Homework#11 Network flow

Textbook:

- 16.4. Prove or disprove the following statement. If all capacities in a network are distinct, then there exists a unique flow function that gives the maximum flow.
- 16.10. Give an efficient algorithm to find a path of maximum bottleneck capacity in a given directed acyclic graph.
- 16.15. Let G = (V, E) be an undirected weighted graph with two distinguished vertices $s, t \in V$. Give an efficient algorithm to find a minimum weight cut that separates s from t.

Maxflow with vertex capacities. Suppose that, in addition to edge capacities, a flow network has *vertex capacities*. That is each vertex has a limit on how much flow can pass though. Show how to transform a flow network $G = \langle V, E \rangle$ with vertex capacities into an equivalent flow network $G' = \langle V', E' \rangle$ without vertex capacities, such that a maximum flow in G' has the same value as a maximum flow in G. How many vertices and edges does G' have?

Maximum flow in |E| **steps of augmenting.** Show how to find a maximum flow in a network $G = \langle V, E \rangle$ by a sequence of at most |E| augmenting paths. (*Hint:* Determine the paths *after* finding the maximum flow.)