Per altra banda, si $\langle R', \# \rangle$ satisfà la condició de l'enunciat, llavors $\# \xrightarrow{+} \#$. Escollim aquí la derivació més curta de la forma $\# \xrightarrow{+} \#$, de manera que cap paraula intermedia és #. Per les regles que tenim al sistema de rescriptura, aquesta derivació ha de ser de la forma $\# \xrightarrow{*} \$u\$ \xrightarrow{*} \$v\$ \xrightarrow{*} \#$. Es pot veure inductivament que en la derivació intermedia $\$u\$ \xrightarrow{*} \$v\$$ totes les paraules són de la forma \$w\$, on w no conté # ni \$: si en un cert punt abans del final es cumpleix la condició, llavors no es pot fer servir $\# \to \$u\$$ per a obtenir la següent paraula, però tampoc $\$v\$ \to \#$, ja que si no # seria paraula intermedia. De l'anterior també es dedueix que totes les regles que s'apliquen en aquesta subderivació són de R. Per tant $\$u\$ \xrightarrow{*} \$v\$$, i com que les regles de R no contenen \$, tambe tenim que $u \xrightarrow{*} v$, de manera que $\langle R, u, v \rangle$ és del problema de \mathbb{M} ots.

(Examen de Juny-2007)

Tingueu present en tots els exercicis que les respostes s'han de justificar (a menys que es digui el contrari). La mera presentació d'una proposta de resultat no és suficient.

- 1. (4.5 punts en total) Els següents apartats, tot i estar relacionats, es poden contestar de forma independent, però recomanem començar pel primer, ja que dóna intuició per als tres darrers.
 - a) (0.5) Considerem el llenguatge sobre $\{a, b\}^*$ dels mots que acaben en aaaa. Escriviu diréctament l'autòmat determinista mínim que el genera (en aquest cas no cal que poseu cap justificació).
 - b) (1.5) Donat un nombre $k \ge 0$, el llenguatge dels mots que acaben en k a's, $\{a,b\}^*a^k$, és regular. Justifiqueu que hi ha un autòmat determinista amb k+1 estats que el reconeix.
 - c) (1.5) Demostreu que no hi ha cap autòmat determinista amb menys que k+1 estats que reconegui $\{a,b\}^*a^k$, o, equivalentment, que el de l'apartat anterior és mínim.
 - d) (1) Demostreu que el llenguatge dels mots tals que la segona meitat d'ells conté només a's, és a dir $\{wa^{|w|}|w\in\{a,b\}$, no és regular.

Resposta:

a)

		a	b
	q_0	q_1	q_0
	q_1	q_2	q_0
	q_2	q_3	q_0
	q_3	q_4	q_0
	$\dagger q_4$	q_4	q_0

b) Generalitzant la idea de l'apartat anterior, només cal que recordem quantes a's hem vist fins al moment. A l'estat q_i hi arribem amb paraules que tenen i a's al final i no i+1 a's al final, excepte per al cas de q_k , que hi arribem amb paraules que tenen k o més a's al final. És fàcil demostrar inductivament que aquestes propietats es cumpleixen per a l'autòmat que descrivim.

	a	b
q_0	q_1	q_0
q_1	q_2	q_0
:		
q_i	q_{i+1}	q_0
:		
q_{k-1}	q_k	q_0
$\dagger q_k$	q_k	q_0

c) Suposem que existeix un autòmat A amb menys de k+1 estats i que reconeix $\{a,b\}^*a^k$. Sigui q_0 l'estat inicial de A. Donat que hi han menys de k+1 estats, dues de les k+1 paraules $\lambda, a, aa, \ldots, a^k$ ens porten al mateix estat. Per tant, existeixen $0 \le i < j \le k$ tals que $q_0a^i = q_0a^j$. Donat que a^k és del llenguatge, q_0a^k és acceptador. Però $q_0a^k = q_0(a^{j+(k-j)}) = q_0(a^ja^{k-j}) = (q_0a^j)a^{k-j} = (q_0a^i)a^{k-j} = q_0(a^ia^{k-j}) = q_0(a^{k-j+i})$. Així doncs, la paraula a^{k-j+i} també ens porta a estat acceptador. Però com que i < j, tenim que k-j+i < k, de manera que a^{k-j+i} no acaba amb k a's, i per contra és acceptada: contradicció.

