

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

eBook, WLAN, Bluetooth, and USB Ports without WWAN

MODEL NUMBER: PLR001

FCC ID: WXP-PLR001

REPORT NUMBER: 09U12899-1

ISSUE DATE: JANUARY 05, 2010

Prepared for
PLASTIC LOGIC
650 CASTRO STREET SUITE 500,
MOUNTAIN VIEW, CA 94041, U.S.A

Prepared by

COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT NO: 09U12899-1 EUT: eBook, WLAN, Bluetooth, and USB Ports without WWAN

WAN FCC ID: WXP-PLR001

DATE: JANUARY 05, 2010

Revision History

Rev.	Rev. Date Revisions		Revised By
	1/05/2010	Initial Issue	T. Chan

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS	5
2.	TES	T METHODOLOGY	6
3.	FAC	ILITIES AND ACCREDITATION	6
4.	CAL	IBRATION AND UNCERTAINTY	6
	4.1.	MEASURING INSTRUMENT CALIBRATION	6
	4.2.	SAMPLE CALCULATION	6
	4.3.	MEASUREMENT UNCERTAINTY	6
5.	EQL	JIPMENT UNDER TEST	7
	5.1.	DESCRIPTION OF EUT	7
	5.2.	MAXIMUM OUTPUT POWER	7
	5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	7
	5.4.	SOFTWARE AND FIRMWARE	7
	5.5.	WORST-CASE CONFIGURATION AND MODE	
	5.6.	DESCRIPTION OF TEST SETUP	
6.	TES	T AND MEASUREMENT EQUIPMENT	10
7.	ANT	ENNA PORT TEST RESULTS	.11
	7.1.	802.11b MODE IN THE 2.4 GHz BAND	
	7.1.	1. 6 dB BANDWIDTH	.11
	7.1.2 7.1.3		
	7.1.4		
	7.1.5	5. POWER SPECTRAL DENSITY	.19
	7.1.6	6. CONDUCTED SPURIOUS EMISSIONS	22
	7.2.	802.11g MODE IN THE 2.4 GHz BAND	
		1. 6 dB BANDWIDTH	_
	7.2.2 7.2.3		
	7.2.4	4. AVERAGE POWER	33
	7.2.5		
	7.2.6	3. CONDUCTED SPURIOUS EMISSIONS	37
8.	RAD	DIATED TEST RESULTS	41
	8.1.	LIMITS AND PROCEDURE	41
	8.2.	TRANSMITTER ABOVE 1 GHz	
	8.2. ² 8.2. ²		
	8.3.	WORST-CASE BELOW 1 GHz	
	J.J.	TOTOL OF COLDENS TO STREET	52

REPORT NO: 09U12899-1
EUT: eBook, WLAN, Bluetooth, and USB Ports without WWAN

FCC ID: WXP-PLR001	EUT: eBook, WLAN, Bluetooth, and USB Ports without WWAN FCC ID: WXI		
55	AC POWER LINE CONDUCTED EMISSIONS	9.	
58	MAXIMUM PERMISSIBLE EXPOSURE	10.	

DATE: JANUARY 05, 2010

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: PLASTIC LOGIC

650 CASTRO STREET

MOUNTAIN VIEW, CA 94041, U.S.A

EUT DESCRIPTION: eBook, WLAN, Bluetooth, and USB Ports without WWAN

MODEL: PLR001

SERIAL NUMBER: 00031661400600

DATE TESTED: NOVEMBER 10 and 23, 2009

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Pass

Compliance Certification Services, Inc. (CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC MANAGER

COMPLIANCE CERTIFICATION SERVICES

CHIN PANG EMC ENGINEER

Chin Pany

COMPLIANCE CERTIFICATION SERVICES

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, and FCC CFR 47 Part 15.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: JANUARY 05, 2010

FCC ID: WXP-PLR001

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an.eBook, WLAN, Bluetooth and USB port device without WWAN

5.2. MAXIMUM OUTPUT POWER

The test measurement passed within ± 0.5dBm of the original output power of the original report 09U12883-4 and model: PLR-002 (removed WWAN portion)

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PIFA antenna, with a maximum peak gain of 2.0 dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT driver software installed during testing was Sychip

The test utility software used during testing was Sychip FCCtool.

