The LNM Institute of Information Technology Jaipur, Rajasthan MATH-II

Assignment 8

- 1. Reduce the following second order differential equations to system of first order differential equations and hence solve.
 - (i) $xy'' + y' = y'^2$ (ii) $yy'' y'^2 = 0$ (iii) $yy'' + y'^2 + 1 = 0$ (iv) $y'' 2y' \coth x = 0$.
- 2. Find the curve y = y(x) passing through origin for which y'' = y' and the line y = x is tangent at the origin.
- 3. Find the differential equation satisfied by each of the following two-parameter families of plane curves:

(i)
$$y = \cos(ax + b)$$
 (ii) $y = ax + \frac{b}{x}$ (iii) $y = ae^x + bxe^x$

4. (a) Find the values of m such that $y = e^{mx}$ is a solution of

(i)
$$y'' + 3y' + 2y = 0$$
 (ii) $y'' - 4y' + 4y = 0$ (iii) $y''' - 2y'' - y' + 2y = 0$.

(b) Find the values of m such that $y = x^m (x > 0)$ is a solution of

(i)
$$x^2y'' - 4xy' + 4y = 0$$
 (ii) $x^2y'' - 3xy' - 5y = 0$.

5. Let p(x), q(x), r(x) are continuous functions on the interval I. Further, suppose $y_1(x)$, $y_2(x)$ are any two solutions of the linear non-homogeneous equation

$$y'' + p(x)y' + q(x)y = r(x), x \in I.$$
 (1)

Obtain conditions on the constants a and b such that $ay_1 + by_2$ is also its solution.

6. If p(x), q(x) are continuous functions on the interval I, then Show that y = x and $y = \sin x$ are not solutions of the linear homogeneous equation

$$y'' + p(x)y' + q(x)y = 0, x \in I.$$
 (2)

- 7. (a) Let $y_1(x)$, $y_2(x)$ be two linearly independent C^2 functions on the interval I, such that the wronskian $W(y_1, y_2)$ is not zero at any point on I. Show that there exists unique p(x), q(x) on I such that (2) has y_1 , y_2 as fundamental solutions.
 - (b) Construct equations of the form (2), from the pairs of linearly independent solutions:

(i)
$$e^{-x}$$
, xe^{-x} (ii) $e^{-x}\sin 2x$, $e^{-x}\cos 2x$

- 8. Show that a solution to (2) with x-axis as tangent at any point in I must be identically zero on I.
- 9. Let $y_1(x)$, $y_2(x)$ are two linearly independent solutions of (2). Show that
 - (i) between consecutive zeros of y_1 , there exists a unique zero of y_2 .
 - (ii) $\phi(x) = \alpha y_1(x) + \beta y_2(x)$ and $\psi(x) = \gamma y_1(x) + \delta y_2(x)$ are two linearly independent solutions iff $\alpha \delta \neq \beta \gamma$.
- 10. Let $y_1(x)$, $y_2(x)$ are two solutions of (2) with a common zero at any point in I. Show that y_1, y_2 are linearly dependent on I.