EGZAMIN WSTĘPNY Z MATEMATYKI

Zestaw składa się z 30 zadań. Zadania 1–10 oceniane będą w skali 0–2 punkty, zadania 11–30 w skali 0–4 punkty. Czas trwania egzaminu — 180 minut.

Powodzenia!

1. Obliczyć
$$\lim_{n \to \infty} \frac{n\sqrt{1+3+5+...+(2n-1)}}{2n^2+n+1}$$
.

- 2. Rozwiązać nierówność $x^2 4x + 9 \leqslant \frac{18}{x+2}$.
- 3. Rozwiązać nierówność $\log_{0.3}(x+1) > -1$.
- 4. Rozwiązać nierówność 2 |1 2x| > 1.
- 5. Dla jakich wartości parametru $\alpha \in (0; 2\pi)$ równanie $\sin 2x = 2\cos \alpha$ posiada rozwiązanie?
- 6. Obliczyć długość wektora \vec{a} , jeżeli $\vec{a} \circ \vec{b} = 7$, $\vec{a} \parallel \vec{b}$ i $\vec{b} = [3, -2, 1]$.
- 7. Rozwiazać nierówność $2^{x^2} < 5^x$.
- 8. Wykazać, że funkcja $f(x) = 3x^3 + 4x + \cos 2x$ jest rosnąca w całej swojej dziedzinie.
- 9. Wyznaczyc te wartości parametru k, dla których prosta y=kx+4 będzie równoległa do prostej $\begin{cases} x=1+3t\\ y=2-t \end{cases}.$
- 10. Dla jakich a i b wielomian $W(x) = 12x^4 17x^2 + ax + b$ dzieli się bez reszty przez $2x^2 + x 1$?
- 11. Dany jest trójkąt o wierzchołkach A(1,1), B(-1,3), C(3,7) i polu S. Przez wierzchołek A poprowadzić jedną z prostych, ktora dzieli dany trójkąt na dwa trójkąty o polach $\frac{1}{4}S$ i $\frac{3}{4}S$. Podać równanie tej prostej.
- 12. Znaleźć ekstrema funkcji $f(x)=(x+3)^2(x+8)^3$. Ile pierwiastków ma równanie f(x)=108?
- 13. Dla jakiej wartości parametru a funkcja

$$f(x) = \begin{cases} \frac{x \sin x}{\sqrt{x^2 + 4} - 2} & \text{dla } x \neq 0 \\ a & \text{dla } x = 0 \end{cases}$$

będzie funkcją ciągłą w punkcie x = 0?

14. Który z punktów paraboli $y = x^2$ jest położony najbliżej prostej y = 2x - 2?