Proof. Recall that the entry a_{ij} in row i and column j of M(f) is the i-th coordinate of $f(u_j)$ over the basis (v_1, \ldots, v_m) . By definition of v_i^* , we have $\langle v_i^*, f(u_j) \rangle = a_{ij}$. The entry a_{ji}^{\top} in row j and column i of $M(f^{\top})$ is the j-th coordinate of

$$f^{\top}(v_i^*) = a_{1i}^{\top} u_1^* + \dots + a_{ji}^{\top} u_j^* + \dots + a_{ni}^{\top} u_n^*$$

over the basis (u_1^*, \dots, u_n^*) , which is just $a_{ji}^\top = f^\top(v_i^*)(u_j) = \langle f^\top(v_i^*), u_j \rangle$. Since

$$\langle v_i^*, f(u_j) \rangle = \langle f^\top(v_i^*), u_j \rangle,$$

we have $a_{ij} = a_{ji}^{\top}$, proving that $M(f^{\top}) = M(f)^{\top}$.

We now can give a very short proof of the fact that the rank of a matrix is equal to the rank of its transpose.

Proposition 11.15. Given an $m \times n$ matrix A over a field K, we have $\operatorname{rk}(A) = \operatorname{rk}(A^{\top})$.

Proof. The matrix A corresponds to a linear map $f: K^n \to K^m$, and by Theorem 11.12, $\operatorname{rk}(f) = \operatorname{rk}(f^\top)$. By Proposition 11.14, the linear map f^\top corresponds to A^\top . Since $\operatorname{rk}(A) = \operatorname{rk}(f)$, and $\operatorname{rk}(A^\top) = \operatorname{rk}(f^\top)$, we conclude that $\operatorname{rk}(A) = \operatorname{rk}(A^\top)$.

Thus, given an $m \times n$ -matrix A, the maximum number of linearly independent columns is equal to the maximum number of linearly independent rows. There are other ways of proving this fact that do not involve the dual space, but instead some elementary transformations on rows and columns.

Proposition 11.15 immediately yields the following criterion for determining the rank of a matrix:

Proposition 11.16. Given any $m \times n$ matrix A over a field K (typically $K = \mathbb{R}$ or $K = \mathbb{C}$), the rank of A is the maximum natural number r such that there is an invertible $r \times r$ submatrix of A obtained by selecting r rows and r columns of A.

For example, the 3×2 matrix

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

has rank 2 iff one of the three 2×2 matrices

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad \begin{pmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{pmatrix} \quad \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$$

is invertible.

If we combine Proposition 7.11 with Proposition 11.16, we obtain the following criterion for finding the rank of a matrix.