CHAPTER 1: DESCRIPTIVE STATISTICS

Joan Llull

Probability and Statistics.

QEM Erasmus Mundus Master. Fall 2016

joan.llull [at] movebarcelona [dot] eu

Introduction

Descriptive statistics is the discipline of qualitatively describing the main features of some data.

Three types of data:

- Cross-sectional
- Time series
- Panel data

Two types of variables:

- Discrete (ordinal, cardinal, or categorical)
- Continuous (can be treated as discrete if grouped in intervals)

FREQUENCY DISTRIBUTIONS

Examples of kernels

We build on a simple example: data for 2,442 households with information on household gross income in year 2010.

Table: Income Distribution (in Euros, 2,442 Households)

	Absolute frequency	Relative frequency	Cumul. frequency	Band- width	Frequency density	Central point
Less that 10,000	187	0.077	0.077	10,000	0.077	5,000
10,000-19,999	387	0.158	0.235	10,000	0.158	15,000
20,000-29,999	327	0.134	0.369	10,000	0.134	25,000
30,000-39,999	446	0.183	0.552	10,000	0.183	35,000
40,000-49,999	354	0.145	0.697	10,000	0.145	45,000
50,000-59,999	234	0.096	0.792	10,000	0.096	55,000
60,000-79,999	238	0.097	0.890	20,000	0.049	70,000
80,000-99,999	91	0.037	0.927	20,000	0.019	90,000
100,000-149,999	91	0.037	0.964	50,000	0.007	125,000
150,000 or more	87	0.036	1.000	100,000	0.004	200,000

Figure: Income Distribution (in Euros, 2,442 Households)

A. Relative frequency B. History

B. Histogram

C. Cumul. frequency

D. Kernel density

Kernel function

Discretizing continuous data in **intervals** may be misleading (relevant variation vs course of dimensionality).

To compute the frequency density of x without discretizing it we can use a **kernel function**:

$$f(a) = \frac{1}{N} \sum_{i=1}^{N} \kappa \left(\frac{x_i - a}{\gamma} \right),$$

where we use $\kappa\left(\frac{x_i-a}{\gamma}\right)$ as a weight, and the ratio outside of the sum is a normalization such that the weights sum to one.

General conditions for kernels

In general, a **kernel** is a non-negative real-valued integrable function that:

- is symmetric,
- and integrates to 1.

The parameter γ , used in the argument of the kernel, is known as the **bandwidth**, and its role is to penalize observations that are far from the conditioning point.

$Examples\ of\ kernels$

Equivalent to what we did without the kernel:

$$\kappa(u) = \begin{cases} 1, & \text{if } u = 0 \\ 0, & \text{if } u \neq 0 \end{cases}.$$

Uniform kernel:

$$\kappa(u) = \begin{cases} 1, & \text{if } |u| \le \tilde{u} \\ 0, & \text{if } |u| > \tilde{u} \end{cases}.$$

Gaussian kernel:

$$\kappa(u) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}u^2}.$$

Example

We build on a simple example: data for 2,442 households with information on household gross income in year 2010.

Figure: Income Distribution (in Euros, 2,442 Households)

A. Relative frequency

B. Histogram

C. Cumul. frequency

D. Kernel density

SUMMARY STATISTICS

Arithmetic mean

Summary statistics are used to summarize a set of observations from the data in order to communicate the largest amount of information as simply as possible.

The **arithmetic mean**, also known as average, sample mean, or, when the context is clear, simply the mean, is defined as:

$$\bar{x} \equiv \sum_{i=1}^{N} w_i x_i,$$

where x_i is the value for observation, N is the total number of observations, and w_i is the weight of the observation, such that $\sum_{i=1}^{N} w_i = 1$.

Main problem: It is sensitive to extreme observations.

Median and mode

The **median** is value for the observation that separates the higher half of the data from the lower half:

$$med(x) \equiv \min \left\{ a : c_a \ge \frac{1}{2} \right\}$$

Main advantage: it is not sensitive to extreme values.

Main inconvenient: changes in the tails are not reflected.

The **mode** is the value with the highest frequency:

$$mode(x) \equiv \left\{ a : f_a \ge \max_{j \ne a} f_j \right\}$$

Mean and median as loss minimizers

Loss function: is a function $L(\cdot)$ that satisfies $0 = L(0) \le L(u) \le L(v)$ and $0 = L(0) \le L(-u) \le L(-v)$ for any u and v such that 0 < u < v.

The **sample mean** is the minimizer of the quadratic loss:

$$\bar{x} = \min_{\theta} \sum_{i=1}^{N} w_i (x_i - \theta)^2.$$

The **median** is the minimizer of the absolute loss:

$$\operatorname{med}(x) = \min_{\theta} \sum_{i=1}^{N} w_i |x_i - \theta|.$$

Sample variance and standard deviation

The **sample variance**, or, when the context is clear, simply the variance, is given by the average squared deviation with respect to the sample mean:

$$s^2 \equiv \sum_{i=1}^{N} w_i (x_i - \bar{x})^2.$$

The standard deviation is $s \equiv \sqrt{s^2}$.

The variance and the standard deviation are not easy to interpret. \Rightarrow coefficient of variation:

$$cv \equiv \frac{s}{\bar{r}}.$$

Central moments

The variance belongs to a more general class of statistics known as central moments.

The (sample) **central moment** of order k, denoted by m_k , is defined as:

$$m_k \equiv \sum_{i=1}^{N} w_i (x_i - \bar{x})^k.$$

The **0th to 2nd moments** are: $m_0 = 1$, $m_1 = 0$, and $m_2 = s^2$.

Third moment \Rightarrow skewness coefficient:

$$sk \equiv \frac{m_3}{s^3}.$$

Fourth moment \Rightarrow (excess) kurtosis coefficient:

$$K \equiv \frac{m_4}{s^4} - 3.$$

BIVARIATE FREQUENCY DISTRIBUTIONS

	Liquid assets (in euros):									
Gross Income (in euros):	None	1-999	1,000-4,999	5,000- 19,999	20,000- 59,999	60,000- 220,000	Total			
A. Absolute Frequencies										
Less that 10,000	107	16	16	26	12	10	187			
10,000-19,999	191	61	49	41	25	20	387			
20,000-29,999	127	45	45	65	28	17	327			
30,000-39,999	188	75	56	61	42	24	446			
40,000-49,999	81	66	69	69	46	23	354			
50,000-59,999	48	33	48	63	25	17	234			
60,000-79,999	33	28	50	51	46	30	238			
80,000-99,999	6	2	21	21	22	19	91			
100,000-149,999	7	5	3	13	27	36	91			
150,000 or more	2	0	0	7	14	64	87			
Total	790	331	357	417	287	260	2,442			
B. Relative Frequencies										
10,000-19,999	0.078	0.025	0.020	0.017	0.010	0.008	0.158			
20,000-29,999	0.052	0.018	0.018	0.027	0.011	0.007	0.134			
30,000-39,999	0.077	0.031	0.023	0.025	0.017	0.010	0.183			
40,000-49,999	0.033	0.027	0.028	0.028	0.019	0.009	0.145			
50,000-59,999	0.020	0.014	0.020	0.026	0.010	0.007	0.096			
60,000-79,999	0.014	0.011	0.020	0.021	0.019	0.012	0.097			
80,000-99,999	0.002	0.001	0.009	0.009	0.009	0.008	0.037			
100,000-149,999	0.003	0.002	0.001	0.005	0.011	0.015	0.037			
150,000 or more	0.001	0.000	0.000	0.003	0.006	0.026	0.036			
Total	0.324	0.136	0.146	0.171	0.118	0.106	1.000			

Figure : Joint Distribution of Income and Liquid Assets (2,442 Households)

$Conditional\ relative\ frequencies$

On top of absolute and relative **joint** frequencies, we can be interested in computing **conditional** relative frequencies.

The **conditional relative frequency** is computed as:

$$f(y=b|x=a) \equiv \frac{N_{ab}}{N_a} = \frac{\frac{N_{ab}}{N}}{\frac{N_a}{N}} = \frac{f_{ab}}{f_a}.$$

CONDITIONAL SAMPLE MEANS

Chapter 1. Fall 2016

Conditional sample mean

The **conditional sample mean** is given by:

$$\bar{y}_{|x=a} \equiv \sum_{i=1}^{N} \mathbb{1}\{x_i = a\} \times f(y_i | x_i = a) \times y_i,$$

where $\mathbb{1}\{\cdot\}$ is the indicator function that equals one if the argument is true, and zero otherwise.

In our example:

Liquid assets:	Mean gross income:				
None	29,829				
1-999	$37{,}145$				
$1,\!000\text{-}4,\!999$	43,165				
$5,\!000\text{-}19,\!999$	46,906				
20,000 - 59,999	60,714				
$60,\!000\text{-}220,\!000$	94,981				
${\it Unconditional}$	46,253				

Kernel function

Discretizing continuous data in **intervals** may be misleading (relevant variation vs course of dimensionality).

However, all previous discussion is for the case in which we **condition** on a **discrete** variable.

To compute the conditional mean of y given x without discretizing x we can use a **kernel function**:

$$\bar{y}_{|x=a} = \frac{1}{\sum_{i=1}^{N} \kappa\left(\frac{x_i - a}{\gamma}\right)} \sum_{i=1}^{N} y_i \times \kappa\left(\frac{x_i - a}{\gamma}\right),$$

where we use $\kappa\left(\frac{x_i-a}{\gamma}\right)$ as a weight, and the ratio outside of the sum is a normalization such that the weights sum to one.

SAMPLE COVARIANCE AND CORRELATION

Chapter 1. Fall 2016

Sample variance and correlation

Finally, we introduce two measures that provide information on the (linear) **co-movements** of two variables.

The **sample covariance** is defined as:

$$s_{xy} \equiv \sum_{i=1}^{N} w_i (x_i - \bar{x})(y_i - \bar{y}).$$

Signs contain information, but magnitudes are hard to interpret.

The correlation coefficient is:

$$r_{xy} \equiv \frac{s_{xy}}{s_y s_x},$$

and it ranges between -1 and 1, and the magnitude is interpretable. A value of 0 indicates that the two variables are (linearly) uncorrelated.

