

COMMERCIAL SINGLE PACKAGE ROOFTOP UNITS GAS HEATING/ELECTRIC COOLING UNITS

580F, 579F, 581A/B/C Dura*Pac* and Dura*Pac* Plus Series Sizes 024-300

2 to 25 Tons

Standard efficiency units (580F072, 090, 120, 150 and 579F180-300) are available. Standard efficiency units (580F036-060, 073, 091,103,121,151, and 180-300) that meet ASHRAE 90.1-04 minimum energy efficiency requirements are also available. High efficiency units (581C024-060, 581B036-150 and 581A155-300) well exceed ASHRAE 90.1-04 energy efficiency requirements and must comply with Energy Star high efficiency requirements. Gas heating with electric cooling rooftops offer:

- Pre-painted galvanized steel cabinet for long life and quality appearance
- Commercial strength base rails with built-in rigging capability
- Convertible design for vertical or horizontal supply/return (024-151 field convertible, factory supplied vertical supply/ return and 210-300 discrete configuration only)
- Non-corrosive, sloped condensate drain pan, meets ASHRAE 62 (IAQ)
- Two-inch return-air filters
- A wide assortment of factory-installed options available, including high-static drives that provide additional performance range
- Factory-installed optional gear driven EconoMi\$er IV (vertical return for sizes 024-151 only) for use with standard rooftop unit controls (includes CO₂ sensor control capability)
- Factory-installed optional gear driven EconoMi\$er2 (vertical return only) for use with third party DDC controls (includes 4 to 20 mA actuator for demand control ventilation)
- Perfect Humidity[™] dehumidification package (581C036-060 and 581B036-150 only)
- Hot gas reheat dehumidification package (581A181-300 only)
 Heat Options
- Exclusive integrated gas control board with diagnostics
- Alumagard[™] heat exchanger coating

- Induced-draft fan for gas combustion
- Tubular, dimpled heat exchangers
- Natural gas
- LP conversion kits
- Low NO_X (size 024-060 only)
- Optional type 409 stainless steel heat exchangers.

FEATURES/BENEFITS

Every compact one-piece unit arrives fully assembled, charged, tested, and ready to run.

GAS HEAT MODELS — All ignition components are contained in the compact IGC (integrated gas controller) which is easily accessible for servicing. The IGC control board, designed and manufactured exclusively for Bryant rooftop units, provides built-in diagnostic capability. An LED (light-emitting diode) simplifies troubleshooting by providing visual fault notification and required system status confirmation.

The IGC also contains an exclusive anti-cycle protection for gas heat operation. After 4 continuous cycles on the unit high-temperature limit switch, the gas heat operation is disabled, and an error code is issued. This feature greatly improves reliability of the rooftop unit.

The IGC also contains burner control logic for accurate and dependable gas ignition. The LED is visible without removing the unit control box access panel. This LED fault-notification system reduces service person troubleshooting time and minimizes service costs. The IGC also maximizes heating efficiency by controlling evaporator-fan on and off delays.

Tubular, dimpled gas heat exchangers optimize heat transfer for improved efficiency. The tubular design permits hot gases to make multiple passes across the path of the supply air. The dimpled design creates a turbulent gas flow to maximize heating efficiency.

Form No. PDS580F-36-4

TABLE OF CONTENTS

Page
Features/Benefits
Model Number Nomenclature
ARI Capacity Ratings
Options and Accessories
580F036-151
Physical Data
Accessory Dimensions
Selection Procedure
Performance Data
Electrical Data
Typical Wiring Schematics
Typical Piping and Wiring
581B036-150
Physical Data
Base Unit Dimensions91,92
Accessory Dimensions
Selection Procedure
Performance Data96-136
Electrical Data
Typical Wiring Schematics
Guide Specifications (036-151 Size Units)
581C024-060
Physical Data
Base Unit Dimensions
Performance Data
Typical Wiring Schematics
Typical Piping and Wiring
Guide Specifications (024-160 Size Units) 170-174
F70F400 000
579F180-300
Physical Data
Physical Data 175,176 Base Unit Dimensions 177,178
Physical Data
Physical Data
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201
Physical Data 175,176 Base Unit Dimensions. 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202
Physical Data 175,176 Base Unit Dimensions. 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 Physical Data 203,204 Base Unit Dimensions 205-207
Physical Data 175,176 Base Unit Dimensions. 177,178 Accessory Dimensions 179-181 Selection Procedure .182 Performance Data 183-196 Electrical Data .197 Typical Wiring Schematics 198-201 Typical Piping and Wiring .202 580F180-300 Physical Data 203,204
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 Physical Data 228-231
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 Physical Data 228-231 Base Unit Dimensions 232,233
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 28-231 Base Unit Dimensions 232,233 Accessory Dimensions 234-237
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 Physical Data 228-231 Base Unit Dimensions 232,233
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 208-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 28-231 Base Unit Dimensions 232,233 Accessory Dimensions 234-237 Selection Procedure 238
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 208-207 Physical Data 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 28-231 Base Unit Dimensions 232,233 Accessory Dimensions 234-237 Selection Procedure 238 Performance Data 239-274 Electrical Data 275-277 Typical Wiring Schematics 278,279
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 Physical Data 228-231 Base Unit Dimensions 232,233 Accessory Dimensions 234-237 Selection Procedure 238 Performance Data 239-274 Electrical Data 275-277 Typical Wiring Schematics 278,279 Typical Piping and Wiring 280
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 208-207 Physical Data 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 28-231 Base Unit Dimensions 232,233 Accessory Dimensions 234-237 Selection Procedure 238 Performance Data 239-274 Electrical Data 275-277 Typical Wiring Schematics 278,279
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 208-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 232,233 Accessory Dimensions 232,233 Accessory Dimensions 234-237 Selection Procedure 238 Performance Data 239-274 Electrical Data 275-277 Typical Wiring Schematics 278,279 Typical Piping and Wiring 280 Guide Specifications (155-300 Size Units) 281-288
Physical Data 175,176 Base Unit Dimensions 177,178 Accessory Dimensions 179-181 Selection Procedure 182 Performance Data 183-196 Electrical Data 197 Typical Wiring Schematics 198-201 Typical Piping and Wiring 202 580F180-300 205-207 Physical Data 203,204 Base Unit Dimensions 205-207 Accessory Dimensions 208-211 Selection Procedure 212 Performance Data 213-222 Electrical Data 223 Typical Wiring Schematics 224-226 Typical Piping and Wiring 227 581A155-300 Physical Data 228-231 Base Unit Dimensions 232,233 Accessory Dimensions 234-237 Selection Procedure 238 Performance Data 239-274 Electrical Data 275-277 Typical Wiring Schematics 278,279 Typical Piping and Wiring 280

FEATURES/BENEFITS (cont)

The efficient in-shot burners and all ignition components are contained in an easily removable, compact assembly.

The California Air Quality Management Districts NO_x requirement of 40 nanograms/joule or less is met on 036-060 size Low NO_x models.

The extra thick Alumagard™ heat exchanger coating provides corrosion resistance and ensures long life (optional stainless steel heat exchangers are available).

The unsightly appearance of flue stacks is eliminated and the effects of wind on heating operations are diminished by the induced draft combustion system. The inducer fan draws hot combustion gas through the heat exchanger at the optimum rate for the most effective heat transfer. The heat exchanger operates under negative pressure, preventing flue gas leakage into the indoor supply air.

During the heating mode, the evaporator-fan relay automatically starts the evaporator fan after the heat exchanger warms up to a suitable temperature. The 30-second fan delay prevents cold air from entering the supply duct system when the conditioned space is calling for heat to maximize efficiency.

The direct-spark ignition system saves operating expense when compared to pilot ignition systems. No crossover tube is required, therefore no sooting or pilot fouling problems can occur.

All standard units are designed for natural gas, but an accessory propane conversion kit is available.

All units have a flame rectification sensor to quickly sense the burner flame and ignite burners almost immediately. Fast shutdown is a certainty since the sensor reacts quickly to any flame outage or system failure. In the event of a shutdown, an error code is issued at the IGC board.

Safety is also assured due to the heating safety controls which will shut down the unit if there is a problem. If excessive temperatures develop, limit switches shut off the gas valve. After 4 continuous short cycles of the high-temperature limit switch, the IGC board locks out the gas heat cycle to prevent any further short cycles. This safety feature is provided exclusively on Bryant rooftop units. The rollout switch also deenergizes the gas valve in the event of a flame rollout.

QUIET, EFFICIENT OPERATION AND DEPENDABLE PER-FORMANCE — Compressors have vibration isolators for quiet operation. Efficient fan and motor design permits operation at low sound levels.

Unit sizes 090-300 offer lower utility costs through part-load operation using 2 or 3 stages of cooling.

Quiet and efficient operation is provided by belt-driven evaporator fans (standard on all units over 5 tons). The belt-driven evaporator-fan is equipped with variable-pitch pulleys which allow adjustment within the rpm ranges of the factory-supplied pulleys.

Increased operating efficiency is achieved through computerdesigned coils featuring staggered internally enhanced copper tubes. Fins are ripple-edged for strength, lanced, and double waved for higher heat transfer.

DURABLE, DEPENDABLE CONSTRUCTION — Designed for durability in any climate, the weather-resistant cabinets are constructed of galvanized steel and bonderized, and all exterior panels are coated with a prepainted baked enamel finish. The paint finish is non-chalking, and is capable of withstanding ASTM (American Society for Testing and Materials) B117 500-hour Salt Spray Test. All internal cabinet panels are primed, permitting longer life and a more attractive appearance for the entire unit.

In addition, all size 024-151 units are designed with a single, continuous top piece to eliminate any possible leaks at seams or gasketing. Totally enclosed condenser-fan motors and permanently lubricated bearings provide additional unit dependability.

FEATURES/BENEFITS (cont)

EASY INSTALLATION AND CONVERSION

All Units are Shipped in the Vertical Duct Configuration for fit-up to standard roof curbs. The contractor can order and install the roof curb early in the construction stage, before decisions on size requirements are made.

All units feature a base rail design with forklift slots and rigging holes for easier maneuvering. Durable packaging protects all units during shipment and storage.

The units can be easily converted from a vertical to a horizontal duct configuration by relocating the panels supplied with the unit (size 024-150 only).

To Convert 024-151 Units from vertical to horizontal discharge, simply relocate 2 panels. The same basic unit can be used for a variety of applications and can be quickly modified at the jobsite.

To Convert 155-300 Units from vertical to horizontal discharge, use the optional horizontal supply/return adapter roof curb (581A155,180 and 579F/580F180-300) or accessory conversion kit (581A210-300). Please note that 581A210-300 units are available from the factory configured for horizontal supply/return.

Convenient Duct Openings in the unit basepans permit sideby-side or concentric duct connections (see Application data section) without requiring internal unit modification.

NOTE: On units using horizontal supply and return, the accessory barometric relief or power exhaust MUST be installed on the return ductwork.

Thru-The-Bottom Service Connection Capability comes standard with the rooftop unit to allow power and control wiring and gas connections to be routed through the unit's basepan, thereby minimizing roof penetrations (to prevent water leaks). (Thru-the-bottom gas connection requires thru-the-bottom accessory kit.) Power, gas and control connections are made on the same side of the unit to simplify installation.

The Non-Corrosive Sloped Condensate Drain Pan (Size 024-150) permits either an external horizontal side condensate drain (outside the roof curb) or an internal vertical bottom drain (inside the roof curb). Both options require an external, field-supplied P-trap.

Standard 2-in. Throwaway Filters are easily accessed through a removable panel located above the air intake hood. No tools are required to change unit filters.

Belt-Driven Evaporator-Fan Motors (optional on 580F units under 6 tons) allow maximum on-site flexibility without changing motors or drives.

Low Voltage Wiring Connections are easily made thanks to the large terminal board which is located for quick, convenient access.

In addition, color-coded wires permit easy tracing and diagnostics.

PROVEN COMPRESSOR RELIABILITY — Design techniques feature computer-programmed balance between compressor, condenser, and evaporator. Bryant-specified hermetic compressors are equipped with compressor overcurrent and overtemperature protection to ensure dependability.

All units have Bryant's exclusive AcutrolTM (024-151) or TXV (thermostatic expansion valve) metering device (155-300) which precisely controls refrigerant flow, preventing slugging and flood-back, while maintaining optimum unit performance. Refrigerant filter driers are standard.

INTEGRATED ECONOMIZERS AND OUTDOOR-AIR DAMP-ERS — Available as options or accessories, economizers and manual outdoor-air dampers introduce outdoor air which mixes with the conditioned air, improving indoor-air quality and often reducing energy consumption.

During a first stage call for cooling, if the outdoor-air temperature is below the economizer control changeover set point, the mixed-air sensor modulates the economizer outdoor-air damper open to take advantage of free cooling provided by the outside air. When second-stage cooling is called for, the compressor is energized in addition to the economizer. If the outdoor-air temperature is above the changeover set point, the first stage of compression is activated and the economizer damper stays at minimum position.

Accessory upgrade kits allow for control by differential dry-bulb temperature (outdoor vs return), outdoor air enthalpy changeover, or more precise differential enthalpy control.

Units can be equipped with different economizer options to meet specific controls applications. The factory-installed or field-installed EconoMi\$er IV and EconoMi\$er2 are available. The EconoMi\$er IV is used with the standard rooftop unit controls and includes an industry standard, stand-alone, solid-state controller. The control can be used with a $\rm CO_2$ sensor for DCV (demand control ventilation) operation. For direct digital control (DDC) applications, the EconoMi\$er2 can be operated using a third party control system. The EconoMi\$er2 includes 4 to 20 mA actuator capability for demand control ventilation applications.

All economizers incorporate a parallel blade, gear-driven damper system for efficient air mixing and reliable control. In addition, the standard damper actuator includes a spring return to provide reliable closure on power loss. The economizers for sizes 024-151 are equipped with up to 100% barometric relief capability for high outdoor airflow operations. Economizers for unit sizes 024-151 are available, factory-installed, for vertical return only. Economizers for unit sizes 155-300 are compatible for vertical or horizontal return. An optional field-installed barometric relief package is available for size 155-300 units.

In addition, single-stage power exhaust is available as a field-installed accessory for EconoMi\$er IV to help maintain proper building pressure.

For units without economizer, year-round ventilation is enhanced by an optional manual outdoor-air damper. On 024-150 units, a 25% or 50% manual damper is available as a field-installed accessory. Unit sizes 155-300 are equipped with a manual 25% damper.

SERVICE OPTIONS (581B and 581A Units Only) — Servicing a rooftop unit has never been easier with the factory-installed service options for these rooftop units. These options include the following:

- Hinged access panels are provided for the filter/indoor-fan motor, compressors, evaporator fan, and control box areas. Quick access to major components is accomplished by simply unlatching and swinging open the various panels. Each hinged panel is permanently mounted to the unit, thereby eliminating the concern of a dropped or wind-blown panel puncturing delicate roof materials. The 4 extended access panels are also equipped with "tie back" retaining devices to hold the door in the open position while servicing the unit.
- An external, covered, 115-v Ground Fault Interrupt (GFI) receptacle is provided as a convenient power source for drills, lights, refrigerant recovery units, or other electrical service tools. A factory-supplied step down transformer is connected to the "load" side of the unit main power connection (size 024-150). For sizes 155-300, connect the outlet to a field-supplied and properly fused branch circuit power supply.
- Slide out "motor-drive-blower" reduces service time (only on 581A210-300).
- An integral non-fused disconnect switch within the rooftop unit reduces installation time, labor and material costs. Safety is assured by an interlock which prevents access to the control box unless the switch is in the OFF position. In addition, the externally mounted handle incorporates power lockout capability to further protect service personnel.

FEATURES/BENEFITS (cont)

INDOOR-AIR QUALITY (IAQ) BEGINS WITH BRYANT ROOF-

TOPS — Sloped condensate pans minimize biological growth in rooftop units in accordance with ASHRAE (American Society of Heating, Refrigeration and Air Conditioning Engineers) Standard 62. Two-inch filters with optional dirty filter indicator switch provide for greater particle reduction in the return air. The face-split evaporator coils improve the dehumidification capability of standard units, maximize building humidity control.

Optional proportional reacting ${\rm CO_2}$ sensor is available with the EconoMi\$er IV outdoor air damper option/accessory to aid the IAQ benefits.

PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION **SYSTEM (581C036-060 and 581B036-150 only)** — Bryant's Perfect Humidity adaptive dehumidification system is an allinclusive factory-installed option that can be ordered with any 581B rooftop unit to meet the demand for providing a flexible and high performing solution to accommodate all of these design related issues. This system expands the envelope of operation of 581B rooftop products to provide unprecedented flexibility to meet year-round comfort conditions. The Perfect Humidity adaptive dehumidification system has the industry's only dual dehumidification mode setting. The Perfect Humidity system includes two new modes of operation. The 581B and 581C rooftop coupled with the Perfect Humidity system is capable of operating in normal design cooling mode, subcooling mode, and hot gas reheat mode. Normal Design Cooling mode is when the unit will operate under its normal sequence of operation by cycling compressors to maintain comfort conditions. Subcooling mode will operate to satisfy part load type conditions when the space requires combined sensible and a higher proportion of latent load control. Hot Gas Reheat mode will operate when outdoor temperatures diminish and the need for latent capacity is required for sole humidity control. Hot Gas Reheat mode will provide neutral air for maximum dehumidification operation.

EXCLUSIVE HOT GAS REHEAT DEHUMIDIFICATION PACK- AGE (581A181-300) — The hot gas reheat dehumidification package is a result of recent advances by Bryant in controlling comfort levels. This factory-installed option significantly improves the dehumidification capability of the rooftop unit and helps control humidity levels in the building.

This option provides increased dehumidification by cooling the hot liquid refrigerant leaving the condenser coil. The hot gas reheat package consists of a subcooling coil located on the leaving-air side of the evaporator coil. The location of this coil in the indoor airstream enhances the latent capacity of the units by as much as 40%. Many buildings suffer from humidity damage or poor indoor air quality due to humid conditions. The improved latent capacity provided by the hot gas reheat option reduces the building's humidity, eliminating potential property damage and making the space more comfortable.

The hot gas reheat option is the ideal IAQ option for hot and humid regions. The operation of the hot gas reheat package can be controlled by a field-installed, wall mounted humidistat or Thermidistat™ device. The circuit activates only when needed (using the accessory humidistat) as opposed to some dehumidification systems that operate continuously. The humidistat can be set for any humidity level between 20% and 80% relative humidity. The Thermidistat device can be set for any humidity level between 50% and 90% relative humidity.

MODEL NUMBER NOMENCLATURE 580F036-151 3 to 12¹/₂ Tons

NOTE: The example model number 580FEV090180KV designates a 7 1/2 ton 460-3-60 volt gas/electric rooftop unit with 180,000 Btuh natural gas heat, EconoMi\$er IV and Alternate Drive.

NOTE: The example model number 580FEV060120NKV designates a 5 ton 460-3-60 volt low NOx gas/electric rooftop unit with 120,000 Btuh natural gas heat, EconoMi\$er IV and Alternate Drive.

MODEL NUMBER NOMENCLATURE 581B036-150 (Standard) 3 to 121/2 Tons

NOTE: The example model number 581BEV090180HQ designates a 7 1/2 ton 460-3-60 volt gas/electric rooftop unit with 180,000 Btuh natural gas heat and EconoMi\$er IV.

NOTE: The example model number 581BEV0601202HQ designates a 5 ton 460-3-60 volt Low NOx gas/electric rooftop unit with 120,000 Btuh natural gas heat and EconoMi\$er IV.

MODEL NUMBER NOMENCLATURE 581C024-060 (Standard Efficiency) — 2 to 5 Tons

NOTE: The example model number 581CEV060150HQ designates a 5 ton 460-3-60 volt gas/electric rooftop unit with 150,000 Btuh natural gas heat and EconoMi\$er IV.

NOTE: The example model number 581CEV060120NHQ designates a 5 ton 460-3-60 volt Low NOx gas/electric rooftop unit with 120,000 Btuh natural gas heat and EconoMi\$er IV.

MODEL NUMBER NOMENCLATURE — 579F180-300

- All indoor-fan motors 5 hp and larger meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT) effective October 24, 1997.
 The example model number 579FEV180230--CB designates a 15-ton 460-3-60 volt gas/
- electric rooftop unit with 230,000 Btuh natural gas heat input, EconoMi\$er IV, and the standard low-medium fan drive static capability.

MODEL NUMBER NOMENCLATURE 580F180-300

NOTES:

- All indoor-fan motors 5 hp and larger meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT) effective October 24, 1997.
 The example model number 580FEV180275--CB designates a 15-ton 460-3-60 volt gas/electric rooftop unit with 275,000 Btuh natural gas heat input, EconoMi\$er IV, and the standard low-medium fan drive static capability.

MODEL NUMBER NOMENCLATURE 581A155, 180, 181 — 13 to 15 Tons

^{*}See pages 212 and 213 for cooling capacity tables for 581A181 unit. For all other data, contact application engineering.

NOTE: All indoor-fan motors 5 hp and larger meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT) effective October 24, 1997.

The example model number: 581AEV180230--CB designates a 15 ton 460-3-60 high efficiency gas/electric rooftop unit with 230,000 Btuh natural gas input, EconoMi\$er IV and standard, low-medium fan drive static capability.

MODEL NUMBER NOMENCLATURE 581A210-300 — 18 to 25 Tons

SS - Stainless Steel Heat Exchanger

^{*} Refer to unit price pages

^{**} See pages 213 and 214 for cooling capacity tables for 5581A181 unit. For all other data, contact your Bryant representative.

ARI* CAPACITY RATINGS — 580F036-151

	NOMINAL	STANDARD	NET COOLING	TOTAL	SEER†		SOUND	
UNIT 580F	TONS	CFM	CAPACITY (Btuh)	kW	Belt Drive	Direct Drive	RATING (dB)	
036	3	1200	35,000	4.0	10.0	9.7	81	
048	4	1600	47,000	5.3	10.0	9.7	81	
060	5	2000	57,000	6.7	10.0	9.7	81	

UNIT 580F	NOMINAL TONS	NET COOLING CAPACITY (Btuh)	TOTAL kW	EER	SOUND RATING (dB)	IPLV
072	6	72,000	8.0	9.0	81	**
073	6	71,000	7.0	10.1	80	**
090	71/2	85,000	9.6	8.9	87	9.40
091	71/2	88,000	8.7	10.1	82	10.5
103	81/2	100,000	9.9	10.1	82	10.4
120	10	117,000	13.0	9.0	88	9.40
121	10	114,000	11.3	10.1	84	11.0
150	121/2	144,000	16.0	9.0	87	9.20
151	121/2	136,000	14.3	9.5	86	9.70

LEGEND

Sound Levels (decibels) Dry Bulb dB

db

EER — Energy Efficiency Ratio
IPLV — Integrated Part-Load Values
SEER — Seasonal Energy Efficiency Ratio
wb — Wet Bulb

*Air Conditioning and Refrigeration Institute.

†Applies only to units with capacity of 65,000 Btuh or less. **The IPLV applies only to two-stage cooling units.

NOTES:

- 1. Rated in accordance with ARI Standards 210/240 (for sizes 036-120) or 360, (for size 150 and 151) and 270.
- ARI ratings are net values, reflecting the effects of circulating fan

210/240 UAC

3. Ratings are based on:

Cooling Standard: 80 F db, 67 F wb indoor entering-air temperature and 95 F db air entering outdoor unit.

IPLV Standard: 80 F db, 67 F wb indoor entering-air temperature

and 80 F db outdoor entering-air temperature.

All 580F036, 048, 060, 073, 091, 103, 121, 151 units are in compliance with ASHRAE 90.1-1999 Energy Standard for minimum SEER and EER requirements. Refer to state and local codes or visit the following website: http://bcap-energy.org to determine if compliance with this standard pertains to a given geographical area of the United States.

HEATING CAPACITIES AND EFFICIENCIES (Standard-Efficiency Units) — 580F036-151

208/230-1-60 — SINGLE-STAGE GAS HEAT

UNIT	INPUT	OUTPUT	TEMPERATURE	MINIMUM HEATING	EF	FICIENCY
580F	CAPACITY	CAPACITY	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)
036074	74,000	57,000	25-55	1004	80	80
036115	115,000	89,000	55-85	1002	80	80
048074	74,000	57,000	25-55	1004	80	80
048115	115,000	91,000	35-65	1327	80	80
048150	150,000	118,000	50-80	1396	80	80
060074	74,000	57,000	25-55	1004	80	80
060115	115,000	91,000	35-65	1327	80	80
060150	150,000	118,000	50-80	1314	80	80

208/230-1-60 — SINGLE-STAGE GAS HEAT — LOW NOX

UNIT	INPUT	NPUT OUTPUT T		MINIMUM HEATING	EF	EFFICIENCY	
580F	CAPACITY	CAPACITY	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)	
036060N	60,000	49,000	20-50	910	80	80	
036090N	90,000	73,000	30-60	1130	80	80	
048060N	60,000	49,000	20-50	910	80	80	
048090N	90,000	73,000	30-60	1130	80	80	
048120N	120,000	98,000	40-70	1300	80	80	
060060N	60,000	49,000	20-50	910	80	80	
060090N	90,000	73,000	30-60	1130	80	80	
060120N	120,000	98,000	40-70	1300	80	80	

ARI* CAPACITY RATINGS (cont)

HEATING CAPACITIES AND EFFICIENCIES (Standard Efficiency Units) — 580F036-151 (cont)

208/230/460-3-60 — SINGLE-STAGE GAS HEAT — LOW NOx

UNIT	INPUT	OUTPUT	TEMPERATURE	MINIMUM HEATING	EF	FICIENCY
580F	CAPACITY	CAPACITY	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)
036060N	60,000	49,000	20-50	910	80	80
036090N	90,000	73,000	30-60	1130	80	80
048060N	60,000	49,000	20-50	910	80	80
048090N	90,000	73,000	30-60	1130	80	80
048120N	120,000	98,000	40-70	1300	80	80
060060N	60,000	47,000	20-50	910	80	80
060090N	90,000	73,000	30-60	1130	80	80
060120N	120,000	98,000	40-70	1300	80	80

${\it 208/230,\,460,\,575\text{-}3\text{-}60-2\text{-}STAGE\,GAS\,HEAT}$

UNIT	INPUT C	APACITY	OUTPUT (CAPACITY	TEMPERATURE	MINIMUM HEATING	EFF	ICIENCY
580F	1st Stage	2nd Stage	1st Stage	2nd Stage	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)
036115	82,000	115,000	65,600	92,000	55-85	1004	80	80
048150	120,000	150,000	96,000	120,000	50-80	1396	80	80
060150	120,000	150,000	96,000	120,000	50-80	1314	80	80
072150	120,000	150,000	96,000	120,000	50-80	1390	80	80
090180	120,000	180,000	96,000	144,000	35-65	2060	80	80
090224	180,000	224,000	144,000	179,200	45-75	2230	80	80
120180	120,000	180,000	90,000	144,000	35-65	2060	80	80
120224	180,000	224,000	144,000	179,200	35-65	2510	80	80
120250	200,000	250,000	160,000	200,000	40-70	2650	80	80
150224	180,000	224,000	144,000	179,200	35-65	2510	80	80
150250	200,000	250,000	160,000	200,000	40-70	2650	80	80

208/230, 460, 575-3-60 — SINGLE-STAGE GAS HEAT

UNIT	INPUT	OUTPUT	TEMPERATURE	MINIMUM HEATING	EFF	ICIENCY
580F	CAPACITY	CAPACITY	(°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)
036074	74,000	59,200	15-45	1220	80	80
048074	74,000	59,200	15-45	1220	80	80
048115	115,000	92,000	35-65	1320	80	80
060074	74,000	59,200	15-45	1220	80	80
060115	115,000	92,000	35-65	1320	80	80
072074	74,000	59,200	15-45	1220	80	80
072115	115,000	92,000	35-65	1320	80	80
090125, 091125	125,000	100,000	20-50	1860	80	80
103125	125,000	100,000	20-50	1860	80	80

LEGEND

AFUE — Annual Fuel Utilization Efficiency

HEATING CAPACITIES AND EFFICIENCIES (Medium-Efficiency Units) — 580F036-151

UNIT	HEATING INPUT (Btuh)	OUTPUT CAPACITY	TEMPERATURE	MINIMUM HEATING	AFUE	STEADY-STATE
580F	Stage 2/Stage 1	(Btuh)	RISE (F)	AIRFLOW (CFM)	(%)	EFFICIENCY (%)
073074	—/ 74,000	59,200	25-55	1220	80.0	80.0
073115	—/115,000	92,000	35-65	1320	80.0	80.0
073150	150,000/120,000	120,000	50-80	1390	80.0	80.0
091125 091180 091224 103125 103180 103224 121180 121224	—/125,000 180,000/120,000 224,000/180,000 —/125,000 180,000/120,000 224,000/180,000 180,000/120,000 224,000/180,000	100,000 144,000 179,200 100,000 144,000 179,200 144,000 179,200	20-50 35-65 45-75 20-50 35-65 45-75 35-65 35-65	1860 2060 2180 1860 2060 2180 2060 2510	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	80.0 80.0 80.0 80.0 80.0 80.0 80.0
121250	250,000/200,000	200,000	40-70	2650	80.0	80.0
151224	224,000/180,000	179,200	35-65	2510	80.0	80.0
151250	250,000/200,000	200,000	40-70	2650	80.0	80.0

ARI* CAPACITY RATINGS — 581B036-150

UNIT 581B	NOMINAL TONS	COOLING (Btuh)	TOTAL kW	SEER†	EER	SOUND RATING dB	IPLV
036	3	36,000	3.21	13.0	11.20	76	**
048	4	46,000	4.25	13.0	11.05	76	**
060	5	61,000	5.55	13.0	11.00	80	**
072	6	73,000	6.70	_	11.00	80	**
090	71/2	90,000	8.18		11.00	82	11.6
102	81/2	103,000	8.90		11.60	82	12.8
120	10	120,000	10.91	_	11.00	84	11.4
150	12 ¹ / ₂	138,000	14.40	_	9.6	86	10.3

LEGEND

EER — Energy Efficiency Ratio IPLV — Integrated Part-Load Value SEER — Seasonal Energy Efficiency Ratio

*Air-Conditioning & Refrigeration Institute.

†Applies only to units with capacity of 65,000 Btuh or less.
**The IPLV is not applicable to single-compressor units.

NOTES:

Rated in accordance with ARI Standard 210/240 (036-120 units) or 360 (150 units) and 270 (036-150 units).
 Ratings are net values, reflecting the effects of circulating fan heat.

Ratings are based on:

Cooling Standard: 80 F db, 67 wb indoor entering-air temperature

and 95 F db outdoor entering-air temperature.

IPLV Standard: 80 F db, 67 F wb indoor entering-air temperature and 80 F db outdoor entering-air temperature.

ARI Standard 210/240 UAC

Only

ARI Standard 340/360

Sizes 036-120 Sizes 150 Only

3. All 581C024-060 and 581B036-150 units are in compliance with ASHRAE 90.1-1999 Energy Standard for minimum SEER and EER requirements. Refer to state and local codes or visit the following website: http://bcap-energy.org to determine if compliance with this standard pertains to a given geographical area of the United States.

4. All 581C024-060 and 581B036-120 units are Energy Star certified.

HEATING CAPACITIES AND EFFICIENCIES — 581B036-150

208/230-1-60 — SINGLE-STAGE GAS HEAT

UNIT	INPUT CAPACITY	OUTPUT CAPACITY	TEMPERATURE	MINIMUM HEATING	EFF	EFFICIENCY		
581B	INPUT CAPACITY	OUTPUT CAPACITY	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)		
036072	72,000	58,000	25-55	1004	82.8	82.0		
036115	115,000	90,000	55-85	1002	80.0	80.0		
048072	72,000	58,000	25-55	1004	82.8	82.0		
048115	115,000	90,000	35-65	1320	81.0	81.0		
048150	150,000	118,000	50-80	1396	80.4	80.0		
060072	72,000	58,000	25-55	1004	82.8	82.0		
060115	115,000	92,000	35-65	1327	81.0	81.0		
060150	150,000	118,000	50-80	1314	80.4	80.0		

LEGEND

AFUE — Annual Fuel Utilization Efficiency.

208/230-1-60 — SINGLE-STAGE GAS HEAT — LOW NOX

UNIT	INPUT CAPACITY	OUTPUT CAPACITY	TEMPERATURE	MINIMUM HEATING	EFFICIENCY		
581B	INFUT CAPACITY	OUTPUT CAPACITY	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)	
036060N	60,000	50,000	20-50	930	80.2	81.2	
036090N	90,000	74,000	30-60	1150	81.0	81.4	
048060N	60,000	50,000	20-50	930	80.2	81.2	
048090N	90,000	74,000	30-60	1150	81.0	81.4	
048120N	120,000	101,000	40-70	1340	80.7	82.4	
060060N	60,000	50,000	20-50	930	80.2	81.2	
060090N	90,000	74,000	30-60	1150	81.0	81.4	
060120N	120,000	101,000	40-70	1340	80.7	82.4	

LEGEND

AFUE — Annual Fuel Utilization Efficiency.

ARI* CAPACITY RATINGS (cont)

HEATING CAPACITIES AND EFFICIENCIES — 581B036-150(cont)

208/230/460-3-60 — SINGLE-STAGE GAS HEAT — LOW NOx

UNIT	INPUT CAPACITY	OUTPUT CAPACITY	TEMPERATURE	MINIMUM HEATING	EFF	FICIENCY
581B	INPUT CAPACITY	OUTPUT CAPACITY	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)
036060N	60,000	50,000	20-50	930	80.2	81.2
036090N	90,000	74,000	30-60	1150	81.0	81.4
048060N	60,000	50,000	20-50	930	80.2	81.2
048090N	90,000	74,000	30-60	1150	81.0	81.4
048120N	120,000	101,000	40-70	1340	80.7	82.4
060060N	60,000	50,000	20-50	930	80.2	81.2
060090N	90,000	74,000	30-60	1150	81.0	81.4
060120N	120,000	101,000	40-70	1340	80.7	82.4

208/230/460-3-60 — 2-STAGE GAS HEAT

UNIT	INPUT C	APACITY	OUTPUT (CAPACITY	TEMPERATUR	MINIMUM	EFF	FICIENCY
581B	1st Stage	2nd Stage	1st Stage	2nd Stage	E RISE (°F)	HEATING AIRFLOW (CFM)	AFUE (%)	Steady State (%)
036072	50,000	72,000	41,000	59,040	25-55	1004	82.8	82.0
036115	82,000	115,000	65,600	93,150	55-85	1002	80.0	80.0
048072	50,000	72,000	41,000	59,040	25-55	1004	82.8	82.0
048115	82,000	115,000	66,420	93,150	35-65	1330	81.0	81.0
048150	120,000	150,000	96,000	120,000	50-80	1390	80.4	80.0
060072	50,000	72,000	41,000	59,040	25-55	1004	82.8	82.0
060115	82,000	115,000	66,420	93,150	35-65	1330	81.0	81.0
060150	120,000	150,000	96,000	120,000	50-80	1370	80.4	80.0
072072	50,000	72,000	41,000	59,040	25-55	1220	82.0	82.0
072115	82,000	115,000	66,420	93,150	35-65	1330	81.0	81.0
072150	120,000	150,000	96,000	120,000	50-80	1390	80.0	80.0
090125	90,000	125,000	73,800	102,500	20-50	1900	82.0	82.0
090180	120,000	180,000	98,400	147,600	35-65	1440	82.0	82.0
090224	180,000	224,000	147,600	183,680	45-75	2230	82.0	82.0
102125	90,000	125,000	73,800	102,500	20-50	1900	82.0	82.0
102180	120,000	180,000	98,400	147,600	35-65	1440	82.0	82.0
102224	180,000	224,000	147,600	183,680	45-75	2230	82.0	82.0
120180	120,000	180,000	98,400	147,600	35-65	1440	82.0	82.0
120224	180,000	224,000	147,600	183,680	35-65	2570	82.0	82.0
120250	200,000	250,000	160,000	200,000	40-70	2650	80.0	80.0
150224	180,000	224,000	147,600	183,680	35-65	2570	82.0	82.0
150250	200,000	250,000	160,000	200,000	40-70	2650	80.0	80.0

LEGEND

AFUE — Annual Fuel Utilization Efficiency

NOTE: Capacities for stainless steel heat exchanger units are the same as standard units.

**ARI* CAPACITY RATINGS — 581C024-060

UNIT 581C	NOMINAL TONS	COOLING (Btuh)	TOTAL kW	SEER	EER	SOUND RATING (decibels)
024	2	24,000	3.2	14.1	12.0**	76
036	3	36,200	4.1	14.0	11.8**	76
048	4	46,000	5.5	14.0	11.7**	76
060	5	59,000	6.7	14.0	11.9	80

LEGEND

EER

Energy Efficiency Ratio Seasonal Energy Efficiency Ratio

*Air-Conditioning & Refrigeration Institute.

**ARI does not require EER ratings for unit with capacity below 65,000 Btuh. For these units, the EER rating at ARI standard conditions is provided for information. tion only.

NOTES:

- Rated in accordance with ARI Standard 210-94 or 360-93.
 Ratings are net values, reflecting the effects of circulating fan heat.
 Ratings are based on:

Cooling Standard: 80 F db, 67 wb indoor entering-air temperature and 95 F db outdoor entering-air temperature.

IPLV Standard: 80 F db, 67 F wb indoor entering-air temperature and 80 F

db outdoor entering-air temperature.

ARI Standard 210/240 UAC

4. All 581C024-060 units are in compliance with ASHRAE 90.1 2001, 2004 Energy Standard for minimum SEER and EER requirements. Refer to state and local codes or visit the following website: http://bcap-energy.org to determine if compliance with this standard pertains to a given geographical state of the United States. area of the United States.

HEATING CAPACITIES AND EFFICIENCIES — 581C024-060

208/230-1-60 — SINGLE-STAGE GAS HEAT

UNIT	INPUT CA	APACITY	OUTPUT C	CAPACITY	TEMPERATURE	RATURE MINIMUM HEATING		EFFICIENCY	
581C	1st Stage	2nd Stage	1st Stage	2nd Stage	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)	
024050	50,000		40,500	_	25-65	575	81.00	81	
036072	72,000	_	59,040	_	25-55	1004	82.80	82	
036115	115,000	_	92,000	_	55-85	1002	80.00	80	
048072	72,000	_	58,000	_	25-55	1004	82.80	82	
048115	115,000	_	92,000	_	35-65	1320	81.00	81	
048150	150,000	_	118,000	_	50-80	1396	80.40	80	
060072	72,000	_	58,000	_	25-55	1004	82.80	82	
060115	115,000	_	92,000	_	35-65	1327	81.00	81	
060150	150,000	_	118,000	_	50-80	1314	80.40	80	

208/230-1-60 — SINGLE-STAGE GAS HEAT — LOW NOX

UNIT	INPUT CAPACITY		OUTPUT CAPACITY		TEMPERATURE	MINIMUM HEATING	El	FICIENCY
581C	1st Stage	2nd Stage	1st Stage	2nd Stage	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)
024050N	50,000	_	40,500	_	25-65	575	81.00	81
036060N	60,000	_	50,000	_	20-50	930	80.20	81
036090N	90,000	_	74,000	_	30-60	1150	81.00	81
048060N	60,000	_	50,000	_	20-50	930	80.20	81
048090N	90,000	_	74,000	_	30-60	1150	81.00	81
048120N	120,000	_	101,000	_	40-70	1340	80.70	82
060060N	60,000	_	50,000	_	20-50	930	80.20	81
060090N	90,000	_	74,000	_	30-60	1150	81.00	81
060120N	120,000	_	101,000	_	40-70	1340	80.70	82

AFUE — Annual Fuel Utilization Efficiency

NOTE: Capacities for stainless steel heat exchanger units (S/R/T) are the same as standard units (D/E/F).

HEATING CAPACITIES AND EFFICIENCIES — 581C024-060 (cont)

208/230/460-3-60 — SINGLE-STAGE GAS HEAT — LOW NOx

UNIT	INPUT CAPACITY		OUTPUT CAPACITY		TEMPERATURE	MINIMUM HEATING	Е	FFICIENCY
581C	1st Stage	2nd Stage	1st Stage	2nd Stage	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)
036060N	60,000		50,000	_	20-50	930	80.20	81
036090N	90,000	_	74,000	_	30-60	1150	81.00	81
048060N	60,000	_	50,000	_	20-50	930	80.20	81
048090N	90,000	_	74,000	_	30-60	1150	81.00	81
048120N	120,000	_	101,000	_	40-70	1340	80.70	82
060060N	60,000	_	50,000	_	20-50	930	80.20	81
060090N	90,000	_	74,000	_	30-60	1150	81.00	81
060120N	120,000	_	101,000	_	40-70	1340	80.70	82

208/230/460/575-3-60 — 2-STAGE GAS HEAT

UNIT	INPUT CAPACITY		OUTPUT CAPACITY		TEMPERATURE	MINIMUM HEATING	EFFICIENCY	
581C	1st Stage	2nd Stage	1st Stage	2nd Stage	RISE (°F)	AIRFLOW (CFM)	AFUE (%)	Steady State (%)
036072	50,000	72,000	41,000	59,040	25-55	1004	82.80	82
036115	82,000	115,000	65,600	93,150	55-85	1002	80.00	80
048072	50,000	72,000	41,000	59,040	25-55	1094	82.80	82
048115	82,000	115,000	66,420	93,150	35-65	1330	81.00	81
048150	120,000	150,000	96,000	120,000	50-80	1390	80.40	80
060072	50,000	72,000	41,000	59,040	25-55	1004	82.80	82
060115	82,000	115,000	66,420	93,150	35-65	1330	81.00	81
060150	120,000	150,000	96,000	120,000	50-80	1370	80.40	80

AFUE — Annual Fuel Utilization Efficiency

NOTE: Capacities for stainless steel heat exchanger units (S/R/T) are the same as standard units (D/E/F).

ARI* CAPACITY RATINGS — 579F180-300

LOW HEAT UNITS

UNIT 579F	NOMINAL TONS	NET COOLING CAPACITY (Btuh)	TOTAL WATTS	EER	SOUND RATING (dB)	IPLV
180	15	174,000	20,128	8.6	88	9.3
216	18	188,000	21,619	8.7	88	9.5
240	20	220,000	25,513	8.6	94	8.7
300	25	268,000	31,068	8.6	94	9.2

HIGH HEAT UNITS

UNIT 579F	NOMINAL TONS	NET COOLING CAPACITY (Btuh)	TOTAL WATTS	EER	SOUND RATING (dB)	IPLV
180	15	174,000	20,154	8.6	88	9.3
216	18	186,000	21,798	8.5	88	9.3
240	20	218,000	25,719	8.5	94	8.5
300	25	268,000	31,600	8.5	94	8.9

LEGEND

Sound Levels (decibels) dB

db — Sound Levels (decibels)
db — Dry Bulb
EER — Energy Efficiency Ratio
IPLV — Integrated Part-Load Values
wb — Wet Bulb

*Air Conditioning and Refrigeration Institute.

NOTES:

Rated in accordance with ARI Standards 360 and 270.

The 579F300 is beyond the scope of the ARI Certification Program.

ARI ratings are net values, reflecting the effects of circulating fan heat.

4. Ratings are based on:

Cooling Standard: 80 F db, 67 F wb indoor entering-air temperature and 95 F db air entering outdoor unit.

IPLV Standard: 80 F db, 67 F wb indoor entering-air temperature and 80 F db outdoor entering-air temperature.

HEATING CAPACITIES AND EFFICIENCIES — 579F180-300

UNIT 579F	HEATING INPUT (Btuh) Stage 2/Stage 1*	OUTPUT CAPACITY (Btuh)	TEMPERATURE RISE (F)	STEADY-STATE EFFICIENCY (%)	MINIMUM HEATING CFM
180230	230,000/172,000	186,000	15-45	81.0	3830
180300	300,000/225,000	243,000	30-60	81.0	3750
216275	275,000/206,000	223,000	15-45	81.0	4580
216360	360,000/270,000	292,000	20-50	81.0	5400
240275	275,000/206,000	223,000	15-45	81.0	4580
240360	360,000/270,000	292,000	20-50	81.0	5400
300275	275,000/206,000	223,000	15-45	81.0	4580
300360	360,000/270,000	292,000	20-50	81.0	5400

^{*}All units are 2-stage heat.

NOTE: Minimum allowable temperature of mixed-air entering the heat exchanger during first-stage heating is 45 F. There is no minimum mixed-air temperature limitation during second-stage heating. For entering-air temperatures below 45 F both stages of heat must be energized together to minimize condensation issues and ensure proper unit operation. Mixed air below 35 F optional stainless steel heat exchangers are recommended.

AIR QUANTITY LIMITS

UNIT 579F	MINIMUM CFM	MAXIMUM CFM
180	4500	7,500
216	5400	9,000
240	6000	10,000
300	7000	11,250

LOW OUTDOOR TEMPERATURE **OPERATING LIMITS (F)**

UNITS	TEMPERATURE
All	40
180 and 216 with Low Ambient Kit	10
240 and 300 with Low Ambient Kit	25
All with Motormaster® Head Pressure Control	-20

ARI* CAPACITY RATINGS — 580F180-300

UNIT SIZE 580F (Low Heat)	NOMINAL TONS	NET COOLING CAPACITY (Btuh)	TOTAL WATTS	EER	SOUND RATING (dB)	IPLV
180	15	176,000	17,064	9.5	88	9.5
210	18	202,000	21,166	9.7	88	10.2
240	20	236,000	24,832	9.5	94	10.1
300	25	278,000	28,535	9.7	94	10.4

UNIT SIZE 580F (High Heat)	NOMINAL TONS	NET COOLING CAPACITY (Btuh)	TOTAL WATTS	EER	SOUND RATING (dB)	IPLV
180	15	176,000	17,179	9.5	88	9.5
210	18	202,000	21,301	9.7	88	10.1
240	20	236,000	24,832	9.5	94	10.0
300	25	277,000	29,067	9.5	94	10.0

LEGEND

Bels — Sound Levels (1 bel = 10 decibels)

db — Dry Bulb

EER — Energy Efficiency Ratio IPLV — Integrated Part-Load Values

wb — Wet Bulb

*Air Conditioning and Refrigeration Institute.

NOTES

- 1. Rated in accordance with ARI Standards 360 and 270.
- ARI ratings are net values, reflecting the effects of circulating fan heat.
- 3. Ratings are based on:

Cooling Standard: 80 F db, 67 F wb indoor entering-air temperature and 95 F db air entering outdoor unit.

IPLV Standard: 80 F db, 67 F wb indoor entering-air temperature

and 80 F db outdoor entering-air temperature.

4. All 580F180-300 units are in compliance with ASHRAE 90.1-1999 Energy Standard for minimum SEER and EER requirements. Refer to state and local codes or visit the following website: http://bcap-energy.org to determine if compliance with this standard pertains to a given geographical area of the United States.

HEATING CAPACITIES AND EFFICIENCIES — 580F180-300

UNIT 580F	HEATING INPUT (Btuh) Stage 2/Stage 1*	OUTPUT CAPACITY (Btuh)	TEMPERATURE RISE (F)	STEADY-STATE EFFICIENCY (%)	MINIMUM HEATING CFM
180275	275,000/206,000	223,000	15-45	81.0	3750
180360	360,000/270,000	292,000	20-50	81.0	3830
210275	275,000/206,000	223,000	15-45	81.0	4580
210360	360,000/270,000	292,000	20-50	81.0	5400
240275	275,000/206,000	223,000	15-45	81.0	4580
240360	360,000/270,000	292,000	20-50	81.0	5400
300275	275,000/206,000	223,000	15-45	81.0	4580
300360	360,000/270,000	292,000	20-50	81.0	5400

^{*}All units are 2-stage heat.

NOTE: Minimum allowable temperature of mixed-air entering the heat exchanger during first-stage heating is 45 F. There is no minimum mixed-air temperature limitation during second-stage heating. For entering-air temperatures below 45 F both stages of heat must be energized together to minimize condensation issues and ensure proper unit operation. Mixed air below 35 F optional stainless steel heat exchangers are recommended.

AIR QUANTITY LIMITS (Cooling)

UNIT 580F	MINIMUM CFM	MAXIMUM CFM
180	4500	7,500
210	5400	9,000
240	6000	10,000
300	7000	11,250

COOLING OPERATION LOW OUTDOOR TEMPERATURE OPERATING LIMITS (F)

UNITS	TEMPERATURE
All — Standard Unit	40
180 and 210 with Low Ambient Kit	10
240 and 300 with Low Ambient Kit	25
All with Motormaster® Head Pressure Control	-20

ARI* CAPACITY RATINGS — 581A155,180

LOW HEAT UNITS

UNIT 581A	NOMINAL TONS	NET COOLING CAPACITY (Btuh)	TOTAL WATTS	EER	SOUND RATING (dB)	IPLV
155230	13	134,000	12,209	10.60	88	11.4
180275	15	180,000	17,064	10.50	88	11.4

HIGH HEAT UNITS

UNIT 581A	NOMINAL TONS	NET COOLING CAPACITY (Btuh)	TOTAL WATTS	EER	SOUND RATING (dB)	IPLV
155300	13	134,000	12,218	10.60	88	11.4
180360	15	180,000	17,179	10.50	88	11.1

LEGEND

 Sound Le
 Dry Bulb dΒ Sound Levels (decibels) db EER — Energy Efficiency Ratio

Integrated Part-Load Values
Wet Bulb **IPLV**

NOTES:

- Rated in accordance with ARI Standards 360 and 270.
- ARI ratings are net values, reflecting the effects of circulating fan heat.
- Ratings are based on:

Cooling Standard: 80 F db, 67 F wb indoor entering-air temperature and 95 F db air entering outdoor unit.

IPLV Standard: 80 F db, 67 F wb indoor entering-air temperature and 80 F db outdoor entering-air temperature.

ARI Standard 340/360

All 581A155, 180 units are in compliance with ASHRAE 90.1-1999 Energy Standard for minimum EER requirements. Refer to state and local codes or visit the following website: http://bcapenergy.org to determine if compliance with this standard pertains to a given geographical area of the United States.

HEATING CAPACITIES AND EFFICIENCIES — 581A155-180

UNIT 581A	HEATING INPUT (Btuh) Stage 2/Stage 1*	OUTPUT CAPACITY (Btuh)	TEMPERATURE RISE (F)	AGA STEADY STATE EFFICIENCY (%)	MINIMUM HEATING CFM†
155230	230,000/172,000	186,000	15-45	81.0	3750
155300	300,000/225,000	243,000	30-60	81.0	3830
180275	275,000/206,000	223,000	15-45	81.0	4580
180360	360,000/270,000	292,000	20-50	81.0	5400

^{*}All units are 2-stage heat.

NOTE: Minimum allowable temperature of mixed air entering the heat exchanger during first stage heating is 45 F. There is no minimum mixed-air limitation during second-stage heating. For entering air temperatures below 45 F, both stages of heat must be energized together to minimize condensation issues and ensure proper unit operation. Mixed air below 35 F optional stainless steel heat exchangers are recommended.

LOW OUTDOOR AIR TEMPERATURE **COOLING OPERATION LIMITS**

	TEMPERATURE LIMIT (F)			
UNIT SIZE 581A	Standard Unit	Unit With Low Ambient Kit	Unit With Motormaster® Control	
155, 180	40	20	-20	

AIR QUANTITY LIMITS (Cooling)

UNIT 581A	MINIMUM CFM	MAXIMUM CFM
155	3900	6500
180	4500	7500

^{*}Air Conditioning and Refrigeration Institute.

[†]Minimum heating cfm must be maintained to ensure proper heating operation.

ARI* CAPACITY RATINGS — 581A210-300

UNIT 581A	NOMINAL TONS	CFM	NET COOLING CAPACITY (Btuh)	TOTAL kW	EER	SOUND RATING (dB)	IPLV†
210	18	5,500	200,000	18.5	10.8	81.7	12.0
240	20	6,000	234,000	21.7	10.8	81.7	11.9
300**	25	7,500	278,000	27.8	10.0	84.6	10.9

LEGEND

db — Dry Bulb
EER — Energy Efficiency Ratio
IPLV — Integrated Part-Load Values
wb — Wet Bulb

*Air Conditioning and Refrigeration Institute. †IPLV values are calculated based on control configuration T.CTL = 2

(2 Stage Y1).
**Size 300 unit is not listed with ARI, but is tested to ARI standards.

- Rated in accordance with ARI Standards 360-93 and 270-95.
 ARI ratings are net values, reflecting the effects of circulating fan heat.

Ratings are based on:

Cooling Standard: 80 F db, 67 F wb indoor entering-air temperature and 95 F db air entering outdoor unit.

IPLV Standard: 80 F db, 67 F wb indoor entering-air temperature and 80 F

the Vistandard: 80 F db, 67 F wo indoor entering-an temperature and 65 db outdoor entering-air temperature.

All 581A210-300 units are in compliance with ASHRAE 90.1 2001 Energy Standard for minimum EER requirements. Refer to state and local codes or visit the following website: http://bcap-energy.org to determine if compliance with this standard pertains to a given geographical area of the United States.

HEATING CAPACITIES AND EFFICIENCIES — 581A210-300

VERTICAL SUPPLY — NATURAL GAS

UNIT	HEATING INPUT	OUTPUT CAPACITY	TEMPERATURE	STEADY-STATE	MINIMUM
581A	(Btuh) Stage 2/Stage 1	(Btuh)	RISE (F)	EFFICIENCY %	HEATING CFM
210250	250,000/199,000	205,000	15-45	82%	4218
210365	365,000/281,000	296,000	25-55	81%	4977
210400	400,000/317,000	328,000	25-55	82%	5522
240250	250,000/199,000	205,000	15-45	82%	4218
240365	365,000/281,000	296,000	25-55	81%	4977
240400	400,000/317,000	328,000	25-55	82%	5522
300250	250,000/199,000	205,000	15-45	82%	4218
300365	365,000/281,000	296,000	25-55	81%	4977
300400	400,000/317,000	328,000	25-55	82%	5522

NOTE: All units are 2-stage gas heat.

HORIZONTAL SUPPLY — NATURAL GAS

UNIT	HEATING INPUT	OUTPUT CAPACITY	TEMPERATURE	STEADY-STATE	MINIMUM
581A	(Btuh) Stage 2/Stage 1	(Btuh)	RISE (F)	EFFICIENCY %	HEATING CFM
210250	250,000/199,000	205,000	15-45	82%	4218
210365	365,000/281,000	296,000	25-55	81%	4977
210400	400,000/317,000	328,000	25-55	82%	5522
240250	250,000/199,000	205,000	15-45	82%	4218
240365	365,000/281,000	296,000	25-55	81%	4977
240400	400,000/317,000	328,000	25-55	82%	5522
300250	250,000/199,000	205,000	15-45	82%	4218
300365	365,000/281,000	296,000	25-55	81%	4977*
300400	400,000/317,000	325,000	25-55	82%	5522*

^{*7000} cfm minimum recommended above 1.0 in. wg external static pressure.

NOTE: All units are 2-stage gas heat.

VERTICAL SUPPLY — PROPANE

UNIT	HEATING INPUT	OUTPUT CAPACITY	TEMPERATURE	STEADY-STATE	MINIMUM
581A	(Btuh) Stage 2/Stage 1	(Btuh)	RISE (F)	EFFICIENCY %	HEATING CFM
210250	250,000/207,000	205,000	15-45	82%	4218
210365	365,000/291,000	296,000	25-55	81%	4480
210400	400,000/331,000	328,000	25-55	82%	5522
240250	250,000/207,000	205,000	15-45	82%	4218
240365	365,000/291,000	296,000	25-55	81%	4480
240400	400,000/331,000	328,000	25-55	82%	5522
300250	250,000/207,000	205,000	15-45	82%	4218
300365	365,000/291,000	296,000	25-55	81%	4480
300400	400,000/331,000	328,000	25-55	82%	5522

NOTE: All units are 2-stage gas heat.

HORIZONTAL SUPPLY — PROPANE

UNIT	HEATING INPUT	OUTPUT CAPACITY	TEMPERATURE	STEADY-STATE	MINIMUM
581A	(Btuh) Stage 2/Stage 1	(Btuh)	RISE (F)	EFFICIENCY %	HEATING CFM
210250	225,000/207,000	185,000	15-45	82%	3807
210365	329,000/291,000	266,000	25-55	81%	4480
210400	356,000/331,000	292,000	25-55	82%	4916
240250	225,000/207,000	184,500	15-45	82%	3796
240365	329,000/291,000	266,000	25-55	81%	4480
240400	356,000/331,000	292,000	25-55	82%	4916
300250	225,000/207,000	185,000	15-45	82%	3807
300365	329,000/291,000	266,000	25-55	81%	4480*
300400	356,000/331,000	292,000	25-55	82%	4920*

*7000 cfm minimum recommended above 1.0 in. wg external static pressure.

NOTE: All units are 2-stage gas heat.

OPTIONS AND ACCESSORIES

581C024-060, 581B036-150 AND 580F036-151

100% OA Open Two-Position Damper 25% OA Open Two-Position Damper X Condenser Coil Grille X Condenser Coil Hail Guard Assembly Conper Fins Indoor and Outdoor Coil Copper Fins Indoor and Outdoor Coil X Copper Fins Outdoor Coil X E-Coat Outdoor Coil (Aluminum) E-Coat Outdoor Coil (Copper) E-Coat Outdoor Coil (Copper) X EconoMi\(\frac{1}{2}\) E \(\frac{1}{2}\) X X EconoMi\(\frac{1}{2}\) E \(\frac{1}{2}\) X X Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector X Flue Shield High-Static Motor and Drive X Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) X Indoor Air Quality (CO₂) Sensor Low NO _X (036-060) X Low NO _X (036-060) X Louvered Hail Guard X X	
Condenser Coil Grille Condenser Coil Hail Guard Assembly Convenience Outlet (Load Side) Copper Fins Indoor and Outdoor Coil Copper Fins Outdoor Coil E-Coat Outdoor Coil (Aluminum) E-Coat Outdoor Coil (Copper) EconoMi\$er IV with Controller EconoMi\$er2 (without controller) Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NO₂ (036-060) X X Copper Fins Indoor Air Quality (CO₂) Sensor X X Copper Fins Indoor Air Quality (CO₂) Sensor X X Copper Fins Indoor Air Quality (CO₂) Sensor X X Copper Fins Indoor Air Quality (CO₂) Sensor X X Light Commercial Thermidistat™ Device X X Copper Fins Indoor Air Quality (CO₂) Sensor X X Light Commercial Thermidistat™ Device X Copper Fins Indoor Air Quality (CO₂) Sensor X X Light Commercial Thermidistat™ Device X Copper Fins Indoor Air Quality (CO₂) Sensor X X Light Commercial Thermidistat™ Device	
Condenser Coil Hail Guard Assembly Convenience Outlet (Load Side) Copper Fins Indoor and Outdoor Coil Copper Fins Outdoor Coil E-Coat Outdoor Coil (Aluminum) E-Coat Outdoor Coil (Aluminum) E-Coat Outdoor Coil (Copper) EconoMi\u00e3\	
Convenience Outlet (Load Side) Copper Fins Indoor and Outdoor Coil Copper Fins Outdoor Coil E-Coat Outdoor Coil (Aluminum) E-Coat Outdoor Coil (Copper) E-Coat Outdoor Coil (Copper) E-Coat Outdoor Coil (Copper) X EconoMi\$er IV with Controller X X EconoMi\$er2 (without controller) X Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector X Flue Shield High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) Humidistat Indoor Air Quality (CO₂) Sensor X Light Commercial Thermidistat™ Device X Low NO₂ (036-060)	
Copper Fins Indoor and Outdoor Coil Copper Fins Outdoor Coil E-Coat Outdoor Coil (Aluminum) E-Coat Outdoor Coil (Copper) EconoMi\(\frac{1}{2}\) IV with Controller EconoMi\(\frac{1}{2}\) IV with Controller EconoMi\(\frac{1}{2}\) IV with Controller EconoMi\(\frac{1}{2}\) IV with Controller EconoMi\(\frac{1}{2}\) X EconoMi\(\frac{1}{2}\) IV with Controller Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector X Flue Discharge Deflector X Flue Shield High-Static Motor and Drive X Hinged Access Panels (581C and 581B only) X Hinged Panel Kit for Economizer X Perfect Humidity™ Dehumidification Package (581C and 581B only) X Indoor Air Quality (CO₂) Sensor X Light Commercial Thermidistat™ Device X Low NO _X (036-060)	
Copper Fins Outdoor Coil E-Coat Outdoor Coil (Aluminum) E-Coat Outdoor Coil (Copper) EconoMi\$er IV with Controller EconoMi\$er2 (without controller) Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NO₂ (036-060)	
E-Coat Outdoor Coil (Aluminum) E-Coat Outdoor Coil (Copper) EconoMi\$er IV with Controller X EconoMi\$er2 (without controller) X Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) Kundoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NO₂ (036-060) X X X X X X X X X X X X	
E-Coat Outdoor Coil (Copper) EconoMi\$er IV with Controller X EconoMi\$er2 (without controller) X Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive X Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) X Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device X X X X X X X X X X X X X	
EconoMi\$er IV with Controller EconoMi\$er2 (without controller) X Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device X X X X X X X X X X X X X	
EconoMi\$er2 (without controller) Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device X X X X X X X X X X X X	
Electronic Programmable Thermostat Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NO₂ (036-060) X X X X X X X X X X X X	
Enthalpy or Differential Enthalpy Sensor Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive X Hinged Access Panels (581C and 581B only) X Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) X Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NOҳ (036-060) X	
Fan/Filter Status Flue Discharge Deflector Flue Shield High-Static Motor and Drive X Hinged Access Panels (581C and 581B only) X Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) X Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NOҳ (036-060) X	
Flue Discharge Deflector Flue Shield High-Static Motor and Drive X Hinged Access Panels (581C and 581B only) X Hinged Panel Kit for Economizer X Perfect Humidity™ Dehumidification Package (581C and 581B only) X Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NOҳ (036-060) X	
Flue Shield High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) X Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NOҳ (036-060) X	
High-Static Motor and Drive Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) K Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NOҳ (036-060) X	
Hinged Access Panels (581C and 581B only) Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) K Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NOҳ (036-060) X	
Hinged Panel Kit for Economizer Perfect Humidity™ Dehumidification Package (581C and 581B only) Humidistat Indoor Air Quality (CO₂) Sensor Light Commercial Thermidistat™ Device Low NOҳ (036-060) X	
Perfect Humidity™ Dehumidification Package (581C and 581B only) X Humidistat X Indoor Air Quality (CO₂) Sensor X Light Commercial Thermidistat™ Device X Low NOҳ (036-060) X	
Humidistat X Indoor Air Quality (CO₂) Sensor X Light Commercial Thermidistat™ Device X Low NO₂ (036-060) X	
Indoor Air Quality (CO₂) Sensor X Light Commercial Thermidistat™ Device X Low NO _X (036-060) X	
Light Commercial Thermidistat™ Device X Low NO _X (036-060) X	
Low NO _X (036-060) X	
Louvered Hail Guard X Y	
LP (Liquid Propane) Conversion Kit	
Manual Outdoor-Air Damper X	
Motormaster® I, II, Head Pressure Control Low Ambient Kit)	
Outdoor Air Enthalpy Sensor X	
Power Exhaust Transformer for 575 v X	
Power Exhaust with Barometric Relief X	
Pre-Coat Aluminum Fins on Outdoor Coil X	
Return Air CO ₂ Sensor (EconoMi\$er IV)	
Return Air Enthalpy Sensor X	
Return Air Temperature Sensor X	
Roof Curbs (Vertical and Horizontal Discharge) X	
Smoke Detectors, Supply/Return X	
Stainless Steel Heat Exchanger X	
Thermostats and Subbases X	
Thru-the-Bottom Utility Connections X	
Time Guard II (Compressor Cycle Delay) Control Circuit	
Unit-Mounted Non-Fused Disconnect X	
UVC Lights X X	

^{*}Factory-installed. †Field-installed.

NOTES:

1. Refer to unit price pages or contact your local representative for accessory and option package information.

2. Some options may increase product lead times.

OPTIONS AND ACCESSORIES (cont)

579F180-300, 580F180-300, AND 581A155-180

ITEM	OPTION*	ACCESSORY†
25% Open Two-Position Damper		X
Barometric Relief Damper (not for use with Horizontal Adapter Curb)		X
Condenser Coil Hail Guard Assembly (180-240)		X
Convenience Outlet (Load Side)	X	
Copper Fins Indoor and Outdoor Coil	X	
Copper Fins Outdoor Coil	X	
E-Coat Outdoor Coil (Aluminum)	X	
E-Coat Outdoor Coil (Copper)	X	
EconoMi\$er IV with Controller	X	X
EconoMi\$er2 (without Controller)		X
Electronic Programmable Thermostat		X
Enthalpy or Differential Enthalpy Sensor		X
Fan/Filter Status		X
High-Static Motor and Drive	Х	
Hinged Access Panels	Х	
Horizontal Adapter Curb (180-240)		X
Humidistat		X
Indoor Air Quality (CO₂) Sensor		X
Light Commercial Thermidistat™ Device		X
LP (Liquid Propane) Conversion Kit		X
Manual Outdoor-Air Damper		X
Motormaster® I, V Head Pressure Control (Low Ambient Kit)		X
Outdoor Air Enthalpy Sensor		X
Power Exhaust without Barometric Relief		X
Pre-coat Aluminum Fins on Outdoor Coil	Х	
Return Air CO ₂ Sensor		X
Return Air Enthalpy Sensor		X
Return Air Temperature Sensor		X
Roof Curbs (Vertical and Horizontal Discharge)		X
Thermostats and Subbases		X
Time Guard II (Compressor Cycle Delay) Control Circuit		X
Ultraviolet Germicidal Lamps	X	
Unit-Mounted Non-Fused Disconnect	X	
Winter Start Time Delay		X

^{*}Factory-installed. †Field-installed.

- Refer to unit price pages or contact your local representative for accessory and option package information.
 Some options may increase product lead times.
 No other options are available with hot gas reheat units.

OPTIONS AND ACCESSORIES (cont)

581A210-300

ITEM	OPTION*	ACCESSORY†
EconoMi\$er IV	X	X
Power Exhaust	X	X
Barometric Relief	X	X
Hail Guard	X	X
Horizontal Kit	X	X
Return Smoke Detector	X	X
Supply Smoke Detector		X
Return and Supply Smoke Detector	X	
Non-Fused Disconnect	X	
Non-Powered Convenience Outlet	X	
Outdoor Air Enthalpy Sensor		X
Return Air Enthalpy Sensor		X
Return Air Temperature Sensor		X
Return Air CO ₂ Sensor		X
Indoor Air Quality (CO ₂) Room Sensor		X
Hot Gas Reheat (181 (15t) model available only with HGRH)	X	
Non-Powered Convenience Outlet	X	
Pre-Coat Condenser	X	
E-Coat Condenser Coil	X	
Copper Condenser Coil	X	
Copper Evaporator Coil	X	
E-Coat Copper Evaporator Coil	X	
Low Range Drive	X	
Mid-Low Range Drive	X	
Mid-High Range Drive	X	
High Range Drive	X	
Roof Curb (14 in.)		X
Roof Curb (24 in.)		X
Low Heat Gas	X	
High Heat Gas	X	
Medium Heat Gas	X	
Stainless Steel Heat Exchangers	X	
Propane Kit		X
Drip Edge		X
Two-Position Damper	X	X
Phase Loss Detection		X
Manual Damper	X	X
Thermostat and Subbase		X
Hinged Access Panels	X	

^{*}Factory-installed. †Field-installed.

NOTES:

1. Refer to unit price pages or contact your local representative for accessory and option package information.

2. Some options may increase product lead times.

OPTIONS AND ACCESSORIES (cont)

Roof Curbs (Horizontal and Vertical) permit installation and securing of ductwork to curb prior to mounting unit on the curb. Both 14-in. and 24-in. roof curbs are available as field-installed accessories.

EconoMi\$er IV is available as a factory-installed option in vertical supply/return configuration only for unit sizes 036-151. Vertical or horizontal configuration is available for unit sizes 155-300. (The EconoMi\$er IV is available as a field-installed accessory for horizontal and/or vertical supply return configurations.) The EconoMi\$er IV is provided with an industry standard, stand-alone, solid-state controller that is easy to configure and troubleshoot. The EconoMi\$er IV is compatible with non-DDC applications. The EconoMi\$er IV is equipped with a barometric relief damper capable of relieving up to 100% return air (for unit sizes 036-151 only). Dry bulb outdoor-air temperature sensor is provided as standard. The return air sensor, indoor enthalpy sensor, and outdoor enthalpy sensor are provided as field-installed accessories to provide enthalpy control, differential enthalpy control, and differential dry bulb temperature control.

EconoMi\$er IV on 579F and 581A units is used for both vertical and horizontal return air configurations.

EconoMi\$er2 is available as a blanket quote control or as a field-installed accessory for horizontal and/or vertical supply return configurations. The EconoMi\$er2 is provided without a controller for use with field-installed third-party controls. The EconoMi\$er2 is equipped with a barometric relief damper capable of relieving up to 100% return air. Dry bulb outdoor-air temperature sensor is provided as standard. The enthalpy, differential temperature (adjustable), and differential enthalpy control are provided as field-installed accessories. The EconoMi\$er2 is capable of control from a 4 to 20 mA signal through optional 4 to 20 mA design without microprocessor control (required for third party control interface).

Manual Outdoor-Air Damper can be preset to admit up to 50% outdoor air for year round ventilation and is available as a field-installed accessory.

Two-Position Damper package is available as an accessory. Both 25% or 100% outdoor air dampers are available.

Head Pressure Control (Motormaster) accessory package maintains condensing temperature between 90 F and 110 F at outdoor ambient temperatures down to –20 F by condenser-fan speed modulation or condenser-fan cycling and wind baffles.

Unit-Mounted, Non-Fused Disconnect Switch provides unit power shutoff. The switch is accessible from outside the unit, provides power off lockout capability and is available as a factory-installed option.

Convenience Outlet is factory-installed and internally mounted with easily accessible 115-v female receptacle.

Compressor Cycle Delay (Time Guard II) accessory prevents unit from restarting for minimum of 5 minutes after shutdown.

Thru-The-Bottom Utility Connectors permit electrical connections to be brought to the unit through the basepan. Connectors are available as field-installed accessories.

Fan/Filter Status Switch accessory provides status of indoor (evaporator) fan (ON/OFF) or filter (CLEAN/DIRTY).

Power Exhaust accessory will provide system exhaust of up to 100% of return air (vertical only). The power exhaust is a field-installed accessory (separate vertical and horizontal design).

Ultraviolet Germicidal Lamps eliminate odor causing mold and fungus that may develop in the wet area of the evaporator section of the unit. The high output, low temperature germicidal lamps are field installed in the evaporator section of the unit, aimed at the evaporator coil and condensate pan.

Hinged Panel Option provides hinged access panels for the filter, compressor, evaporator fan, and control box areas. Filter hinged panels permit tool-less entry for changing filters. Each hinged panel is permanently attached to the rooftop unit. Hinged panels are a factory-installed option.

PHYSICAL DATA — 580F036-073

Type Drive	UNIT SIZE 580F		036	048	060	072	073
Unit AllCu' All	NOMINAL CAPACITY (tons)		3	4	5	6	6
ARCU-							
Second S			465	476	497	576	626
Quantity 1				Designation		0-	!!
Solid Soli			1		j 1		
REFIGURE Expansion Device Coperating Charge (thick)				2 50			
Expansion Device Acutrol™ Metering Device	. /		50	90		04	00
Circuit 1 (tirst stage)	Expansion Device			Ac	cutrol™ Metering Dev	ice	•
Nominal Clm Cl	Circuit 1 (first stage)		4-5 —	6-6 —	7-14 —	9-0 —	11-0 —
Quantity_Diameter (in)			0500	1000		4000	4400
Motor FigRpm Maximum Allowable Rpm Maximum Rpm Righ-Static Maximum Rp			122.0				
CoNDENSER COIL Rows - Firstin 117 Total Face Area (sq ft) 8.36 2.18 8.36 10.42 10.42 10.55	Motor HpRpm		1/ ₄ 1100	1/ ₄ 1100		¹ / ₄ 1100	1/ ₄ 1100
RowsFins/in. 117	,		323				320
EVAPORATOR FAN QuantitySize (in.) Std 110 x 10 110 x	RowsFins/in.			217	217	217	
QuantitySize (in.)			8.36	8.36	_	10.42	16.5
Type Drive High-Static Alt Direct Alt Direct Belt Belt					111 x 10	110 x 10	110 x 10
Type Drive Std Alt						 110 x 10	 110 x 10
Nominal Cfm Maximum Continuous Bhp Std 1200 1600 2000 2400 2100 2100 2400 2100 2400 2100 2400 2100 2400 2100 2400 2100 2400 2100 2400	Type Drive	Std	Direct	Direct	Direct		
Maximum Continuous Bhp Stid Alt 1.20 1.20 1.20 1.30/2.40** - -			Belt	Belt	Belt		
Motor Frame Size		Std					
Motor Frame Size	maximum commucus Brip	Alt	1.20	1.20	1.30/2.40**	_	_
Nominal Rpm High/Low Std	Motor Frame Size		48	48	48		
Nominal Rpm High/Low							
High-Static 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 1725 17270-1460 1070-1460	Nominal Rpm High/Low	Std	860/800	1075/970	1075/1040		
Fan Rpm Range						— 1725	— 1725
High-Static 1075-1455 1075-1455 1300-1685 13	Fan Rpm Range		— 685-1045		— 900-1300	1070-1460	1070-1460
Maximum Allöwáble Rpm Motor Pulley Pitch Diameter Min/Max (in.) Std	Market Book to Trans		1075-1455	1075-1455	1300-1685		1300-1685
Alt High-Static Std High-Static High-Sta						2100	
Nominal Motor Shaft Diameter (in.)	Motor Pulley Pitch Diameter Min/Max (in.)		 1 9/2 9	1 9/2 9	 2 8/3 8	2.8/3.8	
Fan Pulley Pitch Diameter (in.) Fan Pulley Pitch Diameter (in.) Std Alt Alt Alt Alt Alt Alt Alt A	Naminal Matar Chaft Biamatan (in)	High-Static	2.8/3.8	2.8/3.8	3.4/4.4	3.4/4.4	3.4/4.4
Fan Pulley Pitch Diameter (in.)	Nominal Motor Shart Diameter (in.)	Alt	1/2	1/2	5/ ₈	_	_
Alt High-Static 4.5	Fan Pulley Pitch Diameter (in)		5/ ₈	5/8	7/8	7/ ₈ 4.5	7/ ₈ 4 5
Belt, QuantityTypeLength (in.)	r an r andy r non Diameter (iii)	Alt	4.5		5.5	_	_
Pulley Center Line Distance (in.)	Belt, QuantityTypeLength (in.)	Std	_	_	_		
Pulley Center Line Distance (in.)						 1 A 40	 1 A 40
Speed Change per Full Turn of Movable Pulley Flange (rpm)	Pulley Center Line Distance (in.)	Std	_	_	_	14.7-15.5	14.7-15.5
Movable Pulley Flange (rpm)		High-Static	10.0-12.4	10.0-12.4	14.7-15.5	14.7-15.5	14.7-15.5
Movable Pulley Maximum Full Turns From Closed Position	Speed Change per Full Turn of Moyable Pulley Flange (rpm)	Std		70	— 80	80 —	80 —
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, , ,	High-Static	65	65	60		
Factory Setting High-Static Std	From Closed Position	Alt	5	5	5	_	
Alt High-Static Factory Speed Setting (rpm)	Factory Setting		6		5		5 3
Factory Speed Setting (rpm)		Alt	3	3	3	_	_
Fan Shaft Diameter at Pulley (in.) High-Static $5/8$ 1233 $5/8$ 1416 $5/8$ 1416 $5/8$ EVAPORATOR COIL 3/8-in. OD Enhanced Copper Tubes, Aluminum Double-Wavy Fins	Factory Speed Setting (rpm)	Std	-	_	_		
Fan Shaft Diameter at Pulley (in.) $5/_8$ $5/_8$ $5/_8$ $5/_8$ $5/_8$ EVAPORATOR COIL $3/_8$ -in. OD Enhanced Copper Tubes, Aluminum Double-Wavy Fins		Alt High-Static				— 1396	
	Fan Shaft Diameter at Pulley (in.)		5/8	5/8	5/8	5/8	5/8
RowsFins/in. 215 215 315 415 415 Total Face Area (sq ft) 4.17 5.5 5.5 5.5 5.5					315 5.5	415 5.5	

LEGEND

AI — Aluminum Bhp — Brake Horsepower Cu — Copper

NOTES:

^{*}Evaporator coil fin material/condenser coil fin material. Contact your local representative for details about coated fins.
†Weight of 14-in. roof curb.
**Single phase/three-phase.
††Rollout switch lockout is manually reset by interrupting power to unit or resetting thermostat.

^{***}Three-phase standard high heat models have heating input values as shown. Single-phase standard high heat models have one-stage heating with heating input values as follows:

580F036 — 115,000 Btuh

580F048,060 — 150,000 Btuh

†††California SCAQMD compliant Low NO_x models have combustion products that are controlled to 40 nanograms per joule or less.

High-static motor not available on single-phase units.
 An LP kit is available as an accessory. Kit may be used at elevations as high as 2000 ft. LP kit is not used with Low NOx units.

PHYSICAL DATA — 580F036-073 (cont)

UNIT SIZE 580F		036	048	060	072	073
FURNACE SECTION						
Rollout Switch Cutout Temp (F)†† Burner Orifice Diameter		195	195	195	195	195
(indrill size) Natural Gas S Liquid Propane A	115 150 060N 090N 120N	.11333 .11333 .10238 .10238 .10238	.11333 .11333 .12930 .10238 .10238 .11632 .08943	.11333 .11333 .12930 .10238 .10238 .11632 .08943	.11333 .11333 .12930 — — — .08943	.11333 .11333 .12930 — — — .08943
Thermostat Heat Anticipator Setting (amps)	150	.08943	.10437	.10437	.10238	.10437
208/230 v and 575 Stage 1	074 115	.14 .14 .14 .14 .— —/74.000	.14 .14 .14 .14 /74,000 /115,000	.14 .14 .14 .14 /74,000 /115,000	.14 .14 .14 .14 /74,000 /115,000	.14 .14 .14 .14 —/74,000 —/115,000
Low NOx Units	150*** 060N††† 090N††† 120N†††	60,000	120,000/150,000 60,000 90,000 120,000	120,000/150,000 60,000 90,000 120,000	120,000/150,000 — — —	120,000/150,000 — — —
Efficiency (Steady State) (%)	074	80	80	80	80	80
Temperature Rise Range	074 115 150 060N 090N 120N	15-45 55-85 — 20-50 30-60	15-45 35-65 50-80 20-50 30-60 40-70	15-45 35-65 50-80 20-50 30-60 40-70	15-45 35-65 50-80 — —	15-45 35-65 50-80 — —
Manifold Pressure (in. wg) Natural Gas S Liquid Propane A Gas Valve Quantity Gas Valve Pressure Range (Min-Max Allowable)	d	3.5 3.5 1	3.5 3.5 1	3.5 3.5 1	3.5 3.5 1	3.5 3.5 1
Psig in. wg Field Gas Connection		0.180-0.470 5.0-13.0	0.180-0.470 5.0-13.0	0.180-0.470 5.0-13.0	0.180-0.470 5.0-13.0	0.180-0.470 5.0-13.0
Size (in. FPT)		1/2	1/2	1/2	1/2	1/2
HIGH-PRESSURE SWITCH (psig) Standard Compressor			450 ± 50		500 ± 50	500 ± 50
Internal Relief (Differential) Cutout Reset (Auto.)			428 320		428 320	428 320
LOW-PRESSURE SWITCH (psig) Cutout Reset (Auto.)				7 ± 3 22 ± 7		
FREEZE PROTECTION THERMOSTAT (F) Opens				30 ± 5		
Closes OUTDOOR-AIR INLET SCREENS		45 ± 5 Cleanable				
QuantitySize (in.) RETURN-AIR FILTERS			Va	ries by Option Selec Throwaway	eted	
QuantitySize (in.)				216 x 25 x 2		

LEGEND

AluminumBrake HorsepowerCopper Al Bhp Cu

^{*}Evaporator coil fin material/condenser coil fin material. Contact your local representative for details about coated fins.
†Weight of 14-in. roof curb.
**Single phase/three-phase.
††Rollout switch lockout is manually reset by interrupting power to unit or resetting thermostat.

^{***}Three-phase standard high heat models have heating input values as shown. Single-phase standard high heat models have one-stage heating with heating input values as follows:

580F036 — 115,000 Btuh

580F048,060 — 150,000 Btuh

†††California SCAQMD compliant Low NO_x models have combustion products that are controlled to 40 nanograms per joule or less.

High-static motor not available on single-phase units.
 An LP kit is available as an accessory. Kit may be used at elevations as high as 2000 ft. LP kit is not used with Low NOx units.

PHYSICAL DATA — 580F090,120,150 UNITS

LINIT OIZE FOOE		000	400	450
UNIT SIZE 580F		090	120	150
NOMINAL CAPACITY (tons)		71/2	10	121/2
OPERATING WEIGHT (lb) Unit Al/Cu*		881	1057	1077
COMPRESSOR				
Type Quantity		Reciprocating 2	Reciprocating 2	Scroll 2
No. Cylinders (per Circuit)		2	2	_
Oil (oz)		42 ea	54 ea	54 ea
REFRIGERANT TYPE Expansion Device			R-22 Fixed Orifice Metering Device	
Operating Charge (lb-oz)			•	
Circuit 1 (first stage) Circuit 2 (second stage)		4-13 4-14	7- 3 7-13	8-10 8- 6
CONDENSER COIL		³/ ₈ -in. OD Enha	nced Copper Tubes, Aluminu	ım Lanced Fins
RowsFins/in.		117 20.50	217 20.47	217 25.00
Total Face Area (sq ft) CONDENSER FAN		20.50	Propeller Type	25.00
Nominal Cfm		6400	7000	7000
QuantityDiameter (in.) Motor HpRpm		222 ¹/ ₄ 1100	222 1/ ₄ 1100	222 ¹/₄1100
Watts Input (Total)		600	600	600
EVAPORATOR COIL		3/8-in. OD Enhanced Co	pper Tubes, Aluminum Doubl	
RowsFins/in. Total Face Area (sq ft)		315 8.0	315 10.0	415 11.1
EVAPORATOR FAN			Centrifugal Type	
QuantitySize (in.)	Std	115 x 15	115 x 15	115 x 15
	Alt High-Static	115 x 15 115 x 15	115 x 15 115 x 15	115 x 15 —
Type Drive	Std Alt	Belt Belt	Belt Belt	Belt Belt
	High-Static	Belt	Belt	
Nominal Cfm Maximum Continuous Bhp	Std	3000 2.40	4000 2.40	5000 3.70
maximum continuous brip	Alt	2.40	2.90	5.25
Motor Frame Size	High-Static Std	3.70 56	5.25 56	— 56
	Alt	56	56	56
Fan Rpm Range	High-Static Std	56 590-840	56 685-935	860-1080
	Alt High-Static	685-935 860-1080	835-1085 830-1130	830-1130
Motor Bearing Type	nign-static	Ball	Ball	Ball
Maximum Allowable Rpm Motor Pulley Pitch Diameter Min/Max (in.)	Std	2100 2.4/3.4	2100 2.8/3.8	2100 4.0/5.0
motor randy ritori biamotor iminimax (imi)	Alt	2.8/3.8	3.4/4.4	3.1/4.1
Nominal Motor Shaft Diameter (in.)	High-Static Std	4.0/5.0 ^{5/} ₈	2.8/3.8 ⁵ / ₈	— 7/ ₀
,	Alt	1/2	7/ ₈ 7/ ₈ 7.0	7/ ₈ 7/ ₈
Fan Pulley Pitch Diameter (in.)	High-Static Std	1/ ₂ 7/ ₈ 7.0	7.8 7.0	— 8.0
	Alt High-Static	7.0 8.0	7.0 5.8	5.9 —
Belt, QuantityTypeLength (in.)	Stď	1A48	1A49	1A53
	Alt High-Static	1A48 1A53	1A51 1BX48	1BX48 —
Pulley Center Line Distance (in.)	Stď	16.75-19.25	15.85-17.50	15.85-17.50
	Alt High-Static	16.75-19.25 16.75-19.25	15.85-17.50 15.85-17.50	15.85-17.50 —
Speed Change per Full Turn of Movable Pulley Flange (rpm)	Std	50 50	50 50	44 50
, , ,	Alt High-Static	60	60	_
Movable Pulley Maximum Full Turns From Closed Position	Std Alt	5 5	5 5	5 6
	High-Static	5	6	_
Factory Setting	Std Alt	5 5	5 5	5 5
Footoms Occord Continue (co. co.)	High-Static	5	5	_
Factory Speed Setting (rpm)	Std Alt	590 685	685 835	860 960
Fon Shaft Diameter at Dulley (in)	High-Static	860	887	_
Fan Shaft Diameter at Pulley (in.)		1	1	1

LEGEND

Aluminum Brake Horsepower Copper

†Weight of 14-in. roof curb.
**Rollout switch lockout is manually reset by interrupting power to unit or resetting thermostat.

NOTE: High-static motor not available on size 150 units.

^{*}Evaporator coil fin material/condenser coil fin material. Contact your local representative for details about coated fins.

PHYSICAL DATA — 580F090,120,150 UNITS (cont)

UNIT SIZE 580F			090		120		150
FURNACE SECTION							
Rollout Switch Cutout Temp (F)** Burner Orifice Diameter			195		195		195
(indrill size) Natural Gas	Std	125 180 224	.12031 .12031 .12031	180 224 250	.12031 .12031 .12930	224 250	.12031 .12930
Liquid Propane	Alt	125 180 224	.09641 .09641 .09641	180 224 250	.09641 .09641 .10238	224 200	.09641 .10238
Thermostat Heat Anticipator Setting (amps) 208/230 v and 575 Stage 1			.14		.14		.14
Stage 2 460 v Stage 1 Stage 2			.20 .14 .20		.20 .14 .20		.20 .14 .20
Gas Input (Btuh) Stage 1		125 180 224	125,000 120,000 180,000	180 224 250	120,000 180,000 200,000	224 250 —	180,000 200,000 —
Stage 2		125 180 224	180,000 224,000	180 224 250	180,000 224,000 250,000	224 200 —	224,000 250,000 —
Efficiency (Steady State) (%) Temperature Rise Range		125 180 224	80 20-50 35-65 45-75	180 224 250	80 35-65 35-65 40-70	224 250	80 35-65 40-70
Manifold Pressure (in. wg) Natural Gas Liquid Propane Gas Valve Quantity	Std Alt		3.5 3.5 1		3.5 3.5 1		3.5 3.5 1
Gas Valve Quantity Gas Valve Pressure Range (Min-Max Allowable) Psig in. wg			0.180-0.470 5.0-13.0		0.180-0.470 5.0-13.0		0.180-0.470 5.0-13.0
Field Gas Connection Size (in. FPT)			1/2/3/4/3/4		3/ ₄ /3/ ₄ /3/ ₄		3/4/3/4
HIGH-PRESSURE SWITCH (psig) Standard Compressor Internal Relief (Differential)				450 ± 50			500 ± 50
Cutout Reset (Auto.)				428 320			428 320
LOSS-OF-CHARGE (LOW-PRESSURE) SWITCH (psig) Cutout					7 ± 3		
Reset (Auto.) FREEZE PROTECTION					7 ± 3 22 ± 7		
THERMOSTAT (F) Opens					30 ± 5		
Cioses OUTDOOR-AIR INLET SCREENS QuantitySize (in.)				Va	45 ± 5 Cleanable tries by Option Selecte	ed	
RETURN-AIR FILTERS QuantitySize (in.)		4	.16 x 20 x 2		Throwaway .20 x 20 x 2		.20 x 20 x 2
LEGEND				14 in roof cur			

LEGEND

Al — Aluminum
Bhp — Brake Horsepower
Cu — Copper

NOTE: High-static motor not available on size 150 units.

^{*}Evaporator coil fin material/condenser coil fin material. Contact your local representative for details about coated fins.

[†]Weight of 14-in. roof curb.
**Rollout switch lockout is manually reset by interrupting power to unit or resetting thermostat.

PHYSICAL DATA — 580F091,103,121,151 UNITS

ASHRAE 90.1 COMPLIANT UNITS

			1	ī	
UNIT SIZE 580F		091	103	121	151
NOMINAL CAPACITY (tons)		7 1/ ₂	81/2	10	121/2
OPERATING WEIGHT (lb)					
Unit		004	906	1057	4077
Al/Cu*		881	896	1057	1077
COMPRESSOR Type		Reciprocating	Scroll	Scroll	Scroll
Quantity		2	2	2	2
No. Cylinders (per Circuit)		2	2	2	2
Oil (oz) (each compressor)		42	53	50	60
REFRIGERANT TYPE Expansion Device				22 tering Device	
Operating Charge (lb-oz)			I ACUITOL IVIE	lening Device	
Circuit 1 (first stage)		7-10	7-14	8-10	9-8
Circuit 2 (second stage)		8-2	8-5	8-8	9-5
CONDENSER FAN Nominal Cfm		6500	Propell 6500	er Type 7000	7000
QuantityDiameter (in.)		222	222	222	222
Motor HpRpm		¹/ ₄ 1100	¹/ ₄ 1100	¹/ ₄ 1100	¹/ ₄ 1100
Watts Input (Total)		650	650	650	650
CONDENSER COIL				Tubes, Aluminum Lanced	
RowsFins/in. Total Face Area (sq ft)		217 20.50	217 20.50	217 25.00	217 25.00
EVAPORATOR FAN				gal Type	
QuantitySize (in.)	Std	115 x 15	115 x 15	115 x 15	115 x 15
	Alt	115 x 15	_	115 x 15	115 x 15
	High-Static	115 x 15	115 x 15	115 x 15	_
Type Drive	Std	Belt	Belt	Belt	Belt
	Alt	Belt		Belt	Belt
Name of Office	High-Static	Belt	Belt	Belt	
Nominal Cfm	Ctrl	2900	3000	3200	5000
Maximum Continuous Bhp	Std Alt	2.40 2.40	2.40	2.40 2.90	3.70 5.25
	High-Static	3.70	3.70	5.25	5.25 —
Motor Frame Size	Std	56	56	56	56
	Alt	56	_	56	56
	High-Static	56	56	56	_
Fan Rpm Range	Std	590-840	685-935	685-935	860-1080
	Alt	685-935	_	835-1085	830-1130
	High-Static	860-1080	860-1080	830-1130	_
Motor Bearing Type		Ball	Ball	Ball	Ball
Maximum Allowable Rpm		1500	1500	1500	1500
Motor Pulley Pitch Diameter Min/Max (in.)	Std	2.4/3.4	2.8/3.8	2.8/3.8	4.0/5.0
	Alt	2.8/3.8		3.4/4.4	3.1/4.1
Naminal Mater Shoft Diameter (in)	High-Static	4.0/5.0	4.0/5.0	2.8/3.8	
Nominal Motor Shaft Diameter (in.)	Std Alt	5/ ₈	5/ ₈	5/ ₈	7/ ₈
	High-Static	5/ ₈ 7/ ₈	7/8	7/ ₈ 7/ ₈	7/ ₈
Fan Pulley Pitch Diameter (in.)	Std	7.0	7.0	7.0	8.0
ran raney r non 2 amore (m)	Alt	7.0	_	7.0	5.9
	High-Static	8.0	8.0	5.8	_
Belt, QuantityTypeLength (in.)	Std	1A48	1A48	1A49	1A53
	Alt	1A48	_	1A51	1BX48
	High-Static	1A53	1A53	1BX48	_
Pulley Center Line Distance (in.)	Std	16.75-19.25	16.75-19.25	15.85-17.50	15.85-17.50
	Alt	16.75-19.25	-	15.85-17.50	15.85-17.50
Speed Change per Euil Town of	High-Static	16.75-19.25	16.75-19.25	15.85-17.50	
Speed Change per Full Turn of Movable Pulley Flange (rpm)	Std Alt	50 50	50 —	50 50	44 50
movable i ulicy i lalige (ipili)	High-Static	60	60	60	50 —
Movable Pulley Maximum Full Turns	Std	5	5	5	5
From Closed Position	Alt	5	_	5	6
	High-Static	5	5	6	_
Factory Setting	Std	5	5	5	5
	Alt	5	_	5	5
	High-Static	5	5	5	_
Factory Speed Setting (rpm)	Std	590	685	685	860
	Alt	685	_	835	887
For Shoft Diameter of Bullet (in)	High-Static	860	860	887	_
Fan Shaft Diameter at Pulley (in.)		1	1	1	1
EVAPORATOR COIL				luminum Double-Wavy Fi	
RowsFins/in.		315	315	315 10.0	415
Total Face Area (sq ft)		8.9	8.9	10.0	11.1

LEGEND

Aluminum Brake Horsepower Copper

^{*}Evaporator coil fin material/condenser coil fin material. Contact your local representative for details about coated fins.
†Weight of 14-in. roof curb.

**Rollout switch lockout is manually reset by interrupting power to unit or resetting thermostat.

PHYSICAL DATA — 580F091,103,121,151 UNITS (cont)

ASHRAE 90.1 COMPLIANT UNITS (cont)

UNIT SIZE 580F			091		103		121		151
FURNACE SECTION			-						
Rollout Switch Cutout Temp (F)**			195		195		195		195
Burner Orifice Diameter			.55		.50		. 30		. 50
(indrill size) Natural Gas	Std	125	.12031	125	.12031	180	.12031	224	.12031
Hatarar Jas	Siu	180	.12031	180	.12031	224	.12031	250	.12930
Liquid Propane	Alt	224 125	.12031 .09641	224 125	.12031 .09641	250 180	.12930 .09641	224	 .09641
Elquiu i Topalie	AIL	180	.09641	180	.09641	224	.09641	250	.10238
Thormostat Hoot Antiginates		224	.09641	224	.09641	250	.10238	_	
Thermostat Heat Anticipator Setting (amps)						1		1	
208/230 v and 575 Stage 1		ĺ	.14		.14	1	.14	1	.14
Stage 2 460 v Stage 1			.20 .14		.20 .14		.20 .14		.20 .14
Stage 2			.20		.20		.20		.20
Gas Input (Btuh) Stage 1		125 180	125,000 120.000	125 180	125,000 120.000	180 224	120,000 180.000	224 250	180,000 200,000
		224	180,000	224	180,000	250	200,000	_	<u>-</u>
Stage 2		125 180	180,000	125 180	180,000	180 224	180,000 224,000	224 250	224,000 250,000
		180 224	224,000	224	224,000	250	250,000 250,000	250	250,000
Efficiency (Steady			80		80	1	80	1	80
State) (%) Temperature Rise Range		125	20-50	125	80 20-50	180	80 35-65	224	80 35-65
p		180	35-65	180	35-65	224	35-65	250	40-70
Manifold Pressure (in. wg)		224	45-75	224	45-75	250	40-70	_	_
Natural Gas	Std		3.5		3.5	1	3.5	1	3.5
Liquid Propane Gas Valve Quantity	Alt		3.5 1		3.5 1		3.5 1		3.5 1
Gas Valve Pressure Range (Min-Max Allowable)			*		·		·		·
Psig in wa			0.180-0.470 5.0-13.0		0.180-0.470	1	0.180-0.470 5.0-13.0	1	0.180-0.470 5.0-13.0
in. wg Field Gas Connection			5.0-13.0		5.0-13.0		5.0-13.0		5.0-13.0
Size (in. FPT)		125	1/ ₂ 3/ ₄	125	1/2	180	3/ ₄	224	3/ ₄ 3/ ₄
		180 224	3/ ₄ 3/ ₄	180 224	1/ ₂ 3/ ₄ 3/ ₄	224 250	3/ ₄ 3/ ₄	250 —	3/ ₄
HIGH-PRESSURE SWITCH (psig)			- 4		- 4		- 4		
Standard Compressor					450 ± 50				500 ± 50
Internal Relief (Differential) Cutout					428				428
Reset (Auto.)					320				320
LOW-PRESSURE SWITCH (psig)									
Cutout Reset (Auto.)						7 ± 3 22 ± 7			
FREEZE PROTECTION						22 I /			
THERMOSTAT (F)									
Opens						30 ± 5			
Closes		45±5							
OUTDOOR AIR INLET CORFERS		Cleanable Varies by Option Selected							
OUTDOOR-AIR INLET SCREENS QuantitySize (in.)			Varies by Option Selected						
OUTDOOR-AIR INLET SCREENS QuantitySize (in.) RETURN-AIR FILTERS						y Option hrowawa			

LEGEND

AI — Aluminum Bhp — Brake Horsepower Cu — Copper

*Evaporator coil fin material/condenser coil fin material. Contact your local representative for details about coated fins.
†Weight of 14-in. roof curb.

**Rollout switch lockout is manually reset by interrupting power to unit or resetting thermostat.

				580	F — OP	TION/	ACCES	SOR	YWEIG	HTS						
Option / Accessory	036		048		060		072, 073		090, 091		102, 103		120, 121		150, 151	
	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg
Power Exhaust - vertical	50	23	50	23	50	23	50	23	75	34	75	34	75	34	75	34
Power Exhaust - horizontal	30	14	30	14	30	14	30	14	30	14	30	14	30	14	30	14
EconoMi\$er (IV or 2)	50	23	50	23	50	23	50	23	75	34	75	34	75	34	75	34
Two Position damper (25%)	22	10	22	10	22	10	22	10	32	15	32	15	32	15	32	15
Two Position damper (100%)	39	18	39	18	39	18	39	18	58	26	58	26	58	26	58	26
Manual Dampers	12	5	12	5	12	5	18	8	18	8	18	8	18	8	18	8
Hail Guard (standard hood assembly)	25	11	25	11	25	11	25	11	38	17	50	23	50	23	50	23
Cu/Cu Condenser Coil	6	3	13	6	13	6	15	7	12	5	23	10	23	10	23	10
Cu/Cu Condenser and Evaporator Coils	12	5	19	9	21	10	26	12	25	11	49	22	49	22	49	22
Roof Curb (14-in. curb)	115	52	115	52	115	52	115	52	143	65	143	65	143	65	143	65
Roof Curb (24-in. curb)	197	89	197	89	197	89	197	89	245	111	245	111	245	111	245	111

BASE UNIT DIMENSIONS — 580F036-072

BASE UNIT DIMENSIONS — 580F073

BASE UNIT DIMENSIONS — 580F090,120,150

BASE UNIT DIMENSIONS — 580F091,103,121,151

ACCESSORY DIMENSIONS — 580F

Roof Curb

ACCESSORY DIMENSIONS — 580F (cont)

CONNECTOR PKG. ACCY.	В	С	D ALT DRAIN	GAS	POWER	CONTROL	ACCESSORY POWER	ROOF CURB ACCESSORY	"A"	UNIT SIZE
CRBTMPWR001A01			HOLE	^{3/} 4" [19] NPT	3/ ₄ " [19] NPT			CRRFCURB003A01 CRRFCURB004A01	1'-2" [356] 2'-0" [610]	580F 090-151
CRBTMPWR002A01	2'-8 ⁷ / ₁₆ " [827]	1'-10 ¹⁵ / ₁₆ " [583]	1 ³ / ₄ " [44.5]	1/2"	1 ¹ / ₄ " [31.7] 3/ ₄ " [19] NPT	1/ ₂ " [12.7] NPT	1/ ₂ " [12.7] NPT	NOTES:		<u> </u>
CRBTMPWR004A01	[027]	[000]	[44.0]	[12.7] NPT 3/ ₄ " [19] NPT	11/4" [31.7]	[12.7] (11.1	[12.7] (1)	Roof curb accessory Insulated panels: 1	is shipped di -in. thick po	sassembled. lyurethane foam,
				[19] NP1	7			1 ³ / ₄ lb density. 3. Dimensions in [] as 4. Roof curb: 16-gage s		ers.
_ <u>- - </u>	<u> </u>							Attach ductwork to curb).	curb (flanges	
	<u> </u>		- 11∶					6. Service clearance 47. Direction of ai		le.
	ز ر َ ^ک	\ \ !	.、 ¦					8. Connector package 2A01 are for thru-t	s CRBTMP	WR001A01 and
	C;	1175	`. ;					CRBTMPWR003A01 bottom type gas con	1 and 4A01	are for thru-the-
	/	١٠٠٠	¹∦¦						0'-3 5/16 <u>-</u> [84.0]	≯ ►
0′-3″		*='	' :	~D~	GASKE (SUPPLIED WI	Ţ Ţ	UNIT NAIL		TE.	<u> </u>
<u> </u>				υ 	(SUPPLIED WI DUCT (FIELD SUPP		TYPI 0'-7/16"	CAL (4) SIDES		- }
ļ ¦			/ <u>;</u>		• •	-1		COUNTER FLASHING (FIELD SUPPLIED) ING FELT	0	SECTION "C-C"
0′-3″	- " B" ——	RETUR	N A TO		! !		M ∕ (FIEL	D SUPPLIED) NT STRIP LD SUPPLIED)		SCALE 1:4
<u> </u>		OPENI	ING I	3′-3 5/8 ″ [1006]	I I			-ROOFING MATERIAL (FIELD SUPPLIED)	٥	
1'-3 1/4"	PLY AIR PENING	- c	. <u> </u>		!					
[387]	_				_i					
0′-0 7/16″	6 15/16 <u>*</u>	1'-2 7	/8"	0'-0 7/16"		RIGID I	NSULATION SUPPLIED)	OPENING FOR BASEPAN ENTRY SERVICE (SEE NO)TE #8)	
(BOLT HEADS) 2'-	[786] 0′-3″ [76]	(378		[11] (BOLT HEADS:)	,7				
0'-0 7/16" [11] (BOLT HEADS)	4'-0	13/16 ″ 240]	 [1	-0 7/16° 1] DLT HEADS)		į –	0′-2 1/8 ″ [54]	0′-5 3/16		
A 4				A		•		0'-11 2/5 [290]	→	E NOTE #2
F				===	<i>'</i>				4 3/16	
									4 3/16	
		\neg			,	GAS SERVICE	1	*		
					1	GAS SERVICE PLATE (SEE NOTE #8	1′-8 3/ [513]	16"	4 F (15*	
0'-0 1/4"[7]	<u> </u>	⊚		<u></u> ,			(INSID	(INSI)	4 5/16" 01 DE)	-8 3/16 "
0'-4 9/16" [115.5]									* (-8 3/16 [513] [NSIDE)
	SUPPLY	~	ETURN AIR		į		1	TYP 2 3/8	,	
		EW ~ A-			*			2 3/8 0 -2 [75]	15/16	
	V 1	LW A	^)				1	
HEAD OF B INSIDE	OLT TO BE OF FLANGE	ON								
	\setminus	بر								
	1//	0'-1" [25]		A A			//			
0'-1 7/8'		ددعا							6'-6" 1981]	
		*			4'-1 3/4					
AREF		0'-3"			[1264]					RE-LOCK CORNER IS ACCEPTABLE
VIEW (TYP. ALL C	<u>B"</u>	L/bJ		SEE VI	EW "B"				RNATE CONSTRU	
/ CIP. ALL C	CUITEIN			522 71		urb Detai				

Roof Curb Details

SELECTION PROCEDURE (with 580F060 example)

I DETERMINE COOLING AND HEATING REQUIRE-MENTS AT DESIGN CONDITIONS.

Given:

Required Cooling Capacity (TC)55,000 Btuh
Sensible Heat Capacity (SHC) 40,000 Btuh
Required Heating Capacity60,000 Btuh
Condenser Entering Air Temp
Evaporator Entering Air Temp 80 F edb,
67 F ewb
Evaporator Air Quantity2,000 cfm
External Static Pressure 0.6 in. wg
Electrical Characteristics (V-Ph-Hz) 230-3-60
Vertical discharge unit with optional EconoMi\$er IV required.

edb — Entering dry-bulb ewb — Entering wet-bulb

II SELECT UNIT BASED ON REQUIRED COOLING CAPACITY.

Enter Cooling Capacities table for 580F060 (page 33) at condenser entering temperature 95 F, evaporator air entering at 2,000 cfm and 67 F wb. The 580F060 unit will provide a total cooling capacity of 60,900 Btuh and a sensible heating capacity of 45,300 Btuh. For air entering evaporator at temperatures other than 80 F edb, calculate sensible heat capacity correction as required using the formula in the notes following the Cooling Capacities tables.

NOTE: Unit ratings are gross capacities and do not include the effect of evaporator-fan motor heat. To calculate net capacities, see Step V.

III SELECT HEATING CAPACITY OF UNIT TO PROVIDE DESIGN CONDITION REQUIREMENTS.

In the Heating Capacities and Efficiencies table (page 9) note that the 580F060 074 will provide an output capacity of 59,200 Btuh, which is adequate for the given application.

IV DETERMINE FAN SPEED AND POWER REQUIRE-MENTS AT DESIGN CONDITIONS.

Before entering the Fan Performance tables, calculate the total static pressure required based on unit components. From the given and the Accessory/FIOP Static Pressure table on page 75 find:

External static pressure

EconoMi\$er IV static pressure

Total Static

0.60 in. wg
0.12 in. wg
0.72 in. wg

Enter the standard motor Fan Performance table 580F060 Vertical Discharge (page 39) at 2,000 cfm and 0.72 in. wg external static pressure. The standard motor cannot provide 0.87 in. wg external static pressure. Enter the alternate motor Fan Performance table for 580F060, vertical discharge. At 2,000 cfm and 0.72 in. wg external static pressure, find that the rpm is 1219, the Bhp is 1.31, and the watts are 1168 (interpolation required).

V DETERMINE NET COOLING CAPACITY.

Cooling capacities are gross capacities and do not include indoor (evaporator) fan motor (IFM) heat. Use the watts input power to the motor calculated in Section IV above.

IFM Watts = 1168

Determine net cooling capacity using the following formula:

Net sensible capacity = 45,300 Btuh - 3985 Btuh = 41,315 Btuh

The calculations show that a 580F060 unit with the alternate motor and drive is the correct selection for the given conditions.

PERFORMANCE DATA

COOLING CAPACITIES

<u>`</u>	, (F)				Air Enteri	ng Evaporator -	- Cfm/BF			
Temp Air Ent			900/0.11			1200/0.14			1500/0.17	
Conde	nser				Air Enteri	ng Evaporator -	– Ewb (F)			
(Ed	D)	72	67	62	72	67	62	72	67	62
75	TC	42.8	38.9	35.0	44.8	40.8	37.0	45.8	41.9	38.2
	SHC	20.0	24.5	28.7	21.8	27.5	32.8	23.0	30.0	36.0
	kW	2.91	2.81	2.70	2.99	2.88	2.78	3.02	2.92	2.82
85	TC	40.8	36.9	33.3	42.5	38.7	35.0	43.6	39.9	36.1
	SHC	19.4	23.7	27.9	21.0	26.8	31.8	22.6	29.7	35.1
	kW	3.14	3.01	2.90	3.20	3.08	2.97	3.24	3.14	3.02
95	TC	38.7	34.9	31.4	40.4	36.6	33.0	41.4	37.6	34.1
	SHC	18.6	22.9	27.0	20.3	26.0	30.9	22.0	28.8	34.0
	kW	3.35	3.21	3.09	3.42	3.29	3.16	3.47	3.35	3.22
105	TC	36.5	32.8	29.2	38.1	34.3	30.9	39.0	35.2	32.4
	SHC	17.8	22.1	25.9	19.6	25.2	29.8	21.2	28.0	32.3
	kW	3.55	3.41	3.27	3.63	3.49	3.35	3.68	3.54	3.43
115	TC	34.3	30.7	26.9	35.7	32.1	28.8	36.5	32.9	30.6
	SHC	17.0	21.3	24.8	19.0	24.4	28.8	20.5	27.1	30.6
	kW	3.76	3.60	3.45	3.84	3.68	3.54	3.88	3.74	3.64

Temp) (E)				Air Enteri	ng Evaporator -	- Cfm/BF			
Air Ent			1200/0.12			1600/0.15			2000/0.18	
Conde					Air Enteri	ng Evaporator -	– Ewb (F)			
(Ed	ib)	72	67	62	72	67	62	72	67	62
75	TC	57.9	53.1	48.3	60.4	55.9	51.3	62.2	57.3	52.9
	SHC	27.2	33.3	39.2	29.4	37.2	44.8	31.4	40.3	49.1
	kW	4.07	3.93	3.79	4.17	4.03	3.90	4.24	4.08	3.96
85	TC	55.7	50.8	45.3	57.7	53.4	48.5	59.4	55.0	50.2
	SHC	26.4	32.5	37.8	28.4	36.7	43.6	30.5	40.3	47.9
	kW	4.40	4.24	4.08	4.47	4.35	4.20	4.54	4.42	4.25
95	TC	52.9	48.1	42.5	55.2	50.5	45.7	56.7	52.0	47.4
	SHC	25.5	31.5	36.4	27.6	35.6	42.2	29.7	39.2	46.7
	kW	4.70	4.54	4.36	4.78	4.63	4.47	4.87	4.70	4.56
105	TC	50.1	45.3	39.8	52.3	47.6	42.8	53.6	48.9	44.9
	SHC	24.4	30.3	35.1	26.7	34.5	40.7	28.8	38.1	44.6
	kW	5.00	4.81	4.62	5.10	4.91	4.73	5.17	4.99	4.84
115	TC	47.3	42.6	37.2	49.3	44.6	40.0	50.5	45.9	42.4
	SHC	23.4	29.2	33.7	25.9	33.3	39.3	27.8	37.1	42.4
	kW	5.30	5.07	4.88	5.42	5.19	4.99	5.48	5.28	5.12

Temp	/E\				Air Enteri	ng Evaporator -	- Cfm/BF			
Air Ent			1500/0.07			2000/0.09			2500/0.12	
Conde					Air Enteri	ng Evaporator -	– Ewb (F)			
(Ed	0)	72	67	62	72	67	62	72	67	62
75	TC	71.0	63.8	55.4	74.5	67.2	59.2	76.5	69.7	62.1
	SHC	33.9	41.5	47.9	37.4	47.4	55.8	40.6	52.8	61.8
	kW	5.04	4.82	4.62	5.20	4.97	4.76	5.29	5.06	4.87
85	TC	69.2	61.0	54.2	72.9	65.6	57.2	75.2	68.1	61.5
	SHC	33.4	40.5	47.3	37.0	46.9	54.9	40.1	52.3	61.3
	kW	5.50	5.27	5.02	5.66	5.41	5.18	5.75	5.50	5.29
95	TC	65.5	56.6	50.4	69.4	60.9	53.1	71.2	63.3	57.8
	SHC	32.1	38.8	45.6	35.8	45.3	52.6	39.1	50.9	57.8
	kW	5.88	5.62	5.37	6.01	5.76	5.53	6.12	5.87	5.67
105	TC	61.9	53.1	47.1	65.4	56.6	50.5	67.1	58.8	54.5
	SHC	30.8	37.5	44.1	34.5	43.7	50.2	37.9	49.3	54.5
	kW	6.25	5.99	5.72	6.38	6.13	5.91	6.50	6.23	6.06
115	TC	58.2	49.7	43.7	61.4	52.3	47.8	63.0	54.3	51.2
	SHC	29.5	36.1	42.5	33.2	42.1	47.8	36.7	47.6	51.2
	kW	6.63	6.35	6.08	6.75	6.49	6.29	6.88	6.59	6.46

Standard Ratings

LEGEND

ELGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Ldb — Leaving Dry-Bulb
Lwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{\text{4.40}}$

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

 $h_{lwb} = h_{ewb} - \frac{total capacity (Btuh)}{4 F \cdots }$

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENT	TERING A	AIR DRY	-BULB T	EMP (F)
BYPASS	79	78	77	76	75	under 75
FACTOR (BF)	81	82	83	84	85	over 85
` ′			Co	rrection	Factor	
.05 .10 .20 .30	1.04 .98 .87 .76	2.07 1.96 1.74 1.53	3.11 2.94 2.62 2.29	4.14 3.92 3.49 3.05	5.18 4.90 4.36 3.82	Use formula shown below.

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

PERFORMANCE DATA (cont) COOLING CAPACITIES (cont)

F072 (6 T	· · · · · · · · · · · · · · · · · · ·					Air E	ntering Evar	orator — Cf	m/BF				
	p (F) ntering		1800/0.06			2100/0.08	<u> </u>		2400/0.09			3000/0.11	
Cond	lenser db)					Air E	ntering Evap	orator — Ev	vb (F)				
(E	ab)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	86.6	80.0	73.6	87.8	80.3	73.2	90.8	84.1	77.2	93.2	86.6	79.7
	SHC	42.2	52.3	62.2	43.0	53.9	65.5	46.5	59.6	71.6	50.1	66.4	78.7
	kW	5.48	5.33	5.21	5.69	5.50	5.32	5.59	5.44	5.29	5.66	5.51	5.35
85	TC	84.1	77.4	71.0	84.0	77.2	69.5	87.8	81.2	74.5	90.1	83.5	77.3
	SHC	41.4	51.3	61.1	41.7	53.1	64.0	45.5	58.6	70.3	49.4	65.4	76.7
	kW	6.17	6.00	5.85	6.21	6.04	5.83	6.27	6.11	5.94	6.35	6.19	6.02
95	TC	81.6	74.7	68.5	81.0	73.5	66.3	84.8	78.2	71.8	87.0	80.4	74.8
	SHC	40.6	50.3	60.0	40.8	51.8	62.8	44.6	57.6	69.1	48.7	64.5	74.7
	kW	6.86	6.67	6.49	6.78	6.54	6.33	6.95	6.77	6.59	7.03	6.86	6.69
105	TC	78.4	71.8	65.6	76.8	69.7	62.5	81.6	74.9	68.9	83.3	76.9	72.1
	SHC	39.4	49.2	58.7	39.4	50.3	61.1	43.5	56.4	67.4	47.4	63.1	72.0
	kW	7.60	7.39	7.20	7.30	7.05	6.80	7.72	7.50	7.31	7.77	7.59	7.41
115	TC	75.1	68.7	62.5	72.5	65.5	58.7	78.0	71.5	66.1	79.5	73.3	69.3
	SHC	38.1	47.9	57.2	37.9	48.7	58.7	42.3	55.1	65.5	46.3	61.6	69.2
	kW	8.36	8.14	7.93	7.81	7.53	7.27	8.49	8.25	8.06	8.55	8.33	8.18

Tem	ıp (F)					Air Eı	ntering Evap	orator — C	fm/BF				
	ntering		1800/0.06			2100/0.07			2400/0.09			3000/0.11	
	lenser					Air Er	ntering Evap	orator — E	wb (F)				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	81.3	77.8	71.3	82.7	78.7	72.9	84.2	79.7	74.6	85.3	82.5	76.7
	SHC	38.2	51.3	61.6	40.2	54.2	65.9	42.3	57.1	70.2	43.7	64	76.4
	kW	4.69	4.63	4.52	4.73	4.65	4.56	4.77	4.67	4.6	4.8	4.75	4.63
85	TC	78.8	75.6	69	81.1	77.1	70.7	83.3	78.6	72.3	85	80.5	75
	SHC	37.7	50.4	60.5	40	53.9	64.9	42.2	57.5	69.2	44.3	63.6	74.9
	kW	5.21	5.16	5.05	5.27	5.2	5.09	5.34	5.24	5.13	5.39	5.29	5.17
95	TC	77.1	73.3	66.9	79.2	74.8	68.5	81.3	76.2	70.1	82	78	73.3
	SHC	37	49.9	59.7	39.4	53.3	64	41.8	56.8	68.3	43.5	63.4	73.2
	kW	5.8	5.78	5.65	5.87	5.81	5.7	5.94	5.85	5.74	5.95	5.88	5.8
105	TC	75.4	70.7	62.9	76.6	72.1	64.8	77.9	73.4	66.7	79.7	74.9	70.9
	SHC	36.7	48.7	58.2	38.6	52.3	62.2	40.6	55.9	66.3	43	62.4	70.9
	kW	6.49	6.45	6.26	6.53	6.48	6.32	6.56	6.51	6.38	6.61	6.53	6.46
115	TC	72.1	67.9	59	73.6	69	61.1	75.2	70.1	63.3	76.7	71.9	68.1
	SHC	35.3	47.5	57.2	37.6	51.2	60.2	39.9	54.8	63.3	42.2	61.5	68.1
	kW	7.2	7.17	6.94	7.25	7.18	7.01	7.29	7.2	7.08	7.35	7.26	7.15

580F090	(71/ ₂ TONS)											
Tem	p (F)					Air Er	ntering Evap	orator — C	fm/BF				
	ntering		2250/0.07			2800/0.09			3000/0.10			3750/0.12	
	lenser					Air Er	ntering Evap	orator — E	wb (F)				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	102.8	94.8	86.2	105.8	98.2	90.0	106.4	99.0	90.8	109.2	101.6	93.6
	SHC	49.4	61.8	73.2	52.6	67.8	81.6	53.6	69.8	84.0	58.2	77.4	92.2
	kW	7.14	6.82	6.50	7.28	6.98	6.68	7.32	7.04	6.72	7.46	7.18	6.86
85	TC	98.2	90.2	81.6	101.8	93.6	85.2	102.6	94.4	86.0	104.6	96.8	89.6
	SHC	48.0	60.2	71.2	51.6	66.4	79.6	52.8	68.6	82.0	56.8	76.0	89.4
	kW	7.66	7.34	7.00	7.82	7.50	7.18	7.86	7.54	7.22	7.98	7.68	7.40
95	TC	93.8	85.2	76.6	97.0	88.4	80.0	97.6	89.0	81.2	99.4	91.2	85.2
	SHC	46.4	58.2	68.8	50.2	64.6	77.2	51.4	66.8	79.0	55.6	74.4	85.2
	kW	8.18	7.84	7.48	8.36	8.00	7.64	8.40	8.04	7.70	8.50	8.16	7.92
105	TC	88.4	79.8	70.8	91.0	82.8	74.6	91.6	83.4	76.0	93.8	85.4	80.6
	SHC	44.6	56.2	66.0	48.2	62.6	74.2	49.4	64.8	75.6	54.2	72.4	80.6
	kW	8.68	8.30	7.98	8.80	8.46	8.14	8.86	8.50	8.20	8.98	8.64	8.42
115	TC	82.8	73.8	66.0	85.2	76.8	69.6	85.6	77.4	71.0	87.6	79.4	76.0
	SHC	42.6	53.8	63.2	46.4	60.4	69.6	47.8	62.6	71.0	52.8	70.4	75.8
	kW	9.16	8.78	8.42	9.30	8.92	8.64	9.34	8.96	8.72	9.48	9.10	8.94

COOLING CAPACITIES (cont)

	(71/ ₂ TONS)				Air Er	ntering Evar	oorator — C	fm/BF				
	np (F) ntering		2250/0.10			2800/0.11			3000/0.11			3750/0.14	
	lenser					Air Er	ntering Evap	orator — E	wb (F)				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	105.8	97.6	88.7	108.9	101.1	92.6	109.5	101.9	93.5	112.4	104.6	96.4
	SHC	50.9	63.6	75.4	54.1	69.8	84.0	55.2	71.9	86.5	59.9	79.7	94.9
	kW	6.34	6.05	5.77	6.46	6.19	5.93	6.50	6.25	5.96	6.62	6.37	6.09
85	TC	101.1	92.9	84.0	104.8	96.4	87.7	105.6	97.2	88.5	107.7	99.6	92.2
	SHC	49.4	62.0	73.3	53.1	68.4	81.9	54.4	70.6	84.4	58.5	78.2	92.0
	kW	6.80	6.51	6.21	6.94	6.66	6.37	6.98	6.69	6.41	7.08	6.82	6.57
95	TC	96.6	87.7	78.9	99.9	91.0	82.4	100.5	91.6	83.6	102.3	93.9	87.7
	SHC	47.8	59.9	70.8	51.7	66.5	79.5	52.9	68.8	81.3	57.2	76.6	87.7
	kW	7.26	6.96	6.64	7.42	7.10	6.78	7.46	7.14	6.83	7.54	7.24	7.03
105	TC	91.0	82.1	72.9	93.7	85.2	76.8	94.3	85.9	78.2	96.6	87.9	83.0
	SHC	45.9	57.9	67.9	49.6	64.4	76.4	50.9	66.7	77.8	55.8	74.5	83.0
	kW	7.70	7.37	7.08	7.81	7.51	7.22	7.86	7.54	7.28	7.97	7.67	7.47
115	TC	85.2	76.0	67.9	87.7	79.1	71.6	88.1	79.7	73.1	90.2	81.7	78.2
	SHC	43.9	55.4	65.1	47.8	62.2	71.6	49.2	64.4	73.1	54.4	72.5	78.0
	kW	8.13	7.79	7.47	8.25	7.92	7.67	8.29	7.95	7.74	8.41	8.08	7.93

Tem	ıp (F)					Air Er	tering Evap	orator — C	fm/BF				
	ntering		2550/0.08			3000/0.09			3400/0.11			4250/0.13	
	lenser					Air E	Entering Eva	aporator —	Ewb				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	117.7	104.1	93.4	121.3	107.5	97.2	122.9	109.0	98.7	124.4	111.1	101.8
	SHC	55.7	64.7	76.6	59.3	70.6	85.0	61.3	74.7	91.4	66.8	82.1	99.7
	kW	6.42	6.34	6.26	6.46	6.38	6.30	6.47	6.39	6.33	6.50	6.41	6.35
85	TC	113.8	100.4	89.2	117.9	103.8	93.4	119.6	105.3	94.7	122.1	107.5	97.2
	SHC	54.3	63.3	75.0	58.0	69.4	83.8	60.4	73.4	89.1	65.2	81.7	97.0
	kW	7.35	7.26	7.17	7.41	7.31	7.24	7.43	7.33	7.24	7.46	7.37	7.28
95	TC	109.6	96.2	85.3	113.3	99.7	89.2	115.4	101.1	90.3	118.3	103.2	93.1
	SHC	52.9	61.9	73.1	56.5	67.9	81.7	59.1	71.9	87.3	64.0	80.3	93.1
	kW	8.37	8.27	8.16	8.42	8.33	8.24	8.46	8.34	8.22	8.51	8.40	8.31
105	TC	105.6	92.1	81.3	108.8	95.2	84.6	110.4	96.4	86.3	113.2	98.4	89.7
	SHC	51.4	60.4	71.6	55.2	66.4	80.0	57.5	70.3	85.3	62.5	78.3	89.7
	kW	9.49	9.37	9.27	9.55	9.44	9.34	9.57	9.45	9.35	9.61	9.49	9.47
115	TC	100.4	87.9	76.8	103.1	90.4	80.3	105.1	91.7	82.1	107.6	93.5	85.0
	SHC	49.4	58.6	69.6	52.9	64.7	78.3	55.8	68.5	81.9	60.6	76.6	85.0
	kW	10.63	10.56	10.46	10.70	10.62	10.55	10.74	10.62	10.54	10.80	10.68	10.5
125	TC	95.8	83.0	72.0	98.5	85.5	74.9	99.8	86.6	77.5	101.4	88.2	80.7
	SHC	48.0	56.8	67.5	51.6	62.9	74.9	54.0	66.9	77.5	58.2	74.6	80.7
	kW	11.97	11.83	11.61	12.02	11.89	11.73	12.05	11.92	11.80	12.09	11.97	11.8

Tem	ıp (F)				Air Enteri	ng Evaporator -	— Cfm/BF			
	ntering		3000/0.095			4000/0.125			5000/0.15	
	denser				Air Enteri	ng Evaporator -	— Ewb (F)			
(⊨	idb)	72	67	62	72	67	62	72	67	62
75	TC	135.8	124.8	112.0	142.4	130.6	119.8	146.5	134.2	123.7
	SHC	66.8	82.6	97.4	73.2	93.4	112.7	79.7	104.4	123.1
	kW	9.76	9.41	9.10	10.00	9.61	9.27	10.17	9.75	9.41
85	TC	130.0	119.6	104.0	136.0	125.0	114.5	140.0	127.9	118.8
	SHC	64.3	80.5	93.8	71.1	91.7	110.2	77.5	101.8	118.7
	kW	10.41	10.07	9.74	10.67	10.28	9.94	10.84	10.41	10.09
95	TC	124.1	113.7	96.7	129.5	118.9	106.9	132.8	122.0	114.1
	SHC	62.2	78.4	90.0	69.1	89.8	105.9	74.9	100.1	114.0
	kW	11.13	10.78	10.40	11.38	10.99	10.63	11.52	11.14	10.83
105	TC	118.1	104.6	87.9	122.7	111.8	98.5	126.0	115.1	108.0
	SHC	60.4	74.9	85.2	66.9	87.7	98.5	73.1	98.3	108.0
	kW	11.93	11.52	11.10	12.13	11.74	11.41	12.27	11.89	11.65
115	TC	115.0	98.0	84.2	120.0	103.8	93.4	122.6	109.8	102.8
	SHC	59.4	72.4	83.4	66.4	84.8	93.4	72.8	96.9	102.8
	kW	12.26	11.82	11.40	12.48	12.06	11.78	12.60	12.20	12.00

COOLING CAPACITIES (cont)

Tem	np (F)				Air Enteri	ng Evaporator -	— Cfm/BF			
	ntering		3000/0.095			4000/0.125			5000/0.15	
	denser				Air Enteri	ng Evaporator -	– Ewb (F)			
(E	idb)	72	67	62	72	67	62	72	67	62
75	TC	138.2	127.0	114.0	145.0	132.9	122.0	149.1	136.6	125.9
	SHC	68.0	84.1	99.1	74.5	95.1	114.7	81.1	106.3	125.3
	kW	8.37	8.07	7.80	8.57	8.24	7.95	8.72	8.36	8.07
85	TC	132.3	121.7	105.9	138.4	127.2	116.6	142.5	130.2	120.9
	SHC	65.5	81.9	95.5	72.4	93.3	112.2	78.9	103.6	120.8
	kW	8.92	8.63	8.35	9.15	8.81	8.52	9.29	8.92	8.65
95	TC	126.3	115.7	98.4	131.8	121.0	108.8	135.2	124.2	116.1
	SHC	63.3	79.8	91.6	70.3	91.4	107.8	76.2	101.9	116.0
	kW	9.54	9.24	8.91	9.75	9.42	9.11	9.87	9.55	9.28
105	TC	120.2	106.5	89.5	124.9	113.8	100.3	128.3	117.2	109.9
	SHC	61.5	76.2	86.7	68.1	89.3	100.3	74.4	100.1	109.9
	kW	10.23	9.87	9.51	10.40	10.06	9.78	10.52	10.19	9.99
115	TC	117.1	99.8	85.7	122.2	105.7	95.1	124.8	111.8	104.6
	SHC	60.5	73.7	84.9	67.6	86.3	95.1	74.1	98.6	104.6
	kW	10.51	10.13	9.77	10.70	10.34	10.10	10.80	10.46	10.29

Tem	p (F)					Air Er	tering Evap	orator — C	fm/BF				<u></u>
	ntering		3750/0.08			4500/0.09			5000/0.10			6250/0.12	
	lenser					Air Er	tering Evap	orator — Ev	wb (F)				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	175.6	162.2	149.2	181.0	167.5	154.2	182.9	170.2	156.4	187.2	174.7	161.6
	SHC	85.7	107.3	128.0	91.4	116.2	140.3	94.2	122.2	146.5	102.1	135.3	160.
	kW	11.16	10.85	10.57	11.32	11.00	10.69	11.37	11.07	10.73	11.49	11.19	10.8
85	TC	169.3	155.7	140.6	174.2	160.7	147.0	176.9	163.0	149.7	181.5	167.3	155.0
	SHC	83.9	104.8	124.0	89.6	113.9	137.0	92.7	119.7	143.6	100.9	133.4	155.0
	kW	12.15	11.78	11.42	12.31	11.94	11.58	12.39	12.01	11.63	12.53	12.14	11.82
95	TC	161.9	148.9	132.0	166.8	153.5	139.1	169.5	155.7	142.8	173.2	159.5	149.
	SHC	81.4	102.0	119.8	87.0	111.1	133.2	90.7	117.3	140.2	98.3	130.8	149.
	kW	13.12	12.72	12.28	13.30	12.89	12.46	13.40	12.97	12.56	13.54	13.11	12.7
05	TC	154.9	141.3	123.0	158.8	145.4	130.2	160.9	147.6	135.0	165.3	151.2	143.
	SHC	79.0	99.2	115.5	84.5	108.2	128.1	87.8	114.3	134.9	96.6	127.8	143.
	kW	14.16	13.66	13.17	14.31	13.82	13.35	14.38	13.91	13.48	14.58	14.07	13.7
15	TC	146.2	132.2	113.1	150.5	137.0	122.4	152.3	139.4	127.8	155.2	142.7	136.
	SHC	76.1	95.7	110.3	81.7	105.2	122.3	85.0	111.6	127.7	92.9	125.0	135.
	kW	15.09	14.57	14.07	15.30	14.76	14.25	15.37	14.87	14.43	15.49	15.02	14.7

580F151	(12 ¹ / ₂ TON	S)											
Tem	ıp (F)						ntering Evap	orator — C			,		
Air Ei	ntering		3750/0.08			4300/0.09			5000/0.11			6250/0.13	
	denser (db)							aporator —					
(=	ub)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	164.6	152.0	139.9	167.3	155.3	142.6	170.9	158.2	146.2	173.9	162.0	151.0
	SHC	81.3	101.9	121.7	84.5	108.1	130.0	88.9	115.9	139.8	96.7	128.7	150.8
	kW	10.24	9.96	9.71	10.31	10.05	9.78	10.42	10.12	9.84	10.50	10.23	9.95
85	TC	159.9	147.1	133.6	162.6	150.2	137.4	166.3	153.0	141.3	169.5	156.8	147.1
	SHC	79.7	99.9	119.1	83.1	106.3	128.0	88.3	114.1	137.7	96.1	127.4	146.9
	kW	11.38	11.05	10.82	11.45	11.14	10.87	11.58	11.20	10.97	11.66	11.32	11.08
95	TC	154.2	141.5	124.4	157.2	144.6	129.3	159.9	147.6	134.5	164.0	150.9	142.3
	SHC	77.9	98.0	114.8	81.8	104.5	124.1	86.3	112.5	133.8	94.4	125.8	142.2
	kW	12.59	12.26	11.95	12.68	12.36	12.04	12.75	12.44	12.15	12.88	12.54	12.31
105	TC	147.8	134.2	114.0	150.7	137.2	119.1	153.3	140.4	136.4	156.4	143.7	136.7
	SHC	75.4	95.2	109.5	79.6	101.9	118.2	84.4	110.6	126.5	92.2	124.0	136.6
	kW	13.84	13.48	13.12	13.92	13.58	13.24	14.01	13.69	13.37	14.06	13.80	13.58
115	TC	139.7	120.4	102.8	142.1	124.2	109.1	145.5	127.5	117.1	148.4	133.2	128.1
	SHC	72.5	89.8	102.6	76.7	97.0	109.1	82.1	105.7	116.6	90.4	120.1	128.0
	kW	15.03	14.70	14.34	15.12	14.80	15.24	15.24	14.90	14.65	15.35	15.04	14.86
125	TC	130.5	107.0	92.5	132.8	109.7	135.5	135.5	112.7	105.0	138.2	121.1	118.3
	SHC	69.8	84.4	92.4	73.7	91.5	99.2	79.0	99.9	104.9	87.7	114.6	118.3
	kW	16.32	15.91	15.67	16.43	16.00	15.79	16.52	16.11	15.97	16.59	16.21	16.10

Standard Ratings

LEGEND

BF — Edb — Ewb — kW — Ldb — Lwb — SHC — TC —

EUGENO

Bypass Factor
Entering Dry-Bulb
Entering Wet-Bulb
Compressor Motor Power Input
Leaving Dry-Bulb
Leaving Wet-Bulb
Sensible Heat Capacity (1000 Btuh) Gross
Total Capacity (1000 Btuh) Gross

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{\text{1.0}}$ 1.10 x cfm

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil ($\mathbf{h}_{\mathrm{lwb}}$)

 $h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4 F \cdot \cdot \cdot \cdot}$

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTER	RING A	R DRY	-BULB	TEMP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
\			Cori	ection	Factor	•
.05 .10 .20 .30	1.04 .98 .87 .76	2.07 1.96 1.74 1.53	3.11 2.94 2.62 2.29	4.14 3.92 3.49 3.05	5.18 4.90 4.36 3.82	Use formula shown below.

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS

580F036 (3 TON	IS) — STANI	OARD MOTO	R (DIRECT I	ORIVE)								
			Low	Speed					High	Speed		
Airflow (Cfm)		208 V		2:	30, 460, 575	٧		208 V		2	30, 460, 575	٧
(OIIII)	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts
900	0.49	0.21	253	0.50	0.23	277	0.51	0.26	307	0.55	0.31	363
1000	0.42	0.23	270	0.43	0.25	292	0.43	0.27	321	0.51	0.32	374
1100	0.37 0.24 287			0.38	0.26	307	0.39	0.28	335	0.46	0.33	385
1200	0.33	0.26	304	0.33	0.27	323	0.34	0.29	349	0.40	0.34	397
1300	0.27	0.27	321	0.28	0.29	338	0.28	0.31	364	0.34	0.34	408
1400	0.20	0.29	338	0.23	0.30	354	0.25	0.32	378	_	_	_
1500	0.16	0.30	355	0.18	0.31	369	0.20	0.33	392	_	_	_

LEGEND

See page 74 for general fan performance notes.

Brake Horsepower Input to Fan External Static Pressure (in. wg) Bhp ESP

580F036 (3 TON	IS) — ALT	ERNATE	MOTOR (E	BELT DRI	√E)*										
						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp Watts Rpm Bhp Watts Rpm Bhp Watts Rpm Bhp Watts Rpm Bhp Watts													
900 1000	643 683	0.15 0.19	152 191	768 804	0.22 0.27	222 268	870 904	0.30 0.35	296 348	958 991	0.37 0.43	373 430	1037 1069	0.46 0.52	454 517
1100 1200 1300	725 767 811	0.24 0.29 0.35	237 291 352	842 880 920	0.32 0.38 0.45	321 382 451	939 976 1013	0.41 0.48 0.55	407 474 550	1025 1060 1095	0.50 0.57 0.66	496 570 652	1102 1136 1170	0.59 0.67 0.76	588 668 756
1400 1400 1500	855 900	0.35 0.43 0.51	423 504	960 1002	0.45 0.53 0.62	529 617	1013 1051 1090	0.64 0.74	636 731	1132 1169	0.75 0.85	744 846	1205 1242	0.76 0.86 0.97	855 963

580F036 (3 TO	NS) — ALT	ERNATE	MOTOR (E	BELT DRIV	/E)* (con	t)									
				_		E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm														
900 1000 1100	1110 1141 1173	0.54 0.61 0.69	538 607 683	1177 1207 1238	0.63 0.70 0.79	627 700 781	1239 1269 1300	0.72 0.80 0.89	718 796 883	1298 1328 1358	0.82 0.90 0.99	813 895 987	1355 1384 1414	0.92 1.00 1.10	911 998 1094
1200 1300 1400	1205 1239 1273	0.77 0.87 0.97	768 863 967	1270 1303 1337	0.88 0.98 1.09	872 972 1082	1332 1364 —	0.98 1.09 —	979 1084 —	1389 — —	1.09 — —	1088 — —	_ _ _		
1500	1309	1.09	1082	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 1.20.
 3. See page 74 for general fan performance notes.

