

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002年2月28日(28.02.2002)

PCT

(10) 国際公開番号 WO 02/16548 A2

(51) 国際特許分類?:

C12N

(21) 国際出願番号:

PCT/IB01/01446

(22) 国際出願日:

2001年7月30日(30.07.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

2000年8月4日(04.08.2000) 特願2000-237818 特願2001-34434 2001年2月13日(13.02.2001)

(71) 出願人 (米国を除く全ての指定国について): 科学技術 振興事業団 (JAPAN SCIENCE AND TECHNOLOGY CORPORATION) [JP/JP]; 〒332-0012 埼玉県川口市本 町四丁目1番8号 Saitama (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 芳賀達也 (HAGA, Tatsuya) [JP/JP]; 〒249-0004 神奈川県逗子市沼間二丁 目3番1号411号室 Kanagawa (JP). 武田茂樹 (TAKEDA, Shigeki) [JP/JP]; 〒234-0055 神奈川県横浜市港南区 日野南七丁目15番3号 Kanagawa (JP). 美宅成樹 (MI-TAKU, Shigeki) [JP/JP]; 〒185-0021 東京都国分寺市南 町三丁目21番1号1108号室 Tokyo (JP).

(74) 代理人: 廣田雅紀(HIROTA, Masanori); 〒107-0052 東京都港区赤坂二丁目8番11号 第11赤坂葵ビル502 Tokyo (JP).

(81) 指定国 (国内): CA, US.

(84) 指定国 (広域): ヨーロッパ特許 (CH, DE, ES, FR, GB, IT, SE).

添付公開書類:

国際調査報告書なし;報告書を受け取り次第公開さ れる。

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: NOVEL G PROTEIN-COUPLED RECEPTOR

(54) 発明の名称: 新規G蛋白質共役受容体

(57) Abstract: It is intended to provide a novel G protein-coupled receptor (GPCR) gene which makes it possible to find a signal transduction mechanism in vivo or to identify a novel drug-target protein and a method of totally searching for a GPCR protein on data base. Open reading frames (ORFs) consisting of from 250 to 1000 amino acid residues are extracted from human-origin genome data and ORFs originating in DNA repeated sequences, ORFs containing many indefinite amino acids and ORFs having a single amino acid at a ratio of 20% or more are excluded therefrom. Then ORFs containing 6 to 8 transmembrane domains are extracted by using SOSUI. Among the ORFs thus obtained, a gene homologous with a known GPCR gene (preferably a gene showing the highest homology with a GPCR gene or a GPCR-associated gene in homology searching) is searched for.

(57) 要約:

生体内情報伝達機構の発見や新規薬物標的蛋白質の同定を可能とすることができる新規G蛋白質共役受容体(GPCR)遺伝子やGPCR蛋白質をデータベース上で網羅的に検索する方法を提供するものである。ヒト由来ゲノム情報から250~1000のアミノ酸残基からなるオープンリーディングフレーム(ORF)を抽出し、DNAの繰返し配列に由来するORF、不確定なアミノ酸が多いORF、及び同一アミノ酸を20%以上有するORFを排除し、6~8個の膜貫通領域を含むORFをSOSUIを用いて抽出し、得られたORFの中から即知のGPCR遺伝子とホモロジーを有する遺伝子、好ましくはホモロジー検索における最もホモロジーの高い遺伝子がGPCR遺伝子又はGPCR関連遺伝子である遺伝子を検索する。

明細書

新規G蛋白質共役受容体

5 技術分野

10

本発明は、新規G蛋白質共役受容体遺伝子及び新規G蛋白質共役受容体蛋白質をデーターベース上にて網羅的に検索することができる方法や、かかる方法により得られた新規G蛋白質共役受容体遺伝子及び新規G蛋白質共役受容体や、該遺伝子及び蛋白質のアゴニスト若しくはアンタゴニスト等の内在性及び外在性リガンドのスクリーニング方法に関する。

背景技術

G蛋白質共役受容体 (GPCR: G protein-coupled receptor) は、 細胞膜上に存在し、細胞外からのいろいろな情報を受け取る蛋白質であ る。GPCRは膜を7回貫通するという共通構造をもつスーパーファミ 15 リーを形成しており、その一つひとつが光、匂い、味といった感覚のセ ンサーとして働いたり、ホルモン、神経伝達物質、生理活性物質、局所 仲介物質等の細胞外リガンドと結合することによって、これら受容体の コンホメーションを変化させて、Gi、Gt、Gs、Go、Gq、 G_{12} 等のG蛋白質 (GTP-binding protein) を活性化して、細胞内にシグナル 20 を伝達することが知られている。また、各種生体の細胞内や臓器内の複 雑な機能を調節する細胞外リガンドは、生体機能を調節する医薬品とし て活用されており、現在使用されている臨床薬の30~50%はGPC Rを標的とするリガンドと考えられている。近年の遺伝子クローニング 技術の発達により、そのリガンドが同定されていない"Orphan G 25 PCR"の遺伝子が数多く見つかっており、新規GPCRの探索やその 機能解明が求められており、かかる新規GPCR遺伝子をクローニングすることは、アゴニストやアンタゴニストなどのGPCRに特異的なリガンドの探索に有用であることが知られている。しかし、GPCRはその全てが明らかとされているわけではない。

6 他方、SOSUI(http://sosui.proteome.bio.tuat.ac.jp/sosuiframe0.html)は蛋白質の一次構造からアミノ酸ごとの疎水性パラメーターなどを利用して、その膜貫通領域を予想するために開発されたプログラムである。すでに数多くの既知、および未知の蛋白質においてその構造予測に適応され、さらにゲノム遺伝子配列上で膜結合型蛋白質をコードする翻訳領域(ORF:open reading frame)を同定することなどに利用されている。

GPCR及びその内在性リガンドは、これらに作用する薬剤の研究や、 当該遺伝子及びその変異体の遺伝子治療等への応用など、新たな治療法 への応用の可能性が期待される。また、新規GPCR遺伝子の解析を通 して新しい生体内情報伝達機構の発見や新規薬物標的蛋白質の同定も期 待できる。本発明の課題は、生体内情報伝達機構の発見や新規薬物標的 蛋白質の同定を可能とすることができる新規GPCR遺伝子やGPCR 蛋白質をデータベース上で網羅的に検索する方法を提供することにある。

20 発明の開示

25

上記課題を解決するために、本発明者らは、データベース上で網羅的にGPCR遺伝子を検索することができないかと試行錯誤した結果、GPCRが膜を7回貫通するという構造的な特徴を持つこと及び多くの既知GPCR遺伝子が翻訳領域(ORF: Open Reading Frame)にイントロンをもたないことを利用して、ヒトゲノム情報からGPCR遺伝子の候補となりうる翻訳領域を抽出し、SOSUIによる分析を行った。ま

10

15

20

た、ゲノム配列中の確定されていない塩基については、アミノ酸に翻訳する際に可能性のあるアミノ酸のなかで最も膜貫通領域になりやすいアミノ酸に翻訳されるようにした。SOSUIを用いた解析ではGPCRのシグナルペプチドが膜貫通領域として判定される可能性があり、またGPCR構造上で7回目の膜貫通領域は疎水性が低い傾向があるので、SOSUIで膜貫通領域と判定できない可能性が考えられる。これらのことを考慮して、膜貫通領域が6個~8個含むと予想されたORFを最終的にGPCRの候補とし、これらの候補遺伝子を既知のGPCR遺伝子と相同性を調べることにより、新規GPCR遺伝子を同定できることを見い出し、本発明を完成するに至った。

すなわち本発明は、ヒト由来ゲノム情報から200~1500のアミ ノ酸残基からなり、6~8個の膜貫通領域を含むオープンリーディング フレームを抽出し、得られたオープンリーディングフレームの中から既 知のG蛋白質共役受容体遺伝子とホモロジーを有する遺伝子を検索する ことを特徴とするG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受 容体蛋白質の検索方法(請求項1)や、オープンリーディングフレーム を抽出するに際して、DNAの繰返し配列に由来するオープンリーディ ングフレーム、不確定なアミノ酸が多いオープンリーディングフレーム、 及び同一アミノ酸を20%以上有するオープンリーディングフレームを 排除することを特徴とする請求項1記載のG蛋白質共役受容体遺伝子及 び/又はG蛋白質共役受容体蛋白質の検索方法(請求項2)や、既知の G蛋白質共役受容体遺伝子とホモロジーを有する遺伝子が、G蛋白質共 役受容体遺伝子又はG蛋白質共役受容体関連遺伝子であることを特徴と する請求項1又は2記載のG蛋白質共役受容体遺伝子及び/又はG蛋白 質共役受容体蛋白質の検索方法(請求項3)や、G蛋白質共役受容体が、 内在性リガンドを有することを特徴とする請求項1~3のいずれか記載 のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法(請求項4)や、内在性リガンドを有するG蛋白質共役受容体が、嗅覚受容体及び味覚受容体以外のG蛋白質共役受容体であることを特徴とする請求項4記載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法(請求項5)や、内在性リガンドを有するG蛋白質共役受容体が、嗅覚受容体のG蛋白質共役受容体であることを特徴とする請求項4記載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法(請求項6)や、内在性リガンドを有するG蛋白質共役受容体が、味覚受容体のG蛋白質共役受容体であることを特徴とする請求項4記載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法(請求項7)に関する。

また本発明は、請求項1~7のいずれか記載のG蛋白質共役受容体遺 伝子及び/又はG蛋白質共役受容体蛋白質の検索方法により得られるこ とを特徴とするG蛋白質共役受容体遺伝子(請求項8)や、以下の(a) 又は(b)のG蛋白質共役受容体蛋白質をコードする遺伝子(a)配列 15 番号2n(n=1から51までのいずれかの整数を示す)に示されるア ミノ酸配列からなるG蛋白質共役受容体蛋白質(b)配列番号2n(n =1から51までのいずれかの整数を示す)に示されるアミノ酸配列に おいて、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたア ミノ酸配列からなるG蛋白質共役受容体蛋白質(請求項9)や、配列番 20 号2n-1(n=1から51までのいずれかの整数を示す)に示される 塩基配列又はその相補的配列並びにこれらの配列の一部または全部を含 むDNAからなるG蛋白質共役受容体蛋白質をコードするDNA(請求 項10)や、請求項10記載の遺伝子を構成するDNAとストリンジェ ントな条件下でハイブリダイズし、かつG蛋白質共役受容体蛋白質をコ 25 ードするDNA (請求項11) や、以下の(a) 又は(b) のG蛋白質

10

15

20

共役受容体蛋白質をコードする遺伝子(a)配列番号2n(n=52か ら332までのいずれかの整数を示す)に示されるアミノ酸配列からな るG蛋白質共役受容体蛋白質(b)配列番号2n(n=52から332 までのいずれかの整数を示す)に示されるアミノ酸配列において、1若 しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列か らなる G 蛋白質共役受容体蛋白質 (請求項12) や、配列番号2n-1 (n=52から332までのいずれかの整数を示す)に示される塩基配 列又はその相補的配列並びにこれらの配列の一部または全部を含むDN AからなるG蛋白質共役受容体蛋白質をコードするDNA(請求項13) や、請求項13記載の遺伝子を構成するDNAとストリンジェントな条 件下でハイブリダイズし、かつG蛋白質共役受容体蛋白質をコードする DNA (請求項14) や、以下の(a) 又は(b) のG蛋白質共役受容 体蛋白質をコードする遺伝子(a)配列番号2n(n=333から34 7までのいずれかの整数を示す)に示されるアミノ酸配列からなる G 蛋 白質共役受容体蛋白質(b)配列番号2n(n=333から347まで のいずれかの整数を示す) に示されるアミノ酸配列において、1 若しく は数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からな るG蛋白質共役受容体蛋白質 (請求項15) や、配列番号2n-1 (n =333から347までのいずれかの整数を示す)に示される塩基配列 又はその相補的配列並びにこれらの配列の一部または全部を含むDNA からなる G 蛋白質共役受容体蛋白質をコードする D N A (請求項16) や、請求項16記載の遺伝子を構成するDNAとストリンジェントな条 件下でハイブリダイズし、かつG蛋白質共役受容体蛋白質をコードする DNA(請求項17)に関する。

25 また本発明は、請求項1~7のいずれか記載のG蛋白質共役受容体遺 伝子及び/又はG蛋白質共役受容体蛋白質の検索方法により得られるこ

10

15

20

25

とを特徴とするG蛋白質共役受容体蛋白質(請求項18)や、配列番号 2n (n=1から51までのいずれかの整数を示す) に示されるアミノ 酸配列からなるG蛋白質共役受容体蛋白質(請求項19)や、配列番号 2 n (n=1から51までのいずれかの整数を示す)に示されるアミノ 酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加 されたアミノ酸配列からなるG蛋白質共役受容体蛋白質(請求項20) や、配列番号2n(n=52から332までのいずれかの整数を示す) に示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質(請求項2 1) や、配列番号2n(n=52から332までのいずれかの整数を示 す)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠 失、置換若しくは付加されたアミノ酸配列からなるG蛋白質共役受容体 蛋白質 (請求項22) や、配列番号2n (n=333から347までの いずれかの整数を示す)に示されるアミノ酸配列からなるG蛋白質共役 受容体蛋白質 (請求項23) や、配列番号2n (n=333から347 までのいずれかの整数を示す)に示されるアミノ酸配列において、1若 しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列か らなる G 蛋白質共役受容体蛋白質 (請求項24) や、請求項1~7のい ずれか記載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体 蛋白質の検索方法により得られるG蛋白質共役受容体蛋白質の部分ペプ チド (請求項25) や、G蛋白質共役受容体蛋白質が、請求項19~2 4のいずれか記載のG蛋白質共役受容体蛋白質であることを特徴とする 請求項25記載の部分ペプチド(請求項26)に関する。

また本発明は、請求項18記載のG蛋白質共役受容体蛋白質又は請求項25記載のG蛋白質共役受容体蛋白質の部分ペプチドと、マーカー蛋白質及び/又はペプチドタグとを結合させた融合蛋白質又は融合ペプチド(請求項27)や、G蛋白質共役受容体蛋白質が、請求項19~24

のいずれか記載のG蛋白質共役受容体蛋白質であることを特徴とする請 求項27記載の融合蛋白質(請求項28)や、請求項18記載のG蛋白 質共役受容体蛋白質に特異的に結合する抗体(請求項29)や、G蛋白 質共役受容体蛋白質が、請求項19~24のいずれか記載のG蛋白質共 役受容体蛋白質であることを特徴とする請求項29記載の抗体(請求項 30) や、請求項18記載のG蛋白質共役受容体蛋白質を発現すること ができる発現系を含んでなる宿主細胞(請求項31)や、G蛋白質共役 受容体蛋白質が、請求項19~24のいずれか記載のG蛋白質共役受容 体蛋白質であることを特徴とする請求項31記載の宿主細胞(請求項3 2) や、請求項18記載のG蛋白質共役受容体蛋白質をコードする遺伝 10 子機能が染色体上で欠損し又は前記蛋白質が過剰発現することを特徴と する非ヒト動物(請求項33)や、G蛋白質共役受容体蛋白質が、請求 項19~24のいずれか記載のG蛋白質共役受容体蛋白質であることを 特徴とする請求項33記載の非ヒト動物(請求項34)や、非ヒト動物 15 がマウスであることを特徴とする請求項33又は34記載の非ヒト動物 (請求項35)に関する。

また本発明は、請求項18~24のいずれか記載のG蛋白質共役受容体蛋白質、請求項25若しくは26記載の部分ペプチド、又は前記蛋白質若しくは部分ペプチドを発現している細胞の膜と、被検物質とを用いることを特徴とするG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質のスクリーニング方法(請求項36)や、請求項18~24のいずれか記載のG蛋白質共役受容体蛋白質、請求項25若しくは26記載の部分ペプチド、又は前記蛋白質若しくは部分ペプチドを発現している細胞の膜と、G蛋白質又はG蛋白質の部分ペプチドと、被検物質とを用いることを特徴とするG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の

15

20

25

発現促進若しくは抑制物質のスクリーニング方法(請求項37)や、請求項18~24のいずれか記載のG蛋白質共役受容体蛋白質又は請求項25若しくは26記載の部分ペプチドを発現している細胞と、被検物質とを用いることを特徴とするG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質のスクリーニング方法(請求項38)や、請求項18~24のいずれか記載のG蛋白質共役受容体蛋白質又は請求項25若しくは26記載の部分ペプチドを発現している細胞が、請求項31又は32記載の宿主細胞であることを特徴とする請求項36~38のいずれか記載のG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質のスクリーニング方法(請求項40)に関する。

また本発明は、請求項36~40のいずれか記載のG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質のスクリーニング方法により得られることを特徴とするG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質又はG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質が、G蛋白質共役受容体のリガンドであることを特徴とする請求項41記載のG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質(請求項42)や、G蛋白質共役受容体の機能促進者しくは抑制物質(請求項42)や、G蛋白質共役受容体の機能促進者しくは抑制物質(請求項42)や、G蛋白質共役受容体の機能促進者しくは抑制物質(請求項42)や、G蛋白質共役受容体の機能促進者しくは抑制物質(請求項42)や、G蛋白質共役受容体の機能促進不は発現増強を必要としている患者を治療するのに用いられる医薬組成物であって、有効成分として請求項18~2

4のいずれか記載の蛋白質、請求項25若しくは26記載の部分ペプチド、又は請求項41若しくは42記載のG蛋白質共役受容体の機能又は発現を促進する物質を含んでなる医薬組成物(請求項43)や、G蛋白質共役受容体の機能又は発現の抑制を必要としている患者を治療するのに用いられる医薬組成物であって、有効成分として請求項18~24のいずれか記載の蛋白質、請求項25若しくは26記載の部分ペプチド、又は請求項41若しくは42記載のG蛋白質共役受容体の機能又は発現を抑制する物質を含んでなる医薬組成物(請求項44)に関する。

また本発明は、検体中のG蛋白質共役受容体蛋白質をコードするDN A配列を、請求項18~24のいずれか記載の蛋白質をコードするDN A配列と比較することを特徴とするG蛋白質共役受容体の機能又は発現に関連する疾病の診断方法(請求項45)や、請求項18~24のいずれか記載の蛋白質をコードするDNA又はRNAのアンチセンス鎖の全部又は一部からなるG蛋白質共役受容体の機能又は発現に関連する疾病の診断用プローブ(請求項46)や、請求項46記載の診断用プローブ及び/又は請求項29又は30記載の抗体を含有することを特徴とするG蛋白質共役受容体の機能又は発現に関連する疾病の診断薬(請求項47)に関する。

20 発明を実施するための最良の形態

25

本発明のGPCR遺伝子及び/又はGPCR蛋白質の検索方法としては、ヒト由来のゲノム情報から200~1500のアミノ酸残基からなり、6~8個の膜貫通領域を含むオープンリーディングフレームを抽出し、得られたオープンリーディングフレームの中から既知のGPCR遺伝子とホモロジーを有する遺伝子、好ましくはGPCR遺伝子又はGPCR関連遺伝子、特に好ましくは内外性リガンドを有するGPCRの遺

10

伝子である遺伝子を検索する方法であれば、特に制限されるものではないが、好ましくはオープンリーディングフレームを抽出する際に、DNAの繰返し配列に由来するオープンリーディングフレームや不確定なアミノ酸が多いオープンリーディングフレームや、同一アミノ酸を20%以上有するオープンリーディングフレームを排除することが望ましい。6~8個の膜貫通領域を含むオープンリーディングフレームの抽出には、例えば前記した、蛋白質の一次構造からアミノ酸ごとの疎水性パラメーターなどを利用して、その膜貫通領域を予想するために開発されたプログラムであるSOSUI等を用いることができる。また、ホモロジーを有する遺伝子の検索には、BLAST等の公知のホモロジー検索システムを用いることができる。

本発明のGPCR遺伝子としては、上記ホモロジー検索により得られ るGPCR遺伝子であればどのようなものでもよく、例えば、配列番号 2n (n=1から51までのいずれかの整数を示す)に示されるアミノ 酸配列からなる嗅覚受容体及び味覚受容体以外のGPCR蛋白質をコー 15 ドする遺伝子や、配列番号2n(n=52から332までのいずれかの 整数を示す)に示されるアミノ酸配列からなる嗅覚受容体のGPCR蛋 白質をコードする遺伝子や、配列番号2n(n=333から347まで のいずれかの整数を示す) に示されるアミノ酸配列からなる味覚受容体 のGPCR蛋白質をコードする遺伝子や、配列番号2n(n=1から3 20 47までのいずれかの整数を示す)に示されるアミノ酸配列において、 1 若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配 列からなるGPCR蛋白質をコードする遺伝子等を挙げることができ、 これらGPCR遺伝子はそのDNA配列情報等に基づき、例えばヒト由 来のGPCR遺伝子においてはヒト遺伝子ライブラリーやヒトcDNA 25 ライブラリーなどから公知の方法により調製することができる。

10

15

20

25

本発明のGPCR蛋白質をコードするDNAとしては、配列番号2n -1 (n=1から347までのいずれかの整数を示す) に示される塩基 配列又はその相補的配列並びにこれらの配列の一部又は全部を含むDN Aや、これらDNAをプロープとして、各種DNAライブラリーに対し てストリンジェントな条件下でハイブリダイゼーションし、かつGPC R蛋白質をコードするDNAを挙げることができる。かかるDNAを取 得するためのハイブリダイゼーションの条件としては、例えば、42℃ でのハイブリダイゼーション、及び1×SSC、0.1%のSDSを含 む緩衝液による42℃での洗浄処理を挙げることができ、65℃でのハ イブリダイゼーション、及び0.1×SSC,0.1%のSDSを含む 緩衝液による65℃での洗浄処理をより好ましく挙げることができる。 なお、ハイブリダイゼーションのストリンジェンシーに影響を与える要 素としては、上記温度条件以外に種々の要素があり、当業者であれば、 種々の要素を適宜組み合わせて、上記例示したハイブリダイゼーション のストリンジェンシーと同等のストリンジェンシーを実現することが可 能である。

本発明のGPCR蛋白質としては、上記スクリーニング方法により得られたものであればどのようなものでもよく、例えば、配列番号2n(n=1から51までのいずれかの整数を示す)に示されるアミノ酸配列からなる嗅覚受容体及び味覚受容体以外のGPCR蛋白質や、配列番号2n(n=52から332までのいずれかの整数を示す)に示されるアミノ酸配列からなる嗅覚受容体のGPCR蛋白質や、配列番号2n(n=333から347までのいずれかの整数を示す)に示されるアミノ酸配列からなる味覚受容体のGPCR蛋白質や、配列番号2n(n=1から347までのいずれかの整数を示す)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配

10

15

20

列からなるGPCR蛋白質や、これらの組換え蛋白質を具体的に挙げることができる。また、本発明の対象となる上記GPCR蛋白質の部分ペプチドとしては、上記GPCR蛋白質の一部からなり、かつ各種G蛋白質を認識するアミノ酸配列又は各種G蛋白質と特異的に結合するアミノ酸配列を有するものであれば特に制限されるものではない。上記本発明の対象となるGPCR蛋白質及びGPCR蛋白質の部分ペプチド、並びにこれら蛋白質及びペプチドに特異的に結合する抗体が特異的に結合する組換え蛋白質及びペプチドを総称して、以下「本件蛋白質・ペプチド」ということがある。なお、本件蛋白質・ペプチドはそのDNA配列情報等に基づき公知の方法で調製することができ、その由来は特に制限されるものではない。

本発明の融合蛋白質や融合ペプチドとしては、本件蛋白質・ペプチドとマーカー蛋白質及び/又はペプチドタグとが結合しているものであればどのようなものでもよく、マーカー蛋白質としては、従来知られているマーカー蛋白質であればどのようなものでもよく、例えば、アルカリフォスファターゼ、抗体のFc領域、HRP、GFPなどを具体的に挙げることができ、また本発明におけるペプチドタグとしては、Mycタグ、Hisタグ、FLAGタグ、GSTタグなどの従来知られているペプチドタグを具体的に例示することができる。かかる融合蛋白質は、常法により作製することができ、Ni-NTAとHisタグの親和性を利用したGPCR蛋白質の精製や、GPCR蛋白質の検出や、GPCR蛋白質に対する抗体の定量や、その他当該分野の研究用試薬としても有用である。

