

Segundo Cuatrimestre 2025

Pau Frangi Mahiques, Pablo Pardo Cotos y Diego Rodríguez Cubero $Ciencias\ Matemáticas\ e$ $Ingeniería\ Informática$

¹basado en la apuntes de Jesús Jaramillo

Contents

1	Sup	erficies Paramétricas	2
	1.1	Superficies como Conjuntos	5
	1.2	Superficies Regulares a Trozos	7

1 Superficies Paramétricas

Definición 1.0.1 [Superficie Paramétrica]

Una parametrización de una superficie paramétrica S en \mathbb{R}^3 es una aplicación $\varphi: U \to \mathbb{R}^3$ de clase C^1 definida en un abierto conexo $U \subset \mathbb{R}^2$ tal que:

$$Im(\varphi) = \{ \varphi(u, v) \in \mathbb{R}^3 : (u, v) \in U \} = S$$

Diremos que la parametrización φ es regular cuando la pareja de vectores $\left\{\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v}\right\}$ es linealmente independiente en todo punto de U. Equivalentemente, cuando el vector normal asociado a φ es no nulo en todo punto de U:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \neq \vec{0}$$

En este caso, el plano tangente a la superficie en el punto $\varphi(u_0, v_0)$ tiene como ecuaciones paramétricas:

$$\begin{cases} x = \varphi_1(u_0, v_0) + \lambda \frac{\partial \varphi_1}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_1}{\partial v}(u_0, v_0) \\ y = \varphi_2(u_0, v_0) + \lambda \frac{\partial \varphi_2}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_2}{\partial v}(u_0, v_0) \\ z = \varphi_3(u_0, v_0) + \lambda \frac{\partial \varphi_3}{\partial u}(u_0, v_0) + \mu \frac{\partial \varphi_3}{\partial v}(u_0, v_0) \end{cases} \qquad \lambda, \mu \in \mathbb{R}$$

Ejemplo

Dada la superficie $z=x^2+y^2$, podemos parametrizarla con $\varphi:\mathbb{R}^2\to\mathbb{R}^3$ dada por $\varphi(x,y)=(x,y,x^2+y^2)$. Calculemos el vector normal:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial \varphi_1}{\partial x} & \frac{\partial \varphi_2}{\partial x} & \frac{\partial \varphi_3}{\partial x} \\ \frac{\partial \varphi_1}{\partial y} & \frac{\partial \varphi_2}{\partial y} & \frac{\partial \varphi_3}{\partial y} \end{vmatrix} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = \vec{e}_1 - 2x\vec{e}_3 + 2y\vec{e}_2 \neq (0, 0, 0)$$

Ejemplo

Superficies explícitas: Sean $U \subset \mathbb{R}^2$ abierto conexo y $f: U \to \mathbb{R}$ de clase C^1 . Entonces la gráfica de f es una superficie regular con parametrización $\varphi: U \to \mathbb{R}^3$ dada por $\varphi(x,y) = (x,y,f(x,y))$. Veamos que $\vec{N}_{\varphi} \neq (0,0,0)$:

$$\vec{N}_{\varphi} = \frac{\partial \varphi}{\partial x} \times \frac{\partial \varphi}{\partial y} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ \frac{\partial \varphi_{1}}{\partial x} & \frac{\partial \varphi_{2}}{\partial x} & \frac{\partial \varphi_{3}}{\partial x} \\ \frac{\partial \varphi_{1}}{\partial y} & \frac{\partial \varphi_{2}}{\partial y} & \frac{\partial \varphi_{3}}{\partial y} \end{vmatrix} = \begin{vmatrix} \vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = \vec{e}_{1} - \frac{\partial f}{\partial x} \vec{e}_{3} + \frac{\partial f}{\partial y} \vec{e}_{2} \neq (0, 0, 0)$$

$$Im(\varphi) = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \in U, z = f(x, y)\}$$

