Three Stage Model (SLH)

Charles Marks

$$\frac{dS}{dt} = \sigma - \underbrace{c\beta S(\frac{L + \eta H}{L + H + S})}_{\text{initiation}} - \underbrace{\gamma_S S}_{\text{death}}$$

$$\frac{dL}{dt} = \underbrace{pc\beta S(\frac{L + \eta H}{L + H + S})}_{\text{initiation}} - \theta + \omega - \gamma_L L$$

$$\frac{dH}{dt} = \underbrace{(1-p)c\beta S(\frac{L+\eta H}{L+H+S})}_{\text{initiation}} + \theta - \omega - \gamma_H H$$

Symbol	Parameter Description	Units
S	Susceptible Population	Persons
L	Low-Rate Initiator Population	Persons
H	High-Rate Initiator Population	Persons
σ	population births	Persons
c	contacts per time unit	Persons
β	infection rate	$\in [0,1]$
η	high-initiator effect	$\in [0,\infty)$
p	Initiation Into L or H Probability	$\in [0,1]$
θ	L to H transition function	Persons
ω	H to L transition function	Persons
γ_S	Death Rate of S	$\in [0,1]$
γ_L	Death Rate of L	$\in [0,1]$
γ_H	Death Rate of H	$\in [0,1]$