સંબંધ અને વિધેય

3.1 પ્રાસ્તાવિક

વિધયની સંકલ્પના આધુનિક ગણિતશાસ્ત્રના પાયાની વિષયવસ્તુમાંની એક સંકલ્પના છે. વિધયની સંકલ્પનાને વિકસાવવામાં અનેક ગણિતશાસ્ત્રીઓએ મહત્ત્વનું પ્રદાન કર્યું છે. વિધય (Function) શબ્દનો સર્વપ્રથમ ઉપયોગ ફ્રેન્ચ ગણિતશાસ્ત્રી દ'કાર્તેએ ઈ.સ. 1637માં કર્યો હતો. તે વખતે તેણે x^n , $n \in \mathbb{N}$ નો જ ઉલ્લેખ કર્યો હતો. સન 1667માં જેમ્સ ગ્રેગરીએ વિધયની વ્યાખ્યા આપી હતી. તેણે વિધયનો ઉપયોગ કેટલીક રાશિઓ ઉપર થતી બૈજિક ક્રિયાઓથી મળતી નવી રાશિ તરીકે કર્યો હતો. ઈ.સ. 1673માં લિબ્નીટ્ઝે વક્ર પરના બિંદુના યામ, સ્પર્શકના ઢાળ, અભિલંબના ઢાળના સંદર્ભમાં દરેક બિંદુએ બદલાતી રાશિ તરીકે વિધયનો ઉપયોગ કર્યો હતો. વિધયની આધુનિક વ્યાખ્યા ડિરિશ્લેએ આપી હતી. જયોર્જ કેન્ટરે ગણની મદદથી વિધયની વ્યાખ્યા આપી હતી. આ પ્રકરણમાં વિધય તેના પ્રકારો અને તેમની ઉપરની ક્રિયાઓનો અભ્યાસ કરીશું.

3.2 સંબંધ

બે અરિક્ત ગણના કાર્તેઝિય ગુણાકારથી આપણે પરિચિત છીએ. ધારો કે $A = \{a, b, c\}$, $B = \{c, d\}$, તો $A \times B = \{(a, c), (a, d), (b, c), (b, d), (c, c), (c, d)\}$ થાય.

પ્રાકૃતિક સંખ્યાઓના ગણ Nમાં 'બમણા હોવાનો સંબંધ' સંખ્યા 1ને 2 સાથે, 2ને 4 સાથે, 3ને 6 સાથે અને તે જ રીતે બીજી સંખ્યાઓને સાંકળે છે. આવું લખવાને બદલે તેમને ક્રમયુક્ત જોડ દ્વારા $\{(1, 2), (2, 4), (3, 6), (4, 8),...\}$ દ્વારા પણ દર્શાવી શકાય. આમ, આ સંબંધને ગણ $\{(1, 2), (2, 4), (3, 6)...\}$ તરીકે પણ દર્શાવી શકાય. અહીં નોંધીએ કે આ ગણ N \times Nનો ઉપગણ છે.

સંબંધ (Relation) : અરિક્ત ગણો A અને B માટે A × Bના કોઈ પણ ઉપગણને Aથી Bનો સંબંધ કહેવાય.

આમ, ઉપર દર્શાવેલ ગણ A અને B માટે $\{(a, c), (b, d)\}$ એ Aથી Bનો સંબંધ છે. હવે $n(A \times B) = 6$ હોવાથી $A \times B$ ના ઉપગણોની સંખ્યા $2^6 = 64$ થાય. આમ, Aથી Bના 64 વિવિધ સંબંધો શક્ય બને. ગણ તરીકે સંબંધને S થી દર્શાવવામાં આવે છે. આમ ઉપરના સંબંધને $S = \{(a, c), (b, d)\}$ તરીકે લખાય. વધુમાં ઉપર જણાવ્યા મુજબ $A \times B$ નો કોઈ પણ ઉપગણ S એ Aથી Bનો એક સંબંધ છે. જો કોઈ ક્રમયુક્ત જોડ $(x, y) \in S$ હોય તો x એ y સાથે S દ્વારા સંબંધ ધરાવે છે તેમ કહેવાય. ઉપરના ઉદાહરણમાં a એ c સાથે અને b એ d સાથે S દ્વારા સંબંધ ધરાવે છે, જો $(x, y) \in A \times B$ પણ $(x, y) \notin S$, તો x એ y સાથે S દ્વારા સંબંધ ધરાવતો નથી તેમ કહેવાય, ઉદાહરણ તરીકે $(c, c) \notin S$, માટે c એ c સાથે S દ્વારા સંબંધ ધરાવતો નથી.

જો S એ Aથી Bનો સંબંધ હોય, તો $\{a \mid (a, b) \in S\}$ ને Sનો પ્રદેશ (Domain) કહેવાય અને ગણ $\{b \mid (a, b) \in S\}$ ને Sનો વિસ્તાર (Range) કહેવાય. ઉપરના ઉદાહરણમાં Sનો પ્રદેશ $\{a, b\}$ અને વિસ્તાર $\{c, d\}$ છે. Aથી Bના કોઈ પણ સંબંધ માટે પ્રદેશ A નો ઉપગણ હોય અને વિસ્તાર B નો ઉપગણ હોય છે.

Aથી Bનો કોઈ સંબંધ S એ ∅ હોય, તો Sને રિક્ત અથવા ખાલી (Void) સંબંધ કહે છે. Aથી Bનો કોઈ સંબંધ S એ A × B હોય, તો S સાર્વત્રિક (Universal) સંબંધ કહેવાય છે. વધુમાં જો A = B હોય એટલે કે S ⊂ A × A હોય, તો સંબંધ Sને A પરનો સંબંધ કહેવાય છે.

ગણિત તેમજ સમાજમાં સંબંધ અનેક રીતે ઉદ્દભવે છે. કોઈ ગણ Aના ઘાતગણ P(A) ઉપર 'ઉપગણ હોવું' એ એક સંબંધ છે. જો $M \subset \mathbb{N}$ હોય, તો M એ \mathbb{N} સાથે \subset દ્વારા સંબંધ ધરાવે છે તેમ કહેવાય. તે જ રીતે 'નાના હોવું' કે 'મોટા હોવું' તે સંખ્યાઓના ગણ ઉપર સંબંધો છે. આમ જો, a < b હોય, તો a એ b સાથે '<' દ્વારા સંબંધ ધરાવે છે અથવા a > b હોય, તો a એ b સાથે '>' દ્વારા સંબંધ ધરાવે છે તેમ કહેવાય. ઉપરનાં ઉદાહરણો પરથી નોંધીએ કે, સંબંધમાં ક્રમયુક્ત જોડીઓ લેવામાં આવે છે.

સમાજમાં, જો H એ તમામ મનુષ્યોનો ગણ હોય, તો 'માતા હોવું' એ સંબંધ છે. તે H \times Hનો ઉપગણ છે, એટલે કે આ સંબંધ ગણ સ્વરૂપે M = $\{(a, b) \mid a, b \in H, a \rightarrow b$ ની માતા છે $\}$ થી દર્શાવી શકાય. અહીં aMb લખી શકાય.

ઉદાહરણ 1 : A = {1, 2,.., 10}, B = {3, 6, 9, 12}. S એ Aથી Bનો એક સંબંધ છે.