5.5. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

The EUT is a portable device that has three orientations; therefore X, Y and Z orientations have been investigated. The worst case was found to be Z orientation. Since this EUT just removed WWAN portion from the model PLR-002 and no change to the Bluetooth and WLAN portion, so we just did the test performance to verify the output power and spot check the worst case only based on the original report, 09U12883-4 of PLR-002.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST					
Description Manufacturer Model Serial Number FCC ID					
Laptop	HP	compaq 2510p	CNF8271TJ1	Doc	
AC Adapter	HP	PPP009H	F1-09073355820A	Doc	

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

I/O CABLES

	I/O CABLE LIST						
Cable No.		# of Identica		Cable Type	Cable Length	Remarks	
		Ports					
1	AC	1	US 115V	Un-shielded	2m	NA	
2	DC	1	DC	Un-shielded	2m	NA	
3	USB	1	EUT	Un-shielded	2m	NA	

TEST SETUP

The EUT is installed in a host laptop computer during the tests. Test software exercised the radio card.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST					
Description	Manufacturer	Model	Asset	Cal Due	
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/31/10	
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	02/04/10	
Antenna, Horn, 18 GHz	EMCO	3115	C00783	01/29/10	
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00778	12/16/09	
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01016	01/14/10	
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	10/29/10	
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	05/06/11	
Peak Power Meter	Boonton	4541	C01189	01/15/10	
Peak Power Sensor	Boonton	57318	NA	02/02/10	

7. ANTENNA PORT TEST RESULTS

7.1. 802.11b MODE IN THE 2.4 GHz BAND

7.1.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	10	0.5
Middle	2437	10	0.5
High	2462	10	0.5

7.1.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	13.4881
Middle	2437	13.2685
High	2462	13.2856

99% BANDWIDTH

7.1.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

TEST PROCEDURE

The transmitter output is connected to a power meter.

Channel	Frequency	Peak Power Meter	Limit	Margin
		Reading		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	18.00	30	-12.00
Middle	2437	18.20	30	-11.80
High	2462	17.50	30	-12.50

7.1.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11dB (including 10 dB pad and 1 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2412	16.50
Middle	2437	16.60
High	2462	16.20

7.1.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: JANUARY 05, 2010

FCC ID: WXP-PLR001

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-11.83	8	-19.83
Middle	2437	-11.63	8	-19.63
High	2462	-11.90	8	-19.90

POWER SPECTRAL DENSITY

7.1.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: JANUARY 05, 2010

FCC ID: WXP-PLR001

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

7.2. 802.11g MODE IN THE 2.4 GHz BAND

7.2.1. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 100 kHz and the VBW is set to 300 kHz. The sweep time is coupled.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

Channel	Frequency	6 dB Bandwidth	Minimum Limit
	(MHz)	(MHz)	(MHz)
Low	2412	16.6	0.5
Middle	2437	16.6	0.5
High	2462	16.6	0.5

6 dB BANDWIDTH

7.2.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	2412	16.5097
Middle	2437	16.4789
High	2462	16.4727

99% BANDWIDTH

7.2.3. OUTPUT POWER

LIMITS

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

TEST PROCEDURE

The transmitter output is connected to a power meter.

Channel	Frequency	Peak Power Meter	Limit	Margin
		Reading		
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	21.30	30	-8.70
Middle	2437	21.10	30	-8.90
High	2462	20.80	30	-9.20

7.2.4. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

RESULTS

The cable assembly insertion loss of 11dB (including 10 dB pad and 1dB cable) was entered as an offset in the power meter to allow for direct reading of power.

Channel	Frequency Power	
	(MHz)	(dBm)
Low	2412	14.80
Middle	2437	14.10
High	2462	14.10

7.2.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

DATE: JANUARY 05, 2010

FCC ID: WXP-PLR001

TEST PROCEDURE

Output power was measured based on the use of a peak measurement, therefore the power spectral density was measured using PSD Option 1 in accordance with FCC document "Measurement of Digital Transmission Systems Operating under Section 15.247", March 23, 2005.

