Comparison tables: BBOB 2009 function testbed in 20-D

The BBOBies

November 20, 2009

Abstract

This document provides tabular results of the workshop for Black-Box Optimization Benchmarking at GECCO 2009, see http://coco.gforge.inria.fr/doku.php?id=bbob-2009. More than 30 algorithms have been tested on 24 benchmark functions in dimensions between 2 and 40. A description of the used objective functions can be found in [14, 9]. The experimental set-up is described in [13].

The performance measure provided in the following tables is the expected number of objective function evaluations to reach a given target function value (ERT, expected running time), divided by the respective value for the best algorithm. Consequently, the best (smallest) value is 1 and the value 1 appears in each column at least once. See [13] for details on how ERT is obtained. All numbers are computed with no more than two digits of precision.

Table 1: 20-D, running time excess ERT/ERT_{best} on f_1 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

1 Sphere

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep $[28]$	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2.15	1800	550	2.3	1e3	1	2800	57	37	300	44e-7/2e3	1400	5400	5.5	48	74e-5/1e5	œ	270	10	180	200	2	49	40	1	31	3800	3800	1.6e4		17	20	9
	1e-05	2.15	1400	440	2.3	710	Н	6100	45	56	200	1400	870	4200	5.5	37	6.7e5	∞	210	10	180	160	-1	40	32	Н	22	2800	3700	4500		14	39	48
	1e-04	2.15	1100	390	2.3	610	1	5200	33	22	150	810	089	3600	5.5	32	2e5	∞	180	10	180	140	7	36	27	П	22	2300	3600	3800		12	34	41
		2.15																														11	59	36
ere	1e-02	2.15	710	260	2.3	410		3500	56	17	98	330	360	2300	5.5	23	1.2e4	œ	120	10	180	100	-1	27	16	-	15	1400	3500	2800		9.1	23	29
1 Sph	$1e-\bar{0}1$	2.15	520	200	2.3	310	П	2500	20	13	99	190	220	1700	5.5	18	3200	∞	88	10	180	28	8.9	19	11	П	11	870	3400	2100		7.2	18	23
	1e+00	2.15	320	130	2.3	200	Н	1600	14	9.5	45	81	110	1100	5.4	13	1900	∞	22	10	170	51	6.4	12	6.7	П	8.1	400	3400	1500		5.8	12	17
	1e+01	2.15	150	55	2.3	110	-1	730	7.9	5.4	26	30	48	450	5.4	œ	880	∞	27	9.3	160	21	2.4	5.2	3.3	П	4.9	180	22	120	29e+0/1e6	3.8	7.1	10
	1e+02	0.28	64	28	18	49	7.4	840	9.5	12	09	31	8.6	19	41	31	130	37	13	43	820	19	П	9.1	8.9	7.5	11	830	16	19	170	19	13	28
	1e + 03	0.02	1	1	1	1	1	1	1	1	1	П	1	П	П	-	1	П	П	П	1	П	1	-	1	П	1	-	1	П	П	-	П	-
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$\operatorname{BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 2: 20-D, running time excess ERT/ERT_{best} on f_2 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimensions of professions and the median number of function evaluations to reach this value divided by dimensions.

	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	19.7	370	88	200		28	1200	50	44	49			880		066		63	49	1	17	92	30e-8/4e3	12	48	220	59e-5/1e6	099	4500	2600		73	13	66
	1e-05	19.6	260	92	160	٠	28	066	48	43	39	•	14e-1/5e3	740		260		51	43	П	17	43	45	11	36	170	3.7e5	260	4500	2300		73	11	86
	1e-04	19.5	220	89	140	34e-5/2e3	27	006	47	42	34	٠	1200	670	٠	650		49	40	-	17	36	45	10	32	150	1.8e5	200	4500	2100		99	11	86
able	1e-03	19.5	190	62	120	100	27	800	47	41	28	39e-3/2e3	540	009		550		33	36	-	17	32	43	9.7	28	130	7.4e4	450	4500	1800		59	10	26
2 Ellipsoid separable	1e-02	19.4	160	26	88	94	27	710	45	41	23	200	510	540		420	29e-1/1e5	30	33	1	17	27	41	9.5	23	92	3.8e4	410	4600	1400		18	9.7	92
2 Ellip	1e-01	19.3	140	20	63	92	26	610	44	39	18	110	490	470	47e-1/1e4	320	7.3e4	26	30	-1	17	23	21	8.6	19	71	2.6e4	340	4600	840		5.8 8.0	9.1	88
	_	19.3																																
	1e + 01	19.2	88	35	21	54	20	410	35	30	10	42	130	330	450	130	3200	18	22	1	17	15	5.4	7	13	18	0069	250	4600	360		1.4	7.5	7.5
	1e + 02	19	99	29	10	42	15	310	26	22	7.8	23	53	270	94	47	460	13	17	1	17	11	2.5	9	8.5	8.9	1800	190	1900	230		1.2	6.2	22
	1e+03	18.6	45	22	3.5	31	9.1	190	15	14	5.6	12	38	200	23	15	300	8.4	11	1	17	9.7	1	4.3	5.3	1.9	270	150	16	120	12e+4/1e6	1	4.8	35
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 3: 20-D, running time excess ERT/ERT_{best} on f_3 , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	ERT_{best}/D	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	383	3200			٠					36										1	160						160		430				630
	1e-05	382	400					٠			36			-				٠			-1	160				-		120		400				630
	1e-04	382	310								35							٠			-	160						150		380		-		620
	1e-03	382	270			•				-	35			•		•					П	160		•		•		150		360				260
le	1e-02	382	240			•				•	35			-		•					П	160		•		-		140		360		•		520
n separable	$1\dot{e}$ -01	382	230	٠							35						21e-1/1e5		20e-1/1e6		П	160						140		360				490
3 Rastrigin	1e+00	381	190	40e-1/1e6			-		40e-1/3e5		8.3			70e-1/1e5	-		3700	-	1.8e4		1	92	13e+0/4e3			-	-	69		190			60e-1/1e4	340
	1e+01	253	20	27	97e+0/1e4	73e+0/2e3		69e+0/5e4	12	92e+0/1e4	1	84e+0/2e3	43e+0/5e3	44	88e+0/1e4	13e+1/5e4	29	15e+1/2e3	38	19e+0/6e3	1.5	7	28	81e+0/1e4	47e+0/2e4	13e+1/6e3	81e+0/1e6	9.6	21e+0/1e5	120			10	8.3
	1e+02	12.7	54	43	1e3	85	28e+1/6e3	450	6.7	840	5.9	130	28	150	650	1.2e4	190	1400	19	1.3	27	12	-	260	71	7500	2.3e4	43	21			23e+1/7e3	5.2	8.1
	1e+03	0.02	19	17	88	15	570	2900	22	37	210	42	-	22	180	24	26	19	24	190	4e3	20	1	42	24	41	360	4e3	19	28	32	260	28	20
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 4: 20-D, running time excess ERT/ERT $_{\rm best}$ on f_4 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

$\Delta ext{ftarget}$ 1e+03 ERT _{best} /D 0.05	-03 1e+02	1e+01	1e+00	1e-01	1e-02		1e-04	1e-05	1e-07	Aftarget
5	070	956	200	606	000	16-U3	906	000	7050	100T. /D
5.		150	9800	30e-1 /2e5	£00	000	000	000	0001	ALPS [17]
AMaLGaM IDEA 7	79 20	14e+0/1e6) · ·						AMaLGaM IDEA [4]
	110 1400	12e+1/2e4								avg NEWUOA [31]
œ	83 40	69e+0/2e3								$\widetilde{\mathrm{BayEDAcG}}$ [10]
17	00 40e+1/8e3									BFGS [30]
	5100 4300	11e+1/5e4								Cauchy EDA [24]
7.0		12e+0/3e5								BIPOP-CMA-ES [15]
(1+1)-CMA-ES 46	6 14e+1/1e4		٠	٠		٠				(1+1)-CMA-ES [2]
25		П	130	1700	1700	1700	1700	1700	91	DASA [19]
120		10e+1/2e3								DEPSO[12]
П	. 11	88e+0/5e3								DIRECT [25]
20	0 56	6e3	15e+0/1e5							EDA-PSO [6]
27	70 4e3	13e+1/1e4								full NEWUOA [31]
62	9 19e+1/5e4		٠	٠		٠				G3-PCX [26]
1(08 00	65	3800	34e-1/1e5						simple GA [22]
	30 20e + 1/4e3	-				٠				GLOBAL [23]
iAMaLGaM IDEA 61		13e+0/1e6								iAMaLGaM IDEA [4]
280		49e+0/7e3							•	LSfminbnd [28]
4400	00 9.5	1.6	П	П	Н	П	П	Н	П	LSstep [28]
09		53	30e-1/1e5							MA-LS-Chain [21]
П	П.	21e+0/4e3								MCS (Neum) [18]
NELDER (Han) 40	0 13e + 1/1e4			•		٠				NELDER (Han) [16]
NELDER (Doe) 35	5 1600	11e+1/2e4								NELDER (Doe) [5]
20	55 4300	17e+1/1e4				٠				NEWUOA [31]
82	2 3.8e5	13e+1/1e6								(1+1)-ES [1]
4e3	3 18	13	140	220	240	250	250	250	14	POEMS [20]
44	4 8.6	5900	23e+0/1e5							PSO [7]
99	6 130	190	290	300	360	360	370	380	21	PSO_Bounds [8]
15	130 $33e+1/1e6$									Monte Carlo [3]
	0 20e+1/8e3	٠								Rosenbrock [27]
IPOP-SEP-CMA-ES 5	55 2.5	14e+0/1e4								IPOP-SEP-CMA-ES [29]
Π	110 3.2	27	2.8e4	1.3e5	1.3e5	20e-1/4e6			•	VNS (Garcia) [11]

