Response Surface Methodology: Central Composite Designs

BIOE 498/598 PJ

Spring 2022

▶ Begin with a FF+CP design.

- ▶ Begin with a FF+CP design.
- ► Follow path of steepest ascent until the model breaks.

- ▶ Begin with a FF+CP design.
- ► Follow path of steepest ascent until the model breaks.
- ▶ New FF+CP; repeat steepest ascent.

- ▶ Begin with a FF+CP design.
- Follow path of steepest ascent until the model breaks.
- ▶ New FF+CP; repeat steepest ascent.
- ► Stop when model detects lack of fit.

- ▶ Begin with a FF+CP design.
- Follow path of steepest ascent until the model breaks.
- ▶ New FF+CP; repeat steepest ascent.
- ▶ Stop when model detects lack of fit.
- ► **Today**: Fitting a model to a curved response surface.

- ▶ The FF designs used for process improvement are usually augmented by **center points** repeated runs at the design center (0,0).
- Center points serve two purposes:
 - 1. Estimate the *pure error* via the standard deviation of the repeated runs.
 - 2. Test for *lack of fit* to detect curvature.

- ▶ The FF designs used for process improvement are usually augmented by **center points** repeated runs at the design center (0,0).
- Center points serve two purposes:
 - 1. Estimate the *pure error* via the standard deviation of the repeated runs.
 - 2. Test for *lack of fit* to detect curvature.

- ▶ The FF designs used for process improvement are usually augmented by **center points** repeated runs at the design center (0,0).
- Center points serve two purposes:
 - 1. Estimate the *pure error* via the standard deviation of the repeated runs.
 - 2. Test for *lack of fit* to detect curvature.

- The FF designs used for process improvement are usually augmented by **center points** repeated runs at the design center (0,0).
- Center points serve two purposes:
 - 1. Estimate the *pure error* via the standard deviation of the repeated runs.
 - 2. Test for *lack of fit* to detect curvature.

We want to compare the degree of curvature to the uncertainty (pure error) in our center points. We compare using a sum-of-squares approach.

We want to compare the degree of curvature to the uncertainty (pure error) in our center points. We compare using a sum-of-squares approach.

1. $\bar{y}_{\text{center}} = \text{mean response of the } n_{\text{center}}$ center points $\bar{y}_{\text{fact}} = \text{mean response of the } n_{\text{fact}}$ factorial points

We want to compare the degree of curvature to the uncertainty (pure error) in our center points. We compare using a sum-of-squares approach.

1. $\bar{y}_{\text{center}} = \text{mean response of the } n_{\text{center}}$ center points $\bar{y}_{\text{fact}} = \text{mean response of the } n_{\text{fact}}$ factorial points

$$SS_{ ext{curve}} = rac{n_{ ext{fact}} n_{ ext{center}} (ar{y}_{ ext{fact}} - ar{y}_{ ext{center}})^2}{n_{ ext{fact}} + n_{ ext{center}}}, \quad \mathsf{DF}(SS_{ ext{curve}}) = 1$$

We want to compare the degree of curvature to the uncertainty (pure error) in our center points. We compare using a sum-of-squares approach.

1. $\bar{y}_{\text{center}} = \text{mean response of the } n_{\text{center}}$ center points $\bar{y}_{\text{fact}} = \text{mean response of the } n_{\text{fact}}$ factorial points

2.

$$SS_{ ext{curve}} = rac{n_{ ext{fact}} n_{ ext{center}} (ar{y}_{ ext{fact}} - ar{y}_{ ext{center}})^2}{n_{ ext{fact}} + n_{ ext{center}}}, \quad \mathsf{DF}(SS_{ ext{curve}}) = 1$$

$$SS_{ ext{error}} = \sum_{\substack{ ext{center} \\ ext{points}}} (y_i - \bar{y}_{ ext{center}})^2, \quad \mathsf{DF}(SS_{ ext{error}}) = n_{ ext{center}} - 1$$

We want to compare the degree of curvature to the uncertainty (pure error) in our center points. We compare using a sum-of-squares approach.

