

Master's Colloquium: Characterization and Evaluation of Hardware Accelerators for the On-board Data Processing

Limodya, Vernando Fransiscus Munich, April 24th 2024

of the AFIS Satellite Mission

Geomagnetically Trapped Antiprotons

The PaMeLa Mission [1]

inner van Allen radiation belt

An illustration of the van Allen radiation belts [2]

The discovery of geomagnetically trapped cosmic ray antiprotons

O. Adriani^{1,2}, G. C. Barbarino^{3,4}, G. A. Bazilevskaya⁵, R. Bellotti^{6,7}, M. Boezio⁸, E. A. Bogomolov⁹, M. Bongi², V. Bonvicini⁸, S. Borisov^{10,11,12}, S. Bottai², A. Bruno^{6,7,18}, F. Cafagna⁶, D. Campana⁴, R. Carbone^{4,11}, P. Carlson¹³, M. Casolino¹⁰, G. Castellini¹⁴, L. Consiglio⁴, M. P. De Pascale^{10,11}, C. De Santis^{10,11}, N. De Simone^{10,11}, V. Di Felice¹⁰, A. M. Galper¹², W. Gillard¹³, L. Grishantseva¹², G. Jerse^{8,15}, A. V. Karelin¹², M. D. Kheymits¹², S. V. Koldashov¹², S. Y. Krutkov⁹, A. N. Kvashnin⁵, A. Leonov¹², V. Malakhov¹², L. Marcelli¹⁰, A. G. Mayorov¹², W. Menn¹⁶, V. V. Mikhailov¹², E. Mocchiutti⁸, A. Monaco^{6,7}, N. Mori^{1,2}, N. Nikonov^{9,10,11}, G. Osteria⁴, F. Palma^{10,11},

Significant flux of antiprotons is reportedly detected in the South Atlantic Anomaly (SAA)

The location of the SAA [3]

PAMELA Results

The results from the PAMELA mission [4]

- Measured p flux in the SAA is 3 orders higher than the flux measured outside of the SAA (GCR)
- Selesnick, et. al. two main mechanisms
 - Direct proton-antiproton production

$$p + A \rightarrow p + \overline{p} + p + X$$

CRANbarD → dominant mechanism

$$p + A \rightarrow p + n + \overline{n} + X$$

$$\overline{n} \rightarrow \overline{p} + e^{+} + v_{e}$$

Measurements off by 2 orders of magnitude to theoretical predictions

In order to adjust the theory and experiment, data from lower energies are required.

AFIS (Antiproton Flux in Space)

The Active Detection Unit (ADU) for the AFIS Mission [5]

32 layers, each contain 32 plastic scintillating fibers, oriented 90 degrees with respect to its adjacent neighbour

Bragg Spectroscopy

• Energy deposition per unit length given by the Bethe-Bloch formula

$$-\left\langle \frac{\mathrm{d}E}{\mathrm{d}x}\right\rangle = \frac{4\pi}{m_ec^2}\frac{nZ^2}{\beta^2}\left(\frac{e^2}{4\pi\epsilon_0}\right)^2\left[\ln\left(\frac{2m_ec^2\beta^2}{I(1-\beta^2)}\right) - \beta^2\right]$$

- Particle passes through the detector material
- → particle velocity decreases
- → energy deposition per unit length increases
- → results in Bragg curves

Event Topology

One event has the size of 1024 x 12 bits Pixel value = energy in MeV

PDP & Processing Chain

Scientific Computation Module

We can integrate specialized hardware (hardware accelerator) for neural networks

Evaluation of hardware accelerators based on:

Throughput

Power Consumption

Integrability to the FPGA

Model requirements

Optimize models for each hardware accelerator

Analysis of different NN architectures

Hardware Accelerators

Google Coral Accelerator Module w/ Tensor Processing Unit (TPU)

Intel Movidius Myriad Vision Processing Unit (VPU)

Mythic M1076 Analog Matrix Processor (AMP)

Hailo-8 AI Accelerator (Hailo)

Hardware Accelerators

Google Coral Accelerator Module w/ Tensor Processing Unit (TPU)

Intel Movidius Myriad Vision Processing Unit (VPU)

Mythic M1076 Analog Matrix Processor (AMP)

Hailo-8 Al Accelerator (Hailo)

Coral Accelerator Module

Computing architecture of TPU [7]

Vision Processing Unit

Myriad X VPU high level architecture [8]

Format

System-on-Chip

Base clock frequency

700 MHz

Myriad X VPU computing architecture [9]

Theoretical Performance

Max. 1 TOPS

Quantization

Floating Point 16

On-Chip Memory

512 MB DDR Memory

Interfaces

USB 3.1, PCIe Gen 3, Quad SPI, I2C, 16 MIPI lanes

Radiation Tolerance Average SEFIs per day, 0.083 due to heavy ions & 0.0035 due to protons

Vision Processing Unit

Myriad X VPU high level architecture [8]

Myriad X VPU computing architecture [9]

The computing architecture of the Myriad VPU 2, the predecessor [10]

