CS 170 Efficient Algorithms and Intractable Problems

Lecture 8: Paths in Graphs

Nika Haghtalab and John Wright

EECS, UC Berkeley

Announcements

HW4 and Disc 4 coming out today!

Changes to Office Hours:

- → Removed some Tuesday office hours (low attendance)
- → Instead increasing more office hours and TA presence on other days.

Where are annotated version of Lectures 6-7?

- → My iPad didn't save them, it seems. Sorry ...
- Amphation Test! → Refer to the video and the blank slides to fill them in.
- → It's a good exercise!

Last two lectures

Exploring graphs via Depth First Search (DFS)

Use cases of DFS:

Topological Sort

• Strongly connected component

Today

Another approach to exploring graphs!

Breadth-First Search and related algorithms.

Finding single-source shortest path.

Just the graph

Single-Source Shortest Paths (SSSP)

How long does it take me to go from my Sunset 1 office to important locations on campus? SODA **My Office** Shuttle Stop **BART** Sunset 2 Clark Kerr

Input: Graph G = (V, E), "source" node $S \in V$.

<u>Output:</u> For all $u \in V$, dist(s, u) = length of shortest path from <math>s to u.

Why not DFS?

DFS goes depth first. Might explore much farther nodes first.

Exploring for Shortest Path

Depth-First Search:

→explore a maze with a chalk and a string.

- →explore a neighborhood from bird's eye perspective.
- 1. Explore direct neighbors
- everything at distance 1
- 2. Explore (unseen) neighbors of neighbors.
- everything at distance 2
- 3. Explore (unseen) neighbors of neighbors of neighbors
- Everything at distance 3

Single-Source Shorted Paths Algorithms

Input: Graph G = (V, E), "source" node $S \in V$.

<u>Output:</u> For all $u \in V$, dist(s, u) = length of shortest path from <math>s to u.

Unweighted: All edges length 1

→ Breadth-First Search

Positive Weight: length function $\ell: E \to \{1, 2, ...\}$

→ Dijkstra's Algorithm

Arbitrary lengths: *₹* could be negative too

→ Bellman-Ford algorithm


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
   dist[s] = 0
   Q = \{s\}
                 //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
           if dist[v] = \infty
              enqueue(Q, v)
              dist[v] = dist[u] + 1
```



```
bfs(G,s)
   int array dist(n) // initialize to all \infty
dist[s] = 0
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
           if dist[v] = \infty
              enqueue(Q, v)
              dist[v] = dist[u] + 1
```



```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{g'\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B'\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B, F\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B, F\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B, F\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B, F'\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B, F'\}$$


```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

$$Q = \{S, A, C, D, E, B, F'\}$$

$$Q = \{S, A, C, D, E, B, F'\}$$

```
Current dequeued node

Done, with that iteration of "While"
```

```
bfs(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
    Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
            if dist[v] = \infty
               enqueue(Q, v)
               dist[v] = dist[u] + 1
```

Runtime of BFS

enqueue and dequeue called only once per node $\rightarrow 0(1)$ per node.

For every node u, check its neighbors once $\rightarrow O(\deg(u))$ per node.

$$\sum_{u \in V} O(1 + \deg(u)) = O(n + m)$$

Just like DFS. Is this a coincidence?

- Nope!
- DFS is exactly BFS, if queue were to be replaced with a stack