*Motor drive range: 685 to 1	045 rpm. All other rpms require a field-suppl	ied drive.

580F036 (3 TON	IS) — HIG	H-STATIC	MOTOR (BELT DR	IVE)*										
				_		E	xternal St	atic Pres	sure (in. w	g)			_		
Airflow (Cfm)		0.2													
(5)	Rpm														
900 1000 1100 1200 1300 1400 1500	643 683 725 767 811 855 900	0.15 0.19 0.24 0.29 0.35 0.43 0.51	152 191 237 291 352 423 504	768 804 842 880 920 960 1002	0.22 0.27 0.32 0.38 0.45 0.53 0.62	222 268 321 382 451 529 617	870 904 939 976 1013 1051 1090	0.30 0.35 0.41 0.48 0.55 0.64 0.74	296 348 407 474 550 636 731	958 991 1025 1060 1095 1132 1169	0.37 0.43 0.50 0.57 0.66 0.75 0.85	373 430 496 570 652 744 846	1037 1069 1102 1136 1170 1205 1242	0.46 0.52 0.59 0.67 0.76 0.86 0.97	454 517 588 668 756 855 963

						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1110	0.54	538	1177	0.63	627	1239	0.72	718	1298	0.82	813	1355	0.92	911
1000	1141	0.61	607	1207	0.70	700	1269	0.80	796	1328	0.90	895	1384	1.00	998
1100	1173	0.69	683	1238	0.79	781	1300	0.89	883	1358	0.99	987	1414	1.10	1094
1200	1205	0.77	768	1270	0.88	872	1332	0.98	979	1389	1.09	1088	1444	1.21	1200
1300	1239	0.87	863	1303	0.98	972	1364	1.09	1084	1421	1.21	1199	1475	1.32	1316
1400	1273	0.97	967	1337	1.09	1082	1397	1.21	1200	1453	1.33	1320	1507	1.45	1443
1500	1309	1.09	1082	1371	1.21	1204	1430	1.33	1327	1486	1.46	1453	1540	1.59	1581

LEGEND

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for general fan performance notes.

^{*}Motor drive range: 1075 to 1455 rpm. All other rpms require a field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F048 (4 TON	S) — STAND	OARD MOTO	R (DIRECT I	DRIVE)								
A 1 . 61 .			Low S	Speed					High	Speed		
Airflow (Cfm)		208 V		2:	30, 460, 575	V		208 V		2	30, 460, 575	V
(61111)	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts
1200	0.68	0.41	458	0.74	0.45	506	0.74	0.51	572	0.85	0.56	632
1300	0.61	0.42	471	0.67	0.46	521	0.66	0.52	589	0.78	0.58	651
1400	0.53	0.45	503	0.59	0.49	556	0.59	0.54	616	0.70	0.60	681
1500	0.53 0.45 503 0.45 0.47 536			0.51	0.52	593	0.52	0.56	631	0.63	0.62	698
1600	0.36	0.49	557	0.42	0.54	616	0.45	0.58	654	0.56	0.64	723
1700	0.26	0.52	584	0.32	0.57	646	0.37	0.60	678	0.48	0.66	750
1800	0.15	0.54	610	0.22	0.60	674	0.30	0.62	698	0.41	0.68	772
1900	0.04	0.56	629	0.11	0.62	696	0.23	0.64	720	0.34	0.70	796
2000	_	_	_	_	_	_	0.16	0.66	744	0.26	0.73	823

LEGEND

See page 74 for general fan performance notes.

Brake Horsepower Input to Fan External Static Pressure (in. wg)

A ! £1						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960
1600	810	0.49	491	909	0.65	643	994	0.79	790	1070	0.94	932	1140	1.08	1070
1700	847	0.57	567	943	0.73	730	1027	0.89	888	1101	1.05	1040	1170	1.20	1189
1800	885	0.66	652	978	0.83	826	1060	1.00	994	1133	1.16	1157	_	_	_
1900	923	0.75	745	1014	0.94	930	1093	1.11	1109	_	_	_	_	_	_
2000	962	0.85	847	1049	1.05	1043	_	l —	_	_	_	_	_	_	_

4						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	_	_	_
1400	1147	0.98	972	1208	1.09	1086		_	_	_	_	_	_	_	_
1500	1175	1.09	1086	_	_	_	_	_	_	_	_	_	_	_	_
1600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Brake Horsepower Input to FanInput Watts to Motor

*Motor drive range: 770 to 1175 rpm. All other rpms require a field-supplied drive.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.
 See page 74 for general fan performance notes.

580F048 (4 TON	IS) — HIG	H-STATIO	C MOTOR (BELT DR	IVE)*										
A1.01.						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960
1600	810	0.49	491	909	0.65	643	994	0.79	790	1070	0.94	932	1140	1.08	1070
1700	847	0.57	567	943	0.73	730	1027	0.89	888	1101	1.05	1040	1170	1.20	1189
1800	885	0.66	652	978	0.83	826	1060	1.00	994	1133	1.16	1157	1200	1.32	1316
1900	923	0.75	745	1014	0.94	930	1093	1.11	1109	1165	1.29	1283	1231	1.46	1453
2000	962	0.85	847	1049	1.05	1043	1127	1.24	1233	1198	1.42	1417	1263	1.61	1598

A ! £1						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	1346	1.28	1275
1400	1147	0.98	972	1208	1.09	1086	1265	1.21	1199	1320	1.32	1310	1371	1.43	1419
1500	1175	1.09	1086	1235	1.22	1209	1292	1.34	1332	1346	1.46	1452	1397	1.58	1572
1600	1204	1.21	1207	1263	1.35	1340	1320	1.48	1472	1373	1.61	1603	1424	1.74	1732
1700	1233	1.34	1336	1292	1.49	1480	1348	1.63	1622	1401	1.77	1762	1451	1.91	1901
1800	1262	1.48	1473	1321	1.64	1627	1376	1.79	1779	1428	1.94	1930	1479	2.09	2078
1900	1293	1.63	1620	1350	1.79	1784	1405	1.96	1946	1457	2.12	2106	1506	2.28	2265
2000	1323	1.79	1776	1380	1.96	1950	1434	2.13	2123	1486	2.31	2293	_	_	_

Brake Horsepower Input to FanInput Watts to Motor

Bhp Watts

*Motor drive range: 1075 to 1455 rpm. All other rpms require a field-supplied drive.

NOTES:

Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.
 See page 74 for general fan performance notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F060 (5	TONS)	— STAN	IDARD N	IOTOR (I	DIRECT	DRIVE)												
			Low S	Speed					Medium	Speed					High S	Speed		
Airflow (Cfm)		208 V		23	0,460,57	5 V		208 V		23	0,460,57	5 V		208 V		23	0,460,57	5 V
(01111)	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts
1500	0.69	0.67	750	1.01	0.71	791	1.00	0.70	782	1.20	0.76	845	1.22	0.79	875	1.28	0.85	949
1600	0.49	0.70	780	0.85	0.74	824	0.85	0.74	821	1.06	0.79	883	1.09	0.82	913	1.17	0.89	988
1700	0.29	0.73	810	0.70	0.77	857	0.70	0.77	861	0.93	0.83	921	0.97	0.85	950	1.06	0.92	1027
1800	0.09	0.75	839	0.54	0.80	891	0.55	0.81	900	0.80	0.86	959	0.84	0.89	988	0.95	0.96	1066
1900	_	_	_	0.39	0.83	924	0.40	0.84	940	0.67	0.90	997	0.72	0.92	1025	0.84	0.99	1105
2000	_	_	_	0.23	0.86	957	0.25	0.88	979	0.54	0.93	1035	0.59	0.95	1063	0.73	1.03	1144
2100	_	_	_	0.08	0.89	990	0.10	0.91	1018	0.41	0.96	1073	0.46	0.99	1101	0.62	1.06	1183
2200	_	_	_	_	_	_	_	_	_	0.28	1.00	1111	0.34	1.02	1138	0.51	1.10	1222
2300	_	_	_	_	_	_	_	_	_	0.15	1.03	1149	0.21	1.06	1176	0.40	1.13	1261
2400	_	_	_	_	_	_	_	_	_	0.02	1.07	1187	0.09	1.09	1213	0.29	1.17	1300
2500	_		_	_	-	_	_	_	_	_		_	_	-	_	0.18	1.20	1340

LEGEND

See page 74 for general fan performance notes.

Bhp ESP Brake Horsepower Input to Fan
 External Static Pressure (in. wg)

						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	802	0.42	370	912	0.55	489	1006	0.70	624	1088	0.87	773	1163	1.05	935
1600	840	0.49	432	947	0.63	557	1038	0.78	696	1119	0.95	848	1193	1.14	1013
1700	878	0.57	502	982	0.71	632	1071	0.87	776	1151	1.05	932	1224	1.24	1100
1800	917	0.65	581	1017	0.81	716	1105	0.97	864	1183	1.15	1024	1255	1.35	1197
1900	956	0.75	668	1053	0.91	808	1139	1.08	961	1216	1.27	1126	1287	1.47	1302
2000	995	0.86	764	1090	1.02	910	1173	1.20	1067	1249	1.39	1236	1319	1.59	1416
2100	1035	0.98	869	1127	1.15	1021	1209	1.33	1183	1283	1.53	1357	1351	1.74	1541
2200	1075	1.11	984	1164	1.29	1141	1244	1.47	1309	1317	1.68	1488	1385	1.89	1676
2300	1115	1.25	1110	1202	1.43	1273	1280	1.63	1446	1352	1.83	1629	1418	2.05	1822
2400	1155	1.40	1246	1240	1.59	1415	1316	1.79	1594	1387	2.01	1782	1452	2.23	1980
2500	1196	1.57	1394	1278	1.77	1569	1353	1.97	1753	1422	2.19	1946	_	_	_

580F060 (5 TO	NS) — THE	REE-PHA	SE, ALTER	NATE MC	TOR (BE	LT DRIVE)	* (cont)								
						Е	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1232	1.25	1109	1297	1.46	1295	1357	1.68	1492	1415	1.91	1700	1469	2.16	1917
1600	1262	1.34	1190	1325	1.55	1379	1385	1.78	1579	1442	2.01	1788	1496	2.26	2009
1700	1291	1.44	1281	1354	1.66	1472	1414	1.89	1674	1470	2.12	1887	1524	2.37	2109
1800	1322	1.55	1380	1384	1.77	1575	1443	2.00	1779	1499	2.25	1994	_	_	_
1900	1352	1.68	1489	1414	1.90	1687	1472	2.13	1894	1528	2.38	2112	_	_	_
2000	1384	1.81	1607	1445	2.04	1808	1502	2.27	2019	_	_	_	_	_	_
2100	1415	1.95	1736	1476	2.18	1940	_	_	_	_	_	_	_	_	_
2200	1448	2.11	1875	1507	2.35	2083	_	_	_	_	_	_	_	_	_
2300	1480	2.28	2025	_	_	_	_	_	_	_	_	_	_	_	_
2400	I —	_	_	l —	_	_	_	_	_	_	_	<u> </u>	_	_	_
2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 900 to 1300 rpm. All other rpms require a field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for general fan performance notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F060 (5 TON	S) — HIG	H-STATIO	MOTOR (BELT DR	IVE)*										
						Е	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2100 2200 2300 2400 2500	802 840 878 917 956 995 1035 1075 1115 1155 1196	0.42 0.49 0.57 0.65 0.75 0.86 0.98 1.11 1.25 1.40	370 432 502 581 668 764 869 984 1110 1246 1394	912 947 982 1017 1053 1090 1127 1164 1202 1240 1278	0.55 0.63 0.71 0.81 0.91 1.02 1.15 1.29 1.43 1.59	489 557 632 716 808 910 1021 1141 1273 1415	1006 1038 1071 1105 1139 1173 1209 1244 1280 1316 1353	0.70 0.78 0.87 0.97 1.08 1.20 1.33 1.47 1.63 1.79	624 696 776 864 961 1067 1183 1309 1446 1594	1088 1119 1151 1183 1216 1249 1283 1317 1352 1387 1422	0.87 0.95 1.05 1.15 1.27 1.39 1.53 1.68 1.83 2.01 2.19	773 848 932 1024 1126 1236 1357 1488 1629 1782 1946	1163 1193 1224 1255 1287 1319 1351 1385 1418 1452 1486	1.05 1.14 1.24 1.35 1.47 1.59 1.74 1.89 2.05 2.23 2.42	935 1013 1100 1197 1302 1416 1541 1676 1822 1980 2149

						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1232	1.25	1109	1297	1.46	1295	1357	1.68	1492	1415	1.91	1700	1469	2.16	1917
1600	1262	1.34	1190	1325	1.55	1379	1385	1.78	1579	1442	2.01	1788	1496	2.26	2009
1700	1291	1.44	1281	1354	1.66	1472	1414	1.89	1674	1470	2.12	1887	1524	2.37	2109
1800	1322	1.55	1380	1384	1.77	1575	1443	2.00	1779	1499	2.25	1994	1552	2.50	2219
1900	1352	1.68	1489	1414	1.90	1687	1472	2.13	1894	1528	2.38	2112	1580	2.63	2339
2000	1384	1.81	1607	1445	2.04	1808	1502	2.27	2019	1557	2.52	2240	1609	2.78	2470
2100	1415	1.95	1736	1476	2.18	1940	1533	2.43	2155	1587	2.68	2378	_	_	ı —
2200	1448	2.11	1875	1507	2.35	2083	1563	2.59	2301	1617	2.85	2528	_	_	_
2300	1480	2.28	2025	1539	2.52	2237	1595	2.77	2459	_	_	_	_	_	_
2400	1513	2.46	2187	1571	2.71	2403	_	_	_	_	_	_	_	_	_
2500	1547	2.66	2360	_	l —	_	l —	_	_	_	_	_	_	l —	i —

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{\star}\text{Motor}$ drive range: 1300 to 1685 rpm. All other rpms require a field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.
 3. See page 74 for general fan performance notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F072,073 (6	TONS) —	STANDA	RD MOTO	R (BELT D	RIVE)*										
				_		E	xternal St	atic Pres	sure (in. w	g)			_		
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	967	0.65	579	1077	0.81	718	1172	0.96	856	1257	1.12	993	1334	1.27	1130
1900	1007	0.75	663	1115	0.91	811	1208	1.08	957	1291	1.24	1101	1368	1.40	1246
2000	1048	0.85	757	1153	1.03	913	1244	1.20	1066	1326	1.37	1219	1401	1.54	1371
2100	1090	0.97	859	1191	1.15	1023	1281	1.33	1185	1361	1.51	1345	1435	1.69	1505
2200	1131	1.09	970	1230	1.29	1143	1318	1.48	1313	1397	1.67	1481	1470	1.86	1649
2300	1173	1.23	1091	1269	1.43	1273	1355	1.63	1451	1433	1.83	1627	1505	2.03	1803
2400	1215	1.38	1223	1309	1.59	1413	1393	1.80	1600	1470	2.01	1784	1540	2.21	1967
2500	1258	1.54	1365	1349	1.76	1564	1431	1.98	1759	1506	2.20	1951	_	_	_
2600	1300	1.71	1518	1389	1.94	1726	1470	2.17	1929	1544	2.40	2130	_	_	_
2700	1343	1.90	1683	1430	2.14	1899	1509	2.38	2111	_	_	_	_	_	_
2800	1386	2.09	1860	1471	2.35	2085	_	_	_	_	_	_	_	_	_
2900	1429	2.31	2050	l —	l —	_	_	_	_	_	_	_	_	_	_
3000		_		_	_	_	_	_	_	_	_	_	_	_	_

580F072,073 (6	TONS) —	STANDA	RD MOTO	R (BELT D	ORIVE)* (cont)									
						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1406	1.43	1268	1473	1.58	1407	1535	1.74	1548	1595	1.90	1690	1652	2.06	1833
1900	1438	1.57	1391	1504	1.73	1537	1567	1.90	1685	1626	2.06	1833	1682	2.23	1983
2000	1471	1.72	1523	1536	1.89	1677	1598	2.06	1831	1657	2.24	1986	_	_	_
2100	1504	1.87	1665	1569	2.06	1825	1630	2.24	1986	_	_	_	_	_	_
2200	1538	2.04	1816	1602	2.23	1984	_	_	_	_	_	_	_	_	_
2300	1572	2.23	1978	_	_	_	_	_	_	_	_	_	_	_	_
2400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2700	_	_	_	_	_	_	_	l —	_	_	_	_	_	_	_
2800	I —	_	_	_	_	_	_	_	_	_	l —	_	_	_	_
2900	_	_	_	_	_	_	_	l —	_	_	_	_	_	_	_
3000	1 —	_	_	_	_	_	_	l —	_	_	l —	_	_	l —	<u> </u>

LEGEND

Brake Horsepower Input to FanInput Watts to Motor Bhp

*Motor drive range: 1070 to 1460 rpm. All other rpms require a field-supplied drive.

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for general fan performance notes.

580F072,073 (6	TONS) —	HIGH-ST	ATIC MOT	OR (BELT	DRIVE)*										
						Е	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800 1900 2000 2100 2200 2300 2400	967 1007 1048 1090 1131 1173 1215	0.65 0.75 0.85 0.97 1.09 1.23 1.38	579 663 757 859 970 1091 1223	1077 1115 1153 1191 1230 1269 1309	0.81 0.91 1.03 1.15 1.29 1.43	718 811 913 1023 1143 1273 1413	1172 1208 1244 1281 1318 1355 1393	0.96 1.08 1.20 1.33 1.48 1.63 1.80	856 957 1066 1185 1313 1451 1600	1257 1291 1326 1361 1397 1433 1470	1.12 1.24 1.37 1.51 1.67 1.83 2.01	993 1101 1219 1345 1481 1627 1784	1334 1368 1401 1435 1470 1505 1540	1.27 1.40 1.54 1.69 1.86 2.03 2.21	1130 1246 1371 1505 1649 1803 1967
2500 2600 2700 2800 2900	1258 1300 1343 1386 1429	1.54 1.71 1.90 2.09 2.31	1365 1518 1683 1860 2050	1349 1389 1430 1471 1512	1.76 1.94 2.14 2.35 2.57	1564 1726 1899 2085 2283	1431 1470 1509 1548 1588	1.98 2.17 2.38 2.60 2.83	1759 1929 2111 2305 2512	1506 1544 1581 1619	2.20 2.40 2.61 2.84	1951 2130 2320 2522 —	1576 1613 1649 —	2.41 2.62 2.85 —	2142 2329 2527 —
3000	1473	2.54	2252	1553	2.81	2494	_	_		_	_	_	_	_	_

						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1406	1.43	1268	1473	1.58	1407	1535	1.74	1548	1595	1.90	1690	1652	2.06	1833
1900	1438	1.57	1391	1504	1.73	1537	1567	1.90	1685	1626	2.06	1833	1682	2.23	1983
2000	1471	1.72	1523	1536	1.89	1677	1598	2.06	1831	1657	2.24	1986	1713	2.41	2142
2100	1504	1.87	1665	1569	2.06	1825	1630	2.24	1986	1688	2.42	2149	1744	2.60	2312
2200	1538	2.04	1816	1602	2.23	1984	1663	2.42	2152	1720	2.61	2321	1775	2.81	2491
2300	1572	2.23	1978	1635	2.42	2153	1695	2.62	2328	1753	2.82	2504	_	_	
2400	1607	2.42	2150	1669	2.63	2332	1729	2.83	2515	_	_	_	_	_	
2500	1642	2.63	2333	1704	2.84	2523	_	_	_	_	_	_	_	_	_
2600	1677	2.85	2527	_	_	_	_	_	_	_	_	_	_	_	_
2700	I —	_	_	_	_	_	l —	_	_	_	_	_	_	_	_
2800	I —	_	_	_	_	_	l —	_	_	_	_	_	_	_	_
2900	I —	_	_	_	_	_	l —	_	_	_	_	_	_	_	_
3000	I —	_	l —	l —	_	_	_	_	_			_	<u> </u>	_	_

LEGEND

Brake Horsepower Input to FanInput Watts to Motor Bhp Watts

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.
 3. See page 74 for general fan performance notes.

^{*}Motor drive range: 1300 to 1685 rpm. All other rpms require a field-supplied

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F090,091 (71/ ₂ TONS	S) — STA	NDARD N	IOTOR (I	BELT DR	IVE)*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	513	0.54	505	595	0.76	713	665	1.01	940	728	1.27	1187	786	1.56	1453
2300	521	0.57	531	601	0.79	741	671	1.04	972	734	1.31	1222	791	1.60	1489
2400	535	0.63	584	615	0.86	802	684	1.11	1038	745	1.39	1293	802	1.68	1566
2500	551	0.69	642	628	0.93	866	696	1.19	1109	757	1.47	1369	813	1.77	1647
2550	558	0.72	673	635	0.97	900	702	1.23	1146	763	1.51	1409	818	1.81	1689
2600	566	0.76	705	642	1.00	935	709	1.27	1183	769	1.55	1450	824	1.86	1732
2700	582	0.83	771	656	1.08	1008	721	1.35	1263	781	1.65	1535	835	1.95	1823
2800	597	0.90	842	670	1.16	1086	734	1.44	1347	793	1.74	1625	847	2.06	1917
2900	613	0.98	918	684	1.25	1169	748	1.54	1436	805	1.84	1720	859	2.16	2019
3000	629	1.07	999	699	1.35	1256	761	1.64	1530	818	1.95	1820	871	2.28	2125
3100	645	1.16	1085	713	1.45	1349	775	1.75	1630	831	2.06	1925	883	2.40	2235
3200	662	1.26	1176	728	1.55	1448	788	1.86	1734	844	2.18	2036	_	_	_
3300	678	1.36	1272	743	1.66	1551	802	1.98	1845	857	2.31	2152	_	_	_
3400	694	1.47	1374	758	1.78	1660	816	2.10	1961	_	_	_	l —	_	_
3500	711	1.59	1482	773	1.90	1775	831	2.23	2082	_	_	_	_	_	_
3600	727	1.71	1596	789	2.03	1896	845	2.37	2210	_	_	_	l —	_	_
3700	744	1.84	1716	804	2.17	2023	_	_	_	_	_	_	_	_	_
3750	752	1.91	1778	812	2.24	2089	_	_	_	_	_	_	_	_	_

580F090,091 (71/ ₂ TONS	S) — STA	NDARD N	OTOR (E	BELT DR	IVE)* (con	t)								
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Omi)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	839	1.86	1735	889	2.18	2032	_	_	_	_	_	_	_	_	_
2300	844	1.90	1773	893	2.22	2073	_	_	_	_	_	_	_	_	_
2400	854	1.99	1855	903	2.32	2159	_	_	_	_	_		_	_	_
2500	865	2.08	1940	_	_	_	_	_	_	_	_	_	_	_	_
2550	870	2.13	1985	_	_	_	_	_	_	_	_	_	_	_	_
2600	875	2.18	2031	_	_	_	_	_	_	_	_		_	_	_
2700	886	2.28	2126	_	_	_	_	_	_	_	_	_	_	_	_
2800	897	2.39	2227	_	_	_	_	_	_	_	_		_	_	_
2900	_	_		_	_	_	_	_	_	_	_		_	_	_
3000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3100	_	_		_	_	_	_	_	_	_	_		_	_	_
3200	_	_		_	_	_	_	_	_	_	_		_	_	_
3300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3600	_	_	_	_	_	_	_	_	_	_	_		_	_	_
3700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3750	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for General Fan Performance Notes.

^{*}Motor drive range: 590 to 840 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(5111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	513	0.54	505	595	0.76	713	665	1.01	940	728	1.27	1187	786	1.56	1453
2300	521	0.57	531	601	0.79	741	671	1.04	972	734	1.31	1222	791	1.60	1489
2400	535	0.63	584	615	0.86	802	684	1.11	1038	745	1.39	1293	802	1.68	1566
2500	551	0.69	642	628	0.93	866	696	1.19	1109	757	1.47	1369	813	1.77	1647
2550	558	0.72	673	635	0.97	900	702	1.23	1146	763	1.51	1409	818	1.81	1689
2600	566	0.76	705	642	1.00	935	709	1.27	1183	769	1.55	1450	824	1.86	1732
2700	582	0.83	771	656	1.08	1008	721	1.35	1263	781	1.65	1535	835	1.95	1823
2800	597	0.90	842	670	1.16	1086	734	1.44	1347	793	1.74	1625	847	2.06	1917
2900	613	0.98	918	684	1.25	1169	748	1.54	1436	805	1.84	1720	859	2.16	2019
3000	629	1.07	999	699	1.35	1256	761	1.64	1530	818	1.95	1820	871	2.28	2125
3100	645	1.16	1085	713	1.45	1349	775	1.75	1630	831	2.06	1925	883	2.40	2235
3200	662	1.26	1176	728	1.55	1448	788	1.86	1734	844	2.18	2036	_	_	_
3300	678	1.36	1272	743	1.66	1551	802	1.98	1845	857	2.31	2152	_	_	_
3400	694	1.47	1374	758	1.78	1660	816	2.10	1961	_	_	_	_	_	_
3500	711	1.59	1482	773	1.90	1775	831	2.23	2082	_	_	_			_
3600	727	1.71	1596	789	2.03	1896	845	2.37	2210	_	_	_	_	_	_
3700	744	1.84	1716	804	2.17	2023	_	_	_	_	_	_	_	_	_
3750	752	1.91	1778	812	2.24	2089	_	_	_	_	_	_	_	l —	_

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	839	1.86	1735	889	2.18	2032	_	_	_	_	_	_	_	_	_
2300	844	1.90	1773	893	2.22	2073	_	_	_	_	_		_	_	_
2400	854	1.99	1855	903	2.32	2159	_	_	_	_	_	_	_	_	_
2500	865	2.08	1940	_	_	_	_	_	_	_	_	_	_	_	_
2550	870	2.13	1985	_	_	_	_	_	_	_	_	_	_	_	_
2600	875	2.18	2031	_	_	_	_	_	_	_	_	_	_	_	_
2700	886	2.28	2126	_	_	_	_	_	_	_	_	_	_	_	_
2800	897	2.39	2227	_	_	_	_	_	_	_	_	_	_	_	_
2900	_		_	_	_	_	_		_	_	_			_	_
3000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3100	_		_	_	_	_	_		_	_	_			_	_
3200	_	_	_	_	_	_	_	_	_	_	_		_	_	_
3300	_		_	_	_	_	_		_	_	_			_	_
3400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3500	_	_	_	_	_	_	_	_	_	_	_		_	_	_
3600	_	_	_	_	_	_	_	_	_	_	_		_	_	_
3700	l —	_	_	_	_	_	l —	_	_	_	_		_	_	_
3750	I —	_	_	_	_	_	_	_	_	_	_		_	_	_

LEGEND

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for General Fan Performance Notes.

^{*}Motor drive range: 685 to 935 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F090,091	(71/ ₂ TONS	S) — HIG	H-STATIC	MOTOR	(BELT D	RIVE)*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	513	0.54	505	595	0.76	713	665	1.01	940	728	1.27	1187	786	1.56	1453
2300	521	0.57	531	601	0.79	741	671	1.04	972	734	1.31	1222	791	1.60	1489
2400	535	0.63	584	615	0.86	802	684	1.11	1038	745	1.39	1293	802	1.68	1566
2500	551	0.69	642	628	0.93	866	696	1.19	1109	757	1.47	1369	813	1.77	1647
2550	558	0.72	673	635	0.97	900	702	1.23	1146	763	1.51	1409	818	1.81	1689
2600	566	0.76	705	642	1.00	935	709	1.27	1183	769	1.55	1450	824	1.86	1732
2700	582	0.83	771	656	1.08	1008	721	1.35	1263	781	1.65	1535	835	1.95	1823
2800	597	0.90	842	670	1.16	1086	734	1.44	1347	793	1.74	1625	847	2.06	1917
2900	613	0.98	918	684	1.25	1169	748	1.54	1436	805	1.84	1720	859	2.16	2019
3000	629	1.07	999	699	1.35	1256	761	1.64	1530	818	1.95	1820	871	2.28	2125
3100	645	1.16	1085	713	1.45	1349	775	1.75	1630	831	2.06	1925	883	2.40	2235
3200	662	1.26	1176	728	1.55	1448	788	1.86	1734	844	2.18	2036	895	2.52	2352
3300	678	1.36	1272	743	1.66	1551	802	1.98	1845	857	2.31	2152	908	2.65	2475
3400	694	1.47	1374	758	1.78	1660	816	2.10	1961	870	2.44	2275	920	2.79	2603
3500	711	1.59	1482	773	1.90	1775	831	2.23	2082	884	2.58	2402	933	2.93	2737
3600	727	1.71	1596	789	2.03	1896	845	2.37	2210	897	2.72	2537	946	3.09	2877
3700	744	1.84	1716	804	2.17	2023	860	2.51	2343	911	2.87	2677	959	3.24	3023
3750	752	1.91	1778	812	2.24	2089	867	2.59	2413	918	2.95	2750	966	3.32	3100

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	839	1.86	1735	889	2.18	2032	935	2.52	2345	980	2.87	2673	1022	3.23	3015
2300	844	1.90	1773	893	2.22	2073	940	2.56	2389	984	2.91	2718	1027	3.28	3062
2400	854	1.99	1855	903	2.32	2159	950	2.66	2478	993	3.02	2812	1035	3.39	3159
2500	865	2.08	1940	913	2.41	2249	959	2.76	2573	1003	3.12	2911	1044	3.50	3261
2550	870	2.13	1985	918	2.46	2296	964	2.81	2622	1008	3.18	2962	1049	3.55	3315
2600	875	2.18	2031	923	2.51	2344	969	2.87	2673	1012	3.23	3014	1054	3.61	3370
2700	886	2.28	2126	934	2.62	2445	979	2.98	2777	1022	3.35	3123	_	_	_
2800	897	2.39	2227	944	2.73	2550	989	3.10	2888	1032	3.47	3238	_	_	_
2900	908	2.50	2333	955	2.85	2661	1000	3.22	3003	1042	3.60	3358	_	_	_
3000	920	2.62	2443	966	2.98	2777	1010	3.35	3123	_	_	_	_	_	_
3100	931	2.75	2560	977	3.11	2899	1021	3.49	3250	_	_		_	_	_
3200	943	2.88	2682	989	3.25	3026	1032	3.63	3383	_	_		_	_	_
3300	955	3.01	2810	1000	3.39	3159	_	_	_	_	_		_	_	_
3400	967	3.16	2945	1012	3.54	3299	_	_	_	_	_		_	_	_
3500	980	3.31	3084	1024	3.69	3445	_	_	_	_	_	_	_	_	_
3600	992	3.46	3230	_	_	_	_	_	_	_	_		_	_	_
3700	1005	3.63	3383	_		_	_	_	_	_	_	_	_	_	
3750	_	_	_	_	_	_	l _	_	_	_	_		_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 3.70.
 3. See page 74 for General Fan Performance Notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watt
2550	558	0.72	673	635	0.97	900	702	1.23	1146	763	1.51	1409	818	1.81	1689
2600	566	0.76	705	642	1.00	935	709	1.27	1183	769	1.55	1450	824	1.86	173
2700	582	0.83	771	656	1.08	1008	721	1.35	1263	781	1.65	1535	835	1.95	182
2800	597	0.90	842	670	1.16	1086	734	1.44	1347	793	1.74	1625	847	2.06	191
2900	613	0.98	918	684	1.25	1169	748	1.54	1436	805	1.84	1720	859	2.16	201
3000	629	1.07	999	699	1.35	1256	761	1.64	1530	818	1.95	1820	871	2.28	212
3100	645	1.16	1085	713	1.45	1349	775	1.75	1630	831	2.06	1925	883	2.40	223
3200	662	1.26	1176	728	1.55	1448	788	1.86	1734	844	2.18	2036	_	_	l _
3300	678	1.36	1272	743	1.66	1551	802	1.98	1845	857	2.31	2152	! <u> </u>	_	l —
3400	694	1.47	1374	758	1.78	1660	816	2.10	1961	_		' — '	! <u> </u>	_	l —
3500	711	1.59	1482	773	1.90	1775	831	2.23	2082	_		¹ — ı	· _	_	٠ _
3600	727	1.71	1596	789	2.03	1896	845	2.37	2210	_	_	' — '	' — I	_	
3700	744	1.84	1716	804	2.17	2023	_		l — l	_	_	' — '	' — I	_	_
3750	752	1.91	1778	812	2.24	2089	_	' _	· —	_		¹ — ı	· _	_	l —
3800	761	1.98	1842	820	2.31	2156	_	' _	· —	_		¹ — ı	· _	_	l —
3900	777	2.12	1974	_		' — ·	_	_	! <u> </u>	_		' — :	l — I	_	_
4000	794	2.27	2113	_	_	_	_	' _	· —	_		¹ — ı	· _	_	l —
4100	_		' — '	_	_	_	l — I	' _	· —	_		¹ — ı	· _	_	_
4200	_	_	' — ۱		_	¹ — ı	l _ l	' _	· _	_	_	' — ı	۱ _ ۱	_	١
4250	1 — 1	_	' — ۱			' — '	_	! <u> </u>	· _			' — '	! <u> </u>	_	_

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2550	870	2.13	1985	_	_	_	_	_	_	_	_	_	_	_	_
2600	875	2.18	2031	_	_	_	_	_	_	_	_	_	_	_	I —
2700	886	2.28	2126	_	_	_	_	_	_	_	_	_	_	_	_
2800	897	2.39	2227	_	_	_	_	_	_	_	_	_	_	_	_
2900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3000	_	_	_		_	_		_			_			_	I —
3100	_	_	_		_	_		_			_			_	_
3200	_	_	_		_	_		_			_			_	_
3300	_	_	_		_	_		_			_			_	I —
3400	_		_	_		_	_	_		_	_		_		i —
3500	_	_	_	_	_	_	_	_		_	_		_	_	_
3600	_	_	_	_		_	_			_			_		_
3700	_	_	_	_		_	_			_			_		l —
3750	_	_	_	_	_	_	_	_	_	_	_	_	_	_	i —
3800	_	_	_	_	_	_	_	_	_	_	_		_	_	l —
3900	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	_
4000	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	_
4100	_	l _	_	l _	_	_	l _	l		l _	_		_	_	i —
4200	I _	_	_	_	_	_	_	_		_	_		l	_	l _
4250															i

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for General Fan Performance Notes.

 $^{^*\!}Motor$ drive range: 685 to 935 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2	_		0.4			0.6			0.8			1.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2550	558	0.72	673	635	0.97	900	702	1.23	1146	763	1.51	1409	818	1.81	1689
2600	566	0.76	705	642	1.00	935	709	1.27	1183	769	1.55	1450	824	1.86	1732
2700	582	0.83	771	656	1.08	1008	721	1.35	1263	781	1.65	1535	835	1.95	1823
2800	597	0.90	842	670	1.16	1086	734	1.44	1347	793	1.74	1625	847	2.06	1917
2900	613	0.98	918	684	1.25	1169	748	1.54	1436	805	1.84	1720	859	2.16	2019
3000	629	1.07	999	699	1.35	1256	761	1.64	1530	818	1.95	1820	871	2.28	2125
3100	645	1.16	1085	713	1.45	1349	775	1.75	1630	831	2.06	1925	883	2.40	2235
3200	662	1.26	1176	728	1.55	1448	788	1.86	1734	844	2.18	2036	895	2.52	2352
3300	678	1.36	1272	743	1.66	1551	802	1.98	1845	857	2.31	2152	908	2.65	2475
3400	694	1.47	1374	758	1.78	1660	816	2.10	1961	870	2.44	2275	920	2.79	2603
3500	711	1.59	1482	773	1.90	1775	831	2.23	2082	884	2.58	2402	933	2.93	2737
3600	727	1.71	1596	789	2.03	1896	845	2.37	2210	897	2.72	2537	946	3.09	2877
3700	744	1.84	1716	804	2.17	2023	860	2.51	2343	911	2.87	2677	959	3.24	3023
3750	752	1.91	1778	812	2.24	2089	867	2.59	2413	918	2.95	2750	966	3.32	3100
3800	761	1.98	1842	820	2.31	2156	874	2.66	2484	925	3.03	2824	973	3.41	3177
3900	777	2.12	1974	835	2.46	2296	889	2.82	2630	939	3.19	2977	986	3.58	3336
4000	794	2.27	2113	851	2.62	2442	904	2.99	2784	953	3.36	3137	_	_	_
4100	811	2.42	2259	867	2.78	2595	919	3.16	2944	968	3.54	3304	_	_	_
4200	828	2.59	2412	883	2.95	2755	934	3.34	3110	_	_	_	—	_	—
4250	837	2.67	2490	891	3.04	2838	942	3.43	3197		_	_	_	_	_

						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2550	870	2.13	1985	918	2.46	2296	964	2.81	2622	1008	3.18	2962	1049	3.55	3315
2600	875	2.18	2031	923	2.51	2344	969	2.87	2673	1012	3.23	3014	1054	3.61	3370
2700	886	2.28	2126	934	2.62	2445	979	2.98	2777	1022	3.35	3123	_	_	<u> </u>
2800	897	2.39	2227	944	2.73	2550	989	3.10	2888	1032	3.47	3238	_	_	<u> </u>
2900	908	2.50	2333	955	2.85	2661	1000	3.22	3003	1042	3.60	3358	_	_	_
3000	920	2.62	2443	966	2.98	2777	1010	3.35	3123	_	_	_	_		l —
3100	931	2.75	2560	977	3.11	2899	1021	3.49	3250		_	_		_	l —
3200	943	2.88	2682	989	3.25	3026	1032	3.63	3383		_	_		_	l —
3300	955	3.01	2810	1000	3.39	3159	_	_	_		_	_		_	l —
3400	967	3.16	2945	1012	3.54	3299		_			_	_		_	l —
3500	980	3.31	3084	1024	3.69	3445	_	_	_	_	_	_	_	_	l —
3600	992	3.46	3230	_	_	_	_	_	_	_	_	_	_	_	l —
3700	1005	3.63	3383		_	_	_	_	_	_	_	_	_	_	l —
3750	_	_	_		_	_		_	_	_	_	_	_	_	l —
3800	_	_	_		_	_		_	_	_	_	_	_	_	l —
3900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4000	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4100	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4200	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4250	l —	_	_	_	_	_	_	_	_		_	_	_	_	i —

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 3.70.
 3. See page 74 for General Fan Performance Notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

-						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6		<u>, </u>	0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	726	0.75	656	793	0.94	822	853	1.14	997	910	1.35	1181	962	1.56	1373
3100	746	0.81	713	811	1.01	883	870	1.21	1062	926	1.42	1250	978	1.65	1447
3200	766	0.88	773	829	1.08	947	887	1.29	1131	942	1.51	1323	993	1.74	1524
3300	786	0.95	836	847	1.16	1016	905	1.37	1204	958	1.60	1400	1008	1.83	1604
3400	806	1.03	904	866	1.24	1088	922	1.46	1280	975	1.69	1481	1024	1.92	1689
3500	826	1.11	975	885	1.33	1163	940	1.55	1360	991	1.78	1565	1040	2.03	1778
3600	846	1.20	1050	904	1.42	1243	958	1.65	1444	1008	1.88	1654	1056	2.13	1870
3700	866	1.29	1129	923	1.51	1327	975	1.75	1532	1025	1.99	1746	1073	2.24	1967
3800	886	1.38	1212	942	1.61	1415	994	1.85	1625	1043	2.10	1843	1089	2.36	2068
3900	907	1.48	1299	961	1.72	1507	1012	1.96	1722	1060	2.21	1944	_	_	_
4000	927	1.58	1391	980	1.83	1603	1030	2.08	1823	1078	2.33	2049	_	_	_
4100	948	1.69	1487	1000	1.94	1704	1049	2.20	1928	_	_	_	_	_	_
4200	968	1.81	1588	1019	2.06	1809	1067	2.32	2038	_	_	_	_	_	_
4300	989	1.93	1694	1039	2.19	1920	_	_	_	_	_	_	_	_	_
4400	1009	2.06	1804	1058	2.32	2034	_	_	_	_	_	_	_	_	_
4500	1030	2.19	1919	_	_	_	_	_	_	_	_	_	_	_	_
4600	1051	2.32	2039	_	_	_	_	_	_	_	_	_	_	_	_
4700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5000	_	_			_			_	_		_		_	_	

				_		Ex	ternal St	atic Pres	ssure (in. v	vg)			_		
Airflow (Cfm)		1.2			1.4			1.6			1.8	_		2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watt
3000	1012	1.79	1574	1060	2.03	1781	1105	2.28	1997	_	_	_	_	_	_
3100	1027	1.88	1651	1073	2.12	1863	1118	2.37	2081	_	_	_	_	_	l —
3200	1041	1.97	1732	1088	2.22	1947	_	_	_	_	_	_	_	_	I —
3300	1056	2.07	1817	1102	2.32	2036	_	_	_	_	_	_	_	_	_
3400	1071	2.17	1905	_	_	_	_	_	_	_	_	_	_	_	_
3500	1087	2.28	1998	_	_	_	_	_	_	_	_	_	_	_	_
3600	1102	2.39	2094	_	_	_	_	_	_	_	_	_	_	_	I —
3700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ı —
3800	_	_	_	_	_	_	_	_			_			_	l —
3900	_	_	_	_	_	_	_	_			_			_	l —
4000	_	_	_	_	_	_	_	_			_			_	l —
4100	_	_	_	_	_	_	_	_			_			_	ı —
4200	_	_	_	_	_	_	_	_			_			_	ı —
4300	_	_		_	_	_	_	_	_	_	_		_	_	_
4400	_	_		_	_	_	_	_	_	_	_		_	_	_
4500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4600	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	ı —
4700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	ı —
5000	_	l —	_	_		_	_		_	_	_	_	l —		ı —

LEGEND

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for General Fan Performance Notes.

 $^{^{\}star}\text{Motor}$ drive range: 685 to 935 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F120 (10 T	ONS) —	ALTERN	ATE MOTO	OR (BELT	DRIVE)	*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	726	0.75	656	793	0.94	822	853	1.14	997	910	1.35	1181	962	1.56	1373
3100	746	0.81	713	811	1.01	883	870	1.21	1062	926	1.42	1250	978	1.65	1447
3200	766	0.88	773	829	1.08	947	887	1.29	1131	942	1.51	1323	993	1.74	1524
3300	786	0.95	836	847	1.16	1016	905	1.37	1204	958	1.60	1400	1008	1.83	1604
3400	806	1.03	904	866	1.24	1088	922	1.46	1280	975	1.69	1481	1024	1.92	1689
3500	826	1.11	975	885	1.33	1163	940	1.55	1360	991	1.78	1565	1040	2.03	1778
3600	846	1.20	1050	904	1.42	1243	958	1.65	1444	1008	1.88	1654	1056	2.13	1870
3700	866	1.29	1129	923	1.51	1327	975	1.75	1532	1025	1.99	1746	1073	2.24	1967
3800	886	1.38	1212	942	1.61	1415	994	1.85	1625	1043	2.10	1843	1089	2.36	2068
3900	907	1.48	1299	961	1.72	1507	1012	1.96	1722	1060	2.21	1944	1106	2.48	2173
4000	927	1.58	1391	980	1.83	1603	1030	2.08	1823	1078	2.33	2049	1123	2.60	2283
4100	948	1.69	1487	1000	1.94	1704	1049	2.20	1928	1095	2.46	2159	1140	2.73	2397
4200	968	1.81	1588	1019	2.06	1809	1067	2.32	2038	1113	2.59	2274	1157	2.87	2516
4300	989	1.93	1694	1039	2.19	1920	1086	2.45	2153	1131	2.73	2393		_	_
4400	1009	2.06	1804	1058	2.32	2034	1105	2.59	2272	1149	2.87	2517	_	_	_
4500	1030	2.19	1919	1078	2.45	2154	1124	2.73	2397	_	_	_	_	_	_
4600	1051	2.32	2039	1098	2.60	2279	1143	2.88	2527	_	_	_	_	_	_
4700	1071	2.47	2165	1118	2.75	2409	_	_	_	_	_	_	_	_	_
4800	1092	2.62	2295	1138	2.90	2545	_	_	_	_	_	_	_	_	_
4900	1113	2.77	2431	_	_	_	_	_	_	_	_	_	l —	_	_
5000	_	_	_	_	_	_	_	_	_	_	_	_	—	_	_

580F120 (10 T	ONS) —	ALTERN.	ATE MOTO	OR (BELT	DRIVE)	* (cont)									
				_		Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6	_		1.8	_		2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	1012	1.79	1574	1060	2.03	1781	1105	2.28	1997	1148	2.53	2219	1190	2.79	2449
3100	1027	1.88	1651	1073	2.12	1863	1118	2.37	2081	1161	2.63	2308	1202	2.89	2540
3200	1041	1.97	1732	1088	2.22	1947	1132	2.47	2170	1174	2.73	2400	_	_	_
3300	1056	2.07	1817	1102	2.32	2036	1146	2.58	2262	1188	2.84	2496	_	_	_
3400	1071	2.17	1905	1116	2.43	2128	1160	2.69	2359	_	_	_	_	_	_
3500	1087	2.28	1998	1131	2.53	2225	1174	2.80	2459	_	_	_	_	_	_
3600	1102	2.39	2094	1146	2.65	2326	_	_	_	_	_	_	_	_	_
3700	1118	2.50	2195	1162	2.77	2430	_	_	_		_	_	_	_	_
3800	1134	2.62	2300	1177	2.89	2539	_	_	_		_	_	_	_	_
3900	1150	2.75	2410	_	_	_	_	_	_		_	_	_	_	_
4000	1167	2.88	2524	_	_	_	_	_	_		_	_	_	_	_
4100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4600	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	_	l —	_	_	l —	_		_	_	_	_	_	_
5000	I —	_	_	_	_	_	_	_	_	l —	_	_	_	_	_

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.
 3. See page 74 for General Fan Performance Notes.

 $^{^{\}star}\text{Motor}$ drive range: 835 to 1085 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

	<u></u>					Ex	ternal Sta	atic Pres	sure (in. w	vg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	726	0.75	656	793	0.94	822	853	1.14	997	910	1.35	1181	962	1.56	1373
3100	746	0.81	713	811	1.01	883	870	1.21	1062	926	1.42	1250	978	1.65	1447
3200	766	0.88	773	829	1.08	947	887	1.29	1131	942	1.51	1323	993	1.74	1524
3300	786	0.95	836	847	1.16	1016	905	1.37	1204	958	1.60	1400	1008	1.83	1604
3400	806	1.03	904	866	1.24	1088	922	1.46	1280	975	1.69	1481	1024	1.92	1689
3500	826	1.11	975	885	1.33	1163	940	1.55	1360	991	1.78	1565	1040	2.03	1778
3600	846	1.20	1050	904	1.42	1243	958	1.65	1444	1008	1.88	1654	1056	2.13	1870
3700	866	1.29	1129	923	1.51	1327	975	1.75	1532	1025	1.99	1746	1073	2.24	1967
3800	886	1.38	1212	942	1.61	1415	994	1.85	1625	1043	2.10	1843	1089	2.36	2068
3900	907	1.48	1299	961	1.72	1507	1012	1.96	1722	1060	2.21	1944	1106	2.48	2173
4000	927	1.58	1391	980	1.83	1603	1030	2.08	1823	1078	2.33	2049	1123	2.60	2283
4100	948	1.69	1487	1000	1.94	1704	1049	2.20	1928	1095	2.46	2159	1140	2.73	2397
4200	968	1.81	1588	1019	2.06	1809	1067	2.32	2038	1113	2.59	2274	1157	2.87	2516
4300	989	1.93	1694	1039	2.19	1920	1086	2.45	2153	1131	2.73	2393	1175	3.01	2640
4400	1009	2.06	1804	1058	2.32	2034	1105	2.59	2272	1149	2.87	2517	1192	3.15	2768
4500	1030	2.19	1919	1078	2.45	2154	1124	2.73	2397	1168	3.01	2646	1210	3.31	2901
4600	1051	2.32	2039	1098	2.60	2279	1143	2.88	2527	1186	3.17	2780	1228	3.46	3040
4700	1071	2.47	2165	1118	2.75	2409	1162	3.03	2661	1205	3.33	2919	1245	3.63	3184
4800	1092	2.62	2295	1138	2.90	2545	1181	3.19	2801	1223	3.49	3064	1264	3.80	3333
4900	1113	2.77	2431	1158	3.06	2685	1201	3.36	2947	1242	3.66	3214	1282	3.97	3487
5000	1134	2.93	2572	1178	3.23	2832	1220	3.53	3097	1261	3.84	3369	1300	4.16	3647

				_		Ex	ternal St	atic Pres	sure (in. v	vg)			_		
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	_
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	1012	1.79	1574	1060	2.03	1781	1105	2.28	1997	1148	2.53	2219	1190	2.79	2449
3100	1027	1.88	1651	1073	2.12	1863	1118	2.37	2081	1161	2.63	2308	1202	2.89	254
3200	1041	1.97	1732	1088	2.22	1947	1132	2.47	2170	1174	2.73	2400	1215	3.00	263
3300	1056	2.07	1817	1102	2.32	2036	1146	2.58	2262	1188	2.84	2496	1228	3.12	273
3400	1071	2.17	1905	1116	2.43	2128	1160	2.69	2359	1201	2.96	2595	1241	3.23	283
3500	1087	2.28	1998	1131	2.53	2225	1174	2.80	2459	1215	3.08	2699	1255	3.36	294
3600	1102	2.39	2094	1146	2.65	2326	1188	2.92	2563	1229	3.20	2808	1268	3.48	305
3700	1118	2.50	2195	1162	2.77	2430	1203	3.04	2672	1243	3.33	2920	1282	3.62	317
3800	1134	2.62	2300	1177	2.89	2539	1218	3.17	2785	1258	3.46	3036	1296	3.75	329
3900	1150	2.75	2410	1193	3.02	2653	1233	3.31	2902	1273	3.60	3158	1311	3.90	342
4000	1167	2.88	2524	1208	3.16	2770	1249	3.45	3024	1287	3.74	3284	1325	4.04	354
4100	1183	3.01	2642	1224	3.30	2893	1264	3.59	3151	1302	3.89	3414	1340	4.20	368
4200	1200	3.15	2765	1240	3.44	3020	1280	3.74	3282	1318	4.04	3549	1355	4.36	382
4300	1216	3.30	2893	1257	3.59	3152	1295	3.89	3418	1333	4.20	3690	1370	4.52	396
4400	1233	3.45	3025	1273	3.75	3289	1311	4.05	3559	1349	4.37	3834	1385	4.69	411
4500	1250	3.60	3163	1290	3.91	3431	1328	4.22	3705	1364	4.54	3985	_	_	_
4600	1268	3.77	3306	1306	4.08	3578	1344	4.39	3856	1380	4.72	4140	—	_	_
4700	1285	3.94	3454	1323	4.25	3730	1360	4.57	4013	1396	4.90	4300	_	_	_
4800	1303	4.11	3608	1340	4.43	3888	1377	4.76	4175	_	_	_	_	_	_
4900	1320	4.29	3766	1357	4.62	4051	1394	4.95	4342	_	_	_	_	_	_
5000	1338	4.48	3930	1375	4.81	4219	_	_	_	_	_	_	_	_	_

LEGEND

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 5.25.
 3. See page 74 for General Fan Performance Notes.

 $^{^{\}star}\text{Motor}$ drive range: 830 to 1130 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F121 (10 T	ONS) —	STANDA	RD MOTO	R (BELT	DRIVE)*										
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	592	0.77	672	658	0.93	817	719	1.10	961	775	1.26	1105	828	1.42	1249
3100	607	0.83	731	672	1.00	881	731	1.17	1030	787	1.34	1179	839	1.51	1328
3200	623	0.90	794	686	1.08	949	744	1.26	1103	798	1.43	1257	850	1.61	1410
3300	638	0.98	860	700	1.16	1020	757	1.34	1179	810	1.52	1338	861	1.71	1496
3400	653	1.06	931	714	1.25	1095	770	1.44	1260	822	1.62	1423	872	1.81	1586
3500	669	1.15	1005	728	1.34	1175	783	1.53	1344	835	1.72	1512	884	1.91	1680
3600	685	1.23	1084	742	1.43	1258	796	1.63	1432	847	1.83	1606	895	2.03	1778
3700	700	1.33	1167	757	1.53	1346	810	1.74	1524	860	1.94	1703	907	2.14	1881
3800	716	1.43	1254	771	1.64	1438	823	1.85	1621	873	2.06	1805	919	2.26	1987
3900	732	1.53	1345	786	1.75	1534	837	1.96	1722	886	2.18	1911	932	2.39	2099
4000	748	1.64	1441	801	1.86	1635	851	2.08	1828	899	2.30	2022	_	_	_
4100	764	1.76	1542	816	1.98	1741	865	2.21	1939	_	_	_		_	_
4200	780	1.88	1648	831	2.11	1851	879	2.34	2054		_	_		_	_
4300	796	2.00	1758	846	2.24	1966	_	_	_		_	_		_	_
4400	812	2.13	1874	861	2.38	2087		_			_	_		_	_
4500	828	2.27	1994	_		_	_		_	_		_	_	_	_
4600	_		_	_	_	_	_	_	_	_	_	_	_	_	_
4700		_	_	_	_	_	_	_	_	_	_	_	_	_	_
4800	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —

						Ex	ternal St	atic Pres	sure (in. v	va)					
Airflow (Cfm)		1.2			1.4			1.6	(3,	1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	878	1.59	1391	925	1.75	1534	970	1.91	1676	1014	2.07	1817	1055	2.23	1958
3100	888	1.68	1475	935	1.85	1623	979	2.02	1769	1022	2.18	1916	1063	2.35	2062
3200	898	1.78	1563	944	1.95	1715	988	2.13	1867	1031	2.30	2018	_	_	_
3300	909	1.88	1654	954	2.06	1811	998	2.24	1968	_	_	_	_	_	_
3400	919	1.99	1749	964	2.18	1911	1007	2.36	2073	_	_	_	_	_	_
3500	930	2.11	1848	975	2.30	2015	_	_	_	_	_	_	_	_	_
3600	941	2.22	1951	_	_	_	_	_	_	_	_	_	_	_	_
3700	952	2.35	2058	_	_	_	_	_	_	_	_	_	_	_	_
3800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3900	_	l —	_	_	_	_	_	_	_	_	_	_	_	_	_
4000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4300	_	l —	_	_	_	_	_	_	_	_	_	_	_	_	_
4400	—	l —	_	_	_	_		_	_		_	_	_	_	_
4500	<u> </u>	l —	_	l —	_	_	_	_	_	_	_	<u> </u>	_	_	_
4600	I —	l —	_	_	_	_	_	_	_	_	_	_	_	_	_
4700	_	l —	_	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	l —	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	l —	_	_	_	_	_	_	_	_	_	_	_	_	_
5000	I —	—	_	_	_	_	l —	_	_	l —	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{\star}\text{Motor}$ drive range: 685 to 935 rpm. All other rpms require field-supplied drive.

Refer to page 74 for general Fan Performance Data notes.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

A ! (! -						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(3)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	592	0.77	672	658	0.93	817	719	1.10	961	775	1.26	1105	828	1.42	1249
3100	607	0.83	731	672	1.00	881	731	1.17	1030	787	1.34	1179	839	1.51	132
3200	623	0.90	794	686	1.08	949	744	1.26	1103	798	1.43	1257	850	1.61	1410
3300	638	0.98	860	700	1.16	1020	757	1.34	1179	810	1.52	1338	861	1.71	149
3400	653	1.06	931	714	1.25	1095	770	1.44	1260	822	1.62	1423	872	1.81	158
3500	669	1.15	1005	728	1.34	1175	783	1.53	1344	835	1.72	1512	884	1.91	168
3600	685	1.23	1084	742	1.43	1258	796	1.63	1432	847	1.83	1606	895	2.03	177
3700	700	1.33	1167	757	1.53	1346	810	1.74	1524	860	1.94	1703	907	2.14	188
3800	716	1.43	1254	771	1.64	1438	823	1.85	1621	873	2.06	1805	919	2.26	198
3900	732	1.53	1345	786	1.75	1534	837	1.96	1722	886	2.18	1911	932	2.39	209
4000	748	1.64	1441	801	1.86	1635	851	2.08	1828	899	2.30	2022	944	2.52	221
4100	764	1.76	1542	816	1.98	1741	865	2.21	1939	912	2.43	2137	957	2.66	233
4200	780	1.88	1648	831	2.11	1851	879	2.34	2054	925	2.57	2257	969	2.80	246
4300	796	2.00	1758	846	2.24	1966	894	2.48	2175	939	2.71	2382	l — I	_	١
4400	812	2.13	1874	861	2.38	2087	908	2.62	2299	952	2.86	2512	l — I	_	_
4500	828	2.27	1994	877	2.52	2212	922	2.77	2430	_	_	_	l — I	_	١
4600	845	2.42	2120	892	2.67	2343	_	_	· — ·	_	_	l — I	l — I	_	١ _
4700	861	2.57	2251	907	2.82	2479	_	_	! — I	_	_	l — I	_	_	_
4800	877	2.72	2388	_		_	_	_	! — i	_	_	_	' — I	_	l —
4900	894	2.88	2531			_	' _	' —	! — i	' —	_	_	' — I	_	· —
5000		l — l	1	' <u> </u>	1 <u> </u>		1 <u> </u>	¹ _ l	' — i	' — ۱	· _	_	' — i	l — I	١ _

						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6	•		1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	878	1.59	1391	925	1.75	1534	970	1.91	1676	1014	2.07	1817	1055	2.23	1958
3100	888	1.68	1475	935	1.85	1623	979	2.02	1769	1022	2.18	1916	1063	2.35	2062
3200	898	1.78	1563	944	1.95	1715	988	2.13	1867	1031	2.30	2018	1072	2.47	2169
3300	909	1.88	1654	954	2.06	1811	998	2.24	1968	1040	2.42	2124	1080	2.60	2280
3400	919	1.99	1749	964	2.18	1911	1007	2.36	2073	1049	2.55	2234	1089	2.73	2395
3500	930	2.11	1848	975	2.30	2015	1017	2.49	2182	1058	2.68	2348	1098	2.86	2514
3600	941	2.22	1951	985	2.42	2123	1027	2.61	2295	1068	2.81	2466	_	_	_
3700	952	2.35	2058	996	2.55	2236	1038	2.75	2412	_	_	_	_	_	_
3800	964	2.47	2170	1007	2.68	2352	1048	2.89	2534	_	_	_	_	_	_
3900	976	2.60	2286	1018	2.82	2473	_	_	_	_	_	_	_	_	_
4000	987	2.74	2407	_	_	_	_	_	_	_	_	_	_	_	_
4100	999	2.88	2532			_	_	_	_	_	_	_	_		_
4200	_	_	_		_	_		_			_			_	
4300		_			_	_		_			_			_	
4400		_			_	_		_			_			_	
4500	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4600	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4700		_	_	_	_	_	_	_		_	_	_	_	_	_
4800	_	_	_	_	_	_	_	_		_	_	_	_	_	_
4900	_	_	_	_	_	_	_	_		_	_	_	_	_	_
5000	_	_	_		_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

Refer to page 74 for general Fan Performance Data notes.

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.

 $^{^{\}star}\text{Motor}$ drive range: 835 to 1085 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

580F121 (10 T	ONS) — I	HIGH-ST	ATIC MOT	OR (BEL	T DRIVE)*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	592	0.77	672	658	0.93	817	719	1.10	961	775	1.26	1105	828	1.42	1249
3100	607	0.83	731	672	1.00	881	731	1.17	1030	787	1.34	1179	839	1.51	1328
3200	623	0.90	794	686	1.08	949	744	1.26	1103	798	1.43	1257	850	1.61	1410
3300	638	0.98	860	700	1.16	1020	757	1.34	1179	810	1.52	1338	861	1.71	1496
3400	653	1.06	931	714	1.25	1095	770	1.44	1260	822	1.62	1423	872	1.81	1586
3500	669	1.15	1005	728	1.34	1175	783	1.53	1344	835	1.72	1512	884	1.91	1680
3600	685	1.23	1084	742	1.43	1258	796	1.63	1432	847	1.83	1606	895	2.03	1778
3700	700	1.33	1167	757	1.53	1346	810	1.74	1524	860	1.94	1703	907	2.14	1881
3800	716	1.43	1254	771	1.64	1438	823	1.85	1621	873	2.06	1805	919	2.26	1987
3900	732	1.53	1345	786	1.75	1534	837	1.96	1722	886	2.18	1911	932	2.39	2099
4000	748	1.64	1441	801	1.86	1635	851	2.08	1828	899	2.30	2022	944	2.52	2214
4100	764	1.76	1542	816	1.98	1741	865	2.21	1939	912	2.43	2137	957	2.66	2334
4200	780	1.88	1648	831	2.11	1851	879	2.34	2054	925	2.57	2257	969	2.80	2460
4300	796	2.00	1758	846	2.24	1966	894	2.48	2175	939	2.71	2382	982	2.95	2589
4400	812	2.13	1874	861	2.38	2087	908	2.62	2299	952	2.86	2512	995	3.10	2725
4500	828	2.27	1994	877	2.52	2212	922	2.77	2430	966	3.02	2648	1008	3.26	2865
4600	845	2.42	2120	892	2.67	2343	937	2.92	2566	980	3.18	2788	1022	3.43	3010
4700	861	2.57	2251	907	2.82	2479	952	3.08	2706	994	3.34	2934	1035	3.60	3161
4800	877	2.72	2388	923	2.99	2621	966	3.25	2853	1008	3.52	3086	1049	3.78	3317
4900	894	2.88	2531	938	3.15	2768	981	3.42	3005	1022	3.69	3242	1062	3.96	3479
5000	910	3.05	2679	954	3.33	2921	996	3.60	3163	1037	3.88	3405	1076	4.15	3647

						Ev	tornal St	atic Proc	sure (in. v	va)					
Airflow		1.2		1	1.4		terriar St	1.6	Suie (III. V	vg)	1.8		İ	2.0	
(Cfm)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	878	1.59	1391	925	1.75	1534	970	1.91	1676	1014	2.07	1817	1055	2.23	1958
3100	888	1.68	1475	935	1.85	1623	979	2.02	1769	1022	2.18	1916	1063	2.35	2062
3200	898	1.78	1563	944	1.95	1715	988	2.13	1867	1031	2.30	2018	1072	2.47	2169
3300	909	1.88	1654	954	2.06	1811	998	2.24	1968	1040	2.42	2124	1080	2.60	2280
3400	919	1.99	1749	964	2.18	1911	1007	2.36	2073	1049	2.55	2234	1089	2.73	2395
3500	930	2.11	1848	975	2.30	2015	1017	2.49	2182	1058	2.68	2348	1098	2.86	2514
3600	941	2.22	1951	985	2.42	2123	1027	2.61	2295	1068	2.81	2466	1107	3.00	2637
3700	952	2.35	2058	996	2.55	2236	1038	2.75	2412	1078	2.95	2588	1117	3.15	2764
3800	964	2.47	2170	1007	2.68	2352	1048	2.89	2534	1088	3.09	2715	1126	3.30	2895
3900	976	2.60	2286	1018	2.82	2473	1059	3.03	2660	1098	3.24	2846	1136	3.45	3031
4000	987	2.74	2407	1029	2.96	2598	1069	3.18	2790	1108	3.40	2981	1146	3.61	3171
4100	999	2.88	2532	1041	3.11	2729	1080	3.33	2925	1119	3.56	3121	1156	3.78	3316
4200	1012	3.03	2662	1052	3.26	2863	1092	3.49	3065	1130	3.72	3266	1167	3.95	3466
4300	1024	3.19	2796	1064	3.42	3003	1103	3.66	3210	1141	3.89	3415	1177	4.13	3621
4400	1036	3.35	2937	1076	3.59	3148	1114	3.83	3359	1152	4.07	3570	1188	4.31	3781
4500	1049	3.51	3082	1088	3.76	3298	1126	4.00	3514	1163	4.25	3730	1199	4.50	3945
4600	1062	3.68	3232	1100	3.94	3454	1138	4.19	3675	1174	4.44	3895	1210	4.69	4116
4700	1075	3.86	3387	1113	4.12	3614	1150	4.38	3840	1186	4.63	4065	1221	4.89	4291
4800	1088	4.04	3549	1125	4.31	3780	1162	4.57	4011	1198	4.83	4241	_	_	_
4900	1101	4.23	3716	1138	4.50	3951	1174	4.77	4188	_	_	_	_	_	_
5000	1114	4.43	3888	1151	4.70	4129	1187	4.98	4370		_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{\star}\text{Motor}$ drive range: 830 to 1130 rpm. All other rpms require field-supplied drive.

Refer to page 74 for general Fan Performance Data notes.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 5.25.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(5)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	728	1.36	1266	789	1.58	1473	848	1.81	1686	904	2.04	1906	957	2.29	2132
3800	744	1.46	1361	804	1.69	1572	861	1.92	1790	916	2.16	2015	969	2.41	224
3900	760	1.57	1460	819	1.80	1676	875	2.04	1899	929	2.28	2128	981	2.53	2364
4000	777	1.68	1563	834	1.91	1785	889	2.16	2012	942	2.41	2247	993	2.67	248
4100	793	1.79	1672	850	2.04	1899	904	2.29	2132	956	2.54	2371	1006	2.80	261
4200	810	1.92	1786	865	2.16	2018	918	2.42	2255	969	2.68	2499	1018	2.95	274
4300	826	2.04	1906	880	2.30	2142	932	2.56	2385	983	2.82	2633	1031	3.10	288
4400	843	2.18	2031	896	2.44	2272	947	2.70	2520	996	2.97	2773	1044	3.25	303
4500	860	2.32	2161	912	2.58	2408	962	2.85	2660	1010	3.13	2918	1057	3.41	318
4600	876	2.46	2297	927	2.73	2549	977	3.01	2807	1024	3.29	3070	1070	3.58	333
4700	893	2.62	2439	943	2.89	2696	992	3.17	2958	1038	3.46	3226	_	_	_
4800	910	2.77	2587	959	3.06	2849	1007	3.34	3116	1053	3.63	3390	_	_	_
4900	927	2.94	2741	975	3.23	3008	1022	3.52	3280	_	_	l —	_	_	_
5000	944	3.11	2901	991	3.40	3173	1037	3.70	3451	_	_	_	_	_	_
5100	961	3.29	3068	1007	3.59	3345	-	l —	! — i	_	_	_	-	_	_
5200	978	3.48	3241		_	_		_	' — i	_	_	l —	_	_	_
5300	995	3.67	3420		_	_		_	_	_	_	_	_	_	_
5400	_	-	' —	· _	_	_	_	· _	· — i	_	_	! —	-	_	_
5500	_	_	' — 1	l —	_	_	-	l —	! — i	_	_	_	-	_	_
5600	_	-	' — 1	l —	_	· —	-	l —	! — i	_	_	l —	-	_	_
5700	_	— I	' — 1	_	_	_	-	_	l — I	_	_		_	_	_
5800	_	-	' — 1	l —	_	· —	-	l —	! — i	_	_	l —	-	_	_
5900	_	-	' — 1	l —	_	· —	-	l —	! — i	_	_	l —	-	_	_
6000	I —	-	' —	· _	_	·	I — I	· _	· — i	_	· — i	! —	-	_	_
6100	_	_	' —	· _	_	_	I — I	· _	· — i	_	_	_	-	_	_
6200	I —	-	' — 1	_	_	· —	l — I	_	! — i	—	l — I	! —	_	_	_
6300	I —	-	' — :	! <u> </u>	_	· —	! — i	' — 1	' — '	l — I	' — '	' —	_		_

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watt
3700	1008	2.54	2364	1058	2.79	2602	1106	3.05	2846	1152	3.32	3094	1198	3.59	334
3800	1019	2.66	2482	1068	2.92	2725	1116	3.19	2972	1162	3.46	3226	_	_	_
3900	1031	2.79	2605	1079	3.06	2852	1126	3.33	3104	1171	3.61	3362	_	_	
4000	1042	2.93	2733	1090	3.20	2984	1136	3.48	3241	_	_	_	_	_	_
4100	1054	3.07	2866	1101	3.35	3122	1146	3.63	3383	_	_	_	_	_	_
4200	1066	3.22	3004	1112	3.50	3264		_	_		_	_		_	_
4300	1078	3.38	3148	1123	3.66	3413	_	_	_	_	_	_	_	_	
4400	1090	3.54	3297	_	_	_	_	_	_	_	_	_	_	_	_
4500	1103	3.70	3451	_	_	_	_	_	_	_	_	_	_	_	_
4600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5200	_	_				_		_	_		_			_	_
5300	_	_				_		_	_		_			_	_
5400	_	_				_		_	_		_			_	_
5500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
5700	_	_	—	_	_	_	_	_	_	_	_	_	_	_	
5800	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	_
5900	_	_	l —	_	_	_	_	_	_	_	_		_	_	_
6000	_	_		_	_	_	_	_	_	_	_		_	_	
6100	_	_		_	_	_	_	_	_	_	_		_	_	_
6200	_	_		_	_	_	_	_	_	_	_		_	_	_
6300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 3.70.
 3. See page 74 for General Fan Performance Notes.

 $^{^{\}star}\text{Motor}$ drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(31111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watt
3700	728	1.36	1266	789	1.58	1473	848	1.81	1686	904	2.04	1906	957	2.29	213
3800	744	1.46	1361	804	1.69	1572	861	1.92	1790	916	2.16	2015	969	2.41	224
3900	760	1.57	1460	819	1.80	1676	875	2.04	1899	929	2.28	2128	981	2.53	236
4000	777	1.68	1563	834	1.91	1785	889	2.16	2012	942	2.41	2247	993	2.67	248
4100	793	1.79	1672	850	2.04	1899	904	2.29	2132	956	2.54	2371	1006	2.80	261
4200	810	1.92	1786	865	2.16	2018	918	2.42	2255	969	2.68	2499	1018	2.95	274
4300	826	2.04	1906	880	2.30	2142	932	2.56	2385	983	2.82	2633	1031	3.10	288
4400	843	2.18	2031	896	2.44	2272	947	2.70	2520	996	2.97	2773	1044	3.25	303
4500	860	2.32	2161	912	2.58	2408	962	2.85	2660	1010	3.13	2918	1057	3.41	318
4600	876	2.46	2297	927	2.73	2549	977	3.01	2807	1024	3.29	3070	1070	3.58	333
4700	893	2.62	2439	943	2.89	2696	992	3.17	2958	1038	3.46	3226	1084	3.75	350
4800	910	2.77	2587	959	3.06	2849	1007	3.34	3116	1053	3.63	3390	1098	3.93	366
4900	927	2.94	2741	975	3.23	3008	1022	3.52	3280	1067	3.82	3558	1111	4.12	384
5000	944	3.11	2901	991	3.40	3173	1037	3.70	3451	1082	4.00	3733	1125	4.31	402
5100	961	3.29	3068	1007	3.59	3345	1053	3.89	3627	1096	4.20	3915	1139	4.51	420
5200	978	3.48	3241	1024	3.78	3523	1068	4.09	3811	1111	4.40	4103	1153	4.72	440
5300	995	3.67	3420	1040	3.98	3707	1084	4.29	4000	1126	4.61	4298	1168	4.93	460
5400	1012	3.87	3606	1056	4.18	3899	1099	4.50	4196	1141	4.82	4499	1182	5.15	480
5500	1029	4.07	3799	1073	4.39	4097	1115	4.72	4400	1156	5.05	4707		_	_
5600	1046	4.29	3999	1089	4.61	4302	1131	4.94	4610	_	_	_	_	_	_
5700	1063	4.51	4207	1105	4.84	4515	1146	5.18	4827	_	_	_	_	_	_
5800	1080	4.74	4420	1122	5.08	4734	_	_	_	_	_	_	_	_	
5900	1098	4.98	4642	_	_	_	_	_	_	_	_	_	_	_	
6000	1115	5.22	4872	_	_	_	_	_	_	_	_	_	_	_	
6100	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6200	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

3700 3800 3900 4000 4100	Rpm 1008 1019 1031	1.2 Bhp 2.54 2.66	Watts	Rpm	1.4				•				1		
3700 3800 3900 4000 4100	1008 1019	2.54		Rnm				1.6			1.8			2.0	
3800 3900 4000 4100	1019			IXPIII	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3800 3900 4000 4100	1019		2364	1058	2.79	2602	1106	3.05	2846	1152	3.32	3094	1198	3.59	3348
3900 4000 4100	1031	2.00	2482	1068	2.92	2725	1116	3.19	2972	1162	3.46	3226	1206	3.74	3484
4000 4100		2.79	2605	1079	3.06	2852	1126	3.33	3104	1171	3.61	3362	1215	3.89	3624
4100	1042	2.93	2733	1090	3.20	2984	1136	3.48	3241	1180	3.76	3503	1224	4.04	3770
	1054	3.07	2866	1101	3.35	3122	1146	3.63	3383	1190	3.91	3649	1233	4.20	3921
4200	1066	3.22	3004	1112	3.50	3264	1157	3.79	3530	1200	4.08	3801	1243	4.37	4077
4300	1078	3.38	3148	1123	3.66	3413	1167	3.95	3683	1210	4.24	3958	1252	4.54	4238
4400	1090	3.54	3297	1135	3.82	3566	1179	4.12	3841	1221	4.42	4121	1262	4.72	440
4500	1103	3.70	3451	1147	4.00	3726	1190	4.29	4005	1232	4.60	4289	1273	4.91	4578
4600	1115	3.87	3612	1159	4.17	3891	1201	4.48	4175	1243	4.79	4464	1283	5.10	475
4700	1128	4.05	3778	1171	4.36	4062	1213	4.67	4350	1254	4.98	4644		_	_
4800	1141	4.24	3951	1183	4.55	4239	1225	4.86	4532	1265	5.18	4830	_	_	_
4900	1154	4.43	4130	1196	4.74	4422	1237	5.06	4720		_	_	_	_	_
5000	1167	4.63	4314	1209	4.95	4611		_			_	_	_	_	_
5100	1181	4.83	4505	1221	5.16	4808	_		_		_		_		_
5200	1194	5.04	4703		J.10		_	_	_		_	_		_	_
5300	1.134	J.04	47.00		_	_					_	_			_
5400						_									_
5500	_					_									
5600						_									
5700						_									
5800															
5900															
6000															
6100															
6200											_	_			_
6300		l —	_	_		_	l —		_	_	_	_	_	_	

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 830 to 1130 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 5.25.
 3. See page 74 for General Fan Performance Notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS

580F036 (3 TON	IS) — STANI	DARD MOTO	R (DIRECT	DRIVE)								
			Low	Speed					High	Speed		•
Airflow (Cfm)		208 V		2	30, 460, 575	٧		208 V		2	30, 460, 575	V
(0)	ESP				Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts
900	0.54	0.54 0.21 253			0.23	277	0.55	0.26	307	0.60	0.31	363
1000	0.49	0.49 0.23 270			0.25	292	0.52	0.27	321	0.53	0.32	374
1100	0.43	0.24	287	0.45	0.26	307	0.46	0.28	335	0.49	0.33	385
1200	0.39	0.26	304	0.40	0.27	323	0.38	0.29	349	0.43	0.34	397
1300	0.33	0.27	321	0.35	0.29	338	0.35	0.31	364	0.36	0.34	408
1400	0.26	0.29	338	0.28	0.30	354	0.29	0.32	378	_	_	_
1500	0.21	0.30	355	0.23	0.31	369	0.24	0.33	392	_	_	_

LEGEND

See page 74 for general fan performance notes.

Bhp ESP Brake Horsepower Input to Fan External Static Pressure (in. wg)

						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900 1000	607 640	0.14 0.18	142 174	745 775	0.22 0.26	221 261	856 884	0.31 0.35	304 351	952 978	0.39 0.45	393 446	1037 1062	0.49 0.55	485 545
1100	674	0.21	212	805	0.31	307	912	0.41	404	1005	0.51	506	1089	0.61	611
1200 1300 1400	708 743 780	0.26 0.31 0.37	256 307 364	836 868 900	0.36 0.42 0.49	359 417 483	941 971 1002	0.47 0.53 0.61	464 530 603	1033 1062 1091	0.57 0.65 0.73	572 645 726	1116 1143 1172	0.69 0.77 0.86	683 764 851
1500	816	780 0.37 364			0.56	556	1033	0.69	685	1121	0.82	815	1201	0.95	947

580F036 (3 TO	NS) — ALT	ERNATE	MOTOR (E	BELT DRIV	/E)* (con	ıt)									
				_		E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900 1000	1114 1139	0.59 0.65	582 648	1186 1210	0.69 0.76	684 754	1253 1277	0.79 0.87	789 865	1316 1340	0.90 0.98	898 979	1375 1399	1.02 1.10	1010 1097
1100 1200	1165 1191	0.72 0.80	720 799	1236 1261	0.84 0.92	832 917	1302 1327	0.95 1.04	948 1039	1364 1389	1.07	1068 1165	1423	1.20	1191
1300 1400	1218 1246	0.89 0.99	885 980	1288 1315	1.02	1010 1111	1353	1.14	1138	_		_		_	_
1500	1274	1.09	1083	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp Watts Brake Horsepower Input to FanInput Watts to Motor

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 1.20.
 3. See page 74 for general fan performance notes.

580F036 (3 TON	IS) — HIG	H-STATIC	MOTOR (BELT DR	IVE)*										
						E	xternal St	atic Pres	sure (in. w	g)			_		
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(5)	Rpm	Bhp Watts Rpm Bhp					Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900 1000 1100 1200 1300 1400 1500	607 640 674 708 743 780 816	0.14 0.18 0.21 0.26 0.31 0.37 0.43	142 174 212 256 307 364 428	745 775 805 836 868 900 934	0.22 0.26 0.31 0.36 0.42 0.49 0.56	221 261 307 359 417 483 556	856 884 912 941 971 1002 1033	0.31 0.35 0.41 0.47 0.53 0.61 0.69	304 351 404 464 530 603 685	952 978 1005 1033 1062 1091 1121	0.39 0.45 0.51 0.57 0.65 0.73 0.82	393 446 506 572 645 726 815	1037 1062 1089 1116 1143 1172 1201	0.49 0.55 0.61 0.69 0.77 0.86 0.95	485 545 611 683 764 851 947

						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	F F F			Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1114	0.59	582	1186	0.69	684	1253	0.79	789	1316	0.90	898	1375	1.02	1010
1000	1139	0.65	648	1210	0.76	754	1277	0.87	865	1340	0.98	979	1399	1.10	1097
1100	1165	0.72	720	1236	0.84	832	1302	0.95	948	1364	1.07	1068	1423	1.20	1191
1200	1191	0.80	799	1261	0.92	917	1327	1.04	1039	1389	1.17	1165	1448	1.30	1293
1300	1218	0.89	885	1288	1.02	1010	1353	1.14	1138	1414	1.28	1270	1473	1.41	1404
1400	1246	0.99	980	1315	1.12	1111	1379	1.25	1246	1440	1.39	1383	1499	1.53	1523
1500	1274	1.09	1083	1342	1.23	1221	1406	1.37	1362	1467	1.51	1505	1525	1.66	1652

LEGEND

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.
 See page 74 for general fan performance notes.

^{*}Motor drive range: 685 to 1045 rpm. All other rpms require a field-supplied drive.

^{*}Motor drive range: 1075 to 1455 rpm. All other rpms require a field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

580F048 (4 TON	S) — STAND	DARD MOTO	R (DIRECT I	ORIVE)								
A			Low S	Speed					High	Speed		
Airflow (Cfm)		208 V		23	30, 460, 575	V		208 V		23	30, 460, 575	V
(Cilli)	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts
1200	0.75	0.41	458	0.81	0.45	506	0.87	0.51	572	0.92	0.56	632
1300	0.68	0.42	471	0.74	0.46	521	0.79	0.52	589	0.85	0.58	651
1400	0.60	0.45	503	0.66	0.49	556	0.71	0.54	616	0.77	0.60	681
1500	0.51	0.47	536	0.58	0.52	593	0.64	0.56	631	0.70	0.62	698
1600	0.42	0.49	557	0.49	0.54	616	0.56	0.58	654	0.63	0.64	723
1700	0.32	0.52	584	0.39	0.57	646	0.48	0.60	678	0.55	0.66	750
1800	0.21	0.54	610	0.29	0.60	674	0.41	0.62	698	0.48	0.68	772
1900	0.09	0.56	629	0.18	0.62	696	0.33	0.64	720	0.41	0.70	796
2000	_	_	_	0.06	0.65	731	0.26	0.66	744	0.33	0.73	823

LEGEND

See page 74 for general fan performance notes.

Brake Horsepower Input to Fan External Static Pressure (in. wg)

580F048 (4 TON	S) — ALT	ERNATE	MOTOR (E	BELT DRIV	/E)*										
A ! £1						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941
1600	773	0.45	444	879	0.59	586	970	0.73	731	1050	0.88	880	1123	1.04	1034
1700	807	0.52	513	910	0.67	663	999	0.82	817	1078	0.98	973	1150	1.14	1134
1800	841	0.59	589	942	0.75	749	1029	0.91	910	1106	1.08	1074	_	_	_
1900	875	0.68	674	974	0.85	842	1059	1.02	1012	1135	1.19	1184	_	_	_
2000	910	0.77	767	1006	0.95	944	1090	1.13	1122	_	_	_	_	_	_

41.0	1					E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	_	_	_	_	_	_
1300	1113	0.92	915	1177	1.06	1058	_	_	_	_	_	_	_	_	l —
1400	1138	1.01	1000	1201	1.15	1149	_	_	_	_	_	_	_	_	ı —
1500	1163	1.10	1092	_	_	_	_	_	_	_	_	_	_	_	i —
1600	1189	1.20	1191	_	_	_	_	_	_	_	_	_	_	_	l —
1700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
1800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	I —
2000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-

Brake Horsepower Input to FanInput Watts to Motor

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.
 See page 74 for general fan performance notes.

580F048 (4 TON	IS) — HIG	H-STATIO	C MOTOR (BELT DR	IVE)*										
A1.01.						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941
1600	773	0.45	444	879	0.59	586	970	0.73	731	1050	0.88	880	1123	1.04	1034
1700	807	0.52	513	910	0.67	663	999	0.82	817	1078	0.98	973	1150	1.14	1134
1800	841	0.59	589	942	0.75	749	1029	0.91	910	1106	1.08	1074	1177	1.25	1242
1900	875	0.68	674	974	0.85	842	1059	1.02	1012	1135	1.19	1184	1205	1.37	1360
2000	910	0.77	767	1006	0.95	944	1090	1.13	1122	1165	1.31	1302	1234	1.49	1485

580F048 (4 TON	IS) — HIG	H-STATIO	MOTOR (BELT DR	IVE)* (co	nt)									
A ! (!						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	1270	1.27	1262	1324	1.42	1413
1300	1113	0.92	915	1177	1.06	1058	1237	1.21	1205	1293	1.36	1358	1347	1.52	1514
1400	1138	1.01	1000	1201	1.15	1149	1261	1.31	1303	1317	1.47	1461	1370	1.63	1623
1500	1163	1.10	1092	1226	1.25	1247	1285	1.41	1407	1341	1.58	1571	1394	1.75	1740
1600	1189	1.20	1191	1252	1.36	1353	1310	1.53	1520	1365	1.70	1690	1418	1.87	1865
1700	1216	1.31	1299	1277	1.48	1468	1335	1.65	1640	1390	1.83	1817	1442	2.01	1998
1800	1242	1.42	1414	1303	1.60	1590	1361	1.78	1770	1415	1.96	1953	1467	2.15	2140
1900	1270	1.55	1538	1330	1.73	1721	1387	1.92	1908	1441	2.11	2098	1493	2.30	2292
2000	1297	1.68	1672	1357	1.87	1862	1414	2.07	2055	1467	2.26	2252	_	_	_

LEGEND

Brake Horsepower Input to FanInput Watts to Motor Bhp Watts

NOTES:

1. Boldface indicates field-supplied drive is required.
2. Maximum continuous bhp is 2.40.
3. See page 74 for general fan performance notes.

^{*}Motor drive range: 770 to 1175 rpm. All other rpms require a field-supplied drive.

^{*}Motor drive range: 1075 to 1455 rpm. All other rpms require a field-supplied

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

580F060 (5 T	TONS) —	STAND	ARD MO	TOR (DI	RECT D	RIVE)												
			Low S	Speed					Medium	Speed					High	Speed		
Airflow (Cfm)		208V		230	, 460, 57	′5 V		208 V		230	, 460, 57	′5 V		208 V		230	, 460, 57	75 V
(0)	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts	ESP	Bhp	Watts
1500	0.74	0.67	750	1.06	0.71	791	1.07	0.70	782	1.27	0.76	845	1.26	0.79	875	1.33	0.85	949
1600	0.54	0.70	780	0.90	0.74	824	0.92	0.74	821	1.13	0.79	883	1.14	0.82	913	1.22	0.89	988
1700	0.34	0.73	810	0.75	0.77	857	0.77	0.77	861	1.00	0.83	921	1.01	0.85	950	1.11	0.92	1027
1800	0.14	0.75	839	0.59	0.80	891	0.62	0.81	900	0.87	0.86	959	0.89	0.88	988	1.00	0.96	1066
1900	_	_	_	0.44	0.83	924	0.47	0.84	940	0.74	0.90	997	0.77	0.92	1025	0.89	0.99	1105
2000	_	_	_	0.28	0.86	957	0.32	0.88	979	0.61	0.93	1035	0.64	0.95	1063	0.78	1.03	1144
2100	_	_	_	0.13	0.89	990	0.17	0.91	1018	0.48	0.96	1073	0.51	0.99	1101	0.67	1.06	1183
2200	_	_	_	_	_	_	0.02	0.95	1058	0.35	1.00	1111	0.39	1.02	1138	0.56	1.10	1222
2300	_	_	_	_	_	_	_	_	_	0.22	1.03	1149	0.26	1.06	1176	0.45	1.13	1261
2400	_	_	_	_	_	_	_	_	_	0.09	1.07	1187	0.14	1.09	1213	0.34	1.17	1300
2500	_	_	_	_	_	_	_	_	_		_	_		_	_	0.23	1.20	1340

LEGEND

See page 74 for general fan performance notes.

Brake Horsepower Input to Fan External Static Pressure (in. wg)

						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	790	0.40	353	896	0.53	470	990	0.67	599	1074	0.83	738	1151	1.00	886
1600	828	0.46	413	930	0.60	535	1021	0.75	669	1103	0.91	812	1179	1.09	965
1700	866	0.54	479	964	0.68	607	1053	0.84	746	1133	1.01	894	1207	1.18	1051
1800	905	0.62	553	1000	0.77	687	1085	0.94	831	1164	1.11	984	1236	1.29	1146
1900	944	0.71	635	1036	0.87	775	1119	1.04	924	1195	1.22	1082	1266	1.41	1248
2000	984	0.82	725	1072	0.98	871	1153	1.15	1025	1227	1.34	1189	1297	1.53	1360
2100	1024	0.93	824	1109	1.10	976	1188	1.28	1136	1260	1.47	1305	1328	1.67	1481
2200	1064	1.05	932	1147	1.23	1090	1223	1.41	1256	1294	1.61	1430	1360	1.81	1612
2300	1105	1.18	1050	1185	1.37	1215	1259	1.56	1386	1328	1.76	1566	1393	1.97	1752
2400	1146	1.33	1179	1223	1.52	1349	1295	1.72	1527	1362	1.93	1711	1426	2.14	1903
2500	1187	1.48	1317	1262	1.68	1494	1332	1.89	1677	1398	2.10	1868	1460	2.33	2065

						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Rpm Bhp Watts 1223 1.18 1045	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	
1500	1223	1.18	1045	1291	1.36	1212	1355	1.56	1388	1415	1.77	1573	1473	1.99	1765
1600	1249	1.27	1127	1316	1.46	1298	1379	1.66	1478	1439	1.87	1665	1496	2.09	1860
1700	1277	1249 1.27 1127			1.57	1392	1404	1.77	1575	1463	1.99	1766	1520	2.21	1965
1800	1305	1.48	1316	1369	1.68	1495	1430	1.89	1681	1489	2.11	1876	1545	2.34	2078
1900	1333	1.60	1423	1397	1.81	1606	1457	2.02	1797	1514	2.25	1995	_	_	l —
2000	1363	1.73	1540	1425	1.94	1727	1484	2.16	1922	1541	2.39	2124	_	_	_
2100	1393	1.87	1665	1454	2.09	1857	1512	2.31	2056	_	_	_	_	_	l —
2200	1424	2.03	1801	1484	2.25	1997	_	_	_	_	_	_	_	_	_
2300	1455	2.19	1946	_	_	_	_	_	_	_	_	_	_	_	_
2400	1487	2.37	2103	_	_	_	_	_	_	_	_	_	_	_	l —
2500	_	_	_	_	_	_	_	_	_	_	_	_	_	l —	l —

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 900 to 1300 rpm. All other rpms require a field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for general fan performance notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

30F060 (5 TO	NS) — HIG	H-STATIO	C MOTOR (BELT DR	IVE)*										
						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(0)	Rpm	790 0.40 353			Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	790	0.40	353	896	0.53	470	990	0.67	599	1074	0.83	738	1151	1.00	886
1600	828	3 0.46 413 930 0.60			535	1021	0.75	669	1103	0.91	812	1179	1.09	965	
1700	866	866 0.54 479			0.68	607	1053	0.84	746	1133	1.01	894	1207	1.18	1051
1800	905	866 0.54 479 905 0.62 553			0.77	687	1085	0.94	831	1164	1.11	984	1236	1.29	1146
1900	944	0.71	635	1036	0.87	775	1119	1.04	924	1195	1.22	1082	1266	1.41	1248
2000	984	0.82	725	1072	0.98	871	1153	1.15	1025	1227	1.34	1189	1297	1.53	1360
2100	1024	0.93	824	1109	1.10	976	1188	1.28	1136	1260	1.47	1305	1328	1.67	1481
2200	1064	1.05	932	1147	1.23	1090	1223	1.41	1256	1294	1.61	1430	1360	1.81	1612
2300	1105	1.18	1050	1185	1.37	1215	1259	1.56	1386	1328	1.76	1566	1393	1.97	1752
2400	1146	1.33	1179	1223	1.52	1349	1295	1.72	1527	1362	1.93	1711	1426	2.14	1903
2500	1187	1.48	1317	1262	1.68	1494	1332	1.89	1677	1398	2.10	1868	1460	2.33	2065

580F060 (5 TON	IS) — HIG	H-STATIO	C MOTOR (BELT DR	VE)* (co	nt)									
						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts												
1500 1600 1700 1800 1900 2000	1223 1249 1277 1305 1333 1363	1.18 1.27 1.37 1.48 1.60 1.73	1045 1127 1217 1316 1423 1540	1291 1316 1342 1369 1397 1425	1.36 1.46 1.57 1.68 1.81 1.94	1212 1298 1392 1495 1606 1727	1355 1379 1404 1430 1457 1484	1.56 1.66 1.77 1.89 2.02 2.16	1388 1478 1575 1681 1797 1922	1415 1439 1463 1489 1514 1541	1.77 1.87 1.99 2.11 2.25 2.39	1573 1665 1766 1876 1995 2124	1473 1496 1520 1545 1570 1596	1.99 2.09 2.21 2.34 2.48 2.63	1765 1860 1965 2078 2200 2333
2100 2200 2300 2400 2500	1393 1424 1455 1487 1520	1.87 2.03 2.19 2.37 2.56	1665 1801 1946 2103 2269	1454 1484 1514 1545 1577	2.09 2.25 2.42 2.60 2.79	1857 1997 2147 2308 2480	1512 1541 1571 1601	2.31 2.48 2.65 2.84	2056 2200 2355 2521	1568 1596 1625 —	2.55 2.71 2.89 —	2262 2411 2570 — —	1622 — — — —	2.79 — — — —	2475 — — — —

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{*}\text{Motor}$ drive range: 1300 to 1685 rpm. All other rpms require a field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.
 3. See page 74 for general fan performance notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

580F072,073 (6	TONS) —	STANDA	RD MOTO	R (BELT D	RIVE)*										
						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(OIIII)	Rpm	Bhp	Watts												
1800 1900	919 960	0.63 0.73	561 648	1010 1047	0.75 0.85	663 754	1095 1129	0.87 0.98	771 867	1174 1206	1.00 1.11	886 986	1250 1279	1.14 1.25	1008 1111
2000 2100	1001 1043	0.84 0.96	744 850	1085 1123	0.96 1.09	855 965	1163 1199	1.09 1.22	972 1086	1238 1271	1.23 1.37	1095 1213	1309 1340	1.38 1.52	1224 1346
2200 2300	1085 1127	1.09 1.23	966 1092	1162 1201	1.22	1086 1217	1235 1272	1.36	1211 1347	1305 1340	1.51 1.67	1342 1482	1372 1405	1.67	1479 1623
2400	1169	1.38	1229	1241	1.53	1359	1310	1.68	1493	1375	1.84	1633	1439	2.00	1778
2500 2600	1212 1255	1.55 1.73	1378 1539	1281 1322	1.70 1.89	1513 1678	1348 1386	1.86 2.05	1652 1822	1412 1448	2.02 2.22	1796 1970	1473 1508	2.19 2.39	1945 2124
2700 2800	1298 1341	1.93 2.14	1713 1899	1363 1404	2.09 2.31	1857 2048	1425 —	2.26	2005	_	_	_	_	_	_
2900 3000	1384	2.36	2099 —	_	_	_	_	_	_	_	_		_	_	_

						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1321	1.28	1137	1390	1.43	1273	1455	1.59	1415	1518	1.76	1563	1579	1.93	1718
1900	1348	1.40	1243	1415	1.56	1381	1479	1.72	1526	1541	1.89	1677	1601	2.06	1834
2000	1377	1.53	1359	1442	1.69	1500	1505	1.86	1648	1565	2.03	1801	1624	2.21	1961
2100	1406	1.67	1485	1470	1.83	1629	1531	2.00	1780	1591	2.18	1936	1648	2.36	2098
2200	1437	1.83	1621	1499	1.99	1769	1559	2.16	1923	1617	2.34	2082	_	_	_
2300	1468	1.99	1769	1529	2.16	1920	1587	2.34	2077	_	_	_	_	_	_
2400	1500	2.17	1928	1559	2.35	2083	_	_	_	_	_	_	_	_	
2500	1533	2.36	2098	_	_	_	_	_	_	_	_	_	_	_	
2600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
2700	1 —	_	_	_	_	_	_	—	_	_	_	_	l —	_	_
2800	1 —	_	_	_	_	_	_	—	_	_	_	_	l —	_	_
2900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for general fan performance notes.

580F072,073 (6	TONS) —	HIGH-ST	ATIC MOT	OR (BELT	DRIVE)*										
						E	xternal St	atic Pres	sure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	919	0.63	561	1010	0.75	663	1095	0.87	771	1174	1.00	886	1250	1.14	1008
1900	960	0.73	648	648 1047 0.85 754 744 1085 0.96 855			1129	0.98	867	1206	1.11	986	1279	1.25	1111
2000	1001	1001 0.84 744 1085 0.96 855			855	1163	1.09	972	1238	1.23	1095	1309	1.38	1224	
2100	1043	1001 0.84 744			1.09	965	1199	1.22	1086	1271	1.37	1213	1340	1.52	1346
2200	1085	1043 0.96 850 1085 1.09 966			1.22	1086	1235	1.36	1211	1305	1.51	1342	1372	1.67	1479
2300	1127	1043 0.96 850 1085 1.09 966 1127 1.23 1092			1.37	1217	1272	1.52	1347	1340	1.67	1482	1405	1.83	1623
2400	1169	1.38	1229	1241	1.53	1359	1310	1.68	1493	1375	1.84	1633	1439	2.00	1778
2500	1212	1.55	1378	1281	1.70	1513	1348	1.86	1652	1412	2.02	1796	1473	2.19	1945
2600	1255	1.73	1539	1322	1.89	1678	1386	2.05	1822	1448	2.22	1970	1508	2.39	2124
2700	1298	1.93	1713	1363	2.09	1857	1425	2.26	2005	1485	2.43	2158	1544	2.61	2315
2800	1341	2.14	1899	1404	2.31	2048	1464	2.48	2201	1523	2.66	2358	1580	2.84	2520
2900	1384	2.36	2099	1445	2.54	2253	1504	2.71	2410	1561	2.90	2572	_	_	_
3000	1428	2.60	2313	1487	2.78	2471	_	_	_	_	_	_	_	_	_

				_		E	xternal St	atic Pres	sure (in. w	g)			_		
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1321	1.28	1137	1390	1.43	1273	1455	1.59	1415	1518	1.76	1563	1579	1.93	1718
1900	1348	1.40	1243	1415	1.56	1381	1479	1.72	1526	1541	1.89	1677	1601	2.06	1834
2000	1377	1.53	1359	1442	1.69	1500	1505	1.86	1648	1565	2.03	1801	1624	2.21	1961
2100	1406	1.67	1485	1470	1.83	1629	1531	2.00	1780	1591	2.18	1936	1648	2.36	2098
2200	1437	1.83	1621	1499	1.99	1769	1559	2.16	1923	1617	2.34	2082	1673	2.53	2246
2300	1468	1.99	1769	1529	2.16	1920	1587	2.34	2077	1644	2.52	2239	1699	2.71	2406
2400	1500	2.17	1928	1559	2.35	2083	1616	2.53	2243	1672	2.71	2408	1726	2.90	2579
2500	1533	2.36	2098	1591	2.54	2257	1647	2.73	2421	_	_	_	_	_	<u> </u>
2600	1566	2.57	2281	1623	2.75	2444	_	_	_	_	_	_	_	_	<u> </u>
2700	1600	2.79	2477	_	_	_	_	_	_	_	_	_	_	_	_
2800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2900	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	_
3000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.
 3. See page 74 for general fan performance notes.

^{*}Motor drive range: 1070 to 1460 rpm. All other rpms require a field-supplied

^{*}Motor drive range: 1300 to 1685 rpm. All other rpms require a field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

580F090,091	(71/ ₂ TONS	S) — STA	NDARD N	IOTOR (E	BELT DR	IVE)*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	505	0.52	484	586	0.73	681	657	0.97	901	722	1.22	1142	782	1.50	1403
2300	513	0.55	509	592	0.76	708	663	1.00	931	727	1.26	1174	787	1.54	1437
2400	527	0.60	561	605	0.82	766	674	1.07	993	738	1.33	1241	796	1.62	1508
2500	543	0.66	617	618	0.89	828	686	1.14	1060	748	1.41	1312	806	1.70	1583
2550	550	0.69	647	625	0.92	860	692	1.17	1095	754	1.45	1349	811	1.74	1623
2600	558	0.73	677	632	0.96	894	698	1.21	1131	759	1.49	1388	816	1.78	1664
2700	574	0.80	742	645	1.03	964	710	1.29	1207	770	1.58	1469	826	1.88	1749
2800	589	0.87	811	659	1.11	1039	723	1.38	1287	782	1.67	1554	837	1.97	1839
2900	605	0.95	885	673	1.20	1119	736	1.47	1372	794	1.76	1644	848	2.07	1933
3000	621	1.03	963	688	1.29	1204	749	1.57	1463	806	1.87	1740	859	2.18	2033
3100	637	1.12	1046	702	1.39	1293	762	1.67	1558	818	1.97	1840	871	2.29	2139
3200	654	1.22	1135	717	1.49	1388	776	1.78	1658	831	2.09	1946	_	_	_
3300	670	1.32	1228	732	1.60	1488	789	1.89	1764	843	2.21	2057	_	_	_
3400	686	1.42	1328	747	1.71	1593	803	2.01	1876	856	2.33	2174	_	_	_
3500	703	1.54	1433	762	1.83	1705	817	2.14	1993	_	_	_	_	_	_
3600	720	1.66	1543	777	1.95	1822	832	2.27	2116	_	_	_	_	_	_
3700	736	1.78	1660	793	2.09	1944	_	_	_	_	_	_	_	_	_
3750	745	1.85	1721	801	2.15	2008	_	_	_	_	_	_	_	_	_

580F090,091 (71/ ₂ TONS	S) — STA	NDARD N	OTOR (E	BELT DR	IVE)* (con	t)								
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Omi)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	838	1.81	1683	891	2.12	1981	_	_	_	_	_	_	_	_	_
2300	842	1.84	1719	895	2.17	2019	_	_	_	_	_	_	_	_	_
2400	851	1.92	1793	903	2.25	2097	_	_	_	_	_	_	_	_	
2500	860	2.01	1873	911	2.34	2180	_	_	_	_	_	_	_	_	_
2550	865	2.05	1914	916	2.38	2223	_	_	_	_	_	_	_	_	_
2600	869	2.10	1957	_	_	_	_	_	_	_	_	_	_	_	
2700	879	2.19	2046	_	_	_	_	_	_	_	_	_	_	_	_
2800	889	2.29	2140	_	_	_	_	_	_	_	_	_	_	_	
2900	899	2.40	2239	_	_	_	_	_	_	_	_	_	_	_	
3000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3100	_			_	_	_	_	_	_	_	_	_	_	_	
3200	_			_	_	_	_	_	_	_	_	_	_	_	
3300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3750	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for General Fan Performance Notes.

^{*}Motor drive range: 590 to 840 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

580F090,091 (71/ ₂ TONS	3) — AL1	TERNATE I	MOTOR (BELT DI	RIVE)*				_					
A: 0						Ex	ternal St	atic Pres	ssure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(5)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	505	0.52	484	586	0.73	681	657	0.97	901	722	1.22	1142	782	1.50	1403
2300	513	0.55	509	592	0.76	708	663	1.00	931	727	1.26	1174	787	1.54	1437
2400	527	0.60	561	605	0.82	766	674	1.07	993	738	1.33	1241	796	1.62	1508
2500	543	0.66	617	618	0.89	828	686	1.14	1060	748	1.41	1312	806	1.70	1583
2550	550	0.69	647	625	0.92	860	692	1.17	1095	754	1.45	1349	811	1.74	1623
2600	558	0.73	677	632	0.96	894	698	1.21	1131	759	1.49	1388	816	1.78	1664
2700	574	0.80	742	645	1.03	964	710	1.29	1207	770	1.58	1469	826	1.88	1749
2800	589	0.87	811	659	1.11	1039	723	1.38	1287	782	1.67	1554	837	1.97	1839
2900	605	0.95	885	673	1.20	1119	736	1.47	1372	794	1.76	1644	848	2.07	1933
3000	621	1.03	963	688	1.29	1204	749	1.57	1463	806	1.87	1740	859	2.18	2033
3100	637	1.12	1046	702	1.39	1293	762	1.67	1558	818	1.97	1840	871	2.29	2139
3200	654	1.22	1135	717	1.49	1388	776	1.78	1658	831	2.09	1946	l – ,	l – ,	_
3300	670	1.32	1228	732	1.60	1488	789	1.89	1764	843	2.21	2057	_	_	_
3400	686	1.42	1328	747	1.71	1593	803	2.01	1876	856	2.33	2174	_	_	_
3500	703	1.54	1433	762	1.83	1705	817	2.14	1993	_	_	· – ,	I - 1	l – i	· —
3600	720	1.66	1543	777	1.95	1822	832	2.27	2116	_	_	I — ,	I	-	_
3700	736	1.78	1660	793	2.09	1944	_	_ i	I _ ,	_	-	I _ ,	l	-	
3750	745	1.85	1721	801	2.15	2008	- 1	— i	I — ,	_ ,	- 1	I — ,	I - 1	- 1	_

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	838	1.81	1683	891	2.12	1981	_	_	_	_	_	_	_	_	_
2300	842	1.84	1719	895	2.17	2019	_	_	_	_	_		_	_	_
2400	851	1.92	1793	903	2.25	2097	_	_	_	_	_	_	_	_	_
2500	860	2.01	1873	911	2.34	2180	_	_	_	_	_	_	_	_	_
2550	865	2.05	1914	916	2.38	2223	_	_	_	_	_	_	_	_	_
2600	869	2.10	1957	_	_	_	_	_	_	_	_	_	_	_	_
2700	879	2.19	2046	_	_	_	_	_	_	_	_	_	_	_	_
2800	889	2.29	2140	_	_	_	_	_	_	_	_		_	_	_
2900	899	2.40	2239	_	_	_	_	_	_	_	_		_	_	_
3000	_	_	_	_	_	_	_		_	_	_		_	_	_
3100	_	_	_	_	_	_	_	_	_	_	_		_	_	_
3200	_	_	_	_	_	_	_	_	_	_	_		_	_	_
3300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3400	_	_	_	_	_	_	_	_	_	_	_		_	_	_
3500	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3600	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3700	_	_	_	_	_	_	_		_	_	_	_	_	_	
3750	_	l _	_	l _	_		l _	_	_	_	_		l _	_	_

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for General Fan Performance Notes.

^{*}Motor drive range: 685 to 935 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	505	0.52	484	586	0.73	681	657	0.97	901	722	1.22	1142	782	1.50	1403
2300	513	0.55	509	592	0.76	708	663	1.00	931	727	1.26	1174	787	1.54	1437
2400	527	0.60	561	605	0.82	766	674	1.07	993	738	1.33	1241	796	1.62	1508
2500	543	0.66	617	618	0.89	828	686	1.14	1060	748	1.41	1312	806	1.70	1583
2550	550	0.69	647	625	0.92	860	692	1.17	1095	754	1.45	1349	811	1.74	162
2600	558	0.73	677	632	0.96	894	698	1.21	1131	759	1.49	1388	816	1.78	166
2700	574	0.80	742	645	1.03	964	710	1.29	1207	770	1.58	1469	826	1.88	174
2800	589	0.87	811	659	1.11	1039	723	1.38	1287	782	1.67	1554	837	1.97	183
2900	605	0.95	885	673	1.20	1119	736	1.47	1372	794	1.76	1644	848	2.07	193
3000	621	1.03	963	688	1.29	1204	749	1.57	1463	806	1.87	1740	859	2.18	203
3100	637	1.12	1046	702	1.39	1293	762	1.67	1558	818	1.97	1840	871	2.29	213
3200	654	1.22	1135	717	1.49	1388	776	1.78	1658	831	2.09	1946	882	2.41	224
3300	670	1.32	1228	732	1.60	1488	789	1.89	1764	843	2.21	2057	894	2.54	236
3400	686	1.42	1328	747	1.71	1593	803	2.01	1876	856	2.33	2174	907	2.67	248
3500	703	1.54	1433	762	1.83	1705	817	2.14	1993	870	2.46	2297	919	2.81	261
3600	720	1.66	1543	777	1.95	1822	832	2.27	2116	883	2.60	2425	932	2.95	275
3700	736	1.78	1660	793	2.09	1944	846	2.41	2245	896	2.75	2560	944	3.10	288
3750	745	1.85	1721	801	2.15	2008	853	2.48	2312	903	2.82	2630	951	3.18	296

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	838	1.81	1683	891	2.12	1981	941	2.46	2297	988	2.82	2629	1033	3.19	2976
2300	842	1.84	1719	895	2.17	2019	944	2.51	2336	992	2.86	2669	1037	3.24	3018
2400	851	1.92	1793	903	2.25	2097	952	2.59	2416	999	2.95	2752	1043	3.33	3104
2500	860	2.01	1873	911	2.34	2180	960	2.68	2502	1006	3.05	2842	1051	3.43	3196
2550	865	2.05	1914	916	2.38	2223	964	2.73	2547	1010	3.10	2888	1054	3.48	3243
2600	869	2.10	1957	920	2.43	2267	968	2.78	2593	1014	3.15	2935	1058	3.53	3292
2700	879	2.19	2046	929	2.53	2360	976	2.88	2689	1022	3.25	3035	1066	3.64	3395
2800	889	2.29	2140	938	2.64	2458	985	2.99	2791	1030	3.37	3140	_	_	_
2900	899	2.40	2239	948	2.75	2561	994	3.11	2898	1039	3.49	3250	_	_	_
3000	910	2.51	2343	958	2.86	2670	1004	3.23	3011	1048	3.61	3366	_	_	_
3100	921	2.63	2453	968	2.98	2783	1013	3.35	3128	_	_	_	_	_	_
3200	932	2.75	2569	978	3.11	2903	1023	3.49	3252	_	_	_	_	_	_
3300	943	2.88	2690	989	3.25	3029	1033	3.63	3382	_	_	_	_	_	_
3400	954	3.02	2816	1000	3.39	3159	_	_	_	_	_	_	_	_	_
3500	966	3.16	2950	1011	3.54	3297	_	_	_	_	_	_	_	_	_
3600	978	3.31	3088	1022	3.69	3442	_	_	_	_	_	_	_	_	_
3700	990	3.47	3233	_	_	_	_	_	_	_	_	_	_	_	_
3750	996	3.55	3308	_	_	_	_	_	_	_	_	_	_	_	

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 3.70.
 3. See page 74 for General Fan Performance Notes.

PERFORMANCE DATA (cont) FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

						Ex	ternal St.	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(51111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watt
2550	550	0.69	647	625	0.92	860	692	1.17	1095	754	1.45	1349	811	1.74	162
2600	558	0.73	677	632	0.96	894	698	1.21	1131	759	1.49	1388	816	1.78	166
2700	574	0.80	742	645	1.03	964	710	1.29	1207	770	1.58	1469	826	1.88	174
2800	589	0.87	811	659	1.11	1039	723	1.38	1287	782	1.67	1554	837	1.97	183
2900	605	0.95	885	673	1.20	1119	736	1.47	1372	794	1.76	1644	848	2.07	193
3000	621	1.03	963	688	1.29	1204	749	1.57	1463	806	1.87	1740	859	2.18	203
3100	637	1.12	1046	702	1.39	1293	762	1.67	1558	818	1.97	1840	871	2.29	213
3200	654	1.22	1135	717	1.49	1388	776	1.78	1658	831	2.09	1946	_		I —
3300	670	1.32	1228	732	1.60	1488	789	1.89	1764	843	2.21	2057	۱ _ ۱	_	١
3400	686	1.42	1328	747	1.71	1593	803	2.01	1876	856	2.33	2174	_	_	١ _
3500	703	1.54	1433	762	1.83	1705	817	2.14	1993	_	_	' .	۱ _ ۱	_	١ _
3600	720	1.66	1543	777	1.95	1822	832	2.27	2116	۱ _ ۱		¹ — ı	۱ _ ۱	_	' —
3700	736	1.78	1660	793	2.09	1944	_	' == '		_		' — '	! <u> </u>	_	١
3750	745	1.85	1721	801	2.15	2008		_	' —	_		' — '	· _	_	ا
3800	753	1.91	1783	808	2.22	2074		' _	' —	· _		' — '	· _	_	· _
3900	770	2.05	1912	824	2.37	2209		_	' —	_		' — '	· _	_	_
4000	787	2.20	2047	— —		'	l _ i	' _ 1	' _ '	! <u> </u>		' — '	! <u> </u>	l <u> </u>	١
4100	804	2.35	2189	' <u> </u>	· _ ·	' _ '	l _ i	' _ 1	' _ '	! <u> </u>		' — '	! <u> </u>	l <u> </u>	١
4200				۱ _ ۱	· _ ·	' _ '	l _ i	' _	' _ '	! <u> </u>		' _ '	! <u> </u>	l _ l	· _
4250		1 _ 1	' <u> </u>	· _ i	1 _ 1	· <u> </u>	l _ i	' _	' _ '	۱ <u> </u>		¹ <u> </u>	! <u> </u>	1 _ 1	!

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watt
2550	865	2.05	1914	916	2.38	2223	_	_	_	_	_	_	_	_	_
2600	869	2.10	1957	_	_	_		_			_			_	l —
2700	879	2.19	2046			_		_			_			_	l —
2800	889	2.29	2140			_		_			_			_	l —
2900	899	2.40	2239			_		_			_			_	_
3000	_	_	_			_		_			_			_	l —
3100	_		_		_	_			_	_	_	_	_		l —
3200	_	_	_		_	_		_	_		_	_	_	_	_
3300	_	_	_		_	_		_	_		_	_	_	_	_
3400	_	_	_		_	_		_	_		_	_	_	_	l —
3500	_	_	_		_	_		_	_		_	_	_	_	l —
3600	_	_	_		_	_		_	_		_	_	_	_	_
3700	_	_	_		_	_		_	_		_	_	_	_	_
3750	_	_	_		_	_		_	_		_	_	_	_	l —
3800	_	_	_		_	_		_	_		_	_	_	_	l —
3900	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4200	I —	_	_	l —	_	_	l —	_	_	_	_	_	_	_	l —
4250	_	l _	_	l			l <u> </u>	l <u> </u>	_		_		l <u> </u>		l _

LEGEND

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.
 See page 74 for General Fan Performance Notes.

^{*}Motor drive range: 685 to 935 rpm. All other rpms require field- supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6	•		0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2550	550	0.69	647	625	0.92	860	692	1.17	1095	754	1.45	1349	811	1.74	1623
2600	558	0.73	677	632	0.96	894	698	1.21	1131	759	1.49	1388	816	1.78	1664
2700	574	0.80	742	645	1.03	964	710	1.29	1207	770	1.58	1469	826	1.88	1749
2800	589	0.87	811	659	1.11	1039	723	1.38	1287	782	1.67	1554	837	1.97	1839
2900	605	0.95	885	673	1.20	1119	736	1.47	1372	794	1.76	1644	848	2.07	1933
3000	621	1.03	963	688	1.29	1204	749	1.57	1463	806	1.87	1740	859	2.18	2033
3100	637	1.12	1046	702	1.39	1293	762	1.67	1558	818	1.97	1840	871	2.29	2139
3200	654	1.22	1135	717	1.49	1388	776	1.78	1658	831	2.09	1946	882	2.41	2249
3300	670	1.32	1228	732	1.60	1488	789	1.89	1764	843	2.21	2057	894	2.54	2365
3400	686	1.42	1328	747	1.71	1593	803	2.01	1876	856	2.33	2174	907	2.67	2488
3500	703	1.54	1433	762	1.83	1705	817	2.14	1993	870	2.46	2297	919	2.81	2616
3600	720	1.66	1543	777	1.95	1822	832	2.27	2116	883	2.60	2425	932	2.95	2750
3700	736	1.78	1660	793	2.09	1944	846	2.41	2245	896	2.75	2560	944	3.10	2889
3750	745	1.85	1721	801	2.15	2008	853	2.48	2312	903	2.82	2630	951	3.18	2962
3800	753	1.91	1783	808	2.22	2074	861	2.55	2380	910	2.90	2701	957	3.26	3036
3900	770	2.05	1912	824	2.37	2209	875	2.70	2522	924	3.05	2848	970	3.42	3189
4000	787	2.20	2047	840	2.52	2351	890	2.86	2669	938	3.22	3002	984	3.59	3348
4100	804	2.35	2189	856	2.68	2499	905	3.03	2824	952	3.39	3162	l —	_	_
4200	821	2.51	2338	872	2.85	2655	920	3.20	2986	967	3.57	3331	_	_	_
4250	829	2.59	2415	880	2.93	2735	928	3.29	3069	974	3.66	3417	_	_	I —

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2550	865	2.05	1914	916	2.38	2223	964	2.73	2547	1010	3.10	2888	1054	3.48	3243
2600	869	2.10	1957	920	2.43	2267	968	2.78	2593	1014	3.15	2935	1058	3.53	3292
2700	879	2.19	2046	929	2.53	2360	976	2.88	2689	1022	3.25	3035	1066	3.64	3395
2800	889	2.29	2140	938	2.64	2458	985	2.99	2791	1030	3.37	3140	_	_	l —
2900	899	2.40	2239	948	2.75	2561	994	3.11	2898	1039	3.49	3250	_	_	l —
3000	910	2.51	2343	958	2.86	2670	1004	3.23	3011	1048	3.61	3366	_	_	l —
3100	921	2.63	2453	968	2.98	2783	1013	3.35	3128	_	_	_	_	_	l —
3200	932	2.75	2569	978	3.11	2903	1023	3.49	3252	_	_	_	_	_	l —
3300	943	2.88	2690	989	3.25	3029	1033	3.63	3382	_	_	_	_	_	<u> </u>
3400	954	3.02	2816	1000	3.39	3159	_	_	_	_	_	_	_	_	<u> </u>
3500	966	3.16	2950	1011	3.54	3297	_	_	_	_	_	_	_	_	l —
3600	978	3.31	3088	1022	3.69	3442	_			_	_	_	_	_	i —
3700	990	3.47	3233	_	_	_		_	_		_	_		_	l —
3750	996	3.55	3308		_	_		_	_		_	_		_	l —
3800	1002	3.63	3385	_	_	_	_	_	_	_	_	_	_	_	l —
3900	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4000	I —	_	_		_	_		_	_	_	_	_	_	_	i —
4100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
4250	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	l —

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{\star}\text{Motor}$ drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 3.70.
 3. See page 74 for General Fan Performance Notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

	<u></u>					Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(5)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	555	0.72	630	629	0.87	765	696	1.03	904	757	1.19	1048	814	1.36	1198
3100	568	0.78	686	641	0.94	825	706	1.10	968	766	1.27	1115	823	1.45	1269
3200	582	0.85	745	652	1.01	888	717	1.18	1035	776	1.35	1186	832	1.53	1343
3300	595	0.92	808	664	1.09	955	728	1.26	1106	786	1.44	1261	841	1.62	1421
3400	609	1.00	874	677	1.17	1026	739	1.35	1181	797	1.53	1340	851	1.71	1503
3500	623	1.08	945	689	1.25	1100	750	1.43	1259	807	1.62	1422	860	1.81	1589
3600	636	1.16	1019	702	1.34	1179	762	1.53	1341	817	1.72	1508	870	1.91	1679
3700	650	1.25	1097	714	1.44	1261	773	1.63	1428	828	1.82	1598	880	2.02	1772
3800	664	1.34	1179	727	1.54	1347	785	1.73	1518	839	1.93	1693	890	2.13	1870
3900	678	1.44	1266	740	1.64	1438	797	1.84	1613	850	2.04	1791	901	2.25	1973
4000	693	1.55	1356	753	1.75	1533	809	1.95	1712	861	2.16	1894	911	2.37	2080
4100	707	1.65	1451	766	1.86	1632	821	2.07	1816	873	2.28	2002	_	_	_
4200	721	1.77	1551	779	1.98	1736	833	2.19	1924	_			_	_	l —
4300	735	1.89	1656	792	2.10	1845	846	2.32	2037	_	_	_	_	_	l —
4400	750	2.01	1764	806	2.23	1958	_		_	_	_	_	_	_	l —
4500	764	2.14	1879	819	2.37	2077	_	_	_	_	_	_	_	_	l —
4600	779	2.28	1998	_			_	_	_	_	_	_	_	_	_
4700	_		_	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5000	1 _						_								l

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2	_		1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	867	1.54	1353	918	1.72	1513	966	1.91	1680	1012	2.11	1852	1056	2.31	2029
3100	876	1.63	1427	926	1.81	1590	973	2.00	1760	1019	2.20	1934	_	_	_
3200	884	1.71	1504	934	1.90	1671	981	2.10	1843	1026	2.30	2020	_	_	_
3300	893	1.81	1586	942	2.00	1755	988	2.20	1931	1033	2.40	2111	_	_	_
3400	902	1.90	1671	950	2.10	1844	996	2.30	2022	_	_	_	_	_	_
3500	911	2.01	1760	959	2.21	1937	_	_	_	_	_	_	_	_	_
3600	920	2.11	1854	967	2.32	2033	_	_	_	_	_	_	_	_	_
3700	929	2.22	1951	_	_	_	_	_	_	_	_	_	_	_	_
3800	939	2.34	2053	_	_	_	_	_	_	_	_	_	_	_	_
3900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4500	_	l —	<u> </u>	_	_	_	l —	_	_	_	_	<u> </u>	l —	_	_
4600	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
4700	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
5000	_	_	_	_		_	_	<u> </u>	_	_	_	_	_	l —	_

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.
 3. See page 74 for General Fan Performance Notes.

^{*}Motor drive range: 685 to 935 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

580F120,121 (10 TONS	— ALTI	ERNATE M	IOTOR (E	BELT DR	IVE)*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	555	0.72	630	629	0.87	765	696	1.03	904	757	1.19	1048	814	1.36	1198
3100	568	0.78	686	641	0.94	825	706	1.10	968	766	1.27	1115	823	1.45	1269
3200	582	0.85	745	652	1.01	888	717	1.18	1035	776	1.35	1186	832	1.53	1343
3300	595	0.92	808	664	1.09	955	728	1.26	1106	786	1.44	1261	841	1.62	1421
3400	609	1.00	874	677	1.17	1026	739	1.35	1181	797	1.53	1340	851	1.71	1503
3500	623	1.08	945	689	1.25	1100	750	1.43	1259	807	1.62	1422	860	1.81	1589
3600	636	1.16	1019	702	1.34	1179	762	1.53	1341	817	1.72	1508	870	1.91	1679
3700	650	1.25	1097	714	1.44	1261	773	1.63	1428	828	1.82	1598	880	2.02	1772
3800	664	1.34	1179	727	1.54	1347	785	1.73	1518	839	1.93	1693	890	2.13	1870
3900	678	1.44	1266	740	1.64	1438	797	1.84	1613	850	2.04	1791	901	2.25	1973
4000	693	1.55	1356	753	1.75	1533	809	1.95	1712	861	2.16	1894	911	2.37	2080
4100	707	1.65	1451	766	1.86	1632	821	2.07	1816	873	2.28	2002	922	2.50	2191
4200	721	1.77	1551	779	1.98	1736	833	2.19	1924	884	2.41	2114	933	2.63	2307
4300	735	1.89	1656	792	2.10	1845	846	2.32	2037	896	2.54	2231	944	2.77	2428
4400	750	2.01	1764	806	2.23	1958	858	2.45	2154	908	2.68	2352	_	_	_
4500	764	2.14	1879	819	2.37	2077	871	2.59	2276	920	2.82	2479	_	_	_
4600	779	2.28	1998	833	2.51	2200	883	2.74	2404	_	_	_	_	_	_
4700	793	2.42	2121	846	2.65	2328	896	2.89	2537	_	_	_	_	_	_
4800	808	2.56	2251	860	2.81	2462	_	_	_	_	_	_	_	_	_
4900	822	2.72	2385	_	_	_	_	_	—	_	_	_	_	_	_
5000	837	2.88	2525	_	_	_	_	_	_	_	_	_	_	_	_

				_		Ex	ternal Sta	atic Pres	sure (in. v	vg)			_		
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	867	1.54	1353	918	1.72	1513	966	1.91	1680	1012	2.11	1852	1056	2.31	2029
3100	876	1.63	1427	926	1.81	1590	973	2.00	1760	1019	2.20	1934	1062	2.41	2114
3200	884	1.71	1504	934	1.90	1671	981	2.10	1843	1026	2.30	2020	1069	2.51	2203
3300	893	1.81	1586	942	2.00	1755	988	2.20	1931	1033	2.40	2111	1076	2.62	229
3400	902	1.90	1671	950	2.10	1844	996	2.30	2022	1041	2.51	2205	1083	2.73	2393
3500	911	2.01	1760	959	2.21	1937	1004	2.41	2118	1048	2.62	2303	1091	2.84	2494
3600	920	2.11	1854	967	2.32	2033	1013	2.53	2217	1056	2.74	2406	_	_	_
3700	929	2.22	1951	976	2.43	2134	1021	2.65	2322	1064	2.86	2513		_	_
3800	939	2.34	2053	985	2.55	2239	1030	2.77	2430	_	_	_		_	_
3900	949	2.46	2159	995	2.68	2349	1039	2.90	2543		_			_	_
4000	959	2.59	2269	1004	2.81	2462	_	_		_	_		_	_	_
4100	969	2.72	2384	_	_		_	_	_	_	_		_	_	_
4200	979	2.85	2504		_	_	_	_	_	_	_		_	_	_
4300	_	_			_	_		_	_	_	_		_	_	_
4400	_	_	_		_	_		_	_	_	_		_	_	_
4500	_	_	_	_	_	_	_	_	_	_	_		_	_	_
4600	_	_	_	_	_	_	_	_	_	_	_		_	_	_
4700	_	_	_	_	_	_	_	_	_	_	_		_	_	_
4800	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5000	I —	l —	_	_		_	_		_	_		_	_	_	_

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.
 3. See page 74 for General Fan Performance Notes.

 $^{^{\}star}\text{Motor}$ drive range: 835 to 1085 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

						Ex	ternal Sta	atic Pres	ssure (in. w	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(51111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watt
3000	555	0.72	630	629	0.87	765	696	1.03	904	757	1.19	1048	814	1.36	1198
3100	568	0.78	686	641	0.94	825	706	1.10	968	766	1.27	1115	823	1.45	126
3200	582	0.85	745	652	1.01	888	717	1.18	1035	776	1.35	1186	832	1.53	134
3300	595	0.92	808	664	1.09	955	728	1.26	1106	786	1.44	1261	841	1.62	142
3400	609	1.00	874	677	1.17	1026	739	1.35	1181	797	1.53	1340	851	1.71	150
3500	623	1.08	945	689	1.25	1100	750	1.43	1259	807	1.62	1422	860	1.81	158
3600	636	1.16	1019	702	1.34	1179	762	1.53	1341	817	1.72	1508	870	1.91	167
3700	650	1.25	1097	714	1.44	1261	773	1.63	1428	828	1.82	1598	880	2.02	177
3800	664	1.34	1179	727	1.54	1347	785	1.73	1518	839	1.93	1693	890	2.13	187
3900	678	1.44	1266	740	1.64	1438	797	1.84	1613	850	2.04	1791	901	2.25	197
4000	693	1.55	1356	753	1.75	1533	809	1.95	1712	861	2.16	1894	911	2.37	208
4100	707	1.65	1451	766	1.86	1632	821	2.07	1816	873	2.28	2002	922	2.50	219
4200	721	1.77	1551	779	1.98	1736	833	2.19	1924	884	2.41	2114	933	2.63	230
4300	735	1.89	1656	792	2.10	1845	846	2.32	2037	896	2.54	2231	944	2.77	242
4400	750	2.01	1764	806	2.23	1958	858	2.45	2154	908	2.68	2352	955	2.91	255
4500	764	2.14	1879	819	2.37	2077	871	2.59	2276	920	2.82	2479	966	3.06	268
4600	779	2.28	1998	833	2.51	2200	883	2.74	2404	932	2.97	2611	978	3.21	282
4700	793	2.42	2121	846	2.65	2328	896	2.89	2537	944	3.13	2747	989	3.37	296
4800	808	2.56	2251	860	2.81	2462	909	3.05	2674	956	3.29	2889	1001	3.54	310
4900	822	2.72	2385	873	2.96	2601	922	3.21	2818	968	3.46	3037	1013	3.71	325
5000	837	2.88	2525	887	3.13	2745	935	3.38	2966	981	3.63	3189	1024	3.89	341

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	867	1.54	1353	918	1.72	1513	966	1.91	1680	1012	2.11	1852	1056	2.31	2029
3100	876	1.63	1427	926	1.81	1590	973	2.00	1760	1019	2.20	1934	1062	2.41	2114
3200	884	1.71	1504	934	1.90	1671	981	2.10	1843	1026	2.30	2020	1069	2.51	2203
3300	893	1.81	1586	942	2.00	1755	988	2.20	1931	1033	2.40	2111	1076	2.62	2295
3400	902	1.90	1671	950	2.10	1844	996	2.30	2022	1041	2.51	2205	1083	2.73	2393
3500	911	2.01	1760	959	2.21	1937	1004	2.41	2118	1048	2.62	2303	1091	2.84	2494
3600	920	2.11	1854	967	2.32	2033	1013	2.53	2217	1056	2.74	2406	1098	2.96	2600
3700	929	2.22	1951	976	2.43	2134	1021	2.65	2322	1064	2.86	2513	1106	3.09	2710
3800	939	2.34	2053	985	2.55	2239	1030	2.77	2430	1073	2.99	2625	1114	3.22	2824
3900	949	2.46	2159	995	2.68	2349	1039	2.90	2543	1081	3.12	2741	1122	3.35	2943
4000	959	2.59	2269	1004	2.81	2462	1048	3.03	2660	1090	3.26	2861	1130	3.49	3067
4100	969	2.72	2384	1014	2.94	2581	1057	3.17	2782	1098	3.40	2987	1139	3.64	3195
4200	979	2.85	2504	1024	3.08	2705	1066	3.31	2909	1107	3.55	3117	1147	3.79	3329
4300	990	3.00	2629	1034	3.23	2833	1076	3.46	3040	1117	3.71	3252	1156	3.95	3467
4400	1000	3.14	2758	1044	3.38	2966	1085	3.62	3177	1126	3.87	3392	1165	4.11	361
4500	1011	3.30	2892	1054	3.54	3104	1095	3.78	3319	1135	4.03	3537	1174	4.28	3759
4600	1022	3.45	3032	1064	3.70	3247	1105	3.95	3466	1145	4.20	3688	1183	4.46	391
4700	1033	3.62	3176	1075	3.87	3395	1115	4.12	3618	1155	4.38	3843	1193	4.64	4072
4800	1044	3.79	3326	1085	4.04	3549	1126	4.30	3775	1164	4.56	4004	1202	4.83	423
4900	1055	3.97	3482	1096	4.22	3708	1136	4.49	3938	1174	4.75	4171	1212	5.02	4406
5000	1066	4.15	3642	1107	4.41	3873	1146	4.68	4106	1184	4.95	4342	1221	5.22	4582

LEGEND

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 5.25.
 3. See page 74 for General Fan Performance Notes.

