Connectivity as a probabilistic model

The simplest model to study connectivity is a linear equation:

$$y = \beta^T x$$

where *y* is the outcome variable that we want to predict and *x* are known variables that affect the outcome.

Connectivity as a probabilistic model

The simplest model to study connectivity is a linear equation:

$$y = \beta^T x$$

where *y* is the outcome variable that we want to predict and *x* are known variables that affect the outcome.

• The real world involves **uncertainty**. To deal with this uncertainty, we resort to a probability distribution:

Benefits of probabilistic modeling

- •General I: Less assumptions than the linear-model framework (no linear connections, no Gaussianity of the error residuals, etc.).
- •General II: It can encompass **connectivities** and other **variable dependencies** in the same model.

Benefits of probabilistic modeling

- •General I: Less assumptions than the linear-model framework (no linear connections, no Gaussianity of the error residuals, etc.).
- •General II: It can encompass **connectivities** and other **variable dependencies** in the same model.
- There is a one-to-one correspondence with graphs.

$$p(y, x_1, x_2) = p(x_1|y)p(x_2|y)p(y)$$

Difficulties of probabilistic modeling

 Even for a binary alphabet, model requires one parameter for each combination

$$y, x_1, \ldots, x_n$$

resulting in 2^{n+1} parameters.

- •This is **impractical** from both a **computational** (how do we store this large list?) and from a **statistical** (how do we efficiently estimate the parameters from limited data?) point of view.
- As exponentially-sized objects, we need simplifying assumptions about their structure.

The conditional-independence assumption

 Variables might be independent conditioned on the outcome of one variable.

Model probability as a product of factors:

$$p(y, x_1, \dots, x_n) = p(y) \prod_{i=1}^{m} p(x_i|y)$$

•The number of model parameters to estimate becomes linear.

Outline

Step back to Probability basics

•Information-theoretic measures

Toy model example

Random variables

- A random variable X can be regarded as a real-valued function of random outcomes (e.g., the number of tails that appear in 10 coin tosses).
- X can take values in **discrete** or **continuous** alphabets.
- Random variables are defined by its underlying probability measure (CDFs, PDFs, and PMFs)

 Simplest characterization of random variables is via its expectation and variance.

Conditional probability, chain rule and independence

1. **Condition probability**: What is the probability distribution over Y, when we know that X must take on a certain value x?

$$P_{Y|X}(x|y) = P_{X,Y}(x,y)/P_X(x)$$
 $P_X(x) \neq 0$

Conditional probability, chain rule and independence

1. **Condition probability**: What is the probability distribution over Y, when we know that X must take on a certain value x?

$$P_{Y|X}(x|y) = P_{X,Y}(x,y)/P_X(x)$$
 $P_X(x) \neq 0$

2. The chain rule can be applied for random variables as

$$P_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = P_{X_1}(x_1)P_{X_2|X_1}(x_2|x_1)\ldots P_{X_n|X_{n-1}}(x_n|x_1,\ldots,x_n)$$

Conditional probability, chain rule and independence

1. **Condition probability**: What is the probability distribution over Y, when we know that X must take on a certain value x?

$$P_{Y|X}(x|y) = P_{X,Y}(x,y)/P_X(x)$$
 $P_X(x) \neq 0$

2. The chain rule can be applied for random variables as

$$P_{X_1,\ldots,X_n}(x_1,\ldots,x_n) = P_{X_1}(x_1)P_{X_2|X_1}(x_2|x_1)\ldots P_{X_n|X_{n-1}}(x_n|x_1,\ldots,x_n)$$

3. Two random variables X and Y are independent if

$$P_{X,Y}(x,y) = P_X(x)P_Y(y)$$

for all values of x and y.

