

Visitar ciutats

Es poden visitar les ciutats següents sense repetir-ne cap?

Trobar camins òptims

Quin és el preu mínim per viatjar de Boston a San Francisco?

Dissenyar canalitzacions

Es poden connectar les cases a aigua, gas i electricitat sense que es creuin?

Teoria de Grafs Grafs no dirigits

Grafs no dirigits

Grafs

G = (V, E) graf:

- V = V(G) vèrtexos. n = |V| ordre de G
- E = E(G) arestes: parells no ordenats de vèrtexos. m = |E| mida de G

Notacions:

- $e = \{u, v\} = uv \text{ uneix } u \mid v$
- ▶ u i v extrems de e
- u i e = uv són incidents
- ▶ u, v adjacents si $\exists e = uv$
- u, v independents si $\exists e = uv$

Altres conceptes:

- Llaç: aresta e = uu
- Multigraf: hi ha arestes repetides

Graus

Donat $u \in V(G)$:

- $ightharpoonup \Gamma(u)$: cjt. de vèrtexos adjacents a u
- ▶ d(u): grau de u, $|\Gamma(u)|$
- ▶ Si té llaços: d(u) puja 2

Altres conceptes:

$$\delta(G) = \min_{u \in V} d(u), \qquad \Delta(G) = \max_{u \in V} d(u)$$

Graf d-regular: tot $u \in V$ té d(u) = d

Lema de les encaixades de mans

$$2|E| = \sum_{u \in V} d(u)$$

Corol·lari

Hi ha un nombre parell de vèrtexos de grau senar

Subgrafs

G = (V, E) graf:

- G' = (V', E') subgraf de $G: V' \subseteq V, E' \subseteq E$
- Si V' = V: subraf generador
- ▶ Donat $V' \subseteq V$: G[V'] (induït per V'): prendre $E' = E \cap (V')^{(2)}$
- ▶ Donat $W \subseteq V$: $G W := G[V \setminus W]$
- ▶ Donat $w \in V$: $G w := G \{w\}$
- ▶ Donat $F \subseteq E$: $G F := (V, E \setminus F)$
- ▶ Donat $e \in E$: $G e := G \{e\}$

Biel Cardona (UIB)

Curs 2011/12

13 / 36

Complementari d'un graf

Si G = (V, E), $\overline{G} = (V, \overline{E})$.

Graf suma

Si G, H grafs, G + H graf amb

 $V = V(G) \cup V(H), \qquad E = E(G) \cup E(H) \cup \{uv \mid u \in V(G), v \in V(H)\}\$

Biel Cardona (UIB)

matemati

Curs 2011/12

11/12 14/

Graf producte

Si G, H grafs, $G \times H$ graf amb

$$V = V(G) \times V(H)$$

 $E = \{(u,v)(u,v') \mid vv' \in E(H)\} \cup \{(u,v)(u'v) \mid uu' \in E(G)\}$

 $G \times H$

Graf quocient

Si G = (V(G), E(G)) graf, \sim rel.d'eq. a V(G), G/\sim graf amb

$$V=V(G)/{\sim}$$

[u] i [v] adjacents si $\exists u' \sim u$ i $v' \sim v$ amb $u'v' \in E$

Contracció d'aresta

G graf, $e \in E$: \sim només identifica extrems de e:

Teoria de Grafs Grafs no dirigits

Isomorfisme

 $G i H isomorfs (G \simeq H) si$:

- $\phi: V(G) \to V(H)$ bijecció
- $uv \in E(G) \iff \phi(u)\phi(v) \in E(H)$

Invariants de classe d'isomorfisme

Paràmetres comuns a grafs isomorfs (ordre, mida, seqüència de graus,...) Ull!!! Grafs no isomorfs poden tenir mateixos invariants

