22) Poisson Regression

Vitor Kamada

December 2018

Reference

Tables, Graphics, and Figures from

Ch 4.4 Maximum Likelihood Estimation, by Sargent and Stachurski (2018)

https://lectures.quantecon.org/py/mle.html

Russia's Billionaires, by Daniel Treisman (2016), in American Economic Review: Papers & Proceedings 2016, 106(5): 236–241

Number of Billionaires in Russia and the World

Net Worth of Billionaires in Russia and the World

Poisson Distribution

$$Pr(Y=y)=rac{\mu^y}{y!}e^{-\mu},\;\;y=0,1,...$$
 $E(Y)=Var(Y)=\mu$

```
from numpy import exp
from scipy.special import factorial
import matplotlib.pyplot as plt

poisson_pmf = lambda y, μ: μ**y / factorial(y) * exp(-μ)
y_values = range(0, 25)
```

Generate Graphic

```
fig, ax = plt.subplots(figsize=(12, 8))
for µ in [1, 5, 10]:
    distribution = []
    for y i in y values:
        distribution.append(poisson pmf(y i, \mu))
    ax.plot(y values,
            distribution,
            label=f'$\mu',
            alpha=0.5,
            marker='o'.
            markersize=8)
ax.grid()
ax.set_xlabel('$y$', fontsize=14)
ax.set ylabel('$f(y \mid \mu)$', fontsize=14)
ax.axis(xmin=0, ymin=0)
ax.legend(fontsize=14)
```

plt.show()

Poisson MLE

$$Pr(Y = y) = \frac{e^{-\mu}\mu^y}{y!}$$

$$E[y|x] = \mu_i = exp(x_i'\beta)$$

$$InL(\beta) = \sum_{i=1}^{N} \{ y_i x_i' \beta - exp(x_i' \beta) - Iny_i! \}$$

FOC:
$$\sum_{i=1}^{N} (y_i - exp(x_i'\beta))x_i = 0$$

Interpretation of Regression Coefficients

$$E[y|x] = exp(x'\beta)$$

$$\frac{\partial E(y|x)}{\partial x_j} = \beta_j exp(x'\beta)$$

$$AME = \hat{\beta}_j \frac{1}{N} \sum_{i=1}^{N} exp(x_i' \hat{\beta})$$

If intercept is included, then $\hat{\beta}_j \bar{y}$

Forbes' Annual Rankings of Billionaires

```
import pandas as pd
pd.options.display.max_columns = 10
# Load in data and view
df = pd.read_stata('https://github.com/QuantEcon/QuantEcon.lectures.code/raw/master/mle/fp.dta')
df.head()
```

	country	ccode	year	cyear	numbil	 topint08	rintr	noyrs	roflaw	nrrents
0	United States	2.0	1990.0	21990.0	NaN	 39.799999	4.988405	20.0	1.61	NaN
1	United States	2.0	1991.0	21991.0	NaN	 39.799999	4.988405	20.0	1.61	NaN
2	United States	2.0	1992.0	21992.0	NaN	 39.799999	4.988405	20.0	1.61	NaN
3	United States	2.0	1993.0	21993.0	NaN	 39.799999	4.988405	20.0	1.61	NaN
4	United States	2.0	1994.0	21994.0	NaN	 39.799999	4.988405	20.0	1.61	NaN

of Billionaires per Country

```
numbil0 2008 = df[(df['year'] == 2008) & (
    df['country'] != 'United States')].loc[:, 'numbil0']
plt.subplots(figsize=(12, 8))
plt.hist(numbil0_2008, bins=30)
plt.xlim(xmin=0)
plt.grid()
plt.xlabel('Number of billionaires in 2008')
plt.ylabel('Count')
plt.show()
```

of Billionaires in 2008

Explaining the Number of Billionaires in 2008

	(1)	(2)	(3)	(4)
n GDP per capita	1.08*** (0.14)	0.72*** (0.25)	0.74*** (0.23)	0.96*** (0.24)
In population	1.17*** (0.098)	0.81*** (0.21)	0.93*** (0.20)	1.15*** (0.29)
Years in GATT/WTO	0.006 (0.007)	0.007 (0.006)	0.004 (0.006)	0.000 (0.004)
In market capitalization		0.40** (0.17)	0.29* (0.17)	0.11 (0.24)
Real (lending) interest rate ^a		-0.010 (0.00)	-0.009 (0.010)	-0.007 (0.009)
Top marginal income tax rate ^b		-0.051*** (0.011)	-0.058*** (0.012)	-0.060*** (0.015)
Natural resource rents (percent GDP)			-0.005 (0.011)	0.013 (0.013)
Rule of law, 2008			0.20 (0.37)	0.34 (0.28)
Privatization proceeds, 1990–2008 (billion dollars)				-0.002* (0.001)
Observations Pseudo- <i>R</i> ²	197 0.857	131 0.901	131 0.902	113 0.928

