

Modelo de Casos de Uso

Profa. Ana Paula Lemke

Última atualização em 07/03/2019.

Introdução

- Casos de uso (use cases) são utilizados para capturar os requisitos funcionais do sistema. De forma breve, um caso de uso identifica uma funcionalidade oferecida pelo sistema.
- □ Em UML, os casos de uso são especificados através de Diagramas de Casos de Uso.
- Um modelo de casos de uso contém as especificações textuais (narrativas) dos casos de uso do sistema e um diagrama de casos de uso.
 - "Note que casos de uso não são diagramas, são textos. Enfocar os diagramas de caso de uso UML, de valor secundário, em vez do importante texto do caso de uso, é um erro comum para novatos." Fonte: livro "Utilizando UML e Padrões", de Larman (pág. 89).

Introdução

Modelo de Casos de Uso

Identificação: UC1

Caso de uso: Sacar dinheiro

Atores: Cliente Tipo: Primário

Pré-Condições: o Cliente possui cartão do banco e senha cadastrada.

Pós-Condições: lançada a transação na conta do Cliente, atualizado o saldo da conta corrente e

liberado o dinheiro.

Sequência Típica de Eventos (Fluxo Básico):

Ação do ator

- Este caso de uso começa quando o Cliente realiza a leitura do cartão do banco no caixa eletrônico
- 2. O Cliente informa a sua senha
- 4. O Cliente informa o valor do saque

Resposta do sistema

- O sistema valida a conta corrente e senha do Cliente, autorizando a operação
- O sistema autoriza o saque e lança o débito na conta corrente do Cliente
- 6. O sistema libera o dinheiro

Diagrama de Casos de Uso UML

- □ São utilizados para modelar:
 - O contexto de um sistema, identificando os atores e seus papéis na interação com o sistema;
 - Os requisitos de um sistema, especificando o que o sistema deve fazer (do ponto de vista de seus usuários).
- □ Servem para:
 - Verificar e validar a arquitetura do sistema;
 - Identificar e gerar casos de teste.

Notação do Diagrama de Casos de Uso

Ator

Caso de Uso

Fronteira do Sistema (opcional)

Ator

- □ Um ator representa uma entidade (um ser humano, um dispositivo de hardware ou mesmo outro sistema) que interage com o sistema que está sendo modelado.
 - "An Actor does not necessarily represent a specific physical entity but instead a particular role of some entity that is relevant to the specification of its associated UseCases. Thus, a single physical instance may play the role of several different Actors and, conversely, a given Actor may be played by multiple different instances". Fonte: Especificação da UML2.5
 - Por interação entende-se a troca de mensagens entre um ator e o sistema.
- □ Atores estão fora do sistema, isto é, não são entidades componentes do sistema.

Ator

■ Notação:

Caso de uso

- Um caso de uso descreve uma sequência de ações que o sistema deve executar, com o objetivo de produzir como resultado algo de valor para o atendimento das necessidades de um ator.
- □ Casos de usos especificam o que deve ser realizado no sistema, não como deve ser feito.
- □ Um caso de uso:
 - Descreve uma funcionalidade completa do sistema.
 - Gera como resultado algo de valor tangível para um ator.
 - □ "A UseCase is the specification of a set of behaviors performed by a subject, which yields an observable result that is of value for one or more Actors or other stakeholders of the subject". Fonte: Especificação da UML2.5
 - Expressa os requisitos funcionais do sistema.

Caso de uso

- Casos de uso são encontrados investigando como os usuários pretendem usar o sistema para realizar as suas atividades.
- Casos de uso normalmente são percebidos como ações que tem início e fim e produzem resultados num período determinado (geralmente curto) de tempo.
- O modelo de casos de uso está praticamente pronto quando ele captura os requisitos funcionais do sistema, de modo que estes possam ser entendidos por clientes, usuários e pela equipe de desenvolvimento.
- □ Tipos de Casos de Uso
 - Concretos: iniciados por atores
 - Abstratos: iniciados por outros casos de uso

Caso de uso

■ Notação:

Um caso de uso deve ter como nome uma frase representando uma ação (comportamento). Esse nome deve ser significativo para o vocabulário do sistema que está sendo modelado.

