

(19) World Intellectual Property Organization International Bureau

| This prime | 1 (11) (14) (14) (16) | This was the first of the first

(43) International Publication Date 26 July 2001 (26.07.2001)

PCT

(10) International Publication Number WO 01/53489 A1

- (51) International Patent Classification⁷: C07K 14/705
- C12N 15/12,
- (21) International Application Number: PCT/US01/02113
- (22) International Filing Date: 18 January 2001 (18.01.2001)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/176,692

18 January 2000 (18.01.2000) U

- (71) Applicant: LEXICON GENETICS INCORPORATED [US/US]; 4000 Research Forest Drive, The Woodlands, TX 77381 (US).
- (72) Inventors: TURNER, C., Alexander, Jr.: 67 Winter Wheat Place, The Woodlands. TX 77381 (US). MATHUR, Brian; 12000 Sawmill Road #2014, The Woodlands, TX 77380 (US). FRIEDRICH, Glenn; Breland & Breland, 2207 Hermann Drive, Houston, TX 77004 (US). ZAMBROWICZ, Brian; 18 Firethorne Place, The Woodlands, TX 77382 (US). SANDS, Arthur, T.; 163 Bristol Bend Circle, The Woodlands, TX 77382 (US).

- (74) Agents: ISHIMOTO, Lance, K. et al.; Lexicon Genetics Incorporated, 4000 Research Forest Drive, The Woodlands, TX 77381 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

1/53489 A1

(54) Title: HUMAN GABA RECEPTOR PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

(57) Abstract: Novel human polynucleotide and polypeptide sequences are disclosed that share sequence similarity with animal gamma-amino Sutyric acid (GABA) receptor subunits and particularly rho3 subunits thereof. Theses sequences can be used in therapeutic, diagnostic, and pharmacogenomic applications.

HUMAN GABA RECEPTOR PROTEINS AND POLYNUCLEOTIDES ENCODING THE SAME

The present application claims the benefit of U.S.

Provisional Application Number 60/176,692 which was filed on

January 18, 2000 and is herein incorporated by reference in its entirety.

1. INTRODUCTION

The present invention relates to the discovery, identification, and characterization of novel human

10 polynucleotides encoding proteins that share sequence similarity with animal gamma-amino butyric acid (GABA) receptor subunits.

The invention encompasses the described polynucleotides, host cell expression systems, the encoded proteins, fusion proteins, polypeptides and peptides, antibodies to the encoded proteins and peptides, and genetically engineered animals that either lack or over express the disclosed sequences, antagonists and agonists of the proteins, and other compounds that modulate the expression or activity of the proteins encoded by the disclosed sequences that can be used for diagnosis, drug screening, clinical trial

20 monitoring and the treatment of diseases and disorders.

2. BACKGROUND OF THE INVENTION

Membrane proteins play important roles as, inter alia, cell surface markers, receptors, and mediators of signal transduction.

GABA receptors bind a potent inhibitory neurotransmitter and this interaction serves as a target for a variety of pharmaceutical agents such as benzodiazepines, barbiturates and alcohol.

3. SUMMARY OF THE INVENTION

The present invention relates to the discovery,
identification, and characterization of nucleotides that encode
novel human proteins, and the corresponding amino acid sequences
of these proteins. The novel human proteins (NHPs) described for

the first time herein share structural similarity with membrane receptors such as, but not limited to human and other mammalian GABA receptors.

The novel human nucleic acid sequences described herein,
5 encode alternative proteins/open reading frames (ORFs) of 467,
392, 180, 420, 345, and 133 amino acids in length (see SEQ ID NOS:
2, 4, 6, 8, 10, and 12 respectively).

The invention also encompasses agonists and antagonists of the described NHPs, including small molecules, large molecules, nutant NHPs, or portions thereof that compete with native NHP, peptides, and antibodies, as well as nucleotide sequences that can be used to inhibit the expression of the described NHPs (e.g., antisense and ribozyme molecules, and gene or regulatory sequence replacement constructs) or to enhance the expression of the described NHP sequences (e.g., expression constructs that place the described sequence under the control of a strong promoter system), and transgenic animals that express a NHP transgene, or "knock-outs" (which can be conditional) that do not express a functional NHP. A gene trapped murine ES cell line has been produced that knocks-out a murine ortholog of the described NHPs.

Further, the present invention also relates to processes for identifying compounds that modulate, i.e., act as agonists or antagonists, of NHP expression and/or NHP activity that utilize purified preparations of the described NHPs and/or NHP product, or cells expressing the same. Such compounds can be used as therapeutic agents for the treatment of any of a wide variety of symptoms associated with biological disorders or imbalances.

4. DESCRIPTION OF THE SEQUENCE LISTING AND FIGURES

The Sequence Listing provides the sequences of the described

NHP ORFs that encode the described NHP amino acid sequences.

30

5. DETAILED DESCRIPTION OF THE INVENTION

The NHPs, described for the first time herein, are novel proteins that are expressed in, inter alia, human cell lines, human testis, brain, adrenal gland cells, and gene trapped human cells.

The present invention encompasses the nucleotides presented in the Sequence Listing, host cells expressing such nucleotides, the expression products of such nucleotides, and: (a) nucleotides that encode mammalian homologs of the described sequences, 10 including the specifically described NHPs, and the NHP products; (b) nucleotides that encode one or more portions of the NHPs that correspond to functional domains, and the polypeptide products specified by such nucleotide sequences, including but not limited to the novel regions of any active domain(s); (c) isolated 15 nucleotides that encode mutant versions, engineered or naturally occurring, of the described NHPs in which all or a part of at least one domain is deleted or altered, and the polypeptide products specified by such nucleotide sequences, including but not limited to soluble proteins and peptides in which all or a portion 20 of the signal sequence is deleted; (d) nucleotides that encode chimeric fusion proteins containing all or a portion of a coding region of an NHP, or one of its domains (e.g., a receptor or ligand binding domain, accessory protein/self-association domain, etc.) fused to another peptide or polypeptide; or (e) therapeutic 25 or diagnostic derivatives of the described polynucleotides such as oligonucleotides, antisense polynucleotides, ribozymes, dsRNA, or gene therapy constructs comprising a sequence first disclosed in the Sequence Listing.

As discussed above, the present invention includes: (a) the

human DNA sequences presented in the Sequence Listing (and vectors
comprising the same) and additionally contemplates any nucleotide
sequence encoding a contiguous NHP open reading frame (ORF) that
hybridizes to a complement of a DNA sequence presented in the

PCT/US01/02113 WO 01/53489

Sequence Listing under highly stringent conditions, e.g., hybridization to filter-bound DNA in 0.5 M NaHPO4, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1xSSC/0.1% SDS at 68°C (Ausubel F.M. et al., eds., 1989, Current 5 Protocols in Molecular Biology, Vol. I, Green Publishing Associates, Inc., and John Wiley & sons, Inc., New York, at p. 2.10.3) and encodes a functionally equivalent gene product. Additionally contemplated are any nucleotide sequences that hybridize to the complement of a DNA sequence that encodes and 10 expresses an amino acid sequence presented in the Sequence Listing under moderately stringent conditions, e.g., washing in 0.2xSSC/0.1% SDS at 42°C (Ausubel et al., 1989, supra), yet still encodes a functionally equivalent NHP product. Functional equivalents of a NHP include naturally occurring NHPs present in 15 other species and mutant NHPs whether naturally occurring or engineered (by site directed mutagenesis, gene shuffling, directed evolution as described in, for example, U.S. Patent No. 5,837,458). The invention also includes degenerate nucleic acid variants of the disclosed NHP polynucleotide sequences.

Additionally contemplated are polynucleotides encoding NHP ORFs, or their functional equivalents, encoded by polynucleotide sequences that are about 99, 95, 90, or about 85 percent similar or identical to corresponding regions of the nucleotide sequences of the Sequence Listing (as measured by BLAST sequence comparison 25 analysis using, for example, the GCG sequence analysis package (Madison, Wisconsin) using standard default settings).