Graf buid

 B_n : Té n vèrtexos i cap aresta

 B_3

 B_5

 B_6

Graf complet

 K_n : Té n vèrtexos i totes les arestes

 K_3

Connectivitat

Recorreguts i camins

• Recorregut dins G = (V, E) de u a v: Seqüència de vèrtexos

$$u = v_0, v_1, \dots, v_l = v$$
 $v_i v_{i+1} \in E$

- \boldsymbol{v} , \boldsymbol{v} : vèrtexos inicial i final
- v_1, \ldots, v_l : vèrtexos intermitjos
- ▶ *l*: longitud
- Recorregut simple: No repeteix arestes
- Camí: Recorregut on no es repeteixen vèrtexos
- Circuit: Recorregut amb vèrtex inicial i final coincidents
- ► Cicle: Circuit simple

Exemple

- ▶ 1, 4, 2, 6, 5, 3, 2, 1, 6 és un recorregut
- ▶ 1, 4, 2, 6, 5, 3 és un camí
- ▶ 1, 4, 2, 6, 5, 3, 2, 1 és un circuit
- ▶ 1, 4, 2, 6, 1 és un cicle

Teoria de Grafs Connectivitat

Accessibilitat

Un vèrtex v és $\mathit{accessible}$ des de u si existeix recorregut (camí) de u a v .

Proposició

La relació d'accessibilitat és d'equivalència

Demostració

- Reflexiva: $u \rightsquigarrow u$ (longitud 0)
- ▶ Simètrica: Si $u \leadsto v$, invertint-lo, $v \leadsto u$
- ▶ Transitiva: Si $u \leadsto v$ i $v \leadsto w$, concatenant-los, $u \leadsto w$

Components connexos

- Components connexos: Subgrafs generats per classes d'equivalència
- Graf connex: Té un únic component connex

Proposició

Existeix recorregut $u \leadsto v$ ssi existeix camí $u \leadsto v$

Demostració

- ← Tot camí és recorregut
- \Rightarrow Si u, ..., w, ..., w, ..., v, treure nodes intermitjos: u, ..., w, ..., v i iterar.

Proposició

Si G = (V, E) connex, n = |V| i m = |E|:

$$m \ge n - 1$$

Demostració

Inducció sobre n i m:

- ▶ Cas inicial: n = 1: Trivial
- ▶ Pas d'inducció: Suposar cert per a $|V| \le n$ i |E| < m:
 - ► Si G conté cicle, e aresta del cicle:

$$G' = G - e, \quad |V'| = |V|, \quad |E'| = |E| - 1 \quad \implies |E'| \ge |V'| - 1$$

Tenim $|E| \ge |V| - 1$.

Fig. 5 Si G no conté cicle: Prendre camí de longitud màxima. Acaba en u amb d(u)=1 (altrament s'allarga):

$$G' = G - u$$
, $|V'| = |V| - 1$, $|E'| = |E| - 1$ $\implies |E'| \ge |V'| - 1$

Tenim $|E| \ge |V| - 1$.

Biel Cardona (UIB)

2011/12 25

25 / 36

Distància entre nodes

G = (V, E) graf. Per a $u, v \in V$, definim distància

 $d(u, v) = \text{long. mínima de camí } u \leadsto v$

Proposició

La distància és distància:

- $d(u,v) = 0 \iff u = v$
- b d(u,v) = d(v,u)
- $b d(u,v) + d(v,w) \ge d(u,w)$

Demostració

- Trivial
- Trivial: tot camí $u \leadsto v$ indueix camí $v \leadsto u$ i viceversa
- ▶ Si $u \leadsto v$ i $v \leadsto w$ són camins de long. mínima, concatenant-los es té camí $u \leadsto w$ (potser no òptim)

(ロ > (回 > (星 > (星 >) を)

Biel Cardona (UIB

Teoria de Grafs Connectivitat

ctivitat

Radi i diàmetre

- ▶ Diàmetre de G: $D(G) = \max_{u,v \in V} d(u,v)$
- ▶ Distància mitjana de G: $\overline{D} = \frac{1}{|V|^2} \sum_{u,v \in G} d(u,v)$
- Excentricitat de vèrtex u: $exc(u) = max_{v \in V} d(u, v)$
- *Radi* de G: $r(G) = \min_{u \in V} \operatorname{exc}(u)$
- Centre de G: Vèrtexos amb excentricitat mínima

