

Profesor: Michael Karkulik Ayudante: Sebastián Fuentes

Pauta Ayudantía 15 Álgebra Lineal

21 de julio de 2022

Problema 1. Sea $\mathbb{C}^{n\times n}$ el espacio de matrices complejas $n\times n$ y $A,B\in\mathbb{C}^{n\times n}$ sin valores propios comunes.

1. Sea P_A el polinomio característico de A. Pruebe que $P_A(B)$ es una aplicación lineal invertible.

Considere ahora $M \in \mathbb{C}^{n \times n}$ tal que AM = MB.

- 2. Muestre que $A^kM = MB^k$ para cada $k \in \mathbb{N}$.
- 3. Deduzca que $MP_A(B) = 0$ y concluya que M = 0
- 4. Demuestre que f(M) = AM BM define un automorfismo de $\mathbb{C}^{n \times n}$.

Demostración.

1. El polinomio característico de A se escribe como $P_A = (X - \lambda_1) \cdots (X - \lambda_n)$ donde $\lambda_1, \dots, \lambda_n \in \mathbb{C}$ son los valores propios (no necesariamente distintos). Por lo tanto

$$P_A(B) = (B - \lambda_1 I_n) \cdots (B - \lambda_n I_n)$$

y dado que A, B no comparten valores propios cada factor $(B - \lambda_i I_n)$ es invertible, así que $P_A(B)$ es invertible.

2. Por inducción suponemos que $A^kM=MB^k$ y luego

$$A^{k+1}M = A(A^kM) = A(MB^k) = (AM)B^k = MBB^k = MB^{k+1}$$

3. Notemos que

$$MP_A(B) = M(B^n + a_{n-1}B^{n-1} + \dots + a_1B + a_0I_n)$$

$$= MB^n + a_{n-1}MB^{n-1} + \dots + a_1MB + a_0M$$

$$= A^nM + a_{n-1}A^{n-1}M + \dots + a_1AM + a_0M$$

$$= M(A^n + a_{n-1}A^{n-1} + \dots + a_1A + a_0I_n)$$

$$= MP_A(A)$$

y concluimos por el teorema de Cayley-Hamilton que $MP_A(B) = 0$. De la invertibilidad de $P_A(B)$ se tiene

4. La linealidad de f es directa (ejercicio). Basta entonces con verificar que es inyectiva. Notamos entonces que $\ker(f) = \{M \in \mathbb{C}^{n \times n} | AM = MB\}$ y por el punto anterior $\ker(f) = \{0\}$ de lo que se concluye.

Problema 2. Considere la matriz

$$A = \begin{pmatrix} 2 & -1 & 0 & 1 \\ 0 & 3 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & 3 \end{pmatrix}$$

- 1. Encuentre la forma de Jordan de A en función del
- 2. Encuentre una base de Jordan, ie, una matriz P tal que $A = PJP^{-1}$.

MAT210 UTFSM

Solución. De manera directa se calcula el polinomio característico de A, resultando $P_A(\lambda) = (\lambda - 2)^3(\lambda - 3)$, es decir, los valores propios de A son 2, 3 con multiplicidades algebraicas 3, 1 respectivamente. Directamente deducimos que $\lambda = 3$ tiene asociado un bloque de Jordan 1 × 1. Calculamos ahora el espacio propio de $\lambda = 2$ resolviendo:

$$\begin{pmatrix}
0 & -1 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
x \\ y \\ z \\ w
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix} \Rightarrow \ker(A - 2I_4) = \operatorname{span} \left\{ \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix}, \begin{pmatrix}
0 \\ 1 \\ 1 \\ 1
\end{pmatrix} \right\}$$

Dado que la multiplicidad geométrica de $\lambda=2$ es 2, sabemos que dicho valor propio tiene 2 bloques de Jordan asociados, y se deduce que

$$J = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{pmatrix}$$

Es directo verificar que $\ker(A - 3I_4) = \operatorname{span}\{(1 \ 0 \ 0 \ 1)^{\top}\}$. Recordar que una base de Jordan corresponde a una base de vectores propios generalizados, y las columnas de J nos dicta cómo se debe escoger dicha base. Concretamente, la base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ que necesitamos debe ser tal que $\mathbf{v}_1, \mathbf{v}_2$ son vectores propios asociados a $\lambda = 2$, \mathbf{v}_4 debe ser vector propio asociado a λ_3 , y \mathbf{v}_3 debe ser un vector tal que $(A - 2I_4)\mathbf{v}_3 = \mathbf{v}_2$. Podemos considerar entonces $\mathbf{v}_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \end{pmatrix}^{\top}$ y $\mathbf{v}_4 = \begin{pmatrix} 1 & 0 & 0 & 1 \end{pmatrix}^{\top}$. Resta entonces encontrar $\mathbf{v} \in \widetilde{\mathbf{V}}_2 \setminus \mathbf{V}_2$. Calculamos entonces el espacio $\ker(A - 2I_4)^2$:

