XY-4-Chain

Basics

Hamiltonian
$$\mathcal{H}(a) = a_1 X_1 Y_2 + a_2 X_2 Y_3 + a_3 X_3 Y_4 = \sum_{j=1}^3 a_j X_j Y_{j+1}$$
 (1)

Lie Algebra
$$\mathfrak{g}(\mathcal{H}) = \text{span}\{X_1Y_2, X_2Y_3, X_3Y_4, X_1Z_2Y_3, X_2Z_3Y_4, X_1Z_2Z_3Y_4\}$$
(2)

Involution
$$\phi(A) = X^{\otimes 4} A X^{\otimes 4} \tag{3}$$

Cartan Decomposition
$$\mathfrak{t} = \operatorname{span}\{X_1 Z_2 Y_3, X_2 Z_3 Y_4\} \tag{4}$$

$$\mathfrak{m} = \operatorname{span}\{X_1 Y_2, X_2 Y_3, X_3 Y_4, X_1 Z_2 Z_3 Y_4\}$$
 (5)

Cartan Subalgebras
$$\mathfrak{h}_1 = \operatorname{span}\{X_1Y_2, X_3Y_4\} \tag{6}$$

$$\mathfrak{h}_2 = \text{span}\{X_2 Y_3, X_1 Z_2 Z_3 Y_4\} \tag{7}$$

Parametrisations
$$K(\theta) = e^{i\theta_1 X_1 Z_2 Y_3} e^{i\theta_2 X_2 Z_3 Y_4}$$
 (8)

$$v_1(\alpha_1, \alpha_2) = \alpha_1 X_1 Y_2 + \alpha_2 X_3 Y_4 \tag{9}$$

$$v_2(\alpha_1, \alpha_2) = \alpha_1 X_2 Y_3 + \alpha_2 X_1 Z_2 Z_3 Y_4 \tag{10}$$

$$h_1(\beta_1, \beta_2) = \beta_1 X_1 Y_2 + \beta_2 X_3 Y_4 \tag{11}$$

$$h_2(\beta_1, \beta_2) = \beta_1 X_2 Y_3 + \beta_2 X_1 Z_2 Z_3 Y_4 \tag{12}$$

Cost function (Killing form)
$$f_j(\theta) = \langle K(\theta)v_j(\alpha_1, \alpha_2)K(\theta)^{\dagger}, \mathcal{H} \rangle = \frac{1}{2^n} \operatorname{Tr}(Kv_j K^{\dagger} \mathcal{H})$$
 (13)

Hamiltonian Decomposition
$$\mathcal{H} = KhK^{\dagger}$$
 (14)

Note that our involution ϕ is such that \mathfrak{m} is the span of elements $X_a Z_{a+1} ... Z_{b-1} Y_b$ such that b-a is odd Further, our inner product is scaled such that the Pauli strings form an orthonormal set

Our decomposition relies on two key theorems

Theorem 1 $\mathcal{H} = Kh_iK^{\dagger}$ for some $K \in e^{i\mathfrak{k}}$ and $h_i \in \mathfrak{h}_i$

Theorem 2 If e^{itv_j} is dense in $e^{i\mathfrak{h}_j}$, then local extremum θ_C of $f_j(\theta)$ satisfies $K_C^{\dagger}\mathcal{H}K_C \in \mathfrak{h}_j$

The Hamiltonian

For our 4-qubit system, it is possible to directly compute the eigenvalues We see that they are

$$\pm\sqrt{a_2^2+(a_1-a_3)^2}, \qquad \pm\sqrt{a_2^2+(a_1+a_3)^2}$$
 (15)

each with multiplicity 4

We will see that this informs the form of h_j

Commutation Relations

Let us relabel

$$A_{\pm} = \frac{1}{2}(X_1 Z_2 Y_3 \pm X_2 Z_3 Y_4) \qquad B_{\pm} = \frac{1}{2}(X_1 Y_2 \pm X_3 Y_4) \qquad C_{\pm} = \frac{1}{2}(X_2 Y_3 \pm X_1 Z_2 Z_3 Y_4)$$
(16)

and compute the commutation relations

$$\begin{array}{c|cccc} [A,B] & B_{+} & B_{-} \\ \hline A_{+} & 0 & -2iC_{-} \\ A_{-} & -2iC_{+} & 0 \\ \hline \end{array}$$

[A, C]	C_{+}	C_{-}
A_{+}	0	$2iB_{-}$
A_{-}	$2iB_{+}$	0

So using the identity

$$\frac{d}{d\lambda} \left(e^{\lambda S} T e^{-\lambda S} \right) = e^{\lambda S} [S, T] e^{-\lambda S} \tag{17}$$