Ejemplo

Dado el cilindro de ecuaciones $x^2 + y^2 = 1$, 0 < z < 1, buscamos una parametrización de la superficie. Tomando la siguiente parametrización:

$$\begin{cases} x = \cos(\theta) \\ y = \sin(\theta) \\ z = z \end{cases} \quad \theta \in \mathbb{R}, \quad z \in (0, 1)$$

entonces vemos que $\underbrace{x^2 + y^2}_{:} = r^2 \implies r = 1.$

Por tanto, obtenemos que nuestra parametrización es:

$$\varphi : \mathbb{R} \times (0,1) \to \mathbb{R}^3 \quad \varphi(\theta,z) = (\cos(\theta),\sin(\theta),z)$$

Calculemos el vector normal:

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ \frac{\partial \varphi_1}{\partial \theta} & \frac{\partial \varphi_2}{\partial \theta} & \frac{\partial \varphi_3}{\partial \theta} \\ \frac{\partial \varphi_1}{\partial z} & \frac{\partial \varphi_2}{\partial z} & \frac{\partial \varphi_3}{\partial z} \\ \end{vmatrix} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -\sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{vmatrix} = (\cos(\theta), \sin(\theta), 0) \neq (0, 0, 0)$$

Ejemplo

Tomando el cilindro $x^2 + y^2 = 1$, 0 < z < 1 del ejemplo anterior, podemos parametrizarlo de otra forma.

Consideramos el siguiente conjunto:

$$U = \{(u, v) : 1 < \sqrt{u^2 + v^2} < 2, \quad 0 < v < 2\pi\}$$

entonces definimos nuestra parametrización $\varphi: U \to \mathbb{R}^3$ sobre este conjunto tal que

$$\varphi(u,v) = \left(\frac{u}{\sqrt{u^2 + v^2}}, \frac{v}{\sqrt{u^2 + v^2}}, \sqrt{u^2 + v^2} - 1\right)$$

Definición 1.0.2 [Superficies Equivalentes]

Diremos que dos superficies paramétricas $\varphi: U \to \mathbb{R}^3$ y $\psi: V \to \mathbb{R}^3$, definidas respectivamente sobre los conjuntos abiertos conexos $U, V \subset \mathbb{R}^2$, son equivalentes si existe una aplicación biyectiva $h: V \to U$ de clase C^1 (es decir, un difeomorfismo) tal que:

$$\psi = \varphi \circ h.$$

Observación 1.0.1

- 1. En este caso $\varphi(U) = \psi(V)$.
- 2. En la definición se pide que los conjuntos U y V sean conexos. Como $\forall (s,t) \in V$, $D_h(s,t)$: $\mathbb{R}^2 \to \mathbb{R}^2$ es un isomorfismo lineal, sabemos que $det(D_h(s,t)) \neq 0$. Por conexión, $det(D_h(s,t))$ conserva el signo en todo V.

Definición 1.0.3 [Conservación de la Orientación]

- 1. Se dice que h conserva la orientación si $det(D_h(s,t)) > 0$ para todo $(s,t) \in V$, es decir las funciones φ y ψ tienen la misma orientación.
- 2. Se dice que h cambia la orientación si $det(D_h(s,t)) < 0$ para todo $(s,t) \in V$, es decir las funciones φ y ψ tienen orientaciones opuestas.

Lema 1.0.1

Sean $\varphi: U \to \mathbb{R}^3$ y $\psi: V \to \mathbb{R}^3$ dos parametrizaciones equivalentes de una superficie S. Entonces,

para todo $(s,t) \in V$, se cumple que:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t} = \det(D_h(s,t)) \cdot \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}(h(s,t))$$

