATTA	CCTCGTGmAG	TCATTCGTTA	TGAGTATGAC	CTAGAATATG	GTACAAATGT	1080

	ATTAGCTACT	GGTGGTACGA	TTGAAGCAGC	AATAAAATTA	GTTGAAAAAT	TAGGCGGTAT	1200
	CGTAGTAGGT	ATTGCATTTA	TAATTGAATT	GAAATATTTA	AATGGTATTG	AAAAAATTAA	1260
5	AGATTACGAT	GTTATGAGTT	TAATCTCATA	CGACGAATAA	TAAATAATAT	AATTTTATCA	1320
	AATGAAATCC	TTCATCAAAT	GTATAAGAAC	CAATGACTTA	ATTAAAAAAG	TTGTTTAAGT	1380
	TTTCTTAACA	TGAGATGTTA	GGATTTTTTA	TTTACTGAAA	ATGTTAGATG	ATTGAGCATT	1440
10	ATACCTTAAT	AACATCGTTT	ATTTATTTCA	TAAATTGTAG	TATCATAGAA	CTAATATTTA	1500
	AAAAATGAAA	CAGTAGATTT	AGGTCGAATT	TTTGTAAAAG	TTTTAAAAGT	AGGAATAGTA	1560
15	TACAAATTAA	ACTCGCTCAA	GTAAAATTAA	TATTACGATT	AATGACGACA	GGATAAATAT	1620
	TTATCGTCGA	CGGACGTATG	ATTGGTGTGG	GACAAATACT	ATTCAACAAG	AGTACCTAAA	1680
	TCATTGTTTA	AGGCGAAGTA	ATAAATATGA	ATGGGGTGTA	TCATATAATG	AACAACGAAT	1740
20	ATCCATATAG	TGCAGACGAA	tTCTTCACAA	AGCAAAATCA	TATTTGTCAG	CAGATGAATA	1800
	TGAGTATGTT	TTAAAAAGCT	ATCATATTGC	TTATGAAGCA	CATAAAGGTC	AGTTCCGAAA	1860
	AAACGGATTA	CCATACATTA	TGCATCCTAT	ACAAGTTGCA	GGTATTTTAA	CAGAAATGCG	1920
25	ATTAGACGGA	CCGACGATTG	TCGCAGGTTT	TTTGCATGAT	GTAATTGAAG	ATACACCGTA	1980
	TACATTTGAA	GATGTAAAAG	AAATGTTCAA	TGAAGAAGTT	GCTCGAATTG	TTGATGGTGT	2040
20	GACGAAGCTT	aaaaagtaa	AATACCGCTC	AAAAGAAGAA	CAACAAGCTG	AAAATCATCG	2100
30	CAAGTTATTT	ATTGCGATTG	CCAAAGATGT	ACGCGTAATT	TTGGTGAAAT	TAGCAGACAG	2160
	ATTACATAAT	ATGCGTACCT	TGAAAGCCAT	GCCGCGCGAA	AAACAAATTA	GAATTTCTCG	2220
35	AGAAACATTA	GAAATTTATG	CACCATTAGC	ACATCGTCTT	GGTATTAATA	CAATCAAATG	2280
	GGAACTAGAA	GATACGGCTC	TTCGTTATAT	TGATAATGTG	CAATATTTTA	GAATAGTCAA	2340
	TTTAATGAAG	AAGAAACGTA	GTGaACGTGA	AGCGTATATC	GAAACGGCTA	TTGATAGAAT	2400
40	ACGTACTGAA	ATGGACCGAA	TGAATATCGA	AGGCGATATA	AATGGTAGAC	CTAAACATAT	2460
	TTACAGTATT	TATCGGAAAA	TGATGAAGCA	GAAAAAACAA	TTTGATCAAA	TTTTTGATTT	2520
	GTTGGCGATA	CGTGTTATTG	TCAATTCTAT	TAATGATTGT	TATGCGATAC	TTGGGTTGGT	2580
45	GCATACGTTA	TGGAAACCGA	TGCCAGGACG	TTTTAAAGAT	TATATTGCAA	TGCCTAAACA	2640
	AAATTTGTAT	CAGTCATTGC	ATACTACAGT	AGTAGGCCCA	AATGGAGACC	CGCTCGAAAT	2700
	CCAAATACGA	ACGTTTGATA	TGCACGAAAT	TGCTGAGCAT	GGTGTTGCAG	CACACTGGGC	2760
50	TTACAAAGAA	GGTAAAAAAG	TAAGTGAAAA	AGATCAAACT	TATCAAAATA	AGTTAAATTG	2820
	GTTAAAAGAA	TTAGCTGAAG	CGGATCATAC	ATCGTCTGAC	GCTCAAGAAT	TTATGGAAAC	2880

	TGAGTTGCCA	TATGGTGCTG	TGCCGATTGA	TTTTGCTTAT	GCGATTCACA	GTGAAGTAGG	3000
	TAATAAGATG	ATTGGTGCCA	AGGTGAATGG	CAAAATTGTA	CCAATTGACT	ATATTTTACA	3060
5	AACAGGCGAT	ATTGTTGAAA	TACGTACTAG	TAAACATTCA	TATGGACCAA	GTCGTGATTG	3120
	GTTGAAAATT	GTTAAATCGT	CTAGTGCCAA	AGGTAAAATT	AAAAGTTTCT	TCAAAAAACA	3180
	AGATCGTTCA	TCTAATATTG	AAAAAGGCCG	AATGATGGTT	GAAGCTGAAA	TAAAAGAGCA	3240
10	AGGATTTAGA	GTCGAAGATA	TTTTGACAGA	GAAAAATATT	CAGGTTGTTA	ATGAAAAATA	3300
	TAACTTTGCA	AATGAAGATG	ATTTATTCGC	AGCTGTAGGA	TTTGGCGGCG	TGACATCCTT	3360
15	ACAGATTGTT	AATAAATTAA	CTGAAAGACA	ACGTATTTTA	GATAAACAAC	GTGCTTTAAA	3420
	TGAAGCACAA	GAAGTTACGA	AATCATTGCC	TATTAAAGAC	AACATCATTA	CTGATAGTGG	3480
	TGTCTATGTA	GAAGGTTTAG	AAAATGTACT	TATCAAGTTG	TCAAAATGTT	GTAATCCTAT	3540
20	ACCAGGTGAT	GATATTGTAG	GTTATATCAC	CAAAGGTCAC	GGTATTAAAG	TACATCGCAC	3600
	TGATTGCCCA	AATATTAAGA	ACGAAACTGA	ACGACTAATT	AATGTTGAAT	GGGTAAAATC	3660
	AAAAGACGCA	ACTCAAAAAT	ATCAGGTTGA	TTTAGAGGTA	ALGCGTATGA	CCGAAATGGC	3720
25	TTGTTGAATG	AAGTACTACA	AGCTGTTAGC	TCGACAGCCG	GCAATTTAAT	TAAAGTTTCA	3780
	GGACGTTCAG	ATATTGATAA	AAATGCAATA	ATAAATATTA	GTGTCATGGT	GAAAAACGTG	3840
	AATGATGTTT	ATCGTGTGGT	AGAAAAGATC	AAACAACTTG	GTGATGTTTA	TACAGTAACA	3900
30	AGAGTTTGGA	ACTAGAGGTG	CAAAATATGA	AAGTAGTTGT	ACAAAGAGTT	AAAGAAGCAT	3960
	CGGTGACGAA	TGATACATTA	AATAATCAAA	TCAAAAAAGG	ATATTGTTTA	TTAGTCGGTA	4020
35	TCGGTCAGAA	CTCTACAGAG	CAAGATGCAG	ATGTAATTGC	AAAGAAAATT	GCTAATGCAA	4080
	GATTATTTGA	AGATGACAAT	AATAAATTAA	ACTTTAATAT	CCAACAAATG	AATGGTGAAA	4140
	TACTATCAGT	TTCACAATTT	ACTCTCTATG	CAGATGTAAA	AAAAGGTAAC	CGTCCAGGTT	4200
10	TCTCAAATTC	TAAAAATCCT	GATCAAGCGG	TAAAAATTTA	TGAGTATTTT	AATGCaTGCG	4260
	CTACGAGCGT	ATGGTCTTAC	TGTGAAAACA	GGTGAATTTG	GAACACACAT	GAATGTTAGC	4320
	ATAAATAATG	ATGGTCCAGT	CACTATTATT	TATGAAAGTC	AGGACGGCAA	AATTCAATGA	4380
15	AAAAAATAGA	GGCATGGTTA	TCTAAAAAGG	GTCTTAAAAA	TAAACGTACT	CTAATAGTAG	4440
	TGATTGCCTT	TGTCTTATTT	ATCATCTTTT	TATTTTTATT	GCTGAATAGC	AATAGTGAAG	4500
	ATAGTGGGAA	CATCACGATA	ACTGAAAATG	CTGAATTACG	TACAGGTCCA	AACGCTGCGT	4560
50	ATCCAGTCAT	ATATAAAGTT	GAAAAAGGTG	ACCATTTTAA	AAAGATTGGT	AAAGTAGGTA	4620
	АЭТТАЭЭТАА	AGTTGAAGAT	АСРАССРА	ATCANANACC	ተተርርል ተልርርተ	CCATCCCACA	4680

	TAGTGCTTGA	TCCTGGTCAT	GGAGGTAGTG	ACCAGGGTGC	TTCAAGCAAT	АСТАВАТАТА	4800
	AAAGTTTAGA	AAAAGATTAT	ACGTTGAAAA	CAGCAAAAGA	ATTGCAGCGT	ACTTTAGAAA	4860
5	AAGAAGGCGC	AACTGTTAAG	ATGACAAGAA	CAGACGATAC	ATATGTTTCA	CTAGAAAATC	4920
	GTGATATCAA	AGGCGATGCC	TATTTGAGTA	TACATAATGA	TGCGTTAGAA	TCATCTAATG	4980
10	CAAATGGAAT	GACaGTTTAT	TGGTATCATG	ATAATCAAAG	AGCTTTAGCA	GATACGTTAG	5040
10	ACGCTACGAT	TCAGAAGAAA	GGTCTACTTT	CTAATCGCGG	TTCAAGACAA	GAAAATTATC	5100
	AAGTGTTAAG	ACAAACAAAA	GTTCCTGCTG	TTTTATTAGA	ATTAGGTTAT	ATTAGTAACC	5160
15	CAACTGATGA	AACGATGATT	AAAGATCAAT	TACATAGACA	AATTTTAGAA	CAAGCAATTG	5220
	TTGATGGCCT	TAAAATTTAT	TTTTCTGCGT	AGGGCTTGCA	AAAATATGTG	AAAGTAGTTA	5280
	TCATTGATAT	TGAATTTTAT	AACTAAAACC	GTTAGTATTC	TTGAAATGGT	AAATGAAATA	5340
20	GGTAGCAATC	TAACTAAGAT	TGTGTAGGAA	TATAATCCAT	AGACTGAAAG	ATTATGCTGA	5400
	GTAGTTTATA	TACATTGAAC	ACAAGAAGAG	GTGCTTTATG	AAAAGTAAAG	CCGTTAAACG	5460
	TACGTTaAAC	GTTTTGAGTG	GGTTTATTAA	ATGCACGCTT	ataaaaagta	ATGATGATTA	5520
25	CAATTAGGCA	TGTTTTTTAA	ACCA				5544
	(2) INFORMA	TION FOR SE	Q ID NO: 11	11:			
30	((QUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	1067 base p cleic acid NESS: doubl	oairs			

35

40

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 111:

AAAAGATTGC AAATATAAAT GGCATGTTTA ATATGTTAGA ACAACAAATC ATTCATAGCC 60 AAGATATGGC TCATTTTAGA AGTGAATTTT TTTACGTCAA TCATGAGCAT CGAGAAAACT 120 ATGAAGCACT CCTAATTTAT TACAAAAATA GTATCGACAA TCCTATTGTA GATGGTGCAT 180 GTTATATTT AGCCCTACCT GAAATTTTCA ATAGTGTTGA TGTTTTCGAA TCAGAGTTAC 240 CATTTCATG GGTATATGAT GAAAATGGCA TTACCGAAAC AATGAAATCA CTTAGCATTC 300 CATTACAATA TTTAGTTGCA GCAGCTTTAG AAGTAACTGA TGTGAATATA TTTAAGCCTT 360 CAGGATTTAC AATGGGAATG AATAATTGGA ATATTGCTCA AATGCGAATC TTTTGGCAAT 420 ATACAGCAAT TATTAGAAAA GAAGCACTAT AACATTAATA ATTAATTAGC TATAAAGATG 480 ATTCACAACA ATCATCTTTA TAGCTTTTTT ATGTCTAATT ATTTTTGAGG AAAATMACAA 540

55

AATTTTATGT TTTCAAAAGT AAACAATCAA AAGATGTTAG AAGATTGCTT CTATATAAGA 660 AAGAAAGTGT TTGTAGAAGA ACAAGGCGTC CCTGAGGAAA GTGAAATTGA TGAATATGAA 720 TCTGAATCTA TTCACCTCAT TGGATATGAT AATGGACAGC CAGTTGCCAC TGCTCGAATA 780 CGCCCTATTA ATGAAACAAC TGTCAAAATA GAACGAGTAG CTGTGATGAA ATCACATCGT R40 GGACAAGGAA TGGGTAGAAT GCTTATGCAA GCTGTAGAAT CATTAGCTAA AGATGAAGGT 900 TTTTACGTAG CTACTATGAA TGCCCAATGT CATGCTATCC CATTTTATGA AAGTTTAAAC 960 TTTAAAATGA GAGGTAATAT ATTTCTTGAG GAAGGCATCG AGCATATTGA AATGACAAAA 1020 AAGTTAACCT CGCTTAATTA AAAAAAGTTG TATCTATTTT AGAAACA 1067

(2) INFORMATION FOR SEQ ID NO: 112:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 18613 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 112:

AAGACGLALG ATAACAACAA TACGTGTAGT GAAAGATTTT AATCTACATA TTACTGACAA 60 AGAATTCATT GTATTTGTTG GACCATCGGG ATGTGGTAAA TCAACAACAT TACGAATGGT 120 TGCTGGACTA GAGTCTATCA CATCTGGAGA TTTTTATATT GATGGGGAAC GCATGAACGA 180 TGTTGAACCA AAGAATAGAG ATATTGCGAT GGTATTTCAA AACTATGCAT TATATCCACA 240 TATGACTGTT TTTGAAAATA TGGCATTTGG GCTAAAGCTA CGTAAAGTAA ATAAAAAAGA 300 GATTGAACAA AAAGTTAATG AAGCAGCTGA AATATTAGGA TTAACTGAGT ATCTTGGTCG 360 TAAACCAAAA GCGTTATCTG GCGGACAGCG TCAACGTGTT GCTTTGGGCA GAGCTATTGT 420 TAGGGATGCG AAAGTCTTTT TAATGGATGA ACCATTATCG AATCTTGATG CGAAYTLCGA 480 GTACAAATGC GCACAGAAAT ATTGAAATTA CATAAGCGAC TTAATACTAC GACAATTTAT 540 GTTACACATG ATCAAACTGA AGCATTGACG ATGGCTAGTC GAATTGTTGT TTTGAAAGAT 600 GGCGACATTA TGCAAGTCGG CACACCTAGA GAAATATATG ATGCCCCTAA TTGCATATTT 660 GTGGCGCAAT TTATCGGCTC ACCAGCAATG AATATGTTGA ATGCTACAGT TGAAATGGAC 720 GGATTGAAGG TAGGAACACA CCATTTTAAA TTACATAATA AAAAATTTGA AAAGTTAAAA 780 GCTGCTGGCT ACTTAGACAA GGAAATTATT TTAGGTATTC GAGCTGAAGA CATTCATGAA 840 GAACCAATAT TTATTCAAAC TTCTCCAGAG ACACAATTTG AATCTGAAGT AGTTGTATCC 900

55

5

10

15

20

30

35

40

45

	AAATTAGATT	CAAGAACTCA	AGTGATGGCG	AACGACAAGA	TTACACTAGC	ATTTGATATG	1020
	AATAAGTGTC	ACTTTTTTGA	TGAAAAAACA	GGAAATCGTA	TCGTCTAAGG	GGGAGTATTC	1080
5	ATGTCTAAAA	TTTTAAAATG	TATCACGTTA	GCCGTGGTAA	TGTTATTAAT	CGTAACTGCA	1140
	TGTGGCCCTA	ATCGTTCGAA	AGAAGATATT	GATAAAGCAT	TGAATAAAGA	TAATTCTAAA	1200
10 ·	GACAAGCCTA	ACCAACTTAC	GATGTGGGTG	GATGGCGACA	AGCAAATGGC	GTTTTATAAA	1260
10	AAAATTACGG	ATCAATATAC	TAAAAAAACT	GGCATCAAAG	TAAAGCTTGT	AAATATTGGT	1320
	CAAAATGATC	AACTAGAAAA	TATTTCGCTA	GACGCTCCTG	CAGGAAAAGG	TCCAGATATC	1380
15	TTTTTCTTAG	CACATGATAA	TACTGGAAGT	GCCTATCTAC	AAGGCTTAGC	TGCTGAAATC	1440
	AAATTATCAA	AAGATGAGTT	GAAAGGTTTC	AATArGCAAG	CACTTAAAGC	GATGAATTAT	1500
	GACAATAAGC	AACTAGCATT	GCCAGCTATC	GTTGAAACAA	CCGCACTTTT	TTATAATAAA	1560
20	AAATTAGTGA	AAAATGCACC	GCAAACGTTA	GAAGAAGTTG	AAGCTAATGC	TGCCAAACTA	1620
	ACTGATAGTA	AAAAGAAACA	ATACGGTATG	TTATTTGATG	CTAAAAATTT	CTATTTTAAT	1680
	TATCCGTTTT	TATTCGGCAA	TGATGATTAT	ATTTTCAAGA	AAAATGGCAG	TGAATATGAT	1740
25	ATTCATCAGC	TAGGACTAAA	TTCAAAACAT	GTCGTCAAGA	ATGCTGAACG	ATTACAAAAA	1800
	TGGTACGACA	AAGGGTATCT	TCCTAAGGCA	GCAACACATG	ATGTCATGAT	TGGTCTTTTT	1860
	AAAGAAGGAA	AAGTAGGACA	ATTTGTCACT	GGACCGTGGA	ACATTAATGA	ATATCAAGAA	1920
30	ACGTTTGGTA	AAGATTTAGG	AGTAACAACA	TTACCTACAG	ATGGTGGCAA	ACCTATGAAA	1980
	CCATTTCTAG	GTGTACGTGG	TTGGTATTTA	TCTGAATATA	GTAAACATAA	GTATTGGGCT	2040
35	AAAGATTTAA	TGCTGTATAT	CACTAGTAAA	GATACATTAC	AAAAATATAC	AGATGAAATG	2100
	AGCGAAATTA	CTGGACGTGT	TGACGTGAAA	TCATCTAATC	CAAATTTAAA	AGTGTTTGAA	2160
	AAGÇAAGCAC	GTCATGCTGA	ACCGATGCCT	AATATTCCTG	AAATGCGACA	AGTTTGGGAA	2220
40	CCGATGGGCA	ATGCAAGCAT	ATTTATTTCA	AATGGTAAGA	ATCCTAAACA	AGCGTTAGAT	2280
	GAGGCGACGA	ATGATATAAC	GCAAAATATT	AAGATTCTTC	ATCCATCACA	AAATGATAAG	2340
	AAAGGAGATT	AGTTATGACG	AAACGTAACC	CTAAATTAGC	GGCATTATTA	TCTGTTATAC	2400
45	CTGGTTTGGG	ACAGTTTTAT	AATAAAAGAC	CCATTAAAGG	GACGATATTT	TTTATCTTTT	2460
	TCATCAGTTT	TATTTCTGTT	TTTTATAGCT	TTTTAAATAT	TGGTTTTTGG	GGATTGTTCA	2520
	CATTAGGGAC	AGTACCTAAG	TTAGACGATT	CTCGTGTCTT	ACTTGCACAA	GGTATTATTT	2580
50	CTATCTTACT	CGTTGCTTTC	GCAATCATGC	TATATATCAT	таататттта	GATGCATATC	2640
	СТАВТОСТСВ	ስ <i>ር</i> ር አጥተም እአጥ	CCCNATCACC	335T335CC3	TOCONNOCOCO	CTATCCTCC	2700

	TGTAGTTGTA	TTTCCATTAA	TAYYTATGTT	TGGAGTAGCA	TTTACAAATT	ACAATTTATA	2820
	CAACGCGCCT	CCGAGACACA	CATTAGAATG	GGTTGGTTTA	GATAACTTTA	AAACGTTATT	2880
5	CACAATTGGC	GTTTGGCGTA	AAACATTTTT	CAGTGTTATT	ACTTGGACAT	TAGTATGGAC	2940
	GCTTGTTGCA	ACGACACTTC	AAATTGCATT	AGGGCTGTTT	TTGGCAATTA	TTGTAAATCA	3000
	CCCTGTCGTC	AAAGGTAAGA	AATTTATCCG	TACTGTGTTA	ATCCTACCTT	GGGCTGTACC	3060
10	ATCATTTGTG	ACAATTTTAA	TATTTGTAGC	GTTATTTAAT	GATGAATTTG	GTGCGATAAA	3120
	TAATGATATT	TTGCAACCTT	TATTAGGTGT	AGCACCAGCA	TGGTTAAGTG	ATCCGTTTTG	3180
15	GGCAAAAGTG	GCATTAATCG	GCATTCAAGT	ATGGCTTGGA	TTCCCATTTG	TCTTTGCACT	3240
	GTTCACTGGA	GTACTGCAAA	GTATTTCATC	AGATTGGTAC	GAAGCAGCAG	ATATGGATGG	3300
	TGCGTCTAGT	TGGCAAAAGT	TTAGAAACAT	CACATTCCCG	CATGTCATTT	ACGCCACAGC	3360
20	GCCATTGTTA	ATTATGCAAT	ATGCAGGTAA	TTTCAATAAT	TTTAATCTTA	TTTATCTATT	3420
	TAATAAAGGC	GGTCCACCAG	TGTCAGGGCA	GAATGCTGGT	AGTACAGATA	TCTTGATATC	3480
-	TTGGGTGTAT	AATCTGACAT	TTGAGTTTAA	CAACTTCAAC	ATGGGTGCAG	TTGTGTCATT	3540
25	AATTATTGGA	TTTATTGTTG	CTATTGTCGC	ATTTATTCAA	TTCAGACGTA	CAAGTACGTT	3600
	TAAAGATGAG	GGAGGTTTAT	AAGATGACAA	AGAAGAAAA	CATATTAAAA	GCAATCGGTA	3660
	TTTACAGTTT	TATAGCGATG	ATGTTTGTCA	TCATTTTATA	TCCACTACTG	TGGACATTTG	3720
30	GCATTTCCCT	TAATCCAGGT	ACGAACTTGT	ATGGTGCCAA	AATGATACCA	GACAATGCAA	3780
	CATTTAAAAA	TTATGCATTC	TTACTATTCG	ATGACAGTAG	TCAATACCTG	ACTTGGTATA	3840
35	AAAATACGCT	TATCGTAGCA	TCTGCAAATG	CACTGTTTAG	TGTGATATTT	GTCACGTTAA	3900
	CAGCATATGC	TTTTTCTAGA	TATCGCTTTG	TTGGTCGTAA	ATACGGGCTG	ATTACATTTT	3960
	TGAȚITTACA	AATGTTCCCT	GTATTAATGG	CAATGGTCGC	AATCTATATT	TTGCTAAATA	4020
40	CAATTGGATT	ATTAGATTCT	TTATTTGGAC	TAACACTGGT	ATATATTGGT	GGATCAATAC	4080
	CGATGAATGC	CTTTTTAGTG	AAAGGTTACT	TCGATACGAT	TCCAAAAGAA	CTTGATGAAT	4140
	CTGCCAAAAT	TGATGGTGCA	GGGCATATGC	GTATTTTCTT	ACAAATTATG	CTTCCATTAG	4200
45	CTAAGCCGAT	TTTAGCAGTT	GTTGCTTTGT	TCAATTTTAT	GGGGCCATTT	ATGGACTTTA	4260
	TATTACCTAA	AATACTATTA	AGAAGTCCTG	AAAAATTCAC	ATTAGCAGTT	GGATTGTTCA	4320
	ACTTTATTAA	TGATAAGTAT	GCAAATAATT	TCACAGTGTT	TGCAGCAGGG	GCAATTATGA	4380
50	TTGCAGTACC	TATAGCAATC	GTATTCTTGT	TCTTGCAACG	CTATTTAGTA	TCAGGTTTAA	4440
	CAACAGGTGC	GACAAAAGGT	TAGTTTGAAA	TTAGGAGTGG	GGCAGAATTG	ATAAAGAACC	4500

	GGGTGTGGTG	GTATTGCGAA	TGGCAAGCAC	ATGCCAAGTT	TACAAAAAGT	TGAAAATGTT	4620
	GAAATGATCG	CATTTTGTGA	CGTAGACATT	TCGAAAGCAG	CGAGTGCGGC	AGAAGCATAC	4680
5	GGAACTGACA	ATGCAAAGGT	TTATGATGAT	TACAAAGCAT	TGTTAAAAGA	TGACACGATT	4740
	GATGTTATCC	ATGTTTGTAC	GCCAAATGAC	TCGCATTGTG	AAATTACTGT	AGCAGGGTTG	4800
	CATGCTGGTA	AACATGTGAT	GTGTGAAAAA	CCAATGGCTA	AAACGACAGC	AGAAGCTCAA	4860
10	AAAATGATAG	ATACAGCTAA	ATCAACAGGT	AAAAAATTAA	CAATAGGTTA	TCAAAATCGT	4920
	TTCCGAGCAG	ATAGTCAATT	TTTACATCAA	GCAGCGCAAC	GTGGCGACTT	AGGAGACATT	4980
15	TACTTCGGAA	AGGCACATGC	CATTCGTCGT	CGAGCAGTAC	CAACATGGGG	TGTCTTTCTA	5040
	GACGAAGAAG	CTCAAGGTGG	AGGACCATTA	ATCGATATCG	GTACACACGC	TTTAGATTTA	5100
	ACGTTATGGA	TGATGGATAA	TTATGAACCA	GAATCAGTGA	TGGGTTCAAC	ATTCCATAAA	5160
20	TTAAATAAAC	AGCATCATGC	GGCAAACGCT	TGGGGTTCAT	GGAATCCAGA	TGAATTTACA	5220
	GTTGAAGATT	CTGCGTTTGG	ATTTATTAAA	ATGAAGAATG	GAGCGACGAT	CATTTTAGAA	5280
	TCCGCTTGGG	CGATTAATTC	TTTAGAAGTG	GATGAGGCAA	AATGTTCATT	ATCAGGAACT	5340
25	AAAGCAGGTG	CTGATATGAA	AGATGGTCTA	CGTATTCATG	GTGAAGACAT	GGGTACACTT	5400
	TATACCAAAC	ACGTTGAATT	GGAAAACAAA	GGCGTCGACT	TTTATGAAGG	TAATGAAGTG	5460
	GATGAAGCTG	AAGAAGAAGC	AAAAGCTTGG	ATTGATGCAG	TTGTAAATGA	TACTGAACCA	5520
30	GTTGTGAAAC	CGGAACAAGC	AATGGTAGTT	ACAAAAATTC	TTGAAGCGAT	TTATCAGTCT	5580
	GCAAAATCAG	GCAAAGCAAT	TTACTTTGAA	TAACATCATA	CGGTAAGGAG	GCACATCATG	5640
35	ACAAAATTAA	AAGTTGGTGT	GATAGGTGTT	GGTGGTATTG	CACAAGACCG	TCATATTCCA	5700
	GCATTGCTGA	AACTCAAAGA	CACAGTCTCA	TTAGTTGCAG	TACAAGATAT	TAATACAGTG	5760
	CAGATGATTG	ATGTTGCGAA	gCGCTTTAAT	ATACCTCATG	CAGTTGAGAC	ACCTAGCGAG	5820
40	CTGTTTAAAC	TTGTTGATGC	GGTGGTCATT	TGTACACCTA	ATAAATTCCA	TGCTGATCTT	5880
	TCTATAGAAG	CATTGAACCA	TGGTGTCCAT	GTATTGTGTG	AAAAGCCAAT	GGCGATGACG	5940
	ACGGAAGAGT	GTGATCGCAT	GATTGAAGCG	GCTAATAAAA	ATCACAAATT	ATTAACTGTC	6000
45	GCATATCATT	ATCGTCACAC	AGATGTGGCA	ATTACTGCTA	AAAAAGCAAT	TGAATCAGGT	6060
	GTGGTTGGTA	AACCTTTAGT	AGCACGTGTA	CAAGCGATGC	GTAGGCGTAA	AGTGCCTGGC	6120
50	TGGGGTGTTT	TTACCAATAA	AGCGTTGCAA	GGTGGCGGTA	GTTTAATCGA	TTATGGTTGC	6180
50	CACTTGTTAG	ACTTATCTTT	GTGGCTACTA	GGTAAAGATA	TGGTGCCGCA	TGAAGTGCTA	6240
	GGAAAAACAT	ATAATCAATT	GAGCAAACAA	CCGAATCAAA	TTAATGATTG	GGGAACATTT	6300

	GCAAGCATGC	AGTTTGAATG	TTCGTGGTCT	GCAAATATCA	AAGAAGATAA	GGTTCACGTT	6420
	AGTTTATCAG	GAGAAGATGG	CGGTATCAAT	TTATTTCCAT	TTGAAATATA	TGAGCCCCGC	6480
5	TTTGGAACTA	TTTTTGAAAG	CAAAGCTAAT	GTTGAGCATA	ACGAAGACAT	TGCTGGTGAG	6540
	AGACAGGCGC	GTAACTTTGT	CAATGCGTGT	TTAGGGATAG	AAGAGATTGT	GGTGAAACCG	6600
10	GAAGAAGCAC	GCAATGTAAA	TGCCCTTATA	GAAGCGATTT	ATCGTAGCGA	TCTTGATAAC	6660
70	AAGAGCATAC	AACTTTAATG	ATTATCATAT	ATGATACAAA	ATTCTCAATA	TAAAAAGAAG	6720
	GAGTGCTTTT	CAATGAAAAT	AGGTGTATTT	TCAGTATTAT	TTTACGATAA	AAATTTTGAA	6780
15	GATATGTTAG	ATTATGTCTC	AGAATCTGGA	TTGGATATGA	TTGAAGTTGG	AACAGGTGGT	6840
	AACCCAGGAG	ATAAATTTTG	TAAGTTAGAT	GAGTTGTTAG	AAAATGAAGA	CAAGCGCCAA	6900
	GCATTTATGA	AGTCAATCAC	AGACAGAGGC	TTACAAATAA	GTGGTTTCAG	TTGTCATAAC	6960
20	AATCCAATTT	CTCCAGATCC	GATAGAAGCG	AAAGAAGCCG	ATGAAACGTT	ACGTAAAACA	7020
	ATCCGTTTAG	CAAATCTATT	AGACGTGCCA	GTTGTTAATA	CATTTTCTGG	CATTGCAGGA	7080
	TCAGATGATA	CCGCTAAAAA	GCCTAATTGG	CCTGTTACAC	CTTGGCCAAC	AGCCTACTCT	7140
25	GAAATTTATG	ATTATCAGTG	GAATGAAAAG	TTGATACCAT	ATTGGCAAGA	TTTAGCTGAG	7200
	TTTGCAAAAG	AGCAAGATGT	AAAAATTGCC	ATAGAGTTGC	ATGCAGGATT	TTTAGTGCAT	7260
30	ACACCATATA	CAATGTTGAA	GTTACGTGAG	GCTACAAATG	AATATATCGG	TGCTAACTTA	7320
50	GATCCTAGTC	ATCTATGGTG	GCAAGGTATT	GACCCAATTG	CTGCGATTCG	CATATTAGGC	7380
	CAAGCAAATG	CAATTCATCA	CTTCCATGCT	AAAGATACGT	ATATTAATCA	AGAAAATGTA	7440
35	AATATGTATG	GTCTAACTGA	TATGCAACCA	TATGGTAACG	TTGCGACAAG	AGCATGGACA	7500
	TTCCGTACAG	TTGGTTATGG	ACATAGTCCA	TATGTATGGG	CAGATATCAT	AAGTCAACTT	7560
	ATTATTAATG	GATATGATTA	TGTATTAAGT	ATTGAACATG	AAGATCCTAT	TATGTCAGTA	7620
10	GAAGAAGGTT	TCCAAAAAGC	TTGTCAAACT	TTGAAATCTG	TTAATATTTA	CGACAAGCCA	7680
	GCAGACATGT	GGTGGGCATA	ATACGAACTC	GAGGTTAGTC	TGAAGTTTGT	CTGAAGTAAG	7740
	ACTGGTGGCA	GTGTTGAATA	AATGCATATG	TCGCCAAGCC	ATTGCCAAAA	ATTTCACACC	7800
15	TTAAATCAAG	TCATTGTTTG	TAAAGAAGGT	GTACTTTATA	TAAGTATATA	GCGATGGTCA	7860
	TACCCATTCA	CAGTAACAAT	CCTCACCATT	GAAAAGAGTA	TATAACCTTT	TCAATAGTGA	7920
50	GGTATATGAT	AATAAAAAA	GCCTGTTGTC	ACAATGGTCA	TAGACACGAC	ATACTTTAAA	7980
50	GGTTTCTGAA	TATAATATTT	CAGAATGCAC	TTTAAAGATG	GACGTCGATG	TAGACTAAAG	8040
	TCATCACACC	СТТТСАТСТТ	ΤΡΤΙΚΑ ΔΑΤΡΙΤ	СУТТУВТТТС	ጥርጥጥርጥጥር	ТА АТАССТАС	8100

	TAATACACCG	ATTAATTCAG	GAATGATGTT	TAAGAAGTAA	TTTGGGTGTT	TTGTAATTTT	8220
	ATATAATCCA	GATTTAATAA	TAGGATGGTT	AGGTAAAATG	AATAATTTTA	ATGTCCAAAT	8280
5	ACCACCTAAA	GTTTTAATAA	ССАТАААТАА	CATGATATAA	GCAAAGATTA	АТАТААСТАА	8340
	GCCAATACCA	TTTGCAAAGC	TAAATGTATC	TTTATTAATA	AATGCCTCTA	CACCAGCCAA	8400
10	TACATAAATT	AAAACGTGTG	TTATTGCTAA	AAACTTCGAA	TTTTTAACGC	CATATTCAAC	8460
70	TGCACCGTCT	GCTTTTAATT	GTTTTGAGTG	ATTAATAGAT	ATCTTTAAGC	TGACAAGTCT	8520
	GATACAGAAA	AAGATAAGTA	ATATAGATAG	AATCATGATG	TCCTCCGTCA	TTATGTCATA	8580
15	TGTATAAGCG	TTGATTTTGA	CAACATAAAG	TATTTTATAG	ATAAAGCTTG	TCAAATACTA	8640
	TTAACTATTT	ATTAATTTA	GTACATAAAT	ATGTTTCTAA	GTATGTGTTT	ATGTTCAGTA	8700
	TTTTGGATAA	TTTAATAATT	TTAAGGATAT	TAAGCGCTTA	CACCGACGTG	ATATATTTGG	8760
20	CTTAACGAAA	ATGATTGAGG	TGACAGAGAT	GAACTTTTT	GATATCCATA	AGATTCCGAA	8820
	CAAAGGCATT	CCATTATCGG	TACAACGTAA	ATTATGGCTT	AGAAACTTCA	TGCAAGCTTT	8880
	CTTCGTAGTG	TTCTTTGTTT	ATATGGCTAT	GTATTTAATT	CGAAACAACT	TTAAGGCGGC	8940
25	ACAACCGTTT	TTAAAAGAGG	AAATTGGATT	ATCTACATTA	GAACTTGGTT	ATATCGGATT	9000
	AGCATTTAGT	ATCACGTACG	GTTTAGGAAA	AACATTACTT	GGATATTTTG	TCGATGGACG	9060
30	TAACACAAAA	CGTATTATCT	CGTTCTTACT	TATCTTATCT	GCGATTACAG	TTTTAATTAT	9120
	GGGATTTGTT	TTAAGTTACT	TTGGTTCTGT	AATGGGATTA	TTAATTGTAC	TTTGGGGACT	9180
	TAACGGGGTG	TTCCAATCAG	TTGGTGGACC	TGCAAGTTAT	TCAACGATTT	CAAGATGGGC	9240
35	GCCAAGAACG	AAACGTGGCC	GATACTTAGG	ATTCTGGAAT	ACATCACATA	ATATCGGTGG	9300
	TGCCATAGCA	GGTGGTGTTG	CACTTTGGGG	TGCTAATGTA	TTCTTCCATG	GAAATGTTAT	9360
	AGGGATGTTC	ATTTTCCCAT	CGGTGATTGC	ATTACTTATT	GGTATCGCAA	CATTATTTAT	9420
40	CGGAAAAGAT	GATCCGGAAG	AATTAGGATG	GAATCGTGCT	GAAGAAATTT	GGGAAGAGCC	9480
	GGTCGATAAA	GAAAATATTG	ATTCTCAAGG	TATGACGAAA	TGGGAGATCT	TTAAAAAATA	9540
	TATCCTGGGA	AATCCTGTTA	TATGGATTCT	ATGTGTTTCA	AACGTCTTTG	TATACATTGT	9600
45	ACGAATCGGT	ATTGATAACT	GGGCACCGTT	ATATGTGTCA	GAGCATTTAC	ACTTTAGTAA	9660
	AGGCGATGCA	GTTAATACGA	TATTCTACTT	TGAAATTGGT	GCATTAGTTG	CAAGTTTATT	9720
50	ATGGGGCTAC	GTATCAGACT	TATTAAAAGG	TCGTCGTGCA	ATTGTAGCTA	TTGGCTGTAT	9780
50	GTTTATGATT	ACATTTGTTG	TCTTATTCTA	CACAAATGCT	ACAAGTGTCA	TGATGGTTAA	9840
	ביויירערייים	титесътть	CTCCCTTA AT	רשייוים ביירירים. ביירים	ר א ידי א מידי א אי	ттестстате	9900

	CGCGTATCTA TTCGGTGACT	CAATGGCGAA	AGTTGGTTTG	GCGGCTATTG	CTGATCCAAC	10020
	ACGTAACGGT TTAAACATCT	TTGGATATAC	ATTAAGTGGA	TGGACAGATG	TTTTCATCGT	10080
5	CTTCTATGTT GCATTATTCC	TAGGCATGAT	TCTATTAGGA	ATCGTTGCTT	TCTATGAAGA	10140
	AAAGAAAATT AGAAGTTTA	ATAATTTAATA	TAAATCGGAT	TAAAAGTATC	GCCAATCTAT	10200
	TGCAATATAG TTGGCAATCO	TGCCCCGACG	GCATGTGCGT	GAAGAGATGA	AAGATACTGC	10260
10	TTCTACCCTT GCAAATATAT	CATCTCTATG	TCTCGGGGCA	GATCATAATT	CCCTGTTATG	10320
	AAGTATCCTT ATTTGCCCGA	CTTAGGGTGA	CTCAATGAAT	TTACTCCTTA	CAATAAAGAC	10380
15	ATATAGCGGT GTCAATATTC	TAGGGAGTAT	TGTTTTATAT	TTAAACTCTC	TAAAAAGCGG	10440
	ACTGAAAGAA AAGTGAAAA	TTCTCTATCA	GTCCGCTTTT	TCATAGAACA	AAATGGAGGC	10500
	GCCATAATCA TTAGTTATGT	GCTAATCTAT	TTTGCTTGCT	TACAATAATC	ACTTGGCGAC	10560
20	ATTTGTAAAT ATTTTTTAAA	ATGATAGCTA	AACATTTTAT	ACTCTGAAAA	GCCTACTTTG	10620
	TCTGCAATTT CATAGTGTTT	GTAATGTCGA	TCTAACAATT	GCAGAGATTG	TAAAATACGA	10680
	TAGCGATITA AATAATCGAC	: AATTGTAATA	CCAACATGAT	CTTTAAATGT	TCGCATCGCA	10740
25	TACGATTCAC TAACATCGAT	ATGTTGAATT	AAATCTGAAA	CAGECACTTT	CGTTTGATAA	10800
	GATTGCTTAA TTTGATCCAC	: AATCTGGTTT	ACATAATAAT	CATCGTATTC	TACTTTTAAT	10860
	AGTGGTTGGA AGGCATCATO	ACAAGATGCT	AAGCTACGGC	CGTTCTGTGA	TTGTTGCTCT	10920
30	AATAAGGTAC GGACAAGTCT	TCCTAAAATA	ACTTCTAATT	GTGCATGGTC	TACTGGTTTT	10980
	AATAAATAAT CAAGAACATO	ATGTTGAATG	CCGGCTTTCA	TATATTCAAA	GTCATCGTAA	11040
35	CTCGATAATA TGATGACATT	ACAATCTAGA	TGCGCAATAT	CATTGAGTAA	ATCGACGCCA	11100
	TTTTTACGTG GCATACGAAT	ATCAGTAATT	ACTAATTCTG	GCTGATGTTG	TTGAATTAGT	11160
	GATAATGCTT CAACACCATC	TTTAGCAGTG	TATATTGTAT	TGAAATGATA	GTCTCCCCAA	11220
40	GGAATGATTT GCTTTAATCO	TTCTCGAATA	ATTCGTTCAT	CATCACAAAT	AACTACCTTA	11280
	AACATCTACA TTCCCCCTTG	AAAGTGGTAT	TTTATAACAA	ATTAACGTAC	CTTGATTACG	11340
	CTTTGAAAAA ATATGGAGTO	GTGCATGTGA	ACCATATTGA	ATCATTGCTT	TATTGTGTAA	11400
45	ATGATTTAAT CCCAAATGCT	TAGTATCAAA	TACATCATTA	TTAAGAGATT	GGCGTACATA	11460
	TTGCAGGCGA GATGACGACA	TCCCGATACC	ATTGTCGCAA	ACTAAAACAT	GTAAATTCTG	11520
	ACGTGCCAAT GTCAGGCGTA	TAGTAATGTC	CAATGACTCA	GTATCTCTAC	CATGTTTAAT	11580
50	AGCATTITCT ATGAGTGGCT	GAAGCATCAT	TTTACCAATT	GTCTGGTGAC	GCGCTTCTTC	11640
	AGAACTTTCA ATATGGAGCT	TAATCATGTC	ATCAAAACGG	aTGTTTTGTA	TTGCAACATA	11700

	GTAACGTAAC	ATTTGCGATA	ATTGTTGGAC	CACAGTTLGT	GCTAATTTCG	GAGATAACGT	1182
	AATTAAATAT	TGTATTGTTT	GCATCGTATT	GAATAGGAAA	TGAGGCTGGA	ATTGGCGTTC	11880
5	TATTTCCTTT	AACTGAATAT	CACGCAAGCG	ACGTTCTGTA	TGCTCGATAG	AATGGATCAG	11940
	TTGCTCATTT	GATTCAAATA	AATCGTAAAT	АТААТТАТТА	ATTTCTTCTA	GTTCACTGTT	12000
	GTTTTTTAAA	GGCGTATATG	TACCTAGATG	ACGATTTTTG	GCATAGTAAA	TTTTTTGAAT	12060
10	AATCGTTTCG	ATATCTTTTG	TTTGTCGTTT	AGCCATATTA	TCTGCGCTAA	TGAAACCAAA	12120
	TATTACTAGT	AAAACAAGAA	CTACGGCCAT	AACAATTAAC	AACGTGATAC	CATCTTCAAT	12180
15	GTTTTCATGT	ATATCTTTAT	AAATAATGAG	ACGATGGTCA	GCATGGTTTA	ATTTTACAGA	12240
	TTCATTCATA	AATCCGAATT	GTTGTGGTcT	ATACTTTTCA	CCTATAGTAA	AACGGTCATC	12300
	GTTGGCGTAT	AAAATATTGT	CATATTGATC	AmCGATAAGT	GCGAATTGTC	GGTTATCTTT	12360
20	CtTAATTTCA	CTTAAACGTG	GGGTGTTAGC	CATATAAATt	TTAAGCATAT	ATGTACTATT	12420
	TTTGAATTTA	AGCTGATGCG	TTGAAAATAA	ATACATATTT	TTAGTGTTTA	AATGTTCATA	12480
	ATTATTGGTT	ATAAACTGAT	TTGGTCCAGA	TAATTCATAA	TAAAGTGTTG	CGGGCTGTTG	12540
25	GKGTATTAAT	TTTAATAATT	CACGTTTTGT	AGCGGTCACA	TCATGATGAT	TTGyTAAATC	12600
	GAGCTCTTGA	AACGAATTAT	TATGCTGTGT	AATAAATGTC	TGAATCTGCT	TTTCAGTATG	12660
	ATGTAAAGAT	GACTGACTTT	CATCAACATG	TTGATGAATC	GTACGATGCT	CAATCCAAAT	12720
30	ATAGATGGCA	TAGAAGCTTA	CTAGTCCAAT	AATAATGACT	AAAAATACTG	GAAAAATAGT	12780
	AGACnCAAAT	AACGATCGTC	TTAATTGATG	TCTATAAGGT	TTGTATGCCn	TCATTGAATC	12840
35	ATCTCCAAAA	ATTTATGATG	TGGAATATCC	GGTAATTTAG	ATTTCGGTAT	TAAAGGTATG	12900
33	TTCTTAAGAT	TTTCGATAGA	CTGATCGCTT	TGTTCACTAA	CATCCTTTCG	AATTGACTTG	12960
	GCATCGAACT	CTGCAACTAA	TCGTtGTTGT	ACTGAGCGGC	TTGTTAAATA	TTGCACTAAC	13020
40	TTTTTACGCT	TAGGATGAGG	GTGTGCATTT	TTAACTAAAG	CAATrCCATC	AACATTTAAC	13080
	ATTGTTCCTT	CAATTGGATA	AACGATTGAT	ACAGGATAAC	CTTTGTTTTT	CCATGTGCGT	13140
	GCATCTTGTT	CGTAGCTTAG	ACCTGCGTAA	TATTTACCTT	TTGCAACATC	TTCAATGACT	13200
45	TTAGACGTCT	TTGACAGTTG	CATCGCATGG	TTTTGGAATT	GATGCACATC	ACTTACTCGA	13260
	TGATGCATGC	TATAAATAGC	ACGCATATGT	TGATAGCCTG	TCGTTGTTGT	ATTTGGATTT	13320
	GAGTACGCAA	TTTTACCTTT	AAGTATAGGT	TGTAATAAAT	CTTGATAACC	TCGAATCTTA	13380
50	ATATCTCCTT	GTAAATCTGA	ATTCACTACT	ATAACTGTTG	GCATTAATAG	AAAACTAGTA	13440
	ACATATTTAT	TGTTCGAGCG	АТААТССТСТ	<u>እል</u> ምጥርርጥርጥር	ттасасатет	ል ጥርጥጥር አጥልር	13500

	CCACGCTCCG	AAAAATCTTC	GTTATGCAAG	TTTGAAAGCA	GTACTTGAGT	AGATCCGTGT	13620
	TTAATTTCAA	TTTTGACATG	CTCTTGTTTT	TCAAATTCAT	TTAAAATTGG	ACGAATCAAG	13680
5	TTTGATTGAT	ACGGAGAATA	AACTGTTAAT	ACATTTTTAT	CGGATTCAGA	GTGACGCGTA	13740
	TTAGCGCATG	CTGaTAAAAA	AATGAGAAAT	AATAGCAAGA	TATAAATTTT	TGATTTCATG	13800
10	ATATCCCATC	AATTCTATGT	ATATTTTAAT	ACAATAATTT	TAGCAATAAA	TGACGCATAA	13860
	GTAATGTTAA	ATATTTAGAA	ATGTTTATAG	ATGACTTGTT	AAGACGTTGC	AAATGTTGTG	13920
•	ATAGCACAAA	ATTTTTGTTT	GTCAAGACGA	TTTACCGAGG	CTGTAAAATC	AAACTGTTAT	13980
15	ATTTTATTTG	TAGCTGTTAT	ATAAAAATCG	GCAAGATATT	GAACGGTTCA	AAAGTGAATT	14040
	TTTACGTCAA	TAAAAGTATT	TAATCCAGTC	TCTTCATATA	TAAAAGTAAA	TCTTTCTAAG	14100
	TGTTGATTTA	ACGCTTATCA	ACAATCATTT	TTTATAAACA	AATATATACT	CCTAAATTAA	14160
20	CTTTTAAAGC	AATGAAAATA	GTGAACATTA	TAACTGTTGT	GTAACAGAAT	GCAATTAGCA	14220
	TATTACTGTT	ACACAAATTA	GTACAGTTTC	TATGTTTTGA	CATACATTTG	ATGAAAATTG	14280
	TACATAATTT	ATGTGAAAAA	AATCACAACA	AACATGCTAC	AATGACTATG	AAAACGTTAA	14340
25	CATAGCATTT	CAAATTCACA	ACATTATACA	GATGGAGGCG	TTTAGTATGT	TAGAAACAAA	14400
	Taaaaatcat	GCAACAGCTT	GGCAAGGATT	TAAAAATGGA	AGATGGAACA	GACACGTAGA	14460
30	TGTAAGAGAG	TTTATCCAAT	TAAACTACAC	TCTTTATGAA	GGTAATGATT	CATTTTTAGC	14520
30	AGGACCAACA	GAAGCAACTT	CTAAACTTTG	GGAACAAGTA	ATGCAGTTAT	CGAAAGAAGA	14580
	ACGTGAACGT	GGCGGCATGT	GGGATATGGA	CACGAAAGTA	GCTTCAACAA	TCACATCTCA	14640
35	TGATGCTGGT	TATTTAGACA	AAGATTTAGA	AACAATTGTA	GGTGTACAAA	CTGAAAAGCC	14700
	ATTCAAACGT	TCAATGCAAC	CATTCGGTGG	TATTCGTATG	GCGAAAgcAG	CTTGTGAAGC	14760
	TTAÇGGTTAC	GAATTAGACG	AAGAAACTGA	AAAAATCTTT	ACAGATTATC	GTAAAACACA	14820
40	TAACCAAGGT	GTATTCGATG	CATATTCTAG	AGAAATGTTG	AACTGCCGTA	AAGCAGGTGT	14880
	AATCACTGGT	TTACCTGATG	CATACGGACG	TGGACGTATT	ATCGGTGACT	ATCGTCGTGT	14940
	AGCTTTATAT	GGTGTAGATT	TCTTAATGGA	AGAAAAAATG	CACGACTTCA	ACACGATGTC	15000
15	TACAGAAATG	TCAGAAGATG	TAATTCGTTT	ACGTGaAGAA	TTATCAGAAC	AATATCGTGC	15060
	ATTAAAAGAA	TTAAAAGAAC	TTGGACAAAA	ATATGGTTTC	GATTTAAGCC	GTCCAGCAGA	15120
-0	AAACTTCAAA	GAAGCAGTTC	AATGGTTATA	CTTAGCATAC	CTTGCTGCAA	TTAAAGAACA	15180
50	AAACGGTGCA	GCAATGAGTT	TAGGTCGTAC	ATCAACATTC	TTAGATATCT	ATGCTGAACG	15240
	TGACCTTAAA	GCAGGCGTTA	TTACTGAAAG	CGAAGTTCAA	GAAATTATTG	ACCACTTCAT	15300

	AGACCCAACT	TGGGTAACTG	AATCTATCGG	TGGTGTAGGT	ATTGACGGAC	GTCCACTTGT	15420
	TACGAAAAAC	TCATTCCGTT	TCTTACACTC	ATTAGATAAC	TTAGGTCCAG	CTCCAGAACC	15480
5	AAACTTAACA	GTATTATGGT	CAGTACGTTT	ACCTGACAAC	TTCAAAACAT	ACTGTGCAAA	15540
	AATGAGTATT	AAAACAAGTT	CTATCCAATA	TGAAAATGAT	GACATTATGC	GTGAAAGCTA	15600
	TGGCGATGAC	TATGGTATCG	CATGTTGTGT	ATCAGCGATG	ACAATTGGTA	AACAAATGCA	15660
10	ATTCTTCGGT	GCACGTGCGA	ACTTAGCTAA	AACATTACTT	TACGCTATCA	ATGGTGGTAA	15720
	AGATGAAAA	TCTGGTGCAC	AAGTTGGTCC	AAACTTCGAA	GGTATTAACA	GCGAAGTATT	15780
15	AGAATATGAC	GAAGTATTCA	AGAAATTTGA	TCAAATGATG	GATTGGCTAG	CAGGTGTTTA	15840
	CATTAACTCA	TTAAATGTTA	TTCACTACAT	GCACGATAAA	TACAGCTATG	AACGTATTGA	15900
	AATGGCATTA	CATGATACAG	AAATTGTACG	TACAATGGCA	ACAGGTATCG	CTGGTTTATC	15960
20	AGTAGCAGCT	GACTCATTAT	CTGCAATTAA	ATATGCACAA	GTTAAACCAA	TTCGTAACGA	16020
	AGAAGGTCTT	GTAGTAGACT	TTGAAATCGA	AGGCGACTTC	CCTAAATACG	GTAACAATGA	16080
	CGACCGTGTA	GATGATATTG	CAGTTGATTT	AGTAGAACGC	TTCATGACTA	AATTACGTAG	16140
25	TCATAAAACA	TATCGTGATT	CAGAACATAC	AATGAGTGTA	TTAACAATTA	CTTCAAACGT	16200
	TGTATACGGT	AAGAAAACTG	GTAACACACC	AGACGGACGT	AAAGCTGGCG	AACCATTTGC	16260
	TCCAGGTGCA	AACCCAATGC	ATGGCCGTGA	CCAAAAAGGT	GCATTATCTT	CATTAAGTTC	16320
30	TGTAGCTAAG	ATCCCTTACG	ATTGCTGTAA	AGATGGTATT	TCAAATACAT	TCAGTATCGT	16380
	ACCAAAATCA	TTAGGTAAAG	AACCAGAAGA	TCAAAACCGT	AACTTAACTA	GTATGTTAGA	16440
35	TGGTTACGCA	ATGCAATGTG	GTCACCACTT	AAATATTAAC	GTATTTAACC	GTGAAACATT	16500
55	AATAGATGCA	ATGGAACATC	CAGAAGAATA	TCCACAGTTA	ACAATCCGTG	TATCTGGTTA	16560
	CGCTGTTAAC	TTCATTAAAT	TAACACGTGA	ACAACAATTA	GATGTAATTT	CTCGTACATT	16620
40	CCATGAAAGT	ATGTAACAAA	ATTTAAGGTG	GGAGCACTAT	GCTTAAGGGA	CACTTACATT	16680
	CTGTCGAAAG	TTTAGGTACT	GTCGATGGAC	CGGGATTAAG	ATATATATTA	TTTACACAAG	16740
	GATGCTTACT	TAGATGCTTG	TATTGCCACA	ATCCAGATAC	TTGGAAAATT	AGTGAGCCAT	16800
45	CAAGAGAAGT	CACAGTTGAT	GAAATGGTGA	ATGAAATATT	ACCATACAAA	CCATACTTTG	16860
	ATGCATCGGG	TGGCGGTGTA	ACAGTCAGTG	GTGGCGAACC	ATTGTTACAA	ATGCCATTCT	16920
	TAGAAAAATT	ATTTGCAGAA	TTAAAAGAAA	ATGGTGTGCA	CACTTGCTTA	GACACATCGG	16980
50	CTGGATGTGC	TAATGATACA	AAAGCATTTC	AAAGGCATTT	TGAAGAATTA	CAAAAACATA	17040
	CAGACTTGAT	ATTATTAGAT	ATAAAACATA	TTGATAATGA	САААСАТАТТ	AGATTGACAG	17100

	TATGGATTCG	ACATGTCCTT	GTGCCTGGTT	ATTCTGATGA	TAAAGACGAT	TTAATTAAAC	17220
	TAGGGGAATT	TATTAATTCT	CTTGATAACG	TCGAAAAGTT	TGAAATTCTG	CCATATCATC	17280
5	AGTTAGGTGT	TCATAAGTGG	AAAACATTGG	GCATTGCATA	TGAATTAGAA	GATGTCGAAG	17340
	CGCCCGATGA	TGAAGCTGTT	AAAGCAGCCT	ACCGTTATGT	TAACTTCAAA	GGGAAAATTC	17400
10	CCGTTGAATT	ATAAATACAA	TTCAGACCGA	AAAGAAAGCA	TATGCAACTT	CAAGAGTGAA	17460
10	GGGGCATATG	CTTCTTTTTC	AATTGAGTAT	TGAGTATTAG	CAAGACGTAG	TAAGTATATG	17520
	AGACAACTTC	TACAATGGTT	GAAGGAAGAC	GTTTTTGTAA	GTAGCTATGC	TGATAAAGAA	17580
15	TGTGATGTCT	TGTTAAAGGT	GGGGTTCCAA	TATCATCATT	TAGCTGATGT	TGAATGGGTT	17640
	ATTATTTGCT	ACTTGCATAT	GAATATGAGT	CTTTTCAAAT	TTTTATTGAC	CCTGAGTAAT	17700
	GAAAAATATT	AAGATGAAAC	TTAATATTAA	AgCAATGCGG	AGCGTGATTA	TGAAGAGAAT	17760
20	TAGTAAAGAT	ATATGGGCAG	TATTTAAATT	ACTGTATCAA	AATAAAGGGC	GTTTTAGCAT	17820
	TAATGCCTTA	CTATTGCAGT	TAATCATGAT	TTTTATTAGT	AGTACATACT	TAATTTTACT	17880
	ATTTAATATG	ATGTTAAAAG	TAGCTGGCAA	AGCCAACTTA	CGATTAACAA	TTGGACGGAA	17940
25	ATCGTTAGTC	ATCCCGCCAG	TGTGATACTT	CTTATTATAT	TCATATTAAG	TGTTGCCTTT	18000
	CTGATTTATG	TAGAGTTTTC	ATTGTTAGTT	TATATGGTTT	ATGCCGGCTT	TGATCGACAG	18060
	ATTATTACAT	TTAAATCCAT	TTTTAAAAAT	GCCTTTGTAA	ATGTGCGTAA	ACTCATAGGT	18120
30	GTACCAGTTA	TTTTCTTTGT	CATTTATTTA	ATGTTAATGA	TACCCATTGC	CAACCTAGGA	18180
	CTAAGTTCAG	TATTAACAAA	AAATATTTAC	ATACCTAAAT	TTTTAACGGA	AGAACTTATG	18240
35	AAAACGACGA	AAGGTATAAT	CATTTACGGT	ACCTTTATGA	TTGCTGTATT	TATATTAAAT	18300
	TTTAAATTAA	TATTTACTCT	ACCGTTAACG	ATTTTAAACC	GCCAGTCGTT	ATTTAAAAAT	18360
	ATGAGACTAA	GTTGGCAAAT	TACGAAGCGA	AATAAGTTTC	GGCTTGTTAT	AGAAATAGTT	18420
40	ATATTAGAAC	TCATCATTGG	TGCGATTTTA	ACATTAATTA	TTTCAGGAGC	AACATATCTT	18480
	GCTATTTGTG	TAGATGAAGA	AGGAGATAAG	TTTTTAGTCT	CATCAATTTT	ATTTGTTGTA	18540
	TTGAAAAGCG	CATTGTTCTT	CTATTATKTA	TTtACGAAAT	TATCATTAAT	CAGTGTGTTA	18600
45	GTACTGCACT	TAA					18613

(2) INFORMATION FOR SEQ ID NO: 113:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1214 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi)	SEQUENCE	DESCRIPTION:	SEO	ID	NO:	113:
------	----------	--------------	-----	----	-----	------

	AAAGTTTTAA	AAGGGGTGAG	ATACTTGGCG	AATAATCCAT	TCCAGCTTTG	CGTTTAAAAG	60
5	GAATTATACT	TGCCATTGTC	GGTGCTTGTT	TATGGGGATT	AGGTGGTACT	GTTTCTGATT	120
	TCTTGTTCAA	ATATAAGAAT	ATTAATGTCG	ATTGGTACGT	CACTGCTCGA	CTTGTAGTCA	180
	GTGGTGTTTT	CTTACTTATT	ATGTACAAAA	TGATGCAACC	CAAACGTTCA	ATATTTAGCG	240
10	TATTCCAAGA	TCGACGTATG	TTAGGCAAAT	TACTTATCTT	CAGTATACTG	GGCATGTTAG	300
	TAGTACAATA	TGCTTATATG	GCATCTATTA	ATACAGGTAA	TGCTGCGATT	GCAACATTAC	360
15	TACAATACAT	TGCGCCAGTT	TATATTATTA	TTTGGTTTGT	CATAAGAGGC	GTTGCAAAAC	420
	TAACATTATT	TGATGTGCTT	GCTATTATCA	TGACACTATT	AGGAACATTT	TTATTATTAA	480
	CAAATGGTTC	ATTTTCTAAT	TTAGTCGTCA	ATCCTGCAAG	TTTATTCTGG	GGTATTTTAG	540
20	CTGGTGTAGC	ACTCGCTTTT	TACACAATTT	ATCCTTCAGA	CCTACTTAAC	CGCTTCGGTT	600
	CGATTCTAAT	TGTCGGGTGG	GCAATGCTTA	TTTCTGGTGT	TGCGATGAAT	TTACGCCATC	660
	CAATTTGGCA	CATTGATATC	ACTAAATGGG	ACATATCAAT	TATATTATTT	TTAATCTTTG	720
25	GTATTATCGG	TGGTACCGCA	CTCGCATTTT	ATTTCTTTAT	CGACAGTTTA	CAATACATAT	780
	CAGCGAAAGA	AACAACATTA	TTCGGAACTG	TTGAACCTGT	CGTAGCCGTT	ATCGCAAGCA	840
	GTCTATGGTT	ACATGTGGCA	TTCAAACCAT	TTCAAATCGT	AGGCATCATT	CTTATTATGA	900
30	TTTTAATTTT	ATTACTATCA	CTTAAAAGAC	AACCTGAAAC	ATTAGATGAA	TAAGAAAACT	960
	CTGATAATCA	CTTTAGCAAG	TAACTATTAT	TTAACAACGT	AGTTACCTTA	TAGGTGATAT	1020
35	CAGAGTTTTT	TATTTTAGTT	AATAATATTT	TTCACTTGGT	ATAAAAAaGC	GTCGTCGCTC	1080
55	TGGTAATCGG	AAATACTGGA	ATAAAATATG	GAATTGGGTA	ATAATCCCAG	GTAnTAAAAG	1140
	TCCATGTTCC	GATANCCTNT	CCGCAnCTCC	AACCAAATTT	GCCGATAAGG	TTCCAAAAGG	1200
40	CATCCTGGGG	GTAC					1214

(2) INFORMATION FOR SEQ ID NO: 114:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9458 base pairs

(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 114:

ATTTTGGTTT CATTCACGAT GGGGTnATAC AGCAAACACA nCTAAAATAA CTATCAATAG 60

55

	CTTAGACAAT	AAAAAATATG	CCACTACAAT	CGCTAATATT	ACGATTAAAA	AAGAAGCGTT	180
	AACGATTACT	TTCATCGTTG	TTCTATCTCT	GAACATCATA	TTAAAGACAA	CTAGACTAAT	240
5	TGATAATGAA	ACAGCAAAAA	AAGTAATAGC	TAACACTAAT	TTCATCATAA	ATAGACAGAC	300
	TAAACCTATG	ACTAATAATG	TATTAGAAAT	TACAGCTGAC	GTTTTTAACA	TTCTCGaATT	360
	AATATGCACT	CACCCTTTTT	ATTTAAATAA	CTTACATAAT	CATAATAATA	CATGATGTTT	420
10	CATAGGCCTG	TCGATGATTG	ATTCACAATA	GCACGTGATT	TTTTTGTTTT	TCAATATTAT	480
	TCATTTATTC	CATCAAAAAC	ACCCTTTTTA	ATTTTTACAA	AAATTAAAA	AAGTGCTCCT	540
15	ACACTGCTTG	CATGTAGAAA	CACTTTTTCA	TTGTAATGTT	ATTCTTCTCG	AGACATACCT	600
	TTTAGCATAT	TAAGCATGTA	TGTTAAACTA	CGGTTCATGT	CGTCATCTTT	CAATACGCCC	660
	AATAGACTTC	TTATAGTTGT	CTTAGCATTT	GGACTCGCTT	GATTGGCAAC	GTGTAATCCT	720
20	TTATTAACTT	TATTTAGGAA	GTCGCTTAAA	TCTGATACAT	TGAGTTCACC	TAATAAAAAT	780
	ACCATTGAAG	CCATATTAGA	TAATAGCCCT	GTATAAATAT	CTTTATTAAG	TTCAACTGCA	840
	AATTTATTTA	TGATGACTTG	ACGTCCTCGA	ATTGCACCAT	TTAAAGCATC	TAATAGTTTT	900
25	GCATCATCTA	ATGTTTTAAT	AAGCTTGATT	GCTTTTAATA	TACTATCTTT	ATTCGCTGCA	960
	ATTGCCTCTG	TAACTTCATT	TAAACTTTCT	AACTTAATTT	GTTCTTCTGA	TTTTTCTAAG	1020
	CGTCTAATTT	TAGAAGATAT	TCTCTCAGCC	ATTATTTATC	CACCTGATTT	CCCGGGAAAA	1080
30	CATAATCTGA	ACGTTCCCAT	TTTTTCTGTA	CTTGAACACT	GTACTGCGGT	TGACGTTTTT	1140
	TATTGACACG	GAAATTATTA	GGGTTCAACG	GTGACTTACC	ACGTTTCGTA	ATTACCTCCA	1200
35	AACGACAGCT	AGTACGTTTA	TAAGATGGTG	TATCCGTGTA	TTGATCAACA	TCACTATTAG	1260
	TTAATAAGTT	AATTGCACCT	AGATCTCCAT	TTTCCATCGC	aTCaTTATTT	AATGGAATAT	1320
	AGATTTCTTT	ACCTTTAACA	CGATCTGTCA	CGTGAACTTG	TAATACCGCT	TCTCCTGTyT	1380
40	CAGÀAATCAG	CTTAACTTCT	GCACCTTCAT	GAATGCCTCT	ATCTTCAGCA	AGCTCTGGAG	1440
	AAATTTCAAC	AAATGCACGT	GGCACTTTGT	ATTTAATCAT	TGGTGTTTGA	TAAGTCATAT	1500
	TACCTTCATG	GAAGTGCTCT	AACAATCGAC	CATTGTTTAC	ATGAATATCA	TAAATTTCAT	1560
45	CTTGCTTAAA	GTAATTATCA	AATGATAATG	GGAATAATTT	TGCTTTACCA	TTATCAAAAT	1620
	TGAATCCTTC	TAAGTATAGA	ATAGGCTCAT	CAGTACCATC	AGGTTGTACT	GGCCATTGTA	1680
	AACTATTGAA	TCCTTCTAAA	CGATCATAAC	TTACCCCAGC	ATATAGAGGT	GTTAAGCGTG	1740
50	CTACTTCATC	CATAATTTCA	CTAGGATGCT	TGTAATTCCA	ATCAAATCCT	AATCTATTAG	1800
	CAATTGCTTG	GAAAATTTTC	CAGTCAGGTT	TTKAATCACC	AAGAGGTTCT	AATGCTTGGT	1860

	TTGCTGGCAA	TACAACATCT	GCGTATGTTG	CTGTGAATGT	TAAAAATTCA	TCTTGGACTA	1980
	CCATGAAATC	TAATTTTTCA	AACGCAGCTT	GTACAAAATT	AATATTTGAA	TCCACAATAC	2040
5	CCGTATCTTC	ACCATATAAG	TACAATGAGT	GTACTTCTCC	GTCATGTATA	CCTTCTACCA	2100
	TTTCATGATT	ATCTTTACCA	GCTTTTGGAT	TCAATTTAAC	GCCATATTCT	TTTTCAAATT	2160
10	TAGCGCGAAT	ATCATCCGCT	TCAATACTTT	GATAACCAGT	AATCTTATCA	GGCATACTTC	2220
70	CCATATCACT	ACATCCTTGA	ACATTATTAT	GTCCACGTAA	TGGATACGCA	CCAGTACCAG	2280
	GACGACGATA	ATTACCTGTT	ACTAATAATA	AGTTTGAAAT	CGCTGTACTT	GAGTCACTAC	2340
15	CAATGTCTTG	TTGTGTAATA	CCCATTGCCC	AACAAATTAC	AACAGATTCA	GCTTTAGCAC	2400
	ATTCTTCAGC	AAATTTAATC	AATTCTGATT	CAGGAATACC	TGTTGCTTCT	TCAGCAAAAG	2460
	CCATTGTAAA	TGTTTCTAAT	GATTTGTAAT	ATTCATCAAA	ATCATCTACC	CACTCATCAA	2520
20	TAAATGCTTT	ATCGTGTAAA	TCATGATCAA	TAATATACTT	AGTCACTGCA	CTTAACCACG	2580
	CTAAATCCGT	ACCTGGTTTA	GGTTGATAAA	AACGATCCGC	ACGTTCTGCC	ATTTCATGTT	2640
	TTCTAATATC	AAATACATGT	ATTTTTTGAC	CAAATAATTT	TTGTGCACGT	TTCATGCGTG	2700
25	ATGCGATAAC	TGGATGAGCT	TCGGCTGTAT	TAGTACCTAT	CAATACAGAC	ATTGCCGCTT	2760
	TTTCTAAATC	TTCAATACTA	CCTGAGTCAC	CGCCGTGTCC	AACCGTTCTA	AATAAGCCTT	2820
	TTGTTGCAGG	TGCTTGGCAA	TATCTTGAAC	AGTTATCAAC	GTTATTTGTG	CCAATAACTT	2880
30	GTCTTGCTAA	TTTTTGCATT	AAATACGATT	CTTCATTCGT	CGCTTTAGAA	GAAGAAATGA	2940
	ATGATAGTGC	ATCTGGGCCA	TGCTTTTCTT	TAATAGCTGT	AAAATTATCT	GCAATGACGT	3000
35	TTAAAGCTTC	ATCCCATTCT	ACTTCATGGA	ACTCACCATT	TTTCCTTACT	AGTGGTTTAG	3060
	TTAATCGTTG	ATCTGAATTA	ATATGTCCCC	ATGAAAACTT	ACCTTTAACA	CAAGTCGCAA	3120
	TTTŢĀTTTGC	TGGAGAATCA	TGTGATGGTT	GTACTTTTAA	AATTTCTCTA	TCTTTAGTCC	3180
40	AAACTTCAAA	TGAACAACCC	ACACCACAAT	AAGTACACAC	TGTTTTAGTT	TTCTTAATAC	3240
	GCTCTTTACG	CATTTCTGCT	TCTGAATCTG	AGATTGCAAA	TAGTGGACCA	TAACCAGGTT	3300
	CTGCTTTTTT	AGTTAAATCA	ATCATTGCTG	CTAATGAACC	AGGTTCCGTA	TCAGTCATAT	3360
45	AACCCGCATT	ACCTTCCATA	TTCACTTCCA	TCATGGCATT	ACATGGACAT	ACCGTCGCAC	3420
	ATTGACCACA	AGATACACAT	GAAGACTCAT	TAATCGGTAC	ATCATTATCC	CAAATAACAC	3480
	GTGGATGTTC	ACGATCCCAA	TCAATTCTAA	TAGITTCATT	CACTTCGATA	TCTTGACATG	3540
50	CTTCTACACA	ACGCCCACAT	AAGATACATT	GATTTGGATC	ATAACGATAA	AATGGGCCGT	3600
	AATCTTTTTC	GTATGGCTTC	TCTTTATATT	САТАССТТТС	ATGCTGAAGC	CCCCATGCAT	3660

	TATGCTTTTC	TAAAATTCGA	TCAAGCGCTT	CTTTTTGAGC	ATCTTTCACA	TCATTGTTCA	3780
	CAGTATTTAC	AGTCATTGGA	CGATCAATCA	CCGTACTACA	TGAACGTTCA	ATTTTACCGT	3840
5	CAATCTCAAC	AGTACATGTA	TCACATGTTT	GAATTGGTCC	CATCGACTCG	TTATAACAAA	3900
	TTGAAGGTAC	AAAAGTATCT	TGTGATTTAA	TAAATTCAAG	TAAATTCGTA	CCTGGTTCTA	3960
10	CAAGATAATC	TTTTCCATCA	AGTGTAACCA	CCAAATGTTC	TTGCATATTA	CTCACCCCGT	4020
,,,	CTATATATAT	TTTCCGTAAA	TGACTTTTAA	TAAATTGCTC	ATATCCACCT	AAAATAACGA	4080
	TGCCCCACAC	ATCTTTCAGA	TAGAATTAAT	TTAATTGTAT	TACTTTATGT	ACTAGTTGTT	4140
15	AAGTAAAATT	TTGTATTTTG	CCTTTTTACA	ATCATTTTTA	TTTGAAATAT	TTTGCGCGAA	4200
	ATTAAATCAT	CTTTTTGTTT	AATTGAAAAT	AATTATCATT	ATTAGTTTTC	CAATTATCTG	4260
	TTTCACGCTT	TTTGCCATAT	CTTTCACAAC	CTTATTAATG	ACAATATTTA	ATAATCACCT	4320
20	CACCTAAAAA	TCGTTATACT	TAAATTTA	ACCCTTTTTC	TGAAAATTAA	TAACCCAAGT	4380
	TTGATAAATA	TCTACTATCA	TTTAGAAGGT	AATATTTATC	AATTAAATTTA	ATTTGTAATG	4440
	GATTAATTTA	TAAAAATCAA	ATCAGGCATT	ATAAAATA	GCCCATAAAT	ACAAAGTGTT	4500
25	ATCACCTTCT	ATTTACGGGC	TATTAGTTCT	ATTCGTTATT	CTATTTACAG	ATCATTCTAT	4560
	CTAATTAATT	TGTGTACAAT	TTTGATAACT	TATTTTCCCT	TAGTTTACTA	CTCTAGATTA	4620
	TCTTTTAATA	ACTTAGTACT	TTCAGCTTTT	GACTGCTCAC	TAGGAATGAA	GTAGTACAAT	4680
30	CCGTCACTTT	GAATGCCGCC	TTGACCACTC	AATTGATGTT	TATTAATCGT	GTCATTAGCA	4740
	TCTTTATAAT	TGCTTCTAAT	CGTATTCAAA	TCACCTAATG	TTAAATCTGT	TTTAACATTA	4800
35	TTTTGAATTT	CATTCATTAG	ACTATTAAAA	TGTGTAATCG	ATGATGGGCT	TGCAATCTTA	4860
	TTGGCCATCG	CTTCAAGCAC	AATTTGCTGA	CGTTGTTGTC	GACCAAAGTC	ACCACCAGCA	4920
	cciiciicii	TACGACTTCT	AATAAACTTC	AATGCTTGAT	CACCATTTAC	ATGTGTCTGC	4980
40	TGTCCTTTTG	TAAAACGAAC	ACCATCAACA	GTGAATGTAT	CATTACTTAC	TACATCAACA	5040
	CCGCCGATGC	TATCTATCAT	ATTATGCAAA	CCATCCATAT	CGATTGTCGC	ATAATGATCA	5100
	ATTGGCACAT	TCATTAATTT	TTCAAGTGAT	TTAACAGCCA	TATTTGGTCC	ACCATATGCA	5160
45	TAGGCATGTG	CAATTTTTTC	AGTAGTACCA	CGGCCAACAA	TTTCCGCTCT	TGTATCACGC	5220
	GGTATACTTA	CTATTTCAGT	TTTCTTCGTT	TTAGGGTTGA	TAGATAAAAT	CATAATACTA	5280
	tCACTACGCT	CTCCGCCACC	CTTTTTCTTA	CGATCAGCAT	CTGAATCGAC	ACCAAATAAA	5340
50	GCGATTGTGA	ATGGATCACC	ATCGTTTAAA	CTCACTTTTT	TATCTCTTAA	TTCTGAATGA	5400
	TTCCC ATCT A	NOCCN TOTOTO	מ חשרו א יויירויירויירויירויירויירויירויירויירוי	ССРСТРАТА	A A DUTTTT A C.C.	ACCTACATAC	5460

	GGTAGGCTCA	TTTTACTTTT	AGACGAACGT	TTCAATCCCA	CCACTCCTTT	ACTATTCCTT	5580
	ACATACTTTG	TCTGTTTTCT	CTATTTATTA	TATAGTAAAA	TAATTTTTTT	ACTATACTTC	5640
5	TGTAGACGTA	TAACTATTTT	TTATCATTTT	TTATCTCTAG	AGAATATCTA	TCTGTATTTT	5700
	TGATAACCAC	CATTTGCATT	TAAAATTTTA	AGTACCGTTT	CATGACATGC	TTTATTACTT	5760
	ATAATAAAAG	GTGCACCCTT	TAAATGATCA	ATTGCCTTAC	CATCTAAAGT	CGTCATTTTT	5820
10	AGATTCAATA	GTTCTGCAAA	TAAAAACTGT	GCAGCAATGT	CCCAAGGTTT	AGGATTTGTA	5880
	TTAATATGTG	CCCCAAATTG	ACCTTTTGCC	ACTCGCATAG	AATCTAATCC	GCAAGCACCA	5940
15	ACTAAACGAT	AACTAAATGA	GGCGTCAAAT	AAATCTTGCA	CCGTATCTAG	ATTCATCACT	6000
	TGTGCATTAA	ACGATATAAT	AGCGTCTTCC	AATTTTAACG	ATGGTGGTTC	TTCCATCTTA	6060
	ATTCCATTAC	AAAAAGCACC	TTCTCCTCGT	ATTGCTTTAT	AAAGCTTTTT	ATGCGGATAA	6120
20	TCATATACGT	ACGATAACAT	TGGTTTACCT	TCATAAAAAT	ACGCCAATAT	AATACAATAA	6180
	TCTTCTTGCT	GTTTTACTAA	ATTGGCAGTT	CCATCAATGG	GATCCATAAT	CCATAAATGA	6240
	TTAATTTCAT	TCGTAATCAT	TTCATTACTT	TTTTCTTCCG	CTAATAGTTG	GTGTTCCGGA	6300
25	AAATGTGTTG	CTAAAAATTG	TTGGAATTGT	TGTTGAATCT	GTTTATCTAC	ATTTGTAACT	6360
	AAATCAAATC	GATGACGCTT	AGTTTCTGTA	GTCATTTCCA	TAATTAATTG	CGGAATAACA	6420
	TTGTCTATTT	GTTTCAACCA	CGAACATATT	AACTTATCTA	TTTGCTGTAA	TGTTTTATCT	6480
30	GTCATTTCGT	CCACCACTTC	TCATATCATT	ATCATTTTAT	TATTACCCTA	TATTAAAAGA	6540
	ATCAACAATA	CAACTGAAGA	CTTCTTCATT	TTATGCATAA	AAAAATCGGC	TAGTCACGTG	6600
35	CTAGCCGACA	AATAGAAAGG	AAAGTAAGTA	ATAAATATTG	AAGATGTTGT	GATGTAACTT	6660
33	GAACGATTAA	AAGCTATCTG	TTATATAGCT	CTACCCCTTT	GTTTAATCGC	TCCCCCTGTT	6720
	ACAAGTAATA	TCATAGCACA	ATCTTTTTTA	AAATGTAAGC	GTTTTCCACA	AAATTTTTAC	6780
40	GATTTTTTTA	AAAAGATATT	GAAAATGTCC	TCATTGTCAC	TCTTATGTTA	TACTTTGTGT	6840
	AATATATCAT	CTTTTAGGAG	GTGGCTGTCA	TGAATAAAGC	TGAAAGGCAA	AATTTAATAA	6900
	TTACTGCAAT	TCAACAAAAT	AAAAAATGA	CCGCTTTAGA	ATTAGCTAAA	TATTGCAACG	6960
45	TATCCAAACG	CACAATTTTA	AGAGATATTG	ATGATTTAGA	AAATCAAGGT	GTTAAAATTT	7020
	ATGCGCATTA	TGGGAAAAAT	GGTGGTTACC	AAATACAACA	AGCACAATCT	AAAATTGCAT	7080
	TAAACTTATC	TGAAACACAA	TTATCAGCCT	TATTTTTAGT	GCTTAATGAA	AGTCAGTCGT	7140
50	ACTCGACATT	ACCATATAAA	AGCGAAATCA	ACGCAATTAT	AAAACAATGT	TTAAGTCTTC	7200
	CACAAACACC	CTTTN NC N N N N	ש א א מייייייייייייייייייייייייייייייייי	CCATCCACTT	ת א מדויים אידי אידיים	TOTOTOC A TOC A CA	7260

	ATGTGATGTT	AGTAGATCAT	AGGGTTGATG	ATAATATTAA	AGCTGAAAAC	GTTATATTTA	7380
	TTGGCCTTTT	GTGTAAACAT	GGACATTGGC	ATGCAGTCAT	TTATGACATT	GCTCAAGACA	7440
5	AAACTGCCGA	ACTCGAAATT	GAAAATATTA	TAGATATTTC	GTATTCATTC	GGTAAGACGA	7500
	TTCAAACCAG	AGACATATCC	ATTGATAACT	ATCATCAATT	TTTAAACCCC	ATCGATTCCT	7560
10	AAAAAACAGC	AGTAAGATGA	TTTTCAATTA	GAAAATATCT	TGCTGCTGTT	CTCTATTTAT	7620
10	ACAATACTTC	GTATTGAATG	GnTTCGCTTT	CCTAGGGTGC	CGTCTCAGCC	TTGGTCTTCG	7680
	ACTGGCACTG	CTCCCTCAGG	AGTCTCGCCA	TTAATACTAC	GTATTAACAT	GTAATTTTAC	7740
15	TTTGAAATAC	TTAAAAAAAT	AAAACACTTT	GCCCAACTTA	CACTACCAAT	AGAAACTGCT	7800
	GTTAGAATTC	CTCAAAATGA	TATTTCGCGA	TATGTTAATG	AAATTGTTAA	AAAGATAGCT	7860
	GATAGCGAAT	TCGATGAATT	CAGACATCAT	CGTGGCGCAA	CATCCTATCA	TCTAAAAATG	7920
20	ATGTTAAAAA	TCACCTCATA	TTCATATACT	CAATCTGAAT	TTTCTGGCCG	TAGAATAGAA	7980
	AAATTACTTC	ATAACAGTAT	TCGAATGATG	TGGTTAGCTC	AAGATCAAAC	ACCTTCTTAT	8040
	AAAACTATTA	ATCTTTTTAG	AGTGAATCCT	AATACTGATG	CGCTAATTGA	ATCTTTATTT	8100
25	ATTCAGTTTC	TAAAAAAA	GCATATCAAA	AAAGCTGATT	TCTATCAAAT	AATTAATAGA	8160
	AATCAGCTTT	TTTCaTTGCC	TAAAAACTTA	ATGTCCCGAC	CTCTTTATCT	ACGCATAAAT	8220
	ACTTATTACT	GATATAACGA	AAGAAACAAA	ATTATTTGCT	ATATGTAATG	CAATTGTTGA	8280
30	ACCTAGGTTT	CTTCCAGATT	TTAAATAAGT	GAAAACTAAT	ATGATGGATA	GTATGAGATA ,	8340
	TGGACCAAAC	TCAAACGGCG	ACTTTGCATC	AGTCACATGA	ATAAATGCAA	ATAAGAACAC	8400
35	CGAAACAATA	CTCATAGCTA	TAAAATTAAA	CTTCTTACCT	AATTCTCCAA	TTAAAATATG	8460
00	TCTAAATACG	ATTTCTTCAA	CTATTGGACC	TACAATCACA	ATTAATAAGA	ATGCTACAGG	8520
	TAAAAATGCA	GGCACTTCAA	ACATTTTATT	TAGCTCAAGT	TCATTGGCTG	TTtCACTATA	8580
40	TTGCAAATGT	TTAGGTAGAA	ACTGTGTCAT	ATATTCATAT	GTATAAATTA	AGATGAGAGC	8640
	AATAATATAC	GTTATTGACA	ATCTAAGCCA	ATATTTTTTG	ATATACGCAA	AACCAGCTCG	8700
	AAGCCTTGAT	GGCATCACTT	TTAAATGAAA	TAAATAAAT	GCGCCAATCC	CAATCGTATA	8760
45	TGCTAAAGCT	TGTGTGATAG	TCGCTACAAA	TATCAGATTA	CTATCGATTT	CATAATAACC	8820
	AAACAAAATT	GGTCCTATGT	AAGCTGCAAT	TGTGAGTGCA	TAAAATATAA	CACCTATAAT	8880
	TGGAATTATA	AGCAAATCTC	TCCATGCTAT	ATCTTTAAAC	GTGTATTTCT	TTTTTTCATT	8940
50	TTCCaCTGTT	ATATCCLTTC	CTGTTTAATA	ATTGATTTTT	GGAGGTACTT	CTACATGATA	9000
	AACGAAACTA	AGTATATGAG	ACAACAAATT	ACTAATTTGA	TTCAAATCAT	TGATACGATT	9060

	ATAGTTACTA ATGAATTGAA TAAGTTCAAA GGCTTTGAAA CATCATATAT AATAAACGAA	9180
	AATCAAGTTT CCTATTATGA AATTATAACA CTACTTAATA AACGTCCCCT CGACAAGTCG	9240
5	ACTATGGTAA CAAAATTCAA TATCTTAATT TTTATCATAC AGAACTATCT AACGCATTAT	9300
	TTGCAATTAA ATTTGCCCAT TAACCTATTT TTCATAAAAT GTCATTTAAA CAAGTTATTT	9360
10	ATTAAAATTC ACTITATTAC ATAAATTATA CAATTATAAA GTTTCTTCAA ATTGTAAAGA	9420
10	TGCATTAATC GAGTTATAAT CATAATGATT AAGATGGT	9458
	(2) INFORMATION FOR SEQ ID NO: 115:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 910 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 115:	
	Angegratea tgteacgeat tttaactact tetttaceae aagattatae agteacatta	60
25	GTTGATCGTA TGCCATTTCA TGGATTGAAA CCAGAATTTT ATGCTTTAGC TGCGGGCACG	120
	AAATCAGATA AAGATGTTCG TATGAAATTC CCTAATCATC CACAAGTGAA TACAGTTTAT	180
30	GGTGAAATTA ACGACATAGA TTTAGATGCT CAAATTGTCT CAGTCGGTAA TTCTAAAATT	240
00	GATTATGATG AGCTAATCAT TGGTTTAGGA TGTGAAGATA AATATCATAA CGTTCCAGGA	300
	GCCGAAGAAT ATACACATAG TATTCAAACA CTCTCAAAGG CTCGGGATAC TTTCCATAGT	360
35	ATTAGTGAAC TACCAGAAGG TGCTAAAGTC GGTATCGTTG GTGCTGGATT AAGCGGCATA	420
	GAACTTGCCA GCGAATTAAG AGAAAGTAGA TCAGACTTGG AAATATATCT TTATGACCGT	480
	GGGÇEGCGAA TTTTAAGAAA TTTTCCAGAA AAATTAAGTA AGTATGTTGC GAAATGGTTC	540
40	GCCAAAAATA ATGTTACCGT TGTTCCAAAT TCAAATATTA ATAAAGTTGA ACCTGGTAAA	600
	ATATATAACT GTGATGAACC TAAAGATATT GATTTAGTTG TATGGACAGC AGGAATTCAA	660
.=	CCTGTTGAAG TTGTTCGTAA CTTGCCGATT GATATAAATA GTAATGGACG CGTGATAGTT	720
45	AACCAGTATC ATCAAGTACC AACATATCGT AACGTCTATG TAGTTGGTGA TTGTGCTGAT	780
	TTACCACATG CGCCAAGTGC TCAGTTAGCC GAAGTTCAAG GTGATCAAAT TGCCGATGTG	840
50	CTTAAAAAGC AATGGCTAAA TGAACCATTA CCTGACAAAA TGCCGGAACT AAAGGTACAA	900

(2) INFORMATION FOR SEQ ID NO: 116:

55

GGTATCGTTG

(A) LENGTH: 10182 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 116:

	,,,,,			55Q 15 NO	110.		
10	TTTTTGATTC	AAAGTGGTGA	TTTAACAAGC	ATTTTAAATA	GCAATGATTT	GAAAGTCACA	60
	CATGATCCTA	CCACTGATTA	TTATAATTTA	TCTGGTAAGT	TGTCGAACGA	TAATCCAAAC	120
	GTTAAACAAT	TAAAACGTAG	ATATAATATT	CCTAAAAACG	CATCAACAAA	GGTGGAATTA	180
15	AAGGGAATGA	GTGATTTAAA	AGGCAATAAT	CATCAAGATC	AGAAACTTTA	TTTTTATTTT	240
	TCAAGTCCTG	GAAAAGACCA	AATCATTTAT	AAAGAAAGCC	TTACTTATAA	TAAAATAAGT	300
	GAACATTAAT	ACTTATGCTG	TAATTATAGA	AACATCCAAA	TCATCTATTA	nAATCCTATA	360
20	TTATAAAAnC	ACCTCACATA	ACTCGTTCAA	CTGTACCAAA	CCACATTACA	TTAGATTTTA	420
	GGCTAACTAT	TGTGATGTAC	ATCAAAAACG	AATTTGTGAG	GCGTTGTATA	TTTTACAAAG	480
25	GTGACTAGCG	TTTCGTATAG	CATTTCCAAC	ATTACTACAC	TCAAGCGTCA	CGCTAAAGTT	540
	CGAAATCGAA	TCCTTTCATT	CAACAAAAGC	TCATATCCAC	TACAAACTTC	ATATCAAGCG	600
	TATAAACTAT	CTTGTGATAC	TATCTCGATC	ATATCTATAG	TATGCATTTG	TGTTCCGTTT	660
30	CACTGAAGTA	TATGTATCAT	CAGTTAAGTA	TAAACCGTCA	TCCTTCAATG	TTACTTGATA	720
	AGCATATTTC	CGTGCTAACC	AGGCAATATC	TATATAATTT	TCTCCTGCGT	TTTCATAACT	780
	TCTTAAATCT	TCAATATGTG	CACTAACTTC	AGGGAAAATG	ATTCTAACAA	CACTTTCATC	840
35	AACCCAATAT	TTGTCATGCA	TCCATCGCAC	TTGATCTGCC	AATAAAGGTA	ACTGCACATC	900
	ATTGAAATAT	AGACGAAAGC	CGTCACTATC	ATACATTTGC	CGATATGGTA	ATGGCTGTTT	960
	TCTAATCACT	AACACCTCGC	CACCCATTAC	GGTGCCTTCT	CTAGTATCAT	CACTTCCACC	1020
40	CGAAGCTTCA	TACGTTGTTG	GGTCAACCTG	TAGTCCATGT	ACATCTCCAA	TATAAGCATC	1080
	TGGTTTATGT	TCCATTGCAT	GTCCATGTGC	AATCAATGCT	AATATTGTAG	ATTGTGAAAA	1140
45	TTGAGGCTCC	CATTCAATGC	GATTAGGATG	GCTACTATAA	ATTCTAGGTT	CATCTATAGC	.1200
	CTGCTGAATA	TCCATGCCAA	ACACTAATAC	ATTGATTAAT	GTTTGCGCAA	CACTAGCAAT	1260
	GATACTTATG	GCACCAGGTG	CACCTACTGT	TAATATTGGC	TTCCCGTGAT	ACATCACAAT	1320
50	CGTTGGAGCC	ATGTTACTTA	GTGGTCGTTT	ATATGGTGCA	ATTTCGTTAA	TACCACCATC	1380
	TACTACATCA	AAGCCATCCA	TTGTCGTATT	CAATAACACA	CCGTAGCCTG	GAATCGTGAT	1440
	ACCTGAACCA	TAAATCATAC	CAATTGATGT	CGTAAATGAA	GCAATATTAC	CTTCCTTATC	1500

55

	ATCAGACACA	ACACCATGCT	CTATATCAAT	ATTTGCTTTA	TTGCTATCAA	TGAGCGTACT	1620
	GCGTGCTTTT	AAATAATCAT	CATCAATTAA	TGACTGTACA	GGCACCTCAT	GAAAATTATC	1680
5	ATCCGCCAAG	TATTGCGCAC	GATCACTATA	TGCTAAATGC	ATCGCTTGTA	TCAAATGATG	1740
	CAAGTAATCA	ACAGATCTTG	GACCCATAGA	TGGTAAATCG	ACATGTTCTA	ATAACTTCAA	1800
	TATTTGAATT	ACCGTGATAC	CGCCAGAACT	AGATGGTCCC	AAATAA	TGTCATAGTC	1860
10	TTTAAATGTT	GCACTGATTG	GCGCTTTAAT	CTGAATGTCA	TATTTGGCTA	GATCCTCTAA	1920
	AGTGATTGTC	CCACCACATG	CTTTGACAAC	ATTGACTAAT	TGTTTCGCAA	TGTCACCTTT	1980
15	ATAAAATGCA	TTAAACCCTT	GTTCTCTTAA	TATTTGAAAT	GTCTTACCTA	ATTCGGGTTG	2040
	TACAATCCAA	TCACCTTCAC	GCCAATATTG	ATTTTCATGC	GTAAATACTT	GTGCCGTTTC	2100
	ATGATACTTT	GTCAATCGTG	CGTGTTGCTG	GCGCGAATAT	TTTTCAGTAG	CCCAATTGGC	2160
20	TGCATGACCT	TCAATGGCTA	GTTCAATTGC	AGGATTAATT	AAATCTTCCA	ATGACAATTT	2220
	AGCATAACGC	TTGTGAATAT	AATCAAACAG	CTTTGGAATT	GCTGGCACAG	CGACAGTTTT	2280
	ACCATGTGTA	GTCATATCAA	AAAATGATTT	ATATTCGCCT	GAATCATCTA	GATAAAATTG	2340
25	TTTGTCTACA	TGTTCAGGTG	CTGTCTCACG	TGCATCAAAC	GCAGTTATAC	TGCCAGTACT	2400
	TTGCTCATAA	TATAGCAAAT	ACCCGCCACC	ACCAATACCT	GATGCAAATG	GTTCTACCAC	2460
30	ATTCAATGCC	AGTTGAATTG	CAATCACTGC	ATCCATGGCG	TTGCCACCTT	GATCTAATAC	2520
	ATCCTTACCA	ATTTTAGCCG	CAAGAGGATG	TGATACGGAA	ATTAACCCTT	CTTTAGATGT	2580
	TTTTGTCTGT	TTGTCATTTA	AGTTAATGAC	CATACTATAT	CCTCCTACTT	TCTGTTAAAT	2640
35	ATTTAAAACA	TTATTGATTA	ATGGCTTTTT	CTACTTTTTC	TAAATCTTGA	CGTTGCTCGT	2700
	TACCAGTATC	GACAAGTGGT	GTAATCGGTG	ATGCAATTTT	AAATTTATCG	CCACGATAAA	2760
	ACTTAATAAA	TTGATCCTGA	TCTATCGCAT	TAACTACTGC	TTGTCTCAAG	TTTGGATGCG	2820
40	TCTTAAATAT	ACCTTTTTTA	ATATTTAGCA	TTAAAAAGAC	TGACTTGCGT	CCATTTTTGC	2880
	GAATAATGCT	TAAATTTTTA	TCCGACTTAA	TTAAATCAAA	ATGTTTTTGA	TTCACATCTG	2940
	CCAACATATC	AATTGAATGA	TTTCTAAGTT	CTGACAATGC	ATTATTCGGG	TCACCATTAA	3000
45	ACTTCAATGT	AATATTTTTA	ATTTTAGCTG	GTCCATAACT	ACCTTTTTCT	GTTTCGTTGA	3060
	ATCCTGGATT	ACGTTGAAAC	GTTGCTTGAT	ATGCATTTTT	CTGTGTCATA	ATGTATGCGC	3120
50	CACTTGCATA	CAGCGCATTT	TTCCCATCTG	AATTTGCAGG	AATTGTACTG	CTATCCCCAT	3180
	ATCCTTTTGG	ATATTCTTGA	TTTACTTGAT	TAACAAATTT	TTTAGATAAA	ATGCCTGCCG	3240
	AAGAGTGTGT	TAAGTAATTT	ACCTCTCGAG	GCATCGATTG	ATCTGTCGTA	ATTTTAACAA	3300

	TATAAGCTTT	AATCAACTTA	TCATAGATTG	ATTTATCGTC	CTTGTCTTTC	TCTTTACGCA	3420
	ACTGATCGAT	GTCCTCATCT	TTTAATATCT	TGATGTCATT	TATATGTTTG	TGCATATTGT	3480
5	AAGTATTATT	GTTAGGCACA	GACTITITAT	CACGTGCTCT	ATCTAAAGAA	AACTTAACAT	3540
	CTTCAGCCGA	TACACGCTCT	CCAGTATTAC	GTGCTTGTCC	ATTGACCACT	TTCGCAAAAT	3600
	AATCATCATC	TCTTAACAAG	AAATAAAATG	CTTTATTGTC	CTTATTCACA	GCATAATCAT	3660
10	GACTTAACGA	ACCTTTCGTT	GTTAAATGAT	CATTTTCATC	TAATAATAAT	AACCTTGTGT	3720
	ACATATTCAT	ATTAATTGAA	TATACTGACG	GCGCAATTGA	ACGTATTGGA	TCCAATGTAG	3780
15	GAATTTCACC	ATCTTGTTGT	GTCATCACAA	GTGGCCGCGT	ATCTCGTTCT	CTACTATTGT	3840
	TGTAATCAAA	TTGTTGCCAT	ATTAATGCAC	GTGAATTTGG	CAATCCAACA	CTATTTTTAT	3900
	CTAACACTTT	ATTGTCATAT	ACTAAATTCT	TTTTTGATCC	ATATAAAGGC	GCCATATACC	3960
20	CTTTATCAAA	TACAACTTCA	TCTTCAATTT	GCTTATATGT	TTGTTTAACA	TCTGCTTCAT	4020
	TTTGAGTAGA	AGCTTTATTT	AACAACTGGT	CTACATGTTT	ATCTTTCAAT	AAACTATTTG	4080
	ATCCTGTAGA	ACTAAATAAT	GCCGTCATAG	CATAGTTCGG	GTCACCAAAC	ACTGTCATCC	4140
25	AGTCATCAAT	TTGGATATCA	TAATTGCCGG	CTTGACGTTG	TGTACGATAG	CTACCATAAT	4200
	CTGGTTGGAT	ATTCATCTTC	ACGTTAAATC	CTGCATTTTC	CAATTGATCT	TTAACGATAT	4260
30	TCATATCATT	TTCATAACTT	GCTTGTCCTA	GGAAATGTAT	TGTTGGTCGC	TCGCCTTTCA	4320
30	CTTCAACTTT	CGATGACTTT	TGAGCCACTT	CTGATTTCGT	AGGGACACCA	CAACCACTTA	4380
	ATACCAACGC	TAAAACTATA	ATTGCGATAC	TAATGATTTT	CTTCACATCT	ATCCCTACCT	4440
35	TTTTAATGAA	TTCTTGGATC	TAGTGCATCA	CGCACTGCAT	CACCTATAAA	ATTAAATGCT	4500
	AAAACGACGA	ACATAATACA	AACACCAGGT	ACAATAGCTA	AATTACTGTG	CGTTTCCAAG	4560
	TAGTTACTAC	CGGTACGTAA	AATGTTGCCC	CATTCAGCTA	CATCAGGTGC	AACACCAAGT	4620
40	CCTAGGAAAC	TTAAACTACT	TGTTGTTAAT	ACAACCACAC	CTATATTTAA	TGAAAAACGT	4680
	ACAATCATAG	GCGCAATCGC	ATTCGGTAAA	ATATAACGCC	ATATGATATT	CCAAGTGTTT	4740
	TCACCAGTGA	TACGTGCTGC	ATCTACATAT	TCCATGCGTT	TAATTTCTAA	AACACTGGCA	4800
45	CGCATTGTCC	GTGCAAATGA	TGGTATATTA	CCGATACTTA	AAGCAATAAT	TAAATTTGGA	4860
	ATACTTGCTC	CAAATGATGC	AATAATTGCC	ACCGCTAACA	ATAATGATGG	AATTGCAAAC	4920
50	ACTACATCTA	AAATTCGCAT	TATTAAATTA	TCAATATGAT	TAAAATAACC	TGCGATAGTG	4980
	CCTAGTAACA	CACCAAAAAT	AACTGCAATA	ACTACTGAAA	TAATTGAAAT	TGAAAATGTC	5040
	AGCTTCGTTC	CTACAACTAC	GCGTGTAAAT	AAGTCTCTAC	CGAAATCATC	AGTACCAAAC	5100

	GTATCAAATG	TAAATTGTGA	CACAATTGAT	' AATGTCAGCA	TGTAGACTAA	AATAAGTAAC	5220
	CCGATAATCG	CAATACGATG	TCTAGTAGTT	TTTCGTATAA	ACGATTCCCA	CCCGTTATAA	5280
5	CTATGTATTT	GCGATGTACG	TTGGTAACGT	СТААТАСТТА	CAAACATTAA	TAATGTAAAT	5340
	ACGTTGCCTG	TTAATGTCAT	CAACAATAAC	AACACTTCGA	CGATACGTCG	CCATAGGTCA	5400
	TGATGCTTCC	ATGTTTGTTC	CGTTGTTAAA	ATAATAATTA	AAATGATGGT	TAAAACGATT	5460
10	AGCAATGTTT	CAGCAATATA	GAACGTATCG	GCCACATAAC	CTTTAAAAAG	ATTTAATGCA	5520
	CTCGTTAATA	TAACTAAAAT	ATAAGTTGCT	ATGGCGTAAC	TTGCGAATAA	TTTTAAGGAA	5580
15	GCTATCTTTG	AATTAAGTTG	TGCCATATGC	CTCACTTCCT	TTCGTTGATT	TCACTACGTA	5640
	ATTTTGGATC	GATTAAAGCA	ТААААТАТАТ	CAATAATTAA	GTTTGCTAAA	GATATTACAA	5700
	TTGATATATA	TACGACCCCA	CCCATGACTG	CTGGAATATC	AGGTATTAGT	TGTTTTTGGA	5760
20	CGATATAACG	CCCGATACCA	TTAATGTTAA	ATACTTGTTC	CGTCACTGCT	GAACCGCCTA	5820
	GTAACTCTGC	CACTAGAAGA	CCAACTAACG	TTACAATTGG	AATAATGGCA	TTTTTCAAAA	5880
	TATGTTTAAT	AACAACTTGT	GTCGTCGATA	ATCCTTTTGC	ATAAGCAGTT	AAAACATAAT	5940
25	CGctGCGCAT	TACTTCAAGT	ACAGAAGACC	TTGTCATACG	CGTGATAGAA	GCAGCAATAC	6000
	TTGTTCCAAT	GACAAGTACA	GGTAAAATCA	ACGATATTGG	ATGTTCTGGC	ATATAAGATG	6060
20	GTGGCAAAAT	ATCCAATTTC	AATGAGAACG	CTAAAATGAA	TAATAGCCCT	TGCCAGAAAC	6120
30	TTGGAATAGA	TAAACCAATT	AATGCAATTA	TCATTAACGT	GATATCAAGC	CAACTATTTC	6180
	GCTTCATCGC	ACTGATAATA	CCAATTGGTA	TTGCAATAAT	TAATGCCACC	ATTAGCGCTA	6240
35	ATACTGCGAC	AATTATTGTA	ATTGGAATTC	TTTCGCCAAC	TGCTTTAGTC	ACAACCTCAT	6300
	TCCCTTTGTA	AGTCGTACCT	AAGTCAAAGG	TAAAAACACC	CTTGATGGTA	TCCCACAATT	6360
	GAATAAAATA	AGGTTCGTTA	AGATGATGTA	ATACATTGAA	TTGATGTATC	TGTGCCTTTG	6420
40	TTGCATTTTG	TCCCAGTATG	CTATAAGCCG	CATCAAGCGG	TGAAAAATAC	AGAATGGTAA	6480
	ACACACTGAC	AATAACACCA	ATGATGACAA	TCACAGCCAT	GACAATTCGT	TCAAAAATAT	6540
	ATCTAACTAA	TGGCTGTAAA	TAAAAAGTCA	ATAAGATGAA	CATCGGCAAG	GCCAATATCA	6600
45	CTTTGATCAT	GATGAACTTA	TGAAATAATA	CATTTTCAAA	GTATGTTGAA	AAATGTGCTT	6660
	GTTCAATATT	CTTTGAACTC	GTATTAGAAC	TTTGTGCCTT	GAATATTTTT	AATGCTTCTT	6720
50	TATGTATTTG	TGTGGATGAC	TTTTGCTGCG	ATAAATATTT	ATATTTTTGA	TGTAACGCCT	6780
30	GTTCAATTTC	TGAAATTTCA	GAATTATTAG	CGTAAAAATT	TTTCCTCTTA	GCAGAAAAGA	6840
	AAAACTTTAT	CACTGCATAT	AAAAATATTG	GCAAGCTTAA	TACCGATAAT	ACAAACTTGT	6900

	CTTGTAAAAT	AATCTTGAGT	AGATTACTAT	GATATACAAA	AGTATAGAAT	AAATTTACAC	7020
	ATTTGTGaAT	AGGGAGGCAC	AACATCATGT	CAAATTTATT	AGAAGTCAAC	AGTCTGAATG	7080
5	TACAATTCAA	TTATGATGAA	ACTACAGTTC	AAGCGGTAAA	AAACGTCTCT	TTCGAATTAC	7140
	GAAAAAAACA	TATCCTAGGT	ATTGTTGGTG	AATCAGGATC	AGGAAAAAGT	ATTACCGCTA	7200
10	AATCTATTTT	AGGGCTACTA	CCAGATTATC	CAGATCACAC	ATTAACAGGA	GAAATTATTT	7260
70	TTAATGGGCA	ATCGTTAAAT	AATTTATCAA	CTTCAGCGTT	ACAACAAATT	CGAGGTAAGG	7320
	ATATTTCAAT	GATTTTTCAA	GATCCACTCT	CTTCGTTGAA	TCCAAGATTA	ACGATTGGCA	7380
15	AACAAATTAC	AGAAGTAATA	TITCAACATA	AACGTGTATC	TAAATCTGAA	GCAAAGTCGA	7440
	TGACAATAGA	CATTTTAGAA	AAAGTAGGTA	TAAAACATGC	AACTCGACAA	TTTGATGCTT	7500
	ATCCACATGA	ACTITCTGGT	GGTATGCGTC	AACGTGTCAT	GATAGCAATG	GCATTGATTT	7560
20	TAAAGCCACA	AATTTTAATC	GCAGATGAaC	CAACAACGGC	ATTAGATGCC	AGTACACAAA	7620
	ATCAATTACT	GCAGTTAATG	AAGTCCCTTT	ATGAGTACAC	AGAAACATCT	ATTATTTTTA	7680
	TCACTCACGA	TTTAGGCGCT	GTGTATCAAT	TTTGCGACGA	TGTGATTGTA	ATGAAAGATG	7740
25	GAAGTGTCGT	TGAAAGTGGC	ACGGTTGAAA	GTATTTTTAA	ATCGCCACAA	CATACCTATA	7800
	CAAAACGCTT	AATAGATGCG	ATTCCTGATA	TTCATCAAAC	GCGTCCGCCA	AGACCGTTAA	7860
30	ACAATGATAT	TTTATTAAAA	TTCGATCGCG	TGAGyGgGAT	TACACATCAC	CGAGTGGCAG	7920
	CCTATACCGA	GCAGTTAATG	ATATTAACTT	GGCTATTAGA	AAAGGCGAAA	CATTAGGCAT	7980
	TGTCGGTGAA	TCAGGGTCAG	GGAAATCGAC	ATTAGCTAAG	ACGGTCGTCG	GTCTAAAGGA	8040
35	AGTGTCAGAA	GGCTTTATTT	GGTATAACGA	ATTACCATTA	AGTTTATTTA	AAGATGATGA	8100
	ATTGAAATCT	TTACGACAAG	AGATACAAAT	GATTTTTCAA	GATCCATTCG	CATCTATTAA	8160
	TCCAAGATTT	AAAGTCATTG	ATGTGATTAA	ACGACCACTA	ATCATTCATG	GGAAAGTCAA	8220
40	AGATAATGAT	GACATTATTA	AAACTGTCGT	ATCGTTGTTA	GAAAAGGTTG	GCCTAGATCA	8280
	AACTTTCTTA	TATCGCTATC	CACACGAATT	ATCTGGTGGG	CAACGTCAGC	GTGTAAGTAT	8340
	CGCGAGAGCA	CTTGCTGTTG	AACCTAAAGT	GATTGTTTGC	GACGAGGCAG	TGTCCGCTTT	8400
45	AGACGTTTCA	ATTCAAAAAG	ATATCATCGA	GTTATTAAAA	CAATTACAGT	TAGACTTCGG	8460
	CATCACTTAT	TTATTCATCA	CACATGACAT	GGGTGTTATC	AATGAAATAT	GTGATCGCGT	8520
50	TGCAGTTATG	AAAAATGGCG	AAATCGTTGA	ACTGAATAAC	ACAGAAGATA	TTATCAAACA	8580
	TCCGCAGTCA	GACTATGCAA	AGCAACTTAT	TTCAGAAGTA	GCAGTTATTG	СТАААТАААА	8640
	GTCATGCGTT	GTGCAACTTT	ATCACTGTAT	GGTCTGAAAT	AAATTGCGCG	ACTTCTGATG	8700

	TATCAAGTTT	TAGGTGCTTT	GCCATGATTT	AAGAGTCACC	CCCATACTTT	GGGCATTTTA	8820
_	ACGCCAGAAT	AAATCCCCCG	CCACTATGTG	AAGTGTGGGG	GATTATTTAT	ATTTTATTAG	8880
5	AATATTCAGA	TTTTTGAGTG	TGTCAACTTA	GCTTAGTCAA	TGTATATTTA	ACGTCACTTA	8940
	CTCTTTTTCT	TTCATAATTA	ACACATTCAA	ATAAACTTTG	ATCAAAAAAC	ACAAAGTTAA	9000
10	AAGTACCATC	TTGTAATATG	CTCTCATACA	TTATCCCGTC	ATATTTAAGG	CTTCGAATAT	9060
	AATCAGCTAA	ATATTGAAAT	GGCAAATAAT	CTATTCCTTG	TTCATCGCTT	GGATTTGTTA	9120
	TTCCTTTATG	AATCTTTTTT	AATGTTTGGT	AATTTACAAA	ATACTTTCTA	AATCCATCAT	9180
15	CGCCAGCTTT	GATTGCATTA	CTAGTTAAAT	TAGTTAAATT	CGCAATTTTC	AATTTCTCTT	9240
	TTGTCACGTT	TTTTTGTAAC	TTAACCTTAC	CTATATAAAT	AATGTCATTA	TGCTTAGGTT	9300
	TAACTTCTTC	TATACTGACC	TGTTCTTTTG	TACTAAGGTA	TAATACGCTT	ATCCATTTAG	9360
20	AATTCAATCT	TCCTGCCGTT	GCAAATCCCT	TTGGTGGTGA	CATTAGTTCA	CTTTTCTCTG	9420
	TAATGAACTT	AACTATTCTA	GATCTATATA	ATGGTTCAAA	TCTTTCTCTA	AATTCCTCAA	9480
25	TACTATAGTA	ATTAGTAGTG	ATATCGAGAA	AGAACGCTAA	ATTCTCTAAA	TTGATCATAT	9540
25	TTTTATGAAA	TCTATTTTTA	TACTTCAAGC	TCTCACAAAA	TCCATCCCAG	TCATTATTTG	9600
	CTACAATTAG	ATTTTTTATTT	GTATATTTTT	TATCGTTTAT	GATTTTAGCG	CCTACTAAAT	9660
30	CTTCCAACAC	TCGTCTATCT	AAATTTTCAT	CATCTTTAAA	AAGTTCATTT	AAAATACAAC	9720
	TTATTTGAGC	TTCCTCAACA	TTAAATATAC	TCCAGTCGTC	TTTTAATGCT	ATTTCAATCT	9780
	TTTTACCTTC	TTTTGGGCTA	AAAGTATCTG	GTAAATTTAT	ACTAATATCA	TATAATTCTA	9840
35	ATGCTGGTCT	TAAATAATCT	CTAATAAGTT	CTAATTTATC	TATGTCCTTA	GTCGTATCAA	9900
	ATATTTTAAC	ACCAAGATGA	TTGTTATCAA	TATCACAATT	GTCAAATTTG	CTATTTATCA	9960
	TTTGCAATGA	TTTCTACGAT	TTCAGTATTA	TTAAAACATT	TTTCACATAT	TTTCATTTTG	10020
40	AGACTCCAAG	TATCTATTCA	TAATTTCTAG	GTGATGCATG	ATAGATAACC	TTTTAATTAA	10080
	ACCTAATCCT	GGATaCTTAT	TATTTTCATT	TAATTCTTCA	AATTGTCCCA	AGCGCATAAG	10140
45	ATCTATTTTT	AATATCTAAG	TTTTTTGACC	ATGTTACTAA	TT		10182
- -J							

(2) INFORMATION FOR SEQ ID NO: 117:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3491 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

	AACTCAGGCA	ATTGAAACAG	CATTAGGTGC	TTCATTACAA	CATGTCATTG	TAGATTCAGA	60
	AAAAGATGGA	CGCCAGGCTA	TTCAATTTTT	AAAAGAACGT	AATTTAGGTC	GTGCGACGTT	120
5	TTTACCATTA	AATGTTATAC	AGAGTAGAGT	GGTAGCGACT	GATATTAAAT	CTATTGCTAA	180
	AGAGGCAAAC	GGATTTATTA	GTATCGCTTC	GGAAGCAGTT	AAAGTAGCAC	CAGAATATCA	240
10	AAATATTATC	GGGAATTTAT	TAGGTAATAC	GATTATCGTT	GATCATTTAA	AGCATGCAAA	300
,,	TGAATTGGCA	CGTGCGATTA	AATATCGAAC	TCGTATTGTT	ACTTTGGAAG	GTGATATTGT	360
	AAATCCTGGT	GGLTCTATGA	CTGGTGGTGG	CGCTCGTAAG	TCAAAAAGTA	TTCTGTCTCA	420
15	AAAAGACGAG	TTGACAACAA	TGAGACACCA	ATTAGAAGAT	TACTTGCGTC	AAACAGAATC	480
•	ATTTGAACAA	CAATTTAAAG	AGTTGAAGAT	AAAAAGTGAT	CAATTAAGTG	AACTGTATTT	540
	TGAAAAAAGT	CAAAAGCATA	ATACACTTAA	AGAGCAAGTG	CATCATTTTG	AAATGGAGCT	600
20	CGATAGATTA	ACTACACAAG	AAACACAAAT	AAAAAATGAT	CATGAAGAAT	TCGAATTTGA	660
	AAAAAATGAT	GGTTATACGA	GTGACAAAAG	TCGACAAACT	TTGAGTGAAA	AAGAAACTTA	720
	TCTAGAAAGT	ATTAAAGCAT	CTTTAAAACG	ACTAGAAGAT	GAAATTGAAC	GCTACACAAA	780
25	ACTTTCTAAA	GAAGGTAAGG	AAAGCGTTAC	TAAAACACAA	CAAACCTTAC	ATCAGAAACA	840
	ATCTGATCTT	GCTGTGGTTA	AAGAGCGTAT	TAAAACACAA	CAACAGACAA	TAGATCGATT	900
30	AAATAATCAA	AATCAACAAA	CTAAACATCA	ATTAAAAGAT	GTTAAAGAAA	AAATTGCATT	960
55	CTTTAATTCG	GATGAAGTGA	TGGGCGAACA	AGCTTTTCAA	AATATTAAAG	ATCAAATTAA	1020
	TGGTCAACAA	GAAACGAGAA	CACGCTTATC	AGATGAATTA	GATAAATTGA	AACAACAACG	1080
35	TATTGAGTTG	AATGAACAAA	TCGATGCGCA	AGAAGCTAAA	CTACAAGTTT	GTCACCAAGA	1140
	TATTTTAGCT	ATCGAAAATC	ACTACCAAGA	TATTAAAGCT	GAACAATCAA	AGCTAGATGT	1200
	ATTAATTCAT	CATGCGATAG	ATCATTAAAT	GATGRATATC	AATTGACTGT	TGAACGTGCG	1260
40	Aratetgaat	ATACGAGTGA	TGrATCGATg	ACGCATTACG	TAAAAAAGTT	AAGTTAATGr	1320
	AGaTGyCGAT	TGATGrACTA	GGTCCTGTAA	ACTTAAATGC	AATTGAACAA	TTTGAAGAGT	1380
	TAAATGAACG	TTATACATTT	TTAAGTGAAC	AACGTACAGA	TCTTCGTAAA	GCTAAAGAAA	1440
45	CATTAGAGCA	AATTATAAGT	GAAATGGATC	AAGAGGTTAC	TGAAAGATTT	AAAGAAACTT	1500
	TCCATGCTAT	TCAAGGACAT	TTTACAGCTG	TGTTCAAACA	ATTGTTTGGT	GGAGGCGATG	1560
50	CAGAATTGCA	ATTAACTGAA	GCCGATTATT	TAACAGCTGG	TATTGATATT	GTGGtACAAC	1620
50	CACCGGGTAA	AAAGTTGCAA	CATTTATCGT	TACTGAGTGG	TGGTGAGCGT	GCATTAACTG	1680
	CTATTGCTTT	ACTATTTGCA	ATTTTAAAAG	TAAGATCTGC	ACCTTTTGTT	ATATTAGTTG	1740

	TATCAGACGA	AACACAATTC	ATTGTTATTA	CACACCGTAA	AGGAACAATG	GAATTTGCAG	1860
	ATAGGTTATA	CGGTGTAACA	ATGCAAGAAT	CAGGTGTTAC	TAAACTTGTG	AGTGTGAATT	1920
5	TAAATACAAT	AGATGATGTG	TTGAAGGAGG	AGCAATAATG	AGCTTTTTTA	AACGCTTAAA	1980
	AGATAAGTTT	GCAACAAATA	AAGAAAATGA	AGAAGTTAAA	TCCTTAACAG	AAGAACAAGG	2040
10	TCAAGACAAA	TTAGAAGATA	CACATTCTGA	AGGTTCAACG	CAGGACGCAA	ATGATTTAGC	2100
.0	AGAAAATGCT	GAAGTGAAAA	AGAAGCCACG	CAAGTTGAGT	GAAGCGGATT	TTGATGACGA	2160
	TGGCTTAATA	TCAATTGAAG	ATTTTGAAGA	AATTGAAGCT	CAAAAAATGG	GTGCTAAATT	2220
15	TAAAGCAGGA	CTCGAAAAAT	CTCGTCAAAA	TTTCCAAGAA	CAATTAAATA	ATTTGATAGC	2280
	GAGATATCGT	AAAGTAGATG	AAGACTTTTT	TGAAGCTTTA	GAAGAAATGT	TAATCACTGC	2340
	AGACGTCGGT	TTTAATACAG	TGATGACGTT	AACTGAAGAA	TTACGTATGG	AAGCACAACG	2400
20	ACGTAATATT	CAAGATACTG	AAGATTTGCG	TGAAGTCATT	GTTGAAAAGA	TCGTAGAGAT	2460
	TTACCATCAA	GAAGATKATA	ATTCAGAAGC	TATGAACTTA	GAAGATGGTC	GTTTAAATGT	2520
	CATTTTAATG	GTTGGTGTGA	ATGGTGTTGG	TAAAACAACA	ACAATTGGAA	AATTAGCTTA	2580
25	CCGATATAAA	ATGGAAGGTA	AAAAAGTAAT	GTTAGCTGCG	GGCGATACTT	TTAGAGCGGG	2640
	TGCTATTGAT	CAATTGAAAG	TTTGGGGCGA	ACGTGTTGGT	GTAGACGTAA	TTAGCCAAAG	2700
30	TGAAGGTTCT	GATCCAGCTG	CTGTTATGTA	TGATGCGATT	AATGCCGCTA	AAAACAAAGG	2760
	TGTTGATATT	TTAATCTGTG	ATACCGCTGG	ACGTTTACAA	AATAAmaCAA	ATCTAATGCm	2820
	AGAATTAGAA	AAAGTTAAGC	GTGTAATTAA	TCGAGCAGTG	CCAGATGCGC	CTCATGAAGC	2880
35	ATTACTATGT	TTAGATGCTA	CAACTGGTCA	GAATGCGTTG	TCACAAGCTA	GAAACTTTAA	2940
	AGAAGTAACA	AATGTTACAG	GTATTGTATT	AACGAAATTA	GATGGTACAG	CCAAAGGTGG	3000
	TATCGTATTA	GCCATTCGTA	ATGAATTGCA	CATCCCAGTT	AAATATGTAG	GTTTAGGTGA	3060
40	GCAATTAGAT	GACTTACAAC	CATTTAACCC	TGAAAGTTAT	GTCTACGGCT	TATTCGCTGA	3120
	TATGATTGAA	CAAAATGAAG	AAATAACAAC	AGTTGAAAAT	GATCAAATTG	TAACAGAAGA	3180
	AAAGGACGAT	AATCATGGGT	CAAAATGATT	TAGTLAAAAC	GTTACGAATG	AATTATTTGT	3240
45	TTGATTTTaT	CAATCCTTAT	TGACGAATAA	ACAACGTAAT	TATTTGGAAT	TATTTTATCT	3300
	TGAAGATTAT	TCTTTAAGTG	AAATCGCAGa	TACTTTTAAT	GTGAGTAGaC	AAGCAGTTTA	3360
50	TGATAATATA	AGAAGAACTG	GCGATTTAGT	TGAAGATTAT	GAAAAGAAAT	TGGAATTATA	3420
	CCAGAAATTT	GAGCAACGCC	GAGAAATATA	TGATGAAATG	AAACCACATT	TAAGTAATCC	3480
	AGAACAAATA	С					3491

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 4253 base pairs
(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 118:

10							
	AGTACGTTTT	ATAATTATAA	GTACGTAATT	AACATATTAA	CATATCGCAA	GTATGTATTT	60
	AAATAAgATT	GTTATAATTT	CAAAGTTCAT	CCAAGATTAT	GGCGTTTGCA	TTTACCTATT	120
15	AAAAACGTTA	TTATATCAAA	GATGCGAAAG	ATAATACGGG	TTTATTTTAT	GAAAGTGAGA	180
	AGGATAAAAT	GGATAATGAG	CAACGCTTAA	AAAGAAGAGA	GAATATAAGG	AATITCTCGA	240
	TTATAGCACA	TATTGACCAC	GGAAAATCTA	CATTGGCTGA	TAGAATTTTA	GAAAATACCA	300
20	AATCAGTTGA	AACAAGAGAT	ATGCAAGATC	AGTTACTAGA	TTCAATGGAT	TTAGAAAGAG	360
	AACGTGGTAT	TACAATCAAA	TTAAACGCgT	ACGTTTAAAG	TACGAAGCTA	AAGATGGAAA	420
	TACTTATACA	TTCCATTTAA	TCGATACGCC	TGGACACGTC	GATTTTACAT	ATGAAGTGTC	480
25	ACGTTCTTTG	GCAGCTTGTG	AGGGCGCGAT	TTTAGTAGTA	GATGCGGCTC	AAGGTATCGA	540
	AGCACAAACA	TTAGCAAATG	TTTATTTAGC	ATTAGATAAT	GAGTTAGAGT	TATTGCCTGT	600
	TATTAACAAA	ATTGATTTAC	CTGCTGCAGA	ACCTGAACGC	GTGAAACAAG	AAATTGAAGA	660
30	TATGATAGGT	TTAGACCAAG	ACGATGTTGT	TTTAGCAAGT	GCTAAATCTA	ACATTGGAAT	. 720
	TGAAGAGATA	CTAGAGAAAA	TAGTTGAAGT	TGTGCCAGCT	CCAGATGGTG	ACCCAGAAGC	780
35	ACCACTAAAA	GCGTTAATAT	TTGATTCTGA	GTATGATCCA	TATAGAGGGG	TAATTTCATC	840
33	GATAAGAATT	GTGGACGGTG	TTGTTAAAGC	CGGAGATAAA	ATTCGAATGA	TGGCCACTGG	900
						CAGTTGATGA	960
40	•					ATGATTCTAG	1020
						AAGGTTATAA	1080
						ATTATAATGA	1140
45						TTGAGCCTGA	1200
						TACACATGGA	1260
						CTGCACCATC	
50							1320
						ACCCAGCACA	
	MATGCCAGAT	CGIGATAAAA	TIGATAAAAT	ATTTGAGCCA	TATGTTCGTG	CAaCTATGAT	1440

55

	TATAAATATG	GACTATTTAG	ATGATATTCG	TGTAAATATT	GTTTATGAAT	TACCTTTAGC	1560
	TGAAGTTGTA	TTTGATTTCT	TCGATCAACT	TAAATCTAAT	ACTAAAGGAT	ATGCATCATT	1620
5	TGATTATGAA	TTCATCGAAA	ATAAAGAAAG	TAATTTAGTC	AAGATGGATA	TTTTATTAAA	1680
	TGGTGATAAA	GTGGATGCGC	TAAGCTTCAT	AGTTCATAGA	GATTTTGCAT	ATGAACGTGG	1740
10	TAAAGCATTA	GTTGAAAAAC	TTAAAACGTT	AATTCCAAGA	CAGCAATTTG	AAGTACCTGT	1800
	ACAGGCTGCA	ATAGGACAAA	AAATTGTAGC	GCGTACAAAT	ATTAAATCAA	TGGGTAAAAA	1860
	CGTTTTAGCT	AAATGTTATG	GCGGTGACAT	AAGCCGTAAA	CGTAAATTAC	TTGAAAAACA	1920
15	AAAAGCAGGT	AAAGCTAAGA	TGAAAGCAGT	TGGTAATGTT	GAAATTCCAC	AAGATGCTTT	1980
	CTTGGCTGTA	TTGAAAATGG	ATGATGAATA	ATTTTAAAAA	ATCAATTAAC	AATTTACAAT	2040
	GAATAAAGTT	ТААТААСТАА	AAAGAGGGAG	CCTAGGATAA	ATTAACGTCC	TGGGCTTTAC	2100
20	AATGTTATAT	TGGCAGCCAT	CGACAGAGTT	AAAATGAGCT	TATAACAATG	GGGCCCCAAC	2160
	ACAGAAGCTG	ACGAAAAGTC	AGCTTACTAT	AATGTGCAAG	TTGGGGTGGG	GCCCCAACAT	2220
	AGAGAATTTC	GAAAAGAAAT	TCTACAGGCA	ATGCAAGTTG	GGGTGGGACG	ACGAAATAAA	2280
25	TTTTGCGAAA	ATATCATTTC	TGTCCCACTC	CCTTATGCAT	GAGTTTTACT	CATGTAATTT	2340
	TATTTTTAAG	GACATATTAC	ATCTGGCTAA	TGTGTAAGAG	CCACTACATA	ATAAATCATT	2400
30	AGTGGTTCTT	TATTATTTCT	ATCTCACTCC	CTCTAAACAA	GAATAAATAT	TAAAATGAAT	2460
	CGATATATTA	GACAATCATT	GATTAAACGT	TAAAGTTAAA	AGTAAGAATA	ATTGCAGATA	2520
	GTCCAACAGG	ATATAGCCGA	TTGGATAAAA	AGTCTGAGAA	GCGGGGCATT	AAAATGACGG	2580
35	TACAAAGTGC	ATATATACAT	ATTCCATTTT	GTGTAAGAAT	ATGTACATAT	TGTGATTTCA	2640
	ATAAATATTT	TATACAGAAT	CAACCTGTAG	ATGAGTACTT	AGATGCACTA	ATCACAGAAA	2700
	TGTCTACAGC	AAAATATAGG	ATCTTAAAGA	CCATGTATGT	AGGTGGCGGC	ACACCAACGG	2760
40	CCCTTTCTAT	TAATCaGTTG	GAAAGATTAC	TTAAAGCAAT	ACGTGATACG	TTTACAATCA	2820
	CAGGCGAGTA	TACATTTGAA	GCAAATCCTG	ATGAGTTAAC	TAAAGAGAAA	GTCCAACTAT	2880
45	TAGAGAAATA	TGGAGTAAAA	AGGATTTCAA	TGGGCGTTCA	AACATTCAAG	CCGGAGTTAT	2940
45	TGTCTGTTTT	AGGTAGAACG	CACAATACTG	AAGATATTTA	CACTTCGGTG	TTAAATGCTA	3000
	AAAACGCAGG	TATTAAATCA	ATCAGTTTAG	ATTTAATGTA	TCATTTACCG	AAACAGACGA	3060
50	TTGAAGATTT	TGAACAAAGT	TTAGATCTAG	CTTTAGATAT	GGATATTCAA	CATATTTCGA	3120
	GTTACGGCTT	AATACTTGAA	CCTAAAACCC	AATTTTATAA	TATGTATAGA	AAAGGCTTGC	3180
	TCAAACTTGC	TAATGAGGAT	TTAGGTGCTG	ACATGTATCA	GTTGCTGATG	TCTAAGATAG	3240

	AACATAATAA GGTTTACTGG TTTAATGAGG AATATTATGG ATTTGGAGCA GGTGCAAGTG	3360
_	GTTATGTAGA TGGTGTGCGT TATACGAATA TCAATCCAGT GAATCATTAT ATCAAAGCTA	3420
5	TAAATAAAGA AAGTAAAGCA ATTTTAGTAT CAAATAAACC TTCTTTGACT GAGAGAATGG	3480
	AAGAAGAAAT GTTTCTTGGG TTGCGTTTAA ATGAAGGTGT GAGTAGTAGT AGGTTCAAAA	3540
10	AGAAGTTTGA CCAATCTATT GAAAGTGTCT TTGGTCAAAC AATAAATAAT TTAAAAGAGA	3600
	AGGAATTAAT TGTAGAAAAG AACGATGTGA TTGCACTTAC AAATAGAGGG AAAGTCATAG	3660
	GTAATGAGGT TTTTGAAGCT TTCCTAATAA ATGATTAAAA AAAATTGAAA TTTCGAGTCT	3720
15	TTAACATTGA CTTACTTTGA CCAATTTGAT AAATTATAAT TAGCACTTGA GATAAGTGAG	3780
	TGCTAATGAG GTGAAAACAT GATTACAGAT AGGCAATTGA GTATATTAAA CGCAATTGTT	3840
	GAGGATTATG TTGATTTTGG ACAACCCGTT GGTTCTAAAA CACTAATTGA GCGACATAAC	3900
20	TTGAATGTTA GTCCTGCTAC AATTAGAAAT GAGATGAAAC AGCTTGAAGA TTTAAACTAT	3960
	ATCGAGAAGA CACATAGTTC TTCAGGGCGT TCGCCATCAC AATTAGGTTT TAGGTATTAT	4020
	GTCAATCGTT TACTTGAACA AACATCTCAT CAAAAAACAA ATAAATTAAG ACGATTAAAT	4080
25	CAATTGTTAG TTGAGAATCA ATATGATGTA TCATCAGCAT TGACATATTT TGCAGATGAA	4140
	TTATCAAATA TATCTCAATA TACAACTTTA GTTGTTCATC CTAATCATAA ACAAGATATT	4200
30	ATCAATAATG TACACTTGAT TCGTGCTAAT CCTAATTTAG TTATAATGGT TAT	4253
50	(2) INFORMATION FOR SEQ ID NO: 119:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3395 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 119:	
	TCCCTAATCG AACAAATTA TGCGCATAAA CAAAGTAGAT TGATATAAAA TTCTTAATTA	60

TCAGAATATA TTTACAAATC TGAATTTTAT TAGTATATTG GTTAGTTTTC ATAGAGGCAT GACGGTaTTT GAGCAGGATT TTAAATCGGg ATTTTATAAT CGATTTAAGA GAGGCCACLT TGCTTGCACA TTAATACTGT CAATGGGAGG GGAATGTATA TGAGTTAAGC ACATCAATTA ATTCAAGAGG ATGAACATTA TTTTGCGAAA TCAGGACGTA TTAAATATTA TCCGTTAGTG ATTGATCATG GATATGGAGC AACATTGGTT GATATTGAGG GGAAGACATA TATCGATTTG TTATCGAGTG CGAGTTCTCA AAACGTAGGT CATGCACCTA GAGAAGTAAC AGAAGCGATA

