

PRV

PATENT- OCH REGISTRERINGSVERKET
Patentavdelningen

PCT / SE 2004 / 000167

Intyg
Certificate

REC'D 01 MAY 2004	
WIPO	PCT

Härmed intygas att bifogade kopior överensstämmer med de handlingar som ursprungligen ingivits till Patent- och registreringsverket i nedannämnda ansökan.

This is to certify that the annexed is a true copy of the documents as originally filed with the Patent- and Registration Office in connection with the following patent application.

(71) Sökande George Wegler, Skogås SE
Applicant (s)

(21) Patentansökningsnummer 0300332-4
Patent application number

(86) Ingivningsdatum 2003-02-10
Date of filing

Stockholm, 2004-02-19

För Patent- och registreringsverket
For the Patent- and Registration Office

Marita Öun

Avgift
Fee

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Anordning vid fackverksbalkar

Föreliggande uppfinning avser en anordning enligt enligt ingresen i patentkrav 1.

5 Uppfinningens bakgrund

Denna uppfinning är en vidareutveckling av Svenskt patent nr 502302 E04C 3/293 PCT SE 94/00700 "Anordning vid balkar med trådliv", speciellt det trådliv som är illustrerat i figurerna 21 A-B och 22 A-D.

10 Uppfinningen enligt detta kända patent möjliggör att kunna gjuta flänsarna på förstyrvande fackverksbalkar på samma gång som elementskivan i ett byggelement, för att slippa den tunga hantering som i förväg gjutna balkar medför och för att snabba upp förlopet.

15 Detta har visat sig fungera utmärkt.

Byggelementen fungerar dessutom ypperligt ur både hållfasthets- och nedböjningssynpunkt, och installationer inuti byggelementen går med en rasande fart. Cirkulerande varmluft ger mjukvarma golv till mycket låga installationskostnader.

20

Problemet

Däremot har det visat sig omöjligt att till rimliga kostnader tillverka balkliv enligt ovannämnda uppfinning. Med primitiva manuella bockningsanordningar har element i begränsad omfattning tillverkats för laboratorietester och ett antal villor har byggts. Men som sagt till alldeles för höga kostnader.

25 Problemet vid tillverkningen är att det idag inte finns några bockningsautomater som klarar att bocka balkliven med tillräcklig precision och vid en enda bockningscykel. Försök har gjorts att bocka liven i två bockningscykler, men inte ens det har gått med tillräcklig fart och precision. Dessutom blir det för mycket plock med livdelarna. En normalvilla innehåller över tusen livdelar så varje extra arbetsmoment ger orimliga tidstillägg.

30 Målet är att foga ihop ett fackverk, eller en livkorg, med längsgående stänger för att hålla livdelarna på plats och som samtidigt verkar som kraftarmering efter ingjutning i ovannämnda flänsar och skiva.

Av praktiska skäl är en bockning enligt fig 22 C att föredra, med en basdel som livdelen kan vila på vid hopfogningen. (I den patentskrift illustrerat i fig 5).

Betrakta de två vyerna fig 7 A och 7 B i denna patentskrift.

5 (Illustrerade i fig 21 A och 21 B i ovannämnda patentskrift). I fig 7 B framgår att basskänklarna måste ligga intill varandra och dessutom på samma nivå när livdelen lutar i fackverket för att inte ta för stor plats i elementskivan. Av praktiska skäl vill man även placera hela livfackverket ovanför betongskivans
10 armeringsrutnät för att slippa anpassningen till c/c-avstånd. Observera att livdelen inte är helt spegelsymmetrisk. Skulle den vara det måste betongskivan gjutas minst 10 mm tjockare för att få tillräckligt täckskikt, vilket skapar en rad olägenheter, onödig tyngd vid transporter, större nedböjning, större mate-
15 rialåtgång mm.

Två stora hinder

Moderna bockningsautomater klarar inte bockningsvinklar större än 180 grader. Öglan, i denna skrift betecknad (14), kan därför
20 inte formas i en sådan maskin. Därför har två steg i tillverk-
ningen blivit nödvändiga. Först förses ett livämne med en bock om ungefär 120 grader i vardera änden i en bockningsautomat,
till ett brett U.

I nästa steg bockas en ögra ca 220 grader i närheten av livde-
25 lens mitt i en bockningsjigg.

Här uppstår nästa problem.

