A different view

Resolving recurrences is for the computer scientist what is solving differential equations for the engineer

Consider a linear homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

A different view

Resolving recurrences is for the computer scientist what is solving differential equations for the engineer

Consider a linear homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

(1) Factor
$$x^2 - \alpha x - \beta$$

A different view

Resolving recurrences is for the computer scientist what is solving differential equations for the engineer

Consider a linear homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

(1) Factor
$$x^2 - \alpha x - \beta = (x - \lambda_1)(x - \lambda_2)$$

A different view

Resolving recurrences is for the computer scientist what is solving differential equations for the engineer

Consider a linear homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

- (1) Factor $x^2 \alpha x \beta = (x \lambda_1)(x \lambda_2)$
- (2a) If $\lambda_1 \neq \lambda_2$, then $a_n = A\lambda_1^n + B\lambda_2^n$ for some constants A and B.

A different view

Resolving recurrences is for the computer scientist what is solving differential equations for the engineer

Consider a linear homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

- (1) Factor $x^2 \alpha x \beta = (x \lambda_1)(x \lambda_2)$
- (2a) If $\lambda_1 \neq \lambda_2$, then $a_n = A\lambda_1^n + B\lambda_2^n$ for some constants A and B.
- (2b) If $\lambda_1 = \lambda_2$, then $a_n = C\lambda^n + Dn\lambda^n$, where $\lambda = \lambda_1 = \lambda_2$ and C and D are some constants.

A different view

Resolving recurrences is for the computer scientist what is solving differential equations for the engineer

Consider a linear homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

We can solve it using the following method:

- (1) Factor $x^2 \alpha x \beta = (x \lambda_1)(x \lambda_2)$
- (2a) If $\lambda_1 \neq \lambda_2$, then $a_n = A\lambda_1^n + B\lambda_2^n$ for some constants A and B.
- (2b) If $\lambda_1 = \lambda_2$, then $a_n = C\lambda^n + Dn\lambda^n$, where $\lambda = \lambda_1 = \lambda_2$ and C and D are some constants.

3/11

Solutions in (2a) and (2b) are the general solution of the rec. relation.

A different view

Resolving recurrences is for the computer scientist what is solving differential equations for the engineer

Consider a linear homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

We can solve it using the following method:

- (1) Factor $x^2 \alpha x \beta = (x \lambda_1)(x \lambda_2)$
- (2a) If $\lambda_1 \neq \lambda_2$, then $a_n = A\lambda_1^n + B\lambda_2^n$ for some constants A and B.
- (2b) If $\lambda_1 = \lambda_2$, then $a_n = C\lambda^n + Dn\lambda^n$, where $\lambda = \lambda_1 = \lambda_2$ and C and D are some constants.

Solutions in (2a) and (2b) are the general solution of the rec. relation.

Initial conditions (values of a_0 and a_1) determine constants A, B or C, D.

A different view

Resolving recurrences is for the computer scientist what is solving differential equations for the engineer

Consider a linear homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

We can solve it using the following method:

- (1) Factor $x^2 \alpha x \beta = (x \lambda_1)(x \lambda_2)$
- (2a) If $\lambda_1 \neq \lambda_2$, then $a_n = A\lambda_1^n + B\lambda_2^n$ for some constants A and B.
- (2b) If $\lambda_1 = \lambda_2$, then $a_n = C\lambda^n + Dn\lambda^n$, where $\lambda = \lambda_1 = \lambda_2$ and C and D are some constants.

Solutions in (2a) and (2b) are the general solution of the rec. relation.

Initial conditions (values of a_0 and a_1) determine constants A, B or C, D.

A similar method works for higher degree. See pages 518-519.

Example

Let $f: \mathbb{N} \to \mathbb{Z}$ be a function defined recursively by $f(0) = -1, \ f(1) = 5$ and for all $n \geq 2$ by

$$f(n) = 10 \ f(n-1) - 25 \ f(n-2).$$

Fibonacci (again)

$$F_0 = F_1 = 1$$

 $F_n = F_{n-1} + F_{n-2}$

Consider a linear non-homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2} + F(n)$$

Consider a linear non-homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2} + F(n)$$

We can solve it using the following method:

(1) Find one particular solution $a_n^{(p)}$ by poking around.

