Quantitative data: shape and measures of central tendency

Overview

Review of categorical data concepts and R

Quantitative data

Graphing the shape: histograms and outliers

Measures of the central tendency: mean and median

Review

Categorical variables

Quiz: Art time!

Please draw:

- 1. A population and label it a "population"
- 2. A sample and label it "sample"
- 3. Add the label "parameter" in the appropriate location
- 4. Add the label "statistic" in the appropriate location
- 5. Add the symbol for a population proportion in the appropriate location
- 6. Add the symbol for a sample statistic for proportion in the appropriate location
- 7. Add Plato in the appropriate location
- 8. Add the shadows in the appropriate location

Upload your file to Canvas survey

bragging rights to the best drawing!

parameter: π

statistic: p̂

Example of categorical data: Presidential approval ratings

Approve

Disapprove

Example of categorical data: Presidential approval ratings

Approve

Disapprove

Example: Biden's approval rating

- # get Biden's approval rating from 1,000 simulated voters
- > library(SDS100)
- > approval_sample <- get_approval_sample(1000)

Questions:

- 1. What are the observational units (cases)?
- 2. What is the variable?
- 3. What is the population?

1	approve
2	disapprove
3	disapprove
4	disapprove
5	disapprove
6	approve
7	disapprove

Example: Biden's approval rating

Can you calculate p̂ for Biden's approval?

- > approval_table <- table(approval_sample)
- > approval_proportions <- prop.table(approval_table)
- > approval_proportions["approve"]

Can you make a bar plot and pie chart for his approval proportion?

- > barplot(approval_proportions)
- > pie(approval_proportions)

Results from Trumps' approval rating

Example: Biden's approval rating

 $\hat{p}(t)$ as an estimate of $\pi(t)$

Can we ever know π ?

Usually we are interested in knowing about properties of an infinite processes so we can never perfectly know a parameter value

• i.e., we can never know π

However, for *finite populations*, it is possible to know the value of a parameter exactly

For example, if π is the proportion of voters who will vote for Biden in the 2024 election, then should know π in November 2024

Practice at home

Get the degree to which likely voters approve of Biden:

> approval_sample <- get_approval_sample(1000, degree_of_approval = TRUE)

Practice at home:

- Calculate a relative frequency table for the degree of Biden's approval
- Make a bar plot and pie chart of this data

Quantitative variables

Descriptive statistics for one quantitative variable

We will be looking at:

- What is the general 'shape' of the data
- Where are the values centered
- How do the data vary

There are all properties of how the data is *distributed*

For categorical data we had...

Population distributions and sample histograms

Histograms

Histograms are a way of visualizing a sample of quantitative data

- They are similar to bar charts but for quantitative variables
- They aim to give a picture of how the data is distributed

Gapminder data and data frames

get a data frame with information about the countries in the world

- > download_data("gapminder_2007.Rda") # SDS100 function
- > load("gapminder_2007.Rda")
- > View(gapminder_2007)

*	country	continent [‡]	year [‡]	lifeExp [‡]	pop [‡]	gdpPercap [‡]
1	Afghanistan	Asia	2007	43.828	31889923	974.5803
2	Albania	Europe	2007	76.423	3600523	5937.0295
3	Algeria	Africa	2007	72.301	33333216	6223.3675
4	Angola	Africa	2007	42.731	12420476	4797.2313
5	Argentina	Americas	2007	75.320	40301927	12779.3796

Gapminder data

Questions:

- 1. What are the observational units (cases)?
- 2. What are the variables?
- 3. Are the variable categorical or quantitative?
- 4. What is the population?

*	country [‡]	continent [‡]	year [‡]	lifeExp [‡]	pop [‡]	gdpPercap [‡]
1	Afghanistan	Asia	2007	43.828	31889923	974.5803
2	Albania	Europe	2007	76.423	3600523	5937.0295
3	Algeria	Africa	2007	72.301	33333216	6223.3675
4	Angola	Africa	2007	42.731	12420476	4797.2313
5	Argentina	Americas	2007	75.320	40301927	12779.3796

Gapminder data

•	country	continent [‡]	year [‡]	lifeExp [‡]
1	Afghanistan	Asia	2007	43.828
2	Albania	Europe	2007	76.423
3	Algeria	Africa	2007	72.301
4	Angola	Africa	2007	42.731
5	Argentina	Americas	2007	75.320

Data frames are the way R represents structured data

Data frames can be thought of as collections of related vectors

• Each vector corresponds to a variable in the structured data

We can access individual vectors of data using the \$ symbol

we can look at the number of countries in each continent

- > continents <- gapminder_2007\$continent # continent is a categorical variable
- > continent_table <- table(continents)
- > barplot(continent_table)

Gapminder: life expectancy in different countries

Let's look at the life expectancy in different countries, which is a quantitative variable

pull a vector of life expectancies from the data frame

> life_expectancy <- gapminder_2007\$lifeExp

Histograms – countries life expectancy in 2007

Life expectancy for different countries for 142 countries in the world:

43.83, 72.30, 76.42, 42.73, ...