Det är omöjligt att få basskänklarna att hamna intill varandra. Problemet är ironiskt nog, av ritningstekniska skäl, åskådlig-
30 gjort i fig 22 C i ovannämnda patent (i denna skrift fig 5). Ef-
tersom livtrådarna hamnar i kors vid öglan så hamnar basskän-
klarna i nivåer och alldeles för långt från varandra. Tvingar man
skänklarna på plats måste dessa läsas med exempelvis en svets.
Eller kan man tvinga dem att byta plats om lott. Men då är inte
35 längre livstängernas flanker (sidorna i den triangelformade liv-
delen), som skall bilda det friliggande fackverket, raka längre
utan är krökta och utsatta för avsevärda deformationsspänningar
som inverkar menligt på bärformågan hos speciellt de tryckta
fackverksdiagonaleerna.

Även ett annat stort problem har visat sig

Livstängerna utgörs idag uteslutande av s.k. kamstål. Vid valning
ningen av dessa uppstår alltid en längsgående utanpåliggande
rilla som hamnar i olika axiella lägen i bockningsautomaten.
Denna rilla gör att livtråden vrider sig olika vid förnyad bock-
ning, så att ändarna som skall bilda basdelen inte längre är pa-
rallella. Detta är visat i fig 5.

Alternativ tillverkning

Återstår tillverkning av livdelar i förflikpta längder där man
10 bockar öglan först. Detta förfarande går för sakta manuellt och
bockningsmaskiner blir för dyra.
Denna upfinning anger lösningen på ovanstående.

Uppfinningens ändamål och viktigaste kännetecken

15 Avsikten med denna upfinning är att uppnå så många av ovannämnda
kända trådlivs goda egenskaper som möjligt men utan de ovannämnda nackdelarna.
Det vill säga ge en tillräckligt rationell och ekonomisk till-
verkning, med hög automatiseringsgrad för att pressa priset.
20 Samtidigt är ändamålet med upfinningen att ge tillfredsställande
infästning mellan livtråd och fläns samt mellan livtråd och en
gjuten fläns eller skiva, vilket gör att den förstyrvande balken
blir synnerligen stark och lätt, med liten materialåtgång och nu
kan tillverkas till en väsentligt lägre kostnad.
25 Som jämförelse: Betrakta balkar med planbockade liv med ingjutna
V-bockade bockar. Det är framförallt de vridande rörelserna i
varje bock, på grund av livtrådarnas kraftriktningar, den ena
tryckt och den andra dragen, som verkar för att vrida loss in-
fästningen mellan liv och fläns. Balkar med planbockade liv fun-
30 gerar helt enkelt inte. Flänsarna spricker vid minsta belast-
ning.

Lösning av uppgiften:

Det finns, trots alla varianter som beskrivs i ovanstående pa-
tent, speciellt i figurerna 22 A-D, ytterligare ett väsensskilt
sätt att bocka balkliv som ger tillräckligt likvärdig effekt.
Den stora skillnaden med det nya sättet att bocka livet är att
ingen bock är större än 180 grader och att vi bland annat

geometri efter bockningen så att man kan använda hängformar, för att gjuta flänsarna samtidigt som skivan, med rak delning mellan formhalvorna.

- 5 Uppgiften har lösts genom att utforma balklivet enligt patentkrav 1 med följande kännetecknande egenskaper.
 - att balklivsenheten är utformad av balklivselement bestående av stänger bockade till triangelform eller triangelliknande form,
- 10 - att varje balklivselement har ändbockar i bågge ändarna, bockade spegelvänt från varandra i huvudsak symmetriskt kring balklivselementets mitt,
- att nämnda ändbockar är orienterade bredvid varandra sett i flänsens längdriktnings och om lott intill varandra så att
- 15 balklivselementets ändar korsar varandra i ett av balklivselementets triangelhörn och tillsammans med ändbockarna bildar en öglå så att ett med flänsen längsgående kraftärmersjärn kan löpa inuti bågge ändarnas bockar varvid ändarnas bockar är något eller helt tvärställda mot flänsens längdriktning och
- 20 - att bockarna är ingjutna i flänsen.

Här beskrivs ett balklivselementets utseende meddelst ett tänkt bockningsförfarande. Fig 1 A - D.

En från början rak livstång förses med ändbockar i bågge ändarna.

Om vi tänker oss stången liggande horisontellt så bockas ändarna nedåt ungefär 180 grader. Därefter bockas livstången på nytt symmetriskt kring mitten med två spegelvända bockar uppåt ca 11 grader tills livstångens ändar korsar varandra om lott. Livstången har nu en triangelform, där övre hörnet bildas av att ändarna korsar varandra. Bockningen avpassas så att de två ändbockarna tillsammans bildar en lagom stor öglå, sett i triangelns plan, för att gjutas in i flänsen.