 $S = \{(a, b) \mid a \$ એ bનો ગુણક છે $\}$ હોય તો Sનો પ્રદેશ અને વિસ્તાર મેળવો.

ઉકેલ: અહીં S = {(3, 3), (6, 3), (9, 3), (6, 6), (9, 9)} થાય, કારણ કે, B નો સભ્ય 3 છે; અને A માં આવેલ તેના ગુણક 3, 6, 9 છે. Bનો સભ્ય 6 છે; અને Aમાં 6નો ગુણક 6 છે, Bનો સભ્ય 9 છે; અને Aમાં તેનો ગુણક 9 છે. આમ, Sનો પ્રદેશ {3, 6, 9} અને વિસ્તાર {3, 6, 9} છે.

ઉદાહરણ 2 : $S = \{(a, b) \mid a + 2b = 15\}$ થાય તે રીતે એક સંબંધ N પર વ્યાખ્યાયિત છે. Sને યાદીની રીતે લખો. Sનો પ્રદેશ તેમજ વિસ્તાર મેળવો.

ઉકેલ : a+2b=15 થવા માટે જરૂરી છે કે $2b \le 15$. આથી bનાં શક્ય મૂલ્યો $b=1,\,2,\,3,\,4,\,5,\,6,\,7$ થાય. હવે, b નાં આ મૂલ્યોને સંગત a (N માં) નાં મૂલ્યો અનુક્રમે 13, 11, 9, 7, 5, 3, 1 થશે. આમ, $S=\{(13,\,1),\,(11,\,2),\,(9,\,3),\,(7,\,4),\,(5,\,5),\,(3,\,6),\,(1,\,7)\}$

∴ Sનો પ્રદેશ = {1, 3, 5, 7, 9, 11, 13} અનેSનો વિસ્તાર = {1, 2, 3, 4, 5, 6, 7}

ઉદાહરણ 3 : જો $A = \{5, 7, 9\}, B = \{1, 3\}$ અને $S = \{(a, b) \mid a \in A, b \in B, a - b$ અયુગ્મ પૂર્ણાંક} હોય, તો S રિક્ત સંબંધ છે તેમ દર્શાવો.

ઉકેલ : સ્પષ્ટ રીતે, A અને Bના ઘટકો અયુગ્મ પૂર્શાંકો હોવાથી તેમની બાદબાકી યુગ્મ પૂર્શાંકો મળે. આમ, કોઈ પણ ક્રમયુક્ત જોડ (a, b) માટે a - b અયુગ્મ પૂર્શાંક ન થાય. આમ S એ રિક્ત સંબંધ છે.

ઉદાહરણ 4: O અયુગ્મ પ્રાકૃતિક સંખ્યાઓનો ગણ અને E એ યુગ્મ પ્રાકૃતિક સંખ્યાઓનો ગણ છે અને $S = \{(a, b) \mid a + b \text{ યુગ્મ સંખ્યા}\}, T = \{(a, b) \mid ab \text{ યુગ્મ સંખ્યા}\}$ છે, O થી E પરના સંબંધો S અને T શોધો. T માટે પ્રદેશ અને વિસ્તાર શોધો.

ઉકેલ: જો x એ અયુગ્મ અને y એ યુગ્મ સંખ્યા હોય, તો x+y હંમેશાં અયુગ્મ થાય, જયારે xy હંમેશાં યુગ્મ સંખ્યા થાય.

- \therefore કોઈ પણ $(x, y) \in O \times E$ માટે $(x, y) \notin S$ અને હંમેશાં $(x, y) \in T$.
- \therefore S = Ø અને T = O \times E
- ∴ T નો પ્રદેશ અને વિસ્તાર અનુક્રમે O અને E છે.

3.3 સંબંધનું દેશ્ય નિરૂપણ

આપણે જોયું કે Aથી B પરનો સંબંધ A × Bના ઉપગણ તરીકે દર્શાવી શકાય. સંબંધને વેન આકૃતિ દ્વારા અને સારણી દ્વારા પણ દર્શાવી શકાય. નીચેના ઉદાહરણમાં આનું નિરૂપણ કરેલ છે :

 $A = \{1, 2, 5\}, B = \{2, 4, 6, 8, 10\}$ અને $S = \{(a, b) \mid b$ એ a વડે વિભાજય છે $\}$. હવે, $S = \{(1, 2), (1, 4), (1, 6), (1, 8), (1, 10), (2, 2), (2, 4), (2, 6), (2, 8), (2, 10), (5, 10)\}$. આ સંબંધ વેન આકૃતિ 3.1માં દર્શાવેલ છે.

આ આકૃતિમાં aથી bને જોડતું કોઈ કિરણ હોય, તો a એ b સાથે સંબંધ ધરાવે છે તેવો અર્થ થાય છે. આવી આકૃતિને **કિરણ-આકૃતિ** (Arrow Diagram) પણ કહે છે.

બીજી રીત (સારણીની રીત):

				В		
	S	2	4 1 1 0	6	8	10
	1	1	1	1	1	1
A	2	1	1	1	1	1
	5	0	0	0	0	1

ઉપર્યુક્ત સારણી 0 અને 1 દ્વારા બનેલી છે. અહીં $(1,2) \in S$ હોવાથી 1 વાળી હાર અને 2 વાળો સ્તંભ જ્યાં મળે તે ખાનામાં 1 લખાય. વળી, $(5,2) \notin S$, આથી આ ઘટકોને અનુરૂપ ખાનામાં 0 છે.

આ સારણીને
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 તરીકે પણ લખી શકાય.

🕶 નોંધ 🛮 આ પ્રકારની સારણીને શ્રેણિક કહેવાય છે.

સ્વાધ્યાય 3.1

- 1. સંબંધ $S = \{(x, y) \mid x, y \in \mathbb{N}, x + y = 8\}$ નો પ્રદેશ અને વિસ્તાર શોધો.
- **2.** સંબંધ $S = \{(x, x^3) \mid x \ \text{એ } 10 \ \text{s} \ \text{2} \ \text{તાં} \ \text{ના} -1 \ \text{ખિયા } \ \text{છ}\}$ ને યાદીના સ્વરૂપમાં લખો.
- **3.** A = $\{1, 2, 3, 5\}$, B = $\{4, 6, 9\}$. સંબંધ S = $\{(x, y) \mid x$ અને yનો તફાવત અયુગ્મ સંખ્યા છે, $x \in A$, $y \in B\}$ આપેલો છે. Sને યાદીના સ્વરૂપમાં લખો.
- આકૃતિ 3.2માં એક સંબંધ દર્શાવેલ છે.

આ સંબંધને યાદીના સ્વરૂપમાં લખો.

*

3.4 विधेय

હવે આપણે વિધેય (Function) તરીકે પ્રચલિત એક વિશિષ્ટ સંબંધનો અભ્યાસ કરીશું. બે અરિક્ત ગણ A અને B માટે જેનો પ્રદેશ A હોય અને પ્રત્યેક $x \in A$ માટે જો f માં xને સમાવતી એક અને માત્ર એક (અનન્ય) ક્રમયુક્ત જોડ આવેલી હોય તેવા Aથી B પરના અરિક્ત સંબંધ f ને Aથી B પરનું વિધેય કહેવાય છે અને $f:A \to B$ લખાય છે. આમ, વિધેયની વિધિવત્ વ્યાખ્યા નીચે મુજબ આપી શકાય.

