NBClass _Ngram

February 10, 2020

1 Blog Gender feature filtering and classification

1.1 Importing Data from csv

```
[77]: import pandas as pd
    data = pd.read_csv('Data\Gender_Blog.csv')
[78]: data.shape
[78]: (19320, 3)
```

1.2 Labelling comlumns and dropping data due to limited resources

```
[79]: data.head

#Now we can name our own columns

data.columns = ['ID', 'Gender', 'Blog']

data.drop(data.tail(16320).index,inplace=True)
```

```
[80]: data.head
```

```
[80]: <bound method NDFrame.head of
                                             ID
                                                 Gender
      Blog
                         ['\r\n\r\n
                    male
      0
                                          \r\n
                                                     Well this is my firs...
                  female
      1
                         ["\r\n\r\n\t \r\n
                                                      Yes!
                                                                 Finally,...
               2
                    male
                         ['\r\n\r\n
                                                    Yes my overworked bod ...
                                         r\n
      3
                    male
                         ["\r\n\r\n
                                          \r\n
                                                    tennis has always bee ...
                  female
                         ["\r\n\r\n\t\\r\n
                                                  hello. How are you? I'm...
      2995 2995
                 female
                         ['\r\n\r\n\t\\r\n
                                                  I saw Jeff again Sunday...
      2996
           2996
                    male ['\r\n\r\n\r\n
                                                                     Clea...
                                                        \r\r\n
      2997 2997 female ["\r \r \r \r \r \r
                                                  Well, so you lot have s...
      2998 2998
                    male
                         ["\r\n\r\n\r\n
                                                          Hello everyone...
      2999 2999 female
                         ['\r\n\r\n\t \r\n
                                                  Hello. I have to keep ...
```

1.3 Adding Blog length data

```
[81]: data.head
      data['blog_length'] = data['Blog'].str.len()
      #df["blog_length"].mean()
      male = data[data['Gender'] == 'male']
      female = data[data['Gender'] == 'female']
[82]: male.head
      female.head
[82]: <bound method NDFrame.head of
                                            ID
                                                Gender
     Blog \
      1
               1 female ["\r \r \r \r \r \r
                                                     Yes!
                                                                Finally,...
               4 female
                         ["\r\n\r\n\t \r\n
                                                 hello. How are you? I'm...
      8
               8 female ['\r\n\t\t\t\t\t\t\t\t\t\t\t\t
      9
                 female ['\r\n\r\n\t \r\n
                                                 How can you drop a raw ...
              12 female ['\r\
      12
                                        \r\n
                                                   \r\n
                                                             hey ya\'ll!...
      2992 2992 female
                         ['\r\n\r\n\t \r\n
                                                 Well, been working from ...
      2993 2993 female ["\r\n\r\n
                                                         Today, it hasn'...
      2995 2995
                 female ['\r\n\r\n\t\\r\n
                                                 I saw Jeff again Sunday...
      2997
           2997 female ["\r \r \r \r \r \r
                                                 Well, so you lot have s...
      2999 2999 female
                         ['\r\n\r\n\t\\r\n
                                                 Hello. I have to keep ...
            blog_length
      1
                   4574
      4
                  16902
      8
                  10040
                  53733
      12
                 101004
      2992
                   5577
      2993
                 203287
      2995
                   9800
      2997
                  29657
      2999
                  84286
      [1471 rows x 4 columns]>
```

```
[83]: objects = ('male', 'female')
    y_pos = np.arange(len(objects))
    performance = [male["blog_length"].mean(), female["blog_length"].mean()]

plt.bar(y_pos, performance, align='center', alpha=0.5)
    plt.xticks(y_pos, objects)
    plt.ylabel('Genders')
    plt.title('Blog_length_by_gender_')

plt.show()

print(performance)
```


[42002.22171353826, 40258.983684568324]

1.4 Computing readabilty

55.95250000000002

-7942.447807842614 -7822.986412130421

1.5 Visualising Data

```
[84]: import numpy as np
      #Use numpy to find unique polarity vals and count them
      unique, counts = np.unique(data['Gender'], return_counts=True)
[85]: #Now create a temporary pandas frame with these values and frequencies
      Gen = pd.DataFrame({'Gender': unique, 'frequency': counts})
[86]: Gen
[86]:
         Gender
                frequency
        female
                      1471
                      1529
      1
           male
[87]: import matplotlib.pyplot as plt
      #and plot
      Gen.plot.bar(x='Gender', y='frequency', rot=0)
```