	GTACGTTTAG	CTAAGAAGCT	TTGTGAGATT	GCACCTGGAG	ATTTTGAAAA	AAGAGTGACC	540
5	TTCGGATTAA	CCGGATCAGA	CGCAAATGAT	GGCATCATTA	AATTTGCCAG	AGCATATACA	600
5	GGGCGTCCTT	ATATCATTAG	TTTCACTAAT	GCATATCATG	GTTCAACTTT	TGGCTCATTG	660
	TCTATGTCAG	CTATTAGTTT	AAATATGCGC	AAACATTATG	GTCCGTTATT	GAATGGTTTT	720
10	TATCATATTC	CGTTTCCAGA	TAAATATCGT	GGTATGTACG	AGCAGCCACA	AGCTAATTCA	780
	GTAGAAGAAT	ATTTAGCACC	CTTAAAAGAA	ATGTTTGCGA	AGTATGTACC	TGCTGACGAA	840
	GTAGCATGTA	TTGTTATTGA	AACGATACAA	GGCGATGGTG	GACTTTTAGA	ACCAGTTCCA	900
15	GGGTATTTTG	AAGCGTTAGA	AAAGATTTGT	CGTGAACATG	GTATTTTAAT	CGCTGTCGAT	960
	GATATTCAAC	AAGGTTTTGG	GAGAACAGGT	ACATGGAGTT	CAGTCTCGCA	TTTTAATTTT	1020
	ACGCCTGATT	TAATCACTTT	CGGAAAATCC	TTAGCAGGTG	GTATGCCTAT	GTCAGCAATT	1080
20	GTTGGACGCA	AAGAGATTAT	GAATTGTTTA	GAAGCACCAG	CACATTTATT	TACAACAGGT	1140
	GCTAATCCAG	TTAGTTGTGA	AGCTGCATTA	GCCACAATTC	AAATGATTGA	AGATCAGTCG	1200
	CTTCTTCAGG	CTAGTGCGGA	AAAAGGGGAA	TATGTTAGGA	AACGAATGGA	TCAATGGGTA	1260
25	TCTAAATACA	ATAGTGTAGG	CGATGTTAGA	GGTAAAGGTC	TGAGCATTGG	TATTGATATT	1320
	GTTTCCGACA	AAAAACTCAA	AACACGTGAT	GCCAGTGCGG	CACTTAAAAT	TTGTAATTAC	1380
30	TGCTTTGAGC	ATGGCGTAGT	TATTATAGCT	GTAGCAGGAA	ATGTGTTGCG	ATTCCAACCG	1440
	CCATTGGTAA	TAACATATGA	GCAATTAGAC	ACGGCGTTAA	ACACTATAGA	AGATGCACTG	1500
	ACTGCTTTGG	AAGCAGGTAA	CTTAGATCAA	TATGACATAT	CTGGACAAGG	TTGGTAATAG	1560
35	CGATTATCTT	AATATAAAAT	AAAAAATCAT	TTCCACATCT	GGATGTTAAT	CAGATGGGAA	1620
	ATGATTTTTT	TTATTTTTTA	TTTTGGTGGG	TGGTATTCAG	CTACGTCATT	TTTCTTAGAA	1680
	TGTÇTAAGTC	CATAACTTAA	ATATAGGATG	ATACCAACAA	TAAACCAAAT	TAAAGTGTAT	1740
40	AATTTCGCTT	CGAATCCTAA	TCCCCAGAAT	ACTAGCAATA	СТАЛАЛСАЛА	TGTAATTGCT	1800
	GGTAACACAG	GATATAAAGG	TAATTTAAAT	GCAGGAATTG	GTAGATCTTT	ACCTTCACGC	1860
	TTTCTCAAAC	GATACATTGC	TAATGAAACG	AACATAAATG	CAACAAGTGT	ACCTGCTGAA	1920
45	ATTAATTGTG	CTAAAAATGC	GAATGGGAAC	ATAGAACCAA	TTAAAACACC	AATAATAGTA	1980
	AGTATAACTA	GTGCGCGATT	AGGTAAATGT	TTGTCGTTTA	AGTGGCTTAA	CCATGAAGGT	2040
50	AATAAGCCGT	CACGTCCAAA	TGAATAAAGT	AAACGTGAGC	CTGCTAACAT	CATACCAATT	2100
÷ *	AATGCTGTAA	ACATACCGAT	AACAGAGATA	GCTTGAACAA	TAGCTGCTAC	AACACCATGA	2160
	CCACTTTGAC	GTAAAGCCCA	ACCAACAGGT	TCAGCATTGT	TTGCGTATTG	TGAGTAATGG	2220

	CCAAGAATAC CTCTAGGCAT TGTCTTTTGA GGATCAAGTG CTTCTGCTGA GTTTGCTGCG	2340						
	ATAGAATCGA AACCGATATA CGCTAAGAAA ATCATTGAAA CACCAGCATA TATGCCTTGC	2400						
5	CATCCACCAA AGTCACCTGT AGCAGTTACT TTGTGTTCTG GAATAAATGG CACATAGTTA	2460						
	CTAACATTTA TTGCTGTTAA ACCTACGATG ACAAATAAAA TAATAGCTAA TACTTTTAAA	2520						
10	ATAACTAAAA TATTTTCCAT ACGAGCTGCT TCCGACATAC CACGTGATAG TAATAATGCA	2580						
	GTTAATAAAA TAACGATAGC AGCAATAATA TCGATAAAAC CGCCATTTGT ACCAAATGGA	2640						
	TTTGATAATG CTGCAGGTAA TTCGATGCCA ATTGGTTTCA CAAGTCCGCG TAAATTCGCT	2700						
15	GAGAATCCTG ATGCAACAAA GGCTACGGCG ATAAAATATT CAGCTAATAG AGCCCAACCG	2760						
	GCAACCCATC CAAAAAATTC ACCAAATAAT ACATTGACCC AAGAATAGGC TGAACCTGCA	2820						
	AATGGCATAG CGGCAGCCAT TTCTGCATAA GTAAATGCAA CTAAACCAGC AACAATAGCA	2880						
20	GCGAGTAAGA ATGATAACGC AACGGCCGGT CCTGCATGTT CTGCAGCAAC AATGCCAGGT	2940						
	AGCGTAAAGA TAGATGTCGA TACAATTGTT CCTACACCTA AAGCTAAGAA ATCACGCACC	3000						
	CGAAGTGTAC GCTTTAAATG ACCATCTTTA TTTTGATAGA TAGCCGGATC CTCTTTTCGT	3060						
25	GCTATTTTAT TGAAAAAACT TCCCATAAAC TTTCCTCCCA AACATTCATA AACAATTCTA	3120						
	TACGGTGTTT TTTAATATGT TATATCATAG CACAAATAAT CAATATTTTG TCTAAAAATT	3180						
30	CTGAAAAATC ACAACTTTAT GTTACGTATT AATGACTTGT CTTGATAACA TCCATAGATT	3240						
00	TTTTAAATGA TAAAACTGAT TATAACAGAT ATTAAATGAA TAAGTACTAT TTTTTGCnAA	3300						
	TTTTCTAACA ATTTTGCACA TTATATGTTT AAAATCAATT TCATGTTTAT GGTCTGATTG	3360						
35	GCTAGTGTGT ATGAAATGTA ANTCTTTGAC THINGA	3395						
	(2) INFORMATION FOR SEQ ID NO: 120:							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 13508 base pairs							
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double							
	(D) TOPOLOGY: linear							
45								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 120:							
	ATCAGGTAAT GCCATGCGTT TAGCTGAAAA TTTTTTCAGA ACGTTTAAGT GATATCGGAC	60						

55

50

ATCAAGTTGT TTTGATGTCA ATGGATGAAT ATGATACGAC AAACATCGCG CAGTTAGAAG

ATTTATTAT TATTACGTCT ACTCATGGTG AAGGAGAACC GCCTGATAAT GCATGGGATT

TCTTTGAATT TTTAGAAGAC GATAACGCAC CTAATTTAAA TCATGTGAGA TATTCAGTAC

120

180

	TACTAGAAAA	TCTAGGCGCT	GAGCGTATAT	GTAAGCGTGT	AGATTGTGAT	ATTGATTATG	360
	AAGAAGACGC	AGAAAAGTGG	ATGGCAGACA	TCATTAATAT	TATTGATACC	ACATCAGAAG	420
5	GTATTCAAAG	TGAATCGGTG	ATAAGTGAAT	CAATTAAGTO	TGCCAAAGAA	AAGAAATATT	480
	CTAAATCAAA	TCCATACCAA	GCAGAAGTAT	TAGCGAATAT	CAATTTAAAT	GGTACCGATT	540
10	CAAATAAAGA	AACACGACAT	ATAGAATTTT	TACTTGATGA	TTTTAGTGAA	TCATATGAAC	600
	CAGGAGATTG	TATAGTAGCA	TTACCGCAAA	ACGACCCTGA	ATTGGTTGAA	АААСТААТАТ	660
	CCATGTTAGG	TTGGGATCCG	CAATCTCCGG	TGCCAATTAA	TGATCATGGT	GATACAGTTC	720
15	CTATTGTTGA	AGCACTAACA	TCACATTTTG	AATTTACTAA	ATTAACATTG	CCATTATTGA	780
	AAAATGCAGA	TATCTATTTT	GACAATGAAG	AATTATCTGA	ACGTATTCAA	GATGAGTCAT	840
	GGGCGCGTGA	ATATGTTATA	AATCGGGACT	TTATAGATTT	AATAACAGAT	TTTCCAACTA	900
20	TAGAATTACA	ACCTGAGAAT	ATGTATCAAA	TCCTTAGAAA	ATTACCACCA	AGAGAGTATT	960
	CGATTTCTAG	TAGTTTTATG	GCAACGCcAG	ATGAAGTGCA	TATTACCGTT	GGTACGGTTC	1020
	GTTATCAAGC	ACATGGACGT	GAGAGAAAAG	GTGTATGCTC	GGTTCATTTT	GCTGAGCGAA	1080
25	TTAAACCAGG	CGATATAGTA	CCAATTTATT	TGAAGAAAA	TCCGAACTTC	AAATTTCCGA	1140
	TGAAGCAAGA	TATACCGGTT	ATTATGATTG	GACCAGGTAC	TGrAATTGCT	CCTTTTAGAG	1200
30	CATATTTACA	AGAACGTGAA	GAACTTGGTA	TGACTGGAAA	AACATGGTTG	TTCTTTGGTG	1260
30	ATCAACACCG	TAGTTCTGAC	TTTTTATATG	AAGAAGAAAT	AGAAGAATGG	CTTGAAAATG	1320
	GAAACTTAAC	ACGCGTAGAT	TTAGCATTTT	CAAGAGACCA	AGAACACAAA	GAATATGTAC	1380
35	AGCATCGTAT	AATGGAAGAA	AGTAAACGTT	TCAATGAATG	GATTGAGCAA	GGCGCACAAT	1440
	CTATATTTGT	GGCGATGAAA	AATGTATGGC	GAAAGATGTC	CATCAAGCCA	TTAAAGATGT	1500
	ATTGGTAAAA	GAACGTCATA	TTTCTCAAGA	AGAAGCAGAG	TTATTATTGC	GACAAATGAA	1560
40	ACAACAACAA	CGCTATCAAC	GTGATGTTTA	TTAGCGATTG	GTGTTAAATA	TTTTAAGGTG	1620
	TAATGATGTA	AAAAGATATA	AAGGATGTTG	CTCAACATGA	ATATGCCATT	AATGATAGAT	1680
	TTAACAAATA	AAAATGTCGT	CATAGTTGGT	GGAGGCGTCG	TTGCAAGTCG	TCGGGCACAA	1740
45	ACATTAAATC	AATACGTTGA	ACATATGACG	GTCATCAGTC	CGACAATCAC	TGAAAAACTT	1800
	CAAAATATGG	TAGATAACGG	TGTCGTCATA	TGGAAAGAAA	AAGAATTTGA	ACCAAGCGAT	1860
	ATTGTAGACG	CGTATCTAGT	TATTGCAGCA	ACCAATGAGC	CACGTGTCAA	TGAAGCGGTA	1920
50	AAAAAAGCCT	TACCTGAGCA	TGCCCTTTTT	aataatgttg	GAGATGCATC	AAATGGCAAT	1980
	GTTGTATTTC	CAAGTGCACT	ACACCGCGAC	AAGCTAACTA	TCAGTGTATC	AACTGATGGT	2040

	TACAGTTCGT	ATATCGACTI	TTTATATACT	TGCCGACAGA	AAATAAAAGT	ACTTGATATA	2160
	ACATATAACG	AAAAGCAACA	GTTACTGTCA	CAAATTGTGT	CACAAGAATA	TTTAAATCAT	2220
5	GACAAACAAG	CTCAATTTTT	AGCGTGGTTG	GATGTAAGAT	AATAATAGCG	GACCGTCTAA	2280
	CCGTCTAAGG	TAAGTCTTCT	TATTTTAACT	TTAACGCTTA	ATCATTGAAA	TTAAGACATG	2340
10	GGCGGCTTTG	TGAATAGTCT	AATAATGAAG	GATTTAAGCG	ATAATGATAT	GCGTTTTAAA	2400
,,	TATGAATATT	ACAATAGAGA	AAAAGATACG	TAGAACAAAC	TTAATAAAAT	AGGTGGATAA	2460
•	ATTGAAATCT	GGTTGAAGTC	GTTACTATCA	TAGCGACCTT	TAGCCAGATT	TTTTGTGCAA	2520
15	TAGAAAGCAA	TAATAAAAAT	GATAGATCAA	AATGAAATAC	AGGACAGGAT	ATACAAGGAT	2580
	TAGTCATGCC	ATGTTATCAA	GTAGGAAAAT	CAAACTTCAC	TATTGATAGT	TACGCAAAAA	2640
	AGATTTTTT	GATAAAATGA	GATAACTTAA	АТАТААААА	TTATATTAAT	TATAATATTT	2700
20	AAGTTAAAGA	GGGGGATTAT	GTAAATTGTA	TTAAAAGTGG	AGGGAGAAAA	TAATATGAAT	2760
	AGTGATAATA	TGTGGTTAAC	AGTAATGGGG	CTCATTATTA	TTATTTCAAT	TGTAGGTTTA	2820
	CTCATTGCCA	AAAAGATAAA	TCCAGTTGTA	GGTATGACAA	TCATACCTTG	CTTAGGGGCA	2880
25	ATGATTTTAG	GATATAGTGT	GACAGATTTG	GTTGGATTTT	TTGCTAAAGG	GTTAGATCAA	2940
	GTCATCAACG	TTGTTATTAT	GTTTATCTTT	GCCATTATTT	TCTTTGGCAT	CATGAACGAT	3000
	AGTGGTTTAT	TCAAGCCGCT	TGTCAAACGC	TTAATATTAA	TGACACGAGG	CAATGTCGTC	3060
30	ATTGTCTGTG	CAATGACAGC	TTTAATTGGC	ACAATAGCCC	AATTAGATGG	GGCCGGTGCG	3120
	GTAACATTTT	TGCTTTCTAT	TCCTGCATTA	TTACCTTTAT	ATAAAGCGTT	AAATATGAAT	3180
35	AAATATTTAT	TGATTTTACT	ATTAGCATTA	AGCGCGGCGA	TTATGAACAT	GGTACCTTGG	3240
	GGAGGTCCAA	TGGCTCGTGT	AGCTGCAGTG	TTAAAAGCCA	AAAGTGTCAA	TGAATTATGG	3300
	TATGGATTAA	TACCTATTCA	AATAATAGGT	TTCATTCTTG	TTATGTTGTT	TGCGGTATAT	3360
10	CTTGGATTTA	AAGAACAGAA	ACGTATCAAA	AAAGCAATAG	AGAGAAATGA	ATTACCGCAA	3420
	ACACAAGATA	TAGATGTACA	TAAATTAGTT	GAAGTATATG	AACGAGATCA	AGATGTAAGG	3480
	TTTCCTGTAA	AAGGACGTGC	AAGAACAAAA	TCATGGATAA	AATGGGTGAA	TACAGCTTTA	3540
15	ACTTTAGCTG	TTATTCTATC	GATGTTAATA	AATATTGCGC	CACCTGAATT	TGCATTCATG	3600
	ATAGGTGTTy	CGTTGGCACT	TGTTATTAAT	TTTAAATCAG	TGGATGAACA	AATGGAACGA	3660
	TTAAGAGCGC	ATGCGCCGAA	TGCATTAATG	ATGGCTGCAG	TGATTATTGC	AGCAGGTATG	3720
50	TTTTTAGGTG	TACTAAATGA	AACCGGTATG	CTTAAAGCGA	TTGCGACCAA	TTTAATCAAA	3780
	GTGATTCCTG	CAGAAGTAGG	ACCATACTTG	САТАТТАТТС	ጥል ርርጥጥል	でこことできまってい	2040

	ACAGCAGGGC	AATTTGGTGT	ACCGTCTGTA	TCAACAGCTT	ATTCAATGGT	CATAGGGAAT	3960
	ATTATAGGTA	CATTTGTCAG	CCCATTTTCA	CCAGCCTTAT	GGTTGGCAAT	TGGTTTAGCA	4020
5	GAGGCAAACA	TGGGCACGTA	TATTAAGTAT	GCATTCTTTT	GGATTTGGGG	ATTCGCTATC	4080
	GTTATGTTAG	TAATTGCAAT	GTTGATGGGC	ATTGTGACGA	TTTAAGTATG	AAAAAATAGA	4140
10	AACTATGGTC	ACGTTGCAAA	ATGAAATAAT	AGTTGCATAA	ACATGTCGAA	ATGACGGACG	4200
	AATCTTTAAA	CAATTTTAAA	AATTAATGAA	ATAATTGTGT	` AGAAATATGA	ATTTCACTAA	4260
	ATGTTAATAA	CTTTGTGACG	TTTTAGTTAA	CAGACTAATA	AAAATTTGAA	AATACTATAT	4320
15	ATAGTGGTAT	AACGTAATGA	GTAGACACAA	TATATAGGAA	GAAGGGGTAA	AATGAATCAA	4380
	ATCGAAGAAG	CATTAACGGG	TTTGATTTCT	AAAGATCCTG	CTATTGTTAA	CGAAAATGCT	4440
	AACAAAGATA	GTGATACATT	TTCAACAATG	AGAGATTTAA	CAGCAGGTAT	CGTTTCTAAA	4500
20	TCTTACGCAT	TAAATCATTT	ATTACCAAAG	CACGTTGCAG	ATGCACATCA	AAGAGGGGAC	4560
	ATACATTTTC	ACGACTTAGA	TTATCATCCA	TTCCAACCGT	TAACTAACTG	TTGTTTAATA	4620
	GATGCTAAAA	ATATGCTACA	TAATGGATTT	GAAATAGGCA	ACGCGAATGT	AACTTCACCA	4680
25	AAATCAATAC	AAACTGCATC	AGCGCAGCTT	GTACAAATTA	TAGCCAATGT	TTCTAGCAGT	4740
	CAATATGGTG	GCTGTAcGGT	TGACCGCGTT	GACGAATTAC	t TAGTACATA	TGCACGACCA	4800
	TAATGAAGAA	CAACATAGGA	ATATSCGCAA	AGCAATTTGT	CAAAGAATCT	GAAATTGATC	4860
30	GTTATGTTGA	TCAACAAGTC	ACTAAAGACA	TCAATGATGC	GATTGAAAGT	TTAGAATATG	4920
	AAATTAATAC	CTTATATACA	TCTAATGGAC	AGACACCTTT	TGTAACATTA	GGATTCGGCT	4980
35	TAGGTACAGA	TCATTTAAGT	CGCAAAATTC	AACAAGCTAT	CTTAAATACT	CGTATCAAAG	5040
	GCTTAGGAAA	AGACCGCACG	ACAGCGATTT	TCCCGAAACT	TGTATTTTCA	ATTAAAAAAG	5100
	GAACÇAACTT	TAGTCCGCAA	GATCCGAACT	ATGACATTAA	ACAACTAGCA	TTAAAGTGTT	5160
40	CAACGAAACG	TATGTATCCA	GATATTTTAA	ATTATGACAA	ACTCGTAGAA	ATATTAGGTG	5220
	ATTTCAAAGC	GCCAATGGGT	TGTCGTTCAT	TTTTACCAAG	TTGGAAAGAT	GCGGAAGGTC	5280
	ATTTTGAAAA	TAATGGTCGT	TGTAATCTTG	GTGTTGTTAC	ACTTAATTTA	CCTAGAATGG	5340
45	CATTAGAATC	TGCCGGTAAT	ATGACGAAAT	TCTGGGAAAT	CTTTTATGAA	CGTATCGATG	5400
	TGTTACATGA	TGCATTACTT	TATCGTATAA	ATCGTTTGAA	AGATGCTGTA	CCGAATAACG	5460
	CACCGATTTT	ATATAAAAGT	GGCGCATTTA	ACTATAAATT	AAAAGAAACA	GATGATGTTG	5520
50	CTGAGTTATT	TAAAAATAAA	CGTGCAACGA	TTTCAATGGG	CTATATAGGG	TTGTATGAAA	5580
	CAGCTACTGT	TTTCTATGGT	CCAGACTGGG	AAACATCTCA	AGAAGCAAAA	CCATTACCC	E640

	GGTTCAGTAT	TTmCAGTACG	CCGAGTGAAT	CGCTAcGGAT	CGTTTTTGTC	GTTTAGACCA	5760
_	AGAGAGATTT	GGAGATATTA	AAGACATTAC	AGATAAAGGA	TATTATCAAA	ACTCTTTCCA	5820
5	TTATGATGTA	CGTAAAGATG	TTACACCTTT	TGAAAAGTTA	GATTTTGAAA	AAGATTATCC	5880
	TTATTATGCG	AGTGGTGGTT	TCATTCACTA	TTGTGAGTAT	CCGAAATTGC	AACACAATTT	5940
10	GAAAGCACTA	GAAGCGGTAT	GGGACTACTC	TTATGACAAA	GTTGGTTACT	TAGGTACAAA	6000
	TATTCCGATT	GATCATTGTT	ATGAATGTGA	TTACGATGGA	GATTTTGAAG	CAACTGAAAA	6060
	AGGATTTAAA	TGCCCGAACT	GTGGCAATGA	TAATCCTAAA	ACAGTTGATG	TCGTTAAACG	6120
15	AACATGTGGT	TACCTAGGCA	ATCCAGTTCA	ACGTCCAGTA	ATTAAAGGCC	GTCATAAAGA	6180
	AATTTGCGCA	CGAGTAAAAC	ATATGAAAGC	GCCTAAAGAA	TGATACTTTT	AGACATTAAA	6240
	CAAGGACAAG	GTTATATTGC	TAAAATAGAA	TCAAATAGCT	TTGTTGACGG	TGAAGGAGTA	6300
20	AGATGCAGTG	TTTATGTATC	AGGATGTCCA	TTTAATTGTG	TTGGATGTTA	TAACAAAGCC	6360
	TCACAAAAGT	TCAGATATGG	CGAGAAATAC	ACTGATGAAA	TATTAGCAGA	AATATTAGAT	6420
	GATTGCGATC	ATGATTATAT	ATCTGGGCTA	AGTCTATTAG	GTGGCGAACC	ATTTTGTAAT	6480
25	TTGGATATTA	CATTAAATCT	TGTCAAAGCA	TTTCGAGCAC	GTTTTGGAAA	TACAAAGACA	6540
	ATTTGGGTAT	GGACTGGATT	TTTATATGAA	TATTTAGCAA	ATGATTGTAC	AGAACGTCGA	6600
30	GAGTTATTAT	CATACATTGA	CGTTTTAGTA	GATGGTCTAT	TTATACAACA	CTTATTCAAA	6660
30	CCTGATTTAC	CATATAAAGG	TTCTTTAAAT	CAACGCATTA	TAGATGTACA	ACAATCACTC	6720
	TCGCATGCGC	GTATGATTGA	ATATATAGTT	AGTTGAATAT	GTATTAGAAG	TCAAGGTAAC	6780
35	ATTCGTTGCC	TTGGCTTCTT	TTTAGGTTAG	GTACATAATT	GAAAGTTAAT	AAAAGCAATT	6840
	CTTTATAAAA	ATATATTGAT	AGAATATGAC	CTAACAATCA	TTTTGATACC	AATACTAAAA	6900
	GTTGCATATC	CGTTTTTTAA	AAAAGTTGAA	AGAGAAAAGT	GGTATTTTAG	TGGGAAGGAA	6960
40	GTCTAACTTT	TTGGTAGCGT	TTTACAATAA	ATAAATATTC	GTTAATAACG	TATAAATATT	7020
	CTTAAATGCC	ATTCTAGTAA	AATTTGTTAA	ATTCGTTAAA	TCGTAACTTA	ACACTGTTAT	7080
	TTTAGCGCTA	TTAAGGTTTT	GTTTATTACG	GGAAAAATTA	TATAAATATT	CAATAATTGC	7140
45	CAAGTTTCAA	ATTGTATGAA	ATTTGCATTA	TTATTAAATG	TTAGTTATTG	TCAATTTTGT	7200
	GAATCAATAT	AATTATTACA	TTTTGAGATA	AATCGAAACA	GGATTCATAA	AATTAATAAT	7260
	TAGGGGGAGC	ACAATTGAAA	AAAGAGAAAG	TTATGGACTG	GACGACCTTT	ATAGGGACAG	7320
50	TAGCTGTACT	TCTTTTTGCA	GTTATACCTA	TGATGGCTTT	TCCAAAAGCA	AGTGAAGATA	7380
	TCATCACTGG	ТАТТААТАСТ	GCCATTTCTG	ATTCAATTGG	ттссататат	ድድም መተሞሞ መሞር	7440

	TTGGTAAAGC	AAGTGATAAA	CCAGAATTTA	ATACATTTAC	ATGGGCGGCA	ATGCTGTTTT	7560
_	GTGCAGGCAT	AGGCTCTGAT	ATTTTATACT	GGGGCGTTAT	TGAATGGGCT	TTTTACTATC	7620
5	AAGTTCCACC	AAATGGCGCG	AAAAGTATGA	GTGATGAAGC	ACTCCAATAT	GCGACGCAAT	7680
	ATGGTATGTT	CCACTGGGGG	CCAATTGCTT	GGGCTATTTA	TGTTCTACCA	GCATTACCAA	7740
10	TTGGTTATTT	AGTATTTGTT	AAAAAACAAC	CGGTGTATAA	AATTAGTCAA	GCTTGTCGTC	7800
	CGATTTTAAA	AGGTCAAACA	GATAAATTTG	TAGGTAAAGT	TGTAGATATC	TTATTTATCT	7860
	TTGGATTGCT	AGGTGGTGCG	GCAACATCAC	TAGCGTTAGG	TGTGCCATTA	ATTTCTGCAG	7920
15	GCATAGAAAG	ATTAACTGGT	TTAGATGGTA	AAAATATGAT	TTTACGTTCG	GCCATTTTAT	7980
	TAACAATCAC	GGTTATATTT	GCCATTAGTT	CATATACAGG	ATTGAAAAAA	GGTATTCAAA	8040
	AGTTAAGTGA	TATCAACGTT	TGGCTATCCT	TTGTACTTTT	AGCCTTTATA	TTTATTATTG	8100
20	GACCGACTGT	TTTTATTATG	GAAACGACAG	TGACAGGGTT	CGGAAATATG	TTGAGAGATT	8160
	TCTTTCATAT	GGCAACATGG	TTAGAACCAT	TCGGTGGTAT	TAAAGGTCGA	AAAGAAACGA	8220
	ATTTCCCACA	AGACTGGACA	ATATTCTACT	GGTCATGGTG	GTTAGTATAT	GCGCCATTTA	8280
25	TCGGTTTATT	TATCGCTAGA	ATTTCAAAAG	GTCGACGCCT	TAAAGAAGTC	GTGCTAGGAA	8340
	CAATTATTTA	TGGAACGCTT	GGATGCGTAT	TATTCTTTGG	TATTTTTGGT	AACTATGCTG	8400
30	TGTATTTACA	AATTTCTGGA	CAGTTTAATG	TAACACAATA	TTTAAATACA	CATGGTACAG	8460
	AGGCAACCAT	TATTGAAGTG	GTGCATCATT	TACCATTCCC	ATCATTGATG	ATTGTACTAT	8520
	TCTTAGTATC	TGCTTTCTTA	TTCTTAGCAA	CAACATTTGA	TTCGGGTTCA	TATATTTTAG	8580
35	CGGCAGCATC	TCAGAAAAA	GTGGTAGGCG	AACCATTACG	TGCCAATCGT	TTATTCTGGG	8640
	CATTTGCATT	GTGCTTATTG	CCATTTTCAT	TGATGCTAGT	TGGTGGTGAA	CGTGCATTAG	8700
	AAGTĀTTGAA	AACTGCTTCA	ATACTGGCAA	GTGTGCCATT	AATTGTTATT	TTTATTTTCA	8760
40	TGATGATATC	ATTTTTAATC	ATTTTAGGGC	GCGATAGAAT	TAAACTTGAA	ACGCGTGCTG	8820
	AAAAATTAAA	AGAAGTTGAA	CGTCGTTCAT	TGCGAATCGT	TCAAGTATCa	GAAGAAGAAC	8880
	AAGACGATAA	TTTATAATTC	AAAGCGGGTC	TGGGACGACG	AAATGAATTT	TGTGAAAATA	8940
45	TCATTTCTGT	TCCaTTCCCC	TTTTTTTAGT	AGCATTGTAG	GATGAACTTT	TAGGTTTTCA	9000
	TTAATGTTGT	ACTAAAAGAT	TTAATTTTTT	AGTGCTCCAA	GTACTTATTT	ATTGTATGAA	9060
50	GCATATTCTA	AATCGAAGTT	TGAAAGACTC	TCATTGATTA	TTAAATTAAA	TAAAGGGTAT	9120
	GCGTATGTAC	AATTCAAATT	AATCGAAGGA	TGAAATAAAA	TGACTAATCA	ATTTAAAAAT	9180
	AAACAGTCCA	AATTACATGA	CAGTTTAGAA	TCCATCACAA	AAAACTTATA	TGCGACACCT	9240

	ACAGAATATT	GTTATCTATC	ATTCCGGACA	CTTAGGTGAC	TCCCAACAAG	ACATTGCATC	9360
_	ATTAGGTGGT	GTTTCAAAAG	TATTGATGAA	TCATGATCAT	GAATCTATAG	GAGGTTCTAA	9420
5	TCAAGTTGAA	GCCCCTTACT	TTATACATGA	AAATGATGTG	GCTGCACTGA	AACATAAGAT	9480
	TTCTGTTCAA	AAACAATTTA	GTAATCGTGT	AATGTTGGAT	AAGGATTTAG	AAGTTATTCC	9540
10	CGCGCCTGGA	CATACACCAG	GGACGACACT	ATTTTTATGG	GATGATGGTC	ATCACCGTTA	9600
	CTTATTTACT	GGAGATTTTA	TATGTTTTGA	AGGGAAGAGA	TGGCGTACAG	TTATATTAGG	9660
	TTCAAGTGAT	AGAGAAAAT	CTATTCAAAG	TTTAGAGATG	GTTAAAGAAT	TAGATTTTGA	9720
15	TGTACTTGTA	CCTTGGGTTA	CTATCAAAGA	TGAACCGTTA	GTTTATTTTG	TAGAAAATGA	9780
	ATATGAAAAA	CGTGAACAAA	TACAAAATAT	TATTGATAGA	GTACGTGAGG	GCGAGAATAG	9840
	CTAATTGAAA	TATATTGGCG	AAgCAATGTA	ACGAATCTAA	GAAAGCCCTA	GAAAATACCT	9900
20	CCATAATTGA	TTGTCATATA	AAACAAAAAC	GGTAATTTCT	ATTTATTGAG	ATAGAAATTA	9960
	CCGTTTATTT	CGTGGACCTA	TTGCATTGTT	TTTATCATGC	ATAATCATCA	TTGTCGTTGT	10020
	TTGAGTCAAT	TTTAATTTTC	AGAATCAGAA	GGCTGTTCTG	GAATTGGGAA	ATATTTGAAA	10080
25	ATTTCACCGC	TTTCAATCGC	TTCGGTTAAC	TGTTCTAACC	ATTCGTAATA	AACATGTGTA	10140
	TGATCAAGCT	GAGCTTTAAT	TTTTTGTGCC	TCTTGTGTTT	CAGCTTCAGT	TAAATCACTG	10200
30	CTTTCAAGTA	ATGGATTGAT	AATAGCTTGA	GCATCTTTTA	CTGCTTCGAC	ATTGATGTCA	10260
	ATTTCACGCT	GGAATTTTTT	agtgaaaaag	TTTCGGAAAA	AGATGAAAAA	GTCTTTCTCG	10320
	GCGATAAAAT	GTTGTTTGCG	GCTTCCTCTC	GTAAATTGTT	GTTTAACAAT	ATCAAATTCC	10380
35	TGCAATTTCT	TAACGCCAGC	ACTCATACTT	GGTTTGCTCA	TTTGCAATTG	ATGACGCATT	10440
÷	TCATCAAGCG	TCATACTGCC	TTCAAACACC	ATTGTGCCAT	ATAAGTTTCC	TACACTTCTA	10500
	TTAGTGCCAT	ACAAATCCAT	TGTCTGTCCA	ATTGAATTAA	TTACAATATC	TTTTGCTTGT	10560
40	TCTAATTGTT	GCTGTTTGTT	CTGAGAACGA	GTCATCATTG	CACCTCCGTA	CATCATTTTG	10620
	GTCACGTTAA	AATAAATACT	AATACATTAT	AAAACCTTTT	CTAAAAAAAG	ACATTAAAAA	10680
	TATTTAAAGC	ATTAAAGTTA	AATGTTTCGT	TAAATAAAA	TCTAACGAAC	TTACAAAACT	10740
45	TAATTCTTGA	GTTGTTTTGT	AAATTGACAC	ATTTTTCATT	TCTATGCTAA	CATAAGTnTG	10800
	TAAAATTcGT	ТАААТАААА	TTTAACAAAC	TTAACGGrGG	TTGTTGAAkG	Gracttttaa	10860
	aACATTTATC	TCAGCGTCAA	TATATTGATG	GTGAGTGGGT	TGAAAGCGCG	АТААААТА	10920
50	CAAGAGATAT	TATCAATCCT	TACAATCAAG	AAGTGATATT	TACGGTTTCT	GAAGGGACAA	10980
	AAGAGGATGC	AGAACGTGCA	АТСТТАССТС	CAAGACGTGC	GTTTTGAGTTCTT	GGTGAATGGT	11040

	AACATCGCGA	AgCgTTAGCA	CGATTAGAAA	CATTAGATAC	TGGAAAAACG	TTAGAAGAAT	11160
_	CATATGCAGA	TATGGATGAT	ATTCATAATG	TGTTTATGTA	TTTTGCTGGA	TTAGCAGATA	11220
5	AAGACGGTGG	CGAAATGATT	GATTCACCAA	TTCCAGATAC	AGAAAGCAAA	ATTGTTAAAG	11280
	AACCAGTAGG	TGTAGTTACA	CAAATTACAC	CTTGGAATTA	TCCGTTATTA	CAAGCATCAT	11340
10	GGAAAATTGC	GCCAGCGCTT	GCTACGGGTT	GTTCACTAGT	TATGAAACCA	AGTGAAATTA	11400
	CACCATTAAC	AACAATACGT	GTTTTTGAAT	TAATGGAAGA	AGTTGGTTTC	CCTAAAGGAA	11460
	CAATTAATCT	TATTCTAGGT	GCAGGTTCTG	AAGTTGGTGA	CGTAATGTCA	GGTCATAAAG	11520
15	AGGTTGACCT	TGTATCATTT	ACAGGTGGCA	TTGAGACTGG	TAAGCATATT	ATGAAAAATG	11580
	CTGCTAATAA	TGTTACGAAT	ATTGCCTTGG	AACTTGGCGG	TAAAAATCCA	AACATTATCT	11640
	TTGATGATGC	TGATTTTGAA	TTGGCAGTAG	ACCAAGCGTT	AAATGGTGGA	TATTTCCATG	11700
20	CAGGTCAAGT	TTGTTCAGCA	GGATCAAGAA	TATTAGTACA	AAACAGTATT	AAAGACAAAT	11760
	TTGAGCAAGC	ACTTATTGAT	CGCGTGAAAA	AAATCAAATT	AGGTAATGGT	TTTGATGCTG	11820
	ATACTGAAAT	GGGACCAGTG	ATTTCAACAG	AACATCGTAA	TAAGATCGAA	TCTTATATGG	11880
25	ATGTAGCTAA	AGCAGAAGGC	GCAACAATTG	CTGTTGGTGG	TAAACGTCCA	GATAGAGATG	11940
	ATTTAAAAGA	TGGTCTATTC	TTCGAGCCAA	CAGTCATTAC	AAATTGTGAT	ACGTCAATGC	12000
30	GTATTGTACA	AGAAGAGGTT	TTCGGACCTG	TCGTTACTGT	AGAAGGCTTT	GAAACTGAAC	12060
	AAGAAGCGAT	TCAATTAGCG	AATGATTCTA	TATATGGTTT	AGCAGGTGCT	GTATTTTCTA	12120
	AAGATATTGG	AAAAGCACAA	CGCGTTGCTA	ACAAGTTGAA	ACTTGGAACG	GTGTGGATTA	12180
35	ATGATTTCCA	TCCATATTTT	GCACAAGCGC	CATGGGGTGG	ATACAAACAA	TCAGGTATCG	12240
	GTAGAGAATT	AGGCAAAGAA	GGCTTAGAAG	AGTACCTTGT	TTCAAAACAC	ATTTTAACAA	12300
	ATAÇÃAATCC	ACAATTAGTG	AATTGGTTTA	GCAAATAAAA	attagataag	GTGAGTGCCA	12360
40	TTGTAAGAAC	ACAAGACACT	CACTTTGTTT	TGTATAAGTG	GCGAAATGTT	GATTGATAAT	12420
	TTGGACTAAA	CGCAAAATGA	ATCATAGATT	ATTTCATTAC	TGTTAGTAAC	AATCGTAAAA	12480
	GGAAAAGCGA	GTGTTTTGGT	TAGCTAAGTT	TAGCAATTCA	ACGATAACCA	ATCAGCCACT	12540
45	AACAAATATT	TCATGCAATA	CTCACTTTGA	AATACAACAA	ACTTTGGAGG	TCATAACGAT	12600
	GAGTAACAAA	AACAAATCAT	ATGATTATGT	CATCATTGGA	GGAGGCAGTG	CAGGTTCTGT	12660
5 <i>0</i>	ACTAGGTAAT	CGTCTGAGTG	AAGATAAAGA	TAAAGAAGTC	TTAGTATTAG	AAGCGGGTCG	12720
	CAGTGATTAT	TTTTGGGATT	TATTTATCCA	AATGCCTGCT	GCGTTAATGT	TCCCTTCAGG	12780
	CAATAAATTT	TACGATTGGA	TTTATTCAAC	AGATGAAGAA	CCACATATGG	GCGGTCGTAA	12840

TCAACGTGGT AATCCAATGG ACTATGAAGG CTGGGCAGAA CCAGAAGGTA TGGAAACTTG 12960 GGATTTTGCG CACTGTTTAC CGTATTTTAA AAAATTAGAA AAAACATACG GTGCAGCGCC 13020 5 TTATGATAAA TTTAGAGGCC ATGATGGACC AATTAAGTTA AAACGAGGGC CAGCAACGAA 13080 TCCTTTATTC CAGTCATTCT TTGATGCAGG TGTTGAAGCA GGCTATCATA AAACACCTGA 13140 TGTGAATGGA TTTAGACAAG AAGGTTTTGG ACCGTTCGAT AGTCAAGTAC ATCGTGGTCG 13200 10 CCGAATGTCA GCTTCAAGAG CATATTTACA TCCAGCGATG AAGCGTAAAA ACTTAACCGT 13260 TGAAACACGT GCCTTTGTAA CTGAAATTCA TTATGAAGGT AGAAGAGCAA CTGGTGTTAC 13320 GTATAAGAAA AATGGCAAAC TACATACCAT CGATGCTAAT GAAGTCATTT TGTCTGGTGG 13380 15 GGCATTCAAT ACGCCACAAT TACTACAATT ATCTGGTATC GGTGATTCAG AGTTCCTAAA 13440 ATCAAAAGGC ATTGAGCCAC GTGTTCATTT ACCTGGTGTG GGTGAAAACT TTGAAGATCA 13500 20 , CTTAGAGG 13508

(2) INFORMATION FOR SEQ ID NO: 121:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7646 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

50

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 121:

GTAAGTATTG TCTTGATTTC CTAATAAAGT TATATCTTGT AATTCATCTT GTTGACGGCC 60 ATGTGCCATA TAAAGCGCTC CTTTAAATTT ATTTTTTAT TATTTTGGCG TCTCGGCGTG 120 CTTTTTCAAA CATGTAATAA CTTGCACCGA TAATAACGAC GTAACCTAAT GTTGCATAGA 180 AATCTGGAGA TTCTCCGAAT AGAATAAATC CAAGTATTGC TGTGAAAATT ATAGATGCAT 240 ACGTAAAAAT AGAAATATCT TTTGCTGCTG CAAAACTATA TGCTAAAGTA ACACCAATTT 300 GACCCACAGC GGCAGCTAAG CCAGCCCCTA ATAGATAAAG TATTTGCATC TGACTCATTG 360 GTTCATAAGT ATATGCAGTG AAAGGTATTA AAACGATGAC AGAAAATAAG GAGAAGTAAA 420 ATACTATAGT ATATGGTGCT TYTCTTGTAC TAAGTGCTCG AACACATGTA TATGCTGATG 480 CTGCAAAAAT ACCTGAGAAT AAGCCAGCTA ATGATGGAAT CATAGATGAT GAAAATTCAG 540 GTTTCACTAT TAANAGCAAC CTAAAATAGC AATTATCATT GCTGTAATTT GATACTTCCT 600 TACCTTTCA TGLAAGAAAA CAATGCTTAA TAAAATCGTC CAGAAAGGAT TGAGTTTCAT 660 TAATGAATCG GCATCACTAA GTACCATATG ATCAATGGCA TAAATATTTA ACAATACACC

	TGGCTGATGG	TATTTATATA	AATAAAAAT	TGGAATAAAC	ATTGCTACTA	AGTTTCGTGC	840
-	TAATGATTTT	TGAAAAACAG	GAAGGTCACC	TGCAAGTCTG	AAAAACACTG	ACATAAAACT	900
5	GAAACCAATA	GCCGAAATTA	AAATGGCAAT	GATACCTTTT	ACTTTAGGAT	TCAATTTTAT	960
	CGCCTCTTTT	ATATAAAATT	AACGTATTTA	TATTAGCATA	AAACAACATG	TTGTGCATAA	1020
10	ATAGTTGAAA	TTTACTATAA	AAAGACTATA	ATAGACTGTA	GCGAACAAAC	GTTCTGTGTT	1080
	TATTTGTCGG	AATAATAGGG	CATTACACTT	TTATGAATGT	TTGTGTTATT	ACATAAAACA	1140
	AATATCAATT	CAGTATCAAG	CTAATAAGCT	TTTTCTTGAT	TTCTGTTGAT	ACAATTGAGA	1200
15	TTGACACAGA	TTTAAAAAAA	TCAAGTGATA	ТСТАСТАААА	AATTTTTTTA	AATTTGTTCA	1260
	AGTTTTTCTA	ATTTAGTATT	GGTGCCTAGT	TGGAACGTTT	TACGAACATT	CGATTAGAAA	1320
	ATGGCACTTT	AAATCATAGT	GTGTCTTATG	TATAATGAAA	CACATAATAT	AGTGTTGGTG	1380
20	AAACGAAAAA	gACACAATAT	CTTGTGTTTT	GTATGCAAAT	GCTTTATTTA	TGAAGAAATT	1440
	ACATTTAAAA	GTAATTTAAC	ACAGAAATTT	AATAGTTATT	ATCAATTAAT	AGTCATATTT	1500
	TTAGAAAATG	TACTGAGCAA	ATGGAAGATA	TCCAATGATG	TAAACACTAC	ATATAGTGAT	1560
25	TTTTATACAT	TCAACCCATA	TAAGCTACTA	TTTTCTCAAA	TATAAATCTA	TGCAATTGGT	1620
	TTACATTTGA	GAAAATAAGT	AGCTTCATTA	TAGTTAATAC	AATGCTGAGA	TAACCATAGT	1680
30	AACCATGTTG	TTAAAGCATT	TTTTAATTGG	AATGACTACT	TTATTTAAAA	GGGTTGAAGA	1740
	AAGAAGGTGA	TCCAATGAAA	ATAATATAT	TTTCATTTAC	TGGAAATGTC	CGTCGTTTTA	1800
	TTAAGAGAAC	AGAACTTGAA	AATACGCTTG	AGATTACAGC	AGAAAATTGT	ATGGAACCAG	1860
35	TTCATGAACC	GTTTATTATC	GTTACTGGCA	CTATTGGATT	TGGAGAAGTA	CCAGAACCCG	1920
	TTCAATCTTT	TTTAGAAGTT	AATCATCAAT	ACATCAGAGG	TGTGGCAGCT	AGCGGTAATC	1980
	GAAATTGGGG	ACTAAATTTC	GCAAAAGCGG	GTCGCACGAT	ATCAGAAGAG	TATAATGTCC	2040
40	CTTTATTAAT	GAAGTTTGAG	TTACATGGAA	AAAACAAAGA	CGTTATTGAA	TTTAAGAACA	2100
	AGGTGGGTAA	TTTTAATGAA	AACCATGGAA	GAGAAAAAGT	ACAATCATAT	TGAATTAAAT	2160
	AATGAGGTCA	CTAAACGAaG	AGAAGATGGA	TTCTTTAGTT	TAGAAAAAGA	CCAAGAAGCT	2220
45	TTAGTAGCTT	ATTTAGAAGA	AGTAAAAGAC	AAAACAATCT	TCTTCGACAC	TGAAATCGAG	2280
	CGTTTACGTT	ATTTAGTAGA	CAACGATTTT	TATTTCAATG	TGTTTGATAT	TTATAGTGAA	2340
50	GCGGATCTAA	TTGAAATCAC	TGATTATGCA	AAATCAATCC	CGTTTAATTT	TGCAAGTTAT	2400
<i>30</i>	ATGTCAGCTA	GTAAATTTTT	CAAAGATTAC	GCTTTGAAAA	CAAATGATAA	AAGTCAATAC	2460
	TTAGAAGACT	ATAATCAACA	CGTTGCCATT	GTTGCTTTAT	ACCTAGCAAA	TGGTAATAAA	2520

	ACATTTTTAA	ACGCAGGCCG	TGCGCGTCGT	GGTGAGCTAG	TGTCATGTTT	CTTATTAGAA	2640
_	GTGGATGACA	GCTTAAATTC	AATTAACTTT	ATTGATTCAA	CTGCAAAACA	ATTAAGTAAA	2700
5	ATTGGGGGCG	GCGTTGCAAT	TAACTTATCT	AAATTGCGTG	CACGTGGTGA	AGCAATTAAA	2760
	GGAATTAAAG	GCGTAgCGAA	AGGCGTTTTA	CCTATTGCTA	AGTCACTTGA	AGGTGGCTTT	2820
10	AGCTATGCAG	ATCAACTTGG	TCAACGCCCT	GGTGCTGGTG	CTGTGTACTT	AAATATCTTC	2880
	CATTATGATG	TAGAAGAATT	TTTAGATACT	AAAAAAGTAA	ATGCGGATGA	AGATTTACGT	2940
	TTATCTACAA	TATCAACTGG	TTTAATTGTT	CCATCTAAAT	TCTTCGATTT	AGCTAAAGAA	3000
15	GGTAAGGACT	TTTATATGTT	TGCACCTCAT	ACAGTTAAAG	AAGAATATGG	TGTGACATTA	3060
	GACGATATCG	ATTTAGAAAA	ATATTATGAT	GACATGGTTG	CAAACCCAAA	TGTTGAGAAA	3120
	AAGAAAAAGA	ATGCGCGTGA	AATGTTGAAT	TTAATTGCGC	AAACACAATT	ACAATCAGGT	3180
20	TATCCATATT	TAATGTTTAA	AGATAATGCT	AACAGAGTGC	ATCCGAATTC	AAACATTGGA	3240
	CAAATTAAAA	TGAGTAACTT	ATGTACGGAA	ATTTTCCAAC	TACAAGAAAC	TTCAATTATT	3300
	AATGACTATG	GTATTGAAGA	CGAAATTAAA	CGTGATATTT	CTTGTAACTT	GGGCTCATTA	3360
25	AATATTGTTA	ATGTAATGGA	AAGCGGAAAA	TTCAGAGATT	CAGTTCACTC	TGGTATGGAC	3420
	GCATTAACTG	TTGTGAGTGA	TGTAGCAAAT	ATTCAAAATG	CACCAGGAGT	TAGAAAAGCT	3480
20	AACAGTGAAT	TACATTCAGT	TGGTCTTGGT	GTGATGAATT	TACACGGTTA	CCTAGCAAAA	3540
30	AATAAAATTG	GTTATGAGTC	AGAAGAAGCA	AAAGATTTTG	CAAATATCTT	CTTTATGATG	3600
	ATGAATTTCT	ACTCAATCGA	ACGTTCAATG	GAAATCGCTA	AAGAGCGTGG	TATCAAATAT	3660
35	CAAGACTTTG	AAAAGTCTGA	TTATGCTAAT	GGCAAATATT	TCGAGTTCTA	TACAACTCAA	3720
	GAATTTGAAC	CTCAATTCGA	AAAAGTACGT	GAATTATTCG	ATGGTATGGC	TATTCCTACT	3780
	TCTGAGGATT	GGAAGAAACT	ACAACAAGAT	GTTGAACAAT	ATGGTTTATA	TCATGCATAT	3840
40	AGAŤTAGCAA	TTGCTCCAAC	ACAAAGTATT	TCTTATGTTC	AAAATGCAAC	AAGTTCTGTA	3900
	ATGCCAATCG	TTGACCAAAT	TGAACGTCGT	ACTTATGGTA	ATGCGGAAAC	ATTTTACCCT	3960
	ATGCCATTCT	TATCACCACA	AACAATGTGG	TACTACAAAT	CAGCATTCAA	TACTGATCAG	4020
45	ATGAAATTAA	TCGATTTAAT	TGCGACAATT	CAAACGCATA	TTGACCAAGG	TATCTCAACG	4080
	ATCCTTTATG	TTAATTCTGA	AATTTCTACA	CGTGAGTTAG	CAAGATTATA	TGTATATGCG	4140
	CACTATAAAG	GATTAAAATC	ACTTTACTAT	ACTAGAAATA	AATTATTAAG	TGTAGAAGAA	4200
50	TGTACAAGTT	GTTCTATCTA	ACAATTAAAT	GTTGAAAATG	ACAAACAGCT	AATCATCTGG	4260
	ጥርጥርል እጥጥልር	СРСРАСТАТА	CACTCCTATC	יייריייריי איירייריי	ביישיר א ידיידי א	አርጥአ አርአመጥአ	4220

	ATGTTTTGGA	GACAAAATAT	ATCTCAAATG	TGGGTTGAAA	CAGAATTTAA	AGTATCAAAA	4440
_	GACATTGCAA	GTTGGAAGAC	TTTATCTGAA	GCTGAACAAG	ACACATTTAA	AAAAGCATTA	4500
5	GCTGGTTTAA	CAGGCTTAGA	TACACATCAA	GCAGATGATG	GCATGCCTTT	AGTTATGCTA	4560
	CATACGACTG	ACTTAAGGAA	AAAAGCAGTT	TATTCATTTA	TGGCGATGAT	GGAGCAAATA	4620
10	CACGCGAAAA	GCTATTCACA	TATTTTCACA	ACACTATTAC	CATCTAGTGA	Aacaaactac	4680
.0	CTATTAGATG	AATGGGTTTT	AGAGGAACCC	CATTTAAAAT	ATAAATCTGA	TAAAATTGTT	4740
	GCTAATTATC	ACAAACTTTG	GGGTAAAGAA	GCTTCGATAT	ACGACCAATA	TATGGCCAGA	4800
15	GTTACGAGTG	TATTTTTAGA	AACATTCTTA	TTCTTCTCAG	GTTTCTATTA	TCCACTATAT	4860
	CTTGCTGGTC	AAGGGAAAAT	GACGACATCA	GGTGAAATCA	TTCGTAAAAT	TCTTTTAGAT	4920
	GAATCTATTC	ATGGTGTATT	TACCGGTTTA	GATGCACAGC	ATTTACGAAA	TGAACTATCT	4980
20	GAAAGTGAGA	AACAAAAAGC	AGATCAAGAA	ATGTATAAAT	TGCTAAATGA	CTTGTATTTA	5040
	AATGAAGAGT	CATACACAAA	AATGTTATAC	GATGATCTTG	GAATCACTGA	AGATGTGCTA	5100
	AACTATGTTA	AATATAATGG	AAACAAAGCA	CTTTCAAACT	TAGGCTTTGa	ACCTTATTTT	5160
25	GAGGAACGTG	AATTTAACCC	AATCATTGAG	AATGCCTTAG	ATACAACAAC	TAAAAACCAT	5220
	GACTTCTTCT	CAGTAAAAGG	TGATGGTTAT	GTATTAGCAT	TAAACGTAGA	AGCATTACAA	5280
20	GATGATGACT	TTGTATTTGA	CAACAAATAA	CAATTAAATT	AAAAGACCTT	CACATGTAAA	5340
30	GGGAAATAGC	GATTCGTTTC	GTCTTGTCTC	CTACATGTTG	AAGGTCTTTT	TTTATGTGTA	5400
	TCTAACTCAT	TATGAGTCTG	AGTAAGAAAT	CAATGCTCTA	AGATGTACAA	TGCTATTTAT	5460
35	ATTGGCAGTA	GTTGGCGGGG	CCCCAACACA	GAAGCAGGCG	GAAAGTCAGC	TAACAATATT	5520
	GTGCAAGTTG	GCGGGGCCCC	AACATAGAAG	CAGGCGGAAA	GTÇAGCTAAC	AATAATGTGC	5580
	AAGTTGGCGG	GGCCCCAACA	TAAAAGCAGG	CGGAAAGTCA	GCTAACAATA	TTGTGCAAGT	5640
40	TCGGgCGGGG	CCCCAACATA	AAGAAAAACT	TTTTCCTTTA	GAAATTATCA	CTTCCaCaTG	5700
	AGTTTTACTC	ATGTATTCCT	ATTTTTAAGT	ACACATTAGC	TGAGGCTAAT	GTTAAGAACC	5760
	ACTACTTAAT	CAATCATTAG	TAGTTTTTAT	CATTTCCACT	ATTCCCaGAC	ATCAAAATCT	5820
45	TAAGTGTTCT	ATTTTACTTT	AAGTAAACAA	AATACACATT	CCGAAAAATT	AAATTTCAGT	5880
	TTAATTGCAA	ATATCAATAA	AATTGACACT	AAATTATTTG	AAAGGCTATT	GAAATTATGG	5940
	TCAAAAAACG	СТАСТАТТАА	TGAGAAATAT	TATCAATGAT	AATGATTATC	ATTAATTTAA	6000
50	AGGGAGAAAA	ATTTGTAATG	AAGTATTTAT	TAAAGGGAAA	TATTTTGCTT	CTATTACTAA	6060
	TATTGTTGAC	AATTATTTCG	TTGTTCATAG	GTGTGAGTGA	ACTATCAATT	AAAGATTTAC	6120

	GIAITIIAAI	IGCIGGAAGI	TCGTTGGCTT	TAGCAGGCTT	GATAATGCAA	CAMATGATGC	6240
_	AAAATAAGTT	TGTTAGTCCG	ACTACAGCTG	GAACGATGGA	ATGGGCTAAA	CTAGGTATTT	6300
5	TAATTGCTTT	ATTGTTCTTT	CCAACCGGTC	ATATTTTATT	AAAACTAGTA	TTTGCTGTTA	6360
	TTTGCAGTAT	TTGCGGTACG	TTTTTATTTG	TTAAAATCAT	TGATTTTATA	AAAGTGAAAG	6420
10	ATGTCATTTT	TGTACCGCTT	TTAGGAATTA	TGATGGGTGG	GATTGTTGCA	AGTTCACAAC	6480
	CTTCATCTCA	TTGCGCACGA	ATGCTGTTCA	AAGCATTGGT	AACTGGCTTA	ACGGGAACTT	6540
	TGCCATTATC	ACAAGTGGAC	GCTATGAAAT	TTTATATTTA	AGTATTCCTC	TTTTAGCATT	6600
15	GACATATCTT	TTTGCTAATC	ATTTCACGAT	TGTAGGAATG	GGTAAAGACT	TTACTAATAA	6660
	TTTAGGTTTG	AGTTACGAAA	AATTAATTAA	CATCGCATTG	TTTATTACTG	CAACTATTAC	6720
	AGCATTGGTA	GTGGTGACTG	TTGGAACATT	ACCGTTCTTA	GGACTAGTAA	TACCAAATAT	6780
20	TATTTCAATT	TATCGAGGTG	ATCATTTGAA	AAATGCTATC	CCTCATACGA	TGATGTTAGG	6840
	TGCCATCTTT	GTATTATTTT	CTGATATAGT	TGGCAGAATT	GTTGTTTATC	CATATGAAAT	6900
	AAATATTGGT	TTAACAATAG	GTGTATTTGG	AACAATCATT	TTCCTTATCT	TGCTTATGAA	6960
25	AGGTAGGAAA	AATTATGCGC	aACAATAATA	TAATAAAAA	GCTTTTAATT	GCAGTAACGT	7020
	TATTAATTAG	TATGCTGTAC	TTATTTGTAG	GTATTGATTT	TGAAATATTT	GAATATCAAT	7080
30	TTTCAAGTCG	TTTAAGAAAG	TTCATATTAA	TTATTTTAGT	AGGTGCTGCC	ATTGCAACTT	7140
	CAGTGGTGAT	TTTTCAAGCG	ATTACAAATA	ACCGTCTATT	GACACCATCA	ATAATGGGGT	7200
	TAGATGCAGT	TTATTTATTT	ATCAAAGTAT	TGCCAGTCTT	TTTATTTGGA	ATTCAATCGG	7260
35	TATGGGTTAC	TAATGTATAT	TTGAACTTTA	TATTAACACT	TATAACGATG	GTGTTATTCG	7320
	CACTAATCCT	ATTCCAAGGT	ATCTTTAAAA	TCGGACATTT	TTCAATTTAT	TTTATCTTAC	7380
	TTATTGGTGT	CCTTTTAGGA	ACATTTTTTA	GAAGCATAAC	AGGTTTTATT	CAACTGATTA	7440
40	TGGATCCTGA	GTCATTTTTA	GCAATACAAA	GTAGTATGTT	TGCTAATTTT	AATGCTTCTA	7500
	ATTCGAATTT	AGTTACTTTC	TCAGCAGTGC	TATTAGTAAT	CTTATTAGTC	ATTACAATTT	7560
	TACTATTGCC	TTATTTAGAT	GTATTGCTTT	TAGGTCGTGC	TGAAGCAATT	AATCTTGGGA	7620
45	TATCGTATGA	AAAATTAACG	CGAATT				7646

(2) INFORMATION FOR SEQ ID NO: 122:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1194 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

(xi)	SEQUENCE	DESCRIPTION:	SEQ	ID	NO:	122:
			DLV		110.	

5	ATGAATATAT	TTnnAAATAA	ATTATTATGG	ATTGCACCAA	TnGCCACTAT	GATTATCTTG	60
	GTAATCTTTT	CTTTAGCTTT	TTATCCTGCA	TATAATCCTA	AACCAAAAGA	TTTACCAATT	120
	GGTATATTAA	ACGAGGATAA	AGGTACAACG	ATTCAAGATA	AAAATGTTAA	CATTGGTAAA	180
10	AAATTAGAGG	ATAAATTATT	AGATAGTGAT	ТСТААТАААА	TTAAATGGGT	TAAGGTTGAT	240
	AGTGAAAAAG	ACCTTGAAAA	AGATTTGAAA	GATCAAAAAA	TCTTTGGAGT	AGCTATTATT	300
	GATAAAGACT	TTTCAAAAGA	TGCTATGAGT	AAAACACAAA	AAGTAGTTAT	GGATAGTAAA	360
15	AAAGAAGAAA	TGCAACAAAA	AGTTGCTTCA	GGTGAAATTC	CGCCACAAGT	GGTTCAACAA	420
	ATGAAACAAA	AAATGGGGAA	TCAACAAGTA	GAGGTTAAGC	AGGCTAAATT	TAAAACGATT	480
20	GTAAGTGAAG	GATCAAGCTT	ACAAGGTTCA	CAAATTGCAT	CAGCTGTGTT	AACTGGTATG	540
	GGTGATAATA	TTAATGCTCA	AATTACGAAG	CAAAGTTTGG	AAACATTAAC	GAGTCAAAAT	600
	GTTAAAGTCA	ATGCCGCGGA	CATCAATGGT	TTGACGAATC	CAGTAAAAGT	GGATAATGAA	660
25	AAACTTAATA	AAGTTAAAGA	TCACCAAGCA	GGTGGTAATG	CACCATTCCT	AATGTTTATG	720
	CCAATTTGGA	TAGGTTCAAT	CGTAACGTCT	ATCTTATTGT	TCTTTGCATT	TAGAACTAGT	780
	AACAATATCG	TCGTGCAACA	TCGTATCaTT	GCtTCAATTG	GACAGATGAT	ATTTGCAGTT	840
30 35	GTTGCAGCAT	TTGCAGGTAG	CTTTGTTTAT	ATTTATTTCA	TGCAAGGCGT	TCAAAGATTT	900
	GATTTTGACC	ATCCAAATCG	TATCGCAATT	TTTGTAGCAT	TTGCGATTCT	TGGTTTCGTG	960
	GGCCTTATTT	TAGGTGTTAT	GGTATGGCTA	GGTATGAAGT	CAGTTCCAAT	TTTCTTCATT	1020
	TTAATGTTCT	TTAGTATGCA	ACTTGTAACG	TTACCTAAAC	AAATGTTGCC	TGAAAGTTAT	1080
	CAAAAATATG	TATATGATTG	GAATCCATTC	ACACACTATG	CAACAAGTGT	AAGAGACTAT	1140
	TATACTTGAA	TCATCATATT	GAATTAAATA	GTACAATGTG	GATGTTTATA	GGGT	1194
	/2\						

(2) INFORMATION FOR SEQ ID NO: 123: 40

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 558 base pairs

 - (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 123:

50	GACCGACCTA	TACATCCGTA	TAAGTATTTC	TTGATATAAG	TCTTCTAAAT	CATAATGATT	60
	AAATCCAAAT	GTTTTGATGC	GTCGAATAAT	TAATGGTTGT	AGATCCATTA	CTAACTTTTC	120

55

	GTATTTCAAA TATTAAACTA ACCCCTTCTA TCTAAAATTT AAGGTTAGTT TAATATTGTT	240
	ACATTCAAAA TTTCAAGATG ACGGAAATGT CATTTCTTAT GATGTCCTCT TCGTATTTTT	300
5	TCAAATTCTG CAAGGATTTC AGAAGATAAC GGAATTCGAG TTCTTGGCTT GTTTTCACTT	360
	ATATCATCTA ATGATTTACT CACATCAATT TCATTTTCTT TTAAATCTCT CCACATTTCG	420
	CGAGATGATA TTCTATATGC ACCTGATCCA AAGATAGCAT GTTGCTCACT CATATCACTT	480
10	GTTACAACTG TAATATGCTT AGLATGCTTG LCATAAAGLT CATAAACCAT AACGGTTCTA	540
	ATGGAAACCA ATCAGCTG	558
15	(2) INFORMATION FOR SEQ ID NO: 124: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7762 base pairs	
20	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 124:	
25	GCTTCAGACA THTGATGATA TAATCTCTCA TCATCGATTA ATTCTTTTGC AGCTTGATAC	60
	ACATHTTGCT TATTTGTTCC AATGACTTTT AATGTGCCAG CTTCAACACC TTCAGGACGT	120
	TCTGTAACAC TTCGCCAAAA CTAAAACTGG CTTATTAAAT GATGGCGCTT CTTCCTGAAT	180
30	TCCACCTGAA TCTGTCAAAA TAAAATAAGA TTTTnTAGCA AAATTATGGA AATCTATACG	240
	TCCAAAGGTT CAATCAATTC AATTCTGTCA TGACTACCTA AAATCTTTTG AGCCACCTCT	300
	CGAACTTTCG GGTTTTTATG CATTGGATAT ACCAGTGCTA AATCAGTATA CTCATCTATT	360
35	AAGCGTCTAA CCGCTTTAAA TATATTTTCC aTGGGTTTCC CGATATTTTC TCGTCGGTGT	420
	GCTGTCATra GAATGAATTT KTEGTCATGG TATTTATCCA TGATGTTAGA TTTATAATTG	480
40	TCATCAACTG TATATTTCAT AGCATCAATC GCAGTATTAC CAGTGACAAC AACACTTTCT	540
	GAATATTTCC CTTCACTTAA CAAATGCGAT GCAGCATTTT TAGTAGGTGC AAAATGTAAG	600
	TCAGCTAATA CACCAACTAA TTGTCTATTC ACCTCTTCTG GAAAAGGTGA ATATTTATCA	660
45	TAACTTCTAA GCCCTGCTTC AACGTGTCCA ATCGGCACTT GGTTATAAAA TGCCGCTAAA	720
	CCACCTGCAA ATGTCGTCAT CGTATCACCA TGTACAAGTA CCATGTCTGG TTTTTCTAAT	780
	TGAATCACTT GTTCTAATTG AGTGATTGAT TTAGAAGTTA TCTCAGAAAG TGTCTGTCCT	840
50	GATITCATAA TATTCAAATC GTATTTTGGT TTGATTTCAA AGGTACTTAA TACTGAATCA	900
	AGCATTTCTC TATGCTGTGC TGTAACAACA ACAATTGGCT CGAGCATTTT TTCTTGTTCC	960

	ATCTTTTTCA	TCAAACTACT	TATCTCCGAT	TCTTCTATTT	AGTACCAAAC	AATCTATCTC	1080
	CAGCGTCGCC	TAACCCTGGT	GTGATATATG	CTTTGTCATT	aGCTTTTCAT	CAAGTGCAGC	1140
5	AATATAAATA	TCTACATCTG	GATGTGCTTC	ATGCATCTTT	TCTACGCCTT	CTGGTGCTGC	1200
	AATTAAACAC	ATGAAGCGAA	TATTTTTAGC	GCCACGTTTC	TTCAATGAAG	TAATAGCTTC	1260
	AATTGCTGAT	GCGCCTGTTG	CTAACATAGG	ATCAACAACA	ATGATTTGTC	TTTCAGTAAT	1320
10	ATCTTGAGGT	AACTTAGCAA	AATACTCTAC	AGCCTTTAAT	GTTTCGGGAT	CTCGATATAA	1380
	ACCGATATGT	CCAACTCTGG	CTGCAGGTAC	TAAACTTAAA	ATACCATCAG	TCATACCTAA	1440
15	ACCAGCTCTT	AAAATTGGAA	CGATAGCTAA	TTTTTTACCA	GCTAATCGTT	TAGCCGTCAT	1500
,0	TTTAGTTACA	GGCGTTTCAA	TATCAACATC	CTGAAGCTCT	AAGTCTCTAG	TTACTTCATA	1560
	TGCCATCAAC	ATACCAACTT	CGTCTACAAG	TTCTCTAAAT	TCTTTAGTAC	CTGTATTTAC	1620
20	ATCTCTAATA	TAGCTTAGTT	TGTGTTGAAT	TAATGGATGA	TCGAAAACGT	GTACTTTACT	1680
	CATAAAAATT	ACTCCTATCT	TTGTGTATGT	TTATTGATAT	AGAGGATATT	CAGCTGTTAA	1740
	TTTCGCAACG	CGTTCTTTAG	CTTGTTGTAA	TTTTTCTTCA	TCTTTACTAT	TTTTCAATGC	1800
25	TAAACTGATG	ATTTTTGCAA	CTTCCTCAAA	AGCTTTTTCA	TCAAATCCAC	GCGTTGTTGC	1860
	AGCAGGTGTA	CCTAAACGTA	TACCACTCGT	TACAAAAGGT	TTTTCTTGAT	CGAACGGAAT	1920
	GGTATTTTTG	TTACATGTGA	TACCAACTGA	ATCTAAAGTC	TCTTCAGCTT	CTTTACCAGT	1980
30	AAGTCCTATA	GACCCTTTTA	CATCAACAGC	TACTAAGTGA	TTATCTGTAC	CGCCAGAAAC	2040
	AATTCTAAAT	CCTTCATTAA	TTAATGCTTC	TGCAAGAACT	TTTGCGTTTT	TAACCACTTG	2100
	TTGTTGATAC	GTTTTGAAAT	TATTTTCTAA	CGCTTCTCCA	AAAGCAACTG	CTTTtGCTgC	2160
35	AATAACATGC	TCAAGAGGTC	CACCTTGAAT	ACCAGGGAAA	ATTGTTTTAT	CTATGTCTTT	2220
	TTTATATTCT	TCCTTACATA	AAATCATACC	ACCACGEGGT	CCGcGTAATG	TTTTGTGTGT	2280
40	TGTAGTTGTT	ACAAAATCAG	CATATTCTAC	TGGATTTGGA	TGTAAACCTG	CCGCTACTAA	2340
	TCCTGCAATA	TGTGCCATGT	CTACCATTAA	CTTAGCGTTT	ACTTCATCTG	CGATTTCTTT	2400
	AAACTTTTTG	AAGTCAATTG	TTCTTGAATA	TGCTGATGCT	CCTGCCACAA	TAAGCTTAGG	2460
45	CTTATGCTCT	AACGCTAATT	TACGAACTTC	ATCATAATTG	ATTCGTTCTG	TGTCTTTATC	2520
	TACTCCATAT	TCAACGAAAT	TGTAGAATTT	ACCACTAAAA	TTAACAGGCG	CTCCATGTGT	2580
	CAAGTGACCA	CCATGACTCA	AATTCATACC	TAAAACTGTG	TCGCCCATTT	CTAATGCAAC	2640
50	TAAGTAAACA	GCCATGTTCG	CTTGTGAACC	TGAATGTGGT	TGAACATTGA	CATGTTCAGC	2700
	тесьваеват	CCTTTTACCAC	CAMCA AMMOO	CATICOTOTO		CARACTORGA	2260

	TTGTGCTTCC	ATAACCGCTT	CCGATACAAA	ATTITCCGAT	GCGATTAACT	CTATGTTGCT	2880
	ATTTTGTCTC	TGAAATTCTC	TCTCGATTGC	TTCTGCGATA	ACTTTATCTT	GCTTGGTGAT	2940
5	ATAAGACATA	AAATCTCCCC	TTCTTTCAAA	AAAACTTATT	GGTATTTAGC	ACGTTCGCCA	3000
	CCAATCTTTT	TCGGCCTAGA	TGTGGCAATA	GTTACAATTG	CCTGTCCTAC	TTGCTTTACT	3060
	GAGGTCCTTA	CAGGTACACA	TACATGTTTA	ATATGCATGC	CTATTAACGT	TTGACCAATA	3120
10	TCAATTCCAC	AAGGAACAGT	AATATGTTCG	ACCACGATCG	GATCCTTCAT	ATGCTGAAAA	3180
	GCGTATGTTG	CCAAACTCCC	TCCAGCATGT	ACATCTGGAA	CGACGGAAAC	TTCTTCCATT	3240
15	GTTAATGGAT	TATACTGAGA	TTTTTCTATT	GTTATCGCTC	TGTTGATATG	TTCACATCCT	3300
	TGAAAAGCAA	AAGTAACGCC	TGTCTCTTTA	CTCACAACAT	CTAATGCATT	AAAAATAGTT	3360
	TCTGCAACTT	CCaTCGAACC	GACAGTCCCT	ATTTTTTCGC	CAATGACTTC	CGATGTTGAA	3420
20	CATCCAATTA	AACATATATC	TCCTTTATTA	AAAAAGGACA	TATCTTTTAA	TTCGTCTAAT	3480
	AACATTGTCA	AATCTTTCAT	AAAAGCCCAC	CCTTCCTAAA	AATAAAAAAG	GAATATAGCA	3540
	AAGTGCTACA	CTCCTCTATT	ATAACTTATT	TAACTGTTAA	САТАТАСТАА	TTATACAGAA	3600
25	TTCCTACTAG	CAAATAATAT	CTTTTAATTT	TAAAATTAAA	CTTACAAGTT	CTTCATAGGT	3660
	ATGTACATAC	ATTTCTTTTG	TTCCACCGTA	TGGATCTATA	ACTTCTCCTG	CTTCTTTLAC	3720
	ATATTCATGC	AATGTGAAAA	CATGATTTTG	CAAACCAAAG	TGTGCCTCTA	TTAATTCTTT	3780
30	GTGCGAATAC	GACATCGTCA	AAATAATATC	TGCTTTCAAA	TCTGCTTCAG	TAAATTGTTG	3840
	CGATAAGGTC	GTTTCAGCTA	AATGATGTTC	TTCAACTAAG	TCTTCAACAT	AATTCGAAAC	3900
	ACCTTGATTG	TTCACAGCGA	ATATACCTCT	TGATTCAAAT	TGATGATTTG	GCATAACCTC	3960
35	TTTTGCAATA	CTTTCCGCTA	ATGGGCTACG	ACATGTGTTA	CCTGTACAAA	CGAATAAAAT	4020
	CTTCÃTAGTT	CACATCCTTT	aataatgtga	TTACCTGCAG	CTTTTAACAT	GCGATTCATA	4080
40	ATTGCTTCTG	TATTATCATT	CAGCTCAAAG	CCGTATATAT	ACGCCGCTGA	AATATTTTCA	4140
	TTTTCATCAA	GTGAATGTAA	CACATCATAA	AGATTATGAC	TTGCTTGTTT	AACATCATTG	4200
	TCATCCTGAC	ATAATTGAAT	GAATTGCGCT	TCACTTGGTA	TAAACGCCAC	CTTATTACTC	4260
45	GGCACAATAA	AAGCTATAGA	AGACCAATCT	TTACCGTCAT	TTCCAATTTT	GCTCTCAATA	4320
	TCTGTAATAA	TTGTAAGTGG	TGTATTGGGT	GAGTAATGCT	TATACTTCAT	ACCTGGTGCA	4380
	ATTGGCTGTT	CAGTATCATT	ATAATCAGCA	TGGGCGATAC	TATTCGGAAG	TATTTCTGTA	4440
50	ATCATTGCTG	CTGTTATAGA	ACCAGGTCTT	GCAATTTTAT	AAGGAAAAGA	TGTGCAATCT	4500
	3 3 3 3 CCCT3 C	ጥጥር ርጥን አጥር ር	መመረመምረ አረጥም		C	1.TO(2.T) (CC)	4560

	GCACTTGGAG	CAGCTAGAGG	TTCATTTATG	ATTTGTAATA	ATTGTCTACC	TACAGAATGG	4680
	CTTGGCATTC	TAACAGCAAC	TGATGATAAA	CCTCCAGAAA	CTTTTCGACA	TAGATAGCCT	4740
5	AGCTTTAACG	GCAATATAAA	CGAAATAGGG	CCCGGCCAGA	ATGCCTGCAT	TAACTTTTCT	4800
	ACGCGTGGAT	CCAAAGTATA	TGTAAAATCT	TTTAATTGAC	CTTTACTGTG	TATATGAACA	4860
	ATAAGCGGAT	TGTCAGATGG	ACGGCCTTTA	GCTTCATATA	TTTTAGCTAC	AGCTTCTTCA	4920
10	TCTGTCGCAT	TTGCTGCAAG	TCCATAAACT	GTTTCAGTTG	GTAAACCTAT	TAAACCACCG	4980
	TTTAAAACAA	TGTCTTTTAT	TTCATTAATT	TTAGGATATT	GCTGTAAATC	TTCATTATAT	5040
	TCTCTAACAT	CCCAAATTTT	AGTATCCAAC	TTAATCACGC	CTTTCTTATT	TATCATAATA	5100
15	TAAAGCAAAA	AGCTATGCAC	TTAACTAATC	ATAGCAAAGG	CATAACTTCT	AATTACCATT	5160
	TAAATGAGAC	GATTCGATCG	TGGCCATTTA	TATCTTTAAT	AATGTCGATT	TTTTTGTCAG	5220
20	GAAATTTATT	TAAAATTATT	GATTTAAGTG	CCTCACCTTG	ATTGTAACCA	ATTTCAAAAA	5280
	CAACTGGGCT	GCCTTTTTCC	ATAACGTGAG	GTAAATCTTC	AATGATTGAT	TCATAAATAG	5340
	CATATCCATG	GTTATCTGCA	AACAATGCCT	GATGTGGTTC	GAATCTCGTA	ACCGTTGGAG	5400
25	ACATCGTAAC	CATATCTTTT	TCATCTATAT	ATGGTGGATT	AGATATCAAG	CCGTTCAACT	5460
	TGATACCTTC	ATTAATTAAG	GGCTTTAATG	CATCCCCTGT	TAAAAATTGT	ATTTGTGATT	5520
	GATGCTTCTC	AGCATTATTA	CGAGCCATAT	TCATTGCTTC	AAGTGAAATA	TCAGTAGCAA	5580
30	TAACATTTAA	ATCCGGCTTT	TCACATTTCA	AAGTAATTGC	AAGTACACCA	CTACCCGTTC	5640
	CGATATCTAC	GATTGTTGCA	TCATCTTCTA	ACTGTTGTAA	GAAATGCAAC	ATTACTTCTT	5700
	CAGTTTCAGG	TCTTGGTATC	AAACAATTTG	AGTTTACATC	AAACGTTCTA	CCATAAAATG	5760
35	AGGCAAAGCC	AACTATATAC	TGTATAGGCT	CTCCTAATAA	CATACGTTGT	AATGCTAAGT	5820
	CGAACTTCAT	AATCATCGCT	TTCGGCATAT	CATCATGCAT	GTGGACTACA	AAGTCCGTAC	5880
40	GCGTCCATTG	AAATACATCT	AACATTAACC	ATTCAGCTCG	TGTTTGTTCA	AACCCTTTTT	5940
40	GTTGTGTTAA	ATGAATTGCT	TCATCTAACT	TTTCTTTATA	ATTCACCATT	ATTAAGTTCT	6000
	TTCAATTTAT	CTGTCTGCTC	TGATAAAGTC	AGTGCATCTA	TAATTTCTTC	TAAATGGCCT	6060
45	TCCATAATTT	GCCCTAATTT	TTGAAGCGTT	AGACCTATAC	GATGGTCTGT	TACACGGCTT	6120
	TGTGGATAAT	TATAAGTTCG	AATACGTTCT	GAACGATCAC	CAGTACCGAC	TGCTGATTTA	6180
	CGTTGTGACG	CATACTTTTG	TTGTTCTTCT	TGAACTTTCA	TATCGTATAA	ACGTGCTTTT	6240
50	AACACTTTCA	TTGCTTTTTC	ACGGTTTTGA	ATTTGAGACT	TCTcAGAAGA	TGTTGCAATG	6300
	ACACCAGTTG	СТАААТСССТ	AATACGTACT	GCAGAGTCAG	ттстстттьс	GTGCTGACCA	6360

	ACATCTTCAA	CTTCTGGTAA	AACTGCCACT	GTAGCTGTTG	AAGTATGAAT	ACGTCCACCT	6480
	GATTCTGTTT	CAGGCACACG	TTGAACGCGG	TGCGCACCAT	TTTCAAATTT	CAATTTACTA	6540
5	TACGCGCCAT	TACCAGAAAC	TGAGAAACTA	ATTTCTTTGT	AACCACCATG	GTCACTTTCA	6600
	GACGCTTCTA	CTATTTCAGT	TTTGAATCCT	TGTGATTCAG	CATACTTTGA	ATACATACGC	6660
10	ATTAAATCAC	CAGCAAAAAT	CGCAGCCTCA	TCACCACCTG	CTGCTGCTCT	TATTTCTACA	6720
10	ATAACGTCTT	TGTCATCATT	AGGATCTTTA	GGAATCAATA	ATATTTTAAG	CTCTTCTTCA	6780
	AGATTTGGAA	GTTCAGCTTT	AATACCATTA	CTCTCCTCTT	TTAACATTTC	TACTTCTTCT	6840
15	TTATCATCAG	TCTCACTTAA	CATTTCTTCA	ATATCAGCTA	ATTCTTCTTT	TTTAGCTTTA	6900
	TAGTTACGAT	AAACATCTAC	AGTTTTTTGT	AAATCAGCTT	GCTCTTTAGA	ATATTTACGT	6960
	AATTTATCTG	AATCATTTAC	AACATCTGGG	TCACTTAACA	GTTCATTTAA	CTGTTCGTAT	7020
20	CTTTCTTCTA	CAATATCTAA	TTGATCAAAC	ACTTATAATT	CCTCCTTATT	ATTATCACTA	7080
	GGTGCTACGA	TATGGTGCGC	GCGACAACGT	GGCTCATAAC	TTTCATTGGC	ACCTACTAAG	7140
	ATAATCGGAT	CATCGATTTT	AGCTGGTTTA	CCATTTATTA	ATCGTTGCGT	TCTACTAGAT	7200
25	GAAGAACCAC	AAACAGCACA	AACTGCTTGA	AGTTTCGTTA	CTTGTTCACT	GACAGCCATC	7260
	AATTTAGGCA	TTGGTTCGAA	CGGTTCGCCC	CTAAAATCCA	TATCTAATCC	AGCAACAATA	7320
	ACACGGTGTC	CATCTGCTGA	TAGTTTTTCT	ACTATACTTA	CAATTTCATC	GTCAAAAAAT	7380
30	TGCAcTTCGT	CTATTCCTAT	AACATCAACA	TTAGTTAAGT	CGTGCGTCAT	AATTTCACTT	7440
	GCTTTAGAAA	TATTAATCGC	TTCAATGGCA	TTACCATTAT	GAGAGACCAC	TTTTTCTTTA	7500
35	TGATATCGAT	CATCAATCGC	CGGTTTAAAT	ACAACGACTT	TTTGTTTAGC	GTATATACCC	7560
35	CTTCTTAGAC	GTCTTATTAG	TTCTTCGGAT	TTACCGCTAA	ACATACTACC	TGTAATACAT	7620
	TCTATCCAAC	CGGAATGGTA	AGTTTCATAC	ATTGAGAGTn	CCACCTTTTT	CAAAACATAA	7680
40	TCGCTTTATT	ATATCATATT	TCAAATATTC	ATAAATGTCT	TTnTCATAAT	TATATCGATA	7740
	TTGTACATGA	ACAATTATTT	TA				7762

(2) INFORMATION FOR SEQ ID NO: 125:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 2583 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 125:

55

45

	TAAAAAAATT	ATTATCAATG	ATGAACTAGA	ATTGACTGAA	TTCCACCAAG	AACTTACTTA	120
	TATTTTAGAC	AACATAnAAG	GGAATAATAA	TTATGGTAAG	GAATTTGTTG	CAACCGTTGA	180
5	AGAAACATTC	GACATTGAAT	AaAGCGGGGT	GgaAGCACTA	TGAATCAATG	GGATCAGTTC	240
	TTAACACCTT	ATAAGCAAGC	GGTTGATGAG	TTGAAAGkGA	AcTTaAAGGC	ATGCGCAAAC	300
	AATATGAAGT	TGGTGAACAA	GCGTCGCCAA	TAGAATTTGT	TACTGGTCGT	GTTAAACCAA	360
10	TCGCTAGTAT	TATAGATAAG	GCAAACAAAC	GACAAATACC	ATTTGATAGG	TTAAGAGAAG	420
	AAATGTACGA	TATCGCTGGT	TTAAGAATGA	TGTGCCAATT	TGTTGAAGAT	ATTGATGTTG	480
15	TCGTCAATAT	TTTAAGACAA	AGAmaagatt	TTAAAGTAAT	TGAAGAACGA	GATTATATTC	540
,,,	GTAACACTAA	AGAAAGTGGT	TACCGCTCGT	ATCATGTCAT	TATTGAATAT	CCAATTGAAA	600
	CATTACAAGG	CCAAAAATTT	ATATTGGCTG	AGATTCAGAT	TCGTACATTA	GCAATGAATT	660
20	TCTGGGCAAC	GATTGAACAT	ACTTTACGAT	ATAAATATGA	TGGTGCTTAT	CCGGATGAAA	720
	TTCAACATCG	TTTGGAAAGA	GCGGCAGAAG	CAGCGTATTT	ACTTGATGAA	GAGATGTCTG	780
	AAATTAAAGA	TGAAATTCAG	GAAGCTCAAA	AATATTACAC	GCAAAAACGT	TCTAAAAAAC	840
25	ATGAAAATGA	TTAACGAGGT	GTTATAAATC	ATGCGTTATA	CAATTTTAAC	TAAAGGTGAC	900
	TCCAAGTCTA	ATGCCTTAAA	GCATAAAATG	ATGAACTATA	TGAAAGrTTT	TcGCATGaTT	960
	GaGGATrGTG	AAAaTCCTGA	AATTGTTATT	yCAGTTGGTG	GTGACGGTAC	ATTACTACAA	1020
30	GCATTCCATC	AGTATAGCCA	CATGTTATCA	AAAGTGGCAT	TTGTTGGAGT	TCATACAGGT	1080
	CATTTAGGAT	TTTATGCGGA	TTGGTTACCT	CATGAAGTTG	TAATTAAAA	CATCGAAATT	1140
	AATAATTCAG	AGTTTCAGGT	CATTGAATAT	CCATTGCTTG	AAATTATTAT	GAGATACAAC	1200
35	GACAACGGCT	ATGAAACAAG	GTATTTAGCA	TTAAATGAAG	CAACGATGAA	AACTGAAAAT	1260
	GGCFCAACAC	TTGTTGTGGA	TGTTAACTTA	AGAGGGAAAC	ACTTTGAGCG	ATTTAGAGGC	1320
40	GATGGATTAT	GTGTATCAAC	ACCTTCGGGT	TCAACGGCTT	ATAACAAAGC	GCTAGGTGGC	1380
,,,	GCACTGATAC	ATCCTTCACT	TGAAGCAATG	CAAATTACAG	AAATTGCCTC	GATAAATAAT	1440
	CGTGTGTTTA	GAACGGTAGG	ATCACCACTT	GTATTACCAA	AGCATCATAC	ATGTTTAATA	1500
45	TCACCAGTTA	ATCATGATAC	CATTAGAATG	ACGATAGATC	ATGTTAGTAT	CAAACATAAA	1560
	AATGTTAATT	CAATACAATA	CCGTGTAGCA	AATGAAAAAG	TGAGGTTTGC	ACGTTTTAGA	1620
	CCATTCCCAT	TCTGGAAACG	TGTGCACGAT	TCTTTCATAT	CAAGTGATGA	AGAACGATGA	1680
50	AATTTAAGTA	TCATATATCA	CAACAAGAAA	CTGTTAAAAC	TTTTTTAGCA	CGACATGATT	1740
	mmmoma a casa	01010mo1					

	AAATACCGAG TGTTAATTTA ATACCTTATG CTCGTAAGCT AGAAGTATTG TATGAAGATG	1920
	CTTTTATCAT CATAGTTACT AAACCAAACA ATCAAAATTG TACGCCTTCG AGAGAACATC	1980
5	CTCATGAAAG TTTAATCGAA CAAGTACTAT ATCATTGTCA GGAACATGGT GAAAATATTA	2040
	ACCCACATAT TGTTACGCGT CTAGATCGTA ATACAACTGG TATTGTGATA TTCGCTAAAT	2100
	ATGGACATAT CCATCATTTA TTTTCTAAAG TAAACTTGAA AAAAATATAT ACTTGCCTTG	2160
10	TATATGGTAA AACCCATACA TCTGGTATTA TTGAAGCTAA TATTAGACGG TCAAAGGATA	2220
	GGATTATAAC TAGAGAAGTT GCCTCGGATG GTAAATACGC TAAAACATCT TATGAAGTAA	2280
15	TAAATCAGAA TGATAAATAC AGTTTATGCA AAGTTCATTT GCATACGGGA CGTACACATC	2340
,,,	AAATTCGTGT ACATTTTCAA CATATTGGGC ATCCAATTGT GGGAGATTCT TTGTATGATG	2400
	GTTTTCATGA CAAAATTCAT GGTCAAGTAC TGCAATGTAC GCAAATATAT TTTGTTCATC	2460
20	CAATCAATAA GAACAATATT TATATTACAA TTGATTATAA GCAATTACTT AAATTATRCA	2520
	ATCAACTCTA ATnCACACAG GGGGTGTAAG TATGTCAATG AnCACAGATG AAAAAGAGCG	2580
	TGT	2583
25	(2) INFORMATION FOR SEQ ID NO: 126:	
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1818 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 126:

35	ATCAAGTGAT	ACATTTAACT	GGTAAAGGAT	TAAnAGATGC	TCAAGTTAAA	AAATCnGGAT	60
	ATATACAATA	TGAATTTGTT	AAAGAGGATT	TnACAGATTT	ATTnGCAATT	ACGGATACAG	120
40	TAATAAGTAG	AGCTGGATCA	AATGCGATTT	ATGAGTTCTT	AACATTACGT	ATACCAATGT	180
	TATTAGTACC	ATTAGGTTTA	GATCAATCCC	GAGGCGACCA	AATTGACAAT	GCAAATCATT	240
	TTGCTGATAA	AGGATATGCT	AAAGCGATTG	ATGAAGAACA	ATTAACAGCA	CAAATTTTAT	300
45	TACAAGAACT	AAATGAAATG	GAACAGGAAA	GAACTCGAAT	TATCAATAAT	ATGAAATCGT	360
	ATGAACAAAG	TTATACGAAA	GAAGCTTTAT	TTGATAAGAT	GATTAAAGAC	GCATTGAATT	-420
	AATGGGGGGT	AATGCTTTAT	GAGTCAATGG	AAACGTATCT	CTTTGCTCAT	CGTTTTTACA	480
50	TTGGTTTTTG	GAATTATCGC	GTTTTTCCAC	GAATCAAGAC	TTGGGAAATG	GATTGATAAT	540
	GAAGTTTATG	AGTTTGTATA	TTCATCAGAG	AGCTTTATTA	CGACATCTAT	CATGCTTGGG	600

	CTCATGTTAA	AGCGCCACAA	AATTGAAGCA	TTATTTTTTG	CATTAACAAT	GGCATTATCT	720
	GGAATTTTGA	ATCCAGCATT	AAAAAATATA	TTCGATAGAG	AAAGACCTAC	ATTGCTGCGT	780
5	TTAATTGATA	TAACAGGATT	TAGTTTTCCT	AGCGGTCATG	CTATGGGATC	AACTGCATAT	840
	TTTGGAAGTG	GTATCTATCT	ATTAAATCGA	TTAAATCAAG	GTAATTCAAA	AGGTATTCTT	9,00
	ATAGGGTTAT	GTGCAGCTAT	GATTTTATTG	ATTTCCATAT	CACGTGTATA	TCTAGGTGTA	960
10	CATTATCCAA	CAGATATTAT	TGCCGGCATT	ATTGGTGGAT	TATTTTGCAT	TATTTTATCA	1020
	ACGTTATTAC	TTAGAAATAA	ATTAATAAAT	TAAATAGTAA	АААААСАААА	GCAGTAAACC	1080
15	TAAAGTGTCG	TAAGGGTTTA	CTGCTTTTAT	AAAACGTTGT	TATAACGTAT	ATTGTCTTTT	1140
	ACGGGCATAT	AAnAGGGGAA	TATTTGANAA	TGACCAATCC	AACAAGAACG	AAACGTTGTG	1200
	GGGGGGATGT	TCTATGTGGT	ATTGATAATC	ATTTTCAACT	ACTATTATAC	ATTAGTGAGA	1260
20	ATCATTGTCA	ATTAGAAACT	AAAACTTTTT	TTGAATATTT	TTTAAGAATA	GTAAATAAAA	1320
	CGCATGATTA	CGCTATTTTA	GAAAATAAAA	AAATTTGTAT	TTCTCATTAG	AATTAGAATA	1380
	TTTAAAAGTG	ATGAGGTTTA	AACATTATAT	TGTTTACATA	CTCCTTTTGA	ATTCATACAT	1440
25	TATGAAATGT	tACTTCCAAG	TTCAAAATCG	CACATTGAAA	TGATGTGTGA	AATGTTTAAA	1500
	CTACGGTCAT	tTTGTGmAAA	TAAAGrTAAT	AACTATTCAT	TTTACAATAG	TGAAAAGTCA	1560
	GTATATGACA	ACAATTAATA	TTGCGGTAAG	GCCTTGTGTT	ACAGTATTCT	ATATTTAAGT	1620
30	ACTGCAATCA	GAATTAACAG	AATGCCATTA	ACTGATTATT	AAATATTTGA	GTTAATAAAT	1680
	AATTAATGAT	TGTAGCTTGA	AAAATTTAAA	ACATGGTTAT	TGATTTGTGA	TAAAATTTAA	1740
	ACGTAAACAA	ACTAATTTAA	AAAGCAACTA	TTGTATAGAA	AAATACAAAA	TTTAAAATAT	1800
35	ATTACCTTAT	TAGAAAAA					1818

(2) INFORMATION FOR SEQ ID NO: 127:

40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12658 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 127:

TGTTTAAACA ATAGGGGGAA TCTTATGATT GAAAAATTAG TAACCTTTTT AAATGAGGTT 60 GTTTGGAGTA AGCCATTAGT TTATGGTTTG CTAATTACTG GTGTGCTATT TACATTGCGT 120 ATGCGATTTT TTCAAGTTAG ACATTTTAAA GAAATGATTC GATTAATGTT TCAAGGAGAG 180

55

	GGTACAGGTA	ATATTGTCGG	TGTATCTACT	GCAATATTTA	TAGGAGGACC	TGGTGCAGTA	300
	TTTTGGATGT	GGATTACTGC	GTTTTTAGGT	GCAAGTAGTG	CTTTTATTGA	ATCTACACTT	360
5	GGTCAAATAT	TCAAGAGAGT	TGAAAATAAT	GAATACCGTG	GTGGACCAGC	GTATTATATT	420
	GAATATGGTA	TTGGTGGTAA	ATTTGGTAAA	ATTTACGGAA	TTATCTTTGC	TATTGTTACG	480
10	ATTATCTCAG	TAGGTCTATT	GCTTCCTGGT	GTGCAATCTA	ACGCTATAGC	AAGTTCTATG	540
.0	CATAATGCGA	TTCATGTTCC	ACAATGGTTA	ATGGGTGGTA	TTGTTGTAGT	TATTTTGGGA	600
	TTAATTATTT	TTGGTGGTGT	ACGTATTATT	GCCAATGTTG	CAACAGCCGT	TGTACCATTT	660
15	ATGGCAATTA	TTTACATACT	GATGGCTGTC	ATTATCATTT	GTATCAATAT	ACAAGAAGTG	720
	CCAGCGTTAT	TTGCATTAAT	TTTCAAATCA	GCATTTGGAT	TACAATCTGC	TTTTGGTGGT	780
	ATCGTTGGCG	CAATGATAGA	GATTGGTGTT	AAACGTGGAT	TATATTCAAA	TGAGGCTGGT	840
20	CAAGGTACAG	GTCCACACGC	AGCAGCGGCa	gcAGaAGTAT	CACATCCAAG	TAAACAAGGT	900
	CTAGTACAAG	CATTTTCAGT	TTATATTGAT	ACATTATTTG	TATGTACTGC	AACTGCTCTG	960
	ATTATACTTA	TTTCTGGTAC	ATATAATGTG	ACTGATGGTA	CGGTTAATGC	GAATGGCACA	1020
25	CCGCATTTAA	TTAAAGATGG	CGGTATTTAT	GTTGAAAATG	CAACAGGTAA	AGATTATTCA	1080
	GGTACTGCGA	TGTATGCACA	AGCCGGCATt	GATAAAGCGT	TCCATGGCAG	TGGTTATCAA	1140
	TTTGATCCTA	CTTTCTCTGG	CGTAGgTTCG	TACTTTATTG	CATTTGCTTT	ATTCTTCTTT	1200
30	GCATTTACTA	CAATTTTGTC	GTACTACTAC	ATTACAGAAA	CAAATGTTGC	TTATTTAACG	1260
	CGTAATCAAA	ATAATCAAGT	TTCATCGATA	TTTATTAATA	TTGCTCGTGT	GATTATTTTG	1320
35	TTCGCTACAT	TTTACGGTGC	AGTTAAAACA	GCTGATGTAG	CATGGGCATT	CGGTGATTTA	1380
00	GGTGTAGGTC	TAATGGCTTG	GTTAAATATC	ATTGCGATTT	GGATTTTACA	TAAGCCTGCC	1440
	GTAAATGCTT	TAAAAGATTA	TGAAATTCAA	AAGAAACGTT	TAGGCAACGG	TTATAATGCA	1500
40	GTTTATCAAC	CTGATCCGAA	TAAATTACCT	AATGCTGTCT	TTTGGTTGAA	GACGTATCCA	1560
	GAACGTTTAA	AACAAGCACG	TGCCAAAAAG	TAATCTACTT	TTGTTTATAG	TATATGTAGT	1620
	GATCATTTGA	TAAAAAAGAA	AAGTATTGAG	AATTTTAGGt	GCTCAGAAAT	TTGAATTTTA	1680
45	AAAATATAGT	GTCTCTTGGT	АСААТААСАА	TACAACTACT	AGGGGCACTT	TTTTATGTCA	1740
	GAATTTAAAA	CTGGTAAGAT	TAATAAACAT	GTTTTATATA	GTAATATTTT	AAATAGAGAT	1800
	GTCACGTTAA	GTATTTATTT	ACCAGAATCT	TATAATCAAC	TTGTTAAATA	TAATGTCATT	1860
50	CTTTGCTTTG	ACGGATTAGA	TTTTTTACGT	TTCGGGAGAA	TACAACGTAC	ATATGAATCG	1920
	TTAATCAAAG	AAGCGCGTAT	TGATGATGCG	ATCATTGTTG	GATTCCATTA	ТСАВСАССТТ	1980

	GTCGGTAAAG	AAATATTGCC	ATTTATTGAC	TCGACGTTTT	CTACACTGAA	AGTAGGTAAT	2100
	GCAAGGTTAT	TAGTAGGGGA	TAGTTTAGCG	GGTAGTATTG	CCTTATTAAC	GGCGTTGACC	2160
5	TATCCAACGA	TTTTTAGTCG	TGTAGCAATG	TTAAGTCCAC	ATTCAGATGA	AAAAGTATTA	2220
	GATAAGCTAA	ATCAATGTGC	AAATAAAGAA	CAATTGACAA	TTTGGCATGT	CATTGGTCTA	2280
	GATGAAAAAG	ATTTTACTTT	ACCAACAAAT	GGTAAGCGTG	CCGATTTCTT	AACACCGAAT	2340
10	AGAGAATTAG	CTGAACAAAT	TAAGAAATAT	AATATAACTT	ATTATTACGA	TGAATTTGAT	2400
	GGTGGTCACC	AATGGAAAGA	TTGGAAACCA	TTGCTGTCAG	ATATATTATT	GTATTTTTTA	2460
15	AGTAAAAACA	CAGATGATCA	ACTTTATGAA	TAATTTACAT	TAGTAGATTT	AGTATGAATT	2520
	GTCTTCATAT	AGTCTGGTCT	TAATATAAT	TTATAAAAGA	TTTTACTGTT	TAATTTAATT	2580
	TAAATTTGAC	GAAATTGCAA	AAGATGTATA	ATGAATTATT	TTTAATGTAA	CGGTTTTCAA	2640
20	AGAAATTTGA	TATAATAGCA	ATAGGTTAAA	CAAAGGAGGA	ATTCAGATGA	TTTTAGGATT	2700
	AGCATTAATT	CCATCAAAGT	CATTTCAAGA	AGCGGTGGAT	TCTTACCGTA	AAAGATATGA	2760
	TAAACAGTAT	TCACGAATTA	AACCACATGT	GACAATTAAA	GCGCCATTTG	AAATTAAAGA	2820
25	TGGTGATTTA	GATTCTGTCA	TTGAACAGGT	TAGAGCTCGT	ATTAATGGTA	TACCAGCAGT	2880
	AGAAGTTCAT	GCTACAAAAG	CTTCTAGCTT	CAAACCAACG	AACAATGTGA	TTTACTTTAA	2940
	AGTTGCGAAG	ACGGACGACT	TAGAAGAATT	GTTTAATCGC	TTTAATGGAG	AAGATTTCTA	3000
30	TGGAGAAGCT	GAACATGTTT	TTGTGCCACA	CTTTACAATA	GCACAAGGAC	TATCTAGCCA	3060
	AGAATTCGAA	GATATTTTTG	GTCaAGTAGC	ATTAGCTGGG	GTAGACCATA	AAGAAATTAT	3120
	CGATGAATTA	ACTTTGTTAC	GTTTTGACGA	TGACGAAGAT	AAATGGAAAG	TTATTGAAAC	3180
35	GTTTAAATTA	GCTTAAGTAA	CATAATAGTA	TTGTTAATCG	TAGTATGTTT	GAATTAATAA	3240
	GAAAATGGTC	ATTTTTATTG	AATGTAATAA	AAATGACCAT	TTTCTTTATT	TTAAAATACG	3300
40	TTTTAACCTT	ACTTAGCTTT	TTCTCTATTT	ACTATAAAGT	rGCTTCCATA	AAATACAGCT	3360
40	AAGACTAAAA	AGATTAATGC	CGAGAAATAA	AATGTATTGT	TTAAATTGTT	GGTAAATTGT	3420
	GTAATTAATC	CGCCAAATAA	TGGCCCTATC	ATTGAGCCGA	ATCCTTGGAT	ACTATTAAAA	3480
45	ACACCCCAAG	TTTCTTCTTG	TTCATCTGAT	TTGATAAATC	GTGCCATAAA	GGTATTCCAT	3540
	GCTGGTAATA	AGATGCCATA	CATTAGACCG	ATAGCTAAAG	CGATAATCCA	CAAGATGTGA	3600
	ATATTAACAA	TCATAGATAG	AGTAAAAATT	AATATCATGT	АТААААТААА	TCCGCTTAGA	3660
50	ATAACACCAT	ACATAAAGTT	TCTGCTGCGG	ттатстатта	GTTTCGATAA	AAATAGCATC	3720
	GAAACTGCAC	AGCCGATACC	ACCAATAATG	ATTGCAACAG	TATATTCAAT	TGTGCTTACG	3780

	TGTAAAAGAA	TACCAGGGAA	Caacaataaa	TGGcGCTTTG	TCACATCAAC	AATTTGTCTC	3900
	AATTGAGCTT	TAACTGGACG	AGTATTATAA	TTTGTTAACT	TTACATCGAC	TATAATAAA	396,0
5	AATATCCATG	CAATTAAAAC	GACTAAAGAC	ATCATGAAGG	CAAAGCGTGT	TGGGTGCACT	4020
	TTGATAAGTA	GATTCATAAA	AACCATACCT	ACCAATAGGC	CTAACAACCA	TGAAAAATAA	4080
	ACATAGCCCA	TTTGTTTGCC	ACGTTTATCT	TCTTCAACAC	TGGATAACAT	AATGACCCAA	4140
10	ATAGGACTAA	CTGCAATACC	GAGCATCATA	GCACTAAATA	TGATTACAAA	AGGTGATGCT	4200
	GGAAACCAAA	ТААСТААААА	TAAACTTGTA	AATGCTAAAA	TAAATCCAGT	CGTTAAAACG	4260
15	ATTTTTGTGC	CGAATTTTTT	CAGTAAAAAT	CCTATAACAA	AGTTTGTAGA	TGCATCAGCA	4320
	ATAAAATGTA	TTGAAAATGC	TAGAGACGTT	ATTGCTACAG	CAATGGATGT	AACTGTTGGC	4380
	aagaaattaa	TATAGCTTAG	GATATACATG	CCTCTCGCAA	ATTCCATTAA	AAATAAGATA	4440
20	ATAAGCaTTA	AAATGAAATT	TTTATGATTA	GCGTAATTAT	TTAACGAAGA	ATCTTGCATA	4500
	TAAAGGAACC	TTTCCATAAA	TCTCTTGTGG	TTGTGATGAA	TGACCGATTA	AATCAAGTAA	4560
	GTCTCGACAT	ATTGTCTGTG	TAGCATACTT	AATTTTATCT	TGTTCCATTG	TACTAATCAT	4620
25	GTTAGTTAAT	TGCTCATTAC	CGTTAGTTAA	ACTTGCTACA	ATTTTTATTG	CTTCTTCTGG	4680
	AGTATCAGCG	ATTTTACCAA	AACCTTTTTC	TTCAAAGTAA	AGGGCATTTT	CAAGCTCTTG	4740
	ACCAGGTGCA	GGATTTAGGA	AAATCATTGG	AATACAACGG	GCGAAACCTT	CAGTTATTGT	4800
30	GATACCACCA	GGTTTCGTAA	TCATAAGTTG	ACTTGATGCC	ATCCATTCAT	TCATGTGTTT	4860
	GGTATAACCT	AGAATCAATA	CATTCTCGTT	AGATTTAAAC	TTAGCTGTTA	AAGAACGCTT	4920
	TAGCTCTTTG	CTCTTACCAC	AAATCATAAC	TACTTGTGCA	TTTGCaCTTT	tCGCTAATAT	4980
35	ATCAGTAATC	ATCGTGTCAA	AACCTTTAGA	TACACCAAAT	GCACCAGCTG	aCATTAAAAT	5040
	agtifgctta	TCTGGATCTA	AGTTGTTGTC	TATTAACCAC	TGCTTTTGAT	TAATAGGCGT	5100
40	TTCAAATTTG	TTATCAATAG	GAATACCTGT	CaCTTTAACT	GTTGAAGGAT	CAATACCTAC	5160
,,,	GTCTATGAAG	TCTTGTTTCG	TTTCTTTTGT	TGCCACATAA	TATCTTGTTG	AATACGGCGT	5220
	AATCCAGTTT	TTATGTAAGC	GATAGTCTGT	CATCACTGTA	GCAACTGGAA	TATTAATGTT	5280
45	AAATTGCTCA	GTTAGTACCG	ACATAACTGG	TGTAGGAAAC	GTTAATAATA	TTAAATCTGG	5340
	CTTTTCTTTT	ATCAATAAAT	TAATTAACTT	ATTAAGTCCA	TAGTATTTGT	AAAAACATTT	5400
	GTCTAGTTTA	TCTGGGCGGC	TGTAATAAAA	CCCTTTGTAC	ATATTTCTAA	AATTTTATA	5460
50	GCTATTGATA	TACCATTTTT	TACAAATAGA	AGTCAAAATT	GGATGAGCTT	CCATAAATAA	5520
	N TO COTO COTO N	A THO A COLOTTON	እ አጥር/ርጥር/ጥሽ/C	እምምሮ እ ሞእሞሮእ	שיים אריייירא די	でみるとこれでんごで	5587

	TTGAGTAACC	ATTAATAGCC	ACCCTCCGTT	AGTTTGAAAA	TTTTATTTAA	GTGTAACTTA	5700
	TTTTACGGCA	TTATAAAAGA	AATAAAGACG	CAAAGTCGTT	ACATTTATAG	CAATTTTAAT	5760
5	CTATAGATGA	ATTGATACAA	AATAAAACGT	TATTTTATAA	AGCAATTTAT	TGTTCTATGT	5820
	TTTATTTGTA	TATTTAAAAT	TATCCAGTAT	ACAATTATAG	CATATTTTTG	GAAACAATTA	5880
	TGATATTATA	CCATGTTACA	AGATGGTTTT	AATAATTTAA	GATGAGCCAT	AATTGTAAAA	5940
10	CTAATTCATA	ATACCGTATG	TTTTATTTT	AATAGTAGAA	ATTAGAAAAT	GCTGATTAGT	6000
	AGGATATAAC	AGTGAAATTA	TAAATTTATT	AACATCAACA	AAACGTGTAT	AATAAACATA	6060
15	TTGTAGAAAA	AGGAGCGGTT	CAGTTTGGAT	GCAAGTACGT	TGTTTAAGAA	AGTAAAAGTA	6120
	AAGCGTGTAT	TGGGTTCTTT	AGAACAACAA	ATAGATGATA	TCACTACTGA	TTCACGTACA	6180
	GCGAGAGAAG	GTAGCATTTT	TGTCGCTTCA	GTTGGATATA	CTGTAGACAG	TCATAAGTTC	6240
20	TGTCAAAATG	TAGCTGATCA	AGGGTGTAAG	TTGGTAGTGG	TCAATAAAGA	ACAATCATTA	6300
	CCAGCTAACG	TAACACAAGT	GGTTGTGCCG	GACACATTAA	GAGTAGCTAG	TATTCTAGCA	6360
	CACACATTAT	ATGATTATCC	GAGTCATCAG	TTAGTGACAT	TTGGTGTAaC	GGGTACAAAT	6420
25	GGTAAAACTT	CTATTGCGAC	GATGATTCAT	TTAATTCAAA	GAAAGTTACA	AAAAAATAGT	6480
	GCATATTTAG	GAACTAATGG	TTTCCAAATT	AATGAAACAA	AGACAAAAGG	TGCAAATACG	6540
	ACACCAGAAA	CAGTTTCTTT	AACTAAGAAA	ATTAAAGAAG	CAGTTGATGC	AGGCGCTGAA	6600
30	TCTATGACAT	TAGAAGTATC	AAGCCATGGC	TTAGTATTAG	GACGACTGCG	AGGCGTTGAA	6660
	TTTGACGTTG	CAATATTTTC	AAATTTAACA	CAAGACCATT	TAGATTTTCA	TGGCACAATG	6720
	GAAGCATACG	GACACGCGAA	GTCTTTATTG	TTTAGTCAAT	TAGGTGAAGA	TTTGTCGAAA	6780
35	GAAAAGTATG	TCGTGTTAAA	CAATGACGAT	TCATTTTCTG	AGTATTTAAG	AACAGTGACG	6840
	CCTTATGAAG	TATTTAGTTA	TGGAATTGAT	GAGGAAGCCC	AATTTATGGC	TTATAAAAAT	6900
40	CAAGAATCTT	TACAAGGTGT	CAGCTTTGAT	TTTGTAACGC	CTTTTGGAAC	TTACCCAGTA	6960
40	AAATCGCCTT	ATGTTGGTAA	GTTTAATATT	TCTAATATTA	TGGCGGCAAT	GATTGCGGTG	7020
	TGGAGTAAAG	GTACATCTTT	AGAAACGATT	ATTAAAGCTG	TTGAAAATTT	AGAACCTGTT	7080
45	GAAGGGCGAT	TAGAAGTTTT	AGATCCTTCG	TTACCTATTG	ATTTAATTAT	CGATTATGCA	7140
	CATACAGCTG	ATGGTATGAA	CAAATTAATC	GATGCAGTAC	AGCCTTTTGT	AAAGCAAAAG	7200
	TTGATATTTT	TAGTTGGTAT	GGCAGGCGAA	CGTGATTTAA	CTAAAACGCC	TGAAATGGGG	7260
50	CGAGTTGCCT	GTCGTGCAGA	TTATGTCATT	TTCACACCGG	ATAATCCGGC	AAATGATGAC	7320
	CCCAAAATCT	Thaccccaca	ስጥተልርርርስ ^አ አ	CCTCCAACAC	7 TO 7 7 7 7 7 TO 7	The manch is a manim	7700

	GTTTTAGCAT	CAAAAGGAAG	AGAACCATAT	CAAATCATGO	CAGGGCATAT	TAAGGTGCCA	7500
	CATCGAGATG	ATTTAATTGG	CCTTGAAGCA	GCTTACAAAA	AGTTCGGTGG	TGGCCCTGTT	7560
5	GATTAATAAA	AGATTTATTG	ATGAAGGTAA	AACTATTGAT	GTTTATTTAT	TCGAAGCATT	7620
	AAATAACCAG	ATAATCATTG	CTATACCAGA	TTGGTTTTGG	TCATATCAGA	TGGCAATGAC	7680
	ATTAGATGAA	GAAACTTGTT	TTGAAGCAAT	ACTCATGCAA	TTGTTTGTTT	TTAAAGAAGA	7740
10	GGAAGAGGCA	GAATCGATTG	CATCACAACT	AACAGATTGG	ATAGAAACAT	ATAAAAAGGA	7800
	GAAAGACTAA	TGAACTTAAA	GCAAGAAGTT	GAGTCTAGAA	AGACTTTTGC	GATTATTTCA	7860
15	CATCCCGATG	CAGGGAAAAC	AACGTTAACT	GAAAAACTAT	TGTACTTCAG	TGGTGCTATT	7920
	CGTGAAGCGG	GTACAGTTAA	AGGGAAGAAG	ACTGGTAAAT	TTGCGACAAG	TGACTGGATG	7980
	AAAGTTGAAC	AAGAGCGTGG	TATTTCTGTA	ACTAGTTCAG	TAATGCAATT	TGATTACGAT	8040
20	GATTATAAAA	TCAATATCTT	AGATACACCA	GGACATGAAG	ACTTTTCAGA	AGATACGTAT	8100
	AGAACATTAA	TGGCAGTTGA	CAGTGCTGTC	ATGGTCATAG	ACTGTGCAAA	AGGTATTGAA	8160
	CCACAAACAT	TGAAGTTATT	TAAAGTTTGT	AAAATGCGTG	GTATTCCAAT	CTTTACATTC	8220
25	ATTAATAAAT	TAGACCGAGT	AGGTAAAGAA	CCATTTGAAT	TATTAGATGA	AATCGAAGAG	8280
	ACATTAAATA	TTGAAACATA	CCCTATGAAT	TGGCCAATTG	GTATGGGACA	AAGTTTCTTT	8340
	GGCATCATTG	ATAGAAAGTC	TAAAACAATT	GAACCATTTA	GAGATGAAGA	AAATATATTA	8400
30	CATTTGAATG	ATGATTTTGA	GTTGGAAGAA	GATCATGÇAA	TTACAAATGA	TAGTGATTTT	8460
	GAACAAGCGA	TTGAAGAATT	AATGTTGGTT	GAAGAAGCGG	GTGAAGCCTT	TGATAATGAC	8520
	GCGCTGTTGA	GTGGAGACTT	AACACCTGTA	TTTTTCGGTT	CAGCTTTAGC	TAACTTTGGT	8580
35	GTACAAAATT	TCTTAAATGC	ATATGTTGAT	TTTGCGCCAA	TGCCAAATGC	GAGACAAACA	8640
	AAAGAAGACG	TTGAAGTAAG	CCCGTTTGAT	GATTCATTTT	CAGGATTTAT	CTTTAAAATT	8700
40	CAAGCCAACA	TGGACCCTAA	ACACCGTGAT	AGAATTGCCT	TTATGCGTGT	CGTTAGTGGT	8760
70	GCATTTGAAC	GTGGTATGGA	TGTTACTTTG	CAACGTACTA	ATAAAAAGCA	AAAGATCACA	8820
	CGTTCAACGT	CATTTATGGC	AGACGATAAA	GAAACTGTGA	ATCATGCTGT	AGCAGGCGAT	8880
45	ATCATTGGAC	TATATGATAC	TGGTAATTAT	CAAATTGGAG	ATACTTTAGT	TGGTGGAAAA	8940
	CAAACCTACA	GTTTCCAAGA	TTTACCACAA	TTTACGCCAG	AAATTTTTAT	GAAAGTTTCT	9000
	GCTAAAAACG	TCATGAAACA	GAAGCATITC	CATAAAGGTA	TTGAACAATT	AGTACAAGAA	9060
50	GGTGCGATTC	AATACTATAA	AACATTACAC	ACAAACCAAA	TTATTTTAGG	TGCTGTTGGT	9120
	CAGTTACAAT	TTGAAGTTTT	CGAACATAGA	ATGAAAAACG	AATATAATGT	TGATGTTGTT	9180

	AAGATGAACA	CATCAAGATC	GATTTTAGTG	AAAGATAGAT	ATGACGATTT	AGTATTCTTA	9300
	TTTGAAAATG	AATTTGCAAC	AAGATGGTTI	GAAGAGAAAT	TCCCTGAAAT	TAAATTGTAT	9360
5	AGTTTACTTT	AACAGCTCAA	TTGTATAATC	GAATTTGTTA	CATTAAAAAT	AATTGTTTCG	9420
	TTGAAGAAAA	ATAAATTGTA	TATTTTAAAA	GAAAAAGGTA	TACTATGATG	TATCAAATGA	9480
10	ATAACCTATG	GCATTTTGTC	AGAGGGGAGT	AACTTAAGAA	TCATGACCGT	ATAAATGaTT	9540
70	CGACACTTTA	TCGTCATTAC	GArGATATCT	TCCGGTAAAG	TGGGCAATTT	AAATTGCTTA	9600
	GTGAGACCTT	TGCTATTTAT	TTAGCATAGG	TCTTTTTGTT	TGTACTTAAC	TTATTTATTT	9660
15	AAAGGAGTTG	TACATGTTAA	TGGATCCAAG	TTTGATCTTA	CCTTATTTAT	GGGTACTTGT	9720
	CGTTTTAGTA	TTTTTAGAAG	GCTTATTAGC	AGCAGATAAC	GCGATTGTTA	TGGCTGTAAT	9780
	GGTTAAGCAC	TTACCACCCG	AACAACGTAA	AAAAGCTTTG	TTTTACGGTT	TGTTAGGTGC	9840
20	ATTTGTATTT	AGATTTTTAG	CATTATTCTT	AATTAGTATT	ATCGCGAACT	TTTGGTTTAT	9900
	TCAAGCTGCA	GGAGCGGTTT	ACTTAATTTA	TATGTCAATC	AAAAATCTGT	GGCAGTTCTT	9960
	TAAACACCCA	GAAATTGAAA	GTCCTGAAGC	TGGAGATGAT	CATCATTATG	ATGAATCTGG	10020
25	TGAAGAGATT	AAAGCAAGTA	ACAAATCATT	CTGGGGAACT	GTGTTGAAAA	TAGAATTTGC	10080
	AGATATCGCA	TTTGCCATTG	ATTCTATGCT	TGCTGCTTTA	gCTATTGCTG	TAACACTTCC	10140
30	TAAAGTTGGT	ATTCACTTTG	GTGGTATGGA	CTTAGGTCAG	TTCGTAGTCA	TGTTCCTAGG	10200
	TGGAATGATT	GGTGTTATTC	TAATGCGTTA	TGCAGCAACA	TGGTTTGTAG	AGCTATTAAA	10260
	CAAATATCCA	GGACTTGAAG	GTGCAGCCTt	CGCGATCGTT	GGTTGGGTAG	GTGTTAAATT	10320
35	AGTTGTCATG	GTATTAGCGC	ACCCAGACAT	CGCTGTATTG	CCTGAGCACT	TCCCACATGG	10380
	CGTATTATGG	CAATCTATTT	TCTGGACAGT	ACTAATTGGA	TTAGTAATTA	TCGGTTGGTT	10440
	AGGTTCAGTT	GTTAAAAATA	AAAAATCGCA	TAAATAATTG	ATGTGAAGCG	GACAATCTTA	10500
40	ATTTAGTTTA	AGGTTGTCCT	TTTTCATTTA	ATTGAGTGAT	TTATGAAAAA	TGGATTTTGA	10560
	AGAATGTGAA	TCAAAAGATG	CGATATAGTA	TTAAGAAAAT	GTGCCTTTTA	TATTTAGCAT	10620
45	TTTTTCAATA	GAAATTATAT	AGATTTTAAA	GCAAATTAGG	TGTTAATGTG	TCATAATGAT	10680
45	AAGTGATTTT	ATTGAATGGA	GTGGACATTA	GTGGATATTG	GTAAAAAACA	TGTAATTCCT	10740
	AAAAGTCAGT	nACCsaCGTA	AGCGTCGTGA	ATTCTTCCAC	AACGAAGACA	GAGAAGAAAA	10800
50	TTTAAATCAA	CATCAAGATA	AACAAAATAT	AGATAATACA	ACATCAAAAA	AAGCAGATAA	10860
	GCAAATACAT	AAAGATTCAA	TTGATAAGCA	CGAACGTTTT	AAAAATAGTT	TATCATCGCA	10920
	TTTAGAACAG	AGAAACCGTG	ATGTTAATGA	GAATAAAGCT	GAAGAAACTA	AAAGTAATCA	10980

	AAATTCATTA	GATTCAGTGG	ACCAAGATAC	AGAGAAATCA	AAATATTATG	AGCAAAATTC	11100
	TGAAGCGACT	TTATCAACTA	AATCAACCGA	TAAAGTAGAA	TCAACTGAAA	TGAGAAAGCT	11160
5	AAGTTCAGAT	AAAAACAAAG	TTGGTCATGA	AGAGCAACAT	GTACTTTCTA	AACCTTCAGA	11220
	ACATGATAAA	GAGACTAGAA	TTGATTCTGA	GTCTTCAAGA	ACTGATTCAG	ACAGCTCGAT	11280
10	GCAGACAGAG	AAAATAAAA	AAGACAGTTC	AGATGGAAAT	AAAAGTAGTA	ATCTGAAATC	11340
	TGAAGTAATA	TCAGACAAAT	CAAATACAGT	ACCAAAATTG	TCGGAATCTG	ATGATGAAGT	11400
	AAATAATCAG	AAGCCATTAA	CTTTACCGGA	AGAACAGAAA	TTGAAAAGAC	AGCAAAGTCA	11460
15	AAATGAGCAA	ACAAAAACCT	ATACATATGG	TGATAGCGAA	CAAAATGACA	AGTCTAATCA	11520
	TGAAAATGAT	TTAAGTCATC	ATATACCATC	GATAAGTGAT	GATAAAGATA	ACGTCATGAG	11580
	AGAAAATCAT	ATTGTTGACG	ATAATCCTGA	TAATGATATC	AATACACCAT	CATTATCAAA	11640
20	AACAGATGAC	GATCGAAAAC	TTGATGAAAA	AATTCATGTT	GAAGATAAAC	ATAAACAAAA	11700
	TGCAGACTCG	TCTGAAACGG	TGGGATATCA	AAGTCAGTCA	ACTGCATCTC	ATCGTAGCAC	11760
25	TGAAAAAAGA	AATATTTCTA	TTAATGACCA	TGATAAATTA	AACGGTCAAA	AAACAAATAC	11820
25	AAAGACATCG	GCAAATAATA	ATCAAAAAAA	GGCTACATCA	AAATTGAACA	AAGGGCGCGC	11880
	TACGAATAAT	AATTATAGTG	ACATTTTGAA	AAAGTTTTGG	ATGATGTATT	GGCCTAAATT	11940
30	AGTTATTCTA	ATGGGTATTA	TTATTCTAAT	TGTTATTTTG	AATGCCATTT	TTAATAATGT	12000
	GAACAAAAAT	GATCGCATGA	ATGATAATAA	TGATGCAGAT	GCTCaAAAAT	ATACGACAAC	12060
	GATGAAAAAT	GCCAATAACA	CAGTTAAATC	GGTCGTTACA	GTTGAAAATG	AAACATCAAA	12120
35	AGATTCmTCA	TTACCTAAAG	ATAAAGCATC	TCaAGACGAA	GTGGGATCAG	GTGTTGTATA	12180
	TAAAAAATCT	GGAGATACGT	TATATATTGT	TACGAATGCA	CACGTTGTCG	GTGATAAAGA	12240
	АААТЁаАААА	ATAACTTTCT	CGAATAATAA	AAGTGTTGTT	GGGAAAGTGC	TTGGTAAAGA	12300
40	TAAATGGTCA	GATTTAGCTG	TTGTTAAAGC	AACTTCTTCA	GACAGTTCAG	TGAAAGAGAT	12360
	AGCTATTGGA	GATTCAAATA	ATTTAGTGTT	AGGAGAGCCA	ATATTAGTCG	TAGGTAATCC	12420
45	ACTTGGTGTA	GACTTTAAAG	GCACTGTGAC	AGAAGGTATT	ATTTCAGGTC	TGAACAGAAA	12480
40	TGTTCCTATT	GATTTCGATA	AAGATAATAA	ATATGATATG	TTGATGAAAG	CTTTCCAAAT	12540
	TGATGCATCA	GTAAATCCAG	GTAACTCGGG	TGGTGCTGTC	GTCAATAGAG	AAGGAAAATT	12600
50	AATAGGTGTA	GTTGCAGCTA	AAATTAGTAT	GCCAAACGTT	GAAAnTATGT	CATTTGCA	12658
	(0) TYTODAY			_			

(2) INFORMATION FOR SEQ ID NO: 128:

⁽i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 6048 base pairs

(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 128:

(D) TOPOLOGY: linear

5

TGAAATnGAA TAGTACTATT GCAAGTGTAA AGAGGTTAAT TTTTGCCnCA CGCGGGACTT 60 AAAAAGGCAA CCACTGGTTG TGACATATCC TTATTACAT TTATAAATAT AAGGAGGAGG 120 10 TAGTAGTGAA AGACTTATTG CAAGCACAGC AAAAGCTTAT ACCGGATCTC ATAGATAAAA 180 TGTATAAACG TTTTTCTATT CTTACTACTA TCTCAAAAAA TCAGCCTGTC GGACGTCGAA 240 GTTTAAGCGA ACATATGGAT ATGACTGAAC GTGTACTGCG TTCTGAAACA GATATGCTTA 15 300 AGAAACAAGA TTTGATAAAA GTTAAGCCTA CCGGAATGGA AATTACAGCT GAAGGTGAGC 360 AACTGATTTC GCAATTGAAA GGTTACTTTG ATATCTATGC AGATGATAAT CGTCTGTCAG 420 20 AAGGTATTAA GAATAAATTT CAAATTAAGG AAGTTCATGT TGTTCCTGGT GATGCTGATA 480 ATAGTCAATC TGTTAAAACA GAATTAGGTA GACAAGCAGG TCAATTACTT GAAGGCATAT 540 TACAAGAAGA CGCGATAGTT GCTGTAACTG GCGGATCCAC GATGGCATGT GTTAGTGAAG 600 25 CAATTCATTT ATTACCATAT AATGTATTCT TCGTACCAGC CAGAGGTGGA CTAGGCGAAA 660 ATGTTGTCTT TCAGGCAAAC ACAATTGCAG CCAGTATGGC aCAACAAGCT GGCGGTTATT 720 ATACGACGAT GTATGTACCT GATAATGTCA GTGAAACAAC ATATAATACA TTGTTGTTAG 780 30 AGCCATCAGT CATAAACACT TTAGACAAAA TTAAACAAGC AAACGTTATA TTACACGGCA 840 TTGGTGATGC GCTGAAGATG GCGCATCGAC GTCAATCACC TGAAAAGGTC ATTGAACAAC 900 35 TTCAACATCA TCAAGCTGTC GGAGAGGCAT TTGGTTATTA TTTTGATACA CAAGGTCAAA 960 TTGTCCATAA GGTTAAAACA ATTGGACTTC AATTAGAAGA CCTTGAATCA AAAGACTTTA 1020 TTTTTGCAGT TGCAGGAGGC AAATCGAAAG GTGAAGCAAT TAAAGCATAC TTGACGATTG 1080 40 CACCCAAGAA TACAGTGTTA ATCACTGATG AAGCCGCAGC AAAGATAATA CTTGAATAAG 1140 AGATAAAAAG TTTAATACTT TTTAAATATC ATTTTAAAGG AGGCCATTAT AATGGCAGTA 1200 AAAGTAGCAA TTAATGGTTT TGGTAGAATT GGTCGTTTAG CATTCAGAAG AATTCAAGAA 1260 45 GTAGAAGGTC TTGAAGTTGT AGCAGTAAAC GACTTAACAG ATGACGACAT GTTAGCGCAT 1320 TTATTAAAAT ATGACACTAT GCAAGGTCGT TTCACAGGTG AAGTAGAGGT AGTTGATGGT 1380 GGTTTCCGCG TAAATGGTAA AGAAGTTAAA TCATTCAGTG AACCAGATGC AAGCAAATTA 1440 50 CCTTGGAAAG ACTTAAATAT CGATGTAGTA TTAGAATGTA CTGGTTTCTA CACTGATAAA 1500 GATAAAGCAC AAGCTCATAT TGAAGCAGGC GCTAAAAAAG TATTAATCTC AGCACCAGCT 1560

	ACAGTTGTTT	CAGGTGCTTC	ATGTACTACA	AACTCATTAG	CACCAGTTGC	TAAAGTTTTA	1680
_	AACGATGACT	TTGGTTTAGT	TGAAGGTTTA	ATGACTACAA	TTCACGCTTA	CACAGGTGAT	1740
5	CAAAATACAC	AAGACGCACC	TCACAGAAAA	GGTGACAAAC	GTCGTGCTCG	TGCAGCGGCA	1800
	GAAAACATCA	TCCCTAACTC	AACAGGTGCT	GCTAAAGCTA	TCGGTAAAGT	TATTCCTGAA	1860
10	ATCGATGGTA	AATTAGATGG	TGGTGCACAA	CGTGTTCCTG	TAGCTACAGG	TTCATTAACT	1920
	GAATTAACAG	TAGTATTAGA	AAAACAAGAC	GTAACAGTTG	AACAAGTTAA	CGAAGCTATG	1980
	AAAAATGCTT	CAAACGAATC	ATTCGGTtAC	ACTGAAGACG	AAATCGTTTC	TTCAGACGTT	2040
15	GTAGGTATGA	CTTACGGTTC	ATTATTCGAC	GCTACACAAA	CTCGTGTAAT	GTCAGTTGGC	2100
	GACCGTCAAT	TAGTTAAAGT	TGCAGCTTGG	TATGATAACG	AAATGTCATA	TACTGCACAA	2160
	TTAGTTCGTA	CATTAGCATA	CTTAGCTGAA	CTTTCTAAAT	AATTTTAGTA	TAGTTTTTAT	2220
20	TCAAATACGC	TAGTGCTCAG	AACTATTTAG	CATTAATTAA	AGCTTATGAG	TAAGCGGGGA	2280
	GCACAAACGC	TTCTCCGCTT	ATTTTTATAT	AAAATTTCCT	AATTACAAGG	AGGAAACACC	2340
	ATGGCTAAAA	AAATTGTTTC	TGATTTAGAT	CTTAAAGGTA	AAACAGTCCT	AGTACGTGCT	2400
25	GATTTTAACG	TACCTTTAAA	AGACGGTGAA	ATTACTAATG	ACAACCGTAT	CGTTCAAGCT	2460
	TTACCTACAA	TTCAATACAT	CATCGAACAA	GGTGGTAAAA	TCGTACTATT	TTCACATTTA	2520
30	GGTAAAGTGA	AAGAAGAAAG	TGATAAAGCA	AAATTAACTT	TACGTCCAGT	TGCTGAAGAC	2580
	TTATCTAAGA	AATTAGATAA	AGAAGTTGTT	TTCGTACCAG	AAACACGCGG	CGAAAAACTT	2640
	GAAGCTGCTA	TTAAAGACCT	TAAAGAAGGC	GACGTATTAT	TAGTTGAAAA	TACACGTTAT	2700
35	GAAGATTTAG	ACGGTAAAAA	AGAATCTAAA	AATGATCCAG	AATTAGGTAA	ATACTGGGCA	2760
	TCTTTAGGTG	ATGTGTTTGT	AAATGATGCT	TTTGGTACTG	CGCATCGTGA	GCATGCATCT	2820
	AATGTTGGTA	TTTCTACACA	TTTAGAAACT	GCAGCTGGAT	TCTTAATGGA	TAAAGAAATT	2880
40	AAGTTTATTG	GCGGCGTAGT	TAACGATCCA	CATAAACCAG	TTGTTGCTAT	TTTAGGTGGA	2940
	GCAAAAGTAT	CTGACAAAAT	TAATGTCATC	AAAAACTTAG	TTAACATAGC	TGATAAAATT	3000
45	ATCATCGGCG	GAGGTATGGC	TTATACTTTC	TTAAAAGCGC	AAGGTAAAGA	AATTGGTATT	3060
45	TCATTATTAG	AAGAAGATAA	AATCGACTTC	GCAAAAGATT	TATTAGAAAA	ACATGGTGAT	3120
	AAAATTGTAT	TACCAGTAGA	CACTAAAGTT	GCTAAAGAAT	TTTCTAATGA	TGCCAAAATC	3180
50	ACTGTAGTAC	CATCTGATTC	AATTCCAGCA	GACCAAGAAG	GTATGGATAT	TGGACCAAAC	3240
	ACTGTAAAAT	TATTTGCAGA	TGAATTAGAA	GGTGCGCACA	CTGTTGTATG	GAATGGACCT	3300
	ATGGGTGTAT	TCGAGTTCAG	TAACTTTGCA	CAAGGTACAA	TTGGTGTATG	TAAAGCAATT	3360