Mutual information

1. The **mutual information** of two variables is a measure of the **mutual influence** between two random variables. It determines how similar the joint distribution is to the products of factored marginal distribution:

$$I(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

Mutual information

1. The **mutual information** of two variables is a measure of the **mutual influence** between two random variables. It determines how similar the joint distribution is to the products of factored marginal distribution:

$$I(X;Y) = \sum_{y \in \mathcal{Y}} \sum_{x \in \mathcal{X}} p(x,y) \log \left(\frac{p(x,y)}{p(x)p(y)} \right)$$

2. Mutual information and independence:

I(X;Y)=0 if and only if X and Y are independent

Conditional Mutual information

1. The **conditional mutual information** of two variables is the expected value of the mutual information of two random variables given the value of a third.

$$I(X;Y|Z) = \sum_{z \in \mathcal{Z}} P_Z(z) \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y|Z}(x,y|z) \log \frac{P_{X,Y|Z}(x,y|z)}{P_{X|Z}(x|z)P_{Y|Z}(y|z)}$$

Conditional Mutual information

1. The **conditional mutual information** of two variables is the expected value of the mutual information of two random variables given the value of a third.

$$I(X;Y|Z) = \sum_{z \in \mathcal{Z}} P_Z(z) \sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} P_{X,Y|Z}(x,y|z) \log \frac{P_{X,Y|Z}(x,y|z)}{P_{X|Z}(x|z)P_{Y|Z}(y|z)}$$

2. Conditional mutual information and independence:

$$I(X;Y|Z) = 0$$
 if and only if X and Y are conditional independent given Z .

Toy model example

•Cognitive study: stimulus *V* is presented with repetitions, is **non-linearly** encoded by sensory neurons, and the spike trains from two regions in the **sensory pathway** are **simultaneously recorded** (*X* and *Y*) during short time epochs.

Toy model example

•Cognitive study: stimulus *V* is presented with repetitions, is **non-linearly** encoded by sensory neurons, and the spike trains from two regions in the **sensory pathway** are **simultaneously recorded** (*X* and *Y*) during short time epochs.

•Q: How can we assess whether these two regions are connected?

3 discrete variables. Assume:

- Stimulus V is discrete uniform
- Sequence X and Y are binomial with no Gaussian approximation.

3 discrete variables. Assume:

- Stimulus V is discrete uniform
- Sequence X and Y are binomial with no Gaussian approximation.

3 potential models:

Connectivity chain 1

3 discrete variables. Assume:

- Stimulus V is discrete uniform
- Sequence X and Y are binomial with no Gaussian approximation.

3 potential models:

Connectivity chain 1

Connectivity chain 2

3 discrete variables. Assume:

- Stimulus V is discrete uniform
- Sequence X and Y are binomial with no Gaussian approximation.

3 potential models:

Connectivity chain 1

Connectivity chain 2

Common input

•Q: Given simultaneous observables of *V*, *X* and *Y*, what is the <u>more likely model</u> that explains the <u>interaction</u> between both regions?

•Q: Given simultaneous observables of *V*, *X* and *Y*, what is the more likely model that explains the interaction between both regions?

Connectivity chain 1 (Effective connectivity X-Y)

Connectivity chain 2 (Effective connectivity X-Y)

Common input (No effective connectivity X-Y)

Required ingredients

• Measure type?

The relationship between the variables might be **non-linear** and assume non-directionality in the time domain. Hence, use of **information-theoretic** measures (e.g. mutual information instead of Pearson or Partial correlation)

Required ingredients

• Measure type?

The relationship between the variables might be **non-linear** and assume non-directionality in the time domain. Hence, use of **information-theoretic** measures (e.g. mutual information instead of Pearson or Partial correlation)

Third-node effects?

The mutual information across the three variables will be **signficant** regardless of the **3 models**. Hence, to discriminate the likelihood of each model, use of **conditional mutual information**.

