

SRINIVAS UNIVERSITY INSTITUTE OF ENGINEERING AND TECHNOLOGY MUKKA, MANGALURU

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

QUESTION BANK

DISCRTE MATHEMATICAL STRUCTURES AND GRAPH THEORY SUBJECT CODE: 19SCS41/19SAV41

COMPILED BY:

Prof. Rajeshwari Shibaraya, Assistant professor

MODULE 1

FUNDAMENTALS OF LOGIC

1. Which of the following	g proposition is tautology	?	
A) $(p \lor q) \rightarrow q$ Both B and C	B) $p \vee (q \rightarrow p)$	C) $p \lor (p \rightarrow q)$	D)
2. The proposition $p \wedge ($	$(\neg p \lor q)$ is		
A) Tautology All	B) contradiction	C) logically equivalent (p	∧ q) D
3. Which of the following negative?"	g stamen is the negation o	f the statement "2 is even and	-3 is
A) 2 is even and -3 is r	not negative	B) 2 is odd and -3 is not neg	gative
C) 2 is even or -3 is no	ot negative	D) 2 is odd and -3 is not neg	gative
4. $p \rightarrow q$ is logically e	equivalent to		
$A) \neg q \rightarrow p$ $\neg p \lor q$	B) $\neg p \rightarrow q$	C) $\neg p \land q$	D)
5. $\neg (p \rightarrow q)$ is equiva	lent to		
A) $p \land \neg q$ None of these	B) <i>p</i> ∧ <i>q</i>	C) $\neg p \lor q$	D)
6. In proportional logic, v	which of the following is	equivalent to $p \rightarrow q$	
A) $\neg p \rightarrow q$ $p \rightarrow q$	B) $\neg p \lor q$	C) $\neg p \lor \neg q$	D)
7. Let p,q,r , be true	, false, false respectively	which of the following is true	
A) $p \wedge (q \wedge \neg r)$ $p \leftrightarrow (q \vee r)$	B) $(p \rightarrow q) \land \neg r$	C) $q \leftrightarrow (p \land r)$	D)
8. Negation of the statem	ent $(A \land B) \rightarrow (B \lor C)$		
A) $(A \land B) \rightarrow (\neg B \lor \neg B)$ None	$\neg (A \land B) \lor (A \lor B) \lor (A$	$B \lor C$) $\neg (A \rightarrow B) \rightarrow (\neg$	B v C)
9. The contra positive of	$p \rightarrow q$ is		
A) $\neg p \rightarrow \neg q$ $\neg q \rightarrow p$	B) $\neg q \rightarrow \neg p$	C) $q \rightarrow p$	D)

	C) $q \rightarrow p$	D)
equivalent to		
B) $q \rightarrow p$	C) $\neg p \rightarrow$	¬ q
	-	dnesday, then shop
B) Modes Ponens	C) Disjunctive syllogism	D)
$\forall r \land r \rightarrow s$ implies	s which of the conclusion?	
B) <i>p</i> v <i>s</i>	C) q v s	
an Himalaya today onerefore, the pollution	or the pollution is harmful. It n is harmful."	
fied statement $\forall x$: B) $\exists x : p(x)$	$p(x)$ C) $\exists x: \neg p(x)$) D)
n of the statement "?	None of my friends are perfec	ct"
•)]	$\mathbf{B}) \exists \mathbf{x} [\neg \mathbf{A}(\mathbf{x}) \boldsymbol{\wedge} \mathbf{B}$	(x)]
x)]	$D) \neg \exists x [A(x) \land B($	(x)]
ıµivalent? 1. $\neg \forall x$	$P(x)$ 2. $\neg \exists x P(x)$ 3.	$\neg \exists x \neg P(x) = 4.$
	()	
	B) $q \rightarrow p$ There is used in each of its Wednesday, and the second its Wednesday, and the secon	B) $q \rightarrow p$ C) $\neg p \rightarrow$ There is used in each of these arguments" If it is We is Wednesday, and then the shop is crowded". B) Modes Ponens C) Disjunctive syllogism V $r \land r \rightarrow s$ implies which of the conclusion? B) $p \lor s$ C) $q \lor s$ Therefore, the pollution is harmful. It is therefore, the pollution is harmful." B) Modus ponens C) Disjunctive syllogism Field statement $\forall x : p(x)$ B) $\exists x : p(x)$ C) $\exists x : \neg p(x)$ In of the statement "None of my friends are perfectly in of the statement "None of my friends are perfectly in the statement "None of my frien

