This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT

RESPONSE UNDER 47 CHR EXPEDITEDIR A FOLK EXAMINACIOROLIS

In the Claims

Please amend claims 7, 9, 10, 13, 14 and 16 to read as follows.

P

7. (Twice amended) A compound according to Claim 16 in which Ar^2 is a 1,4-phenylene group optionally substituted with one or two atoms or groups $-L^2(Alk)_tL^3(R^4)_u$.

D

- 9. (Twice amended) A compound according to Claim 16 in which Ar¹ is a pyrimidinyl, pyridyl or phenyl group optionally substituted with one or more atoms or groups -L²(Alk)₁L³(R⁴)_u.
- 10. (Amended) A compound according to Claim 9 in which Ar^1 is a pyridyl or phenyl group optionally substituted with one or more atoms or groups $-L^2(Alk)_1L^3(R^4)_u$.

D

13. (Amended) A compound according to Claim 12 in which R^3 is a pyrrolidinyl or thiazolidinyl group optionally substituted with one or more halogen atoms, C_{1-6} alkyl groups, halo C_{1-6} alkyl groups optionally substituted with one or more hydroxyl groups, hydroxyl groups, C_{1-6} alkoxy groups, halo C_{1-6} alkoxy groups, thiol groups, C_{1-6} alkylthio groups, aromatic groups, heteroaromatic groups, or $-(Alk^2)_vR^{10}$ groups, and each nitrogen atom of the pyrrolidinyl or thiazolidinyl group is optionally substituted with a group $-(L^5)_p(Alk^3)_qR^{12}$;

EXAMINITADIPROCESS EXPEDITADIPROCESS EXPEDITADIPROCESS

or R^3 is a phenyl, pyrimidinyl or 1,3,5-triazinyl group optionally substituted with one or more atoms or groups $-R^{13a}$ or $-Alk^4(R^{13a})_m$.

14. (Amended) A compound which is:

3-{4-[(3,5-Dichloroisonicotinoyl)amino]phenyl}-3-({4-[2-hydroxyethylamino]-6-methoxy-1,3,5-triazin-2-yl}amine)propanoic acid;

3-[(3,5-Dichloroisonicotinoyl)amino]-3-{4-[(3,5-dichloroisonicotinoyl)-amino]phenyl}propanoic acid;

3 - {4 - [(3,5 - Dichloroisonicotinoyl) a mino] phenyl} - 3 - [(2,6 - dimethoxybenzoyl) amino] propanoic acid;

3-({[(4S)-3-Acetyl-1,3-thiazolinan-4-yl]carbonyl}amino-3-{4-[(3,5-dichloroisonicotinoyl)amino]phenyl}propanoic acid;

3-{4-[(3,5-Dichloroisonicotinoyl)amino]phenyl}-3-[({(2S)-1-[(3,5-dichlorophenyl)sulphonyl]tetrahydro-1-H-pyrrol-2-yl}carbonyl)amino]propanoic acid;

(2RS,3RS)-3-{4-[(3,5-Dichloroisonicotinoyl)amino]phenyl}-3-{[((2S)-1-[(3,5-dichlorophenyl)sulphonyl]tetrahydro-1-H-pyrrol-2-yl)carbonyl]amino}-2-hydroxypropanoic acid;

3-{4-[(3,5-Dichloroisonicotinoyl)amino]phenyl}-3-[({2-[(2,5-dimethoxyphenyl)thio]-3-pyridinyl}carbonyl)amino]propanoic acid;

and the salts, hydrates and N-oxides thereof.

PATENT

DOCKET NO.:CELL-0086

EXAMBLE DEDING DE LE LE RESTRONSE (CERTAINER RESTRO

16. (Amended three times) A compound of formula (1):

P4

$$Ar^{1}(Alk^{a})_{r}L^{1}Ar^{2}CH(R^{1})C(R^{a})(R^{a})R$$
 (1)

wherein

Ar¹ is an aromatic or $C_{1.9}$ heteroaromatic group containing one to four heteroatoms seleted from oxygen, nitrogen, and sulfur, and is optionally substituted with one or more atoms or groups $-L^2(Alk)_tL^3(R^4)_u$;

 L^2 and L^3 , which may be the same or different, is each a covalent bond or a divalent linker atom or group selected from -O-, -S-, -C(O)-, -C(O)O-, -OC(O)-, -C(S)-, -S(O)-, -S(O)₂-, -N(R⁸)-, -CON(R⁸)-, -OC(O)N(R⁸)-, -CSN(R⁸)-, -N(R⁸)CO-, -N(R⁸)CO-, -N(R⁸)CO)₂-, -N(R⁸)CON(R⁸)-, -N(R⁸)CON(R⁸)-, and -N(R⁸)SO₂N(R⁸)-;

