tunction. Every element en domain have a unique image in co-domain Function. Transcendental Lun. Algebric Lun. Horignometric tus > polynomial. Inverse Trignom → Ratrional. > Exponential fu Irrational. Priece-wise fun. > Loga rithmic fun → Geometrical fo Franctional Least tint Fun, Stignum - Greatost Fun. eint Aun. part fun. Number Line Rule / Wary Curve Method: used only when <, >, <, > Plotted only odd power of x (odd power in Numerator or Denominator) (7) Make the co-efficient of x +ve. Starting number line taking the sign outside the (3) expression from right to left a alternatively. $\frac{1}{x} < 1 \Rightarrow \frac{1}{x} < 1 \Rightarrow \frac{1-x}{x} < 0 \Rightarrow \frac{(x-1)}{x} < 0.$ tie x <0 or x>1 og α ε (-∞, 0) υ (1, ∞) $\frac{F \cdot g}{2} \rightarrow 1$ > 元十>0 $\Rightarrow \frac{1-x}{x} > 0$ \Rightarrow ref (0,1). $\Rightarrow \frac{-(\chi -1)}{\gamma} > 0$

$$\frac{1}{x} < 1 , x \neq 0$$

$$\frac{1}{x} - 1 < 0$$

$$\frac{1}{x$$

 $x \in (0,1]$. $\frac{(x-1)(x-2)}{(x+1)(x+2)} > 0$ $\frac{+}{7}, \frac{-}{1}, \frac{+}{1}, \frac$ $\chi \in \left(-\infty, -2\right) \cup \left(-\frac{1}{2}, 1\right) \cup \left(2, \infty\right)$ $\frac{(x+1)(x-2)}{(2x+1)(x+2)} > 0$ $\mathcal{X} \in \left(-\infty, -2\right) \cup \left(-\frac{1}{2}, 1\right] \cup \left[2, \infty\right)$

Range = $[0, \infty)$

...

l'apperties. (5) |21) a (a is -ve) |x| = x 2 => +x EIR, always true. 46) a < |x | < b (a, b are tre) (a t's +ve) => a < x < b or -b < x < -a (76) tod +16 $\Rightarrow (x-a)(x+a) < 0$ τίξ χλο, α<χ

α<χ

α<χ

α + - + - - - + - a a $x \in (-\alpha, \alpha)$ => - a < x < a. > re(a,b) U(-b,-a). |x | < a (a r's - ve) (7)2 | a | + 161 = | a+6 |. → a.b > 0. Ixl > a (a r's +ve) $\therefore (|\alpha| + |b|)^2 = |\alpha + b|^{\frac{4}{2}}$ \Rightarrow x > a or x < -a. $\Rightarrow a^2 + b^2 + 2|ab| = (a+b)^2$ => ax+ p2+ 2 |abl = q2+ p2+ 2ab · 121 > a > 1x12> a2 > 2|ab| = 2ab \Rightarrow $(x+\alpha)(x-\alpha)>0$. \Rightarrow |ab| = ab(-, |x| = x - a a $\Rightarrow | ab \geqslant o |$ $\Rightarrow x \in (-\infty, -\alpha) \cup (\alpha, \infty)$ \Rightarrow $x < -\alpha$ or $x > \alpha$.

F is said to be a field if it satisfies the following FIELD. Properties; ris an abelian group ii) (F..) closure Property. iii) (IF, .) assocrative Untity. Inverse of non-zero elements exists (a.(b+c) = a.b + a.c (a+b), c = a, c+b, c = + a, b, c e #. E.g (R,+,·), (Q,+,·), (Z,+,·), (Z,p,+p) etc. # Cardinality of a finite field will be p, nen. (can't be divissible by two distinct parimes.)

