Web安全技术 -- IPSec传输模式下ESP报文的装包拆包过程的准确描述

姓名: 陈明亮

学号: 16340023

一、IPSec简介

- 1. IPSec 即网络协议安全协定 Internet Protocol Security ,由 IETF 组织进行协定内容的定义与发布。 IPSec 被设计为对网络协议传输过程的安全性保证,透过对IP协议(互联网协议)的分组进行加密和认证来保护IP协议的网络传输协议族(一些相互关联的协议的集合),确保IP网络传输时每个 IP 包都得到加密与认证,同时在会话开始时建立双方的交互认证,且在会话期间进行密钥的协商,很大程度上保证的网络传输的安全性。
- 2. IPsec由两大部分组成: (1) 建立安全分组流的密钥交换协议; (2) 保护分组流的协议。前者为互联网金钥交换(IKE)协议。后者包括加密分组流的封装安全载荷协议(ESP 协议)或认证头协议(AH 协议)协议,用于保证数据的机密性、来源可靠性(认证)、无连接的完整性并提供抗重播服务。
- 3. IPSec 设计意图为: (1) 入口对入口通信安全,在此机制下,分组通信的安全性由单个节点提供给多台机器 (甚至可以是整个局域网; (2) 端到端分组通信安全,由作为端点的计算机完成安全操作。上述的任意一种模式 都可以用来构建虚拟专用网 (VPN),而这也是IPSec最主要的用途之一。
- 4. IPSec 与其余的互联网安全协议相比可适用范围更加广,该协议工作在 ost 模型的第三层,使其在单独使用时适于保护基于 TCP 或 UDP 的协议。这就意味着,与传输层或更高层的协议相比,IPsec协议必须处理可靠性和分片的问题,这同时也增加了它的复杂性和处理开销。相对而言,SSL/TLS依靠更高层的TCP(OSI的第四层)来管理可靠性和分片,但此些协议并不能完全保护 TCP 或 UDP 通信流的安全性。

二、ESP简介

1. ESP 介绍 Encapsulating Security Payloaads , 封装安全载荷协议 ESP 是 IPSec 支持的两类传输安全协议中的一种。 ESP 协议能够在数据传输过程中对数据完整性进行检测与度量,同时进行数据来源的安全性认证与加密,很大程度上防止了回放攻击。

- 2. ESP 传输模式介绍传输模式 Transport Mode ,是与隧道模式 Tunnel Mode 同为 IPSec 工作的两种信息传输方式,在这两种不同的工作模式下, ESP 数据报的结构与装包/拆包机制也相应地发生改变。与隧道模式不同的是,传输模式下不会主动生成新的 IP 头部信息,而是服用原来的 IP 头,保护报文内部真正传输的内容数据,而不对整个 IP 报文进行保护。
- 3. IPSec 传输模式下 ESP 报文结构示意图

4. 传输模式下 ESP 报文与原始 IPv4 报文的区别示意图

IPv4 ESP Datagram Format - IPSec Transport Mode

5. 传输模式下 ESP 数据包的认证与加密流程图

三、传输模式下ESP报文的装包与拆包过程准确描述

- 1. 装包过程分析
- 传输模式装包的起始步骤为原 IP 报文末尾添加尾部信息 ESP Trailer 。同时尾部信息包含三部分,每当所选的加密算法为块加密时,当最后一块长度不足时就需要进行填充操作 Padding ,附上填充长度 Padding Length ,方便接收方解包时顺利地找出用于填充操作的那一段数据。 Next Header 则用于标明封装的原报文的协议类型,过程示意图:

• 将原IP报文以及初始步骤得到的报文尾部 ESP Trailer 作为整体进行加密封装,封装采取的加密算法以及相应的密钥由SA给出。

"Enchilada" authenticated

• 为上一步得到的加密数据添加 ESP Header ,该头部信息由 SPI 和序列号 Seq# 两部分组成。原本的加密数据,以及新加的头部信息 ESP Header 合称为 Enchilada ,构成认证部分。需要引起注意的是,被封装的原报文的协议类型此时收到保护,由加密过后的 ESP Tariler 的 Next Header 声明,而不是以明文信息不出现在未加密的 ESP Header 中。

• 进行附加完整性度量结果检测 ICV (Integrity check value) , 对第三步得到的加密 Enchilada 部分进行认证,得到一个32位证书倍的完整性度量值 MAC , 并附加在 ESP 报文的尾部。同样地,完整性度量算法的认证密钥由SA给出。

• 传输模式下 ESP 数据装包的最后一步保留原报文的 IP Header ,组成最终发送出的 IPSec 报文。同时需要注意此处的报文协议类型须保证为50,说明封装内容为 ESP 报文。

"Enchilada" authenticated Encrypted OLD IP ESP ESP ESP Original Original IP header header IP header datagram payload MAC trailer Pad Next SP1 Seq # Padding length header

2. 拆包过程分析

- 收到 ESP包后,进行的第一件事情是:检查处理这个包的SA是否存在,这是基本的 IPSec要求,而不是ESP专有的。如果没有SA,这个包就会被丢弃。只有在SA存在的情况下,才可开始进行输入处理。一旦验证通过了一个有效的SA,就可用它开始包的处理。
- 首先检查序列号。如果这个包的序列号是有效的,那么该包就不是一个重复(重播)的包,也不是出现在包含在SA中的序列号窗口的右边—就开始进行处理。由于 ESP 身份验证密文而不是明文,接下来进行的便是对这个包进行身份验证。利用恰当的密钥,把这个完整的ESP包(当然除开身份验证数据)传递到验证器那里(它取自SA)。如果其结果能与"身份验证数据"字段中包含的数据相符(将身份验证算法可能需要的任何分段考虑在内),就可对这个包进行身份验证。接下来是解密。通过取自SA的密钥和密码算法,就可对 ESP 包进行解密,这个ESP包在载荷数据开始之处到下一个头之间。判断解密成功的一个最简单的测试是检验其填充。由于填充内容具有决定意义—要么是一个从1开始的单向递增的数,要么通过加密算法来决定—对填充内容进行验证将决定这个包是否已成功解密。
- 下面分步骤对拆包过程进行分析与准确描述:
 - 1. 接收方收到 IP 报文后,发现协议类型是50,表明这是一个 ESP包。首先查看 ESP header,通过 SPI 决定数据报文所对应的 SA
 - ,获得对应的模式 (tunnel/transport mode) 以及安全规范。
 - 2. 计算 "enchilada" 部分的摘要,与附在末尾的 ICV 做对比,验证数据完整性。
 - 3. 检查 Sea# 里的顺序号, 保证数据是"新鲜"的。
 - 4. 根据 SA 所提供的加密算法和密钥,解密被加密过的数据,得到原 IP 报文与 ESP trailer。
 - 5. 根据 ESP trailer 的填充长度信息,找出填充字段的长度,删去后得到原来的 IP 报文。
 - 6. 最后根据得到的原 IP 报文的目的地址进行转发。