 $^{^{\}star}\text{Motor}$ drive range: 830 to 1130 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	676	1.19	1106	747	1.42	1328	811	1.66	1552	871	1.91	1779	927	2.15	2008
3800	690	1.27	1185	760	1.52	1414	823	1.76	1644	882	2.01	1876	938	2.26	2111
3900	705	1.36	1269	773	1.61	1503	835	1.86	1739	894	2.12	1977	948	2.38	2217
4000	719	1.45	1357	786	1.71	1597	848	1.97	1838	905	2.23	2082	959	2.50	2328
4100	734	1.55	1449	799	1.82	1695	860	2.08	1942	917	2.35	2192	970	2.62	2443
4200	748	1.66	1545	813	1.93	1797	872	2.20	2050	928	2.47	2305	981	2.75	2562
4300	763	1.76	1646	826	2.04	1903	885	2.32	2162	940	2.60	2423	992	2.88	2686
4400	778	1.88	1751	840	2.16	2014	898	2.44	2279	952	2.73	2546	1004	3.02	2814
4500	792	1.99	1860	853	2.28	2130	910	2.57	2401	964	2.87	2673	1015	3.16	2947
4600	807	2.12	1975	867	2.41	2250	923	2.71	2527	976	3.01	2805	1027	3.31	308
4700	822	2.25	2094	881	2.55	2375	936	2.85	2658	989	3.15	2942	1038	3.46	322
4800	837	2.38	2218	895	2.69	2505	949	3.00	2794	1001	3.31	3083	1050	3.62	3375
4900	852	2.52	2347	909	2.83	2640	963	3.15	2935	1014	3.46	3230	_	_	_
5000	867	2.66	2482	923	2.98	2781	976	3.30	3081	1026	3.63	3383	_	_	_
5100	882	2.81	2622	937	3.14	2926	989	3.47	3232	_	_	_	_	_	_
5200	897	2.97	2766	951	3.30	3077	1003	3.63	3389	_	_	_	_	_	_
5300	912	3.13	2917	966	3.47	3233	_	_	_	_	_	_	_	_	_
5400	927	3.30	3073	980	3.64	3395	_	_	_	_	_	_	_	_	_
5500	943	3.47	3234		_	_	_	_	_		_	_	_	_	_
5600	958	3.65	3402	_	_	_	_	_	_	_	_	_	_	_	_
5700	1 —	l —	_	_	_	_	_	_	_	_	_	_	_	_	_
5800	<u> </u>	_	_	_	_	_	_	_	_	_	_	_		_	_
5900	1 —	l —	_	_	_	_	_	_	_	_	_	_		_	_
6000	1 —	l —	_	_	_	_	_	_	_	_	_	_		_	_
6100	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6200	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6300	I —	l —	_	l —	_	_	_	_	_	_	_	_		_	_

580F150,151 (121/ ₂ TONS) — STANDARD MOTOR (BELT DRIVE)* (cont)															
A ! (!	External Static Pressure (in. wg)														
Airflow (Cfm)	1.2			1.4			1.6			1.8			2.0		
(•)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	981	2.40	2240	1031	2.65	2473	1079	2.91	2709	1125	3.16	2948	1169	3.42	3189
3800	990	2.52	2348	1040	2.77	2587	1088	3.03	2828	1133	3.30	3073	1177	3.56	3319
3900	1000	2.64	2459	1050	2.90	2705	1097	3.17	2951	1142	3.43	3201	1186	3.70	3452
4000	1011	2.76	2576	1059	3.03	2826	1106	3.30	3079	1151	3.58	3334	_	_	_
4100	1021	2.89	2697	1069	3.17	2953	1116	3.44	3210	_	_	_	_	_	_
4200	1031	3.03	2822	1079	3.31	3083	1125	3.59	3347	_	_	_	_	_	_
4300	1042	3.16	2951	1089	3.45	3218	_	_	_	_	_	_	_	_	_
4400	1053	3.31	3085	1100	3.60	3357	_	_	_	_	_	_	_	_	_
4500	1064	3.46	3224	_	_		_	_		_	_		_	_	_
4600	1075	3.61	3367	_	_	_	_	_	_	_	_	_	_	_	_
4700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5600	_	_	_	_	_	_	_	_		_	_	_	_	_	
5700	-	_	_	_	_		_	_	_	_	_	_	_	_	_
5800	1 —	_	_	_	_		_	_	_	_	_	_	_	_	_
5900	-	_	_	_	_		_	_	_	_	_	_	_	_	_
6000 6100	1 —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	1 —	_	_	_	_		_	_	_	_	_	_	_	_	_
6200 6300	1 —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0300			_	_		_	_		_	_	_	_	_		_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

NOTES:
1. Boldface indicates field-supplied drive is required.
2. Maximum continuous bhp is 3.70.
3. See page 74 for General Fan Performance Notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

`						EXTER	RNAL ST	ATIC PRI	ESSURE (i	in. wg)					
AIRFLOW (Cfm)		0.2			0.4			0.6		<u> </u>	8.0			1.0	
(51111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	676	1.19	1106	747	1.42	1328	811	1.66	1552	871	1.91	1779	927	2.15	2008
3800	690	1.27	1185	760	1.52	1414	823	1.76	1644	882	2.01	1876	938	2.26	2111
3900	705	1.36	1269	773	1.61	1503	835	1.86	1739	894	2.12	1977	948	2.38	2217
4000	719	1.45	1357	786	1.71	1597	848	1.97	1838	905	2.23	2082	959	2.50	2328
4100	734	1.55	1449	799	1.82	1695	860	2.08	1942	917	2.35	2192	970	2.62	2443
4200	748	1.66	1545	813	1.93	1797	872	2.20	2050	928	2.47	2305	981	2.75	2562
4300	763	1.76	1646	826	2.04	1903	885	2.32	2162	940	2.60	2423	992	2.88	2686
4400	778	1.88	1751	840	2.16	2014	898	2.44	2279	952	2.73	2546	1004	3.02	2814
4500	792	1.99	1860	853	2.28	2130	910	2.57	2401	964	2.87	2673	1015	3.16	2947
4600	807	2.12	1975	867	2.41	2250	923	2.71	2527	976	3.01	2805	1027	3.31	3085
4700	822	2.25	2094	881	2.55	2375	936	2.85	2658	989	3.15	2942	1038	3.46	3227
4800	837	2.38	2218	895	2.69	2505	949	3.00	2794	1001	3.31	3083	1050	3.62	3375
4900	852	2.52	2347	909	2.83	2640	963	3.15	2935	1014	3.46	3230	1062	3.78	3528
5000	867	2.66	2482	923	2.98	2781	976	3.30	3081	1026	3.63	3383	1074	3.95	3685
5100	882	2.81	2622	937	3.14	2926	989	3.47	3232	1039	3.80	3540	1086	4.13	3849
5200	897	2.97	2766	951	3.30	3077	1003	3.63	3389	1052	3.97	3702	1099	4.31	4017
5300	912	3.13	2917	966	3.47	3233	1016	3.81	3551	1065	4.15	3870	1111	4.49	4191
5400	927	3.30	3073	980	3.64	3395	1030	3.99	3719	1078	4.34	4044	1123	4.69	4370
5500	943	3.47	3234	994	3.82	3563	1044	4.17	3892	1091	4.53	4223	1136	4.88	4555
5600	958	3.65	3402	1009	4.01	3736	1057	4.37	4071	1104	4.73	4408	1149	5.09	4746
5700	973	3.83	3575	1023	4.20	3915	1071	4.56	4256	1117	4.93	4599	_	-	_
5800	988	4.03	3754	1038	4.40	4100	1085	4.77	4447	1130	5.14	4796	_	-	_
5900	1004	4.22	3939	1052	4.60	4292	1099	4.98	4645	_	l —	ı —	_	_	_
6000	1019	4.43	4131	1067	4.81	4489	1113	5.20	4848	_	_	_	_	-	_
6100	1034	4.64	4329	1082	5.03	4693	_	_	1 — I	_	_	_	_	_	_
6200	1050	4.86	4533	_		' —	_	_	I — I	_	_	_	_	-	_
6300	1065	5.09	4744	(—)	_	' - 1	_	-	! — i	· —	_	_	I — I	· —	_

580F150,151 (121/ ₂ TON	IS) — AL	TERNATE	MOTOR	(BELT D	RIVE)* (c	ont)								
AIDEL OV		•	•		•	EXTE	RNAL ST	ATIC PR	ESSURE (in. wg)	•				•
AIRFLOW (Cfm)		1.2			1.4			1.6			1.8			2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	981	2.40	2240	1031	2.65	2473	1079	2.91	2709	1125	3.16	2948	1169	3.42	3189
3800	990	2.52	2348	1040	2.77	2587	1088	3.03	2828	1133	3.30	3073	1177	3.56	3319
3900	1000	2.64	2459	1050	2.90	2705	1097	3.17	2951	1142	3.43	3201	1186	3.70	3452
4000	1011	2.76	2576	1059	3.03	2826	1106	3.30	3079	1151	3.58	3334	1194	3.85	3591
4100	1021	2.89	2697	1069	3.17	2953	1116	3.44	3210	1160	3.72	3471	1203	4.00	3733
4200	1031	3.03	2822	1079	3.31	3083	1125	3.59	3347	1169	3.87	3612	1212	4.16	3880
4300	1042	3.16	2951	1089	3.45	3218	1135	3.74	3487	1179	4.03	3758	1221	4.32	4031
4400	1053	3.31	3085	1100	3.60	3357	1145	3.90	3632	1188	4.19	3909	1230	4.49	4187
4500	1064	3.46	3224	1110	3.76	3502	1155	4.06	3782	1198	4.36	4064	1239	4.66	4348
4600	1075	3.61	3367	1121	3.91	3650	1165	4.22	3937	1208	4.53	4224	1249	4.84	4514
4700	1086	3.77	3515	1131	4.08	3805	1175	4.39	4096	1217	4.71	4389	1258	5.02	4684
4800	1097	3.93	3668	1142	4.25	3963	1186	4.57	4260	1228	4.89	4559	1268	5.21	4860
4900	1109	4.10	3826	1153	4.43	4128	1196	4.75	4430	1238	5.08	4734	_	_	_
5000	1120	4.28	3990	1164	4.61	4296	1207	4.94	4604		_		_	_	_
5100	1132	4.46	4159	1175	4.79	4471	1218	5.13	4784		_		_	_	_
5200	1144	4.65	4333	1187	4.99	4651	_	_	_		_		_	_	_
5300	1155	4.84	4512	1198	5.19	4836	_	_	_		_		_	_	_
5400	1167	5.04	4697	_	_	_	_	_	_		_		_	_	_
5500	1179	5.24	4889	_	_	_	_	_	_		_		_	_	_
5600	_	_		_	_	_	_	_	_		_		_	_	_
5700	_	l —	l —	l —	l —	_	_	l —	_	_	_	l —	l —	_	_
5800	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	_
5900	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	_
6000	_	_	_	_	_	_	_	_	_	_	_	_	l —	_	_
6100	_	_	l —	_	_	_	_	l —	_	_	_	l —	l —	_	_
6200	_	l —	l —	l —	l —	_	_	l —	_	_	_	l —	l —	_	_
6300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 5.25.
 3. See page 74 for General Fan Performance Notes.

 $^{^{\}star}\text{Motor}$ drive range: 830 to 1130 rpm. All other rpms require field-supplied drive.

GENERAL NOTES FOR FAN PERFORMANCE DATA TABLES

- Values include losses for filters, unit casing, and wet coils. See this page for accessory/FIOP static pressure information.
 Extensive motor and electrical testing on these units ensures that
- 2. Extensive motor and electrical testing on these units ensures that the full range of the motor can be utilized with confidence. Using fan motors up to the wattage ratings shown will not result in nuisance tripping or premature motor failure. Unit warranty will not be
- affected. See Evaporator-Fan Motor Performance table on page 79 for additional information.
- Use of a field-supplied motor may affect wire sizing. Contact your Bryant representative for details.
- Interpolation is permissible. Do not extrapolate. (Belt drive units only.)

OUTDOOR SOUND POWER (Total Unit)

	SOUND	A-WEIGHTED				OCTA\	/E BANDS			
UNIT 580F	RATING 60 Hz (dB)	(dB)	63	125	250	500	1000	2000	4000	8000
036-072	81	80.5	56.8	75.8	72.4	72.9	74.8	75.4	71.3	69.1
073	80	80.0	59.1	68.9	68.7	71.9	74.0	68.9	65.7	59.0
090	87	86.4	83.2	87.4	83.5	82.8	83.0	77.7	71.8	67.0
091, 103	82	82.0	62.2	69.3	71.5	74.7	76.2	72.9	68.7	61.5
120	88	87.6	97.6	90.4	85.7	84.8	83.9	77.5	71.3	65.8
121	84	84.0	64.6	71.7	73.3	76.9	77.6	73.7	70.6	63.7
150	87	86.4	83.7	87.2	83.4	82.8	83.0	77.7	71.8	67.0
151	86	86.0	63.7	69.9	72.5	78.2	81.1	77.3	73.3	66.8

NOTE: Indoor sound power is available in Bryant's Electronic Catalog program (ECAT) for specific operating parameters.

ACCESSORY/FIOP ECONOMIZER IV AND ECONOMI\$ER2 STATIC PRESSURE* (in. wg) — 580F036-073

COMPONENT	CFM									
COMPONENT	1250	1500	1750	2000	2250	2500	2750	3000		
Vertical EconoMi\$er IV and EconoMi\$er2	0.045	0.065	0.08	0.12	0.145	0.175	0.22	0.255		
Horizontal EconoMi\$er IV and EconoMi\$er2	_	_	0.1	0.125	0.15	0.18	0.225	0.275		

LEGEND

FIOP — Factory-Installed Option

*The static pressure must be added to external static pressure. The sum and the evaporator entering-air cfm should be used in conjunction with the Fan Performance tables to determine indoor blower rpm and watts.

ACCESSORY/FIOP ECONOMISER IV AND ECONOMI\$ER2 STATIC PRESSURE* (in. wg) — 580F090-151

COMPONENT							CF	М						
	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500	4750	5000	5250	6250
Vertical EconoMi\$er IV and EconoMi\$er2	0.06	0.075	0.09	0.115	0.13	0.15	0.17	0.195	0.22	0.25	0.285	0.325	0.36	_
Horizontal EconoMi\$er IV and EconoMi\$er2	_	0.1	0.125	0.15	0.18	0.21	0.25	0.275	0.3	0.34	0.388	_	_	_

LEGEND

FIOP — Factory-Installed Option

*The static pressure must be added to external static pressure. The sum and the evaporator entering-air cfm should then be used in conjunction with the Fan Performance tables to determine blower rpm and watts.

PERFORMANCE DATA (cont) FAN RPM AT MOTOR PULLEY SETTINGS* — 580F036-073

LINUT FOOT						MOTOR P	ULLEY TUR	RNS OPEN					
UNIT 580F	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/2	6
036†	1045	1009	973	937	901	865	829	793	757	721	685	_	_
036**	1455	1423	1392	1360	1328	1297	1265	1233	1202	1170	1138	1107	1075
048†	1175	1135	1094	1054	1013	973	932	892	851	811	770	_	_
048**	1455	1423	1392	1360	1328	1297	1265	1233	1202	1170	1138	1107	1075
060†	1300	1266	1233	1200	1166	1133	1100	1066	1033	1000	966	933	900
060**	1685	1647	1608	1570	1531	1493	1454	1416	1377	1339	1300	_	_
072,073††	1460	1421	1382	1343	1304	1265	1226	1187	1148	1109	1070	_	_
072,073**	1685	1647	1608	1570	1531	1493	1454	1416	1377	1399	1300	_	_

^{*}Approximate fan rpm shown

FAN RPM AT MOTOR PULLEY SETTINGS* — 580F090-151

LINUT FOOF					M	OTOR PULL	EY TURNS	OPEN					
UNIT 580F	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/ ₂	6
090,091†	840	815	790	765	740	715	690	665	635	615	590	_	_
090,091**	935	910	885	860	835	810	785	760	735	710	685	_	_
090,091††	1080	1025	1007	988	970	952	933	915	897	878	860	_	_
103†	935	910	885	860	835	810	785	760	735	710	685	_	_
103††	1080	1025	1007	988	970	952	933	915	897	878	860	_	_
120,121†	935	910	885	860	835	810	785	760	735	710	685	_	_
120,121***	1085	1060	1035	1010	985	960	935	910	885	860	835	_	_
120,121††	1130	1112	1087	1062	1037	1012	987	962	937	912	887	862	83
150,151†	1080	1060	1035	1015	990	970	950	925	905	880	860	_	_
150,151***	1130	1112	1087	1062	1037	1012	987	962	937	912	887	862	83

ALTITUDE COMPENSATION* — 580F036-073 STANDARD UNITS

ELEVATION	74,000 AND NOMIN	115,000 BTUH AL INPUT	150,00 NOMIN	00 BTUH AL INPUT
(ft)	Natural Gas Orifice Size†	Liquid Propane Orifice Size†	Natural Gas Orifice Size†	Liquid Propane Orifice Size†
0-2,000	33	43	30	37
2,000	36	44	31	39
3,000	36	45	31	40
4,000	37	45	32	41
5,000	38	46	32	42
6,000	40	47	34	43
7,000	41	48	35	43
8,000	42	49	36	44
9,000	43	50	37	45
10,000	44	50	39	46
11,000	45	51	41	47
12,000	46	52	42	48
13,000	47	52	43	49
14,000	48	53	44	50

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, heat input rate should be reduced at higher altitudes. †Orifices available through your local Bryant distributor.

ALTITUDE COMPENSATION* — 580F036-073 **LOW NOX UNITS**

ELEVATION (ft)	60,000 AND 90,000 BTUH NOMINAL INPUT	120,000 BTUH NOMINAL INPUT
(11)	Natural Gas Orifice Size†	Natural Gas Orifice Size
0-2,000	38	32
2,000	40	33
3,000	41	35
4,000	42	36
5,000	43	37
6,000	43	38
7,000	44	39
8,000	45	41
9,000	46	42
10,000	47	43
11,000	48	44
12,000	49	44
13,000	50	46
14,000	51	47

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, the input rate should be reduced at higher altitudes. †Orifices are available through your local Bryant distributor.

ALTITUDE COMPENSATION* — 580F090-151

ELEVATION		00, AND 224,000 MINAL INPUT	250,00 NOMIN	00 BTUH AL INPUT
(ft)	Natural Gas Orifice Size†	Liquid Propane Orifice Size†	Natural Gas Orifice Size†	Liquid Propane Orifice Size†
0-2,000	31	41	30	38
2,000	32	42	30	39
3,000	32	42	31	40
4,000	32	42	32	41
5,000	33	43	33	42
6,000	34	43	34	43
7,000	35	44	35	43
8,000	36	44	36	44
9,000	37	45	37	44
10,000	38	46	38	45
11,000	39	47	39	45
12,000	40	47	40	46
13,000	41	48	41	47
14,000	42	48	42	47

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, heat input rate should be reduced at higher altitudes. †Orifices available through your local Bryant distributor.

ALTITUDE DERATING FACTOR*

ELEVATION (ft)	MAXIMUM HEATING VALUE (Btu/ft³)
0-2,000	1,100
2,001-3,000	1,050
3,001-4,000	1,000
4,001-5,000	950
5,001-6,000	900

^{*}Derating of the unit is not required unless the heating value of the gas exceeds the values listed in the table above, or if the elevation exceeds 6000 ft. Derating conditions must be 4% per thousand ft above 2000 ft. For example, at 4000 ft, if the heating value of the gas exceeds 1000 Btu/ft³, the unit will require a 16% derating. For elevations above 6000 ft, the same formula applies. For example, at 7000 ft, the unit will require a 28% derating of the maximum heating value per the National Fuel Gas Code.

IMPORTANT: Local utility companies may be reducing heat content of gas at altitudes above 2000 ft. If this is being done, changing spuds may not be required.

[†]Indicates alternate motor and drive package.

^{**}Indicates high-static motor and drive package. ††Indicates standard motor and drive package.

^{*}Approximate fan rpm shown. †Indicates standard motor and drive package. **Indicates alternate drive package only.

^{††}Indicates high-static motor and drive package.
***Indicates alternate motor and drive package.

Vertical EconoMi\$er IV and EconoMi\$er2 Performance Data (580F036-151)

POWER EXHAUST OPTIONS

	VERTICAL — MOUNTED IN ECONO	MIZER HOOD		
POWER EXHAUST PART NO.	POWER EXHAUST DESCRIPTION	APPLICATION USAGE	POWER OUTPUT (Hp per fan)	NO. FANS
CRPWREXH030A01	Power Exhaust System (208/230-1-60)	036-073	0.23	2
CRPWREXH021A01	Power Exhaust System (460-3-60)	036-073	0.24	2
CRPWREXH022A01	Power Exhaust System (208/230-1-60)	090-151	0.47	2
CRPWREXH023A01	Power Exhaust System (460-3-60)	090-151	0.37	2
	HORIZONTAL — MOUNTED IN RETUR	N DUCTWORK		
POWER EXHAUST PART NO.	POWER EXHAUST DESCRIPTION	APPLICATION USAGE	POWER OUTPUT (Hp per fan)	NO. FANS
CRPWREXH028A01	Horizontal Power Exhaust (208/230-1-60)	All	0.48	1
CRPWREXH029A01	Horizontal Power Exhaust (460-3-60)	All	0.48	1

Horizontal EconoMi\$er IV and EconoMi\$er2 Performance Data (580F036-151)

OPTIONAL POWER EXHAUST POWER REQUIREMENTS

	AMPS AT	MOCP						
UNIT SIZE	230 V (2 Fans Running)	230 VAC	460 VAC	575 VAC				
580F036-073	1.40 Amps at 60 Hz	15 0 omno	1F 0 omno	15 0 omno				
580F090-151	3.04 Amps at 60 Hz	15.0 amps	15.0 amps	15.0 amps				

LEGEND

MOCP — Maximum Overcurrent Protection

EVAPORATOR-FAN MOTOR EFFICIENCY

UNIT 580F	MOTOR EFFICIENCY (%)
036,048	75
060	74/84*
072, 073	84
090-121	80
150, 151	87

*Single phase/three-phase.

NOTE: The EPACT (Energy Policy Act of 1992) regulates energy requirements for specific types of indoor fan motors. Motors regulated by EPACT include any general purpose, T-frame (three-digit, 143 and larger), single-speed, foot mounted, polyphase, squirrel cage induction motors of NEMA (National Electrical Manufacturers Association) design A and B, manufactured for use in the United States. Ranging from 1 to 200 Hp, these continuous-duty motors operate on 230 and 460 volt, 60 Hz power. If a motor does not fit into these specifications, the motor does not have to be replaced by an EPACT-compliant energy-efficient motor. Variable-speed motors are exempt from EPACT compliance requirements. Therefore, the indoor-fan motors for these units are exempt from these requirements.

EVAPORATOR-FAN MOTOR PERFORMANCE

UNIT 580F	EVAPORATOR-FAN MOTOR	UNIT VOLTAGE	MAXIMUM ACCEPTABLE CONTINUOUS BHP*	MAXIMUM ACCEPTABLE OPERATING WATTS	MAXIMUM AMP DRAW
		208/230			2.8
	Standard	460	0.34	440	1.3
		575			1.3
		208/230			4.9
036	Alternate	460	1.20	1000	2.1
		575			2.1
		208/230			6.0
	High Static	460	2.40	2120	3.0
		575			3.0
		208/230			3.5
	Standard	460	0.75	850	1.8
		575			1.8
		208/230			4.9
048	Alternate	460	1.20	1000	2.1
	•	575			2.1
		208/230			6.0
	High Static	460	2.40	2120	3.0
		575			3.0
		208/230			5.9
	Standard	460	1.20	1340	3.2
	Jian Jan J	575	0		3.2
		208/230			6.6/5.2†
060	Alternate	460	1.30/2.40†	2120	2.6
000	Alternate	575	1.50/2.40	2120	3.0
		208/230			8.6
	High Static	460	2.90	2562	3.9
	riigii Static	575	2.90	2302	3.9
		208/230			5.2
	Standard	460	2.40	2120	3.0
	Standard	575	2.40	2120	3.0
072,073					
	Libert Otestie	208/230	0.00	0500	8.6
	High Static	460	2.90	2562	3.9
		575			3.9
	Standard,	208/230	0.40	0.400	6.7
	Alternate	460	2.40	2120	3.0
090,091		575			3.0
•		208/230		2010	12.2
	High Static	460	3.70	3313	5.5
		575			5.5
		208/230			6.7
	Standard	460	2.40	2120	3.0
103		575			3.0
		208/230			12.2
	High Static	460	3.70	3313	5.5
		575			5.5
		208/230			6.7
	Standard	460	2.40	2120	3.0
		575			3.0
		208/230			8.6
120,121	Alternate	460	2.90	2615	3.9
		575			3.9
		208/230			17.3
	High Static	460	5.25	4400	8.5
	•	575			8.5
		208/230			12.2
	Standard	460	3.70	3313	5.5
	•	575	-		5.5
150, 151		208/230			17.3
	Alternate	460	5.25	4400	8.5
		575		1	8.5

LEGEND

BHP — Brake Horsepower

*Extensive motor and electrical testing on these units ensures that the full horsepower range of the motors can be utilized with confidence. Using your fan motors up to the horsepower ratings shown in this table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

†Single phase/three-phase.

NOTE: High-static motor not available on single-phase units.

ELECTRICAL DATA

UNIT SIZE 580F	NOMINAL V-PH-Hz	IFM TYPE	CONV	VOLT RAN		СОМР	RESSOR	(each)	OFM ((each)	IFM FLA	COMBUSTION FAN MOTOR	POWER	SUPPLY	MINIMU	
3001	V-F II-IIZ	IIFE	OUTLET	Min	Max	Qty	RLA	LRA	Qty	FLA	FLA	FLA	MCA	MOCP†	FLA	LRA
		STD	NO								3.5		17.7	25	17	85
		ם	YES								3.3		23.7	25	23	90
	208/230-3-60	ALT	NO	187	254	1	10.2	75	1	1.4	4.9	0.6	19.1	25	19	90
	200/230-3-00	ALI	YES	107	254	'	10.2	75	'	1.4	4.5	0.0	25.1	30	25	95
		HIGH	NO								5.2		19.4	25	19	109
		111011	YES								0.2		25.4	30	25	114
036		STD	NO								1.3		7.6	15	7	44
(3 Ton)		0.5	YES										10.3	15	10	47
(,	460-3-60	ALT	NO	414	508	1	4.4	40	1	0.8	2.1	0.3	8.4	15	8	48
			YES						-				11.1	15	11	50
		HIGH	NO								2.6		8.9	15	9	57
			YES										11.6	15	11	59
	ALT	ALT	NO								1.9		7.1	15	7	37
	575-3-60 HIGI		YES	518	632	1	3.7	31	1	0.6		0.3	9.3	15	9	39
		HIGH	NO YES								2.0		7.2 9.4	15 15	8 10	44 45
-			NO NO									24.2	30	23	101	
		STD	YES								3.5		30.2	35	29	106
			NO NO										25.6	30	25	105
	208/230-3-60	ALT	YES	187	254	1	15.4	90	1	1.4	4.9	0.6	31.6	35	30	110
			NO NO										25.9	30	25	124
		HIGH	YES								5.2		31.9	35	31	129
			NO										13.0	20	13	51
048		STD	YES								1.8		15.7	20	15	53
(4 Ton)			NO										13.3	20	13	53
, ,	460-3-60	ALT	YES	414	508	1	8.3	45	1	0.8	2.1	0.3	16.0	20	15	55
	HIG		NO										13.8	20	13	62
		HIGH	YES								2.6		16.5	20	16	64
		41.7	NO										10.5	15	10	42
		ALT	YES	-10		١.,					1.9		12.7	15	12	43
	575-3-60		NO	518	632	1 6.4	6.4 36	1	0.6		0.3	10.6	15	10	49	
		HIGH	YES								2.0		12.8	15	12	50

LEGEND

FLA — HACR — IFM — LRA — MCA — MOCP — NEC —

NEC OFM

*Used to determine minimum disconnect per NEC. †Fuse or HACR circuit breaker.

NOTES:

NOTES:
 In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.
 Unbalanced 3-Phase Supply Voltage
 Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltage imbalance.

% Voltage Imbalance

Example: Supply voltage is 460-3-60.

AB = 452 v
BC = 464 v
AC = 455 v
Average Voltage =
$$\frac{452 + 464 + 455}{3}$$

$$= \frac{1371}{3}$$

$$= 457$$

Determine maximum deviation from average voltage. (AB) 457-452=5 v (BC) 464-457=7 v (AC) 457-455=2 v

Maximum deviation is 7 v.

Determine percent of voltage imbalance.

% Voltage Imbalance =
$$100 \times \frac{7}{457}$$

= 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

For units with power exhaust: If a single power source is to be used, size wire to include power exhaust MCA and MOCP. Check MCA and MOCP when power exhaust is powered through the unit (must be in accordance with NEC and/or local codes). Determine the new MCA including the power exhaust using the following formula:

MCA New = MCA unit only + MCA of Power Exhaust

For example, using a 580F060 unit with MCA = 28.9 and MOCP = 35, with CRPWREXH030A01 power exhaust. MCA New = 28.9 amps + 1.6 amps = 30.5 amps

If the new MCA does not exceed the published MOCP, then MOCP would not change. The MOCP in this example is 35 amps, the MCA New is below 35, therefore the MOCP is acceptable. If "MCA New" is larger than the published MOCP, raise the MOCP to the next larger size. For separate power, the MOCP for the power exhaust will be 15 amps per NEC.

POWER EXHAUST ELECTRICAL DATA

POWER EXHAUST	APPLICATION	MCA	MCA	MCA	MOCP (separate
PART NO.	USAGE	(230 V)	(460 V)	(575 V)	power source only)
CRPWREXH030A01	036-073*	1.6	N/A	0.64	15
CRPWREXH021A01	036-073	N/A	0.68	N/A	15
CRPWREXH022A01	090-151*	3.4	N/A	1.32	15
CRPWREXH023A01	090-151	N/A	1.4	N/A	15
CRPWREXH028A01	ALL*	1.7	N/A	0.68	15
CRPWREXH029A01	ALL	N/A	0.7	N/A	15

^{*}Single or three phase.

ELECTRICAL DATA (cont)

UNIT SIZE NOMINAL 580F V-PH-Hz		IFM	CONV	VOLT RAN		COMP	RESSOR	(each)	OFM ((each)	IFM	COMBUSTION FAN MOTOR	POWE	R SUPPL	MINIMU	JM UNIT ECT SIZE*
580F	V-PH-Hz	TYPE	OUTLET	Min	Max	Qty	RLA	LRA	Qty	FLA	FLA	FLA	MCA	MOCP†	FLA	LRA
		STD	NO								5.9		27.3	35	27	128
			YES NO										33.3 26.6	40 35	32 26	133 148
	208/230-3-60	ALT	YES	187	254	1	16	114	1	1.4	5.2	0.6	32.6	35	32	153
		HIGH	NO YES								7.5		28.9	35	29	174
			NO NO										34.9 13.2	40 20	34 13	179 71
_060		STD	YES								3.1		15.9	20	15	74
(5 Ton)	460-3-60	ALT	NO YES	414	508	1	7.4	64	1	0.8	2.6	0.3	12.7 15.4	15 20	12 15	81 84
			NO NO								0.4		13.5	20	13	93
		HIGH	YES								3.4		16.2	20	16	96
		ALT	NO YES								1.9		10.4 12.6	15 15	11 12	65 66
	575-3-60	HICH	NO	518	632	1	6.2	52	1	0.6	2.0	0.3	11.2	15	11	74
		HIGH	YES								2.0		13.5	15	13	74
		STD	NO YES								5.2		32.4 38.4	40 45	31 37	180 184
	208/230-3-60	HIGH	NO	187	254	1	20.6	146	1	1.4	7.5	0.6	34.7	40	34	205
		TIIGH	YES								7.5		40.7	45	39	210
072		STD	NO YES								2.6		15.3 18.0	20 20	15 17	90 92
(6 Ton)	460-3-60	HIGH	NO	414	508	1	9.5	73	1	0.9	3.4	0.3	16.1	20	16	103
			YES NO								0		18.8 12.1	25 15	18 12	105 71
	575.0.00	STD	YES	540				-o.4			2.0		13.3	20	13	72
	575-3-60	HIGH	NO	518	632	1	7.6	58.4	1	0.6	2.8	0.3	12.9	15	13	80
-			YES NO								2.0		14.1 32.4	20 40	15 31	81 180
	000/000 0 00	STD	YES	407	054		00.0	4.40			5.2	0.0	38.4	45	37	184
	208/230-3-60	HIGH	NO	187	254	1	20.6	146	1	1.4	7.5	0.6	34.7	40	34	205
			YES NO										40.7 15.4	45 20	39 15	210 90
073	460-3-60	STD	YES	44.4	500	4	0.5	70	4	0.0	2.6	0.2	18.0	20	17	92
(6 Ton)	(6 Ton) 460-3-60 HI	HIGH	NO	414	508	1	9.5	73	1	0.9	3.4	0.3	16.2	20	16	103
			YES NO										18.8 12.3	25 15	18 13	105 75
		STD	YES	518	632	1	7.6	62	1	0.6	1.9	0.3	14.4	20	15	77
	373-3-60	HIGH	NO	310	032	'	7.0	02	1	0.6	2.0	0.5	13.1	20	14	84
			YES NO										15.3 40.1	20 45	16 42	86 229
		STD	YES								5.8		46.1	50	48	233
	208/230-3-60	ALT	NO YES	187	254	2	14	91	2	1.4	5.8	0.6	40.1	45	42	229
			NO NO							,			46.1 44.9	50 50	48 48	233 273
		HIGH	YES								10.6		50.9	60	53	273
		STD	NO YES								2.6		18.4 24.4	20 25	19 22	108 110
090	400.0.00	ALT	NO NO	44.4	500		0.4	40	0	0.7	0.0	0.0	18.4	20	19	108
(7 ¹ / ₂ Ton)	460-3-60	ALT	YES	414	508	2	6.4	42	2	0.7	2.6	0.3	24.4	25	22	110
		HIGH	NO YES								4.8		20.6	25 30	22 24	130 132
		STD	NO								2.0		14.9	20	16	97
		STD	YES							,	2.0		20.9	25	18	99
	575-3-60	ALT	NO YES	518	632	2	5.2	39	2	0.6	2.0	0.3	14.9 20.9	20 25	16 18	97 99
		HIGH	NO								2.8		16.7	20	18	114
<u> </u>			YES NO			-	-				2.0		19.4 40.1	25 45	20 42	117 229
		STD	YES								5.8		44.9	50	42	234
	208/230-3-60	ALT	NO	187	254	2	14	91	2	1.4	5.8	0.6	40.1	45	42	229
	_55,250 0 00		YES NO	.5,	257	-			_		5.0	5.0	44.9 44.9	50 50	48 48	234 273
		HIGH	YES								10.6		49.7	60	53	277
		STD	NO								2.6		18.4	20	19	108
001			YES NO							,			20.6 18.4	25 20	22 19	110 108
091 (7¹/ ₂ Ton)	460-3-60	ALT	YES	414	508	2	6.4	42	2	0.7	2.6	0.3	20.6	25	22	110
		HIGH	NO VEC								4.8		20.6	25	22	130
			YES NO										22.8 14.9	25 20	24 16	132 97
		STD	YES								2.0		16.6	20	18	99
	575-3-60	ALT	NO VEO	518	632 2	2	5.2	39	2	2 0.6	2.0		14.9	20	16	97
			YES NO										16.6 16.7	20 20	18 18	99 114
		HIGH	YES								2.8		18.4	20	20	116

ELECTRICAL DATA (cont)

UNIT SIZE 580F	NOMINAL V-PH-Hz	IFM TYPE	CONV OUTLET		TAGE NGE	СОМРІ	RESSOR	(each)	OFM ((each)	IFM FLA	COMBUSTION FAN MOTOR	POWER	SUPPLY	MINIMU	IM UNIT ECT SIZE*
JOUF	V-F П-П2	IIFE		Min	Max	Qty	RLA	LRA	Qty	FLA	FLA	FLA	MCA	MOCP†	FLA	LRA
		STD	NO								5.8		44.3	50	46	272
	208/230-3-60	0.10	YES	187	254	2	17.3	120.0	2	1.4	5.0	0.6	49.1	60	52	277
		HIGH	NO				-				10.6		49.1	60	52	316
			YES			ļ							53.9	60	57	320
400		STD	NO YES								2.6		21.0	25 30	22 24	149 151
103 (8 ¹ / ₂ Ton)	460-3-60		NO NO	414	508	2	7.9	70.0	2	0.7		0.3	23.2	30	24	171
(6 /2 1011)		HIGH	YES								4.8		25.4	30	27	173
			NO										16.7	20	17	109
		STD	YES						_		2.0		18.4	25	19	111
	575-3-60	111011	NO	518	632	2	5.5	50.0	2	0.6		0.3	18.5	25	19	126
		HIGH	YES								2.8		20.2	25	21	128
		STD	NO								5.8		44.2	50	46	307
		310	YES								5.6		50.2	60	52	311
	208/230-3-60	ALT	NO	187	254	2	15.8	130	2	1.4	7.5	0.6	45.9	50	48	326
	200/230-3-00	ALI	YES	107	254		13.0	130		1.4	7.5	0.0	51.9	60	54	330
		HIGH	NO								15.0		53.4	60	57	374
			YES			ļ							59.4	70	62	378
		STD	NO								2.6		21.8	25	23	152
	(10 10h)		YES NO	ł									27.8 22.6	30 25	25 24	154 191
		ALT	YES	414	508	2	7.9	64	2	0.7	3.4	0.3	25.3	30	26	191
(10 1011)			NO NO	ł									26.6	30	28	185
		HIGH	YES								7.4		29.3	35	31	187
			NO							+			18.1	25	19	123
		STD	YES						52 2 0		2.0	0.3	24.1	25	21	109
	575 0 00	A1.T	NO	540	000	_		6.6 52		0.0	0.0		18.7	25	20	155
	575-3-60	ALT	YES	518	632	2	6.6			0.6	2.0		24.7	25	22	141
		HIGH	NO	Ī							2.8		21.9	30	23	150
			YES								2.0		24.6	30	25	136
		STD	NO								5.8		44.6	50	46	307
		0.5	YES	ļ							0.0		49.4	60	52	312
	208/230-3-60	ALT	NO	187	254	2	15.8	130	2	1.4	7.5	0.6	46.3	60	48	326
			YES NO	ł									51.1	60 60	54 57	331 374
		HIGH	YES								15.0		53.8 58.6	70	62	374
			NO NO										22.0	25	23	152
		STD	YES								2.6		24.2	30	25	154
121			NO	İ									22.8	25	24	191
(10 Ton)	460-3-60	ALT	YES	414	508	2	7.9	64	2	0.7	3.4	0.3	25.0	30	26	193
			NO	İ									26.8	30	28	185
		HIGH	YES	1							7.4		29.0	35	30	187
		STD	NO								2.0		18.1	20	19	123
		310	YES	[] .	2.0		19.8	25	21	125
	575-3-60	ALT	NO	518	632	2	6.6	52	2	0.6	2.8	0.3	18.7	20	20	150
	0,000	/\LI	YES	0.0	002	2 6.6	6 52	2	0.6	2.0	0.0	20.4	25	22	156	
		HIGH	NO								3.3		21.9	25	23	155
		_	YES			1							23.6	25	25	151

LEGEND

FLA —
HACR —
IFM —
LRA —
MCA —
MOCP —
NEC —
OFM —
RLA —

*Used to determine minimum disconnect per NEC. †Fuse or HACR circuit breaker.

NOTES:

ILES:
In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.

Unbalanced 3-Phase Supply Voltage

Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltage imbalance.

% Voltage Imbalance

Example: Supply voltage is 460-3-60.

452 + 464 + 455 Average Voltage = -1371 = 457

Determine maximum deviation from average voltage. (AB) 457 – 452 = 5 v (BC) 464 – 457 = 7 v (AC) 457 – 455 = 2 v Maximum deviation is 7 v.

*Single or three phase.

Determine percent of voltage imbalance.

% Voltage Imbalance =
$$100 \times \frac{7}{457}$$

= 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

 $\begin{tabular}{ll} \textbf{IMPORTANT:} & \textbf{If the supply voltage phase imbalance is more than 2\%, contact your local electric utility company immediately. \\ \end{tabular}$

For units with power exhaust: If a single power source is to be used, size wire to include power exhaust MCA and MOCP. Check MCA and MOCP when power exhaust is powered through the unit (must be in accordance with NEC and/or local codes). Determine the new MCA including the power exhaust using the following formula:

MCA New = MCA unit only + MCA of Power Exhaust For example, using a 580F060 unit with MCA = 28.9 and MOCP = 35, with CRPWREXH030A01 power exhaust.

MCA New = 28.9 amps + 1.6 amps = 30.5 amps

If the new MCA does not exceed the published MOCP, then MOCP would not change. The MOCP in this example is 35 amps, the MCA New is below 35, therefore the MOCP acceptable. If "MCA New" is larger than the published MOCP, raise the MOCP to the next larger size. For separate power, the MOCP for the power exhaust will be 15 amps per NEC.

POWER EXHAUST ELECTRICAL DATA

POWER EXHAUST PART NO.	APPLICATION USAGE	MCA (230 V)	MCA (460 V)	MCA (575 V)	MOCP (separate power source only)
CRPWREXH030A01	036-073*	1.6	N/A	0.64	15
CRPWREXH021A01	036-073	N/A	0.68	N/A	15
CRPWREXH022A01	090-151*	3.4	N/A	1.32	15
CRPWREXH023A01	090-151	N/A	1.4	N/A	15
CRPWREXH028A01	ALL*	1.7	N/A	0.68	15
CRPWREXH029A01	ALL	N/A	0.7	N/A	15

ELECTRICAL DATA (cont)

UNIT SIZE	NOMINAL V-PH-Hz	IFM TYPE	CONV	VOLT RAN		СОМР	RESSOR	(each)	OFM	(each)	IFM FLA	COMBUSTION FAN MOTOR	POWER	SUPPLY	MINIMU	
36UF	V-PH-HZ	ITPE	OUILEI	Min	Max	Qty	RLA	LRA	Qty	FLA	FLA	FLA	MCA	MOCP†	FLA	LRA
		STD	NO								10.6		65.2	80	68	383
	208/230-3-60	310	YES	187	254	2	23	146	2	1.4	10.6	0.6	71.2	80	74	387
	200/230-3-00	HIGH	NO	107	234		23	140		1.4	15.0	0.0	69.6	80	73	406
		півп	YES								13.0		75.6	80	79	410
		STD	NO								4.8		29.6	35	31	192
150	460-3-60	310	YES	414	508	2	10.4	73	2	0.7	4.0	0.3	35.6	40	34	194
(12 ¹ / ₂ Ton)	400-3-00	HIGH	NO	414	300		10.4	13		0.7	7.4	0.3	32.2	35	34	203
		THOT	YES								7.4		34.9	40	37	205
	575-3-60 STD	STD	NO								2.0		23.6	30	25	154
		OID	YES	518	632	2	8.3	58.4	2	0.6	2.0	0.3	29.6	35	27	156
		HIGH	NO	010		_	0.0	00.1	_	2 0.0	2.8	0.0	25.7	30	27	163
		111011	YES								2.0		31.7	35	29	165
		STD	NO	187		2	19	156	2	2 1.4	10.6	0.6	56.2	70	59	359
	208/230-3-60	0.0	YES		254						10.0		61.0	70	65	364
	200/200 0 00	HIGH	NO			_			_		15.0	0.0	60.6	70	64	378
		111011	YES								10.0		65.4	80	70	383
		STD	NO								4.8		26.5	30	28	174
151	460-3-60	0.5	YES	414	508	2	9	75	2	0.7		0.3	28.7	35	30	176
(12 ¹ / ₂ Ton)	400 0 00	HIGH	NO	7.7	000	_	Ĭ	70	_	0.7	7.4	0.0	29.1	35	31	213
	575-3-60		YES										31.3	35	33	215
		STD	NO								3.3		21.6	25	23	127
		0.0	YES	518	632	2	7.4	54	2	0.6		0.3	23.3	30	25	129
			HIGH NO	2 7.4 34		2 0.6	0.0	5.6	3.0	23.7	25	25	159			
		HIGH	YES						<u> </u>	5.6		25.4	30	27	160	

LEGEND

FLA — Full Load Amps
HACR — Heating, Air Conditioning and Refrigeration
IFM — Indoor (Evaporator) Fan Motor
LRA — Locked Rotor Amps
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
NEC — National Electrical Code
OFM — Outdoor (Condenser) Fan Motor
Rated Load Amps
Rated Load Amps

Rated Load Amps

*Used to determine minimum disconnect per NEC. †Fuse or HACR circuit breaker.

NOTES:

TTES:
In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.
Unbalanced 3-Phase Supply Voltage
Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltage imbalance.

% Voltage Imbalance

Example: Supply voltage is 460-3-60.

AB = 452 v
BC = 464 v
AC = 455 v
Average Voltage =
$$\frac{452 + 464 + 455}{3}$$

= $\frac{1371}{3}$
= 457

Determine maximum deviation from average voltage. (AB) 457 - 452 = 5 v (BC) 464 - 457 = 7 v (AC) 447 - 455 = 2 v

Maximum deviation is 7 v.

Determine percent of voltage imbalance.

% Voltage Imbalance = 100 x
$$\frac{7}{457}$$
 = 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

For units with power exhaust: If a single power source is to be used, size wire to include power exhaust MCA and MOCP. Check MCA and MOCP when power exhaust is powered through the unit (must be in accordance with NEC and/or local codes). Determine the new MCA including the power exhaust using the following formula:

MCA New = MCA unit only + MCA of Power Exhaust

For example, using a 580F060 unit with MCA = 28.9 and MOCP = 35, with CRPWREXH030A01 power exhaust.

MCA New = 28.9 amps + 1.6 amps = 30.5 amps

If the new MCA does not exceed the published MOCP, then MOCP would not change. The MOCP in this example is 35 amps, the MCA New is below 35, therefore the MOCP acceptable. If "MCA New" is larger than the published MOCP, raise the MOCP to the next larger size. For separate power, the MOCP for the power exhaust will be 15 amps per NEC.

POWER EXHAUST ELECTRICAL DATA

POWER EXHAUST PART NO.	APPLICATION USAGE	MCA (230 V)	MCA (460 V)	MCA (575 V)	MOCP (separate power source only)
CRPWREXH030A01	036-073*	1.6	N/A	0.64	15
CRPWREXH021A01	036-073	N/A	0.68	N/A	15
CRPWREXH022A01	090-151*	3.4	N/A	1.32	15
CRPWREXH023A01	090-151	N/A	1.4	N/A	15
CRPWREXH028A01	ALL*	1.7	N/A	0.68	15
CRPWREXH029A01	ALL	N/A	0.7	N/A	15

^{*}Single or three phase.

TYPICAL WIRING SCHEMATICS — 580F036-151 (580F090, 460-3-60 Shown)

TYPICAL WIRING SCHEMATICS — 580F036-151 (cont)

EconoMi\$er IV Wiring — 580F036-151 Units

EconoMi\$er2 Wiring — 580F036-151 Units

TYPICAL WIRING SCHEMATICS — 580F (cont)

Convenience Outlet (Optional) — Sizes 580F036-151

Non-Fused Disconnect (Optional) — Sizes 580F036-151

TYPICAL PIPING AND WIRING — 580F036-151

Vertical Discharge Ducting

Horizontal Discharge Ducting

PHYSICAL DATA — 581B036-072

UNIT SIZE 581B		036	048	060	072
NOMINAL CAPACITY		3	4	5	6
OPERATING WEIGHT (lb)					
Unit		530	540	560	635
COMPRESSOR				Scroll	
Quantity		1	1	1	1
Oil (oz)		42	53	50	60
REFRIGERANT TYPE				R-22	
Operating Charge (lb-oz)		5.0	40.0	40.0	10.0
Standard Unit Unit With Perfect Humidity Dehumidification Pa	ackane	5-8 9-0	10-2 15-8	10- 0 17-0	12-8 21-0
CONDENSER FAN	ackage	3 0		ropeller	210
QuantityDiameter (in.)		122	122	122	122
Nominal Cfm		3500	3500	4100	4100
Motor HpRpm		1/ ₄ 825	1/ ₄ 825	1/41100	1/41100
Watts Input (Total)		180	180	320	320
CONDENSER COIL		3/ ₈ -	in. OD Enhanced Coppe	er Tubes, Aluminum Lanced F	ins
Standard Unit		4 47	0 47	0. 47	0.47
RowsFins/in. Total Face Area (sq ft)		117 14.6	217 16.5	217 16.5	217 16.5
Unit with Perfect Humidity Dehumidification Pa	ckage	14.0	10.5	10.5	10.5
RowsFins/in.		117	117	117	117
Total Face Area (sq ft)		3.9	3.9	3.9	3.9
EVAPORATOR COIL				um Double-Wavy Fins, Acutro	
RowsFins/in.		215	215	415	415
Total Face Area (sq ft)		5.5	5.5	5.5	5.5
EVAPORATOR FAN		4 40 40		Type, Belt Drive	4 40 40
QuantitySize (in.) Nominal Cfm		110 x 10 1200	110 x 10 1600	110 x 10 2000	110 x 10 2400
Maximum Continuous Bhp	Std	1.20	1.20	1.30/2.40*	2.40
•	Hi-Static	2.40	2.40	2.90	2.90
Motor Frame Size	Std Hi-Static	48 56	48 56	48/56* 56	56 56
Fan Rpm Range	ni-Static Std	680-1044	770-1185	1035-1460	1119-1585
r an ripin rango	Hi-Static	1075-1455	1075-1455	1300-1685	1300-1685
Motor Bearing Type		Ball	Б :	Б 11	
			Ball	Ball	Ball
Maximum Fan Rpm	844	2100	2100	2100	2100
	Std Hi-Static				
Maximum Fan Rpm	Hi-Static Std	2100 1.9/2.9 2.8/3.8	2100 1.9/2.0 2.8/3.8	2100 2.4/3.4 3.4/4.4	2100 2.4/3.4 3.4/3.4 ^{5/} °
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.)	Hi-Static Std Hi-Static	2100 1.9/2.9 2.8/3.8	2100 1.9/2.0 2.8/3.8	2100 2.4/3.4 3.4/4.4	2100 2.4/3.4 3.4/3.4 ^{5/} °
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.)	Hi-Static Std Hi-Static Std	2100 1.9/2.9 2.8/3.8 1/ ₂ 5/ ₈ 4.5	2100 1.9/2.0 2.8/3.8 1/ ₂ 5/ ₈ 4.0	2100 2.4/3.4 3.4/4.4 5/ ₈ 5/ ₈ 4.0	2100 2.4/3.4 3.4/3.4 ^{5/} / ₈ ^{7/} / ₈ 3.7
Maximum Fan Rom Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.)	Hi-Static Std Hi-Static	2100 1.9/2.9 2.8/3.8 1/2 5/2 4.5 4.5	2100 1.9/2.0 2.8/3.8 1/ ₂ 5/ ₈ 4.0	2100 2.4/3.4 3.4/4.4 5/ ₈ 5/ ₈ 4.0 4.5	2100 2.4/3.4 3.4/3.4 ^{5/} 8 ^{7/8} 3.7 4.5
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.)	Hi-Static Std Hi-Static Std Hi-Static	2100 1.9/2.9 2.8/3.8 1/2 5/8 4.5 4.5 1A36 1A39	2100 1.9/2.0 2.8/3.8 1/2 5/8 4.0 4.5 1A36 1A39	2100 2.4/3.4 3.4/4.4 5/8 5/8 4.0 4.5 1440 1A40	2100 2.4/3.4 3.4/3.4 ⁵ / ₈ 7/ ₈ 3.7 4.5 1A38 1A40
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	2100 1.9/2.9 2.8/3.8 1/ ₂ 5/ ₈ 4.5 4.5 1A36 1A39 10.0-12.4	2100 1.9/2.0 2.8/3.8 1/ ₂ 5/ ₈ 4.0 4.5 1A36 1A39 10.0-12.4	2100 2.4/3.4 3.4/4.4 5/ ₈ 5/ ₈ 4.0 4.5 1440 1A40 14.7-15.5	2100 2.4/3.4 3.4/3.4 5/ ₈ 7/ ₈ 3.7 4.5 1A38 1A40 14.7-15.5
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	2100 1.9/2.9 2.8/3.8 1/2 5/8 4.5 1A36 1A39 10.0-12.4 65	2100 1.9/2.0 2.8/3.8 1/ ₂ 5/ ₈ 4.0 4.5 1A36 1A39 10.0-12.4 70	2100 2.4/3.4 3.4/4.4 5/8 5/8 4.0 4.5 1440 1A40 14.7-15.5	2100 2.4/3.4 3.4/3.4 5/8 7/8 3.7 4.5 1A38 1A40 14.7-15.5 95
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Hi-Static Std	2100 1.9/2.9 2.8/3.8 1/ ₂ 5/ ₈ 4.5 4.5 4.5 1A36 1A39 10.0-12.4 65 65	2100 1.9/2.0 2.8/3.8 1/ ₂ 5/ ₈ 4.0 4.5 1A36 1A39 10.0-12.4 70 65	2100 2.4/3.4 3.4/4.4 5/ ₈ 4.0 4.5 1440 15.5 75 60	2100 2.4/3.4 3.4/3.4 5/ ₈ 7/ ₈ 3.7 4.5 1A38 1A40 14.7-15.5 95 60 5
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Hi-Static	2100 1.9/2.9 2.8/3.8 */2 5/6 4.5 4.5 1A36 1A39 10.0-12.4 65 65 65	2100 1.9/2.0 2.8/3.8 1/ ₂ 5/ ₈ 4.5 1A36 1A39 10.0-12.4 70 65 5	2100 2.4/3.4 3.4/4.4 5/8 5/8 4.0 4.5 1440 1A40 14.7-15.5 75 60 6	2100 2.4/3.4 3.4/3.4 5/8 7/8 3.7 4.5 1A38 1A40 14.7-15.5 95 60 5
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	2100 1.9/2.9 2.8/3.8 1/2 5/8 4.5 4.5 1A36 1A39 10.0-12.4 65 65 65 5	2100 1.9/2.0 2.8/3.8 1/2 5/8 4.0 4.5 1A36 1A39 10.0-12.4 70 65 5 6 3	2100 2.4/3.4 3.4/4.4 5/8 5/8 4.5 1440 1A40 14.7-15.5 75 60 6 5	2100 2.4/3.4 3.4/3.4 5/8 7/8 3.7 4.5 1A38 1A40 14.7-15.5 95 60 5 5
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position Factory Setting — Full Turns Open	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	2100 1.9/2.9 2.8/3.8 1/2 5/8 4.5 4.5 4.5 1A36 1A39 10.0-12.4 65 65 65 6 3 31/2	2100 1.9/2.0 2.8/3.8 1/2 5/8 4.0 4.5 1A36 1A39 10.0-12.4 70 65 6 3 31/2	2100 2.4/3.4 3.4/4.4 5/,8 5/,8 4.0 4.5 1440 1440 14.7-15.5 75 60 6 5 3	2100 2.4/3.4 3.4/3.4 5/ ₈ 7/ ₈ 3.7 4.5 1A38 1A40 14.7-15.5 95 60 5 5 3
Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	2100 1.9/2.9 2.8/3.8 1/2 5/8 4.5 4.5 1A36 1A39 10.0-12.4 65 65 65 5	2100 1.9/2.0 2.8/3.8 1/2 5/8 4.0 4.5 1A36 1A39 10.0-12.4 70 65 5 6 3	2100 2.4/3.4 3.4/4.4 5/8 5/8 4.5 1440 1A40 14.7-15.5 75 60 6 5	2100 2.4/3.4 3.4/3.4 5/8 7/8 3.7 4.5 1A38 1A40 14.7-15.5 95 60 5 5

LEGEND

Bhp — Brake Horsepower

^{*}Single phase/three phase.
†Indicates automatic reset.
**60,000 and 72,000 Btuh heat input units have 2 burners. 90,000 and 120,000 Btuh heat input units have 3 burners. 115,000 Btuh heat input units and 150,000 Btuh Heat input units have 3 burners.
††An LP kit is available as an accessory.

^{||}California compliant three-phase models.
***California SCAQMD compliant low NO_x models have combustion products that are controlled to 40 nanograms per joule or less.

PHYSICAL DATA — 581B036-072 (cont)

UNIT SIZE 581B		036	048	060	072				
FURNACE SECTION Rollout Switch Cutout Temp (F)†		195	195	195	195				
Burner Orifice Diameter (indrill size)**									
Natural Gas — Std	071/072 114/115 149/150	.11333 .11333 —	.11333 .11333 .12930	.11333 .11333 .12930	.11333 .11333 .12930				
	060N 090N 120N	.10238 .10238 —	.10238 .10238 .11632	.10238 .10238 .11632					
Liquid Propane — Alt††	071/072 114115 149/150	.08943 .08943 —	.08943 .08943 .10238	.08943 .08943 .10238	.08943 .08943 .10238				
Thermostat Heat Anticipator Setting (amps) 208/230/460 v First Stage Second Stage		.14 .14	.14 .14	.14 .14	.14 .14				
Gas Input (Btuh) First Stage/Second Stage (3-phase units)	072 115 150	50,000/ 72,000 82,000/115,000	50,000/ 72,000 82,000/115,000 120,000/150,000	50,000/ 72,000 82,000/115,000 120,000/150,000	50,000/ 72,000 82,000/115,000 120,000/150,000				
	071 114 149		/ 72,000 /115,000 /150,000	-/ 72,000 -/115,000 -/150,000	— — — —				
	060N*** 090N*** 120N***	—/ 60,000 —/ 90,000 —	-/ 60,000 -/ 90,000 -/120,000	—/ 60,000 —/ 90,000 —/120,000	_ _ _				
Efficiency (Steady State) (%)	072 115 150	82 80 —	82 81 80	82 81 80	82 81 80				
	071 114 149	82 80 —	82 81 80	82 81 80	_ _ _				
Temperature Rise Range	060N 090N 120N 072	80 80 — 25-55	80 80 80 25-55	80 80 80 25-55					
	115 150 071	55-85 — 25-55	35-65 50-80 25-55	35-65 50-80 25-55	35-65 50-80				
	114 149 060N	55-85 — 20-50	35-65 50-80 20-50	35-65 50-80 20-50	_ _ _				
	090N 120N	30-60 —	30-60 40-70	30-60 40-70					
Manifold Pressure (in. wg) Natural Gas — Std Liquid Propane — Alt†		3.5 3.5	3.5 3.5	3.5 3.5	3.5 3.5				
Gas Valve Quantity Gas Valve Pressure Range (Min-Max Allowable)		1	1	1	1				
Psig in. wg Maximum Static Pressure (in. wg) Field Gas Connection Size (in. FPT)		0.180-0.470 5.0-13.0 1.0 1/ ₂	0.180-0.470 5.0-13.0 1.0 1/ ₂	0.180-0.470 5.0-13.0 1.0 1/ ₂	0.180-0.470 5.0-13.0 1.0 1/2				
HIGH-PRESSURE SWITCH (psig) Standard Compressor Internal Relief Cutout		.2	450	± 50					
Reset (Auto.) LOSS-OF-CHARGE SWITCH/LOW-PRESSURE				20					
SWITCH (Liquid Line) (psig) Cutout			7	±3					
Reset (Auto.) FREEZE PROTECTION THERMOSTAT				± 5					
Opens (F) Closes (F)		30 ± 5 45 ± 5							
OUTDOOR-AIR INLET SCREENS QuantitySize (in.)		Cleanable Varies By Option Selected							
RETURN-AIR FILTERS QuantitySize (in.)			Throw 216 x 25 x 2	vaway	416 x 16 x 2				
LEGEND		IICali	fornia compliant three-ph	asa madals	X TO X L				

LEGEND

Bhp— Brake Horsepower

^{*}Single phase/three phase.
†Indicates automatic reset.
**60,000 and 72,000 Btuh heat input units have 2 burners. 90,000 and 120,000 Btuh heat input units have 3 burners. 115,000 Btuh heat input units and 150,000 Btuh Heat input units have 3 burners.
††An LP kit is available as an accessory. In order to convert a Low NOx unit to LP gas, the baffle must be removed. Low NOx units converted to LP gas are no longer California SCAQMD compliant.

^{||}California compliant three-phase models.
***California SCAQMD compliant low NO_x models have combustion products that are controlled to 40 nanograms per joule or less.

PHYSICAL DATA — 581B090-150

UNIT SIZE 581B		090	102	120	150
NOMINAL CAPACITY (tons)		7 1/ ₂	81/2	10	121/2
OPERATING WEIGHT (Ib)		_			_
Unit		870	1015	1035	1050
COMPRESSOR			Sc	roll	
Quantity		2	2	2	2
Oil (oz) (each compressor)		53	50	50	60
REFRIGERANT TYPE			R-	22	
Operating Charge (lb-oz)			•	•	
Standard Unit Circuit 1 (first stage)		7-10	9- 8	9-10	9-8
Circuit 2 (second stage)		8- 2	8-13	10-10	9-5
Unit With Perfect Humidity Dehumidification	Package				
Circuit 1 (first stage)	-	13-0	16-0	16-8	15-3
Circuit 2 (second stage)		13-6	16-8	17-8	16-6
CONDENSER FAN		0.00		peller	0.00
QuantityDiameter (in.) Nominal Cfm		222 6500	222 6500	222 7000	222 7000
Motor HpRpm		1/ ₄ 1100	1/ ₄ 1100	1/ ₄ 1100	1/ ₄ 1100
Watts Input (Total)		650	650	650	650
CONDENSER COIL		3/ ₈ -ir	n. OD Enhanced Copper	Tubes, Aluminum Lanced	Fins
Standard Unit					
RowsFins/in.		217	217	217	217
Total Face Area (sq ft) Unit with Perfect Humidity Dehumidification	Package	20.5	25.0	25.0	25.0
RowsFins/in.	1 ackage	117	117	117	117
Total Face Area (sq ft)		6.3	8.4	8.4	8.4
EVAPORATOR FAN			Centr	rifugal	
Size (in.)		15 x 15	15 x 15	15 x 15	15 x 15
Type Dríve		Belt	Belt	Belt	Belt
Type Dríve Nominal Cfm	Std			Belt 4000	Belt 5000
Type Dríve Nominal Cfm Maximum Continuous Bhp	Std Hi-Static	Belt 3000 2.90 4.20	Belt 3400 2.90 4.20	Belt 4000 3.70 5.25	Belt 5000 5.25 —
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame	Hi-Static	Belt 3000 2.90 4.20 56	Belt 3400 2.90 4.20 56	Belt 4000 3.70 5.25 56	Belt 5000 5.25 — 56
Type Dríve Nominal Cfm Maximum Continuous Bhp	Hi-Static Std	Belt 3000 2.90 4.20 56 840-1085	Belt 3400 2.90 4.20 56 840-1085	Belt 4000 3.70 5.25 56 860-1080	Belt 5000 5.25 —
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range	Hi-Static	Belt 3000 2.90 4.20 56	Belt 3400 2.90 4.20 56	Belt 4000 3.70 5.25 56	Belt 5000 5.25 — 56
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm	Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100	Belt 5000 5.25 — 56 830-1130 — Ball 2100
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter	Hi-Static Std Hi-Static Std	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0	Belt 5000 5.25 — 56 830-1130 — Ball
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.)	Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter	Hi-Static Std Hi-Static Std	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/ ₈ 8.0 5.8	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/8 5.8 — —
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/ ₈ 8.0 5.8 A53	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.8 8.0 A48 A53	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/,8 7.0 8.0 A51 A53	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 ⁷ / ₈ 8.0 5.8 A53 BX45	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/6 5.8 — BX48
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/ ₈ 8.0 5.8 A53	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/8 5.8 — —
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.8 8.0 A51 A53 16.75-19.25 50 60	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/8 8.0 5.8 A53 BX45 15.85-17.50 45 60	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/6 5.8 — BX48 — 15.85-17.50 60 —
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60 5	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51 A53 16.75-19.25 50 60 5	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/8 8.0 5.8 A53 BX45 15.85-17.50 45 60 5	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/8 5.8 — BX48 — 15.85-17.50
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60 5 5	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51 A53 16.75-19.25 50 60 5 5	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/8 8.0 5.8 A53 BX45 15.85-17.50 45 60 5	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/8 5.8 — BX48 — 15.85-17.50 60 — 6 — —
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position Factory Setting — Full Turns Open	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60 5 5 5 5 5 5	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51 A53 16.75-19.25 50 60 5 5 5 5 5	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/8 8.0 5.8 A53 BX45 15.85-17.50 45 60 5 6 6 5 5 5	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/8 5.8 — BX48 — 15.85-17.50 60 — 6 — 5 —
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60 5 5 5 5 840	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51 A53 16.75-19.25 50 60 5 5 5 5 840	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/ ₈ 8.0 5.8 A53 BX45 15.85-17.50 45 60 5 6 5 860	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/8 5.8 — BX48 — 15.85-17.50 60 — 6 6 — 5 — 887
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position Factory Setting — Full Turns Open Factory Speed Setting (rpm)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60 5 5 5 5 840 860	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/, 7.0 8.0 A51 A53 16.75-19.25 50 60 5 5 5 5 840 860	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/, 8.0 5.8 A53 BX45 15.85-17.50 45 60 5 6 5 5 860 890	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/g 5.8 — BX48 — 15.85-17.50 60 — 6 — 887 — 887 —
Type Drive Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position Factory Setting — Full Turns Open Factory Speed Setting (rpm) Fan Shaft Diameter at Pulley (in.)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60 5 5 5 5 840 860 1	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51 A53 16.75-19.25 50 60 5 5 5 5 840 860 1	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/8 8.0 5.8 A53 BX45 15.85-17.50 45 60 5 6 5 5 860 890 1	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/6 5.8 — BX48 — 15.85-17.50 60 — 6 — 5 — 887 — 1
Type Dríve Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position Factory Setting — Full Turns Open Factory Speed Setting (rpm) Fan Shaft Diameter at Pulley (in.)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60 5 5 5 5 840 860 1 3/8-in. O	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51 A53 16.75-19.25 50 60 5 5 5 840 860 1 DEnhanced Copper Tub	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/8 8.0 5.8 A53 BX45 15.85-17.50 45 60 5 5 6 6 5 5 860 890 1 es, Aluminum Double-Wa	Belt 5000
Type Dríve Nominal Cfm Maximum Continuous Bhp Motor Frame Fan Rpm Range Motor Bearing Type Maximum Fan Rpm Motor Pulley Pitch Diameter A/B (in.) Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.) Belt — TypeLength (in.) Pulley Center Line Distance (in.) Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns from Closed Position Factory Speed Setting (rpm) Fan Shaft Diameter at Pulley (in.)	Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static Std Hi-Static	Belt 3000 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A48 A53 16.75-19.25 50 60 5 5 5 5 840 860 1	Belt 3400 2.90 4.20 56 840-1085 860-1080 Ball 2100 3.4/4.4 4.0/5.0 7/8 7.0 8.0 A51 A53 16.75-19.25 50 60 5 5 5 5 840 860 1	Belt 4000 3.70 5.25 56 860-1080 830-1130 Ball 2100 4.0/5.0 2.8/3.8 7/8 8.0 5.8 A53 BX45 15.85-17.50 45 60 5 6 5 5 860 890 1	Belt 5000 5.25 — 56 830-1130 — Ball 2100 2.8/3.8 — 7/ ₈ 5.8 — BX48 — 15.85-17.50 60 — 6 — 887 — 1

LEGEND

Bhp — Brake Horsepower

^{*}Single phase/three phase. †Indicates automatic reset.

^{**72,000} Btuh heat input units have 2 burners.
115,000 Btuh heat input units and 150,000 Btuh Heat input units have 3 burners.
††An LP kit is available as an accessory.

PHYSICAL DATA — 581B090-150 (cont)

UNIT SIZE 581B		090		102		120		150
FURNACE SECTION Rollout Switch Cutout Temp (F)†		195		195	•	195		195
Burner Orifice Diameter (indrill size)**								
Natural Gas — Std	125 180	.12031 .12031	125 180	.12031 .12031	180 224	.12031 .12031	180 224	.12031 .12930
	224	.12031	224	.12031	250	.12031		.12930
Liquid Propane — Alt††	125	.09641	125	.09641	180	.09641	180	.09641
	180 224	.09641 .09641	180 224	.09641 .09641	224 250	.09641 .10238	224	.10238
Thermostat Heat Anticipator Setting (amps)	224	.09041	224	.09041	230	.10230		_
Stage 1		.14		.14		.14		.14
		.14 .14		.14 .14		.14 .14		.14
Stage 2		.14		.14		.20		.20
g		.20		.20		.20		.20
One leavet (Rively) Channel	125	.20	125	.20	180	.20	400	400.000
Gas Input (Btuh) Stage 1	180	90,000 120.000	180	90,000 120.000	224	120,000 180.000	180 224	120,000 180,000
	224	180,000	224	180,000	250	200,000	_	_
Stage 2	125	125,000	125	125,000	180	180,000	180	180,000
	180 224	180,000 224,000	180 224	180,000 224,000	224 250	224,000 250,000	224	224,000
Efficiency (Steady State) (%)		82		82		82		82
		82		82		82		80
Temperature Rise Range	125	82 20-50	125	82 20-50	180	80 35-65	180	35-65
Temperature Nise Name	180	35-65	180	35-65	224	35-65	224	40-70
	224	45-75	224	45-75	250	40-70	_	_
Manifold Pressure (in. wg) Natural Gas — Std		3.5		3.5		3.5		3.5
Liquid Propane — Alt††		3.5		3.5		3.5		3.5
Gas Valve Quantity Gas Valve Pressure Range (Min-Max Allowable)		1		1		1		1
Psiq	().180-0.470	0.	180-0.470	0.	180-0.470	0.	180-0.470
in. w̃g		5.0-13.0		5.0-13.0		5.0-13.0		5.0-13.0
Field Gas Connection Size (in. FPT)	125 180	.50 .75	125 180	.50 .75	180 224	.75 .75	180 224	.75 .75
	224	.75 .75	224	.75 .75	250	.75 .75		./5
HIGH-PRESSURE SWITCH (psig)								
Standard Compressor Internal Relief					450 ± 50			
Cutout Reset (Auto.)					428 320			
LOSS-OF-CHARGE SWITCH/LOW-PRESSURE SWITCH (Liquid Line) (psig)					020			
Cutout					7 ± 3			
Reset (Auto.)					22 ± 7			
FREEZE PROTECTION THERMOSTAT Opens (F)					30 ± 5			
Closes (F)					45 ± 5			
OUTDOOR-AIR INLET SCREENS					Cleanable			
QuantitySize (in.)					20 x 25 x 16 x 25 x			
RETURN-AIR FILTERS					Throwaway			
QuantitySize (in.)	4.	16 x 20 x 2	4	20 x 20 x 2	4	20 x 20 x 2	4	20 x 20 x 2

LEGEND

Bhp — Brake Horsepower

**180,000 Btuh heat input units have 2 burners.
224,000 Btuh heat input units and 250,000 Btuh Heat input units have 3 burners.
††An LP kit is available as an accessory.

			581	IB —	OPTIC	ON/AC	CESS	ORY	WEIG	HTS						
	03	6	04	8	06	0	07	'2	0	90	10)2	12	20	1:	50
Option / Accessory	lb	kg	lb	k g	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg	lb	kg
Perfect Humidity Dehumidification System	15	7	23	10	25	11	29	13	44	20	51	23	51	23	51	23
Power Exhaust - vertical	50	23	50	23	50	23	50	23	75	34	75	34	75	34	75	34
Power Exhaust - horizontal	30	14	30	14	30	14	30	14	30	14	30	14	30	14	30	14
EconoMi\$er (IV or 2)	50	23	50	23	50	23	50	23	75	34	75	34	75	34	75	34
Two Position damper (25%)	22	10	22	10	22	10	22	10	32	15	32	15	32	15	32	15
Two Position damper (100%)	39	18	39	18	39	18	39	18	58	26	58	26	58	26	58	26
Manual Dampers	12	5	12	5	12	5	18	8	18	8	18	8	18	8	18	8
Hail Guard (louvered)	16	7	16	7	16	7	16	7	34	15	34	15	34	15	34	15
Hail Guard (standard hood assembly)	25	11	25	11	25	11	25	11	38	17	50	23	50	23	50	23
Cu/Cu Condenser Coil	6	3	13	6	13	6	15	7	12	5	23	10	23	10	23	10
Cu/Cu Condenser and Evaporator Coils	12	5	19	9	21	10	26	12	25	11	49	22	49	22	49	22
Roof Curb (14-in. curb)	115	52	115	52	115	52	115	52	143	65	143	65	143	65	143	65
Roof Curb (24-in. curb)	197	89	197	89	197	89	197	89	245	111	245	111	245	111	245	111

^{*}Single phase/three phase. †Indicates automatic reset.

SELECTION PROCEDURE (With 581B048 Example)

I DETERMINE COOLING AND HEATING REQUIRE-MENTS AT DESIGN CONDITIONS.

Given:

Required Cooling Capacity (TC) 44,600 Btuh
Sensible Heat Capacity (SHC) 32,000 Btuh
Required Heating Capacity 85,000 Btuh
Condenser Entering-Air Temperature 95 F
Evaporator Entering-Air Temperature 82 F edb,
67 F ewb
Evaporator Air Quantity
External Static Pressure (ESP) 0.75 in. wg
Electrical Characteristics (V-Ph-Hz)230-1-60

II SELECT UNIT BASED ON REQUIRED COOLING CAPACITY.

Enter the Cooling Capacities table (page 92) at condenser entering temperature of 95 F, evaporator-air entering at 1600 cfm and 80 F db and 67 F wb. The 581B--048115 unit will provide cooling capacity of 48,900 Btuh and a sensible heat capacity of 34,700 Btuh. For evaporator-air temperature other than 80 F edb, calculate sensible heat capacity correction, as required, using the formula found in Note 3 following the Cooling Capacities tables.

For this example:

Correction factor = $1.10 \times (1 - .21) \times (82 - 80) = 1.738$

Multiply the correction factor of 1.738 by 1600 cfm (a total of 2781). From the Gross Cooling Capacities tables find that the sensible heat capacity at 80 F is 34.7 MBtuh (equivalent to 34,700 Btuh). Add 34,700 and 2781 to get the corrected sensible heat capacity of 37,481.

NOTE: Unit ratings are gross capacities and do not include the effect of evaporator-fan motor heat. To calculate net capacities, see Step V.

III SELECT HEATING CAPACITY OF UNIT TO PROVIDE DESIGN CONDITION REQUIREMENTS.

In the Heating Capacities and Efficiencies table (page 10) note that unit 581B--048115 will provide output capacity of 93,150 Btuh, which is adequate for the given application.

IV DETERMINE FAN SPEED AND POWER REQUIRE-MENTS AT DESIGN CONDITIONS.

Before entering the Fan Performance tables, calculate the total static pressure required based on unit components. From the given and the Pressure Drop tables (page 133), find:

External static pressure .75 in. wg
Total static pressure = .75 in. wg

Enter the Fan Performance table for 581B--048115 vertical discharge unit on page 104. At 1600 cfm and 0.75 in. wg interpolation is required. The rpm is 1051. The bhp is 0.90. The watts are 897. The factory-installed standard motor and drive are sufficient for operation.

V DETERMINE NET COOLING CAPACITY.

Cooling capacities are gross and do not include indoor-fan motor (IFM) heat. Determine net capacity using the following formula:

Net sensible capacity = 37,481 Btuh - 3061 Btuh = 34,420 Btuh

PERFORMANCE DATA

COOLING CAPACITIES, STANDARD UNITS

581B036	(3 TONS)									
Ten	ıp (F)				Air Entering	g Evaporato	r — Cfm/BF			
Aiı	Ént		900/0.14			1200/0.17			1500/0.20	
	denser	Air Entering Evaporator — Ewb								
(E	db)	72	67	62	72	67	62	72	67	62
75	TC	41.9	38.7	35.7	43.5	40.8	37.7	44.8	41.8	39.0
	SHC	20.4	25.2	29.7	21.8	28.2	33.8	23.3	30.7	37.0
	kW	2.19	2.16	2.12	2.21	2.18	2.15	2.23	2.19	2.16
85	TC	40.7	37.5	34.5	42.1	39.3	36.4	43.5	40.4	37.6
	SHC	19.9	24.7	29.2	21.5	27.7	33.2	23.2	30.3	36.4
	kW	2.46	2.42	2.39	2.47	2.44	2.41	2.50	2.45	2.42
95	TC	39.3	36.1	33.1	40.8	37.8	34.9	42.0	38.9	36.1
	SHC	19.5	24.1	28.4	21.1	27.2	32.5	22.8	29.9	35.6
	kW	2.75	2.71	2.66	2.77	2.73	2.69	2.79	2.74	2.71
105	TC	37.7	34.6	31.7	39.3	36.2	33.4	40.1	37.2	34.7
	SHC	18.8	23.5	27.8	20.7	26.6	31.8	22.1	29.3	34.7
	kW	3.06	3.02	2.98	3.09	3.04	3.01	3.10	3.06	3.03
115	TC	36.0	33.0	29.7	37.4	34.5	31.5	38.1	35.5	33.2
	SHC	18.3	22.9	26.7	19.9	26.1	30.9	21.3	28.7	33.2
	kW	3.41	3.36	3.31	3.43	3.39	3.34	3.44	3.41	3.37
125	TC	34.2	31.3	27.8	35.6	32.7	29.4	36.3	33.6	31.9
	SHC	17.6	22.2	25.8	19.4	25.4	29.4	20.8	28.0	31.8
	kW	3.78	3.73	3.66	3.80	3.76	3.71	3.81	3.78	3.75

Tem	p (F)					Air Er	ntering Evap	orator — C	fm/BF				
Air	Ent		1200/0.17			1450/0.19			1600/0.21			2000/0.24	
	lenser					Air Er	ntering Evap	orator — E	wb (F)				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	54.0	50.7	44.2	55.9	52.2	47.7	56.4	52.8	49.1	58.1	54.5	50.6
	SHC	26.1	32.7	37.5	27.6	35.1	41.8	28.2	36.2	43.8	30.2	39.5	47.5
	kW	2.81	2.80	2.76	2.83	2.81	2.78	2.83	2.80	2.79	2.84	2.82	2.79
85	TC	52.2	48.9	41.9	54.1	50.4	45.9	54.5	51.0	47.2	55.3	52.3	48.7
	SHC	25.4	32.0	36.4	26.9	34.5	40.8	27.5	35.7	42.8	28.6	38.5	46.6
	kW	3.20	3.19	3.15	3.22	3.20	3.17	3.22	3.20	3.18	3.22	3.20	3.18
95	TC	50.7	46.9	39.5	51.9	48.4	43.5	52.5	48.9	45.2	53.9	50.1	46.7
	SHC	24.9	31.1	35.0	26.1	33.6	39.6	26.8	34.7	41.8	28.8	37.5	45.6
	kW	3.64	3.61	3.57	3.65	3.62	3.60	3.65	3.62	3.60	3.67	3.63	3.61
105	TC	48.8	44.5	36.7	49.8	46.2	40.7	50.2	46.7	42.1	51.5	48.2	44.7
	SHC	24.3	30.2	33.6	25.3	32.8	38.2	26.0	33.9	40.3	27.9	37.4	44.4
	kW	4.12	4.09	4.03	4.12	4.09	4.06	4.12	4.09	4.07	4.14	4.11	4.08
115	TC	46.5	41.1	34.3	47.7	43.3	37.0	48.0	44.4	38.5	48.9	45.7	42.0
	SHC	23.4	28.9	32.4	24.9	31.8	36.3	25.4	33.4	38.3	27.1	36.9	42.0
	kW	4.64	4.59	4.53	4.65	4.62	4.55	4.64	4.63	4.56	4.65	4.63	4.60
125	TC	43.8	37.5	32.4	45.1	39.0	33.8	45.3	40.1	35.4	46.3	42.6	38.8
	SHC	22.5	27.4	31.5	24.1	30.2	33.7	24.7	31.9	35.4	26.5	35.9	38.8
	kW	5.19	5.13	5.05	5.20	5.15	5.09	5.19	5.17	5.11	5.20	5.19	5.15

581B060	(5 TONS)												
Tem	ıp (F)					Air Er	ntering Evap	orator — C	fm/BF				
Air	Ent		1500/0.08			1750/0.09			2000/0.11			2500/0.13	
	lenser					Air Er	ntering Evap	orator — E	wb (F)				
(E	db)	72 67 62 72 67 62 72 67 62 72 70.9 65.4 59.5 72.5 67.3 61.1 72.0 69.4 62.9 74.9								67	62		
75	TC	70.8	65.4	58.5	72.5	67.3	61.1	73.0	68.4	62.8	74.8	70.3	64.8
	SHC	34.1	42.7	49.9	35.7	45.5	54.2	36.8	48.0	57.8	39.6	53.0	63.4
	kW	3.53	3.49	3.44	3.55	3.50	3.46	3.55	3.51	3.47	3.57	3.54	3.48
85	TC	68.9	63.2	55.3	70.5	65.1	57.9	72.2	66.4	60.2	73.2	68.1	62.9
	SHC	33.5	41.8	48.4	35.0	44.8	52.8	37.0	47.6	56.8	39.3	52.5	62.4
	kW	3.98	3.94	3.87	4.00	3.96	3.90	4.03	3.97	3.92	4.04	3.99	3.94
95	TC	66.8	60.6	52.4	68.3	62.5	54.3	69.3	63.8	56.6	71.2	65.6	60.6
	SHC	32.8	40.7	47.0	34.5	43.8	51.1	36.0	46.7	55.0	39.1	51.8	60.5
	kW	4.48	4.43	4.35	4.50	4.45	4.37	4.51	4.46	4.40	4.55	4.48	4.44
105	TC	64.3	57.7	49.9	65.9	59.8	51.7	66.9	61.1	54.1	68.4	62.8	58.4
	SHC	32.0	39.6	45.8	33.7	42.8	49.7	35.3	45.7	53.5	38.4	51.0	58.4
	kW	5.03	4.96	4.87	5.05	4.99	4.90	5.06	5.00	4.93	5.08	5.02	4.98
115	TC	61.5	54.8	47.3	62.8	56.7	49.1	64.0	58.2	51.6	65.4	59.9	56.1
	SHC	31.0	38.4	44.5	32.5	41.6	48.2	34.4	44.6	51.6	37.4	50.0	56.1
	kW	5.61	5.55	5.46	5.62	5.58	5.49	5.65	5.60	5.52	5.67	5.61	5.57
125	TC	58.7	51.6	44.5	59.9	53.4	46.2	60.8	54.9	49.0	62.2	56.8	53.5
	SHC	30.0	37.2	43.1	31.7	40.4	46.2	33.3	43.4	48.9	36.4	48.9	53.4
	kW	6.27	6.19	6.09	6.28	6.21	6.13	6.29	6.24	6.17	6.31	6.27	6.22

Standard Ratings

LEGEND

BF Edb Ewb kW SHC TC

Bypass Factor
Entering Dry Bulb
Entering Wet Bulb
Compressor Motor Power Input
Sensible Heat Capacity (1000 Btuh) Gross
Total Capacity (1000 Btuh) Gross

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil $(\mathbf{h}_{\text{hub}})$ t_{lwb}

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil. The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC. Correction Factor = 1.10 x (1 – BF) x (edb – 80).

COOLING CAPACITIES, STANDARD UNITS (cont)

Terr	ıp (F)	i ———				Air Er	ntering Evapo	orator — Cf	/m/BF				
Air	Ent		1800/0.05	-		2100/0.06		1	2400/0.06		ĺ	3000/0.08	
	denser	i .				Air Er	ntering Evapo	orator — Ev	vb (F)				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	86.7	80.7	74.4	88.8	82.7	76.6	90.5	84.4	78.2	92.6	86.3	81.0
	SHC	43.0	53.7	63.8	45.0	57.4	68.9	47.2	61.2	73.6	51.2	67.4	80.7
	kW	4.58	4.46	4.33	4.63	4.50	4.38	4.67	4.55	4.41	4.72	4.58	4.47
85	TC	84.1	78.2	72.0	86.4	80.3	74.1	88.2	81.7	75.7	90.2	84.0	78.8
	SHC	42.0	52.6	62.7	44.5	56.6	68.0	46.8	60.2	72.5	50.6	67.4	78.7
	kW	5.10	4.97	4.85	5.16	5.03	4.90	5.21	5.06	4.93	5.26	5.12	4.99
95	TC	81.3	75.3	69.2	83.4	77.3	71.3	85.1	78.9	72.9	87.2	80.6	76.2
	SHC	41.0	51.4	61.4	43.4	55.3	66.6	45.8	59.2	71.2	50.2	65.8	76.2
	kW	5.65	5.52	5.39	5.71	5.57	5.44	5.77	5.62	5.48	5.83	5.66	5.55
105	TC	77.9	72.0	66.1	80.0	73.8	68.0	81.6	75.3	69.6	83.4	77.1	73.2
	SHC	39.7	50.2	60.0	42.2	54.0	65.2	44.6	57.8	69.3	49.0	64.5	73.2
	kW	6.22	6.08	5.94	6.29	6.13	6.00	6.34	6.17	6.04	6.40	6.22	6.12
115	TC	74.7	68.4	61.8	75.9	70.0	64.1	77.6	71.3	66.5	78.7	73.0	70.1
	SHC	38.7	48.8	58.1	40.8	52.6	63.2	43.3	56.4	66.4	46.9	63.2	70.0
	kW	6.84	6.68	6.49	6.87	6.71	6.56	6.93	6.75	6.63	6.96	6.80	6.72
125	TC	70.3	63.6	57.2	71.8	65.5	59.1	72.9	66.8	61.9	74.0	68.6	66.4
	SHC	37.2	47.0	55.8	39.5	51.0	59.1	41.7	55.0	61.9	45.4	61.8	66.3
	kW	7.43	7.25	7.03	7.48	7.30	7.13	7.51	7.35	7.22	7.54	7.41	7.33

Ten	np (F)				Air Entering	Evaporato	r — Cfm/BF			
	r Ent		2250/0.10			3000/0.11			3750/0.14	
	denser				Air Entering	Evaporato	r — Ewb (F)			
(E	db)	72	67	62	72	67	62	72	67	62
75	TC	105.5	96.9	87.6	107.3	99.6	90.7	110.3	101.9	93.8
	SHC	50.6	63.6	75.7	53.3	69.2	83.7	58.0	76.6	92.2
	kW	5.15	5.07	5.04	5.16	5.11	5.06	5.20	5.13	5.07
85	TC	102.5	93.6	83.6	105.1	96.5	87.5	107.7	99.0	90.6
	SHC	49.7	62.4	73.9	52.8	68.4	82.2	57.3	75.9	90.0
	kW	5.86	5.79	5.73	5.89	5.82	5.77	5.93	5.86	5.78
95	TC SHC kW	5.86 5.79 5.73 98.9 90.1 79.3 48.5 61.2 71.9 6.65 6.58 6.49			101.6 51.9 6.69	92.9 67.2 6.61	83.5 80.2 6.53	103.8 56.2 6.72	95.3 74.9 6.64	87.4 87.3 6.57
105	TC	95.3	86.2	75.7	97.6	88.8	79.6	100.0	91.0	84.1
	SHC	47.3	59.6	70.2	50.7	65.9	78.0	55.3	73.6	84.1
	kW	7.51	7.44	7.31	7.55	7.48	7.36	7.59	7.50	7.41
115	TC	91.0	82.0	71.6	93.2	84.5	75.4	95.6	86.6	80.7
	SHC	45.9	58.0	68.1	49.3	64.2	75.3	54.2	72.1	80.7
	kW	8.43	8.33	8.20	8.46	8.37	8.27	8.52	8.42	8.34
125	TC	86.2	77.8	68.1	88.3	80.0	71.9	90.0	81.9	77.2
	SHC	44.1	56.4	66.3	47.5	62.6	71.8	52.1	70.1	77.2
	kW	9.38	9.29	9.14	9.43	9.34	9.24	9.47	9.38	9.32

Tem	np (F)							Air Ente	ring Evap	orator -	- Cfm/BF						
Air	Ent		2550	/0.11			3000	/0.12			3400	/0.13			4250	/0.17	
	denser							Air Enter	ring Evap	orator –	- Ewb (F)						
(E	db)	57	62	67	72	57	62	67	57	62	67	72	57	62	67	72	57
75	TC	94.6	101.0	110.0	119.2	100.4	104.4	113.4	121.8	104.2	106.8	115.8	123.4	109.8	111.0	119.0	125.8
	SHC	94.6	84.4	69.4	54.4	100.4	92.4	75.0	57.2	104.2	99.0	80.0	59.8	109.8	110.4	89.4	64.2
	kW	5.72	5.76	5.76	5.82	5.74	5.76	5.80	5.86	5.74	5.76	5.82	5.88	5.76	5.78	5.84	5.90
85	TC	91.0	97.4	106.8	115.8	97.4	101.0	110.0	119.6	101.2	103.0	112.0	121.6	108.0	108.0	116.0	123.4
	SHC	91.0	83.0	68.8	53.2	97.4	91.2	74.2	57.0	101.2	97.6	78.8	59.6	108.0	108.0	89.4	64.2
	kW	6.46	6.5	6.52	6.58	6.50	6.52	6.54	6.60	6.50	6.52	6.54	6.64	6.54	6.54	6.60	6.64
95	TC	85.2	91.4	103.0	112.8	93.4	96.6	106.2	116.0	98.2	99.2	108.4	117.8	104.6	104.6	111.6	121.2
	SHC	85.2	80.4	67.2	52.6	93.4	89.4	73.0	55.8	98.2	96.2	78.2	58.8	104.6	104.6	88.0	64.6
	kW	7.24	7.28	7.36	7.42	7.30	7.32	7.38	7.44	7.34	7.36	7.4	7.46	7.36	7.36	7.42	7.50
105	TC	80.0	82.2	98.6	108.6	87.0	87.8	101.6	111.8	93.4	93.6	103.8	114.0	101.0	100.8	106.8	116.6
	SHC	80.0	76.6	65.6	51.2	87.0	85.6	71.6	54.8	93.4	93.2	76.6	57.8	101.0	100.8	86.8	63.6
	kW	8.08	8.12	8.26	8.32	8.16	8.16	8.28	8.36	8.20	8.20	8.3	8.38	8.28	8.28	8.30	8.40
115	TC	73.6	74.6	89.4	103.4	81.0	81.2	95.2	106.4	86.2	86.2	98.4	108.4	96.4	96.4	101.6	111.8
	SHC	73.6	73.0	62.2	49.6	81.0	81.2	69.4	53.0	86.2	86.2	75.0	56.4	96.4	96.4	85.4	62.8
	kW	9.00	9.00	9.16	9.28	9.08	9.08	9.22	9.30	9.14	9.14	9.26	9.34	9.22	9.22	9.30	9.38
125	TC	68.6	68.6	80.2	98.2	74.4	74.4	84.0	101.0	79.2	79.2	86.8	102.8	88.0	88.0	93.8	105.6
	SHC	68.6	68.6	59.0	48.0	74.4	74.4	65.4	51.6	79.2	79.2	71.0	54.6	88.0	88.0	82.8	61.0
	kW	9.98	9.98	10.14	10.32	10.06	10.06	10.18	10.36	10.14	10.14	10.22	10.38	10.24	10.24	10.28	10.42

Standard Ratings

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
kW — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

- NOTES:
 1. Direct interpolation is permissible. Do not extrapolate.
 2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil $(\mathbf{h}_{\mathrm{lwb}})$ $\mathbf{t}_{\mathrm{lwb}}$

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil. The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC. Correction Factor = 1.10 x (1 – BF) x (edb – 80).

COOLING CAPACITIES, STANDARD UNITS (cont)

581B120	0 (10 TONS	5)											
Ten	np (F)						ntering Evap	orator — C					
Aiı	r Ent		3000/0.03			3200/0.03			4000/0.04			5000/0.04	
	denser					Air	Entering Eva	aporator —	Ewb 67				
(=	db)	72 67 62 72 67 62 72 140 3 120 4 115 0 141 2 120 4 118 1 145 2								62	72	67	62
75	TC	140.3	129.4	115.0	141.2	130.4	118.1	145.2	134.0	122.1	147.5	136.6	125.3
	SHC	65.6	82.2	97.4	66.7	84.4	101.5	71.3	93.1	113.5	77.9	103.7	124.7
	kW	7.35	7.21	7.12	7.37	7.23	7.13	7.46	7.31	7.17	7.51	7.37	7.22
85	TC	137.7	125.3	110.0	138.9	126.6	113.6	142.6	130.6	117.7	144.6	133.3	122.3
	SHC	65.0	81.2	95.2	66.3	83.6	99.7	71.0	92.8	112.0	76.9	103.1	122.2
	kW	8.29	8.13	8.02	8.32	8.16	8.03	8.40	8.24	8.09	8.45	8.31	8.16
95	TC	133.8	120.7	103.0	135.1	121.9	107.2	138.8	125.8	112.8	141.7	128.5	118.5
	SHC	63.9	79.6	92.2	65.2	82.0	97.0	70.6	91.5	109.7	76.9	102.5	118.4
	kW	9.33	9.16	8.98	9.35	9.18	9.00	9.44	9.27	9.07	9.51	9.33	9.19
105	TC	128.7	115.4	96.5	129.8	116.6	99.7	133.7	120.3	107.1	136.7	122.8	114.5
	SHC	62.3	77.6	89.4	63.6	80.2	93.5	69.4	89.6	106.8	76.0	100.6	114.3
	kW	10.46	10.28	10.00	10.47	10.30	10.07	10.57	10.38	10.21	10.66	10.43	10.31
115	TC	123.2	109.1	90.8	124.3	110.3	92.2	127.9	114.4	100.8	130.9	116.8	110.1
	SHC	60.4	75.1	86.6	61.9	77.8	90.0	67.6	87.6	100.7	74.6	98.7	109.9
	kW	11.66	11.47	11.20	11.68	11.51	11.25	11.77	11.60	11.41	11.89	11.66	11.58
125	TC	117.5	101.8	86.2	118.5	103.0	87.4	121.6	107.1	96.0	124.1	110.3	104.8
	SHC	58.5	72.5	84.5	60.0	75.0	87.3	65.8	85.1	96.0	72.5	96.9	104.8
	kW	12.99	12.77	12.50	13.02	12.81	12.55	13.10	12.92	12.74	13.19	13.01	12.91

Tem	p (F)					Air Eı	ntering Evap	orator — C	fm/BF				
	Ent		3750/0.08			4300/0.09			5000/0.11			6250/0.13	
	lenser					Air	Entering Eva	aporator —	Ewb				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	167.1	154.3	142.0	169.8	157.7	144.8	173.5	160.6	148.4	176.5	164.5	153.3
	SHC	82.5	103.5	123.6	85.8	109.7	132.0	90.3	117.7	141.9	98.2	130.7	153.1
	kW	9.44	9.18	8.95	9.50	9.26	9.01	9.60	9.33	9.07	9.68	9.43	9.17
85	TC	162.3	149.3	135.6	165.1	152.5	139.5	168.8	155.3	143.5	172.1	159.2	149.3
	SHC	80.9	101.4	120.9	84.4	107.9	129.9	89.6	115.8	139.8	97.6	129.3	149.1
	kW	10.49	10.18	9.97	10.55	10.27	10.02	10.67	10.32	10.11	10.75	10.43	10.21
95	TC	156.5	143.7	126.3	159.6	146.8	131.3	162.3	149.8	136.5	166.5	153.2	144.5
	SHC	79.1	99.5	116.5	83.0	106.1	126.0	87.6	114.2	135.8	95.8	127.7	144.4
	kW	11.60	11.30	11.01	11.69	11.39	11.10	11.75	11.47	11.20	11.87	11.56	11.35
105	TC	150.0	136.2	115.7	153.0	139.3	120.9	155.6	142.5	138.5	158.8	145.9	138.
	SHC	76.5	96.7	111.2	80.8	103.5	120.0	85.7	112.3	128.4	93.6	125.9	138.
	kW	12.76	12.42	12.09	12.83	12.52	12.20	12.91	12.62	12.32	12.96	12.72	12.5
115	TC	141.8	122.2	104.4	144.3	126.1	110.8	147.7	129.4	118.9	150.7	135.2	130.
	SHC	73.6	91.2	104.2	77.9	98.5	110.8	83.4	107.3	118.4	91.8	121.9	129.
	kW	13.85	13.55	13.22	13.94	13.64	13.35	14.05	13.73	13.50	14.15	13.86	13.7
125	TC	132.5	108.6	93.9	134.8	111.4	100.7	137.6	114.4	106.6	140.3	122.9	120.1
	SHC	70.9	85.7	93.8	74.8	92.9	100.7	80.2	101.4	106.5	89.0	116.3	120.1
	kW	15.04	14.66	14.44	15.14	14.75	14.55	15.23	14.85	14.72	15.29	14.94	14.84

Standard Ratings

LEGEND

BF — Edb — Ewb — kW — SHC — TC —

Bypass Factor
Entering Dry Bulb
Entering Wet Bulb
Compressor Motor Power Input
Sensible Heat Capacity (1000 Btuh) Gross
Total Capacity (1000 Btuh) Gross

NOTES:

- Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{total\ capacity\ (Btuh)}{4.5\ x\ cfm}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

Correction Factor = 1.10 x (1 – BF) x (edb – 80).

COOLING CAPACITIES — UNITS WITH PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM OPTION

Tor	nn /E\				Air Entering	g Evaporato	r — Cfm/BF			
	np (F) r Ent		900/0.14			1200/0.17			1500/0.20	
	denser				Air Entering	g Evaporato	Ewb (F)			
(I	Edb)	72	67	62	72	67	62	72	67	62
75	TC	41.3	37.3	34.3	43.5	39.2	35.9	45.5	41.6	38.2
	SHC	17.5	22.4	26.7	19.6	25.5	31.2	21.5	28.5	35.2
	kW	2.19	2.14	2.10	2.21	2.16	2.14	2.24	2.19	2.16
85	TC	38.6	34.4	31.6	41.3	37.5	33.3	43.5	38.6	35.5
	SHC	15.2	20.1	25.1	17.1	23.2	29.0	18.9	26.3	32.9
	kW	2.46	2.40	2.37	2.47	2.43	2.40	2.51	2.45	2.42
95	TC	35.9	31.4	28.8	39.2	35.9	30.6	41.3	35.7	32.9
	SHC	13.0	17.9	23.3	14.5	21.1	26.9	16.1	24.2	30.6
	kW	2.74	2.68	2.63	2.76	2.74	2.67	2.80	2.75	2.71
105	TC	33.8	29.7	27.4	36.3	32.2	28.7	38.1	32.8	30.4
	SHC	10.9	15.8	21.0	12.5	18.9	24.6	14.0	21.7	28.1
	kW	3.05	3.00	2.97	3.09	3.04	2.99	3.12	3.07	3.03
115	TC	31.8	28.0	25.5	33.2	28.7	26.5	34.9	30.0	27.9
	SHC	9.0	13.7	18.4	10.3	16.8	22.3	11.9	19.3	25.2
	kW	3.40	3.36	3.31	3.45	3.38	3.32	3.48	3.41	3.37
125	TC	28.7	26.3	23.4	29.7	25.5	22.9	31.3	27.1	25.5
	SHC	6.9	12.2	17.3	7.9	14.5	20.6	9.2	17.3	22.3
	kW	3.78	3.73	3.66	3.84	3.77	3.71	3.87	3.79	3.75

					Air Entering	g Evaporator	— Ewb (F)			
	Temp (F) Air Ent ondenser		75 Dry Bulb 32.5 Wet Bulb 50% Relative	ס	(75 Dry Bulb 64 Wet Bulb 55% Relative			75 Dry Bulb 55.3 Wet Bulb 60% Relative	
	(Edb)				Air Enteri	ng Evaporat	or — Cfm			
		900	1200	1500	900	1200	1500	900	1200	1500
80	TC	12.83	15.84	18.20	13.24	16.31	18.73	13.58	16.72	19.18
	SHC	4.06	5.69	6.98	2.21	3.83	5.12	.59	2.20	3.50
	kW	2.12	2.12	2.12	2.13	2.13	2.13	2.14	2.14	2.14
75	TC	13.61	16.44	18.67	14.03	16.93	19.20	14.39	17.34	19.67
	SHC	4.62	6.16	7.37	2.89	4.43	5.65	1.40	2.93	4.15
	kW	2.11	2.11	2.11	2.12	2.12	2.12	2.14	2.14	2.14
70	TC	14.39	17.05	19.14	14.82	17.54	19.68	15.19	17.96	20.15
	SHC	5.17	6.62	7.77	3.58	5.03	6.18	2.20	3.65	4.80
	kW	2.10	2.10	2.10	2.12	2.12	2.12	2.13	2.13	2.13
60	TC	15.95	18.26	20.08	16.40	18.77	20.63	16.79	19.21	21.11
	SHC	6.27	7.55	8.56	4.95	6.23	7.24	3.81	5.09	6.10
	kW	2.09	2.09	2.09	2.11	2.11	2.11	2.12	2.12	2.12
50	TC	17.50	19.48	21.02	17.98	20.00	21.58	18.40	20.45	22.07
	SHC	7.37	8.47	9.35	6.32	7.43	8.30	5.42	6.52	7.39
	kW	2.07	2.07	2.07	2.10	2.10	2.10	2.12	2.12	2.12
40	TC	19.06	20.69	21.07	19.56	21.23	22.54	20.00	21.70	23.03
	SHC	8.47	9.40	10.13	7.71	8.63	9.36	7.02	7.95	8.69
	kW	2.06	2.06	2.06	2.08	2.08	2.08	2.11	2.11	2.11

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
kW — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:

1. Direct interpolation is permissible. Do not extrapolate.

2. The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{\text{sensible capacity (Btuh)}}$ 1.10 x cfm

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{total capacity (Btuh)}{4.5 \times cfm}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

Correction Factor = 1.10 x (1 – BF) x (edb – 80).

COOLING CAPACITIES — UNITS WITH PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM OPTION (cont)

581B048 (4	TONS) — SU	BCOOLIN	IG MODE										
Ten	np (F)					Air Ente	ring Evap	orator —	Cfm/BF				
	r Ent		1200/0.17			1450/0.19			1600/0.21			2000/0.24	
	denser				5	Air Ente	ring Evap	orator —	Ewb (F)		5		
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	52.9	47.5	41.5	55.7	50.9	47.5	57.0	51.7	48.1	60.5	55.6	52.1
	SHC	22.7	28.4	33.4	26.1	34.1	38.9	25.9	33.7	41.6	29.4	39.1	47.5
	kW	2.87	2.86	2.82	2.89	2.87	2.84	2.89	2.86	2.85	2.90	2.88	2.85
85	TC	49.2	43.8	37.1	52.1	47.2	43.6	52.9	47.9	43.7	55.4	51.4	47.0
	SHC	19.8	25.5	30.4	22.2	29.5	35.8	22.4	31.1	38.7	24.2	36.0	44.3
	kW	3.26	3.25	3.21	3.28	3.26	3.23	3.28	3.26	3.24	3.28	3.26	3.24
95	TC	45.8	40.1	32.8	48.2	43.6	39.4	48.8	44.0	39.3	51.7	47.4	43.0
	SHC	17.2	22.5	27.3	18.4	24.8	32.6	19.0	28.1	35.9	20.7	33.0	41.0
	kW	3.71	3.68	3.64	3.72	3.69	3.67	3.72	3.69	3.67	3.74	3.70	3.68
105	TC	41.6	37.0	29.7	43.2	38.9	35.4	43.9	39.7	34.7	46.5	41.4	37.5
	SHC	13.5	19.5	23.9	14.7	21.7	29.2	15.0	23.7	30.6	16.4	27.8	35.1
	kW	4.20	4.17	4.11	4.20	4.17	4.14	4.20	4.17	4.15	4.22	4.19	4.16
115	TC	37.2	33.2	27.1	38.4	34.0	30.8	39.4	35.5	30.0	41.3	35.2	31.9
	SHC	9.9	16.4	20.7	11.3	18.5	25.6	11.2	19.7	25.4	12.4	22.4	28.6
	kW	4.73	4.68	4.62	4.74	4.71	4.64	4.73	4.72	4.65	4.74	4.72	4.69
125	TC	32.4	28.1	24.9	33.8	28.1	27.4	35.3	30.5	26.6	36.1	32.0	28.7
	SHC	7.2	12.9	18.3	8.4	14.5	21.9	16.8	21.1	21.2	9.5	18.3	24.1
	kW	5.29	5.23	5.15	5.30	5.25	5.19	5.29	5.27	5.21	5.30	5.29	5.25

					Air Entering	g Evaporatoi	— Ewb (F)			
	Temp (F) Air Ent ondenser		75 Dry Bulb 62.5 Wet Bull 50% Relative)		75 Dry Bulb 64 Wet Bulb 55% Relative			75 Dry Bulb 55.3 Wet Bulk 60% Relative	
	(Edb)				Air Enteri	ng Evaporat	or — Cfm			
		1200	1450	1600	1200	1450	1600	1200	1450	1600
80	TC	12.13	14.30	15.43	14.98	17.20	18.36	17.44	19.71	20.9
	SHC	1.01	1.60	1.90	-0.18	0.41	0.72	-1.20	-0.61	-0.3
	kW	2.76	2.76	2.76	2.75	2.75	2.75	2.74	2.74	2.74
75	TC	13.25	15.28	16.34	15.96	18.05	19.14	18.31	20.44	21.5
	SHC	1.60	2.14	2.43	0.50	1.05	1.34	-0.45	0.11	0.4
	kW	7.54	7.54	7.57	7.61	7.64	7.66	7.66	7.70	7.71
70	TC	14.37	16.27	17.26	16.94	18.90	19.92	19.17	21.17	22.2
	SHC	2.18	2.69	2.96	1.17	1.69	1.96	0.30	0.82	1.1
	kW	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70	2.70
60	TC	16.60	18.24	19.10	18.91	20.60	21.48	20.91	22.64	23.5
	SHC	3.35	3.79	4.03	2.52	2.97	3.21	1.80	2.25	2.5
	kW	2.64	2.64	2.64	2.65	2.65	2.65	2.65	2.65	2.65
50	TC	18.83	20.22	20.94	20.87	22.30	23.04	22.65	24.10	24.8
	SHC	4.51	4.89	5.09	3.86	4.25	4.45	3.30	3.69	3.8
	kW	2.59	2.59	2.59	2.60	2.60	2.60	2.61	2.61	2.61
40	TC	21.06	22.19	22.78	22.84	24.00	24.61	24.38	25.57	26.1
	SHC	5.68	5.99	6.16	5.21	5.53	5.69	4.80	5.12	5.2
	kW	2.53	2.53	2.53	2.55	2.55	2.55	2.57	2.57	2.57

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
kW — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

*Negative SHC value indicates that the air entering the coil is being heated.

NOTES:

1. Direct interpolation is permissible. Do not extrapolate.

2. The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.00}$ 1.10 x cfm

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

h_{lwb} = h_{ewb} - total capacity (Btuh) 4.5 x cfm

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES — UNITS WITH PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM OPTION (cont)

581B060 (5	TONS) — SU	IBCOOLIN	NG MODE										
Ten	np (F)					Air Ente	ering Eva _l	oorator —	- Cfm/BF				
Air	r Ent		1500/0.08			1750/0.09			2000/0.11			2500/0.13	
	denser					Air Ente	ering Eva	oorator —	- Ewb (F)				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	69.9	62.7	56.2	74.7	67.3	61.0	78.5	71.2	64.8	81.7	75.5	69.3
	SHC	29.0	36.9	43.9	31.7	40.5	51.2	34.5	44.2	55.4	37.8	52.0	62.8
	kW	3.61	3.55	3.51	3.64	3.58	3.49	3.65	3.60	3.51	3.62	3.58	3.51
85	TC	65.9	59.1	51.7	70.6	63.2	56.3	75.5	66.8	60.7	78.1	70.8	65.1
	SHC	25.3	34.0	41.9	27.5	37.6	48.0	30.7	41.6	52.0	33.8	47.4	58.0
	kW	4.05	3.97	3.91	4.07	4.01	3.92	4.11	4.00	3.95	4.08	4.02	3.96
95	TC	61.9	55.2	47.7	66.5	58.8	51.3	70.4	61.9	55.7	74.2	65.9	60.6
	SHC	21.6	31.1	40.0	23.5	34.5	44.6	26.0	38.6	47.9	30.0	42.8	52.6
	kW	4.53	4.43	4.35	4.55	4.47	4.37	4.56	4.42	4.41	4.58	4.49	4.44
105	TC	57.7	51.1	44.9	61.8	54.5	47.7	65.1	57.2	50.8	68.4	60.3	56.1
	SHC	18.1	27.8	35.7	20.0	31.2	40.1	22.1	34.3	43.5	26.1	38.9	48.5
	kW	5.05	4.93	4.84	5.09	4.97	4.88	5.11	4.96	4.92	5.11	5.03	4.98
115	TC	53.4	47.2	42.0	56.6	50.0	44.2	59.6	52.5	46.2	62.6	54.9	51.6
	SHC	14.7	24.6	31.5	16.5	27.8	35.7	18.2	30.0	39.0	22.1	34.9	44.3
	kW	5.60	5.49	5.40	5.64	5.52	5.45	5.69	5.55	5.48	5.69	5.61	5.57
125	TC	48.7	42.0	36.9	51.3	45.0	39.0	54.1	46.8	40.9	56.9	49.2	45.9
	SHC	10.9	19.6	28.0	12.5	22.2	31.5	13.5	24.0	34.0	16.5	28.0	38.8
	kW	6.26	6.12	6.02	6.28	6.18	6.09	6.33	6.18	6.13	6.33	6.27	6.22

					Air Entering	g Evaporatoi	— Ewb (F)			
	Геmp (F) Air Ent ondenser		75 Dry Bulb 62.5 Wet Bull 50% Relative)		75 Dry Bulb 64 Wet Bulb 55% Relative			75 Dry Bulb 55.3 Wet Bulk 60% Relative	
	(Edb)				Air Enteri	ng Evaporat	or — Cfm			
		1500	1750	2000	1500	1750	2000	1500	1750	2000
80	TC	17.67	19.23	20.59	17.51	19.09	20.48	17.37	18.98	20.39
	SHC	-0.39	0.07	0.46	-1.61	-1.15	-0.75	-2.67	-2.21	-1.8
	kW	3.45	3.45	3.45	3.48	3.48	3.48	3.50	3.50	3.50
75	TC	18.55	20.03	21.32	18.45	19.95	21.27	18.36	19.89	21.23
	SHC	0.28	0.71	1.09	-0.85	-0.42	-0.04	-1.83	-1.39	-1.0
	kW	3.43	3.43	3.43	3.46	3.46	3.46	3.49	3.49	3.49
70	TC	19.44	20.83	22.06	19.39	20.81	22.06	19.35	20.80	22.0
	SHC	0.95	1.36	1.71	-0.09	0.32	0.68	-0.99	-0.58	-0.2
	kW	3.42	3.42	3.42	3.45	3.45	3.45	3.48	3.48	3.48
60	TC	21.20	22.44	23.53	21.27	22.54	23.65	21.33	22.62	23.7
	SHC	2.30	2.65	2.95	1.44	1.80	2.11	0.70	1.06	1.3
	kW	3.38	3.38	3.38	3.42	3.42	3.42	3.46	3.46	3.46
50	TC	22.96	24.05	25.00	23.15	24.26	25.23	23.31	24.43	25.4
	SHC	3.64	3.94	4.20	2.97	3.27	3.53	2.39	2.69	2.9
	kW	3.35	3.35	3.35	3.40	3.40	3.40	3.43	3.43	3.43
40	TC	24.73	25.66	26.48	25.03	25.98	26.81	25.28	26.25	27.10
	SHC	4.99	5.23	5.45	4.50	4.75	4.96	4.07	4.32	4.54
	kW	3.32	3.32	3.32	3.37	3.37	3.37	3.41	3.41	3.41

LEGEND

BF — Bypass Factor BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
kW — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

*Negative SHC value indicates that the air entering the coil is being heated.

NOTES:

1. Direct interpolation is permissible. Do not extrapolate.

2. The following formulas may be used:

 t_{ldb} = t_{edb} - sensible capacity (Btuh) 1.10 x cfm

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

h_{lwb} = h_{ewb} - total capacity (Btuh) 4.5 x cfm

Where: h_{ewb} = Enthalpy of air entering evaporator coil. 3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES — UNITS WITH PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM OPTION (cont)

581B072 (6	TONS) — SU	BCOOLIN	IG MODE										
Ten	np (F)					Air Ente	ering Evap	oorator —	Cfm/BF				
Ai	r Ent		1800/0.05			2100/0.06			2400/0.06			3000/0.08	
	denser					Air Ente	ring Evap	orator —	Ewb (F)				
(E	db)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	82.6	75.6	68.5	84.9	78.0	70.9	85.9	79.5	73.5	89.1	82.7	77.0
	SHC	36.0	44.8	55.4	37.5	49.1	59.7	38.8	51.1	64.0	41.8	58.1	70.2
	kW	4.60	4.52	4.36	4.67	4.57	4.46	4.70	4.57	4.45	4.77	4.61	4.51
85	TC	78.2	71.6	64.5	80.9	73.4	65.8	82.0	74.4	67.9	85.8	78.2	72.3
	SHC	31.4	41.2	51.7	33.0	44.7	55.8	34.7	47.4	60.1	37.6	54.3	66.7
	kW	5.16	5.03	4.89	5.22	5.11	4.96	5.26	5.09	4.97	5.32	5.17	5.04
95	TC	73.8	67.4	60.2	76.3	68.3	60.5	77.5	69.3	62.3	82.0	72.8	67.5
	SHC	27.0	37.6	47.9	28.2	40.0	51.6	30.2	43.7	56.2	33.6	49.2	62.9
	kW	5.75	5.60	5.44	5.80	5.66	5.48	5.84	5.68	5.53	5.90	5.73	5.60
105	TC	68.4	62.6	55.9	71.4	64.3	56.2	72.1	64.6	58.3	75.7	67.0	62.4
	SHC	22.3	33.5	43.5	23.4	36.5	48.0	25.4	38.4	50.2	29.1	45.2	56.2
	kW	6.37	6.22	6.06	6.45	6.27	6.10	6.46	6.29	6.16	6.53	6.36	6.24
115	TC	63.4	57.8	50.7	66.0	60.1	51.5	66.4	59.6	54.5	68.8	60.8	57.5
	SHC	18.1	29.5	38.9	18.8	32.9	44.1	20.7	33.3	43.8	24.3	41.4	49.7
	kW	7.04	6.89	6.68	7.10	6.91	6.74	7.12	6.95	6.83	7.16	7.01	6.92
125	TC	55.5	49.6	45.8	58.4	52.4	46.1	57.6	52.1	49.5	59.2	52.8	53.1
	SHC	15.3	24.0	35.2	15.7	27.5	39.0	17.5	27.5	38.4	20.9	34.6	44.4
	kW	7.80	7.61	7.38	7.83	7.67	7.49	7.89	7.72	7.58	7.92	7.78	7.70

					Air Entering	g Evaporator	— Ewb (F)			
	Temp (F) Air Ent ondenser		75 Dry Bulb 62.5 Wet Bull 50% Relative)		75 Dry Bulb 64 Wet Bulb 55% Relative			75 Dry Bulb 55.3 Wet Bulb 60% Relative	
	(Edb)				Air Enteri	ng Evaporat	or — Cfm			
		1800	2100	2400	1800	2100	2400	1800	2100	2400
80	TC	27.41	28.12	28.75	27.25	27.98	28.62	27.12	27.86	28.51
	SHC	5.74	7.61	9.25	1.68	3.52	5.14	-1.85	-0.03	1.58
	kW	4.40	4.39	4.39	4.44	4.44	4.44	4.49	4.49	4.49
75	TC	27.98	28.66	29.24	27.89	28.58	29.18	27.81	28.52	29.13
	SHC	5.73	7.48	9.02	1.92	3.65	5.18	-1.38	0.34	1.85
	kW	4.45	4.45	4.45	4.50	4.50	4.50	4.55	4.55	4.55
70	TC	28.55	29.19	29.74	28.53	29.18	29.74	28.51	29.17	29.74
	SHC	5.71	7.35	8.79	2.17	3.79	5.22	-0.91	0.70	2.12
	kW	4.51	4.51	4.51	4.57	4.57	4.57	4.62	4.62	4.62
60	TC	29.70	30.25	30.74	29.80	30.37	30.86	29.89	30.47	30.97
	SHC	5.67	7.09	8.34	2.65	4.06	5.29	0.04	1.43	2.65
	kW	4.62	4.62	4.62	4.69	4.69	4.69	4.75	4.75	4.75
50	TC	30.84	31.32	31.73	31.07	31.56	31.98	31.27	31.77	32.20
	SHC	5.63	6.83	7.89	3.14	4.33	5.37	0.98	2.15	3.19
	kW	4.74	4.74	4.74	4.82	4.82	4.82	4.89	4.89	4.89
40	TC	31.99	32.38	32.73	32.35	32.75	33.12	32.66	33.07	33.43
	SHC	5.60	6.57	7.43	3.63	4.59	5.44	1.92	2.88	3.72
	kW	4.86	4.86	4.86	4.95	4.95	4.95	5.02	5.02	5.02

LEGEND

BF — Bypass Factor Edb — Entering Dry Bulb

Edb — Entering Wet Bulb

kW — Compressor Motor Power Input

SHC — Sensible Heat Capacity (1000 Btuh) Gross

TC — Total Capacity (1000 Btuh) Gross

NOTES:

1. Direct interpolation is permissible. Do not extrapolate.

2. The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1}$ 1.10 x cfm

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

h_{lwb} = h_{ewb} - total capacity (Btuh)

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

Correction Factor = 1.10 x (1 – BF) x (edb – 80).

^{*}Negative SHC value indicates that the air entering the coil is being heated.

COOLING CAPACITIES — UNITS WITH PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM OPTION (cont)

т	EMP (F)			Α	IR ENTERING	S EVAPORAT	OR — Cfm/E	3F		
A	IR ENT		2250/0.10			3000/0.11			3750/0.14	
	NDENSER				Air Enterin	g Evaporator	— Ewb (F)			
	(Edb)	72	67	62	72	67	62	72	67	62
75	TC	98.4	91.1	81.1	103.7	97.9	91.8	105.8	101.3	94.1
	SHC	44.5	55.4	67.0	50.4	65.4	80.5	54.5	72.4	89.5
	kW	5.05	4.96	4.87	5.09	5.04	4.97	5.16	5.04	4.99
85	TC	94.2	85.8	76.9	100.3	92.4	85.2	103.5	96.8	89.0
	SHC	39.7	51.3	62.7	46.2	58.3	75.7	50.6	68.2	84.3
	kW	5.74	5.65	5.55	5.81	5.75	5.64	5.89	5.74	5.70
95	TC	89.9	80.5	72.6	96.9	86.8	78.6	101.1	92.2	83.8
	SHC	34.8	47.2	58.3	41.9	51.2	71.0	46.6	63.9	79.1
	kW	6.42	6.33	6.22	6.52	6.45	6.31	6.62	6.43	6.40
105	TC	84.6	75.3	68.0	91.6	81.3	73.4	94.5	86.3	78.4
	SHC	30.0	42.5	53.9	36.9	49.3	66.4	41.4	59.2	73.8
	kW	7.26	7.16	7.05	7.36	7.25	7.15	7.46	7.29	7.23
115	TC	79.2	70.1	63.3	86.2	75.8	68.1	87.9	80.3	72.9
	SHC	25.2	37.8	49.4	31.9	47.4	61.9	36.1	54.4	68.5
	kW	8.10	7.99	7.87	8.20	8.05	7.98	8.30	8.14	8.05
125	TC	72.8	64.5	57.2	78.0	69.8	62.3	81.6	73.2	69.2
	SHC	20.1	33.4	44.1	25.4	42.5	56.5	31.1	48.9	64.7
	kW	9.10	8.94	8.83	9.23	9.05	8.95	9.26	9.10	8.99

					Air Entering	g Evaporator	— Ewb (F)			
	emp (F) Air Ent ondenser		75 Dry Bulb 62.5 Wet Bull 50% Relative)		75 Dry Bulb 64 Wet Bulb 55% Relative			75 Dry Bulb 65.3 Wet Bulk 60% Relative	
	(Edb)				Air Enteri	ng Evaporat	or — Cfm			
		2250	3000	3750	2250	3000	3750	2250	3000	3750
80	TC	37.74	40.54	42.68	38.48	41.35	43.55	39.12	42.05	44.29
	SHC	10.67	15.63	19.63	5.01	9.84	13.74	0.10	4.82	8.63
	kW	4.92	4.92	4.92	4.97	4.97	4.97	5.01	5.01	5.01
75	TC	37.34	39.95	41.95	38.08	40.75	42.81	38.72	41.45	43.55
	SHC	9.83	14.48	18.24	4.52	9.05	12.70	-0.09	4.34	7.9
	kW	5.19	5.19	5.19	5.25	5.25	5.25	5.30	5.30	5.30
70	TC	36.93	39.36	41.22	37.67	40.16	42.07	38.31	40.85	42.80
	SHC	8.99	13.33	16.84	4.02	8.26	11.67	-0.28	3.86	7.19
	kW	5.46	5.46	5.46	5.52	5.52	5.52	5.58	5.58	5.58
60	TC	36.13	38.18	39.75	36.87	38.97	40.58	37.51	39.66	41.3°
	SHC	7.31	11.04	14.04	3.04	6.67	9.60	-0.66	2.89	5.75
	kW	5.99	5.99	5.99	6.08	6.08	6.08	6.15	6.15	6.15
50	TC	35.32	37.00	38.29	36.06	37.78	39.10	36.75	38.46	39.8
	SHC	5.63	8.74	11.25	2.06	5.09	7.53	-1.03	1.93	4.3
	kW	6.52	6.52	6.52	6.63	6.63	6.63	6.73	6.73	6.73
40	TC	34.52	35.82	36.82	35.26	36.60	37.62	35.90	37.27	38.32
	SHC	3.94	6.44	8.45	1.08	3.51	5.47	-1.41	0.97	2.88
	kW	7.05	7.05	7.05	7.18	7.18	7.18	7.30	7.30	7.30

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
kW — Compressor Motor Power Input
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

*Negative SHC value indicates that the air entering the coil is being heated.

NOTES:

1. Direct interpolation is permissible. Do not extrapolate.

2. The following formulas may be used:

sensible capacity (Btuh) 1.10 x cfm

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

 $h_{lwb} = h_{ewb} - \frac{total capacity (Btuh)}{4.5}$

Where: h_{ewb} = Enthalpy of air entering evaporator coil. 3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES — UNITS WITH PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM OPTION (cont)

581B102	2 (81/ ₂ TONS)	— SUBC	OOLING M	ODE									
To	mp (F)					Air En	tering Eva	porator —	Cfm/BF				
Α	ir Ent	:	2550/0.08			3000/0.09			3400/0.11			4250/0.13	
	ndenser					Air En	tering Eva	porator —	Ewb (F)				
(Edb)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	114.1	104.1	97.8	116.3	108.5	103.4	117.6	111.9	108.0	122.2	118.9	111.4
	SHC	49.8	64.2	81.2	52.6	70.8	89.0	55.4	76.9	95.4	62.0	87.0	107.2
	kW	5.57	5.46	5.44	5.59	5.50	5.44	5.60	5.51	5.44	5.62	5.62	5.69
85	TC	107.3	98.4	92.6	111.0	101.8	98.0	113.0	104.2	102.0	117.1	111.4	106.1
	SHC	42.2	58.3	76.0	47.1	64.5	83.5	51.2	70.2	89.2	57.3	81.2	101.2
	kW	6.32	6.30	6.15	6.32	6.27	6.18	6.34	6.22	6.20	6.30	6.31	6.45
95	TC	101.9	92.4	86.8	105.3	95.5	92.8	107.4	97.7	96.5	112.1	103.7	100.3
	SHC	35.4	51.9	70.3	40.1	58.5	77.9	44.9	64.9	83.7	52.1	74.0	94.8
	kW	7.06	7.13	6.93	7.06	7.06	6.95	7.06	6.99	6.98	7.01	7.04	7.17
105	TC	94.5	85.4	77.0	97.6	88.3	82.4	99.9	90.6	88.0	104.1	96.1	94.0
	SHC	29.7	45.7	63.2	33.9	52.2	70.1	38.0	58.3	75.7	44.4	67.6	88.5
	kW	7.99	8.00	7.81	8.01	7.97	7.85	8.02	7.94	7.89	7.96	7.96	8.08
115	TC	86.4	75.0	68.3	89.3	80.2	74.1	91.4	83.2	78.4	96.5	88.4	87.1
	SHC	24.0	38.7	56.4	27.4	45.6	62.9	31.1	51.9	67.0	37.0	60.8	81.8
	kW	8.91	8.83	8.66	8.93	8.86	8.76	8.97	8.86	8.84	8.91	8.93	8.90
125	TC	78.6	65.5	60.2	81.3	68.9	64.7	83.3	71.6	68.2	88.5	78.8	78.9
	SHC	18.3	32.0	48.8	21.2	38.0	53.5	24.1	44.1	57.5	29.4	53.3	73.8
	kW	9.81	9.65	9.53	9.86	9.68	9.64	9.89	9.71	9.75	9.90	9.72	9.88

						Air Ent	ering Evap	orator —	Ewb (F)				
Air Cond	np (F) r Ent denser		62.5 W	/ Bulb et Bulb elative)			75 Dry 64 We (55% R				75 Dry 65.3 W (60% R		
(E	idb)					Air E	ntering Eva	aporator –	- Cfm				
		2550	3000	3400	4250	2550	3000	3400	4250	2550	3000	3400	4250
80	TC	43.44	46.26	48.45	52.38	45.26	48.15	50.39	54.43	46.84	49.79	52.08	56.20
	SHC	12.34	16.78	20.29	26.74	5.79	10.15	13.60	19.93	0.11	4.40	7.80	14.03
	kW	6.31	6.31	6.31	6.31	6.05	6.05	6.05	6.05	5.83	5.83	5.83	5.83
75	TC	44.33	47.00	49.06	52.78	46.12	48.85	50.97	54.78	47.67	50.46	52.63	56.52
	SHC	12.92	17.12	20.44	26.54	6.81	10.94	14.20	20.20	1.51	5.58	8.79	14.70
	kW	6.38	6.38	6.8	6.38	6.15	6.15	6.15	6.15	5.95	5.95	5.95	5.95
70	TC	45.22	47.73	49.68	53.18	46.98	49.55	51.55	55.14	48.51	51.14	53.18	56.84
	SHC	13.50	17.47	20.59	26.34	7.83	11.73	14.81	20.46	2.92	6.76	9.79	15.36
	kW	6.46	6.46	6.46	6.46	6.25	6.25	6.25	6.25	6.07	6.07	6.07	6.07
60	TC	46.99	49.19	50.90	53.97	48.70	50.96	52.71	55.86	50.18	52.49	54.27	57.49
	SHC	14.67	18.15	20.90	25.95	9.88	13.31	16.01	20.99	5.73	9.11	11.78	16.68
	kW	6.60	6.60	6.60	6.60	6.45	6.45	6.45	6.45	6.32	6.32	6.32	6.32
50	TC	48.77	50.66	52.13	54.77	50.42	52.36	53.87	56.57	51.85	53.83	55.37	58.14
	SHC	15.83	18.83	21.20	25.56	11.93	14.89	17.22	21.51	8.55	11.47	13.77	18.01
	kW	6.74	6.74	6.74	6.74	6.64	6.64	6.64	6.64	6.56	6.56	6.56	6.56
40	TC	50.54	52.13	53.35	55.56	52.14	53.76	55.02	57.29	53.53	55.18	56.47	58.78
	SHC	17.00	19.52	21.51	25.16	13.98	16.47	18.43	22.04	11.36	13.82	15.76	19.33
	kW	6.88	6.88	6.88	6.88	6.84	6.84	6.84	6.84	6.81	6.81	6.81	6.81

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
kW — Compressor Motor Power Input

 Sensible Heat Capacity (1000 Btuh) Gross
 Total Capacity (1000 Btuh) Gross SHC

TC

NOTES:

1. Direct interpolation is permissible. Do not extrapolate.

2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{total capacity (Btuh)}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

Correction Factor = 1.10 x (1 – BF) x (edb – 80).

COOLING CAPACITIES — UNITS WITH PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM OPTION (cont)

581B12	20 (10 TON	S) — SUB	COOLING	MODE									
Tor	np (F)					Air Ent	ering Eva	oorator —	Cfm/BF				
	r Ent		3000/0.03			3200/0.03			4000/0.04			5000/0.04	
	denser					Air Ent	ering Eva	orator —	Ewb (F)				
(E	Edb)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	134.3	122.5	111.4	135.8	124.3	113.0	138.4	129.5	123.5	143.3	136.5	130.2
	SHC	60.0	76.1	93.7	61.3	79.1	97.4	68.0	89.5	109.4	75.2	100.9	123.3
	kW	7.03	6.84	6.72	7.01	6.89	6.77	7.10	6.92	6.77	7.15	7.03	6.88
85	TC	127.6	115.4	104.6	128.9	118.1	107.0	132.5	121.5	116.6	137.2	128.0	122.9
	SHC	51.5	68.8	87.2	53.9	72.0	91.2	61.0	82.7	102.4	68.6	93.6	115.9
	kW	7.96	7.86	7.59	7.94	7.78	7.51	8.02	7.84	7.69	8.02	7.94	7.79
95	TC	120.9	108.3	97.8	121.9	111.8	101.0	126.5	113.4	109.7	131.1	119.4	115.5
	SHC	43.0	61.5	80.6	46.5	64.8	84.9	53.9	75.9	95.4	62.0	86.2	108.4
	kW	8.88	8.87	8.46	8.86	8.66	8.26	8.94	8.76	8.60	8.89	8.85	8.69
105	TC	112.0	99.9	90.4	113.1	103.2	93.4	117.2	105.0	100.7	122.1	110.5	105.9
	SHC	36.1	54.1	73.8	38.8	57.8	78.9	45.6	68.2	86.8	53.0	78.3	99.7
	kW	10.0	10.0	9.6	10.0	9.8	9.5	10.1	9.9	9.8	10.1	10.0	9.9
115	TC	103.0	91.5	83.1	104.3	94.6	85.9	107.8	96.7	91.7	113.0	101.6	96.4
	SHC	29.2	46.7	66.9	31.2	50.7	72.9	37.3	60.6	78.3	44.0	70.3	90.9
	kW	11.2	11.1	10.8	11.2	11.0	10.7	11.3	11.1	11.0	11.3	11.2	11.1
125	TC	94.1	83.1	75.7	95.5	86.0	78.3	98.5	88.3	82.7	104.0	92.7	86.8
	SHC	22.3	39.3	60.1	23.5	43.7	66.8	29.0	52.9	69.7	35.0	62.4	82.2
	kW	12.35	12.15	11.94	12.38	12.13	11.92	12.48	12.27	12.25	12.53	12.30	12.28

						Air Ent	ering Evap	orator —	Ewb (F)				
Air	p (F) Ent lenser		62.5 W	/ Bulb et Bulb elative)				/ Bulb t Bulb elative)			75 Dry 65.3 W (60% R		
(E	db)				-	Air E	ntering Ev	aporator —	Cfm				
		3000	3200	4000	5000	3000	3200	4000	5000	3000	3200	4000	5000
80	TC	49.15	50.16	53.80	57.72	51.04	52.08	55.86	59.94	52.67	53.74	57.65	61.86
	SHC	9.58	12.02	20.74	29.89	2.88	5.29	13.88	22.89	-2.92	-0.55	7.93	16.83
	kW	7.39	7.38	7.38	7.37	7.45	7.45	7.44	7.43	7.50	7.50	7.49	7.49
75	TC SHC kW	49.60 10.07 7.56	49.60 50.61 54.30 58.2 10.07 12.38 20.60 29.2 7.56 7.56 7.55 7.55 50.04 51.07 54.81 58.8				52.50 6.09 7.63	56.33 14.20 7.62	60.45 22.70 7.62	53.05 -1.60 7.69	54.14 0.64 7.69	58.09 8.65 7.69	62.34 17.05 7.68
70	TC	50.04	51.07	54.81	58.83	51.86	52.92	56.80	60.96	53.43	54.53	58.52	62.82
	SHC	10.56	12.73	20.47	28.58	4.75	6.89	14.52	22.52	-0.28	1.83	9.36	17.26
	kW	7.73	7.73	7.72	7.72	7.81	7.81	7.81	7.80	7.89	7.88	7.88	7.87
60	TC	50.93	51.98	55.81	59.93	52.68	53.77	57.73	61.99	54.20	55.32	59.39	63.77
	SHC	11.54	13.44	20.19	27.28	6.62	8.49	15.16	22.15	2.36	4.21	10.79	17.70
	kW	8.07	8.07	8.07	8.06	8.18	8.18	8.17	8.17	8.27	8.27	8.26	8.26
50	TC	51.82	52.90	56.81	61.03	53.50	54.62	58.66	63.01	54.96	56.10	60.26	64.73
	SHC	12.53	14.14	19.92	25.98	8.50	10.09	15.80	21.78	5.00	6.58	12.22	18.14
	kW	8.42	8.42	8.41	8.41	8.54	8.54	8.54	8.54	8.66	8.65	8.65	8.65
40	TC	52.71	53.81	57.82	62.13	54.32	55.46	59.59	64.04	55.72	56.89	61.13	65.69
	SHC	13.51	14.85	19.64	24.67	10.37	11.70	16.43	21.41	7.64	8.96	13.65	18.58
	kW	8.76	8.76	8.76	8.75	8.91	8.91	8.91	8.90	9.04	9.04	9.04	9.03

LEGEND

Bypass Factor Entering Dry Bulb
Entering Wet Bulb
Compressor Motor Power Input
Sensible Heat Capacity (1000 Btuh) Gross
Total Capacity (1000 Btuh) Gross Edb EWB — kW — SHC — TC —

*Negative SHC value indicates that the air entering the coil is being heated. NOTES:

1. Direct interpolation is permissible. Do not extrapolate.

2. The following formulas may be used:

sensible capacity (Btuh) 1.10 x cfm

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \times \text{cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

3. The SHC is based on 80 F edb temperature of air entering evaporator

Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES — UNITS WITH PERFECT HUMIDITY™ ADAPTIVE DEHUMIDIFICATION SYSTEM OPTION (cont)

581B15	0 (12 ¹ / ₂ TO	NS) — SUE	COOLING	MODE		Air Ente	oring Ever	orator —	Cfm/BE				
Α	mp (F) ir Ent		3750/0.08			4300/0.09	ering Evap	Jorator —	5000/0.11			6250/0.13	
	ndenser					Air Ente	ering Evap	orator —	Ewb (F)				
(Edb)	72	67	62	72	67	62	72	67	62	72	67	62
75	TC	156.3	144.2	132.3	160.0	148.4	136.2	162.8	150.6	138.2	169.0	157.5	145.6
	SHC	66.6	87.6	112.1	72.5	94.8	121.3	76.9	99.6	127.5	87.0	115.5	142.7
	kW	9.28	8.98	8.59	9.35	9.08	8.80	9.40	9.18	8.9	9.43	9.18	8.93
85	TC	147.6	136.2	123.7	150.7	140.1	127.2	154.1	140.8	127.9	161.1	148.0	135.4
	SHC	58.7	80.0	103.8	63.5	86.5	112.2	68.7	91.0	118.1	77.7	107.8	133.2
	kW	10.29	9.93	9.58	10.36	10.08	9.77	10.40	10.34	10.03	10.45	10.18	9.88
95	TC	138.9	128.2	115.1	141.4	131.8	118.3	145.3	131.0	117.6	153.1	138.4	125.1
	SHC	50.8	72.3	95.5	54.4	78.1	103.2	60.5	82.3	108.7	68.5	100.0	123.7
	kW	11.29	10.87	10.57	11.37	11.08	10.74	11.40	11.50	11.1	11.46	11.17	10.83
105	TC	129.1	117.8	105.8	131.7	121.0	108.7	134.8	119.9	107.7	140.9	126.9	115.9
	SHC	42.1	63.5	86.5	45.4	69.0	93.9	51.2	74.2	101.3	57.7	90.2	113.6
	kW	12.59	12.14	11.82	12.67	12.34	11.96	12.70	12.67	12.28	12.79	12.46	12.08
115	TC	119.2	107.3	96.4	122.1	110.2	99.0	124.2	108.8	97.8	128.7	115.3	106.7
	SHC	33.5	54.8	77.5	36.4	59.8	84.7	41.9	66.1	93.8	46.8	80.5	103.5
	kW	13.90	13.40	13.08	13.98	13.59	13.18	14.00	13.83	13.41	14.11	13.75	13.33
125	TC	109.4	96.9	87.1	112.4	99.4	89.3	113.7	97.7	87.8	116.5	103.8	97.5
	SHC	24.8	46.0	68.5	27.4	50.7	75.5	32.6	58.0	86.4	36.0	70.7	93.5
	kW	15.20	14.67	14.33	15.28	14.85	14.40	15.30	15.00	14.54	15.44	15.04	14.58

581B15	0 (12 ¹ / ₂ T	ONS) — H	OT GAS R	EHEAT MC	DE*								
						Air Ent	ering Evap	orator —	Ewb (F)				
Air	p (F) Ent lenser		62.5 W	y Bulb et Bulb elative)				/ Bulb t Bulb elative)			65.3 W	/ Bulb et Bulb elative)	
(E	db)					Air E	ntering Eva	aporator –	- Cfm				
		3750	4300	5000	6250	3750	4300	5000	6250	3750	4300	5000	6250
80	TC	43.54	45.21	47.05	49.78	45.46	47.16	49.05	51.85	47.11	48.86	50.78	53.64
	SHC	-4.36	0.76	6.50	15.20	-9.51	-4.35	1.45	10.22	-13.97	-8.77	-2.93	5.90
	kW	8.70	8.70	8.70	8.70	8.82	8.82	8.82	8.82	8.92	8.92	8.92	8.92
75	TC	44.45	46.02	47.75	50.32	46.33	47.94	49.71	52.34	47.96	49.60	51.41	54.10
	SHC	-3.84	0.96	6.36	14.53	-8.66	-3.81	1.63	9.86	-12.84	-7.96	-2.48	5.82
	kW	8.90	8.90	8.90	8.90	9.03	9.03	9.03	9.03	9.14	9.14	9.14	9.14
70	TC	45.36	46.82	48.45	50.86	47.20	48.71	50.37	52.84	48.80	50.34	52.04	54.55
	SHC	-3.32	1.17	6.21	13.85	-7.81	-3.28	1.80	9.50	-11.71	-7.14	-2.02	5.74
	kW	9.10	9.10	9.10	9.10	9.24	9.24	9.24	9.24	9.36	9.36	9.36	9.36
60	TC	47.17	48.44	49.84	51.93	48.95	50.25	51.69	53.83	50.49	51.82	53.29	55.47
	SHC	-2.28	1.59	5.93	12.50	-6.12	-2.22	2.16	8.79	-9.45	-5.52	-1.11	5.57
	kW	9.51	9.51	9.51	9.51	9.66	9.66	9.66	9.66	9.80	9.80	9.80	9.80
50	TC	48.98	50.05	51.24	53.00	50.70	51.80	53.01	54.82	52.18	53.31	54.55	56.39
	SHC	-1.24	2.00	5.64	11.15	-4.43	-1.15	2.52	8.07	-7.18	-3.89	-0.19	5.41
	kW	9.91	9.91	9.91	9.91	10.09	10.09	10.09	10.09	10.24	10.24	10.24	10.24
40	TC	50.79	51.67	52.64	54.07	52.44	53.34	54.33	55.80	53.87	54.79	55.80	57.30
	SHC	-0.20	2.41	5.35	9.80	-2.73	019	2.87	7.36	-4.92	-2.26	0.72	5.24
	kW	10.31	10.31	10.31	10.31	10.51	10.51	10.51	10.51	10.68	10.68	10.68	10.68

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
kW — Compressor Motor Power Input

SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

*Negative SHC value indicates that the air entering the coil is being heated.