LINEAR ALGEBRA:	
It is nothing but Aini	te dimensional functional analysis.
Internal Composition:	'tw'on the ris sound
If V be non-empty	set then a composition * is said
to be internal composition	in on V, t'f V*Y eV.
External Composition:	the composition 'r's s.t.b
If V be non-empty	set, then a composition of is sitis
external composition in	v over IF if Kelf and veV
then $X \cdot V \in V$.	
Fa-1 Is X an external	composition in cover C.
-An. \a	·
E.g. Is X an external	composition in (yes.)
E.9 " × " "	" " "
	" IR OVER IR? (Yes.)
" × " "	· · · · · · · · · · · · · · · ·
F.9 " X " "	
An No. 1:	ier but til=t IR)
F.9 T.	1 composition
T IS X PAS CEN RE	,, 8 over 8 > (1/2)
E .9	11
E.q , , ,	" S OVE - " \ '
1 Am. No, (4:1 \sqrt{2} \in R	, leg but $1\sqrt{2} = \sqrt{2} \not\in \mathcal{S}$)
Ts X an extern	al comp, ter) by
Am. No. Box, it C, 1	eg but 1. i=i & S)

Let V be any non-empty set and Let (IF, +, .) be any Arield, define two operations, +: VXV -> V (Vector add) (scalar mult",) $\cdot : \mathbb{F} \times V \longrightarrow V$ Then V together with t, and i' rie (V(F), +, .) r's said to be a vector space it it satisfies the following proporties. (V,+) is an abelian group. (2) (D(TB), V = XV + BV. + & B & F and Ve'V. V deff and cive V. X.(u+v) = Xu + Xv $(\chi\beta), V = \chi, (\beta V)$ 1.u=u +ueV. (5) Unere 1 r's the centy of the frield. #(i) Elements of V are said to be vectors. (ii) Elements of IF are said to be scalars. Properties. Let V(iF) be a vector space over a Arield iF. then, $(1) \quad 0 \cdot V = 0 \quad + \quad V \in V$ (2) NO = 0 + NEF. $(4) \lambda \cdot (-V) = (-\lambda) \cdot V = -(\lambda \cdot V)$ TEF, VEV.

Extension of $R \rightarrow R$

SOME EXAMPLES OF VECTOR SPACE : Fig. $V = \mathbb{R}^+$, $F = (\mathbb{R}, +, \cdot)$ Defrine; *: Vxv --- V u + V = uV. o: Fxv ---> V Xou = ux + u, v & V and x e 1 . Check V(F) is a vector space or not? i) clearly, (Rt,*) is an aboltan group. ii) $(X+\beta) \circ V = V \xrightarrow{(X+\beta)} = V \xrightarrow{(X)} = (X \circ V) * (\beta \circ V)$ iii) $\mathcal{K} \circ (u + v) = \mathcal{K} \circ (uv) = (uv)^{\mathcal{K}} = u^{\mathcal{K}} \cdot v^{\mathcal{K}}$ = (Xou) * (X · V) iv) $(X, \beta) \circ u = u^{\alpha\beta} = (u^{\beta})^{\alpha} = X \circ (u^{\beta}) = X \circ (\beta \circ u)$ V) 1. u= u¹ = u. Henre, V(F) is a vector. space. Eg_{-2} $\sqrt{=R^{n}}$; $F = (R, +, \cdot)$ * : $\vee \times \vee \longrightarrow \vee$ $(u_1, u_2, \dots, u_n) * (v_1, v_2, \dots, v_n) = (u_1 + v_1, \dots, u_n + v_n)$ $o: \mathbb{F} \times V \longrightarrow V$ $\chi \circ (u_1, u_2, \underline{\hspace{1cm}}, u_n) = (\chi_{u_1}, \chi_{u_2}, \underline{\hspace{1cm}})$ soln. i) (187, *) is an abelian group. ii) $(\alpha+\beta)$, $V = (\alpha+\beta)V_1$, $(\alpha+\beta)V_2$, $(\alpha+\beta)V_2$, = (Q'V, + BV, , Q'V2+ B V2, ____, Q'vn+ B Vn,) = (dv, , dv2, - 10m) * (Bv1, Bv2, - 1 /3 vn)