[87]: <matplotlib.axes._subplots.AxesSubplot at 0x7f9017e0cd90>

1.6 Splitting Test and train data

[3000 rows x 4 columns]>

```
[88]: from sklearn.model_selection import train_test_split
      #random_state param is just a random number seed
      train, test = train_test_split(data, test_size = 0.2, random_state=42)
[89]: print("Train",len(train))
      print("Test",len(test))
     Train 2400
     Test 600
[90]: data.head
[90]: <bound method NDFrame.head of
                                                Gender
      Blog \
      0
               0
                    male
                         ['\r\n\r\n
                                         \r\n
                                                    Well this is my firs...
      1
               1
                 female ["\r\n\r\n\t\\r\n
                                                     Yes!
                                                                Finally,...
      2
               2
                    male ['\r\n\r\n
                                        \r\n
                                                    Yes my overworked bod ...
                                         \r\n
      3
               3
                    male
                         ["\r\n\r\n
                                                    tennis has always bee ...
                 female
      4
                         ["\r\n\r\n\t \r\n
                                                  hello. How are you? I'm...
      2995 2995 female ['\r\n\r\n\t\\r\n
                                                  I saw Jeff again Sunday...
           2996
                    male
                         ['\r\n\r\n\r\n
      2996
                                                        \r\r\n
                                                                     Clea...
      2997 2997 female ["\r \r \r \r \r
                                                  Well, so you lot have s...
      2998 2998
                    male ["\r\n\r\n
                                                          Hello everyone...
                                                \r\n
      2999 2999 female ['\r \r \r \r \r
                                                  Hello. I have to keep ...
            blog_length
      0
                  16671
      1
                   4574
      2
                   9110
      3
                  11126
      4
                  16902
      2995
                   9800
      2996
                 148587
      2997
                  29657
      2998
                   8734
      2999
                  84286
```

1.7 Features of Trigrams and lower order n grams with NB Bernoulli classifier

```
[91]: from sklearn.feature_extraction.text import CountVectorizer
    counterSt = CountVectorizer(ngram_range=(1, 3))

    ngramsFeat = counterSt.fit_transform(train['Blog'])

from sklearn.naive_bayes import BernoulliNB

#Returns a fitter (trained) classifier
    nb_classifierSt = BernoulliNB().fit(ngramsFeat, train['Gender'])
```

```
[92]: test_featuresSt = counterSt.transform(test['Blog'])

predictionsSt = nb_classifierSt.predict(test_featuresSt)

from sklearn import metrics
print(metrics.classification_report(test['Gender'], predictionsSt))
```

	precision	recall	f1-score	support
female	0.70	0.28	0.40	306
male	0.54	0.87	0.67	294
accuracy			0.57	600
macro avg	0.62	0.58	0.53	600
weighted avg	0.62	0.57	0.53	600

1.8 Features of Trigrams only with NB Bernoulli classifier

```
[93]: from sklearn.feature_extraction.text import CountVectorizer
    counterSt3 = CountVectorizer(ngram_range=(3, 3))
    ngramsFeat3 = counterSt3.fit_transform(train['Blog'])

from sklearn.naive_bayes import BernoulliNB

#Returns a fitter (trained) classifier
    nb_classifierSt3 = BernoulliNB().fit(ngramsFeat3, train['Gender'])
```

```
[94]: test_featuresSt3 = counterSt3.transform(test['Blog'])
predictionsSt3 = nb_classifierSt3.predict(test_featuresSt3)
```

```
from sklearn import metrics
print(metrics.classification_report(test['Gender'], predictionsSt3))
```

	precision	recall	f1-score	support
female	0.70	0.19	0.29	306
male	0.52	0.91	0.66	294
accuracy			0.54	600
macro avg	0.61	0.55	0.48	600
weighted avg	0.61	0.54	0.47	600

