Вопросы на понимание

Упражнение 1. Ответьте на следующие вопросы:

- 1. Как по плотности совместного распределения двух случайных величин находят их частные (маргинальные) плотности?
- 2. Можно ли найти совместное распределение по частным (маргинальным) распределениям?
- 3. Пусть для случайных величин X и Y с дискретными распределениями оказалось, что

$$\mathbb{P}(X = 0, Y = 0) = \mathbb{P}(X = 0) \cdot \mathbb{P}(Y = 0).$$

Следует ли отсюда независимость величин X и Y ?

- 4. Куда сходится среднее арифметическое независимых и одинаково распределённых случайных величин с конечной дисперсией?
- 5. Как по неравенству Чебышёва оценить вероятность $\mathbb{P}(|X \mathbb{E}X| \le t)$, если t > 0 и $\mathrm{Var}X$ существует? Будет ли это оценка сверху или снизу?
- 6. К какому распределению в условиях ЦПТ приближается распределение величины $\frac{S_n \mathbb{E}S_n}{\sqrt{\mathrm{Var}S_n}}$?
- 7. Чему равно математическое ожидание и дисперсия величины $\frac{S_n \mathbb{E}S_n}{\sqrt{\mathrm{Var}S_n}}$?

ЗАДАЧИ

Упражнение 2. Если случайная величина X имеет нормальное распределение $\mathcal{N}(0,1)$, каким будет распределение случайной величины -X?

Упражнение 3. Пользуясь свойствами математического ожидания, покажите, что ковариацию можно вычислить по следующей формуле:

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}X \cdot \mathbb{E}Y.$$

Упражнение 4. Чему равна ковариация между X и X^2 , где $X \sim \mathcal{N}(0,1)$? Можно ли отсюда сделать вывод, что эти величины независимы? (Подсказка: чтобы посчитать ковариацию используйте результат из Упражнения 2.)

Упражнение 5. Игральная кость бросается 120 раз. С какой вероятностью при этом число появлений 5 и 6 окажется в интервале от 30 до 50? Решите задачу всеми изученными методами (неравенство Чебышева, ЦПТ). Сравните полученные результаты.

Упражнение 6. Последнее время автобус, на котором я добираюсь до университета, ходит не так регулярно, как раньше. И теперь я в среднем 1 раз из 3-х вынужден садиться в маршрутку и платить 25 р. С какой вероятностью тогда мне хватит на месяц 250 р., если проездной на автобус мне покупают родители, а ездить приходится 25 раз? Решите задачу всеми изученными методами (неравенство Чебышева, ЦПТ). Сравните полученные результаты.

Упражнение 7. В городе за год рождается $20\,000$ детей и считается, что вероятность рождения мальчика p=0.51. В этом случае существует такое число d, что среди рожденных за год детей разница числа мальчиков и числа девочек будет не больше d с вероятностью 0.99. Найдите это d.