વિષેય (Function) : ધારો કે A અને B બે અરિક્ત ગણ છે અને $f \subset (A \times B)$ અને $f \neq \emptyset$. પ્રત્યેક $x \in A$ ને સંગત અનન્ય ક્રમયુક્ત જોડ $(x, y) \in f$ હોય, તો $f : A \to B$ ને વિષેય કહેવાય છે. ગણ Aને fનો પ્રદેશ (Domain) અને ગણ Bને fનો સહપ્રદેશ (Codomain) કહેવાય છે. ક્રમયુક્ત જોડીઓ (x, y) ના ગણ fને વિષેયનો આલેખ (Graph) પણ કહે છે.

ગણ $\{y \mid (x, y) \in f\}$ ને વિષેય fનો વિસ્તાર (Range) કહેવાય છે. વિષેય $f : A \to B$ ના પ્રદેશ અને વિસ્તારને અનુક્રમે D_f અને R_f થી દર્શાવાય છે. સરળતા માટે આ ગણને વિધેય $f:A \to B$ ના પ્રદેશ અને વિસ્તાર કહેવાને બદલે fના પ્રદેશ અને વિસ્તાર કહીશું. અહીં જુઓ કે fનો વિસ્તાર એ fના સહપ્રદેશનો ઉપગણ છે.

કોઈ વિધેય $f: A \rightarrow B$ માટે, જો $A \subset R$ હોય તો તે વિધેયને વાસ્તવિક ચલનું વિધેય કહેવાય. જો $B \subset R$ હોય તો તેને વાસ્તવિક વિધેય કહેવાય અને જો $A \subset R$ અને $B \subset R$ હોય, તો તેને વાસ્તવિક ચલનું વાસ્તવિક વિધેય કહેવાય.

હવે જો $f: A \rightarrow B$ વાસ્તવિક ચલનું વાસ્તવિક વિધેય હોય તો, ક્રમયુક્ત જોડ $(x, y) \in R \times R$ અને તેનું સમતલમાં એક બિંદુ તરીકે નિરૂપણ કરી શકાય. $\{(x, y) \mid (x, y) \in f\}$ વિધેયનો સમતલમાં આલેખ દર્શાવે છે.

ગણ A = {1, 3, 5}, B = {1, 3, 4, 5, 6, 7} અને f = {(1, 3), (3, 5), (5, 7)}. જુઓ કે f નો પ્રદેશ સમગ્ર A છે અને Aના દરેક ઘટકને અનુરૂપ Bમાં એક અને માત્ર એક ઘટક આવેલો છે. આમ $f: A \to B$ વિધેય છે. અહીં fનો પ્રદેશ A છે. સહપ્રદેશ B છે અને fનો વિસ્તાર {3, 5, 7} છે.

આ વિધેયને વેન આકૃતિ 3.3માં દર્શાવેલ છે.

જઓ કે વિધેય એક ગણના ઘટકોની અન્ય ગણના ઘટકો સાથે સંગતતા આપે છે. ઉપરના ઉદાહરણમાં વિધેયને f(1) = 3, f(3) = 5 અને f(5) = 7 તરીકે લખી શકાય. અર્થાત્ $\forall (x, y) \in f$ માટે y = f(x). વિધેયના અભ્યાસમાં જો આપેલ વિધેયની સંગતતાનું નિરીક્ષણ કરી તેમાં જો કોઈ ભાત (pattern) મળતી હોય, તો તે શોધવાનું ઉપયોગી છે. આવી ભાત વિધેય દર્શાવવા માટે નિયમ કે સૂત્ર આપે છે. ઉપરના ઉદાહરણમાં

 $f(x) = x + 2, \forall x \in A$ લખી શકાય. એ જરૂરી નથી કે દરેક વિધેયને નિયમ કે સૂત્ર તરીકે દર્શાવી શકાય. વિધેય ગણ તરીકે તેના પ્રદેશ અને સહપ્રદેશ ઉપર આધાર રાખે છે, તેના સૂત્ર ઉપર નહિ.

નીચેનાં ઉદાહરણ ઉપર દર્શાવેલ હકીકતને સમજવામાં મદદરૂપ છે :

ધારો કે $f: \mathbb{N} \to \mathbb{N}$, $f(x) = x^2$. આ વિધેય ગણ તરીકે $f = \{(1, 1), (2, 4), (3, 9), \ldots\}$ લખી શકાય. હવે $g:Z\to Z$, $g(x)=x^2$. આ વિધેયનું ગણ સ્વરૂપ

 $g = \{..., (-2, 4), (-1, 1), (0, 0), (1, 1), (2, 4), (3, 9),..\}$ છે. આમ, f અને gનાં સૂત્રો સમાન હોવા છતાં તે અલગ વિધેયો છે.

ધારો કે A = {1, 2, 3, 4, 5}, B = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, C = {1, 3, 5, 7, 9}. $f: A \rightarrow B; f(x) = 2x - 1$ અને $g: A \rightarrow C; g(x) = 2x - 1$ વ્યાખ્યાયિત કરો.

$$f = \{(1, 1), (2, 3), (3, 5), (4, 7), (5, 9)\}$$

$$g = \{(1, 1), (2, 3), (3, 5), (4, 7), (5, 9)\}$$

અહીં વિધેયોના સહપ્રદેશ ભિન્ન છે, આથી f તથા g સમાન વિધેય નથી.

હવે ધારો કે A = {1, 2, 3, 4}, B = {2, 3, 4, 5, 6} અને C = {3, 5, 7, 9, 11}.

 $f: A \to B; \ f(x) = x + 1$ અને $g: A \to C; \ g(x) = 2x + 1$ લો.

અહીં સહપ્રદેશ તથા સૂત્ર બંને ભિન્ન છે, આમ f અને g સમાન વિધેય નથી.

અંતમાં, ધારો કે A = {1, 2, 3, 4}, B = {1, 3, 5} અને

 $C = \{x \mid x \text{ એ } 30$ થી નાની પ્રાકૃતિક સંખ્યા છે.}

 $f: A \to C$; $f(x) = x^2$ અને $g: B \to C$; $g(x) = x^2$ વ્યાખ્યાયિત કરો.

અહીં f અને gના પ્રદેશ ભિન્ન છે. આથી f અને g સમાન વિધેય નથી.

સમાન વિધેયો (Equal Functions) : જો બે વિધેયના પ્રદેશ, સહપ્રદેશ અને આલેખ (ક્રમયુક્ત જોડના ગણ) અથવા સૂત્ર (જો હોય તો) સમાન હોય, તો તેમને સમાન વિધેય કહે છે.

જો A=C, B=D તથા પ્રત્યેક $x\in A$ (અથવા C) માટે f(x)=g(x) હોય, તો $f:A\to B$ અને $g:C\to D$ ને સમાન વિધેય કહેવાય.

વિધેય $f: A \to B$ માટે f(x) ને x આગળ f નું મૂલ્ય અથવા f દ્વારા મળતું x નું પ્રતિબિંબ (Image) કહેવાય છે અને xને f(x)નું પૂર્વ પ્રતિબિંબ (Pre-image) કહેવાય છે. જો $C \subset A$ હોય, તો $\{y \mid y = f(x), x \in C\}$ ને f દ્વારા મળતું ગણ C નું પ્રતિબિંબ કહેવાય છે. આ ગણને f(C) તરીકે પણ દર્શાવાય છે. આમ, f(A) વિધેય $f: A \to B$ નો વિસ્તાર છે.