CHAPTER 7: HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

Joan Llull

Probability and Statistics.

QEM Erasmus Mundus Master. Fall 2016

joan.llull [at] movebarcelona [dot] eu

HYPOTHESIS TESTING

Hypothesis testing

Statistical hypothesis: a hypothesis that is testable on the basis of observing a process that is modeled via a set of random variables.

Null hypothesis: our main hypothesis of interest, denoted by H_0 .

Alternative hypothesis: the set of possible alternative hypothetical data generating processes that would be feasible if the null hypothesis was not true, denoted by H_1 .

Statistical hypothesis testing: a method of statistical inference that compares our sample to a hypothetical sample obtained from an idealized model. The null hypothesis describes a specific statistical relationship between the two data sets.

Statistically significant comparison: the relationship between the observed and hypothetical data sets would be an unlikely realization of the null hypothesis according to a threshold probability.

Significance level: threshold of probability that allows to reject a hypothesis.

$Hypothesis\ testing\ (cont'd)$

Simple hypothesis: we completely specify f_X (up parameter values).

Composite hypothesis: any hypothesis that does not specify the distribution completely.

Test statistic: is a statistic that summarizes the comparison between the sample and the hypothetical sample obtained from the idealized model, denoted by C(X).

Statistical test: a procedure to discern whether or not the test statistic unlikely have been generated by the model described by the null hypothesis.

Critical region or region of rejection: the set of values of the test statistic for which the null hypothesis is rejected, denoted by R_C .

Acceptance region: set of values of the test statistic for which we fail to reject the null hypothesis.

Critical value: threshold value of C(X) delimiting the regions of acceptance and rejection.

TYPE I AND TYPE II ERRORS

Type I and Type II errors

$$H_0 \ C(X)$$
 $C(X) \in R_C$ $C(X) \in R_C^c$
true Type I error Ok
false Ok Type II error

Size: $\alpha \equiv P_{H_0}(C(X) \in R_C)$.

Power: $(1 - \beta) \equiv P_{H_1}(C(X) \in R_C)$.

Power function: in a parametric test, the power under each possible value of θ , denoted by $\pi(\theta)$. If the parameter indicated by H_0 is θ_0 , then $\pi(\theta_0) = \alpha$.

Significance level: upper bound imposed on the size of the test (i.e. maximum exposure to Type I error.

There is a **tension** between size and power.

(illustrate with one-sided normal example)

LIKELIHOOD RATIO TEST

$Likelihood\ ratio\ test$

More on the size vs power trade-off: Why do we tend to consider critical regions at the tails of the distribution?

Consider the case in which null and alternative hypotheses are simple:

$$H_0: C(X) \sim F_0(\cdot),$$

 $H_1: C(X) \sim F_1(\cdot).$

Let R_{α} and R'_{α} be two critical regions of size α :

$$P_{H_0}(C \in R_\alpha) = P_{H_0}(C \in R'_\alpha) = \alpha.$$

We say that R_{α} is **preferred** to R'_{α} for the alternative H_1 if:

$$P_{H_1}(C \in R_\alpha) > P_{H_1}(C \in R'_\alpha).$$

i.e., given the same size, the one that has more power is preferred.

Neyman-Pearson lemma if a size α critical region, R_{α} , and a constant k > 0 exist, such that:

$$R_{\alpha} = \left\{ X : \lambda(X) = \frac{f_0(X)}{f_1(X)} < k \right\}.$$

then R_{α} is the most powerful critical region for any size α test of H_0 vs H_1 .

(example with normal and two simple hypotheses)

$Likelihood\ ratio\ test\ with\ composite\ hypotheses$

Composite hypotheses are more useful:

$$H_0: \quad \theta \in \Theta_0,$$

 $H_1: \quad \theta \in \Theta_0^c = \Theta \backslash \Theta_0.$

A test with critical region R_{α} and power function $\pi(\theta)$ is **uniformly** more powerful for a size α if:

- $\max_{\theta \in \Theta_0} \pi(\theta) = \alpha$, that is, it is of size α .
- $\pi(\theta) \geq \pi'(\theta)$ for any $\theta \in \Theta$, and any test of size α and power function $\pi'(\cdot)$.

It is difficult that the second condition is satisfied in general.

Alternative: generalized likelihood ratio test:

$$\lambda(X) = \frac{\max_{\theta \in \Theta_0} L(X; \theta)}{\max_{\theta \in \Theta} L(X; \theta)} = \frac{L(X; \hat{\theta}_0)}{L(X; \hat{\theta}_1)}.$$

$Likelihood\ ratio\ test\ with\ composite\ hypotheses$

Among other things, the generalized LR test is useful to test restrictions: $\lambda = \frac{\mathcal{L}(\hat{\theta}_r)}{\mathcal{L}(\hat{\theta}_r)}$.

Unbiased test: the power under H_0 is always smaller than the power under H_1 .

Consistent test: the power under H_1 tends to 1 when $N \to \infty$.

(example with normal and two-tail test)

CONFIDENCE INTERVALS

Chapter 7. Fall 2016

$Confidence\ intervals$

So far we have been obtaining **point estimates**.

Alternatively, we can provide an interval approximation to the true parameter: **confidence interval**.

A confidence interval is defined by a pair of values $r_1(X)$ and $r_2(X)$ such that $P(r_1(X) < \theta_0 < r_2(X)) = 1 - \alpha$.

We can also construct Bayesian confidence intervals:

$$R_{\theta,\alpha} \equiv \{\theta : h(\theta|X) > k_{\alpha}\}.$$

Hypothesis testing in a Normal Linear Regression Model

Chapter 7. Fall 2016 13

Tests for single coefficient hypotheses

We want to **test**:

$$\begin{array}{lll} H_0: & \delta_j = \delta_{j0}, & H_0: & \delta_j = \delta_{j0}, \\ H_1: & \delta_j \neq \delta_{j0}, & H_1: & \delta_j > \delta_{j0}. \end{array}$$

If σ^2 is known, we define the following **statistic**:

$$Z_j \equiv \frac{\hat{\delta}_j - \delta_j}{\sigma \sqrt{(W'W)_{jj}^{-1}}} \quad Z_j \sim \mathcal{N}(0, 1).$$

If σ^2 is unknown, we can define an alternative **statistic**:

$$t \equiv \frac{\hat{\delta}_j - \delta_j}{\widehat{s.e.}(\hat{\delta}_j)} \sim t_{N-K}.$$

$Tests\ for\ multiple\ coefficients\ hypotheses$

We want to **test**:

 $H_0: R\delta = R\delta_0,$ $H_1: R\delta \neq R\delta_0.$

If σ^2 is known, we define the following **statistic**:

$$F \equiv \frac{(\hat{\delta} - \delta)' R' [RAR']^{-1} R(\hat{\delta} - \delta)/Q}{s^2} \sim F_{Q,N-K},$$

where $A \equiv (W'W)^{-1}$.

CHAPTER 6: REGRESSION

Joan Llull

Probability and Statistics.

QEM Erasmus Mundus Master. Fall 2016

joan.llull [at] movebarcelona [dot] eu

CLASSICAL REGRESSION MODEL

Introduction

We are interested in estimating $\mathbb{E}[Y|X]$ and/or $\mathbb{E}^*[Y|X]$.

Matrix version of $\mathbb{E}^*[Y|X]$:

$$\mathbb{E}^*[Y|X] = \alpha + \beta' X \quad \Rightarrow \quad \begin{array}{c} \beta = [\operatorname{Var}(X)]^{-1}\operatorname{Cov}(X,Y) \\ \alpha = \mathbb{E}[Y] - \beta'\,\mathbb{E}[X]. \end{array}$$

Let
$$\mathbb{E}^*[Y|X_1] = \alpha^* + \beta^*X_1$$
 and $\mathbb{E}^*[Y|X_1,X_2] = \alpha + \beta_1X_1 + \beta_2X_2$. Thus:

$$\mathbb{E}^*[Y|X_1] = \mathbb{E}^*[\mathbb{E}^*[Y|X_1, X_2]|X_1] = \alpha + \beta_1 X_1 + \beta_2 \,\mathbb{E}^*[X_2|X_1],$$

and if $\mathbb{E}^*[X_2|X_1] = \gamma + \delta X_1$, then:

$$\mathbb{E}^*[Y|X_1] = \alpha + \beta_1 X_1 + \beta_2 (\gamma + \delta X_1) \quad \Rightarrow \quad \begin{array}{l} \beta^* = \beta_1 + \delta \beta_2 \\ \alpha^* = \alpha + \gamma \beta_2. \end{array}$$

Ordinary Least Squares (OLS)

Consider a set of observations $\{(y_i, x_i) : i = 1, ..., N\}$ where y_i are a scalars, and x_i are vectors of size $K \times 1$.

Analogy principle:

$$(\hat{\alpha}, \hat{\beta}) = \arg\min_{(a,b)} \frac{1}{N} \sum_{i=1}^{N} (y_i - a - b'x_i)^2.$$

This estimator is called **Ordinary Least Squares**:

$$\hat{\beta} = \left[\sum_{i=1}^{N} (x_i - \bar{x}_N)(x_i - \bar{x}_N)' \right]^{-1} \sum_{i=1}^{N} (x_i - \bar{x}_N)(y_i - \bar{y}_N).$$

$$\hat{\alpha} = \bar{y}_N - \hat{\beta}' \bar{x}_N.$$

Note that the first term of $\hat{\beta}$ is a $K \times K$ matrix, while the second is a $K \times 1$ vector.

Albegraic properties of the OLS estimator

Let us introduce some compact notation:

- Parameter vector: $\delta \equiv (\alpha, \beta')'$.
- Vector of observations of Y: $y = (y_1, ..., y_N)'$.
- Matrix for other variables: $W = (w_1, ..., w_N)'$, where $w_i = (1, x_i')'$.