20

The invention also includes nucleic acid molecules, preferably DNA molecules, that hybridize to, and are therefore the complements of, the described NHP nucleotide sequences. Such 30 hybridization conditions may be highly stringent or less highly stringent, as described above. In instances where the nucleic acid molecules are deoxyoligonucleotides ("DNA oligos"), such molecules are generally about 16 to about 100 bases long, or about

20 to about 80, or about 34 to about 45 bases long, or any variation or combination of sizes represented therein that incorporate a contiguous region of sequence first disclosed in the Sequence Listing. Such oligonucleotides can be used in conjunction with the polymerase chain reaction (PCR) to screen libraries, isolate clones, and prepare cloning and sequencing templates, etc.

Alternatively, such NHP oligonucleotides can be used as hybridization probes for screening libraries, and assessing gene 10 expression patterns (particularly using a micro array or highthroughput "chip" format). Additionally, a series of the described NHP oligonucleotide sequences, or the complements thereof, can be used to represent all or a portion of the described NHP sequences. An oligonucleotide or polynucleotide 15 sequence first disclosed in at least a portion of one or more of the sequences of SEQ ID NOS: 1-12 can be used as a hybridization probe in conjunction with a solid support matrix/substrate (resins, beads, membranes, plastics, polymers, metal or metallized substrates, crystalline or polycrystalline substrates, etc.). Of 20 particular note are spatially addressable arrays (i.e., gene chips, microtiter plates, etc.) of oligonucleotides and polynucleotides, or corresponding oligopeptides and polypeptides, wherein at least one of the biopolymers present on the spatially addressable array comprises an oligonucleotide or polynucleotide 25 sequence first disclosed in at least one of the sequences of SEQ ID NOS: 1-12, or an amino acid sequence encoded thereby. Methods for attaching biopolymers to, or synthesizing biopolymers on, solid support matrices, and conducting binding studies thereon are disclosed in, inter alia, U.S. Patent Nos. 5,700,637, 5,556,752, 30 5,744,305, 4,631,211, 5,445,934, 5,252,743, 4,713,326, 5,424,186, and 4,689,405 the disclosures of which are herein incorporated by reference in their entirety.

Addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-12 can be used to identify and characterize the temporal and tissue specific expression of a gene. These addressable arrays incorporate oligonucleotide sequences of sufficient length to confer the required specificity, yet be within the limitations of the production technology. The length of these probes is within a range of between about 8 to about 2000 nucleotides. Preferably the probes consist of 60 nucleotides and more preferably 25 nucleotides from the sequences first disclosed in SEQ ID NOS:1-12.

For example, a series of the described oligonucleotide sequences, or the complements thereof, can be used in chip format to represent all or a portion of the described sequences. The oligonucleotides, typically between about 16 to about 40 (or any whole number within the stated range) nucleotides in length can partially overlap each other and/or the sequence may be represented using oligonucleotides that do not overlap. Accordingly, the described polynucleotide sequences shall typically comprise at least about two or three distinct oligonucleotide sequences of at least about 8 nucleotides in length that are each first disclosed in the described Sequence Listing. Such oligonucleotide sequences can begin at any nucleotide present within a sequence in the Sequence Listing and proceed in either a sense (5'-to-3') orientation vis-a-vis the

Microarray-based analysis allows the discovery of broad patterns of genetic activity, providing new understanding of gene functions and generating novel and unexpected insight into transcriptional processes and biological mechanisms. The use of addressable arrays comprising sequences first disclosed in SEQ ID NOS:1-12 provides detailed information about transcriptional changes involved in a specific pathway, potentially leading to the

identification of novel components or gene functions that manifest themselves as novel phenotypes.

Probes consisting of sequences first disclosed in SEQ ID NOS:1-12 can also be used in the identification, selection and validation of novel molecular targets for drug discovery. The use of these unique sequences permits the direct confirmation of drug targets and recognition of drug dependent changes in gene expression that are modulated through pathways distinct from the drugs intended target. These unique sequences therefore also have utility in defining and monitoring both drug action and toxicity.

As an example of utility, the sequences first disclosed in SEQ ID NOS:1-12 can be utilized in microarrays or other assay formats, to screen collections of genetic material from patients who have a particular medical condition. These investigations can also be carried out using the sequences first disclosed in SEQ ID NOS:1-12 in silico and by comparing previously collected genetic databases and the disclosed sequences using computer software known to those in the art.

Thus the sequences first disclosed in SEQ ID NOS:1-12 can be used to identify mutations associated with a particular disease and also as a diagnostic or prognostic assay.

Although the presently described sequences have been specifically described using nucleotide sequence, it should be appreciated that each of the sequences can uniquely be described using any of a wide variety of additional structural attributes, or combinations thereof. For example, a given sequence can be described by the net composition of the nucleotides present within a given region of the sequence in conjunction with the presence of one or more specific oligonucleotide sequence(s) first disclosed in the SEQ ID NOS: 1-12. Alternatively, a restriction map specifying the relative positions of restriction endonuclease digestion sites, or various palindromic or other specific oligonucleotide sequences can be used to structurally describe a

given sequence. Such restriction maps, which are typically generated by widely available computer programs (e.g., the University of Wisconsin GCG sequence analysis package, SEQUENCHER 3.0, Gene Codes Corp., Ann Arbor, MI, etc.), can optionally be used in conjunction with one or more discrete nucleotide sequence(s) present in the sequence that can be described by the relative position of the sequence relative to one or more additional sequence(s) or one or more restriction sites present in the disclosed sequence.

For oligonucleotide probes, highly stringent conditions may refer, e.g., to washing in 6xSSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligos), 48°C (for 17-base oligos), 55°C (for 20-base oligos), and 60°C (for 23-base oligos). These nucleic acid molecules may encode or act as NHP gene antisense molecules, useful, for example, in NHP gene regulation (for and/or as antisense primers in amplification reactions of NHP nucleic acid sequences). With respect to NHP gene regulation, such techniques can be used to regulate biological functions. Further, such sequences may be used as part of ribozyme and/or triple helix sequences that are also useful for NHP gene regulation.

Inhibitory antisense or double stranded oligonucleotides can additionally comprise at least one modified base moiety which is selected from the group including but not limited to 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil,

£ NC, Cold - Sec. C185-19-1

5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine.

The antisense oligonucleotide can also comprise at least one modified sugar moiety selected from the group including but not limited to arabinose, 2-fluoroarabinose, xylulose, and hexose.

In yet another embodiment, the antisense oligonucleotide will comprise at least one modified phosphate backbone selected from the group consisting of a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphoramidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof.

In yet another embodiment, the antisense oligonucleotide is an α-anomeric oligonucleotide. An α-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0-methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA-DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330). Alternatively, double stranded RNA can be used to disrupt the expression and function of a targeted NHP.

Oligonucleotides of the invention can be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothicate oligonucleotides can be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), and methylphosphonate oligonucleotides can be prepared by use of controlled pore glass

PCT/US01/02113 WO 01/53489

polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.

Low stringency conditions are well known to those of skill in the art, and will vary predictably depending on the specific 5 organisms from which the library and the labeled sequences are derived. For guidance regarding such conditions see, for example, Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual (and periodic updates thereof), Cold Springs Harbor Press, N.Y.; and Ausubel et al., 1989, Current Protocols in Molecular Biology, 10 Green Publishing Associates and Wiley Interscience, N.Y.

Alternatively, suitably labeled NHP nucleotide probes can be used to screen a human genomic library using appropriately stringent conditions or by PCR. The identification and characterization of human genomic clones is helpful for 15 identifying polymorphisms (including, but not limited to, nucleotide repeats, microsatellite alleles, single nucleotide polymorphisms, or coding single nucleotide polymorphisms), determining the genomic structure of a given locus/allele, and designing diagnostic tests. For example, sequences derived from 20 regions adjacent to the intron/exon boundaries of the human gene can be used to design primers for use in amplification assays to detect mutations within the exons, introns, splice sites (e.g., splice acceptor and/or donor sites), etc., that can be used in diagnostics and pharmacogenomics.

Further, a NHP gene homolog can be isolated from nucleic acid obtained from an organism of interest by performing PCR using two degenerate or "wobble" oligonucleotide primer pools designed on the basis of amino acid sequences within the NHP products disclosed herein. The template for the reaction may be total RNA, 30 mRNA, and/or cDNA obtained by reverse transcription of mRNA prepared from human or non-human cell lines or tissue known or suspected to express an allele of a NHP gene.

