MA1300 Self Practice # 14

1. (P750, #5, 12, 15) Determine whether the series converges or diverges.

(a).
$$\sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$$
, (b).
$$\sum_{k=1}^{\infty} \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$$
, (c).
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n-2}$$
.

2. (P755, #7, 11, 19, 20) Test the series for convergence or divergence.

(a).
$$\sum_{n=1}^{\infty} (-1)^n \frac{3n-1}{2n+1}$$
, (b).
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+4}$$
, (c).
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^n}{n!}$$
, (d).
$$\sum_{n=1}^{\infty} (-1)^n \left(\sqrt{n+1} - \sqrt{n}\right)$$
.

3. (P755, #32) For what values of p is the series convergent?

$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^p}.$$

4. (P761-762, #5, 9, 29) Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

(a).
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$
, (b). $\sum_{n=1}^{\infty} (-1)^n \frac{(1.1)^n}{n^4}$, (c). $\sum_{n=1}^{\infty} \frac{2 \cdot 4 \cdot 6 \cdots (2n)}{n!}$.

5. (P765, #21, 30) Test the series for convergence or divergence.

(a)
$$\sum_{n=1}^{\infty} (-1)^n \cos(1/n^2)$$
, (b) $\sum_{j=1}^{\infty} (-1)^j \frac{\sqrt{j}}{j+5}$.

6. (P769-770, #5, 20, 23) Find the radius of convergence and interval of convergence of the series.

(a)
$$\sum_{n=1}^{\infty} \frac{x^n}{2n-1}$$
, (b) $\sum_{n=1}^{\infty} \frac{(2x-1)^n}{5^n \sqrt{n}}$, (c) $\sum_{n=1}^{\infty} n! (2x-1)^n$.

7. (P789, #3) If $f^{(n)}(0) = (n+1)!$ for n = 0, 1, 2, ..., find the Maclaurin series for f and its radius of convergence.

8. (P789, #6) Find the Maclaurin series for f using the definition of a Maclaurin series. Also, find the associated radius of convergence.

$$f(x) = \ln(1+x).$$

9. (P789, #38) Use a Maclaurin series in Table 1 on page 786 of the textbook to obtain the Maclaurin series for the given function

$$f(x) = \begin{cases} \frac{x - \sin x}{x^3} & \text{if } x \neq 0, \\ \frac{1}{6} & \text{if } x = 0. \end{cases}$$

1

10. (P790, #72) If $f(x) = (1 + x^3)^{30}$, what is $f^{(58)}(0)$?

11. (P790, #74 (a)) Show that the function defined by

$$f(x) = \begin{cases} e^{-1/x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

is not equal to its Maclaurin series.

- 12. (Extra question) Let f be a continuous function on $[a, \infty)$. If f is differentiable on (a, ∞) and f(a) = 0, $\lim_{x \to \infty} f(x) = 0$, prove that there exists some $\xi \in (a, \infty)$ such that $f'(\xi) = 0$.
- 13. (Extra question) Let f be a continuous function on $[0, \infty)$. If f is differentiable on $(0, \infty)$, f(0) = 0, and f' is increasing on $(0, \infty)$, prove that the function g defined by $g(x) = \frac{f(x)}{x}$ is increasing on $(0, \infty)$.
- 14. (Extra question) Prove that the function f defined by $f(x) = \begin{cases} \frac{3-x^2}{2} & \text{if } x \in [0,1] \\ \frac{1}{x} & \text{if } x \in (1,2] \end{cases}$ on the interval [0,2] satisfies the condition of the mean value theorem. Then find a number $\xi \in (0,2)$ such that $f'(\xi) = \frac{f(2)-f(0)}{2-0}$.