SUBJECT NAME (19SCS41) Page 2

A) $\neg p \rightarrow \neg q$ B) $\neg q \rightarrow \neg p$ C) $q \rightarrow p$

D)

10. The inverse of $p \rightarrow q$ is

11. The converse of $p \rightarrow q$ is

 $\neg q \rightarrow p$

of these

A) $(p \land q) \rightarrow r$ B) $(p \lor q) \rightarrow r$ C) $(p \lor q) \rightarrow \neg r$ D) none

20. The NAND statement is combination of

A) NOT and AND

B) NOT and OR

C) AND and OR

D) AND or OR

21. The NOR statement is combination of

A) NOT and AND

B) NOT and OR

C) AND and OR

D) AND or OR

22. The negation of "Today is Monday" is:

A. Today is Saturday

B. Today is Wednesday

C. Today is Monday

D. Today is not Monday

23. An argument is _____ if the conclusion is not true when all the premises are true:

A. invalid

B False

C. valid

D. None of the

above

24. Which of the following is/are tautology?

A. $a \lor b \rightarrow b \land c$ B. $a \land b \rightarrow b \lor c$ C. $a \lor b \rightarrow (b \rightarrow c)$ D. None of these

Descriptive questions

1. Prove that $(p \lor q) \land \neg i \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$ is a tautology

2. Prove the logical equivalence without using truth table

$$(q \wedge r) \vee (p \wedge r) \Leftrightarrow r$$
$$[\neg p \wedge (\neg q \wedge r)] \vee \mathcal{E}$$

3. Write Converse, Inverse, Contra positive and Negation of "If a triangle is not isosceles then it

is not equilateral"

4. Establish the validity of (a) and by contradiction method of (b)

(a) $p \rightarrow q$ $q \rightarrow (r \land s)$ $\neg r \lor (\neg t \lor u)$ p∧t

(b) $p \rightarrow q$ $\neg r \lor s$ p**V**r $\therefore \neg q \rightarrow s$

...11

5. Show that the hypothesis "If I study, I will not fail in the exam. If I do not watch TV in the evening I will study. I failed in the exam. Therefore I must have watched TV in the evening."

6. Test the validity, No engineering student of 1st or 2nd semester studies logic

$\therefore \text{ Anil is not in } 2^{l}$	g student who studies logic		
7. Test the validity, Sind	ce every square is a rectangl	e and every rectangle is	s parallelogram, it
• •	uare is a parallelogram. band could not play rock m	usic or the refreshment	were not delivered
	year party would have been		
	e cancelled, the refunds wou	ld have be made. No re	efunds were made.
	ould play rock music. ble $[(p \lor q) \rightarrow r] \leftrightarrow [\neg r \rightarrow r]$	$\neg (p \lor q)$	
	(A I)	(1 1/3	
	MODUL	<u>E 2</u>	
<u>P</u> 1	ROPERTIES OF TI	HE INTEGERS	
1. What is the base case	for the inequality $7^n > n^3$, v	where $n = 3$?	
A) 652 > 189 431	B) 42 < 132	C) 343 > 27	D) 42 <=
2. For m = 1, 2,	, 4m+2 is a multiple of		
A) 3	B) 5	C) 6	D) 2
	3, the series $2+4+6+$		
A) $m^2 + 3$ $3m^2 + 4$	B) m+1	C) <i>m</i> ^m	D)
4. By induction hypothe	esis, the series $1^2 + 2^2 + 3^2 +$	$\dots + p^2$ can be proved	equivalent to
A) $p^2 + 27$	B) $\frac{p(p+1)(2p+1)}{6}$	C) $\frac{p(p+1)}{4}$	<u>)</u>
D) $p+p^2$			
	ger m, is divisible by		
$A) 5m^2 + 2$ $m^3 + 3m$	B) 3 <i>m</i> +1	C) $m^2 + 3$	D)
6. How many even 4 di	git whole numbers are there	?	
A) 1358	B) 7250	C) 4500	D) 3600
-	question paper of 15 question vays of answering the question		A, B, C or D. The
A) 65536×4^7	B) 194536 x 4 ⁵	C) 23650 x 4 ⁹	D) 11287435