25

1921: 1 ... Claste

The PCR product can be subcloned and sequenced to ensure that the amplified sequences represent the sequence of the desired NHP gene. The PCR fragment can then be used to isolate a full length cDNA clone by a variety of methods. For example, the amplified fragment can be labeled and used to screen a cDNA library, such as a bacteriophage cDNA library. Alternatively, the labeled fragment can be used to isolate genomic clones via the screening of a genomic library.

PCR technology can also be used to isolate full length cDNA sequences. For example, RNA can be isolated, following standard procedures, from an appropriate cellular or tissue source (i.e., one known, or suspected, to express a NHP sequence). A reverse transcription (RT) reaction can be performed on the RNA using an oligonucleotide primer specific for the most 5' end of the amplified fragment for the priming of first strand synthesis. The resulting RNA/DNA hybrid may then be "tailed" using a standard terminal transferase reaction, the hybrid may be digested with RNase H, and second strand synthesis may then be primed with a complementary primer. Thus, cDNA sequences upstream of the amplified fragment can be isolated. For a review of cloning strategies that can be used, see e.g., Sambrook et al., 1989, supra.

A cDNA encoding a mutant NHP gene can be isolated, for example, by using PCR. In this case, the first cDNA strand may be synthesized by hybridizing an oligo-dT oligonucleotide to mRNA isolated from tissue known or suspected to be expressed in an individual putatively carrying a mutant NHP allele, and by extending the new strand with reverse transcriptase. The second strand of the cDNA is then synthesized using an oligonucleotide that hybridizes specifically to the 5' end of the normal gene. Using these two primers, the product is then amplified via PCR, optionally cloned into a suitable vector, and subjected to DNA sequence analysis through methods well known to those of skill in

PCT/US01/02113 WO 01/53489

the art. By comparing the DNA sequence of the mutant NHP allele to that of a corresponding normal NHP allele, the mutation(s) responsible for the loss or alteration of function of the mutant NHP gene product can be ascertained.

5

Alternatively, a genomic library can be constructed using DNA obtained from an individual suspected of or known to carry a mutant NHP allele (e.g., a person manifesting a NHP-associated phenotype such as, for example, obesity, vision disorders, high blood pressure, depression, infertility, etc.), or a cDNA library 10 can be constructed using RNA from a tissue known, or suspected, to express a mutant NHP allele. A normal NHP gene, or any suitable fragment thereof, can then be labeled and used as a probe to identify the corresponding mutant NHP allele in such libraries. Clones containing mutant NHP gene sequences can then be purified 15 and subjected to sequence analysis according to methods well known to those skilled in the art.

Additionally, an expression library can be constructed utilizing cDNA synthesized from, for example, RNA isolated from a tissue known, or suspected, to express a mutant NHP allele in an 20 individual suspected of or known to carry such a mutant allele. In this manner, gene products made by the putatively mutant tissue can be expressed and screened using standard antibody screening techniques in conjunction with antibodies raised against a normal NHP product, as described below. (For screening techniques, see, 25 for example, Harlow, E. and Lane, eds., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Press, Cold Spring Harbor.)

Additionally, screening can be accomplished by screening with labeled NHP fusion proteins, such as, for example, alkaline phosphatase-NHP or NHP-alkaline phosphatase fusion proteins. In 30 cases where a NHP mutation results in an expressed gene product with altered function (e.g., as a result of a missense or a frameshift mutation), polyclonal antibodies to a NHP are likely to cross-react with a corresponding mutant NHP gene product. Library

clones detected via their reaction with such labeled antibodies can be purified and subjected to sequence analysis according to methods well known in the art.

The invention also encompasses (a) DNA vectors that contain 5 any of the foregoing NHP coding sequences and/or their complements (i.e., antisense); (b) DNA expression vectors that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences (for example, baculo virus as described in U.S. Patent 10 No. 5,869,336 herein incorporated by reference); (c) genetically engineered host cells that contain any of the foregoing NHP coding sequences operatively associated with a regulatory element that directs the expression of the coding sequences in the host cell; and (d) genetically engineered host cells that express an 15 endogenous NHP gene under the control of an exogenously introduced regulatory element (i.e., gene activation). As used herein, regulatory elements include, but are not limited to, inducible and non-inducible promoters, enhancers, operators and other elements known to those skilled in the art that drive and regulate 20 expression. Such regulatory elements include but are not limited to the cytomegalovirus (hCMV) immediate early gene, regulatable, viral elements (particularly retroviral LTR promoters), the early or late promoters of SV40 adenovirus, the lac system, the trp system, the TAC system, the TRC system, the major operator and 25 promoter regions of phage lambda, the control regions of fd coat protein, the promoter for 3-phosphoglycerate kinase (PGK), the promoters of acid phosphatase, and the promoters of the yeast α -mating factors.

The present invention also encompasses antibodies and antiidiotypic antibodies (including Fab fragments), antagonists and
agonists of the NHP, as well as compounds or nucleotide constructs
that inhibit expression of a NHP gene (transcription factor
inhibitors, antisense and ribozyme molecules, or gene or

30

PCT/US01/02113 WO 01/53489

regulatory sequence replacement constructs), or promote the expression of a NHP (e.g., expression constructs in which NHP coding sequences are operatively associated with expression control elements such as promoters, promoter/enhancers, etc.).

5

20

The NHPs or NHP peptides, NHP fusion proteins, NHP nucleotide sequences, antibodies, antagonists and agonists can be useful for the detection of mutant NHPs or inappropriately expressed NHPs for the diagnosis of disease. The NHP proteins or peptides, NHP fusion proteins, NHP nucleotide sequences, host cell expression 10 systems, antibodies, antagonists, agonists and genetically engineered cells and animals can be used for screening for drugs (or high throughput screening of combinatorial libraries) effective in the treatment of the symptomatic or phenotypic manifestations of perturbing the normal function of NHP in the 15 body. The use of engineered host cells and/or animals may offer an advantage in that such systems allow not only for the identification of compounds that bind to the endogenous receptor for an NHP, but can also identify compounds that trigger NHPmediated activities or pathways.

Finally, the NHP products can be used as therapeutics. example, soluble derivatives such as NHP peptides/domains corresponding to the NHPs, NHP fusion protein products (especially NHP-Ig fusion proteins, i.e., fusions of a NHP, or a domain of a NHP, to an IgFc), NHP antibodies and anti-idiotypic antibodies 25 (including Fab fragments), antagonists or agonists (including compounds that modulate or act on downstream targets in a NHPmediated pathway) can be used to directly treat diseases or disorders. For instance, the administration of an effective amount of soluble NHP, or a NHP-IgFc fusion protein or an anti-30 idiotypic antibody (or its Fab) that mimics the NHP could activate or effectively antagonize the endogenous NHP receptor. Nucleotide constructs encoding such NHP products can be used to genetically engineer host cells to express such products in vivo; these

genetically engineered cells function as "bioreactors" in the body delivering a continuous supply of a NHP, a NHP peptide, or a NHP fusion protein to the body. Nucleotide constructs encoding functional NHPs, mutant NHPs, as well as antisense and ribozyme molecules can also be used in "gene therapy" approaches for the modulation of NHP expression. Thus, the invention also encompasses pharmaceutical formulations and methods for treating biological disorders.

Various aspects of the invention are described in greater 10 detail in the subsections below.

5.1 THE NHP SEQUENCES

The cDNA sequences and the corresponding deduced amino acid sequences of the described NHPs are presented in the Sequence

15 Listing. The NHP nucleotides were obtained from clustered human gene trapped sequences, ESTs, and cDNA isolated from a human testis cell library. The described sequences share structural similarity with GABA receptor proteins, and particularly rho 3 subunits of the GABA receptor.

20

5.2 NHPS AND NHP POLYPEPTIDES

NHPs, polypeptides, peptide fragments, mutated, truncated, or deleted forms of the NHPs, and/or NHP fusion proteins can be prepared for a variety of uses. These uses include but are not limited to the generation of antibodies, as reagents in diagnostic assays, for the identification of other cellular gene products related to a NHP, as reagents in assays for screening for compounds that can be as pharmaceutical reagents useful in the therapeutic treatment of mental, biological, or medical disorders and diseases. Given the similarity information and expression data, the described NHPs can be targeted (by drugs, oligos, antibodies, etc.) in order to treat disease, or to therapeutically augment the efficacy of therapeutic agents.

The Sequence Listing discloses the amino acid sequences encoded by the described NHP sequences. The NHPs typically display initiator methionines in DNA sequence contexts consistent with a translation initiation site, and a signal sequence characteristic of membrane or secreted proteins.

