Adaptive Low-Power IoT Protocols

P. Bakowski, B. Parrein - LS2N

IoT Protocols:

Sending data from Terminals to IoT servers

IoT Low-Power Protocols:

Sending data from Low-Power Terminals (LP IoT SoC) to IoT servers (average current <1mA)

Adaptive IoT Low-Power Protocols:

Sending data from Low-Power Terminals (LP IoT SoC) to IoT servers with Adaptive Low-Power Protocols (average current $<300\mu A)$

From continuous to adaptive low-power modes

Sensor value (temperature) evolution

24° threshold : urgent data must be sent

slow change: no need to send

Adaptive Low-Power IoT Protocol (principle: cycles, stages, phases)

Mapping Things (terminals) on Services

terminals are channels

From IoT SoC to Integrated IoT Platform

Integrated IoT Platform: SBCs, software IDE, IDF, libraries, drivers, ...

ESP32C3 IoT SoC

RISC-V: 5-stages pipeline

Radio: WiFi, BT/BLE

Serial interfaces: I2C, SPI, **UART, 12S, ..**

low power : deepsleep RTC clock, memory, ..

I2C

12S

Pulse Counter

USB Serial

GPIO

UART

Controller

Camera

Interface

RTC GPIO

RTC

Sensor

Watchdog

Timers

Vatchdog Timer

Secure O

Boot

Flash

Encryption

2.4 GHz Balun + Switch

System Timers

SPI0/1

SPI2

TWAI[®]

GDMA

General-purpose Timers

Heltec - ESP32C3 board

IoT Integrated DevKit with SBC (RV64GCVB)

IoT DevKit

sx1276/8 modem

SBC board

IoT Integrated DevKit with SBC (x86 - N100)

IoT SoC memories : SRAM & EEPROM

external permanent values meta-parameters base_cycle, max_cycle, min_delta, max_delta, thresholds, ...

internal permanent values meta-parameters base_cycle, max_cycle, min_delta, max_delta, thresholds, ...

low_power stage parameters sensors states, cycle factor, delta factor....

high_power stage: program static/dynamic data sensor values, transmission buffers, ...

> interpreter predefined modules - tools, application modules

4

<u> high_power stage : SRAM & EEPROM</u>

Adaptive Low-Power IoT Protocol (principle: cycles, stages, phases)

loading-processing-storing meta-variables

DT (WiFi) - power consumption analysis

RT (LoRa) - power consumption analysis

LoRa radio parameters: SF=11, SB=125KHz, CR=8 (32-bytes - "long" frames)

RT (LoRa) - power consumption analysis

LoRa radio parameters: SF=11, SB=125KHz, CR=8 (32-bytes - "long" frames)

cycle factor is meta-variable in RTC-memory

64 is max_cycle parameter in NVS

Direct Terminal: WiFi

Essential feature of the protocol is avoidance of very-high cost of WiFi (connection-transmission): average current < 500μA; no Router/Gateway required

Close Terminal: MAC-WiFi

Important feature is avoidance of low-cost WiFi (transmission only) : average current < $400\mu A$; need of MAC-WiFi Router

Remote Terminal: LoRa

Avoidance of relatively-low cost of LoRa transmission (depending on the radio parameters) cost of transmission: average current < $300\mu A$; need of LoRa-WiFi Gateway

