Содержание

l	Глав	2 a 1	3
	1.1	Случайные события, классификация событий, операции над ними.	3
	1.2	Определения: кольцо, алгебра, σ -алгебра, минимальная σ -алгеб-	
		ра над классом K . Борелевская σ -алгебра	3
	1.3	Теорема Каратеодори	4
	1.4	Определения: мера, конечно-аддитивная, счётно-аддитивная мера	5
	1.5	Построение меры Лебега. Верхняя мера Лебега, нижняя мера	
		Лебега, мера Лебега. Измеримое по Лебегу множество	5
	1.6	Вероятностная мера, её свойства, непрерывность вероятностной	
		меры	8
	1.7	Классическое вероятностное пространство. Классическое опре-	
		деление вероятности.	10
	1.8	Дискретное вероятностное пространство	10
	1.9	Условная вероятность. Теорема умножения вероятностей	11
	1.10	Формулы полной вероятности и Байеса	11
	1.11	Независимость событий. Независимость в совокупности	12
	1.12	Теорема о независимости противоположных событий. Критерий	
		независимости случайных событий	12
2	Глав		13
	2.1	Определение измеримой функции, абстрактной и действитель-	
		ной. Критерий измеримости действительных функций	13
	2.2	Случайная величина. Виды случайных величин (дискретная и	
		абсолютно непрерывная)	14
	2.3	Функция распределения и её свойства	14
	2.4	Теорема о существовании случайной величины, соответствую-	
		щей функции со свойствами функции распределения	15
	2.5	Фукнция плотности распределения случайной величины и её	
		свойства	15
	2.6	Дискретная случайная величина. Основные типы дескретных	
		распределений (постановка задачи, закон распределения): рас-	
		пределение Бернулли, равномерное дискретное, биномиальное,	
		пуассоновское, геометрическое распределения	15
	2.7	Равномерное непрерывное распределение (построение функций	
		распределения и плоности, графики)	16
	2.8	Показательное (экспоненциальное) распределение (построение	
		функции распределения, функции плотности, графики, свойство	
		отсутствия последействия)	18
	2.9	Нормальное распределение (функции распределения, функции	
		плотности, свойства)	20

2.10	Случайные векторы. Функция распределения случайного векто-	
	ра, её свойства. Дискретные и непрерывные случайные векторы.	21
2.11	Независимые случайные величины. Критерий независимости слу-	
	чайных величин	22
2.12	Числовые характеристики случайной величины: Математическое	
	ожидание и его свойства	22
2.13	Обобщённое неравенство Чебышёва. Следствие неравенства Че-	
	бышёва	24
2.14	Вычисление математического ожидания для распределений Бер-	
	нулли, биномиального распределения, распределения Пуассона,	
	равномерного непрерывного, показательного, нормального зако-	
	нов распределения	25
2.15	Числовые характеристики случайных величин: Начальные, цен-	
	тральные и смешанные моменты. Дисперсия и её свойства. Ко-	
	вариация и её свойства. Коэффициент корреляции и его свойства.	26

1 Глава 1

1.1 Случайные события, классификация событий, операции над ними.

Определение случайного события:

Пусть Ω — множество элементарных исходов эксперимента. Случайным событием называется любое подмножество множества Ω .

Определение достоверного события:

Достоверным событием называется событие Ω , которому благоприятствует каждый исход эксперимента.

Определение невозможного события:

Невозможным событием называется пустое множество, которому не благоприятствует ни один исход эксперимента.

Определение суммы событий:

Суммой событий A и B называется событие $C = A \cup B$, которому благоприятствуют исходы, принадлежащие хоть одному из событий A или B.

Определение произведения событий:

Произведением событий A и B называется событие $C = A \cap B$, которому благоприятствуют исходы и события A, и события B.

Определение несовместных событий:

Случайные события A и B называются несовместными, если $A \cap B = \emptyset$.

Определение противоположного события:

Событием, противоположным событию A называется событие \overline{A} , которое состоит из исходов, не благоприятствующих A.

1.2 Определения: кольцо, алгебра, σ -алгебра, минимальная σ -алгебра над классом K. Борелевская σ -алгебра.

Определение кольца:

Кольцом ${f R}$ называется непустой класс множества замкнутый относительно операций сложения и взятия разности.

Определение алгебры:

Алгеброй ${\cal A}$ называется непустой класс множества замкнутый относительно сложения и отрицания.

