ъ.		-		*		٦.
,		•				
_	-	2	_		_	- 1

"A	corrente	que flui	num circuit	o é directamente	proporcional à	L
tar	ുള്ള ഉദ്മാ	versament	a proporción	al à resistència	1.	

	7				
Esta	definição	é	da	lei	de:

a)	Lenz	
b)	Newton	
c)	Coulomb	
d)	Ohm	\boxtimes
Not	: Em 1789 o alemão Ohm encontrou uma relação entre	

Nota: Em 1789 o alemão Ohm encontrou uma relação entre os valores das unidades eléctricas. O valor da Intensidade de corrente é directamente proporcional ao valor da tensão e inversamente proporcional ao valor da resistência.

Assim apresentou as seguintes fórmulas:

Resim apresented as segurites formulas: $I = V:R \quad V = I \times R \quad R = V: I$ As mesmas formulas: podem ser apresentadas assim:

$$I = \frac{V}{R}$$
 donde $V = I \times R$ on $R = \frac{V}{I}$

2.2,2.1

Num circuito em corrente contínua, a tensão aplicada é de 12 Volta e a corrente é de 1,5 Amperes.

Qual a resistência do circuito ?

Nota : As perguntas 28 e 29 resolvem-se com a "Lei de Ohm".

$$V = R \times I$$

$$R = V$$

$$I = V$$

$$R$$

Na pergunta 28 será:

$$R = \frac{V}{I} = \frac{12}{1.5} = 8\Omega$$