What is machine learning?

Warning!

Does every observable natural phenomenon follow a law?

Math language

Law as a function

How would we *know* that function?

Origin of approximation theory

Weierstrass Theorem (1885)

Given $f:[a,b] o \mathbb{R}$ continuous and an arbitrary arepsilon>0, there exists an algebraic polynomial p such that

$$|f(x)-p(x)|\leq arepsilon, \quad orall x\in [a,b]\subset \mathbb{R}.$$

Stone WeierstrassTheorem (Weierstrass 1887, simplified proof Stone 1948)

Which is a polynomial?

- 1. x^{3}
- 2. x^{π^e}
- 3. $\sum_{i=0}^{n} \frac{x^i}{i!}$ $n \in \mathbb{N}$ 4. $\sum_{i=0}^{\infty} \frac{x^i}{i!}$

Formalizing the approach

- Data come from $\mathcal{P}(\mathcal{D})$.
- Condition: Independent identically distributed iid
- ullet The information is the characteristic vector ${\mathcal X}$

Prediction task

$$f:\mathcal{X} o \mathcal{Y}$$

Model

- Class of functions where we are going to search
- Need a criteria: loss function and algorithm

Lineal regression

$$E_{in}(W) = rac{1}{N} \sum_{n=1}^{N} (w^T x_n - y_n)^2$$

Gauss Markov theorem

Under the assumption of incorrelated noise, mean zero and bound variance, the Ordinary Least Squared technique reach the minimum variance unbiased estimator for β^*

Model:

$$y_i = f(x_i, eta) + noise, f$$
 linear in eta

Minimizing E_{in}

$$abla E_{in}(w) = rac{2}{N} X^T (Xw - y) = 0$$
 $X^T Xw = X^T y$

Result

$$w = X^\dagger y$$
 where $X^\dagger = (X^T X)^{-1} X^T$

Gradient Descendent (Iterative method)

Given w_0 we want to find \hat{v} such that $E_{in}(w_0 + \eta \hat{v}) < E_{in}(w_0)$

ullet Apply Taylor expansion to first order with $\|\hat{v}\|=1$

$$\Delta E_{in} = E_{in}(w_0 + \eta \hat{v}) - E_{in}(w_0)$$

(...)

The equality holds if and only if

$$\hat{v} = -rac{
abla E_{in}(w(0))}{\|E_{in}(w(0))\|}$$

Negative Gradient! so reaches LOCAL optimun

How η affects the algorithm

Lower the learning rate as the training progresses

Learning rate

Perceptron (McCulloch- Pitts)

Neuronal Network

Is this a polynomial: more or less:)