Extended relational algebra (relations are multisets)

 $\begin{array}{ll} \text{Union: } R \cup S & \text{(sum of appearances)} \\ \text{Intersection: } R \cap S & \text{(minimum of appearances)} \\ \text{Difference: } R - S & \text{(difference of appearances)} \\ \text{Selection: } \sigma_C(R) & \text{(where C is a condition)} \\ \end{array}$

Projection: $\pi_L(R)$ (in L: arithmetic expressions, renaming)

Product: $R \times S$

Join: $R \bowtie S (R \bowtie_{\theta} S)$ (where θ is a condition)

Duplicate elimination: $\delta(R)$ Grouping and aggregation: $\gamma_L(R)$

(in L: grouping expressions and aggregated expressions, plus renaming)

Sorting: $\tau_L(R)$

Examples:

$\pi_{A,B+C->X}(R)$	SELECT A, B+C AS X FROM R;
$\delta(R)$	SELECT distinct * from r;
$R \cup S$	SELECT * FROM R UNION ALL SELECT * FROM S; (multiset)
$R \cap S$	SELECT * FROM R INTERSECT ALL SELECT * FROM S; (!)
R - S	SELECT * FROM R MINUS ALL SELECT * FROM S; (!)
$\delta(R \cup S)$	SELECT * FROM R UNION SELECT * FROM S; (set)
$\delta(R \cap S)$	SELECT * FROM R INTERSECT SELECT * FROM S; (set)
$\delta(R) - \delta(S)$	SELECT * FROM R MINUS SELECT * FROM S; (set)
$R\bowtie S$	SELECT * FROM R NATURAL JOIN S;
$R\bowtie_{\theta} S$	SELECT * FROM R Join S on (θ) ;
$R \times S$	SELECT * FROM R CROSS JOIN S; or SELECT * FROM R, S;
$\gamma_{A,SUM(B)}(R)$	SELECT A, SUM(B) FROM R GROUP BY A;
$\gamma_{A,COUNT(B)}(\delta \pi_{A,B} R)$	SELECT A, COUNT (DISTINCT B) FROM R GROUP BY A;
$\tau_{A, B+C}(R)$	SELECT * FROM R ORDER BY A, B+C;

(!) Attention

Oracle does not support INTERSECT ALL and MINUS ALL, so $R \cap S$ and R - S cannot be expressed in Oracle in multiset meaning.

A complex sample query in SQL and Ralax extended relational algebra:

```
SELECT DISTINCT dname, AVG(sal) + 100 AS sal_plus
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY dname
HAVING COUNT(empno) > 3
ORDER BY dname;
```

In Relax we do not have δ , because the result of every operation is a set.

In Relax syntax:

```
\tau dname (\pi dname, av+100\rightarrowsal_plus
(\sigma cnt>3 (\gamma dname;avg(sal)\rightarrowav,count(empno)\rightarrowcnt (\sigma e.deptno=d.deptno (\rho e Emp × \rho d Dept)))))
```

Execution steps of a SELECT statement expressed in relational algebra:

- 1. replace all usages of the temporary-tables defined in the WITH-clause
- 2. ⋈ joins or product operations after FROM-clause
- 3. σ selection based on the WHERE-clause
- 4. γ creating groups and computing aggregations, based on GROUP BY-clause
- 5. σ selection for the groups or tuples created from the groups, based on HAVING-clause
- 6. Union, INTERSECT, MINUS set operations
- 7. $\frac{\pi}{2}$ projection based on SELECT-clause
- 8. p rename result attributes based on AS keyword
- 9. δ duplicate elimination if we have **DISTINCT**