本発明の本件蛋白質やペプチドに特異的に結合する抗体としては、モ 25 ノクローナル抗体、ポリクローナル抗体、キメラ抗体、一本鎖抗体、ヒ ト化抗体等の免疫特異的な抗体を具体的に挙げることができ、これらは

10

15

上記GPCR蛋白質等の蛋白質又はその一部を抗原として用いて常法により作製することができるが、その中でもモノクローナル抗体がその特異性の点でより好ましい。かかるモノクローナル抗体等のGPCR蛋白質に特異的に結合する抗体は、例えば、GPCR蛋白質の変異又は欠失に起因する疾病の診断やGPCR蛋白質の分子機構を明らかにする上で有用である。

また、本発明の抗体は、慣用のプロトコールを用いて、動物(好ましくはヒト以外)に本件蛋白質・ペプチド若しくはエピトープを含む断片、又は該蛋白質・ペプチドを膜表面に発現した細胞を投与することにより産生され、例えばモノクローナル抗体の調製には、連続細胞系の培養物により産生される抗体をもたらす、ハイブリドーマ法(Nature 256,495-497,1975)、トリオーマ法、ヒトB細胞ハイブリドーマ法(Immunology Today 4,72,1983)及びEBV-ハイブリドーマ法(MONOCLONAL ANTIBODIES AND CANCER THERAPY、pp.77-96,Alan R.Liss、Inc.,1985)など任意の方法を用いることができる。以下に本件蛋白質・ペプチドとして、マウス由来のGPCR蛋白質を例に挙げてマウス由来のGPCR蛋白質に対して特異的に結合するモノクローナル抗体、すなわち抗mGPCR(マウスGPCR)モノクローナル抗体の作製方法を説明する。

上記抗mGPCRモノクローナル抗体は、抗mGPCRモノクローナル抗体産生ハイブリドーマをインビボ又はインビトロで常法により培養することにより生産することができる。例えば、インビボ系においては、齧歯動物、好ましくはマウス又はラットの腹腔内で培養することにより、またインビトロ系においては、動物細胞培養用培地で培養することにより得ることができる。インビトロ系でハイプリドーマを培養するための培地としては、ストレプトマイシンやペニシリン等の抗生物質を含むR

25

PMI1640又はMEM等の細胞培養培地を例示することができる。

抗mGPCRモノクローナル抗体産生ハイブリドーマは、例えば、マ ウス等から得られたGPCRを用いてBALB/cマウスを免疫し、免 疫されたマウスの脾臓細胞とマウスNS-1細胞(ATCC TIB-5 18)とを、常法により細胞融合させ、免疫蛍光染色パターンによりス クリーニングすることにより、抗mGPCRモノクローナル抗体産生ハ イブリドーマを作出することができる。また、かかるモノクローナル抗 体の分離・精製方法としては、蛋白質の精製に一般的に用いられる方法 であればどのような方法でもよく、アフィニティークロマトグラフィー 等の液体クロマトグラフィーを具体的に例示することができる。

また、本発明の上記本件蛋白質・ペプチドに対する一本鎖抗体をつく るためには、一本鎖抗体の調製法(米国特許第4,946,778号)を適用す ることができる。また、ヒト化抗体を発現させるために、トランスジェ ニックマウス又は他の哺乳動物等を利用したり、上記抗体を用いて、本 件蛋白質・ペプチドを発現するクローンを単離・同定したり、アフィニ 15 ティークロマトグラフィーでそのポリペプチドを精製することもできる。 本件蛋白質・ペプチドやその抗原エピトープを含むペプチドに対する抗 体は、GPCR蛋白質の分子機構を明らかにする上で有用である。そし て、これら抗体が特異的に結合する組換え蛋白質又はペプチドも、前記 のように本発明の本件蛋白質・ペプチドに包含される。 20

また上記抗mGPCRモノクローナル抗体等の抗体に、例えば、FI TC (フルオレセインイソシアネート) 又はテトラメチルローダミンイ ソシアネート等の蛍光物質や、¹²⁵ I、³² P、¹⁴ C、³⁵ S 又は³ H 等の ラジオアイソトープや、アルカリホスファターゼ、ペルオキシダーゼ、 β - ガラクトシダーゼ又はフィコエリトリン等の酵素で標識したものや、 グリーン蛍光蛋白質(GFP)等の蛍光発光蛋白質などを融合させた融

合蛋白質を用いることによって、本件蛋白質・ペプチドの機能解析を行うことができる。また免疫学的測定方法としては、RIA法、ELIS A法、蛍光抗体法、プラーク法、スポット法、血球凝集反応法、オクタロニー法等の方法を挙げることができる。

本発明はまた、本件蛋白質・ペプチドを発現することができる発現系 5 を含んでなる宿主細胞に関する。かかる本件蛋白質・ペプチドをコード する遺伝子の宿主細胞への導入は、Davisら(BASIC METHODS IN MOLECULAR BIOLOGY. 1986) 及び Sambrook ら (MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) などの多くの標準的な実験室マニュアルに記載さ 10 れる方法、例えば、リン酸カルシウムトランスフェクション、DEAE - デキストラン媒介トランスフェクション、トランスベクション (transvection)、マイクロインジェクション、カチオン性脂質媒介トラ ンスフェクション、エレクトロポレーション、形質導入、スクレープロ ーディング (scrape loading)、弾丸導入(ballistic introduction)、感 15 染等により行うことができる。そして、宿主細胞としては、大腸菌、ス トレプトミセス、枯草菌、ストレプトコッカス、スタフィロコッカス等 の細菌原核細胞や、酵母、アスペルギルス等の真菌細胞や、ドロソフィ ラS2、スポドプテラSf9等の昆虫細胞や、L細胞、CHO細胞、C OS細胞、HeLa細胞、C127細胞、BALB/c3T3細胞(ジ 20 ヒドロ葉酸レダクターゼやチミジンキナーゼなどを欠損した変異株を含 む)、BHK21細胞、HEK293細胞、Bowesメラノーマ細胞、 卵母細胞等の動植物細胞などを挙げることができる。

また、発現系としては、本件蛋白質・ペプチドを宿主細胞内で発現さ 25 せることができる発現系であればどのようなものでもよく、染色体、エ ピソーム及びウイルスに由来する発現系、例えば、細菌プラスミド由来、 酵母プラスミド由来、SV40のようなパポバウイルス、ワクシニアウイルス、アデノウイルス、鶏痘ウイルス、仮性狂犬病ウイルス、レトロウイルス由来のベクター、バクテリオファージ由来、トランスポゾン由来及びこれらの組合せに由来するベクター、例えば、コスミドやファージミドのようなプラスミドとバクテリオファージの遺伝的要素に由来するものを挙げることができる。これら発現系は、発現を起こさせるだけでなく、発現を調節する制御配列を含んでいてもよい。

上記発現系を含んでなる宿主細胞やかかる細胞の細胞膜、またかかる 細胞を培養して得られる本件蛋白質・ペプチドは、後述するように本発 明のスクリーニング方法に用いることができる。例えば、細胞膜を得る 10 方法としては、F. Pietri-Rouxel (Eur. J. Biochem., 247, 1174-1179, 1997) らの方法などを用いることができ、また、かかる本件蛋白質・ペ プチドを細胞培養物から回収し精製するには、硫酸アンモニウムまたは エタノール沈殿、酸抽出、アニオンまたはカチオン交換クロマトグラフ ィー、ホスホセルロースクロマトグラフィー、疎水性相互作用クロマト 15 グラフィー、アフィニティークロマトグラフィー、ハイドロキシアパタ イトクロマトグラフィーおよびレクチンクロマトグラフィーを含めた公 知の方法、好ましくは、高速液体クロマトグラフィーが用いられる。特 に、アフィニティークロマトグラフィーに用いるカラムとしては、例え ば、抗GPCRモノクローナル抗体等の本件蛋白質・ペプチドに対する 20 抗体を結合させたカラムや、上記本件蛋白質・ペプチドに通常のペプチ ドタグを付加した場合は、このペプチドタグに親和性のある物質を結合 したカラムを用いることにより、本件蛋白質・ペプチドを得ることがで きる。上記本件蛋白質・ペプチドの精製方法は、ペプチド合成の際にも 適用することができる。 25

本発明において、上記本件蛋白質・ペプチドを過剰発現する非ヒト動

25

物とは、野生型非ヒト動物に比べてかかる本件蛋白質・ペプチドを大量に産生する非ヒト動物をいい、また、本件蛋白質・ペプチドをコードする遺伝子機能が染色体上で欠損した非ヒト動物とは、染色体上の本件蛋白質・ペプチドをコードする遺伝子の一部若しくは全部が破壊・欠損・置換等の遺伝子変異により不活性化され、本件蛋白質・ペプチドを発現する機能を失なった非ヒト動物をいう。そして、本発明における非ヒト動物としては、ウサギや、マウス、ラット等の齧歯目動物などの非ヒト動物を具体的に挙げることができるが、これらに限定されるものではない。

10 ところで、メンデルの法則に従い出生してくるホモ接合体非ヒト動物には、本件蛋白質・ペプチド欠損型又は過剰発現型とその同腹の野生型とが含まれ、これらホモ接合体非ヒト動物における欠損型又は過剰発現型とその同腹の野生型を同時に用いることによって個体レベルで正確な比較実験をすることができることから、野生型の非ヒト動物、すなわち本件蛋白質・ペプチドをコードする遺伝子機能が染色体上で欠損又は過剰発現する非ヒト動物と同種の動物、さらには同腹の動物を、例えば下記に記載する本発明のスクリーニングに際して併用することが好ましい。かかる本件蛋白質・ペプチドをコードする遺伝子機能が染色体上で欠損又は過剰発現する非ヒト動物の作製方法を、GPCR蛋白質のノックアウスやトランスジェニックマウスを例にとって以下説明する。

例えば、GPCR蛋白質をコードする遺伝子機能が染色体上で欠損したマウス、すなわちGPCR蛋白質ノックアウトマウスは、マウス遺伝子ライプラリーからPCR等の方法により得られた遺伝子断片を用いて、上記GPCR蛋白質をコードする遺伝子をスクリーニングし、スクリーニングされたGPCR蛋白質をコードする遺伝子をウイルスベクター等を用いてサブクローンし、DNAシーケンシングにより特定する。この

10

20

25

クローンのGPCR蛋白質をコードする遺伝子の全部又は一部をpMC 1ネオ遺伝子カセット等に置換し、3′末端側にジフテリアトキシンA フラグメント (DT-A) 遺伝子や単純ヘルペスウイルスのチミジンキ ナーゼ (HSV-tk) 遺伝子等の遺伝子を導入することによって、タ ーゲットベクターを作製する。

この作製されたターゲティングベクターを線状化し、エレクトロポレ ーション(電気穿孔)法等によってES細胞に導入し、相同的組換えを 行い、その相同的組換え体の中から、G418やガンシクロピア (GA NC)等の抗生物質により相同的組換えを起こしたES細胞を選択する。 また、この選択されたES細胞が目的とする組換え体かどうかをサザン ブロット法等により確認することが好ましい。その確認されたES細胞 のクローンをマウスの胚盤胞中にマイクロインジェクションし、かかる 胚盤胞を仮親のマウスに戻し、キメラマウスを作製する。このキメラマ ウスを野生型のマウスとインタークロスさせると、ヘテロ接合体マウス を得ることができ、また、このヘテロ接合体マウスをインタークロスさ せることによって、本発明のGPCR蛋白質ノックアウトマウスを作製 することができる。また、GPCR蛋白質ノックアウトマウスが生起し ているかどうかを確認する方法としては、例えば、上記の方法により得 られたマウスからRNAを単離してノーザンプロット法等により調べた り、またこのマウスの発現をウエスタンブロット法等により調べる方法 がある。

GPCR蛋白質のトランスジェニックマウスは、GPCR蛋白質をコードするcDNAにチキンβーアクチン、マウスニューロフィラメント、SV40等のプロモーター、及びラビットβーグロビン、SV40等のポリA又はイントロンを融合させて導入遺伝子を構築し、該導入遺伝子をマウス受精卵の前核にマイクロインジェクションし、得られた卵細胞

15

を培養した後、仮親のマウスの輸卵管に移植し、その後被移植動物を飼育し、産まれた仔マウスから前記 c D N A を有する仔マウスを選択することによりかかるトランスジェニックマウスを創製することができる。また、c D N A を有する仔マウスの選択は、マウスの尻尾等より粗 D N A を抽出し、導入した G P C R 蛋白質をコードする遺伝子をプローブとするドットハイブリダイゼーション法や、特異的プライマーを用いた P C R 法等により行うことができる。

本発明のGPCR等の本件蛋白質・ペプチドの機能促進又は抑制物質のスクリーニング方法としては、前記本件蛋白質・ペプチド又は本件蛋白質・ペプチドを発現している細胞膜と、被検物質とを用いる方法や、前記本件蛋白質・ペプチド又は本件蛋白質・ペプチドを発現している細胞膜と、G蛋白質と、被検物質とを用いる方法や、本件蛋白質・ペプチドを発現している細胞と、被検物質とを用いる方法や、本件蛋白質・ペプチドを発現している細胞と、被検物質とを用いる方法や、本件蛋白質・ペプチドのノックアウトマウスやトランスジェニックマウス等の非ヒト動物と、被検物質とを用いる方法等を挙げることができる。

上記本件蛋白質・ペプチド又は本件蛋白質・ペプチドを発現している細胞膜と被検物質とを用いるスクリーニング方法としては、本件蛋白質・ペプチド又は細胞膜表面に発現している本件蛋白質・ペプチドと被検物質とを接触せしめ、本件蛋白質・ペプチド又は細胞膜表面に発現している本件蛋白質・ペプチドと、被検物質との結合状態を測定評価する方法を挙げることができる。また、上記本件蛋白質・ペプチド又は本件蛋白質・ペプチドを発現している細胞膜と、G蛋白質と、被検物質とを用いる方法としては、本件蛋白質・ペプチド又は細胞膜表面に発現している本件蛋白質・ペプチドとG蛋白質と被検物質とを接触せしめ、本件蛋白質・ペプチド又は細胞膜表面に発現している本件蛋白質・ペプチドと 蛋白質との相互作用を測定評価する方法を挙げることができる。

10

上記本件蛋白質・ペプチドのノックアウトマウスやトランスジェニックマウス等の非ヒト動物と、被検物質とを用いる方法としては、かかる非ヒト動物から得られる本件蛋白質・ペプチド発現細胞と被検物質とをあらかじめインビトロで接触せしめた後、かかる本件蛋白質・ペプチド発現細胞をG蛋白質の存在下で培養し、該本件蛋白質・ペプチド発現細胞とG蛋白質に対する応答を測定・評価する方法や、前記非ヒト動物から得られる本件蛋白質・ペプチド発現細胞とG蛋白質に対する応答を測定・ペプチド発現細胞におけるG蛋白質に対する応答を測定・で培養し、該本件蛋白質・ペプチド発現細胞をG蛋白質の存在下で培養し、該本件蛋白質を扱力した後、該非ヒト動物にあらかじめ被検物質を投与した後、該非ヒト動物にあらかじめ被検物質を投与した後、該非ヒト動物にあらかじめ被検物質を投与した後、前記非ヒト動物にあらかじめ被検物質を投与した後、方動物から得られる本件蛋白質・ペプチド発現細胞をG蛋白質の存在下で培養し、該本件蛋白質・ペプチド発現細胞をG蛋白質に対する応答を測定・評価する方法を挙げることができる。

本件蛋白質・ペプチドの機能促進若しくは抑制物質又は本件蛋白質・ペプチドの発現促進又は抑制物質、例えばGPCRのリガンド等は、上記スクリーニング方法により得ることができる。また、本発明の医薬組成物は、有効成分として前記本件蛋白質・ペプチドの他、本件蛋白質・ペプチドの機能促進若しくは抑制物質又は本件蛋白質・ペプチドの発現促進若しくは抑制物質を含んでいるものであれば特に制限されるものではなく、これら医薬組成物は、本件蛋白質・ペプチドの機能促進又は発現増強を必要としている患者や、本件蛋白質・ペプチドの機能又は発現の抑制を必要としている患者を治療するのに用いることができる。さらに、本件蛋白質・ペプチドの機能又は発現に関連する疾病の診断方法としては、検体中における本発明のGPCR蛋白質をコードするDNA配列と比較する方を記するで、

法であれば特に制限されるものではなく、また、本件蛋白質・ペプチドの機能又は発現に関連する疾病の診断用プローブとしては、前記本発明のGPCR蛋白質をコードするDNA又はRNAのアンチセンス鎖の全部又は一部からなるものであれば特に制限されるものではなく、本件蛋白質・ペプチドの機能又は発現に関連する疾病の診断薬としては、上記診断用プローブや前記抗体を含有するものであれば特に制限されるものではない。

5

以下に、実施例を揚げてこの発明を更に具体的に説明するが、この発明の範囲はこれらの例示に限定されるものではない。

10 これまでに報告されている嗅覚、味覚受容体以外のGPCR遺伝子に イントロンを含むかどうかを調べたところ、95種類のGPCR遺伝子 にはイントロンを含まず、63種類のものはイントロンを含むことが確 認できたことから、GPCR遺伝子の約60%にはイントロンがないと 期待できる。また、ヒトの嗅覚、味覚受容体についてはイントロンの存 15 在はこれまで報告されていない。そこで、イントロンを持たないGPC Rを以下のように検索してみた。

[ヒトゲノムデータからの推定GPCR遺伝子の抽出]

ヒトゲノムデータ(2000年8月18日現在のもの)を用いて、GPCR遺伝子の候補となりうるオープンリーディングフレーム(OR20F: Open Reading Frame)を抽出し、SOSUIによる分析を行った。なお、今回用いたヒトゲノムデータには、同一の確定されていない配列を重複して含んでいるため、ヒトゲノム全体が約3G塩基対であるのに対してこのデータは約4.5G塩基対からなる。ヒトゲノムデータから、200~1500のアミノ酸残基をコードするDNAからなる約21万25個のORFを抽出し、この中からDNAの繰り返し配列に由来すると思われるORFや不確定なアミノ酸が多いORFや、同じアミノ酸を2

WO 02/16548 PCT/IB01/01446

0%以上含むORFを排除することによって約13万個のORFを得た。 これら13万個のORFをSOSUIにより解析するに先立って、SO SUI解析の有効性について検討した。

[SOSUI解析の有効性]

SOSUIを用いた解析ではGPCRのシグナルペプチドが膜貫通領 5 域として判定される可能性があり、またGPCR構造上で7回目の膜貫 通領域は疎水性が低い傾向があるので、SOSUIで膜貫通領域と判定 できない可能性が考えられる。そこで、既知のGPCRのアミノ酸配列 をSOSUIで解析することにより、SOSUIがどの程度GPCRの 検索に有効であるかをまず検討した。これまでに報告されている嗅覚、 10 味覚受容体以外の207種類のGPCRをSOSUIで解析したところ、 95%に相当する197種類のGPCRにおいて膜貫通領域を6~8個 含むとの解析結果が得られた。また、43種類の嗅覚受容体においても 同様の解析を行ったところ、77%に相当する33種類のGPCRにお いて膜貫通領域を6~8個含むとの解析結果が得られた。したがってS 15 OSUIの予想能力は嗅覚、味覚受容体以外のGPCRについては9 5%程度、嗅覚受容体については77%程度だと考えられた。上記、こ れまでに報告されている嗅覚、味覚受容体以外の207種類のGPCR はウエブサイト http://www.gpcr.org/7tm/seq/dna.html からダウンロー ドしたものを、嗅覚受容体遺伝子はウエブサイト 20 http://ycmi.med.yale.edu/senselab/ORDB からダウンロードしたもの を用いた。

[ホモロジー (BLAST) 検索]

上記13万個のORFをSOSUIにより分析した結果、膜貫通領域 25 を6~8個含むORFが1150個得られた。得られたGPCR候補1 150個のORFの配列を、BLASTを用いて2000年8月20日

15

20

25

現在のデータベース"nr"と照会し、既知のGPCRとの相同性を調べてみた結果、既知のGPCRとホモロジーを持つものが522個得られた。さらにこれらの配列から重複したものを除くことによって、既知の嗅覚受容体遺伝子203種類と、既知の味覚受容体遺伝子11種類と、嗅覚受容体や味覚受容体以外の既知のGPCR遺伝子64種類を同定することができた。一方、BLAST検索により既知のGPCR遺伝子とホモロジーをもつ、嗅覚受容体や味覚受容体以外の新規なGPCR遺伝子や、嗅覚受容体の新規なGPCR遺伝子や、味覚受容体の新規なGPCR遺伝子や、味覚受容体の新規なGPCR遺伝子や、味覚受容体の新規なGPCR遺伝子を得ることができた。

10 [アミノ酸配列による解析]

上記BLAST検索により得られた新規なGPCR遺伝子につき、ア ミノ酸配列による解析を行った。アミノ酸配列の解析としては、上記S OSUI以外にシグナル配列の同定をPSORTを用いて行い、さらに 膜貫通領域間のループの長さが妥当であるかなどについて検討した。ま た、遺伝子配列についてはORFが偽遺伝子である可能性を判断するに は、ORFの上流にTATAboxやCpGislandが存在するか どうかを検索してみた。その結果、嗅覚及び味覚受容体以外の新規のG PCRと推測できるORFが51種類、嗅覚受容体の新規なGPCRと 推測できるORFが281種類(うち218種類は嗅覚受容体に特異的 な配列を有していた)、味覚受容体の新規なGPCRと推測できるORF が15種類確認できた。上記51種類の嗅覚及び味覚受容体以外の新規 のGPCRの塩基配列を配列番号2n-1(n=1から51までのいず れかの整数を示す)に示し、これら51種類の新規GPCR遺伝子がコ ードする新規GPCR蛋白質のアミノ酸配列を配列番号2n(n=1か ら51までのいずれかの整数を示す)に示す。また、281種類の嗅覚 受容体の新規GPCR遺伝子の塩基配列を配列番号2n-1(n=52

から332までのいずれかの整数を示す)に示し、これら281種類の 嗅覚受容体の新規GPCR蛋白質のアミノ酸配列を配列番号2n(n=52から332までのいずれかの整数を示す)に示す。15種類の味覚 受容体の新規GPCR遺伝子の塩基配列については配列番号2n-1 (n=333から347までのいずれかの整数を示す)に示し、かかる 15種類の味覚受容体の新規GPCR蛋白質のアミノ酸配列を配列番号 2n(n=333から347までのいずれかの整数を示す)に示す。

上記347種類の新規GPCR蛋白質の膜貫通領域(TM)と、アミノ酸レベルでのホモロジーが最も高かった蛋白質名を以下に示す。なお、TMの次の数値は膜貫通領域の番号を表し、それに続く数値範囲は膜貫通領域を構成する部分のアミノ酸残基の配列表における番号を示し、アミノ酸残基の配列表における番号に続く(P)は膜貫通領域としての性質が非常に明確なことを、(S)は膜貫通領域としての性質がやや弱いことを示す。また、アミノ酸レベルでのホモロジーが最も高かった蛋白質名に続く数値は、アクセッションナンバーを示し、全アミノ酸に対する完全に一致するアミノ算数とその割合(%)を示す。またその後に、RT-PCRにより発現部位が確認できたものについてはその発現部位を示す。

配列番号2 [TM1; 26-50(P)、TM2; 59-83(P)、T 20 M3; 92-116(P)、TM4; 130-154(P)、TM5; 168-192(P)、TM6; 203-227(P)、TM7; 24 1-265(P)]

retinoic acid induced 3 (putative G protein-coupled receptor) (A F095448); 138/290 (47%)

25 脾臓、肺、心臓、肝臓、腎臓、膵臓、小腸、大腸 配列番号4 [TM1:17-40(S)、TM2;66-88(P)、 TM3;99-123(S)、TM4;138-162(S)、TM5; 222-246(P)、TM6;256-280(P)] hypothetical protein P1.11659_3 - human(AC004472);302/307(98%) 心臓、大腸

