Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

References

Speech Modifications

LECTURE 3: HARMONIC PLUS NOISE MODELS AND MODIFICATIONS

Yannis Stylianou

Telecommunications and Network Lab, ICS- FORTH styliano@ics.forth.gr

Vitoria, 2010 Sept 2nd

Speech Modifications

Yannis Stylianou

- 1 HNM
 - Introduction
 - Parameters Estimation
 - Synthesis
- 2 Modifications with HNM
 - Source
 - Filter
- 3 References

talk HNM

Modifications with HNM

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction

Parameters Estimation Synthesis

Modifications with HNM

References

• MBE (Griffin et al.1988 [1])

- Sinusoids plus band-pass random signals (Abrantes et al.1991 [2]
- Harmonic and Stochastic Model (Laroche et al.1993 [3]
- Iterative decomposition of the excitation signal (Yegnayarayana et al.1995 [4])
- Harmonic plus Noise Model (Stylianou et al.1995 [5]
- Harmonic plus Noise Model 2 (Stylianou, PhD, 1996 [6])

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Introduction Parameters

Estimation Synthesis

Modifications with HNM

- MBE (Griffin et al.1988 [1])
- Sinusoids plus band-pass random signals (Abrantes et al.1991 [2]
- Harmonic and Stochastic Model (Laroche et al.1993 [3]
- Iterative decomposition of the excitation signal (Yegnayarayana et al.1995 [4])
- Harmonic plus Noise Model (Stylianou et al.1995 [5]
- Harmonic plus Noise Model 2 (Stylianou, PhD, 1996 [6])

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters

Estimation Synthesis

Modifications with HNM

- MBE (Griffin et al.1988 [1])
- Sinusoids plus band-pass random signals (Abrantes et al.1991 [2]
- Harmonic and Stochastic Model (Laroche et al.1993 [3]
- Iterative decomposition of the excitation signal (Yegnayarayana et al.1995 [4])
- Harmonic plus Noise Model (Stylianou et al.1995 [5]
- Harmonic plus Noise Model 2 (Stylianou, PhD, 1996 [6])

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Parameters Estimation

Synthesis

Modifications with HNM

- MBE (Griffin et al.1988 [1])
- Sinusoids plus band-pass random signals (Abrantes et al.1991 [2]
- Harmonic and Stochastic Model (Laroche et al.1993 [3]
- Iterative decomposition of the excitation signal (Yegnayarayana et al.1995 [4])
- Harmonic plus Noise Model (Stylianou et al.1995 [5]
- Harmonic plus Noise Model 2 (Stylianou, PhD, 1996 [6])

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Introduction Parameters

Estimation Synthesis

Modifications with HNM

- MBE (Griffin et al.1988 [1])
- Sinusoids plus band-pass random signals (Abrantes et al.1991 [2]
- Harmonic and Stochastic Model (Laroche et al.1993 [3]
- Iterative decomposition of the excitation signal (Yegnayarayana et al.1995 [4])
- Harmonic plus Noise Model (Stylianou et al.1995 [5]
- Harmonic plus Noise Model 2 (Stylianou, PhD, 1996 [6])

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction

Parameters Estimation Synthesis

Modifications with HNM

- MBE (Griffin et al.1988 [1])
- Sinusoids plus band-pass random signals (Abrantes et al.1991 [2]
- Harmonic and Stochastic Model (Laroche et al.1993 [3]
- Iterative decomposition of the excitation signal (Yegnayarayana et al.1995 [4])
- Harmonic plus Noise Model (Stylianou et al.1995 [5]
- Harmonic plus Noise Model 2 (Stylianou, PhD, 1996 [6])

Why to decompose?

Speech Modifications

Yannis Stylianou

Outline of the talk

Laik

HNM Introduction

Parameters Estimation Synthesis

Modifications

with HNM

References

Decomposing speech into (quasi)periodic and non-periodic part has many applications in:

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

Why to decompose?

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters

Estimation Synthesis

Modifications with HNM

References

Decomposing speech into (quasi)periodic and non-periodic part has many applications in:

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

WHY TO DECOMPOSE?

