Contrôle TD 2 blanc

Question de cours

- Définition de : F et G supplémentaires dans E;
- Si $X = (x_1, \ldots, x_n) \in E^n$: traduire avec des quantificateurs:
 - ---X est une famille libre de E
 - X est une famille génératrice de E
 - X est une base de E
- Énoncer le théorème du rang, la formule de Grassmann.

Exercice 1

Soit f l'application linéaire de $\mathbb{R}_3[X]$ dans \mathbb{R}^2 définie par :

$$\forall P \in \mathbb{R}_3[X], f(P) = (P(0) + P(1), 2P(2)).$$

Déterminer le noyau et l'image de f.

Exercice 2

Soit E un espace vectoriel sur \mathbb{R} et $u \in \mathcal{L}(E)$; u^2 désigne comme d'habitude $u \circ u$. Montrer que :

$$\operatorname{Im}(u) \cap \operatorname{Ker}(u) = \{0_E\} \iff \operatorname{Ker}(u) = \operatorname{Ker}(u^2)$$

Exercice 3

Soit
$$M$$
 la matrice $\begin{pmatrix} -2 & 4 & 3 \\ -5 & 7 & 5 \\ 6 & -6 & -5 \end{pmatrix}$.

Déterminer sous forme factorisée le polynôme caractéristique de la matrice M, en indiquant les transformations opérées sur les lignes et les colonnes.