$$\begin{pmatrix}
0 & -2 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & -2 & 1 & 1
\end{pmatrix}
\begin{pmatrix}
x \\ y \\ z \\ w
\end{pmatrix} = \begin{pmatrix}
0 \\ 0 \\ 0 \\ 0
\end{pmatrix} \Rightarrow \ker(A - 2I_4)^2 = \operatorname{span} \left\{ \begin{pmatrix}
1 \\ 0 \\ 0 \\ 0
\end{pmatrix}, \begin{pmatrix}
0 \\ 1 \\ 2 \\ 0
\end{pmatrix}, \begin{pmatrix}
0 \\ 1 \\ 0 \\ 2
\end{pmatrix} \right\}$$

Podemos tomar entonces $\mathbf{v}_3 = \begin{pmatrix} 0 & 1 & 2 & 0 \end{pmatrix}^{\top} \Rightarrow \mathbf{v}_2 = \begin{pmatrix} A - 2I_4 \end{pmatrix} \mathbf{v}_3 = \begin{pmatrix} -1 & -1 & -1 \end{pmatrix}^{\top}$ Encontramos entonces la matriz de cambio de base:

$$P = \begin{pmatrix} 1 & -1 & 0 & 1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 2 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}$$

Problema 3. Sea V un espacio con producto interno.

1. Demuestre la identidad del paralelogramo:

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2(\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2) \quad \forall \mathbf{u}, \mathbf{v} \in \mathbf{V}$$

2. Pruebe la **fórmula de polarización**:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \frac{\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2}{4} \qquad \forall \mathbf{u}, \mathbf{v} \in \mathbf{V}$$

3. Sea $S \in \mathcal{L}(\mathbf{V})$ inyectivo y defina $\langle \mathbf{u}, \mathbf{v} \rangle_S := \langle S(\mathbf{u}), S(\mathbf{v}) \rangle$. Pruebe que $\langle \cdot, \cdot \rangle_S$ define un producto interno en \mathbf{V} .

Demostración.

MAT210 UTFSM

1. Basta con emplear la bilinealidad y simetría del producto interno:

$$\|\mathbf{u} + \mathbf{v}\|^{2} + \|\mathbf{u} - \mathbf{v}\|^{2} = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle + \langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle$$

$$= \langle \mathbf{u}, \mathbf{u} \rangle + \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{u} \rangle - \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{v}, \mathbf{u} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle$$

$$= 2\|\mathbf{u}\|^{2} + 2\langle \mathbf{u}, \mathbf{v} \rangle - 2\langle \mathbf{u}, \mathbf{v} \rangle + 2\|\mathbf{v}\|^{2}$$

$$= 2(\|\mathbf{u}\|^{2} + \|\mathbf{v}\|^{2})$$

2. Nuevamente por bilinealidad:

$$\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2 = \langle \mathbf{u} + \mathbf{v}, \mathbf{u} + \mathbf{v} \rangle - \langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle$$
$$= \langle \mathbf{u}, \mathbf{u} \rangle + 2\langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{v}, \mathbf{v} \rangle - \langle \mathbf{u}, \mathbf{u} \rangle + 2\langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{v}, \mathbf{v} \rangle$$
$$= 4\langle \mathbf{u}, \mathbf{v} \rangle$$

3. La inyectividad de S nos permite decir que

$$\langle \mathbf{v}, \mathbf{v} \rangle_S = 0 \iff \langle S(\mathbf{v}), S(\mathbf{v}) \rangle = 0 \iff S(\mathbf{v}) = \mathbf{0} \iff \mathbf{v} = \mathbf{0}$$

Por otro lado para $\lambda \in K$ se tiene que $\langle \lambda \mathbf{u}, \mathbf{v} \rangle_S = \langle \lambda S(\mathbf{u}), S(\mathbf{v}) \rangle_S = \lambda \langle \mathbf{u}, \mathbf{v} \rangle_S$. y también

$$\langle \mathbf{u} + \mathbf{w}, \mathbf{v} \rangle_S = \langle S(\mathbf{u} + \mathbf{w}), S(\mathbf{v}) \rangle = \langle S(\mathbf{u}), S(\mathbf{v}) \rangle + \langle S(\mathbf{w}), S(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle_S + \langle \mathbf{w}, \mathbf{v} \rangle_S$$

Problema 4. Sea V espacio vectorial de dimensión finita y $P \in \mathcal{L}(V)$ verificando que $P^2 = P$. Demuestre que existe $U \subseteq V$ tal que $P = P_U$ (ie, P es una proyección ortogonal) si y solo si P es autoadjunto.