Com a resposta alternativa, si apliquem l'algorisme de minimització a l'autòmat de l'apartat anterior, veiem que es comprova que és mínim:

```
0-distingibles: \{q_0, \ldots, q_{k-1}\} \{q_k\}
1-distingibles: \{q_0, \ldots, q_{k-2}\} \{q_{k-1}\} \{q_k\}
2-distingibles: \{q_0, \ldots, q_{k-3}\} \{q_{k-2}\} \{q_{k-1}\} \{q_k\}
\vdots
k-distingibles: \{q_0\} \{q_1\} \ldots \{q_{k-1}\} \{q_k\}
```

- d) Ho fem pel lema de bombament. Fixat N, escollim la paraula $w=b^Na^N$, que és de $\{wa^{|w|}|w\in\{a,b\},$ i considerem una factorització qualsevol w=xyz tal que $|xy|\leqslant N$ i $|y|\geqslant 1$. Sota aquestes condicions, x és de la forma b^i per a un cert $i\geqslant 0,$ y és de la forma b^j per a un cert j>0, i z és de la forma $b^{N-i-j}a^N$. La paraula xy^2z és $b^{N+j}a^N$, i donat que j>0, també tenim que N+j>N, de manera que xy^2z no és de $\{wa^{|w|}|w\in\{a,b\}$. Això conclou la prova.
- 2. (2 punts) Considerem la següent gramàtica $G_{\tt exemple}$:

$$\begin{array}{ccccc} X & \rightarrow & YZ \\ Y & \rightarrow & XX & | & a \\ Z & \rightarrow & ZZ & | & b \end{array}$$

I el següent arbre de derivació del mot terminal ababbb a partir de $G_{\tt exemple}$.

El recorregut en preordre d'aquest arbre és el mot: XYXYaZbXYaZbZZbZb.

En general, el recorregut en preordre d'un arbre, es defineix recursivament com el símbol de l'arrel, seguit del recorregut en preordre del primer fill, seguit del recorregut en preordre del segon fill, i així successivament fins al recorregut en preordre de l'últim fill.

Fixeu-vos que per al cas particular del recorregut en preordre de l'arbre de derivació anterior primer ens ve l'arrel X, seguida del recorregut en preordre de Y que és YXYaZbXYaZb,

seguit del recorregut en preordre de

Donat un arbre de derivació A, anomenem $\operatorname{preordre}(A)$ al mot que codifica el recorregut en preordre de A. Donada una gramàtica G, si anomenem $\mathbf{A}(G)$ al conjunt de tots els possibles arbres de derivació de G en mots terminals, llavors $\{\operatorname{preordre}(A)|A\in\mathbf{A}(G)\}$ defineix el conjunt dels mots que representen recorreguts en preordre de tots els arbres de derivació de G en mots terminals. Anomenem $\operatorname{preordre}(G)$ a aquest conjunt, és a dir, $\operatorname{preordre}(G)=\{\operatorname{preordre}(A)|A\in\mathbf{A}(G)\}$

Considerant l'exemple de gramàtica anterior $G_{\tt exemple}$, construïu una nova gramàtica que generi $\tt preordre(G_{\tt exemple})$. Fixeu-vos que en la nova gramàtica caldrà que, no només a i b siguin símbols terminals, sinó que també X, Y i Z siguin terminals, quan de fet eren variables de la gramàtica original.