Consider a linear non-homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2} + F(n)$$

- (1) Find one particular solution $a_n^{(p)}$ by poking around.
- (2) Determine the general solution $a_n^{(h)}$ to the homogeneous equation

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

Consider a linear non-homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2} + F(n)$$

We can solve it using the following method:

- (1) Find one particular solution $a_n^{(p)}$ by poking around.
- (2) Determine the general solution $a_n^{(h)}$ to the homogeneous equation

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

The general solution of the non-homogeneous recurrence relation is then given by $a_n^{(p)} + a_n^{(h)}$.

Consider a linear non-homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2} + F(n)$$

We can solve it using the following method:

- (1) Find one particular solution $a_n^{(p)}$ by poking around.
- (2) Determine the general solution $a_n^{(h)}$ to the homogeneous equation

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

The general solution of the non-homogeneous recurrence relation is then given by $a_n^{(p)} + a_n^{(h)}$.

When we are given initial conditions, i.e. values of a_0 and a_1 , then these determine the constants A, B or C, D.

Consider a linear non-homogeneous recurrence relation of order 2:

$$a_n = \alpha a_{n-1} + \beta a_{n-2} + F(n)$$

We can solve it using the following method:

- (1) Find one particular solution $a_n^{(p)}$ by poking around.
- (2) Determine the general solution $a_n^{(h)}$ to the homogeneous equation

$$a_n = \alpha a_{n-1} + \beta a_{n-2}$$

The general solution of the non-homogeneous recurrence relation is then given by $a_n^{(p)} + a_n^{(h)}$.

When we are given initial conditions, i.e. values of a_0 and a_1 , then these determine the constants A, B or C, D.

A similar method works for higher degree. See pages 521-522.

Christopher Lustri

Example

$$a_n = 10 \ a_{n-1} - 25 \ a_{n-2} + 3^n$$
.

Example

$$a_n = 10 \ a_{n-1} - 25 \ a_{n-2} + 3^n$$
.

From before, the homogeneous equation $a_n = 10$ $a_{n-1} - 25$ a_{n-2} has the general solution $a_n^{(h)} = C \cdot 5^n + D \cdot n5^n$.

How many ways can we write an integer as a sum of two squares?

$$n = a^2 + b^2$$
, where $a, b \in \mathbb{Z}$

For n = 13, there are eight solutions:

13 =
$$3^2 + 2^2 = (-3)^2 + 2^2 = 3^2 + (-2)^2 = (-3)^2 + (-2)^2$$

= $2^2 + 3^2 = (-2)^2 + 3^2 = 2^2 + (-3)^2 = (-2)^2 + (-3)^2$

How many ways can we write an integer as a sum of two squares?

$$n = a^2 + b^2$$
, where $a, b \in \mathbb{Z}$

For n = 13, there are eight solutions:

13 =
$$3^2 + 2^2 = (-3)^2 + 2^2 = 3^2 + (-2)^2 = (-3)^2 + (-2)^2$$

= $2^2 + 3^2 = (-2)^2 + 3^2 = 2^2 + (-3)^2 = (-2)^2 + (-3)^2$

For n = 16, there are four solutions:

$$16 = 4^2 + 0^2 = (-4)^2 + 0^2 = 0^2 + 4^2 = 0^2 + (-4)^2$$

How many ways can we write an integer as a sum of two squares?

$$n = a^2 + b^2$$
, where $a, b \in \mathbb{Z}$

For n = 13, there are eight solutions:

13 =
$$3^2 + 2^2 = (-3)^2 + 2^2 = 3^2 + (-2)^2 = (-3)^2 + (-2)^2$$

= $2^2 + 3^2 = (-2)^2 + 3^2 = 2^2 + (-3)^2 = (-2)^2 + (-3)^2$

For n = 16, there are four solutions:

$$16 = 4^2 + 0^2 = (-4)^2 + 0^2 = 0^2 + 4^2 = 0^2 + (-4)^2$$

For n = 11, there are no solutions.

How many ways can we write an integer as a sum of two squares?

$$n = a^2 + b^2$$
, where $a, b \in \mathbb{Z}$

For n = 13, there are eight solutions:

13 =
$$3^2 + 2^2 = (-3)^2 + 2^2 = 3^2 + (-2)^2 = (-3)^2 + (-2)^2$$

= $2^2 + 3^2 = (-2)^2 + 3^2 = 2^2 + (-3)^2 = (-2)^2 + (-3)^2$

For n = 16, there are four solutions:

$$16 = 4^2 + 0^2 = (-4)^2 + 0^2 = 0^2 + 4^2 = 0^2 + (-4)^2$$

For n = 11, there are no solutions.

