nr	formula	series	range
1,2	$(1\pm x)^{\frac{1}{4}}$	$1 \pm \frac{1}{4}x - \frac{1 \cdot 3}{4 \cdot 8}x^2 \pm \frac{1 \cdot 3 \cdot 7}{4 \cdot 8 \cdot 12}x^3 - \frac{1 \cdot 3 \cdot 7 \cdot 11}{4 \cdot 8 \cdot 12 \cdot 16}x^4 \pm \cdots$	$\mid x \mid \leqslant 1$
3,4	$(1\pm x)^{\frac{1}{3}}$	$1 \pm \frac{1}{3}x - \frac{1 \cdot 2}{3 \cdot 6}x^2 \pm \frac{1 \cdot 2 \cdot 5}{3 \cdot 6 \cdot 9}x^3 - \frac{1 \cdot 2 \cdot 5 \cdot 8}{3 \cdot 6 \cdot 9 \cdot 12}x^4 \pm \cdots$	$\mid x \mid \leqslant 1$
5,6	$(1\pm x)^{-\frac{1}{4}}$	$1 \mp \frac{1}{4}x + \frac{1.5}{4.8}x^2 \mp \frac{1.5.9}{4.8.12}x^3 + \frac{1.5.9.13}{4.8.12.16}x^4 \mp \cdots$	x < 1
7,8	$(1\pm x)^{-\frac{1}{3}}$	$1 \mp \frac{1}{3}x + \frac{1\cdot 4}{3\cdot 6}x^2 \mp \frac{1\cdot 4\cdot 7}{3\cdot /6\cdot 9}x^3 + \frac{1\cdot 4\cdot 7\cdot 10}{3\cdot 6\cdot 9\cdot 12}x^4 \mp \cdots$	x < 1
9,10	$(1\pm x)^{-\frac{1}{2}}$	$1 \mp \frac{1}{2}x + \frac{1 \cdot 3}{2 \cdot 4}x^2 \mp \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6}x^3 + \frac{1 \cdot 3 \cdot 5 \cdot 7}{2 \cdot 4 \cdot 6 \cdot 8}x^4 \mp \cdots$	x < 1
11,12	$(1\pm x)^{-\frac{3}{2}}$	$1 + \frac{3}{2}x + \frac{3\cdot5}{2\cdot4}x^2 + \frac{3\cdot5\cdot7}{2\cdot4\cdot6}x^3 + \frac{3\cdot5\cdot7\cdot9}{2\cdot4\cdot6\cdot8}x^4 + \cdots$	x < 1
13,14	$(1\pm x)^{-\frac{5}{2}}$	$1 \mp \frac{5}{2}x + \frac{5.7}{2.4}x^2 \mp \frac{5.7.9}{2.4.6}x^3 + \frac{5.7.9.11}{2.4.6.8}x^4 \mp \cdots$	x < 1
15	$\sin x$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots$	$\mid x\mid <\infty$
16	$\sin(x+a)$	$\sin a + x \cos a - \frac{x^2 \sin a}{2!} - \frac{x^3 \cos a}{3!} +$	
		$+\frac{x^4 \sin a}{4!} + \frac{x^5 \cos a}{5!} - \frac{x^6 \sin a}{6!} - \frac{x^7 \cos a}{7!} + \cdots$	$\mid x \mid < \infty$
17	$\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$	$\mid x \mid < \infty$

18	$\cos(x+a)$	$\cos(a) - x\sin(a) - \frac{x^2\cos(a)}{2!} + \frac{x^3\sin(a)}{3!} +$	
		$+\frac{x^4\cos(a)}{4!} - \frac{x^5\sin(a)}{5!} - \frac{x^6\cos(a)}{6!} + \frac{x^7\sin(a)}{7!} \pm \cdots$	$\mid x \mid < \infty$
19	a^x	$1 + \frac{x \ln a}{1!} + \frac{(x \ln a)^2}{2!} + \frac{(x \ln a)^3}{3!} + \frac{(x \ln a)^4}{4!} + \cdots$	$ x < \infty$
20	$\ln x$	$2\left[\frac{x-1}{x+1} + \frac{(x-1)^3}{3(x+1)^3} + \frac{(x-1)^5}{5(x+1)^5} + \cdots\right]$	x > 0
21	$\ln x$	$(x-1) - \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} - \frac{(x-1)^4}{4} + \cdots$	$0 < x \leqslant 2$
22	$\ln x$	$\frac{(x-1)}{x} + \frac{(x-1)^2}{2x^2} + \frac{(x-1)^3}{3x^3} + \frac{(x-1)^4}{4x^4} + \cdots$	$x > \frac{1}{2}$
23	$\ln\left(1+x\right)$	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \dots$	$-1 < x \leqslant 1$
24	$\ln\left(1-x\right)$	$-\left[x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \cdots\right]$	$-1 \leqslant x < 1$

25	$ \ln\left(\frac{1+x}{1-x}\right) $	$2\left[x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots\right]$	x < 1
26	$ \ln\left(\frac{x+1}{x-1}\right) $	$2\left[\frac{1}{x} + \frac{1}{3x^3} + \frac{1}{5x^5} + \frac{1}{7x^7} + \cdots\right]$	$\mid x \mid > 1$
27	$\arcsin x$	$x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots$	$\mid x \mid < 1$
28	$rc \cos x$	$\frac{\Pi}{2} - \left[x + \frac{x^3}{2 \cdot 3} + \frac{1 \cdot 3x^5}{2 \cdot 4 \cdot 5} + \frac{1 \cdot 3 \cdot 5x^7}{2 \cdot 4 \cdot 6 \cdot 7} + \cdots \right]$	$\mid x \mid < 1$
29	$\operatorname{arc} \operatorname{tg} x$	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots$	$\mid x \mid < 1$
30	$\operatorname{arc}\operatorname{ctg} x$	$\frac{\Pi}{2} - \left[x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \right]$	$\mid x \mid < 1$
31	$\sinh x$	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots$	$ x < \infty$
32	$\cosh x$	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots$	$ x < \infty$
33	$ar \sinh x$	$x - \frac{1}{2 \cdot 3}x^3 + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5}x^5 - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 7}x^7 + \cdots$	x < 1
34	$ar \cosh x$	$\pm \left[\ln(2x) - \frac{1}{2 \cdot 2x^2} - \frac{1 \cdot 3}{2 \cdot 4 \cdot 4x^4} - \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 6x^6} - \cdots \right]$	x > 1