Table 5: 20-D, running time excess ERT/ERT_{best} on f_5 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

			<u> </u>	5 Lir	(D)	obe					
$\Delta { m ftarget}$	1e + 03	1e+02	1e+01	1e+00		1e-02		1e-04	1e-05	1e-07	Δ ftarget
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.05	1.83	2.03	2.03	2.03	2.03	2.03	2.03	2.03	2.03	${ m ERT_{best}/D}$
ALPS	Н	51	160	210		280		310	320	330	ALPS [17]
AMaLGaM IDEA	1	34	75	80		80		80	80	80	AMaLGaM İDEA [4]
avg NEWUOA	П	2.7	2.7	3.2		3.3		3.3	3.3	3.3	avg NEWUOA [31]
$\operatorname{BayEDAcG}$	1	29	150	200		200		210	210	210	BayEDAcG [10]
BFGS	П	1.4	2.4	2.7		8.8		8.8	8.7	8.8	BFGS [30]
Cauchy EDA	1	110	160	170		170		170	170	170	Cauchy EDA [24]
BIPOP-CMA-ES	1	2.7	5.1	6.2		6.3		6.3	6.3	6.3	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1.6	3.1	3.6		3.7		3.7	3.7	3.7	(1+1)-CMA-ES [2]
DASA	П	14	24	29		38		47	52	64	DASA [19]
DEPSO	1	16	39	46		48		48	48	48	DEPSO [12]
DIRECT	Н	62	180	220		230		230	230	230	DIRECT [25]
EDA-PSO	Н	5.2	27	34		39		33	33	39	EDA-PSO [6]
full NEWUOA	П	6.4	6.2	6.5		9.9		9.9	9.9	9.9	full NEWUOA [31]
G3-PCX	П	7.5	19	22		27		27	27	27	G3-PCX [26]
simple GA	Н	570	2200	4600		1.1e4		1.8e4	2.2e4	2.3e5	simple GA [22]
GLOBAL	Н	9.2	6.6	11		11		Π	11	11	GLOBAL [23]
iAMaLGaM IDEA	П	4.4	8.6	11		11		Ξ	11	11	iAMaLGaM IDEA [4]
LSfminbnd	н	14	16	16		16		16	16	16	LSfminbnd [28]
LSstep	П	150	180	190		190		190	190	190	LSstep [28]
MA-LS-Chain	П	22	41	44		46		46	46	46	MA-LS-Chain [21]
MCS (Neum)	П	П	П	П		Н		7	Н	1	MCS (Neum) [18]
NELDER (Han)	Н	3.8	7.4	8.8 8.8		9.5		9.5	9.5	9.5	NELDER (Han) [16]
NELDER (Doe)	П	2.6	5.2	6.2		6.4		6.4	6.4	6.4	NELDER (Doe) [5]
NEWUOA	П	1.2	1.2	1.5		1.6		1.6	1.6	1.6	NEWUOA [31]
(1+1)-ES	П	1.6	3.1	3.5		3.6		3.6	3.6	3.6	(1+1)-ES [1]
POEMS	П	180	260	310		320		350	320	320	POEMS $[20]$
PSO	П	4.7	4.3e4	4.3e4		4.3e4	-	4.3e4	4.3e4	4.3e4	PSO [7]
PSO_Bounds	П	4.5	160	160		160		160	160	160	PSO_Bounds [8]
Monte Carlo	П	2.5e6	11e+1/1e6								Monte Carlo [3]
Rosenbrock	П	3.8	4.2	4.3	4.3	4.3		4.3	4.3	4.3	Rosenbrock [27]
IPOP-SEP-CMA-ES	П	2.9	6.2	7.3		7.7		7.7	7.7	7.7	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	П	4.9	8.9	9.2		7.8		7.8	2.8	7.8	VNS (Garcia) [11]

