Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

1 Input Parameters

Modu	ıle		Beam Coverplate Weld Connection		
MainMo	odule		Moment Connection		
Moment(kNm)*				10.0	
Shear (kN)*			100.0	
Axial (k	(N) *			80.0	
		Section			
	Beam S	lection *		NPB 300x150x36.5	
т		rences		Outside	
	Mate	erial *		E 250 (Fe 410 W)A	
α		ngth, fu (MPa)		410	
(B-t) t	Yield	250	R1(mm)	1.5	
ZZ D	Strength , fy (MPa)				
R ₁	Mass	36.52	R2(mm)	0.0	
R ₂	Area(mm2) -	4650.0	Iz(mm4)	71735000.0	
\ \	D(mm)	297.0	Iy(mm4)	5183900.0	
	B(mm)	150.0	rz(mm)	124.2	
	t(mm)	6.1	ry(mm)	33.4	
	T(mm)	9.2	Zz(mm3)	483060.0	
	FlangeSlope	90	Zy(mm3)	69120.0	
		Weld Details			
Weld T	· -		Fillet		
Type of weld fabrication			Shop Weld		
Material grade overwrite (MPa) Fu				410.0	
Safe	Safety Factors - IS 800:2007 Tab			5.4.1)	
	Governed by Yielding			$\gamma_{m0} = 1.1$	
Governed by Ul				$\gamma_{m1} = 1.25$	
Connectio	n Weld			$\gamma_{mw} = 1.25$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2 Design Checks

2.1 Member Capacity

Check	Required	Provided	Remarks
Axial Capacity Member Ac (kN)		$A_c = \frac{A * f_y}{\gamma_{m0} * 10^3}$ $= \frac{4650.0 * 250}{1.1 * 10^3}$ $= 1056.82$	
Shear Capacity Member Sc (kN)		$S_c = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo} * 10^3}$ $= \frac{278.6 * 6.1 * 250}{\sqrt{3} * 1.1 * 10^3}$ $= 223.0$	
Plastic Moment Capacity Pmc (kNm)		$Pmc = \frac{\beta_b * Z_p * fy}{\gamma_{mo} * 10^6}$ $= \frac{1 * 118367.39 * 250}{1.1 * 10^6}$ $= 26.9$	
Moment Deformation Criteria Mdc (kNm)		$Mdc = \frac{1.5 * Z_e * fy}{1.1 * 10^6}$ $= \frac{1.5 * 483060.0 * 250}{1.1 * 10^6}$ $= 164.68$	
Moment Capacity Member Mc (kNm)		$M_c = min(Pmc, Mdc)$ = $min(26.9, 164.68)$ = 26.9	

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.2 Load Consideration

Check	Required	Provided	Remarks
Applied Axial Load Au (kN)	$Ac_{min} = 0.3 * A_c$ = 0.3 * 1056.82 = 317.05 $Ac_{max} = Ac$ = 1056.82	$A_u = 317.05$	Pass
Applied Shear Load Vu (kN)	$Vc_{min} = 0.6 * S_c$ = 0.6 * 223.0 = 133.8 $Vc_{max} = Sc$ = 223.0	$V_u = 133.8$	Pass
Applied Moment Load Mu (kNm)	$Mc_{min} = 0.5 * M_c$ = 0.5 * 26.9 = 13.45 $Mc_{max} = Mc$ = 26.9	$M_u = 13.45$	Pass
Forces Carried by Web		$A_{w} = Axial \ force \ in \ web$ $= \frac{(D - 2 * T) * t * Au}{A}$ $= \frac{(297.0 - 2 * 9.2) * 6.1 * 317.05}{4650.0}$ $= 115.87 \ kN$ $M_{w} = Moment \ in \ web$ $= \frac{Z_{w} * Mu}{Z}$ $= \frac{118367.39 * 13.45}{541790.0}$ $= 2.94 \ kNm$	
Forces Carried by Flange		$A_f = Axial \ force \ in \ flange$ $= \frac{Au * B * T}{A}$ $= \frac{317.05 * 150.0 * 9.2}{4650.0}$ $= 94.09 \ kN$ $M_f = Moment \ in \ flange$ $= Mu - M_w$ $= 13.45 - 2.94$ $= 10.51 \ kNm$ $F_f = flange \ force$ $= \frac{M_f * 10^3}{D - T} + A_f$ $= \frac{10.51 * 10^3}{297.0 - 9.2} + 94.09$ $= 130.62 \ kN$	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.3 Initial Member Check

