Security and Applications

DES and AES

Data Encryption Standard (DES) Basics

DES Example

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
 L = 0000 0001 0010 0011 0100 0101 0110 0111
 R = 1000 1001 1010 1011 1100 1101 1110 1111

PC-1

```
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
```

- From the original 64-bit key
- $K = 00010011 \ 00110100 \ 01010111 \ 01111001 \ 10011011 \ 10111100 \ 11011111 \ 11110001$
- we get the 56-bit permutation
- K+ = 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111
- Next, split this K+ into left and right halves,

• $C_o = 1111000 0110011 0010101 0101111$ $D_o = 0101010 1011001 1001111 0001111$

	Iteration	Shift
•	1	1
•	2	1
•	3	2
•	4	2
•	5	2
•	6	2
•	7	2
•	8	2
•	9	1
•	10	2
•	11	2
•	12	2
•	13	2
•	14	2
•	15	2
•	16	1

- From original pair pair C_0 and D_0 we obtain:
- $C_o = 111100001100110010101011111$ $D_o = 01010101011001100111110001111$
- $C_1 = 111000011001100101010111111$ $D_1 = 1010101011001100111100011110$
- $C_2 = 110000110011001010101111111$ $D_2 = 0101010110011001111000111101$
- $C_4 = 0011001100101010111111111100$ $D_4 = 01011001100111110001111010101$
- $C_5 = 1100110010101011111111110000$ $D_5 = 01100110011111000111101010101$
- $C_6 = 0011001010101111111111000011$ $D_6 = 100110011111000111101010101$

 $C_7 = 110010101010111111111100001100$ $D_7 = 0110011110001111010101010110$ $C_8 = 00101010101111111110000110011$ $D_{g} = 100111100011110101010101011001$ $C_{o} = 01010101011111111100001100110$ $D_q = 00111100011110101010101110011$ $C_{10} = 01010101111111110000110011001$ $D_{10} = 1111000111101010101011001100$ $C_{11} = 010101111111111000011001100101$ $D_{11} = 1100011110101010110110011$ $C_{12} = 010111111111100001100110010101$ $D_{12} = 0001111010101011100110011111$ $C_{13} = 01111111110000110011001010101$ $D_{13} = 0111101010101011001100111100$ $C_{14} = 11111111000011001100101010101$ $D_{14} = 1110101010101100110011110001$ $C_{15} = 111110000110011001010101111$ $D_{15} = 101010101011001110011111000111$ $C_{16} = 111100001100110010101011111$ $D_{16} = 01010101011001100111110001111$

DES Example: 48 bit Key Generation K_n

PC-2

```
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
```

DES Example: 48 bit Key Generation K_n • K_1 = 000110 110000 001011 101111 111111 000111 000001 110010

- For the other keys we have
- K_2 = 011110 011010 111011 011001 110110 111100 100111 100101 $K_3 = 010101\ 011111\ 110010\ 001010\ 010000\ 101100\ 111110\ 011001$ $K_{\Delta} = 011100\ 101010\ 110111\ 010110\ 110110\ 110011\ 010100\ 011101$ $K_5 = 011111 \ 001110 \ 110000 \ 000111 \ 111010 \ 110101 \ 001110 \ 101000$ $K_6 = 011000 \ 111010 \ 010100 \ 111110 \ 010100 \ 000111 \ 101100 \ 101111$ $K_7 = 111011\ 001000\ 010010\ 110111\ 111101\ 100001\ 100010\ 111100$ $K_8 = 111101\ 111000\ 101000\ 111010\ 110000\ 010011\ 101111\ 111011$ $K_{g} = 111000\ 001101\ 101111\ 101011\ 111011\ 011110\ 011110\ 000001$ $K_{10} = 101100\ 011111\ 001101\ 000111\ 101110\ 100100\ 011001\ 001111$ $K_{11} = 001000\ 010101\ 111111\ 010011\ 110111\ 101101\ 001110\ 000110$ $K_{12} = 011101\ 010111\ 000111\ 110101\ 100101\ 000110\ 011111\ 101001$ $K_{13} = 100101 \ 111100 \ 010111 \ 010001 \ 111110 \ 101011 \ 101001 \ 000001$ $K_{14} = 010111 \ 110100 \ 001110 \ 110111 \ 111100 \ 101110 \ 011100 \ 111010$ $K_{15} = 101111 \ 111001 \ 000110 \ 001101 \ 001111 \ 010011 \ 111100 \ 001010$ $K_{16} = 110010 \ 110011 \ 110110 \ 001011 \ 000011 \ 100001 \ 011111 \ 110101$

DES Example: Encode M

IP

```
50 42 34 26 18 10 2
   52 44 36 28 20 12 4
60
   54 46 38 30 22
                   14
  56 48 40 32 24
                   16 8
   49 41
         33 25 17
  51 43
         35 27 19
                   11 3
  53 45 37 29 21
                   13 5
61
63
   55 47
         39
            31 23
                   15
```

DES Example: Encode M

- Applying IP to M, we get
- M = 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
 M'= 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1010 1111 0000

- From $\mathbf{M'}$, we get $\mathbf{L_0}$ and $\mathbf{R_0}$
- L_o = 1100 1100 0000 0000 1100 1100 1111 1111 R_o = 1111 0000 1010 1010 1111 0000 1010

DES Example: Application of K_n

$$L_n = R_{n-1}$$

$$R_n = L_{n-1} + f(R_{n-1}, K_n)$$

Example

 $K_1 = 000110 \ 110000 \ 001011 \ 101111 \ 111111 \ 000111 \ 000001 \ 110010$

$$L_1 = R_0 = 1111\ 0000\ 1010\ 1010\ 1111\ 0000\ 1010\ 1010$$
 $R_1 = L_0 + f(R_0, K_1)$

HOW AES Works?

- Requirements:
 - Software that implements the AES Algorithm
 - Inputs: Data (credit card number, plain text) and Key (encryption key)

AES-Cipher

- AES is a block cipher
- Size of the block is 16 bytes
- Encryption Key Sizes:
 - 128 bit (16 Bytes)
 - 192 bit (24 Bytes)
 - 256 bit (32 Bytes)

AES Functionality

The plain text Message

Encryption

Initial encryption with Key (128bit)

Encryption

Substitution technique for other keys

Keep Iterating

Substitution technique for other keys

Encryption Algorithm Summary

Algorithm	Type	Key Size	Features
DES	Block Cipher	56 bits	Most Common, Not strong enough
TripleDES	Block Cipher	168 bits (112 effective)	Modification of DES, Adequate Security
Blowfish	Block Cipher	Variable (Up to 448 bits)	Excellent Security
AES	Block Cipher	Variable (128, 192, or 256 bits)	Replacement for DES, Excellent Security
RC4	Stream Cipher	Variable (40 or 128 bits)	Fast Stream Cipher, Used in most SSL implementations