Определение σ -алгебры:

 σ -алгебра ${\cal F}$ — это непустой класс множества замкнутый относительно счётного количества сумм и отрицаний:

- 1. Если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$;
- 2. $\Omega \in \mathcal{F}$;
- 3. Если $\{A_i\}_{i=1}^{\infty} \in \mathcal{F}$, то $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Определение σ -алгебры событий:

Сигма алгеброй событий называется множество \mathcal{F} подмножеств $A\subset\Omega,$ удовлетворяющее условиям:

- 1. если $A \in \mathcal{F}$, то $\overline{A} \in \mathcal{F}$;
- 2. $\Omega \in \mathcal{F}$:
- 3. если $\{A\}_{i=1}^{\infty} \in \mathcal{F}$, то $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$.

Определение минмальной σ -алгебры над классом K:

Пусть K — некоторый класс подмножеств из Ω . σ -алгебра $\sigma(K)$ называется наименьшей σ -алгеброй, содержащей класс K, если $K \in \sigma(K)$; любая σ -алгебра \mathcal{F} , которая содержит K ($K \subset \mathcal{F}$), содержит и $\sigma(K) \subset \mathcal{F}$.

Определение Борелевской σ -алгебры:

Борелевской σ -алгеброй β называется минимальная σ -алгебра над классом полуинтервалов $K = \{[a,b]\}$ из R, то есть:

$$\Omega = (-\infty, \infty) = R$$
 $K = \{[a, b), [a, +\infty), (a, +\infty), (-\infty, b), (-\infty, b], (a, b]\}.$

1.3 Теорема Каратеодори.

Пусть Q(A) — счётно аддитивная вероятностная мера на алгебре \mathcal{A} . Тогда существует единственная счётно аддитивная вероятностная мера P(A), заданная на минимальной σ -алгебре \mathcal{F} и являющаяся её продолжением, то есть $\forall A \in \mathcal{A} \ P(A) = Q(A)$.

1.4 Определения: мера, конечно-аддитивная, счётно-аддитивная мера

Пусть Ω — множество элементарных исходов эксперимента. Некоторое его подмножество $A\subset \Omega$ называется случайным событием.

Определение конечно аддитивной вероятностной меры

Конечно аддитивной вероятностной мерой Q(A) называется функция множества $Q:\mathcal{A}\to [0;1]$, такая, что:

- 1. $\forall A \in \mathcal{A} \quad Q(A) \ge 0;$
- 2. $Q(\Omega) = 1$;

3.
$$\forall A, B \in \mathcal{A} : A \cap B = \varnothing \quad Q(A \cup B) = Q(A) + Q(B) \quad Q\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} Q(A_i).$$

Определение счётно аддитивной вероятностной меры:

Счётно аддитивно вероятностной мерой P(A) называется функция множества $P:\mathcal{F} \to [0;1]$, такая, что:

- 1. $\forall A \in \mathcal{F} \ P(A) \ge 0$;
- 2. $P(\Omega) = 1$;

3.
$$\forall \{A_i\}_{i=1}^{\infty} \in \mathcal{F}: \forall i \neq j \ A_i \cap A_j = \varnothing \ P\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} P(A_i).$$

1.5 Построение меры Лебега. Верхняя мера Лебега, нижняя мера Лебега, мера Лебега. Измеримое по Лебегу множество.

Пусть $P = < a, b > \times < c, d >$. $P \subset R^2$ — прямоугольник.

Мерой прямоугольника назовём m(P), где m(P) = (b-a)(d-c)

Множество A назовём эелментарным, если оно представимо в виде суммы прямоугольников хотя бы 1 способом:

$$A = \bigcup P_k,$$

где $\{P_k\}$ — покрытие.

Мерой элементарного сножества A называется

$$m'(A) = \sum m(P_k),$$

где $\{P_k\}$ — разбиение A, то есть $\forall j \neq k \quad P_k \cap P_j = \varnothing$.

Рассмотрим множество $E = [0;1] \times [0;1]$

Определение верхней меры Лебега:

Пусть A — некоторое множество. Рассмотрим $\{P_k\}$, такое, что:

$$A \subset P_k$$

Верхней мерой Лебега называется

$$\mu^*(A) = \inf_{\{P_k\}} \sum m(P_k)$$

Определение нижней меры Лебега:

Рассмотрим множество $E \setminus A.(m(E) = 1)$

Нижней мерой Лебега называется:

$$\mu_*(A) = 1 - \mu^*(E \backslash A)$$

Определение меры Лебега и измеримого по Лебегу множества:

Говорят, что множество A измеримо по Лебегу, если $\mu^*(A)=\mu_*(A)=\mu(A)$. Величина $\mu(A)$ — называется мерой Лебега множества A.

1.6 Вероятностная мера, её свойства, непрерывность вероятностной меры.

