CONCEPTS

AND

DEFINITIONS

Prediction vs. Classification

• two main goals in machine learning

Examples

- stock price prediction
- spam/no spam email classification

A Numerical Dataset

object	Height	Weight	Foot	Label
$ x_i $	(H)	(W)	(F)	$\left \begin{array}{c} \left(L \right) \end{array} \right $
x_1	5.00	100	6	green
x_2	5.50	150	8	green
x_3	5.33	130	7	green
$ x_4 $	5.75	150	9	green
x_5	6.00	180	13	red
$ x_6 $	5.92	190	11	red
x_7	5.58	170	12	red
x_8	5.92	165	10	red

Code for the Dataset

```
import pandas as pd
data = pd.DataFrame(
      \{"id": [1,2,3,4,5,6,7,8],
       "Label": ["green", "green",
                 "green", "green",
                 "red", "red",
                "red"."red"].
       "Height": [5, 5.5, 5.33,5.75,
                  6.00,5.92,5.58,5.92],
       "Weight": [100, 150, 130, 150,
                    180, 190, 170, 165],
       "Foot": [6, 8, 7, 9,
                 13, 11, 12, 10]},
        columns = ["id", "Height",
                    "Weight", "Foot",
                    "Label"] )
```

Code for the Dataset (cont'd)

```
ipdb> data
 id Height Weight Foot Label
 1 5.00
          100
                6 green
()
1 2 5.50
          150
                8 green
2 3 5.33 130 7 green
3 4 5.75
                9 green
          150
               13
4 5 6.00 180
                    red
5 6 5.92 190
               11
                   red
6 7 5.58
               12
          170
                    red
7 8 5.92 165
               10
                   red
```

A Dataset Illustration

A New Instance

$$(H=6, W=160, F=10) \rightarrow ?$$

Categorical Dataset

Day	Weather	Temperature	Wind	Play
1	sunny	hot	low	no
2	rainy	mild	high	yes
3	sunny	cold	low	yes
4	rainy	cold	high	no
5	sunny	cold	high	yes
6	overcast	mild	low	yes
7	sunny	hot	low	yes
8	overcast	hot	high	yes
9	rainy	hot	high	no
_10	rainy	mild	low	yes

- $x^* = (sunny, cold, low) \rightarrow ?$
- need numeric values for attributes

Python Code

import pandas as pd data = pd.DataFrame($\{"Day": [1,2,3,4,5,6,7,8,9,10],$ "Weather": ["sunny", "rainy", "sunny", "rainy", "sunny", "overcast", "sunny", "overcast", "rainy", "rainy"], "Temperature": ["hot", "mild", "cold", "cold", "cold", "mild", "hot", "hot", "hot", "mild"], "Wind":["low","high","low", "high", "high", "low", "low", "high", "high", "low"], "Play":["no","yes","yes","no","yes", "yes", "yes", "yes", "no", "yes"]}, columns = ["Day", "Weather", "Temperature", "Wind", "Play"])

Basic Definitions

- eight objects: x_1, \ldots, x_8
- three features: height H, weight W, foot F
- for input x, its feature vector $\phi(x) = [H(x), W(x), F(x)]$
- $\phi(x)$ is a point in 3-dimensional space R^3

Examples of Objectives

1. binary classification: compute label (green or red) on new instance

$$x \mapsto \phi(\cdot) \mapsto y \in \{0, 1\}$$

2. regression: predict foot size given height and weight

$$x \mapsto \phi(\cdot) \mapsto y \in R$$

• how do we compute $\phi(\cdot)$?

Computing Prediction

- choose a class of functions (e.g. linear, polynomial)
- choose hyper-parameters to:
 - 1. minimize training loss
 - 2. generalize to unseen data
- example: in linear regression we choose slope and intersect (hyper-parameters) to minimize sum of squared residuals

Loss Minimization

- compute parameters to minimize loss
- learning is optimization
- solution depends on the loss function
- examples of loss functions:
 - 1. squared loss $(y \phi(x))^2$
 - 2. absolute loss $|y \phi(x)|$
- use gradient descent to compute hyper-parameters

Testing/Training Sets

- Q: how do we compute model parameters?
- Q: how do we estimate accuracy?
- A: split known objects into two subsets
 - 1. X_train: for parameters
 - 2. X_testing: for accuracy

Testing/Training Sets (cont'd)

• need to minimize any biases in the data

figure reprinted from www.kdnuggets.com with explicit permission of the editor

Bias in Training Data

```
import pandas as pd
data = pd.DataFrame(
      \{"id": [1,2,3,4,5,6,7,8],
       "Label": ["green", "green",
                 "green", "green",
                 "red", "red",
                "red", "red"],
       "Height": [5, 5.5, 5.33,5.75,
                  6.00,5.92,5.58,5.92],
       "Weight": [100, 150, 130, 150,
                    180, 190, 170, 165],
       "Foot": [6, 8, 7, 9,
                 13, 11, 12, 10]},
        columns = ["id", "Height",
                    "Weight", "Foot",
                    "Label"] )
X = data[["Height","Weight","Foot"]]
X_{train} = X[:4]
X_{test} = X[4:]
```