 R^8 is a hydrogen atom or a C_{1-6} alkyl group optionally substituted with one or more halogen atoms, hydroxy groups, or C_{1-6} alkoxy groups;

t is zero or the integer 1;

u is an integer 1, 2 or 3;

Alk is an aliphatic or heteroaliphatic chain;

 R^4 is a hydrogen or halogen atom or a group selected from C_{1-6} alkyl, -OR⁵, -SR⁵, -NR⁵R⁶, -NO₂, -CN, -CO₂R⁵, -SO₃H, -SO₃R⁵, -SOR⁵, -SO₂R⁵, -OCO₂R⁵, -CONR⁵R⁶,

 \mathcal{P}^{ψ}

 R^5 , R^6 , and R^7 , which may be the same or different, is each a hydrogen atom or a straight or branched C_{1-6} alkyl group optionally substituted with one or more halogen atoms, hydroxy groups, or C_{1-6} alkoxy groups;

provided that when t is zero and each of L^2 and L^3 is a covalent bond, then u is the integer 1 and R^4 is other than a hydrogen atom;

 L^1 is a covalent bond or a linker atom or group selected from -CON(R^2)-, -S(O)₂N(R^2)-, -N(R^2)-, and -O-;

R² is a hydrogen atom or a C₁₋₃ alkyl group;

 Ar^2 is a phenylene group optionally substituted with one or two atoms or groups $-L^2(Alk)_iL^3(R^4)_{ij}$;

 R^1 is a group selected from -NHCOR³, -NHSO₂R³, -NHR³, -NHC(O)OR³, -NHCSR³, -NHCON(R³)(R^{3a}), -NHSO₂N(R³)(R^{3a}), and -NHCSN(R³)(R^{3a});

 R^3 is an optionally substituted C_{3-10} cycloaliphatic group, an optionally substituted C_{7-10} polycycloaliphatic group, an optionally substituted C_{3-10} heterocycloaliphatic group containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, -C(O)-, -C(O)-, -C(O)-, -S(O)-, -S(O)-, $-N(R^8)$ -, $-N(R^8)$ -, -N(

-N(R⁸)CON(R⁸)-, -N(R⁸)CSN(R⁸)- and -N(R⁸)SO₂N(R⁸)-; an optionally substituted C_{7-10} heteropolycycloaliphatic group containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, OC(O)-, -C(S)-, -S(O)-, -S(O)₂-, -N(R⁸)-, -C(O)NR⁸-, -OC(O)N(R⁸)-, -CSN(R⁸)-, -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)₂N(R⁸)-, -N(R⁸)S(O)₂-, -N(R⁸)CON(R⁸)-, -N(R⁸)CSN(R⁸)- and -N(R⁸)SO₂N(R⁸)-; an optionally substituted aromatic group, or an optionally substituted C_{1-9} heteroaromatic group containing one, two, three or four heteroatoms seleted from oxygen, nitrogen, and sulfur;

R^{3a} is a hydrogen atom, an optionally substituted C_{1-6} aliphatic group, an optionally substituted C_{1-6} heteroaliphatic group containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, OC(O)-, -C(S)-, -S(O)-, -S(O)₂-, -N(R⁸)-, -C(O)NR⁸-, -OC(O)N(R⁸)-, -CSN(R⁸)-, -N(R⁸)CO-, -N(R⁸)CO-, -N(R⁸)CO-, -N(R⁸)CO-, -N(R⁸)CON(R⁸)-, -N(R⁸)CSN(R⁸)- and -N(R⁸)SO₂N(R⁸)-, an optionally substituted C_{3-10} cycloaliphatic group, an optionally substituted C_{7-10} polycycloaliphatic group, an optionally substituted C_{3-10} heterocycloaliphatic group containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, OC(O)-, -C(S)-, -S(O)-, -S(O)₂-, -N(R⁸)-, -C(O)NR⁸-, -OC(O)N(R⁸)-, -CSN(R⁸)-, -N(R⁸)CO-, -N(R⁸)CON(R⁸)- and -N(R⁸)SO₂N(R⁸)-; an optionally substituted C_{7-10} heteropolycycloaliphatic group containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)-, -S(O)-, -C(S)-, -S(O)-, -S(O)-, -S(O)-, -C(S)-, -S(O)-, -S(O)-, -S(O)-, -S(O)-, -C(S)-, -S(O)-, -S(O)-, -S(O)-, -S(O)-, -C(S)-, -S(O)-, -S(O)