A) 16807

C) 23467

D) 32354

8. How many five-digit numbers can be made from the digits 1 to 7 if repetition is allowed?

B) 54629

9. How many words that can be formed with the letters of the word 'SWIMMING' such that the							
vowels do not come together?							
A) 430	B) 623	C) 729	D) 1239				
10. In how many ways can 10 boys be seated in a row having 28 seats such that no two friends occupy adjacent seats?							
A) $^{13}P_5$	B) ⁹ P ₂₉	C) $^{19}P_{10}$	D) $^{15}P_{7}$				
the	an the letters of the word S	SANFOUNDRY be rearn	ranged such that				
vowels always appear A) (8+3)!2! D) 4!8!	r together? B) 6!2!	C) 8!3!					
12. How many numbers	of three digits can be form	ned with digits 1, 3, 5, 7	and 9?				
A) 983	B) 120	C) 345	D) 5430				
13. How many words car occupying end places	n be formed with the letter s.	rs of the word 'CASTLE	when 'C' and 'E'				
A) 217	B) 48	C) 75	D) 186				
table,	ways in which 4 people E,	F, G, H, A, C can be sea	ted at a round				
such that E and F mu A) 32	st always sit together. B) 290	C) 124	D) 48				
15. For all $n \in N$, 3.5^{2n} A) 19	$^{+1}+2^{3n+1}$ is divisible by B) 17	C) 21	D) 25				
16. If $10^n + 3.4^{n+2} + k$ if of k	s divisible by 9 for all n	$\in N$ then the least positive N	itive integral value				
A) 5 17. How many different	B) 3 words can be formed out of	C) 7 of the letters of the word	D) 1 VARANASI?				
A) 64	B) 120	C) 40320	D) 720				
18. In how many ways candidates?	an a president and vice pre	esident be chosen from a	set of 30				
A) 820	B) 850	C) 880	D) 870				
19. The number of distin	guishable permutations of	the letters in the word F	BANANA are,				
A) 60	B) 36	C) 20	D) 10				

20. A student has a maximum of 720 words from a combination of letters of word given word is:

A. CANADA

B. ENGLAND

C. WASHINGTON

D. None the above

21. Letters of CHORD taken all at a time can be written in:

A. 500

B. 120

D. 135

22. If P(n) is the statement $n \in \mathbb{N}$ such that if P(k) is true, P(k+1) is true of $k \in \mathbb{N}$, then P(n) is true

A. for all n>1

B. for all n>2

C. for all n

D. none of

these

23. Find the middle terms of $\left(2x + \frac{1}{x}\right)^8$

A. $8_C X 2^4$ B. $8_C X 2^5$

 $C. 8_{C.}$

D. none of these

Descriptive questions

1. Prove the following by mathematical induction

(a) $\frac{1}{2.5} + \frac{1}{5.8} + \frac{1}{8.11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{6n+4}$ for all positive integers, $n \ge 1$

(b) $1.3+2.4+3.5+\dots+n(n+2)=\frac{n(n+1)(2n+7)}{6}, n \ge 1$

(c) For any positive integer $11^{n+2}+12^{2n+1}$ is divided by 133

(d) Let $H_1=1, H_2=1+\frac{1}{2}, H_3=1+\frac{1}{2}+\frac{1}{3}, \dots, H_n=1+\frac{1}{2}+\frac{1}{2}+\dots + \frac{1}{n}$

Prove that $\sum_{i=1}^{n} H_i = (n+1)H_n - n$ for all positive integers, $n \ge 1$.

2. For the Fibonacci sequence F_0, F_1, F_2, \dots prove that $F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right]$

3. If L_0, L_1, L_2, \ldots are Lucus numbers then P.T $L_{n+4} - L_n = 5 F_{n+2}$

4. How many arrangements are there for all letters in the word SOCIOLOGICAL? In how many of

arrangements (i) A and G are adjacent (ii) all the vowels are adjacent.

5. A women has 11 close relatives and she wishes to invite 5 of them to dinner. In how many ways she can invite them in the following situations i) There is no restriction on the choice ii) Two particular

persons will not attend separately. iii) Two particular persons will not attend together.

6. Determine the coefficient of (a) x^0 in the expansion of $\left(3x^2 - \frac{2}{x}\right)^{15}$

(b) $a^2b^3c^2d^5$ in the expansion of $[a+2b-3c+2d+5]^{16}$

7. In how many way can one distribute 8 identical balls into 4 distinct containers so that (i) no

containers is left empty (ii) the 4th container gets an odd number of balls.

