Optimize irrigation of Crop Fields

Internet of Plants (IoP)

- Climate change
 - Rain: 4% less than in 2013

 Would you like to improve the under developing countries?

 6 x increase in global water usage since the 1900s, twice the rate of human pop growth

The problem/Opportunity

Less productivity due to:

- Insufficient or excessive amount of water
- Irrigation costs (time, amount of weather forecast, analysis, lost of minerals)
- Cost of water could be higher than the petroleum cost.

IBM BLUEMIX

WATSON

Tech used in our solution

SENSORS

- Rain Gauge
- Soil Moisture
- Hum & Temp
- Wind speed/direction
- Battery clean power

BMP 180 & RASBERRY PI B & BQ prusa I3

- Pressure
- Sea level pressure
- Altitute
- Temperature

Value proposition

- For those farmers who struggle with:
 - The cost of the water
 - Travel costs
 - Lack of time
 - Lost of soil quality
 - "Old methods" measurements / procedures

We offer

- Sensors to measure data (weather, soil water level)
- Big data service
- Reducing the labor cost
- Automatic irrigation system
- Real time notifications
- Plug & Play / Do it yourself

Business model

A farmer with 100HA of tomatoes is producing:
 28.000kg x 0,35€ = 9.800€ x 100HA = 980.000€

Without Cropsquare:

If you are a good farmer you could lose 10% of income = 98.000 €

But you are always at risk of losing everything!!!

Earnings concept

5% Hardware margin

Monthly fee per HA (Different services, weather/seed price forecast)

NGO and IBM and Bluemix - Free data

Current status

- Our product is now available to use for private purposes.
- What we are planning for the future:
 - Big data analysis (weather, stats, seed analysis..)
 - Smart watering depending on the weather forecast
 - Future notifications (dry and watered)
 - Mobile application
 - Work with NGOs for implementation
- How to take out the sensors?

The Team

- Fernando Álvarez-Uría Software Engineer
- Gabriel Aldaz Business Dev
- Elena Arraez Telecom Engineer
- Diego Alvarado MBA
- Pablo Lozano Industrial Engineer
- Javier Yuste International Management

Thank you!

Special thanks: Markus, Tristan, Mentors, Jury & rest of groups!!

- Tec implement 40%
- Usage of cool tec 20%
- Innov 20%
- Solving a prob 20%
- WTF
- Bluemix
- Social media

- Se están haciendo importantes esfuerzos, tanto por parte de la Administración Pública como de los propios regantes, para mejorar la eficiencia del regadío y ahorrar recursos. Aunque la evolución reciente de la demanda agrícola está marcado por un crecimiento de las superficies regadas, por otro lado se están reduciendo las dotaciones unitarias debido a actuaciones de **mejora y modernización de regadíos** que se están acometiendo tanto por iniciativa privada como con financiación pública. Como consecuencia, la composición de los regadíos andaluces en cuanto a las técnicas de riego empleadas ha cambiado radicalmente: sólo entre el año 2000 y 2004: los sistemas de gravedad los más consumidores y menos eficientes han pasado de representar el 49% al 31%, mientras el goteo creció del 16% hasta el 52%. Pero, globalmente, el consumo agrario de agua no ha dejado de crecer en la última década hasta situarse en los 5.009 Hm3 actuales, ya que los ahorros conseguidos con las mejoras tecnológicas y los esfuerzos realizados por el sector han sido en gran parte neutralizados por los incrementos en las superficies de regadío.
- http://www.juntadeandalucia.es/medioambiente/site/portalweb/menuitem.
 7e1cf46ddf59bb227a9ebe205510e1ca/?
 vgnextoid=39d5187616557310VgnVCM2000000624e50aRCRD&vgnextchannel=9869a89971bb6310VgnVCM2000000624e50aRCRD

Cultivos como los frijoles, maíz, boniato y los plátanos obtienen incrementos de rendimiento superiores al 100% cuando se aplica el agua necesaria para satisfacer su demanda hídrica, mientras que la yuca obtuvo valores menores del 50%.

 $\frac{\text{http://scielo.sld.cu/scielo.php?script=sci_arttext\&pid=S2071-00542014000400004\&lng=pt\&nrm=iso}{}$

http://scielo.sld.cu/img/revistas/rcta/v23n4/t0104414.gif

Cultivos de alto rendimiento: http://www.
hortalizas.com/cultivos/riego-en-cultivos-de-alto-rendimiento-a-campo-abierto-y-en-condiciones-protegidas/

Router 3G - Vodafone B970

Router

Dispositivo que permite acceso a Internet e Intranet a través de la red móvil de Vodafone. Está dirigido tanto para equipos individuales como a grupos de trabajo que quieran conectarse a través de la red WiFi, con un diseño compacto. Válido para todo tipo de ordenadores. Fácil instalación. Configurable a través de una sencilla interfaz web.

Dimensiones: 155 x 115 x 28 mm

Peso: 500 g

Indicador: LED Multicolor indica estado y red

Sistema Operativo: PCy MAC

Velocidad: HSUPA: DL 7.2Mbit/s UL 2Mbit/s. HSDPA: DL 7.2Mbit/s UL

384kbit/s

Destacado: Router wifi HSUPA con salida rj11 para llamadas de voz

Tipo de conectores exteriores: Conector de alimentación y datos USB. 4 Conectores RJ45. 1 Conector

RJ11. Conector de antena externa.

Redes soportadas: WCDMA / HSPA (2100); GSM / GPRS (900/ 1800 / 1900)

Descargas de software

- > Descarga Firmware B970 Part.1
- > Descarga Firmware B970 Part.2
- > Descarga Firmware B970b Part.1
- > Descarga Firmware B970b Part.2

BMP 180

- ★ Pressure
- ★ Sea level pressure
- **★** Altitute
- ★ Temperature

ARDUINO PRO / LEONARDO

DHT 22

- **★** Humidity
- **★** Temperature

RAIN GAUGE SENSOR

WIND DIRECTION SENSOR
WIND SPEED SENSOR (ANEMOMETER)

SOIL MOISTURE SENSOR V1.4

The solution

Modular use

- Do it yourself / Plug & Play
- Improve smart cities

Technology used

Plastic elements to be built with Prusa i3 printer

	Before	After
Spend of water	High	Low
Human costs	High	Low
Crop risk prevention (weather & animals)	Manual	Automati c
Travel time	Big	WFH
Big data	No	Yes
Maintain soil quality	No	Yes
Identification of time to irrigate	No	Yes
Data interchange (farmers, databases)	No	Yes
Use of big data for prediction	No	Yes
Early notifications / confirmations	No	Yes
Plug & Play / Do it yourself	N/A	Yes

Technology used

One 1m x 50cm Solar Panel can power >2000 sensors

Our prototype can be powered with one small solar panel (approx cost € 3)

Technology used

RASPBERRY PI B

Add-ins

- Rain Gauge
- Soil Moisture
- Hum & Temp
- Wind speed/direction
- Battery clean power

BMP 180

- Pressure
- Sea level pressure
- Altitute
- Temperature

B970 3G/4G Modem

ARDUINO PRO / LEONARDO

Our Solution: Optimize Irrigation of Crop Fields

