

日本国特許庁 JAPAN PATENT OFFICE

|0|500014 |0|500014 |PECID 124AN20032 |WIPO PCT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年12月2.8日

出願番号

Application Number:

特願2001-399174

[ST.10/C]:

[JP2001-399174]

出 願 人 Applicant(s):

信越化学工業株式会社

PEST AVAILABLE COFY

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

2002年 9月 6日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

13723

【提出日】

平成13年12月28日

【あて先】

特許庁長官 及川 耕造 殿

【国際特許分類】

H01F 01/053

【発明者】

【住所又は居所】

福井県武生市北府2-1-5 信越化学工業株式会社

磁性材料研究所内

【氏名】

榊 一晃

【発明者】

【住所又は居所】

福井県武生市北府2-1-5 信越化学工業株式会社

磁性材料研究所内

【氏名】

笠嶋 匡樹

【発明者】

【住所又は居所】

福井県武生市北府2-1-5 信越化学工業株式会社

磁性材料研究所内

【氏名】

浜田 隆二

【発明者】

【住所又は居所】

福井県武生市北府2-1-5 信越化学工業株式会社

磁性材料研究所内

【氏名】

美濃輪 武久

【特許出願人】

【識別番号】

000002060

【氏名又は名称】

信越化学工業株式会社

【代理人】

【識別番号】

100079304

【弁理士】

【氏名又は名称】 小島 隆司

【選任した代理人】

【識別番号】 100103595

【弁理士】

【氏名又は名称】 西川 裕子

【手数料の表示】

【予納台帳番号】 003207

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 希土類焼結磁石の製造方法

【特許請求の範囲】

【請求項1】 R (但し、RはSm又はSmを50重量%以上含む2種以上の希土類元素) 20~30重量%、Fe10~45重量%、Cu1~10重量%、Zr0.5~5重量%、残部Co及び不可避的不純物からなる合金を溶解、鋳造し、粉砕、微粉砕、磁場中成形、焼結、時効を順次行って焼結磁石とし、更に該焼結磁石を切断及び/又は研磨して表面を加工後、金属メッキを施し、その後、80~850℃で10分~50時間熱処理することを特徴とする希土類焼結磁石の製造方法。

【請求項2】 金属メッキの金属が、Cu、Ni、Co、Sn及びそれらの合金の少なくとも1種であることを特徴とする請求項1記載の希土類焼結磁石の製造方法。

【請求項3】 熱処理が、酸素分圧が10⁻⁴Pa~50kPaであるアルゴン、窒素、又は低圧真空雰囲気下において行われることを特徴とする請求項1又は2記載の希土類焼結磁石の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、水素雰囲気に長時間晒されるモーター等に用いられる Sm_2 Co_{17} 系磁石の製造方法に関する。

[0002]

【従来の技術】

希土類元素と遷移金属の金属間化合物においては、水素が結晶格子間に侵入する、即ち、合金中に水素を吸蔵、放出する特性を持っており、その特性はいるいるな分野で利用されている。その例としては、 $LaNi_5$ に代表される水素吸蔵合金による水素電池が挙げられ、また、希土類焼結磁石においても、 R_2 Fe $_{14}$ B系合金の粉砕方法として、更に R_2 Fe $_{14}$ B系ボンド磁石の製造方法(HDDR 特開平3-129702号公報)として利用されている。

[0003]

しかしながら、合金中又は磁石中に水素を吸蔵、放出させた場合、水素脆性を 引き起こしてしまう。そのため、水素雰囲気中において、希土類焼結磁石を用い たモーター等を使用した場合、希土類焼結磁石が水素脆化を引き起こし、素材に ワレ、クラックもしくは粉化がおこるという問題が生じている。

. [0004]

現在、希土類焼結磁石には、 R_2 Fe $_{14}$ B系、 $SmCo_5$ 系、 Sm_2 Co $_{17}$ 系等の種類がある。一般に、水素に対しては、2-17型結晶構造よりも1-5型結晶構造、1-5型結晶構造よりも2-7型結晶構造の方がプラトー圧は低い、即ち、レアアースリッチ(以下、Rリッチと称す)な合金のほうが水素吸蔵されやすい傾向にあり、水素脆化しやすい。

[0005]