 $\mathcal{K} \circ (u * v) = \mathcal{K} \circ (u_1 + v_1, u_2 + v_2,$ $= \left(\chi(u_1+v_1), \quad \chi(u_2+v_2), \quad ---, \quad \chi(u_n+v_n) \right)$ = (Kuy + dv, , du2 + dv2, ____, dun + dvn) = (Xu, Xu, , , , Xun) * (Xv, , Xv2, , , xvn) = (xou) * (xov) 1) (NB) 0 U = (NB U,, NB U,, ---, NB Un) = X 0 (Bu, Bu, -, Bun) = X 0 (B 0 L). $^{\vee}$) 1 · $u = (1.u_1, 1.u_2, ..., 1.u_n) = u$. Henu, V(F) is a vector space. F. V=R"; F=(C,+,.) *: VXV --- V $(u_1, u_2, \underline{\hspace{1cm}}, u_n) \star (v_1, v_2, \underline{\hspace{1cm}}, v_n) = (c_1 + v_1, \underline{\hspace{1cm}}, u_n + v_n)$ 0: FXV -> V X. u = (Xu, Xu, , ..., Xun) soln. Take, (u,, u,, ___, un) = (1,1, ___, 1) e Rh. Now, dou = (du, du, ____, du) (t, t, ___, t) # R? ris not a vector space bor, rit farils scalar multh

× We know; | 8 ⊆ R ⊆ C. Check Vector space 8⁷(8) V v) R" ((c) × ii) Sycir) x vi) 4 c7(c) ~ vii) ch(R) ~ iii) RTCR) V viii) ch (B) ~ iv) 18 "(8) V V = IR, $F = (IR, +, \cdot)$ Define; \star : $\vee \times \vee \longrightarrow \vee$ U# V= U+V+1 $\cdot: \mathbb{F} \times V \xrightarrow{\cdot} V$ Kou= Ku+ K-1 Soln. i) (R, *) is an abelian group. ii) LHS (X+p) · V = (X+p) V + (X+p) -1 = XV+BV + X+B-1 $R \stackrel{HS}{=} (\chi \circ V) * (\beta \circ V) = (\chi V + \chi - 1) * (\beta V + \beta - 1)$ = Qv+ Q-1+ Bv+ B-1+1 = XV+BV + X+B-11. RHS= LHS. iii) X. (u*V) = X. (u+v+1) $\alpha u + \alpha v + \alpha + \alpha - 1$ = Nu+ Xv + 2x-1. \mathbb{R}_{H} , $(\mathcal{N} \circ \mathbf{u}) \star (\mathcal{N} \circ \mathbf{v}) = (\mathcal{N} \mathbf{u} + \mathcal{N} - \mathbf{I}) \star (\mathcal{N} \mathbf{v} + \mathcal{N} - \mathbf{I})$ = Qu+Q++ XV+Q-1 +1 = Nu+ av+2d-1. 1+1= R#.

```
3# Cartesian Product: Deto
   let A and B are two sets, then the set
                AXB = { (a,b): a ∈ A, b ∈ B}, is called Cartesian product
    of Arand B. Here (a,b) is called an ordered pair.
   @ gf IAI=m and IBI=n => | |AxB|=mxn.=|BxA1
    e.g. A= {1,2,3}, B= {a,b}.
          AXB = { (1,a), (1,b), (2,a), (2,b), (3,a), (3,b) }
          Bx A = {(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)}.
       : ' | AXB | = | BXA | = mxn.
   e.g. A= {1,2,3}, B= {2,3}.
         AxB= { (1,2), (1,3), (2,2), (2,3), (3,2), (3,3)}.
3
         B \times A = \{(2,1), (2,2), (2,3), (3,1), (3,2), (3,3), \frac{3}{3}.
3
        Here AnBl=2.
              |(A \times B) \cap (B \times A)| = g^2 = 4.
   NOTE
         IF [ANB] = & , then (AxB) N(BxA) = 2.
            Let [AnB]=|D|= & (hypothesis)
             DCA and DSB
          => DXDSAXB and DXDGBXA
           => DXD C AXB O BXA
            > | Dx D | E | AxB O BxA |
            => o2 = |AxB O BxA| ---
      Again let (a,b) E (AXB) M(BXA)
                 \Rightarrow (a,b) \in A \times B and (a,b) \in B \times A
3
                 =) a ∈ A, b ∈ B and a ∈ B, b ∈ A
                 => at ANB and, b & BNA = ANB
                 7 aED, bED
```