The NHP amino acid sequences of the invention include the amino acid sequences presented in the Sequence Listing as well as analogues and derivatives thereof. Further, corresponding NHP homologues from other species are encompassed by the invention. 10 In fact, any NHP protein encoded by the NHP nucleotide sequences described above are within the scope of the invention, as are any novel polynucleotide sequences encoding all or any novel portion of an amino acid sequence presented in the Sequence Listing. The degenerate nature of the genetic code is well known, and, 15 accordingly, each amino acid presented in the Sequence Listing, is generically representative of the well known nucleic acid "triplet" codon, or in many cases codons, that can encode the amino acid. As such, as contemplated herein, the amino acid sequences presented in the Sequence Listing, when taken together 20 with the genetic code (see, for example, Table 4-1 at page 109 of "Molecular Cell Biology", 1986, J. Darnell et al. eds., Scientific American Books, New York, NY, herein incorporated by reference) are generically representative of all the various permutations and combinations of nucleic acid sequences that can encode such amino

The invention also encompasses proteins that are functionally equivalent to the NHPs encoded by the presently described nucleotide sequences as judged by any of a number of criteria, including, but not limited to, the ability to bind and cleave a substrate of a NHP, or the ability to effect an identical or complementary downstream pathway, or a change in cellular metabolism (e.g., proteolytic activity, ion flux, tyrosine phosphorylation, transport, etc.). Such functionally equivalent

25 acid sequences.

PCT/US01/02113 WO 01/53489

NHP proteins include, but are not limited to, additions or substitutions of amino acid residues within the amino acid sequence encoded by the NHP nucleotide sequences described above, but which result in a silent change, thus producing a functionally 5 equivalent gene product. Amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, 10 phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid.

A variety of host-expression vector systems can be used to express the NHP nucleotide sequences of the invention. Where, as in the present instance, the NHP peptide or polypeptide is thought to be membrane protein, the hydrophobic regions of the protein can be excised and the resulting soluble peptide or polypeptide can be 20 recovered from the culture media. Such expression systems also encompass engineered host cells that express a NHP, or functional equivalent, in situ. Purification or enrichment of a NHP from such expression systems can be accomplished using appropriate detergents and lipid micelles and methods well known to those 25 skilled in the art. However, such engineered host cells themselves may be used in situations where it is important not only to retain the structural and functional characteristics of the NHP, but to assess biological activity, e.g., in drug screening assays.

The expression systems that can be used for purposes of the invention include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors

30

15

containing NHP nucleotide sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing NHP nucleotide sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus)

5 containing NHP sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing NHP nucleotide sequences; or mammalian cell systems

10 (e.g., COS, CHO, BHK, 293, 3T3) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter).

In bacterial systems, a number of expression vectors may be 15 advantageously selected depending upon the use intended for the NHP product being expressed. For example, when a large quantity of such a protein is to be produced for the generation of pharmaceutical compositions of or containing NHP, or for raising 20 antibodies to a NHP, vectors that direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., 1983, EMBO J. 2:1791), in which a NHP coding sequence may be ligated 25 individually into the vector in frame with the lacZ coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, 1985, Nucleic Acids Res. 13:3101-3109; Van Heeke & Schuster, 1989, J. Biol. Chem. 264:5503-5509); and the like. pGEX vectors (Pharmacia or American Type Culture Collection) can also 30 be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by

1115-256

adsorption to glutathione-agarose beads followed by elution in the presence of free glutathione. The PGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.

polyhidrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. A NHP coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of NHP coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect Spodoptera frugiperda cells in which the inserted sequence is expressed (e.g., see Smith et al., 1983, J. Virol. 46:584; Smith, U.S. Patent No. 4,215,051).

In mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the NHP nucleotide sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing a NHP product in infected hosts (e.g., See Logan & Shenk, 1984, Proc. Natl. Acad. Sci. USA 81:3655-3659). Specific initiation signals may also be required for efficient translation of inserted NHP nucleotide sequences. These signals include the ATG initiation codon and adjacent sequences. In cases where an

entire NHP gene or cDNA, including its own initiation codon and adjacent sequences, is inserted into the appropriate expression vector, no additional translational control signals may be needed. However, in cases where only a portion of a NHP coding sequence is inserted, exogenous translational control signals, including, perhaps, the ATG initiation codon, must be provided. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (See Bittner et al., 1987, Methods in Enzymol. 153:516-544).

In addition, a host cell strain may be chosen that modulates 15 the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of 20 the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To 25 this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include, but are not limited to, CHO, VERO, BHK, HeLa, COS, MDCK, 293, 3T3, WI38, and in 30 particular, human cell lines.

For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the NHP sequences described above can be

engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer sequences, transcription terminators,

5 polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the NHP product. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that affect the endogenous activity of the NHP product.

A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler, et al., 1977, Cell 11:223), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, 1962, Proc.

- 20 Natl. Acad. Sci. USA 48:2026), and adenine phosphoribosyltransferase (Lowy, et al., 1980, Cell 22:817) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to
- 25 methotrexate (Wigler, et al., 1980, Natl. Acad. Sci. USA 77:3567; O'Hare, et al., 1981, Proc. Natl. Acad. Sci. USA 78:1527); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, 1981, Proc. Natl. Acad. Sci. USA 78:2072); neo, which confers resistance to the aminoglycoside G-418 (Colberre-Garapin, et al.,
- 30 1981, J. Mol. Biol. 150:1); and hygro, which confers resistance to hygromycin (Santerre, et al., 1984, Gene 30:147).

Alternatively, any fusion protein can be readily purified by utilizing an antibody specific for the fusion protein being expressed. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht, et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972-8976). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the gene's open reading frame is translationally fused to an amino-terminal tag consisting of six histidine residues. Extracts from cells infected with recombinant vaccinia virus are loaded onto Ni²⁺·nitriloacetic acid-agarose columns and histidine-tagged proteins are selectively eluted with imidazole-containing buffers.

5.3 ANTIBODIES TO NHP PRODUCTS

Antibodies that specifically recognize one or more epitopes of a NHP, or epitopes of conserved variants of a NHP, or peptide fragments of a NHP are also encompassed by the invention. Such antibodies include but are not limited to polyclonal antibodies, monoclonal antibodies (mAbs), humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab')₂ fragments, fragments produced by a Fab expression library, anti-idiotypic (anti-Id) antibodies, and epitope-binding fragments of any of the above.

The antibodies of the invention may be used, for example, in
the detection of NHP in a biological sample and may, therefore, be
utilized as part of a diagnostic or prognostic technique whereby
patients may be tested for abnormal amounts of NHP. Such
antibodies may also be utilized in conjunction with, for example,
compound screening schemes for the evaluation of the effect of
test compounds on expression and/or activity of a NHP gene
product. Additionally, such antibodies can be used in conjunction
gene therapy to, for example, evaluate the normal and/or
engineered NHP-expressing cells prior to their introduction into

ENGLISH OF CHISHESES

PCT/US01/02113 WO 01/53489

the patient. Such antibodies may additionally be used as a method for the inhibition of abnormal NHP activity. Thus, such antibodies may, therefore, be utilized as part of treatment methods.

For the production of antibodies, various host animals may be 5 immunized by injection with the NHP, an NHP peptide (e.g., one corresponding to a functional domain of an NHP), truncated NHP polypeptides (NHP in which one or more domains have been deleted), functional equivalents of the NHP or mutated variant of the NHP. 10 Such host animals may include but are not limited to pigs, rabbits, mice, goats, and rats, to name but a few. Various adjuvants may be used to increase the immunological response, depending on the host species, including but not limited to Freund's adjuvant (complete and incomplete), mineral salts such as 15 aluminum hydroxide or aluminum phosphate, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and Corynebacterium parvum. Alternatively, the immune response could be enhanced by 20 combination and or coupling with molecules such as keyhole limpet hemocyanin, tetanus toxoid, diptheria toxoid, ovalbumin, cholera toxin or fragments thereof. Polyclonal antibodies are heterogeneous populations of antibody molecules derived from the sera of the immunized animals.

