Classification

k-Nearest Neighbors

kNNs are bounded by $\leq 2x$ the Bayes optimal error,

 $N, k \to \infty, k/N \to 0.$

Edge Case 2 pts w/ same features but diff classes.

Robustness Generalizes better to test data.

Better training classification.

Validation Hold back data subset as validation set. Train multiple times w/ diff hyperparams.

Choose what is best on validation set.

Training Set Used to learn model weights.

Validation Set

Tunes hyperparameters (ex. $k \in kNN$). Test Set used as FINAL evaluation of model.

Isocontour of f $L_c = \{x \mid f(x) = c\}, \text{ with isovalue } c.$

Isotropic Gaussian Same var in ea dir: $\Sigma = cI$.

Anisotropic Gaussian Allows diff amnts of var along diff dirs, $\Sigma \succ 0$.

Perceptron

Model/rule: 1 if $\vec{X}_i \cdot \vec{w} > 0$ elif $\vec{X}_i \cdot \vec{w} < 0 \implies -1$.

Loss: $L(z, y_i) = 0$ if $y_i z \ge 0$ else $-y_i z$, (z=pred, y_i =true ans).

$$R(w) = \sum_{i=1}^{n} L(X_i \cdot w, y_i) = \sum_{i \in V} -y_i X_i \cdot w$$

Gives some linear boundary; if data is linearly separable, correctly classifies all data in at most $O\left(\frac{r^2}{r^2}\right)$ iterations.

Support Vector Machines

Hard-Margin: $\min_{\vec{w}} \|\vec{w}\|_2^2$, s.t. $y_i(\vec{w}^\top \vec{x_i} - b) \ge 1 \ \forall i$

Fails w/ non-linearly sep. data. Margin size $=\frac{1}{\|w\|}$, Slab size $=\frac{2}{\|w\|}$

Hyperplane $H = \{x : w \cdot x = -\alpha\}$

flat, infinite, $\dim(d-1)$ plane

 $\vec{w} \cdot (y - x) = 0, \vec{w}$ is normal vec of H. $x, y \in H$ Support Vectors Examples needed to find $f(\mathbf{x}) \in SVM$.

Examples with non-0 weight $\alpha_k \in SVM$.

Soft-Margin

Allows misclassifications: $\min_{\vec{w},b,\xi_i} \frac{1}{2} ||\vec{w}||^2 + C \sum_{i=1}^n \xi_i$ s.t.

$$y_i(\vec{w}^\top \vec{x_i} - b) \ge 1 - \xi_i, \ \forall i; \ \xi_i \ge 0, \ \forall i$$

Small C: maximize margin, underfitting, less sensitive, more flat. Big C: minimize margin, overfitting, very sensitive, more sinuous. $C \to \infty \implies \text{Soft-Margin} \to \text{Hard-Margin}$. Note C > 0.

Generative

Want to learn **everything** about data before you classify:

the priors $\hat{\pi}_i = \Pr(Y = C_i)$ and cond. dist $\mathbb{P}(X|Y = C_i)$.

Posterior: $\mathbb{P}(Y = C_i|X) = \frac{\mathbb{P}(X|Y = C_i) \cdot \mathbb{P}(Y = C_i)}{\mathbb{P}(X)}$

Logistic $\frac{1}{1+e^{-h(x)}}$, where h(x) is **linear** in terms of features. True

Function: in LDA but not QDA (where h(x) is quadratic).

GDA: Assumes each class models a Gaussian distribution. $Q_C(x) = -\frac{\|x - \mu_C\|^2}{2\sigma_C^2} - d\ln \sigma_C + \ln \pi_C$ $\ln\left(\sqrt{2\pi}^{d} f_{C}(x)\pi_{C}\right) = -\frac{1}{2}(x - \mu_{C})^{\top} \Sigma_{C}^{-1}(x - \mu_{C})$

Works with any number of classes; $\frac{d(d+3)}{2} + 1$ params. QDA:

LDA: when variances are equal; d+1 params.