Then:

$$\hat{\delta} = \arg\min_{d} \sum_{i=1}^{N} (y_i - w_i' d)^2 = \arg\min_{d} (y - W d)' (y - W d).$$

And the solution is:

$$\hat{\delta} = \left(\sum_{i=1}^{N} w_i w_i'\right)^{-1} \sum_{i=1}^{N} w_i y_i = (W'W)^{-1} W' y.$$

or:

$$\hat{\delta} = (W'W)^{-1}W'y.$$

Note that we need W'W to be full rank, such that it can be inverted (**absence** of multicollinearity).

Residuals and Fitted Values

From Chapter 3: **prediction error** $U \equiv y - \alpha - \beta' X = y - (1, X')\delta$.

Sample analog is called **residual**: $\hat{u} = y - W\hat{\delta}$.

Similarly, we can define the vector of **fitted values** as $\hat{y} = W\hat{\delta}$.

Clearly, $\hat{u} = y - \hat{y}$.

Some of their **properties** are useful:

- 1. $W'\hat{u} = 0$.
- 2. $\hat{y}'\hat{u} = 0$.
- 3. $y'\hat{y} = \hat{y}'\hat{y}$.
- 4. $\iota' y = \iota' \hat{y} = N \bar{y}$.

Var. decomp. and sample coeff. of determin.

As in the population, we can prove:

$$y'y = \hat{y}'\hat{y} + \hat{u}'\hat{u} \quad \text{and} \quad \widehat{\text{Var}}(y) = \widehat{\text{Var}}(\hat{y}) + \widehat{\text{Var}}(\hat{u}),$$
 where $\widehat{\text{Var}}(z) \equiv N^{-1} \sum_{i=1}^{N} (z - \bar{z})^2$.

Given this, we write the sample coefficient of determination as:

$$R^{2} \equiv 1 - \frac{\sum_{i=1}^{N} u_{i}^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}} = \frac{\sum_{i=1}^{N} (\hat{y}_{i} - \bar{y})_{i}^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}} = \frac{\widehat{\operatorname{Var}}(\hat{y})}{\widehat{\operatorname{Var}}(y)} = \frac{[\widehat{\operatorname{Cov}}(y, \hat{y})]^{2}}{\widehat{\operatorname{Var}}(\hat{y})\widehat{\operatorname{Var}}(y)} = \rho_{y, \hat{y}}^{2}.$$

$Assumptions for \ the \ Classical \ Regression \ Model$

In order to use the OLS estimator to obtain information about $\mathbb{E}[Y|X]$, we require additional assumptions \Rightarrow classical regression model:

- Assumption 1: $\mathbb{E}[y|W] = W\delta \Leftrightarrow \mathbb{E}[y_i|x_1,...,x_N] = \alpha + x_i'\beta \Leftrightarrow y \equiv W\delta + u, \mathbb{E}[u|W] = 0$. Two main implications:
 - Linearity: the optimal linear predictor and the conditional expectation function coincide.
 - (Strict) Exogeneity: $\mathbb{E}[y_i|x_1,...,x_N] = \mathbb{E}[y_i|x_i]$. This implies $\text{Cov}(u_i,x_{kj}) = 0$ and $\mathbb{E}[u_i|W] = 0$ (satisfied by an i.i.d. sample).
- Assumption 2: $\operatorname{Var}(y|W) = \sigma^2 I_N$ (homoskedasticity). Together with A1 it implies that $\operatorname{Var}(y_i|x_1,...,x_N) = \operatorname{Var}(y_i|x_i) = \sigma^2$ and $\operatorname{Cov}(y_i,y_j|x_1,...,x_N) = 0$ for all $i \neq j$. It is satisfied by an i.i.d. sample.

STATISTICAL RESULTS AND INTERPRETATION

Unbiasedness and Efficiency

Given A1 and A2:

- $\mathbb{E}[\hat{\delta}] = \delta$ (unbiased).
- $\operatorname{Var}(\hat{\delta}|W) = \sigma^2(W'W)^{-1}$.
- $\operatorname{Var}(\hat{\delta}) = \sigma^2 \mathbb{E}[(W'W)^{-1}].$

Gauss-Markov: under A1 and A2, OLS is a best (conditionally) linear estimator:

$$\forall \{\tilde{\delta}: \tilde{\delta} \equiv Cy, \mathbb{E}[\tilde{\delta}|W] = \delta\} \quad \Rightarrow \quad \mathrm{Var}(\tilde{\delta}|W) \geq \sigma^2(W'W)^{-1}.$$

Note that this implies $Var(\tilde{\delta}) \ge Var(\hat{\delta})!$

$Normal\ classical\ regression$

• Assumption 3: $y|W \sim \mathcal{N}(W\delta, \sigma^2 I_N)$.

We can estimate δ and σ^2 by (conditional) **maximum likelihood** $\Rightarrow \hat{\delta}_{MLE} = \hat{\delta}_{OLS}$, and $\hat{\sigma}^2 = \frac{\hat{u}'\hat{u}}{N}$.

 \Rightarrow OLS is conditionally a BUE.

For σ^2 , there is **no conditional BUE**, as $\mathbb{E}[\hat{\sigma}^2|W] = \sigma^2 \frac{N-K}{N}$.

An **unbiased estimator** is $s^2 \equiv \frac{\hat{u}'\hat{u}}{N-K}$, and an unbiased estimator of the variance of $\hat{\delta}$ is $\widehat{\text{Var}}(\hat{\delta}) = s^2(W'W)^{-1}$.

CHAPTER 5: ESTIMATION

Joan Llull

Probability and Statistics.

QEM Erasmus Mundus Master. Fall 2016

joan.llull [at] movebarcelona [dot] eu

Analogy Principle

Analogy Principle

Estimation problem: obtaining an approximation to a population characteristic θ_0 combining the information provided in a given sample.

Estimator: is a rule for calculating this approximation to the given quantity based on observed data, $\hat{\theta}(X_1, ..., X_N)$.

Estimate: the value obtained from implementing the estimation rule to the provided sample $\hat{\theta}(x_1,...,x_N)$.

With some **abuse of notation**, we often denote by $\hat{\theta}$ both a given estimator and the corresponding estimate.

Analogy Principle: define in the sample a statistic that satisfies similar properties to those satisfied by the **true parameter** in the population.

DESIRABLE PROPERTIES OF AN ESTIMATOR

Desirable properties of an estimator

An estimator is "good" if it is a good approximation to the true parameter **no matter which is the true value** of the parameter.

Mean squared error (MSE):

$$MSE(\hat{\theta}) \equiv \mathbb{E}[(\hat{\theta} - \theta)^2] = Var(\hat{\theta}) + (\mathbb{E}[\hat{\theta}] - \theta)^2.$$

Bias: $\mathbb{E}[\hat{\theta}] - \theta \Rightarrow$ an estimator with no bias is an **unbiased estimator**.

Efficiency: among unbiased estimators, if one has lower variance than the other, we say it is more efficient.

Best Unbiased Estimator (BUE): it is the most efficient estimator of all possible estimators.

Best Linear Unbiased Estimator (BLUE): like the BUE, but on the class of linear estimators.

Moments and Likelihood Problems

Moments problem

Two equivalent conditions for the parameter of interest define a $moments\ problem$:

• It optimizes an expectation function. E.g.:

$$\mu = \arg\min_{c} \mathbb{E}[(Y-c)^2] \quad \text{or} \quad (\alpha,\beta) = \arg\min_{(a,b)} \mathbb{E}[(Y-a-bX)^2].$$

• It solves a moment condition. E.g.:

$$\mathbb{E}[(Y - \mu)] = 0 \quad \text{or} \quad \mathbb{E}\left[(Y - \alpha - \beta X) \begin{pmatrix} 1 \\ X \end{pmatrix}\right] = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Any of these two requirements makes any assumption on the **population distribution** beyond the relevant moments.

A method of moments estimator would use sample analogs to these conditions, and would obtain $\hat{\mu}$ or $(\hat{\alpha}, \hat{\beta})$ that satisfy them.

$Likelihood\ problem$

We assume that the population distribution is a known function, except for the parameters of interest, which are unknown:

- **Density** of X: $\{f(X; \theta) : \theta \in \Theta\}$, known.
- Parameter space: Θ (set of possible parameters values), known.
- True parameter value: $\theta = \theta_0$, the only unknown element.

Likelihood problem: the true parameter satisfies:

$$\theta_0 = \arg \max_{\theta \in \Theta} \mathbb{E}[\ln f(X; \theta)].$$

Score:
$$z(X; \theta_0) \equiv \frac{\partial \ln f(X; \theta_0)}{\partial \theta'}$$
.

Zero expected score condition: $\mathbb{E}[z(X; \theta_0)] = 0$.

The likelihood problem can also be seen as a moments problem.

MAXIMUM LIKELIHOOD ESTIMATION

The maximum likelihood estimator (MLE)

Likelihood function: $L_N(\theta) = \prod_{i=1}^N f(X_i; \theta)$.

Log-likelihood function: $\mathcal{L}_{N}(\theta) \equiv \ln L_{N}(\theta) = \sum_{i=1}^{N} \ln f(X_{i}; \theta)$.

Maximum Likelihood Estimator (MLE):

$$\hat{\theta}_{MLE} \equiv \arg \max_{\theta \in \Theta} \mathcal{L}_{N}(\theta) = \arg \max_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \ln f(X_{i}; \theta).$$

This estimator is the **sample analog** of the condition that the true parameter θ_0 satisfies in the population.

Likelihood principle: approximate θ_0 by the value of θ that maximizes the likelihood of obtaining the sample that we observe.

First order conditions (sample analogs of zero expected score rule):

$$\frac{1}{N} \sum_{i=1}^{N} \frac{\partial \ln f(X_i; \hat{\theta}_{MLE})}{\partial \theta'} = 0.$$

THE CRAMER-RAO LOWER BOUND

Chapter 5. Fall 2016

The Cramer-Rao lower bound

Fisher information: $I(\theta_0) \equiv \text{Var}(z(X; \theta_0))$ (intuition).