Check	Required	Provided	Remarks
Flange Tension Yielding Capacity (kN)	$F_f = 130.62$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 150.0 * 9.2 * 250}{1.1}$ $= 313.64$	Pass
Web Tension Yielding Capacity (kN)	$A_w = 115.87$	$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 278.6 * 6.1 * 250}{1.1}$ $= 386$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.4 Initial flange plate height check

Check	Required	Provided	Remarks
		outer.b = B - (2*20)	
flange_plate.Height	Outer.b $>= 50$	= 150.0 - (2 * 20)	Pass
		= 110.0	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.5 Flange plate thickness

Check	Required	Provided	Remarks
Thickness (mm)*	T = 9.2	$t_f = 14.0$	Pass
Plate Area check (mm2)	$pt.area >=$ $connected\ member\ area * 1.05$ $= 1449.0$	outer.b = B - (2 * 20) = 150.0 - (2 * 20) = 110.0 pt.area = 14.0 * 110.0 = 1540.0	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.6 Web plate thickness

Check	Required	Provided	Remarks
Thickness	t = 3.05	$t_w = 6.0$	Pass
(mm)*			
		$web \ b = D - (2 * T) - (2 * r_1) - (2 * 20)$	
	pt.area >=	= 297.0 - (2*9.2) - (2*1.5) - (2*20)	
Plate Area	$ \ \ connected \ member \ area*1.05$	= 235.6	Pass
check (mm2)	= 1765	pt.area = 6.0 * 2 * 235.6	
		=2827.2	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.7 Flange Weld Design Check

Check	Required	Provided	Remarks
Min Weld Size (mm)		$t_w = 7$	Pass
Max Weld Size (mm)	Thickness of Thinner part $= min(9.2, 14.0) = 9.2$ $t_{w_{max}} = 9.2$	$t_w = 7$	Pass
Clearance (mm)	$sp = max(15, (t_w + 5))$ $= max(15, (7 + 5))$ $= 15$	sp = 15	Pass
Throat Thickness (mm)	$t_t \ge 3$	$\begin{aligned} t_t &= 0.7 * t_w \\ &= 0.7 * 7 = 4.9 \\ t_t &= 4.9 \end{aligned}$	Pass
Effective length (mm)		$\begin{vmatrix} l_{eff} = (2 * l_w) + b_{fp} - 2 * t_w \\ = (2 * 120) + 120 - 2 * 7 \\ = 350 \end{vmatrix}$	
Flange Weld Strength (N/mm)	$Stress = \frac{F_f * 10^3}{l_{eff}}$ $= \frac{130.62 * 10^3}{350}$ $= 377.51$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{4.9 * 410}{\sqrt{3} * 1.25}$ $= 927.92$	Pass

	Company Name	LoremIpsum	Project Title	Fossee
	Group/Team Name	LoremIpsum	Subtitle	
	Designer	LoremIpsum	Job Number	123
ĺ	Date	26 /05 /2020	Client	LoremIpsum

2.8 Flange Plate Check

Check		Required	Provided	Remarks
Min. (mm)	Plate Height	50	$b_{fp} = B - 2 * sp$ $= 150.0 - 2 * 15$ $= 120$	Pass
Max. (mm)	Plate Height	$b_{fp} = B - 2 * sp$ $= 150.0 - 2 * 15$ $= 120$	120	Fail
Min. (mm)	Plate Length	120	$l_{fp} = [2 * (l_w + 2 * t_w) + g]$ $= [2 * (120 + 2 * 7) + 10.0]$ $= 280$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.9 Web Weld Design Check

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness \ of \ Thicker \ part \\ = max(6.1, 6.0) \\ = 6.1 \\ IS800: 2007 \ cl.10.5.2.3 \ Table 21, \\ t_{w_{min}} = 3$	$t_w = 4$	Pass
Max Weld Size (mm)	Thickness of Thinner part $= min(6.1, 6.0) = 6.0$ $t_{w_{max}} = 6.0$	$t_w = 4$	Pass
Effective length (mm)		$l_{eff} = (2 * l_w) + b_{fp} - 2 * t_w$ $= (2 * 245) + 245 - 2 * 4$ $= 730$	
Clearance (mm)	$sp = max(15, (t_w + 5))$ $= max(15, (4 + 5))$ $= 15$	sp = 15	Pass
Throat Thickness (mm)	$t_t \ge 3$	$t_t = 0.7 * t_w$ = 0.7 * 4 = 2.8 $t_t = 3$	Pass
Moment Demand (kNm		$M_d = (V_u * ecc + M_w)$ $= \frac{(66.9 * 10^3 * 162.43 + 1.47 * 10^6)}{10^6}$ $= 12.34$	
Web Weld Strength (N/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M_{d} * y_{max}}{Ipw}$ $= \frac{12336031.71 * 82.57}{12838139.23}$ $T_{wv} = \frac{M_{d} * x_{max}}{Ipw}$ $= \frac{12336031.71 * 118.5}{12838139.23}$ $V_{wv} = \frac{V_{u}}{l_{eff}}$ $= \frac{66898.88}{730}$ $A_{wh} = \frac{A_{u}}{l_{eff}}$ $= \frac{57936.14}{730}$ $R_{w} = \sqrt{(79.34 + 79.36)^{2} + (113.87 + 910.85)^{2}}$ $= 260.15$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3 * 410}{\sqrt{3} * 1.25}$ $= 568.11$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.10 Web Plate Check

