GPSの移動履歴と地図上経路の近似照合

知能情報工学科 4年 182C1120 中島健斗

目次

- 1. はじめに
- 2. 研究内容
- 3. 提案手法
- 4. 実験
 - ー 地図データ
 - 一 照合結果
- 5. 考察とまとめ

1 はじめに

GPSログと地図上経路の近似照合とは・・・

× GPSの位置点

地図上のノード

— 地図上の経路

通過した経路

1 はじめに

GPSログと地図上経路の近似照合とは・・・

× GPSの位置点

地図上のノード

— 地図上の経路

通過した経路

2 研究内容

研究内容

点列と線分列の照合による移動履歴と地図上経路のマッチング

問題の定義

入力 移動履歴 $S = <(s_1, s_2), (s_2, s_3), \dots, (s_{m-1}, s_m)>,$ 地図上のノード $T = < t_1, t_2, t_3, \dots, t_n>$

出力 実際に通過した地図上の共通経路 T'(ただし, $T'\epsilon T$)

2 研究内容

移動履歴S → 時系列順に昇順な有向グラフ

地図上のノードT \rightarrow 向きが存在しない無向グラフ

3 提案手法

・移動履歴を線分,地図上のノードを点とする

・ $同一視してよい距離の最大値を<math>\delta$ として

全ての (s_i, s_{i+1}) に対して

 $distance\left((s_i,s_{i+1}),t_j\right) \leq \delta$ の判定をする

真のとき1, 偽のとき0を返す述語関数

3 提案手法

$$S = \langle (s_1, s_2), (s_2, s_3), (s_3, s_4), (s_4, s_5), (s_5, s_6) \rangle$$

 $T = \langle t_1, t_2, t_3, t_4, t_5 \rangle$

	s_1	s_2	<i>s</i> ₃	s_4	<i>S</i> ₅	<i>s</i> ₆
t_1	0	0	0	0	1	0
t_2	0	1	0	0	0	0
t_3	0	0	1	0	0	0
t_4	0	0	0	0	0	0
t_5	1	0	0	0	0	0

類似度テーブル

・dp(i,j)に $distance\left((s_i,s_{i+1}),t_j\right) \leq \delta$ を加算 類似度テーブルのマスを埋めていく

類似度テーブルを埋める計算量は $O(mn^2)$

・ $\mathrm{dp}(i,j)=1$ のとき地図上の位置点 t_j を抽出し 共通経路T'を構成する

バックトラックによる計算量は*O(mn)*

■4 実験 ―地図データの用意

①OpenStreetMap上の地図データから道路上の位置点を抽出する

■4 実験 ―地図データの用意

②highwayが共有するnodeのみを抜き出す

4 実験 一地図データの用意

③地図上のnode

4 実験 一地図データの用意

移動履歴 $S = <(s_0, s_1), (s_1, s_2),, (s_{n-2}, s_{n-1}) >$

4 実験 一照合結果

5 考察

・より大きいデータでの処理時間を調べるため 縦10.431km, 横7.998km, ノード数2,841の地図データに対して照合実験を行った

移動距離 [km]	実行時間 [ms]
2.37	642.6
2.84	657.3
3.14	864.5
4.15	1222.1

更に地図データを飯塚市全域(213.96km)(ノード数7,018)まで範囲を広げると

 $\rightarrow O(mn^2)$ の為、およそ7、455.3ms程かかると予想される

5 考察

課題と改善点

・ノードを全て抜き出している $\rightarrow O(mn^2)$ なので多くの処理時間がかかる

・地図面積に応じてノードを除外すれば,処理時間を短縮できる

ご清聴ありがとうごいました