Equivalentemente,

$$\vec{N}_{\psi}(s,t) = det(D_h(s,t)) \cdot \vec{N}_{\varphi}(h(s,t))$$

Demostración. Aplicando la regla de la cadena a $\psi = \varphi \circ h$, obtenemos la siguiente relación entre las matrices jacobianas:

$$D_{\psi}(s,t) = D_{\varphi}(h(s,t)) \cdot D_{h}(s,t).$$

En términos de las derivadas parciales, esto se traduce en:

$$\frac{\partial \psi}{\partial s} = \frac{\partial \varphi}{\partial u} \frac{\partial h_1}{\partial s} + \frac{\partial \varphi}{\partial v} \frac{\partial h_2}{\partial s}, \quad \frac{\partial \psi}{\partial t} = \frac{\partial \varphi}{\partial u} \frac{\partial h_1}{\partial t} + \frac{\partial \varphi}{\partial v} \frac{\partial h_2}{\partial t},$$

donde $h(s,t) = (h_1(s,t), h_2(s,t)).$

Podemos escribir estas ecuaciones en forma matricial como:

$$\left(\frac{\partial \psi}{\partial s}, \frac{\partial \psi}{\partial t}\right) = \left(\frac{\partial \varphi}{\partial u}, \frac{\partial \varphi}{\partial v}\right) \cdot D_h(s, t),$$

donde $D_h(s,t)$ es la matriz jacobiana de h:

$$D_h(s,t) = \begin{pmatrix} \frac{\partial h_1}{\partial s} & \frac{\partial h_1}{\partial t} \\ \frac{\partial h_2}{\partial s} & \frac{\partial h_2}{\partial t} \end{pmatrix}.$$

Ahora, consideremos el producto vectorial de las derivadas parciales de ψ :

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t}$$
.

Utilizando las expresiones anteriores, tenemos:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t} = \left(\frac{\partial \varphi}{\partial u} \frac{\partial h_1}{\partial s} + \frac{\partial \varphi}{\partial v} \frac{\partial h_2}{\partial s}\right) \times \left(\frac{\partial \varphi}{\partial u} \frac{\partial h_1}{\partial t} + \frac{\partial \varphi}{\partial v} \frac{\partial h_2}{\partial t}\right).$$

Expandiendo el producto vectorial y usando que $\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial u} = 0$ y $\frac{\partial \varphi}{\partial v} \times \frac{\partial \varphi}{\partial v} = 0$, obtenemos:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t} = \left(\frac{\partial h_1}{\partial s} \frac{\partial h_2}{\partial t} - \frac{\partial h_1}{\partial t} \frac{\partial h_2}{\partial s}\right) \left(\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}\right).$$

Notamos que el término entre paréntesis a la derecha es el determinante de la matriz jacobiana $D_h(s,t)$:

$$\det(D_h(s,t)) = \frac{\partial h_1}{\partial s} \frac{\partial h_2}{\partial t} - \frac{\partial h_1}{\partial t} \frac{\partial h_2}{\partial s}.$$

Por lo tanto, hemos demostrado que:

$$\frac{\partial \psi}{\partial s} \times \frac{\partial \psi}{\partial t} = \det(D_h(s,t)) \cdot \left(\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}\right) (h(s,t)).$$

Equivalentemente, para los vectores normales unitarios:

$$\vec{N}_{\psi}(s,t) = \det(D_h(s,t)) \cdot \vec{N}_{\varphi}(h(s,t)),$$

donde \vec{N}_{ψ} y \vec{N}_{φ} son los vectores normales unitarios asociados a las parametrizaciones ψ y φ , respectivamente.

Definición 1.0.4 [Orientación de una Superficie]

Asociadas a las parametrizaciones φ y ψ obtenemos lso vectores normales unitarios

$$ec{n}_{arphi} = rac{ec{N}_{arphi}}{||ec{N}_{arphi}||} \quad y \quad ec{n}_{\psi} = rac{ec{N}_{\psi}}{||ec{N}_{\psi}||}$$

Entonces diremos que φ y ψ tienen la misma orientación si:

$$\vec{n}_{\psi}(s,t) = \vec{n}_{\varphi}(h(s,t)) \ o \ \vec{n}_{\psi}(s,t) = -\vec{n}_{\varphi}(h(s,t))$$

1.1 Superficies como Conjuntos

Definición 1.1.1 [Superficie Simple Regular]

Diremos que $S \subset \mathbb{R}^3$ es una superficie simple regular si $S = \varphi(\overline{D})$ donde D = Int(C) siendo $C \subset \mathbb{R}^2$ una curva de Jordan regular a trozos, $y \varphi : U \to \mathbb{R}^3$ una parametrización de clase C^1 inyectiva y regular en $\overline{D} \subset U$.

