

Problem

The entangled geometry and illumination-dependent appearance of transparent objects make it hard to create their 3D representations through 2D images.

Surface Normal

Novel View

NEMTO synthesizes high-quality novel view and relighting by disentangling the geometry and illumination-dependent appearance of a transparent object.

Contributions

- NEMTO is the first end-to-end method for novel view synthesis and scene relighting for transparent objects.
- A physically-guided Ray Bending Network (RBN) for predicting ray paths through the transparent object with better error tolerance for the estimated geometry than analytically calculated refraction.
- Can model real-world transparent objects by hand-captured image.

Comparison of Relevant Methods

Methods	Α	В	С	D	Е	F	Task
Mildenhal et al. [2020]	X	1	X	1	1	X	Si
Bemana et al. [2022]			X			X	gg- gg- les
Yariv et al. [2020]	X		X			X	lm, ase ath
Zhang et al. [2021]	X	√	\	\	X	\	Bc Syr
NEMTO	/	√	√	√	√	X	
Xu et al. [2022] Li et al. [2020]	/	X	X	•	X	X	seo.
LI &I GI. [2020]	•	^	^	V	^	^	<u> </u>

- A. Explicitly models light refraction for non-opaque objects.
- B. Allows direct novel view synthesis with unknown IOR.C. Allows direct scene relighting with unknown IOR.
- D. No complex setup for dataset image capture.
- E. Method works on transparent materials with unknown IOR.
- F. Joint estimation of illumination during training.

Overview of NEMTO Framework

Loss Functions

For ray refraction estimation, we use two losses:

 $\mathcal{L}_{\mathrm{rg}}$ guides the refraction direction exiting the object toward the analytical solution.

 $\mathcal{L}_{\mathrm{rs}}$ encourages locally smooth refraction directions.

Novel View Comparison to Baseline Methods

G.T.

Glass Bear

Glass Key

Mouse

NEMTO NeR IDR PhySG

NEMT

Relighting Results

Synthesis on Real-World Captured Dataset

Despite the inaccuracy in real-world camera poses and captured environment maps, NEMTO synthesizes visually-plausible novel views and relighting results,

Relighting

Acknowledgement: This work is supported in part by the Swiss National Science Foundation via the Sinergia grant CRSII5-180359.