Определение вероятностной меры:

Вероятностной мерой называется функция $P:\mathcal{F} \to [0,1]$, удовлетворяющая условиям:

- 1. $P(\Omega) = 1$;
- 2. $\forall A \in \mathcal{F} \ P(A) \ge 0$;
- 3. $\forall \{A_i\}_{i=1}^\infty \in \mathcal{F}$, такой, что $\forall i \neq j \quad A_i \cap A_j = \varnothing, P\left(\bigcup_{i=1}^\infty A_i\right) = \sum_{i=1}^\infty P(A_i).$

Свойства вероятностной меры:

$$P(\bar{A}) = 1 - P(A)$$

$$\text{Dor - 60:}$$

$$u. \ cot. \quad \Omega = A \cup \bar{A}; \ A \cap \bar{A} = \emptyset$$

$$\text{Touga} \quad 1 \stackrel{(P1)}{=} P(\Omega) = P(A \cup \bar{A}) \stackrel{(P3)}{=} P(A) + P(\bar{A})$$

$$\Rightarrow P(\bar{A}) = 1 - P(A)$$

$$\text{augarbue:} P(\emptyset) = 1 - P(\Omega) = 1 - 1 = 0$$

1.

Eam
$$A \subseteq B$$
 , TO $P(A) \subseteq P(B)$

U $P(B \setminus A) = P(B) - P(A)$

Por-60:

B

Regarable u coobertui $B = A \cup (B \setminus A) = P(A) = P(A) = P(A) = P(A)$

T. R. no arcuave $P(A) = P(A) = P(A) = P(A) = P(A) = P(A) = P(A) = P(A)$

2.

Метреривность веромпностной меры:

Пусть $\{A_i\}_{i=1}^{\infty}$ — монотонный клаес событий, т.е.

Ф $A_i \subset A_{i+1}$ или $(2) A_i \supset A_{i+1}$ роширающаяся/ сумсанощаяся воронка событий (A_i) A_i Тогда (A_i) A_i A_i

4. Por - bo: P

1.7 Классическое вероятностное пространство. Классическое определение вероятности.

Вероятностной моделью стохастического эксперимента называется тройка (Ω, \mathcal{F}, P) , где Ω — множество элементарных исходов экмперимента, \mathcal{F} — алгебра событий, P — вероятностная мера.

 (Ω, \mathcal{F}, P) — вероятностное пространство.

Определение классического вероятностного пространства:

Классическим вероятностым пространством, называется вероятностное пространство (Ω, \mathcal{F}, P) , в конечном множестве элементарных исходов которого все элементарные исходы равновозможны.

Построим вероятностную меру:

Пусть $\Omega = \{w1, \dots, w_n\}$. Рассмотрим $\{A_i\}_{i=1}^n$, где $A_i = \{w_i\}$. Тогда

$$A_i \cap A_j = \varnothing \quad \bigcup_{i=1}^n A_i = \Omega.$$

$$1 = P(\Omega) = P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i) = |P(A_i)| = P(w_i) = p| = \sum_{i=1}^{n} p \Rightarrow$$
$$\Rightarrow p = \frac{1}{n} \Rightarrow \forall w_i \quad P(w_i) = \frac{1}{n}$$

Пусть $A = \{w_{i_1}, \dots, w_{i_k}\}\ 0 \le k \le n$. Тогда вероятностная мера в классическом вероятностном пространстве имеет вид

$$P(A) = P\left(\bigsqcup_{j=1}^{k} w_{ij}\right) = \sum_{j=1}^{k} P(w_{ij}) = \sum_{j=1}^{k} \frac{1}{n} = \frac{k}{n},$$

 $P(A) = \frac{k}{n}$ — называется классической вероятностью, где k — количество благоприятных A элементарных исходов, n — количе-

где k — количество благоприятных A элементарных исходов, n — количество элементарных исходов эксперимента.

1.8 Дискретное вероятностное пространство.

Определение дискретного вероятностного пространства:

Дискретным вероятностным пространством называется вероятностное пространство (Ω, \mathcal{F}, P) , такое, что Ω — конечное или счётное множество неравновозможных исходов.

Вероятностную меру зададим числами $p_i = P(w_i) > 0$, такими, что $\sum_{i=1}^{\infty} p_i = 1$. Тогда $\forall A \in \mathcal{F}$ веротность вычисляется как $P(A) = P(\bigcup_{w_i \in A} w_i) = \sum_{w_i \in A} P(w_i)$.

1.9 Условная вероятность. Теорема умножения вероятностей.