En este caso, el borde de S de define como $\partial S = \varphi(C)$, que es una curva cerrada y regular a trozos en \mathbb{R}^3 .

Definición 1.1.2 [Superficie Casi-Simple Regular]

Diremos que $S \subset \mathbb{R}^3$ es una superficie casi-simple regular si $S = \varphi(\overline{D})$ donde D = Int(C) siendo $C \subset \mathbb{R}^2$ una curva de Jordan regular a trozos, $y \varphi : U \to \mathbb{R}^3$ una parametrización de clase C^1 inyectiva y regular en D.

Definición 1.1.3 [Área e Integral de una Superficie]

Dada una superficie S en \mathbb{R}^3 simple regular o casi-simple regular, y una parametrización $\varphi: U \to \mathbb{R}^3$ de clase C^1 de S, definimos:

1. El área de la superficie S como:

$$a(S) = \int_{S} 1 dS = \int_{D} \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\| du dv = \int_{D} \|\vec{N}_{\varphi}\| du dv$$

2. Si $f: S \to \mathbb{R}$ es una función continua, entonces la integral de superficie de f sobre S es:

$$\int_{S} f dS = \int_{D} f(\varphi(u, v)) \left\| \frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v} \right\| du dv = \int_{D} f(\varphi(u, v)) \|\vec{N}_{\varphi}\| du dv$$

Ejemplo

Consideramos la superficie S de \mathbb{R}^3 resultante de acotar un cono por dos planos paralelos al plano XY, y dada por las ecuaciones:

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = z^2, \ 1 < z < 2\}$$

Calculemos el área de la superficie S:

$$\begin{cases} x = r\cos(\theta) \\ y = r\sin(\theta) \\ z = r \end{cases} \qquad r^2 = x^2 + y^2 = z^2 \implies r = z \qquad \varphi(\theta, z) = \begin{cases} x = z\cos(\theta) \\ y = z\sin(\theta) \\ z = z \end{cases}$$

$$\overline{D} = \begin{bmatrix} 0, 2\pi \end{bmatrix} \times \begin{bmatrix} 1, 2 \end{bmatrix} \qquad S = \varphi(D)$$

$$\vec{N_{\varphi}} = \begin{vmatrix} \vec{e_1} & \vec{e_2} & \vec{e_3} \\ -z\sin(\theta) & z\cos(\theta) & 0 \\ \cos(\theta) & \sin(\theta) & 1 \end{vmatrix} = (z\cos(\theta), z\sin(\theta), -z)$$

$$\|\vec{N_{\varphi}}\|^2 = z^2\cos^2(\theta) + z^2\sin^2(\theta) + (-z)^2 = 2z^2 \implies \|\vec{N_{\varphi}}\| = z\sqrt{2} \neq 0 \quad \forall (0, z) \in D$$

Entonces φ es inyectiva y regular en D (aunque no en \overline{D}), luego S es una superficie casi-simple regular.

Por último, el área de la superficie S es:

$$\begin{split} a(S) &= \int_{D} \|\vec{N}_{\varphi}\| du dv = \int_{\theta=0}^{\theta=2\pi} \int_{z=1}^{z=2} z \sqrt{2} dz d\theta = \int_{\theta=0}^{\theta=2\pi} \left[\frac{z^{2}}{2} \sqrt{2} \right]_{1}^{2} d\theta \\ &= \int_{\theta=0}^{\theta=2\pi} \left(\frac{4}{2} \sqrt{2} - \frac{1}{2} \sqrt{2} \right) d\theta = \int_{\theta=0}^{\theta=2\pi} \frac{3}{2} \sqrt{2} d\theta = \frac{3}{2} \sqrt{2} \cdot 2\pi = 3\pi \sqrt{2} \end{split}$$

Ejemplo

Dada la función $f(x, y, z) = x^2 + y^2 + z^2$, calculemos la integral de superficie de f sobre la superficie S dada por la sección de cono $x^2 + y^2 = z^2$, 1 < z < 2 del ejemplo anterior.