Isotropic:

QDA: $\widehat{\sigma}^2 = \frac{1}{dn} \sum_{i: u_i = C} \|x_i - \widehat{\mu_c}\|^2$ LDA: $\widehat{\sigma}^2 = \frac{1}{dn} \sum_C \sum_{i:u_i=C} \|x_i - \widehat{\mu_c}\|^2$

QDA: $\widehat{\Sigma}_c = \frac{1}{n_c} \sum_{i:y_i=C} (X_i - \widehat{\mu_c})(X_i - \widehat{\mu_c})^{\top}$

LDA: $\widehat{\Sigma} = \frac{1}{n} \sum_{C} \sum_{i:u_i=C} (X_i - \widehat{\mu_c})(X_i - \widehat{\mu_c})^T$

Discriminative

Want to learn a few things before trying to classify. Only tries to model $\mathbb{P}(Y|X)$ from training data. Logistic Reg (2 classes): For a training point, $P(Y = y_i \mid x) = p^{y_i}(1-p)^{1-y_i}$. Note that $p = s(w^T x)$ as given by our model of the posterior $P(Y = 1 \mid x)$. MLE on this leads to the cross entropy loss function (which is convex!), namely

$$L(w) = -\sum y_i (\ln p_i + (1 - y_i) \ln (1 - p_i))$$

Note:
$$P(Y = 1 \mid x) = \frac{1}{1 + \exp(-w^T x)}$$
; $s'(\gamma) = s(\gamma)(1 - s(\gamma))$

Decision Boundary: of the form $w^T x > c_1$ thus must be linear. Though probability predictions are non-linear, actual boundary is linear. Log Reg always separates linearly separable points.

Softmax Reg: logistic regression for multiple classes

Probability

Multivariate Gaussian PDF:

$$f_{\mathbf{X}}\left(x_{1}, \dots, x_{k}\right) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)}{\sqrt{(2\pi)^{k} |\boldsymbol{\Sigma}|}}$$

MLE (Maximum Likelihood Estimate)

We have $A, B, C, D, P(A \mid B) > P(A \mid C) > P(A \mid D)$ \implies B is the MLE of A. MLE Estimate of Anisotropic can be PSD $\hat{\theta}_{MLE}(x) = \arg \max \Pi f(x \mid \theta) = \arg \max \ln \mathcal{L}(\theta; x)$

Mean is unbiased; Variance is biased (usually underestimate) Predicts parameter which max the probability of the data. Implicitly assumes uniform prior

MAP (Maximum a Posteriori)

We have A, B, C, D. $\mathbb{P}(A \mid B) > \mathbb{P}(C \mid B) > \mathbb{P}(D \mid B)$ \implies A is the MAP of B.

 $\hat{\theta}_{MAP} = \arg \max f(\theta \mid x) = \arg \max f(x \mid \theta) \cdot g(\theta)$

Predicts the parameter which maximizes the conditional probability of the parameter given the data.

Should be used when you have the prior probabilities.

MLE = MAP when all parameters have equal prior probability. The axis lengths of Gaussian Isocontours are σ_i s.t. $\sigma^2(X) = \operatorname{Var}(X)$. Independent \iff uncorrelated (only for Multivariate Gaussian).

Bayesian Risk

L (loss function) is symmetric: pick class with max posterior prob. L is asymmetric: minimize $\mathbb{E}[L(\text{true class}, \text{prediction}) \mid \text{data}]$ or pick max loss-weighted posterior prob.