MODULE 3

RELATIONS AND FUNCTIONS

1. Suppose a relation R = {(known as	3, 3), (5, 5), (5, 3)	$(5, 5), (6, 6)$ on $S = \{3, 5, 6\}$	6}. Here R is			
A) equivalence relation relation	ion C) symmetric relation	D) transitive				
2. Determine the number of possible relations in an antisymmetric set with 19 elements A) 23585 B) 2.02 * 10 ⁸⁷ C) 9.34 * 7 ⁹¹ D) 35						
A) symmetric only	A) symmetric only B) anti-symmetric only C) an equivalence relation B) both symmetric and anti-symmetric					
4. Let a set S = {2, 4, 8, 16, Number of edges in the H		e partial order defined by S <= S	= R if a divides b.			
,	B) 5	C) 9	D) 4			
5. If A and B are two sets codifferent relations can be defined for		ely m and n distinct elements	s. How many			
A) $2m-n$	B) $2\frac{m}{n}$	C) 2 mn				
D) 2 <i>m</i> + <i>n</i>						
6. What is the possible num	ber of reflexive re	lations on a set of 5 elements	?			
A) 2^{10}	B) 2 ¹⁵	C) 2 ²⁰				
D) 2 ²⁵						
(Ans: 2^{n^2-n} which is	2^{20} for $n=5$)				
	al number of disting 8) 6	nct relations that can be defin C) 8	ed over A is D) None of			
8. How many onto functions A) 2^n $2(2^n-2)$	s are there from ar B) $2^n - 1$	n n-element $n \ge 2$ set to a 2 C) $2^n - 2$	2-element set? D)			
9 number of reflexi (3,0)} where $\{0, 1, 2, 3\}$	9 number of reflexive closure exists in a relation $R = \{(0,1), (1,1), (1,3), (2,1), (2,2), (3,0)\}$ where $\{0,1,2,3\} \in A$					
A) 2 ⁶	B) 6	C) 8	D) 36			

10. If R is a A) a ²	a relation on a fin	ite set having a eleme B) a ^a	ents, then t		ations on A is D) 2a ²
11. There a A) 2	=	nct Hasse diagrams fo B) 3	or partially (C) 4	ordered set that c	contain D) 6
12. A funct	ion is said to be	if ar	nd only if f	f(a) = f(b) implies	that $a = b$ for all
	the domain of f.	B) One-to-one	C) Many-	-to-many	D) Many-to-
and $g(x)$ =	=3x+4. Then the	on from the set of inte	nd g is		(x)=2x+1
A) 6 <i>x</i>	+9	B) $6x+7$	C) 6x+0	5	D) 6 <i>x</i> +8
		$f(x) = x^3 + 2$ is			
A) f^{-1}	$(y) = (y-2)^{\frac{1}{2}}$	B) $f^{-1}(y) = (y-2)^{\frac{1}{3}}$	C) $f^{-1}(y)$	$(y)=(y)^{\frac{1}{3}}$ D) f^{-1}	$^{-1}(y)=(y-2)$
15. The uni	iversal relation A	x A on A is			
A) anti-s	symmetric	B) an equivalence rel	lation C)	a partial orderin	g relation D)
many		mber of elements in so here with $a \in A$ and b		= p and n(B) = 0	q, then how
A) px 4 pq		B) <i>p</i> + <i>q</i>		C) 2 pq	D)
17. If $f(x)$	$(x) = \tan(x)$, then	$1 f^{-1}\left(\frac{1}{\sqrt{3}}\right) = \mathbf{i}$			
A) $\frac{\pi}{6}$		B) $\frac{\pi}{4}$		C) $\frac{\pi}{3}$	D)
π) 2 0 4	a=1 (a \			
18. If $f(x + A) \%$	(x) = -2x + 8, the	$\frac{\ln f^{-1}(1)=6}{B)\frac{7}{2}}$	C) ² / ₉		D) 0
19. If $f(x)$	$=\tan^{-1}x$ and	$g(x) = \tan(x)$, then	(gof)(x)	z)=¿	
A) $\tan^{-1} x \sin^{-1} x$		B) $\tan^{-1} x \cot(x)$		C) x	D)

20. In a group of 267 people	how many friends are there who	have an identical number of
friends		
in that group?		
A) 266	3) 2 C) 138	D) 202

21. When four coins are tossed simultaneously, in number of the outcomes at most two

of the coins will turn up as heads.

