

EU Mestre em Engenharia de software - UFSCar uferen Doutorando em Engenharia de software – UFSCar Atuei + de 10 anos na iniciativa privada: · Desenvolvedor de software · Arquiteto de software - Gerente de projetos Consultor

EU danielpporto@gmail.com Sala 35

PLANO DE ENSINO Aulas teóricas e práticas: • Turma B (Seg 08h, Qua 08h) na sala 17 • Turma D (Seg 16h, Qua 16h) na sala I6 **Atendimento presencial do professor:** Segunda-feira, das 10h às 12h na sala 35. Atendimento virtual: Fórum de Dúvidas disponível no ambiente Aprender (http://aprender.unb.br)

3

PLANO DE ENSINO Aulas expositivas e práticas Auxílio de monitores Uso da IDE Eclipse 5

PLANO DE ENSINO A avaliação será composta por: · 2 provas (P1 e P2) · atividades extracia se (E) e · um trabalho (T) Cada prova será realizada em laboratório e engloba toda a matéria apresentada anteriormente (conteúdo cumulativo).

PLANO DE ENSINO A Nota Final na disciplina será calculada da seguinte forma: NF = (P1 * 0,20) + (P2 * 0,40) + (E * 0,10) + (T * 0,30) Para ser aprovado na disciplina o aluno precisa: • Ter 75% de presença nas aulas; • Atingir Nota Final (NF) maior ou igual a 5,0.

PLANO DE ENSINO

Prova de Reposição

Apresentar comprovação que justifique o não comparecimento a uma das provas (P1 ou P2) como:

• atestado médico ou

• comprovante de apresentação ao serviço militar obrigatório

,

BIBLIOGRAFIA

STROUSTRUP, B. The C++ Programming Language, 4th Edition, Addison-Wesley Professional, 2013.

HORSTMANN, C. S., CORNELL, G., Core Java, Volume I - Fundamentals, 8th Edition, Prentice Hall, 2016.

(eBrary) LANO, K. UML 2 Semantics and Applications, Wiley, 2009.

DEITEL, H. M., DEITEL, P. J. Java: Como Programar, 8 ed. Pearson do Brasil, 2010.

MATERIAL

https://github.com/DanielDePaulaPorto/FGA

11 12

Tecnologia Java

Basicamente, existem três tipos de programação Java:

• Aplicações – sistemas computacionais convencionais

• **Applets** – programa executado em browser (cliente)

• Servlets - programa executado no servidor Web

13

Histórico

- 1991 Engenheiros da Sun Microsystems
 - pequena linguagem para equipamentos de consumo eletrônicos
 - independência de arquitetura com segurança
 - projeto Green
- 1992 Produto *7 (StarSeven controle remoto)
- 1993 Novo nome projeto: First Person Inc.
- 1994 Elaboração do *browser* para Internet (1993)
- 1995 SunWorld apresenta esta tecnologia Java
 - projeção dos atuais applets
- 1996 Lançamento da primeira versão do Java
 - Grande difusão do Java com Netscape 2.0
 - Esboço de futuro para linguagem Java no JavaOne/96
- 1998 Conferência JavaOne Java 1.2 (Java 2)...

16

18

15

Tecnologia Java

- Java Standard Edition (JSE ou J2SE de Java 2)
 - Para computadores pessoais e notebooks, sendo por ela construídas a maioria das aplicações Java
 - Divide-se em:
 - <u>Java Development Kit</u> (JDK) ou Software/Standard <u>Development Kit</u> (SDK): ambiente desenvolvimento
 - <u>Java Runtime Edition</u> (JRE): ambiente execução
- Java Micro Edition (JME ou J2ME de Java 2)
 - Para dispositivos móveis, sendo dividida em: CLDC (celular, smartfone,...) e CDC (palmtops, pocket,...)
- Java Enterprise Edition (JEE ou J2EE de Java 2)
 - Para aplicações corporativas, integração de sistemas ou distribuição de serviços para terceiros

Tecnologia Java

Algumas outras siglas e expressões importantes:

- JVM Java Virtual Machine
- API Application Programming Interface
- IDE Integrated Development Environment
- **JSP** Java Server Pages
- GUI Graphic User Interface
- CGI Common Gateway Interface

Tecnologia Java

PLATAFORMA

A maioria das plataformas é formada pelo conjunto de hardware e software (S.O.) que trabalham juntos.