ઉદાહરણ 5 : જો A = {1, 2, 3, 4}, B = {2, 4, 6, 8, 10, 12} અને

 $f = \{(1, 2), (2, 4), (3, 6), (4, 10), (3, 12)\}, તો <math>f$ વિધેય છે ?

ઉકેલ : ના. કારણ કે, $3 \in A$ ને સંગત f માં બે ઘટકો છે, જે ગણ Bના ઘટકો 6 અને 12 સાથે ક્રમયુક્ત જોડ રચે છે. વિધેયમાં ગણ Aનો પ્રત્યેક ઘટક ગણ Bના અનન્ય ઘટક સાથે સંગત હોવો જોઈએ. ઉદાહરણ $6: A = \{1, 2, 3, 4, 5,\}, B = \{1, 3, 5, 7\}, f(x) = x - 2$. શું f એ Aથી B પરનું

વિધેય છે ?

ઉકેલ: અહીં શક્ય હોય તો $f = \{(1, -1), (2, 0), (3, 1), (4, 2), (5, 3)\}$. અહીં સ્પષ્ટ જોઈ શકાય છે કે, $f \not\subset (A \times B)$. તેથી f એ A થી Bનો સંબંધ પણ નથી. તેથી f એ Aથી B પરનું વિધેય નથી. ઉદાહરણ $7: f: N \to N$, f(x) = 2x થી વ્યાખ્યાયિત કરો. f વિધેય છે ? f નો વિસ્તાર શોધો. જો $A = \{1, 2, 4, 8, 16\}$ હોય, તો f(A) મેળવો. 56 અને 65નાં પ્રતિબિંબ અને પૂર્વપ્રતિબિંબ પણ મેળવો.

પ્રત્યેક $x \in \mathbb{N}$ માટે અનન્ય $2x \in \mathbb{N}$ અસ્તિત્વ ધરાવે છે. આથી $f: \mathbb{N} \to \mathbb{N}$ વિધેય છે.

 $f = \{(1, 2), (2, 4), (3, 6), (4, 8),...\} = \{(n, 2n) \mid n \in \mathbb{N}\}\$

 \therefore f નો વિસ્તાર $\{2, 4, 6, 8, 10,...\} = \{2n \mid n \in \mathbb{N}\}$ છે.

હવે, f(1) = 2, f(2) = 4, f(4) = 8, f(8) = 16, f(16) = 32,

 $f(A) = \{2, 4, 8, 16, 32\}.$

વધુમાં, f(56) = 112 અને f(65) = 130. આથી 56 અને 65નાં પ્રતિબિંબ અનુક્રમે 112 અને 130 છે.

કોઈ પણ સંખ્યા $x \in \mathbb{N}$ નું પૂર્વ પ્રતિબિંબ $\frac{x}{2}$ છે. x યુગ્મ હોય, તો $\frac{x}{2}$ પ્રાકૃતિક સંખ્યા છે. આમ, 56નું પૂર્વ પ્રતિબિંબ અસ્તિત્વ ધરાવે છે અને તે 28 છે, પરંતુ 65નું પૂર્વ પ્રતિબિંબ અસ્તિત્વ ધરાવતું નથી. f(28) = 56 અને કોઈ પણ $x \in \mathbb{N}$ માટે $f(x) \neq 65$.

ઉદાહરણ 8: નીચેના વાસ્તવિક વિધેયના વિસ્તાર શોધો :

(1)
$$f: R \to R$$
, $f(x) = x^2 + 2x + 3$ (3) $f: R \to R$, $f(x) = [x]$

(2)
$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^4$$
 (4) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = 3x + 2$

63et: (1)
$$f(x) = x^2 + 2x + 3$$

$$f(x) = x^2 + 2x + 1 + 2$$

$$= (x + 1)^2 + 2 \ge 2 \text{ stage } x (x + 1)^2 \ge 0$$

વિસ્તાર
$$R_r \subset \{y \mid y \ge 2, y \in R\}$$

વળી, જો
$$y \in \mathbb{R}$$
 અને $y \ge 2$, અને $\sqrt{y-2} - 1 = x$ લઈએ તો,

$$(x + 1)^2 = y - 2$$
 અથવા $x^2 + 2x + 3 = y$

આમ, પ્રત્યેક
$$y \ge 2$$
 માટે $x \in \mathbb{R}$ મળે જેથી $y = x^2 + 2x + 3$

$$\therefore y \in \mathbb{R}_f$$

$$\therefore R_f = \{y \mid y \ge 2, y \in \mathbb{R}\}$$

(2)
$$x^4 \ge 0$$
, dell $R_f \subset (R^+ \cup \{0\})$

વળી, જો $y \ge 0$, તો $\sqrt[4]{y} = x$ અસ્તિત્વ ધરાવે છે.

$$\therefore x^4 = y$$

$$f(x) = y$$

આમ, પ્રત્યેક $y \in \mathbb{R}^+ \cup \{0\}$ ને સંગત $x \in \mathbb{R}$ મળે જેથી y = f(x)

$$\therefore \quad (\mathbf{R}^+ \cup \{0\}) \subset \mathbf{R}_f \tag{ii}$$

$$\therefore$$
 (i) અને (ii) પરથી $R_f = R^+ \cup \{0\}$.

(3) [x] એટલે x કરતાં મોટો ના હોય તેવો મહત્તમ પૂર્ણાંક.

તેથી,
$$[x] =$$

$$\begin{cases} 0 & \text{જો } 0 \le x < 1 \\ 1 & \text{જો } 1 \le x < 2 \\ 2 & \text{જો } 2 \le x < 3 \end{cases}$$

પ્રત્યેક વાસ્તિવિક સંખ્યા x માટે [x] એ પૂર્ણીક છે.

$$\therefore$$
 $f(x)$ એ પૂર્શીક છે.

$$\therefore \quad R_f \subset Z \tag{i}$$

વળી, કોઈ પણ $n \in \mathbb{Z}$ માટે n = [n] = f(n)

$$\therefore n \in \mathbb{R}_f$$

$$\therefore Z \subset R_f$$
 (ii)

∴ (i) તથા (ii) પરથી
$$R_f = Z$$

નોંધ: 3 કરતાં મોટા નહિ તેવા પૂર્ણીકો 3, 2, 1, 0,...

તે પૈકી મોટામાં મોટો પૂર્ણાંક 3 છે. તેથી [3] = 3

જો $0 \le x < 1$ તો x થી મોટા નહિ તેવા પૂર્શાંકો 0, -1, -2,... છે. તે પૈકી મહત્તમ પૂર્શાંક 0 છે.

 $\therefore \quad 0 \le x < 1 \text{ di } [x] = 0.$

nથી મોટા ન હોય તેવા પૂર્શાંક n, n-1, n-2,... છે. તે પૈકી મહત્તમ પૂર્શાંક n છે. આથી [n]=n.

 $(4) \quad \Re x \in \mathbb{R} \text{ all } 3x + 2 \in \mathbb{R}.$

$$R_f \subset R$$
 (i)

વળી, જો $y \in \mathbb{R}$, તો $\frac{y-2}{3} \in \mathbb{R}$. જો $x = \frac{y-2}{3}$, તો y = 3x + 2.