Entonces, la integral de superficie de f sobre S es:

$$\int_{S} f dS = \int_{D} f(\varphi(\theta, z)) \|\vec{N}_{\varphi}\| d\theta dz = \int_{\theta=0}^{\theta=2\pi} \int_{z=1}^{z=2} 2z^{2} \cdot z\sqrt{2} dz d\theta = \int_{0}^{2\pi} \frac{2\sqrt{2}}{4} \left[z^{4}\right]_{1}^{2} d\theta$$
$$= \int_{0}^{2\pi} \frac{2\sqrt{2}}{4} (16 - 1) d\theta = \int_{0}^{2\pi} \frac{30\sqrt{2}}{4} d\theta = \int_{0}^{2\pi} \frac{15\sqrt{2}}{2} d\theta = \frac{15\sqrt{2}}{2} \cdot (2\pi) = 15\pi\sqrt{2}$$

Observemos que $\int_{S} f dA = \int_{S} f dS$.

Ejemplo

Área de la esfera en \mathbb{R}^3 de radio R:

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = R^2\}$$

$$\varphi: U \to \mathbb{R}^3 \qquad \varphi(\theta, \phi) = \begin{cases} x = R\cos(\theta)\sin(\phi) \\ y = R\sin(\theta)\sin(\phi) \\ z = R\cos(\phi) \end{cases} \qquad \overline{D} = \begin{cases} \theta \in [0, 2\pi] \\ \phi \in [0, \pi] \end{cases}$$

Entonces, tenemos que $D = (0, 2\pi) \times (0, \pi)$ y $\overline{D} = [0, 2\pi] \times [0, \pi]$.

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ -R\sin(\theta)\sin(\phi) & R\cos(\theta)\sin(\phi) & 0 \\ R\cos(\theta)\cos(\phi) & R\sin(\theta)\cos(\phi) & -R\sin(\phi) \end{vmatrix}$$

$$=R^{2}\sin(\phi)\begin{vmatrix}\vec{e}_{1} & \vec{e}_{2} & \vec{e}_{3} \\ -\sin(\theta) & \cos(\theta) & 0\\ \cos(\theta)\cos(\phi) & \sin(\theta)\cos(\phi) & -\sin(\phi)\end{vmatrix} = -R^{2}\sin(\phi)\left(\sin(\phi)\cos(\theta),\sin(\phi)\sin(\theta),\cos(\phi)\right)$$

$$\|\vec{N}_{\varphi}\|^{2} = R^{4} \sin^{4}(\phi) + R^{4} \sin^{2}(\phi) \cos^{2}(\phi) = R^{4} \sin^{2}(\phi) \left(\sin^{2}(\phi) + \cos^{2}(\phi)\right) = R^{4} \sin^{2}(\phi)$$
$$\|\vec{N}_{\varphi}\| = R^{2} \sin(\phi)$$

Luego el área de la esfera es:

$$a(S) = \int_{D} \|\vec{N}_{\varphi}\| du dv = \int_{\theta=0}^{\theta=2\pi} \int_{\phi=0}^{\phi=\pi} R^{2} \sin(\phi) d\phi d\theta = \int_{\theta=0}^{\theta=2\pi} \left[-R^{2} \cos(\phi) \right]_{0}^{\pi} d\theta$$
$$= \int_{\theta=0}^{\theta=2\pi} -R^{2} \left((-1) - 1 \right) d\theta = \int_{\theta=0}^{\theta=2\pi} 2R^{2} d\theta = 2R^{2} \cdot (2\pi) = 4\pi R^{2}$$

