Model Fitting III

Carolina A. de Lima Salge Assistant Professor Terry College of Business University of Georgia

Business Intelligence Spring 2021

Machine Learning Use

Predictive modeling

 The goal is to predict the target using a new dataset where we have values for predictors but not the target

Machine Learning Use

Evaluate based on prediction error

- Build model using training data
- Assess performance on test (hold-out) data

Model Evaluation

How well the model predicts new data (not how well it fits the data it was trained with)

 Key component of most measures is difference between actual outcome and predicted outcome (i.e., error)

Model Evaluation (Regression)

Error for data record = predicted (p) minus actual (a)

When the target is **numeric!**

RMSE: Root Mean Squared Error

MAE: Mean Absolute Error

MAPE: Mean Absolute Percentage Error

Total SSE: Total Sum of Squared Errors

Last Class...

Model Evaluation (Classification)

Accuracy = true positives + true negatives / total

When the target is a class!

Precision = true positives / true positives + false positives Recall = true positives / true positives + false negatives

F-measure = (2 * precision * recall) / (precision + recall)

Today!

Model Evaluation (Classification)

Accuracy = true positives + true negatives / total

When the target is a class!

Precision = true positives / true positives + false positives Recall = true positives / true positives + false negatives

F-measure = (2 * precision * recall) / (precision + recall)

Today!

Accuracy

Inappropriate for imbalanced (or skewed) classes

0 = no fraud

1 = yes fraud

Accuracy

Inappropriate for imbalanced (or skewed) classes

0 = no fraud

1 = yes fraud

Train a logistic model and find that you have 1% error on test set

99% accurate!

Accuracy

Inappropriate for imbalanced (or skewed) classes

0 = no fraud

Only 0.50% of transactions are fraudulent!


```
function y = predictFraud(x)
y = 0; %ignore x!
return
```

99.5% accurate!

Precision / Recall

	Actual 1	Actual 0					
Predicted 1	True positives	False positives	Precision = True positives /				
Predicted 0	False negatives	True negatives	Predicted positives				

Recall = True positives / Actual positives

Precision (of all transactions where we predicted fraud, what fraction actually was fraud?

Recall (of all transactions that actually were fraud, what fraction did we correctly detect as being fraud?

Precision / Recall

	Actual 1	Actual 0	
Predicted 1	True positives (20)	False positives (1)	Precision = True positives /
Predicted 0	False negatives (5)	True negatives (100)	Predicted positives

Recall = True positives / Actual positives

Precision (of all transactions where we predicted fraud, what fraction actually was fraud?

Recall (of all transactions that actually were fraud, what fraction did we correctly detect as being fraud?

Precision / Recall

Useful metrics for evaluating performance when what we want to predict is rare (e.g., fraudulent transaction)

If the model has high precision and high recall, then we can be confident that the model is doing well even if we have very skewed classes

For regression, we started with a linear regression model and then experimented with random forest next

Can we do the same for classification?

We could, but it is not a good idea to start with a linear regression!

Another Note

We know that a linear regression can output values > 1 or < 0

But it is kind of weird to have such possibility when we know that the target is either 1 or 0

What to do?

Logistic Regression

Start with logistic regression, a very popular model that will produce output values (predicted scores) between 0 and 1

Don't be confused by terminology, logistic regression has the term "regression" in it for historical reasons, but it is used in ML for classification

Logistic Regression

The model function

$$\log\left(\frac{p}{1-p}\right) = \alpha + \beta x$$
$$\log(odds\ ratio) = \alpha + \beta x$$

Constructed to maximize the probability of correct classification

p = probability of class membership

 α = log odds of positive class when all predictors are zero

 β = the effect of the predictor on the odds ratio

x = predictor

Logistic Regression

Probability	Odds ratio	log(odds ratio)
0.5	50:50 or 1	0
0.9	90:10 or 9	2.19
0.999	999:1 or 999	6.9
0.01	1:99 or 0.0101	-4.6
0.001	1:999 or 0.001001	-6.9

The odds ratio is the relative chance of an event taking place (OR > 1 more likely, OR < 1 less likely, OR = 1 equally likely)

Example

the β value for each predictor variable indicates the effect of that predictor on the odds ratio. For example, if the β for the flue shot is negative, then getting a flu shot decreases the probability of getting sick

