Math 21-236, Mathematical Studies Analysis II, Spring 2012 Assignment 6

The due date for this assignment is Wednesday April 11.

Given a continuous oriented curve γ with parametric representation φ : $[a,b] \to \mathbb{R}^3$, the *projection* $\Pi \gamma$ of γ in \mathbb{R}^2 is the curve with parametric representation $(\varphi_1, \varphi_2) : [a,b] \to \mathbb{R}^2$.

1. Let $U \subseteq \mathbb{R}^2$ be an open set starshaped with respect to (x_0, y_0) , let $\mathbf{g} : U \setminus \{(x_0, y_0)\} \to \mathbb{R}^2$ be an irrotational vector field of class C^1 , and let $\boldsymbol{\gamma}$ be a continuous closed oriented curve with range contained in $U \setminus \{(x_0, y_0)\}$. Prove that

$$\int_{\gamma} \mathbf{g} = \operatorname{ind}_{\gamma} ((x_0, y_0)) \int_{\gamma_1} \mathbf{g},$$

where γ_1 is the curve parametrized by $\psi(s) = (x_0, y_0) + (r \cos s, r \sin s)$, $s \in [0, 2\pi]$ and r > 0 is so small that $\partial B((x_0, y_0), r) \subset U$.

2. Let $V = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \neq (0, 0)\}$, let $\mathbf{g} : V \to \mathbb{R}^3$ be an irrotational vector field of class C^1 . and let γ be a continuous closed oriented curve with range contained in V. Prove that

$$\int_{\gamma} \mathbf{g} = \operatorname{ind}_{\Pi\gamma} ((0,0)) \int_{\gamma_1} \mathbf{g},$$

where γ_1 is the curve parametrized by $\psi(s) = (\cos s, \sin s, 0), s \in [0, 2\pi]$.

3. Given the function

$$\mathbf{g}\left(x,y,z\right) = \left(\frac{xz}{x^2 + y^2}, \frac{yz}{x^2 + y^2}, h(x,y,z)\right)$$

defined in $U = \{(x, y, z) \in \mathbb{R}^3 : (x, y) \neq (0, 0)\}, h \in C^1(U),$

- (a) find h in such a way that g is irrotational in U;
- (b) prove that $\int_{\gamma} \mathbf{g} = 0$, where γ is the closed curve parametrized by $\varphi(t) = (\cos t, \sin t, 0), t \in [0, 2\pi],$
- (c) prove that **g** is conservative (without using part (d)),
- (d) find f such that $\nabla f = \mathbf{g}$ and f(1, 1, 1) = 0.
- 4. Let $E \subset \mathbb{R}^N$ be a Peano–Jordan measurable set.
 - (a) Let $\mathbf{g}: E \to \mathbb{R}^M$ be a Lipschitz function, with $N \leq M$. Moreover, if N = M, assume that E has measure zero. Prove that $\mathbf{g}(E)$ is Peano–Jordan measurable with measure zero.
 - (b) Let $U \subseteq \mathbb{R}^N$ be an open set and let $\mathbf{g}: U \to \mathbb{R}^M$ be a function of class C^1 . Assume that $\overline{E} \subseteq U$. Moreover, if N = M, assume that E has measure zero. Prove that $\mathbf{g}(E)$ is Peano–Jordan measurable with measure zero.

- (c) Let $U \subseteq \mathbb{R}^N$ be an open set and let $\mathbf{g}: U \to \mathbb{R}^N$ be a function of class C^1 . Assume that $\overline{E} \subseteq U$ and that $\det J_{\mathbf{g}}(\mathbf{x}) \neq 0$ for all $\mathbf{x} \in E^{\circ}$.
 - i. Prove that $\partial \mathbf{g}(E) \subseteq \mathbf{g}(\partial E)$.
 - ii. Prove that $\mathbf{g}\left(E\right)$ is Peano–Jordan measurable.