Langage SQL

définitions

- Algèbre relationnelle: Ensemble d'opérateurs qui s'appliquent aux relations
- Résultat : nouvelle relation qui peut à son tour être manipulée
- L'algèbre relationnelle permet de faire des recherches dans les relations

Opérateurs de l'algèbre relationnelle

- Opérations unaires (une seule opérande): sélection (noté σ), projection (π), renommage (a)
- Opérations binaires: produit cartésien (x), jointures (|X|), union (∪), intersection (∩), différence (−), division (/)

Sélection (restriction) (1)

	$c_1(nom)$	$c_2({ m \hat{a}ge})$	$c_3(adresse)$	c_4 (né à)
-	Bob	13	Lyon	Nice
T=	Sam	7	Nice	Nice
-	Cathy	13	Brest	Brest
	Julie	20	Lyon	Brest

Sélection par rapport à une constante

,	$c_1(nom)$	$c_2({\sf \hat{a}ge})$	$c_3(adresse)$	c_4 (né à)
$\sigma_{c_3="Lyon"}(T)$	Bob	13	Lyon	Nice
	Julie	20	Lyon	Brest

Sélection (restriction) (2)

Sélection par rapport à un critère inter-colonne

	$c_1(nom)$	$c_2({ t age})$	$c_3(adresse)$	c_4 (né à)
$\sigma_{c_3=c_4}(T)$	Sam	7	Nice	Nice
	Cathy	13	Brest	Brest

Sélection à l'aide d'autres opérateurs

:	$c_1(nom)$	$c_2({ m \^age})$	$c_3(adresse)$	c_4 (né à)
$\sigma_{c_2 \leq 14}(T)$	Bob	13	Lyon	Nice
° c ₂ ≤14(±) ·	Sam	7	Nice	Nice
	Cathy	13	Brest	Brest

Sélection (restriction) (3)

Composition de sélection

$\sigma_{c_3="Lyon"}\left(\sigma_{c_2\leq 14}(T)\right)$			
$c_1(nom)$	$c_2({\sf \hat{a}ge})$	$c_3(adresse)$	c_4 (né à)
Bob	13	Lyon	Nice

Conjonction de critères

$$\sigma_{c_3="Lyon"}\left(\sigma_{c_2\leq 14}(T)\right)\iff \sigma_{c_3="Lyon"\ et\ c_2\leq 14}(T)$$

Projection (1)

	$c_1(nom)$	$c_2({\sf \hat{a}ge})$	$c_3(adresse)$	c_4 (né à)
-	Bob	13	Lyon	Nice
T=	Sam	7	Nice	Nice
	Cathy	13	Brest	Brest
	Julie	20	Lyon	Brest

Exemple de projection

:	$c_1(nom)$	$c_2({ t age})$
	Bob	13
$\pi_{c_1,c_2}(T)$	Sam	7
-17-2	Cathy	13
	Julie	20
·		

i	$c_1(nom)$	$c_2(adresse)$
	Bob	Lyon
$\pi_{c_1,c_3}(T)$	Sam	Nice
	Cathy	Brest
	Julie	Lyon

Renumérotation des colonnes

Composition

	$c_1(nom)$	$c_2({ m \^age})$	$c_3(adresse)$	c_4 (né à)
	Bob	13	Lyon	Nice
T=	Sam	7	Nice	Nice
	Cathy	13	Brest	Brest
	Julie	20	Lyon	Brest

Quels sont les noms des personnes habitant à Lyon ?