-N(R⁸)-, -C(O)NR⁸-, -OC(O)N(R⁸)-, -CSN(R⁸)-, -N(R⁸)CO-, -N(R⁸)C(O)O-, -N(R⁸)CS-, -S(O)₂N(R⁸)-, -N(R⁸)S(O)₂-, -N(R⁸)CON(R⁸)-, -N(R⁸)CSN(R⁸)- and -N(R⁸)SO₂N(R⁸)-; an optionally substituted aromatic group, or an optionally substituted $C_{1.9}$ heteroaromatic group containing one, two, three or four heteroatoms seleted from oxygen, nitrogen, and sulfur;

wherein the optional substituents for the aromatic groups and the heteroaromatic groups of R^3 and R^{3a} are selected from one or more atoms or groups R^{13} wherein R^{13} is $-R^{13a}$ or $-Alk^4(R^{13a})_m$;

R^{13a} is a halogen atom, or an amino, substituted amino, nitro, cyano, amidino, hydroxyl, substituted hydroxyl, formyl, carboxyl, esterified carboxyl, thiol, substituted thiol, -COR¹⁴; -CSR¹⁴, -SO₃H, -SOR¹⁴, -SO₂R¹⁴, -SO₂NH₂, -SO₂NHR¹⁴, -SO₂N(R¹⁴)₂, -CONH₂, -CSNH₂, -CONHR¹⁴, -CSNHR¹⁴, -CON(R¹⁴)₂, -CSN(R¹⁴)₂, -N(R¹¹)SO₂R¹⁴, -N(SO₂R¹⁴)₂, -N(R¹¹)SO₂NH₂, -N(R¹¹)SO₂NHR¹⁴, -N(R¹¹)SO₂N(R¹⁴)₂, -N(R¹¹)COR¹⁴, -N(R¹¹)CONH₂, -N(R¹¹)CONHR¹⁴, -N(R¹¹)CON(R¹⁴)₂, -N(R¹¹)CSNH₂, -N(R¹¹)CSNHR¹⁴, -N(R¹¹)CSN(R¹⁴)₂, -N(R¹¹)CSNHet¹, -CONHet¹, -CSNHet¹, -N(R¹¹)SO₂NHet¹, -N(R¹¹)CONHet¹, -N(R¹¹)CSNHet¹, -SO₂NHet¹, -CONHet¹, -CONHet¹, -CSN(R¹¹)Het², -CSN(R¹¹)Het², -N(R¹¹)CON(R¹¹)Het², -N(R¹¹)CSN(R¹¹)Het², aryl or heteroaryl group;

 R^{14} is an -Alk⁴(R^{13a})_m, aryl or heteroaryl group;

NHet¹ is a $C_{5.7}$ cyclicamino group optionally containing one or more -O- or -S- atoms or -N(R¹¹)-, -C(O)- or -C(S)- groups and optionally substituted with one or more substituents as defined for the cycloaliphatic groups of R³ and R^{3a};

PATENT

DOCKET NO.: CELL-0086

RESPONSE UNDER 37 CFR 1.116 [EXPEDITED PROCEDURI] EXAMINING GROUP 1645

Het² is a monocyclic C_{5-7} carbocyclic group optionally containing one or more -O-or -S- atoms or -N(R¹¹)-, -C(O) or -C(S)- groups and optionally substituted with one or more substituents as defined for the cycloaliphatic groups of R³ and R^{3a};

Alk⁴ is a straight or branched C_{1-6} alkylene, C_{2-6} alkenylene or C_{2-6} alkynylene chain, optionally interrupted by one, two, or three -O- or -S- atoms or -S(O)_n or -N(R¹⁵)- groups;

R¹⁵ is a hydrogen atom or C₁₋₆alkyl group;

m is zero or an integer 1, 2 or 3;

n is an integer 1 or 2;

wherein the optional substituents for the aliphatic groups and the heteroaliphatic groups of R^{3a} are selected from halogen atoms, hydroxy groups, $C_{1.6}$ alkoxy groups, thiol groups, $C_{1.6}$ alkylthio groups, amino groups, and substituted amino groups;

wherein the optional substituents for the cycloaliphatic, polycycloaliphatic, heterocycloaliphatic and heteropolycycloaliphatic groups of R^3 and R^{3a} are selected from halogen atoms, C_{1-6} alkyl groups, halo C_{1-6} alkyl groups optionally substituted with hydroxyl groups, hydroxyl groups, C_{1-6} alkoxy groups, halo C_{1-6} alkoxy groups, thiol groups, C_{1-6} alkylthio groups, aromatic groups, heteroaromatic groups, and -(Alk²) $_{\nu}$ R 10 groups;

Alk² is a straight or branched C₁₋₃ alkylene chain;

v is zero or an integer 1;