Monoclonal antibodies, which are homogeneous populations of antibodies to a particular antigen, can be obtained by any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique of Kohler and Milstein, (1975, 30 Nature 256:495-497; and U.S. Patent No. 4,376,110), the human Bcell hybridoma technique (Kosbor et al., 1983, Immunology Today 4:72; Cole et al., 1983, Proc. Natl. Acad. Sci. USA 80:2026-2030), and the EBV-hybridoma technique (Cole et al., 1985, Monoclonal

25

Antibodies And Cancer Therapy, Alan R. Liss, Inc., pp. 77-96).

Such antibodies may be of any immunoglobulin class including IgG,
IgM, IgE, IgA, IgD and any subclass thereof. The hybridoma
producing the mAb of this invention may be cultivated in vitro or
in vivo. Production of high titers of mAbs in vivo makes this the
presently preferred method of production.

In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al., 1984, Proc. Natl. Acad. Sci., 81:6851-6855; Neuberger et al., 1984, Nature, 312:604-608; 10 Takeda et al., 1985, Nature, 314:452-454) by splicing the genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. A chimeric antibody is a molecule in which different portions are derived from different 15 animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region. Such technologies are described in U.S. Patents Nos. 6,075,181 and 5,877,397 and their respective disclosures which are herein incorporated by reference in their entirety. Also favored is the 20 production of fully humanized monoclonal antibodies as described in US Patent No. 6,150,584 and respective disclosures which are herein incorporated by reference in their entirety.

Alternatively, techniques described for the production of single chain antibodies (U.S. Patent 4,946,778; Bird, 1988, Science 242:423-426; Huston et al., 1988, Proc. Natl. Acad. Sci. USA 85:5879-5883; and Ward et al., 1989, Nature 334:544-546) can be adapted to produce single chain antibodies against NHP gene products. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide.

Antibody fragments which recognize specific epitopes may be generated by known techniques. For example, such fragments include, but are not limited to: the $F(ab')_2$ fragments which can

be produced by pepsin digestion of the antibody molecule and the Fab fragments which can be generated by reducing the disulfide bridges of the F(ab')₂ fragments. Alternatively, Fab expression libraries may be constructed (Huse et al., 1989, Science, 246:1275-1281) to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.

Antibodies to a NHP can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" a given NHP, using techniques well known to those skilled in the art. (See, e.g., 10 Greenspan & Bona, 1993, FASEB J 7(5):437-444; and Nissinoff, 1991, J. Immunol. 147(8):2429-2438). For example antibodies which bind to a NHP domain and competitively inhibit the binding of NHP to its cognate receptor can be used to generate anti-idiotypes that "mimic" the NHP and, therefore, bind and activate or neutralize a receptor. Such anti-idiotypic antibodies or Fab fragments of such anti-idiotypes can be used in therapeutic regimens involving a NHP mediated pathway.

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as 20 single illustrations of individual aspects of the invention, and functionally equivalent methods and components are within the scope of the invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims. All cited publications, patents, and patent applications are herein incorporated by reference in their entirety.

WHAT IS CLAIMED IS:

10

1151 C. 1 vill (1894864)

 An isolated nucleic acid molecule comprising at least 24 contiguous bases of nucleotide sequence first disclosed
 in SEQ ID NO: 1.

- 2. An isolated nucleic acid molecule comprising a nucleotide sequence that:
 - (a) encodes the amino acid sequence shown in SEQ ID NO: 2; and
 - (b) hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO: 1 or the complement thereof.
- 3. An isolated nucleic acid molecule comprising a nucleotide sequence that encodes the amino acid sequence shown in SEQ ID NO: 2.
- 4. An isolated nucleic acid molecule comprising a 20 nucleotide sequence that encodes the amino acid sequence shown in SEO ID NO: 8.

SEQUENCE LISTING

```
<110> LEXICON GENETICS INCORPORATED
<120> Novel Human GABA Receptor Proteins and
 Polynucleotides Encoding the Same
<130> LEX-0123-PCT
<150> US 60/176,692
<151> 2000-01-18
<160> 12
<170> FastSEQ for Windows Version 4.0
<210> 1
<211> 1404
<212> DNA
<213> Homo sapiens
<400> 1
atggtcctgg ctttccagtt agtctccttc acctacatct ggatcatatt gaaaccaaat
                                                                        60
                                                                      120
gtttgtgctg cttctaacat caagatgaca caccagcggt gctcctcttc aatgaaacaa
acctgcaaac aagaaactag aatgaagaaa gatgacagta ccaaagcgcg gcctcagaaa
                                                                      180
                                                                      240
tatgagcaac ttctccatat agaggacaac gatttcgcaa tgagacctgg atttggaggg
tctccagtgc cagtaggtat agatgtccat gttgaaagca ttgacagcat ttcagagact
                                                                      300
aacatggact ttacaatgac tttttatctc aggcattact ggaaagacga gaggctctcc
                                                                      360
tttcctagca cagcaaacaa aagcatgaca tttgatcata gattgaccag aaagatctgg
                                                                      420
gtgcctgata tcttttttgt ccactctaaa agatccttca tccatgatac aactatggag
                                                                       480
aatatcatgc tgcgcgtaca ccctgatgga aacgtcctcc taagtctcag gataacggtt
                                                                       540
tcggccatgt gctttatgga tttcagcagg tttcctcttg acactcaaaa ttgttctctt
                                                                       600
gaactggaaa gctatgccta caatgaggat gacctaatgc tatactggaa acacggaaac
                                                                       660
aagteettaa ataetgaaga acatatgtee ettteteagt tetteattga agaetteagt
                                                                      720
                                                                      780
qcatctagtg gattagcttt ctatagcagc acaggttggt acaataggct tttcatcaac
tttgtgctaa ggaggcatgt tttcttcttt gtgctgcaaa cctatttccc agccatattg
                                                                      840
                                                                       900
atggtgatgc tttcatgggt ttcattttgg attgaccgaa gagctgttcc tgcaagagtt
                                                                      960
tccctgggaa tcaccacagt gctgaccatg tccacaatca tcactgctgt gagcgcctcc
atgccccagg tgtcctacct caaggctgtg gatgtgtacc tgtgggtcag ctccctcttt
                                                                      1020
gtgttcctgt cagtcattga gtatgcagct gtgaactacc tcaccacagt ggaagagcgg
                                                                      1080
                                                                      1140
aaacaattca agaagacagg aaagatttct aggatgtaca atattgatgc agttcaagct
                                                                      1200
atggcctttg atggttgtta ccatgacagc gagattgaca tggaccagac ttccctctct
ctaaactcag aagacttcat gagaagaaaa tcgatatgca gccccagcac cgattcatct
                                                                      1260
cggataaaga gaagaaaatc cctaggagga catgttggta gaatcattct ggaaaacaac
                                                                      1320
catgicatig acacciatic taggatitta ticcccatig tgtatatitt atttaatitg
                                                                     1380
                                                                      1404
ttttactggg gtgtatatgt atga
<210> 2
<211> 467
<212> PRT
```