A plataforma Java é diferente, por ser formada somente pelo software que opera sobre uma outra plataforma qualquer.

(sistema operacional) Hardware

JAVA Software

+ Bibliotecas

19

20

Tecnologia Java

PLATAFORMA PADRÃO

A plataforma padrão Java é composta por:

- javac compilador Java
- javadoc gerador de documentação
- java executor de programa Java
- appletviewer visualizador de applets Java

21

22

Tecnologia Java Sua classe bytecode gerado .java .class Sua aplicação Java javadoc appletviewe Sua applet Java Documentação HTML da classe Página Web (código) HTML

Características da Linguagem Java

- Simples: sintaxe semelhante a Linguagem C++, sem recursos avançados na manipulação de memória pelo programador, além de ser destinadas a criação de "pequenos programas"
- Orientação a Objeto (OO): técnica de programação computacional (paradigma) centrada nos dados (objetos) e em suas interfaces para com estes objetos, tendo Java nascido orientado a objeto (não foi adaptada)
- suas aplicações podem ser executadas em diferentes plataformas sem adaptações, fornecendo as mesmas funcionalidades em redes heterogêneas (Internet) Concepção da Sun Microsystems

"Write once, run anywhere." ⇒ Uma vez escrito, executa em qualquer lugar.

23

Características da Linguagem Java

- Robusta: enfatiza a verificação antecipada de possíveis problemas na verificação dinâmica posterior e na eliminação de situações sujeitas a erros de programação (elimina a sobrescrita de memória e consequentemente a destruição de dados nela armazenados)
- Segura: elaboração de programas que protegem o S.O., além do ambiente de execução do próprio programa; considerada uma das linguagens mais segura para Programação
- Distribuída: componentes Java podem estar em uma máquina e serem acessados por outra a distância, com a mesma facilidade de acesso a um arquivo local, sendo esta tecnologia nascida para World Wide Web (sem adaptações)

Características da Linguagem Java

- **Desempenho:** apesar de interpretar os bytecodes, existem alternativas para compilação (JIT- *just in time*, entre outros) com desempenho melhorado de 10 a 20 vezes em sua velocidade
- Múltiplas Linhas de Execução (multithreading): a capacidade de múltiplas execuções dos processos envolvidos, simultaneamente, promove melhor interatividade e comportamento em tempo de execução
- Arquitetura Neutra: geração de bytecodes independentes da arquitetura especifica de execução (código neutro), sendo estes interpretados pelo sistema Java em tempo de execução da JVM

25 26

Arquitetura Java

Máquina Virtual Java

- Java Virtual Machine
- Máquina imaginária implementada por meio de software na emulação de uma máquina real
- Prover a especificação da plataforma no qual os códigos Java serão executados, através da interpretação na máquina imaginária

Coletor de Lixo Java

- Garbage Collection
- Contínuo processo executado em background sobre o S.O. que gerencia toda memória alocada sobre a máquina real
- Em cada ciclo da CPU da JVM é analisado o uso da memória e desalocado o que não está sendo usado

Iniciando a Programação

Programa (ou código)

→ Conjunto de instruções sequenciais que solicita que o computador execute alguma ação (ou atividade) por meio de uma comunicação, no nosso caso, usando uma linguagem de programação

Fonte - escrito na linguagem desejada, no caso - '.java'

Objeto (compilado) - fonte traduzido em bytecodes - '.class'

27 28

Iniciando a Programação

Estrutura de programa na linguagem Java

- Programas em Java são construídos a partir de classes
- Com a definição de uma <u>classe</u> se pode criar qualquer número de <u>objetos</u>, conhecidos como <u>modelos</u> daquela classe
- Uma classe pode ser formada por 2 membros:
 - Campos (ou atributos): dados que pertencem a classe e seus objetos, compondo seu estado
 - Métodos: conjunto de instruções (subprogramas) que operam os campos para manipular o estado do objeto

