Ecuaciones Diferenciales II

LibreIM

Doble Grado de Informática y Matemáticas Universidad de Granada libreim.github.io/apuntesDGIIM

Este libro se distribuye bajo una licencia CC BY-NC-SA 4.0.

Eres libre de distribuir y adaptar el material siempre que reconozcas a los autores originales del documento, no lo utilices para fines comerciales y lo distribuyas bajo la misma licencia.

creativecommons.org/licenses/by-nc-sa/4.0/

Ecuaciones Diferenciales II

LibreIM

Doble Grado de Informática y Matemáticas Universidad de Granada libreim.github.io/apuntesDGIIM

Índice

I.	Teoría	5
1.	Ecuaciones Lineales: Teoremas de Existencia y Unicidad	5
II.	Ejercicios	6

Parte I.

Teoría

Ecuaciones Lineales: Teoremas de Existencia y Unicidad

Definición 1.1 (Ecuación diferencial lineal.). Sea $(\alpha, \beta) \subseteq \mathbb{R}^N$ un intervalo abierto y sean $A: (\alpha, \beta) \to \mathcal{M}(\mathbb{R})$ y $b: (\alpha, \beta) \to \mathbb{R}^d$ funciones continuas. Entonces una ecuación diferencial lineal es de la forma:

$$x' = A(t)x + b(t) \tag{C}$$

Teorema 1.1 (Teorema de existencia y unicidad de la solución.). Dados $t_0 \in (\alpha, \beta)$ y $x_0 \in \mathbb{R}^d$ y consideramos el Problema de Valores Intermedios (PVI):

$$\begin{cases} x' = A(t)x + b(t) \\ x(t_0) = x_0 \end{cases}$$
 (PVI)

Entonces $\exists ! \varphi : (\alpha, \beta) \to \mathbb{R}^d \ \varphi \in \mathscr{C}^1(\mathbb{R})$ que verifica

$$\varphi'(t) = A(t)x + b(t) \quad \forall t \in (\alpha, \beta)$$

y además $\varphi(t_0) = x_0$.

Parte II. Ejercicios