A) 17

B) 28

C) 11

D) 4

Descriptive questions

1. Let A & B be finite sets |B|=3 If there are 4096 relations from A to B what is |A|?

2. Let f and g be function from R to R defined by f(x)=ax+b and $g(x)=1-x+x^2$. If $qof(x) = 9x^2 - 9x + 3$, determine a and b.

3. Let $A = [1,2,3,4], B = \{1,2,3,4,5,6\}$ (a) How many function are there from A to B., How many of these are one-one, How many of these are onto. (b) How many function are there from B to A., How many of these are one-one, How many of these are onto (c) How many bijective function from A to B.

4. State the pigeon hole principle and P.T in any set of 29 persons at least 5 persons must have

been born on the same day of the weak.

5. Let $A = \begin{bmatrix} 1,2,3,4,6,12 \end{bmatrix}$. On A, define the relation R by aRb if and only if a divides b. Prove

that R is a partial order on A. Draw the Hasse diagram for this relation.

- 6. For A = [a, b, c, d, e], the Hasse diagram for the poset (A,R) is shown below
 - (a) Determine the relation matrix for R
 - (b) Construct digraph for R.

- 8. P.T if $f: A \to B$, $g: B \to C$ are the invertible function then $gof: A \to C$ is invertible and $(gof)^{-1} = f^{-1}og^{-1}$.
- 9. Draw the Hasse diagram representing the positive devisors of 36 and 72.
- 10. Find the number of ways of distributing four distinct objects among 3 identical containers with some containers is empty.

MODULE 4

THE PRINCIPLE OF INCLUSION AND EXCLUSION

1. The numbers betwee	n 1 and 520, including b	oth, are divisible by 2 or 6 is				
A) 349	B) 54	C) 213	D) 303			
2. In class, students want to join sports. 15 people will join football, 24 people will join						
basketball, and 9 peo	basketball, and 9 people will join both. How many people are there in the class?					
A) 19	B) 82	C) 64	D) 30			
_	ers from 1 to 520 that are	_				
A) 187	B) 208	C) 421	D) 52			
		relation $a_n = 17a_{n-1} + 30n$ with				
A) 4387	B) 5484	C) 238	D) 1437			
	• • • • • • • • • • • • • • • • • • • •	pes inclusion-exclusion princi	iple belong to?			
A) Numerical proble		B) Graph problems				
C) String processing	•	D) Combinatorial probl				
A) $\stackrel{\circ}{\iota}AUB\vee\stackrel{\circ}{\iota}\vee A\vee$	•	ation of inclusion-exclusion p	orincipie?			
$A \cap B \vee A \vee$		B)				
C) $\dot{i}AUB\lor\dot{i}\lor A\lor$		D)				
$iA \cap B \vee i \vee A \vee + iB$		D)				
	r of multiples of 3 or 5 fr	rom 1 to 500				
A) 233	B) 166	C) 275	D) 100			
*	ty of set of odd positive	<i>'</i>	2) 100			
A) 5	B) 10	C)3	D) 20			
<i>)</i> -	, -	-)-	, -			
9. Let $A = \{1,2,3\}B =$	$\{2,3,4\}C = \{1,3,5\}D = \{2,3,4\}C = \{2,4\}C = $	2,3}. Find the cardinality of	sum of all the			
sets.						
A) 6	B) 5	C) 4	D) 7			
10. How many integers	from 1 to 100 are multip	ples of 2 or 3?				
A) 46	B) 63	C) 67	D) 49			
,	,	,				
A) n_{C_2}	B) $n_{C_{n-1}}$	nts taking n elements at a tim C) n!	D)			
None of these	\mathcal{L}_{n-1}	<i>c)</i>	D)			
12. The rook polynomi	al of 1x1 board					
A) $x+1$	B) $2x+3$	C) 3 <i>x</i> +1	D)			
X	2) 11 3	<i>c) s</i> . <i>1</i>	2)			
	he sequence 2,10,50,250)is				
A) 1250	B) 500	C) 2500	D) 1500			
·	<i>'</i>	s of second order linear homo	· · · · · · · · · · · · · · · · · · ·			
recurrence relation			8			
then auxiliary equa	tion is					
• •		C) $r^n(A cosn\theta + B sinn\theta)$	D) None of			
these	, (-)12	, ()	, 			
	are real and equal roots o	of second order linear homogo	enous recurrence			
relation		a second second morning.				