	TCTTTAGGTT	TTGAAAATGA	CTTCACTCAT	ATTTCAACTG	GTGGCGGCGC	GTCATTAGAG	3480
	TACCTAGAAG	GTAAAGAATT	GCCTGGTATC	AAAGCAATCA	АТААТАААТА	ATAAAGTGAT	3540
5	AGTTTAAAGT	GATGTGGCAT	GTTTGTTTAA	CATTGTTACG	GGAAAACAGT	CACAAGATGA	3600
	CATCGTGTTT	CATCACTTTT	CAAAAATATT	TACAAAACAA	GGAGTGTCTT	TAATGAGAAC	3660
10	ACCAATTATA	GCTGGTAACT	GGAAAATGAA	CAAAACAGTA	CAAGAAGCAA	AAGatTCGTC	3720
	AATACATTAC	CAACACTACC	AGATTCAAAA	GAAGTAGAAT	CAGTAATTTG	TGCACCAGCA	3780
	ATTCAATTAG	ATGCATTAAC	TACTGCAGTT	AAAGAAGGAA	AAGCACAAGG	TTTAGAAATC	3840
15	GGTGCTCAAA	ATACGTATTT	CGAAGATAAT	GGTGCGTTCA	CAGGTGAAAC	GTCTCCAGTT	3900
	GCATTAGCAG	ATTTAGGCGT	TAAATACGTT	GTTATCGGTC	ATTCTGAACG	TCGTGAATTA	3960
	TTCCACGAAA	CAGATGAAGA	AATTAACAAA	AAAGCGCACG	CTATTTTCAA	ACATGGAATG	4020
20	ACTCCAATTA	TATGTGTTGG	TGAAACAGAC	GAAGAGCGTG	AAAGTGGTAA	AGCTAACGAT	4080
	GTTGTAGGTG	AGCAAGTTAA	GAAAGCTGTT	GCAGGTTTAT	CTGAAGATCA	ACTTAAATCA	4140
	GTTGTAATTG	CTTATGAACC	AATCTGGGCA	ATCGGAACTG	GTAAATCATC	AACATCTGAA	4200
25	GATGCAAATG	AAATGTGTGC	ATTTGTACGT	CAAACTATTG	CTGACTTATC	AAGCAAAGAA	4260
	GTATCAGAAG	CAACTCGTAT	TCAATATGGT	GGTAGTGTTA	AACCTAACAA	CATTAAAGAA	4320
30	TACATGGCAC	AAACTGATAT	TGATGGGGCA	TTAGTAGGTG	GCGCATCACT	TAAAGTTGAA	4380
50	GATTTCGTAC	AATTGTTAGA	AGGTGCAAAA	TAATCATGGC	TAAGAAACCa	ACTGCGTTAA	4440
	TTATTTTAGA	TGGTTTTGCG	AACCGCGAAA	GCGAACATGG	TAATGCGGTA	AAATTAGCAA	4500
35	ACAAGCCTAA	TTTTGATCGT	TATTACAACA	AATATCCAAC	GACTCAAATC	GAAGCGAGTG	4560
	GCTTAGATGT	TGGACTACCT	GAAGGACAAA	TGGGTAACTC	AGAAGTTGGT	CATATGAATA	4620
	TCGGTGCAGG	ACGTATCGTT	TATCAAAGTT	TAACTCGAAT	CAATAAATCA	ATTGAAGACG	4680
40	GTGATTTCTT	TGAAAATGAT	GTTTTAAATA	ATGCAATTGC	ACACGTGAAT	TCACATGATT	4740
	CAGCGTTACA	CATCTTTGGT	TTATTGTCTG	ACGGTGGTGT	ACACAGTCAT	TACAAACATT	4800
	TATTTGCTTT	GTTAGAACTT	GCTAAAAAAC	AAGGTGTTGA	AAAAGTTTAC	GTACACGCAT	4860
45	TTTTAGATGG	CCGTGACGTA	GATCAAAAAT	CCGCTTTGAA	ATACATCGAA	GAGACTGAAG	4920
	CTAAATTCAA	TGAATTAGGC	ATTGGTCAAT	TTGCATCTGT	GTCTGGTCGT	TATTATGCAA	4980
50	TGGATCGTGA	CAAACGTTGG	GAACGTGAAG	AAAAAGCTTA	CAATGCTATT	CGTAATTTTG	5040
50	ATGCCCCAAC	TTATGCAACT	GCCAAAGAAG	GTGTAGAAGC	AAGCTATAAT	GAGGGCTTAA	5100
	CTGACGAATT	CGTAGTACCA	TTCATCGTTG	AGAATCAAAA	TGACGGTGTT	AATGATGGAG	5160

	CGAACAGAGC	ATTCGAAGGC	TTTAAAGTTG	AACAAGTTAA	AGACTTATTC	TATGCAACAT	5280
	TCACTAAGTA	TAATGACAAT	ATCGATGCGG	CTATCGTCTT	CGAAAAAGTT	GATTTAAATA	5340
5	ATACAATTGG	TGAAATTGCA	CAAAATAACA	ATTTAACTCA	ATTACGTATT	GCAGAAACTG	5400
	AAAAATACCC	TCACGTTACT	TACTTTATGA	GTGGTGGACG	TAACGAGGAA	TTTAAAGGTG	5460
10	AACGCCGTCG	TTTAATTGAT	TCACCTAAAG	TTGCAACGTA	TGACTTGAAA	CCAGAAATGA	5520
	GTGCTTATGA	AGTTAAAGAT	GCATTATTAG	AAGAGTTAAA	TAAAGGTGAC	TTGGACTTAA	5580
	TTATTTTAAA	CTTTGCTAAC	CCTGATATGG	TTGGACATAG	TGGTATGCTT	GAGCCGACAA	5640
15	TCAAAGCAAT	CGAAGCGGTT	GATGAATGTT	TAGGAGAAGT	GGTTGATAAG	ATTTTAGACA	5700
	TGGACGGTTA	TGCAATTATT	ACTGCTGACC	ATGGTAACTC	TGATCAAGTA	TTGACGGaTG	5760
	ATGATCAACC	AATGACTACG	CAWACAACGA	ACCCAGTACC	AGTGATTGTA	ACAAAAGAAG	5820
20	GCGTTACACT	TAGAGAAACT	GGTCGCTTAG	GTGACTTAGC	ACCTACATTA	TTAGATTTAT	5880
	TAAATGTAGA	ACAACCTGAA	GATATGACAG	GTGAaTCTTT	AATTAAACAC	TAATATTGTA	5940
	AAAGATGTTA	AGTAAACGCT	TAATGACACT	TATTTTTGA	AAATAATAGT	AATATCnTTT	6000
25	TGTTAAATGA	AAGAATAAAG	СТАТААТААТ	TATAGAATAA	CTATTTAn		6048
	(2) INFORMA	TION FOR SE	Q ID NO: 12	!9 :			
	/÷\	OITELIAE		_			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5602 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

30

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 129:

AAAGAAGTGC	AAGATATCAT	CGCATTAATT	AAGTCGTTAC	AAAgTGTAAT	TGTAGACaTC	60
GCTTCCAATA	ATGTTGATAC	AATTATGCCT	GGTTATACTC	ATTTACAGCG	TGCACAGCCA	120
ATTTCATTTG	CACATCATAT	TATGACTTAT	TTTTGGATGT	TACAACGAGA	CCAACAACGA	180
TTTGAAGATA	GTTTAAAACG	AATCGATATT	AATCCTTTAG	GTGCAGCAGC	CTTAAGTGGT	240
ACCACATACC	CTATCGATAG	ACACGAGACA	ACAGCATTGT	TGAACTTTGG	CAGTCTCTAT	300
GAGAATAGCC	TAGATGCTGT	TAGTGACAGA	GACTATATTA	TTGAAACATT	GCATAATATT	360
TCTTTAACGA	TGGTTCACTT	ATCACGCTTT	GCAGAGGAAA	TTATTTTCTG	GTCCACAGAC	420
GAAGCTAAAT	TCATTACATT	ATCAGATGCA	TTTTCAACTG	GCTCATCTAT	TATGCCACAA	480
AAGAAAAATC	CTGATATGGC	AGAATTAATT	AGAGGTAAAG	ттсстссььс	САСТССТСАТ	540

55

	GAAGATAAAG	AAGGTTTATT	CGATGCTGTC	CATACAATTA	AAGGTTCTTT	ACGTATTTTC	660
-	GAAGGTATGA	TTCAAACGAT	GACAATTAAT	AAAGAACGAC	TCAATCAAAC	TGTTAAAGAA	720
5	GATTTTTCAA	ATGCAACGGA	ACTAGCAGAT	TATTTAGTAA	CTAAAAATAT	TCCATTTAGA	780
	ACTGCACATG	AAATTGTAGG	AAAAATCGTC	TTAGAATGTA	TACAACAAGG	TCATTATTTA	840
10	TTAGATGTTC	CTTTAGCAAC	ATATCAACAA	CATCATTCTA	GTATTGATGC	CGATATTTAC	900
	GATTATTTGC	AGCCTGAAAA	TTGTTTAAAA	CGACGTCAAA	GTTACGGTTC	AACAGGTCAA	960
	TCATCGGTCA	AACAACAACT	TGATGTTGCT	AAACAATTAC	TATCACAATA	AATACGTTAA	1020
15	TCTACCTACC	CACAATGTCT	ATTAAAATTA	CATTGTGGGT	ATTTTAATGC	TCTCTTCGTC	1080
	TTGTTGAACA	TCACATTTTT	AAGATTCCTA	AAATGTTTGA	TAATTCTTTT	AAATTTATAT	1140
	TACAAAAATG	TTATAAATTG	TAAAAGAAAT	GTGTAAAGCG	TTTTCACAAG	CAGGTTTTTG	1200
20	TAGTATTTTA	AAATTGTTAG	ACTACAAATA	AAGAGATGAA	AGGATAAAGA	CTATGACTAA	1260
	CTCTTCGAAA	AGCTTCACTA	AATTTATGGC	TGCTTCTGCT	GTTTTTACTA	TGGGATTTTT	1320
25	ATCAGTACCT	ACTGCTGGCG	CTGAACAAAC	AAATCAAATT	GCAAATAAAC	CTCAGGCTAT	1380
25	TCAATGGCAT	ACAAATTTAA	CGAATGAGCG	ATTCACTACT	ATCGCACATC	GTGGCGCAAG	1440
	TGGCTATGCA	CCCGAGCATA	CGTTTCAAGC	ATATGATAAG	AGTCATAATG	AGTTAAAAGC	1500
30	ATCTTATATC	GAAATTGATT	TACAACGTAC	CAAAGATGGC	CATTTAGTTG	CTATGCATGA	1560
	TGAAACTGTT	AACCGTACAA	CAAATGGACA	CGGTAAAGTT	GAGGATTATA	CCCTTGATGA	1620
	ATTAAAACAG	TTAGATGCAG	GAAGTTGGTT	TAATAAAAA	TATCCAAAAT	ACGCAAGAGC	1680
35	AAGTTATAAA	AATGCTAAAG	TACCCACTTT	AGATGAAATT	TTAGAACGTT	ATGGCCCGAA	1740
	TGCAAACTAT	TATATTGAAA	CAAAGTCACC	TGATGTATAC	CCAGGAATGG	AAGAACAATT	1800
	ATTAGCTTCA	TTGAAAAAGC	ATCACCTTTT	AAATAACAAT	AAATTAAAA	ATGGACATGT	1860
40	AATGATTCAA	TCATTTTCTG	ACGAAAGTTT	AAAGAAAATT	CATCGTCAAA	ATAAGCATGT	1920
	GCCATTAGTA	AAATTAGTTG	ATAAAGGTGA	ACTACAACAA	TTTAACGACC	AACGCTTAAA	1980
45	AGAGATACGC	TCTTATGCGA	TTGGATTAGG	TCCTGATTAT	ACAGATTTAA	CTGAACAAAA	2040
45	TACCCATCAT	TTAAAAGACT	TAGGATTTAT	AGTACATCCT	TATACAGTGA	ATGAAAAAGC	2100
	TGATATGTTA	CGATTAAATA	AATATGGCGT	TGATGGTGTC	TTTACAAATT	TCGCTGATAA	2160
50	ATATAAAGAA	GTCATTAAGT	agtaatgtta	AACTAGAAAA	CATAAATACA	AAAATATAGC	2220
	TATTACTATA	AAAAACAGCA	GTAAGATATT	TCCAAATTGA	AATTATCCTA	CTGCTGTCTT	2280
	THEOLOGIA	CCACACAAAT	CATATION	CAAAATTTA	mmoomoomoo	G2.GGGGG222.GM	

	TTGTCTGTAG	AAATTGAGGA	GCTAATTTCT	CTGTGTCGGG	GCTCCACCCC	AACTTGCACA	2460
	CTATTGTAAG	CTGACTTTCC	GCCAGCCTCT	GTGTTGGGGC	CCCGCCAACT	TGCACACTAT	2520
5	TGTAAGCTGA	CTTTCCACCA	GCCTCTGTGT	TGGGGCCCCG	ACTATTTTTG	AAAAGAGCGT	2580
	GTTACACGGG	CATTGTTTTA	CAGTCAACTA	CTGCTAAAAT	AAAATTAACG	AGCTTAGGGC	2640
10	TTTGTTTTCT	GTCCCAAGCT	CGTTAAATCA	CATATGATAA	TTAATTATGC	CCAACCACGA	2700
	TATCTAGCTG	CTTCTGCTGT	ACGTTTAATA	CCTATGATAT	ATGCTGCAAG	TCTCATATCT	2760
	ATTTTTCGGT	TTTGAGACAA	TTCGTAAATC	GTATCAAATG	CCGCTTCTAA	TTTTTCACGT	2820
15	AGCTTTTCAT	TAACTTCTTC	TTCAGACCAA	TAATAACCTT	GATTATTTTG	TACCCATTCG	2880
	AAGTAAGAAA	CCGTTACACC	ACCAGCACTT	GCTAATACGT	CTGGAACTAA	TAATATACCA	2940
	CGTTCAGTTA	AAATACGTGT	TGCTTCTGGT	GTTGTAGGTC	CATTAGCAGC	TTCAACAACG	3000
20	ATACTAGCTT	TAATATCATG	TGCATTGTCT	TCTGTAATTT	GGTTTGAAAT	AGCCGCTGGT	3060
	ACTAAAATGT	CACAATCTAA	TTCAAACAAT	TCTTTATTTG	AGATTGTTTC	TTCAAATAAA	3120
	TTTGTTACCG	TACCAAAACT	ATCACGACGG	TCTAATAAAT	AATCTATATC	TAAGCCATTT	3180
25	GGATCGTGTA	ATGCACCGTA	AGCATCAGAG	ATACCTACAA	TTTTTGCACC	TAAATCATAT	3240
	AAGAATTTAG	CTAAGAAACT	TCCGGCATTA	CCGAAACCTT	GAATAACAAC	CTTGGCACCT	3300
30	TCAATTTGCA	TATTACGACG	TTTTGCAGCT	TGTTCAATTG	CAATAACTAC	ACCTAGTGCA	3360
	GTTGATCTGT	CGCGTCCATG	AGAACCACCC	AATACAATTG	GTTTACCTGT	GATGAAACCT	3420
	GGTGAATTAA	ATTTATCTAA	TGCACTATAT	TCATCCATCA	TCCAAGCCAT	AATTTGTGAG	3480
35	TTTGTAAATA	CATCTGGTGC	TGGAATATCT	TTGTTCGGAC	CTACGAATTG	TGAAATTGCT	3540
	CTTACATATC	CGCGTGATAA	ACGTTCAACT	TCATGAATGC	TCATTTGACG	TGGATCACAA	3600
	ACGATACCAC	CCTTACCACC	ACCGTATGGT	AAGTTTACAA	TGCCACATTT	CAAAGTCATC	3660
40	CACATTGATA	ATGCTTTTAC	TTCTTCTTCA	TCAACATCTG	GGTGGAAACG	CACGCCCCCT	3720
	TTTGTTGGTC	CAACAGCATC	ATTATGTTGC	GCACGGTAAC	CTGTGAATGT	TTTTACTGTG	3780
	CCATCATCCA	TTCGTACAGG	GATACGCACT	TGTAACATTC	TTAAAGGTTC	TTTAATTAAA	3840
15	TCGTACATTC	CTtCGTCAAA	TCCCAATTTA	TGCAATGCTT	CTTTAATAAT	TCCTTGAGTA	3900
	GAAGTTACTA	AATTATTGTT	CTCAGTCATG	ATCCTTTTCG	CCTCTTCTTT	ACCTAATGAT	3960
50	TTCGCTTTCA	AACATATTGT	AACATAACGT	ATTCCTTTTT	AAAGCCCTTA	CAAACTGATT	4020
	GTTACAACTT	TTTGACATTA	TTGAAATACA	TGTCTTATTT	TTTCAAGTGC	AAGGTCCAAT	4080
	TCTTCTTTAG	TAATAATTAA	TGGTGGTGCA	AAACGAATGA	CAGTATCATG	CGTTTCTTTA	4140

	ACACCTATAA	ACAAACCACG	TCCACGGACT	TCTTTAATTG	ATGGATGATC	AATTTGCTTT	4260
	AATTGTTCTT	TAAAATAATC	TCCTAATTCT	AAAGAGCGGC	CTGGTAAATC	CTCATCAACG	4320
5	ATAACATCTA	ATGCAGCAAT	TGATGCAGCA	CAAGCAAGTG	GATTACCACC	AAATGTTGAA	4380
	CCATGTGAGC	CAGGTGTAAA	GACATCTAAT	ACTTCTTTAT	CTGCTAATAC	AACAGAAATT	4440
	GGGAAGACTC	CACCACCTAG	TGCTTTACCT	AAAATATAGA	CATCAGGTTT	TACATTATCC	4500
10	CAATCCGTAG	CAAATAATTT	ACCCGAACGA	CCTAATCCTG	CTTGGATTTC	GTCAGCAATA	4560
	AATAAGACAT	TATGTTCATC	ACATAATTCT	CTAATTGCTT	TCAAATATCC	TTCTGGCGGT	4620
15	ATATTTATAC	CCGCTTCACC	TTGAATTGGT	TCTACTAAAA	CTGCTGCAGT	ATTTTCATTA	4680
	ATTGCAGCTT	TCAATGCATC	TACATCTCCA	AAATCAACTT	TTCTAAATCC	ATCTAATAAC	4740
	GGACCATAAC	CACGTTGGTA	TTCTGCTTCT	GAAGATAATG	AAACTGGCGC	CATTGTTCGA	4800
20	CCATGGAAGT	TACCATTAAA	TGCAATGATT	TCTGCTTTAT	TTGGCTCAAT	TCCTTTAACA	4860
	TCGTATGCCC	AGCGTCGTGC	TGCTTTCAAA	GCTGTTTCTA	CTGCTTCAGC	ACCTGTATTC	4920
	ATTGGTAAAG	CTTTATCTTT	ACCTGCCAGT	TTACAAATTT	TTTCGTACCA	TTCACCTAAG	4980
25	TTATCACTAT	GAAAAGCACG	TGAAACTAAA	GTCACTTTAT	CAGCTTGATC	TTTTAATGCT	5040
	TGAATAATTT	TCGGATGTCT	ATGACCTTGG	TTAACAGCGG	AATATGCAGA	TAACATATCC	5100
	ATATATTTAT	TGCCTTCAGG	ATCTTTAACC	CATACCCCTT	CAGCTTcTGa	AATGaCAATT	5160
30	GGCAATGGTA	AATAATTATG	TGCTCCGTAA	TGATTTGTTA	ACTCAATAAT	TTTTTCAGAT	5220
	TTAGTCATCA	TATCTCCCCT	TTTCATCATT	TATAACTATT	ATACATGAAA	CATTATCCAA	5280
25	ATAATTACAT	TAGTTTTCAA	AGCAGATACT	TTTCCACCAA	AAAAGATGAA	ATAATCACTA	5340
35	AGTTTCATTA	AATTTGTCTA	TTTTGAAAAC	CCTTACATTT	ATAATGACAT	AATTACTTAA	5400
	ATGATTACAA	GCAAAAGAAT	TGATAATTTT	ACACTTAATC	AAAAGTATAT	TTTACTAAGA	5460
40	ATATTTTTAT	TTATAAATAT	TGAAAACCAC	TAACAAATTG	CATACACAAT	ATCATTAGTG	5520
	GTAACAGTTA	AACACTTATT	TATCTTTACG	GGGTAATGGG	TTAAAACCCT	TnCATTAAAA	5580
	TTGGATGnCC	ATAAAATTAG	GG				5602

(2) INFORMATION FOR SEQ ID NO: 130: 45

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5924 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

	TAACCCCATT	TTACCTGGAA	AAATCgTTTG	CGATGCaATm	GCaTTtGaAT	ATAAATACAT	60
	TTTACGTATa	GAATTATAAA	AgGTTTCATT	Caaatcttag	GGTCAAAAAT	GTTATAATAT	120
5	TTTTATGTCA	AATTTAAAAC	AGTAACACTT	ATTTACAAGG	TTGCAATATT	TTGAAGTAAT	180
	AAAGGAAGTG	TCGCGTATTT	TAACTTTTTC	AGAGCAAAAT	GCACTCGCGA	AAATAGATGA	240
10	TTTAATGAAT	ACTTATTGCA	ATCAATGTCC	AATCAAAACT	CGTCTGCGTA	AATTAGAGGG	300
	GAAAACGAAG	GCGCATCATT	TTTGTATCAA	TGAGTGTTCA	ATAGGGAAAG	АААТААААСА	360
	ATTAGGAAAT	GAACTTCAAT	AGGAGGAAGT	CAAATGAAAA	TTATATCTAT	ATCAGAAACA	420
15	CCGAACCACA	ACACAATGAA	GATTACACTT	AGTGAAAGCA	GAGAAGGTAT	GACATCAGAT	480
	ACGTATACTA	AAGTTGATGA	TTCACAGCCA	GCATTTATTA	ATGACATCTT	AAAGGTTGAA	540
	GGCGTTAAAT	CAATTTTCCA	TGTTATGGAC	TTTATTTCAG	TAGATAAAGA	AAATGACGCA	600
20	AATTGGGAAA	CAGTATTGCC	AAAAGTAGAG	GCTGTATTCG	AATAAATTTT	TCATCAACTA	660
	GTATTCGGGG	GGAATAAAGT	ATATGGAAAT	TTTACGTATA	GAGCCAACAC	CAAGTCCAAA	720
	TACAATGAAA	GTTGTTTTGT	CATATACAAG	AGAAGACAAG	TTATCTAATA	CTTATAAAAA	780
25	AGTAGAAGAA	ACACAACCAA	GATTTATAAA	TCAGTTGTTA	TCTATAGATG	GTATCACTTC	840
	CATTTTTCAT	GTCATGAACT	TCTTAGCTGT	TGATAAGGCA	CCAAAAGCTG	ATTGGGAAGT	900
30	CATATTACCT	GATATTAAAG	CTGCTTTTTC	TGATGCGAAT	AAGGTTTTAG	AATCTGTAAA	960
J 0	TGAACCTCAA	ATTGACAATC	ATTTTGGTGA	AATTAAAGCT	GAATTATTAA	CTTTTAAGGG	1020
	TATACCGTAT	CAAATTAAGC	TAACTTCTGC	TGACCAAGAA	TTAAGAGAAC	AATTACCACA	1080
35	AACATATGTT	GACCATATGA	CTCAAGCGCA	AACAGCACAT	GACAATATTG	TTTTTATGCG	1140
	TAAATGGCTA	GATTTAGGAA	ATCGCTATGG	AAATATTCAA	GAAGTAATGG	ATGGTGTCCT	1200
	agaagaagtg	CTAGCTACCT	ATCCAGAATC	ACAGTTACCC	GTATTGGTAA	AACATGCTTT	1260
10	AGAAGAAAAT	CACGCAACTA	ATAATTATCA	TTTCTATCGA	CATGTCTCTT	TGGATGAATA	1320
	TCATGCAACT	GATAATTGGA	AGACTCGATT	ACGAATGTTA	AACCATTTTC	CAAAGCCGAC	1380
	TTTTGAAGAT	ATACCGCTGC	TTGATTTAGC	TTTATCTGAT	GAAAAAGTAC	CGGTTAGACG	1440
15	TCAAGCGATT	GTATTATTAG	GTATGATTGA	AAGTAAAGAA	ATTTTACCGT	ATTTATATAA	1500
	GGGGCTTCGT	GATAAAAGTC	CTGCTGTAAG	AAGAACAGCA	GGGGATTGCA	TAAGCGATTT	1560
50	AGGGTATCCA	GAGGCACTAC	CAGAAATGGT	GCTACTATTA	GATGATCCAC	AGAAAATCGT	1620
,,,	TAGGTGGCGT	GCTGCTATGT	TTATCTTTGA	TGAAGGTAAT	GCAGAGCAGC	TTCCCGCACT	1680
	AAAACCCCAT	カ	A THOCOCOTOTOCA	a comma a a mma	C111mmc111		

	AATTTAATTG	GAGGAATTAA	ATATGAATGC	ATATGATGCT	TATATGAAAG	AAATTGCGCA	1860
	ACAAATGCGT	' GGCGAATTAA	CTCAAAATGG	TTTTACAAGT	TTAGAAACGA	GCGAACAGct	1920
5	ATCGGAGTAT	' ATGAACCAAG	TAAATGCTGA	TGACACTACT	TTTGTAGTTA	TTAACTCTAC	1980
	ATGCGGCTGT	GCAGCTGGAT	TAGCAAGACC	AGCTGCAGTA	GCAGTTGCAA	CACAAAATGA	2040
10	ACATAGACCT	ACAAATACAG	TTACAGTTTT	TGCTGGGCAA	GATAAAGAAG	CAACTGCTAC	2100
10	AATGCGAGAA	TTCATTCAGC	AAGCACCATC	TAGTCCTTCG	TATGCTTTAT	TCAAAGGTCA	2160
	AGATTTAGTT	TATTTTATGC	CTAGAGAATT	TATCGAAGGT	AGAGATATTA	ATGACATTGC	2220
15	AATGGACTTA	AAGGATGCCT	TTGACGAAAA	TTGTAAATAG	TACACATAAA	TAAATATAAA	2280
	GGTTAACACA	TTTTATAATA	TTAAAAATGG	TGTCTGTCAT	TGAAAATAGA	GAATATAGTT	2340
	GTATTCTATT	TGTTAAATAA	AGTCCGTTTT	TACCAACTAT	ATTTTCTAGA	AATTTAACTG	2400
20	TTTTAATAGG	ACATCAAACA	TAATATTCaA	ATCATGTGTT	AACCTCTTTT	TTAAAATTTT	2460
	TTAGCATTAA	AGTTATAGAT	TTGGGTAAAC	AATTACCAAT	TGGAAACATA	TATCACGTTA	2520
	CGATGGGGTA	GGTACTTAAT	CAGCATTTTA	TAAATAAAGT	AACGGAATTC	ATGATATTAA	2580
25	TATCATATTC	CTAAAATGAG	TGATAACAAA	ATGCTACATA	AAGTTAAGTT	ATATCAAACT	2640
	AAATATACAT	ACTATAAATA	ATGAAAATGA	GGTGTTATCG	CATATGTTGA	ATTCATTTGA	2700
30	TGCAGCATAT	CACAGTCTTT	GTGAAGAAGT	TTTAGAAATA	GGAAATACAC	GAAATGATCG	2760
30	CACAAATACA	GGTACGATTT	CGAAATTTGG	TCATCAACTT	CGCTTTGACT	TATCTAAAGG	2820
	ATTTCCACTA	TTAACGACAA	AGAAAGTTTC	TTTTAAATTA	GTAGCAACCG	AATTATTATG	2880
35	GTTCATTAAA	GGAGATACAA	ACATCCAATA	CTTATTAAAA	TATAATAATA	ATATATGGAA	2940
	CGAATGGGCT	TTTGAAAATT	ATATCAAATC	AGACGAGTAT	AAAGGTCCAG	ATATGACAGA	3000
	TTTCGGGCAT	CGTGCATTGA	GTGATCCTGA	ATTTAACGAA	CAATATAAAG	AACAAATGAA	3060
40	ACAÄTTTAAG	CAACGTATTC	TTGAAGATGA	TACATTTGCG	AAGCAATTCG	GGGATTTAGG	3120
	AAATGTTTAT	GGTAAACAAT	GGCGAGATTG	GGTTGATAAA	GATGGTAATC	ATTTTGATCA	3180
	ACTTAAAACA	GTAATTGAAC	AAATTAAGCA	TAATCCAGAT	TCAAGGCGAC	ACATCGTATC	3240
45	TGCATGGAAT	CCAACAGAAA	TTGATACAAT	GGCACTTCCG	CCTTGTCATA	CCATGTTCCA	3300
	GTTTTATGTC	CAAGATGGTA	AGTTAAGTTG	CCAGTTATAC	CAACGTAGCG	CAGATATCTT	3360
5 <i>0</i>	TTTAGGTGTG	CCATTTAATA	TCcGCagctA	CGCTTTATTG	ACACACCTTA	TTGCCAAAGA	3420
	ATGTGGACTT	GAAGTGGGTG	AATTTGTGCA	TACATTTGGA	GATGCACATA	TTTATTCAAA	3480
	тсататтсат	CCCATTCAAA	CACAATTACC	A COTTO A A A CO	ጥጥሮ እ አጥር ርጥር	CA A CAMMA A A	3540

	TGAATCACAT	CCAGCAATAA	AAGCTCCAAT	AGCAGTGTAG	TCATTGCATA	GTTAGCTAAC	3660
	CATATAGACA	TCAAAATGAC	ATCATAGTAT	TTTCAAGTGC	AAAAAAGTAC	TTTTTTGTGT	3720
5	TAAACGTTTT	CATAAATTAT	GCAAAATCAT	TATTTCTATC	ACACTTTATG	ATAAAAATTG	3780
	TGTTAAATTA	AAGATAACTT	AGTAATAAAA	AATGAAATGA	TAGAAGAAGG	AGGATAATTA	3840
	TGACTTTATC	CATTCTAGTt	GCACATGACT	TGCAACGAGT	AATTGGTTTt	GAAAATCAAT	3900
10	TACCTTGGcA	CCTACCAAAT	GATTTGAAGC	ATGTTAAAAA	ATTATCAACA	GGTCATACTT	3960
	TAGTAATGGG	TCGTAAGACA	TTTGAATCGA	TTGGTAAACC	ACTACCGAAT	CGTCGAAATG	4020
15	TTGTACTTAC	TTCAGATACA	AGTTTCAACG	TAGAnGGCGT	TGATGTAATT	CACTCTATTG	4080
	AAGATATTTA	CCAACTACCG	GGCCATGTTT	TCATATTTGG	AGGGCAAACA	TTATTTGAAG	4140
	AAATGATTGA	TAAAGTGGAC	GACATGTATA	TTACTGTTAT	TGAAGGTAAA	TTCCGTGGTG	4200
20	ATACGTTCTT	TCCACCTTAT	mCATTkGAgr	CTGGGAAGTT	GCCTCTTCAG	TTGAAGGTAA	4260
	ACTAGATGAG	AAAAATACAA	TTCCACATAC	CTTTCTACAT	TTAATTCGTA	AAAAATAAGG	4320
	GGGAAAACGA	CCATGACAAA	ACAGATTATA	GTAACAGACT	CAACATCCGA	TTTATCTAAA	4380
25	GAATACTTAG	AAGCAAACAA	CATTCATGTA	ATTCCTTTAA	GTTTAACTAT	TGAAGGAGCT	4440
	TCATACGTTG	ACCAAGTAGA	TATTACATCA	GAAGAATTTA	TTAATCATAT	TGAAAATGAT	4500
20	GAAGATGTAA	AGACAAGTCA	GCCAGCCATA	GGTGAATTTA	TATCTGCTTA	TGAAGAACTA	4560
30	GGAAAAGATG	GCTCTGAAAT	CATAAGTATT	CATCTTTCTT	CAGGATTAAG	TGGTACATAT	4620
	AACACTGCTT	ACCAAGCAAG	TCAAATGGTA	GATGCTAATG	TAACTGTTAT	TGATTCAAAA	4680
35	TCTATTTCTT	TTGGTTTAGG	GTATCAAATA	CAACACCTAG	TAGAGCTTGT	AAAAgAaGGT	4740
	GtCTCAACTT	CTGAAATAGT	TAAAAAGTTA	AATCATTTAA	GAGAAAACAT	TAAATTATTT	4800
	GTAGTTATAG	GGCAATTGAA	TCAATTAATT	AAAGGTGGCA	GAATTAGTAA	AACAAAAGGT	4860
40	TTGATTGGTA	ATCTTATGAA	AATTAAACCA	ATTGGTACAC	TAGATGATGG	TCGCTTAGAG	4920
	CTTGTGCmCA	ATGCGAGAAC	TCaAAATTCk	AGTATCCAAT	ACTTGAAAAA	GGAAATTGCT	4980
	GAATTTATAG	GAGATCATGA	AATCAAATCC	ATTGGTGTCG	CACATGCTAA	CGTCATTGAA	5040
45	TATGTTGATA	AATTGAAGAA	AGTTTTTAAT	GAAGCTTTTC	ATGTGAATAA	TTACGATATA	5100
	AATGTAACTA	CACCAGTTAT	TTCTGCACAT	ACTGGTCAAG	GTGCGATTGG	CCTCGTAGTC	5160
50	CTTAAGAAGT	AAATTTAATC	TTTTCAGTGT	TAATTACTTC	CATTTCAATC	CTTTATAGAC	5220
50	TAAATTTATA	ATTAGATAGA	TAGAGGAGGT	AATTCATATG	ACAAAAGAAT	ATGCAACATT	5280
	AGCAGGAGGA	TGTTTCTGGT	GCATGGTTAA	ACCATTTACA	тсататесас	CCATCAACTC	5340

GAATCAAACO	GGCCATGTCG	AAGCAGTACA	AATTACGTTT	GATCCAGAGG	TTACTTCCTT	5460
TGAAAATATA	TTAGACATAT	ATTTCAAAAC	ATTTGACCCA	ACTGATGATC	AAGGGCAATT	5520
TTTCGATAGA	GGCGAAAGCT	ATCAACCAGT	CATTTTCTAT	CATGATGAAC	ATCAGAAAAA	5580
GGCTGCTGAG	TTTAAAAAGC	AACAATTAAA	TGAACAAGGT	ATTTTCAAGA	AACCAGTGAT	5640
TACACCTATT	AAACCATATA	AAAATTTCTA	TCCAGCTGAA	GACTACCATC	AAGATTATTA	5700
CAAAAAGAAC	CCGGTACATT	ATTACCAATA	TCAACGTGGT	TCAGGTAGAA	AAGCGTTTAT	5760
AGAATCACAT	TGGGGGAATC	AAAATGCTTA	AAAAAGATAA	AAGTGAACTA	ACAGATATAG	5820
AATATATIGI	TACACAAGAn	AACGGCACTG	AACCACCATT	TATGAATGAA	TATTGGAATC	5880
ATTTTGCTAA	AGGATTTATG	TAGATAAAnT	TCnGGTAAAC	CTTG		5924
(2) INFORM	ATION FOR SE	Q ID NO: 13	31:			
(i) S	EQUENCE CHAF (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	9280 base pacid NESS: doubl	pairs			
(xi)	SEQUENCE DES	CRIPTION: S	SEQ ID NO: 1	.31:		

GGCCGTTNAA AATCTCCAAA ATANAAAAAC CCATCTTGTT CCAATGTTTT AAAATCGCCa TCCaACACTT GaTCaATAGC TTGCAACAAC GTTGAACGTG TTTTaCCAAA AGCATCaAAC GCTCCCACTA AAATCAGTGC TTCAAGTAAC TTTCTCGTTT TGACTCTCTT CGGTATACGT CTAGCAAAAT CAAAGAAATC TTTAAATTTG CCGTTCTGAT AACGTTCATC AACAATCACT TTCACACTTT GATAACCAAC ACCTTTAATT GTACCAATTG ATAAATAAAT GCCTTCTTGG GAAGGTTTAT AAAACCAATG ACTTTCGTTA ATGTTCGGTG GCAATATAGT GATACCTTGT TTTTTTGCTT CTTCTATCAT TTGAGCAGTT TTCTTCTCAC TTCCAATAAC ATTACTTAAA ATATTTGCGT AAAAATAATT TGGATAATGG ACTTTTAAAA AGCTCATAAT GTATGCAATT TTAGAATAGC TGACAGCATG TGCTCTAGGA AAACCATAAT CAGCAAATTT CAGAATCAAA TCAAATATTT GCTTACTAAT GTCTTCGTGA TAACCATTTT GCTTTGCACC TTCTATAAAA TCCGCTTCAC CATAACTGAA GTTTGCAAAT GTGCTCGCTA TTTGCATAAT TTGCTCTTGA TAAATAATAA CACCGTAAGT ATTTTTTAAT ATAGGTTCTA AATGCGGATG TAAATATTGA ACTITIGCTIG GATCATGTCT TCTTGTAATG TAAGTTGGAA TTTCTTCCAT TGGACCTGGT

	ACACTTCTTA	CACCGTCAGA	CTCTAATTGG	AATATGCCAG	TCGTATCTCC	TTGCGACAAC	960
	AATTCAAACA	CTTTTTGATC	ATCAAACGGA	ATCTTTTCGA	TATCAATATT	AATACCTAAA	1020
5	TCTTTTTTGA	CTTGTGTTAA	GATTTGATGA	ATAATCGATA	AGTTTCTCAA	CCCTAGAAAA	1080
	TCTATTTTTA	ATAACCCAAT	ACGTTCGGCT	TCAGTCATTG	TCCATTGCGT	TAATAATCCT	1140
	GTATCCCCTT	TCGTTAAAGG	GGCATATTCA	TATAATGGAT	GGTCATTAAT	AATAATTCCT	1200
10	GCCGCATGTG	TAGATGTATG	TCTTGGTAAA	CCTTCTAACT	TTTTACAAAT	ACTGAACCAG	1260
	CGTTCATGTC	GATGGTTTCG	ATGTACAAAC	TCTTTAAAAT	CGTCAATTTG	ATATGCTTCA	1320
15	TCAAGTGTAA	TTCCTAATTT	ATGTGGGATT	AAACTTGAAA	TTTCATTTAA	TGTAACTTCA	1380
15	TCAAACCCCA	TAATTCTTCC	AACATCTCTA	GCAACTGCTC	TTGCAAGCAG	ATGACCGAAA	1440
	GTCACAATTC	CAGATACATG	TAGCTCGCCA	TATTTTTCTT	GGACGTACTG	AATGACCCTT	1500
20	TCTCGGCGTG	TATCTTCAAA	GTCAATATCA	ATATCAGGCA	TTGTTACACG	TTCTGGGTTT	1560
	AAAAAACGTT	CAAATAATAG	ATTGAATTTA	ATAGGATCAA	TCGTTGTAAT	TCCCAATAAA	1620
	TAACTGACCA	GTGAGCCAGC	TGAAGAACCA	CGACCAGGAC	CTACCATCAC	ATCATTCGTT	1680
25	TTCGCATAAT	GGATTAAATC	ACTTACTATT	AAGAAATAAT	CTTCAAAACC	CATATTAGTA	1740
	ATAACTTTAT	ACTCATATTT	CAATCGCTCT	AAATAGACGT	CATAATTAAG	TTCTAATTTT	1800
	TTCAATTGTG	TAACTAAGAC	ACGCCACAAA	TATTTTTAG	CTGATTCATC	ATTAGGTGTC	1860
30	TCATATTGAG	GAAGTAGAGA	TTGATGATAT	TTTAATTCTG	CATCACACTT	TTGAGCTATA	1920
	ACATCAACCT	GCGTTAAATA	TTCTTGGTTA	ATATCTAATT	GATTAATTTC	CTTTTCAGTT	1980
	AAAAAATGTG	CACCAAAATC	TTCTTGATCA	TGAATTAAGT	CTAATTTTGT	ATTGTCTCTA	2040
35	ATAGCTGCTA	ATGCAGAAAT	CGTATCGGCA	TCTTGACGTG	TTTGGTAACA	AACATtTTGA	2100
	ATCCAAACAT	GTTTTCTACC	TTGAATCGAA	ATACTAAGGT	GGTCCATATA	TGTGTCATTA	2160
40	TGGGTTTCAA	ACACTTGTAC	AATATCACGA	TGTTGATCAC	CGACTTTTTT	AAAAATGATA	2220
••	ATCATATTGT	TAGAAAATCG	TTTTAATAAT	TCAAACGACA	CATGTTCTAA	TGCATTCATT	2280
	TTTATTTCCG	ATGATAGTTG	ATACAAATCT	TTTAATCCAT	CATTATTTTT	AGCTAGAACA	2340
15	ACTGTTTCGA	CTGTATTTAA	TCCATTTGTC	ACATATATTG	TCATACCAAA	AATCGGTTTA	2400
	ATGTTATTTG	CTATACATGC	ATCATAAAAT	TTAGGAAAAC	CATACAATAC	ATTGGTGTCA	2460
	GTTATGGCAA	GTGCATCAAC	ATTTTCAGAC	ACAGCAAGTC	TTACgGCATC	TTCTATTTTT	2520
50	AAGCTTGAAT	TTAACAAATC	ATAAGCCGTA	TGAATATTTA	AATATGCCAC	CATGATTGAA	2580
	TGGCCCCTTT	CTATTAGTTA	AGTTTTGTGC	GTAAAGCTGT	AGCAAGTTGC	TCAAATTCAT	2640

	CAATATCATT	AATAATCAAT	TGCCCTTTAG	AACGTAATCG	ACATCTGATT	TCATTACCTT	2760
	CATCGACTGC	AAATACCCAT	ATTTTCAAGC	CTTTGATGTC	AGCAATTGTA	TTAACAAACT	2820
5	GAGATGCTTC	ATTTGGCTGA	ATACCGAATT	GCTCCAATAC	ATCTTCAGTT	ATTTTAACTT	2880
	GGCAGAATCC	ATCATCCATA	AGTTCGAAAT	GTTGTAAAAC	ATAACCTTGA	AACGGCAACA	2940
10	TTTTTGGGTC	CTTCTCCATC	ATTTTATTTA	AAAGCGCATT	ATGATCAATA	TCATGCCCAA	3000
10	TTAACTTTCC	AGCAATTTCC	ATAGTATGTT	CTGAGGTATT	GTTAAAAAGG	AATCGCCCAG	3060
	TATCACCGAC	GATACCAAGA	TATAAAACGC	TCGCGATATC	TTTATTAACA	ATTGCTTCAT	3120
15	CATTAAAATG	TGAGATTAAA	TCGTAAATGA	TTTCACTTGT	AGATGACGCG	TTCGTATTAA	3180
	CTAAATTAAT	ATCACCATAC	TGATCAACTG	CAGGATGATG	ATCTATTTTA	ATAAGTTTAC	3240
	GACCTGTACT	ATAACGTTCA	TCGTCAATTC	GTGGAGCATT	GGCAGTATCA	CATACAATTA	3300
20	CAAGCGCATC	TTGATATGTT	TTATCATCAA	TGTTATCTAA	CTCTCCAATA	AAACTTAATG	3360
	ATGATTCCGC	TTCACCCACT	GCAAATACTT	GCTTTTGCGG	AAATTTCTGC	TGAATATAGT	3420
	ATTTTAAACC	AAGTTGTGAA	CCATATGCAT	CAGGATCTGG	TCTAACATGT	CTGTGTATAA	3480
25	TAATTGTATC	GTTGTCTTCG	ATACATTTCA	TAATTTCATT	CAAAGTACTA	ATCATTTTCA	3540
	TACTCCCTTT	TTTAGAAAAG	TTGCTTAATT	TAAGCATTAG	TCTATATCAA	AATATCTAAA	3600
	TTATAAAAAT	TGTTACTACC	ATATTAAACT	ATTTGCCCGT	TTTAATTATT	TAGATATATA	3660
30	TATTTTCATA	CTATTTAGTT	CAGGGGCCCC	AACACAGAGA	AATTGGACCC	CTAATTTCTA	3720
	CAAACAATGC	aAGTTGGGGT	GGGGCCCCAA	CGTTTGTGCG	AAATCTATCT	TATGCCTATT	3780
35	TTCTCTGCTA	AGTTCCTATA	CTTCGTCAAA	CATTTGGCAT	ATCACGAGAG	CGCTCGCTAC	3840
35	TTTGTCGTTT	TGACTATGCA	TGTTCACTTC	TATTTTGGCG	AAGTTTCTTC	CGACGTCTAG	3900
	TATGCCAAAG	CGCACTGTTA	TATGTGATTC	AATAGGTACT	GTTTTAATAT	ACACGATATT	3960
40	TAAGTTCTCT	ATCATGACAT	TACCTTTTTT	AAATTTACGC	ATTTCATATT	GTATTGTTTC	4020
	TTCTATAATA	CTTACAAATG	CCGCTTTACT	TACTGTTCCG	TAATGATTGA	TTAAAAGTGG	4080
	TGAAACTTCT	ACTGTAATTC	CATCTTGATT	CATTGTTATA	TATTTGGCGA	TTTGATCGTT	4140
45	AATTGTTTCA	CCCATCTGAG	GCTGTCTTCC	TAAAAGTTGC	ATAGACTTTA	AAACATCTTG	4200
	TCTATTAATC	ACACCCACTG	TCTTTTTATT	ACTCGAAACG	ACAGGAATCA	ATTCAATACC	4260
	TTCCCAAATC	ATCATATGCG	CACAACTTGC	TACTGTACTC	ATAGCATTTA	CATAAATAGG	4320
50	ATTTCGCGTC	ATCACTTTAT	CTATTTCGTC	GTCGTCCTTT	GTATTAATCA	TCTCTCGACT	4380
	TGTTACAATA	CCTACTAATT	TATACGACTC	ATTGACTACC	GGAAATCTTG	TATGGCCAGT	4440

	ATCTAATGGC	GTCATTATAT	CTTGAACTAT	TAAGATATCT	TTTCGTATTT	TCTGATTAAA	4560
	AAGTGCTTTG	TTGATAATAT	TTGCAACTAG	GAATGTATCA	TAACTTGATG	ATAGAACAGG	4620
5	TAAATCATGT	TCATTCGCAA	AATTAATAAC	TTTATTAGAT	GGCTTAAATC	CACCAGTAAT	4680
	TAATATAGCC	GTACCTCTTT	TTAAAGCTTC	AATCTGCACA	TCTTCACGAT	TTCCGACAAT	4740
	CAATAATGTC	TTTGGACCAA	TATACTTTAA	AATATCTTTG	AGTTCCATTG	CTCCAATTGC	4800
10	AAATTTAGAT	ACCATCTTAG	TGATACCTTT	GTTGCCACCT	AACACTTGGC	CATCAATAAT	4860
	ATTGACAATT	TCATTAAAAG	TTAAATGTTC	AATTTCATTA	CGATTACGTT	TTTCGATTCG	4920
15	AACCGTACCA	ACACGATCTA	TCGTTGCGAC	CATGCCCATT	TTATCAGCAT	CTTTmATTGC	4980
15	ACGATATGCT	GTCCCytCaG	ATACGTTTAA	AAATTTAGCG	ATTTTACGCA	CCGAAATTTT	5040
	AGAGCCTATA	GATAACGATT	CAATATAATC	TAAAATTTGT	TCATGTTTTG	TCATTCTTTA	5100
20	CCTCTTCTTT	TCGAACAGTA	TTAACTACAT	TATAACTTTA	TTTTGGATAA	AAAGCATTGA	5160
	AGTGAAATGA	AATAATGATC	GTTtCACCTA	TTTTATTTTT	TGAAAATATA	CAACAAACAC	5220
	AAAGATCACA	AAATCTTTAA	TTTTAAATGG	AAAAATCCAT	TATTATTTAT	TAGAATGTAA	5280
25	GTGAGGAGGG	ATGTACTAAT	GTATAAAAAT	ATATTACTTG	GTGTAGACAC	TCAGTTAAAA	5340
	AATGAAAAAG	CACTAAAAGA	AGTGTCTAAA	TTAGCTGGCG	AAGGTACAGT	CGTAACAGTT	5400
	TTAAACGCAA	TCAGCGAACA	AGATGCTCAA	GCATCAATTA	AAGCAGGTGT	TCATTTAAAC	5460
30	AAACTTACTG	AAGAACGAAG	CAAGCGATTG	GAAAAAACAC	GCAAAGCTTT	AGAAGATTAT	5520
	GGTATTGATT	ATGACCAAAT	AATTGTTCGT	GGTAATGCAA	AAGAAGAACT	ATTAAAACAT	5580
	GCTAATAGCG	GTAAATATGA	AATTGTTGTT	TTAAGTAACC	GTAAAGCAGA	AGACAAAAAG	5640
35	AAATTTGTAC	TTGGAAGTGT	CAGCCACAAA	GTAGCAAAAC	GTGCGACTAT	CCCTGTATTA	5700
	ATCGTTAAAT	ATTTTAAAA	TCCAGAATCA	CAAATAATCT	TTCAATCATG	ATGCAGTCTC	5760
40	AAACGACTGA	GTAAATACAA	GAAACGATTA	TGACTGTGGT	TCTGGATTTT	TTATATCGTA	5820
70	GTAAATTTAT	AATCAATGTC	TAATTGTATA	AAACTAAAAT	TACGAGAGTA	GGTCAGAAAT	5880
	GATAAAGAAC	CACTGATGTC	CCCCGTCCAC	GTCGTAACTG	AATCAGTAGA	АТАТАААААС	5940
45	ACCCACTAAA	AATATGCAGA	CGATAACTTC	CACATAGATT	AGCGAGGTGT	TTTTTAGTGT	6000
	AAAATCTATA	TTCTATTTAA	AACTGAACAG	ATTCACCTGG	TTTTAAAATT	TGCACGTCCC	6060
	CTACATTAAC	AGCATCTTTA	AATTGTTGTG	GATCTTGTTC	GATTAATGGG	AATGTATCAT	6120
50	AATGAATCGG	TACAGAAATT	TTTGGTTTAA	TAAATTCATT	AATAGCATAA	CTTGCATCAT	6180
	CAATACCCAT	CGTAAAATTA	TCTCCAATTG	GTACAAAACA	ТАСАТСААСТ	CCATCACCTT	6240

	TTCAACTTCA	AACACGATAC	CCATTGGCAT	ACCTAAATAA	ACTGGGAATA	CCATTTTCAT	6360
	GTGTAAAACT	TGAACTATGA	AATGCTTGAA	CAAATTTAAC	GCTTCCGAAA	TCAAaGTTTG	6420
5	CTTTACCACC	AaTATTCATA	CCATGAACAT	TTTCAACACC	GTGATATGAA	GAAAGATAGT	6480
	CAGCCATTTC	TGCACTTCCA	ATTACTGTTG	CTCCTGTTTT	CTTTGCTAGT	TCCACAACAT	6540
	CACCAAAATG	ATCAAAATGA	CCGTGCGTTA	AAACGATATA	GTCTACCTGC	ACTGTTTCAA	6600
10	TATTCAAATC	ACACTTAGGG	TTATTTGAAA	TAAACGGATC	TACGATAACC	TTTTTGTTGT	6660
	TCCCTTCTAA	ATAAATCGTT	GATTGACCAT	GAAATGATAA	CTTCATTTGA	GCATCCTCCT	6720
15	ATCAATTACT	ATATAAATTT	AGTACCCTTT	TGCCACTTAA	TTATAACAAA	TTCTCAAATT	6780
	TTAAAAATTG	AAAATCTAGT	TAATGTATTA	GCTCGATTTT	GAAATCTAAT	AATAATTGGC	6840
	ATAAAATGGA	AGTAATATTA	TGTTGAGGAG	TGTTTATAAA	ATGACAAAAA	TATCAAAAAT	6900
20	AATAGACGAA	TTGAACAATC	AACAAGCTGA	TGCAGCATGG	ATTACAACAC	CGTTGAATGT	6960
	ATATTATTTT	ACTGGATACC	GTAGCGAACC	CCATGAAAGA	TTATTTGCAT	TATTGATTAA	7020
	GAAAGATGGT	AAACAAGTAC	TATTTTGTCC	AAAAATGGAA	GTCGAAGAAG	TCAAAGCATC	7080
25	ACCTTTCACA	GGTGAAATCG	TTGGATATTT	AGACACTGAA	AACCCTTTTT	CACTTTATCC	7140
	TCAAACAATC	AATAAATTAC	TAATTGAAAG	CGAGCACTTA	ACAGTAGCAC	GCCAAAAACA	7200
	ATTAATCTCT	GGTTTCAATG	TCAATTCATT	CGGAGATGTT	GATTTAACAA	TCAAACAATT	7260
30	GAGAAATATT	AAATCCGAAG	ATGAAATTAG	CAAAATACGT	AAAGCTGCTG	AGTTAGCAGA	7320
	TAAGTGTATC	GAAATAGGTG	TTTCTTATTT	AAAAGAAGGT	GTGACTGAAT	GTGAAGTAGT	7380
05	CAACCATATT	GAGCAAACTA	TCAAACAATA	TGGCGTCAAT	GAAATGAGTT	TTGATACGAT	7440
35	GGTTTTATTT	GGAGATCATG	CCGCATCACC	TCATGGCACA	CCAGGAGATC	GCAGATTAAA	7500
	AAGĆAATGAA	TATGTACTAT	TTGATTTAGG	TGTAATTTAT	GAGCATTATT	GTAGCGATAT	7560
40	GACACGTACT	ATTAAATTTG	GTGAACCTAG	CAAAGAAGCA	CAAGAAATTT	ATAATATTGT	7620
	ATTAGAAGCA	GAAACATCTG	CAATCCAAGC	AATTAAACCT	GGAATACCAT	TAAAAGATAT	7680
	CGATCATATC	GCTAGAAATA	TTATTTCAGA	AAAAGGTTAT	GGTGAATATT	TCCCTCATCG	7740
45	CTTAGGTCAT	GGCCTAGGAT	TACAAGAACA	TGAATATCAA	GATGTTTCAA	GTACTAATTC	7800
	TAATTTGTTA	GAAGCTGGCA	TGGTTATTAC	AATCGAACCA	GGTATTTATG	TACCTGGTGT	7860
	TGCAGGTGTA	AGAATTGAAG	ATGACATACT	TGTCACTAAT	GAAGGATATG	AAGTATTAAC	7920
50	ACATTACGAA	AAATAAGGAG	TGGGATAAAA	ATGAAAAGCT	TGTTACAAGC	GCATTCTCAT	7980
	TCACTCAAAC	3 CTCCC3 3 T3	TA 3 C 3 TTCTA	COCCOTTA & C &	~~~~~~~	m> maa> > ama	

	TGTAATGAAT CAAATCAATA TCATTCATGT TCGATGATTT CTTCGCATTG TTTCTAGCTT	8160
	TAATTTATCA TTATTTAATT TTAATAACCA AGGAGATGAT AACGTCATTC TTTAGTACGC	8220
5	TGTAATCCAT TCCCTTTTCA TCAAATTCAA ATTATAATTG TAATGCTTCT TCTACAGATT	8280
	TATATTCCAT TTCAAATGCC TCTGCAACGC CTTTATTGGT TACGTGACCT TTGTAAGTAT	8340
	TTAAACCTAA TGATAATGGT TGATTTGATT TAAATGCTTC TCTATACCCT TTATTAGCTA	8400
10	GCATGAGCGC ATAAGGTAGC GTAGCATTAT TTAAAGCTAA CGTCGAAGTA CGCGGTACTG	8460
	CACCTGGCAT ATTTGCAACT GCATAATGAA CCACACCATG CTTAATATAT GTAGGATCAT	8520
	CATGTGTCGT AATTTTATCA GTTGLTTCAA AAATACCGCC TTGATCAATA GCAATGTCAA	8580
15	TAATAACTGA CCCATTTTTC ATTTGTTTAA TCATGTCTTC TGTTACAAGT CTTGGCGCTT	8640
	TAGCACCTGG AATTAAAACT GCACCTATTA CTAAATCACT TTGTTTAACA TACAACTCAA	8700
20	TATTCAACGG ATTTGACATA ATTGTATGTA CACGTCCACC GAATAAATCA TCTAATTGTT	8760
20	GTAAACGCTT TGGATTAACA TCTAAAATCG TAACATCTGC ACCTAGTCCT AGTGCAATTT	8820
	TAGCTGCATT TGTTCCTGCT TGACCACCAC CGATAATAGT TACTTTACCC TTAGGTACTC	8880
25	CTGGGACACC ACCTAGTAGA ATTCCCATAC CACCATTAAG TTTTTGTAGG AACTCTGCGC	8940
	CAACTTGAGC TGACATTCTT CCTGCTACCT CACTCATTGG TGATAACAAT GGTAAAGATC	9000
	GGTCTGGTAA CTGCACAGTC TCATATGCAA TACTAATTAC TTTTCTATCT ATCAAAGCTT	9060
30	GTGTTAATTT TTCTTCATTT GCTAAATGAA gatAaGTGAA TAATACAAGC CCTTCTTTAA	9120
	AATATGGATA TTCAGATTCA AGTGGTTCTT TAACTTTAAT AACCATATCC ACATCCCAAA	9180
	CTTTTGCTTG TTCAGCAACA ATCTCAGCAC CTGCTTCTTT GTAATCTACA TCTTCAAAGA	9240
35	ATGATCCTGA ACCCGCATTT GTTTCCACTA AAACAGTATG	9280
	(2) INFORMATION FOR SEQ ID NO: 132:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4669 base pairs (B) TYPE: nucleic acid	

45

(D) TOPOLOGY: linear

(C) STRANDEDNESS: double

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 132:

CTGATTAATC TCTTGTTGTC GTGTATTTAC TAATTGAATC GTTGGTGTCT GAACACGTCC 60

CAGGGATAGC TGTGCATCAT ACTTTGTTGT TAGTGCACGC GTTGCATTAA TCCCAACAAT 120

CCAATCTGCC TCACTTCTCG CTAACGCTGC ATAATACAAA TCGTTATATT GACGACCGTC 180

55

	ACGGATTGGC	TTTTTGTTAC	CAACTTTATO	CAAAATCAAT	CTTGCAACTA	GTTCACCTTC	300
	TCGTCCaGCA	TCTGTTGCAA	TAATAATAT	TTTCACTTTA	TTATCTAAAA	TTAACGCTTT	360
5	TACTGTTTTA	AATTGTTTGC	TTGTTTTACC	AATAACAACA	GTTTTCATAT	ATTTAGGTAT	420
	AATTGGAAGG	TCTTCTAATC	GCCATTCCTI	TAAATTTTTA	TCGTATTGTT	CAGGTGTCGC	480
	ATTTGTCACT	AGATGACCTA	ACGCCCACGT	GACAATATAT	TGGTTATTTT	CAAAGTAACC	540
10	ATTACGCTTC	TGATTTATTT	GTAAAGCATC	AGCAATATCT	CTTGCGACTG	ATGGTTTTTC	600
	AGCTAATATT	AAAGATTTCA	TAAATTATCO	TTTCTCATAC	GTTCTTTTAT	TTCGAACGTG	660
15	CTTCATCTAT	TCCACTAATC	TTTGATTTAA	ATTCAATGAT	TGCAAATGAT	GTGTTAAATG	720
,5	TATTGTAACA	TGTTAATATC	ACTATTAACT	TTCATTTCAG	TTGAAATACT	АТАТААТААА	780
	AGTAACAAAA	AGTACGGAGG	TAATGACATG	AGCATAGTTC	AGTTATATGA	TATTACACAA	840
20	ATAAAATCGT	TCATTGAACA	TTCGAATTAT	GAATCAGCAT	CATACTTATA	TAAACTTCCT	900
	CAACAGTACA	ATGAAATAGA	TGTATTAATA	ACCGATGCGA	TTGAATCACC	TGGTGTATTT	960
	TCGATTAAAG	AAAACGATTC	AATCAAAGCA	ATCATATTGT	CTTTTGCATA	CGATAAAAAT	1020
25	AAATTCAAAG	TCATAGGCCC	TTTCGTGGCT	GACAATTATG	TATTATCTGT	CGATACGTTT	1080
	GAAACGCTAT	TTAAAGCAAT	GACTTCGAAC	CAACCTGACG	ATGCCGTCTT	TAACTTTTCT	1140
	TTTGAAGAAG	GCATTCAACA	ATACAAACCA	TTAATGAAAG	TTATTCAAGC	AAGTTATAAC	1200
30	TTCACTGACT	ATTACATAGA	AGCCCGTACA	AGATTAGAAG	AAGATATGCA	CCAACCAAAT	1260
	ATCATTCCTT	ATCACAAAGG	GTTTTATCGT	GCTTTCAGCA	AATTACACAC	AACTACATTT	1320
	AAATATCAGG	CACAGTCACC	ACAAGATATC	ATTGATAGTT	TAGACGACCA	TCATCATTTG	1380
35	TTTTTATTTG	TTAGCGAAGG	TTTACTTAAA	GGTTATTTAT	ACCTTGAAAT	TGATTCACAA	1440
	CAGTCAATCG	CCGAGATTAA	ATACTTCAGT	TCTCATGTAG	ATTACCGTTT	GAAAGGTATC	1500
40	GCTTTCGAGT	TGCTTGCGTA	TGCATTGCAA	TATGCTTTTG	ATAATTTTGA	TATTAGAAAA	1560
40	GTTTATTTTA	AAATTCGTAA	TAAAAATAAT	AAACTCATCG	AACGATTTAA	TGGTCTAGGT	1620
	TTCCATATCA	ACTATGAGTA	CATTAAATTC	AAATTCGAAT	CACGTAACGT	AAAAGATCAA	1680
45	ACAATCCCTG	AATAAAACAC	CAAGCAAATA	CCCTACAGTA	CATCATTAGC	ATGTATTGTG	1740
	GGTTTTTCTA	CTTTTTGTAA	ATATTGAAAA	TTATAAGTAG	TTGTTTTTTA	CTATTAGGGC	1800
	AGAATGCTTT	ACAATAACAT	GCAAGTGTCA	ATTAAGGGGA	GCACTTGCAT	AAATAGTATA	1860
50	GGAGAGTGAG	TAGTCTTGCA	ATTTCTTGAT	TTCTTAATCG	CACTTTTACC	TGCTTTATTC	1920
	TGGGGAAGTG	TCGTTCTTAT	ТААТСТСТТС	GTCGGCGGTG	CACCTETACAA	ССВВВТТССТ	1000

	TTCAATAATC	CTACTGTAAT	TATTGTCGGT	CTTATTTCTG	GTGCATTATG	GGCGTTTGGA	2100
	CAAGCGAATC	AGCTTAAATC	TATTAGTTTA	ATCGGTGTAT	CAAATACTAT	GCCAGTTTCT	2160
5	ACAGGTATGC	AATTAGTTGG	TACAACATTA	TTCAGCGTTA	TCTTTTTAGG	TGAATGGTCT	2220
	TCAATGACTC	AAATTATCTT	TGGTTTAATC	GCCATGATAT	TATTAGTTAC	TGGTGTAGCA	2280
	CTTACTTCAC	TTAAAGCTAA	AAATGAACGT	CAATCAGATA	ATCCTGAATT	TAAAAAAGCA	2340
10	ATGGGTATTT	TAATTGTATC	TACAGTTGGA	TATGTAGGTT	TCGTTGTACT	TGGTGACATC	2400
	TTTGGTGTTG	GTGGAACTGA	TGCATTGTTC	TTCCAATCTG	TCGGTATGGC	AATTGGTGGC	2460
15	TITATCCTAT	CCATGAATCA	TAAAACATCA	CTTAAATCAA	CAGCACTTAA	TCTATTGcCA	2520
	GGTGTGATTT	GGGGAATTGG	TAACTTGTTC	ATGTTCTATT	CTCAACCAAA	AGTTGGTGTA	2580
	GCTACAAGTT	TCTCATTATC	ACAGTTACTT	GTTATCGTTT	CAACCTTAGG	CGGTATTTTC	2640
20	ATTTTAGGAG	aaagaaaaga	TCGTCGTCAG	ATGACGGGTA	TTTGGGCAGG	TATTATTATT	2700
	ATCGTGATAG	CTGCTATAAT	TCTAGGTAAT	TTGAAATAGA	AAGTTAAATA	CTCATGTAAC	2760
	GTAAAAATGT	AATCACTTCT	GAAAATAACC	ATTCACTTAT	AGAATGATTA	AAATTAATTT	2820
25	TCGGGAATTT	TACGTTGAAT	GTTCCTCTAT	ATGTCCTAGG	AAATACGTGG	CTCTAAAAAC	2880
	AAAACGCAAT	AACACATCAT	GACATTAATC	ATGCGTTTTA	AGACTTTAAA	ATTAGCGATA	2940
	CTTTTAAAAT	CTTGATGATA	TTCATATATC	AAGTATGCGC	CATACATATG	AAGTGGATAG	3000
30	CTGCATAACG	CACTGCATTA	TCAACTTGAA	TGTATGAGTT	GAACAACTAT	GTCATAAATA	3060
	AAAGCCCCCT	TTTCACAATA	TACATTTACA	TATTGTGGTA	AAGGGGGCTC	TCATTTTCTA	3120
	CGAATACTAA	AATGGATTTT	ATTTTCAAAT	GTGTAAACTA	GACAAACACT	GCCTGATACA	3180
35	CGTACAAAAT	AATGATACTA	ATAATGATTG	TCAAATTGGT	CGTCATACCT	ATAAATGGCA	3240
	GTGTŢCGATA	TTTAAACTGA	ATACCATAAG	AAATAATTGC	AACACCTACC	GGGAACATCC	3300
40	AAGTGACCAA	CAATGTCGTC	TTAATCATAT	CATCTGATAC	TGGTAACAAC	ACATATACTA	3360
	ACAATCCCGC	AACTAATGCT	AATCCATAAT	GCAAACATAA	ATATTTAATA	GTAGCAGGTA	3420
	TATACTTTCT	TTCCAGAGTA	AAATTCAACA	TGACACCTAG	CAAAATCATT	GATAACGGCA	3480
45	TATTTGCATG	GGAAAGTATG	CTAAAGAAAT	CGATTGCCAC	ATGTGGTAAA	TGGATGTGAC	3540
	TTATATTCAA	TATAAACATT	ACAATGTATG	TAACGAGTGG	CACTGATTGT	AATAATTTCT	3600
	TACCTAAATA	TTTAAAATCG	AATTGATCAC	TACCTTCACT	AAAGTAGCTA	CCTACAAAGT	3660
50	AAGTAATTCC	AAACATCACA	AAGGCACCAC	CTATATCAGC	CATAACAAAA	TAAATAAGTC	3720
	CCGTTTTAGG	CCATATCACT	TCAATTAGTG	GATATGCAAA	CAATCCAATA	TTCATAGCAC	3780

	CAATCATTTT	CGCCACAATA	ССАТАТАТАА	TCATTAAAAT	TGGTAAAATG	GAGAATGACA	3900
	ATTTTAATTC	TGCACTGTTT	AAATTCACAA	TAACTAAAGA	TGGGAGTGTG	ACATTAAGAA	3960
5	CTAATGTAGC	AATGACTTGA	CTATCTGTTG	CTTTTATAAA	ATTAATGCGC	TTCAAAAAGT	4020
	AACCAAGCGC	AATTAATAAA	ATAATCATAG	TAAATTGTTC	TGTCACTGTT	ATCCCTTCTT	4080
	TCAATAATCT	TCATAATTTA	TAACTTTAAC	ATACTCCACA	GATATTTTAG	AAGTCTACTG	4140
10	TTTCATGCTA	TAATCTACAT	TAAATGCACT	TAATTATATT	TCAAAGGAGT	GTTATAGTAT	4200
	GTCTTTAGAA	AACCAACTAG	CCGAACTTAA	ATATGATTAT	GTTCGTCTTC	AAGGTGACAT	4260
15	AGAAAAACGG	GAATCTTTGA	ATTTAGATAC	TTCCGCACTT	GTTCGTCAAC	TTAAAGATAT	4320
	TGAAAATGAA	ATTAGAAACG	TTCGTGCTCA	AATGCAAGAT	TAATAATCTA	TCATTCAAGC	4380
	AATAAATGCT '	TTTTGTTACA	TAAATTTGAC	TAGCATTGCT	CTGAATACGT	TATATTGATG	4440
20	AATTGCTTCA '	TTTTTCGCTC	AATTACATCT	AGAATCACAA	GATGTTGTCG	TGTTATGATT	4500
	TAGTGTTTCA	ITAACAACAT	ACACGCATAT	CTATCCCAAC	ACTGCTATTT	ATGTTTTCTA	4560
	CGCTGnTGTA (CTACATGAAC	CCTTTGAAAC	GGAGAGGAAG	TTATCATATG	CAATTTTAnC	4620
25	TGATTTTACT 1	AGCAATACTT	TAACnAATTG	nTAGTTTAAT	AGAATTTTA		4669
	(2) INFORMA	TION FOR SE	Q ID NO: 13	3:			
30	() () ()	A) LENGTH: B) TYPE: nu	NESS: doubl	airs			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 133:

	TTTQCACCCA	TCTGaTACAA	TGCACCATGC	GGTTTAACAT	GATTAATTTT	AACTTGATGA	60
	ATGCGACAAA	ACCCTTGTAA	TGCACCTAAT	TGATAAATCA	TCAAATTATA	AATCTCGTCG	120
	TTAGAGATAT	CTATATTTCG	TCTGCCAAAG	CCTTTCAAAT	CAGGTAAACC	AGGATGTGCA	180
	CCTACTGCAA	CATTATGTGC	TTTGGCAAGT	TTTACCGTTT	CATTCATTAC	ATTTTCATCA	240
	CCAGCGTGAA	AACCACAAGC	AACATTCGCA	CTTGTAATTA	ACGGAATAAT	TTGATGATCA	300
	CCACCAAAGG	AATAATTTCC	AAATGCTTCG	CCTAAATCAC	AATTCAAATC	AACTCGCATT	360
•	ATAATTCCAC	CCCTTTAACA	ATTTGATGTT	TTTCTAAAAA	TTTAATATCA	ACATCTTTTG	420
	CATCTCCATC	ACGATATAGT	GGATAATTTA	AAACTGCATA	TAAAAAATCG	GCAGTTGTAG	480
,	AAAATCCATC	TATCACCATT	TCATCTAAGG	TGACTTTCAA	CTTATCAATT	GCTGAAGCTC	540

	AACCGTGATA	TAGTAAAGAA	TCGACTCGCA	CATTAAAGCC	TTGAGGTAAA	TGTAACGCTG	660
5	TCACTTTACC	TGGTGTTGGT	TGAAATTTCT	TTTCaGGATI	TTCGGCATTT	ATTCTCGCTT	720
	CTATCACATO	ACCATTAAAT	TGAATATCGC	TTTGTGAAAA	AGGTAAATGA	TTATGTTCCA	780
	ATAAATACAG	TTGTGCTGCA	ACCAAATCAC	GTTCTGCTCG	CATCTCTGTA	ACAGTATGTT	840
10	CAACTTGTAT	TCGAGCATTC	ATTTCAATAA	AGTAATGTGC	GGTATCAGTT	ACTAAAAATT	900
	CAATCGTACC	TGCACTTCTA	TAATTTGCTG	CACGTGCAAC	TTTAACAGCA	TCGTTACATA	960
15	TTTGTTGTCG	TCTTTCTTCA	GTTAATGCTG	CACAAGGAGA	TTCTTCGATT	AATTTTTGAT	1020
	TTTTACGTTG	TACAGAACAA	TCACGTTCCC	CTAAATGTAC	ATAATTATCC	TGCCCATCTC	1080
	CCaTAACTTG	AACTTCAACA	TGTTTTGcAA	CAGGTATAAA	AGCCTCAACA	TAAACACGAT	1140
20	CATCATCAAA	GTATTTTTT	CCTTCACTTT	TAGCTTCTTT	AAATGCCTTT	TCTAAATCTT	1200
	CAGCTTTCTT	TACAATACGT	ATACCTTTAC	CACCACCGCC	ACTGGCAGCT	TTGATAACAA	1260
	CTGGATAACC	GATGTCTTTG	GCAAGATTCT	CAATTTCAGA	CACATGATTC	ACAGCACCAT	1320
25	TTGATCCTGG	AATCACAGGA	ACACCTGCAT	GATGAACTGT	TTGTCTTGCT	GTTATTTTAT	1380
	CCCCCATCAT	TTCCATCGTT	TTTTTAGTAG	GCCCTATAAA	CGCTATGCCT	TGTTCCTCAA	1440
	CGGTTTGAGC	AAATTTTGTT	GATTCTGATA	AAAAGCCATA	TCCTGGGTGA	ATTGCATTAG	1500
30	CACCAGTGAT	TTGTGCAGCA	GATATGATGC	GGTCAATATT	TAAATAACTA	TCTAAAgCAT	1560
	TArcwTCCCC	AATACATATA	GCTTGATCTG	CTAAATGTAC	ATGCAAGCTT	TGCTCGTCCC	1620
	CTTTTGCATA	AACTGCTACA	GTTTCAATCC	CATATTCTCT	GCAAGCTCTT	ATAATCCTTA	1680
35	CAGCAATTTC	ACCTCTGTTC	GCAATTAAAC	AACGAAGCAT	TTACTTACCC	CCTTTACTTA	1740
	ATACGTACCA	AAACTTGGTC	GTATTCAACA	TTTGTGCCAT	GATCAGCTAC	TATTTCAGTA	1800
40	ATTICTCCAG	CAACATCTGT	TGTTACCTCG	TTTAATACTT	TCATCGCTTC	AACATATCCT	1860
	ATAÁTATCTC	CCTTGTTAAC	TTTGTCACCG	ACATTCACAA	TTGGTTCAGT	TAATTCTTTA	1920
	CTATCTTGTA	AAAAGAATGT	ACCTATCATT	GGTGATTTAA	TGTCATGATA	ATCATTTGTC	1980
45	GAAACATCGG	AGTTATCATT	CGCTTTTGAA	GCTGTCAAAT	CATTATTGTT	CATACTTTGA	2040
	TTTGATTGAT	TACTGTGTGC	AGCCAAATGA	TTCGAGTCAG	TGAAGTCAAT	TTCTATTTCA	2100
	TCTTCAAAAT	TTTTATATTT	AAATTTCTTA	ACATCATTTT	CCTTCACTAA	TTTGATTATT	2160
	TGTTCGATTT	nTTCAATATT	CATTTTACAA	ATCCCCTTTT	AAAATTGTTG	CTAATTTTTT	2220
	CGAAGTATGT	CGCAAGCTAG	ATGTATCAAA	AATTGGAGTC	TTTTGATGAC	TCTTAAGAAT	2280
	TTCATTAAAC	AGAGACATTT	GTTCCCGATT	CTTATCTACA	GCTTCTTGGA	ATGATATCCA	2340

. 55

	TACAGTTGCA ATTTTGGTAT AACCACCTAT CGTTTGTTTA TCATTAAGCA GAATAATAGG	2460
	TTGACCATCA TTTGGTACCT GAACACTACC AAGAGCAACC GGTTCAGAAA TGATATCTGC	2520
5	TTGATTAALT GGTGCAACGC TGTCACCTTC CAAACGATAG CCCATACGGT CTGATTGTTC	2580
	AGTAATTAAA TATGGATGAT TTACAATTTT CGCTCTAGCC TCTTCAGAAA ATGCCTCGAA	2640
	TTGAGGTCCT TGAAGAATGT GTATAATATT ATTTTCTGGC AATAAATCGT CCTGTAAATG	2700
10	AATCGTCTTT CCAATGTTTT CTTTAAAGTC ATTATTTATT TTCACTGTTA TTACATCATC	2760
	AGCTAATAAC TITCTACCTT TGAAT	2785
15	(2) INFORMATION FOR SEQ ID NO: 134:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1010 base pairs(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(D) TOPOLOGI: TIMEAR	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 134:	
25	AATGGAAACG GTTGAAACAG CAATTATTAC TATTTCTATG GGTGAAGGTA TTTCAGAGAT	60
	ATTTAAATCA ATGGGTGCCA CACATATCAT TAGTGGTGGA CAAACGATGA ATCCTTCTAC	120
	AGAAGATATC GTTAAAGTCA TTGAACAATC AAAATGTAAA CGTGCAATTA TTTTACCGAA	180
30	TAATAAAAAT ATCTTAATGG CAAGTGAACA AGCAGCGAGT ATTGTTGATG CAGAAGCTGT	240
	TGTTATTCCA ACGAAATCTA TTCCTCAAGG TATAAGCGCA CTATTCCAAT ATGATGTGGA	300
	CGCAACACTT GAAGAAATA AAGCGCAAAT GGCTGATTCA GTAAATAACG TTAAATCTGG	360
35	TTCATTAACG TACGCTGTTC GTGATACGAA AATTGATGGC GTTGAGATTA AAAAAGACGC	420
	GTTTATGGGC TTGATTGAAG ATAAGATTGT AAGCAGCCAA AGTGATCAAT TAACAACGGT	480
40	TACTGAGTTG TTAAATGAGA TGTTAGCAGA AGATAGTGAA ATATTGACTG TGATTATTGG	540
TU	TCAAGATGCA GAGCAAGCAG TTACAGATAA CATGATAAAC TGGATCGAAG AGCAATATCC	600
	AGATGTAGAA GTGGAAGTTC ATGAAGGTGG ACAACCAATT TATCAATATT TCTTTTCAGT	660

AGAATAAAAA TTTAAAATAA AAAACTACCA ATGATAAATC ATCAGTTGGT AGTTTTTTAT

TTTGCTATTT TAGTGATATT GCGGGTTAAA AGTATCGTTC TCGAGTTGCT AACAATGTCA

TGTTCAACTT AGTCATGATA AAATAAATAA CATACTAAAT GATACGTAAA ATCAAATAAA

ACATAGGTGA TITATTTTGG CTAAAGTAAA CTTAATAGAA AGTCCATATT CTCTTTTACA

ATTAAAAGGT ATAGGTCCTA AGAAAATAGA AGTATTGCAA CAACTAAATA TTCATACAGT

(2) INFORMATION FOR SEQ ID NO: 135:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1540 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 135:

	TGTAGTTGAA	CATGAACAAC	AAAAGAAAGA	AAAGACAAAA	AAGCAATACA	AGCCATTTTG	60
15	GATTGTCATG	AGTTTTATAA	TACTTATAGT	TGTACTATTA	CTCCCGGCAC	CTTCAAGTCT	120
	GCCGATAATG	GCTAAGGCAG	TACTAGCTAT	TTWAGCTTTT	GCAGTTATTA	TGTGGGTAAC	180
	GGAAGCTGTA	TCATATCCGG	TGTCAGCAAC	TTTAATTATT	GGCTTAATGA	TATTACTTTT	240
20	AGGATTTAGC	CCTGTTCAAA	ATTTAGGGGA	GAAGCTAGGT	AATCCGAAAA	GTGGCAGTGC	300
	TATTTTAGCT	GGAAGTGACC	TTCTAGGAAC	TAATCATGCA	TTATCATTAG	CGTTTAGTGG	360
	ATTTGCAACT	TCAGCTGTAG	CTCTCGTTGC	AGCTGCATTA	TTTTTGGCTG	CTGCTATGCA	420
25	AGAAACGAAT	TTGCATAAAA	GACTAGCTCT	TTTAGTGTTA	TCAATTGTTG	GTAATAAAAC	480
	TAGAAATATA	GTTATTGGAG	CAATTATCGT	TTCAATTGTA	CTTGCATTTT	TCGTTCCTTC	540
	TGCAACAGCT	AGAGCAGGGG	CAGTTGTACC	AATCTTGCTG	GGTATGATTG	CGGCATTTAA	600
30	AGTTTCCAAA	GATAGCAAGT	TAGCGTCTTT	ATTAATAATT	ACTTCAGTAC	AAGCTGTGTC	660
	AATTTGGAAT	ATTGGTATCA	AAACGGCGGC	AGCACAAAAT	ATCGTAGCGA	TTAATTTTAT	720
	AAACCATCAA	TTAGGATTTG	ATGTTTCATG	GGGCGAGTGG	TTCTTATATG	CAGCGCCTTG	780
35	GTCCATAGTT	ATGTCCGTAG	CTTTATATTT	CATCATGATT	AAAGTGATGC	CTCCAGAAAT	840
	TAATACAATA	GAAGGTGGTA	AAGATTTAAT	AAAAGAAGAA	TTGCATAAAC	TTGGCCCCGT	900
40	TAGCCCACGT	GAATGGCGTT	TAATTGTTAT	ATCGATGTTA	TTATTACTGT	TTTGGTCAAC	960
	TGAAAAAGTA	TTACATCCGA	TTGACTCTGC	ATCCATTACT	ATTATTGCTT	TAGGTGTTAT	1020
	GTTAATGCCG	AAAATTGGTG	TCATGACATG	GAAACATGTT	GAAAATAAAA	TACCATGGGG	1080
45	AACAATTATC	GTGTTTGGTG	TAGGTATTTC	ACTAGGTAAC	GTTCTTTTGA	AAACAGGTGC	1140
	AGCTCAATGG	TTAAGTGATC	AAACTTTTGG	TGTTTTAGGT	TTAAAACATT	TACCTATTAT	1200
	CGCGACAATT	GCACTTATCA	CGCTTTTTAA	TATATTGATT	CATTTGGGCT	TTGCGAGTGC	1260
50	AACAAGTTTA	TCATCAGCGT	TAATACCTGT	TTTTATTTCG	CTAACCTCTA	CGTTACACTT	1320
	AGGAGACCAG	TCTATAGGAT	TTGTTTTAAT	TCAACAATTT	GTTATTAGTT	ՆՈՐԸՂԻՐԻՐԻՐԻ	1390

	AGATTTCTTG AAGGCAGGTA TACCATTGAC AATTGTAGGG AATAtctAgT GATAGTTTTT	1500
	AGCATGACTT ATTGGAAATG GGTAAGGTTG ChTTAATTAA	1540
5	(2) INFORMATION FOR SEQ ID NO: 136:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11823 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 136:	
15	ACTTCTCACA ATAAGAAATA TGAAATTGTT ATGTGTTAGT TGAGATTCAG TGATGAATTA	60
	CTTTTATCAT TTAAAATGTT GTTATCATTG TCATGCGTTA CCAAATCGCT TACGTATACA	120
20	CGATTCCCAA TCTTAACATA GACGATTTGT ATATCAGAAT TTTCTGATTA CTAACAGTTT	180
	ACCTAAGTTT AAATATCTGT TCAATGATTT TCAGTTATTT TTAAAAGAAA AATCGTAATG	240
	CTGCCATGAT AACAATCCCA CTAATAATTG TAATAGTTAA ALACGCGTGA TTATAGATAA	300
25	AATAACCGTC GGAATGAGCG CGATAATGTA AGGGATGTTT AATGTATACC CCTCACCATG	360
	AGGCGTCTGT TGAATAATGC TGTCAATGAC AAGTGCCGTA AATAGTGTGA TTGGGATAAA	420
	TGATAGCCAT CGAACCACGA CATCAGGCAA TTGCACTTTT GAAATCATGA TAAAAGGTAT	480
30	AATTCGAATT AATAGCGTTA CGATACCACA CAATAAAATA AGTATTAACA TGTTCATATG	540
	AGTTATCATT GTTCCATCAT CACTCCTAAC GCTGCTGAAA TTGTGGCTGC AATTAATATT	600
	GCTAGATATG AAGGCATAAA CATACTTAGC GATAACATCA TTACTATGAC GGCAATAATG	660

40

35

TTGAAGTTTG GTGCAAGCGA CATACTTAAA AGGAACATTC TTGAATTTAC GATAAATACA 1020
GTTAGTACAA TCGCTGATAT AGGTGTACCT GCTATAAACA ACGCGCACAT AATAAATTGC 1080
GCAgcaCCGG CATATATAAC AAGACATAAC AAGACAATTT CTAAAATACT AAAGTTTTGA 1140

AGTACTATGT AAATTCTTAA TCGCGATTTA GTAATTGATT CAAATTGCGC AATGGCCAAA

AAGATAAACA TAGCCGTGAT AGCAAAATCT AACCCTAGCG TTTGCGGATT TGAGATATAT

TCGCCAAATA AAGCCCCAGC TACACATGAA ATTGCCCAAA ATAAATATGC TGTGATGTTA

AGACCATGCA TCCAACGATC ATTGATAGCT TCTCCTTTTA AATAAGGTGT AATGGCGACG

CCAAACGTTT CGTCAGTTAC TAATGAACCT AATCCAACAC GGTTCCAAAA CCCATATGTC

720

780

840

900

960

GACGAAGCCA CAATACCAAA TGAAATACCA ACACCGGCAT AACCCAATAA TGTTGGGATA 1200
CACTCTTGCA CGCCTTGTCT AAAACTTAAA TGTGTTGTCA TCTCAATTAC CTCCTTTGCC 1260

	TAAGCAATAA	CATTAGACAT	CAGTTTGTCT	GAGGTTAGAC	ATTCCGGAGT	CTTTAGTCAG	1380
	CTTCATATTA	ACTITITATI	TTTGAGAATT	TTCAATTTTT	TATTTAAGAC	TACCTCCATA	1440
5	TTTTCTATGG	aTTTGTAGTT	GTTTTTAAGT	ATCAATTTTA	TAAATTTTTA	TATCTGATGA	1500
	TGAGTCTGGG	aTATTGaTTC	ATGTACCACT	CCCTTaTaAT	CATCCCCTCC	CCCTaCCCTA	1560
	CTCCATCGAT	ATAACTCATA	CTACATATCA	ACGAAATCAG	TATTTTATCG	CTTCCTTTCC	1620
10	TATATTAGTG	ATGCTCAAAC	TTGTTACGTT	TTAGATTGTT	TTAGTTCATC	ATAATTATCC	1680
	CGTATTGTTG	CTATAATGAA	ATGCGTTCAC	CCCATTAAAC	CACAAACTTA	ATTTATTGTT	1740
15	GTTATGTGCA	TTGGCTCACT	ATTATATTTT	TACAGCACAA	AAAAAGTGGC	GACAGTTCGT	1800
15	CACCACTTT	TAAAATATTA	TTTAAAGTAT	CTTGCCCTTG	CTTTAAGTAT	ACGTAGATAT	1860
	ATACTTTTTA	AAGCTTGTAG	CTAAAGCCTT	TATTTAACTG	GTTTTGAAAT	TTGTGTTTTA	1920
20	CCACCCATAA	ATGGTACTAA	TGCTTCTGGA	ATTGTTACTG	TTCCATCTTC	ATTTTGGTAA	1980
	TTTTCAACAA	TAGCAGCAAA	TGTACGTCCA	ACTGCTAAAC	CACTACCATT	TAATGTATGT	2040
	GCTAATTCTG	GTTTAGCTGC	TTTGTCACGC	TTGAAGCGGA	TGTTAGCACG	ACGCGCTTGG	2100
25	AAATCCGTAC	AGTTTGAGCA	TGAACTAATT	TCTTTATAAT	CATTGTAGCT	TGGTAACCAA	2160
	ACTTCTAAAT	CATATGTTTT	GCTTGCACTA	AATCCAATAT	CACCTGTACA	TAAAATAACA	2220
	CGACGGTATG	GTAAACCTAA	CTCTTCTAGA	ATTGCTTCTG	CGTTTGTTGT	CATTTCTTCT	2280
30	AAAGCATTCC	ATGAATCTTC	AGGTTGTTCA	AAACGTACCA	TTTCCACTTT	ATCGAATTGA	2340
	TGTAAACGAA	TTAATCCTCT	TGTATCTCTA	CCTGCTGATC	CTGCTTCACT	ACGGAAACAT	2400
	GCAGATTGAC	CAGTGAATTT	TTCAGGAAGT	ACACCTGGTT	GAATAATTTC	ATTACGGTAG	2460
35	AAATTCGTTA	ATGGTACTTC	AGCAGTTGGA	ATTGTATATA	ATCCTTCTTT	TTCTACTTTA	2520
	AATAAATCTT	CTTCAAATTT	AGGTAATTGA	CCTGTACCAT	ACATTGTATC	TGCGTTCACA	2580
40	AGCTGTGGTA	CCATCATTTC	TGTATAACCA	TGTTGTGTTG	TATGTTTTGT	AATCATATAG	2640
70	TTCATTAAAG	CACGCTCTAA	TTGCGCACCT	TCATTTGTTA	AATATACAAA	ACGCGCACCT	2700
	GAAACTTTTG	CTGCACGATC	AAAATCAGCC	ATTTTCAATT	CTTCTACAAT	ATCCCAATGT	2760
45	GCTTTGGGTT	CAAATGAAAA	CTCaCGTGGT	GTACCCCACT	TTTTAACTTC	AACGTTATCT	2820
	TCATCAGATT	CACCTTGAGG	TACATCATCA	CTTATTAAAT	TTGGAATACG	ACAAAGGATA	2880
	CCTGTCATTT	TATTATCAAT	TTCATTTAAT	TGACTATCTT	TTTCTTTAAT	ATCGTCACCT	2940
50	AATGTGCGCA	TTTCAGCAAT	CACATCATCA	GCATTTTCTT	TATTACGTTT	TTTTAATGCG	3000
	ATTTCTTCGC	TTACTTTATT	ACGACGTGCT	TTCATTTCTT	CTGTTGCACT	AATTAATTTA	3060

	TCAATTTTGC	TCTTAACTGT	GTCAGGCTCA	TTTCTGAATA	ATCTAATGTC	TAACATTAAC	3180
	CTTCATCCTT	TCCCAAATAA	TTATCATTTA	TTATGGAATG	ACGTACGTCT	TTATTTTTTA	3240
5	GAAAATAAAA	AAAGACCACA	TCCCTACAAG	GGACGTGGTC	TACGCGTTGC	CACCCTATTT	3300
	AACAATTTAA	GTTATAAAGA	TACACTAAAC	CTAAATTGCA	CTTCACTAAA	ATAACGGTTA	3360
	TCACCGATTG	TTCTTTTAAA	TTAAGTAGGT	AGATTCATAT	ATATGTTGAT	TCTTGTTCAC	3420
10	ACTAACCACA	AGCTCTCTGA	TATCGAACAC	TATATATTAC	TTGTCCTACG	AACAATGTCT	3480
	TATTAAGTTA	TTTTTAATAT	AGCAAACTAT	ATTTGCTTTT	TCAAGTAACG	ATTTCAAACA	3540
15	TCACTCATGT	CGATTTAGTG	ACATGCAGTC	GTTTGATAAA	TTGATTGCTT	TAAATACTGT	3600
	GCAACCGCTT	CAATATCTTT	ATGAAATTGA	CGATCATGTG	TAATGGATGG	CACGATACTT	3660
	CGAAACTCAT	CATACTTGCG	ACGTGTTTTT	GGTGATAATC	CTTCAACACC	TTTTAACTCT	3720
20	GCTGCTTGTA	ATGCAATAAC	ACATTCGATT	GCCAGCACAC	GTCTTGCATT	TTCAATAATT	3780
	TGATAACCAT	GTCTAGCAGC	TGTAGTTCCC	ATAGATACGT	GATCTTCTTG	GTTCGCAGAT	3840
	GAAGTGATAG	AATCAACACT	CGCTGGATGC	GCTAAAGTTT	TATTTTCAGA	AACGAGACTT	3900
25	GCAGCAGCAT	ATTGCATAAT	CATCGCGCCA	CTTTGCAATC	CTGGCTCTGG	ACTAAGAAAT	3960
	GCTGGTAAAT	CACCATTTAA	TTGAGGATTT	ACTAGTCGCT	CTAGACGACG	TTCCGATACG	4020
	TTTGCTAATT	CACTTACACC	TAATTTAAGA	TGATCTAATG	CAAAAGCAAT	AGGTTGTCCA	4080
30	TGGAAGTTAC	CACCTGAAAT	AACAAACGTT	TCATTTGCTT	CCTCAAATAT	AAGTGGATTA	4140
	TCATTAGCCG	CATTCATTTC	AAATTCTAAT	TGCTGTTTAA	CATAATTGAA	TACTTGAAAA	4200
	CTCGCGCCAT	GGATTTGTGG	TATACAACGC	AACGTATATG	CATCTTGTAC	ACGTATTTCT	4260
35	GATTGTCGCG	TCGTTAATGT	TGATCCTTCT	AACCAATCAC	GCATACGCGC	TGCCACATTA	4320
	atctettctt	GAAAATTACG	AACTGCGTGC	ACATCATGTC	GATATGCATC	TATAATGCCA	4380
40	TTAAGAGACT	GATGCGTTAA	TGCAGCAATC	CATTCAGATT	GGTAACCTAA	ATCTTCTGCT	4440
+0	TCTATATAAC	TAATGACACC	TTGAGCTGTC	ATAGCTTGCG	TACCATTAAT	CAATGCTAAA	4500
	CCTTCTTTAG	CCTGAAGGTT	CAAAGGTTGT	CTATTTAATT	CTCTTAATAC	ATCGTCACTA	4560
15	TCCTTTTCTT	CCCCTCTGTA	CAATACTTTC	CCTTCACCAA	TTAATGCTAA	TGCTAAATGT	4620
	GATAATGGCG	CTAAATCTCC	TGATGCACCG	AGAGAGCCTT	GCTGTGGGAT	TATCGGTATA	4680
	ATACGTTCAT	AAAAAATTT	TTGTAATTGT	CTCACTAATT	CTAAAGTGGC	ACCTGAATGA	474
50	CCTTTTAATA	ATGTATTCAA	TCGTAAAATC	ATCATGACTA	ATGCTACTTC	TTTTGAAAAT	480
	GGCTCACCTA	GTCCACAGGC	ATGTGAGCGT	ATCAGATTCA	CTTGTAATTC	ATTATATTGC	486

	TCCTCATTTT	CAATAATACG	TTCAACTACC	GCTCTACTTI	TTTTGACACG	TTCTAACGCA	4980
	TCATCAATAA	TTTCAATCTT	TGATTGTTGT	TGTAAAAATG	ATTTAATATC	CTCAATTGTT	5040
5	AGTGTTTCAC	CATCTAAATA	TAAAGTCATA	TATGTTACCC	CCTTGTTTAT	ATTAAGTAAC	5100
	CCATCCTTCT	TGAAGTATAC	GTTTTCATTT	TTATTGAAAC	AATGGTTTTA	CGTACATTTA	5160
40	TAACCTATTA	TCAGAGCACT	ATTGTAGTGC	GTTAAAGGAT	ATTAAGATTG	TTGTAAGCAT	5220
10	ATTTAATAAT	TTATCTATTG	ACGAATTGCA	TATACAGGTA	TAGTATTTTC	TATTGTATTT	5280
	AACGACAAAT	AATAATGAAT	TCAGAAATTT	ATAATACATT	TTGTTAAAAG	TTACTATATA	5340
15	TTTTTAAAAT	TGAATAAATT	CGGAAAAGGC	TTTTACATGG	GAGGTTATAT	CACTATGGAA	5400
· ·	ACGTTAAATT	CTATTAACAT	TCCTAAGCGT	AAAGAAGATT	CACATAAAGG	TGATTATGGC	5460
	AAAATTTTAT	TAATTGGTGG	ATCTGCTAAC	TTAGGTGGTG	CCATTATGTT	AGCGGCTCGT	5520
20	GCATGTGTAT	TTAGCGGTAG	TGGTTTAATC	ACTGTAGCTA	CACATCCAAC	AAATCATTCA	5580
	GCATTACATT	CTCGTTGCCC	AGAAGCGATG	GTTATTGATA	TTAATGATAC	GAAAATGTTG	5640
	ACGAAAATGA	TTGAAATGAC	TGACAGTATA	CTAATTGGTC	CAGGTCTTGG	CGTTGATTTC	5700
25	AAAGGAAATA	ATGCCATTAC	ATTCCTACTA	CAAAATATAC	AACCGCATCA	AAATTTAATC	5760
	GTAGACGGCG	ATGCGATTAC	AATCTTTAGT	AAACTGAAAC	CGCAATTACC	TACATGTCGT	5820
	GTGATCTTTA	CACCACACCT	CAAAGAATGG	GAACGATTAA	GTGGTATTCC	TATTGAGGAA	5880
30	CAGACATATG	AGCGTAATCG	TGAAGCAGTT	GATCGTTTAG	GTGCAACTGT	TGTACTTAAA	5940
	AAACATGGTA	CTGAAATTTT	CTTTAAAGAT	GAAGACTTTA	AATTGACAAT	CGGTAGCCCA	6000
	GCAATGGCGA	CTGGTGGTAT	GGGCGATACA	CTTGCTGGTA	TGATTACAAG	CTTTGTCGGT	6060
35	CAATTTGATA	ACTTAAAAGA	AGCGGTTATG	AGTGCCACAT	ATACACATAG	TTTTATTGGC	6120
	GAAAACCTTG	CAAAAGATAT	GTATGTGGTG	CCACCATCAA	GACTTATCAA	TGAAATACCT	6180
	TACGCAATGA	AACAATTAGA	AAGTTAGTCA	TTACTAATCA	TTGAATATAG	TAAAGCATTA	6240
40	CTTTCTAGCA	TAAAAATAAG	ACTCCCCTAC	ATATAGGGAA	GTCTTATTTT	TTATTATTCT	6300
	TCATCTGATG	ATTGTTGTAT	ATCTTCTTCA	ACACGATCCA	TGAAATCTTG	TCTTACTTCA	6360
45	ATACGTCCAT	CTTCATCATT	TTCTTCTGAA	TCAATCACTT	CAGTATGAAT	TGCATTTCCT	6420
	GGTGTTTCAT	CATTTACAAC	CGCTTCACGT	TGTTGTTCAG	TACCATCTTC	AGATACAGTT	6480
	GAAGTAGATT	GCTCATCTTC	ATTCGTTTCA	TCTTCTGCAT	CTTCTTTTAC	TTTAGCAACC	6540
50	GTTGAAACAA	ATTGATCATC	ACCTAAGCGA	ATTAAGCGAA	CACCTTGTGC	TGCACGACCA	6600
	TTTTGAGAAA	TATCTGCAAC	ATCTAGTCGA	ATAATGACAC	CTGCATTAGT	AACAATCATT	6660

	GTAGCTGTTI	TAATACCTTI	ACCACCACGA	TTTGATAAGC	GATAGTCATT	AACTGGCGTA	6780
-	CGTTTACCAT	AACCATTTTC	AGTAACTACT	' AATACTTCAT	CAACACTGTT	TGCATGAGCT	6840
5	ACATCAAGCC	CTACAACTTC	GTCACCTTCA	CGAAGTGTAA	TACCTTTCAC	ACCCGTTGCT	6900
	GTACGGCCTA	AAGGACGTAA	TGTTGATTCA	GGGAATCGAA	TTAATGATGC	ATGTGATGTA	6960
10	CCAATCAAGA	TATCTTCTTG	ACCACTTGTT	AAGCGAACTG	CAATTAACTC	ATCATCTTCT	7020
	CTGAACGAAA	TCGCAATCTT	ACCATTTCTA	TTTATTCTTG	AGAAGTTACT	TAATGCTGAA	7080
	CGTTTAACGA	CACCACGTTT	AGTTGCAAAC	ACTAAGAAGT	TGTCTTCACT	TTCAAGGTCT	7140
15	TTAACAGCAA	TCATTGTACT	AATGACTTCA	TCATTTTCAA	GTTCAATAGC	ATTCACTACA	7200
	GGAATACCTT	TAGACTGTCT	TGATAACTCA	GGCACTTCGT	AACCTTTAAG	TTTGTATACA	7260
	CGACCTTTGT	TAGTAAAGAA	CAATACATGG	TCATGTGTAC	TTAAAGTTAC	CAATTGACTG	7320
20	ACAAAATCTT	CTTCCAATGT	ATTCATACCT	TGAACACCAC	GACCACCACG	GTTTTGAGCA	7380
	CGATATGTAG	ATACCGGCAA	ACGTTTAATG	TAGTTATTAT	GGCTTAGTGT	AATTACTATT	7440
	TGTTCTTCTG	GAATTAAGTC	TTCGTCCTCT	AAGTCTTCAA	ATCCACCTAA	TTGAATTTCT	7500
25	GTACGACGAT	CATCACCGAA	ACGATCTCTA	ATTTCAGTCA	ATTCATCTCT	AACTAACTGT	7560
	AATAACACTT	CTTCATCAGC	TAAGATTGCT	TCTAATTCAC	TAATATAATT	TAATAACTCA	7620
	TTATATTCAG	CTTCAATTTT	GTCTCTCTCT	AAACCTGTTA	GACGTCTTAA	ACGCATGTCT	7680
30	AAAATAGCTT	GAGCTTGTTT	TTCAGAAAGT	TTGAAGCGTT	GTTGCAAGCT	TTCCATTGCA	7740
	ACTITATCTG	TATCTGACTC	ACGAATCGTT	GAAATAATTT	CATCGATATG	GTCAAGTGCG	7800
	ATACGTAATC	CTTCTAAAAT	GTGGGCACGA	TCTTTAGCTT	TACGTAAgTT	GTATTGCGTA	7860
35	CGTCTTCTAA	CAACTGTCTT	TTGATGCTCT	AAATAATGTA	CCAACGCTTC	TTTTAAATTA	7920
	ATAAGCTTCG	GTCTACCATT	TACAAGTGCA	ATCATATTCA	CACCAAATGA	TGTTTGAAGA	7980
40	GGTGTTTGTT	TGTATAAGTT	ATTTAAAATG	ACACTAGCAT	TTGCATCCTT	ACGCACATCA	8040
40	ATAACGACAC	GCACACCAGT	ACGTAAACTT	GTTTCATCAC	GTAAATCAGT	GATACCGTCA	8100
	ATTITCTTGT	CACGAACGAG	CTCTGCAATT	TTTTCAATCA	TACGAGCCTT	ATTCACTTGG	8160
45	AAAGGAATTT	CAGTGACAAC	AATACGTTGA	CGTCCGCCTC	CACGTTCTTC	AATAACTGCA	8220
	CGAGAACGCA	TTTGAATTGA	ACCACGACCT	GTTTCATATG	CACGTCTAAT	ACCACTCTTA	8280
	CCTAAAATAA	GTCCAGCAGT	TGGGAAATCA	GGACCTTCAA	TATCCTCCAT	TAACTCAGCA	8340
50	ATTGAAATAT	CAGGGTTCTT	ACTTAAGCTA	AGTACACCAT	TGATTAATTC	TGTTAAGTTA	8400
	TGTGGTGGAA	TATTCGTTGC	СУТУССТУСС	CCCATACCTC	እጥርርእርርእጥጥ	ሮሮርሞን እሞን አረ	0460

	AAATCTATTG	TATCTTTATT	AATATCACGT	AACAGTTCAA	GTGTGATTTT	AGTCATACGC	8580
	GCTTCAGTAT	AACGCATTGC	TGCTGCGCCA	TCTCCATCCA	TTGAACCAAA	GTTACCTTGG	8640
5	CCATCAACAA	GCGGATAACG	ATAACTGAAA	TCTTGAGCCA	TACGTACCAT	TGCTTCATAA	8700
	ATAGATGAGT	CACCATGAGG	GTGATATTTA	CCCATTACGT	CACCAACGAT	ACGTGCTGAT	8760
	TTTTTATATG	ATTTATCCGG	TGTCATACCT	TGTTCATTTA	ATCCATATAG	TATACGACGA	8820
10	TGTACTGGTT	TTAAACCGTC	ACGAACATCT	GGCAATGCAC	GAGCAACGAT	AACACTCATC	8880
	GCATAATCTA	AAAATGATTC	ACGCATTTCA	CTGGTAATAT	TTCGTTCATT	TATTCTTGAT	8940
15	TGAGGTAATT	CAGCCATCAA	GAGTTCCTCC	TTCAAAAGTT	CAGTTCACAG	CGCTTAGAAG	9000
	TCTAAGTTTG	CATAAACTGC	ATTATCTTCT	ATAAATTGTC	TACGGTTTTC	TACAACGTCA	9060
	CCCATTAACA	TTTCAAATGT	TTGGTCCGCT	TCAATCGCAT	CTTCAAGTTT	TACTTGTAAA	9120
20	AGAGCGCGGT	GCTCAGGGTT	CATTGTTGTT	TCCCALAATT	GATCTGCATT	CATTTCTCCA	9180
	AGACCTTTGT	ATCGTGCAAT	AGACCATTTT	GGTGTTGGAT	TCAATTCAGA	TTTAAGTTTA	9240
	TCAAGTTCCC	TATCATTGTA	TACATAATAC	TTTTGTTTAC	CTTGTGTCAG	TTTATACAAC	9300
25	GGTGGCTGTG	CAATATACAC	ATAGCCTGCT	TCAATTAACG	GTCTCATAAA	TCGATAGAAG	9360
	AATGTTAATA	ACAATGTTCT	AATATGCGCT	CCATCCACAT	CGGCATCAGT	CATAATGACG	9420
	ATTTTGTGAT	ATCTTGCTTT	CGCTAGATCA	AAGTCGCCAC	CGATTCCTGT	ACCAAATGCT	9480
30	GTGATCATTT	GACGAATTTC	ATTGTTATTC	AAAATTCTAT	CTAATCGTGC	TTTTTCAACA	9540
	TTTAATATCT	TACCTCGTAA	TGGTAAAATC	GCCTGCGTTC	TAGAGTCACG	ACCAGATTTT	9600
	GTAGACCCCC	CGGCAGAGTC	CCCTTCGACT	AAGAAAATCT	CACATTCTTC	AGGACTTTTA	9660
35	CTAGAGCAAT	CGGCTAATTT	ACCTGGAAGG	CTTGCTACAT	CTAACGCTGA	TTTACGACGT	9720
	GTTACTTCAC	GCGCTTTTTT	CGCAGCAACA	CGTGCACGTG	CCGCCATAAT	ACCTTTTTCA	9780
	ACCACTGTAC	GTGCGACTTG	TGGATTTTCA	TATAAAAATC	GTTCAAAGTG	CTCTGAGAAT	9840
40	AATTTATCTA	CAACTTGACG	CACTTCAGAA	TTACCTAATT	TTGTCTTCGT	TTGACCTTCG	9900
	AATTGAGGAT	CACCATGTTT	GATAGATATA	ATTGCTGTCA	TACCTTCACG	TGTATCTTCA	9960
45	CCAGAAAGTC	TATCTTTTTC	TTCTTTCATA	ATCTTGCTAC	TTAAACCATA	ACTATTTAAG	10020
45	ACACGCGTTA	ATGCACGTTT	GAATCCGTCT	TCATGCGTAC	CACCTTCATA	CGTATGAATG	10080
	TTATTTGCGT	AAGTTAAAAG	ATTTGTGGCA	TATCCTGAGT	TATATTGAAT	CGCAATTTCT	10140
50	ACTTCAATAT	CATCTTTAGA	TTGATGAATA	TAAATTGGCT	CATCATGAAT	AGGTTCTTTA	10200
	TTTTCGTTCA	ATAACTCAAC	GTACGATITA	ATACCGCCCT	CATAGTGATA	GGAGTCTTCT	10260

	GCAAGCTCTC	TAATACGCTG	CTGTAATGTT	TCATAGTTGT	ATACAGTTGT	CTCTGTGAAG	10380
~	ATTTCTCCAT	CTGCTTTAAA	ACGAAtGaCA	GTACCTGTCT	TAtCAGTnGT	GCCAACTTCT	10440
5	TTTAAGTCAA	ATTGAGGTAC	ACCTTTTTTA	TATGCTTGAT	GATATATAGT	CTCATTTCTG	10500
	TGTACATATA	CTTCTAAGTC	TTGTGACAAT	GCGTTTACAA	CTGATGAACC	AACACCATGT	10560
10	AAACCACCAG	ATACTTTGTA	TCCGCCACCG	CCAAATTTAC	CACCAGCATG	TAAAACAGTT	10620
,,	AAAATAACTT	CGACAGCTGG	ACGTCCCATT	TTTTCTTGAA	TATCAACTGG	GATACCACGT	10680
	CCGTTATCCG	TTACTTTAAT	CCAGTTATCT	TTTTCAATAA	CAACTTCAAT	TTGATTTGCA	10740
15	TAACCAGCTA	ATGCTTCATC	GATACTATTA	TCGACAATTT	CCCACACTAA	ATGGTGCAAA	10800
	CCTCTCTCTG	AAGTCGATCC	TATATACATA	CCTGGTCTTT	TACGTACTGC	TTCTAAACCT	10860
	TCTAATACTT	GTATTTGCCC	AGCACCATAA	TTATCCGTGT	TGTTTACATC	TGACAATGCA	10920
20	GTCACCATCG	CTTTCTGTTA	CTTTATAATT	TCACCTTGAT	TAATACGATA	CAATTTAGCG	10980
	TTATTCATGA	TTTCATGATC	AATACCATCT	ACAGATGTCG	TAGTGACAAA	TGTTTGTACT	11040
	TTATGCTGAA	TCGTACTTAA	TAAATGCGTT	TGACGCGAAT	CATCTAATTC	ACTGAGTACA	11100
25	TCGTCTAATA	ATAAGATGGG	ATATTCCCCA	ACTTCGATAT	TCATTAACTC	AATTTCAGCT	11160
	AATTTAATGG	ACAAAGCCGT	TGTACGTTGC	TGTCCTTGAG	AACCATATGT	TTGAGCATCC	11220
	ATGCCATTCA	CATCAAAACT	TATATCATCT	CGATGTGGTC	CGAATAAGCT	AATGCCTCGT	11280
30	TCTTTTTCTC	TTTGCATATT	ATCGCTAAGA	ATAGACATAA	TTTCTTCAAG	TCGTGCCGCT	11340
	TCATTTTGAG	CATAATCAAA	TTTAAGACTA	GGTAAATAAT	TCAGCGACAA	CGCTTCTTTA	11400
	TCATTTGTGA	TACCAGCATG	AATCGGTTTA	GCTAACGACT	CTAGCTCTTG	AATAAAATGT	11460
35	GCACGTTTAT	CAGTTACTTT	CATTGCATAT	TCAGCAAACT	GCTGATTTAA	TACTTCCAAC	11520
	ATTGTTAAGT	CCTTTTTTTG	GCCTAATTGT	AACTGCTTTA	AGTAATTATT	CTTTTGCTTT	11580
40	AAAATACGTT	GGTATTGAGC	TAAATCATTT	AAGTAAACAG	CAGAAATTTG	GCCCAACTCC	11640
40	ATATCTATAA	AGCGTCGTCT	TATTtGrGGr	GAGCCTTTTA	CAATATTCAA	ATCTTCTGGC	11700
	GCAAATAGAA	CCACATTGAG	GTGTCCAATA	TATTGAGTTA	GACGACTTTG	CTCTAAGTGn	11760
45	ATTCACTTTG	GACTTGTTTA	CCTTTnTTAG	TTATAAACAT	TGTTAATGGG	CATCGTGCCG	11820
	TGT						11823

(2) INFORMATION FOR SEQ ID NO: 137:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 692 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double

55

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 137:	
_	ATAATTATTA ACATGGTGTG TTTAGAAGTT ATCCACGGCT GTTATTTTTG TGTATAACTT	60
5	AAAAATTTAA GAAAGATGGA GTAAATTTAT GTCGGAAAAA GAAATTTGGG AAAAAGTGCT	120
	TGAAATTGCT CAAGAAAAAT TATCAGCTGT AAGTTACTCA ACTTTCCTAA AAGATACTGA	180
10	GCTTTACACG ATTAAAGATG GTGAAGCTAT CGTATTATCG AGTATTCCTT TTAATGCAAA	240
	TTGGTTAAAT CAACAATATG CTGAAATTAT CCAAGCAATC TTATTTGATG TTGTAGGCTA	300
	TGAAGTTAAA CCTCACTTTA TTACTACTGA AGAATTAGCA AATTATAGTA ATAATGAAAC	360
15	TGCTACTCCA AAAGAAACAA CAAAACCTTC TACTGAAACA ACTGAGGATA ATCATGTGCT	420
	TGGTAGAGAG CAATTCAATG CCCATAACAC ATTTGACACT TTTGTAATCG GACCCGGTAA	480
	CCGCTTTCCA CATGCAGCGA GTTTAGCTGT GGCCGAAGCA CCAGCCAAAG CGTACAATCC	540
20	mTTATTTATC TATGGAGGTG TTGGtTTAGG AAAAACCCAT TTAATGCATG CCATTGGTCA	600
	TCATGTTTTA GATAATAATC CAGATGCCAA AGTGATTTAC ACATCAAGTG AAAAATTCAC	660
	AAATGAATTT ATTAAATCAA TTCGTGATAA nA	692
25	(2) INFORMATION FOR SEQ ID NO: 138:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7900 base pairs	
30	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(b) Topologi: Tinear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 138:	
35	ATACTGTAGC GCAAATTTCA CAATGGCATG TTATAGAAGA TTTAGTTACG AATGAATTAG	60
	GTATTAGTAT TTTACCAACA TCAATTTCAG AGCAACTAAA TGGAGATGTG AAGCTGLACG	120
40	CATTGAAGAT GCTCATGTAC ATTGGGAATT AGGTGTTGTT TGGAAGAAGG ATAAACAATT	180
40	AAGTCATGCC ACAACGAAAT GGATAGAATT TTTGAAAGAC CGTTTAGGCT AACATATTAA	240
	TAAAGCACTC ATTATTTAAG GCGCATCATT ACGTGGGTCA TTGAAATAAT GAGTGTTTTT	300
45	TTGTGAAAAT GAAGTGAAAT TTAGAGAGCG TTTCCATAGA AAATAGTAAT ACAAACTATA	360
	AAAAAAGAGT ATTTTATAT TGTGTACGCC ATCTTTATAA TAGTTATTGT AACAATTTAG	420

ACATATTTAG AAAGGGATGG CGCCATGCAC AAAGTCCAAT TAATAATCAA ACTACTACTA

CAACTAGGAA TCATCATTGT GATTACTTAT ATTGGCACAG AAATTCAAAA GATTTTTCAT

5

	ATTGTACCGC	TAACTTGGGT	AGAAGACGGT	GCAAACTTTT	TATTAAAGAC	GATGGTCTTT	660
	TTCTTCATAC	CGTCAGTTGT	AGGLATTATG	GaTGtgCTTC	CGAAATTACG	CTAAATTATA	720
5	TACTCTTTTT	CGCAGTCATT	ATCATAGGAA	CATGTATCGT	TGCATTATCT	TCAGGTTATA	780
	TTGCTGAAAA	AATGTCyGtT	AAACWTAAAC	ATCGTAAAGG	TGTAGACGCt	TATGAATGAT	840
	TACGTGCAAG	CCTTATTAAT	GATTTTGTTG	ACTGTCGTTT	TATATTATTT	CGCTAAAAGG	900
10	TTACAACAAA	AATATCCGAA	CCCATTTTTG	AATCCAGCAT	TAATTGCATC	TTTAGGAATT	960
	ATTTTTGTCT	TACTTATCTT	TGGAATTAGT	TATAACGGGT	ATATGAAAGG	TGGCAGTTGG	1020
15	ATCAACCATA	TTTTAAACGC	AACGGTCGTA	TGTTTAGCGT	ACCCACTTTA	TAAAAATAGA	1080
15	GAGAAAATTA	AAGACAATGT	CTCTATCATT	TTTGCAAGTG	TATTAAcTGG	CGTCATGCTG	1140
	AATTTCATGT	TAGTGTTCTT	AACACTTAAA	GCATTTGGCT	ATTCTAAAGA	CGTCATTGTA	1200
20	ACGTTATTGC	CCCGATCTAT	AACAGCCGCA	GTAGGTATCG	AAGTGTCACA	TGAACTAGGT	1260
	GGTACAGATA	CGATGACCGT	ACTTTTTATT	ATCACAACGG	GTTTAATCGG	TAGTATTTTA	1320
	GGTTCGATGT	TATTAAGATT	TGGAAGATTT	GAATCTTCTA	TCGCCAAAGG	ATTAACGTAT	1380
25	GGGAATGCGT	CACATGCATT	TGGCACAGCT	AAAGCACTAG	AAATGGATAT	TGAATCCGGT	1440
	GCATTTAGTT	CAATTGGGAT	GATTTTAACT	GCAGTTATTA	GTTCAGTGTT	AATACCTGTT	1500
	CTAATTTTAT	TATTCTATTA	ATTTAGATAT	TTAAAATGAT	AGACAGAAAG	GGAGGCTATT	1560
30	AGTAATAATG	GCAAAAATAA	AAGCAAATGA	AGCATTAGTT	AAAGCATTAC	AAGCaTGGGA	1620
	TATAGATCAC	TTGTATGGTA	TTCCAGGAGA	CTCAATCGAC	GCATAGTCGA	TAgTTTACGT	1680
	ACAGTGAGAG	ATCAATTTAA	ATTTTATCAT	GTACGTCATG	AAGAAGTAGC	AAGCTTAGCG	1740
35	GCTGCTGGTT	ACACAAAATT	AACTGGTAAA	ATCGGTGTGG	CATTAAGTAT	CGGTGGCCCT	1800
	GGTTTAATTC	ATTTATTAAA	TGGTATGTAT	GATGCCAAAA	TGGATAATGT	ACCGCAATTA	1860
	ATATTATCTG	GACAAACGAA	TAGTACAGCA	CTTGGAACGA	AAGCATTCCA	AGAAACAAAT	1920
40	TTACAAAAAT	TATGTGAAGA	TGTAGCCGTT	TATAATCACC	AAATTGAAAA	AGGTGACAAT	1980
	GTGTTTGAAA	TCGTTAACGA	AGCAATTCGT	ACGGCATATG	AACAAAAAGG	TGTAGCTGTT	2040
	GTTATTTGTC	CTAACGACTT	ATTAACTGAA	AAAATTAAAG	ATACAACGAA	TAAACCAGTA	2100
45	GATACATCAA	GACCAACAGT	AGTATCACCA	AAATATAAAG	ACATCAAAAA	AGCGGTTAAA	2160
	CTAATTAATA	AAAGTAAAAA	GCCTGTCATG	TTAATTGGTG	TAGGTGCGAA	ACATGCGAAA	2220
	GATGAGCTAC	GTGAATTTAT	TGAAATGGCT	AAAATTCCTG	TCATTCATTC	ATTACCAGCT	2280
50	AAAACAATCT	TGCCGGATGA	TCATCCATAT	AGTATCGGtA	ACTTAGGTAA	AATCGGTACC	2340

	CCATATGTGG	ATTACTTACC	TAAGAAAAAT	ATTAAAGCCA	TTCAAATTGA	CACAAATCCT	2460
	AAAAATATCG	GACATCGTTT	CAATATTAAT	GTAGGAATTG	TTGGAGATAG	TAAAATTGCG	2520
5	TTGCATCAGT	TAACTGAAAA	TATTAAACAT	GTTGCTGAAA	GACCATTCTT	AAACAAAACG	2580
	TTAGAACGTA	AAGCGGTTTG	GGATAAATGG	ATGGAACAAG	АТАААААТАА	TAATAGTAAA	2640
	CCATTACGTC	CAGAACGATT	AATGGCATCA	ATCAATAAAT	TTATTAAAGA	TGATGCAGTG	2700
10	ATTTCAGCAG	ATGTAGGTAC	AGCAACAGTT	TGGTCAACTC	GATACTTAAA	CCTTGGTGTA	2760
	AATAACAAGT	TCATCATTTC	AAGTTGGTTA	GGTACAATGG	GTTGCGGTCT	TCCAGGTGCA	2820
	ATTGCATCAA	AAATTGCATA	TCCAAATAGA	CAAGCCATCG	CAATTGCTGG	TGACGGTGCA	2880
15	TTCCAAATGG	TAATGCAAGA	CTTCGCTACA	GCAGTACAAT	ATGATTTACC	TTTAACTGTA	2940
	TTTGTACTTA	ATAACAAACA	GTTAGCATTT	ATTAAATATG	AACAACAAGC	AGCTGGTGAA	3000
	TTAGAATATG	CAGTTGATTT	TTCTGATATG	GATCATGCAA	AATTTGCTGA	GGCAGCAGGT	3060
20	GGTAAAGGTT	ATACAATTAA	GAGTGCTAGC	GAAGTAGATG	CTATAGTCGA	AGAGGCATTA	3120
	GCACAAGATG	TACCAACGAT	TGTAGATGTA	TATGTTGATC	CTAATGCTGC	GCCATTACCA	3180
25	GGTAAAATTG	TAAATGAAGA	AGCGCTTGGT	TATGGTAAGT	GGGCATTTAG	ATCAATTACT	3240
20	GAAGATAAAC	ATTTAGATTT	AGATCAAATT	CCACCAATTT	CAGTGGCAGC	AAAACGTTTC	3300
	TTATAACTGA	TTTAAAGGTT	ATCACAATTG	AATTGAACTA	TAAAAACGGT	AATTTCTATT	3360
30	TCAACAAAAT	GGGAATTGCC	GTTTTGTTTA	TTTATCACAA	ATGATCGTAC	TGAATTGATG	3420
	ATAAAATTGT	GAAAAAGTTG	TTGAAAACGC	TTTTACAAAT	ATGTATAATA	GCTATGAATT	3480
	AGATATCACT	TGCGTGTTAC	TGGTAATGCA	GGCATGAGCA	AACAACCGCA	CTATGAGAAT	3540
35	AGTCTTGTTT	GTTCATGCCT	GCTTTTTTTG	TACATGGAAG	CGGAAATTGA	GATAGGGGAT	3600
	GTTTATATGT	TTAAGAAATT	GTTTGGACAA	TTGCAACGTA	TCGGTAAAGC	ATTAATGTTA	3660
	CCTGTTGCGA	TTTTACCAGC	AGCTGGTATT	TTATTAGCGT	TTGGTAACGC	AATGCACAAC	3720
40	GAACAATTAG	TAGAAATTGC	ACCATGGTTA	AAAAACGATA	TCATTGTAAT	GATTTCGTCG	3780
	GTCATGGAAG	CAGCAGGACA	AGTTGTATTT	GATAACTTGC	CATTATTATT	TGCAGTTGGT	3840
	ACAGCACTTG	GATTAGCAGG	AGGAGACGGT	GTTGCAGCAT	TAGCAGCGCT	AGTAGGTTAC	3900
45	TTAATTATGA	ATGCAACAAT	GGGGAAAGTG	TTGCACATTA	CAATTGATGA	CATTTTCTCA	3960
	TATGCCAAAG	GGGCAAAAGA	ATTAAGTCAA	GCAGCGAAAG	AACCAGCACA	TGCTTTAGTA	4020
	TTAGGTATTC	CAACGTTACA	AACGGGTGTG	TTTGGTGGTA	TTATCATGGG	TGCTTTAGCC	4080
50	CCATCCTCTT	ACAACAAA	יייט איי איי איי איי איי	N C N C T N C C N C	CAMPOON CC	3 mm cmmmc c 3	

	AGCTTTGCGT	GGCCACCAAT	TCAAGATGGA	TTAAATAGTT	TATCGAATTT	CTTATTAAAT	4260
	AAAAATTTAA	CATTAACAAC	GTTTATATTC	GGTATTATTG	AACGCTCATT	AATTCCATTT	4320
5	GGTTTACATC	ATATTTTCTA	TTCACCGTTC	TGGTTTGAAT	TCGGAAGTTA	TACAAATCAC	4380
	GCAGGTGAAT	TGGTTCGTGG	TGACCAACGT	ATTTGGATGG	CACAATTGAA	AGATGGCGTA	4440
	CCATTTACTG	CTGGTGCATT	TACTACTGGT	AAATATCCAT	TTATGATGTT	TGGTTTACCA	4500
10	GCGGCGCAT	TTGCTATTTA	TAAAAATGCA	CGACCAGAAC	GTAAAAAAGT	CGTGGGTGGT	4560
	TTAATGTTAT	CAGCAGGATT	AACTGCATTT	TTAACTGGTA	TCACTGAGCC	ATTAGAATTT	4620
	TCATTCTTAT	TTGTAGCACC	AGTACTTTAT	GGAATTCACG	TATTATTAGC	TGGTACATCA	4680
15	TTCTTAGTAA	TGCATTTATT	AGGCGTTAAA	ATTGGTATGA	CATTCTCAGG	TGGTTTCATA	4740
	GATTATATTT	TATATGGTTT	ATTAAACTGG	GATCGTTCAC	ACGCATTATT	AGTTATTCCA	4800
20	GTCGGTATTG	TATATGCTAT	CGTGTATTAC	TTCTTATTCG	ACTTTGCAAT	TCGTAAGTTT	4860
20	AAATTGAAAA	CACCAGGTCG	TGAAGATGAA	GAAACTGAAA	TTCGTAACTC	TAGTGTCGCA	4920
	AAATTACCAT	TTGATGTCTT	AGATGCAATG	GGTGGAAAAG	AAAACATTAA	ACATTTAGAT	4980
25	GCATGTATTA	CACGTCTACG	CGTAGAAGTG	GTTGATAAAT	CAAAAGTAGA	TGTAGCAGGT	5040
	ATTAAAGCTT	TAGGCGCATC	AGGTGTATTA	GAAGTTGGAA	ACAATATGCA	AGCTATCTTT	5100
	GGTCCAAAAT	CAGATCAAAT	TAAACATGAT	ATGGCCAAGA	TTATGAGTGG	TGAAATTACG	5160
30	AAACCAAGTG	AAACGACAGT	GACTGAAGAA	ATGTCAGATG	AACCAGTTCA	CGTAGAAGCA	5220
	CTTGGAACAA	CAGACATCTA	TGCACCAGGT	ATCGGTCAAA	TCATTCCATT	ATCAGAAGTA	5280
	CCTGATCAAG	TATTCGCTGG	TAAAATGATG	GGTGATGGTG	TTGGCTTTAT	CCCTGAAAAA	5340
35	GGTGAAATTG	TAGCACCGTT	TGATGGTACA	GTGAAAACAA	TCTTCCCTAC	GAAACATGCG	5400
	ATAGGATTAG	AATCTGAAAG	TGGCGTCGAA	GTACTTATTC	ATATTGGTAT	CGATACAGTG	5460
	AAACTGAATG	GTGAAGGATT	CGAAAGTCTG	ATTAACGTTG	atgaaaaagt	AACACAAGGT	5520
40	CAACCATTAA	TGAAAGTGAA	TTTAGCATAC	TTGAAAGCAC	ACGCACCAAG	CATCGTTACA	5580
	CCAATGATTA	TTACAAATCT	TGAAAATAAA	GAACTTGTCA	TTGAAGATGT	ACAAGATGCT	5640
	GATCCAGGTA	AGCTAATTAT	GACAGTCAAA	TAATGATTAA	AAATGAAACA	GCATATCAAA	5700
45	TGAATGAACT	TTTAGTCATT	CGTAGTGCGT	ATGCGAAGTA	GCGAGTTGAA	AGAGAATACG	5760
	TTACAAAAGG	CAGTAGCTTA	AAATGAAGCT	ACTGCCTTTT	TAGTGCGCAA	TGATGTATAG	5820
	CAGGTGTGTT	GATGTTAATA	AGTTAAATAT	TAGTGTTAGA	TATAGAAAAC	ATTGCTTATG	5880
50	TTTTTGTCAC	ATTTTAGAAA	AATGCATCTT	CGCGACTAGC	САААТТААТА	GTCTCATTGA	5940

	AATAAATTAA	CATGATTTTA	AATCTATTTG	TAAGATAAGG	AGATTTGTCA	TTATGACAAC	6060
	AGAAGGTCTA	TTAGTTGCAG	AGAAAGAAAT	CGAAGTGAAT	GGTTACGACA	TTGATGCGAT	6120
5	GGGTGTCGTT	AGTAATATCG	TTTATATTAG	ATGGTTCGAA	GATTTGAGAA	CAGCGTTTAT	6180
	TAATCAGCAC	ATGAATTACT	CAACAATGAT	CAATCAAGGC	ATTTCACCTA	TACTTATGAA	6240
	AACGGAAGCA	GAGTATAAAG	TACCTGTCAC	AATACATGAC	AAACCAGTAG	GTCGTATTTA	6300
10	CTTAGTTAAA	GCAAGCAAGA	TGAAATGGGT	GTTTCAGTTT	GAAATTGTGT	CCGCACATGG	6360
	CGTGCATTGT	ATTGGTACAC	AGACAGGCGG	TTTTTACAGA	TTGAGTGATA	AGAAGATAAC	6420
	CTCTGTGCCA	CAAGTGTTTC	AAGACATTTT	AGCAACAAAA	TAATGACTTC	ATTTTAAAAT	6480
15	ATAAAAAGTA	AGAAGGTGTT	CGAAATGGTT	AAGCAATTAA	ATAGTGTCGA	AGCATTCCGT	6540
	GAATTTATTC	ATCAATATCC	GTTAGCAGTT	GTACATGTCA	TGCGCGATCA	GTGTAGCGTG	6600
20	TGTCATGCCG	TTTTACCACA	AATTGAAGAC	TTGATGCAAT	CATATCCCAA	TGTGCCATTA	6660
20	GCTGTGATTA	ATCAAAGTCA	GGTGGAAGCT	ATTGCTGGAG	AATTAAATAT	TTTCaCTGTA	6720
	CCTGTGGATT	TAATTTTTAT	GAATGGAAAA	GAAATGCATC	GTCAAGGGCG	TTTTATCGAT	6780
25	ATGCAACGTT	TTGAACATCA	TCTTAAGCAA	ATGAATGATA	GTGTAAATAA	CGATGTCGAT	6840
	GAGCATTAAT	ATCGCAAATG	ATTAGCATTG	CTAAGATTAT	GTAGACATCA	TAACITATTT	6900
	CCCAGTAAAT	ATTGGTAGTA	ATTAGAATCA	GCATGGTACA	GTAGAACTAT	AGTAGAAATC	6960
30	ATCAAAGAGG	AGTGACGACA	AATGCGTAAA	AAATGGTCTA	CACTTGCGTT	TGGATTTTTA	7020
	GTTGCAGCAT	ACGCACATAT	TAGAATTAAA	GAAAAACGCA	GTGTGAAAAG	TTATATGTTA	7080
	GAACAAGGTA	TACGATTATC	TAGAGCTAAG	CGTCGTTTTA	TGTATAAAGA	AGAAGCGATG	7140
35	AAAGCATTAG	AAAAAATGGC	GCCACAGACA	GCAGGCGAAT	ATGAGGGAAC	CAATTATCAG	7200
	TTTĄĀGATGC	CAGTAAAAGT	GGATAAGCAC	TTCGGTTCAA	CCGTTTATAC	CGTTAACGAT	7260
	AAACAAGATA	AGCATCAACG	CGTTGTATTA	TATGCACATG	GAGGCGCATG	GTTCCAAGAC	7320
40	CCACTCAAAA	TTCATTTCGA	ATTTATTGAT	GAACTTGCAG	AAACACTCAA	TGCTAAAGTC	7380
	ATCATGCCAG	TATATCCGAA	GATTCCGCAT	CAAGATTATC	AAGCGACGTA	TGTGCTTTTT	7440
	GAAAAGTTGT	ACCATGATTT	ATTGAATCAA	GTAGCAGATT	CTAAACAAAT	CGTTGTAATG	7500
45	GGTGACTCTG	CGGGCGGTCA	AATTGCTTTA	TCATTTGCTC	AATTGTTAAA	AGAAAAACAT	7560
	ATTGTGCAAC	CAGGACATAT	TGTATTAATT	TCACCAGTTT	TAGATGCAAC	GATGCAGCAT	7620
	CCTGAAATTC	CTGACTACTT	AAAGAAAGAC	CCAATGGTAG	GTGTGGATGG	CaGTGTGTTC	7680
50	TTAGCTGAAC	AATGGGCAGG	GGACACACCT	TTAGATAACT	ACAAAGTATC	ACCAATTAAT	7740

7860

1200

1260

CCAGATGCTT TGAACTTATC GCAATTGTTG AGTGCGAAAG GTATCGAACA TGACTTTATA

	CCTGGATATT ACCAATTCCA TATTTATCCA GTATTTCCGA	7900
5	(2) INFORMATION FOR SEQ ID NO: 139:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1984 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 139:	
15	GTCTAAATAA ACAAAATTAT CATTGATTAC TGAACTGGCA TTTCGAAGTA ATGCTTCAAT	60
	ATCATTCGAA TATTTCTTCA ATTTATGATT GTGAAATAAT TCTTGCATCA AAAATGGTCT	120
20	TTGGTCACAT GAATGTGCAT CTGAAGCTAC AAAATGAGCC AAATTACATT CTATAAATTG	180
	TAATGATAAC TTTTGAATGT TTTTACCAAA TCCACCAACT AAAGAACTCG ATGTTAATTG	240
	ACTCAGTGCC CCATTTGCAA CCAATTCATA TAATATTTCC GGATTTTTGG CGATACTTCT	300
25	ATTTCTTTCA GGATGTGCAA TGATTGGTAT GTAACCTCTC GATTGTATTT CAAAAAACAA	360
	TTGTTTTGTA TAATGTGGTA CTTCGCCCGT TGGAAATTCA ATTAATAAAT ATTTCGAACG	420
	ATTAATACCT TGAATACTAC CATTATCTAA GCCTTTCAGA ATCGAATCTG TAATTCTAAT	480
30	TTCTTGCCCG GGAAATAATT TAATATCCAA TGCTTGAACT TCTGGATGCG TTCTTAACTC	540
	CGCCAATTTC ACAAGCACTT GTTGAAATGT ATTATCATAT CTCGGATGCA AATGATGAGG	600
	TGTCGCTACA ATACTTGTTA CACCTTCATC CTTAGCTTGC TTTAATAGTG CAATACTCTT	660
35	TTCAATTGTT TTAGGACCAT CATCTATATC AACTAATATA TGGTTATGAA TATCAATCAT	720
	GATTCATCAG TCCCATAATA TGCATAGTAA CTAGCACTTT TATCTTTAGG CATTCTATTT	780
	AAGACTACAC CTAATAATTT AGCACCTGTT GCTTCAATAA GTTCTTTTCC TTTTTTAACT	840
40	TCATCTCTAT TATTATTTTC CGAATTAACT ACGTAGACAA CATTGCCGGT AAACTTTGAA	900
	AATAATTGCG CATCTGTAAC TGTGTTCACT GGTGGCGTAT CGATAATTAC AAAGTTATAA	960
	TTCATCAATA ATGTGTCATA CAAATTTGCA AATGCCCTTG ATGTAATTAA CTCTGACGGA	1020
45	TTCGGTGGGA TTGGCCCAGA CGTCAAGACG TCTAAATCTT GAATTTCAGT TGAGATAATA	1080
	CTCTCTTCAT AACTTCACCA ATTACCAAT AAACTTCATA CCCCTTCATT CTTTCAAA	3340

