Circuitos Aritméticos: Full Adder Yuri Kaszubowski Lopes UDESC Circuitos Combinacionais Anotações • Circuitos no geral possuem várias entradas e várias saídas Circuito Combinacional A saída depende exclusivamente da entrada Exemplo de circuito que não é combinacional: Circuito que possui uma memória interna, e a saída depende da entrada e do estado atual da memória Chamado de circuito sequencial Circuitos Aritméticos Anotações • Circuitos combinacionais comumente encontrados dentro da ALU ► ALU: Arithmetic Logic Unit (Unidade Lógica e Aritmética) • Compreende circuitos somadores, deslocadores de bits, operadores lógicos, ... • Como exemplo, veremos a implementação de um circuito somador simples Assumiremos que os valores somados são sempre positivos No entanto, o somador ainda é válido para representações em complemento de dois, com alguns poucos ajustes

Anotações

KL (UDESC) Full Adder 3/2

Full Adder

- Full Adder (Somador Completo)
- Circuito somador para 1 bit
- Considera o carry ("vai um")
- \bullet A soma de dois bits pode gerar um carry, e.g., $\mathbf{1}_2 + \mathbf{1}_1$
- Esse carry deve ser considerado no próximo adder, caso ele exista

Bloco representando um Somador. Fonte: Tocci et al.

YKL (UDESC) Full Adder 4/20

Full Adder

Tabela Verdade

• Faça a tabela verdade para o Full Adder

	Entrada			ída
Α	В	\mathbf{C}_{in}	S	C _{out}
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

YKL (UDESC)

Full Adder

5/20

Anotações

Anotações

Full Adder

Tabela Verdade

• Faça a tabela verdade para o Full Adder

Entrada			Sa	ída
Α	В	C _{in}	S	$\mathbf{C}_{\mathrm{out}}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Anotações			

YKL (UDESC) Full Adder 6/2

Full Adder

Montando a expressão Booleana

- Como temos duas saídas, vamos definir cada uma separadamente
- ullet Começando por S, temos quatro entradas que geram 1
- Qual a expressão inicial pela Pela soma dos produtos?
 - $S = \dot{\overline{A}}.\overline{B}.C_{in} + \overline{A}.B.\overline{C_{in}} + A.\overline{B}.\overline{C_{in}} + A.B.C_{in}$

	Entrada	Sa	ída	
Α	В	\mathbf{C}_{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Entrada			Sa	ída
Α	В	\mathbf{C}_{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

/KI	(LIDESC)

Full Adder

Montando a expressão Booleana

- Simplificando
- $\bullet \ \ S = \overline{A}.\overline{B}.C_{in} + \overline{A}.B.\overline{C_{in}} + A.\overline{B}.\overline{C_{in}} + A.B.C_{in}$
- ullet Fatorando \overline{A} nos dois primeiros termos e A nos dois últimos (distributiva⁻¹)

$$S = \overline{A}.(\overline{B}.C_{in} + B.\overline{C_{in}}) + A.(\overline{B}.\overline{C_{in}} + B.C_{in})$$

• Utilizando uma tabela de equivalências lógicas: XOR e XNOR:

$$S = \overline{A} \cdot (\overline{B} \cdot C_{in} + B \cdot \overline{C_{in}}) + A \cdot (\overline{B} \cdot \overline{C_{in}} + B \cdot C_{in})$$

- $S = \overline{A}.(B \oplus C_{in}) + A.(\overline{B \oplus C_{in}})$
- ullet Considere que $X=B\oplus C_{in},$ então:
- $S = \overline{A}.X + A.\overline{X} = A \oplus X$ (propriedade do XOR)
- Substituindo X pela expressão original:
 - $S = A \oplus (B \oplus C_{in})$

Anotações

Anotações

Anotações

Full Adder

Montando a expressão Booleana

- Calculando Cout, temos quatro entradas que geram 1
- Qual a expressão inicial pela Pela soma dos produtos?
 - $\qquad \qquad C_{out} = \overline{A}.B.C_{in} + A.\overline{B}.C_{in} + A.B.\overline{C_{in}} + A.B.C_{in}$

Entrada			Sa	ída
Α	В	\mathbf{C}_{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder

Montando a expressão Booleana

- Simplificando
- $C_{out} = \overline{A}.B.C_{in} + A.\overline{B}.C_{in} + A.B.\overline{C_{in}} + A.B.C_{in}$
- Podemos repetir qualquer mintermo sem alterar o resultado
 Lembre-se: A + A = A (Soma lógica)
 C_{out} = Ā.B.C_{in} + A.B.C_{in} + A.B.C_{in} + A.B.C_{in} + A.B.C_{in}
 No que isso nos ajuda?

