Quiz, 10 questions

~	Congra	atulations! You passed!	Next Item
•	33	passea.	
	~	1 / 1 points	
		notation would you use to denote the 3rd layer's active out is the 7th example from the 8th minibatch?	ations when
		$a^{[3]\{7\}(8)}$	
		$a^{[8]\{3\}(7)}$	
	0	$a^{[3]\{8\}(7)}$	
	Corr	ect	
		$a^{[8]\{7\}(3)}$	
	~	1 / 1 points	
	2. Which agree	of these statements about mini-batch gradient descen with?	t do you
		Training one epoch (one pass through the training se mini-batch gradient descent is faster than training on using batch gradient descent.	_
		You should implement mini-batch gradient descent we explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	he

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient Optimization algorithms

Quiz, 10 questions

## 1/11 ## points 3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between? If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress. Correct If the mini-batch size is 1, you end up having to process the entire training set before making any progress. Un-selected is correct If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch. Correct	n algorithms	9/10 points (90%)
points 3. Why is the best mini-batch size usually not 1 and not m, but instead something in-between? If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress. Correct If the mini-batch size is 1, you end up having to process the entire training set before making any progress. Un-selected is correct If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	Correct	
If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress. Correct If the mini-batch size is 1, you end up having to process the entire training set before making any progress. Un-selected is correct If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	points 3. Why is the best mini-batch size usually not 1 and not m, but instea	d
If the mini-batch size is 1, you end up having to process the entire training set before making any progress. Un-selected is correct If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before	
 Un-selected is correct If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent. Un-selected is correct If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch. 	Correct	
descent, which is usually slower than mini-batch gradient descent. Un-selected is correct If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	entire training set before making any progress.	e
If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	descent, which is usually slower than mini-batch gradient descent.	lient
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.	ation

1/1 points

Optimization algorithms

Quiz, 10 questions

9/10 points (90%)

Which of the following do you agree with?

Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

1/1 points

Optimization algorithms

Quiz, 10 questions

Jan 1st:
$$heta_1=10^oC$$

9/10 points (90%)

Jan 2nd: $heta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing,)

$$v_2=7.5$$
 , $v_2^{corrected}=7.5$

$$igcup_2=7.5$$
 , $v_2^{corrected}=10$

Correct

$$igcup v_2=10$$
 , $v_2^{corrected}=7.5$

$$igcup v_2 = 10$$
 , $v_2^{corrected} = 10$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$lpha = e^t lpha_0$$

Correct

$$\bigcirc \quad \alpha = \frac{1}{\sqrt{t}} \, \alpha_0$$

$$igcap lpha = rac{1}{1+2*t}\,lpha_0$$

$$lpha = 0.95^t lpha_0$$

Optimization algorithms

Quiz, 10 questions

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. The red line below was computed using $\beta=0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing eta will create more oscillations within the red line.

Optimization algorithms Un-selected is correct

Quiz, 10 questions

9/10 points (90%)

1/1 points

8.

Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

	9. Suppose batch gradient descent in a deep network is taking excessively
Optimizatio Quiz, 10 questions	Suppose batch gradient descent in a deep network is taking excessively large gain and but of the parameters that achieves a small value for the 9/10 points (90%) cost function $\mathcal{J}(W^{[1]},b^{[1]},\ldots,W^{[L]},b^{[L]})$. Which of the following techniques could help find parameter values that attain a small value for
	\mathcal{J} ? (Check all that apply)
	Try using Adam
	Correct
	Try tuning the learning rate $lpha$
	Correct
	Try initializing all the weights to zero
	Un-selected is correct
	Try mini-batch gradient descent
	Correct
	Try better random initialization for the weights
	This should be selected
	1/1 points
	10.
	Which of the following statements about Adam is False?
	Adam combines the advantages of RMSProp and momentum
	We usually use "default" values for the hyperparameters eta_1,eta_2 and $arepsilon$ in Adam ($eta_1=0.9$, $eta_2=0.999$, $arepsilon=10^{-8}$)

Adam should be used with batch gradient computations, not with mini-batches

with mini-batches. Optimization algorithms

9/10 points (90%)

uiz, 10 questions	Correct	
	The learning rate hyperparameter α in Adam usually needs to be tuned.	
		_