તેથી પ્રત્યેક $y \in \mathbb{R}$ માટે એક $x \in \mathbb{R}$ એવો અસ્તિત્વ ધરાવે છે કે જેથી y = f(x)

$$\therefore$$
 R \subset R_f

∴ (i) તથા (ii) પરથી $R_f = R$

ઉદાહરણ 9 : $f: \mathbb{R} \to \mathbb{R}, f(x) = 3x - 2$ નો આલેખ દોરો.

ઉકેલ : અહીં f(0) = -2, f(1) = 1,

f(2) = 4, f(10) = 28, f(0.5) = -0.5.

આથી $(0, -2) \in f$, $(1, 1) \in f$,

 $(2, 4) \in f, (-1, -5) \in f...$

આ બિંદુઓને જોડતાં આકૃતિ 3.4માં દર્શાવ્યા પ્રમાણેની રેખા મળે.

(માત્ર કેટલાંક બિંદુઓનું જ આલેખમાં નિરૂપણ કર્યું છે. પરંતુ $x \in \mathbb{R}$ હોવાથી 'સતત' રેખા દોરી છે.)

ઉદાહરણ 10 : $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ થી વ્યાખ્યાયિત વિધેયનો આલેખ દોરો.

ઉંકેલ : આ વિધેય (x, x^2) પ્રકારની જોડીઓ ધરાવે છે. એટલે કે (-1, 1), (1, 1), (-2, 4), (2, 4) વગેરે fમાં છે. આ બિંદુઓ જોડતાં આકૃતિ 3.5 પ્રમાણેનો વક મળે.

સ્વાધ્યાય 3.2

1. R પર વ્યાખ્યાયિત નીચેનાં વિધેયોના વિસ્તાર મેળવો :

(1)
$$f: N \to N, f(x) = x + 2$$

(2)
$$f: N \to N, f(x) = 2^x$$

(3)
$$f: R \to R, f(x) = 5$$

(4)
$$f: Z \to Z, f(x) = x - 1$$

2. નીચેનાં વિધેયોના આલેખ દોરો :

(1)
$$f: R \to R, f(x) = x + 3$$

(2)
$$f: R \to R, f(x) = 1 - x$$

3. જો
$$f: \mathbb{R}^+ \to \mathbb{R}^+$$
, $f(x) = x^2 + 4\sqrt{x} + 3$ હોય, તો $f(4)$, $f(16)$ શોધો.

4. જો
$$f: \mathbb{R} - \{0\} \to \mathbb{R}, f(x) = \frac{1}{x} + ax$$
 અને $f(\frac{1}{5}) = \frac{28}{5}$ હોય, તો a શોધો.

3.5 કેટલાંક વિશિષ્ટ વિધેયો અને તેમના આલેખ

(1) તદેવ વિધેય (Identity Function) : જો A કોઈ અરિક્ત ગણ હોય તો $f: A \rightarrow A, f(x) = x, \forall x \in A$ થી વ્યાખ્યાયિત વિધેય A ઉપરનું તદેવ વિધેય કહેવાય. ગણ A પરનું તદેવ વિધેય I થી દર્શાવાય છે.

આ વિધેય Aના કોઈ પણ ઘટકને તેના તે જ ઘટક સાથે સંગત કરે છે. આ વિધેયનો વિસ્તાર સમગ્ર સહપ્રદેશ છે. વાસ્તવિક સંખ્યાઓના ગણ R પરના તદેવ વિધેયનો આલેખ y = x આકૃતિ 3.6 માં દર્શાવેલ રેખા થાય.

(2) અચળ વિધેય (Constant Function) : જે વિધેયનો વિસ્તાર એકાકી ગણ હોય તેને અચળ વિધેય કહેવાય છે.

વિધેય $f: A \rightarrow B$ હોય અને c એ Bનો કોઈક નિશ્ચિત ઘટક હોય તથા પ્રત્યેક $x \in A$ માટે f(x) = c તો $f: A \rightarrow B$ ને અચળ વિધેય કહે છે.

$$f: \{2, 4, 6, 8\} \rightarrow \mathbb{R}, f(x) = 0$$
 લેતાં,
$$f(2) = 0, f(4) = 0, f(6) = 0, f(8) = 0$$
 થાય. આમ, f એ અચળ વિધેય છે.

ઉદાહરણ તરીકે, જો x એ કોઈ લઘુકોણનું માપ હોય, તો $x \in (0, 90)$ અને $\sin^2 x + \cos^2 x = 1$.

હવે $f:(0, 90) \to \mathbb{R}, f(x) = \sin^2 x + \cos^2 x$ વ્યાખ્યાયિત કરીએ તો, $\forall x \in (0, 90), f(x) = 1$. આથી તે અચળ વિધેય છે.

વાસ્તવિક સંખ્યાઓના ગણ પરના અચળ વિધેયનો આલેખ $y = c \ (c > 0)$ સમક્ષિતિજ રેખા થાય. (જુઓ આકૃતિ 3.7.)

(3) માનાંક વિધેય (Modulus Function) : વાસ્તવિક સંખ્યા x નું માન નીચે પ્રમાણે વ્યાખ્યાયિત થાય છે :

$$|x| = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

 $f: \mathbf{R} \to \mathbf{R}, f(x) = |x|$ થી વ્યાખ્યાયિત થતું વિધેય માનાંક વિધેય અથવા નિરપેક્ષ મૂલ્ય વિધેય કહેવાય છે.

 $\forall x \in \mathbb{R}, |x| \geq 0$ થતું હોવાથી આ વિધેયનો વિસ્તાર $\mathbb{R}^+ \cup \{0\}$ થશે. આ વિધેયનો આલેખ દોરવા માટે જુઓ કે, f(1) = 1, f(-1) = 1, f(0) = 0 વગેરે. આમ, આ વિધેયનો આલેખ બે કિરણોનો યોગગણ થશે. આ આલેખ આકૃતિ 3.8માં દર્શાવ્યો છે.

આકૃતિ 3.8

જો માનાંક વિધેય R+ ઉપર વ્યાખ્યાયિત કરવામાં આવે તો તે તદેવ વિધેય બને.

(4) ચિક્ષ વિધેય (Signum Function) : વિધેય $f: \mathbf{R} \to \mathbf{R}$, જ્યાં

$$f(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

ને ચિત્ત વિધેય કહેવાય છે. આ વિધેયનું મૂલ્ય ચલનું મૂલ્ય ધન અથવા ઋણ હોય તે મુજબ 1 અથવા -1 છે અને x = 0 માટે તેનું મૂલ્ય શૂન્ય છે. આ વિધેયનો પ્રદેશ R છે અને વિસ્તાર $\{-1, 0, 1\}$ છે. આ વિધેયનો આલેખ આકૃતિ 3.9માં દર્શાવ્યા મુજબનો થાય.

આ વિધેયની વ્યાખ્યા આ પ્રમાણે પણ આપી શકાય :

$$f(x) = \begin{cases} 0 & \text{wi } x = 0 \\ \frac{|x|}{x} & \text{wi } x \neq 0 \end{cases}$$

આકૃતિ 3.9

(5) બહુપદી વિધેય (Polynomial Function) : વિધેય $g: R \to R$ જયાં,

 $g(x)=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0,\ a_n\neq 0$ ને n ઘાતનું બહુપદી વિધેય કહેવાય છે. અહીં n એ અનૃષ પૂર્ણાંક છે અને $a_0,\ a_1,\ a_2,...,a_n$ અચળ વાસ્તવિક સંખ્યાઓ છે. અહીં નોંધીએ કે આગળ જણાવેલ અચળ વિધેય એ બહુપદી વિધેયનો n=0 માટેનો ખાસ કિસ્સો છે.