<213> Homo sapiens

<400> 2

Met Val Leu Ala Phe Gln Leu Val Ser Phe Thr Tyr Ile Trp Ile Ile

1				5					10					15	
Leu	_		Asn 20					25					30		
-		35	Ser				40					45			•
-	50		Asp			55					60				
65			Glu		70					75					80
			Pro	85					90					95	
			Thr 100					105					110		
		115	Asp				120					125			
	130		Asp			135					140				
145			His		150					155					160
			Leu	165					170					175	
_			Val 180					185					190		
		195	Gln				200					205			
	210		Leu			215					220				
225			His		230					235					240
			Gly	245					250					255	
			Asn 260					265					270		
		275	Phe Asp				280					285			
	290					295					300				Ser
305					310					315					320
			Val	325					330					335	
			340					345					350		Asn
_		355					360					365			Lys
	370		Met			375					380				
385	_				390					395					Ser 400
				405					410					415	
			420					425					430		Val
_		435					440					445			Arg
11e	Leu	Phe	Pro	Ile	Val	Tyr	lle	Leu	Phe	Asn	Leu	rhe	Tyr	ırp	Gly

```
460
                        455
    450
Val Tyr Val
<210> 3
<211> 1179
<212> DNA
<213> Homo sapiens
<400> 3
                                                                        60
atggteetgg ctttecagtt agteteette acetacatet ggateatatt gaaaceaaat
                                                                       120
gtttgtgctg cttctaacat caagatgaca caccagcggt gctcctcttc aatgaaacaa
acctgcaaac aagaaactag aatgaagaaa gatgacagta ccaaagcgcg gcctcagaaa
                                                                       180
tatgagcaac ttctccatat agaggacaac gatttcgcaa tgagacctgg atttggaggg
                                                                       240
tctccagtgc cagtaggtat agatgtccat gttgaaagca ttgacagcat ttcagagact
                                                                       300
aacatggact ttacaatgac tttttatctc aggcattact ggaaagacga gaggctctcc
                                                                       360
tttcctagca cagcaaacaa aagcatgaca tttgatcata gattgaccag aaagatctgg
                                                                       420
gtgcctgata tcttttttgt ccactctaaa agatccttca tccatgatac aactatggag
                                                                       480
aatatcatgc tgcgcgtaca ccctgatgga aacgtcctcc taagtctcag gataacggtt
                                                                       540
teggecatgt getttatgga tttcageagg tttcetettg acaeteaaaa ttgttetett
                                                                       600
gaactggaaa gctatgccta caatgaggat gacctaatgc tatactggaa acacggaaac
                                                                        660
aagtoottaa atactgaaga acatatgtoo otttotoagt tottoattga agacttoagt
                                                                       720
                                                                       780
gcatctagtg gattagcttt ctatagcagc acaggttggt acaataggct tttcatcaac
tttgtgctaa ggaggcatgt tttcttcttt gtgctgcaaa cctatttccc agccatattg
                                                                       840
atggtgatgc tttcatgggt ttcattttgg attgaccgaa gagctgttcc tgcaagagtt
                                                                       900
tccctgggaa tcaccacagt gctgaccatg tccacaatca tcactgctgt gagcgcctcc
                                                                       960
atgccccagg tgtcctacct caaggctgtg gatgtgtacc tgtgggtcag ctccctcttt
                                                                      1020
gtgttcctgt cagtcattga gtatgcagct gtgaactacc tcaccacagt ggaagagcgg
                                                                      1080
                                                                      1140
aaacaattca agaagacagg aaaggtacag cettgetetg actatcagat eeettgggga
                                                                      1179
atgtggaaaa gactaccctt atctattgcc ctctcttga
<210> 4
<211> 392
<212> PRT
<213> Homo sapiens
<400> 4
Met Val Leu Ala Phe Gln Leu Val Ser Phe Thr Tyr Ile Trp Ile Ile
 1
                                     10
Leu Lys Pro Asn Val Cys Ala Ala Ser Asn Ile Lys Met Thr His Gln
                                                     30
            20
Arg Cys Ser Ser Ser Met Lys Gln Thr Cys Lys Gln Glu Thr Arg Met
                             40
Lys Lys Asp Asp Ser Thr Lys Ala Arg Pro Gln Lys Tyr Glu Gln Leu
                         55
Leu His Ile Glu Asp Asn Asp Phe Ala Met Arg Pro Gly Phe Gly Gly
                    70
                                         75
Ser Pro Val Pro Val Gly Ile Asp Val His Val Glu Ser Ile Asp Ser
                                     90
                85
Ile Ser Glu Thr Asn Met Asp Phe Thr Met Thr Phe Tyr Leu Arg His
                                 105
Tyr Trp Lys Asp Glu Arg Leu Ser Phe Pro Ser Thr Ala Asn Lys Ser
                             120
        115
Met Thr Phe Asp His Arg Leu Thr Arg Lys Ile Trp Val Pro Asp Ile
                         135
                                             140
Phe Phe Val His Ser Lys Arg Ser Phe Ile His Asp Thr Thr Met Glu
```

```
155
145
                    150
Asn Ile Met Leu Arg Val His Pro Asp Gly Asn Val Leu Leu Ser Leu
                                   170
                165
Arg Ile Thr Val Ser Ala Met Cys Phe Met Asp Phe Ser Arg Phe Pro
                                                    190
Leu Asp Thr Gln Asn Cys Ser Leu Glu Leu Glu Ser Tyr Ala Tyr Asn
        195
                            200
                                                205
Glu Asp Asp Leu Met Leu Tyr Trp Lys His Gly Asn Lys Ser Leu Asn
                        215
Thr Glu Glu His Met Ser Leu Ser Gln Phe Phe Ile Glu Asp Phe Ser
                    230
                                        235
Ala Ser Ser Gly Leu Ala Phe Tyr Ser Ser Thr Gly Trp Tyr Asn Arg
                                    250
                245
Leu Phe Ile Asn Phe Val Leu Arg Arg His Val Phe Phe Phe Val Leu
                                265
                                                    270
            260
Gln Thr Tyr Phe Pro Ala Ile Leu Met Val Met Leu Ser Trp Val Ser
                                                285
                            280
Phe Trp Ile Asp Arg Arg Ala Val Pro Ala Arg Val Ser Leu Gly Ile
                        295
Thr Thr Val Leu Thr Met Ser Thr Ile Ile Thr Ala Val Ser Ala Ser
                                        315
                    310
Met Pro Gln Val Ser Tyr Leu Lys Ala Val Asp Val Tyr Leu Trp Val
                325
                                    330
Ser Ser Leu Phe Val Phe Leu Ser Val Ile Glu Tyr Ala Ala Val Asm
                                                    350
                                345
Tyr Leu Thr Thr Val Glu Glu Arg Lys Gln Phe Lys Lys Thr Gly Lys
                            360
Val Gln Pro Cys Ser Asp Tyr Gln Ile Pro Trp Gly Met Trp Lys Arg
                                            380
                        375
Leu Pro Leu Ser Ile Ala Leu Ser
                    390
385
<210> 5
<211> 543
<212> DNA
<213> Homo sapiens
<400> 5
atggtcctgg ctttccagtt agtctccttc acctacatct ggatcatatt gaaaccaaat
                                                                        60
                                                                       120
gtttgtgctg cttctaacat caagatgaca caccagcggt gctcctcttc aatgaaacaa
                                                                       180
acctgcaaac aagaaactag aatgaagaaa gatgacagta ccaaagcgcg gcctcagaaa
tatgagcaac ttctccatat agaggacaac gatttcgcaa tgagacctgg atttggaggg
                                                                       240
tctccagtgc cagtaggtat agatgtccat gttgaaagca ttgacagcat ttcagagact
                                                                       300
                                                                       360
aacatggact ttacaatgac tttttatctc aggcattact ggaaagacga gaggctctcc
                                                                       420
tttcctagca cagcaaacaa aagcatgaca tttgatcata gattgaccag aaagatctgg
                                                                       480
gtgcctgata tctttttgt ccactctaaa agatccttca tccatgatac aactatggag
aatatcatgc tgcgcgtaca ccctgatgga aacgtcctcc taagtctcag atgcctacaa
                                                                       540
                                                                       543
tga
<210> 6
<211> 180
<212> PRT
<213> Homo sapiens
<400> 6
```