The risk for r is the expected loss over all values of x, y. Equals to 0 when class distros don't overlap or prior prob for one class is 1.

$$R(r) = \mathbb{E}[L(r(X), Y)]$$

$$= \sum_{x} \left(\sum_{c \in \{-1, 1\}} L(r(x), c) P(Y = c \mid X = x) \right) P(X = x)$$

$$= \sum_{c \in \{-1, 1\}} \left(P(Y = c) \sum_{x} L(r(x), c) P(X = x \mid Y = c) \right)$$

$$R(\hat{y} = i \mid x) = \sum_{j=1}^{C} \lambda_{ij} P(Y = j \mid x)$$

The Bayes decision rule aka Bayes classifier is the fn r^* that minimizes functional R(r). Assuming L(z,y)=0 for z=y:

$$r^*(x) = \begin{cases} 1 \text{ if } L(-1,1)P(Y=1 \mid X=x) > L(1,-1)P(Y=-1 \mid X=x) \\ -1 \text{ otherwise} \end{cases}$$

Regression Methods

Model: y = Xw. Loss Function: least squares, $n \in N(X)$

Model: $g = 11 \text{a}$, Lobb 1 direction: locable squares, $n \in 11 (21)$		
Name	Objective	Solution
OLS	$\frac{1}{n}\ Y - Xw\ _2^2$	$w^* = (X^\top X)^\dagger X^\top y \in$
		$X^{\dagger}y + n$
Ridge: Assumes	$\frac{1}{n} \ Y - Xw\ _2^2 + \lambda \ w\ _2^2$	$w^* = (X^\top X +$
Gaussian Priors	n 2 2	$(n\lambda I)^{-1}X^{\top}y$
LASSO	$\frac{1}{n} \ Y - Xw\ _2^2 + \lambda \ w\ _1$	No closed form

Linear Algebra

Matrix Calculus

$$abla_{ec{x}} ec{w}^{ op} ec{x} = \left(\frac{\partial ec{w}^{ op} ec{x}}{\partial ec{x}} \right)^{ op} = ec{w} \qquad \qquad
abla_{ec{x}} (ec{w}^{ op} A ec{x}) = A^{ op} ec{w}$$

$$\nabla_A \vec{w}^\top A \vec{x} = \vec{w} \vec{x}^\top \qquad \qquad \nabla_{\vec{x}} (\vec{x}^\top A \vec{x}) = (A + A^\top) \vec{x}$$

$$\nabla_{\vec{x}}^2(\vec{x}^\top A \vec{x}) = A + A^\top \qquad \qquad \nabla_{\vec{x}}(\alpha \vec{y}) = (\nabla_{\vec{x}} \alpha) \vec{y}^\top + \alpha \nabla_{\vec{x}} \vec{y}$$

$$\nabla_{\vec{x}} \vec{f}(\vec{y}) = (\nabla_{\vec{x}} \vec{y}) (\nabla_{\vec{y}} \vec{f}(\vec{y})) \qquad \qquad \nabla_{\vec{x}} (\vec{y} \cdot \vec{z}) = (\nabla_{\vec{x}} \vec{y}) \vec{z} + (\nabla_{\vec{x}} \vec{z}) \vec{y}$$

$$\nabla_{\vec{x}} C \vec{y}(\vec{x}) = (\nabla_{\vec{x}} \vec{y}(\vec{x})) C^{\top} \qquad \qquad \frac{\partial \|\vec{x}\|_2^2}{\partial \vec{x}} = \frac{\partial (\vec{x}^{\top} \vec{x})}{\partial \vec{x}} = 2\vec{x}$$

$$\nabla_{\vec{y}}(\vec{y} - A\vec{x})^{\top}W(\vec{y} - A\vec{x}) = 2W(\vec{y} - A\vec{x})$$

$$\nabla_{\vec{x}}(\vec{y} - A\vec{x})^{\top}W(\vec{y} - A\vec{x}) = -2A^{\top}W(\vec{y} - A\vec{x})$$

$$\nabla_{\vec{w}} (\|X\vec{w} - \vec{y}\|_{2}^{2} + \lambda \|\vec{w}\|_{2}^{2}) = 2X^{\top} X\vec{w} - 2X^{\top} \vec{y} + 2\lambda \vec{w}$$

