Excelで 正規分布、t分布を描く

標準正規分布を描く

1)エクセルで、-5.0から5.0まで0.1刻みの数値 を作る

縦につなげて、-5, -4.9と入力し、 右下の黒ポツを下にドラッグして 連続データを作る

2)NORM.S.DIST関数を使って、上記で作った数値における確率密度を出す

黒ポツのドラッグ、あるいは黒ポツのダブルクリックで、下方に式をコピーする

-5	1.5E-06	
-4.9	2.4E-06	
-4.8	4E-06	
-4.7	6.4E-06	
-4.6	1E-05	

3)散布図を使って作図する

累積分布関数のグラフを作る

同様に、NORM.S.DIST関数の第2引数にTRUE を指定すると、累積分布関数の値を計算してくれる。

-5	1.49E-06	=NORM.S.DIST	Γ(C2,TRUE	()
-4.9	2.44E-06			·
-4.8	3.96E-06			

グラフをクリックし、データ範囲を広げてあげると、 確率密度関数と累積分布関数を一枚のグラフに表 示することができる

ここらへんをドラッグ

確率から、標準正規分布の境界 値を求める

1) NORM.S.INV関数で

上側確率を指定するときは、1-値を関数に渡す。あるいは絶対値をとってもよい。

0.025	-1.95996	
0.975	1.959964	

t 分布を描く

1)-5~5まで、0.1刻みのデータを作り、さらに、適当な自由度をいくつか、各列の先頭に記入する

	自由度						
	1	2	5	10	30	1000	
-5							
-4.9							
-4.8							
-4.7							
-4.6							
-4.5 -4.4							
-4.4							

2)T.DIST関数で確率密度を計算する

第一引数(xの値)と、第二引数(自由度)のセルの指定では、 F4キーを数回押して、第一引数は列が、第二引数は行が固 定されるようにする。

	自由度				
	1	2	5	1	
-5	=T.DIST(=T.DIST(\$B4,C\$3,FALSE)			
-4.9					
-48					

表全体にコピーする

	自由度						
	1	2	5	10	30	1000	
-5	0.012243	0.007128	0.001757	0.000396	3.29E-05	1.71E-06	
-4.9	0.012727	0.007539	0.001944	0.000464	4.36E-05	2.78E-06	
-4.8	0.013241	0.007981	0.002152	0.000544	5.77E-05	4.46E-06	
17	0.010700	0.000450	0.000007	0.000000	7 045 05	715 00	

3)散布図を使ってグラフにする

確率からt分布の境界値を 出す

T.INV関数で、確率と自由度を与えて計算する。

自由度		確率	
	1	0.025	=T.INV(C4,B4)

上側確率をとるときには、1-確率を与えるか、絶対値をとる。

自由度		確率	
	1	0.025	-12.7062
	1	0.975	12.7062
			E