

Algorithmen und Datenstrukturen 1

Prof. Dr. Carsten Lecon

Wiederholung

- Algorithmusbegriff
 - präzise, eindeutig, endliche Beschreibung, ...
 - Eigenschaften von Algorithmen
 - Determinismus
 - Statische Finitheit
 - Dynamische Finitheit
 - Komplexität
 - Zeiteffizienz
 - Speichereffizienz
 - Korrektheit
 - Terminiertheit
 - Beispiele (Kürzen eines Bruches)

Wiederholung

- Notation von Algorithmen
 - Natürliche Sprache
 - Mathematische Formeln
 - Programmablaufplan
 - Struktogramm
 - Pseudocode

Inhalt I

- Analyse von Algorithmen
 - Einführung
 - Beispiel
 - Analyse
 - Wachstum von Funktionen
- Entwurf von Algorithmen
 - Einführung
 - Teile und herrsche
 - Greedy-Verfahren
 - Backtracking

Inhalt I

- Analyse von Algorithmen
 - Einführung
 - Beispiel
 - Analyse
 - Wachstum von Funktionen
- Entwurf von Algorithmen
 - Einführung
 - Teile und herrsche
 - Greedy-Verfahren
 - Dynamische Programmierung
 - Vollständige Enumeration
 - Backtracking

Lernziele

- Herausforderungen:
 - Wie zeigt man die Korrektheit eines Algorithmus?
 - Wie kann man die Laufzeit abschätzen?
 - Wie kann man den Speicherbedarf abschätzen?
 - Asymptotische Laufzeit
- Untersuchung am Beispiel eines Sortieralgorithmus

Inhalt I

- Analyse von Algorithmen
 - Einführung
 - Beispiel
 - Analyse
 - Wachstum von Funktionen
- Entwurf von Algorithmen
 - Einführung
 - Teile und herrsche
 - Greedy-Verfahren
 - Dynamische Programmierung
 - Vollständige Enumeration
 - Backtracking

Das Sortierproblem

- Das Sortierproblem wird beschrieben durch
 - Eingabe: Folge von n ganzen Zahlen (a₁, a₂, ..., a_n)
 - Ausgabe: Eine Permutation (a´₁, a´₂, ..., a´_n) mit
 a´₁ ≤ a´₂ ≤ ... ≤ a´_n
 - Beispiel:
 - Eingabe:

• Ausgabe:

Anwendungen des Sortierproblems

- Sortierproblem ist fundamentales Problem in der Informatik:
 - Es kommt als Teilproblem in vielen Anwendung vor.
 - Es gibt viele Lösungen (Algorithmen).
 - Die unterschiedlichen Lösungen basieren z.T. auf unterschiedliche Entwurfstechniken.
 - Das Problem an sich ist gut verstanden. Man kennt eine untere Schranke für die Laufzeit.
 - Das Problem ist optimal lösbar, d.h., die besten Algorithmen haben eine Laufzeit in der Größenordnung der unteren Schranke.

Anwendungen des Sortierproblems

- Beispiel: Insertionsort
- Einfach, wenig effizient; aber
 - leicht zu implementieren
 - gute Ergebnisse bei vorsortierten oder kleinen Folgen
- Entspricht bspw. dem Kartenaufnehmen in Kartenspielen

Bildquelle: http://mathbits.com

Algorithmus (in Pseudocode)

```
function insertionsort(A)
    for i=2 to länge(A)
      x = A[i] // einzufügendes Element
      j = i  // einzufügende Position
      while( (j>1) and (A[j-1] > x) )
        A[j] = A[j-1]
        j = j-1
    end while
      A[j] = x
10 end for
11 end function
```


Indizierung bei Feldern (Arrays)

- Obacht!
 - In Programmiersprachen in der Regel0 ... n-1
 - Bei der Beschreibung von Algorithmen in der Regel
 1 ... n

Algorithmus (als Struktogramm)

- Wie sieht es aus?
 - → Hörsaalübung ©

Inhalt I

- Analyse von Algorithmen
 - Einführung
 - Beispiel
 - Analyse
 - Wachstum von Funktionen
- Entwurf von Algorithmen
 - Einführung
 - Teile und herrsche
 - Greedy-Verfahren
 - Dynamische Programmierung
 - Vollständige Enumeration
 - Backtracking

- Wichtige Kriterien:
 - Korrektheit:
 - Es ist zu zeigen, dass der Algorithmus für alle Instanzen des Problems eine korrekte Lösung berechnet.
 - Komplexität:
 - Der Ressourcenbedarf des Algorithmus an Laufzeit und Speicher wird untersucht. In der Praxis relevant ist vor allem die Laufzeit.
 - Wichtig ist ein aussagekräftiges Maß für diese Größen.