Information equality:

$$\operatorname{Var}(z(X;\theta_0)) = \mathbb{E}[z(X;\theta_0)z(X;\theta_0)'] = -\mathbb{E}\left[\frac{\partial^2 \mathcal{L}_{N}(\theta_0)}{\partial \theta \partial \theta'}\right].$$

Cramer-Rao inequality: any unbiased estimator $\tilde{\theta}$ satisfies

$$\operatorname{Var}(\tilde{\theta}) \ge I(\theta_0)^{-1}$$
.

 \Rightarrow an unbiased estimator with $Var(\tilde{\theta}) = I(\theta_0)^{-1}$ is the **BUE**.

When the sample size tends to infinity, the variance of the MLE tends to the Cramer-Rao lower bound \Rightarrow MLE is the BUE if $N \rightarrow \infty$.

If there exists a BUE, it is the MLE.

Illustration with the normal distribution.

BAYESIAN INFERENCE

Bayes' theorem

Recall the **Bayes theorem** in Chapter 3:

$$P(\mathcal{A} \,|\, \mathcal{B}) = \frac{P(\mathcal{B} \,|\, \mathcal{A})P(\mathcal{A})}{P(\mathcal{B})} = \frac{P(\mathcal{B} \,|\, \mathcal{A})P(\mathcal{A})}{P(\mathcal{B} \,|\, \mathcal{A})P(\mathcal{A}) + P(\mathcal{B} \,|\, \mathcal{A}^c)P(\mathcal{A}^c)}.$$

More generally, if we **partition** the sample space in N mutually exclusive sets that cover the entire sample space, $A_1, ..., A_N$:

$$P(\mathcal{A}_i \mid \mathcal{B}) = \frac{P(\mathcal{B} \mid \mathcal{A}_i) P(\mathcal{A}_i)}{P(\mathcal{B} \mid \mathcal{A}_1) P(\mathcal{A} \mid 1) + \dots + P(\mathcal{B} \mid \mathcal{A}_N) P(\mathcal{A}_N)}.$$

Bayesian inference

Subjective probability: the probability function that describes our beliefs about the true probabilities of the different outcomes.

Inputs:

- Likelihood of the sample: $f_N(X|\theta)$.
- A priori distribution: $g(\theta)$.

Output: a **posteriori distribution** of the parameter given the information in the sample (Bayes theorem):

$$h(\theta|X) = \frac{f(X|\theta)g(\theta)}{\int_{-\infty}^{\infty} f(X|c)g(c)dc} \propto f(X|\theta)g(\theta).$$

We are treating θ (the "parameter") as a random variable now, not as a given (but unknown) value as we have been doing so far. (**frequentist** inference vs **Bayesian inference**).

Probabilities associated to θ are in **Bayesian interpretation**: a quantity assigned to representing a state of knowledge or belief.

$Bayesian\ estimation$

In Bayesian estimation, we are primarily interested in obtaining a **posterior distribution** $h(\theta|X)$.

We can also obtain **point estimates** using the posterior distribution $h(\theta|X)$. For example, the **mean** of the posterior distribution minimizes the expected quadratic loss:

$$\mathbb{E}_h[\theta|X] = \arg\min_{c} \int_{-\infty}^{\infty} (c-\theta)^2 h(\theta|X) d\theta.$$

Likewise:

- the **median** of the posterior distribution minimizes the expected absolute loss
- the **mode** maximizes the posterior density

CHAPTER 4: SAMPLE THEORY AND SAMPLE DISTRIBUTIONS

Joan Llull

Probability and Statistics.

QEM Erasmus Mundus Master. Fall 2016

joan.llull [at] movebarcelona [dot] eu

RANDOM SAMPLES

Simple random samples

Our **population** is described by a **probabilistic model**.

The data are a set of realizations from the probabilistic model.

The process of obtaining the data is called **sampling**. (e.g. what we did in Chapter 2 for finite sets)

Simple random sampling: a collection of random variables $(X_1, ..., X_N)$ is a simple random sample from F_X if:

$$F_{X_1...X_N}(x_1,...,x_N) = \prod_{i=1}^N F_X(x_i),$$

and thus:

$$f_{X_1...X_N}(x_1,...,x_N) = \prod_{i=1}^N f_X(x_i).$$

SAMPLE MEAN AND VARIANCE

Sample Mean

Statistic: single measure of some attribute of a sample.

Chapter 1, descriptive statistics. Now, we are using them to **infer** some characteristic of the population.

A statistic is a random variable \Rightarrow sample distribution.

Sample mean: $\bar{X}_N \equiv \frac{1}{N} \sum_{i=1}^{N} X_i$.

Some properties (regardless of the functional form of F_X):

- $\mathbb{E}[\bar{X}_N] = \mathbb{E}[X]$.
- $\operatorname{Var}(\bar{X}_N) = \frac{\operatorname{Var}(X)}{N}$ (precision).

Sample variance

Sample variance:

$$\hat{\sigma}^2 \equiv \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}_N)^2.$$

 $\Rightarrow \mathbb{E}[\hat{\sigma}_N^2] = \frac{N-1}{N}\sigma^2$: expect less dispersion than in population.

Corrected sample variance:

$$s_N^2 \equiv \frac{N}{N-1} \ \hat{\sigma}_N^2 = \frac{\sum_{i=1}^N (X_i - \bar{X}_N)^2}{N-1}.$$

- $\bullet \ \mathbb{E}[s_N^2] = \sigma^2.$
- $Var(s_N^2) = \frac{2\sigma^4}{N-1} + \frac{\mu_4 3\sigma^4}{N}$.

Sample variance

"Ideal" sample variance:

$$\tilde{\sigma}_N^2 \equiv \frac{1}{N} \sum_{i=1}^{N} (X_i - \mu)^2.$$

- $\mathbb{E}[\tilde{\sigma}_N^2] = \sigma^2$.
- $\operatorname{Var}(\tilde{\sigma}_N^2) = \frac{1}{N}[\mu_4 \sigma^4] < \operatorname{Var}(s_N^2).$

 \Rightarrow This statistic cannot be computed without knowing μ .

Sampling form a normal population: χ^2 , t, and F distributions

Distribution of the sample mean

Let $X \sim \mathcal{N}(\mu, \sigma^2)$. Then, $\bar{X}_N \sim \mathcal{N}(\mu, \sigma^2/N)$, and:

$$Z \equiv \frac{\bar{X}_N - \mu}{\sigma/\sqrt{N}} \sim \mathcal{N}(0, 1).$$

This would help in making inference about μ if we knew σ^2 ...

... but we don't know σ^2 .

Use s_2^N instead $\Rightarrow s_N^2$ is a random variable: we need to derive the distribution of the transformed random variable.

Some intermediate steps first.

$Intermediate\ steps\ I$

1. Chi-squared: Let $\tilde{Z} \equiv (\tilde{Z}_1, ..., \tilde{Z}_K)'$ be a vector of K i.i.d. random variables, with $\tilde{Z}_i \sim \mathcal{N}(0, 1)$. Then:

$$\tilde{W} = \tilde{Z}_1^2 + \ldots + \tilde{Z}_K^2 = \tilde{Z}'\tilde{Z} \sim \chi_K^2.$$

- The degrees of freedom (K): number of independent squared standard normals included.
- The support of this distribution is \mathbb{R}^+ .
- $\mathbb{E}[\tilde{W}] = K$ and $Var(\tilde{W}) = 2K$.
- 2. Let $\tilde{X} \sim \mathcal{N}_N(0, \Sigma)$. Then:

$$\tilde{X}'\Sigma^{-1}\tilde{X} \sim \chi_N^2$$

$Intermediate\ steps\ II$

- 3. Let M be a size $K \times K$ matrix that:
 - is idempotent (satisfies MM = M),
 - symmetric (satisfies M' = M),
 - and has $rank(M) = R \le K$.

Then:

- M is singular (with the only exception of M = I).
- \bullet M is diagonalizable, and its eigenvalues are either 0 or 1.
- It can always be diagonalized as $M = C'\Lambda C$ such that C'C = I, and Λ is a matrix that include ones in the first R elements of the diagonal and zeros elsewhere.
- \Rightarrow tr(M) = rank(M) (and thus always a natural number).

$Intermediate\ steps\ III$

4. Let $\tilde{Z} \sim \mathcal{N}_K(0, I)$, and M be a size $K \times K$ idempotent and symmetric matrix with rank $(M) = R \leq K$. Then:

$$\tilde{Z}'M\tilde{Z}\sim\chi_R^2$$
.

5. Let $\tilde{Z} \sim \mathcal{N}_K(0, I)$, and M be a size $K \times K$ idempotent and symmetric matrix with rank $(M) = R \leq K$. Also let P be a $Q \times K$ matrix such that PM = 0. Then $\tilde{Z}'M\tilde{Z}$ and $P\tilde{Z}$ are independent.

Student-t

Using these steps:

$$W \equiv \frac{(N-1)s_N^2}{\sigma^2} \sim \chi_{N-1}^2.$$

Student-t: Let $Z \sim \mathcal{N}(0,1)$ and $W \sim \chi_K^2$, with Z and W being independent. Then:

$$t \equiv \frac{Z}{\sqrt{\frac{W}{K}}} \sim t_K.$$

Some characteristics:

- $\bullet \ \mathbb{E}[t] = 0.$
- $Var(t) = \frac{K}{K-2}$ for K > 2.
- Symmetric with respect to zero, support is \mathbb{R} .
- When $K \to \infty$ it is similar to a normal.

Thus we can make **inference** on μ without knowing σ :

$$\frac{Z}{\sqrt{\frac{W}{N-1}}} = \frac{\frac{\bar{X} - \mu}{\sigma/\sqrt{N}}}{\sqrt{\frac{(N-1)s_N^2/\sigma^2}{N-1}}} = \frac{(\bar{X} - \mu)}{s/\sqrt{N}} \sim t_{N-1}.$$

F distribution

F-distribution: Let W_1 and W_2 be two independent random variables such that $W_1 \sim \chi_K^2$ and $W_2 \sim \chi_Q^2$. Then:

$$F \equiv \frac{W_1/K}{W_2/Q} \sim F_{K,Q}.$$

Some characteristics:

- $\mathbb{E}[F] = \frac{Q}{Q-2}$ for Q > 2.
- $(t_K)^2 \sim F_{1,K}$.