Channel	Frequency	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2412	-13.68	8	-21.68
Middle	2437	-11.95	8	-19.95
High	2462	-13.31	8	-21.31

POWER SPECTRAL DENSITY

7.2.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

DATE: JANUARY 05, 2010

FCC ID: WXP-PLR001

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL

SPURIOUS EMISSIONS, MID CHANNEL

SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m		
30 - 88	100	40		
88 - 216	150	43.5		
216 - 960	200	46		
Above 960	500	54		

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each appplicable band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. TRANSMITTER ABOVE 1 GHz FOR 802.11b MODE IN THE 2.4 GHz BAND

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

8.2.2. TRANSMITTER ABOVE 1 GHz FOR 802.11g MODE IN THE 2.4 GHz BAND

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)

HARMONICS AND SPURIOUS EMISSIONS

High Frequency Measurement

Compliance Certification Services, Fremont 5m Chamber

Test Engr: Tom Chen 11/17/09 Date: Project #: 09U12899 Plastic Logic Company:

EUT Description: eBook, Wlan, BT and USB Ports

EUT M/N: PLR001 FCC 15.247 Test Target: Mode Oper: TX, g mode

f Measurement Frequency Amp Preamp Gain Average Field Strength Limit Dist Distance to Antenna D Corr Distance Correct to 3 meters Peak Field Strength Limit Read Analyzer Reading Avg Average Field Strength @ 3 m Margin vs. Average Limit AF Antenna Factor Peak Calculated Peak Field Strength Margin vs. Peak Limit
CL Cable Loss HPF High Pass Filter

f GHz	Dist (m)	Read dBuV	AF dB/m	CL dB	Amp dB	D Corr dB		: :	Limit dBuV/m		Ant Pol V/H	Det. P/A/QP	Notes
Low Ch													
4.824	3.0	42.0	32.8	5.8	-34.8	0.0	0.0	45.7	74.0	-28.3	H	P	
4.824	3.0	26.2	32.8	5.8	-34.8	0.0	0.0	29.9	54.0	-24.1	H	A	
4.824	3.0	39.2	32.8	5.8	-34.8	0.0	0.0	42.9	74.0	-31.1	V	P	
4.824	3.0	26.3	32.8	5.8	-34.8	0.0	0.0	30.0	54.0	- 24.0	V	A	
Mid Ch													
4.874	3.0	38.5	32.8	5.8	-34.9	0.0	0.0	42.3	74.0	-31.7	V	P	
4.874	3.0	26.0	32.8	5.8	-34.9	0.0	0.0	29.8	54.0	-24.2	v	A	
7.311	3.0	39.0	35.2	7.3	-34.7	0.0	0.0	46.8	74.0	-27.2	V	P	
7.311	3.0	26.0	35.2	7.3	-34.7	0.0	0.0	33.8	54.0	-20.2	V	A	
4.874	3.0	39.0	32.8	5.8	-34.9	0.0	0.0	42.8	74.0	-31.2	H	P	
4.874	3.0	26.2	32.8	5.8	-34.9	0.0	0.0	30.0	54.0	-24.0	H	A	
7.311	3.0	38.0	35.2	7.3	-34.7	0.0	0.0	45.8	74.0	-28.2	H	P	
7.311	3.0	25.5	35.2	7.3	-34.7	0.0	0.0	33.3	54.0	- 20.7	H	A	
High Ch													
4.924	3.0	38.0	32.8	5.9	-34.9	0.0	0.0	41.9	74.0	-32.1	H	P	
4.924	3.0	26.0	32.8	5.9	-34.9	0.0	0.0	29.9	54.0	-24.1	H	A	
7.386	3.0	38.2	35.3	7.3	-34.6	0.0	0.0	46.2	74.0	-27.8	H	P	
7.386	3.0	25.0	35.3	7.3	-34.6	0.0	0.0	33.0	54.0	-21.0	H	A	
4.924	3.0	38.6	32.8	5.9	-34.9	0.0	0.0	42.4	74.0	-31.6	V	P	
1.924	3.0	25.9	32.8	5.9	-34.9	0.0	0.0	29.8	54.0	-24.2	V	A	
7.386	3.0	37.8	35.3	7.3	-34.6	0.0	0.0	45.8	74.0	-28.2	V	P	
7.386	3.0	25.2	35.3	7.3	-34.6	0.0	0.0	33.2	54.0	-20.8	V	A	