Fronteira do Sistema

"A **subject** for a set of UseCases"

- O domínio de um conjunto de casos de uso pode ser com um retângulo com a sua identificação no canto superior esquerdo.
 - Neste caso, as elipses que representam os casos de uso ficam visualmente localizadas dentro do retângulo.

Fonte: Especificação da UML2.5

Relacionamento entre atores

- Atores podem estar associados somente através de generalizações.
- A generalização está associada ao conceito de herança.

No exemplo, professor é uma especialização de Usuário (ou herda de), portanto pode fazer tudo que Usuário faz.

Aluno também é uma especialização de Usuário, portanto pode fazer tudo que Usuário faz.

Relacionamento entre atores e casos de uso

Uma associação indica uma interação entre um ator e um caso de uso.

- A multiplicidade da associação é opcional.
 - "When a UseCase has an association to an Actor with a multiplicity that is greater than one at the Actor end, it means that more than one Actor instance is involved in initiating the UseCase".
 - "For instance, a particular UseCase might require simultaneous (concurrent) action by two separate Actors (e.g., in launching a nuclear missile) or it might require complementary and successive actions by the Actors (e.g., one Actor starting something and the other one stopping it)." Fonte: Especificação da UML 2.5.

Relacionamento entre atores e casos de uso

Fonte: Especificação da UML 2.5.1, página 643.

Exemplo 1

- Considere que você esteja desenvolvendo um sistema para uma academia. Como você representaria o seguinte requisito?
 - R1. O sistema deve permitir somente o ingresso de usuários autenticados por meio de login e senha previamente cadastrados.

Generalização / Especialização

 Permite descrever casos de uso mais específicos com base em um caso de uso mais genérico.

No exemplo, há duas formas de se receber o pagamento no sistema: **ou** com dinheiro **ou** com cheque (porta XOR). Sempre que for acionado o caso de uso "Receber pagamento" uma, e apenas uma, dessas formas deverá ser selecionada.

Dependência - Inclusão

 Uma relação de inclusão de um caso de uso A com um caso de uso B indica que uma instância do caso de uso A deverá incluir o comportamento especificado para o caso de uso B.

No exemplo, toda vez que o Cliente for "sacar dinheiro", obrigatoriamente será feita a "validação da conta". O mesmo acontece quando o cliente for "liberar talão de cheque".

"The included UseCase must be available for the behavior of the including UseCase to be completely described."

Fonte: Especificação da UML 2.5.1, página 640.

- A criação de um caso de uso para utilização em relações de dependência por inclusão somente tem sentido se:
 - Houver a possibilidade do caso de uso ser invocado diretamente por um ator.
 - Existir a necessidade de associá-lo a mais de um caso de uso.
- Se nenhuma das situações acima for verdadeira, incorpore a sequência de eventos necessária na descrição do caso de uso dependente.

Dependência – Extensão

Uma relação de extensão de um caso de uso A com um caso de uso B indica que uma instância do caso de uso A poderá incluir - sujeito a satisfação da condição expressa em um fator de extensão - o comportamento especificado para o caso de uso B.

"An ExtensionPoint identifies a point in the behavior of a UseCase where that behavior can be extended by an Extend relationship. Each ExtensionPoint has a unique name within a UseCase."

"The specific manner in which the location of an ExtensionPoint is defined is intentionally unspecified."

Fonte: Especificação da UML 2.5.1, página 640.

Dependência – Extensão

In the UseCase diagram in Figure 18.3 below, the UseCase "Perform ATM Transaction" has an ExtensionPoint "Selection." This UseCase is extended via that ExtensionPoint by the UseCase "On-Line Help" whenever execution of the "Perform ATM Transaction" UseCase occurrence is at the location referenced by the "Selection" extension point and the customer selects the HELP key.

NOTE. The "Perform ATM Transaction" UseCase is defined independently of the "On-Line Help" UseCase.

Figure 18.3 Example Extend

Fonte: Especificação da UML 2.5.1, página 643.