TTAAAAATAT AATGCTGCGT AGGTTTACGC ATATCCCCGT CTACGATTAG TGTTTTATAA

CCTGCTTGCG CATATGCAAC TGCTAAATTT GCTGCAATTG TAGACTTACC TGCGCCTGGT

55

	GATCTTATGC CTCGAAATTT CTCGCTAATA GGTGACTTTG GTTGTTCATG GACAATTAAA	1380
	CTTGATGTAC TTCYTCGTGT ATTCGTCATG GTAATTCCTC GTAAATTAAA ATTTTTGTAT	1440
5	TGAACCTAAA ATAGGTAATC CTAGTTGCGA TTCAACATCT TCTTCTGTCT TAATACGCTT	1500
	ATCTAATAAT TCTTTTAAGA AAATAATCAA TATTGCTAAA ACAATACCAA CAATAATGCT	1560
	GATAACTAAG TTGACAGATA CTATTGGAGA TACTTTTACA GCATTATCAT GTGCTGAGGA	1620
10	AAGTATCGTA ACATTATCAA CACTCATAAT TTTAGGCATG TCATGAGCAA AAACTTTAGA	1680
	TATTTTATTA ACAATTTTGT CAGATTCAGA TTTATTCCCA GTGGTAACTG ATACAGTAAT	1740
15	AATTTGAGAG TTTGTTTGAT TGGTTACTTT TAAAAATGAA TTCAACTCAG CTGTTGAATA	1800
,,,	CTGACCATCA ANTTCTCTAG ATACTTTATC TAGAATTCTA GGACTTTTGA TAATTTCCGT	1860
	ATATGTATTA ACAGACTGCA AACTACTTTG AACATTTTGG AAAGCTAAAT CACTTGAGGA	1920
20	CTTTTTCATG TTCACTAATA TTTGAGTAGA AGCAGTATAT TTGTCAGGCA TAACAAAAAA	1980
	GGTT	1984
	(2) INFORMATION FOR SEQ ID NO: 140:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 6272 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 140:

CAAATCCCTT	GGTGATGAtA	AAtGtATTGC	TGTGTAGCCA	AATAATCTTC	GTATATATGA	60
CTGACGTTCA	ACAACAGCTT	GCAATCGTTT	CGTTGGTACA	GTTACTTTCT	TCTTGTTAAA	120
GAÇÃCCATAT	TCAATTTTAA	GTTGCTCATT	TTCAAGCATC	ACCGAAAAGC	CATAAAATCT	180
TATCATTGTT	ATAATCGTTC	CAATAATATA	TGCCACTATT	AATACTAGTA	AAATGATGAT	240
TAATACTGAA	ATACTTACAA	TTTGAACCCA	TTGACTAATT	TCATGATTTA	GCTTCGACCA	300
TGGGATCAAC	TCTCTTACAG	CCCCGTAAAT	CGGTACTAAA	GCTGCTAACG	TTACACCAAT	360
GGCGCCACTG	GTCATTGCCA	TAAATAGTGA	TTCTTTAAAA	TTCATCTGAT	ATATAGGAAT	420
GCGTTTATTT	TTCTGATTAA	GCATACTATC	AGTGTTCTGC	ACTTCATCTA	AGCGACCTTC	480
TGCGATGTCT	TCCACATTAC	CTTCAATGTC	ATGATTACAG	TTGTCATTCT	TCTCAGCACT	540
AGACTTTTGC	GCCACTTCTG	TCTTCAACTC	TGTTTGCAAT	TGATCAATAT	ATCGTTCAAG	600
ATATTCACCT	TGTTTTTTCG	AAATAACACT	TAAGACAATA	CCATCACTTG	GTGTTTTGAT	660

	AATACGTTTT	ATATTTAATT	CTTTACGCTT	TTTATTAAAA	ATACCTGTTG	TTAAAATGAA	780
_	ATAATTATCC	tCAATCCAAT	ATCGCGTGTT	CATAATTCCG	ACAATTTGAG	AAATGTATGA	840
5	TATTAAAAAG	AATACAAATA	CAATACCTAT	CCATAAATAT	GATTCGGGAT	TCGTATAATC	900
	AAAATCTTTC	AATTGAAAGA	TAATGAAAAT	AAAAAAGACG	ACTATGTTTT	GTTTGATAGC	960
10	ATTGATTATG	CCATTAAAAT	ATGAAATCGG	ATGTAATTTT	TGAGGTTCAG	ACATCACTTT	1020
	CAACCCCTCT	CAAATTCGAC	ATAGTTCTCT	CTTCGATTAT	TTTAACATCG	TCATGAGACA	1080
	TCATCGGTAA	ATAAATAGTA	TGACCTGCAG	TCATAAATCC	AACTTTATAC	AAATTAAGCA	1140
15	CTTTACTAAT	TGGATTAGAT	TTAATCGACA	AGTATTGTAA	ACGTTCAATT	CGACTCGTTT	1200
	CTTCTTTATA	TATAAAAAAT	GATGTACGAT	ATTGTACACT	TAGTTGATCA	ACTTTATAAA	1260
	AGCGACAATG	ATATTGCCAT	AAAGGCTTAA	TAAATAATTT	TAATGTACTC	AGAGCACCTA	1320
20	AAACCAACAA	AATATAAAGT	AAGTAATGTG	GCCATTCAAA	TCTTAACCAT	АТААААТААА	1380
	AAATGACATA	CACAGCTACA	СТСААТАТАА	ATTCTAAGCC	ATTCGTAATG	TAGTAATACA	1440
	ACAATGCTGA	CTTAGGACTC	TTAGTCAACT	TAGTATAATC	TGACATATAC	CCCTCTCCCC	1500
25	AAATAAAAA	TTATACGGAT	TTATAATCTA	TTTCATTTTA	TTTTTATATG	ATGATAATTA	1560
	TAGCATATGG	AATATTTCAT	GCTAATTTAT	TCTTCCTAAA	GGTACATCTA	AAAATTTAAT	1620
30	TAAGCAGAAA	GTGCTTGAAT	TGCTAAAAAG	ACACCATGTT	ATAATTTTAT	CAACATGATG	1680
	CCTTTCATCT	ATAATCAATC	TTTCATCTTA	TCAAGAGCGA	TATTTAGTTC	AAGCACATTC	1740
	ACATAATCAT	TTGTTAACAC	ACCACGCTGC	TTACGATGTT	GAATCAAGTC	GGCCACTCTT	1800
35	GAAGTAGATA	CATGACGAGC	ATCAGCAATA	CGAGGTGCTT	GCTTCAATGC	ATTTTCGACC	1860
	GTAATATGCG	GATCTAAGCC	CGACCCAGAA	CTTGTTGCAG	CATCTATTGT	TACATTTGAA	1920
	TTCCCAAATT	TAACATGATG	TTTCATGCGT	GCTATTAATT	CGGTGTTTCC	ATTCGATTCA	1980
10	TTACTTCCAC	CTGAAGATAC	GCCGTTTTTA	TATAATTTTT	CAGGATTCAT	ATTATAATCA	2040
	ACTGCACTCG	GTCTCCCGTG	AAAATATCGT	GTCTCTGTCC	AGTGCTGTCC	AATCAATTTT	2100
	GATCCAACTA	TACGATTGTC	ATACGTAATT	AAACTGCCAT	TTGCTTGTTG	TAAAAAATA	2160
15	ATTTGACCAA	TTAACGTGAT	AGCTAACGGG	AATAAAAATC	CACATAATAC	CATAGTTATT	2220
	ATCGTTAAAC	AAATACTATT	TCTTATCGTA	TTCATGGTAC	AGGCTCCTTC	CTCTTTACAC	2280
50	AAAAAATTGT	ACAATCATAT	CTATTAATTT	AATGCCTAAA	AACGGGACGA	TTAATCCACC	2340
	TAATCCATAA	ATCAACATAT	TATTTATAAA	GATTCTATCA	ATGCTGTAAC	CCTTTACTTT	2400
	TACACCTTTC	ATGGCAATTG	GAATTAAGGC	AACAATGATT	AATGCATTGA	ATATCAAAGC	2460

	AATTGTTGAC	ATCATTAGTG	CAGGTAAAAT	TGCAAAGTAT	TTTGCTACGT	CATTAGCCAA	2580
_	ACTAAATGTC	GTTAATGCAC	CTCTCGTCAT	TAATAATTGT	TTGCCTATTT	TTACAACCTC	2640
5	TATTAACTTT	GTAGGATTCG	AATCTAAATC	AATTAGATTA	GCTGCCTCTT	TAGCACTAAT	2700
	TGTCCCTGAG	TTCATAGCTA	ATCCTATATT	CGCTTtGTGc	tAGCGCAGGT	GCATCATTTG	2760
10	TACCATCTCC	TGTCATCGCA	ACAATATGGC	CTTTCGCTTG	TTCATCTTTG	ATGACTTTAA	2820
	TTTTATCTTC	GGGTTTACAC	TCTGCAACAA	ATCTATCAAC	CCCGGCTTCT	TTTGCAATTG	2880
	TAGCTGCTGT	TAAAGCATTA	TCACCTGTAC	ACATAACTGT	TTCAATCCCC	ATTTTTCTCA	2940
15	ATTCAGTAAA	TCGTTCTACA	AGACCATCTT	TAATCACATC	TTTTAAATAA	ATCACGCCAA	3000
	GCATGACATT	GTTTTCAATG	ACTATTAAtG	GnGTGCCACC	TTTACTCGAT	ACATCCATAC	3060
	AGAGAGACTC	AATATTAAGA	GGAATATTGC	CTTGTTGTTG	TTTGACAAGA	TTTATCATAC	3120
20	TATTAGGTGC	ACCTTTGAAT	ACCGATATTT	CATTTGTAAT	GATTCCGCTC	ATTCTAGTTT	3180
	CAGCTGTAAA	AGGCTTATAT	GTGCCATCAA	TGTCTTTAGG	CAGCTCATTT	ATATACATCT	3240
	GCttCGCTAA	TCGTACAATA	CTTTTTCCTT	CTGGCGTATC	ATCGTAGATT	GATGACATAT	3300
25	AAGCAGCGAC	TATCAATTTT	TCAAGCATTT	GTTGATTCAC	TGGTAAAAAT	TCACTAGCGA	3360
	TTCGATTGCC	ATAAGTGATT	GTGCCTGTCT	TGTCTAAAAT	CATTACATCG	ACATCTCCAC	3420
30	ATACTTCTAC	AGCACGCCCA	CTTTTCGCTA	ATACATTGAA	TTGAGTAACA	CGATCCATGC	3480
	CTGCAATACC	AATCGCCGAT	AACAAACCAC	CGATTGTCGT	TGGTATTAAA	CATACTGTTA	3540
	ACGCAATGAG	CATCGCAATA	GGTAAAATTA	AATGCAGGTA	AGATGCTATT	GGATATAACG	3600
35	TTACAATAAC	GACTAAAAAT	ATAATTGTTA	ACGTTGTTAA	TAATGTAAAA	AGTGCAATTT	3660
	CATTTGGTGT	TTTATTTCTT	TCCGCCCCTT	CAACTAAGGC	AATCATTTTA	TCTAAAAAAG	3720
	ATGTÃCnCGC	TTCACTCTCA	ACACGTATTT	CTAACCAATC	AGATGTTACA	AGTGTACCGC	3780
40	CAATGACTCC	ATCAAAATCG	CCACCTGATT	CTTTTATCAC	AGGTGCAGAC	TCACCAGTAA	3840
	TTGCAGATTC	ATCAACGGTT	GCTAATCCAT	TTATTACAAC	GCCATCAGCA	GGGATTGTTT	3900
	CTCCATTTTC	TACCCGAATA	TTTTGTCCGG	CTTTTAACTC	TGTGGCGTTC	ACTATCCGAT	3960
45	ACGCACCATT	TTCTTCTATC	AATCGAGCAG	TTAAATTTGA	TTGTGCTTGT	CTTAAACTAT	4020
	CAGCTTGCGC	TTTTCCACGA	CCTTCAGCAA	AGGCTTCTGA	AAAATTAGCA	AACAATATAG	4080
5 <i>0</i>	TTATTAATAA	TATGATAAAA	ATTGTAATCA	AATAACCTCG	CGATAGATAG	CTAGTTCCAA	4140
	ATATGTCAGG	AAAACATATT	AATATCAACG	TTAAAATCAT	TCCAACCTCA	ACGACAAACA	4200
	TTATCGGATT	TAATTATTT	TGTTTAAGAT	TCAGCTTATA	AAAACTCATT	TTCAAAGCTT	4260

	TTTATTTTAA	AGTTAAAAAT	TCACCAATAG	GACCAAGTAA	TAGTACTGGA	ATAAATGTCA	4380
	AACCACTTAG	TAAAACGATA	AATACGATTA	GTGATACGCC	AAAATAAGGT	TTATCAATCG	4440
5	CTATTGTATA	TTTATCTTGA	TGGTATGATT	TTTTATTCAC	TAAACTTGAT	GCAATCATTA	4500
	ATTGCAAAAT	AATTGGTATA	TAACGAGAAA	GCAACATAAT	GATTCCTGTA	GAGATATTCC	4560
10	AGAATGTTGT	ATCATCTTTC	AGTCCTTCAA	ACCCTGATCC	ATTGTTCGCA	GCAGCTGATG	4620
	TCATTTCATA	CATAACTTGT	GAAATACCAT	GAAAAGACGG	ATTCGTtATa	CTTtCACTTG	4680
	CTCCAGGAAT	CATAAAAGCA	AGTGCTGAAA	ATACTAAAAT	TAAAATTGGG	TGTATGAGAA	4740
15	AGACTAAGAC	AATACATTTC	ATTTCACGGG	CGCCAATTGG	CATATTTAAA	TATTCTGGTG	4800
	TTTTACCAAC	CATCAAACTG	CATATAAACA	CCGTCAGTAA	GACAAATATC	AATAAATTCA	4860
	TGAGTCCTAC	GCCTTCGCCA	CCAAATACAA	CATTTAGCAT	CATTAATACC	ATTGGTCCTA	4920
20	ATCCACCTAT	AGGCGTTAAG	CTATCATGCA	TGTTATTAAC	AGAACCCGTT	GTAAATGCCG	4980
	TCGTAATAAC	TGTAAATAGT	GCTGACAAAC	CTGCTCCAAA	CCGTACCTCT	TTACCTTCCA	5040
25	TATTCGGTCC	ATAAATGCCT	AAATTCGCTA	GTATTGGATT	ACCACGATAC	TCACTCCACA	5100
25	TAGTTAATGT	AAGAATTGCT	ATAAAAATGA	AAAACATTGC	GACAAATAAT	ATCAACGCAT	5160
	GACGATGTAC	TCGTTTACCA	TGTCTACTTA	ACATGCGACC	AAATAAGAAC	AACATTGACA	5220
30	TAGGAAGTAA	CATCATACTG	CCCATTTCTA	TAAAATTGCT	CCAAATATTT	GGATTTTCAA	5280
	AAGGTGTTGC	AGAATTTCCT	GCTAAAAATC	CTCCACCATT	CGTACCAAGA	TGTTTTATTG	5340
	ATTCAAGTGA	TGCAATAGGT	CCAAATGCAA	TATGTTGAAT	ATGTCCGCTT	AAAGTCCGAA	5400
35	TCATTAAATT	AGCATGCAAC	GTTTGTGGTA	Caccttgagt	CATCAATAAA	ATACTAATTA	5460
	AACATGATAA	TGGTAAAAGT	ACTCGGACAA	TAAACCGAAC	AATATCTTGA	TAAAAATTAC	5520
	CAATGATATT	AGTTAATCCA	GTTAAACGTC	TCAACATCGC	TATACAAACG	GCGTAACCTG	5580
40	ATGCACTAGA	TGTAAACATT	AAATATGTCA	TTACAATCAT	TTGCGTTAAA	TATGTCACAT	5640
	CTGaTTCACC	GTTATAGTGT	TGtAAATTAC	TATTTGTTAA	AAAAGATATT	GCTGTATTAA	5700
45	ACGCTAAATC	TATCGATTGG	TTTAAATTAT	GATTTGGATT	TAAAAAAAGC	CATTGCTGAA	5760
40	CTATTAGCAA	TACAAATGTT	ATAAACCCCA	TAAATCCATT	AAATGCCAGA	AAATGTTTGA	5820
	CATATGTTTT	AGCTGACATG	TGTTCTAAAT	CTGTGCCGAT	AATTTTAAAA	CACATATTTT	5880
50	CAAATCTAGT	AAATATTAAA	TCTACTCTTG	ACGATTGCAC	CAATGCTACG	CGATATAGAT	5940
	ATCCACTAAA	AACATACGTA	ATCATAACCA	TCATTGTTAG	AAACAAAATT	ATTTCCATGA	6000
	TAACCCTCAC	TTAATATATT	TCTAAAATTT	TTCACTACGA	ATTAAGGCAT	AAAATAAATA	6060

	ACACAACAAC ATCGTAACAA CTTGTTTATG AGAGAAATTT TAATTTTCAA ACTTAGTTAT	6180
	TAAGAAANCA TTAAGATGTG TATGCAGAAA TAAATTTTAT AGCATTTAAT TGTGAAGAAT	6240
5	ATTATGATAT TGCTATCGAG GTGAAGGTTA TG	6272
	(2) INFORMATION FOR SEQ ID NO: 141:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1978 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 141:	
	AAATGATGTT TTACAATAAA TATAnAAACG TATCAACATA TATCATCATA TTTTTAGTTT	60
20	CAAGTGCAGC CTTTGCAATA TTCTTGTTAA GTGCGnACAT TAGTGCTCAC TCGGAACAAG	120
	TGTACGAAAT GACTGACCAT CAAATTAAGA ACAATACGAT AAATAAAGCA TACGAACATA	180
	AAGACCCTAC AAACAATAGC GAACAAAGAG ATGGGAAAGT GTTCGCTTTA ATAAATTGAT	240
25	ACATTGTCAC AACGTTATTT TGCCTATTTT TGCGmAATAG CGTTTTTTAT TACWTTTTTG	300
	CTGATSTTAA ATTTGTTATA TTTTGTTAAA GTATTATAAT GATTGAATAA ACAAATTGAA	360
	GGTAGGTTTT TTAATTGAGT AATTCTGATT TGAATATCGA AAGAATTAAC GAGTTAGCTA	420
30	AAAAGAAAAA AGAAGTAGGA TTAACTCAAG AAGAAGCAAA GGAGCAAACA GCCTTAAGAA	480
	AAGCTTATCT TGAGAGTTTT AGAAAAGGGT TTAAACAACA AATTGAAAAT ACTAAAGTAA	540
35	TTGATCCAGr AGGTAATGAT GTAACACCTG AAAAAATTAA AGAGATACAA CAAAAAAGAG	600
55	ATAATAAAAA TTAAATCACA AATCTGTAAA GAATTTTCTG ACATTATAAC TTGAAATAAG	660
	TATTTTACTT ATCTTTTAT TTTAAAATAA GTTATAATGT ATTTGATAAA ATTGAAGAAG	720
40	GGAAGATACA CAAGATGTTT AATGAAAAAG ATCAATTAGC TGTTGATACG CTACGTGCAC	780
	TAAGTATCGA CACAATCGAA AAAGCGAATT CTGGTCATCC AGGATTACCT ATGGGAGCTG	840
	CCCCAATGGC TTACACTTTG TGGACACGTC ATCTGAATTT TAATCCACAA TCTAAAGATT	900
45	ACTICAATAG AGACCGTTTC GTATTATCTG CAGGGCATGG TTCAGCATTA TTGTATAGCT	960
	TGTTACATGT TTCTGGTAGT TTAGAATTAG AAGAATTAAA GCAATTTAGA CAATGGGGTT	1020
	CTAAAACACC AGGTCATCCT GAATACAGAC ATACAGATGG TGTAGAAGTT ACTACCGGAC	1080
50	CACTTGGACA AGGTTTTGCT ATGTCAGTAG GATTAGCTTT ACAGAAGATC ACCTAGCAGG	1140
	GAAATTTAAT AAAGAAGGAT ATAATGTTGT AGATCATTAC ACATATGTAT TAGCTLCTGA	1200

AAGTAAATTA	GTTGTTTTAT	ACGATTCAAA	TGATATTTCA	TTAGATGGCG	AATTAAACAA	1320
AGCTTTTTCT	GAAAACACAA	AAGCTCGTTT	TGAAGCATAT	GGTTGGAATT	ACTTACTAGT	1380
TAAAGATGGT	AATGATTTAG	AAGAAATTGA	TAAAGCGATT	ACTACAGCTA	AATCTCAAGA	1440
AGGACCAACG	ATTATTGAAG	TTAAAACAAC	AATCGGATTT	GGTTCACCGA	ATAAAGCAGG	1500
AACTAATGGT	GTTCATGGGG	CACCTTTAGG	TGAAGTTGAA	AGAAAATTAA	CATTCGAAAA	1560
TTACGGTTTA	GATCCTGAAA	AACGTTTTAA	TGTTTCAGAA	GAGGTATACG	AAATTTTCCA	1620
AAATACTATG	TTAAAACGTG	CTAATGAAGA	TGAATCTCAA	TGGAATTCAT	TATTAGAAAA	1680
ATATGCAGAA	ACATATCCTG	AATTAGCAGA	AGAATTTAAA	TTAGCGATTA	GTGGTAAATT	1740
GCCTAAAAAT	TATAAGGATG	AATTACCACG	TTTTGAACTG	GGTCATAATG	GTGCATCTCG	1800
TGCTGATTCT	GGTACTGTTA	TTCAAGCAAT	CAGTAAAACT	GTCCCTTCAT	TCTTTGGTGG	1860
ATCAGCAGAC	CTTGCTGGTT	CAAACAAATC	CAATGTAAAT	GATGCAACTG	ATTATAGTTC	1920
TGAAACACCT	GAAGGTAAAA	ATGTGTGGTT	TGGTGTACGT	GAATTTGCTA	TGGGTGCT	1978

(2) INFORMATION FOR SEQ ID NO: 142:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 7588 base pairs

(B) TYPE: nucleic acid(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

35

40

45

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 142:

TAGTAGTATT TATTAAATTA TACGAAGGGA CCCAACACAG AAAATTCATT TTATTGAATT 60 TTACATTTAT GTGCCAAGTT GGGAAAAATG TCTTATTTTT TCAAAGTATT TAAAAGTAAA 120 ATTACATGTT AATACGTAGT ATTAATGGCG AGACTCCTGA GGGAGCAGTG CCAGTCGAAG 180 ACCGAGGCTG AGACGGCACC CTAGGAAAGC GAAGCCATTC AATACGAAGT ATTGTATAAA 240 TAGAGAACAG CAGTAAGATA TTTTCTAATT GAAAATTATC TTACTGCTGT TTTTTAGGGA 300 TTTATGTCCC AACCTTTTA GAATATTAAA TTTCTACAAT TTCGTCATCT TCAACAATAA 360 AGCCCATTGT ATTGACGCTG TTATTTAAGA AAGTCAGAAT ATAACGCATT ACTTCATCAC 420 GTTCTGGCTC ATTGTGAACC TCGTGGTAAA AACCTTGCCA AGCTTTAAAA TATAATTCAG 480 GTGTTTGATA TTTTTCTTTA AACTCATCAA TTGCCCTAGT ATCAACAATT AAATCCTTCG 540 TTCCATACAT TAATAGCGTT GGCATTGGTT GAATGTCATG AATATGAGCC ATCGTATCTT 600 TCATCGTCTC ATTAATTGTA TTATACCAAT GATACGTTGC TTTTTTTAAC ATTAAACCAT 660

55

	CATTAAAACG	TGTGTCTTTT	GAAATTTTAC	CTATATTTGA	AACAAGTTTA	TCTTTACGAT	780
	TTTTTCCATT	CTTTTGAAGT	TCTAGCATAG	GAGAAATTAA	CATCATCCCC	TCGATTGGCA	840
5	ATTCTACTTT	TTCAAGTAAA	TTTAATAAAA	TCAAACCGCC	AAGTCCTACC	CCTAATACAT	900
	AAGTAGGAAT	TTTATATTCA	TTAGCTATCT	TTAACCAGTC	TAGCAAACTT	TCGTGATACG	960
	TTTGAAAGTT	TTCAATTTGT	CCTTTATTAG	CTCTTGAAGT	TTGACCTTGA	CCAGGCAAAT	1020
10	CTCCCATAAT	CACATGATAG	CCATTTCTTC	TTAACATCGT	AATAACATAT	GCATATCTTC	1080
	CCGTATGTTC	TAATATATTA	TGAGCAATAA	CAACGACGCC	TTTCGCATCA	TTTTCAGCTT	1140
15	CCCACTTCCA	CATTATTATA	CTGCCCCTTT	TTCATTAATC	TTCAATAACA	TAATTATAGC	1200
	AAATTCACTA	TGTAGATTTC	TATTTATAGT	ATTATTGTTG	TCCATATTAT	TATATATAAA	1260
	TGAAATCAAC	ATCAATAATA	GTGTAATTAT	ACATAATTAT	TTTTGATTGT	TTTTGATGAA	1320
20	AACGCTTTCT	CGAATATTTT	TTTCATGCTA	AACTTATTGT	AAACACAAGG	GTTTGGAGGA	1380
	GTAGCAATGG	CACTATTAAA	GAATTTTTT	ATCGGATTAT	CTAATAATAG	TTTTTTAAAC	1440
	AACGCAGCAA	AAAAAGTGGG	CCCACGTTTG	GGCGCCAATA	AAGTCGTTGC	CGGAAATACA	1500
25	ATTCCAGAGT	TAATTAATAC	AATCGAATAC	TTAAATGACA	AGAATATCGC	TGTTACGGTA	1560
	GACAATTTAG	GGGAATTTGT	CGGTACAGTT	GAAGAAAGTA	ATCATGCTAA	AGAACAAATT	1620
	TTAACAATTA	TGGACGCGCT	TCATCAACAT	GGCGTAAAGG	CACATATGTC	TGTTAAATTG	1680
30	AGTCAGTTAG	GTGCAGAATT	CGACTTAGAA	TTAGCTTACC	AAAATTTAAG	AGAGATTTTA	1740
	CTTAAAGCAA	ATACTTACAA	CAATATGCAT	ATAAATATTG	ATACTGAAAA	ATATGCTAGC	1800
35	CTGCAACAAA	TTGTTCAAGT	TTTAGATCGC	TTAAAAGGCG	AATTTAGAAA	TGTTGGTACT	1860
33	GTAATTCAAG	CATATTTATA	CGATAGCCAC	GAATTAGTTG	ATAAGTACCA	AGATTTACGA	1920
	TTACGTTTGG	TTAAAGGTGC	ATATAAAGAA	AACGAATCAA	TTGCATTTCA	ATCTAAGGAA	1980
40	GACGTAGATG	CAAATTACAT	CAAAATAATT	GAACAACGTT	TGTTAAACGC	ACGCAATTTC	2040
	ACTTCAATTG	CAACACATGA	CCATCGCATC	ATTAATCATG	TAAAACAATT	TATGAAAGAA	2100
	AATCACATTG	AAAAAGATCG	TATGGAATTC	CAAATGCTCT	ATGGTTTTAG	ATCAGAGTTA	2160
45	GCAGAAGAAA	TCGCAAATGA	AGGCTATAAT	TTCACTATTT	ATGTACCTTA	TGGCGATGAT	2220
	TGGTTTGCGT	ATTTTATGAG	AAGATTAGCA	GAACGCCCAC	AAAACCTATC	TCTTGCTGTA	2280
	AAAGAATTTG	TGAAACCTGC	TGGCTTAAAA	CGTGTTGGCA	TAATTGCAGC	TTTAGGAGCT	2340
50	ACAGTTATGT	TAGGTTTAAG	TACAATTAAA	AAATTATGCC	GTAAATAGAG	CAAGACATAA	2400
	АСААТААТТТ	AGGAGTCTGG	AACAATAATC	AATGTTCTAG	CCTCCTAAAT	GTTATATTGG	2460

	TAGATTTTAA	TAAATTAGCC	ATTTCAATTG	CACTTACTGC	TGCTTCAGCA	CCTTTATTGC	2580
	CAGCTTTCGT	ACCTGCTCTT	TCCACAGCTT	GTTCAATACT	TTCAGTCGTT	AAAATACCAA	2640
5	ATATGACTGG	TACATTAGTT	TGATCATTCA	CTTTAGAAAC	ACCTTTCGCG	ACTTCATTAC	2700
	AAACATAATC	ATAATGAGAC	GTAGCACCGC	GAATTACGCA	TCCTAATGTA	ATTACTGCAT	2760
	CATAATTTCC	TGATGAGGCT	AATTTTTTAG	CTACTAAAGG	AATTTCAAAC	GCACCTGGCA	2820
10	CAAATGCTAC	ATCAATATTG	TCTTCATTAA	CATCATGTCG	AATCAAAGTA	TCTTTTGCAC	2880
	CTTCAAGTAA	TCTTCCAGTG	ATAAAATCAT	TAAATCGACT	AACTACGATT	GCAACTTTCA	2940
15	AATCTTTTCC	AATTAATTTA	CCTTCAAAAT	TCATGTTAAA	ATCCTCCTAT	ATTAAATGAC	3000
,,	CCATTTTTAT	TTTTTTCGTT	TCCATATAAT	CATGATTATG	TACCGTTTCT	GGTACGATAA	3060
	CTTCAATTCT	TTCTGCAATA	TCAATGCCAT	ATTGTTTTAA	TCCCTCAAAT	TTACTTGGAT	3120
20	TATTACTTAA	TAAATTGATA	TGTTCGATGT	TAAAATATTT	TAAAATCTGT	GCAGCAATAT	3180
	GATAATCTCG	CAAATCTTCA	TCAAAACCTA	ATGCTAAATT	TGCAGTTACT	GTATCATATC	3240
	CTTGCTCAAT	TAATTCATAT	GCGCGTAATT	TGTTTAACAA	TCCTATGCCA	CGACCTTCTT	3300
25	GAGGTAGATA	AATAATCATG	CCACCATGTT	CATTGATATA	CTTCATAGAC	GATTCAAGTT	3360
	GAGCACCACA	ATCACAACGT	TGACTATGGA	AAATATCGCC	TGTAAGgCAC	GCAGAATGTA	3420
	AGCGTACATT	TTCATGTTGT	CGAATTGCAC	CTTTTGTCAG	TACAACTATC	TCTTCATCTG	3480
30	TGTATGTCGC	TTTAAAACCA	TACATATCAA	ATGTTCCGAA	ATCTGTAGGC	ATTTTCACTT	3540
	TTGCCTTAAA	TTCAATTTCT	GGTTCTAATT	TTTTACGATA	TTCAATTAAA	TCATCAATCG	3600
35	TAATCATCTT	TAATTGATGT	TTTTCTTTAA	ACTTTTGTAA	ATCTTGTCCT	TTCGCCATCG	3660
33	TGCCGTCATC	ATTCATAATC	TCACAAATGA	CACCAGCGGG	CTTGGCACCA	GTAAGTTTAG	3720
	CTAÃATCAAC	AGCCGCTTCT	GTGTGTCCAT	TTCTAGCTAA	TACGCCTTTA	TCTTGTGCTA	3780
40	CTAATGGAAA	TAAATGACCA	GGACGATTAA	AATCTTTAGC	TTCACTACTA	GGATCAATGA	3840
	GCTTTTTGGC	AGTCAATGTA	CGTTCATAAG	CACTAATTCC	TGTTGTTGTA	TCTACATGAT	3900
	CAATACTCAC	TGTAAATTGC	GTACCAAAGA	TGTCGGAGTT	ATCATCAACC	ATTTGTACCA	3960
45	AATCCAAACG	TTGTGCAATA	TCTTTAGACA	CTGGTGCGCA	TATTAATCCC	CtTGCTTCTT	4020
	TCGCCATAAA	ATTAATGGTA	TTATCGTTCA	TCCATTCAGT	AACCGCTACT	AAATCACCTT	4080
	CATTTTCACG	ATTCTCATCA	TCTACTACAA	TAATTGGTTC	TCCATTTTTT	AAAGCCATTA	4140
50	AAGCACTGTC	AATATTATCG	AATTGCATGC	TACCCCTCCt	ааааассааа	TGCTCTTAAT	4200
	TTATCTACAG	ATAATTGGTC	TTTATCTTTA	TTTAAAATAT	TTTCAACATA	TTTAAACAAA	4260

	CTCGTTTCTG	GAATAAGATG	AATGTCAAAA	CTGTTATCAT	GCTTATCAAA	TACCGTTAGA	4380
	CTAACACCAT	CCACAGTAAT	AGACCCTTGC	TTAACTAACT	GATTATTAAT	ATGTTGGCTA	4440
5	CATTGAATCG	TAATAATTTT	TGCATTGGCT	GTTTCATTTA	TTTTTGAAAC	TGTTCCTAGT	4500
	TCATCTACAT	GACCGAGGAC	AAAATGTCCA	CCAAACCTAC	CGTTACCACT	CATGGCACGC	4560
	TCTAAATTTA	CTTCTGATTG	TCGCTTAACA	TCTGCTAAAT	AGGTTTTATT	TTCAGTGCCT	4620
10	TTAATTACTT	GAACAGTAAA	AGATGTCTGA	TTAAAATCAA	TCACTGTTAA	ACATGCACCA	4680
	TTAACACTGA	TGGAATCACC	AATATGCATA	TCTGCCGTAA	TCTTATGTGC	TTCAATTTCA	4740
15	ATCGTCCTGA	CTGATTGACG	AATTTGAACA	CTTTTAACGA	CACCTATTTC	TTCAACGATG	4800
	CCAGTAAACA	TGCATCATCA	CTTCTTTCGT	AAAGTTAATT	TAACATTTTG	ATTTAATAAC	4860
	TCGGAATGAA	CAATTTCAAA	TTGGTTCGCA	TCTGGTATCT	CAATCACATC	ATTTGTTTGA	4920
20	TAAAATTGAT	AATTTCCAGA	TCCGCCAATT	AATTTCGGGG	CATAATAGAG	AATAAATTCA	4980
	TCTATATAAT	TAGATTGGAG	AAATTCTGAA	GTAGTGGTTG	GACCTGCCTC	GACTAGCAAA	5040
	GTTCCAACTC	CTCTTTTATA	TAAATTGTGA	AGAATTGTTG	TTAAATCGCA	AGACTTCAAG	5100
25	TAAATAATTT	CAATATGTGT	TTGATTGGTT	GTTAAATTTG	GATTTTCAGT	ATATATCCAA	5160
	ATTGGTGTTG	ATTCATCTTG	ATAAATTTGC	TGATTAAAAT	GAATATTCCC	AGACTTAGAC	5220
	AATATTACTT	TTATAGGGTT	TTTTCCATCT	TGAATACGTG	TAGTATATTG	TGGATCATCT	5280
30	AATTCAACTG	TACGTCTTCC	AGTTAACACT	GCGTCGTGTC	GATGTCTTAA	CTTATAGACA	5340
	TCTTGTTTAA	CCTCTTTGTT	AGTAATCCAT	TGACTTTGTC	CATTATCATT	CGCTTGTTTA	5400
35	CCATCTAAAC	TTGCAGATAC	TTTCACTGTA	ATTTGTGGCA	GTTGCTTTGC	TTTTGCTTTA	5460
	AAAAAGTCTT	GGTATAATTG	TGATGCCCGT	TCATCATCAA	CGCATTCAAC	CTCAATACCG	5520
	TGAÇCCCGTA	ACGTCTCATC	ACCATGTGTG	TCTAACGAAT	TGTCTTTTGT	TGCGTATACT	5580
40	ACTITIGCIA	TCTTACAATC	AATTATTTTG	TTAACACAGG	GTGGTGTTGA	ACCAAAATGA	5640
	CTACATGGCT	CTAACGTAAT	ATAAATCGTC	GCACCTTCAG	CATTTTGTTG	TGCCATATCA	5700
	AGTGCTTGAA	CCTCCGCATG	CTTGTCACCT	TTTCTCAAGT	GTGCACCAAT	ACCAACAATC	5760
15	CTACCTTCTT	TAACTACAAC	AGCGCCAACG	GGTGGATTAA	CACCTGTTTG	ACCTTGTACC	5820
	ATATTTGCAA	GTTGAATCGC	ATAATCCATA	AATTGACTCA	AATGATCACC	TCTATAAACA	5880
	AAAATCCTCA	CATCATGAAT	TAAGATGCAA	GGAGAAAAAT	TTATCGTTAA	ATAAGCCTAT	5940
50	TTGTACACAT	TTTTACAAAT	ACGCTACATT	ATCTTTGTCG	ATAATTAACA	TTCTTTCTCC	6000
	СУДСТВОВ	тта астити	CCTCTAGAAT	СТСАСТАСАТ	CAGCCACTAA	TATCABACAT	6060

				_			
	TTATATATGA	AATTGTTATA	GATTATTTGA	GTACGTAGTA	TGTCAACTAC	ATTTAAAATG	6180
	ATACTATATG	TTTTCTGAAA	AAACAATTAA	TGACGGTTTT	AATTTAATAT	AATCTGAGTA	6240
5	CTATAGGCAT	CTCATTGATA	TGATTCTTAC	TAACAGACAT	ТААААТСААА	CCTTCAATTC	6300
	GTCTCTATAG	AGCGTTCTCT	TTATTATCTT	CTAGTTACAA	ATTATTGATT	GtCACtGCGC	6360
	TGTTGTTGCT	CATTCGATTC	TAAAGCATCA	TATAATTGAG	ATACTGTATG	CGCAACTTGT	6420
10	TCTACAATCA	TTTTCACACC	GTTTCGTAGT	TTATTAACAC	CGTTTGTCAT	TTGACCTATC	6480
	GCAATCATAT	TTGTTAATGT	TCCAAACCTT	GGACTAATAA	CTTGATTGGT	TTCCGGAATG	6540
	ATTTGTATGC	CTCCCATTGG	GTGTGCTTGT	ACAATTTGTC	TATTTTCAAG	ATTTCTAATT	6600
15	AATTGATCAT	CTTGATCCAA	TTCATTTAAA	TGACTTTTTG	CACCTGTCGC	GTTAATGACA	6660
	ACATTATATA	TGTCTACTGA	TTCTTGGTTT	TTGTATGAAA	AATAATACAA	CTTGCCATaC	6720
20	ATGTTCACAT	CTTCTAAATC	TTTTTTCAAA	ATTAAAGACT	TATTTTCTAT	TAATTCAATA	6780
	ATTAGTTCAG	CAGTTCTTGG	AGGCATTGGA	TTTGAATTTA	ATTGAATCAT	CTTTGAGTAT	6840
	TTTTGATTAA	ATTGATGTTG	GTCTTCAATA	CTTAAGCTAT	TCCATATCCA	ATTTAAATTC	6900
25	TCTTTCAAAT	GTTCAATCAT	ACTTTGGAAA	ATGCCCaTTT	CTGTTGGACG	CGCTAAATCA	6960
	TACTTCAAAT	CTGCAATATG	ATTTCCTGTA	CGTCTATGTA	CTAATTTTTT	AAAATCAATG	7020
	TCATATTCAG	ÇACATTCTTT	ТАААААТААА	GAAACTAAAG	TATCAAGCGG	TGCATTGCCG	7080
30	AAATGATGTT	TTTTAATGTC	ATTTAATTTG	TCTTTAGTTA	AGTACTTGAA	TGTCACGTCT	7140
	ATCATTGTAC	CTCTTACACT	TGGTAAATGA	GCAGAACGAC	TCGTCATAGT	AATTGGTAAT	7200
	TTTGGATGAT	GAGCAGCAAC	ATAACGGACA	ACATCTAAAC	TGGCAAGGCC	TGTACCAATA	7260
35	ATCGCAATAT	CGTCCAGTTC	ATTTACTTCG	TCTAACGTAT	TATATGTTGG	ATAAGGCGTA	7320
	gcGATATATC	CTTTTTTACC	CTTTAAGTTA	TATGGATCAT	GGTAGGCAAA	TGTACCACAT	7380
40	GTTÄAAAATA	CATAATCGTA	CGCTTGCCAT	GATTGTCCTG	AATTTGTAGT	ACATATGTAA	7440
70	TAAGTTAAAT	TCGTTTCATC	GATATTAGAA	TTTGTATAAA	TCTCTTGAAC	TTTATTATAA	7500
	TTAGTTGATA	TATTTGGATA	TTTTTTCGTG	AACATAGATA	AATAAGATTT	CATATAATGT	7560
45	CCGAATACAA	ATCTCGGTAA	ATATGCAG				7588

(2) INFORMATION FOR SEQ ID NO: 143:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 10320 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 143:

	nCTAGGTATT	TTAAACCTAA	TCTAGATAAA	CTAGCTTCGT	AAGCAGCTGC	TACATTTTCA	60
5	CGACCGAAAT	CCTCAAAATA	TAATTTTGAA	GTAATAAATA	AGTCTTCTCT	AGCAATACCA	120
	GTTGACTCCA	ATCCGGCACG	AATGCCAGCA	CCTACTTGTT	CTTCATTCCC	ATAAACTTTT	180
	GCGGTATCAA	TACTACGATA	TCCTTGTTCA	ATGGCATACT	TAACACTTTC	CATGCAATTT	240
10	TCATCATTTT	CCACACGAAA	TGTCCCTAAA	CCAATTTGTG	GCATCGTGTT	TCCATTATAA	300
	AATGTTTTAA	CCTCCATAAA	TATCGCCTCA	CCTTTTTGAT	GTATTATACC	CTGTTATCAT	360
15	AACAAATCTG	AGTTGAATAC	ATGAGAAAAA	ACACTTAGAG	CAATCAACCA	СТААААТТСТ	420
	AGTAATATCT	CTCAAATATT	AATCAAATTG	TAAAAGTAAT	TCTGTTTAAT	TTATGACAAA	480
	CTAAAAAAGC	CGAAGTAACA	ACATATAGTC	ATCACTTCAG	CCTAACATTT	AATTGAATGA	540
20	TTCAATTTTA	TCCATCATTT	GTTGTAAGTC	TTCCACGTTG	TATTGAATAC	GACCATGGAA	600
	TACAAATTTG	TTAAAGAACT	CGTCTAATTG	TTCAGCACCG	ACAAGCACTT	TGACAGCACT	660
	ATTTTGATTA	TAATTTGAAA	TCGTTACATC	GCCTTCATTT	TTAAGATTAA	AGTATAAAAT	720
25	TGAAGTTGGT	GTATATTTGG	CACCTAATTC	TTTTTGTAAG	TCTTCAGCCA	ATTGTTTAAT	780
	CGCCTCAATT	TGATCTGAAT	AATTTACAAA	TGATAATGAA	CGTTTGTCAT	CATTTTGATC	. 840
	CATCACAATA	GTTTGCGGTC	TAGATTTATC	TAAATCCAAT	GTATCAAATA	CTTGTTCCAT	900
30	TGGTGGTAAA	TCTTTAAATT	GACCGCCACT	AATACCATTA	TAAACATGAC	CTTTTAACAA	960
	TTGAGAATCA	ATAATATAA	GACCAGTTCT	TGTTAATACT	AAATGACTAA	TTCGTTCAAT	1020
35	ATTATTAAAG	CCATCCTTTG	GTAAAAAGAT	ATTTGCCATA	ATGTGCATAT	CTTCTGGTCG	1080
33	AATTCGTTTT	TCTTTAACTA	ATCTTTCACG	AATACCAATT	AATCTCATGT	CCGTTACATA	1140
	TTCĄCTATGA	TTTTTCGAGA	ACAATTTTAA	TGCGTCAATC	TCACGATCTT	TTGTACTAAC	1200
40	CATGTGATTA	TAATCTTCTT	GTTGTTTTGT	AATTGTCTTT	TTATTTTGAA	TACGCTCTTT	1260
	CTCTAAAGCT	TCTTCATGAG	ACTTTTTAAT	GTTTTGTTCT	TGTTGTTCAT	ACTTTTCTTC	1320
	TGTTTGTCGC	TTAACTTTTT	TCTTACTACC	TAAGGCAACT	AAAAAAAGGA	CAAAAAAGAT	1380
1 5	TAATGCAATG	AgCTACTGCA	ATAATGAGTC	CAATGACTAT	CGGTGAAGAT	AAATCCATCA	1440
	CAACAACGCT	CCTTTTTAAT	ATATGAATAA	CTTTAATTAT	AATAGAaAAG	CTAAAGATTT	1500
	TCGATACATA	TTATCATTTA	TATACCGAAA	ATCTTTTATT	TAGCTATATT	CAATTCATCT	1560
50	TATTATTTTA	CTGCGTCTTT	TAATTCTTCC	ACTTTGTCTA	ATTTTTCCCA	TGGGAATAAG	1620
	A CATCTCTA C	CTCCNNNNTC	ACCATA ACCA	CCACTTTCTT	TCT3 3 3 TCCC	ጥጥ/ግጥጥ/ እ እ አ	1600

	AGTTGCCCTT	CAGAAACTTT	ACCTGTTCCA	AATGTATCAA	TTGCAATTGA	CACTGGTTCT	1800
	GCAACACCAA	TCGCATATGC	CAATTGTACT	TCACATTGAT	CTGCTAAACC	TGCTGCAACA	1860
5	ATATTTTTAG	CCACATAACG	TGCAGCGTAT	GCAGCTGAAC	GGTCTACTTT	TGTAGGATCC	1920
	TTACCACTGA	AGCATCCGCC	ACCATGACGT	GCATAGCCAC	CGTACGTATC	AACAATGATT	1980
	TTACGTCCTG	TTAATCCTGC	ATCACCTTGA	GGTCCACCGA	TTACAAAGCG	TCCTGTAGGA	2040
10	TTGATGTAGA	ATTTAGTTTG	TTCATTAATC	AAGTTTTCTG	GAACAGTTGG	ATAAATGACA	2100
	TGTGCTTTAA	TGTCTTCTTG	AATTTGTTCA	AGTGTCACAT	CCTCAGCATG	TTGTGTTGAT	2160
15	ACGACAATCG	TATCAATACG	TACTGGGTTA	TCATTTTCAT	CATATTCAAC	AGTGACCTGA	2220
	ACTTTACCGT	CTGGTCGTAA	ATAATTTAAC	GTACCATCTT	TACGCACATC	TGATAAACGT	2280
	TTTGCCAATT	GATGTGATAA	ATAAATTGCT	AGAGGCATAT	ACGTCTCTGT	TTCATTCGTT	2340
20	GCGTAACCAA	ACATTAAACC	TTGGTCACCT	GCACCTGTTG	CTTCAATTTC	TTCTTCGCTA	2400
	TCTTTATCAC	GATACTCTAA	TGCTTTATCC	ACGCCTTGTG	CAATGTCAGG	TGATTGTTCA	2460
	TCAATCGCAG	TTAAAATTGC	CATTGTTTCA	TAATCATAAC	CATATTTTGC	TCTTGTGTAT	2520
25	CCAATTTCTT	TAATTGTTTC	TCTAACAACT	TTCGGAATAT	CAACATATGT	TGTTGTAGAA	2580
	ATTTCGCCGG	CGATCAATGC	CATACCTGTT	GTAACAGTTG	TTtCACAAGC	TACACGTGCA	2640
	TTTGGATCGT	CTTTTAAAAT	AGCATCTAAT	ATTGCATCTG	ACACTTGGTC	AGCGATTTTA	2700
30	TCTGGGTGTC	CTTCTGTAAC	AGACTCTGAA	GTAAATAATC	GTTTGTTATT	TAACATAGTT	2760
	TGCTCCTTTA	AATTTATATT	ACGAAAATTC	TCTCTCTGTG	AGCTAAATAA	AAAAGACCTT	2820
35	CTAACTATTA	ATATAGAGAG	AAGGCCTAAT	ACGTCCATTC	GCTCTTATCG	TTCAGACCTA	2880
	TTTGTCTGCA	AAcGGTTTGG	CACCTTTCTT	TTATAAAAAA	GAGGTTGCTG	GGTTTCATTG	2940
	GGTÇCATGTC	CCTCCACCAC	TCAGGATAAG	AGAATCCGTT	AAAAATAATA	GTACCTAATT	3000
40	AATGAATTAA	TGTCAATTTT	TCACAAATAA	ATTTACAGTA	AAATATTGTA	GATTAATTAT	3060
	GTTAATGTGT	TATACTAATT	AAATGTAAAG	GCTTACATTT	AAATTATCGC	TTTGGAGGGA	3120
	TTTAGGATGT	CAGTAGACAC	ATACACTGAA	ACAACTAAAA	TTGACAAATT	ACTGAAAAA	3180
45	CCAACGTCAC	ATTTTCAACT	TTCGACGACA	CAACTTTATA	ATAAAATCTT	AGACAATAAC	3240
	GAAGGGGTAT	TAACAGAACT	TGGTGCTGTT	AATGCAAGTA	CTGGAAAATA	TACTGGTCGT	3300
	TCGCCTAAAG	ACAAATTTTT	TGTCTCTGAA	CCTTCATATA	GAGATAACAT	TGATTGGGGA	3360
50	GAAATTAATC	AACCTATCGA	TGAAGAAACT	TTCTTGAAGT	TATACCATAA	AGTACTAGAC	3420
	TATTTAGATA	AAAAAGATGA	ACTATACGTA	TTTAAAGGCT	ACGCTGGTAG	ССАТАВАСАТ	3480

	ATGTTTATTA	GACCTGAATC	AAAAGAAGAA	GCTACAAAGA	TTAAACCTAA	CTTCACTATC	3600
	GTTTCTGCAC	CACATTTTAA	AGCAGATCCA	GAAGTTGATG	GTACTAAATC	TGAAACCTTT	3660
5	GTCATTATTT	CATTTAAACA	CAAAGTCATT	TTAATCGGCG	GTACTGAATA	CGCTGGTGAA	3720
	ATGAAAAAAG	GTATCTTCTC	TGTAATGAAT	TATCTCTTAC	CGATGCAAGA	TATTATGAGC	3780
	ATGCATTGCT	CAGCAAACGT	TGGTGAAAAA	GGCGATGTTG	CATTATTCTT	TGGTCTATCT	3840
10	GGCACTGGTA	AAACAACCTT	ATCGGCTGAC	CCACACCGTA	AACTAATCGG	TGATGATGAA	3900
	CACGGCTGGA	ATAAAAACGG	GGTCTTTAAT	ATCGAAGGTG	GCTGCTATGC	AAAAGCAATT	3960
15	AATCTTTCCA	AAGAAAAAGA	ACCACAGATT	TTTGACGCAA	TCAAATATGG	TGCAATTTTA	4020
	GAGAACACTG	TAGTTGCAGA	AGATGGTTCA	GTGGACTTTG	AAGACAATCG	TTATACAGAA	4080
	AACACGCGTG	CCGCTTATCC	AATTAATCAC	ATTGACAATA	TTGTAGTACC	ATCTAAAGCA	4140
20	GCACATCCAA	ATACAATTAT	TTTCTTAACT	GCGGATGCAT	TTGGTGTTAT	TCCACCGATT	4200
	TCAAAGTTAA	ATAAAGACCA	AGCAATGTAT	CATTTCTTGA	GTGGTTTCAC	TTCTAAATTA	4260
	GCTGGTACAa	GCGTGGTGTG	ACAGAACCTG	AACCATCATT	CTCAACATGT	TTCGGAGCAC	4320
25	CGTTCTTCCC	GTTACACCCT	ACTGTTTACG	CTGATCTATT	AGGTGAACTT	ATCGATTTAC	4380
	ATGATGTTGA	TGTTTATCTT	GTTAATACTG	GATGGACTGG	CGGAAAATAT	GGTGTAGGAC	4440
	GTAGAATCAG	CTTACATTAC	ACACGTCAAA	TGGTAAACCA	AGCGATTTCT	GGCAAATTGA	4500
30	AAAATGCAGA	ATATACAAAA	GATAGTACGT	TTGGTTTAAG	CATTCCTGTA	GAAATTGAAG	4560
	ATGTACCGAA	AACAATTTTA	AATCCAATTA	ATGCTTGGAG	CGACAAAGAG	AAATATAAAG	4620
35	CACAAGCAGA	AGATTTAATT	CAACGTTTTG	AAAAGAACTT	CGAAAAATTT	GGTGAAAAAG	4680
	TTGAACATAT	TGCTGAAAAA	GGTAGCTTCA	ACAAATAAAT	TTGAATACTA	AATCAAAACC	4740
	ACCŒTGTGA	ACGGGTGGTT	TGTTCTGCGG	CTATAAGCCT	TCCTTACTGG	CCAGCCCTAA	4800
40	AAGĞGCACTG	ACAAGTCAGC	CAACTGCACT	ACTATTCCAG	CAACCCTAAA	GGGTTACTCT	4860
	TTTTTCTTTC	TTTTTTTATT	TTTCTCTCCA	GTGAAAGGAT	CTAAATATTC	TTCCATTGAG	4920
	ATTTGGTCTG	CAACGATATC	CTCTTGTAAT	TGATTACGAA	TATAATTTTC	AATCACTTTT	4980
45	TTATTTCTAC	CTACTGTATC	CACATAAAAT	CCTTTACACC	AAAACTTTCT	ATTTCCATAT	5040
	CTATACTTTA	AGTTAGCATG	TCTATCAAAT	ATCATTAAAC	TACTTTTTCC	TTTTAAATAG	5100
	CCAACAAATG	ATGATACCCC	AAGTTTGGGT	GGTATACTAA	CTAACATATG	GATATGATCT	5160
50	TTACATGCCT	CTGCTTCAAT	TATCTCTACA	CCTTTTCTTT	CACATAATTG	ACGCAATATA	5220
	ATCCCTATAT	CTTTTTTTAT	TTTTCCATAT	ATCACTTGTC	TTCTGTATTT	AGGTGCAAAG	5280

	AAATAGCATC	TCCTCGTGTT	GATTATTTTG	GTTGGCTGAC	CAATATTTAT	TCTAGCACGT	5400
	AGAGATGCAT	TTTTTGTGAC	AATGGTAGAA	CCTTTTCtGa	ACCATACGCA	TAGCGTATGG	5460
5	TTTTCTTTTT	ACAATTAAAG	AGCCAACCGT	TGTTATAGTC	TAACAATGGT	TGGCTCCTCT	5520
	TATTTTATGT	GCTAAAAATT	TATAGGCAAT	TTTATTACAA	CAATGTACAT	TTAAGGTGAC	5580
	CTTCATGCCA	AAATCGCATC	ACTCATTTAA	TGGAAGCAGC	ACGTCTTCAT	ATAAAGTACC	5640
10	GATCCCTAAT	TCAACGCATG	TAGTACCACA	TCTTCAAAGC	TTGATAGTTC	CCATGCGCAC	5700
	ACCACGTTTC	ATACTAGCTA	TGCGACTCAA	CTTGGTTCAT	AAACTCTTTA	ATATAAGTCA	5760
15	ATGTTTCAAC	CATCGCTGGT	GGTCTTGGCA	CATGTCCTTC	TGCCATTTGA	TAAAATGTTT	5820
	CATGCGTGGC	ACCTTTTAAC	TCTAGTTGGT	CCGCTAAATA	ATACGCATGA	TGAATACCAA	5880
	CTTGCTGGTC	TTTCCCTCCA	TGTACAATTA	ATATTGGCGG	ACTGTTTTCA	TTAATGTTTG	5940
20	GAATCGCTTG	GCGTGCCTCA	TATGCCGCTC	GATCTTTTTT	CGGATGACCA	ATCATTCTTC	6000
	GTAGCATGCC	TCTTAAATCG	ACACGTTCTT	CATACATTAA	ATCAATATCT	GAGACACCAC	6060
	CCCAGATTGT	ATAACTTGTT	ACTGGTAAGT	CTTGAAATGT	CAACAATCCT	TGTAAACCAC	6120
25	CTCGCGAAAA	ACCAACCATG	TGGATAAATG	CATGTGGATA	TTTATCATGT	AGCAACCTTA	6180
	ATAATTGCGT	CACATCATTT	AAATCGCCAC	GGTAAAATTC	GTCTTTGCCT	TCACTCCCAT	6240
	TGTTACCTCG	GTAGTATGGC	CCAATCACTA	AAGTTTGACT	ATCTGAAAAT	TGCATTAATC	6300
30	TACCTGCGCG	CACACGTCCT	ACTTGACCTT	TGCCACCTCG	CAAATAAACT	ACAATGCGAT	6360
	TTACTTCATG	ATGTGGTGTC	ATCATTAAAG	CTTTTACTTG	TAAGTCATCT	GACAAATATG	6420
35	TAATITCITC	GAATTGATGC	GTAAAATATT	CAATTGGCAT	TCGTTTACGT	TTGATAAAAC	6480
	CCAAGTGATT	GCACCCTCTC	TACGCATTTT	AAAATGGTAC	TATCTTGCAG	TAAGAAACTC	6540
	CGTTGTGCGA	GTTCAATATC	ATTGATACAG	TTAAACAACA	CTGGCCCTGC	TGTTTCTAAA	6600
40	TAATCGTTCT	TGCTTACCAA	TGATTCAACT	TCGATAAAAT	ATACATCTTT	TACAAAATCA	6660
	GTTTGATCAT	GTGTTTCAAT	GGTATATTGT	GCTATGTAAT	AAATATTTTT	AACTTTGGCG	6720
	CCTGTTTCTT	CATATAATTC	aCGTGTAACT	GCTTCAGCAC	TACTTTCCCC	GCGTTCCCTT	6780
45	TTACCACCAG	GAAATTCAAT	CCCCCGTAAA	TTATGTTTGG	TAAAAAGCAA	TTGATTTTTA	6840
	AACGTTGGAA	TAGCTAGCAC	ATGATTGCCA	TCTGCTATCT	CATTATCCTT	TTTAAATGTC	6900
	AAATTAACTT	GACGATTATC	TTTATCCCTA	AACTTCACGC	GCATCACATC	CCTACATTGT	6960
50	ATGTTAATAT	AATAGTTAAT	TACTATCGTT	GGAGGCATTA	ATTATGAAAA	AGATATTCTT	7020
	GGCGATGATT	ראידידידער	ΔΔΟΩΤΌΤΟΔΤ	TTCGCCACTC	ACTCCACCAA	СПТСТСТТТ	7080

	CCTTTATTTA	GGTATCCGTC	GTATTTTAAA	ATGTCATCCG	CTTCATAAAG	GCGGCTTTGA	7200
	CCCTGTTCCG	TTAAAAAAAG	ACAAGTCAGC	AAGCAAGCAT	TCACATAAAC	ATAACCATTA	7260
5	ATATGGTTGT	AATTGAGTTA	TATCCACTAA	AGGGGGGCGA	AATTCGAGTC	GCCCCTCTTT	7320
	TAATATGCCT	GAATGCGCCA	CCACATCTTG	ТТСААААТАА	TAACCTGCTG	GTGTAACATC	7380
	TCCTGGATAA	TCACCTTTAC	GAGCAAGCAT	CGCTGTAAAA	TAGCGGCTTA	AACCATATTC	7440
10	GTACATGCCG	CCAATAACCA	CTTTTGCACC	ATGACTTTTC	AAAGTATCAA	TTGCCGTTTG	7500
	CACTTTATCA	ATGCCACCTA	GACGAAATGG	TTTTAATACA	ACAACTTTCA	CATTGTATAA	7560
15	TTCTATCAAA	TTAATTATGT	CCaACAACGA	TGTTGCCTTT	TCATCAAGGG	CTATTGGAGG	7620
	TATTGTTCCA	TCCGCTACTT	CATCAAGCAT	GGAGATATCT	TTAAATGGCT	CTTCGATATA	7680
	AAGAACCTGT	TCACGCGCTA	ATAACTGTAA	CTGTGTGAAA	TCTTGACGAT	CCAAGGACTC	7740
20	ATTTGCATCT	ATAACCAATT	GAAAGTGAAA	GTCTAATTCC	CGTAACACTC	TAATTTGATG	7800
	CATGATTTGA	GGCGTCCATT	TTAATTTAAT	TCTGGTCGGC	TTTGTTGCTT	TTAATGACTC	7860
	TAGTTGTTTA	TTTGATAAGC	CGCTCGcTGT	CGCTCCATAT	GCTACTGAAA	ATGAAGGCAG	7920
25	TACATGAAAC	ATTTGATACA	ATGCCATGAC	AATAGTTGCC	CTTGCAGCAG	GCGTATTTTC	7980
	CAATGAATCT	ACTAATTTTA	GTGCTGCTTC	ATACGTTTCA	AATGATTTAT	TTCTATTATC	8040
	TTCGAACCAT	TGCTCAATTA	CATGTTTCAC	TGAGGCAATT	GTTTCATGAT	CATACCAATC	8100
30	TGTTTGAAAA	GCGTTACATT	CCCCGAAATA	TGCATTTCCT	TTGTCATCAA	TCAATTCGAT	8160
	AAACAAACAA	TCACGATGCG	TTAAAGTGAC	TTTCGGTGTT	ACAATTTGTG	ACTTAAATGG	8220
35	CTCACTATAT	TTATAAAAAT	GCAAAGCTGT	CAACTTCATC	AAATCATCCT	CTATACAACT	8280
	TATTTCTTTG	TAATTTACCT	GTTGATGTAT	AAGGTAAAGT	ATCAACCTTT	TCAAAGTGTT	8340
	TCGGTACTTT	ATATTTCGCT	AAATGTTGTG	ATAAATATGC	AATCAATTGT	GCCTTTGAAA	8400
40	TGTCACTTTC	ACTGACAAAA	TATAATTTAG	GCACTTGGCC	CCAAGTATCA	TCAGGATGCC	8460
	CTACACATAC	TGCGTCACTG	ATACCTGGAA	ATTGCtTCGC	TACCGTTTCA	ATTTGATATG	8520
	GATAAATATT	TTCACCGCCA	СТААТААТТА	AATCTTTACG	TCGGTCATAA	ATCATGACAT	8580
45	AACCTTCATG	ATCTATTTCA	GCAATGTCAC	CCGTATTAAA	ATAACCATTT	TCAAACGTAC	8640
	CCGTTAAATC	TGTTGGATAC	AAATATACAT	TCATCACATT	GGCGCCTTTA	ATCATTAATT	8700
	CTCCATGACC	TTCTTTATTA	GGATTTTTAA	TTTTTACGTC	AACATTGGCA	CTTGGCATCC	8760
50	CTACAGTGTC	AGGACGTGCA	TGCAACATTT	CCGGTGTTGC	TGTTAAAAAT	TGCGAACATG	8820
	тстсастсат	ACCA BATCA B	ייייי או או איייי	CCACCTTATA	תייביים אייביים	ሮ ሞርሞርሞአ ሞር አ	0000

	AACCTTGTTG	CATAAGCCAA	TTTAAAGTTT	GTGGCACAAG	CGAAATGTGC	GTGATTCGTT	9000
	CATTTTTAAT	CATCGTTAAA	ATTTGTTCGG	CATTGAATTT	ATCAACAATG	CGCACAGTAA	9060
5	AACCTTCAAT	AACAGCTCTT	AAAAGTACAC	TGAGACCCGA	AATATGATAA	ATCGGCAAGA	9120
	CAGATAGCCA	ATTAGTGTCA	CGATCAAATC	CCAAGCTCTC	TTTACATCCG	ATTGCACTGG	9180
	CATAATGATT	ACGAAACGTT	TGTGGCACCG	CTTTTTGAGG	GCCCGTTGTC	CCTGATGTAA	9240
10	ACATAATCGA	TGCAATGTCA	TCTAAATTAA	ATGATGTATT	TAATATGTTG	GACGGCGACT	9300
	CTTTCGGCAC	CACAGTTTCA	TTCGATGTTT	CATATTGGAT	ACCCATTGTG	TTGTCCAACA	9360
15	AACTGTTCGT	TGTAATATCC	CTTCCAGCGA	ATTCAATATC	ATCCAGCGAT	ACAATTTGAA	9420
	ACCCTCGTAA	TTCCAGTGGC	AAGGTACAAA	AAATCAATTG	TACATCGATT	GACTTCATCT	9480
	GATTCGTCAT	CTCATTAGGT	GTCAACCTTG	TATTAATCAT	CGCAATTTCA	ATATTTGCCA	9540
20	ACCAACATGC	ATGTATTAAA	ATGATCGATT	GAATCGAATT	ATCTATGTAT	AGCCCAACAC	9600
	GAGATTGTTG	ATAAGCCTTG	AGTCTTTTAG	CCAATAGACT	CGCTTCACAG	TATAAATTTT	9660
	GATAAGTATA	AGATTCTTGA	CCGTCTGTTA	TCGCAATATG	ATGTCCATTT	TGTTGTGCTT	9720
25	GTTTATATAA	CCAAAAGTCC	ATGCGTTATT	CCTCCAAAAT	CATTTACATT	ATAATTATAA	9780
	CGATTTTATG	ACATTCTAGC	AGTGGTTATG	TTTAAAAATA	TAAAAAAGTA	GACGAATTGA	9840
	TGCATTGATA	TGATTGTTAT	AATGCTCAAT	ACATATCGTT	ATATCATTCG	TCTACTATTA	9900
30	TCAGTTATTT	TTATTTAATT	TTAGTGTCAT	TCTGTCATTT	TGATGTGGTG	ATTTACCCAT	9960
	TGTTGCCACA	TCATCTGCAA	TGTCAATTGG	TATACGGTTC	ATGTCTTGTA	ATGCACTTAA	10020
35	ATGGAATACT	TCATCATCTA	AATTTTCAAT	GAGATATACA	TAATATGTTA	CCTTGTCCTT	10080
	TITATATTTT	AACGTTTTCC	AAAAGTCCGG	CTTGCAATTC	AATACATTAT	CCGGAATATA	10140
	TTCĀĀTĀĀĀT	AAGTAACGTT	TGCTGCCTAC	TTTGTCTATG	AAATATTTTG	CAGTGCCTTT	10200
40	TTCTATACCT	CTTATATGTG	CATAGTCTGC	TGAAAAGTAA	ATACTACCTA	TTGTTTCATT	10260
	ATGTTGTTGT	ATTTCAAATC	GTTGGCCTAC	TATTTTATTA	TTTGTGCTAC	nGGGGACTTA	10320
	(2) THEODN	MION DOD CI	10 TD NO. 1				

(2) INFORMATION FOR SEQ ID NO: 144:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1477 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 144:

55

45

	GTGTGGATTG	GATTTTAAAA	TCACCCTCAT	AAATACTGTC	ATCAATATGA	TAAGTTACAA	120
	TTTCACCTAT	TATTAAATCA	GCCCCATCTA	ATACATCTCC	AAGCAATATC	ATTTGCGmTA	180
5	GTTTACATTC	GAATCTCATT	TTCGCATCTT	TAATTCCTGG	CGTCTTAATC	GTTGTAGATG	240
	TTAAAAGTGA	TAATTCTGTA	CGACTCAACT	CACTGTCACC	ATATGCTAAC	GGCGCTGCAG	300
10	TCTCATTAAT	ATCTTGAACA	TTATCTTCGT	CTGTAATATG	CACAACAAAG	TCTCCAGTCC	360
10	GTTCTATATT	TAATGCAGTA	TCTTTTCTCT	TACCTCCTGC	ACGTTGAACT	GCAATAGCAA	420
	TCATTGGCGG	ATGATTATTA	ACAATATTAA	AAAAGCTAAA	TGGTGCTGCA	TTTACTGATG	480
15	CATCTTGATT	TAATGTTGTA	ACAAAAGCTA	TAGGTCGTGG	AATAATTGAA	CCAATTAATA	540
	ATTTATAGTT	TTCTCTAGCA	GTTAATGATT	GTGCATCAAA	CGTATACATA	ATACCTACCT	600
	CTTTTCTAAG	TATATCTAGG	TATTTCTCCG	ATTTTGGTTA	ATTTAAACAT	CTATTCTCCT	660
20	CTGAAAATCA	CTTGTATTTA	TTTAGCAAAT	CTTTTGAAAT	ATGACACATA	TGCATATCTT	720
	CTGGATATTT	TTCTAAATGT	TGCTGATGTT	CTTCAGCACT	TTTAATGTAG	TTAGACAGCG	780
	GTAAGACTTC	CACTGCAATT	TGATCTCTGT	CTTTACGTCG	TTCAATGAAC	TGACGCGCTT	840
25	CAATTAAGTG	GTCATCTACA	CAACTATATA	AACCCGTTCG	ATACTTTTGT	CCAATATCAT	900
	TTCCTTGTTG	ATTCACACTG	TAAGGATCAA	TGATTTCAAA	TAAATAATTC	ATAATGTCTG	960
	TAATTGTTAA	CATACGATCA	TCGAAATGAA	GTTTGACACA	TTCAGCATAA	CCATCATACG	1020
30	GACCGTCTAA	TTTAGAGCTT	CTTCCATTTG	CTCTTCCTGC	TTCTGTATGT	ATAATTCCAG	1080
	GTATTGTTGC	AAAAAATGCT	TCAACACCCC	ATAAACATCC	TCCTGCTACA	TAAACAACTG	1140
35	CCATATTTAC	ACCTCATCAT	CCTTTTTTAT	ATTTTTAACA	AGGTTATACC	ATTTAATACC	1200
	GCCATGACAT	GATTCTGATA	CACCTTCATT	ACGATACCCA	TATTTTTCAT	AAAATGAAAT	1260
	TAATGATTCT	CGACATGTTA	ACGTTACACC	ATGTCGATGA	TGATTCTTAG	CAAGAGTTTC	1320
40	AAAATAGTTT	AGTAAGCGAC	CTGCAATACC	CTGACCTTGA	TAATTTGGTG	CTACAACAAG	1380
	ACCTAACACA	CTAATATAGC	CACCTTCACT	ATTATTTGTG	GAGACATTTT	TAAATAAATC	1440
	ATCGCTAATG	TAACGCTCTT	TTATGACTGG	ACCGTTG			1477

45 (2) INFORMATION FOR SEQ ID NO: 145:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 3976 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

	AGGTGATTAT	CCTAAAAATG	CTCATGAGGT	CGCTATTAAT	GATAAGTTAG	CTGCAGACAA	60
	CATTAGAGTC	GGGGATAGAT	TACATTTTAA	AAATAATTCA	ACTAGTTATA	GAGTTTCTGG	120
5	TATTTTAAAC	GACACAATGT	ATGCGCATAG	TTCCATTGTG	CTATTGAACG	ATAACGGATT	180
	TAATGCATTG	AATAAGGTTA	ATACGGCATT	TTATCCAGTG	AAAAATTTAA	CACAACAACA	240
	ACGTGATGAG	CTTAATAAAA	TAAATGACGT	TCAAGTTGTG	AGTGAAAAA G	ATTTAACAGG	300
10	TAATATTGCG	AGTTATCAAG	CAGAGCAAGC	ACCGTTAAAT	ATGATGATTG	TTAGTTTGTT	360
	TGCTATTACA	GCAATCGTTC	TAAGTGCATT	TTTCTATGTT	ATGACGATTC	AAAAAATATC	420
15	ACAAATTGGC	ATTTTGAAAG	CAATTGGTAT	TAAGACAAGA	CATTTATTGA	GTGCGTTAGT	480
	TTTACAAATT	TTAACACTAA	CAATAATTGG	GGTAGGTATT	GCTGTGATCA	TCATAGTAGG	540
	ACTATCATTT	ATGATGCCGG	TAACGATGCC	TTTTTACTTA	ACAACGCAAA	ATATTTTATT	600
20	AATGGTGGGG	ATATTTATAT	TAGTAGCGAT	TTTAGGTGCC	TCACTATCAT	TTATCAAATT	660
	ATTTAAAGTG	GATCCTATCG	AAGCAATTGG	AGGTGCAGAA	TAATGGCATT	AGTCGTTGAA	720
	GATATCGTCA	AAAATTTCGG	AGAAGGTTTG	TCTGAAACAA	AAGTTTTAAA	AGGTATTAAT	780
25	TTTGAAGTGG	AACAAGGGGA	ATTTGTCATT	TTAAATGGTG	CCTCTGGTTC	TGGGAAAACA	840
	ACATTGCTAA	CGATATTAGG	CGGATTGTTA	AGTCAAACGA	GTGGTACAGT	GCTTTACAAT	900
	GATGCGCCAT	TGTTTGATAA	ACAGCATCGT	CCTAGTGATT	TACGATTGGA	AGATATTGGT	960
30	TTTATTITTC	AATCTTCACA	TTTAGTTCCT	TATTTAAAAG	TGATAGAGCA	ATTGACACTC	1020
	GTAGGTCAAG	AAGCGGGAAT	GACCAAACAA	CAAAGTTCAA	CAAGAGCAAT	ACAACTTTTG	1080
35	AAAAATATTG	GTTTAGAAGA	TCGCTTGAAT	GTATATCCGC	ATCAGTTATC	TGGCGGTGAA	1140
	AAGCAACGTG	TTGCGATTAT	GAGAGCATTT	ATGAATAATC	CGAAAATCAT	TTTAGCAGAT	1200
	GAGÇCCACAG	CAAGTTTAGA	TGCCGATAGA	GCAACAAAAG	TTGTTGAGAT	GATACGTCAA	1260
40	CAAATTAAAG	AACAACAAAT	GATTGGTATT	ATGATTACAC	ACGATCGAAG	ATTATTTGAA	1320
	TATGCAGATC	GAGTGATTGA	ATTAGAAGAT	GGCAAAATAA	CTGATTAGTG	GCTTGTAAAG	1380
	ACGCTAAATG	TTAATGATTT	AAGACATAGT	agtataaaag	TTAGATAACA	GAATACGATT	1440
45	TGGGTTTACA	AAAAACAGGC	TGGGACATTA	AGTTCTTAGG	CAATGTAAAA	AAGCTGATTT	1500
	СТАТТААТТА	TTTGATAGAA	ATCAGCTTTT	TTGATATGTA	TTTTATAATG	TACAGCTCGT	1560
	TGCATTCATA	TAGCTTGAAG	TCACGTTTAA	AACCATATCT	ATCATTATGG	TATGCATATC	1620
50	TTTTAAAAACC	TATTCTTTTG	TTATTAGGAC	ATATAAATTC	ATCATTAAGT	TCGTCATATT	1680
	maa samaana	3.00000003.3.3.3	3 mama3 amm	ma a a commo con			

	CACTATCATA	ACATGCATCA	GCTACAATAT	ACTCCGGTAA	ATAACCGAAG	nTATTTTGAA	1860
	TCATTGTTAA	AAATGGAATT	AAAGTTCTAG	TATCTGTTGG	GTTTTGAAAT	AGGTCATAGG	1920
5 ·	ATAAAACAAA	TTGAGAATTT	GTCGCTATTT	GTAAATTGTA	TCCTGGCTTA	AGTTGGCCAA	1980
	AGTGTCTTAT	TTTTTTAAAG	TATTTAAAAG	TAAAATTACA	TGTTAATACG	TAGTATTAAT	2040
	GGCGAGACTC	CTGAGGGAGC	AGTGCCAGTC	GAAGaCAGGG	GCCCCAACAC	AGAArcTGAC	2100
10	ATATAGTCAG	CTTACAACAA	TGTGCCGGTT	GGGGTGGCTG	AGACGGCACC	CTAGGAAGGG	2160
	ACCCGTCATC	AAAAATTCTA	TTTATAGAAT	TTTACAGTAA	TGTGCCAGAT	GGGCATAGCG	2220
15	AAgcCATTCA	ATACGAAGTA	TTGTATAAAT	AGAGAACAGC	AGTAAGATAT	TTTCTAATTG	2280
70	AAAATTATTT	TACTGCTGTT	TTTTTTAGGG	ATTAATGTCC	CAGACTCTTT	AGTITATTTA	2340
	TTTTCAATAT	AACAATTGTC	TAATCAAGGA	TTAACGAATA	TTTAAAGATA	GTTTGACGCA	2400
20	ATATTAGAAA	CAACCTATAA	TAATAGTTTG	TTTGTGGATT	AACTATTATA	AATAAAAGCG	2460
	GCGTAAAGAC	ATATAAACCA	ACTACTTGAA	CAATATAACG	TTAATAACAA	TCTATACTGA	2520
	TACATTACGC	CTAGATAATC	TTTGATGAGC	ACATGTAAGA	AAAAGTGATA	TGGTGTATGA	2580
25	CTTCCGACAC	CATCGATAGA	TAAACCTAAT	TTTTGGGCTA	GTCGTAAGGC	GCGCAATACA	2640
	TGAAACTGAC	TTGTtACACA	AACAATTTTA	ACTGCTTCAT	GATACAAATT	GTTGATGATT	2700
	TGTTTAGAAT	ATAAAAAGTT	TGTGTATGTA	TTTATAGAGT	GAGATTCCAT	TAGTATATCT	2760
30	GTTTTATCAA	CACCATGTGC	AATCAAATAA	CGTTGCATAG	CTAAAGCTTC	AGAAATTGGT	2820
	TCGTCTGGTC	CTTGTCCGCC	AGATACAATG	ATCTTTGTTG	CTGATGCTTG	TTGTTGATAG	2880
35	ATATCAAGTG	CACGATCTAA	ACGCGCTGCA	AGCATTGGTG	TGACAAATTC	GGTAAAAATA	2940
55	CCAGCACCTA	ACACAATTAT	GATATCAACT	TCTTTGTTGT	ATGATCTATG	TCTATATGAT	3000
	ACTGTCCAAA	CGAGATAACA	AATAAAGGTT	AGTAACAGGG	AAAGACATAA	TATAGCTAAC	3060
40	CACATAGACA	AACCTTTCAC	AATAGGTGAC	TGAATCGTAC	TTATAAATAG	AAGTGCTGAT	3120
	GTGTAGAGTA	CAAATTTATA	TGAAAAAGAT	AATAATTTTT	ТААТАААТАА	GCGACTAGAA	3180
	GTATGAGAAA	ATAAATATCT	ATGTTTGAAT	AGCATGATAA	TACTGATTAT	TATAAATGTT	3240
45	ACAAACATAG	ACCAAGGGAA	AGTATAGGTC	ATGATGCTAT	AGATGAGTGA	CAAAAATATC	3300
	GATATGACAA	CTAAGATGTA	GCATGTTAAA	TTTAACGTCA	GAGTATAGTT	GAAAATTAAC	3360
	GGACAAATAA	CGATAAGTAT	AAATATTAAT	AATAAATTCA	ATAACATACT	GACACCTCGC	3420
50	TTATAATAAA	TATTAAATAT	AAATGTAGAT	GATTTAATTT	ATTAAAGCAA	GGAGAAAGCA	3480
	GCAACATGTA	AATCTTAATT	TGTTATATTA	TATATGGGTC	AATATTTTTG	TGTTTTTTAG	3540

	TATGGTAAAA CATTTACAAG ACCATATTCA ATTTTTAGAG CAGTTTATAA ATAACGTTAA	3660						
	CGCATTAACT GCAAAAATGT TGAAAGATTT ACAAAATGAA TATGAAATTT CATTAGAGCA	3720						
5	GTCTAACGTA TTAGGTATGT TAAATAAAGA ACCTTTGACA ATTAGTGAAA TCACGCAAAG	3780						
	ACAAGGTGTA AATAAGGCCG CAGTAAGCCG ACGAATTAAA AAGTTAATCG ATGCTTAATT	3840						
	AGTTAAGTTA GATAAACCAA ATTTAAATAT TGATCAACGT TTGAAATTCA TAACCTTAAC	3900						
10	TGACAAAGGT AGAGCATATT TGAAAGAACG TAATGCGATT ATGACAGATA TTGCGCAAGA	3960						
	TATTACTAAT GATTTA	3976						
15	(2) INFORMATION FOR SEQ ID NO: 146:							
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3346 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear							

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 146:

GCTACCTAGG	CATTTAAGAG	ATCAAAAAAT	GTATGAATAT	GAACGTTATT	TTTATGAGCA	60
AGAACTTAAT	GGCGTTGATG	aaggggaaat	TTTAAAGAAG	TTAAAAGACC	CACAAGATGT	120
TGCAGCTGAA	ACAAAAGCTA	GAAGTGTTAT	TGATTATGCT	GAATCTAAAC	CAACATTTGA	180
AAATATTTCA	AGAGCTGTTG	CTGCTTCATT	AAGTTTAGGC	ATTCTATCTA	TTTTTGTCAT	240
CCTTATACCA	GTATCTATAG	TTGGATTATT	TGTATTAGCA	TTATTTTTAA	TATCACTTTT	300
GCTGCTGTTT	TGTCCAATTA	TTTTATTAGC	ATCAGCAATA	TCCAGAGGAA	TTGTGGACTC	360
AATTAGTAAT	GTATTTTTTG	CCATATCATA	TTCAGGATTA	GGATTAGTAT	TTATCATTGT	420
CATATTTAAG	ATTTTAGAAT	ACATTTATCG	TTTAATCTTA	AAATATTTAC	TTTGGTATAT	480
TAAAACTGTC	AAAGGAAGCG	TTAGAAAATG	AAGAAATTCT	TTTTTATTGG	GCTTTTAGTG	540
TTTGTTGTCT	TTTTTACAGC	AGCAACCATT	ATTTGGTTCA	GCTATGATAA	AAACAAATAT	600
GGTACTAAAC	AATATGATAA	AACATTCAAA	gACGATGCTT	TTGACAATGT	ATCTATAAAT	660
TTGGATAGTA	CAGAACTTCG	TATAAAACGG	GGGAATCAAT	TTAGAGTTAA	ATATGATGGT	720
GACAATGATA	TATTAATTAA	TATAGTAGAT	AAGACGTTGA	AGATTAGTGA	TAAAAGGTCT	780
AAGACAAGAG	GATATGCAAT	TGATATGAAT	CCTTTTCATG	AGAATAAGAA	AACGTTAACG	840
ATTGAAATGC	CTGATAAAAT	GATTAAACGT	TTAAATCTAT	CATCTGGAGC	AGGAAGTGTT	900
асаатсастс	איייר א באיירבאיי	ACACAACACA	ስርጥስጥጥርስ አ አ	CCATTAACCC	ጥር እ እርጥ አርጥጥ	960

	AGTAAAAGTA	ACATTAAAAA	TAGCAATATT	AAAGTTGTTA	TTGGTACGCT	ACAAATCGAC	1080
5	AAGAGTCAAA	TTAAACAATC	CATATTTTTA	AACGATCATG	GTGACATTGA	ATTTAAAAAC	1140
	ATGCCATCAA	AAGTAGATGC	AAAAGCTTCT	ACTAAACAAG	GAGATATTCG	TTTTAAGTAT	1200
	GATAGTAAAC	CTGAAGACAC	TATACTAAAG	CTAAATCCGG	GAACGGGTGA	TAGCGTAGTT	1260
10	AAAAATAAAA	CATTTACTAA	TGGtAAAGTT	GGGAAAAGCG	ACAATGTTTT	AGAATTTTAT	1320
	ACGATTGATG	GTAATATCAA	AGTTGAATAA	ATAAAGGATG	TAAGCACCGA	TATTAGGAAG	1380
15	CATAATTTCT	CTAATATCGG	TGTTATTTAT	TTGTTGGCAA	AAGTTAAGTC	GGTATCTATA	1440
	TTGCCAGTAA	AGTGAGTGAT	ATTAAGGTCT	TGACCATCTA	ACCATGATTT	GAAATCTATT	1500
	ATTTCTGGTG	GCGCATTTTC	TCCCAATGTA	AAATATGCAG	TTAATGTTTC	AGGTTGATAC	1560
20	ATTGATGTAT	GGATGGTGCC	AGACCAGCTT	TTGAATAGTT	TACTGTAAAT	TTCATACTGA	1620
	GGATTATTGA	ATAACTTAAA	TGCTGTAGTC	ATATCTAAAT	TATCATTAGT	TTGTGAAATG	1680
	GTACGCGCCA	GTCTTTCTTT	AGATTCTTTT	GTATAATTAC	GATTTTCATG	TGTTAATATT	1740
25	TCAAAATGAT	TTGTACATAT	ATTATCATAA	CGAACATCTA	TTGATCTCGG	TGTCACTTCA	1800
	ACAATTGCAT	GGTTCAATGA	TTTGTCCATC	AGTATGTAGC	TAAATGAGCT	TCTGTGTGGT	1860
	ATTTCTTTCA	ATAATTGGAT	TGCTTCTGTT	ACATTTCGGC	AATTTTCAAG	AATTAGACGA	1920
30	CCAATCATAT	AACATACAAA	ACCATTTGCT	GGTTTCTTCC	GGTGCATAAA	GTTATAGCCC	1980
	ATAGTTAATC	CTGACTCATT	CATACCATCC	ATTCTTCCAG	TTACCCTTGA	TACAGGACCA	2040
35	ATTTGAGCTA	AACCGCTATC	TGTAGGTTGA	TAAAGTAAGT	AGCGACCATC	ATAAGTTGCA	2100
	GGGTGGTAAT	CATAATTTCT	AACCATGAAG	TCTTTGCCTT	GAAAGACCGT	GCAaCCACTT	2160
	TCTTTTAAAT	CGGTAAAACG	ATAATGTCCA	AAGTTTAAAA	TAATTTGGCG	TGTTGGCATT	2220
40	TTGAGTATAC	TTTGTAGTCC	CATTAATTCT	TCCCATATTT	GAGGTGCGTA	TGTTTGGAAT	2280
	ATTTGATAAG	TTTCATTTAC	ATCTATATCG	AAACGTGGGA	CaCnTTTTTT	CCATTCTTTT	2340
	TCTCGATTTT	TTAGAAGAGG	TGTTTGTTGA	AGCCATTTAC	CAGTTTTAAC	ACCTAACTCG	2400
15	AAATGTGAAC	CTCTAAAAGT	CATGATATCT	GATGTCACTT	GTTGCATATC	ATCGGCCCCT	2460
	TTCTTTTTAG	TTGTAATATA	TTGTAAATAA	ATAGTAATCG	TATGTATATT	GAATGTCATG	2520
	TTAAATAAAG	TTATATTTTA	CTAAATGAAA	TATAAAATTG	TTTGAGGTGA	TTTCTCGGTG	2580
50	TATAAGACTT	ATCAATCAGT	TAAAACATAT	TTTTATAGAT	GGTGGGGATA	TTGAGTTAAA	2640
	AACTTAAAAT	CATCTTATCA	TAAATATCAA	TCTTAAGTTA	GCATTCACGA	TAATAGTCAT	2700
	TGTTAACATT	АССАТАТААС	GTCATGTCAC	GTTGAAACAG	AGGTTCCTCG	CCATTTTTCA	2760

	TTATTTAATG ATTATTCTAT ATATGATAGT ATAATGAAAT GTAGATAGGT ATTTAATTTA	2880
5	ACAGAGGTGA AATTGAGATG TGGAATTTTA TTAAATGtGT GKTTAAATTC GTATTTAGCT	2940
	TAGTTGCTAT TACAACATTA GTTGCTGGTG TTGGTGTAGT AGCATTTGCT TATATCTTTA	3000
	AAAAAGATTT TGAAGATATT GAAAGAAAAA CTAAAGAAAT TATTTCTGAT ATTGAAAGTA	3060
10	AAAATAACTA ATAACATTTA GAGGCTGGGA CATAAATCCC TAAAAAACAG CAGTAAGATA	3120
	ATTTTCAATT AGAAAATATC TTACTGCTGT TCTCTATTTn ATCAMTACTt CGTATTGAAT	3180
	GGCTTCGCTT TCCTAGGGTG CCGTCTCAGC CTTGGTCTTC GACTGGCACT GCTCCCTCAG	3240
15	GAGTCTCGCC ATTAATACTA CGTATTAACA TGTAATTTTA CTTTGGAAAT ACTTTTAAAA	3300
	AATAAGACAC TTTGGCCCAA CTTGGCACAT AAATGTAAAA TTCAAT	3346
	(2) INFORMATION FOR SEQ ID NO: 147:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2375 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 147:	
30	GTTGAAGAAA GAAATATAAC AGTCAATTAT AATTATAACC TTGTTGAAAT CGACGGTGAC	60
	AAAAAAGTGG CTACATTCGA ACATATCAAA GCATACGATA GAAAAACAAT AAGTTATGAT	120
	ATGTTACATG TAACACCACC TATGGGTCCC TTAGATGTAG TAAAAGAAAG TACACTTTCA	180
35	GATAGTGAGG GTTGGGTAGA TGTTAACCCA ACCACATTAC AGCATAAAAG CTACTCTAAT	240
	GTATTTGCAC TTGGTGATGC TTCAAATGTA CCTACTTCAA AAACAGGCGC ACTATTcGTA	300
	AGCAAGCACC TATCGTCGCT AATAATTTAT TGCAAGTGAT GAATAATCAA ATGTTAACGC	360
40	ATCATTATGA TGGTTATACT TCATGCCCTA TTGTTACTGG ATATAATAGG TTAATACTTG	420
	CAGAGTTTGA TTATAATAAA AATACTAAAG AAACAATGCC GTTTAATCAG GCCAAAGAAC	480
	GTaGAAGTAT GTATATTT AAGAAAGATT TATTACCTAA AATGTATTGG TACGGCATGC	540
45	TAAAAGGATT AATATAATAA AGTACAGAAA ACAATAAATT TITAATGAAA AATCTTTTAC	600
	TATAAAAGAT TAAGTATTTA AATGACGTGT CAGTGTTGTG TTTATATGTC GTGAATTTTT	660
	ACCITCIA ANT ACTATAACAT TOAAAAACTT CITACTCITT TAAATCATCA CCATGAACTC	720

ATTCAATAAG AATGATTATG AAAATAGAAA CAGCAGTAAG ATATTTTCTA ATTGAAAATC

ATCTCACTGC TGTTTTTTAA AGGTTTATAC CTCATCCTCT AAATTATTTA AAAATAATTA

	AGATATTCAA	ACCACGTGTA	CTCAAAATGA	TAGCTTGGTA	TGTACCTCCA	ATAGTAATTT	960
	CAATAACTTT	GTCTGTTGAA	CACTAAGAGC	AATTTTAATT	TCATAATGTG	TTGTAAACAT	1020
5	TTTTTTTGAT	TGGAGTTTTT	TTCTGAGTTA	AACGATATCC	TGATGTATTT	TTAATTTTGC	1080
	ACCATTTCCA	AAAGGATAAG	TGACATAAGT	AAAAAGGCAT	CATCGGGAGT	TATCCTATCA	1140
	GGAAAACCAA	GATAATACCT	AAGTAGAAAG	TGTTCAATCC	GTGTTAAATT	GGGAAATATC	1200
10	ATCCATAAAC	TTTATTACTC	ATACTATAAT	TCAATTTTAA	CGTCTTCGTC	CATTTGGGCT	1260
	TCAAATTCAT	CGAGTAGTGC	TCGTGCTTCT	GCAATTGATT	GTGTGTTCAT	CAATTGATGT	1320
15	CGAAGTTCGC	TAGCGCCTCT	TATGCCACGC	ACATAGATTT	TAAAGAATCT	ACGCAArCTC	1380
	TTGAATTGTC	GTATTTCATC	TTTYTCATAT	TTGTTAAACA	ATGATAFATG	CAATCTCAAy	1440
	Aratctaata	GTTCYTTGCT	TGTGTGTTCG.	CGTGGTTCTT	TTTCAAAAGT	GAATGGATTG	1500
20	TGGAAAATGC	CTCTACCAAT	CATGATGCCA	TCAATACCAT	ATTTTTCTGC	AAGTTCAAGT	1560
	CCTGTTTTTC	TATCGGGAAT	ATCATCGTTA	ATTGTTAACA	ATGTGTTTGG	TGCAATTTCG	1620
	TCACGTAAAT	TTTTAATAGC	TTCGATTAAT	TCCCAATGTG	CATCTACTTT	ACTCATGCGT	1680
25	TTGATAAAA	CTTAAATAAT	ATTAATTCGG	TCATCAGTGG	CGTTAAATCT	TTTATCATTT	1740
	TTAGTTATAG	TTGATAAATT	TATATTTATA	AGCATATATG	GATATTTCAT	CAAAAATTTT	1800
	TATTTATATA	AATCCGAACT	GCATACATAT	TTGTTTAAAT	AAGAGGTATT	ATTTTTCGGG	1860
30	AAATTGCTGT	CTGAGTTAAA	AGGATTAGTT	TTATAAAATG	AGTTGAACTA	TAGCCAAAAA	1920
	CGATTAAAAT	ACTGATAATC	CATTTTTGtA	TTATGTTAGG	GACTTTTTTA	CTTAATTTTA	1980
35	ACCCTATTGG	aGCmAATATA	ATACTCCCTA	TTATAAGGAA	TAAGGCGTCA	TATAAaGGGA	2040
33	TATAACCTTG	AATAAGTTTG	ATGACAAAAG	CACCAATTGA	AGATATAAAA	GCAATTACTA	2100
	TACTATTAGC	GACTACAGTA	TTCATTGGTA	ATTTGAATAA	AACCAATAAT	ATAGGAATAA	2160
40	TAATGAAGGC	ACCACCTGCA	CCTACTATAC	CTGAAATAAT	ACCAATGAAA	AGGCCAATGA	2220
	TAACTAATAA	ATATTTATTA	AATGAAGACT	TTTCGGAACT	AGGTTLCACT	TTAATAAACA	2280
	TTAATGTTAA	TGCAAGTAAA	GCAATAATGA	TATATACCGT	ATTTACAAAT	GTAGCATCAA	2340
45	ATAAATTTGC	TAGAAATGCA	CCTAACATAC	TCCCT			2375

(2) INFORMATION FOR SEQ ID NO: 148:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6115 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 148:

	GAGGTTTCTA	GACAAGCTTT	TAATAACTTA	CCAAACTCAT	TAAgrTGGTT	gTGtTGGACT	60
5	GCCLATTATC	mAAGtATTAT	GaGTTGTTTA	ATATTAGtGC	TAArACATAC	GAAGAGTGGT	120
	TTAAACAATT	TAGTAGTAAG	AAAGCACAAT	TCAGTATTAA	TCTCACGGAT	AAATGGATAA	180
	TTCAAATCGC	ATATGGTAAA	ТТААТААТАА	TGGCTAAAAA	TAATGGCGAT	ACATATTTTA	240
10	GAGTTCAAAC	AATTAAAAAG	CCAGGTAATT	ATATTTTTAA	CAAATATCGA	TTAGAGATAC	300
	ATTCTAATTT	ACCAAAATGT	TTATTTCCGC	TTACAGTGAG	AACACGACAA	AGTGGCGATA	360
15	CATTTAAACT	GAATGGGCGC	GATGGTTATA	AGAAAGTGAA	TCGCCTGTTT	ATAGATTGTA	420
	AAGTGCCACA	GTGGGTTCGG	GATCAAATGC	CAATCGTATT	GGATAAACAA	CAGCGCATTA	480
	TTGCGGTAGG	AGATTTATAT	CAACAACAAA	СААТААААА	ATGGATTATA	ATTAGTAAAA	540
20	ATGGAGATGA	ATAGCGTTAT	GCATAATGAT	TTGAAAGAAG	TATTGTTAAC	TGAAGAAGAT	600
	ATTCAAAATA	TCTGTAAGGA	ATTGGGAGCA	CAATTAACAA	AGGATTATCA	AGGTAAACCA	660
	TTAGTATGCG	TGGGTATCTT	AAAAGGCTCA	GCAATGTTTA	TGTCAGATTT	AATTAAACGA	720
25	ATTGATACCC	ATTTATCAAT	TGATTTCATG	GATGTTTCTA	GTTATCACGG	AGGCACTGAG	780
	TCAACTGGTG	AAGTTCAAAT	CATTAAAGAT	TTAGGTTCTT	CTATTGAAAA	TAAAGACGTA	840
	TTAATTATTG	AAGATATCTT	AGAGACTGGT	ACTACACTTA	AGTCAATTAC	TGAATTATTA	900
30	CAATCTAGAA	AAGTTAATTC	ATTAGAAATA	GTTACTTTAT	TAGATAAACC	AAACCGTCGT	960
	AAAGCGGACA	TTGAAGCTAA	GTATGTAGGT	AAAAAAATAC	CAGATGAATT	TGTTGTTGGt	1020
35	TACGGTTTAG	ATTATCGTGA	ATTATACCGA	AACTTACCAT	ATATCGGTAC	GTTAAAACCT	1080
<i>55</i>	GAAGTGTATT	CAAATTAATT	TTTTAATCAA	TTTCAGTTAT	TATTACTATG	CGTTTGAGAA	1140
	ATAATAGTGT	AGACTCAAAA	ATATGAAAAA	TGTATTTCAT	ATATATTTAA	TTTTAGACAA	1200
40	GACATATGTC	TTGAAAAGTT	GAAAAATATA	GAGATTGATA	AAACTAATAC	GGGTGTGAAT	1260
	GACATTGATG	TTAAGCTCAA	TTACTAGCTT	ATAAAACATG	TCATATGTTA	CAATTTTTGT	1320
	TAGTTTTATT	ATGGGAAGTA	GGAGGAAATG	ACGCATGCAG	AAAGCTTTTC	GCAATGTGCT	1380
45	AGTTATCGTA	ATAATAGGCG	TTATTATTTT	TGGTCTATTT	TCATATTTAA	ACGGTAATGG	1440
	AAATATGCCG	AAACAGCTTA	CATATAATCA	ATTTACTGAG	AAGTTGGAAA	AAGGTGACCT	1500
	TAAAACTTTA	GAAATCCAAC	CACAACAAAA	TGTCTATATG	GTAAGTGGTA	AAACGAAAAA	1560
50	TGATGAAGAC	TATTCATCAA	CTATTTTATA	TAACAACGAA	AAAGAATTAC	AAAAAATTAC	1620
	тавтастаст	****	A CCCTCTA A A	ስጥጥል ስ <i>ር</i> ር ስጥጥ	*****	*****	1600

	TTTCTTCCTA	AGCCAAGCAC	AAGGTGGCGG	TAGTGGCGGT	CGTATGATGA	ACTTTGGTAA	1800
	ATCTAAAGCA	AAAATGTACG	ATAATAATAA	ACGTCGTGTT	CGTTTCTCTG	ATGTAGCAGG	1860
5	GGCAGATGAA	GAAAAACAAG	AATTAATTGA	AATTGTTGAT	TTCTTGAAAG	АТААТАААА	1920
	ATTCAAAGAA	ATGGGATCTA	GGATTCCTAA	AGGTGTCTTA	CTTGTTGGAC	CTCCAGGTAC	1980
	TGGTAAAACA	TTACTTGCTA	GAGCGGTTGC	AGGTGAAGCT	GGCGCACCAT	TCTTCTCTAT	2040
10	TAGTGGTTCA	GACTTTGTAG	AGATGTTTGT	TGGTGTTGGT	GCGAGCCGTG	TTCGTGACTT	2100
	ATTCGATAAT	GCTAAGAAAA	ACGCGCCTTG	TATCATCTTT	ATCGATGAGA	TTGATGCTGT	2160
15	TGGTCGTCAA	CGTGGTGCAG	GTGTTGGTGG	CGGTCATGAT	GAACGTGAAC	AAACCCTAAA	2220
	CCAATTATTA	GTTGAAATGG	ATGGTTTCGG	TGAAAATGAA	GGTATCATTA	TGATAGCTGC	2280
	TACAAACCGT	CCTGATATCC	TTGACCCAGC	CTTATTACGT	CCAGGTCGTT	TTGATAGACA	2340
20	AATTCAAGTT	GGTCGTCCAG	ATGTGAAAGG	CCGTGAAGCA	ATTCTTCATG	TTCATGCTAA	2400
	AAACAAACCA	CTTGATGAAA	CGGTTGATTT	AAAAGCAATT	TCACAACGTA	CACCTGGTTT	2460
	CTCAGGTGCT	GATTTAGAGA	ACTTATTAAA	TGAAGCATCT	TTAATTGCTG	TACGTGAAGG	2520
25	TAAAAAGAAA	ATTGACATGA	GAGATATCGA	AGAGGCAACG	GATAGAGTTA	TAGCCGGACC	2580
	TGCTAAGAAA	TCTCGAGTTA	TTTCTAAGAA	AGAACGTAAT	ATTGTTGCTC	ATCACGAAGC	2640
	TGGTCATACA	ATTATCGGTA	TGGTACTTGA	TGAGGCAGAA	GTAGTGCATA	AAGTTACTAT	2700
30	TGTTCCACGT	GGACAAGCAG	GTGGTTATGC	AATGATGCTA	CCTAAACAAG	ATCGTTTCTT	2760
	AATGACTGAA	CAAGAGTTAT	TAGATAAAAT	CTGTGGTTTA	CTTGGTGGAC	GTGTATCAGA	2820
35	AGATATTAAC	TTTAACGAAG	TATCAACAGG	TGCTTCAAAT	GACTTCGAAC	GTGCAACACA	2880
	AATCGCACGC	TCAATGGTTA	CGCAATATGG	TATGAGTAAA	AAATTAGGAC	CATTACAGTT	2940
	CGGTCATAGC	AATGGTCAAG	TATTCTTAGG	TAAAGATATG	CAAGGTGAGC	CTAATTATTC	3000
40	AAGCCAAATC	GCATATGAAA	TTGATAAAGA	AGTTCAACGA	ATCGTTAAAG	AACAATACGA	3060
	ACGTTGTAAA	CAAATTTTAT	TAGAGCACAA	AGAACAATTA	ATTTTAATTG	CTGAAACATT	3120
	ATTAACAGAA	GAAACATTAG	TTGCTGAACA	AATTCAATCA	TTATTCTACG	AAGGTAAATT	3180
45	ACCTGAAATT	GATTATGATG	CAGCTAAAGT	TGTTAAAGAT	GAAGATTCTG	AATTTAATGA	3240
	TGGTAAATTC	GGTAAATCTT	ATGAAGAGAT	TCGTAAAGAG	CAATTAGAAG	ATGGACAACG	3300
	TGACGAAAGT	GAAGATCGTA	AAGAAGAAAA	AGATATTGCT	GAGGATAAAA	AAGAAGCTGA	3360
50	TAAATCTGAT	GAAAAAGATG	AACCAGCACA	TCGACAAGCC	CCAAATATCG	AAAAACCTTA	3420
	CCATCCAAAT	CACCCACACA	משת אחד א אחד	CATTATATOT	A COR COMPOND	ጥር ጥጽ ጥር እ ጥጽ እ	3400

	AATTGTTATA	GCAGAAAATA	ATTGTAAAAC	AAGTTACTTC	ATTATTTAGA	ATGATGGGTG	3600
	TAGAATAAGT	ACAATTGTTG	CATTTTATGA	AGTAAAGTAA	TTTTTTAAAT	ATAGAGTAAT	3660
5	AGAGGAGATT	GAAATAATGA	CACACGATTA	TATTGTTAAA	GCATTAGCAT	TTGATGGAGA	3720
	GATTAGGGCT	TATGCTGCTT	TGACAACTGA	AACTGTTCAA	GAAGCACAAA	CGAGACATTA	3780
	TACATGGCCG	ACAGCATCTG	CTGCAATGGG	AAGAACAATG	caCAGCAACA	GCTATGATGG	3840
10	GCGCAATGTT	GAAAGGTGAT	САААААТТАА	CTGTCACTGT	AGATGGCCAA	GGACCTATTG	3900
	GACGAATTAT	TGCCGATGCA	AATGCTAAAG	GCGAGGTGCG	TGCTTATGTA	GACCATCCAC	3960
15	AAACTCATTT	TCCATTAAAT	GAGCAAGGTA	AACTTGATGT	AAGACGAGCG	GTAGGGACAA	4020
	ATGGATCTAT	TATGGTTGTT	AAAGACGTTG	GAATGAAAGA	CTATTTCtCT	GGAGCAAGTC	4080
	Caattgtttc	AGGAGAACTT	GGTGAAGATT	TTACTTATTA	TTATGCTACA	AGTGAACAAA	4140
20	CACCTTCATC	GGTAGGTCTT	GGTGTATTGG	TAAATCCTGA	TAATACGATT	AAAGCAGCAG	4200
	GAGGATTTAT	CATTCAAGTT	ATGCCAGGTG	CCAAAGATGA	AACAATTTCA	AAATTAGAAA	4260
	AAGCAATTAG	TGAAATGACA	CCAGTTTCTA	aattaattga	ACAAGGATTA	ACGCCAGAAG	4320
25	GATTACTAAA	CGAAATCTTA	GGTGAAGACC	ATGTGCAAAT	TTTAGAGAAA	ATGCCTGTTC	4380
	AATTTGAATG	TAATTGTAGT	CATGAGAAAT	TTTTAAATGC	TATTAAAGGA	TTGGGCGAGG	4440
	CTGAGATTCA	AAATATGATT	AAAGAAGATC	ATGGTGCTGA	AGCAGTATGT	CATTTCTGTG	4500
30	GAAATAAATA	TAAATATACT	GAAGAAGAAT	TAAACGTGTT	GCTAGAAAGT	TTAGCGTAAT	4560
	TTAATTTAAA	TCAATACGCT	AAAATGTTTA	TTTTTAGCGG	TTTAGTGAAA	TGTAGAACTA	4620
35	AATAGTTGTA	TAATCCTTAG	TGATTTTGTT	TGCTTTCTAG	AATTTATTTG	ТААТАААТА	4680
33	TCTATATCCG	АТАААТАААС	TAAGATTTCA	ACAACTAACT	AAAAAGGAGT	GTTCTTAATG	4740
	GCAĢĀAAAAC	CAGTAGATAA	TATTACTCAA	ATTATTGGCG	GTACACCGGT	AGTCAAATTG	4800
40	AGAÄATGTAG	TAGATGACAA	TGCAGCAGAT	GTTTATGTAA	AATTGGAATA	TCAAAATCCA	4860
	GGTGGTTCTG	TAAAGGATAG	AATTGCTTTA	GCAATGATTG	AAAAAGCAGA	GCGAGAAGGC	4920
	AAAATTAAAC	CTGGCGATAC	AATTGTAGAA	CCAACAAGTG	GTAATACAGG	TATCGGTTTA	4980
45	GCATTTGTAT	GTGCTGCTAA	AGGATATAAA	GCAGTATTTA	CTATGCCCGA	AACAATGAGC	5040
	CAAGAGCGTC	GTAATTTATT	AAAAGCATAC	GGTGCGGAAT	TAGTTTTAAC	GCCTGGATCA	5100
	GAAGCGATGA	AAGGTGCAAT	TAAAAAAGCT	AAAGAATTGA	AAGAAGAACA	TGGTTACTTC	5160
50	GAGCCACAAC	AATTTGAAAA	CCCTGCGAAC	CCTGAAGTTC	ATGAGTTAAC	TACAGGTCCT	5220
	САСТТАТТАС	א רא איייייריא	ACCCA A A A CO	ATTCC ATTCCCT	TO CTA COTO	TCTTCCTN CT	5300

GTTGCTATAG AGCCTGAGGC TTCTCCAGTA TTGAGCGGTG GTGAGCCAGG TCCACATAAA 5400 TTACAAGGTT TAGGTGCTGG ATTTATTCCA GGCACTTTGA ATACAGAAAT CTATGACAGT 5460 ATTATTAAAG TAGGAAATGA TACAGCGATG GAAATGTCTC GTCGAGTTGC TAAAGAGGAA . 5520 GGTATTTTAG CAGGTATTTC ATCAGGTGCT GCGATTTATG CTGCCATTCA AAAAGCAAAA 5580 GAATTAGGAA AAGGTAAAAC AGTAGTAACA GTATTGCCGA GTAATGGTGA ACGCTACTTA 5640 10 TCAACACCTT TATATTCATT CGATGACTAA TTAATGTCAT TTAAAAGAGT GAGTTATCTT 5700 TTTGAGATAA CTTGCTCTTT TTTTCTACCA TGTATATTTT TAAAAATATG AGCGTTAAAT 5760 TAAACATTTT TCTGATAAAA ATATCCAGTG AATGATAAGA TAATAAACGT ACATACTAAT 5820 15 AACTAGTAAA TAGCAGGAGT AAATTTTATT AGAGTTAAAC AATACATAAT TAAAGGGTGG 5880 TTAACATGAC TAAAACAAAA ATTATGGGCA TATTAAACGT CACACCTGAT TCATTCTCAG 5940 ATGGTGGAAA ATTTAATAAT GTTGAATCAG CTATAAATAG AGTGAAAGCC ATGATAGATG 6000 20 AAGGTGCTGA CATTATAGAT GTTGGAGGTG TTTCAACGAG ACCCGGTCAT GAAATGGTTT 6060 CATTAGAAGA TGAGATGAAC AGAGTATTAC CTGTTGTTGA AGCTATTGTC GGTTT 6115 25

(2) INFORMATION FOR SEO ID NO: 149:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 10401 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 149:

TAGATACTGG GNTAAAcaTc AAAAATAtyT GCtTaTTCaC GTGTTTAcGc TCCCtCAAAC 60 GCAACGTTAA TTGCGTGTAA TCATTTAGTG TGAATTCAGA CGCTTCTTCC ATGACTATGT 120 CTGATATGCC TTTTATCGAC TTTATTTTCT CTGGGTTATC TAATCCTTTA AACAAAAAA 180 CTGCGCCGTT TGGCAATTCA ACTTTGTTAT CAGTCTTATT CCAAAGGCAC ATGTCCCAAA 240 TACCAAAGTT TATCAAACAA TCTTTAACAT CTTCGAACAA ACTATCTTTA ATTGTTGATT 300 GTACTTTTCT AAGCCACAGT ATACGCCTAG GATATTTCCA ATCTTGCAAT GCTTTGAGTA 360 CAACTTTTTG TATAACGCCG TGAGACTTAC CGCTCGAACC TCCACCGTAA TGKACTTCAG 420 TGAAGTLATC GTAATTGGTT AGTATTTCGA ATATGTTTCT ATTGAAAACA TTAGACGGTT 480 TGTTAAAGTT TAATTTAACT TTCGTCATCG TACTCACCAA TATTAATCTC AATATTCTTC 540 TGAGTAATTT CTTTTTTATC GATATACGCA CCATGTACTT TTAGTATGTG GTCAATAGAT 600

55

5

30

35

40

45

	TTTAAATGGT	CATATTTCTT	ACTGTAAGCC	TCTTGAGGTT	CTCCTCTAGC	AATAGAAGCA	720
	GATAACGCTA	AAGCTTCTGT	AATACTCATT	AAACGCTCTT	CTTGTATCTG	TTCTAATCGT	780
5	TCTTTAATAT	ATTCCGAAAC	ATTAACATTT	CTTAACAATC	GACTTGCTAA	AGACTCTGCT	840
	GTTTTCTTAC	TATAACCTGC	TGTAATTGCT	GCTTTTTTAC	CATTACATCC	ATTCATTATA	900
	TATTCATCTG	CGAATCTCTT	TTGTTTTTCG	TTCATTTCAT	TTACCACCAA	CTCTCGCGCT	960
10	ATACGCTTTT	TAAAATTAAA	AAAGGATTGG	CTATAATCAG	CCAACCCACA	TAGATCCTTT	1020
	ATTCCTAATT	GCGATAAGGG	AAACGCAGTA	CGATAGTCAA	TATCCTACAC	TATCATAATA	1080
15	TCTCATTTAA	GGTATCAAAA	ACTGCCACTT	TACTGCCAAT	TTCAGTCTTC	CCCTAACTCT	1140
	TCCGCCAATC	TAGATATGAT	TTTTCTTTTG	ATTCTATGAG	CAGTTCTATC	AGAAATGTGT	1200
	ATGTCAACAC	AAACTTTCAC	TAATTCCTTT	TTATTAAAAT	AATACTCTTG	AATGAATTCG	1260
20	CGTTCTTTCC	TGCTTGATGT	GTTGATTATA	CGTTCAATAG	CGCTCTTAAA	CTCAAGGATT	1320
	TTACCTCTTC	GTATACTACA	AAGATAATTA	GTTACTGCCA	TTTCTGTTTT	CGATGTATTA	1380
	GACGGTACAA	ACTCCCCGCC	TATATTTGTA	TCTGTTGGAA	TCCACGGTGT	CATTATTTCA	1440
25	CTTCTTAAAT	CTTCAAGTTG	TTTATGATAA	TTAGGATAAT	CACACAACTC	ATCTTCTAAC	1500
	TTTCGAACTG	TTGATAATTT	TAATCCGTAT	TTCTTTTTAG	TCATGAATAC	CCTCCGTACA	1560
	AATATGTTTA	ATCTTCAAAG	TGTCTCAATC	TACTTCTTAA	TATCTCTATC	TCTCGCTCTT	1620
30	TAACTTTTAC	ATCACCTTTT	AACTGTTCCG	CTTGTAACAT	CACACCAAAC	AATAAGATGA	1680
	CTAGTAATAT	AATTGCTATG	ATTAACCACA	TCATCTACTC	CGACACCTCC	GCCCTCATCA	1740
	AATCAGACTG	ATCACTCAAC	TTTGCGAAGT	CACTTGGCGC	CTCTACATCA	TCATTAGCCG	1800
35	TCATCATAAT	ATATACTTGC	TCAGTTACAT	ACTTACCTAA	CTCATACATC	GCTAGTAAGA	1860
	ataatagtct	CAAAATTTCT	TTAACCACCA	CTAAACACCC	CATGTTAATT	TATCGATAAT	1920
40	TTGTATAGCT	TGTTTTAATG	CGTCTCTTTT	TTCTTTGATA	TCTCTATTAT	CGCCATCTTC	1980
	ATCAGCTGAC	ATTAACTCAC	TGTCATATTC	ATATAATAGT	TCTGATATTT	CATTACTAGC	2040
	TACTACTAAT	AAGTTTTCAT	CTACATCAAT	CGTTACCGTT	TTCTTTGGCA	TCTCCATCTC	2100
45	TCCTTATCTT	AACTTGTGCC	TCGTATTTGC	GCTCAGCTTC	TTCTTTACTC	TCTGCCTCAA	2160
	CAACTGTAAA	CGTCTGATTA	TCTCTAGCAG	TAGTAAAATG	TTCATGTGGT	TGTCCTGTTG	2220
	AATCTTTGAA	TGTTGTGACT	AAGTATTGCG	TCACTTCTTA	TCACTCCTTT	GAATGATTCT	2280
50	AAGTTTTTCT	ACGAATAAAA	GTATTAGTAC	AACACTCAAT	GTAGCCAACA	TATTTTTTTG	2340
	OTTOWN CON N N N						

	TACAAGTATT	GGAACTAATG	TAATGATGTA	ACTCACTTCC	CCAAAACCTC	CTTGACTCGA	2520
	TCTAAGATGT	CTTTACACTC	CGCTACTTCC	GAAGCCTTTT	TCTCCACGTT	CTGAAACACT	2580
5	TTCGAATTCC	TCCACTTGCT	TTAGTTCAGG	TGTCCATATA	GGCACGATAA	CCAATTGAGC	2640
	TAGTTTGTCT	CCTTCGTTGA	TTTGATAAGT	TCCGTATTGT	CTTATGGCGT	CACTCAAATC	2700
	GATTTCTCCT	TTAATATCAA	AAACACCTGG	TGTGATATAA	CCATTCGATG	CAATAGCGTC	2760
10	ATTCTTGATA	TTAATCCCTA	AATTGCCGTG	ATATCCCGCG	TCTATCTTGC	CTGTTTCAAT	2820
	CACTAAATGC	GTTTTACTAC	TTACACCACT	ACGGCTAGTT	AATAGTCCGA	CATAGCCCTC	2880
15	TGGTATGCTT	ACAGCTACAT	CTGTTTTAAT	CACTGCCTTT	TCTTGTGGCT	CAAGTACGAC	2940
,,,	AGTTTCAGCT	GAGAATATGT	CATAACCTGC	ATCCGTCTTA	TGATTTCGTT	CGGGCATTCT	3000
	AGCATTTTCT	GATAATAGCC	TTACTTGTAA	TGTGTTAGTC	ATTTTCCTGC	TCCTCCCTAG	3060
20	CTGTAGCAAA	CGCTATTCTC	AATTTCAATC	TTTCAACAAT	ATGAATTAGT	GCGGTATTGA	3120
	GGAATATTTC	AAATTCTTCA	ATGTTCTCAT	CTATAAAATC	AAGTATTTCT	TCCTCTTGTT	3180
	CACTGTCAAA	CTCGCTTAGT	ACATCCCAAA	TATTTATGTC	GCTTTTGCTC	GTTTCTAATA	3240
25	CTCTTTTGAT	TATTTCTGAA	TTACTTTTAT	TACTCATTTT	CCTTGTTCCT	CCTCATATTT	3300
	ATAGACAACT	TGACCTGCCA	TAATCCCTAC	TGCTTCATCA	AGTTCAATAC	CTTCTTTAAC	3360
	TGAATGTTGA	ATAGCATTTG	TCATTCCCTC	AAGTATTTCA	TCAAACGCTT	GTGCTCTCTT	3420
30	ATACACGTCC	TCAATCTCTT	TTAGTAATCC	CTCTGTGTCA	TTACCGTTAT	ACGCACTAGC	3480
	ACTGATCACT	GATTGTTCAA	TTTGTTCGCG	GTTATTCATC	ATTTCCATCT	CCTCTAAAAT	3540
	AAAGTTAGTT	GCTTCTGCTC	CTCGTATTCC	AAACCATGTT	GCTTTATATA	TGTTTCGAGC	3600
35	TCTTCCGCTG	TATCAAATGT	CTTTTTCACG	CCTTGCCAAC	CTGGCACGAT	ATGCCCATGa	3660
	AAGTĀATAAG	TGCCGTTCAC	TACATGGATA	TGTGCCACTC	GTTCGTTATC	CTGATACAGA	3720
40	TATCTCTTAG	ATCCGAAAAA	TTGGTTTAAG	TATTCTTTAC	ATGCGCTATC	GGTTTTAGGC	3780
70	ATTTATGCTT	CCTGCCATTT	CTTAAACATT	TGGTTATAAG	TAGTATCAAA	CCAGTACGGA	3840
	TCACGTGAAT	GTTTTTGAGG	CACATTAAAC	AAATGTGGCT	TCTTCTTACG	TAGTTCAGCC	3900
45	TCTTTACGTC	GTTGCCTAGC	CATTTCACGC	TCTTTGCTCT	CTCGCTCCAT	GATTTTGGAT	3960
	AACACAATTT	CTTTATACTC	AGCTAAGCGC	ATACCATAAG	GTGCATGTAA	GGCTTCTAAC	4020
	AACGCCCAGC	CACCTCGTAC	TCTTTTTGCA	ACCATTCCTG	GAGTTAAACC	GTTCTTTTTT	4080
50	ATCAATTCAT	TTTCATGTTC	GGTAAATTTA	TATGGTTTAC	CGTTAATCTT	TACGATACTC	4140
	מיייתמיייתמ	ССТСТАТАСА	شطعتاها والملعك	ጥጥል አጥር ርካ አጥ	יויינישרי א אירוייטיטיטי		4200

	ACATTTAAGT	TAACCATCTC	AGCTTTTCCG	TTTTTATATC	CACTAATAGT	TGATCTTGAT	4320
	ACGCCAGTTT	CATTGTGCAA	ATCTTGGACA	CTTACGTTAT	CTCTAGCCAT	GATTACCCTT	4380
5	AAATTAGTTG	CGAATACTEC	GTTCAACTTC	ATTTATTCCA	CCTCTATATA	TGCATGTCTT	4440
	ATTGTTATGT	TGTCATACTT	TAGTAATTCG	TCCGGATTGT	CATCTAAGCG	CTTTGCCAGC	4500
	GTATCTTTTT	CTTTATCCAC	ATCATCGTAA	TGCTGATATT	CAACTTCTGT	AGGTATTCTT	4560
10	ATATCAATCG	TTGCGTTTAT	ATATGCTTGT	TGTTGCATTA	GATCACTTCA	TTTCTCTTTT	4620
	TCTTTTACGT	CTGACTTTCA	CTAAGTCCTC	ATATACCATC	CATTCTTGAC	CTGTGTATTT	4680
15	AGGCGCTTTA	CATATCCACG	TTAAATTCAC	ATCTCTATAC	TGATATCTGA	ATATCTTCGC	4740
.0	TTTGATGTTG	GCAACTTCAG	TCGCCTTACC	TTTAACGTCT	ATAACTTCAA	CCAGTTTCCC	4800
	TTCCTTCCAC	AAAGAGAAAT	CGGCTATATA	CGTAATCGGT	CTTTGTTTCC	CGAATTTAGG	4860
20	TTGTAATTCA	AATTTCGGTT	GTATTTCGAT	ACGATCATAG	TTAGTGCCAT	TCATATTACT	4920
	TTCTAAATAT	TGGTAATATT	CGCACTCTAC	TTTGCTATCA	AATACAATTC	CTTTGTACTC	4980
	AACTTTCTTA	GCATTGTATT	TACTCATTGT	GCCACCTCTA	AATATCAAAT	ATCGTTGCTT	5040
25	GCAATCCTAG	CTCTTGCTCA	TATAGAAGCC	CGTGAGCGCC	TTTGAATCGT	TTTAGGTCAC	5100
	TATCAGTCAT	AATTTTCTTT	TCGTCGCTGA	AATGGGCTCC	TGTGAGCGAA	TAAACTTCAT	5160
	TTACGTTGTC	TTTATACTTG	ATGACCTTAA	TATCTTCCGT	GCCATCTTCT	CGGTATAAGT	5220
30	AATATTTTTC	TTTCGGCATT	TTTTAACACT	CCTTAATGTG	TGTTTTCTTC	CAGTTGATTT	5280
	CATTCATGAT	TTTCTTTTCA	ACTCTGTCGT	AATCATCGAA	AGGCGATAAC	TCGTTATTGT	5340
	CCAACAATCT	ATTGACCGCC	CAACCAGTCT	CGATATATAC	ATTTGCTACA	ATCGGGTCGC	5400
35	TTTGCTTTGT	CTCTTCATAC	ATCGATTTCA	ATAAGCTTTT	GAATTGCATT	ATATTCATGT	5460
	GAAAÃACCTC	TGAGTCTTCT	TGTAATACTC	AAATTCAATT	ATTCCGGTTT	CGCCGTCTTT	5520
40	GTTTTTGGCT	ATGTTACATT	CAACAATAGA	TTTGCCAGTG	ATACTGTCAT	CTTCGTCACG	5580
	GTTATAATAA	TCATCACGGT	AAAGTAGCAT	CGCTAAACTC	GCATCTGCTT	CTATTCCGCC	5640
	TGATTCTTTC	ATGTCCGATA	GCATTGGTCT	TTTATCCTGT	CTAGACTCGA	CACCACGATT	5700
45	CAGTTGTGAA	AGTAGTACGA	TGATTGCGCC	TGTCTCGTTA	GCGATTATCT	TTAAGTCACG	5760
	TGATATCTTT	TCTACTGCTA	CACGTCTATC	AACTTTCGCA	TCAGTATCCA	TCAGTTGAAG	5820
	ATAATCTATA	AAAATAACTT	GTTGCCTGTC	TGAATGCCTC	ATTGtTGCGC	TCGCACATCT	5880
50	TGCGGTGTGA	TATTACTTTT	ATCAGAAATA	TCGATGCCTA	ATTTCATGAT	TTTATCCATC	5940
		y Contractive and a	CHCITCCCCC	COTTO A COTTO	TO B THE STATE OF	The management of the second	C000

	AGACTAAAGA	AAGATGTTTT	GTATCCATTT	TGTGCTATGT	TCAGCATCAT	GTTTAATGCA	6120
	AAACCTGTCT	TACCCACTGA	GGGACGCGCT	GCGATGACGA	TTAATTGTGA	TGGTTCTAAT	6180
5	CCCCCTATTT	TGTAATCCAT	TAGCTTGTAA	CCCGTCTTAA	TTTGCTTCTT	AGGGCTATCG	6240
	CTGTATAACT	CTTCGACAAA	CTCCTCAACA	AACTTCTTGG	TTCCATCTTC	TTTTTTGTTA	6300
	GTAATTGTTT	TTAAATCCTT	GAGTTCATCA	ATCAAGTTGT	TAAAGTTTTG	GTTCGTAGGT	6360
10	TGTTGTTTGA	ACTCAGTTAC	CAATTCGTTA	GCTTTGTTGA	GCTGATAACT	TTCCAATAAT	6420
	TCTTGTTGAT	AACGTTCAAA	GAAGCCATAT	CCAATGAAAT	CGGAGTTGTA	AAGTTTAGTT	6480
15	ATAGTATCTG	CATCTAAAAA	TTCTTTATCT	TTAGTTGCTT	TTAAATAGAT	TTCTTGATGA	6540
	TCTATCTTTC	CGACGTCCAT	TACATAATTG	AAAAAGGTTT	TAAACTTTTC	GTTCGTAAAC	6600
	ATGTAATCTT	TAACTCTTAT	CTTTTCTAAT	ACGTCCGGTT	GTTTAAGTAG	CGTAGCGATT	6660
20	ATTGTACTTT	CAATTTCGAA	TTGTCCGTAA	TTCATTCGTT	TTCGCCCCCA	AATTCTGCCA	6720
	ACTTATTCAT	GAACTTATCT	AGCGCTATTT	TTCTTTGTCT	GACATATTCG	GGGTCATTCT	6780
	GCATTTTCCA	TTGGTGTGTA	GCGGTTTCGT	TATCTACTGG	CTCGATAGAT	ACTTTTTAG	6840
25	GTTCCTTACG	CATGATTGCT	GGTAAGTTAG	GCGGGTACGG	GTTGTTACTG	TTGATATAAA	6900
	CATCTACCGC	TTTTACAGTT	GGTTGATAAT	CTCCATTTTG	ACTTAATACA	TCAATCCACA	6960
	TTTCTAACTT	CGGTTTATCA	AAATCAATGT	TGTATACGTA	CCTAACTTTT	TTAATAATTT	7020
30	CTAATGCTTG	TGTTTTGCTC	ATCGGCATTA	GTCATCACTC	AATTCTTTTT	CCATTTGTGC	7080
	AATGACATCA	TCAGTAGTAT	TTTTTCTAGG	TGCTATTTTA	TTTTCTGCAT	CTTCTTTTGT	7140
	TTTGACATTC	TCTTTAGCCC	AGTTGTTTAA	AACTTTAATT	AAATAGCCAC	CATGCGCACT	7200
35	TITGCTTTTA	GTGTACTCAA	CACCTACTTT	TACAACTTCA	AAAGCGTTTG	TACCTATATC	7260
	ATCAÂTAGCA	AACCCTAATT	GTTCCATTTG	ATTAGGTGTT	AACTTATCAT	CCAAATTTGC	7320
40	AATTATATAT	TTTATTGAAG	ATGAGAAGAC	GGCTTCTCTT	TCTTCTTCTT	TATTCTTATA	7380
	TTCTTCTTCT	TTTTCTTCTT	CTCTTTCTTC	TTCTTCTTCT	GTATCGTTAC	GTAACGTTAC	7440
	GGTAACGTTA	CGTTTTGCTT	CTAGTAACTT	TTTCTGTTTC	TCACGATAGC	GTTGTTGTCG	7500
45	CAATTTATTT	TTTTCTTTAT	GCTTAGCTTT	GCTATCTAAG	CTTTGATGCT	TCTCCCAGTT	7560
	TGTCACTTTT	ATGACACCAT	TAACTTTTTC	AATCATGCCC	AATGTCTCAA	AAGTTTGAAT	7620
	TGCTAACCTT	ATTGAGTTAA	TAGGTCTATT	AAATTCATTT	GCTAACATTT	CTTCGTTGTA	7680
50	CGGCAAGTTT	TCGGATAGCA	TAATATAACC	TTGTTCATTG	TACTTTCCTG	ATAAAGTTAG	7740
	TAACTTAACC	CAAATAGTTA	TGATCGTATC	TCTTTCGGGT	AAAGCTTCGA	TATATTTGAT	7800

	CTCCTTTCAG	CATTTTGTTG	AGCCTCTCAT	CAACTTTTAT	CCACGAGTCA	TGCAAGTGAT	7920
	ATTTATCATC	AAACGACTTA	ACGCCAATTG	CGTGCTGTTC	ATTATGATGT	TGTCTACACA	7980
5	GTGCTAACAC	ATGTTTGTCG	TAGTGATTCA	TTTTGTTTCT	GTTCATGCCT	CTGCCGACTG	8040
	CTTCATAATG	TGCCAGGTCT	GCGTGAGGCT	TTCCGCATAT	TACACAGTTG	CGGTTGATTG	8100
	TAGCCCAATA	TAATAACGCT	TTATCTTCGC	TTAACAACTT	ACTCGTTTCT	ACACTCATAG	8160
10	GTATTTGATG	ATGAAACATA	AACGCTATAA	TCAGTTCTAT	TAACTCCCTT	GCAACTTTCA	8220
	TAGAACAGTC	GCGCAGACTG	ATTTCTTCAT	AACCTTTCAT	AATTTCCAAT	TCTGTTTGTA	8280
15	ATAATTTTCT	AGTTGATTCT	ACTGGTTCGC	CCCAGTGAAG	TTCTATATCT	CTACACATTG	8340
	CGAATATTTT	TTTGCGTTGT	TCTATAGATA	GTTTTTTATT	GTCCGGAACC	TCTACTTCTG	8400
	CTTTTAGTGG	ATATCCGTTT	TCTAGTAAGT	CAATGTGACT	TTGTTCAAGT	TCAACACCAG	8460
20	TAGCAACGAC	GGAATAAGTA	CCGTCATTGT	CTTTCTGGTA	TCTTGTAATG	TATTGCATTT	8520
	AAACCACGTC	CTAGAACGGT	AAATCATCAT	CATTGATTTC	TATTGGACCA	TTAGCATTAG	8580
	CGAATGGGTT	TGATTGTTGA	CTCATTGGCG	TCTGTTTCCC	ATTTGCTTGC	TGTTCTTTTT	8640
25	GTTTCATCTC	ATCAGTTTTA	GGTTCTGGTT	TATTAACTAC	TTCATCGTCT	TTATTCCAAA	8700
	CTTTTACATA	TGAGAGTCTT	ACAAAATACT	TGCCTTGTTC	CTCGTTAAAT	TTATTTTTAA	8760
	GTACAATAGT	TCCGATTTTG	TTAATTAATT	GATCTGTGTC	AAAAGTTAAA	TCTGGTAAGT	8820
30	TCAATTTAAT	TCCTAATCTA	CTAAGTAACT	CGATATATTG	TTTTTCTTGA	TAATCTTGTT	8880
	GGAATGGTGG	GACGAATTGG	TTGTGTTTGT	ATTGTTTACC	TTCGTTGTTT	TCAAAAACAA	8940
25	TCGTGAAGTA	TCTGTTTTCT	CTGTCGTTAA	ACTCGACATT	TGCAACTTTT	ACTGTAAATT	9000
35	CTCCAGCTCC	TAAAAAGTCC	CCACCTTTCA	TGAATGCCTC	TTGATTAGTT	TCTTGAATGT	9060
	ATTGTGTTCT	ACCAGTGATT	TTCATAATTT	TTATACCGTC	CTTTTAATTA	ATTTTTAATT	9120
40	ACCATTTCTA	ATTGCTTGTA	CAACATCGTT	AATACTTGGA	TTAATGAAAC	GTTTGTTGTT	9180
	AATTTTGATG	TTGCTTGAGT	GTCTTATCTT	TGTCTCGAAT	AAATTTGATG	GTTCAGCGTT	9240
	AAGTACATAT	TGATAAGTTT	TTTCGCCGTC	TTGCTCATGT	TCTTCTATTG	TCATTCTTGC	9300
45	TAACACGTCA	GATTGACTGA	TGACTGCTTT	TTTTATTTGG	TCTTGTGCCT	CTATCGTGAT	9360
	TGTTGGATTG	ATAGTACTTC	CCTCATCATC	TTTGTCTTTG	TTAATGCCCT	CGTGTCCGCT	9420
	TATAGCAAGA	TGAAATTGAT	AATGTTCTTG	TAATTTAGAA	ATATAACGAT	AAATACTTAC	9480
50	AATGCGTGTA	GCACACTCGC	CCCAATCATT	AAATGTCGGT	TTCTTTGATT	TACCGTCCAT	9540
	САТСТССТСС	ልጥልርጥር ልጥልም	<u> </u>	ብሔር የመውሰው ነው። መመር የመመር መመር መመር መመር መመር መመር መመር መመር መመር	ጥሮ አ አጥሮ አ ርሞ አ	СВАСВТСВВТ	9600

