4 Variations de fonctions dérivables

Proposition 4. Soit f une fonction définie et dérivable sur un intervalle I.

- La fonction f est **croissante** sur I si et seulement si f' est **positive** sur I.
- La fonction f est décroissante sur I si et seulement si f' est négative sur I.
- La fonction f est constante sur I si et seulement si f' est nulle sur I

Remarque. • Cela correspond à l'intuition grâce à laquelle la dérivée a été construite, c'est-à-dire que f'(x) est la pente de la tangente à la courbe représentative de f en le point (x; f(x)).

• Ce sont des équivalences. Si la fonction est croissante, alors sa dérivée est positive. Si la dérivée d'une fonction est positive, alors cette fonction est croissante.

Exemple. Soit $f: x \mapsto x^2 - 2x + 1$ définie sur \mathbb{R} .

- a) Donner l'expression de la dérivée de f.
- b) Étudier le signe de f' à l'aide d'un tableau de signe.

x	$-\infty$	• • •	$+\infty$
Signe de f'			
ue j			

c) En déduire le tableau de variations de f.

x	$-\infty$	•••	$+\infty$
Variations de f			

5 Extremums de fonctions dérivables

Définition 3. Soit f une fonction définie sur un intervalle I, et $a \in I$. On dit que f atteint un **extremum local** en a s'il existe un intervalle (non restreint à un point) J tel que : $a \in J$; $J \subseteq I$ et la restriction de f sur J atteint un extremum en a.

Remarque. Autrement dit, f(a) est un extremum local de f sur I si l'image de a est supérieure ou inférieure à l'image de ses voisins « proches ».

Exemple. Soit f une fonction définie sur [-6; 6] dont la courbe représentative C_f est représentée sur le repère suivant (en bas à gauche):

- a) Quel est le maximum et le minimum de f? En quelles valeurs sont-elles atteintes?
- b) On a représenté sur le repère à droite la restriction de f sur l'intervalle [-6; -1]. En déduire que en quel abscisse f admet un extremum local.

Proposition 5. Soit f une fonction définie et dérivable sur un intervalle **ouvert** I, et soit $a \in I$. Si f atteint un extremum local en a, alors

$$f'(a) = 0$$

Remarque.

- L'hypothèse d'intervalle ouvert est importante : cette proposition devient fausse sinon. Par exemple, la fonction carrée $f: x \mapsto x^2$ restreinte sur [1;2] admet un extremum en 1, mais sa dérivée en 1 est non-nulle.
- La réciproque de cette proposition est fausse : ce n'est pas forcément parce que f'(a) = 0 que f atteint un extremum local en a. Par exemple, si $f: x \mapsto x^3$ sur \mathbb{R} , on a bien f'(0) = 0, et pourtant f(0) = 0 n'est ni un minimum ou un maximum local.
- Cette proposition donne néanmoins une liste des candidats envisageables pour lex extremums d'une fonction dérivable sur un intervalle I: il suffit de chercher parmi les points a tels que f'(a) = 0. C'est ce qu'on appelle une condition nécessaire.