 $R_2Fe_{14}B$ 系磁石は、磁石中にRリッチ相を有するため、O. 1 MP a 以下の圧力の水素雰囲気下で、容易に水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じる。通常、 $R_2Fe_{14}B$ 系磁石は、耐食性向上のためメッキ、樹脂コーティングなどの表面処理がなされているが、水素脆化を防止する手段とはなっていない。この問題を解決する方法として、 $R_2Fe_{14}B$ 系磁石の表面処理膜に水素吸蔵合金を含有させる方法を提案した(特願平11-871196)。この方法により作製された $R_2Fe_{14}B$ 系磁石は、O. 1 MP a 以下の圧力の水素雰囲気下においては、水素脆性を引き起こさないものの、それを超える圧力の水素雰囲気下においては、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じる場合がある。

[0006]

 $SmCo_5$ 系磁石も、 $R_2Fe_{14}B$ 系磁石と同様に、Rリッチ相を有すると共に、主相である $SmCo_5$ 相のプラトー圧が約0. 3MPaである。このことから、0. 3MPaを超える圧力の水素雰囲気中では、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じる。

[0007]

 Sm_2Co_{17} 系磁石は、主相が2-17相であり、 $R_2Fe_{14}B$ 系、 $SmCo_5$

系に比べRリッチではないことと、Rリッチ相を含有しないため、水素脆性を引き起こしにくい。しかしながら、1MPaを超える圧力の水素雰囲気中では、他の希土類焼結磁石と同様に、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じることがわかっている。

[0008]

耐水素脆性を向上させるためには、 Sm_2Co_{17} 系磁石を焼結磁石とし、切断及び/又は研磨して表面を加工後、酸素分圧 $10^{-6}\sim152$ torrの雰囲気において熱処理すればよいことが分かっている(特願2000-231248号)。そうすることにより、磁石表面にCo及び/又はCo、Fe中に Sm_2O_3 が微細に分散している層を存在させていれば、3 MPaを超える高圧水素雰囲気下においても水素脆性は起こさない。しかし、 Sm_2Co_{17} 系磁石及びCo及び/又はCo、Fe中に Sm_2O_3 が微細に分散している層は、硬く、欠け易いため、製品組み立て等、取扱いの際、チッピング等を引き起こす場合がある。チッピング等を引き起こした希土類焼結磁石は、磁気特性には影響はないものの、耐水素脆性は大きく低下し、表面層のない場合と同等になってしまう。従って、1 MPaを超える圧力の水素雰囲気中では、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が起こるため、そのような雰囲気中では、使用することができない。

[0009]

【発明が解決しようとする課題】

本発明は、このような問題を解決した $\mathrm{Sm_2Co_{17}}$ 系焼結磁石の製造方法を提供するものである。即ち、従来の希土類焼結磁石の様に、水素雰囲気下で、水素脆性を引き起こし、磁石素材にワレ、クラックもしくは粉化が生じるという問題を解決した $\mathrm{Sm_2Co_{17}}$ 系焼結磁石の製造方法を提供することを目的とする。

[0010]

【課題を解決するための手段及び発明の実施の形態】

本発明者は、上記目的を達成するため鋭意検討を行った結果、焼結、時効後の 焼結磁石を表面加工後、金属メッキを施し、更に最適な熱処理をすることで、磁 石体表面に耐水素性に優れた層を形成するという、高圧の水素雰囲気中でも水素

脆性を引き起こさない希土類焼結磁石の製造方法を見い出した。このことから、水素雰囲気に長時間晒されるモーター等に好適に用いられるSm₂Со₁₇系焼結磁石が得られることを知見し、本発明をなすに至った。

[0011]

即ち、本発明は、前記問題を解決する方法として下記(1)~(3)の希土類 永久磁石の製造方法を提供するものである。

- (1) R(但し、RはSm又はSmを50重量%以上含む2種以上の希土類元素) 20~30重量%、Fe10~45重量%、Cu1~10重量%、Zr0.5~5重量%、残部Co及び不可避的不純物からなる合金を溶解、鋳造し、粉砕、微粉砕、磁場中成形、焼結、時効を順次行って焼結磁石とし、更に該焼結磁石を切断及び/又は研磨して表面を加工後、金属メッキを施し、その後、80~850℃で10分~50時間熱処理することを特徴とする希土類焼結磁石の製造方法
- (2)金属メッキの金属が、Cu、Ni、Co、Sn及びそれらの合金の少なくとも1種であることを特徴とする(1)記載の希土類焼結磁石の製造方法、
- (3) 熱処理が、酸素分圧が10⁻⁴Pa~50kPaであるアルゴン、窒素、又は低圧真空雰囲気下において行われることを特徴とする(1)又は(2)記載の希土類焼結磁石の製造方法。

[0012]