Korrektheit von Algorithmen

```
1 function insertionsort(A)
2 for i=2 to lange(A)
3     x = A[i] // einzufügendes Elemen
4     j = i // einzufügende Positio
5     while( (j>1) and (A[j-1] > x) )
6          A[j] = A[j-1]
7          j = j-1
8          end while
9          A[j] = x
10     end for
11 end function
```

- In Analogie zur Beweistechnik der vollständigen Induktion wird mit Invarianten (Schleifeninvarianten) gearbeitet, indem man folgende Punkte zeigt:
 - Initialisierung:
 - Die Invariante ist vor der ersten Iteration der Schleife wahr.
 - Aufrechterhaltung:
 - Wenn die Invariante vor einer Iteration der Schleife erfüllt ist, dann ist sie auch vor Beginn der nächsten Iteration erfüllt.
 - Terminierung:
 - Wenn die Schleife endet, dann liefert die Invariante einen nützlichen Hinweis, um die Korrektheit des Algorithmus zu zeigen.

- Beobachtung: Berechnung erfolgt in Schleife (2..n)
- Schleifeninvariante:
 - Die Teilfolge a₁, ..., a_{i-1} ist sortiert.

```
function insertionsort(A)
for i=2 to länge(A)

x = A[i] // einzufügendes Element
j = i // einzufügende Position
while((j>1) and (A[j-1] > x))

A[j] = A[j-1]

j = j-1
end while
A[j] = x

end for

lend function
```


- Initialisierung:
 - Vor dem ersten Schleifendurchlaufs (Zeile 2) gilt:
 - i wird auf 2 gesetzt
 - Teilfolge ist a₁, ..., a₂₋₁ (also nur a₁)
 - → das Feld ist sortiert, die Invariante ist erfüllt.

```
function insertionsort(A)
for i=2 to länge(A)

x = A[i] // einzufügendes Element
j = i // einzufügende Position
while((j>1) and (A[j-1] > x))

A[j] = A[j-1]

j = j-1
end while
A[j] = x

end for

lend function
```


- Aufrechterhaltung:
 - Die for-Schleife bewegt die Elemente a_{j-1}, a_{j-2}, ...jeweils um eine Position nach rechts (Zeilen 4-8), bis der richtige Einfügeplatz für a_i gefunden ist.
 - Dann wird a_i an diese Stelle geschrieben (Zeile 9).

```
function insertionsort(A)
for i=2 to länge(A)

x = A[i] // einzufügendes Element
j = i // einzufügende Position
while((j>1) and (A[j-1] > x))

A[j] = A[j-1]

j = j-1
end while
A[j] = x

end for

lend function
```


- Aufrechterhaltung (2):
 - Der Schlüssel von a_i wird zwischengespeichert.
 - In der vorigen Iteration wurde eine sortierte Teilfolge (a₁, ..., a_{i-1}) hergestellt.
 - In der **while**-Schleife wird das erste Element $a_j \le a_i < a_{j+1}$ gesucht.
 - a_i wird durch Verschieben der größeren Elemente zwischen a_i und a_{i+1} einsortiert.
 - → somit sind die Elemente a_i, a_i sortiert.
 - → die Schleifeninvariante ist zum Start der nächsten Iteration wieder erfüllt.

```
1 function insertionsort(A)
2  for i=2 to lange(A)
3  x = A[i] // einzufugendes Element
4  j = i // einzufugende Position
5  while( (j>1) and (A[j-1] > x) )
6  A[j] = A[j-1]
7  j = j-1
8  end while
9  A[j] = x
10 end for
```


- Terminierung:
 - Algorithmus terminiert, wenn i=n+1 (länge(A)).
 - Da die Invariante "a₁, …, a_{i-1} ist geordnet" gilt, gilt auch "a₁, …, a_n ist geordnet" (da i=n+1).
- → Der Algorithmus ist korrekt, die Liste ist geordnet.

```
1 function insertionsort(A)
2  for i=2 to länge(A)
3  x = A[i] // einzufügendes Element
4  j = i // einzufügende Position
5  while( (j>1) and (A[j-1] > x) )
6  A[j] = A[j-1]
7  j = j-1
8  end while
9  A[j] = x
10  end for
1lend function
3/3
```

Noch ein Beispiel (Klausur WS 2012/2013)

Zeigen Sie mit vollständiger Induktion, dass die Schleifeninvariante $r = 2^i$ lautet.

```
1. public static int pot2 (int n) {
2.  int r = 1;
3.  int i = 0;
4.  while (i < n) {
5.   r *= 2;
6.  i++;
7.  }
8.  return r;
9. }</pre>
```

- Wichtige Kriterien:
 - Korrektheit:
 - Es ist zu zeigen, dass der Algorithmus für alle Instanzen des Problems eine korrekte Lösung berechnet.
 - Komplexität:
 - Der Ressourcenbedarf des Algorithmus an Laufzeit und Speicher wird untersucht. In der Praxis relevant ist vor allem die Laufzeit.
 - Wichtig ist ein aussagekräftiges Maß für diese Größen.