Table 6: 20-D, running time excess ERT/ERT_{best} on f_6 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT}_{ m best}/{ m D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	309	14e-7/2e5	22	П	٠	61	٠	1.6	٠	74			44	1.4	2.4		•	8.3			9		7.4		1.7	6.7	37	790	220		٠	7	1.6
	1e-05	248	370	22	1		4.9		1.6		63			44	1.4	2.3			∞			6.5		4	46e-5/2e4	1.7	6.4	36	570	160			7	1.6
	1e-04	219	150	21	1		4.8		1.5		58			44	1.4	2.2			7.7			6.7		3.5	430	1.6	6.5	35	620	130		21e-2/1e4	1.9	1.6
	1e-03	184	100	22	-1		ಬ		1.6		49			44	1.4	2.2			7.8	72e-1/1e4		7.2		3.5	110	1.6	6.1	36	710	140		810	1.9	1.7
ive sector	1e-02	152	28	22	П		4.9	٠	1.6	13e-1/1e4	33			44	1.4	2.1		42e-3/2e3	7.7	096		7.7		3.5	65	1.5	5.2	36	820	140		230	1.9	1.7
6 Attract	1e-01	123	64	21	Н	٠	4.7	17e-1/5e4	1.6	1200	25	13e-1 /2e3		44	1.4	2.1		8.5	7.1	1100		œ		3.2	28	1.4	3.9	36	086	140		210	1.9	1.7
	1e+00	87.2	54	22	П		4.7	1700	1.7	180	19	64		45	1.4	7	11e+0/1e5	4.9	8.9	092	59e+0/1e4	8.9		3.3	20	1.3	2.8	37	1400	150		92	1.9	1.9
		64.7																																
	1e+02	26	25	22	1.1	41	2.7	1500	2.2	4.5	8.9	7.5	31	46	1.9	1.4	130	2.9	5.6	31	260	4.9	33	2.4	2.3	-	2.2	26	280	45	48e+1/1e6	3.9	2.1	2.8
	1e+03	4.03	59	26	2.3	46	2.2	6200	2.9	1.9	12	11	18	27	ಬ	4.1	320	ಸು	5.1	6	140	11	1.8	2.5	1.5	П	77	88	6.4	9.2	2.4e5	2.1	3.2	ಬ
	$\Delta \mathrm{ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 7: 20-D, running time excess ERT/ERT_{best} on f_7 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	848	-	П				14	2.1					-					1.3			380				-							1.5	2300
	1e-05	826		-				14	2.5									•	1.3			390											1.5	2400
	1e-04	826		-				14	2.5										1.3			390											1.5	2400
	1e-03	826	-	1				14	2.5					-				•	1.3			390				-						-	1.5	2400
_	1e-02	826	48e-2/2e5	Н	-			14	2.2	92e-2/1e4		-				-			1.3	-		390	-	-				12e-1/1e5				-	1.5	2400
Step-ellipsoid	$1e-\bar{0}1$	475	930	1.3				18	3.5	300				15e-1/1e5	27e-1/1e4				1			360						3100					2.4	72
7 Ste	1e+00	214	850	2.1	51e-1/2e4	11e+0/2e3		29	4.9	54	13e+0/4e5	77e-1/2e3		950	200	12e+0/1e4	32e-1/1e5		1	15e+0/1e4	29e+0/1e4	120		16e+0/1e4	97e-1/2e4			2e3	62e-1/1e5	22e+0/1e5			4	78
5 4	1e+01	67.5	30	3.6	100	22		44	1	30	1.8e4	18	15e+0/6e3	26	4.6	092	22	22e+0/700	1.7	1e3	2200	4.3	38e+0/4e3	2200	370	18e+0/2e4	27e+0/1e6	21	430	9200	10e+1/1e6		2.3	5.4
	1e + 02	7.59	26	10	1.4	31	67e+1/100	130	2.8	16	49	6.7	7	65	1.9	2.8	180	2.9	5.8	21	180	5.4	57	4.6		43	1100	52	4.8	26	2.1e5	38e+1/3e3	2.8	3.7
	1e+03	0.53	2	က	7.1	4.3	69	130	2.5	1.6	16	2.7	3.5	2.5	14	4.7	5.8	4.6	7	23	230	3.4	П	4.5	2.5	3.6	3.1	440	2.5	3.3	3.2	200	3.4	1.1
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 8: 20-D, running time excess ERT/ERT_{best} on f_8 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock $[27]$	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	222	26e-6/2e5	22	Н		1.2	550	4.7	6.7	550				1.7	5.7	·	1.2	11	•		14	1.8	5.6	9.5	П	240		3300	•		670	5.8	6.4
	1e-05	219	3100	21	1		1.2	360	4.6	9.9	420				1.7	5.5		1.2	10			13	1.8	5.3	7.7	П	200		890			62	2.8	6.4
	1e-04	215	1200	21	1		1.2	290	4.6	6.7	350			17e-5/1e5	1.7	5.5		1.2	10			13	1.8	5.1	7.2	-	180		580			55	5.8	6.4
nal	1e-03	211	1e3	20	1		1.2	260	4.5	9.9	280			410	1.7	5.5		1.2	10	40e-1/1e4	12e-1/1e4	14	1.8	4.9	6.5	1	160		470	15e-2/1e5		42	5.8	6.4
k origin	1e-02	207	740	20	1		1.2	250	4.5	9.9	200			330	1.7	5.5		1.2	8.6	720	350	13	1.8	4.5	9	1	140		410	7200		35	5.7	6.4
Rosenbrock origina	1e-01	202	009	19	1		1.2	210	4.3	9.9	120			260	1.6	5.5		1.2	9.2	710	220	13	1.8	4.1	5.5	П	120	74e-1/1e5	350	1800		28	5.7	6.3
8 F	1e+00	187	460	18	1		1.3	180	4.2	6.5	57			220	1.6	5.6		1.3	9.5	120	130	13	1.8	3.9	4.9	П	120	2600	320	450		25	5.6	6.3
>	1e+01	97.9	100	20	1	48e+0/2e3	1.9	200	4.2	3.9	34	17e+0/2e3	64e+0/5e3	190	1.4	2.7	17e+0/1e5	1.7	8.6	9.6	25	14	1.6	3.4	2.9	П	13	590	93	540		4	5.6	9
	1e + 02	21	51	16	1.6	35	77	200	2.4	1.8	26	16	82	110	2.6	77	250	2.4	6.4	17	71	10	1.2	2.9	က	П	11	84	19	160		1.1	1.7	3.1
	1e+03	5.52	20	25	7	55	1.9	360	4	2.7	15	16	25	220	3.4	3.9	480	4.1	13	7.1	150	12	1.4	3.2	3.2	-1	2.5	100	15	88	80e+2/1e6	73	3.5	9
	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 9: 20-D, running time excess ERT/ERT_{best} on f_9 , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	1e-07 Δ ftarget	$_{186}$ ERT $_{ m best}/{ m D}$		7	1.2 avg NEWUOA [31]			630 Cauchy EDA [24]	Щ	6.9 $(1+1)$ -CMA-ES [2]		. DEPSO [12]	DIRECT [25]		2.2 full NEWUOA [31]		02	1.5 GLOBAL [23]	iAl	. LSfminbnd [28]				8.9 NELDER (Han) [16]	Z		200 (1+1)-ES [1]	POEMS [20]	. PSO [7]	. PSO_Bounds [8]	. Monte Carlo [3]	. Rosenbrock [27]	7.2 IPOP-SEP-CMA-ES [29]	17NTO (Camera) [11]
		180	-	25	1.2		77	470	6.1	7	2700				2.3	4.1		1.6	12			30	1.7	8.8	8.4	1	160					35e-5/1e4	7.2	90
	1e-04	176	-	22	1.2		7	340	6.1	-1	2400				2.3	4.1		1.6	12	-		31	1.7	8.6	7.9	П	130					850	7.3	0
	1e-03	173	•	24	1.3	٠	7	310	6.1	-	2100		•	٠	2.3	4.1		1.6	12			31	1.6	8.4	7.5	Н	110					63	7.3	0
tated	1e-02	169	-	24	1.3		2.1	300	6.1	7	1800				2.3	4.1	٠	1.6	12			50	1.6	2.8	_	П	98					49	7.3	ν χ
9 Rosenbrock rotated	1e-01	164		23	1.2		2.1	290	9	7	1500			14e-2/1e5	2.3	4		1.6	12	32e-1/1e4		27	1.5	7.2	9.9	1	65			20e-1/1e5		37	7.2	0
9 Rosen	1e+00	155	48e-1/2e5	22	1.2		2.2	270	5.7	6.7	1300			450	2.2	3.8		1.7	11	470		25	1.3	9.9	6.1	1	52	99e-1/1e5	75e-1/1e5	9200		31	7	co
•	1e+01	85.8	350	22	-	18e+0/2e3	2.2	190	4.7	4.5	210	18e+0/2e3	22e+0/5e3	280	1.8	2.9	19e+0/1e5	1.7	9.6	52	18e+0/1e4	17	1	3.6	3.3	1	12	2e3	029	200		8.4	6.9	0 9
		17.8																						2.3	1.4	1.3	2.5	74	40	650		1.2	2.5	3.0
	1e+03	0.05	4800	2e3	230	4800	210	3.3e4	390	260	2e3	1400	П	2.2e4	460	410	4.4e4	420	1400	740	1.5e4	820	Н	200	150	130	260	1e4	1600	8.2e4	68e + 2/1e6	190	320	710
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Carcia)

Table 10: 20-D, running time excess ERT/ERT_{best} on f_{10} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]			Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+]	DASA $[19]$	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES $[1]$	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]		IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	874		2.1	ಬ	٠	77e-8/5e4	25	1.1	-				•		23		19e-6/2e3	1.1			8.9		٠		5.8	94e-5/1e6						1.6	2.7
	1e-05	854	٠	1.8	4.2		3.1	21	1.1	П				-		18		5.9	П	•		6.9		•		4.7	8700	-					1.6	2.8
	1e-04	810		1.8	3.9		1.3	21	1.1							16		5.6	п			7.2				4.3	3500						1.7	2.9
	1e-03	746	٠	1.7	3.6	•	1.1	20	1.2	1.1		٠		•		15		7	П	-		2.8		•		4	2200	•			•	•	1.8	3.1
	1e-02	682	٠	1.7	3.1	•	1.1	19	1.3	1.2		٠		•		13		1.2	П	-		8.5		•		3.3	1e3	•			•	•	7	3.4
lipsoid	1e-01	537		1.9	3.1		П	20	1.6	1.4				-		12		1.1	1.2	•		11		•		3.3	1e3						2.4	4.2
10 Ellir	1e+00				2.6		1	22	1.8	1.7	72e-1/1e6				67e-1/1e4	10		1.1	1.3			13		30e+0/1e4	57e-1/2e4	2.6	200						2.9	4.7
	1e+01	371	16e+1/2e5	1.8	1.5		1	20	1.9	1.7	3400				34	6.5		1	1.3			11		390	30	1.7	300		84e+1/1e5			27e+1/1e4	3.1	4.8
	1e+02				1		1	21	1.9	1.7	1200			36e+1/1e5	15	3.4		1	1.3	22e+2/1e4		12		5.3	4.2	1.1		12e + 2/1e5		41e+1/1e5				5.7
	1e+03	94	330	3.9	1	42e+3/2e3	1.6	36	3.1	2.5	390	17e+3/2e3	94e+2/5e3	480	6.6	3.1	15e+3/1e5	1.7	2.3	290	18e + 3/1e4	11	72e+2/4e3	2.9	2.2	1.2	20	5100 1	1200	650	11e+4/1e6	27	7.2	8.2
	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA		POEMS						VNS (Garcia)