Определение условной вероятности:

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство и $A, B \in \mathcal{F}; \quad P(B) > 0.$ Условной вероятностью события A при условии, что наступило событие B называется число:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}.$$

Теорема умножения вероятностей:

Пусть A и B — случайные события и P(B) > 0. Тогда

$$P(A \cap B) = P(B) \cdot P(A|B)$$

Пусть A_1,A_2,A_3 — случайные события и $P(A_1)>0$ и $P(A_1\cap A_2)>0$. Тогда

$$P(A_1 \cap A_2 \cap A_3) = P(A_1) \cdot P(A_2|A_1) \cdot P(A_3|A_1 \cap A_2)$$

1.10 Формулы полной вероятности и Байеса.

Теорема (формула полной вероятности):

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство и $\{A_i\}_{i=1}^{\infty} \in \mathcal{F}$ — полная группа попарно несовместных событий; $P(A_i) \geq 0$. Пусть $A \in \mathcal{F}$ — неполное событие $P(A|A_i) \geq 0$. Тогда $P(A) = \sum_{i=1}^{\infty} P(A_i) \cdot P(A|A_i)$.

Доказательство:

$$P(A) = P(A \cap \Omega) = P(A \cap (\sqcup_{i=1}^{\infty} A_i)) = P(\sqcup_{i=1}^{\infty} (A \cap A_i)) \Rightarrow$$
$$\Rightarrow \sum_{i=1}^{\infty} P(A \cap A_i) = \sum_{i=1}^{\infty} P(A_i) P(A|A_i)$$

Теорема (формула Байеса):

Пусть $\{A_i\}_{i=1}^\infty \in \mathcal{F}$ — полная группа попарно несовместных событий и пусть для некоторого P(A)>0. Тогда

$$\forall i = \overline{1, \infty} \quad P(A_i|A) = \frac{P(A_i)P(A|A_i)}{P(A)}$$

Доказательство:

$$P(A_i|A) = \frac{P(A \cap A_i)}{P(A)} = \frac{P(A_i) \cdot P(A|A_i)}{P(A)}$$

1.11 Независимость событий. Независимость в совокупности.

Определение независимости событий:

Случайные события A и B называются независимыми, если:

$$P(A \cap B) = P(A) \cdot P(B)$$

Определение независимости в совокупности:

 $\{A_i\}_{i=1}^n$ — называются независимыми в совокупности, если

$$\forall 2 \le k \le n \quad P(\bigcap_{j=1}^{k} A_{ij}) = \prod_{j=1}^{k} P(A_{ij})$$

1.12 Теорема о независимости противоположных событий. Критерий независимости случайных событий.

Теорема о независимости противоположных событий:

Пусть A и B — независимы. Тогда события A и \overline{B} , \overline{A} и B. \overline{A} и \overline{B} — попарно независимы.

Доказательство:

Рассмотрим A и \overline{B} . Тогда $P(A\cap \overline{B})$. Можем заметить, что $P(A\cap \overline{B})=P(A\backslash (A\cap B))=P(A)-P(A\cap B)=P(A)-P(A)P(B)=P(A)(1-P(B))=P(A)P(\overline{B})$.

Остальные случаи аналогичны.

Критерий независимости случайных событий:

Пусть A и B такие, что P(B)>0. Тогда Случайные события A и B независимы, тогда и только тогда, когда:

$$P(A|B) = P(A)$$

Доказательство:

Необходимость:

Пусть A и B независимы:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A) \cdot P(B)}{P(B)} = P(A)$$

Достаточность:

Пусть выполняется: P(A|B) = P(A). Тогда из определения условной вероятности следует, что $P(A\cap B) = P(A|B)\cdot P(A) = P(A)\cdot P(B)$, то есть выполняется определение.

2 Глава **2**

2.1 Определение измеримой функции, абстрактной и действительной. Критерий измеримости действительных функций.

Определение измеримой функции:

Пусть X и Y — некоторые множества и пусть S_x и S_y — классы подмножества. $f:X\to Y$ — некоторая функция.

Функция $f:X \to Y$ называется (S_x,S_y) — измеримой, если:

$$\forall B \in S_y \quad \exists f^{-1}(B) \in S_x$$

Определение измеримой действительной функции:

Действительная функция f(x) с областью определения $X\subset R$ называется μ -измеримой или S_μ -измеримой, если для любого борелевского множества $b\in \beta(R)$ $f^{-1}(b)\in S_\mu.$

Определение (критерий измеримости действительных функций):

Действительная функция f(x) измерима \Leftrightarrow

$$\forall C \in R \quad f^{-1}(b) = f^{-1}(-\infty,C) \text{—} \text{ измерима}$$

$$\quad \text{ или} \\ \{x: f(x) < C\}$$

2.2 Случайная величина. Виды случайных величин (дискретная и абсолютно непрерывная).