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters

Estimation Synthesis

Modifications with HNM

References

Decomposing speech into (quasi)periodic and non-periodic part has many applications in:

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

Why to decompose?

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters

Estimation Synthesis

Modifications with HNM

References

Decomposing speech into (quasi)periodic and non-periodic part has many applications in:

- Speech modification
- Speech coding
- Pathologic voice detection (i.e., HNR ...)
- Psychoacoustic research

MOTIVATION FOR HNM

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Introduction Parameters Estimation

Synthesis Modifications

with HNM

Brief overview of HNM

Speech Modifications

Yannis Stylianou

Outline of the

talk HNM

Introduction

Parameters Estimation Synthesis

Modifications with HNM

- HNM is a pitch-synchronous harmonic plus noise representation of the speech signal.
- Speech spectrum is divided into a low and a high band delimited by the so-called maximum voiced frequency.
- The low band of the spectrum (below the maximum voiced frequency) is represented solely by harmonically related sine waves.
- The upper band is modeled as a noise component modulated by a time-domain amplitude envelope.
- HNM allows high-quality copy synthesis and prosodic modifications.

HNM IN EQUATIONS

Speech Modifications

Yannis Stylianou

Outline of the

talk HNM

Introduction Parameters

Estimation Synthesis

Modifications with HNM

References

• Harmonic part:

$$h(t) = \sum_{k=-L(t)}^{L(t)} A_k(t) e^{j k\omega_0(t) t}$$

Noise part:

$$n(t) = e(t) [v(\tau, t) \star b(t)]$$

Speech:

$$s(t) = h(t) + n(t)$$

PERIODIC PART

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction

Parameters Estimation Synthesis

Modifications with HNM

References

HNM₁: Sum of exponential functions without slope

$$h_1[n] = \sum_{k=-L(n_a^i)}^{L(n_a^i)} a_k(n_a^i) e^{j2\pi k f_0(n_a^i)(n-n_a^i)}$$

HNM₂: Sum of exponential function with complex slope

$$h_2[n] = \Re \left\{ \sum_{k=1}^{L(n_a^i)} A_k(n) \exp^{j2\pi k f_0(n_a^i)(n-n_a^i)} \right\}$$

where

$$A_k(n) = a_k(n_a^i) + (n - n_a^i)b_k(n_a^i)$$

with $a_k(n_a^i)$, $b_k(n_a^i)$ to be complex numbers (amplitude and slope respectively). \Re denotes taking the real part

Periodic part

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Introduction Parameters Estimation

Synthesis Modifications

with HNM References HNM₁: Sum of exponential functions without slope

$$h_1[n] = \sum_{k=-L(n_a^i)}^{L(n_a^i)} a_k(n_a^i) e^{j2\pi k f_0(n_a^i)(n-n_a^i)}$$

ullet HNM $_2$: Sum of exponential function with complex slope

$$h_2[n] = \Re \left\{ \sum_{k=1}^{L(n_a^i)} A_k(n) \exp^{j2\pi k f_0(n_a^i)(n-n_a^i)} \right\}$$

where

$$A_k(n) = a_k(n_a^i) + (n - n_a^i)b_k(n_a^i)$$

with $a_k(n_a^i)$, $b_k(n_a^i)$ to be complex numbers (amplitude and slope respectively). \Re denotes taking the real part.

PERIODIC PART continuing

Speech Modifications

Yannis Stylianou

Outline of the

talk

HNM

Introduction Parameters

Estimation Synthesis

Modifications with HNM

References

 \bullet HNM3: Sum of sinusoids with time-varying real amplitudes

$$h_3[n] = \sum_{k=0}^{L(n_a^i)} a_k(n) cos(\varphi_k(n))$$

where

$$a_{k}(n) = c_{k0} + c_{k1} (n - n_{a}^{i})^{1} + \dots + c_{kp} (n - n_{a}^{i})^{p(n)}$$

$$\varphi_{k}(n) = \epsilon_{k} + 2\pi k \zeta (n - n_{a}^{i})$$

where p(n) is the order of the amplitude polynomial, which is, in general, a time-varying parameter.