以下に、本発明の詳細を説明する。

本発明におけるSm₂Co₁₇系焼結磁石合金組成の主成分は、Sm又はSmを 50重量%以上含む2種以上の希土類元素20~30重量%、Fe10~45重量%、Cu1~10重量%、Zr0.5~5重量%、残部Co及び不可避的不純物からなる。前記Sm以外の希土類金属としては、特に限定されるものではなく、Nd、Ce、Pr、Gdなどを挙げることができる。希土類元素中のSmの含有量が50重量%未満の場合や、希土類元素量が20重量%未満、30重量%を超える場合は、有効な磁気特性をもつことはできない。

[0013]

本発明の Sm_2Co_{17} 系磁石合金は、上記組成範囲の原料をアルゴン等の非酸

化性雰囲気中において、高周波溶解により溶解、鋳造する。

[0014]

次に、前記 S m₂ C o 17 系磁石合金を粗粉砕し、次いで平均粒径 1 ~ 1 O μ m 、 好ましくは約 5 μ m に微粉砕する。この粗粉砕は、例えば、不活性ガス雰囲気中で、ジョークラッシャー、ブラウンミル、ピンミル及び水素吸蔵等により行うことができる。また、前記微粉砕は、アルコール、ヘキサン等を溶媒に用いた湿式ボールミル、不活性ガス雰囲気中による乾式ボールミル、不活性ガス気流によるジェットミル等により行うことができる。

[0015]

次に、前記微粉砕粉を、好ましくは $10kOe以上の磁場を印可することが可能な磁場中プレス機等により、好ましくは<math>500kg/cm^2$ 以上 $2000kg/cm^2$ 以上 $2000kg/cm^2$ 未満の圧力により圧縮成形する。続いて、得られた圧縮成形体を、熱処理炉により、アルゴンなどの非酸化性雰囲気ガス中で、 $1100\sim1300$ で、好ましくは $1150\sim1250$ でにおいて、 $0.5\sim5$ 時間、焼結、溶体化し、終了後、急冷を行う。

[0016]

続いて、アルゴン雰囲気中、700~900℃、好ましくは750~850℃ の温度で、5~40時間保持し、-1.0℃/分の降温速度で400℃以下まで 徐冷する時効処理を施し、切断及び/又は研磨して表面の加工仕上げを行う。こ の際、特に限定されるものではないが、希土類焼結磁石体に面取りがなされてい ることが望ましい。

[0017]

この表面加工仕上げ後、前記希土類焼結磁石体に金属メッキを施す。前記金属メッキの金属は、Cu、Ni、Co、Sn及びそれらの合金の少なくとも1種からなり、メッキ厚さは、1~100μm、特に1~50μmが好ましい。また多層メッキを施してもよい。この金属メッキを施す前処理として、特に限定されるものではないが、前記希土類焼結磁石体をアルカリ脱脂、酸洗浄、水洗することが望ましい。メッキの成膜方法としては、特に限定されるものではないが、電解メッキ法が好ましい。また、前記希土類焼結磁石体をメッキ液に浸漬する方法は

、バレル法又は引っ掛け治具法のいずれでもよく、希土類焼結磁石体の寸法及び形状によって適当に選択される。

[0018]

なお、電解メッキ液としては、公知の組成のメッキ液を使用し、そのメッキ液に応じた公知の条件でメッキすることができるが、特にpH2~12のメッキ液が好適である。

[0019]

上記方法により金属メッキを施した後、酸素分圧が10⁻⁴Pa~50kPa、好ましくは10⁻⁴Pa~30kPaであるアルゴン、窒素、空気又は真空雰囲気下において、10分~50時間、80~850℃、好ましくは400~600℃で熱処理する。前記熱処理時間は、10分未満では、耐水素性に優れた層の形成が十分でない、或いは、ばらつきが多くなるため適当ではなく、また、50時間を超える熱処理は、効率的ではないことと、耐水素性に優れた層が厚くなることにより磁気特性を劣化させる原因となることがあるため適当ではない。前記熱処理温度は、80℃未満では、耐水素性に優れた希土類焼結磁石を得るために長時間の処理が必要となり、効率的ではなく、また、850℃を超える温度では、耐水素性に優れた層の形成は成されるものの、希土類焼結磁石と金属メッキが反応する、及び磁石が相変態を起こし磁気特性の劣化が生じる。ちなみに、上記耐水素性に優れた層は、メッキ金属の酸化物層であり、0.1~100μmの厚さがあることが好ましく、更に好ましくは0.1~20μmである。

[0020]

