Résolution de problèmes à contraintes temporelles

Maëlle Gautrin

Année scolaire 2021-2022

Table des matières

- Introduction
- 2 Etude d'un cas particulier (STP)
 - Méthode de Floyd-Warshall
 - Obtention d'une solution particulière
- 3 Résolution du cas général(TCSP)
 - Méthode naïve
 - Approximation de la solution

- Liste des événements ponctuels :
 - ► X1 : le donneur décède à l'hôpital
 - X2 : début du prélèvement
 - X3 : fin du prélèvement

Modélisons une situation de prélèvement d'organe :

- Liste des événements ponctuels :
 - ► X1 : le donneur décède à l'hôpital
 - X2 : début du prélèvement
 - X3 : fin du prélèvement

(X1)

- Liste des événements ponctuels :
 - ► X1 : le donneur décède à l'hôpital
 - X2 : début du prélèvement
 - X3 : fin du prélèvement

- Liste des événements ponctuels :
 - ► X1 : le donneur décède à l'hôpital
 - X2 : début du prélèvement
 - X3 : fin du prélèvement

- Liste des événements ponctuels :
 - ► X1 : le donneur décède à l'hôpital
 - X2 : début du prélèvement
 - X3 : fin du prélèvement

- Liste des événements ponctuels :
 - ► X1 : le donneur décède à l'hôpital
 - X2 : début du prélèvement
 - X3 : fin du prélèvement

- ► Peut-on récupérer l'organe?
- ► En combien de temps au minimum?
- Quelles instructions donner aux soignants pour qu'ils se coordonnent?

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

- ► X0 : décès du donneur
- ► X1 : arrivée du chirurgien
- ► X2 : début de l'opération
- ► X3 : fin de l'opération et préparation de l'organe
- ► X4 : fin de la préparation
- ► X5 : arrivée de l'organe à destination

Etude d'un cas particulier (STP)

Une nouvelle structure de donnée

Une nouvelle structure de donnée

Une nouvelle structure de donnée

$$3 \le X2 - X1 \le 7$$
peut s'écrire
$$\begin{cases} X2 - X1 \le 7 \\ X1 - X2 \le -3 \end{cases}$$

Représentation matricielle

$$3 < X2 - X1 < 7$$

peut s'écrire
$$\begin{cases} X2 - X1 \le 7 \\ X1 - X2 \le -3 \end{cases}$$

$$\begin{pmatrix} 0 & 15 & 15 & 45 & +\infty & 90 \\ -2 & 0 & 7 & +\infty & +\infty & +\infty \\ 0 & -3 & 0 & 30 & +\infty & +\infty \\ 0 & +\infty & -25 & 0 & 35 & +\infty \\ +\infty & +\infty & +\infty & -25 & 0 & +\infty \\ 0 & +\infty & +\infty & +\infty & -15 & 0 \end{pmatrix}$$

Algorithme de Floyd-Warshall

A partir de :

$$\begin{pmatrix} 0 & 15 & 15 & 45 & +\infty & 90 \\ -2 & 0 & 7 & +\infty & +\infty & +\infty \\ 0 & -3 & 0 & 30 & +\infty & +\infty \\ 0 & +\infty & -25 & 0 & 35 & +\infty \\ +\infty & +\infty & +\infty & -25 & 0 & +\infty \\ 0 & +\infty & +\infty & +\infty & -15 & 0 \end{pmatrix}$$

Algorithme de Floyd-Warshall

A partir de :

$$\begin{pmatrix} 0 & 15 & 15 & 45 & +\infty & 90 \\ -2 & 0 & 7 & +\infty & +\infty & +\infty \\ 0 & -3 & 0 & 30 & +\infty & +\infty \\ 0 & +\infty & -25 & 0 & 35 & +\infty \\ +\infty & +\infty & +\infty & -25 & 0 & +\infty \\ 0 & +\infty & +\infty & +\infty & -15 & 0 \end{pmatrix}$$

on obtient :

$$\begin{pmatrix} 0 & 12 & 15 & 45 & 75 & 90 \\ -2 & 0 & 7 & 37 & 72 & 88 \\ -5 & -3 & 0 & 30 & 65 & 85 \\ -30 & -28 & -25 & 0 & 35 & 60 \\ -55 & -53 & -50 & -25 & 0 & 35 \\ -70 & -68 & -65 & -40 & -15 & 0 \end{pmatrix}$$

Quelles instructions précises peut-on transmettre à l'équipe médicale?

- Quelles instructions précises peut-on transmettre à l'équipe médicale?
- ► Méthode utilisée :
 - -choisir une valeur pour un intervalle

- Quelles instructions précises peut-on transmettre à l'équipe médicale?
- ► Méthode utilisée :
 - -choisir une valeur pour un intervalle
 - -réduire le graphe en respectant cette valeur

- Quelles instructions précises peut-on transmettre à l'équipe médicale?
- ► Méthode utilisée :
 - -choisir une valeur pour un intervalle
 - -réduire le graphe en respectant cette valeur
 - jusqu'à obtenir une seule valeur par intervalle

Résolution des TCSP : solution naïve

Idée : décomposer un TCSP en STP

Résolution des TCSP : solution naïve

Idée : décomposer un TCSP en STP

Résolution des TCSP : solution naïve

Idée : décomposer un TCSP en STP

Ce qui donne $\prod_{i=1}^a k_i$ STP avec a le nombre d'arêtes et k_i le nombre d'intervalles de l'arête i.

Résolution des TCSP : solution naïve

L'ensemble des solutions d'un TCSP est l'union des solutions de chaque STP.

- ► Il faut faire le transport en hélicoptère
- ► Il est possible d'attendre le chirurgien disponible

Idée : approcher un TCSP par un STP

- représenter chaque ensemble d'intervalle par un seul intervalle qui englobe tous ceux de l'ensemble.
- ▶ ici : { $[10,+\infty[; [2,15]]$ } sera représenté par $[2,+\infty[$ et { $[15;+\infty[; [40;\infty[]]]$ par $[15;+\infty[.]]$

► On considère le STP suivant :

- ► On considère le STP suivant :
- ► On cherche son réseau minimal

- ► On considère le STP suivant :
- ► On cherche son réseau minimal

- ► On considère le STP suivant :
- ► On cherche son réseau minimal
- ► On intersecte avec le réseau de départ

- ► On considère le STP suivant :
- ► On cherche son réseau minimal
- ► On intersecte avec le réseau de départ

- ► On considère le STP suivant :
- ► On cherche son réseau minimal
- ► On intersecte avec le réseau de départ

- ► On considère le STP suivant :
- ► On cherche son réseau minimal
- ► On intersecte avec le réseau de départ

- ► On considère le STP suivant :
- ► On cherche son réseau minimal
- ► On intersecte avec le réseau de départ
- ► On itère ce processus jusqu'à ce qu'il n'y ait plus de changements

Résultat final

► Finalement on obtient :

Contre-exemple

► TCSP initial :

► STP le représentant :

Contre-exemple

L'approximation donne :

► Alors que le réseau minimal est :

Résultat final

- ► On peut maintenant répondre aux questions suivantes :
 - Est-il nécessaire de déranger l'anesthésiste occupé?
 - ▶ Peut-on se contenter de faire le trajet en ambulance?

