Report

Inés Alejandro García Mosqueda A00834571

Oliver Josel Hernández Rebollar A01641922

Paul Enrique Alonso Ramírez A01634608

Analysis of Control Systems

Group 401

Tecnológico de Monterrey, Campus Guadalajara September 9, 2023

Report

Computer Numerical Control is a way to instruct manufacturing machinery with a computer. It is a method widely used in the operation of industrial robots. Commonly, the instructions for the machinery will come from software known as computer-aided design. One basic type of CNC is point-to-point. Here the tool executes a set of primitive instructions such as carving a path given its initial and final point. Memory is required to keep track of the performed commands (Britannica, 2023).

Linear actuators provide, as the name suggests, motion in a straight line. There are several ways in which one can achieve linear motion. However, we shall devote our attention to the conversion from rotary motion to linear motion. A way to achieve this is by using screw threads to a rotary motion source. The present project utilizes a lead screw. A lead screw has helical threads that are designed for minimum backlash to allow precise positioning. The rotary motion of the lead screw is translated into the nut's linear motion. The torque required to move the nut will largely depend on the nature of the application (Figliola & Beasley, 2011). The following image better depicts the given description.

Theoretical Framework

As mentioned, lead screws are a way to transmit power in modern machines. They can generate high forces with a small moment. Also, they are known for providing a really good level of motion precision. Thus, we see them extensively in applications that use linear actuators or

linear stages. Typically lead screws can operate in two different ways. The first one is by supplying power to the nut and the other one is by rotating the shaft. Thereby, transferring power to the nut. In our project, the second way was used in the project. In other words, the nut's rotational motion is restricted and the screw shaft rotates. As a consequence the nut moves along the screw axis, namely, converting the rotary motion into linear motion. There are a few advantages of lead screws worth noting. Overall, they are cheap and reliable as their construction is simple; they require little to no maintenance; operations are smooth and reliable; load capacity is high (Slid, 2022).

H-bridge is a special circuit configuration that allows control over the current source to a load. This is specially important in motor applications because it is possible to change the behavior of the motor with an H-bridge. One must be careful always guaranteeing the correct H-bridge configurations because it is possible to cause a short circuit and damage the component (Franz, 2023). Operation in an H-Bridge is with switches. When using H-Bridge, one must consider at all times the switches characteristics and the thermal management of the circuit. Ignoring these properties can lead to operation failure. As mentioned, H-Bridges are heavily utilized in motor applications, since they can be mixed with the Pulse Width Modulation, hence, controlling the motor's speed (Electricity - Magnetism, n.d.).

An encoder is a sensor that retrieves physical variables. As with almost every known sensor, encoders convert what they sense into an electrical signal that can later be processed and handled by a piece of software. These devices help to determine the position, speed and direction. This is achieved by a count that the encoder generates and sends it to a controller. There are several technologies that an encoder can use to create a signal; for example, mechanical, magnetic, resistive and optical. Optical is the most common way. Specifically, The light emitted from a source is periodically interrupted by a disk with holes. These interruptions are the ones we use to generate the pulses and then know things like the direction of the encoder, speed, among others (Encoder Products Company, n.d.).

Mechanics

The linear shaft is a long rod-shaped tool used to support linear motion, especially sliding motion. Without it, we wouldn't complete a sliding mechanism with linear power transmission.

However, manufacturing and selecting the right linear shaft can be complicated. Linear shafts can have different structures and be made from various materials, depending on the required properties. With a linear shaft, motion can be guided and adjusted.

The load and specific requirements determine the size and precision of the linear shaft. In linear power transmission mechanisms, the shaft works alongside an actuator, a support rail, bushings (ball bearings), etc. In linear power transmission, the actuator typically does all the sliding work, while the rail, bushings, and linear shafts provide support.

The screw rotates clockwise, causing the shaft, which is essentially a nut on the screw, to move up and down the screw as the screw rotates. This is what converts the rotational motion of the electric motor into linear motion. Linear motors have been designed to produce high force at low speeds and even when stationary. Their design is not based on power but purely on force.

The direct current motor, also known as the direct current motor, is designed to transform electrical energy into mechanical energy, causing rotary motion. This is made possible thanks to the magnetic field that composes it, which is perhaps the most important part of the whole equipment. However, it requires other components to operate effectively, such as the stator, which serves as mechanical support for the device and holds the machine's poles, which can be wound with copper wire around an iron core or permanent magnets. The rotor is a cylindrical instrument with a winding and a core, which are supplied with direct current through the collector formed by commutator segments. The commutator segments are made of copper and are in contact with the fixed brushes.

There are two ways to mount the linear shaft: continuous support and end support. Continuous support shafts are generally used for heavier loads, while those supported at both ends are used for lighter loads.

Electronics

In the realm of the Linear Axis, where precision is paramount, our electronic components serve as the central nervous system, orchestrating every facet of movement and control. This electronic symphony relies on a harmonious ensemble of key components, each playing a unique and indispensable role.

The L298N motor driver plays a critical role in our Linear Axis Control Project, serving as the primary component to translate electronic signals into precise physical motion. This integrated circuit, known for its versatility and reliability, acts as the conductor for the motor's performance. The main function of the L298N motor driver is essential to our system, serving three main functions:

- Direction Control: The motor driver manages the motor's direction by reversing the polarity of the applied voltage to achieve forward or reverse motion.
- Speed Regulation: It allows us to adjust the motor's speed by varying the supplied voltage, providing us with the capability for precise speed control.
- Current Management: It incorporates current-sensing circuits to prevent overcurrent conditions, protecting both the motor and the driver itself.