=) (a * b) & D x D

(AXB O BXA) C DXD - 3 A×B OB×A (DD) = 22 > | AXB OBXA| \(\sigma^2 --- \) Now, From eq 2) and 1) we conclude that | AXB n BxA = 02. # Ordered Pair Let $a,b \in X$ be any two elements of a nonempty set X. Then (a,b) is defined as m; (a,b) = { {a], {a,b}}... (a,b) = (b,a) iff a=b. O 15 proulis let (aib) = (b, a) => { [a], {aib]} = { [b], [b,a]} = { [b], {aib]}. => {a}= {b}, (a)= {a,b} => a=b, a=b. 3 a=b. conversly let a=b. $(a,b) = \{\{a\}, \{a,b\}\}\$ $\Rightarrow \{a,b\} = \{\{b\}, \{b,a\}\}\$ (: a=b).

$$(a,b) = \{\{a\}, \{a,b\}\}\$$
 (: a=b).
= (b,a) . \Box

= (b,a). \square .

Relation:-A subset of AXB is called relation from A to B or it may be called as a binary relation from A to B.

① Number of relations from A to B = 2 m×n. where |A|=m and |B|=n. : |A|=m and |B|=n.

AXB = MXN

> | PCA×B) = 2mxn = Total no. of relations from A to B.

O Binary Relation for Relation on A) A subset R of AxA is called a binary relation on A or Simply, a relation on A if a, b ∈ A and we write aRb and ais related to b:

O Number of binary relation on a set A = 2" = 2" Let |A|=n, $\Rightarrow |A\times A|=n^2$ > | p(AxA) | = 2n2 = no. cf relations on A. Types of Relations: -> Empty Relation :-As pisa subset of every set, hence \$CAXA. .. oris arelation on A, called empty relation. 1 ie no any pair of elements satisfies the given condition. 1 > Universal Relation: AXA is a subset of AXA .. AxA is a relation on A, called universal relation. 1 > Identity Relation: A subset I of AXA is called Identity relation on A if a EA, ther (a,a) ∈ I and (a,b) ¢ I 1 + a + b. e.g. Let A= Sa,,az, --, and be any set of 'n' elements. 3) Then I = {(a, a), (a2, a2), ---, (an, an)} is a subset of AXA is called adentity relation. NOTE (1) |A|= |I|= n. (i) On a set, a relation is said to be identity if every element of A is related to itself only. (iii) Identity relation is unique for any set A. -> Reflexive Relation: A relation R on a set A is called reflexive if every element of A moust related to itself, i.e. a subset R of AXA is called reflexive relation on A, if ta (A => (a,a) E R. e.g. let A= {1,2,3} R= { (1,1), (1,2), (2,2) (3,3) } $R_{1}=\left\{ (1,1), (3,2), (3,3) \right\}$ Here both R and R1 are reflexive. We may say R=I, : | ICR.

•

3,

3

B

IF M=n and R is reflexive on A, then | |R|>n|

Irreflexive Relation:

A relation Rock said to be irreflexive if tafA, (a,a) FR. i.e. Ris a roreflexive relation on A if no element of A is related to ttself.

Properties:o Irreflexive is not the exact negation of reflexive.

- O There exist some relations which are both reflexive and irreflexive. e.g. o.
- OThere exist some relations which are neither reflexive nor irreflexive.

e.g. R = {(a,a), (a,b)} where R is a relation on A={a,b} Here R is neither reflexive nor foreflexive.

Symmetric Relation:

A relation R on a set A is symmetric if (a,b) ER => (b,a) ER.

Properties:

- φis symmetric (As X any (aib) ε φ st (b,a) € φ). on any set A.
- ICR, where R is symmetric.

A symmetric Relation!

A relation R defined on A is called asymmetric whenever (aib) ER -> (ba) ER.

O pis asymmetric.

O Every asymmetric relation is impeflexive but the converse is not always true.

Anti - Symmetric Relation:

A relation R on A is called anti-symmetric if (a,b) & R and (b,a) & R > a=b for aib EA.

properties !

- O dis anti-symmetric.
- O A relation R on A is said to be anti-symmetric IFF & no pairs of distinct elements · a, b & A south that a, b) & R and (b,a) & R.
- eg ... R= { (a,a), (b,b)}, A= {aib}. Here R is both symmetric and anti-symmetrie.

