Séminaire TEST

Andrés SÁNCHEZ PÉREZ

4 avril 2014

1 Présentation du sujet

Les méthodes de Monte-Carlo par chaînes de Markov sont une classe de technique d'échantillonnage. Un algorithme MCMC repose sur le parcours d'une chaîne de Markov qui a pour loi stationnaire la distribution à échantillonner.

1.1 Notation

Soient (X, X), (Y, \mathcal{Y}) , (Z, \mathcal{Z}) des espaces mesurables. Nous denotons par

 $\mathbb{F}(X,X)$ l'ensemble des fonctions mesurables de (X,X) dans $[-\infty,\infty]$.

 $\mathbb{F}_+(X,X)$ l'ensemble des fonctions mesurables de (X,X) dans $[0,\infty]$.

 $\mathbb{F}_b(X,X)$ l'ensemble des fonctions mesurables et bornées de (X,X) dans $[0,\infty)$.

 $\mathbb{M}_+(X)$ l'ensemble des mesures signées et finies dans (X, X).

 $\mathbb{M}_+(X)$ l'ensemble des mesures dans (X, X).

 $\mathbb{M}_1(X)$ l'ensemble des mesures de probabilité dans (X, X).

Définition 1 $M: X \times \mathcal{Y} \to [0, \infty]$ est un noyau si

- Pour tout $x \in X$, $M(x, \cdot)$ est une mesure sur \mathcal{Y} .
- Pour tout $A \in \mathcal{Y}$, $M(\cdot, A)$ est une fonction mesurable. M est dit Markovien si pour tout $x \in X$, M(x, Y) = 1. m est la densité de M par rapport à la mesure λ si $M(x, A) = \int_A m(x, y) \lambda(\mathrm{d}y)$.

Définition 2 *Pour* $f \in \mathbb{F}(Y, \mathcal{Y}), \mu \in \mathbb{M}_+(X), \text{ et les noyaux } M : X \times \mathcal{Y} \to [0, \infty] \text{ et } N : Y \times \mathcal{Z} \to [0, \infty], \text{ nous définons}$

- Mf: x → $\int M(x, dy) f(y)$. Mf est mesurable : convergence monotone sur \mathbb{F}_+ et étendre aux réelles.
- $-\mu M:A\to \int M(x,A)\mu(\mathrm{d}x).\ \mu M\in \mathbb{M}_+(\mathcal{Y}):$ convergence monotone pour montrer l'additivité dénombrable.
- $MN(x, A) = \int M(x, dy)N(y, A).$

Supposez par la suite que (X, X) est un espace polonais, i.e. métrisable, à base dénombrable dont la topologie peut être définie par une distance qui en fait un espace complet.

Définition 3 Nous disons que le noyau $M: X \times X \to [0, \infty]$ est réversible par rapport à la mesure μ si pour toutes $f, g \in \mathbb{F}_+(X, X)$

$$\int \int \mu(\mathrm{d}x) M(x,\mathrm{d}y) f(x) g(y) = \int \int \mu(\mathrm{d}x) M(x,\mathrm{d}y) f(y) g(x) \; .$$

Définition 4 La mesure μ est stationnaire par rapport à M si $\mu M = \mu$.

Proposition 1 Si M est réversible par rapport à la mesure μ alors μ est stationnaire.

Preuve

Soient f quelconque dans $\mathbb{F}_+(X, X)$ et g = 1

$$\int \int \mu(\mathrm{d}x) N(x,\mathrm{d}y) f(x) = \int \int \mu(\mathrm{d}x) N(x,\mathrm{d}y) f(y) \Leftrightarrow$$
$$\mu(f) = \mu N(f) .$$

Pout toute chaîne de Markov $X = (X_n)_{n \in \mathbb{N}}$ homogene de loi initiale π_0 et noyau de transition P, nous avons $X_n \sim \mu_0 P^n$.