Check	Required	Provided	Remarks
Min. Plate Height (mm)	50	$b_{fp} = D - 2 * T - (2 * R_1) - 2 * sp$ $= 297.0 - 2 * 9.2 - (2 * 1.5) - 2 * 15$	Pass
inini i ideo iroigne (inin)		= 245	
Min. Plate Length (mm)	120	$l_{fp} = [2 * (l_w + 2 * t_w) + g]$ $= [2 * (245 + 2 * 4) + 10.0]$	Pass
wiii. Tiwee Bengui (iiiii)	120	= 520	1 000

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.11 Member Checks

Check	Required	Provided	Remarks
		$T_{dg} = \frac{l * t * f_y}{\gamma}$	
		/mo	
Flange Tension Yielding		$=\frac{1*150.0*9.2*250}{1.1}$	
Capacity (kN)		= 313.64	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Flange Tension Rupture			
Capacity (kN)		$= \frac{0.9 * 1 * 150.0 * 9.2 * 410}{1.25}$	
		=407.38	
		$T_d = min(T_{dg}, T_{dn})$	
Flange Tension Capacity	$f_f = 130.62$	= min(313.64, 407.38)	Pass
(kN)		= 313.64	
		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$	
		γ_{mo}	
Web Tension Yielding Ca-		$= \frac{1 * 278.6 * 6.1 * 250}{1.1}$	
pacity (kN)			
		$= 386.24$ $0.9 * A_0 * f_0$	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Web Tension Rupture Ca-		0.9*1*278.6*6.1*410	
pacity (kN)		$= \frac{0.9 * 1 * 278.6 * 6.1 * 410}{1.25}$	
		=501.68	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Web Block Shear Capac-		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
ity (kN)			
		$T_{db} = min(T_{db1}, T_{db2}) = 833.38$	
		$T_d = min(T_{dg}, T_{dn}, T_{db})$	
Web Tension Capacity	$A_w = 115.87$	= min(386.24, 501.68, 833.38)	Pass
(kN)		=386.24	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.12 Flange Plate Capacity Checks in axial-Outside

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{1 * 120 * 14.0 * 250}{1.1}$ $= 381.82$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * 1 * 120 * 14.0 * 410}{1.25}$ $= 495.94$	
Plate Tension Capacity (kN)	$f_f = 130.62$	$T_d = min(T_{dg}, T_{dn})$ = $min(381.82, 495.94)$ = 381.82	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.13 Web Plate Capacity Checks in Axial

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{2 * 245 * 6.0 * 250}{1.1}$ $= 668.18$	
Tension Rupture Capacity (kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * 2 * 245 * 6.0 * 410}{1.25}$ $= 867.89$	
Plate Tension Capacity (kN)	$A_w = 115.87$	$T_d = min(T_{dg}, T_{dn})$ = $min(668.18, 867.89)$ = 668.18	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

2.14 Web Plate Capacity Checks in Shear

Check	Required	Provided	Remarks
		$V_{dy} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$	
Shear yielding Capacity (V_dy) (kN)		$=\frac{2*245*6.0*250}{\sqrt{3}*1.1}$	
		=385.77	
		$V_{dn} = \frac{0.9 * A_{vn} * f_u}{\sqrt{3} * \gamma_{m1}}$	
Shear Rupture Capacity (V_dn) (kN)		$=\frac{0.9*2*245*6.0*410}{\sqrt{3}*1.25}$	
		= 501.08	
		$V_d = min(V_{dy}, V_{dn})$	
Plate Shear Capacity (kN)	$V_u = 133.8$	= min(385.77, 501.08)	Pass
		=385.77	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	26 /05 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View