1. $\bar{y}_{\text{center}} = \text{mean response of the } n_{\text{center}}$ center points $\bar{y}_{\text{fact}} = \text{mean response of the } n_{\text{fact}}$ factorial points

2.
$$SS_{\text{curve}} = \frac{n_{\text{fact}} n_{\text{center}} (\bar{y}_{\text{fact}} - \bar{y}_{\text{center}})^2}{n_{\text{fact}} + n_{\text{center}}}, \quad \text{DF}(SS_{\text{curve}}) = 1$$

3.
$$SS_{\text{error}} = \sum_{\substack{\text{center} \\ \text{points}}} (y_i - \bar{y}_{\text{center}})^2, \quad \mathsf{DF}(SS_{\text{error}}) = n_{\text{center}} - 1$$

4.
$$F_{\text{curve}} = \frac{SS_{\text{curve}}/\text{DF}(SS_{\text{curve}})}{SS_{\text{error}}/\text{DF}(SS_{\text{error}})}$$

temp	time	yield
_	_	39.3
_	+	40.0
+	_	40.9
+	+	41.5
0	0	40.3
0	0	40.5
0	0	40.7
0	0	40.2
0	0	40.6

1. $\bar{y}_{fact} = (39.3 + 40.0 + 40.9 + 41.5)/4 = 40.425$ $\bar{y}_{center} = (40.3 + 40.5 + 40.7 + 40.2 + 40.6)/5 = 40.46$

temp	time	yield
_	_	39.3
_	+	40.0
+	_	40.9
+	+	41.5
0	0	40.3
0	0	40.5
0	0	40.7
0	0	40.2
0	0	40.6

1.
$$\bar{y}_{fact} = (39.3 + 40.0 + 40.9 + 41.5)/4 = 40.425$$

 $\bar{y}_{center} = (40.3 + 40.5 + 40.7 + 40.2 + 40.6)/5 = 40.46$

$$SS_{curve} = \frac{4 \times 5 \times (40.425 - 40.46)^2}{4 + 5} = 0.0026$$

temp	time	yield
_	_	39.3
_	+	40.0
+	_	40.9
+	+	41.5
0	0	40.3
0	0	40.5
0	0	40.7
0	0	40.2
0	0	40.6

1.
$$\bar{y}_{fact} = (39.3 + 40.0 + 40.9 + 41.5)/4 = 40.425$$

 $\bar{y}_{center} = (40.3 + 40.5 + 40.7 + 40.2 + 40.6)/5 = 40.46$

2.

$$\textit{SS}_{curve} = \frac{4 \times 5 \times (40.425 - 40.46)^2}{4 + 5} = 0.0026$$

$$SS_{\text{error}} = (40.3 - 40.46)^2 + \dots + (40.6 - 40.46)^2$$

= 0.172

time	yield
_	39.3
+	40.0
_	40.9
+	41.5
0	40.3
0	40.5
0	40.7
0	40.2
0	40.6
	- + - + 0 0 0 0

1.
$$\bar{y}_{fact} = (39.3 + 40.0 + 40.9 + 41.5)/4 = 40.425$$

 $\bar{y}_{center} = (40.3 + 40.5 + 40.7 + 40.2 + 40.6)/5 = 40.46$

2.

$$SS_{curve} = \frac{4 \times 5 \times (40.425 - 40.46)^2}{4 + 5} = 0.0026$$

3.

$$SS_{error} = (40.3 - 40.46)^2 + \dots + (40.6 - 40.46)^2$$

= 0.172

$$F_{\text{curve}} = \frac{0.0026/1}{0.172/(5-1)} = 0.0605$$

time	yield
_	39.3
+	40.0
_	40.9
+	41.5
0	40.3
0	40.5
0	40.7
0	40.2
0	40.6
	- + - + 0 0 0

1.
$$\bar{y}_{fact} = (39.3 + 40.0 + 40.9 + 41.5)/4 = 40.425$$

 $\bar{y}_{center} = (40.3 + 40.5 + 40.7 + 40.2 + 40.6)/5 = 40.46$

2.

$$SS_{curve} = \frac{4 \times 5 \times (40.425 - 40.46)^2}{4 + 5} = 0.0026$$

3.

$$SS_{error} = (40.3 - 40.46)^2 + \dots + (40.6 - 40.46)^2$$

= 0.172

4.

$$F_{\text{curve}} = \frac{0.0026/1}{0.172/(5-1)} = 0.0605$$

time	yield
_	39.3
+	40.0
_	40.9
+	41.5
0	40.3
0	40.5
0	40.7
0	40.2
0	40.6
	- + - + 0 0 0 0

pf(0.0605, 1, 4, lower.tail=FALSE) $\rightarrow p < 0.818$.