Flu Shot	Vitamin C intake	Sleep	Sick?
1	1000	7	0
1	500	5	1
0	700	8	1
0	1100	8.5	0
1	600	7	0
0	500	6	1
1	800	6	0

predictor target

ML Classification in R

Use the the caret package

Telco Customer Churn – recall, the goal is to predict the target using a new dataset as best as we can

```
library(tidyverse)
library(caret)
churn <- read_csv("churn.csv")</pre>
```

Churn Data

ML Classification in R

🗅 🖅 🖓 Filt														Q					Q	
customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSupport	StreamingTV	StreamingMovies	Contract	PaperlessBilling	PaymentMethod	MonthlyCharges	TotalCharges	
7590-VHVEG	Female		0 Yes	No		1 No	No phone service	DSL	No	Yes	No	No	No	No	Month-to-month		Electronic check	29.85		85 No
2 5575-GNVDE	Male		0 No	No	3	4 Yes	No	DSL	Yes	No	Yes	No	No	No	One year	No	Mailed check	56.95	1889.	50 No
3 3668-QPYBK	Male		0 No	No		2 Yes	No	DSL	Yes	Yes	No	No	No	No	Month-to-month	Yes	Mailed check	53.85	108.3	15 Yes
4 7795-CFOCW	Male		0 No	No	4	5 No	No phone service	DSL	Yes	No	Yes	Yes	No	No	One year	No	Bank transfer (automatic)	42.30	1840.	75 No
9237-HQITU	Female		0 No	No		2 Yes	No	Fiber optic	No	No	No	No	No	No	Month-to-month	Yes	Electronic check	70.70	151.6	65 Yes
6 9305-CDSKC	Female		0 No	No		8 Yes	Yes	Fiber optic	No	No	Yes	No	Yes	Yes	Month-to-month	Yes	Electronic check	99.65	820.5	50 Yes
7 1452-KIOVK	Male		0 No	Yes	2	2 Yes	Yes	Fiber optic	No	Yes	No	No	Yes	No	Month-to-month	Yes	Credit card (automatic)	89.10	1949.4	40 No
8 6713-OKOMC	Female		0 No	No	1	.0 No	No phone service	DSL	Yes	No	No	No	No	No	Month-to-month	No	Mailed check	29.75	301.9	90 No
9 7892-POOKP	Female		0 Yes	No	2	8 Yes	Yes	Fiber optic	No	No	Yes	Yes	Yes	Yes	Month-to-month	Yes	Electronic check	104.80	3046.0	05 Yes
0 6388-TABGU	Male		0 No	Yes	6	2 Yes	No	DSL	Yes	Yes	No	No	No	No	One year	No	Bank transfer (automatic)	56.15	3487.9	95 No
1 9763-GRSKD	Male		0 Yes	Yes	1	.3 Yes	No	DSL	Yes	No	No	No	No	No	Month-to-month	Yes	Mailed check	49.95	587.4	45 No
2 7469-LKBCI	Male		0 No	No	1	.6 Yes	No	No	No internet service	Two year	No	Credit card (automatic)	18.95	326.8	80 No					
3 8091-TTVAX	Male		0 Yes	No	5	8 Yes	Yes	Fiber optic	No	No	Yes	No	Yes	Yes	One year	No	Credit card (automatic)	100.35	5681.	10 No
1 0280-XJGEX	Male		0 No	No	4	9 Yes	Yes	Fiber optic	No	Yes	Yes	No	Yes	Yes	Month-to-month	Yes	Bank transfer (automatic)	103.70	5036.3	30 Ye
5 5129-JLPIS	Male		0 No	No	2	!5 Yes	No	Fiber optic	Yes	No	Yes	Yes	Yes	Yes	Month-to-month	Yes	Electronic check	105.50	2686.0	05 No
6 3655-SNQYZ	Female		0 Yes	Yes	6	9 Yes	Yes	Fiber optic	Yes	Yes	Yes	Yes	Yes	Yes	Two year	No	Credit card (automatic)	113.25	7895.	15 No
7 8191-XWSZG	Female		0 No	No	5	2 Yes	No	No	No internet service	One year	No	Mailed check	20.65	1022.9	95 No					
8 9959-WOFKT	Male		0 No	Yes	7	'1 Yes	Yes	Fiber optic	Yes	No	Yes	No	Yes	Yes	Two year	No	Bank transfer (automatic)	106.70	7382.2	25 No
9 4190-MFLUW	Female		0 Yes	Yes	1	.0 Yes	No	DSL	No	No	Yes	Yes	No	No	Month-to-month	No	Credit card (automatic)	55.20	528.3	35 Yes
0 4183-MYFRB	Female		0 No	No	2	1 Yes	No	Fiber optic	No	Yes	Yes	No	No	Yes	Month-to-month	Yes	Electronic check	90.05	1862.9	90 No
1 8779-QRDMV	Male		1 No	No		1 No	No phone service	DSL	No	No	Yes	No	No	Yes	Month-to-month	Yes	Electronic check	39.65	39.6	65 Yes
2 1680-VDCWW	Male		0 Yes	No	1	.2 Yes	No	No	No internet service	One year	No	Bank transfer (automatic)	19.80	202.2	25 No					
3 1066-JKSGK	Male		0 No	No		1 Yes	No	No	No internet service	Month-to-month	No	Mailed check	20.15	20.	15 Yes					
4 3638-WEABW	Female		0 Yes	No	5	8 Yes	Yes	DSL	No	Yes	No	Yes	No	No	Two year	Yes	Credit card (automatic)	59.90	3505.	10 No
5 6322-HRPFA	Male		0 Yes	Yes	4	19 Yes	No	DSL	Yes	Yes	No	Yes	No	No	Month-to-month	No	Credit card (automatic)	59.60	2970.	30 No
6 6865-JZNKO	Female		0 No	No	3	0 Yes	No	DSL	Yes	Yes	No	No	No	No	Month-to-month	Yes	Bank transfer (automatic)	55.30	1530.6	60 No
7 6467-CHFZW	Male		0 Yes	Yes	4	7 Yes	Yes	Fiber optic	No	Yes	No	No	Yes	Yes	Month-to-month	Yes	Electronic check	99.35	4749.	15 Ye
8665-UTDHZ	Male		0 Yes	Yes		1 No	No phone service	DSL	No	Yes	No	No	No	No	Month-to-month	No	Electronic check	30.20	30.2	20 Ye
5248-YGIJN	Male		0 Yes	No	7	'2 Yes	Yes	DSL	Yes	Yes	Yes	Yes	Yes	Yes	Two year	Yes	Credit card (automatic)	90.25	6369.4	45 No
8773-HHUOZ	Female		0 No	Yes	1	.7 Yes	No	DSL	No	No	No	No	Yes	Yes	Month-to-month	Yes	Mailed check	64.70	1093.	10 Ye
3841-NFECX	Female		1 Yes	No	7	'1 Yes	Yes	Fiber optic	Yes	Yes	Yes	Yes	No	No	Two year	Yes	Credit card (automatic)	96.35	6766.9	95 No