Bias in Training Data (cont'd)

```
ipdb> X_train
   5.00
          100
               6 green
1 5.50 150
               8 green
2 5.33 130
               7 green
3 5.75 150
                9 green
ipdb> X_test
  Height Weight Foot Label
4 6.00
          180
               13 red
5 5.92 190
               11 red
6 5.58 170
               12 red
7 5.92 165
               10 red
ipdb> X_test
```

need to randomize data

Eliminating Bias

```
import pandas as pd
from sklearn.model_selection \
      import train_test_split
data = pd.DataFrame(
      {"id": [1,2,3,4,5,6,7,8],}
       "Label": ["green", "green", "green", "green",
                 "red", "red", "red", "red"],
       "Height": [5, 5.5, 5.33,5.75,
                  6.00,5.92,5.58,5.92],
       "Weight":[100, 150, 130, 150,
                    180, 190, 170, 165],
       "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
        columns = ["id", "Height",
                   "Weight", "Foot", "Label"] )
X = data[["Height","Weight","Foot"]]
y = data["Label"]
X_train, X_test, y_train, y_test=\
      train_test_split(X, y, train_size=0.5)
```

Eliminating Bias

ipdb> X_train							
	Height	Weight	Foot	Label			
3	5.75	150	9	green			
1	5.50	150	8	green			
4	6.00	180	13	red			
5	5.92	190	11	red			
ipdb> X_test							
	Height	Weight	Foot	Label			
2	5.33	130	7	green			
0	5.00	100	6	green			
7	5.92	165	10	red			
7 6	5.92 5.58	165 170	10 12	red red			

• data is now "shuffled"

Stratifying Classes

```
import pandas as pd
from sklearn.model_selection \
      import train_test_split
data = pd.DataFrame(
      {"id": [1,2,3,4,5,6,7,8],}
       "Label": ["green", "green", "green", "green",
                 "red", "red", "red", "red"],
       "Height": [5, 5.5, 5.33,5.75,
                  6.00,5.92,5.58,5.92],
       "Weight":[100, 150, 130, 150,
                    180, 190, 170, 165],
       "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
        columns = ["id", "Height",
                   "Weight", "Foot", "Label"] )
X = data[["Height","Weight","Foot"]]
y = data["Label"]
X_train, X_test, y_train, y_test=\
      train_test_split(X, y, train_size=0.75)
```

Stratifying Classes

```
ipdb> X_train
  Height Weight Foot Label
   5.58
          170
               12.
                    red
 5.33 130
                7 green
3 5.75 150
                9 green
0 5.00 100
                6 green
1 5.50 150
                8 green
 6.00 180
               13
                    red
ipdb> X_test
  Height Weight Foot Label
7
   5.92 165
               10
                   red
   5.92 190
               11
                   red
```

• label counts are not evenly distributed

Split and Stratify

```
import pandas as pd
from sklearn.model_selection \
      import train_test_split
data = pd.DataFrame(
      \{"id": [1,2,3,4,5,6,7,8],
       "Label": ["green", "green", "green", "green",
                 "red"."red"."red"."red"].
       "Height": [5, 5.5, 5.33,5.75,
                  6.00,5.92,5.58,5.92],
       "Weight":[100, 150, 130, 150,
                    180, 190, 170, 165],
       "Foot": [6, 8, 7, 9, 13, 11, 12, 10]},
        columns = ["id", "Height",
                   "Weight", "Foot", "Label"] )
X = data[["Height","Weight","Foot"]]
y = data["Label"]
X_train, X_test, y_train, y_test=\
      train_test_split(X, y,
          train_size=0.75, stratify=y)
```

Stratifying Classes

```
ipdb> X_train
 5.50
1
          150
                8
                  green
6 5.58 170
                   red
3 5.75 150
                9 green
5 5.92 190
               11
                   red
2 5.33 130
               7 green
 5.92 165
               10
                   red
ipdb> X_test
  Height Weight Foot Label
    5.0 100
                6
                  green
    6.0 180
               13
                   red
```

• label counts are now evenly distributed

Cross Validation

- we use only a portion of data for testing and training
- can use more with *n*-fold cross validation
 - 1. split data randomly into n parts
 - 2. use n-1 for training
 - 3. use 1 part for testing
 - 4. repeat n times using different part for testing
 - 5. average results

k-fold Validation

• expensive for large n

Bias-Variance Decomposition

- bias average difference between prediction and correct value
- variance variability of prediction for a given point

 $Error = Bias^2$

- + Variance
- +Irreducible Error

Bias-Variance Trade-Off

low bias, low variance

high bias, low variance

low bias, high variance

high bias, high variance

Bias-Variance Trade-Off

low bias, low variance

high bias, low variance

low bias, high variance

high bias, high variance

- "overfitting" low bias, high variance
- 'underfitting'' low variance, high bias

Bias-Variance: Ideal Model

Concepts Check:

- (a) prediction vs. classification
- (b) numerical vs. categorical data
- (c) loss function
- (d) testing and training data
- (e) bias elimination and stratification
- (f) cross and k-fold validation
- (g) bias vs. variance trade-offs