Theorie 3: Quantenmechanik

Übungsblatt 4: Lineare Operatoren

<u>Deadline:</u> Mittwoch 15.05.2024 18.00 via eCampus

Allgemeine Eigenschaften von linearen Operatoren

- 1. Im Folgenden bezeichnen \hat{A} , \hat{B} , \hat{C} lineare Operatoren auf einem Hilbertraum \mathcal{H} , und α, β sind komplexe Zahlen. Zeigen Sie dass folgende Identitäten gelten:
 - (0.5 Punkte) $(\hat{A} + \hat{B})^{\dagger} = \hat{A}^{\dagger} + \hat{B}^{\dagger}$
 - (0.5 Punkte) $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$
 - (0.5 Punkte) $(\hat{A}^{-1})^{\dagger} = (\hat{A}^{\dagger})^{-1}$
 - (0.5 Punkte) $[\hat{A}, \hat{B}]^{\dagger} = [\hat{B}^{\dagger}, \hat{A}^{\dagger}]$
 - (0.5 Punkte) $[\hat{A}, \hat{B}] = -[\hat{B}, \hat{A}]$
 - (0.5 Punkte) $\left[\alpha \hat{A} + \beta \hat{B}, \hat{C}\right] = \alpha \left[\hat{A}, \hat{C}\right] + \beta \left[\hat{B}, \hat{C}\right]$
 - (1 Punkt) $[\hat{A}, [\hat{B}, \hat{C}]] + [\hat{B}, [\hat{C}, \hat{A}]] + [\hat{C}, [\hat{A}, \hat{B}]] = 0$
 - (0.5 Punkte) $[\hat{A}\hat{B},\hat{C}]=\hat{A}[\hat{B},\hat{C}]+[\hat{A},\hat{C}|\hat{B}$
 - (2 Punkte) $[\hat{A}^n, \hat{B}] = \sum_{k=0}^{n-1} \hat{A}^k [\hat{A}, \hat{B}] \hat{A}^{n-k-1}$, wobei $n \ge 1$ eine natürliche Zahl ist.
- 2. Im Folgenden sind \hat{U} und \hat{V} unitäre Operatoren auf \mathcal{H} , und \hat{A} is hermitisch.
 - (1 Punkt) Zeigen Sie dass die Menge aller unitärer Operatoren auf \mathcal{H} eine Gruppe bildet.
 - (0.5 Punkte) Zeigen Sie dass $\hat{U}\hat{A}\hat{U}^{-1}$ hermitisch ist.

Die Exponentialfunktion

Das Exponential eines linearen Operators ist definiert als

$$e^{\hat{A}} = \sum_{n=0}^{\infty} \frac{\hat{A}^n}{n!} \,.$$

- 1. (1 Punkt) Zeigen Sie dass $[\hat{A}, e^{\hat{A}}] = 0$.
- 2. (1 Punkt) Zeigen Sie dass $e^{\hat{B}\hat{A}\hat{B}^{-1}} = \hat{B}e^{\hat{A}}\hat{B}^{-1}$
- 3. Zeigen Sie dass $e^{\hat{A}}e^{\hat{B}}=e^{\hat{A}+\hat{B}}$ dann und nur dann wenn $[\hat{A},\hat{B}]=0$. Zu diesem Zweck definieren wir zwei Funktionen:

$$f(t) = e^{t\hat{A}}e^{t\hat{B}}$$
 and $g(t) = e^{t(\hat{A}+\hat{B})}$.

Wir müssen nun zeigen dass f(t) = g(t) für alle t dann und nur dann wenn $[\hat{A}, \hat{B}] = 0$.

- (1 Punkt) Zeigen Sie dass aus f(t) = g(t), für alle t, folgt dass $[\hat{A}, \hat{B}] = 0$. <u>Hinweis:</u> Wenn f und g gleich sind, dann müssen auch deren Ableitungen gleich sein.
- (2 Punkte) Wir nehmen nun an dass $[\hat{A}, \hat{B}] = 0$. Zeigen dass daraus folgt dass f(t) = g(t) für alle t. Hinweis: Zeigen Sie dass f und g Lösung einer gemeinsamen Differentialgleichung sind.
- 4. Wir wollen nun an einem Beispiel zeigen wie man das Exponential im endlich-dimensionalen Fall ausrechnen kann. Wir betrachten den linearen Operator auf \mathbb{C}^2 der in der Standardbasis dargestellt wird durch die Matrix

$$M = \begin{pmatrix} 1 & 2-i \\ 2+i & -3 \end{pmatrix} .$$

- (4 Punkte) Bestimmen Sie die Eigenwerte und Eigenvektoren der Matrix M, und schreiben Sie M in der Form $M = UDU^{-1}$, wobei D eine Diagonalmatrix ist.
- (3 Punkte) Wenden Sie die vorherigen Ergebnisse an um e^M auszurechnen.