Exemplo 2

- Considere que você esteja desenvolvendo um sistema para uma academia. Como você representaria os seguintes requisitos?
 - R1. O sistema deve permitir somente o ingresso de usuários autenticados por meio de *login* e senha previamente cadastrados. Existirão dois tipos de usuários: clientes e funcionários. Cada usuário terá permissões de acesso a funcionalidades distintas do sistema.
 - R2. O sistema deve permitir que os funcionários cadastrem, consultem e alterem as fichas de acompanhamento dos clientes.

Desenvolvimento de Diagramas de Casos de Uso

- Um Diagrama de Casos de Uso captura as funcionalidades de um sistema de acordo com a visão de seus usuários.
- Deve ser desenvolvido pelo analista em conjunto com especialistas no domínio da aplicação.
- Um Diagrama de Casos de Uso é composto por:
 - Casos de Uso
 - Atores
 - Relações de associação, dependência e generalização

Desenvolvimento de Diagramas de Casos de Uso

Passos:

- 1. Identificar atores
- Identificar casos de uso
- Identificar relacionamentos entre atores e casos de uso
- 4. Identificar relacionamentos entre casos de uso

Descobrindo atores e casos de uso

Atores

- Atores são identificados pela determinação de quais entidades tem interesse de usar e interagir com o sistema.
- Atores possuem demandas a serem satisfeitas pelos casos de uso.
- Os objetivos dos atores determinam os casos de uso a serem definidos para o sistema.
- Atores identificam papéis genéricos e não ocorrências específicas.
 - □ Caixa e Correntista; e não João e Maria.

Perguntas usadas para identificar os atores:

- Quem usa o sistema?
- Quem inicializa o sistema? Quem o configura?
- □ Com que outros sistemas existentes o novo sistema interage?
- □ Quem fornece os dados? Quem usa as informações?

Descobrindo atores e casos de uso

□ Lista Ator-Objetivos

Ator	Objetivo
Cliente	Retirar dinheiro de sua conta corrente Consultar conta corrente
Caixa	Processar depósito em uma conta corrente Processar pagamento de contas Processar retirada de talões de cheque

Descobrindo atores e casos de uso

□ Casos de Uso:

- Deve ser definido um caso de uso para cada objetivo de um ator. O nome do caso de uso é similar ao objetivo do ator.
 - Exemplo:
 - Ator: Cliente
 - Objetivo: Retirar dinheiro de sua conta corrente
 - Caso de Uso: Sacar Dinheiro
- Exceção: casos de uso para tratamento de informações persistentes do sistema – CRUD (create, retrieve, update, delete).
 - Estes casos de uso podem ser comumente identificados por Gerenciar<X>, como por exemplo o caso de uso Gerenciar Conta Corrente.

Diagrama de Casos de Uso

- □ Erros mais frequentes:
 - Fazer casos de usos pequenos demais (ex.: "Incrementar contador"): não confundir um "passo" do processamento com um "caso de uso".
 - Fazer casos de usos grandes demais (ex.: "Processar sistema de vendas"): um caso de uso deve gerar um resultado perceptível pelo ator.
 - "Forçar" relacionamentos entre casos de uso.
 - Exemplo: indicar <<include>> entre os casos de uso "Consultar produto" e "Cadastrar produto".

Relacione os seguintes elementos de um diagrama de casos de uso para um sistema de gerenciamento de bibliotecas:

Identifique os erros dos diagramas apresentados abaixo:

Considere a seguinte situação:

Situação: "Meus funcionários registram a avaliação física feita em um aluno. Nessa avaliação nós medimos as dimensões corporais do aluno e a taxa de gordura. Nós compramos um aplicativo que indica, a partir de uma média histórica da população, qual o risco enfrentado pelo aluno de problemas cardíacos de acordo com as proporções medidas. Por isso, caso o aluno esteja em uma situação de risco, nós solicitamos uma consulta com um médico conveniado pela academia que usará o sistema que está sendo desenvolvido para registrar o resultado do exame médico detalhado a ser realizado com este aluno."

Atividade 3 (continuação)

Diagrama de casos de uso gerado:

O diagrama está de acordo com a descrição do cliente?

Texto da atividade projetado em aula.

 Faça um diagrama de Casos de Uso para a situação descrita abaixo.