5 配列番号6 [TM1; 1-21(S)、TM2; 92-116(P)、 TM3; 126-148(P)、TM4; 177-197(S)、TM 5; 207-231(S)、TM6; 255-279(P)、TM7; 298-322(P)]

putative chemokine receptor; GTP-binding protein (PROTEIN-COUPLED

- 10 RECEPTOR HM74) (D10923); 122/294 (41%)
- 配列番号8 [TM1; 18-42 (P)、TM2; 49-73 (S)、TM3; 100-120 (S)、TM4; 138-162 (P)、TM5; 178-202 (S)、TM6; 219-243 (P)]
- putative chemokine receptor; GTP-binding protein (PROTEIN-COUPLE
- 15 D RECEPTOR HM74) (D10923); 178/341 (52%) 配列番号10 [TM1; 31-55(P)、TM2; 65-89(P)、 TM3; 99-123(S)、TM4; 154-178(P)、TM5; 194-218(P)、TM6; 242-266(S)、TM7; 27 4-298(P)]
 - 20 FML1_GORGO FMLP-RELATED RECEPTOR I (X97738); 90/324 (27%) 配列番号12 [TM1; 24-48 (P)、TM2; 69-90 (S)、 TM3; 96-120 (S)、TM4; 135-159 (P)、TM5; 186-210 (P)、TM6; 231-251 (P)、TM7; 27 7-301 (P)]
 - 25 P2Y5_CHICK P2Y PURINOCEPTOR 5 (P2Y5) (protein-coupled receptor) (L06109); 113/284 (39%)

WO 02/16548 PCT/IB01/01446

配列番号14 [TM1; 37-61(P)、TM2; 80-102(S)、TM3; 118-142(P)、TM4; 150-174(P)、TM5; 200-222(P)、TM6; 240-264(P)]
purinergic receptor P2Y, G-protein coupled 1 (U22829); 109/299(36%)

脳、脾臓、肺、肝臓、大腸

配列番号16 [TM1; 27-51(P)、TM2; 69-93(P)、TM3; 103-124(S)、TM4; 144-168(P)、TM5; 185-209(P)、TM6; 223-247(P)、TM7;

10 26,7-291 (S)

5

MAS1 oncogene (J03823); 111/294 (37%)

心臓、小腸、大腸

配列番号18 [TM1;8-32(P)、TM2;61-85(S)、TM3;92-116(S)、TM4;154-178(P)、TM5;

15 196-220 (P), TM6; 250-274 (P)]
G-protein coupled receptor GPR34 (AF039686); 77/323 (23%)

脳、脾臓、肺、心臓、肺、腎臓、膵臓、胃、小腸、大腸

配列番号20 [TM1;5-23(S)、TM2;50-74(P)、 TM3;87-111(S)、TM4;123-147(P)、TM5;

20 165-189 (P), TM6; 211-235 (P)]
5-hydroxytryptamine (serotonin) receptor 1D (AB041379);72/272 (26%)

膵臓

配列番号22 [TM1; 2-24 (P)、TM2; 29-53 (P)、 25 TM3; 64-88 (S)、TM4; 94-117 (P)、TM5; 2 13-237 (P)、TM6; 297-321 (S)] CG2114 gene product (AE003476); 71/302 (23%)

胃、小腸

配列番号24[TM1;37-61(P)、TM2;76-100(S)、 TM3;113-137(P)、TM4;151-175(P)、TM

5; 189-213 (P), TM6; 250-274 (P), TM7; 290-310 (S)]

sphingosine 1-phosphate receptor Edg-8 (AF223649); 343/397 (86%)

配列番号26[TM1;25-49(P)、TM2;58-82(S)、

TM3; 97-121 (P), TM4; 138-162 (P), TM5;

10 184-208 (P), TM6; 233-254 (P), TM7; 27 4-293 (S)]

gene product; putative G-protein-coupled receptor; G protein coupled receptor for UDP-glucose (D13626); 149/314 (47%)

脳、脾臓、心臓、胃、大腸

- 15 配列番号 28 [TM1; 39-63(P)、TM2; 72-96(S)、TM3; 148-170(P)、TM4; 202-225(P)、TM5; 248-272(P)、TM6; 286-310(S)]
 GALS_MOUSE GALANIN RECEPTOR TYPE 2 (AF042784); 109/299(36%)
 膵臓
- 20 配列番号30[TM1;43-67(P)、TM2;79-103(P)、 TM3;113-137(P)、TM4;154-174(S)、TM5; 206-230(P)、TM6;287-311(P)、TM7;324 -345(S)]

PROBABLE G PROTEIN-COUPLED RECEPTOR (D43633); 179/429 (41%)

25 配列番号 3 2 [TM1; 1 3 5 - 1 5 7 (S)、TM2; 1 6 1 - 1 8 4 (P)、TM3; 1 9 1 - 2 1 5 (P)、TM4; 2 3 0 - 2 5 4 (P)、

WO 02/16548 PCT/IB01/01446

TM5; 266-290 (P)、TM6; 318-342 (P)]
seven transmembrane receptor (AB019120); 71/302 (23%)
配列番号34 [TM1; 43-67 (P)、TM2; 79-103 (P)、
TM3; 113-137 (P)、TM4; 154-178 (S)、TM5;
5 206-230 (P)、TM6; 280-302 (P)、TM7; 312
-336 (P)]

PROBABLE G PROTEIN-COUPLED RECEPTOR (D43633); 125/312 (40%)

配列番号36[TM1;38-62(P)、TM2;89-113(S)、

TM3; 118-142 (P), TM4; 164-188 (P), TM5;

10 208-232 (P), TM6; 248-272 (S), TM7; 276 -298 (S)]

G-protein coupled receptor SALPR; somatostatin and angiotensin-like (G-protein coupled receptor SALPR) (D88437); 141/322 (43%) 腎臓、小腸

15 配列番号 3 8 [TM1; 7-31 (P)、TM2; 42-66 (S)、TM3; 79-103 (S)、TM4; 120-144 (P)、TM5; 159-183 (P)、TM6; 224-248 (P)、TM7; 264-288 (S)]

DOP1_DROME DOPAMINE RECEPTOR 1 PRECURSOR (D-DOP1) (X77234); 95/350

20 (27%)

配列番号40 [TM1; 3-27(S)、TM2; 36-60(P)、TM3; 64-87(S)、TM4; 94-116(S)、TM5; 213-231(S)、TM6; 251-273(P)]

cadherin EGF LAG seven-pass G-type receptor (AF031572); 40/112 (35%)

25 配列番号42[TM1; 27-51(S)、TM2; 103-122(S)、 TM3; 139-160(P)、TM4; 180-204(S)、TM5; 221-245 (P), TM6; 263-281 (S)]

RTA_RAT PROBABLE G PROTEIN-COUPLED RECEPTOR RTA (M35297); 120/332 (36%)

配列番号44 [TM1; 28-52 (P)、TM2; 63-87 (P)、

5 TM3; 95-117 (P), TM4; 141-165 (P), TM5; 179-203 (P), TM6; 216-240 (P), TM7; 252 -276 (S)]

MAS1 oncogene (J03823); 108/283 (38%)

脾臟、肺、大腸

- 10 配列番号46 [TM1; 18-42(S)、TM2; 96-120(P)、TM3; 140-164(P)、TM4; 178-202(P)、TM5; 318-342(P)、TM6; 353-374(S)]
 (AE003422) EG: 22E5.11 gene product (AE003422); 98/364(26%)
 肺
- 15 配列番号48 [TM1; 12-36 (P)、TM2; 47-71 (S)、TM3; 97-121 (P)、TM4; 133-157 (S)、TM5; 183-207 (P)、TM6; 226-250 (P)] frizzled 6 (AB012911); 286/314 (91%)

配列番号50 [TM1;16-40(P)、TM2;45-69(S)、

20 TM3; 80-104 (P), TM4; 116-138 (S), TM5; 164-188 (S), TM6; 278-302 (P), TM7; 354 -378 (P)]

unnamed protein product (AK000922); 286/370 (77%)

配列番号52[TM1;64-88(P)、TM2;98-120(P)、

25 TM3; 1 2 2 - 1 4 6 (S), TM4; 1 7 2 - 1 9 6 (P), TM5; 2 1 3 - 2 3 7 (S), TM6; 2 5 3 - 2 7 7 (P), TM7; 2 8 4

-308(P)

putative pheromone receptor V2R2 (AF053989); 250/327 (76%)

鼻

配列番号54[TM1;84-106(P)、TM2;110-132(P)、

5 TM3; 136-158(P), TM4; 173-194(P), TM5; 200-224(P), TM6; 230-251(P), TM7; 267 -291(P)]

insulin-like growth factor I, brain-specific - Thai catfish (A53697); 28/88 (31%)

- 10 配列番号 5 6 [TM1; 9 0 1 1 4 (S)、TM2; 1 1 7 1 4 0 (S)、TM3; 1 5 1 1 6 8 (S)、TM4; 1 7 4 1 9 8 (P)、TM5; 2 0 9 2 3 3 (S)、TM6; 2 3 8 2 6 2 (P)]
 hypothetical protein T06E4.7 Caenorhabditis elegans (Z70756); 25/67 (37%)
- 15 肺

配列番号 5 8 [TM1; 40-64(P)、TM2; 71-95(S)、TM3; 124-148(P)、TM4; 153-177(P)、TM5; 204-228(P)、TM6; 243-265(P)、TM7; 283-307(S)]

20 cysteinyl leukotriene receptor 1 (AF119711); 114/298 (38%) 配列番号60 [TM1; 16-38 (P)、TM2; 51-73 (P)、 TM3; 91-113 (P)、TM4; 133-155 (S)、TM5; 178-199 (P)、TM6; 271-293 (S)] G protein-coupled seven-transmembrane receptor(D43633); 117/365

25 (32%)

配列番号62[TM1;17-39(S)、TM2;67-89(P)、

TM3;101-123(S)、TM4;135-157(P)、TM5; 178-196(S)、TM6;202-221(S)] allatostatin receptor(AF163775);43/154(27%) 肺、心臓、膵臓、小腸

5 配列番号64 [TM1; 9-31 (S)、TM2; 48-70 (S)、TM3; 92-114 (S)、TM4; 207-229 (S)、TM5; 269-290 (P)、TM6; 315-337 (P)、TM7; 348-370 (P)]

pheromone receptor VN3(U36895); 84/277 (30%)

- 10 鼻
 - 配列番号 6 6 [TM1; 118-140(P)、TM2; 153-175(S)、TM3; 199-221(S)、TM4; 236-258(P)、TM5; 281-303(P)、TM6; 326-348(P)、TM7; 362-384(P)]
- 15 G protein-coupled receptor LGR5(AF061444); 120/269 (44%) 配列番号68 [TM1; 33-54(S)、TM2; 97-119(P)、TM3; 168-190(S)、TM4; 264-286(P)、TM5; 291-313(S)、TM6; 405-427(P)] interleukin 9 receptor precursor(L39064); 30/105 (28%)
- 20 配列番号70 [TM1; 5-27 (P)、TM2; 55-76 (S)、T M3; 85-107 (P)、TM4; 126-148 (S)、TM5; 1 64-186 (P)、TM6; 267-289 (P)、TM7; 304-326 (S)]

pheromone receptor VN6 (U36898); 99/310 (31%)

25鼻配列番号72 [TM1; 1-21 (S)、TM2; 27-43 (S)、T

M3;51-73(S)、TM4;92-114(S)、TM5;131 -153(S)、TM6;183-205(P)] pheromone receptor 1(Y12725);64/155(41%)

5 配列番号74 [TM1; 20-42 (P)、TM2; 50-72 (S)、TM3; 84-106 (P)、TM4; 123-144 (P)、TM5; 167-189 (S)、TM6; 228-250 (P)、TM7; 259-281 (S)]

putative G-Protein coupled receptor, EDG6(AJ000479); 81/268 (30%)

10 骨格筋

配列番号76 [TM1; 21-43 (P)、TM2; 55-77 (P)、TM3; 100-122(S)、TM4; 136-158(P)、TM5; 181-203(P)、TM6; 227-247(P)、TM7; 270-272(S)]

- 15 putative purinergic receptor P2Y10(AF000545); 148/292(50%) 配列番号78[TM1; 24-46(P)、TM2; 57-79(P)、TM3; 98-120(P)、TM4; 136-158(P)、TM5; 189-211(P)、TM6; 234-255(P)、TM7; 280-300(S)]
- 20
 KIAA0001 gene product (D13626); 140/295 (47%)

 脳、胸腺、肺、腎臓、胃、大腸

 配列番号80 [TM1; 1-23 (P)、TM2; 36-58 (S)、T

 M3; 249-271 (P)、TM4; 296-318 (P)、TM5;

 332-354 (P)、TM6; 368-390 (P)、TM7; 412

 25

 -434 (P)、TM8; 458-480 (S)]

seven transmembrane receptor (ABO19120); 191/487 (39%)

配列番号82 [TM1;5-25(S)、TM2;80-97(S)、TM3;103-124(P)、TM4;133-155(P)、TM5;165-187(S)、TM6;217-239(P)]
unnamed protein product(AK000922);304/357(85%)

5 配列番号84 [TM1;16-34(S)、TM2;216-238(P)、TM3;247-269(S)、TM4;285-307(S)、TM5;367-389(P)、TM6;403-425(P)]
seven transmembrane receptor(AB019120);95/326(29%)

配列番号86 [TM1; 1-23(S)、TM2; 41-63(S)、T 10 M3; 95-117(P)、TM4; 128-150(P)、TM5; 1 57-179(P)、TM6; 190-212(S)、TM7; 216-

238(P), TM8; 260-282(P)

neuropeptide Y receptor Y6 (U58367); 23/88 (26%)

配列番号88 [TM1;14-36 (S)、TM2;55-77 (P)、

15 TM3; 94-116 (P), TM4; 126-147 (P), TM5; 185-207 (P), TM6; 215-237 (S)] orphan G protein-coupled receptor (AF045764); 199/236 (84%)

配列番号90[TM1;31-53(P)、TM2;69-91(P)、

TM3; 110-132 (S), TM4; 195-217 (P), TM5;

 $20 \quad 400-422$ (P), TM6; 434-456 (P)]

G-protein coupled receptor RE2(AF091890); 63/192 (32%)

配列番号92 [TM1;1-23 (P)、TM2;36-58 (P)、T

M3; 99-121 (P), TM4; 135-157 (S), TM5; 1

65-187 (P), TM6; 189-211 (S), TM7; 339-

 $25 \quad 361 \text{ (P)}, \text{ TM8}; 379-401 \text{ (S)}]$

Frizzled-1 protein homolog(T42210); 27/82 (32%)

WO 02/16548 PCT/IB01/01446

配列番号 9 4 「TM1:24-46 (P)、TM2;83-105 (P)、 TM3; 122-143 (P), TM4; 166-188 (S), TM5; 227-249 (P), TM6; 258-280 (S)] putative G-Protein coupled receptor (AJ000479); 76/268 (28%) 配列番号96[TM1;22-44(P)、TM2;113-135(P)、 5 TM3; 159-181 (P), TM4; 203-225 (S), TM5; 228-250 (P), TM6; 272-294 (S)] Frizzled-10 (AB027464); 23/96 (23%) 配列番号98 [TM1; 11-33 (S)、TM2; 41-63 (S)、 TM3; 71-93 (S), TM4; 96-118 (P), TM5; 1210 2-144 (S), TM6; 146-165 (S)] beta3-adrenergic receptor (AF109930); 39/120 (32%) 配列番号100[TM1;8-29(P)、TM2;31-52(P)、 TM3; 55-73 (P), TM4; 79-100 (P), TM5; 110-132 (S), TM6; 147-169 (P), TM7; 177-115 99 (P), TM8 : 201 - 222 (P)] putative pheromone receptor V2R1 (AF053985) : 51/219 (23%) 配列番号102[TM1;6-28(P)、TM2;60-82(S)、 TM3:90-111 (S), TM4:127-149 (P), TM5:181-203 (S), TM6; 237-259 (P)] 20 pheromone receptor VN6 (U36898); 79/236 (33%) 配列番号104 [TM1;5-27(S)、TM2;41-63(P)、 TM3; 82-104 (S), TM4; 106-128 (P), TM5; 153-175 (S), TM6; 191-213 (P), TM7; 235-257 (P), TM8; 289-311 (S)] 25 odorant receptor S19(AF121976); 106/228 (46%)

配列番号106 [TM1; 1-23 (S)、TM2; 44-66 (S)、TM3; 85-106 (P)、TM4; 149-171 (P)、TM5; 183-205 (S)、TM6; 217-238 (S)] odorant receptor \$18(AF121975); 159/222 (71%)

5 配列番号108 [TM1; 3-25 (P)、TM2; 96-118 (S)、
TM3; 120-142 (S)、TM4; 149-171 (P)、TM5;
182-204 (P)、TM6; 211-231 (P)]
odorant receptor A16(AB030896); 122/244 (50%)

配列番号110[TM1;31-53(P)、TM2;64-86(S)、

TM3; 100-122(S), TM4; 138-160(P), TM5;
171-193(S), TM6; 199-221(P)]
olfactory receptor-like protein COR3' beta(L17432); 106/217 (48%)

配列番号112[TM1;30-52(P)、TM2;65-87(P)、

TM3; 105-127(S), TM4; 134-156(S), TM5;

15 203-225 (P), TM6; 243-265 (P), TM7; 272 -294 (S)]

odorant receptor S18(AF121975); 184/303 (60%)

配列番号114[TM1;29-51(P)、TM2;59-81(S)、

TM3; 99-121 (S), TM4; 144-166 (P), TM5;

20 179-201 (S), TM6; 204-225 (P), TM7; 242 -264 (P), TM8; 269-291 (S)]

odorant receptor MOR83 (ABO30894); 155/306 (50%)

配列番号116 [TM1;4-26(S)、TM2;32-53(P)、

TM3;65-87 (P), TM4;99-121 (S), TM5;12

25 3-144 (P), TM6; 162-184 (S), TM7; 189-2 11 (P)] WO 02/16548 PCT/IB01/01446

odorant receptor MOR83(AB030894); 121/226 (53%)

配列番号118[TM1;26-48(P)、TM2;61-83(S)、

TM3; 98-120 (S), TM4; 141-163 (S), TM5;

204-225 (P), TM6; 239-261 (P)]

5 odorant receptor MOR83 (AB030894); 156/303 (51%)

配列番号120[TM1;25-47(P)、TM2;57-79(S)、

TM3:88-109 (S), TM4:131-153 (P), TM5:

201-223 (P), TM6; 242-264 (S)]

CfOLF1 (U53679); 107/235 (45%)

10 配列番号122 [TM1;29-51(S)、TM2;83-105(P)、TM3;114-136(P)、TM4;149-171(S)、TM5; 192-214(S)、TM6;259-281(P)、TM7;294-316(P)]

odorant receptor S51 (AF121981) : 127/159 (79%)

15 配列番号124 [TM1;35-57(P)、TM2;68-90(P)、 TM3;96-118(S)、TM4;147-169(S)、TM5; 210-232(P)、TM6;246-268(P)、TM7;278 -300(S)]

MOR 3'Betal (AF133300) : 119/308 (38%)

20 配列番号 1 2 6 [TM1; 15-37(S)、TM2; 64-86(P)、TM3; 93-115(S)、TM4; 141-163(S)、TM5; 206-228(P)、TM6; 237-259(P)] odorant receptor S51(AF121981); 85/128(66%)

配列番号128 [TM1;6-28(S)、TM2;32-53(P)、

25 TM3; 59-81 (S), TM4; 97-119 (S), TM5; 14 5-167 (P), TM6; 205-226 (P), TM7; 236-2 58 (P), TM8; 268-290 (S)]

similar to rat olfactory receptor OR18(AC004908); 209/311 (67%)

配列番号130[TM1;1-23(S)、TM2;28-50(P)、

TM3; 63-85 (S), TM4; 142-163 (P), TM5; 2

5 03-225 (P), TM6; 238-260 (P), TM7; 271-293 (P)]

olfactory receptor-like protein COR3' beta(L17432); 147/299 (49%)

配列番号132[TM1;31-53(S)、TM2;63-85(S)、

TM3; 99-121 (S), TM4; 149-171 (P), TM5;

10 205-227 (P), TM6; 244-266 (S), TM7; 273
-295 (P)]

putative G-protein coupled receptor RA1c(AF079864); 142/299 (47%)

配列番号134[TM1;1-23(S)、TM2;26-48(S)、

TM3; 51-73 (S), TM4; 85-107 (S), TM5; 15

15 1-172 (P), TM6; 182-204 (P), TM7; 212-2 34 (S)]

odorant receptor S19(AF121976); 142/246 (57%)

配列番号136[TM1;11-33(S)、TM2;37-59(P)、

TM3; 71-93 (P), TM4; 107-129 (P), TM5; 1

20 51-173 (S), TM6; 207-229 (P), TM7; 249-271 (P)]

olfactory receptor-like protein COR3' beta(L17432); 134/306 (43%)

配列番号138[TM1;11-32(S)、TM2;49-71(S)、

TM3; 91-113 (P), TM4; 128-150 (S), TM5;

25 170-192 (P), TM6; 231-253 (P), TM7; 268

-290 (S), TM8; 312-334 (S)]

15

olfactory receptor-like protein COR3' beta(L17432); 149/313 (47%) 配列番号140[TM1;1-23(S)、TM2;30-52(P)、 TM3; 67-89 (S), TM4; 102-124 (S), TM5; 1 37-159 (S), TM6; 202-224 (P), TM7; 239-

- 261 (P), TM8; 271-293 (P)] 5 olfactory receptor-like protein COR3' beta(L17432); 156/298 (52%) 配列番号142[TM1;2-24(S)、TM2;33-55(P)、 TM3; 69-91 (P), TM4; 106-128 (S), TM5; 142-164 (S), TM6; 208-230 (P), TM7; 244-
- 266 (S), TM8; 276-298 (S)] 10 putative G-protein coupled receptor RA1c (AF079864); 171/305 (56%) 配列番号144[TM1;31-53(P)、TM2;65-87(P)、 TM3; 141-163(S), TM4; 183-205(P), TM5; 2 1 2 - 2 3 4 (P), TM6; 2 4 0 - 2 6 2 (P), TM7; 2 7 3 -295(S)
- olfactory receptor 64 (AF071080): 161/302 (53%) 配列番号146 [TM1;6-28 (P)、TM2;42-64 (S)、 TM3; 87-109 (P), TM4; 144-166 (P), TM5; 183-205 (P), TM6; 217-237 (S)]
- olfactory receptor-like protein COR3' beta(L17432); 129/249 (51%) 20 配列番号148 [TM1;1-18 (P)、TM2;43-65 (S)、 TM3; 67-88 (S), TM4; 99-121 (S), TM5; 13 6-158 (S), TM6; 175-197 (P)]
- putative G-protein coupled receptor RA1c(AF079864); 73/151 (48%) 配列番号150[TM1;31-53(P)、TM2;66-88(P)、 25
 - TM3; 104-126(S), TM4; 141-163(S), TM5;

205-227 (P), TM6; 246-268 (S), TM7; 274 -296 (S)]

odorant receptor S18(AF121975); 142/308 (46%)

配列番号152 [TM1;6-26 (S)、TM2;29-51 (P)、

5 TM3; 53-75 (P), TM4; 97-119 (S), TM5; 13 3-155 (S), TM6; 202-224 (P), TM7; 237-2 59 (P), TM8; 269-291 (S)]

putative G-protein coupled receptor RA1c(AF079864); 298/318 (93%) 配列番号154 [TM1;1-23 (S)、TM2;29-51 (P)、

10 TM3; 67-89 (P), TM4; 104-126 (S), TM5; 1 45-166 (S), TM6; 206-228 (P), TM7; 244-266 (S), TM8; 277-298 (S)]

putative G-protein coupled receptor RA1c(AF079864); 157/301 (52%) 配列番号156 [TM1; 18-40 (P)、TM2; 44-65 (P)、

15 TM3; 69-91 (S), TM4; 115-137 (P), TM5; 1 54-176 (P), TM6; 214-236 (P), TM7; 255-277 (P), TM8; 282-304 (S)]

putative G-protein coupled receptor RA1c(AF079864); 184/307 (59%) 配列番号 1 5 8 [TM1; 3 0 - 5 2 (P)、TM2; 5 8 - 8 0 (S)、