Vision Processing Unit

Myriad X VPU high level architecture [8]

Myriad X VPU computing architecture [9]

The computing architecture of the Myriad VPU 2, the predecessor [10]

Analog Matrix Processor

- ACE (Analog Compute Engine), where potentiometers are arranged in crosspoint arrays
- Multiplication based on Ohm's Law

$$I = G \cdot U$$
input values (voltage)

 Addition based on 1st Kirchoff's Law → row currents add up

M1076 Analog Matrix Processor [11]

Hailo-8

Hailo-8 Al Accelerator [12]

- Consist of tiles that are responsible for control, memory and computations
- Resource assignment is made to optimize the dataflow

Measurement Method

As input: 10⁴ simulated proton events with 10 repetitions

Common NN Architectures

- No direct correlation between model size to performance
- → An analysis of the computing architecture is needed

The number of MACs per output neuron = input_size

Total number of MACs = input_size * output_size

- - one output neuron requires 64 x 64

--- MAC operations

TPU

one output neuron requires 64 x 64
MAC operations

(significantly) more processing time needed

– – one output neuron requires 4096
 MACs

– – one output neuron requires 4096
 MACs

The effect of NN depth

The effect of NN depth

- Processing time per event increases linearly with depth
- Grey line is where the model size exceeds 8
 MB
- "Knee" for the case of TPU observed at grey line
 - Change in slope not as apparent for convolutions

1x1-Convolution as Dimensionality Reduction

<u>PID model</u> → identification of ion type

: 2 images with the size of 16 x 32 pixels (YX & YZ) Input : (1,26) vector \rightarrow Z-th index = probability that the Output

event is from an ion with atomic number Z

Might have similar architecture to the (later) model used for p/p event separation

1x1-Convolution as Dimensionality Reduction

1x1-Convolution as Dimensionality Reduction

1x1-Convolution as Dimensionality Reduction

- A significant improvement is observed for the TPU
- Slight improvement for the VPU is observed

 → the effect of adding another layer for
 the VPU is larger than the effect of
 reducing the model width

Model Compression Techniques

Lower Quantization

Lower quantization than the one required from hardware?

Structural Pruning

No improvement observed for all hardware accelerators

Model Compression Techniques

Knowledge Distillation

Promising to compress any model to a student model, tailored for each hardware

Conclusion & Outlook

- Available hardware accelerators
 - Power consumption 1-2 W
 - Might be useful if FPGA resources do not suffice for NNs
 - Interfacing still unknown
 - Need performance data for FPGA as reference
- NN architecture
 - $_{\circ}$ TPU + VPU \rightarrow layer width should be <= 4096 neurons
 - TPU \rightarrow smaller and "narrow" models, VPU \rightarrow larger models, but preferably less layers
- Compression methods
 - Structural pruning does not affect throughput for TPU and VPU
 - \circ Knowledge distillation is promising for both TPU and VPU \to to be investigated in the future

Citations

- [1] https://pamela-web.web.roma2.infn.it/
- [2] http://www.nasa.gov/content/goddard/van-allen-probes-reveal-zebra-stripes-in-space
- [3] https://www.esa.int/ESA Multimedia/Videos/2020/05/Development of the South Atlantic Anomaly
- [4] T. Pöschl. »Modeling and Prototyping of a Novel Active-Target Particle Detector for Balloon and Space Applications Master's Thesis«. Technical University of Munich, Mar. 2015.
- [5] Martin Losekamm et al. »The AFIS Detector: Measuring Antimatter Fluxes on Nanosatellites«. In: Proceedings of the International Astronautical Congress, IAC. Vol. 5. Sept. 2014. DOI: 10.13140/RG.2.1.4996.0405.
- [6] M. Tanabashi et al. (Particle Data Group), (2018) Phys. Rev. D 98, 030001
- [7] Jouppi et al. In-Datacenter Performance Analysis of a Tensor Processing Unit. 2017. arXiv: 1704.04760 [cs.AR].
- [8] https://www.anandtech.com/show/11771/intel-announces-movidius-myriad-x-vpu
- [9] Petrongonas, Evangelos & Leon, Vasileios & Lentaris, George & Soudris, Dimitrios. (2021). ParalOS: A Scheduling & Memory Management Framework for Heterogeneous VPUs. 221-228. 10.1109/DSD53832.2021.00043.
- [10] Sergio Rivas-Gomez et al. »Exploring the Vision Processing Unit as Co-Processor for Inference«. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). 2018, pp. 589-598. DOI: 10.1109/IPDPSW.2018.00098.
- [11] https://codasip.com/wp-content/uploads/2021/03/Codasip case-study Mythic.pdf
- [12]

https://www.cnx-software.com/2020/10/07/learn-more-about-hailo-8-ai-accelerator-and-understanding-ai-benchmarks/

Different number of Channels

Sparsity

Angle & PID Model

Activations

Inception Module

Kernel Sizes > 16 are suboptimal for VPU

Kernel Sizes > 16 are suboptimal for VPU