Demostración. Suponemos en primer lugar que $P = P_{\mathbf{U}}$ es una proyección ortogonal. Sean $\mathbf{v}_1, \mathbf{v}_2 \in \mathbf{V}$ y escribimos $\mathbf{v}_1 = \mathbf{u}_1 + \mathbf{w}_1, \mathbf{v}_2 = \mathbf{u}_2 + \mathbf{w}_2$ con $\mathbf{u}_1, \mathbf{u}_2 \in \mathbf{U}, \mathbf{w}_1, \mathbf{w}_2 \in \mathbf{U}^{\perp}$. Entonces vemos que

$$\langle P(\mathbf{v}_1), \mathbf{v}_2 \rangle = \langle \mathbf{u}_1, \mathbf{u}_2 + \mathbf{w}_2 \rangle = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle + \underbrace{\langle \mathbf{u}_1, \mathbf{w}_2 \rangle}_{=0} = \langle \mathbf{u}_1, \mathbf{u}_2 \rangle + \langle \mathbf{w}_1, \mathbf{u}_2 \rangle = \langle \mathbf{u}_1 + \mathbf{w}_1, \mathbf{u}_2 \rangle = \langle \mathbf{v}_1, P(\mathbf{v}_2) \rangle$$

deduciendo así que P = P'.

Suponemos ahora que P es autoadjunto. Entonces $P(\mathbf{v} - \mathcal{P}(\mathbf{v})) = P(\mathbf{v}) - P^2(\mathbf{v}) = 0$, es decir, $\mathbf{v} - P(\mathbf{v}) \in \ker(P)$. Como P es autoadjunto $\ker(P) = \operatorname{Im}(P')^{\perp} = \operatorname{Im}(P)^{\perp}$ tenemos $\mathbf{v} - P(\mathbf{v}) \in \operatorname{Im}(P)^{\perp}$. Notar que siempre podemos escribir

$$\mathbf{v} = P(\mathbf{v}) + (\mathbf{v} - P(\mathbf{v}))$$

donde $P(\mathbf{v}) \in \operatorname{Im}(P)$ y $\mathbf{v} - \mathcal{P}(\mathbf{v}) \in \operatorname{Im}(P)^{\perp}$. Por lo tanto $P = P_{\mathbf{U}}$ con $\mathbf{U} = \operatorname{Im}(P)$.

Definición. Sea V un espacio con producto interno. Decimos que $T \in \mathcal{L}(V)$ es una isometría de V si $||T(\mathbf{v})|| = ||\mathbf{v}||$ para todo $\mathbf{v} \in V$.

Problema 5. Sea V espacio con producto interno y $T \in \mathcal{L}(V)$.

- 1. Demuestre que T es una isometría si y solo si $\langle T(\mathbf{u}), T(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle$ para todos $\mathbf{u}, \mathbf{v} \in \mathbf{V}$.
- 2. Si T es un automorfismo, pruebe que T es una isometría si y solo si $T^{-1} = T'$.
- 3. Demuestre que T es isometría si y solo si T' es una isometría.

Considere ahora un subespacio $\mathbf{U} \subseteq \mathbf{V}$ y defina la **simetría ortogonal** como

$$S_{\mathbf{U}}: \mathbf{V} \to \mathbf{V}, \qquad S_{\mathbf{U}}(\mathbf{v}) := 2P_{\mathbf{U}}(\mathbf{v}) - \mathbf{v}$$

MAT210 UTFSM

- 4. Demuestre que $S_{\mathbf{U}}$ define un automorfismo isométrico y autoadjunto en \mathbf{V} .
- 5. Muestre que $S_{\mathbf{U}^{\perp}} = -S_{\mathbf{U}}$.

Demostración.

1. Si T es una isometría, dado que la fórmula de polarización nos permite expresar el producto interno en función de la norma, es claro que T preserva $\langle \cdot, \cdot \rangle$ pues preserva la norma. Más específicamente,

$$\begin{split} \langle T(\mathbf{u}), T(\mathbf{v}) \rangle &= = \frac{\|T(\mathbf{u}) + T(\mathbf{v})\|^2 - \|T(\mathbf{u}) - T(\mathbf{v})\|^2}{4} \\ &= \frac{\|T(\mathbf{u} + \mathbf{v})\|^2 - \|T(\mathbf{u} - \mathbf{v})\|^2}{4} \\ &= \frac{\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2}{4} \\ &= \langle \mathbf{u}, \mathbf{v} \rangle \end{split}$$

Ahora, si T preserva el producto interno es claro que $||T(\mathbf{v})||^2 = \langle T(\mathbf{v}), T(\mathbf{v}) \rangle = \langle \mathbf{v}, \mathbf{v} \rangle = ||\mathbf{v}||^2$.