Table 11: 20-D, running time excess ERT/ERT_{best} on f_{11} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	-07 Δ ftarget	742 ERT $_{ m best}/{ m D}$		1.9 AMaLGaM İDEA [4]	a		BFGS [30]	26 Cauchy EDA [24]	I BIPOP-CMA-ES [15]	(1+1	1500 DASA [19]	. DEPSO [12]	DIRECT [25]	. EDA-PSO [6]	full NEWUOA [31]	S G3-PCX [26]	. simple GA [22]	GLOBAL [23]	1 iAMaLGaM IDEA [4]	. LSfminbnd [28]	. LSstep [28]	.8 MA-LS-Chain [21]	. MCS (Neum) [18]	4	Z	Z	680 $(1+1)$ -ES [1]			2e-4/1e5 PSO_Bounds [8]	. Monte Carlo [3]	. Rosenbrock [27]	1.8 IPOP-SEP-CMA-EŚ [29]	A VNS (Garcia) [11]
		614 74						25 2							75e-5/1e4	7.6			=			9.3		-		9.9	029		150	1200			2.1	2
	1e-04	554					6.3				810	-			88	7.3		•				10				6.2	620	34e-4/1e5	140	099		-	2.3	7
		488					150	22	1.4	2.4	730	-		٠	36	7.1						11		-			610			480			2.5	0
Discus	1e-02		12e-2/2e5	1.6	5.1			20							18									-	75e-3/2e4	5.6	260	190	110	240			2.8	0
11	1e-01	314	2200	1.9	5.7		1.3	22	1.9	2.4	420			79e-1/1e5	21	7		1	1.2			14		16e-1/1e4	74	5.8 8.5	580	190	110	220			3.7	700
	1e+00	111	086	3.7	11		П	44	5.1	5.1	069	-	٠	1.3e4	45	14	20e+0/1e5	1	2.7	•		35		290	24	13	1200	410	190	440	-		10	0
for many in a	1e+01	50.1	490	22	15	14e+1/2e3	П	64	10	2	570	95e+0/2e3	76e+0/5e3	1900	57	18	2.9e4	1.2	4.4	•		63	62e+0/4e3	41	17	15	1600	440	140	570	67e+0/1e6	11e+1/1e4	20	-10
	1e+02	24.1	29	3.3	11	250	П	71	18	5.6	120	110	23	74	40	9.7	120	1.5	5.2	22e+1/1e4	29e+1/1e4	30	53	5.2	4.4	15	1400	52	46	210	930	880	34	93
	1e+03	1.35	5	7	9	4.9	2.9	100	4.1	2.4	4.4	8.2	2.1	4.3	22	4	4.2	v	4.4	7	2.4	2.6	1	3.3	4.4	1.5	2100	130	4.1	4.4	5.5	2.9	3.1	77
	Δ ftarget	ERT_{best}/D	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	(Signary) SIVI

Table 12: 20-D, running time excess ERT/ERT_{best} on f_{12} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	$\Delta { m ftarget}$	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	691	-	8.4	21		45	1100	7	3.6	13e+0/1e6	-		57e-3/1e5	100	1.3		3.4	3.9			47	16e-4/4e3			1	-						2.5	4.4
	1e-05	620	-	9.2	12		1.8	390	1.9	3.4	2.3e4	-		2300	35	1.2		1.1	3.6			51	94	54e-4/1e4		1	-						2.4	4.1
	1e-04	321	•	12	20	٠	2.2	360	3.3	9	4.4e4	٠		4400	37	2.1		П	9			26	87	460	21e-3/2e4	1.8	٠	٠					4.3	7.4
	1e-03	207	33e-3/2e5	15	24	٠	1.6	380	4.5	8.3	6.8e4	٠		0089	38	2.9		П	7.8			150	43	340	1400	2.2	٠	٠				70e-2/1e4	5.9	8.3
Bent cigar	1e-02	158	3500	16	24	٠	1.7	400	4.9	9.6								1	8.1			140	24	28	400	က				64e-1/1e5		910	8.9	9.1
12 Be	1e-01	137	840	13	18	21e-1/2e3	1.6	420	4.5	6.6	4.7e4		25e+3/5e3	720	26	က		1	7.2	76e-1/1e4	16e+0/1e4	130	12	22	61	က	52e-1/1e6	37e-1/1e5		5100		210	6.4	9.9
dimension	1e+00	6.96	240	12	15	22	1.6	440	4	9.6	2.8e4	77e-1/2e3	240	260	15	2.8		1	9.9	410	089	8.6	8.4	26	45	က	6.7e4	2100	64e-1/1e5	3e3		26	6.7	5.9
aiviaea by	1e+01	52.1	87	19	11	42	1.6	510	က	7.7	2.2e4	89	420	300	11	2.7	14e+2/1e5	1	8.7	26	230	7.4	1.1	19	13	က	1.2e4	420	1700	200		14	5.8	5.9
us value	1e+02	29.6	06	29	1.3	09	1.6	520	က	3.1	16	48	330	250	6.7	2.5	1.5e4	1.1	13	3	35	12	1.3	5.5	4.1	1.3	1.7	170	550	270		Н	2.8	3.4
s to reach th	1e+03	25.4	80	28	1.4	55	1.6	450	က	1.8	13	39	340	230	2.3	2.4	7100	1.1	12	2.9	29	11	1.3	2.7	2.3	1.3	1.7	160	640	240	28e+6/1e6	1	2.7	3.3
runction evaluations to reach this value divided by d	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 13: 20-D, running time excess ERT/ERT_{best} on f_{13} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO $[12]$	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]		IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	1510	٠	1.7	67e-5/2e4			23	က	14	51e-6/1e6			•	30e-4/1e4	330			-	•						•	2e3					18e-4/1e4	7	1500
	1e-05	1220	•	1.7	170	٠	96e-5/2e4	23	2.3	6.3	3700			٠	120	130		16e-4/1e3	Н	53e-3/1e4		27e-3/1e5		35e-3/1e4	36e-4/2e4	43e-4/9e3	410		22e+0/1e5			120	1.9	540
	1e-04	1090		1.7	22		87	23	1.6	2.2	1200	-			40	110		4.2	Н	130		1300		130	270	130	110	-	1300	•		43	1.9	320
	1e-03	937	14e-3/2e5	1.7	14		23	23	1.5	4.2	670				26	47		4.5	-	160		1500	60e-2/4e3	22	86	19	50		1500			17	1.7	130
$_{ m ridge}$		175	2700	7.7	30		1	100	6.2	11	1600			12e-2/1e5	49	75		1.1	4.4	150		1800	330	180	87	37	92		8e3			31	∞	180
13 Sharp	1e-01	138	420	∞	14		П	100	5.1	10	570			1200	18	43		1.1	4.3	89	12e+0/1e4	200	61	09	31	9.3	26	59e-1/1e5	1e4	50e-1/1e5		8.3	7.7	120
	1e+00	101	130	œ	5.3	49e+0/2e3	1	100	2.7	7.1	230	53e-1/2e3	-	330	9	17	10e+0/1e5	1.1	4.1	19	1400	390	37	29	18	က	13	1.4e4	6400	4100		4.2	5.4	55
	1e + 01	32.6	26	18	1.5	910	1.7	210	4.3	4.9	380	64	13e+1/5e3	160	1.8	9.3	5100	7	8.7	19	460	11	34	11	12	П	7.4	1700	6200	2300		2.5	5.8	4.3
	1e+02	8.51	130	41	1.8	150	1.6	410	5.1	3.4	22	40	2400	330	3.6	4.8	200	3.1	18	8.7	310	22	8.4	6.4	3.4	н	3.3	200	1800	310	92e+1/1e6	7	ъ	6.2
	1e+03	3.21	49	18	2.1	45	1.2	260	3.6	5.9	15	11	15	110	4.1	4.3	290	5.7	9.2	6.2	180	7.3	1.3	2.3	1.5	Н	2.5	100	6.1	12	1.5e5	2.5	3.6	5.8
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	$iAMaLGaM\ IDEA$	LSfminbad	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 14: 20-D, running time excess ERT/ERT_{best} on f_{14} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

