Lycée Thiers

QUESTIONS BRÈVES - C

C1	$\forall x \in \mathbb{R}, -x = x$	
C2	$\forall x \in \mathbb{R}, x \leqslant x$	
СЗ	$\forall x \in \mathbb{R}, \ x = x \Leftrightarrow x \geqslant 0$	
C4	L'équation $x^2 = x $ possède 2 solutions	
C5	L'équation $ x - 1 = x + 1 $ ne possède pas de solution	
C6	L'équation $ x^2 - 1 = x $ possède 4 solutions	
C7	$\forall x \in \mathbb{R}, \ x + x \le 2 x $	
C8	$\forall x \in \mathbb{R}, x-1 \le x+1 $	
C9	$\forall x \in \mathbb{R}, x^2 \leqslant 10^{10} x $	
C10	$\exists x \in \mathbb{R}; \ x + \sqrt{x^2} = 0$	
C11	$\forall x \in \mathbb{R}, \ x + \sqrt{x^2 + 1} > 0$	
C12	$\forall (x, y) \in [0, +\infty[^2, \sqrt{x} - \sqrt{y}] \leq x - y $	
C13	$\forall (x,y) \in \mathbb{R}^2, x-y \le x - y $	
C14	$\forall (x, y) \in \mathbb{R}^2, xy = x y $	
C15	$\forall (x,y) \in \mathbb{R}^2, \left x + y \right \leqslant \sqrt{x^2 + y^2}$	
C16	$\forall (x,y) \in \mathbb{R}^2, x + y \leq \sqrt{x^2 + y^2}$	
C17	L'équation $ x - 1 = 1$ possède 2 solutions	
C18	L'ensemble des solutions de $ x + 3 > 1$ est un intervalle	
C19	$\forall (x,y) \in \mathbb{R}^2, \ \forall a \in \mathbb{R}^+, \ x-y \le a \Leftrightarrow x-a \le y \le x+a$	

C20	x + y = 1 est l'équation d'un cercle	*
C21	$\forall (x, y) \in \mathbb{R}^2, x + y \le 1 \Rightarrow x^2 + y^2 \le x + y $	
C22	$\forall (x,y) \in \mathbb{R}^2, x^2 + y^2 \leq x + y \Rightarrow x + y \leq 1$	
C23	L'application $x \mapsto \sin(x) $ est π -périodique	
C24	$\forall x \in \mathbb{R}, \cos(x) + \sin(x) \ge 1$	
C25	$\forall x \in [0, \pi], \ \sqrt{\frac{1 + \cos(2x)}{2}} = \cos(x)$	
C26	$\forall x \in \mathbb{R}, \ \sin(x) \le x $	