20 TM3; 83-105 (S), TM4; 204-226 (P), TM5; 240-262 (P), TM6; 274-296 (S)]

putative G-protein coupled receptor RA1c(AF079864); 180/299 (60%)

配列番号160 [TM1;2-24 (S)、TM2;30-52 (P)、

TM3; 64-86 (S), TM4; 100-122 (S), TM5; 1

25 41-163 (S), TM6; 204-226 (P), TM7; 273-295 (S)] odorant receptor \$18(AF121975); 164/303 (54%)

配列番号162[TM1;30-52(P)、TM2;64-86(P)、

TM3;102-124(S), TM4;142-164(S), TM5;

205-227 (P), TM6; 241-263 (S), TM7; 273

5 - 295 (S)

odorant receptor S18(AF121975); 166/305 (54%)

配列番号164 [TM1:33-55 (P)、TM2;67-89 (P)、

TM3; 104-126 (S), TM4; 146-168 (P), TM5;

214-236 (S), TM6; 246-268 (P), TM7; 276

10 - 298 (S)

odorant receptor \$19(AF121976); 140/304 (46%)

配列番号166[TM1;14-36(S)、TM2;42-64(P)、

TM3; 78-100 (S), TM4; 115-137 (P), TM5;

153-174 (S), TM6; 217-239 (P)]

odorant receptor S18(AF121975); 209/248 (84%)

配列番号168[TM1;36-58(P)、TM2;68-90(P)、

TM3; 103-125 (P), TM4; 146-168 (S), TM5;

208-230 (P), TM6; 245-267 (P), TM7; 275

-297(S)

20 odorant receptor S18(AF121975); 123/298 (41%)

配列番号170[TM1;31-53(S)、TM2;63-85(P)、

TM3; 100-122(S), TM4; 140-162(S), TM5;

204-226 (P), TM6; 239-260 (P)]

MOR 3' Beta1 (AF133300) : 103/259 (39%)

25 配列番号172 [TM1; 29-51 (P)、TM2; 63-85 (P)、

TM3; 99-121 (S), TM4; 143-165 (S), TM5;

WO 02/16548 PCT/IB01/01446

177-199 (S), TM6; 204-226 (S)] putative G-protein coupled receptor RA1c(AF079864); 112/247 (45%), 配列番号174[TM1;10-32(P)、TM2;44-66(P)、 TM3; 73-93 (S), TM4; 128-150 (S), TM5; 158-179 (S), TM6; 181-203 (P)] 5 olfactory receptor (AF179805); 27/101 (26%) 配列番号176 [TM1;5-27 (P)、TM2;46-68 (S)、 TM3:85-107 (S), TM4:123-145 (S), TM5:154-176 (P), TM6; 182-204 (S), TM7; 21610 -237(S)odorant receptor S18(AF121975); 149/250 (59%) 配列番号178 [TM1;1-23(S)、TM2;28-50(S)、 TM3:96-118 (S), TM4:134-156 (S), TM5:196-218 (P), TM6; 238-260 (P), TM7; 269-291(S)15 putative G-protein coupled receptor RA1c(AF079864); 172/307 (56%) 配列番号180[TM1;6-28(S)、TM2;40-62(P)、 TM3:72-94 (S), TM4:111-133 (S), TM5:158-180 (P), TM6; 214-236 (P), TM7; 252-274 (P), TM8 : 283 - 305 (S)20 olfactory receptor-like protein COR3' beta(L17432); 167/304 (54%) 配列番号182[TM1;29-51(S)、TM2;65-87(S)、 TM3;108-130(S), TM4;144-165(P), TM5; 201-223 (P), TM6; 240-262 (P), TM7; 271-293(S)25

olfactory receptor-like protein COR3' beta(L17432); 153/296 (51%)

WO 02/16548 PCT/IB01/01446

配列番号184 [TM1; 2-24(S)、TM2; 30-52(P)、TM3; 64-86(S)、TM4; 105-127(S)、TM5; 204-226(P)、TM6; 240-262(P)、TM7; 274-296(S)]

- 5 olfactory receptor-like protein COR3' beta(L17432); 150/303 (49%) 配列番号186 [TM1; 4-26 (S)、TM2; 35-57 (P)、TM3; 72-94 (S)、TM4; 115-137 (S)、TM5; 151-172 (S)、TM6; 191-213 (P)、TM7; 249-271 (S)、TM8; 281-303 (S)]
- 10 MOR 3'Betal (AF133300); 157/298 (52%)

 配列番号188 [TM1; 36-58(P)、TM2; 74-96(P)、

 TM3; 108-130(P)、TM4; 149-171(S)、TM5; 209-231(P)、TM6; 260-282(P)]

 MOR 3'Betal (AF133300); 123/307 (40%)
- 15 配列番号190[TM1;30-52(S)、TM2;67-89(S)、 TM3;103-125(S)、TM4;205-227(P)、TM5; 242-264(S)、TM6;269-291(S)] MOR 3'Betal(AF133300);172/307(56%)

20 TM3; 81-103 (S), TM4; 107-129 (S), TM5; 145-167 (P), TM6; 184-206 (P)] putative G-protein coupled receptor RA1c(AF079864); 98/210 (46%)

配列番号194[TM1;34-56(P)、TM2;71-93(P)、

配列番号192[TM1;31-53(P)、TM2;56-78(S)、

TM3; 108-130(S), TM4; 144-166(P), TM5;

25 191-212 (P), TM6; 224-246 (P), TM7; 251 -273 (S)] odorant receptor 5.24(AF158963); 168/328 (51%)

配列番号196 [TM1;8-30(S)、TM2;53-75(P)、

TM3; 105-127 (P), TM4; 139-161 (S), TM5;

167-189 (P), TM6; 200-222 (P), TM7; 231

5 - 253 (P)

olfactory receptor OR18(S29710); 189/268 (70%)

配列番号198[TM1;28-50(P)、TM2;84-106(S)、

TM3; 117-139 (S), TM4; 145-166 (S), TM5;

185-207 (P), TM6; 213-235 (S), TM7; 243

- 10 265 (P), TM8; 274 296 (S)]
 - odorant receptor S19(AF121976); 192/299 (64%)

配列番号200 [TM1;7-29(S)、TM2;35-57(S)、

TM3; 64-86 (S), TM4; 95-117 (S), TM5; 14

1-163 (S), TM6; 200-221 (P)]

- 15 olfactory receptor 17-1 (AF095725); 95/96 (98%)
 - 配列番号202[TM1;26-48(P)、TM2;62-84(S)、

TM3; 96-118 (P), TM4; 141-163 (S), TM5;

204-225 (P), TM6; 239-261 (P), TM7; 268

-290(S)

- 20 odorant receptor MOR83 (AB030894); 159/301 (52%)
 - 配列番号204[TM1;31-53(P)、TM2;65-87(S)、

TM3; 104-126 (S), TM4; 205-227 (P), TM5;

243-265 (S), TM6; 269-291 (S)]

odorant receptor S18(AF121975); 163/310 (52%)

25 配列番号 2 0 6 [TM1; 1-23 (S)、 TM2; 27-49 (P)、

TM3; 65-87 (S), TM4; 108-130 (S), TM5; 2

05-227 (P), TM6; 242-264 (S), TM7; 268-290 (S)]

olfactory receptor 67(AF133300); 158/309 (51%)

配列番号208[TM1;32-54(P)、TM2;66-88(P)、

5 TM3; 98-120 (S), TM4; 137-159 (S), TM5; 210-231 (P), TM6; 243-265 (P)]

odorant receptor S51(AF121981); 112/159 (70%)

配列番号210[TM1;30-52(P)、TM2;100-122(P)、

TM3; 127-149 (P), TM4; 153-175 (P), TM5;

10 209-231 (P), TM6; 243-265 (S), TM7; 274 -296 (S)]

odorant receptor S46 (AF121979); 198/307 (64%)

配列番号212[TM1;34-56(P)、TM2;104-126(P)、

TM3; 149-171 (P), TM4; 210-232 (P), TM5;

15 2 4 7 - 2 6 9 (S), TM6; 2 7 6 - 2 9 8 (S)]
odorant receptor S46 (AF121979); 209/307 (68%)

配列番号214 [TM1;3-25 (S)、TM2;31-53 (P)、

TM3;106-128(P),TM4;132-154(S),TM5;

156-178 (S), TM6; 203-225 (P), TM7; 242

20 - 264 (P); TM8; 271-293 (S)]
odorant receptor S46(AF121979); 174/306 (56%)

配列番号216[TM1;36-58(P)、TM2;101-123(P)、

TM3; 141-163(P), TM4; 181-203(P), TM5;

206-227 (P), TM6; 270-292 (S)]

25 odorant receptor S46 (AF121979); 178/307 (57%)

配列番号218[TM1;26-48(P)、TM2;65-87(S)、

TM3; 104-126(S), TM4; 142-164(S), TM5; 204-226(P), TM6; 240-262(P), TM7; 276-297(S)]

olfactory receptor-like protein COR3' beta(L17432); 159/301 (52%)

5 配列番号220[TM1;21-43(P)、TM2;84-106(S)、 TM3;116-138(S)、TM4;145-167(P)、TM5; 182-204(S)、TM6;210-232(P)、TM7;240 -262(S)、TM8;272-294(S)]

odorant receptor S46(AF121979); 192/310 (61%)

10 配列番号 2 2 2 [TM1; 2 7-49(S)、TM2; 7 5-97(S)、TM3; 1 1 3-1 3 5 (P)、TM4; 1 4 0-1 6 2 (P)、TM5; 169-190(S)、TM6; 2 0 3-2 2 5 (S)] olfactory receptor(AJ133430); 190/247 (76%)

配列番号224 [TM1;1-20(S)、TM2;28-50(P)、

15 TM3; 61-83 (S), TM4; 92-114 (S), TM5; 13 3-155 (P), TM6; 195-217 (P)] HUMAN OLFACTORY RECEPTOR 511 (Q13606); 95/214 (44%)

配列番号226 [TM1;27-49 (P)、TM2;58-80 (S)、

TM3; 93-115 (S), TM4; 143-165 (S), TM5;

20 17.8-200 (S), TM6; 206-227 (P), TM7; 241 -263 (P), TM8; 268-290 (S)]

odorant receptor MOR83(AB030894); 171/307 (55%)

配列番号228[TM1;25-47(P)、TM2;55-77(S)、

TM3; 100-122(S), TM4; 143-165(P), TM5;

25 170-192 (S), TM6; 205-226 (P), TM7; 241 -263 (P)]

odorant receptor MOR83 (ABO30894); 158/308 (51%)

配列番号230 [TM1;1-23 (P)、TM2;27-49 (S)、

TM3; 81-103 (P), TM4; 143-165 (P), TM5;

184-206 (P), TM6; 214-236 (P)]

- olfactory receptor [Homo sapiens] (AJ003147); 154/249 (61%)
 - 配列番号232[TM1;27-49(P)、TM2;63-85(P)、

TM3; 103-125(S), TM4; 143-165(S), TM5;

204-226 (P), TM6; 238-259 (S), TM7; 273

-295(S)

10 olfactory receptor P2 [Mus musculus] (AF247657); 194/302 (64%)

配列番号234[TM1;34-55(S)、TM2;104-126(P)、

TM3:148-170 (S), TM4:204-226 (P), TM5:

242-264 (S), TM6; 273-294 (S)]

HsOLF1 [Homo sapiens] (U56420); 153/304 (50%)

- 15 配列番号236 [TM1;22-44(S)、TM2;62-84(S)、
 - TM3; 97-119 (P), TM4; 143-165 (P), TM5;

207-229 (P), TM6; 242-263 (S), TM7; 27.8

-300(S)1

olfactory receptor C6 [Mus musculus] (AF102523); 149/305 (48%)

20 配列番号238[TM1;34-56(P)、TM2;95-117(S)、

TM3; 140-162 (P), TM4; 166-188 (S), TM5;

202-224 (P), TM6; 238-260 (S)]

odorant receptor [Mus musculus] (X92969); 201/276 (72%)

配列番号240「TM1:26-48 (P)、TM2;69-91 (P)、

- 25 TM3; 95-117 (S), TM4; 136-158 (P), TM5;
 - 166-188 (S), TM6; 205-227 (P), TM7; 237

-259 (S), TM8; 271-292 (S)] odorant receptor [Mus musculus] (X92969); 270/309 (87%) 配列番号242[TM1;26-48(P)、TM2;60-82(S)、 TM3; 93-115 (P), TM4; 144-166 (S), TM5; 176-198 (S), TM6; 202-223 (P), TM7; 2345 -255 (S), TM8; 269-291 (S)] odorant receptor MOR18 [Mus musculus] (AB030895); 183/303 (60%) 配列番号244 [TM1;8-30(S)、TM2;43-65(S)、 TM3;87-109 (P), TM4;131-153 (S), TM5; 173-195 (S), TM6; 233-255 (P), TM7; 271 10 -292 (P), TM8; 302-323 (P)] odorant receptor MOR18 [Mus musculus] (AB030895); 195/301 (64%) 配列番号246[TM1;45-67(P)、TM2;112-134(S)、 TM3; 143-165(S), TM4; 167-189(S), TM5; 192-214 (S), TM6; 219-240 (P), TM7; 251 15 -273 (P), TM8; 281-303 (P)] odorant receptor A16 [Mus musculus] (AB030896); 161/300 (53%) 配列番号248[TM1;118-140(P)、TM2;159-18 1 (P), TM3; 186-208 (S), TM4; 222-244 (P), TM5; 263-285 (P), TM6; 294-316 (S)] 20 odorant receptor MOR18 [Mus musculus] (AB030895); 114/193 (59%) 配列番号250 [TM1;2-24(S)、TM2;28-49(S)、 TM3; 56-78 (S), TM4; 91-113 (P), TM5; 12 3-145 (S), TM6; 161-183 (S), TM7; 201-22 2 (P)] 25olfactory receptor OR18 - rat(S29710); 175/263 (66%)

. 1

配列番号252 [TM1;5-27(S)、TM2;51-73(P)、TM3;123-145(P)、TM4;167-189(P)、TM5;216-238(P)、TM6;261-283(P)、TM7;295-317(S)]

- 5 odorant receptor MOR18 [Mus musculus] (AB030895); 257/301 (85%) 配列番号 2 5 4 [TM1; 2 8 4 9 (S)、TM2; 1 4 3 1 6 5 (S)、TM3; 1 7 6 1 9 8 (S)、TM4; 2 0 2 2 2 3 (P)、TM5; 2 3 5 2 5 7 (P)、TM6; 2 6 4 2 8 6 (S)] odorant receptor MOR18 [Mus musculus] (AB030895); 169/307 (55%)
- 10 配列番号256[TM1;13-35(S)、TM2;156-178(P)、
 TM3;192-214(P)、TM4;252-274(P)、TM5;
 287-309(P)、TM6;313-335(S)]
 olfactory receptor OR18 rat(S29710);181/300(60%)
 配列番号258[TM1;25-47(P)、TM2;58-80(P)、
- 15 TM3; 93-115 (S), TM4; 140-162 (P), TM5; 189-211 (P), TM6; 237-259 (P)] olfactory receptor OR18 - rat(S29710); 183/302 (60%)

配列番号260 [TM1;9-31(P)、TM2;67-88(S)、

TM3; 90-112 (P), TM4; 116-138 (S), TM5;

20 144-166 (P), TM6; 179-201 (S), TM7; 210 -231 (P), TM8; 270-292 (S)]

HsOLF1 [Homo sapiens] (U56420); 166/307 (54%)

配列番号262[TM1;20-42(P)、TM2;60-82(S)、

TM3; 100-122(S), TM4; 146-168(P), TM5;

25 202-224 (P), TM6; 242-264 (S), TM7; 270 -292 (P)] olfactory receptor [Homo sapiens] (AF065860); 159/214. (74%)

配列番号264[TM1;17-39(S)、TM2;91-113(S)、

TM3; 117-139 (P), TM4; 144-166 (P), TM5;

183-205 (S), TM6; 208-229 (P), TM7; 244

5 - 265 (S), TM8; 274 - 295 (S)]

HsOLF1 [Homo sapiens] (U56420); 161/306 (52%)

配列番号266[TM1;31-53(P)、TM2;63-85(S)、

TM3; 102-124 (P), TM4; 142-164 (P), TM5;

203-225 (P), TM6; 241-262 (S), TM7; 271

- 10 293 (S)
 - HsOLF1 [Homo sapiens] (U56420); 180/313 (57%)

配列番号268[TM1;44-66(P)、TM2;70-92(S)、

TM3; 94-116 (P), TM4; 152-174 (P), TM5;

182-204 (S), TM6; 210-232 (P)]

15 olfactory receptor [Homo sapiens] (AF065860); 142/216 (65%)

配列番号270[TM1;45-67(P)、TM2;78-100(S)、

TM3; 116-138 (P), TM4; 158-180 (P), TM5;

193-215 (P), TM6; 224-245 (P), TM7; 258

-280 (S), TM8; 290-311 (S)]

20 olfactory receptor H7 [Mus musculus] (AF102540); 147/222 (66%)

配列番号272[TM1;29-51(P)、TM2;64-86(P)、

TM3; 98-120 (P), TM4; 143-165 (P), TM5;

201-223 (P), TM6; 238-259 (S), TM7; 269

-291(S)

25 olfactory receptor C6 [Mus musculus] (AF102523); 140/302 (46%)

配列番号274[TM1;26-48(P)、TM2;61-83(P)、

TM3; 98-120 (P)、TM4; 135-157 (P)、TM5; 196-218 (P)、TM6; 239-260 (S)] olfactory protein [Rattus norvegicus] (M64378); 115/258 (44%) 配列番号276 [TM1; 48-70 (P)、TM2; 91-113 (S)、TM3: 130-152 (S)、TM4: 176-198 (S)、TM5;

5 TM3; 130-152(S), TM4; 176-198(S), TM5; 237-259(P), TM6; 299-321(S)]

HsOLF1 [Homo sapiens] (U56420); 167/303 (55%)

配列番号278[TM1;32-54(P)、TM2;96-118(P)、

TM3; 145-167 (P), TM4; 201-223 (P), TM5;

- 10 239-261 (P)、TM6; 269-291 (S)]
 olfactory receptor OR93Gib [Hylobates lar] (AF045580); 166/304 (54%)
 配列番号280 [TM1; 7-29 (P)、TM2; 35-57 (S)、
 TM3; 70-92 (P)、TM4; 115-137 (S)、TM5; 1
 77-199 (P)、TM6; 247-268 (P)]
- 15 olfactory receptor 4 [Gallus gallus] (X94744); 156/282 (55%) 配列番号 2 8 2 [TM1; 3 8 6 0 (P)、TM2; 1 0 3 1 2 5 (P)、TM3; 1 3 2 1 5 4 (P)、TM4; 1 6 7 1 8 9 (P)、TM5; 2 0 7 2 2 9 (P)、TM6; 2 4 6 2 6 7 (P)、TM7; 2 7 8 2 9 9 (P)]
- 20 olfactory receptor OR93Gib [Hylobates lar] (AF045580);161/302 (53%) 配列番号 2 8 4 [TM1; 2 8 5 0 (P)、TM2; 9 8 1 2 0 (P)、TM3; 1 4 0 1 6 2 (P)、TM4; 2 1 0 2 3 2 (P)、TM5; 2 4 0 2 6 2 (S)、TM6; 2 7 2 2 9 4 (S)] olfactory receptor OR93Ch [Pan troglodytes] (AF045577); 165/308
- 25 (53%) 配列番号 2 8 6 [TM1; 1-23 (S)、TM2; 25-47 (P)、

20

TM3; 56-78 (S), TM4; 90-112 (S), TM5; 14 2-164 (S), TM6; 198-220 (P), TM7; 236-25.8 (P), TM8 : 269 - 290 (S)

olfactory receptor P2 [Mus musculus] (AF247657); 134/302 (44%)

- 配列番号288[TM1;93-115(S)、TM2;128-150 (S), TM3; 161-183 (P), TM4; 212-234 (P), TM5; 264-286 (P), TM6; 305-327 (S)] olfactory receptor [Homo sapiens] (AJ003147); 183/305 (60%) 配列番号290[TM1;5-27(S)、TM2;40-62(S)、
- TM3; 83-105 (P), TM4; 135-157 (P), TM5; 10 181-203 (S), TM6; 213-235 (S)] olfactory receptor [Homo sapiens] (298744); 160/250 (64%) 配列番号292[TM1;30-52(P)、TM2;99-121(P)、 TM3:147-169(P), TM4; 207-229(P), TM5;
- 243-265 (S), TM6; 274-296 (S)] 15 chick olfactory receptor 7 [Gallus gallus] (279586); 151/306 (49%) 配列番号294[TM1;28-50(P)、TM2;66-88(S)、 TM3; 104-126 (S), TM4; 138-160 (P), TM5;201-223 (P), TM6; 242-264 (P), TM7; 270 -292(S)
- olfactory receptor 4 [Gallus gallus] (X94744); 161/310 (51%) 配列番号296[TM1;20-42(P)、TM2;61-83(P)、 TM3; 95-117 (S), TM4; 143-165 (S), TM5; 177-199 (S), TM6; 206-227 (P)]
- olfactory receptor 2 [Gallus gallus] (X94742); 106/233 (45%) 25 配列番号298[TM1;26-48(P)、TM2;62-84(S)、

TM3; 104-126 (P), TM4; 142-164 (P), TM5; 207-228 (P), TM6; 271-293 (S), TM7; 306
-328 (P)]

odorant receptor [Mus musculus] (X92969); 145/302 (48%)

- 5 配列番号 3 0 0 [TM1; 7-29(S)、TM2; 5 3-75(P)、
 TM3; 1 0 1-123(S)、TM4; 1 3 2-154(S)、TM5;
 163-185(P)、TM6; 198-220(S)]
 dJ88J8.1 (novel 7 transmembrane receptor (rhodopsin family)
 (olfactory receptor like) protein) (hs6M1-15)) [Homo sapiens]
- 10 (AL035402); 173/261 (66%) 配列番号 3 0 2 [TM1; 1 9 - 4 1 (S)、TM2; 8 3 - 1 0 5 (S)、 TM3; 1 6 4 - 1 8 6 (S)、TM4; 2 0 3 - 2 2 5 (P)、TM5; 2 3 9 - 2 6 0 (S)、TM6; 2 7 2 - 2 9 3 (S)] olfactory receptor [Homo sapiens] (Z98744); 253/310 (81%)
- 15 配列番号 3 0 4 [TM1; 8-30(S)、TM2; 5 1-73(S)、
 TM3; 9 4-116(P)、TM4; 172-194(P)、TM5;
 201-223(S)、TM6; 232-254(S)]
 olfactory receptor 4 [Gallus gallus] (X94744); 126/267(47%)
 配列番号 3 0 6 [TM1; 32-54(P)、TM2; 62-84(S)、
- 20 TM3; 134-156(P)、TM4; 206-228(P)、TM5; 245-267(S)、TM6; 276-298(S)] chick olfactory receptor 4 [Gallus gallus] (Z79593); 154/309(49%) 配列番号308[TM1; 41-63(P)、TM2; 73-95(S)、TM3; 106-128(S)、TM4; 147-169(P)、TM5;
- 25 2 1 9 2 4 1 (P), TM6; 2 8 7 3 0 9 (S)]
 HsOLF1 [Homo sapiens] (U56420); 146/310 (47%).