Used to make **inference** about σ^2 .

BIVARIATE AND MULTIVARIATE SAMPLING

Chapter 4. Fall 2016

Bivariate and Multivariate Sampling

In a multivariate random sample, $(X_1, ..., X_N)$ are N realizations of a random vector.

All the results above apply.

We can also construct "corrected covariances".

CHAPTER 3: MULTIVARIATE RANDOM VARIABLES

Joan Llull

Probability and Statistics.

QEM Erasmus Mundus Master. Fall 2016

joan.llull [at] movebarcelona [dot] eu

JOINT AND MARGINAL DISTRIBUTIONS

Joint and marginal cdfs

Multivariate random variable: a vector that includes several (scalar) random variables:

$$X=(X_1,\ldots,X_K)'.$$

Joint cdf:

$$F_{X_1...X_K}(x_1,...,x_K) \equiv P(X_1 \le x_1, X_2 \le x_2,...,X_K \le x_K)$$

Marginal cdf:

$$F_i(x) \equiv P(X_i \le x) = P(X_1 \le \infty, ..., X_i \le x, ..., X_K \le \infty)$$

= $F(\infty, ..., x, ..., \infty)$.

Joint pmfs and pdfs

Joint pmf (discrete var.): $P(X_1 = x_1, X_2 = x_2, ..., X_K = x_K)$.

Joint pdf (continuous var.): a joint pdf $f_{X_1...X_K}(z_1,...,z_K)$ satisfies:

$$F_{X_1...X_K}(x_1,...,x_K) \equiv \int_{-\infty}^{x_1} ... \int_{-\infty}^{x_K} f_{X_1...X_K}(z_1,...,z_K) dz_1...dz_K.$$

Properties of joint pdfs:

- $f_{X_1...X_K}(x_1,...,x_K) \ge 0$ for all $x_1,...,x_K$.
- $F_{X_1...X_K}(\infty,...,\infty) = \int_{-\infty}^{\infty} ... \int_{-\infty}^{\infty} f_{X_1...X_K}(z_1,...,z_K) dz_1...dz_K = 1.$
- $P(a_1 \le X_1 \le b_1, ..., a_K \le X_K \le b_k) = \int_{a_1}^{b_1} ... \int_{a_K}^{b_K} f(z_1, ..., z_K) dz_1 ... dz_K.$
- $P(X_1 = a_1, ..., X_K = a_K) = 0.$
- $P(X_1 = a, a_2 \le X_2 \le b_2, ..., a_K \le X_K \le b_K) = 0.$

(examples with discrete and continuous variables)

Marginal pmfs and pdfs

Marginal pmf (discrete var.):

$$P(X_i = x) \equiv \sum_{x_1} ... \sum_{x_K} P(X_1 = x_1, ... X_i = x, ..., X_K = x_K).$$

Marginal pdf (continuous var.):

$$f_i(x) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{X_1...X_K}(z_1, ..., x, ..., z_K) dz_1...dx_{i-1} dx_{i+1}...dz_K,$$

or equivalently:

$$F_i(x) = \int_{-\infty}^x f_i(z)dz.$$

(examples with discrete and continuous variables)

CONDITIONAL DISTRIBUTIONS AND INDEPENDENCE

Conditional probability and independence

Let $\mathcal{A}, \mathcal{B} \subset \mathcal{F}$. The probability that \mathcal{A} occurs given that \mathcal{B} occurred, denoted by $P(\mathcal{A} | \mathcal{B})$ is formally defined as:

$$P(A \mid B) \equiv \frac{P(A \cap B)}{P(B)}.$$

Bayes' rule:

$$P(\mathcal{A} \cap \mathcal{B}) = P(\mathcal{A} \mid \mathcal{B})P(\mathcal{B}) = P(\mathcal{B} \mid \mathcal{A})P(\mathcal{A})$$
$$\Rightarrow P(\mathcal{B} \mid \mathcal{A}) = \frac{P(\mathcal{A} \mid \mathcal{B})P(\mathcal{B})}{P(\mathcal{A})}.$$

 \mathcal{A} and \mathcal{B} are **independent** if (the three below are equivalent):

- $P(A \mid B) = P(A)$
- $P(\mathcal{B} \mid \mathcal{A}) = P(\mathcal{B})$
- $P(A \cap B) = P(A)P(B)$.

Conditional cdfs

Let X be a random variable, and \mathcal{A} an event, with $P(\mathcal{A}) \neq 0$. The **conditional cdf** of X given \mathcal{A} occurred is:

$$F_{X|A}(x) \equiv P(X \le x | A) = \frac{P(X \le x \cap A)}{P(A)}.$$

If \mathcal{A} is represented as a random vector X_2 :

$$F_{X_1|X_2}(x|x_2) \equiv P(X_1 \le x|X_2 = x_2)$$

if discrete, and:

$$F_{X_1|X_2}(x|x_2) \equiv \lim_{h \to 0} P(X_1 \le x|x_2 + h \ge X_2 \ge x_2)$$

if continuous.

Conditional pmfs and pdfs

Conditional pmf (discrete variable):

$$P(X_1 = x | X_2 = x_2) = \frac{P(X_1 = x, X_2 = x_2)}{P(X_2 = x_2)}.$$

Conditional pdf (continuous variable):

$$f_{X_1|X_2}(x|x_2) \equiv \frac{f_{X_1X_2}(x,x_2)}{f_{X_2}(x_2)},$$

or implicitly through the cdf:

$$F_{X_1|X_2}(x|x_2) = \int_{-\infty}^x f_{X_1|X_2}(z|x_2)dz.$$

(check it is a well-defined pdf)

Factorization (application of the Bayes' rule):

$$f_{X_1X_2}(x_1,x_2) = f_{X_1|X_2}(x_1|x_2) \\ f_{X_2}(x_2) = f_{X_2|X_1}(x_2|x_1) \\ f_{X_1}(x_1).$$

Independence

Two random variables X_1 and X_2 are **independent** if and only if:

- $f(X_1|X_2)$ and $f(X_2|X_1)$ do not depend on X_2 and X_1 respectively.
- $F_{X_1X_2}(x_1, x_2) = F_{X_1}(x_1)F_{X_2}(x_2)$ for all X_1 and X_2 .
- $P(x_1 \in \mathcal{A}_{X_1} \cap x_2 \in \mathcal{A}_{X_2}) = P(x_1 \in \mathcal{A}_{X_1})P(x_2 \in \mathcal{A}_{X_2}).$

The three conditions are **equivalent**.

Corollary: $(X_1, ..., X_K)$ independent if and only if $F_{X_1...X_K}(x_1, ..., x_K)$ $\prod_{i=1}^K F_i(x_i)$.

TRANSFORMATIONS OF RANDOM VARIABLES

Chapter 3. Fall 2016

Transformations of random variables

Let:

- $(X_1,...,X_K)'$: vector of independent random variables.
- $\{Y_i = g_i(X_i) : j = 1, ..., K\}$: transformed random variables.

Then $(Y_1,...,Y_K)'$ are also **independent**.

Let:

- $(X_1,...,X_K)'$: vector of continuous random variables with pdf $f_X(x)$.
- Y = g(X): K-dimensional function with a unique inverse, $X = g^{-1}(Y)$, and $\det\left(\frac{\partial g^{-1}(Y)}{\partial Y'}\right) \neq 0$.

Then, the **joint pdf** of Y = g(X) is:

$$f_Y(y) = f_X(g^{-1}(y)) \left| \det \left(\frac{\partial g^{-1}(Y)}{\partial Y'} \right) \right|.$$

MULTIVARIATE NORMAL DISTRIBUTION

Chapter 3. Fall 2016

$Multivariate\ normal\ distribution$

Multivariate normal: $X \sim \mathcal{N}_K(\mu_X, \Sigma_X)$. Pdf is given by:

$$f_X(x) = (2\pi)^{-\frac{K}{2}} \det(\Sigma_X)^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(x - \mu_X)'\Sigma_X^{-1}(x - \mu_X)\right),$$

where μ_K is a size K vector of parameters, and Σ_X is $K \times K$ positive definite and symmetric matrix of parameters.

It is a **transformation** of a vector of independent standard normals $Z = (Z_1, ..., Z_K)'$ with $\{Z_i \sim \mathcal{N}(0, 1) : j = 1, ..., K\}$:

$$X = \mu_X + \Sigma_X^{\frac{1}{2}} Z.$$

Using similar derivation: $Y = a + BX \sim \mathcal{N}(a + B\mu_X, B\Sigma_X B')$.

COVARIANCE, CORRELATION, AND CONDITIONAL EXPECTATION

Covariance and correlation: two random vars.

Covariance: $Cov(X_1, X_2) \equiv \mathbb{E}[(X_1 - \mu_{X_1})(X_2 - \mu_{X_2})].$

Properties:

- $Cov(X_1, X_2) = \mathbb{E}[X_1 X_2] \mathbb{E}[X_1] \mathbb{E}[X_2].$
- $Cov(X_1, X_2) = Cov(X_2, X_1)$.
- Cov(X, X) = Var(X).
- \bullet Cov(c, X) = 0.
- $\bullet \operatorname{Cov}(aX_1, bX_2) = ab\operatorname{Cov}(X_1, X_2).$
- $Cov(X_1 + X_2, X_3) = Cov(X_1, X_3) + Cov(X_2, X_3).$
- $Var(X_1 + X_2) = Var(X_1) + Var(X_2) + 2 Cov(X_1, X_2).$

Correlation coefficient:

$$\rho_{X_1 X_2} \equiv \frac{\operatorname{Cov}(X_1, X_2)}{\sqrt{\operatorname{Var}(X_1) \operatorname{Var}(X_2)}}.$$

Cauchy-Schwarz inequality: $\Rightarrow \rho_{X_1X_2}^2 \leq 1$.