 Algèbre : le résultat d'une opération portant sur des relations est aussi une relation, ce qui rend possible la composition de différentes opérations

Renommage

- Parfois on veut appliquer plusieurs relations à la fois
- Soit on écrit l'opération comme une seule expression relationnelle algébrique en imbriquant les opérations, ou On applique une opération à la fois et on crée des résultats de relations intermédiaires.
- Dans le dernier cas on doit donner des noms aux résultats intermédiaires.
- On peut écrire une seule expression algébrique:
 - □PRENOM, NOM, SALAIRE(□ N°Dép=5(EMPLOYE))
- OU on peut écrire une séquence d'opérations:
 - DEP5_EMP ← □ N°Dép=5(EMPLOYE)
 - RESULTAT ← □ PRENOM, NOM, SALAIRE (DEP5_EMP)

Produit cartésien (1)

Homme	
c_1 (nom)	c_2 (adresse)
Bob	Lyon
Sam	Nice

Femme	
c_1 (nom)	c_2 (adresse)
Cathy	Brest
Julie	Lyon
Linda	Lyon

Quels sont les couples homme-femme ?
Homme × Femme

Quels sont les couples homme-femme d'une même ville ?

$$\sigma_{c2=c4}(Homme \times Femme)$$

Produit cartésien (2)

Homme	
c_1 (nom)	c_2 (adresse)
Bob	Lyon
Sam	Nice

Ville		
c_1 (nom) c_2 (nb hab.)		c_3 (départ.)
Nice	340.000	Alp-Mar
Brest	Brest 160.000	
Lyon	420.000	Rhône

Dans quel département habitent les hommes?

$$\sigma_{c2=c3}(Homme \times Ville)$$

Jointure (1)

Homme		
$c_1 \; (nom) c_2 \; (adresse)$		
Bob Lyon		
Sam Nice		

Femme		
$c_1 \; (nom) c_2 \; (adresse)$		
Cathy Brest		
Julie Lyon		
Linda Lyon		

Quels sont les couples homme-femme d'une même ville ?

$$\mathsf{Homme} \bowtie_{c2=c2} \mathsf{Femme} \longleftrightarrow \sigma_{c2=c4}(\mathsf{Homme} \times \mathsf{Femme})$$

c_1 (nom)	c_1 (nom) c_2 (adresse) c_3 (no		c_4 (adresse)
Bob	Lyon	Julie	Lyon
Bob	Bob Lyon		Lyon

Jointure (2)

Homme		
c_1 (nom) c_2 (adresse)		
Bob Lyon		
Sam Nice		

Ville		
c_1 (nom) c_2 (nb hab.)		c_3 (départ.)
Nice	340.000	Alp-Mar
Brest	160.000	Finistère
Lyon	420.000	Rhône

Dans quel département habitent les hommes?

Homme
$$\bowtie_{c2=c1}$$
 Ville $\leftrightarrow \sigma_{c2=c3}$ (Homme \times Ville)

c_1 (nom)	c_2 (adresse)	c_3 (nom)	c_4 (nb hab.)	c_5 (départ.)
Bob	Lyon	Lyon	420.000	Rhône
Sam	Nice	Nice	340.000	Alp-Mar

Union

Homme		
$c_1 \; (nom) c_2 \; (adresse)$		
Bob Lyon		
Sam Nice		

Femme		
$c_1 \; (nom) c_2 \; (adresse)$		
Cathy Brest		
Julie Lyon		
Linda Lyon		

- Quel est l'ensemble des personnes ?
- Quel est l'ensemble des personnes habitant Lyon ?

Les relations doivent avoir même schéma (même nombre d'attributs dont les domaines correspondent)

Différence

Homme		
$c_1 \; (nom) c_2 \; (adresse)$		
Bob Lyon		
Sam Nice		

Femme		
$c_1 \; (nom) c_2 \; (adresse)$		
Cathy Brest		
Julie Lyon		
Linda Lyon		

 Quelles sont les villes pour lesquelles on connaît au moins un homme et aucune femme ?

$$\pi_{c2(Homme)}$$
 - $\pi_{c2(Femme)}$

Opérations dérivées

- Intersection
- Division
 - Permet de rechercher les sous-tuples d'une relation qui sont "complétés" par tous ceux d'une autre relation

Vins		
Cru	Mill.	Qualité
Volnay	1983	А
Volnay	1979	В
Chablis	1983	Α
Chablis	1979	Α
Julienas	1986	А