2 Algorithme de Metropolis-Hastings

 $X = (X_t)_{t \in \mathbb{N}}$ est la chaîne que nous voulons generer avec π comme loi stationnaire. Supposons que la loi π a une densité π (par un abus de notation) par rapport à la mesure λ . Nous considérons le noyau Q sur (X,X) qui a une densité q aussi par rapport à la mesure λ . Pour chaque $x \in Q$ nous savons tirer selon la distribution $Q(x,\cdot)$.

```
Algorithm 1: Metropolis-Hastings
```

```
Input: Une densité \pi et un noyau Q de densité q
```

Output: Une chaîne de Markov *X*

- $1 X_0 = x_0$;
- 2 for each t do

3
$$Y_t \sim Q(X_{t-1}, \cdot);$$

4 tirer $U \sim \mathcal{U}(0, 1);$
5 **if** $U \leq \alpha(X_{t-1}, Y_t)$ **then**
6 $X_t = Y_t$ **else**
7 $X_t = X_{t-1}$

8 return $X = (X_0, X_1, \ldots)$

Οù

$$\alpha(x,y) = \begin{cases} \min\left\{\frac{\pi(y)\,q(y,x)}{\pi(x)\,q(x,y)},1\right\} & \text{si } \pi(x)\,q(x,y) > 0, \\ 1 & \text{si } \pi(x)\,q(x,y) = 0. \end{cases}$$

Nous remarquons que

$$X_n = 1_{\{U < \alpha(X_{n-1}, Y_n)\}} Y_n + 1_{\{U > \alpha(X_{n-1}, Y_n)\}} X_{n-1}$$
.

$$\mathbb{P}(X_{1} \in A | X_{0} = x) = \mathbb{P}(\mathbb{1}_{\{U \leq \alpha(X_{0}, Y_{1})\}} Y_{1} + \mathbb{1}_{\{U > \alpha(X_{0}, Y_{1})\}} X_{0} \in A | X_{0} = x)
= \mathbb{P}(\{U \leq \alpha(X_{0}, Y_{1})\} \cap \{Y_{1} \in A\} | X_{0} = x)
+ \mathbb{P}(\{U > \alpha(X_{0}, Y_{1})\} \cap \{X_{0} \in A\} | X_{0} = x)
= \int \int \mathbb{1}_{u \leq \alpha(x, y)} \mathbb{1}_{y \in A} \mathbb{1}_{u \in [0, 1]} q(x, y) du \lambda(dy)
+ \int \int \mathbb{1}_{u > \alpha(x, y)} \mathbb{1}_{x \in A} \mathbb{1}_{u \in [0, 1]} q(x, y) du \lambda(dy)
= \int_{A} \alpha(x, y) q(x, y) \lambda(dy) + \mathbb{1}_{x \in A} \int (1 - \alpha(x, z)) q(x, z) du \lambda(dz) .$$

X est une chaîne de Markov de noyau

$$P(x, dy) = \alpha(x, y) q(x, y) \lambda(dy) + \left[\int (1 - \alpha(x, z)) q(x, z) \lambda(dz) \right] \delta_x(dy) .$$

Proposition 2 P est réversible par rapport à π .

 $\pi(dx)P(x, dy) = \alpha(x, y) q(x, y) \pi(x) \lambda(dx) \lambda(dy)$

Preuve

$$+\left[\int \left(1-\alpha\left(x,z\right)\right)q\left(x,z\right)\lambda\left(\mathrm{d}z\right)\right]\pi\left(x\right)\lambda\left(\mathrm{d}x\right)\delta_{x}\left(\mathrm{d}y\right)\;.$$

$$\alpha\left(x,y\right)q\left(x,y\right)\pi\left(x\right)=\left\{\begin{array}{ll}\min\left\{\pi\left(y\right)q\left(y,x\right),\pi\left(x\right)q\left(x,y\right)\right\}&\text{si }q\left(x,y\right)\pi\left(x\right)\neq0\;,\\\text{sinon }.\end{array}\right.$$
Soient $f,g\in\mathbb{F}_{+}\left(X,X\right)$

$$\int\int f(x)g(y)\pi(\mathrm{d}x)P\left(x,\mathrm{d}y\right)=\int\int f(x)g(y)\alpha\left(x,y\right)q\left(x,y\right)\pi\left(x\right)\lambda\left(\mathrm{d}x\right)\lambda\left(\mathrm{d}y\right)$$

$$+\int\int f(x)g(y)\left[\int \left(1-\alpha\left(x,z\right)\right)q\left(x,z\right)\lambda\left(\mathrm{d}z\right)\right]\pi\left(x\right)\lambda\left(\mathrm{d}x\right)\delta_{x}\left(\mathrm{d}y\right)$$

$$=\int\int f(y)g(x)\alpha\left(x,y\right)q\left(x,y\right)\pi\left(x\right)\lambda\left(\mathrm{d}x\right)\lambda\left(\mathrm{d}y\right)$$

$$+\int f(x)g(x)\left[\int \left(1-\alpha\left(x,z\right)\right)q\left(x,z\right)\lambda\left(\mathrm{d}z\right)\right]\pi\left(x\right)\lambda\left(\mathrm{d}x\right)$$