And by considering the non-degenerate transformations

$$(\theta_1, \theta_2) \to \left(\frac{\theta_1 + \theta_2}{2}, \frac{\theta_1 - \theta_2}{2}\right) \qquad (\alpha_1, \alpha_2) = \frac{\alpha_1 + \alpha_2}{2}(1, 1) + \frac{\alpha_1 - \alpha_2}{2}(1, -1)$$
 (18)

We can rewrite our optimality condition

$$\frac{i}{2} \frac{\partial f_1(1, -1)}{\partial (\theta_1 + \theta_2)/2} = f_2(1, -1) = 0$$

$$\frac{i}{2} \frac{\partial f_1(1, 1)}{\partial (\theta_1 - \theta_2)/2} = f_2(1, 1) = 0$$
(19)

That is

$$\langle X_2 Y_3 \pm X_1 Z_2 Z_3 Y_4, K(\theta)^{\dagger} \mathcal{H} K(\theta) \rangle = 0 \tag{20}$$

And for such a θ , we have that h_1 is given by

$$\beta_1 = \langle X_1 Y_2, K(\theta)^{\dagger} \mathcal{H} K(\theta) \rangle = f_1(1, 0)$$

$$\beta_2 = \langle X_3 Y_4, K(\theta)^{\dagger} \mathcal{H} K(\theta) \rangle = f_1(0, 1)$$
(21)

A couple of things to note:

- 1. A symmetric argument holds for h_2
- 2. Our commutation relations also give us that

$$\frac{\partial^2 f_j}{\partial \theta_k^2} = 4f_j \qquad \forall j, k \tag{22}$$

and so, unless $f_i(\theta) = 0$, we can be sure that this is a local extremum

3. The form $\langle X_2 Y_3 \pm X_1 Z_2 Z_3 Y_4, K(\theta)^{\dagger} \mathcal{H} K(\theta) \rangle = 0$ is nice

Symbolic Computation

We can symbolically compute $\langle X_1Y_2 \pm X_3Y_4, K^{\dagger}\mathcal{H}K \rangle$ and $\langle X_2Y_3 \pm X_1Z_2Z_3Y_4, K^{\dagger}\mathcal{H}K \rangle$

$$f_1(1,1) = a_2 \sin(2\theta_1 - 2\theta_2) + (a_1 + a_3) \cos(2\theta_1 - 2\theta_2)$$
(23)

$$f_1(1,-1) = a_2 \sin(2\theta_1 + 2\theta_2) + (a_1 - a_3) \cos(2\theta_1 + 2\theta_2)$$
(24)

$$f_2(1,1) = a_2 \cos(2\theta_1 - 2\theta_2) - (a_1 + a_3) \sin(2\theta_1 - 2\theta_2) \tag{25}$$

$$f_2(1,-1) = a_2 \cos(2\theta_1 + 2\theta_2) - (a_1 - a_3) \sin(2\theta_1 + 2\theta_2) \tag{26}$$

So we can factorise \mathcal{H} into \mathfrak{h}_1 via

$$\theta_1 + \theta_2 = \frac{1}{2} \arctan\left(\frac{a_2}{a_1 - a_3}\right) + \frac{\pi}{2} \mathbb{1}[a_1 - a_3 < 0]$$
 (27)

$$\theta_1 - \theta_2 = \frac{1}{2} \arctan\left(\frac{a_2}{a_1 + a_3}\right) + \frac{\pi}{2} \mathbb{1}[a_1 + a_3 < 0]$$
 (28)

$$\beta_1 + \beta_2 = \sqrt{a_2^2 + (a_1 + a_3)^2} \tag{29}$$

$$\beta_1 - \beta_2 = \sqrt{a_2^2 + (a_1 - a_3)^2} \tag{30}$$

Or instead into \mathfrak{h}_2 via

$$\theta_1 + \theta_2 = -\frac{1}{2}\arctan\left(\frac{a_1 - a_3}{a_2}\right) + \frac{\pi}{2}\mathbb{1}[a_2 < 0]$$
 (31)

$$\theta_1 - \theta_2 = -\frac{1}{2}\arctan\left(\frac{a_1 + a_3}{a_2}\right) + \frac{\pi}{2}\mathbb{1}[a_2 < 0]$$
 (32)