 $A = \{1.2.3\}, R = \{(.1), (2.2)\}$ Ol. 9 Then R to anti-symmetric but not asymmetric. Transitive Relation: A relation R on a set A is called transitive if abjer and begin → (a,c) ∈ R. + (about) for a,b,c ∈ A. ⊙ pis transitive. -> Equivalence Relation: A relation R on a set A is called an equivalence relation if it is 1 re'flexive, symmetric and transitive. e.g. Relation of 11el lines on a set of lines in a plane. 1 Equivalence Class: let R be an equivalence relation on a set A. Let a & A, then the set defined and denoted as; (3) Cl(a) = { n ∈ A | (n,a) ∈ R } is called an equivalence class 3 of acA by the relation R. 3 equivalence classes are either disjoint or ridentical. 3 Quotient Set! A be a non-empty set and Ri be an equivalence relation on Then the set of all disjoint equivalence classes is called quotient set of A by R. & denoted by A = { a | a f A } is quotient set of A by R. MOTE ! $\overline{\mathbb{A}} \subseteq \mathbb{R} \longrightarrow \mathbb{A}$ and $\overline{\mathbb{A}} \in \mathbb{P}(A)$. 2 TP A= \$, then to the R & A. e.g. on R, aRb (=) [司=西.[6]. **3** I = [12], 2=[2,3)... P: '} & |a∈R] → Z given by ie. P: R → Z. 7 (a)=a, **3** > Pris one-one and onto. 1 a 1 ~ ~ Z. 0 Here total no of equivalence classes is countably infinite. then | R = countanbly infinite, I.e. (xo). 3

Both Way Relation:
A relation R on a set A is scalled bothway if REAXB

and REBXA, both.

MORSAXB and RSBXA

> RSAXBOBXA

> RS DXD, where D= ANB and D= o(say).

() Total no. of bothway relation = 2000 = 2002

nusband has to be accompanied by his wife, however wife mayn't be accompanied by her husband. Then how many gathering are possible?

Ansold No. of choices for a pl-couple = 3.

as the appearance may be {HW, W,H, W}

Hence n-couples have e 3n choices.

Alterantively. {a, e, -, an, b, b, -, bn }.

then the appearance is not based on the choice of husbands, as they depend on the choice of their respective wives.

Now, each wife has 3 choices - Go to party with husband.

Doesn't go to party.

.. n wives will have 37 choices.

Buesl Howmany possible pairs (A,B) are there, such that A,BCS, and AnB=0, where S= {1,2,3,4,5}.

III-JAM SYLABUSS. ODE : -Introduction. (1) Order and Degree. (2) Formation of ODE. **(3)** Types of solutions. (4) (5) Methods of solutions. (i) Separation of Variable. (ii) Reductible to separation of var. (iii) Homogeneous. Reducible to homogenéous eqn. (ii) Exact dill. eg + I.F 1727 1st order, 1st deg. de linear didt egn Reductible to Linear Diff. egn. $(\forall n)$ (VIII) Bernoulies eq

L'inear diff. egn with constant co-efficients.

Linear diff. eqn cuith Variable co-efficients.

(i) Variation of parameters

(ii) Cauchy- Euler's egn.

Orthogonal Trajectory

Wronskian.

3

Nopric-2

(6)

(7)

(683)

(8)

(P)

ALL MATERIAL AVAILABLE HERE

Hand Written Class Notes

JAM, GATE, NET for CSIR
MATHS, CHY, PHY, LIFE SCI, EARTH SCI.

NET for UGC

ENG, ECO, HIS, GEO, PSCY, COM ENV,.... Etc.

GATE, IES, PSUs for ENGG.

ME, EC, EE, CS, CE, ARC, FT, Earth etc.

IAS, JEE, NEET(PMT).

चौधरी PHOTO STAT

JIA SARAI NEAR IIT

DELHI = 110016

CONTACT NO: 9818909565

Dependent Variable and Independent Variable: The variable whose value is assigned is called independent Variable and the variable whose value is obtained corresponding to assign value is called dependent variable. = # Function. (i) Every element in domain have a unique image the co-domain. (ii) Mathematical defn. : + A + B is said to be a fun. if tread] unique yes such that y=f(x). T J = fex) y = f(x) => It is not a tun, Here, y, = fex) not unique ing. Jz = fer) of 7e. not a Acin. It is a fun. no timage tin

Any egn bet" dependent Variable, tindp. variable and derrivative of dependent variable curith respect to rindp, var. r's called differential equation.