3 Ergodicité

3.1 Systèmes dynamiques

Théorème 3.1 Soit (F,D) un espace métrique complet quelconque. Soit $T: F \to F$ un opérateur continu tel que, pour un certain $m \in \mathbb{N}^*$, $\alpha \in (0,1)$ et $u,v \in F$

 $= \int \int f(y)g(x)\pi(\mathrm{d}x)P(x,\mathrm{d}y) \ .$

$$D(T^m u, T^m v) \le \alpha D(u, v) .$$

Il existe donc un unique point fixe $a \in F$ et pour tout $u \in F$

$$D(T^n u, a) \le \left(1 - \alpha^{1/m}\right)^{-1} \max_{0 \le i \le m} \alpha^{-i/m} D\left(T^i u, T^{i+1} u\right) \alpha^{n/m} .$$

En outre, s'il existe $A \ge 1$ telle que $D(Tu, Tv) \le AD(u, v)$ pour tout $u, v \in F$, alors

$$D(T^{n}u, a) \leq \left(\alpha^{-1/m}A\right)^{m-1}D(u, a)\alpha^{n/m}.$$

Preuve

Unicité. Soient a, b des points fixes de T, cela veut dire que $a = Ta = T^m a$ et de même pour b.

$$D(a,b) = D(T^m a, T^m b) \le \alpha D(a,b) \Rightarrow D(a,b) = 0$$
.

Existence. Considère $u, v \in F$ et $n \in \mathbb{N}$. n = km + r avec $0 \le r < m$.

$$D\left(T^nu,T^nv\right)\leq \alpha^k D\left(T^ru,T^rv\right)\ .$$

En prenant v = Tu

$$D(T^{n}u, T^{n}v) \leq \alpha^{k} D\left(T^{r}u, T^{r+1}u\right) \leq \alpha^{n/m} \alpha^{-r/m} D\left(T^{r}u, T^{r+1}u\right)$$

$$\leq \alpha^{n/m} \max_{0 \leq r < m} \alpha^{-r/m} D\left(T^{r}u, T^{r+1}u\right).$$

En conséquence $\{T^n u\}_{n\geq 0}$ est de Cauchy. Appelons a la limite

$$D(T^{n}u, a) \leq \max_{0 \leq r < m} \alpha^{-r/m} D\left(T^{r}u, T^{r+1}u\right) \sum_{q=n}^{\infty} \alpha^{n/m}$$
$$= \left(1 - \alpha^{1/m}\right)^{-1} \max_{0 \leq i < m} \alpha^{-i/m} D\left(T^{i}u, T^{i+1}u\right) \alpha^{n/m}.$$

Comme T est continu $Ta = T \lim_{n \to \infty} T^n u = \lim_{n \to \infty} T^{n+1} u = a$. Si maintenant $D(Tu, Tv) \le AD(u, v)$

$$D(T^{n}u, a) = D(T^{n}u, T^{n}a) \le \alpha^{\lfloor n/m \rfloor} D\left(T^{n-m\lfloor n/m \rfloor}u, T^{n-m\lfloor n/m \rfloor}a\right)$$
$$\le \alpha^{\lfloor n/m \rfloor} A^{n-m\lfloor n/m \rfloor} D(u, a) .$$

Pour finir nous utilisons que $\lfloor n/m \rfloor \ge n/m - (m-1)/m$ et que $A \ge 1$ et $\alpha \le 1$.

3.2 Espaces $M_V(X)$

Théorème 3.2 Soit F un sous-espace de $\mathbb{M}_1(X)$ et D une métrique sur F telle que $\delta_x \in F$ pour tout $x \in X$ et (F, D) est complet. Soit P un noyau markovien continu pour D et tel que $\xi P \in F$ pour tout $\xi \in F$. Supposez qu'il existe un certain $m \in \mathbb{N}^*$, $\alpha \in (0, 1)$ et A > 0 telles que pour tous $\xi, \xi' \in F$

$$D(\xi P, \xi' P) \le AD(\xi, \xi')$$
 $D(\xi P^m, \xi' P^m) \le \alpha D(\xi, \xi')$.