> Uma pediatra trabalha em três consultórios em bairros distintos, onde atende em horários diferentes. Sua secretária, trabalha nos três consultórios. Para que a marcação de consultas seja centralizada, a secretária tem que carregar as três agendas de um lado para outro. Existe o risco da secretária esquecer ou perder uma agenda. Para resolver o problema, a médica contratou um analista para desenvolver um sistema que controle a marcação de consultas e a ficha dos pacientes. As principais funcionalidades relativas a pacientes são o seu cadastro, remoção, e marcação de consultas. Após uma consulta pode ser necessário pedir exames a um laboratório de análises clínicas. A consulta pode ser paga em dinheiro, ou cartão de crédito, caso em que é necessário verificar o cartão do paciente com a companhia de cartão de crédito específica. Se o paciente possui plano de saúde, ele não paga a consulta, apenas assina um recibo a ser enviado ao plano de saúde.

Especificando Casos de Uso

- Existem muitos formatos para descrever casos de uso.
 - A UML não especifica padrão algum para descrever textualmente casos de uso.
- Em geral, quanto maior o risco associado a um caso de uso, mais detalhado ele deve ser.

Especificando Casos de Uso

- A especificação de um caso de uso pode ser feita através da descrição de sequências de eventos em formato de texto.
 - Descreve como o ator e o caso de uso interagem.
 - Concentra-se no comportamento externo do sistema, ignorando os procedimentos a serem executados internamente.
 - Devem ser considerados:
 - □ Como e quando o caso de uso inicia e termina;
 - □ Quando o caso de uso interage com os ator(es) envolvido(s);
 - □ A sequência padrão de eventos;
 - □ As sequências alternativas ou de exceção.

Especificando Casos de Uso

Dimensões em que o estilo de descrição de um caso de uso pode variar:

Figura 4-1: Independência entre formato, grau de abstração e detalhamento de um caso de uso.

Fonte: BEZERRA, E. **Princípio de análise e projetos de sistemas com UML**. 3. ed. Rio de Janeiro: Elsevier, 2015 (página 55).

Dimensão "Formato"

- Refere-se à estrutura utilizada para organizar a narrativa textual do caso de uso.
- Formatos normalmente utilizados: contínuo, numerado e tabular.

Quadro 4-1: Exemplo de descrição contínua

Este caso de uso inicia quando o cliente chega ao caixa eletrônico e insere seu cartão. O sistema requisita a senha do cliente. Após o cliente fornecer sua senha e esta ser validada, o sistema exibe as opções de operações possíveis. O cliente opta por realizar um saque. Então o sistema requisita o total a ser sacado. O cliente fornece o valor da quantidade que deseja sacar. O sistema fornece a quantia desejada e imprime o recibo para o cliente. O cliente retira a quantia e o recibo, e o caso de uso termina.

Fonte: BEZERRA, E. **Princípio de análise e projetos de sistemas com UML**. 3. ed. Rio de Janeiro: Elsevier, 2015 (página 56).

Dimensão "Formato"

Formatos normalmente utilizados: contínuo, numerado e tabular.

Quadro 4-2: Exemplo de descrição numerada

- 1) Cliente insere seu cartão no caixa eletrônico.
- 2) Sistema apresenta solicitação de senha.
- 3) Cliente digita senha.
- 4) Sistema valida a senha e exibe menu de operações disponíveis.
- 5) Cliente indica que deseja realizar um saque.
- 6) Sistema requisita o valor da quantia a ser sacada.
- 7) Cliente fornece o valor da quantia que deseja sacar.
- 8) Sistema fornece a quantia desejada e imprime o recibo para o cliente.
- 8) Cliente retira a quantia e o recibo, e o caso de uso termina.

Fonte: BEZERRA, E. **Princípio de análise e projetos de sistemas com UML**. 3. ed. Rio de Janeiro: Elsevier, 2015 (página 56).

Dimensão "Formato"

 Formatos normalmente utilizados: contínuo, numerado e tabular (também chamado formato duas colunas).

Quadro 4-3: Exemplo de narrativa fragmentada

Cliente	Sistema
Insere seu cartão no caixa eletrônico.	Apresenta solicitação de senha.
Digita senha.	Valida senha e exibe menu de operações disponíveis.
Solicita realização de saque.	
Fornece o valor da quantia que deseja	Requisita a quantia a ser sacada.
sacar.	Fornece a quantia desejada e
Retira a quantia e o recibo.	imprime o recibo para o cliente

Fonte: BEZERRA, E. **Princípio de análise e projetos de sistemas com UML**. 3. ed. Rio de Janeiro: Elsevier, 2015 (página 56).