Define a function $f: \mathbb{N} \to \mathbb{N}$, where f(n) denotes the number of solutions for n. So f(13) = 8, f(16) = 4, and f(11) = 0.

How many ways can we write an integer as a sum of two squares?

$$n = a^2 + b^2$$
, where $a, b \in \mathbb{Z}$

For n = 13, there are eight solutions:

13 =
$$3^2 + 2^2 = (-3)^2 + 2^2 = 3^2 + (-2)^2 = (-3)^2 + (-2)^2$$

= $2^2 + 3^2 = (-2)^2 + 3^2 = 2^2 + (-3)^2 = (-2)^2 + (-3)^2$

For n = 16, there are four solutions:

$$16 = 4^2 + 0^2 = (-4)^2 + 0^2 = 0^2 + 4^2 = 0^2 + (-4)^2$$

For n = 11, there are no solutions.

Define a function $f: \mathbb{N} \to \mathbb{N}$, where f(n) denotes the number of solutions for n. So f(13) = 8, f(16) = 4, and f(11) = 0.

8/11

What do you think happens to f(n) on average, as n grows large?

Christopher Lustri Discrete Mathematics

Average $f(n) \simeq 3.6$

Average $f(n) \simeq 3.16$

Christopher Lustri

Discrete Mathematics

n = 1 .. 1000

Average $f(n) \simeq 3.148$

n = 1 .. 10000

Average $f(n) \simeq 3.1416$

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 1$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 2$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers *a*, *b* as lattice points.

Marking the solutions to $a^2 + b^2 = 3$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 4$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 5$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 6$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 7$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 8$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 9$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 10$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 11$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 12$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 13$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 14$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 15$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 16$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 17$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 18$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 19$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

Marking the solutions to $a^2 + b^2 = 20$:

As n grows, the average of $f(1), \ldots, f(n)$ approaches π .

Proof: Consider pairs of integers a, b as lattice points.

The solutions to $a^2 + b^2 \le n$ fill a circle of radius \sqrt{n} .

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

This is the number of lattice points inside the circle of radius \sqrt{n} (excluding the origin),

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

This is the number of lattice points inside the circle of radius \sqrt{n} (excluding the origin), which is roughly the area of this circle.

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

This is the number of lattice points inside the circle of radius \sqrt{n} (excluding the origin), which is roughly the area of this circle. (Because each unit square contains on average one lattice point.)

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

This is the number of lattice points inside the circle of radius \sqrt{n} (excluding the origin), which is roughly the area of this circle. (Because each unit square contains on average one lattice point.)

So, as *n* becomes large, $f(1) + f(2) + \ldots + f(n) \simeq$

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

This is the number of lattice points inside the circle of radius \sqrt{n} (excluding the origin), which is roughly the area of this circle. (Because each unit square contains on average one lattice point.)

So, as *n* becomes large, $f(1) + f(2) + \ldots + f(n) \simeq \pi \sqrt{n^2}$

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

This is the number of lattice points inside the circle of radius \sqrt{n} (excluding the origin), which is roughly the area of this circle. (Because each unit square contains on average one lattice point.)

So, as *n* becomes large, $f(1) + f(2) + \ldots + f(n) \simeq \pi \sqrt{n^2} = \pi \cdot n$.

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

This is the number of lattice points inside the circle of radius \sqrt{n} (excluding the origin), which is roughly the area of this circle. (Because each unit square contains on average one lattice point.)

So, as
$$n$$
 becomes large, $f(1) + f(2) + \ldots + f(n) \simeq \pi \sqrt{n^2} = \pi \cdot n$.

The average then becomes

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}\simeq\frac{\pi\cdot n}{n}$$

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}.$$

But f(1) + f(2) + ... + f(n) is the number of integer solutions to the equation $a^2 + b^2 \le n$ (excluding the trivial case a = b = 0).

This is the number of lattice points inside the circle of radius \sqrt{n} (excluding the origin), which is roughly the area of this circle. (Because each unit square contains on average one lattice point.)

So, as
$$n$$
 becomes large, $f(1) + f(2) + \ldots + f(n) \simeq \pi \sqrt{n^2} = \pi \cdot n$.

The average then becomes

$$\frac{f(1)+f(2)+\ldots+f(n)}{n}\simeq\frac{\pi\cdot n}{n}=\pi.$$

This completes the proof.