(6) સંમેય વિધેય (Rational Function) : $g(x) \neq 0$ હોય તેવા પ્રદેશમાં વ્યાખ્યાયિત બહુપદીય વિધેયો f તથા g માટે $h(x) = \frac{f(x)}{g(x)}$ ને સંમેય વિધેય કહેવાય છે.

આમ, $h: R - \{x \mid g(x) = 0\} \to R$, $h(x) = \frac{f(x)}{g(x)}$ એક સંમેય વિધેય છે. અત્રે f તથા g બહુપદીય વિધેયો છે.

(7) મહત્તમ પૂર્ણાંક વિધેય (Greatest Integer

Function): $\Re[x]$ એ x થી નાના અથવા x ને સમાન તમામ પૂર્શાકોમાં સૌથી મોટો પૂર્શાંક દર્શાવે તો $f: \mathbb{R} \to \mathbb{R}, f(x) = [x]$ ને મહત્તમ પૂર્ણાંક વિધેય કહે છે. તેનો પ્રદેશ R તથા વિસ્તાર Z છે.

[x]ની વ્યાખ્યા પરથી સ્પષ્ટ છે કે,

$$[x] = \begin{cases} -1 & -1 \le x < 0 \\ 0 & 0 \le x < 1 \\ 1 & 1 \le x < 2 \text{ qold.} \end{cases}$$

આ વિધેયને **ક્લોર વિધેય (Floor Function)** પણ કહે છે.

આ વિધેયનો આલેખ આકૃતિ 3.10માં દર્શાવ્યા મુજબ થશે.

આકૃતિ 3.10

આવી જ રીતે xથી નાના ન હોય તેવા પૂર્ણાંકો પૈકી ન્યુનતમ પૂર્ણાંકનું વિધેય પણ વ્યાખ્યાયિત કરી શકાય.

(8) ન્યૂનતમ પૂર્ણાંક વિધેય (Ceiling Function) :

 $g: \mathbb{R} \to \mathbb{R}, g(x) = \lceil x \rceil, x$ કરતાં નાનો નહિ તેવો ન્યૂનતમ પૂર્ણાંક.

આ વિધેયને **સિલિંગ વિધેય (Ceiling Function)** કહે છે. આ વિધેયનો આલેખ આકૃતિ 3.11માં દર્શાવેલ છે.

સ્વાધ્યાય 3.3

નીચેનાં વિધેયોના આલેખ દોરો : 1.

- (1) $f: \mathbb{R} \to \mathbb{R}, f(x) = |x 1|$ (2) $g: \mathbb{R} \to \mathbb{R}, g(x) = [x + 1]$
- (3) $h: N \to R, h(x) = x [x]$
- (4) $g: [-3, 3] \to Z; g(x) = x$ થી નાનો નહિ તેવો ન્યુનતમ પૂર્ણીક.

2. નીચેનાં વિધેયોના વિસ્તાર મેળવો :

- (1) $f: \mathbb{N} \to \mathbb{R}$ $f(x) = \frac{1}{x}$
- (2) $h: \mathbb{N} \to \mathbb{R}$ h(x) = x [x]

3.6 વાસ્તવિક વિધેયો પરની બૈજિક ક્રિયાઓ

આપણે વાસ્તવિક વિધેયોનાં સરવાળા, બાદબાકી, ગુણાકાર તેમજ ભાગાકારનો અભ્યાસ કરીશું. $f: A \to R$ અને $g: B \to R$ વિધેયો છે તથા $A \cap B \neq \emptyset$

- (1) બે વિધેયોનો સરવાળો : $f: A \to R$, $g: B \to R$ બે વાસ્તવિક વિધેયો છે. તેમનો સરવાળો $(f+g): (A \cap B) \to R$; (f+g)(x) = f(x) + g(x), $\forall x \in A \cap B$ થી વ્યાખ્યાયિત કરવામાં આવે છે.
- (2) બે વિધેયોની બાદબાકી : બે વાસ્તવિક વિધેયો, $f: A \to R$ અને $g: B \to R$ માટે તેમની બાદબાકી $(f-g): (A \cap B) \to R; (f-g)(x) = f(x) g(x), \forall x \in A \cap B$ થી વ્યાખ્યાયિત કરવામાં આવે છે.
- (3) વાસ્તવિક સંખ્યાથી ગુણાકાર : ધારો કે $X \subset R$ અને $f: X \to R$ એ વાસ્તવિક વિધેય છે અને α એ કોઈ વાસ્તવિક સંખ્યા છે. વાસ્તવિક સંખ્યા α અને વિધેય fનો ગુણાકાર $(\alpha f): X \to R$, $(\alpha f)(x) = \alpha f(x)$, $\forall x \in X$ થી વ્યાખ્યાયિત કરવામાં આવે છે. અહીં વાસ્તવિક સંખ્યા α ને અદિશ કહે છે. આથી આ ગુણાકારને અદિશ વડે વિધેયનો ગુણાકાર કહેવાય છે.
- (4) બે વાસ્તવિક વિધેયોનો ગુણાકાર : બે વાસ્તવિક વિધેયો $f: A \to R$ અને $g: B \to R$ નો ગુણાકાર (A \cap B) ઉપર વ્યાખ્યાયિત કરવામાં આવે છે. આમ (fg) : (A \cap B) $\to R$ અને $\forall x \in A \cap B$, (fg)(x) = f(x) g(x).
- (5) બે વાસ્તવિક વિધેયોનો ભાગાકાર : બે વાસ્તવિક વિધેયો $f:A \to R$ અને $g:B \to R$ નો ભાગાકાર $\left(\frac{f}{g}\right)$ એ $(A \cap B) \{x \mid g(x) = 0\} \neq \emptyset$ ઉપર વ્યાખ્યાયિત કરવામાં આવે છે. આમ, $\left(\frac{f}{g}\right):A \cap B \{x \mid g(x) = 0\} \to R$, $\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$.

च નોંધ વાસ્તવિક સંખ્યાથી વિધેયનો ગુણાકાર અને બે વાસ્તવિક વિધેયોનો ગુણાકાર તે વચ્ચે શું સંબંધ છે ?

ઉદાહરણ 11 : $f: \mathbb{R} \to \mathbb{R}$ અને $g: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, g(x) = 4x - 1 હોય, તો f+g, f-g, fg અને $\frac{f}{g}$ શોધો.

634:
$$f + g : R \to R$$
; $(f + g)(x) = x^2 + 4x - 1$,
 $f - g : R \to R$; $(f - g)(x) = x^2 - 4x + 1$
 $fg : R \to R$; $(fg)(x) = x^2(4x - 1) = 4x^3 - x^2$

 $\left(\frac{f}{g}\right)$ શોધવા માટે $g(x) \neq 0$ થવું જોઈએ. અહીં g(x) = 4x - 1 હોવાથી તે ફક્ત $x = \frac{1}{4}$ માટે શૂન્ય થાય. આમ, $\left(\frac{f}{g}\right)$ નો પ્રદેશ $R - \left\{\frac{1}{4}\right\}$ થશે. આથી, $\frac{f}{g} : R - \left\{\frac{1}{4}\right\} \to R$, $\left(\frac{f}{g}\right)(x) = \frac{x^2}{4x - 1}$.