Table 15: 20-D, running time excess ERT/ERT $_{\text{best}}$ on f_{15} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	23000		1.2					П									٠	5.2			٠											6.4	•
	1e-05	22500		1.2					п										5.3									-					1.1	
	1e-04	16100		1.7					1.4										7.4									-					1	
	1e-03	16000	•	1.7		•	•	•	1.4	•		•	•	٠			•		7.4	•						•		•				•	1	
	1e-02	15800		1.7					1.4	-									7.5														1	
15 Rastrigin	1e-01	15600		1.7		•			1.4	•		•		-					7.5	•								•		•		•	1	
15 Ra	1e+00	7330		77					7					80e-1/1e5				-	14			60e-1/1e5											1	60e-1/6e6
>	1e+01	1520	20e+0/2e5	1.5	95e+0/1e4	93e+0/2e3	-	67e+0/5e4	1	85e+0/1e4	11e+1/1e6		10e+1/5e3	36	77e+0/1e4	92e+0/5e4	25e+0/1e5		2.8			6.9	10e+1/4e3	80e+0/1e4	54e+0/2e4	12e+1/6e3	82e+0/1e6	34e+0/1e5	49e+0/1e5	51e+0/1e5			1.1	310
	1e+02	83.5	10	7.1	120	23	25e+1/6e3	89	1.2	73	3e4	12e+1/2e3	110	22	81	550	59	25e+1/1e3	3.1	14e+1/1e4	22e+1/1e4	3.7	20	54	17	1100	5400	23	92	220	26e+1/1e6	35e+1/1e4	1	1.5
	1e + 03	90.0	18	12	26	13	029	1700	17	33	160	12	1	20	120	21	21	13	12	130	2400	10	1	28	22	56	340	2700	16	14	16	2700	14	22
	Δ ftarget	${ m ERT}_{ m best}/{ m D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 16: 20-D, running time excess ERT/ERT $_{best}$ on f_{16} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	11000		5.7				٠	1			•				٠		٠	56	•		•						•		•		٠	1.7	
	1e-05	0886	-	6.1					П										28														1.9	
	1e-04	0926		6.1					Н			-							59	-				-				-				-	1.9	
	1e-03	9400		6.2		•			Н			•							56	•												-	1.4	
SS	1e-02	0969	-	5.4					1					75e-2/1e5					18									58e-2/1e5					1.1	72e-3/3e6
16 Weierstrass	1e-01	3850	78e-2/2e5	5.2					1.2				12e-1/5e3	380	25e-1/1e4		24e-1/1e5		13									100		25e-1/1e5			1	200
16	1e+00	1360	110	3.3	31e-1/2e4				1	53e-1/1e4	44e-1/1e6		-1	55	110	32e-1/5e4	1e3	42e-1/600	1.7	95e-1/1e4	10e+0/1e4	18e-1/1e5	75e-1/4e3	47e-1/1e4	30e-1/2e4	53e-1/1e4	72e-1/1e6	21	47e-1/1e5	1e3	11e+0/1e6		1	9.1
	1e+01	69.2	9.3	14	3.6	21e+0/2e3	26e+0/2e4	16e+0/5e4	1.7	34	086	23e+0/2e3	8.3	530	4.6	17	140	1	3.6	160	240	19	11	17	7.2	16	1400	15	110	130	6.5e4	29e+0/1e4	3.1	3.6
	1e + 02	0.02	1.2	1.1	1.5	1.2	140	3.5	1.3	1.1	2.3	1.2	1	1.3	1.9	1.3	1.3	1.2	1.2	1.1	п	1.1	1	1.3	1.4	1.1	1.2	250	1.3	1.2	1.3	3.4	1.2	П
	1e + 03	0.05	П	1	П	1	1	1	1	1	П	П	1	1	1	1	1	1	П	П	П	П	1	П	П	1	1	-	1	П	П	1	Н	1
	Δ ftarget	$\text{ERT}_{\text{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 17: 20-D, running time excess ERT/ERT_{best} on f_{17} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

initicaton evaluacions to reach this value divided by difficulting	10 or 10 or	CIIIO IIO	varue an	vided by diff	7 Schaffer	inclusion 17 Schaffer F7. condition 10	ion 10				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01		1e-01	1e-02	1e-03	1e-04	1e-05	1e-07	Δ ftarget
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	0.02	0.05	3.15	51.5	200	612	1530	2230	2810	4020	${ m ERT}_{ m best}/{ m D}$
ALPS	1	1.5	19	28	5100	16e-2/2e5					ALPS [17]
AMaLGaM IDEA	1	1.1	14	7.7	4.3	5.1	4.7	3.5	5.1	5.4	AMaLGaM İDÉA [4]
avg NEWUOA	1	2.1	2.4	29e-1/4e4							avg NEWUOA [31]
$_{ m BayEDAcG}$	1	77	19	19	48	15e-2/2e3					BayEDAcG [10]
BFGS	1	350	360	56e-1/2e4							BFGS [30]
Cauchy EDA	1.1	200	260	120	62	30	16	16	23	37e-7/5e4	Cauchy EDA [24]
BIPOP-CMA-ES	1	4	2.2	1	1	1	1.2	1.4	1.3	1.4	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1.9	58	49e-1/1e4							(1+1)-CMA-ES [2]
DASA	1	8.5	6.6e4	57e-1/1e6							DASA [19]
DEPSO	1	1.5	8.3	18	150	43e-2/2e3			-		DEPSO[12]
DIRECT	1	1	1.8	55	55e-2/5e3						DIRECT [25]
EDA-PSO	1	1.3	13	36	20	22	10	8.1	18	21	EDA-PSO [6]
full NEWUOA	1	9.4	13	37e-1/1e4							full NEWUOA [31]
G3-PCX	1	1.2	4	35e-1/5e4							G3-PCX [26]
simple GA	1	1.2	57	92	7100	21e-2/1e5					simple GA [22]
GLOBAL	1	1.6	6.2	44e-1/3e3							GLOBAL [23]
iAMaLGaM IDEA	1	1.5	6.4	2.9	1.5	1.4	6.1	22	29	23	iAMaLGaM IDEA [4]
LSfminbnd	1	8.9	066	82e-1/1e4							LSfminbnd [28]
LSstep	1	55	1700	78e-1/1e4							LSstep [28]
MA-LS-Chain	1	1.3	3.5	5.1	7.7	10	12	33	59	98	MA-LS-Chain [21]
MCS (Neum)	1	П	н	42e-1/4e3							MCS (Neum) [18]
NELDER (Han)	П	1.3	240	62e-1/1e4							NELDER (Han) [16]
NELDER (Doe)	1	4	2.1	46e-1/2e4							NELDER (Doe) [5]
NEWUOA	П	5.1	16	38e-1/8e4							NEWUOA [31]
(1+1)-ES	1	5.7	5.2e4	73e-1/1e6							(1+1)-ES [1]
POEMS	П	540	94	25	19	200	270	11e-3/1e5			POEMS $[20]$
PSO	П	1.1	3.2	2500	10e-1/1e5				•		PSO [7]
PSO_Bounds	П	1.3	က	830	85e-2/1e5			٠			PSO_Bounds [8]
Monte Carlo	1	1.1	120	50e-1/1e6							Monte Carlo [3]
Rosenbrock	П	1.6e4	2.1e4	19e+0/1e4							Rosenbrock [27]
IPOP-SEP-CMA-ES	1	1.4	2.8	4	3.1	1.6	1	-	-	1	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	П	1.2	5.3	1.2	1.5	5.8	34	2500	10e-5/4e6		VNS (Garcia) [11]

Table 18: 20-D, running time excess ERT/ERT_{best} on f_{18} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

11.1 1.2 3.8 1.1.1 2.3 1.1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.3 1.1 2.3 1.1 2.3 1.1 2.3 1.1 2.3 1.1 2.3 1.1 2.3 1.1 2.3 2.0 1.1 2.9 2.0 1.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Schaffe	$1e+02 \\ 0.14$	3.8 15 430 69ϵ	3.8 7.3 3	19 $3200 10e+0/6e4$	15	216				1 60 $4.6e5$ $25e+0/1e6$.	7.1 49 16e-1		30		7100 14e+0/5e4		17e+0/4e3	2.7		1.1 610 $31e+0/1e4$		17.	200	6.5	320 1.2e4 1	1100	5.2 240 29	2.4 69	7.7 $18e+0/1e6$.	1.4e4 4.8e4 <i>97e</i>	IPOP-SEP-CMA-ES 1 8.5 1 1.1 1
					1.3 19	1 6.4	1 920	2.5 270	1 5.3	1 12	1 60	1 7.9	1 6.5	1.1 4.2	1.1 23	1.1 2.2	1.1 7.8	1.1 5.9	1.2 3.4	2.2 31	1.1 610	1.1 5.8	1 1	1 830								1 8.5