Resposta:

Utilitzarem les variables X', Y' i Z', que generaran $\operatorname{Preordre}(L_{G_{\operatorname{exemple}},X})$, $\operatorname{Preordre}(L_{G_{\operatorname{exemple}},Y})$ i $\operatorname{Preordre}(L_{G_{\operatorname{exemple}},X})$, respectivament; on $L_{G,W}$ representa el llenguatge generat per la gramàtica G considerant W com a símbol inicial. La gramàtica que construïm és:

$$\begin{array}{cccccc} X' & \rightarrow & XY'Z' \\ Y' & \rightarrow & YX'X' & | & Ya \\ Z' & \rightarrow & ZZ'Z' & | & Zb \end{array}$$

Tot i que es podria demostrar per inducció que es genera preordre $(G_{\tt exemple})$, en aquest cas ens limitem a observar que la utilització d'una regla qualsevol $W \to W_1 W_2$ de $G_{\tt exemple}$ porta a un arbre de derivació de la forma W on α_1 i α_2 són àrbres de derivació

generats desde W_1 i W_2 , respectivament, i que el recorregut en preordre d'aquest arbre és WPreordre (α_1) Preordre (α_2) . Amb la regla $W' \to WW'_1W'_2$ podem assumir inductivament que W'_1 i W'_2 generen Preordre $(L_{G_{\texttt{exemple}},W'_1})$ i Preordre $(L_{G_{\texttt{exemple}},W'_2})$.

Com a resposta alternativa podriem haver donat:

3. (1.5 punts) Classifiqueu com a decidible, semi-decidible pero no decidible, o no semi-decidible, els següent problema.

$$\{x | \forall y : (M_x(y) \downarrow \Rightarrow M_x(y) < y)\}$$

(Les entrades i sortides de les màquines de turing s'interpreten com a nombres naturals.)

Resposta:

Demostrarem que no és ni semi-decidible reduïnt desde \overline{K} de la següent manera. Si x és l'element d'entrada, donem com a sortida de la reducció el programa p següent.

```
entrada y Simular \mathbf{M}_x(x) sortida y
```

Si x pertany a $\overline{\mathbb{K}}$, llavors $\mathbf{M}_x(x)\uparrow$, de manera que el programa p no s'atura per cap entrada, i llavors compleix la condició $\forall y: (M_p(y) \downarrow \Rightarrow M_p(y) < y)$, concloent així que p pertany al nostre llenguatge.

En canvi, si x no pertany a $\overline{\mathbb{K}}$, llavors $M_x(x) \downarrow$, de manera que el programa p s'atura amb totes les entrades, i de fet es comporta com la funció identitat, de manera que no compleix la condició $\forall y: (M_p(y) \downarrow \Rightarrow M_p(y) < y)$, concloent així que p no pertany al nostre llenguatge.

Com a resposta alternativa, pel teorema de Rice, donat que L és un conjunt d'índexos, que no és ni el total ni el buit, i que conté els nombres que representen la funció totalment indefinida, resulta que L no és ni semi-decidible.

Més en detall, L és un conjunt d'indexos perque en la condició sempre que apareix x, ho fa amb el contexte M_x , és a dir, una condició només sobre el comportament del programa M_x , independentment de la seva implementació. L no és buit perque conté, per exemple, a qualsevol nombre de programa que es penja sempre. L no és el total perque no conté per exemple als nombres de programes que donen com a sortida la pròpia entrada, per a totes les entrades.

4. (2 punts en total) En aquest cas heu d'escollir qué contestar d'entre dos problemes alternatius

Opció 1:

En els exercicis-control del curs hem vist que és indecidible el problema de, donades dues gramàtiques, saber si tenen intersecció no buida.

$$\{\langle G_1, G_2 \rangle \mid \mathbf{L}(G_1) \cap \mathbf{L}(G_2) \neq \emptyset\}$$

Ara volem demostrar que també ho és el problema de, donades dues gramàtiques, saber si tenen com a intersecció un nombre infinit de mots; és a dir, si hi ha infinits mots generats per totes dues gramàtiques.

$$\{\langle G_1, G_2 \rangle \mid |\mathbf{L}(G_1) \cap \mathbf{L}(G_2)| = \infty\}$$

a) (1) Demostreu amb un contraexemple que el següent intent de reducció desde intersecció no buida no funciona. (És a dir, que no és cert que una entrada del problema del intersecció no buida té resposta afirmativa si i només si la seva transformada en una entrada del problema que hem enunciat també en té).