NOTES:

1. Direct interpolation is permissible. Do not extrapolate.

2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{total\ capacity\ (Btuh)}{4.5\ x\ cfm}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

Correction Factor = 1.10 x (1 – BF) x (edb – 80).

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS

581B036 (3 T	ONS) —	STANDA	ARD MO	TOR (BE	LT DRIVE	Ε)*									
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	567	0.15	145	688	0.22	222	786	0.30	296	871	0.37	368	947	0.44	437
1000	599	0.18	177	717	0.27	265	814	0.35	349	897	0.43	430	972	0.51	509
1100	632	0.22	215	747	0.31	313	842	0.41	407	925	0.50	498	999	0.59	587
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960

581B036 (3 T	rons) —	STAND	ARD MO	FOR (BEI	LT DRIVE	E)* (cont))								
A : 61						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(0)	Rpm						Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1016	0.51	505	1080	0.57	572	1139	0.64	637	1195	0.71	702	1249	0.77	765
1000	1041	0.59	587	1104	1080 0.57 572			0.74	737	1219	0.81	811	1272	0.89	883
1100	1066	0.68	674				1188	0.85	843	1243	0.93	925	1296	1.01	1007
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	_	_	_
1400	1147	0.98	972	1208	1.09	1086	_	_	_	_	_	_	_	_	_
1500	1175	1.09	1086	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 680 to 1044 rpm. All other rpms require fieldsupplied drive.

Refer to this page for general Fan Performance Data notes.

- 1. **Boldface** indicates field-supplied drive is required.
- 2. Maximum continuous bhp is 1.20.

			_			Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm											Watts			
900	567									0.37	368	947	0.44	437	
1000	599	0.18	177	717	0.27	265	814	0.35	349	897	0.43	430	972	0.51	509
1100	632	0.22	215	747	0.31	313	842	0.41	407	925	0.50	498	999	0.59	587
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960

						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1016	0.51	505	1080	0.57	572	1139	0.64	637	1195	0.71	702	1249	0.77	765
1000	1041	1041 0.59 587 1104 0.67					1163	0.74	737	1219	0.81	811	1272	0.89	883
1100	1066	0.68	674	1129	0.76	759	1188	0.85	843	1243	0.93	925	1296	1.01	1007
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	1346	1.28	1275
1400	1147	0.98	972	1208	1.09	1086	1265	1.21	1199	1320	1.32	1310	1371	1.43	1419
1500	1175	1.09	1086	1235	1.22	1209	1292	1.34	1332	1346	1.46	1452	1397	1.58	1572

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1075 to 1455 rpm. All other rpms require fieldsupplied drive.

Refer to this page for general Fan Performance Data notes.

NOTES:

- 1. Boldface indicates field-supplied drive is required.
- 2. Maximum continuous bhp is 2.40.

GENERAL NOTES FOR FAN PERFORMANCE DATA TABLES

- 1. Static pressure losses (i.e., EconoMi\$er IV) must be added to

- static pressure losses (i.e., EconoMiser IV) must be added to external static pressure before entering Fan Performance table. Interpolation is permissible. Do not extrapolate. Fan performance is based on wet coils, clean filters, and casing losses. See Accessory/FIOP Static Pressure table on page 133. Extensive motor and drive testing on these units ensures that the full horsepower and watts range of the motor can be utilized with
- confidence. Using the fan motors up to the watts or bhp rating shown will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.
- 5. Use of a field-supplied motor may affect wire size. Contact your Bryant representative for details.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B048 (4 T	ONS) —	STAND	ARD MO	TOR (BE	LT DRIVE	Ξ)*									
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200 1300	666 701	0.26 0.31	257 306	778 810	0.37 0.43	367 426	871 901	0.47 0.54	471 540	952 981	0.57 0.65	572 651	1025 1053	0.67 0.76	670 760
1400 1500	737 773	0.36 0.42	361 422	842 875	0.49 0.57	491 564	931 963	0.62 0.70	616 699	1010 1040	0.74 0.84	738 831	1081 1110	0.86 0.96	856 960
1600	810	0.49	491	909	0.65	643	994	0.79	790	1070	0.94	932	1140	1.08	1070
1700 1800	847 885	0.57 0.66	567 652	943 978	0.73 0.83	730 826	1027 1060	0.89 1.00	888 994	1101 1133	1.05 1.16	1040 1157	1170 —	1.20	1189 —
1900 2000	923 962	0.75 0.85	745 847	1014 1049	0.94 1.05	930 1043	1093	1.11	1109 —	_	_	_	_	_	_

						Ext	ernal Sta	tic Pres	sure (in. [,]	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	3 0.77 767		Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200 1300	1093 1119	0.77 0.87	767 866	1155 1181	0.87 0.98	861 970	1213 1239	0.96 1.08	955 1073	1268 1294	1.05 1.18	1047 1175	1321 —	1.14	1137
1400 1500	1147 1175	0.98 1.09	972 1086	1208 —	1.09	1086	_	_	_	_	_		_	_	_
1600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1700 1800		_	_						_	_	_		_		
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000		_	_	_	_	_	l —	_	_	_	_	_	_	_	l —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 770 to 1185 rpm. All other rpms require fieldsupplied drive.

Refer to page 107 for general Fan Performance Data notes.

NOTES:

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.

581B048 (4	TONS) —	HIGH-S	TATIC MO	OTOR (B	ELT DRI	VE)*									
4. 6						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200 1300 1400 1500 1600 1700	666 701 737 773 810 847	0.26 0.31 0.36 0.42 0.49 0.57	257 306 361 422 491 567	778 810 842 875 909 943	0.37 0.43 0.49 0.57 0.65 0.73	367 426 491 564 643 730	871 901 931 963 994 1027	0.47 0.54 0.62 0.70 0.79 0.89	471 540 616 699 790 888	952 981 1010 1040 1070 1101	0.57 0.65 0.74 0.84 0.94 1.05	572 651 738 831 932 1040	1025 1053 1081 1110 1140 1170	0.67 0.76 0.86 0.96 1.08 1.20	670 760 856 960 1070 1189
1800 1900 2000	885 923 962	0.66 0.75 0.85	652 745 847	978 1014 1049	0.83 0.94 1.05	826 930 1043	1060 1093 1127	1.00 1.11 1.24	994 1109 1233	1133 1165 1198	1.16 1.29 1.42	1157 1283 1417	1200 1231 1263	1.32 1.46 1.61	1316 1453 1598

						Ext	ernal Sta	tic Pres	sure (in. '	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	1346	1.28	1275
1400	1147	0.98	972	1208	1.09	1086	1265	1.21	1199	1320	1.32	1310	1371	1.43	1419
1500	1175	1.09	1086	1235	1.22	1209	1292	1.34	1332	1346	1.46	1452	1397	1.58	1572
1600	1204	1.21	1207	1263	1.35	1340	1320	1.48	1472	1373	1.61	1603	1424	1.74	1732
1700	1233	1.34	1336	1292	1.49	1480	1348	1.63	1622	1401	1.77	1762	1451	1.91	1901
1800	1262	1.48	1473	1321	1.64	1627	1376	1.79	1779	1428	1.94	1930	1479	2.09	2078
1900	1293	1.63	1620	1350	1.79	1784	1405	1.96	1946	1457	2.12	2106	1506	2.28	2265
2000	1323	1.79	1776	1380	1.96	1950	1434	2.13	2123	1486	2.31	2293	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1075 to 1455 rpm. All other rpms require field-supplied drive.

Refer to page 107 for general Fan Performance Data notes.

NOTES:

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B060 (5 TC	NS) — ST	ANDARD	MOTOR (BELT DRI	VE)* — SI	NGLE-PH	ASE UNIT	S							
						Е	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000	848 887 927 967 1007	0.42 0.49 0.57 0.65 0.75	371 433 502 579 663 757	968 1004 1040 1077 1115 1153	0.55 0.63 0.71 0.81 0.91 1.03	486 556 633 718 811 913	1069 1103 1137 1172 1208 1244	0.68 0.76 0.86 0.96 1.08 1.20	600 678 763 856 957 1066	1158 1190 1223 1257 1291	0.80 0.90 1.00 1.12 1.24	715 800 892 993 1101	1238 1269 1302 1334 —	0.94 1.04 1.15 1.27 —	831 922 1022 1130 —
2100 2200 2300	1090 1131 1173	0.97 1.09 1.23	859 970 1091	1191 1230 —	1.15 1.29 —	1023 1143 —	=	=	=	=	=	_	_	_	=
2400 2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

						E	xternal Sta	atic Press	ure (in. wo	3)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	•
(5)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1312	1.07	948	1380	1.20	1067	_	_	_	_	_	_	_	_	_
1600	1342	1.18	1047	_	_		l — i	· — ;	_	' — I	١	l — I	_	_	_
1700	1374	1.30	1153	_	_	_	l — i	l — i	_	_	· —	_	_	_	_
1800	_	_	_	_	_	_	l — i	_	_	_	l —	_	_	_	_
1900	_	_	_	_	_	_	_	_	_	_	l —	_	_	_	_
2000	_	_	_	_	_	_	l — i	' — i	_	_	l —	— I	_	_	_
2100	_	_	_	_	_	_	l — i	_	_	_	l —	— I	_	_	_
2200	_	_	_	_	_	_	l — i	_	-	_	l —	_	_	_	_
2300	_	_	_	_	_	_	l — i	l — 1	-	' — I	l —	_	_	_	_
2400	_	_		_	_	_	l — i	l — ,	—	' — I	l —	_ I	_	_	_
2500	_	_	_	_	_		l — I	' — '		_	' —	I — I	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

Refer to page 107 for general Fan Performance Data notes.

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 1.30.

581B060 (5 To	ONS) — ST	ANDARD	MOTOR (I	BELT DRI	VE)* — TH	IREE-PHA	SE UNITS	3							
						Е	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	848	0.42	371	968	0.55	486	1069	0.68	600	1158	0.80	715	1238	0.94	831
1600	887	0.49	433	1004	0.63	556	1103	0.76	678	1190	0.90	800	1269	1.04	922
1700	927	0.57	502	1040	0.71	633	1137	0.86	763	1223	1.00	892	1302	1.15	1022
1800	967	0.65	579	1077	0.81	718	1172	0.96	856	1257	1.12	993	1334	1.27	1130
1900	1007	0.75	663	1115	0.91	811	1208	1.08	957	1291	1.24	1101	1368	1.40	1246
2000	1048	0.85	757	1153	1.03	913	1244	1.20	1066	1326	1.37	1219	1401	1.54	1371
2100	1090	0.97	859	1191	1.15	1023	1281	1.33	1185	1361	1.51	1345	1435	1.69	1505
2200	1131	1.09	970	1230	1.29	1143	1318	1.48	1313	1397	1.67	1481	1470	1.86	1649
2300	1173	1.23	1091	1269	1.43	1273	1355	1.63	1451	1433	1.83	1627	1505	2.03	1803
2400	1215	1.38	1223	1309	1.59	1413	1393	1.80	1600	1470	2.01	1784	1540	2.21	1967
2500	1258	1.54	1365	1349	1.76	1564	1431	1.98	1759	1506	2.20	1951	_	_	_

						E	xternal Sta	atic Press	ure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1312	1.07	948	1380	1.20	1067	1445	1.34	1189	1506	1.48	1312	1564	1.62	1437
1600	1342	1.18	1047	1411	1.32	1173	1474	1.46	1300	1535	1.61	1429	1593	1.76	1560
1700	1374	1.30	1153	1441	1.45	1286	1505	1.60	1420	1565	1.75	1555	1622	1.91	1692
1800	1406	1.43	1268	1473	1.58	1407	1535	1.74	1548	1595	1.90	1690	1652	2.06	1833
1900	1438	1.57	1391	1504	1.73	1537	1567	1.90	1685	1626	2.06	1833	1682	2.23	1983
2000	1471	1.72	1523	1536	1.89	1677	1598	2.06	1831	1657	2.24	1986	_	_	_
2100	1504	1.87	1665	1569	2.06	1825	1630	2.24	1986	_	_	_	_	_	_
2200	1538	2.04	1816	1602	2.23	1984	_	_	_	_	_	_	_	_	_
2300	1572	2.23	1978	_	_	_	_	_	_	_	_	_	_	_	_
2400	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B060 (5 TC	NS) — HI	GH-STATI	C MOTOR	(BELT DE	RIVE)*										
						Е	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	848	0.42	371	968	0.55	486	1069	0.68	600	1158	0.80	715	1238	0.94	831
1600	887	0.49	433	1004	0.63	556	1103	0.76	678	1190	0.90	800	1269	1.04	922
1700	927	0.57	502	1040	0.71	633	1137	0.86	763	1223	1.00	892	1302	1.15	1022
1800	967	0.65	579	1077	0.81	718	1172	0.96	856	1257	1.12	993	1334	1.27	1130
1900	1007	0.75	663	1115	0.91	811	1208	1.08	957	1291	1.24	1101	1368	1.40	1246
2000	1048	0.85	757	1153	1.03	913	1244	1.20	1066	1326	1.37	1219	1401	1.54	1371
2100	1090	0.97	859	1191	1.15	1023	1281	1.33	1185	1361	1.51	1345	1435	1.69	1505
2200	1131	1.09	970	1230	1.29	1143	1318	1.48	1313	1397	1.67	1481	1470	1.86	1649
2300	1173	1.23	1091	1269	1.43	1273	1355	1.63	1451	1433	1.83	1627	1505	2.03	1803
2400	1215	1.38	1223	1309	1.59	1413	1393	1.80	1600	1470	2.01	1784	1540	2.21	1967
2500	1258	1.54	1365	1349	1.76	1564	1431	1.98	1759	1506	2.20	1951	1576	2.41	2142

581B060 (5 TC	NS) — HI	GH-STATI	C MOTOR	(BELT DE	RIVE)* (co	nt)									
						E	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		1.2	_		1.4	_		1.6	_		1.8	_		2.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1312	1.07	948	1380	1.20	1067	1445	1.34	1189	1506	1.48	1312	1564	1.62	1437
1600	1342	1.18	1047	1411	1.32	1173	1474	1.46	1300	1535	1.61	1429	1593	1.76	1560
1700	1374	1.30	1153	1441	1.45	1286	1505	1.60	1420	1565	1.75	1555	1622	1.91	1692
1800	1406	1.43	1268	1473	1.58	1407	1535	1.74	1548	1595	1.90	1690	1652	2.06	1833
1900	1438	1.57	1391	1504	1.73	1537	1567	1.90	1685	1626	2.06	1833	1682	2.23	1983
2000	1471	1.72	1523	1536	1.89	1677	1598	2.06	1831	1657	2.24	1986	1713	2.41	2142
2100	1504	1.87	1665	1569	2.06	1825	1630	2.24	1986	1688	2.42	2149	1744	2.60	2312
2200	1538	2.04	1816	1602	2.23	1984	1663	2.42	2152	1720	2.61	2321	1775	2.81	2491
2300	1572	2.23	1978	1635	2.42	2153	1695	2.62	2328	1753	2.82	2504	_	_	_
2400	1607	2.42	2150	1669	2.63	2332	1729	2.83	2515	_	_	_	_	_	_
2500	1642	2.63	2333	1704	2.84	2523	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

Refer to page 107 for general Fan Performance Data notes.

Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.90.

*Motor drive range: 1300 to 1685 rpm. All o	other rpms require field-supplied drive.
---	--

				_		E	xternal St	atic Press	ure (in. w	g)			_		
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	967	0.63	563	1075	0.80	715	1170	0.97	861	1255	1.13	1002	1333	1.28	1139
1900	1008	0.72	643	1112	0.91	805	1205	1.08	960	1289	1.25	1111	1366	1.42	1258
2000	1049	0.82	731	1151	1.02	903	1241	1.20	1068	1323	1.38	1228	1399	1.56	1384
2100	1091	0.93	827	1189	1.14	1008	1278	1.33	1183	1358	1.52	1353	1433	1.71	1519
2200	1133	1.05	933	1229	1.26	1123	1315	1.47	1308	1393	1.67	1487	1467	1.87	1662
2300	1176	1.18	1047	1268	1.40	1247	1352	1.62	1441	1429	1.84	1630	1501	2.04	1815
2400	1218	1.32	1170	1308	1.55	1380	1390	1.78	1584	1466	2.01	1782	1537	2.23	1977
2500	1261	1.47	1304	1349	1.72	1523	1429	1.96	1736	1503	2.19	1945	_	_	_
2600	1305	1.63	1448	1390	1.89	1677	1468	2.14	1900	1540	2.38	2117	_	_	_
2700	1348	1.80	1602	1431	2.07	1841	1507	2.33	2073	_	_	_	_	_	_
2800	1392	1.99	1768	1472	2.27	2016	_	_	_	_	_	_	_	_	_
2900	1435	2.19	1945	_	_	_	_	_	_	_	_	_	_	_	_
3000	1479	2.40	2135	_	_	_	_	_	_	_	_	_	_	_	_

581B072 (6 TC	NS) — ST	ANDARD	MOTOR (BELT DRI	VE)* (cont	:)									
41.6						E	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1406	1.43	1273	1475	1.58	1403	1540	1.72	1531	1601	1.87	1657	1660	2.00	1780
1900	1438	1.58	1401	1505	1.73	1541	1569	1.89	1678	1630	2.04	1813	1689	2.19	1945
2000	1470	1.73	1537	1537	1.90	1686	1600	2.06	1833	1660	2.23	1977	1718	2.38	2118
2100	1502	1.89	1681	1568	2.07	1840	1631	2.25	1996	_	_	_	_	_	_
2200	1535	2.06	1834	1600	2.25	2002	_	_	_	_	_	_	_	_	_
2300	1569	2.25	1996	_	_	_	_	_	_	_	_	_	_	_	_
2400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2500 2600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2700				_	_							_		_	
2800					_						_	_			
2900	_	_	_	_	_					_	_			_	
3000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1119 to 1585 rpm. All other rpms require field-supplied drive.

Refer to page 107 for general Fan Performance Data notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B072 (6 T	rons) —	HIGH-S	TATIC MO	OTOR (B	ELT DRI	VE)*									
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	967	0.63	563	1075	0.80	715	1170	0.97	861	1255	1.13	1002	1333	1.28	1139
1900	1008	0.72	643	1112	0.91	805	1205	1.08	960	1289	1.25	1111	1366	1.42	1258
2000	1049	0.82	731	1151	1.02	903	1241	1.20	1068	1323	1.38	1228	1399	1.56	1384
2100	1091	0.93	827	1189	1.14	1008	1278	1.33	1183	1358	1.52	1353	1433	1.71	1519
2200	1133	1.05	933	1229	1.26	1123	1315	1.47	1308	1393	1.67	1487	1467	1.87	1662
2300	1176	1.18	1047	1268	1.40	1247	1352	1.62	1441	1429	1.84	1630	1501	2.04	1815
2400	1218	1.32	1170	1308	1.55	1380	1390	1.78	1584	1466	2.01	1782	1537	2.23	1977
2500	1261	1.47	1304	1349	1.72	1523	1429	1.96	1736	1503	2.19	1945	1572	2.42	2149
2600	1305	1.63	1448	1390	1.89	1677	1468	2.14	1900	1540	2.38	2117	1608	2.62	2331
2700	1348	1.80	1602	1431	2.07	1841	1507	2.33	2073	1578	2.59	2301	1645	2.84	2524
2800	1392	1.99	1768	1472	2.27	2016	1547	2.54	2258	1616	2.81	2495	_	_	_
2900	1435	2.19	1945	1514	2.48	2203	1587	2.76	2455		_			_	
3000	1479	2.40	2135	1556	2.70	2402	_	_	_	_	_	_	_	_	

4: 4						Exte	ernal Sta	tic Press	sure (in. v	wg)					
Airflow (Cfm)		1.2		•	1.4			1.6	_		1.8	_		2.0	
, 5,	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1406	1.43	1273	1475	1.58	1403	1540	1.72	1531	1601	1.87	1657	1660	2.00	1780
1900	1438	1.58	1401	1505	1.73	1541	1569	1.89	1678	1630	2.04	1813	1689	2.19	1945
2000	1470	1.73	1537	1537	1.90	1686	1600	2.06	1833	1660	2.23	1977	1718	2.38	2118
2100	1502	1.89	1681	1568	2.07	1840	1631	2.25	1996	1690	2.42	2149	1747	2.59	2300
2200	1535	2.06	1834	1600	2.25	2002	1662	2.44	2167	1721	2.62	2330	1778	2.80	2490
2300	1569	2.25	1996	1633	2.45	2174	1694	2.64	2348	1752	2.84	2520	_	' — i	l —
2400	1603	2.44	2167	1666	2.65	2355	1727	2.86	2539	_	_	_	_	' — i	l —
2500	1638	2.64	2349	1700	2.87	2546		_	_	_	_	_	_	_	ا
2600	1673	2.86	2541	_	_	_	l — i	_	l — I	_	_	_	_	_	ا
2700	-	_	_	_	_	-	_	_	_	_	_	_	_	' — i	l —
2800	_	_	_	_	_	-	l —	_	_	_	_	_	_		١ —
2900	_	_	_	_	_	-	_	_	_	_	_	_	_	' — i	l —
3000	_				_	l — i	' —		- 1	' —	' —				' —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1300 to 1685 rpm. All other rpms require field-supplied drive.

Refer to page 107 for general Fan Performance Data notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.90.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B090 (7 ¹ / ₂	TONS) -	— STAN	DARD MO	OTOR (B	ELT DR	IVE)*									
						Ext	ernal Sta	atic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(6)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	513	0.54	505	595	0.76	713	665	1.01	940	728	1.27	1187	786	1.56	1453
2300	521	0.57	531	601	0.79	741	671	1.04	972	734	1.31	1222	791	1.60	1489
2400	535	0.63	584	615	0.86	802	684	1.11	1038	745	1.39	1293	802	1.68	1566
2500	551	0.69	642	628	0.93	866	696	1.19	1109	757	1.47	1369	813	1.77	1647
2550	558	0.72	673	635	0.97	900	702	1.23	1146	763	1.51	1409	818	1.81	1689
2600	566	0.76	705	642	1.00	935	709	1.27	1183	769	1.55	1450	824	1.86	1732
2700	582	0.83	771	656	1.08	1008	721	1.35	1263	781	1.65	1535	835	1.95	1823
2800	597	0.90	842	670	1.16	1086	734	1.44	1347	793	1.74	1625	847	2.06	1917
2900	613	0.98	918	684	1.25	1169	748	1.54	1436	805	1.84	1720	859	2.16	2019
3000	629	1.07	999	699	1.35	1256	761	1.64	1530	818	1.95	1820	871	2.28	2125
3100	645	1.16	1085	713	1.45	1349	775	1.75	1630	831	2.06	1925	883	2.40	2235
3200	662	1.26	1176	728	1.55	1448	788	1.86	1734	844	2.18	2036	895	2.52	2352
3300	678	1.36	1272	743	1.66	1551	802	1.98	1845	857	2.31	2152	908	2.65	2475
3400	694	1.47	1374	758	1.78	1660	816	2.10	1961	870	2.44	2275	920	2.79	2603
3500	711	1.59	1482	773	1.90	1775	831	2.23	2082	884	2.58	2402	_	_	_
3600	727	1.71	1596	789	2.03	1896	845	2.37	2210	897	2.72	2537	_	_	_
3700	744	1.84	1716	804	2.17	2023	860	2.51	2343	911	2.87	2677	_	_	_
3750	752	1.91	1778	812	2.24	2089	867	2.59	2413	_	_	_	_	_	

581B090 (7 ¹ / ₂	2 TONS) -	— SIAN	DARD MC	JIOR (B	ELI DK			atio Bros	ssure (in.	.wa)					
Airflow	<u> </u>	1.2			1.4	EXI	ernai Sia	1.6	ssure (III.	wg)	1.8			2.0	
(Cfm)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	839	1.86	1735	889	2.18	2032	935	2.52	2345	980	2.87	2673	_		_
2300	844	1.90	1773	893	2.22	2073	940	2.56	2389	_	_	_	_	_	_
2400	854	1.99	1855	903	2.32	2159	950	2.66	2478	_	_	_	_	_	_
2500	865	2.08	1940	913	2.41	2249	959	2.76	2573	_	_	_	_	_	_
2550	870	2.13	1985	918	2.46	2296	964	2.81	2622	_	_	_	_	_	_
2600	875	2.18	2031	923	2.51	2344	969	2.87	2673	_	_	_	l —	_	_
2700	886	2.28	2126	934	2.62	2445	_	_	_	_	_	_	_	_	_
2800	897	2.39	2227	944	2.73	2550	_	_	_	_	_	_	_	_	_
2900	908	2.50	2333	955	2.85	2661	_	_	_	_	_	_	_	_	_
3000	920	2.62	2443	_	_	_	_	_	_	_	_	_	_	_	_
3100	931	2.75	2560		_	_	_	_	_	_	_	_	_	_	_
3200	943	2.88	2682		_	_	_	_	_	_	_	_	_	_	_
3300	_	_	_		_	_	_	_	_	_	_	_	_	_	_
3400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3600	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3700	l —	l —	_	_	_	_	l —	_	_	_	_	_	_	_	_
3750	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 840 to 1085 rpm. All other rpms require field-plied drive.

Refer to page 107 for general Fan Performance Data notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.90.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

	<u> </u>				•	Evt	ornal St	tio Droc	ouro (in	wa)					
Airflow						EXI	ernai Sta		sure (in.	wg)					
(Cfm)		0.2			0.4	1		0.6			0.8			1.0	
. ,	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	513	0.54	505	595	0.76	713	665	1.01	940	728	1.27	1187	786	1.56	1453
2300	521	0.57	531	601	0.79	741	671	1.04	972	734	1.31	1222	791	1.60	1489
2400	535	0.63	584	615	0.86	802	684	1.11	1038	745	1.39	1293	802	1.68	1566
2500	551	0.69	642	628	0.93	866	696	1.19	1109	757	1.47	1369	813	1.77	1647
2550	558	0.72	673	635	0.97	900	702	1.23	1146	763	1.51	1409	818	1.81	1689
2600	566	0.76	705	642	1.00	935	709	1.27	1183	769	1.55	1450	824	1.86	1732
2700	582	0.83	771	656	1.08	1008	721	1.35	1263	781	1.65	1535	835	1.95	1823
2800	597	0.90	842	670	1.16	1086	734	1.44	1347	793	1.74	1625	847	2.06	1917
2900	613	0.98	918	684	1.25	1169	748	1.54	1436	805	1.84	1720	859	2.16	2019
3000	629	1.07	999	699	1.35	1256	761	1.64	1530	818	1.95	1820	871	2.28	2125
3100	645	1.16	1085	713	1.45	1349	775	1.75	1630	831	2.06	1925	883	2.40	2235
3200	662	1.26	1176	728	1.55	1448	788	1.86	1734	844	2.18	2036	895	2.52	2352
3300	678	1.36	1272	743	1.66	1551	802	1.98	1845	857	2.31	2152	908	2.65	2475
3400	694	1.47	1374	758	1.78	1660	816	2.10	1961	870	2.44	2275	920	2.79	2603
3500	711	1.59	1482	773	1.90	1775	831	2.23	2082	884	2.58	2402	933	2.93	2737
3600	727	1.71	1596	789	2.03	1896	845	2.37	2210	897	2.72	2537	946	3.09	2877
3700	744	1.84	1716	804	2.17	2023	860	2.51	2343	911	2.87	2677	959	3.24	3023
3750	752	1.91	1778	812	2.24	2089	867	2.59	2413	918	2.95	2750	966	3.32	3100

A : #1						Ext	ernal Sta	atic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	839	1.86	1735	889	2.18	2032	935	2.52	2345	980	2.87	2673	1022	3.23	3015
2300	844	1.90	1773	893	2.22	2073	940	2.56	2389	984	2.91	2718	1027	3.28	3062
2400	854	1.99	1855	903	2.32	2159	950	2.66	2478	993	3.02	2812	1035	3.39	3159
2500	865	2.08	1940	913	2.41	2249	959	2.76	2573	1003	3.12	2911	1044	3.50	326
2550	870	2.13	1985	918	2.46	2296	964	2.81	2622	1008	3.18	2962	1049	3.55	331
2600	875	2.18	2031	923	2.51	2344	969	2.87	2673	1012	3.23	3014	1054	3.61	337
2700	886	2.28	2126	934	2.62	2445	979	2.98	2777	1022	3.35	3123	1063	3.74	348
2800	897	2.39	2227	944	2.73	2550	989	3.10	2888	1032	3.47	3238	1073	3.86	360
2900	908	2.50	2333	955	2.85	2661	1000	3.22	3003	1042	3.60	3358	1083	4.00	372
3000	920	2.62	2443	966	2.98	2777	1010	3.35	3123	1052	3.74	3484	1093	4.14	385
3100	931	2.75	2560	977	3.11	2899	1021	3.49	3250	1063	3.88	3615	_	_	_
3200	943	2.88	2682	989	3.25	3026	1032	3.63	3383	1074	4.02	3752	_	_	_
3300	955	3.01	2810	1000	3.39	3159	1043	3.78	3521	1084	4.18	3896	_	_	_
3400	967	3.16	2945	1012	3.54	3299	1055	3.93	3667	_	_	_	_	_	_
3500	980	3.31	3084	1024	3.69	3445	1066	4.09	3817	_	_	_	_	_	_
3600	992	3.46	3230	1036	3.86	3596	_	_	_	_	_	_	_	_	_
3700	1005	3.63	3383	1048	4.03	3755	_	_	_	_	_	_	_	_	_
3750	1011	3.71	3462	1054	4.11	3836	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 4.20.

^{*}Motor drive range: 860 to 1080 rpm. All other rpms require field—supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B102 (8 ¹ / ₂	TONS) -	— STAN	DARD MO	OTOR (B	ELT DR	IVE)*									
						Ext	ernal Sta	atic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2500	541	0.50	467	624	0.66	614	701	0.83	771	771	1.00	936	837	1.19	1109
2600	556	0.55	513	637	0.71	665	711	0.89	827	781	1.07	996	845	1.26	1173
2700	571	0.60	562	650	0.77	720	722	0.95	885	790	1.14	1059	854	1.33	1241
2800	586	0.66	615	663	0.83	777	734	1.02	948	800	1.21	1126	863	1.41	1312
2900	601	0.72	672	676	0.90	839	745	1.09	1014	811	1.28	1197	872	1.49	1387
3000	616	0.79	732	689	0.97	904	757	1.16	1083	821	1.36	1271	882	1.57	1465
3100	632	0.85	796	703	1.04	972	769	1.24	1157	832	1.45	1349	892	1.66	1548
3200	648	0.93	864	717	1.12	1045	782	1.32	1235	843	1.53	1431	902	1.75	1635
3300	663	1.00	936	731	1.20	1122	795	1.41	1316	855	1.63	1517	912	1.85	1725
3400	679	1.09	1012	745	1.29	1203	808	1.50	1402	867	1.72	1608	923	1.95	1820
3500	695	1.17	1092	760	1.38	1288	821	1.60	1492	879	1.83	1703	934	2.06	1920
3600	711	1.26	1177	774	1.48	1379	834	1.70	1587	891	1.93	1802	945	2.17	2024
3700	728	1.36	1266	789	1.58	1473	848	1.81	1686	904	2.04	1906	957	2.29	2132
3800	744	1.46	1361	804	1.69	1572	861	1.92	1790	916	2.16	2015	969	2.41	2246
3900	760	1.57	1460	819	1.80	1676	875	2.04	1899	929	2.28	2128	981	2.53	2364
4000	777	1.68	1563	834	1.91	1785	889	2.16	2012	942	2.41	2247	993	2.67	2487
4100	793	1.79	1672	850	2.04	1899	904	2.29	2132	956	2.54	2371	1006	2.80	2615
4200	810	1.92	1786	865	2.16	2018	918	2.42	2255	969	2.68	2499	_	<u> </u>	_
4300	826	2.04	1906	880	2.30	2142	932	2.56	2385	983	2.82	2633	_	_	_

						Ext	ernal Sta	atic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2500	900	1.38	1289	959	1.58	1476	1015	1.79	1669	1069	2.00	1868	1121	2.22	2073
2600	907	1.46	1357	965	1.66	1548	1021	1.87	1745	1074	2.09	1948	1125	2.31	2158
2700	914	1.53	1429	972	1.74	1624	1027	1.96	1825	1079	2.18	2032	1130	2.41	2245
2800	922	1.61	1505	979	1.83	1704	1033	2.05	1909	1085	2.27	2120	1135	2.51	2337
2900	931	1.70	1584	986	1.92	1787	1040	2.14	1996	1091	2.37	2211	1141	2.61	2432
3000	939	1.79	1667	994	2.01	1874	1047	2.24	2087	1098	2.47	2307	1147	2.71	2532
3100	948	1.88	1753	1002	2.11	1965	1054	2.34	2183	1105	2.58	2406	1153	2.83	2635
3200	957	1.98	1844	1011	2.21	2060	1062	2.45	2283	1112	2.69	2510	_	_	_
3300	967	2.08	1939	1020	2.32	2160	1070	2.56	2386	1119	2.81	2618	_	_	_
3400	977	2.19	2039	1029	2.43	2264	1079	2.67	2494	_	_	_	_	_	_
3500	987	2.30	2143	1038	2.54	2372	1088	2.80	2607	_	_	_	_	_	_
3600	998	2.41	2251	1048	2.66	2485	_	_	_	_	_	_	_	_	_
3700	1008	2.54	2364	1058	2.79	2602	_	_	_	_	_		_	_	_
3800	1019	2.66	2482	_	_	_	_	_	_	_	_	_	_	_	_
3900	1031	2.79	2605	_	_	_	_	_	_	_	_		_	_	_
4000	_	_		-	_	_	-	_	_	_	_		_	_	_
4100	_	_	_	<u> </u>	_	_	<u> </u>	_	_	_	_	<u> </u>	<u> </u>	_	_
4200	_	_		-	_	_	-	_	_	_	_		_	_	_
4300	I —	_	<u> </u>	_	_	_	_	_	_	<u> </u>	_	<u> </u>	I —	_	_

LEGEND

Bhp — Brake Horsepower Input to FanWatts — Input Watts to Motor

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.

^{*}Motor drive range: 840 to 1085 rpm. All other rpms require field—supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B102 (8 ¹ / ₂	i ONO) -	_ 111011	-SIAIIC II	IO TOK	DLLI D										
Airflow						Ext	ernal Sta	atic Pres	sure (in.	wg)					
(Cfm)		0.2			0.4			0.6			8.0			1.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2500	541	0.50	467	624	0.66	614	701	0.83	771	771	1.00	936	837	1.19	1109
2600	556	0.55	513	637	0.71	665	711	0.89	827	781	1.07	996	845	1.26	1173
2700	571	0.60	562	650	0.77	720	722	0.95	885	790	1.14	1059	854	1.33	1241
2800	586	0.66	615	663	0.83	777	734	1.02	948	800	1.21	1126	863	1.41	1312
2900	601	0.72	672	676	0.90	839	745	1.09	1014	811	1.28	1197	872	1.49	1387
3000	616	0.79	732	689	0.97	904	757	1.16	1083	821	1.36	1271	882	1.57	1465
3100	632	0.85	796	703	1.04	972	769	1.24	1157	832	1.45	1349	892	1.66	1548
3200	648	0.93	864	717	1.12	1045	782	1.32	1235	843	1.53	1431	902	1.75	1635
3300	663	1.00	936	731	1.20	1122	795	1.41	1316	855	1.63	1517	912	1.85	1725
3400	679	1.09	1012	745	1.29	1203	808	1.50	1402	867	1.72	1608	923	1.95	1820
3500	695	1.17	1092	760	1.38	1288	821	1.60	1492	879	1.83	1703	934	2.06	1920
3600	711	1.26	1177	774	1.48	1379	834	1.70	1587	891	1.93	1802	945	2.17	2024
3700	728	1.36	1266	789	1.58	1473	848	1.81	1686	904	2.04	1906	957	2.29	2132
3800	744	1.46	1361	804	1.69	1572	861	1.92	1790	916	2.16	2015	969	2.41	2246
3900	760	1.57	1460	819	1.80	1676	875	2.04	1899	929	2.28	2128	981	2.53	2364
4000	777	1.68	1563	834	1.91	1785	889	2.16	2012	942	2.41	2247	993	2.67	2487
4100	793	1.79	1672	850	2.04	1899	904	2.29	2132	956	2.54	2371	1006	2.80	2615
4200	810	1.92	1786	865	2.16	2018	918	2.42	2255	969	2.68	2499	1018	2.95	2748
4300	826	2.04	1906	880	2.30	2142	932	2.56	2385	983	2.82	2633	1031	3.10	2888

						Ext	ernal Sta	atic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2500	900	1.38	1289	959	1.58	1476	1015	1.79	1669	1069	2.00	1868	1121	2.22	2073
2600	907	1.46	1357	965	1.66	1548	1021	1.87	1745	1074	2.09	1948	1125	2.31	215
2700	914	1.53	1429	972	1.74	1624	1027	1.96	1825	1079	2.18	2032	1130	2.41	224
2800	922	1.61	1505	979	1.83	1704	1033	2.05	1909	1085	2.27	2120	1135	2.51	233
2900	931	1.70	1584	986	1.92	1787	1040	2.14	1996	1091	2.37	2211	1141	2.61	243
3000	939	1.79	1667	994	2.01	1874	1047	2.24	2087	1098	2.47	2307	1147	2.71	253
3100	948	1.88	1753	1002	2.11	1965	1054	2.34	2183	1105	2.58	2406	1153	2.83	263
3200	957	1.98	1844	1011	2.21	2060	1062	2.45	2283	1112	2.69	2510	1160	2.94	274
3300	967	2.08	1939	1020	2.32	2160	1070	2.56	2386	1119	2.81	2618	1167	3.06	285
3400	977	2.19	2039	1029	2.43	2264	1079	2.67	2494	1127	2.93	2730	1174	3.19	297
3500	987	2.30	2143	1038	2.54	2372	1088	2.80	2607	1135	3.05	2847	1181	3.32	309
3600	998	2.41	2251	1048	2.66	2485	1097	2.92	2724	1144	3.18	2968	1189	3.45	321
3700	1008	2.54	2364	1058	2.79	2602	1106	3.05	2846	1152	3.32	3094	1198	3.59	334
3800	1019	2.66	2482	1068	2.92	2725	1116	3.19	2972	1162	3.46	3226	1206	3.74	348
3900	1031	2.79	2605	1079	3.06	2852	1126	3.33	3104	1171	3.61	3362	1215	3.89	362
4000	1042	2.93	2733	1090	3.20	2984	1136	3.48	3241	1180	3.76	3503	1224	4.04	377
4100	1054	3.07	2866	1101	3.35	3122	1146	3.63	3383	1190	3.91	3649	1233	4.20	392
4200	1066	3.22	3004	1112	3.50	3264	1157	3.79	3530	1200	4.08	3801	_		_
4300	1078	3.38	3148	1123	3.66	3413	1167	3.95	3683	l —	_		l —	_	l —

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 4.20.

^{*}Motor drive range: 860 to 1080 rpm. All other rpms require field—supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B120 (10	TONS) —	- STANE	OARD MO	TOR (BE	LT DRI	/E)*									
						Ext	ernal Sta	atic Pres	ssure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	616	0.79	732	689	0.97	904	757	1.16	1083	821	1.36	1271	882	1.57	1465
3100	632	0.85	796	703	1.04	972	769	1.24	1157	832	1.45	1349	892	1.66	1548
3200	648	0.93	864	717	1.12	1045	782	1.32	1235	843	1.53	1431	902	1.75	1635
3300	663	1.00	936	731	1.20	1122	795	1.41	1316	855	1.63	1517	912	1.85	1725
3400	679	1.09	1012	745	1.29	1203	808	1.50	1402	867	1.72	1608	923	1.95	1820
3500	695	1.17	1092	760	1.38	1288	821	1.60	1492	879	1.83	1703	934	2.06	1920
3600	711	1.26	1177	774	1.48	1379	834	1.70	1587	891	1.93	1802	945	2.17	2024
3700	728	1.36	1266	789	1.58	1473	848	1.81	1686	904	2.04	1906	957	2.29	2132
3800	744	1.46	1361	804	1.69	1572	861	1.92	1790	916	2.16	2015	969	2.41	2246
3900	760	1.57	1460	819	1.80	1676	875	2.04	1899	929	2.28	2128	981	2.53	2364
4000	777	1.68	1563	834	1.91	1785	889	2.16	2012	942	2.41	2247	993	2.67	2487
4100	793	1.79	1672	850	2.04	1899	904	2.29	2132	956	2.54	2371	1006	2.80	2615
4200	810	1.92	1786	865	2.16	2018	918	2.42	2255	969	2.68	2499	1018	2.95	2748
4300	826	2.04	1906	880	2.30	2142	932	2.56	2385	983	2.82	2633	1031	3.10	2888
4400	843	2.18	2031	896	2.44	2272	947	2.70	2520	996	2.97	2773	1044	3.25	3032
4500	860	2.32	2161	912	2.58	2408	962	2.85	2660	1010	3.13	2918	1057	3.41	3182
4600	876	2.46	2297	927	2.73	2549	977	3.01	2807	1024	3.29	3070	1070	3.58	3338
4700	893	2.62	2439	943	2.89	2696	992	3.17	2958	1038	3.46	3226	l —	_	_
4800	910	2.77	2587	959	3.06	2849	1007	3.34	3116	1053	3.63	3390	—	_	_
4900	927	2.94	2741	975	3.23	3008	1022	3.52	3280	_	_	_	l —	_	_
5000	944	3.11	2901	991	3.40	3173	1037	3.70	3451	_	_	_	_	_	_

						Ext	ernal Sta	atic Pres	ssure (in.	wg)					
Airflow (Cfm)		1.2	_		1.4			1.6			1.8			2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	939	1.79	1667	994	2.01	1874	1047	2.24	2087	1098	2.47	2307	1147	2.71	2532
3100	948	1.88	1753	1002	2.11	1965	1054	2.34	2183	1105	2.58	2406	1153	2.83	263
3200	957	1.98	1844	1011	2.21	2060	1062	2.45	2283	1112	2.69	2510	1160	2.94	274
3300	967	2.08	1939	1020	2.32	2160	1070	2.56	2386	1119	2.81	2618	1167	3.06	285
3400	977	2.19	2039	1029	2.43	2264	1079	2.67	2494	1127	2.93	2730	1174	3.19	297
3500	987	2.30	2143	1038	2.54	2372	1088	2.80	2607	1135	3.05	2847	1181	3.32	309
3600	998	2.41	2251	1048	2.66	2485	1097	2.92	2724	1144	3.18	2968	1189	3.45	321
3700	1008	2.54	2364	1058	2.79	2602	1106	3.05	2846	1152	3.32	3094	1198	3.59	334
3800	1019	2.66	2482	1068	2.92	2725	1116	3.19	2972	1162	3.46	3226	_	_	_
3900	1031	2.79	2605	1079	3.06	2852	1126	3.33	3104	1171	3.61	3362	_	_	
4000	1042	2.93	2733	1090	3.20	2984	1136	3.48	3241	_	_	_	_	_	
4100	1054	3.07	2866	1101	3.35	3122	1146	3.63	3383	_	_	_	_		_
4200	1066	3.22	3004	1112	3.50	3264	_	_	_	_	_	_	_	_	_
4300	1078	3.38	3148	1123	3.66	3413	_	_	_	_	_	_	_	_	
4400	1090	3.54	3297	_	_	_	_	_	_	_	_	_	_	_	
4500	1103	3.70	3451	_	_	_	_	_	_	_	_	_	_	_	
4600	_	_	_	_	_	_	l —	_	_	l —	_	_	_	_	
4700	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	
4800	l —	_	l —	_	_	_	_	_	_	_	_	_	_	_	
4900	l —	_	l —	_	_	_	_	_	_	_	_	_	_	_	_
5000	_	_		_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 3.70.

^{*}Motor drive range: 860 to 1080 rpm. All other rpms require field—supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581B120 (10	TONS) —	- HIGH-	STATIC M	OTOR (E	BELT DR	RIVE)*									
4						Ext	ernal Sta	atic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	616	0.79	732	689	0.97	904	757	1.16	1083	821	1.36	1271	882	1.57	1465
3100	632	0.85	796	703	1.04	972	769	1.24	1157	832	1.45	1349	892	1.66	1548
3200	648	0.93	864	717	1.12	1045	782	1.32	1235	843	1.53	1431	902	1.75	1635
3300	663	1.00	936	731	1.20	1122	795	1.41	1316	855	1.63	1517	912	1.85	1725
3400	679	1.09	1012	745	1.29	1203	808	1.50	1402	867	1.72	1608	923	1.95	1820
3500	695	1.17	1092	760	1.38	1288	821	1.60	1492	879	1.83	1703	934	2.06	1920
3600	711	1.26	1177	774	1.48	1379	834	1.70	1587	891	1.93	1802	945	2.17	2024
3700	728	1.36	1266	789	1.58	1473	848	1.81	1686	904	2.04	1906	957	2.29	2132
3800	744	1.46	1361	804	1.69	1572	861	1.92	1790	916	2.16	2015	969	2.41	2246
3900	760	1.57	1460	819	1.80	1676	875	2.04	1899	929	2.28	2128	981	2.53	2364
4000	777	1.68	1563	834	1.91	1785	889	2.16	2012	942	2.41	2247	993	2.67	2487
4100	793	1.79	1672	850	2.04	1899	904	2.29	2132	956	2.54	2371	1006	2.80	2615
4200	810	1.92	1786	865	2.16	2018	918	2.42	2255	969	2.68	2499	1018	2.95	2748
4300	826	2.04	1906	880	2.30	2142	932	2.56	2385	983	2.82	2633	1031	3.10	2888
4400	843	2.18	2031	896	2.44	2272	947	2.70	2520	996	2.97	2773	1044	3.25	3032
4500	860	2.32	2161	912	2.58	2408	962	2.85	2660	1010	3.13	2918	1057	3.41	3182
4600	876	2.46	2297	927	2.73	2549	977	3.01	2807	1024	3.29	3070	1070	3.58	3338
4700	893	2.62	2439	943	2.89	2696	992	3.17	2958	1038	3.46	3226	1084	3.75	3500
4800	910	2.77	2587	959	3.06	2849	1007	3.34	3116	1053	3.63	3390	1098	3.93	3668
4900	927	2.94	2741	975	3.23	3008	1022	3.52	3280	1067	3.82	3558	1111	4.12	3841
5000	944	3.11	2901	991	3.40	3173	1037	3.70	3451	1082	4.00	3733	1125	4.31	4021

A ! £1				=		Ext	ernal Sta	atic Pres	sure (in.	wg)			ā.		
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	939	1.79	1667	994	2.01	1874	1047	2.24	2087	1098	2.47	2307	1147	2.71	2532
3100	948	1.88	1753	1002	2.11	1965	1054	2.34	2183	1105	2.58	2406	1153	2.83	2635
3200	957	1.98	1844	1011	2.21	2060	1062	2.45	2283	1112	2.69	2510	1160	2.94	2743
3300	967	2.08	1939	1020	2.32	2160	1070	2.56	2386	1119	2.81	2618	1167	3.06	2855
3400	977	2.19	2039	1029	2.43	2264	1079	2.67	2494	1127	2.93	2730	1174	3.19	2971
3500	987	2.30	2143	1038	2.54	2372	1088	2.80	2607	1135	3.05	2847	1181	3.32	3092
3600	998	2.41	2251	1048	2.66	2485	1097	2.92	2724	1144	3.18	2968	1189	3.45	3218
3700	1008	2.54	2364	1058	2.79	2602	1106	3.05	2846	1152	3.32	3094	1198	3.59	3348
3800	1019	2.66	2482	1068	2.92	2725	1116	3.19	2972	1162	3.46	3226	1206	3.74	3484
3900	1031	2.79	2605	1079	3.06	2852	1126	3.33	3104	1171	3.61	3362	1215	3.89	3624
4000	1042	2.93	2733	1090	3.20	2984	1136	3.48	3241	1180	3.76	3503	1224	4.04	3770
4100	1054	3.07	2866	1101	3.35	3122	1146	3.63	3383	1190	3.91	3649	1233	4.20	3921
4200	1066	3.22	3004	1112	3.50	3264	1157	3.79	3530	1200	4.08	3801	1243	4.37	4077
4300	1078	3.38	3148	1123	3.66	3413	1167	3.95	3683	1210	4.24	3958	1252	4.54	4238
4400	1090	3.54	3297	1135	3.82	3566	1179	4.12	3841	1221	4.42	4121	1262	4.72	4405
4500	1103	3.70	3451	1147	4.00	3726	1190	4.29	4005	1232	4.60	4289	1273	4.91	4578
4600	1115	3.87	3612	1159	4.17	3891	1201	4.48	4175	1243	4.79	4464	1283	5.10	4757
4700	1128	4.05	3778	1171	4.36	4062	1213	4.67	4350	1254	4.98	4644	_	_	_
4800	1141	4.24	3951	1183	4.55	4239	1225	4.86	4532	1265	5.18	4830	_	_	_
4900	1154	4.43	4130	1196	4.74	4422	1237	5.06	4720	_	_	_	_	_	_
5000	1167	4.63	4314	1209	4.95	4611	_	_	_	_	_	_	_	_	

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 5.25.

^{*}Motor drive range: 830 to 1130 rpm. All other rpms require field— supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

						Ext	ernal Sta	atic Pres	ssure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	728	1.36	1266	789	1.58	1473	848	1.81	1686	904	2.04	1906	957	2.29	2132
3800	744	1.46	1361	804	1.69	1572	861	1.92	1790	916	2.16	2015	969	2.41	224
3900	760	1.57	1460	819	1.80	1676	875	2.04	1899	929	2.28	2128	981	2.53	236
4000	777	1.68	1563	834	1.91	1785	889	2.16	2012	942	2.41	2247	993	2.67	248
4100	793	1.79	1672	850	2.04	1899	904	2.29	2132	956	2.54	2371	1006	2.80	261
4200	810	1.92	1786	865	2.16	2018	918	2.42	2255	969	2.68	2499	1018	2.95	274
4300	826	2.04	1906	880	2.30	2142	932	2.56	2385	983	2.82	2633	1031	3.10	288
4400	843	2.18	2031	896	2.44	2272	947	2.70	2520	996	2.97	2773	1044	3.25	303
4500	860	2.32	2161	912	2.58	2408	962	2.85	2660	1010	3.13	2918	1057	3.41	318
4600	876	2.46	2297	927	2.73	2549	977	3.01	2807	1024	3.29	3070	1070	3.58	333
4700	893	2.62	2439	943	2.89	2696	992	3.17	2958	1038	3.46	3226	1084	3.75	350
4800	910	2.77	2587	959	3.06	2849	1007	3.34	3116	1053	3.63	3390	1098	3.93	366
4900	927	2.94	2741	975	3.23	3008	1022	3.52	3280	1067	3.82	3558	1111	4.12	384
5000	944	3.11	2901	991	3.40	3173	1037	3.70	3451	1082	4.00	3733	1125	4.31	402
5100	961	3.29	3068	1007	3.59	3345	1053	3.89	3627	1096	4.20	3915	1139	4.51	420
5200	978	3.48	3241	1024	3.78	3523	1068	4.09	3811	1111	4.40	4103	1153	4.72	440
5300	995	3.67	3420	1040	3.98	3707	1084	4.29	4000	1126	4.61	4298	1168	4.93	460
5400	1012	3.87	3606	1056	4.18	3899	1099	4.50	4196	1141	4.82	4499	1182	5.15	480
5500	1029	4.07	3799	1073	4.39	4097	1115	4.72	4400	1156	5.05	4707	_		_
5600	1046	4.29	3999	1089	4.61	4302	1131	4.94	4610	_	_		_		_
5700	1063	4.51	4207	1105	4.84	4515	1146	5.18	4827	_	_	_	_	_	_
5800	1080	4.74	4420	1122	5.08	4734	<u> </u>	_	_	_	_	_	_	_	_
5900	1098	4.98	4642	_	_		_	_		_	_		_	_	_
6000	1115	5.22	4872	_	_	_	_	_	_	_	_	_	_	_	_
6100	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6200	-	_	_	<u> </u>	_	_	<u> </u>	_	_	_	_	_	_	_	_
6300	I —		_	—	_	_	—	_	_	_	_	_		_	_

581B150 (12 ¹	12 TONS) — STA	NDARD N	IOTOR (BELT DI	RIVE)* (co	ont)								
A ! 61				-		Ext	ernal Sta	atic Pres	ssure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	1008	2.54	2364	1058	2.79	2602	1106	3.05	2846	1152	3.32	3094	1198	3.59	3348
3800	1019	2.66	2482	1068	2.92	2725	1116	3.19	2972	1162	3.46	3226	1206	3.74	3484
3900	1031	2.79	2605	1079	3.06	2852	1126	3.33	3104	1171	3.61	3362	1215	3.89	3624
4000	1042	2.93	2733	1090	3.20	2984	1136	3.48	3241	1180	3.76	3503	1224	4.04	3770
4100	1054	3.07	2866	1101	3.35	3122	1146	3.63	3383	1190	3.91	3649	1233	4.20	3921
4200	1066	3.22	3004	1112	3.50	3264	1157	3.79	3530	1200	4.08	3801	1243	4.37	4077
4300	1078	3.38	3148	1123	3.66	3413	1167	3.95	3683	1210	4.24	3958	1252	4.54	4238
4400	1090	3.54	3297	1135	3.82	3566	1179	4.12	3841	1221	4.42	4121	1262	4.72	4405
4500	1103	3.70	3451	1147	4.00	3726	1190	4.29	4005	1232	4.60	4289	1273	4.91	4578
4600	1115	3.87	3612	1159	4.17	3891	1201	4.48	4175	1243	4.79	4464	1283	5.10	4757
4700	1128	4.05	3778	1171	4.36	4062	1213	4.67	4350	1254	4.98	4644		_	_
4800	1141	4.24	3951	1183	4.55	4239	1225	4.86	4532	1265	5.18	4830		_	_
4900	1154	4.43	4130	1196	4.74	4422	1237	5.06	4720	_	_	_		_	_
5000	1167	4.63	4314	1209	4.95	4611	_	_	_	_	_	_		_	_
5100	1181	4.83	4505	1221	5.16	4808	_	_		_	_			_	_
5200	1194	5.04	4703	_	_	_	_	_	_	_	_	_		_	_
5300	_	_	_	_	_	_	_	_	_	_	_	_		_	_
5400	_	_	_	_	_	_	_	_	_	_	_	_		_	_
5500	_	_	_	_	_	_	_	_	_	_	_	_		_	_
5600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5700	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_
5800	-	_	<u> </u>	_	l —	_	_	_	_	_	_	_	_	_	_
5900	_	_	<u> </u>	_	_	_	_	l —	_	_	_	I —	_	_	_
6000	_	_	—	<u> </u>	<u> </u>	_	_	_	_	_	_	_		_	_
6100	_	_	—	_	<u> </u>	_	_	_	_	_	_	_		_	_
6200	I —	_	<u> </u>	l —	l —	_	_	_	_	l —	_	I —	_	_	_
6300	_	l —	<u> </u>	l —	—	_	-	l —	_	—	l —	_	_	l —	_

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

Refer to page 107 for general Fan Performance Data notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 5.25.

^{*}Motor drive range: 830 to 1130 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS

581B036 (3 T	rons) —	STANDA	ARD MO	TOR (BE	LT DRIVE	Ε)*									
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(6)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	553	0.14	134	681	0.22	221	782	0.32	316	870	0.42	417	948	0.53	526
1000	582	0.16	163	707	0.26	257	807	0.36	358	894	0.47	466	971	0.58	580
1100	612	0.20	196	734	0.30	297	833	0.41	405	919	0.52	519	995	0.64	639
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941

581B036 (3 T	TONS) —	STAND	ARD MO	TOR (BEI	LT DRIVE	E)* (cont))								
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1019	0.64	640	1084	0.76	760	1146	0.89	885	1203	1.02	1016	1258	1.16	1152
1000	1042	0.70	700	1107	0.83	825	1168	0.96	956	1225	1.10	1091	_	_	_
1100	1065	0.77	765	1130	0.90	896	1190	1.04	1032	1247	1.18	1173	_	_	_
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115		_	_	_	_	
1300	1113	0.92	915	1177	1.06	1058	_	_	_	_	_	_	_	_	_
1400	1138	1.01	1000	1201	1.15	1149	_	_	_	_	_	_	_	_	_
1500	1163	1.10	1092	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 680 to 1044 rpm. All other rpms require field- supplied drive.

See page 107 for general fan performance notes.

NOTES:

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.

						Ext	ernal Sta	tic Pres	sure (in.	wg)			_		
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	553	0.14	134	681	0.22	221	782	0.32	316	870	0.42	417	948	0.53	526
1000	582	0.16	163	707	0.26	257	807	0.36	358	894	0.47	466	971	0.58	580
1100	612	0.20	196	734	0.30	297	833	0.41	405	919	0.52	519	995	0.64	639
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941

						Ext	ernal Sta	tic Pres	sure (in.	wg)					· · · · · ·
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1019	0.64	640	1084	0.76	760	1146	0.89	885	1203	1.02	1016	1258	1.16	1152
1000	1042	0.70	700	1107	0.83	825	1168	0.96	956	1225	1.10	1091	1279	1.24	1232
1100	1065	0.77	765	1130	0.90	896	1190	1.04	1032	1247	1.18	1173	1301	1.33	1319
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	1270	1.27	1262	1324	1.42	1413
1300	1113	0.92	915	1177	1.06	1058	1237	1.21	1205	1293	1.36	1358	1347	1.52	1514
1400	1138	1.01	1000	1201	1.15	1149	1261	1.31	1303	1317	1.47	1461	1370	1.63	1623
1500	1163	1.10	1092	1226	1.25	1247	1285	1.41	1407	1341	1.58	1571	1394	1.75	1740

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

 $^{\star}\text{Motor}$ drive range: 1075 to 1455 rpm. All other rpms require field-supplied drive.

See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

•	<u> </u>			,		Ext	ernal Sta	tic Pres	sure (in.	wa)					
Airflow (Cfm)		0.2			0.4			0.6	(9/	8.0			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941
1600	773	0.45	444	879	0.59	586	970	0.73	731	1050	0.88	880	1123	1.04	1034
1700	807	0.52	513	910	0.67	663	999	0.82	817	1078	0.98	973	1150	1.14	1134
1800	841	0.59	589	942	0.75	749	1029	0.91	910	1106	1.08	1074		_	
1900	875	0.68	674	974	0.85	842	1059	1.02	1012	1135	1.19	1184	_	_	_
2000	910	0.77	767	1006	0.95	944	1090	1.13	1122	_	_	_	_	_	_

						Ext	ernal Sta	tic Pres	sure (in. 1	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	_	_	_	_	_	_
1300	1113	0.92	915	1177	1.06	1058	_	_	_	_	_	_	_	_	_
1400	1138	1.01	1000	1201	1.15	1149	_	_	_	_	_	_	_	_	_
1500	1163	1.10	1092	_	_	_	_	_	_	_	_	_	_	_	_
1600	1189	1.20	1191	_	_	_	_	_	_	_	_	_	_	_	_
1700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1800	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1900		_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	<u> </u>	_	_	_	_	l —	_	_	_	_	_	l —	_	_	l —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

See page 107 for general fan performance notes.

NOTES:

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.

*Motor drive range: 770 to 1185 rpm. All other rpms require fieldsupplied drive.

						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941
1600	773	0.45	444	879	0.59	586	970	0.73	731	1050	0.88	880	1123	1.04	1034
1700	807	0.52	513	910	0.67	663	999	0.82	817	1078	0.98	973	1150	1.14	1134
1800	841	0.59	589	942	0.75	749	1029	0.91	910	1106	1.08	1074	1177	1.25	1242
1900	875	0.68	674	974	0.85	842	1059	1.02	1012	1135	1.19	1184	1205	1.37	1360
2000	910	0.77	767	1006	0.95	944	1090	1.13	1122	1165	1.31	1302	1234	1.49	1485

						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	1270	1.27	1262	1324	1.42	1413
1300	1113	0.92	915	1177	1.06	1058	1237	1.21	1205	1293	1.36	1358	1347	1.52	1514
1400	1138	1.01	1000	1201	1.15	1149	1261	1.31	1303	1317	1.47	1461	1370	1.63	1623
1500	1163	1.10	1092	1226	1.25	1247	1285	1.41	1407	1341	1.58	1571	1394	1.75	1740
1600	1189	1.20	1191	1252	1.36	1353	1310	1.53	1520	1365	1.70	1690	1418	1.87	1865
1700	1216	1.31	1299	1277	1.48	1468	1335	1.65	1640	1390	1.83	1817	1442	2.01	1998
1800	1242	1.42	1414	1303	1.60	1590	1361	1.78	1770	1415	1.96	1953	1467	2.15	2140
1900	1270	1.55	1538	1330	1.73	1721	1387	1.92	1908	1441	2.11	2098	1493	2.30	2292
2000	1297	1.68	1672	1357	1.87	1862	1414	2.07	2055	1467	2.26	2252	_	_	l —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

 $^{\star}\text{Motor}$ drive range: 1075 to 1455 rpm. All other rpms require field-supplied drive.

See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581B060 (5 T	ONS) —	STAND	ARD MO	TOR (BEI	LT DRIVE	E)* — SIN	IGLE-PH	ASE UN	ITS						
4: 6						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2	_		0.4	_		0.6			0.8	_		1.0	_
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000 2100	800 839 879 919 960 1001 1043	0.39 0.46 0.54 0.63 0.73 0.84 0.96	350 412 483 561 648 744 850	904 938 974 1010 1047 1085 1123	0.49 0.57 0.65 0.75 0.85 0.96 1.09	438 505 580 663 754 855 965	999 1030 1062 1095 1129 1163 1199	0.60 0.68 0.77 0.87 0.98 1.09 1.22	535 605 684 771 867 972 1086	1087 1115 1144 1174 1206 1238	0.72 0.80 0.90 1.00 1.11 1.23	640 714 796 886 986 1095	1169 1195 1221 1250 1279	0.85 0.93 1.03 1.14 1.25	753 829 914 1008 1111 —
2200 2300 2400	1085 1127	1.09 1.23	966 1092	1162 —	1.22 —	1086	_				_		_	_	
2500	_	_		_		_			_			_		_	_

581B060 (5 T	rons) —	STAND	ARD MO	ΓOR (BEI	LT DRIVE	E)* — SIN	IGLE-PH	ASE UN	ITS (cont	:)					
4						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(31111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1247	0.98	873	1320	1.13	1002	1390	1.28	1137	_	_	_	_	_	_
1600	1270	1.07	952	1342	1.22	1083	_	_	_	_	_	_	_	_	_
1700	1295	1.17	1040	_	_	_	_	_	_	_	_	_	_	_	_
1800	1321	1.28	1137		_			_		_	_	_	_	_	
1900		_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	_	_	_	_	_	_		_	_	_	_	_	_	_	_
2100		_	_		_			_		_	_	_	_	_	
2200		_	_	_	_	_	_	_	_	_	_	_	_	_	_
2300		_	_	_		_	_	_	_	_	_	_	_		_
2400		_	_	_	_	_	_	_	_	_	_	_	_	_	_
2500		_	_	_		_	_	_	_	_	_	_	_		_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

See page 107 for general fan performance notes.

NOTES:

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.30.

581B060 (5	TONS) —	STANDA	ARD MO	TOR (BE	LT DRIVE	E)* — TH	REE-PH/	ASE UNI	TS						
A : 61						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(0)	Rpm	Bhp	Watts												
1500 1600	800 839	0.39 0.46	350 412	904 938	0.49 0.57	438 505	999 1030	0.60 0.68	535 605	1087 1115	0.72 0.80	640 714	1169 1195	0.85 0.93	753 829
1700 1800	879 919	0.54 0.63	483 561	974 1010	0.65 0.75	580 663	1062 1095	0.77 0.87	684 771	1144 1174	0.90 1.00	796 886	1221 1250	1.03 1.14	914 1008
1900 2000	960 1001	0.73 0.84	648 744	1047 1085	0.85 0.96	754 855	1129 1163	0.98 1.09	867 972	1206 1238	1.11 1.23	986 1095	1279 1309	1.25 1.38	1111 1224
2100 2200	1043 1085	0.96 1.09	850 966	1123 1162	1.09 1.22	965 1086	1199 1235	1.22	1086 1211	1271 1305	1.37 1.51	1213 1342	1340 1372	1.52 1.67	1346 1479
2300 2400	1127 1169	1.23 1.38	1092 1229	1201 1241	1.37	1217 1359	1272 1310	1.52 1.68	1347 1493	1340 1375	1.67 1.84	1482 1633	1405 1439	1.83	1623 1778
2500	1212	1.55	1378	1281	1.70	1513	1348	1.86	1652	1412	2.02	1796	1473	2.19	1945

581B060 (5	TONS) —	STANDA	ARD MO	TOR (BEI	LT DRIVE	E)* — TH	REE-PH/	ASE UNI	TS (cont)	١					
A : 61			•		•	Ext	ernal Sta	tic Pres	sure (in.	wg)				•	
Airflow (Cfm)		1.2			1.4	•		1.6	•		1.8			2.0	•
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1247	0.98	873	1320	1.13	1002	1390	1.28	1137	1457	1.44	1280	1522	1.61	1430
1600	1270	1.07	952	1342	1.22	1083	1411	1.37	1221	1476	1.54	1365	1540	1.71	1517
1700	1295	1.17	1040	1365	1.32	1173	1432	1.48	1313	1497	1.64	1459	1559	1.82	1612
1800	1321	1.28	1137	1390	1.43	1273	1455	1.59	1415	1518	1.76	1563	1579	1.93	1718
1900	1348	1.40	1243	1415	1.56	1381	1479	1.72	1526	1541	1.89	1677	1601	2.06	1834
2000	1377	1.53	1359	1442	1.69	1500	1505	1.86	1648	1565	2.03	1801	1624	2.21	1961
2100	1406	1.67	1485	1470	1.83	1629	1531	2.00	1780	1591	2.18	1936	1648	2.36	2098
2200	1437	1.83	1621	1499	1.99	1769	1559	2.16	1923	1617	2.34	2082	_	_	_
2300	1468	1.99	1769	1529	2.16	1920	1587	2.34	2077	_	_	I —	_	_	_
2400	1500	2.17	1928	1559	2.35	2083	_	_	_	_	_	_	_	_	_
2500	1533	2.36	2098	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require fieldsupplied drive.

See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581B060 (5 T	ONS) — F	IIGH-STA	TIC MOT	OR (BEL1	DRIVE)										
						Ex	ternal Sta	atic Press	sure (in. v	/g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Gilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000 2100	800 839 879 919 960 1001 1043	0.39 0.46 0.54 0.63 0.73 0.84 0.96	350 412 483 561 648 744 850	904 938 974 1010 1047 1085 1123	0.49 0.57 0.65 0.75 0.85 0.96 1.09	438 505 580 663 754 855 965	999 1030 1062 1095 1129 1163 1199	0.60 0.68 0.77 0.87 0.98 1.09	535 605 684 771 867 972 1086	1087 1115 1144 1174 1206 1238 1271	0.72 0.80 0.90 1.00 1.11 1.23 1.37	640 714 796 886 986 1095 1213	1169 1195 1221 1250 1279 1309 1340	0.85 0.93 1.03 1.14 1.25 1.38 1.52	753 829 914 1008 1111 1224 1346
2200 2300 2400 2500	1085 1127 1169 1212	1.09 1.23 1.38 1.55	966 1092 1229 1378	1162 1201 1241 1281	1.22 1.37 1.53 1.70	1086 1217 1359 1513	1235 1272 1310 1348	1.36 1.52 1.68 1.86	1211 1347 1493 1652	1305 1340 1375 1412	1.51 1.67 1.84 2.02	1342 1482 1633 1796	1372 1405 1439 1473	1.67 1.83 2.00 2.19	1479 1623 1778 1945

581B060 (5 T	ONS) — F	HIGH-STA	TIC MOT	OR (BEL1	DRIVE)*	(cont)									
				_		Ex	ternal Sta	atic Press	sure (in. v	vg)			_		
Airflow (Cfm)		1.2	_		1.4	_		1.6	_		1.8	_		2.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000	1247 1270 1295 1321 1348 1377	0.98 1.07 1.17 1.28 1.40 1.53	873 952 1040 1137 1243 1359	1320 1342 1365 1390 1415 1442	1.13 1.22 1.32 1.43 1.56 1.69	1002 1083 1173 1273 1381 1500	1390 1411 1432 1455 1479 1505	1.28 1.37 1.48 1.59 1.72 1.86	1137 1221 1313 1415 1526 1648	1457 1476 1497 1518 1541 1565	1.44 1.54 1.64 1.76 1.89 2.03	1280 1365 1459 1563 1677 1801	1522 1540 1559 1579 1601 1624	1.61 1.71 1.82 1.93 2.06 2.21	1430 1517 1612 1718 1834 1961
2100 2200 2300 2400 2500	1406 1437 1468 1500 1533	1.67 1.83 1.99 2.17 2.36	1485 1621 1769 1928 2098	1470 1499 1529 1559 1591	1.83 1.99 2.16 2.35 2.54	1629 1769 1920 2083 2257	1531 1559 1587 1616 1647	2.00 2.16 2.34 2.53 2.73	1780 1923 2077 2243 2421	1591 1617 1644 1672	2.18 2.34 2.52 2.71	1936 2082 2239 2408	1648 1673 1699 1726	2.36 2.53 2.71 2.90	2098 2246 2406 2579

LEGEND

Bhp Watts Brake HorsepowerInput Watts to Motor

 $^{*}\text{Motor}$ drive range: 1300 to 1685 rpm. All other rpms require field-supplied drive.

See page 107 for general fan performance notes.

NOTES:

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.90.

581B072 (6 T	ONS) — S	TANDAR	RD MOTO	R (BELT I	DRIVE)*										
A :(1						Ex	ternal Sta	tic Press	ure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	913	0.64	569	1010	0.80	715	1098	0.98	869	1178	1.16	1032	1252	1.35	1203
1900	952	0.73	652	1046	0.91	805	1131	1.09	965	1210	1.28	1134	1282	1.48	1311
2000	992	0.84	744	1083	1.02	903	1166	1.21	1070	1242	1.40	1245	1313	1.61	1427
2100	1032	0.95	844	1120	1.14	1010	1200	1.33	1184	1275	1.54	1365	1345	1.75	1553
2200	1073	1.07	954	1158	1.27	1127	1236	1.47	1307	1308	1.68	1495	1377	1.90	1689
2300	1114	1.21	1074	1196	1.41	1254	1272	1.62	1440	1343	1.84	1634	1409	2.07	1834
2400	1155	1.36	1204	1234	1.57	1391	1308	1.78	1584	1377	2.01	1784	1443	2.24	1990
2500	1196	1.51	1345	1273	1.73	1538	1345	1.96	1738	1412	2.19	1945	_	_	_
2600	1238	1.69	1497	1312	1.91	1697	1382	2.14	1904	1448	2.38	2117	_	_	_
2700	1280	1.87	1660	1352	2.10	1867	1420	2.34	2081	_	_	_	_	_	_
2800	1322	2.07	1835	1392	2.31	2050	_	_	_	_	_	_	_	_	_
2900	1364	2.28	2023	_	_	<u> </u>	_	_	_	_	_	<u> </u>	_	_	<u> </u>
3000	_	_	I —	_	_	<u> </u>	_	_	_	_	_	<u> </u>	_	_	<u> </u>

						Ex	ternal Sta	atic Press	sure (in. v	/g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1322	1.56	1382	1388	1.77	1568	1451	1.98	1762	1510	2.21	1962	_	_	_
1900	1351	1.68	1495	1416	1.90	1686	1477	2.12	1885	1536	2.35	2090	_	_	_
2000	1380	1.82	1617	1444	2.04	1814	1505	2.27	2017	_	_	_	_	_	_
2100	1411	1.97	1748	1473	2.20	1950	_	_	_	_	_	_	_		_
2200	1441	2.13	1890	1503	2.36	2097	_	_	_	_	_	_	_		_
2300	1473	2.30	2041	_	_	_	_	_	_	_	_	_	_	_	_
2400	_	_		_	_	_	_	_	_	_	_	_	_	_	_
2500				_		_	_	_	_		_	_			_
2600				_		_	_	_	_		_	_			_
2700	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2800	I —	_	_	_	_	l —	_	_	_	_	_	_	_	_	_
2900	I —	_	_	_	_	l —	_	_	_	_	_	_	_	_	_
3000	_	_	_	_	_	l —	_	_	_	_	_	_	_	_	_

LEGEND

Bhp Watts Brake HorsepowerInput Watts to Motor

*Motor drive range: 1119 to 1585 rpm. All other rpms require field-supplied drive.

See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581B072 (6 T	ONS) — F	IIGH-STA	TIC MOT	OR (BEL1	DRIVE)										
						Ex	ternal Sta	tic Press	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	913	952 0.73 652			0.80	715	1098	0.98	869	1178	1.16	1032	1252	1.35	1203
1900	952	0.73	652	1046	0.91	805	1131	1.09	965	1210	1.28	1134	1282	1.48	1311
2000	992	0.84	744	1083	1.02	903	1166	1.21	1070	1242	1.40	1245	1313	1.61	1427
2100	1032	0.95	844	1120	1.14	1010	1200	1.33	1184	1275	1.54	1365	1345	1.75	1553
2200	1073	1.07	954	1158	1.27	1127	1236	1.47	1307	1308	1.68	1495	1377	1.90	1689
2300	1114	1.21	1074	1196	1.41	1254	1272	1.62	1440	1343	1.84	1634	1409	2.07	1834
2400	1155	1.36	1204	1234	1.57	1391	1308	1.78	1584	1377	2.01	1784	1443	2.24	1990
2500	1196	1.51	1345	1273	1.73	1538	1345	1.96	1738	1412	2.19	1945	1477	2.43	2157
2600	1238	1.69	1497	1312	1.91	1697	1382	2.14	1904	1448	2.38	2117	1511	2.63	2335
2700	1280	1.87	1660	1352	2.10	1867	1420	2.34	2081	1484	2.59	2300	1546	2.84	2526
2800	1322	2.07	1835	1392	2.31	2050	1458	2.56	2270	1521	2.81	2496	_	_	_
2900	1364	2.28	2023	1432	2.53	2245	1496	2.78	2472	_	_	_		_	_
3000	1406	2.50	2224	1472	2.76	2452	_	_		_	_	—	_	_	_

81B072 (6 T	ONS) — F	HIGH-STA	TIC MOT	OR (BELT	DRIVE)	(cont)									
						Ex	ternal Sta	atic Press	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1800	1322	1.56	1382	1388	1.77	1568	1451	1.98	1762	1510	2.21	1962	1568	2.44	2169
1900	1351	1.68	1495	1416	1.90	1686	1477	2.12	1885	1536	2.35	2090	1593	2.59	2302
2000	1380	1.82	1617	1444	2.04	1814	1505	2.27	2017	1563	2.51	2227	1619	2.75	2443
2100	1411	1.97	1748	1473	2.20	1950	1533	2.43	2159	1590	2.67	2374	_	_	_
2200	1441	2.13	1890	1503	2.36	2097	1562	2.60	2311	1618	2.85	2532	_	_	_
2300	1473	2.30	2041	1533	2.54	2254	1591	2.79	2474	_	_	_	_	_	_
2400	1505	2.48	2203	1564	2.73	2422	_		_	_	_	_			_
2500	1537	2.68	2376	_					_	_	_	_			_
2600	1571	2.88	2560	_					_	_	_	_			_
2700	_	_	_	_	_	_	_	_	l —	_	_	l —	_	_	_
2800	_	_	_	_	_	_	_	_	l —	_	_	l —	_	_	_
2900	_	_	_	_	_	_	_	_	l —	_	_	l —	_	_	_
3000	_	_	_	_	_	_	l —	l —	_	_	_	_	_	_	l —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1300 to 1686 rpm. All other rpms require field-supplied drive.

- NOTES:
 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581B090 (71/ ₂	TONS) —	STAND	ARD MOT	OR (BEL	T DRIVE)*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	505	0.52	484	586	0.73	681	657	0.97	901	722	1.22	1142	782	1.50	1403
2300	513	0.55	509	592	0.76	708	663	1.00	931	727	1.26	1174	787	1.54	1437
2400	527	0.60	561	605	0.82	766	674	1.07	993	738	1.33	1241	796	1.62	1508
2500	543	0.66	617	618	0.89	828	686	1.14	1060	748	1.41	1312	806	1.70	1583
2550	550	0.69	647	625	0.92	860	692	1.17	1095	754	1.45	1349	811	1.74	1623
2600	558	0.73	677	632	0.96	894	698	1.21	1131	759	1.49	1388	816	1.78	1664
2700	574	0.80	742	645	1.03	964	710	1.29	1207	770	1.58	1469	826	1.88	1749
2800	589	0.87	811	659	1.11	1039	723	1.38	1287	782	1.67	1554	837	1.97	1839
2900	605	0.95	885	673	1.20	1119	736	1.47	1372	794	1.76	1644	848	2.07	1933
3000	621	1.03	963	688	1.29	1204	749	1.57	1463	806	1.87	1740	859	2.18	2033
3100	637	1.12	1046	702	1.39	1293	762	1.67	1558	818	1.97	1840	871	2.29	2139
3200	654	1.22	1135	717	1.49	1388	776	1.78	1658	831	2.09	1946	882	2.41	2249
3300	670	1.32	1228	732	1.60	1488	789	1.89	1764	843	2.21	2057	894	2.54	2365
3400	686	1.42	1328	747	1.71	1593	803	2.01	1876	856	2.33	2174	907	2.67	2488
3500	703	1.54	1433	762	1.83	1705	817	2.14	1993	870	2.46	2297	919	2.81	2616
3600	720	1.66	1543	777	1.95	1822	832	2.27	2116	883	2.60	2425	_	_	_
3700	736	1.78	1660	793	2.09	1944	846	2.41	2245	896	2.75	2560	_	_	_
3750	745	1.85	1721	801	2.15	2008	853	2.48	2312	903	2.82	2630	_	_	_

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	838	1.81	1683	891	2.12	1981	941	2.46	2297	988	2.82	2629	_	_	_
2300	842	1.84	1719	895	2.17	2019	944	2.51	2336	992	2.86	2669	_	_	_
2400	851	1.92	1793	903	2.25	2097	952	2.59	2416	_	_	_	_	_	_
2500	860	2.01	1873	911	2.34	2180	960	2.68	2502	_	_	_	_	_	_
2550	865	2.05	1914	916	2.38	2223	964	2.73	2547	_	_	_	_	_	_
2600	869	2.10	1957	920	2.43	2267	968	2.78	2593	_	_	_	_	_	_
2700	879	2.19	2046	929	2.53	2360	976	2.88	2689	_	_	_	_	_	_
2800	889	2.29	2140	938	2.64	2458	_	_		_	_	_	_	_	_
2900	899	2.40	2239	948	2.75	2561	_	_	_	_	_	_	_	_	_
3000	910	2.51	2343	958	2.86	2670	_	_	_	_	_	_	_	_	_
3100	921	2.63	2453	_	_	_	_	_	_	_	_	_	_	_	_
3200	932	2.75	2569	_	_	_	_	_	_	_	_	_	l —	_	_
3300	943	2.88	2690	_	_	_	_	_	_	_	_	_	_	_	_
3400	_	_	_	l —	_	_	_	_	_	_	_	_	_	_	_
3500	_	l —	_	_	_	_	_	_	_	_	_	_	l —	_	_
3600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
3750	_	_	_	_	_	_	_	_		_	_		_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 840 to 1085 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581B090 (7 ¹ / ₂	TONS) —	HIGH-S	TATIC MO	TOR (BE	LT DRIV	E)*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	505	0.52	484	586	0.73	681	657	0.97	901	722	1.22	1142	782	1.50	1403
2300	513	0.55	509	592	0.76	708	663	1.00	931	727	1.26	1174	787	1.54	1437
2400	527	0.60	561	605	0.82	766	674	1.07	993	738	1.33	1241	796	1.62	1508
2500	543	0.66	617	618	0.89	828	686	1.14	1060	748	1.41	1312	806	1.70	1583
2550	550	0.69	647	625	0.92	860	692	1.17	1095	754	1.45	1349	811	1.74	1623
2600	558	0.73	677	632	0.96	894	698	1.21	1131	759	1.49	1388	816	1.78	1664
2700	574	0.80	742	645	1.03	964	710	1.29	1207	770	1.58	1469	826	1.88	1749
2800	589	0.87	811	659	1.11	1039	723	1.38	1287	782	1.67	1554	837	1.97	1839
2900	605	0.95	885	673	1.20	1119	736	1.47	1372	794	1.76	1644	848	2.07	1933
3000	621	1.03	963	688	1.29	1204	749	1.57	1463	806	1.87	1740	859	2.18	2033
3100	637	1.12	1046	702	1.39	1293	762	1.67	1558	818	1.97	1840	871	2.29	2139
3200	654	1.22	1135	717	1.49	1388	776	1.78	1658	831	2.09	1946	882	2.41	2249
3300	670	1.32	1228	732	1.60	1488	789	1.89	1764	843	2.21	2057	894	2.54	2365
3400	686	1.42	1328	747	1.71	1593	803	2.01	1876	856	2.33	2174	907	2.67	2488
3500	703	1.54	1433	762	1.83	1705	817	2.14	1993	870	2.46	2297	919	2.81	2616
3600	720	1.66	1543	777	1.95	1822	832	2.27	2116	883	2.60	2425	932	2.95	2750
3700	736	1.78	1660	793	2.09	1944	846	2.41	2245	896	2.75	2560	944	3.10	2889
3750	745	1.85	1721	801	2.15	2008	853	2.48	2312	903	2.82	2630	951	3.18	2962

						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2250	838	1.81	1683	891	2.12	1981	941	2.46	2297	988	2.82	2629	1033	3.19	2976
2300	842	1.84	1719	895	2.17	2019	944	2.51	2336	992	2.86	2669	1037	3.24	3018
2400	851	1.92	1793	903	2.25	2097	952	2.59	2416	999	2.95	2752	1043	3.33	3104
2500	860	2.01	1873	911	2.34	2180	960	2.68	2502	1006	3.05	2842	1051	3.43	3196
2550	865	2.05	1914	916	2.38	2223	964	2.73	2547	1010	3.10	2888	1054	3.48	3243
2600	869	2.10	1957	920	2.43	2267	968	2.78	2593	1014	3.15	2935	1058	3.53	3292
2700	879	2.19	2046	929	2.53	2360	976	2.88	2689	1022	3.25	3035	1066	3.64	3395
2800	889	2.29	2140	938	2.64	2458	985	2.99	2791	1030	3.37	3140	1073	3.76	3503
2900	899	2.40	2239	948	2.75	2561	994	3.11	2898	1039	3.49	3250	1082	3.88	3616
3000	910	2.51	2343	958	2.86	2670	1004	3.23	3011	1048	3.61	3366	1090	4.01	3736
3100	921	2.63	2453	968	2.98	2783	1013	3.35	3128	1057	3.74	3488	1099	4.14	3861
3200	932	2.75	2569	978	3.11	2903	1023	3.49	3252	1066	3.88	3616	_	_	<u> </u>
3300	943	2.88	2690	989	3.25	3029	1033	3.63	3382	1076	4.02	3749	_	_	i —
3400	954	3.02	2816	1000	3.39	3159	1044	3.77	3518	1086	4.17	3889	_	_	i —
3500	966	3.16	2950	1011	3.54	3297	1054	3.92	3660	_	_	_	_	_	i —
3600	978	3.31	3088	1022	3.69	3442	1065	4.08	3808	_	_	_	_	_	_
3700	990	3.47	3233	1034	3.85	3591	_	_	_	_	_	_	_	_	i —
3750	996	3.55	3308	1040	3.93	3669	_	_	_	_	_	_	_	_	i —

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{\star}\text{Motor}$ drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 4.20.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581B102 (81/ ₂	TONS) —	STAND	ARD MOT	OR (BEL	T DRIVE)*									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2500	513	0.45	423	603	0.62	576	682	0.78	732	753	0.96	892	817	1.13	1055
2600	526	0.50	463	614	0.67	621	692	0.84	783	761	1.02	948	825	1.20	1117
2700	539	0.54	505	625	0.72	670	702	0.90	837	770	1.08	1008	834	1.27	1182
2800	552	0.59	551	637	0.77	721	712	0.96	894	780	1.15	1070	842	1.34	1250
2900	565	0.64	599	648	0.83	775	722	1.02	954	789	1.22	1136	851	1.42	1321
3000	579	0.70	651	660	0.89	832	732	1.09	1017	799	1.29	1204	860	1.50	1395
3100	592	0.76	706	672	0.96	893	743	1.16	1083	808	1.37	1276	869	1.58	1471
3200	606	0.82	764	684	1.03	957	754	1.24	1153	818	1.45	1351	878	1.66	1552
3300	620	0.88	825	696	1.10	1024	765	1.31	1225	829	1.53	1429	888	1.75	1636
3400	634	0.95	890	709	1.17	1095	777	1.40	1302	839	1.62	1511	897	1.85	1723
3500	648	1.03	958	721	1.25	1169	788	1.48	1381	850	1.71	1597	907	1.95	1815
3600	662	1.10	1030	734	1.34	1246	800	1.57	1465	860	1.81	1686	917	2.05	1909
3700	676	1.19	1106	747	1.42	1328	811	1.66	1552	871	1.91	1779	927	2.15	2008
3800	690	1.27	1185	760	1.52	1414	823	1.76	1644	882	2.01	1876	938	2.26	2111
3900	705	1.36	1269	773	1.61	1503	835	1.86	1739	894	2.12	1977	948	2.38	2217
4000	719	1.45	1357	786	1.71	1597	848	1.97	1838	905	2.23	2082	959	2.50	2328
4100	734	1.55	1449	799	1.82	1695	860	2.08	1942	917	2.35	2192	970	2.62	2443
4200	748	1.66	1545	813	1.93	1797	872	2.20	2050	928	2.47	2305	981	2.75	2562
4300	763	1.76	1646	826	2.04	1903	885	2.32	2162	940	2.60	2423	992	2.88	2686

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2500	877	1.31	1222	933	1.49	1392	986	1.68	1565	1037	1.87	1742	1085	2.06	1921
2600	885	1.38	1289	940	1.57	1464	993	1.76	1643	1043	1.96	1824	1091	2.15	2008
2700	892	1.46	1359	948	1.65	1540	1000	1.85	1723	1049	2.05	1909	1097	2.25	209
2800	900	1.54	1432	955	1.74	1618	1007	1.94	1807	1056	2.14	1998	1103	2.35	219
2900	908	1.62	1508	963	1.82	1699	1014	2.03	1893	1063	2.24	2089	1110	2.45	228
3000	917	1.70	1587	970	1.91	1784	1021	2.13	1983	1070	2.34	2185	1117	2.56	238
3100	925	1.79	1670	979	2.01	1872	1029	2.23	2076	1077	2.45	2283	1123	2.67	249
3200	934	1.88	1756	987	2.10	1963	1037	2.33	2172	1085	2.56	2384	1131	2.79	259
3300	943	1.98	1845	995	2.21	2057	1045	2.44	2272	1092	2.67	2490			
3400	952	2.08	1939	1004	2.31	2156	1053	2.55	2376	1100	2.79	2599		_	_
3500	961	2.18	2035	1013	2.42	2258	1062	2.66	2483	_				_	_
3600	971	2.29	2135	1022	2.53	2364	1070	2.78	2595		_	_		l — '	_
3700	981	2.40	2240	1031	2.65	2473	—		_		_	_		l — '	_
3800	990	2.52	2348	1040	2.77	2587	_	_	_	_	_	_		l '	l —
3900	1000	2.64	2459	1050	2.90	2705	_	_	_	_	_	_		l '	l _
4000	1011	2.76	2576		2.50			_	_		_	_		l '	
4100	1021	2.89	2697			_			_		_	_		i _ '	
4200	1021	2.03	2037						_						
4300															1 —

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{*}\text{Motor}$ drive range: 840 to 1085 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.90.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581B102 (81/ ₂	TONS) —	· HIGH-S	TATIC MO	TOR (BE	LT DRIV	,									
A inflant						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2500	513	0.45	423	603	0.62	576	682	0.78	732	753	0.96	892	817	1.13	1055
2600	526	0.50	463	614	0.67	621	692	0.84	783	761	1.02	948	825	1.20	1117
2700	539	0.54	505	625	0.72	670	702	0.90	837	770	1.08	1008	834	1.27	1182
2800	552	0.59	551	637	0.77	721	712	0.96	894	780	1.15	1070	842	1.34	1250
2900	565	0.64	599	648	0.83	775	722	1.02	954	789	1.22	1136	851	1.42	1321
3000	579	0.70	651	660	0.89	832	732	1.09	1017	799	1.29	1204	860	1.50	1395
3100	592	0.76	706	672	0.96	893	743	1.16	1083	808	1.37	1276	869	1.58	1471
3200	606	0.82	764	684	1.03	957	754	1.24	1153	818	1.45	1351	878	1.66	1552
3300	620	0.88	825	696	1.10	1024	765	1.31	1225	829	1.53	1429	888	1.75	1636
3400	634	0.95	890	709	1.17	1095	777	1.40	1302	839	1.62	1511	897	1.85	1723
3500	648	1.03	958	721	1.25	1169	788	1.48	1381	850	1.71	1597	907	1.95	1815
3600	662	1.10	1030	734	1.34	1246	800	1.57	1465	860	1.81	1686	917	2.05	1909
3700	676	1.19	1106	747	1.42	1328	811	1.66	1552	871	1.91	1779	927	2.15	2008
3800	690	1.27	1185	760	1.52	1414	823	1.76	1644	882	2.01	1876	938	2.26	2111
3900	705	1.36	1269	773	1.61	1503	835	1.86	1739	894	2.12	1977	948	2.38	2217
4000	719	1.45	1357	786	1.71	1597	848	1.97	1838	905	2.23	2082	959	2.50	2328
4100	734	1.55	1449	799	1.82	1695	860	2.08	1942	917	2.35	2192	970	2.62	2443
4200	748	1.66	1545	813	1.93	1797	872	2.20	2050	928	2.47	2305	981	2.75	2562
4300	763	1.76	1646	826	2.04	1903	885	2.32	2162	940	2.60	2423	992	2.88	2686

						Ex	ternal Sta	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
2500	877	1.31	1222	933	1.49	1392	986	1.68	1565	1037	1.87	1742	1085	2.06	192 ⁻
2600	885	1.38	1289	940	1.57	1464	993	1.76	1643	1043	1.96	1824	1091	2.15	2008
2700	892	1.46	1359	948	1.65	1540	1000	1.85	1723	1049	2.05	1909	1097	2.25	209
2800	900	1.54	1432	955	1.74	1618	1007	1.94	1807	1056	2.14	1998	1103	2.35	219
2900	908	1.62	1508	963	1.82	1699	1014	2.03	1893	1063	2.24	2089	1110	2.45	228
3000	917	1.70	1587	970	1.91	1784	1021	2.13	1983	1070	2.34	2185	1117	2.56	238
3100	925	1.79	1670	979	2.01	1872	1029	2.23	2076	1077	2.45	2283	1123	2.67	249
3200	934	1.88	1756	987	2.10	1963	1037	2.33	2172	1085	2.56	2384	1131	2.79	259
3300	943	1.98	1845	995	2.21	2057	1045	2.44	2272	1092	2.67	2490	1138	2.91	271
3400	952	2.08	1939	1004	2.31	2156	1053	2.55	2376	1100	2.79	2599	1145	3.03	282
3500	961	2.18	2035	1013	2.42	2258	1062	2.66	2483	1108	2.91	2711	1153	3.15	294
3600	971	2.29	2135	1022	2.53	2364	1070	2.78	2595	1116	3.03	2827	1161	3.29	306
3700	981	2.40	2240	1031	2.65	2473	1079	2.91	2709	1125	3.16	2948	1169	3.42	318
3800	990	2.52	2348	1040	2.77	2587	1088	3.03	2828	1133	3.30	3073	1177	3.56	3319
3900	1000	2.64	2459	1050	2.90	2705	1097	3.17	2951	1142	3.43	3201	1186	3.70	345
4000	1011	2.76	2576	1059	3.03	2826	1106	3.30	3079	1151	3.58	3334	1194	3.85	359
4100	1021	2.89	2697	1069	3.17	2953	1116	3.44	3210	1160	3.72	3471	1203	4.00	373
4200	1031	3.03	2822	1079	3.31	3083	1125	3.59	3347	1169	3.87	3612	1212	4.16	388
4300	1042	3.16	2951	1089	3.45	3218	1135	3.74	3487	1179	4.03	3758			_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 4.20.

^{*}Motor drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581B120 (10 T	ONS) —	STANDA	RD MOTO	R (BELT	DRIVE)*	•									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	579	0.70	651	660	0.89	832	732	1.09	1017	799	1.29	1204	860	1.50	1395
3100	592	0.76	706	672	0.96	893	743	1.16	1083	808	1.37	1276	869	1.58	1471
3200	606	0.82	764	684	1.03	957	754	1.24	1153	818	1.45	1351	878	1.66	1552
3300	620	0.88	825	696	1.10	1024	765	1.31	1225	829	1.53	1429	888	1.75	1636
3400	634	0.95	890	709	1.17	1095	777	1.40	1302	839	1.62	1511	897	1.85	1723
3500	648	1.03	958	721	1.25	1169	788	1.48	1381	850	1.71	1597	907	1.95	1815
3600	662	1.10	1030	734	1.34	1246	800	1.57	1465	860	1.81	1686	917	2.05	1909
3700	676	1.19	1106	747	1.42	1328	811	1.66	1552	871	1.91	1779	927	2.15	2008
3800	690	1.27	1185	760	1.52	1414	823	1.76	1644	882	2.01	1876	938	2.26	2111
3900	705	1.36	1269	773	1.61	1503	835	1.86	1739	894	2.12	1977	948	2.38	2217
4000	719	1.45	1357	786	1.71	1597	848	1.97	1838	905	2.23	2082	959	2.50	2328
4100	734	1.55	1449	799	1.82	1695	860	2.08	1942	917	2.35	2192	970	2.62	2443
4200	748	1.66	1545	813	1.93	1797	872	2.20	2050	928	2.47	2305	981	2.75	2562
4300	763	1.76	1646	826	2.04	1903	885	2.32	2162	940	2.60	2423	992	2.88	2686
4400	778	1.88	1751	840	2.16	2014	898	2.44	2279	952	2.73	2546	1004	3.02	2814
4500	792	1.99	1860	853	2.28	2130	910	2.57	2401	964	2.87	2673	1015	3.16	2947
4600	807	2.12	1975	867	2.41	2250	923	2.71	2527	976	3.01	2805	1027	3.31	3085
4700	822	2.25	2094	881	2.55	2375	936	2.85	2658	989	3.15	2942	1038	3.46	3227
4800	837	2.38	2218	895	2.69	2505	949	3.00	2794	1001	3.31	3083	1050	3.62	3375
4900	852	2.52	2347	909	2.83	2640	963	3.15	2935	1014	3.46	3230	_	_	_
5000	867	2.66	2482	923	2.98	2781	976	3.30	3081	1026	3.63	3383	_	_	

						Ex	ternal Sta	atic Pres	sure (in. v	va)					
Airflow (Cfm)		1.2			1.4			1.6		- 9/	1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	917	1.70	1587	970	1.91	1784	1021	2.13	1983	1070	2.34	2185	1117	2.56	2389
3100	925	1.79	1670	979	2.01	1872	1029	2.23	2076	1077	2.45	2283	1123	2.67	2492
3200	934	1.88	1756	987	2.10	1963	1037	2.33	2172	1085	2.56	2384	1131	2.79	2599
3300	943	1.98	1845	995	2.21	2057	1045	2.44	2272	1092	2.67	2490	1138	2.91	2710
3400	952	2.08	1939	1004	2.31	2156	1053	2.55	2376	1100	2.79	2599	1145	3.03	2824
3500	961	2.18	2035	1013	2.42	2258	1062	2.66	2483	1108	2.91	2711	1153	3.15	2942
3600	971	2.29	2135	1022	2.53	2364	1070	2.78	2595	1116	3.03	2827	1161	3.29	3063
3700	981	2.40	2240	1031	2.65	2473	1079	2.91	2709	1125	3.16	2948	1169	3.42	3189
3800	990	2.52	2348	1040	2.77	2587	1088	3.03	2828	1133	3.30	3073	1177	3.56	3319
3900	1000	2.64	2459	1050	2.90	2705	1097	3.17	2951	1142	3.43	3201	1186	3.70	3452
4000	1011	2.76	2576	1059	3.03	2826	1106	3.30	3079	1151	3.58	3334	_	_	_
4100	1021	2.89	2697	1069	3.17	2953	1116	3.44	3210	_	_			_	_
4200	1031	3.03	2822	1079	3.31	3083	1125	3.59	3347		_			_	_
4300	1042	3.16	2951	1089	3.45	3218	_	_	_		_			_	_
4400	1053	3.31	3085	1100	3.60	3357		_	_		_			_	_
4500	1064	3.46	3224	_	_	_	_	_	_	_	_	_	_	_	_
4600	1075	3.61	3367	_	_	_	_	_	_	_	_	_	_	_	_
4700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
4900	_	_	_	_	_	_	_	_	_	_	_		_	_	_
5000	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{*}\text{Motor}$ drive range: 860 to 1080 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 3.70.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)	1	0.2			0.4			0.6	•		0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	579	0.70	651	660	0.89	832	732	1.09	1017	799	1.29	1204	860	1.50	1395
3100	592	0.76	706	672	0.96	893	743	1.16	1083	808	1.37	1276	869	1.58	1471
3200	606	0.82	764	684	1.03	957	754	1.24	1153	818	1.45	1351	878	1.66	1552
3300	620	0.88	825	696	1.10	1024	765	1.31	1225	829	1.53	1429	888	1.75	1636
3400	634	0.95	890	709	1.17	1095	777	1.40	1302	839	1.62	1511	897	1.85	1723
3500	648	1.03	958	721	1.25	1169	788	1.48	1381	850	1.71	1597	907	1.95	1815
3600	662	1.10	1030	734	1.34	1246	800	1.57	1465	860	1.81	1686	917	2.05	1909
3700	676	1.19	1106	747	1.42	1328	811	1.66	1552	871	1.91	1779	927	2.15	2008
3800	690	1.27	1185	760	1.52	1414	823	1.76	1644	882	2.01	1876	938	2.26	2111
3900	705	1.36	1269	773	1.61	1503	835	1.86	1739	894	2.12	1977	948	2.38	2217
4000	719	1.45	1357	786	1.71	1597	848	1.97	1838	905	2.23	2082	959	2.50	2328
4100	734	1.55	1449	799	1.82	1695	860	2.08	1942	917	2.35	2192	970	2.62	2443
4200	748	1.66	1545	813	1.93	1797	872	2.20	2050	928	2.47	2305	981	2.75	2562
4300	763	1.76	1646	826	2.04	1903	885	2.32	2162	940	2.60	2423	992	2.88	2686
4400	778	1.88	1751	840	2.16	2014	898	2.44	2279	952	2.73	2546	1004	3.02	2814
4500	792	1.99	1860	853	2.28	2130	910	2.57	2401	964	2.87	2673	1015	3.16	2947
4600	807	2.12	1975	867	2.41	2250	923	2.71	2527	976	3.01	2805	1027	3.31	3085
4700	822	2.25	2094	881	2.55	2375	936	2.85	2658	989	3.15	2942	1038	3.46	3227
4800	837	2.38	2218	895	2.69	2505	949	3.00	2794	1001	3.31	3083	1050	3.62	3375
4900	852	2.52	2347	909	2.83	2640	963	3.15	2935	1014	3.46	3230	1062	3.78	3528
5000	867	2.66	2482	923	2.98	2781	976	3.30	3081	1026	3.63	3383	1074	3.95	3685

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3000	917	1.70	1587	970	1.91	1784	1021	2.13	1983	1070	2.34	2185	1117	2.56	2389
3100	925	1.79	1670	979	2.01	1872	1029	2.23	2076	1077	2.45	2283	1123	2.67	2492
3200	934	1.88	1756	987	2.10	1963	1037	2.33	2172	1085	2.56	2384	1131	2.79	2599
3300	943	1.98	1845	995	2.21	2057	1045	2.44	2272	1092	2.67	2490	1138	2.91	2710
3400	952	2.08	1939	1004	2.31	2156	1053	2.55	2376	1100	2.79	2599	1145	3.03	2824
3500	961	2.18	2035	1013	2.42	2258	1062	2.66	2483	1108	2.91	2711	1153	3.15	2942
3600	971	2.29	2135	1022	2.53	2364	1070	2.78	2595	1116	3.03	2827	1161	3.29	3063
3700	981	2.40	2240	1031	2.65	2473	1079	2.91	2709	1125	3.16	2948	1169	3.42	3189
3800	990	2.52	2348	1040	2.77	2587	1088	3.03	2828	1133	3.30	3073	1177	3.56	3319
3900	1000	2.64	2459	1050	2.90	2705	1097	3.17	2951	1142	3.43	3201	1186	3.70	3452
4000	1011	2.76	2576	1059	3.03	2826	1106	3.30	3079	1151	3.58	3334	1194	3.85	3591
4100	1021	2.89	2697	1069	3.17	2953	1116	3.44	3210	1160	3.72	3471	1203	4.00	3733
4200	1031	3.03	2822	1079	3.31	3083	1125	3.59	3347	1169	3.87	3612	1212	4.16	3880
4300	1042	3.16	2951	1089	3.45	3218	1135	3.74	3487	1179	4.03	3758	1221	4.32	4031
4400	1053	3.31	3085	1100	3.60	3357	1145	3.90	3632	1188	4.19	3909	1230	4.49	4187
4500	1064	3.46	3224	1110	3.76	3502	1155	4.06	3782	1198	4.36	4064	1239	4.66	4348
4600	1075	3.61	3367	1121	3.91	3650	1165	4.22	3937	1208	4.53	4224	1249	4.84	4514
4700	1086	3.77	3515	1131	4.08	3805	1175	4.39	4096	1217	4.71	4389	1258	5.02	4684
4800	1097	3.93	3668	1142	4.25	3963	1186	4.57	4260	1228	4.89	4559	1268	5.21	4860
4900	1109	4.10	3826	1153	4.43	4128	1196	4.75	4430	1238	5.08	4734	_	_	_
5000	1120	4.28	3990	1164	4.61	4296	1207	4.94	4604	_	_	_		_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

 $^{\star}\text{Motor}$ drive range: 830 to 1130 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 5.25.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	676	1.19	1106	747	1.42	1328	811	1.66	1552	871	1.91	1779	927	2.15	2008
3800	690	1.27	1185	760	1.52	1414	823	1.76	1644	882	2.01	1876	938	2.26	2111
3900	705	1.36	1269	773	1.61	1503	835	1.86	1739	894	2.12	1977	948	2.38	2217
4000	719	1.45	1357	786	1.71	1597	848	1.97	1838	905	2.23	2082	959	2.50	2328
4100	734	1.55	1449	799	1.82	1695	860	2.08	1942	917	2.35	2192	970	2.62	2443
4200	748	1.66	1545	813	1.93	1797	872	2.20	2050	928	2.47	2305	981	2.75	2562
4300	763	1.76	1646	826	2.04	1903	885	2.32	2162	940	2.60	2423	992	2.88	2686
4400	778	1.88	1751	840	2.16	2014	898	2.44	2279	952	2.73	2546	1004	3.02	2814
4500	792	1.99	1860	853	2.28	2130	910	2.57	2401	964	2.87	2673	1015	3.16	2947
4600	807	2.12	1975	867	2.41	2250	923	2.71	2527	976	3.01	2805	1027	3.31	3085
4700	822	2.25	2094	881	2.55	2375	936	2.85	2658	989	3.15	2942	1038	3.46	3227
4800	837	2.38	2218	895	2.69	2505	949	3.00	2794	1001	3.31	3083	1050	3.62	3375
4900	852	2.52	2347	909	2.83	2640	963	3.15	2935	1014	3.46	3230	1062	3.78	3528
5000	867	2.66	2482	923	2.98	2781	976	3.30	3081	1026	3.63	3383	1074	3.95	3685
5100	882	2.81	2622	937	3.14	2926	989	3.47	3232	1039	3.80	3540	1086	4.13	3849
5200	897	2.97	2766	951	3.30	3077	1003	3.63	3389	1052	3.97	3702	1099	4.31	4017
5300	912	3.13	2917	966	3.47	3233	1016	3.81	3551	1065	4.15	3870	1111	4.49	4191
5400	927	3.30	3073	980	3.64	3395	1030	3.99	3719	1078	4.34	4044	1123	4.69	4370
5500	943	3.47	3234	994	3.82	3563	1044	4.17	3892	1091	4.53	4223	1136	4.88	4555
5600	958	3.65	3402	1009	4.01	3736	1057	4.37	4071	1104	4.73	4408	1149	5.09	4746
5700	973	3.83	3575	1023	4.20	3915	1071	4.56	4256	1117	4.93	4599	_	_	_
5800	988	4.03	3754	1038	4.40	4100	1085	4.77	4447	1130	5.14	4796	_	_	_
5900	1004	4.22	3939	1052	4.60	4292	1099	4.98	4645	_	_	_	_	_	_
6000	1019	4.43	4131	1067	4.81	4489	1113	5.20	4848	_	_	_	_	_	_
6100	1034	4.64	4329	1082	5.03	4693	_	_	_	_	_	_	_	_	_
6200	1050	4.86	4533	_	_	_	_	_	_	_	_	_	_	_	_
6300	1065	5.09	4744	_	_	_	_	_	_	l —	_	_	_	_	_

581B150 (121/ ₂	TONS) -	– STANI	DARD MO	TOR (BE	LT DRIVI	E)* (cont)									
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3700	981	2.40	2240	1031	2.65	2473	1079	2.91	2709	1125	3.16	2948	1169	3.42	3189
3800	990	2.52	2348	1040	2.77	2587	1088	3.03	2828	1133	3.30	3073	1177	3.56	3319
3900	1000	2.64	2459	1050	2.90	2705	1097	3.17	2951	1142	3.43	3201	1186	3.70	3452
4000	1011	2.76	2576	1059	3.03	2826	1106	3.30	3079	1151	3.58	3334	1194	3.85	3591
4100	1021	2.89	2697	1069	3.17	2953	1116	3.44	3210	1160	3.72	3471	1203	4.00	3733
4200	1031	3.03	2822	1079	3.31	3083	1125	3.59	3347	1169	3.87	3612	1212	4.16	3880
4300	1042	3.16	2951	1089	3.45	3218	1135	3.74	3487	1179	4.03	3758	1221	4.32	4031
4400	1053	3.31	3085	1100	3.60	3357	1145	3.90	3632	1188	4.19	3909	1230	4.49	4187
4500	1064	3.46	3224	1110	3.76	3502	1155	4.06	3782	1198	4.36	4064	1239	4.66	4348
4600	1075	3.61	3367	1121	3.91	3650	1165	4.22	3937	1208	4.53	4224	1249	4.84	4514
4700	1086	3.77	3515	1131	4.08	3805	1175	4.39	4096	1217	4.71	4389	1258	5.02	4684
4800	1097	3.93	3668	1142	4.25	3963	1186	4.57	4260	1228	4.89	4559	1268	5.21	4860
4900	1109	4.10	3826	1153	4.43	4128	1196	4.75	4430	1238	5.08	4734	_	_	_
5000	1120	4.28	3990	1164	4.61	4296	1207	4.94	4604	_	_	_	_	_	_
5100	1132	4.46	4159	1175	4.79	4471	1218	5.13	4784	_	_	_	_	_	_
5200	1144	4.65	4333	1187	4.99	4651	_	_	_	_	_	_	_	_	_
5300	1155	4.84	4512	1198	5.19	4836	_	_	_	_	_	_	_	_	_
5400	1167	5.04	4697	_	_	_	_	_	_	_	_	_	_	_	_
5500	1179	5.24	4889	_	_	_	_	_	_	_	_	_	_	_	_
5600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
5900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6000	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_
6100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6200	_	—	_	<u> </u>	_	_	<u> </u>	_	_	_	_	_	_	_	_
6300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive range: 830 to 1130 rpm. All other rpms require field-supplied drive.

- NOTES:

 1. Boldface indicates field-supplied drive is required.
 2. Maximum continuous bhp is 5.25.

FAN RPM AT MOTOR PULLEY SETTING WITH STANDARD MOTOR* — 581B036-150

UNIT					M	OTOR PU	ILLEY TU	RNS OPE	EN				
581B	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/2	6
036	1044	1008	971	935	898	862	826	789	753	716	680	_	_
048	1185	1144	1102	1061	1019	978	936	895	853	812	770	_	_
060	1460	1425	1389	1354	1318	1283	1248	1212	1177	1141	1106	1070	1035
072	1585	1538	1492	1445	1399	1352	1305	1259	1212	1166	1119	_	_
090,102	1085	1060	1035	1010	985	960	935	910	890	865	840	_	_
120	1080	1060	1035	1015	990	970	950	925	905	880	860	_	
150	1130	1112	1087	1062	1037	1212	987	962	937	912	887	962	830

^{*}Approximate fan rpm shown (standard motor/drive).

FAN RPM AT MOTOR PULLEY SETTING WITH HIGH-STATIC MOTOR* — 581B036-150

UNIT						MOTOR PI	JLLEY TU	RNS OPE	N				
581B	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/ ₂	6
036	1455	1423	1392	1360	1328	1297	1265	1233	1202	1170	1138	1107	1075
048	1455	1423	1392	1360	1328	1297	1265	1233	1202	1170	1138	1107	1075
060	1685	1589	1557	1525	1493	1460	1428	1396	1364	1332	1300	_	_
072	1685	1589	1557	1525	1493	1460	1428	1396	1364	1332	1300	_	_
090	1080	1025	1007	988	970	952	933	915	897	878	860	_	_
102	1080	1025	1007	988	970	952	933	915	897	878	860	_	_
120	1130	1112	1087	1062	1037	1212	987	962	937	912	887	962	830

^{*}Approximate fan rpm shown (high-static motor/drive).

ALTITUDE COMPENSATION* — 581B036-072

ELEVATION	60,000 and 9	D 115,000/ 00,000 BTUH L INPUT		0,000 BTUH AL INPUT
(ft)	Natural Gas Orifice Size†	Liquid Propane Orifice Size†	Natural Gas Orifice Size	Liquid Propane Orifice Size†
0-2,000	33/38	43	30/32	38
2,000	34/39	43	30/33	39
3,000	35/40	44	31/34	40
4,000	36/41	44	32/35	41
5,000	36/41	44	33/35	42
6,000	37/42	45	34/36	43
7,000	37/42	45	35/37	43
8,000	38/43	46	36/37	44
9,000	39/43	47	37/38	44
10,000	41/44	48	38/40	45
11,000	43/45	48	39/41	45
12,000	44/45	49	40/42	46
13,000	44/46	49	41/43	47
14,000	45/47	50	42/43	47

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, the input rate should be reduced at higher altitudes. †Orifices are available through your local Bryant distributor.

ALTITUDE COMPENSATION* — 581B090-150

ELEVATION	224,00	30,000, AND 0 BTUH AL INPUT		0 BTUH AL INPUT		
(ft)	Natural Gas Orifice Size†	Liquid Propane Orifice Size†	Natural Gas Orifice Size†	Liquid Propane Orifice Size† 38 39 40 41 42 43 43 44 44 45 45		
0-2,000	31	41	30	38		
2,000	32	42	30	39		
3,000	32	42	31	40		
4,000	32	42	32	41		
5,000	33	43	33	42		
6,000	34	43	34	43		
7,000	35	44	35	43		
8,000	36	44	36	44		
9,000	37	45	37	44		
10,000	38	46	38	45		
11,000	39	47	39	45		
12,000	40	47	40	46		
13,000	41	48	41	47		
14,000	42	48	42	47		

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, the input rate should be reduced at higher altitudes. †Orifices are available through your local Bryant distributor.

ALTITUDE DERATING FACTOR*

ELEVATION	MAXIMUM HEATING VALUE (Btu/ft3)
0-2000	1100
2001-3000	1050
3001-4000	1000
4001-5000	950
5001-6000	900

*Derating of the unit is not required unless the heating value of the gas exceeds the values listed in the table above, or if the elevation exceeds 6000 ft. Derating conditions must be 4% per thousand ft above 2000 ft. For example, at 4000 ft, if the heating value of the gas exceeds 1000 Btu/ft³, the unit will require a 16% derating. For elevations above 6000 ft, the same formula applies. For example, at 7000 ft, the unit will require a 28% derating of the maximum heating value per the National Fuel Gas Code.

IMPORTANT: Local utility companies may be reducing heat content of gas at altitudes above 2000 ft. If this is being done, changing spuds may not be required.

OUTDOOR SOUND POWER (TOTAL UNIT)

UNIT	SOUND				OCTAVE	BANDS			
581B	RATING (dB)	63	125	250	500	1000	2000	4000	8000
036,048	76	55.9	66.0	64.0	66.2	68.4	64.5	61.7	57.3
060,072	80	59.1	68.9	68.7	71.9	74.0	68.9	65.7	59.0
090,102	82	62.2	69.3	71.5	74.7	76.2	72.9	68.7	61.5
120	84	64.6	71.1	73.3	76.9	77.6	73.7	70.6	63.7
150	86	63.7	69.9	72.5	78.2	81.1	77.3	73.3	66.8

LEGEND

dB — Sound Levels (decibels)

NOTE: The indoor sound power is available in Bryant's Electronic Catalog program (ECAT) for specific operating parameters.

EVAPORATOR-FAN MOTOR EFFICIENCY

UNIT SIZE 581B	EFFICIENCY%
036,048	75
060	74/84*
072	84
090,102	80
120	85
150	87

^{*}Single phase/3 phase.

NOTES:

1. Convert bhp to watts using the following formula:

watts = $\frac{\text{bhp (746)}}{\text{motor efficiency}}$

2. The EPACT (Energy Policy Act of 1992) regulates energy requirements for specific types of indoor fan motors. Motors regulated by EPACT include any general purpose, T-frame (three-digit, 143 and larger), single-speed, foot mounted, polyphase, squirrel cage induction motors of NEMA (National Electrical Manufacturers Association) design A and B, manufactured for use in the United States. Ranging from 1 to 200 Hp, these continuous-duty motors operate on 230 and 460 volt, 60 Hz power. If a motor does not fit into these specifications, the motor does not have to be replaced by an EPACT-compliant energy-efficient motor. Variable-speed motors are exempt from EPACT compliance requirements. Therefore, the indoor fan motors for Bryant 581B036-150 units are exempt from these requirements.

ACCESSORY/FIOP STATIC PRESSURE* (in. wg) — 581B036-072

COMPONENT	CFM											
COMPONENT	600	800	1000	1250	1500	1750	2000	2250	2500	2750	3000	
Vertical EconoMi\$er IV and EconoMi\$er2	0.10	0.20	0.35	0.045	0.065	0.08	0.12	0.145	0.175	0.22	0.255	
Horizontal EconoMi\$er IV and EconoMi\$er2		_	_	_	_	0.1	0.125	0.15	0.18	0.225	0.275	

LEGEND

FIOP — Factory-Installed Option

ACCESSORY/FIOP STATIC PRESSURE* (in. wg) — 581B090-150

COMPONENT	CFM													
COMPONENT	2250	2500	2750	3000	3250	3500	3750	4000	4250	4500	4750	5000	5250	6250
Vertical EconoMi\$er IV and EconoMi\$er2	0.06	0.075	0.09	0.115	0.13	0.15	0.17	0.195	0.22	0.25	0.285	0.325	0.36	_
Horizontal EconoMi\$er IV and EconoMi\$er2	_	0.1	0.125	0.15	0.18	0.21	0.25	0.275	0.3	0.34	0.388	_	_	_

LEGEND

FIOP — Factory-Installed Option

*The static pressure must be added to external static pressure. The sum and the evaporator entering-air cfm should be used in conjunction with the Fan Performance tables to determine indoor blower rpm and watts.

^{*}The static pressure must be added to external static pressure. The sum and the evaporator entering-air cfm should be used in conjunction with the Fan Performance tables to determine indoor blower rpm and watts.

Perfect Humidity™ Adaptive Dehumidification Coil Pressure Drop (Subcooling and Reheat Modes of Operation)

Vertical EconoMi\$er IV and EconoMi\$er2 Performance Data (581B036-150)

Horizontal EconoMi\$er IV and EconoMi\$er2 Performance Data (581B036-150)

EVAPORATOR-FAN MOTOR PERFORMANCE — STANDARD MOTOR

UNIT 581B	UNIT VOLTAGE	UNIT PHASE	MAXIMUM CONTINUOUS BHP*	MAXIMUM OPERATING WATTS*	MAXIMUM AMP DRAW
	208/230	Single	1.20	1000	4.9
036	208/230				4.9
036	460	Three	1.20	1000	2.2
	575				2.2
	208/230	Single	1.20	1000	4.9
048	208/230				4.9
U46	460	Three	1.20	1000	2.2
	575				2.2
	208/230	Single	1.30	1650	10.1
060	208/230				6.7
060	460	Three	2.40	2120	3.0
	575				3.0
	208/230				6.7
072	460	Three	2.40	2120	3.0
	575				3.0
	208/230				8.6
090,102	460	Three	2.90	2615	3.9
	575				3.9
	208/230				12.2
120	460	Three	3.70	3775	5.5
	575				5.5
	208/230				17.3
150	460	Three	5.25	4400	8.5
Ť	575				8.5

LEGEND

Bhp — Brake Horsepower

EVAPORATOR-FAN MOTOR PERFORMANCE — HIGH-STATIC MOTOR

UNIT 581B	UNIT VOLTAGE	UNIT PHASE	MAXIMUM CONTINUOUS BHP*	MAXIMUM OPERATING WATTS*	MAXIMUM AMP DRAW
	208/230				6.7
036	460	Three	2.40	2120	3.0
	575				3.0
	208/230				6.7
048	460	Three	2.40	2120	3.0
	575				3.0
	208/230				8.6
060	460	Three	2.90	2615	3.9
	575				3.9
	208/230				8.6
072	460	Three	2.90	2615	3.9
	575				3.9
	208/230				12.2
090,102	460	Three	4.20	3775	5.5
	575				5.5
	208/230				17.3
120	460	Three	5.25	4400	8.5
	575				8.5

LEGEND

Bhp — Brake Horsepower

^{*}Extensive motor and electrical testing on these units ensures that the full horsepower and watts range of the motors can be utilized with confidence. Using fan motors up to the ratings shown in this table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

^{*}Extensive motor and electrical testing on these units ensures that the full horsepower and watts range of the motors can be utilized with confidence. Using fan motors up to the ratings shown in this table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

POWER EXHAUST OPTIONS

POWER EXHAUST PART NO.	POWER EXHAUST DESCRIPTION	APPLICATION USAGE	POWER OUTPUT (Hp per fan)	NO. FANS
CRPWREXH030A01	Power Exhaust System (208/230-1-60)	036-072*	0.23	2
CRPWREXH021A01	Power Exhaust System (460-3-60)	036-072	0.24	2
CRPWREXH022A01	Power Exhaust System (208/230-1-60)	090-150*	0.47	2
CRPWREXH023A01	Power Exhaust System (460-3-60)	090-150	0.37	2
	HORIZONTAL — MOUNTED IN RETUR			
POWER EXHAUST	POWER EXHAUST DESCRIPTION	APPLICATION USAGE	POWER OUTPUT (Hp per fan)	NO. FANS
PART NO.		USAGE	(TIP per fail)	FAINS
PART NO. CRPWREXH028A01	Horizontal Power Exhaust (208/230-1-60)	All*	0.48	1

^{*}Single or three phase rooftop unit.

POWER EXHAUST POWER REQUIREMENTS

POWER EXHAUST	AMPS AT 230 V		MOCP					
SIZE	(2 FANS RUNNING)	230 VAC	460 VAC	575 VAC				
3 to 6 Ton	1.40 amps at 60 Hz	15.0	15.0	15.0				
71/ ₂ to 121/ ₂ Ton	3.04 amps at 60 Hz	amps	amps	amps				

LEGEND

MOCP - Maximum Overcurrent Protection

ELECTRICAL DATA

581B036-150 UNITS

	UNIT SIZE	NOMINAL	IFM	CONV	VOL	TAGE NGE	СОМ	IPRESSO	R (each)	OFM	(each)	IFM	COMBUSTION FAN MOTOR	POWER	SUPPLY*		IM UNIT
Mathematical Registroside 10							Qty	RLA	LRA	Qty	FLA	FLA		MCA	MOCP**		
STD NO 1870 187		208/230-1-60	STD		187	254	1	16	88	1	0.7	4.9	0.6				
Mathematical Part																	
Change Minima		208/220-2-60	STD		107	254	1	10.3	77	1	0.7	4.9	0.6				
Might Migh		200/230-3-00	HIGH		107	254	'	10.5	,,,	'	0.7	5.2	0.0				
Change Fine		460-3-60	STD		111	509	1	5.1	30	1	0.4	2.2	0.3				
STO	(3 Tons)	400-3-00	HIGH		717	300	'	3.1	33	'	0.4	2.6	0.5	-			
STD NO 175																	
Might No. 10 N			SID							1	0.4	1.9	0.3	9.7			
PH		575-3-60	HIGH		518	632	1	4.2	31		0.4	2.0	0.0				
March Marc			511														
March Sign			PH							1	0.4	2.6	0.9				
STD NO 187 254 1 13.5 93 1 0.7 258 36 22 106		208/230-1-60	STD		187	254	1	23.7	126	1	0.7	4.9	0.6				
Corner C			OTD									4.0					
High No Fig Fig High No Fig High No		208/230-3-60	SID		187	254	1	13.5	93	1	0.7	4.9	0.6				
048 (4 Tons) 480-3-60			HIGH								• • •	5.8					
460-3-60			CTD									2.2					
HIGH HIGH		460-3-60	טוט		414	508	1	6.4	46.5	1	0.4	2.2	0.3		15		
STD NO VES HIGH NO	(4 Ions)		HIGH									2.6					
ST53-60			CTD									1.0					
S75-3-60			210							1	0.4	1.9	0.3				
PH		575-3-60	HIGH		518	632	1	6.4	40		0	2.0	0.0				
060 (5 Tons) 080 STD WO 187 254 1 28.8 169 1 1.5 6.6 0.			DII								0.4	0.0	0.0				
Part			PH							1	0.4	2.6	0.9				
A		208/230-1-60	STD		187	254	1	28.8	169	1	1.5	6.6	0.6				
Part			OTD														
060 (S Tons) 460-3-60 HiGH VeS STD NO VeS NO NO NO NO NO NO NO N		208/230-3-60	210		187	254	1	17.3	123	1	1.5	5.8	0.6				
Composition Composition			HIGH									7.5	-				
Magnetic Magnetic			OTD									0.0					
HIGH NO YES STD NO YES STO NO STO STO STO STO NO STO S		460-3-60	SID		414	508	1	9	62	1	0.8	2.6	0.3				
STD	(5 Tons)	100 0 00	HIGH			000		Ü	02		0.0	3.4					
Figure F			OTD														
Fract Frac			SID							1	0.6	2.0	0.3				
PH		575-3-60	HIGH		518	632	1	7.1	50		0.0	2.8					
STD			511														
Parison Pari			PH							1	0.8	3.4	0.3				
High NO 187 254 1 20.5 156 1 1.4 7.5 0.6 34.5 40 34 219 460-3-60 460-3-60 High NO YES 1414 508 1 9.6 75 1 0.6 2.6 0.3 15.2 20 15 97 17.9 20 17 99 187 YES 18 109 187 YES 18 109 18 18 19 18 18 19 18 18			STD									5.8	0.6				
OT2 OF4		208/230-3-60			187	254	1	20.5	156	1	1.4						
No			HIGH									7.5	0.6			39	
O72 (6 Tons) HIGH NO YES Y			STD									2.6	0.3				
Figh Figh	072	460-3-60	LIIOU		414	508	1	9.6	75	1	0.6	0.4	0.0				
STD YES HIGH NO TITLE TO TITLE			HIGH	YES								3.4	0.3	18.7	25	18	109
The light The			STD		-							2.0					
No		E7E 0 00	LIIOU		E40	600	_			1	0.8		0.3				
PH YES NO YES NO TO TO TO TO TO TO TO		5/5-3-60	HIGH	YES	518	632	1	1.7	56	ļ		2.8		15.4	20	15	
STD NO YES 187 254 2 12.4 88 2 1.4 7.5 0.6 44.2 50 46 247			PH		-					1	0.6	3.4	0.3				
090 (71/2 Tons) SID YES 187 254 2 12.4 88 2 1.4 10.6 10.6 14.2 50 46 247 267 10.6 10.6 10.6 10	 		CTD	NO					 			7.5			45		
HIGH YES		208/230-3-60	סוט	YES	187	254	2	12.4	88	2	1.4	7.5	0.6	44.2	50	46	247
A60-3-60 STD NO YES HIGH NO YES ST5-3-60 HIGH NO NO YES HIGH NO ST5-3-60 HIGH NO NO ST5-3-60 HIGH NO ST8 ST8 ST8 ST8 ST9 ST9 ST8 ST9 ST8 ST9 ST8 ST8 ST8 ST8 ST9 ST9 ST8 ST8 ST9 ST9 ST8			HIGH		,		-			-		10.6					
090 (71/2 Tons) HIGH NO YES NO YES NO YES NO YES HIGH NO YES 575-3-60 HIGH NO NO YES NO			075						<u> </u>			6.					
090 HIGH NO YES		460-3-60	SID	YES	414	508	2	6.4	44	2	0.7	3.4	0.3	21.9	25	23	123
STD NO YES HIGH NO YES NO YES NO DH NO DH NO THIS HOLD THE NO DELTA TO THE NO DELTA TEXT TO T	090 (71/2 Tons)	.30 0 00	HIGH				-	0.4		-	J.,	4.8	0.0				
575-3-60 HIGH NO YES NO NO NO NO NO NO NO NO NO NO NO NO NO	(1 /2 10113)		ott.				1	-	 								
575-3-60 HIGH NO YES 518 632 2 4.8 34 3.3 15.3 20 17 104 17.5 20 19 104 17.5 20 17 104			SID	YES						2	0.6	2.8	0.3	16.8	20	17	95
PH NO 2 07 48 03 15.8 20 17 104		575-3-60	HIGH		518	632	2	4.8	34	~	3.0	3.3	0.0				
			DU		1					_		4.0	2.2				
			PH							2	0.7	4.8	0.3				

ELECTRICAL DATA (cont)

581B036-150 UNITS

UNIT SIZE 581B	NOMINAL V-PH-Hz	IFM TYPE	CONV	VOLT RAN		СОМ	PRESSOF	R (each)	OFM ((each)	IFM FLA	COMBUSTION FAN MOTOR	POWER	SUPPLY*		IM UNIT ECT SIZE†
3010	V-PH-HZ		OUILEI	Min	Max	Qty	RLA	LRA	Qty	FLA	FLA	FLA	MCA	MOCP**	FLA	LRA
		STD	NO								7.5		40.2	45	42	276
	208/230-3-60	310	YES	187	254	2	13.1	105	2	1.4	7.5	0.6	46.2	50	48	281
	200/230-3-00	HIGH	NO	107	254	_	13.1	100	_	1.4	10.6	0.0	43.3	50	46	301
		111011	YES								10.0		49.3	60	51	305
		STD	NO	ļ							3.4		21.5	25	23	143
	460-3-60	0.5	YES	414	508	2	7.4	55	2	0.7	0	0.3	24.2	30	25	145
102	100 0 00	HIGH	NO		000	_		00	_	0	4.8	0.0	22.9	25	24	156
(81/ ₂ Tons)			YES										25.6	30	27	158
		STD	NO	ļ							2.8		18.2	20	19	115
		_	YES	ļ						0.6		0.3	20.4	25	21	116
	575-3-60	HIGH	NO	518	632	2	6.4	44	2		3.3		18.9	25	20	124
		_	YES				-						21.1	25	22	126
		PH	NO	ļ						0.7	4.8	0.3	19.4	25	20	124
			YES										21.5	25	22	126
		STD	NO	ļ							10.6	0.6	53.0	60	56	341
	208/230-3-60		YES NO	187	254	2	2 17.6 1	125	2	1.4			59.0 57.4	70 70	61	345
		HIGH	YES								15.0	0.6			61	364
			NO NO										63.4 24.9	70 30	66 26	369 171
		STD	YES	ł							4.8		27.6	30	29	171
400	460-3-60		NO NO	414	508	2	8.3	62.5	2	0.7		0.3	27.5	30	29	182
120 (10 Tons)		HIGH	YES	ł							7.4		30.2	35	32	184
(10 10110)			NO NO										19.1	25	20	136
		STD	YES	ł							3.3	0.3	21.3	25	22	138
			NO	ł					2	0.6			21.0	25	23	146
	575-3-60	HIGH	YES	518	632	2	6.3	50			5.6	0.3	23.1	25	25	148
			NO	ł									21.2	25	23	146
		PH	YES	Ì					2	0.7	7.4	0.3	23.4	25	25	148
			NO										60.6	70	64	426
	208/230-3-60	STD	YES	187	254	2	19	156	2	1.4	15.0	0.6	66.6	70	70	431
			NO										29.1	35	31	207
150	460-3-60	STD	YES	414	508	2	9	75	2	0.7	7.4	0.3	31.8	35	33	209
(12 ¹ / ₂ Tons)		OT	NO						_	0.0	5.0	0.0	23.5	30	25	154
	575.0.00	ST	YES	540	000		7.4		2	0.6	5.6	0.3	25.6	30	27	156
	575-3-60	DII	NO	518	632	2	7.4	54	_	0.7	7.4	0.2	23.7	30	25	154
		PH	YES	Ī					2	0.7	7.4	0.3	25.9	30	27	156

LEGEND

CONV — Convenience Outlet
FLA — Full Load Amps
HACR — Heating, Air Conditioning and Refrigeration
IFM — Indoor (Evaporator) Fan Motor
LRA — Locked Rotor Amps
MCA — Minimum Circuit Amps
MCCP — Maximum Overcurrent Protection
NEC — National Electrical Code
OFM — Outdoor (Condenser) Fan Motor
PH — Perfect Humidity*M Debumidification System
RLA — Rated Load Amps
UL — Underwriters' Laboratories

*The values listed in this table do not include power exhaust. See table at right for power exhaust requirements.

†Used to determine minimum disconnect per NEC.

**Fuse or HACR circuit breaker.

S:
In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. The UL, Canada units may be fuse or circuit breaker. Electrical data based on 95 F ambient outdoor-air temperature ± 10% voltage. Unbalanced 3-Phase Supply Voltage

Unbalanced 3-Phase Supply Voltage

Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltage imbalance.

Example: Supply voltage is 460-3-60.

AB = 452 v BC = 464 v AC = 455 v 452 + 464 + 455 Average Voltage 1371 = 457

Determine maximum deviation from average voltage. (AB) 457-452=5 v (BC) 464-457=7 v (AC) 457-455=2 v

Maximum deviation is 7 v.

Determine percent of voltage imbalance.

% Voltage Imbalance =
$$100 \times \frac{7}{457}$$

= 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

POWER EXHAUST ELECTRICAL DATA

POWER EXHAUST PART NO.	APPLICATION USAGE	MCA (230 V)	MCA (460 V)	MCA (575 V)	MOCP (separate power source only)
CRPWREXH030A01	036-072*	1.6	N/A	0.64	15
CRPWREXH021A01	036-072	N/A	0.68	N/A	15
CRPWREXH022A01	090-150*	3.4	N/A	1.32	15
CRPWREXH023A01	090-150	N/A	1.4	N/A	15
CRPWREXH028A01	ALL*	1.7	N/A	0.68	15
CRPWREXH029A01	ALL	N/A	0.7	N/A	15

N/A — Not Available

*Single or three phase.

 $\ensuremath{\mathsf{NOTE}}\xspace$ If a single power source is to be used, size wire to include power exhaust MCA and MOCP.

Check MCA and MOCP when power exhaust is powered through the unit. Determine the new MCA including the power exhaust using the following formula:

MCA New = MCA unit only + MCA of Power Exhaust

For example, using a 581B060 unit with MCA = 28.9 and MOCP = 35, with CRPWREXH030A01 power exhaust.

MCA New = 28.9 amps + 1.6 amps = 30.5 amps

If the new MCA does not exceed the published MOCP, then MOCP would not change. The MOCP in this example is 35 amps and the MCA New is below 35; therefore the MOCP is acceptable. If "MCA New" is larger than the published MOCP, raise the MOCP to the next larger size. For separate power, the MOCP for the power exhaust will be 15 amps per NEC.

TYPICAL WIRING SCHEMATICS — 581B

SIZES 036-150 (581B090, 460-3-60 Shown)

TYPICAL WIRING SCHEMATICS — 581B (cont)

EconoMi\$er IV Wiring — 581B036-150 Units

EconoMi\$er2 Wiring — 581B036-150 Units

TYPICAL WIRING SCHEMATICS — 581B (cont)

Convenience Outlet (Optional) — Sizes 581B036-150

Non-Fused Disconnect (Optional) — Sizes 581B036-150

TYPICAL PIPING AND WIRING — 581B036-150

Vertical Discharge Ducting

Horizontal Discharge Ducting

GUIDE SPECIFICATIONS — 580F036-151 AND 581B036-150

PACKAGED ROOFTOP ELECTRIC COOLING UNIT WITH GAS HEAT — CONSTANT VOLUME APPLICATION

HVAC GUIDE SPECIFICATIONS

SIZE RANGE: 3 TO 121/2 TONS, NOMINAL (COOLING) 60,000 TO 250,000 BTUH, NOMINAL (INPUT HEATING)

BRYANT MODEL NUMBERS: 580F, 581B

581B036-121 UNITS ARE ENERGY STAR QUALIFIED

PART 1 — GENERAL

1.01 SYSTEM DESCRIPTION

Outdoor rooftop mounted, electrically controlled heating and cooling unit utilizing a hermetic compressor(s) for cooling duty and gas combustion for heating duty. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.

