

UNIVERSITY OF GHANA

(All rights reserved)

BSc/BA, FIRST SEMESTER EXAMINATIONS: 2017/2018

DEPARTMENT OF MATHEMATICS

MATH 223: CALCULUS II (3 credits)

INSTRUCTION:

ANSWER ANY 4 OUT OF THE FOLLOWING 6 QUESTIONS

TIME ALLOWED:

TWO HOURS AND THIRTY MINUTES $\left(2\frac{1}{2} \text{ hours}\right)$

1. (a) Use the Mean Value Theorem to establish the following inequality

$$e^{a}(x-a) < e^{x} - e^{a} < e^{x}(x-a),$$

if a < x. [15 Marks]

(b) By considering the derivative of the function $f:[-1,1]\to\mathbb{R}$ defined by

$$f(x) = \frac{2x}{x^2 + 1},$$

show that f^{-1} exists and find $(f^{-1})'(\frac{4}{5})$.

[15 Marks]

(c) Evaluate the following limit

$$\lim_{x \to \infty} \left(\frac{x+1}{x+2} \right)^x.$$

[20 Marks]

- 2. (a) Express $5 \sinh x + \cosh x$ in the form $Ae^x + Be^{-x}$, where A and B are integers. [10 Marks]
 - (b) Solve the equation $5 \sinh x + \cosh x + 5 = 0$, giving your answer in the form $\ln a$, where $a \in \mathbb{R}$. [15 Marks]
 - (c) Differentiate the following functions with respect to x

(i)
$$\sinh x \tanh x$$
 (ii) $\int_{\sqrt{x}}^{x} \frac{\sin t}{t} dt$. [25 Marks]

- (a) Use the Riemann sum to calculate the area under the curve $y = -x^2 + 3x + 2$ between x = -1 and x = 2.
 - (b) Let $R = \lim_{n \to \infty} \left| \sum_{i=0}^{n-1} \left(3 + \frac{4j}{n} \right)^2 \cdot \frac{4}{n} \right|$, write R as a definite integral and hence evaluate R.

[15 Marks]

(c) If $x^y = e^{x-y}$, prove that

$$\frac{dy}{dx} = \frac{\ln x}{(1 + \ln x)^2}.$$

[15 Marks]

- (a) Evaluate the following integrals
 - (i) $\int \frac{x+1}{\sqrt{x^2-x+1}} dx$ (ii) $\int \frac{dx}{5+3\cos x}$ (Hint: use the substitution $t=\tan(x/2)$)

[25 Marks]

- (b) Evaluate the following definite integrals
 - (i) $\int_{0}^{2} \frac{dx}{(4+x^{2})^{2}}$ (Hint: Use the substitution $x=2\tan\theta$)

(ii)
$$\int_{1}^{2} x^{4} (\ln x)^{2} dx$$
 (Hint: Use integration by parts). [25 Marks]

(a) By writing $3\cos x + 4\sin x = \lambda \frac{d}{dx}(4\cos x + 5\sin x) + \mu(4\cos x + 5\sin x)$, where λ and μ are constants, find the values of λ and μ and hence evaluate the integral

$$\int \frac{3\cos x + 4\sin x}{4\cos x + 5\sin x} dx.$$

[15 marks]

(b) Let
$$I_n = \int_0^1 x^n \sqrt{1 - x^2} dx$$
, $n \in \mathbb{N}$. Show that $(n+2)I_n = (n-1)I_{n-2}$, $n \ge 2$. [20 Marks]

(c) If $q = \sin(\sin x)$, prove that

$$\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y\cos^2 x = 0.$$

[15 Marks]

- (a) Evaluate the following improper integrals

(i)
$$\int_0^3 \frac{dx}{(x-1)^{2/3}}$$
 (ii) $\int_0^\infty (1+2x)e^{-x}dx$ (iii) $\int_{-\infty}^\infty \frac{6x^3}{(x^4+1)^2}dx$.

[35 Marks]

(b) Evaluate the following integral using partial fractions

$$\int \frac{3x^2 + 2x}{(x+2)(x^2+4)} dx.$$

[15 Marks]