Model conditions

Connectivity chain 1

$$I(V;Y|X) = 0$$

Model conditions

Connectivity chain 1

$$I(V;Y|X) = 0$$

Connectivity chain 2

$$(V) - (X)$$

$$I(V;Y|X) > 0 \qquad I(X;Y|V) > 0 \qquad I(V;X|Y) = 0$$

$$I(V;X|Y) = 0$$

Model conditions

Connectivity chain 1

$$I(V;Y|X) = 0$$

Connectivity chain 2

$$(V) - (Y) - (X)$$

$$I(V;Y|X) > 0 \qquad I(X;Y|V) > 0 \qquad I(V;X|Y) = 0$$

$$I(V;X|Y) = 0$$

Common input

$$I(V; X|Y) = 0$$
 $I(V; Y|X) > 0$

$$I(X;Y|V) = 0$$

Connectivity chain 1

Connectivity chain 2

Common input

Common input

•Probabilistic modeling and measures (e.g., mutual information, etc.) offers a general framework to analyze connectivity problems with (1) as few model assumptions as possible, (2) incorporating variables of different kind and (3) can be formally represented by graphs.

- •Probabilistic modeling and measures (e.g., mutual information, etc.) offers a general framework to analyze connectivity problems with (1) as few model assumptions as possible, (2) incorporating variables of different kind and (3) can be formally represented by graphs.
- •A priori computationally expensive but allows assumptions on variable dependencies.

- •Probabilistic modeling and measures (e.g., mutual information, etc.) offers a general framework to analyze connectivity problems with (1) as few model assumptions as possible, (2) incorporating variables of different kind and (3) can be formally represented by graphs.
- •A priori computationally expensive but allows assumptions on variable dependencies.
- •Conditional mutual information is a measure that correctly determines intrinsic connectivity pathways upon appropriate conditioning of variables.

- •Probabilistic modeling and measures (e.g., mutual information, etc.) offers a general framework to analyze connectivity problems with (1) as few model assumptions as possible, (2) incorporating variables of different kind and (3) can be formally represented by graphs.
- •A priori computationally expensive but allows assumptions on variable dependencies.
- •Conditional mutual information is a measure that correctly determines intrinsic connectivity pathways upon appropriate conditioning of variables.
- •Recommendation to use: At the last stages of the analysis, after dimensionality reduction, non-linear model based on the remained few interpretable variables.

In next Chapters....

- Directionality/Causality analysis (Transfer entropy, etc.).
- •Surrogate tests for non-linear measures.
- •Models integrating scalar and time series variables (e.g. model spike trains as binary sequences).
- •Other **non-linear models** and measures (oscillators, synchronization) nor covered here.

Reading

•T.A. Cover and J. Thomas, "Elements of Information Theory".

•DJC Mackay, "Information theory, inference and learning algorithms".

1. Model generation

```
[vecV,vecX,vecY]=generate_model(P_source_max,epsilon,num_tria
ls,sequence_length,num_model, encoding)
```

Inputs: P_source_max: spiking probability for selected stimulus outcome.

epsilon: crossover probability between spikes and '0' of X and Y.

num_trials: number of trials

sequence length: spike train length of X and Y.

num_model: 1 (chain 1), 2 (chain 2), 3 (common input).

encoding: linear /non linear:

Outputs: Column vectors with **observables** from the 3 variables pval_cond,Ml_sur_cond]=conditional_mutual_information(vecX, vecY, vecZ,

2. Connectivity estimation

Mutual information

```
[MI0, pvalue, MI_sur,P_X_Y, Perm_mat]=mutual_information(vecX,
vecY, Nsur)
```

Conditional mutual information

```
[MI, pvalue, MI_sur, MI_cond,
pval_cond,MI_sur_cond]=conditional_mutual_information(vecX,
vecY, vecZ, max_sur
```

Quantization of the conditioned variable

```
[vecX2, vecY2] = equal_bin_quantization(vecX, vecY, num_levels,
num trials)
```

3. Model Results

4. Result Figures

Figure 4 (Unweighted)

Figure 5 (Weighted)