1. Run a FF design augmented with replicated center points.

- 1. Run a FF design augmented with replicated center points.
- 2. Fit a first order model and check for lack of fit.
 - ▶ If significant lack of fit, switch to Response Surface Methodology.

- 1. Run a FF design augmented with replicated center points.
- 2. Fit a first order model and check for lack of fit.
 - If significant lack of fit, switch to Response Surface Methodology.
- 3. Perform runs along the steepest ascent path until the response diminishes.

- 1. Run a FF design augmented with replicated center points.
- 2. Fit a first order model and check for lack of fit.
 - ▶ If significant lack of fit, switch to Response Surface Methodology.
- 3. Perform runs along the steepest ascent path until the response diminishes.
- Go to (1) and repeat using the location of maximum response as the new center point.

- 1. Run a FF design augmented with replicated center points.
- 2. Fit a first order model and check for lack of fit.
 - If significant lack of fit, switch to Response Surface Methodology.
- 3. Perform runs along the steepest ascent path until the response diminishes.
- Go to (1) and repeat using the location of maximum response as the new center point.
- 5. Switch to a curved model and Response Surface Methodology (RSM).

- ▶ We need two things to model a curved response surfaces:
 - 1. A model that is flexible enough to curve.
 - 2. Data that can detect the curvature.

- ▶ We need two things to model a curved response surfaces:
 - 1. A model that is flexible enough to curve.
 - 2. Data that can detect the curvature.
- The optimal operating conditions correspond to a maximum in the response surface.
- We need models that can contain maxima.

- ▶ We need two things to model a curved response surfaces:
 - 1. A model that is flexible enough to curve.
 - 2. Data that can detect the curvature.
- The optimal operating conditions correspond to a maximum in the response surface.
- We need models that can contain maxima.
- ► FO + TWI models are curved, but are rarely bounded.

- ▶ We need two things to model a curved response surfaces:
 - 1. A model that is flexible enough to curve.
 - 2. Data that can detect the curvature.
- The optimal operating conditions correspond to a maximum in the response surface.
- We need models that can contain maxima.
- ► FO + TWI models are curved, but are rarely bounded.

$$y = 20 + 3.6x_1 - 1.8x_2 - 0.6x_1x_2$$

Set $x_2 = 0$, then $y \to \infty$ as $x_1 \to \infty$.

▶ The *true* model for any system is a general nonlinear function

$$y = f(x_1, x_2, \ldots, x_k)$$

▶ The *true* model for any system is a general nonlinear function

$$y = f(x_1, x_2, \ldots, x_k)$$

▶ If you know *f* for your system, congrats! Fit its parameters with regression and use it.

▶ The *true* model for any system is a general nonlinear function

$$y = f(x_1, x_2, \ldots, x_k)$$

- ▶ If you know *f* for your system, congrats! Fit its parameters with regression and use it.
- ightharpoonup Usually we don't know f, so we approximate it with a simpler function.

▶ The *true* model for any system is a general nonlinear function

$$y = f(x_1, x_2, \ldots, x_k)$$

- ▶ If you know *f* for your system, congrats! Fit its parameters with regression and use it.
- ▶ Usually we don't know f, so we approximate it with a simpler function.
- ▶ We are not claiming that *f* is a particular shape. Rather, we claim that an approximation is "good enough" over our domain of interest.

Approximating f with a general quadratic

Let's find the second-order Taylor series of $f(x_1, x_2)$ centered at zero:

$$f(x_1, x_2) \approx f|_0 + \frac{\partial f}{\partial x_1}\Big|_0 x_1 + \frac{\partial f}{\partial x_2}\Big|_0 x_2 + \frac{1}{2} \frac{\partial^2 f}{\partial x_1^2}\Big|_0 x_1^2 + \frac{1}{2} \frac{\partial^2 f}{\partial x_2^2}\Big|_0 x_2^2 + \frac{1}{2} \frac{\partial^2 f}{\partial x_1 \partial x_2}\Big|_0 x_1 x_2$$