RESIDUAL (NOISE) PART

Speech Modifications

> Yannis Stylianou

Outline of the talk

ним

Introduction

Parameters Estimation Synthesis

Modifications with HNM

References

The non-periodic part is just the *residual* signal obtained by subtracting the periodic-part (harmonic part) from the original speech signal in the time-domain

$$r[n] = s[n] - h[n]$$

where h[n] is either $h_1[n]$, $h_2[n]$, or $h_3[n]$.

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Introduction

Parameters Estimation

Synthesis

Modifications with HNM

- Pitch: based on an autocorrelation criterion
- Maximum Voiced Frequency: voicing matching criteria
- Amplitudes: Least-Squares
- Noise part: variance and Linear prediction

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Introduction Parameters

Estimation

Synthesis

Modifications with HNM

- Pitch: based on an autocorrelation criterion
- Maximum Voiced Frequency: voicing matching criteria
- Amplitudes: Least-Squares
- Noise part: variance and Linear prediction

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Introduction

Parameters Estimation

Synthesis

Modifications with HNM

- Pitch: based on an autocorrelation criterion
- Maximum Voiced Frequency: voicing matching criteria
- Amplitudes: Least-Squares
- Noise part: variance and Linear prediction

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Introduction

Parameters Estimation

Synthesis

Modifications with HNM

- Pitch: based on an autocorrelation criterion
- Maximum Voiced Frequency: voicing matching criteria
- Amplitudes: Least-Squares
- Noise part: variance and Linear prediction

EXAMPLE OF ESTIMATION

Speech Modifications

> Yannis Stylianou

Outline of the

talk

HNM

Introduction
Parameters
Estimation
Synthesis

Modifications with HNM

FUNDAMENTAL FREQUENCY REFINEMENT

Speech Modifications Yannis

Stylianou

Outline of the talk

Introduction **Parameters** Estimation Synthesis

HNM

Modifications with HNM

References

Using the initial f_0 value and the L detected voiced frequencies f_i , then the refined fundamental frequency, \hat{f}_0 is defined as the value that minimizes the error:

$$E(\hat{f}_0) = \sum_{i=1}^{L} |f_i - i \cdot \hat{f}_0|^2$$

REFINEMENT FREQUENCY EXAMPLE

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Introduction **Parameters** Estimation Synthesis

Modifications with HNM

References

(b) Frequency in Hz

3500

VARIANCE OF THE RESIDUAL SIGNAL

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Introduction

Parameters Estimation Synthesis

.

Modifications with HNM

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Introduction Parameters Estimation

Synthesis

Modifications with HNM

References

- For the periodic part: Overlap-and-Add, or
 - Linear amplitude interpolation
 - Linear phase interpolation using average pitch value
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients.
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e.,, triangular)

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters Estimation

Synthesis

Modifications with HNM

- Direct time frequency matching
- For the periodic part: Overlap-and-Add, or
 - Linear amplitude interpolation
 - Linear phase interpolation using average pitch value
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters Estimation

Synthesis

Modifications with HNM

- Direct time frequency matching
- For the periodic part: Overlap-and-Add, or
 - Linear amplitude interpolation
 - Linear phase interpolation using average pitch value
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using
 normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters Estimation

Synthesis

Modifications with HNM

- Direct time frequency matching
- For the periodic part: Overlap-and-Add, or
 - Linear amplitude interpolation
 - Linear phase interpolation using average pitch value
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients.
 - Sample-by-sample filtering of Gaussian noise using
 The sample filtering of Gaussian noise using
 The sample filtering of Gaussian noise using
 - Modulation in time with a deterministic function (i.e., triangular)

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Introduction Parameters Estimation

Synthesis

Modifications with HNM

References

- For the periodic part: Overlap-and-Add, or
 - Linear amplitude interpolation
 - Linear phase interpolation using average pitch value
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters Estimation

Synthesis

Modifications with HNM

References

- For the periodic part: Overlap-and-Add, or
 - Linear amplitude interpolation
 - Linear phase interpolation using average pitch value
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters Estimation