DUAL FULL-BRIDGE DRIVER

At the core of our project's electronics is the Arduino Mega, a microcontroller board based on the ATmega2560. This microcontroller serves as the project's central processing unit, executing complex control algorithms and facilitating seamless communication with various sensors and components. The choice of Arduino Mega contributes to the project's user-friendliness and versatility, making it an ideal candidate for orchestrating the multi-disciplinary aspects of our linear axis control system.

The motor-reducer assembly seamlessly integrates a motor, reduction gearbox, and encoder, a trio of components that harmonize to deliver precise control over the linear motion of our axis. At the core of this assembly is the motor, strategically coupled with a reduction gearbox. Together, they form a symbiotic relationship, with the motor providing the mechanical power required to propel the linear motion. The reduction gearbox, with an approximate reduction ratio of 1:45, transforms the motor's high-speed rotation into the slower, high-torque movement essential for

our project's precision. Nestled within this assembly is the encoder, a sentinel of precision. This vital component employs Hall Effect technology and boasts a resolution of approximately 493.9 PPR (Pulses Per Revolution) with a ±10% tolerance. Operating within a voltage range of 3.3V to 5V and offering a response frequency of 100 kHz, the encoder delivers real-time feedback that is instrumental in our pursuit of accuracy. The motor, reduction gearbox, and encoder operate in tandem to orchestrate the linear motion of our axis. As the motor churns, the gearbox tempers its high-speed rotation, allowing for controlled movement. Simultaneously, the encoder diligently records every aspect of this motion—position, speed, and direction. This trove of data serves as the compass by which our system navigates, ensuring that the linear axis moves precisely as intended.

PINOUT GM 25-370 Encoder 12 V DC 140RPM

Encoder

- Tipo de encoder: Codificador Hall Magnético Incremental de doble fase
- Voltaje de alimentación: 3.3V 5V
- Interfaz: PH20 (cable estándar)
- Numero básico de pulsos 11ppr
- Frecuencia de respuesta 100KHz

GM 25-370 12V 140 RPM

- Voltaje recomendado: 12V
- Relación de Reducción aproximada: 1:45
- Velocidad sin carga: 140 rpm (a 12V)
- Corriente sin carga: ≤ 150 mA (a 12V)
- · Velocidad Nominal: 70 rpm
- Corriente Nominal: ≤ 0.8 A
- Torque / Par nominal: 4.3 kg.cm (0.42 Nm)
- Corriente de bloqueo: ≤ 2.5 A
- Par de bloqueo: 8.5 kg.cm
- Resolución Hall aproximada: 493.9 PPR ± 10%

In the context of connecting and utilizing the L298N motor driver, a typical wiring configuration is employed to ensure optimal functionality. This standard connection scheme serves as the foundation for effectively controlling motors and is widely adopted in various applications.

Software

The software we developed is quite simple because we were instructed to use an Arduino which is known for being user friendly. We wanted to increase the portability and robustness of our design, so we implemented a class called *PositionMotorControl*. This class has five methods for orchestrating the motor's behavior. The constructor will retrieve all the information for the member functions. Initialization method will send the constructor's data to the Arduino. Control method will be rotating the shaft based upon an error computed using the number of pulses. Set Target Position receives the desired position in the number of pulses. Get Current Position returns the current position attribute and Set Cero establishes what will be taken as the reference, namely, the origin. Attributes declared with the volatile qualifier are used in the interruption called Handle Encoder. This private function member reads the encoder in real time and updates things like current position and the motor's direction. It is declared as

static and thus uses a pointer to be called. At the beginning of the main program we create a motor instance, then set the baud rate to communicate with the microcontroller. Lastly we enter the loop and read the Serial Monitor to receive input from the user, if that does not happen, we print the position. Later the control method is called and moves the nut to the desired position. The following is a high-level description of the main program.

https://uelectronics.com/producto/gm-25-370-motor-con-encoder-12v-dc-140rpm-330rpm/

https://uelectronics.com/producto/balero-rodamiento-lineal-lm8uu-de-8mm-3d-cnc/

Cople Flexible D18L25 Nema Acoplador

Etiquetas: Acoplador Nema, cople, Cople D18L25, cople flexible, Cople Flexible 5x5mm, Cople Flexible 5x8mm,

Cople Flexible 6.35x8mm, Cople Flexible 8x10mm, Cople Flexible 8x8mm, Cople Flexible D18L25, D18L25, Piezas y