Table 19: 20-D, running time excess ERT/ERT_{best} on f_{19} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	4 $1e-05$ $1e-07$ $\Delta ftarget$	3.34e5 3.37e5 E	. ALPS [17]	8.2 8.1	. avg NEWUOA [31]	BayEDAcG [10]	. BFGS [30]	. Cauchy EDA [24]	1 1 BIPOP-CMA-ES [15]	. $(1+1)$ -CMA-ES [2]	OPSA = 0.00	. DEPSO [12]	DIRECT [25]	. EDA-PSO [6]	full NEWUOA [31]	. G3-PCX [26]	. simple GA [22]	GLOBAL [23]	. iAMaLGaM IDEA [4]	. LSfminbnd [28]	. LSstep [28]	. MA-LS-Chain [21]	MCS (Neum) [18]	. NELDER (Han) [16]	. NELDER (Doe) [5]	. NEWUOA [31]	. $(1+1)$ -ES [1]	. POEMS [20]	PSO [7]	. PSO_Bounds [8]	. Monte Carlo [3]	. Rosenbrock $[27]$. IPOP-SEP-CMA-ES [29]	. VNS (Garcia) [11]
	1e-03 1e-04	3.11e5 3.33e5		8.8					1 1																									
rock F8F2	1e-02 1			4.5					1										72e-3/1e6			11e-2/1e5	25e-2/4e3										29e-2/1e4	
19 Griewank-Rosenbrock F8F2	1e-01	17200	31e-2/2e5	7.6	20e-1/1e5				1.2	18e-1/1e4			21e-2/5e3	26e-1/1e5			44e-2/1e5		44			13	1	19e-1/1e4	96e-2/2e4	12e-1/1e5	-	94e-2/1e5	-				8.7	916-916
2 ' '	1e+00	0.05	6.2e5	3.4e4	8e6	41e-1/2e3	12e+0/1e4	34e-1/5e4	2.4e4	2.8e6	58e-1/1e6	50e-1/2e3	1	2.8e7	21e-1/1e4	26e-1/5e4	6.5e5	57e-1/3e3	1.8e6	38e-1/1e4	41e-1/1e4	2.9e4	1	1.4e6	4.3e5	4.3e6	56e-1/1e6	1.4e6	32e-1/1e5	31e-1/1e5	78e-1/1e6		2.7e4	8 264
	1e+01	0.05	1200	740	210	1500	1.2e6	8400	170	1400	1.8e6	430	1	4600	480	800	1.4e4	2600	460	1200	7800	280	1	160	73	92	6.3e6	6200	380	820	5.9e5	33e+0/1e4	150	330
	1e+02	0.02	1	1.2	2.9	1.1	170	3.4	1	П	2.1	1.1	1	1.1	1.3	1.1	1.1	П	1.1	2.6	130	1.1	1	П	П	1.1	2.2	170	1.1	1.1	1.1	3.1e4	П	_
	1e+03	0.05	П	-	1	П	П	1	1	1	-		п	-	п	1	п	1	-	1	п	1	1		1	1	П	1	1	-	-	1	1	-
	$\Delta { m ftarget}$	$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 20: 20-D, running time excess ERT/ERT_{best} on f_{20} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

runction evaluations to reach this value divided by differential 20 Sci	to react	n tills value	aivided	20 S	$20 \text{ Schwefel } x^* \sin(x)$	$\sin(x)$					
Δ ftarget	1e+03	1e + 02	1e+01	1e+00	1e-01	1e -0 2	1e-03	1e-04	1e-05	1e-07	$\Delta \mathrm{ftarget}$
$\mathrm{ERT}_{\mathrm{best}}/\mathrm{D}$	2.78	3.53	4.09	2310	1.55e5	2.76e5	2.77e5	2.78e5	2.8e5	2.82e5	$\mathrm{ERT}_{\mathrm{hest}}/\mathrm{D}$
ALPS	48	54	53	9.2	47e-2/2e5						ALPS [17]
AMaLGaM IDEA	20	22	20	88	68e - 2/1e6		•	٠		٠	AMaLGaM İDEA [4]
avg NEWUOA	1.8	1.4	1.3	110	12e-1/2e4						avg NEWUOA [31]
BayEDAcG	47	51	49	31e-1/2e3			٠	٠			BayEDAcG [10]
BFGS	1.7	1.9	2.1	5.8	90e-2/2e4						BFGS [30]
Cauchy EDA	310	330	340	27e-1/5e4	•		•	٠		٠	Cauchy EDA [24]
BIPOP-CMA-ES	4.7	4.4	4.3	9.5	П	Н	Н	П	Н	П	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	3.5	3.6	3.4	21	11e-1/1e4		•	•		•	(1+1)-CMA-ES [2]
DASA	22	21	20	2.1	40e-2/1e6						DASA [19]
DEPSO	15	16	15	21e-1/2e3	•		٠	٠	٠	٠	DEPSO $[12]$
DIRECT	17	36	31	18e-1/5e3							DIRECT [25]
EDA-PSO	210	230	230	15	63e-2/1e5		•	•		•	EDA-PSO [6]
full NEWUOA	4.2	3.4	3.1	64	12e-1/1e4						full NEWUOA [31]
G3-PCX	5.6	5.4	ъ	12e-1/5e4					•	•	G3-PCX [26]
simple GA	470	520	200	2.8	32e-2/1e5						simple GA [22]
GLOBAL	9.9	5.6	5.2	1.6	99e-2/4e3		•	•		•	GLOBAL [23]
iAMaLGaM IDEA	14	14	14	240	88e - 2/1e6						iAMaLGaM IDEA [4]
LSfminbnd	11	11	11	5.9	97e-2/1e4		•				LSfminbnd [28]
Γ Sstep	230	260	280	11	10e-1/1e4						LSstep [28]
MA-LS-Chain	œ	9.7	9.4	3.3	4.8	24e-2/1e5		•		•	MA-LS-Chain [21]
MCS (Neum)	5.9	5.4	4.7	12	12e-1/4e3						MCS (Neum) [18]
NELDER (Han)	3.1	3.4	3.5	13e-1/1e4			•	•	•	•	NELDER (Han) [16]
NELDER (Doe)	1.9	2.1	2.5	28	11e-1/2e4						NELDER (Doe) [5]
NEWUOA	П	П	-	15	10e-1/2e4						NEWUOA [31]
(1+1)-ES	3.4	3.2	3.1	110	88e - 2/1e6						(1+1)-ES [1]
POEMS	130	120	120	1	30e-2/1e5		•				POEMS $[20]$
PSO	12	15	17	20	11e-1/1e5						PSO [7]
PSO_Bounds	99	79	98	11	53e-2/1e5						PSO_Bounds [8]
Monte Carlo	1.7e6	15e + 2/1e6									Monte Carlo [3]
Rosenbrock	က	2.4	5.6	2.9	97e-2/1e4		•				Rosenbrock [27]
IPOP-SEP-CMA-ES	4.4	4.7	4.5	13	11e-1/1e4						IPOP-SEP-CMA-ES [29]
VNS (Garcia)	8.1	7.7	7.1	1.1	30e-2/1e7		•	٠	٠	٠	VNS (Garcia) [11]

Table 21: 20-D, running time excess ERT/ERT_{best} on f_{21} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