Qualité		
Mill.	Qualité	
1983	А	
1979	А	

Division (2) Exemple

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
s4	p2
s4	p4

pno p2 B1

sno s1 s2 s3 s4 pnop2p4B2

sno s1 s4

A/B2

pno p1 p2 p4

B3

sno s1

A/B3

definition

- SQL est acronyme de « Structred Query Language » c'est-à-dire langage d'interrogation structuré
- Un langage qui interroge une base donné... mais pas seulement
- Langage conçu par IBM dans les années 1970 et normalisé après en 1992
- SQL est un langage complet de gestion de base de donnés

définition

- La gestion comprend:
 - Interrogation de la base
 - Manipulation de donnée (ajout, mise a jour et suppression
 - Création de la structure (création de table)
 - Contrôle d'accès (qui peut faire quoi)

utilisation

- Le langage SQL est utilisé par la plupart des systèmes de gestion de base de données relationnelles
- Ex: oracle,Informix, sql server, MySql...etc
- Pourtant chaque SGBD a sa variante de sql
- PS: les différences entre la syntaxe de différents SGBD rend difficile la portabilité du code sql

fonctionnement

- Sql désigne les objets (Tables ,colonnes, utilisateurs, etc) par des identificateurs
- Un identificateur est un mot formé de 30 caractère max commençant par une lettre d'alphabet
- Un identificateur peut contenir des lettres, des chiffres est les symbol # \$_
- Ne pas utiliser les mot clés SQL comme identificateur (DATE, TYPE, SET...)

Les tables

- Les relations sont stockées sous forme de table composé de lignes et des colonnes
- Exemple de table Etudiant:

CNE	Nom	Prenom
23485	Ali	Drissi
65908	Amine	Alami
75824	Maryam	Alaoui

Les colonnes

- Les données d'une même colonne doivent être du même type
- Le type est spécifié au moment de la création de la table
- Chaque colonne est identifié uniquement au sein de la même table
- Deux colonnes appartenant à la même table ne doivent pas porter le même nom
- Le nom complet de la colonne est nom_table.nom_colonne

- Types numérique:
 - Nombres entiers: SMALLINT (sur 2 octets, de -32.768 à 32.767), INTEGER (sur 4 octets, de -2.147.483.648 à 2.147.483.647)
 - Nombres décimaux: DECIMAL(p,d) p chiffre significatifs et d chiffre après la virgule (ex: DECIMAL(3,2) => 987,32)
 - Numériques non exactes à virgule flottante: REAL avec 7 chiffre significatives et FLOAT avec 15 chiffres significatives
 - D'autres types numériques peuvent être définie par les SGBD

- Chaîne de caractères: deux types
 - CHAR (*longueur*): pour les chaînes de caractères de longueur constante d'une longueur max *longueur* (le reste est remplie par des espaces)
 - VARCHAR(*longueur*): pour les chaînes de caractères de longueur variables et une longueur max de longueur
 - CHAR est en général utilisé pour de courtes chaînes et VARCHAR pour des chaînes longues

- Types temporels:
 - DATE:deux chiffres pour le jour, deux chiffres pour le mois et quatre pour l'année (08/11/2000)
 - TIME:heures, minutes et secondes
 - INTERVAL:intervalle de temps
 - TIMESTAMP: permet de spécifier un moment avec date et heur

- Types binaires: sert à stocker les images et le son
 - BIT:longueur constante
 - BIT VARYING: longueur variable
- Valeur NULL: absence de valeur et pas un zéro

Création de table

- L'ordre CREATE TABLE permet de créer une table en définissant le nom et le type de chacune des colonnes de la table
- Syntaxe: CREATE TABLE nom_table (colonne1 type1, colonne2 type2,)

Clé primaire

Sur une colonne :

PRIMARY KEY

Exemple: code smallint primary key

Sur plusieurs colonnes

PRIMARY KEY (colonne1, colonne2,...)