Accesorios 3D CNC

https://uelectronics.com/producto/cople-flexible-d18l25-nema-acoplador/

Varilla Lisa 8mm 60cm para Impresora 3D/CNC

https://uelectronics.com/producto/varilla-lisa-8mm-para-impresora-3d-cnc/

References

- Britannica. (2023, May 28). *Computer Numerical Control*. https://www.britannica.com/technology/numerical-control
- Electricity Magnetism. (n.d.). *H-Bridges*. https://www.electricity-magnetism.org/h-bridges/
- Encoder Products Company. (n.d.). What is an encoder?.
 - https://www.encoder.com/article-what-is-an-encoder
- Figliola, R., & Beasley, D. (2011). *Theory and Design for Mechanical Measurements*. John Wiley & Sons, Inc.
- Franz, K. (2023, April 18). What Is an H-Bridge?. https://digilent.com/blog/what-is-an-h-bridge/
- Slid Siim. (2022, January 24). Lead Screws Explained. https://fractory.com/lead-screws/
- Mega, A. (s/f). Arduino® MEGA 2560 Rev3. Arduino.cc. Recuperado el 10 de septiembre de 2023, de https://docs.arduino.cc/resources/datasheets/A000067-datasheet.pdf
- Mega, A. (s/f). Arduino® MEGA 2560 Rev3. Arduino.cc. Recuperado el 10 de septiembre de 2023, de https://docs.arduino.cc/resources/datasheets/A000067-datasheet.pdf
- Mega, A. (s/f). Arduino® MEGA 2560 Rev3. Arduino.cc. Recuperado el 10 de septiembre de 2023, de https://docs.arduino.cc/resources/datasheets/A000067-datasheet.pdf

Appendix

The code for the axis can be found here

https://github.com/Ineso1/Linear-Axis-Control/tree/main/ControlProgram/LinearAxisControl v1

Product Reference Manual SKU: A000067

Modified: 06/09/2023

Description

Arduino® Mega 2560 is an exemplary development board dedicated for building extensive applications as compared to other maker boards by Arduino. The board accommodates the ATmega2560 microcontroller, which operates at a frequency of 16 MHz. The board contains 54 digital input/output pins, 16 analog inputs, 4 UARTs (hardware serial ports), a USB connection, a power jack, an ICSP header, and a reset button.

Target Areas

3D Printing, Robotics, Maker

Modified: 06/09/2023

Features

■ ATmega2560 Processor

- Up to 16 MIPS Throughput at 16MHz
- 256k bytes (of which 8k is used for the bootloader)
- 4k bytes EEPROM
- 8k bytes Internal SRAM
- 32 × 8 General Purpose Working Registers
- Real Time Counter with Separate Oscillator
- Four 8-bit PWM Channels
- Four Programmable Serial USART
- Controller/Peripheral SPI Serial Interface

ATmega16U2

- Up to 16 MIPS Throughput at 16 MHz
- 16k bytes ISP Flash Memory
- 512 bytes EEPROM
- 512 bytes SRAM
- USART with SPI master only mode and hardware flow control (RTS/CTS)
- Master/Slave SPI Serial Interface

Sleep Modes

- Idle
- ADC Noise Reduction
- Power-save
- Power-down
- Standby
- Extended Standby

Power

- USB Connection
- External AC/DC Adapter

I/O

- 54 Digital
- 16 Analog
- 15 PWM Output

Contents

1 The Board	5
1.1 Application Examples	5
1.2 Accessories	5
1.3 Related Products	5
2 Ratings	6
2.1 Recommended Operating Conditions	6
2.2 Power Consumption	6
3 Functional Overview	6
3.1 Block Diagram	6
3.2 Board Topology	7
3.3 Processor	8
3.4 Power Tree	8
4 Board Operation	9
4.1 Getting Started - IDE	9
4.2 Getting Started - Arduino Web Editor	9
4.3 Sample Sketches	9
4.4 Online Resources	9
5 Connector Pinouts	10
5.1 Analog	11
5.2 Digital	11
5.3 ATMEGA16U2 JP5	13
5.4 ATMEGA16U2 ICSP1	13
5.5 Digital Pins D22 - D53 LHS	13
5.6 Digital Pins D22 - D53 RHS	14
6 Mechanical Information	14
6.1 Board Outline	14
6.2 Board Mount Holes	15
7 Declaration of Conformity CE DoC (EU)	15
8 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021	
9 Conflict Minerals Declaration	17
10 FCC Caution	17
11 Company Information	18
12 Reference Documentation	18

13 Revision History 18

1 The Board

Arduino® Mega 2560 is a successor board of Arduino Mega, it is dedicated to applications and projects that require large number of input output pins and the use cases which need high processing power. The Arduino® Mega 2560 comes with a much larger set of IOs when we compare it with traditional Uno board considering the form factor of both the boards.

1.1 Application Examples

- **Robotics**: Featuring the high processing capacitity, the Arduino Mega 2560 can handle the extensive robotic applications. It is compatible with the motor controller shield that enables it to control multiple motors at an instance, thus making it perfect of robotic applications. The large number of I/O pins can accommodate many robotic sensors as well.
- **3D Printing**: Algorithms play a significant role in implementation of 3D printers. Arduino Mega 2560 has the power to process these complex algorithms required for 3D printing. Additionally, the slight changes to the code is easily possible with the Arduino IDE and thus 3D printing programs can be customized according to user requirements.
- **Wi-Fi**: Integrating wireless functionality enhances the utility of the applications. Arduino Mega 2560 is compatible with WiFi shields hence allowing the wireless features for the applications in 3D printing and Robotics.