Proposició

 $G ext{ connex } \Rightarrow r(G) \leq D(G) \leq 2r(G)$

Demostració

- ▶ $r(G) \le D(G)$: Trivial
- ▶ $D(G) \le 2r(G)$: Prenem u, v amb d(u, v) = D(G) i w del centre; aleshores $D(G) = d(u, v) \le d(u, w) + d(w, v) \le 2r(G)$

Vèrtexos de tall, arestes pont

Idea: objectes que al treure'ls el graf es desconnecta

- $v \in V$ vèrtex de tall: G v té més components connexos que G
- $e \in E$ aresta pont: G e té més components connexos que G

Exemple

- ightharpoonup u i v són els únics vèrtexos de tall
- e és la única aresta pont

Biel Cardona (UIB)

Matemàtica

Curs 2011/12

28 / 36

Teoria de Graf

Connectivita

Proposici<u>ó</u>

Tot graf té almenys dos vèrtexos que no són de tall

Demostració

Suposem que no: tot vèrtex (excepte potser un) és de tall.

- ► Siguin u, v amb D(G) = d(u, v). Puc suposar v de tall.
- Sigui w separat de u a G v.
- ▶ Tot camí $u \leadsto w$ passa per v
- $\Rightarrow d(u,w) = d(u,v) + d(v,w)$
- ightharpoonup d(u,w) > D(G) !!!

Piol Cardona (IIIP)

Matemàtica Discre

Curs 2011/1

29 / 36

Grafs eulerians i hamiltonians

Grafs eulerians

- ▶ Un recorregut/cicle eulerià recorre totes les arestes del graf
- ► Un graf eulerià és un graf que admet cicle eulerià

Exemple

Curs 2011/

30 /

Teorema

Un graf admet un cicle eulerià si, i només si, és connex i tots els seus vèrtexos tenen grau parell

Demostració

- ⇒ Trivial: en un cicle, cada cop que fem servir una aresta per arribar a un vèrtex, en fem servir una altra per sortir d'ell.
- Recursivament:
 - Fem un cicle qualsevol (el podem fer per paritat de graus)
 - Traiem el cicle
 - Si no hem fet servir totes les arestes, tornem a repetir
 - Enganxem els cicles que hem fet

Teoria de Grafs Grafs eulerians i hamil

Exemple

Teoria de Grafs Grafs eulerians i hamilto

Un graf admet un recorregut eulerià si, i només si, és connex i té tots els seus vèrtexos de grau parell, excepte dos d'ells, que són necessàriament els extrems del recorregut eulerià.

Demostració.

Corol·lari

"Trivial": afegir una aresta entre els dos vèrtexos de grau senar (o entre els extrems del circuit, per a l'altra meitat de la demostració)

Grafs hamiltonians

- Un recorregut/cicle hamiltonià passa exactament una vegada per cada vèrtex del graf
- ▶ Un *graf hamiltonià* és un graf que admet un cicle hamiltonià.

Exemple

Biel Cardona (UIB)

Curs 201

990

s 2011/12 35 /

Teoria de Gra

Grafs eulerians i hamiltonia

Teorema

???

Algunes propietats

Condicions suficients per a hamiltonicitat (\Rightarrow hamiltonià):

- G té ordre $n \ge 3$ i $\forall u \in V$, $\deg(u) \ge n/2$
- G té ordre $n \ge 3$ i $\forall u, v \in V$ t.q. $uv \notin E$, $d(u) + d(v) \ge n$
- G té ordre $n \ge 3$ i mida $m \ge (n^2 3n + 6)/2$

Condicions necessàries per a hamiltonicitat (hamiltonià \Rightarrow):

- ▶ *G* no té vèrtexos de tall
- ▶ Per a tot $S \subseteq V$, G S té $\leq |S|$ components connexos

M

temàtica Discret

Curs 2011/1

36 / 36