EECS 496: Sequential Decision Making

Soumya Ray

sray@case.edu

Office: Olin 516

Office hours: T 4-5:30 or by appointment

Announcement

- Assignment posted
 - Due Saturday 9/21 11:59pm

Grader: Zicheng Gao (zxg109)

Recap

- What is probability theory?
- What is a random variable?
- What is an atomic event? Event? Sample space?
- What are the axioms of probability?
- What is the "joint pdf"?
- What is p(X|Y)?
- What is Bayes' Rule? What is its significance?
- When are two r.v.'s independent? What is the significance of independence?
- What is the expectation of a rv?
- What is the variance of a rv?
- What is conditional independence?
- In probabilistic inference, we want the pdf over a _____ given
- One method for probabilistic inference is ______.

Today

- Probabilistic inference (Ch 13)
- Bayesian Networks (Ch 14, Russell and Norvig)

Inference by Enumeration

- We are given a pdf over a collection of r.v.'s X
 - Of these, we observe evidence E=e ($E\subseteq X$)
 - We are interested in the query variable V
 - Let \mathbf{Y} be $\mathbf{X} \setminus \{\mathbf{E}, V\}$ (everything in \mathbf{X} not in \mathbf{E} and not V)
 - Note $X = Y \cup E \cup V$
 - Sometimes called "nuisance" variables

• We want $p(V=v/\mathbf{E}=\mathbf{e})$

Inference by Enumeration

$$p(V = v \mid \mathbf{E} = \mathbf{e}) = \frac{p(V = v, \mathbf{E} = \mathbf{e})}{p(\mathbf{E} = \mathbf{e})}$$

$$p(V = v, \mathbf{E} = \mathbf{e}) = \sum_{\mathbf{y}} p(V = v, \mathbf{E} = \mathbf{e}, \mathbf{Y} = \mathbf{y}) \quad \mathbf{Y} = \mathbf{X} \setminus \{\mathbf{E}, V\}$$

$$p(\mathbf{E} = \mathbf{e}) = \sum_{v} \sum_{\mathbf{y}} p(V = v, \mathbf{E} = \mathbf{e}, \mathbf{Y} = \mathbf{y})$$

$$p(V = v \mid \mathbf{E} = \mathbf{e}) = \sum_{v} \sum_{\mathbf{y}} p(V = v, \mathbf{E} = \mathbf{e}, \mathbf{Y} = \mathbf{y})$$

$$p(V = v \mid \mathbf{E} = \mathbf{e}) = \sum_{v} \sum_{\mathbf{y}} p(V = v, \mathbf{E} = \mathbf{e}, \mathbf{Y} = \mathbf{y})$$

Example

CloudyTomorrow	RainTomorrow	WetGrass	Probability
No	No	No	0.4
No	No	Yes	0.01
No	Yes	No	0
No	Yes	Yes	0.01
Yes	No	No	0.15
Yes	No	Yes	0.02
Yes	Yes	No	0.01
Yes	Yes	Yes	0.4

$$p(WetGrass = Yes \mid CloudyTomorrow = Yes)?$$

Solution

$$p(WetGrass = Yes \mid CloudyTomorrow = Yes) \propto$$

 $p(W = Yes, C = Yes, R = Yes) + p(W = Yes, C = Yes, R = No) \propto$
 $0.4 + 0.02 = 0.42$

$$p(WetGrass = No \mid CloudyTomorrow = Yes) \propto$$

 $p(W = No, C = Yes, R = Yes) + p(W = No, C = Yes, R = No) \propto$
 $0.01 + 0.15 = 0.16$

$$c = \frac{1}{(0.42 + 0.16)} = 1.724$$

$$p(WetGrass = Yes \mid CloudyTomorrow = Yes) = 0.42c = 0.724$$

 $p(WetGrass = No \mid CloudyTomorrow = Yes) = 0.16c = 0.276$

Bayesian Networks (Motivation)

- A key need in all of AI is to reason with uncertain information
 - i.e., given you know the values of some quantities ("evidence"), find the distribution over values of some other quantities ("query variables")
 - I observe a sequence of sensor measurements from my location. Each sensor is noisy. Where am I located?
- This is hard!
 - General probabilistic inference is NP-hard

Rule-based Expert Systems

- To get around the hardness of the problem, early Al researchers devised heuristic solutions
- "Expert Systems" had lots of weighted rules:
 - "If sensor1>5 and sensor2>4, x-location=5: 5.6"
 - "If sensor2<7 and sensor3>6, x-location=7: 3.4"
- What if multiple rules were true?
 - Then you had to combine the weights using arcane combining rules
 - This procedure was very ad-hoc and sometimes led to conflicting results