then auxiliary equation is

A) $A k_1^n + B k_2^n$

B) $(A+Bn)k^n$ C) $r^n(A\cos\theta + B\sin\theta)$ D) None of these

16. If k_1 and k_2 are complex roots of second order linear homogenous recurrence relation then

auxiliary equation is

A) $A k_1^n + B k_2^n$ B) $(A + Bn)k^n$ C) $r^n (A cosn\theta + B sinn\theta)$ D) None of these

Descriptive questions

1. Determine the number of positive integers n such that $1 \le n \le 100$ and n is not divisible

by 2,3,or 5.

2. In how many ways 5 number of a's, 4 number of b's and 3 number of c's can be arranged

that all the identical letters are not in a single block.

- 3. In how many ways can one arrange the letters in the word CORRESPONDENTS so that
 - (i) there is no pair of consecutive identical letters?
 - (ii) there are exactly 2 pairs of consecutive identical letters?
 - (iii) there are at least 3 pairs of consecutive identical letters?
- 4. Define derangement. There are eight letters to eight different people to be placed in eight different addressed envelopes. Find the number of ways of doing this so that at least one letter gets to the right person.
- 5. Find the rook polynomial for the following board

- 6. An apple, a banana, a mango, and an orange are to be distributed to four boys
- B_1, B_2, B_3, B_4 . The boys B_1 and B_2 do not wish to have apple, the boy B_3 does not want banana or mango, and B_4 refuses orange. In how many ways the distribution can be made so that no boy is displeased.
- 7. Five teachers T_1, T_2, T_3, T_4, T_5 are to be made class teachers for five classes

 C_1, C_2, C_3, C_4, C_5 one teacher

for each class. $T_1 \wedge T_2$ do not wish to become class teacher for $C_1 \vee C_2$, $T_3 \wedge T_4$ for $C_4 \wedge C_5$ and

 T_5 for $C_3 \vee C_4 \vee C_5$. In how many ways can the teacher be assigned to work.

- 8. Solve the recurrence relation of
- (a) $a_n + a_{n-1} 6a_{n-2} = 0, n \ge 2$ given $a_0 = -1 \land a_1 = 8$

(b)
$$a_n - 6a_{n-1} + 9a_{n-2} = 0, n \ge 2$$
 given $a_0 = 5, a_1 = 12$

(c)
$$a_{n+2} + 3a_{n+1} + 2a_n = 3^n, n \ge 2$$
, given $a_0 = 0, a_1 = 1$

MODULE 5

Introduction to Graph Theory

1. In a tree between ev	ery pair of vertices there	e is	
A) Exactly one path	B) A self loop	C) two circuits	D) n number of
paths			
2. A graph G is called	a if it is a connected	acyclic graph	
A) Cyclic graph	B) Regular graph	C) Tree	D) Not a graph
3. A graph is a collecti	on of		
A) Row and column	B) Vertices and ed	lges C) Equations	D) none of these
4. A vertex of a graph	is called even or odd dep	pending upon	
		or odd B) Its deg	ree is even or odd
		en or odd D) None o	
	raph the sum of degrees of		
A) Must be even	B)	Are twice the number o	f edges
C) Must be odd	· · · · · · · · · · · · · · · · · · ·) Need not be even	C
6. A graph with one ve		,	
A) multigraph	B) digraph	C) isolated graph	D) trivial
graph	, С 1	, 5 1	,
7. Length of the walk	of a graph is		
A) The number of v		B) The number of edg	es in walk W
C) Total number of	edges in a graph	D) Total number of ve	rtices in a graph
8. A graph with no edg	ges is known as empty gr	aph. Empty graph is also	= =
A) Trivial graph			
9. The maximum degree	ee of any vertex in a sim	ple graph with n vertices	is
A) $n-1$	B) n+1	C) $2n-1$	D) n .
10. The complete grap	h with four vertices has l	k edges where k is	
A) 3	B) 4	C) 5	D) 6
11. Suppose v is an isc	olated vertex in a graph, t	then the degree of v is	
A) 0	B) 1	C) 2	D) 3
12.Circle has	· 		
A) No vertices	B) Only 1 vertex	C) 8 vertices	D) None of these
13. A graph is tree only	y if		
A) Is planar	B) Contains a circuit	C) Is minimally D)	Is completely
connected			
14. A graph G is called	la if it is a connected	d acyclic graph?	
A) Cyclic graph	B) Regular grap	h C) Tree	D) Not a
graph			