次いで、希土類焼結磁石体表面に樹脂塗装(吹き付け塗装、電着塗装、粉体塗 装或いはディッピング塗装等のいわゆる樹脂塗装)を施すこともできる。樹脂塗 装による皮膜は、耐水素性を有していないが、希土類焼結磁石が用いられたモー ターなどが使用される雰囲気により耐酸性を有する必要があることや、モーター などに希土類焼結磁石が組み込まれる際、表面層に傷をつけないため成されるこ ととなる。なお、樹脂塗装の樹脂は、特に限定されるものではないが、アクリル 系、エポキシ系、フェノール系、シリコーン系、ポリエステル系及びポリウレタ ン系樹脂等が望ましい。

[0021]

【実施例】

次に本発明の実施例を挙げて具体的に説明するが、本発明はこれらに限定されるものではない。

[0022]

[実施例1]

 Sm_2Co_{17} 系磁石合金は、Sm:25.0重量%、Fe:17.0重量%、Cu:4.5重量%、Zr:2.5重量%、残部Coの組成になるように配合し、アルゴンガス雰囲気中で、アルミナルツボを使用して高周波溶解炉で溶解し、鋳型鋳造することにより作製した。

[0023]

次に、前記 Sm_2Co_{17} 系磁石合金を、ジョークラッシャー、ブラウンミルで約 500μ m以下に粗粉砕後、窒素気流によるジェットミルにより平均粒径約 5μ mに微粉砕を行った。得られた微粉砕粉を、磁場中プレス機により15kOeの磁場中に7000000円力で成形した。得られた成形体は熱処理炉を用い、アルゴン雰囲気中で、1190000、2時間焼結した後、アルゴン雰囲気中、<math>117500、100000円力で、10000000円分の機結体を、アルゴン雰囲気中、1000000円分の機結体を、アルゴン雰囲気中、10000000円分の降温速度で徐冷を行い、焼結磁石を作製した。得られた焼結磁石から、1000000円分の降温速度で徐冷を行い、焼結磁石を作製した。得られた焼結磁石から、1000000000円の降温速度で徐冷を行い、焼結磁石を作製した。

[0024]

次に、前記焼結磁石に、ピロリン酸Cu60g/L、ピロリン酸K240g/L、シュウ酸K30g/Lで調整したメッキ浴を用い、浴温度40C、電流密度 1. $5A/dm^2$ の条件で電解Cuメッキを 20μ m施し、その後、550C、12時間、空気中(酸素分圧20kPa)の熱処理を施し、室温まで徐冷し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、Vibrating Sample Magnetometer (以下、VSMと称す)により磁気特性の測定を行った。

[0025]

前記水素ガス試験用試料を耐圧容器に入れ、水素、10MPa、25℃の条件で封入し、1日放置するという水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察し、更にVSMにより磁気特性の測定を行った。

[0026]

[実施例2]

実施例1と同様な組成、方法で焼結磁石を作製した。次に、得られた焼結磁石から実施例1と同様に5×5×5mmに磁石を切り出した。前記磁石に対し、実施例1と同様な条件で電解Cuメッキを20μm施し、その後、550℃、12時間、真空中(酸素分圧10⁻²Pa)の熱処理を施し、室温まで徐冷し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、VSMにより磁気特性の測定を行った。前記水素ガス試験用試料に対し、実施例1と同様な条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察し、更にVSMにより磁気特性の測定を行った。

[0027]

[比較例1]

実施例1と同様な組成、方法で焼結磁石を作製した。次に、得られた焼結磁石から実施例1と同様に5×5×5mmに磁石を切り出し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、VSMにより磁気特性の測定を行った。前記水素ガス試験用試料に対し、実施例1と同様な条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察した。

[0028]

[比較例2]

実施例1と同様な組成、方法で焼結磁石を作製した。次に、得られた焼結磁石から実施例1と同様に5×5×5mmに磁石を切り出した。前記磁石に対し、実施例1と同様な条件で電解Cuメッキを20μm施し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、VSMにより磁気特性の測定を行った。前記水素ガス試験用試料に対し、実施例1と同様な条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察した。

[0029]

[比較例3、4]

実施例1と同様な組成、方法で焼結磁石を作製した。次に、得られた焼結磁石から実施例1と同様に5×5×5mmに磁石を切り出した。前記磁石に対し、実施例1と同様な条件で電解Cuメッキを20μm施し、その後、50℃、12時間、空気中(酸素分圧20kPa) [比較例3]、及び、900℃、12時間、空気中(酸素分圧20kPa) [比較例4]の熱処理を施し、室温まで徐冷し、更にエポキシ系樹脂を吹き付けにより塗装し、水素ガス試験用試料を得、VSMにより磁気特性の測定を行った。前記水素ガス試験用試料に対し、実施例1と同様な条件で水素ガス試験を施し、その後取り出した。取り出した磁石は、外観を目視で観察し、更にVSMにより磁気特性の測定を行った。