Matrix A is Positive Semi-Definite iff

- (a) $\forall \vec{x} \neq \vec{0} \in \mathbb{R}^n, \vec{x}^\top A \vec{x} > 0$. Symmetric.
- (b) All eigenvalues of A are non-negative $(\lambda_i \geq 0)$.
- (c) \exists unique matrix $L \in \mathbb{R}^{n \times n}$ such that $A = LL^{\top}$ (Cholesky decomposition).

$$\text{PSD Example: } A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \text{, with } \lambda = 3, 1. \ L = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \text{.}$$

All diagonal entries of A are non-negative and $Tr(A) \ge 0$. Sum of all the entries > 0. $Var(Mx) = M Var(x)M^T$, M is constant. $M \succ 0, N \succ 0, M - N \succ 0 \implies N^{-1} - M^{-1} \succ 0$ $M \succeq 0, N \succeq 0 \implies M - N \succeq 0 \iff \lambda_{\min}(M) > \lambda_{\max}(N).$ $A = A^{\frac{1}{2}}A^{\frac{1}{2}} = U\Lambda^{\frac{1}{2}}\Lambda^{\frac{1}{2}}U^{\top}, A^{\frac{1}{2}} = U\Lambda^{\frac{1}{2}}U^{\top}$

A function is convex iff Hessian is PSD. Strict Convexity: $(\forall 0 < t < 1), f(tx_1 + (1 - t)x_2) < tf(x_1) + (1 - t)f(x_2)$

Covariance Matrix

$$\Sigma = \frac{1}{n} \hat{X}^\top X = \begin{bmatrix} \text{Var}(X_1) & \text{Cov}(X_1, X_2) & \cdots & \text{Cov}(X_1, X_d) \\ \text{Cov}(X_2, X_1) & \text{Var}(X_2) & \cdots & \text{Cov}(X_2, X_d) \\ \vdots & \vdots & \ddots & \vdots \\ \text{Cov}(X_d, X_1) & \text{Cov}(X_d, X_2) & \cdots & \text{Var}(X_d) \end{bmatrix}$$

$$= \mathbb{E}[(X - \mu)^{\top}(X - \mu)]$$
 where $X \in \mathbb{R}^{n \times d}$, all diag entries > 0

Symmetric, PSD $\Longrightarrow \exists \Sigma = V \Lambda V^{\top}$ by Spectral Theorem. PD \Longrightarrow symmetric in this class. Eigenvectors are orthogonal directions along which points are uncorrelated. $\Sigma^{-1} = V\Lambda^{-1}V^{\top} = \sum_{i} \frac{1}{\Lambda_{i,i}} v_i v_i^{\top}$

Spectral Theorem: $A = V\Lambda V^{\top}$. All real+symmetric $n \times n$ matrices have real eigenvalues and n eigenvectors that are mutually orthogonal: $v_i^{\top} v_i = 0 \quad \forall i \neq j$.

Norm Ball

 ℓ_0 and ℓ_1 encourage sparsity (more than ℓ_2).

Fundamental Theorem of Linear Algebra

 $(N(A)^{\perp} = R(A^{\top})) \oplus (N(A^{\top}A) = N(A) = R(A^{\top})^{\perp}) = \mathbb{R}^n$ $(N(A^{\top})^{\perp} = R(A)) \oplus (N(A^{\top}) = R(A)^{\perp}) = \mathbb{R}^m$ Rank-nullity Theorem: $\dim(R(A)) + \dim(N(A)) = n$ Jensen's Inequality: If f(x) is strictly convex, $\mathbb{E}[f(x)] > f(\mathbb{E}[x])$. $\dim(\operatorname{Row}(X)) = \dim(R(X^{\top})) = \operatorname{rank}(X^{\top}) = \operatorname{rank}(X).$ $\operatorname{Row}(X^{\top}X) = R(X^{\top}X) = \operatorname{Row}(X) = R(X^{\top})$

Update Rule

Gradient Descent: $w^{(t+1)} \leftarrow w^{(t)} - \eta \nabla_w J(w^{(t)})$ $w^{(t+1)} \leftarrow w^{(t)} + \epsilon X^{\top} (y - s(Xw^{(t)}))$ Logistic Reg:

Newton's Method: $w^{(t+1)} \leftarrow w^{(t)} - (\nabla_w^2 J(w^{(t)}))^{-1} \nabla_w J(w^{(t)})$ *** Note: If J quadratic, Newton's method only needs one

step to find exact solution. Newton's Method doesn't work for most nonsmooth functions, and is generally faster than BGD/SGD.