Synthesis

Modifications with HNM

References

- For the periodic part: Overlap-and-Add, or
 - Linear amplitude interpolation
 - Linear phase interpolation using average pitch value
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e. triangular)

Speech Modifications

Yannis Stylianou

Outline of the talk

ним

Introduction Parameters Estimation

Synthesis

Modifications with HNM

References

- For the periodic part: Overlap-and-Add, or
 - Linear amplitude interpolation
 - Linear phase interpolation using average pitch value
- For the stochastic (noise) part):
 - Instead of AR coefficients we use reflection coefficients
 - Sample-by-sample filtering of Gaussian noise using normalized lattice filtering
 - Modulation in time with a deterministic function (i.e., triangular)

Preparing for prosody modifications

Speech Modifications

> Yannis Stylianou

Outline of the talk

ним

Modifications with HNM

Source Filter

References

For being able to make prosodic modifications (at least pitch and time scale modifications) in the context of HNM, we should

- Associate analysis and synthesis time instants
- Determine a continuous magnitude envelope
- Determine a continuous phase envelope

Preparing for Prosody Modifications

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

Source Filter

References

For being able to make prosodic modifications (at least pitch and time scale modifications) in the context of HNM, we should

- Associate analysis and synthesis time instants
- Determine a continuous magnitude envelope
- Determine a continuous phase envelope

Preparing for prosody modifications

Speech Modifications

> Yannis Stylianou

Outline of the talk

ним

Modifications with HNM

Source Filter

References

For being able to make prosodic modifications (at least pitch and time scale modifications) in the context of HNM, we should

- Associate analysis and synthesis time instants
- Determine a continuous magnitude envelope
- Determine a continuous phase envelope

Magnitude: Discrete Cepstrum

Speech Modifications

> Yannis Stylianou

Outline of the

talk

HNM

Modifications with HNM

Source

Filter

BARK SCALED DISC. CEPSTRA

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

Source

Filter

PHASE ENVELOPE ESTIMATION

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

Source

Filter

EXAMPLE OF PHASE ENVELOPES

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

Source

Filter

EXAMPLE OF PITCH MODIFICATION

Speech Modifications

> Yannis Stylianou

Outline of the

talk HNM

Modifications with HNM

Source Filter

References

Pitch modification by 1.3

SOUND EXAMPLES

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

Source

Filter

Original		
Time-scale by 0.7		
Time-scale by 1.6	4	
Pitch modification by 0.8		
Pitch modification by 1.6		
Original		
Time-varying pitch and time modif.		
Original		
Time-scale by 4		
Time-scale by 6		

PROBABILISTIC CLASSIFICATION

Speech Modifications

> Yannis Stylianou

Outline of the talk

Laik

HNM

Modifications with HNM

Source

Filter

References

 \bullet Modeling of the acoustic space of a speaker by a GMM :

$$p(\mathbf{x}) = \sum_{i=1}^{m} \alpha_i N(\mathbf{x}; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i),$$

Classification:

$$P(C_i|\mathbf{x}) = \frac{\alpha_i N(\mathbf{x}; \boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)}{\sum_{j=1}^m \alpha_j N(\mathbf{x}; \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

 Estimation using an Expectation-Maximization (EM) algorithm initialized by a standard binary splitting VQ procedure.

MAPPING FUNCTION

Speech Modifications

Yannis Stylianou

Outline of the

Mapping function [7]:

$$\mathcal{F}(\mathbf{x}_t) = \sum_{i=1}^{m} P(\mathcal{C}_i | \mathbf{x}_t) \left[\boldsymbol{\nu}_i + \boldsymbol{\Gamma}_i \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_t - \boldsymbol{\mu}_i) \right]$$

Motivation:

$$E[\mathbf{y}|\mathbf{x}=\mathbf{x}_t] = \nu + \mathbf{\Gamma}\mathbf{\Sigma}^{-1}(\mathbf{x}_t - \mu)$$