$$\beta_1 + \beta_2 = \sqrt{a_2^2 + (a_1 + a_3)^2} \tag{33}$$

$$\beta_1 - \beta_2 = \sqrt{a_2^2 + (a_1 - a_3)^2} \tag{34}$$

XY-6-Chain

Basics

$$\mathcal{H}(\vec{a}) = a_1 X_1 Y_2 + a_2 X_2 Y_3 + a_3 X_3 Y_4 + a_4 X_4 Y_5 + a_5 X_5 Y_6 = \sum_{j=1}^5 a_j X_j Y_{j+1}$$
(35)
$$\mathfrak{g}(\mathcal{H}) = \operatorname{span}\{X_1 Y_2, X_2 Y_3, X_3 Y_4, X_4 Y_5, X_5 Y_6, X_1 Z_2 Y_3, X_2 Z_3 Y_4, X_3 Z_4 Y_5, X_4 Z_5 Y_6, X_1 Z_2 Z_3 Y_4, X_2 Z_3 Z_4 Y_5, X_3 Z_4 Z_5 Y_6, X_1 Z_2 Z_3 Z_4 Y_5, X_2 Z_3 Z_4 Z_5 Y_6 \}$$
(36)
$$\phi(A) = X^{\otimes 6} A X^{\otimes 6}$$
(37)
$$\mathfrak{t} = \operatorname{span}\{X_1 Z_2 Y_3, X_2 Z_3 Y_4, X_3 Z_4 Y_5, X_4 Z_5 Y_6, X_1 Z_2 Z_3 Z_4 Y_5, X_2 Z_3 Z_4 Z_5 Y_6 \}$$
(38)
$$\mathfrak{m} = \operatorname{span}\{X_1 Y_2, X_2 Y_3, X_3 Y_4, X_4 Y_5, X_5 Y_6, X_1 Z_2 Z_3 Y_4, X_2 Z_3 Z_4 Y_5, X_3 Z_4 Z_5 Y_6, X_1 Z_2 Z_3 Z_4 Z_5 Y_6 \}$$
(39)
$$\mathfrak{h}_1 = \operatorname{span}\{X_1 Y_2, X_3 Y_4, X_5 Y_6 \}$$
(40)
$$\mathfrak{h}_2 = \operatorname{span}\{X_3 Y_4, X_2 Z_3 Z_4 Y_5, X_1 Z_2 Z_3 Z_4 Z_5 Y_6 \}$$
(41)

$$K(\vec{\theta}) = e^{i\theta_1 X_1 Z_2 Y_3} e^{i\theta_2 X_2 Z_3 Y_4} e^{i\theta_3 X_3 Z_4 Y_5} e^{i\theta_4 X_4 Z_5 Y_6} e^{i\theta_5 X_1 Z_2 Z_3 Z_4 Y_5} e^{i\theta_6 X_2 Z_3 Z_4 Z_5 Y_6}$$

$$(42)$$

$$h_1 = \beta_1 X_1 Y_2 + \beta_2 X_3 Y_4 + \beta_3 X_5 Y_6 \tag{43}$$

$$h_2 = \beta_1 X_1 Z_2 Z_3 Z_4 Z_5 Y_6 + \beta_2 X_2 Z_3 Z_4 Y_5 + \beta_3 X_3 Y_4 \tag{44}$$

$$h_3 = \beta_1 X_2 Y_3 + \beta_2 X_1 Z_2 Z_3 Y_4 + \beta_3 X_5 Y_6 \tag{45}$$

$$h_4 = \beta_1 X_1 Y_2 + \beta_2 X_3 Z_4 Z_5 Y_6 + \beta_3 X_4 Y_5 \tag{46}$$

Basics ver 2

For ease, let us denote $X_a Z_{a+1} ... Z_{b-1} Y_b$ as (ab)

$$\mathcal{H}(\vec{a}) = a_1(12) + a_2(23) + a_3(34) + a_4(45) + a_5(56) = \sum_{j=1}^{5} a_j(j \ j+1)$$
 (47)
$$\mathfrak{g}(\mathcal{H}) = \operatorname{span}\{(12), (23), (34), (45), (56), (13), (24), (35), (46), (14), (25), (36), (15), (26), (16) \}$$
 (48)
$$= \{(ab) \mid 1 \leq a < b \leq 6\}$$
 (49)
$$\mathfrak{t} = \operatorname{span}\{(13), (24), (35), (46), (15), (26) \} = \{(ab) \in \mathfrak{g} \mid b - a \text{ even} \}$$
 (50)
$$\mathfrak{m} = \operatorname{span}\{(12), (23), (34), (45), (56), (14), (25), (36), (16) \} = \{(ab) \in \mathfrak{g} \mid b - a \text{ odd} \}$$
 (51)
$$K(\vec{\theta}) = e^{i\theta_1(13)}e^{i\theta_2(24)}e^{i\theta_3(35)}e^{i\theta_4(46)}e^{i\theta_5(15)}e^{i\theta_6(26)}$$
 (52) (53)
$$\mathfrak{h}_1 = \operatorname{span}\{(12), (34), (56) \}$$
 (54)
$$\mathfrak{h}_2 = \operatorname{span}\{(12), (34), (56) \}$$
 (55)
$$\mathfrak{h}_3 = \operatorname{span}\{(12), (36), (45) \}$$
 (56)
$$\mathfrak{h}_4 = \operatorname{span}\{(23), (14), (56) \}$$
 (57)
$$\mathfrak{h}_5 = \operatorname{span}\{(14), (25), (36) \}$$
 (58)
$$\mathfrak{h}_6 = \operatorname{span}\{(16), (23), (45) \}$$
 (60)
$$\mathfrak{h}_1 = \beta_1(12) + \beta_2(34) + \beta_3(56)$$
 (61)
$$\mathfrak{h}_2 = \beta_1(16) + \beta_2(25) + \beta_3(34)$$
 (62)
$$\mathfrak{h}_3 = \beta_1(12) + \beta_2(36) + \beta_3(45)$$
 (63)
$$\mathfrak{h}_4 = \beta_1(23) + \beta_2(14) + \beta_3(56)$$
 (64)
$$\mathfrak{h}_5 = \beta_1(14) + \beta_2(25) + \beta_3(36)$$
 (65)