1.02 QUALITY ASSURANCE

- A. Unit well exceeds ASHRAE 90.1-2001 Energy Standards. Units 581B036-120 are Energy Star qualified.
- B. Unit shall be rated in accordance with ARI Standards 210 or 360. Designed in accordance with UL Standard 1995.
- C. Unit shall be designed to conform to ASHRAE 15, latest revision.
- D. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- E. Roof curb shall be designed to conform to NRCA Standards.
- F. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- G. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- H. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered to ISO 9001:2000.
- I. Each unit shall be subjected to a completely automated run testing on the assembly line. A factory-supplied printout indicating tested pressures, amperages, data, and inspectors; providing certification of the unit status at the time of manufacture, shall be available upon request.

1.03 DELIVERY, STORAGE, AND HANDLING

Unit shall be stored and handled per manufacturer's recommendations.

PART 2 — PRODUCTS

2.01 EQUIPMENT (STANDARD)

A. General:

Factory assembled, single-piece heating and cooling unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, refrigerant charge (R-22), and special features required prior to field start-up.

B. Unit Cabinet:

 Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a prepainted baked enamel finish on all externally exposed surfaces. The color of this pre-painted steel is referred to as "American Sterling," a gray color. Bryant's paint specification for this color is PH184. Color: American Sterling, this gray color is to match federal standard 595a, #26231.
Gloss (per ASTM 0523, 60 deg. F): 60.

Hardness of paint film: H-2H pencil hardness.

- Evaporator fan compartment interior cabinet surfaces shall be insulated with a minimum 1/2-in. thick,

 Ib density, flexible fiberglass insulation, neoprene coated on the air side. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.
- Cabinet panels shall be easily removable for servicing.
- Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
- Unit shall have a factory-installed, sloped condensate drain pan made of a non-corrosive material, providing a minimum ³/₄-in.-14 NPT connection with both vertical and horizontal drains, and shall comply with ASHRAE Standard 62.
- 6. Unit shall have a factory-installed filter access panel to provide filter access with tool-less removal.
- Unit shall have standard thru-the-bottom gas and power connection capability (accessory kit is required).

C. Fans:

1. Evaporator Fan:

- Fan shall be direct or belt driven as shown on the equipment drawings. Belt drive shall include an adjustable-pitch motor pulley.
- Fan wheel shall be double-inlet type with forwardcurved blades.
- Bearings shall be sealed, permanently lubricated ball-bearing type for longer life and lower maintenance.
- Evaporator fan shall be made from steel with a corrosion-resistant finish and shall be dynamically balanced.
- Bryant rooftop evaporator fan motors smaller than 5 hp are specifically designed for Bryant and are rated in maximum continuous Bhp or maximum continuous watts. The motors do not have a horsepower rating on the nameplate.
- Condenser fan shall be of the direct-driven (with totally enclosed motors) propeller type and shall discharge air vertically.
- Condenser fan shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.
- Induced-draft blower shall be of the direct-driven, single inlet, forward-curved centrifugal type, made from steel with a corrosion-resistant finish and shall be dynamically balanced.

D. Compressor(s):

- 1. Fully hermetic type, internally protected scroll-type.
- Factory mounted on rubber grommets and internally spring mounted for vibration isolation.
- 3. On dual electrically and mechanically independent circuits (090-150).

E. Coils:

 Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved ³/₈-in. OD copper tubes with all joints brazed.

GUIDE SPECIFICATIONS — 580F036-151 AND 581B036-150 (cont)

Dual compressor models (size 090-150) shall have face-split type evaporator coil (circuit no. 1 on bottom).

3. Testing:

- Evaporator and condenser coils shall be qualified to UL 1995 burst test at 2,200 psi.
- Evaporator and condenser coils shall be leak tested to 150 psig and pressure tested to 400 psig.

4. Optional Coils:

- a. Optional pre-coated aluminum-fin coils shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.
- b. Copper-fin coils shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan. All copper construction shall provide protection in moderate coastal environments.
- c. E-Coated aluminum-fin coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss - 60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in.-lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90. Coil construction shall be aluminum fins mechanically bonded to copper tubes.
- d. E-Coated copper-fin coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss — 60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in.-lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90. Coil construction shall be copper fins mechanically bonded to copper tubes with copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting sheet metal

coil pan to maintain coating integrity and minimize corrosion potential between coil and pan.

F. Heating Section:

 Induced-draft combustion type with energy saving direct-spark ignition system and redundant main gas valve.

2. Heat Exchanger:

- a. The standard heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gage steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance.
- b. The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gage type 409 stainless steel.
- 3. Burners shall be of the in-shot type constructed of aluminum-coated steel.
- 4. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
- The integrated gas controller (IGC) board shall include gas heat operation fault notification using an LED (light-emitting diode).
- Unit shall be equipped with anti-cycle protection with one short cycle on unit flame rollout switch or 4 continuous short cycles on the high-temperature limit switch. Fault indication shall be made using an LED.
- The IGC board shall contain algorithms that modify evaporator-fan operation to prevent future cycling on high-temperature limit switch.
- 8. The LED shall be visible without removal of control box access panel.

G. Refrigerant Components:

Refrigerant circuit components shall include:

- 1. Fixed orifice metering system.
- 2. Refrigerant filter drier.
- 3. Service gage connections on suction, discharge, and liquid lines.

H. Filter Section:

- Standard filter section shall consist of factoryinstalled, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- Filter face velocity shall not exceed 320 fpm at nominal airflows.
- 3. Filter section should use only one size filter.
- 4. Filters shall be accessible through an access panel with "no-tool" removal.

I. Controls and Safeties:

1. Unit Controls:

Unit shall be complete with self-contained low-voltage control circuit protected by a fuse on the 24-v transformer side (090-150 units have a resettable circuit breaker).

2. Safeties:

- Unit shall incorporate a solid-state compressor protector which provides anti-cycle reset capability at the space thermostat, should any of the following standard safety devices trip and shut off compressor.
 - 1) Compressor overtemperature, overcurrent.
 - 2) Loss-of-charge/low-pressure switch.
 - 3) Freeze-protection thermostat, evaporator coil.
 - 4) High-pressure switch.
 - Automatic reset motor thermal overload protector.

GUIDE SPECIFICATIONS — 580F036-151 AND 581B036-150 (cont)

- The lockout protection shall be easily disconnected at the control board, if necessary.
- Heating section shall be provided with the following minimum protections:
 - 1) High-temperature limit switches.
 - 2) Induced draft motor speed sensor.
 - 3) Flame rollout switch.
 - 4) Flame proving controls.

J. Operating Characteristics:

- Unit shall be capable of starting and running at 125 F ambient outdoor temperature, meeting maximum load criteria of ARI Standard 210/240 or 360 at ± 10% voltage.
- Compressor with standard controls shall be capable of operation down to 25 F ambient outdoor temperature.

K. Electrical Requirements:

All unit power wiring shall enter unit cabinet at a single factory-predrilled location.

L. Motors:

- Compressor motors shall be cooled by refrigerant gas passing through motor windings and shall have line break thermal and current overload protection.
- 2. Evaporator-fan motor shall have permanently lubricated bearings and inherent automatic-reset thermal overload protection. Evaporator motors are designed specifically for Bryant and do not have conventional horsepower (HP) ratings listed on the motor nameplate. Motors are designed and qualified in the "airover" location downstream of the cooling coil and carry a maximum continuous bhp rating that is the maximum application bhp rating for the motor; no "safety factors" above that rating may be applied.
- Totally enclosed condenser-fan motor shall have permanently lubricated bearings, and inherent automatic-reset thermal overload protection.
- 4. Induced-draft motor shall have permanently lubricated sealed bearings and inherent automatic-reset thermal overload protection.

M. Special Features:

Certain features are not applicable when the features designated * are specified. For assistance in amending the specifications, contact your local Bryant Sales Office.

- 1. Roof Curbs (Horizontal and Vertical):
 - Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

* 2. Integrated Economizers:

- a. Integrated integral modulating type capable of simultaneous economizer and compressor operation. During economizer operation, up to two compressors on sizes 090-150 will operate.
- Available as a factory-installed option in vertical supply/return configuration only. (Available as a field-installed accessory for dedicated horizontal and/or vertical supply return configurations.)
- Includes all hardware and controls to provide cooling with outdoor air.
- d. Equipped with low-leakage dampers, not to exceed 2% leakage at 1 in. wg pressure differential.
- e. Capable of introducing up to 100% outdoor air.

- f. EconoMi\$er IV and EconoMi\$er2 shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
- g. Designed to close damper(s) during loss-ofpower situations with spring return built into motor.
- h. Dry bulb outdoor-air temperature sensor shall be provided as standard. Outdoor air sensor set point is adjustable and shall range from 40 to 100 F. For the EconoMi\$er IV, the return air sensor, indoor enthalpy sensor, and outdoor enthalpy sensor shall be provided as field-installed accessories to provide enthalpy control, differential enthalpy control, and differential dry bulb temperature control. For the EconoMi\$er2, the enthalpy, differential temperature (adjustable), and differential enthalpy control shall be provided as field-installed accessories.
- EconoMi\$er IV controller shall use a mixed air thermistor mounted on the evaporator fan housing to control EconoMi\$er IV operation to a supply air temperature of 55 F.
- j. The EconoMi\$er IV and EconoMi\$er2 shall have a gear-driven parallel blade design.
- k. EconoMi\$er IV controller shall provide control of internal building pressure through its accessory power exhaust function. Factory set at 100%, with a range of 0% to 100%.
- EconoMi\$er2 shall be capable of control from a 4 to 20 mA signal through optional 4 to 20 mA design without microprocessor control (required for PremierLink™ or third party control interface).
- m. EconoMi\$er IV controller Occupied Minimum Damper Position Setting maintains the minimum airflow into the building during occupied period providing design ventilation rate for full occupancy (damper position during heating). A remote potentiometer may be used to override the set point.
- n. EconoMi\$er IV controller Unoccupied Minimum Damper Position Setting — The EconoMi\$er IV dampers shall be closed when the unit is in the occupied mode.
- EconoMi\$er IV controller IAQ/DCV Maximum Damper Position Setting — Setting the maximum position of the damper prevents the introduction of large amounts of hot or cold air into the space. This position is intended to satisfy the base minimum ventilation rate.
- p. EconoMi\$er IV controller IAQ/DCV control modulates the outdoor-air damper to provide ventilation based on the optional 2 to 10 vdc CO₂ sensor input.
- q. Compressor lockout sensor (opens at 35 F, closes at 50 F).
- Actuator shall be direct coupled to economizer gear, eliminating linkage arms and rods.

s. Control LEDs:

- When the outdoor air damper is capable of providing free cooling, the "Free Cool" LED shall illuminate.
- 2) The IAQ LED indicates when the module is on the DCV mode.
- The EXH LED indicates when the exhaust fan contact is closed.

GUIDE SPECIFICATIONS — 580F036-151 AND 581B036-150 (cont)

t. Remote Minimum Position Control — A field-installed accessory remote potentiometer allows the outdoor air damper to be opened or closed beyond the minimum position in the occupied mode for modified ventilation.

3. Manual Outdoor-Air Damper:

Manual damper package shall consist of damper, birdscreen, and rainhood which can be preset to admit up to 50% outdoor air for year round ventilation.

- 4. 100% Two-Position Damper:
 - Two-position damper package shall include single blade damper and motor. Admits up to 100% outdoor air.
 - b. Damper shall close upon indoor (evaporator) fan shutoff.
 - Designed to close damper during loss of power situations.
 - d. Equipped with 15% barometric relief damper.
- 5. 25% Two-Position Damper:
 - a. Two-position damper package shall include single blade damper and motor. Admits up to 25% outdoor air.
 - b. Damper shall close upon indoor (evaporator) fan shutoff.
- 6. Head Pressure Control Package:

Consists of solid-state control and condenser-coil temperature sensor to maintain condensing temperature between 90 F and 110 F at outdoor ambient temperatures down to -20 F by condenser-fan speed modulation or condenser-fan cycling and wind baffles.

7. Propane Conversion Kit:

Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane (valid up to 2000 ft elevation).

* 8. Electronic Programmable Thermostat:

Units shall be capable of using deluxe full-featured electronic thermostat. Thermostat shall use built-in compressor cycle delay control for both heating and cooling duty. Thermostat shall be capable of working with third party direct digital controls.

9. Light Commercial Thermidistat™ Device:

Field-installed wall-mounted thermostat is used to control temperature and activation of the dehumidification package. The Thermidistat device can be set for humidity settings from 50% to 90% relative humidity. Automatic humidity control adjusts indoor humidity based on the outdoor temperature sensor.

* 10. Flue Shield:

Flue shield shall provide protection from the hot sides of the gas flue hood.

* 11. Thermostat and Subbase:

Thermostat and subbase shall provide staged cooling and heating automatic (or manual) changeover, fan control, and indicator light.

* 12. Condenser Coil Hail Guard Assembly:

Hail guard shall protect against damage from hail and flying debris.

13. Unit-Mounted, Non-Fused Disconnect Switch:

Switch shall be factory-installed, internally mounted. NEC and UL approved non-fused switch shall provide unit power shutoff. Switch shall be accessible from outside the unit and shall provide power off lockout capability.

14. Convenience Outlet:

Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle. Shall include 15 amp GFI receptacle with independent fuse protection. Voltage required to operate convenience outlet shall be provided by a factory-installed step-down transformer powered from the LOAD (RTU) side of the unit power supply. Shall be accessible from outside the unit.

 High-Static Indoor Fan Motor(s) and Drive(s) (036-120):

High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.

16. Flue Discharge Deflector:

Flue discharge deflector directs unit exhaust vertically instead of horizontally.

17. Condenser Coil Grille:

The grille protects the condenser coil from damage by large objects without increasing unit clearances.

18. Compressor Cycle Delay:

Unit shall be prevented from restarting for minimum of 5 minutes after shutdown.

19. Thru-the-Bottom Utility Connectors:

Kit shall provide connectors to permit gas and electrical connections to be brought to the unit through the basepan.

20. Fan/Filter Status Switch:

Switch shall provide status of indoor (evaporator) fan (ON/OFF) or filter (CLEAN/DIRTY). Status shall be displayed over communication bus when used with direct digital controls or with an indicator light at the thermostat.

21. Power Exhaust Accessory for EconoMi\$er IV or EconoMi\$er2:

Power exhaust shall be used in conjunction with EconoMi\$er IV or EconoMi\$er2 to provide system exhaust of up to 100% of return air (vertical only). The power exhaust is a field-installed accessory (separate vertical and horizontal design).

NOTE: Horizontal power exhaust is intended to mount in return ductwork.

As the outdoor-air damper opens and closes, *both* propeller fans are energized and deenergized through the EconoMi\$er IV controller. The set point is factory set at 100% of outdoor-air, and is adjustable 0 to 100% to meet specific job requirements. Available in 208/230-1-60 v or 460-3-60 v. An LED light on the controller indicates when the power exhaust is operating.

For the EconoMi\$er2, the power exhaust shall be controlled by the third party controls.

Outdoor Air Enthalpy Sensor (EconoMi\$er IV or EconoMi\$er2):

The outdoor air enthalpy sensor shall be used with the EconoMi\$er IV or EconoMi\$er2 device to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the EconoMi\$er IV or EconoMi\$er2 device will provide differential enthalpy control. The sensor allows the EconoMi\$er IV or EconoMi\$er2 controller to determine if outside air is suitable for free cooling.

GUIDE SPECIFICATIONS — 580F036-151 AND 581B036-150 (cont)

Return Air Enthalpy Sensor (EconoMi\$er IV or EconoMi\$er2):

The return air enthalpy sensor shall be used with the EconoMi\$er IV or EconoMi\$er2 device. When used in conjunction with an outdoor air enthalpy sensor, the EconoMi\$er IV or EconoMi\$er2 device will provide differential enthalpy control.

 Return Air Temperature Sensor (EconoMi\$er IV or EconoMi\$er2):

The return air temperature sensor shall be used with the EconoMi\$er IV or EconoMi\$er2 device. When used in conjunction with the standard outdoor air temperature sensor, the EconoMi\$er IV or EconoMi\$er2 device will provide differential temperature control.

- 25. Indoor Air Quality (CO₂) Sensor (EconoMi\$er2):
 - a. Shall have the ability to provide demand ventilation indoor air quality (IAQ) control through the EconoMi\$er2 with an IAQ sensor.
 - The IAQ sensor shall be available in duct mount, wall mount, and wall mount with LED display. The set point shall have adjustment capability.
 - c. Requires EconoMi\$er2 control option.
- Indoor Air Quality (CO₂) Room Sensor (EconoMi\$er IV):

Sensor shall have the ability to provide demand ventilation control through the EconoMi\$er IV. The IAQ sensor shall be wall mounted with an LED display in parts per million. The set point shall have adjustment capability.

27. Return Air CO₂ Sensor (EconoMi\$er IV):

Sensor shall have the ability to provide demand ventilation control through the EconoMi\$er IV. The IAQ sensor shall be duct mounted. The set point shall have adjustment capability.

- 28. Gas Heat options (sizes 004-006):
 - Single-stage gas heat shall be provided in lieu of two-stage heat.
 - NOx reduction shall be provided to reduce nitrous oxide emissions to meet the California Air Quality Management NOx requirement of 40 nanograms/ joule or less.
 - Primary tubes on low NOx units shall be 409 stainless steel. Other components shall be aluminized steel.

29. Ultraviolet Germicidal Lamps:

Ultraviolet germicidal lamps are designed to eliminate odor causing mold and fungus that may develop in the wet area of the evaporator section of the unit. The high output, low temperature germicidal lamps are field installed in the evaporator section of the unit, aimed at the evaporator coil and condensate pan. The short wavelength ultraviolet light inhibits and kills mold, fungus and microbial growth. The lamps have an output rating at 45F in 400 fpm airflow of 120 microwatts/cm² at 1 meter.

- 30. Perfect Humidity™ Adaptive Dehumidification System (581B only):
 - a. The Perfect Humidity dehumidification system shall be factory-installed in the rooftop units, and shall provide greater dehumidification of the occupied space by two modes of dehumidification operations beside its normal design cooling mode:
 - Subcooling mode further subcools the hot liquid refrigerant leaving the condenser coil when

- both temperature and humidity in the space are not satisfied.
- 2) Hot gas reheat mode shall mix a portion of the hot gas from the discharge of the compressor with the hot liquid refrigerant leaving the condenser coil to create a two-phase heat transfer in the system, resulting in a neutral leaving-air temperature when only humidity in the space is not satisfied.
- b. The system shall consist of a subcooling/reheat dehumidification coil located downstream of the standard evaporator coil. This dehumidification coil is a two-row coil with the exception of the 036 unit, which has a one-row coil.
- The system shall include crankcase heater(s) for the scroll compressor(s).
- d. The system shall include a low outdoor air temperature switch to lock out both subcooling and hot gas reheat mode when the outdoor-air temperature is below 40 F.
- e. The system shall include a Motormaster® low ambient control to ensure the normal design cooling mode capable of down to 0° F low ambient operation.
- f. The system shall include a low-pressure switch on the suction line to ensure low pressure start-up of hot gas reheat mode at lower outdoor temperature condition.
- g. The system operation may be controlled by a field-installed, wall-mounted humidistat. The dehumidification circuit will then operate only when needed. Field connections for the humidistat are made in the low-voltage compartment of the unit control box. The sensor can be set for any level between 55% and 80% relative humidity.
- h. The system shall include a thermostatic expansion valve (TXV) to ensure a positive superheat condition and a balance of pressure drop.
- i. For units with two compressors (sizes 090-150), depending on the conditions required to maintain the space set points, one or both compressors can operate in subcooling mode, one compressor could operate in subcooling mode while the other operates in hot gas reheat mode, or one or both compressors can operate in hot gas reheat mode.

31. Humidistat:

Field-installed, wall-mounted humidistat is used to control activation of the dehumidification package. The humidistat can be set for humidity levels between 20% and 80% relative humidity.

32. Hinged Panel Option:

Hinged panel option provides hinged access panels for the filter, compressor, evaporator fan, and control box areas. Filter hinged panels permit tool-less entry for changing filters. Each hinged panel is permanently attached to the rooftop unit.

33. Louvered Hail Guard:

The hail guard shall protect the entire outdoor coil surface from direct or indirect (from adjacent surfaces) hail damage. Hail guard shall have a pressure drop of 2%.

PHYSICAL DATA — 581C

UNIT SIZE 581C		024	036	048	060
NOMINAL CAPACITY (tons)		2	3	4	5
OPERATING WEIGHT(Ib)			Ü		Ü
Base Unit**		530	540	560	635
COMPRESSOR				Scroll	
Quantity		1	1	1	1
Oil (oz)		25	42	56	53
REFRIGERANT TYPE				R-22	
Standard Unit		53	711	88	1211
Unit With Perfect Humidity Adaptive Dehumidification Sy	stem	102	140	1413	210
CONDENSER FAN	310111	10 2	14 0	Propeller	21 0
QuantityDiameter (in.)		122	122	122	122
Nominal Cfm		3000	3500	3500	4100
Motor HpRpm		1/8825	1/8825 180	1/8825	1/41100
Watts Input (Total) CONDENSER COIL		180		180 per Tubes, Aluminum Lance	320
RowsFins/in.		117	117	217	217
Total Face Area (sq ft)		14.6	14.6	16.5	16.5
EVAPORATOR COIL				Tubes, Aluminum Double-V	
Standard Unit					
RowsFins/in.		215	215	215	415
Total Face Area (sq ft)		4.2	5.5	5.5	5.5
Perfect Humidity Coil Adaptive Dehumidification System					
RowsFins/in.		117	117	217	217
Total Face Area (sq ft)		3.5	3.9	3.9	3.9
EVAPORATOR FAN				trifugal Type, Belt Drive	
QuantitySize (in.)		110 x 10	110 x 10	110 x 10	110 x 10
Nominal Cfm Maximum Continuous Bhp	Std	800 0.58	1200 1.20	1600	2000 1.30/2.40*
Maximum Continuous Brip	Hi-Static	2.40	2.40	1.20 2.40	2.90
	ni-Static	2.40	2.40	2.40	2.90
Motor Frame Size	Std	48	48	48	48/56†
	Hi-Static		56	EC	56
Motor Rpm	Std	1620	1620	56 1620	1725
	Hi-Static		1725	1725	1725
Fan Rpm Range	Std	400-1000	680-1044	770-1185	1035-1460
	Hi-Static		1075-1455	1075-1455	1300-1685
Motor Bearing Type		Ball	Ball	Ball	Ball
Maximum Fan Rpm	٠	1620	2100	2100	2100
Motor Pulley Pitch Diameter A/B (in.)	Std	2.4/3.2	1.9/2.9	1.9/2.0	2.4/3.4
Naminal Matar Shaft Diameter (in)	Hi-Static Std	E/0	2.8/3.8	2.8/3.8	3.4/4.4
Nominal Motor Shaft Diameter (in.)	Sto Hi-Static	5/8 7/8	1/2 5/8	1/2 5/8	5/8 5/8
Fan Pulley Pitch Diameter (in.)	Std	4.0	4.5	4.0	4.0
	Hi-Static	4.5	4.5	4.0	4.5
Belt — TypeLength (in.)	Std	1A36	1A36	1436	1A40
	Hi-Static	1A39	1A39	1A39	1A40
Pulley Center Line Distance (in.)		10.0 -12.4	10.0-12.4	10.0-12.4	14.7-15.5
Speed Change per Full Turn of Movable Pulley Flange		0.5	0-	70	
(rpm)	Std Hi-Static	60	65 65	70	75 60
Movable Pulley Maximum Full Turns from Closed	Hi-Static		65	65	UU
Position	Std	5	5	5	6
	Hi-Static	Ŭ	6	6	5
Factory Setting — Full Turns Open	Std	3	3	3	3
· · · · · ·	Hi-Static		31/2	31/2	31/2
Factory Speed Setting(rpm)	Std	756	826	936	1248
	Hi-Static	F /O	1233	1233	1396
Fan Shaft Diameter at Pulley (in.)		5/8	5/8	5/8	5/8

LEGEND

Bhp — Brake Horsepower

148

^{*}Single/three phase.
**Base unit weight does not include any options or accessories. See Options and Accessory weight tables for additional weight information.
†Indicates automatic reset.

PHYSICAL DATA — 581C

UNIT SIZE 581C		024	036	048	060
FURNACE SECTION		195	195	195	195
Rollout Switch Cutout Temp(F)† Burner Orifice Diameter (indrill size)** Natural Gas—Std* Liquid Propane—Alt††	071/072 114/115 149/150 060N 090N 120N	.08943 — — .08943 — .07349	.11333 .11333 .11333 .11333 .11333 .10238 .10238	.11333 .11333 .12930 .11333 .11333 .12930 .10238 .10238 .10238	.11333 .11333 .12930 .11333 .11333 .12930 .10238 .10238 .11632
Thermostat Heat Anticipator Setting (amps)	114/115 149/150		.08943 .08943 .08943	.08943 .10437 .08943 .08943 .10237	.08943 .10437 .08943 .08943 .10437
208/230/460/575v First Stage		0.14	0.14	0.14	0.14
Second Stage Gas Input (Btuh) First Stage/Second Stage	072 115 150 17111 17211 14911 060N***	0.14 50,000/—	0.14 50,000/72,000 82,000/115,000 	0.14 50,000/72,000 82,000/115,000 120,000/150,000 *** —/72,000 *** —/115,000 *** —/150,000 ††† —/60,000	0.14 50,000/72,000 82,000/115,000 120,000/150,000 *** —/72,000 *** —/115,000 *** —/150,000 ††† —/60,000 ††† —/90,000
Efficiency (Steady State) (%)	120N*** 072 115 150 071 114 149 060N 090N 120N	81 	82.8 80 82 82 80 80 80 80 80 80 80 80	††† —/90,000 ††† —/120,000 82.8 81 80.4 82 81 80 80.2 81 80.7	111 -/30,000 111 -/120,000 82.8 81 80.4 82 81 80 80.2 81 80.7
Temperature Rise Range	072 115 150 071 114 149 060N 090N 120N	25-65 — — — — —	25-55 55-85 25-55 55-85 20-50 30-60	25-25 35-65 50-80 25-55 35-65 50-80 20-50 30-60 40-70	25-55 35-65 50-80 25-55 35-65 50-80 20-50 30-60 40-70
Manifold Pressure (in.wg) Natural Gas—Std Liquid Propane—Alt††		3.5 3.5	3.5 3.5	3.5 3.5	3.5 3.5
Gas Valve Quanity Gas Valve Pressure Range (Min-Max Allowable) psig in wg Field Gas Connection Size (in. FPT)		1 0.180-0.70 5.0-13.0 1/2	1 0.180-0.70 5.0-13.0 1/2	1 0.180-0.70 5.0-13.0 1/2	1 0.180-0.70 5.0-13.0 1/2
HIGH-PRESSURE SWITCH (psig) Standard CompressorInternal Relief Cutout Reset (Auto.) LOSS-OF-CHARGE SWITCH (LiquidLIne) (psig)				450±50 428 320	
Cutout Reset(Auto.) FREEZE PROTECTION THERMOSTAT				7±3 22±5	
Opens(F) Closes(F) OUTDOOR-AIR INLET SCREENS		Clea	anable Screen quantity	30±5 45±5 and size varies with op	tion selected
RETURN-AIRFILTERS QuantitySize (in.)		0168	7	Throw away 216x25x2	tion science.

LEGEND

Bhp — Brake Horsepower

IIThree-phase standard models have heating inputs as shown. Single-phase standard models have one-stage heating with heating input values as follows: $048\text{-}060,\,036 - 72,000$ Btuh $048\text{-}060,\,036 - 115,000$ Btuh 048-060 - 150,000 Btuh (shown in heating capacity tables) ***California compliant three-phase models. †††California SCAQMD compliant low NO $_{\rm X}$ models have combustion products that are controlled to 40 nanograms per joule or less. NOTE: Capacities for stainless steel heat exchanger units (S/R/T) are the same as standard units (D/E/F).

^{*}Single phase/three phase. Stainless steel models use the same orifices as equivalent standard heat exchangers.
†Indicates automatic reset.
**60,000 and <72,000 Btuh heat input units have 2 burners. 90,000 and 120,000 Btuh heat input units have 3 burners. 115,000 Btuh heat input units and 150,000 Btuh Heat input units have 3 burners.
†† An LP kit is available as an accessory. If an LP kit is used with Low NOx units, the Low NOx baffle must be removed and the units will no longer be classified as Low NOx units.

COOLING CAPACITIES — 581C024-060 STANDARD UNITS

581C0	24 (2 To	ns)		•	•								
Tem	p (F)			•	Air	Enterin	ıg Evap	orator	CFN	l/BF			
Air	Ent		600/	0.12	•		800/	0.14			1000	/0.18	
Cond	enser				Air	Enterir	ng Evap	orator	Ewb				
(Ec	db)	57	62	67	72	57	62	67	72	57	62	67	72
	TCG	22.6	24.3	26.7	29	25	25.7	28.1	30.2	26.6	26.8	29	30.9
75	SHG	21.7	19.5	16.4	13	24	22.9	18.6	14.1	25.6	25.4	20.6	15.1
	CMP	1.18	1.19	1.2	1.21	1.19	1.19	1.2	1.21	1.19	1.2	1.21	1.22
	TCG	21.3	23	25.7	28	24.2	24.7	27.2	29.6	25.9	25.9	27.9	30.2
85	SHG	20.5	19	16	12.7	23.3	22.4	18.4	14.1	24.9	24.9	20.3	15.1
	CMP	1.36	1.37	1.38	1.39	1.38	1.38	1.39	1.4	1.38	1.38	1.39	1.4
	TCG	19.9	21	24.7	27.2	23.1	23.3	26	28.6	25	24.9	26.9	29.3
95	SHG	19.1	18.2	15.7	12.4	22.2	21.9	18.1	13.9	24	24	20.2	15.1
	CMP	1.56	1.57	1.59	1.6	1.58	1.58	1.59	1.61	1.59	1.59	1.6	1.61
	TCG	18.4	18.8	23.2	26	21.3	21.3	24.8	27.4	23.9	23.9	25.6	28.2
105	SHG	17.7	17.3	15.1	12	20.5	20.5	17.7	13.5	23	23	19.9	14.8
	CMP	1.78	1.78	1.81	1.82	1.8	1.8	1.82	1.83	1.81	1.81	1.82	1.84
	TCG	16.6	16.5	20.5	24.7	19.7	19.7	22.4	26	22	22	24.1	26.7
115	SHG	16	15.9	14.1	11.6	19	19	16.9	13.1	21.1	21.1	19.5	14.5
	CMP	2.01	2.01	2.05	2.08	2.05	2.05	2.06	2.08	2.06	2.06	2.07	2.09
	TCG	15	15	17.7	22.2	17.7	17.7	19.6	24.4	19.7	19.8	20.5	25.2
125	SHG	14.5	14.5	13.2	10.8	17	17	16	12.7	19	19	18.3	14.1
	CMP	2.27	2.27	2.3	2.34	2.3	2.3	2.32	2.35	2.32	2.32	2.33	2.36

581C0	36 (3 To	ons)											
Tem	p (F)				Air	Enterir	g Eva	orator	CFN	l/BF			
Air	Ent		900/	0.10			1200	/0.13			1500	/0.16	
Cond	enser				Air	Enterir	ıg Eva	porator	Ewb	(F)			
(E	db)	57	62	67	72	57	62	67	72	57	62	67	72
	TCG	32	34.5	38.9	42.8	35.1	37.1	40.9	44.9	38.1	38.5	42.2	45.9
75	SHG	32	28.9	25	20.4	35.1	33.6	28.3	22.3	38.1	37.4	31.2	23.9
	CMP	1.94	1.96	1.98	2	1.96	1.97	1.99	2.01	1.98	1.98	2	2.02
	TCG	30.9	33.2	37.5	41.4	33.8	34.9	39.4	43.3	36.9	37	40.5	44.3
85	SHG	30.9	28.3	24.5	19.8	33.8	32.5	27.8	21.8	36.9	36.7	30.7	23.3
	CMP	2.19	2.21	2.24	2.26	2.22	2.23	2.25	2.27	2.24	2.24	2.26	2.28
	TCG	29.5	31.4	35.4	39.7	31.8	32.3	37.7	41.5	35.1	35.2	38.8	42.5
95	SHG	29.5	27.3	23.6	19.2	31.8	31.2	27.2	21.2	35	35.2	30	22.8
	CMP	2.47	2.49	2.52	2.54	2.5	2.51	2.54	2.56	2.53	2.53	2.54	2.56
	TCG	28	29.5	33	38	29.5	29.5	34.7	39.7	32.3	32.2	36.8	40.8
105	SHG	28	26.4	22.6	18.6	29.4	29.4	26	20.7	32.3	32.2	29.5	22.5
	CMP	2.78	2.79	2.83	2.86	2.81	2.81	2.85	2.87	2.84	2.84	2.86	2.88
	TCG	26.3	27.1	30.7	35.2	27.6	27.6	31.1	37.6	29.6	29.5	32.9	38.5
115	SHG	26.3	25.3	21.7	17.7	27.6	27.6	24.5	20	29.6	29.5	27.8	21.9
	CMP	3.1	3.11	3.16	3.2	3.15	3.15	3.18	3.22	3.17	3.17	3.2	3.23
	TCG	24.4	24.7	28.1	32.1	25.5	25.5	27.5	33.7	27	27	28.5	35.8
125	SHG	24.4	24.1	20.7	16.6	25.5	25.4	22.9	18.8	27	27	26	21.2
	CMP	3.45	3.46	3.51	3.56	3.51	3.51	3.53	3.59	3.53	3.53	3.55	3.6

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
COMP — Compressor Power kw
SHG — Gross Sensible Capacity (1000 Btuh)
TCG — Compressor Cooling Capicity (1000 Btuh)

NOTES:

- Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

= Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil $(h_{\rm lwb})$ t_{lwb}

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil.

3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

Correction Factor = 1.10 x (1 – BF) x (edb – 80)

PERFORMANCE DATA — 581C COOLING CAPACITIES — 581C024-060 STANDARD UNITS (cont)

581C0	48 (4 T	ons)								
Tem	p (F)		1	Air Ent	ering E	vapora	ator C	FM/BF	•	
Air	Ent	1:	200/0.0	5	1	600/0.0	7	2	000/0.0	9
Conde	enser			Air Ent	ering E	Evapora	ator E	wb (F))	
(Ec	lb)	62	67	72	62	67	72	62	67	72
	TCG	46.3	51.1	55.7	48.8	53.5	58	50.7	54.9	59.1
75	SHG	39.9	33.8	27.1	46.3	38.6	29.8	50.6	42.7	32
	CMP	2.36	2.37	2.38	2.37	2.38	2.39	2.37	2.38	2.39
	TCG	42.9	49	54	46.2	51.5	56.4	49.2	52.8	57.4
85	SHG	38.5	33	26.6	45.2	37.9	29.4	49.1	42.2	31.7
	CMP	2.69	2.71	2.72	2.71	2.72	2.74	2.72	2.72	2.74
	TCG	38.7	45.8	51.9	42.6	48.8	54.2	46.8	50.4	55.5
95	SHG	36.5	31.8	25.9	42.5	37.1	28.9	46.8	41.6	31.4
	CMP	3.05	3.08	3.11	3.07	3.1	3.12	3.1	3.11	3.12
	TCG	34.4	41.1	49.1	39	43.8	51.5	43.3	46.3	52.8
105	SHG	34.3	30	24.9	39	35.3	28.2	43.3	40.4	30.9
	CMP	3.42	3.48	3.53	3.47	3.5	3.54	3.5	3.52	3.54
	TCG	31.4	36.3	44.7	35.8	38.4	47.3	39.2	40.6	49.5
115	SHG	31.4	28.1	23.5	35.8	33.3	26.9	39.2	38.1	30.1
	CMP	3.85	3.9	3.96	3.9	3.92	3.98	3.93	3.94	4
	TCG	28.2	31.1	39.8	31.9	33	41.6	35.3	35.4	43.9
125	SHG CMP	28.1 4.31	26.2 4.35	21.8 4.42	31.9 4.36	31.1 4.37	25.1 4.44	35.3 4.4	35.4 4.4	28.4 4.46

	060 (5 1	ons)															
	p (F)								nterin	g Air				=			
Out	door		1500	/0.26			1750)/.31			2000)/.35			2500	0/.45	
Air	Ent						Ir	ndoor E	Enterin	g Air	Ewb (F	-)					
(E	db)	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72
	TCG	57	60.2	66.5	72	60.3	62.3	68.5	73.8	63.2	64.1	69.7	75.6	67.4	67.4	71.8	77.6
75	SHG	55.3	50.5	42.4	33.5	58.6	55.2	45.7	35.4	61.3	59.5	48.6	37.4	65.5	65.5	54.4	40.7
	CMP	3.1	3.11	3.12	3.14	3.11	3.12	3.13	3.15	3.11	3.12	3.13	3.16	3.12	3.12	3.14	3.17
	TCG	54.1	56.9	64	70.2	58.3	59.7	65.9	72	60.9	61.4	67.3	73.4	65.3	65.2	69.6	75.3
85	SHG	52.6	49.1	41.4	33	56.6	54.1	44.8	35	59.2	58.4	48	36.9	63.4	63.4	54.4	40.4
	CMP	3.5	3.52	3.54	3.56	3.52	3.53	3.54	3.57	3.53	3.54	3.54	3.58	3.54	3.54	3.56	3.59
	TCG	50.2	53	61.1	67.5	55	55.6	62.9	69.3	58.6	58.6	64.3	70.6	62.8	62.8	66.4	72.7
95	SHG	48.8	47.4	40.3	32.2	53.4	52.3	43.8	34.2	56.9	56.8	47.2	36.1	61	61	53.4	40
	CMP	3.94	3.95	3.99	4.02	3.97	3.97	4.01	4.03	3.99	3.99	4.02	4.03	4.01	4.01	4.02	4.05
	TCG	47.4	47.9	56.5	64.3	50.9	51	59.5	66.1	54.7	54.8	60.9	67.4	59.9	60	62.9	69
105	SHG	46	45.2	38.7	31.1	49.5	49.5	42.6	33.2	53.1	53.2	45.9	35.2	58.2	58.3	52.4	38.8
	CMP	4.42	4.42	4.48	4.51	4.44	4.44	4.5	4.53	4.47	4.47	4.51	4.54	4.5	4.5	4.52	4.54
]	TCG	43.1	43.2	50.3	60.8	47.3	47.3	52.6	62.6	50.1	50.1	55.6	63.9	56	55.9	58.2	65.4
115	SHG	41.8	42	36.4	30	45.9	45.9	40.2	32.1	48.7	48.7	44.1	34.2	54.4	54.3	50.8	37.9
	CMP	4.92	4.92	4.98	5.05	4.96	4.96	5	5.07	4.98	4.98	5.02	5.08	5.03	5.03	5.05	5.08
]	TCG	39	39	43.9	55.7	42.3	42.3	46.9	58.5	46.1	46.1	48.2	59.7	50.9	50.9	51.3	61.4
125	SHG	37.9	37.9	34.1	28.3	41.1	41	38.2	30.8	44.8	44.8	41.6	32.9	49.4	49.4	48.2	36.9
	CMP	5.47	5.46	5.52	5.62	5.51	5.51	5.55	5.64	5.54	5.54	5.56	5.66	5.59	5.59	5.59	5.66

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb
COMP — Compressor Power kw
SHG — Gross Sensible Capacity (1000 Btuh)
TCG — Compressor Cooling Capicity (1000 Btuh)

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{\text{sensible capacity (Btuh)}}$ 1.10 x cfm

t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

 $h_{lwb} = h_{ewb} - \frac{total \ capacity \ (Btuh)}{1}$

Where: h_{ewb} = Enthalpy of air entering evaporator coil. 3. The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

Correction Factor = 1.10 x (1 – BF) x (edb – 80).

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS

581C (2 Ton	s) - STA	NDAR	о мото	R (BELT D	RIVE)								
41551 614					EXTER	RNALSTA	ATIC PRES	SURE (in. v	vg)				
AIRFLOW (Cfm)	0.	.1	(0.2	0.4	,	0	.6	8.0	}	1.	.0	
(OIIII)	Rpm	Bhp	Rpm										
600	500	0.08	531	0.08	607	0.14	713	0.21	788	0.29	878	0.37	
700	529	0.09	567	0.09	633	0.16	739	0.24	816	0.32	902	0.41	
800	547	0.1	592	0.12	660	0.19	761	0.27	845	0.37	937	0.47	
900	570	0.13	620	0.14	691	0.22	793	0.32	870	0.42	957	0.53	
1000	599	0.15	650	0.16	717	0.26	818	0.36	894	0.47	981	0.58	

LEGEND

Refer to page 107 for general Fan Performance Data notes.

Bhp — Brake Horsepower Watts — Input Watts to Motor

NOTES:

Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.

*Motor drive range: 680 to 1044 rpm. All other rpms require field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS

4: 0				•		Ext	ernal Sta	tic Pres	sure (in.	wg)	•	•	•		
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	567	0.15	145	688	0.22	222	786	0.30	296	871	0.37	368	947	0.44	437
1000	599	0.18	177	717	0.27	265	814	0.35	349	897	0.43	430	972	0.51	509
1100	632	0.22	215	747	0.31	313	842	0.41	407	925	0.50	498	999	0.59	587
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960

	,			`		Evt	ornal Sta	tic Pros	sure (in.	wa)					
Airflow (Cfm)		1.2			1.4	EXI	erriai Sta	1.6	sure (III.	wy)	1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900 1000	1016 1041	0.51 0.59	505 587	1080 1104	0.57 0.67	572 662	1139 1163	0.64 0.74	637 737	1195 1219	0.71 0.81	702 811	1249 1272	0.77 0.89	765 883
1100 1200	1066 1093	0.68 0.77	674 767	1129 1155	0.76 0.87	759 861	1188 1213	0.85 0.96	843 955	1243 1268	0.93 1.05	925 1047	1296 1321	1.01 1.14	1007 1137
1300 1400	1119 1147	0.87 0.98	866 972	1181 1208	0.98 1.09	970 1086	1239 —	1.08	1073 —	1294 —	1.18 —	1175 —	_	_	_
1500	1175	1.09	1086	_	_	_	_	_	_	_	_	_	_	_	

LEGEND

Refer to page 107 for general Fan Performance Data notes.

Bhp — Brake Horsepower Watts — Input Watts to Motor

^{*}Motor drive range: 680 to 1044 rpm. All other rpms require field-supplied drive.

581C036 (3	TONS) —	HIGH-S	TATIC MO	OTOR (B	ELT DRI	VE)*									
4. 0						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01)	Rpm														
900	567	7 0.15 145 688 0.22 222 786 0.30 296 871 0.37 368 947 0.44 437													
1000	599	0.18	177	717	0.27	265	814	0.35	349	897	0.43	430	972	0.51	509
1100	632	0.22	215	747	0.31	313	842	0.41	407	925	0.50	498	999	0.59	587
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960

NOTES:
1. **Boldface** indicates field-supplied drive is required.
2. Maximum continuous bhp is 1.20.

581C036 (3 T	TONS) —	HIGH-S	TATIC MO	OTOR (B	ELT DRI	VE)* (con	ıt)								
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp Watts Rpm Bhp Watts Rpm Bhp Watts Rpm Bhp Watts 0.51 505 1080 0.57 572 1139 0.64 637 1195 0.71 702 1249 0.77 765													
900	1016	0.51	505	1080	0.57	572	1139	0.64	637	1195	0.71	702	1249	0.77	765
1000	1041	0.59	587	1104	0.67	662	1163	0.74	737	1219	0.81	811	1272	0.89	883
1100	1066	0.68	674	1129	0.76	759	1188	0.85	843	1243	0.93	925	1296	1.01	1007
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175	1346	1.28	1275
1400	1147	0.98	972	1208	1.09	1086	1265	1.21	1199	1320	1.32	1310	1371	1.43	1419
1500	1175	1.09	1086	1235	1.22	1209	1292	1.34	1332	1346	1.46	1452	1397	1.58	1572

LEGEND

Refer to page 107 for general Fan Performance Data notes.

Bhp — Brake Horsepower Watts — Input Watts to Motor

NOTES:

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581C048 (4 T	TONS) —	STAND	ARD MO	TOR (BEI	LT DRIVE	Ξ)*									
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960
1600	810	0.49	491	909	0.65	643	994	0.79	790	1070	0.94	932	1140	1.08	1070
1700	847	0.57	567	943	0.73	730	1027	0.89	888	1101	1.05	1040	1170	1.20	1189
1800	885	0.66	652	978	0.83	826	1060	1.00	994	1133	1.16	1157	_	_	_
1900	923	0.75	745	1014	0.94	930	1093	1.11	1109	_	_	_	_	_	_
2000	962	0.85	847	1049	1.05	1043	_	_	_	_	_	_	_	_	_

						Ext	ernal Sta	tic Pres	sure (in. '	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1093	0.77	767	1155	0.87	861	1213	0.96	955	1268	1.05	1047	1321	1.14	1137
1300	1119	0.87	866	1181	0.98	970	1239	1.08	1073	1294	1.18	1175			
1400	1147	0.98	972	1208	1.09	1086	_	_	_	_	_	_	_	_	_
1500	1175	1.09	1086	_	_	_	_	_	_	_	_	_	_	_	_
1600	_	_	_		_	_	_	_	_	_	_	_	_	_	_
1700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
2000		_					_	_	_	_	_		_		_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.

*Motor	drive	range:	770	to	1185	rpm.	ΑII	other	rpms	require	field-
suppli	ed driv	/e.									

						Ext	ernal Sta	tic Pres	sure (in. [,]	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	666	0.26	257	778	0.37	367	871	0.47	471	952	0.57	572	1025	0.67	670
1300	701	0.31	306	810	0.43	426	901	0.54	540	981	0.65	651	1053	0.76	760
1400	737	0.36	361	842	0.49	491	931	0.62	616	1010	0.74	738	1081	0.86	856
1500	773	0.42	422	875	0.57	564	963	0.70	699	1040	0.84	831	1110	0.96	960
1600	810	0.49	491	909	0.65	643	994	0.79	790	1070	0.94	932	1140	1.08	1070
1700	847	0.57	567	943	0.73	730	1027	0.89	888	1101	1.05	1040	1170	1.20	1189
1800	885	0.66	652	978	0.83	826	1060	1.00	994	1133	1.16	1157	1200	1.32	1316
1900	923	0.75	745	1014	0.94	930	1093	1.11	1109	1165	1.29	1283	1231	1.46	1453
2000	962	0.85	847	1049	1.05	1043	1127	1.24	1233	1198	1.42	1417	1263	1.61	1598

^{*}Motor drive range: 1075 to 1455 rpm. All other rpms require field-supplied drive.

Refer to page 107 for general Fan Performance Data notes.

581C048 (4	TONS) —	HIGH-S	TATIC MO	OTOR (B	ELT DRI	VE)* (con	ıt)								
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200 1300 1400 1500 1600 1700	1093 1119 1147 1175 1204 1233	0.77 0.87 0.98 1.09 1.21 1.34	767 866 972 1086 1207 1336	1155 1181 1208 1235 1263 1292	0.87 0.98 1.09 1.22 1.35 1.49	861 970 1086 1209 1340 1480	1213 1239 1265 1292 1320 1348	0.96 1.08 1.21 1.34 1.48 1.63	955 1073 1199 1332 1472 1622	1268 1294 1320 1346 1373 1401	1.05 1.18 1.32 1.46 1.61 1.77	1047 1175 1310 1452 1603 1762	1321 1346 1371 1397 1424 1451	1.14 1.28 1.43 1.58 1.74 1.91	1137 1275 1419 1572 1732 1901
1800 1900 2000	1262 1293 1323	1.48 1.63 1.79	1473 1620 1776	1321 1350 1380	1.64 1.79 1.96	1627 1784 1950	1376 1405 1434	1.79 1.96 2.13	1779 1946 2123	1428 1457 1486	1.94 2.12 2.31	1930 2106 2293	1479 1506 —	2.09 2.28 —	2078 2265 —

LEGEND

— Brake Horsepower— Input Watts to Motor Bhp Watts

*Motor drive range: 1075 to 1455 rpm. All other rpms require fieldsupplied drive.

Refer to page 107 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

						E	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		0.2			0.4	_		0.6			0.8	_		1.0	_
(51111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600	848 887	0.42 0.49	371 433	968 1004	0.55 0.63	486 556	1069 1103	0.68 0.76	600 678	1158 1190	0.80 0.90	715 800	1238 1269	0.94 1.04	831 922
1700	927	0.57	502	1040	0.71	633	1137	0.86	763	1223	1.00	892	1302	1.15	1022
1800	967	0.65	579	1077	0.81	718	1172	0.96	856	1257	1.12	993	1334	1.27	1130
1900	1007	0.75	663	1115	0.91	811	1208	1.08	957	1291	1.24	1101	_	_	_
2000	1048	0.85	757	1153	1.03	913	1244	1.20	1066	_	_	_	_	_	_
2100	1090	0.97	859	1191	1.15	1023	_	_	_	_	_	_	_	_	_
2200	1131	1.09	970	1230	1.29	1143	_	_	_	_	_	_	_	_	_
2300	1173	1.23	1091	_	_	_	_	_	_	_	_	_	_	_	_
2400	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

						Е	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6	,		1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1312	1.07	948	1380	1.20	1067	_	_	_	_	_	_	_	_	_
1600	1342	1.18	1047	_	_	_	_	_	_	_	_	_	_	_	_
1700	1374	1.30	1153	_	_	_	_	_	_	_	_	_	_	_	_
1800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2300	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	_
2400	_	_	l —	_	_	_	_	_	_	_	_	_	_	_	_
2500	I —	_	l —	l —	_	_	l —	_	_	_	_	_	l —	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

Refer to page 107 for general Fan Performance Data notes.

NOTES:
1. **Boldface** indicates field-supplied drive is required.
2. Maximum continuous bhp is 1.30.

581C060 (5 To	ONS) — ST	ANDARD	MOTOR (BELT DRI	VE)* — TH	IREE-PHA	SE UNITS	3							
						Е	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600	848 887	0.42 0.49	371 433	968 1004	0.55 0.63	486 556	1069 1103	0.68 0.76	600 678	1158 1190	0.80 0.90	715 800	1238 1269	0.94 1.04	831 922
1700	927	0.57	502	1040	0.71	633	1137	0.86	763	1223	1.00	892	1302	1.15	1022
1800 1900	967 1007	0.65 0.75	579 663	1077 1115	0.81 0.91	718 811	1172 1208	0.96 1.08	856 957	1257 1291	1.12 1.24	993 1101	1334 1368	1.27 1.40	1130 1246
2000 2100	1048 1090	0.85 0.97	757 859	1153 1191	1.03 1.15	913 1023	1244 1281	1.20 1.33	1066 1185	1326 1361	1.37 1.51	1219 1345	1401 1435	1.54 1.69	1371 1505
2200	1131	1.09	970	1230	1.29	1143	1318	1.48	1313	1397	1.67	1481	1470	1.86	1649
2300 2400	1173 1215	1.23 1.38	1091 1223	1269 1309	1.43 1.59	1273 1413	1355 1393	1.63 1.80	1451 1600	1433 1470	1.83 2.01	1627 1784	1505 1540	2.03 2.21	1803 1967
2500	1258	1.54	1365	1349	1.76	1564	1431	1.98	1759	1506	2.20	1951	-		

581C060 (5 TC	NS) — ST	ANDARD	MOTOR (BELT DRI	VE)* — TH	IREE-PHA	SE UNITS	(cont)							
						E	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500	1312 1342 1374 1406 1438 1471 1504 1538 1572	1.07 1.18 1.30 1.43 1.57 1.72 1.87 2.04 2.23	948 1047 1153 1268 1391 1523 1665 1816	1380 1411 1441 1473 1504 1536 1569 1602	1.20 1.32 1.45 1.58 1.73 1.89 2.06 2.23	1067 1173 1286 1407 1537 1677 1825 1984	1445 1474 1505 1535 1567 1598 1630	1.34 1.46 1.60 1.74 1.90 2.06 2.24	1189 1300 1420 1548 1685 1831 1986	1506 1535 1565 1595 1626 1657 —	1.48 1.61 1.75 1.90 2.06 2.24 —	1312 1429 1555 1690 1833 1986 — —	1564 1593 1622 1652 1682 — — —	1.62 1.76 1.91 2.06 2.23 — — —	1437 1560 1692 1833 1983 — — —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

Refer to page 107 for general Fan Performance Data notes.

Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581C060 (5 TC	NS) — HI	GH-STATI	C MOTOR	(BELT DF	RIVE)*										
						E	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000 2100 2200	848 887 927 967 1007 1048 1090	0.42 0.49 0.57 0.65 0.75 0.85 0.97 1.09	371 433 502 579 663 757 859 970	968 1004 1040 1077 1115 1153 1191 1230	0.55 0.63 0.71 0.81 0.91 1.03 1.15	486 556 633 718 811 913 1023 1143	1069 1103 1137 1172 1208 1244 1281 1318	0.68 0.76 0.86 0.96 1.08 1.20 1.33	600 678 763 856 957 1066 1185	1158 1190 1223 1257 1291 1326 1361 1397	0.80 0.90 1.00 1.12 1.24 1.37 1.51 1.67	715 800 892 993 1101 1219 1345 1481	1238 1269 1302 1334 1368 1401 1435 1470	0.94 1.04 1.15 1.27 1.40 1.54 1.69 1.86	831 922 1022 1130 1246 1371 1505 1649
2300 2400 2500	1173 1215 1258	1.23 1.38 1.54	1091 1223 1365	1269 1309 1349	1.43 1.59 1.76	1273 1413 1564	1355 1393 1431	1.63 1.80 1.98	1451 1600 1759	1433 1470 1506	1.83 2.01 2.20	1627 1784 1951	1505 1540 1576	2.03 2.21 2.41	1803 1967 2142

						E	xternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1312	1.07	948	1380	1.20	1067	1445	1.34	1189	1506	1.48	1312	1564	1.62	1437
1600	1342	1.18	1047	1411	1.32	1173	1474	1.46	1300	1535	1.61	1429	1593	1.76	1560
1700	1374	1.30	1153	1441	1.45	1286	1505	1.60	1420	1565	1.75	1555	1622	1.91	1692
1800	1406	1.43	1268	1473	1.58	1407	1535	1.74	1548	1595	1.90	1690	1652	2.06	1833
1900	1438	1.57	1391	1504	1.73	1537	1567	1.90	1685	1626	2.06	1833	1682	2.23	1983
2000	1471	1.72	1523	1536	1.89	1677	1598	2.06	1831	1657	2.24	1986	1713	2.41	2142
2100	1504	1.87	1665	1569	2.06	1825	1630	2.24	1986	1688	2.42	2149	1744	2.60	2312
2200	1538	2.04	1816	1602	2.23	1984	1663	2.42	2152	1720	2.61	2321	1775	2.81	2491
2300	1572	2.23	1978	1635	2.42	2153	1695	2.62	2328	1753	2.82	2504	_	_	_
2400	1607	2.42	2150	1669	2.63	2332	1729	2.83	2515	_	_	_	_	_	_
2500	1642	2.63	2333	1704	2.84	2523	_	_	l —	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1300 to 1685 rpm. All other rpms require field-supplied drive.

Refer to page 107 for general Fan Performance Data notes.

NOTES:

Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.90.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS

581C024 (21	Tons)											
					EXTERN	ALSTAT	IC PRES	SURE (in.	wg)			
AIRFLOW (Cfm)	0.	.1		0.2	0.	.4	0	.6	0	.8	1.	.0
(OIIII)	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp	Rpm	Bhp
600	490	0.08	521	0.08	597	0.14	703	0.21	788	0.29	868	0.37
700	519	0.09	557	0.09	623	0.16	729	0.24	816	0.32	892	0.41
800	537	0.1	582	0.12	650	0.19	751	0.27	845	0.37	927	0.47
900	560	0.13	610	0.14	681	0.22	783	0.32	870	0.42	947	0.53
1000	589	0.15	640	0.16	707	0.26	808	0.36	894	0.47	971	0.58

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 680 to 1044 rpm. All other rpms require field-supplied drive.

See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS

						Exte	ernal Sta	tic Press	sure (in. v	vg)			_		
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900 1000	553 582	0.14 0.16	134 163	681 707	0.22 0.26	221 257	782 807	0.32 0.36	316 358	870 894	0.42 0.47	417 466	948 971	0.53 0.58	526 580
1100	612	0.20	196	734	0.30	297	833	0.41	405	919	0.52	519	995	0.64	639
1200 1300 1400	643 675 707	0.23 0.28 0.33	234 277 326	762 790 819	0.34 0.40 0.45	343 394 452	859 886 913	0.46 0.52 0.58	458 517 581	944 969 996	0.58 0.65 0.72	579 644 716	1020 1044 1070	0.71 0.78 0.86	705 777 855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941

						Ext	ernal Sta	tic Pres	sure (in. '	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1019	0.64	640	1084	0.76	760	1146	0.89	885	1203	1.02	1016	1258	1.16	1152
1000	1042	0.70	700	1107	0.83	825	1168	0.96	956	1225	1.10	1091		_	_
1100	1065	0.77	765	1130	0.90	896	1190	1.04	1032	1247	1.18	1173	_	_	_
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	_	_	_	_	_	_
1300	1113	0.92	915	1177	1.06	1058	_	_	_	_	_	_	_	_	_
1400	1138	1.01	1000	1201	1.15	1149	_	_	_	_	_	_	_	_	_
1500	1163	1.10	1092			_		_			_		_		_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 680 to 1044 rpm. All other rpms require field- supplied drive.

See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.

						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	553	0.14	134	681	0.22	221	782	0.32	316	870	0.42	417	948	0.53	526
1000	582	0.16	163	707	0.26	257	807	0.36	358	894	0.47	466	971	0.58	580
1100	612	0.20	196	734	0.30	297	833	0.41	405	919	0.52	519	995	0.64	639
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941

581C036 (3 T	TONS) —	HIGH-S	TATIC MO	OTOR (B	ELT DRI	VE)* (con	ıt)								
A : 41						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
900	1019	0.64	640	1084	0.76	760	1146	0.89	885	1203	1.02	1016	1258	1.16	1152
1000	1042	0.70	700	1107	0.83	825	1168	0.96	956	1225	1.10	1091	1279	1.24	1232
1100	1065	0.77	765	1130	0.90	896	1190	1.04	1032	1247	1.18	1173	1301	1.33	1319
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	1270	1.27	1262	1324	1.42	1413
1300	1113	0.92	915	1177	1.06	1058	1237	1.21	1205	1293	1.36	1358	1347	1.52	1514
1400	1138	1.01	1000	1201	1.15	1149	1261	1.31	1303	1317	1.47	1461	1370	1.63	1623
1500	1163	1.10	1092	1226	1.25	1247	1285	1.41	1407	1341	1.58	1571	1394	1.75	1740

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1075 to 1455 rpm. All other rpms require fieldsupplied drive.
See page 107 for general fan performance notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581C048 (4 T	TONS) —	STAND	ARD MO	ΓOR (BEI	LT DRIVE	Ε)*									
						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200 1300 1400 1500 1600	643 675 707 740 773	0.23 0.28 0.33 0.38 0.45	234 277 326 382 444	762 790 819 849 879	0.34 0.40 0.45 0.52 0.59	343 394 452 515 586	859 886 913 941 970	0.46 0.52 0.58 0.66 0.73	458 517 581 653 731	944 969 996 1023 1050	0.58 0.65 0.72 0.80 0.88	579 644 716 795 880	1020 1044 1070 1096 1123	0.71 0.78 0.86 0.95 1.04	705 777 855 941 1034
1700 1800 1900 2000	807 841 875 910	0.52 0.59 0.68 0.77	513 589 674 767	910 942 974 1006	0.67 0.75 0.85 0.95	663 749 842 944	999 1029 1059 1090	0.73 0.82 0.91 1.02 1.13	817 910 1012 1122	1078 1106 1135	0.98 1.08 1.19	973 1074 1184 —	1150 — — —	1.14 1.14 —	1134 — — —

						Ext	ernal Sta	tic Pres	sure (in. [,]	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	_	_	_	_	_	_
1300	1113	0.92	915	1177	1.06	1058	_	_	_	_	_	_	_	_	_
1400	1138	1.01	1000	1201	1.15	1149	_	_	_	_	_	_	_	_	_
1500	1163	1.10	1092	_	_	_	_	_	_	_	_	_	_	_	_
1600	1189	1.20	1191	_	_	_	_	_	_	_	_	_	_	_	_
1700	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1800	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.20.

*Motor	drive	range:	770	to	1185	rpm.	ΑII	other	rpms	require	field-
supplie	ed driv	e.							•	·	

						Ext	ernal Sta	tic Pres	sure (in. [,]	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	643	0.23	234	762	0.34	343	859	0.46	458	944	0.58	579	1020	0.71	705
1300	675	0.28	277	790	0.40	394	886	0.52	517	969	0.65	644	1044	0.78	777
1400	707	0.33	326	819	0.45	452	913	0.58	581	996	0.72	716	1070	0.86	855
1500	740	0.38	382	849	0.52	515	941	0.66	653	1023	0.80	795	1096	0.95	941
1600	773	0.45	444	879	0.59	586	970	0.73	731	1050	0.88	880	1123	1.04	1034
1700	807	0.52	513	910	0.67	663	999	0.82	817	1078	0.98	973	1150	1.14	1134
1800	841	0.59	589	942	0.75	749	1029	0.91	910	1106	1.08	1074	1177	1.25	1242
1900	875	0.68	674	974	0.85	842	1059	1.02	1012	1135	1.19	1184	1205	1.37	1360
2000	910	0.77	767	1006	0.95	944	1090	1.13	1122	1165	1.31	1302	1234	1.49	1485

581C048 (4 T	TONS) —	HIGH-S	TATIC MO	OTOR (B	ELT DRI	VE)* (con	nt)								
4: 6						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1200	1089	0.84	837	1153	0.98	974	1213	1.12	1115	1270	1.27	1262	1324	1.42	1413
1300	1113	0.92	915	1177	1.06	1058	1237	1.21	1205	1293	1.36	1358	1347	1.52	1514
1400	1138	1.01	1000	1201	1.15	1149	1261	1.31	1303	1317	1.47	1461	1370	1.63	1623
1500	1163	1.10	1092	1226	1.25	1247	1285	1.41	1407	1341	1.58	1571	1394	1.75	1740
1600	1189	1.20	1191	1252	1.36	1353	1310	1.53	1520	1365	1.70	1690	1418	1.87	1865
1700	1216	1.31	1299	1277	1.48	1468	1335	1.65	1640	1390	1.83	1817	1442	2.01	1998
1800	1242	1.42	1414	1303	1.60	1590	1361	1.78	1770	1415	1.96	1953	1467	2.15	2140
1900	1270	1.55	1538	1330	1.73	1721	1387	1.92	1908	1441	2.11	2098	1493	2.30	2292
2000	1297	1.68	1672	1357	1.87	1862	1414	2.07	2055	1467	2.26	2252	_	1	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Motor drive range: 1075 to 1455 rpm. All other rpms require field-supplied drive. See page 107 for general fan performance notes.

- NOTES:
 1. **Boldface** indicates field-supplied drive is required.
 2. Maximum continuous bhp is 2.40.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581C060 (5 T	TONS) —	STANDA	ARD MO	TOR (BEI	LT DRIVE	E)* — SIN	IGLE-PH	ASE UN	ITS						
A !(!						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000	800 839 879 919 960 1001	0.39 0.46 0.54 0.63 0.73 0.84	350 412 483 561 648 744	904 938 974 1010 1047 1085	0.49 0.57 0.65 0.75 0.85 0.96	438 505 580 663 754 855	999 1030 1062 1095 1129 1163	0.60 0.68 0.77 0.87 0.98 1.09	535 605 684 771 867 972	1087 1115 1144 1174 1206 1238	0.72 0.80 0.90 1.00 1.11 1.23	640 714 796 886 986 1095	1169 1195 1221 1250 1279	0.85 0.93 1.03 1.14 1.25	753 829 914 1008 1111
2100 2200 2300	1043 1085 1127	0.96 1.09 1.23	850 966 1092	1123 1162 —	1.09 1.22 —	965 1086 —	1199 — —	1.22 — —	1086 — —	_	_	_	_ _ _	_ _ _	_ _
2400 2500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

						Ext	ernal Sta	tic Pres	sure (in. v	wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	1247	0.98	873	1320	1.13	1002	1390	1.28	1137	_	_	_		_	_
1600	1270	1.07	952	1342	1.22	1083	_	_	_	_	_	_	_	_	_
1700	1295	1.17	1040	_	_	_	_	_	_	_	_	_	_	_	_
1800	1321	1.28	1137	_	_	_	_	_	_	_	_	_	_	_	_
1900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2100	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2400	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
2500	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 1.30.

						Ext	ernal Sta	tic Pres	sure (in. '	wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500	800	0.39	350	904	0.49	438	999	0.60	535	1087	0.72	640	1169	0.85	753
1600	839	0.46	412	938	0.57	505	1030	0.68	605	1115	0.80	714	1195	0.93	829
1700	879	0.54	483	974	0.65	580	1062	0.77	684	1144	0.90	796	1221	1.03	914
1800	919	0.63	561	1010	0.75	663	1095	0.87	771	1174	1.00	886	1250	1.14	1008
1900	960	0.73	648	1047	0.85	754	1129	0.98	867	1206	1.11	986	1279	1.25	1111
2000	1001	0.84	744	1085	0.96	855	1163	1.09	972	1238	1.23	1095	1309	1.38	1224
2100	1043	0.96	850	1123	1.09	965	1199	1.22	1086	1271	1.37	1213	1340	1.52	1346
2200	1085	1.09	966	1162	1.22	1086	1235	1.36	1211	1305	1.51	1342	1372	1.67	1479
2300	1127	1.23	1092	1201	1.37	1217	1272	1.52	1347	1340	1.67	1482	1405	1.83	1623
2400	1169	1.38	1229	1241	1.53	1359	1310	1.68	1493	1375	1.84	1633	1439	2.00	1778
2500	1212	1.55	1378	1281	1.70	1513	1348	1.86	1652	1412	2.02	1796	1473	2.19	1945

^{*}Motor drive range: 1035 to 1460 rpm. All other rpms require field-supplied drive.

581C060 (5	rons) —	STAND	ARD MO	TOR (BE	LT DRIVI	E)* — TH	REE-PH/	ASE UNI	TS (cont)						
4. 0						Ext	ernal Sta	tic Pres	sure (in.	wg)					
Airflow (Cfm)		1.2			1.4			1.6	_		1.8	_		2.0	
(0)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500	1247 1270 1295 1321 1348 1377 1406 1437 1468 1500 1533	0.98 1.07 1.17 1.28 1.40 1.53 1.67 1.83 1.99 2.17 2.36	873 952 1040 1137 1243 1359 1485 1621 1769 1928 2098	1320 1342 1365 1390 1415 1442 1470 1499 1529 1559	1.13 1.22 1.32 1.43 1.56 1.69 1.83 1.99 2.16 2.35	1002 1083 1173 1273 1381 1500 1629 1769 1920 2083	1390 1411 1432 1455 1479 1505 1531 1559 1587	1.28 1.37 1.48 1.59 1.72 1.86 2.00 2.16 2.34	1137 1221 1313 1415 1526 1648 1780 1923 2077	1457 1476 1497 1518 1541 1565 1591 1617	1.44 1.54 1.64 1.76 1.89 2.03 2.18 2.34	1280 1365 1459 1563 1677 1801 1936 2082	1522 1540 1559 1579 1601 1624 1648 —	1.61 1.71 1.82 1.93 2.06 2.21 2.36 —	1430 1517 1612 1718 1834 1961 2098 —

LEGEND

See page 107 for general fan performance notes.

Bhp — Brake Horsepower Watts — Input Watts to Motor

NOTES:

*Motor drive range: 1035 to 1460 rpm. All other rpms require field-

Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.40.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581C060 (5 T	581C060 (5 TONS) — HIGH-STATIC MOTOR (BELT DRIVE)*														
A: 0						Ex	ternal Sta	atic Press	sure (in. v	vg)					
Airflow (Cfm)		0.2	•		0.4	•		0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000 2100	800 839 879 919 960 1001 1043	0.39 0.46 0.54 0.63 0.73 0.84 0.96	350 412 483 561 648 744 850	904 938 974 1010 1047 1085 1123	0.49 0.57 0.65 0.75 0.85 0.96 1.09	438 505 580 663 754 855 965	999 1030 1062 1095 1129 1163 1199	0.60 0.68 0.77 0.87 0.98 1.09	535 605 684 771 867 972 1086	1087 1115 1144 1174 1206 1238 1271	0.72 0.80 0.90 1.00 1.11 1.23 1.37	640 714 796 886 986 1095 1213	1169 1195 1221 1250 1279 1309 1340	0.85 0.93 1.03 1.14 1.25 1.38 1.52	753 829 914 1008 1111 1224 1346
2200 2300 2400 2500	1043 1085 1127 1169 1212	1.09 1.23 1.38 1.55	966 1092 1229 1378	1162 1201 1241 1281	1.09 1.22 1.37 1.53 1.70	1086 1217 1359 1513	1235 1272 1310 1348	1.36 1.52 1.68 1.86	1211 1347 1493 1652	1305 1340 1375 1412	1.57 1.51 1.67 1.84 2.02	1342 1482 1633 1796	1372 1405 1439 1473	1.67 1.83 2.00 2.19	1479 1623 1778 1945

581C060 (5 T	TONS) —	HIGH-ST	ATIC MOT	OR (BEL	T DRIVE)	* (cont)									
		External Static Pressure (in. wg)													
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
1500 1600 1700 1800 1900 2000 2100 2200	1247 1270 1295 1321 1348 1377 1406 1437	0.98 1.07 1.17 1.28 1.40 1.53 1.67 1.83	873 952 1040 1137 1243 1359 1485 1621	1320 1342 1365 1390 1415 1442 1470 1499	1.13 1.22 1.32 1.43 1.56 1.69 1.83 1.99	1002 1083 1173 1273 1381 1500 1629 1769	1390 1411 1432 1455 1479 1505 1531 1559	1.28 1.37 1.48 1.59 1.72 1.86 2.00 2.16	1137 1221 1313 1415 1526 1648 1780 1923	1457 1476 1497 1518 1541 1565 1591 1617	1.44 1.54 1.64 1.76 1.89 2.03 2.18 2.34	1280 1365 1459 1563 1677 1801 1936 2082	1522 1540 1559 1579 1601 1624 1648 1673	1.61 1.71 1.82 1.93 2.06 2.21 2.36 2.53	1430 1517 1612 1718 1834 1961 2098 2246
2300 2300 2400 2500	1437 1468 1500 1533	1.83 1.99 2.17 2.36	1769 1928 2098	1529 1559 1591	2.16 2.35 2.54	1769 1920 2083 2257	1559 1587 1616 1647	2.16 2.34 2.53 2.73	2077 2243 2421	1617 1644 1672 —	2.34 2.52 2.71 —	2082 2239 2408 —	1699 1726	2.53 2.71 2.90	2406 2406 2579

LEGEND

Bhp Watts Brake HorsepowerInput Watts to Motor See page 107 for general fan performance notes.

- Boldface indicates field-supplied drive is required.
 Maximum continuous bhp is 2.90.

supplied drive.

 $^{^{*}\}text{Motor}$ drive range: 1300 to 1685 rpm. All other rpms require field-supplied drive.

FAN RPM AT MOTOR PULLEY SETTING WITH STANDARD MOTOR* — 581C024-060

UNIT		MOTOR PULLEY TURNS OPEN											
581C	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/ ₂	6
024	936	906	876	846	816	786	756	726	696	656	639		_
036	1044	1008	971	935	898	862	826	789	753	716	680	_	_
048	1185	1144	1102	1061	1019	978	936	895	853	812	770	_	_
060	1460	1425	1389	1354	1318	1283	1248	1212	1177	1141	1106	1070	1035

^{*}Approximate fan rpm shown (standard motor/drive).

FAN RPM AT MOTOR PULLEY SETTING WITH HIGH-STATIC MOTOR* — 581C030-060

UNIT		MOTOR PULLEY TURNS OPEN											
581C	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/2	6
030	1455	1423	1392	1360	1328	1297	1265	1233	1202	1170	1138	1107	1075
048	1455	1423	1392	1360	1328	1297	1265	1233	1202	1170	1138	1107	1075
060	1685	1589	1557	1525	1493	1460	1428	1396	1364	1332	1300	_	_

^{*}Approximate fan rpm shown (high-static motor/drive).

EVAPORATOR-FAN MOTOR PERFORMANCE — STANDARD MOTOR — 581C024-060

UNIT 581C	UNIT PHASE	MAXIMUM CONTINUOUS BHP*	MAXIMUM OPERATING WATTS*	UNIT VOLTAGE	MAXIMUM AMP DRAW
024	Single	0.58	580	208/230	2.0
	Single	1.20	1000	208/230	4.9
036				208/230	4.9
036	Three	1.20	1000	460	2.2
				575	2.2
	Single	1.20	1000	208/230	4.9
040				208/230	4.9
048	Three	1.20	1000	460	2.2
				575	2.2
	Single	1.30	1650	208/230	9.2
000				208/230	6.7
060	Three	2.40	2120	460	3.0
				575	3.0

LEGEND

Bhp — Brake Horsepower

EVAPORATOR-FAN MOTOR PERFORMANCE — HIGH-STATIC MOTORS — 581C036-060

UNIT 581C	UNIT PHASE	MAXIMUM CONTINUOUS BHP*	MAXIMUM OPERATING WATTS*	UNIT VOLTAGE	MAXIMUM AMP DRAW
				208/230	6.7
036	Three	2.40	2120	460	3.0
				575	3.0
				208/230	6.7
048	Three	2.40	2120	460	3.0
				575	3.0
				208/230	8.6
060	060 Three	2.90	2615	460	3.9
				575	3.9

LEGEND

Bhp — Brake Horsepower

^{*}Extensive motor and electrical testing on these units ensures that the full horsepower and watts range of the motors can be utilized with confidence. Using the fan motors up to the ratings shown in this table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

^{*}Extensive motor and electrical testing on these units ensures that the full horsepower and watts range of the motors can be utilized with confidence. Using the fan motors up to the ratings shown in this table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

EVAPORATOR-FAN MOTOR EFFICIENCY — 581C024-060

UNIT SIZE 581C	EFFICIENCY%
024, 036, 048	75
060	74/84*

^{*}Single phase/3 phase.

NOTES:

1. Convert bhp to watts using the following formula:

watts =
$$\frac{\text{bhp (746)}}{\text{motor efficiency}}$$

2. The EPACT (Energy Policy Act of 1992) regulates energy requirements for specific types of indoor fan motors. Motors regulated by EPACT include any general purpose, T-frame (three-digit, 143 and larger), single-speed, foot mounted, polyphase, squirrel cage induction motors of NEMA (National Electrical Manufacturers Association) design A and B, manufactured for use in the United States. Ranging from 1 to 200 Hp, these continuous-duty motors operate on 230 and 460 volt, 60 Hz power. If a motor does not fit into these specifications, the motor does not have to be replaced by an EPACT-compliant energy-efficient motor. Variable-speed motors are exempt from EPACT compliance requirements. Therefore, the indoor fan motors for Bryant 581C024-060 units are exempt from these requirements.

ACCESSORY/FIOP STATIC PRESSURE* (in. wg) — 581C024-060

COMPONENT		CFM									
COMPONENT	600	800	1000	1250	1500	1750	2000	2250	2500	2750	3000
Vertical EconoMi\$er IV and EconoMi\$er2	0.10	0.20	0.35	0.045	0.065	0.08	0.12	0.145	0.175	0.22	0.255
Horizontal EconoMi\$er IV and EconoMi\$er2	_	_	_	_	_	0.1	0.125	0.15	0.18	0.225	0.275

LEGEND

FIOP — Factory-Installed Option

*The static pressure must be added to external static pressure. The sum and the evaporator entering-air cfm should be used in conjunction with the Fan Performance tables to determine indoor blower rpm and watts.

581C - OPTION/ACCESSORY WEIGHTS

Option / Accessory	02	24	0:	36	0	48	06	0
Option / Accessory	lb	kg	lb	kg	lb	kg	lb	kg
Perfect Humidity Dehumidification System	13	6	15	7	23	10	25	11
Power Exhaust - vertical	50	23	50	23	50	23	50	23
Power Exhaust - horizontal	30	14	30	14	30	14	30	14
EconoMi\$er (IV or 2)	50	23	50	23	50	23	50	23
Two Position damper (25%)	22	10	22	10	22	10	22	10
Two Position damper (100%)	39	18	39	18	39	18	39	18
Manual Dampers	12	5	12	5	12	5	12	5
Hail Guard (louvered)	16	7	16	7	16	7	16	7
Hail Guard (standard hood assembly)	25	11	25	11	25	11	25	11
Cu/Cu Condenser Coil	5	2	6	3	13	6	13	6
Cu/Cu Condenser and Evaporator Coils	10	5	12	5	19	9	21	10
Roof Curb (14-in. curb)	115	52	115	52	115	52	115	52
Roof Curb (24-in. curb)	197	89	197	89	197	89	197	89

ALTITUDE COMPENSATION* — 581C024-060 STANDARD UNIT

ELEVATION	50,000 BTUH I	NOMINAL INPUT
(ft)	Natural Gas Orifice Size†	Liquid Propane Orifice Size†
0-2,000	43	49
2,000	44	50
3,000	44	50
4,000	44	50
5,000	45	51
6,000	45	51
7,000	46	51
8,000	47	52
9,000	47	52
10,000	48	52
11,000	49	53
12,000	50	54
13,000	51	55
14.000	52	56

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, heat input rate should be reduced at higher altitudes. †Orifices available through your Bryant distributor.

ALTITUDE COMPENSATION* — 581C024-060 LOW NOX UNITS

ELEVATION	60,000 AND 90,000 BTUH NOMINAL INPUT	120,000 BTUH NOMINAL INPUT
(ft)	Natural Gas Orifice Size†	Natural Gas Orifice Size
0-2,000	38	32
2,000	40	33
3,000	41	35
4,000	42	36
5,000	43	37
6,000	43	38
7,000	44	39
8,000	45	41
9,000	46	42
10,000	47	43
11,000	48	44
12,000	49	44
13,000	50	46
14,000	51	47

^{*}As the height above sea level increases, there is less oxygen per cubic foot of air. Therefore, heat input rate should be reduced at higher altitudes. †Orifices available through your Bryant distributor.

ALTITUDE DERATING FACTOR*

ELEVATION	MAXIMUM HEATING VALUE AT SEA LEVEL (Btu/ft³)
0-2000	1100
2001-3000	1050
3001-4000	1000
4001-5000	950
5001-6000	900

*Derating of the gas heating equipment to compensate for the effects of altitude is always required. Orifice change is not required if the fuel heating value (at sea level) is below the limits listed in the table at left. Derating conditions must be 4% per thousand ft above 2000 ft. For example, at 4000 ft, if the heating value of the gas exceeds 1000 Btu/ft³, the unit will require a 16% derating. For elevations above 6000 ft, the same formula applies. For example, at 7000 ft, the unit will require a 28% derating of the maximum heating value per the National Fuel Gas Code.

IMPORTANT: Local utility companies may be reducing heat content of gas at altitudes above 2000 ft. If this is being done, changing spuds may not be required.

Vertical - Mounted in Economizer Hood									
Power Exhaust Part No.	Power Exhaust Description	Application Usage	Power Output (Hp per fan)	Fans per PE					
CRPWREXH021A01	Power Exhaust System (460-3-60)	036-060	0.24	2					
CRPWREXH030A01	Power Exhaust System (208/230-1-60)	036-060	0.23	2					

	Horizontal - Mounted in Return Ductwork									
Power Exhaust Part No.	Power Exhaust Description	Application Usage	Power Output (Hp per fan)	Fans per PE						
CRPWREXH028A01	Power Exhaust System (208/230-1-60)	ALL*	0.48	1						
CRPWREXH029A01	Power Exhaust System (460-3-60)	ALL	0.48	1						

^{*} Single or three phase rooftop unit.

SOUND DATA

UNIT ARI										
581C	RATING (decibels)	(db)	63	125	250	500	1000	2000	4000	8000
024-048	76	76.0	55.9	66.0	64.0	66.2	68.4	64.5	61.7	57.3
060	80	80.0	59.1	68.9	68.7	71.9	74.0	68.9	65.7	59.0

LEGEND

ARI — Air Conditioning and Refrigeration Institute

NOTE: Indoor sound power is available in Bryant's Electronic Catalog Program (ECAT) for specific operating parameters.

PERFORMANCE DATA — 581C

581C024-036

UNIT SIZE	NOMINAL V-PH-Hz	IFM TYPE		DLTAGE RANGE COMPRESSOR		OI	-м	COMBUSTION FAN MOTOR	IFM	CONV	POWER SUPPLY		MINIMUM UNIT DISCONNECT SIZE			
SIZE	V-PH-HZ		Min	Max	QTY	RLA	LRA	QTY	FLA	FLA	FLA	OUILEI	MCA	MOCP	FLA	LRA
024	208/	STD	187	254	1	10.9	63	1	0.7	0.6	2.0	NO	16.3	20	15.6	69
(2 tons)	230-1-60	310	107	234	'	10.9	03	'	0.7	0.0	2.0	YES	22.3	25	21.2	73
	208/	STD	187	254	1	16	88	1	0.7	0.6	4.9	NO	25.6	30	24.8	101
	230-1-60	310	107	234	'	10	00	'	0.7	0.0	4.5	YES	31.6	35	30.4	106
		STD						77 1	0.7		4.9	NO	18.5	25	18.3	90
	208/	310	187	254	1	10.3	77			0.6	4.5	YES	24.5	30	23.8	95
	230-3-60	HS	107	234	'	1 10.0	''	'	0.7	0.0	5.8	NO	19.4	25	19.3	120
		110									5.0	YES	25.4	30	24.9	124
		STD				5.1	39	1	1 0.4		2.2	NO	9.0	15	8.9	46
036	460-3-60	SID	414	508	1					0.3	2.2	YES	11.7	15	11.4	48
(3 tons)	400-3-00	HS	414	306	'					0.3	2.6	NO	9.4	15	9.3	60
		по									2.0	YES	12.1	15	11.8	63
		STD									1.9	NO	7.6	10	7.5	36
		310						4	0.4		1.9	YES	9.7	15	9.5	38
	575-3-60	HS	518	18 632	1	4.2	31	'	0.4	0.3†	2.0	NO	7.7	10	7.6	43
	373-3-60	ПЭ	518		'	4.2	31			0.37	2.0	YES	9.8	15	9.6	44
		Dorfoot Humidity							1	0.44		2.6†	NO	7.7	10	8.0
		Perfect Humidity						'	0.4†		2.01	YES	9.8	15	9.6	50

LEGEND

FLA — Full Load Amps
HACR — Heating, Air Conditioning and Refrigeration
IFM — Indoor (Evaporator) Fan Motor
LRA — Locked Rotor Amps

Minimum Circuit Amps

MOCP — Maximum Overcurrent Protection NEC — National Electrical Code

Outdoor (Condenser) Fan Motor

RLA

Rated Load Amps
 Underwriters' Laboratories

*The values listed in this table do not include power exhaust. See table at right

for power exhaust requirements.
**Fuse or HACR circuit breaker.

†460v motor

NOTES:

- I compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. The UL, Canada units may be fuse or circuit breaker.
- Electrical data based on 95 F ambient outdoor-air temperature ± 10%

Unbalanced 3-Phase Supply VoltageNever operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltimbalance

Example: Supply voltage is 460-3-60.

AB = 452 vBC = 464 v AC = 455 v

Average Voltage =
$$\frac{452 + 464 + 455}{3}$$
$$= \frac{1371}{3}$$
$$= 457$$

Determine maximum deviation from average voltage.

(AB) 457 - 452 = 5 V(BC) 464 - 457 = 7 V

(AC) 457 – 455 = 2 v

Maximum deviation is 7 v.

Determine percent of voltage imbalance.

% Voltage Imbalance =
$$100 \times \frac{7}{457}$$

= 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

POWER EXHAUST ELECTRICAL DATA

POWER EXHAUST PART NO.	Application usage	MCA (230 v)	MCA (460 v)	MCA (575 v)	MOCP (for separate power source)
CRPWREXH030A01	036-072	1.6	N/A	0.64	15
CRPWREXH021A01	036-072	N/A	0.68	N/A	15
CRPWREXH028A01	ALL*	1.7	N/A	0.68	15
CRPWREXH029A01	ALL	N/A	0.7	N/A	15

- Single or three phase rooftop unit

N/A — Not available

NOTE: If a single power source is to be used, size wire to include power exhaust MCA and MOCP.

Check MCA and MOCP when power exhaust is powered through the unit. Determine the new MCA including the power exhaust using the following

MCA New = MCA unit only + MCA of Power Exhaust

For example, using a 581B060—unit with MCA = 28.9 and MOCP = 35, with CRPWREXH030A01 power exhaust.

CRPWREXHU30A01 power exnaust.

MCA New = 28.9 amps + 1.6 amps = 30.5 amps
If the new MCA does not exceed the published MOCP, then MOCP would
not change. The MOCP in this example is 35 amps and the MCA New is
below 35; therefore the MOCP is acceptable. If "MCA New" is larger than
the published MOCP, raise the MOCP to the next larger size. For separate
power, the MOCP for the power exhaust will be 15 amps per NEC.

581C048-060 UNITS

UNIT SIZE	NOMINAL V-PH-Hz	IFM TYPE		TAGE NGE	c	OMPRESS	OR	OI	FΜ	COMBUSTION FAN MOTOR	IFM	CONV OUTLET	POWER	SUPPLY *	MINIMU DISCON SIZ	NNECT
			Min	Max	QTY	RLA	LRA	QTY	FLA	FLA	FLA		MCA	MOCP**	FLA	LRA
	208/230-1-60	STD	197	254	1	21	115	1	1.5	0.6	4.9	NO	32.7	40	31.5	130
	200/200 1 00	015	107	201	, i		110		1.0	0.0	4.0	YES	38.7	45	37.0	135
		STD									4.9	NO	24.0	30	23.6	110
	208/230-3-60	_	187	254	1	14.1	95	1	1.5	0.6		YES	30.0	35	29.1	115
		HS									5.8	NO YES	24.9 30.9	30 35	24.6 30.1	140 145
												NO NO	11.9	35 15	11.6	145 53
048		STD									2.2	YES	14.6	20	14.1	55
(4 tons)	460-3-60		414	508	1	7.1	45	1	0.8	0.3		NO NO	12.3	15	12.1	67
(4 (0113)		HS									2.6	YES	15.0	20	14.6	70
												NO	10.1	15	9.9	44
		STD							0.0		1.9	YES	12.3	15	11.9	46
	575-3-60	HS	518	632	1	6.1	38	1	0.6	0.3†	2.0	2.0 NO	10.2	15	10.0	51
	373-3-00	по	316	032	'	0.1	36			0.31	2.0	YES	12.4	15	12.0	52
		Perfect Humidity						1	0.8†		2.6†	NO	10.3	15	10.1	56
		1 choot Hamaity							0.01		2.01	YES	12.5	15	12.1	58
	208/230-1-60	STD	187	254	1	25	150	1	1.5	0.6	6.6	NO	39.4	50	38.1	187
					, i			·				YES	45.4	60	43.6	191
		STD									5.8	NO YES	28.9	35	28.3	168
	208/230-3-60		187	254	1	17.3	123	1	1.5	0.6		NO NO	34.9 30.6	40 35	33.8 30.2	173 187
		HS									7.5	YES	36.6	40	35.8	192
												NO	13.9	20	13.6	92
060		STD									2.6	YES	16.6	20	16.1	95
(5 tons)	460-3-60		414	508	1	8.4	70	1	0.8	0.3†		NO	14.7	20	14.5	102
(,		HS									3.4	YES	17.4	20	17.0	104
		STD									2.0	NO	11.5	15	11.2	66
		סוט						1	0.6		2.0	YES	13.6	15	13.2	67
	575-3-60	HS	518	632	1	7 1	53	'	0.0	0.3†	2.8	NO	12.3	15	12.1	75
	373-3-00	110	310	032	1	7.1	53			0.51	2.0	YES	14.4	20	14.1	76
		Perfect Humidity						1	1.9†		3.4†	NO	12.2	15	12.0	79
		. ccc lumlarly									0.71	YES	14.4	20	14.0	80

LEGEND

FLA — Full Load Amps
HACR — Heating, Air Conditioning and Refrigeration
IFM — Indoor (Evaporator) Fan Motor
LRA — Locked Rotor Amps
MCCR — Minimum Circuit Amps
MCCR — Maximum Covernment Protection

MOCP — Maximum Overcurrent Protection
NEC — National Electrical Code Outdoor (Condenser) Fan Motor
 Rated Load Amps
 Underwriters' Laboratories **OFM**

RLA

ÜĽ

†460v motor

NOTES:

- OTES:

 1. In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. The UL, Canada units may be fuse or circuit breaker.
- Electrical data based on 95 F ambient outdoor-air temperature ± 10% voltage.

Unbalanced 3-Phase Supply Voltage

Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltage. imbalance.

Example: Supply voltage is 460-3-60.

AB = 452 v BC = 464 v AC = 455 v

Average Voltage =
$$\frac{452 + 464 + 455}{3}$$
$$= \frac{1371}{3}$$
$$= 457$$

Determine maximum deviation from average voltage.

(AB) 457 – 452 = 5 v (BC) 464 – 457 = 7 v (AC) 457 – 455 = 2 v

Maximum deviation is 7 v.

Determine percent of voltage imbalance.

% Voltage Imbalance =
$$100 \times \frac{7}{457}$$

= 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

POWER EXHAUST ELECTRICAL DATA

POWER EXHAUST PART NO.	Application usage	MCA (230 v)	MCA (460 v)	MCA (575 v)	MOCP (for separate power source)
CRPWREXH030A01	036-072	1.6	N/A	0.64	15
CRPWREXH021A01	036-072	N/A	0.68	N/A	15
CRPWREXH028A01	ALL*	1.7	N/A	0.68	15
CRPWREXH029A01	ALL	N/A	0.7	N/A	15

 * — Single or three phase rooftop unit N/A — Not available

NOTE: If a single power source is to be used, size wire to include power exhaust MCA and MOCP.

Check MCA and MOCP when power exhaust is powered through the unit. Determine the new MCA including the power exhaust using the following

MCA New = MCA unit only + MCA of Power Exhaust

For example, using a 581B060—5 unit with MCA = 28.9 and MOCP = 35, with CRPWREXH030A01 power exhaust.

MCA New = 28.9 amps + 1.6 amps = 30.5 amps

If the new MCA does not exceed the published MOCP, then MOCP would not change. The MOCP in this example is 35 amps and the MCA New is below 35; therefore the MOCP is acceptable. If "MCA New" is larger than the published MOCP, raise the MOCP to the next larger size. For separate power, the MOCP for the power exhaust will be 15 amps per NEC.

TYPICAL WIRING SCHEMATICS — 581C

NOTES:

- 1. If any of the original wire furnished must be replaced, it must
- be replaced with type 90 C wire or its equivalent.

 2. Three phase motors are protected under primary single
- Inree phase motors are protected under primary single phasing conditions.
 Use copper conductors only.
 TRAN is wired for 230 v unit. If unit is to be run with 208 v power supply, disconnect BLK wire from 230 v tap (ORN) and connect to 208 v tap (RED). Insulate end of 230 v tap.

LEGEND

TYPICAL WIRING SCHEMATICS — 581C

LEGEND

OAT — Outdoor Air Temperature Sensor

- Switch on actuator must be in run position for economizer to operate.
 50HJ540573 actuator consists of the 50HJ540567 actuator and a harness with 500-ohm resistor.

TYPICAL PIPING AND WIRING — 581C 024-060

GUIDE SPECIFICATONS — 581C024-060

Packaged Rooftop Electric Cooling Unit with Gas Heat – Constant Volume Application

HVAC Guide Specifications

Size Range: 24,000 to 60,000 Btuh,

Nominal (Input Heating) 2 to 5 Tons, Nominal (Cooling)

581C 024-060 UNITS ARE ENERGY STAR QUALIFIED

Bryant Model Number: 581C

PART 1 — General

1.01 SYSTEM DESCRIPTION

Outdoor rooftop mounted, electrically controlled heating and cooling unit utilizing a hermetic compressor(s) for cooling duty and gas combustion for heating duty. Unit shall discharge supply air vertically or horizontally as shown on contract drawings.

1.02 QUALITY ASSURANCE

- A. Unit exceeds ASHRAE 90.1-2004 Energy Standards. Units 003-006 are Energy Star qualified.
- B. Unit shall be rated in accordance with ARI Standards 210 or 360 as applicable. Designed in accordance with UL Standard 1995.
- C. Unit shall be designed to conform to ASHRAE 15, latest revision
- D. Unit shall be UL-tested and certified in accordance with ANSI Z21.47 Standards and UL-listed and certified under Canadian standards as a total package for safety requirements.
- E. Roof curb shall be designed to conform to NRCA Standards.
- F. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- G. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- H. Unit shall be designed in accordance with ISO 9001:2000, and shall be manufactured in a facility registered to ISO 9001:2000.
- I. Each unit shall be subjected to a completely automated run testing on the assembly line. A factory-supplied printout indicating tested pressures, amperages, data, and inspectors; providing certification of the unit status at the time of manufacture; shall be available upon request.

0.01 DELIVERY, STORAGE, AND HANDLING

Unit shall be stored and handled per manufacturer's recommendations.

PART 2 — Product

2.01 EQUIPMENT (STANDARD)

A. General:

Factory assembled, single-piece heating and cooling unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, refrigerant charge (R-22), and special features required prior to field start-up.

B. Unit Cabinet:

 Unit cabinet shall be constructed of galvanized steel, and shall be bonderized and coated with a prepainted baked enamel finish on all externally exposed surfaces. The color of this pre-painted steel is referred to as "American Sterling," a gray color. Bryant's paint specification for this color is PH184.

Color: American Sterling, this gray color is to match federal standard 595a, #26231.

Gloss (per ASTM 0523, 60 deg. F): 60.

Hardness of paint film: H-2H pencil hardness.

- Evaporator fan compartment interior cabinet surfaces shall be insulated with a minimum ¹/₂-in. thick,
 Ib density, flexible fiberglass insulation, neoprene coated on the air side. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.
- Cabinet panels shall be easily removable for servicing.
- Holes shall be provided in the base rails for rigging shackles to facilitate maneuvering and overhead rigging.
- Unit shall have a factory-installed, sloped condensate drain pan made of a non-corrosive material, providing a minimum ³/₄-in.-14 NPT. connection with both vertical and horizontal drains, and shall comply with ASHRAE Standard 62.
- 6. Unit shall have a factory-installed filter access panel to provide filter access with tool-less removal.
- Unit shall have standard thru-the-bottom gas and power connection capability (accessory kit is required).

C. Fans:

1. Evaporator Fan:

- Fan shall be belt driven as shown on the equipment drawings. Belt drive shall include an adjustable-pitch motor pulley.
- Fan wheel shall be double-inlet type with forward-curved blades.
- Bearings shall be sealed, permanently lubricated ball-bearing type for longer life and lower maintenance.
- Evaporator fan shall be made from steel with a corrosion-resistant finish and shall be dynamically balanced.
- Condenser fan shall be of the direct-driven (with totally enclosed motors) propeller type and shall discharge air vertically.
- Condenser fan shall have aluminum blades riveted to corrosion-resistant steel spiders and shall be dynamically balanced.
- Induced-draft blower shall be of the direct-driven, single inlet, forward-curved centrifugal type, made from steel with a corrosion-resistant finish and shall be dynamically balanced.

D. Compressor(s):

- 1. Fully hermetic type, internally protected scroll-type.
- Factory mounted on rubber grommets and internally spring mounted for vibration isolation.
- 3. Units shall be electrically and mechanically single circuits (one compressor per circuit).

E. Coils:

 Standard evaporator and condenser coils shall have aluminum lanced plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.

2. Testing:

- a. Evaporator and condenser coils shall be qualified to UL 1995 burst test at 2,200 psi.
- Evaporator and condenser coils shall be leak tested to 150 psig and pressure tested to 400 psig.

3. Optional Coils:

- a. Optional pre-coated aluminum-fin coils shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.
- b. Copper-fin coils shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan. All copper construction shall provide protection in moderate coastal environments.
- c. E-Coated aluminum-fin coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss - 60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in.-lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90. Coil construction shall be aluminum fins mechanically bonded to copper tubes.
- d. E-Coated copper-fin coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss — 60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in.-lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90. Coil construction shall be copper fins mechanically bonded to copper tubes with copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting sheet metal coil pan

to maintain coating integrity and minimize corrosion potential between coil and pan.

F. Heating Section:

 Induced-draft combustion type with energy saving direct-spark ignition system and redundant main gas valve.

2. Heat Exchanger:

- a. The standard heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gage steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance.
- The optional stainless steel heat exchanger shall be of the tubular-section type, constructed of a minimum of 20-gage type 409 stainless steel
- Burners shall be of the in-shot type constructed of aluminum-coated steel.
- 4. All gas piping shall enter the unit cabinet at a single location on side of unit (horizontal plane).
- 5. The integrated gas controller (IGC) board shall include gas heat operation fault notification using an LED (light-emitting diode).
- Unit shall be equipped with anti-cycle protection with one short cycle on unit flame rollout switch or 4 continuous short cycles on the high-temperature limit switch. Fault indication shall be made using an LED.
- 7. The IGC board shall contain algorithms that modify evaporator-fan operation to prevent future cycling on high-temperature limit switch.
- 8. The LED shall be visible without removal of control box access panel.

G. Refrigerant Components:

Refrigerant circuit components shall include:

- 1. Fixed orifice metering system (Acutrol™ device).
- 2. Refrigerant filter drier.
- Service gage connections on suction, discharge, and liquid lines.

H. Filter Section:

- Standard filter section shall consist of factoryinstalled, low velocity, throwaway 2-in. thick fiberglass filters of commercially available sizes.
- Filter face velocity shall not exceed 320 fpm at nominal airflows.
- 3. Filter section should use only one size filter.
- Filters shall be accessible through an access panel with "no-tool" removal.

I. Controls and Safeties:

1. Unit Controls:

Unit shall be complete with self-contained low-voltage control circuit protected by a fuse on the 24-v transformer side.

2 Safeties:

- a. a.Unit shall incorporate a solid-state compressor protector which provides anti-cycle reset capability at the space thermostat, should any of the following standard safety devices trip and shut off compressor.
 - 1) Compressor overtemperature, overcurrent.
 - 2) Loss-of-charge/low-pressure switch.
 - Freeze-protection thermostat, evaporator coil.
 - 4) High-pressure switch.
 - Automatic reset motor thermal overload protector.

- The lockout protection shall be easily disconnected at the control board, if necessary.
- b. Heating section shall be provided with the following minimum protections:
 - 1) High-temperature limit switches.
 - 2) Induced draft motor speed sensor.
 - 3) Flame rollout switch.
 - 4) Flame proving controls.

J. Operating Characteristics:

- Unit shall be capable of starting and running at 125
 F ambient outdoor temperature, meeting maximum load criteria of ARI Standard 210/240 or 360 at ± 10% voltage.
- Compressor with standard controls shall be capable of operation down to 25 F ambient outdoor temperature.

K. Electrical Requirements:

All unit power wiring shall enter unit cabinet at a single factory-predrilled location.

L. Motors:

- Compressor motors shall be cooled by refrigerant gas passing through motor windings and shall have line break thermal and current overload protection.
- 2. Evaporator-fan motor shall have permanently lubricated bearings and inherent automatic-reset thermal overload protection. Evaporator motors are designed specifically for Carrier and do not have conventional horsepower (HP) ratings listed on the motor nameplate. Motors are designed and qualified in the "air-over" location downstream of the cooling coil and carry a maximum continuous bhp rating that is the maximum application bhp rating for the motor; no "safety factors" above that rating may be applied.
- Totally enclosed condenser-fan motor shall have permanently lubricated bearings, and inherent automatic-reset thermal overload protection.
- 4. Induced-draft motor shall have permanently lubricated sealed bearings and inherent automatic-reset thermal overload protection.

M. Special Features:

Certain features are not applicable when the features designated * are specified. For assistance in amending the specifications, contact your local Bryant Sales Office.

- 1. Roof Curbs (Horizontal and Vertical):
 - Formed galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - b. Permits installation and securing of ductwork to curb prior to mounting unit on the curb.

*2. Integrated Economizers:

- Integrated integral modulating type capable of simultaneous economizer and compressor operation.
- Available as a factory-installed option in vertical supply/return configuration only. (Available as a field-installed accessory for dedicated horizontal and/or vertical supply return configurations.)
- Includes all hardware and controls to provide cooling with outdoor air.
- d. Equipped with low-leakage dampers, not to exceed 2% leakage at 1 in. wg pressure differential.
- e. Capable of introducing up to 100% outdoor air.

- f. EconoMi\$er IV and EconoMi\$er2 shall be equipped with a barometric relief damper capable of relieving up to 100% return air.
- g. Designed to close damper(s) during loss-ofpower situations with spring return built into motor
- h. Dry bulb outdoor-air temperature sensor shall be provided as standard. Outdoor air sensor set point is adjustable and shall range from 40 to 100 F. For the EconoMi\$er IV, the return air sensor, indoor enthalpy sensor, and outdoor enthalpy sensor shall be provided as field-installed accessories to provide enthalpy control, differential enthalpy control, and differential dry bulb temperature control. For the EconoMi\$er2, the enthalpy, differential temperature (adjustable), and differential enthalpy control shall be provided as field-installed accessories.
- The EconoMi\$er IV and EconoMi\$er2 shall have a gear-driven parallel blade design.
- j. EconoMi\$er IV microprocessor control shall provide control of internal building pressure through its accessory power exhaust function. Factory set at 100%, with a range of 0% to 100%.
- k. EconoMi\$er2 shall be capable of control from a 4 to 20 mA signal through optional 4 to 20 mA design without microprocessor control (required for PremierLink™ or third party control interface).
- EconoMi\$er IV Microprocessor Occupied Minimum Damper Position Setting maintains the minimum airflow into the building during occupied period providing design ventilation rate for full occupancy (damper position during heating). A remote potentiometer may be used to override the set point.
- m. EconoMi\$er IV Microprocessor Unoccupied Minimum Damper Position Setting The EconoMi\$er IV dampers shall be closed when the unit is in the occupied mode.
- n. EconoMi\$er IV Microprocessor IAQ/DCV Maximum Damper Position Setting Setting the maximum position of the damper prevents the introduction of large amounts of hot or cold air into the space. This position is intended to satisfy the base minimum ventilation rate.
- EconoMi\$er IV Microprocessor IAQ/DCV control modulates the outdoor-air damper to provide ventilation based on the optional 2 to 10 vdc CO₂ sensor input.
- p. Compressor lockout sensor (opens at 35 F, closes at 50 F).
- Actuator shall be direct coupled to economizer gear, eliminating linkage arms and rods.
- r. Control LEDs:
 - When the outdoor air damper is capable of providing free cooling, the "Free Cool" LED shall illuminate.
 - 2) The IAQ LED indicates when the module is on the DCV mode.
 - 3) The EXH LED indicates when the exhaust fan contact is closed.
- s. Remote Minimum Position Control A field-installed accessory remote potentiometer allows the outdoor air damper to be opened or closed beyond the minimum position in the occupied mode for modified ventilation.

3. Manual Outdoor-Air Damper:

Manual damper package shall consist of damper, birdscreen, and rainhood which can be preset to admit up to 50% outdoor air for year round ventilation

*4. 100% Two-Position Damper:

- Two-position damper package shall include single blade damper and motor. Admits up to 100% outdoor air.
- b. Damper shall close upon indoor (evaporator) fan shutoff.
- Designed to close damper during loss of power situations.
- d. Equipped with 15% barometric relief damper.
- 5. 25% Two-Position Damper:
 - Two-position damper package shall include single blade damper and motor. Admits up to 25% outdoor air.
 - b. Damper shall close upon indoor (evaporator) fan shutoff.

*6. Head Pressure Control Package:

Consists of solid-state control and condenser-coil temperature sensor to maintain condensing temperature between 90 F and 110 F at outdoor ambient temperatures down to -20 F by condenser-fan speed modulation or condenser-fan cycling and wind baffles.

7. LP (Liquid Propane) Conversion Kit:

Package shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane (valid up to 2000 ft elevation).

*8. Electronic Programmable Thermostat:

Units shall be capable of using deluxe full-featured electronic thermostat. Thermostat shall use built-in compressor cycle delay control for both heating and cooling duty. Thermostat shall be capable of working with Carrier direct digital controls.

9. Light Commercial Thermidistat™ Device:

Field-installed wall-mounted thermostat is used to control temperature and activation of the dehumidification package. The Thermidistat device can be set for humidity settings from 50% to 90% relative humidity. Automatic humidity control adjusts indoor humidity based on the outdoor temperature sensor.

*10. Flue Shield:

Flue shield shall provide protection from the hot sides of the gas flue hood.

*11. Thermostat and Subbase:

Thermostat and subbase shall provide staged cooling and heating automatic (or manual) changeover, fan control, and indicator light.

*12. Condenser Coil Hail Guard Assembly:

Hail guard shall protect against damage from hail and flying debris.

13. Unit-Mounted, Non-Fused Disconnect Switch:

Switch shall be factory-installed, internally mounted. NEC and UL approved non-fused switch shall provide unit power shutoff. Switch shall be accessible from outside the unit and shall provide power off lockout capability.

14. Convenience Outlet:

Outlet shall be factory-installed and internally mounted with easily accessible 115-v female receptacle. Shall include 15 amp GFI receptacle with

independent fuse protection. Voltage required to operate convenience outlet shall be provided by a factory-installed step-down transformer powered from the LOAD (RTU) side of the unit power supply. Shall be accessible from outside the unit.

 High-Static Indoor Fan Motor(s) and Drive(s) (004-012):

High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.

16. Flue Discharge Deflector:

Flue discharge deflector directs unit exhaust vertically instead of horizontally.

17. Condenser Coil Grille:

The grille protects the condenser coil from damage by large objects without increasing unit clearances.

18. Compressor Cycle Delay:

Unit shall be prevented from restarting for minimum of 5 minutes after shutdown.

19. Thru-the-Bottom Utility Connectors:

Kit shall provide connectors to permit gas and electrical connections to be brought to the unit through the basepan.

20. Fan/Filter Status Switch:

Switch shall provide status of indoor (evaporator) fan (ON/OFF) or filter (CLEAN/DIRTY). Status shall be displayed over communication bus when used with direct digital controls or with an indicator light at the thermostat.

21. Energy\$Recycler™ Energy Recovery System:

The package shall be an outdoor rooftop, surface mounted, electronically controlled, air-to-air heat pump unit utilizing a hermetic compressor for cooling and heating duty.

The Energy\$Recycler system shall recover energy from building exhaust air and pre-condition ventilation air to allow higher ventilation requirements and minimizing energy cost.

This option shall be available with the following:

- a. A mounting kit for the Energy\$Recycler device for cantilever mounting off of the rooftop unit with out the use of a slab or a roof curb.
- A field-installed 460-v to 208/230-v transformer to provide power when the 208-230/1/60 or 100 size Energy\$Recycler device is used with a 460v rooftop unit.
- c. A field-installed 575-v to 208/230-v transformer to provide power when an Energy\$Recycler device is used with a 575-v unit.
- Power Exhaust Accessory for EconoMi\$er IV or EconoMi\$er2:

Power exhaust shall be used in conjunction with EconoMi\$er IV or EconoMi\$er2 to provide system exhaust of up to 100% of return air (vertical only). The power exhaust is a field-installed accessory (separate vertical and horizontal design).

NOTE: Horizontal power exhaust is intended to mount in return ductwork.

As the outdoor-air damper opens and closes, *both* propeller fans are energized and deenergized through the EconoMi\$er IV controller. The set point is factory set at 100% of outdoor-air, and is adjustable 0 to 100% to meet specific job requirements. Available in 208/230-1-60 v or 460-3-60 v. An LED light on the controller indicates when the power exhaust is operating.

For the EconoMi\$er2, the power exhaust shall be controlled by the or third party controls.

Outdoor Air Enthalpy Sensor (EconoMi\$er IV or EconoMi\$er2):

The outdoor air enthalpy sensor shall be used with the EconoMi\$er IV or EconoMi\$er2 device to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the EconoMi\$er IV or EconoMi\$er2 device will provide differential enthalpy control. The sensor allows the EconoMi\$er IV or EconoMi\$er2 controller to determine if outside air is suitable for free cooling.

 Return Air Enthalpy Sensor (EconoMi\$er IV or EconoMi\$er2):

The return air enthalpy sensor shall be used with the EconoMi\$er IV or EconoMi\$er2 device. When used in conjunction with an outdoor air enthalpy sensor, the EconoMi\$er IV or EconoMi\$er2 device will provide differential enthalpy control.

Return Air Temperature Sensor (EconoMi\$er IV or EconoMi\$er2):

The return air temperature sensor shall be used with the EconoMi\$er IV or EconoMi\$er2 device. When used in conjunction with the standard outdoor air temperature sensor, the EconoMi\$er IV or EconoMi\$er2 device will provide differential temperature control.

- 26. Indoor Air Quality (CO₂) Sensor (EconoMi\$er2):
 - a. Shall have the ability to provide demand ventilation indoor air quality (IAQ) control through the EconoMi\$er2 with an IAQ sensor.
 - The IAQ sensor shall be available in duct mount, wall mount, and wall mount with LED display.
 The set point shall have adjustment capability.
 - Requires EconoMi\$er2, or Apollo control options.
- Indoor Air Quality (CO₂) Room Sensor (EconoMi\$er IV):

Sensor shall have the ability to provide demand ventilation control through the EconoMi\$er IV. The IAQ sensor shall be wall mounted with an LED display in parts per million. The set point shall have adjustment capability.

28. Return Air CO₂ Sensor (EconoMi\$er IV):

Sensor shall have the ability to provide demand ventilation control through the EconoMi\$er IV. The IAQ sensor shall be duct mounted. The set point shall have adjustment capability.

- 29. Gas Heat options (sizes 036-060):
 - Single-stage gas heat shall be provided in lieu of two-stage heat.
 - NOx reduction shall be provided to reduce nitrous oxide emissions to meet the California Air Quality Management NOx requirement of 40 nanograms/joule or less.
 - Primary tubes on low NOx units shall be 409 stainless steel. Other components shall be aluminized steel.
- 30. Ultraviolet Germicidal Lamps:

Ultraviolet germicidal lamps are designed to eliminate odor causing mold and fungus that may develop in the wet area of the evaporator section of the unit. The high output, low temperature germicidal lamps are field installed in the evaporator section of the unit, aimed at the evaporator coil and condensate pan. The short wavelength ultraviolet

light inhibits and kills mold, fungus and microbial growth. The lamps have an output rating at 45F in 400 fpm airflow of 120 microwatts/cm² at 1 meter.

- 31. Perfect Humidity™ Adaptive Dehumidification System:
 - a. The Perfect Humidity dehumidification system shall be factory-installed in the rooftop unit, and shall provide greater dehumidification of the occupied space by two modes of dehumidification operations beside its normal design cooling mode:
 - Subcooling mode further subcools the hot liquid refrigerant leaving the condenser coil when both temperature and humidity in the space are not satisfied.
 - 2) Hot gas reheat mode shall mix a portion of the hot gas from the discharge of the compressor with the hot liquid refrigerant leaving the condenser coil to create a twophase heat transfer in the system, resulting in a neutral leaving-air temperature when only humidity in the space is not satisfied.
 - b. The system shall consist of a subcooling/ reheat dehumidification coil located downstream of the standard evaporator coil. This dehumidification coil is a two-row coil on the 005 and 006 units, and a one-row coil on 003 and 004 units.
 - The system shall include crankcase heater(s) for the scroll compressor(s).
 - d. The system shall include a low outdoor air temperature switch to lock out both subcooling and hot gas reheat mode when the outdoor-air temperature is below 40 F.
 - e. The system shall include a Motormaster® low ambient control to ensure the normal design cooling mode capable of down to 0° F low ambient operation.
 - f. The system shall include a low-pressure switch on the suction line to ensure low pressure startup of hot gas reheat mode at lower outdoor temperature condition.
 - g. The system operation may be controlled by a field-installed, wall-mounted humidistat. The dehumidification circuit will then operate only when needed. Field connections for the humidistat are made in the low-voltage compartment of the unit control box. The sensor can be set for any level between 55% and 80% relative humidity.
 - h. The system shall include a Thermal Expansion Valve (TXV) to ensure a positive superheat condition and a balance of pressure drop.
- 32. Humidistat:

Field-installed, wall-mounted humidistat is used to control activation of the dehumidification package. The humidistat can be set for humidity levels between 20% and 80% relative humidity.

33. Hinged Panel Option:

Hinged panel option provides hinged access panels for the filter, compressor, evaporator fan, and control box areas. Filter hinged panels permit tool-less entry for changing filters. Each hinged panel is permanently attached to the rooftop unit.

PHYSICAL DATA — 579F180-300

UNIT 579F		180	575 v	216	240	300
NOMINAL CAPACITY (tons)		208/230, 460 v 15	3/3 V	18	20	25
OPERATING WEIGHT (Ib)		1650)	1800	1850	2000
Economizer Roof Curb		90 200		90 200	90 200	90 200
COMPRESSOR		200		Scr		200
QuantityModel (Ckt 1, Ckt 2)				1SM120,	1SM120,	1SM161,
Number of Refrigerant Circuits		2SR*9 ²	12AE	1SR*782AE 2	1SM110 2	1SM120 2
Oil (oz) (Ckt 1, Ckt 2)		90, 9		110, 72	110,110	112, 110
Stages of Capacity Control (%) REFRIGERANT TYPE		50/50)	60/40 R-2	52/48	56/44
Expansion Device				TX		
Operating Charge (lb-oz)		10.44	2	15.0	10.0	24.0
Circuit 1* Circuit 2		10-10 10-5		15-2 11-5	16-3 14-8	21-0 15-4
CONDENSER COIL			Cross-Hato	hed ³ / ₈ -in. Coppe	r Tubes, Aluminum Land or Copper Plate Fins	ed,
RowsFins/in.		217	Alum 7	inum Pre-Coated, 315	or Copper Plate Fins 315	415
Total Face Area (sq ft)		21.7		21.7	21.7	21.7
CONDENSER FAN		40.40		Propelle	/ ·	40.500
Nominal Cfm QuantityDiameter (in.)		10,40 322	2	9300 322	13,700 230	12,500 230
Motor HpRpm		1/210	50	1/21050	11075	11075
Watts Input (Total) EVAPORATOR COIL		1100		1100	3400	3400
EVAPORATOR COIL			CIUSS-HAICH	Copper Plate Fi	Tubes, Aluminum Lance ins, Face Split	eu oi
RowsFins/in. Total Face Area (sq ft)		217 17.5	7	315 17.5	315 17.5	415 17.5
EVAPORATOR FAN				Centrifug	al Type	
QuantitySize (in.) Type Drive		210 x 10 Belt	210 x 10 Belt	212 x 12 Belt	212 x 12 Belt	212 x 12 Belt
Nominal Cfm		6000	6000	7200	8000	10,000
Motor Hp Motor Nominal Rpm		3.7 1725	3.0 1725	5 1745	7.5 1745	10 1740
Maximum Continuous Bhp		4.25	3.45	5.90	8.7 [208/230, 575 v]	10.2 [208/230, 575 v]
Motor Frame Size		56H	5.45 56H	184T	9.5 [460 v] 213T	11.8 [460 v] 215T
Nominal Rpm High/Low		_	_	_	_	_
Fan r/s Range	Low-Medium Static High Static	891-1179 1227-1550	1159-1429	910-1095 1069-1287	1002-1225 1193-1458	1066-1283 1332-1550
Motor Bearing Type	riigii otatic	Ball	Ball	Ball	Ball	Ball
Maximum Allowable Rpm Motor Pulley Pitch Diameter	Low-Medium Static	1550 3.1/4.1	1550 4.3/5.3	1550 4.9/5.9	1550 5.4/6.6	1550 4.9/5.9
Min/Max (in.)	High Static	3.7/4.7	_	4.9/5.9	5.4/6.6	4.9/5.9
Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.)	Low-Medium Static	⁷ / ₈ 6.0	7/ ₈ 6.4	1 ¹ / ₈ 9.4	1 ³ / ₈ 9.4	1 ³ / ₈ 8.0
' ' '	High Static	5.2		8.0	9.4 7.9	6.4
Nominal Fan Shaft Diameter (in.)	Low-Medium Static	1 ³ / ₁₆ 1BX42	1 ³ / ₁₆ 1BX45	17/ ₁₆	1 ⁷ / ₁₆ 1BX54	1 ⁷ / ₁₆ 2BX50
Belt, QuantityTypeLength (in.)	High Static	1BX42 1BX42	_	1BX50 1BX48	1BX50	2BX50 2BX47
Pulley Center Line Distance (in.) Speed Change per Full Turn of	Low-Medium Static	13.5-15.5 48	13.5-15.5 44	13.3-14.8 37	14.6-15.4 37	14.6-15.4 36
Movable Pulley Flange (rpm)	High Static	55		34	44	45
Movable Pulley Maximum Full Turns From Closed Position		5	5	5	5	5
Factory Speed		3.5	3.5	3.5	3.5	3.5
Factory Speed Setting (rpm)	Low-Medium Static High Static	1035 1389	1296	1002 1178	1120 1328	1182 1470
Fan Shaft Diameter at Pulley (in.)	ingii otatio	13/ ₁₆	1 ³ / ₁₆	17/ ₁₆	17/ ₁₆	1 ⁷ / ₁₆

LEGEND

Bhp — Brake Horsepower TXV — Thermostatic Expansion Valve

NOTE: The 579F units have a low-pressure switch (standard) located on the suction side.

^{*}Circuit 1 uses the lower portion of condenser coil and lower portion of evaporator coils; and Circuit 2 uses the upper portion of both coils.
†Rollout switch is manual reset.

**The 579F300 units requires 2-in. industrial-grade filters capable of handling face velocities of up to 625 ft/min (such as American Air Filter no. 5700 or equivalent).

PHYSICAL DATA — 579F180-300 (cont)

UNIT 579F	180	216	240	300
FURNACE SECTION				
Rollout Switch Cutout Temp (F)†	190	190	190	190
Burner Orifice Diameter (indrill size)				
_ Natural Gas	0.128530/0.13629	0.128530/0.13629	0.128530/0.13629	0.128530/0.13629
Thermostat Heat Anticipator Setting (amps)	0.00	0.00	0.00	0.00
208/230, 575 Stage 1	0.98	0.98	0.98	0.98
Stage 2 460 v Stage 1	0.44 0.80	0.44 0.80	0.44 0.80	0.44 0.80
460 v Stage 1 Stage 2	0.80	0.80	0.80	0.80
Gas Input Stage 1	172.000/225.000	206.000/270.000	206.000/270.000	206.000/270.000
Stage 2	230,000/300,000	275,000/360,000	275,000/360,000	275,000/360,000
Efficiency (Steady State) (%)	81	81	81	81
Temperature Rise Range	15-45/20-50	15-45/20-50	15-45/20-50	15-45/20-50
Manifold Pressure (in. wg)				
Natural Gas	3.3	3.3	3.3	3.3
Gas Valve Quantity	1	1 3/ ₄	1	1
Field Gas Connection Size (inFPT)	3/4	3/4	3/4	
HIGH-PRESSURE SWITCH (psig)				
Cutout			26	
Reset (Auto)		32	20	
LOW-PRESSURE SWITCH (psig)				
Cutout		2		
Reset (Auto)		4	4	
FREEZE PROTECTION THERMOSTAT (F)				
Opens			± 5	
Closes		45	± 5	
OUTDOOR-AIR INLET SCREENS		Clear	nable	
QuantitySize (in.)		220 x	(25 x 1	
, ,		120 x	(20 x 1	
RETURN-AIR FILTERS		Throwa	awav**	
QuantitySize (in.)		420 x	(20 x 2	•
• • •		416 x	(20 x 2	
POWER EXHAUST	1/ ₋ Hp 208/2	230-460 v Motor Direct Drive	Propeller-Fan (Factory-Win	ed for 460 v)

LEGEND

Brake HorsepowerThermostatic Expansion Valve

*Circuit 1 uses the lower portion of condenser coil and lower portion of evaporator coils; and Circuit 2 uses the upper portion of both coils.

†Rollout switch is manual reset.
**The 579F300 units requires 2-in. industrial-grade filters capable of handling face velocities of up to 625 ft/min (such as American Air Filter no. 5700 or equiva-

NOTE: The 579F units have a low-pressure switch (standard) located on the suction side.

OPERATING AND RIGGING WEIGHTS

	BASE UNIT OPERATING WEIGHTS*											
UNIT	180		216	i	240		300					
	lb kg lb		kg	lb	kg	lb	kg					
579F	1650	748	1800	816	1850	839	2000	907				

^{*}Base unit weight does not include electric heaters, copper coils, economizer, power exhaust, barometric relief or crating. See Options and Accessories table below for more information.

 $\pmb{\mathsf{NOTE}}$: For 180 and 216 unit sizes add 75 lb (34 kg) for domestic crating. For 240 and 300 unit sizes add 135 lb (61 kg). For export crating add 500 lb (227 kg).

OPTIONS AND ACCESSORIES (Weight Adders)

			OP	TION/ACCES	SORY WEIGI	HTS		
OPTION/ ACCESSORY	1	180		216		40	300	
ACCESSORT	lb	kg	lb	kg	lb	kg	lb	kg
Barometric Relief Damper	50	23	50	23	50	23	50	23
Power Exhaust	85	39	85	39	85	39	85	39
EconoMi\$er IV	90	41	90	41	90	41	90	41
Cu Condenser Coil	150	68	150	68	150	68	150	68
Cu Condenser and Evaporator Coils	280	127	280	127	280	127	280	127
Roof Curb (14-in. curb)	200	91	200	91	200	91	200	91
Horizontal Adapter Curb (Pre-Assembled)	250	113	250	113	250	113	250	113
Horizontal Adapter Curb (Field-Assembled)	343	156	343	156	343	156	343	156
Hail Guard	60	27	60	27	60	27	60	27

LEGEND

Cu - Copper

Horizontal and Vertical Roof Curbs — 579F180-300

ACCESSORY DIMENSIONS — 579F180-300

179

ACCESSORY DIMENSIONS — 579F180-300 (cont)

Horizontal Supply/Return Adapter Installation (579F180-300)

Barometric Relief/Power Exhaust

ACCESSORY DIMENSIONS (cont)

Factory-Installed Convenience Outlet

Factory-Installed Non-Fused Disconnect

SELECTION PROCEDURE (With 579F180 Example)

I DETERMINE COOLING AND HEATING REQUIRE-MENTS AT DESIGN CONDITIONS.

Given:

required.

Required Cooling Capacity170,000 Btuh
Sensible Heat Capacity
Required Heating Capacity200,000 Btuh
Condenser Entering Air Temp
Evaporator Entering Air Temp 80 F edb,
67 F ewb
Evaporator Air Quantity
External Static Pressure 0.6 in. wg
Electrical Characteristics (V-Ph-Hz) 460-3-60
Vertical discharge unit with optional EconoMi\$er IV

edb — Entering dry-bulb ewb — Entering wet-bulb

II SELECT UNIT BASED ON REQUIRED COOLING CAPACITY.

Enter Cooling Capacities table for 579F180300 (page 152) at condenser entering temperature 95 F, evaporator air entering at 4,500 cfm and 67 F wb. The 579F180300 unit will provide a total cooling capacity of 179,000 Btuh and a sensible heating capacity of 117,000 Btuh. For air entering evaporator at temperatures other than 80 F edb, calculate sensible heat capacity correction as required using the formula in the notes following the Cooling Capacities tables.

NOTE: Unit ratings are gross capacities and do not include the effect of evaporator-fan motor heat. To calculate net capacities, see Step V.

III SELECT HEATING CAPACITY OF UNIT TO PROVIDE DESIGN CONDITION REQUIREMENTS.

In the ARI Heating Capacities and Efficiencies table (page 12) note that the 579F180300 will provide an output capacity of 243,000 Btuh, which is adequate for the given application.

IV DETERMINE FAN SPEED AND POWER REQUIRE-MENTS AT DESIGN CONDITIONS.

Before entering the Fan Performance tables, calculate the total static pressure required based on unit components. From the given and the Accessory/FIOP Static Pressure table on page 164 find:

External static pressure

EconoMi\$er IV static pressure

0.60 in. wg
0.04 in. wg
0.64 in. wg

Enter the Fan Performance table 579F180300 (page 161) at 4,500 cfm and 0.64 in. wg external static pressure. By interpolation, find that the rpm is 1017 and the watts are 1743.

V DETERMINE NET COOLING CAPACITY.

Cooling capacities are gross capacities and do not include indoor (evaporator) fan motor (IFM) heat. Use the watts input power to the motor calculated in Section IV above.

IFM Watts = 1743

Determine net cooling capacity using the following formula:

Net capacity = Gross capacity – IFM heat = 179,000 Btuh – 1743 Watts

 $(3.412 \frac{\text{Btuh}}{\text{Watts}})$

= 179,000 Btuh - 5947 Btuh = 173,053 Btuh

Net sensible capacity = 117,000 Btuh - 5947 Btuh = 111,053 Btuh

The calculations show that a 579F180300 unit with the standard motor and standard low-medium static drive is the correct selection for the given conditions.