AAAATGCTTA	TAATTCTTAA	TCTGCACAAC	TGCCCCATCT	TCTGTTACCG	TTGTTCCGTC	9720
CTCATTTATA	TCTAGTACTA	AGGCATTGTT	ATCTTTTGTT	AAAAACGTAG	TTTTACCAGT	9780
ACCGAACTTG	CCGTATATCG	CAAATTTATA	AAACTTGTTT	GCATTTTGTT	TGCTGATGTC	9840
TTTTACACCT	AGTTGCGTTA	AAATATCGAC	ATCTTGATTA	GTTTTTTCAG	TCATCTATTC	9900
TCCCACCTTT	ACCGTGTATG	ACGTTGGTTT	CTCCACAATG	CTAGCACCCT	CTAAAACTTC	9960
GCCGTTTGCG	TCAATCAATG	TGCCGTTTTC	AGTTACATTG	AAATCTTTCT	TAATGTCTGA	10020
TTGGCTAAGT	TTTTTAGTTA	CTTTTACATA	GTTGTCAAAA	CCTCGTTGCT	CAAGTTGTnT	10080
AATGACTTCT	TGCTCATTGC	TAACTTGAAT	GACTTTTGAA	CCTTTTCTGG	CTGTCACTTT	10140
TCCGTAAGtG	TATTCAACTT	GAATTTGCTA	TCTTGTTCTT	TTTGTATTCT	GTAATATTCA	10200
ATTACAAGGC	TTTGTAAATA	TTCTTTGCCA	CTCTGTAATT	TTTCTACTTC	TTTATCTTTC	10260
CATTCGTTTA	TGCGTTCAAT	TTCTTTATTT	GCTAAATCGT	TGATTTCATT	CTCTTTAGTT	10320
GTGATTGCAT	CCAGTTTCTn	AAAAACCCAG	TTAGCACTGT	CTAGATCAGT	nACTTTGAAT	10380
CGGTCGTCTT	GTTCGAATGT	n				10401

(2) INFORMATION FOR SEQ ID NO: 150:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2989 base pairs
 (B) TYPE: nucleic acid

- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 150:

. 60	TAGTAATGTT	TTTAAGTTTA	ATTGTTTAAA	TGCGTAGATA	TTATTCTCGA	TTTCTCTCTA
120	CATCTAGTTA	TATAATCATT	GTGTTGTATA	CTAAAAACAG	TTTCATATAT	GAGTTTATAA
180	TGTTTTTAAT	CATTGATGGA	CGATGCAATT	TAATTTCATG	AAAAATAATA	TACTTACTIT
240	ATCGATTTTT	TTTCTTTCGA	TTAAATTCAC	GCATATATTT	TCCAaATAAA	CTTAATCAAA
300	CTATTCCCAT	TCTGTCATAT	ATTAAAGCTC	CCATTGTTTC	TTAAACTTTT	ATCTCTTGnA
360	TAATCGTATT	AATTCTGCTT	ATTATCACCT	ACACAAATAA	AAACATAACA	TGAATTCGCT
420	CACGTGCAAG	TGATTTATTT	ACCATAGGTA	TCTTTTTTC	GAATCTTTCT	TGCTTCCTCT
480	ATCCTGTTTT	GGTGAAAAAT	GTTAGCTAAT	ATCTAGCTAA	TCTTCAGTCA	TTCGCCCACT
540	TCATTTCTAC	ACCATTGATT	TTGCATTTCT	CAACTTCACG	ATATATTCAT	AAATTGTCCA
600	ATGCATGTTT	TTGAAGTCTC	ATATATCAAT	CTAATATAGT	TATTGCATTT	GTTCTCCTTA

	AATTCAGTTT	ATATAAATGT	AATGCATTCC	TAACTAAATT	AAATCAATTG	AAATTGGGAT	720
	TATAACTTTA	TGATACGTAC	CACTACAATA	AAATAATATA	GTGAATAATC	TACCATTAGA	780
5	AAAATAAGCA	CAAAAAAACT	AGCAACCACA	CAAAAATGTG	ATTAGCTAGT	TAATAAGTGT	840
	CTAATTTAAG	TTAATTGTTA	ATCTATAAGA	TTAATCACTT	GAACGCGCAA	TCAAAATAAT	900
10	ACGTACAAGC	TCTGCTACAG	CGACTGCAGT	TGCTGCAACA	TAAGTCATTG	CTGCTGCAGA	960
10	TAATACTTTA	CGCGCATGCT	TGTATTCTTT	TTCATTTACA	ATGTTCAATG	CCGTAATTTG	1020
	TTTCATCGCT	CTTGAACTCG	CATCAAACTC	AACTGGTAAC	GTAACAATTG	AGAATAATAC	1080
15	CGCTAATGAC	ATTAAACCAG	CACCAATCCA	TAAAGCAGTT	GAACCaAATG	CACTACCTAT	1140
	CGCTGTTAAG	ATAATACCTA	ACATGATGAT	CATATAACTT	AATGAACTCC	CTAGGTTTGC	1200
	AACAGGTACT	AATGCTGCTC	TGAATCTTAA	GAACCAATAT	CCTTGGTGAT	CTTGAATGGC	1260
20	ATGACCAACT	TCGTGGGCTG	CAATTGCAGT	TCCAGCAACT	GATGGTCTGT	CATAGTTTGC	1320
	AGGAGATAGT	GAAACAACTT	TCTTTTTAGG	ATCGTAATGA	TCTGTTAAGA	ATCCTTCACC	1380
	TTTAACAACT	TCGACATCAT	AAATACCGTT	TGCATGTAAA	ATTTCTAATG	CAACTTCACG	1440
25	ACCCGTTTTA	CCACTAGTTG	ATCTAACTTG	TGAATATTTC	TCATAGTTAG	ATTTAACTTT	1500
	GTGTTGTGCC	CATAAAGGAA	GCACCATTAA	TATTACGAAA	TAAATTATCA	TAGTAAAAAT	1560
	TGAAGACAAT	AAACTCACTC	TCCTTTATAA	ATATTTTACT	GTCATTTGCC	GTTTTTATCA	1620
30	AATCATTTAC	ACTTTAATAA	TTTGTTTAAT	TCAATATAAA	GCAAAAGTCC	AAAAACACTT	1680
	AGACAACATG	ATAATACACC	AATTTGCCAC	ACATGTGTAG	TTATAAAATC	ATAATATGGA	1740
35	AATTGAAGGT	GAAAATAGTC	AATATAATCA	TTCAAAAACA	CCCAAATCAT	yGCTACACTG	1800
33	ATTCCAATCA	TAGAACGTTT	AAACCTAGGA	TAGAAGTAAA	TTGCCTGAAC	AGCCATTATA	1860
	CTGTGGGAAA	ACATTAATAC	CAAACCATTT	ACTGTAATAT	CACCTTGTTC	AATAATAAAT	1920
40	AATATATTCA	TTATAACTGC	CCAAATCCCA	TATTTGAATA	ATGTTACAAA	TGCCAGTGCA	1980
	TCGATAATAC	TATTTTGTTT	TTGAATTAAT	ATCAATGAGA	TAGAAATAAC	TAAGTATAAT	2040
	ATTGCAGTTG	GGCTATCTGG	AACAAAAATC	TTAAAATGCC	AGGGCGTATG	ACTTAATTGT	2100
45	TCACCATACC	ATATATAACC	ATAAATCATC	CCTAATATAT	TACAAATGAG	TAGCATCATT	2160
	AACCAAGAAC	GTTGATAAAG	TGTATATTGC	CAAAATGCTT	TAATTGTCAT	CTGCTAAGTC	2220
	CTCAAATTGA	TTATGTTTAT	TTACTAGCTT	GAGTGTATTT	AAAATTTGCG	TTAGTTGATA	2280
50	AAAACGTTGC	TTTTCATTCA	TCTGTAAACT	TAAATCAATA	TTGTGTAACA	AGTAATCTAT	2340
	# N N W N N C C C N	TOTAL MODE	CATOTATACO	רא יויא ביויא אייא איי	33000000033	CATTA A COURTED C	2400

	TGACACGTTT GCGAAGTGAA TTTGAATATC AAAAGCACAG TTATGATTAG CGATATAATC	2520
	AAATATTTCA TTTGTATTCA TTAACTTTAT ATTACGCTTA GTAAATTGAA TTGCAGAAGC	2580
5	GTGACTTCCC ACTTCTGCAA TTTCTAATGT TTCATGATGA TTAATTTTTG TATCTACAAA	2640
	ATGAATGTTT GCCAATTTCG CCTCATTCAC TTTTATATAG TTAAGCACCC AAACTGCAAT	2700
	ACGCGACTTA AATCGATATT GAAAAAGTAA ATATTCAATA AAACTTTCTT TAATTTGATT	2760
10	GAGTGTCTCT GACATCAAAT ACCCCATTTT AAGATTGCAA TCTTGATAAT TCGTCATGCC	2820
	AATTITCGTT ACTTGGCTCT AGTTCCAACA ATTGATTTAA AATAGTAATT GCTTGTTCCT	2880
15	TTTGACCAAT TTCAATTAAA TAGAAATAAT AATCACTCAT AAAATCAATA TTTGTTTTCA	2940
	TCGTTGGATA TGCTAATTCA AAGAAATGTT GAGCTTCTTT ATCTCGCTC	2989
	(2) INFORMATION FOR SEQ ID NO: 151:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1143 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 151:	
	CATCAACTCC TTAATTACAC TGTAAATGAT ATGCGTCTTT TTGACAACTA TATTTGTCAA	60
30	ATCTACACCA AAAAATATGA TTATCCACCT ATGTATGACA TTTTGAAACA AACACCTCAA	120
	CGCCTACAAG TCATAATTGT TTACTTTCGT TACACCTTCC TGCATAATTA ACAGCATTCT	180
	AATTITAGTA TGATGCACGC ATTITCACTA AATCAAACCA TTCAAAGGAG ACTATTATGG	240
35	CATTTACATT ATCTGCAATT CAACAAGCAC ATCAACAATT TACTGGTGTT GACTTTCCAA	300
	AACIATTCAA AGCTTTTAAA GATATGGGGA TGACTTACAA TATCGTCAAC ATTCAAGATG	360
40	GCACTGCAAC ATACGTACAT CAATCAGAAG ATGATATCGT TACGTCATCT GTAAAAAGTA	420
	ATCATCCTGT TGCTCAAAAA TCAAACAAAA CAATAGTTCA AGACGTCTTA ACTAGACATC	480
	AACAAGGGCA AACAGATTTT GAAACATTTT GTGATGAAAT GGCTGAAGCT GGCATTTATA	540
45	AATGGCATAT CGATATTCMA GCGGGCACTT GTACTTATAT CGACTTGCAA GACCAAGCTG	600
	TTATTTCAGA ATTAATCCCT CAATAAACTA TATTTATAGC AACATTTTAA TTATTTCATA	660
	AAATTTTATT GATAATCATT ATCGTTCGGT ATAAAGTAAA TACTATATAC TACTTATGAG	720
50	TGAGGTTGAT TATCATGATA ACTAACACTT TTATTTTAGG CATCACAGGC CCAACAAGTC	780
	TTGTCGTCAT TAGCATTATC GCTTTAATTA TTTTTGGTCC GAAAAAATTA CCACAATTTG	840

AGTCTCACGA TACACCCAGT AAGGAATCGA AACAACAGCG AGAGCAATAG CACTGACCAC 960 ACCTTACTGG TTCACTTTAG CGAACTACGC CATCGGTTAG TAAAAATTTT ATTGTCGTTC 1020 5 GTCATTACGG TCATCGTCGT ATATGTYTCA TCATTTTGGT GGATGACACC ATTCATAACG 1080 TATATYACCC GGCACATGTG TCCTTACATG CATTTCATTC ACAGAAATGA TACAAATAAC 1140 GTG 1143 10 (2) INFORMATION FOR SEQ ID NO: 152: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7953 base pairs (B) TYPE: nucleic acid 15 (C) STRANDEDNESS: double (D) TOPOLOGY: linear (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 152: 20 CAACGCCTGA ACGTAAACCA TATCGTTTCG CGATTTCCTC ATCTTGACTA TTTACTAAAA 60 ACTCTCTCAT GGCGATTAAT GTTTCTTTTT CTTCTTTAGT TAATGGTAAT TCTAACTCAG 120 25 CTGCTTTTTG ACGCAAAGTT GGATGACCAT CTCTAATGAT GTCTTTCATT GTTAACATAT 180 ATTGCACCTT CCTTATTTTA ATTTGTTTTA GTTGAATGAC AGTAAAAAGG TTGTTAAGAT 240 ACTCATACAT TTTTATGTGT AAATATCTAC AAAGTTAACC AACTACTGCC AATGTTTATT 300 30 TTAGATAGTA TATGTAAATT TTCAAGALAT GCGTAATTGC GTTAAAAAAT GATTAAAGTG 360 TTGGTTTCAA GCAATGATAC TTTAGAAATT TATTTATCAT CTTGACTTTA AAAATTATAT 420 TATAAATGAC GTAACTGTCA ACAGATATAC TTAGTAYTGA AGATGTGTAA TGTAATTGTT 480 35 TAAAATTGAT TTCCAAGCAG ATTTTATTTA TCATTTAATT TAAATAGCAA GTGGAGGTAC 540 AAGTAATGAA ATTTGGAAAA ACAATCGCAG TAGTATTAGC ATCTAGTGTC TTGCTTGCAG 600 GATGTACTAC GGATAAAAAA GAAATTAAGG CATATTTAAA GCAAGTGGAT AAAATTAAAG 660 40 ATGATGAAGA ACCAATTAAA ACTGTTGGTA AGAAAATTGC TGAATTAGAT GAGAAAAAGA 720 AAAAATTAAC TGAAGATGTC AATAGTAAAG ATACAGCAGT TCGCGGTAAA GCAGTAAAGG 780 ATTTAATTAA AAATGCCGAT GATCGTCTAA AGGAATTTGA AAAAGAAGAA GACGCAATTA 840 45 AGAAGTCTGA ACAAGACTTT AAGAAAGCAA AAAGTCACGT TGATAACATT GATAATGATG 900 TTAAACGTAA AGAAGTAAAA CAATTAGATG ATGTATTAAA AGAAAAATAT AAGTTACACA 960 50 GTGATTACGC GAAAGCATAT AAAAAGGCTG TAAACTCAGA GAAAACATTA TTTAAATATT 1020

55

TAAATCAAAA TGACGCGACA CAACAAGGTG TTAACGAAAA ATCAWAAGCA ATAGAACAGA

	AAGAAAAGCA	AGACGTTGAT	CAATTTAAAT	AATTAATATA	ATACAGATGG	TAGGAAACAA	1200
	CTAATACAGT	TCCTATTATC	TGTATCTTTT	TTTATTAAAA	CAGAACTTTT	TCAAATGGTT	1260
5	TAACAGTCCC	ATTTATTTGT	GGTACAATTA	GTAAGGATAA	AATGAATTTC	TATACAATTA	1320
	TGGGAAAGGT	ATTGTGAATT	GAATGGCTCC	TAAGTTACAA	GCCCAATTCG	ATGCAGTAAA	1380
10	AGTTTTAAAT	GATACTCAAT	CGAAATTTGA	AATGGTTCAA	ATTTTGGATG	AGAATGGTAA	1440
10	CGTCGTAAAT	GAAGACTTAG	TACCTGATCT	TACGGATGAA	CAATTAGTGG	AATTAATGGA	1500
	AAGAATGGTA	TGGACTCGTA	TCCTTGATCA	ACGTTCTATC	TCATTAAACA	GACAAGGACG	1560
15	TTTAGGTTTC	TATGCACCAA	CTGCTGGTCA	AGAAGCATCA	CAATTAGCGT	CACAATACGC	1620
	TTTAGAAAAA	GAAGATTACA	TTTTACCGGG	ATACAGAGAT	GTTCCTCAAA	TTATTTGGCA	1680
	TGGTTTACCA	TTAACTGAAG	CTTTCTTATT	CTCAAGAGGT	CACTTCAAAG	GAAATCAATT	1740
20	CCCTGAAGGC	GTTAATGCAT	TAAGCCCACA	AATTATTATC	GGTGCACAAT	ACATTCAAGC	1800
	TGCTGGTGTT	GCATTTGCAC	TTAAAAAACG	TGGTAAAAAT	GCAGTTGCAA	TCACTTACAC	1860
	TGGTGACGGT	GGTTCTTCAC	AAGGTGATTT	CTACGAaGGT	ATTAACTTTG	CAGCAGCTTA	1920
25	TAAAGCACCT	GCAATTTTCG	TTATTCAAAA	CAATAACTAT	GCAATTTCAA	CACCAAGAAG	1980
	CAAGCAAACT	GCTGCTGAAA	CATTAGCTCA	AAAAGCAATT	GCTGTAGGTA	TTCCTGGTAT	2040
	CCAAGTTGAT	GGTATGGATG	CGTTAgcTGT	nATATCAAGC	AACTAAAGAA	GCACGTGACC	2100
30	GCGCAgTTGC	AGGTGAAGGT	CCAACATTAA	TTGAAACTAT	GACATATCGT	TATGGTCCTC	2160
	ATACAATGGC	TGGTGACGAT	CCAACTCGTT	ACAGAACTTC	AGACGAAGAT	GCTGAATGGG	2220
35	AGAAAAAAGA	CCCATTAGTA	CGTTTCCGTA	AATTCCTTGA	AAACAAAGGT	TTATGGAATG	2280
	AAGACAAAGA	AAATGAAGTT	ATTGAACGTG	CAAAAGCTGA	TATTAAAGCA	GCAATTAAAG	2340
	AGGÇTGATAA	CACTGAAAAA	CAAACTGTTA	CTTCTCTAAT	GGAAATTATG	TATGAAGATA	2400
40	TGCCTCAAAA	CTTAGCAGAA	CAATATGAAA	TTTACAAAGA	GAAGGAGTCG	AAGTAAGCCA	2460
	TGGCACAAAT	GACAATGGTT	CAAGCGATTA	ATGATGCGCT	TAAAACTGAA	CTTAAAAATG	2520
	ACCAAGATGT	TTTAATTTTT	GGTGAAGACG	TTGGTGTTAA	CGGCGGTGTT	TTCCGTGTTA	2580
45	CTGAAGGACT	ACAAAAAGAA	TTTGGTGAAG	ATAGAGTATT	CGATACACCT	TTAGCTGAAT	2640
	CAGGTATTGG	TGGTTTAGCG	ATGGGTCTTG	CAGTTGAAGG	ATTCCGTCCG	GTTATGGAAG	2700
	TACAATTCTT	AGGTTTCGTA	TTCGAAGTAT	TTGATGCGAT	TGCTGGACAA	ATTGCACGTA	2760
50	CTCGTTTCCG	TTCAGGCGGT	ACTAAAACTG	CACCTGTAAC	AATTCGTAGC	CCATTTGGTG	2820
	CTCCCCTACA	CACACCACAA	TTACACCCAC	አጥአ አ ርጥጥአ ር አ	እ <i>ር</i> ርጣን መመመው	<i>ርር</i> ምር እ አጥርምር	2000

	CTATTAGAAG	TAATGACCCA	GTCGTATACT	TAGAGCATAT	GAAATTGTAT	CGTTCATTCC	3000
	GTGAAGAAGT	ACCTGAAGAA	GAATATACAA	TTGACATTGG	TAAGGCTAAT	GTGAAAAAAG	3060
5	AAGGTAATGA	CATTTCAATC	ATCACATACG	GTGCAATGGT	TCAAGAATCA	ATGAAAGCTG	3120
	CAGAAGAACT	TGAAAAAGAT	GGTTATTCTG	TTGAAGTAAT	TGACTTACGT	ACTGTTCAAC	3180
	CAATCGATGT	TGACACAATT	GTAGCTTCAG	TTGAAAAAAC	TGGTCGTGCA	GTTGTAGTTC	3240
10	AAGAAGCACA	ACGTCAAGCT	GGTGTTGGTG	CAGCAGTTGT	AGCTGAATTA	AGTGAACGTG	3300
	CAATCCTTTC	ATTAGAAGCA	CCTATTGGAA	GAGTTGCAGC	AGCAGATACA	ATTTATCCAT	3360
15	TCACTCAAGC	TGAAAATGTT	TGGTTACCAA	ACAAAAATGA	CATCATCGAA	AAAGCAAAAG	3420
	AAACTTTAGA	ATTTTAATAC	ATTTTAAAAG	TTAACGAAGT	TAGCGTATTT	TAGTCTCATT	3480
	GATTAAAATG	AAATGTTTAA	TTTACGAAAT	CTTAGGAGGG	CAAAAACGTG	GCATTTGAAT	3540
20	TTAGATTACC	CGATATCGGG	GAAGGTATCC	ACGAAGGTGA	AATTGTAAAA	TGGTTTGTTA	3600
	AAGCTGGAGA	TACTATTGAA	GAAGACGATG	TTTTAGCTGA	GGTACAAAAC	GATAAATCAG	3660
	TAGTAGAAAT	CCCATCACCA	GCATCTGGTA	CTGTAGAAGA	AGTTATGGTA	GAAGAAGGTA	3720
25	CAGTAGCTGT	AGTTGGTGAC	GTTATTGTTA	AAATCGATGC	ACCTGATGCA	GAAGATATGC	3780
	AATTTAAAGG	TCATGATGAT	GATTCATCAT	CTAAAGAAGA	ACCTGCGAAA	GAGGAAGCGC	3840
	CAgcAGaGCA	AGCACCTGTA	GCTACTCAAA	CTGAAGAAGT	AGATGAAAAC	AGAACTGTTA	3900
30	AAGCAATGCC	TTCAGTACGT	AAATACGCAC	GTGAAAAAGG	TGTTAACATT	AAAGCAGTTT	3960
	CTGGATCTGG	TAAAAATGGT	CGTATTACAA	AAGAAGATGT	AGATGCATAC	TTAAATGGTG	4020
05	GTGCACCAAC	AGCTTCAAAT	GAATCAGCTG	CTTCAGCTAC	AAGTGAAGAA	GTTGCTGAAA	4080
35	CTCCTGCAGC	ACCTGCAGCA	GTAACATTAG	AAGGCGACTT	CCCAGAAACA	ACTGAAAAAA	4140
	TCCCTGCTAT	GCGTAGAGCA	ATTGCGAAAG	CAATGGTTAA	CTCTAAGCAT	ACTGCACCTC	4200
40	ATGTAACATT	AATGGATGAA	ATTGATGTTC	AAGCATTATG	GGATCACCGT	AAGAAATTTA	4260
	AAGAAATCGC	AGCTGAACAA	GGTACTAAGT	TAACATTCTT	ACCTTATGTT	GTTAAAGCAC	4320
	TTGTTTCTGC	attgaaaaaa	TACCCAGCAC	TTAACACTTC	ATTCAATGAA	GAAGCTGGTG	4380
45	AAATCGTTCA	TAAACATTAC	TGGAATATCG	GTATTGCAGC	AGACACTGAT	AGAGGATTAT	4440
	TAGTACCTGT	TGTTAAACAT	GCTGATCGTA	AGTCTATTTT	CCAAATTTCA	GATGAAATTA	4500
	ATGAATTAGC	TGTTAAAGCA	CGTGATGGTA	AATTAACAGC	CGATGAAATG	AAAGGTGCTA	4560
50	CATGCACAAT	CAGTAATATC	GGTTCAGCTG	GTGGACAATG	GTTCACTCCA	GTTATCAATC	4620
	ACCCAGAAGT	АССА АТСТТА	GGA ATTTGGCC	СТАТТССТСА	AAAACCTATC	CTTAAACATC	4680

	ATGGTGCAAC	TGGCCAAAAT	GCAATGAATC	ACATTAAACG	TTTATTAAAT	AATCCAGAAT	4800
	TATTATTAAT	GGAGGGGTAA	AACATGGTAG	TTGGAGATTT	CCCAATTGAA	ACAGATACTA	4860
5	TAGTAATCGG	AGCAGGTCCT	GGTGGATACG	TTGCAGCAAT	TCGTGCAGCT	CAATTAGGAC	4920
	AAAAAGTAAC	AATCGTTGAG	AAAGGTAATC	TTGGTGGTGT	TTGCTTAAAC	GTAGGATGTA	4980
10	TTCCTTCAAA	AGCATTACTA	CATGCTTCTC	ACCGTTTTGT	TGAAGCACAA	CATTCTGAAA	5040
.0	ACTTAGGTGT	TATTGCTGAA	AGTGTTTCTT	TAAACTTCCA	AAAAGTTCAA	GAATTCAAAT	5100
	CATCAGTTGT	TAATAAATTA	ACTGGTGGTG	TTGAAAGCTT	ACTTAAAGGT	AACAAAGTTA	5160
15	ACATCGTTAA	AGGTGAAGCA	TATTTCGTAG	ATAACAATAG	CTTACGTGTT	ATGGACGAAA	5220
	AGAGCGCACA	AACATACAAC	TTTAAAAATG	CAATCATTGC	AACAGGTTCA	AGACCAATTG	5280
	AAATTCCTAA	TTTCAAATTC	GGTAAACGTG	TTATCGACTC	AACAGGTGCT	TTAAACTTAC	5340
20	AAGAAGTACC	aGGTAAATTA	GTTGTAGTTG	GTGGAGGATA	CATTGGATCA	GAATTAGGTA	5400
	CAGCATTTGC	TAACTTTGGT	TCAGAAGTAA	CCATCCTTGA	AGGTGCTAAA	GATATCTTAG	5460
	GTGGCTTCGA	AAAACAAATG	ACACAACCTG	TTAAAAAAGG	TATGAAAGAA	AAAGGTGTTG	5520
25	AAATCGTTAC	TGAAGCTATG	GCTAAATCAG	CTGAAGAAAC	AGATAACGGA	GTTAAAGTTA	5580
	CTTATGAAGC	TAAAGGCGAA	GAGAAAACAA	TCGAAGCTGA	TTATGTATTA	GTAACTGTAG	5640
	GTCGTCGTCC	AAACACAGAC	GAATTAGGCC	TAGAAGAATT	AGGTGTTAAA	TTCGCTGACC	5700
30	GTGGATTATT	AGAAGTTGAT	AAACAAAGCC	GTACGTCTAT	CAGCAATATC	TATGCAATTG	5760
	GTGATATCGT	TCCAGGTTTA	CCACTTGCTC	ACAAAGCTAG	CTATGAAGCT	AAAGTTGCTG	5820
35	CTGAAGCAAT	TGATGGTCAA	GCTGCTGAAG	TTGATTACAT	TGGTATGCCA	GCAGTATGCT	5880
	TTACTGAACC	AGAATTAGCT	ACAGTTGGTT	ATTCAGAAGC	GCAAGCTAAA	GAAGAAGGTT	5940
	TAGÇAATTAA	AGCTTCTAAA	TTCCCATATG	CAGCAAATGG	TCGTGCATTA	TCATTAGATG	6000
40	ATACTAACGG	ATTTGTTAAA	CTTATTACAC	TTAAAGAAGA	TGATACTTTA	ATCGGTGCTC	6060
	AAGTAGTTGG	TACTGGTGCA	TCAGATATTA	TCTCTGAATT	AGGTTTAGCA	ATTGAAGCTG	6120
	GTATGAATGC	TGAAGATATC	GCATTAACAA	TCCATGCACA	TCCAACATTA	GGTGAGATGA	6180
45	CTATGGAAGC	AGCAGAAAAA	GCTATCGGAT	ACCCAATCCA	TACAATGTAA	TAACTGATTA	6240
	TCTATAAAGA	TTCAGTCATT	AAAAGCTGTA	GCATATGCTA	CGGCTTTTTT	GTTTTAGGTA	6300
	aagtaatgta	aggaaattga	TTTGAGATAT	CGTTAACATG	TGACATGCAT	GTTATACTAG	6360
50	CGATGCTAAT	AAAAGAATTG	AAATGGAGGG	TTCAACAATG	GAATATGAGT	ATCCAATTGA	6420
	THE PARTY CO.	лотавтовьо.	AGATGATTTC	ВСТСВТВВВТ	ייי ע עייייייייייייייי	атстасаса а	6480

	AATTGTGCCT	GCTAAAGCAG	AGGAAAAACA	AATTTTTAAT	ACTITCGAAA	AAAGTAGTGG	6600
	CTATAATAGT	TACAAAGCAG	TTCAAGATGT	AAAAACTCAC	TCTGAAGAAC	AAAGAGTAAC	6660
5	AGCTAAAnAA	TAATTCGTTC	GAAATTAACA	CAATTTAATA	GGAATTTTTC	TTTAAAACTA	6720
	TTGCTAATAA	AGCTATATTT	TGATACCTTT	ATCAAGTGTT	AAACAAAATG	TTTGATAAAA	6780
	GTAAACTTAA	TATAGCTTTT	TTAGGTGGAA	AAATAAATGA	ACATAGGTAA	TAAAATTAAA	6840
10	AATCTTAGAA	GAATTAAAAA	TTTAACGCAA	GAAGAACTTG	CTGAACGTAC	AGACTTATCG	6900
	AAAGGCTACA	TTTCACAAAT	AGAAAGTGAA	CATGCCTCAC	CAAGTATGGA	AACTTTCTTA	6960
15	AATATTATAG	AGGTGTTAGG	AACGACGCCA	AGTGAATTTT	TTAAAGACAG	TGAAAATGAA	7020
	AAAGTATTAT	ACAAGAAGGA	AGAACAAGTT	ATTTATGATG	AGTATGATGA	AGGTTATATA	7080
	TTAAATTGGT	TAGTTTCAAA	GTCAAATGAA	TATGATATGG	AGCCATTAAT	ATTAACTTTA	7140
20	AAGCCTGGAG	CATCATATAA	AAATTTTAAT	CCATCAGAGT	CTGATACGTT	TATTTATTGT	7200
	ATGTCAGGTC	AGATAACACT	TAATTTAGGC	AAAGAGATAT	ATCAAGCACA	AGAAGAAGAC	7260
	GTTTTGTATT	TTAAAGCACG	AGATAATCAT	CGTTTGTCAA	ACGAATCAAA	CAATGAAACA	7320
25	CGAATACTTA	TTGTAGCGAC	AGCTTCATAT	TTATAGGGGG	GATCTTATTT	GGAACCGTTA	7380
	TTATCATTAA	AATCAGTTAG	TAAAAGCTAT	GATGATCTTA	ATATCTTAGA	TGACATAGAT	7440
	ATTGATATTG	AATCAGGATA	CTTTTATACA	TTATTAGGTC	CTTCAGGTTG	TGGTAAAACA	7500
30	ACAATTTTAA	AATTAATTGC	AGGGTTTGAA	TATCCTGACA	GTGGTGAAGT	GATTTATCAA	7560
	AACAAACCAA	TTGGTAATTT	ACCACCAAAT	AAACGTAAAG	TGAATACAGT	CTTTCAAGAT	7620
0.5	TATGCATTAT	TTCCACACTT	AAACGTCTAT	GATAATATCG	CTTTTGGTTT	GAAATTAAAA	7680
35	AAATTATCAA	AAACCGAAAT	TGATCAAAAA	GTAACTGAGG	CATTAAAATT	AGTAAAACTT	7740
	TCAGGTTATG	aaaaagaaa	TATTAATGAA	ATGAGTGGCG	GACAAAAGCA	ACGTGTTGCA	7800
40	ATTGCACGTG	CTATCGTAAA.	TGAACCAGAA	ATATTATTGT	TAGATGAATC	TTTATCCGCA	7860
	TTAGATTTGA	AATTGCGTAC	TGAAATGCAA	TATGAATTAC	GAGAATTGCa	ATCTAGATTA	7920
	GGtATTACAT	TTATATTTGT	aACACATGAT	CCA			7953

(2) INFORMATION FOR SEQ ID NO: 153:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2347 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

45

	GGCGTGATCA	TACGACCGTC	ATTCATGCTC	ATGAAAAAAT	ATCTAAAGAT	TTAAAAGAAG	60
	ATCCTATTTT	TAAACAAGAA	GTAGAGAATC	TTGAAAAAGA	AATAAGAAAT	GTATAAGTAG	120
5	GAAACTTTGG	GAAATGTAAT	CTGTTATATA	ACAGCACTAA	TGATNACAAT	CATTTTTTAC	180
	ATTTCTATAT	GCTAATGTGG	CAAGATGAGC	AAAACTCATT	TTGTGGATaA	TGTTTaAAAG	240
	TCATACACAC	CATACACAAG	TTATCAACAT	GTGTATAAyT	CGCCAAATCT	ATGTTTTTAA	300
10	GACTTATCCA	CCAATCCACA	GCACCTACTA	CTATTACTAA	GAACTTAAAA	CCTATATAAT	360
	TATATATAAA	CGACTGGAAG	GAGTTTTAAT	TAATGATGGA	ATTCACTATT	AAAAGAGATT	420
15	ATTTTATTAC	ACAATTaAAT	GACACATTAA	AAGCTATTTC	ACCAAGAACA	ACATTACCTA	480
	TATTAACTGG	TATCAAAATC	GATGCGAAAG	AACATGAAGT	TATATTAACT	GGTTCAGACT	540
	CTGAAATTTC	AATAGAAATC	ACTATTCCTA	AAACTGTAGA	TGGCGAAGAT	ATTGTCAATA	600
20	TTTCAGAAAC	AGGCTCAGTA	GTACTTCCTG	GACGATTCTT	TGTTGATATT	ATAAAAAAAT	660
	TACCTGGTAA	AGATGTTAAA	TTATCTACAA	ATGAACAATT	CCAGACATTA	ATTACATCAG	720
	GTCATTCTGA	ATTTAATTTA	AGTGGCTTAG	ATCCAGATCA	ATATCCTTTA	TTACCTCAAG	780
25	TTTCTAGAGA	TGACGCAATT	CAATTGTCGG	TAAAAGTGCT	TAAAAACGTG	ATTGCACAAA	840
	CAAATTTTGC	AGTGTCCAcC	TCAGAAACAC	GCCCAGTACT	AACTGGTGTG	AACTGGCTTA	900
	TACAAGAAAA	TGAATTAATA	TGCACAGCGA	CTGACTCACA	CCGCTTGGCT	GTAAGAAAGT	960
30	TGCAGTTAGA	AGATGTTTCT	GAAAACAAAA	ATGTCATCAT	TCCAGGTAAG	GCTTTAGCTG	1020
	AATTAAATAA	AATTATGTCT	GACAATGAAG	AAGACATTGA	TATCTTCTTT	GCTTCAAACC	1080
25	AAGTTTTATT	TAAAGTTGGA	AATGTGAACT	TTATTTCTCG	ATTATTAGAA	GGACATTATC	1140
35	CTGATACAAC	ACGTTTATTC	CCTGAAAACT	ATGAAATTAA	ATTAAGTATA	GACAATGGGG	1200
	AGTŢTTATCA	TGCGATTGAT	CGTGCCTCTT	TATTAGCGCG	TGAAGGTGGT	AATAACGTTA	1260
40	TTAAATTAAG	TACAGGTGAT	GACGTTGTTG	AATTGTCTTC	TACATCACCA	GAAATTGGTA	1320
	CTGTAAAAGA	AGAAGTTGAT	GCAAACGATG	TTGAAGGTGG	TAGCCTGAAA	ATTTCATTCA	1380
	ACTCTAAATA	TATGATGGAT	GCTTTAAAAG	CAATCGATAA	TGATGAGGTT	GAAGTTGAAT	1440
15	TCTTCGGTAC	AATGAAACCA	TTTATTCTAA	AACCAAAAGG	TGACGACTCG	GTAACGCAAT	1500
	TAATTTTACC	AATCAGAACT	TACTAAAAAT	AAATATAAAT	AAAGGATGAC	GTGATTAATT	1560
	AAAACGTCAT	CCTTTATTTT	TTGGCAAAAA	TAATTCTAGG	TGCGTATGTA	AAATAAATTT	1620
50	GGCAGCATTT	TAAACAGCAA	ATAAAAGACG	CCAATTAAAT	TTATGACAAA	TGTATCCAAA	1680
	ATTTAATAAG	TGTGCTTATA	TGCCCTTTAA	ATTTAAAATT	TTAATAGTCA	ATAACAAGTT	1740

AAAAATAAGA	ATTAATTATT	TATATGTAAA	CGGTTTCTAC	CTCTATTTTA	AATGAAATTT	1860
GTGACAAAAA	AAGGTATAAT	ATATTAATGA	CATACAAAGA	AATGGAGTGA	TTATTTTGGT	1920
TCAAGAAGTT	GTAGTAGAAG	GAGACATTAA	TTTAGGTCAA	TTTCTAAAAA	CAGAAGGGAT	1980
TATTGAATCT	GGTGGTCAAG	CAAAATGGTT	CTTGCAAGAC	GTTGAAGTAT	TAATTAATGG	2040
AGTGCGTGAA	ACACGTCGCG	GTAAAAAGTT	AGAACATCAA	GATCGTATAG	ATATCCCAGA	2100
ATTACCTGAA	GATGCTGGTT	CTTTCTTAAT	CATTCATCAA	GGTGAACAAT	GAAGTTAAAT	2160
ACACTCCAAT	TAGAAAATTA	TCGTAACTAT	GATGAGGTTA	CGTTGAAATG	TCATCCTGAC	2220
GTGAATATCC	TCATTGGAGA	AAATGCACAA	GGGAAAGACA	AATTTACTTG	GAATCAATTT	2280
ATACCTTAGC	TTTAGCAAAA	AGTCATAGAA	CGAGTAATGG	ATAAGGGACT	CCATACCGTT	2340
TTAATGC						2347

(2) INFORMATION FOR SEQ ID NO: 154:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 13542 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 154:

ACAAGACGTn	TCTATAACTT	ATCTGAAATC	GCTCGTCAAG	ATAAAGATTA	TGCAACTATC	60
TCATTCTTAA	ACTGGTTCTT	AGATGAACAA	GTCGAAGAAG	AATCAATGTT	TGAAACTCAC	120
ATCAATTATT	TAACTCGTAT	CGGCGATGAC	AGCAATGCAT	TATATCTTTA	CGAAAAAGAA	180
CTTGGCGCTC	GTACATTCGA	CGAAGAATAA	TTAAACATCA	CTACAATAGA	CAGATAAATA	240
TCATACGACA	TGATAGGCAT	TTGGGTCACT	TACAATAACC	CAATGTCTAT	ATTATTTTGC	300
TTTACGGAGA	TCACTAGATT	CATTTTCTGA	ATCATTGATC	TGCGTTTTTT	CATTTTCAAG	360
GCTAATTATT	GTATTTTTAG	TCATTTATTT	TTTAAACTAC	TAATGTTAAT	AACTCTAAAT	420
TTGATGTTGA	ATTAATTTGA	CGATTTTAAA	GCATATCATC	ATTTACTTTT	TAATCAGAGT	480
TACATCCAAA	TGATAGATTT	CACGTTATAC	CTTCACGTAT	AATATTATGT	ATCGTTTGTA	540
agcaaatgac	TAAAAGTCTA	TTAATATATA	CATTTAATTA	ATTGAAAGGA	TTGACTACAT	600
GATACAAGAT	GCGTTTGTTG	CACTTGATTT	TGAAACAGCA	AATGGTAAAC	GTACAAGTAT	660
TTGTTCTGTC	GGAATGGTTA	AAGTCATTGA	TAGTCAAATA	ACAGAAACAT	TTCATACTCT	720
TGTGAATCCG	CAAGACTATT	TTTCACAACA	AAATATTAAA	ATTCATGGCA	TACAACCAGA	780

		aGATTTACCT	GTTGTCGCAC	ATAACGCGGC	ATTTGATATG	AACGTCTTAC	ATCAAAGCAT	900
		TCAAAATATT	GGTTTACCAA	CTCCAAATTT	AACTTACTTT	TGTAGTTATC	AACTTGCTAA	960
	5	AAGAACCGTT	GATTCGTATC	GATACGGTTT	AAAACATATG	ATGGAGTTTT	ATCAATTAGA	1020
		TTTTCATGGT	CATCATGATG	CATTGAATGA	TGCCAAAGCA	TGCGCAATGA	TTACTTTTAG	1080
	10	GCTACTGAAA	AATTATGAAA	ATTTAACATA	TGTAACTAAT	ATTTATGGTA	AAAATCTAAA	1140
	10	AGATAAAGGC	TAGGACTAAA	TAAAATACTC	CCTTCAAAAG	TAAGCATTGT	AAAAATGTAA	1200
		ACTTTGCAGG	GAGCTTTATT	TTATATAAAG	TCATATATCG	TCATATTTT	ATAAGTTGAT	1260
	15	TGTTCTAAAT	TACCTACAGT	GACACCAATA	AGTCGAATTG	GTACATCAGG	GTCTTTTAAA	1320
		TCGTTATAAA	GTAAATATGC	AATATTATAA	ATATCTTCTT	CAGAACTAAC	CGAATCTCTT	1380
		AAACTCATCT	GTTTAGATAG	CGTTTCAAAT	TGATAAGTTT	TAATTTTAAC	CGTTACAGTT	1440
	20	TTAGCTGACT	TCTGTAATTT	ATTTAGACGT	TCAGCTGTTT	TACCTGnACA	ATTCCCATAC	1500
		TTTTCTTAAA	ATCTCTTCAT	CATCATTCAC	GTCTGTTGCA	AATGTGCGTT	CAGTCCCTAC	1560
•		TGATTTTCTT	ACTCTTGATG	ATTTCACTTC	ACTATGGTCA	ATACCGCGTG	CCTTGTTATA	1620
	25	TAAACCCCGA	CCTCTTTTTC	CAAACAAACG	TATTAATTCA	AATTCCGTTT	TCTCATATAA	1680
		ATCTCTACCG	TTAAAAATAC	CATTATCATG	CATTACTTTT	TTGGAAGCTT	TACCTACGCC	1740
		TGGaAAATCT	CCAATATCCA	ATGTCATCAA	AATATCATGG	aCATTTTGAT	AATCAATCAC	1800
	30	AGTCATACCA	TCAGGTTTAT	TCATACCACT	CGCTAATTTA	GCTAAAAATT	TGTTATAAGA	1860
٠.		AACACCTGCA	GATGCTGTTA	AATGTGTCTG	CTCTAGAATA	TCTTTTCTAA	TATACTGAGC	1920
	35	AATTTTCGAA	GCAGGAAGGT	CTGGTCTCAC	TAATTCTGTA	ATATCTAAAT	ACGCTTCATC	1980
	33	CAATGACATC	GGTTCTACCT	TATCTGTATA	ACTTCGGAAA	ATAGACATAA	TCTGCGCAGA	2040
		TGTTTCTCGG	TAAGCACCAA	AATTACTTGT	GACAAAGTAT	CCATTTGGAC	ATAATTTATG	2100
	40	CGCTTGTGAC	ATAGGCATTG	CTGAATGGAC	GCCGTATTTT	CGTGCTTCAT	AGGATGCCGT	2160
		AGAGACAACA	CCCCTACTGC	TTGCTTTACC	ACCAACAATG	ACTGGTTTCC	CTTTCAATTT	2220
		GGGGTTATCT	CTCATTTCGA	CTTGTGCAAA	AAAATAGTCC	ATATCTATAT	GAATAATTCG	2280
	45	TCTCTCAGTC	AAGTGCTCAC	СТСССТАСТА	ATTTTTACTT	TTATAACGCA	CAAAAATATC	2340
		TCAACATAAT	TATACGCTGT	GTACGATTTT	TTTACATAAA	TCTTGCACTT	AGCGATAACT	2400
		ATATTGaGAT	AACTACAAGT	TGTTATAAAA	TCAATTGCTA	TTTAAGCATG	ATGATGAAGA	2460
	50	CGATTGAGTA	AGAAAACATA	GGTAATCTGA	AATAATTCAA	GCAAATTCAT	TTTGTTGGTA	2520
		TCATCATATT	AAAATTTATT	ATTGAGTCGG	CTTTTGATGA	TACAAATAAA	TACTATCTTC	2580

	AAAGCAATAA	GCGGTATGCA	TACTAAACAT	AAAAATAAGT	GATGAATAAC	CAAATACCTT	2700
	AATTAAAATA	AGCAAGCCAG	TACTTAATAG	GATTAGTGGT	GACAGCATAA	TAATTGAGAA	2760
5	TTGCCATTTG	TTGAAGCAAG	CATCTGCTGT	TTGGAATAAG	ATTCTGTCTT	TTTTTATATT	2820
	AAACATAGGT	TTGCTATCTT	TTTTAAATAA	AAGAAATAAT	GCTCTATGGA	TAAGTTCATG	2880
10	TAAAATCAAT	AAAATAATGA	ATCCAGCAAA	CCCATATACA	AGATTGATGA	TGATATTTTG	2940
10	ATCGACAACC	GCTGTGACAC	CTAACGCCCA	CTTATACGTA	AATAAAATCA	CGAATAACGC	3000
	AATAACAAGT	TGCAAGATAA	TAAACCTTCG	CATTTGAAAA	TTATTTGTCG	TTAAATCAAT	3060
15	TTTATGCATT	ACCAACCCTC	CCGATCATGA	CATTCTTATT	CTTCTTTAAA	TATAGTATAC	3120
	AATGTCACAT	TTAATTTAAA	AAGTTCATAT	CAAGAAAGTA	AATTGGCTGT	AATAAAATTT	3180
	TAATATACGA	CTTCTTTCTT	CACTTATTAA	GGCGAAATTT	TATCECAAAT	CATGTGCGCT	3240
20	ATTTCAAATT	GAATAATGCC	ACTGTCTCAA	CATGTGTTGT	TTGTGGAAAC	ATATCTACCG	3300
	GTGTTACCTC	TTCAAGTTGA	TATTTTTCAG	СТААТААТАА	TGCATCACGT	TGCTGTGTTG	3360
	CGGGATTACA	TGAAATATAG	ACAATACGCT	TAGGTTCTAA	TGTAAGCAAA	GTCTGAATAA	3420
25	ACGTTTCGTC	ACAGCCCTTT	CTTGGCGGAT	CAACCATTAC	AACATCTGGT	TTAATCCCTT	3480
	GTGCTTTCCA	TTGTAAAATA	ACTTCTTCAG	CTTTCCCACA	GACAAAAGTT	GTATTATTGC	3540
	ATTGGTTTAT	AGTCGCATTT	TGTTGTGCGT	CTTCAATTGC	AGAAGGTACT	ACTTCAACAC	3600
30	CGTATACATG	TTTTGCAAGT	GGTGCCATAT	ATAGCCCTAT	TGTTCCAATA	CCACAATAGG	3660
	TATCTAATAC	AACTTCATTA	CCTGTCAATT	GCGCATACTC	AATTGCTTTA	TTATATATT	3720
35	TCTCTGTTTG	TTCAGAATTA	ATTTGGTAGA	ATGACTGATC	ACTTATTTTA	AATGTACTAT	378 <u>0</u>
	CTGTTAATTG	ATCAATAATT	GTATCTTTAC	CATATAGCGT	TATAGATTGA	CGTCCCATAA	3840
	TAACATTAGA	GTGGCTATCA	TTAATGTTTT	GTTTAATGCT	TGTCACATTA	GGAAATGCAT	3900
40	CTAATATCTT	CTCAACAACA	GCATTTTTTT	GTGGCCACTT	TTTACCATTA	GTTACAAAAA	3960
	TAATCATCAT	TTCGTCTGTA	TGATATCCTG	TTCTTACAAC	CAAATGTCTC	ATTAAACCTT	4020
	TTTTCAATTG	TTCTTGATAA	ATACTTACAT	TTAAATCTTT	TAAAATAGAT	TTAACTTCAT	4080
45	TCATCACTTC	TTGATGTTGT	GAATCTTGTA	TTAAACAACT	TTCCATGTCA	ATAATGTCAT	4140
	GGCTTCTTTG	ACGATAAAAG	CCCATAATAA	CTTCATTCTG	TTCATTCTTA	CCAACTGGAA	4200
	TCTGGGACTT	GTTTCGATAT	CTCCAAGGAT	CTGTCATGCC	AACTGTATCG	TTAATCTTAG	4260
50	AATTATCAAA	ATGCGCTTTT	CGCTGAAACA	AATTAATCAC	TTGTTCCTTT	TTCATTTCAA	4320
		CTATCATAAC	שייים א איייים	GGCACCCACC	አ ር እ አ ር ር ጥጥር እ	ተ ልል ተልተልተል ሮ	4380

	AGTTCTTTTT	TACTTTGATA	ATTTTATATT	CAATTTGTTC	ATTAATTAAA	GCTTGTGGTA	4500
	TGAAAATAGG	AAAGCGATCT	ATTITTACGA	CACCATGGCC	TTCATGCGTT	AAATCAACAA	4560
5	CTGTTCCCGT	TTTTATGTCA	TTTTTAGCTA	TTGCTTGCAA	AATTTTACCT	CCAAAATGAA	4620
	CAGGTTAGGA	ACAAAATTAT	GCGCTTCCTA	ACCTGCCATT	ATATATTTCA	CTATTTCTGT	4680
	TTATTCTTCG	ATTAAATTGT	CATCAACATG	ATCATTATTT	ATTAACTCTT	CATTTACAAT	4740
10	ATCATTAGGT	GCAAAGACAT	CTATATGACG	TTCTAGATTT	AAGAAATTCG	CTGGTAATTT	4800
	ACCACCATAT	TCTCCATCTA	CATTTAGTTG	TAAGTCTGTG	AATGATGAAA	TATTAATTGC	4860
15	CITTGCTTTT	TCATAAATAA	CTTTAGGATG	CTTAGTATGT	TCTCCTCTTG	AAGCTAAAGT	4920
	CATAATATGA	CCAAGTTCTG	CAAGGTTTGA	TTTTTCAACT	ATAATTAACG	TAAAATAGCC	4980
	GTCATCTAAC	TTAGCGTCCG	GCACTAATTT	TTCAAATCCT	GCCATTGAAT	TTGTTAAACC	5040
20	TAAAAAGAAT	AATAATGCTT	CTCCTTGGAA	AACATTACCA	TCATATTCAA	TTCTTAAATC	5100
	TACAGCTTTC	ATTTGAGGTA	ACATTTCGAA	ACCTTTGaTG	TAATAAGCAA	ATGGACCAAC	5160
	AATAGATTTC	AATTTACTCG	GTGTTTCATA	AGAGACTTGC	GTCAATTGTC	CGCCTGCAGC	5220
25	TAAATTAATA	AAGTATCGAT	TATTCATTTT	ACCAATATCT	ACTTTAGTAG	AATGACCTTC	5280
	AATGATGACA	TCAAGTGCCC	CCATGATGTC	ATTAGGTATA	TGCAATGCAC	GTCCAAAGTC	5340
	ATTAACAGTA	CCCATAGGAA	TGACACCTAG	CTTAGGACGA	TTAGGCTTTT	CTGCGATACC	5400
30	ATTAACTACT	TCATTTAATG	TTCCATCACC	ACCTGCAGCG	ATTAATACAT	CATAATTTTC	5460
	ATGCATAGCT	CTTTCTGCTT	CAAGTGTGGC	ATCACCTATT	TTCTCGGTTG	CATATGCACT	5520
	CGTTTCATAT	CCCGCTTTTT	CTAATTTTAT	TAAGGCATCA	GGTAATTCTC	TTTTAAATAG	5580
35	CTCTTTACCT	GATGTCGGGT	TATAAATGAT	TCTAGCACGT	TTCCTCATAT	CTTATCCCTC	5640
	TACTTAAAAT	TCATATATTT	TAACTTCATC	TTTGTTTCGT	CTAATAGGGA	GTGGGACAGA	5700
40	AATAATATTT	AACAAAATTT	ATTTCGTTCT	ACCCCAACTT	GCATTGTCTG	TAGAATTTCC	5760
	TTTCGAAATT	CTCTATGTTG	GGGCCCCACC	CCAACTTGCA	CATTATTGtA	AGCTGACAGA	5820
	AAGTCAGCTT	CTTTGTTTGG	GGCCCCGCC	AACTTGCACA	TTATTGTAAG	CTGACAGAAA	5880
45	ATCAGCTTCT	ATGTTGGGGC	CCCACTAGAA	TTGAAAAAAG	CTTGTTACAA	GCGTATTTTC	5940
	TTTCAGTCAA	CTACAGCCAA	TATAACATTG	TAGTGCCTAG	GACATTGAAT	TTATGACCCA	6000
	GGCTCAGTCT	TATTTCATCA	TTCTTAATAT	CGTTAAAGAC	CAACTTGTAT	CTTAAACAAA	6060
50	TACTATCTCA	ATATGTACAA	AGCTTGTTAT	TTATTCAGCA	TTTTTTGCCG	TTCTTCATTA	6120
	TALAGCTTCG	TCAGTTATGC	TATTTTACCT	TTAAAATGAT	GTTGTAAATA	TAATGTTGTC	6180

	AACGCATTAA	TAAAATTAAT	ATTTTTACCA	TTAACATGTA	CAATGAATAA	AGTTAAAAGT	6300
	AATTTGACTT	CTATAGATAT	AAATAAACCC	TCGATTGCAT	CTAAGTCAGC	AATCAAGGGT	6360
5	TTATTTTTTA	AATCTTCATA	GTTTGATGAT	TTAAATTATC	TTTTATCTAA	TTCTTGTTTT	6420
	AATAGTTGAT	TTACTAATTG	TGGATTAGCT	TGACCTTTAG	ACGCTTTCAT	AATTTGACCA	6480
10	ACTAAGAAGC	CCATAGCTTT	GCCTTTACCA	TTTTTGTAAT	CTTCAACTGA	TTGTTCGTTA	6540
,,,	TTGTCTAATG	CTTCATTTAC	AAATTTTAGA	AGTGTTGCTT	CATCAGAAAT	TTGAACTAAG	6600
	CCATTATCTT	CCATAATCTG	TTTAGCATTA	CCACCTTTAG	CTGCTAACTC	TGGGAAGACT	6660
15	TTCTTCGCAA	TTTTACTGCT	CATTGTTCCG	TCTTCGATAA	GTTTAATCAT	ACCTGCTAAA	6720
	TTTTCTGGTG	TTAATTTAGT	ATCTAATAAT	TCTACTTGAT	TTTTATTTAA	ATATTCGTTT	6780
	ACGCCACCCA	TTAACCAGTT	AGATGTTAAT	TTAACATCTG	CACCGTGTTC	AATTGTTGAT	6840
20	TCAAAGAAAT	CTGACATTTC	TTTAGTCAAT	GTTAATACGT	GTGCATCGTA	TGCAGGTAAA	6900
	CCTAATTCAT	TTACATACTT	AGCTTTACGT.	TCATCTGGTA	ATTCAGGAAT	TGTCTGACGA	6960
	ACACGCTCTT	TCCAAGCATC	ATCAATATAT	AAAGGTACAA	TGTCAGGCTC	TGGGAAGTAA	7020
25	CGGTAATCAT	CAGAACCTTC	TTTAACACGC	ATTAAAATTG	TTTTACCTGT	AGATTCATCA	7080
	AATCGACGTG	TTTCTTGTCC	GATTTCTCCA	CCATTTAACA	ATTCTTCTTC	TTGGCGTTTT	7140
	TCTTCATATT	CTAAACCTTT	ACGTACATAG	TTAAATGAGT	TTAAGTTTTT	CAATTCGGCT	7200
30	TTAGTACCAA	ATTTTTCTTG	ACCATATGGA	CGTAAAGAGA	TGTTAGCATC	ACAACGTAAA	7260
	GATCCCTCTT	CCATCTTAAC	GTCTGATACA	CCAGTGTATT	GAATAATTGA	ACGCAATTTT	7320
35	TCTAAATATG	CATATGCTTC	TTTAGGTGAA	CGAATATCTG	GTTCAGATAC	GATTTCAATT	7380
	AGCGGTGTAC	CTTGACGGTT	CAAGTCAACT	AATGAATACT	CACCTTTATG	TGTTGACTTA	7440
	CCAĞCATCTT	CTTCCATGTG	AAGACGAGTA	ATACCGATTC	GTTTTGTTTC	ACCGTCGACT	7500
40	TCGATATCGA	TATATCCATT	TTCACCAATT	GGTTGATCAA	ATTGAGAAAT	TTGATATGCT	7560
	TTTGGATTAT	CTGGATAGAA	ATAGTTCTTA	CGGTCAAACT	TAGATTCTGT	TGCGATTTCC	7620
	ATATTTAGTG	CCATTGCAGC	ACGCATTGCC	CAGTCTACTG	CACGCTTATT	AACAACTGGT	7680
45	AAGACACCTG	GATATGCTAA	GTCGATAACA	TTTGTATTTG	AGTTAGGTTC	TGCTCCAAAA	7740
	TGCGCTGGTG	ATGGAGAAAA	CATTTTTGAG	TCCGTTTTTA	ACTCTACGTG	AACTTCAAGT	7800
	CCTATAACTG	TTTCAAAATG	CATGATTTCC	ACTCCTTATA	ATTTTTCATA	AACGTCATGT	7860
50	AAATTGTATT	GTGTTTCATA	TTGATAAGCG	ACACGATATA	ACGTTTTTTC	ATCGAATGGT	7920
	TTROCK STOR	8 CTCT3 8 8 CC	CAMPOOTOCC	עייט ע קאווייט אייט אייט אייט	OTOGRAPA ACC	3 3 C 3 C 3 3 3 T 3	7000

	GGATCATCAA	TTTCTTCACC	TAAATTAAAC	GCaGTgTnAG	GCGCTGTTGG	ACCAACTACT	8100
	ACATCATAAT	TTTCGAATAC	TTTATCAAAG	TCATTTTTAA	TCAATGTTCT	AACTTTTTGA	8160
5	GATTTTTTAT	AGTAAGCATC	ATAGTAACCT	GAACTTAATG	CAAATGTACC	TAAGAAAATA	8220
	CGACGTTTTA	CTTCTTTACC	GAAACCTTCA	GATCTTGACA	TTTTATATAA	TTCTTCTAAT	8280
10	GAATGAGCTT	CTTTAGAATG	ATAACCATAA	CGAATTCCGT	CAAAACGAGA	AAGGTTTGAC	8340
10	GAAGCTTCTG	ATGATGCAAT	CACGTAATAT	GATGGAATAC	CAAATTTAGT	ATTTGGCAAT	8400
	GATACTTCCT	CAACGACAGC	ACCTAAAGAT	TTTAAAGTTT	CTACAGCGTT	TTGAACTGCT	8460
15	TCTTTTACGT	CATCAGCTAC	ACCTTCACCT	AAGTATTCTT	TAGGTAATGC	AACTITTAAT	8520
	CCTTTAATAT	CTTTACCAAT	TTCAGATGTA	AAGTCTACAT	CATCAACTGG	TGCACTTGTA	8580
	GAGTCATTAA	CATCTGCACC	AGAAATAGCT	TCTAATACGA	TTGCATTATC	TTTTACATTT	8640
20	CGAGTCAATG	GACCAATTTG	GTCTAATGAA	GATGCAAAAG	CAACTAATCC	AAATCGAGAT	8700
	ACACGACCGT	ATGTTGGTTT	CATACCGACA	ACGCCACAAT	ATGCAGCCGG	TTGTCTAATT	8760
	GAACCACCTG	TGTCTGAACC	TAAGCTAAAT	GGTACTAAGC	CAGCTGCAAc	TGCTGCTGCA	8820
25	GATCCACCTG	ATGAACCACC	TGGCACTGCT	TTATGGTCAA	ATGGGTTAAC	TGTTTTTTTG	8880
	AAATAAGATG	TTTCTGTTGA	ACCACCCATT	GCAAACTCAT	CCATATTTAA	TTTACCGATT	8940
	AAAACGGCAT	TTTCATTATG	TAGTTTTTCC	ATTACAGTAG	ATTCGTAAAT	TGGCACAAAA	9000
30	CCTTCTAACA	TTTTACTTGC	ACATGTTGTT	TCTAATCCGT	TTGTAATAAT	GTTATCTTTT	9060
	ATACCCATTG	GAATACCAAA	TAATTTGCCA	TCCATTTGAT	CTTTTGCTTG	TAATTCATCC	9120
35	AATTCTTGCG	CTTTTTTGAT	TGCATTTTCT	TTATCCAGCG	CTAGAAAAGA	CTTAATTGTT	9180
33	GGATCAGTCT	CTTCAATTGC	ATCATATATA	TCTTTAACAA	CATCAGATGG	TTTGATTTTT	9240
	TTGTCTTTTA	TTAAAGTTAA	TAAATTCTCA	ACCGATTCGT	AGCGAATGCT	CATCTTACGC	9300
40	GTCCTCCTCA	TTCATGATTG	TAGGCACTTT	AAATTGTCCA	TCTTCTGTTT	CTTTGGCATT	9360
	TTTCAAAGCT	AATTCTTGTG	GAATACCTTT	AATTGCTTTA	TCTTCACGTA	AAACGTTTTG	9420
	TAAATCTAAA	ACGTGATATG	TAGGTTCAAC	GCCTTCTGTA	TCAGCGCTAT	CATTTTGTTT	9480
45	TGCAAAATCT	AAAATGCTTT	CTAATGTGTT	GGCCATTTCT	TCCGTTTCTT	CAGGAGAAAT	9540
	TTGAAGTCTT	GCAAGATTCG	CGATATGCTC	AACTTCTTCA	CGTGTTACTT	TTGTCATTAA	9600
	TAAAAGCCTC	CTTTAAGTCA	TTCATCACTA	AATTGTATCA	AATTTCCAAT	TAAAAATCTA	9660
50	AGTATTTATG	AGGTGCTACT	TTAATTTCAT	ATAAACTGTA	TAAACATTAT	CATTCGTTTA	9720
	TCAAATCATT	TTTTATGAAA	ACAACACTCT	TTTAATATTA	GACAACCCAA	TTCAATATTA	9780

	TATATTGGTA	TGCAAGTATT	TCAAAAAGAA	TAAATTTAAT	TTTCCTACTT	TTCTAAACAT	9900
	TTATCTTTAT	GTATAATGTT	TTCAAGTAAC	TAAATTATAA	ATTAAATAAA	GGGAGTGTTT	9960
5	ATCATGCTTA	CAATGGGGAC	AGCATTAAGT	CAACAAGTAG	ATGCCAATTG	GCAAACTTAT	10020
	ATTATGATTG	CCGTCTACTT	CTTGATACTA	ATCGTTATTG	GCTTTTACGG	TTACAAGCAA	10080
	GCAACTGGTA	ACCTAAGCGA	GTACATGTTA	GGTGGACGTA	tATTGGACCG	TATATTACTG	10140
10	CATTATCAGC	TGGAGCTTCA	GATATGAGTG	GATGGATGAT	TATGGGGCTA	CCTGGTTCTG	10200
	TCTATAGCAC	TGGTCTATCA	GCTATGTGGA	TTACAATCGG	TTTAACATTA	GGTGCTTATA	10260
15	TAAATTACTT	TGTTGTTGCT	CCTAGACTTC	GTGTTTATAC	CGAATTAGCT	GGAGATGCAA	10320
	TTACATTACC	AGATTTCTTT	AAAAATCGTT	TAAACGATAA	AAATAATGTG	TTAAAGATTA	10380
	TTTCTGGATT	GATTATCGTA	GTATTCTTTA	CATTATATAC	ACATTCTGGT	TTCGTATCTG	10440
20	GTGGTAAACT	ATTTGAAAGT	GCTTTTGGAT	TAGATTATCA	TTTCGGTTTA	ATATTAGTTG	10500
	CTTTCATTGT	CATTTTCTAT	ACTITCTTTG	GTGGATATTT	AGCTGTATCA	ATTACAGATT	10560
	TCTTCCAAGG	TGTCATTATG	TTAATTGCGA	TGGTTATGGT	CCCTATTGTT	GCTATGATGA	10620
25	ATTTAAACGG	CTGGGGAACG	TTTCATGATG	TAGCAGCTAT	GAAACCTACA	TTAAATTTAA	10680
	TATTTAAAGG	GTTATCATTT	ATAGGAATTA	TCTCTCTATT	TTCATGGGGA	TTAGGTTATT	10740
	TCGGTCAACC	TCATATCATT	GTAAGGTTTA	TGTCTATTAA	ATCACACAAG	ATGCTACCTA	10800
30	AAGCTAGACG	TTTAGGTATT	AGCTGGATGG	CTGTTGGTTT	ATTAGGCGCT	GTGGCTGTTG	10860
	GTTTAACAGG	TATTGCATTC	GTACCTGCTT	ATCATATTAA	ACTAGAAGAT	CCTGAGACAT	10920
35	TATTCATCGT	GATGAGTCAA	GTACTCTTCC	ATCCTCTTGT	AGGTGGTTTC	TTACTTGCTG	10980
35	CGATTCTAGC	TGCAATTATG	AGCACGATTT	CTTCACAATT	ACTTGTAACA	TCTAGTTCAC	11040
	TAACGGAAGA	CTTTTATAAA	TTAATTCGTG	GTGAAGAAAA	agctaaaacg	CACCAAAAAG	11100
40	AATTTGTTAT	GATTGGAAGA	TTATCTGTAT	TAGTTGTAGC	AATTGTTGCC	ATCGCGATTG	11160
	CATGGAATCC	AAACGACACA	ATTCTAAACT	TAGTAGGTAA	CGCTTGGGCC	GGATTTGGTG	11220
	CATCGTTCAG	TCCACTTGTG	CTATTTGCAC	TTTACTGGAA	AGGTTTGACA	CGTGCCGGTG	11280
45	CTGTAAGTGG	AATGGTTTCA	GGTGCCTTAG	TCGTTATCGT	TTGGATTGCA	TGGATTAAAC	11340
	CATTGGCACA	TATCAACGAA	ATATTCGGCT	TATATGAAAT	TATTCCTGGA	TTTATTGTAA	11400
	GTGTAATCGT	TACATATGTT	GTAAGTAAAC	ТТАСТААААА	ACCTGGTGCA	TTTGTTGAAA	11460
50	CTGACTTAAA	CAAAGTTCGT	GACATCGTTA	GAGAAAAATA	ATTCATAAGT	CTTAACAAAT	11520
	TAAAAAGGTA	СТААТСТТАА	TCAAAATTAT	САСТААСАТТ	CCTACCTTTTT	ייידער איירער איירער איירער איירער איירער איירער איירער איירער איירער איירער איירער איירער איירער איירער איירע	11580

	AATTAAAGCA	CGTGGTTGGT	TACCATCTTT	AATACGAATT	TCATAGTTAT	CGATTTTATC	11700
	GAAATATTTA	TTCGCTTGTT	CAGTAACGTA	CTGTGTAATA	CCAATTGTTT	CAGCTTGTCC	11760
5	ATAGTAATCG	ATTGGTAAAT	CTACTACTAA	TCGTTGTGGC	TTTTTATCAA	CAAATTTAAC	11820
	TTTCCCTACT	GCTTGTGTGA	AATTAGAAAA	ATATGATTGC	AAATTATCAT	TAAATTGCTT	11880
	GAAATTATTA	TTTAAATTTT	CATCATAATC	TGCTGCTGTT	GAAGAAGGTA	ATAAAGCTGA	11940
10	TTTTTCATTG	ATATTATGCC	ATTCATTAAG	CTTTGTTTGA	CTCTTTTCTG	CAGTCGCTTG	12000
	AGTGATAAAT	TCACCTGGTG	TGATTGAATC	TTCACTTGAT	TGCTTATAAA	TTGCAAAATG	12060
15	AATTGGTATA	TCTTTTAAAT	CATCATTTTC	ACGTAACCTT	GATAATATCT	CACTAGCCAT	12120
	TTGTTTACCT	TGCTTTTTAA	CTCGCTATCA	TCTAGTTTTT	TACTAAAAGT	CGATCCATCT	12180
	TTTTCTTTTT	TATAGTAATA	AACACTATTC	ATAGCTAAAC	CAATCGTCAT	ACCTTTAATA	12240
20	TTCTTACCTT	TTGTATCTCC	ACCACCATAA	AAATCTTGCT	CTAAAATGTT	AGATAAATAG	12300
	GCTGGTGATT	TTTCTGCAAT	CTTTTCAGGA	TCTGTTTCAC	CTtCGTGTGA	TGGATTAAGT	12360
	CCTAAATTTT	CATTCGCTTT	CTTGTCTTTT	TTATCTTTTT	CAGACATTTT	ATCGATTTCA	12420
25	CGTTTTGTAT	ACTTAGGATT	TAAATAGGCA	TTAATTGTTT	TCTTGTCCAA	AAATTGACCA	12480
	TCTTGATACA	AATATTTATC	TGTTGGAAAT	ACTTCTTTAC	TTAAGTTCAA	TAAACCATCT	12540
	TCAAAGTCGC	CGCCATTATA	ACTATTTGCC	ATGTTATCTT	GTAAAAGTCC	TCTTGCCTGG	12600
30	CTTTCTTTAA	ATGGTAACAA	TGTACGATAG	TTATCACCTT	GTACATTTTT	ATCCGTTGCA	12660
	ATTTCTTTTA	CTTGATTTGA	ACTATTGTTA	TGTTTTTGAT	TATCTTTTCC	AGCCTGGTCA	12720
25	TCCTTATGGT	TACCACAAGC	AGCGAGTATA	AAGATAGCTG	TAATCAATAA	TACTAATGTA	12780
35	CGCTTCATCG	ACATACCCCT	CTAACTATTT	AATTCATTTT	GCTTATCTAC	AAATTGTTGC	12840
	TCTGTCCAAA	TTTCAATACC	TAAACTTTGT	GCTTTTGTTA	ATTTTGAACC	TGCATCTTCA	12900
10	CCAGCAATAA	CGACATCTGT	ATTTTTAGTA	ACGCTACTTG	TAACTTTAGC	ACCTTGTGAT	12960
	GCAAGCCATT	TAGATGCTTC	ATTGCGTGTC	ATTTGATGTA	GCTTACCAGT	CAGTACTATC	13020
	GTTTTACCAC	TAAATTCAGG	ATGTCCTTCA	ATATCTGATG	TTTTGATACC	TTTATAAATC	13080
1 5	ATATTAACAT	GTTTATCTTT	TAATTTTTGA	ATTAAAGCAC	GAATATCTTC	ATTTTCTAAA	13140
	TAAGTAACTA	CAGATTGTGC	TACTTTATCA	CCTATATCAT	GAATTTCTAC	TAATTCCGCT	13200
	TCAGTTACCG	TTAGTAATCG	ATCTATCGTT	TCATATTTTT	CTGCTAACAC	TTGGCTCGCT	13260
50	TTAACACCTA	AATGCCTAAT	ACCTAGACCA	AATAATAAAT	TTTCTAAAGA	GTTGTCCTTA	13320
	ССТТСТТСА	ጥርርሮልርሮፕላል	ጥል አልጥጥልጥሮል	V Calalalalalatal	CCCCCATTCC	ርጥርጥል እ እ ርርጥ	12200

TAAAGCTGTT GAATAATTTT AGTGCCTAAA CCATCAATAT TcATGGCTTG TCTTGaTACA 13500

AAGTGNATCA ATCCLTCAAC AAGTTGTGCT TGGTCATTTT GG 13542

5

(2) INFORMATION FOR SEQ ID NO: 155:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1893 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

15

20

25

30

35

40

45

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 155:

TT TAACACATGC ACTGATTTA	GAATATTTAT ACATTTATTT	CAGTAAACAC CTCTGATTAC	C
TT TATCTATCTT GGTTATCTA	TAAAAAGGGT AAACATGGTT	GACTACTAAA CACCTTTACG	Ç
AA ATATGTATAA AAATGAATA	ACGCATAACA ATTGCTTAAA	TTATAAATAT TTnTCATATT	7
FT CAATTGTTTG AACATATTL	TTATTAGATT TAATAAGCGT	ATGTGTAATA AACTTGCTAA	F
T ATAGAAATTG AAAATTCTA	ACAGATACGA ATATTGTCGT	ATTAAAATCA CATTGATATC	F
AC ATGAGAAAAA TCGATTAAC	ACATAATTIT AAGTTTCAAC	TTTTTAAATG AAAGTCTTCA	7
AC TTTACAATTG TTGCTAATC	CCTTTTGAGA CATTTCAAAC	AACAACGTCA GTTGAATATG	F
CA ACGATTTCTA ATAAGTGTT	CCCTGCTATA AAATAAATCA	ATATATTTGC TTTTAGTGAT	7
CT GCTGCGTCTC TATGATAAG	TTTGCGTTAG TTCATCCACT	TGTATTGAAT TGTTCATCAA	7
CG TACGTACTTT TATTATTTT	CTTTCCCTAA TAAACTCACG	CAATTTATCT TCTGCGCCAT	¢
CA CCATAGCAGT CTAATAAAT	TACCTAACTT TGCTTCATCA	AAGATCGCTG CCCACTTTTT	F
AA CTTTCTAAAT GTTCTTTAG	TACCTAAATG ATAACTATAA	ATCTTTAATC TGGAACATCA	F
CC GCAAAAGTTA ATAATGCTC	TATCTGCTGC ACTCATAACC	TGTATCATCG ACATTAGCGA	7
CA ATTGGTTGGC CTTCGCTTT	TTTCCAAAGT TTCAAGATCA	TGTTTTTGTT TTGTGTATCA	7
CA CTTGCTATTG ACAGCCGTT	CGACCATTCC AACATGACCA	CATATCTAAC ATTTGACCGC	C
CA CTTGAAATAA GTTCAAATG	CATCAGTTAA TCTATCATCA	TAGAACTTTT ATTTTTACTT	7
AC TCACCATATA CTTTATGAT	CTGCTAATAT CGCAGTCCAC	TTTAGTTAAT AAAGCATCAC	1
CT GGTAGGTCAT CATGAATAA	AATCATCATT ATCCATCGCT	TGTTAATTTT CCTCGTCGAT	7
TC ATACCTAACT CATACTCGG	CTAGTGCAAT TGCGCTCTTC	TGAATATGTA TGAATCATTT	1
GG ATGCGTTTAC CTCCAGCAT	GTAATAACAG AACTGGTCGG	ATTTAGTGAA TCTAAAGTGA	Į
TT ACTGATTTAT TTATCGCAA	CTTCTAGCTG AGTATCCATT	TAATGAATAC AACATACTTT	7

55

CATCCTCAGC	TTCTTCTTTT	ATTAAGTCAT	TCACCTTTTT	TTCGGCATTT	TTTAAAGTTG	1380
TGTCACAAGC	TGCTGATAGT	TTCATACCAC	GTTGATATAA	ATCTAATGAT	TCCTCTAAAG	1440
ATACTGTTTC	ATTATCTAAT	TTTTGAACAA	TTTGCTCTAA	TTCTTGCATC	ATTTCTTCAA	1500
AACTTTGCGT	TTCTTTAGTC	ATTATTACAC	CTTACTTTCG	TAACTTTTGC	ATCTACTAAG	1560
CCATCTTTCA	TTGTTAACGT	CAATTGATCA	TTTTCTGTTA	AATCTTTAGT	ACTCGTAATG	1620
ACTTCGTCTT	TTTTATTAAC	AATTGCATAT	CCACGCAACA	TTGTATTAGT	TGGACTTAAA	1680
TTGTTTAAGT	TTTCTACTTT	ATTTTTCAAA	TCATTTTTAT	AACTTAATAT	CTTAGAATTC	1740
AATTAATTTAA	CAAGTTGGTT	TGTCAATTGA	AGATTATnTT	GTTGTTCTTG	ATTAACACTA	1800
CTTAGTAATG	CTTTTAAATn	ATAACGTTGG	TGCAACAGCA	TTAAATCGAG	GCCCCGGTGG	1860
TCCAAAGTTG	CCCGAATTnG	TGGTTTCAGG	ccc			1893
(2) INFORM	ATION FOR SE	EQ ID NO: 15	56:			
(i) SE	EQUENCE CHAR	ACTERISTICS	S:			

- (A) LENGTH: 821 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 156:

60	TAATATGTTG	ATGGTGATTG	AGAGAAAAAC	ATATTCAATT	CCTTCACTTA	AAAATATATT
120	TAAGGTTGGA	AATCGTAAGC	TTTATTTCTG	TAATACTTTT	CTGGGTGTTT	TGCAATATTT
180	TAAAAAACTT	TTTCCTTCAT	AATAATTTTA	GTAAAGGGAA	AATAACTCTA	AATTTATAAT
240	CTCTAAGTAT	TCAATAATGG	TGGCGGTCTT	ATTTTTTATT	ATATTTTATT	TTGTTTCACA
300	TAATGACTGC	GGTTGGTTGG	AGGCTTTATT	AAAATATAAT	TTAAATCCTC	GTTĄTTAACT
360	TATTATCTAA	AAAATTTATG	TATTGACAAA	TGTCATCGAT	CTGTTAAACA	AGGTTTCTTT
420	ATTTCGGCAA	TGCAGGTTCT	CTGGATTTAC	GATGGTTTAG	GTGGAAAAAT	AACTAACACG
480	AACGATTGGA	AAAAGATAAA	AATTTGGAAT	CAAAAAAATG	TTGGACCAAT	TACTTGTATA
540	AAAACAGTAG	ATCTGCAGAA	CTGTAGAAAA	GGTATAGATG	ACTAGACGTT	TAGGACATAA
600	TAAGCCCTAA	TCTAATCATA	AAAAAGTATT	GTGAAGCTTC	AAATGTCATG	ATGGTGTTGA
660	ACCCAAAATA	ATCAATAAAA	ATCTAAAATC	TGCTATGCGA	TGGTAAATGT	GAAATGGAGC
720	CTTGGATTAG	ATAATAAGCA	AATGGTCGAT	ATGAATACTT	AAATATAATG	TAGAATTATT
780	TTAGTAGAGA	TACGTCAAAA	CCCaAAAGaA	ATTGGTTCAT	CCTTTTATTA	TTTATTTTT

(2) INFORMATION FOR SEQ ID NO: 157:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2343 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 157:

AGTAAGATAA	TTTTCAATTA	GAAAATATCT	TACTGCTGTT	CTCTATTTAT	ACAATACTTC	60
GTATTGAATG	GCTTCGCTTT	CCTAGGGTGC	CGTCTCAGCC	TTGGTCTTCG	ACTGGCACTG	120
CTCCCTCAGG	AGTCTCGCCA	TTAATACTAC	GTATTAACAT	GTAATTTTAC	TTTGAAATAC	180
AAAAAATTTT	TAAGACACTT	TGCCCAACTT	GCACATAAAT	GTAAAATTCA	ATAAAATGAA	240
TTTTCTGTGT	TGGGTCCCTT	CTTATAATTT	AATAAATACC	ACTAAACTAA	ATTAACGAGG	300
TGCCTTATGT	АТАААААТТА	TAACATGCCC	CAACTACACT	ACCAATAGAA	ACTTCTGTTA	360
GAATCCCTCA	AAATGATATT	TCACGATATG	TTAATGAAAT	TGTTGAAACr	ATACCTGATA	420
GCGAATTCGA	TGAATTCAGA	CATCATCGTG	GCGCAACATC	CTATCATCCA	AAAATGATGT	480
TAAAAATCAT	CTTATATGCA	TATACTCAAT	CTGTTTAATT	ATGTTCAAAG	CATTAAGGTA	540
ACAAGACAAT	ATCTAAGATA	TCAAAGATAG	AAATTTTTTG	ACGTTGTTGC	TGATTGTAAA	600
CATAACCATC	AATTTCATAA	TTAATAGCAT	CAATACGATA	AATGGTTAAG	CGTACTGAAT	660
CTACAAAGCC	ATTATTATAA	AATTTAACTT	CTACAGGTTG	GGCATATTGT	AGCGCCTCGT	720
GTAGCCGAAT	GTTTAGCTCA	GCCAATTGAT	CATCTGATAA	TACAGGACGT	GTAATTTTGT	780
TTTGGTCGAT	AATGTATTGT	TGAATCGTTT	CGAATTGTTC	GGGTAATGTT	GCAAAAGGAG	840
CCCATTTAAT	CATGCCTCTT	CCCATAGGTA	TATTGTTATC	TAGTAATTCT	CTTGGAACGT	900
TACGATAATC	AGTITCTTCT	TCATAACTTG	TCATCCTTAA	TTCACCCCAA	TCTGATAATT	960
ACATTATACG	AACATGTGTT	CTATTTTGCA	ACAAAAATTT	TGTGGaAGCA	TAAACGCGTT	1020
AATAATTAAT	GCTCGTGLAA	GTAAAAAAGA	GGGATTAATT	AAAATCGAAT	AATGaCATAT	1080
CACaGCAAAT	AGTTCTTTTA	AAGTAGTTAA	ATAGTTTTAG	CTTTAAGGAA	aTGATAAaTG	1140
ATTGTWAATT	CTAGCTAAAA	TTTAATAAAA	TGAAAATAAG	ACTAACATGG	AGGGGTAAAA	1200
GTAATGACAA	ATGGATATAT	TGGTTCTTAC	ACTAAAAAGA	ATGGTAAAGG	GATTTATCGT	1260
TTTGAATTAA	ACGAAAATCA	GTCACGTATT	GATTTATTAG	AAACAGGATT	TGAATTAGAA	1320
GCGTCTACAT	ATTTGGTGCG	TAATAATGAA	GTTTTATATG	GAATCAACAA	AGAAGGAGAA	1380

	TGTTTGTCTT	CAAAAGCTGG	TACAGGTTGT	TATGTATCGA	TTTCAGAAGA	TAAACGATAT	1500
	TTATTTGAAG	CGGTATATGG	TGCTGGCATC	ATACGTATGT	ATGAATTAAA	TACGCACACA	1560
5	GGTGAAATTA	TACGTCTAAT	TCAAGAACTT	GCACATGATT	TTCCAACAGG	TACACATGAA	1620
	AGACAAGATC	ATCCACACGC	ACATTATATT	AATCAAACTC	CAGATGGTAA	GTACGTTGCA	1680
	GTAACAGATT	TAGGTGCTGA	TCGTATCGTT	ACTTATAAAT	TTGATGACAA	CGGGTTTGAA	1740
10	TTTTATAAAG	AATCTTTATT	TAAAGATAGT	GATGGGACAA	GACATATTGA	ATTTCATGAT	1800
	AATGGAAAAT	TTGCTTATGT	CGTACACGAA	TTATCAAATA	CTGTGAGTGT	TGCAGAATAT	1860
15	AATGACGGTA	AATTTGAAGA	GCTCGAGCGT	CATTTAACAA	TTCCTGAAAA	CTTTGATGGA	1920
	GATACTAAAC	TTGCAGCAGT	GCGTTTATCT	CATGATCAAC	AATTCTTATA	TGTATCTAAT	1980
	AGAGGGCATG	ATAGCATTGC	AATTTTTAAA	GTTCTTGATA	ATGGTCAACA	CTTAGAACTA	2040
20	GTAACAaTTA	CTGAAaGTGG	TGGTCAATTC	CCAAGAGATT	TTAATATTGC	CTCATCAGAT	2100
	GACCYTTTAG	TTTgTGCTCA	kGaGCaAGGA	GATTCAGTTG	TAACTGTTTT	CGAAAGAAAT	2160
	AAAGAAACAG	GTAAAATTAC	GCTATGTGAT	AACACTCGTG	TAGCATCTGA	AGGTGTATGT	2220
25	GTCATATTTT	AATCTTTAAT	TAATCATGAT	AAAAAGAAAA	CCATGTTTCC	AAAAAATTTG	2280
	TGTATACCTT	GAAATTTATT	GnTTTCCAGn	ACATCAATTA	TGGGAAGCAT	GGnTTATTTT	2340
	TGT						2343
30	(2) INFORM	ATION FOR SE	EQ ID NO: 15	8:			

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4837 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

.

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 158:

AAATTGCCAG TTGGTATCGC TTCTGGTGCA GTAGTCGAAG GTTTCTTCCA AGGTATCATT 60
CCGATTGGCT ATATCGTTAT GATGGCAGTA TTGTTATACA AAATTACTGT TGAATCTGGA 120
CAATTTTAA CAATTCAAGA TAGTATTACA AATATTTCAC AAGACCAACG TATTCAAGTT 180
TTACTTATTG GATTTGCATT CAACGCATTT TTAGAAGGTG CAGCAGGATT TGGTGTACCA 240
ATTGCAATTT GTGCACTTTT ATTAACACAA TTAGGATTTA ATCCATTAAA AGCTGCGATG 300
TTATGTTTAG TCGCAAATGC AGCGTCTGGT GCTTTTGGTG CGATTGGTAT CCCTGTAGGT 360
GTTGTAGAAA CGTTGAAATT ACCTGGAGAT GTTTCAGTAT TAGGTGTTTC TCAATCAGCA 420

	GGTTTTAGAG	GTGTTAAAGA	AACATTACCA	GCAATTTTAG	TAGTTTCAAT	CACTTATACA	540
	CTTACTCAAG	GATTATTAAC	TGTATTCAGT	GGACCTGAAT	TAGCAGATAT	TATTCCACCG	600
5	TTATTAACAA	TGTTAGCATT	AGCAGTATTT	TCTAAAAAAT	TCCAACCAAA	ACACATTTAT	660
	CGTGTTAATA	AAGATGAAGA	AATTGAACCT	GCAAAAGCAC	ATTCTGCAAA	AGCAGTATTA	720
	CATGCATGGA	GCCCATTCAT	TGTATTAACA	GTCATTGTAA	TGATTTGGAG	TGCGCCATTC	780
10	TTTAAAAACT	TATTCTTACC	AAATGGTGCT	TTATCATCAT	TAGTATTTAA	ATTCAACTTA	840
	CCTGGaACAA	TCAGCGAAGT	TACGCATAAA	CCATTAGTAT	TGACTTTAAA	TATTATTGGA	900
15	CAAACAGGTA	CAGCTATTTT	ATTAACTATT	ATTATTACAA	TTTTAATGTC	TAAAAAGGTT	960
	AACTTTAAAG	ATGCAGGTAG	ATTATTCGGC	GTTACATTTA	AAGAGTTGTG	GTTACCAGTT	1020
	CTTACAATTT	GTTTCATCTT	AGCAATTTCT	AAAATCACAA	CTTATGGTGG	TTTAAGTGCA	1080
20	GCAATGGGTC	AAGGTATTGC	TAAAGCAGGT	AATGTCTTCC	CAGTTCTATC	ACCAATTTTA	1140
	GGTTGGATAG	GTGTGTTTAT	GACAGGATCA	GTTGTAAATA	ACAACTCATT	ATTTGCACCA	1200
	ATTCAAGCTT	CTGTTGCACA	ACAAATTGGA	ACAAGTGGTT	CACTTCTTGT	ATCTGCTAAT	1260
25	ACAGTTGGTG	GTGTAGCGGC	AAAATTGATT	TCACCACAAT	CAATTGCAAT	TGCAACTGCA	1320
	GCAGTAAAAC	AAGTTGGTAA	GGAATCAGAA	TTATTAAAAA	TGACATTGAA	ATACAGTGTA	1380
	TGTTTACTAA	TATTCATCTG	TATTTGGACT	TTCATCTTGT	CATTATTATA	AAAAAACGTA	1440
30	TTTCAAAATA	TAAATATACA	GAAGGTGAGA	TGTTTTCTAA	CATCTCATCT	TTTTTTTATG	1500
	GATCATTAAT	GAAAGAAGTT	TGACATTATA	ATAATGGTAG	CGCTTTATGT	TAAAATGAAT	1560
	AGTGAGTAAT	CAGCAATCAA	ATTAAATTGG	TTGATAGCTG	TTAAGGTTTG	TGGTTTTGTC	1620
35	TTTGTGCTAT	CGCnCATAAA	GTATATAATT	AAAGTAGTTT	CGTTATTATA	AAATATTAAT	1680
	ATAÇATAGTA	GATAGTAATA	GAGCATCACC	ATGGGAACCT	ATTGAGACAC	TTATTGATTT	1740
40	AAAGTGGTAT	TAATATGTCG	TATTTCTCGA	ACGTTCCATT	ATTCATTTTA	AAAAGGGGGA	1800
	CTGTATTTGT	TATGACAACA	CAACATAGCA	AAACAGATGT	CATCTTAATT	GGTGGCGGTA	1860
	TTATGAGTGC	aCATTAGGAA	CATTACTTAA	AGAATTATCA	CCTGAGAAAA	ATATTAAAGT	1920
45	GTTTGAAAAA	TTAGCACAAC	CTGGCGAAGA	GAGTTCAAAT	GTATGGAATA	ATGCCGGTAC	1980
	AGGGCATTCA	GCACTTTGCG	AGTTGAACTA	TACAAAAGAA	GGTAAGGATG	GCACAGTTGA	2040
	TTGTAGTAAA	GCAATTAAGA	TAAATGAGCA	GTACCAAATT	TCAAAACAGT	TTTGGGCATA	2100
50	TTTAGTTAAA	ACAGGACAAT	TAGATAACCC	AGATCGCTTT	ATTCAAGCGG	TGCCACACAT	2160
	GACTTTTTCTC	ATTGGCGAAG	АТААТСТАСС	מממידמידיי	ACTCCTCTTC	СРУССТВРУ	2220

	GGTACCGTTA	ATGATTGAAG	GTCGTAAGTC	TGATGAACCA	ATTGCTTTAA	CTTATGATGA	2340
	AACTGGTACa	gATGTTAACT	TTGGTGCGTT	AACTGCAAAG	TTATTTGATA	ATTTAGAGCA	2400
5	ACGTGGTGTG	GGAATTCAAT	ATAAGCAGAA	TGTATTAGAC	ATCAAGAAAC	AGAAATCTGG	2460
	GGTATGGCTA	GTTAAAGTTA	AAGATTTAGA	AACTAATGAA	ACGACAACAT	ATGAATCTGA	2520
	TTTTGTATTT	ATTGGTGCTG	GCGGTGCGAG	TTTACCATTA	CTCCAAAAGA	CTGGGATTAA	2580
10	ACAATCAAAA	CATATTGGTG	GTTTCCCGGT	AAGTGGATTA	TTCCTGCGCT	GTACAAATCA	2640
	AGAAGTGATT	GATCGTCATC	ATGCTAAAGT	GTACGGAAAA	GCAGCAGTGG	GTGCGCCACC	2700
15	AATGTCAGTG	CCGCACTTAG	ATACACGTTT	TGTAGACGGC	AAGCGTTCAT	TGTTATTTGG	2760
	TCCATTTGCA	GGTTTCTCAC	CTAAATTTTT	AAAAACAGGT	TCACATATGG	ATTTAATTAA	2820
	ATCGGTTAAA	ССАААТААТА	TCGTGACGAT	GTTATCTGCA	GGTATCAAAG	AAATGAGTCT	2880
20	TACGAAGTAT	TTAGTGTCAC	AATTGATGTT	ATCTAATGAT	GAGCGTATGG	ATGATTTAAG	2940
	AGTCTTTTTC	CCAAATGCTA	AAAATGAAGA	TTGGGAAGTG	ATTACAGCAG	GGCAACGTGT	3000
	CCAAGTAATC	AAGGATACTG	AGGATTCTAA	AGGTAACTTA	CAATTTGGTA	CTGAAGTTAT	3060
25	TACGTCAGAT	GATGGCACAT	TAGCTGCATT	ACTTGGTGCA	TCACCTGGTG	CGTCAACAGC	3120
	TGTAGATATT	ATGTTTGATG	TTTTACAGAG	ATGCTATCGT	GATGAATTCA	AAGGATGGGA	3180
	ACCAAAGATT	AAAGAAATGG	TGCCGTCATT	TGGTTATCGC	tTAACAGATC	ATGAGGATTT	3240
30	ATATCATAAA	ATTAATGAAG	AAGTAACTAA	GTATTTACAA	GTTAAATAAT	AAACGAAACG	3300
	GTAATGTCTT	TTTTAATGTG	ATAGACATTA	CCGTTTTTTA	GTGGTTAATA	AAAATCATTT	3360
	TAATTGTTTC	AGTTGCTTGT	TAATAGTGTC	TACGTAGTTC	TTGTTTTTAA	AGAATTGAAT	3420
35	TATCCAAATT	AATACATAAA	CCACAATGAA	GATAATTGTG	AATATGATTA	GATAATGCAC	3480
	TGTTÄGTGGA	AACCAACCGG	CAAGCATTGC	TAAAGGCAAG	AATCCGACAT	ACGTTGTTAT	3540
40	GAAATGCATT	ATAGTTGCTT	TAGTAATGCT	CCAATCTGTG	TATTTAAAGA	TAAAATCTCC	3600
	AAGGAAAAAG	ACGACGCCTA	TGAGTAACCA	TAAAATGATA	GAAATCAACA	TTACGGTAGT	3660
	TTCTGTGAAA	TGCGTATAAT	ACAATATGCC	AATAGTTGAT	TGTGGGTTCA	GTGGATAATA	3720
45	TTTGCCGTCT	GCAAATAACA	TACTAAAGAA	CAGTGAAAGG	GACAAACCAA	TGATTAAGCT	3780
	TAATAAATAAT	GAGTTTTTCA	AATTTTTCAT	ATTGATAAGC	GCTCCTTTAT	AGATTTTAAA	3840
	TAACGTCTAG	AAGAATAGGT	GTAGTGTGCA	TCTTTAAGAT	ACATACGTAT	AAGTCCATTT	3900
50	GGCTCTAATA	ATAATTTTTC	AATGTAATAC	TTGTTGACGA	TTTCTGATTT	GGAAATGCGA	3960
	ATGAAATGTT	GTGGTAACTG	TTTTTCTAGT	TCATAAAGTC	GTAATTTTAG	TTTGAATTTT	4020

	ACATTAATGA	TATGGATTTC	TTTGTCTATG	TATCCGACTA	ATGTATGTGA	TTTGTCTAAA	4140
	TCATTGACTG	CATTAATAAT	ACTTTGAACG	TTATCATTCA	TTTTAGGTGC	ATGTATATCA	4200
5	ATATAAGATT	CCGTCTCATT	TGCATTGATA	AATAAATTGA	GTTTCATCAT	AGGTTAATGC	4260
	CTCCTTCAAA	ATTATTAAAC	CATAAATGAC	CATCGATATA	TTTAAATTTT	GTTGAATGGT	4320
10	AGAAATTAAA	TGTTAAGTGG	CTAGAAAGCG	CTAATCAATA	TAAAAGATAC	CTCCTGAAAT	4380
10	AAAAACAGAA	ATGTTTTTC	AGGAGGTAGA	GATTAAAGTG	AATTATTTGG	CAGTGTAATA	4440
	GTAAAGGTGG	TTACATACTC	GTTACTTTGT	GTGAATTGGA	TTGTACCATG	ATGCAATTCA	4500
15	ATGATGGATT	TTGTAATTGC	AAGACCTAAA	CCATTGCTAT	TATCATGTTT	GCTCACTTTA	4560
	TAAAAACGTT	CAAATAAACG	TGCTTCAGCT	TGTGGACTAA	TTGGTGAACC	ATCATTACTT	4620
	ATTGTGAAAA	TGATATTGTT	GTGACTATGT	TGCAAAGCGA	TGTCAATGGC	ACCACCAACA	4680
20	TCTGTATACT	TAATAGCATT	TATTAATAAA	TTACTCAATG	CTTGATGTAA	CAAACGTTGA	4740
	TTTCCTAGGA	AATTGATGAT	TCTAGGTCAG	CTAAnATGAT	TAACGACTTT	TCATCAGCAG	4800
	CANATTGTTC	ATGTCGAATG	ATATChTTAA	TGAGCTG			4837
05	/01 TITTODICE						

(2) INFORMATION FOR SEQ ID NO: 159:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1600 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 159:

ACAATTATTG	GATTATTATC	AAGCAACGTT	AATGGATGAC	TTCCACTTAC	AACAGAAATG	60
CCCATAGATT	CTAAATCTtT	TGCATGAGCA	TCTTGTGATA	AGTCTTTTCC	ATCATTGACA	120
GTTACATTCG	CACCTAATTT	ACTTAATAAT	TTAGCTGCTT	CATAACCACT	TTTTGCCAAA	180
CCGACAACTA	ATACATTTTT	ATTTTCTAAC	CCTGTATAAT	TAAGCATCTT	AATGCACTCC	240
AATCCATAAA	CCGATTAAAC	CTGAAATCAG	ACCAACAGCC	CAAAATACTG	TAACTACTTT	300
CCATTCGCTC	CATCCTATCA	ATTCAAAATG	ATGATGAATC	GGACTCATTT	TAAATATACG	360
CTTTCCAGTC	AATTTAAAGC	TAGCGACTTG	TAACATAACA	GATAATGTTT	CAATTACGAA	420
TACTAAACCT	ATAAAAATTA	ATGATAATTC	CTGATTAAGC	ATGATTGAAA	TGGTAGCAAA	480
TATACCACCT	AAAGCTAAGC	TACCTGTATC	TCCCATAAAC	ACTITAGCAG	GGTTAATGTT	540
ATATGGTAAA	AATCCTAAAA	GTGCAAACAA	CATAATGATA	CAGAAAATAC	CAATTGCCGT	600

55

50

30

35

40

	TGCTAATCCA TCTAAACCAT CTGTTAAATT TACTGCATTA GAAAAACCTA CTTGCCAAAA	720						
	AACAATGAAA ATAACATATG CAAATGATAG TGGGATTGCT ACATTCGTAA ATGGAATATG	780						
5	TATGCTCGTA GAAAAATTCA CCAAATGAAA CACATTACTT AAAACAAAGA ATATAATCGC	840						
	AATACCAATT TGCGCCAAAA ACTTCTGTTT ACTTGTTAAA CCTTGGTTAT TCTTTTTAAC	900						
10	AACAATAATA TAATCATCTA TAAAACCAAT TAACCCAAAA CCAATCGTCA CAAATAATAA	960						
	CAGTATGATT GGATTAGCTT GATCTACAAA TATAATAGCC ACCAAAGACG TTATCACAAT	1020						
	ACTTAATAGA AATGTTAGTC CACCCATCGT TGGTGTACCA GTCTTCTTCA TATGGCTTTG	1080						
15	TGGACCTTCT TCTCGAATAC TTTGACCAAA TTTCATCCTT TTTAATGTAG GTATTAAAAC	1140						
	AGGTACCAAA ACAAATGTAA TCACTAGCGC TAATAACGCA TATACAAAAA TCATAACTAT	1200						
	CTCCTCTTCT TAATCCAGAC TTTTTTAACC ACTAATATAT TATCAATTTT TCAATTAAAT	1260						
20	AAACAAAGTT GTAATCAAAA TTTATAATTT TTCTTTTTTA CGGCATAAGA GGCCAGTATA	1320						
	AAAAGTTTGC CTATAACAAA CAAGTTAATC TGACCTCGTC TACCTTAAAA TTCTCTATCA	1380						
	ACACTTATTT ATAAAGATTA AATGAAGATG TTGTTTTCTA TCACAGCATT ACTTTAGTAA	1440						
25	AAACAAATAG TGACAATACA TCCTAATTTA ATGTAGCCAT TCTTGTTAGT CCGACTTATC	1500						
	CTTGTCAGTT TTACTGTCAG ATTTCnTCTT ATCATCTGAA TTTGAATCAG AATTATTCGT	1560						
	CGAATTGCTG TCTACATTCT CTGGATGGAA AATTCTACGT	1600						
30	(2) INFORMATION FOR SEQ ID NO: 160:							
	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 1186 base pairs (B) TYPE: nucleic acid							
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear							
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 160:							
	ATTGCCTTTG TTTTAATTTT AAATCAAAAT mGCCTATGAA AGATTTAAAT CAATTAATTT	60						
	CTATAATATT ATCATTTTTA AAGCATATCA TTGTTTAGTT TTTTTATAAT TGGATAAATA	120						
45	CTAATAGTTA CTTTATAAAA CATTACATAG AGAAAGGTTA AGGAGTGCAC ATGTCGAAAA	180						
	AGGATCACTC TTCTTCAAAA TACCTTAATT CTGTTAAGGA AGCGCAAGAG GAGTCAAAAA	240						
	AGAAAAATAA AAGTAATCCC AAAATTGATG TTGATCGTAC ATATATTGAA CCTCAACAAT	300						
50	TCCAATCTAA GAAACCTAAA AAAGATGATC AGGTTTTCTT CTTATCAAGA TTAAATAAAC	360						

55

420

CTGCAAAATA TAAGAAAGAC TCTAATTTCT TATCATATCT CATCTATCGC ATAGGAAAAG

TGTTGCTTTT	CCTATTAACA	TTATTACCAT	TTTTCAATAT	TAAGCAGAGT	CAAATTACTA	540
ATATGTTAAG	CAATGCACCC	GCTGAAACAT	CTACTCTAAT	TAAGAGTGTA	ATTGGTGATA	600
TAACTCAAAA	CTCCAGTGGT	GGCTTATTAT	CTATCGGTTT	GATTTTAGCA	ATTTGGTCAG	660
CTTCAAATGG	AATGACTGCA	ATTATGAATT	CTTTCAATGT	TGCTTACGAT	GTAGAAGATA	720
GCCGTAATGG	AATCGTATTA	AAACTACTAA	GTGTTGTCTT	CACTGTAGTT	ATGGGCGTTG	780
TGTTTGTAGT	TGCTCTAGCA	TTACCAACGC	TTGGTTCTGT	AATTAGTCAT	TTCCTATTCG	840
GTCCACTTGG	aTTTGACGAA	CAAGTGAAAT	GGATTTTTAA	CCTTATTAGA	ATTGTGTTAC	900
CAATCATTAT	TATATTTATC	ATATTTATCG	TGTTATATTC	GGTTGCACCT	AACGTTAAAA	960
CGAAGCTTAA	GTCAGTATTA	CCAGGTGCAG	TATTTACTTC	AATTATTTGG	TTAGCTGGTT	1020
CATTTGGTTT	TGGTTGGTAT	ATTTCAAATT	TTGGTAACTA	TTCTAAAACA	TATGGCAGTA	1080
TCGCGGGTAT	CATCATTTTG	TTACTATGGT	TATATATCAC	AAGTTTTATT	ATAATTGTCG	1140
GnGCTGAAAT	CAATGCAATC	ATTCATCAGC	GTAGTGTAAT	TAAAGG		1186

(2) INFORMATION FOR SEQ ID NO: 161:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7872 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

30

35

40

45

50

5

10

15

20

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 161:

TCTTGAGCCA TCTTTTGAGC TAACTGACTA GATTGATACC CAAAAATCAT AGTTACCAAC 60 ATAAACTTTA ATTTTACCGA AGTCTAAATC AGCGATATGA GTACATACAT TATTTAAGAA 120 ATGACGGTCA TGCGATACTA CGATAACAGT ATTATCAAAG TTAATTAAGA AATCTTCTAA 180 CCAACTGATT GCTGGAATAT CGAGACCGTT AGTAGGCTCA TCCAGTAATA GTACGTCTGG TTCACCGAAT AAACTTTGCG CTAATAATAC TTTAATTTTT TGGTTGTTTT CTAATTCAGC 300 CATTTTTTA TCGTGTAAAG TTGGATCGAT ACCTAAACCA GATAAAAGGT TAGCAGCATC 360 AGCTTCAGCA TTCCAACCAT TCATTTCTGC AAATTCACCT TCAAGTTCAG CAGCACGGAT 420 ACCATCTTCA TCACTGAAAT CTGGCTTCAT ATAGATTTCA TCTTTTTCTT TCATAACCTC 480 ATAAAGACGT TCGTGACCTT TAATTACAAC ATCAAGCACG CGTTCATCTT CATAAGCATA 540 GTGGTCCTGT TTTAAAACAG CTAGACGTTC ATTTTTCCCT AATGAAACAT GTCCTGTTTG 600 AGAATCTAAT TCACCAGATA ATATTTTTAA GAATGTTGAT TTACCTGCAC CATTCGCACC 660

	ATCTCCAAAA	CGTAAACTCA	CATCAGTTAC	TTGTAACATG	CATTTTCTCC	TTTTTTTCAT	780
	TCGATATTCT	AACGGAAGAA	TTATATCATA	TTATCGTCAC	AGTTTCGACC	TCATATAAGT	840
5	TGTAATGATA	GAATGACTCA	CACATGTTAT	AATAATAAAG	AATACAAGAA	TCGAAGGAGA	900
	ATAACATGGC	ATTAGACAAA	GATATAGTAG	GTTCTATAGA	ATTCCTTGAA	GTAGTAGGGT	960
	TACAAGGTTC	AACTTACCTT	TTAAAAGGAC	CAAACGGTGA	AAACGTAAAG	TTAAACCAAT	1020
10	CAGAAATGAA	CGATGATGAT	GAATTAGAAG	TAGGTGAAGA	ATATAGTTTC	TTCATTTATC	1080
	CAAACCGTTC	AGGTGAATTA	TTTGCAACTC	AAAATATGCC	TGATATTACG	AAAGATAAAT	1140
15	ATGACTTTGC	TAAAGTACTT	AAAACGGATC	GCGATGGGGC	ACGTATAGAT	GTTGGATTAC	1200
	CCCGTGAAGT	GTTAGTACCA	TGGGAAGATT	TACCAAAAGT	GAAATCACTA	TGGCCACAAC	1260
	CTGGTGATTA	TTTGCTAGTT	ACATTACGAA	TTGACCGTGA	GAATCATATG	TATGGACGTT	1320
20	TAGCGAGTGA	ATCTGTTGTA	GAAAATATGT	TTACACCTGT	ACACGACGAT	AATTTAAAAA	1380
	ACGAaGTCAT	TGAAGCCAAA	CCTTACCGCG	TATTACGAAT	TGGTAGCTTT	TTATTAAGCG	1440
	AATCAGGTTA	CAAAATTTTC	GTACATGAAT	CAGAACGTAA	AGCTGAACCA	AGATTAGGTG	1500
25	AATCTGTTCA	AGTTAGAATT	ATCGGGCATA	ATGATAAAGG	TGAGTTAAAT	GGTTCATTTT	1560
	TACCACTTGC	ACATGAACGT	TTAGACGATG	ACGGCCAAGT	CATCTTTGAT	TTACTAGTTG	1620
	AATATGATGG	TGAATTACCA	TTCTGGGACA	AATCAAGCCC	TGAAGCGATT	AAAGAAGTAT	1680
30	TCAATATGAG	TAAAGGTTCA	TTCAAACGTG	CAATCGGTCA	CTTATATAAA	CAGAAGATTA	1740
	TTAATATAGA	AACAGGTAAA	ATCGCTTTAA	CTAAAAAAGG	TTGGAGTCGA	ATGGACTCAA	1800
	AAGAATAATC	ATTTTTACAC	GTGTCGTAGG	ATGCGTGTTT	TTTTTTTTCA	ATATTAAATC	1860
35	GGACAGATGA	AGTAGTTTTT	TAAACATTCC	TTTCAAAGTA	AAAATTAAA	TAATTCAAAC	1920
	GAATAGGCTG	GGaCATTAAG	TTCTTAGGCA	ATGTAAAAAA	GCTGATTTCT	ATTAATTATT	1980
40	TGATGGAAAT	CAGCTTTTTT	GATATGTATT	TTATAATGTA	CAGCTCGTTG	AGCTGCTATT	2040
	TTCCTTATAT	TAAGTGCCAT	TAATACAAAA	CCTAGCTCTC	GTTTAACTTT	ATTTATTCCT	2100
	CGAACTGACA	TTCGAGTGAA	aCCCAAAATA	GCCTTCATAA	ATCCAAAAAC	AGGCTCTACA	2160
45	TAAATTTTTC	TATGACTATA	GATTTTTTC	GTTTCTGGTT	CAGAAAGCTT	TTGaTTAATT	2220
	TGGGCTTTAA	TGTATTTCAA	agtaaaatta	CATGTTAATA	CGTAGTATTA	ATGGCGAGAC	2280
	TCCTGAGGGA	GCAGTGCCAG	TCGAAGACAG	GGGCCCCAAC	ACAGAAGcTG	ACATATAGTC	2340
50	AGCTTACAAC	AATGTGCCGG	TTGGGGTGGC	TGAGACGGCA	CCCTAGGAAG	GGACCCGTCA	2400
	TCAAAAATTC	ТАТТТАТАСА	АТТТТАСАСТ	AATGTGACAG	ACGGGCAAAG	CGAAGCCATT	2460

	CTTACTGCTG	TTTTTTTAGG	GATTTATGTC	CCAGCCATTT	TTGTATTCAT	ATTTAAATTT	2580
	CGATAATTTT	TCAGGAAGCA	TTTTAATTTT	ACTAATGAAG	CAATATTTTT	TAGATTAACA	2640
5	AAAATTAATA	TTTACATTTT	CTTAACAATT	TTTTATGTAA	CATTTACAGT	TTCTAAAAAT	2700
	GAGGTTAATA	ATTCAAGGTT	AAGATAAAGA	TGTAATCAAT	ACAAATACTA	TTTGTTGTTC	2760
	ATACAGGGAG	GATATTTCAA	TGAAAAAATG	GCAATTTGTT	GGTACTACAG	CTTTAGGTGC	2820
10	AACACTATTA	TTAGGTGCTT	GTGGTGGCGG	TAATGGTGGC	AGTGGTAATA	GTGATTTAAA	2880
	AGGGGAAGCT	AAAGGTGATG	GCTCATCAAC	AGTAGCACCA	ATTGTGGAGA	AATTAAATGA	2940
15	AAAATGGGCT	CAAGATCACT	CGGATGCTAA	AATCTCAGCA	GGACAAGCTG	GTACAGGTGC	3000
	TGGTTTCCAA	AAATTCATTG	CAGGAGATAT	CGACTTCGCT	GATGCTTCTA	GACCAATTAA	3060
	AGATGAAGAG	AAGCAAAAAT	TACAAGATAA	GAATATCAAA	TACAAAGAAT	TCAAAATTGC	3120
20	GCAAGATGGT	GTAACGGTTG	CTGTAAATAA	AGAAAATGAT	TTTGTAGATG	AATTAGACAA	3180
	ACAGCAATTA	AAAGCAATTT	ATTCTGGAAA	AGCTAAAACA	TGGAAAGATG	TTAATAGTAA	3240
	ATGGCCAGAT	AAAAAAATAA	ATGCTGTATC	ACCAAACTCA	AGTCATGGTA	CTTATGACTT	3300
25	CTTTGAAAAT	GAAGTAATGA	ATAAAGAAGA	TATTAAAGCA	GAAAAAAATG	CTGATACAAA	3360
	TGCTATCGTT	TCTTCTGTAA	CGAAAAACAA	AGAGGGAATC	GGATACTTTG	GATATAACTT	3420
	CTACGTACAA	AATAAAGATA	AATTAAAAGA	AGTTAAAATC	AAAGATGAAA	ATGGTAAAGC	3480
30	AACAGAGCCT	ACGAAAAAA	CAATTCAAGA	TAACTCTTAT	GCATTAAGTA	GACCATTATT	3540
	CATTTATGTA	AATGAAAAAG	CATTGAAAGA	TAATAAAGTA	ATGTCAGAAT	TTATCAAATT	3600
	CGTCTTAGAA	GATAAAGGTA	AAGCAGCTGA	AGAAGCTGGA	TATGTAGCAG	CACCAGAGAA	3660
35	AACATACAAA	TCACAATTAG	ATGATTTAAA	AGCATTTATT	GATAAAAATC	AAAAATCAGA	3720
	CGACAAGAAA	TCTGATGATA	AAAAGTCTGA	AGACAAAAAA	TAATAAGACG	CAATTTCAAA	3780
40	TGTGTCTTGA	AACATGATTT	TGATGGTGAA	TCATTATTTA	GAGTACAAAG	CTTGATTTAT	3840
	CGAGACGCTG	ATTTTGACAT	TCAGTTAGTC	TACAAGCTTA	TCAACTTAAA	ATAGTGGTTC	3900
	ATCATTATTT	TACAAATCTA	ATTATTTTGG	GAGTAATAGA	AAGAGGTTTG	ATTATGACTT	3960
45	CATCTACTAA	TGTTAAAGCT	TTAATCGAAA	AAAATAATAA	TAAAAAAGGA	AAGCATAATG	4020
	ACAAAATTAT	ACCAGTTATT	TTAGCCGCAA	TTTCAGCGAT	TTCCATTTTA	ACAACACTAG	4080
	GTATATTAAT	CACATTGCTT	TTAGAAACCA	TCACTTTTTT	CACCAGAATT	CCAATAACTG	4140
50	AATTTCTATT	TTCTACTACT	TGGAATCCTA	CCGGTTCAGA	CCCTAAGTTT	GGTATCTGGG	4200
	Chrownanaan	ACCCA CONTO	****	TT NTT CC NC	T3 T3 TTTTCC3	COTTO CA COTO C	4250

	AACCGATATT	AGAAATTTTA	GCAGGAATAC	CAACAATTGT	GTTTGGTTTC	TTTGCATTAA	4380
	CCTTTGTTAC	ACCAGTATTA	AGATCTTTCA	TACCAGGTCT	TGGAGAGTTT	AATGCTATAA	4440
5	GTCCCGGCTT	AGTTGTCGGT	ATTATGATTG	TCCCTCTCAT	CACAAGTTTG	AGTGAGGaTG	4500
	CAATGGCATC	TGTACCAAAT	AAAATTCGAG	AAGGTGCCTA	TGGACTTGGA	GCAACTAAAT	4560
	TAGAAGTAGC	AACTAAAGTC	GTACTTCCCG	CAGCAACATC	AGGTATTGTA	GCTTCAATCG	4620
10	TTCTCGCGAT	TTCAAGAGCA	ATTGGAGAAA	CGATGATTGT	ATCATTAGCG	GCAGGTAGTT	4680
	CGCCAACAGC	TTCATTAAGT	TTAACAAGTT	CGATTCAAAC	AATGACTGGA	TATATTGTTG	4740
15	AGATAGCGAC	AGGTGATGCA	ACATTTGGAT	CAAATATTTA	TTACAGTATT	TATGCTGTAG	4800
	GGTTCACACT	ATTTATCTTT	ACCTTAATCA	TGAATTTACT	TTCTCAGTGG	ATTTCTAAGC	4860
	GTTTTAGGGA	GGAGTATTAA	TATGGAAACG	ACAGATAATA	ATAGACAATC	ACTCGTCGAT	4920
20	CAACAACTTG	TCCAAAAACA	TTTATCATCC	AGAACGGTTA	AAAATAAAGT	GTTCAAACTC	4980
	ATATTTTTAG	CATGTACATT	ATTAGGACTT	GTCGTACTTA	TTGCGTTGTT	AACTCAAACA	5040
	TTGATTAAAG	GGGTAAGTCA	TTTAAATTTA	CAGTTTTTCA	CTAATTTTTC	TTCTTCAACA	5100
25	CCATCTATGG	CTGGCGTTAA	AGGCGCGTTA	ATCGGTTCAC	TTTGGTTAAT	GTTAAGTATC	5160
	ATTCCATTAT	CAATCATCCT	AGGAATAGGT	ACAGCTATAT	ACTTAGAAGA	ATATGCGAAA	5220
	AACAACAAAT	TTACTCAGTT	TGTTAAAATC	AGTATTTCCA	ATTTAGCTGG	TGTACCATCA	5280
30	GTTGTATTTG	GGTTATTAGG	TTATACTTTG	TTCGTTGGTG	GTGCAGGGAT	TGAAGCCTTG	5340
	AAAATGGGTA	ACAGTATATT	GGCAGCAGCG	CTAACAATGA	CCTTACTGAT	ATTACCAATT	5400
25	ATTATTGTTT	CAAGTCAGGA	AGCAATTAGA	GCTGTACCTA	ACTCAGTACG	CGAACTTCTT	5460
35	ACGGCTTAGG	TGCTAATAAA	TGGCAAACGA	TAAGACGTGT	TGTCTTACCA	GCAGCGTTAC	5520
	CTGGTATTTT	AACTGGATTC	ATTTTGTCTC	TTTCAAGAGC	ACTGGGAGAA	ACAGCGCCAC	5580
40	TTGTGCTAAT	CGGTATACCG	ACTATATTAT	TGGCAACACC	TAGAAGTATA	TTGGATCAAT	5640
	TTTCAGCATT	ACCTATCCAA	ATATTTACTT	GGGCGAAAAT	GCCTCAAGAA	GAATTCCAGA	5700
	ATGTTGCATC	GGCAGGCATT	ATCGTTTTAC	TAGTTATCTT	AATCTTAATG	AATGGCGTTG	5760
45	CGATTATTTT	ACGTAACAAA	TTTAGTAAAA	AATTCTAATT	TAAACAATCA	ATCTCATTTA	5820
	TCTATTAAAA	AGGGAGTTTT	AAATATGGCG	CAAACACTTG	CACAAACTAA	ACAAATATCT	5880
	CAAAGTCATA	CGTTTGATGT	CTCACAAAGT	CATCATAAAA	CACCAGATGA	TACAAACTCA	5940
50	CATTCTGTTA	TATATTCAAC	ACAAAATTTA	GACTTATGGT	ATGGCGAAAA	TCATGCATTA	6000
	CAAAATATTA	ATTTAGATAT	TTATGAAAAC	CAAATTACTG	CCATTATAGG	TCCATCTGGT	6060

	AAAACAGCTG	GTAAAATATT	ATATCGAGAT	CAAGACATTT	TTGATCAAAA	ATATTCTAAA	6180
	GAACAATTAC	GTACAAATGT	GGGCATGGTC	TTTCAACAAC	CTAATCCATT	TCCAAAATCA	6240
5	ATATACGATA	ATATTACTTA	CGGTCCAAAG	ATTCACGGTA	TTAAAAATAA	AAAAGTTCTT	6300
	GATGAAATCG	TTGAGAAATC	ATTACGTGGC	GCTGCAATTT	GGGATGAATT	AAAGGATAGG	6360
	TtGCACACAA	ATGCATATAG	TTTATCCGGT	GGGCAACAAC	AACGTGTTTG	TATCGCGCGT	6420
10	TGTTTAGCAA	TTGAACCTGA	AGTCATTTTA	ATGGATGAAC	CGACATCAGC	ATTAGATCCA	6480
	ATCTCAACAT	TAAGAGTAGA	AGAGTTGGTT	CAAGAACTAA	AAGAAAAGTA	TACAATTATT	6540
15	ATGGTtACAC	ATAATATGCA	ACAAGCAGCT	CGTGTATCAG	ATAAAACTGC	ATTTTTCTTA	6600
	AATGGTTATG	TCAATGAATA	TGATGATACT	GATAAAATTT	TCTCTAACCC	ATCAAACAAG	6660
	AAAACAGAAG	ATTATATTTC	AGGAAGGTTT	GGTTGATATA	TAATGGCAAT	AATTAGACAA	6720
20	CGATATCAGG	AGCAACTTGA	TGATTTAATA	AAAGAATTAC	GTCGGTTAGG	TGCaAATGTC	6780
	TATGTGAGTA	TTGaAAATGG	TATAAAAtCA	TTAAGTATTG	aCGATAGAGG	cTTTGCACGA	6840
	CAAACAGTTA	AAAACGATAA	ACATATCAAT	CAATTAAATT	ATGATATTAA	TGAGCGAGTT	6900
25	ATCATGTTAA	TTACAAAGCA	ACAGCCCATT	GCGAGTGATT	TGCGTATGAT	GATTTCTTCA	6960
	TTAAAAATCG	CCTCCGATTT	AGAAAGAATA	GGAGATAATG	CCTCGAGTAT	TGCCAATATT	7020
	CGATTGCGTA	CAAAGATTAC	AGATGATTAT	GTGTTAACCC	GTTTAAAGAC	AATGGGTAAA	7080
30	TTAGCTATGT	TAATGTTAAA	GGACTTAGAT	CAAGCATTTA	AAAAGAAAGA	TACCGTATTA	7140
	ATAAGAGAAA	TAATTGAGCG	TGATGAAGAT	ATCGATGACT	TATATAGTCA	TATTATTAAC	7200
	GCAACGTATC	TTATTGATAA	CGtCCATTTG	TCGCTGCACA	AGCTCATTTA	GCAGCAAGAC	7260
35	ATTTAGAACG	TATTGGTGAT	CATATTATTA	ACATCGCTGA	AAGTGTTTAT	TTTTATTTAA	7320
	CAGGTACACA	TTACGAACAA	TAACTTAAAG	TTATTACTAT	AAAATCCCTT	ACGATAAATA	7380
40	TATATTTCTA	TTATTCATAA	ACCCTCAAAA	AAACCAAGAT	TCTCACAATT	AGTAATGTGA	7440
	AAATCTTGGT	TTATATTGTT	CTACTATAAA	TTGTCTCGCA	TCTTAGTTAT	TTGCTTGCTC	7500
	AATTTCATCT	GTTAATTTTT	CAACTTCATC	GACTAAATCA	GAAATATATT	GAATTGTAGA	7560
45	TTTAAGTGGC	TGTTCTGTAG	TAATGTCTAC	ACCTGCAATG	TTTGCAAGTT	CGACAGGTGA	7620
	TACACTACCA	CCTTTTTTCA	ATGTTTCTAA	CCAAGCATCA	ACAGCTGGTT	GGCCTTCATT	7680
	TTTAATCTTT	TGAGAAACGA	CAGTTCCGAT	TGTTAAGCCA	GCAGAATACG	TATACGAATA	7740
50	TAATCCCATA	TAGTAATGAG	GTTGACGCAT	CCATGTTAAT	TCAGCACCCT	CAGTCATGTC	7800
	TACTCATCT	CCAAAAAATTT	Стттатааас	מידיים מירים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים מידיים	מיויידית מיויידית מ	ATCTACCCC	7860

(2) INFORMATION FOR SEQ ID NO: 162:

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 798 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 162:	
	TTTTTTCTTT TCTTCATTTG AAAATTGATC ATTCAGCAAT ATAAGCGTAT TTGTTAATGA	60
15	TTTAGGTGTT CCAATTTCAT AATCCCACCA ATTTAAGTTG GTATTCTTGC CAGTTGTTTT	120
	AGTAAAATTC TCACTTAATT CTTTTACTTT TTTATCTGGT TCTTTTCCAT ATGCATTTTT	180
	ATGCAGCCAC TCAAGGGCAT CTTTCACTTT CTTCTTATTT TCGTCAGTAT TTAAAGTGGT	240
20	TTTAGGATTC CTCATCGCTT CTGCGATTTT CTCAATATTA CGATAGGTAC GAGTCATATG	300
	AGAAGAATTA GTTTCAAGGG TTTCCGCTCC TGACCACAAG TATTTCCTAC CACTTTCAGT	360
	TTTCATTTCC TTGAGTAAAT TCGTCGCCTC TTTCTCTGTA GCATCAAACT TCTTCTTCAT	420
25	ATCTGGATTA TTCTCATCAT ACTTATCATA ACCATAGTTA ACGTCCAGCC ATGTGTTCCT	480
	CAATTTITCA TAATCTGGCG TTTGAACATT CGTATCAGCC ACAGCGATTT GATGTTTATC	540
	AACACTTCTG AATTCACCAC CATTCAAAGT AATCACACCA GCCATTAATA ACGTAATGGT	600
30	GGATAATTTT TGCCATTTCT TTATTCTATA TGTCATTGAC ATGTCTCCTT TTTGTGTTGC	660
	GCGTGCGCAA TGAATATTAT GATTAAATAA TGATTCAATT TTTCAAAATT CGTTAACGTA	720
	TACAAATGAC TGTCTACTGT CAAACAATCC ACAAAGAATG TTGATGECAT AT&AACAATC	780
35	GATCACCCAA ATTTTCCG	798
	(2) INFORMATION FOR SEQ ID NO: 163:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5132 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 163:	
	TACAGGTTTT ACTATAATGG ATGGTATTTT GGCTAAACGA CATTGGTTTA GTCTTCTTTT	60
50	TTTNACTTCC TANATTTACA ATGGTATAAA TAATAATGCT ATATTTAGAA TGATGAGTAT	120
	ACTTACTGAA ACTAAATTAA AAGTGTCTGG TTCTTTACTA AAGATAGCTG CTATCCTTGC	180

	AATACAAGTT	CCAATGAGCG	CAATTAAAAG	TACTAACCCA	ACGATGAAAC	TCTGTTTGTC	300
	ACTTAACTCA	AAGAAACTAT	AGATAGGATA	TTTTTTAATA	ATCAAGCCAC	CTAAAATCAT	360
5	CCATAAAAAT	ACGATAATTC	CATAAGTCAC	ATTTATAACA	TACGTTATTT	TTTGGTCACC	420
	AAATCGGACT	AATGTATTTC	GTAGAATCAG	CATACCAATG	ACAACACCTA	AAATAACGAT	480
	ACTAGCTATA	TAAAGTAAAA	ATGCAATTGT	CACATCAAAT	GTACCCAAAT	CTAAAAACCT	540
10	AGGAATTAYA	AYGACTGCTA	AAATAAAAGC	GAAGYACAAA	GTAATATAKT	TATACAAACC	600
	GGTAGTAAGA	CTTATCTCAG	GTGATAATTG	ATCAGCCATT	GACTTAATCG	GTGTATTAAT	660
15	AATTGAACTT	GTATCTTCGT	TATTTTTTC	AGCCATAGTT	AAATGATCTT	CGAGCTCTTC	720
	CAATAACTCT	TCTACTTCTG	CTTCAGTCTT	ACCTCTAAAT	AACAATTCAA	CACGTAATTT	780
	TTCTAAAAAA	TCTTGAGATT	GTTTACTTAA	CATCGTTTTC	CCCTCCAAAC	AAGTTAATCA	840
20	TCCCTTTATT	CAAAACTTGC	CATTTCGATT	TAAATACTTT	TAGTTCCTTT	AAACCTGAAT	900
	CGGTAATCGT	ATAGTATTTC	CGCCTCGGGC	CGCCATTACT	AGATTTTTT	ATTGTCGTAT	960
	CAACGTATCC	TTTTTTGTTT	AAACGCATTA	AAACTGGATA	AATACTACCC	TCACTTATCT	1020
25	CTGGAAACTC	TTGATTCTTA	AGTTTCGTCA	TAATTTCATA	TCCATACGTT	TCGCCTTGGG	1080
	CAATGAGACC	TAATATCGCC	CCATCTAAGA	GACCTTTCAT	AATCTGATCT	GACACTGACA	1140
	TTTTAATCAC	CTACTATCTT	ACATAATAAG	ATAGTACATT	GAGAACTTTT	CGTCAACTAT	1200
30	CTTTTATTGT	AAGGTAGTTG	TTGTACACAT	TCCTTAAATG	ACTAACAACT	TTGTTAATAG	1260
	GGTAATACTT	ACGGAAGTAT	ATTTTATTTA	TGGGGGAGGA	ATTAATAATG	ACTACAAAAA	1320
	CAGTATTTGA	TGTCATTGAT	ATGGGGTTAG	GATATTTAGT	AAATGTGTAT	GATGCTTGGA	1380
35	aagttgaaaa	GGTACTTGAT	GATTATCATA	AGCCTTTTTC	TAATACCATT	CATTGGCAAT	1440
	TTGGECATGT	ATTAACAATT	TTTGAATCGG	CCTTAGCTGT	TGCTGGTAAA	GAGAATATTG	1500
40	TATAAATAT	CTATAGACCT	TTATTCGGAA	ATGGTTCGTC	TCCAGATGAA	TGGAAGGATG	1560
70	AAGTACCGAG	TATTGAAAGG	ATTTTAGAAG	GTCTCCAAAC	TTTACCTGAA	CGTGCACGAA	1620
	ATCTAACTGA	AGATGATTTA	GCAATTGAAT	TGAAACAGCC	AATTGTCGGT	TGTAATAACT	1680
45	TAGAAGAGTT	ATTAGTATTA	AATGCCATTC	ACATCCCACT	TCATGCTGGT	AAAATTGAAG	1740
	AGATGTCTCG	TATATTAAAA	TAAAATTTAA	AAATATGTGC	TTATTAACCG	TTAACAACAC	1800
	GTTAACGGgT	TTTTTATTTG	TTTAAAAGGT	CACTTTTTTG	AATTTAATAA	ACACCATCTA	1860
50	TACCAGTTCT	TCACCGATTC	TCGAAAAATA	ATTATATTAA	TGATTTCGTT	AATTTAATTT	1920
	тататттаат	TATTACTGTA	CATCTTTTGT	AGTTAGCTTT	ATTCTTAAAT	TGAAATATGT	1980

	TACTCCCTAT	CGTTGTAGGT	CTCCTTATTT	GGGCACTTAC	ACCTTTTAAA	CCGGATGCTG	2100
	TGGATCCAAC	AGCATGGTAT	ATGTTCGCAA	TATTCGTCGC	GACAATCATT	GCTTGTATTA	2160
5	CACAACCGAT	GCCAATTGGG	GCCGTCTCTA	TAATTGGATT	TACAATCATG	GTACTCGTTG	2220
	GCATTGTTGA	CATGAAAACG	GCTGTCGCTG	GTTTTGGTAA	TAATAGCATT	TGGTTAATTG	2280
	CTATGGCATT	TTTCATTTCG	AGAGGATTTG	TGAAAACAGG	TCTTGGTAGA	CGTATCGCAC	2340
10	TTCATTTCGT	CAAATTATTT	GGTAAAAAAA	CATTAGGATT	AGCATATTCT	ATCGTCGGTG	2400
	TAGATTTAAT	TCTAGCGCCT	GCTACACCAA	GTAATACCGC	GCGTGCTGGT	GGAATCATGT	2460
15	TCCCAATTAT	CAAATCACTT	TCTGAATCAT	TTGGTTCGAA	ACCGAAAGAC	GGATCAGCAC	2520
	GCAAAATGGG	TGCATTTCTT	GTTTTCACAG	AATTCCAAGG	TAATTTAATT	ACTGCGGCTA	2580
	TGTTTTTAAC	TGCAATGGCC	GGTAACCCCC	TTGCACAAAA	TTTAGCATCT	AGCACATCTA	2640
20	ATGTTCACAT	TACATGGATG	AATTGGTTTC	TAGCTGCTTT	AGTTCCTGGA	CTTGTTTCCT	2700
	TAATTGTTGT	ACCTTTTATT	ATTTATAAAA	TTTATCCACC	AACTGTTAAA	GAAACACCAA	2760
	ATGCTAAGAG	TTGGGCTGAA	AATGAATTAG	CGACTATGGG	TAAAATCGCT	TTAGCTGAAA	2820
25	AATT:TATGAT	TGGTATTTTT	GTCGTTGCGT	TAACACTATG	GATTGTCGGA	AGTTTCATTC	2880
	ATATTGATGC	AACTTTAACG	GCCTTTATTG	CGCTAgcATT	gTTATTATTG	ACAGGCGTCT	2940
	TAACATGGCA	AGACATTTTA	AACGAAACAG	GTGCTTGGAA	CACATTAGTA	TGGTTCTCAG	3000
30	TATTAGTGTT	AATGGCCGAC	CAATTAAACA	AGCTTGGATT	TATTCCTTGG	TTAAGTAAAT	3060
	CCATTGCTAC	AAGTCTTGGT	GGCTTAAGCT	GGCCTATAGT	CCTGGTCATT	TTAATATTGT	3120
0.5	TCTACTTCTA	TTCACATTAC	TTATTTGCAA	GTTCTACAGC	ACATATCAGT	GCGATGTATG	3180
35	CAGCATTACT	AGgCGTTGCC	ATCGCAGCCG	GTGCACCACC	ATTATTCAGT	GCATTAATGT	3240
	TAGGTTTCTT	CGGTAACCTA	TTAGCTTCAA	CAACACACTA	TAGTAGTGGT	CCAGCGCCGA	3300
40	TTCTATTCTC	TTCAGGTTAC	GTGACTCAAA	AACGTTGGTG	GACAATGAAC	TTAATATTAG	3360
	GTTTCGTCTA	CTTTATTATC	TGGATTGGTT	TAGGATCACT	TTGGATGAAA	GTAATTGGTA	3420
	TATTTTAAAA	TATTTAAATT	AGCGCTCGAA	TCTCATTGAT	TTGGGCGCTT	TTTAATTTGT	3480
45	ATTTAAAATC	AACCTTTGCT	AAATCAAGAC	TCCCTTTTTA	AAATACGTTT	ATCCTTTAAA	3540
	TCATTGCGTG	CTTCACTGAA	AATTTGTATA	AAGATTTAAG	TCATTACGTA	ACATCACATA	3600
	AAATACATTT	CTATACTATT	CCGCTTCATT	GATTAACATT	ACGTATGCCC	TCATAAATCA	3660
50	TCATACAAAA	AACACCTTCG	TTTAAATTCA	TTTTAATTGC	GAATTCAACG	AAAGTGCCTT	3720
	ATTTCATATT	TAATGTTTCA	AATTTATACG	TCTGTCACTG	TTACTGCACA	CATACCTCAG	3780