		_		21 G		01	Š				
$\Delta { m ftarget}$	1e+03	1e + 02	1e+01	1e+00	1e-01	1e-02 $1e-0$	1e-03	1e-04	1e-05	1e-07	$\Delta { m ftarget}$
$\mathrm{ERT}_{\mathrm{hest}}/\mathrm{D}$	0.02	0.05	28.1	327		716	732	754	778	879	ERT_{hest}/D
ALPS	1	1	14	13		7.7	8.3	9.5	8.6	11	ALPS [17]
AMaLGaM IDEA	1	Т	51	2400		1500	1500	1500	1400	1300	AMaLGaM İDEA [4]
avg NEWUOA	П	Н	3.2	5.7		3.5	3.4	3.3	3.3	2.9	avg NEWUOA [31]
BayEDAcG	1	1	55	60e-1/2e3							BayEDAcG [10]
BFGS	1	П	1.9	5.5	4.6	4.6	4.5	4.4	4.3	7.3	BFGS [30]
Cauchy EDA	1	-	1e3	32e-1/5e4							Cauchy EDA [24]
BIPOP-CMA-ES	1	П	3.2	55	48	47	46	45	43	39	BIPOP-CMA-ES [15]
(1+1)-CMA-ES	1	1	3.6	5.6	5.8	2.7	5.6	5.4	5.3	4.7	(1+1)-CMA-ES $[2]$
DASA	П	П	240	100	100	100	66	96	93	83	DASA [19]
DEPSO	Т	П	22	13	8.3	8.6	8.9	9.3	19	20e-1/2e3	DEPSO[12]
DIRECT	1	П	3.3	27	19e-1/5e3					٠.	DIRECT [25]
EDA-PSO	1	П	35	850	220	260	550	530	520	460	EDA-PSO [6]
full NEWUOA	П	П	7.4	3.4	4.5	4.5	4.4	4.2	4.1	3.7	full NEWUOA [31]
G3-PCX	1	-	12	7.2	5.1	ಬ	4.9	4.8	4.6	4.1	G3-PCX [26]
simple GA	1	П	90	620	400	400	006	890	20e-1/1e5		simple GA [22]
GLOBAL	1	П	1	1	П	1	1	-	1	2.1	GLOBAL [23]
iAMaLGaM IDEA	1	П	10	029	540	540	530	520	540	490	iAMaLGaM IDEA [4]
LSfminbnd	1	П	30	27	20	20	19	19	18	16	LSfminbnd [28]
LSstep	1	П	120	200	200	200	200	190	190	170	LSstep [28]
MA-LS-Chain	1	П	140	310	230	230	220	210	210	180	MA-LS-Chain [21]
MCS (Neum)	Н	Н	26	32	26	25	22	24	23	32	MCS (Neum) [18]
NELDER (Han)	1	П	7.7	20	24	24	23	23	22	20	NELDER (Han) [16]
NELDER (Doe)	1	1	7.6	4	7	2.1	2.1	7	7	1.8	NELDER (Doe) [5]
NEWUOA	Н	н	1.7	2.2	1.2	1.2	1.2	1.1	1.1	-1	NEWUOA [31]
(1+1)-ES	П	П	8.3	13	9.4	9.3	9.1	8. 8.	8.6	7.6	(1+1)-ES $[1]$
POEMS	1	1	2500	67e-1/1e5							POEMS $[20]$
PSO	1	Н	1800	4300	2e3	2e3	1900	1900	1800	1600	PSO [7]
PSO_Bounds	Н	н	260	1200	2e3	2e3	1900	1900	1800	1600	PSO_Bounds [8]
Monte Carlo	н	Н	26e+0/1e6								Monte Carlo [3]
Rosenbrock	Н	Н	7.8	9.2	4.7	4.6	4.5	4.4	4.3	3.8	Rosenbrock [27]
IPOP-SEP-CMA-ES	1	Н	15	20	28	57	26	54	53	47	IPOP-SEP-CMA-ES [29]
VNS (Garcia)	1	1	11	55	29	58	53	28	27	25	VNS (Garcia) [11]

Table 22: 20-D, running time excess ERT/ERT_{best} on f_{22} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension f_{22} , f_{23} ,

		6740 ERT $_{ m best}/{ m D}$		7	2.4 avg NEWUOA [31]		14 BFGS [30]	. Cauchy EDA [24]	37 BIPOP-CMA-ES [15]	1 $(1+1)$ -CMA-ES [2]	40 DASA [19]	. DEPSO [12]	DIRECT [25]	. EDA-PSO [6]	11 full NEWUOA [31]	4 G3-PCX [26]	. simple GA [22]	1.3 GLOBAL [23]	. iAMaLGaM IDEA [4]	7.2 LSfminbnd [28]	. LSstep [28]	MA-LS-Chain [21]	. MCS (Neum) [18]	_	1.5 NELDER (Doe) [5]	Z		. POEMS [20]		210 PSO_Bounds [8]	. Monte Carlo [3]	2.2 Rosenbrock [27]	. IPOP-SEP-CMA-ES [29]	VNS (Cancia) [11]
		_	180		12	٠	9.5		190	ro	200			•	53	20		1		34				54	7.5	9	10	•		1100		11		1100
	1e-04	1310	110		12		7.4		190	5.1	200				54	21		1		35			20e-1/4e3	55	7.7	6.2	10			1100		11		1200
SS	1e-03		98	-	13		7.7		200	5.3	210				22	22		1		36			47	58	∞	6.4	11			1100		12		1200
1 peak	1e-02	1210	81		13		6.7		210	5. 5.	210				29	22		1		36			48	59	8.2	9.9	11	-		1200		12		1200
Gallagher 21	$1\widetilde{e}$ -01	1170	62	69e-2/1e6	14	20e-1/2e3	8.1	51e-1/5e4	210	5.6	220	26e-1/2e3	71e-2/5e3	26e-1/1e5	9	23	20e-1/1e5	1	69e-2/1e6	37		20e-1/1e5	20	61	8.3	8.9	11	51e-1/1e5	20e-1/1e5	1200		12	69e-2/1e4	1300
22 G	1e+00	279	9.7	1900	5.6	31	1.8	1200	13	4.2	7.5	16	16	1e3	12	9.9	1500	1	440	16	51e-1/1e4	810	20	18	6.5	4.9	വ	5e3	410	730	30e+0/1e6	4.3	23	67
	1e+01	23.3	19	8.2	77	34	2.5	470	8.9	3.5	34	20	8.6	1600	2.5	11	110	1.1	8.1	59	280	3.8	17	17	5.2	П	11	2300	ಬ	089	6.4e5	3.4	6.2	14
	1e+02	0.02	1	П	1	1	1	1.1	1	1	П	-	1	П	П	1	1	1	П	1	1	П	-	1	П	1	П	П	-	П	1	1	-1	-
	1e + 03	0.02	1	Т	1	1	1	1.1	1	1	П	1	1	П	П	1	1	1	П	1	П	П	П	П	1	1	П	П	П	П	1	1	П	-
	Δ ftarget	${ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	BayEDAcG	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWOOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 23: 20-D, running time excess ERT/ERT_{best} on f_{23} , in italics is given the median function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{hest}/D}$	ALPS [17]	AMaLGaM İDEA [4]	avg NEWUOA [31]	BayEDAcG [10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO [12]	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS [20]	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	41900		1					1.2	•						-			3.2					-										
	1e-05	40600		1					1.2			-							3.3												-			
	1e-04	25500		1					1.9										5.2												-			
	1e-03	24400	-	П		-			77									-	5.1															23e-3/2e6
uuras	1e-02	18300	-	П					1.7						25e-2/1e4				2.3			61e-3/1e5		20e-2/1e4	17e-2/2e4	39e-2/8e3		59e-3/1e5					81e-3/1e4	1700
23 Katsuuras	1e-01	3370	29e-2/2e5	1.1	20e-2/2e4		13e-1/5e3		1	37e-2/1e4	31e-2/1e6		38e-2/5e3		44	30e-2/3e4	12e-1/1e5	43e-2/500	1.6	10e-1/1e4	91e-2/1e4	8.9	11e-1/4e3	43	98	32	31e-2/1e6	13	95e-2/1e5	12e-1/1e5	11e-1/1e6	50e-2/4e3	3.8	10
aea na airii	1e+00	80.7	82	23	4.7	23e-1/2e3	300	19e-1/5e4	32	9.1	64	26e-1/2e3	52	16e-1/1e5	7	7.8	4600	1	5.4	210	81	7.1	120	3.3	1.4	3.5	32	42	1600	8400	5.5e4	4.6	18	25
ing anvi	1e+01	0.16	1.9	1.7	15	1.6	47	1.9	4.3	5.8	3.4	1.6	4.1	2.1	14	2.8	1.7	2.8	1.9	4.4	2.5	1.8	1.3	2.1	1.9	12	27	23	2.5	က	$^{2.6}$	1.7	4.9	П
UIIIS VA	1e+02	0.05	1	1	Н	1	1	1	1	1	1	П	П	1	П	П	П	1	1	Н	П	П	П	П	П	П	1	1	П	П	Н	Н	П	П
O ICACII	1e + 03	0.05	1	1	1	1	1	1	-	1	1	1	1	1	1	1	1	1	1	П	1	1	1	1	1	-	1	1	1	1	1	П	1	-
tunction evaluations to reach this value divided by differential 23	$\Delta { m ftarget}$	$_{ m ERT_{best}/D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	$_{ m BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	${ m Rosenbro}{\it ck}$	IPOP-SEP-CMA-ES	VNS (Garcia)

Table 24: 20-D, running time excess ERT/ERT_{best} on f_{24} , in italics is given the median final function value and the median number of function evaluations to reach this value divided by dimension

