

Università degli Studi di Bari Aldo Moro Dipartimento di Informatica

Anno Accademico 2013/2014

Piattaforma cloud per l'analisi di big data provenienti da social network

Tecnologie per l'individuazione di contenuti a sfondo discriminatorio

Relatori:

Prof. Pasquale Lops

Dott. Pierpaolo Basile

Laureando: Gianvito Taneburgo

Scenario della ricerca

Grande mole di dati non strutturati:

- video
- immagini
- log
- email
- sensori
- like +1
- ecc.

Unità di misura	Simbolo	Valore (byte)
gigabyte	GB	109
terabyte	ТВ	10 ¹²
petabyte	PB	10 ¹⁵
exabyte	EB	10 ¹⁸

Fattori di sviluppo

Diffusione Internet

Aumento velocità media download/upload

Aumento potere computazionale

Aumento capacità di memorizzazione

Sviluppo dispositivi e reti mobili

Big Data means the data is large enough that you have to think

about it in order to gain insights from it.

Sviluppare applicazioni per estrarre valore dai dati grezzi

Brand reputation analysis

Recommender system

Targeted advertising

Query log mining

Brand reputation analysis

Recommender system

Targeted advertising

Query log mining

More Top Picks for You

Windows 7 Home Premium SP1 64bit... Windows ☆☆☆☆ (1,268)

Asus P8Z77-V LK Intel Z77 DDR3 LGA... ★★★☆ (100) \$186.12

\$128.70 \$102.95

Intel Core i7-3770K Quad-Core... ****** (345) \$400.00 \$325.99

Gigabyte Intel Z77 LGA 1155 AMD.. ★★★☆ (126)

Corsair Vengeance 8 GB DDR3 1600 MHz...

Samsung 840 Series 2.5 inch 120GB... (1,483) \$249.98

View your shopping cart

Brand reputation analysis

Recommender system

Targeted advertising

Query log mining

Brand reputation analysis

Recommender system

Targeted advertising

uniba bari
uniba bari
uniba bari economia
uniba bari lingue
uniba bari giurisprudenza

Ulteriori informazioni

Premi Invio per cercare

Query log mining

Problematiche

Strumenti adatti ai dati

Memorizzare big data

Soluzioni

Tecnologie scalabili

Piattaforme di **cloud** computing

Google Cloud Platform

Architettura della piattaforma

Platform

Task

Cloud

Module

Connector

Apache Hadoop

Framework per il calcolo distribuito tra nodi di un cluster

- Architettura master/slave
- Modello di programmazione MapReduce
 - map: elaborazione locale
 - reduce: aggrega i risultati
- Hadoop Distributed File System
- Commodity hardware
- Scalabilità orizzontale

Modello MapReduce

Map:

 $(K, V) \rightarrow list(I, P)$

Reduce:

(I, list (P)) -> list (P)

Esempio: indicizzazione di un documento.

Map: (int, String) -> list (String, int)

map (int lineNumber, String line):
for each word w in line:
Emit Intermediate (w, 1);

Reduce: (String, list (int)) -> (String, int)

reduce (String w, List<Integer> values) :
 long count = 0;
 for each value v in values:
 count += v;
 Emit (w, count) ;

Indicizzazione con Hadoop

«

Il link per la tesi è questo http://goo.gl/Gojmx2 ed il link per la presentazione è questo http://goo.gl/7ozuaA.

Il contatto è questo taneburgo@gmail.com

>>

Termine	Frequenza	Termine	Frequenza
II	2	http://goo.gl/Gojmx2	1
link	2	ed	1
per	2	il	1
la	2	presentazione	1
tesi	1	http://goo.gl/7ozuaA	1
è	3	contatto	1
questo	3	taneburgo@gmail.com	1

Indicizzazione con Hadoop

Map input:

Il link per la tesi è questo http://goo.gl/Gojmx2 ed il link per la presentazione è questo http://goo.gl/7ozuaA.

Map input:

Il contatto è questo taneburgo@gmail.com

Map output:

```
(II, 1)
                             (il, 1)
(link, 1)
                             (link, 1)
(per, 1)
                             (per, 1)
(la, 1)
                             (la, 1)
(tesi, 1)
                             (presentazione, 1)
(è, 1)
                             (è, 1)
(questo, 1)
                             (questo, 1)
(http://goo.gl/Gojmx2, 1) (http://goo.gl/7ozuaA, 1)
(ed, 1)
```

Map output:

```
(II, 1)(contatto, 1)(è, 1)(questo, 1)(taneburgo@gmail.com, 1)
```

Indicizzazione con Hadoop

Reduce input:

(II, [1, 1])

(link, [1, 1])

(per, [1, 1])

(la, [1, 1])

(tesi, [1])

(è, [1, 1, 1])

(questo, [1, 1, 1])

(http://goo.gl/Gojmx2, [1])

(ed, [1])

(il, [1])

(presentazione, [1])

(http://goo.gl/7ozuaA, [1])

(contatto, [1])

(taneburgo@gmail.com, [1])

Reduce output:

(II, 2)

(link, 2)

(per, 2)

(la, 2)

(tesi, 1)

(è, 3)

(questo, 3)

(http://goo.gl/Gojmx2, 1)

(ed, 1)

(il, 1)

(presentazione, 1)

(http://goo.gl/7ozuaA, 1)

(contatto, 1)

(taneburgo@gmail.com, 1)

Indicizzazione con Hadoop (PRO)

Map input:

Il link per la tesi è questo http://goo.gl/Gojmx2 ed il link per la presentazione è questo http://goo.gl/7ozuaA.