Stochastic GD: $w \leftarrow w - \epsilon \nabla_w J(w)_i$ for some $i \in U([1, \dots, n])$ Logistic Reg: $w \leftarrow w + \epsilon(y_i - s(X_i \cdot w))X_i$

Cost Functions

 $y_i = f(X_i) + \epsilon_i$: ϵ_i from Gaussian, all ϵ_i same mean, all y_i same var

General: $J = \sum_{i=1}^{n} L(X_i \cdot w, y_i)$ Linear: $J = \sum_{i=1}^{n} (X_i \cdot w + \alpha - y_i)^2 = \|Xw - y\|_2^2$ Logistic: $J = -\sum_{i=1}^{n} (y_i \ln s(X_i \cdot w) + (1 - y_i) \ln(1 - s(X_i \cdot w)))$ Weight LS: $J = \sum_{i=1}^{n} w_i (X_i \cdot w - y_i)^2 = (Xw - y)^{\top} \Omega(Xw - y)$

ROC Curve

Design Matrix

subtracting μ^{\top} from each row of X: $X \to \dot{X}$ Centering: Applying rotation $Z = \dot{X}V$ where Var(X) =Decorrelating: $V\Lambda V^{\top}$. Covariance matrix of Z is Λ (diagonal) $W = \dot{X} \operatorname{Var}(X)^{-1/2}$ ($\Sigma^{-1/2}$:ellipsoid to sphere) Sphering: Whitening: Perform centering, and then sphering

Bias-Variance Tradeoff

Statistical Bias: $\mathbb{E}[\hat{\theta} - \theta] = \mathbb{E}[\hat{\theta}] - \theta$.

Bias: error due to inability of hypothesis h to fit q perfectly e.g., fitting quadratic q with a linear h

Variance: error due to fitting random noise in data e.g., we fit linear q with a linear h, yet $h \neq q$.

Overfitting: Low Bias, High Variance

Underfitting: High Bias, Low Variance.

Adding a feature usually increases variance [don't add a feature unless it reduces bias more. Adding a feature results in a non-increasing bias.

Forward/Backward stepwise selection aren't guaranteed to find optimal features. Backward stepwise selection looks at d'-1features at a time, where d' is current num of features (one at a time). Use Forward selection if we think few features important, Backward selection if many features important.

higher residuals \implies higher bias

higher complexity \implies higher variance

 $Var(h(z)) = E[h(z) - E[h(z)]^2] \approx \sigma^2 \frac{d}{r}$

Bias-Variance Decomposition:

Model Risk = $\mathbb{E}[L(h(z), \gamma)] = \mathbb{E}[(h(z) - \gamma)^2]$ $= (\mathrm{E}[h(z)] - g(z))^2 + \mathrm{Var}(h(z))$ where $E[\gamma] = g(z)$; $Var(\gamma) = Var(\epsilon)$

Note: the model determines Bias-Variance Tradeoff, not the algorithm used to solve the model/optimization problem.

Isocontour/Voronoi Diagrams

QDA: different variance; decision boundary is curved towards class(es) w/ lower variance

Quadratic Form: $x^{\top}A^{-2}x = ||A^{-1}x||_2^2$ is an ellipsoid with axes $v_1, v_2, \dots v_n$ (eigenvectors of A) and radii $\lambda_1, \lambda_2, \dots, \lambda_n$ (eigenvalues of A). Note that A > 0.