Expectation of random vectors

Expectation of a random vector:

$$\mathbb{E}[X] \equiv \int_{-\infty}^{\infty} x dF_{X_1...X_K}(x_1, ..., x_K) = \begin{pmatrix} \mathbb{E}[X_1] \\ \vdots \\ \mathbb{E}[X_K] \end{pmatrix}.$$

Similarly:

$$\mathbb{E}[g(X)] \equiv \int_{-\infty}^{\infty} g(x) dF_{X_1...X_K}(x_1, ..., x_K).$$

 X_1 and X_2 are **independent** $\Rightarrow \mathbb{E}[X_1X_2] = \mathbb{E}[X_1]\mathbb{E}[X_2]$.

Variance-covariance matrix

The variance-covariance matrix is defined as:

$$\operatorname{Var}(X) \equiv \mathbb{E}[(X - \mu_X)(X - \mu_X)'] =$$

$$= \begin{pmatrix} \operatorname{Var}(X_1) & \operatorname{Cov}(X_1, X_2) & \dots & \operatorname{Cov}(X_1, X_K) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Var}(X_2) & \dots & \operatorname{Cov}(X_2, X_K) \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}(X_K, X_1) & \operatorname{Cov}(X_K, X_2) & \dots & \operatorname{Var}(X_K) \end{pmatrix}.$$

This matrix is **symmetric** and **positive-semidefinite**.

Retaking the **multivariate normal**: if $X \sim \mathcal{N}_K(\mu_X, \Sigma_X)$,

$$\mathbb{E}[X] = \mu_X, \quad \text{Var}(X) = \Sigma_X = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 & \dots & \rho_{1K}\sigma_1\sigma_K \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 & \dots & \rho_{2K}\sigma_2\sigma_K \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{1K}\sigma_1\sigma_K & \rho_{2K}\sigma_2\sigma_K & \dots & \sigma_K^2 \end{pmatrix}.$$

$Conditional\ expectation$

Conditional expectation X_1 given X_2 (continuous):

$$\mathbb{E}[X_1|X_2 = x_2] \equiv \int_{-\infty}^{\infty} x_1 f_{X_1|X_2}(x_1|x_2) dx_1.$$

(discrete):

$$\mathbb{E}[X_1|X_2 = x_2] \equiv \sum_{x_1 \in (-\infty,\infty)} x_1 P(X_1 = x_1|X_2 = x_2).$$

In general, using the Rienman-Stiltjes integral:

$$\mathbb{E}[X_1|X_2 = x_2] \equiv \int_{-\infty}^{\infty} x_1 dF_{X_1|X_2}(x_1|x_2).$$

Conditional variance is defined as:

$$\operatorname{Var}[X_1|X_2 = x_2] \equiv \int_{-\infty}^{\infty} (x_1 - \mathbb{E}[X_1|X_2])^2 dF_{X_1|X_2}(x_1|x_2).$$

Law of iterated expectations:

$$\mathbb{E}[\mathbb{E}[X_1|X_2]] = E[X_1].$$

Independence (revisited)

Three concepts:

- 1. **Independence**: $F_{X_1|X_2}(x_1|x_2) = F_{X_1}(x_1)$ (or any of the equivalent specifications defined above).
- 2. **Mean independence**: X_1 is mean independent of X_2 if $\mathbb{E}[X_1|X_2] = \mathbb{E}[X_1]$ for all values of X_2 . (this relation is not symmetric).
- 3. Absence of correlation: $Cov(X_1, X_2) = 0 = \rho_{X_1 X_2}$.

From strongest to weakest: $1. \Rightarrow 2. \Rightarrow 3$.

Application: bivariate normal distribution

In the multivariate normal case, independence, mean independence, and absence of correlation are **equivalent**.

They occur (for X_i and X_j) if and only if $\rho_{ij} = 0$.

Conditional distribution:

$$X = (X_1, X_2)' \sim \mathcal{N}_2 \left(\begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}, \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{12}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix} \right)$$
$$\Rightarrow X_1 | X_2 \sim \mathcal{N} \left(\mu_1 + \rho_{12} \frac{\sigma_1}{\sigma_2} (X_2 - \mu_2), \sigma_1^2 (1 - \rho_{12}^2) \right).$$

LINEAR PREDICTION

Expectations and prediction

h(X): **prediction** of a variable Y based on the information in X.

 $U \equiv Y - h(X)$: prediction error.

The expectation is the **optimal predictor**:

$$\mathbb{E}[Y|X] = \arg\min_{h(X)} \mathbb{E}[(Y - h(X))^2] = \arg\min_{h(X)} \mathbb{E}[U^2].$$

By extension, $\mathbb{E}[Y]$ is the **optimal constant predictor**.

Nice decomposition:

$$Var(Y) = Var(\mathbb{E}[Y|X]) + \mathbb{E}[Var(Y|X)].$$

Population R^2 :

$$R^2 \equiv \frac{\operatorname{Var}(\mathbb{E}[Y|X])}{\operatorname{Var}(Y)} = 1 - \frac{\mathbb{E}[\operatorname{Var}(Y|X)]}{\operatorname{Var}(Y)}.$$

$Optimal\ linear\ predictor$

Given a random vector (Y, X), the optimal linear predictor of Y given X is the function $\mathbb{E}^*[Y|X] \equiv \alpha + \beta X$ that satisfies:

$$(\alpha, \beta) = \arg\min_{(a,b)} \mathbb{E}[(Y - a - bX)^2].$$

Solving for the first order conditions $\beta = \frac{\text{Cov}(X,Y)}{\text{Var}(X)}$ and $\alpha = \mathbb{E}[Y] - \beta \mathbb{E}[X]$, and, hence:

$$\mathbb{E}^*[Y|X] = \mathbb{E}[Y] + \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)}(X - \mathbb{E}[X])$$

Properties:

- If expectation is linear (e.g. bivariate normal), $\mathbb{E}^*[Y|X] = \mathbb{E}[Y|X]$.
- $\bullet \ \mathbb{E}^*[c|X] = c.$
- $\bullet \ \mathbb{E}^*[cX|X] = cX.$
- $\mathbb{E}^*[Y + Z|X] = \mathbb{E}^*[Y|X] + \mathbb{E}^*[Z|X].$
- $\mathbb{E}^*[Y|X_1] = \mathbb{E}^*[\mathbb{E}^*[Y|X_1, X_2]|X_1].$

Optimal linear predictor (cont'd)

Goodness of fit statistic:

$$\rho_{XY}^2 \equiv \frac{\mathrm{Var}(\mathbb{E}^*[Y|X])}{\mathrm{Var}(Y)} = \beta^2 \frac{\mathrm{Var}(X)}{\mathrm{Var}(Y)} = \frac{\mathrm{Cov}(X,Y)^2}{\mathrm{Var}(X)\,\mathrm{Var}(Y)}$$

Notice that $0 \le \rho_{XY}^2 \le R^2$.

CHAPTER 2: RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS

Joan Llull

Probability and Statistics.

QEM Erasmus Mundus Master. Fall 2016

joan.llull [at] movebarcelona [dot] eu

PRELIMINARIES: AN INTRODUCTION TO SET THEORY

Definitions

Consider a collection of objects, including all objects in consideration in a given discussion.

We start introducing some definitions:

- **Element** (or point): each object in our collection (ω) .
- Space (universe, or universal set): the totality of all elements (Ω) .
- Set: a partition of the space $(A, B, ... \text{ or } A_1, A_2, ...)$.
- Index set: for the second type of notation for sets, the collection of all possible indexes (Λ) .
- Venn diagram: a diagram that shows all possible logical relations between a finite collection of sets

We denote that an element ω is part of a set \mathcal{A} by $\omega \in \mathcal{A}$. To express the opposite, we use $\omega \notin \mathcal{A}$.

We can define sets **explicitly** $(A = \{1, 2, 3, 4, 5, 6\})$ or **implicitly** $(A = \{(x, y) : x \in \mathbb{R}, y \in \mathbb{R}^+\})$.

The set that includes no elements is the **empty set**, \varnothing .

Operators for sets

We define a list of operators for sets:

- Subset: when all elements of \mathcal{A} are also in \mathcal{B} ($\mathcal{A} \subset \mathcal{B}$ or $\mathcal{B} \supset \mathcal{A}$).
- Equivalent set: if $A \subset B$ and $B \subset A$ (A = B).
- Union: the set that consists of all points that are either in \mathcal{A} or in \mathcal{B} or in both $(\mathcal{A} \cup \mathcal{B} \text{ or } \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}, \text{ and we define } \bigcup_{\lambda \in \varnothing} \mathcal{A}_{\lambda} \equiv \varnothing).$
- Intersection: the set that consists of all points that are both in \mathcal{A} and \mathcal{B} ($\mathcal{A} \cap \mathcal{B}$ or $\bigcap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}$, and we define $\bigcap_{\lambda \in \mathcal{Q}} \mathcal{A}_{\lambda} \equiv \Omega$).
- Set difference: the set that consists of all points in \mathcal{A} that are not in \mathcal{B} ($\mathcal{A} \setminus \mathcal{B}$ or, when the context is clear, $\mathcal{A} \mathcal{B}$).
- Complement: the complement of \mathcal{A} with respect to the space Ω is the set that consists of all points in Ω that are not in \mathcal{A} , that is $\Omega \setminus \mathcal{A}$ (\mathcal{A}^c or $\overline{\mathcal{A}}$).
- Disjoint/mutually exclusive sets: $\mathcal{A} \subset \Omega$ and $\mathcal{B} \subset \Omega$ are mutually exclusive if $\mathcal{A} \cap \mathcal{B} = \emptyset$. Subsets $\{\mathcal{A}_{\lambda}\}$ are mutually exclusive if $\mathcal{A}_{\lambda} \cap \mathcal{A}_{\lambda'} = \emptyset$ for every λ and λ' such that $\lambda \neq \lambda'$.

