STAT 3100 Lecture Note

Week Three (Sep 20 & 22, 2022)

Zhiyang Zhou (zhiyang.zhou@umanitoba.ca, zhiyanggeezhou.github.io)

2022/Sep/15 21:02:48

Multivariate normal (MVN) distribution (con'd)

Marginals of MVN

- Suppose p-vector $\mathbf{X} = (X_1, \dots, X_p)^{\top}$ and q-vector $\mathbf{Y} = (Y_1, \dots, Y_q)^{\top}$ are jointly normally distributed. Then, \mathbf{X} and \mathbf{Y} are independent $\Leftrightarrow \operatorname{cov}(\mathbf{X}, \mathbf{Y}) = \mathbf{0}_{p \times q}$.
- If X is of MVN, then its all margins are still of MVN. The inverse proposition does NOT hold.
 - Cautionary example: Let Y = XZ, where $X \sim \mathcal{N}(0,1)$; Z is independent of X with $\Pr(Z = 1) = \Pr(Z = -1) = .5$. X and Y both turn out to be of standard normal, but they are not jointly normal. (Why?)

```
if (!("plot3D" %in% rownames(installed.packages())))
  install.packages("plot3D")
set.seed(1)
xsize = 1e4L
X = rnorm(xsize)
Z = rbinom(n = xsize, 1, .5)
Y = (2 * Z - 1) * X
# 3d histogram of (X, Y)
plot3D::hist3D(z=table(cut(X, 100), cut(Y, 100)), border = "black")
# plot the support of joint pdf of (X, Y)
plot3D::image2D(z=table(cut(X, 100), cut(Y, 100)), border = "black")
```

Normal sampling theory (CB Sec. 5.3)

Stochastic representations for χ^2 -, t-, and F-r.v. (HMC Chp. 3)

• If iid $X_1, \ldots, X_n \sim \mathcal{N}(\mu, \sigma^2)$, then $-\sum_{i=1}^n X_i^2 \sim \chi^2(n) \text{ if iid } X_1, \ldots, X_n \sim \mathcal{N}(0, 1);$ $-X/\sqrt{Y/n} \sim t(n) \text{ if } X \sim \mathcal{N}(0, 1) \text{ and } Y \sim \chi^2(n) \text{ are independent};$ $-(X/m)/(Y/n) \sim F(m, n) \text{ if } X \sim \chi^2(m) \text{ and } Y \sim \chi^2(n) \text{ are independent}.$

Important identities for normal samples

- $\bar{X} = n^{-1} \sum_{i=1}^n X_i$ and $S^2 = (n-1)^{-1} \sum_{i=1}^n (X_i \bar{X})^2$ are independent
- $n^{1/2}(\bar{X}-\mu)/\sigma \sim \mathcal{N}(0,1)$

- $(n-1)S^2/\sigma^2 \sim \chi^2(n-1)$
- $n^{1/2}(\bar{X} \mu)/S \sim t(n-1)$

Taylor series (Def 5.5.20 & Thm 5.5.21 in C&B)

Taylor series about $x_0 \in \mathbb{R}$ for univariate functions

• Suppose f has derivative of order n+1 within an open interval of x_0 , say $(x_0 - \varepsilon, x_0 + \varepsilon)$ with $\varepsilon > 0$. Then, for $x \in (x_0 - \varepsilon, x_0 + \varepsilon)$,

$$f(x) \approx \sum_{k=0}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k = f(x_0) + \sum_{k=1}^{n} \frac{f^{(n)}(x_0)}{k!} (x - x_0)^k,$$

where $f^{(n)}(x_0) = \frac{d^n}{dx^n} f(x)|_{x=x_0}$.

• Called the Maclaurin series if $x_0 = 0$

Taylor series about $x_0 \in \mathbb{R}^p$ for multivariate functions

Under regularity conditions,

$$f(\boldsymbol{x}) \approx f(\boldsymbol{x}_0) + (\boldsymbol{x} - \boldsymbol{x}_0)^{\top} \nabla f(\boldsymbol{x}_0) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_0)^{\top} \mathbf{H}(\boldsymbol{x}_0) (\boldsymbol{x} - \boldsymbol{x}_0),$$

where the gradient $\nabla f(\boldsymbol{x}_0) = [\frac{\partial}{\partial x_1} f(\boldsymbol{x}_0), \cdots, \frac{\partial}{\partial x_p} f(\boldsymbol{x}_0)]^{\top} \in \mathbb{R}^{p \times 1}$ and the Hessian $\mathbf{H}(\boldsymbol{x}_0) = [\frac{\partial^2}{\partial x_i \partial x_i} f(\boldsymbol{x}_0)]_{p \times p}$.