Gaussian with covariance matrix $\Sigma = \frac{1}{n} \hat{X}^{\top} \hat{X}$ isocontours with radii of length $\sqrt{\lambda_i(\Sigma)} = \sigma_i(X)$

Decision Trees

Tree with each node denoting a split over some feature. Leaf node specifies class, deep decision tree = overfit = high variance

Random Forests

At each node, take rnd sample of m features (out of d).

Classification: $m_{\rm init} \approx \sqrt{d}$

Regression: $m_{\rm init} \approx \frac{d}{3}$

Smaller m = less features = less complex model = more bias

Kernels

Can speedup algorithms such as SVMs, kNN, Regression (linear & logistic), k-means, etc.

 $w = X^{\top} a = \sum_{i=1}^{n} a_i X_i$ Substitute this into the algorithm so we have to optimize n weights a instead of d weights w

Kernel Ridge Regression: Center X and y so means are 0, $X_{i,d+1} = 1$. Solve normal equations: $(X^{\top}X + \lambda I)w = X^{\top}y$

If a is a solution to $(X^{\top}X + \lambda I)a = y$,

 $X^{\top}y = X^{\top}XX^{\top}a + \lambda X^{\top}a = (X^{\top}X + \lambda I)X^{\top}a \implies w = X^{\top}a$

The dual: $\min ||XX^{\top}a - y||^2 + \lambda ||X^{\top}a||^2$ Test phase: $h(z) = w^{\top}z = a^{\top}Xz = \sum_{i=1}^n a_i(X_i^{\top}z)$, if $X_i^{\top}z$ are precomputed, it takes O(n) time to evaluate h vs O(d) time for primal method.

kernel fn: $k(x,z) = x^{\top}z$, kernel mtx: $K = XX^{\top} (K_{ij} = k(X_i, X_j))$ kernel matrix must be PSD + symmetric

Solve $(K + \lambda I)a = y \ O(n^3)$, test $h(z) = \sum a_i k(X_i, z) \ O(nd)$ time Dual: $O(n^3 + n^2 d)$, Primal: $O(d^3 + d^2 n)$, dual is better when d > n. **Kernel Trick**: Polynomial kernel = $k(x, z) = (x^{T}z + 1)^{p}$

Can compute $k(x,z) = \Phi(x)^{\top} \Phi(z)$ in O(d) time instead of $O(d^p)$

 $\ln(ab) = \ln(a) + \ln(b)$: $a^{x+y} = a^x \cdot a^y$

Enables us to implicitly handle polynomial features efficiently Kernel Perceptrons:

 $w \leftarrow y_1 \Phi(X_1)$: while some $y_i \Phi(X_i) \cdot w < 0, \ w \leftarrow w + \epsilon y_i \Phi(X_i)$ for each test pt z, $h(z) \leftarrow w \cdot \Phi(z)$

Let $\Phi(X)$ be $x \times D$ matrix with rows $\Phi(X_i)^{\top}$

Dualize with $w = \Phi(X)^{\top} a$, $a_i \leftarrow a_i + \epsilon y_i$,

 $\begin{array}{l} h(z) = \sum_{i=1}^{n} a_{j} + k(X_{ij}, z) \\ \Phi(X_{i}) \cdot w = (\Phi(X)w)_{i} = (\Phi(X)\Phi(X)^{\top}a)_{i} = (Ka)_{i} \end{array}$

 $a \leftarrow \begin{bmatrix} y_1 & 0 & \cdots & 0 \end{bmatrix}^{\top}$: while some $y_i(Ka)_i < 0, a_i \leftarrow a_i + \epsilon y_i$ $O(n^2d)$ to kernel mtx O(1) to update a, O(n) to update Ka