Rev. 4.1.2.7

Note: No other emissions were detected above the system noise floor.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

This report shall not be reproduced except in full, without the written approval of CCS.

8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE)

		ency Meas											
Complian	ce Certif	ication Se	rvices, F	remon	5m Cha	amber							
Test Engr:		Chin Pan	·g										
Date:		11/24/09											
Project #:		09U12899	•										
Company:	1	Plastic Lo	gic										
EUT Descr	iption:	eBook, W	/lan, BT	and U	B Ports	without '	WWAN						
Configura	tion:	EUT Only	,										
EUT M/N:		PLR001											
Test Targe	t:	FCC 15C											
Mode Ope	r:	TX (Wors	st Case)										
	f	Measurem	ent Frequ	ency	Amp	Preamp (Gain			Margin	Margin vs.	Limit	
	Dist	Distance to	o Antenn	a	D Corr	Distance	Correct	to 3 meters					
	Read	Analyzer I	Reading		Filter	Filter Ins	ert Loss						
	AF	Antenna F	actor		Corr.	Calculate	d Field St	trength					
	CL	Cable Loss	:		Limit	Field Stre	ngth Lin	nit					
f	Dist	Read	AF	CL	Amp	D Corr	Filter	Corr.	Limit	Margin	Ant Pol	Det.	Notes
MHz	(m)	dBuV	dB/m	dB	dB	dВ	dВ	dBuV/m	dBuV/m	dB	V/H	P/A/QP	
horiz													
92.763	3.0	47.5	8.2	0.9	29.6	0.0	0.0	27.1	43.5	-16.4	H	P	
	3.0	44.7	12.2	1.5	28.8	0.0	0.0	29.6	46.0	-16.4	H	<u>P</u>	
			19.5	2.6	29.5	0.0	0.0	37.1	46.0	-8.9	H	P	
714.868	3.0	44.5										-	
714.868 739.109	3.0	49.3	19.9	2.7	29.4	0.0	0.0	42.5	46.0	-3.5	H	P	
739.109 751.230	3.0 3.0	49.3 49.8	19.9 20.1	2.7	29.4	0.0	0.0	43.3	46.0	-2.7	H	P	
714.868 739.109 751.230 787.471	3.0 3.0 3.0	49.3 49.8 45.8	19.9 20.1 20.8	2.7 2.8	29.4 29.2	0.0 0.0	0.0 0.0	43.3 40.1	46.0 46.0	-2.7 -5.9	H H	P P	
714.868 739.109 751.230 787.471 799.592	3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5	19.9 20.1 20.8 21.0	2.7 2.8 2.8	29.4 29.2 29.2	0.0 0.0 0.0	0.0 0.0 0.0	43.3 40.1 41.1	46.0 46.0 46.0	-2.7 -5.9 -4.9	H H H	P P P	
714.868 739.109 751.230 787.471 799.592 811.712	3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4	19.9 20.1 20.8 21.0 21.1	2.7 2.8 2.8 2.8	29.4 29.2 29.2 29.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2	46.0 46.0 46.0 46.0	-2.7 -5.9 -4.9 -8.8	H H H H	P P P	
714.868 739.109 751.230 787.471 799.592 811.712 853.354	3.0 3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4 46.0	19.9 20.1 20.8 21.0 21.1 21.3	2.7 2.8 2.8	29.4 29.2 29.2 29.1 28.8	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2 41.4	46.0 46.0 46.0 46.0 46.0	-2.7 -5.9 -4.9 -8.8 -4.6	H H H	P P P P	
714.868 739.109 751.230 787.471	3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4	19.9 20.1 20.8 21.0 21.1	2.7 2.8 2.8 2.8 2.9	29.4 29.2 29.2 29.1	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2	46.0 46.0 46.0 46.0	-2.7 -5.9 -4.9 -8.8	Н Н Н Н	P P P	