```
bfs(G,s)
   int array dist(n) // initialize to all \infty
   dist[s] = 0
   Q = \{s\}
                  //A queue containing s
   While Q is not empty
       u = dequeue(Q)
       for all v, s.t. (u, v) \in E
           if dist[v] = \infty
              enqueue(Q, v)
               dist[v] = dist[u] + 1
```

Weighted Graphs

Ignoring the weights and playing BFS is an issue
If P is the shortes S-w path, for any WEV on
path P, the shortest S-w path is also on P.

Useful fact

Dijkstra's Algorithm Intuition

K: Set of "known" nodes where length of SP is computed (and less than "unknown" nodes) The next node to add to K: v must have a direct edge to K. Why?

Dijkstra's Algorithm Intuition

K: Set of "known" nodes where length of SP is computed (and less than "unknown" nodes)

The next node to add to K: v must have a direct edge to K. Why?

 \rightarrow Which one? The one with smallest $dist(s, u) + \ell(u, v)$.

Dijkstra's Algorithm Intuition

K: Set of "known" nodes where length of SP is computed (and less than "unknown" nodes)

The next node to add to K: v must have a direct edge to K. Why?

 \rightarrow Which one? The one with smallest $dist(s, u) + \ell(u, v)$.

Don't recomputing all of these distances at every round.

 \rightarrow Keep overestimates of distances for U and update estimates when a neighbor enters K.


```
dijkstra(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \times dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
        U \leftarrow U \setminus v dist(w) equin \leq dist(w), dist(v), dist(v)
        for all (v, w) \in E
           (If dist[w]) \neq dist[v] + \ell(v, w)
                   dist[w] = dist[v] + \ell(v, w)
```



```
U
A
B
C
D
E
dist
0
\infty
\infty
\infty
```

```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \neq dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
int array \ dist(n) \ // \ initialize \ to \ all \ \infty
dist[s] = 0
U = V \ // \ K = V \setminus U
V \leftarrow V \leftarrow V 
V \leftarrow V \leftarrow V
```

```
U A B C D E

dist 0 4 2 \infty \infty
```

```
for all (v, w) \in E

If dist[w] \ngeq dist[v] + \ell(v, w)

dist[w] = dist[v] + \ell(v, w)
```



```
U
A
B
C
D
E
dist
0
4
2
\infty
\infty
```

```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                            //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
             If dist[w] \not\propto dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \neq dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
for all (v, w) \in E

If dist[w] \neq dist[v] + \ell(v, w)

dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \neq dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
        U
        A
        B
        E
        D
        E

        dist
        0
        3
        2
        6
        7
```

```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \neq dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
             If dist[w] \not\ge dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \neq dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \times dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
int array \ dist(n) \ // \ initialize \ to \ all \ \infty
dist[s] = 0
U = V \ // \ K = V \setminus U
V \leftarrow V \leftarrow V 
V \leftarrow V \leftarrow V
```

```
for all (v, w) \in E

If dist[w] \not\succeq dist[v] + \ell(v, w)

dist[w] = dist[v] + \ell(v, w)
```


dijkstra(G,s) $int array \ dist(n) \ // \ initialize to all <math>\infty$ dist[s] = 0 U = V $// K = V \setminus U$ While U is not empty $v \leftarrow \text{node in } U$ with smallest dist[v] $U \leftarrow U \setminus v$


```
for all (v, w) \in E

If dist[w] > dist[v] + \ell(v, w)

dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
   int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \ge dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)

int array \ dist(n) \ // \ initialize \ to \ all \ \infty

dist[s] = 0

U = V // \ K = V \setminus U

While U is not empty

v \leftarrow \text{node in } U with smallest dist[v]

U \leftarrow U \setminus v
```

```
for all (v, w) \in E

If dist[w] \not> dist[v] + \ell(v, w)

dist[w] = dist[v] + \ell(v, w)
```



```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    dist[s] = 0
                                           //K = V \setminus U
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
            If dist[w] \times dist[v] + \ell(v, w)
                    dist[w] = dist[v] + \ell(v, w)
```

What is the shortest path?

The dist data structure is keeping track of the distances.

But what about the actual path from *s* to all nodes?

Update(v, w) routine:

"If" condition, finds a shorter path, S to v to w.

Keep track of the incoming edge, in prev[w].

Update(v, w)

If
$$dist[w] \neq dist[v] + \ell(v, w)$$

$$\longrightarrow dist[w] = dist[v] + \ell(v, w)$$

$$prev[w] = v$$

Dijkstra's-Algorithm U dist 6