Определение случайной величины:

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство. Случайной величиной называется вещественно значная функция ξ такая, что

$$\xi: \Omega \to R \quad \forall x \in R \quad \{w: \xi(w) < x\} \in \mathcal{F}$$

Определение дискретной случайной величины:

Дискретной случайной величиной называется случайная величина ξ , множество значений которой конечно или счётно, то есть

$$\xi \in \{x_1, x_2, \dots\}$$

Определение абсолюьно непрерывной случайной величины:

Абсолютно непрерывной случайной величиной называется случайная величина ξ , такая, что

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(t)dt$$

2.3 Функция распределения и её свойства.

Определение функции распределения:

Функцией распределения вероятностей случайной величины ξ называется функция $F_{\xi}(x) = P\{w: \xi(w) < x\}$

Свойства функции распределения:

- 1. $0 \le F_{\xi}(x) \le 1 \quad \forall x \in R;$
- 2. $F_{\xi}(x)$ неубывающая, непрерывная слева функция;
- 3. $\lim_{x \to +\infty} F_{\xi}(x) = 1$ $\lim_{x \to -\infty} F_{\xi}(x) = 0;$
- 4. $P{a \le \xi < b} = F_{\xi}(b) F_{\xi}(a);$
- 5. $P\{\xi = x_0\} = F_{\xi}(x_0 + 0) F_{\xi}(x_0)$.

2.4 Теорема о существовании случайной величины, соответствующей функции со свойствами функции распределения.

Теорема (о существовании случайной величины, заданной функцией распределения):

Пусть F(x) принимает значение на [0,1], неубывающая и $F(-\infty)=0$, $F(+\infty)=1$. Тогда \exists вероятностное пространство (Ω,\mathcal{F},P) и ξ на нём, для которой $P\{\xi< x\}=F(x)$.

2.5 Фукнция плотности распределения случайной величины и её свойства.

Определение функции плотности распределения:

Функцией плотности распределения вероятностей случайной величины ξ называется функция $f_{\xi}(x)$ такая, что:

- 1. $\forall x \in R \quad f_{\xi}(x) \ge 0;$
- 2. $F'_{\xi}(x) = f_{\xi}(x);$
- 3. $\int_{-\infty}^{\infty} f_{\xi}(x) dx = 1;$
- 4. $P\{a \le \xi \le b\} = \int_{b}^{a} f_{\xi}(x) dx$.
- 2.6 Дискретная случайная величина. Основные типы дескретных распределений (постановка задачи, закон распределения): распределение Бернулли, равномерное дискретное, биномиальное, пуассоновское, геометрическое распределения.

Распределение Бернулли $(\xi \sim Bern(p))$:

Пусть в множестве Ω различают два события A и \overline{A} . Случайное событие A — успех $P(A)=p, \overline{A}$ — неудача $P(\overline{A})=q$.

$$A \cup \overline{A} = \Omega$$
 и $A \cap \overline{A} = \emptyset$, следовательно, $p+q=1$.

Пусть $\xi=1$, если наступил успех и $\xi=0$, если наступила неудача. Ряд распределения имеет вид:

$$\begin{array}{c|cccc}
\xi & 0 & 1 \\
P & p & q
\end{array}$$

Закон распределения: $P\{\xi=k\}=p^kq^{1-k}, \quad k\in\{0;1\}.$

Биномиальное распределение $(\xi \sim Bin(n;p))$:

Произведено n независимых, одинаковых, испытаний Бернули.

Вероятность успеха $p(n) \simeq p$ — почти не зависит от номера испытания.

$$\Omega = \{ \overline{w} = (\xi_1, \xi_2, \dots, \xi_n) : \xi_i \in \{0, 1\} \}.$$

Введём случайную величину ξ — количество успехов в n испытаниях Бернули. Тогда $\xi \in \{0,1,\dots,n\}$.

Закон распределения: $P\{\xi=k\}=C_n^k p^k q^{n-k}.$

Пуассоновское распределение ($\xi \sim Pois(\lambda)$):

Произведено большое количество испытаний Бернулли, то есть Bin(n,p), но n — велико $\gg 1000$.

Условие применения пуассоновского приближения: $p \le 0, 1; \quad npq \le 9.$

$$\xi = 0, 1, \dots$$

Закон распределения: $P_n(k)=rac{e^{-\lambda}\lambda^k}{k!}$, где $\sum_{k=0}^{\infty}rac{e^{-\lambda}\lambda^k}{k!}=e^{-\lambda}\cdot e^{\lambda}=1.$

геометрическое распределение:

Испытания производятся до тех пор пока не появится первый успех.

 $\xi = 1, 2, \dots$ — количество произведённых испытаний.