- Dimensão "Detalhamento"
 - "O grau de detalhamento a ser utilizado na descrição de um caso de uso pode variar desde o mais sucinto até a descrição com vários detalhes (expandida)"*.
 - Exemplos de elementos comumente presentes na descrição de casos de uso:
 - Identificador
 - Nome do Caso de Uso
 - Tipo
 - Atores
 - Resumo
 - Restrições
 - Pré-condições
 - Fluxo de eventos principal

- Fluxo alternativo
- □ Fluxo de exceção
- Inclusão/Extensão
- Pós-condição
- Autor
- Data
- Requisitos não-funcionais

^{*} Fonte: BEZERRA, E. **Princípio de análise e projetos de sistemas com UML**. 3. ed. Rio de Janeiro: Elsevier, 2015 (página 56).

- Dimensão "Abstração"
 - O grau de abstração de um caso de uso diz respeito à existência ou não de menção a aspectos relativos à tecnologia durante a descrição desse caso de uso.
 - Bezerra classifica os casos de uso como essenciais e reais em relação ao nível de abstração.
 - Um caso de uso essencial é aquele que NÃO faz menção a aspectos relativos à tecnologia utilizada nas interações entre ator e sistema.
 - Um caso de uso é dito real quando são citados detalhes da tecnologia.
 - Por exemplo, os quadros indicados na dimensão "formato" são todos reais, pois citam os caixas eletrônicos e cartões magnéticos.

^{*} Fonte: BEZERRA, E. **Princípio de análise e projetos de sistemas com UML**. 3. ed. Rio de Janeiro: Elsevier, 2015 (página 56).

- □ A especificação que será utilizada em aula inclui:
 - Identificação do Caso de Uso
 - Nome do Caso de Uso
 - Atores que interagem com o caso de uso
 - Pré-condições (o estado do sistema para que o caso de uso possa iniciar)
 - Pós-condições (o estado do sistema após a execução do caso de uso)
 - Sequência de Eventos (ou fluxo principal)
 - Sequências Alternativas
 - Requisitos não funcionais

□ Caso 1: Especificando caso de uso com associação simples com ator

Identificação: UC1

Caso de uso: Sacar dinheiro

Ator: Cliente

Pré-Condições: o Cliente possui cartão do banco identificado e senha cadastrada.

Pós-Condições: lançada a transação na conta do Cliente, atualizado o saldo da conta e liberado o

dinheiro.

Sequência Típica de Eventos (Fluxo Básico):

Este caso de uso inicia quando o Cliente deseja sacar dinheiro de sua conta corrente.

- 2. Cliente seleciona a opção de sacar dinheiro.
- 3. Sistema solicita o valor do saque.
- Cliente informa o valor do saque e confirma.
- 5. Sistema valida o valor do saque e solicita a senha.
- 6. Cliente informa a senha e confirma.
- 7. Sistema valida a senha e lança o débito na conta corrente do Cliente.
- Sistema libera o dinheiro.

Sequências Alternativas (Fluxos Alternativos):

- 5a. Fundos Insuficientes:
 - 1. Sistema não autoriza o valor solicitado para saque pelo Cliente
 - 2. Operação é cancelada
- 7a. Cliente Inválido:
 - 1. Sistema não reconhece a conta corrente e senha do Cliente como válida
 - 2. Operação é cancelada

Requisitos Não-Funcionais

Resposta do sistema deve ocorrer em no máximo 30 seg em 90 % dos casos.

□ Caso 2: Especificando caso de uso com ramificações (relacionamento de generalização)

□ Ramificações:

- Situações em que existem duas ou mais opções de continuidade no fluxo de uma determinada seção.
- Dentro da Sequência Típica de Eventos são indicados desvios para subseções.
 - □ Escreva uma subseção para cada desvio usando novamente uma Sequência Típica de Eventos.