PERFORMANCE DATA — 579F **COOLING CAPACITIES**

579F180) (15 Tons	s)													
Tom	p (F)						Evap	orator Air	Quantity –	- Cfm					
	tering				4500				5250						
	enser						Eva	oorator Air	— Ewb (F)/BF					
(E	db)	54/0.48	58/0.32	62/0.22	67/0.20	72/0.19	76/0.24	80/0.04	54/0.54	58/0.39	62/0.25	67/0.23	72/0.21	76/0.23	80/0.04
75	TC SHC kW	_ _	- 168 177 192 209 225 240 171 171 182 197 214 229 246 - 152 142 123 103 85 69 171 150 151 130 108 88 69 - 152 142 123 103 85 69 171 150 151 130 108 88 69											69	
85	TC SHC kW	159 159 13.7	164 148 13.8	171 139 14.1	186 120 14.4	202 100 14.8	219 83 15.5	233 66 15.4	166 166 13.9	172 151 14.0	175 148 14.1	190 127 14.5	207 105 14.9	222 86 15.2	237 67 15.5
95	TC SHC kW	154 154 15.3	159 142 15.4	165 136 15.5	179 117 15.9	195 98 16.3	210 80 16.7	226 64 17.3	161 161 15.5	164 155 15.5	169 145 15.7	183 124 16.0	199 102 16.5	214 83 16.8	229 64 17.1
105	TC SHC kW	149 149 16.9	154 137 17.0	158 133 17.1	172 114 17.6	187 95 18.0	201 78 18.4	216 61 18.7	156 156 17.2	156 156 17.1	162 142 17.2	176 121 17.7	191 99 18.1	205 81 18.5	222 62 19.1
115	TC SHC kW	144 144 18.6	145 142 18.6	152 130 18.9	165 111 19.3	179 92 19.8	193 75 20.2	207 58 20.6	150 150 18.9	151 151 18.9	156 137 19.0	168 118 19.5	183 96 19.9	196 78 20.3	210 58 20.7
117	TC SHC kW	143 143 18.9	143 142 19.0	150 129 19.2	163 110 19.7	178 91 20.2	191 74 20.5	205 57 20.9	149 149 19.2	149 149 19.2	154 136 19.4	167 117 19.8	181 96 20.3	194 77 20.7	208 58 21.0
120	TC SHC kW	141 141 19.5	141 141 19.5	148 128 19.8	161 109 20.2	175 90 20.7	_ _ _	_ 	147 147 19.8	148 148 19.8	152 135 19.9	164 116 20.4	179 95 20.8	_ 	

579F180) (15 Ton:	s) (cont)													
Tom	n /E)						Evap	orator Air	Quantity –	– Cfm					
	p (F) ntering				6000				6750						
	lenser						Eva	oorator Air	— Ewb (F)/BF					
(E	db)												76/0.25	80/0.03	
75	TC SHC kW	178 178 12.7	174 171 12.7	185 159 12.8	200 136 13.1	218 112 13.5	233 91 13.8	250 70 14.1	183 183 12.8	179 179 12.7	183 161 12.8	203 142 13.2	221 116 13.5	236 93 13.9	253 70 14.1
85	TC SHC kW	173 173 14.1	173 172 14.1	179 156 14.2	193 133 14.6	210 109 15.0	227 89 15.8	244 68 16.2	178 178 14.2	178 178 14.2	183 161 14.3	196 139 14.7	213 113 15.1	228 91 15.3	247 68 16.3
95	TC SHC kW	167 167 15.7	167 167 15.6	173 152 15.8	186 130 16.1	203 106 16.6	217 86 16.9	232 64 17.2	173 173 15.8	173 173 15.8	177 157 15.9	189 137 16.2	205 111 16.6	220 88 17.0	235 65 17.3
105	TC SHC kW	162 162 17.3	162 162 17.3	167 147 17.4	179 127 17.8	194 104 18.2	208 83 18.5	223 61 18.9	168 168 17.4	167 167 17.4	171 152 17.5	181 133 17.9	197 108 18.3	211 85 18.6	225 62 18.9
115	TC SHC kW	156 156 19.1	156 156 19.1	160 143 19.1	171 124 19.6	186 101 20.0	199 80 20.4	213 59 20.7	160 160 19.2	160 160 19.2	165 145 19.3	173 130 19.6	188 104 20.1	201 82 20.5	215 59 20.8
117	TC SHC kW	154 154 19.4	155 155 19.4	159 142 19.5	169 124 19.9	184 100 20.4	197 79 20.8	211 58 21.1	159 159 19.6	159 159 19.6	163 144 19.7	171 129 20.0	186 104 20.4	199 82 20.8	_
120	TC SHC kW	153 153 19.9	153 153 19.9	157 140 20.0	167 122 20.4	181 99 20.9		111	157 157 20.1	157 157 20.1	161 142 20.2	169 128 20.5	_ _ _	_ 	_

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 $\mathbf{t}_{\text{lwb}} = \quad \text{Wet-bulb temperature corresponding to enthalpy of air} \\ \text{leaving evaporator coil } (\mathbf{h}_{\text{lwb}})$

h_{lwb} = h_{ewb} - total capacity (Btuh)

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTE	RING AI	R DRY-E	ULB TE	MP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
` ,			Corr	ection F	actor	
0.05	1.04	2.07	3.11	4.14	5.18	
0.10	0.98	1.96	2.94	3.92	4.91	
0.20	0.87	1.74	2.62	3.49	4.36	
0.30	0.76	1.53	2.29	3.05	3.82	Use formula
0.40	0.65	1.31	1.96	2.62	3.27	shown below.
0.50	0.55	1.09	1.64	2.18	2.73	
0.60	0.44	0.87	1.31	1.74	2.18	
0.70	0.33	0.65	0.98	1.31	1.64	

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES (cont)

79F180 (1	5 Tons) (co	ont)						
Temp) (F)			Evapo	orator Air Quantity -	— Cfm		
Air En					7500			
(Ed		54/0.65	58/0.52	62/0.41	oorator Air — Ewb (I 67/0.30	76/0.27	80/0.03	
						72/0.28		
75	TC SHC kW	188 188 12.9	183 183 12.8	193 170 13.0	206 148 13.2	223 120 13.6	239 95 13.9	256 70 14.2
85	TC SHC kW	183 183 14.4	183 183 14.4	187 167 14.4	199 145 14.7	215 117 15.1	233 94 15.9	249 68 16.3
95	TC SHC kW	177 177 15.9	177 177 15.9	181 161 16.0	191 142 16.3	207 114 16.7	222 90 17.0	237 65 17.3
105	TC SHC kW	171 171 17.6	171 171 17.6	175 154 17.7	183 138 18.0	199 111 18.4	213 87 18.7	228 62 19.0
115	TC SHC kW	164 164 19.4	164 164 19.4	169 146 19.5	175 135 19.7	190 108 20.2	203 84 20.5	217 59 20.9
117	TC SHC kW	163 163 19.7	163 163 19.7	167 145 19.9	173 134 20.0	188 107 20.5	201 84 20.9	
120	TC SHC kW	161 161 20.2	161 161 20.3	165 143 20.4	170 133 20.6		111	

LEGEND

 Bypass Factor
 Entering Dry-Bulb
 Entering Wet-Bulb
 Compressor Motor Power Input
 Leaving Dry-Bulb
 Leaving Wet-Bulb
 Sensible Heat Capacity (1000 Btuh) Gross
 Total Capacity (1000 Btuh) Gross BF Edb Ewb kW Idb Iwb SHC TC

NOTES:

Direct interpolation is permissible. Do not extrapolate. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil $(\mathbf{h}_{\text{lwb}})$ $t_{lwb} =$

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTERING AIR DRY-BULB TEMP (F)											
BYPASS FACTOR	79	78	77	76	75	under 75							
(BF)	81	82	83	84	85	over 85							
, ,			Corr	ection F	actor								
0.05	1.04	2.07	3.11	5.18									
0.10	0.98	1.96	2.94	3.92	4.91								
0.20	0.87	1.74	2.62	3.49	4.36								
0.30	0.76	1.53	2.29	3.05	3.82	Use formula							
0.40	0.65	1.31	1.96	2.62	3.27	shown below.							
0.50	0.55	1.09	1.64	2.18	2.73								
0.60	0.44	0.87	1.31	1.74	2.18								
0.70	0.33	0.65	0.98	1.31	1.64								

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES (cont)

579F210	6 (18 Ton	s)													
Tom	p (F)						Evap	orator Air	Quantity –	– Cfm					
	ntering				5400							6000			
	lenser						Eva	oorator Air	— Ewb (F)/BF					
(=	db)	54/0.49													80/0.05
75	TC SHC kW	194 194 13.6	198 178 13.7	206 169 13.9	223 146 14.2	243 121 14.6	260 99 15.0	277 79 15.2	200 200 13.7	203 191 13.8	210 177 14.0	227 152 14.4	246 125 14.7	263 102 15.1	
85	TC SHC kW	189 189 15.1	192 176 15.2	200 166 15.4	217 143 15.9	235 118 16.3	252 97 16.6	269 76 16.9	195 195 15.3	195 195 15.3	204 174 15.7	220 149 16.0	239 123 16.4	255 100 16.8	_
95	TC SHC kW	183 183 16.8	184 181 16.8	193 162 17.1	209 140 17.6	227 115 18.0	243 94 18.4		189 189 17.0	190 190 17.0	196 170 17.2	212 146 17.6	230 120 18.1	246 97 18.5	
105	TC SHC kW	177 177 18.6	178 178 18.6	185 159 18.8	201 137 19.3	218 112 19.8	234 91 20.2		183 183 18.8	185 185 18.6	189 166 18.9	204 143 19.4	221 116 19.9	237 94 20.3	
115	TC SHC kW	171 171 20.5	171 171 20.5	177 154 20.7	192 133 21.2	209 109 21.8	224 88 22.1	_ 	176 176 20.7	177 177 20.7	181 161 20.8	195 139 21.3	212 113 21.8	226 90 22.2	<u> </u>
117	TC SHC kW	170 170 20.9	170 170 20.9	176 154 21.1	191 132 21.6	207 108 22.1	222 87 22.5		175 175 21.1	175 175 21.1	180 160 21.2	193 138 21.7	210 112 22.2	224 90 22.6	
120	TC SHC kW	168 168 21.5	168 168 21.5	173 152 21.7	188 131 22.2	204 107 22.7	=		173 173 21.7	173 173 21.7	177 159 21.8	191 137 22.3	207 111 22.8		

579F216	6 (18 Ton	s) (cont)													
	•	Í .					Evap	orator Air	Quantity -	- Cfm					
	p (F) ntering				7000		_					8000			
	lenser db)						Eva	orator Air	— Ewb (F)/BF					
(=	ub)	54/0.58 58/0.42 62/0.29 67/0.21 72/0.20 76/0.20 80/0.05 54/0.62 58/0.48 62/0.36 67/0.23 72/0.22 76/0.21 80/0.05												80/0.04	
75	TC SHC kW	209 209 13.9	209 209 13.9	215 189 14.1	232 162 14.5	251 132 14.9	268 106 15.2	_ _ _	216 216 14.1	217 217 14.1	221 198 14.2	236 171 14.5	255 138 15.0	272 109 15.3	_
85	TC SHC kW	203 203 15.5	204 204 15.5	209 185 15.7	224 159 16.1	243 129 16.5	260 103 16.9		211 211 15.7	211 211 15.7	215 192 15.8	228 168 16.2	247 135 16.6	263 107 17.0	
95	TC SHC kW	197 197 17.2	197 197 17.2	202 180 17.4	216 156 17.8	235 126 18.2	251 100 18.7		204 204 17.4	204 204 17.4	209 185 17.6	220 165 17.9	238 132 18.3	254 104 18.7	
105	TC SHC kW	191 191 19.0	191 191 19.0	195 175 19.2	208 152 19.5	225 123 20.0	241 97 20.5		197 197 19.2	197 197 19.2	202 177 19.3	211 161 19.6	228 128 20.1	244 100 20.6	
115	TC SHC kW	184 184 21.0	184 184 21.0	188 168 21.1	199 149 21.5	215 119 22.0	230 94 22.4		190 190 21.1	190 190 21.1	194 170 21.2	202 158 21.6	218 125 22.1		
117	TC SHC kW	183 183 21.3	183 183 21.4	187 166 21.5	197 148 21.8	214 118 22.4	228 93 22.7	_ _ _	188 188 21.5	188 188 21.5	192 171 21.7	200 157 22.0	216 124 22.5	<u> </u>	_ _ _
120	TC SHC kW	180 180 21.9	180 180 22.0	185 163 22.1	194 147 22.4	210 117 23.0	_ _ _	111	186 186 22.1	186 186 22.1	190 172 22.2	197 156 22.5	111	111	

LEGEND

BF Edb Ewb kW Idb Iwb SHC TC

Bypass Factor
Entering Dry-Bulb
Entering Wet-Bulb
Compressor Motor Power Input
Leaving Dry-Bulb
Leaving Wet-Bulb
Sensible Heat Capacity (1000 Btuh) Gross
Total Capacity (1000 Btuh) Gross

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 $t_{\text{lwb}} = \quad \text{Wet-bulb temperature corresponding to enthalpy of air} \\ \text{leaving evaporator coil } (h_{\text{lwb}})$

$$h_{lwb} = h_{ewb} - \frac{total capacity (Btuh)}{4.5 \times cfm}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTE	RING AI	R DRY-E	ULB TE	MP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
` ,			Corr	ection F	actor	
0.05	1.04	2.07	3.11	4.14	5.18	
0.10	0.98	1.96	2.94	3.92	4.91	
0.20	0.87	1.74	2.62	3.49	4.36	
0.30	0.76	1.53	2.29	3.05	3.82	Use formula
0.40	0.65	1.31	1.96	2.62	3.27	shown below.
0.50	0.55	1.09	1.64	2.18	2.73	
0.60	0.44	0.87	1.31	1.74	2.18	
0.70	0.33	0.65	0.98	1.31	1.64	

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES (cont)

Temp	(E)			Evapo	rator Air Quantity -	- Cfm		
Air Ente					9000			
Conde	nser			Evap	orator Air — Ewb (F)/BF		
(Edk	P)	54/0.65	58/0.53	62/0.40	67/0.25	72/0.23	76/0.23	80/0.05
75	TC SHC kW	223 223 14.3	223 223 14.3	228 202 14.4	239 181 14.6	258 144 15.0	275 113 15.4	=
85	TC SHC kW	216 216 15.8	217 217 15.9	222 194 16.0	231 177 16.3	250 141 16.7	266 110 17.1	=
95	TC SHC kW	210 210 17.6	210 210 17.6	215 187 17.7	223 174 18.0	241 138 18.4	257 107 18.8	=
105	TC SHC kW	202 202 19.4	202 202 19.4	207 184 19.5	214 170 19.7	231 134 20.2		=
115	TC SHC kW	195 195 21.3	195 195 21.3	196 192 21.4	204 166 21.7	221 131 22.2		=
117	TC SHC kW	193 193 21.7	193 193 21.7	194 192 21.7	202 166 22.0	219 130 22.6	_ _ _	=
120	TC SHC kW	191 191 22.3	191 191 22.3	191 191 22.3	199 164 22.6		_	_

LEGEND

 Bypass Factor
 Entering Dry-Bulb
 Entering Wet-Bulb
 Compressor Motor Power Input
 Leaving Dry-Bulb
 Leaving Wet-Bulb
 Sensible Heat Capacity (1000 Btuh) Gross
 Total Capacity (1000 Btuh) Gross BF Edb Ewb kW Idb Iwb SHC TC

NOTES:

Direct interpolation is permissible. Do not extrapolate. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil $(\mathbf{h}_{\mathrm{lwb}})$ $t_{lwb} =$

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTE	RING A	R DRY-E	BULB TE	MP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
, ,			Corr	ection F	actor	
0.05	1.04	2.07	5.18			
0.10	0.98	1.96	2.94	3.92	4.91	
0.20	0.87	1.74	2.62	3.49	4.36	
0.30	0.76	1.53	2.29	3.05	3.82	Use formula
0.40	0.65	1.31	1.96	2.62	3.27	shown below.
0.50	0.55	1.09	1.64	2.18	2.73	
0.60	0.44	0.87	1.31	1.74	2.18	
0.70	0.33	0.65	0.98	1.31	1.64	

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES (cont)

579F240	(20 Ton:	s)														
Tom	p (F)						Evap	orator Air	Quantity -	– Cfm						
	tering				6,000							7,000				
	enser						Eva	oorator Air	— Ewb (F)/BF	/BF					
(E	db)	54/0.48	58/0.31	62/0.21	67/0.19	72/0.17	76/0.22	80/0.05	54/0.54	58/0.37	62/0.25	67/0.21	72/0.19	76/0.21	80/0.04	
75	TC SHC kW	217 217 15.1	222 199 15.2	232 189 15.4	252 163 15.8	274 136 16.2	294 112 16.6	316 90 17.0	227 227 15.3	231 217 15.4	238 202 15.5	254 172 15.9	281 143 16.4	297 115 16.5	322 91 17.2	
85	TC SHC kW	212 212 16.9	217 194 17.2	226 185 17.3	244 159 17.6	266 133 18.0	285 109 18.4	306 87 18.8	222 222 17.1	225 211 17.3	231 198 17.3	250 170 17.7	272 140 18.2	291 113 18.6	312 88 19.0	
95	TC SHC kW	206 206 18.9	208 197 18.8	217 181 19.0	236 156 19.5	257 129 20.0	276 106 20.4	295 84 20.8	215 215 19.0	216 213 19.0	223 194 19.2	241 166 19.6	262 136 20.1	281 110 20.5	301 84 21.0	
105	TC SHC kW	199 199 20.8	202 190 20.9	209 177 21.1	227 152 21.6	247 126 22.0	265 103 22.5	285 80 22.9	208 208 21.0	209 209 21.0	215 189 21.2	232 163 21.7	252 132 22.2	270 107 22.6		
115	TC SHC kW	192 192 23.0	194 192 22.9	200 173 23.3	218 149 23.8	237 122 24.3	254 99 24.8		202 202 23.2	202 202 23.2	207 183 23.5	222 159 23.9	242 129 24.5	259 103 24.9		
117	TC SHC kW	191 191 23.5	191 191 23.5	199 172 23.7	216 148 24.2	235 121 24.8	252 99 25.2		200 200 23.8	200 200 23.8	205 182 23.9	220 158 24.4	240 128 24.9	257 102 25.3		
120	TC SHC kW	189 189 24.2	189 189 24.2	196 170 24.4	213 147 25.0	232 120 25.5	249 98 25.9		197 197 24.5	198 198 24.5	203 181 24.6	217 156 25.1	236 127 25.6	_ _ _	_ _ _	

79F240) (20 Ton	s) (cont)					F		0	06					
	p (F) ntering				8,000		Evap	orator Air	Quantity –	- Ctm		9,000			
Cond	lenser						Eva	orator Air	— Ewb (F)/BF					
(E	db)	54/0.58	58/0.43	62/0.30	67/0.23	72/0.21	76/0.22	80/0.04	54/0.62	58/0.48	62/0.35	67/0.24	72/0.23	76/0.23	80/0.04
75	TC SHC kW	236 236 15.5	238 232 15.5	241 211 15.6	259 181 15.9	286 149 16.5	302 119 16.6	328 91 17.3	244 244 15.7	244 244 15.7	250 222 15.8	267 192 16.1	290 155 16.6	307 123 16.7	
85	TC SHC kW	231 231 17.5	230 230 17.3	237 209 17.4	254 179 17.8	276 146 18.3	296 117 18.7		237 237 17.5	238 238 17.6	243 216 17.6	258 189 18.0	281 152 18.4	300 121 18.8	
95	TC SHC kW	223 223 19.2	223 223 19.2	229 203 19.3	245 176 19.8	267 142 20.2	285 114 20.6		231 231 19.5	230 230 19.4	235 209 19.5	249 185 19.8	270 148 20.3	289 117 20.8	_
105	TC SHC kW	216 216 21.3	216 216 21.3	221 197 21.4	236 172 21.8	256 139 22.3	274 110 22.7		222 222 21.4	223 223 21.5	228 202 21.6	239 181 21.9	260 145 22.4	278 114 22.8	
115	TC SHC kW	208 208 23.5	209 209 23.5	213 190 23.7	226 168 24.0	246 135 24.6	263 107 25.0		214 214 23.7	214 214 23.7	220 193 23.9	229 177 24.2	249 141 24.7	266 110 25.1	_ _ _
117	TC SHC kW	207 207 24.0	207 207 24.0	212 188 24.1	224 167 24.5	243 134 25.0	260 106 25.5		213 213 24.2	213 213 24.2	219 191 24.2	227 176 24.6	246 140 25.1	263 109 25.6	_ _ _
120	TC SHC kW	204 204 24.7	205 205 24.7	209 185 24.8	221 166 25.2	240 133 25.7	_		210 210 24.9	210 210 24.9	215 193 25.0	224 175 25.3	243 139 25.8		_

LEGEND

BF — Edb — Ewb — Idb — Iwb — SHC — Bypass Factor Entering Dry-Bulb Entering Wet-Bulb

kW Idb Iwb SHC TC

Compressor Motor Power Input Leaving Dry-Bulb Leaving Wet-Bulb Sensible Heat Capacity (1000 Btuh) Gross Total Capacity (1000 Btuh) Gross

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{total capacity (Btuh)}{4.5 \times cfm}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTE	RING AI	R DRY-E	ULB TE	MP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
` ,			Corr	ection F	actor	
0.05	1.04	2.07	3.11	4.14	5.18	
0.10	0.98	1.96	2.94	3.92	4.91	
0.20	0.87	1.74	2.62	3.49	4.36	
0.30	0.76	1.53	2.29	3.05	3.82	Use formula
0.40	0.65	1.31	1.96	2.62	3.27	shown below.
0.50	0.55	1.09	1.64	2.18	2.73	
0.60	0.44	0.87	1.31	1.74	2.18	
0.70	0.33	0.65	0.98	1.31	1.64	

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES (cont)

Tomp	/E\	_	_	Evapo	rator Air Quantity -	– Cfm	<u> </u>	
Temp Air Ente					10,000			
Conder	ser			Evap	orator Air — Ewb (F	F)/BF		
(Edb)	54/0.65	58/0.52	62/0.40	67/0.26	72/0.24	76/0.24	80/0.04
75	TC SHC kW	250 250 15.8	250 250 15.8	256 227 15.9	267 200 16.1	294 161 16.7	314 127 17.1	_
85	TC SHC kW	243 243 17.6	244 244 17.8	249 220 17.7	262 198 18.0	284 158 18.5	303 124 18.9	
95	TC SHC kW	236 236 19.5	236 236 19.5	241 212 19.7	252 194 19.9	274 154 20.4	292 121 20.9	
105	TC SHC kW	228 228 21.6	228 228 21.6	234 203 21.8	242 190 22.0	263 151 22.5	281 117 22.9	
115	TC SHC kW	220 220 23.9	220 220 23.9	223 207 23.9	232 186 24.2	251 147 24.7	268 113 25.2	
117	TC SHC kW	218 218 24.3	218 218 24.3	221 205 24.4	230 185 24.7	249 146 25.2	266 112 25.6	
120	TC SHC kW	215 215 25.1	215 215 25.1	218 203 25.1	226 183 25.4	245 145 25.9		=

LEGEND

 Bypass Factor
 Entering Dry-Bulb
 Entering Wet-Bulb
 Compressor Motor Power Input
 Leaving Dry-Bulb
 Leaving Wet-Bulb
 Sensible Heat Capacity (1000 Btuh) Gross
 Total Capacity (1000 Btuh) Gross BF Edb Ewb kW Idb Iwb SHC TC

NOTES:

Direct interpolation is permissible. Do not extrapolate. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil $(\mathbf{h}_{\text{lwb}})$ $t_{lwb} =$

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTE	RING AI	R DRY-E	BULB TE	MP (F)				
BYPASS FACTOR	79	78	77	76	75	under 75				
(BF)	81	82	83	84	85	over 85				
, ,			Corr	ection F	actor					
0.05	1.04	2.07	3.11	4.14	5.18					
0.10	0.98	1.96	2.94	3.92	4.91					
0.20	0.87	1.74	2.62	3.49	4.36					
0.30	0.76	1.53	2.29	3.05	3.82	Use formula				
0.40	0.65	1.31	1.96	2.62	3.27	shown below.				
0.50	0.55	1.09	1.64	2.18	2.73	1				
0.60	0.44	0.87	1.31	1.74	2.18					
0.70	0.33	0.65	0.98	1.31	1.64					

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES (cont)

579F300) (25 Tons	s)													
Tom	p (F)						Evap	orator Air	Quantity –	– Cfm					
	ntering				7,000							8,000			
	lenser						Eva	orator Air	— Ewb (F)/BF					
(=	db)	54/0.44	58/0.26	62/0.13	67/0.12	72/0.12	76/0.19	80/0.01	54/0.49	58/0.32	62/0.15	67/0.14	72/0.13	76/0.17	80/0.00
75	TC SHC kW		256 243 19.3	270 229 20.0	298 198 20.3	325 164 21.0	349 133 21.6	370 106 22.2	266 266 19.5	268 251 19.6	280 246 19.9	304 209 20.5	324 168 20.9	352 137 21.8	379 107 22.4
85	TC SHC kW	249 249 21.3	251 238 21.3	265 226 21.7	289 194 22.4	315 160 23.1	340 130 24.3	361 103 24.4	260 260 21.6	262 254 21.6	272 243 22.0	294 205 22.5	321 167 23.3	344 135 23.9	367 104 24.6
95	TC SHC kW	244 244 23.6	245 230 23.5	257 223 24.1	279 190 24.6	306 156 25.6	328 127 26.2	349 99 26.7	254 254 23.8	256 249 23.9	262 238 24.1	284 201 24.8	310 163 25.5	332 131 26.2	355 100 26.9
105	TC SHC kW	237 237 25.9	238 233 25.9	247 218 26.3	269 185 27.0	293 152 27.8	315 122 28.5	336 95 29.2	246 246 26.3	247 245 26.3	253 233 26.5	274 197 27.2	298 159 28.0	319 127 28.7	343 96 29.5
115	TC SHC kW	229 229 28.6	231 225 28.6	237 213 28.9	258 181 29.6	283 148 30.3	302 119 31.2	322 91 31.9	238 238 28.9	239 239 28.9	243 228 29.1	264 193 29.7	286 155 30.6	306 123 31.4	328 91 32.1
117	TC SHC kW	228 228 29.1	230 225 29.1	236 212 29.4	256 180 30.2	279 147 31.0	299 118 31.7		237 237 29.4	237 237 29.5	241 227 29.6	260 192 30.4	283 154 31.2	304 122 31.9	_ _ _
120	TC SHC kW	226 226 30.0	226 225 30.0	232 211 30.3	252 179 30.9	276 145 31.8	=		234 234 30.3	234 234 30.3	238 225 30.5	257 190 31.1	280 152 32.0		

579F300) (25 Ton	s) (cont)													
Tom	p (F)	<u> </u>					Evap	orator Air	Quantity -	- Cfm					
	ntering				9,000							10,000			
	lenser db)						Eva	orator Air	— Ewb (F)/BF					
(E	ub)	54/0.53	58/0.37	62/0.18	67/0.15	72/0.14	76/0.17	80/0.00	54/0.57	58/0.41	62/0.23	67/0.16	72/0.15	76/0.17	80/0.00
75	TC SHC kW	277 277 19.8	276 269 19.5	286 261 20.0	310 221 20.6	336 178 21.3	361 142 22.0	385 108 22.6	286 286 20.0	284 284 20.2	291 274 20.2	314 232 20.8	341 186 21.5	365 147 22.1	390 108 22.7
85	TC SHC kW	271 271 22.2	272 264 21.9	277 257 22.1	300 217 22.7	326 175 23.4	349 139 24.1	373 104 24.8	278 278 22.1	278 278 22.1	282 269 22.2	304 228 22.8	330 182 23.6	354 143 24.2	378 105 24.9
95	TC SHC kW	263 263 24.1	263 263 24.1	268 251 24.3	289 213 24.9	316 171 25.9	337 135 26.4	360 100 27.1	270 270 24.4	270 270 24.4	273 262 24.4	293 223 25.1	319 177 25.8	341 139 26.5	364 101 27.2
105	TC SHC kW	255 255 26.5	255 255 26.5	258 246 26.6	278 208 27.3	302 166 28.1	326 132 29.0	346 96 29.6	261 261 26.8	262 262 26.8	264 254 26.9	282 219 27.5	306 173 28.3	328 135 29.0	352 97 29.8
115	TC SHC kW	247 247 29.1	246 246 29.2	249 239 29.3	267 204 30.0	290 162 30.8	311 127 31.5		253 253 29.3	253 253 29.3	255 245 29.6	270 214 30.1	293 168 30.9	315 131 31.7	
117	TC SHC kW	244 244 29.7	244 244 29.7	247 237 29.8	265 203 30.4	288 161 31.3	308 126 32.1		251 251 30.0	251 251 30.0	253 243 30.0	268 213 30.6	291 168 31.4		_ _ _
120	TC SHC kW	241 241 30.6	242 242 30.6	244 235 30.7	261 201 31.3		_ _ _	111	248 248 30.8	248 248 30.8	250 239 31.0	264 212 31.5	_ _ _	_ 	_

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 $t_{\text{lwb}} = \quad \text{Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil } (h_{\text{lwb}})$

$$h_{lwb} = h_{ewb} - \frac{total\ capacity\ (Btuh)}{4.5\ x\ cfm}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTE	RING AI	R DRY-E	ULB TE	MP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
, ,			Corr	ection F	actor	
0.05	1.04	2.07	3.11	4.14	5.18	
0.10	0.98	1.96	2.94	3.92	4.91	
0.20	0.87	1.74	2.62	3.49	4.36	
0.30	0.76	1.53	2.29	3.05	3.82	Use formula
0.40	0.65	1.31	1.96	2.62	3.27	shown below.
0.50	0.55	1.09	1.64	2.18	2.73	
0.60	0.44	0.87	1.31	1.74	2.18	
0.70	0.33	0.65	0.98	1.31	1.64	

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

COOLING CAPACITIES (cont)

Temp) /E)			Evapo	orator Air Quantity –	– Cfm		
Air Ent					11,250			
Conde	enser			Evap	orator Air — Ewb (F	F)/BF		
(Ed	ib)	54/0.61	58/0.47	62/0.30	67/0.16	72/0.17	76/0.17	80/0.00
75	TC SHC kW	295 295 20.3	295 295 20.3	298 285 20.4	319 245 20.9	342 193 21.2	367 151 21.5	392 108 21.9
85	TC SHC kW	288 288 22.5	287 287 22.4	289 278 22.4	310 241 23.1	334 190 23.7	359 148 24.4	384 106 25.3
95	TC SHC kW	278 278 24.6	278 278 24.6	280 269 24.7	318 150 30.0	323 186 26.0	346 144 26.7	
105	TC SHC kW	269 269 27.0	269 269 27.0	272 259 27.1	285 232 27.6	310 182 28.4	332 140 29.1	
115	TC SHC kW	259 259 29.7	260 260 29.6	262 247 29.8	273 227 30.2	297 177 31.1	318 136 31.8	
117	TC SHC kW	257 257 30.3	257 257 30.3	261 245 30.3	271 226 30.7	294 176 31.6	_ _ _	
120	TC SHC kW	254 254 31.1	254 254 31.1	257 242 31.3	267 224 31.6		_	=

LEGEND

 Bypass Factor
 Entering Dry-Bulb
 Entering Wet-Bulb
 Compressor Motor Power Input
 Leaving Dry-Bulb
 Leaving Wet-Bulb
 Sensible Heat Capacity (1000 Btuh) Gross
 Total Capacity (1000 Btuh) Gross BF Edb Ewb kW Idb Iwb SHC TC

NOTES:

Direct interpolation is permissible. Do not extrapolate. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil $({\rm h}_{\rm lwb})$ $t_{lwb} =$

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTE	RING A	R DRY-E	BULB TE	MP (F)
BYPASS	79	78	77	76	75	under 75
FACTOR (BF)	81	82	83	84	85	over 85
` '			Corr	ection F	actor	
0.05	1.04	2.07	3.11	4.14	5.18	
0.10	0.98	1.96	2.94	3.92	4.91	
0.20	0.87	1.74	2.62	3.49	4.36	
0.30	0.76	1.53	2.29	3.05	3.82	Use formula
0.40	0.65	1.31	1.96	2.62	3.27	shown below.
0.50	0.55	1.09	1.64	2.18	2.73	
0.60	0.44	0.87	1.31	1.74	2.18	
0.70	0.33	0.65	0.98	1.31	1.64	

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

FAN PERFORMANCE — 579F180-300 UNITS

579F180230 (1	5 TONS)	*																
41.61							Avail	able Ext	ternal St	atic Pres	sure (ir	ո. wg)						
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0			1.2	
(Oilli)	Rpm	Bhp	Watts															
4500 4800	809 850	1.53 1.76	1317 1516	906 942	1.74 1.98	1502 1706	994 1027	1.96 2.20	1690 1899	1078 1107	2.18 2.43	1882 2094	1156 1183	2.41 2.66	2077 2293	1230 1255	2.64 2.89	2275 2495
5100	892	2.01	1733	979	2.24	1928	1061	2.46	2125	1138	2.70	2325	1211	2.93	2528	1281	3.17	2733
5400 5700	934 976	2.28 2.58	1970 2225	1017 1056	2.52 2.82	2169 2429	1096 1132	2.75 3.06	2371 2635	1170 1204	2.99 3.30	2575 2843	1241 1272	3.22 3.54	2781 3053	1309 1338	3.47 3.79	2990 3266
6000	1019	2.90	2500	1096	3.14	2709	1168	3.38	2919	1238	3.63	3131	1304	3.88	3345	1368	4.13	3562
6300 6600	1063 1106	3.24 3.61	2795 3111	1136 1177	3.49 3.86	3008 3329	1206 1244	3.74 4.11	3223 3547	1273 1309	3.99 4.37	3439 3767	1337	4.24 —	3657 —	_	_	
6900	1150	4.00	3448	1218	4.26	3670	_	_	_	_	_	_	_	_	_	_	_	_
7200 7500	_			_		_	_			_	_		_			_		_

					-	Available	Externa	al Static	Pressur	e (in. wg	1)				
Airflow (Cfm)		1.4			1.6			1.8			1.9			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
4500	1301	2.87	2477	1369	3.11	2683	1434	3.35	2891	1497	3.47	2997	1497	3.60	3103
4800	1324	3.13	2700	1390	3.37	2909	1454	3.62	3120	1515	3.74	3226	1515	3.87	3334
5100	1349	3.41	2942	1413	3.66	3153	1475	3.90	3367	1535	4.03	3475	1535	4.16	3584
5400	1374	3.71	3202	1437	3.96	3416	1498	4.21	3633	_	_	_	_	_	_
5700	1402	4.04	3481	1463	4.29	3699	_	_	_	_	_	_	_	_	_
6000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
6600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7200	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	<u> </u>	_
7500	_	_	_	_	_		_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Standard low-medium static drive range is 891 to 1179 rpm (208/230 v and 460 v) or 1159 to 1429 (575 v). Alternate high-static drive range is 1227 to 1550 (208/230 v and 460 v only). Other rpms require a field-supplied drive.

Refer to page 194 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp is 4.25 (208/230 v and 460 v) or 3.45 (575 v) and the maximum continuous watts are 3775 (208/230 v and 460 v) or 3065 (575 v). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm.

				_			Avail	able Ext	ternal St	atic Pres	ssure (ir	n. wg)						
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0			1.2	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
5,500	755	2.27	1908	831	2.58	2171	901	2.91	2443	968	3.24	2723	1031	3.58	3009	1091	3.93	3302
6,000	810	2.72	2287	881	3.04	2556	947	3.37	2833	1010	3.71	3116	1070	4.05	3406	1127	4.40	3702
6,500	866	3.22	2710	932	3.55	2985	994	3.88	3266	1054	4.23	3554	1111	4.57	3847	1166	4.93	4146
7,000	923	3.78	3177	985	4.11	3458	1044	4.45	3744	1100	4.80	4036	1155	5.15	4333	1207	5.51	4635
7,500	980	4.39	3690	1038	4.73	3976	1094	5.07	4267	1148	5.43	4564	1200	5.78	4864	1250	6.15	5170
8,000	1038	5.06	4251	1093	5.40	4542	1146	5.75	4838	1197	6.11	5138	1246	6.47	5443	1294	6.84	5752
8,500	1096	5.78	4859	1148	6.13	5156	1198	6.49	5456	1247	6.85	5761	1294	7.22	6070	1340	7.59	6382
9,000	1154	6.56	5517	1204	6.92	5818	1251	7.28	6123	1298	7.65	6432	1343	8.02	6745	1388	8.40	7062
9,500	1213	7.40	6224	1260	7.77	6531	1306	8.13	6840	1350	8.51	7154	1394	8.88	7471	1436	9.26	7791
10,000	1272	8.30	6983	1317	8.67	7294	1360	9.05	7608	1403	9.43	7926	1445	9.81	8247	1486	10.19	8570

				_	A	vailable	Externa	al Static	Pressur	e (in. wg	1)		_		
Airflow (Cfm)		1.4			1.6			1.8			1.9			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
5,500	1149	4.28	3602	1204	4.65	3907	1258	5.02	4217	1284	5.20	4375	1309	5.39	4533
6,000	1183	4.76	4003	1236	5.13	4310	1288	5.50	4622	1313	5.68	4780	1337	5.87	4939
6,500	1219	5.29	4450	1270	5.66	4759	1320	6.03	5073	1344	6.22	5232	1368	6.41	5391
7,000	1258	5.88	4942	1307	6.25	5253	1355	6.62	5569	1378	6.81	5729	1402	7.00	5890
7,500	1299	6.52	5480	1346	6.89	5794	1392	7.27	6113	1415	7.46	6273	1437	7.65	6435
8,000	1341	7.21	6065	1387	7.59	6383	1392	7.97	6704	1453	8.16	6866	1475	8.36	7300
8,500	1385	7.97	6699	1429	8.35	7019	1472	8.73	7343	1493	8.93	7506	1514	9.12	7670
9,000	1431	8.78	7382	1473	9.15	7705	1515	9.55	8032	1535	9.75	8196	_	_	_
9,500	1478	9.65	8114	1519	10.04	8441	_	_	_	_	_	_	_	_	_
10,000	I —	_	_	_	_	_	l —	_	_	_	_	_	_	_	l —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Standard low-medium static drive range for the 216 size is 910 to 1095 rpm. Standard low-medium static drive range for the 240 size is 1002 to 1225 rpm. Alternate high-static drive range for the 216 size is 1069 to 1287. Alternate high-static drive range for the 240 size is 1193 to 1458 rpm. Other rpms require a field-supplied drive.

Refer to page 194 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp for the 216 size is 5.90. Maximum continuous bhp for the 240 size is 8.70 (208/230 and 575 v) or 9.50 (460 v). The maximum continuous watts for the 216 size is 5180. The maximum continuous watts for the 240 size is 7915 (208/230 and 575 v) or 8640 (460 v). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm.

FAN PERFORMANCE — 579F180-300 UNITS (cont)

579F300275 (25	TONS)	*																
A1.01							Avail	able Ext	ernal St	atic Pres	ssure (ir	n. wg)						
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0			1.2	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
7,000	941	3.35	2,769	1002	3.80	3,140	1061	4.27	3528	1117	4.76	3,934	1171	5.27	4,356	1224	5.80	4,794
7,500	999	4.05	3,348	1057	4.53	3,742	1112	5.02	4152	1166	5.54	4,579	1218	6.07	5,216	1268	6.63	5,478
8,000	1058	4.85	4,007	1113	5.35	4,424	1165	5.87	4856	1216	6.41	5,304	1266	6.97	5,766	1314	7.55	6,243
8,500	1117	5.74	4,750	1169	6.28	5,190	1219	6.83	5645	1268	7.40	6,114	1315	7.98	6,597	1361	8.58	7,094
9,000	1177	6.75	5,583	1226	7.31	6,047	1274	7.89	6524	1320	8.48	7,015	1365	9.09	7,520	1410	9.72	8,037
9,500	1237	7.98	6,511	1284	8.46	6,999	1329	9.07	7499	1374	9.69	8,012	1417	10.33	8,538	1459	10.98	9,076
10,000	1297	9.12	7,450	1342	9.74	8,051	1385	10.37	8574	1428	11.02	9,110	1469	11.68	9,657	1510	12.36	10,217
10,500	1358	10.49	8,674	1400	11.14	9,209	1442	11.80	9755	1483	12.47	10,314	1523	13.16	10,883	_	_	<u> </u>
11,000	1418	12.00	9,919	1459	12.67	10,478	_	l —	_	_	l —	_	_	_	_	_	_	_
11,250	1449	12.80	10,585	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

579F300275 (25	TONS)	* (cont)							
41.0			vailable	Externa	al Static	Pressure	e (in. wg	1)	
Airflow (Cfm)		1.4			1.6			1.8	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
7,000	1274	6.35	5248	1323	6.92	5,718	1371	5.54	6204
7,500	1316	7.20	6960	1364	7.79	6,437	1410	6.41	6939
8,000	1360	8.14	6734	1406	8.76	7,239	1450	7.40	7759
8,500	1406	9.20	7605	1449	9.83	8,129	1492	8.48	8666
9,000	1453	10.36	8568	1495	11.02	9,111	1536	9.69	9667
9,500	1501	11.64	9627	1541	12.32	10,190	_	_	_
10,000	_	_	_	_	_		_	_	_
10,500	_	_	l —	_	_	_	_	_	l —
11,000	_	_	_	_	_	_	_	_	_
11,250	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower **Watts** — Input Watts to Motor

*Standard low-medium static drive range is 1066 to 1283 rpm. Alternate high-static drive range is 1332 to 1550. Other rpms require a field-supplied drive.

Refer to page 194 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp is 10.20 (208/230 and 575 v) or 11.80 (460 v) and the maximum continuous watts are 9510 (208/230 and 575 v) or 11,000 (460 v). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm.

							Avail	able Ext	ternal St	atic Pres	sure (ir	ı. wg)						
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0			1.2	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
4500	819	1.55	1335	914	1.76	1518	1001	1.98	1705	1083	2.20	1894	1160	2.42	2088	1234	2.65	2284
4800	861	1.78	1538	951	2.00	1726	1035	2.22	1916	1113	2.45	2110	1188	2.68	2307	1259	2.91	2507
5100	904	2.04	1759	989	2.26	1952	1069	2.49	2147	1145	2.72	2345	1218	2.95	2545	1287	3.17	2749
5400	947	2.32	1999	1300	2.55	2197	1105	2.78	2396	1179	3.01	2598	1248	3.25	2802	1315	3.49	3009
5700	990	2.62	2259	1068	2.85	2461	1142	3.09	2665	1213	3.33	2871	1280	3.57	3079	1345	3.81	3289
6000	1034	2.94	2539	1109	3.18	2745	1180	3.42	2953	1248	3.67	3163	1313	3.91	3375	1376	4.16	3589
6300	1078	3.29	2840	1150	3.54	3050	1218	3.78	3262	1284	4.03	3476	1348	4.28	3692	_	_	_
6600	1123	3.67	3161	1192	3.91	3376	1258	4.16	3592	_	_	_	_	l —	_	_	_	l —
6900	1167	4.06	3504	1234	4.32	3723	_	_	_	_	_	_	_	_	_	_	_	_
7200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
7500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

A 1 . et .					-	Available	Externa	ıl Static	Pressur	e (in. wg	1)				
Airflow (Cfm)		1.4			1.6			1.8			1.9			2.0	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
4500	1304	2.88	2484	1371	3.12	2688	1435	3.36	2895	1467	3.48	2999	1497	3.60	3104
4800	1327	3.14	2711	1393	3.38	2917	1456	3.62	3126	1486	3.75	3232	1517	3.87	3338
5100	1353	3.43	2955	1417	3.67	3165	1478	3.92	3377	1508	4.04	3484	1537	4.16	3592
5400	1380	3.73	3219	1442	3.98	3432	1502	4.23	3646	1531	4.35	3755	_	_	_
5700	1408	4.06	3503	1468	4.31	3718	_	_	_	_	_	_	_	_	_
6000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6300	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6900	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_
7200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Standard low-medium static drive range is 891 to 1179 rpm (208/230 v and 460 v) or 1159 to 1429 (575 v). Alternate high-static drive range is 1227 to 1550 (208/230 v and 460 v only). Other rpms require a field-supplied drive.

Refer to page 194 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp is 4.25 (208/230 v and 460 v) or 3.45 (575 v) and the maximum continuous watts are 3775 (208/230 v and 460 v) or 3065 (575 v). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm.

FAN PERFORMANCE — 579F180-300 UNITS (cont)

A 1 . et .							Avail	able Ext	ternal St	atic Pres	ssure (ir	ı. wg)						
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0			1.2	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
5,500	795	2.43	2043	866	2.74	2306	934	3.07	2578	998	3.40	2856	1059	3.74	3142	1117	4.08	3434
6,000	854	2.92	2452	921	3.24	2722	984	3.57	3998	1044	3.90	3281	1102	4.25	3570	1158	4.60	3865
6,500	914	3.46	2909	977	3.79	3184	1036	4.12	3465	1093	4.46	3752	1148	4.81	4045	1201	5.16	4343
7,000	975	4.06	3414	1034	4.39	3695	1090	4.73	3981	1144	5.08	4272	1196	5.43	4569	1246	5.79	4870
7,500	1037	4.72	3969	1092	5.06	4255	1145	5.41	4546	1196	5.76	4842	1256	6.12	5142	1294	6.48	5447
8,000	1099	5.44	4575	1150	5.79	4866	1201	6.14	5162	1249	6.50	5462	1297	6.86	5766	1343	7.22	6075
8,500	1161	6.22	5232	1210	6.57	5529	1258	6.93	5829	1304	7.29	6134	1349	7.66	6443	1393	8.03	6755
9,000	1223	7.07	5943	1270	7.43	6245	1315	7.79	6550	1360	8.16	6869	1403	8.53	7171	1445	8.90	7487
9,500	1286	7.98	6708	1331	8.34	7014	1374	8.71	7324	1416	9.08	7638	1457	9.46	7954	1498	9.84	8274
10,000	1349	8.95	7528	1392	9.32	7839	1433	9.70	8154	1473	10.07	8471	_	_	_	_	_	_

					-	Available	Externa	ıl Static	Pressur	e (in. wg	1)				
Airflow (Cfm)		1.4			1.6			1.8			1.9			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
5,500	1173	4.44	3732	1227	4.80	4036	1279	5.17	4345	1304	5.35	4502	1329	5.54	4629
6,000	1211	4.95	4165	1263	5.32	4471	1313	5.69	4782	1337	5.87	4939	1361	6.06	5097
6,500	1252	5.53	4646	1302	5.89	4954	1350	6.26	5267	1373	6.56	5425	1396	6.64	5584
7,000	1295	6.16	5176	1343	6.52	5487	1389	6.90	5802	1412	7.09	5961	1434	7.28	6121
7,500	1340	6.85	5756	1386	7.22	6070	1431	7.60	6387	1452	7.79	6547	1474	7.98	6709
8,000	1388	7.60	6388	1431	7.97	6704	1474	8.35	7240	1495	8.54	7186	1516	8.74	7348
8,500	1436	8.41	7071	1478	8.79	7390	1520	9.17	7713	1540	9.37	7876	_	_	_
9,000	1486	9.28	7807	1527	9.67	8130	_	_	_	_	_	_	_	_	_
9,500	1538	10.22	8597	_	_	_	_	_	_	_	_	_	_	_	l —
10,000	_	l —	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Standard low-medium static drive range for the 216 size is 910 to 1095 rpm. Standard low-medium static drive range for the 240 size is 1002 to 1225 rpm. Alternate high-static drive range for the 216 size is 1069 to 1287. Alternate high-static drive range for the 240 size is 1193 to 1458 rpm. Other rpms require a fieldsupplied drive.

Refer to this page for general Fan Performance Data notes.

NOTE: Maximum continuous bhp for the 216 size is 5.90. Maximum continuous bhp for the 240 size is 8.70 (208/230 and 575 v) or 9.50 (460 v). The maximum continuous watts for the 216 size is 5180. The maximum continuous watts for the 240 size is 7915 (208/230 and 575 v) or 8640 (460 v). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operations of the state of

A inflam.							Avail	able Ext	ernal St	atic Pres	ssure (in	. wg)						
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0			1.2	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
7,000	992	4.05	3,348	1051	4.44	3,668	1106	4.83	3995	1160	5.24	4331	1212	5.65	4675	1262	6.08	5026
7,500	1055	4.77	3,947	1110	5.17	4,277	1162	5.58	4615	1214	6.00	4960	1263	6.43	5312	1311	6.86	5672
8,000	1118	5.58	4,610	1170	5.99	4,950	1220	6.41	5298	1268	6.84	5653	1315	7.27	6014	1361	7.72	6382
8,500	1182	6.46	5,339	1231	6.88	5,690	1278	7.31	6047	1324	7.75	6411	1369	8.20	6782	1413	8.66	7158
9,000	1246	7.42	6,136	1292	7.86	6,498	1337	8.30	6865	1381	8.75	7239	1424	9.21	7618	1466	9.68	8003
9,500	1310	8.47	7,005	1354	8.92	7,377	1397	9.38	7754	1439	9.84	8137	1480	10.31	8525	1520	10.79	8918
10,000	1374	9.61	7,947	1416	10.07	8,329	1457	10.54	8715	1497	11.02	9107	1537	11.50	9504	_	_	_
10,500	1439	10.84	8,964	1479	11.32	9,356	1518	11.79	9752	_	_	_	_	_	_	_	_	_
11,000	1503	12.17	10,059	1542	12.65	10,460	_	_	_	_	l —	_	_	_	_	_	l —	_
11,250	1536	12.86	10,636	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

			vailable	Externa	al Static	Pressur	e (in wo	1	
Airflow (Cfm)		1.4	wanabic	LACCITIC	1.6	i iessui	e (III. wg	1.8	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
7,000	1311	6.51	5385	1359	6.96	5751	1405	6.00	6124
7,500	1358	7.30	6039	1403	7.76	6412	1448	6.84	6792
8,000	1406	8.17	6767	1560	8.63	7137	1492	7.75	7524
8,500	1456	9.12	7541	1498	9.59	7929	1539	8.75	8323
9,000	1507	10.15	8393	1548	10.63	8790	_	_	l —
9,500	_	_	_	_	_	_	_	_	_
10,000	_	_	_	_	_	_	_	_	_
10,500	_	_	l —	_	l —	_	_	_	_
11,000	_	_	_	_	_	_	_	_	_
11.250	I —	_	l —	_	l —	_	_	_	l —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Standard low-medium static drive range is 1066 to 1283 rpm. Alternate high-static drive range is 1332 to 1550. Other rpms require a field-supplied drive.

Refer to this page for general Fan Performance Data notes.

NOTE: Maximum continuous bhp is 10.20 (208/230 and 575 v) or 11.80 (460 v) and the maximum continuous watts are 9510 (208/230 and 575 v) or 11,000 (460 v). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm.

GENERAL NOTES FOR FAN PERFORMANCE DATA TABLES

- Static pressure losses (i.e., EconoMi\$er IV) must be added to external static pressure before entering Fan Performance table.
- Interpolation is permissible. Do not extrapolate.
 Fan performance is based on wet coils, clean filters, and casing losses. See Accessory/FIOP Static Pressure table on page 193.
- Extensive motor and drive testing on these units ensures that the full horse-power and watts range of the motor can be utilized with confidence. Using fan motors up to the watts or bhp rating shown will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.
 Use of a field-supplied motor may affect wire sizing. Contact your Bryant representative for details.
- representative for details.

Fan Performance Using Accessory Power Exhaust (579F180-300)

ALTITUDE COMPENSATION* — 579F180-300

ELEVATION	NATURAL GAS	ORIFICE SIZE†
(ft)	Low Heat	High Heat
0-3,000	30	29
3,000- 7,000	31	30
7,000- 9,000	32	31
9,000-10,000	33	31
above 10,000	35	32

^{*}Includes a 4% input reduction per each 1,000 feet. †Orifices available through your Bryant distributor.

ALTITUDE DERATING FACTOR*

ELEVATION (ft)	MAXIMUM HEATING VALUE (Btu/ft³)
0-2,000	1,100
2,001-3,000	1,050
3,001-4,000	1,000
4,001-5,000	950
5,001-6,000	900

*Derating of the unit is not required unless the heating value of the gas exceeds the values listed in the table above, or if the elevation exceeds 6000 ft. Derating conditions must be 4% per thousand ft above 2000 ft. For example, at 4000 ft, if the heating value of the gas exceeds 1000 Btu/ft³, the unit will require a 16% derating. For elevations above 6000 ft, the same formula applies. For example, at 7000 ft, the unit will require a 28% derating of the maximum heating value per the National Fuel Gas Code.

IMPORTANT: Local utility companies may be reducing heat content of gas at altitudes above 2000 ft. If this is being done, then changing spuds may not be required.

ALTITUDE COMPENSATION — 579F180-300 (LP Gas Units)

ELEVATION	LIQUID PROPANE ORIFICE SIZE
(ft)	Low Heat and High Heat
0-2,000	36
2,000	37
3,000	38
4,000	38
5,000	39
6,000	40
7,000	41
8,000	41
9,000	42
10,000	43

OUTDOOR SOUND POWER

UNIT	SOUND	A-WEIGHTED			OCTAVE BANDS										
579F	RATING (60 Hz)	(dB)	63	125	250	500	1000	2000	4000	8000					
180	88 dB	87.8	90.8	88.7	86.4	84.3	83.5	78.4	75.6	66.8					
216	88 dB	87.8	90.8	88.7	86.4	84.3	83.5	78.4	75.6	66.8					
240	95 dB	94.1	98.7	92.3	93.8	90.9	89.6	85.9	80.3	74.3					
300	95 dB	94.1	98.7	92.3	93.8	90.9	89.6	85.9	80.3	74.3					

NOTE: Indoor sound power is available in Bryant's Electronic Catalog program (ECAT) for specific operating parameters.

ACCESSORY/FIOP STATIC PRESSURE (in. wg)* — 579F180-300

COMPONENT					CFM				
COMPONENT	4500	5000	5400	6000	7200	7500	9000	10,000	11,250
EconoMi\$er IV and EconoMi\$er2	0.040	0.050	0.060	0.070	0.090	0.100	0.110	0.120	0.140

LEGEND

FIOP — Factory-Installed Option

FAN RPM AT MOTOR PULLEY SETTINGS*

UNIT		MOTOR PULLEY TURNS OPEN											
579F	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/2	6
180† (208/230 and 460-v)	††	††	1179	1150	1121	1093	1064	1035	1006	978	949	920	891
180**	††	††	1559	1522	1488	1455	1422	1389	1356	1323	1289	1256	1227
180† (575-v)	††	††	1429	1403	1376	1349	1323	1296	1269	1242	1215	1188	1159
216†	††	††	1095	1077	1058	1040	1021	1002	984	965	947	928	910
216**	††	††	1287	1265	1243	1222	1200	1178	1156	1134	1112	1091	1069
240†	††	††	1225	1209	1187	1165	1143	1120	1098	1076	1053	1031	1002
240**	††	††	1458	1434	1407	1381	1354	1328	1301	1275	1248	1222	1193
300†	††	††	1283	1269	1247	1225	1203	1182	1160	1138	1116	1095	1066
300**	††	††	_	_	1551	1524	1497	1470	1443	1415	1388	1361	1332

^{*}The static pressure must be added to external static pressure. The sum and the evaporator entering-air cfm should then be used in conjunction with the Fan Performance tables to determine blower rpm and watts.

^{*}Approximate fan rpm shown.
†Indicates standard drive package.
**Indicates alternate drive package.
††Due to belt and pulley size, pulley cannot be set to this number of turns open.

EVAPORATOR-FAN MOTOR DATA

UNIT 579F	UNIT VOLTAGE	MAXIMUM ACCEPTABLE CONTINUOUS BHP*	MAXIMUM ACCEPTABLE CONTINUOUS BkW*	MAXIMUM ACCEPTABLE OPERATING WATTS	MAXIMUM AMP DRAW
	208/230	4.25	3.17	3,775	10.5
180	460	4.25	3.17	3,775	4.8
	575	3.45	2.59	3,065	3.9
	208/230				15.8
216	460	5.90	4.40	5,180	7.9
	575				6.0
	208/230	8.70	6.49	7,915	22.0
240	460	9.50	7.08	8,640	13.0
	575	8.70	6.49	7,915	10.0
	208/230	10.20	7.61	9,510	28.0
300	460	11.80	8.80	11,000	14.6
	575	10.20	7.61	9,510	13.0

LEGEND

BHP — Brake Horsepower BkW — Brake Kilowatts

NOTE: All indoor-fan motors 5 hp and larger meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT) effective October 24, 1997.

EVAPORATOR-FAN MOTOR EFFICIENCY

UNIT 579F	MOTOR EFFICIENCY (%)
180 (3.0 Hp)	81.7
180 (3.7 Hp)	85.8
216 (5 Hp)	87.5
240 (7.5 Hp)	88.5
300 (10 Hp)	89.5

NOTE: All indoor-fan motors 5 hp and larger meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT) effective October 24, 1997.

^{*}Extensive motor and electrical testing on these units ensures that the full horsepower (brake kilowatt) range of the motors can be utilized with confidence. Using fan motors up to the horsepower (brake kilowatt) ratings shown in this table will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

ELECTRICAL DATA

LINUT	NOMINAL		TAGE	(COMPR	RESSOR	₹		0	-м		IFM	PO		COMBUSTION	POV	
UNIT 579F	VOLTAGE	RAI	NGE	No	. 1	No	. 2						EXH	AUST	FAN MOTOR	SUP	
	(3 Ph, 60 Hz)	Min	Max	RLA	LRA	RLA	LRA	Qty	Нр	FLA (ea)	Нр	FLA	FLA	LRA	FLA	MCA	MOCP*
	208/230	187	253	28.8	195	28.8	195	3	0.5	1.7	3.7	10.5/11.0	_	_	0.57	81/81	100/100
	200/200	107	200	20.0	100	20.0	100		0.0		· · ·	10.0/11.0	4.6	18.8	0.57	85/86	110/110
180	460	414	508	14.7	95	14.7	95	3	0.5	0.8	3.7	4.8	_	_	0.30	40	50
(15 Tons)	.00		000						0.0	0.0	···		2.3	6.0	0.30	43	50
	575	518	633	10.8	80	10.8	80	3	0.5	0.8	3.0	3.9	_	_	0.57	30	40
													2.1	4.8	0.57	32	40
	208/230	187	253	30.1	225	28.8	195	3	0.5	1.7	5.0	15.8/15.8			0.57	87/87	110/110
													4.6	18.8	0.57	92/92	110/110
216 (18 Tons)	460	414	508	15.5	114	14.7	95	3	0.5	0.8	5.0	7.9	_	_	0.30	44	50
(16 10115)													2.3	6.0	0.30	47	60
	575	518	633	12.1	80	10.8	80	3	0.5	8.0	5.0	6.0	2.1	4.8	0.57 0.57	34 36	40
1													2.1	4.6	0.57	116/116	150/150
	208/230	187	253	37.8	239	30.1	225	2	1	6.6	7.5	25.0/25.0	4.6	18.8	0.57	120/120	150/150
242													4.0	10.0	0.30	57	70
240 (20 Tons)	460	414	508	17.2	125	15.5	114	2	1	3.3	7.5	13.0	2.3	6.0	0.30	59	70
(======================================													2.5	0.0	0.57	44	50
	575	518	633	12.4	80	12.1	80	2	1	3.4	7.5	10.0	2.1	4.8	0.57	46	50
														_	0.57	130/130	150/150
	208/230	187	253	41.0	350	37.8	239	2	1	6.6	10.0	28.0/28.0	4.6	18.8	0.57	135/135	175/175
300													_	_	0.30	66	80
(25 Tons)	460	414	508	21.8	158	17.2	125	2	1	3.3	10.0	14.6	2.3	6.0	0.30	68	80
												40.0	_	_	0.57	54	70
	575	518	633	17.3	125	12.4	80	2	1	3.4	10.0	13.0	2.1	4.8	0.57	56	70

LEGEND

FLA — Full Load Amps
HACR — Heating, Air Conditioning and Refrigeration
IFM — Indoor (Evaporator) Fan Motor
LRA — Locked Rotor Amps
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
NEC — National Electrical Code
OFM — Outdoor (Condenser) Fan Motor

OFM Outdoor (Condenser) Fan Motor
 Rated Load Amps

*Fuse or HACR circuit breaker.

In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be

tuse or circuit breaker. Unbalanced 3-Phase Supply Voltage
Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent voltage imbalance.

% Voltage Imbalance

= 100 x max voltage deviation from average voltage average voltage

EXAMPLE: Supply voltage is 460-3-60.

Average Voltage =
$$\frac{452 + 464 + 455}{3}$$

= $\frac{1371}{3}$

Determine maximum deviation from average voltage.

(AB) 457 – 452 = 5 v (BC) 464 – 457 = 7 v (AC) 457 – 455 = 2 v

Maximum deviation is 7 v.

Determine percent voltage imbalance.

% Voltage Imbalance = 100 x
$$\frac{7}{457}$$

This amount of phase imbalance is satisfactory as it is below the maximum

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

TYPICAL WIRING SCHEMATICS — 579F (579F240, 208/230 V Shown)

TYPICAL WIRING SCHEMATICS — 579F (579F240, 208/230 V Shown) (cont)

LEGEND AND NOTES LEGEND

AHA	 Adjustable Heat Anticipator 		 Indoor-Fan Circuit Breaker 	TRAN —	Transformer
	Breaker with Amp Turns	IFM IGC	 Indoor-Fan Motor Integrated Gas Unit Controller 	\bigcirc	Terminal (Marked)
C CB CC CLO COMP	Contactor, Compressor Circuit Breaker Cooling Compensator Compressor Lockout	L LED LOR	Light Light-Emitting Diode Lockout Relay Low-Pressure Switch	0	Terminal (Unmarked) Terminal Block
CR CT	Compressor Motor Control Relay Control Transformer	LS	Limit Switch Main Gas Valve	•	Splice
DM DU	Damper Motor Dummy Terminal		National Electrical CodeOutdoor-Fan Contactor	\bigcirc	Splice (Marked)
EQUIP FPT	 Equipment Freeze Protection Thermostat 	PL	Outdoor-Fan MotorPlug Assembly		Splice (Field Supplied)
FU	— Fuse	PRI RS	Primary Rollout Switch		Factory Wiring
GND HPS	— Ground— High-Pressure Switch	SN	— Sensor		Field Control Wiring
HS	Hall Effect Sensor	SR	 Solenoid Relay 		Field Power Wiring
HV	— High Voltage	SW TB	SwitchTerminal Block		Accessory or Optional Wiring
I IDM IFC	IgnitorInduced-Draft MotorIndoor-Fan Contactor	TC TH	Thermostat Cooling Thermostat Heating		To indicate common potential only; not to represent wiring.

NOTES:

- Compressor and fan motors thermally protected; 3-phase motors protected against primary single-phasing conditions.
 If any of the original wire furnished must be replaced, it must be replaced with type 90 C wire or its equivalent.
 Jumpers are omitted when unit is equipped with economizer.
 IFCB must trip amps is equal to or less than 140% full load amps.
 On 208/230-v unit, TRAN1 is factory wired to ORN lead for 230-v power supply. If unit is to run on 208-v power supply, TRAN1 must be rewired. Disconnect the BLK wire on TRAN1 and connect wire to 208-v RED wire. Insulate 230-v ORN wire.
- The CLO locks out the compressor to prevent short cycling on compressor overload and safety devices. Before replacing CLO, check these devices.
- Number(s) indicates the line location of used contacts. A bracket over (2) numbers signifies a single-pole, double-throw contact. An underlined number signifies a normally closed contact. A plain (no line) number signifies a normally open contact.

TYPICAL WIRING SCHEMATICS — 579F (cont)

EconoMi\$er IV Wiring — 579F180-300 Units

EconoMi\$er2 Wiring — 579F180-300 Units

TYPICAL WIRING SCHEMATICS — 579F (cont)

Non-Fused Disconnect (Optional) — 579F180-300

TYPICAL PIPING AND WIRING — 579F180-300 (579F180 Shown)

PHYSICAL DATA — 580F180-300

DPERATING WEIGHT	UNIT 580F		180	210	240	300
Unit	NOMINAL CAPACITY (tons)		15	18	20	25
Scroll, Corpeland	OPERATING WEIGHT					
DOMPRESSORMANUFACTURER						
Capacity Capacity	•		80			80
1ZR72KC			4 7D04KC			4 7D4440VC
Capacity Stages (%) Capacity Stages (%)	Quantitywodei (Ckt 1, Ckt 2)	ļ				
Number of Refrigerant Circuits 2 2 2 2 2 2 136,106		J	60, 40	55, 45	55, 45	60, 40
Ref Ref Ref Ref		J				
Expansion Device TXV			გე, _ნ ი	100, 01	·	130, 100
19-8 19-8 19-11 26-13 25-10						
19-8 19-8 19-8 19-11 26-13 25-10	Operating Charge (lb-oz)	J	1		IAV	1
Cross-Hatched 3/- in Copper Tubes, Aluminum Lanced, Aluminum Free-Coated, or Copper Plate Firs	Circuit 1*	J				
RowsFins./in. 415 21.7 21.7 21.7 315 (2 coils)				-	_	
RowsFins/in.	CONDENSER COIL		Cross	s-Hatched ³ / ₈ -in. C	opper Tubes, Aluminur	m Lanced,
Total Face Area (sq ft) 21.7 21.7 21.7 21.7 43.4	Rows Fins/in.		415			
Nominal Cfm	Total Face Area (sq ft)	!				
Nominal Cfm 10,500 10,500 14,200 21,000 21,000 22,000 21,000 22,000 22,000 24,00	CONDENSER FAN			Pr	opeller Type	
Motor PhpRpm V21050				10,500	14,200	
Watts Input (Total)		J		322 1/ 1050		622 1/ 1050
Authors Auth		J	1100	1100		2200
Copper Plate Fins, Face Split	EVAPORATOR COIL			s-Hatched 3/g-in. Co	opper Tubes, Aluminum	
Total Face Area (sq ft)				Copper Pla	late Fins, Face Split	
Centrifugal Type		J				
QuantitySize (in.) Type Drive Belt Nominal Cfm 6000 7200 8000 10,00	,		U. 11			U.3
Belt Nominal Cfm Nominal Cfm Nominal Cfm Nominal Cfm Nominal Rpm 1745 174			2 12 x 12			2 .12 x 12
Motor Hp Motor Nominal Rpm	Type Drive	ļ	Belt	Belt	Belt	Belt
Motor Nominal Rpm		J				
Maximum Continuous Bhp Motor Frame Size Nominal Rpm High/Low Fan Rpm Range Low-Medium Static High Static Low-Mediu		J				
Motor Frame Size	•	J			8.7 [208/230, 575 v]	10.2 [208/230, 575 v]
Nominal Rpm High/Low Fan Rpm Range	<u>'</u>	J				
Note Range Low-Medium Static High St		J			Z131 —	Z 10 1 —
Ball Ball Ball 1550 13/8						
Maximum Allowable Rpm Motor Pulley Pitch Diameter Min/Max (in.) Low-Medium Static High Static 1550 4.9/5.9 4.9/5.9 4.9/5.9 5.4/6.6 4.9/5.9 4.9/5.9 5.4/6.6 4.9/5.9 4.9/5.9 5.4/6.6 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	Mater Bearing Type	High Static				
Motor Pulley Pitch Diameter Min/Max (in.) Low-Medium Static High Static 4.9/5.9 4.9/5.9 5.4/6.6 4.9/5.9 Nominal Motor Shaft Diameter (in.) Low-Medium Static High Static 11/8 11/8 13/8 13/8 Fan Pulley Pitch Diameter (in.) Low-Medium Static High Static 9.4 9.4 9.4 8.0 Nominal Fan Shaft Diameter (in.) Low-Medium Static High Static 17/16 17/16 17/16 17/16 17/16 17/16 17/16 17/16 17/16 17/16 17/16 17/16 17/16 1BX53 2BX50 2BX50 2BX50 1BX53 2BX50 2BX50 1BX53 2BX50 2BX50 1BX53 2BX50 2BX50 2BX47 13.3-14.8 13.3-14.8 13.3-14.8 14.6-15.4 14.6-15.4 14.6-15.4 14.6-15.4 44 45 Movable Pulley Flange (rpm) High Static 4 6 6 6 6 Factory Speed Setting (rpm) Low-Medium Static High Static 965 1002 1095 <t< th=""><th></th><th>J</th><th></th><th></th><th></th><th></th></t<>		J				
Nominal Motor Shaft Diameter (in.) Low-Medium Static High Static 11/8 9.4 9.4 9.4 9.4 8.0 8.0 7.9 6.4 17/16 17/16 17/16 17/16 1BX50 1BX50 1BX50 1BX50 1BX50 2BX50 1BX50	Motor Pulley Pitch Diameter		4.9/5.9	4.9/5.9	5.4/6.6	4.9/5.9
Speed Change per Full Turn of Movable Pulley Flange (rpm) Movable Pulley Maximum Full Turns From Closed Position Factory Speed Setting (rpm) Low-Medium Static High Static Low-Medium Static High Static Speed Setting (rpm) Low-Medium Static High Static Speed Setting (rpm) Low-Medium Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Static High Static Speed Spe		High Static				
Nominal Fan Shaft Diameter (in.) Belt, QuantityTypeLength (in.) Low-Medium Static High Static Low-Medium Static High Static		Low-Medium Static	9.4	9.4	9.4	8.0
Delty Delt			8.0	8.0	7.9	6.4
Pulley Center Line Distance (in.) High Static 1BX48 1BX48 1BX50 2BX47 Speed Change per Full Turn of Movable Pulley Flange (rpm) Low-Medium Static 37 37 37 36 Movable Pulley Maximum Full Turns From Closed Position 4 6 6 6 Factory Speed Factory Speed Setting (rpm) Low-Medium Static High Static 965 1002 1095 1182 High Static 1134 1178 1303 1470		Low-Medium Static	1// ₁₆ 1 BY 50	1 // ₁₆	1// ₁₆ 1 RX 53	1 ¹ / ₁₆
Pulley Center Line Distance (in.) 13.3-14.8 13.3-14.8 14.6-15.4 14.6-15.4 Speed Change per Full Turn of Movable Pulley Flange (rpm) Low-Medium Static 44 37 37 36 Movable Pulley Maximum Full Turns From Closed Position 4 6 6 6 Factory Speed Factory Speed Setting (rpm) Low-Medium Static High Static 965 1002 1095 1182 High Static 1134 1178 1303 1470			1BX48	1BX48	1BX50	2BX47
Movable Pulley Flange (rpm) High Static 44 34 44 45 Movable Pulley Maximum Full Turns From Closed Position 4 6 6 6 Factory Speed Factory Speed Setting (rpm) Low-Medium Static High Static 965 1002 1095 1182 High Static 1134 1178 1303 1470		· ·	13.3-14.8	13.3-14.8	14.6-15.4	14.6-15.4
Movable Pulley Maximum Full Turns 4 6 6 6 From Closed Position 4 6 6 6 Factory Speed 3.5 3.5 3.5 3.5 Factory Speed Setting (rpm) Low-Medium Static High Static 965 1002 1095 1182 High Static 1134 1178 1303 1470						
From Closed Position 4 6 6 6 Factory Speed 3.5 3.5 3.5 3.5 Factory Speed Setting (rpm) Low-Medium Static High Static 965 1002 1095 1182 High Static 1134 1178 1303 1470	Movable Pulley Maximum Full Turns	High Static	1			_
Factory Speed Setting (rpm) Low-Medium Static High Static 965 1002 1095 1182 4 170 1134 1178 1303 1470	From Closed Position	Ţ				
High Static 1134 1178 1303 1470	Factory Speed Setting (rnm)	Low-Medium Static				
			1134	1178	1303	1470
· · · · · · · · · · · · · · · · · · ·	Fan Shaft Diameter at Pulley (in.)					

LEGEND

Bhp — Brake Horsepower TXV — Thermostatic Expansion Valve

NOTE: The 580F180-300 units have a low-pressure switch (standard) located on the suction side.

^{*}Circuit 1 uses the lower portion of the condenser coil and lower portion of the evaporator coils; and Circuit 2 uses the upper portion of both coils.
†Rollout switch is manual reset.
**The 580F300 unit requires 2-in. industrial-grade filters capable of handling face velocities up to 625 ft/min (such as American Air Filter no. 5700 or equivalent).

PHYSICAL DATA — 580F180-300 (cont)

UNIT 580F	180	210	240	300					
FURNACE SECTION									
Rollout Switch Cutout Temp (F)†	190	190	190	190					
Burner Orifice Diameter (indrill size)	0.4005 00/0.400 00	0.4005 00/0.400 00	0.4005 00/0.400 00	0.4005 00/0.400 00					
Natural Gas	0.128530/0.13629	0.128530/0.13629	0.128530/0.13629	0.128530/0.13629					
Thermostat Heat Anticipator Setting (amps) 208/230, 575 v Stage 1	0.98	0.98	0.98	0.98					
,go .	0.96	0.96	0.96	0.96					
Stage 2	0.80	0.80	0.80	0.80					
otage i	0.44	0.44	0.44	0.44					
Stage 2 Gas Input Stage 1	206.000/270.000	206.000/270.000	206.000/270.000	206.000/270.000					
Gas Input Stage 1 Stage 2	275.000/360.000	275.000/360.000	275.000/360.000	275.000/360.000					
Efficiency (Steady-State) (%)	81	81	81	81					
Temperature Rise Range	15-45/20-50	15-45/20-50	15-45/20-50	15-45/20-50					
Manifold Pressure (in. wg)									
Natural Gas	3.3	3.3	3.3	3.3					
Gas Valve Quantity	1	1	1	1					
Gas Valve Pressure Range	F F 40 F	55425	E E 40 E	5.5-13.5					
in. wg psia									
Field Gas Connection Size (inFPT)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
HIGH-PRESSURE SWITCH (psig)	, 4	' 4	, 4	' 4					
Cutout		11	26						
Reset (Auto)			20						
LOW-PRESSURE SWITCH (psig)		<u> </u>	-0						
Cutout		2	7						
Reset (Auto)			4						
FREEZE PROTECTION THERMOSTAT (F)									
Opens		30	± 5						
Closes		45	± 5						
OUTDOOR-AIR INLET SCREENS	Cleanable								
QuantitySize (in.)		220 >							
		120 >	20 x 1						
RETURN-AIR FILTERS		Throw	away**						
QuantitySize (in.)			(20 x 2	_					
		416	x20 x 2						
POWER EXHAUST	1/ ₂ Hp, 208/230	0-460 v Motor Direct Drive	, Propeller-Fan (Factory-W	/ired for 460 v)					

LEGEND

Brake HorsepowerThermostatic Expansion Valve Bhp TXV

NOTE: The 580F180-300 units have a low-pressure switch (standard) located on the suction side.

OPERATING AND RIGGING WEIGHTS

		BASE UNIT OPERATING WEIGHTS*								
UNIT	180)	210)	240)	300			
	lb	kg	lb	kg	lb	kg	lb	kg		
580F	1800	816	1850	839	1900	862	2270	1030		

^{*}Base unit weight does not include copper coils, economizer, power exhaust, barometric relief or crating. See Options and Accessories table below for more information.

NOTE: For 180 or 210 unit, add 75 lb (34 kg) for domestic crating. For 240 unit, add 135 lb (61 kg). For 300 unit, add 175 lb (79 kg) for domestic crating.

OPTIONS AND ACCESSORIES (Weight Adders)

		OPTION/ACCESSORY WEIGHTS										
OPTION/ ACCESSORY	1	80	2	10	2	40	300					
ACCEDOCKT	lb	kg	lb	kg	lb	kg	lb	kg				
Barometric Relief Damper	50	23	50	23	50	23	50	23				
Power Exhaust	85	39	85	39	85	39	85	39				
EconoMi\$er IV	90	41	90	41	90	41	90	41				
Cu Condenser Coil	150	68	150	68	150	68	150	68				
Cu Condenser and Evaporator Coils	280	127	280	127	280	127	280	127				
Roof Curb (14-in. curb)	200	91	200	91	200	91	200	91				
Horizontal Adapter Curb (Pre-Assembled)	250	113	250	113	250	113	250	113				
Horizontal Adapter Curb (Field-Assembled)	348	156	343	156	343	156	343	156				
Hail Guard	60	27	60	27	60	27	60	27				

LEGEND

Cu — Copper

^{*}Circuit 1 uses the lower portion of the condenser coil and lower portion of the evaporator coils; and Circuit 2 uses the upper portion of both coils.

[†]Rollout switch is manual reset.

**The 580F300 unit requires 2-in. industrial-grade filters capable of handling face velocities up to 625 ft/min (such as American Air Filter no. 5700 or equivalent).

BASE UNIT DIMENSIONS — 580F180, 210

BASE UNIT DIMENSIONS — 580F300

Horizontal and Vertical Roof Curbs 580F180-240

Vertical Roof Curbs 580F300

ACCESSORY DIMENSIONS — 580F (cont)

Horizontal Supply/Return Adapter Installation (580F180-240)

Barometric Relief/Power Exhaust

ACCESSORY DIMENSIONS — 580F (cont)

Factory-Installed Convenience Outlet

Factory-Installed Non-Fused Disconnect (180-300)

SELECTION PROCEDURE (With 580F240 Example)

I DETERMINE COOLING AND HEATING REQUIRE-MENTS AT DESIGN CONDITIONS.

Given:

required.

Required Cooling Capacity	230,000 Btuh
Sensible Heat Capacity (SHC)	170,000 Btuh
Required Heating Capacity	
Condenser Entering Air Temp	95 F (Summer)
Evaporator Entering Air Temp	80 F edb,
	67 F ewb
Evaporator Air Quantity	8,000 cfm
External Static Pressure	0.6 in. wg
Electrical Characteristics (V-Ph-Hz)	460-3-60
Vertical discharge unit with optional	EconoMi\$er IV

edb — Entering dry-bulb ewb — Entering wet-bulb

II SELECT UNIT BASED ON REQUIRED COOLING CAPACITY.

Enter Cooling Capacities table for 580F240 (page 183) at condenser entering temperature 95 F, evaporator air entering at 8,000 cfm and 67 F wb. The unit will provide a total cooling capacity of 249,000 Btuh and a sensible heating capacity (SHC) of 188,000 Btuh. For air entering evaporator at temperatures other than 80 F edb, calculate SHC correction as required.

NOTE: Unit ratings are gross capacities and do not include the effect of evaporator-fan motor heat. To calculate net capacities, see Step V.

III SELECT HEATING CAPACITY OF UNIT TO PROVIDE DESIGN CONDITION REQUIREMENTS.

In the ARI Heating Capacities and Efficiencies table note that the 580F240360 will provide an output capacity of 292,000 Btuh, which is adequate for the given application.

IV DETERMINE FAN SPEED AND POWER REQUIRE-MENTS AT DESIGN CONDITIONS.

Before entering the Fan Performance tables, calculate the total static pressure required based on unit components. From the given and the Accessory/FIOP Static Pressure table on page 191 find:

External static pressure

EconoMi\$er IV static pressure

Total static pressure

0.60 in. wg
0.10 in. wg
0.70 in. wg

Enter the Fan Performance table 580F240360 at 8,000 cfm and 0.70 in. wg external static pressure. By interpolation, find that the rpm is 1243 and the watts are 5368.

V DETERMINE NET COOLING CAPACITY.

Cooling capacities are gross capacities and do not include indoor (evaporator) fan motor (IFM) heat. Use the watts input power to the motor calculated in Section IV above.

IFM Watts = 5368

Determine net cooling capacity using the following formula:

Net capacity = Gross capacity – IFM heat = 249,000 Btuh – 5368 Watts

 $(3.412 \frac{Btuh}{Watts})$

= 249,000 Btuh - 18,316 Btuh = 230,684 Btuh

Net sensible capacity = 188,000 Btuh – 18,316 Btuh = 169,684 Btuh

The calculations show that a 580F240360 unit with the standard motor and standard low-medium static drive is the correct selection for the given conditions.

PERFORMANCE DATA COOLING CAPACITIES

580F180	(15 TONS))														
Ten	np (F)						Air	Entering	Evaporat	or — Cfm	/BF					
Air E	ntering	4	,500/0.01	0	5	,250/0.12	0	6	6,000/0.14	0	6	3,750/0.15	0	7	,500/0.16	0
	denser						Air	Entering	Evaporat	or — Ewb	(F)					
(⊨	db)	62	67	72	62	67	72	62	67	72	62	67	72	62	67	72
75	TC SHC	175.7 145.5	191.8 123.0	210.9 99.9	180.5 156.2	196.4 131.5	214.9 104.9	183.3 167.8	201.0 139.1	218.9 110.6	187.1 175.3	203.0 146.3	222.9 115.0	189.2 183.7	205.0 155.8	224.9 119.4
	kW	14.0	14.4	15.0	14.2	14.6	15.1	14.3	14.7	15.2	14.4	14.9	15.4	14.5	14.9	15.4
85	TC SHC kW	168.8 141.7 15.2	185.1 119.8 15.6	203.0 97.1 16.1	173.3 151.6 15.3	189.2 128.6 15.8	207.0 101.9 16.3	177.1 162.4 15.5	192.8 135.9 15.9	210.9 106.7 16.5	179.7 171.1 15.6	196.0 143.1 16.1	214.9 111.0 16.6	182.3 179.1 15.7	198.0 150.2 16.1	216.9 116.4 16.7
95	TC SHC kW	161.8 138.7 16.4	177.5 116.8 16.9	194.4 93.9 17.4	166.4 147.5 16.6	181.5 125.2 17.0	199.0 99.1 17.6	169.0 157.6 16.7	184.7 132.7 17.2	203.0 103.3 17.7	171.7 167.2 16.8	187.7 139.9 17.3	205.0 108.3 17.8	174.5 173.9 16.9	189.4 146.5 17.4	207.0 112.2 17.9
105	TC SHC kW	154.6 133.9 17.6	169.3 113.6 18.2	185.3 90.7 18.7	158.6 143.7 17.8	173.1 121.4 18.3	189.2 95.7 18.8	161.2 154.2 17.9	175.9 129.0 18.5	192.0 100.3 18.9	164.0 161.8 18.1	178.1 136.1 18.5	194.6 104.7 19.1	167.4 167.2 18.2	179.7 142.7 18.6	196.2 108.7 19.1
115	TC SHC kW	147.1 130.1 19.0	160.8 110.2 19.5	175.5 87.4 20.0	150.4 139.7 19.1	164.2 117.8 19.7	179.1 92.1 20.2	152.4 149.3 19.2	166.4 125.4 19.8	181.9 96.7 20.2	155.8 155.6 19.4	168.6 131.9 19.9	184.3 101.1 20.4	159.6 159.2 19.5	169.7 139.1 19.9	185.7 105.3 20.4
118	TC SHC kW	144.7 129.0 19.4	158.0 109.1 19.9	172.5 86.4 20.4	147.7 138.5 19.5	161.2 116.6 20.0	175.9 91.1 20.6	150.0 147.7 19.6	163.4 124.2 20.2	178.3 95.5 20.6	153.4 153.4 19.8	165.4 130.7 20.2	180.7 99.9 20.8	157.0 156.8 19.9	166.8 137.7 20.4	182.1 104.1 20.8
120	TC SHC kW	142.9 128 19.6	156.2 108 20.2	170.5 86 20.6	145.9 138 19.8	159.2 116 20.2	_ _ _	148.3 146 19.9	161.2 123 20.4		151.8 152 20.0	163.2 130 20.4	_ 	155.4 155 20.2	164.8 137 20.6	_ _ _

580F210	(18 TONS)															
Ten	np (F)						Air	Entering	Evaporat	or — Cfm	/BF					
Air Ei	ntering	5	,400/0.09	5	6	,000/0.10	5	7	,000/0.12	0	8	3,000/0.14	0	9	,000/0.15	0
	lenser						Air	Entering	Evaporat	or — Ewb	(F)					
(E	db)	62	67	72	62	67	72	62	67	72	62	67	72	62	67	72
75	TC	227	247	269	232	251	274	237	255	277	241	258	280	248	261	283
	SHC	200	167	134	215	178	141	231	194	152	241	205	160	248	219	167
	kW	15.9	16.5	17.2	16.1	16.7	17.3	16.3	16.8	17.5	16.5	16.9	17.6	16.7	17.0	17.7
85	TC	219	238	259	224	242	265	229	247	269	235	250	272	241	252	273
	SHC	197	164	131	210	175	137	225	188	145	234	200	153	240	214	163
	kW	17.2	17.8	18.5	17.4	17.9	18.6	17.6	18.1	18.8	17.8	18.3	19.0	18.0	18.3	19.0
95	TC	210	229	248	214	233	253	219	237	258	225	239	261	231	242	263
	SHC	192	160	126	205	171	133	218	183	141	225	194	148	231	206	156
	kW	18.5	19.2	19.9	18.7	19.3	20.0	19.0	19.5	20.2	19.2	19.6	20.3	19.4	19.7	20.4
105	TC	200	218	237	205	222	241	210	225	245	216	228	249	221	230	250
	SHC	186	155	123	199	166	129	210	178	136	216	190	143	221	201	150
	kW	19.9	20.5	21.2	20.1	20.7	21.3	20.4	20.8	21.5	20.6	21.0	21.7	20.8	21.0	21.8
115	TC	190	207	225	195	210	228	201	213	232	206	216	235	211	217	236
	SHC	181	151	118	193	161	124	201	173	132	206	185	139	211	196	146
	kW	21.3	21.9	22.6	21.5	22.1	22.8	21.8	22.2	22.9	22.0	22.4	23.1	22.2	22.4	23.1
120	TC	185	200	218	189	205	221	196	207	225	201	209	227	205	210	229
	SHC	179	149	117	189	159	122	196	171	130	201	182	137	205	193	144
	kW	22.1	22.6	—	22.3	22.8	—	22.5	22.9	—	22.7	—	—	22.9	—	—

LEGEND

BF — Bypass Factor
Edb — Entering Dry Bulb
Ewb — Entering Wet Bulb

kW — Compressor Power
 SHC — Gross Sensible Capacity (1000 Btuh)
 TC — Gross Cooling Capacity (1000 Btuh)

PERFORMANCE DATA (cont)

COOLING CAPACITIES (cont)

	(20 TONS)						Δir	Entering	Evaporat	or — Cfm	/RF					
	np (F) ntering	-	6,000/0.04	1		7,000/0.05			8,000/0.06			9,000/0.07	7	1	0,000/0.0	8
Conc	denser						Air	Entering	Evaporat	or — Ewb	(F)					
(E	db)	62	67	72	62	67	72	62	67	72	62	67	72	62	67	72
75	TC	237	258	282	242	264	288	247	268	291	252	271	295	258	274	298
	SHC	204	171	138	221	184	146	237	199	156	247	210	164	257	221	172
	kW	16.7	17.4	18.1	16.9	17.6	18.3	17.1	17.8	18.5	17.3	17.9	18.6	17.5	18.0	18.7
85	TC	229	249	272	234	254	278	239	260	283	245	262	286	250	265	287
	SHC	201	167	135	216	180	142	231	193	150	240	203	157	250	217	167
	kW	18.1	18.7	19.5	18.3	18.9	19.7	18.5	19.1	19.9	18.7	19.3	20.1	18.8	19.4	20.1
95	TC	220	239	261	225	245	267	230	249	271	235	251	275	241	255	277
	SHC	195	163	130	211	176	138	224	188	145	233	199	152	241	210	160
	kW	19.4	20.2	20.9	19.7	20.4	21.2	19.9	20.6	21.3	20.1	20.6	21.4	20.3	20.8	21.6
105	TC	209	228	249	216	234	254	220	237	259	225	240	262	230	242	263
	SHC	189	159	126	206	171	134	217	183	140	225	195	148	230	205	154
	kW	20.9	21.5	22.3	21.2	21.8	22.5	21.4	22.0	22.7	21.6	22.1	22.9	21.8	22.2	23.0
115	TC	200	217	237	205	222	241	211	225	244	216	227	248	221	229	249
	SHC	185	154	122	199	166	129	209	178	136	216	189	143	221	200	150
	kW	22.5	23.1	23.8	22.7	23.3	24.0	22.9	23.4	24.2	23.2	23.6	24.4	23.4	23.7	24.4
120	TC	194	211	230	199	216	234	205	218	237	210	220	240	214	222	241
	SHC	183	152	121	195	164	126	204	175	134	210	186	141	214	196	148
	kW	23.2	23.8	24.6	23.5	24.0	—	23.7	24.2	—	23.9	24.4	—	24.1	24.4	—

	0 (25 TON	,							Air	Enterir	ng Evap	orator	— Cfm	/BF							
	ıp (F) itering		7,000	/0.05			8,000	/0.06			9,000				10,00	0/0.08			11,25	0/0.09	
	enser								Air	Enterir	ng Evap	orator	— Ewb	(F)							
(=	db)	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72
75	TC	256	271	299	327	267	278	305	336	276	283	309	341	285	286	313	344	294	294	316	347
	SHC	256	232	196	159	267	249	208	166	276	265	220	173	285	281	232	182	294	294	252	198
	kW	18.0	18.3	18.9	19.6	18.3	18.5	19.1	19.8	18.5	18.7	19.2	19.9	18.7	18.8	19.4	20.1	19.0	19.0	19.5	20.2
85	TC	248	262	288	316	259	267	293	322	267	273	298	328	276	276	302	331	284	285	305	336
	SHC	248	228	192	154	259	244	204	161	267	259	216	169	276	274	228	175	284	284	244	187
	kW	20.0	20.4	20.9	21.5	20.3	20.4	21	21.7	20.6	20.6	21.2	21.9	20.8	20.8	21.3	22	21	21	21.5	22.1
95	TC	241	252	277	303	251	257	281	309	259	262	286	314	266	267	290	317	274	275	293	321
	SHC	241	223	187	149	251	239	198	157	259	254	210	164	266	265	222	171	274	275	238	180
	kW	22.4	22.6	23.1	23.7	22.6	22.7	23.3	23.9	22.8	22.9	23.4	24	23	23	23.5	24.2	23.2	23.2	23.6	24.2
105	TC	233	243	266	289	242	247	270	295	250	252	273	299	256	258	277	303	264	265	280	306
	SHC	233	218	182	145	242	233	194	152	250	248	206	159	256	257	217	166	264	265	232	176
	kW	24.9	25.1	25.6	26.2	25.2	25.3	25.8	26.3	25.4	25.4	25.9	26.5	25.6	25.6	26	26.6	25.8	25.8	26.1	26.7
115	TC	225	232	254	277	234	236	258	281	241	242	261	285	247	247	264	288	254	255	267	291
	SHC	225	214	178	140	234	228	189	148	241	241	201	155	247	247	211	162	253	255	227	171
	kW	27.9	27.9	28.5	29	28	28.1	28.6	29.2	28.2	28.2	28.7	29.2	28.4	28.4	28.8	29.3	28.7	28.7	28.9	29.5
125	TC	216	221	241	263	224	225	245	267	231	231	248	269	237	236	251	273	243	242	253	276
	SHC	216	208	173	136	223	221	184	142	230	231	196	149	236	236	206	157	243	242	221	166
	kW	30.9	31.1	31.6	32	31.2	31.2	31.7	32.2	31.4	31.4	31.7	32.3	31.6	31.6	31.9	32.3	31.7	31.7	31.9	32.5

LEGEND

 kW — Compressor Power
 SHC — Gross Sensible Capacity (1000 Btuh)
 TC — Gross Cooling Capacity (1000 Btuh) BF — Bypass Factor Edb — Entering Dry Bulb Ewb — Entering Wet Bulb

PERFORMANCE DATA (cont)

FAN PERFORMANCE — 580F180-300 UNITS

580F18027	′5*														
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	753	1307	1.53	761	1330	1.56	840	1572	1.84	912	1822	2.14	980	2080	2.44
4800	747	1384	1.62	790	1515	1.78	866	1765	2.07	936	2023	2.37	1002	2289	2.68
5100	741	1465	1.72	820	1718	2.01	893	1977	2.32	961	2243	2.63	1280	2516	2.95
5700	810	1911	2.24	882	2182	2.56	950	2459	2.88	1014	2741	3.21	1075	3029	3.55
6000	844	2164	2.54	914	2444	2.87	980	2730	3.20	1042	3021	3.54	1100	3317	3.89
6300	879	2439	2.86	947	2729	3.20	1010	3023	3.55	1070	3322	3.90	1127	3626	4.25
6600	915	2737	3.21	980	3035	3.56	1041	3338	3.91	1099	3645	4.28	1155	3957	4.64
6900	950	3057	3.59	1013	3364	3.95	1072	3675	4.31	1129	3991	4.68	1183	4311	5.06
7200	986	3401	3.99	1047	3717	4.36	1104	4037	4.74	1159	4361	5.11	1211	4689	5.50
7500	1022	3770	4.42	1081	4095	4.80	1136	4423	5.19	1189	4755	5.58	1241	5091	5.97

580F18027	'5* (cont))													
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	1044	2345	2.75	1105	2619	3.07	1163	2899	3.40	1218	3187	3.74	1271	3481	4.08
4800	1065	2561	3.00	1124	2841	3.33	1180	3127	3.67	1235	3420	4.01	1287	3720	4.36
5100	1086	2795	3.28	1144	3082	3.61	1199	3375	3.96	1252	3674	4.31	1304	3979	4.67
5700	1132	3324	3.90	1187	3624	4.25	1240	3929	4.61	1291	4241	4.97	1341	4558	5.35
6000	1157	3619	4.24	1210	3925	4.60	1262	4239	4.97	1312	4557	5.34	1361	4880	5.72
6300	1182	3935	4.62	1234	4249	4.98	1285	4569	5.36	1334	4894	5.74	_	_	ı —
6600	1208	4274	5.01	1259	4595	5.39	1309	4922	5.77		_	_	_	_	ı —
6900	1235	4636	5.44	1285	4964	5.82	_	_	_	_	_	_	_	_	l —
7200	1262	5021	5.89	_	_	_	_		_	_		_			<u> </u>
7500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

						Availabl	e Extern	al Static I	Pressure	(in. wg)			_		
Airflow (Cfm)		2.2			2.4			2.6			2.8			3.0	
(Cilli)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	1322	3781	4.43	1372	4088	4.79	1419	4400	5.16	1466	4719	5.53	1511	5042	5.91
4800	1337	4280	4.72	1386	4337	5.09	1433	4655	5.46	1479	4978	5.84	_	_	_
5100	1353	4290	5.03	1401	4607	5.40	1448	4930	5.78	_	_	_	_		_
5700	1388	4881	5.72	_	_	_	_	_	_	_		_	_		_
6000	_	_	_	_	_	_	_	_	_	_		_	_		_
6300	_	_	_	_	_	_	_	_	_	_	_	_	_		_
6600					_							_			_
6900	_	_	_	_	_	_	_	_	_	_		_	l —		_
7200	_	_	_	_	_	_	_	_	_	_		_	l —		_
7500	_	_			_	_	_		_	_		_	_		_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

Refer to page 221 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp for the standard motor is 6.13. The maximum continuous watts is 5180. Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm.

^{*}Standard low-medium static drive range is 873 to 1021 rpm. Alternate high-static drive range is 1025 to 1200. Other rpms require a field-supplied drive.

PERFORMANCE DATA (cont)

FAN PERFORMANCE — 580F180-300 UNITS (cont)

580F18036	60*														
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	753	1307	1.53	786	1404	1.65	861	1644	1.93	932	1893	2.22	997	2150	2.52
4800	747	1384	1.62	818	1603	1.88	890	1852	2.17	958	2108	2.47	1022	2373	2.78
5100	775	1571	1.84	850	1822	2.14	920	2079	2.44	986	2344	2.75	1048	2616	3.07
5700	849	2054	2.41	918	2323	2.73	982	2598	3.05	1044	2879	3.38	1102	3166	3.71
6000	886	2329	2.73	952	2607	3.06	1015	2891	3.39	1074	3180	3.73	1130	3474	4.08
6300	924	2628	3.08	987	2915	3.42	1047	3207	3.76	1105	3504	4.11	1160	3807	4.46
6600	962	2951	3.46	1023	3246	3.81	1081	3547	4.16	1136	3853	4.52	1190	4163	4.88
6900	1000	3298	3.87	1059	3603	4.23	1115	3912	4.59	1168	4225	4.96	1220	4543	5.33
7200	1038	3672	4.31	1095	3986	4.67	1149	4303	5.05	1201	4625	5.42	1251	4950	5.81
7500	1077	4072	4.78	1131	4394	5.15	1184	4720	5.54	1234	5050	5.92	_	_	_

580F18036	0* (cont))													
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(51111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp									
4500 4800 5100 5700 6000 6300	1060 1082 1106 1157 1184 1212	2414 2644 2894 3459 3774 4114	2.83 3.10 3.39 4.06 4.43 4.83	1119 1140 1163 1211 1236 1263	2685 2922 3178 3757 4080 4427	3.15 3.43 3.73 4.41 4.79 5.19	1175 1195 1216 1262 1287 1312	2964 3207 3470 4061 4391 4745	3.48 3.76 4.07 4.76 5.15 5.57	1230 1248 1268 1312 1335 1359	3250 3498 3767 4371 4707 5067	3.81 4.10 4.42 5.13 5.52 5.94	1282 1299 1319 1360 1382	3542 3795 4071 4686 5029	4.15 4.45 4.77 5.50 5.90
6600 6900 7200	1241 1270 —	4478 4866 —	5.25 5.71 —	1290 — —	4798 — —	5.63 — —	1338 — —	5122 — —	6.01 — —	_ _ _	_ _ _		_ _ _	_ _ _	_ _ _
7500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

580F18036	0* (cont))													
4. 4				_		Availabl	e Extern	al Static	Pressure	(in. wg)			_		
Airflow (Cfm)		2.2			2.4			2.6			2.8			3.0	
(Cilli)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	1332	3841	4.50	1381	4145	4.86	1428	4456	5.23	1473	4772	5.60	1518	5095	5.98
4800	1349	4100	4.81	1397	4409	5.17	1443	4725	5.54	1488	5046	5.92	_	_	_
5100	1367	4380	5.14	1414	4695	5.51	1460	5180	5.88	_		_	_		_
5700	1407	5007	5.87	_		_				_	_		_	_	_
6000			_			_				_	_		_	_	_
6300			_			_				_	_		_	_	_
6600	_	_	_	_		_	_	_	_	_	_	_	_	_	_
6900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7500	_		_	_	_				_		_				

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

Refer to page 221 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp for the standard motor is 6.13. The maximum continuous watts is 5180. Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm.

^{*}Standard low-medium static drive range is 873 to 1021 rpm. Alternate high-static drive range is 1025 to 1200. Other rpms require a field-supplied drive.

3001 100-30

PERFORMANCE DATA (cont)

FAN PERFORMANCE — 580F180-300 UNITS (cont)

580F210275 (1	8 TONS)	ŧ																
A inflant							Avail	able Ex	ternal St	atic Pres	ssure (ir	ո. wg)						
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0			1.2	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
5,500	755	2.27	1908	831	2.58	2171	901	2.91	2443	968	3.24	2723	1031	3.58	3009	1091	3.93	3302
6,000	810	2.72	2287	881	3.04	2556	947	3.37	2833	1010	3.71	3116	1070	4.05	3406	1127	4.40	3702
6,500	866	3.22	2710	932	3.55	2985	994	3.88	3266	1054	4.23	3554	1111	4.57	3847	1166	4.93	4146
7,000	923	3.78	3177	985	4.11	3458	1044	4.45	3744	1100	4.80	4036	1155	5.15	4333	1207	5.51	4635
7,500	980	4.39	3690	1038	4.73	3976	1094	5.07	4267	1148	5.43	4564	1200	5.78	4864	1250	6.15	5170
8,000	1038	5.06	4251	1093	5.40	4542	1146	5.75	4838	1197	6.11	5138	1246	6.47	5443	1294	6.84	5752
8,500	1096	5.78	4859	1148	6.13	5156	1198	6.49	5456	1247	6.85	5761	1294	7.22	6070	1340	7.59	6382
9,000	1154	6.56	5517	1204	6.92	5818	1251	7.28	6123	1298	7.65	6432	1343	8.02	6745	1388	8.40	7062
9,500	1213	7.40	6224	1260	7.77	6531	1306	8.13	6840	1350	8.51	7154	1394	8.88	7471	1436	9.26	7791
10,000	1272	8.30	6983	1317	8.67	7294	1360	9.05	7608	1403	9.43	7926	1445	9.81	8247	1486	10.19	8570

580F210275 (18	TONS)	' (cont)													
A inflam.					- /	vailable	Externa	al Static	Pressur	e (in. wg	1)				
Airflow (Cfm)		1.4			1.6			1.8			1.9			2.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
5,500	1149	4.28	3602	1204	4.65	3907	1258	5.02	4217	1284	5.20	4375	1309	5.39	4533
6,000	1183	4.76	4003	1236	5.13	4310	1288	5.50	4622	1313	5.68	4780	1337	5.87	4939
6,500	1219	5.29	4450	1270	5.66	4759	1320	6.03	5073	1344	6.22	5232	1368	6.41	5391
7,000	1258	5.88	4942	1307	6.25	5253	1355	6.62	5569	1378	6.81	5729	1402	7.00	5890
7,500	1299	6.52	5480	1346	6.89	5794	1392	7.27	6113	1415	7.46	6273	1437	7.65	6435
8,000	1341	7.21	6065	1387	7.59	6383	1392	7.97	6704	1453	8.16	6866	1475	8.36	7300
8,500	1385	7.97	6699	1429	8.35	7019	1472	8.73	7343	1493	8.93	7506	1514	9.12	7670
9,000	1431	8.78	7382	1473	9.15	7705	1515	9.55	8032	1535	9.75	8196	_	_	_
9,500	1478	9.65	8114	1519	10.04	8441	_	_	_	_	_	_	_	_	_
10,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Standard low-medium static drive range is 910 to 1095 rpm. Alternate high-static drive range is 1069 to 1287. Other rpms require a field-supplied drive.

Refer to page 221 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp is 5.90. The maximum continuous watts is 5180.

4							Avail	able Ex	ternal St	atic Pres	ssure (in	ı. wg)						
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0			1.2	
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
5,500	795	2.43	2043	866	2.74	2306	934	3.07	2578	998	3.40	2856	1059	3.74	3142	1117	4.08	3434
6,000	854	2.92	2452	921	3.24	2722	984	3.57	3998	1044	3.90	3281	1102	4.25	3570	1158	4.60	3865
6,500	914	3.46	2909	977	3.79	3184	1036	4.12	3465	1093	4.46	3752	1148	4.81	4045	1201	5.16	4343
7,000	975	4.06	3414	1034	4.39	3695	1090	4.73	3981	1144	5.08	4272	1196	5.43	4569	1246	5.79	4870
7,500	1037	4.72	3969	1092	5.06	4255	1145	5.41	4546	1196	5.76	4842	1256	6.12	5142	1294	6.48	5447
8,000	1099	5.44	4575	1150	5.79	4866	1201	6.14	5162	1249	6.50	5462	1297	6.86	5766	1343	7.22	6075
8,500	1161	6.22	5232	1210	6.57	5529	1258	6.93	5829	1304	7.29	6134	1349	7.66	6443	1393	8.03	6755
9,000	1223	7.07	5943	1270	7.43	6245	1315	7.79	6550	1360	8.16	6869	1403	8.53	7171	1445	8.90	7487
9,500	1286	7.98	6708	1331	8.34	7014	1374	8.71	7324	1416	9.08	7638	1457	9.46	7954	1498	9.84	8274
10,000	1349	8.95	7528	1392	9.32	7839	1433	9.70	8154	1473	10.07	8471	_	_	_	_	_	l —

41.61					-	Available	Externa	I Static	Pressur	e (in. wg	1)				
Airflow (Cfm)		1.4			1.6			1.8			1.9			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
5,500	1173	4.44	3732	1227	4.80	4036	1279	5.17	4345	1304	5.35	4502	1329	5.54	4629
6,000	1211	4.95	4165	1263	5.32	4471	1313	5.69	4782	1337	5.87	4939	1361	6.06	5097
6,500	1252	5.53	4646	1302	5.89	4954	1350	6.26	5267	1373	6.56	5425	1396	6.64	5584
7,000	1295	6.16	5176	1343	6.52	5487	1389	6.90	5802	1412	7.09	5961	1434	7.28	6121
7,500	1340	6.85	5756	1386	7.22	6070	1431	7.60	6387	1452	7.79	6547	1474	7.98	6709
8,000	1388	7.60	6388	1431	7.97	6704	1474	8.35	7260	1495	8.54	7186	1516	8.74	7348
8,500	1436	8.41	7071	1478	8.79	7390	1520	9.17	7713	1540	9.37	7876	_	_	_
9,000	1486	9.28	7807	1527	9.67	8130	_	_	_	_	_	_	_	_	_
9,500	1538	10.22	8597	_	_	_	_	_	_	_	_	_	_	_	_
10,000	—	l —	l —	_	_	_	_	_	_	_	_	_	_	_	l —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Standard low-medium static drive range is 910 to 1095 rpm. Alternate high-static drive range is 1069 to 1287. Other rpms require a field-supplied drive.

Refer to page 221 for general Fan Performance Data notes.

 ${f NOTE:}$ Maximum continuous bhp is 5.90. The maximum continuous watts is 5180.

FAN PERFORMANCE — 580F180-300 UNITS (cont)

						Availabl	e Extern	al Static	Pressure	(in. wg)					
Cfm		0.2			0.4			0.6			8.0			1.0	
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,000	824	2607	3.09	894	2844	3.37	961	3085	3.66	1023	3330	3.95	1083	3578	4.24
6,500	881	3030	3.59	947	3266	3.88	1009	3507	4.16	1069	3751	4.45	1126	3998	4.74
7,000	939	3488	4.14	1001	3725	4.42	1060	3965	4.70	1116	4208	4.99	1170	4454	5.28
7,500	998	3982	4.72	1055	4218	5.00	1111	4458	5.29	1165	4701	5.58	1217	4946	5.87
8,000	1056	4512	5.35	1111	4748	5.63	1164	4988	5.92	1215	5230	6.20	1264	5474	6.49
8,500	1116	5077	6.02	1167	5314	6.30	1218	5553	6.59	1266	5795	6.87	1314	6039	7.16
9,000	1175	5678	6.74	1224	5915	7.02	1272	6154	7.30	1319	6395	7.59	1364	6639	7.88
9,500	1235	6315	7.49	1282	6552	7.77	1327	6791	8.06	1372	7033	8.34	1415	7276	8.63
10,000	1295	6988	8.29	1340	7225	8.57	1383	7465	8.86	1426	7706	9.14	1468	7949	9.43

						Availabl	e Extern	al Static	Pressure	(in. wg)					
Cfm		1.2			1.4			1.6			1.8			2.0	
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,000	1141	3829	4.54	1196	4082	4.84	1249	4337	5.15	1301	4596	5.45	1351	4856	5.76
6,500	1181	4247	5.04	1234	4499	5.34	1285	4753	5.64	1334	5009	5.94	1383	5267	6.25
7,000	1223	4702	5.58	1274	4953	5.88	1323	5205	6.18	1371	5460	6.48	1417	5716	6.78
7,500	1267	5194	6.16	1316	5443	6.46	1363	5694	6.76	1409	5947	7.06	1454	6202	7.36
8,000	1313	5721	6.79	1359	5970	7.08	1405	6220	7.38	1449	6472	7.68	1493	6726	7.98
8,500	1360	6285	7.46	1405	6533	7.75	1449	6783	8.05	1491	7034	8.34	1533	7286	8.64
9,000	1408	6885	8.17	1451	7132	8.46	1494	7381	8.76	1535	7631	9.05	_	_	l —
9,500	1458	7521	8.92	1499	7768	9.22	1540	8180	9.51	_	_	_	_	_	l —
10,000	1508	8193	9.72	1549	8440	10.01	_	l —	_	_	_	_	_	_	l —

						Availabl	e Extern	al Static I	Pressure	(in. wg)					
Cfm		2.2			2.4			2.6			2.8			3.0	
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,000	1399	5118	6.07	1446	5381	6.38	1492	5647	6.70	1537	5914	7.02	_	_	
6,500	1429	5527	6.56	1475	5789	6.87	1520	6052	7.18	_		_	_	_	_
7,000	1462	5974	7.09	1507	6234	7.40	1550	6495	7.71	l —	_	_	l —	_	
7,500	1498	6459	7.66	1540	6717	7.97	_	_	_	_		_	_	_	_
8,000	1535	6981	8.28	_	_	_	_	_	_	l —		_	l —	_	_
8,500	l —	_	_	_	_	_	_	_	_	l —	_	_	l —	_	_
9,000	l —	_	_	_	_	_	_	_	_	l —	_	_	l —	_	
9,500	_	_	_	_	_	_	_	_	_	_		_	_	_	_
10,000													_		_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

Refer to page 221 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp for the standard motor is 8.70 (for 208/230 and 575-v units) and 9.50 (for 460-v units). The maximum continuous watts is 7915 (for 208/230 and 575-v units) and 8640 (for 460-v units). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Performance table for additional information.

^{*}Standard low-medium static drive range is 1002 to 1151 rpm. Alternate high-static drive range is 1193 to 1369. Other rpms require a field-supplied drive.

FAN PERFORMANCE — 580F180-300 UNITS (cont)

						Availabl	e Extern	al Static	Pressure	(in. wg)					
Cfm		0.2			0.4			0.6			0.8			1.0	
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,000	868	2752	3.26	934	2987	3.54	997	3227	3.83	1058	3470	4.12	1115	3716	4.41
6,500	929	3201	3.80	991	3436	4.08	1051	3675	4.36	1108	3917	4.65	1162	4163	4.94
7,000	991	3687	4.37	1049	3923	4.65	1105	4161	4.94	1159	4403	5.22	1211	4647	5.51
7,500	1054	4211	5.00	1109	4447	5.28	1161	4686	5.56	1213	4926	5.84	1262	5170	6.13
8,000	1117	4773	5.66	1168	5009	5.94	1218	5247	6.22	1267	5488	6.51	1314	5731	6.80
8,500	1180	5373	6.37	1229	5609	6.65	1277	5847	6.94	1323	6088	7.22	1368	6331	7.51
9,000	1244	6011	7.13	1290	6247	7.41	1335	6485	7.69	1380	6726	7.98	1423	6968	8.27
9,500	1308	6687	7.93	1352	6924	8.21	1395	7162	8.50	1437	7402	8.78	1479	7644	9.07
10,000	1372	7401	8.78	1414	7638	9.06	1455	7876	9.34	1496	8117	9.63	1535	8358	9.92

						Availabl	e Extern	al Static I	Pressure	(in. wg)					
Cfm		1.2			1.4			1.6			1.8			2.0	
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,000	1171	3965	4.70	1224	4216	5.00	1276	4469	5.30	1326	4726	5.61	1374	4983	5.91
6,500	1215	4410	5.23	1266	4659	5.53	1316	4911	5.83	1364	5165	6.13	1411	5421	6.43
7,000	1262	4894	5.81	1311	5142	6.10	1358	5392	6.40	1404	5645	6.70	1449	5899	7.00
7,500	1310	5415	6.42	1357	5663	6.72	1403	5912	7.01	1447	6164	7.31	1490	6416	7.61
8,000	1360	5976	7.09	1405	6222	7.38	1449	6471	7.68	1492	6721	7.97	1533	6973	8.27
8,500	1412	6575	7.80	1455	6821	8.09	1497	7068	8.39	1538	7318	8.68	_		_
9,000	1465	7212	8.56	1506	7457	8.85	1547	7705	9.14	_	_	_	_		_
9,500	1519	7888	9.36	_	_	_	_	_	_	_	_	_	_	_	_
10,000	_		_	_	_	_	_		_	_	_	_	_		_

						Availabl	e Extern	al Static I	Pressure	(in. wg)					
Cfm		2.2			2.4			2.6			2.8			3.0	
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,000	1422	5243	6.22	1468	5505	6.53	1513	5768	6.84	_	_		_	_	
6,500	1456	5679	6.74	1501	5938	7.04	1544	6199	7.35	_	_	_	_		_
7,000	1493	6155	7.30	1536	6412	7.61	_		_	_	_	_	_		_
7,500	1533	6670	7.91	_	_	_	_		_	_	_	_	_		_
8,000	l —	_	_	_	_	_	_		_	_	_	_	_		_
8,500	l —	_	_	_	_		_	_	_	_	_	_	_		_
9,000	_	_	_	_	_	_	_		_	_	_	_	_		_
9,500	_	_	_	_	_	_	_		_	_	_	_	_		_
10,000					_				_						_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

Refer to page 221 for general Fan Performance Data notes.

NOTE: Maximum continuous bhp for the standard motor is 8.70 (for 208/230 and 575-v units) and 9.50 (for 460-v units). The maximum continuous watts is 7915 (for 208/230 and 575-v units) and 8640 (for 460-v units). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Performance table for more information.

^{*}Standard low-medium static drive range is 1002 to 1151 rpm. Alternate high-static drive range is 1193 to 1369. Other rpms require a field-supplied drive.

FAN PERFORMANCE — 580F180-300 UNITS (cont)

580F300275 (25	5 TONS)*																	
A							Avail	able Ext	ernal St	atic Pres	ssure (ir	ո. wg)						
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0			1.2	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
7,000	941	3.35	2,769	1002	3.80	3,140	1061	4.27	3528	1117	4.76	3,934	1171	5.27	4,356	1224	5.80	4,794
7,500	999	4.05	3,348	1057	4.53	3,742	1112	5.02	4152	1166	5.54	4,579	1218	6.07	5,210	1268	6.63	5,478
8,000	1058	4.85	4,007	1113	5.35	4,424	1165	5.87	4856	1216	6.41	5,304	1266	6.97	5,766	1314	7.55	6,243
8,500	1117	5.74	4,750	1169	6.28	5,190	1219	6.83	5645	1268	7.40	6,114	1315	7.98	6,597	1361	8.58	7,094
9,000	1177	6.75	5,583	1226	7.31	6,047	1274	7.89	6524	1320	8.48	7,015	1365	9.09	7,520	1410	9.72	8,037
9,500	1237	7.98	6,511	1284	8.46	6,999	1329	9.07	7499	1374	9.69	8,012	1417	10.33	8,538	1459	10.98	9,076
10,000	1297	9.12	7,450	1342	9.74	8,051	1385	10.37	8574	1428	11.02	9,110	1469	11.68	9,657	1510	12.36	10,217
10,500	1358	10.49	8,674	1400	11.14	9,209	1442	11.80	9755	1483	12.47	10,314	1523	13.16	10,883	_	_	_
11,000	1418	12.00	9,919	1459	12.67	10,478	_	_	_	_	_	_	_	_	_	_	_	_
11,250	1449	12.80	10,585	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—

580F300275 (25	TONS)*	(cont)							
A inflam.		Α	vailable	Externa	al Static	Pressur	e (in. wg	1)	
Airflow (Cfm)		1.4	_		1.6			1.8	_
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
7,000	1274	6.35	5248	1323	6.92	5,718	1371	5.54	6204
7,500	1316	7.20	6960	1364	7.79	6,437	1410	6.41	6939
8,000	1360	8.14	6734	1406	8.76	7,239	1450	7.40	7759
8,500	1406	9.20	7605	1449	9.83	8,129	1492	8.48	8666
9,000	1453	10.36	8568	1495	11.02	9,111	1536	9.69	9667
9,500	1501	11.64	9627	1541	12.32	10,190	_	_	_
10,000	_	_	_	_	_	_	_	_	_
10,500	_	_	l —	_	_	_	_	_	_
11,000	_	_	l —	_	_	_	_	_	_
11,250	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower **Watts** — Input Watts to Motor

*Standard low-medium static drive range is 1066 to 1283 rpm. Alternate high-static drive range is 1332 to 1550. Other rpms require a field-supplied drive.

Refer to this page for general Fan Performance Data notes.

NOTE: Maximum continuous bhp is 10.20 (208/230 and 575 v) or 11.80 (460 v) and the maximum continuous watts are 9510 (208/230 and 575 v) or 11,000 (460 v). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Performance table for more information.

A ! £1							Avail	able Ext	ternal St	atic Pres	ssure (in	ı. wg)						
Airflow (Cfm)		0.2			0.4		0.6			0.8			1.0			1.2		
(Cilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
7,000	992	4.05	3,348	1051	4.44	3,668	1106	4.83	3995	1160	5.24	4331	1212	5.65	4675	1262	6.08	5026
7,500	1055	4.77	3,947	1110	5.17	4,277	1162	5.58	4615	1214	6.00	4960	1263	6.43	5312	1311	6.86	5672
8,000	1118	5.58	4,610	1170	5.99	4,950	1220	6.41	5298	1268	6.84	5653	1315	7.27	6014	1361	7.72	6382
8,500	1182	6.46	5,339	1231	6.88	5,690	1278	7.31	6047	1324	7.75	6411	1369	8.20	6782	1413	8.66	7158
9,000	1246	7.42	6,136	1292	7.86	6,498	1337	8.30	6865	1381	8.75	7239	1424	9.21	7618	1466	9.68	8003
9,500	1310	8.47	7,005	1354	8.92	7,377	1397	9.38	7754	1439	9.84	8137	1480	10.31	8525	1520	10.79	8918
10,000	1374	9.61	7,947	1416	10.07	8,329	1457	10.54	8715	1497	11.02	9107	1537	11.50	9504	_	_	_
10,500	1439	10.84	8,964	1479	11.32	9,356	1518	11.79	9752	_	_	_	_	_	_	_	_	_
11,000	1503	12.17	10,059	1542	12.65	10,460	_	_	_	_	_	_	_	_	_	_	_	_
11,250	1536	12.86	10,636	_	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	l —

580F300360 (25	TONS)*	(cont)								
41.0			vailable	Externa	al Static	Pressur	e (in. wg	1)		
Airflow (Cfm)		1.4			1.6		1.8			
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	
7,000	1311	6.51	5385	1359	6.96	5751	1405	6.00	6124	
7,500	1358	7.30	6039	1403	7.76	6412	1448	6.84	6792	
8,000	1406	8.17	6767	1560	8.63	7137	1492	7.75	7524	
8,500	1456	9.12	7541	1498	9.59	7929	1539	8.75	8323	
9,000	1507	10.15	8393	1548	10.63	8790	_	_	_	
9,500	_	_	_	_	_	_	_	_	_	
10,000	_	_	_	_	_	_	_	_	_	
10,500	_	_	l —	_	_	_	_	_	_	
11,000	_	_	_	_	_	_	_	_	_	
11,250	_	_	l —	_	_	_	_	_	_	

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

*Standard low-medium static drive range is 1066 to 1283 rpm. Alternate high-static drive range is 1332 to 1550. Other rpms require a field-supplied drive.

Refer to this page for general Fan Performance Data notes.

NOTE: Maximum continuous bhp is 10.20 (208/230 and 575 v) or 11.80 (460 v) and the maximum continuous watts are 9510 (208/230 and 575 v) or 11,000 (460 v). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Performance table for more information.

GENERAL NOTES FOR FAN PERFORMANCE DATA TABLES

- Static pressure losses (i.e., EconoMi\$er IV) must be added to external static
- pressure before entering Fan Performance table.

 Interpolation is permissible. Do not extrapolate.

 Fan performance is based on wet coils, clean filters, and casing losses. See Accessory/FIOP Static Pressure table on page 223.
- Extensive motor and drive testing on these units ensures that the full horse-power and watts range of the motor can be utilized with confidence. Using fan motors up to the watts or bhp rating shown will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.
- Use of a field-supplied motor may affect wire size. Contact your Bryant representative for details.

Fan Performance Using Accessory Power Exhaust (580F180-300)

ALTITUDE COMPENSATION* — 580F180-300

ELEVATION	NATURAL GAS	S ORIFICE SIZE†
(ft)	Low Heat	High Heat
0-3,000	30	29
3,000- 7,000	31	30
7,000- 9,000	32	31
9,000-10,000	33	31
above 10,000	35	32

^{*}Includes a 4% input reduction per each 1,000 feet. †Orifices available through your Bryant dealer.

ALTITUDE DERATING FACTOR*

ELEVATION (ft)	MAXIMUM HEATING VALUE (Btu/ft³)
0-2,000	1,100
2,001-3,000	1,050
3,001-4,000	1,000
4,001-5,000	950
5,001-6,000	900

*Derating of the unit is not required unless the heating value of the gas exceeds the values listed in the table above, or if the elevation exceeds 6000 ft. Derating conditions must be 4% per thousand ft above 2000 ft. For example, at 4000 ft, if the heating value of the gas exceeds 1000 Btu/ft³, the unit will require a 16% derating. For elevations above 6000 ft, the same formula applies. For example, at 7000 ft, the unit will require a 28% derating of the maximum heating value per the National Fuel Gas Code.

IMPORTANT: Local utility companies may be reducing heat content of gas at altitudes above 2000 ft. If this is being done, changing spuds may not be required.

ALTITUDE COMPENSATION — 580F180-300 (LP Gas Units)

ELEVATION	LIQUID PROPANE ORIFICE SIZE
(ft)	Low Heat and High Heat
0-2,000	36
2,000	37
3,000	38
4,000	38
5,000	39
6,000	40
7,000	41
8,000	41
9,000	42
10,000	43

OUTDOOR SOUND POWER

UNIT	SOUND	A-WEIGHTED	OCTAVE BANDS									
580F	RATING (60 Hz)	(dB)	63	125	250	500	1000	2000	4000	8000		
180	88 dB	87.6	90.8	88.7	86.4	84.3	83.5	78.4	75.6	66.8		
210	88 dB	87.8	90.8	88.7	86.4	84.3	83.5	78.4	75.6	66.8		
240	94 dB	94.4	99.7	93.0	93.7	91.8	89.7	85.9	80.7	74.4		
300	94 dB	94.1	98.7	92.3	93.8	90.9	89.6	85.9	80.3	74.3		

LEGEND

Bels — Sound Levels (1 bel = 10 decibels)

NOTE: Indoor sound power is available in Bryant's Electronic Catalog program (ECAT) for specific operating parameters.

ACCESSORY/FIOP STATIC PRESSURE (in. wg)* - 580F180-300

COMPONENT	CFM											
COMPONENT	4500	5000	5400	6000	7200	7500	9000	10,000	11,250			
EconoMi\$er IV and EconoMi\$er2	0.040	0.050	0.060	0.070	0.090	0.100	0.110	0.120	0.140			

LEGEND

FIOP — Factory-Installed Option

FAN RPM AT MOTOR PULLEY SETTINGS*

UNIT						MOTOR P	ULLEY TUR	NS OPEN					
580F	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/2	6
180†	††	††	††	††	1021	1002	984	965	947	928	910	891	873
180**	††	††	††	††	1200	1178	1156	1134	1112	1091	1069	1047	1025
210†	††	††	1095	1077	1058	1040	1021	1002	984	965	947	928	910
210**	††	††	1287	1265	1243	1222	1200	1178	1156	1134	1112	1091	1069
240†	††	††	††	††	1151	1132	1114	1095	1077	1058	1040	1021	1002
240**	††	††	††	††	1369	1347	1325	1303	1281	1259	1237	1215	1193
300†	††	††	1283	1269	1247	1225	1203	1182	1160	1138	1116	1095	1066
300**	††	††	††	††	1551	1524	1497	1470	1443	1415	1388	1361	1332

EVAPORATOR-FAN MOTOR PERFORMANCE

UNIT 580F	UNIT VOLTAGE	MAXIMUM ACCEPTABLE CONTINUOUS BHP*	MAXIMUM ACCEPTABLE CONTINUOUS BkW*	MAXIMUM ACCEPTABLE OPERATING WATTS	MAXIMUM AMP DRAW
	208/230				15.8
180	460	6.13	4.57	5,180	7.9
	575				6.0
	208/230				15.8
210	460	5.90	4.40	5,180	7.9
	575				6.0
	208/230	8.70	6.49	7,915	22.0
240	460	9.50	7.08	8,640	13.0
	575	8.70	6.49	7,915	10.0
	208/230	10.20	7.61	9,510	28.0
300	460	11.80	8.80	11,000	14.6
	575	10.20	7.61	9,510	13.0

LEGEND

BHP Brake Horsepower Brake Kilowatts

will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.

NOTE: All indoor-fan motors 5 hp and larger meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT) effective October 24, 1997.

EVAPORATOR-FAN MOTOR EFFICIENCY

UNIT 580F	MOTOR EFFICIENCY (%)
5 Hp	87.5
7.5 Hp	88.5
10 Hp	89.5

NOTE: The EPACT (Energy Policy Act of 1992) regulates energy requirements for specific types of indoor fan motors. Motors regulated by EPACT include any general purpose, T-frame (three-digit, 143 and larger), single-speed, foot mounted, polyphase, squirrel cage induction motors of NEMA (National Electrical Manufacturers Association) design A and B, manufactured for use in the United States. Ranging from 1 to 200 Hp, these continuous-duty motors operate on 230 and 460 volt, 60 Hz power. If a motor does not fit into these specifications, the motor does not have to be replaced by an EPACT-compliant energy-efficient motor. Variable-speed motors are exempt from EPACT compliance requirements. Therefore, the indoor-fan motors for these units are exempt from these requirements.

^{*}The static pressure must be added to external static pressure. The sum and the evaporator entering-air cfm should then be used in conjunction with the Fan Performance tables to determine blower rpm and watts.

^{*}Approximate fan rpm shown.
†Indicates standard drive package.
**Indicates alternate drive package.
††Due to belt and pulley size, pulley cannot be set to this number of turns open.

^{*}Extensive motor and electrical testing on these units ensures that the full horse-power (brake kilowatt) range of the motors can be utilized with confidence. Using your fan motors up to the horsepower (brake kilowatt) ratings shown in this table

ELECTRICAL DATA

	NOMINAL		TAGE		С	OMPR	ESSOF	₹				-M		IFM		VER	COMBUSTION		VER
UNIT 580F	VOLTAGE	RAI	NGE	No	. 1	No.	1A	No	. 2		UI.	IVI		ILIAI	EXH	AUST	FAN MOTOR	SUF	PLY
	(3 Ph, 60 Hz)	Min	Max	RLA	LRA	RLA	LRA	RLA	LRA	Qty	Нр	FLA (ea)	Нр	FLA	FLA	LRA	FLA	MCA	MOCP*
	208/230	187	253	32.1	195		_	20.7	156	3	0.5	1.7	5.0	15.8/15.8	_	_	0.57	82/82	110/110
	200/230	107	200	52.1	190			20.7	150	3	0.5	1.7	5.0	13.0/13.0	4.6	18.8	0.57	86/86	110/110
180	460	414	508	16.4	95	_	_	10	70	3	0.5	0.8	5.0	7.9	_	_	0.30	41	50
100	400	717	500	10.4	30			10	70	ŭ	0.0	0.0	5.0	7.5	2.3	6.0	0.30	43	50
	575	518	633	12	80	_	_	8.2	54	3	0.5	0.75	5.0	6.0	_	_	0.57	31	40
	373	010	000	12	00			0.2	07	Ů	0.5	0.70	0.0	0.0	2.1	4.8	0.57	34	40
	208/230	187	253	30.1	225	_	_	28.8	195	3	0.5	1.7	5.0	15.8/15.8	_	_	0.57	87/87	110/110
	200/200	101	200	00.1	LLO			20.0	100	Ů	0.0	1.7	0.0	10.0/10.0	4.6	18.8	0.57	92/92	110/110
210	460	414	508	15.5	114	_	_	14.7	95	3	0.5	0.8	5.0	7.9	_	_	0.30	44	50
10	100		000	10.0						Ů	0.0	0.0	0.0	7.0	2.3	6.0	0.30	47	60
	575	518	632.5	12.1	80	_	_	10.7	80	3	0.5	0.75	5.0	6.0	_		0.57	34	40
	0.0	0.0	002.0							Ŭ	0.0	00	0.0	0.0	2.1	4.8	0.57	36	40
	208/230	187	253	42	239	_	_	33.6	225	2	1	6.6	7.5	25.0/25.0	_	_	0.57	124/124	150/150
											_				4.6	18.8	0.57	129/129	150/150
240	460	414	508	19.2	125	_	_	17.3	114	2	1	3.3	7.5	13.0	_	_	0.30	61	80
															2.3	6.0	0.30	63	80
	575	518	633	13.8	80.0	_	_	13.5	80.0	2	1.0	3.4	7.5	10.0	_	_	0.57	48	60
															2.1	4.8	0.57	50	60
	208/230	187.2	253	20.7	156	20.7	156	47.1	245	6	0.5	1.7	10.0	28.0/28.0	_		0.57	138/138	175/175
															4.6	18.8	0.57	143/143	150/175
300	460	414	508	10	75	10	75	19.6	125	6	0.5	0.8	10.0	14.6			0.30	64	80
												_			2.3	6	0.30	66	80
	575	517.5	632.5	8.2	54	8.2	54	15.8	100	6	0.5	0.8	10.0	13.0	_	_	0.57	54	60
															2.1	4.8	0.57	56	70

LEGEND

FLA — Full Load Amps
HACR — Heating, Air Conditioning and Refrigeration
IFM — Indoor (Evaporator) Fan Motor
LRA — Locked Rotor Amps
MCA — Minimum Circuit Amps
MOCP — Maximum Overcurrent Protection
NEC — National Electrical Code
OFM — Outdoor (Condenser) Fan Motor
RLA — Rated Load Amps

*Fuse or HACR circuit breaker.

NOTES:

In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be

Unbalanced 3-Phase Supply Voltage
 Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent voltage imbalance.

% Voltage Imbalance

= 100 x <u>max voltage deviation from average</u> <u>voltage</u> average voltage

EXAMPLE: Supply voltage is 460-3-60.

Determine maximum deviation from average voltage.

(AB) 457 – 452 = 5 v (BC) 464 – 457 = 7 v (AC) 457 – 455 = 2 v

Maximum deviation is 7 v.

Determine percent voltage imbalance.

% Voltage Imbalance =
$$100 \times \frac{7}{457}$$

= 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

TYPICAL WIRING SCHEMATICS — 580F

Typical Wiring Schematic — 580F180, 460-3-60 Shown

TYPICAL WIRING SCHEMATICS — 580F (cont)

EconoMi\$er IV Wiring — 580F180-300

EconoMi\$er2 Wiring — 580F180-300

TYPICAL WIRING SCHEMATICS — 580F (cont)

Non-Fused Disconnect (Optional) — 580F180-300

TYPICAL PIPING AND WIRING — 580F180-300

PHYSICAL DATA — 581A155,180

UNIT 581A			55	180						
NOMINAL CAPACITY (tons)		208/230 460	575	208/230 460 15	575					
DPERATING WEIGHT (lb) Unit										
Al/Al* Al/Cu*			725 375	1800 1950						
Cu/Cu* EconoMi\$er IV		20	005 90	2080 90						
EconoMiSer2 Roof Curbt			85 200	85 200						
Hot Gas Reheat Dehumidification Package		-	_	40						
COMPRESSOR QuantityModel (Ckt 1, Ckt 2)		2ZF	R72KC	1ZR94KC, 1ZR7	2KC					
Number of Refrigerant Circuits Loading (% of full capacity)		2	2 3,100	0,60,100						
Crankcase Heater Watts Oil (oz) (Ckt 1, Ckt 2)		7	70 1,60	70 85,60						
REFRIGERANT TYPE			R-22	00,00						
Expansion Device Operating Charge (lb)			TXV							
Circuit 1** Circuit 2			0.7 3.4	19.5 13.45						
CONDENSER FAN			Propeller T	ype						
Nominal Cfm QuantityDiameter (in.)		3	.22	10,500 322						
Motor HpRpm Watts Input (Total)		1/ ₂ 11	1050 00	1/ ₂ 1050 1100						
CONDENSER COIL		Cross-H	Hatched 3/8-in. Copper Tubes, Pre-Coated, or Copp	Aluminum Lanced, Aluminum er Plate Fins						
RowsFins/in. Total Face Area (sq ft)		4	.15 1.7	415 21.7						
EVAPORATOR FAN			Centrifugal	Гуре						
QuantitySize (in.) Type Drive		В	2 X 12 elt	212 x 12 Belt						
Nominal Cfm Std Motor Hp		52	200	6000 5						
Opt Motor Hp Motor Nominal Rpm		2.9 3.7 17	725 N/A	N/A 1745						
Std Maximum Continuous Bhp Opt Maximum Continuous Bhp		3.13 4.26	3.38 N/A	6.13						
Motor Frame Size Fan Rpm Range	Low-Medium Static		6H 895-1147	184T 873-1021						
•	High Static	1040-1315	all	1025-1200 Ball						
Motor Bearing Type Maximum Allowable Rpm	Laur Madium Ctatia	15	550	1550						
Motor Pulley Pitch Dia.	Low-Medium Static High Static	3.1/4.1 3.7/4.7	3.1/4.1 N/A	4.9/5.9 4.9/5.9						
Nominal Motor Shaft Diameter (in.) Fan Pulley Pitch Diameter (in.)	Low-Medium Static	^{7/} 8 6.0	7/ ₈ 6.0	11/ ₈ 9.4						
Nominal Fan Shaft Diameter (in.) Belt, QuantityType Length (in.)	High Static Low-Medium Static	6.0 1 ^{3/} 16 1BX45	6.0 1 ³ / ₁₆ 1BX45	8.0 1 ^{7/} ₁₆ 1BX50						
Pulley Center Line Distance (in.)	High Static	1BX45 1BX45 14.5-16.0	1BX45 1BX45 14.5-16.0	1BX48 13.3-14.8						
Speed Change per Full Turn of Movable Pulley Flange (Rpm)	Low-Medium Static	45	45	37						
Movable Pulley Maximum	High Static	45	N/A	44						
Full Turns From Closed Position Factory Speed		6 3.5	6 3.5	4†† 3.5						
Factory Speed Setting (Rpm)	Low-Medium Static High Static	987 1155	987 N/A	965 1134						
EVAPORATOR COIL RowsFins/in.			-in. Copper Tubes, Aluminum .15	Lanced or Copper Plate Fins, Fa 415	ce Split					
Total Face Area (sq ft)	ſ	17	7.5	17.5						
FURNACE SECTION Rollout Switch Cutout Temp (F)***		1!	90	190						
Burner Orifice Diameter (indrill size) Natural Gas	Std	0.128530	0/ 0.13629	0.128530/ 0.136	.29					
Liquid Propane††† Thermostat Heat Anticipator Setting	Alt		/0.106536	0.106536/0.1065						
208/230/460/575 v Stage 1 (amps)		0.98 0.8	0.98	0.98 0.8	0.98					
Stage 2 (amps)		0.44 0.44	4 0.44	0.44 0.44	0.44					
Gas Input (Btuh) Stage 1 Stage 2		225,000	//230,000 //300,000	206,000/270,000 275,000/360,000						
Efficiency (Steady State) (%) Temperature Rise Range		15-45	31 5/30-60	81 15-45/20-50						
Manifold Pressure (in. wg) Natural Gas	Std	3	.3	3.3						
Liquid Propane††† Gas Valve Quantity	Alt	•	i.3 1	3.3						
Gas Valve Pressure Range (Min-Max Allowable) (in. wg) (psig)		235.	-13.5 487	5.5-13.5 .235487						
Field Gas Connection Size (inFPT) HIGH-PRESSURE SWITCH (psig)		3,	1401	3/4						
Cutout			426 320							
Reset (Auto.) LOW-PRESSURE SWITCH (psig)			320							
Cutout Reset (Auto.)			27 44							
FREEZE PROTECTION THERMOSTAT (F)										
		30 ± 5 45 ± 5								
Opens Closes		Cleanable 220 x 25 x 1								
Closes DUTDOOR-AIR INLET SCREENS		120 x 20 x 1								
Closes DUTDOOR-AIR INLET SCREENS QuantitySize (in.)				Throwaway 420 x 20 x 2						
Closes DUTDOOR-AIR INLET SCREENS QuantitySize (in.) RETURN-AIR FILTERS			Throwaw							
Closes OUTDOOR-AIR INLET SCREENS QuantitySize (in.) RETURN-AIR FILTERS QuantitySize (in.)			Throwaw 420 x 20 416 x 20	x 2 x 2						
Closes OUTDOOR-AIR INLET SCREENS QuantitySize (in.) RETURN-AIR FILTERS QuantitySize (in.) LEGEND		*Evaporator coi †Weight of 14-ir	Throwaw 420 x 20 416 x 20 il fin material/condenser coil fi	x 2 x 2 n material.						
Closes OUTDOOR-AIR INLET SCREENS QuantitySize (in.) RETURN-AIR FILTERS QuantitySize (in.) LEGEND — Aluminum p — Brake Horsepower		†Weight of 14-ir **Circuit 1 uses	Throwaw 420 x 20 416 x 20 ill fin material/condenser coil fin. roof curb. the lower portion of condenser	x 2 x 2 n material. ser coil and lower portion of eva	porator coils,					
Closes DUTDOOR-AIR INLET SCREENS QuantitySize (in.) RETURN-AIR FILTERS QuantitySize (in.) LEGEND — Aluminum		†Weight of 14-ir **Circuit 1 uses Circuit 2 uses	Throwaw 420 x 20 416 x 20 il fin material/condenser coil fi n. roof curb. the lower portion of condenser the upper portion of both coils d pulley style, moveable pulle	x 2 x 2 n material. ser coil and lower portion of eva						

PHYSICAL DATA — 581A210-300

UNIT 581A		210	240	300
NOMINAL CAPACITY (tons)		18	20	25
OPERATING WEIGHT (lb)		0004	0070	0500
AI/AI COMPRESSOR		2224	2272	2526
Quantity		3	3	2
Number of Refrigerant Circuits		3 686890	3 9090	2 110110NA
Oil (ounces) Ckt ACkt BCkt C REFRIGERANT TYPE		000090	909090	110110NA
Expansion Device		TXV	TXV	TXV
Operating Charge (lb) Circuit A		13.1	13.8	21.8
Circuit B		12.7	13.9	20.3
Circuit C		15.2	15.5	NA
CONDENSER FAN Nominal Cfm (Total, all fans)		14,000	14,000	21,000
QuantityDiameter (in.)		422	422	622
Motor HpRpm Watts Input (Total)		1/ ₄ 1100 1400	1/ ₄ 1100 1400	1/ ₄ 1100 2100
CONDENSER COIL		1400	1400	2100
RowsFins/in.		217	217	217
Total Face Area (sq ft)		57.78	57.78	66.67
EVAPORATOR FAN QuantitySize		215x11	215x11	215x11
Type Drive		Belt	Belt	Belt
Nominal Cfm Motor Bearing Type		7000 Ball	8000 Ball	10,000 Ball
Maximum Allowable Fan Rpm		1400	1400	1400
EVAPORATOR COIL				
RowsFins/in. Total Face Area (sq ft)		315 23.33	415 23.33	415 27.22
FURNACE SECTION				
Rollout Switch Cutout Temp (F) Burner Orifice Diameter (indrill size)		225 0.13629	225 0.13629	225 0.13629
Gas		Natural	Natural	Natural
Thermostat Heat Anticipator Setting Stage 1 (amps)		0.98	0.98	0.98
Stage 2 (amps)		0.44	0.44	0.44
Gas Input (Btuh) HIGH HEAT	Stage 1 Stage 2	317,000 400,000	317,000 400,000	317,000 400,000
Efficiency (Steady State) %	Vertical	82	82	82
Temperature Rise Range Gas Input (Btuh) MEDIUM HEAT	Stage 1	25-55 281,000	25-55 281,000	25-55 281,000
, , ,	Stage 2	365,000	365,000	365,000
Efficiency (Steady State) % Temperature Rise Range	Vertical	81 25-55	81 25-55	81 25-55
Gas Input (Btuh) LOW HEAT	Stage 1	199,000	199,000	199,000
Efficiency (Steady State) %	Stage 2 Vertical	250,000 82	250,000 82	250,000 82
Temperature Rise Range (F)		15-45	15-45	15-45
Manifold Pressure Natural Gas (in. wg)	Vertical	3.00	3.00	3.00
Natural Gas (in. wg)	Horizontal	2.95	2.95	2.95
Gas Valve Quantity Gas Valve Pressure Range	(in. wg)	1 5.5-13.0	1 5.5-13.0	1 5.5-13.0
Min-Max Allowable Field Gas Connection Size (in, FPT)	(psig) ´´	.235469	.235469	.235469
HIGH-PRESSURE SWITCH (psig)		3/4	3/4	3/4
Cutout		426	426	426
Reset (Auto)		320	320	320
OUTDOOR-AIR INLET SCREENS QuantitySize (in.)		320x25	320x25	320x25
RETURN-AIR FILTERS		SILLEVILLE	3 <u>20</u> ,20	5 .
QuantitySize (in.)		916x25	916x25	918x24
LECEND				

LEGEND

TXV — Thermostatic Expansion Valve

PHYSICAL DATA (cont)

EVAPORATOR FAN DATA — 581A210-300 VERTICAL SUPPLY/RETURN UNITS

5044	210		240		300	
581A	203/230 and 460 V	575 V	203/230 and 460 V	575 V	203/230 and 460 V	575 V
LOW RANGE						
Motor Hp	3.7	3	5	5	5	5
Motor Nominal RPM	1725	1725	1745	1745	1745	1745
Maximum Continuous Bhp	4.25	3.45	5.75	5.75	5.75	5.75
Maximum Continuous Watts	3698	3149	4900	4900	4900	4900
Motor Frame Size	56HZ	56HZ	S184T	184T	S184T	184T
Motor Shaft Diameter (in.)	7/ ₈ 647-886	7/ ₈ 810-1072	11/8	11/ ₈	11/8	11/ ₈
Fan Rpm Range			949-1206	949-1206	805-1Ŏ07	805-1Ŏ07
Motor Pulley Min. Pitch Diameter (in.)	2.7	3.1	3.7	3.7	4.8	4.8
Motor Pulley Max. Pitch Diameter (in.)	3.7	4.1	4.7	4.7	6.0	6.0
Blower Pulley Pitch Diameter (in.)	7.2	6.6	6.8	6.8	10.4	10.4
Blower Pulley Shaft Diameter (in.)	1.1875	1.1875	1.1875	1.1875	1.1875	1.1875
Blower Pulley Type	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
Pulley Center Line Distance (in.)	11.293-13.544	11.286-14.475	9.81-13.055	9.81-13.055	9.81-13.055	9.81-13.055
Belt, QuantityTypeLength (in.)	1BX38	1BX38	1BX38	1BX38	1BX45	1BX45
Speed Change Per Turn — Moveable Pulley (rpm)	48	52	51	51	40	40
Moveable Pulley Maximum Full Turns	6	6	6	6	6	6
Factory Speed Setting (rpm)	767	941	1078	1078	906	906
HIGH RANGE						
Motor Hp	5	5	7.5	7.5	7.5	7.5
Motor Nominal Rpm	1745	1745	1745	1745	1745	1745
Maximum Continuous Bhp	5.75	5.75	8.63	8.63	8.63	8.63
Maximum Continuous Watts	4900	4900	7267	7267	7267	7267
Motor Frame Size	S184T	184T	S213T	S213T	S213T	S213T
Motor Shaft Diameter (in.)	1¹/ ₈ 897-1139	11/ ₈	13/ ₈	13/ ₈	1 ³ / ₈	13/ ₈
Fan Rpm Range	897-1139	873-1108	941-1176	941-1176	941-1176	941-1176
Motor Pulley Min. Pitch Diameter (in.)	3.7	3.7	4.8	4.8	4.8	4.8
Motor Pulley Max. Pitch Diameter (in.)	4.7	4.7	6.0	6.0	6.0	6.0
Blower Pulley Pitch Diameter (in.)	7.2	7.4	8.9	8.9	8.9	8.9
Blower Pulley Shaft Diameter (in.)	1.1875	1.1875	1.1875	1.1875	1.1875	1.1875
Blower Pulley Type	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
Pulley Center Line Distance (in.)	9.81-13.055	9.81-13.055	9.025-12.179	9.025-12.179	9.025-12.179	9.025-12.179
Belt, QuantityTypeLength (in.)	1BX38	1BX38	1BX42	1BX42	1BX42	1BX42
Speed Change Per Turn — Moveable Pulley (rpm)	48	47	47	47	47	47
Moveable Pulley Maximum Full Turns	6	6	6	6	6	6
Factory Speed Setting (rpm)	1018	991	1059	1059	1059	1059

LEGEND

Bhp — Brake Horsepower

EVAPORATOR FAN DATA — 581A210-300 HORIZONTAL SUPPLY/RETURN UNITS

504.4	210		240		300	
581A	203/230 and 460 V	575 V	203/230 and 460 V	575 V	203/230 and 460 V	575 V
LOW RANGE						
Motor Hp	3.7	3	3.7	5	5	5
Motor Nominal Rpm	1725	1725	1725	1745	1745	1745
Maximum Continuous Bhp	4.25	3.45	4.25	5.75	5.75	5.75
Maximum Continuous Watts	3698	3149	3698	4900	4900	4900
Motor Frame Size	56HZ	56HZ	56HZ	184T	S184T	184T
Motor Shaft Diameter (in.)	7/ ₈ 896-1227	7/8	7/8	11/ ₈	11/8	11/ ₈
Fan Rpm Range	896-1227	863-1141	896-1227	873-1108	805-1007	805-1007
Motor Pulley Min. Pitch Diameter (in.)	2.7	3.1	2.7	3.7	4.8	4.8
Motor Pulley Max. Pitch Diameter (in.)	3.7	4.1	3.7	4.7	6.0	6.0
Blower Pulley Pitch Diameter (in.)	5.2	6.2	5.2	7.4	10.4	10.4
Blower Pulley Shaft Diameter (in.)	1.1875	1.1875	1.1875	1.1875	1.1875	1.1875
Blower Pulley Type	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
Pulley Center Line Distance (in.)	11.293-13.544	11.286-14.475	11.293-13.544	9.81-13.055	9.81-13.055	9.81-13.055
Belt, QuantityTypeLength (in.)	1BX35	1BX38	1BX35	1BX38	1BX45	1BX45
Speed Change Per Turn — Moveable Pulley (rpm)	66	56	66	47	40	40
Moveable Pulley Maximum Full Turns	6	6	6	6	6	6
Factory Speed Setting (rpm)	1062	1002	1062	991	906	906
HIGH RANGE						
Motor Hp	5	5	5	5	7.5	7.5
Motor Nominal Rpm	1745	1745	1745	1745	1745	1745
Maximum Continuous Bhp	5.75	5.75	5.75	5.75	8.63	8.63
Maximum Continuous Watts	4900	4900	4900	4900	7267	7267
Motor Frame Size	S184T	184T	S184T	184T	S213T	S213T
Motor Shaft Diameter (in.)	11/8	11/ ₈	11/8	11/ ₈	1 ³ / ₈	13/ ₈
Fan Rpm Range	1113-1414	1042-1285	1113-1414	1113-1414	941-1176	941-1176
Motor Pulley Min. Pitch Diameter (in.)	3.7	4.3	3.7	3.7	4.8	4.8
Motor Pulley Max. Pitch Diameter (in.)	4.7	5.3	4.7	4.7	6.0	6.0
Blower Pulley Pitch Diameter (in.)	5.8	7.2	5.8	5.8	8.9	8.9
Blower Pulley Shaft Diameter (in.)	1.1875	1.1875	1.1875	1.1875	1.1875	1.1875
Blower Pulley Type	Fixed	Fixed	Fixed	Fixed	Fixed	Fixed
Pulley Center Line Distance (in.)	9.81-13.055	9.81-13.055	9.81-13.055	9.81-13.055	9.025-12.179	9.025-12.179
Belt, QuantityTypeLength (in.)	1BX35	1BX38	1BX35	1BX35	1BX42	1BX42
Speed Change Per Turn — Moveable Pulley (rpm)	60	48	60	60	47	47
Moveable Pulley Maximum Full Turns	6	6	6	6	6	6
Factory Speed Setting (rpm)	1264	1164	1264	1264	1059	1059

LEGEND

Bhp — Brake Horsepower

PHYSICAL DATA (cont)

OPERATING AND RIGGING WEIGHTS — 581A155,180

,		BASE UNIT OPER	ATING WEIGHTS*					
UNIT	155		180					
	lb	kg	lb	kg				
581A	1725	782	1800	816				

^{*}Base unit weight does not include electric heaters, copper coils, economizer, power exhaust, barometric relief or crating. See Options and Accessories table below for more information.

