PHY 115 - Spring 2014

Study Guide for the Final Exam

- The table below is a guide to the topics and concepts you will need for the PHY 115 Final Exam.
- The Final will be on Wednesday, April 23, at 3:00 pm.
- Please bring a calculator. You may bring a note sheet. The usual rules apply.
- The main recommendations are: redo all homework, midterm and quiz problems that are related to the topics below. You should also read the textbook and the class notes. All the homework solutions are available on Moodle.
- Use the PhET URLs (available on Moodle) for energy and momentum simulations.

The table below lists the topics, chapter/sections from the textbook and assignments that are relevant for the final exam. The table continues on the next page.

Topic	Relevant Concepts	Chapters/Sections	Related to Assignment #
Kinematics: 1-D motion	Basic units and unit conversions	Chapter 2: sections 2.1 through 2.3	2, 3
	Constant-speed motion		
	Position and displacement		
	Average and instantaneous: speed, velocity, acceleration		
	Graphing constant-speed and accelerated motion		
Kinematics, 1-D motion: the Kinematic Equations	Uniformly accelerated motion: the Kinematic Equations	Chapter 2: sections 2.4, 2.5	3
	Using graphs and kinematic equations to solve problems		
Free-fall: a particular case of uniformly accelerated motion	Applying the Kinematic equations to free-fall problems	Chapter 2: section 2.6	3
	Graphing free-fall motion		
Vector addition and vector components	Using a coordinate system and splitting vectors into x and y components.	Chapter 1: sections 1.7 and 1.8	4

Motion in a	Graphing and solving problems involving 2-D motion	Chapter 3, sections	4
plane and	(including projectile motion problems)	3.1 to 3.3	
projectile			
motion	Sets of equations used for projectile motion: uniform		
	motion in the horizontal direction and accelerated		
	motion in the vertical direction.		
Newton's Laws	Types of Forces, part 1 (normal, gravitational, tension)	Chapter 4, all	5 and 6
of Motion	Free-body diagrams	sections	
	Free-body diagrams		
	Newton's First, Second and Third Law		
Applications of	Types of forces, part 2 (static and kinetic friction)	Chapter 5, all	5, 6 and 8
Newton's Laws		sections	
	1D and 2D motion with free-body diagrams		
	Using Newton's Laws to solve force and motion		
	problems		
	Elastic Forces		
Circular motion	Centripetal acceleration and centripetal force (a net	Chapter 6, sections	5 and 8
	force)	6.1 and 6.2	
Work and energy	Kinetic energy	Chapter 7: sections	7 and 8
		7.1 to 7.7	
	Potential energies (gravitational and elastic)		
	Conservation of energy		
	Conservation of energy		
	Conversion of potential energy (gravitational or		
	elastic) into kinetic energy and vice-versa		
	Definition and calculation of work		
	Meaning of negative and positive works		
	Conservative and nonconservative forces (e.g., the		
	drag force and the friction force)		
Momentum	Definition and calculation of momentum	Chapter 8, sections	9
		8.1 to 8.4	
	Conservation of momentum in collisions and		
	explosions		
	Change in momentum (impulse)		
	Change in momentum (impuise)		
	Completely elastic collisions in 1D (objects bounce):		
	kinetic energy and momentum are conserved		
	Completely inelastic collisions (objects stick together):		
	momentum is conserved, but kinetic energy is not		
	conserved. Special case of inelastic collision: the		
	ballistic pendulum		

Office hours:

Monday, 4:30 p - 5:30 p. I can also be available at other times, but in this case you should schedule your appointment by email. Please refer to the Academic support Center schedule for the tutor's hours.