3.7 વિધેયોનું સંયોજન (સંયોજિત વિધેય)

હવે આપણે વિધેયોના સંયોજનનો અભ્યાસ કરીશું. $f:A\to B$ કોઈ વિધેય હોય તો $\forall x\in A$ ને સંગત ગણ Bમાં અનન્ય ઘટક મળે. હવે $g:B\to C$ વિધેય હોય તો Bના પ્રત્યેક ઘટકને સંગત ગણ Cમાં અનન્ય ઘટક મળે. વિધેયો f અને gના સંયોજનનો વિચાર કરતાં Aના પ્રત્યેક ઘટકને સંગત ગણ C માં અનન્ય ઘટક મેળવી શકાય. હવે આપણે બે વિધેયના સંયોજનની વ્યાખ્યા આપીશું.

સંયોજિત વિધેય (Composition Function) : ધારો કે $f: A \to B$ અને $g: C \to D$ બે વિધેયો છે. જો $\mathbf{R}_f \subset C$ હોય તો વિધેયો f અને gનું સંયોજિત વિધેય $h: A \to D$, h(x) = g(f(x)) દ્વારા વ્યાખ્યાયિત કરવામાં આવે છે. આવા વિધેય hને g of થી દર્શાવાય છે.

સંયોજિત વિધેય આવી રીતે લખી શકાય, (gof) : $A \rightarrow D$ અને (gof)(x) = g(f(x)).

સંયોજિત વિધેયની સચિત્ર રજૂઆત આકૃતિ 3.12 માં દર્શાવ્યા મુજબ થાય.

વિધેય f અને gનું સંયોજિત વિધેય (gof) વ્યાખ્યાયિત થાય તે માટે $\mathbf{R}_f \subset \mathbf{D}_g$ હોવું જરૂરી છે. આમ, g તથા f નું સંયોજિત વિધેય fog

આકૃતિ 3.12

વ્યાખ્યાયિત થાય તે માટે $\mathbf{R}_g \subset \mathbf{D}_f$ હોવું જરૂરી છે. જો $f: \mathbf{A} \to \mathbf{B}, g: \mathbf{B} \to \mathbf{C}$ હોય, તો તે વિશિષ્ટ સંયોજન છે. અત્રે $\mathbf{R}_f \subset \mathbf{B} = \mathbf{D}_g$. આથી $\mathbf{R}_f \subset \mathbf{D}_g$ છે જ. આથી gof હંમેશાં શક્ય બને. જો $f: \mathbf{A} \to \mathbf{B}, g: \mathbf{B} \to \mathbf{A}$ હોય, તો gof અને fog બંને શક્ય છે.

ઉદાહરણ 12 : A = {1, 2, 3, 4, 5}, B = {1, 3, 5, 7, 9}, C = {3, 7, 11, 15, 19, 23}. $f: A \rightarrow B, f(x) = 2x - 1$ તથા $g: B \rightarrow C, g(x) = 2x + 1$ હોય, તો fog અથવા gof પૈકી જે શક્ય હોય તે શોધો.

ઉકેલ : અહીં $R_f \subset B = D_g$. આથી gof શક્ય છે.

હવે, (gof)(x) = g(f(x)) = g(2x - 1) = 2(2x - 1) + 1 = 4x - 2 + 1 = 4x - 1

 \therefore (gof)(1) = 3, (gof)(2) = 7, (gof)(3) = 11, (gof)(4) = 15, (gof)(5) = 19

આમ, $gof: A \rightarrow C$, $gof = \{(1, 3), (2, 7), (3, 11), (4, 15), (5, 19)\}.$

હવે, $g: B \to C$, $g = \{(1, 3), (3, 7), (5, 11), (7, 15), (9, 19)\}$

 \therefore R_o = {3, 7, 11, 15, 19} $\not\subset$ A = D_f

∴ fog મળે નહિ.

🖝 નોંધ અહીં, gof મળે છે, પરંતુ fog મળતું નથી.

ઉદાહરણ 13: $f: N \to N$, $f(x) = x^2$, $g: N \to N$, $g(x) = x^3$. fog અને gof શોધો.

Geometric $f(g(x)) = f(g(x)) = f(x^3) = (x^3)^2 = x^6$

 $gof: N \to N; (gof)(x) = g(f(x)) = g(x^2) = (x^2)^3 = x^6$

<u>ાં</u> અહીં, fog = gof.

ઉદાહરણ 14 : A = {1, 2, 3, 4, 5}, B = {1, 4, 9, 16, 25}, $f : A \rightarrow B$, $f(x) = x^2$, $g : B \rightarrow A$, $g(x) = \sqrt{x}$. fog અને gof શોધો.

634: $f \circ g : B \to B$; $(f \circ g)(x) = f(g(x)) = f(\sqrt{x}) = (\sqrt{x})^2 = x$ $g \circ f : A \to A$; $(g \circ f)(x) = g(f(x)) = g(x^2) = \sqrt{x^2} = |x| = x \text{ sizes } x \in A$

અહીં, $gof = I_A$ અને $fog = I_B$

ઉદાહરણ 15 : $f: R \to R$, f(x) = 3x + 2, $g: R \to R$, g(x) = 2x + 3. fog અને gof શોધો. શું $f \circ g = g \circ f \circ g$?

ઉકેલ : $R_f \subset R = D_g$ અને $R_g \subset R = D_f$

 \therefore fog: R \rightarrow R અને gof: R \rightarrow R અસ્તિત્વ ધરાવે છે.

$$(f \circ g)(x) = f(g(x)) = f(2x + 3) = 3(2x + 3) + 2 = 6x + 11$$

$$(gof)(x) = g(f(x)) = g(3x + 2) = 2(3x + 2) + 3 = 6x + 7$$

 \therefore gof અને fogને સમાન પ્રદેશ અને સહપ્રદેશ પર વ્યાખ્યાયિત છે, પરંતુ $gof \neq fog$.

પ્રમેય 3.1 : જો $f: A \rightarrow B$ વિધેય હોય, તો $foI_A = f$ અને $I_Bof = f$.

સાબિતી : અહીં $I_A:A\to A$ અને $f:A\to B$ વિધેયો છે. આથી foI_A વ્યાખ્યાયિત છે તેમજ $(foI_A):A\to B$ એક વિધેય છે.

હવે $\forall x \in A$, $(foI_A)(x) = f(I_A(x) = f(x)$

 $(I_A$ तदेव विधेय छे.)

 $foI_A:A\to B$ અને $f:A\to B$ અને $(foI_A)(x)=f(x)$ $\forall x\in A$ આમ, $foI_A=f$ મળે છે.

વળી, $f: A \to B$ અને $I_B: B \to B$ વિધેય હોવાથી $I_B of$ વ્યાખ્યાયિત છે તથા $f: A \to B$ અને $I_B of: A \to B$ વિધેયો છે.

$$(I_B o f)(x) = I_B (f(x)) = f(x), \forall x \in B$$

$$\therefore$$
 $I_{B}of = f$

પ્રમેય 3.2 : જો $f: A \to B$, $g: B \to C$ અને $h: C \to D$ વિધેયો હોય તો (hog)of = ho(gof).

