# MARKS & CHANNELS

# How can I visually represent two numbers

e.g., 4 and 8

#### **MARKS & CHANNELS**

Marks: represent items or links

Channels: change appearance based on attribute

**Channel = visual variable** 

## **MARKS FOR ITEMS**

Basic geometric elements



3D mark: Volume, but rarely used

# **MARKS FOR LINKS**

→ Containment











# **NESTED CONTAINMENT**



#### **CHANNELS**

#### Change appearance proportional to or based on attributes



# **JACQUES BERTIN**

French cartographer

who makes or draws maps

Theoretical principles for visual encodings



#### **BERTIN'S VISUAL VARIABLES**



## **USING MARKS AND CHANNELS**



Mark: Line

Channel: Length, Position

1 quantitative attribute 1 quantitative attr.

1 categorical attribute



Mark: Point

Channel: Position



Adding Hue

+1 categorical attr.



Adding Size

+1 quantitative attr.

# REDUNDANT ENCODING



Length, Position and Value

#### **GOOD BAR CHART?**



Rule: Use channel proportional to data!

#### **TYPES OF CHANNELS**

Magnitude channels

How much? Which

rank?

**Position** 

Length

Saturation ...

**Identity channels** 

What?

Shape

Color (hue)

Spatial region...

Ordinal & Quantitative data

**Categorical Data** 

# PRINCIPLES OF EXPRESSIVENESS AND EFFECTIVENESS

#### **Expressiveness principle**

The visual encoding should express **all of, and only**, the information in the dataset attributes

#### **Effectiveness principle:**

The importance of attribute should match the salience of the channel

#### Means:

- The most important attributes should be encoded with the most effective channels in order to be most noticeable
- Then the following important attributes match with less effective channels

# **RANK OF CHANNELS**

**Channels:** Expressiveness Types and Effectiveness Ranks

Magnitude Channels: Ordered Attributes Identity Channels: Categorical Attributes Position on common scale Spatial region Most Position on unaligned scale Color hue Length (1D size) Motion Tilt/angle Shape Effectiveness Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

#### WHAT VISUAL VARIABLES ARE USED?

#### Across U.S. Companies, Tax Rates Vary Greatly

Last week, in a Congressional hearing, Apple got grilled for its low-tax strategy. But not every business can copy that approach. Here is a look at what S.&P. 500 companies paid in corporate income taxes — federal, state, local and foreign — from 2007 to 2012, according to S&P Capital IQ. Related Article  $^{\circ}$ 



#### **CHARACTERISTICS OF CHANNELS**

#### **Selective**

- Is a mark distinct from other marks?
- Can we make out the difference between two marks?

#### **Associative**

Does it support grouping?

**Quantitative** (Magnitude vs identity channels)

Can we quantify the difference between two marks?



#### **CHARACTERISTICS OF CHANNELS**

#### **Order (Magnitude vs Identity)**

Can we see a change in order?

#### Length

How many unique marks can we make?

## **POSITION**

# Strongest visual variables

Suitable for all data types

#### **Problems:**

- Sometimes not available (spatial data, map)
- Cluttering (many items overlapped)



Selective: Yes

Associative: Yes

Quantitative:Yes

Order: Yes

Length: Fairly big

(options)

→ Good channel

# **EXAMPLE: SCATTERPLOT**



# **POSITION IN 3D? NOT SO GOOD**



#### **LENGTH & SIZE**

#### Good for 1D, OK for 2D, Bad for 3D

Easy to see which one is bigger

Aligned bars use position redundantly

1D length:

Selective: yes

Associative: yes

Quantitative: yes

Order: yes

Length: yes



## **EXAMPLE 2D SIZE: BUBBLES**

#### Four Ways to Slice Obama's 2013 Budget Proposal

Explore every nook and cranny of President Obama's federal budget proposal.

All Spending

Types of Spending

Changes

**Department Totals** 

#### **How \$3.7 Trillion Is Spent**

Mr. Obama's budget proposal includes \$3.7 trillion in spending in 2013, and forecasts a \$901 billion deficit.

Circles are sized according to the proposed spending.



Color shows amount of cut or increase from 2012.