Operators for sets

- Cartesian product: the set of all ordered pairs (a, b) where $a \in \mathcal{A}$ and $b \in \mathcal{B}$ $(\mathcal{A} \times \mathcal{B})$.
- Power set: the power set of \mathcal{A} is the set of all possible subsets of \mathcal{A} , including \emptyset and \mathcal{A} itself $(2^{\mathcal{A}} \text{ or } \mathcal{P}(\mathcal{A}))$. If \mathcal{A} includes n elements, $2^{\mathcal{A}}$ includes 2^n elements.
- Finite and countable sets: a finite set is a set that has a finite number of elements. A countable set is a set with the same number of elements as some subset of the set of natural numbers (can be finite or infinite).
- Sigma-algebra: a σ -algebra, Σ , on a set \mathcal{A} is a subset of the power set of \mathcal{A} , $\Sigma \subset 2^{\mathcal{A}}$, that satisfies three properties:
 - it includes \mathcal{A} .
 - if the subset $\mathcal{B} \subset \mathcal{A}$ is included in Σ , \mathcal{B}^c is also included.
 - if a countable collection of subsets $\{A_{\lambda}\}$ is included, its union $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ is also included.

Some properties of these operators

- Commutative laws: $A \cup B = B \cup A$, and $A \cap B = B \cap A$.
- Associative laws: $A \cup (B \cup C) = (A \cup B) \cup C$, and $A \cap (B \cap C) = (A \cap B) \cap C$
- Distributive laws: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$, and $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- $A \cap \Omega = A$; $A \cup \Omega = \Omega$; $A \cap \emptyset = \emptyset$; $A \cup \emptyset = A$.
- $A \cap A^c = \emptyset$; $A \cup A^c = \Omega$; $A \cap A = A \cup A = A$.
- $\bullet \ (\mathcal{A}^c)^c = \mathcal{A}.$
- **DeMorgan's laws**: $(\mathcal{A} \cup \mathcal{B})^c = \mathcal{A}^c \cap \mathcal{B}^c$ and $(\mathcal{A} \cap \mathcal{B})^c = \mathcal{A}^c \cup \mathcal{B}^c$. Likewise, $(\bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda})^c = \bigcap_{\lambda \in \Lambda} \mathcal{A}_{\lambda}^c$, and $(\bigcap_{\lambda \in \Lambda} \mathcal{A}_{\lambda})^c = \bigcup_{\lambda \in \Lambda} \mathcal{A}_{\lambda}^c$.
- $\mathcal{A} \setminus \mathcal{B} = \mathcal{A} \cap \mathcal{B}^c$ and $(\mathcal{A} \setminus \mathcal{B})^c = \mathcal{A}^c \cup \mathcal{B}$.
- $(A \cap B) \cup (A \cap B^c) = A$ and $(A \cap B) \cap (A \cap B^c) = \emptyset$.
- $A \subset B \Rightarrow A \cap B = A$ and $A \cup B = B$.
- $\mathcal{A} \times \mathcal{B} \neq \mathcal{B} \times \mathcal{A}$.

STATISTICAL INFERENCE, RANDOM EXPERIMENTS, AND PROBABILITIES

Statistical inference and random experiment

Statistical inference: the process of deducing properties or claims from a population of interest (as opposed to descriptive statistics).

Random experiment (or trial): conceptual description of the process that generated the data that we observed.

We call it **random** because though the process can be replicated under similar conditions, results are not known with certainty (there is more than one possible outcome).

 \Rightarrow e.g. tossing a coin

The definition of probability

The **probability space** is a mathematical construct that formalizes a random experiment. The probability space consists of three parts:

- A sample space Ω , which is the set of all possible outcomes.
- A σ -algebra, $\mathcal{F} \subset 2^{\Omega}$, which is a set of events, $\mathcal{F} = \{\mathcal{A}_1, \mathcal{A}_2, ...\}$, where each event $\mathcal{A}_{\lambda} \subset \Omega$ is a subset of Ω that contains zero or more outcomes. An event \mathcal{A}_{λ} is said to occur if the experiment at hand results in an outcome ω that belongs to \mathcal{A}_{λ} .
- A **probability measure** $P: \mathcal{F} \to [0, 1]$, which is a function on \mathcal{F} that satisfies three axioms:
 - 1. $P(A) \ge 0$ for every $A \in \mathcal{F}$.
 - 2. $P(\Omega) = 1$ (Ω is sometimes called the sure event)
 - 3. If $A_1, A_2, ...$ is a sequence of mutually exclusive events in \mathcal{F} , then $P(\bigcup_{\lambda=1}^{\infty} A_{\lambda}) = \sum_{\lambda=1}^{\infty} P(A_{\lambda})$.

 \Rightarrow e.g. tossing a coin

FINITE SAMPLE SPACES AND COMBINATORIAL ANALYSIS

Chapter 2. Fall 2016

$Finite\ sample\ spaces$

We focus now on finite sample spaces: $\Omega = \{\omega_1, ..., \omega_N\}$.

Let the operator N(A) denote the **number of elements** of a finite set A.

We define $N \equiv N(\Omega)$ as the total number of possible outcomes of a random experiment with a finite number of outcomes.

We analyze two cases:

- All elements of the sample space are equally likely.
- The elements of the sample space are **not equally likely**.

$Finite\ sample\ spaces\ w/\ equally\ likely\ elements$

In this case, the **probability** of each outcome is $\frac{1}{N}$,

Axiomatic definition: define a probability function $P(\cdot)$ over a finite sample space that satisfies two properties:

- $P(\{\omega_1\}) = P(\{\omega_2\}) = \dots = P(\{\omega_N\}).$
- If $A \subset \Omega$ includes N(A) elements, then P(A) = N(A)/N.

Such function satisfies the **three axioms** and hence is a probability function.

$Combinatorial\ analysis$

The only part left is a **counting** exercise, to obtain N(A) and N (e.g. tossing a coin twice).

To do it systematically, we will use **combinatorial analysis**. Define:

•
$$n! \equiv n(n-1)(n-2)...1 = \prod_{j=0}^{n-1} (n-j)$$
. We define $0! \equiv 1$.

•
$$(n)_k \equiv n(n-1)...(n-k+1) = \prod_{j=0}^{k-1} (n-j) = \frac{n!}{(n-k)!}.$$

• Combinatorial symbol (or n pick k): it is defined as:

$$\binom{n}{k} \equiv \frac{(n)_k}{k!} = \frac{n!}{(n-k)!k!}, \quad \text{with} \quad \binom{n}{k} \equiv 0 \text{ if } k < 0 \text{ or } k > n.$$

• Binomial theorem: the binomial theorem states that:

$$(a+b)^n = \sum_{j=0}^n \binom{n}{j} a^j b^{n-j}.$$

Application: random sampling

Example: drawing a **sample** of size n from an **urn** with M balls, numbered from 1 to M.

Two ways of **drawing** a sample:

- with replacement $\Rightarrow \Omega = \{(z_1, ..., z_n) : z_1 \in \{1, ..., M\}, ..., z_n \in \{1, ..., M\}\}.$
- without replacement $\Rightarrow \Omega = \{(z_1, ..., z_n) : z_1 \in \{1, ..., M\}, z_2 \in \{1, ..., M\} \setminus \{z_1\}, ..., z_n \in \{1, ..., M\} \setminus \{z_1, ..., z_{n-1}\}\}.$

Counting the number of elements in a set \mathcal{A} composed of points that are *n*-tuples satisfying certain conditions: $N(\mathcal{A}) = N_1 \cdot N_2 \cdot ... \cdot N_n$.

- with replacement $\Rightarrow M^n$ different samples could possibly be drawn.
- without replacement $\Rightarrow M \cdot (M-1) \cdot ... \cdot (M-n+1) = (M)_n$ different samples.

Application: size of the power set

Counting elements of the power set:

- Every subset of Ω with n elements $\Rightarrow n!$ different combinations of n elements, drawing from the set without replacement.
- Denote the number of different sets of size n can be formed off Ω by x_n .
- Since we know we can get $(M)_n$ different size-n samples without replacement we know $n!x_n = (M)_n$
- Thus $x_n = \frac{(M)_n}{n!} = \binom{M}{n}$, and the number of sets is $\sum_{n=1}^{M} x_n$.
- \Rightarrow Using the binomial theorem $\sum_{n=1}^{M} x_n = \sum_{n=1}^{M} {M \choose n} = 2^M$

Finite sample spaces w/o equally likely elements

We should define our **probability function** in a different way.

Let
$$\Omega = {\omega_1, ..., \omega_N}$$
, and **define** $p_j \equiv P({\omega_j})$ for $j = 1, ..., N$.

To satisfy the **second and third axioms** of the probability function, p_j for j = 1, ..., N need to be such that $\sum_{i=1}^{N} p_j = 1$, since:

$$\sum_{j=1}^{N} p_j = \sum_{j=1}^{N} P(\{\omega_j\}) = P\left(\bigcup_{j=1}^{N} \{\omega_j\}\right) = P(\Omega) = 1.$$

For any **event** \mathcal{A} , define $P(\mathcal{A}) \equiv \sum_{\{j:\omega_j \in \mathcal{A}\}} p_j$.

This function also satisfies the three axioms, and hence is a probability function.

DEFINITION OF RANDOM VARIABLE AND CUMULATIVE DENSITY FUNCTION

Random variable

Random variable:

a function $X:\Omega\to {\rm I\!R}$

such that $A_r \equiv \{\omega : X(\omega) \leq r\}$

satisfies $\mathcal{A}_r \subset \mathcal{F}$ for every real number r.

 \Rightarrow e.g. tossing a coin

$Cumulative \ distribution \ function$

A random variable is represented by its **cumulative distribution** function (cdf), which transforms real numbers into probabilities:

$$F_X : \mathbb{R} \to [0, 1], \quad F_X(x) \equiv P(X \le x).$$

Properties of a cdf:

- In the limit, $F_X(-\infty) = 0$ and $F_X(\infty) = 1$.
- F_X is nondecreasing (because if $x_1 < x_2$ then $\{\omega : X(\omega) \le x_1\} \subseteq \{\omega : X(\omega) \le x_2\}$).
- F_x is continuous from the right (not necessarily from the left).

 \Rightarrow e.g. tossing a coin

CONTINUOUS AND DISCRETE RANDOM VARIABLES

Discrete random variables

A random variable is **discrete** if its support includes a finite (or countably infinite) number of points of support.

The **cdf** of a discrete random variable is a **step function**, with the discrete jumps occurring at the points of support.