Met Val Leu Ala Phe Gln Leu Val Ser Phe Thr Tyr Ile Trp Ile Ile

```
10
                5
1
Leu Lys Pro Asn Val Cys Ala Ala Ser Asn Ile Lys Met Thr His Gln
                                25
Arg Cys Ser Ser Ser Met Lys Gln Thr Cys Lys Gln Glu Thr Arg Met
                            40
Lys Lys Asp Asp Ser Thr Lys Ala Arg Pro Gln Lys Tyr Glu Gln Leu
                        55
Leu His Ile Glu Asp Asn Asp Phe Ala Met Arg Pro Gly Phe Gly Gly
                                        75
                   70
Ser Pro Val Pro Val Gly Ile Asp Val His Val Glu Ser Ile Asp Ser
                                    90
                85
Ile Ser Glu Thr Asn Met Asp Phe Thr Met Thr Phe Tyr Leu Arg His
                                105
Tyr Trp Lys Asp Glu Arg Leu Ser Phe Pro Ser Thr Ala Asn Lys Ser
                                               125
                            120
       115
Met Thr Phe Asp His Arg Leu Thr Arg Lys Ile Trp Val Pro Asp Ile
                                            140
                       135
Phe Phe Val His Ser Lys Arg Ser Phe Ile His Asp Thr Thr Met Glu
                                    155
                    150
Asn Ile Met Leu Arg Val His Pro Asp Gly Asn Val Leu Leu Ser Leu
                                    170
                165
Arg Cys Leu Gln
            180
<210> 7
<211> 1263
<212> DNA
<213> Homo sapiens
                                                                       60
atgaagaaag atgacagtac caaagcgcgg cctcagaaat atgagcaact tctccatata
gaggacaacg atttcgcaat gagacctgga tttggagggt ctccagtgcc agtaggtata
                                                                      120
                                                                      180
gatgtccatg ttgaaagcat tgacagcatt tcagagacta acatggactt tacaatgact
                                                                      240
ttttatctca ggcattactg gaaagacgag aggctctcct ttcctagcac agcaaacaaa
agcatgacat ttgatcatag attgaccaga aagatctggg tgcctgatat cttttttgtc
                                                                       300
                                                                       360
cactctaaaa gatccttcat ccatgataca actatggaga atatcatgct gcgcgtacac
                                                                       420
cctgatggaa acgtcctcct aagtctcagg ataacggttt cggccatgtg ctttatggat
                                                                       480
ttcagcaggt ttcctcttga cactcaaaat tgttctcttg aactggaaag ctatgcctac
aatgaggatg acctaatgct atactggaaa cacggaaaca agtccttaaa tactgaagaa
                                                                       540
                                                                       600
catatgtccc tttctcagtt cttcattgaa gacttcagtg catctagtgg attagctttc
tatagcagca caggttggta caataggctt ttcatcaact ttgtgctaag gaggcatgtt
                                                                       660
                                                                       720
ttettetttg tgctgcaaac ctatttccca gccatattga tggtgatgct ttcatgggtt
                                                                       780
tcattttgga ttgaccgaag agctgttcct gcaagagttt ccctgggaat caccacagtg
ctgaccatgt ccacaatcat cactgctgtg agegeeteca tgccccaggt gtcctaccte
                                                                       840
aaggetgtgg atgtgtacet gtgggtcage teeetetttg tgtteetgte agteattgag
                                                                       900
                                                                      960
tatgcagctg tgaactacct caccacagtg gaagagcgga aacaattcaa gaagacagga
aagatttcta ggatgtacaa tattgatgca gttcaagcta tggcctttga tggttgttac
                                                                      1020
catgacageg agattgacat ggaccagact tecetetete taaactcaga agactteatg
                                                                      1080
agaagaaaat cgatatgcag ccccagcacc gattcatctc ggataaagag aagaaaatcc
                                                                      1140
ctaggaggac atgttggtag aatcattctg gaaaacaacc atgtcattga cacctattct
                                                                      1200
aggattttat toccoattgt gtatatttta tttaatttgt tttactgggg tgtatatgta
                                                                      1260
                                                                      1263
tga
<210> 8
```

5/9

<211> 420 <212> PRT

<213> Homo sapiens

1181 1 - 1 1 175-8947

<400> 8 Met Lys Lys Asp Asp Ser Thr Lys Ala Arg Pro Gln Lys Tyr Glu Gln Leu Leu His Ile Glu Asp Asn Asp Phe Ala Met Arg Pro Gly Phe Gly Gly Ser Pro Val Pro Val Gly Ile Asp Val His Val Glu Ser Ile Asp Ser Ile Ser Glu Thr Asn Met Asp Phe Thr Met Thr Phe Tyr Leu Arg 55 His Tyr Trp Lys Asp Glu Arg Leu Ser Phe Pro Ser Thr Ala Asn Lys 70 Ser Met Thr Phe Asp His Arg Leu Thr Arg Lys Ile Trp Val Pro Asp 90 Ile Phe Phe Val His Ser Lys Arg Ser Phe Ile His Asp Thr Thr Met 105 Glu Asn Ile Met Leu Arg Val His Pro Asp Gly Asn Val Leu Leu Ser 125 120 Leu Arg Ile Thr Val Ser Ala Met Cys Phe Met Asp Phe Ser Arg Phe 135 Pro Leu Asp Thr Gln Asn Cys Ser Leu Glu Leu Glu Ser Tyr Ala Tyr 155 150 Asn Glu Asp Asp Leu Met Leu Tyr Trp Lys His Gly Asn Lys Ser Leu 170 165 Asn Thr Glu Glu His Met Ser Leu Ser Gln Phe Phe Ile Glu Asp Phe 185 Ser Ala Ser Ser Gly Leu Ala Phe Tyr Ser Ser Thr Gly Trp Tyr Asn 200 Arg Leu Phe Ile Asn Phe Val Leu Arg Arg His Val Phe Phe Val 220 215 Leu Gln Thr Tyr Phe Pro Ala Ile Leu Met Val Met Leu Ser Trp Val 235 230 Ser Phe Trp Ile Asp Arg Arg Ala Val Pro Ala Arg Val Ser Leu Gly 245 250 Ile Thr Thr Val Leu Thr Met Ser Thr Ile Ile Thr Ala Val Ser Ala 265 Ser Met Pro Gln Val Ser Tyr Leu Lys Ala Val Asp Val Tyr Leu Trp 280 285 Val Ser Ser Leu Phe Val Phe Leu Ser Val Ile Glu Tyr Ala Ala Val 295 Asn Tyr Leu Thr Thr Val Glu Glu Arg Lys Gln Phe Lys Lys Thr Gly 315 310 Lys Ile Ser Arg Met Tyr Asn Ile Asp Ala Val Gln Ala Met Ala Phe 330 325 Asp Gly Cys Tyr His Asp Ser Glu Ile Asp Met Asp Gln Thr Ser Leu 345 Ser Leu Asn Ser Glu Asp Phe Met Arg Arg Lys Ser Ile Cys Ser Pro 360 Ser Thr Asp Ser Ser Arg Ile Lys Arg Arg Lys Ser Leu Gly Gly His 375 380 Val Gly Arg Ile Ile Leu Glu Asn Asn His Val Ile Asp Thr Tyr Ser 390 395 Arg Ile Leu Phe Pro Ile Val Tyr Ile Leu Phe Asn Leu Phe Tyr Trp 410 Gly Val Tyr Val

420

<210> 9 <211> 1038 <212> DNA <213> Homo sapiens <400> 9 60 atgaagaaag atgacagtac caaagcgcgg cctcagaaat atgagcaact tctccatata 120 gaggacaacg atttcgcaat gagacctgga tttggagggt ctccagtgcc agtaggtata gatgtccatg ttgaaagcat tgacagcatt tcagagacta acatggactt tacaatgact 180 ttttatctca ggcattactg gaaagacgag aggctctcct ttcctagcac agcaaacaaa 240 agcatgacat ttgatcatag attgaccaga aagatctggg tgcctgatat cttttttgtc 300 360 cactotaaaa gatoottoat ocatgataca actatggaga atatoatgot gogogtacac cctgatggaa acgtcctcct aagtctcagg ataacggttt cggccatgtg ctttatggat 420 ttcagcaggt ttcctcttga cactcaaaat tgttctcttg aactggaaag ctatgcctac 480 aatgaggatg acctaatgct atactggaaa cacggaaaca agtccttaaa tactgaagaa 540 600 catatgtccc tttctcagtt cttcattgaa gacttcagtg catctagtgg attagctttc tatagcagca caggttggta caataggctt ttcatcaact ttgtgctaag gaggcatgtt 660 720 ttcttctttg tgctgcaaac ctatttccca gccatattga tggtgatgct ttcatgggtt tcattttgga ttgaccgaag agctgttcct gcaagagttt ccctgggaat caccacagtg 780 ctgaccatgt ccacaatcat cactgctgtg agcgcctcca tgccccaggt gtcctacctc 840 aaggetgtgg atgtgtacet gtgggteage teeetetttg tgtteetgte agteattgag 900 tatgcagctg tgaactacct caccacagtg gaagagcgga aacaattcaa gaagacagga 960 1020 aaggtacagc cttgctctga ctatcagatc ccttggggaa tgtggaaaag actaccctta 1038 tctattgccc tctcttga <210> 10 <211> 345 <212> PRT <213> Homo sapiens <400> 10 Met Lys Lys Asp Asp Ser Thr Lys Ala Arg Pro Gln Lys Tyr Glu Gln 10 5 Leu Leu His Ile Glu Asp Asn Asp Phe Ala Met Arg Pro Gly Phe Gly 25 Gly Ser Pro Val Pro Val Gly Ile Asp Val His Val Glu Ser Ile Asp 40 Ser Ile Ser Glu Thr Asn Met Asp Phe Thr Met Thr Phe Tyr Leu Arg 60 55 His Tyr Trp Lys Asp Glu Arg Leu Ser Phe Pro Ser Thr Ala Asn Lys 75 70 Ser Met Thr Phe Asp His Arg Leu Thr Arg Lys Ile Trp Val Pro Asp 90 85 Ile Phe Phe Val His Ser Lys Arg Ser Phe Ile His Asp Thr Thr Met 110 100 105 Glu Asn Ile Met Leu Arg Val His Pro Asp Gly Asn Val Leu Leu Ser 125 120 Leu Arg Ile Thr Val Ser Ala Met Cys Phe Met Asp Phe Ser Arg Phe

