1. Proof:

$$\begin{split} & \operatorname{Pr}(\alpha_{1}, \dots, \alpha_{n} | \beta) = \frac{\operatorname{Pr}(\alpha_{1}, \dots, \alpha_{n}, \beta)}{\operatorname{Pr}(\beta)} \\ & \operatorname{Pr}(\alpha_{1} | \alpha_{2}, \dots, \alpha_{n}, \beta) = \frac{\operatorname{Pr}(\alpha_{1}) * \operatorname{Pr}(\alpha_{2}, \dots, \alpha_{n}, \operatorname{B} | \alpha_{1})}{\operatorname{Pr}(\alpha_{2}, \dots, \alpha_{n}, \beta)} \\ & \operatorname{Pr}(\alpha_{2}, \dots, \alpha_{n}, \beta) = \operatorname{Pr}(\alpha_{3}, \dots, \alpha_{n}, \beta | \alpha_{2}) * \operatorname{Pr}(\alpha_{2}) \\ & \vdots \operatorname{Pr}(\alpha_{1} | \alpha_{2}, \dots, \alpha_{n}, \beta) = \frac{\operatorname{Pr}(\alpha_{1}) * \operatorname{Pr}(\alpha_{2}, \dots, \alpha_{n}, \operatorname{B} | \alpha_{1})}{\operatorname{Pr}(\alpha_{3}, \dots, \alpha_{n}, \beta | \alpha_{2}) * \operatorname{Pr}(\alpha_{2})} \\ & \operatorname{Pr}(\alpha_{1} | \alpha_{2}, \dots, \alpha_{n}, \beta) \operatorname{Pr}(\alpha_{2} | \alpha_{3}, \dots, \alpha_{n}, \beta | \alpha_{2}) * \operatorname{Pr}(\alpha_{2}) \\ & = \frac{\operatorname{Pr}(\alpha_{1}) * \operatorname{Pr}(\alpha_{2}, \dots, \alpha_{n}, \beta | \alpha_{1})}{\operatorname{Pr}(\alpha_{3}, \dots, \alpha_{n}, \beta | \alpha_{2}) * \operatorname{Pr}(\alpha_{2}) * \operatorname{Pr}(\alpha_{3}, \dots, \alpha_{n}, \beta | \alpha_{3}) * \operatorname{Pr}(\alpha_{3}) * \dots * \frac{\operatorname{Pr}(\alpha_{n}) * \operatorname{Pr}(\beta | \alpha_{n})}{\operatorname{Pr}(\beta)} \\ & = \frac{\operatorname{Pr}(\alpha_{1}) * \operatorname{Pr}(\alpha_{2}, \dots, \alpha_{n}, \beta | \alpha_{1})}{\operatorname{Pr}(\beta)} \\ & = \frac{\operatorname{Pr}(\alpha_{1}, \dots, \alpha_{n}, \beta)}{\operatorname{Pr}(\beta)} \\ & \vdots \operatorname{Pr}(\alpha_{1}, \dots, \alpha_{n}, \beta | \beta) = \operatorname{Pr}(\alpha_{1} | \alpha_{2}, \dots, \alpha_{n}, \beta) \operatorname{Pr}(\alpha_{2} | \alpha_{3}, \dots, \alpha_{n}, \beta) \dots \operatorname{Pr}(\alpha_{n} | \beta) \\ & \vdots \operatorname{Pr}(\alpha_{1}, \dots, \alpha_{n}, \beta) = \operatorname{Pr}(\alpha_{1} | \alpha_{2}, \dots, \alpha_{n}, \beta) \operatorname{Pr}(\alpha_{2} | \alpha_{3}, \dots, \alpha_{n}, \beta) \dots \operatorname{Pr}(\alpha_{n} | \beta) \end{split}$$