配列番号310[TM1;11-33(S)、TM2;42-64(P)、TM3;75-97(S)、TM4;106-128(S)、TM5;151-173(S)、TM6;188-210(S)、TM7;214-236(P)、TM8;249-270(S)]

- 5 olfactory receptor P2 [Mus musculus] (AF247657); 276/315 (87%) 配列番号 3 1 2 [TM1; 15-37 (S)、TM2; 53-75 (S)、TM3; 84-106 (S)、TM4; 109-131 (P)、TM5; 161-183 (P)、TM6; 196-218 (P)] olfactory receptor [Homo sapiens] (AF065870); 246/284 (86%)
- 10 配列番号 3 1 4 [TM1; 26-48(P)、TM2; 60-82(S)、TM3; 99-120(P)、TM4; 142-164(S)、TM5; 174-195(S)、TM6; 202-224(P)、TM7; 237-258(P)、TM8; 271-292(S)] dJ80I19.1 (olfactory receptor-like protein (hs6M1-1)) [Homo
- 15 sapiens] (AL022727); 136/305 (44%)
 配列番号316 [TM1; 10-32(S)、TM2; 46-68(P)、
 TM3; 80-102(P)、TM4; 117-139(P)、TM5; 157-179(P)、TM6; 222-244(P)、TM7; 259
 -281(P)]
- 20 odorant receptor S19 [Mus musculus] (AF121976); 168/291 (57%) 配列番号 3 1 8 [TM1; 2-24 (S)、TM2; 45-67 (P)、TM3; 72-94 (P)、TM4; 119-141 (S)、TM5; 170-192 (P)、TM6; 221-243 (P)、TM7; 260-282 (P)、TM8; 288-310 (S)]
- 25 odorant receptor S19 [Mus musculus] (AF121976); 163/280 (58%) 配列番号3 2 0 [TM1; 36-58 (P)、TM2; 65-86 (S)、

TM3; 93-115 (P), TM4; 134-156 (S), TM5; 195-217 (P), TM6; 236-257 (S)] olfactory receptor-like protein [Homo sapiens] (L35475); 280/316 (88%)

- 5 配列番号 3 2 2 [TM1; 28-50(P)、TM2; 96-118(P)、TM3; 141-163(S)、TM4; 176-198(S)、TM5; 207-229(P)、TM6; 239-260(S)、TM7; 273-294(S)]
 - olfactory receptor G3 [Mus musculus] (AF102535); 187/223 (83%)
- 10 配列番号 3 2 4 [TM1; 4-26 (P)、TM2; 5 4-76 (S)、TM3; 8 4-106 (P)、TM4; 1 4 4-166 (P)、TM5; 189-211 (S)、TM6; 214-235 (S)] odorant receptor S25 [Mus musculus] (AF121977); 180/251 (71%) 配列番号 3 2 6 [TM1; 3 4-56 (P)、TM2; 9 7-119 (P)、
- TM3;140-162(P)、TM4;173-195(S)、TM5;
 202-223(P)、TM6;266-288(S)]
 odorant receptor S25 [Mus musculus] (AF121977);189/310(60%)
 配列番号328[TM1;33-55(P)、TM2;98-120(P)、
 TM3;142-164(S)、TM4;204-226(P)、TM5;
- 20 2 3 9 2 6 1 (S)、TM 6; 2 7 1 2 9 3 (S)]
 olfactory receptor P2 [Mus musculus] (AF247657); 158/309 (51%)
 配列番号 3 3 0 [TM 1; 1 9 4 1 (P)、TM 2; 6 1 8 3 (P)、
 TM 3; 9 5 1 1 7 (P)、TM 4; 1 4 1 1 6 3 (P)、TM 5;
 2 0 1 2 2 3 (P)、TM 6; 2 3 9 2 6 0 (S)、TM 7; 2 7 2
- 25 293 (S)]
 odorant receptor [Mus musculus] (X92969); 156/310 (50%)

配列番号 3 3 2 [TM1; 1-23 (S)、TM2; 3 3-55 (P)、TM3; 8 3-105 (S)、TM4; 118-139 (P)、TM5; 166-188 (P)、TM6; 226-248 (P)、TM7; 260-282 (S)、TM8; 292-313 (S)]

- 5 HGMP07J [Homo sapiens] >gi|228481|prf||1804351C olfactory receptor HGMP07J [Homo sapiens] (X64995); 168/308 (54%) 配列番号 3 3 4 [TM1; 3 3-55(P)、TM2; 1 0 4-1 2 6 (P)、TM3; 1 4 5-1 6 7 (S)、TM4; 2 0 7-2 2 9 (P)、TM5; 2 4 3-2 6 5 (P)、TM6; 2 7 6-2 9 8 (P)]
- 10 olfactory receptor I7 [Mus musculus] (AF106007); 181/311 (58%) 配列番号 3 3 6 [TM1; 20-42(P)、TM2; 6 3-85(P)、TM3; 96-118(P)、TM4; 145-167(S)、TM5; 203-225(P)、TM6; 238-259(S)、TM7; 272-293(S)]
- HGMP07J [Homo sapiens] >gi | 228481 | prf | | 1804351C olfactory receptor HGMP07J [Homo sapiens] (X64995); 160/300 (53%) 配列番号 3 3 8 [TM1; 25-47 (P)、TM2; 61-83 (S)、TM3; 100-122 (P)、TM4; 144-166 (P)、TM5; 198-220 (P)、TM6; 236-258 (S)、TM7; 269
- 20 291 (S)]
 odorant receptor MOR18 [Mus musculus] (AB030895); 181/302 (59%)
 配列番号340 [TM1; 1-23 (S)、TM2; 25-47 (P)、
 TM3; 59-81 (P)、TM4; 92-114 (S)、TM5; 14
 3-165 (S)、TM6; 204-226 (P)、TM7; 237-2
- 25 5 9 (S), TM8; 2 6 7 2 8 9 (S)]
 odorant receptor A16 [Mus musculus] (AB030896); 170/297 (57%)

WO 02/16548 PCT/IB01/01446

配列番号342[TM1;23-45(P)、TM2;85-107(S)、TM3;136-158(P)、TM4;171-193(P)、TM5;196-217(P)、TM6;230-252(P)、TM7;259-281(S)]

- 5 odorant receptor MOR18 [Mus musculus] (AB030895); 184/297 (61%) 配列番号 3 4 4 [TM1; 4-26 (P)、TM2; 2 9-51 (P)、TM3; 8 7-109 (P)、TM4; 1 3 2-154 (P)、TM5; 200-222 (P)、TM6; 229-250 (S)] olfactory receptor [Mus musculus] (AJ251154); 188/308 (61%)
- 10 配列番号 3 4 6 [TM1; 10-32(S)、TM2; 42-64(P)、TM3; 76-98(S)、TM4; 115-137(S)、TM5; 156-177(S)、TM6; 216-238(S)、TM7; 254-276(S)、TM8; 288-309(S)]
 olfactory receptor-like protein COR3' beta [Gallus gallus]
- 15 (L17432); 167/314 (53%) 配列番号348 [TM1; 2-23 (S)、TM2; 29-51 (S)、 TM3; 67-89 (S)、TM4; 102-124 (P)、TM5; 1 61-183 (S)、TM6; 209-231 (S)、TM7; 237-259 (S)]
- 20 olfactory receptor [Homo sapiens] (Y10529); 193/270 (71%) 配列番号 3 5 0 [TM1; 38-60 (P)、TM2; 81-103 (S)、TM3; 111-133 (P)、TM4; 154-176 (S)、TM5; 218-240 (P)、TM6; 254-276 (P)、TM7; 288-309 (S)]
- olfactory receptor [Mus musculus domesticus] (AF073987); 183/216 (84%)

配列番号 3 5 2 [TM1; 1-23 (S)、TM2; 3 0-52 (P)、TM3; 6 4-86 (P)、TM4; 1 0 3-125 (S)、TM5; 1 4 4-165 (P)、TM6; 2 0 8-230 (P)、TM7; 2 4 2-264 (S)、TM8; 2 7 6-297 (S)]

- 5 odorant receptor S18 [Mus musculus] (AF121975); 219/305 (71%) 配列番号 3 5 4 [TM1; 3 8 6 0 (P)、TM2; 7 1 9 3 (P)、TM3; 1 0 7 1 2 9 (S)、TM4; 1 5 2 1 7 4 (S)、TM5; 2 1 3 2 3 5 (P)、TM6; 2 4 8 2 7 0 (S)、TM7; 2 8 0 3 0 2 (S)]
- 10 odorant receptor S19 [Mus musculus] (AF121976); 163/288 (56%) 配列番号 3 5 6 [TM1; 28-50 (P)、TM2; 72-94 (S)、TM3; 112-134 (P)、TM4; 141-163 (S)、TM5; 221-243 (P)、TM6; 286-308 (P)、TM7; 326-347 (S)、TM8; 357-379 (S)]
- olfactory receptor C6 [Mus musculus] (AF102523); 138/308 (44%) 配列番号 3 5 8 [TM1; 2 9 5 1 (P)、TM2; 6 6 8 8 (P)、TM3; 1 0 6 1 2 8 (S)、TM4; 1 3 2 1 5 4 (P)、TM5; 1 9 7 2 1 9 (P)、TM6; 2 3 4 2 5 5 (S)、TM7; 2 6 7 2 8 9 (S)]
- 20 olfactory receptor C6 [Mus musculus] (AF102523); 140/310 (45%) 配列番号 3 6 0 [TM1; 1-23(S)、TM2; 28-50(S)、TM3; 64-86(P)、TM4; 100-122(P)、TM5; 166-188(P)、TM6; 201-222(S)] olfactory receptor C6 [Mus musculus] (AF102523); 100/215 (46%)
- 25 配列番号 3 6 2 [TM1; 3 2-5 4 (P)、TM2; 1 0 5-1 2 7 (P)、 TM3; 1 4 4-1 6 6 (P)、TM4; 1 8 5-2 0 7 (S)、TM5;

. WO 02/16548 PCT/IB01/01446

210-231 (P), TM6; 241-263 (S), TM7; 272 -294 (S)]

HsOLF1 [Homo sapiens] (U56420); 161/310 (51%)

配列番号364[TM1;19-41(P)、TM2;61-83(S)、

5 TM3; 90-112 (P), TM4; 116-138 (S), TM5; 145-167 (S), TM6; 179-201 (S), TM7; 210 -232 (P), TM8; 270-292 (S)]

HsOLF1 [Homo sapiens] (U56420); 168/307 (54%)

配列番号366[TM1;19-41(S)、TM2;60-82(S)、

10 TM3; 99-121 (S), TM4; 140-162 (P), TM5; 206-227 (P), TM6; 243-264 (S), TM7; 273 -293 (S)]

CfOLF2 [Canis familiaris] (U53680); 175/308 (56%)

配列番号368[TM1;29-51(P)、TM2;101-123(P)、

15 TM3; 144-166(S), TM4; 206-227(P), TM5; 240-262(S), TM6; 273-295(S)] olfactory receptor OR93Ch [Pan troglodytes] (AF045577); 162/313 (51%)

配列番号370[TM1;23-45(P)、TM2;66-87(S)、

20 TM3; 94-116 (S), TM4; 133-155 (S), TM5; 200-222 (P), TM6; 246-268 (S), TM7; 276 -298 (S)]

CfOLF1 [Canis familiaris] (U53679); 153/299 (51%)

配列番号372[TM1;41-63(P)、TM2;102-124(S)、

25 TM3; 1 3 7 - 1 5 9 (P), TM4; 2 0 7 - 2 2 9 (P), TM·5; 2 4 6 - 2 6 8 (P), TM6; 2 7 8 - 3 0 0 (P)] HsOLF1 [Homo sapiens] (U56420); 173/306 (56%)

配列番号374 [TM1;7-29 (S)、TM2;32-53 (P)、

TM3:60-82 (S), TM4:100-122 (S), TM5:1

44-166 (P), TM6; 200-222 (P), TM7; 235-

5 257 (S)]

similar to rat olfactory receptor OR18; similar to S29710 (PID:g423702) [Homo sapiens] (AC004908); 220/311 (70%)

配列番号376[TM1;1-23(S)、TM2;28-50(P)、

TM3;59-81 (S), TM4;95-117 (P), TM5;14

10 2-164 (P), TM6; 206-228 (P), TM7; 239-2 60 (P)]

similar to rat olfactory receptor OR18; similar to S29710 (PID:g423702) [Homo sapiens] (AC004908); 225/291 (77%)

配列番号378[TM1;9-31(S)、TM2;123-145(P)、

15 TM3; 1 4 8 - 1 7 0 (S), TM4; 1 9 2 - 2 1 4 (S), TM5; 2 3 6 - 2 5 8 (P), TM6; 2 9 5 - 3 1 7 (P), TM7; 3 3 4 - 3 5 5 (P), TM8; 3 6 7 - 3 8 9 (S)]

olfactory receptor OR18 - rat(S29710); 204/302 (67%)

配列番号380[TM1;9-31(S)、TM2;34-56(P)、

20 TM3; 62-84 (S), TM4; 97-119 (S), TM5; 14 4-166 (S), TM6; 205-227 (P), TM7; 242-2 63 (P), TM8; 275-296 (P)]

olfactory receptor 4 [Gallus gallus] (X94744); 173/303 (57%)

配列番号382[TM1;20-42(S)、TM2;62-84(S)、

25 TM3; 95-117 (S), TM4; 146-168 (S), TM5; 205-226 (P), TM6; 237-259 (S), TM7; 268 -290(S)

odorant receptor MOR83 [Mus musculus] (ABO30894); 156/304 (51%)

配列番号384[TM1;22-44(P)、TM2;62-84(S)、

TM3:98-120 (S), TM4;144-166 (P), TM5;

5 197-219 (P), TM6; 237-259 (S), TM7; 269 -291 (S)]

odorant receptor MOR83 [Mus musculus] (AB030894); 159/304 (52%)

配列番号386[TM1;49-71(P)、TM2;77-99(S)、

TM3; 120-142 (P), TM4; 173-195 (S), TM5;

10 221-243 (P), TM6; 260-282 (P), TM7; 289 -311 (P)]

MOR 3'Betal [Mus musculus] (AF133300); 188/310 (60%)

配列番号388[TM1;17-39(P)、TM2;50-72(S)、

TM3; 82-104 (P), TM4; 134-156 (S), TM5;

15 167-189 (S), TM6; 196-217 (P), TM7; 224 -245 (S)]

olfactory receptor P2 [Mus musculus] (AF247657); 226/296 (76%)

配列番号390[TM1;19-41(P)、TM2;61-83(P)、

TM3; 94-116 (P), TM4; 136-158 (P), TM5;

20 178-200 (S), TM6; 207-229 (P), TM7; 273 -295 (S)]

olfactory receptor P2 [Mus musculus] (AF247657); 170/304 (55%)

配列番号392[TM1;27-49(P)、TM2;62-84(P)、

TM3; 95-117 (P), TM4; 135-157 (P), TM5;

25 177-199 (S), TM6; 207-229 (P), TM7; 273 -295 (S)] olfactory receptor P2 [Mus musculus] (AF247657); 164/304 (53%) 配列番号 3 9 4 [TM1; 3 0 - 5 2 (P)、TM2; 7 4 - 9 6 (P)、TM3; 1 3 7 - 1 5 7 (P)、TM4; 1 8 3 - 2 0 5 (S)、TM5; 2 5 8 - 2 8 0 (P)、TM6; 3 2 0 - 3 4 1 (S)]

taste bud receptor protein TB 567 [Rattus norvegicus] (U50948); 235/307 (76%)

配列番号396 [TM1;24-46 (P)、TM2;56-78 (S)、TM3;94-116 (S)、TM4;129-151 (P)、TM5;207-229 (P)、TM6;241-263 (S)、TM7;272

10 - 292 (P)

olfactory receptor OR14 - rat(S29709); 256/304 (84%)

配列番号398[TM1;28-50(P)、TM2;98-120(P)、 TM3;127-149(P)、TM4;203-225(P)、TM5;

249-271 (S), TM6; 274-295 (S)]

- olfactory receptor OR14 rat(S29709); 234/299 (78%)
 配列番号400 [TM1; 32-54(P)、TM2; 57-79(P)、
 TM3; 92-114(P)、TM4; 129-151(P)、TM5;
 201-223(P)、TM6; 237-259(S)]
 olfactory receptor OR14 rat(S29709); 189/302 (62%)
- 20 配列番号402 [TM1; 30-52 (P)、TM2; 62-84 (S)、TM3; 94-116 (P)、TM4; 138-159 (P)、TM5; 203-225 (P)、TM6; 238-259 (S)、TM7; 272-293 (S)]

olfactory receptor [Rattus norvegicus] (X80671); 210/305 (68%)

25 配列番号404[TM1;26-48(P)、TM2;94-116(S)、 TM3;129-151(S)、TM4;181-203(P)、TM5; 208-229 (P), TM6; 240-262 (S), TM7; 271
-292 (S)]

olfactory receptor OR14 - rat(S29709); 201/300 (67%)

配列番号406[TM1;28-50(P)、TM2;63-85(S)、

5 TM3; 93-115 (P), TM4; 130-152 (P), TM5; 202-224 (P), TM6; 238-259 (P)]

olfactory receptor [Rattus norvegicus] (X80671); 247/302 (81%)

配列番号408 [TM1;1-21(S)、TM2;40-62(P)、

TM3; 98-120 (P), TM4; 223-245 (P), TM5;

 $10 \quad 260-282$ (S), TM6; 290-312 (S)]

taste bud receptor protein TB 641 [Rattus norvegicus] (U50949); 185/297 (62%)

配列番号410[TM1;20-42(P)、TM2;200-222(P)、

TM3; 239-261 (P), TM4; 269-290 (S), TM5;

15 3 0 4 - 3 2 6 (P), TM 6; 3 3 1 - 3 5 2 (P), TM 7; 3 5 8 - 3 7 2 (S)]

taste bud receptor protein TB 641 [Rattus norvegicus] (U50949); 170/302 (56%)

配列番号412 [TM1;1-23(S)、TM2;26-48(S)、

20 TM3; 1 1 0 - 1 3 2 (S), TM4; 1 3 7 - 1 5 8 (P), TM5; 1 7 0 - 1 9 2 (P), TM6; 1 9 8 - 2 2 0 (S)] taste bud receptor protein TB 641 [Rattus norvegicus] (U50949);

140/234 (59%)

配列番号414 [TM1; 3-25 (S)、TM2; 30-52 (P)、

25 TM3; 63-85 (S), TM4; 180-202 (S), TM5; 2 05-226 (P), TM6; 239-261 (P), TM7; 266288 (S)]

taste bud receptor protein TB 641 [Rattus norvegicus] (U50949); 165/299 (55%)

配列番号416 [TM1;6-28(S)、TM2;41-63(S)、

5 TM3; 102-124(P), TM4; 142-164(P), TM5; 170-192(S), TM6; 198-220(S)] olfactory receptor OR18 - rat(S29710); 154/209(73%)

配列番号418[TM1; 26-48(S)、TM2; 99-121(P)、

TM3; 141-163 (P), TM4; 204-226 (P), TM5;

10 2 3 5 - 2 5 6 (P), TM6; 2 6 7 - 2 8 9 (S), TM7; 3 0 5 - 3 2 7 (P)]

odorant receptor A16 [Mus musculus] (AB030896); 164/286 (57%)

配列番号420[TM1;33-55(P)、TM2;70-92(S)、

TM3; 103-125 (P), TM4; 209-231 (P), TM5;

15 247-269 (S), TM6; 278-300 (S)]

olfactory receptor 4 [Gallus gallus] (X94744); 159/306 (51%)

配列番号422 [TM1;6-28(S)、TM2;31-52(P)、

TM3; 91-113 (P), TM4; 137-159 (S), TM5;

 $2\ 0\ 1-2\ 2\ 3$ (P), TM6; $2\ 3\ 9-2\ 6\ 1$ (S), TM7; $2\ 7\ 0$

20 - 292 (S)

olfactory receptor OR93Ch [Pan troglodytes] (AF045577); 166/305 (54%)

配列番号424[TM1;24-46(P)、TM2;99-120(P)、 TM3;137-159(P)、TM4;204-225(P)、TM5;

25 2 3 7 - 2 5 8 (S), TM6; 2 7 0 - 2 9 1 (S)]
HsOLF1 [Homo sapiens] (U56420); 154/301 (51%)

配列番号426 [TM1;17-39(S)、TM2;72-94(S)、TM3;134-156(P)、TM4;203-224(P)、TM5;238-260(P)、TM6;269-291(S)] olfactory receptor 2 [Gallus gallus] (X94742);155/307(50%)

5 配列番号428 [TM1; 26-48 (P)、TM2; 55-77 (S)、TM3; 81-103 (S)、TM4; 141-163 (P)、TM5; 197-219 (P)、TM6; 238-260 (P)、TM7; 268-290 (S)]

olfactory receptor OR18 - rat(\$29710); 193/299 (64%)

- 10 配列番号430[TM1;35-57(S)、TM2;96-118(S)、TM3;130-152(P)、TM4;156-178(S)、TM5;
 193-215(P)、TM6;239-261(P)、TM7;266
 -288(S)、TM8;294-315(S)]
 olfactory receptor OR18 rat(S29710);213/304(70%)
- 15 配列番号432 [TM1; 10-32(S)、TM2; 63-85(P)、TM3; 101-123(S)、TM4; 158-180(P)、TM5; 194-216(P)、TM6; 229-249(S)] olfactory receptor [Rattus norvegicus] (AF010293); 198/263(75%) 配列番号434 [TM1; 16-38(P)、TM2; 56-78(S)、TM3; 86-108(P)、TM4; 139-161(P)、TM5;
- 20 1 M 3; 8 6 1 0 8 (F), 1 M 4; 1 3 9 1 0 1 (1), 1 M 0; 1 9 7 - 2 1 9 (P), T M 6; 2 3 8 - 2 6 0 (S), T M 7; 2 7 0 - 2 9 1 (S)]

olfactory protein [Rattus norvegicus] (M64378); 142/294 (48%)

配列番号436 [TM1;8-30(P)、TM2;60-82(S)、

25 TM3; 93-115 (P), TM4; 139-161 (P), TM5; 203-225 (P), TM6; 268-290 (S)]

olfactory receptor C6 [Mus musculus] (AF102523); 149/312 (47%) 配列番号438[TM1;21-43(P)、TM2;89-111(S)、 TM3:132-154 (S), TM4:199-221 (P), TM5:239-260 (S), TM6; 269-291 (S)] olfactory receptor 2 [Gallus gallus] (X94742); 148/304 (48%) 5 配列番号440[TM1;34-56(P)、TM2;62-84(P)、 TM3:88-110 (S), TM4:206-228 (P), TM5:238-260 (P), TM6; 270-291 (S)] olfactory receptor 2 [Gallus gallus] (X94742); 158/307 (51%) 配列番号442 [TM1;23-45(S)、TM2;76-98(S)、 10 TM3; 134-156 (S), TM4; 199-221 (P), TM5; 240-261 (S), TM6; 270-291 (P) olfactory receptor 4 [Gallus gallus] (X94744); 171/301 (56%) 配列番号444 [TM1;3-25(S)、TM2;37-59(S)、 TM3:78-100 (P), TM4:147-169 (P), TM5:**1**5 184-206 (P), TM6; 214-235 (S) olfactory receptor OR93Ch [Pan troglodytes] (AF045577); 134/245 (54%)配列番号446「TM1:8-30(P)、TM2;33-54(P)、 TM3; 95-117 (S), TM4; 126-148 (P), TM5; 20 208-230 (P), TM6; 271-293 (S)] olfactory receptor 4 [Gallus gallus] (X94744); 149/304 (49%) 配列番号448[TM1;57-79(P)、TM2;96-118(S)、 TM3; 131-153 (S), TM4; 205-227 (S), TM5;237-259 (P), TM6; 274-295 (S)] 25 taste bud receptor protein TB 641 [Rattus norvegicus] (U50949);

173/298 (58%)

配列番号450[TM1;19-41(P)、TM2;62-84(P)、TM3;95-117(P)、TM4;141-163(P)、TM5;202-224(P)、TM6;240-261(P)、TM7;272

5 - 294 (S)

olfactory receptor C6 [Mus musculus] (AF102523); 152/300 (50%) 配列番号452[TM1; 31-53(P)、TM2; 95-117(P)、TM3; 125-147(P)、TM4; 180-202(S)、TM5; 208-229(P)、TM6; 238-260(S)、TM7; 272

10 - 294 (P)

olfactory receptor [Rattus norvegicus] (X80671); 193/301 (64%) 配列番号 4 5 4 [TM1; 2-24 (S)、TM2; 29-51 (S)、TM3; 5 9-81 (S)、TM4; 107-129 (S)、TM5; 169-190 (P)、TM6; 201-223 (P)]

