Politecnico di Milano – Facoltà di Ingegneria Industriale e dell'Informazione – A.A. 2019/2020 Corso di Laurea in Ingegneria Fisica ESAME DI ANALISI III A DISTANZA, 25/6/2020 – Prof. I. FRAGALÀ

TEST 1. (8 punti) Scrivere solo le risposte, e.g. (a) Vero/Falso (b) Vero/Falso etc.

Sia f una funzione di variabile complessa definita sul disco $D := \{|z| < 1\}$. Stabilire quali delle seguenti affermazioni sono vere e quali sono false:

- (a) Se f ammette primitive in D allora è olomorfa su D. VERO (cf. Gilardi)
- (b) Se Res $(f, z_0) = 0$ per ogni fissato $z_0 \in D$, allora f è olomorfa. FALSO (es. $f(z) = 1/z^2$)
- (c) Se f è olomorfa su $D \setminus \{0\}$, f' è sviluppabile in serie di Laurent su $D \setminus \{0\}$. VERO (perché f' è olomorfa su $D \setminus \{0\}$)
- (d) L'insieme degli zeri di $f, Z(f) := \{z \in D : f(z) = 0\}$, puó essere costituito da $D \cap \mathbb{R}$. VERO (es: f(z) = Imz).

TEST 2. (8 punti) Scrivere solo le risposte, e.g. (a) Vero/Falso (b) Vero/Falso etc. Sia

$$u(x) := -\frac{2x}{(x^2+1)^2}, \quad x \in \mathbb{R},$$

e sia \widehat{u} la sua trasformata di Fourier. Stabilire quali delle seguenti affermazioni sono vere e quali sono false:

- (e) $\widehat{u}(\xi) = i\pi \xi e^{-|\xi|}$; VERO (poiché $u(x) = \frac{d}{dx} \frac{1}{1+x^2}$)
- (f) $\widehat{u}(x) = (2\pi)u(-x)$; VERO (vale formula inversione, poiché $u, \widehat{u} \in L^1(\mathbb{R})$)
- (g) $\widehat{u} \in C^1(\mathbb{R})$; VERO (poiché $xu \in L^1(\mathbb{R})$)
- (h) $u \in \mathcal{S}'(\mathbb{R})$. VERO (poiché $u \in L^1(\mathbb{R}) \subset \mathcal{S}'(\mathbb{R})$).

TEORIA. (5 punti) Scrivere coincisamente risposte, 2-3 righe per punto

(i) Esibire una distribuzione $T \in \mathcal{D}'(\mathbb{R})$ tale che $T' = 2\delta_1$, dove δ_1 è la delta di Dirac in x = 1.

$$f(x) = \begin{cases} 2 & \text{per } x > 1\\ 0 & \text{per } x \le 1 \end{cases}$$

(l) Mostrare che, per ogni fissato $c \in \mathbb{R}$, la funzione appartenente a $L^1_{loc}(\mathbb{R})$ definita da u(x) = c per ogni $x \in \mathbb{R}$ ha derivata nulla nel senso delle distribuzioni.

Per ogni funzione test $\varphi \in \mathcal{D}(\mathbb{R})$, detto L un numero reale tale che $\varphi = 0$ fuori da [-L, L], si ha

$$\langle u', \varphi \rangle = -\langle u, \varphi' \rangle = \int_{-L}^{L} c\varphi' = c[\varphi(L) - \varphi(-L)] = 0.$$

ESERCIZIO (10 punti) Scrivere le risposte E le loro motivazioni

Si considerino le due successioni di funzioni definite, sull'intervallo [0, 1], da

$$f_n(x) = x^{\frac{1}{n}}, \qquad g_n(x) = \begin{cases} n & \text{se } x \in [0, \frac{1}{n}] \\ 1 & \text{se } x \in (\frac{1}{n}, 1]. \end{cases}$$

- (m) Determinare le funzioni f e g tali che, rispettivamente, $f_n \to f$ e $g_n \to g$ puntualmente quasi ovunque su [0,1].
- (n) Stabilire, giustificando la risposta, se $f_n \to f$ e se $g_n \to g$ uniformemente su [0,1].
- (o) Stabilire, giustificando la risposta, se $\int_0^1 f_n \to \int_0^1 f$ e se $\int_0^1 g_n \to \int_0^1 g_n$

Soluzione.

- (m) Si ha $f_n \to 1$ e $g_n \to 1$ puntualmente quasi ovunque su [0,1] (precisamente, entrambe f_n e g_n convergono puntualmente a 1 tranne che nel punto x=0, nel quale si ha $f_n(0)\equiv 0$ e $g_n(0)\to +\infty$).
- (n) In entrambi i casi, f_n e g_n non convergono uniformemente a 1 su [0,1] in quanto

$$\sup_{x \in [0,1]} |f_n(x) - 1| \ge |f_n(0) - 1| = 1 \not\to 0 \qquad \text{e} \qquad \sup_{x \in [0,1]} |g_n(x) - 1| \ge |g_n(0) - 1| = n - 1 \not\to 0.$$

(nota: stessa conclusione per chi avesse considerato il sup essenziale, in quanto ess $\sup_{x \in [0,1]} |f_n(x) - 1| = 1$ e ess $\sup_{x \in [0,1]} |g_n(x) - 1| = n - 1$).

(o) Per quanto riguarda la successione f_n , la risposta è affermativa per il teorema di convergenza dominata di Lebesgue: si ha $\int_0^1 f_n \to \int_0^1 f$ in quanto $f_n \to f$ puntualmente q.o., e le f_n sono dominate dalla funzione costante 1, che è Lebesgue integrabile sull'intervallo [0,1].

Per quanto riguarda la successione g_n , la risposta è negativa, in quanto

$$\int_0^1 g_n = 1 + (1 - \frac{1}{n}) \to 2 \neq 1 = \int_0^1 g;$$

si noti infatti che non è possibile applicare il teorema di convergenza dominata di Lebesgue dato che la successione g_n non ammette una maggiorante integrabile; non è possibile applicare neanche il teorema di convergenza monotona di Beppo-Levi dato che la successione g_n non è monotona crescente.