Autómatas y Lenguajes formales Ejercicio Semanal 7

Sandra del Mar Soto Corderi Edgar Quiroz Castañeda

22 de marzo del 2019

- 1. Para cada ANFD, resuelve los siguientes incisos.
 - (a) Construye un autómata mínimo equivalente, mostrando paso a paso el proceso de construcción.
 - (b) Da una expresión regular α correspondiente al lenguaje aceptado por el autómata usando el método de ecuaciones características.

1. Autómata 1

Figure 1: El autómata M

(a) Autómata mínimo

Para minimizar el autómata, primero quitamos los estados inaccesibles, podemos ver que no hay manera de acceder a q_4 , así que lo eliminamos del autómata y eliminamos las transiciones hacia el.

Comencemos con la partición inducida por $[\equiv_0] = \{A = F, B = Q \setminus F\}$. Evaluando δ para obtener las clases de \equiv_1

Α	q_1	q_2	q_3	q_5	q_6	q_7
a	A	В	В	A	В	В
b	A	В	Α	A	В	Α

В	q_0	q_8
a	В	A
b	В	A

De A se refinan tres nuevas clases , y de B se refinan dos nuevas clases. Por lo que $[\equiv_1] = \{B = \{q_0\}, F = \{q_8\}, C = \{q_1, q_5\}, D = \{q_2, q_6\}, E = \{q_3, q_7\}\}$. Hay que evaluar δ en los elementos de C, D, E para obtener las clases de \equiv_2 .

С	q_1	q_5	D	q_2	q_6	Е	q_3	q_7
a	D	D	a	G	G	a	G	G
b	Е	Е	b	G	G	b	Е	E

Entonces $[\equiv_2] = \{C, D, E\}.$

No se genera ningún refinamiento, por lo que el proceso ya ha acabado. El autómata mínimo entonces es:

Figure 2: El autómata mínimo M'

(b) Expresión regular usando el sistema de ecuaciones característico: Consideremos: B = 0, C = 1, D = 2, E = 3, F = 4. Definimos el sistema de ecuaciones a resolver:

$$L_{0} = aL_{1} + bL_{1}$$

$$L_{1} = aL_{2} + bL_{3} + \epsilon$$

$$L_{2} = aL_{4} + bL_{4} + \epsilon$$

$$L_{3} = aL_{4} + bL_{3} + \epsilon$$

$$L_{4} = aL_{4} + bL_{4}$$

Simplificamos algunas de las ecuaciones

$$L_0 = (a+b)L_1$$

$$L_2 = (a+b)L_4 + \epsilon$$

$$L_4 = (a+b)L_4$$

Aplicamos el lema de Arden en L_4

$$L_4 = (a+b)L_4$$

$$L_4 = (a+b)L_4 + \varnothing$$

$$L_4 = (a+b)(a+b)^* \varnothing + \varnothing$$

$$L_4 = \varnothing$$

Sustituimos L_4 en L_3 aplicamos el lema de Arden en L_3

$$L_3 = aL_4 + bL_3 + \epsilon$$

$$L_3 = a\varnothing + bL_3 + \epsilon$$

$$L_3 = \varnothing + bL_3 + \epsilon$$

$$L_3 = bL_3 + \epsilon$$

$$L_3 = b(b^*\epsilon) + \epsilon$$

$$L_3 = bb^* + \epsilon$$

$$L_3 = b^*$$

Sustituimos L_4 en L_2

$$L_2 = (a+b)L_4 + \epsilon$$

$$L_2 = (a+b)\varnothing + \epsilon$$

$$L_2 = \varnothing + \epsilon$$

$$L_2 = \epsilon$$

Sustituimos L_2 y L_3 en L_1

$$L_1 = aL_2 + bL_3 + \epsilon$$

$$L_1 = a(\epsilon) + b(b^*) + \epsilon$$

$$L_1 = a + (bb^* + \epsilon)$$

$$L_1 = a + b^*$$

Sustituimos L_1 en L_0

$$L_0 = (a+b)L_1$$

 $L_0 = (a+b)(a+b^*)$

Por lo tanto, la expresión regular correspondiente al lenguaje aceptado es: $\alpha = (a+b)(a+b^*)$

2. Autómata 2

Figure 3: El autómata A

(a) Autómata mínimo

Comencemos con la partición inducida por $[\equiv_0] = \{A = F, B = Q \setminus F\}$. Evaluando δ para obtener las clases de \equiv_1

A	q_2	q_4
a	B	B
b	B	B

B	q_0	q_1	q_3	q_5	q_6
a	B	B	A	B	B
b	B	A	B	B	B

A no cambia, y de B se refinan tres nuevas clases.

Por lo que $[\equiv_1] = \{A, C = \{q_0, q_5, q_6\}, D = \{q_1\}, E = \{q_3\}\}.$

Cómo D y E son unitarios, sólo hay que evaluar δ en los elementos de C para obtener las clases de \equiv_2 .

C	q_0	q_5	q_6
a	D	C	C
b	E	C	C

Entonces $[\equiv_1] = \{A, D, E, G = \{q_0\}, H = \{q_5, q_6\}\}$. Evaluando δ sobre H para obtener las clases de \equiv_3

H	q_5	q_6
a	H	H
b	H	H

3

Por lo que no se generó ningún refinanmiento, por lo que el proceso ya ha acabado. El autómata mínimo entonces es

Figure 4: El autómata mínimo A'

(b) Expresión regular

Consideremos: G = 0, D = 1, E = 2, A = 3, H = 4. Definimos el sistema de ecuaciones a resolver:

$$L_0 = aL_1 + bL_2$$

$$L_1 = aL_4 + bL_3$$

$$L_2 = aL_3 + bL_4$$

$$L_3 = aL_4 + bL_4 + \epsilon = (a+b)L_4 + \epsilon$$

$$L_4 = aL_4 + bL_4 = (a+b)L_4$$

Usando el lema de Arden, tenemos que

$$L_4 = (a+b)^*\varnothing = \varnothing$$

$$\implies L_3 = (a+b)\varnothing + \epsilon = \epsilon$$

$$\implies L_2 = a\epsilon + b\varnothing = a$$

$$\implies L_1 = a\varnothing + b\epsilon = b$$

$$\implies L_0 = ab + ba$$

Por lo tanto, la expresión regular correspondiente al lenguaje aceptado es: $\alpha = ab + ba$