Analyse von Algorithmen: Komplexität

- Eine Analyse erlaubt, den "besten" Algorithmus auszusuchen, bzw. die "ungünstigen" auszusortieren.
 - Absolute Qualität: Aufwandsmessung und/oder -abschätzung unabhängig von anderen Verfahren
 - Relative Qualität: relativ zur Qualität von "Konkurrenzverfahren"
- Analyse: Vorhersage des Ressourcenverbrauchs eines Algorithmus
 - Rechenzeit
 - Speicher
 - Kommunikationsbreite
 - **–** ...
- Meist ist Rechenzeit wichtig

- Rechenzeit hängt ab von
 - Probleminstanz, d.h. Eingabe
 - Eingabelänge (ist problemabhängig)
 - Bei vielen Algorithmen: Anzahl der Elemente der Eingabe (Sortieren, Fouriertransformation, ...)
 - Bei machen Algorithmen Anzahl der Bits der Eingabe (binäre Addition, Multiplikation)

- Rechenzeit kann beschrieben werden durch
 - Anzahl der einfachen Operationen, das heißt durch Zählen von Schritten, und
 - Zuweisen von Rechenzeit für bestimmte Operationen

Analyse von Algorithmen: Beispiel

```
function insertionsort(A)
    for i=2 to länge(A)
      x := A[i]
      j := i
 while( (j>1) and (A[j-1] > x) )
       A[j] := A[j-1]
       j := j-1
    end while
    A[j] = x
10 end for
11 end function
```


- Was sind hier die relevanten Operationen?
 - Herausnehmen/Einfügen eines Objekts: Pro Iteration nur einmal
 - Größenvergleich mit Objekten der linken (sortierten)
 Teilfolge: variabel
 - Verschieben von Objekten nach rechts: variabel

- Arten der Analyse:
 - best case
 - worst case
 - average case

- Laufzeit: best case:
 - Bereits sortierte Folge
 - Aufwand: Pro Iteration ein Vergleich
 - 1. Objekt wird nicht verglichen (j>1)
 - → n-1 Iterationsrunden
 - → Gesamtaufwand in der **Größenordnung** von n-1, da der absolute Aufwand für einen Einzelvergleich nicht spezifiziert ist.

```
1 function insertionsort(A)
2  for i=2 to lange(A)
3     x := A[i]
4     j := i
5     while((j>1) and (A[j-1] > x))
6     A[j] := A[j-1]
7     j := j-1
8     end while
9     A[j] = x
10 end for
11 end function
```

- Aufwand (allgemein):
 - Abstraktion auf Potenzen oder andere Funktionen der Gesamtzahl n der zu sortierenden Elemente (n, n², log n, n³ * log n, etc.)
 - Vernachlässigung von konstanten Anteilen (z.B. n-1)
 - "O-Notation":
 - O(n²): "In der Ordnung von n²"
- In unserem Fall:
 - O(n)
 - Die Komplexität von insertionsort im best case ist O(n).

function insertionsort(A)
for i=2 to lange(A)

10 end for

while (j>1) and (A[j-1] > x)

- Laufzeit: worst case:
 - Pro Iteration Vergleich und Verschieben von allen linken Nachbarn
 - Hochrechnung:
 - 1. Iteration (i=2): ein Vergleich, einmal Verschieben
 - 2. Iteration (i=3): 2 Vergleiche, zwei Verschiebungen
 - ...
 - (n-1). Iteration (i=n): je n-1 Vergleiche und Verschiebungen

•
$$\rightarrow 2^*(1+2+...n-1)$$

= $2^*((n-1)^*n)/2) = (n-1)^*n = n^2-n$
 $\uparrow \sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

- Laufzeit: worst case:
 - Pro Iteration Vergleich und Verschieben von allen linken Nachbarn
 - Hochrechnung:
 - 1. Iteration (i=2): ein Vergleich, einmal Verschieben
 - 2. Iteration (i=3): 2 Vergleiche, zwei Verschiebungen
 - ...
 - (n-1). Iteration (i=n): je n-1 Vergleiche und Verschiebungen
 - \rightarrow 2*(1+2+...n-1) = 2*((n-1)*n)/2) = (n-1)*n = n²-n

Die Komplexität von insertionsort im worst case ist O(n²).