Закон распределения: $P\{\xi=k\}=pq^{k-1}\quad 0< p<1\quad q=1-p\quad k=1,2,\dots$

Равномерное дискретное распределение $(\xi \sim R(N))$:

Конечное множество равновозможных исходов (классическое вероятностное пространство).

 ξ — номер наступившего исхода.

$$P\{\xi=k\} = \frac{1}{N}; \quad k = \overline{1, N},$$

где N — общее количество исходов.

2.7 Равномерное непрерывное распределение (построение функций распределения и плоности, графики).

Равномерное непрерывное распределение:

2.8 Показательное (экспоненциальное) распределение (построение функции распределения, функции плотности, графики, свойство отсутствия последействия)

p-c:
$$\S \sim \Pi(\Lambda) - \Lambda$$
 - napawerp pacripegevenus

 $\S = 0$

Rootpean pacripegevenue $\S = 0$ yandwan

 $\S \ge 0$

Reginaronium, uto ripudop ripopadoran disotrazino $\S = 0$

Reginaronium, uto departicore bointin in cripia $\S = 0$ weightenine of Ganerii = $\emptyset = 0$ to $\emptyset = 0$

Свойство отсутствия последействия:

2.9 Нормальное распределение (функции распределения, функции плотности, свойства).

$$(\xi \sim N(a, \sigma^2))$$
:

Функция распределения: $F_{\xi}(x)=rac{1}{\sqrt{2\pi}\sigma}\int\limits_{-\infty}^{x}e^{-rac{(t-a)^{2}}{2\sigma^{2}}}dt$

Функция плотности: $f_{\xi}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-a)^2}{2\sigma^2}}$

$$(\xi_0 \sim N(0,1))$$
:

Функция распределения: $F_{\xi}(x) = \frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^{x}e^{-\frac{t^2}{2}}dt$

Функция плотности: $f_{\xi}(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$

Свойства нормального распределения:

1. Связь $N(a, \sigma^2)$ и N(0, 1):

Если
$$\xi \sim N(a,\sigma^2)$$
, то $\frac{\xi-a}{\sigma}=\xi_0 \sim N(0,1)$

Если
$$\xi_0 \sim N(0,1)$$
, то $\sigma \xi_0 + a = \xi \sim N(a,\sigma^2)$;

2. Связь стандартного нормального распределения с функциями Лапласа:

С дифференциальной функцией Лапласа:

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \Rightarrow f_{\xi_0}(x) = \varphi(x)$$

С интегральной функцией Лапласа:

$$0, 5 + \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{0} e^{-\frac{t^2}{2}} dt + \frac{1}{\sqrt{2\pi}} \int_{0}^{x} e^{-\frac{t^2}{2}} dt = F_{\xi_0}(x);$$

3. Правило трёх сигм (3):

Почти всё нормальное распределение лежит в диапазоне $(a-3\sigma;a+3\sigma)$ $\xi \sim N(a,\sigma^2).$

2.10 Случайные векторы. Функция распределения случайного вектора, её свойства. Дискретные и непрерывные случайные векторы.

Определение случайного вектора:

Пусть (Ω, \mathcal{F}, P) — векторное пространство. Случайным вектором называется вектор со случайными координатами:

$$\overline{\xi} = (\xi_1, \dots, \xi_n),$$

где $\xi_i \in (\Omega, \mathcal{F}, P)_i$.

Определение функции распределения случайного вектора. Её свойства:

Функцией распределения вероятностей случайного веткора называется:

$$F_{\overline{\xi}}(x_1, \dots, x_n) = P\{w : \xi_1(w) < x_1, \dots, \xi_n(w) < x_n\}$$
$$F_{\xi\eta}(x, y) = P\{w : \xi(w) < x, \eta(w) < y\}$$

Свойства функции распределения:

- 1. $\forall x, y \in R \quad 0 \le F_{\xi\eta(x,y)} \le 1$;
- 2. Пусть x_0 фиксирован. Тогда

 $F_{\xi\eta}(x_0,y)$ — неубывающая, непрерывная слева функция по y.

Пусть y_0 фиксирован. Тогда

 $F_{\xi\eta}(x,y_0)$ — неубывающая, непрерывная слева функция по x.

3.

$$\lim_{x \to +\infty} F_{\xi\eta}(x, y) = F_{\eta}(y)$$

$$\lim_{y \to +\infty} F_{\xi\eta}(x, y) = F_{\xi}(x)$$

$$\lim_{x \to +\infty; y \to +\infty} F_{\xi\eta}(x, y) = 1$$

$$\lim_{x \to -\infty} F_{\xi\eta}(x, y) = \lim_{y \to -\infty} F_{\xi\eta}(x, y) = \lim_{x \to -\infty; y \to -\infty} F_{\xi\eta}(x, y) = 0$$

Cu. beamop non. asconsomno непрерывании, если дил его φ -уши распр-я справедино представление $F_{SR}(x,y)=\frac{1}{2}f_{SR}(u,v)$ он dv, где $f_{SR}(x,y)-\varphi$ -дия ристрости совместного распр-я си.в. ξ и η , м.е. $f_{SR}(x,y)$.

