Overview

Chapter 1

- Simulation #2
- Simulation #3

Chapter

- Simulation #4
- Simulation #

Mechanics Simulations With JavaScript

Peter Krieg

Physics Fall Semester Thesis

December 3, 2014

Overview - Why Did I Choose This Topic?

Overview

- Chapter 1
 Simulation #1
 Simulation #2
- Chapter 2
 Simulation #4
 Simulation #5

- I hope to use programming as a lens to view physics
- Examine mechanics in more detail
- Solve physics problems through simulations
- JavaScript high level language viewable easily in web browser

What is a simulation?

Overview

Chapter 1

- Simulation #1
 Simulation #2

onapter 2

- Simulation #4
- Simulation #5 Simulation #6

- Animation vs. Simulation
- Frames per second
- File size

Method of Basic Simulation

Overview

- HTML5 canvas application programming interface (API)
- Timer for each frame

Overview

Chapter 1

Simulation #1

C: 11: "12

C. 1.0. /

diation #-4

Simulation #

Chapter 1: Basic kinematics and aerodynamic drag

Overview

Chapter 1

Simulation #1 Simulation #2 Simulation #3

Chapter

Simulation #4
Simulation #5
Simulation #6

- Three simulations
- Simulation #1: Basic bouncing ball
- Simulation #2: Bouncing ball with aerodynamic drag
- Simulation #3: Multiple bouncing balls

Simulation #1: Basic Bouncing Ball

Overview

Chapter 1

Simulation #1 Simulation #2

Chapter 2

Simulation #4

Simulation #5

Realistic g value

• 9.81
$$\frac{px}{s^2} = .1635 \frac{\frac{px}{s}}{frame} \times \frac{60 frame}{s}$$

• Coefficient of restitution (C_r)

$$\bullet \ \ \textit{C_r} = \sqrt{\frac{\textit{KE_f}}{\textit{KE_i}}} = \sqrt{\frac{\frac{1}{2}\textit{mv_f^2}}{\frac{1}{2}\textit{mv_i^2}}} = \frac{\textit{v_f}}{\textit{v_i}}$$

•
$$v_f = v_i * C_r$$

Simulation #2: Bouncing Ball With Aerodynamic Drag

Simulation #2

• $f_{drag} = -\frac{1}{2}C_d\rho Av^2$

- F_D = force of drag
- $\rho = \text{density of fluid}$
- v =speed of object relative to fluid
- C_d = drag coefficient (affected by texture, shape, viscosity, lift, etc)
- A = cross-sectional area of object

Simulation #3: Multiple Balls Bouncing

- Simulation #3

- Same physics as simulation #1
- Array of ball objects
- Each object has properties
- Each frame cycles through array, updating properties of each object

Chapter 2: Planetary Motion

Overviev

Chapter 1
Simulation #1
Simulation #2
Simulation #3

Chapter 2

Simulation #4 Simulation #5 Simulation #6 3 Simulations

Simulation #4: Orbits

• Simulation #5: Escape velocity

• Simulation #6: Kepler's 2nd law

Simulation #4: Orbits

Overview

Chapter

Simulation #2

Simulation #3

Chapter 2

Simulation #4

Simulation #5

Newton's Law of universal gravitation

$$\bullet \ F_g = G \frac{m_1 m_2}{r^2}$$

- Euler's Method to update velocity
- $x(t + dt) = x(t) + \frac{dx}{dt}(t) dt$

Overview

Chapter 1

Simulation #1 Simulation #2 Simulation #3

Chapter

Simulation #4
Simulation #5
Simulation #6

 $\bullet \ K_i + U_{g_i} = K_f + U_{g_f}$

•
$$\frac{1}{2}mv_{esc}^2 - \frac{GMm}{r} = 0 + 0$$

•
$$v_{esc} = \sqrt{\frac{2GM}{r}}$$

•
$$v_{esc} = \sqrt{\frac{2*1\frac{px^3}{s^2}*1000000}{410px}} \approx 69.843\frac{px}{s}$$

 Used bigger canvas, and plotted velocities during planet's travel

Overviev

bantar 1

Simulation #1 Simulation #2

Chapter

Chapter 2 Simulation #4 Simulation #5

Overviev

Chapter 1

Simulation #1 Simulation #2

Chapter 2

Chapter 2 Simulation #

Simulation #4 Simulation #5

Simulation #5

Overview

hanter 1

Simulation #1 Simulation #2

_. _.

Jnapter 2 Simulation #4

Simulation #5

Simulation #6: Kepler's 2nd law

Overviev

- Chapter 1
 Simulation #1
 Simulation #2
 Simulation #3
- Chapter 2
 Simulation #4
 Simulation #5
 Simulation #6

- Early 1600's Johannes Kepler proposed laws explaining how planets orbit the sun
- Law #2: "The radius vector drawn from the Sun to a planet sweeps out equal areas in equal time intervals"
- Simulation shows constant $\frac{dA}{dt}$

Overviev

Chapter 1

Simulation #1 Simulation #2

mulation #

Chapter

mulation #4

Simulation #6

Thank You