Modèles de calcul Université de Montpellier TD 2

Sauf mention contraire, on utilisera l'alphabet $\{a, b\}$.

Exercice 1 Reconnaissance

Quel est le langage reconnu par chacun des automates suivants?

Exercice 2 Modulo

Dans cet exercice, on utilisera l'alphabet $\{a,b,c\}$. Rappel : $|u|_a$ désigne le nombre de "a" dans u.

- I. Construisez un automate reconnaissant les mots u tels que : $|u|_a \equiv 1 \pmod{3}$.
- 2. Construisez un automate reconnaissant tous les mots ayant aacbac comme sous-mot.

Exercice 3 Égalité

Montrez que les deux automates suivants reconnaissent le même langage.

Exercice 4 Nécessaire ou pas

- Montrez que si une transition arrive dans un état non-atteignable, alors elle part d'un état non atteignable.
- 2. Montrez que le langage des mots cheminables dans un automate ne change pas si l'on retire tous les états non-atteignables de cet automate (ainsi que toutes les transitions qui en partent).
- 3. Montrez que le langage des mots reconnu par un automate est égal au langage des mots cheminables dans cet automate si et seulement si tous ses états atteignables sont finaux.

Exercice 5 Atteignable

Considérons un automate quelconque. Définissons F^i comme l'ensemble des états à partir desquels on peut atteindre un état final en lisant un mot d'au plus i lettres.

- I. Que vaut F^0 ?
- 2. Montrez que $F^n \subset F^{n+1}$.
- 3. Montrez que si $F^n = F^{n+1}$, alors $F^n = F^{n+1} = F^{n+2}$.
- 4. Montrez que $\exists n \, \forall m > n, \, F^m = F^n$. On notera F^{∞} cet ensemble F^n .
- 5. Notons e le nombre d'états de l'automate. Est-il vrai que $\forall n > e, F^e = F^n$?
- 6. Trouvez un automate ayant un état q tel que $q \notin F^{\infty}$.
- 7. Que se passe-t-il quand $q_0 \notin F^{\infty}$?
- 8. On suppose que $q_0 \in F^{\infty}$ et on enlève de l'automate tous les états qui ne sont pas dans F^{∞} , ainsi que toutes les transitions qui partent ou arrivent de ces états. Quel langage reconnait l'automate ainsi obtenu? (Justifiez avec soin)

Exercice 6 Etoile

Montrez que le langage $L = \{a^n b^n, n \in \mathbb{N}\}$ n'est pas reconnaissable par automate. En d'autres termes, qu'il n'existe pas d'automate qui reconnaisse ce langage. Encore autrement dit, que ce langage n'est pas rationnel.

Exercice 7 Mots et Expressions Rationnelles

Dans cet exercice, on se place sur l'alphabet $\{a,b\}$. Soit l'expression $a(ab+ba^*)^*b^*a$.

- 1. Les mots suivants sont-ils dans le langage dénoté par cette expression? aaba, abba, aaab, aaaba
- 2. Construire un automate qui reconnaît cette expression.
- 3. Donnez une expression rationnelle qui dénote le langage de tous les mots qui se terminent par aa.
- 4. Donnez une expression rationnelle qui dénote le langage de tous les mots dans lesquelles chaque paire de a (chaque fois qu'il y a aa) apparaît devant une paire de b.
- Donnez une expression rationnelle qui dénote le langage de tous les mots qui ne contiennent pas bab.

Exercice 8 Langages et expressions rationnelles

On définit $\mathcal{L}^+ = \mathcal{L}.\mathcal{L}^*$.

- 1. A quoi correspondent les éléments de \mathcal{L}^+ ?
- 2. A quelle condition sur \mathcal{L} ϵ appartient-il à \mathcal{L}^+ ?
- 3. Que vaut \mathcal{L}^{**} ? Et \mathcal{L}^{++} ?
- 4. Si $\mathcal{L} = \{aa, bab\}$, à quelle condition existe-t-il des mots de longueur n dans \mathcal{L}^+ ? Même question pour \mathcal{L}^* .