Identificação: UC5

Caso de uso: Receber Pagamento

Ator: Caixa

Pré-Condições: o Caixa está identificado e autenticado

Pós-Condições: o pagamento recebido é registrado no sistema associado ao Caixa

Sequência Típica de Eventos:

Seção Principal

- Este caso de uso começa quando o Caixa deseja registrar novo pagamento.
- Caixa indica que deseja registrar novo pagamento.
- 3. Sistema solicita o código de barras do documento de cobrança bancária.
- 4. Caixa registra o documento de cobrança bancária a ser pago.
- 5. Sistema valida a aceitação do documento de cobrança a ser pago.
- 6. Caixa informa a opção desejada:
 - 6.1. Se for pagamento em dinheiro, ver subseção Receber pagamento em dinheiro
 - 6.2. Se for pagamento em cheque, ver subseção Receber pagamento em cheque
- 7. Sistema registra o pagamento.
- 8. Sistema imprime o comprovante.

Sequências Alternativas da seção principal (Fluxos Alternativos):

- 4a. Operação cancelada:
 - 1. Caixa cancela a operação.
 - 2. Operação é cancelada.
- 5a. Documento não identificado:
 - 1. Sistema notifica que o documento não foi identificado.
 - 2. Volta para o passo 3 da seção principal.

Subseção: Receber pagamento em dinheiro

- 1. Caixa registra o valor em dinheiro recebido
- 2. Sistema informa o troco a ser repassado

Subseção: Receber pagamento em cheque

- 1. Sistema solicita as informações do cheque.
- 2. Caixa registra as informações do cheque no sistema.
- 3. Sistema valida os dados do cheque.

Sequências Alternativas da subseção:

- 2a. Dados inválidos:
 - 1. Sistema indica que os dados do cheque não são válidos.
 - 2. Volta para o passo 1 da subseção.

□ Caso 3: Relacionamento de Inclusão

Identificação: UC1

Caso de uso: Sacar dinheiro

Ator: Cliente

Pré-Condições: o Cliente possui cartão do banco identificado e senha cadastrada.

Pós-Condições: lançada a transação na conta do Cliente, atualizado o saldo da conta e liberado o dinheiro.

Sequência Típica de Eventos (Fluxo Básico):

- 1. Este caso de uso inicia quando o Cliente deseja sacar dinheiro de sua conta corrente.
- Cliente seleciona a opção de sacar dinheiro.
- Sistema solicita o valor do saque.
- 4. Cliente informa o valor do saque e confirma.
- 5. Sistema valida o valor do saque e solicita a senha.
- Cliente informa a senha e confirma.
- 7. Include Validar conta.
- 8. Sistema lança o débito na conta corrente do Cliente.
- Sistema libera o dinheiro.

Sequências Alternativas (Fluxos Alternativos):

- 5a. Fundos Insuficientes:
 - 1. Sistema não autoriza o valor solicitado para saque pelo Cliente
 - 2. Operação é cancelada
- 7a. Cliente Inválido:
 - 1. Sistema não reconhece a conta corrente e senha do Cliente como válida
 - 2. Operação é cancelada

Requisitos Não-Funcionais

Resposta do sistema deve ocorrer em no máximo 30 seg em 90 % dos casos.

Identificação: UC2

Caso de Uso: Validar conta

Atores: Cliente

Pré-Condições: estar sendo realizada operação que necessita validação.

Pós-Condições: conta validada

Sequência Típica de Eventos:

1. Sistema valida a conta corrente e senha do Cliente, autorizando a operação.

Sequência Alternativa:

- 1a. Cliente Inválido:
 - 1. Sistema não reconhece a conta corrente ou a senha do Cliente como válida.
 - 2. Operação é cancelada.

Caso 4: Relacionamento de Extensão

Identificação: UC1

Caso de uso: Sacar dinheiro

Ator: Cliente

Pré-Condições: o Cliente possui cartão do banco identificado e senha cadastrada.

Pós-Condições: lançada a transação na conta do Cliente, atualizado o saldo da conta e liberado o

dinheiro.