#### VALUE/LUMINANCE/SATURATION

OK for quantitative data when length & size are used Not very many shades recognizable

Selective: yes

Associative: yes

Quantitative: somewhat

Order: yes

Length: limited (around 7 - 8)



#### **EXAMPLE: DIVERGING VALUE-SCALE**



## **COLOR**

#### Good for qualitative data (identity channel)

Limited number of classes/length (7-10)

Do not work for quantitative data

Lots of pitfalls!

Good practice: minimize use of color for encoding data

Selective: yes

Associative: yes

Quantitative: no

Order: no

Length: limited

# **COLOR: BAD EXAMPLE**





FIGURE 13. Estimated Mean Annual Ratio of Actual Evapotranspiration (ET) to Precipitation (P) for the Conterminous U.S. for the Period 1971-2000. Estimates are based on the regression equation in Table 1 that includes land cover. Calculations of ET/P were made first at the 800-m resolution of the PRISM climate data. The mean values for the counties (shown) were then calculated by averaging the 800-m values within each county. Areas with fractions >1 are agricultural counties that either import surface water or mine deep groundwater.

#### **COLOR: GOOD EXAMPLE**



# **SHAPE**

# **Great to recognize many classes No grouping, ordering**

Selective: yes

Associative: limited

Quantitative: no

Order: no

Length: vast









#### Idea: use facial parameters to map quantitative data



Does it work? Not really

Critique: https://eagereyes.org/criticism/chernoff-faces

# MORE CHANNELS



https://en.rockcontent.com/blog/2012/07/27/45-ways-to-communicate-two-quantities/



# **ACCURACY OF CHANNELS**

Steven's Psychophysical Power Law: S= I<sup>N</sup>



S = sensationI = intensity

# **HOW MUCH LONGER?**



# **HOW MUCH LONGER**



# **HOW MUCH STEEPER?**



## **HOW MUCH LARGER?**



## **HOW MUCH LARGER?**



# **HOW MUCH LARGER (AREA)?**



# **HOW MUCH DARKER?**



**2**x

# **HOW MUCH DARKER?**



**3**x

# **POSITION, LENGTH & ANGLE**

### The eyeballing game



#### Your inaccuracy by category:

| Parallelogram   | 5.0 | <br> |
|-----------------|-----|------|
| Midpoint        |     | <br> |
| Bisect angle    |     | <br> |
| Triangle center |     | <br> |
| Circle center   |     | <br> |
| Right angle     |     | <br> |
| Convergence     |     | <br> |

Average error: 5.00 (lower is better)

Time taken: 3.3

#### Best of last 500 score and time: (more)

|      |       | <del></del>               |
|------|-------|---------------------------|
| 1.32 | 250 s | Harabubakken sparkakar kl |
| 1.36 | 81 s  | ± rides saddle horn       |
| 1.39 | 110 s | have both-can f myself±   |
| 1.46 | 93 s  | ± is one kinky dude       |
| 1.50 | 95 s  | no NTsample my taco? ±    |
| 1.55 | 114 s |                           |
| 1.57 | 113 s |                           |
| 1.65 | 85 s  | ± "come on funny feeling" |
| 1.70 | 71 s  | JSA                       |
| 1.75 | 89 s  | JSA                       |

#### Best on this computer score and time:

### OTHER FACTORS AFFECTING ACCURACY

Alignment
Distractors
Distance
Common scale









## **RESEARCH BY CLEVELAND 1984**





# HEER & BOSTOCK, 2010



Jeffrey Heer and Michael Bostock

Computer Science Department Stanford University {jheer, mbostock}@cs.stanford.edu

#### Cleveland & McGill's Results



# **JOCK MACKINLAY, 1986**

#### Ordinal Nominal Quantitative Position Position Position Length Density Hue Saturation Angle Texture Connection Hue Slope **Texture** Area Containment Connection Density Volume Density Containment Saturation Shape Saturation Length Length Hue Angle Texture Slope Angle Connection Slope Area Containment Volume Area Shape Shape Volume

### **SEPARABILITY OF ATTRIBUTES**

### Can we combine multiple visual variables?

Position+ Hue (Color)



Fully separable

Size
+ Hue (Color)



Some interference

Width
+ Height



Some/significant interference

Red + Green



Major interference