Approximating f with a general quadratic

Let's find the second-order Taylor series of $f(x_1, x_2)$ centered at zero:

$$f(x_1, x_2) \approx \underbrace{f|_0}_{\beta_0} + \underbrace{\frac{\partial f}{\partial x_1}\Big|_0}_{\beta_1} x_1 + \underbrace{\frac{\partial f}{\partial x_2}\Big|_0}_{\beta_2} x_2 + \underbrace{\frac{1}{2} \frac{\partial^2 f}{\partial x_1^2}\Big|_0}_{\beta_{11}} x_1^2 + \underbrace{\frac{1}{2} \frac{\partial^2 f}{\partial x_2^2}\Big|_0}_{\beta_{22}} x_2^2 + \underbrace{\frac{1}{2} \frac{\partial^2 f}{\partial x_1 \partial x_2}\Big|_0}_{\beta_{12}} x_1 x_2$$

The function f and its derivatives are unknown, so we fit the parameters β with a linear model.

Let's find the second-order Taylor series of $f(x_1, x_2)$ centered at zero:

$$f(x_1, x_2) \approx \underbrace{f|_0}_{\beta_0} + \underbrace{\frac{\partial f}{\partial x_1}\Big|_0}_{\beta_1} x_1 + \underbrace{\frac{\partial f}{\partial x_2}\Big|_0}_{\beta_2} x_2 + \underbrace{\frac{1}{2} \frac{\partial^2 f}{\partial x_1^2}\Big|_0}_{\beta_{11}} x_1^2 + \underbrace{\frac{1}{2} \frac{\partial^2 f}{\partial x_2^2}\Big|_0}_{\beta_{22}} x_2^2 + \underbrace{\frac{1}{2} \frac{\partial^2 f}{\partial x_1 \partial x_2}\Big|_0}_{\beta_{12}} x_1 x_2$$

The function f and its derivatives are unknown, so we fit the parameters β with a linear model.

Let's find the second-order Taylor series of $f(x_1, x_2)$ centered at zero:

$$f(x_{1},x_{2}) \approx \underbrace{f|_{0}}_{\beta_{0}} + \underbrace{\frac{\partial f}{\partial x_{1}}|_{0}}_{\beta_{1}} x_{1} + \underbrace{\frac{\partial f}{\partial x_{2}}|_{0}}_{\beta_{2}} x_{2} + \underbrace{\frac{1}{2} \frac{\partial^{2} f}{\partial x_{1}^{2}}|_{0}}_{\beta_{11}} x_{1}^{2} + \underbrace{\frac{1}{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}|_{0}}_{\beta_{22}} x_{2}^{2} + \underbrace{\frac{1}{2} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}|_{0}}_{\beta_{12}} x_{1} x_{2}$$

$$f(x_{1},x_{2}) \approx \underbrace{\underbrace{\beta_{0} + \beta_{1} x_{1} + \beta_{2} x_{2}}_{FO} + \underbrace{\beta_{11} x_{1}^{2} + \beta_{22} x_{2}^{2}}_{PQ} + \underbrace{\beta_{12} x_{1} x_{2}}_{TWI}}_{SO}$$

The function f and its derivatives are unknown, so we fit the parameters β with a linear model.

Let's find the second-order Taylor series of $f(x_1, x_2)$ centered at zero:

$$f(x_{1},x_{2}) \approx \underbrace{f|_{0}}_{\beta_{0}} + \underbrace{\frac{\partial f}{\partial x_{1}}|_{0}}_{\beta_{1}} x_{1} + \underbrace{\frac{\partial f}{\partial x_{2}}|_{0}}_{\beta_{2}} x_{2} + \underbrace{\frac{1}{2} \frac{\partial^{2} f}{\partial x_{1}^{2}}|_{0}}_{\beta_{11}} x_{1}^{2} + \underbrace{\frac{1}{2} \frac{\partial^{2} f}{\partial x_{2}^{2}}|_{0}}_{\beta_{22}} x_{2}^{2} + \underbrace{\frac{1}{2} \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}}|_{0}}_{\beta_{12}} x_{1} x_{2}$$

$$f(x_{1},x_{2}) \approx \underbrace{\underbrace{\beta_{0} + \beta_{1} x_{1} + \beta_{2} x_{2}}_{FO} + \underbrace{\beta_{11} x_{1}^{2} + \beta_{22} x_{2}^{2}}_{PQ} + \underbrace{\beta_{12} x_{1} x_{2}}_{TWI}}_{SO}$$