 R^{10} is a -OH, -SH, -N(R^{11})₂, -CN, -CO₂ R^{11} , -NO₂, -CON(R^{11})₂, -CSN(R^{11})₂, -OC(O)N(R^{11})₂, -C(O)H, -COR¹¹, -OCO ₂ R^{11} , -OC(O)R¹¹, -C(S)R¹¹, -CSN(R^{11})₂, -N(R^{11})COR¹¹,

68

 $-N(R^{11})CSR^{11}, -SO_3H, -SOR^{11}, -SO_2R^{11}, -SO_3R^{11}, -SO_2N(R^{11})_2, -N(R^{11})SO_2R^{11}, \\ -N(R^{11})CON(R^{11})_2, -N(R^{11})CSN(R^{11})_2, \text{ or } -N(R^{11})SO_2N(R^{11})_2 \text{ group; and}$

R¹¹ is an atom or group as defined for R⁸ or an optionally substituted cycloaliphatic or hetercycloaliphatic group as defined for R³;

and when R^3 is a heterocycloaliphatic group containing one or more nitrogen atoms each nitrogen atom is optionally substituted with a group $-(L^5)_p(Alk^3)_qR^{12}$;

 $L^5 \text{ is } -C(O)-, -C(O)O-, -C(S)-, -S(O)-, -S(O)_2-, -CON(R^{11})-, -CSN(R^{11})-, -SON(R^{11})- \text{ or } -SO_2N(R^{11})-;$

p is zero or an integer 1;

Alk³ is an optionally substituted aliphatic or heteroaliphatic chain;

q is zero or an integer 1;

R¹² is a hydrogen atom or an optionally substituted cycloaliphatic, heterocycloaliphatic, polycycloaliphatic, polyheterocycloaliphatic, aromatic or heteroaromatic group;

 R^a and R^a ', which may be the same or different, are each independently selected from a hydrogen or halogen atom or an optionally substituted straight or branched alkyl, alkenyl, alkynyl, haloalkyl, alkoxy, haloalkoxy, alkylthio or - $(Alk^b)_mR^b$ group (in which Alk^b is a C_{1-3} alkylene chain, m is zero or the integer 1, and R^b is -OH, -SH, -NO₂, -ÇN, -CO₂H, -CO₂R^c (where R^c is an optionally substituted straight or branched C_{1-6} alkyl group), -SO₃H, -SOR^c, -SO₂R^c, -SO₃R^c, -OCO₂R^c, -C(O)H, -C(O)R^c, -OC(O)R^c, -C(S)R^c, -NR^dR^e (where R^d and R^e , which may

9

PH

be the same or different, are each a hydrogen atom or an optionally substituted straight or branched C_{1-6} alkyl group), $-CON(R^d)(R^e)$, $-OC(O)N(R^d)(R^e)$, $-N(R^d)C(O)R^e$, $-CSN(R^d)(R^e)$, $-N(R^d)C(S)R^e$, $-S(O)_2N(R^d)(R^e)$, $-N(R^d)SO_2R^e$, $-N(R^d)CON(R^e)(R^f)$ (where R^f is a hydrogen atom or an optionally substituted straight or branched C_{1-6} alkyl group), $-N(R^d)C(S)N(R^e)(R^f)$ or $-N(R^d)SO_2N(R^e)(R^f)$ group);

Alka is an optionally substituted C_{1-6} aliphatic or C_{1-6} heteroaliphatic chain containing one, two, three or four heteroatoms or heteroatom-containing groups selected from -O-, -S-, -C(O)-, -C(O)O-, -C(O)-, -C(S)-, -S(O)-, -S(O)-, $-N(R^8)$ -, $-N(R^8)$ -, $-N(R^8)$ CO-, $-N(R^8)$ CO-, $-N(R^8)$ CO)-, $-N(R^8)$ CO)-, $-N(R^8)$ CO)-, $-N(R^8)$ CON($-N(R^8)$ -, $-N(R^8)$ CON($-N(R^8)$ -, and $-N(R^8)$ SO₂N($-N(R^8)$ -,

wherein the optional substituents for the aliphatic and heteroaliphatic groups of Alka are selected from halogen atoms, hydroxy groups, C_{1-6} alkoxy groups, thiol groups, C_1 . alkylthio groups, amino groups, and substituted amino groups;

r is zero or the integer 1;

R is a carboxylic acid (CO₂H), a carboxylic ester group, or carboxylic amide group; and the salts, hydrates and N-oxides thereof.

16

(Twice amended) A method for the treatment of a mammal suffering from inflammatory arthritis, multiple sclerosis, allograft rejection, diabetes, inflammatory dermatoses, asthma or