	Δ ftarget	${ m ERT_{best}/D}$	ALPS [17]	AMaLGaM IDEA [4]	avg NEWUOA [31]	BayEDAcG~[10]	BFGS [30]	Cauchy EDA [24]	BIPOP-CMA-ES [15]	(1+1)-CMA-ES [2]	DASA [19]	DEPSO $[12]$	DIRECT [25]	EDA-PSO [6]	full NEWUOA [31]	G3-PCX [26]	simple GA [22]	GLOBAL [23]	iAMaLGaM IDEA [4]	LSfminbnd [28]	LSstep [28]	MA-LS-Chain [21]	MCS (Neum) [18]	NELDER (Han) [16]	NELDER (Doe) [5]	NEWUOA [31]	(1+1)-ES [1]	POEMS $[20]$	PSO [7]	PSO_Bounds [8]	Monte Carlo [3]	Rosenbrock [27]	IPOP-SEP-CMA-ES [29]	VNS (Garcia) [11]
	1e-07	2.6e6	•	•		•		•	П	•		•		•		•		•		•		•		•		•		•		•		•		•
	1e-05	2.6e6	•	•		•		•	П	•				•		•		•		•		•		•		•		•		•		•		•
	1e-04	2.6e6						•	-																									
	1e-03	2.6e6	•	•		•		•	-1	•		•		•		•		•		•		•		•		•		•		•		•		•
gin	$^{\rm 1e-02}$	2.6e6	•	•		•		٠	П	•		•		•		•		•		•		•		•		•		•		•		•		•
bi-Rastri	1e-01	2.6e6		23e-1/1e6		•		٠	П	•		•				•		٠		•		•		•		•		٠				٠		
24 Lunacek bi-Rastrigin	1e+00	3.74e5	•	19					П			•						•	21e-1/1e6			25e+0/1e5											23e+0/1e4	88e-1/1e7
	1e+01	00699	22e+0/2e5	5.1	74e+0/1e4	11e+1/2e3		91e+0/5e4	1	90e+0/1e4				86e+0/1e5	71e+0/1e4	11e+1/5e4	42e+0/1e5		2.8		19e+1/1e4	42	10e+1/4e3	10e+1/1e4	50e+0/2e4	83e+0/8e3	93e+0/1e6	46e+0/1e5	60e+0/1e5	66e+0/1e5			1	89
	1e + 02	331	5.7	4.2	3.3	44	31e+1/6e3	92	5.5	24	16e+1/1e6	14e+1/2e3	15e+1/5e3	28	4.5	190	35	21e+1/1e3	1.3	15e+1/1e4	210	2.1	12	49	3.7	4.3	3100	10	63	81	26e+1/1e6	37e+1/1e4	1	1.8
	1e+03	0.05	П	1.1	14	Н	œ	1.7	1	1	1.1	1.1	П	1.1	3.7	1.1	1.1	1	1.1	7.1	3.1	1.1	П	н	П	6.5	4.1	2.7	П	1.1	П	1.4	1	П
	Δ ftarget	$ ext{ERT}_{ ext{best}}/ ext{D}$	ALPS	AMaLGaM IDEA	avg NEWUOA	${f BayEDAcG}$	BFGS	Cauchy EDA	BIPOP-CMA-ES	(1+1)-CMA-ES	DASA	DEPSO	DIRECT	EDA-PSO	full NEWUOA	G3-PCX	simple GA	GLOBAL	iAMaLGaM IDEA	LSfminbnd	LSstep	MA-LS-Chain	MCS (Neum)	NELDER (Han)	NELDER (Doe)	NEWUOA	(1+1)-ES	POEMS	PSO	PSO_Bounds	Monte Carlo	Rosenbrock	IPOP-SEP-CMA-ES	VNS (Garcia)

References

- [1] Anne Auger. Benchmarking the (1+1) evolution strategy with one-fifth success rule on the BBOB-2009 function testbed. In Rothlauf [32], pages 2447–2452.
- [2] Anne Auger and Nikolaus Hansen. Benchmarking the (1+1)-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2459–2466.
- [3] Anne Auger and Raymond Ros. Benchmarking the pure random search on the BBOB-2009 testbed. In Rothlauf [32], pages 2479–2484.
- [4] Peter A. N. Bosman, Jörn Grahl, and Dirk Thierens. AMaLGaM IDEAs in noiseless black-box optimization benchmarking. In Rothlauf [32], pages 2247–2254.
- [5] Benjamin Doerr, Mahmoud Fouz, Martin Schmidt, and Magnus Wahlström. BBOB: Nelder-mead with resize and halfruns. In Rothlauf [32], pages 2239–2246.
- [6] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using an EDA and PSO hybrid. In Rothlauf [32], pages 2263–2268.
- [7] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using particle swarm optimization. In Rothlauf [32], pages 2269–2274.
- [8] Mohammed El-Abd and Mohamed S. Kamel. Black-box optimization benchmarking for noiseless function testbed using PSO_Bounds. In Roth-lauf [32], pages 2275–2280.
- [9] S. Finck, N. Hansen, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Presentation of the noiseless functions. Technical Report 2009/20, Research Center PPE, 2009.
- [10] Marcus Gallagher. Black-box optimization benchmarking: results for the BayEDAcG algorithm on the noiseless function testbed. In Rothlauf [32], pages 2281–2286.
- [11] Carlos García-Martínez and Manuel Lozano. A continuous variable neighbourhood search based on specialised EAs: application to the noiseless BBO-benchmark 2009. In Rothlauf [32], pages 2287–2294.
- [12] José García-Nieto, Enrique Alba, and Javier Apolloni. Noiseless functions black-box optimization: evaluation of a hybrid particle swarm with differential operators. In Rothlauf [32], pages 2231–2238.
- [13] N. Hansen, A. Auger, S. Finck, and R. Ros. Real-parameter black-box optimization benchmarking 2009: Experimental setup. Technical Report RR-6828, INRIA, 2009.
- [14] N. Hansen, S. Finck, R. Ros, and A. Auger. Real-parameter black-box optimization benchmarking 2009: Noiseless functions definitions. Technical Report RR-6829, INRIA, 2009.

- [15] Nikolaus Hansen. Benchmarking a bi-population CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2389–2396.
- [16] Nikolaus Hansen. Benchmarking the nelder-mead downhill simplex algorithm with many local restarts. In Rothlauf [32], pages 2403–2408.
- [17] Gregory S. Hornby. The Age-Layered Population Structure (ALPS) evolutionary algorithm, July 2009. Noiseless testbed.
- [18] Waltraud Huyer and Arnold Neumaier. Benchmarking of MCS on the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 989.
- [19] Peter Korosec and Jurij Silc. A stigmergy-based algorithm for black-box optimization: noiseless function testbed. In Rothlauf [32], pages 2295–2302.
- [20] Jirí Kubalik. Black-box optimization benchmarking of prototype optimization with evolved improvement steps for noiseless function testbed. In Rothlauf [32], pages 2303–2308.
- [21] Daniel Molina, Manuel Lozano, and Francisco Herrera. A memetic algorithm using local search chaining for black-box optimization benchmarking 2009 for noise free functions. In Rothlauf [32], pages 2255–2262.
- [22] Miguel Nicolau. Application of a simple binary genetic algorithm to a noiseless testbed benchmark. In Rothlauf [32], pages 2473–2478.
- [23] László Pál, Tibor Csendes, Mihály Csaba Markót, and Arnold Neumaier. BBO-benchmarking of the GLOBAL method for the noiseless function testbed. http://www.mat.univie.ac.at/~neum/papers.html, 2009. P. 986.
- [24] Petr Posik. BBOB-benchmarking a simple estimation of distribution algorithm with Cauchy distribution. In Rothlauf [32], pages 2309–2314.
- [25] Petr Posik. BBOB-benchmarking the DIRECT global optimization algorithm. In Rothlauf [32], pages 2315–2320.
- [26] Petr Posik. BBOB-benchmarking the generalized generation gap model with parent centric crossover. In Rothlauf [32], pages 2321–2328.
- [27] Petr Posik. BBOB-benchmarking the Rosenbrock's local search algorithm. In Rothlauf [32], pages 2337–2342.
- [28] Petr Posik. BBOB-benchmarking two variants of the line-search algorithm. In Rothlauf [32], pages 2329–2336.
- [29] Raymond Ros. Benchmarking sep-CMA-ES on the BBOB-2009 function testbed. In Rothlauf [32], pages 2435–2440.
- [30] Raymond Ros. Benchmarking the BFGS algorithm on the BBOB-2009 function testbed. In Rothlauf [32], pages 2409–2414.
- [31] Raymond Ros. Benchmarking the NEWUOA on the BBOB-2009 function testbed. In Rothlauf [32], pages 2421–2428.

[32] Franz Rothlauf, editor. Genetic and Evolutionary Computation Conference, GECCO 2009, Proceedings, Montreal, Québec, Canada, July 8-12, 2009, Companion Material. ACM, 2009.