Alors, il existe une unique mesure invariante $\pi \in F$ et pour tout $\xi \in F$

$$D(\xi P^{n}, \pi) \leq \left(1 - \alpha^{1/m}\right)^{-1} \left(\alpha^{-1/m}A\right)^{m-1} D(\xi, \xi P) \alpha^{n/m},$$

$$D(\xi P^{n}, \pi) \leq \left(\alpha^{-1/m}A\right)^{m-1} D(\xi, \pi) \alpha^{n/m}.$$

En outre, si la convergence d'une suite de mesures de probabilité dans F par rapport à D implique la convergence faible, π est donc la seule measure de probabilité P invariante.

Preuve

Soit π la unique mesure invariante dans F et $\tilde{\pi}$ une mesure invariante dans $\mathbb{M}_1(X)$. Pour toute fonction f continue et bornée

$$\tilde{\pi}(f) = \tilde{\pi}P^n(f) = \int \tilde{\pi}(\mathrm{d}x) P^n f(x) .$$

 $\delta_x P^n \Rightarrow \pi$ (converge faiblement).

$$\delta_x P^n(f) = \int P^n(x, dy) f(y) = P^n f(x) \to \pi(f)$$

En plus $|P^n f(x)| \le |f|_{\infty}$. Pour le théorème de convergence dominée $\int P^n f(x) \tilde{\pi}(dx) = \pi(f)$.

Soit $V: X \to [1, \infty)$ une fonction mesurable. Nous allons étudier des sous-espaces de $\mathbb{M}_{\pm}(X)$ munis de la norme $\|\cdot\|_V$:

$$\|\xi\|_{V} = \sup \{\xi(f) : f \in \mathbb{F}_{b}(X, X), |f/V|_{\infty} \le 1\}$$
.

Nous denotons $\mathbb{M}_V(X) = \{ \xi \in \mathbb{M}_{\pm}(X) : ||\xi||_V < \infty \}.$

Proposition 3 $(\mathbb{M}_V(X), \|\cdot\|_V)$ *est complet.*

Dans le cas de la variation totale $V \equiv 1$.

Proposition 4 La convergence en norme $\|\cdot\|_V$ entraı̂ne la convergence faible.

Définition 5 Le noyau P est dit V – géometriquement ergodique si il existe deux constantes $C < \infty$ et $\rho \in (0, 1)$ telles que

$$\sup_{x \in X} \frac{\|P^n(x,\cdot) - \pi\|_V}{V(x)} \le C\rho^n.$$

Définition 6 Le V-coefficient de Dobrushin est le coefficient de Lipschitz de P par rapport à la distance $\|\cdot\|_V$.

$$\Delta_{V}(P) = \sup_{\xi \neq \xi'} \frac{d_{V}(\xi P, \xi' P)}{d_{V}(\xi, \xi')},$$

Lemme 1

$$\Delta_V(P) = \sup_{x,y} \frac{\|P(x,\cdot) - P(y,\cdot)\|_V}{V(x) + V(y)}$$

Définition 7 Définitions

 $-X = (X_t)_{t \in \mathbb{N}}$ est dites φ - irréductible si il existe une mesure φ sur X telle que pour tout $A \in X$ vérifiant $\varphi(A) > 0$ et pour tout $x \in X$, il existe $n \in \mathbb{N}$ tel que $P^n(x, A) > 0$.

- Un ensemble mesurable $C \in X$ est dit μ small si il existe une mesure non triviale μ sur X telle que pour tout $x \in C$, et tout $B \in X$, $P(x, B) \ge \mu(B)$.
- Si il existe une mesure μ et un ensemble μ small A tel que $\mu(A) > 0$, alors la chaîne est dite fortement apériodique.

Définition 8 Condition de Doeblin : $\exists m \geq 1, \ \varepsilon > 0 \ et \ v \in \mathbb{M}_1(X)$ tels que pour tout $x \in X$ et $A \in X$, $P^m(x, A) \geq \varepsilon v(A)$.

Proposition 5 La condition de Doeblin implique que $\Delta_1(P^m) \leq 1 - \varepsilon$.

Preuve

Soit $Q(x, \cdot) = (1 - \varepsilon)^{-1} (P^m(x, A) - \varepsilon \nu(A))$ est un noyau et

$$||P^m(x,\cdot) - P^m(y,\cdot)||_{TV} = (1-\varepsilon)||Q(x,\cdot) - Q(y,\cdot)||_{TV} \le 2(1-\varepsilon)$$
.