1.2 Superficies Regulares a Trozos

Definición 1.2.1 [Suma de Superficies]

Sean $S_1, S_2 \subset \mathbb{R}^3$ dos superficies simples regulares. Se dice que la superficie S es la suma de S_1 y S_2 , y se denota por $S = S_1 + S_2$, si:

1.
$$S = S_1 \cup S_2$$

2.
$$S_1 \cap S_2 \subset \partial S_1 \cap \partial S_2$$

En este caso, se define el borde de S como:

$$\partial S = \overline{(\partial S_1 \cup \partial S_2) \setminus (\partial S_1 \cap \partial S_2)}$$

 $Si \ \partial S = \emptyset$, entonces se dice que S no tiene borde y es cerrada.

Análogamente, se define la suma de superficies $S_1 + S_2 + \ldots + S_k$ siendo cada S_i una superficie simple regular.

Ejemplo

Consideramos el cubo S formado por la suma de las superficies de los seis lados del cubo $S = S_1, S_2, \ldots, S_6$. En particular tenemos que $\partial S = \emptyset$.

Ejemplo

Consideramos ahora el cilindro S formado por la suma de las superficies de los dos "tapas" del cilindro S_1, S_2 y la superficie lateral dividida en dos partes iguales S_3 y S_4 . En este caso, tenemos que $S = S_1 + S_2 + S_3 + S_4$, y como en el caso anterior, $\partial S = \emptyset$.

Ejemplo

Quitémosle una de las tapas al cilindro, entonces tenemos que $S = S_1 + S_2 + S_3$, y en este caso

$$\begin{cases} \partial(S_1 + S_2) = C_0 \cup C_1 \\ \partial S_3 = C_0 \\ \partial S = \overline{(\partial(S_1 + S_2) \cup \partial S_3) \setminus (\partial S_1 + S_2) \cap \partial S_3} = \overline{(C_0 \cup C_1 \cup C_0) \setminus (C_0)} = \overline{C_1} = C_1 \end{cases}$$

Definición 1.2.2 [Orientación de una superficie]

Sea $S \subset \mathbb{R}^3$ una superficie simple regular. Una funcion continua $\vec{n}: S \to \mathbb{R}^3$ se denomina como normal unitaria si $\forall p \in S: \vec{n}(p) \in T_p(s)$ $y ||\vec{n}(p)|| = 1$.

Plano tangente a S en p

Una superficie simple regular orientada en (S, \vec{n}) donde S es una superficie simple regular y \vec{n} es una normal unitaria.

Observación 1.2.1

Una superficie simple regular S admite dos orientaciones:

Sea $\varphi: \overline{D} \to S$ una parametrización simple regular de S (segun la definicion de S).

Consideremos ahora:

$$\vec{n}_{\varphi} = \frac{\vec{N}_{\varphi}}{||\vec{N}_{\varphi}||} = \frac{\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}}{||\frac{\partial \varphi}{\partial u} \times \frac{\partial \varphi}{\partial v}||}$$

Entonces $\vec{n} = \vec{n}_{\varphi} \circ \varphi^{-1} : S \to \mathbb{R}^3$ es una normal unitaria en S, puesto que $\varphi : \overline{D} \to S$ es un homomorfismo.

Tambien podemos tomar $-\vec{n}: S \to \mathbb{R}^3$ como otra normal unitaria en S.

Sean $\vec{n_1}, \vec{n_2}: S \to \mathbb{R}^3$ dos normales unitarias en S. Entonces $h: S \to \mathbb{R}^3$, definida por $h(p) = \langle \vec{n_1}(p), \vec{n_2}(p) \rangle$, es una función continua en S y ademas $||h(p)|| = 1 \quad \forall p \in S$.

Como S es conexa, obtenemos que $h(p) \equiv 1$ o bien $h(p) \equiv -1$, $\forall p \in S$.