NOTE. In partial derrivative, y should be fun. of 2 or more than 2 rindp. Varriable.

(ii)
$$\frac{d^2y}{dx^2} + y = St'nx$$

Simple ODE.

$$\frac{d^2 \int_{0}^{2} dx^2}{dx^2} + \frac{d^2 \int_{0}^{2} dx^2}{dx^2} = e^{x}$$

$$\frac{dy_1}{dx} + \cos x \cdot \frac{dy_2}{dx} = 0$$

system of ODE

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = e^{x}$$

simple PDE

$$\frac{\partial^2 x}{\partial x^2} + \frac{\partial^2 x}{\partial x \partial y} = 0$$

system of

Ordinary Differential Equation:

· Any differential equ in which unique rindp, variable and p dependent variable and total derrivative of dependent var. cu. r.t reindp. Varriable és carred ordinary diff. egn.

Partial Differential Equation:

Any diff equ ahrich contains partial derivative r's called pastr'al diff. eq.

Jay Jagannath

SETS AND ITS FUNDAMENTALS.

<u>CET</u>. Connection of Well-defined distinct objects is called set.

NOTE. (1) By well-defined we mean, there is no confusion regarding inclusion or exclusion of any objects.

- (2) The word set is mathematical form of the word collection.
- (3) A set ritself is considered as an object, hence eligible for collection to form a set.
- (4) Generally, sets are denoted by capital letters X, Y, Z, -etc and the objects included in the set called elements are denoted by small letters x, y, Z, --etc.
- (5) It x is a set and a is an object collected in X, be long to ax and denoted by at X.
- (6) Empty collection is well-defined as every object being tested has to be excluded. Hence, it is a set and is called Void set, null set and denoted by \$\phi\$ or \$\{\}\$

Axiom of Regularity:

"No set belongs to ritself, rie A is a set

then A & A.

Ordinary Set: A set X is said to be ordinary if X & X.

Extraordinary Set:

A set x is called extra-ordinary set if X E X.

X = { x | x is not a marker }

X is well-defined

X is a set & x is not a marker.

X EX = X x is an extra-ordinary set.

collection/ Set Builder Notation:

X = { Type of object : Rule for collection}

 $\ell \cdot q \quad X = \left\{ x \text{ is a natural no. } : 2 < x < q \right\}$

Russel's Paradox:

"There is no set of all sets" i.e collection of all the sets does "t form a set.

QR There is no set of all ordinary sets."

i.e collection of all ordinary sets is not a set.

Proof. Let $X = \{ A \mid A \text{ is an ordinary set } \}$ If not let, X is a set.

Case-1 PI4 x is most an ordinary set

> x e x (Je4.)

> x is an extra-ordinary set %

Case-2

IA × r's extra-ordrinary set.

> × ∈ × (Defr.)

> x is ordinary set. ix.

More. Throughout onwards, we will use the ordinary sets

Aor analysis, but not extraordinary set.

AAB. NOTES. Let A and B are sets. STAUB = {x | xeA or xeB} (ii) ANB = {x | xeA and xeB} Unt $A-B = \{ x \mid x \in A \text{ and } x \notin B \}$ JUY A A B = (AUB) - (ANB) $= (A-B) \cup (B-A)$. SUBSET. Let A and B are two sets. + i4 XEA > XEB => A is a subset of B, denoted by ACB. Treast set B then A is called a subset of B +++ ++ A = B. > XEA > XEB = A => XEA => ACA for any set A -> Any set is subset of itself. of A = \$ > 7 xeA s.t x ≠ B > | CB for any B -> pris subset of any set. POWER SET. $P(X) = \{A : ACX\}$ = The set of all the subsets of X. $\Rightarrow X \in P(X)$ $\Rightarrow \phi \in P^{(x)}$

x = { a,b, {a,b}} x = { a,b} Here, yex & yex > ye p(x). Cartesian Product:

Let A and B are 9 sets.

 $A \times B = \left\{ (\alpha, b) : \alpha \in A \text{ and } b \in B \right\}$

= cartesian product of A and B.

Where, (a,b) is called ordered pair.

Eunctron:

Let A and B are 2 non-empty sets. Then a rule by which every elements of A is assigned to some unrique element of B, defines a fun. from A -> B.