	TTATAGGGTT	TTTGCGACCG	GATGTTTCTT	CAATTTAATG	TATTGAGAAA	GACTATATAA	3900
	CACAATACCT	GTCCAAATAA	ATATAAACGT	AATTAATTGA	TCTATACTAA	AAGGCTCTTT	3960
5	GAAAACAAAT	ATGCCGAGTA	CAAACATTAT	TGTTGGTCCA	ACGTATTGAA	TAAATCCTAT	4020
	TAGCGAAAGT	GGAATACGTT	TTGCCCCGGC	TGAGAATAGG	ATTAGTGGTA	TTGCCGTAAT	4080
	AGCACCAGAA	AATAACAACC	AAAATGATGA	CATGTTCAAT	CCAAATGACA	TCTGATGTTG	4140
10	CTGCCATAAA	TAAATAACGT	ATATTAGTCC	AGCAGGTGCG	GTAACAATAC	ATTCAATCGT	4200
	AATACTGCTG	ATGGCATCAA	TATGTACTAC	TTTTTTCAAT	AATCCGTATG	TACCAAAGGA	4260
15	TAACGCTAAT	ATAATAGAGA	CGATTGGGAA	TTCTCCAATC	TTGAGCGTCA	TATATAATAC	4320
,,,	ACCGATGAAT	GCGAATAAAA	TGGCTAGCCA	TTCAAATTTA	TTGAATCTTT	CTTTTAAAAA	4380
	GATAAGTGCG	AGCAAAATGC	TAACAAGTGG	ATTTATATAA	TAACCTAAAC	TTGTTTGTAG	.4440
20	GACGTGACCG	TTCGTTACAG	СССАААТААА	TGTACCCCAA	TTTAATGTAA	TGACATAGCC	4500
	TGCTACGACA	ATCGCTAATA	GCTGAATGGG	CTTGCCTAAC	AATTGATTCA	TATCTCGTTG	4560
	AAATGCATTG	CGTTGTTTTT	GTCCAACCGC	GAGTATGAAA	ATCATGAATA	TTGCTGAAAA	4620
25	TATAATACGA	AAGGCTAAAA	TTTCAAATGC	GCCTATTGCA	TCAACGAACT	GCCAATATAT	4680
	AGGTAGTATT	CCCCACAGAA	TGTATGCACT	GAGTGCTAAA	AATATGCCTT	TTTTATACTC	4740
	TGAATTCACC	TTCAAACCTC	CTTACTTTCC	TAATTTTTAA	TTTACTGCAT	ACGCTCACTT	4800
30	GGTTATGCTA	ATATAACGAT	тттастаата	ATATTTCGAT	AAAGATATCA	TTTTGTTTAT	4860
	ATTTCCCACA	TTTATTCACC	AACCACTAAA	CAATATTAAT	TTTATAAATA	ATTCTGTACA	4920
	AATCAGGGTA	TATTGCCAGA	AAGACTACCA	TACAACATAA	AGGATGGATA	CAAATGACTT	4980
35	TACCTAAAAT	TGGAAAGCCT	GCAACACGCG	CGCTAAATTC	ACAAGGTATA	TACACATTAG	5040
	AAGCÁGTATC	ACAATATACG	AAGTCATCTC	TAATGGAGAT	GCATGGCGTT	GGTCCTAAAG	5100
40	CTATATCAAT	ATTGGAACAA	GCTTTATTTC	AG			5132
	(2) INFORMA	TION FOR SE	Q ID NO: 16	i4:			
	(i) er	QUENCE CHAR	^~~~~~~~~~~~	١.			
		A) LENGTH:					
	\ \ \	, 22191111	~~~ょ」 かなごこ	Patta			

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 164: 50

AAGTAAATTA TATTATGAAT TTGCCTGTCA ATTTCTTAAA GACATTCTTA CCGGAACTAA 60

	TAGAAGCAAT	TAATAATGCy	mAAGAAAAGA	CAGCTAATAA	TACCGGCTTA	AAATTAATAT	180
	TTGCAATTAA	TTATGGTGGC	AGAGCAGAAC	TTGTTCATAG	TATTAAAAAT	ATGTTTGACG	240
5	AGCTTCATCA	ACAAGGTTTA	AATAGTGATA	TCATAGATGA	AACATATATA	AACAATCATT	300
	TAATGACAAA	AGACTATCCT	GATCCAGAGT	TGTTAATTCG	TACTTCAGGA	GAACAAAGAA	360
10	TAAGTAATTT	CTTGATTTGG	CAAGTTTCGT	ATAGTGAATT	TATCTTTAAT	САААААТТАТ	420
10	GGCCTGACTT	TGACGAAGAT	GAATTAATTA	AATGTATAAA	AATTTATCAG	TCACGTCAAA	480
	GACGCTTTGG	CGGATTGAGT	GAGGAGTAGT	ATAGTATGAA	AGTTAGAACG	CTGACAGCTA	540
15	TTATTGCCTT	AATCGTATTC	TTGCCTATCT	TGTTAAAAGG	CGGCCTTGTG	TTAATGATAT	600
	TTGCTAATAT	ATTAGCATTG	ATTGCATTAA	AAGAATTGTT	GAATATGAAT	ATGATTAAAT	660
	TTGTTTCAGT	TCCTGGTTTA	ATTAGTGCAG	TTGGTCTTAT	CATCATTATG	TTGCCACAAC	720
20	ATGCAGGGCC	ATGGGTACAA	GTAATTCAAT	TAAAAAGTTT	AATTGCAATG	AGCTTTATTG	780
	TATTAAGTTA	TACTGTCTTA	TCTAAAAACA	GATTTAGTTT	TATGGATGCT	GCATTTTGCT	840
	TAATGTCTGT	GGCTTATGTA	GGCATTGGTT	TTATGTTCTT	TTATGAAACG	AGATCAGAAG	900
25	GATTACATTA	CATATTATAT	GCCTTTTTAA	TTGTTTGGCT	TACAGATACA	GGGGCTTACT	960
	TGTTTGGTAA	AATGATGGGT	AAACATAAGC	TTTGGCCAGT	AATAAGTCCG	ААТААААСАА	1020
	TCGAAGGATT	CATAGGTGGC	TTGTTCTGTA	GTTTGATAGT	ACCACTTGCA	ATGTTATATT	1080
30	TTGTAGATTT	CAATATGAAT	GTATGGATAT	TACTTGGAGT	GACATTGATT	TTAAGTTTAT	1140
	TTGGTCAATT	AGGTGATTTA	GTGGAATCAG	GATTTAAGCG	TCATTTCGGC	GTTAAAGACT	1200
35	CAGGTCGAAT	ACTACCTGGA	CACGGTGGTA	TTTTAGACCG	ATTTGACAGC	TTTATGTTTG	1260
	TGTTACCATT	ATTAAATATT	TTATTAATAC	AATCTTAATG	CTGAGAACAA	ATCAATAAAC	1320
	GTAAAGAGGA	GTTGCTGAGA	TAATTTAATG	AATCTCAGAA	CTCCTTTTGA	AAATTATACG	1380
40	CAATATTAAC	TTTGAAAATT	ATACGCAATA	TTAACTTTGA	AAATTAGACG	TTATATTTTG	1440
	TGATTTGTCA	GTATCATATT	ATAATGACTT	ATGTTACGTA	TACAGCAATC	ATTTTTAAAA	1500
	TAAAAGAAAT	TTATAAACAA	TCGAGGTGTA	GCGAGTGAGC	TATTTAGTTA	CAATAATTGC	1560
45	ATTTATTATT	GTTTTTGGTG	TACTAGTAAC	TGTTCATGAA	TATGGCCATA	TGTTTTTTGC	1620
	GAAAAGAGCA	GGCATTATGT	GTCCAGAATT	TGCGATCGGT	ATGGGGCCAA	AAATTTTTAG	1680
	TTTTAGAAAA	AATGAAACAC	TTTACACTAT	TAGGTTATTG	CCTGTTGGTG	GATATGTTCG	1740
50	TATGGCAGGA	GATGGCTTAG	AAGAGCCACC	AGTCGAGCCC	GGTATGAACG	TTAAAATTAA	1800
	ברדה מיזכה א	СЛЛЛАТСЛЛА	таасасатат	СУДОТАТОВСТ	Сатсатсата	אכידידירי ם א ריא	1860

	CACTGCTTAT	GATAATGAAA	GACATCATTT	TAAAATTGCT	AGAAAGTCTT	TCTTTGTTGA	1980
	AAATGGTAGC	TTAGTTCAAA	TTGCTCCGAG	AGACAGACAA	TTTGCACATA	AAAAGCCATG	2040
5	GCCGAAATTT	TTAACATTAT	TTGCGGGACC	GTTATTTAAC	TTTATATTAG	CTTTAGTCCT	2100
	ATTTATTGGT	CTTGCATATT	ATCAAGGCAC	GCcTACGTCT	ACTGTAGAAC	AAGTCGCAGA	2160
	TAAGTATCCA	GCTCAACAAG	CAGGATTACA	AAAAGGTGAT	AAGATCGTCC	AAATTGGCAA	2220
10	ATATAAAATA	TCTGAATTTG	ATGATGTTGA	TAAGGCGTTA	GATAAAGTTA	AAGATAATAA	2280
•	GACGACTGTT	AAATTTGAAC	GTGATGGTAA	AACAAAGTCA	GTTGAATTAA	CACCTAAAAA	2340
15	GACTGAAAAA	AAACTGACTA	AAGTAAGTTC	AGAGACGAAG	TATGTTCTCG	GATTCCAACC	2400
	AGCGAGTGAA	CATACACTTT	TTAAACCAAT	TGTATTCGGA	TTTAAAAGCT	TTTTAATCGG	2460
	TAGTACTTAT	ATTTTTACAG	CTGTAGTAGG	TATGTTGGCT	AGTATATTTA	CGGGCGGATT	2520
20	CTCATTTGAT	ATGTTAAATG	GTCCGGTTGG	TATTTATCAT	AACGTCGACT	CAGTTGTTAA	2580
	AGCGGGTATC	ATTAGCTTAA	TTGGTtnCAC	TGCGTTATTA	AGTGTAAACT	TAGGTATTAT	2640
	GAATTTAATT	CCTATTCCTG	CACTAGACGG	TGGTCGTATT	TTATTTGTTA	TATATGAAGC	2700
25	GATTTTCAGA	AAACCAGTTA	ATAAAAAAGC	GGAAACAACG	ATTATTGCTA	TTGGTGCCAT	2760
	TTTCATGGTC	GTTATAATGA	TATTAGTAAC	GTGGAATGAT	ATTCGACGAT	ATTTCTTATA	2820
	ATTTAGGAGG	ATAAATAATT	ATGAAGCAAT	CCAAAGTTTT	TATACCAACG	ATGCGTGACG	2880
30	TGCCATCAGA	AGCAGAAGCA	CAAAGTCATC	GTTTATTATT	GAAATCGGGT	TTGATAAAAC	2940
	AAAGTACAAG	TGGGATTTAT	AGTTATTTAC	CGCTAGCAAC	ACGTGTGTTA	AATAATATA	3000
35	CTGCAATTGT	GCGACAAGAA	ATGGAACGTA	TCGATTCTGT	TGAAATTTTA	ATGCCAGCGT	3060
00	TACAACAAGC	TGAATTATGG	GAAGAATCAG	GACGTTGGGG	TGCATATGGC	CCAGAATTAA	3120
	TGCGTTTACA	AGATAGaCAT	GGAAgACAAT	TTgCATTAGG	TCCaACACAT	GAAGAATTAG	3180
40	TTACATCAAT	AGTAAGAAAT	GAATTGAAAT	CATACAAACA	ATTACCGATG	ACATTATTCC	3240
	aAATTCAATC	TAAATTCCGT	GATGAAAAGA	GACCACGTTT	TGGTTTAYTC	GTGGGCGTGA	3300
	ATTTATTATG	AAAGATGCAT	ATTCATTCCA	TGCTGACGAG	GCATCATTAG	ATCAAACGTA	3360
45	TCAAGATATG	TATCAAGCGT	ATAGCCGTAT	TTTTGAGAGA	GTTGGCATTA	ACGCAAGACC	3420
	AGTAGTTGCA	GATTCAGGTG	CTATAGGCGG	TAGCCATaCA	CATGAATTTA	TGGCATTAAG	3480
	TGCTATCGGT	GAGGATACAA	TCGTTTACAG	TAAAGAAAGT	GATTATGCTG	CTAACATCGA	3540
50	AAAAGCAGAA	GTCGTTTACG	ArcCAaATcA	TaAGCATACT	ACTGTGCAAC	CTTTAGAAAA	3600
	*******	OCE & AMORES	3 C 3 C C C C C B	3 C 3 3 MMC C C 3	CACTOCOTO	CERCACCACE	2661

	GCGTGGCCAT	CATGAAATTA	ATGACATTAA	ATTAAAATCT	TATTTCGGCA	CAGATAATAT	3780
	TGAATTAGCA	ACACAAGACG	AAATTGTTAA	TTTAGTTGGT	GCAAATCCTG	GTTCACTAGG	3840
5	TCCTGTAATT	GATAAAGAAA	TCAAAATTTA	TGCAGATAAT	TTTGTGCAAG	ATTTAAATAA	3900
	TTTAGTTGTC	GGTGCTAACG	AAGATGGTTA	TCACTTAATT	AATGTAAATG	TAGGTAGAGA	3960
	CTTCAACGTT	GATGAATATG	GCGATTTCCG	TTTTATTTTA	GAAGGCGAAA	AGTTAAGTGA	4020
10	TGGTTCAGGC	GTTGCACATT	TTGCTGAAGG	TATTGAAGTT	GGTCAAGTAT	TCAAATTGGG	4080
	TACTAAGTAT	TCAGAATCAA	TGAATGCTAC	ATTCTTAGAT	AACCAAGGAA	AAGCTCAATC	4140
15	TTTAATTATG	GGTTGTTACG	GAATTGGAAT	TTCTAGAACG	CTAAGTGCGA	TTGTTGAACA	4200
,,	AAATCACGAT	GATAATGGAA	TTGTTTGGCC	TAAATCAGTT	ACTCCGTTTG	ATTTACATTT	4260
	AATTTCTATT	AATCCTAAGA	AAGATGATCA	ACGAGAACTA	GCAGATGCAC	TATATGCTGA	4320
20	ATTTAATACT	AAATTTGATG	TGTTGTACGA	TGATCGTCAG	GAACGTGCAG	GTGTTAAATT	4380
	TAATGATGCC	GATTTAATTG	GTTTACCACT	GCGAATTGTT	GTTGGTAAAC	GTGCATCGGA	4440
	AGGTATTGTA	GAAGTTAAAG	AACGTTTAAC	AGGTGATAGC	GAAGAAGTTC	ACATTGATGA	4500
25	CTTAATGACT	GTCATTACAA	ATAAATATGA	TAACTTAAAA	TAATTAAGAT	CGAATGAATT	4560
	ATAAGAGTAG	GAAAAAGCTG	AAAGAAATCT	GATGCTTATG	TCCTGCTCTT	ATTATTTTTG	4620
	ATATAATGAT	TATTCGATGA	AAAATGACTG	AAGACATAGT	ATAATTAAAG	ATAAATTTGT	4680
30	TTTAACAATA	TAATGATTAG	CCAAATATAA	AGCATTTAAT	TTTCTATCAT	TACTATGCTC	4740
	ACATAATCTA	AATATTGTTC	GAACACGTAA	AAGTAATTTC	TATTTAAGGT	GGTAATTGTC	4800
	TTGGCAATGA	CAGAGCAACA	AAAATITAAA	GTGCTTGCTG	ATCAAATTAA	AATTTCAAAT	4860
35	CAATTAGATG	CTGAAATTTT	AAATTCAGGT	GAACTGACAC	GTATAGATGT	TTCTAACAAA	4920
	AACAGAACAT	GGGAATTTCA	TATTACATTA	CCACAATTCT	TAGCTCATGA	AGATTATTTA	4980
40	TTATTTATAA	ATGCAATAGA	GCAAGAGTTT	AAAGATATCG	CCAACGTTAC	ATGTCGTTTT	5040
40	ACGGTAACAA	ATGGCACGAA	TCAAGATGAA	CATGCAATTA	AATACTTTGG	GCACTGTATT	5100
	GACCAAACAG	CTTTATCTCC	AAAAGTTAAA	GGTCAATTGA	AACAGAAAAA	GCTTATTATG	5160
45	TCTGGAAAAG	TATTAAAAGT	AATGGTATCA	AATGACATTG	AACGTAATCA	TTTTGATAAG	5220
	GCATGTAATG	GAAGTCTTAT	CAAAGCGTTT	AGAAATTGTG	GTTTTGATAT	CGATAAAATC	5280
	ATATTCGAAA	CAAATGATAA	TGATCAAGAA	CAAAACTTAG	CTTCTTTAGA	AgCACaTATT	5340
50	CAAGAAGAAG	ACGAACAAAG	TGCACGATTG	GCAACAGAGA	AACTTGAAAA	AATGAAAGCT	5400
	CARARACCCA	AACAACAACA	TARCARCAR	NOTICE CONTROL	ATA ACTOTOS	N N TOTO COTTO N C	5460

	GCAATAGAGG	GTGTCATTTT	TGATATAAAC	TTAAAAGAAC	TTAAAAGTGG	TCGCCATATC	5580
	GTAGAAATTA	AAGTGACTGA	CTATACGGAC	TCTTTAGTTT	TAAAAATGTT	TACTCGTAAA	5640
5	AACAAAGATG	ATTTAGAACA	TTTTAAAGCG	CTAAGTGTTG	GTAAATGGGT	TAGGGCTCAA	5700
	GGTCGTATTG	AAGAAGATAC	ATTTATTAGA	GATTTAGTTA	TGATGATGTC	TGATATTGAA	5760
	GAGATTAAAA	AAGCGACAAA	AAAAGATAAG	GCTGAAGAAA	AGCGTGTAGA	ATTCCACTTG	5820
10	CATACTGCAA	TGAGCCAAAT	GGATGGTATA	CCCAATATTG	GTGCGTATGT	TAAACAGGCA	5880
	GCAGACTGGG	GACATCCAGC	CATTGCGGTT	ACAGACCATA	ATGTTGTGCA	AGCATTTCCA	5940
15	GATGCTCACG	CAGCAGCGGA	AAAACATGGC	ATTAAAATGA	TATACGGTAT	GGAAGGTATG	6000
	TTAGTTGATG	ATGGTGTTCC	GATTGCATAC	AAACCACAAG	ATGTCGTATT	AAAAGATGCT	6060
	ACTTATGTTG	TGTTCGACGT	TGAGACAACT	GGTTTATCAA	ATCAGTATGA	TAAAATCATC	6120
20	GAGCTTGCAG	CTGTGAAAGT	TCATAACGGT	GAAATCATCG	ATAAGTTTGA	AAGGTTTAGT	6180
	AATCCGCATG	AACGATTATC	GGAAACGATT	ATCAATTTGA	CGCATATTAC	TGATGATATG	6240
	TTAGTAGATG	CCCCTGAGAT	TGAAGAAGTA	CTTACAGAGT	TTAAAGAATG	GGTTGGCGAT	6300
25	GCGATATTCG	TAGCGCATAA	TGCTTCGTTT	GATATGGGCT	TCATCGATAC	GGGATATGAA	6360
	CGTCTTGGGT	TTGGACCATC	AACGAATGGT	GTTATCGATA	CTTTAGAATT	ATCTCGTACG	6420
	ATTAATACTG	AATATGGTAA	ACATGGTTTG	AATTTCTTGG	СТАААААТА	TGGCGTAGAA	6480
30	TTAACGCAAC	ATCACCGTGC	CATTTATGAT	ACAGAAGCAA	CAGCTTACAT	TTTCATAAAA	6540
	ATGGTTCAAC	Aaatgaaaga	ATTAGGCGTA	TTAAATCATA	ACGAAATCAA	CAAAAAACTC	6600
	AGTAATGAAG	ATGCATATAA	ACGTGCAAGA	CCTAGTCATG	TCACATTAAT	TGTACAAAAC	6660
35	CAACAAGGTC	TTAAAAATCT	ATTTAAAATT	GTAAGTGCAT	CATTGGTGAA	GTATTTCTAC	6720
	CGTAÉACCTC	GAATTCCACG	TTCATTGTTA	GATGAATATC	GTGAGGGATT	ATTGGTAGGT	6780
40	ACAGCGTGTG	ATGAAGGTGA	ATTATTTACG	GCAGTTATGC	AGAAGGACCA	GAGTCAAGTT	6840
10	GAAAAAATTG	CCAAATATTA	TGATTTTATT	GAAATTCAAC	CACCGGCACT	TTATCAAGAT	6900
	TTAATTGATA	GAGAGCTTAT	TAGAGATACT	GAAACATTAC	ATGAAATTTA	TCAACGTTTA	6960
15	ATACATGCAG	GTGACACAGC	GGGTATACCT	GTTATTGCGA	CAGGAAATGC	ACACTATTTG	7020
	TTTGAACATG	ATGGTATCGC	ACGTAAAATT	TTAATAGCAT	CACAACCCGG	CAATCCACTT	7080
	AATCGCTCAA	CTTTACCGGA	AGCACATTTT	AGAACTACAG	ATGAAATGTT	AAACGAGTTT	7140
50	CATTTTTTAG	GTGAAGAAAA	AGCGCATGAA	ATTGTTGTGA	AAAATACAAA	CGAATTAGCA	7200
	GATCGAATTG	AACGTGTTGT	ТССТАТТАВА	САТСААТТАТ	ACACACCCC	ተልተርርል አርር ଫ	7260

	CTGCCTCAAA	TCGTAATTGA	TCGATTAGAA	AAAGAATTAA	AAAGTATTAT	CGGTAATGGA	7380
	TTTGCGGTAA	TTTACTTAAT	TTCGCAACGT	TTAGTTAAAA	AATCATTAGA	TGATGGATAC	7440
5	TTAGTTGGTT	CCCGTGGTTC	AGTAGGTTCT	AGTTTTGTAG	CGACAATGAC	TGAGATTACT	7500
	GAAGTAAACC	CGTTACCGCC	ACACTATATT	TGTCCGAACT	GTAAAACGAG	TGAATTTTTC	7560
10	AATGATGGTT	CAGTAGGATC	AGGATTTGAT	TTACCTGATA	AGACGTGTGA	AACTTGTGGA	7620
10	GCGCCACTTA	TTAAAGAAGG	ACAAGATATT	CCGTTTGAAA	CATTTTTAGG	ATTTAAGGGA	7680
	GATAAAGTTC	CTGATATCGA	CTTAAACTTT	AGTGGTGAAT	ATCAACCGAA	TGCCCATAAC	7740
15	TACACAAAAG	TATTATTTGG	TGAGGATAAA	GTATTCCGTG	CAGGTACAAT	TGGTACTGTT	7800
	GCTGAAAAGA	CTGCTTTTGG	TTATGTTAAA	GGTTATTTGA	ATGATCAAGG	TATCCACAAA	7860
	AGAGGTGCTG	AAATAGATCG	ACTCGTTAAA	GGATGTACAG	GTGTTAAACG	TACAACTGGA	7920
20	CAGCATCCAG	GGGGTATTAT	TGTAGTACCT	GATTACATGG	ATATTTATGA	TTTTACGCCG	7980
	ATACAATATC	CTGCCGATGA	TCAAAATTCA	GCATGGATGA	CGACACATTT	TGATTTCCAT	8040
	TCTATTCATG	ATAATGTATT	AAAACTTGAT	ATACTTGGAC	ACGATGATCC	AACAATGATT	8100
25	CGTATGCTTC	AAGATTTATC	AGGAATTGAT	CCAAAAACAA	TACCTGTAGA	TGATAAAGAA	8160
	GTTATGCAGA	TATTTAGTAC	ACCTGAAAGT	TTGGGTGTTA	CTGAAGATGA	AATTTTATGT	8220
	AAAACAGGTA	CATTTGGGGT	ACCAGAATTC	GGTACAGGAT	TCGTGCGTCA	AATGTTAGAA	8280
30	GATACAAAGC	CAACAACATT	TTCTGAATTA	GTTCAAATCT	CAGGATTATC	TCATGGTACA	8340
	GATGTGTGGT	TAGGCAATGC	TCAAGAATTA	ATTAAAACCG	GTATATGTGA	TTTATCAAGT	8400
	GTAATTGGTT	GTCGTGATGA	TATCATGGTT	TATTTAATGT	ATGCTGGTTT	AGAACCATCA	8460
35	ATGGCTTTTA	AAATAATGGA	GTCAGTACGT	AAAGGTAAAG	GTTTAACTGA	AGAAATGATT	8520
	GAAAÉGATGA	AAGAAAATGA	AGTGCCAGAT	TGGTATTTAG	ATTCATGTCT	TAAAATTAAG	8580
40	TACATGTTCC	CTAAAGCCCA	TGCAGCAGCA	TACGTTTTAA	TGGCAGTACG	TATCGCATAT	8640
	TTCAAAGTAC	ATCATCCACT	TTATTACTAT	GCATCTTACT	TTACAATTCG	TGCGTCAGAC	8700
	TTTGATTTAA	TCACGATGAT	TAAAGATAAA	ACAAGCATTC	GAAATACTGT	AAAAGACATG	8760
45	TATTCTCGCT	ATATGGATCT	AGGTAAAAAA	GAAAAAGACG	TATTAACAGT	CTTGGAAATT	8820
	ATGAATGAAA	TGGCGCATCG	AGGTTATCGA	ATGCAACCGA	TTAGTTTAGA	AAAGAGTCAG	8880
	GCGTTCGAAT	TTATCATTGA	AGGCGATACA	CTTATTCCGC	CGTTCATATC	AGTGCCTGGG	8940
50	CTTGGCGAAA	ACGTTGCGAA	ACGAATTGTT	GAAGCTCGTG	ACGATGGCCC	ATTTTTATCA	9000
	AAAGAAGATT	TAAACAAAAA	AGCTGGATTA	TCTCAGAAAA	TTATTGAGTA	TTTAGATGAG	9060

	GAAATAATCA	AGGTATTTAT	TTAATGCGTA	TGGCGTAGTC	AAAGAAATAC	AAAATTGTTG	9180
	CTGGACACAA	AATTATGCCC	GTATTTCTTT	TCAATGTCTT	ACGAGTCTAT	TCAAATGTAA	9240
5	TGGTGAAATA	AAGGAACAAA	CTTTTACAAG	AATCTCTGAT	TAATAGTGAA	GTCATTTGTT	9300
	TCAAGCATAA	ACTTATGCTA	TAATTAAGTT	GCTTAAAAAT	TAGTGAACTC	AGGCAGAAGA	9360
	GTGGGAGATT	CCCGCTCTTT	TCTATTTGCC	AAAAAGGGAG	GCCTGTATGA	GTAAAATTAC	9420
10	AGAACAAGTA	GAAGTGATTG	TTAAACCAAT	TATGGAAGAC	TTGAATTTTG	AACTTGTAGA	9480
	CGTTGAATAT	GTCAAAGAGG	GTAGAGATCA	TTTTCTTAGA	ATCTCTATTG	ATAAAGAAGG	9540
15	TGGCGTAGAT	TTAAATGATT	GTACGCTAGC	TTCTGAAAAA	ATAAGTGAAG	CTATGGATGC	9600
	AAATGATCCT	ATTCCTGAAA	TGTATTATTT	AGACGTAGCG	TCACCTGGTG	CAGAACGTCC	9660
	ААТТААААА	GAACAAGATT	TCCAAAATGC	AATAACTAAA	CCTGTATTTG	TTTCTTTATA	9720
20	TGTACCAATT	GAAGGTGAAA	AGGAATGGTT	AGGCATTTTA	CAAGAAGTCA	ATAATGAAAC	9780
	AATTGTAGTA	CAAGTTAAAA	TCAAAGCAAG	AACGAAAGAT	ATAGAGATAC	CGAGAGACAA	9840
	AATAGCAAAA	GCACGTCACG	CAGTTATGAT	TTAACGTGAT	GAGGAGGAAA	AAACGTGTCA	9900
25	AGTAATGAAT	TATTATTAGC	TACTGAGTAT	TTAGAAAAAG	AAAAGAAGAT	TCCTAGAGCA	9960
	GTATTAATTG	ATGCTATTGA	AGCAGCTTTA	ATTACTGCAT	ACAAAAAGAA	TTATGATAGT	10020
	GCAAGAAATG	TCCGTGTGGA	ATTAAATATG	GATCAAGGTA	CTTTCAAAGT	TATCGCTCGT	10080
30	AAAGATGTTG	TTGAAGAAGT	ATTTGACGAC	AGAGATGAAG	TGGATTTAAG	TACAGCGCTT	10140
	GTTAAAAACC	CTGCATATGA	AATTGGTGAT	ATATACGAAG	AAGATGTAAC	ACCTAAAGAT	10200
	TTTGGTCGTG	TAGGTGCTCA	AGCAGCGAAA	CAAGCAGTAA	TGCAACGTCT	TCGTGATGCT	10260
35	GAACGTGAAA	TTTTATTTGA	AGAATTTATA	GACAAAGAAG	AAGACATACT	TACTGGAATT	10320
	ATTGÂCCGTG	TTGACCATCG	TTATGTATAT	GTGAATTTAG	GTCGTATCGA	AGCTGTTTTA	10380
40	TCTGAAGCAG	AAAGAAGTCC	TAACGAAAAA	TATATTCCTA	ACGAACGTAT	CAAAGTATAT	10440
40	GTTAACAAAG	TGGAACAAAC	GACAAAAGGT	CCTCAAATCT	ATGTTTCTCG	TAGCCATCCA	10500
	GGTTTATTAA	AACGTTTATT	TGAACAAGAA	GTTCCAGAAA	TTTACGATGG	TACTGTAATT	10560
45	GTTAAATCAG	TAGCACGTGA	AGCTGGCGAT	CGCTCTAAAA	TTAGTGTCTT	CTCTGAAAAC	10620
	AATGATATAG	ATGCTGTTGG	TGCATGTGTT	GGTGCTAAAG	GCGCACGTGT	TGAAGCTGTT	10680
	GTTGAAGAGC	TAGGTGGTGA	AAAAATCGAC	ATCGTTCAAT	GGAATGAAGA	TCCAAAAGTA	10740
50	TTTGTAAAAA	ATGCTTTAAG	CCCTTCTCAA	GTTTTAGAAG	TTATTGTTGA	TGAAACAAAT	10800
	CAATCTACAG	TAGTTGTTGT	TCCTGATTAT	CAATTGTCAT	TAGCGATTGG	TAAAAGAGGA	10860

	GATGCGCGTG	AAGCGGGTAT	CTATCCAGTA	GTTGAAGCTG	AAAAAGTAAC	TGAAGAAGAT	10980
	GTTGCTTTAG	AAGATGCTGA	CACAACAGAA	TCAACCGAAG	AGGTAAATGA	TGTTTCAGTT	11040
5	GAAACAAATG	TAGAGAAAGA	ATCTGAATAA	TAGGTTGGAG	TGAAGTATCT	ATGAAAAAGA	11100
	AAAAAATTCC	GATGCGAAAA	TGTATTCTTT	CAAATGAAAT	GCATCCCAAA	AAAGATATGA	11160
	TTCGTGTTGT	TGTTAATAAA	GAAGGCGAAA	TCTTTGCGGA	TGTTACTGGA	AAGAAACAAG	11220
10	GCCGTGGCGC	ATATGTTTCT	AAAGATGTTG	CTATGGTTGA	AAAAGCACAA	CAAAAAGAAA	11280
	TTTTAGAAAA	ATATTTTAAA	GCATCTAAAG	AGCAATTGGA	TCCTGTTTAC	AAAGAAATTA	11340
15	TTAGATTAAT	TTATAGAGAA	GAGATCCCAA	AATGAGTATA	GATCAAATAT	TAAACTTTTT	11400
	AGGATTAGCA	ATGAGAGCTG	GTAAAGTAAA	AACAGGTGAA	TCAGTCATTG	TTAATGAGAT	11460
	TAAAAAAGGA	AATTTGAAGC	TCGTTATTGT	TGCAAATGAT	GCGTCTGATA	ATACAGCTAA	11520
20	ATTAATTACA	GATAAATGTA	AGAGTTACAA	AGTTCCATTC	AGAAAGTTTG	GAAATCGAAA	11580
	TGAATTGGGA	ATAGCACTTG	GAAAAGGTGA	GCGTGTTAAT	GTAGGGATTA	CTGACCCAGG	11640
	CTTTGCTAAA	AAGTTGCTAT	CAATGATAGA	TGAATATCAT	AAGGAGTGAT	TATATGAGTA	11700
25	AACAAAGAAT	TTACGAATAT	GCGAAAGAAT	TAAATCTAAA	GAGTAAAGAG	ATTATAGATG	11760
	AGTTAAAAAG	CATGAATATT	GAGGTTTCAA	ATCATATGCA	AGCTTTGGAA	GATGACCAAA	11820
	TTAAAGCATT	AGATAAAAAG	TTCAAAAAAG	AACAAAAGAA	CGACAATAAA	CAAAGCACTC	11880
30	AAAATAATCA	CCAAAAATCA	AACAATCAAA	ACCAAAATAA	AGGGCmACAA	AAAGATAACA	11940
	AAAAGAATCm	ACAACAAAAT	AATAAAGGCA	ACAAAGGCAA	TAAAAAGAAT	AATAGAAATa	12000
	ATAAGAAAAA	TAACAAGAAT	AATAAACCAC	AAAATCAACC	AGCTGCTCCA	AAAGAAATAC	12060
35	CATCAAAAGT	GACATATCAA	GAAGGTATTA	CAGTAGGCGA	ATTTGCGGAT	AAATTAAATG	12120
	TTGAATCATC	AGAAATTATC	AAAAATTAT	TCTTACTTGG	TATTGTTGCT	AATATCAATC	12180
40	AATCATTAAA	TCAAGAAACA	ATCGAATTAA	TTGCCGATGA	TTATGGCGTT	GAGGTTGAAG	12240
40	AAGAAGTTGT	GATTAATGAA	GAAGACTTAT	CAATCTATTT	CGAAGACGAA	AAAGATGATC	12300
	CAGAGGCAAT	TGAGAGACCA	GCAGTTGTAA	CAATTATGGG	ACATGTTGAC	CATGGTAAAA	12360
45	CGACTTTATT	AGATTCAATT	CGTCATACAA	AAGTTACAGC	AGGTGAAGCA	GGCGGAATCA	12420
	CTCAACATAT	TGGTGCATAT	CAAATTGAAA	ACGATGGCAA	AAAAATCACT	TTCTTAGATA	12480
	CACCGGGACA	TGCTGCATTT	ACAACGATGC	GTGCGCGTGG	TGCaCAAGTA	ACAGATATTA	12540
50	CTATTTTAGT	AGTAGCAGCT	GACGATGGTG	TTATGCCACA	AACAATTGAA	GCAATTAACC	12600
	AMCOMA A A CA	1001-110m	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	mmcos oms s s	M3333 mmo3m	*******	

	GCGGCGAAAC	AATTtTCGTc	CACTTTCTGC	ATTAAGTGGT	GATGGTATCG	ACGATTTATT	12780
_	AGAAATGATA	GGATTAGTTG	CAGAAGTTCA	AGAACTTAAA	GCAAATCCTA	AAAACCGTGC	12840
5	TGTTGGTACA	GTTATCGAAG	CTGAATTAGA	TAAATCACGT	GGTCCTTCTG	CATCATTATT	12900
	AGTACAAAAC	GGTACATTAA	ATGTTGGTGA	TGCGATTGTA	GTTGGTAATA	CTTACGGCCG	12960
10	TATCCGTGCA	ATGGTTAATG	ACTTAGGTCA	AAGAATCAAA	ACGGCTGGTC	CATCAACGCC	13020
10	TGTTGAAATT	ACAGGTATTA	ATGATGTGCC	ACAAGCTGGG	GATCGCTTTG	TTGTATTTAG	13080
	TGATGAAAAA	CAAGCTCGTC	GTATTGGTGA	ATCAAGACAC	GAAGCTAGCA	TTATACAACA	13140
15	ACGTCAAGAA	AGTAAAAATG	TTTCATTAGA	TAACCTGTTT	GAACAAATGA	AACAAGGTGA	13200
	AATGAAAGAT	TTAAACGTTA	TTATTAAAGG	TGATGTTCAA	GGTTCTGTTG	AAGCTTTAGC	13260
	TGCATCATTA	ATGAAAATTG	ATGTTGAAGG	CGTAAATGTT	CGTATCATTC	ATACAGCGGT	13320
20	TGGTGCAATT	AATGAGTCAG	ACGTGACACT	TGCTAATGCC	TCAAATGGTA	TTATCATTGG	13380
	TTTCAATGTT	CGTCCAGACA	GTGGTGCAAA	ACGTGCTGCA	GAAGCTGAAA	ATGTTGATAT	13440
	GCGTTTACAC	AGAGTTATTT	ATAATGTTAT	CGAAGAAATT	GAATCAGCGA	TGAAAGGTTT	13500
25	ACTTGATCCA	GAATTTGAAG	AACAAGTTAT	CGGACAAGCT	GAAGTTCGTC	AAACATTCAA	13560
	AGTTTCTAAA	GTTGGTACTA	TTGCTGGATG	TTATGTTACT	GAAGGTAAAA	TTACGCGAAA	13620
	TGCTGGTGTA	CGTATTATTC	GTGATGGTAT	TGTTCAATAT	GAAGGCGAAT	TAGATACACT	13680
30	TAAACGTTTC	AAAGATGATG	CTAAGGAAGT	TGCAAAAGGT	TATGAATGTG	GTATTACAAy	13740
	TGAAAACTAC	AATGACCTTA	AAGAAGGCGA	TGTTATCGAA	GCATTTGAAA	TGGTTGAAAT	13800
	TAAGCGTTAA	TTAAATAAAT	TACAAGCTAA	AAGTATAGTT	AAGATTGATA	TGCTCCCTAT	13860
35	AAATATTGCA	CTTTTTAAGT	GTCTACTTTA	TAGGGAGCAT	ATTTGATACT	AGCTTTTGGT	13920
	TTTPTATTAG	AATAGATTAC	CTATTAAAAG	TTACGTTATA	TGGACATGAT	TTTGTATAAA	13980
40	ATTTTGTGGT	GGCCTAGAAT	GATTTTTAAT	GACAAAATAT	AATGTCGACT	ATTATTGGAA	14040
	AATTITCTGT	TGaAATGCCT	ATCTTACGGC	AAACTTTATT	TGATTTTATA	GGCTTAATTT	14100
	ATTAAAATAA	CGTGTGAGCT	AAAATAATTG	TTTAAGCATT	GTTACACTAA	AAAATGCAAA	14160
45	TAACAATTGA	ACTTAAAGAT	AAAGAGGTGA	CAAGAATGAG	CAGTATGAGA	GCAGAGCGTG	14220
	TTGGTGAACA	AATGAAGAAG	GAATTAATGG	ATATCATCAA	CAATAAAGTC	AAAGATCCTC	14280
	GAGTTGGTTT	TATTACAATT	ACAGATGTTG	TTTTAACAAA	TGATTTATCG	CAGGCTAAAG	14340
50	TATTTTTAAC	TGTATTAGGT	AACGATAAAG	AAGTAGAAAA	TACATTTAAA	GCACTTGATA	14400
	AAGCAAAAGG	СттСаттаас	ጥርጥር እ አጥጥልር	CTTCTACAAT	CCCATTACCT	A THE A THE COOL	14460

	AAGATTTACA	CAAACAAGAT	AGATAATTTA	GTGTTAGGTA	TCTGGAAAAT	GTTTGATAAT	14580
	TTCTTAATAT	CGGTATATTA	ACATTAAACA	GTTAATACAT	AGATGTGTAG	AAATAGTTAA	14640
5	CATTTTCCAG	TTTTTTTATG	AATAAATTTA	GTTGATACGC	TATTAAAATA	TATTTTAAAA	14700
	AAGAAGGTGA	CTATATGTAT	AATGGGATAT	TACCAGTATA	TAAAGAGCGC	GGTTTAACAA	14760
	GTCATGACGT	TGTATTCAAA	TTGCGTAAAA	TATTAAAAAC	TAAAAAAATA	GGTCACACGG	14820
10	GTACGCTTGA	TCCCGAAGTT	GCAGGCGTGT	TACCGGTATG	TATAGGTAAT	GCAACGAGAG	14880
	TTAGTGATTA	TGTTATGGAT	ATGGGCAAAG	CTTATGAAGC	AACTGTATCG	ATAGGAAGAA	14940
15	GTACAACGAC	TGAAGATCAA	ACGGGTGATA	CATTGGAAAC	AAAAGGTGTA	CACTCAGCAG	15000
	AATAATTTA	GGACGATATT	GACCGATTGT	TAGAAAGTTT	TAAAGGTATC	ATTGAACAAA	15060
	TTCCGCCGAT	GTACTCATCC	GTCAAAGTAA	ATGGTAAAAA	ATTATATGAA	TATGCGCGTA	15120
20	ATAATGAAAC	agttgaaaga	CCAAAGCGTA	AAGTLAATAT	TAAAGACATT	GGGCGTATAT	15180
	CTGAATTAGA	TTTTAAAGAA	AATGAGTGTC	TAAAATTTTA	ACGCGTCATC	TGTGGTAAAG	15240
	GTACATATAT	TAGAACGCTA	GCAACTGATA	TTGGTGTGAA	ATTAGGCTTT	CCGGCACATA	15300
25	TGTCGAAATT	AACACGAATC	GAGTCTGGTG	GATTTGTGTT	GAAAGATAGC	CTTACATTAG	15360
	AACAAATAAA	AGAACTTCAT	GAGCAGGATT	CATTGCAAAA	TAAATTGTTT	CCTTTAGAAT	15420
	ATGGATTAAA	GGGTTTGCCA	AGCATTAAAA	TTAAAGATTC	GCACATAAAA	AAACGTATTT	15480
30	TAAATGGGCA	GAAATTTAAT	AAAAATGAAT	TTGATAACAA	AATTAAAGAC	CAAATTGTAT	15540
	TTATTGATGA	TGATTCAGAA	AAAGTATTAG	CAATTTATAT	GGTACACCCT	ACAAAAGAAT	15600
	CAGAAATTAA	ACCTAAAAAA	GTCTTTAATT	AAAGGAGATA	GAATTTATGA	AAGTCATAGA	15660
35	AGTGACACAT	CCTATACAAT	CTAAACAGTA	TATTACAGAG	GATGTTGCAA	TGGCATTCGG	15720
	ATTITTCGAT	GGCATGCATA	AAGGTCATGA	CAAAGTCTTT	GATATATTAA	ACGAAATAGC	15780
40	TGAGGCACGC	AGTTTAAAAA	AAGCGGTGAT	GACATTTGAT	CCGCATCCGT	CTGTCGTGTT	15840
40	GAATCCTAAA	AGAAAACGAA	CAACGTATTT	AACGCCACTT	TCAGATAAAA	TCGAAAAAAT	15900
	TAGCCAACAT	GATATTGATT	ATTGTATAGT	GGTTAATTTT	TCATCTAGGT	TTGCTAATGT	15960
45	GAGCGTAGAA	GATTTTGTTG	AAAATTATAT	AATTAAAAAT	AATGTAAAAG	AAGTCATTGC	16020
	TGGTTTTGAT	TTTACTTTTG	GTAAATTTGG	AAAAGGTAAT	ATGACTGTAC	TTCAAGAATA	16080
	TGATGCGTTT	AATACGACAA	TTGTGAGTAA	ACAAGAAATT	GAAAATGAAA	AAATTTCTAC	16140
50	AACTTCTATT	CGTCAAGATT	TAATCAATGG	TGAGTTGCAA	AAAGCGAATG	ATGCTTTAGG	16200
	<i>ריי</i> ים איז איז איז איז איז איז איז איז איז איז	ጥርጥልጥጥል አ ልር	৮ ሮልርፕሮፕልርሞ	CCAACCTGAA	AAAAGGGGAA	CAACTATTCC	16260

	TGCTGTTAGT	ATTGAAATCG	GCACTGAAAA	TAAATTATAT	CGAGGGGTAG	CTAACATAGG	16380
_	TGTAAAGCCA	ACATTTCATG	ATCCTAACAA	AGCAGAAGTT	GTCATCGAAG	TGAATATCTT	16440
5	TGACTTTGAG	GATAATATTT	ATGGTGAACG	AGTGACCGTG	AATTGGCATC	ATTTCTTACG	16500
	TCCTGAGATT	AAATTTGATG	GTATCGACCC	ATTAGTTAAA	CAAATGAACG	ATGATAAATC	16560
10	GCGTGCTAAA	TATTTATTAG	CAGTTGATTT	TGGTGATGAA	GTAGCTTATA	ATATCTAGAG	16620
	TTGCGTATAG	tTATATAAAC	AATCTATACC	ACACCTTTTT	CTTAGTAGGT	CGAATCTCCA	16680
	ACGCCTAACT	CGGATTAAGG	AGTATTCAAA	CATTTTAAGG	AGGAAATTGA	TTATGGCAAT	16740
15	TTCACAAGAA	CGTAAAAACG	AAATCATTAA	AGAATACCGT	GTACACGAAA	CTGATACTGG	16800
	TTCACCAGAA	GTACAAATCG	CTGTACTTAC	TGCAGAAATC	AACGCaGTAA	ACGAACACTT	16860
	ACGTACACAC	AAAAAAGACC	ACCATTCACG	TCGTGGATTA	TTAAAAATGG	TAGGTCGTCG	16920
20	TAGCATTTaT	TAAACTACTT	ACGTAGTAAA	GATATTCAAC	GTTACCGTGA	ATTAATTAAA	16980
	TCACTTGGTA	TCCGTCGTTA	ATCTTAATAT	AACGTCTTTG	AGGTTGGGGC	ATATTTATGT	17040
	TCCAACCTTA	ATTTATATTA	AAAAAGCTTT	TTACAAATAT	TAACATTTAT	TATATGTTAA	17100
25	GCTAATATTG	AGTGAATAAT	AAGGTTACAA	TGAGATAAAG	ATGATATAAG	TACACCTAGA	17160
	GTAATAATCA	AGATATTAAA	AATAAAGTAT	GTTTTTTTAA	AAAATATAAC	TTATATTTAT	17220
	ACTGATAAGG	GTGGGACGAT	AAGTCTATTT	TGTAAATAAT	AGATGGATAT	CCCGCTCTCT	17280
30	TTTTTTCCAA	TTCAATATTT	TATAACTAAT	ATTAAAATAC	GATAATAAAT	GATATGATAT	17340
	AACTATTAGA	TTCAAGAGAG	GAGATTTATA	ATGTCTCAAG	AAAAGAAAGT	TTTTAAAACT	17400
35	GAATGGGCAG	GAAGATCTTT	AACGATTGAA	ACAGGGCAAT	TAGCTAAACA	AGCAAATGGC	17460
33	GCTGTATTGG	TTCGTTATGG	AGATACAGTC	GTGTTATCGA	CGGCAACTGC	ATCAAAAGAA	17520
	CCTCGTGATG	GAGATTTCTT	CCCATTAACA	GTGAACTATG	AAGAAAAAT	GTACGCTGCG	17580
40	GGTAAAATTC	CTGGTGGATT	TAAAAAGAGA	GAAGGACGTC	CTGGTGACGA	TGCAACATTA	17640
	ACTGCGCGAT	TAATTGATAG	ACCAATTAGA	CCTTTATTCC	CTAAAGGATA	TAAGCATGAT	17700
	GTTCAAATTA	TGAACATGGT	ATTAAGTGCA	GATCCTGATT	GTTCACCACA	AATGGCTGCA	17760
45	ATGATTGGTT	CATCTATGGC	GCTTAGTGTG	TCGGATATTC	CATTCCAAGG	GCCAATCGCC	17820
	GGTGTAAATG	TGGGTTATAT	TGACGGTAAA	TATATCATTA	ACCCAACAGT	AGAAGAAAA	17880
	GAAGTTTCTC	GTTTAGACCT	TGAAGTAGCT	GGTCATAAAG	ATGCGGTAAA	CATGGTAGAG	17940
50	GCAGGCGCTA	GTGAGATTAC	TGAACAAGAA	ATGTTAGAGG	CGATTTTCTT	TGGTCATGAA	18000
	GAGATTCAAC	GTTTAGTTGA	TTTCCAACAA	CAAATCGTCG	ACCACATTCA	ACCTGTTAAA	18060

	GAAGAAAAG	GACTTAAAGA	AACAGTTTTA	ACATTTGATA	AACAACAACG	AGATGaAAAT	18180
	CTTGATAACT	TAAAAGAAGA	AATCGTCAAT	GAATTTATCG	ATGAAGAAGA	TCCAGAGAAT	18240
5	GAATTACTTA	TTAAAGAAGT	TTATGCAATT	TTAAATGAAT	TAGTGAAAGA	AGAAGTTCGA	18300
	CGTTTAATTG	CAGATGAAAA	AATTAGACCA	GACGGCCGTA	AACCTGATGA	AATCCGTCCA	18360
10	TTAGATTCTG	AAGTTGGTAT	TTTACCTAGA	ACGCATGGTT	CAGGTCTATT	TACACGTGGT	18420
,,,	CAGACTCAAG	CACTTTCAGT	TTTAACATTA	GGTGCTTTAG	GCGATTATCA	ATTAATTGAT	18480
	GGTTTAGGAC	CTGAAGAAGA	AAAAAGATTC	ATGCATCATT	ACAACTTCCC	GAATTTTTCA	18540
15	GTAGGTGAAA	CTGGTCCAGT	ACGTGCGCCA	GGTCGTCGTG	AAATTGGACA	TGGTGCGTTA	18600
	GGTGAAAGAG	CATTAAAATA	TATTATTCCT	GATACTGCTG	ATTTCCCATA	TACAATTCGT	18660
	ATTGTAAGTG	AGGTACTTGA	ATCAAATGGT	TCATCATCTC	AAGCGTCAAT	TTGTGGATCA	18720
20	ACATTAGCAT	TAATGGATGC	GGGCGTACCG	ATTAAAGCAC	CAGTTGCTGG	TATTGCTATG	18780
	GGCCTTGTTA	CACGTGAAGA	TAGCTATACG	ATTTTAACTG	ATATCCAAGG	TATGGAAGAT	18840
05	GCATTAGGTG	ATATGGACTT	TAAAGTCGCT	GGTACTAAAG	AAGGTATTAC	AGCAATCCAA	18900
25	ATGGATATTA	AAATTGACGG	TTTAACGCGT	GAAATTATCG	AAGAGGCTCT	AGAACAAGCG	18960
	AGACGTGGTC	GTTTAGAAAT	AATGAATCAT	ATGTTACAAA	CAATTGATCA	ACCACGTACT	19020
30	GAATTAAGTG	CTTACGCGCC	AAAAGTTGTA	ACTATGACAA	TTAAACCAGA	TAAGATTAGA	19080
	GATGTTATCG	GACCTGGTGG	TAAAAAAATT	AACGAAATTA	TTGATGAAAC	AGGTGTTAAA	19140
	TTAGATATTG	AACAAGATGG	TACTATCTTT	ATTGGTGCTG	TTGATCAAGC	TATGATAAAT	19200
35	CGTGCTCGTG	AAATCATTGA	GGAAATTACA	CGTGAAGCGG	AAGTAGGTCA	AACTTATCAA	19260
	GCCACTGTTA	AACGTATTGA	AAAATACGGT	GCGTTTGTAG	GCCTATTCCC	AGGTAAAGAT	19320
	ecciiectic	ACATTTCACA	AATTTCAAAA	AATAGAATTG	AAAAAGTGGA	AGATGTATTA	19380
40	AAAATCGGTG	ACACAATTGA	AGTTAAGATT	ACTGAAATTG	ATAAACAAGG	TCGAGTAAAT	19440
	GCTTCACATA	GAGCATTAGA	AGAATAATAT	TTAAAGTCAT	ATGACGACAA	TGTATCGTCA	19500
45	TGTGATTTTT	TTATGCCACT	TTTTACGAAG	TGACCCGTTT	TGAATTTGTT	GTATTGAACA	19560
	TTTTAAAACG	CTTTATTATT	TTGTGTGCAA	CTGTTAATTA	TCCTGTATGT	ATAGTGATTA	19620
	ATAGTGTACA	TCAAGTGTTT	TTTAACTTAT	AATGAATAGT	GAGTTTATAT	ATGGACGGGT	19680
50	AACAAATTTA	GGAGGTAAGA	TTTTGAGTTT	AATAAAGAAA	AAGAATAAAG	ATATTCGCAT	19740
	TATACCATTA	GGCGGTGTTG	GCGAAATTGC	TAAAAATATG	TATATCGTTG	AAGTAGACGA	19800
	TGAAATGTTT	ATGTTAGATG	CTGGACTTAT	GTTTCCAGAA	GACGAAATGC	TAGGTATTGA	19860

	CCTTACACAC	GGACATGAGC	ACGCGATTGG	TGCAGTGAGT	TATGTTTTAG	AACAATTAGA	19980
	TGCACCAGTA	TATGGATCTA	AATTGACAAT	AGCGTTAATT	AAAGAAAATA	TGAAAGCCCG	20040
5	TAATATTGAT	AAAAAAGTTC	GCTACTATAC	AGTTAATAAT	GATTCAATTA	TGAGATTCAA	20100
	AAACGTGAAT	ATTAGTTTCT	TTAATACGAC	ACACAGTATT	CCTGATAGTT	TAGGTGTTTG	20160
10	TATTCACACT	TCATATGGTG	CCATTGTGTA	TACAGGTGAA	TTTAAGTTTG	ACCAAAGTTT	20220
10	ACATGGACAT	TATGCACCAG	ATATTAAACG	TATGGCAGAG	ATTGGTGAAG	AAGGCGTATT	20280
	TGTCTTAATC	AGTGATTCTA	CTGAGGCAGA	GAAACCTGGA	TATAATACTC	CGGAAAATGT	20340
15	GATTGAACAT	CATATGTATG	ATGCTTTTGC	AAAAGTGCGA	GGTCGCTTGA	TAGTTTCATG	20400
	TTATGCTTCG	AACTTTATAC	GTATTCAGCA	AGTTTTAAAT	ATTGCTAGCA	AGCTAAATCG	20460
	TAAAGTGTCA	TTTTTAGGAA	GATCACTTGA	AAGTTCATTT	AATATTGCTC	GTAAAATGGG	20520
20	GTATTTCGAC	ATTCCTAAAG	ATTTGCTAAT	TCCTATAACA	GAAGTTGATA	ATTATCCTAA	20580
	AAATGAAGTG	ATAATTATAG	CTACTGGTAT	GCAAGGAGAA	CCTGTAGAAG	CCTTAAGTCA	20640
	AATGGCGCAA	CATAAGCATA	AAATTATGAA	TATCGAAGAA	GGCGATTCTG	TATTTTTAGC	20700
25	AATTACGGCT	TCTGCTAATA	TGGAAGTTAT	CATTGCGAAT	ACATTAAATG	AGCtTgTtAC	20760
	GnCTGGCGCA	CATATTATTC	CAAATAACAA	AAAGATTCAT	GCTTCAAGTC	ATGGTTGCAT	20820
30	GGAAGAATTA	AAAATGATGA	TTAATATTAT	GAAACCTGAA	TACTTTATTC	CTGTACAAGG	20880
	TGAATTTAAA	ATGCAGATAG	CACATGCGAA	GCTAGCAGCT	GAAGCAGGTG	TTGCACCAGA	20940
	AAAGATTTTC	CTTGTGGAAA	AAGGAGATGT	CATTAATTAC	AACGGTAAAG	ATATGATATT	21000
35	AAATGAAAAG	GTAAATTCAG	GAAATATTTT	AATAGATGGC	ATTGGTATTG	GGGATGTAGG	21060
	AAATATCGTG	TTGAGAGACC	GTCATCTTTT	AGCAGAAGAT	GGTATCTTTA	TTGCTGTTGT	21120
	AACGTTAGAT	ССТАААААТА	GACGTATAGC	TGCGGGACCT	GAAATTCAAT	CTCGTGGGTT	21180
40	TGTATATGTA	CGTGAAAGTG	AAGACTTATT	ACGTGAAGCA	GAAGAGAAAG	TACGTGAAAT	21240
	AGTAGAGGCT	GGTTTACAAG	AAAAACGCAT	AGAATGGTCT	GAAATTAAAC	AAAATATGCG	21300
45	TGATCAAATT	AGTAAACTAT	TATTCGAAAG	TACAAAACGT	CGTCCTATGA	TTATTCCAGT	21360
	AATTTCTGAA	ATTTAATCAA	AAAGTCATTA	ACATAAAAGA	GGTCAGAACA	AGTCACTGAA	21420
	ATATAATGGT	TGTCATGGAC	AATTTACTTA	TATTTTATGA	TAGTCAATTG	AAGGGGTAAC	21480
50	GATTAATCTG	TTATCTTAAG	TAAATTGATA	CATAGATGAT	ATTGTTCTAA	CCTCTTTCAT	21540
	CGTCTGTTTG	GACTACATAT	TCTAAACATC	AAATAGGAAA	TTATATATAA	TAACGTCGTT	21600
	TTAACTAAGG	CAACATAAGG	AGGTGCGTCA	ATTGGCACAA	GCAAAAAAGA	AATCGACAGC	21660

GATACGTTAT	GTCATAGCTA	TTTTAGTAGT	TGTATTAATG	GTGTTGGGTG	TTTTCCAATT	21780
AGGAATAATA	GGTCGTCTAA	TTGACAGCTT	CTTTAATTAT	TTATTTGGGT	ACAGTAGATA	21840
TTTAACATAT	ATTTTAGTAC	TCTTAGCAAC	TGGTTTTATT	ACATACTCTA	AACGTATTCC	21900
TAmaACTAGA	CGAACGGCTG	GTTCGATTGT	ATTGCAAATT	GCATTGCTAT	TTGTATCACA	21960
GTTAGTTTTT	CATTTTAATA	GTGGTATCAA	AGCTGAAAGA	GAACCTGTAC	TTTCTTATGT	22020
GTATCAGTCA	TACCAACACA	GTCATTTCCC	AAATTTTGGT	GGCGGTGTAT	TAGGCTTTTA	22080
TTTATTAGAG	TTAAGCGTAC	CTTTAATTTC	ATTATTTGGT	GTATGTATTA	TTACTATTTT	22140
ATTATTATGC	TCAAGTGTTA	TTTTATTAAC	AAACCATCAA	CATCGTGAAG	TTGCAAAAGT	22200
TGCACTGGAA	AATATAAAAG	CTTGGTTTGG	TTCATTTAAT	GAA		22243

(2) INFORMATION FOR SEQ ID NO: 165:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5510 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 165:

TTATTAATnA	TTAATATTT	TATTTTTAAA	AATAAAGCGA	GGAGCTATCA	ATGGAACAAA	60
TTACTTCTGC	ACAAAATAAT	AGAATTAAAC	AAGCGAACAA	GCTAAAAmAG	AAACGTGAGA	120
GGGATAAAAC	TGGATTAGCT	TTAATTGAAG	GTGTGCATTT	AATTGAAGAA	GCTTATCAAA	180
GTGGAATTGT	AATTACACAA	TTATTTGCAA	TTGAACCGGC	AAGATTAGAT	CAGCAAATTA	240
wCGCATACGC	GCAAGAAGTT	TTTgAAATAA	ACATGAAAGT	TGCTGAATCT	TTATCAGGTA	300
CAGTGACACC	ACAAGGGTTT	TTCGCAATCA	TTGAGAAGCC	GCATTATGAT	ATTTCTAAAG	360
CACAACAAGT	ATTGCTCATC	GATCGTGTTC	AAGATCCTGG	AAATTTAGGC	ACATTAATTA	420
GAACTGCGGA	TGCTGCTGGA	ATGGATGCTG	TAATAATGGA	GAAGGGTACG	ACAGATCCTT	480
ATCAAGATAA	AGTGTTGCGA	GCGAGTCAAG	GTAGTGTTTT	CCATTTGCCA	GTTATGACAC	540
AAGATCTCGA	TACGTTTATT	ACTCAATTTA	ATGGTCCTGT	TTATGGTACA	GCACTTGAAA	600
ACGCAGTGgC	ATACAAAGAA	GTTACTTCAA	GTGATTCTTT	TGCATTACTA	TTAGGTAATG	660
AGGGAGAAGG	TGTTAATCCT	GAATTATTAG	CACATACTAC	ACAAAATTTA	ATCATACCTA	720
TTTATGGTAA	AGCTGAAAGT	TTAAATGTAG	CGATTGCAGG	TAGTATTTTA	CTTTATCATT	780
TGAAAGGTTG	ACCGTGTTGA	AAGTTTTCCG	ATATAATTAT	AATTAATTGT	TTAACAGAAC	840

	ATAAATAATT	GTTTTAGGGA	GAATAATCGT	GACTGCAAGT	TATTCCAATT	ATTTAAAGTC	960
	TTTTCACCTT	TTTGGTTACT	TAAAGAGATT	TAAGTCGGAA	AGACAATCCG	TTATCAATAT	1020
5	TAAACAAGTG	TATGCTTAGG	CATAAATTTG	GGTGGTACCA	CGGAAATGAC	TTTCGTCCCT	1080
	TATTTTTTAA	GAGGATGAAA	GTCTTTTTT	AGTTAAACAA	CAAATATGAT	AAATAGAAAA	1140
	TGAATAGTTC	GAATAGGGAG	GTCAGTGACA	TATGTCTGAA	CAACAAACAA	TGTCAGAGTT	1200
10	· AAAACAACAA	GCGCTTGTAG	ATATTAATGA	AGCAAATGAT	GAACGTGCAC	TGCAAGAAGT	1260
	TAAAGTGAAA	TACTTAGGTA	AAAAAGGGTC	AGTTAGCGGA	CTAATGAAAT	TGATGAAGGA	1320
15	TTTGCCGAAT	GAAGATAAAC	CTGCGTTTGG	TCAAAAAGTG	AATGAATTGC	GTCAAACAAT	1380
	TCAAAATGAA	TTAGATGAAA	GACAACAGAT	GTTAGTTAAA	GAAAAATTAA	ATAAGCCAAT	1440
	TGGCTGAAGA	AACAATTGAT	GTATCATTAC	CAGGTCGTCA	TATTGAAATC	GGTTCAAAGC	1500
20	ATCCATTAAC	ACGTACAATA	GAAGAAATTG	AAGACTTATT	CTTAGGTTTA	GGTTATGAAA	1560
	TTGTGAATGG	ATATGAAGTT	GAACAAGATC	ATTATAACTT	CGAAATGCTG	AATTTACCTA	1620
	AATCACACCC	TGCACGTGAT	ATGCAAGATA	GTTTCTATAT	TACGGATGAA	ATTTTATTAC	1680
25	GTACGCATAC	ATCACCAGTG	CAGGCACGTa	CGATGGAATC	ACGTCATGGT	CAAGGTCCAG	1740
	TTAAAATTAT	TTGCCCTGGT	AAAGTGTATC	GTCGTGACTC	TGATGATGCG	ACACATAGTC	1800
20	ATCAATTTAC	ACAAATCGAA	GGATTAGTTG	TTGATAAAAA	CGTTAAAATG	AGTGATTTGA	1860
30	AAGGTACTTT	AGAATTGTTA	GCTAAGAAAT	TATTTGGTGC	TGATCGTGAA	ATTCGTTTAC	1920
	GTCCAAGTTA	CTTCCCATTC	ACTGAACCTT	CTGTAGAAGT	TGATGTGTCA	TGTTTTAAAT	1980
35	GTAAAGGAAA	AGGTTGTAAT	GTGTGTAAAC	ACACAGGATG	GATTGAAATT	TTAGGTGCTG	2040
	GAATGGTACA	TCCTAATGTA	TTAGAAATGG	CTGGTTTTGA	TTCTTCAGAG	TACTCTGGAT	2100
	TTGCATTTGG	TATGGGACCA	GACCGTATTG	CAATGTTGAA	ATATGGTATA	GAAGATATTC	2160
40	GTCATTTCTA	TACTAATGAT	GTGAGATTTT	TAGATCAATT	TAAAGCGGTA	GAAGATAGAG	2220
	GTGACATGTA	ATGTTGATAT	CAAATGAATG	GTTGAAAGAA	TATGTAACAA	TCGATGATTC	2280
	TGTAAGTAAT	TTGGCAGAAC	GTATTACGCG	CACAGGTATT	GAAGTGGATG	ATTTAATTGA	2340
45	CTACACAAAA	GATATCAAAA	ATTTAGTTGT	CGGCTTCGTT	AAGTCAAAAG	AGAAACATCC	2400
	TGATGCTGAT	AAATTAAATG	TTTGCCAAGT	TGATATCGGA	GAAGACGAAC	CTGTACAAAT	2460
50	CGTTTGTGGT	GCACCGAACG	TTGaTGCAGG	ACAATATGTC	ATTGTTGCTA	AAGTAGGTGG	2520
50	CAGATTGCCT	GGTGGTATTA	AAATTAAGCG	TGCCAAATTA	CGCGGTGAAC	GTTCAGAAGG	2580
	TATGATTTGT	TCGTTACAAG	AAATTGGTAT	TTCAAGTAAC	TATATACCGA	AAAGTTTTGA	2640

	ATATTTAGAT	GATCAAGTAA	TGGAATTTGA	TTTAACGCCG	AATCGTGCAG	ATGCTTTAAG	2760
	TATGATAGGT	ACTGCTTATG	AAGTTGCAGC	ATTATATAAT	ACAAAAATGA	CTAAGCCAGA	2820
5	GACAACATCA	AATGAGCTTG	ATTTATCTGC	AAATGATGAA	CTGACTGTGA	CAATTGAAAA	2880
	TGAAGATAAA	GTACCATATT	ATAGTGCACG	TGTTGTTCAC	GACGTGACAA	TTGAACCCTC	2940
10	GCCAATTTGG	ATGCAAGCAC	GCTTAATAAA	AGCGGGTATA	CGTCCTATTA	ATAATGTTGT	3000
,,,	TGACATTTCA	AATTATGTGT	TATTAGAATA	CGGTCAACCA	TTGCACATGT	TTGATCAAGA	3060
	TGCGATTGGT	TCACAACAAA	TTGTTGTTCG	TCAAGCTAAT	GAAGGCGAAA	AAATGACAAC	3120
15	ATTAGATGAT	ACAGAACGTG	AATTATTAAC	GAGCGATATT	GTCATTACTA	ATGGACAAAC	3180
	TCCAATTGCA	TTAGCTGGTG	TTATGGGTGG	CGATTTTTCA	GAAGTTAAAG	AACAAACATC	3240
	AAATATAGTG	ATTGAAGGTG	CTATTTTTGA	TCCAGTTTCA	ATTCGTCATA	CATCAAGACG	3300
20	TTTAAATTTA	CGCAGTGAAT	CATCTAGTCG	TTTTGAAAAA	GGAATAGCTA	CTGAATTTGT	3360
	AGATGAAGCA	GTCGACCGTG	CATGTTATTT	ATTACAAACT	TATGCAAACG	GAAAAGTGCT	3420
	AAAAGATAGA	GTGTCTTCAG	GAGAACTTGG	TGCATTTATT	ACACCAATCG	ACATCACTGC	3480
25	TGATAAAATT	AATCGCACTA	TTGGATTTGA	TTTGTCACAA	AATGATATTG	TTACTATTTT	3540
	TAATCAACTA	GGGTTTGATA	CAGAAATAAA	TGATGATGTT	ATTACAGTGC	TAGTACCATC	3600
30	ACGTCGTAAA	GATATTACAA	TTAAAGAAGA	TTTAATTGAA	GAAGTTGCAC	GTATATATGG	3660
	ATACGACGAT	ATTCCATCAA	CGTTACCTGT	CTTCGATAAA	GTTACTAGTG	GTCAGCTAAC	3720
	TGATCGCCAA	TATAAAACTA	GAATGGTTAA	AGAAGTGTTA	GAAGGTGCTG	GATTAGACCa	3780
35	AGCTATTACG	TATTCGTTAG	TTTCTAAAGA	AGATGCTACT	GCaTTTTCGA	TGCAACAGCG	3840
	TCAAACAATT	GATTTATTGA	TGCCAATGAG	TGAAGCGCAT	GCGTCATTAC	GTCAAAGTTT	3900
	ATTACCACAT	TTAATCGAAG	CGGCATCATA	TAATGTGGCA	CGCAAAAATA	AAGATGTAAA	3960
40	ATTÄTTTGAA	ATCGGCAATG	TCTTCTTTGC	TAATGGAGAA	GGTGAACTAC	CAGATCAAGT	4020
	TGAATATTTA	AGTGGTATTT	TAACTGGAGA	TTATGTAGTC	AATCAATGGC	AAGGTAAGAA	4080
	AGAAACGGTT	GATTTCTATT	TAGCAAAAGG	TGTCGTGGAT	CGAGTATCTG	AAAAGTTAAA	4140
15	TCTTGAATTT	AGTTATCGCC	GTGCTGATAT	TGaTGGATTA	CATCCAGGTC	GTACTGCTGA	4200
	AATCTTATTA	GAGAATAAAG	TTGTTGGTTT	TATTGGTGAA	TTACATCCAA	TATTAGCAGC	4260
50	TGATAATGAT	TTAAAACGTA	CGTATGTTTT	TGAGTTGAAT	TTTGATGCAT	TAATGGCTGT	4320
	GTCGGTAGGT	TACATTAATT	ACCAGCCAAT	TCCGAGATTC	CCAGGCATGT	CTCGTGACAT	4380
	TGCATTAGAA	GTAGATCAAA	ATATTCCAGC	AGCTGATTTA	TTATCAACGA	TTCATGCACA	4440

	AAAAGGTAAA	AAATCAATTG	CAATACGTTT	AAATTATTTA	GACACAGAAG	AAACATTGAC	4560
	AGATGAGCGC	GTTTCAAAAG	TACAAGCGGA	AATTGAAGCA	GCATTAATTG	AACAAGGTGC	4620
5	TGTTATTAGA	TAATGATTTA	AACCCCATGT	ATAAGGATAT	CTGAAGTAGA	TTGATATCCC	4680
	TAACATGGGG	TTTTATTTTT	GGGTTCACCA	ATTTGGTTCC	AATGCATTTA	AAAAGTCAAA	4740
	GAGGAACAGC	GGAATACAGA	TGATGCTTCG	CACAACTGCA	TAAAAGCCTC	TAATGATTAA	4800
10	AAATCAAAGA	GGCTTTAAAA	TTTTTTGGGC	TTTTTCACGA	TTTTTAAAAT	GCTTTTTTGA	4860
	AATGGTATCT	AAACGTGAAA	GACCGTATTT	TTTTATAATT	TTGGCGGCGA	TTACATCGAC	4920
15	TTTAGCACCG	GCACCTTTAG	GAATCGTCAT	ATTAATATTT	TTTGATATTT	GATCCATATA	4980
	TGTAACAAAT	GCGTATCGAG	AAATTATGCT	TGCCACTGCA	ATGGCTAATG	ACTTCGATTC	5040
	TCCTTTTGTT	TCAAATTTTG	TTTTCTTTGG	AAGTGGTATA	TCTGATAATG	CGTAATGGCT	5100
20	ATACACTTCG	CGTTTTGCGA	ACTGATCAAT	GACGATATAG	TCTAATTGAG	ACGAATCAAT	5160
	TTTTTCAAGT	ACATTTTTGA	TGGCTTCATT	ATGAAGGGCA	GCTTTCATTT	TTACTTGAGT	5220
	CCAGCCTTTT	GCTTGCTGAA	TATTATATTT	TTCATTGTGT	AGTGTTAATA	ATGAATGTGG	5280
25	TATGAAAGTA	ACCAATTGCT	CAGCAAGTTC	TACAATTTTG	GTATCGGTTA	ATTTTTTGA	5340
	ATCATCTACA	CCCAAAGTTT	TTAAAATAGG	GACATGCTCT	TTGGTAACGA	AAGCAGCACA	5400
30	CACAGTCAAC	GGACCAAAGT	AATCGCCACT	TCCAGCCTCA	TCACTACCAA	TACAGTTAAA	5460
30	TTGTTCATAC	ATTAaAGTTg	TcCAgAAAAG	AATTAGCCAT	ATTTnCCTTT		5510
	(2) INFORMA	ATION FOR SE	Q ID NO: 16	56:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 9623 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 166:

GNTTATACTT ATAAATTTTA CGGGGGTAAT ATAATACTTA TTTACCTGTA ATATATGATA 60 ATTCTTCAGC GGCAGCTGCG TTGATAGTTC TATGAGAAAT GATACCTAAT CCTTTAACAT 120 TGGATTCTGA AATAACGATA GAACCATCAC TGTTAACTTT TTCAACAAAT GCTACATGAC 180 CGTAATGTTG ATCTGCACCA AATTGTCCAG CCTCAAATAC AACAGCAGCA TGACGTTTTG 240 GTGTATGACT TACTTGATAA TCACGGTATT GAGCTCGATT ATTCCAATTA TGTGCATCAC 300 CTAAATCACC TGAGATAGAT GTACCAAATT GTTTCATACG GTTATATACG TACCAAGTAC 360

	ATGAATCATC	ATAATCCTTG	ATAGAACGTT	CATATTTATC	TAAATCTGGC	ATGCGTTCAT	480
	CGTCAAACTG	AGTTAATTGA	TAGTGTTTAA	TAATACTGTT	TAATTTCTTA	GCATAGTTTG	540
5	GATCTGTAGC	ATATGTTTTA	GATAAGTGTG	ATGTTGCATC	TTTATAAGAA	TCGGCTTCCG	600
	ATTTCCATGT	TGGTTTATAA	ATTGTTCGAT	TGCCATCAAT	ACCATTTTTA	ATAAGGTCAG	660
10	AGTAATCTTT	TAGTGATTCT	TTCGTGCTTG	GATATTTTCG	GAATCCAGCA	TTAATACTAT	720
70	ACAATTGATT	ACCATCAGCT	TCTAATGTGT	TAAAAGGAAC	AGAATTCCCT	TCaAAAGCAC	780
	CTTTGATACC	GAATAAATTA	TGGTTTGGTG	ACWTAGCTAA	AGCACTACGA	CCTGAGTCAG	840
15	ATTCTAAGAT	TGCTTGGGCA	ATCATGACAG	ACGCATAAAT	ATCGTTATCT	TGACCAATGC	900
	GATGTGCATC	TTTAGCAATT	GATTTGACAA	ATTGACGTGT	ATCTTTTGAG	TCAACAACGT	960
	TAAATTGTCC	GCTATCATCA	TTGTTAGATA	TACTAGGATC	TGTTTCGAAT	AATGATGTTG	1020
20	CACGTGTATC	CTTTTGATTA	ACATCGTTAT	TGAATGATTG	AGCAGGTTTA	GATTTATGTT	1080
	TCAATTCATC	TTGTGTTGGT	AACTGTGGAT	TCTTTGTATT	AGATTTTTCA	TTTTTGTCTT	1140
	TTTTAGATTG	AGATGCATAA	TCTTTTTGTG	TTTTCTTTGC	ATCTTCACTG	TATTGATCCA	1200
25	AAATAGAGTC	TAAAGCCGAA	TCTGACATTG	ATTGATTATC	TTTCGATGAA	GATTTTTGAT	1260
	TTGCTTTATC	GTCACTTGCT	GGTTGACTAT	TTGATTGATT	AGGTTGTGTT	GGCTTTGGCG	1320
30	AATTTGGTTG	CTTATTAGAT	GTACTTGGTT	TTGTATTGTT	TGATTTAGGT	GCTTTTTGAT	1380
	TGTCTGCTTT	ATCTTGTTTA	GATGATTGCG	TATCAGTGTC	ATTTTTGATG	CTATTGTCAC	1440
	TGTTTTTATT	CGAATCATTT	GTTGACTTTT	CGCCATTACG	AGGTTGTTCG	TAATCAGAAA	1500
35	TATCCGAATT	TAAATTGAAT	AAGTTTTGGA	TTAAAGTTGT	TAATGAGTAA	TTATCATCGT	1560
	ATTTATTTTT	GGTTAGCAAT	TGGTTTATAT	TGGTTTGTGG	TAAATTCTTA	TAAATAAAAT	1620
	CAATGATATT	GTTAGAGTCT	GAAGTGCTGT	CGTCTATAGT	TTTAAATTTT	TTGTCGTTAT	1680
40	TGTĊTTGGTT	ACTTGTATTA	TTTTTGTCTG	CTTTATCAAT	ATCTTTACTT	GTAGTATCCT	1740
	TAGAAGTTTC	ATCGTCATTA	GATTTTTTTG	AATCATGAGA	TGTTGTCTTA	GCTGTAGTAT	1800
	CTTTTTGAGG	TGTATCAGCA	TAAGCGgTAG	GTGAAaCTAA	AGTAGGTAAT	ACGAGCGTAG	1860
45	TTGATAGCAA	ATAAATTAAA	ATTTTATTTT	TAGGCATATT	TCGTATTCTC	CCTTGAAAAA	1920
	TATAATAATT	AAGTGTGATA	ATAAACTATG	ATTTGTTATA	ATTTATCGTA	TGCTGAAAAT	1980
50	AGTTGATAGG	TATCAATCGA	CTAAATATCT	TCCAGTAAAT	TGATTATACT	AATTCACAAC	2040
	GCAAAAATAA	ATTAATTTAC	AAAAAATATA	TAAAAAATAT	GAATAATTCC	TACATAGGAG	2100
	TGTGACAATG	AAGAACGCAT	TTAAATTATT	TAAAATGGAT	CTGAAGAAAG	TAGCTAAGAC	2160

	TAACTTATGG	GCAATGTGGG	ATCCATATGG	CAACACGGGA	CACATCAAGG	TCGCAGTCGT	2280
	TAATGAAGAT	AAAGGCGACA	CAATCAGAGG	GAAAAAAGTT	AATGTCGGTA	ATACGATGGT	2340
5	TAATACACTC	AAGAAAAATA	AAAGTTTTGA	TTGGCAGTTT	GTAAGTAGAG	AGAAAGCTGA	2400
	TCATGAGATA	AAAATGGGTA	AATATTTTGC	AGGTATTTAC	ATCCCATCTA	AGTTTACACA	2460
10	TGAAATTACA	GGGACACTAC	GTAAGCAGCC	TCAAAAAGCA	GATGTAGAAT	TTAAGGTGAA	2520
70	TCAGAAGATT	AACGCTGTTG	CGTCTAAGCT	AACAGATACT	GGTTCGTCAG	TTGTCGTTGA	2580
	AAAAGCGAAT	GAACAATTTA	ATAAAACAGT	AACTCGAGCA	TTATTAGAAG	AAGCTAACAA	2640
15	AGCAGGTTTA	ACTATTGAAG	AAAATGTGCC	GACAATTAAC	AAGATAAAAA	ATGCGGTATA	2700
	TTCAGCAGAT	AAAGCTTTAC	CTAAGATTAA	TGACTTTGCG	AATAAAATTG	TATATTTGAA	2760
	TAACCACCAA	GCGGATTTAG	ATAAATATGC	CAATGATTTT	AGAAAACTAG	GAAATTATAA	2820
20	AGGTGATATT	TTAGATGCTC	AGAAAAAATT	AAACGAaGTC	AATGGTGCTA	TTCCGCAACT	2880
	TAATGAAAAG	GCTAAGTTGA	TATTAGCTTT	AAATAATTAT	ATGCCGAAAA	TTGAAAAAGC	2940
	GTTAAATTTT	GCAGCTGATG	ACGTGCCAGC	GCAGTTCCCT	AAAATTAATC	AAGGACTTAA	3000
25	CATTGCGAGT	CAAGGTATTG	ATCAAGCTAA	TGGACAGTTA	AATGATGCCA	AAGGCTTCGT	3060
	CACACAAGTT	AGAAGTAGAG	TCGGTGATTA	TCAAGATGCA	ATTCGACGCG	CGCAAGATTT	3120
30	AAATCGAAGA	AACCAGCAAC	AGATTCCTCA	AAATAGCGCG	GCGAACAACG	AAACATCAAA	3180
••	TAGTGCACCT	GCAGCTGGTA	ATGGTGTAGC	ATCAACGCCA	CCAAGTGCAC	CAAGTGGCGA	3240
	TACTGCACCA	AATAATAATG	TTACGCAAAA	TACCGCACCA	AATAGTAATA	ATGCGCCTGT	3300
35	ATCGACTACA	CCACAAAGTA	CAAGCGGGAA	AAAAGATGGT	CAAAGTTTTG	TAGATATAAC	3360
	AACAACACAA	GTCAGCACAG	CTAACGAGAA	CACACAAAAC	ATTACAGATA	AAGATGTTAA	3420
	ATCAATGGAA	GCGGCATTAA	CGGGCTCTTT	ATTATCATTA	TCAAATAATT	TAGATACCCA	3480
40	AGCGÂAAGCC	GCACAAAAAG	ATAGTCAGGC	ATTACGTAAT	ATTTCGTATG	GGATTTTAGC	3540
	ATCGGACAAG	CCTTCTGATT	TTAGAGAGTC	TTTAGATAAT	GTTAAGTCCG	GTTTAGAATA	3600
	CACAACGCAA	TATAATCAAC	AATTTATCGA	TACATTAAAA	GAGATTGAGA	AGAATGAAAA	3660
45	TGTTGATTTA	TCAAAAGAAA	TTGATAAGGT	AAAAGCAGCT	AATAATCGAA	TTAATGAATC	3720
	ATTAAGGTTA	GTTAATCAAT	TAAGCAATGC	ATTAAAGAAT	GGTAGTTCAG	GAACTGCTGA	3780
50	AGCTACTAAA	TTACTAGATC	AACTTTCAAA	ACTAGATTCA	TCATTATCAT	CATTTAGAGA	3840
	TTATGTTAAA	AAAGATCTTA	ACAGCTCTTT	AGTATCAATA	TCACAACGTA	TTATGGATGA	3900
	ATTGAACAAA	GGGCAAACTG	CATTATCCAA	TGTTCAGTCT	AAATTAAATA	CAATTGATCA	3960

	AACAGTATTA	CCAAGTATTG	AACAACAATA	CATTAGTGCT	GTTAAAAATG	CTCAAGCAAA	4080
	CTTCTCGAAA	GTGAAAAGTG	ATGTAGCTAA	AGCTGCTAAC	TTTGTGCGCA	ATGACTTACC	4140
5	ACAGTTAGAA	CAGCGATTAA	CTAATGCGAC	AGCAAGTGTG	AATAAAAATT	TACCAACGTT	4200
	ATTAAATGGT	TATGATCAAG	CGGTAGGATT	ACTAAATAAA	AATCAGCCAC	AAGCGAAAAA	4260
10	GGCTTTATCA	GATTTAGCTG	ATTTTTCTCA	AAATAAATTG	CCTGATGTTG	AAAAAGATTT	4320
,,	GAAAAAAGCG	AATAAAATTT	TCAAGAAATT	AGACAAAGAT	GATGCAGTCG	ACAAATTAAT	4380
	CGACACACTT	AAGAATGATT	TGAAAAAGCA	AGCGGGTATT	ATTGCAAATC	CTATTAATAA	4440
15	GAAGACTGTT	GATGTTTTCC	CAGTTAAGGA	TTATGGTTCA	GGTATGACAC	CATTCTATAC	4500
	TGCACTGTCA	GTATGGGTAG	GTGCACTCTT	GATGGTAAGT	TTATTAACGG	TTGATAATAA	4560
	ACATAAGAGT	CTAGAGTCAG	TCTTAACGAC	AAGACAAGTG	TTCTTAGGTA	AGGCAGGATT	4620
20	CTTTATAATG	CTTGGTATGT	TGCAAGCACT	CATTGTATCG	GTTGGAGATT	TGTTAATCCT	4680
	AAAAGCAGGA	GTTGAGTCAC	CTGTATTATT	TGTACTTATA	ACGATTTTCT	GTTCGATTAT	4740
	TTTCAACTCA	ATCGTATATA	CGTGCGTATC	ATTACTTGGT	AACCCAGGTA	AAGCCATTGC	4800
25	AATCGTATTG	CTTGTATTAC	AAATTGCAGG	TGGTGGGGGA	ACATTCCCAA	TTCAAACTAC	4860
	GCCACAATTT	TTCCAAAACA	TTTCGCCATA	CTTACCATTT	ACGTATGCAA	TTGATTCATT	4920
30	ACGTGAAACA	GTAGGCGGTA	TTGTTCCGGA	AATCCTAATT	ACAAAATTAA	TTATATTAAC	4980
	GTTATTTGGT	ATAGGATTCT	TCGTTGTAGG	TTTAATTTTA	AAACCTGTAA	CAGATCCATT	5040
	GATGAAGCGC	GTATCTGAAA	AAGTTGACCA	AAGTAACGTT	ACAGAATAAA	AATTAAATCC	5100
35	ACACATTAGG	GTTATAGCTC	CTTAATGTGT	GGATTTTTAT	GTTTTTAGAC	AGAAGAGATA	5160
	GTAATTTCTG	TCTTTTATGG	GACGGTTGTT	ATCATTGCTA	TTATCCAGGA	TGACTTACTA	5220
	TAGGACTAAT	ATTACCGACA	AAGTGAATAT	CCTCGTCTTC	CGTAGTTAAA	ATAAAGCTAG	5280
40	AACCTTTTTG	GATGTCATAG	TGCTTATCGT	TTACTGTTAA	AGTACCAGTA	CCATCGATAA	5340
	TTGTAACTAA	GCAATAAGCA	TGTGGTTTAT	TGAATTTTAA	ATCTCCATGA	ATATCCCATT	5400
45	TATATACTGC	AAAATATTGA	TTATCTACAA	ATTGAGTTAC	AGTGTGTGTG	TCGATGTGAG	5460
40	TTGTTATAGG	AGTAGTATTT	GGTTCATGAT	TGCCTAATTC	AATCACATCT	TTACTTTGCT	5520
	CTAAGTGCAA	ATCACGCAAT	TGACCATTTT	GATCTCGTCT	ATCATAGTCA	TAAATACGGT	5580
50	ATGTCGTATC	GGAGGATTGT	TGTGTCTCTA	AAATTAAAAT	ACCCGAACCA	ATGGCATGGA	5640
	CAGTGCCAGC	AGGAACATAA	TAAAAGTCAC	CGGGCTTAAC	AGGTATACGT	TTGAAAAGAC	5700
	TGTCAAATTC	ATGATTATCA	ATCATGTCTA	TTAACGTCTG	TTTATTATGT	GCATGTACGC	5760

	GTTCGCCTTC	GTGTTTTAAA	GCGTAGTCAT	CATCTGGGTG	AACTTGAACA	GATAATTTAT	5880
	CATTGGCATC	TAATACTTTA	GTTAGCAGAG	GGAAACTATC	TCGTGAATCA	TTATCGAATA	5940
5	ATTCACGATG	TTGTGACCAA	AGTTGATCTA	GGGTCATATC	CTTGTATGGA	CCATTGATAA	6000
	TTGTATTAGG	ACCATTTGGA	TGTGCAGAAA	TTGCCCAGCA	TTCACCAGTT	GTTTCATTAG	6060
10	GGATATCATA	GTTAAATGCT	TTTAATGCAT	GACCGCCCCA	AATTCTGTCT	TTAAAAACGG	6120
70	GTTGTAAAAA	TAATGCCATA	GTTAAAACTC	CTCTATATTT	TCATTAATAA	GTTATAAATT	6180
	TCTGTAGTAC	TGTTTGCATT	AATTAGTGAT	TGGCGTGTCT	CATCATTCAT	TAACGCTTTA	6240
15	GATAAGCGCT	GAAGTATTTT	TAAATGTGTA	TCCTGACTGT	TGTTTGGTAC	GGCAATTAAG	6300
	AATATCAATT	GAGGTAGACT	ACCATCTAGA	CTGTCCCATT	TAACACCATG	ATTATTTTC	6360
	ATAACAGCTA	CAATCGGTTG	TTTTACAACA	TCAGACTTTG	CATGTGGAAT	GGCCACGTTC	6420
20	ATGCCAATAG	CTGTCGTAGm	tCcATTTCAC	GTTCTAGTAT	TGCATTTTTT	AAATGCGATG	6480
	TGTGCTCTAC	ATAACGGCAA	ATTTTAAGTT	TATGAATCAA	CATATCAATT	GCTTCGTTTC	6540
	GAGACATGTC	GTGATCAGTA	ATTATCATAG	TTTGTTGATC	AAAAACATGA	GAAGGTTTAT	6600
25	TGAGATGTGA	ATGTTTCGCG	GTGTTATCTA	CATTGTCAAC	CTCTGTATCA	TGTTGTGTAA	6660
	TATCTGTATC	ATGAAGTTGC	GTGTGTTGCG	CTGGTGCATC	TACTGCTATA	ACTGGTGTAT	6720
30	TGCGTTTTAA	TAATAGTACA	GTAGTCATTG	TGACAAGACT	ACCTACTATC	ACTGCAAAGA	6780
	TAAACCATAA	TACATGATCA	ATACCACCTA	ATACAGCCAC	GATTGGACCT	CCATGTGCGA	6840
	CTCTATCGCC	GACACCACCA	ATGGCTGCAA	TGACTGATGC	AATCATTGCA	CCAATGATGT	6900
35	TTGCAGGTAT	AATGCGCAAT	GGATCTTGGG	CTGCGAAAGG	AATAGCACCT	TCAGTAATAC	6960
	CAAATAGTCC	CATAGTGAAG	GAAGCCTTAC	CCATTTCTCT	TTCGGAATGA	TTGAATTTAT	7020
	ACTITIGAAC	AAACGTTGCT	AAACCTAAAC	CGATTGGTGG	TGTACATACA	GCAACTGCGA	7080
40	CCATACCCAT	AACGGCGTAA	TTACCTTCAG	CAATAAGTGC	TGAGCCAAAT	AAAAATGCTA	7140
	CCTTGTTTAC	TGGACCGCCC	ATATCGAAGG	CAATCATCGC	ACCTATAATC	ATCGCAAGTA	7200
	TAATAATATT	AGCACCTTGC	ATACTTTTTA	ACCAGGTTGT	TAATGCCTCA	AAAATATTAG	7260
45	AAATTGGTGC	ACCGATTAAA	AATATAAATA	TCAATCCTAC	AACGACCGAT	GAAATAATGG	7320
	GAATAATAAT	GATAGGCATA	ATTGGTGCCA	TTGCTTTTGG	AACTTTAATA	TCTTTAATCC	7380
50	ACTTTGCGAT	ATAACCTGCT	AAGAAACCAG	CAACAATACC	ACCTAAAAAT	CCTGCGCCTG	7440
	CATCACTGCC	ATAAAAACTA	CCGTCAGCAG	CGATAGCGCC	GCCAATCATA	CCAGGAACAA	7500
	GACCGGGGTT	GTCAGCGATA	CTAACAGCGA	TATATCCAGC	TAGTATTGGA	ACCATAAATT	7560

	ATCCTTTTGA	TGTCGTTtCA	CCGCCTAGAG	TCAGCGCGAT	GGCGATAAGG	AGTCCACCAA	7680
_	CTACGATAAA	AGGAACCATA	AACGATACAC	CGTTCATTAA	ATGTTGATAC	ACCATTTGAA	7740
5	TACCATTTTT	AGACTTACCG	CGATCTTTCG	AATGATAATT	TGTTTCAGAT	TGATAAATAG	7800
	GCGCATCTTG	ATTAATGATA	CGTTGAATTA	GACCTCTCGG	ATTATGAATC	CCTTCGCGAA	7860
10	CATTTTCATT	AATCAACCGT	TTACCAACAA	ATCGGGACAG	ATCAACTTGT	TTATCAGCTG	7920
	CAATTATGAC	ACCGTCAGCT	TCTTCGATGT	CTTGCGTAGT	TAAAACATTT	TCAGCACCAA	7980
	CACCGCCCTG	TGTCTCTACT	TTAATATCCA	CACCCATTTC	TTTTGCTACC	TGCTCAAGCT	8040
15	TTTCTTGAGC	CATATATGTA	TGTGCAATGC	CATTTGGGCA	TGAGGTAATA	GCTACAATTT	8100
	TCATAAAATC	ATCTCCTTTT	CTATATTGTA	AGCGTATTCT	CGATACTAAA	AAAAAGAATA	8160
	ATTACCGTTA	CTAGTGGCAA	TTATTCTTGT	AAGTATTCAA	ATAACTGTTG	CTTTAAACTA	8220
20	TGATCATCTA	AACTACATAA	ATGGTTCACT	GAATCATCAT	CCAAGTTAGC	AATTAATTGC	8280
	ATCATTTGTT	TTGTAAAAGC	TTTGTCTTTA	TGCGAAATCG	CTAAGAAAA	GACAAGTTTG	8340
	ACATCGTGTT	GTCGCCAAGG	AAAAACATCT	TTTGTGCGAA	AAATAAGCAC	ATGTGATTGT	8400
25	AAAACTTTTT	CAGGATCTCC	ATGAGGAATC	GCCATAAAAT	TACCTATGTA	TGTAGAAGAT	8460
	GATTTCTCAC	GCTCTAAAGC	TGATTCGATA	TATCCTTCTA	CAATCGCATG	ATGTGCTTGT	8520
30	TTTTTTATAA	GAGCTTCTTC	AAAAATTTGC	ACAGTATGCC	GTGATTTTTG	TTCAGTATTT	8580
	ACGACAAGGA	AATTGACAGT	GTCCATATGA	TGATGTGCTT	GAACCGGATT	TTGCTTTTGC	8640
	TTCACAACGT	GTCTGATTTT	GTGACGATCA	TCTTCAGAAA	ATAATGGTGC	AACCTTGATA	8700
35	GTCGTCAGGT	GCTTAGGAAG	TATGTTTAGC	GTTTGTTTAG	GAATATCATG	GGTCGTTATT	8760
	AATAAATCTA	CATTGTCAAA	GTGATAGTGT	GTTATATTTT	CTAGTTTAAT	CGTATTTATC	8820
	ACTGÁCAACT	CTTCGGATAA	GTTATTTATT	TTAGTTTCTA	AAAAATTCGA	CACACCTAGA	8880
40	CCATAATAAC	AAGCAATGAC	TACATTTAAT	TGTGTTTTGG	TACGACGCTC	GATGGCAGCT	8940
	TGAAAATGAA	TTGTTAAAAA	TGCAATTTCA	TCTTCGCTCA	TCTCTATATC	AGTATCAATT	9000
	GCTAATTTAT	CAATCGCTTC	AAAAAGTGTG	TTAAACACAA	AGGGATAGAG	TTTTTTAATC	9060
45	TCTATAACTA	AAGGATTGTT	TAAATAAATG	TTTTGAGTGA	TACGTAAATA	TGCTTTACTA	9120
	AAATGATTAT	ATAAATTTTG	TTGTAAAATC	GAATCTTCAT	TGAAAGGTAC	ATGAATACGT	9180
50	TGCTGCATCA	ATTCGATTAA	GCGATCAATA	TAACTTTGTA	TAAATATACG	TTCTATGCCA	9240
	ATATCGAGTT	TATTAAAATG	ATAAGCAATA	AAGAATGAAA	ACATATTGAT	TACTTTTTCG	9300
	TTCAAGTCAT	AACCTAATCT	TTCGTTGATT	TGCTTAATGC	AAGATTGAGA	TATCAATTTT	9360

	AGATGAATTA AAAGCTGTTG TATTTGAATA TCAGTTGTTT CAATA	ACTATG TTGTTGAAGT 948
-	GTCTCTTGTA TAATATGCGA AATCATCCTT TGGTGTGAAT CAGGT	TAATTC aTTTAAAATT 954
5	AGGTCTTCAA CATGTACATG CCCTGATGAT AATTGATTTA AATGG	SATGAT GGCATTAGTG 960
	ATATCATTAT CTGTTCCATC GAC	962
10	(2) INFORMATION FOR SEQ ID NO: 167:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1021 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 167:	,
20	ACCGTGGAAA CACGTCTAGT CAATCAGAAA GCGATAAAAA TGTGA	CTAAA TCATCTCAAG 6
	AGGAAAATCA AGCAAAAGAA GAATTACAAA GCGTTTTAAA CAAAA	TTAAC AAACAATCAA 12
	GTAAGAATAA TTAAAAAATT TTGATATTGT CTATGTTTAT AGTTC	ACAAG CCATTCAACG 18
25	TATTGTAAAC TAAGGATAGT GTATTTTTTT AATAGTAATT TGTCA	GGAGG TGCCTATCTA 24
	TGGAAGAACA TTACTACGTA AGTATTGATA TTGGATCATC AAGCG	TAAAA ACAATAGTAG 30
30	GCGAGAAATT TCACAATGGT ATAAATGTGA TAGGTACAGG ACAAA	CCTAC ACGAGCGGTA 36
	TAAAAAATGG TTTAATTGAT GATTTTGATA TTGCGCGACA AGCAA	TCAAA GACACAATTA 42
	AAAAGGCATC AATCGCTTCG GGTGTTGATA TTAAAGAAGT TTTCC	TGAAA TTACCTATCA 48
35	TTGGAACGGA AGTTTATGAT GAATCAAATG AAATCGACTT TTATG	AGGAT ACAGAAATCA 54
	ACGGTTCACA TATCGAAAAA GTATTAGAAG GTATTAGAGA AAAAA	ATGAT GTGCAAGAAA 60
	CAGAAGTAAT TAATGTGTTC CCGATTCGTT TTATAGTCGA TAAAG	AAAAT GAGGTTTCAG 66
40	ACCCTAAAGA ATTAATTGCC AGACATTCAT TAAAGGTTGA AGCAG	GCGTA ATTGCTATTC 72
	AAAAATCGAT TTTAATTAAT ATGATTAAAT GCGTAGAAGC ATGTG	GTGTT GATGTATTAG 78
	ATGTTTACTC TGATGCATAT AACTATGGTT CAATCCTAAC AGCTA	CTGAA AAAGAGTTAG 84
45	GTGCATGTGT CATTGATATT GGTGAAGACG TTACGCAAGT TGCTT	TTTAT GAACGCGGTG 90
	AATTAGTAGA TGCTGATTCT ATCGAAATGG CAGGGCGTGA TATTA	CaGAC GATaTTGCAC 96
50	aAGGrTTaAA CACTTCTnAT GAAACTGCTG nAAAAAGTTA AACAC	CAATH TGGTCATGCA 102
50	T	102

(2) INFORMATION FOR SEQ ID NO: 168:

(A) LENGTH: 7963 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 168:

10	TAATCTATTA	TAAAAACTGT	CCATACCCTT	TGATTACCTT	CTCTTCAGGT	ACAGGCCACA	60
	CTTGAGGCCA	TAAGCCATAT	GCTTGCTGTG	AATAAAATTG	TGCCATTTGT	AACAATATAA	120
	TATATACAAA	TAAACACCCA	ATAATTGCTG	TCACTAATGG	ATATGATAAC	CAAACCATTA	180
15	ATAAAACTGC	AATAATTACT	AACCTAAAGA	TAATATTAAA	TGCGTCTCTC	CCTCTTATAA	240
•	AGCTTCTAAT	AAATAAGAAT	AAATACATCG	CATTAGAGTT	AAATTTACTA	CCCTTTGGAA	300
	CTGGTAAAAG	TATATCTAGA	TAACTTCTTC	TGACTGCAGA	TTCTTTCAAA	TGTTTTACAT	360
20	CGGTGAACAT	ATTAACAAAT	TTATAATAAT	TCATATGATG	TCGATGTTCG	ATTGCAATCA	420
	TTTTCTCCCA	AGGATACAAA	AAGCCTGGTT	TATATTTTTT	AACTAAAAAT	TCTATȚAACA	480
25	CAGGCAAAGC	AACCATCACA	AATGCGATGT	ACCATTTTGG	AGCTAATAGT	AAGTAATATG	540
20	TTAGAGCAAA	GGTGATGAAT	GATATTAAAT	TAACTTGCCA	TGTTTTAAGT	CCCGATTGAT	600
	ACCATTGCCA	TCTTAAGCGT	AAACCAACAT	ATGGAAAAAT	TAATGCACTG	ACTCCAAAAC	660
30	AAATATAAAA	TGCCACATTA	TGTTGATTAA	TATTGTAAAA	CAACGGGAAC	ATTACAATAA	720
	CAATAATGAG	TTGGATTAAT	ATGCGCGCAA	AGTAACTATA	TAAAATCGCA	TGACGCATAA	780
-	ATTGAGACAT	GTGTTTTTCA	AATGGTAATA	AAAAGATTTT	ATCCGCTTCT	TTTAACAGTG	840
35	GTCsCmTTGG	AAAAATAGrT	GTCAACGCAA	CAATCACTGC	TGCTATTaAT	GAAAAATTGa	900
	TATTCGTTGG	AATATGTTTT	AACCATTCAC	CATATCCArA	AATAAATGCA	CCCAGCAAAA	960
	TAAGTAAAAA	GACCATGAAA	TGACCATTAA	ATATAAACTT	ATTATAATAA	TTTTtCTCTT	1020
40	TACGAAGGC	ATGTAATCTT	TTATTAAATA	ATGTGGTÄGC	TTGGTTACGC	ATGTACATCT	1080
	CCACCTTGCG	TCACATGAAT	ATATATATCG	TCTAATGTTT	GATTATGTAA	GCCAGTTTGT	1140
4.5	TGTCTCAATG	CTTCTAAATC	TCCAAATGCA	ACGACTTCAC	CTTCGTCTAG	TATGaTAAAA	1200
45	CGATCACAGT	AACGTTCAGC	TGTTGCTAAA	ATATGTGTAC	TCATTAGAAC	GGTTCTACCT	1260
	TCGTTTTTCT	TTTCAACCAT	TAAATCTAAC	ATGGATTGAA	TTCCTAATGG	ATCTAGGCCA	1320
50	AGGAATGGTT	CGTCTATAAT	ATACAATTCG	GGATTAACGA	TAAACGCACA	AATAATCATG	1380
	ACTTTTTGTT	TCATCCCCTT	AGAAAAATGA	CTCGGAAAAA	CTTTCAACTC	ATTTTCTAAA	1440
	CGGAATGTCT	TTAATAATGG	CATTGCTCGA	TTCATCGTTT	CATCACGATC	AATATCATAT	1500

	TCCGGAATAT	AAGATAACTT	TCTTCTATAA	GCCTCTATGT	CATCATTAAT	GTTGATATCT	1620
	GAAATTGATA	GAGATCCTTC	CATAGGTGTA	AGCAATCCTA	GCATATGTTT	AATCGTTGTA	1680
5	CTCTTACCAG	CGCCATTAAG	GCCAATAAGT	CCAACAATTT	CGCCTTTGTT	TAATTCAAAA	1740
	TTTATATCTT	TAATTACAGG	GCGTTTTCCA	TATCCACCTG	TAAGCTGTTC	TACTTTAACT	1800
	GTCATAAGGC	ACCTCCATGA	CTTATATTGT	ACCAAAAATT	ATAAAATGCT	CATATTAAAT	1860
10	ACACATGTCC	TAATATCGAA	TTTTTAGCGA	CAATGTTATA	ATGAATGGTA	ATACTAGTTG	1920
	AAAAGGAGTG	TAGTCATCAT	GTCAGAAACA	ATTTTCGGCA	AAATTTTAAC	TGGAGAAATT	1980
15	CCTAGCTTTA	AAGTATATGA	AGACGATTAT	GTCTATGCCT	TTTTAGATAT	ATCACAAGTT	2040
	ACTAAAGGAC	ATACGTTATT	AATTCCTAAA	AAAGCTTCTG	CTAATATCTT	TGAAACTGAT	2100
	GAAGAAACAA	TGAAACATAT	CGGTGCAGCA	TTACCTAAAG	TAGCAAATGC	TATTAAGCGT	2160
20	GCATTTAATC	CTGATGGTTT	AAACATTATT	CAAAATAATG	GTGAGTTTGC	AGATCAATCT	2220
	GTATTTCATA	TTCATTTCCA	CTTAATTCCT	CGATACGAAA	ATGATATTGA	TGGATTTGGT	2280
	TATAAGTGGG	AAACACATGA	AGACATTTTA	GATAACGATG	CAAAACAACA	AATTGCTGAA	2340
25	CAAATTCAAG	CACAATTTTA	AATGTATGCT	TAATCTAAGC	TCGAACGGGT	ATAATATGAT	2400
	TAATATTATA	ACAATTGCGT	TTGAAGTGAT	AACATCAAGG	TTAGCAATTT	TAAACAAAAT	2460
	GAGTTATCAA	GATAACAGAT	GTTAAAAGTG	AGGAGAATAT	AAATGAAAGC	ATCACGCATT	2520
30	CTATTCGGTA	TCGGTGTTGG	CGTAGCAGCT	GGTTTTGTAG	TTGCACTTCA	AGGACGTGAC	2580
	GACAAAAGTG	TCAAGAACAA	CACGATCGAT	CGTACTGCCC	CTACTGGTTC	AAAATCAGAA	2640
35	CTACAACGTG	AATTTGAAAC	GATTAAACAA	AGTTTTAATG	ACATTTTAAA	CTATGGTGTT	2700
35	CAAATTAAAA	ACGAAAGTGC	GGAATTTGGT	AGTTCAATTG	GTGGTGAAAT	TAAGTCATTA	2760
	CTTÇGAAACT	TCAAATCTGA	CATTAATCCT	AATATTGAAC	GTTTACAGTC	ACACATCGAA	2820
40	AATTTACAAA	ATCGTGGCGA	GGATATTGGA	AACGAAATTT	CTAAGTAGCA	GGTTACGTTC	2880
	TCGATCACAA	CTATTTTTAT	TAGTAACAGC	ATATTTATTT	TTTAAAATTA	AATGCCAAAT	2940
	AAACGAGATG	ACATTAGAAA	TTAGATATTT	CTTGTCATCT	CTTTTTTAAA	ACTCAAATGA	3000
45	ACTTATGTTT	ACAAATTATA	GGAAGACATT	GTTTGTAGTG	ATTTTCGCTT	AAATCATATT	3060
	TATGAATTGA	TTGAAAACAT	TGCTTAGGAT	TCATTGTGTT	ATCCLTGCAC	TTTGATTACG	3120
	CTTTACTTAA	ATCATTATCG	ACAAACAACA	TACTTATATT	TTCATTGAGC	CGAACCTTAT	3180
50	ATACACATTA	CATATACCTT	ACTTGCACAA	ATTATTAATC	TGGTGTTTAT	TATAATTACA	3240
	ጥስጥርስ ርጥስ ጥጽ		TOTOTATE A CO	TO COMPONIE	3 3 3 C 3 D C C C C C C C C C C C C C C	TOTAL CAMPA TO CO	2200

	TTTCATAAGT	GATGCTTTAT	TAGCAAGAAT	ATGTGTTCGC	AGAAATTTGT	TCTGCATTCT	3420
	ACTTCTACGC	TAGTCAATCA	GACAATTTTA	CCAATCCCCA	CTTTCGCGTT	TCAAATCAAA	3480
5	CAATACGTCG	CTCCTTTCTT	CTTATATAAC	AATTCTTCTA	ACATGATATG	TTACTATTGA	3540
	ATTACTGAAC	CTGAGTTAGT	TATAATCTAA	CTTATATTGA	AAAGAGATGA	GGCGTAAGAT	3600
	ATGTTTTTAT	GTAAAAGACA	AATTGATATC	AATGCACGAT	TTGGTTTGCC	TAGAATTGCA	3660
10	TTTATGAGTG	CAGTTGCAAC	CATCATTATG	TTTTTAGTTA	GTTATGAAGT	AATGTATTTT	3720
	TTATCTAATA	CGCCATTATC	AGATAGACAT	TTTCTCATCT	TTTTATTACT	TGTATTTATG	3780
15	ACGTATCCAT	TACATAAAAG	TATACATTTA	TTATTTTTCT	TACCATATAG	AAAATCGTTT	3840
15	AAAGTTCATA	AGTTAACTAA	AAGAAAATGG	CTTATATTCT	ATAATACCTA	CGTCAATCAA	3900
	CCTGTACACA	AATTTTATTT	TTGCATTAAC	TTAATATTGC	CGTTAATTAT	CTTATCTGCA	3960
20	ATGTTCGTTT	ATCTAACAAT	TTCATTCCCG	CAATATGGAC	ATTATTTTAT	GTTCTTATTG	4020
	GCATTGAATT	TCGGTATTTC	CATTACAGAT	TTATTATATT	TAAAAATAAT	TATATTTTCT	4080
	AATTATGGAC	AATATATAGA	AGAACATAGT	ACAGGTATTA	ATATTTTGAA	AAAAATTAAA	4140
25	AATCCATATC	ATTTATAACA	AAATAATTAT	AGCAAGGTGT	TATTATTTGT	TTTTAGGCTA	4200
	TGTAATAgcT	tACAATCAAA	TGTATATAGA	CCTTGTTTTT	TTATTTTCAT	CAATTTCTAC	4260
	CCCTAAACCT	AATGCTCTAG	TCTGATGTCA	TGGGTTATTG	ATTGGTGATA	АТАТААААСТ	4320
30	ATGTTATATT	CACGATGATT	AACTTACAAA	GGAGTTTCAA	CTATGAAGAT	GATAAACAAA	4380
	TTAATCGTTC	CGGTAACAGC	TAGTGCTTTA	TTATTAGGCG	CTTGTGGCgC	TAGTGCCACA	4440
	GACTCTAAAG	AAAATACATT	AATTTCTTCT	AAAGCTGGAG	ACGTAACAGT	TGCAGATACA	4500
35	ATGAAAAAA	TCGGTAAAGA	TCAAATTGCA	AATGCATCAT	TTACTGAAAT	GTTAAATAAA	4560
	ATTTTAGCTG	ATAAATATAA	AAATAAAGTT	AATGATAAGA	AGATTGACGA	ACAAATTGAA	4620
40	AAAATGCAAA	AGCAATACGG	CGGTAAAGAT	aaatttgaaa	AGGCCCTTCA	ACAGCAAGGT	4680
40	TTAACAGCCG	АТАААТАТАА	AGAAAATTTA	CGTACTGCTG	CTTATCATAA	AGAATTACTA	4740
	TCAGATAAAA	TTAAAATCTC	TGATTCTGAA	ATTAAAGAAG	ACAGCArgaa	AGCTTCACAC	4800
45	ATTTTAATTA	AAGTTAAATC	TAAGAAAAGC	GACMAAGAAG	GCTTAGATGA	TAAAGAAGCG	4860
	AAACAAAAAG	CTGAAGAAAT	TCAAAAAGAA	GTTTCAAAAG	ATCCAAGTAA	ATTTGGTGAA	4920
	ATCGCTAAAA	AAGAATCAAT	GGATACTGGT	TCAGCTAAAA	AAGATGGCGA	ATTAGGTTAT	4980
50	GTTCTTAAAG	GACAAACTGA	TAAAGATTTT	GAAAAAGCAC	TATTTAAGCT	TAAAGATGGT	5040
	CAACTATCAC	מ מכנייייניייים מ	איזיריא אכירייזיידיי	CCATATCATA	ምምስምምስ <i>እ አ ር ር</i>	TC 3 T 3 3 C C 3	E100

	AAAAATCCAA	AATTATTGAC	TGATGCATAC	AAAGATCTAT	TAAAAGAATA	CGATGTTGAC	5220
	TTTAAAGATC	GTGATATTAA	ATCAGTTGTC	GAAGATAAAA	TCTTAAACCC	TGAAAAACTT	5280
5	AAACAAGGTG	GCGCACAAGG	CGGACAATCC	GGCATGAGCC	AATAACACAA	AACCGAGCGA	5340
	CCGTGGTTCA	AAAATCATAC	CACGGCCGCT	CGGTTTTTTC	GCATTAAAAA	TCGGACAGAT	5400
	GAGCTCATGT	TTCAGTATAC	TCATCTGTCC	GATATCTTTT	AATTCTTAAT	CGAGTGATTC	5460
10	AGGATTGTAG	AATCTACGAT	TTTCAAGACC	AAATATTTTA	TCTGTAAACT	GACCCTTGTC	5520
	AGTTTTTTTA	TATGCCTTTT	CAAACATATT	CATTCTAGCA	TCGATATTAT	CGATATAGCA	5580
15	TAAAATTTCT	GCTTCTTTTA	AGTATGGCAG	TTTTGGAGAA	CCATACTCTA	ACTTACCATG	5640
	ATGAGATAAA	ATCATATGTC	TTAACAACAT	GATTTCTTCT	CCTTCAATGT	TCAATTCACG	5700
	AGCTGCTTCA	ACTACTTCAT	CACTCGCAAT	CGAGATGTGT	CCTAATAAGT	TACCTTCGAC	5760
20	TGTATACGAC	GTCGCAACAG	GACCACTCAA	TTCTCTAACT	TTACCAATAT	CATGCAAAAT	5820
	AATACCACTA	TATAACAAAC	TTTTGTTTAA	CAATGGATAA	ATGTCaCAAA	TTGATTTTGC	5880
	AATACGTAAC	ATCGTTAATA	CATGATAGCT	TAAGCCACTC	GCAAAGTTAT	GaTGATGAGA	5940
25	ACTAGCAGCT	GGATATGTGT	AAAATCGTTC	TTGATATTTT	TTCAATAAAT	GACGTGTGAT	6000
	ACGTTGTAAA	TTAGCATTTT	CAATATCTAG	CAAATAATGA	GAAATCTCTT	CTTGTATTTC	6060
	TGCCGGTGAT	AAAGGTGCAC	CATCTACAAA	TTGTTCTGTT	TTTAATTGAT	CTTCAGTTGT	6120
30	CGCTAGTCTA	ATTTGGTTGA	CTTTCATCTG	TTTATTTCCG	CGATAGTTTA	TGATGTCACC	6180
	TTTAACATGT	ACAATTTCTT	CAGGCTTGAT	TGTTGCCATA	TCATTTTTTG	TAGCCGTCCA	6240
25	AAATTTCGCT	TCAATTTCAC	CACTTTTATC	TTGCAAATGT	AATGTCATAT	AATCTTTACC	6300
35	TTGTGCTGTT	ACACCCTGTG	TAGCTTTATG	CACTAAGAAA	AAGTGATCAA	CTGAATCTCC	6360
	GGGATTTAGA	TTCTCTATAT	TTCTCATCGT	TTCCCGCCTT	CCTCTATTTT	GTTTAATGTA	6420
40	ATCACTTCTT	TTGATGGAAC	AATATTATCT	TTTACACATG	TAAAGTATAG	TACTTGATAG	6480
	TGTTCTGATA	ATGATCGTAA	ATAATTCAAC	ATTTTTTCAG	TACGTTTTTT	ATCAAAATGA	6540
	ACAAATGCAT	CATCAACAAT	TAATGGGAAC	GGATAATATG	GTCTTAGTAC	CTTAATTAAA	6600
45	CTGATACGTA	AAGCTACATA	AAGTAATTCT	TTTGTAGATT	GACTTAGTTC	AACAGGATCA	6660
	TATAATTGAC	CATTAACATG	TTTAACCGTA	ATTGAATCTT	CATTATAGTT	AATCATCGTA	6720
	TATCTGCCAT	CTGTTAAATG	CTTCAATATT	TCTACCGCTT	CATTAATAAC	TTGAGGCAAA	6780
50	CGTTTATCTT	TAATTTGTTT	AATGTGTTCA	TCAACTAAAC	TTTGTAAATA	ACTTAAACTT	6840
	GCCCAATCTT	TTGCGATATC	ATTAAGTTGA	TTTTTAAGAC	TGTGATATTC	ATGTCTTAAA	6900

	GCTTGCATTT	CAAGATATTG	CTCATTATAT	TCGTCAACTT	GAGTAGCCAA	TAAATGATCT	7020
	TCTTCTTCAA	GTTGTGCAGT	TGTTTTTCA	CTTAAACTAG	AACTTAATTC	ATAAGAATAG	7080
5	TTTTGGTTCT	CAAGATATTT	AGTTAAATCA	TTAAAACGAC	TCAAATTACT	AGTATAAGTT	7140
	TGGTAATCTT	CATGATGTTG	GTAAAAATCT	TCTTCAGTAC	CAACATTGAT	AAAATCGAAT	7200
	AGTGCTGTAA	TTTCTTTATT	ATTITCTTCT	AATTGAGCAT	TTAAATGATT	TAATTCATTT	7260
10	GTAACAAGTT	TGGTATTTTC	AGCATTAATA	CGCCATTTTT	CATTCGTGTC	TTCAGCTGAT	7320
	TTCAACCATT	GTTGCACATC	GTGGAATAAA	GATAATTTGT	TGAAATAAAC	AAATTGTGAT	7380
15	TTTGTAACAG	CTTCAGCATG	ATTGTAGAAT	GTATCTAATT	CTTGAACCAA	TTGCTGGCGT	7440
	TGTTGATTTA	AATCACTGAT	ATGTTGATCT	AATGCTTTAA	TATTCGCCAT	TGTAGAAATA	7500
	CTATCAACAA	TTAAATCATT	TGAAATTTTA	GATGATAAGT	ATAATTCATC	CTTAACGTTC	7560
20	TCAACTGTCG	ATTGTAATTC	ATCATGACGC	CCTTTCGCAT	CATTTAAACG	ACCTTCAATA	7620
	TACTGACGTT	TCTCTTCTAA	AATATCTTTA	TTTTTCAAAG	CTTGTTGCCA	GTGATCACGA	7680
	ATGCGATATT	GCTCATCAAG	ATCAAAATCT	AAGTCATAAT	TTTCATCTAA	AATGGCTAGT	7740
25	TGTGCTTTAA	TTTCTTCGAT	TTCATCTGTG	ATGGCCTCGC	TATAATCTAC	TTCTTTTGAT	7800
	TTAGACATGA	TGATACCGAT	AACAAATACT	Aaagttaata	CTGCGAAAAT	AATACCAAAC	7860
	AACATGTTGT	TTGAAATAAA	TGAGAAGGCA	GTTAAACCAA	TACCTACTAA	TGTTAAAAGr	7920
30	ATAAACGTTG	TTCGkaacaa	TTTTTGACGT	TTTTGttTTT	CTT		7963
	(2) INFORMA	TION FOR SE	Q ID NO: 16	9:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3958 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40

45

50

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 169:

ATATTGTCTT TACAATAGTT TGCTATGGAG GTAATTAACC AATAGGAGGA ATTTATAATG 60
GCAGTAATTT CAATGAAACA ATTACTAGAA GCGGGTGTTC mCttCGGTCA CCAAACACGT 120
CGTTGGAACC CAAAAATGAA AAAATATATC TTCACTGAGA GAAATGGTAT TTATATCATC 180
GACTTACAAA AAACAGTGAA AAAAGTAGAC GAGGCATACA ACTTCTTGAA ACAAGTTTCA 240
GAAGATGGTG GACAAGTCTT ATTCGTAGGA nCTAAAAAAC AAGCACAAGA ATCAGTTAAA 300
TCTGAAGCAG AACGTGCTGG TCAATTCTAC ATTAACCAAA GATGGTTAGG TGGATTATTA 360

	GAAGATGGTT	TATTCGAAGT	ATTACCTAA	AAAGAAGTAG	TAGAACTTAA	AAAAGAATAC	480
5	GACCGTTTAA	TCAAATTCTT	AGGCGGAATT	CGTGATATGA	AATCAATGCC	TCAAGCATTA	540
	TTCGTAGTTG	ACCCACGTAA	AGAGCGTAAT	GCAATTGCTG	AAGCTCGTAA	ATTAAATATT	600
	CCTATCGTAG	GTATCGTTGA	CACTAACTGT	GATCCTGACG	AAATTGACTA	CGTTATCCCA	660
10	GCAAACGACG	ATGCTATCCG	TGCGGTTAAA	TTATTAACTG	CTAAAATGGC	AGATGCAATC	720
	TTAGAAGGTC	AACAAGGCGT	TTCTAATGAA	GAAGTAGCTG	CAGAACAAAA	CATCGATTTA	780
	GATGAAAAAG	AAAAATCAGA	AGAAACAGAA	GCAACTGAAG	AATAATCAAC	TGTTGAATCT	840
15	GACTTAGATA	TAGTTTAAAT	GGGTGATAAG	ATATTAATGC	TTATCACCTT	TTTTAAAAAG	900
	AAAATCGAGG	CAAATTACAA	ATATTCAATT	AGAGTATTGG	CAATCTTGCC	TATAATAATG	960
	CTAAAATCAT	AATATATAAn	ATGATAACTT	ATTGGAGGAA	TAATGAATGG	CAACTATTTC	1020
20	AGCAAAACTT	GTTAAAGAAT	TACGTGAAAA	AACTGGCGCG	GGTATGATGG	ATTGTAAAAA	1080
	AGCGCTAACT	GAAACTGATG	GTGACATCGA	TAAAGCGATT	GACTACCTAC	GTGAAAAAGG	1140
25	TATTGCTAAA	GCAGCTAAAA	AAGCAGACCG	TATTGCGGCT	GAAGGTTTAG	TACATGTAGA	1200
	AACTAAAGGT	AACGACGCAt	TATCGTTGAA	ATCAACTCTG	AAACAGACTT	TGTTGCTCGT	1260
	AACGAAGGTT	TCCAAGAGTT	AGTTAAAGAA	ATCGCTAATC	AAGTATTAGA	TACAAAAGCT	1320
30	GAAACTGTTG	AAGCTTTAAT	GGAAACAACT	TTACCAAATG	GTAAATCAGT	TGATGAAAGA	1380
	ATTAAAGAAG	CAATTTCAAC	AATCGGTGAA	AAATTAAGTG	TTCGTCGTTT	TGCTATCAGA	1440
<i>35</i>	ACTAAAACTG	ATAACGATGC	TTTCGGCGCT	TACTTACACA	TGGGTGGACG	CATTGGTGTA	1500
	TTAACAGTTG	TTGAAGGTTC	AACTGACGAA	GAAGCAGCAA	GAGACGTTGC	TATGCATATC	1560
	GCTGCAATCA	ACCCTAAATA	TGTTTCTTCT	GAACAAGTTA	GCGAAGAAGA	AATCAACCAC	1620
	GAAAGAGAAG	TTTTAAAACA	ACAAGCATTA	AATGAAGGTA	AACCAGAAAA	CATCGTTGAA	1680
40	AAAATGGTGG	AAGGACGTTT	ACGTAAATAC	TTACAAGAAA	TTTGTGCTGT	AGATCAAGMT	1740
	TCGTTAAAAA	CCCTGATGTA	ACAGTTGAAG	CTTTCTTAAA	AACAAAAGGT	GGAAAACTTG	1800
45	TTGACTTCGT .	ACGCTATGAA	GTAGGCGAAG	GTATGGAAAA	ACGCGAAGAA	AACTTTGCGG	1860
	ATGAAGTTAA .	AGGACAAATG	AAATAATCTG	TCATAAAGTA	AAACAAGGAA	GAAGACACCT	1920
	TTAATGTTGC	ТТТАТТАААА	TGTAAATCAT	TCTAATAAAA	CGACAACTGT	GTCTTCTTTA	1980
50	CTTGTATATG	TTACATATAT	TCACGATAGA	GAGGATAAGA	AAATGGCTCA	AATTTCTAAA	2040
	TATAAACGTG	TAGTTTTGAA	ACTAAGTGGT	GAAGCGTTAG	CTGGAGAAAA	AGGATTTGGC	2100
	ATAAATCCAG '	TAATTATTAA	AAGTGTTGCT	GAGCAAGTGG	СТСААСТТСС	ТАВАВТССВС	2160

	TTAGGTATGG	ACCGTGGAAC	TGCTGATTAC	ATGGGTATGC	TTGCAACTGT	AATGAATGCC	2280
	TTAGCATTAC	AAGATAGTTT	AGAACAATTG	GATTGTGATA	CACGAGTATT	AACATCTATT	2340
5	GAAATGAAGC	AAGTGGCTGA	ACCTTATATT	CGTCGTCGTG	CAATTAGACA	CTTAGAAAAG	2400
	AAACGCGTAG	TTATTTTTGC	TGCAGGTATT	GGAAACCCAT	ACTTCTCTAC	AGATACTACA	2460
	GCGGCATTAC	GTGCTGCAGA	AGTTGAAGCA	GATGTTATTT	TAATGGGCAA	AAATAATGTA	2520
10	GATGGTGTAT	ATTCTGCAGA	TCCTAAAGTA	AACAAAGATG	CGGTAAAATA	TGAACATTTA	2580
	ACGCATATTC	AAATGCTTCA	AGAAGGTTTA	CAAGTAATGG	ATTCAACAGC	ATCCTCATTC	2640
15	TGTATGGATA	ATAACATTCC	GTTAACTGTT	TTCTCTATTA	TGGAAGAAGG	AAATATTAAA	2700
	CGTGCTGTTA	TGGGTGAAAA	GATAGGTACG	TTAATTACAA	ATTTAAATTAA	GAGGTGTAAA	2760
	ATAATGAGTG	ACATTATTAA	TGAAACTAAA	TCAAGAATGC	AAAAATCAAT	CGAAAGCTTA	2820
20	TCACGTGAAT	TAGCTAACAT	CAGTGCAGGA	AGAGCTAATT	CAAATTTATT	AAACGGCGTA	2880
	ACAGTTGATT	ACTATGGTGC	ACCAACACCT	GTACAACAAT	TAGCAAGCAT	CAATGTTCCA	2940
	GAAGCACGTT	TACTTGTTAT	TTCTCCATAC	GACAAAACTT	CTGTAGCTGA	CATCGAAAAA	3000
25	GCGAȚAATAG	CAGCTAACTT	AGGTGTTAAC	CCAACAAGTG	ATGGTGAAGT	GATACGTATT	3060
	GCTGTACCTG	CCTTAACAGA	AGAACGTAGA	AAAGAGCGCG	TTAAAGATGT	TAAGAAAATT	3120
	GGTGAAGAAG	CTAAAGTATC	TGTTCGAAAT	ATTCGTCGTG	ATATGAATGA	TCAGTTGAAA	3180
30	AAAGATGAAA	AAAATGGCGA	CATTACTGAA	GATGAGTTGA	GAAGTGGCAC	TGAAGATGTT	3240
	CAGAAAGCAA	CAGACAATTC	aataaaagaa	ATTGATCAAA	TGATTGCTGA	TAAAGAAAA	3300
	GATATTATGT	CAGTATAAAA	CTAATATACA	ATGACATATT	AAAATGCCAG	TATTAAACGA	3360
35	TAATGTAACA	TTTAAAATGG	GCATGTTTAA	TTAAATCAAA	GATGCATGTG	AAATTTAAA	3420
	TTCAGAATGA	GCATAAAAAT	GGTGTTTAAA	CAAGTTAATT	AAACATATAC	TTTATAAATA	3480
40	ATAGGCATTA	GGTATATTGC	TATAATAAAG	TTATGTAATT	TTTAACCTCA	GTATGTATGT	3540
	CACATTTCTG	GTGTAAACTG	TACCGAGTCA	GACTTTGGTA	CAGTTTTTTT	ATTTGCTTAT	3600
	TCAATGCATT	AAATGAGTAT	GATAAAATGA	TAATGATTGT	TTAGTAACTT	ATACTATATG	3660
45	ACAGAGATGA	TCAGGCTCGG	AGGAAAGACC	ATGTTTAAAA	AGCTAATAAA	TAAAAAGAAC	3720
	ACTATAAATA	ATTATAATGA	AGAATTAGAC	TCGTCTAATA	TACCTGAACA	TATCGCTATT	3780
	ATTATGGATG	GTAATGGGCG	ATGGGCTAAG	AAGCGAAAAA	TGCCTAGAAT	TAAAGGTCAT	3840
50	TACGAAGLAT	GCAAACAATA	AAAAAAATTA	CTAGGGTAGC	TAGTGATATT	GGTGTTAAGT	3900
	מיידיים מ מיידיים מ	У ШУССССТИТЕТ	тесьетсььь	ATTGGTCAAG	ACCTGAAAGT	GAAGTAAA	3958

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5333 base pairs
 (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 170:

10							
	ATTAAAACAA	CTTAATATAC	CTATTTATGG	TGGTCCTTTA	GCATTAGGTT	TAATCCGTAA	60
	TAAACTTGAA	GAACATCATT	TATTACGTAC	TGCTAAACTA	AATGAAATCA	ATGAGGACAG	120
15	TGTGATTAAA	TCTAAGCACT	TTACGATTTC	TTTCTACTTA	ACTACACATA	GTATTCCTGA	180
	AACTTATGGC	GTCATCGTAG	ATACACCTGA	AGGAAAAGTA	GTTCATACCG	GTGACTTTAA	240
	ATTTGATTTT	ACACCTGTAG	GCAAACCAGC	AAACATTGCT	AAAATGGCTC	AATTAGGCGA	300
20	AGAAGGCGTT	CTATGTTTAC	TTTCAGACTC	AACAAATTCA	CTTGTGCCTG	ATTTTACTTT	360
	AAGCGAACGT	GAAGTTGGTC	AAAACGTAGA	TAAGATCTTC	CGTAATTGTA	AAGGTCGTAT	420
	TATATTTGCT	ACCTTCGCTT	СТААТАТТТА	CCGAGTTCAA	CAAGCAGTTG	AAGCTGCTAT	480
25	CAAAAATAAC	CGTAAAATTG	TTACGTTCGG	TCGTTCGATG	GAAAACAATA	TTAAAATAGG	540
	TATGGAACTT	GGTTATATTA	AAGCACCACC	TGAAACATTT	ATTGAACCTA	АТААААТТАА	600
	TACCGTACCG	AAGCATGAGT	TATTGATACT	ATGTACTGGT	TCACAAGGTG	AACCAATGGC	660
30	AGCATTATCT	AGAATTGCTA	ATGGTACTCA	TAAGCAAATT	AAAATTATAC	CTGAAGATAC	720
	CGTTGTATTT	AGTTCATCAC	CTATCCCAGG	TAATACAAAA	AGTATTAACA	GAACTATTAA	780
	TTCCTTGTAT	AAAGCTGGTG	CAGATGTTAT	CCATAGCAAG	ATTTCTAACA	TCCATACTTC	. 840
35	AGGGCATGGT	TCTCAAGGTG	ATCAACAATT	AATGCTTCGA	TTAATCAAGC	CGAAATATTT	900
	CTTAECTATT	CATGGTGAAT	ACCGTATGTT	AAAAGCACAT	GGTGAGACTG	GTGTTGAATG	960
40	CGGCGTTGAA	GAAGATAATG	TCTTCATCTT	TGATATTGGA	GATGTCTTAG	CTTTAACACA	1020
4 0	CGATTCAGCA	CGTAAAGCTG	GTCGCATTCC	ATCTGGTAAT	GTACTTGTTG	ATGGTAGTGG	1080
	TATCGGTGAT	ATCGGTAATG	TTGTAATAAG	AGACCGTAAG	CTATTATCTG	AAGAAGGTTT	1140
45	AGTTATCGTT	GTTGTTAGTA	TTGaTTTTAA	TACAAATAAA	TTACTTTCTG	GTCCAGACAT	1200
	TATTTCTCGA	GGATTTGTAT	ATATGAGGGA	ATCAGGTCAA	TTAATTTATG	ATGCACAACG	1260
	CAAAATCAAA	ACTGATGTTA	TTAGTAAGTT	AAATCAAAAT	AAAGATATTC	AATGGCATCA	1320
50	GATTAAATCT	TCTATCATTG	AAACATTACA	ACCTTATTTA	TTTGAAAAAA	CAGCTAGAAA	1380
	ACCAATGATT	TTACCAGTCA	TTATGAAGGT	AAACGAACAA	AAAGAATCAA	АСВАТАВТА	1440