Sequência Típica de Eventos (Fluxo Básico):

1. Este caso de uso inicia quando o Cliente deseja sacar dinheiro de sua conta corrente.

- Cliente seleciona a opção de sacar dinheiro.
- 3. Sistema solicita o valor do saque.
- 4. Cliente informa o valor do saque e confirma. *Extend* (quantia elevada) Autorizar Saque
- Sistema solicita a senha.
- 6. Cliente informa a senha e confirma.
- 7. Sistema valida a senha e lança o débito na conta corrente do Cliente.
- 8. Sistema libera o dinheiro.

Sequências Alternativas (Fluxos Alternativos):

- 7a. Cliente Inválido:
 - 1. Sistema não reconhece a conta corrente e senha do Cliente como válida
 - 2. Operação é cancelada

Requisitos Não-Funcionais

Resposta do sistema deve ocorrer em no máximo 30 seg em 90 % dos casos.

Identificação: UC3

Caso de Uso: Autorizar saque

Ator: Gerente

Pré-Condições: saque com valor elevado solicitado.

Pós-Condições: valor da saque avaliado.

Sequência Típica de Eventos

Gerente solicita informações da conta corrente do cliente.

2. Sistema apresenta informações completas sobre o cliente e suas movimentações bancárias.

3. Gerente autoriza o saque no valor solicitado.

Sequência Alternativa:

3a: Saque não autorizado

- 1. Gerente não autoriza o saque no valor solicitado.
- 2. Operação é cancelada.

- Utilize descrição breve, com o mínimo de sentenças e na voz ativa;
- Nomeie um caso de uso começando com um verbo, enfatizando ser um processo (Comprar Itens, Entrar Pedido,...)
- Para possibilitar uma identificação clara do ator iniciador e do evento, comece a descrição da sequência de um caso de uso com o seguinte esquema
 - Este caso de uso começa quando <Ator> <Evento que inicia Caso de Uso>.
- Cada cenário alternativo ou de exceção deverá retornar para o cenário de sucesso ou encerrar o caso de uso
- □ Use de 3 a 9 passos para satisfazer todos os interesses e garantias.

- Escreva casos de uso em um estilo essencial, independente da interface com o usuário.
 - Enfoque na intenção do ator.

Estilo essencial

Assuma que o caso de uso Gerenciar Usuários exija identificação e autenticação

- 1. O Administrador identifica-se
- 2. O Sistema autentica a identidade

Estilo concreto – evite-o durante o trabalho inicial com requisitos

Em contraste, existe um estilo concreto de caso de uso. Nesse estilo, as decisões sobre a interface de usuário estão embutidas no texto do caso de uso. O texto pode até mesmo mostrar imagens de telas com janelas, discutir a navegação entre janelas, a manipulação de elementos de tela (widgets^{‡‡}) da GUI, entre outros. Por exemplo:

- 1. O Administrador insere seu ID e senha na caixa de diálogo (ver Imagem 3).
- 2. O Sistema autentica o Administrador.
- 3. O Sistema exibe a janela "editar usuários" (ver Imagem 4).

- Escreva casos de uso enxutos
 - Despreze palavras de "ruído".
 - Mesmo pequenas alterações ajudam:

Sistema autentica...

O sistema autentica...

Fonte: LARMAN, C. Utilizando UML e padrões: uma introdução à análise e ao projeto orientados a objetos e ao desenvolvimento iterativo. 3. ed. Porto Alegre: Bookman, 2007 (página 108).

- Escreva casos de uso caixa preta
 - Casos de uso definem o que o sistema deve fazer (análise) e não como (projeto).

Estilo Caixa Preta	Não
O sistema registra a venda	O sistema grava a venda numa base de dados ou (ainda pior):
	O sistema gera um comando SQL INSERT para a venda

Fonte: LARMAN, C. **Utilizando UML e padrões: uma introdução à análise e ao projeto orientados a objetos e ao desenvolvimento iterativo**. 3. ed. Porto Alegre: Bookman, 2007 (página 108).

Lembre-se sempre:

"Um caso de uso representa uma determinada funcionalidade de um sistema conforme percebida externamente. Representa também os agentes externos que interagem com o sistema. Um caso de uso, entretanto, não revela a estrutura e o comportamento internos do sistema."

Fonte: BEZERRA, E. **Princípio de análise e projetos de sistemas com UML**. 3. ed. Rio de Janeiro: Elsevier, 2015 (página 55).