2. Notamos que

$$\begin{array}{ll} T \mbox{ es isometr\'{i}a} & \Longleftrightarrow & \langle T(\mathbf{u}), T(\mathbf{v}) \rangle = \langle \mathbf{u}, \mathbf{v} \rangle & \forall \mathbf{u}, \mathbf{v} \in \mathbf{V} \\ & \Longleftrightarrow & \langle \mathbf{u}, T'(T(\mathbf{v})) \rangle \langle \mathbf{u}, \mathbf{v} \rangle & \forall \mathbf{u}, \mathbf{v} \in \mathbf{V} \\ & \Longleftrightarrow & T'T = TT' = \mathrm{id}_{\mathbf{V}} \end{array}$$

3. Si T es isometría, por el punto anterior $TT' = id_{\mathbf{V}}$ y luego

$$||T'(\mathbf{v})||^2 = \langle T'(\mathbf{v}), T'(\mathbf{v}) \rangle = \langle \mathbf{v}, TT'(\mathbf{v}) \rangle = ||\mathbf{v}||^2$$

Dado que (T')' = T lo anterior es suficiente para concluir.

4. La simetría $S_{\mathbf{U}} := 2P_{\mathbf{U}} - \mathrm{id}_{\mathbf{V}}$ es combinación lineal de aplicaciones autoadjuntas y luego es autoadjunta, pues, $S_{\mathbf{U}}^* = 2P_{\mathbf{U}}^* - \mathrm{id}_{\mathbf{V}}^* = 2P_{\mathbf{U}} - \mathrm{id}_{\mathbf{V}} = S_{\mathbf{U}}$. Más aún,

$$S_{\mathbf{U}}^2 = S_{\mathbf{U}} \circ S_{\mathbf{U}} = (2P_{\mathbf{U}} - \mathrm{id}_{\mathbf{V}}) \circ (2P_{\mathbf{U}} - \mathrm{id}_{\mathbf{V}}) = 4\underbrace{P_{\mathbf{U}}^2}_{=P_{\mathbf{U}}} - 4P_{\mathbf{U}} + \mathrm{id}_{\mathbf{V}} = Id_{\mathbf{V}}$$

En particular, $\ker(S_{\mathbf{U}}) = \{\mathbf{0}\}$ y es por ende invertible. Finalmente, dado que $S_{\mathbf{U}}$ es autoadjunto, $S_{\mathbf{U}} \circ S_{\mathbf{U}}^* = S_{\mathbf{U}} \circ S_{\mathbf{U}} = Id_{\mathbf{V}}$ y luego $S_{\mathbf{U}}^* = S_{\mathbf{U}}^{-1}$ y gracias al punto 3. $S_{\mathbf{U}}$ es una isometría.

5. Por definición de la proyección ortogonal sabemos que $P_{\mathbf{U}}+P_{\mathbf{U}^{\perp}}=\mathrm{id}_{\mathbf{V}}$ y por lo tanto

$$S_{\mathbf{U}^{\perp}} = 2P_{\mathbf{U}^{\perp}} - \mathrm{id}_{\mathbf{V}} = 2(\mathrm{id}_{V} - P_{\mathbf{U}}) - \mathrm{id}_{\mathbf{V}} = \mathrm{id}_{\mathbf{V}} - 2P_{\mathbf{U}} = -S_{\mathbf{U}}$$

Problema 6. Sea V espacio vectorial complejo con producto interno de dimensión finita. Demuestre que toda aplicación lineal $T \in \mathcal{L}(V)$ normal posee una **raíz cuadrada**, ie, existe $S \in \mathcal{L}(V)$ tal que $T = S^2$.

Demostración. Sea $T \in \mathcal{L}(\mathbf{V})$ normal. El teorema espectral en su versión compleja afirma que existe una base ortonormal $(\mathbf{v}_1, \dots, \mathbf{v}_n)$ de vectores propios de T asociados respectivamente a $\lambda_1, \dots, \lambda_n \in \mathbb{C}$ valores propios, es decir, se verifica que $T(\mathbf{v}_j) = \lambda_j \mathbf{v}_j$ para cada $j = 1, \dots, n$. Definimos entonces $S(\mathbf{v}_j) = \sqrt{\lambda_j} \mathbf{v}_j$ y extendemos por linealidad para obtener una aplicación $S \in \mathcal{L}(\mathbf{V})$ tal que $S^2 = T$.

4