ÉCONOMÉTRIE : S2, UGA, L3 MIASH

TRAVAUX À FAIRE

RÉGRESSION LINÉAIRE ET MCO

(Cette version: 8 février 2022)

MICHAL URDANIVIA 1

 $^{1. \ \} Contact: michal.wong-urdanivia@univ-grenoble-alpes.fr, Universit\'e de Grenoble Alpes, Facult\'e d'\'economie, GAEL.$

UGA, FEG	ÉCONOMÉTRIE, L3 MIASH, S2	M. Urdanivia
	Table des matières	
1. Propriétés de l'estimateur des MCO		2
2. Application		2

1. Propriétés de l'estimateur des MCO

On étudie la relation entre une variable $Y \in \mathbb{R}$ et un vecteur $X \in \mathbb{R}^K$ et l'on suppose que :

$$Y = X^{\top} \beta + U, \tag{1.1}$$

où U est une variable inobservable(à l'inverse de (Y, X)) et $\beta \in \mathbb{R}^K$ sont des paramètres inconnus. (Y, X), et U sont des variables aléatoires.

- (1) Rappelez à quelle condition quant à la relation entre U et X (1.1) est une équation pour un modèle de régression linéaire, à savoir tel que $\mathrm{E}(Y|X) = X^{\top}\beta$.
- (2) Quelle condition plus faible que celle de la question précédente permet de montre que l'estimateur des MCO de β est convergent?
- (3) Montrer que sous cette condition β est le vecteur des paramètres dans la projection de Y sur X, à savoir que,

$$\beta = \underset{b \in \mathbb{R}^K}{\operatorname{arg\,min}} \, \mathrm{E}\left((Y - X^\top b)^2 \right), \tag{1.2}$$

où il faut aussi supposer que $E(XX^{\top})$ est de plein rang et ce faisant que son inverse existe.

2. Application

- (1) Dans le modèle estimé dans le notebook 1, calculez l'effet de l'experience sur le salaire(en log).
- (2) Testez sa significativité.