Map output:

(II, 1)	(il, 1)
(link, 1)	(link, 1)
(per, 1)	(per, 1)
(la, 1)	(la, 1)
(tesi, 1)	(presentazione, 1)
(è, 1)	(è, 1)
(questo, 1)	(questo, 1)
(http://goo.gl/Gojmx2, 1)	(http://goo.gl/7ozuaA, 1)
(ed, 1)	

Map output:

```
(II, 1)(contatto, 1)(è, 1)(questo, 1)(taneburgo@gmail.com, 1)
```

Indicizzazione con Hadoop (PRO)

Combine input =Map output

Combine input =Map output

Combine output:

```
(II, 1) (i
(link, 2) (per, 2) (f
(la, 2)
(tesi, 1)
(è, 2)
(questo, 2)
(http://goo.gl/Gojmx2, 1)
(ed, 1)
```

(il, 1)

(presentazione, 1)

(http://goo.gl/7ozuaA, 1)

Combine output:

(II, 1)

(contatto, 1)

(è, 1)

(questo, 1)

(taneburgo@gmail.com, 1)

Indicizzazione con Hadoop (PRO)

Reduce input:

(II, [1, 1])

(link, [2])

(per, [2])

(la, [2])

(tesi, [1])

(è, [2, 1])

(questo, [2, 1])

(http://goo.gl/Gojmx2, [1])

(ed, [1])

(il, [1])

(presentazione, [1])

(http://goo.gl/7ozuaA, [1])

(contatto, [1])

(taneburgo@gmail.com, [1])

Reduce output:

(II, 2)

(link, 2)

(per, 2)

(la, 2)

(tesi, 1)

(è, 3)

(questo, 3)

(http://goo.gl/Gojmx2, 1)

(ed, 1)

(il, 1)

(presentazione, 1)

(http://goo.gl/7ozuaA, 1)

(contatto, 1)

(taneburgo@gmail.com, 1)

Database NoSQL

Vantaggi

- scalabilità orizzontale
- modello flessibile dei dati

Svantaggi

- transazioni ACID → BASE
- teorema CAP

Classifica dei DBMS per numero di installazioni

Cloud provider

- Infrastructure-as-a-Service (laaS)
- Platform-as-a-Service (PaaS)
- Software-as-a-Service (SaaS)
- Database-as-a-Service (DaaS)

Cloud provider

- Compute Engine: IaaS
- Cloud Storage: IaaS
- Datastore: DaaS

La «Mappa dell'Intolleranza»

- Quanto siamo razzisti?
- Quanto siamo omofobi?
- Quanto discriminiamo il prossimo?

Nel 2013:

- 45% dei giovani si è dichiarato xenofobo o diffidente degli stranieri
- 92% delle persone LGBT discriminate per l'orientamento sessuale
- 25% degli omosessuali e 6.743.000 donne vittime di violenze

La «Mappa dell'Intolleranza»

- Quanto siamo razzisti?
- Quanto siamo omofobi?
- Quanto discriminiamo il prossimo?

Nel 2013:

- 45% dei giovani si è dichiarato xenofobo o diffidente degli stranieri
- 92% delle persone LGBT discriminate per l'orientamento sessuale
- 25% degli omosessuali e 6.743.000 donne vittime di violenze

Raccolta preliminare dei tweet

OMOFOBIA	RAZZISMO	DISABILITÀ	MISOGINIA	ANTISEMITISMO
finocchio	neg*o	nano	baldr**ca	ebreo ai forni
ricch***e	terrone	storpio	zoc**la	rabbino
fr***o	zingaro	spastico	boc***nara	giudeo
rotti***lo	muso giallo	zoppo	tro**na	ebreo di me**a
cul***one	crucco	cerebroleso	mign**ta	

Esempi di seed per classi di discriminazione

1st Research question

Quantificare vantaggi e svantaggi di una soluzione cloud per l'elaborazione distribuita di grandi e piccoli dataset

Collezione	Contenuto	Dimensione
itWaC	1.870.000 documenti	11,16 GB
omofobia	22.564 tweet	1.738 kB
disabilità	29.793 tweet	2.242 kB
misoginia	249.425 tweet	17.935 kB