Showing 1 to 31 of 7,043 entries, 21 total columns

The goal is to find a parsimonious model – i.e., a simple model that performs well

- Correlation between predictors
- Correlation between predictors and target

To compute the correlation, we need numeric values

```
# transform categories to numbers
                                                             mutate(DeviceProtectionN = case_when(
                                                       58
    churn <- churn %>%
                                                       59
                                                               DeviceProtection == "Yes" ~ 1,
                                                               DeviceProtection == "No" ~ ∅,
22
      mutate(genderN = case_when()
                                                       60
                                                               DeviceProtection == "No internet service" ~ 0
23
        gender == "Male" ~ 1,
                                                       61
                                                       62
                                                               )) %>%
        gender == "Female" ~ 0
                                                       63
                                                             mutate(TechSupportN = case_when(
25
       )) %>%
                                                       64
                                                               TechSupport == "Yes" ~ 1,
26
      mutate(PartnerN = case_when(
                                                       65
                                                               TechSupport == "No" ~ 0,
27
        Partner == "Yes" ~ 1,
                                                               TechSupport == "No internet service" ~ 0
                                                       66
28
        Partner == "No" ~ 0
                                                       67
                                                               )) %>%
29
        )) %>%
                                                       68
                                                             mutate(StreamingTVN = case_when(
30
      mutate(DependentsN = case\_when(
                                                               StreamingTV == "Yes" ~ 1,
                                                       69
31
        Dependents == "Yes" ~ 1,
                                                               StreamingTV == "No" ~ 0,
                                                       70
32
        Dependents == "No" ~ 0
                                                       71
                                                               StreamingTV == "No internet service" ~ 0
33
        )) %>%
                                                       72
                                                               )) %>%
34
      mutate(PhoneServiceN = case_when()
                                                       73
                                                             mutate(StreamingMoviesN = case_when(
35
        PhoneService == "Yes" ~ 1,
                                                       74
                                                               StreamingMovies == "Yes" ~ 1,
36
        PhoneService == "No" ~ 0
                                                               StreamingMovies == "No" ~ 0,
                                                       75
37
       )) %>%
                                                               StreamingMovies == "No internet service" ~ 0
                                                       76
38
      mutate(MultipleLinesN = case_when(
                                                       77
                                                               )) %>%
39
        MultipleLines == "Yes" ~ 1,
                                                       78
                                                             mutate(ContractN = case_when(
        MultipleLines == "No" ~ ∅,
40
                                                       79
                                                               Contract == "Month-to-month" ~ 0,
        MultipleLines == "No phone service" ~ 0
41
                                                       80
                                                               Contract == "One year" ~ 1,
        )) %>%
                                                       81
                                                               Contract == "Two year" ~ 1
      mutate(InternetServiceN = case_when()
                                                       82
                                                               )) %>%
        InternetService == "Fiber optic" ~ 2,
                                                       83
                                                             mutate(PaperlessN = case_when(
45
        InternetService == "DSL" ~ 1,
                                                       84
                                                               PaperlessBilling == "Yes" ~ 1.
```