1.2 Accessories

1.3 Related Products

- Arduino® Uno Rev 3
- Arduino® Nano
- Arduino® DUE without headers

2 Ratings

2.1 Recommended Operating Conditions

Symbol	Description	Min	Max
TOP	Operating temperature:	-40 °C	85 °C

2.2 Power Consumption

Symbol	Description	Min	Тур	Max	Unit
PWRIN	Input supply from power jack		TBC		mW
USB VCC	Input supply from USB		TBC		mW
VIN	Input from VIN pad		TBC		mW

3 Functional Overview

3.1 Block Diagram

Arduino MEGA Block Diagram

3.2 Board Topology

Front View

Arduino MEGA Top View

Ref.	Description	Ref.	Description
USB	USB B Connector	F1	Chip Capacitor
IC1	5V Linear Regulator	X1	Power Jack Connector
JP5	Plated Holes	IC4	ATmega16U2 chip
PC1	Electrolytic Alumninum Capacitor	PC2	Electrolytic Alumninum Capacitor
D1	General Purpose Rectifier	D3	General Purpose Diode
L2	Fixed Inductor	IC3	ATmega2560 chip
ICSP	Connector Header	ON	Green LED
RN1	Resistor Array	XIO	Connector

3.3 Processor

Primary processor of Arduino Mega 2560 Rev3 board is ATmega2560 chip which operates at a frequency of 16 MHz. It accommodates a large number of input and output lines which gives the provision of interfacing many external devices. At the same time the operations and processing is not slowed due to its significantly larger RAM than the other processors. The board also features a USB serial processor ATmega16U2 which acts an interface between the USB input signals and the main processor. This increases the flexibility of interfacing and connecting peripherals to the Arduino Mega 2560 Rev 3 board.

3.4 Power Tree

Power Tree

4 Board Operation

4.1 Getting Started - IDE

If you want to program your Arduino® MEGA 2560 while offline you need to install the Arduino® Desktop IDE [1] To connect the Arduino® MEGA 2560 to your computer, you'll need a Type-B USB cable. This also provides power to the board, as indicated by the LED.

4.2 Getting Started - Arduino Web Editor

All Arduino® boards, including this one, work out-of-the-box on the Arduino® Web Editor [2], by just installing a simple plugin.

The Arduino® Web Editor is hosted online, therefore it will always be up-to-date with the latest features and support for all boards. Follow [3] to start coding on the browser and upload your sketches onto your board.

4.3 Sample Sketches

Sample sketches for the Arduino® MEGA 2560 can be found either in the "Examples" menu in the Arduino® IDE

4.4 Online Resources

Now that you have gone through the basics of what you can do with the board you can explore the endless possibilities it provides by checking exciting projects on ProjectHub [5], the Arduino® Library Reference [6] and the online store [7] where you will be able to complement your board with sensors, actuators and more.

5 Connector Pinouts

Arduino Mega Pinout

Modified: 06/09/2023

5.1 Analog

Pin	Function	Туре	Description
1	NC	NC	Not Connected
2	IOREF	IOREF	Reference for digital logic V - connected to 5V
3	Reset	Reset	Reset
4	+3V3	Power	+3V3 Power Rail
5	+5V	Power	+5V Power Rail
6	GND	Power	Ground
7	GND	Power	Ground
8	VIN	Power	Voltage Input
9	A0	Analog	Analog input 0 /GPIO
10	A1	Analog	Analog input 1 /GPIO
11	A2	Analog	Analog input 2 /GPIO
12	A3	Analog	Analog input 3 /GPIO
13	A4	Analog	Analog input 4 /GPIO
14	A5	Analog	Analog input 5 /GPIO
15	A6	Analog	Analog input 6 /GPIO
16	A7	Analog	Analog input 7 /GPIO
17	A8	Analog	Analog input 8 /GPIO
18	A9	Analog	Analog input 9 /GPIO
19	A10	Analog	Analog input 10 /GPIO
20	A11	Analog	Analog input 11 /GPIO
21	A12	Analog	Analog input 12 /GPIO
22	A13	Analog	Analog input 13 /GPIO
23	A14	Analog	Analog input 14 /GPIO
24	A15	Analog	Analog input 15 /GPIO

5.2 Digital

Pin	Function	Туре	Description
1	D21/SCL	Digital Input/I2C	Digital input 21/I2C Dataline
2	D20/SDA	Digital Input/I2C	Digital input 20/I2C Dataline
3	AREF	Digital	Analog Reference Voltage
4	GND	Power	Ground
5	D13	Digital/GPIO	Digital input 13/GPIO
6	D12	Digital/GPIO	Digital input 12/GPIO
7	D11	Digital/GPIO	Digital input 11/GPIO
8	D10	Digital/GPIO	Digital input 10/GPIO
9	D9	Digital/GPIO	Digital input 9/GPIO
10	D8	Digital/GPIO	Digital input 8/GPIO
11	D7	Digital/GPIO	Digital input 7/GPIO
12	D6	Digital/GPIO	Digital input 6/GPIO
13	D5	Digital/GPIO	Digital input 5/GPIO
14	D4	Digital/GPIO	Digital input 4/GPIO

Pin	Function	Туре	Description
15	D3	Digital/GPIO	Digital input 3/GPIO
16	D2	Digital/GPIO	Digital input 2/GPIO
17	D1/TX0	Digital/GPIO	Digital input 1 /GPIO
18	D0/Tx1	Digital/GPIO	Digital input 0 /GPIO
19	D14	Digital/GPIO	Digital input 14 /GPIO
20	D15	Digital/GPIO	Digital input 15 /GPIO
21	D16	Digital/GPIO	Digital input 16 /GPIO
22	D17	Digital/GPIO	Digital input 17 /GPIO
23	D18	Digital/GPIO	Digital input 18 /GPIO
24	D19	Digital/GPIO	Digital input 19 /GPIO
25	D20	Digital/GPIO	Digital input 20 /GPIO
26	D21	Digital/GPIO	Digital input 21 /GPIO

