Unità 1

Il sistema di elaborazione

Il modello funzionale

Il modello di von Neumann prevede che l'elaboratore sia composto da:

- un microprocessore che si occupa di elaborare le informazioni;
- una memoria in cui sono immagazzinati i dati durante la loro elaborazione;
- un insieme di periferiche che consentono al microprocessore di comunicare con l'utente esterno, il quale può immettere dati o ricevere informazioni.

La CPU

Il **processore**, chiamato anche **CPU**, è l'elemento fondamentale dell'elaboratore.

Un processore esegue velocemente operazioni elementari su numeri binari e usa il concetto di indirizzamento. Per eseguire le sue istruzioni, la CPU usa delle memorie veloci chiamate **registri**.

Per sincronizzare il suo funzionamento con quello dei dispositivi a esso collegati, sulla scheda madre è presente un segnale chiamato **clock**.

I parametri principali della CPU sono:

- numero di bit (parallelismo);
- frequenza del clock;
- struttura interna;
- numero di core integrati;
- velocità delle periferiche collegate;
- cache.

II bus (1)

Il **bus** è l'insieme di collegamenti esistenti tra microprocessore, memoria e periferiche.

Si suddivide, dal punto di vista funzionale, in tre parti:

- bus dati,
- bus indirizzi
- bus di controllo.

II bus (2)

Il **bus dati** serve a trasferire i dati tra il microprocessore e le periferiche e tra le periferiche stesse.

Il **bus indirizzi** serve per attivare una cella di memoria o una periferica, trasmettendo su di esso l'indirizzo del dispositivo con il quale intende comunicare.

Il **bus di controllo** raggruppa una serie di collegamenti necessari per stabilire e mantenere una comunicazione che consenta il trasferimento dei dati tra CPU e periferiche.

I collegamenti utilizzati cambiano per ciascun tipo di periferica e sono:

- BUSY (occupato)
- IRQ (interruzione) periferica più importante segnala di voler interrompere

II bus (3)

Nelle attuali schede madri, per ottimizzare il trasferimento dei dati, i bus sono stati sdoppiati.

Un bus chiamato **Northbridge** collega le periferiche più veloci (es. RAM/scheda video)

Un bus chiamato **Southbridge** collega le periferiche più lente.

La memoria centrale (1)

La **memoria centrale** è costituita da milioni di celle, ciascuna contenente un bit di informazione.

La gestione avviene a gruppi di almeno 8 bit (un byte).

L'accesso ai dati è casuale (RAM), perché non serve una lettura in sequenza delle varie celle per giungere a un dato: è sufficiente indicare nel bus indirizzi la posizione della singola cella.

La memoria funziona solo se è alimentata.

Le operazioni sono **lettura** e **scrittura**.

Un circuito interno provvede a controllare che i dati siano sempre corretti, segnalando eventuali problemi.

Le memorie secondarie (1)

Esistono diversi tipi di memorie secondarie, dette anche aggiuntive. Al loro interno, vi è il concetto di **storage** (o spazio di archiviazione).

Possiamo generalmente categorizzare vari tipi di memorie:

- Magnetiche (salvando i bit su materiale magnetico per effetto elettronico)
 - Es. hard disk/DVD/CD
 - Salvano le informazioni all'interno di settori e tracce
 - Permettono un accesso casuale

Le memorie secondarie (2)

L'hard disk sfrutta la magnetizzazione di granuli di ferro depositati su dischi che ruotano ad alta velocità.

Possiede grande capacità di memoria, ma è una periferica lenta.

L'**SSD** è un circuito elettronico che non ha parti in movimento, quindi è molto veloce in scrittura e lettura.

Rispetto all'hard disk, il costo è maggiore e la durata minore, dato dalle poche scritture possibili.

Le **flash memory** sono memorie con le stesse caratteristiche dell'SSD, ma con capacità ridotte.

Non necessitano di alimentazione e funzionano con connessione al connettore USB (Plug and Play = collega e usa)

Le memorie secondarie (3)

I **CD/DVD** sono dischi che memorizzano le informazioni tramite l'opacizzazione di piccole aree su uno strato metallico al loro interno.

Hanno buone capacità di memorizzazione, ma tempi di lettura e scrittura elevati; sono adatti per l'archiviazione.

Vi sono infatti le memorie **ottiche**, che permettono di salvare le informazioni in modo scrivibile o leggibile, richiedendo vari aggiornamenti.

Oltre ai CD/DVD, un altro esempio di memoria di questo tipo sono i bluray.

Le periferiche

Le **periferiche** sono classificate per la direzione del flusso di dati tra esse e il microprocessore e per il compito svolto.

La loro classificazione prevede tre sottocategorie:

- input (dati verso il processore);
- output (dati dal processore);
- input/output (dati verso il/dal processore).