- The function f and its derivatives are unknown, so we fit the parameters β with a linear model.
- ightharpoonup In general we will have k factors and the quadratic approximation will be

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{j=1}^k \sum_{i=1}^{J-1} \beta_{ij} x_i x_j.$$

Let's find the second-order Taylor series of $f(x_1, x_2)$ centered at zero:

$$f(x_{1},x_{2}) \approx \underbrace{f|_{0}}_{\beta_{0}} + \underbrace{\frac{\partial f}{\partial x_{1}}\Big|_{0}}_{\beta_{1}} x_{1} + \underbrace{\frac{\partial f}{\partial x_{2}}\Big|_{0}}_{\beta_{2}} x_{2} + \underbrace{\frac{1}{2}\frac{\partial^{2} f}{\partial x_{1}^{2}}\Big|_{0}}_{\beta_{11}} x_{1}^{2} + \underbrace{\frac{1}{2}\frac{\partial^{2} f}{\partial x_{2}^{2}}\Big|_{0}}_{\beta_{22}} x_{2}^{2} + \underbrace{\frac{1}{2}\frac{\partial^{2} f}{\partial x_{1}\partial x_{2}}\Big|_{0}}_{\beta_{12}} x_{1}x_{2}$$

$$f(x_{1},x_{2}) \approx \underbrace{\underbrace{\beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2}}_{\text{FO}} + \underbrace{\beta_{11}x_{1}^{2} + \beta_{22}x_{2}^{2}}_{\text{PQ}} + \underbrace{\beta_{12}x_{1}x_{2}}_{\text{TWI}}}_{\text{SO}}$$

- The function f and its derivatives are unknown, so we fit the parameters β with a linear model.
- \triangleright In general we will have k factors and the quadratic approximation will be

$$y = \beta_0 + \sum_{i=1}^k \beta_i x_i + \sum_{i=1}^k \beta_{ii} x_i^2 + \sum_{i=1}^k \sum_{i=1}^{J-1} \beta_{ij} x_i x_j.$$

▶ This model has 1 + 2k + k(k - 1)/2 parameters, so RSM designs must have at least this many runs.

The Central Composite Design (CCD)

- A factorial or FF design can estimate FO and TWI terms.
- Estimating curvature requires points beyond the factorial corners.
- One popular option is the Central Composite Design.

The Central Composite Design (CCD)

- A factorial or FF design can estimate FO and TWI terms.
- Estimating curvature requires points beyond the factorial corners.
- ▶ One popular option is the **Central Composite Design**.

Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.

- Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.

- Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.
- CCDs have a pair of axial runs for each factor:

- ► Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.
- CCDs have a pair of axial runs for each factor:
 - ▶ One factor is set to $\pm \alpha$

- Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.
- CCDs have a pair of axial runs for each factor:
 - ▶ One factor is set to $\pm \alpha$
 - All other factors are set to 0.

- ► Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.
- CCDs have a pair of axial runs for each factor:
 - \triangleright One factor is set to $\pm \alpha$
 - All other factors are set to 0.
- ▶ Center points estimate pure error and help (some) with PQ terms.

- ► Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.
- CCDs have a pair of axial runs for each factor:
 - \triangleright One factor is set to $\pm \alpha$
 - All other factors are set to 0.
- ► Center points estimate pure error and help (some) with PQ terms.
- ▶ To build a CCD you need to decide:

- Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.
- CCDs have a pair of axial runs for each factor:
 - ightharpoonup One factor is set to $\pm \alpha$
 - All other factors are set to 0.
- Center points estimate pure error and help (some) with PQ terms.
- ► To build a CCD you need to decide:
 - 1. The size of the FF core

- Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.
- CCDs have a pair of axial runs for each factor:
 - ightharpoonup One factor is set to $\pm \alpha$
 - All other factors are set to 0.
- ► Center points estimate pure error and help (some) with PQ terms.
- ▶ To build a CCD you need to decide:
 - 1. The size of the FF core
 - 2. The number of center runs

- Factorial points alone estimates the FO and TWI terms. The core must be Resolution V or higher.
- Axial points allow estimation of the PQ terms. Without axial points we could only estimate the sum of all PQ terms.
- CCDs have a pair of axial runs for each factor:
 - ▶ One factor is set to $\pm \alpha$
 - All other factors are set to 0.
- ► Center points estimate pure error and help (some) with PQ terms.
- ► To build a CCD you need to decide:
 - 1. The size of the FF core
 - 2. The number of center runs
 - 3. The value of α

Uniform precision

A model has uniform precision if the variance at design radius 1 is the same as at the center.