Arduino Mega Pinout

5.3 ATMEGA16U2 JP5

Pin	Function	Туре	Description
1	PB4	Internal	Serial Wire Debug
2	PB6	Internal	Serial Wire Debug
3	PB5	Internal	Serial Wire Debug
4	PB7	Internal	Serial Wire Debug

5.4 ATMEGA16U2 ICSP1

Pin	Function	Туре	Description
1	CIPO	Internal	Controller In Peripheral Out
2	+5V	Internal	Power Supply of 5V
3	SCK	Internal	Serial Clock
4	COPI	Internal	Controller Out Peripheral In
5	RESET	Internal	Reset
6	GND	Internal	Ground

5.5 Digital Pins D22 - D53 LHS

Pin	Function	Туре	Description
1	+5V	Power	Power Supply of 5V
2	D22	Digital	Digital input 22/GPIO
3	D24	Digital	Digital input 24/GPIO
4	D26	Digital	Digital input 26/GPIO
5	D28	Digital	Digital input 28/GPIO
6	D30	Digital	Digital input 30/GPIO
7	D32	Digital	Digital input 32/GPIO
8	D34	Digital	Digital input 34/GPIO
9	D36	Digital	Digital input 36/GPIO
10	D38	Digital	Digital input 38/GPIO
11	D40	Digital	Digital input 40/GPIO
12	D42	Digital	Digital input 42/GPIO
13	D44	Digital	Digital input 44/GPIO
14	D46	Digital	Digital input 46/GPIO
15	D48	Digital	Digital input 48/GPIO
16	D50	Digital	Digital input 50/GPIO
17	D52	Digital	Digital input 52/GPIO
18	GND	Power	Ground

5.6 Digital Pins D22 - D53 RHS

Pin	Function	Туре	Description
1	+5V	Power	Power Supply of 5V
2	D23	Digital	Digital input 23/GPIO
3	D25	Digital	Digital input 25/GPIO
4	D27	Digital	Digital input 27/GPIO
5	D29	Digital	Digital input 29/GPIO
6	D31	Digital	Digital input 31/GPIO
7	D33	Digital	Digital input 33/GPIO
8	D35	Digital	Digital input 35/GPIO
9	D37	Digital	Digital input 37/GPIO
10	D39	Digital	Digital input 39/GPIO
11	D41	Digital	Digital input 41/GPIO
12	D43	Digital	Digital input 43/GPIO
13	D45	Digital	Digital input 45/GPIO
14	D47	Digital	Digital input 47/GPIO
15	D49	Digital	Digital input 49/GPIO
16	D51	Digital	Digital input 51/GPIO
17	D53	Digital	Digital input 53/GPIO
18	GND	Power	Ground

6 Mechanical Information

6.1 Board Outline

Arduino Mega Outline

6.2 Board Mount Holes

Arduino Mega Mount Holes

Certifications

7 Declaration of Conformity CE DoC (EU)

We declare under our sole responsibility that the products above are in conformity with the essential requirements of the following EU Directives and therefore qualify for free movement within markets comprising the European Union (EU) and European Economic Area (EEA).

8 Declaration of Conformity to EU RoHS & REACH 211 01/19/2021

Arduino boards are in compliance with RoHS 2 Directive 2011/65/EU of the European Parliament and RoHS 3 Directive 2015/863/EU of the Council of 4 June 2015 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

Substance	Maximum Limit (ppm)
Lead (Pb)	1000
Cadmium (Cd)	100
Mercury (Hg)	1000
Hexavalent Chromium (Cr6+)	1000
Poly Brominated Biphenyls (PBB)	1000
Poly Brominated Diphenyl ethers (PBDE)	1000
Bis(2-Ethylhexyl} phthalate (DEHP)	1000
Benzyl butyl phthalate (BBP)	1000
Dibutyl phthalate (DBP)	1000
Diisobutyl phthalate (DIBP)	1000

Exemptions: No exemptions are claimed.

Arduino Boards are fully compliant with the related requirements of European Union Regulation (EC) 1907 /2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). We declare none of the SVHCs (https://echa.europa.eu/web/guest/candidate-list-table), the Candidate List of Substances of Very High Concern for authorization currently released by ECHA, is present in all products (and also package) in quantities totaling in a concentration equal or above 0.1%. To the best of our knowledge, we also declare that our products do not contain any of the substances listed on the "Authorization List" (Annex XIV of the REACH regulations) and Substances of Very High Concern (SVHC) in any significant amounts as specified by the Annex XVII of Candidate list published by ECHA (European Chemical Agency) 1907 /2006/EC.

9 Conflict Minerals Declaration

As a global supplier of electronic and electrical components, Arduino is aware of our obligations with regards to laws and regulations regarding Conflict Minerals, specifically the Dodd-Frank Wall Street Reform and Consumer Protection Act, Section 1502. Arduino does not directly source or process conflict minerals such as Tin, Tantalum, Tungsten, or Gold. Conflict minerals are contained in our products in the form of solder, or as a component in metal alloys. As part of our reasonable due diligence Arduino has contacted component suppliers within our supply chain to verify their continued compliance with the regulations. Based on the information received thus far we declare that our products contain Conflict Minerals sourced from conflict-free areas.

