函数的倒数的极限 首先, 要证明的结论是:

任取 $\varepsilon > 0$, 存在 $\delta > 0$, 使得当 $0 < |x - x_0| < \delta$ 时, 有

$$\left| \frac{1}{g(x)} - \frac{1}{B} \right| < \varepsilon \tag{1}$$

式(1)可化为:

$$\frac{|g(x) - B|}{|B||g(x)|} < \varepsilon \tag{2}$$

注意到上式左侧由以下三项组成: 1|B|、|g(x)-B| 与 1|g(x)|. 现在要做的,就是在已经给定的正数 ε 下,找到合适的 δ ,然后分别判断这三项的取值范围,最后论证这三项在给定的 δ 下乘积能够小于 ε .

第一项 1|B| 是常数;

对第二项 |g(x) - B|, 与第三项 1|g(x)|, 由

$$\lim_{x \to x_0} g(x) = B \tag{3}$$

可得: 对于任意 $\varepsilon_0 > 0$, 能够找到 δ_0 , 使得当 $0 < |x - x_0| < \delta_0$ 时, 有 $|g(x) - B| < \varepsilon_0$.

于是:

[label=0]取 $\varepsilon_0 = \varepsilon$,则必定存在正数 δ_{10} ,使得当 $0 < |x - x_0| < \delta_{10}$ 时,有

$$|g(x) - B| < \varepsilon \tag{4}$$

取 $\varepsilon_0 = |B|2$,则必定存在正数 δ_2 ,使得当 $0 < |x - x_0| < \delta_2$ 时,就有

$$|g(x) - B| < |B|2\tag{5}$$

由 2, 可由绝对值不等式得到

$$1|g(x)| < 2|B| \tag{6}$$

取 $\delta = \min\{\delta_{10}, \delta_2\}$, 那么, 当 $0 < |x - x_0| < \delta$ 时, 就同时有 $0 < |x - x_0| < \delta_{10}$ 与 $0 < |x - x_0| < \delta_2$ 成立.

当 $0 < |x - x_0| < \delta_{10}$ 成立时,式(4)成立,

当 $0 < |x - x_0| < \delta_2$ 成立时,式(5)成立,那么式(6)也就能够成立.

于是, 当 $0 < |x - x_0| < \delta$ 时, (4)、(6)两式就能同时成立. 这时, 就有:

$$\left| \frac{1}{g(x)} - \frac{1}{B} \right| = \frac{1}{|B|} \times |g(x) - B| \times \frac{1}{|g(x)|} < \frac{1}{|B|} \times \varepsilon \times \frac{2}{|B|} = \frac{2\varepsilon}{|B|^2}$$
 (7)

这与我们最终想要证明的式(1)还差了那么一点,所以需要稍作调整. 1 中,改取 $\varepsilon_0 = |B|^2 2\varepsilon$,那么,则必定存在正数 δ_1 ,使得当 $0 < |x-x_0| < \delta_1$ 时,有

$$|g(x) - B| < \frac{|B|^2}{2}\varepsilon. \tag{8}$$

这时,改取 $\delta=\min\{\delta_1,\delta_2\}$,那么当 $0<|x-x_0|<\delta$ 时,可知(8)、(6)两式同时成立. 于是

$$\left| \frac{1}{g(x)} - \frac{1}{B} \right| = \frac{1}{|B|} \times |g(x) - B| \times \frac{1}{|g(x)|} < \frac{1}{|B|} \times \frac{|B|^2}{2} \varepsilon \times \frac{2}{|B|} = \varepsilon \quad (9)$$

这就是我们要证明的式(1).