1.9 Features of n grams (n=4) with NB Bernoulli classifier

```
[95]: from sklearn.feature_extraction.text import CountVectorizer
    counterSt4 = CountVectorizer(ngram_range=(4, 4))

    ngramsFeat4 = counterSt4.fit_transform(train['Blog'])

#Returns a fitter (trained) classifier
    nb_classifierSt4 = BernoullinB().fit(ngramsFeat4, train['Gender'])

    test_featuresSt4 = counterSt4.transform(test['Blog'])

    predictionsSt4 = nb_classifierSt4.predict(test_featuresSt4)

from sklearn import metrics
    print(metrics.classification_report(test['Gender'], predictionsSt4))
```

	precision	recall	f1-score	support
female	0.65	0.04	0.08	306
male	0.49	0.98	0.66	294
accuracy			0.50	600
macro avg	0.57	0.51	0.37	600
weighted avg	0.57	0.50	0.36	600

1.10 Features of single charachter n grams with NB Bernoulli classifier

```
[96]: from sklearn.feature_extraction.text import CountVectorizer
    counterChars = CountVectorizer(ngram_range=(1, 1),analyzer='char_wb')

    ngramsFeatChars = counterChars.fit_transform(train['Blog'])

#Returns a fitter (trained) classifier
    nb_classifierchars = BernoulliNB().fit(ngramsFeatChars, train['Gender'])

    test_featuresChars = counterChars.transform(test['Blog'])

    predictionsChars = nb_classifierchars.predict(test_featuresChars)

from sklearn import metrics
    print(metrics.classification_report(test['Gender'], predictionsChars))
```

	precision	recall	f1-score	support
female	0.65	0.59	0.62	306
male	0.61	0.66	0.64	294
accuracy			0.63	600
macro avg	0.63	0.63	0.63	600
weighted avg	0.63	0.63	0.63	600

1.11 Features of bi and single character ngrams with NB Bernoulli classifier

```
[97]: from sklearn.feature_extraction.text import CountVectorizer
    counterChars2 = CountVectorizer(ngram_range=(1, 2),analyzer='char_wb')

    ngramsFeatChars2 = counterChars2.fit_transform(train['Blog'])

#Returns a fitter (trained) classifier
    nb_classifierchars2 = BernoulliNB().fit(ngramsFeatChars2, train['Gender'])

    test_featuresChars2 = counterChars2.transform(test['Blog'])

    predictionsChars2 = nb_classifierchars2.predict(test_featuresChars2)

    from sklearn import metrics
    print(metrics.classification_report(test['Gender'], predictionsChars2))
```

	precision	recall	f1-score	support
female	0.69	0.57	0.62	306
male	0.62	0.73	0.67	294
accuracy			0.65	600
macro avg	0.65	0.65	0.65	600
weighted avg	0.65	0.65	0.65	600

1.12 Features unigrams (stop words removed) with NB Bernoulli classifier

```
[98]: counterUni = CountVectorizer(stop_words='english')
    train_features= counterUni.fit_transform(train['Blog'])

#Returns a fitter (trained) classifier
    nb_classifierUni = Bernoulling().fit(train_features, train['Gender'])

test_features = counterUni.transform(test['Blog'])

predictions = nb_classifierUni.predict(test_features)

print(metrics.classification_report(test['Gender'], predictions))
```

	precision	recall	f1-score	support
female	0.69	0.60	0.65	306
male	0.64	0.72	0.68	294
accuracy			0.66	600
macro avg	0.66	0.66	0.66	600
weighted avg	0.67	0.66	0.66	600

1.13 Features of unigrams (default params) with NB Bernoulli classifier

```
[99]: counterNoS = CountVectorizer()

train_featuresN= counterNoS.fit_transform(train['Blog'])

#Returns a fitter (trained) classifier

nb_classifierNS = BernoulliNB().fit(train_featuresN, train['Gender'])
```

```
test_featuresN = counterNoS.transform(test['Blog'])
predictionsN = nb_classifierNS.predict(test_featuresN)
from sklearn import metrics
print(metrics.classification_report(test['Gender'], predictionsN))
```

	precision	recall	f1-score	support
female male	0.68 0.62	0.58 0.72	0.63 0.67	306 294
accuracy macro avg weighted avg	0.65 0.65	0.65 0.65	0.65 0.65 0.65	600 600

[]:	
[]:	
[]:	