2.11 Независимые случайные величины. Критерий независимости случайных величин.

Определение случайных независимых велечин:

Случайные велечины ξ и μ называются независимыми, если:

$$\forall x,y \in R \quad P\{w: \xi(w) < x; \mu(w) < y\} = P\{w: \xi(w) < x\} \cdot P\{w: \mu(w) < y\}$$

Критерий независимости дискретной случаной величины:

Дискретные случайные величины ξ и η независимы, тогда и только тогда, когда:

$$\forall i \neq j \quad p_{ij} = p_i p_j$$

2.12 Числовые характеристики случайной величины: Математическое ожидание и его свойства.

Пусть (Ω, \mathcal{F}, P) — вероятностное пространство и пусть ξ — случайная величина на нём.

$$\xi = \xi(w) \quad P = P(w)$$

Определение математического ожидания:

Математическим ожиданием случайной величины ξ называется

$$M\xi = \int_{\Omega} \xi(w)dP(w)$$

Пусть для ξ построена функция распределения $F_{\xi}(x) = P\{\xi < x\}.$ Тогда

$$M\xi = \int_{-\infty}^{\infty} x dF_{\xi}(x)$$

Для дискретной случайной величины математическое ожидание находится по формуле:

$$M\xi = \sum_{i=1}^{\infty} x_i p_i$$

Для абсолютно непрерывной величины:

$$M\xi = \int_{-\infty}^{\infty} x f_{\xi}(x) dx$$

Свойствай математического ожидания:

- 1. Mc = c, c—const;
- 2. $Mc\xi = cM\xi$;
- 3. $M(\xi \pm \eta) = M\xi \pm M\eta$;
- 4. Если ξ и η независимы, то

$$M\xi\eta = M\xi M\eta;$$

- 5. Если $\xi \ge 0 \quad (P\{\xi \ge 0\} = 1)$, то $M\xi \ge 0$;
- 6. Неравенство Коши-Буняковского:

$$M|\xi\eta| \le M|\xi|M|\eta|;$$

7. Неравенство Чебышёва:

Пусть ξ — некоторая неотрицательная величина, а g(x), неубывающая на множестве значений ξ , непрерывная функиция. Тогда

$$\forall \varepsilon > 0 \quad P\{\xi \ge \varepsilon\} \le \frac{Mg(\xi)}{g(\varepsilon)};$$

2.13 Обобщённое неравенство Чебышёва. Следствие неравенства Чебышёва.

Неравенство Чебышёва:

Пусть ξ — некоторая неотрицательная величина, а g(x), неубывающая на множестве значений ξ , непрерывная функиция. Тогда

$$\forall \varepsilon > 0 \quad P\{\xi \ge \varepsilon\} \le \frac{Mg(\xi)}{g(\varepsilon)};$$

Доказательство:

Рассмотрим $Mg(\xi)$:

$$Mg(\xi) = \int_{-\infty}^{\infty} g(x)dF_{\xi}(x) = \int_{0}^{\infty} g(x)dF_{\xi}(x) \ge \int_{\epsilon}^{\infty} g(x)dF_{\xi}(x) \ge$$

$$\ge g(\epsilon) \int_{\epsilon}^{\infty} dF_{\xi}(x) = g(\epsilon) \lim_{x \to +\infty} (F_{\xi}(x) - F_{\xi}(\epsilon)) = g(\epsilon)(1 - P\{\xi > \epsilon\}) =$$

$$= g(\epsilon)P\{\xi \ge \epsilon\} \le \frac{Mg(\xi)}{g(\epsilon)}$$

Следствие неравенства Чебышёва:

Пусть ξ — некоторая случайная величина с конечным математическим ожиданием. Тогда

$$\forall \epsilon > 0 \quad P\{|\xi - M\xi \ge \epsilon\} \le \frac{M(\xi - M\xi)^2}{\epsilon^2}$$

2.14 Вычисление математического ожидания для распределений Бернулли, биномиального распределения, распределения Пуассона, равномерного непрерывного, показательного, нормального законов распределения.