- O-Notation, formal:
 - Für eine gegebene Funktion g(n) ist O(g(n)) die folgende Menge von Funktionen:
 - $O(g(n)) = \{f(n): \exists \text{ positive Konstanten } c_1, n_0 \text{ mit } 0 \le f(n) \le c_1 g(n) \text{ für alle } n \ge n_0 \}$
 - Man schreibt auch: f ε O(g) oder f=O(g)
 - g ist eine asymptotische obere Schranke für f(n)

Veranschaulichung O-Notation

- O-Notation: Beispiel 1
- Zeigen Sie, dass ½ n² 3n ε O(n²)
- $\frac{1}{2} n^2 3n \le c_1 n^2$
- $\frac{1}{2}$ $\frac{3}{n}$ $\leq c_1$
- Wähle $n_0=1$ und $c_1=\frac{1}{2}$

- O-Notation: Beispiel 2
- Zeigen Sie, dass 2n² + 3n ε O(n²)
- $2n^2 + 3n \le 2n^2 + 3n^2 = 5n^2$
- Wähle $n_0=1$ und $c_1=5$

O-Notation: Größenordnungen

```
• O(1) konstant
```

- O(log n) logarithmisch
- O(log₂ n) quadratisch logarithmisch
- O(n) linear
- O(n log n) n log n
- O(n²) quadratisch
- O(n³) kubisch
- O(n^k) polynomiell
- O(kⁿ) exponentiell

Rechenregeln

$$f \in \Theta(f)$$

 $f \in \Omega(f)$
 $f \in O(f)$
 $O(O(f)) \in O(f)$
 $c \cdot O(f) \in O(f)$
 $O(f + c) \in O(f)$
 $O(f + g) \in O(\max(f, g))$
 $O(f) \cdot O(g) \in O(f \cdot g)$

O(f+g) Hintereinanderausführung von Programmteilen (Sequenz)

 $O(f) \cdot O(g)$ Schachtelung von Programmteilen

O-Notation: Größenordnungen

T1 linear, T2 logarithmisch, T3 n log n, T4 quadratisch

Annahme: Ein Rechenschritt benötigt 1ms → 1000 Schritte/s

T(n)	1s	1 min	1 h
O(n)	1.000	60.000	3.600.00
O(n log n)	140	4.895	204.094
O(n ²)	31	244	1.897
$O(n^3)$	10	39	153
O(2 ⁿ)	9	15	21

Beispiel 1: Laufzeit?

```
for (int j = 0; j < N; j++) {
    if (j == N / 2)
        break;
    for (int i = 0; i < N; i++) {
        if (i \le N / 2) {
            System.out.println(i);
        } else {
            break;
        1 // if
} // for (i)
for (int j = 0; j < 3; j++) {
    for (int i = 0; i < N; i++) {
        System.out.println(i * i);
    } // for (i)
  // for (i)
```

• Vermutung: $\frac{1}{2}$ N² + 3N

- Vermutung: $\frac{1}{2}$ N² + 3N
- Zeigen Sie, dass ½ N² + 3N ε O(N²)

$$\frac{1}{2} N^2 + 3N \le c_1 N^2$$

 $\frac{1}{2} + 3/N \le c_1$

Wähle $n_0=1$ und $c_1=3,5$

Beispiel 2: Laufzeit?

```
for (int j=0; j<N; j++) {
    for (int i=0; i<N; i++) {
        System.out.print(j-i);
    } // for (i)
} // for (j)
for (int j=0; j<3; j++) {
    for (int i=0; i<N; i++) {
        System.out.println(i);
    } // for (j)
} // for (j)</pre>
```

• Vermutung: $2N^2 + 3N = O(N^2)$

- Vermutung: $2N^2 + 3N = O(N^2)$
- Zeigen Sie, dass $2N^2 + 3N = O(N^2)$

$$2N^2 + 3N \le 2N^2 + 3N^2 = 5N^2$$

Wähle
$$n_0=1$$
 und $c_1=5$

Analyse von Algorithmen - Zusammenfassung

- Beweis der Korrektheit:
 - Z.B. mittels Invarianten
- Komplexität
 - Laufzeit wird größenordnungsmäßig beschrieben
 - Meist O-Notation