- odorant receptor MOR83 [Mus musculus] (AB030894); 156/269 (57%) 配列番号456 [TM1; 1-21 (S)、TM2; 40-62 (P)、TM3; 98-120 (P)、TM4; 223-245 (P)、TM5; 259-281 (S)、TM6; 298-320 (P)] taste bud receptor protein TB 641 [Rattus norvegicus] (U50949);
- 20 154/249 (61%)

配列番号458 [TM1; 25-47 (P)、TM2; 55-77 (S)、TM3; 97-119 (S)、TM4; 140-162 (S)、TM5; 200-222 (P)、TM6; 236-258 (S)] olfactory receptor 4 [Gallus gallus] (X94744); 153/303 (50%)

25 配列番号 4 6 0 [TM1; 1-17(S)、TM2; 27-49(S)、 TM3; 67-89(P)、TM4; 102-124(P)、TM5; 1 WO 02/16548 PCT/IB01/01446

74-196 (S), TM6; 208-230 (P), TM7; 238-260 (S)]

olfactory receptor [Homo sapiens] (Y10529); 185/261 (70%)

配列番号462[TM1;1-20(S)、TM2;57-79(P)、

- 5 TM3;89-111(S)、TM4;122-144(P)、TM5; 156-178(P)、TM6;224-246(P)] olfactory receptor 4 [Gallus gallus] (X94744);122/229(53%) 配列番号464[TM1;32-54(S)、TM2;92-114(P)、
- TM3; 140-162(S), TM4; 197-219(S), TM5;
- 10 238-260 (S)、TM6; 272-293 (P)]
 olfactory receptor OR93Gib [Hylobates lar] (AF045580);160/309 (51%)
 配列番号466 [TM1; 1-23 (S)、TM2; 33-55 (S)、
 TM3; 69-91 (P)、TM4; 150-171 (P)、TM5; 182-204 (P)、TM6; 211-233 (S)]
- 15 HsOLF1 [Homo sapiens] (U56420); 147/247 (59%)
 配列番号468 [TM1; 26-48(P)、TM2; 94-116(P)、
 TM3; 136-158(P)、TM4; 180-202(S)、TM5;
 209-231(P)、TM6; 238-260(S)、TM7; 271
 -292(P)]
- 20 olfactory receptor 4 [Gallus gallus] (X94744); 170/307 (55%) 配列番号470 [TM1; 7-29 (P)、TM2; 35-57 (S)、TM3; 70-92 (S)、TM4; 184-205 (P)、TM5; 213-235 (S)、TM6; 247-268 (P))] olfactory receptor OR93Gib [Hylobates lar] (AF045580); 151/283 (53%)
- 25 配列番号472 [TM1; 19-41(P)、TM2; 56-78(S)、 TM3; 104-126(P)、TM4; 144-166(P)、TM5;

203-224 (P), TM6; 237-259 (P), TM7; 269
-291 (P)]

odorant receptor MOR83 [Mus musculus] (AB030894); 160/306 (52%)

配列番号474[TM1;27-49(P)、TM2;142-164(S)、

5 TM3; 172-193 (S), TM4; 205-226 (P), TM5; 242-264 (P), TM6; 268-290 (S)]

odorant receptor MOR83 [Mus musculus] (AB030894); 170/308 (55%)

配列番号476[TM1;37-59(P)、TM2;108-130(S)、

TM3; 153-175 (P), TM4; 188-210 (P), TM5;

10 214-235 (P), TM6; 251-273 (P), TM7; 278 -300 (S)]

odorant receptor MOR83 [Mus musculus] (AB030894); 168/297 (56%)

配列番号478[TM1;29-51(P)、TM2;58-80(S)、

TM3; 141-163 (P), TM4; 177-199 (P), TM5;

15 205-226 (P), TM6; 239-261 (P), TM7; 271 -293 (S)]

odorant receptor MOR83 [Mus musculus] (AB030894); 159/300 (53%)

配列番号480[TM1;30-52(P)、TM2;95-117(S)、

TM3; 149-171 (S), TM4; 197-219 (P), TM5;

20 241-263 (P), TM6; 268-290 (P)]

similar to rat olfactory receptor OR18; similar to S29710 (PID:g423702) [Homo sapiens] (AC004908); 167/312 (53%)

配列番号482[TM1;23-45(P)、TM2;58-80(S)、

TM3; 96-118 (S), TM4; 141-163 (S), TM5;

25 200-222 (P), TM6; 245-267 (S), TM7; 270 -292 (S)] -294(S)

5

CfOLF1 [Canis familiaris] (U53679); 149/310 (48%) 配列番号484 [TM1; 29-50 (P)、TM2; 60-82 (S)、 TM3; 95-117 (P)、TM4; 134-156 (S)、TM5; 203-225 (P)、TM6; 238-259 (S)、TM7; 274

- olfactory receptor P2 [Mus musculus] (AF247657); 144/307 (46%) 配列番号486 [TM1; 26-48(S)、TM2; 88-110(P)、TM3; 136-158(S)、TM4; 194-216(P)、TM5; 231-253(P)、TM6; 259-281(S)]
- 10 similar to rat olfactory receptor OR18; similar to S29710 (PID:g423702) [Homo sapiens] (AC004908); 177/296 (59%) 配列番号488 [TM1; 30-52(P)、TM2; 70-92(S)、TM3; 106-128(S)、TM4; 146-168(P)、TM5; 196-218(P)、TM6; 239-261(S)、TM7; 270
- 15 -292(S)]
 odorant receptor S46 [Mus musculus] (AF121979); 188/304 (61%)
 配列番号490 [TM1; 25-47 (P)、TM2; 53-75 (S)、
 TM3; 150-172 (S)、TM4; 199-221 (P)、TM5;
 235-257 (P)、TM6; 269-291 (S)]
- 20 odorant receptor MOR18 [Mus musculus] (AB030895); 193/301 (64%) 配列番号492 [TM1; 6-28(S)、TM2; 30-51(S)、TM3; 105-127(P)、TM4; 138-160(P)、TM5; 169-191(S)、TM6; 199-221(P)、TM7; 235-257(P)、TM8; 266-288(S)]
- 25 odorant receptor A16 [Mus musculus] (AB030896); 184/302 (60%) 配列番号4 9 4 [TM1; 2 4-46 (P)、TM2; 5 7-79 (S)、

TM3; 108-130 (S), TM4; 145-167 (S), TM5; 177-199 (S), TM6; 209-231 (P), TM7; 239. -261 (S), TM8; 270-292 (P)] odorant receptor S1 [Mus musculus] (AF121972); 129/297 (43%)

5 配列番号496[TM1;74-96(P)、TM2;126-148(S)、TM3;169-191(P)、TM4;206-228(P)、TM5; 234-255(P)、TM6;266-288(P)、TM7;297 -319(P)]

olfactory receptor P2 [Mus musculus] (AF247657); 130/305 (42%)

10 配列番号498 [TM1; 48-70 (P)、TM2; 73-95 (S)、 TM3; 99-121 (S)、TM4; 130-151 (S)、TM5; 162-184 (P)、TM6; 222-244 (P)、TM7; 254 -275 (P)、TM8; 284-306 (S)]

chick olfactory receptor 7 [Gallus gallus] (Z79586); 130/303 (42%)

15 配列番号 5 0 0 [TM1; 8-3 0 (P)、TM2; 3 4-5 6 (P)、TM3; 8 2-1 0 4 (S)、TM4; 1 4 0-1 6 2 (P)、TM5; 2 0 2-2 2 4 (P)、TM6; 2 4 0-2 6 1 (P)、TM7; 2 6 9 -2 9 1 (S)]

odorant receptor S1 [Mus musculus] (AF121972); 143/307 (46%)

20 配列番号 5 0 2 [TM1; 1-23(S)、TM2; 42-64(S)、
TM3; 8 4-106(P)、TM4; 148-169(P)、TM5;
184-205(S)、TM6; 213-235(S)]
olfactory receptor E6 [Mus musculus] (AF102528); 155/223(69%)
配列番号 5 0 4 [TM1; 2-24(S)、TM2; 40-62(S)、

25 TM3; 80-102 (P), TM4; 144-166 (P), TM5; 181-202 (S), TM6; 214-235 (S)] olfactory receptor [Rattus norvegicus] (X80671); 127/243 (52%) 配列番号 5 0 6 [TM1; 1-23 (P)、TM2; 27-49 (P)、TM3; 6 5-87 (S)、TM4; 8 9-111 (P)、TM5; 156-178 (P)、TM6; 194-215 (P)、TM7; 227-249 (S)] olfactory receptor [Gorilla gorilla] (AF101764); 93/214 (43%)

5

10

15

olfactory receptor [Gorilla gorilla] (AF101764); 93/214 (43%) 配列番号 5 0 8 [TM1; 11-33 (P)、TM2; 49-71 (S)、 TM3; 8 0-1 0 2 (S)、TM4; 1 2 8-1 5 0 (S)、TM5; 193-215 (P)、TM6; 2 2 5-2 4 7 (P)、TM7; 2 5 4

olfactory receptor P2 [Mus musculus] (AF247657); 128/290 (44%) 配列番号 5 1 0 [TM1; 18-40 (P)、TM2; 56-78 (P)、TM3; 91-113 (S)、TM4; 125-147 (S)、TM5; 200-222 (P)、TM6; 242-264 (S)、TM7; 269-291 (S)]

olfactory receptor-like protein [Rattus norvegicus] (AF029357); 129/300 (43%)

配列番号 5 1 2 [TM1; 2 5 - 47 (P)、TM2; 5 5 - 77 (S)、TM3; 9 3 - 1 1 5 (P)、TM4; 1 2 4 - 1 4 6 (S)、TM5; 20 2 0 6 - 2 2 8 (P)、TM6; 2 3 7 - 2 5 9 (P)、TM7; 2 7 0 - 2 9 1 (S)]

olfactory receptor [Gorilla gorilla] (AF101764); 125/302 (41%) 配列番号 5 1 4 [TM1; 8-30 (S)、TM2; 3 2-51 (P)、TM3; 6 3-85 (S)、TM4; 9 4-116 (S)、TM5; 1 4 1-163 (P)、TM6; 201-223 (P)、TM7; 244-266 (S)、TM8; 272-293 (S)]

olfactory receptor-like protein [Rattus norvegicus] (AF029357); 131/297 (44%)

配列番号516[TM1;26-48(P)、TM2;53-75(S)、

TM3; 96-118 (S), TM4; 135-157 (P), TM5;

5 198-220 (P), TM6; 241-263 (S), TM7; 270 -291 (S)]

gustatory receptor 43 [Rattus norvegicus] (AB038167); 265/311 (85%)

配列番号518[TM1;31-52(P)、TM2;62-84(S)、

TM3; 99-121 (P), TM4; 144-166 (S), TM5;

10 202-224 (P), TM6; 236-258 (P), TM7; 271 -292 (S)]

dJ80I19.7 (olfactory receptor-like protein (hs6M1-3)) [Homo sapiens] (AL022727); 174/304 (57%)

配列番号520[TM1;8-30(P)、TM2;79-101(P)、

15 TM3; 1 2 8 - 1 5 0 (S), TM4; 1 8 6 - 2 0 8 (P), TM5; 2 2 6 - 2 4 7 (S), TM6; 2 5 7 - 2 7 7 (S)]

gustatory receptor 43 [Rattus norvegicus] (AB038167); 169/283 (59%)

配列番号522[TM1;32-54(P)、TM2;56-78(S)、

TM3; 91-113 (S), TM4; 142-164 (S), TM5;

20 205-227 (P), TM6; 238-260 (S), TM7; 272 -294 (S)]

olfactory protein [Rattus norvegicus] (M64377); 161/303 (53%)

配列番号524 [TM1;1-22(S)、TM2;29-51(S)、

TM3; 101-123 (P), TM4; 172-194 (P), TM5;

25 213-235 (S), TM6; 239-261 (S)]

olfactory protein [Rattus norvegicus] (M64392); 165/268 (61%)

配列番号 5 2 6 [TM1; 28-50 (P)、TM2; 61-83 (S)、TM3; 103-125 (P)、TM4; 140-162 (P)、TM5; 202-224 (P)、TM6; 237-259 (P)] olfactory protein [Rattus norvegicus] (M64377); 161/305 (52%)

- 5 配列番号 5 2 8 [TM1; 2 7 4 9 (P)、TM2; 6 3 8 5 (S)、TM3; 9 1 1 1 3 (S)、TM4; 1 4 1 1 6 3 (S)、TM5; 1 7 7 1 9 9 (S)、TM6; 2 0 6 2 2 8 (P)、TM7; 2 4 0 2 6 2 (S)、TM8; 2 7 0 2 9 2 (S)]
 - olfactory receptor [Pan troglodytes] (AF101741); 195/307 (63%)
- 10 配列番号 5 3 0 [TM1; 2-24(S)、TM2; 3 1-53(S)、TM3; 6 5-87(S)、TM4; 1 0 9-131(S)、TM5; 1 6 9-191(P)、TM6; 2 0 9-2 2 6(S)] olfactory receptor [Mus musculus] (AJ251154); 190/285(66%)

配列番号532[TM1;33-55(P)、TM2;98-120(S)、

- 15 TM3; 132-154(S), TM4; 175-197(S), TM5; 205-227(P), TM6; 237-258(P), TM7; 278 -299(S)]
 - olfactory factor OR37 rat(S29711); 244/304 (80%)

配列番号534 [TM1;2-24(S)、TM2;31-53(S)、

- 20 TM3; 65-87 (S), TM4; 109-131 (S), TM5; 1 71-193 (P), TM6; 208-226 (P)]
 - olfactory receptor [Mus musculus] (AJ251154); 197/285 (69%)

配列番号536[TM1;1-23(S)、TM2;57-79(P)、

TM3; 128-150(S), TM4; 169-191(S), TM5;

25 206-228 (P), TM6; 237-259 (P), TM7; 267 -288 (P), TM8; 305-327 (S)] olfactory factor OR37 - rat(S29711); 259/304 (85%)

配列番号538[TM1;8-30(P)、TM2;56-78(S)、

TM3:81-103 (S), TM4; 107-129 (S), TM5;

148-170 (P), TM6; 177-199 (P), TM7; 203

5 - 225 (P)

olfactory receptor [Mus musculus] (AJ251154); 166/283 (58%)

配列番号540[TM1;24-46(P)、TM2;62-84(S)、

TM3; 101-123(S), TM4; 137-159(S), TM5;

171-193 (S), TM6; 207-229 (P), TM7; 237

10 - 258 (P), TM8; 274 - 296 (S)]

olfactory receptor [Mus musculus] (AJ251154); 219/319 (68%)

配列番号542[TM1;43-65(P)、TM2;117-139(S)、

TM3; 152-174 (P), TM4; 214-236 (P), TM5;

253-274 (S), TM6; 286-306 (S)]

- olfactory protein [Rattus norvegicus] (M64377); 174/311 (55%)
 - 配列番号544[TM1;39-61(P)、TM2;116-138(P)、

TM3; 152-174 (P), TM4; 214-236 (P), TM5;

253-274 (P), TM6; 284-306 (S)]

olfactory receptor [Homo sapiens] (AJ003147); 171/308 (55%)

20 配列番号 5 4 6 [TM1; 3 3 - 5 5 (P)、TM2; 6 8 - 9 0 (P)、

TM3; 100-122(S), TM4; 143-165(S), TM5;

208-230 (P), TM6; 244-266 (S), TM7; 279

-298(S)

HGMP07J [Homo sapiens] >gi|228481|prf||1804351C olfactory receptor

25 HGMP07J [Homo sapiens] (X64995); 143/297 (48%)

配列番号548[TM1;17-39(P)、TM2;70-92(S)、

• WO 02/16548 PCT/IB01/01446

```
TM3; 98-120 (P), TM4; 145-167 (P), TM5;
   202-224 (P), TM6; 238-259 (S)]
   olfactory receptor OR93Gib [Hylobates lar] (AF045580); 149/309 (48%)
   配列番号550 [TM1;1-19(S)、TM2;27-49(P)、
   TM3; 103-125(S), TM4; 139-161(P), TM5;
   201-223 (P), TM6: 237-258 (S)]
   olfactory factor OR37 - rat(S29711); 148/305 (48%)
   配列番号552「TM1;33-54(P)、TM2;60-82(P)、
   TM3; 95-117 (P), TM4; 133-155 (S), TM5;
   202-224 (P), TM6; 239-261 (P), TM7; 273
10
   -294(S)
   olfactory receptor E3 [Mus musculus] (AF102527); 159/223 (71%)
   配列番号554[TM1;19-41(S)、TM2;49-71(P)、
   TM3:81-103 (S), TM4:121-143 (P), TM5:
   163-185 (S), TM6; 216-238 (P), TM7; 260
15
   -282 (S), TM8; 294-314 (S)]
   olfactory receptor E3 [Mus musculus] (AF102527); 168/223 (75%)
   配列番号556[TM1;33-55(P)、TM2;65-87(P)、
   TM3:101-123(S), TM4:149-171(P), TM5;
   208-230 (P), TM6; 242-264 (P), TM7; 277
20
   -298 (S), TM8; 320-342 (P)
   olfactory receptor E3 [Mus_musculus] (AF102527); 128/223 (57%)
   配列番号558 [TM1;4-26(S)、TM2;34-56(S)、
   TM3; 62-84 (S), TM4; 165-187 (P), TM5; 2
   04-226 (P), TM6; 235-257 (S)]
25
   olfactory receptor E3 [Mus musculus] (AF102527); 147/223 (65%)
```

配列番号 5 6 0 [TM1; 2 5 - 4 7 (P)、TM2; 5 7 - 7 9 (S)、TM3; 9 3 - 1 1 5 (P)、TM4; 1 3 4 - 1 5 6 (S)、TM5; 2 0 1 - 2 2 3 (S)、TM6; 2 3 4 - 2 5 6 (S)、TM7; 2 6 9 - 2 9 1 (S)]

- olfactory receptor [Gorilla gorilla] (AF101764); 128/301 (42%) 配列番号 5 6 2 [TM1; 3 4 5 5 (P)、TM2; 1 0 1 1 2 3 (S)、TM3; 1 4 4 1 6 6 (S)、TM4; 2 0 8 2 3 0 (P)、TM5; 2 4 4 2 6 6 (P)、TM6; 2 7 5 2 9 7 (S)] olfactory receptor E3 [Mus musculus] (AF102527); 152/223 (68%)
- 10 配列番号 5 6 4 [TM1; 3 5 5 7 (P)、TM2; 9 5 1 1 7 (S)、TM3; 1 4 2 1 6 4 (P)、TM4; 1 7 0 1 9 2 (S)、TM5; 2 0 7 2 2 9 (P)、TM6; 2 3 8 2 6 0 (P)] olfactory receptor [Mus musculus] (AJ251155); 256/312 (82%) 配列番号 5 6 6 [TM1; 1 9 4 1 (P)、TM2; 6 1 8 3 (P)、
- 15 TM3; 95-117 (S), TM4; 141-163 (S), TM5; 201-223 (P), TM6; 239-260 (S)] HGMP07J [Homo sapiens] >gi|228481|prf||1804351C olfactory receptor HGMP07J [Homo sapiens] (X64995); 157/309 (50%)
- 配列番号 5 6 8 [TM1; 2 4 4 6 (P)、TM2; 5 7 7 9 (S)、
 20 TM3; 9 2 1 1 4 (S)、TM4; 1 4 1 1 6 3 (P)、TM5; 2 0 2 2 2 4 (P)、TM6; 2 3 9 2 6 1 (S)、TM7; 2 6 8 2 9 0 (S)]
 - olfactory protein [Rattus norvegicus] (M64378); 208/304 (68%) 配列番号 5 7 0 [TM1; 6 3 - 8 5 (P)、TM2; 9 8 - 1 2 0 (S)、
- 25 TM3; 1 4 5 1 6 7 (S), TM4; 1 7 9 2 0 1 (S), TM5; 2 4 3 - 2 6 5 (P), TM6; 2 8 1 - 3 0 2 (S)]

olfactory receptor [Mus musculus] (M84005); 191/305 (62%) 配列番号 5 7 2 [TM1; 13-35 (S)、TM2; 5 9-81 (S)、TM3; 102-124 (S)、TM4; 166-188 (P)、TM5; 201-223 (S)、TM6; 237-257 (S)]

- 5 OL1 receptor [Rattus norvegicus] (L34074); 120/270 (44%) 配列番号 5 7 4 [TM1; 15-37 (S)、TM2; 52-74 (S)、TM3; 9 9-121 (S)、TM4; 162-184 (P)、TM5; 195-216 (S)、TM6; 227-249 (S)、TM7; 252-274 (P)、TM8; 277-299 (P)]
- 10 olfactory receptor G7 [Mus musculus] (AF102537); 133/223 (59%) 配列番号 5 7 6 [TM1; 19-41 (P)、TM2; 5 7-79 (S)、TM3; 9 4-116 (S)、TM4; 139-161 (S)、TM5; 202-224 (P)、TM6; 240-260 (S)、TM7; 276-298 (S)]
- olfactory receptor P2 [Mus musculus] (AF247657); 135/301 (44%) 配列番号 5 7 8 [TM1; 28-50 (P)、TM2; 62-84 (S)、TM3; 98-120 (P)、TM4; 144-166 (P)、TM5; 209-231 (S)、TM6; 242-264 (P)] olfactory protein [Rattus norvegicus] (M64377); 175/309 (56%)
- 20 配列番号 5 8 0 [TM1; 1-23(S)、TM2; 51-73(P)、TM3; 119-141(S)、TM4; 166-187(S)、TM5; 204-226(S)、TM6; 235-257(P)、TM7; 272-294(S)]

CfOLF2 [Canis familiaris] (U53680); 168/293 (57%)

25 配列番号 5 8 2 [TM1; 3 2 - 5 4 (P)、TM2; 9 4 - 1 1 6 (S)、 TM3; 1 4 5 - 1 6 7 (P)、TM4; 2 0 0 - 2 2 2 (P)、TM5;

246-268 (S), TM6; 270-292 (S)] olfactory receptor [Pan troglodytes] (AF101741); 184/307 (59%) 配列番号584[TM1;55-77(P)、TM2;91-113(S)、 TM3; 124-146 (P), TM4; 172-194 (S), TM5; 209-231 (P), TM6; 238-260 (P), TM7; 265 5 -287 (P), TM8; 298-320 (S)] olfactory receptor [Mus musculus] (AJ251155); 179/306 (58%) 配列番号586[TM1;27-49(P)、TM2;87-109(P)、 TM3; 126-148(S), TM4; 153-175(S), TM5; 202-224 (P), TM6; 239-260 (S), TM7; 27210 -294(S)olfactory receptor [Rattus norvegicus] (X80671); 151/300 (50%) 配列番号588[TM1;28-50(P)、TM2;98-120(P)、 TM3:140-162(P), TM4;206-227(P), TM5;240-262 (S), TM6; 271-293 (S)] 15 olfactory receptor OR93Ch [Pan troglodytes] (AF045577); 161/304 (52%)配列番号590[TM1;11-33(S)、TM2;52-73(S)、 TM3; 98-120 (P), TM4; 135-157 (S), TM5;163-184 (P), TM6; 225-247 (S)] 20 HGMP07J [Homo sapiens] >gi|228481|prf||1804351C olfactory receptor HGMP07J [Homo sapiens] (X64995); 119/261 (45%) 配列番号592 [TM1;1-23 (P)、TM2;42-64 (S)、 TM3; 76-98 (S), TM4; 107-129 (P), TM5; 137-158 (S), TM6: 176-198 (S)] 25

olfactory receptor [Mus musculus] (AJ251154); 188/216 (87%)

配列番号 5 9 4 [TM1; 11-33 (P)、TM2; 47-69 (S)、TM3; 9 4-116 (P)、TM4; 140-162 (P)、TM5; 168-189 (S)、TM6; 195-208 (S)] similar to mouse olfactory receptor 13; similar to P34984 (PID:g464305) [Homo sapiens] (AC005587); 126/208 (60%) 配列番号 5 9 6 [TM1; 17-39 (P)、TM2; 8 4-106 (P)、TM3; 126-147 (S)、TM4; 149-171 (S)、TM5; 201-223 (S)、TM6; 258-280 (P)、TM7; 298 -320 (S)、TM8; 330-352 (S)]