Det inses att öglan inte har idealisk form eftersom ändbockarna endast har bockats 180 grader. Yttersta ändarna ligger utanför den ideala öglan. Hållfasthetstester i full skala har visat att balkflänsen inte behöver göras bredare för att täcka in dessa utstickande ändar. Huvudsaken är att de hamnar väl inuti form-

Vidare inses att formhalvorna fortfarande kan ha en rak delning i skarven emellan dem och tätar i krysset där livändarna korsar varandra.

5 I praktiken

I praktiken, när man använder en bockningsautomat, bockas balklivet från en upprullad coil. Livstången går genom ett riktverk och bockas i tur och ordning: första ändbocken, därefter första basbocken, sedan andra basbocken och sist andra ändbocken. Därefter klipps stången av och balklivet är klart att användas.

Här inses att bockningen går avsevärt mycket fortare än förr med detta nya utförande på balklivet.

15 Ytterligare stora fördelar

Fig 3 A visar tydligt att två gjutformhalvor för formande av flänsen (8) får en rak delning i det X som livdelarnas skänklar bildar.

Vidare ser vi i Fig 3 B att balklivselementen inte har någon höger- eller vänstersida, utan kan monteras som de faller efter tillverkningen. Det är ingen svårighet att få ändbockarna (2) och (2') intill varandra.

Flänsen (8) får naturligtvis göras något högre för bibehållet täckskikt, men materialåtgången är blygsam eftersom flänsen är så smal.

Beskrivning av ritningarna

Fig 1 A, B, C och D visar ett sätt att bocka balklivselement (1,4) för att beskriva geometrin hos balklivselementen enligt uppföringen.

Fig 2 visar i perspektiv balklivselement (1,4), enligt uppföringen, monterade till en fackverkskorg, hopfogade med längsgående kraftarmering (6,7,7'), färdig för ingjutning i en balk eller ett byggelement.

Fig 3 A och B visar, med två vyer, hur ett färdigt byggelement skapats med en skiva (9) och en förstyvande fackverksbalk (15). Den förstyvande fackverksbalken (15) består av en fläns (8) och en fackverkskorg sammanfogad av livdelar

Fig 4 visar med tre vyer, ett kompletterat byggelement färdigt för leverans.

Fig 5 visar i princip, exempel på oacceptabel form på ett balkliv enligt känd teknik (13), med spretande, icke parallella, glest placerade ändar (12).

Fig 6 visar, i perspektiv, exempel på önskvärd form på ett balkliv (13) enligt känd teknik, med tätplacerade parallella ändskänklar (12).

Fig 7 A och B visar i princip, med två vyer, exempel på önskvärd form på ett balkliv (13) enligt känd teknik.

Beskrivning av utföringsexempel

Fig 1 A, B, C och D visar, ett sätt att bocka balklivselement (1,4) för att beskriva geometrin hos dessa balklivselement enligt uppfindingen.

En från början rak livstång (Fig 1 A) förses med ändbockar (2,2') bockade nedåt i bågge ändarna ungefär 180 grader (Fig 1 B). Därefter bockas livstången på nytt symmetriskt kring mitten med två spegelvända bockar uppåt ca 110 grader (Fig 1 C) tills livstångens ändar korsar varandra omlokt (Fig 1 D).

Livstången har nu en triangelform, där övre hörnet bildas av att ändarna (1,4) korsar varandra. Bockningen avpassas så att de två ändbockarna (2,2') tillsammans bildar en lagom stor öglan, sett i triangelns plan, för att rymma ett längsgående armeringsjärn (6) och tillsammans med detta gjutas in i flänsen (8).

Fig 2 visar i perspektiv balklivselement (1,4), enligt uppfindingen, monterade till ett fackverk eller en fackverkskorg, hopfogade med längsgående kraftarmering (6,7,7'), färdig för ingjutning i en balk eller ett byggelement.

Fig 3 A och B visar, med två vyer, hur ett färdigt byggelement skapas med en skiva (9) och en förstyrvande fackverksbalk (15). Den förstyrvande fackverksbalken (15) består av en fläns (8) och en fackverkskorg sammanfogad av livdelar (1,4) och längsgående kraftarmering (6,7,7').

I Flänsen är balklivselementens (1,4) bockar (2,2') ingjutna tillsammans med ett längsgående kraftarmeringsjärn (6). Livdelarnas (1,4) basdelar (5) tillsammans med två längsgående kraftarmeringsjärn (7,7') är ingjutna i elementskivan (9).