 - - * Agora temos termos em comum em pares de mintermos, o que nos ajuda a fatorar
 - $\qquad \qquad \textbf{\textit{C}}_{\textit{out}} = \overline{\textbf{\textit{A}}}.\textbf{\textit{B}}.\textbf{\textit{C}}_{\textit{in}} + \textbf{\textit{A}}.\textbf{\textit{B}}.\textbf{\textit{C}}_{\textit{in}} + \textbf{\textit{A}}.\overline{\textbf{\textit{B}}}.\textbf{\textit{C}}_{\textit{in}} + \textbf{\textit{A}}.\textbf{\textit{B}}.\overline{\textbf{\textit{C}}_{\textit{in}}} + \textbf{\textit{A}}.\textbf{\textit{B}}.\overline{\textbf{\textit{C}}}.\textbf{\textit{A}}.\textbf$
- Fatorando:
 - $\qquad \qquad C_{out} = B.C_{in}.(\overline{A} + A) + A.C_{in}.(\overline{B} + B) + A.B.(\overline{C_{in}} + C_{in})$
- Soma lógica $(X + \overline{X} = 1)$:

 - $\begin{array}{l} \blacktriangleright \ \ \textit{C}_{\textit{out}} = \textit{B}.\textit{C}_{\textit{in}}.1 + \textit{A}.\textit{C}_{\textit{in}}.1 + \textit{A}.\textit{B}.1 \\ \blacktriangleright \ \ \textit{C}_{\textit{out}} = \textit{B}.\textit{C}_{\textit{in}} + \textit{A}.\textit{C}_{\textit{in}} + \textit{A}.\textit{B} \text{ (Multiplicação lógica)} \\ \end{array}$

YKL (UDESC)	Full Adder

Full Adder

Montando a expressão Booleana

- $S = A \oplus (B \oplus C_{in})$
- $\bullet \ \ \textit{C}_{\textit{out}} = \textit{B}.\textit{C}_{\textit{in}} + \textit{A}.\textit{C}_{\textit{in}} + \textit{A}.\textit{B}$

Entrada			Sa	
Α	В	C _{in}	S	C _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

YKI.	(UDESC)	

Full Adder

Montando a expressão Booleana

- $S = A \oplus (B \oplus C_{in})$
- $\bullet \ \textit{C}_{\textit{out}} = \textit{B}.\textit{C}_{\textit{in}} + \textit{A}.\textit{C}_{\textit{in}} + \textit{A}.\textit{B}$
- Montar o circuito

Full Adder. Fonte: Tocci et al.

YKL (UDESC)	Full Adder	12/2

Anotações		
-		

Anotações			

Α	notações			
_				
-				
-				
_				

Exercícios

- Faça a tabela verdade para o circuito do slide anterior e veja que ele realmente possui o comportamento esperado pelo full adder
- O full adder do slide anterior:

 - Soma 2 bits (A e B) e um carry (C_{in}) e
 Gera uma saída de 1 bit (S) + carry (C_{out})

Então:

- Monte um circuito para somar dois bits com outros dois (Exemplo: $11 + 01 \Leftrightarrow AB + CD$
- Mostre o circuito com portas lógicas
- Note que o bit menos significativo nunca recebe um carry. Como você vai resolver esse problema com o full adder?

YKL (UDESC)	Full Adder	13/2

Full Adder: Limitação

- Veja a implementação (em blocos) de um somador para 5 bits
 - Onde está a limitação (em tempo) desse circuito?
 - Precisamos esperar os carrys
 - O carry C_1 precisa passar para FA#1, que vai gerar C_2 , que será necessário em FA#2, ... até termos o carry final C_5
 - É especialmente custoso, principalmente em somadores grandes (e.g. 64-bits)
 - * Esse problema é conhecido como carry propagation (Propagação do carry)

Anotações			

Anotações

Anotações

Carry Propagation

- Circuitos de alta velocidade devem tratar esse problema
 - ► Esquemas chamados carry-lookahead são adicionados
 - Predizem se determinada operação vai gerar um carry ou não, sempre precisar passar por cada um dos Full Adders
- Requerem uma grande quantidade extra de portas lógicas para serem implementados
- Na disciplina nos contentaremos com o Full Adder sem lookahead
 - Implementações de circuitos de carry-lookahead podem ser encontradas na literatura da disciplina

····otagooo			

Circuitos integrados

- Existem diversos circuitos integrados que implementam o circuito discutido em aula

 - 7483: Somador completo de 4 bits
 CD4008: Somador completo de 4 bits com carry look ahead

YKL (UDESC)	Full Adder	16/20
Dica		
Dica		
 Boa parte do conteúo 	do desta aula foi baseado em Tocci e	et al (2016)
	n (2010) o mesmo circuito é criado, r	mas utilizando
uma abordagem difer	rente	
 No livro existe també 	m a implementação do half-adder	
 Leia a implementação 	o apresentada no livro caso você ten	nha tido alguma

Anotações

YKL (UDESC)	Full Adder	17/

Exercícios

- Secondo para soma de dois bits com dois bits (AB + CD)
 - Para o bit menos significativo, que não recebe carry, crie um circuito de soma que não recebe C_{in} algum para o cálculo
 O nome desse circuito é half-adder
 Tente definir você mesmo esse circuito

dificuldade com a abordagem utilizada em sala

* Sua implementação também está disponível na literatura

Anotações			

Referências

- TOCCI, R.J.; WIDMER, N.S. Sistemas digitais: princípios e aplicações. 11a ed, Prentice-Hall, 2011.
- RUGGIERO, M.; LOPES, V. da R. Cálculo numérico: aspectos teóricos e computacionais. Makron Books do Brasil, 1996.
- NULL, L.; LOBUR, J. Princípios Básicos de Arquitetura e Organização de Computadores. 2014. Bookman, 2009. ISBN 9788577807666.

Anotações			
Anotações	Anotações		
Anotações			
	Anotações		

Anotações