Dati di input dell'esperimento

Protocollo sperimentale

Confronto dei tempi medi di indicizzazione con Hadoop tra:

- macchina locale (cluster in modalità pseudo-distribuita)
- cluster su Compute Engine differenti tra loro per
 - numero di nodi interconnessi
 - tipo di macchine virtuali

Per convenzione:

- 4n-x1=4: cluster con 4 nodi da 1 CPU ciascuno (4 tot)
- 4n-x2=8: cluster con 4 nodi da 2 CPU ciascuno (8 tot)
- 9n-x2=18: cluster con 9 nodi da 2 CPU ciascuno (18 tot)
- • •
- #nodi-tipo_VM=CPU_cluster

TEMPI MEDI DI INDICIZZAZIONE (s)

Grandi dataset: miglior cluster outperforms macchina locale Piccoli dataset: macchina locale outperforms miglior cluster

TEMPI MEDI DI INDICIZZAZIONE (s)

Mantenendo costante il numero di nodi e migliorando il tipo di macchina virtuale, i tempi di indicizzazione diminuiscono sempre

TEMPI MEDI DI INDICIZZAZIONE (s)

Mantenendo costante il tipo di macchina virtuale ed aumentando il numero di nodi, i tempi di indicizzazione diminuiscono solo su grandi dataset

Problematiche riscontrate

Language model

- RT #Vogliadi #solo5ingredienti @CraftMarmalade: Frollini all'olio d'oliva e semi di finocchio ;D http://t.co/GZd7loEcbx
 - retweet, hashtag, menzioni, emoticon, URL, abbreviazioni, ecc.

Falsi positivi

- Angolo del risparmio: iPod nano con il 30% di sconto! http://t.com/VwnCRlhCLH
- Cuoco omofobo espelle dalla cucina anche i semi di **finocchio**

2nd Research question

Migliorare i seed ricercando ed analizzando i termini più significativi nei tweet

Collezione	Cardinalità vocabolario
itWaC	4.431.080 termini
omofobia	54.507 termini
disabilità	72.569 termini
misoginia	280.412 termini

Dati di input dell'esperimento

Protocollo sperimentale

- Divergenza di Kullback-Leibler: misura la prossimità tra due distribuzioni di probabilità discrete:
 - C: corpus itWaC
 - T: collezione di tweet di una classe
- Pointwise Kullback-Leibler divergence: è il contributo dato da una parola s alla divergenza complessiva di T da C:

$$\delta_S(T||C) = P_T(s) \ln \frac{P_T(s)}{P_C(s)}$$

- Correzione di Laplace: $P_D(i) = \frac{f_{D,i}+1}{f_D+|D|}$
- Calcolo distribuito con Hadoop: 14 milioni di probabilità!
- Le parole con PKLD maggiore sono quelle più significative nella collezione T quando questa viene confrontata con C

Nelle prime posizioni dei ranking emergono:

- bestemmie, imprecazioni, turpiloquio
- personaggi famosi (politici, giovani cantanti, ecc...)
- trasmissioni televisive
- termini complementari ai seed in espressioni d'uso comune (nano: Biancaneve, iPod, giardino; finocchio: semi, tisana)

almeno due nuovi seed tra i primi 300 termini più significativi per ogni classe

Ranking

OMOFOBIA		DISABILITA'		MISOGINIA	
Harry	cazzo	@Ty_il_nano	iPhone	@justinbieber	madonna
culo	tisana	@matteorenzi	@justinbieber	Vaffanculo	Profilo
merda	isterica	Renzi	malefico	inferno	Sesso
psiconano	foto	ottavo	Apple	Brutta	mamma
#tvoi	@GayOggi	iPod	cazzo	depressa	tette
# GF13	prezzemolo	giardino	Biancaneve	vergine	'rca
Justin	Tisana	merda	Brunetta	Bocca	inchiavabile

Conclusioni

- Sistemi distribuiti per memorizzare ed elaborare dati:
 - controproducenti per piccoli dataset
 - indispensabili per big data
- Piattaforme di cloud computing:
 - migliorano le performance delle tecnologie scalabili
 - facili da configurare ed utilizzare
 - economicamente vantaggiose (costo esperimenti: 21€)
- Raccolta ed analisi dei tweet:
 - rimozione di seed poco significativi e filtraggio in base al contesto
 - aggiunta di nuovi seed

Sviluppi futuri

- Piattaforma d'analisi dei dati:
 - aggiungere task di data visualization
 - integrare altri prodotti cloud di Google (es: Big Query)
- Elaborazione dei tweet:
 - indagare sulla semantica dei messaggi (es: sentiment analysis)
 - apprendere automaticamente language model dei tweet
- Riconoscimento di contenuti discriminatori:
 - costruire classificatori per i tweet
 - studiare la personalità degli individui per ottenere dei profili dei discriminatori (omofobo, razzista, antisemita, ecc.)
 - analizzare la struttura del grafo del social network

Domande?

Grazie per l'attenzione