714.868 739.109 751.230 787.471 799.592 811.712 853.354 56.041 92.163	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4 46.0 51.4	19.9 20.1 20.8 21.0 21.1 21.3 7.9	2.7 2.8 2.8 2.8 2.9 0.6	29.4 29.2 29.2 29.1 28.8 29.6	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2 41.4 30.3	46.0 46.0 46.0 46.0 46.0 46.0	-2.7 -5.9 -4.9 -8.8 -4.6 -9.7	H H H H V	P P P P	
714.868 739.109 751.230 787.471 799.592 811.712 853.354 56.041 92.163	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4 46.0 51.4 50.4	19.9 20.1 20.8 21.0 21.1 21.3 7.9 8.1	2.7 2.8 2.8 2.8 2.9 0.6 0.9	29.4 29.2 29.2 29.1 28.8 29.6 29.6	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2 41.4 30.3 29.8	46.0 46.0 46.0 46.0 46.0 40.0 43.5	-2.7 -5.9 -4.9 -8.8 -4.6 -9.7	H H H H V V	P P P P P P P	
714.868 739.109 751.230 787.471 799.592 811.712 853.354 56.041 92.163 210.967	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4 46.0 51.4 50.4 43.9	19.9 20.1 20.8 21.0 21.1 21.3 7.9 8.1 12.0	2.7 2.8 2.8 2.8 2.9 0.6 0.9	29.4 29.2 29.2 29.1 28.8 29.6 29.6 28.9	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2 41.4 30.3 29.8 28.3	46.0 46.0 46.0 46.0 46.0 40.0 43.5 43.5	-2.7 -5.9 -4.9 -8.8 -4.6 -9.7 -13.7 -15.2	H H H H V V	P P P P P P P P P	
714.868 739.109 751.230 787.471 799.592 811.712 853.354 56.041 92.163 210.967 738.989	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4 46.0 51.4 50.4 43.9	19.9 20.1 20.8 21.0 21.1 21.3 7.9 8.1 12.0 19.9	2.7 2.8 2.8 2.9 0.6 0.9 1.3 2.7 2.7	29,4 29,2 29,2 29,1 28,8 29,6 29,6 28,9 29,4	0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2 41.4 30.3 29.8 28.3 37.3	46.0 46.0 46.0 46.0 46.0 40.0 43.5 43.5 46.0	-2.7 -5.9 -4.9 -8.8 -4.6 -9.7 -13.7 -15.2 -8.7 -6.2	H H H H V V V V V	P P P P P P P P P P P P P P P P P P P	
714.868 739.109 751.230 787.471 799.592 811.712 853.354 56.041 92.163 210.967 738.989 751.110 763.230	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4 46.0 51.4 50.4 43.9 44.1 46.3	19.9 20.1 20.8 21.0 21.1 21.3 7.9 8.1 12.0 19.9	2.7 2.8 2.8 2.9 0.6 0.9 1.3 2.7 2.7 2.7 2.7	29.4 29.2 29.2 29.1 28.8 29.6 29.6 28.9 29.4 29.4 29.3 29.2	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2 41.4 30.3 29.8 28.3 37.3 39.8 37.4 36.6	46.0 46.0 46.0 46.0 46.0 40.0 43.5 43.5 46.0	-2.7 -5.9 -4.9 -8.8 -4.6 -9.7 -13.7 -15.2 -8.7 -6.2 -8.7 -9.4	H H H H V V V V V V V	P P P P P P P P P P P P P P P P P P P	
714.868 739.109 751.230 787.471 799.592 811.712 853.354 56.041 92.163 210.967 738.989 751.110 763.230	3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	49.3 49.8 45.8 46.5 42.4 46.0 51.4 50.4 43.9 44.1 46.3	19,9 20,1 20,8 21,0 21,1 21,3 7,9 8,1 12,0 19,9 20,1 20,4	2.7 2.8 2.8 2.9 0.6 0.9 1.3 2.7 2.7	29.4 29.2 29.1 28.8 29.6 29.6 28.9 29.4 29.4 29.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	43.3 40.1 41.1 37.2 41.4 30.3 29.8 28.3 37.3 39.8 37.4	46.0 46.0 46.0 46.0 46.0 40.0 43.5 43.5 46.0 46.0	-2.7 -5.9 -4.9 -8.8 -4.6 -9.7 -13.7 -15.2 -8.7 -6.2	H H H H V V V V V	P P P P P P P P P P P P P P P P P P P	