Language de manipulation de données

- C'est le language permettant de modifier le contenu de la base de données
- Il est composé des trois commandes suivantes
 - Insert
 - Update
 - Delete

insert

- Insere un nouvel enregistrement dans la table
- Syntaxe: INSERT INTO table (col1,..., coln)
) VALUES (valeur1,...,valeurn)
- Exemple: insert into personne (CIN, nom, prenom) values ("H34556", "drissi", "ali
 ")

update

- Met à jour un enregistrement
- Syntaxe:

UPDATE table SET col1 = exp1, col2 = exp2, ...

WHERE condition

 Exemple: update employe set salaire=salaire*1.1
 Where poste = vendeur;

delete

- L'ordre delete permet de supprimer des lignes d'une table
- Syntaxe: DELETE FROM table WHERE condition
- Exemple: delete from employe where date de naissance >= 65;
- PS: la commande delete sans clause where supprime toutes les lignes de la table

interrogation

- L'ordre SELECT permet d'interroger la base de données, il possède les clauses suivantes:
 - SELECT ...
 - FROM ...
 - WHERE ...
 - GROUP BY ...
 - HAVING ...
 - ORDER BY ...
- Seuls SELECT et FROM sont obligatoires
- Les clauses doivent apparaître avec le même ordre que ci dessus

SELECT

- Cette clause indique les colonnes ou expressions retournés par l'interrogation
- Syntaxe: SELECT [DISTINCT] col1, col2
- Ou SELECT [DISTINCT] expr1 [AS nom1], expr2 [AS nom2]
- Distinct est une option facultative pour afficher les enregistrements différents
- « Select * » affiche toutes les colonnes

FROM

- Détermine les tables concernées par la sélection (il est possible de sélectionner de plusieurs tables)
- FROM table1, table2...

WHERE

- Cette clause permet de sélectionner quelles sont les lignes à sélectionner selon un prédicat (expression logique ayant une valeur logique vrai ou faux) si le résultat est vrai la ligne est sélectionnée
- Syntaxe: WHERE prédicat

Les opérateurs logiques

- WHERE exp1 = exp2
- WHERE exp1 != exp2
- WHERE exp1 < exp2
- WHERE exp1 > exp2
- WHERE exp1 <= exp2
- WHERE exp1 >= exp2
- WHERE exp1 BETWEEN exp2 AND exp3
- WHERE exp1 LIKE exp2
- WHERE exp1 NOT LIKE exp2
- WHERE exp1 IN (exp2, exp3,...)
- WHERE exp1 NOT IN (exp2, exp3,...)
- WHERE exp IS NULL
- WHERE exp IS NOT NULL

GROUP BY

- Il est possible de subdiviser la table en groupes, chaque groupe étant l'ensemble des lignes ayant une valeur commune.
- Syntaxe: GROUP BY exp1, exp2,...

HAVING

- sert à préciser quels groupes doivent être sélectionnés.
- Syntaxe: HAVING prédicat
- Elle se place après la clause GROUP BY et porte sur les caractéristiques du groupe

ORDER BY

- Les lignes constituant le résultat d'un SELECT sont obtenues dans un ordre indéterminé. La clause ORDER BY précise l'ordre dans lequel la liste des lignes sélectionnées sera donnée.
- Syntaxe: ORDER BY exp1 [DESC], exp2 [DESC], ...
- Par default l'ordre est croissant l'option DESC doit être mentionnée dans le cas d'un ordre décroissant

Fonctions de groupes

- Les fonctions de groupes peuvent apparaître dans le Select ou le Having
 - AVG moyenne
 - SUM somme
 - MIN plus petite des valeurs
 - MAX plus grande des valeurs
 - VARIANCE variance
 - STDDEV écart type (déviation standard)
 - COUNT(*) nombre de lignes
 - COUNT(col) nombre de valeurs non nulles de la colonne
 - COUNT(DISTINCT col) nombre de valeurs non nulles différentes