USA (112) Russia (42) Russia (50) Russia (60) Germany (25) Germany (22) India (26) USA (23) India (16) Hong Kong (24) India (21) USA (16) Turkey (23) Hong Kong (11) Hong Kong (11)

Russia (33) Germany (26) India (19) Sweden (8) Lebanon (7)

Set Up Variables for Estimation

import statsmodels.api as sm

```
poisson reg = sm.Poisson(df[['numbil0']], df[reg1],
                   missing='drop').fit(cov_type='HC0')
 print(poisson reg.summary())
Warning: Maximum number of iterations has been exceeded.
      Current function value: 2,226090
      Tterations: 35
                   Poisson Regression Results
Dep. Variable:
                      numbil0 No. Observations:
                                                        197
Model:
                      Poisson Df Residuals:
                                                        193
Method:
                         MLE Df Model:
Date:
              Wed, 26 Jul 2017 Pseudo R-squ.:
                                                    0.8574
Time:
                   15:41:38 Log-Likelihood:
                                               -438.54
converged:
                       False II-Null:
                                                    -3074.7
                              LLR p-value:
                                                     0.000
            coef std err z P>|z| [0.025 0.975]
const -29.0495 2.578 -11.268 0.000 -34.103 -23.997
lngdppc 1.0839 0.138 7.834 0.000 0.813 1.355
lnpop 1.1714 0.097 12.024 0.000 0.980 1.362
```

from statsmodels.iolib.summary2 import summary_col

```
regs = [reg1, reg2]
reg names = ['Model 1', 'Model 2']
info dict = {'Pseudo R-squared': lambda x: f"{x.prsquared:.2f}",
             'No. observations': lambda x: f"{int(x.nobs):d}"}
regressor order = ['const'.
                   'Ingdppc'.
                   'Inpop'.
                   'gattwto08',
                   'lnmcap08'.
                   'rintr'.
                   'topint08'.1
results = []
for reg in regs:
    result = sm.Poisson(df[['numbil0']], df[reg],
                        missing='drop').fit(cov type='HC0', maxiter=100, disp=0)
    results.append(result)
results table = summary col(results=results,
                            float format='%0.3f',
                            stars=True,
                            model names=reg names,
                            info dict=info dict,
                            regressor order=regressor order)
results_table.add_title('Table 1 - Explaining the Number of Billionaires in 2008')ac
```

print(results_table)

Table 1 - Explaining the Number of Billionaires in 2008

===========	Model 1	Model 2
const	-29.050***	-19.444***
	(2.578)	(4.820)
lngdppc	1.084***	0.717***
	(0.138)	(0.244)
lnpop	1.171***	0.806***
	(0.097)	(0.213)
gattwto08	0.006	0.007
	(0.007)	(0.006)
lnmcap08		0.399**
		(0.172)
rintr		-0.010
		(0.010)
topint08		-0.051***
		(0.011)
Pseudo R-squared	0.86	0.90
No. observations	197	131
Standard errors	in parenthe:	ses.
* n/ 1 ** n/ 05	***n/ Q1	

^{*} p<.1, ** p<.05, ***p<.01

Difference between the Predicted an Actual Values

```
data = ['const', 'lngdppc', 'lnpop', 'gattwto08', 'lnmcap08', 'rintr',
        'topint08', 'nrrents', 'roflaw', 'numbil0', 'country'l
results df = df[data].dropna()
# Use Last model (model 3)
results df['prediction'] = results[-1].predict()
# Calculate difference
results df['difference'] = results df['numbil0'] - results df['prediction']
# Sort in descending order
results df.sort values('difference', ascending=False, inplace=True)
# Plot the first 15 data points
results df[:15].plot('country', 'difference', kind='bar', figsize=(12,8), legend=False)
plt.ylabel('Number of billionaires above predicted level')
plt.xlabel('Country')
```

plt.show()

Percentage of Russian Billionaires in the Given Year who Made Their Wealth in the Following Sectors

	2005	2015
Oil, oil refining, gas, coal	56	28
Metals	48	20
Banking, finance, insurance	30	32
Telecom, IT, software, Internet	4	8
Construction	4	5
Real estate		19 S 13 L 13 L
Chemicals and fertilizer		13 😌
Food and beverage production		7 10
Trade		6
Transport		3 0
Manufacturing		3 3 1 O 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C
Casinos		1 7
Memo: Number of billionaires	27	88 X

Percentage of Those Becoming Billionaires in the Following Periods Who Were Still Billionaires in 2015

	All	USA	Germany	Japan	Brazil	Russia	Hong Kong
1996–2002	39	53	27	16	38	56	32
2003-2007	59	54	66	33	44	72	90
2008-2010	62	66	75	67	67	45	86
2011-2014	72	85	97	71	58	43	59

Source: Calculated from Forbes, various years.