Section 0.1 Exercise 1

Sol.

- (a) $\{1, 2, 3, 4, 5\}$.
- (b) $\{-5, -4, -3, -2, -1, 0, 1, 2\}$.
- (c) $\{1, 2, 3, 4, 5\}$.
- (d) $\{2,3,4\}$.

Section 0.1 Exercise 2

Sol.

- (a) (1/2, 1).
- (b) [-1, 7].

Section 0.1 Exercise 4

Sol.

We prove that

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$$

Let $x \in A \setminus (B \cup C)$. Then $x \in A$ but $x \notin (B \cup C)$, so that $x \notin B$ and $x \notin C$. It follows that $x \in A \setminus B$ and $x \in A \setminus C$, i.e., $x \in (A \setminus B) \cap (A \setminus C)$. This shows that

$$A \setminus (B \cup C) \subset (A \setminus B) \cap (A \setminus C)$$
.

For the reverse inclusion, suppose that $x \in (A \setminus B) \cap (A \setminus C)$, so that $x \in A$ but $x \notin B$ and $x \notin C$. Then $x \notin B \cup C$, and we get that $x \in A \setminus (B \cup C)$. This shows that

$$(A \setminus B) \cap (A \setminus C) \subset A \setminus (B \cup C)$$

and the two sets have to be equal, namely

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$$

as required.

Section 0.1 Exercise 6

Sol.

Suppose that $A \subset B$. We prove that $(C \setminus B) \subset (C \setminus A)$.

Let $x \in (C \setminus B)$. Then $x \in C$, but $x \notin B$. In particular, we have that $x \notin A$, since otherwise x would be in B, because $A \subset B$. This shows that $x \in (C \setminus A)$, as required.

It is not true in general that $A \subset B$ implies $(C \setminus A) \subset (C \setminus B)$, as can be seen taking $C = \{1, 2, 3\}$, $A = \{1\}$ and $B = \{1, 2\}$. Then $C \setminus B = \{3\}$ but $C \setminus A = \{2, 3\}$.

Section 0.1 Exercise 10

Sol.

- (a) $\{0\}$.
- (b) \mathbb{R} .
- (c) [0,1].
- (d) (-1,3).

Section 0.1 Exercise 12

Sol.

- (a) $\mathbb{R} \setminus \{0\}$.
- (b) $\mathbb{R} \setminus [1,2]$.

Section 0.2 Exercise 13

Sol.

Let $f: \mathbb{N} \to \mathbb{N}$ defined by f(n) = 2n - 1.

The image of f is the set of all positive odd integers, $B := \{1, 3, 5, \dots\}$. The function f is injective; indeed, if f(n) = f(m), then 2n - 1 = 2m - 1 which gives m = n.

The function f is not surjective; for example 2 is not in the image of f. The domain of f^{-1} is B and for $n \in B$, we have $f^{-1}(n) = (n+1)/2$.

Section 0.2 Exercise 17

Sol.

Consider $A = \{1\}$, $B = \{1,2\}$, $C = \{1,2\}$, and define $f: A \to B$ by f(1) = 1, and $g: B \to C$ by g(1) = 1 and g(2) = 1. Then g is not injective, but $g \circ f: A \to C$ is trivially injective.

Section 0.4 Exercise 37

Sol.

Suppose that there exists a bijection $f: A \to \mathcal{P}(A)$. As in the hint, define $C := \{x \in A : x \notin f(x)\}$. Then C is a subset of A, so $C \in \mathcal{P}(A)$. Since f is surjective, we must have that C = f(a) for some $a \in A$. There are two cases: $a \in C$ or $a \notin C$.

Suppose that $a \in C$. Then by definition of C, we must have $a \notin f(a)$. But f(a) = C, so that $a \notin C$, a contradiction.

Suppose that $a \notin C$. But again by definition of C, this implies that $a \in f(a)$, i.e. $a \in C$, again a contradiction.

Since both cases lead to a contradiction, we deduce that there is no bijection $f: A \to \mathcal{P}(A)$.

Section 0.5 Exercise 40

Sol.

Suppose that $x, y \geq 0$. Then

$$0 \le (\sqrt{x} - \sqrt{y})^2 = x + y - 2\sqrt{x}\sqrt{y}.$$

Rearranging, this gives

$$\sqrt{xy} = \sqrt{x}\sqrt{y} \le \frac{x+y}{2}$$

as required.

Section 0.5 Exercise 41

Sol.

Suppose that 0 < a < b. Multiplying by a on both sides of the inequality 0 < a and using Axiom A11, we get $0 < a^2$. Note that we used the fact that 0x = 0 for all $x \in \mathbb{R}$, as proved in class.

On the other hand, multiplying by a on both sides of the inequality a < b gives $a^2 < ab$, again using Axiom A11. But $ab < b^2$, as can be seen multiplying the inequality a < b by b. This gives $a^2 < b^2$, as required.

The other inequality is proved similarly.