Luego $\vec{n_1} = \vec{n_2} \ o \ \vec{n_1} = -\vec{n_2}$.

$$\overline{D} \to_{\varphi} S \to_{\vec{n}} \mathbb{R}^3 \leftarrow_{\vec{n}_{\varphi}} \overline{D}$$

Definición 1.2.3 [Integral en una superficie simple, regular y orientada]

Sean (S, \vec{n}) superficie simple regular orientada y $\vec{F}: S \to \mathbb{R}^3$ un campo vectorial continuo, definimos:

$$\int_{(S,\vec{n})} \vec{F} = \int_{S} \langle \vec{F}, \vec{n} \rangle$$

Observación 1.2.2

 $\langle \vec{F}, \vec{n} \rangle$ es un campo escalar en S.

 $Si \varphi : \overline{D} \to S$ es una parametrización simple regular de S tal que $\vec{n}_{\varphi} = \vec{n} \circ \varphi$ entonces:

$$\int_{(S,\vec{n})} \vec{F} = \int_{S} \langle \vec{F}, \vec{n} \rangle = \int_{D} \langle \vec{F}(\varphi(u,v)), \vec{n}_{\varphi}(u,v) \rangle \| \vec{N}_{\varphi}(u,v) \| du dv = \int_{D} \langle \vec{F}(\varphi(u,v)), \vec{N}_{\varphi}(u,v) \rangle du dv$$

8

Ejemplo

Sea $S = \{(x, y, z) \in \mathbb{R}^3 : z = x^2 + y^2 \le 1\}$ orientada con la normal "exterior".

Sea ademas $\vec{F}(x,y,z)=(xz,yz,0)$. Y sea entonces $\overline{D}=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$ con $\partial D=C=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$.

Entonces podemos tomar $\varphi: \overline{D} \to S$, $\varphi(x,y) = (x,y,x^2+y^2)$, y nos preguntamos \vec{l}_{φ} induce \vec{l} ? Tenemos entonces $\partial S = \varphi(\partial D) = \{(x,y,z) \in \mathbb{R}^3 x^2 + y^2 = 1 = z\}$, y ahora calculamos:

$$\vec{N}_{\varphi} = \begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = (-2x, -2y, 1)$$

Trasello tenemos que $\vec{N}_{\varphi}(0,0) = (0,0,1)$ apunta hacia "arriba", y $\varphi(0,0) = (0,0,0)$, hacia "debajo", por lo que \vec{n}_{φ} es opuesta a \vec{n} .

$$-\int_{D} \langle (x(x^{2}+y^{2}), y(x^{2}+y^{2}), 0), (-2x, -2y, 1) \rangle dxdy = +\int_{D} 2x^{2}(x^{2}+y^{2}) + 2y^{2}(x^{2}+y^{2}) dxdy = 2\int_{D} (x^{2}+y^{2})^{2} dxdy = \frac{2\pi}{3}$$

Definición 1.2.4 [Orientacion inducida en el borde]

Sea (S, \vec{n}) una superficie simple regular orientada y sea $\varphi : \overline{D} \to S$ una parametrización simple regular de S que induce a la orientacion \vec{n} , es decir, $\vec{n}_{\varphi} = \vec{n} \circ \varphi$.

Consideremos $\partial S = \varphi(\partial D)$, entonces la orientación en ∂S inducida por \vec{n} es el sentido de recorrido que se obtiene componendo con φ cuando ∂D se recorre en el sentido positivo.

Observación 1.2.3

 $Si \ \gamma : [a,b] \to \partial D$ recorre ∂D en el sentido positivo $\implies \varphi \circ \gamma : [a,b] \to \partial S$ recorre ∂S con la orientación inducida por \vec{n} .

Es decir, ∂S se recorre de manera que el "sacacorchos" avanza en la direccion de \vec{n} .

Equivalentemente, ∂S se recorre dejando la superficie de S "a la izquierda" si la normal \vec{n} representa la vertical.