Для распределения Бернулли:

$$M\xi = 0 \cdot q + q \cdot p = p$$

Для биномиального распределения:

$$M\xi = M(\xi_1, \dots, \xi_n) = M\xi_1 + \dots M\xi_n = p + \dots + p = np$$

Для распределения Пуассона:

$$M\xi = \sum_{k=0}^{\infty} k \frac{\lambda e^{-\lambda}}{k!} = \lambda e^{-\lambda} \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda e^{-\lambda} e^{\lambda} = \lambda$$

Для равномерного непрерывного распределения:

$$M\xi = \int_{-\infty}^{\infty} x f(x) dx = \int_{b}^{a} x \frac{1}{b-a} dx = \frac{1}{b-a} \cdot \frac{b^2 - a^2}{2} = \frac{b+a}{2}$$

Для показательного распределения:

$$M\xi = \int_0^\infty x \cdot \lambda e^{-\lambda x} dx = -xe^{-\lambda x} \Big|_0^\infty + \int_0^\infty \lambda e^{-\lambda x} dx =$$
$$= -\left(\lim_{x \to +\infty} xe^{-\lambda x} - e^0\right) + \frac{-1}{\lambda} \left(\lim_{x \to +\infty} xe^{-\lambda x} - e^0\right) = \frac{1}{\lambda}$$

Для нормального распределения:

$$M\xi_0 = \int_{-\infty}^{\infty} x \cdot e^{-\frac{x^2}{2}} dx = \int_{-\infty}^{0} x \cdot e^{-\frac{x^2}{2}} dx + \int_{0}^{\infty} x \cdot e^{-\frac{x^2}{2}} dx = 0$$
$$M\xi = M(\sigma\xi_0 + a) = a$$

2.15 Числовые характеристики случайных величин: Начальные, центральные и смешанные моменты. Дисперсия и её свойства. Ковариация и её свойства. Коэффициент корреляции и его свойства.

Heranbasia universal k-10 hopages paint-A ci. 8. § Razisbaemica
$$m_k = M\xi^k$$
, ecua $M|\xi|^k < +\infty$. $m_t = M\xi$, $m_2 = M\xi^c$, $D\xi = m_A - (m_1)^c$

Weimpaished universal k-10 hopages paint-A ci. 8. § Razisbaemica $\mu_k = M(\xi - M\xi)^k$, ecua $M|\xi| < +\infty$, $M|\xi - M\xi|^k < +\infty$.

 $\mu_t = M(\xi - M\xi)^k$, ecua $M|\xi| < +\infty$, $M|\xi - M\xi|^k < +\infty$.

 $\mu_t = M(\xi - M\xi)^k = M\xi - M(M\xi) = 0$
 $\mu_t = M(\xi - M\xi)^k = D\xi$

Cueinarreu universal k-10 hopages paint-A ci. 8. § a q razisbaemica dij = $M(\xi - M\xi)^i (q - M\eta)^i$, $i+j=k$, $M(\xi) < +\infty$, $M|\eta| < +\infty$.

 $k=1: d_{10} = M(\xi - M\xi)^k = D\xi = \mu_t$ $d_{11} = M(q - M\eta)^k = D\eta = \mu_t$ $d_{12} = M(\xi - M\xi)(q - M\eta)^k = \cos(\xi, \eta)$

Определение дисперсии случайной величины:

Пусть ξ — случайная величина и $|M\xi| < +\infty$.

Дисперсией случайной величины ξ называется число

$$D\xi = M(\xi - M\xi)^2$$

Свойства дисперсии:

- 1. $D\xi \ge 0$;
- 2. Dc = 0;
- 3. $Dc\xi = c^2 D\xi$;
- 4. Если случайные величины ξ и η независимы, то

$$D(\xi \pm \eta) = D\xi \pm D\eta;$$

- 5. $D\xi = M\xi^2 (M\xi)^2$;
- 6. Для произвольных случайных величин ξ и η с $M|\xi|<+\infty$ и $M|\eta|<+\infty$ верно

$$D(\xi \pm \eta) = D\xi \pm D\eta \pm \text{cov}(\xi, \eta),$$

где $\mathrm{cov}(\xi,\eta) = M(\xi-M\xi)(\eta-M\eta)$ — ковариация.

Xobapuayus cuyr. benurum ξ α η ecmb cuyr. benuruma cor(ς, η) = M(ς - Hς)(η - Hη).

Choūcmba:

1) cor(ς, η) = cor(η, ξ)2) cor(ς, ξ) = Dξ3) cor(ς, η) = Mςη - MςΜη4) ξ α η nezabucunus ⇒ cor(ς, η) = 0Hezabucunocmb ⇒ nexoppenupyenocms, oбjanuoe nebepno.

 $\frac{\mathcal{K}_{0}\text{3pp}-m}{\mathcal{K}_{0}\text{3pp}} \frac{\mathcal{K}_{0}\text{3pp}}{\mathcal{K}_{0}\text{3pp}} \frac{$