_	15. If the origin and terminus of a walk are same, the walk is known as?						
A) Open	B) Closed		C) Path	D) None of			
	these 16. A tree having a main node, which has no predecessor is?						
	B) Rooted tree			ree D) None of			
these	b) Rooted acc		c) weighted t	icc D) None of			
17. Which of the following s	tatements for a si	imple graph i	s correct?				
A) Every path is a trail			trail is a path				
C) Every trail is a path as		, ,	-	il have no relation			
18. How many edges are the	re in complete gr	aph of order	9?				
A) 35	B) 36	C)	45	D) 19			
19 is the maximum	number of edges	s in an acyclic	c undirected gra	ph with k vertices			
A) $k-1$	B) k^2		C) $2k+3$	D)			
$k^{3}+4$							
20. In a the deg	ree of each and e	very vertex is	s equal				
A) Regular graph				D) Star graph			
21. All closed walk are of				, & 1			
A) infinite	=	C)	_	D) finite			
22. In a m-ary tree, each vert				,			
A) n	B) n^4		C) $n-1$	D)			
,	2) n		<i>c)</i> ₁	2)			
$\frac{n(n-1)}{2}$							
2	l. C	-114:					
23. The of a gra	=		=	D) E 1 :			
A) Parallel graph	B) Line graph	C)C	omponent	D) Eulerian			
circuit							
24. A trail in a graph can be		~)					
A) a walk without repeat	-	<i>'</i>	cycle without r				
C) a walk with repeated	edges	D) a	line graph with	one or more			
vertices							
25. The vertex which is of 0	•						
A. Leaf B	. Root	C. Internal r	node I	D. None of the			
above							
26. What is true about star tr							
A. A tree having n vertice							
B. A tree which contains	n vertices and n-	l cycles					
C. A tree having a single D. A tree which has 0 or							
D. A tree which has 0 of	more connected s	subtrees					
27. A graph which consists o	of disjoint union o	of trees is call	ed				
A) bipartite graph	B) forest		caterpillar tree	D) labeled			
tree	,	,	1	,			
28. In preorder traversal of a binary tree the second step is							
A) traverse the right sub	=	_	traverse the left	subtree			
C) traverse right subtree		<i>'</i>	visit the root				
c, au. 0150 11giil 5000100	=)						

- 29. Every node N in a binary tree T except the root has a unique parent called the of N.
 - A. Antecedents
- B. Predecessor
- C. Forerunner
- D.

Precursor

- 30. A terminal node in a binary tree is called
 - A. Root
- B. Leaf

C. Child

D. Branch

Descriptive questions

- 1. Give the pictorial and graph representation of Konigsberg bridge problem and state the problem
- 2. Define tree. Suppose that a tree T has 2 vertices of degree two , 4 vertices of degree three, 3 vertices of

degree four, find the number of pendent vertices in T.

- 3. Construct an optimal prefix code for the symbols a,o,q,u,y,z that occur with the frequencies 20,28,4,17,12,7 respectively.
- 4. Apply the merge sort to the list (a) -1,7,4,11,5,-8,15,-3,-2,6,10,3. (b) -1,0,2,-2,3,6,-3,5,1,4
- 5. Obtain an optimal prefix code for the message (a) "FALL OF THE WALL". (b) MISSION SUCCESSFUL. Indicate the code for the message
- 6. Define isomorphism. Verify two graphs are isomorphic

- 7. Define the following terms and give an example for each
- (a) Complete graph (b) Euler circuit (c) Path (d) Bipartite graph (e) Regular graph (f) simple

graph (g) Complement of graph (h) Binary Tree

- 8. Define tree. Prove that a tree with n vertices has n-1 edges
- 9. Determine |V| for the following graphs
 - (i) G has 9 edges and all vertices have degree 3.
 - (ii) G is regular with 15 edges.
 - (iii) G has 10 edges and 2 vertices of degree 4 and all other vertices of degree 3
- 10. Define graph and degree of vertex of graph. Prove that in every graph the number of vertices of odd

degree is even.

