Лабораторная работа №1 по мат. анализу

Тема: предел последовательности, точные границы, частичные пределы.

Цель работы: научиться работать с определением предела, критерием точных границ, частичными пределами как аналитически, так и численно.

Задание: для данной последовательности x_n найти множество частичных пределов, верхний и нижний пределы, точные границы, наибольший и наименьший элементы. Проверить определение предела для некоторой сходящейся подпоследовательности. Проверить критерий точной грани.

Порядок работы:

Часть 1. Аналитический метод

- 1. Исследовать данную последовательность x_n на сходимость. Для этого выделить сходящиеся подпоследовательности, найти множество частичных пределов. Найти верхний и нижний пределы. Выяснить, сходится ли x_n .
- 2. Найти точные нижнюю и верхнюю грани выделенных подпоследовательностей. Провести дополнительное исследование при необходимости (монотонность). Найти $\sup x_n$, $\inf x_n$, $\overline{\lim} x_n$, $\underline{\lim} x_n$.
 - 3. Имеет ли x_n наибольший и наименьший элементы? Найти их, если есть.
- 4. Выберите одну сходящуюся подпоследовательность. Запишите для нее определение предела и покажите, что оно выполнено (найдите по любому $\varepsilon > 0$ номер n_0 , начиная с которого члены выбранной подпоследовательности попадают в ε -окрестность предела).

Часть 2. Численный метод

- 1. Построить график последовательности x_n (первые 100 точек). Отметить на графике найденные аналитически $\sup x_n$, $\inf x_n$, $\overline{\lim} x_n$, $\underline{\lim} x_n$ (горизонтальными линиями).
- 2. Выделить одну сходящуюся подпоследовательность, отметить ее точки на графике другим цветом.
- 3. По данному $\varepsilon > 0$ (используйте, например, значения 0, 01; 0, 001 и 0, 0001) найдите номер n_0 , начиная с которого члены выбранной подпоследовательности попадают в ε -окрестность предела. Постройте график подпоследовательности, начиная с найденного номера n_0 (100 точек), отметьте на графике значение предела (горизонтальной линией).
- 4. Для исходной последовательности x_n выберите одну из точных границ, которая не достигается. Проверьте выполнение критерия точной грани. Программа должна по заданному $\varepsilon > 0$ (используйте, например, значения 0,01; 0,001 и 0,0001) находить номер m такой, что $x_m > \sup x_n \varepsilon$ (аналогично для $\inf x_n$). Отметьте найденную точку на графике из п. 2.1 (если требуется, измените диапазон отображаемых номеров).

Требования к оформлению лабораторной работы:

- 0. Форма отчёта один .pdf файл
- 1. Аналитическая часть отчета оформляется как домашняя работа. Её можно писать на листочке, на планшете, на компьютере.

- 2. Программу для численного метода можно писать на любом удобном вам языке программирования. В отчёте укажите версию языка/компилятора.
- 3. Каждый пункт численного метода должен быть выполнен вами самостоятельно.
- 3.5. Для построения графиков допускается использование сторонних библиотек.
- 4. В отчете так же кратко поясните, как вы выполняли каждый пункт численного метода.
- 5. Следите за понятностью и чистотой вашего кода, не стесняйтесь оставлять комментарии.

Сдача происходит через github classroom: https://classroom.github.com/a/D3Bw-9qE Получите свой репозиторий, перейдя по ссылке. Запушьте в него свой код. Файл с отчетом положите в корень репозитория.

Для вашего удобства, вам предлагается пример построения графиков в Java: https://github.com/itmo-ct-calculus-2022/Java-XChart-example

$$x_n = \left(1 + \sin\frac{\pi n}{2}\right) \cdot \frac{n-3}{n+5}.$$