NOTE: For 155 and 180 unit sizes add 75 lb (34 kg) for domestic crating. For export crating add 500 lb (227 kg).

OPTIONS AND ACCESSORIES — 581A155,180 (Weight Adders)

		OPTION/ACCES	SORY WEIGHT	S
OPTION/ ACCESSORY	48H	J015	48H	J017
ACCECCONT	lb	kg	lb	kg
Barometric Relief Damper	50	23	50	23
Power Exhaust	85	39	85	39
EconoMi\$er IV	90	41	90	41
EconoMi\$er2	85	39	85	39
Cu Condenser Coil	150	68	150	68
Cu Condenser and Evaporator Coils	280	127	280	127
Roof Curb (14-in. curb)	200	91	200	91
Horizontal Adapter Roof Curb (Preassembled)	250	113	250	113
Horizontal Adapter Roof Curb (Field-assembled)	343	156	343	156
Hail Guard	60	27	60	27
Hot Gas Reheat Dehumidification Package	_	_	40	18

LEGEND

Cu — Copper

OPTIONS AND ACCESSORIES — 581A210-300 (Weight Adders)

			OPTION/ACCES	SORY WEIGHT	s		
OPTION/ ACCESSORY	581.	A210	581	A240	581A300		
ACCECCON	lb	kg	lb	kg	lb	kg	
Barometric Relief Damper	50	23	50	23	50	23	
Power Exhaust	125	57	125	57	125	57	
Economizer	170	77	170	77	195	88	
Cu Condenser Coil	162	73	162	73	202	92	
Cu Condenser and Evaporator Coils	316	143	290	132	365	166	
5-Cell Gas Heat Assembly	85	39	85	39	85	39	
8-Cell Gas Heat Assembly	113	51	113	51	113	51	
Roof Curb (14 inch)	210	95	210	95	210	95	
Optional Indoor Motor	28	13	28	13	20	9	
Two-Position Damper	45	20	45	20	45	20	
Hail Guard	85	39	85	39	100	45	
Horizontal Airflow	90	41	90	41	90	41	
Hot Gas Reheat	70	32	70	32	85	39	
CO ₂ Sensor	5	2	5	2	5	2	
Return Smoke Detector	5	2	5	2	5	2	
Supply Smoke Detector	5	2	5	2	5	2	
Non-Fused Disconnect	15	7	15	7	15	7	
Non-Powered Convenience Outlet	20	9	20	9	20	9	
Enthalpy Sensor	2	1	2	1	2	1	
Differential Enthalpy Sensor	3	1	3	1	3	1	
Drip Edge	5	2	5	2	5	2	
Manual Damper	25	11	25	11	25	11	

LEGEND

Cu — Copper
 HACR — Heating, Air Conditioning and Refrigeration

BASE UNIT DIMENSIONS — 581A155,180

BASE UNIT DIMENSIONS — 581A210-300

581A155,180

ACCESSORY DIMENSIONS (cont)

Horizontal Supply/Return Adapter Installation (581A155,180)

Barometric Relief/Power Exhaust

ACCESSORY DIMENSIONS (cont)

Factory-Installed Convenience Outlet

Factory-Installed Non-Fused Disconnect

ACCESSORY DIMENSIONS — 581A210-300

SELECTION PROCEDURE

I DETERMINE COOLING AND HEATING REQUIRE-MENTS AT DESIGN CONDITIONS.

Given:

II SELECT UNIT BASED ON REQUIRED COOLING CAPACITY.

Enter Cooling Capacities table for 581A180 at condenser entering temperature of 95 F, evaporator air quantity of 6,000 cfm, and indoor air temperature of 67 F. The 581A180 unit will provide a total cooling capacity of 190,000 Btuh and a SHC of 136,000 Btuh. For evaporator air temperatures other than 80 F, calculate SHC correction using formula in notes under cooling capacity tables.

Unit meets design conditions for TC and SHC.

NOTE: Unit ratings are gross capacities and do not include the effect of indoor fan motor heat. To calculate net capacities, see Step V.

III SELECT HEATING CAPACITY OF UNIT TO PROVIDE DESIGN CONDITION REQUIREMENT.

In Heating Capacities and Efficiencies table, note that 581A180275 unit will provide 223,000 Btuh with an input of 275,000 Btuh.

IV DETERMINE FAN SPEED AND POWER REQUIRE-MENTS AT DESIGN CONDITIONS.

Before entering the Fan Performance tables, calculate the total static pressure required based on unit components. Tabulated fan performance includes filters and wet evaporator coil. Refer to Accessory/FIOP Static Pressure table for added pressure drops.

Calculate pressure drop:

Design External Static Pressure 1.40 EconoMi\$er IV 0.07

1.47 in. wg (ESP)

Enter Fan Performance tables for 581A180 (low heat units) at 6,000 cfm and 1.47 in. wg. The rpm is 1228 and the Bhp is 4.73. The factory-installed 5 hp motor and alternate high-static drive are sufficient for this operation.

V DETERMINE NET COOLING CAPACITIES.

Cooling capacities are gross capacities and do not include indoor (evaporator) fan motor (IFM) heat. To determine input power to the motor, enter the Fan Performance tables for 581A180 (low heat units) at 6,000 cfm and 1.47 in. wg. Input watts to the motor are 4035.

Determine net cooling capacity and net sensible cooling capacity using the following formulas:

IFM Heat = Input Watts x 3.412 Btuh/Watt

= 4035 x 3.412 = 13,767 Btuh

Net Capacity = Gross Capacity - IFM Heat

= 190,000 - 13,767 = 176,233 Btuh

Net Sensible Cap. = Gross Sensible Cap. - IFM Heat

= 136,000 - 13,767 = 122,233 Btuh

The calculations show that a 581A180275 unit is the correct selection for the given conditions.

VI SELECT THE UNIT THAT CORRESPONDS TO POWER SOURCE AVAILABLE.

The electrical data table shows that the 230-3-60 unit is available.

PERFORMANCE DATA

COOLING CAPACITIES — STANDARD UNITS

581A1	1A155 (12 Tons)																					
Т	··· (F)											Air — C										
Air	np (F) · Ent			3	600/0.0	1						375/0.0						5	000/0.0	1		
	ond								Evap Air — Ewb (F)													
		54	58	62	67	72	76	80	54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	152	156	161	174	189	201	213	161	164	167	180	195	207	218	169	171	172	184	199	211	222
	SHC	152	144	135	114	92.9	75.4	57.5	161	156	150	125	99.6	78.7	57.5	169	166	162	134	105	81.3	57.4
	kW	7.56	7.65	7.74	8.01	8.33	8.6	8.86	7.76	7.82	7.88	8.14	8.46	8.72	8.97	7.92	7.95	7.98	8.24	8.55	8.82	9.06
70	TC	148	152	156	169	183	195	206	157	160	162	174	189	200	211	165	166	167	179	193	204	214
	SHC	148	141	133	112	90.6	73.2	55.4	157	153	148	123	97.3	76.5	55.3	165	162	160	132	103	79.1	55.3
	kW	8.5	8.58	8.67	8.97	9.26	9.53	9.8	8.7	8.75	8.81	9.07	9.39	9.66	9.91	8.86	8.89	8.91	9.16	9.49	9.76	9.99
75	TC	146	150	154	166	181	192	204	155	158	160	172	186	197	208	163	164	164	176	189	201	212
	SHC	146	139	132	111	89.7	72.2	54.6	155	151	146	122	96.2	75.5	54.6	163	161	158	131	101	78.1	54.5
	kW	9.02	9.1	9.18	9.45	9.8	10.1	10.4	9.22	9.27	9.31	9.58	9.91	10.2	10.5	9.39	9.41	9.43	9.68	9.99	10.3	10.6
85	TC	142	145	149	161	175	186	196	151	153	154	166	179	190	200	158	159	159	170	183	194	203
	SHC	142	136	129	109	87.4	70	52.4	151	147	144	119	93.9	73.2	52.3	158	157	155	128	99.1	75.8	52.2
	kW	10.1	10.2	10.3	10.6	10.9	11.2	11.5	10.3	10.4	10.4	10.7	11	11.3	11.6	10.5	10.5	10.5	10.8	11.1	11.4	11.7
95	TC	138	141	143	155	168	179	189	147	148	149	160	173	183	192	153	153	154	164	177	187	195
	SHC	138	133	127	106	85	67.7	50.1	147	144	141	117	91.6	70.9	50	153	153	152	126	96.9	73.5	49.9
	kW	11.4	11.4	11.5	11.8	12.2	12.4	12.7	11.6	11.6	11.6	11.9	12.3	12.6	12.8	11.8	11.8	11.8	12	12.4	12.7	12.9
105	TC	134	136	138	149	162	172	181	141	142	143	153	166	176	184	148	148	148	157	169	179	186
	SHC	134	129	124	104	82.4	65.3	47.7	141	139	137	114	89	68.4	47.5	148	148	148	123	94.3	70.9	47.4
	kW	12.7	12.8	12.8	13.2	13.5	13.8	14.1	12.9	13	13	13.3	13.6	13.9	14.2	13.1	13.1	13.1	13.4	13.7	14	14.3
115	TC	129	130	132	143	155	164	172	136	137	138	146	158	168	175	142	142	142	149	161	171	177
	SHC	129	125	121	101	79.8	62.7	45.1	136	135	133	111	86.3	65.9	45	142	142	142	120	91.6	68.4	45
	kW	14.2	14.2	14.3	14.6	15	15.3	15.6	14.4	14.4	14.5	14.7	15.1	15.5	15.7	14.6	14.6	14.6	14.8	15.2	15.6	15.7
125	TC	124	125	126	136	147	156	163	131	131	132	140	150	159	165	136	136	136	142	153	162	167
	SHC	124	121	118	98.2	77	60.1	42.5	131	130	128	109	83.5	63.2	42.5	136	136	136	117	88.7	65.7	42.4
	kW	15.8	15.8	15.9	16.2	16.6	17	17.2	16.1	16.1	16.1	16.4	16.7	17.1	17.3	16.3	16.2	16.2	16.4	16.8	17.2	17.4

581A1	55 (12 To	ons) (cont)												
	j							Evap Air	— Cfm/BF						
	ıp (F)				5625/0.02							6250/0.02			
	Ent ond							Evap Air	— Ewb (F)						
~	Jilu	54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	175	175	176	187	202	214	224	180	180	180	190	204	216	226
	SHC	175	173	171	142	110	83.8	57.3	180	180	180	151	115	86.2	57.2
	kW	8.03	8.05	8.07	8.3	8.61	8.87	9.1	8.14	8.15	8.16	8.36	8.66	8.93	9.14
70	TC	170	171	171	181	195	207	216	175	176	176	184	198	209	218
	SHC	170	169	168	140	108	81.5	55.2	175	176	176	148	113	84	55.1
	kW	8.98	8.99	9.01	9.23	9.55	9.81	10	9.09	9.1	9.11	9.3	9.61	9.87	10.1
75	TC	168	168	169	179	192	203	213	173	173	173	181	195	206	215
	SHC	168	167	166	139	107	80.5	54.4	173	173	173	147	112	83	54.3
	kW	9.5	9.51	9.52	9.75	10.1	10.3	10.6	9.62	9.62	9.62	9.81	10.1	10.4	10.6
85	TC	163	163	164	172	185	196	205	168	168	168	175	188	198	206
	SHC	163	162	162	136	104	78.2	52.2	168	168	168	145	109	80.6	52.1
	kW	10.6	10.6	10.6	10.9	11.2	11.5	11.7	10.7	10.7	10.8	10.9	11.2	11.5	11.8
95	TC	158	158	158	166	178	189	196	162	162	162	168	180	190	197
	SHC	158	157	157	134	102	75.9	49.8	162	162	162	142	107	78.3	49.7
	kW	11.9	11.9	11.9	12.1	12.4	12.7	12.9	12	12	12	12.1	12.5	12.8	13
105	TC	152	152	152	159	171	181	187	157	157	157	161	173	182	188
	SHC	152	152	152	131	99.3	73.3	47.4	157	157	157	139	104	75.7	47.4
	kW	13.2	13.2	13.2	13.4	13.8	14.1	14.3	13.4	13.4	13.4	13.5	13.9	14.2	14.4
115	TC	146	146	146	151	163	172	177	150	150	150	153	165	174	178
	SHC	146	146	146	128	96.6	70.7	44.9	150	150	150	136	102	73.1	44.8
	kW	14.7	14.7	14.7	14.9	15.3	15.6	15.8	14.9	14.9	14.9	14.9	15.4	15.7	15.8
125	TC	140	140	140	144	155	163	167	144	144	144	146	156	164	168
	SHC	140	140	140	125	93.7	67.9	42.4	144	144	144	133	98.7	70.2	42.3
	kW	16.4	16.4	16.4	16.5	16.9	17.2	17.4	16.5	16.5	16.5	16.6	17	17.3	17.4

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:
1. Direct interpolation is permissible. Do not extrapolate.
2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil
The SHC is based on 80 F edb temperature of air entering evaporator coil.
Below 80 F edb, subtract (corr factor x cfm) from SHC.
Above 80 F edb, add (corr factor x cfm) to SHC.

	ENTERING AIR DRY-BULB TEMP (F)													
BYPASS	79	78	77	76	75	under 75								
FACTOR (BF)	81	82	83	84	85	over 85								
(3.)		Correction Factor												
.05	1.04	2.07	3.11	4.14	5.18									
.10	.98	1.96	2.94	3.92	4.90	Use formula								
.20	.87	1.74	2.62	3.49	4.36	shown below.								
.30	.76	1.53	2.29	3.05	3.82									

Interpolation is permissible.

Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

			ENTERI	NG WET-I	BULB (F)									
CFM	54	58	8 62 67 72				80							
	Bypass Factor													
3600	0.355	0.158	0.054	0.038	0.049	0.000	0.000							
4375	0.439	0.255	0.112	0.043	0.057	0.000	0.000							
5000	0.486	0.314	0.126	0.054	0.037	0.000	0.000							
5625	0.525	0.360	0.174	0.066	0.073	0.000	0.000							
6250	0.551	0.410	0.202	0.080	0.079	0.000	0.000							

COOLING CAPACITIES — STANDARD UNITS (cont)

30 (15 To	ons)																				
(F)										Evap /	Air — C	fm/BF									
			4	500/0.0	1					5	250/0.0	1					6	000/0.0	1		
								Evap Air — Ewb (F)													
	54	58	62	67	72	76	80	54	58	62	67	72	76	80	54	58	62	67	72	76	80
CUC	180.5	184.6	188.7	203.5	219.9	233.7	247	189.3	191.7	194.2	208.7	224.1	238	251	198.1	198.8	199.6	212.9	229.3	242	255 65.4
kW	9.41	9.49	9.58	9.87	104.7	10.47	10.78	9.58	9.63	9.68	9.97	10.4	10.57	10.87	9.75	9.77	9.79	10.07	10.39	10.67	10.95
TC	176.7	180.5	184.4	199	215.1	227.8	242	185.3	187.5	189.8	203	219.2	231.8	245	193	194.5	195.1	208.1	224.3	237	248
kW	1/6./ 10.5	169 10.57	155.8 10.64	129.4 10.96	102.4 11.35	86 11.62	63.9 11.95			169.3 10.76	138.9 11.06	108 11.45	89.1 11.72	12.04	193 10.85	191.4 10.87	181 10.89	149.7 11.17	114.2 11.55	92.2 11.82	63.7 12.13
TC	174.7	177.5	181	196	213	224.2	238	182.3	184.4	186	201	217	229.2	242	190.9	191.3	189	204	219	233.1	246
																					62.7 12.75
TC	169.6	172.2	175	190	205	218.1	230.8	177.2	179	180	194	209	221.9	233.3	185.6	185.9	183	198	212	225.7	237
SHC	169.6	163.3	145	121	97	82.5	60.7	177.2	174.1	157	130	102	85.6			184.7	168	139	106	88.6	
																					14.05
																					228 57.8
kW			13.5	13.9	14.3	14.85			13.82	13.6	14	14.4			14	14	13.8	14.1	14.5	15.07	15.43
TC	158.1	159.8	161	174	188	200.3	212.4	165.2	166	165	178	191			172.3	172.3	169	181	193	207.3	
																					54.9 16.86
SHC	151.8	149.1	134	111	87	73.7	52.1	158.4	157	145	120	91	76.7	52.1	165	164.9	151	128	94	79.8	51.9
						17.79		16.68													18.39
																					193.9 48.7
kW	17.96	18.01									18.6	19.11	19.5								19.93
	FOR THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF TH	Ent nd 54 TC 180.5 SHC 176.7 SHC 176.7 SHC 174.7 KW 11.07 TC 169.6 SHC 169.6 KW 12.29 TC 164.3 SHC 164.3 SHC 158.1 SHC 158.1 SHC 158.1 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.8 SHC 151.	TC 174.7 177.5 SHC 174.7 167.2 KW 12.29 12.35 KW 12.29 12.35 KW 13.59 13.65 TC 158.1 159.8 KW 13.59 13.65 TC 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 15.5 158.1 159.8 KW 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45 16.45	TC 174.7 177.5 181 SHC 174.7 167.2 175.8 KW 10.5 163.3 145. KW 12.29 12.35 12.3 TC 169.6 163.3 145. KW 15.5 168.4 16.3 166.5 168. SHC 174.7 17.5 181 TC 174.7 17.5 181 SHC 174.7 17.5 181 SHC 174.7 17.5 181 SHC 174.7 167.2 147 KW 11.07 11.14 11.2 TC 169.6 163.3 145 KW 12.29 12.35 12.3 TC 164.3 158.9 142 KW 13.59 13.65 13.5 TC 158.1 159.8 161 SHC 151.8 152.8 152 SHC 151.8 152.8 152 SHC 151.8 152.8 152 SHC 151.8 149.1 134 KW 16.45 16.48 16.1 TC 144.7 143.5 123.4	TC 176.7 169. 155.8 129.4 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.6 10.5 10.5 10.5 10.5 10.6 10.5 10.5 10.5 10.6 10.5 10.5 10.5 10.6 10.5 10.5 10.5 10.6 10.5 10.5 10.5 10.6 10.5 10.5 10.5 10.6 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	P (F)	P (F)	Part	TC	Part	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish P	Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish Parish P	Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Pari	Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Parison Pari	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part

581A1	80 (15 T	ons) (cont))												
								Evap Air	— Cfm/BF						
	որ (F)				6750/0.01							7500/0.02			
	r Ent ond							Evap Air	— Ewb (F)						
"	ona	54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	203.8	204.2	204.6	216.3	231.7	244	257	209.5	209.5	209.6	218.8	235	248	259
	SHC	203.8	201.8	191.2	164.1	124.1	97	65.4	209.5	209.5	196.6	173.7	138.1	100	65.2
	kW	9.88	9.88	9.89	10.13	10.45	10.72	11	9.99	9.99	9.99	10.19	10.51	10.78	11.05
70	TC	199.6	199.8	200.1	210.5	226.5	239	250	205.2	205.1	205.1	213.8	228.8	241	252
	SHC	199.6	197.8	187	159.7	121.3	95.2	63.5	205.2	205.1	192.4	169.8	134.5	98.2	63.5
	kW	10.99	10.99	11	11.24	11.6	11.88	12.18	11.12	11.11	11.11	11.31	11.65	11.94	12.22
75	TC	196.4	196.6	194	206	220	235	247	201.9	201.9	198	208	223	237	249
	SHC	196.4	195.7	181	153	120	94	62.5	201.9	201.9	186	163	163	97.1	62.5
	kW	11.58	11.58	11.6	11.9	12.2	12.5	12.8	11.71	11.7	11.7	11.9	11.9	12.56	12.84
85	TC	191	191.1	188	200	213	227.8	239	196.4	196.4	192	202	214	229.8	241
	SHC	191	190.5	175	148	115	91.6	60.2	196.4	196.4	180	157	119	94.6	60.2
	kW	12.81	12.81	12.7	13	13.3	13.77	14.1	12.96	12.95	12.8	13.1	13.4	13.84	14.13
95	TC	184.4	184.5	181	192	205	219.1	229.7	189.7	189.7	185	194	206	221.1	230.5
	SHC	184.4	184.2	170	144	108	88.9	57.7	189.7	189.7	174	153	113	91.9	57.6
	kW	14.15	14.15	13.9	14.2	14.6	15.14	15.47	14.29	14.29	14	14.3	14.6	15.2	15.51
105	TC	176.7	176.7	173	182	194	209.2	218.5	181.9	181.9	177	184	194	211.1	220.1
	SHC	176.7	176.7	162	140	103	86	54.9	181.9	181.9	166	148	107	88.9	54.7
	kW	15.55	15.55	15.2	15.5	15.8	16.57	16.9	15.7	15.7	15.3	15.5	15.8	16.64	16.94
115	TC	169.5	169.4	166	172	183	198.2	207.1	173.9	173.8	169	174	183	200	208.6
	SHC	169.5	169.4	155	136	98	82.7	51.8	173.9	173.8	158	142	101	85.6	51.7
	kW	17.05	17.04	16.6	16.8	17.1	18.08	18.42	17.2	17.2	16.7	16.9	17.1	18.15	18.45
125	TC	160.9	161.1	161.2	165.6	177.4	187.9	195.4	165.1	165.2	165.4	167.8	179.2	188.6	196
	SHC	160.9	161.1	150.7	125.6	95.04	79.4	48.7	165.1	165.2	155.2	133.2	105.3	82.3	48.6
	kW	18.57	18.59	18.62	18.81	19.18	19.68	20.06	18.72	18.75	18.78	18.91	19.33	19.71	20.09

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:
1. Direct interpolation is permissible. Do not extrapolate.
2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

rator coil (
$$h_{lwb}$$
)
 $h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil.
Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

		ENT	ERING	AIR DE	RY-BUL	B TEMP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
(,				Correction	on Facto	or
.05	1.04	2.07	3.11	4.14	5.18	
.10	.98	1.96	2.94	3.92	4.90	Use formula
.20	.87	1.74	2.62	3.49	4.36	shown below.
.30	.76	1.53	2.29	3.05	3.82	

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

			ENTERI	NG WET-E	BULB (F)		
CFM	54	58	62	67	72	76	80
			Ву	pass Fac	tor		
4500	0.396	0.193	0.054	0.053	0.067	0.000	0.000
5250	0.455	0.272	0.077	0.065	0.077	0.000	0.000
6000	0.504	0.337	0.121	0.077	0.088	0.000	0.000
6750	0.544	0.390	0.193	0.094	0.100	0.000	0.000
7500	0.578	0.436	0.244	0.108	0.114	0.000	0.000

COOLING CAPACITIES — STANDARD UNITS (cont)

581A2	10 (18 T	ons)																				
	(F)											Air — C										
I em	p (F) Ent			5	400/0.0	5						300/0.0	-					7	200/0.0	7		
	ond											Air — E										
		54	58	62	67	72	76	80	54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	202	206	211	229	248	263	279	212	215	218	235	254	269	285	220	221	223	239	259	273	289
	SHC	202	193	184	155	124	99.3	74.7	212	205	199	166	131	103	74.9	220	216	213	177	138	106	75
	kW	10.2	10.3	10.4	10.6	10.8	11	11.2	10.4	10.4	10.4	10.7	10.9	11.1	11.3	10.5	10.5	10.5	10.7	11	11.2	11.4
70	TC	197	202	206	223	242	256	272	207	209	212	228	247	262	277	215	216	217	233	252	267	282
	SHC	197	189	181	152	122	97	72.5	207	202	196	163	129	101	72.7	215	212	210	174	135	104	72.8
	kW	11.4	11.5	11.5	11.8	12	12.2	12.5	11.6	11.6	11.6	11.9	12.1	12.3	12.6	11.7	11.7	11.7	11.9	12.2	12.4	12.6
75	TC	195	199	203	219	238	253	268	204	206	209	225	244	258	273	212	213	214	229	248	263	277
	SHC	195	187	180	150	120	95.8	71.3	204	199	195	162	127	99.3	71.4	212	210	208	173	134	103	71.5
	kW	12.1	12.2	12.2	12.5	12.7	13	13.2	12.3	12.3	12.3	12.6	12.8	13	13.3	12.4	12.4	12.4	12.6	12.9	13.1	13.3
	TC	190	193	196	213	231	246	260	199	201	202	218	236	251	264	206	207	208	222	240	255	268
85	SHC	190	183	177	148	118	93.4	68.8	199	195	191	159	125	96.9	68.9	206	205	204	170	131	100	69
	kW	13.5	13.5	13.6	13.8	14.1	14.4	14.6	13.6	13.7	13.7	13.9	14.2	14.5	14.7	13.7	13.8	13.8	14	14.3	14.5	14.8
95	TC	184	187	190	205	222	236	250	193	194	195	210	227	241	254	200	200	201	214	231	245	258
	SHC	184	179	173	144	114	90.2	65.9	193	190	187	156	121	93.7	66.1	200	199	199	167	128	97.1	66.2
	kW	15	15	15.1	15.4	15.7	15.9	16.2	15.1	15.2	15.2	15.5	15.8	16	16.3	15.3	15.3	15.3	15.5	15.8	16.1	16.3
105	TC	178	180	182	197	213	228	240	186	187	188	201	217	232	244	193	193	193	205	221	235	247
	SHC	178	173	169	141	111	87.3	62.9	186	184	183	152	118	90.8	63.1	193	193	193	163	124	94.1	63.2
	kW	16.6	16.7	16.7	17	17.3	17.7	17.9	16.8	16.8	16.8	17.1	17.4	17.8	18	16.9	16.9	16.9	17.2	17.5	17.8	18
115	TC	171	172	174	188	203	217	228	179	179	179	192	207	221	232	185	185	185	195	210	224	235
	SHC	171	168	165	137	107	83.6	59.6	179	178	178	149	114	87.1	59.7	185	185	185	159	121	90.4	59.9
	kW	18.4	18.4	18.4	18.8	19.1	19.4	19.7	18.6	18.6	18.6	18.9	19.2	19.5	19.8	18.7	18.7	18.7	19	19.3	19.6	19.9
125	TC	164	165	165	178	192	205	216	171	171	171	182	196	208	219	177	177	177	185	199	211	222
	SHC	164	162	160	134	104	79.8	56.1	171	171	171	145	110	83.2	56.3	177	177	177	155	117	86.5	56.4
	kW	20.2	20.3	20.3	20.6	21	21.3	21.6	20.4	20.4	20.4	20.8	21.1	21.4	21.7	20.6	20.6	20.6	20.8	21.2	21.5	21.8

581A2	10 (18 To	ons) (cont))												
_	(E)							Evap Air	— Cfm/BF						
	p (F) Ent				8100/0.08							9000/0.09			
	ond							Evap Air	— Ewb (F)						
		54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	227	227	228	243	262	277	293	233	233	233	246	265	280	295
	SHC	227	226	224	187	144	109	75.1	233	233	233	198	151	113	75.1
	kW	10.5	10.6	10.6	10.7	11	11.2	11.4	10.6	10.6	10.6	10.8	11	11.3	11.5
70	TC	222	222	222	236	255	271	284	228	228	227	239	258	272	287
	SHC	222	221	221	185	142	107	72.8	228	228	227	195	148	110	72.9
	kW	11.8	11.8	11.8	12	12.2	12.5	12.7	11.9	11.9	11.8	12	12.3	12.5	12.7
75	TC	219	219	219	232	251	266	280	225	224	224	235	254	268	282
	SHC	219	218	218	183	140	106	71.6	225	224	224	193	147	109	71.7
	kW	12.5	12.5	12.5	12.7	12.9	13.2	13.4	12.6	12.5	12.5	12.7	13	13.2	13.4
85	TC	213	213	213	225	243	258	271	218	218	218	228	245	260	273
	SHC	213	213	213	180	138	103	69.1	218	218	218	190	144	107	69.2
	kW	13.8	13.8	13.8	14.1	14.3	14.6	14.8	13.9	13.9	13.9	14.1	14.4	14.6	14.8
95	TC	206	206	206	217	234	248	260	211	211	211	220	236	250	262
	SHC	206	206	206	177	134	100	66.3	211	211	211	187	141	103	66.4
	kW	15.4	15.4	15.4	15.6	15.9	16.1	16.4	15.5	15.5	15.5	15.6	15.9	16.2	16.4
105	TC	199	199	199	208	224	238	249	203	203	204	210	226	240	251
	SHC	199	199	199	173	131	97.2	63.2	203	203	204	183	137	100	63.4
	kW	17	17.1	17.1	17.3	17.6	17.9	18.1	17.2	17.2	17.2	17.3	17.6	17.9	18.1
115	TC	191	191	191	198	213	226	237	195	195	195	201	215	228	238
	SHC	191	191	191	169	127	93.5	60	195	195	195	179	133	96.6	60
	kW	18.8	18.8	18.8	19	19.3	19.7	19.9	18.9	18.9	18.9	19.1	19.4	19.7	19.9
125	TC	182	182	182	188	201	213	224	186	186	186	190	203	215	225
	SHC	182	182	182	165	123	89.6	56.5	186	186	186	174	129	92.6	56.6
	kW	20.7	20.7	20.7	20.9	21.2	21.6	21.9	20.9	20.9	20.9	21	21.3	21.6	21.9

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:
1. Direct interpolation is permissible. Do not extrapolate.
2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

		ENT	ERING	AIR DE	RY-BUL	B TEMP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
(=: /			(Correction	on Facto	or
.05	1.04	2.07	3.11	4.14	5.18	
.10	.98	1.96	2.94	3.92	4.90	Use formula
.20	.87	1.74	2.62	3.49	4.36	shown below.
.30	.76	1.53	2.29	3.05	3.82	

Interpolation is permissible.

Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

		_	ENTERI	NG WET-I	BULB (F)		
CFM	54	58	62	67	72	76	80
			Ву	pass Fac	tor		
5400	0.424	0.238	0.125	0.120	0.138	0.000	0.000
6300	0.478	0.304	0.153	0.132	0.145	0.000	0.000
7200	0.525	0.364	0.190	0.144	0.153	0.000	0.000
8100	0.562	0.414	0.231	0.156	0.162	0.000	0.000
9000	0.594	0.456	0.281	0.168	0.170	0.000	0.000

COOLING CAPACITIES — STANDARD UNITS (cont)

581A2	40 (20 T	ons)																				
	(E)										Evap /	Air — C	fm/BF									
	np (F) · Ent			6,	0.00/0.0)4						,000/0.0						8	,000/0.0)5		
	ond											Air — E										
		54	58	62	67	72	76	80	54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	235	242	248	267	288	306	323	247	251	256	274	296	312	330	257	259	262	279	300	317	333
	SHC	235	224	212	178	143	115	86.6	247	238	230	191	151	119	87	257	251	246	204	159	123	86.7
	kW	11.5	11.6	11.7	12	12.4	12.7	13	11.7	11.8	11.8	12.1	12.5	12.8	13.1	11.9	11.9	11.9	12.2	12.6	12.9	13.1
70	TC	231	237	242	261	282	300	316	242	246	250	268	289	305	323	252	254	256	273	293	310	326
	SHC	231	220	209	175	141	113	84.5	242	234	227	189	149	117	84.9	252	247	243	201	156	120	84.6
	kW	13.1	13.2	13.3	13.6	14	14.3	14.6	13.3	13.3	13.4	13.7	14.1	14.4	14.8	13.4	13.5	13.5	13.8	14.2	14.5	14.8
75	TC	228	234	239	257	278	295	311	239	243	246	264	285	301	318	249	250	252	269	290	305	322
	SHC	228	218	208	174	139	112	83.1	239	232	225	187	147	115	83.6	249	245	241	199	155	119	83.5
	kW	13.9	14	14.1	14.5	14.9	15.2	15.6	14.1	14.2	14.2	14.6	15	15.3	15.7	14.3	14.3	14.4	14.7	15.1	15.4	15.8
85	TC	223	227	231	250	270	287	303	234	236	238	256	277	292	310	243	244	245	261	282	296	314
	SHC	223	213	204	171	136	109	80.5	234	227	221	184	144	112	80.9	243	240	236	196	152	116	81.3
	kW	15.6	15.7	15.8	16.2	16.6	17.1	17.4	15.8	15.9	15.9	16.3	16.8	17.2	17.6	16	16.1	16.1	16.5	16.9	17.3	17.7
95	TC	216	219	223	241	260	277	292	226	228	230	247	267	282	298	235	235	236	251	272	285	303
	SHC	216	208	200	167	132	105	77.2	226	221	217	180	141	109	77.7	235	233	231	192	148	112	78
	kW	17.4	17.5	17.6	18.1	18.6	19	19.4	17.7	17.7	17.8	18.2	18.7	19.1	19.6	17.9	17.9	17.9	18.3	18.9	19.2	19.7
105	TC	208	211	214	231	249	265	279	218	219	220	236	256	270	285	226	226	226	241	260	273	290
	SHC	208	202	195	163	129	101	73.6	218	215	212	176	137	105	74	226	226	225	188	145	108	74.4
	kW	19.3	19.4	19.5	20	20.6	21	21.5	19.6	19.6	19.7	20.2	20.8	21.2	21.6	19.9	19.9	19.9	20.3	20.9	21.3	21.8
115	TC	200	202	204	220	237	253	266	209	210	210	225	243	257	271	217	217	217	229	248	260	275
	SHC	200	195	190	158	124	97.2	69.5	209	207	206	171	132	101	70	217	217	217	183	140	104	70.4
	kW	21.3	21.4	21.5	22	22.7	23.2	23.6	21.7	21.7	21.7	22.2	22.9	23.3	23.8	21.9	21.9	21.9	22.4	23	23.4	23.9
125	TC	191	192	193	208	224	239	251	199	199	200	212	230	243	255	207	207	206	216	232	245	257
	SHC	191	188	185	153	120	92.8	65.3	199	199	199	166	128	96.4	65.7	207	207	206	178	135	99.8	65.5
	kW	23.5	23.5	23.6	24.2	24.8	25.4	25.9	23.8	23.8	23.8	24.4	25	25.5	26	24.1	24.1	24.1	24.5	25.1	25.7	26.1

581A2	40 (20 To	ons) (cont))												
	(T)							Evap Air	— Cfm/BF						
	p (F) Ent				9,000/0.06							10,000/0.07	7		
	ond							Evap Air	— Ewb (F)						
•	Jiiu	54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	265	266	267	284	305	321	338	272	272	272	287	307	325	340
	SHC	265	262	260	216	166	126	87	272	271	271	227	173	130	86.7
	kW	12	12	12	12.3	12.7	12.9	13.2	12.1	12.1	12.1	12.4	12.7	13	13.3
70	TC	260	261	261	277	298	315	331	266	267	267	281	301	317	333
	SHC	260	258	256	213	164	124	85	266	267	267	225	171	127	84.7
	kW	13.6	13.6	13.6	13.9	14.3	14.6	14.9	13.7	13.7	13.7	14	14.3	14.6	15
75	TC	256	257	258	273	294	310	326	263	263	263	277	296	312	327
	SHC	256	255	254	211	162	123	83.7	263	263	263	223	169	126	83.4
	kW	14.5	14.5	14.5	14.8	15.2	15.5	15.8	14.6	14.6	14.6	14.9	15.2	15.6	15.9
85	TC	250	250	250	265	285	301	316	257	256	256	268	287	303	317
	SHC	250	250	249	208	159	120	81	257	256	256	220	166	123	80.7
	kW	16.2	16.2	16.2	16.5	17	17.4	17.7	16.4	16.4	16.4	16.6	17	17.4	17.7
95	TC	242	242	242	255	274	288	304	248	248	248	258	276	292	306
	SHC	242	242	242	204	155	116	77.8	248	248	248	215	162	120	77.6
	kW	18.1	18.1	18.1	18.4	18.9	19.3	19.7	18.3	18.3	18.2	18.5	19	19.4	19.7
105	TC	233	233	233	244	263	275	291	239	239	239	247	264	279	291
	SHC	233	233	233	200	152	112	74.2	239	239	239	211	158	116	73.9
	kW	20.1	20.1	20.1	20.4	21	21.4	21.8	20.3	20.2	20.2	20.5	21	21.5	21.8
115	TC	223	223	223	232	250	262	276	229	228	228	235	251	263	276
	SHC	223	223	223	195	147	108	70.2	229	228	228	206	154	111	69.9
	kW	22.2	22.1	22.1	22.5	23.1	23.5	24	22.3	22.3	22.3	22.6	23.1	23.6	24
125	TC	213	212	212	219	234	247	258	218	217	217	222	235	248	259
	SHC	213	212	212	189	142	103	65.4	218	217	217	200	148	106	65.2
	kW	24.3	24.3	24.3	24.6	25.2	25.7	26.2	24.5	24.5	24.5	24.7	25.3	25.8	26.2

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:
1. Direct interpolation is permissible. Do not extrapolate.
2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

rator coil (
$$h_{lwb}$$
)
 $h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil.
Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

Г			ENIT	EDING	AID DE	V DIII	B TEMP (F)
	BYPASS						
	FACTOR	79	78	77	76	75	under 75
	(BF)	81	82	83	84	85	over 85
	(/			C	Correction	on Facto	or
	.05	1.04	2.07	3.11	4.14	5.18	
	.10	.98	1.96	2.94	3.92	4.90	Use formula
	.20	.87	1.74	2.62	3.49	4.36	shown below.
1	.30	.76	1.53	2.29	3.05	3.82	

Interpolation is permissible. Correction Factor = $1.10 \times (1 - BF) \times (edb - 80)$.

			ENTERI	NG WET-I	BULB (F)		
CFM	54	58	62	67	72	76	80
			Ву	pass Fac	tor		
6,000	0.386	0.197	0.108	0.109	0.134	0.000	0.000
7,000	0.444	0.260	0.131	0.121	0.138	0.000	0.000
8,000	0.492	0.321	0.163	0.133	0.145	0.000	0.000
9,000	0.532	0.375	0.205	0.146	0.154	0.000	0.000
10,000	0.566	0.420	0.245	0.158	0.164	0.000	0.000

COOLING CAPACITIES — STANDARD UNITS (cont)

581A3	00 (25 To	ons)																				
		,									Evap /	Air — C	fm/BF									
Tem	p (F) Ent			7,	500/0.0	5					8	,250/0.0	6					9,	,500/0.0	7		
	ond										Evap /	Air — E	wb (F)									
		54	58	62	67	72	76	80	54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	287	296	304	331	359	385	408	297	304	310	336	367	390	414	311	315	319	345	375	398	421
	SHC	287	274	261	220	178	145	110	297	285	273	229	185	148	110	311	303	294	246	194	152	111
	kW	15.5	15.7	15.9	16.5	17.3	17.9	18.6	15.7	15.9	16	16.7	17.4	18.1	18.7	16	16.1	16.2	16.9	17.6	18.3	19
70	TC	279	286	293	318	345	367	392	288	293	298	323	350	372	397	301	303	306	329	357	381	403
	SHC	279	267	255	214	173	139	105	288	278	268	224	178	142	105	301	294	287	239	188	147	105
	kW	17	17.2	17.3	18	18.7	19.3	20	17.2	17.3	17.5	18.1	18.8	19.4	20.1	17.5	17.6	17.7	18.3	19	19.7	20.3
75	TC	275	281	287	311	338	360	383	283	288	293	316	343	365	388	296	298	300	323	349	372	394
	SHC	275	264	252	212	170	136	102	283	274	265	221	176	139	103	296	290	284	237	185	144	103
	kW	17.9	18.1	18.2	18.8	19.5	20.1	20.8	18.1	18.2	18.4	18.9	19.7	20.3	20.9	18.4	18.5	18.5	19.1	19.8	20.5	21.1
85	TC	267	272	277	299	324	345	366	274	278	282	304	329	350	370	286	287	289	311	334	355	375
	SHC	267	257	247	207	165	131	97.3	274	267	259	216	171	134	97.3	286	282	278	232	180	139	97.3
	kW	19.8	19.9	20	20.6	21.2	21.8	22.4	20	20.1	20.1	20.7	21.4	22	22.6	20.2	20.3	20.3	20.9	21.5	22.1	22.7
95	TC	259	263	267	288	311	331	350	267	270	273	293	315	335	354	278	279	281	299	322	340	358
	SHC	259	251	242	202	160	126	92.5	267	261	255	212	166	129	92.5	278	276	273	227	175	134	92.4
	kW	22.1	22.2	22.3	22.8	23.4	23.9	24.5	22.3	22.4	22.5	22.9	23.5	24	24.6	22.6	22.6	22.6	23.1	23.6	24.2	24.7
105	TC	253	256	260	279	301	318	335	260	262	264	282	304	322	338	269	270	270	287	308	326	342
	SHC	253	246	239	198	156	122	87.9	260	255	250	207	162	125	87.8	269	268	267	222	171	129	87.7
	kW	24.9	25	25.1	25.4	25.9	26.4	26.9	25.1	25.1	25.1	25.5	26	26.5	26.9	25.2	25.2	25.2	25.6	26.1	26.6	27.1
115	TC	246	249	252	270	291	305	320	253	255	256	274	294	309	323	262	262	262	277	298	312	328
	SHC	246	240	235	195	152	118	83.5	253	250	246	204	158	121	83.4	262	261	261	218	167	125	83.9
	kW	28.1	28.2	28.3	28.6	29	29.3	29.6	28.3	28.3	28.3	28.6	29	29.4	29.7	28.4	28.4	28.4	28.7	29.1	29.4	29.9
125	TC	238	240	242	259	279	293	305	245	246	246	262	281	295	310	253	253	253	266	284	298	313
	SHC	238	234	230	190	148	114	79.2	245	243	240	199	153	116	79.7	253	253	253	214	162	120	79.9
	kW	31.6	31.7	31.7	32	32.4	32.6	32.9	31.8	31.8	31.8	32.1	32.4	32.7	33	31.9	31.9	31.9	32.1	32.5	32.7	33.1

581A3	00 (25 To	ons) (cont)												
	j							Evap Air	— Cfm/BF						
	ıp (F)				10,750/0.08	3						12,000/0.09	•		
	Ent ond							Evap Air	— Ewb (F)						
~	Jila	54	58	62	67	72	76	80	54	58	62	67	72	76	80
60	TC	322	324	327	351	380	404	429	332	333	334	357	386	410	432
	SHC	322	317	313	260	203	157	111	332	330	329	276	212	162	111
	kW	16.3	16.4	16.4	17	17.8	18.5	19.2	16.6	16.6	16.6	17.2	18	18.6	19.2
70	TC	311	312	314	336	364	386	408	320	320	321	341	368	392	414
	SHC	311	308	305	255	198	151	105	320	320	319	269	206	156	106
	kW	17.8	17.8	17.9	18.4	19.2	19.8	20.5	18	18	18	18.5	19.3	20	20.6
75	TC	306	307	308	329	356	378	398	315	315	315	333	360	383	404
	SHC	306	304	302	252	195	149	103	315	314	314	266	203	153	103
	kW	18.7	18.7	18.7	19.3	20	20.6	21.3	18.9	18.9	18.9	19.4	20.1	20.8	21.4
85	TC	295	296	297	315	340	362	379	303	303	303	319	344	365	385
	SHC	295	295	294	246	189	144	97.3	303	303	303	260	198	148	97.9
	kW	20.5	20.5	20.5	21	21.7	22.3	22.8	20.7	20.7	20.7	21.1	21.8	22.4	23
95	TC	286	286	286	303	327	344	364	293	293	294	307	330	347	366
	SHC	286	286	286	241	185	138	93	293	293	294	255	193	142	92.8
	kW	22.7	22.7	22.7	23.1	23.8	24.3	24.9	22.9	22.9	22.9	23.2	23.9	24.4	24.9
105	TC	277	277	277	290	312	329	347	284	284	285	295	314	331	352
	SHC	277	277	277	236	179	133	88.3	284	284	285	250	188	137	88.7
	kW	25.4	25.4	25.4	25.7	26.2	26.7	27.2	25.5	25.6	25.6	25.8	26.3	26.7	27.3
115	TC	268	269	269	281	300	315	332	274	274	275	283	303	317	333
	SHC	268	269	269	232	176	129	84.4	274	274	275	245	184	133	84
	kW	28.5	28.5	28.5	28.7	29.2	29.5	30	28.6	28.6	28.6	28.8	29.2	29.5	30
125	TC	260	259	259	269	287	300	316	265	265	264	271	289	302	318
	SHC	260	259	259	227	171	125	80	265	265	264	240	179	129	80.1
	kW	32	32	32	32.1	32.5	32.8	33.2	32.1	32.1	32.1	32.2	32.5	32.8	33.3

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:
1. Direct interpolation is permissible. Do not extrapolate.
2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{\text{total capacity (Btuh)}}{4.5 \text{ x cfm}}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil.

Below 80 F edb, subtract (corr factor x cfm) from SHC.

Above 80 F edb, add (corr factor x cfm) to SHC.

	_		ENT	ERING	AIR DF	RY-BUL	B TEMP (F)
BYPAS:		79	78	77	76	75	under 75
(BF)	`	81	82	83	84	85	over 85
(=: /				C	Correction	n Facto	or
.05		1.04	2.07	3.11	4.14	5.18	
.10		.98	1.96	2.94	3.92	4.90	Use formula
.20		.87	1.74	2.62	3.49	4.36	shown below.
.30		.76	1.53	2.29	3.05	3.82	

Interpolation is permissible.

Correction Factor = 1.10 x (1 – BF) x (edb – 80).

		_	ENTERI	NG WET-I	BULB (F)		
CFM	54	58	62	67	72	76	80
			Ву	pass Fac	tor		
7,500	0.407	0.208	0.097	0.104	0.123	0.000	0.000
8,250	0.443	0.256	0.110	0.112	0.128	0.000	0.000
9,500	0.494	0.324	0.138	0.123	0.136	0.000	0.000
10,750		0.380	0.181	0.134	0.145	0.000	0.000
12,000	0.571	0.427	0.232	0.145	0.154	0.000	0.000

COOLING CAPACITIES, UNITS WITH HOT GAS REHEAT OPTION

581A	181 (15 TC	ONS) UI	NIT WIT	н нот	GAS R	EHEAT	IN COC	LING N	IODE												
То	mp (F)								Air	Enteri	ng Evap	orator	— Cfm/	/BF							
	Entering		4500/0.02 5250/0.03								6000	/0.04			6750	/0.04			7500	/0.05	
	ndenser Edb)								Air	Enteri	ng Evap	orator	— Ewb	(F)							
(Eab)	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72
75	TC	166	179	193	214	175	186	202	221	183	191	208	227	190	195	212	232	197	199	216	236
	SHC	165	152	129	108	175	166	140	115	183	178	150	121	190	189	159	127	197	196	168	133
	kW	10.4	10.6	10.7	10.9	10.5	10.6	10.8	11.0	10.6	10.7	10.9	11.1	10.7	10.7	10.9	11.2	10.8	10.8	11.0	11.2
85	TC	162	174	189	209	171	180	195	216	179	185	200	222	186	189	205	226	192	194	208	230
	SHC	162	150	127	106	171	163	137	113	179	175	147	119	186	185	156	125	192	192	164	131
	kW	11.7	11.9	12.1	12.3	11.8	12.0	12.1	12.4	11.9	12.0	12.2	12.5	12.0	12.1	12.3	12.5	12.1	12.1	12.3	12.6
95	TC	158	169	182	202	166	174	187	209	174	179	194	214	181	183	198	218	187	188	201	221
	SHC	158	148	126	104	166	160	134	110	174	172	145	116	181	180	154	122	187	187	163	128
	kW	12.7	12.9	13.1	13.3	12.9	13.0	13.2	13.4	13.0	13.0	13.2	13.5	13.1	13.1	13.3	13.6	13.1	13.2	13.4	13.6
105	TC	153	163	178	195	162	168	181	201	169	172	188	206	175	177	191	209	181	181	194	213
	SHC	153	145	123	101	162	157	133	107	169	167	142	113	175	175	151	119	181	181	160	125
	kW	14.1	14.2	14.4	14.7	14.2	14.3	14.5	14.8	14.3	14.3	14.6	14.8	14.4	14.4	14.6	14.9	14.5	14.5	14.7	14.9
115	TC	148	156	171	188	157	161	176	193	163	165	180	197	169	170	183	201	174	175	185	203
	SHC	148	141	120	98	157	153	130	104	163	162	139	110	169	169	148	116	174	174	156	122
	kW	15.5	15.6	15.8	16.1	15.6	15.7	15.9	16.2	15.7	15.8	16.0	16.3	15.8	15.8	16.1	16.3	15.9	15.9	16.1	16.4
125	TC	143	149	163	179	151	153	168	184	157	158	171	188	163	163	174	190	167	167	176	192
	SHC	143	138	117	95	151	149	126	101	157	156	136	107	163	163	144	112	167	167	153	118
	kW	17.0	17.1	17.4	17.7	17.2	17.2	17.5	17.8	17.3	17.3	17.6	17.8	17.4	17.4	17.6	17.9	17.5	17.5	17.6	17.9

Tom	p (F)						Eva	aporator A	Air Quanti	ity — Cfm	/BF					
	tering		4500/0.12	!		5250/0.14			6000/.015	;		6750/0.18			7500/0.18	i
	enser						Evapo	orator Air	— Relativ	ve Humidi	ty (%)					
(E	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC	55	57	59	56	58	59	56	58	60	57	59	60	57	59	61
	SHC	34	32	30	36	34	32	37	35	33	38	36	35	40	38	36
	kW	4.4	4.5	4.5	4.4	4.5	4.5	4.4	4.5	4.5	4.4	4.5	4.5	4.4	4.5	4.5
75	TC	42	44	45	43	44	46	43	45	46	43	45	46	44	45	47
	SHC	22	19	17	23	21	18	25	22	20	26	24	21	28	25	23
	kW	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8
85	TC	29	30	31	29	31	32	30	31	32	30	32	33	31	32	33
	SHC	9	6	3	11	8	5	13	10	7	14	11	8	16	12	9
	kW	5.2	5.2	5.3	5.2	5.2	5.3	5.2	5.2	5.3	5.2	5.2	5.3	5.2	5.2	5.3
95	TC	15	16	17	16	17	18	16	18	18	17	18	19	17	18	19
	SHC	-3	-7	-11	-1	-5	-9	1	-3	-7	2	-2	-5	4	0	-4
	kW	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6

Tom	p (F)						Eva	porator A	Air Quanti	ty — Cfm	/BF					
	tering		4500/0.12			5250/0.14			6000/.015			6750/0.18			7500/0.18	
Cond	enser						Evapo	orator Air	— Relativ	e Humid	ity (%)					
(Ed	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC	81	84	86	82	85	87	83	86	88	84	87	89	85	87	90
	SHC	34	32	30	36	33	31	37	35	33	39	36	34	40	38	36
	kW	7.8	7.9	7.9	7.8	7.9	7.9	7.8	7.9	7.9	7.8	7.9	7.9	7.8	7.9	7.9
75	TC	62	64	66	62	65	67	63	66	68	64	66	68	64	67	69
	SHC	22	19	16	24	21	18	25	22	20	27	24	21	28	25	22
	kW	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5	8.5
85	TC	42	44	46	43	45	46	43	45	47	44	46	48	44	46	48
	SHC	10	6	2	12	8	4	14	10	6	15	11	8	16	13	9
	kW	9.2	9.2	9.3	9.2	9.2	9.3	9.2	9.2	9.3	9.2	9.2	9.3	9.2	9.2	9.3
95	TC	23	24	26	23	25	26	24	25	27	24	26	27	24	26	27
	SHC	-2	-7	-11	0	-5	-9	2	-3	-7	3	-1	-6	5	0	-4
	kW	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:
1. Direct interpolation is permissible. Do not extrapolate.
2. The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

$$h_{lwb} = h_{ewb} - \frac{total\ capacity\ (Btuh)}{4.5\ x\ cfm}$$

Where: hewb = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENTERI	NG AIR DE	RY-BULB T	EMP (F)	
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
		-	Correction	n Factor		
.05 .10 .20 .30	1.04 .98 .87 .76	2.07 1.96 1.74 1.53	3.11 2.94 2.62 2.29	4.14 3.92 3.49 3.05	5.18 4.90 4.36 3.82	Use for- mula shown below.

COOLING CAPACITIES, UNITS WITH HOT GAS REHEAT OPTION (cont)

581A181	(15 TON	S) UNIT W	тн нот	GAS REH	EAT — A	AND B IN	REHEAT	, C ON								
Tom	p (F)				_		Eva	porator A	Air Quanti	ity — Cfm	/BF			_		
	tering		4500/0.12	!		5250/0.14			6000/.015	;		6750/0.18	1		7500/0.18	}
	enser						Evapo	orator Air	— Relativ	ve Humid	ity (%)					
(Ed	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC SHC kW	133 73 10.7	140 69 10.7	146 65 10.8	134 75 10.7	141 71 10.7	147 67 10.8	135 77 10.7	142 73 10.7	148 69 10.8	136 79 10.7	143 75 10.7	149 71 10.8	137 81 10.7	144 76 10.7	150 72 10.8
75	TC SHC kW	116 61 11.8	123 55 11.8	128 50 11.8	117 63 11.8	123 57 11.8	129 52 11.8	117 65 11.8	124 59 11.8	130 54 11.8	118 66 11.8	125 61 11.8	131 56 11.8	118 68 11.8	126 62 11.8	132 57 11.8
85	TC SHC kW	98 48 12.9	105 41 13.0	111 35 13.0	99 50 12.9	106 43 13.0	112 37 13.0	99 52 12.9	106 45 13.0	112 39 13.0	100 54 12.9	107 46 13.0	113 40 13.0	100 55 12.9	107 48 13.0	113 42 13.0
95	TC SHC kW	81 36 14.0	88 28 14.1	94 21 14.1	81 38 14.0	88 29 14.1	94 22 14.1	81 39 14.0	88 31 14.1	95 24 14.1	81 41 14.0	89 32 14.1	95 25 14.1	81 42 14.0	89 34 14.1	95 26 14.1

581A	210 (18 TC	DNS) UI	VIT WIT	н нот	GAS R	EHEAT	IN COC	LING N	IODE												
	mp (F)									Enteri	ng Evap	orator	— Cfm/	/BF							
Air E	Entering		5400	/0.03			6300	/0.04			7200	/0.05			8100	/0.06			9000	/0.07	
	denser Edb)								Air	Enteri	ng Evap	orator	— Ewb	(F)							
(Eab)	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72
75	TC	183	198	215	236	192	206	224	245	201	212	230	252	210	216	235	257	217	222	240	262
	SHC	182	169	143	120	192	184	156	127	201	197	166	134	210	209	177	141	217	218	186	147
	kW	11.5	11.7	11.9	12.2	11.6	11.8	12.1	12.4	11.7	11.9	12.2	12.5	11.9	11.9	12.2	12.5	12.0	12.0	12.3	12.6
85	TC	179	192	210	231	188	200	217	239	197	205	223	244	205	210	227	249	212	215	232	254
	SHC	179	166	142	117	188	181	153	125	197	194	163	131	205	206	173	138	212	213	183	145
	kW	12.8	13.1	13.3	13.7	13.0	13.2	13.5	13.8	13.2	13.3	13.6	13.9	13.3	13.4	13.7	14.0	13.4	13.5	13.7	14.1
95	TC	175	186	202	223	184	193	209	229	193	198	215	236	200	203	219	241	206	208	223	245
	SHC	175	163	142	114	184	177	151	121	193	191	160	128	200	200	170	135	206	207	180	142
	kW	14.1	14.3	14.6	14.9	14.3	14.4	14.7	15.1	14.4	14.5	14.8	15.2	14.6	14.6	14.9	15.3	14.7	14.7	15.0	15.4
105	TC	170	180	197	215	179	186	201	222	187	192	208	226	194	197	212	230	200	202	215	235
	SHC	170	160	136	111	179	174	147	118	187	186	158	125	194	195	168	131	200	201	178	138
	kW	15.6	15.8	16.1	16.5	15.8	15.9	16.2	16.6	15.9	16.0	16.3	16.7	16.1	16.1	16.4	16.8	16.2	16.2	16.5	16.9
115	TC	165	173	189	208	173	179	195	214	181	184	199	218	187	189	203	222	193	194	205	225
	SHC	165	157	133	109	173	170	144	116	181	181	154	122	187	188	164	128	193	194	173	134
	kW	17.2	17.4	17.7	18.1	17.4	17.5	17.8	18.2	17.5	17.6	17.9	18.3	17.7	17.7	18.0	18.4	17.8	17.9	18.1	18.5
125	TC	159	166	181	199	167	171	186	203	174	177	190	207	180	182	193	210	186	187	196	213
	SHC	159	154	130	105	167	166	140	112	174	175	151	118	180	181	160	124	186	187	170	130
	kW	18.9	19.1	19.5	19.9	19.1	19.2	19.6	20.0	19.3	19.4	19.7	20.1	19.5	19.5	19.8	20.1	19.6	19.6	19.8	20.2

Tom	p (F)				_		Eva	porator /	ir Quanti	ty — Cfm	/BF			_		
	ntering		5400/0.03			6300/0.04			7200/0.05	1		8100/0.06	1		9000/0.07	
	lenser						Evapo	orator Air	— Relativ	/e Humidi	ty (%)					
(E	db)	50	63 65 62 64 66 63 65 66 63 65 67 64 66													60
65	TC	61	63	65	62	64	66	63	65	66	63	65	67	64	66	68
	SHC	38	35	34	40	37	35	41	39	37	43	41	39	44	42	40
	kW	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
75	TC	47	48	50	47	49	51	48	50	51	48	50	52	49	51	52
	SHC	24	21	18	26	23	20	28	25	22	29	26	24	31	28	25
	kW	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4	5.4
85	TC	32	33	35	32	34	35	33	34	36	33	35	36	34	35	37
	SHC	11	7	3	13	9	5	14	11	7	16	12	9	17	14	10
	kW	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9	5.9
95	TC	17	18	19	18	19	20	18	19	20	19	20	21	19	20	21
	SHC	-3	-8	-12	-1	-6	-10	1	-4	-8	3	-2	-6	4	0	-4
	kW	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:

- Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{\text{sensible capacity (Btuh)}}$ 1.10 x cfm

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

total capacity (Btuh) $h_{lwb} = h_{ewb} - -$ 4.5 x cfm

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

27/24/20		ENT	ERING	AIR DF	RY-BUL	B TEMP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
			C	Correction	n Facto	or
.05 .10 .20 .30	1.04 .98 .87 .76	2.07 1.96 1.74 1.53	3.11 2.94 2.62 2.29	4.14 3.92 3.49 3.05	5.18 4.90 4.36 3.82	Use formula shown below.

COOLING CAPACITIES, UNITS WITH HOT GAS REHEAT OPTION (cont)

581A210	(18 TONS	S) UNIT W	/ІТН НОТ	GAS REH	EAT — A	AND B IN	REHEAT	, C OFF								
Tom	p (F)				_		Eva	porator A	Air Quanti	ity — Cfm	/BF			_		
	tering		5400/0.03			6300/0.04			7200/0.05	;		8100/0.06	;		9000/0.07	,
	enser						Evapo	orator Air	— Relativ	ve Humidi	ty (%)					
(E	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC SHC kW	90 38 8.8	93 35 8.8	95 33 8.8	91 40 8.8	94 37 8.8	97 35 8.8	92 41 8.8	95 39 8.8	98 37 8.8	93 43 8.8	96 40 8.8	99 38 8.8	94 44 8.8	97 42 8.8	100 40 8.8
75	TC SHC kW	68 24 9.6	71 21 9.6	73 18 9.6	69 26 9.6	72 23 9.6	74 20 9.6	70 28 9.6	73 25 9.6	75 22 9.6	71 30 9.6	74 26 9.6	76 23 9.6	72 31 9.6	74 28 9.6	77 25 9.6
85	TC SHC kW	47 11 10.3	49 7 10.3	51 3 10.3	47 13 10.3	50 9 10.3	52 5 10.3	48 15 10.3	50 11 10.3	52 7 10.3	49 17 10.3	51 12 10.3	53 9 10.3	49 18 10.3	51 14 10.3	53 10 10.3
95	TC SHC kW	25 -2 11.1	27 -8 11.1	29 -12 11.1	26 0 11.1	27 -5 11.1	29 -10 11.1	26 2 11.1	28 3 11.1	29 -8 11.1	26 3 11.1	28 -2 11.1	30 -6 11.1	27 5 11.1	29 0 11.1	30 -5 11.1

T	(F)						Eva	aporator A	Air Quanti	ty — Cfm	/BF					
	p (F) ntering		5400/0.03	1		6300/0.04			7200/0.05			8100/0.06	i		9000/0.07	
	lenser						Evapo	orator Air	— Relativ	/e Humidi	ty (%)					
(E	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC	147	155	162	148	157	164	150	158	165	151	160	167	152	161	168
	SHC	81	76	72	84	79	75	86	81	77	88	83	79	90	85	80
	kW	11.9	12.0	12.0	11.9	12.0	12.0	11.9	12.0	12.0	11.9	12.0	12.0	11.9	12.0	12.0
75	TC	128	136	143	129	137	144	130	138	146	131	139	147	132	140	148
	SHC	67	61	56	70	63	58	72	65	60	74	67	62	76	69	63
	kW	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2	13.2
85	TC	108	117	124	109	118	125	110	118	126	110	119	127	111	120	127
	SHC	54	46	39	56	48	41	58	50	43	60	52	45	61	53	46
	kW	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
95	TC	89	98	105	89	98	106	89	98	106	90	99	107	90	99	107
	SHC	40	31	23	42	33	25	44	34	26	45	36	28	47	37	29
	kW	15.8	15.7	15.7	15.8	15.7	15.7	15.8	15.7	15.7	15.8	15.7	15.7	15.8	15.7	15.7

581A	240 (20 TC	NS) UI	NIT WIT	н нот	GAS R	EHEAT	IN COC	LING N	ODE												
To	mp (F)	•							Air	Enteri	ng Evap	orator	— Cfm/	/BF							-
Air E	ntering		6000	/0.04			7000	/0.05			8000	/0.06			9000	/0.07			10,00	0/0.08	
	denser Edb)								Air	Enteri	ng Evap	orator	— Ewb	(F)							
,	Lub)	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72
75	TC SHC kW	216 213 13.9	234 199 14.2	255 171 14.6	279 141 15.0	226 225 14.0	243 217 14.4	265 185 14.8	290 151 15.3	237 237 14.3	251 232 14.5	273 198 15.0	298 159 15.4	247 247 14.5	256 241 14.6	279 211 15.1	305 168 15.6	256 256 14.6	263 251 14.8	284 223 15.2	310 176 15.7
85	TC SHC kW	13.9 14.2 14.6 15.0 14.0 14.4 14.8 211 227 249 272 221 237 258 209 194 168 141 221 214 182 15.4 15.8 16.2 16.7 15.7 16.0 16.4						282 148 16.9	232 232 15.9	243 228 16.1	265 195 16.6	287 155 17.1	242 242 16.1	250 237 16.3	270 206 16.7	293 163 17.2	250 250 16.3	255 244 16.4	275 220 16.8	300 173 17.4	
95	TC SHC kW	211 227 249 272 221 237 258 209 194 168 141 221 214 182					269 142 18.6	228 228 17.7	235 222 17.9	254 190 18.3	278 152 18.8	236 236 17.9	241 230 18.0	259 202 18.4	286 161 19.0	243 243 18.1	247 236 18.2	264 214 18.6	290 169 19.1		
105	TC SHC kW	201 197 19.0	214 190 19.3	232 161 19.8	253 131 20.3	211 211 19.3	221 206 19.5	238 172 20.0	261 140 20.6	221 221 19.5	228 216 19.7	247 188 20.2	266 146 20.7	229 229 19.8	234 223 19.9	251 200 20.3	271 155 20.8	236 236 20.0	239 229 20.0	255 212 20.4	278 165 21.0
115	TC SHC kW	195 191 21.0	206 185 21.3	224 158 21.8	245 129 22.4	205 205 21.3	213 201 21.5	230 171 22.0	252 137 22.7	214 214 21.6	219 209 21.7	236 183 22.2	258 145 22.8	221 221 21.8	225 215 21.9	240 194 22.3	262 152 22.9	228 228 22.0	231 221 22.1	243 207 22.4	265 160 23.0
125	TC SHC kW	189 184 23.1	198 179 23.4	215 154 24.0	235 125 24.7	198 198 23.5	204 194 23.7	221 167 24.2	239 132 24.8	207 207 23.8	210 201 23.9	225 179 24.4	244 139 25.0	214 214 24.0	216 207 24.1	229 191 24.5	248 147 25.1	220 220 24.2	222 212 24.3	232 202 24.6	251 154 25.2

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:

- Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

$$t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.10 \text{ x cfm}}$$

 $t_{\rm lwb}$ = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil $(h_{\rm lwb})$

h_{lwb} = h_{ewb} - total capacity (Btuh) 4.5 x cfm

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENT	FERING	AIR DE	RY-BULI	B TEMP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
		-	(Correction	on Facto	r
.05 .10 .20 .30	1.04 .98 .87 .76	2.07 1.96 1.74 1.53	3.11 2.94 2.62 2.29	4.14 3.92 3.49 3.05	5.18 4.90 4.36 3.82	Use formula shown below.

COOLING CAPACITIES, UNITS WITH HOT GAS REHEAT OPTION (cont)

581A240	(20 TONS	S) UNIT W	ITH HOT	GAS REH	EAT — A	IN REHEA	AT, B AND	C OFF								
Tom	p (F)				_		Eva	porator A	Air Quanti	ty — Cfm	/BF			_		
	tering		6000/0.04			7000/0.05			8000/0.06	,		9000/0.07	•	1	0,000/0.0	8
	enser						Evapo	orator Air	— Relativ	e Humid	ity (%)					
(EC	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC SHC kW	73 45 6.1	75 42 6.1	77 40 6.1	73 47 6.1	76 44 6.1	78 42 6.1	74 49 6.1	76 47 6.1	79 44 6.1	75 51 6.1	77 48 6.1	79 46 6.1	75 53 6.1	78 50 6.1	80 48 6.1
75	TC SHC kW	55 29 6.6	57 25 6.6	59 22 6.6	56 31 6.6	58 27 6.6	60 24 6.6	56 33 6.6	58 30 6.6	60 26 6.6	57 35 6.6	59 31 6.6	61 28 6.6	57 37 6.6	59 33 6.6	61 30 6.6
85	TC SHC kW	38 13 7.2	40 8 7.2	41 4 7.2	38 15 7.2	40 10 7.2	42 7 7.2	39 17 7.2	40 13 7.2	42 9 7.2	39 19 7.2	41 14 7.2	42 10 7.2	39 21 7.2	41 16 7.2	43 12 7.2
95	TC SHC kW	20 -4 7.7	22 -9 7.7	23 -14 7.7	21 -1 7.7	22 -7 7.7	24 -11 7.7	21 1 7.7	22 -4 7.7	24 -9 7.7	21 3 7.7	23 -3 7.7	24 -7 7.7	21 5 7.7	23 -1 7.7	24 -6 7.7

Tom	p (F)						Eva	porator A	Air Quanti	ty — Cfm	/BF					
	ף (ר) itering		6000/0.04			7000/0.05			8000/0.06	i		9000/0.07	•	1	0,000/0.0	8
	enser						Evapo	rator Air	— Relativ	e Humidi	ty (%)					
(Ec	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC	106	110	113	108	111	114	109	113	116	110	114	117	111	115	118
	SHC	45	42	39	47	44	41	49	46	44	51	48	46	53	50	47
	kW	10.7	10.7	10.8	10.7	10.7	10.8	10.7	10.7	10.8	10.7	10.7	10.8	10.7	10.7	10.8
75	TC	81	84	87	82	85	88	83	86	89	83	87	89	84	87	90
	SHC	29	25	21	31	27	24	34	29	26	36	31	28	37	33	30
	kW	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6	11.6
85	TC	56	58	61	56	59	61	56	59	61	57	59	62	57	60	62
	SHC	13	8	3	16	10	6	18	13	8	20	15	10	22	16	12
	kW	12.6	12.7	12.7	12.6	12.7	12.7	12.6	12.7	12.7	12.6	12.7	12.7	12.6	12.7	12.7
95	TC	30	33	34	30	32	34	30	32	34	30	32	34	30	32	34
	SHC	-3	-9	-14	0	-6	-12	2	-4	-10	4	-2	-8	6	0	-6
	kW	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6	13.6

581A240	(20 TON	S) UNIT W	ІТН НОТ	GAS REH	EAT — A	AND B IN										
Tem	p (F)				•		Eva	aporator /	Air Quanti	ty — Cfm	/BF			•		
Air En	itering		6000/0.04			7000/0.05	i		8000/0.06	i		9000/0.07	,	1	10,000/0.0	8
	lenser						Evapo	orator Air	- Relativ	e Humidi	ity (%)					
(Ec	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC SHC kW	177 98 14.5	185 92 14.6	191 86 14.7	177 100 14.5	185 94 14.6	192 88 14.7	178 101 14.5	186 95 14.6	192 90 14.7	178 103 14.5	186 97 14.6	193 92 14.7	178 104 14.5	186 98 14.6	193 93 14.7
75	TC SHC kW	154 81 16.1	161 73 16.1	168 66 16.1	154 83 16.1	162 75 16.1	169 69 16.1	155 85 16.1	162 78 16.1	169 71 16.1	155 87 16.1	163 80 16.1	169 73 16.1	155 89 16.1	163 81 16.1	170 75 16.1
85	TC SHC kW	131 63 17.7	138 54 17.7	145 46 17.8	131 66 17.7	139 57 17.7	145 49 17.8	131 69 17.7	139 60 17.7	146 52 17.8	132 71 17.7	139 62 17.7	146 54 17.8	132 73 17.7	140 64 17.7	146 56 17.8
95	TC SHC kW	107 46 19.3	115 35 19.3	122 25 19.3	108 50 19.3	115 39 19.3	122 29 19.3	108 53 19.3	116 42 19.3	122 32 19.3	108 55 19.3	116 45 19.3	123 35 19.3	109 58 19.3	116 47 19.3	123 38 19.3

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:
1. Direct interpolation is permissible. Do not extrapolate.
2. The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{\text{sensible capacity (Btuh)}}$ 1.10 x cfm

 $\mathbf{t_{lwb}} = \text{Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil } (\mathbf{h_{lwb}})$

$$h_{lwb} = h_{ewb} - \frac{total\ capacity\ (Btuh)}{4.5\ x\ cfm}$$

Where: h_{ewb} = Enthalpy of air entering evaporator coil The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENT	ERING	AIR DE	RY-BUL	B TEMP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
			(Correction	n Facto	or
.05	1.04	2.07	3.11	4.14	5.18	
.10 .20	.98 .87	1.96 1.74	2.94	3.92	4.90 4.36	Use formula shown below.
.30	.76	1.74	2.62	3.49 3.05	3.82	onown bolow.

COOLING CAPACITIES, UNITS WITH HOT GAS REHEAT OPTION (cont)

581A	300 (25 TC	ONS) UI	NIT WIT	н нот	GAS R	EHEAT	IN COC	LING N	IODE												
Т	mp (F)								Air	Enteri	ng Evap	orator	— Cfm/	/BF							
Air I	Entering		7000/	0.042			8250/	0.052			9500/	0.062			10,750	/0.072			12,000	0/0.082	
	ndenser Edb)								Air	Enteri	ng Evap	orator	— Ewb	(F)							
,	Lub)	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72	57	62	67	72
75	TC SHC kW	245 245 16.4	245 268 293 318 259 282 303 333 274 291 314 340 289 301 322 348 305 309 332 245 229 197 162 259 254 213 173 274 271 230 183 289 287 247 195 305 298 267 6.4 17.0 17.6 18.2 16.7 17.4 17.9 18.6 17.1 17.6 18.2 18.8 17.5 17.8 18.4 19.0 18.0 18.1 18.6													356 203 19.2					
85	TC SHC kW	233 233 17.9	259 228 18.7	278 186 19.3	309 158 19.9	256 256 18.5	273 252 19.1	293 211 19.7	324 171 20.4	271 271 19.0	282 264 19.4	305 229 20.0	330 180 20.8	285 285 19.3	290 276 19.6	312 246 20.2	337 191 21.1	298 298 19.8	303 295 19.9	321 261 20.4	343 201 21.3
95	TC SHC kW	230 230 20.0	252 225 20.8	276 191 21.4	303 156 22.1	251 251 20.7	265 249 21.2	284 202 21.5	314 166 22.4	269 269 21.3	274 269 21.4	290 220 21.9	326 181 23.0	274 274 21.5	282 274 21.7	300 238 22.1	332 190 23.2	283 283 21.6	293 280 22.0	308 259 22.5	334 197 23.3
105	TC SHC kW	226 226 22.0	245 223 22.8	268 188 23.3	292 153 24.3	242 242 22.7	253 241 23.1	277 205 23.7	301 163 24.7	255 255 23.1	264 255 23.4	284 221 24.0	308 171 25.0	266 265 23.6	275 265 23.7	290 240 24.3	314 185 25.2	278 278 24.0	281 278 24.1	294 253 24.4	319 194 25.4
115	TC SHC kW	221 221 24.3	233 217 25.1	258 183 25.7	281 149 26.7	232 232 24.8	242 230 25.4	267 200 26.1	290 160 27.1	247 247 25.3	253 246 25.8	274 217 26.4	297 170 27.2	253 253 25.8	260 254 26.0	275 233 26.5	302 179 27.3	267 267 26.1	269 267 26.3	279 248 26.7	306 189 27.4
125	TC SHC kW	216 216 26.9	223 212 27.1	247 181 28.0	268 145 29.0	225 225 27.4	230 223 27.5	253 196 28.3	275 155 29.4	237 237 27.8	240 236 27.9	256 211 28.5	280 163 29.6	247 247 28.2	248 247 28.3	260 228 28.7	285 174 29.8	254 254 28.5	255 254 28.6	263 242 28.9	288 184 29.9

Tom	p (F)						Eva	aporator A	Air Quanti	ty — Cfm	/BF					
	ף (ר) itering		7500/0.04	5	8	3250/0.05	5	9	9500/0.06	5	1	0,750/0.07	'5	1:	2,000/0.08	5
	enser						Evapo	orator Air	— Relativ	e Humidi	ity (%)					
(E	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC SHC kW	79 39 11	79 83 87 39 33 28 11 11 11 56 61 65		80 41 11	84 35 11	88 30 11	81 43 11	85 37 11	89 32 11	82 45 11	86 39 11	90 34 11	83 47 11	87 41 11	91 36 11
75	TC SHC kW	56 18 11	61 11 11	65 5 11	57 20 11	62 12 11	66 6 11	59 22 11	63 15 11	67 8 11	60 24 11	64 16 11	68 10 11	61 26 11	65 18 11	69 12 11
85	TC SHC kW	34 -2 11	38 -11 11	42 -19 12	35 -1 11	39 -10 12	43 -18 12	37 1 12	41 -8 12	45 -16 12	38 3 12	42 -7 12	46 -14 12	39 4 12	43 -5 12	47 -13 12
95	TC SHC kW	12 -23 12	16 -33 12	19 -42 12	13 -22 12	17 -32 12	21 -41 12	15 -20 12	19 -31 12	22 -40 12	16 -19 12	20 -30 12	24 -39 12	17 -17 12	22 -28 12	25 -38 12

Tom	p (F)				_		Eva	porator /	Air Quanti	ty — Cfm	/BF			_		
	tering		7500/0.04	5		8250/0.05	5	9	9500/0.06	5	1	0,750/0.07	'5	1:	2,000/0.08	35
	enser						Evapo	orator Air	— Relativ	/e Humidi	ty (%)					
(E	db)	50	55	60	50	55	60	50	55	60	50	55	60	50	55	60
65	TC	211	222	231	215	226	235	220	232	241	226	237	247	230	242	252
	SHC	123	115	109	129	121	115	139	131	124	147	139	133	155	147	140
	kW	19	19	20	19	19	20	19	19	20	19	20	20	19	20	20
75	TC	182	193	202	185	196	205	189	200	210	192	204	214	196	208	218
	SHC	103	93	85	110	100	91	120	110	101	128	118	110	136	126	118
	kW	20	21	21	20	21	21	21	21	21	21	21	21	21	21	21
85	TC	153	164	174	155	166	176	157	169	178	159	171	181	161	173	184
	SHC	84	72	62	90	78	68	100	88	78	110	97	87	118	106	95
	kW	22	22	22	22	22	22	22	22	22	22	22	22	22	22	22
95	TC	124	135	145	125	136	146	125	137	147	126	138	148	127	139	149
	SHC	64	50	38	71	57	45	81	67	55	91	76	64	99	85	72
	kW	23	23	23	23	23	23	23	23	24	23	23	24	23	24	24

LEGEND

BF — Bypass Factor
Edb — Entering Dry-Bulb
Ewb — Entering Wet-Bulb
kW — Compressor Motor Power Input
Idb — Leaving Dry-Bulb
Iwb — Leaving Wet-Bulb
SHC — Sensible Heat Capacity (1000 Btuh) Gross
TC — Total Capacity (1000 Btuh) Gross

NOTES:

Direct interpolation is permissible. Do not extrapolate.
 The following formulas may be used:

 $t_{ldb} = t_{edb} - \frac{\text{sensible capacity (Btuh)}}{1.100}$ 1.10 x cfm

 t_{lwb} = Wet-bulb temperature corresponding to enthalpy of air leaving evaporator coil (h_{lwb})

total capacity (Btuh) 4.5 x cfm

Where: h_{ewb} = Enthalpy of air entering evaporator coil

The SHC is based on 80 F edb temperature of air entering evaporator coil. Below 80 F edb, subtract (corr factor x cfm) from SHC. Above 80 F edb, add (corr factor x cfm) to SHC.

		ENT	ERING	AIR DF	RY-BUL	B TEMP (F)
BYPASS FACTOR	79	78	77	76	75	under 75
(BF)	81	82	83	84	85	over 85
			(Correction	n Facto	or
.05 .10 .20 .30	1.04 .98 .87 .76	2.07 1.96 1.74 1.53	3.11 2.94 2.62 2.29	4.14 3.92 3.49 3.05	5.18 4.90 4.36 3.82	Use formula shown below.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS

581A155 (12	TONS) W	ITH STAN	DARD MC	TOR (Lov	v Heat Uni	ts)*									
						Availa	ble Extern	nal Static F	Pressure (in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(0)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3750	597	895	0.84	692	967	1.07	781	1150	1.33	858	1342	1.59	928	1527	1.85
4000	625	1014	0.98	714	1097	1.21	800	1292	1.48	876	1495	1.75	945	1689	2.03
4250	653	1141	1.13	737	1236	1.36	820	1442	1.64	895	1656	1.93	963	1859	2.22
4500	682	1274	1.29	761	1382	1.54	840	1599	1.82	914	1824	2.11	982	2037	2.42
4750	711	1415	1.48	786	1538	1.73	861	1765	2.01	934	2001	2.32	1001	2224	2.63
5000	740	1563	1.68	812	1702	1.94	884	1940	2.22	954	2188	2.53	1020	2419	2.86
5250	769	1719	1.89	839	1875	2.16	907	2125	2.45	974	2384	2.77	1039	2625	3.10
5500	799	1884	2.13	867	2060	2.41	931	2321	2.70	996	2592	3.02	1059	2841	3.36
5750	828	2058	2.38	894	2256	2.67	956	2528	2.97	1018	2810	3.29	1080	3069	3.64
6000	857	2243	2.64	923	2464	2.96	982	2748	3.26	1041	3042	3.59	1101	3308	3.94
6250	885	2438	2.93	951	2687	3.27	1008	2981	3.58	1065	3286	3.91	1122	3559	4.26

581A155 (12	2 TONS) W	ITH STAN	DARD MC	TOR (Lov	v Heat Uni	ts)* (cont)	1								
						Availa	ble Exterr	nal Static F	Pressure (in. wg)					
Airflow (Cfm)		1.2			1.4			1.6	_		1.8	_		2.0	_
(OIIII)	Rpm	Watts	Bhp												
3750 4000	992 1009	1756 1931	2.12 2.31	1053 1069	1988 2173	2.40 2.59	1112 1126	2236 2431	2.68 2.88	1169 1181	2497 2702	2.97 3.18	1224 1234	2769 2984	3.27 3.48
4250 4500 4750	1026 1044 1062	2114 2304 2504	2.51 2.72 2.95	1085 1102 1120	2366 2566 2775	2.80 3.02 3.26	1141 1157 1174	2634 2844 3062	3.10 3.33 3.58	1194 1209 1226	2914 3133 3360	3.40 3.65 3.91	1246 1260 1275	3206 3433 3666	3.72 3.97 4.23
5000 5250 5500	1081 1100	2712 2931 3160	3.19 3.44 3.72	1138 1156	2993 3220 3457	3.52 3.79	1191 1209	3288 3523 3765	3.85 4.13 4.43	1242 1260 1278	3592 3832	4.18 4.47	1291 1308	3905 4148	4.52 4.82
5750 6000	1119 1138 1158	3399 3649	4.00 4.31	1175 1194 1213	3457 3702 3957	4.07 4.37 4.69	1228 1246 1265	4014 4270	4.43 4.74 5.07	1278 1296 1315	4077 4328 4581	4.78 5.11 5.45	1326 1343 —	4395 4644 —	5.14 5.48
6250	1179	3910	4.64	1233	4219	5.02	1284	4531	5.41	_	_	_	_	_	_

LEGEND

Brake Horsepower Input Watts to Motor Bhp Watts

Refer to page 262 for general Fan Performance Data notes.

NOTES:

- 1. Field-supplied motor required.
- Maximum continuous bhp for the standard motor is 3.13 (for 208/230 and 460-v units) or 3.38 (for 575-v units). The maximum continuous watts is 2700 (for 208/230 and 460-v units) or 3065 (for 575-v units). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Data tables for more information.
- information.

 Fan performance is identical for horizontal discharge applications using Bryant horizontal adapter curb.

						Availa	ble Extern	al Static F	ressure (i	in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3750	597	895	0.84	692	967	1.07	781	1150	1.33	858	1342	1.59	928	1527	1.85
4000	625	1014	0.98	714	1097	1.21	800	1292	1.48	876	1495	1.75	945	1689	2.03
4250	653	1141	1.13	737	1236	1.36	820	1442	1.64	895	1656	1.93	963	1859	2.22
4500	682	1274	1.29	761	1382	1.54	840	1599	1.82	914	1824	2.11	982	2037	2.42
4750	711	1415	1.48	786	1538	1.73	861	1765	2.01	934	2001	2.32	1001	2224	2.63
5000	740	1563	1.68	812	1702	1.94	884	1940	2.22	954	2188	2.53	1020	2419	2.86
5250	769	1719	1.89	839	1875	2.16	907	2125	2.45	974	2384	2.77	1039	2625	3.10
5500	799	1884	2.13	867	2060	2.41	931	2321	2.70	996	2592	3.02	1059	2841	3.36
5750	828	2058	2.38	894	2256	2.67	956	2528	2.97	1018	2810	3.29	1080	3069	3.64
6000	857	2243	2.64	923	2464	2.96	982	2748	3.26	1041	3042	3.59	1101	3308	3.94
6250	885	2438	2.93	951	2687	3.27	1008	2981	3.58	1065	3286	3.91	1122	3559	4.26

						Availa	ble Exterr	nal Static F	ressure (i	in. wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(Cilli)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3750	992	1756	2.12	1053	1988	2.40	1112	2236	2.68	1169	2497	2.97	1224	2769	3.27
4000	1009	1931	2.31	1069	2173	2.59	1126	2431	2.88	1181	2702	3.18	1234	2984	3.48
4250	1026	2114	2.51	1085	2366	2.80	1141	2634	3.10	1194	2914	3.40	1246	3206	3.72
4500	1044	2304	2.72	1102	2566	3.02	1157	2844	3.33	1209	3133	3.65	1260	3433	3.97
4750	1062	2504	2.95	1120	2775	3.26	1174	3062	3.58	1226	3360	3.91	1275	3666	4.23
5000	1081	2712	3.19	1138	2993	3.52	1191	3288	3.85	1242	3592	4.18	1291	3905	4.52
5250	1100	2931	3.44	1156	3220	3.79	1209	3523	4.13	1260	3832	4.47	1308	4148	4.82
5500	1119	3160	3.72	1175	3457	4.07	1228	3765	4.43	1278	4077	4.78	1326	4395	5.14
5750	1138	3399	4.00	1194	3702	4.37	1246	4014	4.74	1296	4328	5.11	1343	4644	5.48
6000	1158	3649	4.31	1213	3957	4.69	1265	4270	5.07	1315	4581	5.45	_	_	
6250	1179	3910	4.64	1233	4219	5.02	1284	4531	5.41	_	_		l —	_	. —

LEGEND

Bhp Brake Horsepower Watts Input Watts to Motor

Refer to page 262 for general Fan Performance Data notes.

NOTES:

- Field-supplied motor required.
- Maximum continuous bhp for the optional motor is 4.26. Maximum continuous watts for the optional motor is 3610. Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Data tables for more information.
 Fan performance is identical for horizontal discharge applications using Bryant horizontal adapter curb.

^{*}Standard low-medium static drive range is 895 to 1147 rpm. Other rpms require a field-supplied drive.

^{*}Alternate high-static drive range is 1040 to 1315 (for 208/230 and 460-v units). The alternate high-static drive is not available for 575-v units. Other rpms require a field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A155 (12	Z TONS) W	ITH STAN	DARD MC	TOR (Hig	h Heat Un	its)*									
						Availa	ble Extern	al Static F	Pressure (i	in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3750	622	888	0.89	713	1027	1.13	795	1234	1.37	869	1454	1.63	936	1584	1.89
4000	652	1015	1.04	738	1168	1.28	818	1388	1.54	890	1620	1.80	956	1756	2.07
4250	682	1151	1.20	763	1317	1.45	841	1550	1.72	911	1793	1.99	976	1937	2.27
4500	713	1295	1.38	790	1474	1.63	864	1719	1.91	934	1973	2.20	997	2126	2.49
4750	744	1448	1.58	817	1641	1.84	889	1896	2.12	956	2159	2.42	1019	2326	2.72
5000	776	1610	1.80	845	1817	2.06	914	2081	2.35	979	2353	2.66	1041	2536	2.97
5250	808	1783	2.04	874	2003	2.31	940	2277	2.60	1003	2556	2.91	1064	2757	3.24
5500	840	1967	2.29	903	2200	2.57	966	2482	2.87	1028	2768	3.19	1087	2991	3.52
5750	872	2163	2.57	933	2410	2.86	993	2699	3.16	1053	2990	3.49	1110	3237	3.83
6000	905	2373	2.87	963	2634	3.16	1021	2929	3.47	1078	3225	3.81	1134	3497	4.15
6250	937	2596	3.19	994	2872	3.49	1049	3172	3.81	1105	3473	4.15	1159	3769	4.50

581A155 (12	2 TONS) W	ITH STAN	DARD MC	TOR (Hig	h Heat Un	its)* (cont)								
						Availa	ble Extern	al Static F	Pressure (i	in. wg)					
Airflow (Cfm)		1.2	_		1.4			1.6	_		1.8	_		2.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3750	999	1829	2.15	1059	2091	2.42	1117	2343	2.70	1174	2521	2.99	1228	2801	3.29
4000	1017	2010	2.35	1076	2279	2.63	1132	2540	2.91	1186	2738	3.21	1239	3023	3.51
4250	1036	2198	2.56	1093	2474	2.85	1148	2743	3.14	1201	2962	3.44	1253	3251	3.75
4500	1056	2395	2.78	1112	2675	3.08	1166	2951	3.39	1217	3194	3.70	1267	3487	4.01
4750	1077	2601	3.03	1132	2885	3.34	1184	3168	3.65	1235	3435	3.97	1284	3731	4.29
5000	1098	2816	3.29	1152	3104	3.61	1204	3392	3.93	1253	3683	4.26	1301	3981	4.59
5250	1120	3042	3.56	1173	3332	3.90	1224	3626	4.23	1273	3940	4.57	1320	4239	4.91
5500	1142	3279	3.86	1195	3570	4.20	1245	3870	4.55	1293	4203	4.89	1339	4501	5.24
5750	1165	3528	4.18	1217	3819	4.53	1266	4125	4.88	1313	4471	5.24	_	_	_
6000	1188	3789	4.51	1239	4080	4.88	1288	4389	5.24	_	_	_	<u> </u>	_	_
6250	1212	4062	4.87	1262	4351	5.24	_	_	_	<u> </u>	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

Refer to page 262 for general Fan Performance Data notes.

NOTES:

- Field-supplied motor required.
- Maximum continuous bhp for the standard motor is 3.13 (for 208/230 and 460-v units) or 3.38 (for 575-v units). The maximum continuous watts is 2700 (for 208/230 and 460-v units) or 3065 (for 575-v units). Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Data tables for more information
- information.

 3. Fan performance is identical for horizontal discharge applications using Bryant horizontal adapter curb.

						Availa	ble Extern	al Static F	Pressure (in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3750	622	888	0.89	713	1027	1.13	795	1234	1.37	869	1454	1.63	936	1584	1.89
4000	652	1015	1.04	738	1168	1.28	818	1388	1.54	890	1620	1.80	956	1756	2.07
4250	682	1151	1.20	763	1317	1.45	841	1550	1.72	911	1793	1.99	976	1937	2.27
4500	713	1295	1.38	790	1474	1.63	864	1719	1.91	934	1973	2.20	997	2126	2.49
4750	744	1448	1.58	817	1641	1.84	889	1896	2.12	956	2159	2.42	1019	2326	2.72
5000	776	1610	1.80	845	1817	2.06	914	2081	2.35	979	2353	2.66	1041	2536	2.97
5250	808	1783	2.04	874	2003	2.31	940	2277	2.60	1003	2556	2.91	1064	2757	3.24
5500	840	1967	2.29	903	2200	2.57	966	2482	2.87	1028	2768	3.19	1087	2991	3.52
5750	872	2163	2.57	933	2410	2.86	993	2699	3.16	1053	2990	3.49	1110	3237	3.83
6000	905	2373	2.87	963	2634	3.16	1021	2929	3.47	1078	3225	3.81	1134	3497	4.15
6250	937	2596	3.19	994	2872	3.49	1049	3172	3.81	1105	3473	4.15	1159	3769	4.50

						Availa	ble Extern	al Static F	Pressure (i	in. wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3750	999	1829	2.15	1059	2091	2.42	1117	2343	2.70	1174	2521	2.99	1228	2801	3.29
4000	1017	2010	2.35	1076	2279	2.63	1132	2540	2.91	1186	2738	3.21	1239	3023	3.51
4250	1036	2198	2.56	1093	2474	2.85	1148	2743	3.14	1201	2962	3.44	1253	3251	3.75
4500	1056	2395	2.78	1112	2675	3.08	1166	2951	3.39	1217	3194	3.70	1267	3487	4.01
4750	1077	2601	3.03	1132	2885	3.34	1184	3168	3.65	1235	3435	3.97	1284	3731	4.29
5000	1098	2816	3.29	1152	3104	3.61	1204	3392	3.93	1253	3683	4.26	1301	3981	4.59
5250	1120	3042	3.56	1173	3332	3.90	1224	3626	4.23	1273	3940	4.57	1320	4239	4.91
5500	1142	3279	3.86	1195	3570	4.20	1245	3870	4.55	1293	4203	4.89	1339	4501	5.24
5750	1165	3528	4.18	1217	3819	4.53	1266	4125	4.88	1313	4471	5.24	_	_	_
6000	1188	3789	4.51	1239	4080	4.88	1288	4389	5.24	_	_	_	1 —	_	_
6250	1212	4062	4.87	1262	4351	5.24	_	_	_	_	_	_	_	_	i —

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

Refer to page 262 for general Fan Performance Data notes.

NOTES:

- . Field-supplied motor required.
- Maximum continuous bhp for the optional motor is 4.26. The maximum continuous watts is 3610. Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Data tables for more information.
- Fan performance is identical for horizontal discharge applications using Bryant horizontal adapter curb.

^{*}Standard low-medium static drive range is 895 to 1147 rpm. Other rpms require a field-supplied drive.

^{*}Alternate high-static drive range is 1040 to 1315. Other rpms require a field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

						Availabl	e Extern	al Static I	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	753	1307	1.53	761	1330	1.56	840	1572	1.84	912	1822	2.14	980	2080	2.44
4800	747	1384	1.62	790	1515	1.78	866	1765	2.07	936	2023	2.37	1002	2289	2.68
5100	741	1465	1.72	820	1718	2.01	893	1977	2.32	961	2243	2.63	1025	2516	2.95
5700	810	1911	2.24	882	2182	2.56	950	2459	2.88	1014	2741	3.21	1075	3029	3.55
6000	844	2164	2.54	914	2444	2.87	980	2730	3.20	1042	3021	3.54	1100	3317	3.89
6300	879	2439	2.86	947	2729	3.20	1010	3023	3.55	1070	3322	3.90	1127	3626	4.25
6600	915	2737	3.21	980	3035	3.56	1041	3338	3.91	1099	3645	4.28	1155	3957	4.64
6900	950	3057	3.59	1013	3364	3.95	1072	3675	4.31	1129	3991	4.68	1183	4311	5.06
7200	986	3401	3.99	1047	3717	4.36	1104	4037	4.74	1159	4361	5.11	1211	4689	5.50
7500	1022	3770	4.42	1081	4095	4.80	1136	4423	5.19	1189	4755	5.58	1241	5091	5.97

581A180 (15 TONS) (Low He	eat Units)* (cont)											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	1044	2345	2.75	1105	2619	3.07	1163	2899	3.40	1218	3187	3.74	1271	3481	4.08
4800	1065	2561	3.00	1124	2841	3.33	1180	3127	3.67	1235	3420	4.01	1287	3720	4.36
5100	1086	2795	3.28	1144	3082	3.61	1199	3375	3.96	1252	3674	4.31	1304	3979	4.67
5700	1132	3324	3.90	1187	3624	4.25	1240	3929	4.61	1291	4241	4.97	1341	4558	5.35
6000	1157	3619	4.24	1210	3925	4.60	1262	4239	4.97	1312	4557	5.34	1361	4880	5.72
6300	1182	3935	4.62	1234	4249	4.98	1285	4569	5.36	1334	4894	5.74	_	_	<u> </u>
6600	1208	4274	5.01	1259	4595	5.39	1309	4922	5.77	_	_	_	_	_	<u> </u>
6900	1235	4636	5.44	1285	4964	5.82	_	_	_	_	_	_	I —	I —	l —
7200	1262	5021	5.89	_	_	_	_	_	_	_	_	_	_	_	l —
7500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

						Availabl	e Extern	al Static I	Pressure	(in. wg)					
Airflow (Cfm)		2.2			2.4			2.6			2.8			3.0	
(Cilli)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	1322	3781	4.43	1372	4088	4.79	1419	4400	5.16	1466	4719	5.53	1511	5042	5.91
4800	1337	4025	4.72	1386	4337	5.09	1433	4655	5.46	1479	4978	5.84	_	_	_
5100	1353	4290	5.03	1401	4607	5.40	1448	4930	5.78	_		_	_		_
5700	1388	4881	5.72	_	_	_	_	_	_	_		_	_		_
6000	_	_	_	_	_	_	_	_	_	_		_		_	_
6300	_	_	_	_	_	_	_	_	_	_		_	_		_
6600	_	_	_	_	_	_	_	_	_	_		_		_	_
6900	l —	_	_	_	_	_	_	_	_	_	_	_	_		_
7200	_	_	_	_	_	_	_	_	_	_		_	_		_
7500	_	_	_	_	_	_	_	_	_	l —		_	l —	_	_

LEGEND

Bhp — Brake Horsepower FIOP — Factory-Installed Option Watts — Input Watts to Motor

Refer to page 262 for general Fan Performance Data notes.

NOTES:

- Maximum continuous bhp for the standard motor is 6.13. The maximum continuous watts is 5180. Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Data tables for more information.
 Fan performance is identical for horizontal discharge applications using Bryant horizontal adapter curb.

^{*}Standard low-medium static drive range is 873 to 1021 rpm. Alternate high-static drive range is 1025 to 1200. Other rpms require a field-supplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A180 (15 TONS) (High H	eat Units	s)*											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	753	1307	1.53	786	1404	1.65	861	1644	1.93	932	1893	2.22	997	2150	2.52
4800	747	1384	1.62	818	1603	1.88	890	1852	2.17	958	2108	2.47	1022	2373	2.78
5100	775	1571	1.84	850	1822	2.14	920	2079	2.44	986	2344	2.75	1048	2616	3.07
5700	849	2054	2.41	918	2323	2.73	982	2598	3.05	1044	2879	3.38	1102	3166	3.71
6000	886	2329	2.73	952	2607	3.06	1015	2891	3.39	1074	3180	3.73	1130	3474	4.08
6300	924	2628	3.08	987	2915	3.42	1047	3207	3.76	1105	3504	4.11	1160	3807	4.46
6600	962	2951	3.46	1023	3246	3.81	1081	3547	4.16	1136	3853	4.52	1190	4163	4.88
6900	1000	3298	3.87	1059	3603	4.23	1115	3912	4.59	1168	4225	4.96	1220	4543	5.33
7200	1038	3672	4.31	1095	3986	4.67	1149	4303	5.05	1201	4625	5.42	1251	4950	5.81
7500	1077	4072	4.78	1131	4394	5.15	1184	4720	5.54	1234	5050	5.92	_	_	l —

581A180 (15 TONS) (High H	eat Units	s)* (cont)											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	1060	2414	2.83	1119	2685	3.15	1175	2964	3.48	1230	3250	3.81	1282	3542	4.15
4800	1082	2644	3.10	1140	2922	3.43	1195	3207	3.76	1248	3498	4.10	1299	3795	4.45
5100	1106	2894	3.39	1163	3178	3.73	1216	3470	4.07	1268	3767	4.42	1319	4071	4.77
5700	1157	3459	4.06	1211	3757	4.41	1262	4061	4.76	1312	4371	5.13	1360	4686	5.50
6000	1184	3774	4.43	1236	4080	4.79	1287	4391	5.15	1335	4707	5.52	1382	5029	5.90
6300	1212	4114	4.83	1263	4427	5.19	1312	4745	5.57	1359	5067	5.94	_	<u> </u>	_
6600	1241	4478	5.25	1290	4798	5.63	1338	5122	6.01	_	_	_	_	<u> </u>	_
6900	1270	4866	5.71	_	_	_	_	—	_	_	_	_	—	l —	_
7200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

581A180 (15 TONS) (High Heat Units)* (cont)															
Airflow (Cfm)	Available External Static Pressure (in. wg)														
	2.2			2.4			2.6			2.8			3.0		
	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
4500	1332	3841	4.50	1381	4145	4.86	1428	4456	5.23	1473	4772	5.60	1518	5095	5.98
4800	1349	4100	4.81	1397	4409	5.17	1443	4725	5.54	1488	5046	5.92	_	_	_
5100	1367	4380	5.14	1414	4695	5.51	1460	5016	5.88	_		_	_	_	_
5700	1407	5007	5.87	_	_			_		_	_		_	_	_
6000		_	_		_			_		_	_		_	_	_
6300		_	_		_			_		_	_		_	_	_
6600	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
6900	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7200	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7500	_			_	_	_		_				_	_		_

LEGEND

Bhp — Brake Horsepower Watts — Input Watts to Motor

Refer to page 262 for general Fan Performance Data notes.

- NOTES:

 1. Maximum continuous bhp for the standard motor is 6.13. The maximum continuous watts is 5180. Do not adjust motor rpm such that motor maximum bhp and/or watts is exceeded at the maximum operating cfm. See Evaporator Fan Motor Data tables for more information.

 2. Fan performance is identical for horizontal discharge applications.
 - 2. Fan performance is identical for horizontal discharge applications using Bryant horizontal adapter curb.

^{*}Standard low-medium static drive range is 873 to 1021 rpm. Alternate high-static drive range is 1025 to 1200. Other rpms require a fieldsupplied drive.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A210 (18 TONS) (Low He	eat Units)*											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3500	460	591	0.68	548	774	0.89	623	951	1.09	692	1126	1.29	755	1301	1.50
4000	499	774	0.89	581	976	1.12	653	1170	1.35	717	1361	1.56	777	1551	1.78
4500	538	990	1.14	617	1212	1.39	685	1423	1.64	746	1630	1.88	803	1835	2.11
5000	579	1243	1.43	654	1485	1.71	719	1715	1.97	778	1938	2.23	832	2158	2.48
5500	621	1536	1.77	693	1798	2.07	755	2045	2.35	811	2285	2.63	864	2520	2.90
6000	664	1871	2.15	732	2152	2.48	792	2417	2.78	846	2673	3.07	897	2925	3.36
6500	707	2250	2.59	772	2550	2.93	830	2834	3.26	883	3106	3.57	932	3373	3.88
7000	751	2676	3.08	813	2994	3.44	869	3295	3.79	920	3585	4.12	967	3868	4.45
7500	795	3150	3.62	855	3487	4.01	909	3805	4.38	958	4112	4.73	1004	4411	5.07
8000	839	3676	4.23	897	4029	4.63	949	4366	5.02	997	4689	5.39	1042	5004	5.75
8500	884	4253	4.89	940	4625	5.32	990	4978	5.73	1037	5318	6.12	1080	5649	6.50

581A210 (18 TONS) (Low He	eat Units)* (cont)											
4: 6						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6	_		1.8			2.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3500	814	1476	1.70	871	1650	1.90	924	1825	2.10	975	1999	2.30	1023	2173	2.50
4000	834	1740	2.00	888	1930	2.22	939	2119	2.44	988	2308	2.65	1035	2497	2.87
4500	857	2039	2.35	909	2243	2.58	958	2446	2.81	1005	2650	3.05	1051	2853	3.28
5000	884	2376	2.73	933	2594	2.98	980	2811	3.23	1026	3028	3.48	1070	3244	3.73
5500	913	2753	3.17	960	2984	3.43	1006	3215	3.70	1049	3445	3.96	1092	3674	4.23
6000	945	3172	3.65	990	3417	3.93	1034	3662	4.21	1076	3905	4.49	1117	4147	4.77
6500	978	3636	4.18	1022	3895	4.48	1064	4153	4.78	1104	4409	5.07	1144	4665	5.37
7000	1012	4145	4.77	1055	4419	5.08	1095	4691	5.39	1135	4960	5.70	1173	5229	6.01
7500	1047	4703	5.41	1089	4992	5.74	1128	5277	6.07	1167	5561	6.40	1204	5842	6.72
8000	1084	5311	6.11	1124	5615	6.46	1163	5915	6.80	1200	6211	7.14	1236	6506	7.48
8500	1121	5972	6.87	1160	6290	7.23	1198	6604	7.60	1234	6914	7.95	1269	7223	8.31

LEGEND

Bhp — Brake Horsepower Input to FanWatts — Input Watts to Motor

*Motor drive ranges: Low Range: 647-886 (208/230 and 460-v), 810-1072 (575-v) High Range: 897-1139 (208/230 and 460-v), 873-1108 (575-v) All other rpms require field-supplied drive.

Refer to page 262 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A210 (18 TONS) (Mediur	n Heat U	nits)*											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3500	470	611	0.70	556	791	0.91	630	967	1.11	697	1141	1.31	760	1314	1.51
4000 4500	511 553	802 1029	0.92 1.18	591 629	1001 1248	1.15 1.44	661 695	1194 1458	1.37 1.68	725 756	1383 1663	1.59 1.91	784 812	1572 1866	1.81 2.15
5000	597	1297	1.10	669	1534	1.76	732	1761	2.03	789	1982	2.28	843	2201	2.13
5500	641	1606	1.85	709	1862	2.14	770	2106	2.42	825	2343	2.70	876	2577	2.96
6000 6500	686 732	1961 2363	2.26 2.72	751 794	2234 2653	2.57 3.05	809 849	2495 2931	2.87 3.37	862 900	2749 3201	3.16 3.68	911 948	2997 3465	3.45 3.99
7000	779	2815	3.24	837	3122	3.59	891	3416	3.93	940	3702	4.26	986	3981	4.58
7500	826	3320	3.82	882	3642	4.19	933	3953	4.55	980	4254	4.89	1025	4549	5.23
8000 8500	873 921	3879 4495	4.46 5.17	926 972	4217 4847	4.85 5.57	975 1019	4542 5189	5.22 5.97	1021 1063	4860 5521	5.59 6.35	1065 1105	5169 5846	5.95 6.72
0000	921	4495	5.17	9/2	4047	5.57	1019	5169	5.97	1003	00Z1	0.35	1105	5040	0.72

581A210 (18 TONS) (Mediur	n Heat U	nits)* (cc	nt)										
4. 0						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6	_		1.8			2.0	_
(5)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3500	818	1488	1.71	874	1661	1.91	927	1835	2.11	978	2008	2.31	1026	2182	2.51
4000	840	1760	2.02	893	1948	2.24	943	2136	2.46	992	2324	2.67	1039	2512	2.89
4500	865	2068	2.38	915	2270	2.61	964	2472	2.84	1011	2673	3.07	1056	2876	3.31
5000	893	2417	2.78	942	2632	3.03	988	2848	3.28	1033	3063	3.52	1076	3278	3.77
5500	925	2808	3.23	971	3037	3.49	1016	3266	3.76	1059	3494	4.02	1100	3721	4.28
6000	958	3243	3.73	1003	3486	4.01	1045	3728	4.29	1087	3970	4.57	1127	4210	4.84
6500	993	3725	4.28	1036	3982	4.58	1077	4238	4.87	1117	4492	5.17	1156	4745	5.46
7000	1029	4256	4.90	1071	4528	5.21	1111	4797	5.52	1150	5064	5.82	1187	5330	6.13
7500	1067	4838	5.56	1107	5124	5.89	1146	5407	6.22	1184	5688	6.54	1220	5967	6.86
8000	1106	5474	6.30	1145	5774	6.64	1182	6071	6.98	1219	6365	7.32	1254	6657	7.66
8500	1145	6165	7.09	1183	6479	7.45	1220	6790	7.81	1255	7098	8.16	1290	7403	8.51

LEGEND

Bhp — Brake Horsepower Input to FanWatts — Input Watts to Motor

*Motor drive ranges: Low Range: 647-886 (208/230 and 460-v), 810-1072 (575-v) High Range: 897-1139 (208/230 and 460-v), 873-1108 (575-v) All other rpms require field-supplied drive.

Refer to page 262 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A210 (18 TONS) (High H	eat Units	s)*											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			8.0			1.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3500	470	611	0.70	556	791	0.91	630	967	1.11	697	1141	1.31	760	1314	1.51
4000	511	802	0.92	591	1001	1.15	661	1194	1.37	725	1383	1.59	784	1572	1.81
4500	553	1029	1.18	629	1248	1.44	695	1458	1.68	756	1663	1.91	812	1866	2.15
5000	597	1297	1.49	669	1534	1.76	732	1761	2.03	789	1982	2.28	843	2201	2.53
5500	641	1606	1.85	709	1862	2.14	770	2106	2.42	825	2343	2.70	876	2577	2.96
6000	686	1961	2.26	751	2234	2.57	809	2495	2.87	862	2749	3.16	911	2997	3.45
6500	732	2363	2.72	794	2653	3.05	849	2931	3.37	900	3201	3.68	948	3465	3.99
7000	779	2815	3.24	837	3122	3.59	891	3416	3.93	940	3702	4.26	986	3981	4.58
7500	826	3320	3.82	882	3642	4.19	933	3953	4.55	980	4254	4.89	1025	4549	5.23
8000	873	3879	4.46	926	4217	4.85	975	4542	5.22	1021	4860	5.59	1065	5169	5.95
8500	921	4495	5.17	972	4847	5.57	1019	5189	5.97	1063	5521	6.35	1105	5846	6.72

581A210 (18 TONS) (High H	eat Units	s)* (cont)											
4. 0						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6	_		1.8			2.0	
(0)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
3500	818	1488	1.71	874	1661	1.91	927	1835	2.11	978	2008	2.31	1026	2182	2.51
4000	840	1760	2.02	893	1948	2.24	943	2136	2.46	992	2324	2.67	1039	2512	2.89
4500	865	2068	2.38	915	2270	2.61	964	2472	2.84	1011	2673	3.07	1056	2876	3.31
5000	893	2417	2.78	942	2632	3.03	988	2848	3.28	1033	3063	3.52	1076	3278	3.77
5500	925	2808	3.23	971	3037	3.49	1016	3266	3.76	1059	3494	4.02	1100	3721	4.28
6000	958	3243	3.73	1003	3486	4.01	1045	3728	4.29	1087	3970	4.57	1127	4210	4.84
6500	993	3725	4.28	1036	3982	4.58	1077	4238	4.87	1117	4492	5.17	1156	4745	5.46
7000	1029	4256	4.90	1071	4528	5.21	1111	4797	5.52	1150	5064	5.82	1187	5330	6.13
7500	1067	4838	5.56	1107	5124	5.89	1146	5407	6.22	1184	5688	6.54	1220	5967	6.86
8000	1106	5474	6.30	1145	5774	6.64	1182	6071	6.98	1219	6365	7.32	1254	6657	7.66
8500	1145	6165	7.09	1183	6479	7.45	1220	6790	7.81	1255	7098	8.16	1290	7403	8.51

LEGEND

Bhp — Brake Horsepower Input to FanWatts — Input Watts to Motor

*Motor drive ranges: Low Range: 647-886 (208/230 and 460-v), 810-1072 (575-v) High Range: 897-1139 (208/230 and 460-v), 873-1108 (575-v) All other rpms require field-supplied drive.

Refer to page 262 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A240 (2	20 TONS) (Low He	eat Units)*											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
5,000	590	1276	1.47	663	1516	1.74	727	1745	2.01	786	1968	2.26	840	2189	2.52
5,500	633	1579	1.82	703	1838	2.11	764	2084	2.40	820	2324	2.67	872	2560	2.94
6,000	677	1925	2.21	744	2203	2.53	803	2467	2.84	857	2723	3.13	907	2974	3.42
6,500	722	2317	2.67	786	2614	3.01	842	2896	3.33	894	3167	3.64	942	3434	3.95
7,000	767	2758	3.17	828	3073	3.53	883	3371	3.88	933	3660	4.21	979	3942	4.53
7,500	813	3250	3.74	871	3582	4.12	924	3897	4.48	972	4202	4.83	1017	4500	5.18
8,000	859	3795	4.36	915	4143	4.77	966	4475	5.15	1012	4797	5.52	1056	5110	5.88
8,500	906	4394	5.05	959	4759	5.47	1008	5107	5.87	1053	5445	6.26	1096	5774	6.64
9,000	952	5051	5.81	1004	5432	6.25	1051	5797	6.67	1095	6150	7.07	1136	6494	7.47
9,500	999	5767	6.63	1049	6163	7.09	1094	6544	7.53	1137	6913	7.95	1177	7272	8.36
10,000	1047	6544	7.53	1094	6956	8.00	1138	7352	8.46	1180	7736	8.90	1219	8111	9.33

581A240 (2	20 TONS) (Low He	eat Units)* (cont)											
4. 0						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6	_		1.8			2.0	
(5)	Rpm							Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
5,000	891	2408	2.77	940	2625	3.02	987	2843	3.27	1032	3060	3.52	1076	3277	3.77
5,500	921	2792	3.21	968	3024	3.48	1014	3255	3.74	1057	3485	4.01	1099	3716	4.27
6,000	954	3221	3.70	999	3467	3.99	1042	3711	4.27	1084	3955	4.55	1125	4198	4.83
6,500	988	3696	4.25	1032	3956	4.55	1073	4214	4.85	1114	4470	5.14	1153	4726	5.44
7,000	1024	4219	4.85	1066	4493	5.17	1106	4764	5.48	1145	5034	5.79	1183	5303	6.10
7,500	1060	4792	5.51	1101	5080	5.84	1140	5365	6.17	1178	5649	6.50	1215	5930	6.82
8,000	1098	5417	6.23	1138	5719	6.58	1176	6018	6.92	1213	6315	7.26	1249	6610	7.60
8,500	1137	6096	7.01	1175	6413	7.38	1212	6726	7.74	1248	7036	8.09	1283	7344	8.45
9,000	1176	6831	7.86	1214	7163	8.24	1250	7490	8.61	1285	7814	8.99	1319	8135	9.36
9,500	1216	7624	8.77	1253	7970	9.17	1288	8312	9.56	1322	8649	9.95	1355	8984	10.33
10,000	1256	8478	9.75	1292	8838	10.16	1327	9193	10.57	1360	9545	10.98	1393	9893	11.38

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 949-1206 High Range: 941-1176 All other rpms require field-supplied drive.

Refer to page 262 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A240 (2	20 TONS) (Mediur	n Heat U	nits)*											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
5,000	607	1329	1.53	677	1565	1.80	740	1791	2.06	797	2013	2.31	850	2231	2.57
5,500	652	1648	1.90	719	1902	2.19	779	2145	2.47	833	2382	2.74	884	2616	3.01
6,000	699	2013	2.32	763	2285	2.63	819	2545	2.93	872	2798	3.22	921	3046	3.50
6,500	746	2428	2.79	807	2716	3.12	861	2993	3.44	911	3262	3.75	958	3525	4.05
7,000	794	2895	3.33	851	3198	3.68	904	3491	4.02	952	3776	4.34	998	4055	4.66
7,500	842	3415	3.93	897	3735	4.30	947	4043	4.65	994	4343	5.00	1038	4637	5.33
8,000	891	3992	4.59	943	4327	4.98	991	4650	5.35	1036	4966	5.71	1079	5274	6.07
8,500	940	4628	5.32	990	4977	5.72	1036	5316	6.11	1080	5646	6.49	1121	5970	6.87
9,000	990	5325	6.12	1037	5688	6.54	1082	6042	6.95	1124	6386	7.35	1163	6724	7.73
9,500	1039	6085	7.00	1085	6462	7.43	1128	6829	7.85	1168	7188	8.27	1207	7541	8.67
10,000	1089	6911	7.95	1133	7301	8.40	1174	7682	8.83	1213	8055	9.26	1251	8421	9.69

581A240 (2	20 TONS) (Mediur	n Heat U	nits)* (co	nt)										
4: 4						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2	_		1.4	_		1.6			1.8	_		2.0	_
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
5,000	900	2448	2.82	949	2664	3.06	995	2879	3.31	1040	3095	3.56	1083	3310	3.81
5,500	933	2847	3.27	979	3077	3.54	1023	3305	3.80	1066	3534	4.06	1108	3762	4.33
6,000	967	3292	3.79	1011	3535	4.07	1054	3778	4.35	1095	4019	4.62	1135	4260	4.90
6,500	1003	3785	4.35	1046	4043	4.65	1087	4298	4.94	1127	4553	5.24	1165	4806	5.53
7,000	1041	4330	4.98	1082	4601	5.29	1122	4870	5.60	1160	5138	5.91	1197	5404	6.22
7,500	1079	4926	5.67	1119	5212	5.99	1158	5495	6.32	1195	5776	6.64	1231	6055	6.96
8,000	1119	5578	6.42	1158	5878	6.76	1195	6174	7.10	1231	6468	7.44	1267	6761	7.78
8,500	1160	6288	7.23	1198	6601	7.59	1234	6912	7.95	1269	7219	8.30	1303	7524	8.65
9,000	1202	7056	8.12	1238	7384	8.49	1273	7708	8.87	1308	8029	9.23	1341	8347	9.60
9,500	1244	7887	9.07	1279	8228	9.46	1314	8566	9.85	1347	8900	10.24	1379	9231	10.62
10,000	1287	8781	10.10	1321	9137	10.51	1355	9488	10.91	1387	9836	11.31	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 949-1206 High Range: 941-1176 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A240 (2	20 TONS) (High H	eat Units	s)*											
						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
5,000	607	1329	1.53	677	1565	1.80	740	1791	2.06	797	2013	2.31	850	2231	2.57
5,500	652	1648	1.90	719	1902	2.19	779	2145	2.47	833	2382	2.74	884	2616	3.01
6,000	699	2013	2.32	763	2285	2.63	819	2545	2.93	872	2798	3.22	921	3046	3.50
6,500	746	2428	2.79	807	2716	3.12	861	2993	3.44	911	3262	3.75	958	3525	4.05
7,000	794	2895	3.33	851	3198	3.68	904	3491	4.02	952	3776	4.34	998	4055	4.66
7,500	842	3415	3.93	897	3735	4.30	947	4043	4.65	994	4343	5.00	1038	4637	5.33
8,000	891	3992	4.59	943	4327	4.98	991	4650	5.35	1036	4966	5.71	1079	5274	6.07
8,500	940	4628	5.32	990	4977	5.72	1036	5316	6.11	1080	5646	6.49	1121	5970	6.87
9,000	990	5325	6.12	1037	5688	6.54	1082	6042	6.95	1124	6386	7.35	1163	6724	7.73
9,500	1039	6085	7.00	1085	6462	7.43	1128	6829	7.85	1168	7188	8.27	1207	7541	8.67
10,000	1089	6911	7.95	1133	7301	8.40	1174	7682	8.83	1213	8055	9.26	1251	8421	9.69

581A240 (2	20 TONS) (High H	eat Units	s)* (cont)											
4. 0						Availabl	e Extern	al Static	Pressure	(in. wg)					
Airflow (Cfm)		1.2			1.4			1.6	_		1.8			2.0	_
(5)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
5,000	900	2448	2.82	949	2664	3.06	995	2879	3.31	1040	3095	3.56	1083	3310	3.81
5,500	933	2847	3.27	979	3077	3.54	1023	3305	3.80	1066	3534	4.06	1108	3762	4.33
6,000	967	3292	3.79	1011	3535	4.07	1054	3778	4.35	1095	4019	4.62	1135	4260	4.90
6,500	1003	3785	4.35	1046	4043	4.65	1087	4298	4.94	1127	4553	5.24	1165	4806	5.53
7,000	1041	4330	4.98	1082	4601	5.29	1122	4870	5.60	1160	5138	5.91	1197	5404	6.22
7,500	1079	4926	5.67	1119	5212	5.99	1158	5495	6.32	1195	5776	6.64	1231	6055	6.96
8,000	1119	5578	6.42	1158	5878	6.76	1195	6174	7.10	1231	6468	7.44	1267	6761	7.78
8,500	1160	6288	7.23	1198	6601	7.59	1234	6912	7.95	1269	7219	8.30	1303	7524	8.65
9,000	1202	7056	8.12	1238	7384	8.49	1273	7708	8.87	1308	8029	9.23	1341	8347	9.60
9,500	1244	7887	9.07	1279	8228	9.46	1314	8566	9.85	1347	8900	10.24	1379	9231	10.62
10,000	1287	8781	10.10	1321	9137	10.51	1355	9488	10.91	1387	9836	11.31	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 949-1206 High Range: 941-1176 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A300	(25 TON	S) (Low H	eat Units	s)*											
						Availabl	e Exteri	nal Static	Pressure	(in. wg)				
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,500	750	2,468	2.84	806	2,767	3.18	854	3,031	3.49	898	3,298	3.79	943	3,584	4.12
7,000	797	2,942	3.38	853	3,276	3.77	899	3,557	4.09	941	3,832	4.41	982	4,118	4.74
7,500	845	3,468	3.99	900	3,840	4.42	945	4,142	4.76	985	4,430	5.09	1024	4,721	5.43
8,000	892	4,045	4.65	948	4,462	5.13	991	4,789	5.51	1030	5,092	5.86	1067	5,391	6.20
8,500	939	4,677	5.38	995	5,141	5.91	1038	5,497	6.32	1076	5,818	6.69	1112	6,129	7.05
9,000	986	5,364	6.17	1042	5,882	6.76	1085	6,269	7.21	1122	6,611	7.60	1157	6,936	7.98
9,500	1033	6,108	7.03	1090	6,684	7.69	1132	7,105	8.17	1169	7,470	8.59	1203	7,813	8.99
10,000	1079	6,911	7.95	1137	7,550	8.68	1180	8,007	9.21	1216	8,399	9.66	1249	8,761	10.08
10,500	1126	7,773	8.94	1184	8,480	9.75	1227	8,978	10.33	1263	9,399	10.81	1296	9,782	11.25
11,000	1172	8,696	10.00	1232	9,475	10.90	1274	10,017	11.52	1310	10,468	12.04	1342	10,876	12.51
11,500	1219	9,681	11.13	1279	10,539	12.12	1322	11,127	12.80	1357	11,611	13.35	_	_	_
12,000	1265	10,732	12.34	1326	11,669	13.42	_	_	_	_	_	_	l —	_	_
12,500	1311	11,848	13.63	_	_	_	_	_	_	_	_	_	_	_	_

581A300	(25 TON	S) (Low H	eat Units	s)* (cont)										
						Availabl	e Exteri	nal Static I	Pressure	(in. wg)				
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,500	988	3,900	4.49	1035	4,250	4.89	1082	4,634	5.33	1130	5,053	5.81	1177	5,499	6.32
7,000	1024	4,426	5.09	1066	4,760	5.48	1109	5,126	5.90	1153	5,524	6.35	1197	5,953	6.85
7,500	1063	5,026	5.78	1101	5,351	6.15	1141	5,702	6.56	1181	6,081	6.99	1222	6,490	7.46
8,000	1104	5,698	6.55	1140	6,020	6.92	1176	6,361	7.32	1213	6,727	7.74	1251	7,118	8.19
8,500	1146	6,443	7.41	1180	6,765	7.78	1214	7,103	8.17	1249	7,459	8.58	1283	7,837	9.01
9,000	1190	7,259	8.35	1222	7,586	8.73	1255	7,925	9.11	1287	8,276	9.52	1319	8,645	9.94
9,500	1235	8,148	9.37	1266	8,483	9.76	1296	8,824	10.15	1327	9,176	10.55	1357	9,541	10.97
10,000	1280	9,111	10.48	1310	9,456	10.88	1340	9,804	11.28	1369	10,158	11.68	1398	10,522	12.10
10,500	1326	10,147	11.67	1355	10,505	12.08	1384	10,862	12.49	_	_	_	_	_	<u> </u>
11,000	1372	11,259	12.95	_	_	_	_	_	_	_	_	_	_	_	l —
11,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
12,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
12,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 805-1007 High Range: 941-1176 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A300	(25 TON	S) (Mediu	m Heat U	Jnits)*											
						Availabl	e Exteri	nal Static	Pressure	(in. wg)				
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Cilli)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,500	775	2,600	2.99	825	2,872	3.30	871	3,130	3.60	915	3,400	3.91	959	3,692	4.25
7,000	826	3,115	3.58	875	3,408	3.92	918	3,679	4.23	959	3,954	4.55	1000	4,245	4.88
7,500	878	3,690	4.24	925	4,006	4.61	966	4,292	4.94	1005	4,575	5.26	1043	4,868	5.60
8,000	929	4,326	4.98	975	4,667	5.37	1015	4,970	5.72	1052	5,265	6.06	1088	5,564	6.40
8,500	981	5,029	5.78	1026	5,395	6.20	1064	5,717	6.58	1100	6,025	6.93	1134	6,332	7.28
9,000	1033	5,799	6.67	1076	6,191	7.12	1114	6,533	7.51	1148	6,856	7.89	1181	7,173	8.25
9,500	1085	6,640	7.64	1128	7,058	8.12	1164	7,421	8.54	1198	7,761	8.93	1229	8,091	9.31
10,000	1137	7,553	8.69	1179	8,000	9.20	1214	8,385	9.64	1247	8,741	10.05	1278	9,086	10.45
10,500	1190	8,542	9.82	1230	9,016	10.37	1265	9,424	10.84	1297	9,799	11.27	1327	10,158	11.68
11,000	1242	9,609	11.05	1282	10,111	11.63	1316	10,542	12.12	1347	10,937	12.58	1376	11,311	13.01
11,500	1294	10,756	12.37	1333	11,287	12.98	1367	11,741	13.50	_	<u> </u>	_	l —	<u> </u>	_
12,000	1347	11,985	13.78	_	<u> </u>	_	_		_	_	_	_	_	_	_
12,500	_	<u> </u>	_	_	_	_	_	_	_	l —	_	_	_	_	_

581A300	(25 TON	S) (Mediu	m Heat L	Jnits)* (d	cont)										
						Availabl	e Exteri	nal Static I	Pressure	(in. wg)				
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
()	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,500	1004	4,016	4.62	1050	4,374	5.03	1098	4,769	5.48	1145	5,195	5.97	1192	5646	6.49
7,000	1041	4,559	5.24	1083	4,902	5.64	1126	5,277	6.07	1170	5,685	6.54	1214	6122	7.04
7,500	1081	5,179	5.96	1120	5,512	6.34	1159	5,872	6.75	1199	6,261	7.20	1240	6680	7.68
8,000	1124	5,875	6.76	1160	6,203	7.13	1196	6,553	7.54	1233	6,928	7.97	1270	7329	8.43
8,500	1168	6,647	7.64	1202	6,974	8.02	1235	7,318	8.42	1269	7,684	8.84	1304	8071	9.28
9,000	1214	7,495	8.62	1245	7,825	9.00	1277	8,168	9.39	1309	8,527	9.81	1341	8905	10.24
9,500	1260	8,421	9.69	1290	8,756	10.07	1320	9,100	10.47	1351	9,457	10.88	1381	9830	11.31
10,000	1308	9,425	10.84	1337	9,768	11.23	1365	10,116	11.63	1394	10,474	12.05	_	_	_
10,500	1356	10,510	12.09	1384	10,862	12.49	_	_	_	_	_	_	_	_	_
11,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
11,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
12,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—
12,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 805-1007 High Range: 941-1176 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — VERTICAL DISCHARGE UNITS (cont)

581A300	(25 TON	S) (High F	leat Unit	s)*											
						Availabl	e Exteri	nal Static	Pressure	(in. wg)				
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,500	775	2,600	2.99	825	2,872	3.30	871	3,130	3.60	915	3,400	3.91	959	3,692	4.25
7,000	826	3,115	3.58	875	3,408	3.92	918	3,679	4.23	959	3,954	4.55	1000	4,245	4.88
7,500	878	3,690	4.24	925	4,006	4.61	966	4,292	4.94	1005	4,575	5.26	1043	4,868	5.60
8,000	929	4,326	4.98	975	4,667	5.37	1015	4,970	5.72	1052	5,265	6.06	1088	5,564	6.40
8,500	981	5,029	5.78	1026	5,395	6.20	1064	5,717	6.58	1100	6,025	6.93	1134	6,332	7.28
9,000	1033	5,799	6.67	1076	6,191	7.12	1114	6,533	7.51	1148	6,856	7.89	1181	7,173	8.25
9,500	1085	6,640	7.64	1128	7,058	8.12	1164	7,421	8.54	1198	7,761	8.93	1229	8,091	9.31
10,000	1137	7,553	8.69	1179	8,000	9.20	1214	8,385	9.64	1247	8,741	10.05	1278	9,086	10.45
10,500	1190	8,542	9.82	1230	9,016	10.37	1265	9,424	10.84	1297	9,799	11.27	1327	10,158	11.68
11,000	1242	9,609	11.05	1282	10,111	11.63	1316	10,542	12.12	1347	10,937	12.58	1376	11,311	13.01
11,500	1294	10,756	12.37	1333	11,287	12.98	1367	11,741	13.50	_		_	_	_	_
12,000	1347	11,985	13.78	_	_	_	_	_	_	_	_	_	l —	_	_
12,500	_		_	_	_	_	_		_	_	_	_	_	_	_

581A300	(25 TON	S) (High F	leat Unit	s)* (con	t)										
						Availabl	e Exteri	nal Static I	Pressure	(in. wg)				
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp	Rpm	Watts	Bhp
6,500	1004	4,016	4.62	1050	4,374	5.03	1098	4,769	5.48	1145	5,195	5.97	1192	5646	6.49
7,000	1041	4,559	5.24	1083	4,902	5.64	1126	5,277	6.07	1170	5,685	6.54	1214	6122	7.04
7,500	1081	5,179	5.96	1120	5,512	6.34	1159	5,872	6.75	1199	6,261	7.20	1240	6680	7.68
8,000	1124	5,875	6.76	1160	6,203	7.13	1196	6,553	7.54	1233	6,928	7.97	1270	7329	8.43
8,500	1168	6,647	7.64	1202	6,974	8.02	1235	7,318	8.42	1269	7,684	8.84	1304	8071	9.28
9,000	1214	7,495	8.62	1245	7,825	9.00	1277	8,168	9.39	1309	8,527	9.81	1341	8905	10.24
9,500	1260	8,421	9.69	1290	8,756	10.07	1320	9,100	10.47	1351	9,457	10.88	1381	9830	11.31
10,000	1308	9,425	10.84	1337	9,768	11.23	1365	10,116	11.63	1394	10,474	12.05	_	_	_
10,500	1356	10,510	12.09	1384	10,862	12.49	_	_	_	_	_	_	_	_	_
11,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
11,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
12,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
12,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to FanWatts — Input Watts to Motor

*Motor drive ranges:

Low Range: 805-1007
High Range: 941-1176
All other rpms require field-supplied drive.

Refer to this page for general Fan Performance Data notes.