Proposition 6 Si la chaîne $X = (X_t)_{t \in \mathbb{N}}$ est φ - irréductible et apériodique, de plus, il existe un ensemble small C et une fonction $V: X \to [1, \infty)$ tels que l'on ait la condition de dérive suivante : il existe deux constantes $\lambda \in (0, 1)$ et $b < \infty$ telles que

$$PV(x) \le \lambda V(x) + b \mathbb{1}_C(x), \forall x \in X$$

alors la chaîne est V- géometriquement ergodique.

Pour une fonction $f \in \mathbb{F}(X, X)$ nous considerons

$$S_n(f) = \frac{1}{n} \sum_{t=0}^{n-1} f(X_t) .$$

Définition 9 Si π est la unique probabilité invariante de P, pour $f \in \mathbb{F}(X, X)$ telle que $\pi |f| < \infty$ l'équation de Poisson associée à f est définie par

$$\hat{f} - P\hat{f} = f - \pi(f) .$$

Nous disons que \hat{f} est une solution si elle satisfait l'équation et $P|\hat{f}|(x) < \infty$.

Lemme 2 Si le noyau est V – géometriquement ergodique pour toute f telle que $|f/V|_{\infty} < \infty$ nous avons

$$\sum_{n=0}^{\infty} |P^n f(x) - \pi(f)| < \infty$$

$$\hat{f}(x) = \sum_{n=0}^{\infty} (P^n f(x) - \pi(f))$$

est une solution de l'équation de Poisson associée à f

Preuve

Soit
$$\hat{f}_n(x) = \sum_{t=0}^{n-1} (P^t f(x) - \pi(f))$$

$$|\hat{f}_{n+1}(x) - \hat{f}_n(x)| = |P^n f(x) - \pi(f)| \le C\rho^n V(x) |f/V|_{\infty}, \qquad (1)$$

et $\hat{f}_n(x)$ converge.

$$\left|\frac{\hat{f}_n(x)}{V(x)}\right| \le \frac{\sum\limits_{n=0}^{\infty} |P^n f(x) - \pi(f)|}{V(x)} \le C (1 - \rho)^{-1} \left|\frac{f}{V}\right|_{\infty}$$

Sous conditions d'integrabilité de V par rapport à $P(x,\cdot)$ on retrouve que $P\hat{f}_n(x) \to P\hat{f}$.

$$\hat{f}(x) - P\hat{f}(x) = \lim \left(\hat{f}_n(x) - P\hat{f}_n(x) \right) = f(x) - \pi(f) + \lim \left(P^n f(x) - \pi(f) \right) = f(x) - \pi(f).$$

Proposition 7 Soit f telle que $\pi |f| < \infty$ et \hat{f} une solution de l'équation de Poisson. Donc,

$$S_n(f) - \pi(f) = \frac{M_n(\hat{f})}{n} + \frac{\hat{f}(X_0) - \hat{f}(X_n)}{n}$$
$$M_n(\hat{f}) = \sum_{t=1}^n \left\{ \hat{f}(X_t) - \mathbb{E}\left[\hat{f}(X_t) | \mathcal{F}_{t-1}\right] \right\} = \sum_{t=1}^n \left\{ \hat{f}(X_t) - P\hat{f}(X_{t-1}) \right\}$$

 $où \mathcal{F}_t = \sigma(X_0, \dots, X_t)$. En outre $(M_n(\hat{f}), \mathcal{F}_n)$ est une martingale.

Preuve

$$S_n(f) - \pi(f) = \frac{1}{n} \sum_{t=0}^{n-1} (f(X_t) - \pi(f)) = \frac{1}{n} \sum_{t=0}^{n-1} (\hat{f}(X_t) - P\hat{f}(X_t))$$

Théorème 3.3 Si la chaîne $X = (X_t)_{t \in \mathbb{N}}$ est φ - irréductible et apériodique, de plus, il existe un ensemble small C et une fonction $V: X \to [1, \infty)$ tels que l'on ait la condition de dérive suivante : il existe deux constantes $\lambda \in (0, 1)$ et $b < \infty$ telles que

$$PV(x) \le \lambda V(x) + b \mathbb{1}_C(x), \forall x \in X$$

et que $\pi(V) < \infty$ alors pour tout a > 1 et toute fonction f telle que $|f|_{V^{1/a}} < \infty$,

$$\lim \frac{1}{n} \sum_{k=1}^{n} f(X_k) = \pi(f)$$
 p.s.