Uniform precision

A model has uniform precision if the variance at design radius 1 is the same as at the center.

Uniform precision

A model has uniform precision if the variance at design radius 1 is the same as at the center.

Choosing the correct number of center points in a CCD ensures uniform precision.

▶ Models are most precise at the center of the design.

- Models are most precise at the center of the design.
- Ideally, the change in precision should be independent of the direction we move away from the center.

- Models are most precise at the center of the design.
- Ideally, the change in precision should be independent of the direction we move away from the center.

Fig. 2. Variance contours for some 2 dimensional designs

Image from Box and Hunter 1957.

- ▶ Models are most precise at the center of the design.
- ▶ Ideally, the change in precision should be independent of the direction we move away from the center.

Fig. 2. Variance contours for some 2 dimensional designs

Image from Box and Hunter 1957.

Designs where the variance only depends on the radius are called rotatable designs.

- Models are most precise at the center of the design.
- Ideally, the change in precision should be independent of the direction we move away from the center.

Image from Box and Hunter 1957.

- Designs where the variance only depends on the radius are called rotatable designs.
- ▶ A CCD with *F* factorial points is rotatable when $\alpha = \sqrt[4]{F}$.

Rotatable, uniform precision CCDs

factors (k)	2	3	4	5	5 - 1	6
factorial points	4	8	16	32	16	64
axial points	4	6	8	10	10	12
center points	5	6	7	10	6	15
axial distance (α)	1.414	1.682	2.000	2.378	2.000	2.828
factors (k)	6 - 1	7	7 - 1	8	8 - 1	8 - 2
factorial points	32	128	64	256	128	64
axial points	12	14	14	16	16	16
center points	9	21	14	28	20	13
axial distance (α)	2.378	3.364	2.828	4.000	3.364	2.828

Factor levels in a CCD

Each factor in the CCD will be set at five levels:

$$-\alpha$$
 -1 0 1 α

Factor levels in a CCD

Each factor in the CCD will be set at five levels:

$$-\alpha$$
 -1 0 1 α

Unlike a 2-level design, the coded units in a CCD have meaning!

Let's say we're designing a combination screening of three drugs. The absolute widest concentration range we can use for drug A is [-3.2,1.0] on a $\log_{10}\text{-}\mu\text{M}$ scale. What are the five levels assuming a full-factorial CCD?

Let's say we're designing a combination screening of three drugs. The absolute widest concentration range we can use for drug A is [-3.2, 1.0] on a \log_{10} - μ M scale. What are the five levels assuming a full-factorial CCD?

$$F = 2^3 = 8 \Rightarrow \alpha = \sqrt[4]{8} = 1.68$$

Let's say we're designing a combination screening of three drugs. The absolute widest concentration range we can use for drug A is [-3.2, 1.0] on a \log_{10} - μ M scale. What are the five levels assuming a full-factorial CCD?

$$F = 2^3 = 8 \Rightarrow \alpha = \sqrt[4]{8} = 1.68$$

$$A = \operatorname{center}(A) + \frac{\operatorname{range}(A)}{2\alpha}[\operatorname{code}]$$
$$= -1.1 + \frac{1 - (-3.2)}{2(1.68)}[\operatorname{code}]$$

Let's say we're designing a combination screening of three drugs. The absolute widest concentration range we can use for drug A is [-3.2, 1.0] on a \log_{10} - μ M scale. What are the five levels assuming a full-factorial CCD?

$$F = 2^3 = 8 \Rightarrow \alpha = \sqrt[4]{8} = 1.68$$

A = center(A) +
$$\frac{\text{range}(A)}{2\alpha}$$
[code]
= -1.1 + $\frac{1 - (-3.2)}{2(1.68)}$ [code]