[0030]

【表1】

	表面処理	水素ガス試験	水素ガス試験後	表面層の
	条件	条件	外観	厚さ
実施例 1	Cu メッキ(20μm) + 550℃×12h(O ₂ :20kPa)		変化無し	5 μ m
実施例 2	Cu メッキ(20 μ m) + 550℃×12h(O ₂ :10 ⁻² Pa)	·	変化無し	1 μ m
比較例 1	なし	なし 10Mpa 粉々 25°C		-
比較例 2	Cu メッキ(20μm)	1日	粉々	·
比較例 3	Cu メッキ(20 μ m) + 50℃×12h(O ₂ :20kPa)		粉々	測定不能
比較例 4	Cu メッキ(20μm) + 900℃×12h(O ₂ :20kPa)		変化無し	20 μ m

^{*}測定不能は酸化物層が形成されていたものの、薄層で測定できなかった。

[0031]

表1に、熱処理条件、水素ガス試験条件、水素ガス試験後の外観を示した。実施例1、2及び比較例4は、水素ガス試験において変化がなかったことに対し、 比較例1、2及び3は、粉々に粉砕されていた。このことから、実施例1、2及

び比較例4は、水素脆性を引き起こさなかったことは明らかである。

[0032]

【表2】

	表面処理前			水素ガス試験前		水素ガス試験後			
	Br [kG]	iHc [kOe]	(BH) max [MGOe]	Br [kG]	iHc [k0e]	(BH) max [MGOe]	Br [kG]	iHc [kOe]	(BH) max [MGOe]
実施例 1	11.02	14. 55	28. 2	11.00	14.85	28. 0	11. 00	14.83	28. 0
実施例 2	11.05	14. 88	28. 4	11.03	15. 05	28. 2	11: 03	14. 98	28. 2
比較例 1	11. 03	14. 32	28. 3	11.03	14. 32	28. 3	X	X	\times
比較例 2	11. 02	14. 45	28. 1	11.00	14. 40	28. 0	X		
比較例 3	11.02	14. 50	28. 1	10. 99	14.40	27.9	X		
比較例 4	11. 03	14. 66	28. 2	11.00	3. 51	11.51	11.00	3. 45	11. 50

[0033]

表2に、表面処理前、及び水素ガス試験前後の磁石の磁気特性を示した。表面 処理前、及び水素ガス試験前後で、実施例1、2は、ほとんど磁気特性の変化は なかったことに対し、比較例4は、表面処理前と水素ガス試験前で大きく磁気特 性が変化していることが分かる。このことは、実施例1、2において、表面処理 による磁気特性の劣化、及び、水素脆性がなかったことと、比較例4が表面処理 において磁気特性の劣化を招いてしまったことを示している。比較例1、2及び 3は、水素処理により粉砕されてしまったため、水素処理後の磁気特性は、測定 不能であった。

[0034]

以上、表1、2は、比較例1~4では、表面処理により磁気特性が明らかに劣化した又は耐水素性の向上が見られなかったのに対し、実施例1、2では、表面処理により磁気特性が劣化することなく、耐水素性が向上したことを示している

[0035]

【発明の効果】

本発明の Sm_2Co_{17} 系焼結磁石の製造方法により、水素雰囲気中においても、水素脆性を引き起こさない、モーター等に使用できる希土類焼結磁石を得ることが可能となる。

【書類名】 要約書

【要約】

【解決手段】 R(但し、RはSm又はSmを50重量%以上含む2種以上の希土類元素)20~30重量%、Fe10~45重量%、Cu1~10重量%、Zr0.5~5重量%、残部Co及び不可避的不純物からなる合金を溶解、鋳造し、粉砕、微粉砕、磁場中成形、焼結、時効を順次行って焼結磁石とし、更に該焼結磁石を切断及び/又は研磨して表面を加工後、金属メッキを施し、その後、80~850℃で10分~50時間熱処理することを特徴とする希土類焼結磁石の製造方法。

【効果】 本発明のSm₂Co₁₇系焼結磁石の製造方法により、水素雰囲気中においても、水素脆性を引き起こさない、モーター等に使用できる希土類焼結磁石を得ることが可能となる。

【選択図】 なし

出願人履歷情報

識別番号

[000002060]

1. 変更年月日

1990年 8月22日

[変更理由]

新規登録

住 所

東京都千代田区大手町二丁目6番1号

氏 名

信越化学工業株式会社