10 FCC Caution

Any Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- (1) This device may not cause harmful interference
- (2) this device must accept any interference received, including interference that may cause undesired operation.

FCC RF Radiation Exposure Statement:

- 1. This Transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.
- 2. This equipment complies with RF radiation exposure limits set forth for an uncontrolled environment.
- 3. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

English: User manuals for licence-exempt radio apparatus shall contain the following or equivalent notice in a conspicuous location in the user manual or alternatively on the device or both. This device complies with Industry Canada licence-exempt RSS standard(s). Operation is subject to the following two conditions:

- (1) this device may not cause interference
- (2) this device must accept any interference, including interference that may cause undesired operation of the device.

French: Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes :

- (1) l'appareil nedoit pas produire de brouillage
- (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

IC SAR Warning:

English This equipment should be installed and operated with minimum distance 20 cm between the radiator and your body.

French: Lors de l' installation et de l' exploitation de ce dispositif, la distance entre le radiateur et le corps est d'au moins 20 cm.

Important: The operating temperature of the EUT can't exceed 85°C and shouldn't be lower than -40°C.

Hereby, Arduino S.r.l. declares that this product is in compliance with essential requirements and other relevant provisions of Directive 201453/EU. This product is allowed to be used in all EU member states.

11 Company Information

Company name	Arduino S.r.l.
Company Address	Arduino SRL, Via Andrea Appiani 25, 20900 Monza MB, Italy

12 Reference Documentation

Ref	Link
Arduino IDE	https://www.ard.ina.cs/on/Main/Coftware
(Desktop)	https://www.arduino.cc/en/Main/Software
Arduino IDE (Cloud)	https://create.arduino.cc/editor
Cloud IDE Getting	https://create.arduino.cc/projecthub/Arduino_Genuino/getting-started-with-arduino-web-
Started	editor-4b3e4a
Arduino Pro Website	https://www.arduino.cc/pro
Project Hub	https://create.arduino.cc/projecthub?by=part∂_id=11332&sort=trending
Library Reference	https://www.arduino.cc/reference/en/libraries/
Online Store	https://store.arduino.cc/

13 Revision History

Date	Revision	Changes
29/09/2020	1	First Release

DUAL FULL-BRIDGE DRIVER

- OPERATING SUPPLY VOLTAGE UP TO 46 V
- TOTAL DC CURRENT UP TO 4 A
- LOW SATURATION VOLTAGE
- OVERTEMPERATURE PROTECTION
- LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V (HIGH NOISE IMMUNITY)

DESCRIPTION

The L298 is an integrated monolithic circuit in a 15-lead Multiwatt and PowerSO20 packages. It is a high voltage, high current dual full-bridge driver designed to accept standard TTL logic levels and drive inductive loads such as relays, solenoids, DC and stepping motors. Two enable inputs are provided to enable or disable the device independently of the input signals. The emitters of the lower transistors of each bridge are connected together and the corresponding external terminal can be used for the con-

nection of an external sensing resistor. An additional supply input is provided so that the logic works at a lower voltage.

BLOCK DIAGRAM

Jenuary 2000 1/13

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Power Supply	50	V
V_{SS}	Logic Supply Voltage	7	V
V _I ,V _{en}	Input and Enable Voltage	-0.3 to 7	V
lo	Peak Output Current (each Channel) – Non Repetitive (t = 100μs) –Repetitive (80% on –20% off; ton = 10ms) –DC Operation	3 2.5 2	A A A
V _{sens}	Sensing Voltage	–1 to 2.3	V
P _{tot}	Total Power Dissipation (T _{case} = 75°C)	25	W
T _{op}	Junction Operating Temperature	-25 to 130	°C
T_{stg}, T_{j}	Storage and Junction Temperature	-40 to 150	°C

PIN CONNECTIONS (top view)

THERMAL DATA

Symbol	Parameter	PowerSO20	Multiwatt15	Unit	
R _{th j-case}	Thermal Resistance Junction-case	Max.	_	3	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max.	13 (*)	35	°C/W

^(*) Mounted on aluminum substrate

4

PIN FUNCTIONS (refer to the block diagram)

MW.15	PowerSO	Name	Function
1;15	2;19	Sense A; Sense B	Between this pin and ground is connected the sense resistor to control the current of the load.
2;3	4;5	Out 1; Out 2	Outputs of the Bridge A; the current that flows through the load connected between these two pins is monitored at pin 1.
4	6	Vs	Supply Voltage for the Power Output Stages. A non-inductive 100nF capacitor must be connected between this pin and ground.
5;7	7;9	Input 1; Input 2	TTL Compatible Inputs of the Bridge A.
6;11	8;14	Enable A; Enable B	TTL Compatible Enable Input: the L state disables the bridge A (enable A) and/or the bridge B (enable B).
8	1,10,11,20	GND	Ground.
9	12	VSS	Supply Voltage for the Logic Blocks. A100nF capacitor must be connected between this pin and ground.
10; 12	13;15	Input 3; Input 4	TTL Compatible Inputs of the Bridge B.
13; 14	16;17	Out 3; Out 4	Outputs of the Bridge B. The current that flows through the load connected between these two pins is monitored at pin 15.
_	3;18	N.C.	Not Connected

ELECTRICAL CHARACTERISTICS ($V_S = 42V$; $V_{SS} = 5V$, $T_j = 25^{\circ}C$; unless otherwise specified)