55

	GCTTTTTCTT	TATATATGAT	GAGCTTGAGA	CATAAATCAA	TGTTCAATGC	TCTACAAAGT	1560
	TATATTGGCA	GTAGTTGACT	GAACGAAAAT	GCGCTTGTAA	CAAGCTTTTT	TCAATTCTAG	1620
5	TCAGGGGCCC	CAACATAGAG	AATTTCGAAA	AGAAATTCTA	CAGGCAATGC	GAGTTGGGGT	1680
	GTGGGCCCCA	ACAAAGAGAA	ATTGGATTCC	CAATTTCTAC	AGACAATGTA	AGTTGGGGTG	1740
	GGACGACGAA	ATAAATTTTG	AGAAAATATC	ATTTCTGTCC	CACTCCCGAT	TATCTCGTCG	1800
10	CAATATTTTT	TTCAAAGCGA	TTTAAATCAT	TATCATGTCC	AATCATGATT	AAAATATCAC	1860
	CTATTTCTAA	ATTAATATTT	GGATTTGGTG	AAATGATGAA	CTCTTTGCCT	CGTTTAATTG	1920
15	CAATAATGTT	AATTCCATAT	TGTGCTCTTA	TATCTAAATC	AATGATAGAC	TGCCCCGCCA	1980
	TCTTTTCAGT	TGCTTTCAAT	TCTACAATAG	AATGCTCGTC	TGCCAACTCA	AGATAATCAA	2040
	GTACACTTGC	ACTCGCAACA	TTATGCGCAA	TACGTCTACC	CATATCACGC	TCAGGGTGCA	2100
20	CAACCGTATC	TGCTCCAATT	TTATTTAAAA	TCTTTGCATG	ATAATCATTT	TGTGCTTTAG	2160
	CAGTTACTTT	TTTTACACCT	AACTCTTTTA	AAATTAAAGT	CGTCAACGTA	CTTGATTGAA	2220
	TATTTTCACC	AATTGCCACA	ATGACATGAT	CAAAGTTACG	GATACCTAAA	CTTTTCATAA	2280
25	CTGCTTCATC	TGTAGTGTCT	GCAACAACCG	CATGAGTAGC	GATATCACTA	TATTCATTCA	2340
	CTCTATTTTC	ATCATGGTCG	ATGGCCATTA	CATCCATGTC	TAATGCATTC	AACTCACGAA	2400
	CGATACTACC	TCCAAAACGA	CCTAGACCGA	TGACTACATA	TTCTTTACCC	ATACTCGCCC	2460
30	TCCATTAAAT	GATTTTCATC	AATTCATTGA	TAAATATAAAT	TAAAATTAT	TATAAATGAG	2520
	TACCCCAACT	AAATTATCTA	AATGCAGTAA	TGCAAGTAAA	TGAAAGTTGG	GGTATCGTCT	2580
	CAACTTATGA	TTTCTTTCCT	TCAACATATT	CTTTGTCGAA	AACAAATAAT	CTTAATAATA	2640
35	ATATTAACGA	TGGAAGTAAT	AAAAGTAAAC	СТААААТААА	GACAATCACT	AATGTCCAGC	2700
	CCATTTCTGG	ATTAACATAT	GCATCTGTAA	TTTTTACAAA	CGGATATAAA	AGGTATGGCA	2760
40	ATTTACTAAT	TCCATAGCCA	AAGAACGCGA	ACATCATTTG	TAAAATAACA	AATACAAAAG	2820
	CCAAACCATG	TTTTTTCTTA	aagaatgtta	ACAATGAAGC	TAATGCAAAG	AATAAGAAAC	2880
	TTATACCAAA	CATCCACCAA	TAGTCAAAAA	CAGCTGAATA	AAAATGTTCA	GAATTTTGAA	2940
<i>15</i>	TGCGTAATGA	TAGAAATACG	AATAAACAAA	TGATAATCAT	CGGCGGCCCT	AAAAATATGT	3000
	GCCATTGTCT	TGTTAAATTA	TATGCTGGTT	CGTCATTTGC	TTTTTTAGCA	TAATATGTCA	3060
	AAAATCCTGA	TGAAATATAT	AAAACTGAAA	TAATTGCCAA	GAATACTACA	GACCAAGCAA	3120
50	ATGGGCTTAA	TAATAACTGC	ACCCAATCTA	GATCGATAAC	ATTGTTTCGA	ACATTAATAT	3180
	ACCCA CCTTC	TO THE RESERVE THE THE THE THE THE THE THE THE THE TH	*****	ATAATCA 3.00	MOCA A MINA A M	11 maan amm	2246

	AACTGTTTCT	CAACGATATC	ATAATCAGTG	CTATTGAACC	TGGTATTAAC	AATACCGTGC	3360
	CTAAATATTT	GATTGACTCT	GGAAAGAAAC	CTACGAATCC	TACGAAGAAG	AAAACAAAGA	3420
5	ATACATTCGT	AACTTCCCAA	ACTGGGTTTA	AATAACGTGA	AATTAAGTGA	TTAATTTTCT	3480
	TTTCATCACC	AGTTAACTTT	GAATGCAATG	CGAAGAAACC	TGCCCCAAAA	TCTATAGAAG	3540
	CAATAATGAT	ATAGCAAAAT	AAAAACAACC	ATAACACTGT	TATACCTATA	AATGCATAAA	3600
10	TCATTTTTCT	ATTTCTCCTC	CTTGCTTCTT	GGCTAAACGA	TTTACATCTT	CATACGCCGG	3660
	TTTATTTTTA	AACATACGAA	TTAATACGTA	TGCACATGTA	TACATTAAAA	TGATGTACAA	3720
	TATGCCAAAT	AAAATTGTAA	CGAaGGTTAT	TCCGCCTGCT	TGTGTTGCTG	CTTCTGCCAC	3780
15	GCGCATATAA	CCACGAACAA	TCCAAGGCTG	TCTACCCATC	TCTGTTAAGA	ACCATCCAAA	3840
	TTCTATAGCT	AGCATTGAAG	CTGGGCCTGT	TAATAATATT	CCATAAAGCA	TCCATTTATG	3900
20	AGTAGAAAAC	TTTCTAAGCT	TTTTAAACAT	TAAAGTTAAG	ACATAAACAC	CTGAAATGAC	3960
	AAAACATAAA	ATTCCCATCG	TTACCATTAA	ATCAAAGAAA	TAATGGACGA	TCATAGGCGG	4020
	ATGTAAACTT	TTTGGAAAAT	CATTTAACCC	TTGTACTTTA	GTTTTGACAC	TATTATCTGC	4080
25	TAAGAAACTC	AATAGTCCAG	GTAATTCAAT	CGCACCTTTA	ACTTGCTGAG	TCTTTTCATC	4140
	TAACACACCA	AATAATAATA	ATTTGGCATG	GGAAGATGTA	TCGAAATGCC	ATTCATAAGC	4200
	TGCTAATTTT	TCAGGTTGGA	ATTTATGCAA	AAATTTTGCA	GATAAATCCC	CTGCCAACAT	4260
30	AGAAAGTAAT	GTTGAAAAGA	ATCCAACTAT	CATAGACATT	TTCAAAGCTT	TCTTATGGTA	4320
	GACAGTATCT	TTAGGTTGAC	GATTACGCAA	TAATTTAAAA	GCTGCTATTG	ATGCAATAAC	4380
	AAATGCCATC	GTCATACCGG	CTGTAGTAAT	TACGTGAAAT	GATCGAACTA	TAAACGATGG	4440
35	GTTAAACATC	GCTTCTATAG	GTTGAACATT	GACCATCTTT	CCATTCTTCA	ACTCAAAACC	4500
	TGCAGGCGTA	TTCATAAATG	AATTCACTGA	agtaatgaag	AATGCTGAGA	AAGAGCCACC	4560
40	AATAATTACT	GGTATACTAA	TTAAGAAATG	TGTCCATTTA	TTTTTAAAAC	GATCCCAAGT	4620
••	ATATAAATAT	ATACTTAAGA	AAATAGCTTC	AAAGAAGAAC	GCAAATGTTT	CCATAAATAA	4680
	TGGAAGTGCA	ATAACGTGTC	CACCCATTTC	CATAAATGTA	GGCCAAATCA	ATGATAATTG	4740
45	AAGTCCTATA	ATTGTACCTG	TAACAACTCC	CACTGCTACA	GTAATTGTAT	AAGCTTTAGC	4800
	CCATCTTTTG	GCCATAGCTA	TATATTGAAG	ATCATTTTTG	CGAATACCTA	AAAATTCTGC	4860
	AATTGCGAAC	ATTAAAGGCA	TACCAACACC	AATCGTTGCA	AAAATGATAT	GAACTGCTAA	4920
50	AGTCATAGCT	GTCAAAAACC	GACTGATTTC	AACTGTATCC	ATTTAAAAAC	ATCACCTTTT	4980
	المناسلية المناسلية المناسلية المناسلية المناسلية المناسلية المناسلية المناسلية المناسلية المناسلية المناسلة ا	***********	እ አጥሮ እ አ <i>ር</i> ሞሞ እ	A TOTA TO A TOTAL	CONTRACTOR	THE THOUGHT A A A	5040

	GAATTTCAAT GTATAATTGT GTATATTACA TTAGAATAAA GCACGAAGGA GCATGATACA	5160
	TGTCAGAAAT AATCGTTTAT ACGCAGAATG ATTGTCCACC TTGTACATTT GTAAAAAATT	5220
5	ATCTAAATGA GCATCACATT GATTTTGAAG AGAGAAATAT CAACAATCAA CAATATCGAA	5280
	ACGAAATGAT AGATTTTGAT GCTTTTTCAA CTCCGTTTAT TTTGTTGAAT GGC	5333
	(2) INFORMATION FOR SEQ ID NO: 171:	
10 15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 11126 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 171:	
20	ATACGTGACC CTTTATCCGA AAATTTCTTT TCATATTCTG TTAAAATATT ACTGCCATCG	60
	TCTTCTTGAT GTAAATTTAG ATTTATTTTT GTAAAATACA TTCCAAATTG AGACATACTT	120
	TCTAAACTGT AGGCAAATAG TCCTCTGTTA TCAGTTTTAA AATGTAAATC TCCTTCATCA	180
25	TTTAAGATTT GTTGATACAA CGCTAAAAAC GTATGATACG TTAAACGTCG TTTTGCATGA	240
	CGATTTTTTG GCCATGGATC TGAAAAGTTC AAATAAATAC GCGAAACTTC GCCGTCTTTA	300
	AAATATTCAT TTAATTCAAT GGCGTCATTA CAAATAATCT TTAAATTTGT TAAACCCATC	360
30	TCTTTAACTT TATCCAATAC TTTATAAACG ATACTTTTCT CACGTTCCAT TGAAATATAG	420
	TTAATATGAG GATTTTGAGC AGCTAATGTT GTAATAAACT GCCCCATACC CGAACCAATT	480
	TCAATGTGTA TCGGTTGCGT TTTaTCAAAC CATTCAGTCA TTTTCCCTGc ATGTTGACCG	540
35	TCCATGTCAA CCAATTCAGG ATGATCTTTT AAATAATCTT CAGCCCATGG TTTGTATCGA	600
	ACTCTCATAT TTTATTCTCC TCTTAAATAA ACATGTTACT ATTCATAACT TCATTTAGGA	660
10	ATTTAAGCCA AGTGTTCATA TCCTTATATC TTTTTTGCTC TTCATACCAT TGAACAAGAC	720
40	CTATAGATTG AATTACCGTA TACCATTTCA TACGTTTATT TAAATTCAAG CTCTCTTGAA	780
	CACCATATGT TTCAAGCCAT TCAGACCATT GTTGTTGTGG AACATAGTTG TAAAGCAGCA	840
45	TTCCGATATC AATTGCCGGG TCTGCAATCA TTGCACCTTC CCAATCAACT AAAAATAGTT	900
	CATCTCGATC GGATAATAAC CAATTATTAT GATTCACATC ACCATGTACA ACAGTGAAAA	960
	AACGCGAATC TAAACTCGGT ATATGCTCTT CTAAATAGGT TAATGATTTT CTCACAATAT	1020
50	GATGTGTTAA AACTTCTCTT GATAAAGAGG CATTAATTTT ATTAAGCATA ATCTCAGGAG	1080
-	TAATAGGTTC CATTTCCATA CGCTTTAACA TACTTAATAA AGGTCTAGAA TTGTGTATCT	1140

	TTTTCCAATG	TTGTGCTGTA	ACAACCTCGC	CTGTTTCTAT	GCGTTTCGTC	CATACTAATT	1260
	TGGGCACAAT	ACCTTCTGCT	GATAATGCCG	CAATAAATGG	ATTTGAATTT	CGTTTTAAAA	1320
5	ACAACTTTTG	TCCATCTTGT	TCAGCCATAT	ATGCTTCACC	AGATGCACCA	CCTGCTGAAT	1380
	CAAGTGTCCA	CCCTAATTGA	TAAAACTGCT	CCAACTCGTC	CACCTCACTT	TCAATTAGAA	1440
10	AATGGCTCTA	GAAATAGGTT	TTTCAAGAGC	CATATATTCT	AATTTATAAC	ACCATACTGG	1500
10	TACAAATATT	ATGTCCAGAT	AATTATTGTA	AATCCTCAAC	CAATGCCTAC	ATTACACGAC	1560
	TAAATTTAAA	TCGTAATGTC	TGTCATTGAC	ACCATACATT	CTATAGTCAC	TTACTTGACA	1620
15	TATAATGTTA	CCGTGTCTAA	AACTACATGT	TTTTGAATCT	CTGTAGGCGA	TAAACTCTAG	1680
	TTTTCAAAAT	AATTGCTATC	CCATTTTCAT	GGTTAGCATA	AATTTATGAA	CTGTAACATT	1740
	TACGTACTTA	GTAAAATATG	ATGCACATCA	TATTTGTrAC	TCATAGAAAA	TTTTATAAtT	1800
20	TTTATCATTA	TATTTCAACT	GAAAATGAGA	AACAAAATGG	CACTTTTTAC	TAATATGTGT	1860
	TTTCTAAACA	ACACTTTTAA	GCTTCGTTTT	AAATTATAAC	ATAATTCACT	TACGAAAGTT	1920
	GATAAATTTA	AGTAATTTAA	тстааааата	TGATGAAAGA	ATTTTAAATA	CTGTGTGACT	1980
25	CTATATACTT	TTCAAATCCT	TCTTGTAGTT	GACGTGTAAT	TGGGCCAACT	TTACCATCAT	2040
	TAACTGGTTC	ACCATCTAAT	TTAATAACAG	GTGTAACCTC	AGCTGAAGTA	CTTGAAACAA	2100
	TAACTTCATC	TGCGTTTTTC	AAGAAATCTA	CAGTAAACGT	TTCTTCTTTA	AATGGGATGT	2160
30	TATAGTCTTC	GGCAATTTTT	TTAATTACAA	TTCGTGTAAT	ACCATTAAGA	ATATAGTTGT	2220
	TAATCGGATG	TGTATAAATC	ACACCGTCTT	TAATTGCATA	AGCATTACTT	GAAGATCCTT	2280
35	CAGTTACAGT	TECACCTCGA	TGTTGAATTG	CTTCAACTGC	ATTATATTTC	ACAGCATATT	2340
	CTTTTGCTAA	TACATTCTCC	TAATAAGTTC	AAGCTTTTAA	TGTCGCAACG	TAACCATCGG	2400
	ATATETTCAA	CGGTAACACC	ATTCACACCA	TTTTCTAAAT	GATCATAAGG	ACGATCATAA	2460
40	CTCTTTGTAT	AAGCAACAAT	TGCTGGTTCT	ACTTCAGGTG	TCGGGAAGCT	ATGATTCCTT	2520
	TCAGCTACAC	CACGCGTTGC	Tygaatataa	ATTGCCCCAG	TTTCAATTTG	ATTCATATCA	2580
	ACTAATTTAC	GAGATAGTTC	AATTAATTCT	TCTACAGAAT	AATTTAAATC	TAAACCAATC	2640
45	TCATTGGCAC	TACGTWAAAW	TCTTTCATAA	TGTTCTGTTA	CTGTAAATAA	CTTACCATTA	2700
	TATACTCGAA	TGTATTCATA	AATACCATCG	CCAAATACGT	ATCCTCTGTC	GTTGTATGAA	2760
	ACCTTTGCTT	CACTTGGACT	TACAAACTCA	CCATTTAAAA	AAATTTTTC	CATATATTAT	2820
50	TCCTCCACGC	ATAATGAATA	AATTGCTTCT	AAGTAAATAC	TAGTTGCGTT	AAATAACTGT	2880
	TTTTTAGTGA	TATATTCATT	TTTCTGATGC	ATTAAATCTT	CAGAATCACT	AAACATTGCG	2940

	TCAGTCATAT	CATTTGTTTG	ATTTCTATAT	GCAGTAACTA	ACTTTTGTAC	AAAAGGATCA	3060
	TTTTTATCAA	CATAATGTGG	TGGTTGGACT	TTACCTAATT	TCACTTCAAA	GCCATATTGT	3120
5	TGAATCTCAT	TTGCAAAACG	ATCCATAGCT	TTTTCAAATT	CAAATCCTTC	TGGGTAGCGT	3180
	AAGTTGATAC	CGAAAAGACC	TGCGTTTTCA	TTATCATATG	TAATAACACC	AATGTTAGTT	3240
	GTCACGTCAC	CCATGACATC	TGTATGGAAT	TTCATTCCCA	TCTTTTCACC	AAAATCTGAA	3300
10	TTAAATAAGT	AGCGATTACT	AAATGCTACA	AACGCTTGTG	CATTATTATC	AAGATTTAAT	3360
	GATGCTAAGA	ATTTTAGTAA	GTAAAGACCC	GCATTCACAC	CGATAGATGG	ATCCATACCA	3420
15	TGAACCGCTT	TACCTTCAAC	TGTTAAAACT	AGAATGCCAC	TATCAACAGT	ACTATCACCT	3480
	TGTAAATGAT	TTTGTTCTAA	AAAGTACTCA	AAGTCTTGAA	TAACATCTGT	CATATTTTCT	3540
	TTAACAAGCA	CTCTTGCTTC	TGCATGATCA	GGTACCATGT	TGTAACGTTC	ACCAGATTTA	3600
20	AAAGTTATTA	ATTCATAATC	AGGTTCATCT	TGATCTTCAG	TAAGTTTATT	TTGAACTAAA	3660
	TCAAATGTTG	TAATGCCTTT	TTCACCATGA	ATACATGGAA	ATTCTGCATC	TGGTGCAAAA	3720
	CCTAATGTTG	GCATTTCTTC	TGTTTTAAAA	TAGCGATCCG	TACATTTCCA	ATCAGATTCT	3780
25	TCATCCGTAC	CAATAATCAT	ATGAATACGT	TTCTTCCAAT	CCACATTCAT	ATCTTCTAAT	3840
	ATCTTAATTG	CATAATAAGC	AGCAATTGTT	GGACCTTTGT	CATCAAGTGT	ACCTCTAGCT	3900
	ATGATAGCAT	CTTCTGTTAC	AACCGGCTCG	AACGGATTAC	TATCCCATCC	ATCACCAGCA	3960
30	GGAACAACGT	CAACATGACA	TAAGATACCT	AATACGTCAT	TTCCTTTACC	TGCCTCAATT	4020
	CTTCCTGCAA	TATGATCCAC	ATCATGTGTT	GTAAATCCAT	CTCTATGTGC	AATTTCATAC	4080
25	ATGTAGTCTA	ATGCCTTACG	AGGACCTGGA	CCAACTGGTG	CGTCTTCTGA	TGCTTTTGCA	4140
35	TCATCTCTCA	CACTTTCAAT	TGCTAATAAT	CCTTTTAAGT	CATTAATGAT	TTGATCTTCG	4200
	TATTGTTGAA	CTTTTTCTTT	CCACATTCGA	AATCGACTTC	CTTTTTTCTA	TAAGTTAAAT	4260
40	TCTATTTTAC	ATGAAAAGAT	ATAAAAACTA	CAATAAGATG	TCAGAAAATA	ATAAAAAGGA	4320
	ACAAAACGAT	GCTATTGATA	TGACACAAAT	CATAAATAGC	TGCTTTGTTC	CTTTTTTAAT	4380
	TTATATATTT	AAAATACACA	TATTCAAGAG	CTCGAGATAT	AAGTCAATGT	ACTAGGCACA	4440
45	CAATTTAATA	TTGACAGTAA	TTAACCGAAC	GAAAATGCGC	CCCGGGGCCC	CAACATAGAG	4500
	AATTTCGAAA	AGAAATTCTA	CAGACAATGC	AAGTTGGCGG	GGCCCCAACA	TAGAAGCTGG	4560
	CCAATAGTTA	GCTTTCAATA	ATGTGCAAGT	TGGGGTAAGG	GCCCCAACAC	AGAAGCTGGC	4620
50	CAATAGTCAG	CTTTCAATAA	TGTGCAAGTT	GGGGTAAGGG	CCCCAACACA	GAGAATTTCG	4680
	AAAAGAAATT	CTACAGACAA	TGCAAGTTGG	CGGGGCCCCA	ACACAGAAGC	TGGCCAATAG	4740

	TAAAGAAATA	CGTTTTCTTT	AGATATTAGT	ATTTCTTATG	AATGAGTTTC	ACGCATGTAT	4860
	TCTTCTTTCT	ATATGCATAT	TAGCTATGAC	TAACGATAAA	GAACCTGAAA	CACTAATAAA	4920
5	TGTCCTATAG	TTTACAATAT	TATATTGGCA	GTAGTTGACT	GAATGAAAAT	ACGCTTGTAA	4980
	CAAGCTTTTT	TCAATTCTAG	TCAACCTTGC	CGGGGTGGGA	CGACGAAATA	AATTTTGCTA	5040
	AAATATGATT	TCTGTCCCAC	TCCCTTATCA	TTTCTGTCCT	ACTCACATCT	TATTCTTTAT	5100
10	CAGATAATGC	ATTTTTATTC	TTTTTTAAAT	CTTCTTCAGT	GACGATACGT	TATTATTAAA	5160
	TTGGTGTGCG	CCACCTTCAT	CATCAAATTT	ACCTTTTTCA	ATACTTTCGT	CAGTCTTATT	5220
15	GTCATATTCG	GTAAATTTTG	ATTTTTCTTC	TTTGAAAAAT	GCTTTTGGAT	TATTTTTTAA	5280
	TCTATTAGCA	TATTCTTTCG	GATTTGTTTT	TACTTCTTTA	ATTGTTTCAT	TAGCAATTGT	5340
	TCCTAATTGC	GTCGCTTTAT	CCTTAGCATT	ATCTTTATAG	CTTTGAGGAT	CTTGTTTATA	5400
20	TTTATTATAT	TCcTGcTTTC	AGCTTGTCAC	GACTATCTTT	ACGTGTAACA	AGTACAGCTG	5460
	CTACAGCGCC	ACCTATACCT	AAAATCGCTT	TAAATAAATT	ACCTTTTGCC	ATATCAATCG	5520
	TCTCCCTTTT	ATTTATAATT	TAATTTGTCA	AAATCATTTT	CAGTTAATAA	ACGATATTCT	5580
25	CCTGAATCTA	AATTGCTGTC	CAATTCTAAA	TCAGCAATTT	TGATACGTCT	TAAATGTAAT	5640
	ACCTCATTTT	GAATGCTATG	AAACATTCGT	TTAACTTGAT	GATATTTTCC	TTCATAAATT	5700
	GTTACGTGTG	ACGTTTGATT	ATCAATATAA	GTTAATATTG	CAGGCTTAAC	CTTGCCATCA	5760
30	GTCAGTGTtA	CACCCTCTTT	AAAAGCTTGA	ATGTCGTCTT	CAGTGATAGG	ATTTGCTGAA	5820
	ATAACTTCAT	ATTTTTTAGA	AACATGTTTG	TTTGGACTCA	TTAATTCATG	ATTAAAATCA	5880
	CCATCATTCG	TTATCAATAA	AAGCCCTTCT	GTATCTTTAT	CAAGACGACC	AACCGGAAAA	5940
35	ATATTTAGAT	GTTGGTATTC	AGGTATTAAA	TCAATAACGG	TTTTTGAATG	ATGATCTTCA	6000
	GTTGCTGATA	TATAACCTTT	TGGCTTATTT	AACATAATAT	AGACATTTTC	AATGTATTCT	6060
40	ATTAATTCTC	CACGAACTGT	TATCTTATCG	TTTTCTGGTT	CTATATGTGT	TTTTGGTGAT	6120
	TTAATTACTT	GTTCGTTGAC	ATTTACAAGG	CCTTTTTTAA	GTAACTGTTT	GACCTCATTA	6180
	CGTGTACCGA	CGCCCATATT	TGCTAAAAAT	TTATCTATTC	TCATCGTAAA	AACCTAACTC	6240
45	TACGTCTTAA	TTTTTCAGGA	ATTTCACCTA	AGAATTCGTC	CGCAAGACGC	GTTTTAATTG	6300
	TGATTGTACC	GTAAATTAGA	ATACCTACTG	TAACACCTAA	AATAATAATG	ATTAAGTAAC	6360
	CAAGTTTAGT	AGGTTCTAAG	AATAGATTTG	CAAGGAAAAA	TACTAATTCT	ACACCTAGCA	6420
50	TCATAATAAA	TGAATACAAG	AATATTTTTG	CAAAATGAAT	CCAACTATAG	CTGAATTTAA	6480
	ACTTCGCATA	TTTTTTAAGA	ATATAGAAAT	TACATCCAAT	TGCAAATAAT	AATGCGATAC	6540

	ACTTGATAAC	TACAGAAGCT	AAAATAACAT	AAACTGTTAA	TTTCTGTTTA	TCTATACCTT	666
	GTAACATTGA	TGCCGTTACA	CTTAATAGTG	AAATTAGTAT	TGCTACAGGC	GCATAATAGA	672
5	ATAATAAGCG	ACTACCATCA	TGGTTAGGGT	CATGACCTAA	AACAATTGGA	TCGTAACCAT	678
	AGAAAACTGT	GAATAATGGT	TGTGCCAAGG	CCATAATTCC	AATACTAGCT	GGAACAGTTA	684
	TAAACATTAA	TACACCAATA	GATGTTCTAA	TTTGATGATG	CATTTCATGT	AAGCGACCTT	690
10	CTGCAAATGT	TTTTGTAATA	TAAGGAATTA	AACTCACTGC	AAAACCAGCA	CTTAATGATG	696
	TCGGAATCAT	TACAATTTTA	TTAGTTGACA	TATTTAGCAT	ATTAAAGAAT	ATATCTTGTA	702
15	ACTGTGAAGG	TATACCAACT	AAAGATAAAG	CACCGTTATG	TGTAAATTGA	TCTACTAAGT	708
	TAAATAATGG	ATAATTCAAA	CTTACAATAA	CGAACGGTAT	ACTATAAGCA	ATAATTTCTT	7140
	TATACATCTT	GCCATATGAC	ACATCTATAT	CTGTGTAATC	AGATTCGACC	ATACGATCAA	7200
20	TATTATGCTT	ACGCTTTCTC	CAGTAATACC	AGAGTGTGAA	TATACCAATA	ATCGCACCAA	726
	CTGCTGCTGC	AAAAGTAGCA	ATACCATTGG	CTAATAAAAT	AGAGCCATCA	AAGACATTTA	7320
	GTACTAAATA	ACTTCCGATT	AATATGAAAA	TCACGCGTGC	AATTTGCTCA	GTTACTTCTG	738
25	ACACTGCTGT	TGGCCCCATA	GATTTATAAC	CTTGGAATAT	CCCTCTCCAT	GTCGCTAATA	744
	CAGGAATAAA	GATAACAACC	ATACTAATGA	TTCTTATAAT	CCAAGTAATA	TCATCGACTG	750
	ACCAACCGTT	TTTATCATGA	ATGTTTCTAG	CTAATGTTAA	TTCAGAAATA	TAAGGTGCTA	756
30	AGAAATACAG	TACCAAGAAA	CCTAAAACAC	CGGTAATACT	CATTACAATA	AAACTCGATT	762
	TATAAAATTT	CTGACTTACT	TTATATGCCC	CAATAGCATT	ATATTTCGCA	ACATATTTCG	76B
0.5	AAGCTGCTAA	TGGTACACCT	GCTGTCGCAA	CTGCAATTGC	AATATTATAT	GGTGCATAAG	774
35	CGTATGTGAA	CGGCGCCATA	TTTTCTTGTC	CACCAATTAA	ATAGTTGAAT	GGAATGATaA	780
	AAAGTACGCC	CAATACCTTG	GTAATTAATA	TACTAATGGT	AATTAAAAAG	GTTCCACGCA	786
: 40	CCATTTCTTT	ACTTTCACTC	ATTACGAATC	TCCCTATCTC	ATGTTTATTA	AAGTTTTGTA	792
	AACTAAAAGC	TGTTTCTCTG	TAAAATCATT	TTTCATTATT	ATGAATATAT	CACAAAACTT	798
	TATTTCATTG	TCGTATATTC	AATGAATTAT	CATAACAAAA	TTATCAACAC	ATTGTCATTG	804
45	AATACTAGAT	TTTGATTAGA	ATATTACGAA	ATTTCATATA	AACATTATAC	TACTATTTGA	810
	GATGAACATC	GCATAACAGT	AGAAAAATCA	TTCTTATCAT	ACACATACAT	CTTCATTTTT	816
	TATGAAGTTC	ACATTATAAA	TATATTCAAC	ATAATTGTCA	TCTCATAACA	CAAGAGATAT	822
50	AGCAAAGTTT	AAAAAAGTAC	TATAAAATAG	CAATTGAATG	TCCAGTAACA	AATTTGGAGG	828
	AAGCGTATAT	GTATCAAACA	ATTATTATCG	GAGGCGGACC	TAGCGGCTTA	ATGGCGGCAG	834

	GTAAACTCAA	AATATCTGGT	GGCGGTAGAT	GTAACGTAAC	TAATCGATTA	CCATATGCTG	8460
	AAATTATTAA	GAACATTCCT	GGaAATGGGA	AATTTTTATA	TAGTCCCTTT	TCAATTTTTG	8520
5	ATAATGAATC	CATCATAGAT	TTTTTTGAGT	CTAGGGGTGT	TAAATTAAAA	GAAGAAGATC	8580
	ACGGGCGTAT	GTTTCCAGTT	TCCAACAAAG	CACAAGACGT	GGTTGATACA	TTAGTGACAA	8640
	CTATCGAACG	CCAACATGTA	ACGATTAAAG	AAGAAGAAGC	TGTTAGTAGA	ATCGAAGTTA	8700
10	ATACAGACCA	AACTTTCACT	GTACATACTC	AAAATAATAG	TTATGAAAGC	CATTCGCTAG	8760
	TGATTGCTAC	AGGTGGTACA	AGTGTCCCTC	AAACTGGTTC	AACTGGTGAT	GGTTATAAGT	8820
15	TCGCACAAGA	TTTAGGTCAT	ACCATTACTG	AGTTATTCCC	GACCGAAGTT	CCAATTACAT	8880
	CAGCTGAACC	TTTCATCAAA	TCCAATCGTC	TAAAAGGTTT	AAGTTTAAAA	GATGTTGAAT	8940
	TGTCAGTACT	TAAGAAAAAT	GGTAAAAAAC	GCATCAGTCA	TCAAATGGAT	ATGTTATTTA	9000
20	CTCATTTTGG	TATCAGTGGT	CCAGCTGCAT	TAAGATGTAG	TCAGTTTGTT	TATAAAGAAC	9060
	AAAAAAATCA	AAAGACACAG	CACATTTCTA	TGGCAATCGA	TGCATTTCCT	GAATTAAACC	9120
	ATGAACAATT	AAAACAACAC	ATCACATCAT	TATTATCGGA	CACACCAGAT	AAAATCATTA	9180
25	AAAACAGTTT	GCATGGTCTA	ATTGAAGAGC	GCTACTTACT	GTTCATGCTG	GAACAAGCAG	9240
	GAATCGATGA	AAATACCACA	TCACATCACT	TATCAAATCA	ACAATTGAAC	GACTTAGTAA	9300
	ATATGTTTAA	AGGGTTTGTA	TTTAAGGTGA	ACGGGACATT	ACCTATAGAT	AAGGCATTTG	9360
30	TCACAGGTGG	TGGTGTGTCA	CTTAAAGAAA	TTCAACCTAA	AACAATGATG	TCTAAATTAG	9420
	TTCCGGGATT	ATTTTTATGT	GGTGAAGTAT	TAGATATACA	TGGTTATACT	GGTGGTTATA	9480
	ATATTACAAG	TGCACTCGTA	ACAGGACATG	TCGCTGGATT	ATATGCCGGA	CATTACTCAC	9540
35	ATGCATCAAT	GGAATAATAG	TATAAAATTT	GGTTCGATTC	TCTTTAGTAG	ATCAACTTTT	9600
	TCATTCAAAT	AAAAATGACC	TTAATATAAC	TGAGTCACTA	AAAAGTGTCG	TTATATTAAG	9660
40	GTCATTTCGT	TAATTATGAT	TCTTTTTCGT	TTTTAGTACG	TCTTCTAGCT	AACAAAGCCG	9720
	CACCTGTAAT	CAGTGCAAAT	TCTTTCAATG	GTAAATCCAT	TCCTTCAGAA	CCTGTATTTG	9780
	GAAGTTCTTT	TTCAACTTTG	CGCGATTCAT	GTGTCTCTTC	TTTTTTAATA	GGCGTACAAA	9840
45	CTTTTGGAGC	TGGCTGAATT	TCTTTTGGTG	ATACTTTCGT	CGCTTCAGCT	GGTAATTTAA	9900
	TTGCTAAAAT	TTCATCAACA	ATGAATTGCG	TGTGTTGTTT	GATGTCATTT	AATGTCGCAT	9960
	CTTCATCAAT	CATTCTATTG	CCATCTGCAA	CATATTGATC	AATTAATACT	TTTACTTTAG	10020
50	CTAATTGTTC	TGGTGTTGCG	ATCGCTTTGA	ATTTCGCATA	TGTTTGTTGA	GCAATGTTAT	10080
	CARTTCCCAC	TO A COTTA TOTAL	TOTOTOTOTO NO	TA A TOTA COTOCO	TOTATATOC	CTITIN ATTOCKS A	10140

	CATCCATTTG	TAATTTTAAA	GCAGTTATAG	CTTTTAATGC	ATCAGCCTTA	TTACGATTAC	10260
	TTACTTTTCG	ATAATTTTGC	ACTAAAGCAG	TGACGCGTGC	AAGATCATCA	TTAATCGTTT	10320
5	TTTCAGCATC	TGGCTTTTTA	ATAGGATGTA	CATCTAAATC	ATGTATTGTT	TGTAGATTTA	10380
	ATGATGCTGT	TTTATCAACT	TGTGCATTGC	TACGATCTTG	ATCAATTTGT	CCAATAGCAG	10440
	TGTCATAAAT	ATTTTGTAAC	TGTGCTAATA	TACTATTTCT	TTCTTCTACC	GTTGCTTGAA	10500
10	TATTCGCTTC	AATTGCTTGT	TTTTTATCGT	TGAATAATGT	TGTCAATTGT	TCTCGAGCAG	10560
	ACGCCTTTCT	GTTAATAACA	GGTTCGATTT	CACGAATTTC	GTTTTTCTCA	TCATGCAATA	10620
15	AATATGCCAC	ATCTGCATTA	GTCACTGCAC	TAGCAATTTG	TTGTTTAGCT	TTAATTAACT	10680
,,,	CTTTTTCAAC	TTGTGCTATT	GCAATATTTT	GTTCTTCATC	TGTCGCTTCG	TTATTTGCTT	10740
	TAATTAAATT	AATTTTATTT	GTAGCGATAT	TTTGAATTTG	TTGTAATGCT	GTTGCTTTAA	10800
20	CTGTTGTCGC	TGGTTTAATT	TTTGAAATAA	TATTTTGAGC	ATTTATACTA	TCTTGATTAA	10860
	CTTGGGCAGT	CTTATCTGCA	TGATTGATCT	GATCAATAGC	CTGATTAAGT	GCTTGTTCTA	10920
	CTAAATGTTT	AGCAGCTAGT	CTTTCTTCTT	CAGTTGATAA	ATCGCTTTGA	TCGATTAGTG	10980
25	CATTTTGAGC	TTCGGCTTTT	ACACCAACAG	ATTGACGCGC	TGCTGGTTTA	ACTTGAACTT	11040
	TAGGTAAAAT	CACTTTGATG	TTGTCGTTGC	CATCAGTCnC	AGTnCGATCC	ACTTCTGCAT	11100
	TCGTTTTGTT	TTGTGCAATG	TCATTT				11126

(2) INFORMATION FOR SEQ ID NO: 172:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3660 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

Ξ.

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 172:

TTGCCCCGCA CGGCGGTGTG NTTCCTAGAA ATAATGAATA TAAAGAGAAA TATATAACAA 60
CGATTTTGAA TTATGAACCT GGTGATATCG TTACAATCAA ACGTGTGAGA GATAAGACCG 120
ATTTGCTAAT ATATTTGTCT AGTAAAGATA TTTCTATTGG TAATGAAGTG GAAATTGTAT 180
CGAAAGATGA AATGAATAAA GTAATTATCA TTAAACGTAA TGATAATGTA ATTATTGTCA 240
GTTACGAAAA TGCAATGAAC ATGTTTGCTG AAAAAATAAAA TAAAGAAGCC ATAAAGATAT 300
CCATGATTGA ACTGATAAAG ACATATGGAT AATTGCTTTA GGCTTCTTTT TTATTAGTTA 360
ATTTATCAAG TGAGTATATT TGAGTAAAAT ATTCACTGCA TAAAGATTGA AGATAATCCA 420

55

50

30

35

40

	CTGTGGACTC	GGACGCTGGA	AAGTCAATTT	AGCAATCGTC	CAACTAGATT	GTAGAACTTC	540
	GCCTAATAAT	ACACCTAAAA	TATATTGATA	ACTCATTGTG	ACAAGTAGTT	GAATTTCTAC	600
5	TATATTTTCA	TCTTTTAATA	TAAAATACAA	CATGATAGAA	ATTAAAGTTA	TAACAACAAT	660
	GGGTGAGCCT	TTTCtAGATG	TTAAAATTAA	AAAATAAATA	AATATCAATA	AATAGGTAAA	720
	TATAAAGAAA	CTAGGTATCT	GATAATGGCT	CGACGCTAAA	CCTATCAATA	ACATAATAGG	780
10	TGGCATAAAA	TAACCACCAA	TCGTTGTAAG	CCATTGGCCT	GCTAGATGTC	TAGATTGTGT	840
	AATTGCGAAT	CCTTGTTGTA	ATGTCTGTTG	TCGCTCTCGT	GGACTTGTTA	CAATGACTAA	900
15	ATCTTTTGCA	CGGCCACCAG	CGAGTTTATT	AAACAGTACA	TGACCAAATT	CATGTGTTAA	960
,,	AACAGGGATA	TAGTTTAAAA	TGACATCTAA	ATAGTTCAAA	ACAGGCTTAT	GTCTATATTG	1020
	ATGAATAGCA	ATATAACAAG	CTGCAACAAT	AACGATAATG	TATATATTAA	GTTGAATTGT	1080
20	CGTATTAAAA	AAGTTTGATA	AATAATTCAT	TGTTAACCTC	ATATAAGATA	TTAATTTAAA	1140
	GTTTGCTTAT	CACTTATTAT	AAATGATATT	GGCATCAATA	GCGTTAGACT	TTAGACTTAC	1200
	CTTAGTTAAA	CTAATTTTAA	TTTTTGAAAA	GGTGAATATG	TGTTAAAATA	AAGCAAAATC	1260
25	ATTTCGATAT	AAATAGGATG	AATATAAATA	CTGTTAATAT	TGATTACACT	AACATAATAA	1320
	TGAAATAAGA	TAGGAGATTC	CTGTTATGAC	TGTTGAAGAA	AGATCCAATA	CAGCCAAAGT	1380
	TGACATTTTA	GGGGTCGATT	TTGATAATAC	AACAATGTTG	CAAATGGTTG	AAAATATTAA	1440
30	AACCTTTTTT	GCAAATCAAT	CAACGAATAA	TCTTTTTATA	GTAACAGCCA	ACCCTGAAAT	1500
	AGTGAATTAC	GCGACGACAC	ATCAAGCGTA	TTTAGAGTTA	ATAAATCAAG	CGAGCTATAT	1560
	TGTTGCTGAT	GGGACAGGAG	TAGTCAAAGC	TTCGCATCGT	TTAAAGCAAC	CTCTAGCGCA	1620
35	TCGTATACCT	GGTATTGAGT	TGATGGATGA	ATGTTTGAAA	ATTGCTCATG	TAAATCATCA	1680
	AAAAGTATTT	TTGCTAGGGG	CAACTAATGA	AGTTGTAGAA	GCGGCACAAT	ATGCATTGCA	1740
40	ACAAAGATAT	CCAAACATAT	CGTTTGCACA	TCATCACGGT	TATATTGATT	TAGAAGATGA	1800
	GACAGTAGTG	AAcGnAnTTA	AACTGTTTAA	ACCTGATTAC	ATATTTGTAG	GTATGGGATT	1860
	CCCTAAACAA	GAAGAATGGA	TTATGACACA	TGAAAACCAA	TTTGAATCTA	CAGTGATGAT	1920
45	GGGCGTAGGT	GGTTCTCTTG	AAGTATTTGC	TGGGGCTAAA	AAGAGAGCGC	CTTATATCTT	1980
	TAGAAAATTA	AACATTGAAT	GGATATATAG	AGCATTAATA	GATTGGAAAC	GTATTGGTAG	2040
	ATTAAAGAGT	ATTCCAATAT	TTATGTATAA	AATAGCCAAA	GCaAAAAGAA	АААТААААА	2100
50	GGCGAAATAA	TCATGATGAC	AAAAATAAAA	CCGAGGAAAT	CCTTAAATGG	AGATTCTCGG	2160
	THE THE PERSON AND TH	מיד א מידיים אידים	ACCAACCGG	ACTCATCGAG	ው ነው ነው ነው ነው ነው ነው ነው ነው ነው ነው ነው ነው ነው	A Tall Catalandal	2220

	CATCAAGTTC	ACCGTAATCT	TTTAACTTTC	CGCCTTCAAT	CCAAGCAATC	TTAGTACAAA	2340
	ATTGTCTCAC	TTGTCCTAAG	TTATGACTAA	CGAAAAAGAT	GGTTTTGTTT	TGCTCTTTAA	2400
5	ACTCGTAAAT	TTTATCTAAA	CATTTTTGTG	CAAAAGTTTG	GTCACCTACA	GATAAAGCTT	2460
	CGTCAATGAC	TAAGATATCT	GGATTAACTG	TGATATTAAT	TGAAAAACCA	AGTTTTGCAC	2520
	GCATACCACT	TGAATACTTT	TTAACTGGTT	GATAAATAAA	CTCACCAAGT	TCACTAAATT	2580
10	CAATAATCTT	AGGTGTCATC	GCTTTAATTT	CTTTTCGCTT	AAAGCCCATA	CATAACATTT	2640
	TAAATTCGAT	ATTTTCAATC	CCTGTAAGTT	GTCCACTCAA	GCCAGCACTA	ATTGCGATAA	2700
15	CGCTGACTTC	ACCATTACGA	TCCACTTTGC	CAACAGTAGG	CGACAAAGAA	CCGCCAATGA	2760
	TATTGCTCAA	CGTTGATTTG	CCGGAACCAT	TGATGCCAAC	AAGCCCTATG	ACGTCACCTT	2820
	CATATGCTTT	TAAACTAATG	TCATCTAAAG	CGAAAAATGT	TTTGTTTTTA	TGTTTGGGAA	2880
20	TGAGCGCATC	TTTCATACGT	TCTTTATTTG	TACGATAAAT	ACGATATTCT	TTTGTTACAT	2940
	TTTTAATGTT	TACCGAAACG	TTCATTTGTA	GACCTTCCTT	ATTCACATTT	ATCTAGATTA	3000
	TAATATACTA	CTCAACAGTT	GTTAAATTTT	AAAACCTGTT	GTAAAGTGTA	TAGAAGATTT	3060
25	TGTTATTATC	AGAGTGGGTG	TTTTGACACA	AAATGTTAAT	CATCAATGAT	AACAATGATA	3120
	TTTAAAAACT	AAACTTATTT	CAACTTACAT	GATTGTATAC	TATAATGTAT	TTGTAATAAA	3180
	CTAATATTTT	AAAGAACTAG	ACAATAATTT	TGATAGCATC	CATGTATAGT	GATAGTATTT	3240
30	ACAACAATTA	TTATAATACT	ATTTAGTTAA	GTAGAGAAAT	AGTTAAACAT	TTGAAAGTGT	3300
	GGTTTAATGG	AATGTCAGCA	ATAGGAACAG	TTTTTAAAGA	ACATGTAAAG	AACTTTTATT	3360
25	TAATTCAAAG	ACTGGCTCAG	TTTCAAGTTA	AAATTATCAA	TCATAGTAAC	TATTTAGGTG	3420
35	TGGCTTGGGA	ATTAATTAAC	CCTGTTATGC	AAATTATGGT	TTACTGGATG	GTTTTTGGAT	3480
	TAGGAATAAG	AAGTAATGCA	CCAATTCATG	GTGTACCTTT	TGTTTATTGG	TTATTGGTTG	3540
40	GTATCAGTAT	GTGGTTCTTC	ATCAACCAAG	GTATTTTAGA	AGGTACTAAA	GCAATTACAC	3600
	AAAAGTTTAA	TCAAGTATCG	AAAATGAAcT	TCCCGTTATC	GATALACCGA	CATATATTGT	3660

(2) INFORMATION FOR SEQ ID NO: 173:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 13868 base pairs
(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 173:

55

45

	ATTAATCACT	TGTTGTGTAG	AGTCTTGTCC	GTTTTGGTTA	TGATTGTTAG	CCATGATATA	120
	CCTCCCTTAC	AACACTCGTG	GACCAGAAGT	TTTCTGATCT	CTCACATTAA	CTTCTAACTT	180
5	ACGTACTGGC	ATTTCTGTGA	AATATTCTAC	ATTCTTTTTA	ATATCCGAAC	GAATTGCTTC	240
	AGTTAAAGAT	TGAACTTGAA	CATTATTTGG	TACGAAAAAG	TCAGTTTTAA	TGTCGATATA	300
	AGATTTATTT	TTTTTGTTAT	ATAGTTTCGC	AACTACATTT	GGTTGTCTTA	CTTGATCATA	360
10	TTTTGCAACC	GTATCGAATG	CCGTCTTTTC	AACAGCTTTA	CGAGATACGT	AAACATGACC	420
	ATCATCGAAG	TCTTTGTATA	ATCCAGGTTT	TCGATGCGTA	GGTTTGAAGA	TACTAAATAC	480
15	TAATATAAGA	CCTATTAATA	TCAATAGTGC	AGCAAGTGAA	ATAAGTAATG	GTTGGAACCA	540
	TTCAAATTGA	AGGAAGTAGT	CTTGATATTC	AGTTATACGT	CCATCTTGGA	TATACATGAA	600
	TAACAGGAAC	CCCACGATTA	CTACTATTAA	TAAGCCAAGG	ATAAAGTTTT	TAAGTCGTTT	660
20	CACCCCTAAC	GACACCTCCT	TAGTTAAAGT	TAATTTAAAA	ACATATTAAA	TATGTACCCA	720
	TCAGTTTTTT	TCTTAAACAT	AATAAATTAA	TAACTTTAAA	TTTATTTTTA	ATATATAAGA	780
	TGAAGTACCA	TTTAGTAATA	TATTCCCTAG	TTTTTGTAAA	TAAAACCTCA	TTATTAATTA	840
25	ATTYTCGTCA	ATATGTTTTG	AAGAACGATA	TTCTAAAATA	TCTGGGTCAC	GATGTTTAAT	900
	TAAAACCTTA	TTACTATTTC	TCGGTTTCTC	CTCACTCAAA	GATTTTATAA	GCGACCATAT	960
	CATCGCTATA	ATGACCACGG	AAAATGGTAA	CGCAGCAATG	ATTAATAAAT	TTTGAATTGC	1020
30	TTGAGTACCA	CCTGTGTAAA	TCATGATGAT	TGCAAATAAT	GCCATAATGA	TACCCCAACT	1080
	CACTTTGACA	AATGACTTCG	GATTAATATC	ACCACTTGAA	CTCAACATAC	CTAAAACATA	1140
25	AGTTGCCGAA	TCCGCTGATG	TAACAAAGAA	AATCATAATA	ACAAGTAAAG	TAATTAAGCT	1200
35	TAATACAAAA	CCTAGCGGAT	AATGTTGTAG	CGTCGCAAAA	GTTGCTGTTT	CTGTCGCAGC	1260
	TTTAGCAATA	TCGGCAATAT	GATTATCTTG	TAAGTAAATT	GCTGACGCGC	CGAATACCGC	1320
40	AAAGAATATA	AAGCAAACTA	ACGCCGGGAC	AAAAAGTACA	CCTAGAATAA	ATTCTTTAAT	1380
	CGTACGTCCT	TTTGACACAC	GTGCAATAAA	TATACCTACA	AATGGTGCCC	AAGATATCCA	1440
	CCATGCCCAG	TAAAAGATTG	TCCAATTTTG	TAACCATTGG	AATTTTTGAC	CACCTGTCGG	1500
45	AATGCGTAAA	CTCATACTAA	AGAAATTTGC	AATATAATTA	CCTAGACCAT	TCGTAAATGT	1560
	ATTTAAAATG	TATAGCGTTG	GCCCAACAAT	AAAAAGACCA	ATAAGTACTA	CAAAAGCAAG	1620
	TAACATGTTG	ATATTACTCA	ACGTTTTGAT	ACCTTTATCG	ATACCTGACC	ATGCTGACCA	1680
50	AGTAAATAAT	ATGGTTGCAA	TGACAATCAA	GATTACTTGC	ATCGTGAAGT	TACTCGGTAC	1740
	ממשממשדם	אמשרבתאאר	СЛАГССТАТТА	TTGCAATGCA	СССАВАССТА	ATGTTGCAGC	1800

	CATTGCCTTT	TCACCTAATA	AAGGCGTCAA	TGTAGCGCTG	ACTAAGCCAG	GATATCCTTT	1920
	ATGAAAGCTA	AAATATGCAA	ACACTAGCGC	GACAATACCA	TAGACTGCCC	ATGCATGAAT	1980
5	CCCCCAATGG	AAAAATGAAA	ACTGCATTGC	ATCATTAATT	GCAGATTGCG	TGCCAGCTTT	2040
	ATGAATAGGC	GTTAATTTGA	AGGCATGACT	GATTGGTTCT	GCCGTTGTCC	AGAACACAAG	2100
	TCCTATTCCC	ATACCAGCAC	TAAATAACAT	AGCAAACCAA	GACGGCAATG	AGAATTCAGG	2160
10	ATCTTCGCCT	TCTTCACCTA	ATGTAATGTT	TGCGTATCTC	GAAAATAAAA	TATACACACA	2220
	GACAAATAAA	ATAACTAAAA	CGAGCAATAA	ATAATACCAA	GAAAAATGTA	GCGCAATAAA	2280
15	TGTAGTAATG	TTTTGCGTGA	GTTTTTCTAA	CTGTTTCGGA	AATATTGCTC	CAAAAGCAAC	2340
	AAATATCGTA	CATATCACTA	AAGATACCCA	AAACACTAGA	CTTACTGATT	TATTTTCAT	2400
	AAATACAAAC	CCTTTCTGTG	TAATGGTAAG	TTCATACCCA	TAACTGCAAC	ATTTTAATCA	2460
20	TTTGTAATTT	TATATAGACA	CAATTAATAA	TGCCTCATCT	TTTAAAAATG	АТАТАТААА	2520
	CACACTCAAA	TTATTTATCA	TTGAGCAACA	AAGTATTTTA	TTGTATTTAA	GTAATGCCTT	2580
	TCTAGTGCAT	TATTGATTTG	ATACCTGCAA	AGTTGCCATA	TTTCCGTTTA	GAATCAATAG	2640
25	TCGCTAGACA	САААААТАА	GTCGCCTATA	CAGTATTTTC	TGCATAAGGC	GACTTTACTT	2700
	ACTAATCTAT	ATATTAATTA	CTAATTTTCC	AATCATTGAT	TGTTTTTCCA	ACAATTGATG	2760
	TGCTTGATAT	AAGTTTTCAG	GTGATAAACC	TTCAAAAACT	TGTGTCGTTG	TTGGTTGGTA	2820
30	ATGCCCTGAT	TCTATATTTT	TCGTAATATC	TTCTAAATAC	TCATGTTGTT	TAATCATATC	2880
	AGGCGTTCGA	TGAATTGGAC	GCGCAAACAT	AAATTCATGT	GTAAATGTTA	TACTTTTTAA	2940
05	TTTTAATGCA	TTTAAATCTT	GATCTTCATT	AAAAGCTACG	ATAGTCGTAA	TATGCCCTAA	3000
35	TGGTTTTATC	AGTTCAATCA	TAGTATTGTA	ATACAAGTCT	GTATTATAGG	TGCAAAATAT	3060
	ATAATCTACT	AATGGAATTT	CTTTAAATTG	ACGCACTAAA	TCCTCTTTAT	GATTCAATAC	3120
40	GATATCTGCG	CCCATCTTTT	CACACCACTC	TGTTGTTTCT	TGTCGTGATG	CTGTTGTAAT	3180
	GACAGTTAAA	CCATACCGTT	TAGCAATTTG	AGTGGCTATA	CTGCCTACAC	CACCGGCACC	3240
	ATTAATGATT	AAGACAGACT	TCCCTTCGTT	TTCAGCAGGA	TTCGTAGAAA	TTTTAAATGT	3300
45	ATCAAAAAAC	GTTTCATATG	CCGTAATACC	AGTTAGCGGT	AGACTAACCG	CTTCATTAGC	3360
	ACTTATGTTG	TGTGGTGCTT	TTGCAACTAT	AGCTTCTGAC	ACCAATTGAT	ATGTCGCATT	3420
	TGATCCTTGT	CTATTTGGCG	ATCCAGCATA	AAATACAACG	TCACCCGGAC	TAAATAATGT	3480
50	AACGTCTGGT	CCGATAGCTT	CAACAGTACC	AATAGCATCA	AACCCAAGTA	CACGAGGTGC	3540
	מייועב א כיוויכ א כייוי	TO CATE TO COLO	المناطعة المناطعة المناطعة	ATCTACACCA	מ מידים מים מידים	TO COTA TETOTA C	3600

	ATTTCCTTCT	TCCAATTTAA	AGGGCTTCTC	AAATCCTATC	ATTTTCATAT	CGTTTCACCT	3720
	CATTTATGAA	CTTATTTCTT	ATTATACAAA	ATAGAAGCCA	TGTGTGCTTA	TATCGCAGCA	3780
5	TCATGACTCC	TTTTTCATTT	GAATATATAA	ATAATTACAG	ACGACTTTCG	TATTAAATTT	3840
	TAGACTTATT	TCTACCATGT	TGCTGAACAA	ATTTACTTTA	GATAAAAAAT	TATTAAATTT	3900
	TGGTCAATTA	ACAAAGTTAG	TTTGTTAAAA	CGTgATACTT	TATTATTCCG	TTACTTTAAT	3960
10	AACTTGTTTA	CCAAAGTTAT	CGCCAGTaAA	TAAATTTTTA	AATGCATGTG	GCGCATTTTC	4020
	AAAACCATCT	TCAATGGTTA	CTTGTGACTG	AATTTTACCT	TCTTGAACCC	ATGTTGCAAG	4080
15	CTGTTCACTA	GCTTCTTTAA	AAGCATTAGC	GAATTCACTT	ACCAAGAAGC	CTCTCATCAT	4140
	TACTTGCTTC	TTAATAAGCG	TACCTTGAAT	ACGTGGTCCG	ATATCGGCTT	CAGGATGATT	4200
	ATATGACGAA	ATTGCGCCAC	ATACTGGTAC	ACGTGCAAAA	CGATTTAAAT	GCTTAAATAC	4260
20	TTCATCGCCA	ACTGTTCCAC	CAACATTTTC	AAAATAAACA	TCAATACCAT	CTGGTACTGC	4320
	TTGTGCTAAC	GCTTCTGCAA	AATCCTCTTT	CTTATAATCA	ATACCAGCGT	CAAAGCCCAG	4380
	TGTCTCTGTT	AAATAATTTA	CTTTTTTGTC	GCCACCCGCA	ATACCTACTA	CACGGCAACC	4440
25	TTTAATCTTA	GCAATTTGAC	CTACAACTGA	ACCTACAGCA	CCAGATGCAG	CTGAAACCAC	4500
	AACAGTATCA	CCGGCTTTAG	GTTGTCCAAT	ATCAAGCAGA	CCATGATATG	CTGTTTGTCC	4560
	TGGCATTCCT	AAAACACTTA	AATATAAATC	AAGTGGTACA	TCTGTCGTTG	GAACTTTAGT	4620
30	AATTTGATCC	GCTTGGACAT	GATTAATGAT	TCGCCAAGGC	AACATACCTA	CAACGACATC	4680
	TCCTTTTTTA	TAATCTGCGA	GTGTCGAATC	AATTACTTTT	GCAACGACAT	GGCTAACAAT	4740
35	CGGTTTACCA	ATTTCAAAAG	GCTGTACATA	CGAATCTGCC	TTAGTCATAC	GTCCTCTCAT	4800
33	ATATGGATCC	ACTGAAATAT	ACAGCGTTTG	TACAAGTACA	CCATCGCTCT	CAAGTTTaGG	4860
	CGTGFCAATC	TCTTCaATTT	TGAATGTATC	CTCTTGAGGC	ATGCCKTCTG	GTATTTTGTT	4920
40	AAAAAGAATT	TGTTTATTTT	GCATCATTAA	TCACCTTTCT	TTATTTGAAA	CTTTTACTTA	4980
	TTTGTTACTT	AAGCGTTAAG	TTTGAATTGT	GTCtTCGTGA	TGTCTGTATG	CAAATACATT	5040
	CTTAGTTGTT	ATATTTTGAC	TTAAGCACTG	ATTCATTCAT	GTAACTTCAA	CCACATTATA	5100
45	TTTGCTATAA	TCATAAATTT	AAAATGTTAC	GACTTAGACA	TTTTATGGAA	ACTCTCAAAC	5160
	AATAGATAAT	TTTTGAAAAG	CTCTAATATT	ACAAGCTTTT	TTGCCCCAGA	AAAACTAGCA	5220
	GTTGCTTTAT	TTTTTCCATA	AGAAGTCGAT	TAACTCATTA	GCAACATTTT	CATTCTCATG	5280
50	AAGCTGACTA	TGTTGTGCAG	GCTCACCTTC	ATATTTAGAT	TCTCGATAAC	TTTTCGGACT	5340
	ATTTCCCACT	ΔΑΤΑΤΉΤΑ	ል ተርልተተተርርል	∆כב∆∆ריידאידיא	GACACTCTGC	ССТСТСААТС	5400

	ATCTTTTAGC	ACGCGTAATT	GCTGATAAGG	TTGATTCATT	CGACTTGGTT	TACCATCTTT	552
	ATCAACTGTA	ATTTCATTGA	CATCTTCATT	CATATTTAAA	ACACCATTAA	ATGTCCCTGC	558
5	AATATTCACT	TGTTTGTTTA	ACTGTGGCAG	TGACTTGTCG	TTACCATATG	TCATCATATA	564
	TTGTGCAAAT	GTTAAGTTCC	CCATTGAGTG	ACCGACAAAG	TTGAATTTAT	CGAAATTGTA	570
	TTCAGATTGT	AACTTAGTCA	GTACATTTTT	AAACCACGCA	GCATTCTTAT	CCAAATAGCC	576
10	TTGTCTGTTA	TTTTCAAGTT	CAATTTTCAC	AATAGGATTC	ACTGCATCTT	TTCTTAGTTT	582
	CCCTTTAAAT	GTCACTGCAC	CATCCTTTGA	AACGTAAGCA	GTGATGATAT	CTTTAGTTAC	588
15	CCCTCTTTTT	TCTGCTTGCT	TCACCATAAA	CTTTTCAGAA	TTGGCACTAC	CACCAAATCC	594
,,,	ATGTAAGAAC	AATGTTGGAA	TTGGCTTTTT	AACAAATTGC	TGTTGTTGTA	TTTTAAATGT	600
	TTGTGCCTGT	CGTTGACTAA	ACACCACCAT	AATAATAGAG	CCTATAATAA	TAGCGACCGC	606
20	TAACAATGTC	GTAATAATTA	CAAAAATTTT	CTTCACACTT	TTAACTCCCA	TTCATGTCTT	612
	TTATATAAGT	ATAAAGGATG	TGATTAAAAA	TGTCCTTTAG	TTGATTTTGA	ATACATCATT	618
	AACTTTTAAG	ATGACTTTGG	AAAGTTGTCC	GTTAACGTTT	GTTAATTGAT	TGCTTCTTTA	624
25	GCTTTCAATG	GTGTGTCACC	CATTGATTAA	TATATAAATA	TGTATATGCA	TGTTTAATTT	630
	ATCTCTTTCT	ATAAATAAAG	ACCTACCAGC	ACTCGACTGA	TAGGCCTTTT	AATATCTATA	636
	ATTATTTAAT	TTCTTTTGTT	TCGGCTAACT	CTTTGTACCA	ATAAGCACTT	TTCTTAGGAT	642
30	AACGTTCTTG	AGTCTCAAAA	TCGACATAGA	ATAAACCATA	TCGTTTTTCA	TAACCATTTG	648
	ACCAAGAGAA	CACATCCATT	AATGACCAAA	TAAAGTAACC	TTTAACATTT	GCACCATCTA	654
	TAATAGCATC	TGCAATAACG	TTCAAATGTT	GTCTTACATA	ATCAATACGT	GCATCATCAT	660
35	GAACTGTTTT	TTCAGATTCA	ATAAATTCAT	CTTTATATCC	TAAACCATTT	TCAGTGATAT	666
	AAATCTTATG	aTAGTTAGGA	TAATCTTTAA	CAACACGCAT	Gatttgatca	TATAAACCTT	672
40	GAGGATAGAT	CATCCAGTCC	CAGTCTGTGC	GAGGTACGTC	GACATCAAAT	TCACGTTGTC	678
	CGACACCTTT	AAGTTGGTAT	TTAGAACCGC	CTTTATCACC	TGTCGCATTA	TGCGTGATTT	684
	CAGATTCTCC	ATCGTAACCT	CTCATCCAAT	CACTCATGTA	GTAATTGATA	CCTAAGAAGT	690
45	CGTTTAAATC	TTTGGCTGCA	TCTAAAATGG	CATAATCTTC	ATCTGTAATG	TTTAATTTAC	6960
	CGCCATTAAC	AGATAAGATA	TGTTGCACAC	CTTCCATCGT	TTCACGAGAA	TACTTACCTA	7020
	AATATGTTGC	ATCTAAGATG	AATTTATTAT	GGATGATATC	TTCTAATTCT	GCTGCACGAA	7080
50	CATCTTCAGG	ATTTGATGGA	TCGAACGGAT	ATTTTGTTGG	CAATGCGTGT	ACAACACCAA	7140
			mcmmm		mama a a a ma a		720

	CTACTAAATA	TTGACCATCA	CCAATAGGTC	CAATTTCATT	GAATGTAGTC	CAATATTTTA	7320
	CTTCTGGGAA	TTCTTTAAAA	CAATATTCAG	CATAATCTAC	AAAGTAGTCA	ATCGTTTTAC	7380
5	GATTTAGAAA	ATCGCCATCT	TTGTGTAaCA	CTTCTGGTGT	ATCAAAATGA	TGCAATGTTA	7440
	CAAATGGTTC	AACATGACGT	TTATGACACT	CTGCAAATAA	CTTATGGTAA	TACTCAACAC	7500
10	CTTTAGGGTT	AACTTCGCCA	TATCCATTTG	GGAAGATACG	AGACCATGCA	ATTGAAATTC	7560
10	GGATACCATT	AACACCGAAT	TTTTCACTTA	ATTCTAAATC	CACTGGATAT	CTGTTATAAA	7620
	AATCACTCGC	TGGTTCTGCA	GTGTACCAAT	AGTTTTCTTC	TAAATACGTA	TCCCATGCTA	7680
15	CGCGACCTTT	ACCATCCGTA	TTTGTCGCAC	CTTCTGCTTG	ATATGCTGCT	GTTGCTCCAC	7740
	САЛАЛАТАЛА	ATCTTCAGGT	AATGTTTTAG	TCATATGAAA	AACTCCTATT	CTTAATTTTC	7800
	AAATTGTTGT	TGAACGAAAT	CAAGGGCTGC	TTGGCCATCT	CGTGTCAATT	TGATATATTC	7860
20	AGCACCTTGA	GTCTTCGCTA	ATTTAATACC	TAATCTATCT	GTATCTTGCT	TAATATCTTC	7920
	ATAGTTAGAC	GCAACTTGTG	GCGCTAAAAT	GATTAATTGG	TACTCTTTCA	TAATGTCCAT	7980
	ATGTGCGCCA	TATCCGCCAG	CTGCCGCTTT	CACTGGCACA	TGATATTCTT	CAGCTGCTTT	8040
25	ATTAAGTGCA	TTGGCTAATA	ATCCACTTGT	ACCACCACCG	GCACAAAGTA	CTAAGACATT	8100
	TGTTTGTTCT	GTGATATTTG	AAGCTTTAGC	TGCATCGTCT	GATACACCAC	TTGCCGCTAA	8160
	AATTGAATCA	GCTTTTTTCG	TATCAAAGTT	TGCTGCAACT	TTTTCTTTTA	AATCTGAATT	8220
30	ACTITCTITA	CGTCCTTCTT	CTTCATCAAG	AATTTCACTA	TCATAAACTT	TTAGGAATGG	8280
	GTAGTAAATA	АТААТАТСТА	CAACAATCAA	AGTAATAGCT	AGTACGAATG	ACCATAAACC	8340
35	AAAACCTGTA	CCCATGATAA	TGCCCAATGG	ACCTGGTGTT	GTCCAAGGTA	AATTCACACT	8400
	AAAACTATTC	ATTCCTAACA	CTTCAACGAA	AAGTTTGAAA	ATCCATACGT	TAACAATTGG	8460
	TGCTĀATACA	AATGGAATAA	AGAACACAGG	ATTCAATACT	AGTGGTGCAC	CAAATAAAAT	8520
40	TGGTTCGTTT	ACACCAAAGA	ATGTTGGTAC	AACTGATGCA	CGTCCAATCG	CTTTGTTTCG	8580
	TTTAGATTTC	GTCATCCACA	TAAACATGAA	CGGGACGACC	AATGTTGCAC	CCGTACCTCC	8640
	AAATGTAACG	ATAAACATTT	GTGTACCTGA	TGTAATAATT	TTATCTGCGT	GTTCTCCAGC	8700
45	TTGAAGCAAC	TTGAAGTTCG	CTTCGATATT	CGCATATGTA	ATGGCTGCAA	TTGCTGGCTC	8760
	TACAATTGAC	GGACCATGAA	TACCTACAAA	CCAGAATAAT	GCAAAGGCAC	CAAAGATAAT	8820
	TGTGACACCA	ATCCATCCAT	CTGCTGCTGT	AAATAATGGT	TCGAATAATT	TTAAAATACC	8880
50	TTCCGCTACA	TTTGATTTAA	AGCTGTTGCG	AATGACTAAA	TCTAATGCAT	AAAGAATGAT	8940
	GATTACCGCT	ממסטיוממממס	ተሞል ልርጥርር ልተሞ	ייביצדידי מייי מע	САВАТАТТСС	CCCCTA CTTC	0000

	AAATGCTGAT	AAGAATGCTG	TTAATAAACC	TTTAGTTCCC	ATAAATGCAC	TTAAGAATCC	9120
	ACCATCTTTG	GCTGGATCAG	AAGCTAAGAA	CAAGAATCCA	CACATCGCTG	CTAGCATTGT	9180
5	AGAAATAAAG	TTAATTTGAT	TTGTACTTTC	TAGCTTACGG	TTAAATGAAT	CTGTTAAAGA	9240
	TTTCGCTGTC	GTTCCTGCTA	CTAAAAATGC	TACAAGCCCC	ATCGTATAGT	TATATGGTTT	9300
	CATTAAAATG	GCTTCCATGC	CTTTATCCCA	TTTAAAACCA	AATATATTTG	GCACATATGC	9360
10	AATTAATAGA	AAGATACTTG	AGAATAAGAT	GACAGGCATT	GCAGAAATAA	ATCCATCACG	9420
	GATGGCTCTT	AAATATATGT	TACGTGATAA	TTTCTCGAAA	AATGGCTTCC	CTTTTTCAAT	9480
15	TTGTGCGATC	AATTTTTGCA	TCATTGTCAT	CACCCTCTTT	TATAAAATTC	TAATAAATGC	9540
75	TTCATTAAAT	CTTTCAGTAA	AATTGTTGTC	ATTAAATGAT	CTTGACCATG	CATCATCGTT	9600
	ACACTGTATG	CAATATCATC	ACCTTGCGCT	TCTTTAGCCA	ACAGGCTTGT	TTGTGCTCTA	9660
20	TGCGCTTCCG	CAATGCAATT	GTTTCCTTCT	TCAATCAGTG	CATCTGCTTT	TGCAAAATCT	9720
	CCAGCTTGAG	CTGCTGTTAA	TGCTTCTAAA	AACTTAGAAC	GTGCATCCCC	TGCAAATGCA	9780
	ACAATTTCAA	AACCTAATAA	TTGGACTTCT	TCTCTATTCA	TAGCATTAAT	CCCCTTTTAA	9840
25	ACTTATTTTC	TTTGTTTCCA	AGATGTCGCA	GTATCTTTTA	ATACTTTATT	TAAGTCATCA	9900
	ATATTTTTGA	AACCAGTTGT	ACGTAACCAT	TCACGAGCAG	CATCTTCACC	TTGTTCAATG	9960
	TATACTTGAA	CAGCACCAGA	CCATGTAGCA	CGGCCACAAA	GTACCCCGTT	GAATTTAGCA	10020
30	CCAGCTTCGT	GAGCAAATTT	TAAAGTTTCT	TGGAATAATT	CCGCAGAAAC	ACCAGCACTT	10080
	AAGTAAATGT	ATGGTAAATG	AGTTGCTGCA	TCTTGATCTT	TAAAGTGTTG	TGCCGCTTCC	10140
	TCTTTTGTAT	AAACCACTTC	ACCTTCAGCA	AAGCCTTCTA	CATATTTCAT	GTTTACTGGT	10200
35	ACTTCAACTT	TCAATACATC	AACGTTAAAG	CGTGGTTCTG	AGAATAATTT	CATTGCTTCG	10260
	TTAACCTTTC	TAGGCTTAAC	TTTTGCGAAT	TCAACACTAC	CGTTATCAGG	AATGTTGTCA	10320
40	TCGTATGTTA	ATACTTCTAA	AAAGAATGGA	ATATCTTCTG	CAACACATTC	TGAACCGATT	10380
	CTTTCAATGT	ATGCTTTCTT	TTGAATGTTA	ATTTCTTCAG	CATCATCAAC	ATCATAGTAA	10440
	AGTAAGAATT	TAACAGCATT	TGCGCCTTGT	TCTTTTAAAC	GTTTTGCAGA	CCACTCTACT	10500
45	AAACAGTCAG	GTAAACGACC	TTTAGCGTTT	ACGTCATATC	CAGTTTTTTC	ATAAGCAAGT	10560
	AATAATCCAC	AATCTTTGTT	ACGTGCATCT	GAAGCTGGTA	AACCATATTC	AGGATCTAAT	10620
	AAAATTGAAG	ATGCATATTG	TGTTAATTCT	TCCGCAACTA	ATACTTTTAA	TTGTTCAATT	10680
50	TGAGCTACAG	TTGGTTCTTC	AGTTTGATGT	TTTGCCATCA	TGCGTTTTAA	AGCACCACGT	10740
	TCCTC3 3 3 TC	OTT > TO C > C >	3 3 TO 3 TO 3 COTT	moormonns o	THE R A CONTACTOR	3 3 000C 3 0C CC	10000

	TCATCATAAT	TATTTAAATT	GACATAACCT	GTTTGTGCTT	CTTGTGCATT	CAGCATGCCT	10920
	AAAGTATTGG	CTTTTTTTAG	TAAATCGTGG	TCGTTTTCAT	GATTAAGAAT	TGCTGAAGTA	10980
5	ATTCCAGCAA	CTGTAGAATC	ACCTGAACCA	ACCGGATTTA	ATACACTTAT	TGTCGGAATA	11040
	TTCACTCTAT	AGAATGTATG	ATTGTGCTTA	GCGAATGCAC	CTTGTGCACC	TAAAGACACA	11100
	ATAATCCACT	CAATCCCTTC	GAATAAGGGT	TGTGACACTG	CCTGTTTCAA	ACTTTCTAAA	11160
10	CTTTCATCAA	GTGGCTGGTT	AAGCAATTGA	TATAGTTCAG	AAATGTTTGG	TTTAATGACT	11220
	GTAGGTTTGT	ATGGATTTTC	CAAAACTGTT	TGCAAAGTtG	CACCCGAGCA	ATCTAATATC	11280
15	ACAGGCACAC	CTTTGTTTTG	GCATCGTTCA	ATGATTTGTG	САТААТААТС	TTGATTTAAT	11340
.0	CCTTTAGGTA	AGCTACCTGA	AATAGCAACT	GCTTCAACTT	TTTCTAATAA	TTGTTCAAAA	11400
	TGTTTAATAA	ATCCTGCAGC	CTCTTGATTA	TCAATCTCCG	GTCCCTGCTC	TAAAATTTCT	11460
20	GTTTGTTGCC	CTTCATGTAA	AATTGCAATG	CAGTTTCGTG	TTTCACCCTT	AATGTTATAA	11520
	AATGCATGCT	TGATGTCGGC	ATGATCTAAT	TTTTTAGCAA	TAAATTGACC	TAATTCACCG	11580
	CCAATAAAAC	CACTCGCAAG	GACTGGCTCA	CCTACTTGCG	CAAGTACTCT	TGTTACATTT	11640
25	AAACCTTTAC	CACCAGCTGT	TTTACTTACT	TCTTGAACAC	GATTAACATC	ATCTAATTTC	11700
	AATGCTGTTA	ATGGGTATGA	AATATCAACG	GATGGATTTA	ATGTTAAAGT	TAAAATCATA	11760
	TGTGTCGTCC	CTTAATCGTG	GTATTCGCCT	CTGTCCCATT	TTTCTAAGAA	TTCATCAAAG	11820
30	AAATGTGGAT	CAGCTTGATC	TGCATTGCTT	GTTTCTAAAT	GTTTAATTTT	AGCGATTAAT	11880
	TTTTTGTTCT	CTTCAGTTGG	TTTATATTCA	GCATTAATAA	ATGCATCGAT	AATATCGCAC	11940
	ATTAATAACT	CACCTATAAT	ACGTCCACCG	AAGCCAATAA	CGTTCGCATT	TAATTCTTCT	12000
35	TTAGCGTATA	ACGCTGATGT	CATATCACGT	ACTAGTGCTG	AACGAACGCC	AGGTACTTTA	12060
	TTTACAGCAT	TGTTAATACC	AACACCTGTT	CCACAAATAC	AAACACCTAA	GTCTGCATTA	12120
40	CCGCTAACAA	CTTGTTCGCC	AACTTTTTTA	CCAAAAATTG	GATAATGTGT	TCTTGTGAAA	12180
	TCGTATGTTC	CTACGTCAAT	GACTTCATGT	CCTTTTGATT	TTAAAAATTC	AGATACACGC	12240
	ATTTTTGTAT	CTGTAACAAT	ATGGTCGCAT	CCTAATGCAA	TCTTCATAGT	AATTTTTCCT	12300
45	CCTTAGCACA	TTTTATTAAG	CATATCTACG	CGGATTTGGT	GTCTACCACC	ATCGTATTTA	12360
	CCTTCAACAA	AACCTTTAAC	GACATTTTTC	GCTAATGTGT	CTCCAACAAT	TTCAGATCCC	12420
	ATAGTGATCA	TTCTTGAATT	GTTATGGCCT	CTAGTCATAT	ATCCAGAGCG	TTCATCTGAT	12480
50	ACTTCAGCAG	CAATCATGCC	TTTGATTTTT	GTAGCAACCA	TAAAGCTACC	TGCACCAAAT	12540
	GCATCGATAA	CAATACCTAA	GTTACCTTCT	TGACTTTGAA	CATCTTTTGC	TACAGCCAAA	12600

	TCTAATAAGT	ATGATTTGAT	GACTTCTTTT	AATCGTTTGC	CAGCTTCATC	TGAACCAATA	12720
	ATAATCGCCA	TAATAAGACT	CCTTTTTACT	TTAATTTTGA	AATACCTTTC	TTAAAATGTG	12780
5	ACATATTTAT	TTGTAGGTTA	TGAAAATCTT	GAGAAAAGGC	TTTCAATTTG	ATTACGTTTA	12840
	AATTATAAAC	ATAAACAAAC	AATAAATCAA	CATAATATGT	TTATAATATG	TTTGTTTATG	12900
	ACGTATTTTC	AAACAATAAG	TGAACATTCA	TATTGTGGTG	TTGTTTTAAT	TAGGTATTCG	12960
10	TCTGAAATTG	TAGTAAAACT	TTGTCGAGGT	TCCCGTTGaC	ATAAATTTGC	ATAAAAAAta	13020
	GCCCATAAAT	GAATGCAAAT	TCACATTCAC	TTATGAGCAT	ATAGATACAT	ATTTTAACAA	13080
15	TGCAGTTATA	CTTTTAATTT	AGTCGACTAC	TTCAATATAT	GTTTTAATCG	TTTCTACTTT	13140
	TTCTTCATCT	TCATAGTCCA	TGACCACTGC	AGTCAATTCG	TTTAACTGAC	AAAATGATGT	13200
	AAAATCTTCT	TTGCCAACTT	TCGTATGATC	GATTAACAAG	TATTTTTCAA	TTGAATTACT	13260
20	TAGTGCCAGT	TGTTGCGTAT	AGGCTTCATC	TAATGTAGAT	GTCATCACAG	CACCTTTATT	13320
	TACTGCGTTA	CTACTAAAGA	ACATCTTGCT	AAATCTTAGT	TTTTCCAACA	TGGCGTTCGC	13380
	CATTTCACCT	ACAAATGCTT	CTGTAATATG	GCGCATTTCA	CCACCAATTA	AATAGACACG	13440
25	AAAATGTGCT	GTTTGTTTTT	СТААСААААТ	TTTATACACC	GGCAAACAAT	TCGTAATAAT	13500
	TGTGAGCGTA	TGATGATTGA	CTTCTTCTGC	TAATAGTTCC	ACTGTTGTTC	CTGGTCCGAA	13560
	AAACAAAGTA	TCCCCATCTT	CAATTAATGA	TGCAGCTTTT	TTAGCTATAA	ATCGTTTTTC	13620
30	TGCAATTTGA	CGGGTATGTT	TTTCTTTATG	CGATATTTCT	TTATACTGAA	ATGTTGAATT	13680
	ACTGCGTGCA	CCACCATGAA	TCTTCGTTAA	AATCCCTTTA	TTTTCCAATT	CAATTAAATC	13740
25	TCTTCGAACT	GTCATATCAG	ACACATTTAA	ACCTTCGACG	ATTTCATTCG	TTCTTATCGT	13800
35	GCCCTTTTTA	TTCACTAGTT	TAGCAATTTC	GTCCAAACGT	TCATGTTTAT	TCAATGTAAA	13860
	ATTGCCTC						13868

(2) INFORMATION FOR SEQ ID NO: 174: 40

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 4549 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 174:

TTAAGTCAAC TTTGTCTATA CGGTTTGGAT CLTCTaCCCA ATGTCTTATA AAAGACAATC 60 CCGCACCTGA AACATAACTC ATGAAATAAG AAAATGGTAT ACCATTAATT TGATCATTTT 120

55

50

	AATCTTTACC	CATACGAAAC	ATCAATTGAT	AAAATGCGAT	GTCTTTTTCT	ATCATTTCTA	240
	TTAAAACGGT	CATAATTTGA	TGTATGTTAT	CCGTGGATAA	CTTAACTGCT	CCATTTAACT	300
5	TCTCATCATG	AATGAAGTCT	CTTATTTCCT	CCAACTGCTG	GTCCTCTAAT	TTTTCAAGCA	360
	AATCATACTT	ATCATAATAA	TGCGTATAAA	ATGTACTACG	GTTAACATCA	GCTAAATCTG	420
10	CAATTTGTTG	CACAGTAATC	TCTTCTAATT	GGTGTTGATG	TAAAAGTTCA	ATAAATGCAT	480
70	TTCTCATTGC	AACTTGTGAT	TTTCTAATAC	GTCGATCTAT	AGTCATTTAT	ATCAAGTCCT	540
	CCCCAATGAT	TATAAACGTT	ATGTTCATTA	TCCCACAAAT	CTCCAACATT	GATGATTGGC	600
15	ACACAATGTT	TACCTGTTTA	ATATAGGTGA	TACAAACAAA	CAGAAAAAGG	TGATAACAAT	660
	GAACCAACAT	TTACTAGGAA	ATCCAAAATT	AACTGTAACT	CATGTCAATG	AAGTTAAAGC	720
	CGGTATTAAC	CACATCGTTG	TCGACAGTGT	TCAATATGGA	AATCAAGAAA	TGATTATGGA	780
20	AAAAGATGTC	ACTGTGGAAA	TGCGCGATGG	CGAAAAATTA	TATATTAATA	TTTTCAGACC	840
	AAATAAAGAT	GGCAAATTCC	CTGTAGTTAT	GTCTGCAGAT	ACTTACGGTA	AAGATAATAA	900
	GCCTAAAATC	ACAAATATGG	GTGCCCTTTG	GCCAACATTA	GGTACCATTC	CGACATCTAG	960
25	TTTTACACCT	GAAGAATCAC	CAGACCCAGG	ATTTTGGGTG	CCAAATGATT	ATGTTGTAGT	1020
	TAAAGTTGCA	TTACGCGGTA	GTGACAAATC	CAAAGGCGTC	TTATCTCCAT	GGTCAAAAAG	1080
	AGAAGCGGAA	GATTATTACG	Artgattgaa	TGGGCAGCAA	ATCAGTCATG	GAGTAATGGA	1140
30	AATATCGGGA	CAAATGGTGT	TTCTTATCTT	GCGGTGACTC	AATGGTGGGT	CGCATCATTA	1200
	AATCCACCAC	ATTTAAAAgC	AAtGATTCCT	TGGGAAGGCT	TAAATGATAT	GTATAGAGAA	1260
35	GTAGCCTTTC	ACGGAGGTAT	mCCAGATACT	GGCTTTTATC	GTTTCTGGAC	TCAAGGTATT	1320
	TTTGCGAGAT	GGACAGATAA	TCCAAATATC	GAAGATTTGA	TTCAAGCACA	ACAAGAACAT	1380
	CCTCFGTTCG	ATGATTTTTG	GAAACAGCGT	CAAGTGCCAT	TATCACAAAT	TAAAACACCT	1440
40	CTACTAACAT	GTGCTAGTTG	GTCTACACAA	GGTTTGCACA	ACCGTGGCTC	TTTTGAAGGA	1500
	TTTAAACAAG	CTGCATCTGA	AGAAAAATGG	CTATATGTGC	ATGGACGTAA	AGAGTGGGAA	1560
	AGTTACTACG	CTAGAGAAAA	TCTCGAACGC	CAAAAATCAT	TCTTTGATTT	TTACCTTAAA	1620
45	GAAGAAAATA	ACGATTGGAA	AGATACGCCT	CATGTCATTT	ATGAAGTTAG	AGATCAATTT	1680
	TATAAAGGCG	AATTCAAATC	AGCGTCACGT	GTCCCTTTAC	CTAACGCAGA	ATATACACCA	1740
	TTGTATTTGA	ATGCTGAAAA	TCACACATTG	AATCATGCAA	AGATTAGTAG	CGCGCATGTC	1800
50	GCACAATATG	ACTCTGAAGA	TAAACAACAA	GATGTAAGTT	TTAAATATAC	GTTTGACAAA	1860
	САТАСТСАСТ	ТАСТТССААА	CATGAACTTA	AAACTATGGG	TAAGCACTAA	AGACTCAGAT	1920

	CCTGATTTTA	ATCATATTGA	AAATGGTCAA	GTAGCTACTG	GTTGGTTACG	CGTATCACAT	2040
	CGTGAATTAG	ATCAAGAAAA	ATCCTCAATC	GCGCAACCTT	GGCATAAACA	TGAAACAGAA	2100
5	TTAAAGTTGT	CACAAGATGA	GATTGTACCT	GTTGAAATCG	AATTGTTACC	TTCAGGCACG	2160
	CTATTTAAAC	AAGGCGAAAC	ATTGGAAGTT	GTTGTAAAGG	GTAGTGAAAT	TGTAATTGGT	2220
	AATAGTACTC	CTGGCATGAA	AACACGTTAT	GAACATGAAG	AAACCGTAAA	TAAAGGCATG	2280
10	CACATGATTT	ATACTGGTGG	TAAATATGAT	TCACAATTAA	TCATTCCTAT	CGTTAATTGA	2340
	TATGCAGCAA	TTACGGTCGC	TTTTGATTAA	AAGTGACATA	GTGATAGGAC	TGTATAACAA	2400
15	GAGAAAGCCA	CACGCTTGGA	ATCTTAAACC	AAGGTGTGGC	CCTTTTTATT	ATTGATGGCT	2460
15	ATTTAATTTT	ATAACACTAT	CGTATTTTCT	TTTTCATGAA	TCATTTCAAT	AATGACATTA	2520
	TCTTCATTCA	TTACTGCTAC	TTTAGGTGCA	TGGTTTTTAA	TTTCTTCTTC	ATTCAACTGT	2580
20	GCATAAGTCA	TGATTATGAC	TACATCGCCT	ACTTCAACAA	GTCTTGACGC	TGCACCGTTT	2640
	AAACAAATTT	TACCACTACC	TCTTTCACCA	GCTATTACGT	ATGTTTCAAA	ACGTGCACCA	2700
	TTATTATTAT	TCACGATGGC	TACTTTTTCA	TTTGGCAAGA	TGTCTACCGC	TTCCAATATA	2760
25	TCTGAATCAA	TCGTAATGCT	ACCTACATAA	TTTAAATTTG	ACTCAGTCAC	TCTTGCTCTA	2820
	TGAATTTTAG	CATTCATCAT	TGTTCTTATC	ACTITATICA	GCTCCAATTA	TTATATTATC	2880
	TATTAAACGC	GCTTTTGAAA	ATTTAACAGC	TAAcGAGATA	AATATGCGTC	CAGTTATTTC	2940
30	GTGTTGTTCT	ACTAATTGAG	GATAACTATA	AACAGCAACT	TCTTCAATGC	GTTCACTTAT	30,00
	ATGTGATTCA	AGATATTCAG	TAACCCTGTC	TATAATTACT	TTACTTTGAC	GTTCACCGTC	3060
	TTGATACAAC	GCTTGTGCTA	ATAGCAAACT	TTTACTTAAA	TGTACCGCTT	CTTGTCGTTC	3120
35	TTGCTCCGTT	AAATAAACAT	TTCTTGAACT	TTTCGCCAAA	CCATCTGCTT	CTCGAACGAT	3180
	ATCAATACCA	ATAATTTCAA	CGGCATGATT	GAAGTCTTTT	ACCMTTTGCT	CGaCAATAGC	3240
40	CAATTGCTGG	GCATCTTTTT	TACCAAAATA	AGCATAATCC	GGCATAACAA	TATTAAATAG	3300
40	CTTATTAACT	ACTGTTACCA	CCCCATCAAA	ATGCCCTGGr	CCGtTCGCTC	CTTCTAACAC	3360
	ATCAGCTAAT	GGGCCTACTT	TGACATCAAT	ACCTAATTCA	CCTGGATACA	TATCTTCTAC	3420
45	TGCAGGATGA	AAAACAATGT	CCGCTCCTAC	TTCTGATACT	AATTCTAAAT	CTTTATCAAT	3480
	TTGTCTCGGA	TAAGCATCGA	AATCTTCGTT	TGGACCAAAT	TGTAATGGAT	TAACAAATAC	3540
	ACTCACAATT	GTAATATCAT	TTGTACTAAC	TGATTCGCGT	ACCATCGTTA	AATGTCCATC	3600
50	ATGTAAGGCA	CCCATTGTTG	GGATAAAACC	AATCGTTGTG	CCTGAGCGTT	TGGCTGCTTT	3660
	3 3 C 3 3 TC TC TC TT	ጥር ር' እ ጥር ጥር ጥጥ	THE COURT OF	N N TO N COTTO	CTCATTCTTA	ጥጥ አ ለርምር አጥ	3720

	GATCGTATTG	TITTAAACCA	TCCACACCAA	CACTAAAATC	AGCAAATTGC	TTCACAAATT	3840
	TCGCTTTATG	TTCAACACCA	TAATTTAACA	TATCGTGATA	AACCAATACT	TGACCATCTG	3900
5	TACCTTTTCC	TGCACCAATA	CCAATGACTG	GAATTGTTAA	GTGCTTGCTA	ATTTCTTCTG	3960
	CTAAATCATT	TGGAATTGCT	TCAAGTACTA	ACGCAACTGC	ACCAGCTTGT	TCTACATTTT	4020
10	TCGCGTCTAA	AATAAGTTGc	TCCGCTGCTT	CTTTCGTTGC	ACCTTGTAAT	TTATACCCCA	4080
10	TAACGCCAAC	ACTTTGAGGT	GTTAATCCTA	AATGTGCAAC	AACAGGAATA	CCAATTGCCG	4140
	TTGCTTTTTC	AATAAATGGT	GTAATATGCG	CTCCTTCTGC	TTTAATTGCA	TTTGCATTCG	4200
15	TCTCCTGATA	AAGCTTTAGA	GCATGATTTA	AGTCTTGTGT	CATAGAGATG	CCTACTGCAC	4260
	CAATCGGCAT	ATCAACAACT	ACAAATGTAT	TTGGTGCGCC	TCTTCTTACT	GCACGACCGT	4320
	GATGAATCAT	ATCTGCTAAC	GTCACTTGTA	CGGTACTTTC	ATAACCTAAT	ACAGTCATAC	4380
20	CAAGTGAATC	CCCAACAAGA	ATCATATCAA	TACCCGCTGC	TTCCACTTGT	TTAGCACTTG	4440
	GAAAATCATA	AGCTGTTACC	ATAGAAATTT	TAGTTTGCTT	TTGTTTCATA	TCTATTAATT	4500
	GACTTACTGT	TTTCAATGTT	ATTCAACCTC	TTTTTGCAGT	ATnATTAGA		4549
25	(2) INFORMA	TION FOR SE	O ID NO: 17	′5 ÷			

(2) INFORMATION FOR SEQ ID NO: 175:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 8339 base pairs

(B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 175:

TTATCTTTTG TTGTTTCCTT AGACAAACGA CTAACCACAT TATAATGGAC TAATTTATTA 60 ATTÉTATITA ATTCCATTAA GITATCCGTA ACACTAAGTG AAGATGCGGA GITCACTCTC 120 GTTTGTACTC TTCGTTTTAA TAAAGCACCT CGTAATAATA CAATCATTCT TCTTATTAAT 180 GATGCTTGTC TATATACCTG TGTTCTTTCA GCATAACGCA TATAGTTTTC AAGTACACTA 240 TTCGTTATTT GTCCTTCATC TACTAAAGAC TCTAATGTTT TKGTTTCTAC ATTAAAAGCA 300 ATTTTTTGTA GACGTTCTAA TTCTTTAGAG TTTTCATCAT CTTTCTCTAC AGTTTTTAAA 360 AATGCTAATT TATCATGATA TTCTTTAATC ACGTTACCAT ATTTAAAACT TGTTTCGAAA 420 GTAGATTTTT GATTTAGATA ATCAATAACT TGTTCTAATA TATAAATTCT AGCAACTTTA 480 AACGACATAT TGCCAATTAC TGTTTTAGGT GCAGGTTTCG TTAATAATGG CAATAATACT 540 TGCGCAACTA CCAAACTAAT AATAACCATA CCAGATGCAA TAAATAATAA GTCGTTTCTA 600

55

50

30

35

40

	ATTGTTCCAT	GCACACCACA	TAACGTCATA	ATTAAAGCGT	ATAAACTTCG	CTTTGGTGGT	720
	TTCTCAGTCG	TTGGATTATC	ATCATCATTT	TTAGTCATCA	TTTTTTGGAA	TGGACTGATG	780
5	GCTAAATAAA	AATAAGGATA	TAAGACATAA	ACCCAAACAA	ATCTAAATAG	ATAGACAGCT	840
	AAAGCAACAA	CAATAGTGAT	GCCTATTAAA	AAGATTAAAT	TGTGCGGTTC	TGTTTTGATA	900
	ATTTTAATAA	TAACTTCAGG	TACTAAAAAT	CCTAATATTG	AAAAAACAAA	GCCATTTAAA	960
10	ACATAACCTA	GTATATTCCA	TGTATGATTG	TAACTCATTT	GCAGTTGTGT	ACGTACTTGC	1020
	ATAATTCTGT	CACGTTCGAA	ACCATGTACA	AGTCCTGCAA	CTACTGCTGC	AATGATTCCT	1080
15	GATGCGTGaA	ACAATTCAGC	AATTAAATAC	GTAACAAATG	GTGTTAACAA	TTGAATAATT	1140
	GTAAACATAT	TAATGTTTTC	ATATCCTCGA	CGCATCAATG	TTAATCGGAA	CCTTACTAAT	1200
	GCCATACCTA	TAAGTAAACC	AACCACTGCG	CCACCAATTG	ATGCAATTAA	AAACAACTGA	1260
20	ACAGCATCAA	CAAGTGAAAA	AGCACCTGTA	ACTAATACTC	CAACAGCTAT	TTTAAATGAA	1320
	ATAATACCAG	CAGCATCATT	CAATAATGAC	TCACCTTCAA	GAATTGTCAT	TGCTCCTTTT	1380
	GGCAAGACCT	TTCCTTTAGT	GATTGCTTGC	ACTGCTACTG	CATCAGTAGG	ACAAAGAATG	1440
25	GCAGCAATTG	CAAATGCTGC	TCCAATAGGT	AAATCTGGCC	AAATCCAATG	AATAAATAAA	1500
	CCTACACCTA	TCACAGTAGT	AATGACTAAT	CCTAATGCCA	TCATCATCAC	TGGCTTAATA	1560
	TATTTCCTTA	AATGGACTCT	AGAAACATTA	ACACCTTCTA	CAAATAACAA	AGGCGCAATC	1620
30	ATTGTTACCA	TAAACAATTC	AGAATCAAAA	TTAAATTGAA	CAGGGATTGG	GGTAATAAAT	1680
	AGTAACATGC	CCAAGAAAAT	TTGTATAAAT	GCTAGGGGTA	CTTTAGGTAT	GAAAGTATGG	1740
35	ACAAACGAAC	TTAGTATCAC	AACAGCTATA	aatataagaa	TTGTTTCAAA	TATTTCCAAA	1800
33	CTTTCACCTC	TCTAAAAAGT	ATTGTTTAAT	TGAAAATTAA	GTATCACATC	TCGTTGTAAT	1860
	TATACTTTAG	AGGATAAATT	GAGTTAGCGA	CCACAAAAGC	ACTTTAATAT	AGATATATGT	1920
40	CTACGATTGC	AGTACTTAAA	TTTGCAATTA	TTTAATTTTA	TTTTATCACT	AATTGTTTGT	1980
	ATAAATAAAC	AACTTGCTTT	CACATAACAA	CATTAACTTA	TAATACAAAA	AATGAGCACC	2040
	TTAAAATCGA	CTAACCAATT	TCaAAGTACT	CTTTTAATGA	TTAATTTTGA	AAACAGATTT	2100
45	TCaAAAGCAT	TGTTATGCTT	AACAATTTAG	CCAACACTTC	AATCGTTTTG	ATACCATTTC	2160
	TTACGATGCT	CTTCTCGTTT	TTCAGCACGT	AATTGTAATG	CTTCTGTAGA	GTTTTGTTCA	2220
	TTTGAACTTA	ATAATATTGA	TGCATGTGTG	TGAGCATCAT	TTTTTCGATA	CATATAAGCG	2280
50	CCGTTGCGAT	AAGCAGCGCG	AGCGACTAAG	TGCATGCCGA	CTGGTGAAGT	TAAATTAATA	2340
	аааасаастс	асастаатаа	ACCCACACTG	AAAATCCTG	TATTCACAAT	דדמממדמממ	2400

	CTTAAGAAAA	CATCTTGGAA	TTTCACGATA	CCTATTGCAC	TAATAAGAGC	AATAAAACTA	2520
	CCTAACAACA	ACATCACAGC	AGCAATAAGA	CTAAAGATTT	CTTTTGTTAT	TTCCATTAAA	2580
5	CACATGCCCC	CCACCAATAA	AGCGTGATAT	TGAAACAGAA	CTTACAAAAG	ATATAATGGC	2640
	AATGAGCATG	ATTGAATCTA	AGAAAGAAAC	GGTGCCCATA	AGTACACTTA	ACACACCCAC	2700
10	AATTGACATT	ACGACAGCAC	TTGTTGTATC	AAATGTAACG	ACACGATCTG	CTGTTGTAGG	2760
,,	TCCCTTGATT	AATCTAAATA	AACAGATGAT	TAATGCAATT	ССАААААТАА	TGAGTGAACT	2820
	AATAATCATA	ATATGTGTTA	TTGTTTGTAT	CATCGCGACA	CCTCCAATAT	TAAGTCTTCA	2880
15	TAATGCTTAA	TACTTCTTAA	CAAACTATCT	TTTTCTTTTT	CTGACACGTC	GATACTATGA	2940
	ATAAAAAACT	TTTTAGAGTC	TTGAGAAATT	CGTATTACTG	TAGACCCTGG	AGTTATAATA	3000
	ATTAAAATTG	TTAAAAATGT	TATTGACCAA	TCACTTGTTA	GTCTTGTTTC	ATATGAAAGT	3060
20	AATCCAGGGT	TCATATCTTT	TGTTTTAAAA	AGAATATAAT	TAATCGTGCT	AATGCTAGAT	3120
	GTTATTAATT	GATATAAATA	AACACCTAAA	AATTTAATAG	CTACCCATAT	TTTTCTAACA	3180
	TAAAAATCAT	CGCTGAAAAA	CCTGTGTAAT	ATATAAATGA	CAATTAAACC	AATTAGATAT	3240
25	CCAGAAAAGA	AAGTCGAGAA	TTTAAAATGA	TCTTCATCTT	GAAATAATAC	CCATAAGAAT	3300
	GCAATGATAA	TATTTAAAAC	TATTTGATTC	ATTTAGTCCT	CTCCTTTCAA	ATGCGGATTT	3360
	ACAAGTTTTT	GATATAATTG	ATCACTCGTG	TTCAACTCAG	TTGCATCACT	TGTAACATTT	3420
30	AACACAACAG	GTGCAGCAAT	TCCGATTGCG	ATAACCACAA	CTACTAAAAT	ACTTAAAATT	3480
	CTTTTTCGAT	ATAGCGGGAT	TTTCTTAAAA	TTAACTTCCT	CCCCATCTTT	ATCTCCAAAA	3540
35	TACATATAAA	AAAGTATCCT	AAATAAACTG	TACATTGCAA	TTAGACTAGT	AATAATCATT	3600
	AACGCTAGTC	CAATATAATT	GCCATTTTGC	AATGCACCTT	GGAAAATAAG	TACTTTCCCC	3660
	GGAĄAGCCAC	TAAATGGAGG	CACGCCGCCA	ATAGCAAAAA	TCATTATAAT	AAACGCAACT	3720
40	CCAAATAAAG	GTTCTTTTTT	AGCTAAGCCA	TTCAAATATT	GATATTGTCG	ATAGCCTGTA	3780
	ATGTAAACTA	AACTACCAAT	TAAAAAATAA	AGCAATGTTT	TTACAACAAT	GTCATTTACC	3840
	ааатаааата	TTGCACCATT	AATACCTGCA	AACGTGTTTG	TTCCTAAACC	TAAAATGATA	3900
45	AATCCTATTG	AGATTATGAC	TTGGTAAGCT	GCAATCTTTT	TAATATCTTT	ATAAGCAATG	3960
	ACACCTATAG	CGCCGATGAC	CATAGTTATA	GCAGCCATAG	TTGCTAGCAA	TGGATGTATG	.4020
	AGATCATTAT	GTTGATCAAA	TAGTAAAGTG	AAGAATCGAA	TTAATGCATA	GGCCCCTACT	4080
50	TTGGTCATTA	ACGCTGCAAA	TAATGCTGCA	AGCTCAGTAT	TTAACACAGC	GTAGGCTTTG	4140
	GGT1 GGG1 G1	m>>>>>	CN CCCCMCCM	TTCCCACTAA	ATCCCACTAA	CAACATTAAT	4200

	AAGTTTAATG	TACCTACTGT	TTTATAAAGT	AAACCTATAC	CTAATAAGAA	TAGCCATGAA	4320
	CCAATAATAT	TCAAGACAAC	ATAAATAATT	GCAGCACGTA	ATTGTTCTAC	AGATTGTCCA	4380
5	AGTGTAATGA	GTACAAATGA	CGCTAGTAAC	ATAATTTCAA	ACATGACGTA	TAAATTAAAT	4440
	AAATCTGATG	TTAGAAAAGA	GCCTATCACG	CCAACACTTA	AAAATAATAT	GAACGATGGC	4500
10	AAGTGATAAC	GATTTGCTTT	ATGTTCGCCA	CGCCCAAATC	CGTATGCCAT	AATTAAAGTA	4560
	ATCACAAACG	AAGCGGTTGT	AACCATAATT	AAACTTAAAG	AATCTCCTAA	AAACTGTATA	4620
	CCAAAGGGCG	CTGACCATCC	TCCAAAGTCT	AGCGTAATTG	GACGGTGACG	CTGAACATAA	4680
15	ATTAATAGCA	TTAATGAAAT	AATTGTGGTG	ATAGTCATTG	TACCTAAGTA	TAAATATTTA	4740
	GAAATACGAT	CATTATTTTT	TAAAAATACA	AGGATTAAGG	CACAAAGGAA	TGGTAATAAC	4800
	ATTGGTAAAA	TCAATAAGTT	ACTTAGCATC	ATCTTCCCCC	CTTAGGCCTT	CAATTTCATC	4860
20	TTCTTTTGTT	ACTTTATAAG	TTCTATAAAC	AAGTACAAGT	AAAAACGCAG	TCATCCCAAA	4920
	CCCTATAACT	ATTGCAGTTA	GTACAATAGC	TTGTAACAAG	GGATCAACAA	ACAATTGGTT	4980
	TCCACCAGTT	ATTAGTGGTT	CTGATCTACT	AGAACCATAC	GTTCCCATAC	TCATAATAAT	5040
25	GAGATTACCA	GCATGAGTAT	ATATTGAAAT	TCCGATTACA	ATACGAATTA	AATTGATTGA	5100
	TAAAATCATA	TATGTTCCTA	TAAACACTAA	AAATCCTATA	ACTAGTAATA	ATATTAAATT	5160
22	CATGATCGAC	CTCCGCTAAG	CGACAACATC	ACTGTGACAA	TAACACCAAC	AACTGAGAAT	5220
30	AAAATACCTA	ATTCAAAAAG	TGTTATTGTA	CTTACATGAA	TTTGTCCTAA	AATTGGAAGT	5280
	ATCCAAGTTG	TTTCATATTG	AGACAAAAAT	GGTTTTCCAA	AAAACATAGG	TATTATCGCA	5340
35	GTAATAGATG	ATACCAATGC	TCCAATAATC	ATTAAAATTC	TAAAATCAAT	CGGTAAACTT	5400
	TCTAAAACCT	CTTCAACATT	AAAAGCCAGA	AACATTAAAA	TAAACGCTGA	ACTAAATATT	5460
	AAAÇCACCAA -	TAAACCCACC	ACCAGGATTA	TTATGACCTG	CGAAGAAGAC	ATAGAATCCG	5520
40	AAAGTCAATA	AAATAAATAC	AACAAGTTTC	GTGACCGTTC	TTAACACGAC	ATCATTCTCT	5580
	TTCATCTTGT	CCCCTCCGAT	CTTGATAATT	TAATAATGtg	TAAATACCTA	GCCCAGTAAT	5640
	AATTAACACT	AATCCTTCAA	ATAATGTATC	TAATGCTCTA	AAGTCACCAA	GTATCGCATT	5700
45	TACAATATTT	TTACCACCTG	TTAGTTTGTC	AGCTTTTAAA	TAAAAGTCTG	ATATTGATGA	5760
	TAAACCATCT	GTTTGTTGTG	TAATAAAAT	TAATGATACA	ACAATAAGTG	CCATCAAGAG	5820
	TGATACAGAA	ATTTTAATTA	TTTCTCTTTT	TTTGTTAGCG	TTAGATCTTG	GCACGTTTGG	5880
50	TAATCTTGAA	AAACTGACAA	TAAATAGTAT	CGTCGTTATT	GTTTCAACTA	CTAGCTGAGT	5940
	G	mar.cocc.	mas mmaams m		CCC C C C C C C C C C C C C C C C C C	1 Magaz mas a	C A A A

	GACAGITACG	ATTGCTAATA	TAATTTCTAA	TGCCCCAAAT	TCAGAAACAT	GTAACTGATG	6120
	TACTTTAGGA	AGTCCaATTC	GAATATAACC	ATATCCAATG	ATAATCATAA	ATATGCCTAA	6180
5	GGTCATAATA	ATGTACTGGT	TTAAACGATC	TTGCATAACA	CGTTTAAATC	GCTTCGTAGC	6240
	AAACTTTTCA	AAATGTCGAT	ATACCATCTC	ATAGCTTTTT	GAAACTGAAA	TCTGTCTAAT	6300
	TTTACCTGTG	AACACTTTTT	TCCAATCTAC	TTTGATTGCT	AGTACACTAC	CCAATAAAAT	6360
10	AATGATGATG	GTTAAAAGAA	GCGGTATGTT	AAATCCATGC	CATTGCGAAA	CATGTGGTGC	6420
	CAATTGATCA	ATTTGATGAT	TACCACCTGA	TACAGCTCTT	AATGCnAGAA	CGATAATCCC	6480
15	CTTCCCAAAT	ATATNTGGTA	CAAAAAAGAT	TACAGGTACT	AGCACCATTA	aTATAAGAGA	6540
	TGGTAAACTA	aACAACCATG	GTTCGTGGAT	ATTTTTTTTA	GTAAAAACCT	TAGAATCATA	6600
	TTTTGtCCAA	AATACTTCTT	TTACCATGTA	TAGTGCATAT	GTGAATGTAA	AAACACTCGC	6660
20	AATAACACCA	ACAAACACGA	TAGCTATCAT	TGAAATCAAA	CTAAATTGGG	ATAATTGTCC	6720
	AGTTTGTGTT	AATGCATCTA	AAAACATTTC	TTTACTTAAA	AATCCATTTA	AAAATGGTAC	6780
	TCCAGCCATA	GATAGAGCCG	CTATCGTCAT	GACTAGATTC	ATTTTAGGAA	ATAGTTGACG	6840
25	CATTCCACTT	AAAATTCGTA	TATCCCTTGA	ACCTGCTTCA	TGATCTAAAA	TACCTACTCC	6900
	CATGAAAAGC	GCACATTTAA	AGATGGCATG	ATTCATTAGa	TGAAATAGcG	CACCAYATAA	6960
	TACMAATACA	TAAATaGATG	CTATTGCGTC	TTGTTGGTGT	TGAGCATATC	CGCCACCTAT	7020
30	ACCCACCATA	GCCATAATCA	TCCCAAGTTG	ACTGATTGTA	GAGTACGCTA	GGATACCTTT	7080
	TAAATCCCAT	TGTTTTAAAG	CTGTAATTGA	ACCAAATAAC	ATTGTTATTA	AACCAACAAA	7140
	CGTAACGATA	TATACGTACA	TATTGCTAnG	ACCTAATAAT	GGTGTAAATC	GAAGTAATAG	7200
35	AAnGATACCA	GCTTTTACCA	TCGTGGCTGA	ATGTAAATAA	GCACTTACAG	GTGTAGGTGC	7260
	AGCCÁTTGCT	CTAGGTAGCC	AGTATGAAAT	GGAraTTGTG	CTGATTTTGT	AAATGCACCT	7320
40	AATAAAAACA	TAAAAATCAT	AGGGATAAAC	AATCCATGAT	TCTTAATATG	ATCTGCTTGT	7380
-	CCTAATATCT	CTGTGATGTT	ATTCGTTCCT	GTCATGATAT	ACAGCATAAT	AAAACCAACT	7440
	AATAACGCCA	ATCCACCAAA	TACTGTAATC	ATAAATGATT	GAATCGCACC	AAATTGACTG	7500
45	TCACCATTGT	TATACCAATA	TGAnATCAAT	AAAAATGATG	ATmCACTCGT	TAATTCCCAA	7560
	AAaATGTACA	TCMATATCGT	ATTGTCTGAT	AATACaaTAC	CAATCATACT	GAACATAAAT	7620
	AACGTTAAAT	AAAATAAAA	CCTTGGTAAA	TTGTCTTTTC	GAGAGGATAA	ATATTGAGTT	7680
50	GCATAGAAGA	ATACTGCAAT	TCCAATAAGT	GAAATAATAA	GAGAAAACAT	ТАААСТТААА	7740
	ССВТСТВВВС	CTAAATCTAA	አምም አም አም ውጥ	<u>ስ ስጥር ጥር ጥጥ</u> አ	ጥርር አጥርር እስጥ	ACACCTACA A	7900

	GGTGCAACCA ACGCTATGTA CCCGGCATAT TTAGCCAATG CTCTACGTTT AGACATTAGA	7920
	AGTATCATCG CCATAATCAC AAGTATAGCA ATTAATAAAT AAACCAAACT CATTATTAGC	7980
5	CTCCTTTGTT TCTATAATTG TAATGAAATA TAAATACTAT GTTCACACTC ATTTTCTAAA	8040
	CCGATAAAAT TTAGTGTTTC AATAGCAGAT TGATGCCCTA AATACTTTTG AATGACTGGT	8100
10	ATAAGTATAC CTTTTTGATA AGCATGATAT GCAAATGTCT TACGCAATGT CGTTAGTCCT	8160
,,,	ACATTATCTA TACCAGCTTC AATTGATGCT TGGTGAATTA TTCGATATGC TTGCTGTCTA	8220
	GATAATACTT GATTTGTTCG TAGTGATTGA AAAAGAACGT CTTCATTCGA AAGACTCCTG	8280
15	TCCTCTATAT ATTGAAGTAG TTCTTTCGAT AATGTTTCTG GTAACCTAAT TTTAATCAA	8339
	(2) INFORMATION FOR SEQ ID NO: 176:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 588 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 176:	
	CCCGATTTT TTACGTAATC TAATACATAC GGCAAAATCA ACTTTAATCA AAAAAGACTC	60
	ATACACAATG CCTTTAAAGC ACATGTATGA GTCCTTTTTA GTAGTTTATA TCAAAAAATA	120
30	GTTTAATGTA TAAATTAGTT TTTGTTTACA GATGCGTCGT AGATTGATTC TACAGCATCA	180
	CCTAAAGCTT TATCGAATTC TTCTTTAGAT TGATCAGCTC TTAAATCACT AGCTAATGCA	240
35	CGTGAGAAAC TTGCGATAAG TTCAGCGTTA TCTTTAAGTA ATTCATTTGC TTTTTCTCTG	300
	CTGTAACCAC CTGATAATAC AACGACACGA ACAACATTAG GATGTTCAGC TAACTCTTTG	360
	TATAAGTTTG GTTCAGTAGG AATTGTTAAT TTCAACATTA CTAATTGATC AGCATTTAAG	420
40	CTATCTAAAC CTTTTTTAAG TTCAGCTTTT AATACTTTTT CAATTTCAGC TTTGTCTTTT	480
	GCATTAATAT TAACTTCTGG TTCGATAATT GGAACTAAAC CTTTAGCAAT AATTTGTTTA	540
	GCAACTTCAA ATTGTTGTTC AACAACGTCT TTGATACCTT GCTCATTT	588
15	(2) INFORMATION FOR SEQ ID NO: 177:	
5 <i>0</i>	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2841 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	

	ATAGAGTnCT	GGnACTTACT	ATGACATATG	GCGCTAGAAT	GGCTGAGCCA	GGTGAATTTA	60
	CAAAACGTGC	CTTTTTAAAT	GGTCGTATTG	ATTTATCTCA	AGCTGAAGCA	GTTATGGACT	120
5	TTATTCGCTC	GAAGACAGAT	AGAGCTTCTA	AAGTTGCGAT	GAATCAAATT	GAAGGTCGTC	180
	TAAGTGACTT	AATCAAAAAA	CAACGTCAAT	CTATATTAGA	GATACTCGCT	CAAGTGGAAG	240
	TGAATATTGA	TTATCCTGAA	TACGATGATG	TTGAAGATGC	GACTACTGAA	TTTCTTTTAG	300
10	AGCAGTCTAA	AGAAATCAAA	CAGGAAATTA	ATCGTTTATT	AGATACCGGT	GCGCAGGGTA	360
	AAATTATGCG	TGAAGGTTTA	TCTACAGTTA	TTGTTGGTAA	ACCAAACGTA	GGTAAATCAT	420
	CGATGTTAAA	TAATTTAATA	CAAGATAATA	AAGCGATTGT	AACTGAGGTA	GCAGGTACTA	480
15	CTAGAGATGT	CTTAGAAGAG	TACGTCAATG	TTCGTGGCGT	GCCATTAAGA	TTAGTTGATA	540
	CTGCTGGTAT	ACGTGAGACA	GAAGATATAG	TAGAGAAGAT	TGGTGTTGAA	CGCTCTAGAA	600
00	AGGCTCTTAG	CCAAGCAGAC	TTAATTTTAT	TTGTATTAAA	CAATAACGAA	GCATTGACwC	660
20	AAGAAGATTA	CACATTATAT	GAAGTGGTTA	AAAATGAAGA	TGTAATCGTA	ATTGTTAATA	720
	AAATGGATTT	AGAGCAAAAC	ATAGATATTA	ATGAAGTTAA	AGATATGATA	GGTGATACGC	780
25	CATTAATICA	AACTTCAATG	TTAAAACAAG	AAGGTATTGA	TGaATTAGAA	ATACAAATTC	840
	gAGATTTGTT	CTTTGGTGGa	GAAGTACAAA	ATCAAGATAT	GACTTATGTT	TCTAATTCAA	900
	GACATATTTC	ATTATTAAAA	CAAGCAAGAC	AAACGATACA	AGATGCGATT	GATGCAGCAG	960
30	AATCTGGTGT	GCCTATGGaT	ATGGTACAAA	TTGATTTAAC	TAGAACTTGG	GAAATATTAG	1020
	GAGAAATTAT	TGGTGAGACT	GCAAgTGATG	AACTCATCGA	TCAGTTATTC	AGTCAATTCT	1080
	GCTTAGGTAA	ATAGTAATTG	AAATAGACGG	AATACCGTCT	TAAGAAGGCT	AGTAAGATAT	1140
35	CAAATAAGGA	GGTTTATATT	GTGGTTCAAG	AATATGATGT	AATCGTTATA	GGTGCGGGAC	1200
	ATGCAGGTGT	AGAAGCAGGT	TTAGCATCTG	CAAGACGTGG	TGCTAAAACA	TTAATGCTAA	1260
	CAATAAATTT	AGATAATATT	GCATTTATGC	CATGTAACCC	ATCTGTAGGT	GGACCAGCTA	1320
40	AAGGTATCGT	TGTTCGTGAA	ATTGATGCTT	TAGGTGGACA	AATGGCAAAA	ACAATCGATA	1380
	AAACACACAT	TCAAATGAGA	ATGTTAAATA	CAGGTAAAGG	ACCTGCTGTA	AGAGCACTAA	1440
	GAGCGCAAgc	AGaTAAAGTA	CTTTATCAAC	aagaaatgaa	ACGCGTGATT	GAAGATGAAG	1500
45	AAAATTTGCA	TATAATGCAA	GGTATGGTAG	ACGAACTTAT	TATAGAAGAT	AATGAAGTTA	1560
	AAGGTGTACG	TACAAATATT	GGTACAGAGT	ATTTATCTAA	AGCAGTAATT	ATTACAACGG	1620
	GAACATTTTT	ACGTGGTGAA	ATCATTTTAG	GTAATATGAA	GTATTCAAGT	GGACCAAATC	1680
50	ACCAATTACC	ATCAATCACA	TTATCAGACA	ATTTAAGAGA	ACTTGGTTTT	GATATTGTTC	1740

	AAATACAACC AGGTGACGAT GTAGGTCGTG CATTCAGCTT TGAAACAACA GAATATATAT	1860
	TAGATCAATT GCCATGTTGG CTAACGTATA CTAATGCTGA AACACACAA GTTATCGATG	1920
5	ATAATTTACA TCTATCTGCA ATGTATTCAG GGATGATTAA AGGAACCGGG CCACGTTATT	1980
	GCCCTTCAAT TGAAGATAAA TTTGTTCGAT TTAATGATAA GCCGCGACAT CAACTTTTCT	2040
	TAGAGCCTGA AGGTCGTAAT ACAAATGAAG TATATGTGCA AGGATTGTCT ACAAGTCTTC	2100
10	CTGAACATGT GCACGTCAAA TGTTAGAGAC GATACCAGGT CTTGAAAAAG CAGATATGAT	2160
	GCGTGCCGGC TACGCAATTG AATATGATGC GATTGTGCCA ACGCAGTTAT GGCCTACACT	2220
	TGAAACGAAA ATGATTAAAA ACTTATATAC TGCAGGTCAA ATTAATGGTA CATCTGGTTA	2280
15	TGAAGAAGCA GCAGGACAAG GATTGATGGC AGGTATTAAC GCTGCAGGTA AAGTGTTAAA	2340
	CACAGGCGAA AAGATATTAA GTCGTTCAGA TGCATATATT GGTGTCTTAA TCGATGATCT	2400
20	TGTAACTAAA GGTACTAATG AACCTTATCG TTTACTAACA TCACGTGCAG AATATCGTTT	2460
20	GTTACTACGT CATGATAATG CTGATTTGAG ATTGACGGAT ATGGGATATG AACTTGGTAT	2520
	GATTTCTGAA GAAAGATATG CACGTTTTAA TGAAAAACGT CAGCAAATTG ATGCGGAAAT	2580
25	TAAGCGTTTA TCAGATATTC GTATTAAACC AAACGAACAT ACGCAAGCGA TTATTGAACA	2640
	ACATGGTGGT TCTCGCTTAA AAGATGGTAT TTTAGCTATC GATTTATTAC GCAGACCTGA	2700
	AATGACTTAC GATATAATTT TAGAACTTTT AGAAGAAGAA CATCAATTGA ATGCAGATGT	2760
30	TGAAGAACAA GTAGAAATAC AAACAAAATA TGAAGGTTAT ATCAATAAAT CACTACAACA	2820
	AGTTGAGAAA GTTAAGCGTA T	2841
	(2) INFORMATION FOR SEQ ID NO: 178:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3025 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 178:	
	ATCTAATTTC AAACCCGGTG ATAAATTGCC AAGCGTGACG CAATTAAAAG AACGTTATCA	60
45	AGTAAGTAAG AGTACTATCA TTAAAGCATT AGGCTTATTG GAACAAGATG GTTTGATCTA	120
	TCAAGCACAA GGCAGTGGTA TTTATGTGAG AAATATTGCT GATGCCAATC GTATCAACGT	180

CTTTAAGACT AATGGTTTCT CTAAAAGTTT AGGTGAACAC CGAATGACAA GTAAGGTACT

TGTTTTTAAG GAGATTGCAA CGCCACCTAA ATCTGTACAA GATGAGCTCC AATTAAATGC

	CGAATATTCT	TATTATCATA	AAGAAATCGT	GAAATATTTA	AATGATGATA	TTGCTAAGGG	420
	CTCTATCTTC	GACTATTTAG	AATCAAACAT	GAAACTTCGT	ATTGGTTTTT	CAGATATTTT	480
5	CTTTAATGTA	GATCAACTCA	CTTCAAGTGA	AGCTTCATTA	CTACAATTGT	CTACAGGTGA	540
	ACCATGTTTA	CGTTACCACC	AGACTTTTTA	TACAATGACT	GGCAAACCCT	TTGATTCATC	600
	TGACATCGTA	TTTCATTATC	GTCATGCACA	GTTTTATATT	CCTAGTAAAA	AGTAATAAAT	660
10	ACATAAAAAC	GTCTATATCC	CAGTTATAAA	CTGGAGTATA	GACGTTTTTT	TACGATAATA	720
	ACAATGGCTC	AAATTGCTAT	TATCTTGCTT	AGGTTTTTCG	TTTTAGAAGA	ATATTGCTAC	780
	AAAGACAGGC	ACAACTGCTA	CAACAACTAC	ACCAACTAAC	ACTAAAGCTA	TACTTGCCAT	840
15	TGATTCTTCT	ACAGGTCCTA	ATTCTTTGGC	TGGTGCTACA	CCTAATGTGT	GACCACTTGT	900
	TCCAAGTGCT	AATCCTCGGG	CAATAGGGTT	AGTAATTCGG	AAAAGCTTTA	AGAATTTATT	960
20	ACCTAGGGCA	TAAATAATGA	CACCATTTAA	AATAACTGCT	AATGATGTTA	ATTCTTTTAT	1020
	ACCACCGATA	CCAGCTGATA	CTGGTAACGC	AATCGCTGTA	GTTGCTGCTT	GAGGTAACAT	1080
	TGATAAAATA	ACATCATTGG	CAAATTGTGC	TAACTTCGCA	AAAGTTAAAA	TAATTAATAA	1140
25	CGCTACAACT	GTACCGATAC	CAATACCTCC	GATGATACGA	TGCCAATGTT	TAACAAGCAC	1200
	TTCACGCTTT	TTATATAACG	GAATCGCAAA	ACAGATTGTT	GCCGGTTCTA	AGAAGAAGTA	1260
	AATAATGTCT	CCACCTATTT	TGTAAGTCTT	ATACGGAATG	CCTGTTAAAT	AGAGGAAGGC	1320
30	CACACCAAAT	ACCATACTGA	CAAATAGCGG	TGCGAATAAG	AAGAAACGAT	TAGTTTTTTC	1380
	AAATAATATG	GTCGCTAAGA	AAAATGGTAT	AACGGATAAC	AGTATTCCGA	AGTAAGGTGT	1440
	GTTTaGTGCT	AAGTGGTTAA	TCaTGAGCTT	GTGCCTCCTC	TATTTTGATC	TTTTTTGTGA	1500
35	CTTTGTCACC	TTTAGATCTC	GAAGTAACTT	TCATAATAAT	TTgTGTGACA	TAGCCAGTAC	1560
	aaatāagtaa	TAGTATTGTT	GAGACGATTA	TTAGTCCAAT	GATTAAAAAT	GGTGCTTGGC	1620
	TAATGACACC	TAAAGAGTTA	ACAACTGAGA	TACCGGCTGG	TACGAAGAGT	AAGCCAATGT	1680
40	TATTTGTTAG	TGTCGTTCCT	ACTTTTTCGA	CTTCGCCTAA	CTTAACAGCA	CCAGTACATA	1740
	ATAATACAAA	TAATAATACT	AAACCGATTA	CTGATGCAGG	CATAGGAATT	GGCATAAATG	1800
45	ATTCAATTAT	TTTCGATACA	AAGAGTACTA	AAGCAATTAC	AATGACTTGG	TGAAAAAGT	1860
1 5	GTGCTGGTTT	TGATGCGTCT	TTTTGTTGTT	TCACGACCAT	TGCCTCCTAC	GTTTGATTTA	1920
	ACTAAAGTAT	AGATGGCTCA	CTTCGATTTG	CGTGATTTTT	AGTCCGAAAT	ACAAAATATC	1980
50	ATAGGTAAAA	TGCATAAAAA	AAAGGATTAC	TGTTAAAGTA	ATCCTATCGA	CGCTTTAAAA	2040
	TCTTTCATAA	ATGAACGTCC	AACTTGCATC	TTGACACCAT	TTGTCAATAT	TACCATATAA	2100

	TGAATACGTA	TAAAATAAGT	GGGATTCAAT	CGTTTTTCAT	AACGATTCAA	TGGCTCTGTT	2220
	GTTTCGTATT	TATGATTCGT	TGTATGTATG	GTTGTAATAC	CATTATGTGT	GCCAATCCCA	2280
5	ATAATATTT	GTTGCTTTAA	CATGTGAATT	TTATCGTCAA	TTTCAACAGG	TAAGCTTTGA	2340
	TCAAAATTCG	CCGACATATC	ATTCGCAATT	GCACTTGCGT	TATTATCATC	TTTGGCTTTA	2400
	GTCGCACGCA	CTTTATTGAC	TGCTTGTTCA	ATACGTTTTT	GACCAAACGG	TTTCAAAATA	2460
10	TAGTCTGTCG	CATTTAATTC	AAATGCCTGT	ACTGCGTATT	GGTCATGTGC	AGTTGCAAAA	2520
	ATAATCGCAG	GTGGCTCTTT	CATCTTTTGA	ATCTTAGCTC	CTAATTCGAT	CCCATTTTCA	2580
15	TCCATTAAAT	TGACATCTAA	AAATATAATG	TCATATTGAT	TGATCAGTAG	TGCTTCCAAT	2640
15	GTTTCTTTTA	CATTTTCTGC	CTCATTAATT	TCTTCAAAAC	CACCAATTTC	ATTTAATAAA	2700
	TATGTTAATT	CATTACGTGC	TAATGGCTCA	TCATCTATGA	TTAATGCTTT	CATATTTATT	2760
20	CCTCCTCTTG	TCTTTCATAA	GGAAGTACAC	ACCAAAAAGT	GGTACCGCTC	GATGTCGATT	2820
	CAAATTGTAA	TGCTGCGGAT	TTTCCAAATA	ATCCTTTTAG	GCGTAAGTTT	AAATTTTCTA	2880
	AAGCACTACC	AGTTCCAGAC	TCTGATTCTA	CAGATGTnTC	TCCCaACAAA	TGCATTTTAT	2940
25	CTTTAGAAAT	ACCCTGACCA	TTATCTTGTA	CAATAATACG	TACATGTGTT	GCAGTTTCTT	3000
	TAATCACTGA	CACGTCAATA	TCGTT				3025
	(2) INFORMA	TION FOR SE	Q ID NO: 17	9:			
30	(ACTERISTICS 1689 base p scleic acid				

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

35

40

45

50

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 179:

ACAGAATTTC ACAGCATTTT TAGATGAAAA AATAAGCCAG TCATAGCGTT GATTTAACAA 60 ATGAATATCA AAATTTAGTG GCTTTATATC AATAAAGGGT TTGTGAATAA TTGATACTAA 120 ATCACTTTGC ATGTCATTTG TTTGTGTCAT AACTACAACT GGCTTCATAT TTAAACGTCA 180 CTCCATTATT TAATGTTGTT CATTTAAGCG TTTTATAATT TCATAAGCAC CTTGCTCTTT 240 TAATTTGTTA CTCACTGTTT TGCCTAACTC AACCGGATCT GTTCCGTTCA TTGTATATTC 300 AAATCGTTCT TTACCATCTG GGGTCATAAT TAAACCTGTA AATTCGATTT CGTTTTGATC 360 TGAGATTGTA GCATATCCTG CAATTGGCAC CTGACAACTA CCATCCATTT CTGCTAAAAA 420 CGTTCGTTCA GCAGTCACAC ATTTTGCAAC CTCATCATTA TGTACTTTGC TTAATAATGT 480

	TAACAATGTA	TCTCTATCAA	GATAAGATGT	TnCAATATCA	TCTGACCAGC	CCATTCTTCT	600
	TAAACCAGCT	GCAGCTAAAA	TAATCGCATC	ATAATCTTCA	GTTTGTAACT	TTTCTAATCG	660
5	TGTATCTATA	TTACCTCTAA	TCCATTTAAT	CTCTAAATTA	GGATACTTAG	ATAATATTTG	720
	TGCACCACGA	CGTAATGAAC	TAGTACCAAT	AATACTGCCT	TCTGGCAATT	GGGATAGTGG	780
10	TGTATGTGTT	TTAGAAATAT	ACGCATCAAA	AGGTAATTCT	CTATCAGGGA	TACAACCTAA	840
,,,	TGTTAAACCT	TCCGGAATTA	CACTTGGTAC	GTCTTTAAGC	GAGTGTATTG	CCATATCGAT	900
	ATTTTTTCA	AAAAGTTCAT	GTTGTATTTC	TTTAACAAAT	AAGCCTTTGC	CTCCGACTTT	960
15	AGACAATTGT	TTATCTACTA	TACGATCGCC	TTTCGTGaCA	ATTTCTTTAA	TTTCAATTTC	1020
	TAGATTTGGC	TCGACAGCTT	TTAATTTATC	AATAAATTGC	TGGCTTTGTG	TTAAAGCTAA	1080
	TTTACYTCTT	CTGGAGCCAA	CGACTTATTT	ACGCATGTTC	AATTCCTCCT	AGGAACGGAT	1140
20	TGCTCTAGAT	TATTTTCTCA	ATTCACAAAA	TGTGTTGCAA	AAAATAAATT	AATCATATTT	1200
	AAGCAAAATA	AAATAATGTT	ATAGTATATT	AAATATCTTG	AATTCAACCA	TTTGTTGATT	1260
	СТААСТАААА	TATAACTTCC	ATATAATACT	GTAATAATTG	AAGAGAGTAT	TACCTTCGGG	1320
25	TCAATGAATA	TACGTTCACC	AACTGAAATT	ACACCCCACT	GTGTACCTAA	AATAATACTA	1380
	AATATGAGAA	TTATCCACCC	ACTTAACGTT	GAGTAAAACA	CAATTGATTC	AAGTGTAGCA	1440
	ACGCTACCAA	TTCTAAAGTA	TTTTTGATCA	AAACGTTTTT	CCTTCAAATT	ACGGTATTGC	1500
30	ATGATATACA	GTAATGCATT	GACAAAAGCT	AAGGCAAAGA	AGACATAACT	TAACACAGCT	1560
	AGACCGATAT	GGACTAACAG	TAACTCGTCT	ACAACAGCAA	TTTTCTGAAC	CTTATTAGTA	1620
	TAATGTGTCG	GTTGAAATGT	ATTCATCCCT	AAnAGTGTTA	ACCCTATTAA	ATTCCAAGGA	1680
35	AAAACACAG						1689
	(2) INFORMA	ATION FOR SE	EQ ID NO: 18	30:			
40		QUENCE CHAR (A) LENGTH: (B) TYPE: nu (C) STRANDEI (D) TOPOLOGY	1209 base pacleic acid	pairs			

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 180:

nTGGnTGGCTTTTCCTATTGGACCAAATGGACCNTTTACCTGGCCNTTCCCAGGACACCC60CGCTTGTGCCCACATTCCAATCGGAAAAGGTGTATGTGGTACAGCCGTTTCAGAACGTCG120TACACAAATTGTAGCTGATGTTCATCAATTCGAAGGACATATCGCTTGTGATGCTAATAG180

55

	CGATGCCCCT ATAACGGATC GATTTGATGA CAATGACAAA GAACATCTTG AAGCAATTGT	300
	TAAAATTATT GAAAAGCAAC TCGCATAAAA GGACATCAGC ATTTTCAATA AAGTGTTGAC	360
5	AGTTAGCAGG AAAATGTTAC AATAATCTTT GTGTGAATTA ACGAAAGTAG CAGTTGTATA	420
	TTATTGAGCG CTATGTTGTT CCCAATGCGG ACGTGTCACG TAACTGTCGC TATAAGGTGA	480
10	AGACACATAA AACAATATAT CTTAGTAAGC ATGCAACACT CTTTTTTGTT TATTCATAAC	540
70	AACAAAAAA AATTAAAGGA GGAGTCTTAT TATGGCTCGA TTCAGAGGTT CAAACTGGAA	600
	AAAATCTCGT CGTTTAGGTA TCTCTTTAAG CGGTACTGGT AAAGAATTAG AAAAACGTCC	660
15	TTACGCACCA GGACAACATG GTCCAAACCA ACGTAAAAAA TTATCAGAAT ATGGTTTACA	720
	ATTACGTGAA AAACAAAAAT TACGTTACTT ATATGGAATG ACTGAAAGAC AATTCCGTAA	780
	CACATTIGAC ATCGCTGGTA AAAAATTCGG TGTACACGGT GAAAACTTCA TGATCTTATT	840
20	AGCAAGTCGT TTAGACGCTG TTGTTTATTC ATTAGGTTTA GCTCGTACTC GTCGTCAAGC	900
	ACGTCAATTA GTTAACCACG GTCATATCTT AGTAGATGGT AAACGTGTTG ATATTCCATC	960
	TTATTCTGTT AAACCTGGTC AAACAATTTC AGTTCGTGAA AAATCTCAAA AATTAAACAT	1020
25	CATCGTTGAA TCAGCTGAAATTT CGTACCTGAG TACTTAAACT TTGATGCTGA	1080
	CAGCTTAACT GGTACTTTCG TACGTTTACC AGAACGTAGC GAATTACCTG CTGAAATTAA	1140
	CGAACAATTA ATCCGTTGAG TACTACTCAA GATAATACGG TCAATACCAA CACCCACAAT	1200
30	TGTGGGTGT	1209
	(2) INFORMATION FOR SEQ ID NO: 181:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 698 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 181:

