Progressive Taxation in the Directed Search Model

ShinHyuck Kang¹

Korea Labor Institute Project For ETRI Meeting

Aug. 22, 2023

¹The views of this research are only author's one. Any error is mine.

PROGRESSIVE TAXATION

- Higher income pays more, Lower income pays less
- Put it another way: Marginal Tax Rate > Average Tax Rate
- Not about very theoretical taxation such as Ramsey/Mirrleesian taxation. Instead, mechanically talk about progressive income tax

Progressive Taxation: Visualization

Figure: Pre-Post Tax Labor Income

Figure: Pre-Post TaxIncome

How to formulate progressive taxation in a DSGE MODEL?

- One of the most famous way: HSV tax function
- In the real world, it's a step-function. However, it makes life a lot easier using a HSV tax function
- HSV tax function: Let y be a pre-tax income. Then,

Income tax:
$$T(y) = y - \lambda y^{1-\tau}$$

Disposable income:
$$D(y) = y - T(y) = \lambda y^{1-\tau}$$

If au > 0: Tax is progressive. If au = 1: All agents have identical income

KEY CONCEPTS

- If taxes are more progressive,
- Benefits
 - Inequality ↓
 - Poor households' additional consumption & utility from the fiscal policy large \rightarrow Can improve social welfare
 - Social welfare: $\int u(c(a, x), n(a, x)) d\mu(a, x)$
- Costs
 - Efficiency ↓
 - Rich households save less $\rightarrow K \downarrow \rightarrow w \downarrow \& r \uparrow$
 - Work less \rightarrow contribution to aggregate labor efficiency $\downarrow \rightarrow w \downarrow \& r \downarrow$

TRANSITION: OPTIMAL PROGRESSIVE INCOME TAX

Figure: Transition to new steady state. $(\tau, \tau_k) = (0.14, 0.24) \rightarrow (\tau^*, \tau_k^*) = (0.24, 0.39)$. Reference: Chang, Kim and Chang (2015)

WHY EFFICIENCY AND WELFARE COULD BE OPPOSITE

Figure: Value function V(a, z)

So, what I do in this research

- In the standard model, there is no unemployment. Thus, as $\tau \uparrow \to$ wage \downarrow ($w = \alpha (K/N)^{1-\alpha}$) \to labor supply discourages, in particular for higher skill workers
- Question: What if there is unemployment due to search frictions?
- Nash bargaining model: Exists and it implies that more progressive income tax leads to lower unemployment
- Directed search model(What I do): To my best knowledge, it is the first research to model with directed search model
 - Benefit: Easy to add another fiscal policy, such as lower bounds of unemployment insurance benefit + Aggregate shock

Model: Subperiod 1 - Separation & Search

Unemployed job seeker's value function:

$$R^{U}(b, a, h) = \max_{\mu'} \left\{ p(\theta(\mu', a, h)) E(\mu', a, h) + (1 - p(\theta(\mu', a, h)) U(b, a, h)) \right\}$$
(1)

Trade-off: Better job offer $\mu'\uparrow \to {\sf Less}$ probability to get a job $p(\theta(\mu',a,h))\downarrow$

Employed worker's value function:

$$R^{E}(\mu, a, h) = \max_{\mu'} \left\{ \lambda_{e} p(\theta(\mu', a, h)) E(\mu', a, h) - E(\mu, a, h) \right\} + E(\mu, a, h)$$
 (2)

Model: Subperiod 2 - Matching and Consumption/Saving

Employed worker's value function:

$$E(\mu, a, h) = \max_{c, a', n} \left\{ u(c, n) + \beta \left[\delta R^{U}(b, a', h) + (1 - \delta) R^{E}(\mu, a', h) \right] \right\}$$
(3)

subject to

$$(1 + \tau_c)c + a' = \lambda(\mu h n + r(1 - \tau_k)a)^{1-\tau} + a$$

$$b = \max\{\min\{RepRatio * \mu h n, \overline{B}\}, \underline{B}\}$$

Model: Subperiod 2 - Matching and Consumption/Saving

Unemployed worker's value function:

$$U(b, a, h) = \max_{c, a'} \left\{ u(c) + \beta \left[\gamma R^{U}(\underline{b}, a', h) + (1 - \gamma) R^{U}(b, a', h) \right] \right\}$$
(4)

subject to

$$(1 + \tau_c)c + a' = \lambda(b + r(1 - \tau_k)a)^{1-\tau} + a$$

MODEL: FIRM'S PROBLEM

Matched firm's value function:

$$J(\mu, a, h) = (1 - \mu)hn + \beta(1 - \delta)(1 - \lambda_e p(\theta(\mu'(\mu, a', h), a', h)))J(\mu, a', h)$$
(5)

Vacancy posting:

$$V = -\kappa + q(\theta(\mu, a, h)J(\mu, a, h)$$

Free entry condition: Equilibrium labor market tightness $\theta = v/u$

$$V = 0$$

Matching function:

$$M(u,v) = \chi u^{1-\eta} v^{\eta}$$

PARAMETRIZATION(PRELIMINARY)

Parameter	Description	Value	Reference/Target
σ	CRRA parameter	2.0000	CRRA utility parameter
ψ	Frisch elasticity	1.0000	Literature
β	Time Discount Factor	0.9946	Monthly frequency
r	Risk-free asset	0.0029	3.5% Annual rate
īn	Indivisible hours work	0.3410	Survey report on labor conditions by employment type
\bar{n}_2	Part-Time working hours	0.2257	2004-2022 EAPS
τ	Income tax progressivity	0.11	Estimates from NTS
λ	HSV tax function	0.98	Needs to be calibrated τ_c
Value-added tax	0.1000	Standard	
τ_k	Capital income tax	0.237	Chang et al.(2015)
λ_e	OJS job offer probability	0.5882	Griffy (2021)
RepRatio	Replacement ratio of U.I benefit	0.6000	60% Current Policy
γ	Duration of U.I benefit	0.5400	Six-month
$\frac{\underline{b}}{\overline{b}}$	Lower bounds of U.I benefit		one-day lower bound 60, 120 won
\bar{b}	Upper bounds of U.I benefit		one-day upper bound 66, 000 won (needs to be fixed)
δ	Job separation	0.0152	2017 - 2020 Regular workers' involuntarily job separation
χ	Matching efficiency	0.3200	Literature
η	Matching elasticity	0.5000	Literature
κ	Fixed cost of posting vacancy	1.0000	Needs to be revised
$(\mathbb{E}h, \sigma_h)$	Ex-ante heterogeneity of human capital	(11.2849, 0.4061)	Needs to be revised

Job Application Policy Function: $\mu(b,a,h)$

Unemployed job seekers

Figure: Low Human Capital

Figure: High Human Capital

Job Application Policy Function: $\mu(\mu, a, h)$

Employed job seekers

Figure: Low Human Capital

Figure: High Human Capital

STATIONARY DISTRIBUTION: ASSET

Figure: Asset Dist. when $\tau=0.11$

Figure: Asset Dist. when $\tau = 0.24$

BENCHMARK VS. MORE PROGRESSIVE TAXATION

- **1** Benchmark: $\tau = 0.11$ (Esitmates)
 - Aggregate capital: K = 79.16
 - Unemployment rate: 7.49%
- **2** More Progressive: $\tau = 0.24$ (Policy experiments)
 - Aggregate capital: K = 6.91
 - Unemployment rate: 6.56%

WHAT WE NEED MORE

- Calibration
- Policy experiments
 - Change of UI benefit
 - Optimal income tax progressivity
- Model ingredients
 - Endogenous hours work & human capital
 - Preference heterogeneity