### A Higher-Dimensional Eckmann-Hilton Argument

Eugenia Cheng, Alex Corner

School of the Art Institute Chicago, Sheffield Hallam University

### **Plan**

Aim: Describe the 3-fold generalisation of the Eckmann–Hilton argument for 3-degenerate 4-categories...

...with a mind to develop this in generality for (n-1)-degenerate n-categories.

Section n: degenerate n-categories  $(1 \le n \le 4)$ 

### The Concept of Degeneracy



### The Concept of Degeneracy



Idea: In a *k*-degenerate *n*-category, the bottom *k* dimensions are trivial.



Idea: A k-degenerate n-category 'is' an (n-k)-category with extra structure.

### A Question of Totalities



| Objects            | Totality   |
|--------------------|------------|
| monoids            | category   |
| categories         | 2-category |
| onoidal categories | 2-category |
| 2-categories       | 3-category |

m

Idea: d-Cat is a full sub-2-category of Cat. We can 'truncate' d-Cat to a category: discard the natural transformations.

Problem: **d-2-Cat** is a full sub-3-category of **2-Cat**. We can't 'truncate' **d-2-Cat** to a 2-category: this is fixed using icons.

### 1-degenerate 2-categories



### A Question of Totalities



Idea: d-Cat is a full sub-2-category of Cat.
We can 'truncate' d-Cat to a category:
discard the natural transformations.

Problem: **d-2-Cat** is a full sub-3-category of **2-Cat**. We can't 'truncate' **d-2-Cat** to a 2-category: this is fixed using icons.

### 1-degenerate 2-categories

### monoidal category 2-category 0-cells} trivial 1-cells objects 2-cells morphisms hor. composites vert. composites ---composition identity unit object interchange interchange $(a*b)\circ(c*d)=(a\circ c)*(b\circ d)$

### 2-degenerate 2-categories



 $\label{ldea: o and * are the same and commutative.} \\ This is the Eckmann-Hilton argument:$ 

$$a \circ b = (1 * a) \circ (b * 1)$$

$$= (1 \circ b) * (a \circ 1)$$

$$= b * a$$

$$= (b \circ 1) * (1 \circ a)$$

$$= (b * 1) \circ (1 * a)$$

$$= b \circ a$$

### **Eckmann-Hilton Argument**



### The Periodic Table of n-Categories







### 3-degenerate 4-categories

## symmetric monoidal categories

### semi-strict 4-categories

composition of 1-cells composition of 2-cells interchange

### composition of 3-cells

0-composition weak

1-composition strict

2-composition weak

Mix of strict and weak enrichment:

- Vertically weak tricategories: Bicats-Cat.
- Semi-strict 4-categories: **Bicat**<sub>c</sub>-**Cat-wCat**.
  - Use iterated icons, 2-monads, iterated distributive laws on Cat-Gph-Gph.
- Triply-degenerate: we can produce a symmetric monoidal category.
- Future: Obtain full coherence result and comparison of totalities like before.

### 2-degenerate 3-categories



strict

weak

strict

## The Eckmann-Hilton Sphere

# The Eckmann-Hilton Sphere

### The Periodic Table of n-Categories





### Summary

We have a heirarchy of results in progress demonstrating that all of the following produce symmetric monoidal categories:

- 3-tuply monoidal categories: two weak, one strict, strict interchanges
- 3-degenerate 4-categories: produced using iconic constructions
- (n-1)-degenerate *n*-categories: produced using iconic constructions



