APLC Design Summary

 $\qquad \qquad \triangleright \ 08_USORT_N128_FPM380M0150_IWA0370_OWA01400_C10_BW20_Nlam5_LS_ID_ID00_ODOD09_ls_0_ovsamp16_N.fits$

Solution File:

USORT
128 x 128 pixels
0.1871
0.1554
θ.θ
0.99
20.0%
5
3.8 \(\lambda/D\)
150 pixels
3.7—14.0 \(\lambda \/ D
10-10
θ pixels
0 pixels
0 pixels

Fri Oct 27 18:27:05 2023

On – axis PSF in log irradiance, normalized to the peak irradiance value.

Radial intensity profile for the broadband APLC design at 11 simulated wavelengthscentered around λ_0/D and equally spatially sampled over the 20.0% bandpass. The black curve shows the average intensity across the 11 wavelength samples. The dashed red vertical lines delimitthe high-contrast dark zone (between 3.7 and 14.0 λ_0/D). The blue dotted line delimits the FPM radius, set to 3.8 λ_0/D .

Analysis Summary

Pupil core throughput: Lyot stop core throughput: Maximum core throughput: Maximum core throughput w.r.t. pupil core throughput:

Maximum core throughput w.r.t. Lyot stop core throughput:

Inner working angle:

0.6163835963822561 0.44338273489435265 0.09580314881215592 0.15542780400785144 0.2160732506532612 $4.024596756355615 \lambda_0/D$

Broadband normalized irradiance for four representative levels of residual pointing jitter.

Azimuthally averaged raw contrast for four representative levels of rms residual pointing jitter.