- → We denote it by, A:A→B.
- → IA xeA rès assigned to yeB, then y rès unrique for xe, and we denote rèt by y=Acx).
- → More ever, y is called the image of x and x is called a pre-image of y.

NOTES.

(4) Let yCB then AT(y) = { xeA | A(x) e y } CA.

Types of Functions.

One-One (Injection)

if
$$f(x) = f(y)$$

$$\Rightarrow x = y \quad \text{OR} \quad x \neq y \Rightarrow f(x) \neq f(y)$$

(2) Onto (Surjection) if \$(A) = B rie Range of A = co-domain rice Every elements of B has a pre-rimage in the set A. Brjecteon. A: A+B sit A is one-one and onto. both, then A is called a bijection from A to B. + It A is both one-one and onto Arom A + B $\overrightarrow{c} : A : A \xrightarrow{\text{onto}} B$ cue can define, g: B > A Let g(s) = t + cA + f(t) = S. => of is called the rinverse of A and denoted by 4-1 and we say that I is invertible. Similar Sets. Two non-empty sets are said to be similar if Ja brijection bet hem. The words like equivalent, equinumorous, equipotent are also Used in plane of Ormilar. Finite Set: A non-empty set is said to be finite, if it is similar to has finite no. of elements.

A non-empty set is said to be finite, it its

similar to has finite no. of elements.

i.e the set having finite cardinality.

Eq. A = Set of days to in a month. (Provided 30 days)

Here, $|A| = 30 \Rightarrow A$ is finite.

By extension of Jefn;

Empty set is also finite set, and its cardinality is zero.

 $e^{i}e\left[carq\left(\phi\right) =0\right]$

(NOTE

 $IN = \left\{ 1, 2, 3, \dots, n, n+1, \dots \right\}$ $IN_0 = \left\{ 0, 1, 2, \dots, n, n+1, \dots \right\}$

are sets of Ainte cardinals.

lehere in is set of cardinality of all non-empty Ainite sets. and,

IN. is the set of cardinalities of all finite sets.

Infinite Set;

The set which is not similar to Sin for any n.
i.e the set which has infinite no of element.

E.g IN , INX IN , P(IN) , . - .

NOTE. To compare potentéal of 2 sets lue use functions.

If (i) Arom A to B onto fun, can't be defined,

we say B has more potential than that of A.

and we write card(A) < card(B) > |A| < |B|.

It (ii) from A to B, one-one fun. can't be defined,
be say A has more potential than that of B,
and we write card (A) > card (B) => |A| > |B|.

WECTOR CALCULUS:
Syllabus.
1) Baste
(i) Dot product
(11) Cross broduct
(iii) Scalar Triple Product
(iv) Vector Triple product.
[2] (i) Gradiant, Divergence, Curl.
(ii) Tangent vector.
(in) Unrit tangent vector.
(iv) Normal Vector> 100 %. 1 question> 2 questions.
(V) Egn of tangent plane.
(vi) Egn of normal.
(vii) Directional Derivative.
(Viii) Irrotational Vector.
(1/x) Solenofial vector.
(3) (i) L'ine Integral, 100 y. 1 quistion.
(ii) Surface Integral,
(iii) Volume Integral.
(iv) Work Done.
(v) Conservative vector field.
4. (i) Green's Thm 1 question.
(ii) Stock's Thm,
(111) Gaus - Divergence Thm and their properties -> 1 question

ALL MATERIAL AVAILABLE HERE

Hand Written Class Notes

JAM, GATE, NET for CSIR
MATHS, CHY, PHY, LIFE SCI, EARTH SCI.

NET for UGC

ENG, ECO, HIS, GEO, PSCY, COM ENV,.... Etc.

GATE, IES, PSUs for ENGG.

ME, EC, EE, CS, CE, ARC, FT, Earth etc.

IAS, JEE, NEET(PMT).

चौधरी PHOTO STAT

JIA SARAI NEAR IIT

DELHI = 110016

CONTACT NO: 9818909565

#. De otation $a = |a| \cdot a \longrightarrow \overline{dis}^n$.

(1) Scalar. A scalar is a quantity which has only magnifude but doesn't have a disn.

Fig Time, Mass, Dristance, Temp. etc.