2. Pr(Oil) = 0.5, Pr(Gas) = 0.2, Pr(Neither) = 0.3, Pr(Positive|Oil) = 0.9, Pr(Positive|Gas) = 0.3, Pr(Positive|Neither) = 0.1

$$\begin{split} ⪻(Oil|Positive) = ? \\ ⪻(Oil|Positive) = \frac{Pr(Oil) * Pr(Positive|Oil)}{Pr(Positive)} \end{split}$$

$$\begin{split} \Pr(Positive) &= \Pr(Positive|Oil) * \Pr(Oil) + \Pr(Positive|Gas) * \Pr(Gas) \\ &+ \Pr(Positive|Neither) * \Pr(Neither) \\ &= 0.9 * 0.5 + 0.3 * 0.2 + 0.1 * 0.3 \\ &= 0.54 \end{split}$$

$$\therefore \Pr(Oil|Positive) = \frac{0.5 * 0.9}{0.54}$$
$$= 0.83\overline{3}$$

3. The DAG looks like:

We can create a new RV Coin for the coin that is drawn. CPT Coin:

		
Coin	Pr(Coin)	
Α	1/3	
В	1/3	
С	1/3	

For each of the outcomes X_i , the CPT is:

Coin	X_i	$Pr(X_i Coin)$
Α	Т	0.2
A	F	0.8
В	Т	0.4
В	F	0.6
С	Т	0.8
С	F	0.2

CPT Bell:

X_1	X_2	X_3	Bell	$Pr\left(Bell X_1, X_2, X_3\right)$
Т	Т	Т	Т	1
Т	Т	Т	F	0
Т	Т	F	Т	0
T	Т	F	F	0
Т	F	Т	Т	0
T	F	Т	F	0
Т	F	F	Т	0
Т	F	F	F	0
F	Т	Т	Т	0
F	Т	Т	F	0
F	Т	F	Т	0
F	Т	F	F	0
F	F	Т	Т	0
F	F	Т	F	0
F	F	F	Т	1
F	F	F	F	0

4.

(a)

$$I(A,\emptyset,\{B,E\})$$

 $I(B,\emptyset,\{A,C\})$
 $I(C,\{A\},\{B,D,E\})$
 $I(D,\{A,B\},\{C,E\})$
 $I(E,\{B\},\{A,C,D,F,G\})$
 $I(F,\{C,D\},\{A,B,E\})$
 $I(G,\{F\},\{A,B,C,D,E,H\})$
 $I(H,\{F,E\},\{A,B,C,D,G)\}$

- (i) False, the path A,D,B,E is open because D is convergent and B is divergent.
- (ii) True, B is closed because B is divergent and is part of the evidence. H cannot be used in a path either since it is convergent.
- (iii) True, CDE is given as evidence, and no path exists.

(b)
$$Pr(a,b,c,d,e,f,g,h) = Pr(a)Pr(b)Pr(c|a)Pr(d|a,b)P(e|b)Pr(f|c,d)Pr(g|f)Pr(h|f,e)$$

(c)
$$Pr(A = 1, B = 1)$$
 and $Pr(E = 0|A = 0)$

$$Pr(A = 1, B = 1) = Pr(A = 1) * Pr(B = 1) = 0.2 * 0.7 = 0.14$$

 $Pr(E = 0|A = 0) = Pr(E = 0)$ (independence due to d – separation)
 $= Pr(E = 0|B = 1) Pr(B = 1) + * Pr(E = 0|B = 0)P(B = 0)$
 $= 0.9 * 0.7 + 0.1 * 0.3$
 $= 0.66$

5.

	Α	В	$\neg A \lor B$	Pr(A, B)
w_0	Т	Т	Т	0.3
w_1	Т	F	F	0.2
W_2	F	Т	Т	0.1
W_3	F	F	T	0.4

(a) w_0, w_2, w_3

(b)
$$Pr(\alpha) = 0.3 + 0.1 + 0.4 = 0.8$$

(c)
$$Pr(A, B | \alpha) = \frac{Pr(A, B, \alpha)}{P(\alpha)} = 0.375$$

	(u)	
Α	В	$P(A,B \alpha)$
Т	Т	= 0.3 / 0.8 = 0.375
Т	F	0
F	Т	= 0.1 / 0.8 = 0.125
F	F	= 0.4 / 0.8 = 0.5

(d)
$$Pr(\neg A \lor \neg B | \alpha) = 0.5 + 0.125 = 0.625$$