170

140

155

135

150

165

Pro Leu Asp Thr Gln Asn Cys Ser Leu Glu Leu Glu Ser Tyr Ala Tyr

Asn Glu Asp Asp Leu Met Leu Tyr Trp Lys His Gly Asn Lys Ser Leu

Asn Thr Glu Glu His Met Ser Leu Ser Gln Phe Phe Ile Glu Asp Phe

```
180
                              185
Ser Ala Ser Ser Gly Leu Ala Phe Tyr Ser Ser Thr Gly Trp Tyr Asn
                           200 205
Arg Leu Phe Ile Asn Phe Val Leu Arg Arg His Val Phe Phe Phe Val
                                           220
                       215
Leu Gln Thr Tyr Phe Pro Ala Ile Leu Met Val Met Leu Ser Trp Val
                                       235
                   230
Ser Phe Trp Ile Asp Arg Arg Ala Val Pro Ala Arg Val Ser Leu Gly
                                   250
               245
Ile Thr Thr Val Leu Thr Met Ser Thr Ile Ile Thr Ala Val Ser Ala
                               265
Ser Met Pro Gln Val Ser Tyr Leu Lys Ala Val Asp Val Tyr Leu Trp
                           280
Val Ser Ser Leu Phe Val Phe Leu Ser Val Ile Glu Tyr Ala Ala Val
                                           300
                      295
Asn Tyr Leu Thr Thr Val Glu Glu Arg Lys Gln Phe Lys Lys Thr Gly
                                      315
                   310
Lys Val Gln Pro Cys Ser Asp Tyr Gln Ile Pro Trp Gly Met Trp Lys
                                   330
               325
Arg Leu Pro Leu Ser Ile Ala Leu Ser
<210> 11
<211> 402
<212> DNA
<213> Homo sapiens
atgaagaaag atgacagtac caaagcgcgg cctcagaaat atgagcaact tctccatata
gaggacaacg atttcgcaat gagacctgga tttggagggt ctccagtgcc agtaggtata
                                                                     120
gatgtccatg ttgaaagcat tgacagcatt tcagagacta acatggactt tacaatgact
                                                                     180
ttttatctca ggcattactg gaaagacgag aggctctcct ttcctagcac agcaaacaaa
                                                                     240
agcatgacat ttgatcatag attgaccaga aagatctggg tgcctgatat cttttttgtc
                                                                     300
                                                                     360
cactctaaaa gatccttcat ccatgataca actatggaga atatcatgct gcgcgtacac
                                                                     402
cctgatggaa acgtcctcct aagtctcaga tgcctacaat ga
<210> 12
<211> 133
<212> PRT
<213> Homo sapiens
<400> 12
Met Lys Lys Asp Asp Ser Thr Lys Ala Arg Pro Gln Lys Tyr Glu Gln
                5
                                   10
Leu Leu His Ile Glu Asp Asn Asp Phe Ala Met Arg Pro Gly Phe Gly
                                25
Gly Ser Pro Val Pro Val Gly Ile Asp Val His Val Glu Ser Ile Asp
                           40
Ser Ile Ser Glu Thr Asn Met Asp Phe Thr Met Thr Phe Tyr Leu Arg
                        55
His Tyr Trp Lys Asp Glu Arg Leu Ser Phe Pro Ser Thr Ala Asn Lys
                    70
                                       75
Ser Met Thr Phe Asp His Arg Leu Thr Arg Lys Ile Trp Val Pro Asp
                                   90
               85
Ile Phe Phe Val His Ser Lys Arg Ser Phe Ile His Asp Thr Thr Met
                                                  110
           100
                               105
```

Glu Asn Ile Met Leu Arg Val His Pro Asp Gly Asn Val Leu Leu Ser 115 120 125 Leu Arg Cys Leu Gln 130

INTERNATIONAL SEARCH-REPORT

Intern at Application No PCT/US 01/02113

A. CLASSIF IPC 7	C12N15/12 C07K14/705					
According to	International Patent Classification (IPC) or to both national classific	ation and IPC				
B. FIELDS						
	currentation searched (classification system followed by classificati	on symbols)				
IPC 7	C07K C12N					
Documentati	ion searched other than minimum documentation to the extent that a	such documents are included. In the fields se-	arched			
	ata base consulted during the international search (name of data be	tse and, where practical, search terms used)				
EPO-Int	ternal, WPI Data, PAJ, BIOSIS					
C. DOCUME	ENTS CONSIDERED TO BE RELEVANT					
Calegory *	Citation of document, with indication, where appropriate, of the re	levani passages	Relevant to claim No.			
x	ME BAILEY ET AL.,: "Genetic lin radiation hybrid mapping of the	three	1,2			
	human GABA(C) receptor rho subun GABR1, GABR2 and GABR3"	it genes :				
	BIOCHÍMICA ET BIOPHYSICA ACTA, vol. 1447, no. 2-3,					
	28 October 1999 (1999-10-28), pa 307-312, XP000999020	ges				
Y	the whole document	3,4				
х	T OGURUSU AND R SHINGAI: "Cloni putative gamma-aminobutyric acid	ng of a (GABA)	1,2			
	receptor subunit rho 3 cDNA" BIOCHIMICA ET BIOPHYSICA ACTA,	, , , , , , , , , , , , , , , , , , , ,				
	vol. 1305. no. 1-2.	15.10				
	7 February 1996 (1996-02-07), pa XP000999706	ges 15-18,				
Y	the whole document	3,4				
		-/				
X Furt	ther documents are listed in the continuation of box C.	Patent family members are listed	in annex.			
	ategories of cited documents:	"T" later document published after the inte or priority date and not in conflict with	the application but			
consid	ent defining the general state of the art which is not dered to be of particular relevance document but published on or after the International	cted to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention				
which	ent which may throw doubts on priority claim(s) or is cited to establish the publication date of another	cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone to document of naticular relevance; the claimed invention				
°O° docum	on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means	cannol be considered to involve an in document is combined with one or m ments, such combination being obvio	ore other such docu-			
P docum	neutrophished prior to the international filing date but than the priority date claimed	in the art. *&" document member of the same patent				
Date of the	actual completion of the international search	Date of mailing of the international se	arch report			
1	16 May 2001	06/06/2001				
Name and	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2	Authorized officer				
	NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Julia, P				

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Intel Application No
PCT/US 01/02113

		PC1/US 01/02113
.(Continu	Mion) DOCUMENTS CONSIDERED TO BE RELEVANT	
alegory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
(H QIAN ET AL.,: "Molecular and pharmacological properties of GABA-rho subunits from white perch retina" J. NEUROBIOL., vol. 37, no. 2, 1998, pages 305-320, XP000996647	1,2
1	the whole document	3,4
(GR. CUTTING ET AL.: "Cloning of the gamma-aminobutyric acid (GABA) RHO-1 cDNA: a GABA receptor subunit highly expressed in the retina" PROC. NATL. ACAD. SCI. USA, vol. 88, April 1991 (1991-04), pages 2673-2677, XP002167521	1,2
1	the whole document	3,4
(GR CUTTING ET AL.,: "Identification of a putative gamma-aminobutyric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14-q21 and mouse chromosome 4" GENOMICS, vol. 12, no. 4, April 1992 (1992-04), pages 801-806, XP000999703	1,2
f	the whole document	3,4
•	K. WEGELIUS ET AL., : "Distribution of GABA receptor rho subunit transcripts in the rat brain" EUROPEAN JOURNAL OF NEUROSCIENCE, vol. 10, January 1998 (1998-01), pages 350-357, XP000996648 the whole document	3,4