• Estimation of mapping function:

$$\epsilon = \sum_{t=1}^{n} ||\mathbf{y}_t - \mathcal{F}(\mathbf{x}_t)||^2$$

talk HNM

Modifications with HNM

Source Filter

Mapping function

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

Source

Filter

References

• Mapping function [7]:

$$\mathcal{F}(\mathbf{x}_t) = \sum_{i=1}^m P(\mathcal{C}_i | \mathbf{x}_t) \left[\boldsymbol{\nu}_i + \boldsymbol{\Gamma}_i \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_t - \boldsymbol{\mu}_i) \right]$$

Motivation:

$$E[\mathbf{y}|\mathbf{x}=\mathbf{x}_t] = \mathbf{
u} + \mathbf{\Gamma}\mathbf{\Sigma}^{-1}(\mathbf{x}_t - \mathbf{\mu})$$

• Estimation of mapping function:

$$\epsilon = \sum_{t=1}^{n} ||\mathbf{y}_t - \mathcal{F}(\mathbf{x}_t)||^2$$

MAPPING FUNCTION

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

Source

Filter

References

• Mapping function [7]:

$$\mathcal{F}(\mathbf{x}_t) = \sum_{i=1}^m P(\mathcal{C}_i | \mathbf{x}_t) \left[\boldsymbol{\nu}_i + \boldsymbol{\Gamma}_i \boldsymbol{\Sigma}_i^{-1} (\mathbf{x}_t - \boldsymbol{\mu}_i) \right]$$

Motivation:

$$E[\mathbf{y}|\mathbf{x}=\mathbf{x}_t] = \mathbf{
u} + \mathbf{\Gamma}\mathbf{\Sigma}^{-1}(\mathbf{x}_t - \mathbf{\mu})$$

Estimation of mapping function:

$$\epsilon = \sum_{t=1}^{n} ||\mathbf{y}_t - \mathcal{F}(\mathbf{x}_t)||^2$$

PERFORMANCE OF THE MAPPING FUNCTION

Speech Modifications

> Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

Source Filter

.

Results - XAB test

Speech Modifications

> Yannis Stylianou

Outline of the

talk

HNM

Modifications with HNM

Source

Filter

References

Task: Listeners were asked to select either A or B as being most similar to X.

	РО	16 GMM	64 GMM	64 GMM(2)
Correct	18%	83%	88%	97%
answers				

Audio examples of Voice Conversion: HNM + GMM

Speech Modifications **Yannis**

Stylianou Outline of the

talk

HNM

Modifications with HNM Source

Filter

References

Source Converted Target Converted 👊

Speech Modifications

Yannis Stylianou

Outline of the talk

HNM

Modifications with HNM

References

D. Griffin and J. Lim, "Multiband-excitation vocoder," *IEEE Trans. Acoust., Speech, Signal Processing*, vol. ASSP-36, pp. 236–243, Fev 1988.

A. Abrantes, J. Marques, and I. Transcoso, "Hybrid sinusoidal modeling of speech without voicing decision," *Eurospeech-91*, pp. 231–234, 1991.

J. Laroche, Y. Stylianou, and E. Moulines, "HNS: Speech modification based on a harmonic + noise model.," *Proc. IEEE ICASSP-93, Minneapolis*, pp. 550–553, Apr 1993.

B.Yegnanarayana, C. d'Alessandro, and V. Darsinos, "An iterative algorithm for decomposition of speech signals into periodic and aperiodic components," vol. 6, no. 1, 1998.

Y. Stylianou, J. Laroche, and E. Moulines, "High-Quality Speech Modification based on a Harmonic + Noise Model.," *Proc. EUROSPEECH*, 1995.

Y. Stylianou, Harmonic plus Noise Models for Speech, combined with Statistical Methods, for Speech and Speaker Modification.

Y. Stylianou, O. Cappé, and E. Moulines, "Continuous probabilistic transform for voice conversion,"

PhD thesis, Ecole Nationale Supèrieure des Télécommunications, Jan 1996.

IEEE Trans. Speech and Audio Processing, vol. 6, no. 2, pp. 131-142, 1998.

Speech Modifications Yannis

Stylianou
Outline of the

talk HNM

Modifications with HNM