

A real-time optical ground receiver for photon starved environments

Free-Space Laser Communications XXXV

Jennifer N. Downey

NASA Glenn Research Center

Cleveland, Ohio

Introduction

- NASA is using the CCSDS Optical Communications High Photon Efficiency (HPE) waveform on future missions: Optical Artemis-2 Orion (O2O), Psyche
 - PPM: 4, 8, 16, 32, 64, 128, 256
 - Slot widths: 512 ns 125 ps
 - Maximum data rate: ~2 Gbps
- NASA Glenn is building a photon-counting ground receiver compliant with the CCSDS Optical Communications HPE standard
 - PPM: 16, 32
 - Slot widths: 2 ns, 1 ns, 0.5 ns
 - Maximum data rate: 267 Mbps
- Goals:
 - Utilize commercial off the shelf (COTS) components
 - Demonstrate with O2O at the NASA Goddard Low Cost Optical Terminal (LCOT) ground station
 - Transfer technology to commercial company

Receiver Subsystems Under Development

Fiber Interconnect:

- Photonic lantern (one multimode fiber input to 7 FMF outputs) or FMF
- Input fiber core size, number of outputs, and output fiber core size scalable to application
- In house prototyping capability; development partnership with University of Sydney

Single Photon Detector:

- COTS detectors, portable, rack-mounted
- Array of FMF coupled single-pixel detectors sharing one cryostat or single monolithic 16-channel array
- Continuous operation, includes amplifier electronics, 60-80% efficient

FPGA-based Receiver:

- 1 ADC per detector channel; digital detector channel combining
- Real Time processing; COTS development platform
- Compatible with CCSDS downlink optical waveform (high photon efficiency)
- FPGA VHDL/Verilog receiver code will be released

Fiber Interconnect and Detectors: Photonic Lantern + 7 Single Pixel Detectors

NASA

Photonic Lantern:

- FMFs:
 - 20 um graded-index core
 - NA: 0.19
 - 6 LP-modes
- MMF input:
 - 55 um
 - 42 total modes

Detectors:

- Efficiency: 80-82%
- Dark count rate: 3 kcps
- Rise time: 850 ps
- 1/e reset time: 15 ns
- Jitter: 60-80 ps FWHM

Fiber Interconnect and Detectors: FMF + 16-Channel Detector Array

NASA

FMF:

- 20 um graded-index core
- NA: 0.19
- 6 LP-modes

Detectors:

- Efficiency: 83%
- Dark count rate: 3-10 kcps
- Rise time: 500 ps
- 1/e reset time: 5-8 ns
- Jitter: 75-95 ps FWHM

FPGA-based Receiver

NASA

- COTS MicroTCA development platform
- Command/telemetry interface is through HTTP interface built on Space Telecommunications Radio System Architecture

FPGA-based Receiver

Timing Recovery FPGA

- Xilinx Radio Frequency System-on-Chip (RFSoC) FPGA with 16 ADCs
- Time alignment with mechanical phase shifters
- Performs channel combining, photon counting, symbol timing recovery, codeword alignment, convolutional deinterleaving
- Calculates channel statistics to send to Decoder FPGA

Decoder FPGA

- Calculates 8-bit slot log-likelihood ratios
- Performs BCJR iterative decoding and queuing and reordering for multiple decoder instances
- Test mode allows independent characterization of decoder FPGA

Ethernet Frames

Test Setup

Test Optical Transmitter

- Sine and PPM signal generated by FPGA
 - Enables testing with Doppler Rate
- Pulse carving configuration implemented with 2 Mach Zehnder Modulators
- Bias controller algorithm:
 - Gradient descent with five-point stencil derivative

Path Loss Emulation

- VOA used for free-space path loss
- Arbitrary Light Field Generator: flattop generated for input to the fiber interconnect
- Tests completed without added atmospheric turbulence
- Fiber/detector testing was completed with emulated atmospheric turbulence*

Arbitrary Light Field Generator

Codeword Error Rate Curve Results – PPM-16, Code Rate 1/3, 133 Mbps

Photonic Lantern + 7 Single-pixel Detectors

When operating where the photonic lantern numeric aperture is matched to turbulence conditions, it is expected that both architectures will perform similarly.

FMF + 16-pixel Detector Array

Detector Jitter & FPGA Implementation Loss (dB)		Fiber & Detector Loss (dB)		Measured K _b at 10 ⁻⁵ CWER (dB photons/slot)		Required Input Power at 10 ⁻⁵ CWER (dBm)	
PL	А	PL	А	PL	Α	PL	А
0.3	1.2	8.0	3.2	-27.2	-22.0	-72.2	-75.5

Codeword Error Rate Curve Results –PPM-16, Code Rate 1/2, 200 Mbps

Photonic Lantern + 7 Single-pixel Detectors

FMF + 16-pixel Detector Array

When operating where the photonic lantern numeric aperture is matched to turbulence conditions, it is expected that both architectures will perform similarly.

Detector Jitter & FPGA Implementation Loss (dB)		Fiber & Detector Loss (dB)		Measured K _b at 10 ⁻⁵ CWER (dB photons/slot)		Required Input Power at 10 ⁻⁵ CWER (dBm)	
PL	А	PL	Α	PL	А	PL	А
0.3	1.2	9.6	3.5	-24.7	-20.8	-68.7	-73.5

Receiver will be demonstrated at the NASA GSFC Low Cost Optical Terminal*

Light is coupled from the backend optics into the fiber interconnect

Real Time Optical Receiver

Optical ground station components provided by NASA GSFC LCOT: dome, telescope, back-end optics (includes tracking and pointing)

Conclusion

- A photon-counting ground receiver has been developed and tested for several CCSDS HPE modes.
 - Two fiber/detector architectures were prototyped
- When operating in an optical ground station where the photonic lantern numeric aperture is matched to turbulence conditions, it is expected that both architectures will perform similarly.