Learning Theory

Range Space (P, H): $P = \text{set of all possible train/test pts (ex. } \mathbb{R}^d)$ H = set of all possible hypotheses Dichotomy: split of input data into two separate classes, not necessarily linear decision boundary. Shatter Function: $\Pi_H(X) = |\{X \cap h : h \in H\}| = \text{maximum number}$ of dichotomies hypothesis class H can produce in particular set of points X. $\Pi_H(n) = \max_{|X|=n, X \subset P} \Pi_H(X) = \text{maximum number of}$

dichotomies hypothesis class H can produce amongst a set of n data points and is only ever 2^n (known as shattering) or polynomial in n. VC Dimension = the largest number of points D s.t. $\Pi_H(D) = 2^n$. Basically largest number of points a hypothesis class can produce all dichotomies of. Can be infinite, can be 0. A linear perceptron classifier with d parameters (d-dimensional weight vectors) has a VC dimension of d. For example, 2d linear perceptron (three weights - one for each dimension and one fictitious dimension = bias) has VC dimension of 3.

AdaBoost

Ensemble method that trains multiple learns on weighted sample points and weights learner. (misclassified points = increased weights, accurate learners = increased weights). Find classifier G_T and coefficient β_T to minimize

Risk = $\frac{1}{n} \sum_{i=1}^{n} L(M(X_i), y_i)$ with $M(X_i) = \sum_{t=1}^{T} \beta_t G_t(X_i)$ AdaBoost metalearner uses $L(\rho, \ell) = e^{-\rho \ell}$

 $w_i^{(T+1)} = w_i^{(T)} \exp(-\beta_T y_i G_T(X_i)), \, \beta_T = \frac{1}{2} \ln\left(\frac{1 - \text{err}_T}{\text{err}_T}\right)$

 $\operatorname{err}_T = \frac{\sum_{y_i \neq G_T(X_i)} w_i^{(T)}}{\sum_{t=1}^n w_i^{(T)}}. \text{ metalearner: } h(z) = \operatorname{sign}(\sum_{t=1}^T \beta_t G_t(z))$

Neural Nets

Multi-layered perceptron, each layer puts outputs of previous layer linear function and then activation function. Minimize loss via gradient descent

Principal Component Analysis

PCA only makes linear relations. Low-rank approximation is lossy feature selection: you lose lower variance components yet select out low-singular values (often "noise" components) XX^{\top}

Clustering

NP-hard: find $\operatorname{argmin}_{y} \sum_{i=1}^{k} \sum_{y_{i}=i} ||X_{j} - \mu_{i}||^{2}$

K-means: alternate between fixed y_i 's update μ_i 's and vice versa. Halt when step 2 changes no assignments. Both steps decrease objective fn unless they change nothing; alg must terminate. Initialization: Forgy method (choose k random points to be centroids). Can also use the (worse) random partitions - randomly assign each point to a cluster. K-medioids: K-means, but instead of using mean, use medioid, sample point minimizing total distance to other points in cluster.

Hierarchical clustering: creates a tree, every subtree is a cluster. Bottom-up (agglomerative) start with each point a cluster; repeatedly fuse pairs minimizing d(A, B). Linkage functions: complete: $d(A, B) = \max\{d(w, x) : w \in A, x \in B\}$ single: $d(A, B) = \min\{d(w, x) : w \in A, x \in B\}$ average: $d(A, B) = \frac{1}{|A||B|} \sum_{w \in A} \sum_{x \in B} dist(w, x)$

centroid: $d(A, B) = dist(\mu_A, \mu_B)$

Top-down (divisive) starts with single cluster, repeatedly splits

Miscellaneous

NP-Hard to find optimal linear classifier

Bayes vs. GDA

Bayes uses true mean/variance, while GDA uses sample mean/variance. True mean/variance

Cauchy-Schwarz $|\langle x, y \rangle| \le ||x|| \cdot ||y||$ Sigmoid Function:

 $s(\gamma) = \frac{1}{1+e^{-\gamma}}$

Graph:

Unique Optimum

Only ridge regression has one unique optimum (not Least Squares, Lasso, or Logistic).

Training Data:

Training on less data can improve training accuracy, training on more data can improve valida-

tion/test accuracy.