Application

- Approximate unknown or complex f with a polynomial
 - Δ-method
 - Asymptotic theory for maximum likelihood estimators
- Moment generating function (mgf): $M_X(t) = \mathbb{E}\{\exp(tX)\} = \sum_{n=0}^{\infty} t^n \mathbb{E}(X^n)/n!$ the Maclaurin series of $\exp(tX)$ is $\exp(tX) = \sum_{n=0}^{\infty} (tX)^n/n!$ $\Rightarrow \mathbb{E}(X^n) = M_X^{(n)}(0)$

Generating functions

Moment generating function (mgf, Sec. 2.3 in C&B)

- Univariate r.v. X
 - mgf $M_X(t) = \mathbb{E}\{\exp(tX)\}\$ if $\mathbb{E}\exp(tX) < \infty$ for t in a neighborhood of 0; otherwise we say that the mgf does not exist or is undefined
 - * Continuous X: $M_X(t) = \int_{-\infty}^{\infty} \exp(tx) f_X(x) dx$ · (Two-sided) Laplace transformation of f_X
 - * Discrete X: $M_X(t) = \sum_{\{x:x \in \text{supp}(X)\}} \exp(tx) p_X(x)$
 - $M_{aX+b}(t) = \exp(bt)M_X(at)$
- Multivariate r.v. $\mathbf{X} = (X_1, \dots, X_p)^{\top} \in \mathbb{R}^p$
 - mgf $M_{\mathbf{X}}(t)$ is defined as

$$M_{\mathbf{X}}(\boldsymbol{t}) = \operatorname{E} \exp(\boldsymbol{t}^{\top} \mathbf{X}) = \begin{cases} \int_{\mathbb{R}^{p}} \exp(\boldsymbol{t}^{\top} \mathbf{X}) f_{\mathbf{X}}(\boldsymbol{x}) d\boldsymbol{x} & \text{continuous } \mathbf{X} \\ \sum_{\{\boldsymbol{x}: \boldsymbol{x} \in \operatorname{supp}(\mathbf{X})\}} \exp(\boldsymbol{t}^{\top} \mathbf{X}) p_{\mathbf{X}}(\boldsymbol{x}) & \text{discrete } \mathbf{X} \end{cases}$$

provided that $\mathrm{E}\exp(\mathbf{t}^{\top}\mathbf{X}) < \infty$ for $\mathbf{t} = (t_1, \dots, t_p)^{\top}$ in some neighborhood of $\mathbf{0}$; otherwise we say that the mgf does not exist or is undefined.

- * X_1, \dots, X_p are independent $\Rightarrow M_{\mathbf{X}}(t) = \prod_{i=1}^p M_{X_i}(t_i)$
- $-M_{\mathbf{AX}+\mathbf{b}}(\mathbf{t}) = \exp(\mathbf{b}^{\top}\mathbf{t})M_{\mathbf{X}}(\mathbf{A}^{\top}\mathbf{t})$
- Application
 - Characterizing distributions: $M_{\mathbf{X}}(t)$ and $M_{\mathbf{Y}}(t)$ are both well-defined and equal for all t in a neighborhood of $\mathbf{0} \Leftrightarrow \mathbf{X} \stackrel{d}{=} \mathbf{Y}$
 - * Proofs for laws of large numbers and central limit theorems.
 - Computing moments

 - * nth raw moment $\mu'_n = EX^n = \sum_{k=0}^n \binom{n}{k} \mu_k (\mu'_1)^{n-k}$ * nth central moment $\mu_n = E(X EX)^n = \sum_{k=0}^n \binom{n}{k} (-1)^{n-k} \mu'_k (\mu'_1)^{n-k}$

Example Lec6.1

- Find the mgfs of following distributions.
 - $-N(\mu,\sigma^2).$
 - $MVN(\boldsymbol{\mu}, \boldsymbol{\Sigma}).$
 - Cauchy distribution: $f_X(x) = {\pi(1+x^2)}^{-1}, x \in \mathbb{R}$.

Other generating functions

- Characteristic function
 - For univariate X: $\phi_X(t) = \operatorname{E}\exp(itX)$ for all $t \in \mathbb{R}$

 - * Fourier transform of f_X * Inverse: $f_X(x)=(2\pi)^{-1}\int_{\mathbb{R}}\phi_X(t)\exp(-itx)\mathrm{d}t$
 - * $\mu'_n = \mathrm{E} X^n = (-i)^n \phi_X^{(n)}(0)$ For Multivariate $\mathbf{X} = (X_1, \dots, X_p)^\top$: $\phi_{\mathbf{X}}(t) = \mathrm{E} \exp(i t^\top \mathbf{X})$ for all $t \in \mathbb{R}^p$
 - * Fourier transform of $f_{\mathbf{X}}$
 - * Inverse: $f_{\mathbf{X}}(\boldsymbol{x}) = (2\pi)^{-p} \int_{\mathbb{R}^p} \phi_{\mathbf{X}}(\boldsymbol{t}) \exp(-i\boldsymbol{t}^{\top}\boldsymbol{x}) d\boldsymbol{t}$
 - $-\phi_{\mathbf{X}}(t) = \phi_{\mathbf{Y}}(t) \text{ for all } t \in \mathbb{R}^p \Leftrightarrow \mathbf{X} \stackrel{d}{=} \mathbf{Y}$
- Cumulant generating function
 - $-K_X(t) = \ln M_X(t) = \sum_{n=0}^{\infty} \kappa_n t^n / n!$
 - $-\kappa_n = K_X^{(n)}(0)$
- Probability-generating function
 - For discrete r.v. X taking values from $\{0,1,\ldots\}$, $G(z)=\mathrm{E}t^X=\sum_{x=0}^\infty t^x p_X(x)$.
 - $p_X(n) = \Pr(X = n) = G^{(n)}(1)/n!$