Работа 2.2.6 Изучение гальванометра

Мотыгуллин Булат

Цель работы

Изучение работы высокочувствительного зеркального гальванометра магнитоэлектрической системы в режимах измерения постоянного тока и электрического заряда.

Эксперементальная установка

Рис. 1: Схема установки для работы гальванометра в стационарном режиме

Схема для исследования гальванометра в стационарном режиме представлена на рис. 1. Постоянное напряжение U снимается с блока питания и измеряется вольтметром V. Ключ K_3 позволяет менять направление тока через гальванометр Γ , делитель напряжения — менять величину тока в широких пределах. Ключ K_2 служит для включения гальванометра, кнопка K_1 — для его успокоения. Магазин сопротивлений R позволяет менять режим работы гальванометра от колебательного до апериодического.

Для изучения работы гальванометра в

режиме измерения заряда (в баллистическом режиме), используется схема, представленная на рис. 2.

Рис. 2: Схема установки для определения баллистической постоянной

Система ключей устроена так, что нормально ключ K_2 замкнут, а ключи K_3 и K_4 разомкнуты. При нажатии на кнопку K_0 сначала размыкается ключ K_2 , затем замыкается K_3 и через некоторое время — K_4 . При нормальном положении кнопки K_0 конденсатор C заряжается до напряжения U_C и получает заряд q.

При нажатии на ключ K_0 конденсатор отключается от источника постоянного напряжения (размыкается ключ K_2) и подключается к гальванометру (замыкается ключ K_3).

Формулы

$$C_I = \frac{2aI}{x}$$

$$S_I = \frac{1}{C_I}$$

$$\Theta = \ln \frac{x_n}{x_{n+1}}$$

$$C_q^{\text{kp}} = 2a \frac{R_1}{R_2} \frac{CU_0}{x_{max}^{cr}}$$

Результаты

Рис. 3: Зависимость I(x)

Динамическая постоянная:

$$C_I = (416, 22 \pm 9, 29)$$
нА

Чувствительность гальванометра к току:

$$S_I = (2, 40 \pm 0, 05) \cdot 10^{-3} \text{HA}^{-1}$$

Логарифмический декремент затухания:

$$\Theta_0 = (271, 53 \pm 0, 35) \cdot 10^{-3}$$

Рис. 4: Зависимость $x(R + R_0)$

Критическое сопротивление, определенное по графику:

$$R_{\rm kp} = (5 \pm 0, 1)$$
кОм

Критическое сопротивление, отпределенное по формуле (3): 6362,54 62,07

$$R_{\rm kp} = (6362, 54 \pm 62, 07) {\rm Om}$$

Критическое сопротивление, отпределенное по подбором:

$$R_{\rm kp} = (3400 \pm 100) {
m Om}$$

Баллистическая постоянная в критическом режиме:

$$C_q^{
m kp}=(898,53\pm29,47)$$
н
Кл

Вывод