```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    array prev(n) // initialize to all nil
                                              //K = V \setminus U
     dist[s] = 0,
    While U is not empty
          v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
         for all (v, w) \in E
              If dist[w] > dist[v] + \ell(v, w)
                     dist[\mathbf{w}] = dist[\mathbf{v}] + \ell(\mathbf{v}, \mathbf{w})
```

Runtime of Dijkstra

Depends on the data structure used for keeping track of U's distances.

Priority Queue
Insert(elem, key)
DeleteMin has the elem with buest
DecreaseKey (elem, key)
m calls

```
dijkstra(G,s)
    int array dist(n) // initialize to all \infty
    array prev(n) // initialize to all nil
                                          //K = V \setminus U
    dist[s] = 0,
    U = V
    While U is not empty
         v \leftarrow \text{node in } U \text{ with smallest } dist[v]
         U \leftarrow U \setminus v
        for all (v, w) \in E
             If dist[w] \ge dist[v] + \ell(v, w)
                   dist[w] = dist[v] + \ell(v, w)
```

Priority Queues and Dijkstra

Implementation	Insert	DeleteMin	DecreaseKey	Dijkstra's Runtime
Array	0(1)/	O(n)	0(1)	$O(n^2 + m) = O(n^2)$

Priority Queues and Dijkstra

Implementation	Insert	DeleteMin	DecreaseKey	Dijkstra's Runtime
Array	0(1)	O(n)	0(1)	$O(n^2 + m) = O(n^2)$
Binary heap	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O((n+m)\log(n))$

Priority Queues and Dijkstra

Implementation	Insert	DeleteMin	DecreaseKey	Dijkstra's Runtime
Array	0(1)	O(n)	0(1)	$O(n^2 + m) = O(n^2)$
Binary heap	$O(\log(n))$	$O(\log(n))$	$O(\log(n))$	$O((n+m)\log(n))$
Fibonacci heap	0(1)	$O(\log(n))$	0(1)	$O(n\log(n) + m)$

Best known Dijsktra's runtime (2004): $O(n \log \log(n) + m)$

Negative Weights

Sometimes there are negative weights on graphs:

Instead of total cost, recording cost saved/spent

SSSP is well-defined if no cycle has negative length.

Reviewing the Update Method

- 1. Update is "safe": dist[w] is an overestimate on the true SP length d(s, w)
- \rightarrow At all times, $dist[w] \ge d(s, w)$ for all $w \in V$.
- 2. Suppose the shortest S-w path is the following and that dist[v]=d(s,v).
- $\rightarrow \text{Then, } update(v, w) \text{ will result in } dist[w] = d(s, w). \text{ min } 2^{dist}(\omega), dist(v) + 2^{dist}(\omega), dist(w) + 2^{dist}(\omega), dis$

If
$$dist[w] < dist[v] + \ell(v, w)$$

$$dist[w] = dist[v] + \ell(v, w)$$

So SI is also the same path.

The following sequence, computes every node's distance from S correctly.

 $update(s, v_1) \dots update(v_1, v_2) \dots update(v_2, v_3) \dots \dots update(v_k, w)$

This sequence is a subsequence of iterating over all edges and updating each one, and repeating this n-1 times.

Bellman-Ford(G, s) For i=1, , ..., n-1For all $(u, v) \in E$ update(u, v)

Runtime of Bellman-Ford:

- O(nm) updates
- Each update is O(1).
- Best SSSP runtime for arbitrary edge weights.

Wrap up

BFS versus DFS!

BFS, Dijkstra, Bellman-Ford

- → All good for single-source shortest path problem.
- → Dijkstra handles positive weights, but less efficient than BFS
- → Bellman-Ford can handle negative weights, but less efficient than Dijkstra

Next time

Greedy Algorithms