AAATCCCTTt	GTtaAAgTsC	AAAtTTTTCc	AACrgCTTTA	Atargaccca	TATTACCETC	60
TTGGATTAAA	tCmAGGaATG	ACATACCACG	ACCACGTATC	TTTTAGCAAT	ACTTACAACT	120
AAACGTAAGT	TCGCTTCTGC	AAGTCTTGAT	TTTGCTACTT	CATCACCTTG	TTCAATACGT	180
TTGGCTAATT	CGATTTCTTC	TTGTGCACTT	AATAAGTTAA	CACGCCCAAT	TTCTTTAAGG	240
TACATACGAA	CTGGGTCATT	TATTTTAACA	CCTGGAGGGG	CACTAAGATC	ACTTGGATTC	300
AGTTTCTCGT	CAGTATCTGA	ACTATCTTTT	TCATTAACTA	GTGAAATATC	ATTATCATTT	360

	GCAATTTCTT CATGACTTAA ATGACCCTCT TTTTTACCTT TTTCAATTAA TTGCTTCTTA	480				
_	ACATCTTCTA ATGTTAATGT CGGATCAATT GTTTGTTTTT TAATTTTAAC TGTGTTATCA	540				
5	GACATGAAAC GGCCTCCCGA TTTTAAATAT GAACATTCGA AATTTATTCA ATATTGCTAT	600				
	TTTAAACGAA ATTCTTAATT AATTCCATCC ATATTTTAA TTTTATTTTA CAAATTGGGA	660				
10	ACTAAATCCC CAATATTTAT TTTTCAATAG TGGTGGTT	698				
	(2) INFORMATION FOR SEQ ID NO: 182:					
	(i) SEQUENCE CHARACTERISTICS:					
15	(A) LENGTH: 5147 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double					
	(D) TOPOLOGY: linear					

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 182:

60	ACATTAAGTT	AAAACATCTA	ATATTATCAA	TATTTCAAGA	GTATACAATG	ACTTGATGAT
120	GTTCTTCTTA	TAAAAACATC	CTTCTCAAAA	GCTATTATCA	CACAATTCTA	TTGTAGAATT
180	CTCAATAATT	TGTTAGAGCT	ACCCTCAAAC	CACCATAAAT	TGAAACAATC	AAGATTTAAT
240	AAAATTTTAA	AGATGAAAGA	GCTCAACTGA	ATAAAAGAAC	AGGCTATCTA	TAAAAAAGCA
300	GTGAATCAAT	ATTAGCTCAA	CTGAACAATT	CAAGACCATG	TGACGCGCAG	TTCATATGGA
360	TACGCAAGTG	ATATCTCTAT	TTTTTGAATA	TTACATCTTG	TAAAGATCAT	TATTAGCAGA
420	GCACATAATG	TAAAACCTCA	TATTTTTTAA	TTGTGTTTTC	TAAAGTGCAC	TGCTGTATTC
480	TCAGCACATT	AAATTAAACC	ACCATTTCCG	ATCACTTAAA	TATTTTCTAT	AACAACTTTC
540	CCGCTTTCAT	ATGTATTAAA	TTTAACTCAT	AAAAATATTT	CTTTATTCTT	CAAAGCCCCA
600	GATTTTGCGG	GAAATAGCGT	TtTATTAATC	TtTATCTGtT	ATCTCTATAT	TAAAAA Ā AAAAT
660	ATAAGTTGTA	TATTTATTTT	TTCAGCAAAA	GAATAAATCT	TTTACTTCCT	TTTTAAGCCT
720	ATAATTCGTT	ATTGCAATAC	AGATTTTAGT	TTATAAATAT	TTAAATTTAA	AAACTTACCT
780	AAAAACATTT	TKTGAAAAAG	GGGGTATTAA	ATACATACAG	GACTTTACAA	ATATTATGAT
840	TTACTTATAT	TTTAGGTACA	CATCTGTAAC	GTAGGTATEG	TAAACTAGGT	ATTCAATTCG
900	CAAAATGCTT	TGAAGCTCAA	CGCAACACGA	GCAAAtgctG	AACACCTGCT	CTGGTGGCGT
960	TTTATCCAAA	ACGCAATGGT	ATGCTGATCA	CCTAACTTAA	CTTAAATATG	TTTATCAAGT
1020	AAACTTAATG	TGAAGCTCAA	ACGTTTTAGG	CAAAGTGCTA	TGATCCAAGC	GCCTTAAAGA
1080	CAACAAAGCG	CAACAAAGAT	AAAATAACTT	GATGCGCAAC	TCCAAAAGCT	ACTCTCAAGC

	AAAGTCTTAA	AGACGACCCA	AGCCAAAGCA	CTAACGTTTT	AGGTGAAGCT	AAAAAATTAA	1200
	ACGAATCTCA	AGCACCGAAA	GCTGATAACA	ATTTCAACAA	AGAACAACAA	AATGCTTTCT	1260
5	ATGAAATCTT	GAATATGCCT	AACTTAAACG	AAGAACAACG	CAATGGTTTC	ATCCAAAGCT	1320
	TAAAAGATGA	CCCAAGCCAA	AGTGCTAACC	TATTGTCAGA	AGCTAAAAAG	TTAAATGAAT	1380
	CTCAAGCACC	GAAAGCGGAT	AACAAATTCA	ACAAAGAACA	ACAAAATGCT	TTCTATGAAA	1440
10	TCTTACATTT	ACCTAACTTA	AACGAAGAAC	AACGCAATGG	TTTCATCCAA	AGCCTAAAAG	1500
	ATGACCCAAG	CCAAAGCGCT	AACCTTTTAG	CAGAAGCTAA	AAAGCTAAAT	GATGCTCAAG	1560
15	CACCAAAAGC	TGACAACAAA	TTCAACAAAG	AACAACAAAA	TGCTTTCTAT	GAAATTTTAC	1620
,,,	ATTTACCTAA	CTTAACTGAA	GAACAACGTA	ACGGCTTCAT	CCAAAGCCTT	AAAGACGATC	1680
	CTTCAGTGAG	CAAAGAAATT	TTAGCAGAAG	CTAAAAAGCT	AAACGATGCT	CAAGCACCAA	1740
20	AAGAGGAAGA	CAATAACAAG	CCTGGCAAAG	AAGACAATAA	CAAGCCTGGC	AAAGAAGACA	1800
	ACAACAAGCC	TGGTAAAGAA	GACAACAACA	AGCCTGGTAA	AGAAGACAAC	AACAAGCCTG	1860
	GCAAAGAAGA	CGGCAACAAG	CCTGGTAAAG	AAGACAACAA	AAAACCTGGT	AAAGAAGATG	1920
25	GCAACAAGCC	TGGTAAAGAA	GACAACAAAA	AACCTGGTAA	AGAAGACGGC	AACAAGCCTG	1980
	GCAAAGAAGA	TGGCAACAAA	CCTGGTAAAG	AAGATGGTAA	CGGAGTACAT	GTCGTTAAAC	2040
	CTGGTGATAC	AGTAAATGAC	ATTGCAAAAG	CAAACGGCAC	TACTGCTGAC	AAAATTGCTG	2100
30	CAGATAACAA	ATTAGCTGAT	AAAAACATGA	TCAAACCTGG	TCAAGAACTT	GTTGTTGATA	2160
	AGAAGCAACC	AGCAAACCAT	GCAGATGCTA	ACAAAGCTCA	AGCATTACCA	GAAACTGGTG	2220
	AAGAAAATCC	ATTCATCGGT	ACAACTGTAT	TTGGTGGATT	ATCATTAGCC	TTAGGTGCAG	2280
35	CGTTATTAGC	TGGACGTCGT	CGCGAACTAT	AAAAACAAAC	AATACACAAC	GATAGATATC	2340
	ATTTTATCCA	AACCAATTTT	AACTTATATA	CGTTGATTAA	CACATTCTTA	TTTGAAATGA	2400
	TAAGAATCAT	CTAAATGCAC	GAGCAACATC	TTTTGTTGCT	CAGTGCATTT	TTTATTTTAC	2460
40	TTACTTTTCT	AAACAACTTC	TGAAACGCCT	CAACACTTTC	TACTCTGATT	ACATATATGA	2520
	CATTTTTAGG	CATTAAAAAA	TCGAACTAGA	CAAGATGCTC	ATTGCATTTC	GTACTAGTTC	2580
45	GATTCATGAA	TAATTAGATT	TAAAATGTCA	TTTGAATCCA	AGTGACAACA	TTATTTATAT	2640
43	TTAGAATATT	AACGTTAGTA	TAAACGTCCA	AACACAAATA	AAAGCAACAA	ATATAATACT	2700
•	GTATTTTAAC	GTCATTTTTA	ATAATGCAGA	TTCTTCACCA	ACTTTTTTAA	CAGCTGCAGT	2760
50	CGCAATGGCA	ATTGATTGTG	GTGAAATAAG	TTTCGCTGCT	ACACCACCTG	CAGTGTTAGC	2820
	TGCCACAAGT	A ATCA A CCCC	יט ע ע ע האוויה אוויי	₩₩₽₩₽₩₽₽₽	N-m-m-c-c-c	CAAMA COMOO	2022

	TGGAGAGAAT	AATGGGAAAA	TTGCTCCCGC	TTTAGCAATA	CCTTGTCCAA	TTGCTACAGT	3000
	CAAACCACCG	TATGTCATAA	CTTTAGCAAT	AGCTAGGATA	GCTGAAATTG	TAAGGATCGG	3060
5	TAACCATAAT	TCTTTAATTG	CTTCGACCAA	TAAAGCACCT	GCACTTTTCC	ATTTTAACTT	3120
	CGTAATTAAA	ATTGTAATAA	TTACTGTTAA	TAAAATCGCT	GTCCCAGTTG	CACCAATTAA	3180
10	ATCGAGACGC	AACGCAATTC	CTTTAGGCGA	TAAATCACTC	ACAGTATTTG	GAATTGGCAA	3240
10	TTTTATTACT	AAACTTTCAA	GTGCACCTCC	AGGTTGGAAT	AATTTTTTGA	AGAATGGTGC	3300
	ACTCCATACT	AATACAAAGG	CAGTTAAAAT	TACGAACGGA	CTCCAAGCAA	AGACAATTTC	3360
15	TTTAGGCGTT	CGTTTTTGAA	TTTTATGTTC	AGACGCTTCC	AATCTGAAAA	TGTTTTTCGG	3420
	TTTAAATTTA	CGACAAACAA	ATGCTAACAC	CACCATTGTT	GCTAGTGATG	GAATAATGTC	3480
	TGCTAGTTCT	GGACCATGGA	ATATTGTTAA	TAATAATTGT	AATCCAGTAT	ATGTACCACT	3540
20	CACTGTTAAA	ATGACAGGTA	AAATTTCTTT	AATACCTTTC	ATACCATCTA	CAATGAATAC	3600
	TAAAACAAAT	GGAATAATAA	AGTTTAAAAT	TGGAAGTGTT	AATGCTGAGT	ATCTCGCAAC	3660
0.5	ATCTAATGTT	GTAACGCCTC	CACTTAAGTT	AAACGTATCA	ATAATACTAA	CTGGTAAACC	3720
25	AATTGCACCA	AAGGCACCCG	CCGCACCATT	AGCAATTAAA	CATAACATCG	CTGCTTTTAA	3780
	TGGTTCAAAT	CCAAGTTGAA	TTAATAATAC	TGCACAAATC	GCAATTGGCA	CACCAAATCC	3840
30	TGCTGCACCT	TCTAAAAATG	CGTTGAAACA	AAATCCAATT	AATAATAGTT	GGATTCTTTG	3900
	GTCCACTGAA	ATACTTGCAA	TACTATCTTG	AATAATAGAA	AATTGTCCTG	TTTTAATAGA	3960
	AACTTTATAT	AACCAAACTG	CCATTAAAAC	GATATATCCT	ATTGGGAAAA	TACCGGCAAC	4020
35	AACGCCTTCT	GTAATCGCAC	CTGCTGATAC	ACGCGCTGGT	AATTCAAATA	CAAATAAAGC	4080
	CACAATCAAT	GTAACAACCA	AAGTTGTCAA	TGCTGCATAA	ATGCCTTTCA	TTTTAAAAAC	4140
	GGTTÄAGCAT	AATAAAAATA	AAATAATAGG	TACTGCTGCA	ACTAAGGCTG	ATAATCCGAC	4200
40	ATTATCGAAT	GGATTTACAG	TAAGTAGTGT	CATAATGACT	CCCTCTCTTT	ATATAAAATA	4260
	TTTATCATTC	TGATTAATCT	ACAACCTATT	TCAACTTATA	TTTTGCGATG	ATCACATATT	4320
45	TAAAATGTAA	CACTCCTATA	TGTGACAGGC	AATCGAATTT	TTACAAAAAG	TTCACAAAAT	4380
	ATACACAATA	TTTAACTATA	ATAMATAATA	TATCaTntTA	ATTATAAATA	CTAGATATTA	4440
	TTTATAATAA	TCTCAGGAAT	TCGCTTCAAA	ACTGCATCAT	GAGAGTTTAT	ATTTTTATTG	4500
50	AGAATCTCTC	ATTTTATGAA	TTGTAGGAAG	TAAACAAAAT	ATGACAAGCG	TCAAACCAAT	4560
	GATAATGATA	AATATCATAT	TAAACCATAG	TAAATTGAAT	TGATGATGGT	GTTGTATTTG	4620
	CCAAATTTCT	AATACTGTGA	AGATAGACAT	ATAGCTCATA	ATCTCTAAAT	TTAACGTACT	4680

AAATCGTTCA	TAGTATCTAC	CTGCAATGAA	AAATATAAGC	CAAATCACTA	TAAATGCGCT	4800
ATTAATCAAA	AGCAGCACCC	ATTTATCAGC	AAAATTATCA	GCATCCCCTG	CTAAATTATA	4860
ATGAATAGGC	ACTTTGGTTG	GTAATTTTGG	ATAGGTCACT	ACTGTATAGC	ACATCATAGC	4920
TAAGTAAATA	AGTAGACTTA	ATATTGTAAA	AGACCTGATT	TTAGACATTC	TATCGCCTcT	4980
TCTTTACATT	TTATGTATAA	CACTCTGCCT	ATTTTACCTT	TTAATaCATT	ACCCCAAcGA	5040
TtAAaCAATA	tGTAaTGATA	CTATAATTGC	GTCAGGAGTA	TCCGCTTGTT	AAATGTGCAT	5100
AGCTTATATT	TAGCTGTTTA	ACATGCCACA	TAATGATTCG	AATTATT		5147
(2) INFORMA	ATION FOR SE	EQ ID NO: 18	33:			

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1312 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 183:

CACTTACTTC	CACCATTATC	ATAACTTTAA	AATGGATATA	nttcatcaaa	CATTATCTAA	60
AGGCGTCGCA	CCTACACCAA	CACCATCCAA	CAATTAACTT	ACAACTCTGC	GATTACTTCT	120
TCAGCAGCAA	CTTTCACnTG	CGTAATACAA	TCAGGTAGTC	CAACCGCTTC	AAAAGATGCA	180
CCAGTTACTC	TAAGTCGTGG	ATATGTTTGT	TTAATATGTG	CTTGAATCTG	TCTAATTTGT	240
TGAATATGAC	CGACATGGTA	CTGTGGCATA	CTTTTCGGCA	AACGATTGAC	AATTGTAAAT	300
TCAGGATCAC	CTTTAAATGT	CATCATTTGA	CTTAAATCTC	TACGTACAAT	CGATACTAAT	360
TCATTATCTG	TATGATCATC	AACCACAGTA	TCACCTGGTT	TACCTACATA	CGCACGAATC	420
AAAACCTTAC	CTTCCGGTGT	AGTAAATGGC	CATTTTTTCG	ATGTCCAAGT	ACATGCGGTA	480
ATGŤCTGTAT	CACTCGTTCT	CGCAATTACG	AAGCCAGTAC	CATCATGGGT	ATTTTCAATG	540
TCTTTTTCAT	CAAATGCCAA	TACAACAGTT	GCAACAGTCG	TACTATCCAT	CGTTTTAAAG	600
TAATCAAATG	CTGGATCTTG	TCCGAACCAA	TTTAAAAACA	CTTGATGTGG	TGTCGTTACT	660
AATACGCCAT	CATACACTTC	TTCTAGTTGA	TCATTGTAAA	CAATTTTATA	TTGTTTTTGA	720
GATGTAATTA	TATCATCCAC	TGACGTATTG	TAGCGTATTG	TCACACCTTT	ATTTTTAACA	780
TCTTGTTCTA	ATGCTTCAAT	AAATGAGCTT	AAACCATGCT	TAAATTGTTT	GAATTGTCCT	840
TTCGGTGCGC	CAGGATATAA	TTGTCTTTGT	TTCAGACGCT	TATTTTTCTC	ATCCTTCATA	900
CCTTTTATCA	GACTTCCGAA	TGCCTCTTCT	TTTTCTTTAA	AATTAGGAAA	CGTACTCATC	960

ATATCTTGTT	CTAATCCAAT	ATCTTTCGCT	AATTCTGTCA	TAATCGTTTT	TC	1312
GGAATCGGAT	ATAATTTATT	TTTCGCAAAA	ATATATGATT	GTCCAGTCGT	ATTTGTAACA	1260
ATTAATTTTG	TAGTAACAAA	TGGTTTAATA	TCTGTTGGAA	TACCCATAAT	TGAACCACCT	1200
TGCATTTGAG	TAGGTTTTTT	TAATAAATCA	AACCCTGCTC	TTAATTTACC	AAGTGGCGAT	1140
TCAAGTACCT	CATTACCTAA	TCTTGCTCTG	AAAAATGCAC	CAACAGAAAT	GTCACCATCC	1080

(2) INFORMATION FOR SEQ ID NO: 184:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 6157 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 184:

TTTTACAATA AAAATATGAT ATACTACTTG TCGTATATAA GGAACGGAGG ACAATTTATG 60 CATACATTT TAATCGTATT ATTAATCATT GATTGTATTG CATTAATAAC TGTTGTACTA 120 CTCCAAGAAG GTAAAAGCAG TGGACTTTCA GGTGCCATCA GTGGTGGTGC TGAGCAGTTA 180 TTCGGTAAAC AAAAACAACG TGGCGTCGAT TTATTCTTAA ATAGATTAAC AATTATTTTA 240 TCAATATTAT TTTTTGTACT TATGATTTGC ATAAGTTATC TTGGTATGTA AGGTCCGGCG 300 ATGTAAATGT CGGGCTTTTT TATTTATAAT TAAGAATGTA ATAGTTTAAC AATAAGCTAT 360 GTAAAATATA TAGCCTAGTT AAGTATGCAA AGGGAGCGTT AGATTTATGC AGATAAAATT 420 ACCAAAACCT TTCTTTTTG AGGAAGGTAA ACGTGCCGTG TTATTACTAC ATGGTTTTAC 480 AGGCAATTCG TCTGATGTTC GTCAATTAGG TCGATTTTTA CAAAAGAAAG GTTATACATC 540 ATATGCACCG CAATATGAAG GCCACGCGGC ACCACCAGAT GAAATACTGA AATCTAGTCC 600 660 TTTCGTTTGG TTTAAAGATG CGTTAGATGG TTATGATTAT CTTGTTGAAC AAGGTTATGA TGAAATTGTT GTTGCTGGTC TATCATTAGG TGGGGATTTT GCTTTAAAAT TAAGCTTAAA 720 TAGAGATGTA AAGGGTATTG TAACGATGTG TGCTCCTATG GGTGGCAAAA CTGAAGGTGC 780 840 CATTTATGAA GGCTTTTTAG AATATGCACG CAATTTTAAA AAGTATGAAG GTAAAGATCA AGAGACTATT GATAATGAAA TGGATCATTT TAAACCAACT GAAACTTTAA AAGAACTAAG 900 TGAAGCATTA GATACGATTA AAGAGCAAGT TGATGAAGTG TTGGATCCTA TTTTAGTGAT 960 TCAAGCAGAA AACGACAATA TGATTGATCC ACAATCCGCA AATTATATAT ATGACCATGT 1020 AGATTCTGAT GACAAAAATA TCAAGTGGTA CAGTGAATCT GGACATGTTA TTACGATTGA 1080

55

5

10

15

25

30

35

40

45

	AGAATAAAAA	GAGATTTTAA	CATTAGAAAG	GAGGGGCATA	ATGAATTTAA	AGCAATCTAT	1200
	AGAAGAGATT	ATTAATCAAC	CTGAATATGA	ACCTATGTCA	GTGTCAGATT	TTCAAGATGC	1260
5	ATTAGGTTTA	AGCAGTGCCG	ACTCGTTTAG	AGATTTAATT	AAGGTGCTTG	TGGAGTTAGA	1320
	ACAATCAGGA	TTAATCGAAC	GTACAAAAAC	AGACAGATAC	CAAAAAAAGC	ATAGTIATAG	1380
	AGGTCAATCA	AAATTGATAA	AAGGAACGTT	AAGTCAAAAT	AAAAAAGGCT	TTGCATTCTT	1440
10	AAGACCTGAA	GATGAGGATA	TGGAAGATAT	ATTTATTCCC	CCGACGAAAA	TTAATCGTGC	1500
	CTTGGATGGA	GATACTGTTA	TTGTAGAAAT	CCATCAATCA	AAAGGTGAAC	ATAAAGGTAA	1560
15	AATCGAAGGG	GAAGTTAAGT	CGATTGAGAA	GCATTCTGTA	ACTCAAGTTG	TTGGTACGTA	1620
	TAGTGAAGCT	AGACATTTTG	GCTTTGTTAT	TCCGGATGAT	AAACGTATTA	TGCAAGATAT	1680
	TTTCATTCCT	AAAGGTCAAA	GTTTAGGCGC	AGTCGATGGT	CATAAGGTAC	TTGTACAAAT	1740
20	TACTAAGTAT	GCTGATGGTT	CAGATAATCC	AGAAGGACAT	ATTTCTGCTA	TTTTAGGACA	1800
	TAAAAATGAT	CCTGGCGTAG	ATATTTTATC	TATTATCTAT	CAACATGGCA	TAGAAATTGA	1860
	ATTTCCTGAT	GAAGTGTTAC	AAGAAGCTGA	AGCAGTACCT	GATCATATTG	AAAATACTGA	1920
25	AATTAAAGGC	CGTCATGATT	TACGTGATGA	ATTGACAATC	ACAATTGATG	GTGCTGATGC	1980
	TAAAGACTTA	GATGACGCAA	TTAGTGTTAA	AAAGTTAGCG	AACGGTAATA	CGCAATTAAC	2040
30	TGTAAGTATT	GCTGATGTCA	GCTATTATGT	AACAGAAGGT	TCTGCATTGG	ATAAAGAGGC	2100
	ATATGATAGA	GCGACAAGTG	TATATCTTGT	TGACCGTGTA	ATTCCAATGA	TTCCACATCG	2160
	ATTAAGTAAT	GGTATTTGTT	CATTGAATCC	TAATGTTGAT	CGTTTAACTC	TAAGCTGTCG	2220
35	CATGGAAATC	GATGCTAGTG	GTCGCGTTGT	TAAACATGAA	ATTTTTGATA	GTGTTATACA	2280
	TTCTGATTAT	CGAATGACGT	ATGATGCGGT	AAATCAGATT	ATTACTGAAA	AGGATCCTAA	2340
	CATTCGCGAA	CAATATAATG	AAATTACGCC	TATGCTAGAT	TTAGCACAAG	ATTTATCTAA	2400
40	TCGTTTGATT	CAAATGAGAA	AACGACGTGG	TGAAATCGAT	TTTGATATTA	GTGAAGCAAA	2460
	AGTATTAGTT	AACGAAGACG	GTATACCAAC	AGATGTTCAA	TTAAGACAAC	GTGGCGAGGG	2520
45	TGAACGTCTA	ATTGAATCAT	TTATGTTAAT	TGCAAATGAA	ACAGTTGCTG	AACATTTTAG	2580
40	TAAGTTAGAT	GTACCTTTTA	TTTACCGAGT	GCATGAGCAA	CCTAAATCAG	ATCGCTTAAG	2640
	ACAATTCTTT	GATTTTATTA	CAAACTTTGG	CATCATGATT	AAGGGTACTG	GCGAAGATAT	2700
50	TCATCCAACA	ACACTTCAAA	AGGTTCAAGA	AGAAGTAGAA	GGTCGACCTG	AACAAATGGT	2760
	CATTTCAACA	ATGATGTTGC	GTTCAATGCA	ACAAGCGCAT	TATGATGATG	TGAACTTGGG	2820
	ACATTTTGGC	TTATCAGCTG	AATATTATAC	GCATTTTACA	TCACCAATTA	GACGTTATCC	2880

	AGAAGTGAAG	CGTTGGGAAG	ACAAATTGCC	TGAGTTAGCT	GAACATACTT	CTAAACGTGA	3000
	ACGTCGTGCT	ATTGAGGCAG	AACGTGATAC	TGATGaATTG	AAAAAAGCAG	AATATATGAT	3060
5	TCAACATATT	GGTGATGAAT	TTGAAGGTAT	TGTCAGCTCA	GTAGCTAACT	TCGGTATGTT	3120
	CATTGAATTG	CCAAATACGA	TAGAAGGTAT	GGTTCATATT	GCGAATATGA	CTGATGATTA	3180
	TTACCGTTTT	GAAGAGCGTC	AAATGGCATT	AATTGGTGAG	CGTCAAGCTA	AAGTATTTAG	3240
10	AATTGGTGAC	ACAGTTAAGG	TTAAAGTGAC	GCATGTTGAT	GTAGATGAAC	GATTAATTGA	3300
	TTTTCAAATT	GTAGGTATGC	CTTTACCGAA	AAATGATCGA	TCACAGCGCC	CAGCGCGAGG	3360
15	TAAGACAATT	CAAGCCAAAA	CGCGTGGTAA	ATCATTAGAT	AAATCAAAAT	CTGATGATAA	3420
	GGGTCGTAAG	AAAAAAGGTA	AGCAACGTAA	AGGTAAAAAC	CAACGTAATA	ATGATAAATC	3480
	AGGTAATAGT	AAGCATAAGC	CATTTTATAA	AGATAAAAGT	GTGAAAAAGA	AAGCACGTCG	3540
20	TAAGAAAAA	TAAGCAGCAA	TGAGGTGAGT	ATGAATGGCT	AAGAAGAAAT	CACCAGGTAC	3600
	ATTAGCGGAA	AATCGTAAGG	CAAGACATGA	TTATAATATT	GAAGATACGA	TTGAAGCGGG	3660
	AATTGTATTG	CAAGGCACAG	AAATAAAATC	AATTCGCCGA	GGTAGTGCTA	ACCTTAAAGA	3720
25	TAGTTATGCG	CAAGTTAAAA	ACGGTGAAAT	GTATTTGAAT	AATATGCATA	TAGCACCATA	3780
	CGAAGAAGGG	AATCGTTTTA	ATCACGATCC	TCTTCGTTCT	CGAAAATTAT	TATTGCACAA	3840
30	GCGTGAAATC	ATTAAATTGG	GTGATCAAAC	ACGTGAGATT	GGTTATTCGA	TTGTGCCGTT	3900
00	AAAGCTTTAT	TTGAAGCATG	GACATTGTAA	AGTATTACTT	GGTGTtGCAC	GAGGTAAGAA	3960
	AAAATATGAT	AAACGTCAAG	CTTTGAAAGA	AAAAGCAGTC	AAACGAGATG	TTGCGCGCGA	4020
35	TATGAAAGCC	CGTTATTAAG	CGATTTAGTT	GCTTAATCGG	GCTATATTTG	ATATAGTTAT	4080
	ATGTGCTTTT	GTAAATTACA	AAAGTATGAT	TTGTTTGATT	TATTATTTCG	GGGACGTTCA	4140
	TGGATTCGAC	AGGGGTCCCC	CGAGCTCATT	AAGCGTGTCG	GAGGGTTGTC	TTCGTCATCA	4200
40	ACACACACAG	TTTATAATAA	CTGGCAAATC	AAACAATAAT	TTCGCAGTAG	CTGCCTAATC	4260
	GCACTCTGCA	TCGCCTAACA	GCATTTCCTA	TGTGCTGTTA	ACGCGATTCA	ACCTTAATAG	4320
45	GATATGCTAA	ACACTGCCGT	TTGAAGTCTG	TTTAGAAGAA	ACTTAATCAA	ACTAGCATCA	4380
45	TGTTGGTTGT	TTATCACTTT	TCATGATGCG	AAACCTATCG	ATAAACTACA	CACGTAGAAA	4440
	GATGTGTATC	AGGACCTTTG	GACGCGGGTT	CAAATCCCGC	CGTCTCCATA	TTTGTAGCCT	4500
50	ACAGCCTTTG	TGGTTGTGGG	CTTTTTTATT	TTGTGTTTTT	CAGGGGATAA	TGCATTGCAG	4560
	AATTTGTTGT	GAGTATTGAT	ATAGCAGTGT	TTGTATAGGT	GTTTATTTGA	TGGAGGAAAG	4620
	AGTAATAAGT	GATTATGAAT	TAGTTTTTGA	GATATAAGGG	GACAGTGATG	TGTGTCAAAT	4680

	TTATACGCAA	AAAATTCTCC	ATGTTATATA	TGTCAATATA	AAAATGTGAA	TCGTCTACAC	4800
	TTAATTGGAT	AAATGGCTAC	TGAAAAAGAA	CTTTTCATTT	TTGTTACGTC	ACTAAGTGGG	4860
5	TGTAGTTATA	AAGAGATGAG	CCGAGTTTTG	ATATTTTCAT	TAGAATCAAT	ATGCCTATTA	4920
	ACACAATCAG	CAATAGTTGA	CGAGACGGAA	ATAAAAGAAG	TCGTAGTTAA	GAAATGCATT	4980
10	TCACAACATA	CCATTGTAGC	CATTTTTATT	GTTTTGGATG	ATAAACTCTT	TTTGGAATTT	5040
70	TTAGTTTTTA	TAATTTGCAA	CTACACTACT	TCTTTTACTA	ATATTAATGT	CTAAGTAATC	5100
	GATAAAAAAT	TTTCCATTGA	ATAAATGAGA	AGTTAAAAAC	TTTACTTAAC	CTTTCycATT	5160
15	GCATTTTCCT	ATTCACGATT	TTAAGAACCC	AACATACTAC	AAACGAATTT	TAAAAGGCGA	5220
	GAGTAAAGCT	TACTTGTTTA	TTATACATAT	TTAAAATCCA	AGAGTCAGAA	CAGACTACTC	5280
	CTCTTTATAA	СТАТАААААА	TAGCTATGAA	AAAATCTATC	GTCATAGATT	CCTTCATAGC	5340
20	TAATCTTAGT	ATGTTTATTT	TTATTTTAGG	ATGCTATTTA	TCAACTCAAC	ATATAACTCA	5400
	CTATTTTTAT	AACCTTCTAA	TATATCATTA	ACTTGTCTAA	TAGGTATTTC	TGGTACTTCT	5460
	CTAATGTTTT	CCAATTTTGT	TTTAAATTGT	TTTTTTGTTA	TTTGCTCTTT	ATTTGTAGCC	5520
25	AATTGGAACA	AGTAAGAATC	TAGCATATTA	ATTTCTTTAT	ATGAATACAT	ATATCTTAAT	5580
	AACACTAAAT	CTCTAGTTTT	TAAGTTAGGC	GCTAGTTCTT	CTTGTAATTG	TTCTATTGAT	5640
30	TGTYTCATTA	ATAACAATCT	CATTTCTAAT	TCTTCATTAT	TCATTTTATC	ACACTCTTLT	5700
	TATATTAATG	CTTGACCAAC	TTGGGAAACC	CAAAACCCTA	TGCTTCTTGC	AGTAGAATCT	5760
	TTAATACCAG	TTCCCATCAA	TGCTTGTGAA	ACTTGACCTT	GTACATTTCC	CCATGTAGCC	5820
35	TCTTCTTGTT	TTAATGCATT	ATTCAATGCG	GGATTTACAA	ATTTATCCCA	TCTTTTTTT	5880
	ATGATTTTCC	GGCACGGGGA	CTGATTTCTT	TAACACCATT	AAACACAGAT	TTTTTATTTT	5940
	TAATCATAGC	TTTATAGTAT	CATGTTGGCT	AAGCTATAAA	TAAGTCAGTT	TCTCTAAAAA	6000
40	TTAAATAACT	GAATGTAAGA	CAATCAACAA	wccaaattta	TACTTCATCT	AAACCACTGT	6060
	GGTCGTCATC	TTTTTGCTTT	TCTTTTTCTT	TCTCTCGTTC	TTGTTCTTTT	TTGTACTCTT	6120
45	CTTCAAATTC	TTTTTCTTTC	TTTTCTACTT	CTTCTCT			6157
70							

(2) INFORMATION FOR SEQ ID NO: 185:

- (i) SEQUENCE CHARACTERISTICS:

 (A) LENGTH: 884 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: double
 (D) TOPOLOGY: linear

55

	CATTTGTTAT	TCTGAGTAGC	CAATTTGGCA	AAGATGAACA	AACGTCTGAA	CAAACGTATC	6
	AAGTTGCAGT	CGCATTAGAG	TTAATTCATA	TGGCAACACT	TGTTCATGAT	GACGTTATTG	120
5	ATAAAAGCGA	CAAGCGTCGA	GGCAAGTTAA	CCATATCAAA	GAAATGGGAT	CAGACAACTG	180
	CTATTTTAAC	TGGGAATTTT	TTATTGGCAT	TAGGACTTGA	ACACTTAATG	GCCGTTAAAG	240
	ATAATCGTGT	ACATCAATTG	ATATCTGAAT	CTATCGTTGA	TGTTTGTAGA	GGGGAACTTT	300
10	TCCAATTTCA	AGACCAATTT	AACAGTCAAC	AGACAATTAT	TAATTATTTA	CGACGTATCA	360
	ATCGCAAAAC	AGCACTGTTA	ATTCAAATAT	CAACTGAAGT	TGGTGCAATT	ACTTCTCAAT	420
15	CTGATAAAGA	GACTGTACGA	AAATTGAAAA	TGATTGGTCA	TTATATAGGT	ATGAGCTTCC	480
	AAATCATTGA	TGATGTATTA	GACTTCACAA	GTACCGAAAA	GAAATTAGGT	AAGCCGGTCG	540
	GAAGTGATTT	GCTTAATGGT	CATATTACGT	TACCGATTT	ATTAGAAATG	CGTAAAAATC	600
20	CAGACTTCAA	ATTGAAAATC	GAACAGTTAC	GTCGTGATAG	TGAACGCAAA	GAATTIGAAG	660
	AATGTATCCA	AATCATTAGA	AAATCTGACA	GCATCGATGA	GGCTAAGGCA	GTAAGTTCGA	720
	AGTATTTAAG	TAAAGCYTTG	AATTTGATTT	CyGaGTTACC	aGATGGACaT	CCGaGAtCAC	780
25	TACYTTTAAG	TTTGACGAAA	AAAATGGGTT	CAAnAAACAC	GTAGTATTTA	TGnAAAAGTA	840
	TTGAAAGCGC	TTTACCAACC	TGTTAATATA	TAATAGTAAT	ATAC		884
30	(2) INFORMA	TION FOR SE	Q ID NO: 18	16 :			•
30							

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 6876 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

35

40

45

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 186:

AATTTCATCT GCTCGTGCAA AATCTTTGTT TTTCCTTGCT TCATTACGCT CTTCGATTAA 60 TTTTTCAACA TCTTCATCCA ATAATTCATC TGCATTTTTA GATTTTAACG GTACACCTAA AACATCGCTG AAAATTTGAT AAACTGCTTT AAATTTATCA ATTACTTCTG TTGATGTTGT 180 GTTCTCTAGT ACATATTTAT TCGCAAGTKT TGCTAAATCA TACCAAGCTG TAATTGCATT 240 AGCTGTATTA AAATCATCAT TCATAACTGT TTCAAAACGA TTTAAAATCG CATCAATTTG 300 ATCAATATAT GTCTGTTGAT TTTCAATATT AGTAGCAATT TGTGCGCGCT CTTCAATTAA 360 TTGATAACTA TTGCGAATAC GCTCTAGTCC aCTACGTGCT GATTCTACCA ATTCTAGATT 420 ATAGTTAATT GGGCTTCTAT AATGTACGCT AATCATAAAG AATCTTAGTA CATCTGGATC 480

55

	ATTATCAATA	TTAATGAAAC	CATTATGCAT	CCAATAATTA	GCAAATGGCG	CATGATTATG	600
	TGCTTCTGAT	TGTGCTATTT	CATTTTCATG	ATGTGGAAAT	TGTAAATCTG	AACCACCCGC	660
5	ATGTATATCA	ATTGTAGGTC	CTAGCTCATG	AAATGCCATT	ACAGAACATT	CTATATGCCA	720
	TCCTGGTCTA	CCTTCACCAA	ATGGGCTATC	CCAACTAATC	TCGCCAGGTt	CGCTTTTTTC	780
10	CACAATGTAA	AATCAAGTGC	ATCTTCTTTA	TGCTCTCCTG	CATCTATACG	AGCACCCACT	840
	TTTAAGTCAT	CTATGGATTG	ATGACTTAAT	TTACCATAAC	CTTCAAATTT	ACGTGTTCTA	900
	AAGTAAACAT	CGCCACCACT	TTCATATGCA	TAACCTTGAT	CCACCAAATC	TTTAATAAAT	960
15	TGAATAATGT	CATCCATATG	GTCCATTACC	CTTGGATTTG	AAGTCGCTTT	TCTAACATTT	1020
	AACGCACCAA	CATCTTCATG	AAAAGCAGCG	ATATATTTT	CTGCAATTTC	GGGAACAGAC	1080
	TGATTTAATT	CTTGAGAACG	TTTAATTAAT	TTATCATCTA	CGTCTGTAAA	ATTTGATACA	1140
20	TATTCTACAT	TATATCCTTG	GTATTCAAAG	TAACGTCTCA	CTACGTCATA	ATTAATTGCW	1200
	GGTCTTGCGT	TACCAATATG	AATGTAGTTA	TATACAGTAG	GACCACATAC	ATACATTTTT	1260
	ACTTTCCCTG	GTTCTATAGG	CTTGAACACT	TCTTTTTGAC	GTGTAAGCGT	ATTATATAAT	1320
25	GTAATCATCT	TGAATCTCTC	CATTCCTAGT	CTTTTCAAGT	TGTCGTTCTA	AATGCTTAAT	1380
	TTGTTCATAA	ATTGGATCAG	GTAGATGGCG	ATGATCAAAT	GTTTTTCCAA	CTCGAACACC	1440
30	ATCTTGCTTA	ACAATATGTC	CTGGTATACC	AACAACCGTT	GAATAACTIG	GAACTGATTG	1500
	TAAAACAACT	GAATTTGCAC	CAATATTTAC	ATTTGAATTT	ATTTTAATAT	TTCCTAAAAC	1560
	TTTCGCACCG	GCTGCTATTA	AAACATTGTC	TCCTATATCT	GGGTGTCTTT	TCCCTCTTTC	1620
35	TTTCCCTGTC	CCACCAAGTG	TCACGCCTTG	ATAGATTGTC	ACATTATCAC	CAATTGTACA	1680
	TGTTTCTCCT	ATTACAACGC	CCATACCATG	ATCTATAAAT	AGACGCTTTC	CAATTTTAGC	1740
	ACCTGGATGG	ATTTCTATAC	CTGTGAAAAA	TCTTGAAATT	TGAGATATCG	CGCGTGCTGC	1800
40	AACATATTTT	TTTTGGTTGT	ATAACTTATG	TGCAATCAAA	TGACTCCAAA	CTGCATGTAA	1860
	ACCTGCATAC	GTTGTAATGA	CTTCTAATGT	TGAACGTGCC	GCTGGATCCT	GCTCAAATAC	1920
45	CATTTTTATA	TCGTCTCTCA	TTCTTTTTAA	CAAGATCATT	TCCTCCTCAA	TGATTGAACT	1980
45	ACGTAAATAC	ATAATTGAAG	TACCTGCGAA	ATTAAATATC	AAAAAAGCAC	CACTAACATA	2040
	CAAATTGTAT	TGTTAGAGGC	GCTTCCGCAC	GGTTCCACTC	TGAATTTAGC	GAATAACATT	2100
50	AATAATATTG	CGGGCGCTTC	CAAATTATCA	AGGAAACTAA	GTCAACTTAA	TGCTCATCAC	2160
	TCTCATTATA	TATTTAATTC	ATTTTACGAA	GGTGCATTCA	TTAATTTCTA	CGTTGTACTC	2220
	ACAGCAACCG	TACACTCTCT	GCATCGTATA	AATTTAATTA	CTAATCCTTC	GTTTTATATA	2280

	ATAAAATTCA	AGTATATACT	ACCTTGATCT	TGTCTATTTC	ATTACTTATA	TTGTTTTAAA	2400
	CGGTTTAGCA	CTTTTTCTTT	ACCAAGTACT	TCAATTGTAT	TTGGTAATTC	AGGACCATGC	2460
5	ATTTGGCCTG	TTACAGCAAC	ACGAATAGGC	ATAAATAATT	GCTTGCCTTT	TATTCCTGTT	2520
	TCTTTTTGAA	CTTCTTTAAT	TGTCTTTTTA	ATTTCAGCCG	CTTCAAATGG	TTCAAGTGCT	2580
10	TCTAATTTAC	TGAATAAGTG	CGTCATTAAC	TCTGGTACTT	GCTCTCCATT	AATCACTTGT	2640
10	TGTTCTTCTT	CACCAAGAGC	TGGCATTTCT	TTAAAGAACA	TTTCTGATAA	AGGTACAATT	2700
	TCACCGGCAT	AACTCATTTC	TTTTTGATAA	AGCGCAATTA	ATTTGCGTCC	CCAAGATAAA	2760
15	TCCTCTTCTG	ACGGCACCTC	AGGAATCAAA	TTTGCTTTAA	TTAAATGAGG	TAATGCTAAT	2820
	TGGAATACTG	TTTCAGTATC	TTTTTGTTTC	ATATATTGGT	TATTAACCCA	TGCTAATTTT	2880
	TGCTTATCGA	AAAATGCTGG	TGATTTTGAC	AAACGCTTTT	CATCAAAGAT	TTTGATAAAT	2940
20	TCTTCTTTAG	AAAAGATTTC	TTCTTCACCT	TCAGGAGACC	AACCTAATAA	CGCAATAAAA	3000
	TTAAATAACG	CTTCAGGTAA	ATAACCTAAG	TCACGATATT	GCTCAATAAA	TTGTAAAATT	3060
	TGCCCATCAC	GTTTACTTAA	CTTTTTACGT	TCTTCATTAA	CAATTAATGA	CATATGACCA	3120
25	AAACGAGGTG	GCTCCCAGCC	AAATGCTTCA	TAAATCATAA	TTTGTTTAGG	CGTGTTTGAA	3180
	ATATGATCAT	CACCACGAAT	TACATCTGAA	ATTTGCATGT	AATGATCATC	TATAGCTACT	3240
30	GCAAAATTGT	ACGTTGGAAT	GCCATCTTTT	TTTACGATAA	CCCAGTCACC	AATACCATTT	3300
00	GAATCAAATG	AAATATTTCC	TTTTACCATA	TCATCAAATG	AATACGTTTG	GTTTTGAGGT	3360
	ACTCGGAAAC	GAATTGATGG	TTGGCGTCCT	TCTGCTTCAA	ATTGTTGACG	TTGTTCTTCA	3420
35	GTCAAATGCG	CATGTTGACC	ACCATAGCGA	GGCATTTCAC	CACGAGCGAT	TTGCGCTTCA	3480
	CGTTCAGCTT	CTAATTCTTC	TTCTGTCATA	TAGCATTTAT	ATGCTTTATC	TTCTGCTAGT	3540
	AACTGATCTA	TTAATGGTTG	GTAGATATGT	TGACGTTCAG	ATTGACGATA	TGGTCCGTAG	3600
40	CCATTGTCTT	TATCTACAGA	CTCATCCCAA	TCTAATCCTA	ACCATTTAAG	ATTATCAAAT	3660
	TGTGATGTTT	CTCCATCTTC	TAAATTACGT	TTTTTATCAG	TATCTTCAAT	TCGAATCACA	3720
	AAATCTCCGT	TGTAATGTTT	AGCATACAAG	TAATTGAATA	ATGCTGTTCT	TGCATTACCA	3780
45	ATATGAAGAT	ACCCAGTTGG	ACTTGGTGCA	TATCTTACTC	TTATACGATC	GCTCATTTTT	3840
	TTCACTCCTA	AATTAAATAT	CAGATTTTCA	AGTTAGTTCA	TATAAATTGT	TCATTTGCTA	3900
50	TCTTCGACCG	TCATAACAAA	TGTCTAACTC	GTCTTATTGT	TAAAACGAAA	CAATGCTTTT	3960
	TAACATGACC	TTAAAATAAT	TTCATTGTTT	AATCATAACA	TAATTCCCTG	GGTAATATGC	4020
	TTAAATTTTA	AATAGAAAGC	TGTTGTTTTT	TCAACACTTT	AAAAAAGCTA	TCCCTAAGAA	4080

	TTAAACTTCA	AATTAACTAT	TCAAATACGT	TAAAATTGAT	TCTAATTTTG	TATGTCTTGA	4200
	TTGCTATAAG	AATAACTTTA	TTAATATCTA	AAATTTAACA	CTTAATGAAC	TTGTTTCAAT	4260
5	GATATATTAG	CACTATTTGT	ATTTTTTGAT	AACTAATATG	TTTTGCATTT	ATTTATAGTT	4320
	ATACTTCAAA	TTACAAACTt	CGCCATTTCA	TATACCTTTT	AATATCTATT	TTGTTTTCGT	4380
10	CAACTACAGT	TTTTATAATG	ATACTGTATC	TTCGATTTTT	TTAGCAAAAA	CAATTCTTCC	4440
	TGAAGATGTT	TGCAATAAGC	TGACTACTTC	TAAATTGACA	TGACTGCCAA	TAAGATTTTT	4500
	AGCATTATCA	ACAACTACCA	TCGTACCATC	ATCTAGATAT	CCTACTGCCT	GACCAGGCtC	4560
15	CTTACCCATT	TTTGTCAGTA	AAATATGCAG	TTGATCACCT	TGATGTACAT	TAGGTTTGAT	4620
	TGCTTCTGAT	AAATCATTAA	CATTTAATGC	TTTGATACCA	TGTACATGAC	AAACTTTATT	4680
	TAGGTTGAAA	TCTGTCGTTA	TAATACTTGC	ATGATATTGT	TTTGCTAATT	TTAATAACAT	4740
20	CGTATCAATA	TCACTATGTG	TTTTAGTTGG	ATGTATAACC	TTTGTAGGAT	AGTCTAAATC	4800
	ATACAATTCA	TTTAAAATAT	CTAAGCCTCT	TTTACCCTTT	TCaCGTTTAA	CACTGTCATT	4860
	TGAATCTGCA	ACAATTTGTA	ATTCATTAAT	AACACCTTGT	GGAATTAAAA	TATTGCCATC	4920
25	GATAAAACCG	CAACGAATGA	CTTCTAAAAT	ACGACCATCA	ATAATTGCGC	TTGTGTCGAT	4980
	AATTTTTGGC	GTAgcaCTTT	TaGTATGTTG	TGACATGGAA	CGCGCTATAT	TCTCAGGTAA	5040
30	AAACATTAAC	ATTTCATCTC	GTTTTTTAAG	GCCAAATTGG	AAACCGAAAT	AACATAGTAA	5100
	TATCGTAATT	ATGACAGGAA	TGAAATGATT	AAAAATAGAG	TTGCCAATTG	ATTCTAATAT	5160
	AAACGACACC	ATAACAGAAA	TAAGTAATCC	GATTATTAAA	CCTATTGTTG	CGAATAGTAT	5220
35	TTCAACAGCA	CTTCTACGCA	TAATAAAATG	TTCTAAACCT	TTTATAGCGT	TAGTAACTCG	5280
	TCTAATAAAT	ACACCAAAAA	TTAAGAACAT	AAAAATACTA	CCGATAATGC	CATCTACATA	5340
	GTGATTTTTT	AAAAAGCTGG	AGTTTTGTAA	TCCAAGATCA	TTTGCAATTT	CAGGAATAAT	5400
40	AATTATTCCT	AATGCGCTCC	CAATAATTAA	GTAAATAATA	ATAACCATTA	GTTTAACGAT	5460
	ATTCACACAA	TGTCCTCCTT	TCTTGATGTT	TTATGAATGA	AGAGCAAATG	ACAATACTTC	5520
	ATGTACAGTA	GTTACACCTA	TTACTTGTAT	ACCTTCAGGA	TATGTCCATC	CGCCTATATT	5580
45	ATTTTTAGGA	ATAATTACAC	GTTTGAAACC	TAGTTTTGCA	GCCTCTTGCA	CGCGTTGTTC	5640
	TATCCGAGAT	ACACGACGTA	CCTCACCCGT	TAAACCAACT	TCTCCAATAT	AGCAATCTAA	5700
50	TCCGTCGACA	GCTTTATCTT	TAAAGCTAGA	TGCAGTTGCT	ACAATTACAC	TTAAATCAAC	5760
	TGCTGGCTCC	GTTAACTTTA	CACCGCCAGC	TACTTTGATA	TAAGCATCTT	GTTGTTGTAA	5820
	ייישיים מייים מייים	بتمتملمك متمتمك بالماسك	CCAAAACACC	CATCAACAAA	СТТАДТССТТ	ТАТСАТСААТ	5880

	TATIMAMASI GGICIGGITE CCICCAIGGI IGCAACAATI GIIGAACCIG GAACATIIGI	6000
	TGAACGTTCT TCTAAAAACA TTTCAGATGG ATTATTTACA CCTTTTAATC CACTTTGCTT	6060
5	CATTTCGAAG ATTCcCATTT CATTCGTTGA ACCAAAACGG TTTTTAACAG CTCGCAAAAT	6120
	TCGATATGCG TGGTGTTCAT CGCCTTCAAA ATAAAGCACA GTATCAACCA TGTGTTCTAG	6180
10	CAATCTTGGG CCCAGCAATT TGACCTTCTT TCGTTACATG ACCCACTATA AAAGTTGCAA	6240
	TGTTCATTTG TTTAGCAATA TTCATTAAAC TTTGTGTACT TTCACGAACT TGTGAAACAG	6300
	AACCTGGCGC AGAGCTGATT TCAGGATGAT ATATTGTTTG AATCGAATCC ACTACTAATA	6360
15	AATCAGGTTG TTCTTCTTTT ACTGTTTGAT AAATAACTTC AAGATCTGTT TCAGCTAATA	6420
	CTTGCAATTC ACTTGAATCT TCATCTAATC GCTCTGCACG TAATTTAGTC TGACTAAGCG	6480
	ATTCTTCTCC AGTAATATAT AGTACTTTTT TCTTTTGAGA TAACGATGCA CAAATTTGTA	6540
20	AAAGTAACGT TGACTTACCA ATACCTGGAT CCCCACCAAT AAGTACTAAC GATCCGCTCA	6600
	CAATACCTCC ACCTAATACA CGGTTGAATT CTGCTGAATC TGTTAACACT CTCGGCGTTG	6660
	TTTCATGTTT AATACTATTT AATTTTTGTA CTTTACCTGC TAATTCCTTG GTTTTAACTC	6720
25	CATGTTTAGG ATTGGCTGCT TTTTCAACAA TTTCCTCCAT TTGATTCCAA GCGCCACAAT	6780
	TAGGACATTT CCCCATCCAT TTAGGAGATT GATAACCACA AGCCATACAT TCAAAAATCA	6840
30	CTTTTTTCTT GGCCArAATT GCACCTCCAC TTTCTT	6876
30	(2) INFORMATION FOR SEQ ID NO: 187:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1193 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 187:	
	CAACTCAAAC AGCAGAACAA CGTCGTGAGT TGATTAATGG TGTATTTACT GACATTAATC	60
	CCATACATTA AAAATATGAT GTACGTGTTA GCAGATAATA GACATATCTC ATTAATAGCT	120
45	GACGTATTCA AGGCGTTCCA AAGCTTATAT AACGGACACT ACAATCAAGA TTTTGCAACA	180
	ATTGAGTCAA CATATGAATT GAGTCAAGAA GAGTTAGATA AGATTGTCAA ACTAGTAACT	240
50	CAACAAACGA AGTTATCTAA AGTTATTGTA GATACAAAAA TTAATCCAGA TTTAATTGGT	300
J0	GGATTTAGAG TTAAAGTCGG CACAACTGTA TTAGATGGTA GTGTTAGAAA TGATCTTGTC	360

55

CAATTACAAA GAAAATTTAG AAGAGTTAAT TAATTATAAA GAGGAGTGAC ATAGATGGCC 420

	ATGTCCGTAA	CTGATGTAGG	TACTGTATTA	CAAATTGGTG	ATGGTATTGC	ATTAATTCAC	540
_	GGATTAAATG	ACGTTATGGC	TGGTGAGCTA	GTAGAATTCC	ATAACGGCGT	ACTTGGTTTA	600
5	GCCCAAAACC	TTGAAGAGTC	AAACGTGGGT	GTGGTTATTT	TAGGACCATA	CACAGGTATT	660
	ACTGAAGGTG	ACGAAGTTAA	ACGTACTGGT	CGTATCATGG	AAGTACCAGT	AGGTGAAGAA	720
10	CTAATCGGAA	GAGTTGTTAA	TCCATTAGGA	CAACCTATTG	ATGGACAAGG	ACCGATTAAC	780
	ACAACTAAAA	CACGTCCaGT	AGAGAAAAA	GCTACTGGTG	TAATGGATCg	TAAATCAGTA	840
	GATGAGCCAT	TACAAACAGG	TATCAAAGCA	ATTGATGCTT	TAGTACCAAT	TGGTAGAGGT	900
15	CAACGTGAGT	TAATCATCGG	TGACCGTCAA	ACAGGTAAAA	CAACAATTGC	AATTGACACA	960
	ATTTTGAACC	AAAAAGATCA	AGGTACGATT	TGTATCTATG	TTGCTATTGG	TCAAAAAGAT	1020
	TCAACAGTAA	GAGCAAATGT	TGAAAAGTTA	AGACAAGCAG	GCGCTTTAGA	CTACACTATT	1080
20	GTTGTAGCAG	CATCAGCTTC	TGAACCTTCT	CCATTATTAT	ATATTGCACC	ATATTCAGGT	1140
	GTAACAATGG	GTGAAGAATT	CATGTTTAAC	GGTAAACATG	TTTTAATCGT	TTA	1193
0.5	(2) INFORM	ATION FOR SI	EQ ID NO: 1	88:			
25	, , , ,	EQUENCE CHAI (A) LENGTH: (B) TYPE: nu (C) STRANDEI	5549 base pacted acid	pairs			
		(D) TOPOLOGY	: linear				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 188:

TGCTAAGAAG	TCAAAATAAA	CTAACTATnA	AACATCTAGT	ACGATTATTA	AAGTGACAGA	60
TNATAAAATT	GAATTATTnA	GAGAAGGAGA	TATAAAGTTT	GAAGAAATAA	AAGAAAGACT	120
AGGTÁCAGGT	ATTATTTATG	AATAAGTTAA	TACTTGGGAT	TTATTTATAC	CGAATTTTTT	180
CACGAGCATA	CTTTTATTTA	CCGTTTTTAT	TAATTTACTT	TTTGATTCAA	GGTTATTCCA	240
TAATACAATT	AGAAATATTA	ATGGCGTCTT	ATGGCATTGC	AGCATTTTTA	TTCTCTCTAT	300
ACAAAGAGAA	GTGTTTTAAA	ATTTGTAACT	TAAAAGATTC	TAATAAATTA	GTTGTTAGTG	360
AAATATTCAA	AATCATCGGT	TTATTGTTGT	TATTATATCA	AAATCAATAT	TTAATTTTAG	420
TAGTGGCACA	AATATTATTA	GGGTTAAGTT	ACTCAATGAT	GGCGGGTGTT	GATACCGCAA	480
TAATTAAAAG	AAATATAACA	AATGAGAAAT	ACGTACAAAA	TAAGTCAAAT	AGCTATATGT	540
TCCTATCATT	ATTAATTTCA	GGGATTATAG	GTAGTTATCT	TTATGGAATA	AATATTAAAT	600
GGCCTATAAT	AATGACTGGT	ATATTTTCAA	TTCTAACAAT	TATAATTATT	CGATGCACAT	660

	TACCAGAAGA	GAAGTTTTGG	ATATTGCATT	ATTCTTTTTT	AAGAGCGTTA	ATATTAGGAT	780
	TTTTTATAGG	ATTTATTCCA	ATTAATATAT	ATAATGATTT	AAAACTGAAT	AATTTACAAT	840
5	TTATTTCAGT	ATTAACTTGT	TACACAGTTA	TGGGTTTTGT	ATCTTCACGT	TATTTAACTA	900
	AATACTTGAA	TTATAAGTTT	GTGTCAGAAA	TTTGTTTAGT	AATATTTTTA	ATAATATATA	960
10	CATATCAAAG	TTTCATAGCA	GTTACTATTT	CTATGATATT	TTTAGGTATT	TCTTCAGGGT	1020
	TAACTCGTCC	ACAAACTATA	AATAAACTTT	CTAGCAGTAG	TAACTTAAGA	GTGATGCTTA	1080
	ATTATGCAGA	AACGTTATAT	TTTATTTTTA	ATATCGCATT	TTTACTTATG	GGTGGTTACT	1140
15	TATATACAAT	AGGAACTATT	CAATACTTAA	TATTATTTAT	TTCGTTATTA	ATTTTTATAT	1200
	ATTTAATAAT	AATATTTYAT	TTTACAAGGA	GAGAGCAACA	TGAAAATAAA	AACTGAATTT	1260
	AAAGGGAACA	ATATACCATA	TGAATACGCA	GCAGGTGCAG	ATGTGAGTGA	TTCTATTAAC	1320
20	GGGAATCCAA	TTAAGTCATT	TCCATTTGAA	GTAATTGAAT	TACCGGAAGG	gactaaatat	1380
	CTTGCTTGGT	CTTTAATTGA	CTATGATGCA	ATTCCTGTAT	GTGGCTTTGC	TTGGATTCAT	1440
	TGGAGTGTAG	CTAATGTAAG	TGTTAGTGGC	AATTCAATTT	CTATAAAAGC	AGATTTATCA	1500
25	AGAACAAAGG	GCGACTATGT	ACAAGGTAAA	AATAGCTTTA	CTAGTGGGTT	GTTGGCTGAA	1560
	GATTTTTCAG	AAATAGAAAA	TCACTATGTA	GGACCTACAC	CACCTGATCA	AGATCATCAA	162
30	TATGAATTAA	CAGTTTATGC	GTTAGATCAT	TCTTTAAATT	TGAAGAATGG	GTTCTACTTG	168
	AATGAATTTT	TAAAAGAAGT	AAATCAACAT	AAAATTGATC	AAACAAGTAT	TAACCTTATA	174
	GGAAGAAAA	TTTAATACTA	AATATCTCAT	CAATATAAAA	TTGTTCAATT	AAAAGTACAA	180
35	AGAAACAAAG	GTTTTAATTT	ATATATTAGG	TACGGCGTTC	GCTATAATGC	AAAGAAGTAA	186
	TTAAATTTAA	GAAATGTAAA	CTTAGTTATT	GTAATGTGAA	TTTATTTGAA	AAAATAGAAA	192
	GTATTAACAA	TTATAGCTTT	TACATTAATT	AAAATTTATT	TTTAAAAACA	AGTAAACAAT	198
40	TTACATACTT	ATAATTTTTG	AAAATTTTCA	ATTTGTGTTA	TATTGATTTT	GTAAGATACT	204
	TTAACTCACA	AAGGAGAGAG	AGTATATGAA	ATTAAAATCA	TTTATAACTG	TAACTTTGGC	210
	ACTGGGCATG	ATCGCAACGA	CTGGCGCTAC	TGTGGCAGGT	AATGAGGTAT	CTGCAGCAGA	216
45	AAAGGACAAA	CTACCGGCAA	CTCAAAAAGC	TAAAGAAATG	CAAAATGTTC	CATATACAAT	222
	TGCAGTAGAT	GGCATTATGG	CTTTCAATCA	ATCTTACTTA	AATTTACCAA	AAGATAGCCA	228
50	ATTATCATAT	TTAGATTTAG	GAAATAAAGT	TAAAGCTTTG	TTATATGATG	AACGCGGTGT	234
	AACACCTGAG	AAGATTCGAA	ATGCAAAATC	TGCCGTTTAC	ACGATTACTT	GGAAAGATGG	240
	TAGTAAAAA	GAAGTGGATC	TTAAGAAAGA	TAGCTACACA	GCAAACTTGT	TTGATTCAAA	246

	CAACATGAAG	CATTTAATTT	TACAGTGATG	ATTATAAAAT	AATTGCCTTG	ATACAAAGAT	2580
	TACTCGTAAA	TGACATCTTT	GTATTAAGGC	TTTTTCTAAA	TTTAAAAGTG	ATGGGTTAGA	2640
5	GGTCATTGAG	CTTTAAAATA	TTCAAAATAC	AAAACATTAA	TGGCCAAAAA	TAAAAGCCGC	2700
	CTTTATCTGG	GCAGCTTCAA	TAATAAGAAA	GACATATTTC	ATTTTATACT	AAATAGTTAT	2760
10	TGTGATGAAT	CTTTCGGCGG	TTTAATTACT	GCAGCAAAAA	TTGCTGTGAA	AATCGTGAAC	2820
10	AATACTGCCA	TGATAATTGG	ATTCACTACA	TTTAAGCTGT	CTCCACCTAC	TAGGCTATTA	2880
	AGTACAAAGT	TAACCATTTG	CATTAATAAT	AATGCCCAAA	AGAATGTTAC	GAGGTGTTTC	2940
15	ATGTCATTCT	ACCTCCACTT	TAATTATATA	TATTTTATTT	TAAGTGAAAG	TTAGAAATTT	3000
	GTATAGTAAC	ATCTCATATA	TTTTGACCAT	ATTATACAGT	TTAAATAAAT	GATTTTATCT	3060
	GAATGGCTAT	TCTAAATTAA	GCGCATTAAA	ACCAATITCA	TACTGAAATT	TGACGATAAT	3120
20	AAAGCATTAA	AATTTTATTA	ACTAGTCAAT	ATTCCTACCT	CTGACTTGAG	TTTAAAAAGT	3180
	AATCTATGTT	AAATTAATAC	CTGGTATTAA	AAATTTTATT	AAGAAGGTGT	TCAACTATGA	3240
	ACGTGGGTAT	TAAAGGTTTT	GGTGCATATG	CGCCAGAAAA	GATTATTGAC	AATGCCTATT	3300
25	TTGAGCAATT	TTTAGATACA	TCTGATGAAT	GGATTTCTAA	GATGACTGGA	ATTAAAGAAA	3360
	GACATTGGGC	AGATGATGAT	CAAGATACTT	CAGATTTAGC	ATATGAAGCA	AGTTTAAAAG	3420
30	CAATCGCTGA	CGCTGGTATT	CAGCCCGAAG	ATATAGATAT	GATAATTGTT	GCCACAGCAa	3480
30	CTGGaGATAT	GCCATTTCCA	ACTGTCGCAA	ATATGTTGCA	AGAACGTTTA	GGGACGGGCA	3540
	AAGTTGCCTC	TATGGATCAA	CTTGCAGCAT	GTTCTGGATT	TATGTATTCA	ATGATTACAG	3600
35	CTAAACAATA	TGTTCAATCT	GGAGATTATC	ATAACATTTT	AGTTGTCGGT	GCAGATAAAT	3660
	TATCTAAAAT	AACAGATTTA	ACTGACCGTT	CTACTGCAGT	TCTATTTGGA	GATGGTGCAG	3720
	GTGCGGTTAT	CATCGGTGAA	GTTTCAGATG	GCAGAGGTAT	TATAAGTTAT	GAAATGGGTT	3780
40	CTGATGGCAC	AGGTGGTAAA	CATTTATATT	TAGATAAAGA	TACTGGTAAA	CTGAAAATGA	3840
	ATGGTCGAGA	AGTATTTAAA	TTTGCTGTTA	GAATTATGGG	TGATGCATCA	ACACGTGTAG	3900
	TTGAAAAAGC	GAATTTAACA	TCAGATGATA	TAGATTTATT	TATTCCTCAT	CAAGCTAATA	3960
45	TTAGAATTAT	GGAATCAGCT	AGAGAACGCT	TAGGTATTTC	AAAAGACAAA	ATGAGTGTTT	4020
	CTGTAAATAA	ATATGGAAAT	ACTTCAGCTG	CGTCAATACC	TTTAAGTATC	GATCAAGAAT	4080
50	TAAAAAATGG	TAAAATCAAA	GATGATGATA	CAATTGTTCT	TGTCGGATTC	GGTGGCGGCC	4140
50	TAACTTGGGG	CGCAATGACA	ATAAAATGGG	GAAAATAGGA	GGATAACGAA	TGAGTCAAAA	4200
	TAAAAGAGTA	GTTATTACAG	GTATGGGAGC	CCTTTCTCCA	ATCGGTAATG	ATGTCAAAAC	4260

	TGAACCTTAT	AGCGTTCACT	TAGCAGGAGA	ACTTAAAAAC	TITAATATTG	AAGATCATAT	4380
	CGACAAAAA	GAAGCGCGTC	GTATGGATAG	ATTTACTCAA	TATGCAATTG	TAGCAGCTAG	4440
5	AGAGGCTGTT	AAAGATGCGC	AATTAGATAT	CAATGAAAAT	ACTGCAGATC	GAATCGGTGT	4500
	ATGGATTGGT	TCTGGTATCG	GTGGTATGGA	AACATTTGAA	ATTGCACATA	AACAATTAAT	4560
10	GGATAAAGGC	CCAAGACGTG	TGAGTCCATT	TTTCGTACCA	ATGTTAATTC	CTGATATGGC	4620
	AACTGGGCAA	GTATCAATTG	ACTTAGGTGC	AAAAGGACCA	AATGGTGCAA	CAGTTACAGC	4680
	ATGTGCAACA	GGTACAAATT	CAATCGGAGA	AGCATTTAAA	ATTGTGCAAC	GCGGTGATGC	4740
15	AGATGCAATG	ATTACTGGTG	GTACAGAAGC	ACCAATTACT	CATATGGCAA	TTGCTGGTTT	4800
	CAGTGCAAGT	CGAGCGCTTT	CTACAAATGA	TGACATTGAA	ACAGCATGTC	GTCCATTCCA	4860
	AGAAGGTAGA	GATGGTTTTG	TTATGGGTGA	AGGTGCTGGT	ATTTTAGTAA	TTGAATCTTT	4920
20	AGAATCAGCA	CAAGCTCGAG	GTGCCAATAT	TTATGCTGAG	ATAGTTGGCT	ATGGTACTAC	4980
	AGGTGATGCT	TATCATATTA	CAGCGCCAGC	TCCAGAAGGT	GAAGGTGGTT	CTAGAGCAAT	5040
05	GCAAGCAGCT	ATGGATGATG	CTGGTATTGA	ACCTAAAGAT	GTACAATACT	TAAATGCCCA	5100
25	TGGTACAAGT	ACTCCTGTTG	GTGACTTAAA	TGAAGTTAAA	GCTATTAAAA	ATACATTTGG	5160
	TGAAGCAGCT	AAACACTTAA	AAGTTAGCTC	AACAAAATCA	ATGACTGGTC	ACTTACTTGG	5220
30	TGCAACAGGT	GGAATTGAAG	CAATCTTCTC	AGCGCTTTCA	ATTAAAGACT	CTAAAGTCGC	5280
	ACCGACAATT	CATGCGGTAA	CACCAGATCC	AGAATGTGAT	TTGGATATTG	TTCCAAATGA	5340
	AGCGCAAGAC	CTTGATATTA	CTTATGCAAT	GAGTAATAGC	TTAGGATTCG	GTGGACATAA	5400
35	CGCAGTATTA	GTATTCAAGA	AATTTGAAGC	ATAACTATAA	nAATCTTCAG	TAACGTTGTT	5460
	TTAGTTACTG	AAGATTTTTT	CaGTTTCTTT	ATACTAAGAT	GAGCGACACA	CAATCGTCAT	5520
	AATAĀAATAT ·	GAATATTTAT	TAATAATAA				5549
40	(2) INFORMA	ATION FOR SE	Q ID NO: 18	19:			
		EQUENCE CHAP (A) LENGTH:					
45		(B) TYPE: nu (C) STRANDEL (D) TOPOLOGY	cleic acid NESS: doub				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 189:

AGATTATAGT AAGATTGATA GTTTGGCGAC TGAAGCGCGA GAAAAATTAT CAGAAGTAAA 60 mcctttaaat attgcacaag cttctagaat atcaggggta aatccagcag acatatctat 120

	TGGTTAGCAG	AACAATTAAA	AGAACATAAT	ATTCAATTAA	CTGAGACTCA	AAAACAACAG	240
_	TTTCAAACAT	ATTATCGTTT	ACTTGTTGAA	TGGAATGAAA	AGATGAATTT	GACAAGTATT	300
5	ACAGATGAAC	ACGATGTATA	TTTGAAACAT	TTTTATGATT	CCATTGCACC	TAGTTTTTAT	360
	TTTGATTTTA	ATCAGCCTAT	AAGTATATGT	GATGTAGGCG	CTGGAGCTGG	TTTTCCAAGT	420
10	ATTCCGTTAA	AAATAATGTT	TCCGCAGTTA	AAAGTGACGA	TTGTTGATTC	ATTAAATAAG	480
	CGTATTCAAT	TTTTAAACCA	TTTAGCGTCA	GAATTACAAT	TACAGGATGT	CAGCTTTATA	540
	CACGATAGAG	CAGAAACATT	TGGTAAGGGT	GTCTACAGGG	AGTCTTATGA	TGTTGTTACT	600
15	GCAAGAGCAg	TAGCTAGATT	ATCCGTGTTA	AGTGAATTGT	GTTTACCGCT	AGTTAAAAAA	660
	GGTGGACAGT	TTGTTGCATT	AAAATCTTCA	AAAGGTGAAG	AAGAATTAGA	AGAAGCAAAA	720
	TTTGCAATTA	GTGTGTTAGG	TGGTAATGTT	ACAGAAACAC	ATACCTTTGA	ATTGCCAGAA	780
20	GATGCTGGAG	AGCGCCAGAT	GTTCATTATT	GATAAAAAA	GACAGACGCC	GAAAAAGTAT	840
	CCAAGAAAAC	CAGGGACGCC	TAATAAGACT	CCTTTACTTG	AAAAATAATG	CATAATCCTT	900
	TACAACTAAC	ATAAAAGGAG	CGAATGGATA	ATGAAAAAAC	CTTTTTCAAA	ATTATTTGGT	960
25	TTGAAAAACA	AAGATGACAT	CATTGGACAT	ATTGAAGAAG	ATCGCAATAG	TAATGTTGAA	1020
	TCCATTCAAA	TTGAACGTAT	CGTTCCCAAC	CGTTATCAAC	CAAGACAGGT	GTTTGAACCA	1080
30	AATAAAATTA	AAGAACTTGC	TGAATCAATA	CATGAACATG	GTTTACTACA	ACCTATTGTT	1140
	GTAAGACCGA	TTGAAGAAGA	TATGTTTGAA	ATTATTGCTG	GAGAGCGCCG	ATTTAGAGCA	1200
	ATACAATCAC	TAAATTTACC	TCAAGCAGAC	GTTATTATTC	GTGATATGGA	TGATGAAGAG	1260
35	ACGGCTGTTG	TTGCATTAAT	TGAGAATATT	CAAAGAGAAA	ATTTGTCTGT	TGTTGAAGAA	1320
	GCGGAAGCCT	ATAAGAAATT	ATTGGAAATT	GGTGATACAA	CGCAAAGTGA	ATTGGCAAAA	1380
	AGTTTAGGTA	AAAGTCAAAG	CTTTATTGCA	AATAAGTTGC	GTTTATTGAA	GTTGGCGCCG	1440
40	AAAGTACTAC	TTCGCTTAAG	AGAAGGTAAA	ATTACTGAAC	GTCATGCGAG	AgcGGtATTA	1500
	TCATTGTCTG	ATAGCGAACA	AGAAGCGTTG	ATTGAGCAAG	TCATTGCACA	AAAGCTAAAT	1560
	GTGAACAGAC	TGAAGATAGA	GTACGCCAAA	AAACGGGGCC	CGAAAAAGTC	AAAGCACAAA	1620
45	ACCTTCGCTT	TGCACAAGAT	GTCACTCAAG	CACGAGATGA	GGTAGGCAAA	AGTATCCAAG	1680
	CGATTCAACA	AACAGGATTA	CATGTTGAGC	ATAAAGACAA	AGATCATGAA	GATTATTATG	1740
50	AAATAAAAT	TCGAATATAT	AAACGTTaGT	AGTAGGATGT	CGTATACATG	ATGACTAACA	1800
	CATAAAAGAC	AAAGCTAAGA	TCATAACAGC	TTTGTCTTTT	TTTTTTTTTT	TACGTGAAAC	1860
	30°233330000	አመአመመመስመለም	сттеатсасс	СТССТАСАТА	ልልጥሮልልጥሮጥጥ	СПРАПССТСТВ	1920

	TTCTAGTCAA	CCTTGCTGGG	GTGGGACGAC	GAAATAAATT	TTGCGAAAAT	ATCATTTCTG	2040
	TCCCACTCCC	TAATTTGAGC	TGGATATACT	TTCATTTGAA	CCCTTTATTG	CTAGTTTATG	2100
5	AAAGTATCAT	GAAAGCTTTA	TGAACATCGC	TTGAGTTGCC	TTTACAGTAG	AAAATTTAAG	2160
	TTTTACACTT	TGTGTGAATG	ATACGTTTTG	TATTGAATTA	ATTATAGAAA	GGTACGTTGA	2220
	AGATGTTTTC	AATTGGAAGT	GCAATTCTTC	ATTTTGTCAT	TGGTGGTATC	GCTGTTGCAT	2280
10	TAGCTTCAAT	TATTGCTGAT	AAGGTAGGTG	GTAAGTTAGG	AGGTATTATA	GCTACTATGC	2340
	CGGCAGTCTT	TCTTGCGGCT	ATTATCGCAT	TAGCTTTAGA	TCATCGTGGT	ACGCAATTAG	2400
15	TGGAGATGTC	GATGAATCTT	AGTACTGGAG	CAATTGTCGG	TATTCTGTCT	TGTATATTAA	2460
	CTGTATTTTT	GACATCTCTC	TACATTAAGC	ATAAAGGTTA	TCGGAAAGGC	GCAATATTCA	2520
	CAGTTGTTTG	TTGGTTTGTC	ATTTCCCTCG	CAATATTCAG	TATTAGACAT	TTATAGTTTG	2580
20	GAAAATGCGT	GATAATTAGT	TGTATTCAGT	TATTAAGTAA	TAAATTATTG	GAGGCAGAAC	2640
	ATCATGAAAT	TAACATTAAT	GAAATTTTTT	GTGGGGGGAT	TTGCAGTATT	ATTAAGTTAT	2700
	ATTGTATCTG	TAACACTACC	TTGGAAAGAA	TTTGGCGGTA	TATTTGCaAC	GTTTCCGGCA	2760
25	GTATTTTTAG	TGTCTATGTT	TATTACAGGT	ATGCAATATG	GTGATAAAGT	CGCTGTGCAT	2820
	GTAAGTCGTG	GCGCAGTGTT	TGGTATGACA	GGGGTATTAG	TTTGTATTTT	AGTTACATGG	2880
	ATGATGTTAC	ATATGACGCA	CATGTGGTTG	ATTAGCATTG	TTGTTGGTTT	CCTAAGCTGG	2940
30	TTCATCAGTG	CAGTATGTAT	TTTTGAAGCG	GTAGAATTTA	TAGCACAAAA	AAGATTAGAA	3000
	AAGCATAGTT	GGAAAGCTGG	AAAATCGAAT	agtaaatagt	GTGAACGTAA	TCTCTTAACT	3060
35	AGGACTAACT	TTGCAAGCAT	TGAATAGCAT	GGAAAAGTTG	CATCATTAAT	AAGTGAAATT	3120
	CAAGTTGGCA	TTGAGAAAAT	TACAAGCGCG	TAATCATACa	GGTCTGTCTT	AAGGGAGTCT	3180
	TCGĄĄCCCCG	ATGTTGTCGT	ATGTCAAAAC	ATTTAGTCAA	TCATAAAGGT	GACTTGATTT	3240
40	AACTTTATCT	GATAGTCTGA	TTGTAATGAT	TGTACTAATT	GACTGGAGGC	GTATGTAATT	3300
	GAATCTGAGT	AAACAAATTA	AAAAGTATAG	GGAACGAGAT	GGTTATTCAC	AAGAATATCT	3360
	TGCTGAAAAG	TTATATGTAT	CTAGGCAGAG	TATTTCTAAT	TGGGAAAATG	ACAAAAGCTT	3420
45	ACCAGACATA	CATAACTTAT	TAATGAYGTG	TGAATTGTTC	AATGTAACTT	TAGATGATTT	3480
	AGTAAAAGGG	ACCATTCCAT	TTGTACCTGA	TATTAAAGCG	CAACGAAGTC	TTAACTTATG	3540
	GACATATGTG	ATGCTTATTT	TCATGACATT	AGCTGCAATT	TTAATGGGAC	CTTTAGTTGT	3600
50	TTATTGGAAT	TGGACTTGGG	GTGTAACGGT	GGCAATCATT	TTGGGAATAG	GTTTTTATGC	3660
	ATCTATGAAA	ATAGAAGATT	TAAAAAAAGT	GCATAAAATG	GACAACTACG	ATCGAATTGT	3720

	GACAAATGCG	CTTTCTATTA	TATCAGTAAT	TGGTATACTC	AGCCTCATAA	TTTTCCTTAG	3840
	TGTGTATTTG	GCAAATAAGT	TTTTATAAAT	CATCGTGGTA	TCGTCTCATA	TTATTTATAT	3900
5	TATCCAAAAT	AGCATAAAAA	AATACCAACA	AGATTTAGAA	CCTTGTTGGT	AATCAAAGCG	3960
	aTTCATTTAT	AATGAGTCGT	TTTATGTTGT	AAGATTAAAC	AGTTTGTACG	TTAACTGCTT	4020
10	GGTCTCCACG	TTGACCTTCA	GTGATTTCGA	AAGTAACTTT	TTGACCTTCT	TCTAAAGTTT	4080
	TGTAGCCATC	GCTAGCGATA	CCTGAGAAAT	GTACGAATAC	GTCTCCGCCA	TTTTCTTGTT	4140
	CGATGAAACC	AAAACCTTTT	TCTGCTTTAA	ACCATTTWAC	TGTACCGTTA	TTCATATwGA	4200
15	AWACCTCCGT	gTGCTTTTGC	ACTTAATATT	TGTAACAAAT	TCATAACTAA	AAAAGAGGAT	4260
	ATTCTAAACA	AATACACTAC	AATTTAATTC	ACGAGCTTTT	ATTACGTAAG	ACCAACTATA	4320
	CGCTCATATT	GGCATAATGT	ACAGTGTTTT	TTGAAAATAA	ATTAAAAAAG	ATTTTTAAAA	4380
20	ACCTTAGAAA	CGTTGATTTA	AAGGGGTTTA	TAAAAATwaw	AAAATTGTAG	TCTTTTATGG	4440
	TGTTTGCTAG	TTTTCAAAGT	GACATATCGT	TTAAACATGA	TGATTTTATA	AGCAATCCAT	4500
	AAAAAACAAG	CAGCGATAAA	CGCTACTTGT	TGATATTAAA	ATCTGACTTG	AAAGGTCATA	4560
25	GCAATGTTCT	ATACCGATGG	AATGTGCTTA	CTTGCCTTTT	TCTTCACGAC	GTTTTAAATA	4620
	ATAAGAGCCA	CCTAATAAAC	CAGCTGGAAT	GCCTATCATT	GGTGTTGTGA	ATGAGCTTAA	4680
30	TACAATAACA	AGTATTGTTA	AAGCAATGAC	GTTATACCAA	GTTACAGTCA	AATTTTTCAA	4740
30	ATCCTCATAT	GATTGTTTTA	CTAATTCTCT	AAATTTCATG	ATTCAATCTC	TCCTTTTTTA	4800
	TAAATCTTTA	GATTGTCAAA	TTAAGCTGGA	CA			483
35	(2) INFORM	ATION FOR SI	EQ ID NO: 1	90:			
40	ξ	EQUENCE CHAI (A) LENGTH: (B) TYPE: ni (C) STRANDEI (D) TOPOLOG	5727 base pucleic acid ONESS: doub	pairs ·			

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 190:

CAAAGCTGTT	CAAAAGGCTT	ATAATTTAAA	TTTAGATAAC	ATACGTACAA	TGGAACCTAA	60
GTTGAGATAT	CAAGCGATCA	ATAAAGGTAA	TATTAATTTA	ATAGATGCAT	ATTCAACTGA	120
CGCTGAATTA	AAACAATATG	ATATGGTTGT	GTTAAAAGAT	GATAAGCACG	TATTTCCACC	180
ATATCAAGGA	GCACCATTAT	TTAAAGAAAG	CTTTTTAAAG	AAACATCCAG	AAATTAAGAA	240
ACCGTTAAAC	AAACTAGAAA	ACAAAATATC	TGATGAAGAT	ATGCAAATGA	TGAACTATAA	300

	GTTAATCAAA	TAACGACCAA	CGCCACATAA	GATGCGTAAC	ACCAAATTAT	ATCTTATGTG	420
	GCGTTGTTAT	ATTTAAATCT	ATAATTATGT	TCAATTTAAA	CATGCAATAA	TGATTAAAAA	480
5	ATATGACATG	TTAAACACAA	TGTAAGCTAT	TATGATGTGA	AAATAGTAGC	ATTGCATTTT	540
	AGAAACATAG	AGCGATATAA	TGAATATAAG	TTTTTTGAAA	TTTCAGTTAA	TTCTAAGGAG	600
	GTTGTTTTTA	TTATGAAAGA	ACAACTTAAT	CAACTATCAG	CATATCAGCC	TGGTTTATCT	660
10	CCAAGGGCAT	TGAAAGAAAA	GTATGGCATT	GAAGGAGATT	TATATAAACT	TGCATCAAAT	720
	GAAAATTTGT	ATGGACCATC	GCCTAAAGTT	AAAGAAGCGA	TATCAGCACA	CTTAGATGAG	780
15	TTATATTATT	ATCCTGAAAC	AGGATCACCG	ACATTAAAAG	CGGCGATTAG	TAAACATTTA	840
	AATGTAGATC	AATCACGCAT	TTTATTTGGT	GCGGGATTAG	ATGAAGTTAT	ATTAATGATT	900
	TCTAGAGCTG	TATTAACGCC	AGGGGATACT	ATTGTTACAA	GTGAAGCGAC	ATTCGGTCAA	960
20	TATTATCACA	ATGCGATTGT	TGAATCAGCT	AATGTGATAC	AAGTACCTTT	AAAAGATGGT	1020
	GGCTTCGATT	TAGAAGGTAT	TTTAAAAGAA	GTTAATGAAG	ATACGTCATT	GGTATGGTTA	1080
	TGTAATCCAA	ATAATCCTAC	AGGTACATAT	TTTAATCATG	AGAGCTTAGA	TTCGTTTTTA	1140
25	TCTCAAGTAC	CTCCACATGT	ACCAGTAATT	ATAGATGAAG	CTTATTTTGA	ATTTGTGACA	1200
	GCAGAGGACT	ACCCGGATAC	ACTTGCTTTG	CAACAAAAAT	ATGACAATGC	TTTCTTATTA	1260
	CGTACATTTT	CAAAGGCGTA	TGGATTAGCG	GGTTTACGTG	TAGGATATGT	GGTAGCAAGT	1320
30	GAACATGCGA	TTGAAAAATG	GAACATCATT	AGACCACCAT	TTAATGTGAC	ACGTATATCT	1380
	GAATACGCAG	CAGTTGCAGC	ACTTGAAGAT	CAACAATATT	TAAAAGAGGT	AACACATAAA	1440
35	AATAGTGTTG	AACGCGAAAG	ATTTTATCAA	TTACCTCAAA	GTGAGTATTT	CTTGCCAAGT	1500
35	CAAACGAATT	TTATATTTGT	AAAAACmAAG	CGGGTAAATG	AACTTTATGA	AGCACTTTTA	1560
	AATGTAGGGT	GTATTACGCG	ACCATTTCCA	ACTGGTGTTA	GAATTACAAT	TGGTTTTAAA	1620
40	GAACAAAATG	ATAAAATGTT	AGAAGTTTTA	TCAAACTTTA	AATACGAATA	GTAAGTGGGG	1680
	AGTGGGACAG	AAATGATATT	TTCGCAAAAT	TTATTTCGtC	GTCCCACCCC	AACTTGCATT	1740
	GTCTGTAGAA	ATTGGGAATC	CAATTTCtCT	TTGTTGGGGC	CCCGCCGGCA	AGGTTGACTA	1800
45	GAATTGAAAA	AAGCTTGTTA	CAAGCGCATT	TTCGTTCAGT	CAACTACTGC	CAATATAACT	1860
	TTGTAGAGCA	TTGAACATTG	ATTTATGTCT	CAAGCTCAAT	GCAGTGTGAA	TGATGAGGTG	1920
	AGAGTATTCA	GTGTAAAAAG	CAACAATAGA	TGATATTGTT	TTGTATCAAT	TGCTTTTTTG	1980
50	CTATACTGAA	TCAATACTGA	TATTTTCAGG	AGAAGATTAA	AATGACCCGT	AAATCAATCG	2040
	CCATTCATAT	CCNTCNNCTN	ででくくころころでる	Chrencenca	********** **************************	COTOTONATO	22.00

	TTCCTGAACA	TGATGGATTA	ATTACAGAAG	TATTGAGAGA	ACCAGGCTTC	TTCAGACATC	2220
	TTAAAGTGAT	GCCGTATGCA	CAAGAAGTTG	TGAAAAAATT	AACTGAACAT	TATGATGTAT	2280
5	ATATTGCTAC	AGCAGCAATG	GATGTACCAA	CATCATTTAG	TGATAAATAT	GAATGGTTAC	2340
	TAGAGTTCTT	TCCATTTTTA	GATCCTCAGC	ATTTTGTTTT	TTGTGGTAGA	AAAAACATCG	2400
10	TTAAAGCTGA	TTATTTAATA	GATGACAATC	CTAGACAGCT	TGAAATTTTT	ACTGGTACAC	2460
	CGATTATGTT	TACAGCAGTG	CATAATATTA	ATGATGATCG	ATTTGAACGC	GTAAATAGCT	2520
	GGAAAGATGT	AGAACAGTAT	TTTTTAGATA	ATATTGAGAA	ATAAAATATA	TCACTTGAAA	2580
15	AATTTCATGT	AGAAAAGATG	ATGGATAGGC	TATAAAGTAA	TTGTGACTGA	GATGAACTTT	2640
	TATGTCTTAG	ACACTACAAC	ACTATATTGG	CAGTAGTTGA	CTGCGGGGCC	CCAACATAGA	2700
	GAAATTGGAT	TCCCAATTTC	TACAGACAAT	GCAAGTTGGG	GTGGsCCCCA	ACATAAAGAA	2760
20	ATACTTTTTC	TTTAGAAATT	AGTATTTCTT	ATGCATGAGT	GTAACTCATG	CATTCATATT	2820
	TTTAAGTACA	CATTAGCTGT	GACTAATGAT	AAAGAATCGC	TACATAATCA	ATCATTAGTC	2880
	GTTCTTTATC	ATTTCCGTCC	CGCTCTCAAT	AAATGTTAGT	CTATCTTATT	ATTATAAATC	2940
25	GGATGAATGT	GTTAATCTAT	GGCAGATTAC	ACGTCATCCG	ATTTTTTATA	GAATTTGAAA	3000
	AAGACGCATA	AACCACTATG	ATTTAAAATTA	CAACATCAAT	CATTTTAGTG	gCATGCGCCA	3060
	AAATTATATG	TCTGTTTTTG	AAACAGGGTA	ATAGCTTAAA	GCTAATAAAA	ACGAATATAA	3120
30	GGTGCGTTGA	ATCTTATGAT	TACACTCCAA	ACCTAATATA	ATATCGGGTT	AAGATCATTC	3180
	CGGATGCTTA	CAAATCATTG	ACAGTAAGTA	ACTGAATGGC	ATTTGGTATA	ACCTCAATAT	3240
35	CAATAGGTGT	TTCTAATGAA	ATTTCGCCAT	CAATATCAAC	TTTCATTGCT	GGATCTGTTG	3300
	TAAGTGAAAT	CTTTTTACCA	GGTATATGCT	CAATACCTTG	AGTAATTTCA	TTCCaATTCA	3360
	TGCTATCACG	CTTTTTAAAA	ATATCATTTA	AAATACTGAA	ACTTTGTTCA	TTAAAAATGA	3420
40	AAGTGTTCAG	TTCACCATCT	TGAGGAGACA	AATCAGTCaA	TGGTATACGA	CTACCACCAA	3480
	TGAATGGACC	ATTTGCTGTT	AGTATCATGG	TCGTTTCGCC	AGAATATGTC	TTATCATCTA	3540
	TTGATAATTG	ATAATTAAAT	TGTGTTGGAT	TTAGCAGTGT	TTTGACAGTT	GATCCAATAT	3600
45	AACTCAATTT	ACCAAATATA	TCTTTTGAAC	CATCTTGTAC	GTTTTCAGCG	TTTTGAACAA	3660
	TGAGACCTAA	GCCAACAAAG	TTGAGTGCAT	ATTGATTATT	TATTTTAATT	ACATCGTATG	3720
	TACCAACTTG	TGCAGAAATC	ATTTGTTCAC	TAGCTTGTTT	ATGATTAGGT	GCTATATTTA	3780
50	GCGTTTTTGT	AAAATCATTA	AAAGTACCGC	CTGGTAAAAT	GCCAATAGGG	AGTTGAAGGT	3840
	САТСТСТСАТ	ДАСАСССТТТ Т	ΔΤΔΔGΤΤΟΩΤ	таассствее	ATCACCGCCA	Δαασααασα	3900

	CACCTTCGTT	TTCACTCAAT	TGAATAGAAA	GATGCTTACA	AATTGAACTT	AATGCTGTTG	4020
	TAACTTCCCC	AATACCTTGA	TTAATATTT	TTAATCCACT	GTGTTCATGG	TAAAAGAGGA	4080
5	CACCATGTGT	ATATTTATTT	TCCATAGTTT	AGCCTACTTT	CTAAAAATTG	GTTCATTAAA	4140
	TATATATACC	CACTTTTAAT	TGTTAATACC	AAAAATATGT	TTTTAAATAG	AGAAAATGGT	4200
	AATAAATGAA	ATTGATTTCT	ATAGAGTGGG	ACGAGAAAAT	ATAGTTATAG	CTGTCTATAA	4260
10	TGAGCATATT	AAGTTTTAT	TTATACTGAT	ATCTTGAATT	TAATTAATAG	AAACCTATAA	4320
	AAAAACAGTA	AGCCATTTAA	ATGACTTACT	GTTTTTTGAA	TTAGGCCAAC	AATATTAACG	4380
15	TATACCTTTC	ATCGCTTTGA	TGATTAAAGG	TGAGAATGCT	AATACAATTG	TTGTAACAAT	4440
	AATTGCAACA	ACACCTAGGA	AAATAAAGTA	ATTTGTTTGA	CCTAGTGGTT	CTATTAACTT	4500
	AACTAAAGTA	CCATTGATTG	CTTGTGCAGA	AGCGTTAGTT	AAGTACCAAA	TACTCATCAT	4560
20	TTGGGCATTA	AATGCTTTAG	GTGCTAACTT	AACAGCAGCA	CTATTACCCG	TTGGTGATAA	4620
	GCATAGCTCA	CCGATAACAC	AAATAATGTA	CGATAAAATA	ACCCAGTTAA	CTGAAAAGTT	4680
	TGATGAACCT	GATGCATAAC	CTACAATACC	AATTAGTATG	TATGACGCAC	CTGCTAAGAA	4740
25	CGTACCAATT	GCAAATTTTA	CTGGCAGGCT	AGGTTGTTTA	GTTCCAAGCT	TTTGCCATAA	4800
	AAGTGAAATA	ATTGGAGCTA	GTAATAAAAT	AAATAATGGG	TTAATTGATT	GGAAGATCGC	4860
	TTCACCAAAG	TTTGTTTTCC	AACCAAATAA	GTTTAATTTC	ATATCTGAAT	GTTCAATTCC	4920
30	ATATATGTTT	AATACATTAG	ACCCTTGTTC	TTGAATAGCC	CAGAACACCA	TTCCAAGAAT	4980
	AAATAATGGA	ATAAATGCTT	TAACACGAGA	ACGTTCAGTA	TCAGTGACAT	CTTTACTTCT	5040
25	AATAATTAAA	GTGAAGTAAA	TGAnTGGTAA	TGCAATACCT	AATACTAAAA	CAGTATTACT	5100
35	AACTAAGTTA	AATGATAATG	agttagttaa	TGCACCAATA	ACGATAATTA	ATACAATTGC	5160
	TAAAACAACA	CTTCCGATAA	TAAGACCATA	CTTTTTCTTT	TCAGCTGGTG	TCAATGGGTT	5220
40	AGTAGGTTTC	ATACCAACGC	TACCTAAGTT	TTTGCGGTTG	AAAAGTACAT	ACCATACTAA	5280
	ACCTAATGCC	ATACCAACTG	CTGCAATCAA	GAATCCGCCG	TGGAAGTTTT	TAACATTAAC	5340
	AAAGTGTTGC	AAAATAATAG	GTGATAATAA	TGCACCCATA	TTAACTGACA	TATAGAAAAT	5400
45	AACAAAACCT	GCATCCATAC	GTCTATCATT	TTCAGGATAT	AAACGGCCAA	CGATATTTGA	5460
	AATGTTTGGC	TTCATTAAAC	CTGAACCAAT	AATGATGAAG	AACATTGATG	TGAATAAGCC	5520
	GATTAATGCA	AATGGTAAGC	TTAAACAAAT	ATGTCCGATA	ATAATAAAGA	CTGCACCTAA	5580
50	TAAAGTAGCG	CCTCTAGTGC	CTGTAATTCT	GTCAGCAATC	CATCCGCCTG	GTATTGATGT	5640
	CATATAGATT	AATGAACCAT	Δ ΥΔΟΤΩΔΟΔΤ	ΔΑΤΤΩΛΌΝΤΑ	CCTCTTCTTT	TATCAATTCC	E700

(2) INFORMATION FOR SEQ ID NO: 191:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 14078 base pairs (B) TYPE: nucleic acid

(C) STRANDEDNESS: double (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 191:

60	TGATGGTATT	AAACCAATGT	AAATACTTAC	AGATTTAACG	ACGGCGaAGA	TGGACTATTA
120	CGAAACATAC	AAAAGAAAGA	ATTAAAGAAG	AGCTGATCAG	ACCCAGCATT	ATCACAGATG
180	AAAGTTATCA	AAAGACCTCT	TAATATAAAC	TTTGTTTGAA	CTATAAGAAT	TTCGATCGTT
240	ATCGTTTCAT	GGGATAGGCA	TGCCATCTAT	TTTTTAATGT	TTCAGAGGTC	AGATGATACC
300	CACTTACATG	GCGTCACAAA	TGGCAATTTG	AGTATTTGTA	TCATATGACA	TCGTTTATAT
360	GAATTGTAAA	GTTAGAAATT	AATGCAAAGG	TTGTTTTGTG	GAATTATTAA	ATTTATTGGT
420	CGTATAGCGG	ATTTTTAGTG	TTTGATCCAA	GCTTTAGTCA	TCTTTGTTTC	TACTTTCTAA
480	AATTTAGGTA	AACGCATCTA	GCGTTTTTGA	CTAAAATATC	ATAGTGCGCA	ATTTTGCAAT
540	CAAGCGCTTG	AATTGATCTA	TAATTCATGT	TGTTTGCTAT	TTTAAGTCAG	CGATAATTTA
600	CAGTCGTATC	AATTTAATAC	TITGCTTGCT	TAGTTTCAGA	GTATGTGATG	ATGTTGATAC
660	GTGTTGTCAT	ATTTTCATTT	ATATGTTTTG	CAGCAACTAA	GCTTTAATAC	AAGGAGCGCC
720	TATATTGCAA	TACACTATTG	AAAAAAATTA	TACATTAATC	TCCTTTGATG	GCTTTGTTAC
780	AATATATAGT	TATTCTAGTT	ATGCTTTGTT	AAGATAGTTA	CTATAACAAA	AGCTAATTAA
840	TTGGAGGAAT	CAATTACATT	GTAGATTGGG	TTTCTTTAAT	TAATATTTTG	TAATGTCTTT
900	ATCTAGCTTA	TAGCAGTTGC	CTAGGCGCAT	AATAATTTCG	TGAAAAAGCA	TAAĀAATTA
960	GAAATCACAA	ATTATAGTGG	GTAACAAAGG	AGATGCGATA	ATAACAAAGC	TTTACATGGG
1020	TTCAGCTCTA	GATATTTAAA	ATAGATAGCA	TGGGACATTA	GGAGTAAAAA	GTTAATGCTG
1080	TGAATATGGA	СТААТАААТА	ATAGGATTAA	AATTTATGCT	AAGACTATAT	TATTATTTGG
1140	GGAAGATCAA	AGGTATTAAG	TTGTTGGAAA	TAAAGATAGG	ATAAAGAAGC	GATAATATTT
1200	TGCAAATTAT	AACAATGGTA	GAAGATTATA	ATCTCAATAT	AGAGAAAGAA	TATCTTTTGG
1260	TAATTTAGAA	TTCATAAATA	ATGGCTAATT	AGATTTAAAA	ATCCTCGTAC	AAAAAAGAAA
1320	ACTGGATGAT	TAAAGAGAGC	CAGGATGCAT	CAATGAACTA	TGAAAGAATA	GAACTTTCGA
1380	TTTTAATGCA	ACTTGAAAAC	AAGAATTCAG	TATTAAGGAT	AAGTTAAAGA	TTTCACAGAG

	GTTGTATCAT	ATTATGGTGA	TAAGGATTAT	GGGGAGCACG	CGAAAGAGTT	ACGAGCAAAA	1500
	CTGGACTTAA	TCCTTGGAGA	TACAGACAAT	CCACATAAAA	TTACAAATGA	ACGTATTAAA	1560
5	AAAGAAATGA	TTGATGACTT	AAATTCAATT	ATTGATGATT	TCTTTATGGA	AACTAAACAA	1620
	AATAGACCGA	AATCTATAAC	GAAATATAAT	CCTACAACAC	ATAACTATAA	AACAAATAGT	1680
	GATAATAAAC	CTAATTTTGA	TAAATTAGTT	GAAGAAACGA	AAAAAGCAGT	TAAAGAAGCA	1740
10	GATGATTCTT	GGAAAAAGAA	AACTGTCAAA	AAATACGGAG	AAACTGAAAC	AAAATCGCCA	1800
	GTAGTAAAAG	AAGAGAAGAA	AGTTGAAGAA	CCTCAAGCAC	CTAAAGTTGA	TAACCAACAA	1860
15	GAGGTTAAAA	CTACGGCTGG	TAAAGCTGAA	GAAACAACAC	AACCAGTTGC	ACAACCATTA	1920
15	GTTAAAATTC	CACAGGGCAC	AATTACAGGT	GAAATTGTAA	AAGGTCCGGA	ATATCCAACG	1980
	ATGGAAAATA	AAACGGTACA	AGGTGAAATC	GTTCAAGGTC	CCGATTTTCT	AACAATGGAA	2040
20	CAAAGCGGCC	CATCATTAAG	CAATAATTAT	ACAAACCCAC	CGTTAACGAA	CCCTATTTTA	2100
	GAAGGTCTTG	AAGGTAGCTC	ATCTAAACTT	GAAATAAAAC	CACAAGGTAC	TGAaTCAACG	2160
	TTAAAAGGTA	CTCAAGGAGA	ATCAAGTGAT	ATTGAAGTTA	AACCTCAAGC	AACTGAAACA	2220
25	ACAGAAGCTT	CTCAATATGG	TCCGAGACCG	CAATTTAACA	AAACACCTAA	ATATGTTAAA	2280
	TATAGAGATG	CTGGTACAGG	TATCCGTGAA	TACAACGATG	GAACATTTGG	ATATGAAGCG	2340
	AGACCAAGAT	TCAATAAGCC	ATCAGAAACA	AATGCATATA	ACGTAACAAC	ACATGCAAAT	2400
30	GGTCAAGTAT	CATACGGAGC	TCGTCCGACA	TACAAGAAGC	CAAGCGAAAC	GAATGCATAC	2460
	AATGTAACAA	CACATGCAAA	CGGCCAAGTA	TCATACGGAG	CTCGTCCGAC	ACAAAACAAG	2520
	CCAAGCAAAA	CAAACGCATA	TAACGTAACA	ACACATGGAA	ACGGCCAAGT	ATCATATGGC	2580
35	GCTCGCCCAA	CACAAAACAA	GCCAAGCAAA	ACAAATGCAT	ACAACGTAAC	AACACATGCA	2640
	AACGGTCAAG	TGTCATACGG	AGCTCGCCCG	ACATACAAGA	AGCCAAGTAA	AACAAATGCA	2700
40	TACAATGTAA	CAACACATGC	AGATGGTACT	GCGACATATG	GGCCTAGAGT	AACAAAATAA	2760
40	GTTTGTAACT	CTATCCAAAG	ACATACAGTC	AATACAAAAC	ATTACGTATC	TTTACAACAG	2820
	TAATCATGCA	TTCTATGATG	CTTCTAACTG	AATTAAAGCA	TCGAACAATC	GGAAGCATAT	2880
45	TTCTAAATTA	TTTATTCATT	ATAGTCTTAA	ACATAACATG	ACCTAATATA	TTACTAACCT	2940
	ATTAAAATAA	ACCACGCACA	TCTAAGTGAT	ATACGACAAT	CACAGCAATA	ATAATTGCTT	3000
	TAGAAAGTCG	TGCCGAACTG	GAACTTACAA	GTCTAGTTCG	AACACACACT	GATGTGAGTG	3060
50	GTTTTCTTTA	TTTTAAACAT	GAACAATCAG	ATAAGTTACT	AGCATTAGCA	AATATTATTA	3120
	AATCAAACCC	CTTCGATTCA	יי איזיייי א א מאיזייי א א מאיזייי א א מיזיייי א א	አልሮአልሞርልሞሞ	AAAATTAGAG	ርጥርጥል አ አጥርጥ	2100

	TATTTCACAC	AGCTTCATTA	ATAAAACGAA	ATTGCTTCAA	CCCGCTTCAA	CTTCAACTGG	3300
	CTTCAACTTC	AGCCTACTTC	ATTCAATAAC	AAAACGAATC	CGCTTCATCC	AAAATCAACC	3360
5	ATTCTAACGC	ACATATTCAA	ATATAGCAGC	TGCACCCATG	CCGACACCAA	TACACATCGT	3420
	AACCATGCCG	TAACGGCTAT	CGGGACGTCT	ACCCATTTCA	TTAAGTAAAC	GCGCGGTTAA	3480
	CATTGCGCCT	GTAGCACCTA	ATGGATGACC	TAAAGCAATA	GCGCCACCAT	TCACATTCGT	3540
10	ACGTGATATA	TCTAGACCTA	CTTCTTTAAT	AGATGCAATC	GTTTGAGAAG	CAAATGCTTC	3600
	GTTCAATTCG	ATCAAATCAA	TGTCTTCAAC	AGATAGATTG	CTGAGTGACA	ATACTTCAGG	3660
15	AATCGCATAT	GCAGGCCCAA	TACCCATAAT	TTTCGGGTCA	ACGCCTACTG	CCTTAAAACC	3720
.0	AACGAATCGT	GCAATAGGTG	TCACGCCGAG	TTCTTTCACT	TTATCTCCAG	ACATTAAAAC	3780
	TACAAATCCT	GCACCATCAG	AAAGTGGGGC	AGATGTTCCT	GCAGTCATAG	TGCCGTCAGC	3840
20	TTTAAATACT	GTACGTAATT	TGGCTAATGC	CTCCATCGTG	GTGTCAGGGC	GTATAAATTC	3900
	ATCTTGGTCA	AAGATATTTG	TGTGTACTTT	TGGTCCTGCG	TTTGTATATT	CAACTGAGTT	3960
	TACTTGTATT	GGAATAATTT	CATCTTTGAA	CCGACCATCA	CGTTGTGCGT	CATAGGCACG	4020
25	TTGATGACTT	CTGACAGCAT	AAGCATCTTG	ATCTTCGCGT	GATACGTCAA	ATTGGGATGC	4080
	TACATTTTCA	GCAGTTAAAC	CCATAGGATA	TGACGCACCT	ATATCATCAT	ATTGTAAGGT	4140
	TGGATTGTTT	GTGGGCTCGT	TGCCACCCAT	TGGTACGGCA	CTCATCAATT	CAACGCCACC	4200
30	AGCTACAAGT	ATATCTCCTT	GACCAGCCAT	AATTTGATTG	GCTGCAATCG	CGATGGTTTG	4260
	TAATCCTGAT	GAGCAGTAGC	GATTCACTGT	TTGACCCGGT	ACCGTGTCAG	ATAATCCCGC	4320
	ACGCAATGCA	ATCGTTCGTG	CAATGTTTTG	GCCTTGTAAT	CCTTCTGGAA	AAGCCGTACC	4380
35	AACAATGACA	TCTTCAATCA	TATTCTTATT	GAATTTTCCG	TCAATACGTT	TCAATACGCC	4440
	TTGTAATACT	TTGGCTGCGA	CATCATCAGG	TCTTTCGTGG	AATAATGCGC	CTTGCTTTGC	4500
40	TTTCGCTGCG	GCTGAACGCC	CATAAGCTAC	AATGTATGCT	TCTTGCATGG	TTATCATCCT	4560
	CTCTTAATGA	CTATCTTTTA	ATTACGTAAT	GGCTTACCAG	TTTTTAACAT	ATGTGCAATT	4620
	CTTTCATATG	ATTTTTTAGA	TTTTAGTAAG	TCAATAAAGC	CAATTTTCTC	CAACGATTGA	4680
45	ATGTAACGTT	GATTGATAAA	TGTATTTCTT	GGTAAATCAC	CACCCGCTAA	AATTGTGGCG	4740
	ATATTTAAGG	CAATATGATA	ATCATGGTCG	CTAATAAAAT	GACCCCGTCT	TTGCGCATCT	4800
	AATTGTCCTT	GGATCAATGC	TTTGAAGTCT	TCACCTAAAG	CGATATATTG	ATGTCTAGGA	4860
50	TTCGGAATAT	AGTTTGTTTC	TGCTTCATAT	TTCGCACGTT	TGAGCGCAAC	TTCGACACGT	4920
	тстсстстат	тааааатаат	ССТВТСТСТВ	тсасстаат	AACCATAACG	ACCTCCCTCA	4980

	TGTTTGTCAT	CAAACTTATG	CGATGTGCGT	AATATGCGAT	CAGCCATTTC	TGCAAGGCCA	5100
	CCGCCACTCG	GTAATAAGCC	AACACCTGCT	TCAACAAGAC	CGATATATGT	TTCACTTGCA	5160
5	GCGACAACAA	TAGGTGAGTA	AAGTACAAGC	TCACAGCCAC	CGCCTAAGGC	ACGACCTTGA	5220
	ACAGCTGTGA	CTACTGGTTT	CAAACTATAC	TTCAAACGAT	TAAAGCTATA	ATGTAATTTA	5280
	TCAATTGATT	GTGCAACGAC	ATCATCTACA	AGACCGTCTT	CATGCGCCTT	TTTCATTAAG	5340
10	AAAAGGTTAG	CACCCACACT	GAAATTGTTA	CCATCTGCAT	AAATAACCAT	ACTTGTGTAA	5400
	TGGTCATTTT	CCAGTAAATC	AATCGCATCA	ACTAACGCAT	CGTTGAATTC	ATCGGTAATG	5460
. .	ACATTATTTT	TACTTTGTAA	TTTCAGTAAC	AGTTGATCAT	CATGAGTTAC	GGAAAGTTTG	5520
15	GCATCACCTT	TATCCCAAAG	TTCATCTTTT	ACGAAGTGAG	AAATAGGTGT	TGCATATTCA	5580
	ATGGTCTCAT	CTTGTTTATA	AAAGCCACCA	TCTAAATCAC	TAATCCATTG	TGGTAAGTCT	5640
20	CCAAGTTCGT	CTTCCATACG	TGTTTTAACA	CGTTCGTATC	CCATTGCATC	CCATAATTGG	5700
	AATGGACCAA	GTTTCCAGTT	GAACCCCCAG	ACAAGCGCAC	GGTCTATGTC	TCGGAAATCA	5760
	TCGGTAGCTT	TAGGTACATT	GATAGCAGAG	TAATAGAAAT	TATTACGTAA	TGTCTCCCAT	5820
25	AAAAATAGTC	CCGCTTCGTC	TTGCGCATTG	AATATGGTAT	CAAGGTTATG	CACTAAGTCT	5880
	TTATTAAATT	CATTTAAAAT	TGGTAATTGT	GGTTGCGATA	CAGGTACATA	ATCTTGTTTT	5940
	TCAACATCGT	AAACAAGTCG	AGCTTTAGTT	TCTTTATCCT	TTTTGTAAAA	TCCTTGTTTC	6000
30	GTTTTACGTC	CGAGTGCGCC	ATTGTCAAAC	AACGTATTTA	CAATTTTGAC	ATCATGAAAA	6060
	TAAGGTGTTT	CTTCAGGTAC	TTGTTGCATG	CCTTTAATTA	CAGACACTGC	AATATCTAAA	6120
	CCGACTAGGT	CAGATAGCGC	ATATGTACCT	GTTTTAGGAC	GACCAATCGC	TTGCCCAGTT	6180
35	AAAGCATCCA	CATCTACAAT	GCTTATCTTG	TGTTGCTCGG	CGCGATACAT	AATATCATTC	6240
	ATTGTTTGCG	TGCCGACTCT	ATTTGCGACA	AAGCCAGGCA	CATCATTGAC	GACAATGACA	6300
	CCTTTACCTA	ACACATTTTG	CGCGAAATTT	TTTACATCTA	ATATAATAGA	TTCCTTCGTG	6360
40	TGTGACGTAG	GTATTAACTC	CACTAATTTC	ATAATACGTG	GTGGGTTAAA	GAAATGTAGA	6420
	CCAAAGAATC	GTTCTTGATC	CTTCTCGTTA	AATGCTTGAG	CAATCGCATT	AATTGGAATA	6480
15	CCTGATGTAT	TTGTAGCGAA	TAAAGCATCT	TCTTTAGCAT	GTTGTAGAAC	TTGTTGCCAA	6540
	ACAGCATGCT	TAATTTCAAT	ATCTTCTTTG	ACTGCTTCGA	TATATAAATC	AGCATCATCA	6600
	TTTACCAAGT	CATCATCAAA	ATTACCATAT	GTTAAATGAC	TCGCTAGATT	TAAGTCGAAT	6660
50	AGTAGCGGCC	GTTTCTTATC	TGTAATTTTA	TCGTAAGATT	TTTTCGCAAT	GAGATTTGGA	6720
	maammamam	001 0m1 01 1 m	> mam> > m> am	mmn			

	GTGATTCCTC	CAATTTAGTT	GAGGATAAGA	TAACCATTAA	GATAATTGGA	ATAACGTTGC	6900
	TATTTTATAA	AATTAATTAA	GTATCTTTGA	CAGTCATCTT	AGCCTCTTAT	TTAAGGAAAA	6960
5	AGCTTTATGC	TTAAAATAAG	TCTTTTTTAG	TGAAATTAAT	GCATCTCATA	TAATTATTTG	7020
	CTATTTATAC	GAAAGCAGAA	TCTCCAGTCA	AAGCGCGTCC	AATTACTAAG	GCATTAATTT	7080
	CATGTGTACC	TTCGTACGTG	TAAATCGCTT	CTGCATCAGA	GAAGAAACGT	GCAATATCAT	7140
10	AATCGTCAGC	TAGTATGCCA	TTACCACCTG	TAATACCGCG	GCCCATAGCT	ACTGTCTCAC	7200
	GCAAACGTAA	GGCATTCATC	ATCTTCGCCG	TTGAAGTTGC	AACCTCGTCA	TATTCACCAT	7260
15	GTGCTTGCAT	ATTAGCTAAT	TGAGCACATG	TTGCCATTGC	TTGAGCTAAA	TTACCTTGCA	7320
15	TCATTGCTAG	CTTTTCTTGT	ATTAACTGAT	ATTTACTAAT	TGGTTTGCCG	AATTGCTTAC	7380
	GCTCAGTGAC	ATAATCTAAT	GTGGCACGTA	AAGCGCCAGC	CATACCACCT	GTAGCCATAT	7440
20	AAGCAACGCC	TGCTCTCGTT	GAATAAAGAA	TTTTGGCAAT	ATCTTTAAAG	CTTGTTATGT	7500
	TTTGTAAGCG	ATCCGCTTCA	TCTACTTTGA	CATTAGTTAA	TTTAATTAGG	GCGTTAGGAA	7560
	CAATGCGAAG	TGCGATTTTA	TTATCAATGA	CTTCAATATC	GACGCCATCT	TGTTCTGGTC	7620
25	TGACTACAAA	GCAATGGGGT	TTGCCAGTTT	CTTTATTTAC	TGCGAATACT	GGAATGACAT	7680
	CAGATACATG	TGCACCACCA	ATCCATTTCT	TTTCACCATT	GATAACCCAA	GTATCGCCTT	7740
	GGCGTTCAGC	GACTGTTTCA	AGACCTCCCG	CAACGTCCGA	ACCGTGTTCT	GGTTCAGTTA	7800
30	AAGCAAAGCA	TGTACGCAGT	TCATGTGACT	GTAATTTAGG	TACATATTTC	GCAATTTGTT	7860
	CTTTGCTACC	TCCGAAATAG	AAAGTGTTAT	GCCCTAAACC	TTGGTGAACA	CCGAGTAGGG	7920
	TAGCTAAGGA	AATATCAAAT	CGCGCGAGTA	GGTAAGACAT	GAAAAACTGA	AATAGTTGAC	7980
35	TAGGCATTTT	GGCGTTTGGA	CGATCCTTGT	AAAGTAATGG	ATTGTTAAAA	TTAATTTAATT	8040
	CTCCCAGATC	TTTAAAATAG	TCCTCGGGTA	CAGTAGCGTC	TATCCAATGT	TGATTAATAT	8100
40	TTTCACGGTA	CTTACTTTCT	AGCAATGAAT	CTACTTGTTG	TAAAAATTCG	ACTTCACCGT	8160
+0	CTGTTAAACC	TTTAGCAATA	CTAAGTACAT	CTTCAGGAAA	TAATGTTTTT	AAGACCGTTT	8220
	CTTTTTCAAA	TGTCATATAA	ATTCCTCCTA	AAAATAATAT	GAATACTAAT	GTGAAATGCA	8280
45	TTTAATTCAA	AAACAACACG	CTTTATTTGT	AAACGCTTAC	ACTAAATGTC	TTTTAAAAA	8340
	ATCACCTTTA	AAGTGTTTGC	GAGACTTTGT	CATTCATCAT	TTGTCGAATC	GCAAGTTTAT	8400
	CTGGTTTCTG	CGTACTGTTT	AACGGCATAT	GTGTCACTGG	TACATACATT	CTTGGGACTT	8460
50	TATAACCTGC	TAAACGACTt	CGCATATGTT	GATTTAAAAT	TTCAGCGTAA	TGAGGTTCAT	8520
	CTTCGCGAAG	TATAATGGCT	GCAGCAATTG	ATTCACCATA	TTTTGGATGA	TCATAGCCAA	8580

	AGACATTTTC	GCCACCAGTT	ATGATTAATT	CTTTTTTGCG	GTCAATAATA	AATATATCGC	8700
	CATCGTTGTC	CATCTTCGCT	AAGTCACCAG	TTAATAAATA	TCGACCATGA	AATGCTTTGG	8760
5	CAGTCTCTGC	TGGTTTATTC	CAATATCCTG	GCGTGACATT	TTTAGCCTTA	ATTGCAAGTT	8820
	CGCCAATCTC	ACCAGTAGGT	ACTTCCTCAC	CGTTATCATC	AAGGATACGT	GCATCAACGA	8880
	ACATGACTGC	TTTACCAATA	CTCATTGGCT	TACGTTTTGA	ATTTTCCGGT	GTATTAACAA	8940
10	GTACAAGAGG	TGCTTCAGTT	AAACCATAGC	CGTTAATAAT	GTTTATGCCA	TATTGTTTAA	9000
	AAGCTGCTTG	GATACTTGGT	AATGGTTGTG	AACCACCTTG	GATGATATAA	TCCATAGCTC	9060
15	TAAAATTTTC	AGGATTAAAA	TTACTAGCAC	GTAGCGTACT	ATAATACATT	GTCGGAATCA	9120
	TGATAATAAA	TGTAGGGTGA	TATTGTGCAA	TCATGTCATT	CAATTCTTCG	CCGTTAAAGT	9180
	AACGTTGAAG	AATAAGTGTG	CCACCTGACA	TTAATACTGG	TAATACAGTA	TCGTTAAACC	9240
20	CTAAAACATG	GAACATTGGT	GTTGATACAA	TCGTAATATA	GTTTGAATTG	AACTTATACG	9300
	TCAGCTCTAA	GTTTGCACCG	TTATGAACAA	ATGATTCATA	TGAGAACATC	ACACCTTTAG	9360
	GTGATCCGGT	TGTACCACTT	GTATAAATTA	ATGCTGCAAG	ATCTTGTGGT	TCAACAGGTG	9420
25	TTGCTTGAAA	AGGTTGGTGA	TAATCTGGAT	TTACGATTTC	ATCATATTGC	GCCACATCAA	9480
	TATCCATATG	CAATAAGTTT	TGGTCAATAT	CGGTGAGTGA	ACTTAAATGT	TTTTCAGCAT	9540
	AGAAGAGCAG	TTTTAATTGT	GCATCTTCCA	CAATGGCTGC	AATTTCTTTT	GGGTTAAGCC	9600
30	GCCAATTCAA	TGGTAAAAA	ACCGCACCTG	TTTTAAAACA	AGCAAACAAT	AAATCTAATA	9660
	TTGCAATATC	ATTTGGCGCA	AAAATACCGA	TAACATCGCC	TTTTTTAACA	CCTTGAGATG	9720
	TTAAATAATG	TGCCATATTA	TCAGCGCGTG	CATTGAGTTG	TTGGTATGTC	CAAGATGTTT	9780
35	GTTTTGCGTG	ATCAATAACG	GCAGGCTTGT	CATCATCGAA	GTCTGAACGC	GTTTTTATCC	9840
	AATCEAAATT	CATTAGTATA	CCCCCTTTAG	CTTCACTTTC	ATACTTTATG	AATTGATTGT	9900
40	TTAAGTTGTC	CCCATTTTTC	TTTGTAAATG	CTGGTATCAA	TTAATTTTAA	ATGATCAGCA	9960
	ATAATTGGTT	TAAAAGCCAT	TTGATTCAAA	ATATCTTTAT	GCAAATCAAG	ACCTGGTGCA	10020
	ATTTCAATTA	GTTTCAAGCC	TTGATTGGTG	AGTTCGAATA	CTGCACGATC	AGTAACAAAA	10080
45	TAGATTTCTT	GCTCGAGTGA	TTGTGAATAT	TGTGCATTAA	AGTCGATATG	GCTCACATCT	10140
	GATACAAATT	TCTGGTTTTG	TCCTTCAGTT	TCAATGTTTA	ATCGTTGATT	ATGGCATGAG	10200
	ACATGACTGC	CAGCTACAAA	AGTACCTGAA	AAGATAATTT	TATTTACAGA	TTGCGTAATG	10260
50	TCTATAAAGC	CACCACATCC	ATTTAGTCGG	TCATTGAAGT	AAGACACGTT	GACATTGCCG	10320
	TATTGATCAA	CCTCAGCAAA	GCTAAGATAG	GCAACTGATA	CACCATTGTT	ΑΤΑΑΑΤΑΑΑΑ	10380

	CGACTCCCAA	CGAATCCACC	GAAAATGCCA	ACATCTAAAA	TCGGTTGCAC	ATCATGTTCA	10500
	ACACATTCTT	CATGCAATAA	ATTAGAGAGT	TCATTATTGA	TGCCATAACC	GATGCTAATT	10560
5	GTATCGCCAT	AAGTTAAAAA	CTGAGCAGCA	CGTCGGAGAA	TCAATTTGCG	ACTATTAAAA	10620
	GGTAATGCGG	GTTCAGGTAT	TCCATCAATT	CGTTCTTCTC	CAGACAAGGC	TGGTAAATAA	10680
	TGACTTTGAA	TTACTTGGCG	GTGATTCTTT	TCATCTTCTG	TGACGTATAC	ATAATCGACA	10740
10	AGATTTCCTG	GGATAACAAC	TTCATTCGGT	TTTAGTTGAT	AGTCGTCAAC	TAAAGCTTTA	10800
	ACTTGTACAA	TAACTTTCCC	ATGATTGGCT	TTCGCGTTTA	ATGCGACATG	ATAACACTCG	10860
15	CTCAAGTACG	CTTCTTGAGT	TAAATAAATG	TTACCTTGTT	GATCTGCGTA	TGTTCCTCTC	10920
	AGTAGTGCCA	CATCAACGCT	AGGGAATGTG	TAATGTAAGT	ATGTTTCATC	GTTGATGGTT	10980
	ACTAATGAAA	CTAAATCATC	CGTTGTTCGT	GTATTTACTT	TACCGCCACC	GTATCTAGGA	11040
20	TCAACAGCTG	TGTTTAATCC	GATTTTAGTA	ATAACTCCAG	GTAATAATTG	ATTACTCTGA	11100
	CGATAATGAG	TTGCAATGAT	ACCTTGTGGT	AAAAAATAAG	CTTCAATGTC	ATTATTTTTC	11160
	ATTGCTTGTG	CCGTTTTGGA	AGAAGCCGTT	AAAATACTCA	TAATGACACG	TTTAATCATG	11220
25	CGACGTTCTA	TAAAATCATC	TAAATCCGGT	GCGGCACCTA	AACTATGAAT	ATCATTCGCT	11280
	AATATAAACG	TTAAATCATT	GGGCGTATGA	TATGTGTCAT	GTTGCGCTAA	CACAGCACGT	11340
	AGAACTTCGG	CGGGTAAGTT	GGCTACAGCT	AATGCTGGTA	AACCAATCAC	ATCACCATCT	11400
30	TTAATGATAT	GTTGTAAGTC	GTGCCATGTG	ATTTGTTTCA	AGCAAGTCAC	CTCCATCACA	11460
	TTTGATAAAA	TATAGCGTTT	TTACACTTTG	TGTAAACCCT	Tacaagaaat	ATAACATAAC	11520
	GACGTTTAAA	ATCAATTAGA	AATATCTTTT	TATTCTGATA	ATAGACACAG	TATAGACACA	11580
35	TTTTGATGGT	CGATAACAAT	TGTAATATCA	AGGGTTTGTA	ATGAATTGAA	TATCATTAAA	11640
	ATACTTATAT	AAAAATATTG	TTCGGAATAT	AAAAAGTTAA	ATAGGTTTTG	ATTTTTAAAT	11700
40	ATGAAATACA	AAGTGCCCAA	TCGAACAAAG	TATTTATATT	AAAATATGGA	AAATCCATCA	11760
	ATATTAAATT	AAAATAGTTT	TATTATGAAA	AGTGAAAGTA	GGTAAGTCTA	TGGAAGGTCT	11820
	TAATCATCGA	AGAAATACAG	aaaagaaga	GACAACACAA	ACGCAATCaG	TTGCACCTAA	11880
45	TACAGGTGAA	GAGGGGATGT	CATCAGCAAG	TACACAATCA	ACTAAGACGT	CCGACATACA	11940
	TAATGAATCT	ATCGATAAAC	AAATGGAAGC	TAAAGCGCAT	GAAACAGCGC	AAAATACAGA	12000
	TTTAAAAAAC	GAAGCAAGAA	GTTTATTTGA	TAATGCAACC	AAATCAATCG	GTAGACTAGC	12060
50	GGGCAATGAT	GAAAGCTTAA	ATCTTAATTT	AAAAGATATG	CTTTCTGAAG	TATTTAAGCC	12120
	CCAMACTARA	******	37V7333773777	mamacccccm	ACTOCOTA N = =	CITE COCCA CO	12102

	TTTCACAGTA	ACATTTATTG	GATTATGGGT	CATGGCAGCA	ATTTTTAATA	ACACTAACGC	12300
	GATTCCGGGT	CTCATTTTTA	TAGGGGCTTT	AACAGTACCA	TTATCGGGTT	TGTTCTTCTT	12360
5	TTATGAATCA	AATGCGTTTA	AAAATATTAG	CATTTTTGAA	GTTATTATCA	TGTTCTTTAT	12420
	TGGCGGCGTA	TTTTCATTAC	TAAGTACGAT	GGTATTATAT	AGATTTGTCG	TTTTTAGTGA	12480
	TCAATTCGAA	AGGTTTGGTT	CTTTAACATT	TTTCGATGCA	TTTTTAGTAG	GATTAGTTGA	12540
10	AGAAACTGGA	AAAGCACTCA	TTATTGTTTA	TTTCGTCAAT	AAATTGAAAA	CAAATAAGAT	12600
	TTTGAATGGA	TTATTAATCG	GTGCTGCTAT	TGGTGCAGGG	TTCGCAGTTT	TTGAATCAGC	12660
15	AGGTTATATT	TTGAATTTCG	CTTTAGGAGA	AAATGTCCCA	TTATTAGATA	TIGTCTTCAC	12720
,5	ACGTGCGTGG	ACTGCGATTG	GTGGTCATTT	AGTTTGGTCA	kCGATTGTTG	GTGCTGCAAT	12780
	AGTTATTGCG	AAAGAACAGC	ATGGCTTTGA	ATTCAAAGAT	ATTTTTGATA	AACGCTTTTT	12840
20	AATATTCTTT	TTATCAGCCG	TTGTTTTACA	TGGCATTTGG	GATACATCTT	TAACTGTACT	12900
	TGGCAGTGAT	ACGTTGAAAA	TATTTATTTT	AATCGTTATT	GTGTGGATAC	TTGTATTCaT	12960
	TTTAATGGGG	GCAGGTTTAA	AACAAGTGAA	TTTACTGCAG	AAAGAATTTA	AAGAACAACA	13020
25	GAAAAAAGTA	GACGAATAAT	AATTAAAGCT	TATGTTGCTC	ATATGTTTGT	GACATAAGCT	13080
	ATTTTTATAA	TTTGTCTTTA	AAAGAGTGGA	ATAGGAATAC	TTTTTGGAGT	TAAAAAAGTG	13140
	TTtCACGTTA	AACAAATAGT	GACAATTAGA	TTTATATAAA	ATGAACATGA	TTCACTGAAA	13200
30	GTATGTAATA	ATCATTTTAT	TGAAATTCAT	CAAACAGAAA	TTAATACAAT	CATATAAGCA	13260
	AATTAAACCA	CGCCATAATC	ATATTGGATG	ACTTCGGCGT	GGTTTTTATA	GTTGAAGCAG	13320
	GGCTGAGACA	TAAATCAATG	TCCCACACTC	CCTTATCGTT	CAATCGTTGT	TCGATAATCG	13380
35	ATTAAATAGA	TACCTTCAGG	TGTTACTTTA	TAATTTTTAA	CCTTAGAGTT	AGCAGCGACT	13440
	ATTIGATCGT	TGTAAGCAAT	ATAACTGTTT	GGTACATCTC	GACTTGATAA	TTTAATAATA	13500
40	TCATTAGAAA	TATTGTGACG	TTCCTTAACA	TCTACAGTAT	GATTCAATTG	AAATTAATTA	13560
40	TCATCGACGT	TGCTATTATT	GTAGTCTCCT	TTATTAATAG	CACCATCTTT	TTTATATGCT	13620
	TGATTAAAGA	AATAACCTGT	ATCTCCACGA	GGAATTGTTC	CGAAACTATA	CATCGTTGCA	13680
45	TCCCATGCAG	AACGGTCTTT	TAAGTAACCT	TCTATGTCAT	CAACACTTTT	AATGTCGATT	13740
	TCAATATTTG	CTTTTTTAGC	ATCTGATTGT	AATACTTGCG	CAATTTTCGA	TAGCTCTGGA	13800
	CGACCGTCAT	ACGTAATTAA	CTTAATTTTT	AAAGGGTGTT	CTTTTGTATA	ACCATCTTTA	13860
50	GCTAATAACA	TTTTTGCTTG	TTCGATATTT	TGTTTGGTTA	ACTTAGGTTC	TTTAATATAT	13920
	ייי אי הויידוריי עי עי ער כי כי	СУДТИВВИТО	A CTCCTTCCA	പ്രവഹ്ഥപ്പാപ്പായം	<u>እ</u> ል ር ር ጥጥር አጥ አ	እ አጥአጥር አጥርጥ	12000

	TTATLAGTAT GATTATACAT AAGTAAGAAG TTCTAAAn	14078
	(2) INFORMATION FOR SEQ ID NO: 192:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 486 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
10	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 192:	
15	TGAAAACTAA AGTGTTTCTA ATGCGTGACT AAAATTAGTA ATAATTAAGT TCTCATGATA	60
-	ATAGGTATTT TTGAAAAATG GAGGAGTCTA TAAATGGGTA AAAAAATGGG TCTAGGTTTA	120
	TCTATTGCAT TGGTTGTTAT TGGTATTGCC GTTGTATGTT TAATGATTTT TTCTAGTCAA	180
20	AAAACGACTT ATTTTGGTTA TATGAATAGT AATACAAATG CAGAAAAAGT TGTCAGTGAA	240
	AAAGATGGAT TAGTCAAACA TAATATCAAA GTAGAACCAT CTAATGATTT CAAGCCGAAA	300
	AAAGGAGACT TIGTAAAATT AGTTTCTAAA GATGATGGGA AGACATTTTA TAAACAAGAG	360
25	ATTGTTAAAC ATGATGACGT CCCACACGGT TTAATGATGA AAATTCACGA CATGCATATG	420
	AATTAATAAA AAAGCATCTA TAACGTAATT TTGAAGAAGT AGAGTTATCT TCTTATGCGT	480
	TTTAGA	486
30	(2) INFORMATION FOR SEQ ID NO: 193:	
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1626 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear 	
	5	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 193:	
40	GAGGTCTATA TACAATTATG GTTGTTCCAG TTAAACGAAC TGATGGCTTT ATTACTAAGT	60
	TTAATAGATT AATTGAAAGA CGATTATTAC GTCATTTCAG TAAAAAAGGT TATATCACAT	120
45	GGGAGGAAAA TTGATTGTCT GACATTTTAA AATGTATCGG TTGTGGTGCG CCACTTCAAT	180
	CTGAAGATAA AAATAAACCT GGTTTTGTAC CAGAGCATAA TATGTTTCGT GATGACGTGA	240
	TTTGCAGACG TTGTTTCCGC TTGAAAAATT ATAACGAATT CAAGATGTAG GATTAGAAAG	300
50	TGAAGACTTT TTAAAATTAT TATCAGGACT TGCGGATAAA AAGGGTATTG TCGTCAATGT	360
	CGTGGATGTA TTTGACTTTG AAGGATCATT TATTAATGCA GTTAAACGTA TTGTCGGAAA	420