Applications and Terminologies

School of Electronic and Computer Engineering Peking University

Wang Wenmin

9. Perspectives about Machine Learning

Contents:

- □ 9.1. What is Machine Learning
- □ 9.2. History of Machine Learning
- ☐ 9.3. Why Different Perspectives
- □ 9.4. Three Perspectives on Machine Learning
- ☐ 9.5. Applications and Terminologies

Artificial Intelligence

Application Fields of Machine Learning 机器学习的应用领域

- - - Video Analysis U 视频分析

- Optical Character Recognition (OCR) 光学字符识别 (OCR)
 - Handwriting Recognition = 手写体识别

Application Fields of Machine Learning 机器学习的应用领域

Text or Document Classification	文本与文档分类
(e.g. Spam Email Detection)	■ (例如垃圾邮件检测)
Recommender Systems	推荐系统
Ad Placement	广告配置
Credit Scoring	信用评分
Fraud Detection	欺诈检测
Stock Trading	股票交易
Drug Design	新药设计
Medical Diagnosis	医学诊断
Robotics	机器人学

□ Samples 样本

Items or instances of data used for learning or evaluation.
用于学习或评估的数据项或实例。

□ Features 特征

- The set of attributes, often represented as a vector associated to a sample: 属性集,通常表示为与样本相关的向量:
 - ➤ Handcrafted features: 手工式特征 e.g., SIFT, HOG, SURF, LBP, GLOH, LESH, CENTRIST. 例如, SIFT、HOG、SURF、LBP、GLOH、LESH、CENTRIST。
 - ➤ Learned features: 学习式特征 e.g., by convolutional neural network. 例如,通过卷积神经网络。

□ Handcrafted Features 手工式特征

- HOG (Histogram of Oriented Gradients)
 HOG (定向梯度直方图)
- Similar to SIFT(Scale-Invariant Feature Transform), but improved accuracy.
 与SIFT(尺度不变特征变换)类似,但改善了精度。
- By distribution of intensity gradients or edge directions. 按照强度梯度或边缘方向分布。
- 64×128 detection window. 64×128个检测窗口。 _____

□ Learned Features 学习式特征

- Humans can learn to see efficiently. Because brains are deep, with many layers of processing.
 人类可以有效地学会观察。因为大脑是深度的,具有许多处理层次。
- Some algorithms for such deep architectures, can produce features from raw data for visual recognition.
 具有这种深度架构的算法,能从原始数据中生成视觉认知的特征。
- Feature learning also be called representation learning. 特征学习也被称为表示学习。
- Understanding deep learning will enable us to build more intelligent machines for visual recognition. 理解深度学习将使我们能够构建更智能的视觉认知机器。

□ Labels 标记

- Values or categories assigned to samples. 在样本上指定的值或类别。
- In classification problems, samples are assigned specific categories.
 分类问题中,样本被指定特定的类别。
- In regression problems, items are assigned real-valued labels.
 回归问题中,项被指定为实值的标记。

□ Training sample 训练样本

- Samples used for training learning algorithm. 用于训练学习算法的样本。
- In spam problem, the training sample consist of a set of email samples along with their associated labels.

对于垃圾邮件问题,训练样本由一组邮件样本以及相关标签组成。

□ Validation sample 验证样本

- Samples used to tune the parameters of a learning algorithm when working with labeled data.
 - 用于在使用标记数据时调整学习算法参数的样本。
- Learning algorithms typically have one or more free parameters, and validation sample is used to select appropriate values for these model parameters. 学习算法通常具有一个或多个自由参数,因而验证样本用于为这些模型参数选择适当的值。

□ Test sample 测试样本

- Samples used to evaluate the performance of a learning algorithm. 用于评估学习算法性能的样本。
- These predictions are then compared with the labels of the test sample to measure the performance of the algorithm.

 然后将这些预测与测试样本的标签进行比较,以衡量算法的性能。

Artificial Intelligence :: Learning :: Perspectives

□ Loss function 损失函数

- To measure the difference, or loss, between a predicted label and a true label. 用于度量预测标签和真实标签之间差异或损失。
- Denoting the set of all labels as \square and the set of possible predictions as \square , a loss function L is a mapping:

将所有的标签集表示为 \square 、并且可能的预测集为 \square ,则损失函数L为映射:

 $L: \square \times \square' \to \mathbb{R}_+$

□ Hypothesis set 假设集

- A set of functions mapping features to the set of labels □. 将特征映射为标签□的函数集。
- For example, the following are a set of functions mapping email features to: 例如,映射电子邮件特征的函数集如下:

 $\square = \{\text{spam, non-spam}\}.$

□ Abstraction 抽象

■ It involves the translation of data into broader representations. 其含义是将数据转化为更广泛的表示。

□ Generalization 泛化

■ It describes the process of turning abstracted knowledge into a form that can be utilized for action. It is also the ability of a learning algorithm to perform accurately on unseen samples after having experienced a learning data set. 它形容将抽象知识转化为可用于动作形式的过程。它也是学习算法具有学习数据集的经验后,可以对未知样本正确地进行处理的能力。

Some Notations in This Course 本课程的一些符号

Notation 符号	Description 说明	
\mathbb{R}	Set of real numbers	实数集
\mathbb{R}_{+}	Set of non-negative real numbers	非负实数集
\mathbb{R}^n	Set of <i>n</i> -dimensional real-valued vectors	n维实值向量集
[a, b]	Closed interval between a and b	a和b之间的闭区间
(a, b)	Open interval between a and b	a和b之间的开区间
N	Set of natural numbers, i.e., {0, 1,}	自然数集,即:{0,1,}
	An arbitrary set	任意集合
	Input space	输入空间
	Target space	目标空间
Н	hypothesis set	假设集

Summary 本章小结

- Machine learning is to study some algorithms that can learn from and make predictions on data.
 - 机器学习是研究一些可以从数据中学习、并对数据进行预测的算法。
- The different perspectives are aimed to try to have a taxonomy on the algorithms of machine learning, for being easy to understand machine learning.

 几个不同视角旨在尝试对机器学习的算法进行分类,以便于理解机器学习。
- Three perspectives on machine learning are proposed in this chapter, those are learning tasks, learning paradigms and learning models.
 - 本章提出了机器学习的三个视角,他们是:学习任务、学习范例以及学习模型。

The Three Perspectives 三个视角

Maybe "Blind Men and an Elephant"

Thank you for your affeation!