Donada la entrada $\langle G_1, G_2 \rangle$ de intersecció no buida, construïm una nova entrada $\langle G'_1, G'_2 \rangle$ per a intersecció infinita així:

- Si S_1 és el símbol inicial de G_1 , llavors G_1' té una nova variable S_1' com a símbol inicial, i les seves regles són les de G_1 més $S_1' \to S_1 S_1' | \lambda$.
- Si S_2 és el símbol inicial de G_2 , llavors G_2' té una nova variable S_2' com a símbol inicial, i les seves regles són les de G_2 més $S_2' \to S_2 S_2' | \lambda$.
- b) (1) Doneu una reducció des del problema de intersecció no buida i justifiqueu que és correcta. Pista: és recomanable utilitzar algún símbol nou per a aconseguir-ho.

Opció 2:

Expliqueu formalment, amb generalitat i claretat, cóm es pot obtenir un autòmat amb pila indeterminista que reconegui el llenguatge generat per una gramàtica donada.

Resposta:

Opció 1:

a) Podem tenir com a entrada les gramàtiques $S_1 \to a$ i $S_2 \to aa$. La intersecció és buida, i en canvi les corresponents

Generen infinites paraules comunes: $\{a^{2n}\}.$

- b) Donada la entrada $\langle G_1, G_2 \rangle$ de intersecció no buida, agafem un símbol nou # que no aparegui ni a G_1 ni a G_2 , i construïm una nova entrada $\langle G'_1, G'_2 \rangle$ per a intersecció infinita així:
 - Si S_1 és el símbol inicial de G_1 , llavors G_1' té una nova variable S_1' com a símbol inicial, i les seves regles són les de G_1 més $S_1' \to S_1 \# S_1' | S_1$.
 - Si S_2 és el símbol inicial de G_2 , llavors G_2' té una nova variable S_2' com a símbol inicial, i les seves regles són les de G_2 més $S_2' \to S_2 \# S_2' | S_2$.
 - Si G_1 i G_2 generen una paraula comuna w, llavors G_1' i G_2' generen infinites paraules comunes de la forma $w\#w\#\dots \#w\#w$.

Per la direcció contraria, si G_1' i G_2' generen infinites paraules comunes, agafem qualsevol d'elles, que serà de la forma w o $w\#\ldots$, on w no conté #. Aquesta w és generable tant desde G_1' com desde G_2' .

Com a resposta alternativa també podiem haver creat com a G_1' les regles de G_1 més $S_1' \to \#S_1'|S_1$, i com a G_2' les regles de G_2 més $S_2' \to \#S_2'|S_2$.

A partir d'una CFG $G = \langle V, \Sigma, P, S \rangle$ podem construir de la manera següent un NPDA $M = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ tal que L(M) = L(G):

- el conjunt d'estats $Q = \{q_0, p, f\}$ (estat inicial, estat de procés i estat acceptador);
- l'alfabet de pila $\Gamma = \Sigma \cup V \cup \{Z_0\}$ on $Z_0 \not\in \Sigma \cup V$ és el símbol de fons de pila;
- el conjunt d'estats acceptadors $F = \{f\};$
- la funció de transició δ està format per:

 $Z_0q_0 \vdash Z_0Sp$ (una λ -transició que posa la variable inicial al cim de la pila en l'estat de procés);

 $\{Zp \vdash \alpha^R p | Z \to \alpha \in P\}$ (una λ -transició per a cada producció de la variable Z al cim de la pila);

 $\{apa \vdash p | a \in \Sigma\}$ (si el cim de la pila és un terminal, l'autòmat ha de verificar que sigui igual al símbol en curs del mot d'entrada i avançar el capçal);

 $Z_0p \vdash f$ (una λ -transició que permet passar a l'estat acceptador quan tot el mot ha estat processat).