NOTE: Maximum continuous bhp is:

Low Range: 5.75 High Range: 8.63

GENERAL NOTES FOR FAN PERFORMANCE DATA TABLES

- Static pressure losses (i.e., EconoMi\$er IV) must be added to external static pressure before entering Fan Performance table.
 Interpolation is permissible. Do not extrapolate.
 Fan performance is based on wet coils, clean filters, and casing losses. See Accessory/FIOP Static Pressure table on page 273.
- Extensive motor and drive testing on these units ensures that the full horsepower and watts range of the motor can be utilized with confidence. Using the fan motors up to the watts or bhp rating
- shown will not result in nuisance tripping or premature motor failure. Unit warranty will not be affected.
- Use of a field-supplied motor may affect wire size. Contact your Bryant representative for details.
 Field-supplied drive requires changing belt and motor pulley to meet desired airflow. See application data or contact your local Bryant representative for details.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	635	1064	1.22	709	1278	1.47	776	1492	1.72	838	1708	1.96	896	1924	2.21
4,000	707	1402	1.61	773	1627	1.87	835	1853	2.13	892	2080	2.39	947	2307	2.65
4,500	780	1802	2.07	840	2037	2.34	897	2273	2.61	950	2510	2.89	1001	2465	2.84
5,000	853	2264	2.60	909	2510	2.89	961	2756	3.17	1011	2710	3.12	1059	3015	3.47
5,500	928	2794	3.21	979	3049	3.51	1028	3012	3.46	1075	3333	3.83	1120	3661	4.21
6,000	1003	3047	3.50	1051	3376	3.88	1096	3714	4.27	1140	4059	4.67	1182	4411	5.07
6,500	1079	3812	4.38	1123	4166	4.79	1166	4529	5.21	1207	4898	5.63	1247	5274	6.07
7,000	1155	4697	5.40	1196	5078	5.84	1236	5465	6.29	1275	5859	6.74	1313	6260	7.20
7,500	1231	5714	6.57	1270	6120	7.04	1308	6533	7.51	1345	6952	8.00	1381	7378	8.49
8,000	1308	6871	7.90	1344	7303	8.40	1380	7741	8.90	_	_	_	_	_	_
8,500	1385	8177	9.40	_	_	_	_	_	_	_	_	_	_	_	_
9,000	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
9,500	_	_	_		_	_		_	_	_	_	_	_	_	l —
10,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>

81A210 (18 T	TONS) (Lo	w Heat I	Units)* (co	nt)		•	•		•	•					
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	951	2143	2.46	1003	2120	2.44	1052	2387	2.75	1100	2662	3.06	1146	2944	3.39
4,000	998	2535	2.92	1048	2548	2.93	1095	2835	3.26	1141	3129	3.60	1184	3432	3.95
4,500	1050	2756	3.17	1097	3055	3.51	1142	3363	3.87	1185	3678	4.23	1227	4001	4.60
5,000	1105	3329	3.83	1150	3651	4.20	1192	3979	4.58	1234	4315	4.96	1274	4658	5.36
5,500	1163	3997	4.60	1205	4342	4.99	1246	4692	5.40	1286	5051	5.81	1324	5415	6.23
6,000	1224	4771	5.49	1263	5138	5.91	1302	5511	6.34	1340	5892	6.78	1377	6278	7.22
6,500	1286	5658	6.51	1324	6048	6.96	1361	6445	7.41	1397	6847	7.87	_	_	l —
7,000	1350	6668	7.67	1386	7081	8.14	_	_	_	_	_	_	_	_	l —
7,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
8,000	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	l —
8,500	l —	_	_	l —	_	_	l —	_	_	_	_	_	_	_	i —
9,000	l —	l —	_	l —	_	_	l —	_	_	_		_	l —	_	l —
9,500	_	_	_	l —	_	_	l —	_	_	_	_	_	_	_	i —
10,000	l —	l —	_	l —	_	_	l —	_	_	_		_	l —	_	l —

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 896-1227 (208/230 and 460-v), 863-1141 (575-v) High Range: 1113-1414 (208/230 and 460-v), 1042-1285 (575-v) All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581A210 (18 T	ONS) (Me	edium H	eat Units)*												
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Gilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	645	1105	1.27	720	1329	1.53	788	1549	1.78	851	1767	2.03	910	1982	2.28
4,000	718	1454	1.67	785	1692	1.95	848	1926	2.22	906	2158	2.48	962	2388	2.75
4,500	792	1866	2.15	853	2117	2.43	911	2364	2.72	965	2609	3.00	1017	2583	2.97
5,000	867	2343	2.69	923	2605	3.00	977	2865	3.30	1027	2845	3.27	1076	3163	3.64
5,500	943	2889	3.32	995	3162	3.64	1044	3158	3.63	1092	3497	4.02	1138	3843	4.42
6,000	1019	3177	3.65	1067	3532	4.06	1113	3892	4.48	1158	4259	4.90	1201	4631	5.33
6,500	1096	3973	4.57	1141	4354	5.01	1184	4742	5.45	1226	5136	5.91	1267	5535	6.37
7,000	1173	4894	5.63	1215	5304	6.10	1256	5719	6.58	1295	6140	7.06	1334	6567	7.55
7,500	1250	5952	6.85	1290	6389	7.35	1328	6832	7.86	1366	7281	8.37	_	_	_
8,000	1328	7153	8.23	1365	7620	8.76	_	_	_	_	_	_	_	_	_
8,500	_	_		_	_		_	_		_	_		_	_	
9,000	_	_		_	_		_	_		_	_		_	_	
9,500	1 —	—	_	_	_	_	l —	_	_	_	_	_	l —	_	_
10,000	_	_	_	_	_		_	_	_	_	_	1	_	_	

581A210 (18 T	TONS) (M	edium He	eat Units)*	(cont)											
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	965	2195	2.53	1018	2181	2.51	1068	2442	2.81	1116	2708	3.11	1162	2979	3.43
4,000	1014	2364	2.72	1064	2644	3.04	1112	2930	3.37	1158	3221	3.70	1202	3517	4.05
4,500	1067	2882	3.31	1114	3187	3.67	1160	3498	4.02	1204	3814	4.39	1246	4135	4.76
5,000	1123	3489	4.01	1168	3820	4.39	1211	4156	4.78	1253	4497	5.17	1294	4844	5.57
5,500	1182	4194	4.82	1224	4551	5.23	1266	4913	5.65	1306	5280	6.07	1345	5652	6.50
6,000	1243	5008	5.76	1283	5391	6.20	1323	5779	6.65	1361	6172	7.10	1398	6569	7.56
6,500	1306	5939	6.83	1345	6349	7.30	1382	6763	7.78	_	_	_	_	_	_
7,000	1371	6997	8.05	_	_	_	_	_	_	_	_	_	_	_	_
7,500	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_	_
8,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
8,500	I —	_	_	_	_	_	l —	_	_	l —	_	_	_	_	_
9,000	1 —	_	_	_	_	_	l —	_	_	l —	_	_	_	_	_
9,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
10,000	I —	_	_	l —	_	_	l —	_	_	_	_	_	l —	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 896-1227 (208/230 and 460-v), 863-1141 (575-v) High Range: 1113-1414 (208/230 and 460-v), 1042-1285 (575-v) All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581A210 (18 T	ONS) (Hi	gh Heat	Units)*												
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oiiii)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	645	1105	1.27	720	1329	1.53	788	1549	1.78	851	1767	2.03	910	1982	2.28
4,000	718	1454	1.67	785	1692	1.95	848	1926	2.22	906	2158	2.48	962	2388	2.75
4,500	792	1866	2.15	853	2117	2.43	911	2364	2.72	965	2609	3.00	1017	2583	2.97
5,000	867	2343	2.69	923	2605	3.00	977	2865	3.30	1027	2845	3.27	1076	3163	3.64
5,500	943	2889	3.32	995	3162	3.64	1044	3158	3.63	1092	3497	4.02	1138	3843	4.42
6,000	1019	3177	3.65	1067	3532	4.06	1113	3892	4.48	1158	4259	4.90	1201	4631	5.33
6,500	1096	3973	4.57	1141	4354	5.01	1184	4742	5.45	1226	5136	5.91	1267	5535	6.37
7,000	1173	4894	5.63	1215	5304	6.10	1256	5719	6.58	1295	6140	7.06	1334	6567	7.55
7,500	1250	5952	6.85	1290	6389	7.35	1328	6832	7.86	1366	7281	8.37	_	_	_
8,000	1328	7153	8.23	1365	7620	8.76	_	_	_	_	_	_	_	_	_
8,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
9,000	_	_	_	—	_	_	—	_	_	_	_	_	_	_	_
9,500	_	_	_	—	_	_	—	_	_	_	_	_	_	_	_
10,000	_	_	_	_	_		_	_	_	_	_	_	_	_	_

581A210 (18 T	TONS) (Hi	gh Heat	Units)* (co	ont)											
4. 0						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	965	2195	2.53	1018	2181	2.51	1068	2442	2.81	1116	2708	3.11	1162	2979	3.43
4,000	1014	2364	2.72	1064	2644	3.04	1112	2930	3.37	1158	3221	3.70	1202	3517	4.05
4,500	1067	2882	3.31	1114	3187	3.67	1160	3498	4.02	1204	3814	4.39	1246	4135	4.76
5,000	1123	3489	4.01	1168	3820	4.39	1211	4156	4.78	1253	4497	5.17	1294	4844	5.57
5,500	1182	4194	4.82	1224	4551	5.23	1266	4913	5.65	1306	5280	6.07	1345	5652	6.50
6,000	1243	5008	5.76	1283	5391	6.20	1323	5779	6.65	1361	6172	7.10	1398	6569	7.56
6,500	1306	5939	6.83	1345	6349	7.30	1382	6763	7.78	_	_	_	_	_	i —
7,000	1371	6997	8.05	_	_		_	_		_	_		_	_	<u> </u>
7,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
8,000	_	_		_	_		_	_		_	_		_	_	_
8,500	I —	_		_	_		_	_		_	_		_	_	_
9,000	-	_	_	_		_	_	_	<u> </u>	_	_	_	_	_	<u> </u>
9,500	_	_		_	_		_	_		_	_		_	_	_
10,000	I —	_		_	_		_	_		_	_		_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 896-1227 (208/230 and 460-v), 863-1141 (575-v) High Range: 1113-1414 (208/230 and 460-v), 1042-1285 (575-v) All other rpms require field-supplied drive.

Refer to page 261Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581A240 (20 T	ONS) (Lo	w Heat l	Jnits)*												
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	642	1082	1.24	714	1296	1.49	781	1510	1.74	843	1726	1.98	901	1943	2.23
4,000	714	1426	1.64	780	1651	1.90	841	1877	2.16	898	2103	2.42	952	2330	2.68
4,500	787	1831	2.11	847	2067	2.38	904	2303	2.65	957	2540	2.92	1008	2501	2.88
5,000	862	2301	2.65	917	2547	2.93	969	2793	3.21	1019	2755	3.17	1066	3062	3.52
5,500	937	2838	3.26	988	3094	3.56	1036	3067	3.53	1083	3390	3.90	1127	3719	4.28
6,000	1013	3113	3.58	1060	3445	3.96	1105	3783	4.35	1149	4130	4.75	1191	4484	5.16
6,500	1089	3893	4.48	1133	4250	4.89	1175	4615	5.31	1216	4986	5.73	1256	5364	6.17
7,000	1166	4798	5.52	1207	5181	5.96	1247	5570	6.41	1285	5965	6.86	1323	6369	7.32
7,500	1243	5837	6.71	1282	6244	7.18	1319	6658	7.66	1355	7080	8.14	1391	7507	8.63
8,000	1320	7017	8.07	1356	7450	8.57	1392	7890	9.08	_	_	_	_	_	_
8,500	1398	8350	9.60	_		_	_	_	_	_	_	_	_	_	_
9,000	l —	_	_	_		_	_	_	_	_	_	_	_	_	_
9,500	_	_	_	_		_	_	_	_	_	_	_	_	_	_
10,000	_	_	-	_	_	1	_	_		_	_	_	_	_	_

81A240 (20 T	ONS) (Lo	w Heat l	Units)* (co	nt)											
4: 0						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	955	2160	2.48	1007	2142	2.46	1056	2409	2.77	1104	2684	3.09	1149	2968	3.41
4,000	1004	2299	2.64	1053	2578	2.96	1100	2865	3.29	1145	3160	3.63	1189	3463	3.98
4,500	1056	2793	3.21	1103	3093	3.56	1147	3402	3.91	1191	3718	4.28	1233	4041	4.65
5,000	1112	3376	3.88	1156	3699	4.25	1199	4029	4.63	1240	4366	5.02	1280	4710	5.42
5,500	1171	4057	4.67	1212	4402	5.06	1253	4754	5.47	1292	5114	5.88	1331	5480	6.30
6,000	1232	4845	5.57	1271	5213	6.00	1310	5588	6.43	1348	5970	6.87	1384	6358	7.31
6,500	1295	5749	6.61	1333	6141	7.06	1369	6538	7.52	_	_	_	_	_	_
7,000	1360	6778	7.80	1396	7193	8.27	_	_	_	_	_	_	_	_	_
7,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
8,000	l —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
8,500	l —	_	_	_	_	_	_	_	_	_	_	_	l —	_	_
9,000	l —	_	_	_	_	_	_	_	_	_	_	_	l —	_	_
9,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
10,000	I —	_	_	_	_	_	_	_	_	_		_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 896-1227 (208/230 and 460-v), 873-1108 (575-v) High Range: 1113-1414 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581A240 (20 T	ONS) (Me	edium H	eat Units)*												
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	652	1123	1.29	726	1347	1.55	793	1567	1.80	856	1784	2.05	914	2000	2.30
4,000	725	1479	1.70	792	1716	1.97	854	1950	2.24	912	2182	2.51	967	2412	2.77
4,500	800	1897	2.18	861	2148	2.47	918	2395	2.75	972	2639	3.04	1024	2620	3.01
5,000	875	2383	2.74	931	2645	3.04	984	2904	3.34	1035	2892	3.33	1083	3212	3.69
5,500	952	2937	3.38	1003	2883	3.32	1053	3217	3.70	1100	3558	4.09	1145	3905	4.49
6,000	1029	3249	3.74	1077	3605	4.15	1123	3966	4.56	1167	4334	4.98	1210	4707	5.41
6,500	1106	4061	4.67	1151	4445	5.11	1194	4834	5.56	1236	5229	6.01	1276	5629	6.47
7,000	1184	5003	5.75	1226	5414	6.23	1266	5831	6.71	1306	6253	7.19	1344	6681	7.68
7,500	1262	6083	7.00	1302	6522	7.50	1340	6967	8.01	1377	7417	8.53	_	_	I —
8,000	1341	7312	8.41	1378	7779	8.95	_	_	_	_	_	_	_	_	I —
8,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
9,000	-	_	_	_	_	_	_	_	_	_	_	_	_	_	<u> </u>
9,500	_	<u> </u>	_	_	_	_	_	_	_	_	_	_	—	_	1 —
10,000	I —	_	_	l —	_	_	l —	_	_	_	_	_	l —	_	l —

						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	970	2213	2.55	1022	2203	2.53	1072	2464	2.83	1120	2730	3.14	1166	3002	3.45
4,000	1019	2393	2.75	1069	2673	3.07	1117	2959	3.40	1163	3251	3.74	1207	3548	4.08
4,500	1073	2920	3.36	1120	3226	3.71	1165	3537	4.07	1209	3854	4.43	1252	4176	4.80
5,000	1130	3537	4.07	1174	3870	4.45	1218	4207	4.84	1259	4549	5.23	1300	4896	5.63
5,500	1189	4257	4.90	1232	4614	5.31	1273	4977	5.72	1313	5345	6.15	1352	5719	6.58
6,000	1251	5086	5.85	1292	5469	6.29	1331	5859	6.74	1369	6253	7.19	_	_	_
6,500	1315	6035	6.94	1354	6446	7.41	1391	6861	7.89	_	_	_	_	_	_
7,000	1381	7114	8.18	_	_	_	_	_	_	_	_	_	_	_	_
7,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
8,000	_	_		_	_		_	_		_	_		_	_	
8,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
9,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
9,500	l —	_	_	_	l —	_	l —	_	_	_	_	_	_	_	_
10,000	_	_		_	_	_	l —		_		_	_	_	_	

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 896-1227 (208/230 and 460-v), 873-1108 (575-v) High Range: 1113-1414 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581A240 (20 T	ONS) (Hi	gh Heat	Units)*												
						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(Oilli)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	652	1123	1.29	726	1347	1.55	793	1567	1.80	856	1784	2.05	914	2000	2.30
4,000	725	1479	1.70	792	1716	1.97	854	1950	2.24	912	2182	2.51	967	2412	2.77
4,500	800	1897	2.18	861	2148	2.47	918	2395	2.75	972	2639	3.04	1024	2620	3.01
5,000	875	2383	2.74	931	2645	3.04	984	2904	3.34	1035	2892	3.33	1083	3212	3.69
5,500	952	2937	3.38	1003	2883	3.32	1053	3217	3.70	1100	3558	4.09	1145	3905	4.49
6,000	1029	3249	3.74	1077	3605	4.15	1123	3966	4.56	1167	4334	4.98	1210	4707	5.41
6,500	1106	4061	4.67	1151	4445	5.11	1194	4834	5.56	1236	5229	6.01	1276	5629	6.47
7,000	1184	5003	5.75	1226	5414	6.23	1266	5831	6.71	1306	6253	7.19	1344	6681	7.68
7,500	1262	6083	7.00	1302	6522	7.50	1340	6967	8.01	1377	7417	8.53	_	_	_
8,000	1341	7312	8.41	1378	7779	8.95	_	_	_	_	_	_	_	_	_
8,500	_	_		_	_		_	_		_	_		_	_	
9,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
9,500	_	_		_	_		_	_		_	_		_	_	
10,000	_	_	_	_	_		_	_		_	_		_	_	_

81A240 (20 T	ONS) (Hi	gh Heat	Units)* (co	ont)											
4. 0						Ex	ternal St	atic Pres	sure (in. v	vg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(OIIII)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
3,500	970	2213	2.55	1022	2203	2.53	1072	2464	2.83	1120	2730	3.14	1166	3002	3.45
4,000	1019	2393	2.75	1069	2673	3.07	1117	2959	3.40	1163	3251	3.74	1207	3548	4.08
4,500	1073	2920	3.36	1120	3226	3.71	1165	3537	4.07	1209	3854	4.43	1252	4176	4.80
5,000	1130	3537	4.07	1174	3870	4.45	1218	4207	4.84	1259	4549	5.23	1300	4896	5.63
5,500	1189	4257	4.90	1232	4614	5.31	1273	4977	5.72	1313	5345	6.15	1352	5719	6.58
6,000	1251	5086	5.85	1292	5469	6.29	1331	5859	6.74	1369	6253	7.19	_	_	
6,500	1315	6035	6.94	1354	6446	7.41	1391	6861	7.89	_	_	_	_	_	_
7,000	1381	7114	8.18	_	_	_	_	_	_	_	_	_	_	_	
7,500	I —	_	_	_	_	_	_	_	_	_	_	_	_	_	_
8,000	I —	_	_	_	_	_	_	_	_	_		_	_	_	_
8,500	I —	_	_	_	_	_	_	_	_	l —	_	_	_	_	_
9,000	I —	_	_	_	_	_	_	_	_	l —	_	_	_	_	_
9,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
10,000	I —	_	_	_	_	_	_	_	_	_		_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 896-1227 (208/230 and 460-v), 873-1108 (575-v) High Range: 1113-1414 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581A300 (25 TONS) (Low He	at Units)*												
						E	cternal S	tatic Press	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
6,500	786	2,658	3.06	819	2,835	3.26	857	3,052	3.51	899	3,304	3.80	943	3,586	4.12
7,000	842	3,208	3.69	871	3,386	3.89	905	3,599	4.14	943	3,847	4.42	983	4,123	4.74
7,500	898	3,827	4.40	925	4,006	4.61	955	4,217	4.85	989	4,460	5.13	1026	4,733	5.44
8,000	955	4,518	5.20	979	4,699	5.40	1007	4,908	5.65	1037	5,148	5.92	1070	5,416	6.23
8,500	1012	5,284	6.08	1034	5,466	6.29	1059	5,675	6.53	1087	5,912	6.80	1117	6,176	7.10
9,000	1069	6,127	7.05	1090	6,312	7.26	1113	6,521	7.50	1138	6,757	7.77	1165	7,017	8.07
9,500	1127	7,050	8.11	1146	7,238	8.32	1167	7,448	8.57	1190	7,682	8.84	1215	7,940	9.13
10,000	1184	8,057	9.27	1202	8,247	9.49	1221	8,460	9.73	1243	8,693	10.00	1266	8,948	10.29
10,500	1242	9,149	10.52	1258	9,344	10.75	1276	9,557	10.99	1296	9,791	11.26	1318	10,046	11.55
11,000	1299	10,331	11.88	1315	10,529	12.11	1332	10,745	12.36	1350	10,979	12.63	1370	11,232	12.92
11,500	1357	11,604	13.35	1372	11,806	13.58	_	_	_	l —	_	_	_	_	_
12,000	_		_	_		_	_		_	_		_	_		_
12,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

581A300 (25 TONS) (Low Hea	t Units)* ((cont)											
						Ex	ternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(51111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
6,500	988	3,900	4.49	1035	4,248	4.89	1082	4,632	5.33	1129	5,050	5.81	1177	5,499	6.32
7,000	1024	4,428	5.09	1066	4,760	5.48	1109	5,124	5.89	1153	5,521	6.35	1197	5,950	6.84
7,500	1063	5,031	5.79	1102	5,354	6.16	1141	5,703	6.56	1181	6,081	6.99	1221	6,487	7.46
8,000	1105	5,709	6.57	1140	6,025	6.93	1176	6,364	7.32	1213	6,729	7.74	1250	7,116	8.18
8,500	1149	6,465	7.44	1181	6,777	7.79	1215	7,109	8.18	1249	7,463	8.58	1283	7,838	9.02
9,000	1194	7,302	8.40	1225	7,608	8.75	1256	7,935	9.13	1287	8,282	9.53	1319	8,649	9.95
9,500	1242	8,222	9.46	1270	8,524	9.80	1298	8,847	10.17	1328	9,189	10.57	1358	9,548	10.98
10,000	1290	9,227	10.61	1316	9,525	10.96	1343	9,845	11.32	1370	10,181	11.71	1399	10,536	12.12
10,500	1340	10,321	11.87	1364	10,617	12.21	1389	10,932	12.57	_	_	_	_	_	_
11,000	1391	11,505	13.23	_		_	_	_	_	_	_	_	_	_	_
11,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
12,000	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
12,500	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 805-1007 High Range: 941-1176 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

581A155-300

PERFORMANCE DATA (cont)

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581A300 (25 TONS) (Medium	Heat Un	its)*											
						E	xternal S	tatic Press	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
6,500	799	2,730	3.14	833	2,914	3.35	872	3,135	3.61	914	3,392	3.90	958	3,687	4.24
7,000	856	3,294	3.79	887	3,481	4.00	921	3,699	4.25	958	3,950	4.54	999	4,235	4.87
7,500	913	3,929	4.52	941	4,118	4.74	972	4,335	4.99	1006	4,582	5.27	1042	4,860	5.59
8,000	971	4,637	5.33	996	4,829	5.55	1024	5,046	5.80	1055	5,290	6.08	1088	5,562	6.40
8,500	1029	5,421	6.24	1052	5,617	6.46	1078	5,835	6.71	1106	6,077	6.99	1136	6,345	7.30
9,000	1087	6,285	7.23	1108	6,484	7.46	1132	6,703	7.71	1158	6,946	7.99	1185	7,211	8.29
9,500	1145	7,231	8.32	1165	7,433	8.55	1187	7,655	8.80	1211	7,898	9.08	1236	8,161	9.39
10,000	1203	8,262	9.50	1222	8,468	9.74	1243	8,693	10.00	1265	8,936	10.28	1288	9,199	10.58
10,500	1261	9,381	10.79	1279	9,592	11.03	1299	9,820	11.29	1319	10,065	11.58	1341	10,327	11.88
11,000	1320	10,592	12.18	1337	10,807	12.43	1355	11,038	12.70	1374	11,284	12.98	1394	11,547	13.28
11,500	1378	11,896	13.68	_	_	_	_	_	_	l —	_	_	_	_	_
12,000	_		_	_	_	_	_	_	_	_		_	_	_	_
12,500	_			_	_	_	_	_	_	_	_	_	_	_	_

581A300 (25 TONS) (Medium	Heat Unit	ts)* (cont	t)										
						Ex	ternal St	atic Press	ure (in. w	g)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
6,500	1005	4,020	4.62	1052	4,390	5.05	1100	4,791	5.51	1148	5,221	6.00	1195	5673	6.52
7,000	1041	4,555	5.24	1084	4,908	5.64	1128	5,294	6.09	1172	5,710	6.57	1217	6153	7.08
7,500	1080	5,168	5.94	1119	5,508	6.33	1160	5,878	6.76	1201	6,279	7.22	1242	6708	7.71
8,000	1122	5,862	6.74	1158	6,190	7.12	1195	6,548	7.53	1233	6,934	7.97	1272	7347	8.45
8,500	1167	6,638	7.63	1200	6,959	8.00	1234	7,305	8.40	1269	7,677	8.83	1304	8076	9.29
9,000	1214	7,499	8.63	1244	7,813	8.99	1275	8,149	9.37	1308	8,511	9.79	1340	8896	10.23
9,500	1262	8,447	9.72	1290	8,754	10.07	1319	9,084	10.45	1349	9,437	10.85	1379	9812	11.28
10,000	1312	9,482	10.91	1338	9,785	11.25	1365	10,110	11.63	1392	10,454	12.02	_	_	l —
10,500	1363	10,608	12.20	1387	10,909	12.55	_	_		_	_		_	_	l —
11,000	_	_		_		_	_		_	_		_	_		_
11,500	_	_	_	l —	_	_	_	_	_	_		_	_	_	_
12,000	_	_		_		_	_		_	_		_	_		<u> </u>
12,500	_	_		—	_	<u> </u>	_	_		l —	_		_	_	I —

LEGEND

Bhp — Brake Horsepower Input to Fan
Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 805-1007 High Range: 941-1176 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

FAN PERFORMANCE — HORIZONTAL DISCHARGE UNITS (cont)

581A300 (25 TONS) (High He	at Units)	ŧ											
						E	cternal S	tatic Press	sure (in. v	vg)					
Airflow (Cfm)		0.2			0.4			0.6			0.8			1.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
6,500	799	2,730	3.14	833	2,914	3.35	872	3,135	3.61	914	3,392	3.90	958	3,687	4.24
7,000	856	3,294	3.79	887	3,481	4.00	921	3,699	4.25	958	3,950	4.54	999	4,235	4.87
7,500	913	3,929	4.52	941	4,118	4.74	972	4,335	4.99	1006	4,582	5.27	1042	4,860	5.59
8,000	971	4,637	5.33	996	4,829	5.55	1024	5,046	5.80	1055	5,290	6.08	1088	5,562	6.40
8,500	1029	5,421	6.24	1052	5,617	6.46	1078	5,835	6.71	1106	6,077	6.99	1136	6,345	7.30
9,000	1087	6,285	7.23	1108	6,484	7.46	1132	6,703	7.71	1158	6,946	7.99	1185	7,211	8.29
9,500	1145	7,231	8.32	1165	7,433	8.55	1187	7,655	8.80	1211	7,898	9.08	1236	8,161	9.39
10,000	1203	8,262	9.50	1222	8,468	9.74	1243	8,693	10.00	1265	8,936	10.28	1288	9,199	10.58
10,500	1261	9,381	10.79	1279	9,592	11.03	1299	9,820	11.29	1319	10,065	11.58	1341	10,327	11.88
11,000	1320	10,592	12.18	1337	10,807	12.43	1355	11,038	12.70	1374	11,284	12.98	1394	11,547	13.28
11,500	1378	11,896	13.68	_		_	_	_	_	_		_	_	_	
12,000	<u> </u>	_	_	_	_	_	_	_	_		_	_	_	_	_
12,500	_	_	_	_		_	_	_	_	_	_	_	_	_	_

581A300 (25 TONS) (High He	at Units)*	(cont)											
4. 0						Ex	ternal St	atic Press	ure (in. w	rg)					
Airflow (Cfm)		1.2			1.4			1.6			1.8			2.0	
(01111)	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts	Rpm	Bhp	Watts
6,500	1005	4,020	4.62	1052	4,390	5.05	1100	4,791	5.51	1148	5,221	6.00	1195	5673	6.52
7,000	1041	4,555	5.24	1084	4,908	5.64	1128	5,294	6.09	1172	5,710	6.57	1217	6153	7.08
7,500	1080	5,168	5.94	1119	5,508	6.33	1160	5,878	6.76	1201	6,279	7.22	1242	6708	7.71
8,000	1122	5,862	6.74	1158	6,190	7.12	1195	6,548	7.53	1233	6,934	7.97	1272	7347	8.45
8,500	1167	6,638	7.63	1200	6,959	8.00	1234	7,305	8.40	1269	7,677	8.83	1304	8076	9.29
9,000	1214	7,499	8.63	1244	7,813	8.99	1275	8,149	9.37	1308	8,511	9.79	1340	8896	10.23
9,500	1262	8,447	9.72	1290	8,754	10.07	1319	9,084	10.45	1349	9,437	10.85	1379	9812	11.28
10,000	1312	9,482	10.91	1338	9,785	11.25	1365	10,110	11.63	1392	10,454	12.02	_	_	_
10,500	1363	10,608	12.20	1387	10,909	12.55	_	_		_	_		_	_	
11,000	—	_	_	_	_	_		_	_	_	_	_	_	_	_
11,500	_	_	_	_	_	_		_	_	_	_	_	_	_	
12,000	—	_	_	_	_	_	_	_	_	_	_	_	_	_	_
12,500	l —	<u> </u>	_	_	_	_	_	_	_	_	_	_	_	_	_

LEGEND

Bhp — Brake Horsepower Input to Fan Watts — Input Watts to Motor

*Motor drive ranges: Low Range: 805-1007 High Range: 941-1176 All other rpms require field-supplied drive.

Refer to page 261 for general Fan Performance Data notes.

Fan Performance Using Accessory Power Exhaust (581A155,180)

POWER EXHAUST PERFORMANCE (581A210-300)

ALTITUDE COMPENSATION* — 581A155,180 (Natural Gas Units)

ELEVATION	NATURAL GAS	S ORIFICE SIZE†				
(ft)	Low Heat	High Heat				
0-3,000	30	29				
3,000- 7,000	31	30				
7,000- 9,000	32	31				
9,000-10,000	33	31				
above 10,000	35	32				

^{*}Includes a 4% input reduction per each 1,000 feet. †Orifices available through your Bryant dealer.

ALTITUDE COMPENSATION — 581A155,180 (LP Gas Units)

ELEVATION	LIQUID PROPANE ORIFICE SIZE
(ft)	Low Heat and High Heat
0-2,000	36
2,000	37
3,000	38
4,000	38
5,000	39
6,000	40
7,000	41
8,000	41
9,000	42
10,000	43

ALTITUDE COMPENSATION — 581A210-300 (Natural Gas)

ELEVATION	OF	RIFICE SIZE —	- NATURAL G	AS
(ft)	Low Heat	Medium Heat	High Heat (6 Cell)	High Heat (8 Cell)
0-2,000	29	30	29	29
2,000	29	30	29	29
3,000	30	31	30	30
4,000	30	31	30	30
5,000	30	31	30	30
6,000	30	31	30	30
7,000	31	32	31	31
8,000	31	32	31	31
9,000	31	32	31	31
above 10,000	32	33	32	32

ALTITUDE COMPENSATION — 581A210-300 (LP Gas)

ELEVATION		ORIFICE SIZ	E — LP GAS			
(ft)	Low Heat	Medium Heat	High Heat (6 Cell)	High Heat (8 Cell)		
0-2,000	35	38	35	35		
2,000	36	39	36	36		
3,000	36	39	36	36		
4,000	37	40	37	37		
5,000	37	40	37	37		
6,000	38	41	38	38		
7,000	39	42	39	39		
8,000	40	43	40	40		
9,000	41	44	41	41		
above 10,000	42	45	42	42		

ALTITUDE DERATING FACTOR*

ELEVATION (ft)	MAXIMUM HEATING VALUE (Btu/ft³)
0-2,000	1,100
2,001-3,000	1,050
3,001-4,000	1,000
4,001-5,000	950
5,001-6,000	900

*Derating of the unit is not required unless the heating value of the gas exceeds the values listed in the table above, or if the elevation exceeds 6000 ft. Derating conditions must be 4% per thousand ft above 2000 ft. For example, at 4000 ft, if the heating value of the gas exceeds 1000 Btu/ft³, the unit will require a 16% derating. For elevations above 6000 ft, the same formula applies. For example, at 7000 ft, the unit will require a 28% derating of the maximum heating value per the National Fuel Gas Code.

IMPORTANT: Local utility companies may be reducing heat content of gas at altitudes above 2000 ft. If this is being done, changing spuds may not be required.

EVAPORATOR-FAN MOTOR EFFICIENCY — 581A155,180

MOTOR HORSEPOWER	MOTOR EFFICIENCY (%)
3.0	81.7
2.9, 3.7	85.8
5.0	87.5

NOTE: All indoor-fan motors 5 hp and larger meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT) effective October 24, 1997.

ACCESSORY/FIOP STATIC PRESSURE (in. wg)* — 581A155,180

COMPONENT		CFM										
COMPONENT	4500	5000	5400	6000	7200	7500	9000	10,000	11,250			
EconoMi\$er IV		0.050	0.060	0.070	0.090	0.100	0.110	0.120	0.140			

LEGEND

FIOP — Factory-Installed Option

*The static pressure must be added to external static pressure. The sum and the evaporator entering-air cfm should then be used in conjunction with the Fan Performance tables to determine blower rpm and watts.

INDOOR SOUND DATA (TOTAL UNIT) — 581A155,180

	SOUND RATING-dB (60 Hz)	SOUND	SOUND			SOUND POWER (dB)								
UNIT 581A		A-WEIGHTED (dB)	Octave Bands											
			63	125	250	500	1000	2000	4000	8000				
155	87	87.3	87.1	89.9	86.4	84.0	82.7	79.0	73.9	68.6				
180	88	88.0	95.7	88.9	87.2	85.2	91.9	79.5	72.7	66.0				

EVAPORATOR FAN MOTOR PERFORMANCE — 581A155,180

UNIT 581A	NOMINAL HP	VOLTAGE	MAX WATTS	EFF. %	MAX BHP	MAX BkW	MAX AMPS
155 (Standard Motor)	2.9 2.9 2.9 3	208 230 460 575	2700 2700 2700 2700 3065	85.8 85.8 85.8 81.7	3.13 3.13 3.13 3.38	2.34 2.34 2.34 2.53	9.46 8.6 4.3 3.9
155 (Optional Motor)	3.7 3.7 3.7	208 230 460	3610 3610 3610	85.8 85.8 85.8	4.38 4.38 4.38	3.27 3.27 3.27	10.5 10.5 4.8
180 5 5 5 5		208 230 460 575	5180 5180 5180 5180 5180	87.5 87.5 87.5 87.5	6.13 6.13 6.13 6.13	4.57 4.57 4.57 4.57	15.8 15.8 7.9 6.0

LEGEND

BHP — Brake Horsepower BkW — Brake Kilowatts

FAN RPM AT MOTOR PULLEY SETTINGS* — 581A155,180

UNIT		MOTOR PULLEY TURNS OPEN													
581A	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	5 ¹ / ₂	6		
155†	1147	1124	1101	1078	1055	1032	1010	987	964	941	918	895	††		
155**	1315	1292	1269	1246	1223	1200	1178	1155	1132	1109	1086	1063	1040		
180†	††	††	††	††	1021	1002	984	965	947	928	910	891	873		
180**	††	††	††	††	1200	1178	1156	1134	1112	1091	1069	1047	1025		

^{*}Approximate fan rpm shown.

[†]Indicates standard drive package.

**Indicates alternate drive package.

††Due to belt and pulley style, pulley cannot be set to this number of turns open.

PERFORMANCE DATA (cont) OUTDOOR SOUND POWER (TOTAL UNIT)

UNIT	ARI	A-WEIGHTED	VEIGHTED OCTAVE BANDS												
581A	RATING (decibels)	(db)	63	125	250	500	1000	2000	4000	8000					
155,180	88	87.6	90.8	88.7	86.4	84.3	83.5	78.4	75.6	66.8					
210, 240	82	81.7	90.2	84.8	80.7	79.0	77.6	71.4	66.7	60.7					
300	85	84.9	90.0	86.3	83.6	82.9	80.3	74.9	71.4	66.5					

LEGEND

ARI — Air Conditioning and Refrigeration Institute

NOTE: Indoor sound power is available in Bryant's Electronic Catalog Program (ECAT) for specific operating parameters.

FAN RPM AT MOTOR PULLEY SETTINGS* — 581A210-300

581A	DRIVE					МОТ	OR PUI	LEY T	URNS (PEN				
361A	DRIVE	0	1/2	1	11/2	2	21/2	3	31/2	4	41/2	5	51/2	6
	Low Range Vertical	647	667	687	707	727	747	767	786	806	826	846	866	886
210 (208/230 and	High Range Vertical	897	917	937	958	978	998	1018	1038	1058	1079	1099	1119	1139
460 volt)	Low Range Horizontal	896	924	951	979	1006	1034	1062	1089	1117	1144	1172	1199	1227
	High Range Horizontal	1113	1138	1163	1188	1213	1238	1264	1289	1314	1339	1364	1389	1414
	Low Range Vertical	810	832	854	876	897	919	941	963	985	1007	1028	1050	1072
210	High Range Vertical	873	893	912	932	951	971	991	1010	1030	1049	1069	1088	1108
(575 volt)	Low Range Horizontal	863	886	909	933	956	979	1002	1025	1048	1072	1095	1118	1141
	High Range Horizontal	1042	1062	1083	1103	1123	1143	1164	1184	1204	1224	1245	1265	1285
	Low Range Vertical	949	970	992	1013	1035	1056	1078	1099	1120	1142	1163	1185	1206
240 (208/230 and	High Range Vertical	941	961	980	1000	1019	1039	1059	1078	1098	1117	1137	1156	1176
460 volt)	Low Range Horizontal	896	924	951	979	1006	1034	1062	1089	1117	1144	1172	1199	1227
	High Range Horizontal	1113	1138	1163	1188	1213	1238	1264	1289	1314	1339	1364	1389	1414
	Low Range Vertical	949	970	992	1013	1035	1056	1078	1099	1120	1142	1163	1185	1206
240	High Range Vertical	941	961	980	1000	1019	1039	1059	1078	1098	1117	1137	1156	1176
(575 volt)	Low Range Horizontal	873	893	912	932	951	971	991	1010	1030	1049	1069	1088	1108
	High Range Horizontal	1113	1138	1163	1188	1213	1238	1264	1289	1314	1339	1364	1389	1414
	Low Range Vertical	805	822	839	856	872	889	906	923	940	957	973	990	1007
300	High Range Vertical	941	961	980	1000	1019	1039	1059	1078	1098	1117	1137	1156	1176
(all voltages)	Low Range Horizontal	805	822	839	856	872	889	906	923	940	957	973	990	1007
	High Range Horizontal	941	961	980	1000	1019	1039	1059	1078	1098	1117	1137	1156	1176

^{*}Approximate fan rpm shown.

EVAPORATOR FAN MOTOR SPECIFICATIONS — 581A210-300

UNIT 581A	DRIVE	ORIENTATION	MOTOR P/N	NOMINAL HP	VOLTAGE	MAX WATTS	EFFICIENCY %	MAX BHP	MAX BkW	MAX AMPS
			HD60FK651	3.7	208	3698	85.8	4.25	3.17	10.6
	Low	Vertical	HD60FK651	3.7	230	3698	85.8	4.25	3.17	9.6
	LOW	vertical	HD60FK651	3.7	460	3698	85.8	4.25	3.17	4.8
			HD58DL575	3	575	3149	81.7	3.45	2.57	3.9
			HD60FL650	5	208	4900	87.5	5.75	4.29	16.7
	High	Vertical	HD60FL650	5	230	4900	87.5	5.75	4.29	15.2
	nign	vertical	HD60FL650	5	460	4900	87.5	5.75	4.29	7.6
210			HD60FL575	5	575	4900	87.5	5.75	4.29	6.1
210			HD60FK651	3.7	208	3698	85.8	4.25	3.17	10.6
	Low	Horizontal	HD60FK651	3.7	230	3698	85.8	4.25	3.17	9.6
	LOW	Honzontai	HD60FK651	3.7	460	3698	85.8	4.25	3.17	4.8
			HD58DL575	3	575	3149	81.7	3.45	2.57	3.9
			HD60FL650	5	208	4900	87.5	5.75	4.29	16.7
	Lliada	l lavimantal	HD60FL650	5	230	4900	87.5	5.75	4.29	15.2
	High	Horizontal	HD60FL650	5	460	4900	87.5	5.75	4.29	7.6
			HD60FL575	5	575	4900	87.5	5.75	4.29	6.1
			HD60FL650	5	208	4900	87.5	5.75	4.29	16.7
	1	\	HD60FL650	5	230	4900	87.5	5.75	4.29	15.2
	Low	Vertical	HD60FL650	5	460	4900	87.5	5.75	4.29	7.6
			HD60FL575	5	575	4900	87.5	5.75	4.29	6.1
			HD62FL650	7.5	208	7267	88.5	8.63	6.43	24.2
	LEast	\	HD62FL650	7.5	230	7267	88.5	8.63	6.43	22
	High	Vertical	HD62FL650	7.5	460	7267	88.5	8.63	6.43	11
0.40			HD62FL575	7.5	575	7267	88.5	8.63	6.43	9
240			HD60FK651	3.7	208	3698	85.8	4.25	3.17	10.6
	1	U a sim a satal	HD60FK651	3.7	230	3698	85.8	4.25	3.17	9.6
	Low	Horizontal	HD60FK651	3.7	460	3698	85.8	4.25	3.17	4.8
			HD60FL575	5	575	4900	87.5	5.75	4.29	6.1
			HD60FL650	5	208	4900	87.5	5.75	4.29	16.7
	I Park	l la de a atal	HD60FL650	5	230	4900	87.5	5.75	4.29	15.2
	High	Horizontal	HD60FL650	5	460	4900	87.5	5.75	4.29	7.6
			HD60FL575	5	575	4900	87.5	5.75	4.29	6.1
			HD60FL650	5	208	4900	87.5	5.75	4.29	16.7
	Mid Law	\/ort:==1	HD60FL650	5	230	4900	87.5	5.75	4.29	15.2
	Mid-Low	Vertical	HD60FL650	5	460	4900	87.5	5.75	4.29	7.6
			HD60FL575	5	575	4900	87.5	5.75	4.29	6.1
			HD62FL650	7.5	208	7267	88.5	8.63	6.43	24.2
	NAC-LI Code	\	HD62FL650	7.5	230	7267	88.5	8.63	6.43	22
	Mid-High	Vertical	HD62FL650	7.5	460	7267	88.5	8.63	6.43	11
200			HD62FL575	7.5	575	7267	88.5	8.63	6.43	9
300			HD60FL650	5	208	4900	87.5	5.75	4.29	16.7
	Middle	I la sia a sata!	HD60FL650	5	230	4900	87.5	5.75	4.29	15.2
	Mid-Low	Horizontal	HD60FL650	5	460	4900	87.5	5.75	4.29	7.6
			HD60FL575	5	575	4900	87.5	5.75	4.29	6.1
			HD62FL650	7.5	208	7267	88.5	8.63	6.43	24.2
	NATIONAL TO A	I I a wise of the	HD62FL650	7.5	230	7267	88.5	8.63	6.43	22
	Mid-High	Horizontal	HD62FL650	7.5	460	7267	88.5	8.63	6.43	11
	1		HD62FL575	7.5	575	7267	88.5	8.63	6.43	9

LEGEND

BHP — Brake Horsepower BkW — Brake Kilowatts

ACCESSORY/FIOP STATIC PRESSURE (in. wg) — 581A210-300

ſ	COMPONENT		CFM															
	COMPONENT	4,000	4,500	5,000	5,500	6,000	6,500	7,000	7,500	8,000	8,500	9,000	9,500	10,000	10,500	11,000	11,500	12,000
	Economizer	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.15	0.16	0.17	0.19	0.20

LEGEND

FIOP — Factory-Installed Option

*The static pressure must be added to the external static pressure. The sum and the evaporator entering-air cfm should then be used in conjunction with the Fan Performance tables to determine blower rpm and watts.

ELECTRICAL DATA — 581A (cont)

ELECTRICAL DATA — 581A155,180

	NOMINAL		TAGE	C	OMPR	ESSO	₹		0	FM		IFM		VER	COMBUSTION		VER
UNIT 581A	VOLTAGE	RAI	NGE	No	. 1	No	. 2		O.	IVI		ILIAI	EXH	AUST	FAN MOTOR	SUP	PLY
	(3 Ph, 60 Hz)	Min	Max	RLA	LRA	RLA	LRA	Qty	Нр	FLA (ea)	Нр	FLA	FLA	LRA	FLA	MCA	MOCP*
	208/230	08/230		8.8/ 8.4	-		0.57	60/60	80/80								
	200/200		1	20	.00	1	.00		0.0	0		0.07 0	4.6	18.8	0.57	65/65	80/80
155 (Standard	460	414	506	10.0	75	10.0	75	3	0.5	0.80	2.9	4.2	-		0.30	29	35
IFM)	100		0	10.0	,,			Ŭ	0.0	0.00	2.0		2.3	6.0	0.30	31	40
	575	518	633	8.2	54	8.2	54	3	0.5	0.75	3.0	3.9	_	_	0.57	25	30
	575	310	0	0.2	04	0.2	5	J	0.0	0.70	5.0	5.5	2.1	4.8	0.57	27	30
	208/230	187	253	20.7	156	20.7	156	3	0.5	1.70	3.7	10.5/11.0			0.57	62/63	80/80
155 (Optional	200/200	107	200	20.7	100	20.7	100		0.0	1.70	0.,	10.0/11.0	4.6	18.8	0.57	67/67	80/80
IFM)	460	414	506	10.0	75	10.0	75	3	0.5	0.80	3.7	4.8	-	_	0.30	30	35
	100		0	10.0	,,			Ŭ	0.0	0.00	0.7	1.0	2.3	6.0	0.30	32	40
	208/230	187	253	32.1	195	20.7	156	3	0.5	1.70	5.0	15.8/15.8	_	_	0.57	82/82	110/110
	200/200	107	20	02.1	155	20.1	100	J	0.0	1.70	5.0	15.6/15.0	4.6	18.8	0.57	86/86	110/110
180	460	414	506	16.4	95	10.0	75	3	0.5	0.80	5.0	7.9			0.30	41	50
	100		000	10.1		10.0	,,,		0.0	0.00	0.0	7.0	2.3	6.0	0.30	43	50
	575	518	633	12.0	80	8.2	54	3	0.5	0.75	5.0	6.0	-	_	0.57	31	40
	37.0	010	033	12.0	00	0.2	54	3	0.5	0.73	5.0	5.0	2.1	4.8	0.57	34	45

LEGEND

FLA — HACR — IFM — LRA —

Full Load Amps Heating, Air Conditioning and Refrigeration Indoor (Evaporator) Fan Motor

LRA Locked Rotor Amps MCA — MOCP — NEC — OFM — Minimum Circuit Amps

Maximum Overcurrent Protection

National Electrical Code

Outdoor (Condenser) Fan Motor

 Rated Load Amps *Fuse or HACR circuit breaker.

NOTES:

- In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.

Unbalanced 3-Phase Supply Voltage

Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltage imbalance.

% Voltage Imbalance

= 100 x <u>max voltage deviation from average voltage</u> average voltage

Example: Supply voltage is 460-3-60.

Average Voltage =
$$\frac{452 + 464 + 455}{3}$$

$$=\frac{1371}{3}$$

Determine maximum deviation from average voltage.

Maximum deviation is 7 v.

Determine percent of voltage imbalance.

% Voltage Imbalance =
$$100 \times \frac{7}{457}$$

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

ELECTRICAL DATA — 581A (cont)

ELECTRICAL DATA — 581A210-300 WITHOUT CONVENIENCE OUTLET

	NOMINAL	VOLT				COMPR					OFM			IFM		POW		COMBUSTION	POWER	SUPPLY	DISCONNECT
UNIT 581A	VOLTAGE (3 Ph,	RAN	NGE	No	. 1	No	. 2	No	. 3		U				E	XHA		FAN MOTOR			SIZE
30 IA	60 Hz)	Min	Max	RLA	LRA	RLA	LRA	RLA	LRA	Qty	Нр	FLA (ea)	Нр	FLA	Qty	Нр	FLA (ea)	FLA	MCA	MOCP*	FLA
													3.7	10.6/ 9.6	_	_			78/ 77	100/ 90	83/ 82
															2	1	5.9		90/ 89 84/ 83	100/100	97/ 96 90/ 89
	208/230	187	253	16.7	130	16.7	130	22.4	184	4	0.25	1.5	5	16.7/15.2	2	1	5.9	0.5	96/ 94	100/100	104/102
														0.4.0/00	_	Ė	_		92/ 89	100/100	99/ 96
													7.5	24.2/22	2	1	5.9		104/101	125/110	112/110
													3.7	4.8	_	_	_		39	45	42
															2	1	3.1		45	50	49
210	460	414	506	9	70	9	70	10.7	90	4	0.25	0.7	5	7.6	2	1	3.1	0.3	42 48	50 50	45 52
																Ė	J. I		45	50	49
													7.5	11	2	1	3.1		51	60	56
													3	3.9	_	_	_		32	40	35
													3	3.9	2	1	2.4		37	45	40
	575	518	633	7	55	7	55	9.3	73	4	0.25	0.7	5	6.1	_	Ļ	_	0.24	35	40	37
															2	1	2.4		39 37	45 45	43 40
													7.5	9	2	1	2.4		42	50	46
													0.7	40.0/.00	Ē	Ė			89/ 88	100/100	96/ 95
													3.7	10.6/ 9.6	2	1	5.9		101/100	110/110	110/109
													5	16.7/15.2	_	<u> </u>			96/ 94	100/100	103/102
	208/230	187	253	22.4	184	22.4	184	22.4	184	4	0.25	1.5			2	1	5.9	0.5	107/106 103/101	125/125	117/115 112/109
													7.5	24.2/22	2	1	5.9		115/113	125/110 125/125	126/123
														00.0/00	Ē	Ė	_	İ	112/108	125/125	120/116
													10	30.8/28	2	1	5.9		124/120	150/125	133/130
													3.7	4.8	_	<u> </u>			42	50	46
															2	1	3.1		49 45	50 50	53 49
240													5	7.6	2	1	3.1		51	60	56
	460	414	506	10.7	90	10.7	90	10.7	90	4	0.25	0.7	7.5	44	Ē	Ė	_	0.3	49	50	53
													7.5	11	2	1	3.1		55	60	60
													10	14	2	Ļ	_		52	60	56
																1	3.1		59 39	60 45	63 42
													5	6.1	2	1	2.4		44	50	48
	575	518	633	9.3	73	9.3	73	9.3	70	4	0.25	0.7	7.5	9		1—	_	0.24	42	50	46
	3/3	310	033	9.3	13	9.3	13	9.3	73	4	0.23	0.7	7.5	9	2	1	2.4	0.24	47	50	51
													10	11	_	_	_		44 49	50 60	48 53
-															2	1	2.4		132/130	175/175	138/136
													5	16.7/15.2	2	1	5.9		143/142	175/175	151/150
	208/230	187	253	47.1	245	47.1	245	_	_	6	0.25	1.5	7.5	24.2/22	_	_	_	0.5	139/137	175/175	147/144
	200/230	107	233	47.1	243	47.1	243			U	0.23	1.5	7.3	24.2/22	2	1	5.9	0.5	151/149	175/175	160/158
													10	30.8/28	2	1	5.9		146/143 158/155	175/175 200/200	154/151 168/164
															_	H	5.9		56	60	59
													5	7.6	2	1	3.1		62	80	66
300	460	414	506	19.6	125	19.6	125	_	_	6	0.25	0.7	7.5	11	_	_	_	0.3	59	60	63
300	400	717	300	13.0	125	13.0	125			U	0.23	0.7	7.5	""	2	1	3.1	0.5	66	80	70
													10	14	2	1	3.1		62 69	80 80	66 73
															_	Ė	3.1		46	60	48
													5	6.1	2	1	2.4		51	60	54
1	575	518	633	15.8	100	15.8	100	_	_	6	0.25	0.7	7.5	9				0.24	49	60	52
1	0.0	0.0	550	. 5.0	.50	. 5.5	. 50				5.20	0.,			2	1	2.4	3.23	54	60	57
													10	11	2	1	2.4		51 56	60 60	54 59
ь					<u> </u>	<u> </u>							l	L		_ '	2.4	l	50	UU	JB

LEGEND

Full Load Amps Heating, Air Conditioning and Refrigeration Indoor (Evaporator) Fan Motor Locked Rotor Amps Minimum Circuit Amps FLA — HACR —

IFM LRA MCA

MCA — MOCP— NEC — OFM — RLA — Minimum Circuit Amps Maximum Overcurrent Protection National Electrical Code Outdoor (Condenser) Fan Motor Rated Load Amps

*Fuse or HACR circuit breaker.

NOTES:

In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker. Unbalanced 3-Phase Supply Voltage

Never operate a motor where a phase imbalance in supply voltage is greater than 2%. Use the following formula to determine the percent of voltage imbalance. % Voltage Imbalance

max voltage deviation from average voltage = 100 x average voltage

Example: Supply voltage is 460-3-60.

Determine maximum deviation from average voltage.

(AB) 457 - 452 = 5 v (BC) 464 - 457 = 7 v (AC) 457 - 455 = 2 v

Maximum deviation is 7 v.

Determine percent of voltage imbalance.

% Voltage Imbalance =
$$100 \text{ x}$$
 $\frac{7}{457}$ = 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

ELECTRICAL DATA — 581A (cont)

ELECTRICAL DATA — 581A210-300 WITH OPTIONAL CONVENIENCE OUTLET

	NOMINAL	VOLT	AGE			COMPR					OFM			IFM		POW		COMBUSTION FAN MOTOR	POWER	SUPPLY	DISCONNECT SIZE
UNIT 581A	VOLTAGE (3 Ph, 60 Hz)	Min	Max	RLA	LRA	RLA	LRA	No RLA	LRA	Qty	Нр	FLA	Нр	FLA	Qty	Нр	FLA	FLA	MCA	MOCP*	FLA
	00112)									_		(ea)	3.7	10.6/ 9.6	_	Ė	(ea)		83/ 82	100/100	89/ 88
													0	10.07 0.0	2	1	5.9		95/ 94	100/100	103/101
	208/230	187	253	16.7	130	16.7	130	22.4	184	4	0.25	1.5	5	16.7/15.2	2	1	5.9	0.5	89/ 88 101/ 99	100/100	96/ 94 110/108
															_	Ė	-		97/ 94	100/100	105/102
													7.5	24.2/22	2	1	5.9		109/106	125/125	118/116
													3.7	4.8	_	_			42	50	45
															2	1	3.1		48	50	52
210	460	414	506	9	70	9	70	10.7	90	4	0.25	0.7	5	7.6	2	1	3.1	0.3	45 51	50 60	48 56
															Ê	Ė	-		48	50	52
													7.5	11	2	1	3.1		54	60	59
													3	3.9	_	_	_		35	40	38
														0.0	2	1	2.4		40	45	43
	575	518	633	7	55	7	55	9.3	73	4	0.25	0.7	5	6.1	2	1	2.4	0.24	38 42	45 50	40 46
														_	_	Ė			40	45	44
													7.5	9	2	1	2.4		45	50	49
													3.7	10.6/ 9.6	_	_	_		94/ 93	100/100	102/101
													0.7	10.0/ 0.0	2	1	5.9		106/105	125/125	116/115
													5	16.7/15.2	2	1	5.9		101/ 99 112/111	110/100 125/125	109/107 123/121
	208/230	187	253	22.4	184	22.4	184	22.4	184	4	0.25	1.5				Ė	3.9	0.5	108/106	125/125	118/115
													7.5	24.2/22	2	1	5.9		120/118	125/125	131/129
													10	30.8/28	_	_	_		117/113	125/125	125/122
													10	30.0/20	2	1	5.9		129/125	150/150	139/136
													3.7	4.8	2	1	3.1	-	45 52	50 60	49 56
															_	H	3.1		48	50	52
240	400	44.4	500	40.7	00	40.7	00	40.7	00		0.05	0.7	5	7.6	2	1	3.1		54	60	59
	460	414	506	10.7	90	10.7	90	10.7	90	4	0.25	0.7	7.5	11	_	_	_	0.3	52	60	56
													7.5	"	2	1	3.1		58	60	63
													10	14	2	1	3.1		55 62	60 70	60 67
															_	Ė	-		42	50	46
													5	6.1	2	1	2.4		47	50	51
	575	518	633	9.3	73	9.3	73	9.3	73	4	0.25	0.7	7.5	9	_	_	_	0.24	45	50	49
	010	0.0	000	0.0	,,,	0.0	,,,	0.0	,,,	-	0.20	0.7	7.0	Ů	2	1	2.4	0.24	50	50	55
													10	11	2	1	2.4		47 52	50 60	51 57
													-	40 =	_	_			137/135	175/175	144/142
													5	16.7/15.2	2	1	5.9	j	148/147	175/175	157/155
	208/230	187	253	47.1	245	47.1	245	_	_	6	0.25	1.5	7.5	24.2/22	_	_	_	0.5	144/142	175/175	152/150
	200/200	101	200	47.1	240	47	240			Ů	0.20	1.0	7.0	27.2/22	2	1	5.9	0.0	156/154	200/200	166/163
													10	30.8/28	2	1	5.9		151/148 163/160	175/175 200/200	160/157 173/170
															_	Ė	J.9		59	60	62
													5	7.6	2	1	3.1]	65	80	69
300	460	414	506	19.6	125	19.6	125	_	_	6	0.25	0.7	7.5	11			_	0.3	62	80	66
	400	717	000	10.0	120	10.0	120				3.20	0.7	7.5	- ''	2	1	3.1		69	80	73
													10	14	2	1	3.1		65 72	80 90	69 77
													_		_	<u> </u>	J. I		49	60	52
													5	6.1	2	1	2.4	1	54	60	57
	575	518	633	15 R	100	15.8	100	_	_	6	0.25	0.7	7.5	9		_	_	0.24	52	60	55
	3/3	310	000	3 15.8	100	10.0	100	-	-	٥	0.20	0.7	1.5	,	2	1	2.4	0.24	57	60	60
													10	11	2	<u> </u>	2.4		54 59	60 60	57 63
																1	2.4		59	Uσ	ರಿತ

LEGEND

FLA — HACR —

Full Load Amps Heating, Air Conditioning and Refrigeration Indoor (Evaporator) Fan Motor Locked Rotor Amps Minimum Circuit Amps IFM LRA MCA

*Fuse or HACR circuit breaker.

Minimum Circuit Amps Maximum Overcurrent Protection National Electrical Code Outdoor (Condenser) Fan Motor Rated Load Amps MCA MOCP— NEC — OFM —

NOTES:
1. In compliance with NEC requirements for multimotor and combination load equipment (refer to NEC Articles 430 and 440), the overcurrent protective device for the unit shall be fuse or HACR breaker. Canadian units may be fuse or circuit breaker.
2. Unbalanced 3-Phase Supply Voltage
Never operate a motor where a phase imbalance in supply voltage is greater than 2%.
Use the following formula to determine the percent of voltage imbalance. % Voltage Imbalance

max voltage deviation from average voltage = 100 x average voltage

Example: Supply voltage is 460-3-60.

AB = 452 v
BC = 464 v
AC = 455 v
Average Voltage =
$$\frac{452 + 464 + 455}{3}$$

= $\frac{1371}{3}$
= 457

Determine maximum deviation from average voltage.

(AB) 457 - 452 = 5 v (BC) 464 - 457 = 7 v (AC) 457 - 455 = 2 v Maximum deviation is 7 v.

Determine percent of voltage imbalance.

% Voltage Imbalance =
$$100 \text{ x}$$
 $\frac{7}{457}$ = 1.53%

This amount of phase imbalance is satisfactory as it is below the maximum allowable 2%.

IMPORTANT: If the supply voltage phase imbalance is more than 2%, contact your local electric utility company immediately.

TYPICAL WIRING SCHEMATICS — 581A

581A155, 460-3-60 Shown

TYPICAL WIRING SCHEMATICS — 581A

EconoMi\$er IV Wiring — 581A155,180

EconoMi\$er2 Wiring — 581A155,180

TYPICAL PIPING AND WIRING — 581A (581A155 Shown)

GUIDE SPECIFICATIONS — 579F/580F180-300 AND 581A155,180 SIZE UNITS

PACKAGED ROOFTOP ELECTRIC COOLING UNIT WITH **GAS HEAT — CONSTANT VOLUME APPLICATION**

HVAC GUIDE SPECIFICATIONS

SIZE RANGE: 13 AND 15 TONS (581A), 15 TO 25 TONS

(579F, 580F), NOMINAL (COOLING)

230,000 TO 360,000 BTUH, NOMINAL (INPUT

HEATING) (GAS UNITS)

BRYANT MODEL NUMBERS: 580F, 579F, 581A

PART 1 — GENERAL

1.01 SYSTEM DESCRIPTION

Unit is an outdoor rooftop mounted, electrically controlled heating and cooling unit utilizing scroll hermetic compressors for cooling duty and gas combustion for heating duty. Supply air shall be discharged downward or horizontally (with horizontal supply/return curb adapter assembly), as shown on contract drawings. Standard unit shall include a manual outdoor-air inlet.

1.02 QUALITY ASSURANCE

A. Unit shall be rated in accordance with ARI Standards 270 and 360 and all units shall be designed in accordance with UL Standard 1995.

NOTE: Size 300 units are beyond the scope of ARI certification guidelines.

- B. Unit shall be designed to conform to ASHRAE 15.
- C. Unit shall be ETL and ETL, Canada tested and certified in accordance with ANSI Z21.47 Standards as a total package.
- D. Roof curb shall be designed to conform to NRCA Standards.
- E. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- F. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- G. Unit shall be manufactured in a facility registered to ISO 9001:2000.

1.03 DELIVERY, STORAGE, AND HANDLING

Unit shall be stored and handled per manufacturer's recommendations.

PART 2 — PRODUCTS

2.01 EQUIPMENT (STANDARD)

A. General:

Each unit shall be a factory assembled, single-piece heating and cooling unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, refrigerant charge (R-22), and special features required prior to field start-up.

B. Unit Cabinet:

- 1. Constructed of galvanized steel (G90 1.8 oz. of zinc per square foot of sheet metal), bonderized and primer-coated on both sides and coated with a baked polyester thermosetting powdercoating finish on the outer surface. The color of this pre-painted steel is referred to as "American Sterling," a gray color. Bryant's paint specification for this color is PH184. Color: American Sterling, this gray color is to match federal standard 595a, #26231. Gloss (per ASTM 0523, 60 deg, F); 60,

 - Hardness of paint film: H-2H pencil hardness.
- 2. Indoor blower compartment interior surfaces shall be insulated with a minimum 1/2-in. thick, 1 lb density fiberglass insulation. Fiberglass insulation shall be bonded with a thermosetting resin (8 to 12% by weight nominal, phenol formaldehyde typical), and coated with an acrylic or other material that meets

the NFPA 90 flame retardance requirements and has an "R" Value of 3.70. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.

- 3. Cabinet panels shall be easily removable for servicing. Cabinet panels are minimum 20 gage. Panels shall have 1/2-in. thick, 1.5-lb. density insulation.
- 4. Filters shall be accessible through an access panel.
- 5. Holes shall be provided in the base rails (minimum 12 gage) for rigging shackles to facilitate overhead rigging.
- 6. Unit shall contain a sloped drain pan, to prevent standing water from accumulating. Pan shall be fabricated of hot dipped zinc coated minimum spangle steel. Zinc coating shall be G90 designation according to ASTM Standard A653. Unit shall contain a factory-installed nonferrous main condensate drain connection.

C. Fans:

- 1. Indoor blower (evaporator fan):
 - a. Fan shall be belt driven. Belt drive shall include an adjustable pulley. The standard fan drive shall have a factory-installed low-medium external static pressure capable fan drive. The alternate fan drive option shall have a factory-installed external high static pressure capable fan drive.
 - b. Fan wheel shall be made from steel with a corrosion-resistant finish. It shall be a dynamically balanced, double-inlet type with forward-curved
- 2. Condenser fans shall be of the direct-driven propeller type, with corrosion-resistant blades riveted to corrosion-resistant steel supports. They shall be dynamically balanced and discharge air upwards.
- 3. Induced-draft blower shall be of the direct-driven. single inlet, forward-curved, centrifugal type. It shall be made from steel with a corrosion-resistant finish and shall be dynamically balanced.

D. Compressor(s):

- 1. Fully hermetic, scroll type, internally protected.
- 2. Factory spring-shock mounted and internally spring mounted for vibration isolation.
- 3. On electrically and mechanically independent refrigerant circuits.
- 4. All compressors shall have 70 W crankcase heaters.

E. Coils:

- 1. Standard evaporator and condenser coils shall have aluminum plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
- 2. Coils shall be leak tested at 150 psig and pressure tested at 450 psig.

F. Heating Section:

- 1. Induced-draft combustion type with energy saving direct-spark ignition system and redundant main gas
- 2. a. The heat exchanger shall be of the tubularsection type constructed of a minimum of 20-gage steel coated with a nominal 1.2 mil aluminumsilicone alloy for corrosion resistance.
 - b. The optional stainless steel heat exchangers shall be tubular-section design and shall be constructed of a minimum 20 gage, 409 stainless steel.

GUIDE SPECIFICATIONS — 579F/580F180-300 AND 581A155,180 SIZE UNITS (cont)

- Burners shall be of the in-shot type constructed of aluminum-coated steel.
- 4. All gas piping shall enter the unit at a single location.
- Gas piping shall be capable of being routed through the roof curb directly into unit.

G. Refrigerant Components:

Refrigerant circuit components shall include:

- 1. Thermostatic expansion valve (TXV).
- 2. Filter driers.
- Gage port and connections on suction, discharge, and liquid lines.

H. Filter Section:

Standard filter section shall consist of 2 sizes of factory-installed 2-in. thick throwaway fiberglass filters of commercially available sizes. Filters shall be approximately 10% efficient with an airside pressure drop of approximately 0.07 in. wg (clean).

- I. Controls and Safeties:
 - 1. Unit Controls:
 - a. Economizer control (optional).
 - b. Capacity control (2-step).
 - Unit shall be complete with self-contained lowvoltage control circuit.

J. Safeties:

- Unit shall incorporate a solid-state compressor lockout which provides reset capability at the space thermostat, should any of the following safety devices trip and shut off compressor:
 - Compressor lockout protection provided for either internal or external overload.
 - 2) Low-pressure switch.
 - 3) Dual freezestats (evaporator coil).
 - 4) High-pressure switch.
- b. Supply-air thermostat shall be located in the unit.
- Heating section shall be provided with the following minimum protections:
 - 1) High-temperature limit switch.
 - 2) Induced-draft motor speed sensor.
 - 3) Flame rollout switch.
 - 4) Flame proving controls.
 - 5) Redundant gas valve.

K. Operating Characteristics:

- Unit shall be capable of starting and running at 120 F ambient outdoor temperature per maximum load criteria of ARI Standard 360.
- 2. Unit with standard controls will operate in cooling down to an outdoor ambient temperature of 40 F.
- 3. Unit shall be provided with fan time delay to prevent cold air delivery.

L. Electrical Requirements:

All unit power wiring shall enter unit cabinet at a single location.

M. Motors:

- Compressor motors shall be cooled by refrigerant gas passing through motor windings and shall have line break thermal and current overload protection.
- All fan motors shall have permanently lubricated, sealed bearings and inherent automatic-reset thermal overload protection or manual reset calibrated circuit breakers.

 All indoor-fan motors 5 hp and larger shall meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT) effective October 24, 1997.

N. Special Features:

Certain features are not applicable when the features designated * are specified. For assistance in amending the specifications, contact your local Bryant Sales Office.

1. Coils

- a. Optional pre-coated aluminum-fin coils shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube. Epoxy-phenolic barrier shall minimize galvanic action between dissimilar metals.
- b. Optional copper-fin coils shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan. All copper construction shall provide protection in moderate coastal environments.
- c. E-Coated aluminum-fin coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss - 60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in./lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90. Coil construction shall be aluminum fins mechanically bonded to copper tubes.
- d. E-Coated copper-fin coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss - 60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in./lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90. Coil construction shall be copper fins mechanically bonded to copper tubes with copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting sheet metal coil pan to maintain coating integrity and minimize corrosion potential between coil and pan.

GUIDE SPECIFICATIONS — 579F/580F180-300 AND 581A155,180 SIZE UNITS (cont)

- 2. Roof Curbs (Horizontal and Vertical):
 - Formed of 16-gage galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - Permits installing and securing ductwork to curb prior to mounting unit on the curb.
- 3. Horizontal Adapter Roof Curb:

Includes factory-assembled adapter and internal duct and substantially improves evaporator fan static performance (static regain).

NOTE: Power exhaust or barometric relief must be mounted in the return ductwork when used in conjunction with this accessory.

4. Integrated Economizers:

- Integrated integral modulating type capable of simultaneous economizer and compressor operation.
- Available as a factory-installed option in vertical supply/return configuration only. (Available as a field-installed accessory for horizontal and/or vertical supply return configurations.)
- Includes all hardware and controls to provide cooling with outdoor air.
- d. Equipped with low-leakage dampers, not to exceed 2% leakage at 1 in. wg pressure differential.
- e. Capable of introducing up to 100% outdoor air.
- f. EconoMi\$er IV and EconoMi\$er2 shall be equipped with a barometric relief damper.
- g. Designed to close damper(s) during loss-ofpower situations with spring return built into motor.
- h. Dry bulb outdoor-air temperature sensor shall be provided as standard. Outdoor air sensor set point is adjustable and shall range from 40 to 100 F. For the EconoMi\$er IV, the return air sensor, indoor enthalpy sensor, and outdoor enthalpy sensor shall be provided as field-installed accessories to provide enthalpy control, differential enthalpy control, and differential dry bulb temperature control. For the EconoMi\$er2, the enthalpy, differential temperature (adjustable), and differential enthalpy control shall be provided as field-installed accessories.
- EconoMi\$er IV controller shall use a mixed air thermistor mounted on the evaporator fan housing to control EconoMi\$er IV operation to a supply air temperature of 55 F.
- j. The EconoMi\$er IV and EconoMi\$er2 shall have a gear-driven parallel blade design.
- k. EconoMi\$er IV controller shall provide control of internal building pressure through its accessory power exhaust function. Factory set at 100%, with a range of 0% to 100%.
- EconoMi\$er2 shall be capable of control from a 4 to 20 mA signal through optional 4 to 20 mA design without microprocessor control (required for third party control interface).
- m. EconoMi\$er IV controller Occupied Minimum Damper Position Setting maintains the minimum airflow into the building during occupied period providing design ventilation rate for full occupancy (damper position during heating). A remote potentiometer may be used to override the set point.

- n. EconoMi\$er IV controller Unoccupied Minimum Damper Position Setting — The EconoMi\$er IV dampers shall be completely closed when the unit is in the occupied mode.
- EconoMi\$er IV controller IAQ/DCV Maximum Damper Position Setting — Setting the maximum position of the damper prevents the introduction of large amounts of hot or cold air into the space. This position is intended to satisfy the base minimum ventilation rate.
- p. EconoMi\$er IV controller IAQ/DCV control modulates the outdoor-air damper to provide ventilation based on the optional 2 to 10 vdc CO₂ sensor input.
- q. Compressor lockout sensor (opens at 35 F, closes at 50 F).
- Actuator shall be direct coupled to economizer gear, eliminating linkage arms and rods.
- s. Control LEDs:
 - When the outdoor air damper is capable of providing free cooling, the "Free Cool" LED shall illuminate.
 - The IAQ LED indicates when the module is on the DCV mode.
 - The EXH LED indicates when the exhaust fan contact is closed.
- t. Remote Minimum Position Control A field-installed accessory remote potentiometer allows the outdoor air damper to be opened or closed beyond the minimum position in the occupied mode for modified ventilation.

5. Two-Position Damper:

Two-position damper package shall include single blade damper and 24-v motor. Admits up to 25% outdoor air, and shall close upon unit shutoff. Damper shall cover 3.8-in. high by 17.75-in. wide (117.8 sq. in.) opening in return air upper panel.

Accessory Compressor Cycle Delay:
 Compressor shall be prevented from rest:

Compressor shall be prevented from restarting for a minimum of 5 minutes after shutdown.

* 7. Thermostats and Subbases:

To provide staged heating and cooling in addition to automatic (or manual) changeover and fan control.

- 8. Barometric Relief Damper Package:
 - Package shall include damper, seals, hardware, and hoods to relieve excess internal pressure.
 - b. Damper shall close due to gravity upon unit shutdown.
 - Damper package must be field-installed in returnair ductwork when used with optional side return connections.

Power Exhaust:

Package shall include an exhaust (propeller style) fan, $^{1}/_{2}$ Hp 208-230, 460 v (factory-wired for 460 v) direct drive motor, and damper for vertical flow units with economizer to control over-pressurization of building. Power Exhaust package must be field-installed in return-air ductwork when used with optional side return connections.

* 10. Head Pressure Control Package:

Consists of an accessory outdoor-air package and a solid-state control with condenser coil temperature sensor for controlling condenser-fan motor speed to maintain condensing temperature between 90 F and 100 F at outdoor ambient temperature down to -20 F.

GUIDE SPECIFICATIONS — 579F/580F180-300 AND 581A155,180 SIZE UNITS (cont)

11. Low-Ambient Kits:

When used, allows units to operate at lower outdoor ambient temperatures. Sizes 155, 180, 210/216, and 300 will operate down to 10 F. Size 240 will operate down to 25 F.

* 12. Enthalpy Sensor:

- a. For use with Economi\$er IV only.
- b. Capable of comparing heat content (temperature and humidity) of outdoor air and indoor air and controlling economizer cut-in point at the most economical level.

NOTE: Two accessory enthalpy sensors are required for differential enthalpy control.

13. Electronic Programmable Thermostat:

Capable of using deluxe full-featured electronic thermostat.

14. Winter Start Time-Delay Relay:

Used in conjunction with the accessory low-ambient kit or head pressure control device, permits operation in cooling at lower outdoor ambient temperatures. See price pages for more information.

15. Liquid Propane Conversion Kit:

Kit shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane gas.

16. Hinged Access Panels for the Filter, Compressors, Evaporator Fan, and Control Box Areas:

Filter hinged access panels permit tool-less entry for changing filters. Evaporator fan hinged access panel shall be field-convertible to a tool-less entry by removing and discarding screws. Each external hinged access panel shall be permanently attached to the rooftop unit.

17. Convenience Outlet:

Shall be factory-installed and internally mounted with an externally accessible 115-v, 15 amp. GFI, female receptacle with hinged cover. Voltage required to operate convenience outlet shall be provided by a field-installed separate branch circuit.

18. Non-Fused Disconnect Switch:

Shall be factory-installed, internally mounted, NEC and UL approved non-fused switch shall provide unit power shutoff. The control access door shall be interlocked with the non-fused disconnect. The disconnect switch must be in the OFF position to open the control box access door. Shall be accessible from outside the unit and shall provide power off lockout capability.

19. Alternate Drive:

Shall provide higher static drive capability to enhance evaporator-fan performance rpm range.

20. Hail Guard, Condenser Coil Grille:

Shall protect the condenser coil from hail, flying debris, and damage by large objects without increasing unit clearances.

21. Ultraviolet Germicidal Lamps:

Ultraviolet germicidal lamps are designed to eliminate odor causing mold and fungus that may develop in the wet area of the evaporator section of the unit. The high output, low temperature germicidal lamps are field installed in the evaporator section of the unit, aimed at the evaporator coil and condensate pan. The short wavelength ultraviolet light inhibits and kills mold, fungus and microbial growth. The

lamps have an output rating at 45 F in 400 fpm air-flow of 120 microwatts/cm² at 1 meter.

22. Stainless Steel Condensate Pan:

Stainless steel condensate pans shall be available for condensate collection.

23. Light Commercial Thermidistat™ Device:

Shall regulate temperature and humidity from one location. Automatic humidity control adjusts indoor humidity level between 50 and 90% RH (relative humidity) based on the outdoor temperature sensor.

24. Fan/Filter Status Switch:

Provides status of indoor (evaporator) fan (ON/OFF) or filter (CLEAN/DIRTY). Status shall be displayed over communication bus when used with direct digital controls or with an indicator light at the thermostat.

25. Manual Outdoor-Air Damper:

Manual damper package shall consist of damper, birdscreen, and rainhood which can be preset to admit up to 50% outdoor air for year-round ventilation.

High-Static Motor(s) and Drive(s):

High-static motor(s) and drive(s) shall be factory-installed to provide additional performance range.

- 27. Indoor Air Quality (CO₂) Sensor:
 - Shall have the ability to provide demand ventilation indoor air quality (IAQ) control through the economizer with an IAQ sensor.
 - The IAQ sensor shall be available in duct mount, wall mount, and wall mount with LED display. The set point shall have adjustment capability.
- 28. Return Air CO₂ Sensor (EconoMi\$er IV):

Sensor shall have the ability to provide demand ventilation control through the EconoMi\$er IV. The IAQ sensor shall be duct mounted. The set point shall have adjustment capability.

Outdoor Air Enthalpy Sensor (EconoMi\$er IV or EconoMi\$er2):

The outdoor air enthalpy sensor shall be used to provide single enthalpy control. When used in conjunction with a return air enthalpy sensor, the controller will provide differential enthalpy control. The sensor allows the controller to determine if outside air is suitable for free cooling.

Return Air Enthalpy Sensor (EconoMi\$er IV or EconoMi\$er2):

The return air enthalpy sensor shall be used with the EconoMi\$er IV or EconoMi\$er2 device. When used in conjunction with an outdoor air enthalpy sensor, the controller will provide differential enthalpy control.

Return Air Temperature Sensor (EconoMi\$er IV or EconoMi\$er2):

The return air temperature sensor shall be used with the EconoMi\$er IV or EconoMi\$er2 device. When used in conjunction with the standard outdoor air temperature sensor, the EconoMi\$er IV or EconoMi\$er2 device will provide differential temperature control.

Indoor Air Quality (CO₂) Room Sensor (EconoMi\$er IV):

Sensor shall have the ability to provide demand ventilation control through the EconoMi\$er IV. The IAQ sensor shall be wall mounted with an LED display in parts per million. The set point shall have adjustment capability.

GUIDE SPECIFICATIONS — 581A210-300 UNITS

PACKAGED ROOFTOP ELECTRIC COOLING UNIT WITH GAS HEAT — CONSTANT VOLUME APPLICATION

HVAC GUIDE SPECIFICATIONS

SIZE RANGE: 18 TO 25 TONS NOMINAL (COOLING)

250,000 TO 400,000 BTUH, NOMINAL (INPUT HEATING)

BRYANT MODEL NUMBERS: 581A

PART 1 — GENERAL

1.01 SYSTEM DESCRIPTION

Unit is an outdoor rooftop mounted, electrically controlled heating and cooling unit utilizing scroll hermetic compressors with crankcase heaters for cooling duty and gas combustion heat for heating duty. Supply air shall be discharged downward or horizontally, as shown on contract drawings.

1.02 QUALITY ASSURANCE

- A. Unit shall well exceed the energy efficiency requirements of ASHRAE standard 90.1-2001. Unit shall be Energy Star qualified.
- B. Unit shall be rated in accordance with ARI Standards 270 and 360 and all units shall be designed in accordance with UL Standard 1995.
- C. Unit shall be designed to conform to ASHRAE 15.
- D. Unit shall be UL and UL, Canada, tested and certified in accordance with ANSI Z21.47 Standards as a total package.
- E. Roof curb shall be designed to conform to NRCA Standards.
- F. Insulation and adhesive shall meet NFPA 90A requirements for flame spread and smoke generation.
- G. Unit casing shall be capable of withstanding 500-hour salt spray exposure per ASTM B117 (scribed specimen).
- H. Unit shall be manufactured in a facility registered to ISO 9001:2000.

1.03 DELIVERY, STORAGE, AND HANDLING

Unit shall be stored and handled per manufacturer's recommendations.

PART 2 — PRODUCTS

2.01 EQUIPMENT (STANDARD)

A. General:

The 581A unit shall be a factory assembled, single-piece heating and cooling unit. Contained within the unit enclosure shall be all factory wiring, piping, controls, refrigerant charge (R-22), and special features required prior to field start-up.

B. Unit Cabinet:

 Constructed of galvanized steel (G90 — 1.8 oz. of zinc per square foot of sheet metal), bonderized and primer-coated on both sides and coated with a baked polyester thermosetting powdercoating finish on the outer surface. The color of this pre-painted steel is referred to as "American Sterling," a gray color. Bryant's paint specification for this color is PH184.

Color: American Sterling, this gray color is to match federal standard 595a, #26231.

Gloss (per ASTM 0523, 60 deg. F): 60.

Hardness of paint film: H-2H pencil hardness.

- 2. Indoor blower compartment interior surfaces shall be insulated with a minimum 1/2-in. thick, 1 lb density fiberglass insulation. Fiberglass insulation shall be bonded with a thermosetting resin (8 to 12% by weight nominal, phenol formaldehyde typical), and coated with an acrylic or other material that meets the NFPA 90 flame retardance requirements and has an "R" Value of 3.70. Aluminum foil-faced fiberglass insulation shall be used in the gas heat compartment.
- Cabinet panels shall have minimum 1/2-in. thick, 1.5-lb. density insulation. Each external access panel shall be permanently attached to the rooftop unit. Panels shall also include tiebacks.
- 4. Filters shall be accessible through an access panel.
- Holes shall be provided in the base rails (minimum 14 gage) for rigging shackles and level travel and movement during overhead rigging operations.
- 6. Fork lift slots shall be available from two sides of the unit (end and side).
- Unit shall contain a sloped drain pan, to prevent standing water from accumulating. Pan shall be fabricated of epoxy powder coated steel.

C. Fans:

- 1. Indoor blower (evaporator fan):
 - a. Centrifugal supply air blower shall have pillowblock ball bearings and adjustable belt drive. Blower assembly shall slide out of unit for servicing.
 - Fan wheel shall be made from steel with a corrosion resistant finish. It shall be a dynamically balanced, double-inlet type with forward-curved blades.
 - The indoor fan system (blower wheels, motors, belts, and both bearings) shall slide out for easy access.
- Condenser fans shall be of the direct-driven propeller type, with corrosion-resistant blades riveted to corrosion-resistant steel supports. They shall be dynamically balanced and discharge air upwards. Condenser fan motors shall be totally enclosed and be of a shaft down design.
- 3. Induced-draft blower shall be of the direct-driven, single inlet, forward-curved, centrifugal type. It shall be made from steel with a corrosion-resistant finish and shall be dynamically balanced.

D. Compressor(s):

- 1. Fully hermetic, scroll type, internally protected.
- 2. Factory spring-shock mounted and internally spring mounted for vibration isolation.
- On electrically and mechanically independent refrigerant circuits.
- 4. Reverse rotation protection capability.
- Crankcase heaters shall only be activated during compressor OFF mode.

E. Coils:

- Standard evaporator and condenser coils shall have copper or aluminum plate fins mechanically bonded to seamless internally grooved copper tubes with all joints brazed.
- Coils shall be leak tested at 150 psig (1034 kPa) and pressure tested at 450 psig (3103 kPa).

GUIDE SPECIFICATIONS — 581A210-300 UNITS (cont)

- 3. Optional pre-coated aluminum-fin coils shall have a durable epoxy-phenolic coating to provide protection in mildly corrosive coastal environments. Coating shall be applied to the aluminum fin stock prior to the fin stamping process to create an inert barrier between the aluminum fin and copper tube. Epoxyphenolic barrier shall minimize galvanic action between dissimilar metals.
- 4. Copper-fin coils shall be constructed of copper fins mechanically bonded to copper tubes and copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting the sheet metal coil pan to minimize potential for galvanic corrosion between coil and pan. All copper construction shall provide protection in moderate coastal environments.
- 5. E-Coated aluminum-fin coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss -60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in./lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90. Coil construction shall be aluminum fins mechanically bonded to copper tubes.
- 6. E-Coated copper-fin coils shall have a flexible epoxy polymer coating uniformly applied to all coil surface areas without material bridging between fins. Coating process shall ensure complete coil encapsulation. Color shall be high gloss black with gloss — 60 deg of 65 to 90% per ASTM D523-89. Uniform dry film thickness from 0.8 to 1.2 mil on all surface areas including fin edges. Superior hardness characteristics of 2H per ASTM D3363-92A and cross-hatch adhesion of 4B-5B per ASTM D3359-93. Impact resistance shall be up to 160 in./lb (ASTM D2794-93). Humidity and water immersion resistance shall be up to minimum 1000 and 250 hours respectively (ASTM D2247-92 and ASTM D870-92). Corrosion durability shall be confirmed through testing to be no less than 1000 hours salt spray per ASTM B117-90. Coil construction shall be copper fins mechanically bonded to copper tubes with copper tube sheets. Galvanized steel tube sheets shall not be acceptable. A polymer strip shall prevent coil assembly from contacting sheet metal coil pan to maintain coating integrity and minimize corrosion potential between coil and pan.

F. Heating Section:

- Induced-draft combustion type with energy saving direct-spark ignition system and redundant main gas valve with 2-stage capability.
- The heat exchanger shall be of the tubular-section type constructed of a minimum of 20-gage steel coated with a nominal 1.2 mil aluminum-silicone alloy for corrosion resistance.
- Burners shall be of the in-shot type constructed of aluminum-coated steel.
- 4. All gas piping shall enter the unit at a single location.

- Stainless steel heat exchanger (minimum 20 Ga type 409 stainless steel) shall be available.
- G. Refrigerant Components:

Each refrigerant circuit shall include:

- Thermostatic expansion valve (TXV) with removable power element.
- 2. Filter driers.
- Gage port and connections on suction and discharge.

H. Filter Section:

Standard filter section shall consist of factory-installed 2-in. thick throwaway fiberglass filters.

- I. Controls and Safeties:
 - 1. Electro-Mechanical Control:
 - a. Economizer control (optional).
 - b. Capacity control (2-step).
 - c. Unit shall be complete with self-contained low-voltage control circuit.

2. Safeties:

- a. Unit shall incorporate a solid-state compressor lockout which provides optional reset capability at the space thermostat, should any of the following safety devices trip and shut off compressor:
 - Compressor lockout protection provided for either internal or external overload.
 - 2) Low-pressure protection.
 - 3) Freeze protection (evaporator coil).
 - 4) High-pressure protection (high pressure switch or internal).
- b. Induced draft heating section shall be provided with the following minimum protections:
 - 1) High-temperature limit switch.
 - 2) Induced-draft motor speed sensor.
 - 3) Flame rollout switch.
 - 4) Flame proving controls.
 - 5) Redundant gas valve.

J. Operating Characteristics:

- Unit shall be capable of starting and running at 125 F ambient outdoor temperature per maximum load criteria of ARI Standard 360.
- 2. Unit with standard controls will operate in cooling down to an outdoor ambient temperature of 40 F.
- Size 18 and 20 ton units shall have 3 fully independent refrigerant circuits to allow for 33% capacity per circuit.

K. Electrical Requirements:

All unit power wiring shall enter unit cabinet at a single location.

L. Motors:

- Compressor motors shall be cooled by refrigerant gas passing through motor windings and shall have line break thermal and current overload protection.
- All fan motors shall have permanently lubricated, sealed bearings and inherent automatic-reset thermal overload protection or manual reset calibrated circuit breakers.
- All indoor-fan motors 5 hp and larger shall meet the minimum efficiency requirements as established by the Energy Policy Act of 1992 (EPACT), effective October 24, 1997.

GUIDE SPECIFICATIONS — 581A210-300 UNITS (cont)

M. Special Features:

Certain features are not applicable when the features designated * are specified. For assistance in amending the specifications, contact your local Bryant Sales Office.

- 1. Full Perimeter Roof Curbs (Horizontal and Vertical):
 - Formed of 14-gage galvanized steel with wood nailer strip and shall be capable of supporting entire unit weight.
 - b. Permits installing and securing ductwork to curb prior to mounting unit on the curb.
 - Retrofit roof curb kit shall be available for fit up to existing Bryant roof curbs.

* 2. Integrated Economizer:

- Integrated integral modulating type capable of simultaneous economizer and compressor operation.
- Available as a factory-installed option in vertical supply/return configuration only. (Available as a field-installed accessory for dedicated horizontal and/or vertical supply return configurations.)
- Includes all hardware and controls to provide cooling with outdoor air.
- d. Equipped with low-leakage dampers, not to exceed 2% leakage at 1 in. wg pressure differential.
- e. Capable of introducing up to 100% outdoor air.
- f. EconoMi\$er IV shall be equipped with a barometric relief damper.
- g. Designed to close damper(s) during loss-ofpower situations with spring return built into motor.
- h. Dry bulb outdoor-air temperature sensor shall be provided as standard. Outdoor air sensor set point is adjustable and shall range from 40 to 100 F. For the EconoMi\$er IV, the return air sensor, indoor enthalpy sensor, and outdoor enthalpy sensor shall be provided as field-installed accessories to provide enthalpy control, differential enthalpy control, and differential dry bulb temperature control.
- EconoMi\$er IV controller shall use a mixed air thermistor mounted on the evaporator fan housing to control EconoMi\$er IV operation to a supply air temperature of 55 F.
- j. The EconoMi\$er IV shall have a gear-driven parallel blade design.
- k. EconoMi\$er IV controller shall provide control of internal building pressure through its accessory power exhaust function. Factory set at 100%, with a range of 0% to 100%.
- I. EconoMi\$er IV controller Occupied Minimum Damper Position Setting maintains the minimum airflow into the building during occupied period providing design ventilation rate for full occupancy (damper position during heating). A remote potentiometer may be used to override the set point.
- m. EconoMi\$er IV controller Unoccupied Minimum Damper Position Setting — The EconoMi\$er IV dampers shall be completely closed when the unit is in the occupied mode.
- EconoMi\$er IV controller IAQ/DCV control modulates the outdoor-air damper to provide ventilation based on the optional 2 to 10 vdc CO₂ sensor input.
- Compressor lockout sensor (opens at 35 F, closes at 50 F).
- Actuator shall be direct coupled to economizer gear, eliminating linkage arms and rods.

q. Control LEDs:

- When the outdoor air damper is capable of providing free cooling, the "Free Cool" LED shall illuminate.
- The IAQ LED indicates when the module is on the DCV mode.
- The EXH LED indicates when the exhaust fan contact is closed.
- r. Remote Minimum Position Control A field-installed accessory remote potentiometer allows the outdoor air damper to be opened or closed beyond the minimum position in the occupied mode for modified ventilation.

* 3. Barometric Relief Damper Package:

- a. Package shall include damper, seals, hardware, and hoods to relieve excess internal pressure.
- b. Damper shall close due to gravity upon unit shutdown.

Power Exhaust:

Package shall include an exhaust (centrifugal style) fan, 1 Hp 208-230, 460 v (factory-wired for 460 v) direct-drive motor, and damper for vertical flow units with economizer to control over-pressurization of building.

* 5. Thermostats and Subbases:

Units shall provide staged heating and cooling in addition to automatic (or manual) changeover and fan control.

6. Hot Gas Bypass Dehumidification Package:

The dehumidification package is a factory-installed option that provides increased dehumidification by diverting hot gas from the compressor to the HGRH coil to provide approximately 75 F leaving air temperature dehumidifying the air but NOT overcooling the space. The package consists of a single row, 12.25 sq ft subcooling coil located on the leaving air-side of the evaporator coil. The location of this coil in the indoor airstream greatly enhances the latent capacity of the unit.

The package shall be equipped with low pressure switch(es) and TXVs. Low pressure switch(es) prevents evaporator coil freeze-up and TXVs assure a positive superheat condition. If the operation of the Hot Gas Reheat (HGRH) coil is controlled by a field-installed wall-mounted humidistat, the dehumidification circuit will then operate only when needed. Optional field connections for the humidistat are made in the low voltage compartment of the unit control box.

7. Humidistat:

Field-installed, wall-mounted humidistat is used to control activation of the dehumidification package. The humidistat can be set for humidity levels between 20% and 80% relative humidity.

* 8. Electronic Programmable Thermostat:

Thermostat shall be capable of using deluxe full-featured electronic thermostat.

9. Liquefied Propane Conversion Kit:

Kit shall contain all the necessary hardware and instructions to convert a standard natural gas unit for use with liquefied propane gas.

10. Convenience Outlet:

Outlet shall be factory-installed and internally mounted with an externally accessible 115-v, 15 amp GFI, female receptacle with hinged cover. A step down transformer shall be included so no additional wiring is necessary.

GUIDE SPECIFICATIONS — 581A210-300 UNITS (cont)

11. Non-Fused Disconnect Switch:

Switch shall be factory-installed, internally mounted, NEC and UL approved. Non-fused switch shall provide unit power shutoff. Shall be accessible from outside the unit and shall provide power off lockout capability.

12. Hail Guard, Condenser Coil Grille:

Grille shall protect the condenser coil from hail, flying debris, and damage by large objects without increasing unit clearances.

13. Horizontal Kit:

Horizontal kit shall contain all the necessary hardware to convert a vertical airflow unit to a horizontal airflow unit.

The unit shall also be available as a horizontal airflow unit directly from the factory.

14. Return Air Smoke Detector:

The smoke detector shall send input to the controller to shut down the unit in case smoke is detected. The smoke detector shall be factory installed in the return air section or shall be available as a field-installed accessory.

15. Two-Position Damper:

The damper shall admit up to 25% outdoor air and shall close upon shutdown. The package shall include a single-blade damper and motor.

16. Manual Damper:

The damper shall have a manually adjustable outside air intake for up to 33% outside air.

17. 30% Filters:

The filters shall be 30% efficient. The filters shall be 2-in., pleated filters.

18. Standard Motor with Alternate Drive:

The alternate drive shall provide high-static drive capability to enhance evaporator fan performance.

19. Alternate Motor with Standard Drive:

The alternate motor shall provide high-static motor capability to enhance evaporator fan performance.

20. Alternate Motor with Optional Drive:

The alternate motor and optional drive shall provide high-static motor and drive capability to enhance evaporator fan performance.

21. Four-in. Filter Capability:

The unit shall be capable of accepting 4-in. filters by removal of the factory-supplied 2-in. filters and filter rack and installation of a specially designed filter bracket.

22. Supply Air Smoke Detector:

The smoke detector shall send input to the controller to shut down the unit in case smoke is detected. The smoke detector shall be factory installed in the supply air section or shall be available as a field-installed accessory.

23. Supply and Return Air Smoke Detector:

The smoke detector shall send input to the controller to shut down the unit in case smoke is detected. The smoke detector shall be factory installed in the supply and return air sections or shall be available as a field-installed accessory.

24. HACR Breaker:

The HACR circuit breaker shall be factory installed.

25. Thru-the-Curb Utility Connectors:

Kit shall provide connectors to permit gas and electrical connections to be brought to the unit through the roof curb.

26. Condensate Overflow Switch:

The condensate overflow switch shall close when the condensate level in the pan rises above switch.

27. Outdoor Air Enthalpy Sensor (EconoMi\$er IV):

The outdoor air enthalpy sensor is used to sense outdoor air enthalpy for the EconoMi\$er IV device. The outdoor air humidity sensor, in conjunction with the standard outdoor air temperature sensor, shall be used with the EconoMi\$er IV device to provide outdoor enthalpy. Outdoor air enthalpy shall be calculated by the EconoMi\$er IV device from the outdoor air temperature and enthalpy readings. When the outdoor air enthalpy sensor is installed, the EconoMi\$er IV can perform Outdoor Air Enthalpy control. With the additional installation of an accessory return air temperature sensor and return air enthalpy sensor, differential enthalpy control can also be performed.

28. Return Air Enthalpy Sensor (EconoMi\$er IV):

The return air enthalpy sensor is used to sense return air enthalpy for the EconoMi\$er IV device. The return air enthalpy sensor, in conjunction with the accessory return air temperature sensor, shall be used with the EconoMi\$er IV device to provide return air enthalpy. Return air enthalpy shall be calculated by the EconoMi\$er IV device from the return air temperature and humidity readings. With the additional installation of an accessory return air temperature sensor and outdoor air enthalpy sensor, differential enthalpy control can also be performed.

29. Return Air Temperature Sensor (EconoMi\$er IV):

The return air temperature sensor is used to sense return air temperature for the EconoMi\$er IV device. When the return air temperature sensor is installed, the EconoMi\$er IV can perform Differential Temperature control. The return air temperature sensor, in conjunction with the accessory return air humidity sensor, shall be used with the EconoMi\$er IV device to provide return air enthalpy. Return air enthalpy shall be calculated by the EconoMi\$er IV device from the return air temperature and humidity readings. With the additional installation of an accessory return air enthalpy sensor and outdoor air humidity sensor, differential enthalpy control can also be performed.

30. Indoor Air Quality (CO₂) Room Sensor (EconoMi\$er

Sensor shall have the ability to provide demand ventilation control through the EconoMi\$er IV. The IAQ sensor shall be wall mounted with an LED display in parts per million. The set point shall have adjustment capability.

31. Return Air CO₂ Sensor (EconoMi\$er IV):

Sensor shall have the ability to provide demand ventilation control through the EconoMi\$er IV. The IAQ sensor shall be duct mounted. The set point shall have adjustment capability.

CONTROLS

OPERATING SEQUENCE, SIZE 024-151 UNITS

Cooling, Units Without Economizer — When thermostat calls for cooling, terminals G and Y1 are energized. The indoor-fan contactor (IFC) and compressor contactor are energized and indoor-fan motor, compressor, and outdoor fan starts. The outdoor-fan motor runs continuously while unit is cooling.

For units with 2 stages of cooling, if the thermostat calls for a second stage of cooling by energizing Y2, compressor contactor no. 2 (C2) is energized and compressor no. 2 starts.

Heating, Units Without Economizer — When the thermostat calls for heating, terminal W1 is energized. To prevent thermostat short-cycling, the unit is locked into the Heating mode for at least 1 minute when W1 is energized. The induced-draft motor is energized and the burner ignition sequence begins. The indoor (evaporator) fan motor (IFM) is energized 45 seconds after a flame is ignited. On units equipped for two stages of heat, when additional heat is needed, W2 is energized and the high-fire solenoid on the main gas valve (MGV) is energized. When the thermostat is satisfied and W1 is deenergized, the IFM stops after a 45-second time-off delay.

Cooling, Units With EconoMi\$er IV — When free cooling is not available, the compressors will be controlled by the zone thermostat. When free cooling is available, the outdoor-air damper is modulated by the EconoMi\$er IV control to provide a 50 to 55 F mixed-air temperature into the zone. As the mixed-air temperature fluctuates above 55 or below 50 F, the dampers will be modulated (open or close) to bring the mixed-air temperature back within control.

If mechanical cooling is utilized with free cooling, the outdoor-air damper will maintain its current position at the time the compressor is started. If the increase in cooling capacity causes the mixed-air temperature to drop below 45 F, then the outdoor-air damper position will be decreased to the minimum position. If the mixed-air temperature continues to fall, the outdoor-air damper will close. Control returns to normal once the mixed-air temperature rises above 48 F.

If optional power exhaust is installed, as the outdoor-air damper opens and closes, the power exhaust fans will be energized and deenergized.

If field-installed accessory CO_2 sensors are connected to the EconoMi\$er IV control, a demand controlled ventilation strategy will begin to operate. As the CO_2 level in the zone increases above the CO_2 set point, the minimum position of the damper will be increased proportionally. As the CO_2 level decreases because of the increase in fresh air, the outdoor-air damper will be proportionally closed.

For EconoMi\$er IV operation, there must be a thermostat call for the fan (G). If the unit is occupied and the fan is on, the damper will operate at minimum position. Otherwise, the damper will be closed when the thermostat is satisfied.

When the EconoMi\$er IV control is in the occupied mode and a call for cooling exists (Y1 on the thermostat), the control will first check for indoor fan operation. If the fan is not on, then cooling will not be activated. If the fan is on, then the control will open the EconoMi\$er IV damper to the minimum position.

On the initial power to the EconoMi\$er IV control, it will take the damper up to $2^{1}/_{2}$ minutes before it begins to position itself. Any change in damper position will take up to 30 seconds to initiate. Damper movement from full closed to full open (or vice versa) will take between $1^{1}/_{2}$ and $2^{1}/_{2}$ minutes.

If free cooling can be used as determined from the appropriate changeover command (switch, dry bulb, enthalpy curve, differential dry bulb, or differential enthalpy), then the control will modulate the dampers open to maintain the mixed-air temperature set point at 50 to 55 F.

If there is a further demand for cooling (cooling second stage — Y2 is energized), then the control will bring on compressor stage 1 to maintain the mixed-air temperature set point. The EconoMi\$er IV damper will be open at maximum position. EconoMi\$er IV operation is limited to a single compressor.

Heating, Units With Economizer

NOTE: The units have 2 stages of heat.

When the thermostat calls for heating, power is sent to W1 on the IGC (integrated gas unit controller) board. An LED (light-emitting diode) on the IGC board will be on during normal operation. A check is made to ensure that the rollout switch and limit switch are closed and the induced-draft motor is running. The induced-draft motor is then energized, and when speed is proven with the hall effect sensor on the motor, the ignition activation period begins. The burners will ignite within 5 seconds.

If the burners do not light, there is a 22-second delay before another 5-second attempt. If the burners still do not light, this sequence is repeated for 15 minutes. After the 15 minutes have elapsed, if the burners still have not lit, heating is locked out. To reset the control, break 24-v power to the thermostat.

When ignition occurs the IGC board will continue to monitor the condition of the rollout and limit switches, the hall effect sensor, as well as the flame sensor. If the unit is controlled through a room thermostat set for fan auto., 45 seconds after ignition occurs, the indoor-fan motor will be energized (and the outdoorair dampers will open to their minimum position). If for some reason the overtemperature limit opens prior to the start of the indoor fan blower, on the next attempt, the 45-second delay will be shortened to 5 seconds less than the time from initiation of heat to when the limit tripped. Gas will not be interrupted to the burners and heating will continue. Once modified, the fan on delay will not change back to 45 seconds unless power is reset to the control.

When additional heat is required, W2 closes and initiates power to the second stage of the main gas valve. When the thermostat is satisfied, W1 and W2 open and the gas valve closes, interrupting the flow of gas to the main burners. If the call for W1 lasted less than 1 minute, the heating cycle will not terminate until 1 minute after W1 became active. If the unit is controlled through a room thermostat set for fan auto., the indoor-fan motor will continue to operate for an additional 45 seconds then stop (and the outdoor-air dampers will close). If the overtemperature limit opens after the indoor motor is stopped within 10 minutes of W1 becoming inactive, on the next cycle the time will be extended by 15 seconds. The maximum delay is 3 minutes. Once modified, the fan off delay will not change back to 45 seconds unless power is reset to the control.

When the thermostat is satisfied and W1 and W2 are deenergized, the IFM continues to run and the economizer damper then moves to the minimum position.

OPERATING SEQUENCE, 580F180-300, 579F150-300 AND 581A155,180

Cooling, Units Without Economizer — When thermostat calls for cooling, terminals G and Y1 are energized. The indoor (evaporator) fan contactor (IFC) and compressor contactor no. 1 (C1) are energized, and evaporator-fan motor (IFM), compressor no. 1 and condenser fan(s) start. The condenser-fan motor(s) runs continuously while unit is cooling. When the thermostat calls for a second stage of cooling by energizing Y2, compressor contactor no. 2 (C2) is energized and compressor no. 2 starts.

CONTROLS (cont)

Heating, Units Without Economizer — When the thermostat calls for heating, power is sent to W on the IGC (integrated gas unit controller) board. An LED (light-emitting diode) on the IGC board will be on during normal operation. A check is made to ensure that the rollout switch and limit switch are closed. The induced-draft motor is then energized, and when speed is proven with the hall effect sensor on the motor, the ignition activation period begins. The burners will ignite within 5 seconds.

If the burners do not light, there is a 22-second delay before another 5-second attempt. If the burners still do not light, this sequence is repeated for 15 minutes. After the 15 minutes have elapsed, if the burners still have not lit, heating is locked out. To reset the control, break 24-v power to the thermostat.

When ignition occurs the IGC board will continue to monitor the condition of the rollout and limit switches, the hall effect sensor, as well as the flame sensor. If the unit is controlled through a room thermostat set for fan auto., 45 seconds after ignition occurs, the indoor-fan motor will be energized. If for some reason the overtemperature limit opens prior to the start of the indoor fan blower, on the next attempt, the 45-second delay will be shortened to 5 seconds less than the time from initiation of heat to when the limit tripped. Gas will not be interrupted to the burners and heating will continue. Once modified, the fan on delay will not change back to 45 seconds unless power is reset to the control.

When additional heat is required, W2 closes and initiates power to the second stage of the main gas valve. When the thermostat is satisfied, W1 and W2 open and the gas valve closes, interrupting the flow of gas to the main burners. If the call for W1 lasted less than 1 minute, the heating cycle will not terminate until 1 minute after W1 became active. If the unit is controlled through a room thermostat set for fan auto., the indoor-fan motor will continue to operate for an additional 45 seconds then stop. If the overtemperature limit opens after the indoor motor is stopped within 10 minutes of W1 becoming inactive, on the next cycle the time will be extended by 15 seconds. The maximum delay is 3 minutes. Once modified, the fan off delay will not change back to 45 seconds unless power is reset to the control.

An LED indicator is provided on the IGC to monitor operation. The IGC is located by removing the side panel and viewing the IGC through the view port located in the control box access panel. During normal operation, the LED is continuously on.

Cooling, Units With EconoMi\$er IV — When free cooling is not available, the compressors will be controlled by the zone thermostat. When free cooling is available, the outdoor-air damper is modulated by the EconoMi\$er IV control to provide a 50 to 55 F mixed-air temperature into the zone. As the mixed-air temperature fluctuates above 55 or below 50 F, the dampers will be modulated (open or close) to bring the mixed-air temperature back within control.

If mechanical cooling is utilized with free cooling, the outdoor-air damper will maintain its current position at the time the compressor is started. If the increase in cooling capacity causes the mixed-air temperature to drop below 45 F, then the outdoor-air damper position will be decreased to the minimum position. If the mixed-air temperature continues to fall, the outdoor-air damper will close. Control returns to normal once the mixed-air temperature rises above 48 F.

If optional power exhaust is installed, as the outdoor-air damper opens and closes, the power exhaust fans will be energized and deenergized.

If field-installed accessory CO_2 sensors are connected to the EconoMi\$er IV control, a demand controlled ventilation strategy will begin to operate. As the CO_2 level in the zone increases above the CO_2 set point, the minimum position of the damper will be increased proportionally. As the CO_2 level decreases because of the increase in fresh air, the outdoor-air damper will be proportionally closed.

For EconoMi\$er IV operation, there must be a thermostat call for the fan (G). If the unit is occupied and the fan is on, the damper will operate at minimum position. Otherwise, the damper will be closed.

When the EconoMi\$er IV control is in the occupied mode and a call for cooling exists (Y1 on the thermostat), the control will first check for indoor fan operation. If the fan is not on, then cooling will not be activated. If the fan is on, then the control will open the EconoMi\$er IV damper to the minimum position.

On the initial power to the EconoMi\$er IV control, it will take the damper up to $2^{1}/_{2}$ minutes before it begins to position itself. Any change in damper position will take up to 30 seconds to initiate. Damper movement from full closed to full open (or vice versa) will take between $1^{1}/_{2}$ and $2^{1}/_{2}$ minutes.

If free cooling can be used as determined from the appropriate changeover command (switch, dry bulb, enthalpy curve, differential dry bulb, or differential enthalpy), then the control will modulate the dampers open to maintain the mixed-air temperature set point at 50 to 55 F.

If there is a further demand for cooling (cooling second stage — Y2 is energized), then the control will bring on compressor stage 1 to maintain the mixed-air temperature set point. The EconoMi\$er IV damper will be open at maximum position. EconoMi\$er IV operation is limited to a single compressor.

Heating, Units With Economizer

NOTE: The units have 2 stages of heat.

When the thermostat calls for heating, power is sent to W1 on the IGC (integrated gas unit controller) board. An LED (light-emitting diode) on the IGC board will be on during normal operation. A check is made to ensure that the rollout switch and limit switch are closed and the induced-draft motor is running. The induced-draft motor is then energized, and when speed is proven with the hall effect sensor on the motor, the ignition activation period begins. The burners will ignite within 5 seconds.

If the burners do not light, there is a 22-second delay before another 5-second attempt. If the burners still do not light, this sequence is repeated for 15 minutes. After the 15 minutes have elapsed, if the burners still have not lit, heating is locked out. To reset the control, break 24-v power to the thermostat.

When ignition occurs the IGC board will continue to monitor the condition of the rollout and limit switches, the hall effect sensor, as well as the flame sensor. If the unit is controlled through a room thermostat set for fan auto., 45 seconds after ignition occurs, the indoor-fan motor will be energized (and the outdoor-air dampers will open to their minimum position). If for some reason the overtemperature limit opens prior to the start of the indoor fan blower, on the next attempt, the 45-second delay will be shortened to 5 seconds less than the time from initiation of heat to when the limit tripped. Gas will not be interrupted to the burners and heating will continue. Once modified, the fan on delay will not change back to 45 seconds unless power is reset to the control.

When additional heat is required, W2 closes and initiates power to the second stage of the main gas valve. When the thermostat is satisfied, W1 and W2 open and the gas valve closes, interrupting the flow of gas to the main burners. If the call for W1 lasted less than 1 minute, the heating cycle will not terminate until 1 minute after W1 became active. If the unit is controlled through a room thermostat set for fan auto., the indoor-fan motor will continue to operate for an additional 45 seconds then stop (and the outdoor-air dampers will close). If the overtemperature limit opens after the indoor motor is stopped within 10 minutes of W1 becoming inactive, on the next cycle the time will be extended by 15 seconds. The maximum delay is 3 minutes. Once modified, the fan off delay will not change back to 45 seconds unless power is reset to the control.

CONTROLS (cont)

When the thermostat is satisfied and W1 and W2 are deenergized, the IFM continues to run and the economizer damper then moves to the minimum position.

Units With Hot Gas Bypass Dehumidification Package — When thermostat calls for cooling, terminals G and Y1 and Y2 and the compressor contactors C1 and C2 are energized. The indoor (evaporator) fan motor (IFM), compressor, and outdoor (condenser) fan motor (OFM) start. The OFM runs continuously while the unit is in cooling. As shipped from the factory, hot gas bypass dehumidification circuit is always energized. If hot gas bypass circuit modulation is desired, a field-installed, wall-mounted humidistat is required.

If the hot gas bypass humidistat is installed and calls for the hot gas bypass subcooler coil to operate, the humidistat internal switch closes. This energizes and closes the liquid line solenoid valve coil (LLSV) of the hot gas bypass circuit, forcing the hot liquid refrigerant of the liquid line to enter the subcooler coil. As the hot liquid passes through the subcooler coil, it is exposed to the cold supply airflow coming off from the evaporator coil and the liquid is further cooled to a temperature approaching the evaporator coil leaving-air temperature. The state of the refrigerant leaving the subcooler coil is a highly subcooled liquid refrigerant. The liquid then enters a thermostatic expansion valve (TXV) where the liquid is dropped to a lower pressure. The TXV does not have a pressure drop great enough to change the liquid to a 2-phase fluid. The TXV can throttle the pressure drop of the liquid refrigerant and maintain proper conditions at the compressor suction valve over a wide range of operating conditions. The liquid then enters a second fixed restrictor expansion device for a second pressure drop to a 2-phase fluid. The liquid proceeds to the evaporator coil at a temperature lower than normal cooling operation. This lower temperature is what increases the latent capacity of the rooftop. The 2-phase refrigerant passes through the evaporator and is changed into a vapor. The air passing over the evaporator coil will become colder than during normal operation as a result of the colder refrigerant temperatures. However, as it passes over the subcooler coil, the air will be warmed slightly.

As the refrigerant leaves the evaporator, the refrigerant passes a low-pressure switch in the suction line. This low-pressure switch will de-activate the hot gas bypass package when the suction pressure reaches 60 psig. The low-pressure switch is an added safety device to protect against evaporator coil freeze-up. The low-pressure switch will only de-activate and open the liquid line solenoid valve in the hot gas bypass circuit. The compressors will continue to run as long as there is a call for cooling, regardless of the position of the low-pressure switch. The solenoid valve and the hot gas bypass package will be re-activated only when the call for cooling has been satisfied, the low-pressure switch has closed, and a new call for cooling exists. The crankcase heaters on the scroll compressor provide additional protection for the compressor due to the additional refrigerant charge in the subcooler.

When the humidistat is satisfied, the humidistat internal switch opens cutting power to and opening the LLSV. The refrigerant is routed back through the evaporator and the subcooler coil is removed from the refrigerant loop.

When the thermostat is satisfied, C1 and C2 are deenergized and the compressor and OFM shut off. After a 30-second delay, the IFM shuts off. If the thermostat fan selector switch is in the ON position, the IFM will run continuously.

OPERATING SEQUENCE, 581A210-300

Cooling, Units Without Economizer — When thermostat calls for cooling, terminals G and Y1 are energized. The indoor-fan contactor (IFC) and compressor contactors A1 and B1 (except 300 units) are energized and indoor-fan motor, compressor, and outdoor fan starts. The outdoor fan motor runs continuously while unit is cooling. If further cooling is required, the Y2 output

from the thermostat energizes compressor contactor C1 (B1 on 300 units).

Heating, Units Without Economizer

NOTE: The 581A210-300 units have 2 stages of heat.

When the thermostat calls for heating, power is sent to W on the IGC (integrated gas unit controller) board. An LED (light-emitting diode) on the IGC board will be on during normal operation. A check is made to ensure that the rollout switch and limit switch are closed and the induced-draft motor is running. The induced-draft motor is then energized, and when speed is proven with the hall effect sensor on the motor, the ignition activation period begins. The burners will ignite within 5 seconds.

If the burners do not light, there is a 22-second delay before another 5-second attempt. If the burners still do not light, this sequence is repeated for 15 minutes. After the 15 minutes have elapsed, if the burners still have not lit, heating is locked out. To reset the control, break 24-v power to the thermostat. When ignition occurs the IGC board will continue to monitor the condition of the rollout and limit switches, the hall effect sensor, as well as the flame sensor. If the unit is controlled through a room thermostat set for fan auto., 45 seconds after ignition occurs, the indoor-fan motor will be energized (and the outdoor-air dampers will open to their minimum position). If for some reason the overtemperature limit opens prior to the start of the indoor fan blower, on the next attempt, the 45-second delay will be shortened to 5 seconds less than the time from initiation of heat to when the limit tripped. Gas will not be interrupted to the burners and heating will continue.

Once modified, the fan on delay will not change back to 45 seconds unless power is reset to the control.

When additional heat is required, W2 closes and initiates power to the second stage of the main gas valve. When the thermostat is satisfied, W1 and W2 open and the gas valve closes, interrupting the flow of gas to the main burners. If the call for W1 lasted less than 1 minute, the heating cycle will not terminate until 1 minute after W1 became active. If the unit is controlled through a room thermostat set for fan auto., the indoor-fan motor will continue to operate for an additional 45 seconds then stop (and the outdoor-air dampers will close).

If the overtemperature limit opens after the indoor motor is stopped within 10 minutes of W1 becoming inactive, on the next cycle the time will be extended by 15 seconds. The maximum delay is 3 minutes. Once modified, the fan off delay will not change back to 45 seconds unless power is reset to the control.

A LED indicator is provided on the IGC to monitor operation. The IGC is located by removing the side panel and viewing the IGC through the view port located in the control box access panel. During normal operation, the LED is continuously on.

Cooling, Units With EconoMi\$er IV — When free cooling is not available, the compressors will be controlled by the zone thermostat. When free cooling is available, the outdoor-air damper is modulated by the EconoMi\$er IV control to provide a 50 to 55 F mixed-air temperature into the zone. As the mixed-air temperature fluctuates above 55 or below 50 F, the dampers will be modulated (open or close) to bring the mixed-air temperature back within control.

If mechanical cooling is utilized with free cooling, the outdoor-air damper will maintain its current position at the time the compressor is started. If the increase in cooling capacity causes the mixed-air temperature to drop below 45 F, then the outdoor-air damper position will be decreased to the minimum position. If the mixed-air temperature continues to fall, the outdoor-air damper will close. Control returns to normal once the mixed-air temperature rises above 48 F.

If optional power exhaust is installed, as the outdoor-air damper opens and closes, the power exhaust fans will be energized and deenergized.

CONTROLS (cont)

If field-installed accessory CO_2 sensors are connected to the EconoMi\$er IV control, a demand controlled ventilation strategy will begin to operate. As the CO_2 level in the zone increases above the CO_2 set point, the minimum position of the damper will be increased proportionally. As the CO_2 level decreases because of the increase in fresh air, the outdoor-air damper will be proportionally closed.

For EconoMi\$er IV operation, there must be a thermostat call for the fan (G). If the unit is occupied and the fan is on, the damper will operate at minimum position. Otherwise, the damper will be closed.

When the EconoMi\$er IV control is in the occupied mode and a call for cooling exists (Y1 on the thermostat), the control will first check for indoor fan operation. If the fan is not on, then cooling will not be activated. If the fan is on, then the control will open the EconoMi\$er IV damper to the minimum position.

On the initial power to the EconoMi\$er IV control, it will take the damper up to $2^{1}/_{2}$ minutes before it begins to position itself. Any change in damper position will take up to 30 seconds to initiate. Damper movement from full closed to full open (or vice versa) will take between $1^{1}/_{2}$ and $2^{1}/_{2}$ minutes.

If free cooling can be used as determined from the appropriate changeover command (switch, dry bulb, enthalpy curve, differential dry bulb, or differential enthalpy), then the control will modulate the dampers open to maintain the mixed-air temperature set point at 50 to 55 F.

If there is a further demand for cooling (cooling second stage — Y2 is energized), then the control will bring on compressor stage 1 to maintain the mixed-air temperature set point. The EconoMi\$er IV damper will be open at maximum position. EconoMi\$er IV operation is limited to a single compressor.

Heating, Units With Economizer

NOTE: The units have 2 stages of heat.

When the thermostat calls for heating, power is sent to W1 on the IGC (integrated gas unit controller) board. An LED (light-emitting diode) on the IGC board will be on during normal operation. A check is made to ensure that the rollout switch and limit switch are closed and the induced-draft motor is running. The

induced-draft motor is then energized, and when speed is proven with the hall effect sensor on the motor, the ignition activation period begins. The burners will ignite within 5 seconds.

If the burners do not light, there is a 22-second delay before another 5-second attempt. If the burners still do not light, this sequence is repeated for 15 minutes. After the 15 minutes have elapsed, if the burners still have not lit, heating is locked out. To reset the control, break 24-v power to the thermostat.

When ignition occurs the IGC board will continue to monitor the condition of the rollout and limit switches, the hall effect sensor, as well as the flame sensor. If the unit is controlled through a room thermostat set for fan auto., 45 seconds after ignition occurs, the indoor-fan motor will be energized (and the outdoorair dampers will open to their minimum position). If for some reason the overtemperature limit opens prior to the start of the indoor fan blower, on the next attempt, the 45-second delay will be shortened to 5 seconds less than the time from initiation of heat to when the limit tripped. Gas will not be interrupted to the burners and heating will continue. Once modified, the fan on delay will not change back to 45 seconds unless power is reset to the control.

When additional heat is required, W2 closes and initiates power to the second stage of the main gas valve. When the thermostat is satisfied, W1 and W2 open and the gas valve closes, interrupting the flow of gas to the main burners. If the call for W1 lasted less than 1 minute, the heating cycle will not terminate until 1 minute after W1 became active. If the unit is controlled through a room thermostat set for fan auto., the indoor-fan motor will continue to operate for an additional 45 seconds then stop (and the outdoor-air dampers will close). If the overtemperature limit opens after the indoor motor is stopped within 10 minutes of W1 becoming inactive, on the next cycle the time will be extended by 15 seconds. The maximum delay is 3 minutes. Once modified, the fan off delay will not change back to 45 seconds unless power is reset to the control.

When the thermostat is satisfied and W1 and W2 are deenergized, the IFM continues to run and the economizer damper then moves to the minimum position.

APPLICATION DATA

- CONDENSATE DRAIN PAN A sloped condensate drain pan is supplied on all units. The condensate pan must be externally trapped. Condensate drains are located on both the bottom and end of the unit.
- DUCTWORK All ductwork must be attached to flanges.
 If no flanges are present, they must be field supplied.
 Secure vertical discharge ductwork to roof curb. For horizontal discharge applications, attach ductwork to flanges.
 Field-supplied flanges can be attached to horizontal discharge openings and all ductwork attached to flanges.
- THERMOSTAT Use of 2-stage cooling thermostat is recommended for all units equipped with economizer. A
 2-stage cooling thermostat is required for size 090-300 units with integrated economizer.
- HEATING-TO-COOLING CHANGEOVER All units are automatic changeover from heating to cooling when automatic changeover thermostat and subbase are used.
- AIRFLOW Units are draw-thru on cooling and blow-thru on heating.
- MAXIMUM AIRFLOW To minimize possibility of condensate blow-off from evaporator, airflow through units should not exceed 500 cfm/ton (sizes 024-240) and 11,250 cfm (size 300).
- MINIMUM AIRFLOW Minimum airflow for cooling is 300 cfm/ton (sizes 036-240) and 280 cfm/ton (300 units). Refer to Heating Capacities and Efficiencies table for minimum heating airflow.
- MINIMUM AMBIENT OPERATING TEMPERATURE Minimum ambient operating temperature for size 036-150 standard units is 25 F. With accessory Motormaster® I, II, or IV units can operate at outdoor temperatures down to -20 F. Unit sizes 155-300 are designed to operate at outdoor temperatures down to 40 F. With accessory Motormaster I or Motormaster V control, units can operate at outdoor temperatures down to -20 F.

NOTE: Under most application circumstances, if the roof-top unit is equipped with an economizer, low ambient controls are not required. Unless the outdoor air is unsatisfactory for free cooling due to high temperature, excessive humidity, or poor air quality, outdoor air should be used.

 MAXIMUM OPERATING OUTDOOR-AIR TEMPERA-TURE — Maximum outdoor operating temperature for cooling is shown below (60 Hz):

581B,C024-150	125 F
580F036-151	115 F
579F/580F180-240	120 F
579F/580F300	125 F
581A036-155	125 F
581A180	120 F
581A210	125 F
581A240	125 F
581A300	125 F

- HIGH ALTITUDES These may require a change to the gas orifice. Refer to Altitude Compensation tables.
- 11. MINIMUM HEATING ENTERING AIR TEMPERATURE —
 The minimum temperature of air entering the dimpled heat exchanger is 50 F continuous and 45 F intermittent for aluminum heat exchangers and 40 F continuous and 35 F intermittent for stainless steel heat exchangers. To operate at lower mixed-air temperatures, a field-supplied outdoorair thermostat must be used to initiate both stages of heat when the temperature is below the minimum required temperature to ensure full fire operation. Wire the outdoor-air thermostat (part no. HH22AG106) in series with the second stage gas valve as shown below. Set the outdoor-air thermostat at 35 F for stainless steel heat exchangers or

45 F for aluminum heat exchangers. This temperature setting will bring on the second stage of heat whenever the ambient temperature is below the thermostat set point. Indoor comfort may be compromised when heating is initiated using low entering air temperatures with insufficient heating temperature rise.

Wiring of Outdoor-Air Thermostat

12. MOTOR DATA — Due to Bryant's internal unit design (draw-thru over the motor), air path, and specially designed motors, the full horsepower (maximum continuous bhp) listed in the Physical Data tables and the notes following each Fan Performance table can be utilized with extreme confidence.

Using Bryant motors to the values listed in the Physical Data, Fan Performance, and Evaporator-Fan Motor Data tables *will not* result in nuisance tripping or premature motor failure. In addition, the unit warranty will not be affected.

- 13. THRU-THE-BOTTOM CONNECTIONS The accessory thru-the-bottom connections are needed to ensure proper connections when routing wiring and piping through the basepan and roof curb. This accessory is used for electric and control power only or electric, control power, and gas piping depending on which accessory is selected.
- 14. FIELD-SUPPLIED FAN DRIVES If the factory drive sets must be changed to obtain other wheel speeds, consult the nearest Browning Manufacturing Co. sales office with the required new wheel speed and the data from Physical Data tables (center distances, motor and fan shaft diameters, motor horsepower) for a modified drive set selection. For minor speed changes, the fan sheave size should be changed. (Do not reduce the size of the motor sheave; this will result in reduced belt horse-power ratings and reduced belt life.) All indoor fan pulleys are adjustable. See physical data tables for rpm adjustment ranges.

15. CONDENSER COIL PROTECTION

- a. PRE-COATED ALUMINUM FIN COILS have a durable epoxy-phenolic coating applied to the fin prior to the fin stamping process to provide protection in mildly corrosive coastal environments. Pre-coated coils have an inert barrier between the aluminum fin and copper tube. This barrier electrically disconnects the dissimilar metals to minimize the potential for galvanic corrosion. This economical option provides substantial corrosion protection beyond the standard uncoated coil construction.
- b. COPPER-FIN COILS provide increased corrosion resistance in moderate coastal environments where industrial air pollution is not present. All copper coils eliminate bimetallic construction to eliminate the potential for galvanic corrosion. Application in industrial environments is not recommended due to potential attack from sulfur, sulfur oxide, nitrogen oxides, carbon and several other industrial airborne contaminants. In moderate seacoast environments, copper-fin coils have extended life compared to standard or pre-coated aluminum-fin coils.

APPLICATION DATA (cont)

Concentric Duct Details

- c. E-COATED ALUMINUM FIN coils undergo a precisely controlled scientific process that bonds an impermeable epoxy coating to the specially prepared fin coil surface. E-Coating produces a smooth, consistent coating that is less brittle, more resilient and more durable than previous postcoating processes. E-Coated aluminum-fin coils offer economical protection and improved coil life in many contaminated environments.
- d. E-COATED COPPER-FIN COILS provide maximum protection in virtually all environments, this option combines the continuous, impenetrable barrier of the E-Coating process with the natural resistance of an all-copper construction. E-Coated copper-fin coil assemblies ensure long life, even in environments that combine harsh coastal conditions with industrial contamination.
- 16. ECONOMI\$ER IV The EconoMi\$er IV factory-installed economizer package includes a gear-driven damper system that modulates the return air and outdoor air supply to the rooftop unit in order to take advantage of "free cooling" with outdoor air when conditions are suitable. The system utilizes industry proven technology available for integrating the use of outdoor air for cooling with mechanical cooling for 3 through 25-ton rooftop units. The intuitive EconoMi\$er IV microprocessor-based controller optimizes
- and enhances rooftop operation through reduced energy consumption, optimal zone comfort, and efficient equipment cycling. This is accomplished by operating the compressors when the outdoor air temperature is too warm, integrating the compressors with outdoor air when free cooling is available, and locking out the compressor when outdoor air temperature is too cold. The detailed sequence of operation is described in the Controls section with a brief description of selected application items here.
- a. **THERMOSTAT INTERFACE** The EconoMi\$er IV control was designed to work with conventional thermostats that have Y1 (cooling stage 1), Y2 (cooling stage 2), W1 (heat stage 1), W2 (heat stage 2), and G (fan). In addition, the EconoMi\$er IV will support an occupied/unoccupied switch (typically integrated into the thermostat or Thermidistat™ device). When the switch is closed, it provides a 24-vac signal to the unit for occupied mode, and provides no signal to indicate unoccupied mode. The EconoMi\$er IV control can be configured to allow different minimum economizer damper positions and to allow the use of mechanical cooling in the occupied mode.

CONDENSER COIL PROTECTION APPLICATIONS

DESCRIPTION		ENVIRONMENT										
(Dura-Shield Option)	Standard, Non-Corrosive	Mild Coastal	Severe Coastal	Industrial	Combined Coastal and Industrial							
Standard, Al/Cu	X											
Pre-Coated Al/Cu		X										
Cu/Cu		Х										
E-Coated Al/Cu				Х	Х							
E-Coated Cu/Cu			Х									

LEGEND

Al/Cu — Aluminum Fin with Copper Tube Coil
Cu/Cu — Copper Fin with Copper Tube Coil
Dura-Shield — Family of Coil Protection Options

E-Coated — Extremely Flexible and Durable Epoxy Coating Uniformly

Applied to the Coil Surfaces

Pre-Coated — Epoxy Coating Applied to Fin Stock Material

APPLICATION DATA (cont)

b. CONTROL FEATURES — The EconoMi\$er IV controller provides superior functionality for rooftop unit operation. EconoMi\$er IV control features are included as follows:

Remote Minimum Position — The EconoMi\$er IV controller can be used with a field-supplied and field-installed remote minimum position control switch that will enable and disable the EconoMi\$er IV to open or close the damper beyond the minimum position for modified ventilation, providing 2 to 10 vdc output.

NOTE: Minimum position signal takes priority over the DCV (demand control ventilation) maximum position signal.

<u>Demand Control Ventilation (DCV)</u> — The EconoMi\$er IV has DCV capability when using an IAQ sensor. This sensor is typically installed in the return duct or occupied space. When implementing a DCV control scheme with the EconoMi\$er IV, the control algorithm will modulate the position of the damper between two user-configured damper positions, Maximum DCV Position and Minimum Occupied position. Design airflow rates for these two damper positions should be such that when the damper is at the Maximum DCV position, enough fresh ventilation air will be brought in to remove contaminants and CO₂ generated by sources other than people (i.e., since in unoccupied mode). The Maximum DCV position is intended to satisfy the IAQ "Base Ventilation Rate." The Minimum Occupied position design airflow rate should be sufficient to satisfy ventilation requirements for removing CO2 from all sources including people at the maximum occupancy.

 $\underline{\mathsf{IAQ}\ \mathsf{Sensors}}$ — EconoMi\$er IV can be utilized with any IAQ (CO₂) sensor that provides a 2 to 10 vdc output. The controller will modulate the outdoor air damper to provide ventilation based on the sensor output and the IAQ setting of the controller. When used, an IAQ sensor will modulate the damper from the minimum position (base ventilation rate based on CO_2 levels) to maximum position (full occupancy ventilation rate).

<u>Damper Operation</u> — The EconoMi\$er IV allows the damper to be configured for two adjustable damper positions including maximum position and occupied minimum positions. The two (2) position damper capability is a unique feature of EconoMi\$er IV and includes operation flexibility as follows:

- Minimum Occupied Position: This adjustable position allows a minimum ventilation (base ventilation rate) airflow rate through the unit during occupied periods.
- 2. Demand Control Ventilation (DCV) Maximum Position: A DCV maximum occupied position is provided when using an IAQ sensor for DCV. See DCV and Control sections for sequence. The DCV Maximum Position limits outdoor airflow into the rooftop when the DCV routine overrides the mixed air sensor. Setting the DCV Maximum Position of the outdoor air damper prevents large amounts of hot or cold air into the space.

IMPORTANT: When the DCV Maximum Position is set below the minimum position, the minimum position overrides the maximum position, negating most DCV functions.

<u>Power Exhaust</u> — The EconoMi\$er IV has the capability to control one stage of power exhaust for maintaining air balance and pressurization. Control is activated based on outdoor air damper position (adjustable); factory-set at the "middle" position (dampers halfway open).

Compressor Staging — The EconoMi\$er IV is an integrated economizer and has the ability to utilize simultaneous outdoor air and compressors. The EconoMi\$er IV can be configured to support economizer and compressor operation. Only one or two compressor operation is available with 3 to 12½ ton units.

c. CHANGEOVER STRATEGIES — The EconoMi\$er IV controller can be configured to accommodate all available economizer control strategies that place the rooftop unit in economizer mode including:

<u>Remote Minimum Position</u> — Used when a remote signal from a remote minimum position control will enable and disable the EconoMi\$er IV (remote enable control).

<u>Outdoor Dry Bulb</u> — EconoMi\$er IV will be enabled based on the outdoor-air temperature. This is provided standard with the EconoMi\$er IV.

<u>Differential Dry Bulb</u> — EconoMi\$er IV will be enabled whenever the outdoor-air temperature is lower than the return-air temperature.

Outside Air Enthalpy — EconoMi\$er IV will be enabled based on the outside air enthalpy curves as shown in the EconoMi\$er IV Changeover diagram below. The A, B, C, and D curves shown have been in use for many years and have been included as part of the latest ASHRAE 90.1 energy efficiency code. The curves are designed to take into consideration both outdoor temperature and humidity. These curves are used to set up the EconoMi\$er IV controller to use the EconoMi\$er IV for free cooling when the conditions to the left of the curve exist. When the conditions are to the right of the curve, then outdoor air cooling will not be used and the outdoor air damper position will be set at the minimum position.

Deciding which curve is used is a function of the outdoor climate and the type of economizer utilized. Since EconoMi\$er IV is a fully integrated economizer, the range where outdoor air can be utilized for free cooling is expanded and the A and B curves may be used. The control point table in the EconoMi\$er IV Changeover diagram below provides assistance for whether the A and B curves will be suitable. In general terms, a hot and humid climate may be a reason not to use the A curve, while a cooler climate might be more applicable for using the A or B curve.

The EconoMi\$er IV has expanded outdoor air capability. For a changeover economizer which cannot utilize simultaneous economizer and compression, both A and B curves would potentially be undesirable since the temperature and humidity levels are too high without compression assistance to provide effective cooling. Therefore, most changeover economizers utilize the D curve.

<u>Differential Enthalpy</u> — The EconoMi\$er IV will be enabled based on the comparison of the enthalpy of the return air and outside air. When the outside air enthalpy is lower than he return side, the unit will be in economizer mode.

Using the EconoMi\$er IV controller for implementing different control changeover strategies requires the use of different combinations of dry bulb and humidity sensors as outlined in the EconoMi\$er IV Sensor Usage table.

APPLICATION DATA (cont)

Economizer Changeover Curves

ECONOMI\$ER IV SENSOR USAGE CHART

APPLICATION	ECONOMI\$ERIV WITH OUTDOOR AIR DRY BULB SENSOR	ECONOMI\$ERIV WITH SINGLE ENTHALPY SENSOR					
	Accessories Required	Accessories Required					
Outdoor Air Dry Bulb	None. The outdoor air dry bulb sensor is factory installed.	CRTEMPSN002A00*					
Differential Dry Bulb	CRTEMPSN002A00*	(2) CRTEMPSN002A00*					
Single Enthalpy	HH57AC078	None. The single enthalpy sensor is factory installed.					
Differential Enthalpy	HH57AC078 and CRENTDIF004A00*	CRENTDIF004A00*					
CO ₂ for DCV Control using a Wall-Mounted CO ₂ Sensor	CGCDXSEN004A00						
CO ₂ for DCV Control using a Duct-Mounted CO ₂ Sensor	CGCDXSEN004A00† and CGCDXASP001A00**						

^{*}CRENTDIF004A00 and CRTEMPSN002A00 accessories are used on many different base units. As such, these kits may contain parts that will not be needed for installation.
†CGCDXSEN004A00 is an accessory CO₂ sensor.
**CGCDXASP001A00 is an accessory aspirator box required for duct-mounted applications.