Key Point 1

 Real-world systems can be described by large numbers of variables, but typically only a few interact with each other

- So we can take advantage of statistical independence during inference
 - This makes probabilistic inference practical on a large scale

Statistical Independence

 Two r.v.'s X and Y are statistically independent if

$$p_{X,Y}(X = x, Y = y) = p_X(X = x)p_Y(Y = y)$$

Key Point 2

 Once the probability distributions are factored using independence, they can be represented as graphs

- These ideas lead to Bayesian Networks
 - Developed by Judea Pearl (Turing award winner 2012) among others

Bayesian Networks

 A way of representing the probability distribution over a collection of random variables

- The probability distribution is represented as a graph
 - This is a kind of "graphical model"
- Inference operations can be made efficient by taking advantage of the graph structure

The Chain Rule

• Consider n random variables $X_1, ..., X_n$

$$Pr(x_{1},...,x_{n}) = Pr(x_{1},...,x_{n-1} | x_{n}) Pr(x_{n})$$

$$= Pr(x_{1},...,x_{n-2} | x_{n-1},x_{n}) Pr(x_{n-1} | x_{n}) Pr(x_{n})$$

$$= Pr(x_{n}) \prod_{i=1}^{n-1} Pr(x_{i} | \{x_{j}\}_{j=i+1}^{n})$$

The Chain Rule as a Graph

The Chain Rule as a Graph

- Each node represents a random variable
- A directed edge represents a conditioning dependence
 - So x_{n-1} is conditioned on x_n , x_{n-2} on x_n and x_{n-1} , etc
- The "parents" of a node x_i , $Pa(x_i)$, are the other nodes x_j with edges to x_i

Properties of the Network

- It is a DAG
 - "Directed Acyclic Graph"–If you follow the directed edges, you can't start from x_i and get back to it
 - But there are lots of undirected cycles
- It is not unique
 - Reorder the variables
 - Therefore, any probability distribution can be represented using many graphical structures

The Chain Rule as a Graph

 What would happen if I deleted an edge from this graph?

$$\Pr(x_1, \dots, x_n) = \Pr(x_n) \prod_{i=1}^{n-1} \Pr(x_i \mid \{x_j\}_{j=i+1}^n)$$

$$\Pr(x_n) \Pr(x_{n-1}) \prod_{i=1}^{n-2} \Pr(x_i | \{x_j\}_{j=i+1}^n)$$

=
$$Pr(x_1,...,x_n)$$
 iff x_{n-1} is independent of x_n

Key idea

- The "chain rule graph" is always an exact representation for any joint distribution
- Suppose for some x_i , we *know* that it is independent of an ancestor x_{i+k} given the other parents:

$$Pr(x_i \mid x_{i+1}, ..., x_{i+k}, ..., x_n) = Pr(x_i \mid x_{i+1}, ..., x_{i+k-1}, x_{i+k+1}, ..., x_n)$$

• In the chain rule graph, we can delete the edge $x_{i+k} \rightarrow x_i$ and it will *still* represent the joint distribution

The Bayesian network assumption

Consider an arbitrary DAG over n random variables

- This DAG *still* represents the joint probability distribution iff for all x_i , x_i is independent of all its *non-descendants* given its *parents*
 - Called the "Bayesian Network Assumption"

BNA and the Chain rule

So for an arbitrary DAG,

$$Pr(x_1,...,x_n)$$
= $Pr(x_n) \prod_{i=1}^{n-1} Pr(x_i | \{x_j\}_{j=i+1}^n)$

$$= \prod_{i=1}^{n} \Pr(x_i \mid Pa(x_i))$$
 By BNA

Example (J. Pearl et al.)

- My house has a sensitive burglar alarm which occasionally also goes off if there is an earthquake. If the alarm goes off, my neighbor might call and tell me about it.
- How to describe this with a BN?
 - Nodes?
 - Edges?

Alarm network

The Meaning of an Edge

- Sometimes, it is useful to think of an edge $x_i \rightarrow x_j$ as being a "causal" relationship
- Consider the two networks:

- These represent the exact same probability distribution, $Pr(X_1, X_2)$
 - Independence is symmetric, causality is not (usually)
- A network constructed to be causal will be a BN, but not all BNs are causal

Explaining Away

- When Alarm is unknown, Burglary and Earthquake are independent
- But if the Alarm goes off, then they become dependent because they "compete" to explain the Alarm