સાબિતી : જુઓ કે $hog: B \to D$ વિધેય છે. આથી $(hog)of: A \to D$ વિધેય છે. $gof: A \to C$ વિધેય છે. આથી $ho(gof): A \to D$ વિધેય છે. બીજા શબ્દોમાં (hog)of અને ho(gof) સમાન પ્રદેશ અને સહપ્રદેશ પરનાં વિધેયો છે.

હવે
$$\forall x \in A$$
, $((hog)of)(x) = (hog)(f(x))$
= $h(g(f(x)))$
= $h((gof)(x))$
= $(ho(gof))(x)$

 $\therefore \quad (hog)of = ho(gof)$

સ્વાધ્યાય 3

- **1.** A = {1, 2, 3}, B = {4, 5, 6}; $f: A \to B$, $g: B \to A$ આપેલાં વિધેય છે. $f = \{(1, 5), (2, 6), (3, 4)\}, g = \{(5, 1), (6, 2), (4, 3)\}.$ fog અને gof શોધો. (જો અસ્તિત્વ ધરાવે તો.)
- 2. f અને g એ Rથી R નીચે મુજબ પર વ્યાખ્યાયિત છે. fog, gof, fof, gog શોધો.
 - (1) f(x) = x + 1 g(x) = 2x
 - (2) $f(x) = x^2 + 2$ g(x) = 3x

(5)	$f(x) = 2x^2 + 1$	g(x) = 3x								
સંબંધ	$A S = \{(x, y) \mid x, y\}$	\in N, $x + y = 5$	માટે પ્રદેશ અને વિસ્તાર	ર શોધો.						
સંબંધ	$A S = \{(x, x^2) \mid x \in A\}$	≣ N, <i>x</i> < 5}ને યાદીન	ની રીતે દર્શાવો.							
નીચે	ના સંબંધોને આલેખની	રીતે દર્શાવો :								
(1)	$S = \{(x, y) \mid x, y\}$	\in N, $x < 10$, $y <$	$10, \frac{x}{y}$ એ પૂર્ણાંક છે.}							
			,	= 8}						
(2) $S = \{(x, y) \mid x \in \mathbb{N}, y \in \mathbb{N}, -3 < x < 2, y < 8, x + y = 8\}$ નીચેના R પર વ્યાખ્યાયિત વિધેયોનાં વિસ્તાર શોધો :										
		_	(3) f(x) =	x-2						
	f(x) = 1000		(/ 3 (/							
	નાં વિધેયોના આલેખ									
(1)	$f \colon \mathbb{R} \to \mathbb{R}, f(x) :$	= 1 + x								
(2)	$f: \mathbb{R} \to \mathbb{R}, f(x) =$	= x + 10								
(3)	$f: \mathbb{N} \to \mathbb{N}, f(x)$	= x + 10								
જો <i>1</i>	$f: \mathbb{R}^+ \to \mathbb{R}, f(x) =$	$=x-\sqrt{x}$, $\operatorname{di} f(9)$	અને $f(2)$ શોધો.							
નીચેનાં વિધેયો $f: \mathbb{R} \to \mathbb{R}, g: \mathbb{R} \to \mathbb{R}$ માટે fog, gof, fof, gog શોધો.										
(1)	$f(x) = x^2$	g(x) = x - 1								
	f(x) = x - 5									
	$f(x) = x^2 - 3$									
f:	$R^+ \to R^+, f(x) = 1$	x^2 , $g: \mathbb{R}^+ \to \mathbb{R}^+$,	$g(x) = \sqrt{x}$ all fog,	gof, fof, gog	શોધો.					
(1) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x $. સાબિત કરો કે $fof = f$.										
(2)	$f: \mathbb{R} - \{-1\} \rightarrow$	$R - \{-1\}, f(x) = \frac{1}{2}$	$\frac{1-x}{1+x}$. સાબિત કરો કે f	$fof = I_{R - \{-1\}}$. •					
નીચે	આપેલું દરેક વિધાન સ	ાચું બને તે રીતે આપેલ	i વિકલ્પો (a), (b), (c)	અથવા (d)માંથી	યોગ્ય					
વિકલ	વ્ય પસંદ કરીને 🔲 ય	માં લખો <u>:</u>								
(1)	સંબંધ $S:A \to B$ ન	ો પ્રદેશ છે.								
	(a) Bનો ઉપગણ	(b) Aનો ઉપગણ	(c) સાર્વત્રિક ગણ	(d) ખાલી ગણ						
(2)	સંબંધ $S:A \to B$ ન	ો વિસ્તાર છે.								
	(a) હંમેશાં ખાલી	(b) Bનો ઉપગણ	(c) Aનો ઉપગણ	(d) $A \times B$						
(3)	સંબંધ $S: A \rightarrow B$,	$S = A \times B$ તો S એ.								
	(a) વ્યાખ્યાયિત નથી.	(b) એકાકી ગણ	(c) સાર્વત્રિક સંબંધ	(d) ખાલી સંબંધ	ધ					
(4)	$\Re f\colon \mathbf{R}\to\mathbf{R}, f(x)$	x) = x - 2, g : R -	$\to R, g(x) = x + 2;$	(f+g)(x)=						
	(a) x	(b) $x^2 - 4$	(c) 2x	(d) 4						
	- /			• •						

(3) $f(x) = x^2 + 3x + 1$ g(x) = 2x - 3

(4) f(x) = x + 1 g(x) = x - 1

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

(5)
$$\Re f: R - \{0\} \to R, g: R - \{0\} \to R, f(x) = x, g(x) = \frac{1}{x};$$

$$fg: R - \{0\} \to R, (fg)(x) = \dots...$$
(a) x^2 (b) 1 (c) $\frac{1}{x^2}$ (d) x

(6) $\Re f: Z \to Z, f(x) = x - 3, g: Z \to Z g(x) = x + 3, \operatorname{ch} fog: Z \to Z, (fog)(x) = \dots...$
(a) $|x|$ (b) x (c) $x^2 - 9$ (d) $\frac{x + 3}{x - 3}$

(7) $\Re f: R \to R, f(x) = x^2 - 9, f(3) = \dots...$
(a) -6 (b) 9 (c) 0 (d) 3

(8) $\Re f: R \to R, f(x) = x + 2, g: R \to R, g(x) = x - 2 \operatorname{ch} fog: R \to R, fog = \dots...$
(a) $\operatorname{de} a$ (b) $\operatorname{de} a$ (c) $\operatorname{de} a$ (d) $\operatorname{de} a$ (e) $\operatorname{de} a$ (e) $\operatorname{de} a$ (for a (for a

સારાંશ

(c) f + g અસ્તિત્વ ધરાવતું નથી. (d) $f + g : \{1, -1\} \rightarrow \mathbb{R}, (f + g)(x) = 0$

- 1. સંબંધ, તેનો પ્રદેશ અને વિસ્તાર
- 2. ખાલી સંબંધ, સાર્વત્રિક સંબંધ, વેન આકૃતિ અને સારણી
- 3. વિધેય, પ્રદેશ, વિસ્તાર
- 4. વિશિષ્ટ વિધેયોના અને અન્ય વિધેયના આલેખ
- 5. વિધેયો પર બૈજિક ક્રિયાઓ
- 6. સંયોજિત વિધેય