To create a histogram we create a set of intervals

• 35-40, 40-45, 45-50, ... 75-80, 80-85

We count the number of points that fall in each interval

We create a bar chart with the counts in each bin

Histograms – countries life expectancy in 2007

Life Expectancy	Frequency Count
(35 – 40]	1
(40 – 45]	8
(45 – 50]	10
(50 – 55]	12
(55 – 60]	12
(60 – 65]	9
(65 – 70]	7
(70 – 75]	39
(75 – 80]	31
(80 – 85]	13

Gapminder: life expectancy in different countries

Try creating a histogram of the life expectancy in different countries using the hist() function

pull a vector of life expectancies from the data frame

- > life_expectancy <- gapminder_2007\$lifeExp
- > hist(life_expectancy)

Common shapes for distributions

Can you think of a distribution that is right skewed?

Income distribution

Can you think of a distribution that is symmetric and bell-shaped?

Young adult male heights (Martin, 1949)

Men on OkCupid are taller!

Bias?

Can you think of a distribution that is symmetric but not bell-shaped?

Old Faithful eruption times

Plato and shadows: distributions and histograms

Outliers

An **outlier** is an observed value that is notably distinct from the other values in a dataset by being much smaller or larger than the rest of the data.

Outliers can potentially have a large influence on the statistics you calculate

One should examine outliers in more detail to understand what is causing them

Descriptive statistics for the center of a distribution

Graphs are useful for visualizing data to get a sense of what of what the data look like

We can also summarize data numerically

Question: what is a numerical summary of a sample of data called?

A: a statistic!

Two important statistics that can be used to describe the center of the data are the **mean** and the **median**

Sample and population mean

The mean

Mean =
$$x_1 + x_2 + x_3 + ... + x_n$$
 = $\sum_{i=1}^{n} \frac{x_i}{n}$ = $\frac{1}{n} \sum_{i=1}^{n} x_i$

R: mean(x)

R: mean(x, na.rm = TRUE)

Give the proper notation: μ vs. \bar{x} ?

We measure the height of 50 randomly chosen Yale students

We measure the height of all Yale students

Can you calculate the mean of the countries life expectancy in R?

- > life_expectancy <- gapminder_2007\$lifeExp
- > mean(life_expectancy)

The median

The **median** of a data set of size n is

- If n is odd: The middle value of the sorted data
- If n is even: The average of the middle two values of the sorted data

The median splits the data in half

```
R: median(v)
median(v, na.rm = TRUE)
```

Resistance

We say that a statistics is **resistant** if it is relatively unaffected by extreme values (outliers).

The median is resistant when the mean is not

Example:

Mean US salary = \$72,641

Median US salary = \$51,939

Summary of concepts

- 1. A *probability distribution* shows the *relative likelihood* that we will get a data point in the population with a particular value
 - (for a more precise definition take a class in probability)
- 2. Distributions can have different shapes
 - E.g., left skewed, right skewed, bell shaped, etc.
- 3. The **mean** is one measure of central tendency
 - Sample mean is denoted \overline{x} (statistic)
 - Population mean is denoted μ (parameter)
- 4. The **median** is another measure of central tendency
 - The median is resistant to outliers while the mean is not

Income distribution

Summary of R

Data frames contain structured data

• We can view a data frame in R Studio (not in Markdown) using:

```
> View(my_data_frame)
```

We can extract vectors from a data frame using:

```
> my_vec <- my_data_frame$my_var
```

We can get a sense of how quantitative data is distributed by creating a histogram > hist(my vec)

We can calculate measures of central tendency using:

- > mean(my_vec)
- > median(my_vec)

Practice at home

Lock5 questions:

- Proportions
 - warmups: 2.1, 2.3, 2.5, 2.7, 2.9 (1st and 2nd edition)
 - 2.13 (2nd edition 2.15) Rock papers scissors
- Quantitative data (shape and central tendency)
 - 2.33, 2.35, 2.37 (2nd edition 2.43, 2.45, 2.47)
 - 2.43, 2.45 (2nd edition 2.53, 2.55)
 - 2.47, 2.49 (2nd edition 2.57, 2.59)

Experiment with the Gapminder data frame and extended Biden approval ratings:

- Create some bar and pie charts for the categorical data
- Create some histograms for the quantitative data

Homework 1

Homework 1 is due at 11pm on Sunday February 6th

Use Ed Discussions for any questions that come up, and/or attend class office hours

Upload a pdf with your answers to Gradescope