Aufgabe 1

Wir fixieren das Alphabet $\Sigma = \{a, b\}$ und definieren $L \subseteq \Sigma$ durch

 $L = \{w \mid \text{in } w \text{ kommt das Teilwort bab vor}\}$

z. B. ist babaabb \in L, aber baabaabb \notin L. Der folgende nichtdeterministische Automat A erkennt L:

(a) Wenden Sie die Potenzmengenkonstruktion auf den Automaten an und geben Sie den resultierenden deterministischen Automaten an. Nicht erreichbare Zustände sollen nicht dargestellt werden.

Zustandsmengen			
$Z_0:\{z_0\}$			
$Z_1:\{z_0,z_1\}$			
$Z_2:\{z_0,z_2\}$			
$Z_3:\{z_0,z_1,z_3\}$			
$Z_4:\{z_0,z_2,z_3\}$			
$Z_5:\{z_0,z_3\}$			
7(1	L 17: 1	Fr 1 1.	
Zustandsmenge	Eingabe a	Eingabe b	
$\{z_0\}$	$\{z_0\}$	$\{z_0, z_1\}$	
$\{z_0, z_1\}$	$\{z_0, z_2\}$	$\{z_0, z_1\}$	
$\{z_0, z_2\}$	$\{z_0\}$	$\{z_0, z_1, z_3\}$	
$\{z_0, z_1, z_3\}$	$\{z_0, z_2, z_3\}$	$\{z_0, z_1, z_3\}$	
$\{z_0, z_2, z_3\}$	$\{z_0, z_3\}$	$\{z_0, z_1, z_3\}$	
$\{z_0, z_3\}$	$\{z_0, z_3\}$	$\{z_0, z_1, z_3\}$	

(b) Konstruieren Sie aus dem so erhaltenen deterministischen Automaten den Minimalautomaten für L. Beschreiben Sie dabei die Arbeitsschritte des verwendeten Algorithmus in nachvollziehbarer Weise.