The cdf is fully characterized by the **probability mass function** (pmf), which is defined as $P(X = x_a)$, since:

$$F_X(x) \equiv \sum_{\{a: x_a \le x\}} P(X = x_a).$$

(connection with Chapter 1)

Continuous random variables

We define a random variable as **continuous** if there exists a non-negative function $f_X(\cdot)$ such that:

$$F_X(x) = \int_{-\infty}^x f_X(z)dz, \quad \forall x \in \mathbb{R}.$$

The function $f_X(\cdot)$ is known as **probability density function** (pdf).

The pdf indicates the **rate** at which the **probability is accumulated** in the neighborhood of a point x:

$$f_X(x) = \lim_{h \to 0} \frac{F_X(x+h) - F_X(x)}{h}.$$

Continuous random variables

Continuous random variables (and their pdfs and cdfs) satisfy the following:

- $f_X(x) \ge 0$ in all the support where $F_X(x)$ is differentiable.
- $\int_{-\infty}^{\infty} f_X(z)dz = 1$, even though nothing prevents $f_X(x) > 1$ at some point x.
- F_X is continuous (from both sides).
- P(X = x) = 0 for all x in (and out of) the support of X.
- $P(x_1 < X < x_2) = \int_{x_1}^{x_2} f_X(z) dz$.
- $f_X(x) = \frac{d}{dx} F_X$ at all points where F_X is differentiable.

Mixed random variables

Mixed random variable: continuous in a part of its domain, but with some points at which there is positive probability mass.

More formally, a random variable is mixed if its **cdf** is of the form:

$$F_X(x) = pF_X^{(d)}(x) + (1-p)F_X^{(c)}(x), \quad 0$$

where $F_X^{(d)}(\cdot)$ is the cdf of the discrete part, and $F^{(c)_X(\cdot)}$ is the cdf of the continuous part.

This type of cdf, formed as a convex combination of cdfs of continuous and discrete random variables is called a **mixture**.

COMMONLY USED UNIVARIATE DISTRIBUTIONS

$Discrete\ distributions$

The **Bernoulli distribution** is a discrete distribution with pmf given by:

$$f_X(x) = \begin{cases} p^x (1-p)^{1-x} & \text{if } x \in \{0,1\} \\ 0 & \text{otherwise} \end{cases},$$

where the parameter p satisfies $0 \le p \le 1$.

The **Poisson distribution** is a discrete distribution with pmf given by:

$$f_X(x) = \begin{cases} \frac{e^{-\lambda} \lambda^x}{x!} & \text{if } x = 0, 1, 2, \dots \\ 0 & \text{otherwise} \end{cases},$$

where the parameter λ satisfies $\lambda > 0$.

$Uniform\ distribution$

The **uniform distribution** is a continuous distribution (there is a discrete version of it) with pdf given by:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in [a,b] \\ 0 & \text{otherwise} \end{cases}$$

where a and b are the inferior and superior limits of the support, and with cdf given by:

$$F_X(x) = \begin{cases} 0 & \text{if } x \in (-\infty, a) \\ \frac{x-a}{b-a} & \text{if } x \in [a, b] \\ 1 & \text{if } x \in (b, \infty) \end{cases}.$$

If X is uniformly distributed, we denote $X \sim \mathcal{U}(a, b)$.

Standard normal distribution

The **standard normal distribution** is a continuous distribution with pdf given by:

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right),$$

and cdf given by:

$$\Phi(x) = \int_{-\infty}^{x} \phi(z)dz.$$

Its pdf is **symmetric** around 0, its only **maximum** is at x = 0, and it has two **inflection** points at ± 1 .

The indication that a random variable X is distributed as a standard normal is denoted as $X \sim \mathcal{N}(0,1)$.

The cdf of the normal distribution does not have a **closed form solution**, but its values are tabulated, and incorporated in most statistical softwares (even in spreadsheets!).

Normal distribution

The standard normal distribution can be generalized by means of an **affine transformation**: if $Z \sim \mathcal{N}(0,1)$, then $X \equiv \mu + \sigma Z$.

This transformation is simply called the **normal distribution**, and is denoted by $\mathcal{N}(\mu, \sigma^2)$.

The cdf of the normal distribution is given by:

$$F_X(x) \equiv P(X \le x) = P(\mu + \sigma Z \le x) = P\left(Z \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right),$$

and its pdf is equal to:

$$f_X(x) = \frac{d}{dx} F_X(x) = \frac{1}{\sigma} \phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right).$$

In this case, $f_X(\cdot)$ is **symmetric** with respect to μ , its only **maximum** is at $x = \mu$, and it has two **inflection** points at $\pm \sigma$.

TRANSFORMATIONS OF RANDOM VARIABLES

Chapter 2. Fall 2016 30

Transformations of random variables

Let $Y \equiv g(X)$, with $X \sim F_X(\cdot)$. Then, $Y \sim ?$

If the support of Y is **discrete**:

$$P(Y = y) = \sum_{\{i: g(x_i) = y\}} P(X = x_i).$$

If the support of Y is **continuous**, $g(\cdot)$ is invertible and differentiable, and $g'(\cdot) \neq 0$:

$$F_Y(y) \equiv P(Y \le y) = P(X \le g^{-1}(y)) = F_X(g^{-1}(y)),$$

and:

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X(g^{-1}(y)) \left| \frac{1}{g'[g^{-1}(y)]} \right|.$$

EXPECTATION AND MOMENTS

Chapter 2. Fall 2016 32

Expectation

The **expectation** of a random variable X, $\mathbb{E}[X]$, is defined as:

- if X is discrete: $\mathbb{E}[X] \equiv \sum_a x_a P(X = x_a)$,
- and if X is continuous: $\mathbb{E}[X] \equiv \int_{-\infty}^{\infty} x f_X(x) dx$.

Analogy with the **sample mean** described in Chapter $1 \Rightarrow$ the expectation is the population equivalent to the sample mean.

The two expressions above can be unified using the **Riemann-Stieltjes integral**:

$$\mathbb{E}[X] \equiv \int_{-\infty}^{\infty} x dF_X(x).$$

For
$$Y \equiv g(X)$$
:

$$\mathbb{E}[Y] \equiv \int_{-\infty}^{\infty} g(x) dF_X(x).$$

Variance and central moments

The variance of a random variable X, denoted by Var(X), is the expected quadratic deviation with respect to the mean $\mu_X \equiv \mathbb{E}[X]$:

- if X is discrete: $Var(X) \equiv \sum_{a} [(x_a \mu_X)^2 P(X = x_a)],$
- and if X is continuous: $Var(X) \equiv \int_{-\infty}^{\infty} (x \mu_X)^2 f_X(x) dx$.

In general, using the **Riemann-Stieltjes** integral:

$$\operatorname{Var}(X) \equiv \int_{-\infty}^{\infty} (x - \mu_X)^2 dF_X(x).$$

The **standard deviation** is defined as:

$$\sigma_X \equiv +\sqrt{\operatorname{Var}(X)},$$

where the positive sign indicates that it is given by the positive root.

The \mathbf{k}^{th} central moment of the distribution of X is defined as:

$$\mathbb{E}[(x-\mu_X)^k] \equiv \int_{-\infty}^{\infty} (x-\mu_X)^k dF_X(x).$$

General properties of expectations

Let c be a constant, and g(X) and h(X) denote two arbitrary functions of a random variable X. Then:

- $\bullet \ \mathbb{E}[c] = c,$
- $\mathbb{E}[cX] = c \, \mathbb{E}[X],$
- $\mathbb{E}[g(X) + h(X)] = \mathbb{E}[g(X)] + \mathbb{E}[h(X)],$
- $\mathbb{E}[g(X)] \ge \mathbb{E}[h(X)]$ if $g(X) \ge h(X)$ for every value of X,

and:

- $\operatorname{Var}(X) = \mathbb{E}[X^2] \mathbb{E}[X]^2$.
- Var(c) = 0,
- $Var(cX) = c^2 Var(X)$,
- Var(c+X) = Var(X).

Jensen's inequality

Jensen's inequality: Let X denote a random variable, and let $g(\cdot)$ denote a continuous and convex function.

Then:

$$\mathbb{E}[g(X)] \ge g\left(\mathbb{E}[X]\right).$$

The opposite is true if $g(\cdot)$ is concave.

If the function is strictly convex, the inequality holds strictly.

If the function is linear, then it is satisfied with equality.

Chebyshev's and Markov's inequalities

Chebyshev's inequality: any distribution satisfies:

$$P(|X - \mu_X| \ge c) \le \frac{\sigma_X^2}{c^2} \quad \Leftrightarrow \quad P(|X - \mu_X| \ge k\sigma_X) \le \frac{1}{k^2},$$

where X is a random variable, μ_X is its mean, σ_X^2 is its variance, c is an arbitrary positive constant, and $k \equiv \frac{c}{\sigma_X}$.

It states that not more than $\frac{1}{k^2}$ of the distribution's values can be more than k standard deviations away from the mean.

For example, in the case of the normal distribution, $P(|X - \mu_X| \ge \sigma_X) \approx 1 - 0.6827 \le 1$, $P(|X - \mu_X| \ge 2\sigma_X) \approx 1 - 0.9545 \le 0.25$, and $P(|X - \mu_X| \ge 3\sigma_X) \approx 1 - 0.9973 \le \frac{1}{9}$.

Markov's inequality: for any positive constant c and nonnegative function $g(\cdot)$ (such that the expectation $\mathbb{E}[g(X)]$ exists):

$$P(g(X) \ge c) \le \frac{\mathbb{E}[g(X)]}{c}.$$

QUANTILES, THE MEDIAN, AND THE MODE

Chapter 2. Fall 2016 38

Quantiles, the median, and the mode

 τ th quantile: minimum value of X below which there is a fraction τ of the density of the distribution:

$$q_{\tau} \equiv \min\{x : F_X(x) \ge \tau\},$$

for $\tau \in [0,1]$. When $F_X(\cdot)$ is invertible, $q_{\tau} = F_X^{-1}(\tau)$. Thus, the quantiles also characterize the distribution of X, as so does the cdf.

Median: the 0.5th quantile, $q_{0.5}$.

Mode: value of X that has the maximum density (or mass if X is discrete).