Symbol	Parameter	Test Condition	ons	Min.	Тур.	Max.	Unit
Vs	Supply Voltage (pin 4)	Operative Condition		V _{IH} +2.5		46	V
V_{SS}	Logic Supply Voltage (pin 9)			4.5	5	7	V
Is	Quiescent Supply Current (pin 4)	$V_{en} = H; I_L = 0$	$V_i = L$ $V_i = H$		13 50	22 70	mA mA
		V _{en} = L	$V_i = X$			4	mA
I _{SS}	Quiescent Current from V _{SS} (pin 9)	$V_{en} = H; I_L = 0$	$V_i = L$ $V_i = H$		24 7	36 12	mA mA
		V _{en} = L	$V_i = X$			6	mA
V_{iL}	Input Low Voltage (pins 5, 7, 10, 12)			-0.3		1.5	V
V _{iH}	Input High Voltage (pins 5, 7, 10, 12)			2.3		VSS	V
l _{iL}	Low Voltage Input Current (pins 5, 7, 10, 12)	$V_i = L$				-10	μΑ
I _{iH}	High Voltage Input Current (pins 5, 7, 10, 12)	$Vi = H \le V_{SS} - 0.6V$			30	100	μΑ
V _{en} = L	Enable Low Voltage (pins 6, 11)			-0.3		1.5	V
V _{en} = H	Enable High Voltage (pins 6, 11)			2.3		V _{SS}	V
I _{en} = L	Low Voltage Enable Current (pins 6, 11)	V _{en} = L				-10	μΑ
I _{en} = H	High Voltage Enable Current (pins 6, 11)	$V_{en} = H \le V_{SS} - 0.6V$			30	100	μΑ
V _{CEsat (H)}	Source Saturation Voltage	I _L = 1A I _L = 2A		0.95	1.35 2	1.7 2.7	V V
V _{CEsat (L)}	Sink Saturation Voltage	$I_L = 1A$ (5) $I_L = 2A$ (5)		0.85	1.2 1.7	1.6 2.3	V V
V _{CEsat}	Total Drop	I _L = 1A (5) I _L = 2A (5)		1.80		3.2 4.9	V V
V _{sens}	Sensing Voltage (pins 1, 15)			-1 (1)		2	V

ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
T ₁ (V _i)	Source Current Turn-off Delay	0.5 V_{i} to 0.9 I_{L} (2); (4)		1.5		μs
T ₂ (V _i)	Source Current Fall Time	0.9 I _L to 0.1 I _L (2); (4)		0.2		μs
T ₃ (V _i)	Source Current Turn-on Delay	0.5 V _i to 0.1 I _L (2); (4)		2		μs
T ₄ (V _i)	Source Current Rise Time	0.1 l _L to 0.9 l _L (2); (4)		0.7		μs
T ₅ (V _i)	Sink Current Turn-off Delay	0.5 V_{i} to 0.9 I_{L} (3); (4)		0.7		μs
T ₆ (V _i)	Sink Current Fall Time	0.9 I _L to 0.1 I _L (3); (4)		0.25		μs
T ₇ (V _i)	Sink Current Turn-on Delay	0.5 V _i to 0.9 I _L (3); (4)		1.6		μs
T ₈ (V _i)	Sink Current Rise Time	0.1 l _L to 0.9 l _L (3); (4)		0.2		μs
fc (V _i)	Commutation Frequency	I _L = 2A		25	40	KHz
T ₁ (V _{en})	Source Current Turn-off Delay	0.5 V _{en} to 0.9 I _L (2); (4)		3		μs
T ₂ (V _{en})	Source Current Fall Time	0.9 I _L to 0.1 I _L (2); (4)		1		μs
T ₃ (V _{en})	Source Current Turn-on Delay	0.5 V _{en} to 0.1 I _L (2); (4)		0.3		μs
T ₄ (V _{en})	Source Current Rise Time	0.1 l _L to 0.9 l _L (2); (4)		0.4		μs
T ₅ (V _{en})	Sink Current Turn-off Delay	0.5 V _{en} to 0.9 I _L (3); (4)		2.2		μs
T ₆ (V _{en})	Sink Current Fall Time	0.9 I _L to 0.1 I _L (3); (4)		0.35		μs
T ₇ (V _{en})	Sink Current Turn-on Delay	0.5 V _{en} to 0.9 I _L (3); (4)		0.25		μs
T ₈ (V _{en})	Sink Current Rise Time	0.1 l _L to 0.9 l _L (3); (4)		0.1		μS

^{1) 1)}Sensing voltage can be –1 V for t \leq 50 $\mu sec;$ in steady state V_{sens} min \geq – 0.5 V. 2) See fig. 2. 3) See fig. 4.

Figure 1 : Typical Saturation Voltage vs. Output Current.

Figure 2 : Switching Times Test Circuits.

Note: For INPUT Switching, set EN = H For ENABLE Switching, set IN = H

⁴⁾ The load must be a pure resistor.

Figure 3: Source Current Delay Times vs. Input or Enable Switching.

Figure 4 : Switching Times Test Circuits.

Note: For INPUT Switching, set EN = H
For ENABLE Switching, set IN = L

Figure 6 : Bidirectional DC Motor Control.

Figure 7 : For higher currents, outputs can be paralleled. Take care to parallel channel 1 with channel 4 and channel 2 with channel 3.