Fig 4 visar med tre vyer, ett komplett byggelement färdigt för leverans.

5 Fig 5 visar i princip, exempel på oacceptabel form på ett balkliv (13) enligt känd teknik, med spretande, icke parallella glest placerade ändar (12).

Fig 6 visar, i perspektiv, exempel på önskvärd form på en balklivskorg (13) enligt känd teknik, med tättplacerade parallella ändskänklar (12). Svårt att uppnå i praktiken.

10 Fig 7 A och B visar i princip, med två vyer, exempel på önskvärd form på ett balkliv (13) enligt känd teknik. Observera att basskänklarna (12) ligger i horisontell nivå trots att de inte ligger alldeles tätt intill varandra, ett krav, svårt att uppfylla i praktiken.

15 Bockningarna av ovanstående balkliv kan naturligtvis även göras i andra turordningar. Även om till väsentliga delar endast några utföringsformer av den föreliggande uppfinningen har visats på ritningar och beskrivits ovan torde det förstås att uppfinningar icke är begränsad till dessa utföringsformer utan endast begränsas av det i patentkraven angivna.
20

Patentkrav

1. Anordning vid fackverksbalkar typ tvåflänsbalkar med åtminstone en gjuten fläns (8), vid byggelement med en skiva (9) med förstyrvande fackverksbalkar (15) med åtminstone en gjuten fläns (8), varvid de förstyrvande fackverksbalkarna innehåller en balklivsenhet (1,4) bestående av balklivselement av stång, tråd eller bandliknande materiel, vilka balklivselement är bockade och hopfogade i sådan form att de sedda i flänsens längsriktnings bildar ett sicksack eller sicksackliknande mönster eller liksom fackverkssträvor snedställda i förhållande till flänsens (8) längdriktning, till sicksack- eller sågtandform, bildande ett fackverksliv, fästade till flänsarna i en balk respektive till fläns och skiva i ett byggelement,
 kännetrecknad av
 att balklivsenheten är utformad av balklivselement bestående av stänger bockade till triangelform eller triangelliknande form (1,4), att varje balklivselement har ändbockar (2,2') i bågge stångändarna, bockade spegelvänt från varandra i huvudsak symmetriskt kring balklivselementets mitt,
 att nämnda ändbockar (2,2') är orienterade bredvid varandra sett i flänsens (8) längdriktning och om lott intill varandra så att balklivselementets ändar korsar varandra i ett av balklivselementets triangelhörn och tillsammans med ändbockarna bildar en öglå så att ett med flänsen (8) längsgående kraftarmeringsjärn (6) kan löpa inuti bågge ändarnas bockar (2 ; 2') varvid ändarnas bockar är något eller helt tvärställda mot flänsens längdriktning och
 att bockarna (2,2') är ingjutna i flänsen (8).

2. Anordning enligt patenkrav 1, kännetrecknad av att balklivselementen (1,4) bockas i tur och ordning från stångänden räknat, första ändbocken (2), därefter första basbocken (3), sedan andra basbocken (3') och sist andra ändbocken (2').

3. Anordning enligt patenkrav 1 eller 2, kännetrecknad av att balklivselementen bockas från en upprullad
 ... när genom ett riktverk sedan bockas och därefter klipps

Sammandrag

Balkliv, med ny bockning (1,4), för fackverksbalkar typ tvåflänsbalkar, för tvåflänsbalkar med åtminstone en gjuten fläns och för förstuvande fackverksbalkar (15) till en skiva (9) i ett byggelement med åtminstone en gjuten fläns (8).

En balklivsenhet, bildande fackverksliv, tillverkat av stång som liksom fackverkssträvor snedstälts i förhållande till flänsens längdriktning, är fästat till flänsarna i en balk respektive till fläns och skiva i ett element.

10 Balklivsenheten är utformad av balklivselement (1,4) bestående av stänger bockade till triangel- eller triangelliknande form. Varje balklivselement har ändbockar (2,2') orienterade intill varandra och om lott så att balklivselementets ändar korsar varandra och tillsammans med ändbockarna bildar en ögla, så att ett med flänsen längsgående kraftarmeringsjärn (6) kan löpa inuti bågge ändarnas bockar (2,2), och är ingjutna i balkflänsen (8).

15

1/2

FIG 1A

FIG 1B

FIG 1C

FIG 1D

FIG 2

FIG 3A

FIG 3B