(2) <u>Vector</u>. A vector is a quantity which has magnitude, dir n and follow the Triangle law of add".

Force, Drisplacement etc.

(3) Postition vector.

$$\overrightarrow{\alpha} = \overrightarrow{\tau} + 2 \overrightarrow{j}$$

$$\Rightarrow \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$\overrightarrow{OA} = 57 + 61$$

$$\overrightarrow{OB} = 6\tau^{\prime} + 8/$$

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

Types of Vectors:

(1) Equal Vector.

Two vectors are s.t.b equal iff they have equal magnitude and same dis.

$$A \longrightarrow B \qquad |AB| = |CD|$$

(2) Zero Vector/ Han Vector.

A vector whose rinritial and terminal pts. are same is called hull vector.

(3) Like / Unlike Vector:

Two vectors are said to be

(i) like When they have same dish.

(ii) Unlike When they have opposite disn.

$$\vec{a}$$
 and $-\vec{a}$ unlike \vec{a} $-\vec{a}$ \vec{a} \vec

(4) Unit Vector.

A uneit vector es a vector whose magnifude es uneity.

>10 = untrike

$$\vec{a} = \frac{\vec{a}}{|\vec{a}|}$$

(5) Position Vector: If p is any pt. in the space then the vector op is called position vector of the point p, where or is origin. (6) Co-initial Vector. Vectors having same invitial point are called co-invitial vector. # Dristance Formacla. $A = (x_1, y_1)$; $B = (x_2, y_2)$ $\overrightarrow{OA} = 24\pi^{4} + 3\pi^{3} \qquad ; \quad \overrightarrow{OB}' = 22\pi^{4} + 32\pi^{3}$ $-\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1) \cdot \overrightarrow{A} + (y_2 - y_1) \overrightarrow{A}$ **3** +AB = $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ \rightarrow (Drist is a scalar quantity.) + A= (x1, y1, Z1); B= (x2, y2, Z2) $\overrightarrow{OA} = 247 + 11 + 71k' ; \overrightarrow{OB} = 227 + 12 \hat{1} + 72k'$ $-\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (x_2 - x_1) + (y_2 - y_1) + (z_2 - z_1) + (x_3 - z_1) + (x_4 - z_1) + (x_5 - z_1) + (x_$ $|+AB| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$ on the space. Let p(x,y,z) be any point OP = xe^ +yj + zh' $|OP| = \sqrt{x^2 + y^2 + 7^2}$ = x2 + y1 + ZK \$ | \vartheta | = \vartheta = \vartheta 2+ \vartheta 2

$$\frac{1}{x_{2}-x_{1}} = \frac{y_{4}-y_{3}}{x_{4}-x_{3}} = \lambda$$

$$\frac{7}{7} \frac{1}{7} \frac{1}{7} = \frac{x_2 - x_1}{24 - x_3} = \lambda.$$

$$\overrightarrow{OA} = \gamma_{1} \tau^{1} + \gamma_{1} \gamma^{1} \qquad ; \quad \overrightarrow{OB} = \gamma_{2} \tau^{1} + \gamma_{2} \gamma^{1}$$

$$\overrightarrow{AB} = (x_2 - x_1) \overrightarrow{\tau} + (y_2 - y_1) \overrightarrow{J}$$

$$\overrightarrow{CD} = (x_4 - x_3) \cdot (y_4 - y_3) \hat{j}$$

$$AB = (x_4 - x_3) \tau^4 + \lambda(y_4 - y_3) \int_1^1$$

$$\frac{1}{2} = \frac{1}{2} + \frac{1}$$

$$\overrightarrow{b} = b_1 \overrightarrow{\tau} + b_2 \overrightarrow{f} + b_3 \overrightarrow{k}$$

$$\begin{vmatrix} -i & \overrightarrow{a} & \overrightarrow{b} & \overrightarrow{b} \end{vmatrix} = \frac{\alpha_1}{b_1} = \frac{\alpha_2}{b_2} = \frac{\alpha_3}{b_3} \quad \text{or} \quad \begin{vmatrix} \overrightarrow{a} = \lambda \overrightarrow{b} \end{vmatrix}$$

$$-AB = \lambda$$
. Bc.

$$c \cdot \left[\overrightarrow{a} = \lambda \overrightarrow{b} \right]$$