APPLICATION INFORMATION (Refer to the block diagram)

1.1. POWER OUTPUT STAGE

The L298 integrates two power output stages (A; B). The power output stage is a bridge configuration and its outputs can drive an inductive load in common or differenzial mode, depending on the state of the inputs. The current that flows through the load comes out from the bridge at the sense output: an external resistor (R_{SA} ; R_{SB} .) allows to detect the intensity of this current.

1.2. INPUT STAGE

Each bridge is driven by means of four gates the input of which are In1; In2; EnA and In3; In4; EnB. The In inputs set the bridge state when The En input is high; a low state of the En input inhibits the bridge. All the inputs are TTL compatible.

2. SUGGESTIONS

A non inductive capacitor, usually of 100 nF, must be foreseen between both Vs and Vss, to ground, as near as possible to GND pin. When the large capacitor of the power supply is too far from the IC, a second smaller one must be foreseen near the L298.

The sense resistor, not of a wire wound type, must be grounded near the negative pole of Vs that must be near the GND pin of the I.C.

Each input must be connected to the source of the driving signals by means of a very short path.

Turn-On and Turn-Off: Before to Turn-ON the Supply Voltage and before to Turn it OFF, the Enable input must be driven to the Low state.

3. APPLICATIONS

Fig 6 shows a bidirectional DC motor control Schematic Diagram for which only one bridge is needed. The external bridge of diodes D1 to D4 is made by four fast recovery elements (trr \leq 200 nsec) that must be chosen of a VF as low as possible at the worst case of the load current.

The sense output voltage can be used to control the current amplitude by chopping the inputs, or to provide overcurrent protection by switching low the enable input.

The brake function (Fast motor stop) requires that the Absolute Maximum Rating of 2 Amps must never be overcome.

When the repetitive peak current needed from the load is higher than 2 Amps, a paralleled configuration can be chosen (See Fig.7).

An external bridge of diodes are required when inductive loads are driven and when the inputs of the IC are chopped; Shottky diodes would be preferred.

This solution can drive until 3 Amps In DC operation and until 3.5 Amps of a repetitive peak current.

On Fig 8 it is shown the driving of a two phase bipolar stepper motor; the needed signals to drive the inputs of the L298 are generated, in this example, from the IC L297.

Fig 9 shows an example of P.C.B. designed for the application of Fig 8.

Fig 10 shows a second two phase bipolar stepper motor control circuit where the current is controlled by the I.C. L6506.

Figure 8: Two Phase Bipolar Stepper Motor Circuit.

This circuit drives bipolar stepper motors with winding currents up to 2 A. The diodes are fast 2 A types.

Figure 9: Suggested Printed Circuit Board Layout for the Circuit of fig. 8 (1:1 scale).

Figure 10: Two Phase Bipolar Stepper Motor Control Circuit by Using the Current Controller L6506.

DIM		mm			inch	
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
D		1			0.039	
Е	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.02	1.27	1.52	0.040	0.050	0.060
G1	17.53	17.78	18.03	0.690	0.700	0.710
H1	19.6			0.772		
H2			20.2			0.795
L	21.9	22.2	22.5	0.862	0.874	0.886
L1	21.7	22.1	22.5	0.854	0.870	0.886
L2	17.65		18.1	0.695		0.713
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L7	2.65		2.9	0.104		0.114
М	4.25	4.55	4.85	0.167	0.179	0.191
M1	4.63	5.08	5.53	0.182	0.200	0.218
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

47/

DIM.	mm				inch	
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			5			0.197
В			2.65			0.104
С			1.6			0.063
Е	0.49		0.55	0.019		0.022
F	0.66		0.75	0.026		0.030
G	1.14	1.27	1.4	0.045	0.050	0.055
G1	17.57	17.78	17.91	0.692	0.700	0.705
H1	19.6			0.772		
H2			20.2			0.795
L		20.57			0.810	
L1		18.03			0.710	
L2		2.54			0.100	
L3	17.25	17.5	17.75	0.679	0.689	0.699
L4	10.3	10.7	10.9	0.406	0.421	0.429
L5		5.28			0.208	
L6		2.38			0.094	
L7	2.65		2.9	0.104		0.114
S	1.9		2.6	0.075		0.102
S1	1.9		2.6	0.075		0.102
Dia1	3.65		3.85	0.144		0.152

OUTLINE AND MECHANICAL DATA

DIM.		mm			inch	
DIIVI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α			3.6			0.142
a1	0.1		0.3	0.004		0.012
a2			3.3			0.130
a3	0		0.1	0.000		0.004
b	0.4		0.53	0.016		0.021
С	0.23		0.32	0.009		0.013
D (1)	15.8		16	0.622		0.630
D1	9.4		9.8	0.370		0.386
E	13.9		14.5	0.547		0.570
е		1.27			0.050	
e3		11.43			0.450	
E1 (1)	10.9		11.1	0.429		0.437
E2			2.9			0.114
E3	5.8		6.2	0.228		0.244
G	0		0.1	0.000		0.004
Н	15.5		15.9	0.610		0.626
h			1.1			0.043
L	0.8		1.1	0.031		0.043
N	10° (max.)					
S			8° (n	nax.)		
Т		10			0.394	

- (1) "D and F" do not include mold flash or protrusions.
 Mold flash or protrusions shall not exceed 0.15 mm (0.006").
 Critical dimensions: "E", "G" and "a3"

OUTLINE AND MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