To compute the correlation, we need numeric values

Check: Class Distribution

Is the target skewed?

```
# is the target skewed?
ggplot(df1, aes(ChurnN)) +
  geom_bar() +
  theme_classic() +
  labs(x = "Churn", y = NULL) +
  scale_x_continuous(breaks = c(0,1))
```


Splitting Data

Set a starting value so that results are reproducible Split the data into training and testing

To compute the correlation, we need numeric values

```
# compute correlation between predictors
predCor <- cor(churn_train[,3:21])

# which variables to remove to avoid multicollinearity?
findCorrelation(predCor, cutoff = .7, names = TRUE)</pre>
```

```
> findCorrelation(predCor, cutoff = .7, names = TRUE)
[1] "TotalCharges" "MonthlyCharges"
```

To compute the correlation, we need numeric values

```
churn_train <- churn_train %>%
   dplyr::select(Churn, ChurnN, SeniorCitizen, tenure,
genderN:PaymentN)

# compute correlation between predictors and the target
predTargetCor <- cor(churn_train[,2:19])</pre>
```

÷	ChurnN
ContractN	-0.403106687
tenure	-0.357595735
PaymentN	-0.208914546
OnlineSecurityN	-0.171331455
DependentsN	-0.165798719
TechSupportN	-0.165196333
PartnerN	-0.151886551
OnlineBackupN	-0.086484892
DeviceProtectionN	-0.059665761
genderN	-0.007478973
PhoneServiceN	0.023936107
MultipleLinesN	0.042687277
StreamingMoviesN	0.059091113
StreamingTVN	0.064058803
SeniorCitizen	0.151257781
PaperlessN	0.187102484
InternetServiceN	0.319796385
ChurnN	1.000000000

Model Induction and Testing

Use training set to build model, then predict churn using the test set

Model Performance

Use training set to build model, then predict churn using the test set

- Of all customers where we predicted churn, ~65% actually churned
- Of all customers that actually churned, we only correctly predicted about half (~53%)

Confusion Matrix and Statistics Reference Prediction No Yes No 925 176 Yes 107 197 Accuracy : 0.7986 95% CI: (0.7766, 0.8193) No Information Rate: 0.7345 P-Value [Acc > NIR] : 1.342e-08 Kappa : 0.4511 Mcnemar's Test P-Value: 5.296e-05 Precision: 0.6480 Recall: 0.5282 Prevalence: 0.2655 Detection Rate: 0.1402 Detection Prevalence: 0.2164 Balanced Accuracy: 0.7122

'Positive' Class : Yes

At-home exercise

- Experiment with different models to check and see if your model performance changes. A couple of popular options to try out are:
 - k-Nearest neighbors
 - Decision Trees
 - Support Vector Machines
 - Naïve Bayes

Summary

- Classification ML is when the target is a class (e.g., "yes" or "no"). Here, start with logistic regression rather than linear regression to try and maximize the probability of correct classification
- If the class distribution of the target is skewed (e.g., a lot more 0s than 1s), look for precision and recall in addition to accuracy in order to evaluate the performance of the model
- Other rules still apply: transform data, split sample, select features, train the model, and test performance

Thank You!