Characterization of Surfaces and Interfaces

Modern Techniques of Surface Science

– D.P. Woodruff and T.A. Dechar

Scanning Tunneling Microscope (STM)

The Tunneling Effect

The tunneling effect consists of the propagation of a particle through a region where the particle's energy is smaller than the potential energy. Classically this region is forbidden to the particle where its kinetic energy would be negative. Quantum mechanically, however, since particles display wave features, the quantum waves can tunnel through the barrier.

Scanning tunnelling microscopy (STM)

Si & Au as seen in STM

wikipedia.org

Scanning Tunneling Microscope (STM)

Quantum Tunnel Effect and Tunneling Microscope

www.youtube.com/watch?v=K64Tv2mK5h4

The Scanning Tunnelling Microscope: How it Works and Its Applications

www.youtube.com/watch?v=RftWp_3RZwA

AFM Modes of Operation	Working Principle	Advantage	Disadvantage
Contact Mode	 Physical contact between the tip and the surface 	High scan speedsHigh resolution	 Damage to soft sample Later forces may produce image artefacts
Non-contact Mode	 No contact between the tip and the sample 	Low resolutionNo damage to sample	Slower scan speed if compared with both contact and tapping mode
Tapping Mode	Intermittent and short contact between the sample and the tip	High resolutionMinimal damage to sample	Slower scan speed if compared with contact mode

Product 1

Product 2

Imaging internal bond structure with CO-mediated non-contact atomic force microscopy (NC-AFM)

Reactant

1.7 mV

AFM Principle- Basic Training

www.youtube.com/watch?v=s6KqJS1GZNE

Dr Rashid, 2021

- Elemental information
 - Similar to EDS
 - Great for low-Z materials
- Bonding/valence state
- Nearest-neighbor atomic structure
- Dielectric response
- Free-electron density
- Band gap
- Specimen thickness

- When electron interacts with specimen, it loses energy in different ways.
- This loses energy contains information about the sample.
- So, It can be separated by magnetic prism and analyzed to find the details of their bonding/valence state, the nearest-neighbor atomic structure, their dielectric response, the free electron density, the band gap, and the specimen thickness.

Introduction to electron energy-loss spectroscopy

www.youtube.com/watch?v=wBz6csZN4Jc

There are more

- Auger Electron Spectroscopy(AESO)
- X-ray Photoemission Spectroscopy (XPS)
- Low Energy Electron Diffraction (LEED)
- Reflection High Energy Electron Diffraction (RHEED)