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

TEST PROCEDURE

ANSI C63.4

RESULTS

	CONDUCTED EMISSIONS DATA (115VAC 60Hz)								
Freq.	Reading			Closs	Limit	EN_B	Mar	gin	Remark
(MHz)	PK (dBuV)	QP (dBuV)	AV (dBuV)	(dB)	QP	AV	QP (dB)	AV (dB)	L1 / L2
0.16	54.10		36.79	0.00	65.36	55.36	-11.26	-18.57	L1
0.33	46.02		27.71	0.00	59.48	49.48	-13.46	-21.77	L1
0.83	37.50		19.50	0.00	56.00	46.00	-18.50	-26.50	L1
0.16	40.94		29.12	0.00	65.41	55.41	-24.47	-26.29	L2
0.32	35.49		24.47	0.00	59.71	49.71	-24.22	-25.24	L2
0.80	38.13		21.58	0.00	56.00	46.00	-17.87	-24.42	L2
6 Worst I	Data								

Decreases with the logarithm of the frequency.

LINE 1 RESULTS

Compliance Certification Services 47173 Benicia Street Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888 Data#: 21 File#: 09U12899_FCC.EMI Date: 11-24-2009 Time: 08:08:05 Level (dBuV) 80 CISPR CLASS-B **AVERAGE** 35 -10 0.150.2 Prequency (MHz) (Line Conduction) Ref Trace: Trace: 19 Condition: CISPR CLASS-B Test Operator: : Chin Pang Project #: : 09U12899 Company: : Plastic Logic Company: EUT Description:: eBook, Wlan, BT and USB Ports Configuration: : EUT and AC Adapter Mode: : TX (Worst Case)

: L1: Peak (Blue), Average (Green)

: FCC Class B

: 115V / 60Hz

Target:

Voltage:

LINE 2 RESULTS

Compliance Certification Services 47173 Benicia Street

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

Fremont, CA 94538 Tel: (510) 771-1000 Fax: (510) 661-0888

File#: 09U12899 FCC.EMI Date: 11-24-2009 Time: 08:18:21 Data#: 28

(Line Conduction)

Ref Trace: Trace: 26

Condition: CISPR CLASS-B Test Operator: : Chin Pang Project #: : 09U12899 Company: : Plastic Logic

EUT Description:: eBook, Wlan, BT and USB Ports

Configuration: : EUT and AC Adapter : TX (Worst Case) Mode: : FCC Class B Target: Voltage: : 115V / 60Hz

: L2: Peak (Blue), Average (Green)

MAXIMUM PERMISSIBLE EXPOSURE **10**.

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	gth strength Power		Averaging time (minutes)
(A) Lim	nits for Occupational	/Controlled Exposu	res	
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6
(B) Limits	for General Populati	on/Uncontrolled Exp	posure	
0.3–1.34	614 824/f	1.63 2.19/f	*(100) *(180/f²)	30 30

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
30–300	27.5	0.073	0.2	30	
300–1500 1500–100,000			f/1500 1.0	30 30	

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: JANUARY 05, 2010 FCC ID: WXP-PLR001

Table 5
Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m² is converted to units of mWc/m² by dividing by 10.

Distance is given by:

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

S = Power density in W/m^2

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m²

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
2.4 GHz	WLAN	0.20	21.30	2.00	0.43	0.043

Page 60 of 61