- 10 olfactory receptor [Mus musculus] (M84005); 182/305 (59%) 配列番号 5 9 8 [TM1; 16-38 (P)、TM2; 94-116 (S)、TM3; 140-162 (P)、TM4; 171-193 (S)、TM5; 200-222 (P)、TM6; 239-261 (S)] similar to mouse olfactory receptor 13; similar to P34984
- 15 (PID:g464305) [Homo sapiens] (AC005587); 183/251 (72%) 配列番号 6 0 0 [TM1; 3 2 5 4 (P), TM2; 9 5 1 1 7 (P), TM3; 1 3 9 1 6 1 (S), TM4; 1 9 6 2 1 8 (P), TM5; 2 4 2 2 6 4 (S), TM6; 2 7 6 2 9 8 (S)] HsOLF3 [Homo sapiens] (U56421); 135/305 (44%)
- 20 配列番号602 [TM1; 19-41 (P)、TM2; 61-83 (P)、
 TM3; 94-116 (S)、TM4; 148-170 (P)、TM5;
 180-202 (S)、TM6; 211-233 (P)、TM7; 241
 -262 (S)、TM8; 273-294 (S)]
 R30385_1 [Homo sapiens] (AC004510); 293/313 (93%)
- 25 配列番号 6 0 4 [TM1; 7 3 9 5 (S)、TM2; 1 4 6 1 6 8 (S)、 TM3; 1 9 1 - 2 1 3 (S)、TM4; 2 4 5 - 2 6 7 (P)、TM5;

291-312 (P), TM6; 324-344 (S)] olfactory receptor 4 [Gallus gallus] (X94744); 169/310 (54%) 配列番号606 [TM1;1-21(S)、TM2;45-67(P)、 TM3;73-95 (S), TM4;106-128 (S), TM5;161-183 (P), TM6; 223-245 (P), TM7; 258-5 280 (S), TM8; 290-311 (S)odorant receptor S1 [Mus musculus] (AF121972); 215/315 (68%) 配列番号608[TM1;41-63(P)、TM2;71-93(S)、 TM3;105-127(P), TM4;149-171(P), TM5; 216-238 (P), TM6; 249-271 (P), TM7; 27910 -301(S)odorant receptor S1 [Mus musculus] (AF121972); 278/317 (87%) 配列番号610[TM1;29-50(P)、TM2;59-81(P)、 TM3:96-118 (S), TM4:144-166 (P), TM5:203-224 (P), TM6; 240-262 (P), TM7; 269 15 -291(S)odorant receptor MOR83 [Mus musculus] (ABO30894); 167/308 (54%) 配列番号612[TM1;56-78(S)、TM2;97-119(S)、 TM3; 136-158 (P), TM4; 184-206 (P), TM5;239-261 (P), TM6; 278-299 (S), TM7; 310 20 -331(S)odorant receptor S1 [Mus musculus] (AF121972); 195/293 (66%) 配列番号614[TM1;26-48(P)、TM2;60-82(S)、 TM3; 93-115 (S), TM4; 141-163 (P), TM5; 206-228 (P), TM6; 238-259 (S), TM7; 26825 -290(S)

olfactory receptor C6 [Mus musculus] (AF102523); 148/299 (49%) 配列番号616 [TM1; 19-41(S)、TM2; 62-84(S)、 TM3; 100-122(S)、TM4; 140-162(P)、TM5;

5 BC62940_2 [Homo sapiens] (AC004659); 214/310 (69%) 配列番号618 [TM1; 33-55 (P)、TM2; 64-86 (S)、TM3; 100-122 (S)、TM4; 137-159 (P)、TM5; 207-229 (P)、TM6; 245-267 (P)、TM7; 273-295 (S)]

202-224 (P), TM6; 242-264 (S)]

taste bud receptor protein TB 641 [Rattus norvegicus] (U50949); 270/310 (87%)

配列番号620 [TM1; 3-25 (P)、TM2; 30-51 (S)、TM3; 53-74 (S)、TM4; 81-95 (S)、TM5; 101-122 (S)、TM6; 144-166 (P)、TM7; 183-20

- 15 5 (P)、TM8; 214-235 (S)]
 olfactory receptor [Callithrix jacchus] (AF127882); 200/216 (92%)
 配列番号622 [TM1; 3-25 (P)、TM2; 30-51 (P)、
 TM3; 54-75 (S)、TM4; 78-96 (S)、TM5; 102
 -123 (S)、TM6; 144-166 (P)、TM7; 183-20
- 20 5 (P)、TM8; 214-235 (S)]
 olfactory receptor [Eulemur rubriventer] (AF127861); 200/216 (92%)
 配列番号624 [TM1; 16-38 (P)、TM2; 94-116 (S)、
 TM3; 140-162 (P)、TM4; 171-193 (S)、TM5;
 200-222 (P)、TM6; 239-260 (P)]
- similar to mouse olfactory receptor 13; similar to P34984 (PID:g464305) [Homo sapiens] (AC005587); 217/307 (70%)

配列番号626 [TM1; 1-23(P)、TM2; 52-74(P)、TM3; 120-142(S)、TM4; 168-190(P)、TM5; 230-251(P)、TM6; 262-284(P)] odorant receptor MOR18 [Mus musculus] (AB030895); 158/299(52%)

- 5 配列番号628 [TM1; 27-49 (P)、TM2; 62-84 (S)、TM3; 98-120 (S)、TM4; 145-167 (P)、TM5; 205-226 (P)、TM6; 237-259 (P)] odorant receptor MOR18 [Mus musculus] (AB030895); 149/293 (50%) 配列番号630 [TM1; 39-61 (P)、TM2; 80-102 (S)、
- 10 TM3; 1 1 5 1 3 7 (P), TM4; 1 6 0 1 8 2 (P), TM5;
 1 9 0 2 1 2 (S), TM6; 2 2 5 2 4 6 (P), TM7; 2 6 1
 2 8 3 (P), TM8; 2 8 8 3 1 0 (P)]
 similar to rat olfactory receptor OR18; similar to S29710
 (PID:g423702) [Homo sapiens] (AC004908); 164/302 (54%)
- 15 配列番号632 [TM1; 31-53(P)、TM2; 62-84(S)、 TM3; 101-123(S)、TM4; 133-155(S)、TM5; 164-186(S)、TM6; 200-222(P)、TM7; 238 -260(P)、TM8; 268-290(S)]

odorant receptor MOR83 [Mus musculus] (AB030894); 164/307 (53%)

- 20 配列番号634[TM1;27-49(P)、TM2;92-114(P)、
 TM3;133-155(P)、TM4;200-222(P)、TM5;
 237-258(S)、TM6;266-288(S)]
 odorant receptor MOR83 [Mus musculus] (AB030894);262/306(85%)
 配列番号636[TM1;5-27(P)、TM2;33-55(S)、
- 25 TM3; 59-81 (S), TM4; 83-105 (S), TM5; 11 4-136 (S), TM6; 144-166 (P), TM7; 180-2

01 (S), TM8; 214-236 (S)] taste bud receptor protein TB 641 [Rattus norvegicus] (U50949); 189/244 (77%) 配列番号638 [TM1;7-29(S)、TM2;67-89(S)、 TM3; 102-124 (P), TM4; 166-188 (S), TM5;5 209-231 (P), TM6; 237-259 (S)] BC319430_5 [Homo sapiens] (AC006271); 183/260 (70%) 配列番号640[TM1;20-42(S)、TM2;46-67(S)、 TM3; 72-94 (S), TM4; 115-137 (S), TM5; 160-182 (P), TM6; 218-240 (P), TM7; 256-10 278 (S), TM8; 292-314 (S) odorant receptor S1 [Mus musculus] (AF121972); 191/314 (60%) 配列番号642 [TM1; 2-24(S)、TM2; 48-70(P)、 TM3; 116-138 (S), TM4; 162-184 (P), TM5;188-210 (S), TM6; 222-244 (S), TM7; 26315 -285 (S), TM8; 325-345 (P)] OLF4 [Homo sapiens] (ACO02988); 200/302 (66%) 配列番号644 [TM1; 25-47 (P)、TM2; 58-80 (S)、 TM3; 100-122 (P), TM4; 142-164 (P), TM5;193-215 (P), TM6; 241-262 (S), TM7; 27220 -293(S)BC85395 3 [Homo sapiens] (AC005255); 201/302 (66%) 配列番号646[TM1;19-41(S)、TM2;95-117(P)、 TM3; 143-165 (P), TM4; 170-192 (S), TM5;200-222 (S), TM6; 241-263 (S)] 25

BC85395 3 [Homo sapiens] (AC005255); 186/298 (62%)

配列番号648 [TM1; 27-49 (P)、TM2; 60-82 (S)、TM3; 100-122 (P)、TM4; 143-165 (P)、TM5; 210-232 (P)、TM6; 243-265 (S)] olfactory receptor [Papio hamadryas] (AF127819); 204/216 (94%)

- 5 配列番号 6 5 0 [TM1; 3 4 5 6 (P)、TM2; 6 2 8 4 (S)、TM3; 9 8 1 2 0 (P)、TM4; 1 2 4 1 4 6 (S)、TM5; 2 0 2 2 2 4 (P)、TM6; 2 3 7 2 5 9 (S)、TM7; 2 7 0 2 9 2 (S)]
 - olfactory protein [Rattus norvegicus] (M64386); 177/308 (57%)
- 10 配列番号 6 5 2 [TM1; 41-63(S)、TM2; 82-104(S)、TM3; 113-134(S)、TM4; 144-166(P)、TM5; 181-203(P)、TM6; 210-232(S)]

 HGMP07J [Homo sapiens] >gi|228481|prf||1804351C olfactory receptor HGMP07J [Homo sapiens] (X64995); 124/248 (50%)
- 15 配列番号 6 5 4 [TM1; 12-34(P)、TM2; 45-67(S)、TM3; 101-123(S)、TM4; 144-166(S)、TM5; 197-219(P)、TM6; 240-261(S)、TM7; 272-293(S)]

HGMP07J [Homo sapiens] >gi|228481|prf||1804351C olfactory receptor HGMP07J [Homo sapiens] (X64995); 165/308 (53%)

20 HGMP07J [Homo sapiens] (X64995); 165/308 (53%)

配列番号656 [TM1; 28-50(P)、TM2; 94-116(S)、
TM3; 139-161(S)、TM4; 203-225(P)、TM5;
239-260(P)、TM6; 271-293(S)]

olfactory receptor P2 [Mus musculus] (AF247657); 155/308 (50%)

25 配列番号 6 5 8 [TM1; 5 1 - 7 3 (P)、TM2; 8 3 - 1 0 5 (P)、 TM3; 1 5 6 - 1 7 8 (P)、TM4; 2 0 2 - 2 2 4 (P)、TM5; 229-250 (P), TM6; 265-287 (P), TM7; 292
-314 (P)]

odorant receptor MOR83 [Mus musculus] (AB030894); 174/304 (57%)

配列番号660[TM1;1-23(S)、TM2;50-72(P)、

- 5 TM3; 81-103 (S), TM4; 113-135 (P), TM5; 160-182 (S), TM6; 222-244 (P), TM7; 258 -280 (S), TM8; 292-314 (S)]
 - olfactory receptor [Gorilla gorilla] (AF101764); 135/306 (44%)

配列番号662[TM1;23-45(P)、TM2;60-82(S)、

- 10 TM3; 98-120 (S), TM4; 139-161 (P), TM5; 203-225 (P), TM6; 237-259 (S), TM7; 271 -292 (S)]
 - olfactory receptor, family 12, subfamily D, member $2(NP_039224)$; 205/306 (66%)
- 15 配列番号 6 6 4 [TM1; 7-29(S)、TM2; 3 3-55(S)、TM3; 9 5-117(P)、TM4; 1 4 1-163(S)、TM5; 2 0 4-2 2 6 (P)、TM6; 2 4 0-2 6 2 (P)、TM7; 2 7 2 -2 9 3 (S)]

olfactory receptor [Mus musculus] (AJ251155); 157/309 (50%)

20 配列番号 6 6 6 [TM1; 18-40(P)、TM2; 55-77(S)、TM3; 111-133(P)、TM4; 142-164(P)、TM5; 195-217(P)、TM6; 246-268(P)、TM7; 284-305(S)]

candidate taste receptor T2R7(AF227133); 95/303 (31%)

25 配列番号 6 6 8 [TM1; 8-30(P)、TM2; 45-67(S)、 TM3; 97-119(S)、TM4; 128-150(P)、TM5; 180-202 (P), TM6; 228-250 (P), TM7; 252 -273 (S), TM8; 276-298 (S)]

candidate taste receptor T2R13(AF227137); 140/307 (45%)

配列番号670 [TM1;7-29 (P)、TM2;48-70 (S)、

5 TM3; 99-120 (S), TM4; 129-151 (P), TM5; 178-200 (P), TM6; 227-249 (P)]

candidate taste receptor T2R13(AF227137); 136/306 (44%)

配列番号672[TM1;10-32(P)、TM2;42-64(P)、

TM3; 93-115 (S), TM4; 126-148 (P), TM5;

- 10 182-204 (P)、TM6; 235-257 (P)]
 candidate taste receptor T2R7(AF227133); 131/311 (42%)
 配列番号674 [TM1; 19-41 (S)、TM2; 61-83 (S)、
 TM3; 108-130 (S)、TM4; 138-160 (P)、TM5;
 195-217 (P)、TM6; 247-269 (P)]
- 15 candidate taste receptor T2R9(AF227135); 101/307 (32%) 配列番号676 [TM1; 34-56 (P)、TM2; 75-97 (S)、 TM3; 114-136 (P)、TM4; 158-180 (P)、TM5; 209-231 (P)、TM6; 262-284 (P)、TM7; 286 -308 (S)]
- 20 taste receptor rT2R6(AF240766); 100/291 (34%)
 配列番号678 [TM1; 34-56 (P)、TM2; 75-97 (S)、
 TM3; 114-136 (P)、TM4; 158-180 (P)、TM5;
 209-231 (P)、TM6; 258-280 (P)]
 candidate taste receptor T2R7(AF227133); 103/310 (33%)
- 25 配列番号 6 8 0 [TM1; 7-29(P)、TM2; 94-116(P)、 TM3; 131-153(P)、TM4; 182-204(P)、TM5;

235-257 (P), TM6; 267-289 (P), TM7; 291
-307 (S)]

taste receptor rT2R12(AF240768); 214/307 (69%)

配列番号682 [TM1;8-30 (P)、TM2;46-68 (P)、

5 TM3; 91-113 (S), TM4; 128-150 (P), TM5; 180-202 (P), TM6; 229-251 (P)]

candidate taste receptor T2R13(AF227137); 140/309 (45%)

配列番号684 [TM1;8-30 (P)、TM2;45-67 (P)、

TM3; 90-112 (P), TM4; 129-151 (P), TM5;

10 1 7 8 - 2 0 0 (P.), TM6; 2 2 7 - 2 4 9 (P)]
candidate taste receptor T2R13(AF227137); 116/246 (47%)

配列番号686[TM1;7-29(P)、TM2;34-56(P)、

TM3; 61-83 (P), TM4; 116-138 (P), TM5; 147-169 (P), TM6; 197-219 (P), TM7; 248-

15 269 (P), TM8; 295-317 (S)]

candidate taste receptor T2R13(AF227137); 131/292 (44%)

配列番号688 [TM1;8-30 (P)、TM2;45-67 (P)、

TM3; 97-119 (P), TM4; 126-148 (P), TM5;

178-200 (P), TM6; 230-251 (P), TM7; 267

20 - 289 (S)

candidate taste receptor T2R13(AF227137); 136/309 (44%)

配列番号690[TM1;8-30(P)、TM2;45-67(P)、

TM3; 97-119 (P), TM4; 128-150 (P), TM5; 180-202 (P), TM6; 229-251 (P)]

25 candidate taste receptor T2R13(AF227137); 115/252 (45%)

配列番号692 [TM1;8-30 (P)、TM2;46-68 (S)、

TM3; 99-121 (S)、TM4; 128-150 (P)、TM5; 184-206 (P)、TM6; 229-251 (P)] candidate taste receptor T2R13(AF227137); 136/306 (44%) 配列番号694 [TM1; 8-30 (P)、TM2; 45-67 (P)、TM3; 97-119 (S)、TM4; 128-150 (P)、TM5; 178-200 (P)、TM6; 228-250 (P)、TM7; 276-298 (S)] candidate taste receptor T2R13(AF227137); 131/293 (44%)

10 産業上の利用可能性

本発明によると、生体内情報伝達機構の発見や新規薬物標的蛋白質の同定を可能とすることができる新規GPCR遺伝子やGPCR蛋白質をデータベース上で網羅的に検索することができ、得られたGPCR蛋白質を用いることにより、その内在性リガンド等をスクリーニングすることが可能となり、これらGPCRやその内在性リガンドは、これらに作用する薬剤の研究や、当該遺伝子及びその変異体の遺伝治療等への応用など、新たな治療法への応用の可能性が期待される。また味覚受容体及び嗅覚受容体のリガンドとして、新規味物質、苦味阻害物質、新規匂い物質、匂い阻害物質の開発などへの応用が期待される。さらに、新規GPCR遺伝子の解析を通して新しい生体内情報伝達機構の発見や新規薬物標的蛋白質の同定も期待できる。

請求の範囲

- 1.ヒト由来ゲノム情報から200~1500のアミノ酸残基からなり、6~8個の膜貫通領域を含むオープンリーディングフレームを抽出し、
- 5 得られたオープンリーディングフレームの中から既知のG蛋白質共役受容体遺伝子とホモロジーを有する遺伝子を検索することを特徴とするG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法。
- 2. オープンリーディングフレームを抽出するに際して、DNAの繰返 10 し配列に由来するオープンリーディングフレーム、不確定なアミノ酸が 多いオープンリーディングフレーム、及び同一アミノ酸を20%以上有 するオープンリーディングフレームを排除することを特徴とする請求項 1記載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白 質の検索方法。
- 15 3. 既知のG蛋白質共役受容体遺伝子とホモロジーを有する遺伝子が、 G蛋白質共役受容体遺伝子又はG蛋白質共役受容体関連遺伝子であることを特徴とする請求項1又は2記載のG蛋白質共役受容体遺伝子及び/ 又はG蛋白質共役受容体蛋白質の検索方法。
- 4. G蛋白質共役受容体が、内在性リガンドを有することを特徴とする 20 請求項1~3のいずれか記載のG蛋白質共役受容体遺伝子及び/又はG 蛋白質共役受容体蛋白質の検索方法。
 - 5. 内在性リガンドを有するG蛋白質共役受容体が、嗅覚受容体及び味 覚受容体以外のG蛋白質共役受容体であることを特徴とする請求項4記 載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の
- 25 検索方法。
 - 6. 内在性リガンドを有するG蛋白質共役受容体が、嗅覚受容体のG蛋

5

白質共役受容体であることを特徴とする請求項4記載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法。

- 7. 内在性リガンドを有するG蛋白質共役受容体が、味覚受容体のG蛋白質共役受容体であることを特徴とする請求項4記載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法。
- 8. 請求項1~7のいずれか記載のG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法により得られることを特徴とするG蛋白質共役受容体遺伝子。
- 9.以下の(a)又は(b)のG蛋白質共役受容体蛋白質をコードする遺伝子。
- 10 (a) 配列番号2n(n=1から51までのいずれかの整数を示す)に 示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質
- (b) 配列番号2n(n=1から51までのいずれかの整数を示す)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるG蛋白質共役受容体蛋白質10.配列番号2n-1(n=1から51までのいずれかの整数を示す)に示される塩基配列又はその相補的配列並びにこれらの配列の一部または全部を含むDNAからなるG蛋白質共役受容体蛋白質をコードするDNA。
- 11. 請求項10記載の遺伝子を構成するDNAとストリンジェントな 20 条件下でハイブリダイズし、かつG蛋白質共役受容体蛋白質をコードす るDNA。
 - 12. 以下の(a) 又は(b) のG蛋白質共役受容体蛋白質をコードする遺伝子。
- (a) 配列番号 2n(n=52 から 332 までのいずれかの整数を示す) 25 に示されるアミノ酸配列からなる G 蛋白質共役受容体蛋白質
 - (b) 配列番号2n(n=52から332までのいずれかの整数を示す)

に示されるアミノ酸配列において1若しくは数個のアミノ酸が欠失、置 換若しくは付加されたアミノ酸配列からなるG蛋白質共役受容体蛋白質。

- 13. 配列番号 2n-1 (n=52から 332までのいずれかの整数を 示す) に示される塩基配列又はその相補的配列並びにこれらの配列の一
- 部または全部を含むDNAからなるG蛋白質共役受容体蛋白質をコード するDNA。
 - 14. 請求項13記載の遺伝子を構成するDNAとストリンジェントな 条件下でハイブリダイズし、かつG蛋白質共役受容体蛋白質をコードす るDNA。
- 15. 以下の(a)又は(b)のG蛋白質共役受容体蛋白質をコードす 10 る遺伝子。
 - (a) 配列番号 2n (n=333から 347までのいずれかの整数を示 す) に示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質。
- (b) 配列番号2n(n=333から347までのいずれかの整数を示 す) に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠 15 失、置換若しくは付加されたアミノ酸配列からなるG蛋白質共役受容体 蛋白質。
- 16. 配列番号 2 n-1 (n=333から347までのいずれかの整数 を示す)に示される塩基配列又はその相補的配列並びにこれらの配列の 一部または全部を含むDNAからなるG蛋白質共役受容体蛋白質をコー 20 ドするDNA。
 - 17. 請求項16記載の遺伝子を構成するDNAとストリンジェントな 条件下でハイブリダイズし、かつG蛋白質共役受容体蛋白質をコードす るDNA。
- 18. 請求項1~7のいずれか記載のG蛋白質共役受容体遺伝子及び/ 25 又はG蛋白質共役受容体蛋白質の検索方法により得られることを特徴と

するG蛋白質共役受容体蛋白質。

- 19. 配列番号2n(n=1から51までのいずれかの整数を示す)に示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質。
- 20. 配列番号2n(n=1から51までのいずれかの整数を示す)に 示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置 換若しくは付加されたアミノ酸配列からなるG蛋白質共役受容体蛋白質。 21. 配列番号2n(n=52から332までのいずれかの整数を示す) に示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質。
- 22.配列番号2n(n=52から332までのいずれかの整数を示す) 10 に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなるG蛋白質共役受容体蛋白 質。
 - 23. 配列番号 2n(n=333) から 347 までのいずれかの整数を示す)に示されるアミノ酸配列からなる G 蛋白質共役受容体蛋白質。
- 15 24. 配列番号2n(n=333から347までのいずれかの整数を示す)に示されるアミノ酸配列において、1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなるG蛋白質共役受容体蛋白質。
- 25.請求項1~7のいずれか記載のG蛋白質共役受容体遺伝子及び/ 20 又はG蛋白質共役受容体蛋白質の検索方法により得られるG蛋白質共役 受容体蛋白質の部分ペプチド。
 - 26. G蛋白質共役受容体蛋白質が、請求項19~24のいずれか記載のG蛋白質共役受容体蛋白質であることを特徴とする請求項25記載の部分ペプチド。
- 25 27. 請求項18記載のG蛋白質共役受容体蛋白質又は請求項25記載 のG蛋白質共役受容体蛋白質の部分ペプチドと、マーカー蛋白質及び/

又はペプチドタグとを結合させた融合蛋白質又は融合ペプチド。

- 28. G蛋白質共役受容体蛋白質が、請求項19~24のいずれか記載のG蛋白質共役受容体蛋白質であることを特徴とする請求項27記載の融合蛋白質。
- 5 29. 請求項18記載のG蛋白質共役受容体蛋白質に特異的に結合する 抗体。
 - 30. G蛋白質共役受容体蛋白質が、請求項19~24のいずれか記載のG蛋白質共役受容体蛋白質であることを特徴とする請求項29記載の抗体。
- 10 31. 請求項18記載のG蛋白質共役受容体蛋白質を発現することができる発現系を含んでなる宿主細胞。
 - 32. G蛋白質共役受容体蛋白質が、請求項19~24のいずれか記載のG蛋白質共役受容体蛋白質であることを特徴とする請求項31記載の宿主細胞。
- 15 33. 請求項18記載のG蛋白質共役受容体蛋白質をコードする遺伝子機能が染色体上で欠損し又は前記蛋白質が過剰発現することを特徴とする非ヒト動物。
 - 34. G蛋白質共役受容体蛋白質が、請求項19~24のいずれか記載のG蛋白質共役受容体蛋白質であることを特徴とする請求項33記載の非ヒト動物。