The Hamiltonian

Matlab timed out trying to compute the eigenvalues

Commutation Relations

Note that the actions of \mathfrak{k} on \mathfrak{h}_1 act as involutions (up to scalar)

So once again we have $\frac{\partial^2 f}{\partial \theta_j^2} = 4f$ for all j

Which would suggest we are still working with cos and sin of 2(+- comb of thetas)

Is there some sort of inner product we can apply where each of these terms would be orthogonal?

First, it's a good idea to generalise the commutations, for a < b < c < d

$$[ab, cd] = 0 (66)$$

$$[ac, bd] = 0 (67)$$

$$[ad, bc] = 0 (68)$$

$$[ab, ac] = 2i(bc) \tag{69}$$

$$[ac, bc] = 2i(ab) \tag{70}$$

$$[ab, bc] = -2i(ac) \tag{71}$$

I'll have a look at eigen-esque things, my inital idea is

- $(13) \pm (24)$ etc
- Then $\frac{\partial}{\partial(\theta_1+\theta_2)}\langle\gamma_1(12+34-56)+\gamma_2(-12+34+56)+\gamma_3(12-34+56),K^{\dagger}\mathcal{H}K\rangle = 4i(\gamma_2-\gamma_3)\langle(14-23),K^{\dagger}\mathcal{H}K\rangle$ etc.
- So to find our θ_C , it suffices to find $\langle ---, K^{\dagger} \mathcal{H} K \rangle = 0$ for $(14 \pm 23), (36 \pm 45), (25 \pm 16)$

ŧ	13	24	35	46	15	26
13	0	0	-2i(15)	0	2i(35)	0
24	0	0	0	-2i(26)	0	2i(46)
35	2i(15)	0	0	0	-2i(13)	0
46	0	2i(26)	0	0	0	-2i(24)
15	-2i(35)	0	2i(13)	0	0	0
26	0	-2i(46)	0	2i(24)	0	0

\mathfrak{h}_1	12+34-56	-12+34+56	12 - 34 + 56	Cartan
13+24	0	4i(14-23)	-4i(14-23)	4
13-24	-4i(14+23)	0	0	4
35+46	-4i(36-45)	0	4i(36-45)	3
35-46	0	-4i(36+45)	0	3
15+26	4i(25-16)	-4i(25-16)	0	2
15-26	0	0	-4i(25+16)	2

\mathfrak{h}_1	12	34	56	coeff	Cartan
13	23	14	0	-2i	4
24	14	23	0	2i	4
35	0	45	36	-2i	3
46	0	36	45	2i	3
15	25	0	16	-2i	2
26	16	0	25	2i	2

\mathfrak{h}_2	16	25	34	coeff	Cartan
13	36	0	14		5
24	0	45	23		6
35	0	23	45		6
46	14	0	36		5
15	56	12	0	2i	1
26	12	56	0	-2i	1

\mathfrak{h}_3	12	36	45	coeff	Cartan
13	23	16	0		6
24	14	0	25		5
35	0	56	34	2i	1
46	0	34	56	-2i	1
15	25	0	14		5
26	16	23	0		6

\mathfrak{h}_4	23	14	56	coeff	Cartan
13	12	34	0	2i	1
24	34	12	0	-2i	1
35	25	0	36		5
46	0	16	45		6
15	0	45	16		6
26	36	0	25		5
26	36	0	25		5

\mathfrak{h}_5	14	25	36	coeff	Cartan
13	34	0	16		2
24	12	45	0		3
35	0	23	56		4
46	16	0	34		2
15	45	12	0		3
26	0	56	23		4

\mathfrak{h}_6	16	23	45	coeff	Cartan
13	36	12	0		3
24	0	34	25		2
35	0	25	34		2
46	14	0	56		4
15	56	0	14		4
26	12	36	0		3