20

- 35. 非ヒト動物がマウスであることを特徴とする請求項33又は34記載の非ヒト動物。
- 36. 請求項18~24のいずれか記載のG蛋白質共役受容体蛋白質、 請求項25若しくは26記載の部分ペプチド、又は前記蛋白質若しくは 25 部分ペプチドを発現している細胞の膜と、被検物質とを用いることを特 徴とするG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質

5

共役受容体の発現促進若しくは抑制物質のスクリーニング方法。

37. 請求項18~24のいずれか記載のG蛋白質共役受容体蛋白質、 請求項25若しくは26記載の部分ペプチド、又は前記蛋白質若しくは 部分ペプチドを発現している細胞の膜と、G蛋白質又はG蛋白質の部分 ペプチドと、被検物質とを用いることを特徴とするG蛋白質共役受容体 の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しく は抑制物質のスクリーニング方法。

- 38. 請求項18~24のいずれか記載のG蛋白質共役受容体蛋白質又は請求項25若しくは26記載の部分ペプチドを発現している細胞と、
- 10 被検物質とを用いることを特徴とするG蛋白質共役受容体の機能促進若 しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質の スクリーニング方法。
 - 39. 請求項18~24のいずれか記載のG蛋白質共役受容体蛋白質又は請求項25若しくは26記載の部分ペプチドを発現している細胞が、
- 15 請求項31又は32記載の宿主細胞であることを特徴とする請求項36 ~38のいずれか記載のG蛋白質共役受容体の機能促進若しくは抑制物 質又はG蛋白質共役受容体の発現促進若しくは抑制物質のスクリーニン グ方法。
- 40. 請求項33~35のいずれか記載の非ヒト動物と、被検物質とを 20 用いることを特徴とするG蛋白質共役受容体の機能促進若しくは抑制物 質又はG蛋白質共役受容体の発現促進若しくは抑制物質のスクリーニン グ方法。
- 41. 請求項36~40のいずれか記載のG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物 25 質のスクリーニング方法により得られることを特徴とするG蛋白質共役 受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進

. WO 02/16548 PCT/IB01/01446

若しくは抑制物質。

5

10

15

20

42. G蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質が、G蛋白質共役受容体のリガンドであることを特徴とする請求項41記載のG蛋白質共役受容体の機能促進若しくは抑制物質又はG蛋白質共役受容体の発現促進若しくは抑制物質。

43. G蛋白質共役受容体の機能促進又は発現増強を必要としている患者を治療するのに用いられる医薬組成物であって、有効成分として請求項18~24のいずれか記載の蛋白質、請求項25若しくは26記載の部分ペプチド、又は請求項41若しくは42記載のG蛋白質共役受容体の機能又は発現を促進する物質を含んでなる医薬組成物。

44. G蛋白質共役受容体の機能又は発現の抑制を必要としている患者を治療するのに用いられる医薬組成物であって、有効成分として請求項 18~24のいずれか記載の蛋白質、請求項25若しくは26記載の部分ペプチド、又は請求項41若しくは42記載のG蛋白質共役受容体の機能又は発現を抑制する物質を含んでなる医薬組成物。

45. 検体中のG蛋白質共役受容体蛋白質をコードするDNA配列を、請求項18~24のいずれか記載の蛋白質をコードするDNA配列と比較することを特徴とするG蛋白質共役受容体の機能又は発現に関連する疾病の診断方法。

46. 請求項18~24のいずれか記載の蛋白質をコードするDNA又はRNAのアンチセンス鎖の全部又は一部からなるG蛋白質共役受容体の機能又は発現に関連する疾病の診断用プロープ。

47. 請求項46記載の診断用プローブ及び/又は請求項29又は30 25 記載の抗体を含有することを特徴とするG蛋白質共役受容体の機能又は 発現に関連する疾病の診断薬。

(19) 世界知的所有権機関 国際事務局

11660 (1860) (1860) (1860) (1860) (1861) (1861) (1864) (1861) (1866) (1866) (1866) (1866) (1866)

(43) 国際公開日 2002年2月28日(28.02.2002)

PCT

(10) 国際公開番号 WO 02/16548 A3

C12N 15/12, C07K 14/705, 19/00, (51) 国際特許分類7: 16/28, C12N 1/21, 1/19, 5/10, A01K 67/027, G01N 33/50, 33/53, 33/566, 33/68, C12Q 1/02, 1/68, A61K 38/17

(21) 国際出願番号:

PCT/IB01/01446

(22) 国際出願日:

2001年7月30日(30.07.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-237818 2000年8月4日 (04.08.2000) JP 2001年2月13日(13.02.2001) 特願2001-34434

(71) 出願人 (米国を除く全ての指定国について): 科学技術 振興事業団 (JAPAN SCIENCE AND TECHNOLOGY CORPORATION) [JP/JP]; 〒332-0012 埼玉県川口市本 町四丁目1番8号 Saitama (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 芳賀達也 (HAGA, Tatsuya) [JP/JP]; 〒249-0004 神奈川県逗子市沼間二丁

目3番1号411号室 Kanagawa (JP). 武田茂樹 (TAKEDA, Shigeki) [JP/JP]; 〒234-0055 神奈川県横浜市港南区 日野南七丁目15番3号 Kanagawa (JP). 美宅成樹 (MI-TAKU, Shigeki) [JP/JP]; 〒185-0021 東京都国分寺市南 町三丁目21番1号1108号室 Tokyo (JP).

- (74) 代理人: 廣田雅紀(HIROTA, Masanori); 〒107-0052 東京都港区赤坂二丁目8番11号 第11赤坂葵ビル502 Tokyo (JP).
- (81) 指定国 (国内): CA, US.
- (84) 指定国 (広域): ヨーロッパ特許 (CH, DE, ES, FR, GB, IT, SE).

添付公開書類:

- 国際調査報告書
- 電子形式により別個に公開された明細書の配列表部 分、請求に基づき国際事務局から入手可能
- (88) 国際調査報告書の公開日:

2002 年6 月27 日

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: NOVEL G PROTEIN-COUPLED RECEPTOR

(54) 発明の名称: 新規G蛋白質共役受容体

(57) Abstract: It is intended to provide a novel G protein-coupled receptor (GPCR) gene which makes it possible to find a signal transduction mechanism in vivo or to identify a novel drug-target protein and a method of totally searching for a GPCR protein on data base. Open reading frames (ORFs) consisting of from 250 to 1000 amino acid residues are extracted from human-origin genome data and ORFs originating in DNA repeated sequences, ORFs containing many indefinite amino acids and ORFs having a single amino acid at a ratio of 20% or more are excluded therefrom. Then ORFs containing 6 to 8 transmembrane domains are extracted by using SOSUI. Among the ORFs thus obtained, a gene homologous with a known GPCR gene (preferably a gene showing the highest homology with a GPCR gene or a GPCR-associated gene in homology searching) is searched for.

(57) 要約:

生体内情報伝達機構の発見や新規薬物標的蛋白質の同定を可能とすることができる新規G蛋白質共役受容体(GPCR)遺伝子やGPCR蛋白質をデータベース上で網羅的に検索する方法を提供するものである。ヒト由来ゲノム情報から250~1000のアミノ酸残基からなるオープンリーディングフレーム(ORF)を抽出し、DNAの繰返し配列に由来するORF、不確定なアミノ酸が多いORF、及び同一アミノ酸を20%以上有するORFを排除し、6~8個の膜貫通領域を含むORFをSOSUIを用いて抽出し、得られたORFの中から即知のGPCR遺伝子とホモロジーを有する遺伝子、好ましくはホモロジー検索における最もホモロジーの高い遺伝子がGPCR遺伝子又はGPCR関連遺伝子である遺伝子を検索する。

International application No.

PCT/IB01/01446

	Int.	IFICATION OF SUBJECT MATTER C1 ⁷ C12N 15/12, C07K 14/705, C07K C12N 5/10, A01K 67/027, G01 33/68, C12Q 1/02, C12Q 1/68 International Patent Classification (IPC) or to both nation	N 33/50, G01N 33/53, G01 8, A61K38/17	/21, C12N 1/19, N 33/566, G01N
Minin	3. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C12N 15/12, C07K 14/705, C07K 19/00, C07K 16/28, C12N 1/21, C12N 1/19, C12N 5/10, A01K 67/027, G01N 33/50, G01N 33/53, G01N 33/566, G01N 33/68, C12Q 1/02, C12Q 1/68, A61K38/17			
Docur	mentati	on searched other than minimum documentation to the	extent that such documents are included i	in the fields searched
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) WPI (DIALOG), BIOSIS (DIALOG), CA (STN), MEDLINE (STN), JICST FILE (JOIS)				
C. I	OCU	MENTS CONSIDERED TO BE RELEVANT		
Categ	orv*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
	<i>Y</i>	WO 00/05264 Al (Takeda Chemical 03 February, 2000 (03.02.2000), & JP 2000-175690 A & EP 110356 & AU 9947986 A	Industries, Ltd.),	1-8,18,25,27, 29,31,33, 35-40,43-44, 46-47
3	Y	WO 00/08053 A1 (Takeda Chemical 17 February, 2000 (17.02.2000), & JP 2000-050875 A & EP 110356 & AU 9950651 A		1-8,18,25,27, 29,31,33, 35-40,43-44, 46-47
3	Y	MITAKU, S. et al., "Proportion of proteomes of 15 single-cell org SOSUI prediction system", Biophy Nos.2-3, pages 165-171	anisms analyzed by the	1-8,18,25,27, 29,31,33, 35-40,43-44, 46-47
3	Y	MITAKU, S., "Homology no nai Am kara no Tanpakushitsu Kozo Kino Chuushutsu", Genome Science; H motozuku Bioscience no Shin-Ten pages 367-370	Joho no Hito Genome Kaiseki ni	1-8,18,25,27, 29,31,33, 35-40,43-44, 46-47
	Enabe	and a supports are listed in the continuation of Box C	See patent family annex.	1
Further documents are listed in the continuation of Box C. Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed			the application but cited to derlying the invention claimed invention cannot be ered to involve an inventive e claimed invention cannot be p when the document is a documents, such a skilled in the art	
Date of the actual completion of the international search 25 January, 2002 (25.01.02) Date of mailing of the international search report 05 February, 2002 (05.02.02)			rch report 05.02.02)	
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer			,	
Faccimile No		In	Telephone No.	

International application No.

PCT/IB01/01446

ategory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	SUWA Makiko et al., "Amino-san Hairetsu Joho kara no Receptor Tanpakushitsu no Kozo Yosoku to Drug Design ni okeru Igi", Fine Chemical, 1998, Vol.27, No.19, pages 7-17	1-8,18,25,27, 29,31,33, 35-40,43-44, 46-47
Y	ZHAO, H. et al., "Vertebrate odorant receptors", Cell. Mol. Life Sci. 1999, Vol.56, Nos.7-8, pages 647-659	1-8,18,25,27, 29,31,33, 35-40,43-44, 46-47
Y	MOMBAERTS, P. Seven-transmembrane proteins as odorant and chemosensory receptors. Science 1999, Vol.286, No.5440, pages 707-711	1-8,18,25,27, 29,31,33, 35-40,43-44, 46-47
р,х	TAKEDA, S. et al., "Systematic seach for G-protein-coupled receptor genes from human genome database", Jpn: J. Pharmacol. 2001 March, Vol.85, No.Suppl.1, page 167P	1-8,18,25,27, 29,31,33, 35-40,43-44, 46-47
	·	
	·	
	·	
		1
	±.	İ
	·	

International application No.

PCT/IB01/01446

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)		
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:		
. 🖂	Claims Nos.: 45	
1. 🔀	because they relate to subject matter not required to be searched by this Authority, namely:	
	Claim 45 pertains to diagnostic methods to be practiced on the human body.	
2.	Claims Nos.: 41-42 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:	
	Although the substances as set forth in claims 41 and 42 involve any	
suk	ostances obtained by a screening method as set forth in any of claims 36	
to	40, no particular substance is stated in the description. Thus, these	
cla	aims are not sufficiently supported by the description.	
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This Into	ernational Searching Authority found multiple inventions in this international application, as follows:	
	ee extra sheet.	
	<u>.</u>	
i. 🔲	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.	
	the Australia did not invite navment	
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
	· · · · · · · · · · · · · · · · · · ·	
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
4. 🛛	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
	Claims 1 to 8, 18, 25, 27, 29, 31, 33, 35 to 40, 43, 44, 46 and	
47		
	The state of the s	
Remar	The additional search fees were accompanied by the applicant's protest.	
	No protest accompanied the payment of additional search fees.	

International application No.

PCT/IB01/01446

Continuation of Box No. II of continuation of first sheet (1)

Although the invention as set forth in claim 1 relates to a method of searching for a G protein-coupled receptor gene and/or a G protein-coupled receptor protein from human-origin genome data, G protein-coupled receptor genes obtained by the searching method as set forth in claim 1 involve those which are not novel. Such being the case, the invention as set forth in claim 1 relating to a method of searching for a G protein-coupled receptor gene and/or a G protein-coupled receptor protein and the invention as set forth in claim 9 relating to genes encoding G protein-coupled receptor proteins etc. comprising the amino acid sequences represented by the even numbers among SEQ ID NOS:2 to 102 are not considered as relating to a group of inventions so linked as to form a single general inventive concept.

Although the inventions as set forth in claims 9 to 17, 19 to 24, 26, 28, 30, 32 and 34 relates to genes encoding G protein-coupled receptor proteins etc. comprising the amino acid sequences represented by the even numbers among SEQ ID NOS:2 to 694, it cannot be said that the genes encoding the G protein-coupled receptor proteins comprising the amino acid sequences represented by the even numbers among SEQ ID NOS:2 to 694 have a common structure. Moreover, it cannot be said that genes encoding the G protein-coupled receptor proteins are novel. Accordingly, the inventions as set forth in claims 9 to 17, 19 to 24, 26, 28, 30, 32 and 34 are divided into 347 groups of inventions of genes respectively encoding the G protein-coupled receptor proteins comprising the amino acid sequences represented by the even numbers among SEQ ID NOS:2 to 694 and these groups of inventions are not considered as relating to a group of inventions so linked as to form a single general inventive concept.

Such being the case, the inventions as set forth in claims 1 to 40, 43, 44, 46 and 47 are divided into 348 groups of inventions and these groups of inventions are not considered as relating to a group of inventions so linked as to form a single general inventive concept.

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1⁷ C12N 15/12, C07K 14/705, C07K 19/00, C07K 16/28, C12N 1/21, C12N 1/19, C12N 5/10, A01K 67/027, G01N 33/50, G01N 33/53, G01N 33/566, G01N 33/68, C12Q 1/02, C12Q 1/68, A61K38/17

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C12N 15/12, C07K 14/705, C07K 19/00, C07K 16/28, C12N 1/21, C12N 1/19, C12N 5/10, A01K 67/027, G01N 33/50, G01N 33/53, G01N 33/566, G01N 33/68, C12Q 1/02, C12Q 1/68, A61K38/17

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

WPI (DIALOG), BIOSIS (DIALOG), CA (STN), MEDLINE (STN), JICST7711/ (JOIS)

C. 関連すると認められる文献				
引用文献の		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号		
Y	WO 00/05264 A1 (武田薬品工業株式会社) 2000.2.3 & JP 2000-175690 A & EP 1103563 A1 & AU 9947986 A	1-8, 18, 25, 27, 29 , 31, 33, 35-40, 43 -44, 46-47		
Υ	WO 00/08053 A1 (武田薬品工業株式会社) 2000.2.17 & JP 2000-050875 A & EP 1103562 A1 & AU 9950651 A	1-8, 18, 25, 27, 29 , 31, 33, 35-40, 43 -44, 46-47		

|×| C欄の続きにも文献が列挙されている。

| | パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

C (続き).	関連すると認められる文献	関連する
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
Y	MITAKU, S. et al. Proportion of membrane proteins in proteomes of 15 single-cell organisms analyzed by the SOSUI prediction system. Biophys. Chem. 1999, Vol. 82, No. 2-3, p. 165-171	1-8, 18, 25, 27, 29 , 31, 33, 35-40, 43 -44, 46-47
Y	美宅 成樹, ホモロジーのないアミノ酸配列からのタンパク質構造・機能情報の抽出, ゲノムサイエンス:ヒトゲノム解析に基づくバイオサイエンスの新展開, 1999, p. 367-370	1-8, 18, 25, 27, 29 , 31, 33, 35-40, 43 -44, 46-47
Y	諏訪 牧子 他, アミノ酸配列情報からのレセプタータンパク質の構造予測とドラッグデザインにおける意義, ファインケミカル, 1998, Vol. 27, No. 19, p. 7-17	1-8, 18, 25, 27, 29 , 31, 33, 35-40, 43 -44, 46-47
Y	ZHAO, H. et al. Vertebrate odorant receptors. Cell. Mol. Life Sci. 1999, Vol. 56, No. 7-8, p. 647-659	1-8, 18, 25, 27, 29 , 31, 33, 35-40, 43 -44, 46-47
Y	MOMBAERTS, P. Seven-transmembrane proteins as odorant and che mosensory receptors. Science 1999, Vol. 286, No. 5440, p. 707-711	1-8, 18, 25, 27, 29 , 31, 33, 35-40, 43 -44, 46-47
Р, Х	TAKEDA, S. et al. Systematic seach for G-protein-coupled receptor genes from human genome database. Jpn. J. Pharmacol. 2001 Mar., Vol. 85, No. Suppl. 1, p. 167P	1-8, 18, 25, 27, 29 , 31, 33, 35-40, 43 -44, 46-47

第I橌	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
PCT1	7条(2)(a)の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. 🗵	請求の範囲 <u>45</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
	請求の範囲45は、人の身体の診断方法に関するものである。
2. 🗵	請求の範囲 41-42 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、 請求の範囲 41-42 記載の物質は、請求の範囲 36-40 のいずれか記載のスクリーニング方法により得られるあらゆる物質を含むものであるが、明細書には、上記物質として具体的なものが記載されておらず、明細書による十分な裏付けを欠いている。
3. 🗌	請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄	発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に近	べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
	·
別	出版参照
1. []	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 🗵	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載 されている発明に係る次の請求の範囲について作成した。
	請求の範囲1-8, 18, 25, 27, 29, 31, 33, 35-40, 43-44, 46-47
追加調査	至手数料の異議の申立てに関する注意] 追加調査手数料の納付と共に出願人から異議申立てがあった。] 追加調査手数料の納付と共に出願人から異議申立てがなかった。

別紙

請求の範囲1に記載された発明は、ヒト由来ゲノム情報からG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質を検索する方法であるが、請求の範囲1記載の検索方法により得られるG蛋白質共役受容体遺伝子には、新規でないものも含まれるので、請求の範囲1に記載のされたG蛋白質共役受容体遺伝子及び/又はG蛋白質共役受容体蛋白質の検索方法に係る発明と、請求の範囲9に記載された配列番号2~102の偶数番号の配列番号に示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質等をコードする遺伝子に係る発明とは、単一の一般的発明概念を形成するように連関している一群の発明であるとは認められない。

また、請求の範囲9-17、19-24、26、28、30、32、34に記載された発明は、配列番号 $2\sim694$ の偶数番号の配列番号に示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質をコードする遺伝子等に係る発明であるが、配列番号 $2\sim694$ の偶数番号の配列番号に示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質をコードする遺伝子は、共通な構造を有するとはいえず、また、G蛋白質共役受容体蛋白質をコードする遺伝子は新規であるとはいえないので、請求の範囲9-17、19-24、26、28、30、32、34に記載された発明は、配列番号 $2\sim694$ の偶数番号の配列番号のいずれかに示されるアミノ酸配列からなるG蛋白質共役受容体蛋白質をコードする遺伝子の347の発明群に区分され、当該発明群が単一の一般的発明概念を形成するように連関している一群の発明であるとは認められない。

したがって、請求の範囲1-40、43-44、46-47に記載された発明は、348の発明群に区分され、当該発明群が単一の一般的発明概念を形成するように連関している一群の発明であるとは認められない。

訂正版

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年2 月28 日 (28.02.2002)

PCT

(10) 国際公開番号 WO 02/016548 A3

(51) 国際特許分類⁷: C12N 15/12, C07K 14/705, 19/00, 16/28, C12N 1/21, 1/19, 5/10, A01K 67/027, G01N 33/50, 33/53, 33/566, 33/68, C12Q 1/02, 1/68, A61K 38/17

(21) 国際出願番号:

PCT/IB01/01446

(22) 国際出願日:

2001年7月30日(30.07.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-237818 2000年8月4日(04.08.2000) JP 特願2001-34434 2001年2月13日(13.02.2001) JP

(71) 出願人 (米国を除く全ての指定国について): 科学技術 振興事業団 (JAPAN SCIENCE AND TECHNOLOGY CORPORATION) [JP/JP]; 〒332-0012 埼玉県川口市本 町四丁目1番8号 Saitama (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 芳賀達也 (HAGA, Tatsuya) [JP/JP]; 〒249-0004 神奈川県逗子市沼間二丁 目3番1号411号室 Kanagawa (JP). 武田茂樹 (TAKEDA, Shigeki) [JP/JP]; 〒234-0055 神奈川県横浜市港南区 日野南七丁目15番3号 Kanagawa (JP). 美宅成樹 (MI-TAKU, Shigeki) [JP/JP]; 〒185-0021 東京都国分寺市南 町三丁目21番1号1108号室 Tokyo (JP).

- (74) 代理人: 廣田雅紀(HIROTA, Masanori); 〒107-0052 東京都港区赤坂二丁目8番11号 第11赤坂葵ビル502 Tokyo (JP).
- (81) 指定国 (国内): CA, US.
- (84) 指定国 (広域): ヨーロッパ特許 (CH, DE, ES, FR, GB, IT, SE).

添付公開書類:

- 国際調査報告書
- 電子形式により別個に公開された明細書の配列表部分、請求に基づき国際事務局から入手可能

(88) 国際調査報告書の公開日:

2002 年6 月27 日

(48) この訂正版の公開日:

2003年2月27日

(15) 訂正情報:

PCTガゼット セクションIIの No.09/2003 (2003 年2 月 27 日)を参照

2文字コード及び他の略語については、定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: NOVEL G PROTEIN-COUPLED RECEPTOR

(54) 発明の名称: 新規G蛋白質共役受容体

(57) Abstract: It is intended to provide a novel G protein-coupled receptor (GPCR) gene which makes it possible to find a signal transduction mechanism in vivo or to identify a novel drug-target protein and a method of totally searching for a GPCR protein on data base. Open reading frames (ORFs) consisting of from 250 to 1000 amino acid residues are extracted from human-origin genome data and ORFs originating in DNA repeated sequences, ORFs containing many indefinite amino acids and ORFs having a single amino acid at a ratio of 20% or more are excluded therefrom. Then ORFs containing 6 to 8 transmembrane domains are extracted by using SOSUI. Among the ORFs thus obtained, a gene homologous with a known GPCR gene (preferably a gene showing the highest homology with a GPCR gene or a GPCR-associated gene in homology searching) is searched for.

/続葉有]

(57) 要約:

生体内情報伝達機構の発見や新規薬物標的蛋白質の同定を可能とすることができる新規G蛋白質共役受容体(GPCR)遺伝子やGPCR蛋白質をデータベース上で網羅的に検索する方法を提供するものである。ヒト由来ゲノム情報から250~1000のアミノ酸残基からなるオープンリーディングフレーム(ORF)を抽出し、DNAの繰返し配列に由来するORF、不確定なアミノ酸が多いORF、及び同一アミノ酸を20%以上有するORFを排除し、6~8個の膜貫通領域を含むORFをSOSUIを用いて抽出し、得られたORFの中から即知のGPCR遺伝子とホモロジーを有する遺伝子、好ましくはホモロジー検索における最もホモロジーの高い遺伝子がGPCR遺伝子又はGPCR関連遺伝子である遺伝子を検索する。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.