Iniciando a Programação

Estrutura de programa na linguagem Java

- O método main é obrigatório nos aplicativos Java, pois é a partir dele que se inicia sua execução, com exceção para os applets (web)
- Está presente em Java o conceito de <u>bloco de</u> instruções indicadas pelos marcadores { e } para cada bloco elaborado
- Toda instrução deve estar entre as chaves '{', '}' e ser encerrada com ';'
- Esta linguagem é case sensitive (maiúsc./minúscula)
- Utilização de texto estruturado na construção de programas adequados e com qualidade

30

29

Iniciando a Programação

Estrutura de programa na linguagem Java

- Valores do tipo **String** são entre aspas ("), enquanto que um único caractere estará entre apóstrofes (')
- Identificadores usam letras, números e sublinha ' '
- 3 tipos de comentários no código fonte em Java:
 - // comentário no resto linha, após esta simbologia
 - /* inicia um bloco de comentário até */ que encerra
 - /** inicia o bloco de comentário que fará parte da documentação gerada para este programa, sendo encerrado em */

Iniciando a Programação

IDENTIFICADORES

- Recursos definidos pelo programador que recebem seus nomes (identificadores), como: campos, métodos, ...
- Criação de nomes para estes recursos usam letras alfabéticas, números, sublinha ('_') e \$, facilitando a programação, convencionalmente
- Nomes em Java são traduzidos em Unicode, podendo fazer uso de muitos caracteres especiais como π como identificador válido
- Seu primeiro caracter deve ser letra, se evitando o uso de caracteres especiais na programação convencional
- · Letras maiúsculas são diferentes de minúsculas

32

34

- · Não pode ser igual a uma palavra reservada em Java
- Devem possuir fácil reconhecimento, sendo significativos

31

Iniciando a Programação

IDENTIFICADORES (convenção)

- <u>Campos (variáveis) e métodos</u> iniciam com letras minúsculas, porém, quando o identificador é um nome composto (mais que uma palavra) a primeira letra de cada palavra, após a primeira, é sempre maiúscula
- Exemplos: contador, idadeMedia ou indiceTaxaAumento
- <u>Classes</u> iniciam com letras maiúsculas e para os nomes compostos segue a mesma norma descrita anteriormente

Exemplos: Pessoa ou DispositivoMovel

 <u>Constantes</u> são definidas com caracteres todos em maiúsculos

Exemplos: TAMANHO ou VALORMAXIMO

Iniciando a Programação

Não usar palavras reservadas como identificadores.

Palavras Reservadas (50)

abstract	continue	for	new	switch
assert	default	if	package	synchronized
boolean	do	goto	private	this
break	double	implements	protected	throw
byte	else	import	public	throws
case	enum	instanceof	return	transient
catch	extends	int	short	try
char	final	interface	static	void
class	finally	long	strictfp	volatile
const	float	native	super	while

33

Iniciando a Programação

Tipo de Dados Primitivos (escalares)

- Todos os outros tipos de dados em Java são baseados em um desses oito tipos
- A definição do tipo de dados permite que o computador aloque e mantenha livre um espaço exato de memória que será utilizado pelo "programa" elaborado

Tipo	Descrição do tipo	<u>Quantidade</u>	
inteiro	byte, short, int, long	4	
real (ponto flutuante)	float, double	2	
lógico	boolean	1	
caracter	char 1		

Iniciando a Programação

Tipo de Dados Primitivos

Tipo	Tamanho em bits			
byte (inteiro)	80	-128 a 127		
short (inteiro)	16	-32768 a 32767		
int (inteiro)	32 -214	7483648 a 2147483647		
long (inteiro)	64 -9)223372036854775808 a 9	9	
float (real)	32	3.4E-38 a 3.4E38		
double (real)	64	1.7E-308 a 1.7E308		
boolean (lógico)	8 (true ou false		
char (caracter)	16	0 a 65535		

⇒ Por padrão,valor real (ponto flutuante) em Java é double.

35 36

Iniciando a Programação VARIÁVEL

- · Posição nomeada de memória usada para guardar um valor que pode ser modificado pelo programa
- · As variáveis em Java devem ser declaradas e iniciadas antes de serem usadas dentro de seu escopo (método ou
- Forma geral da definição ou declaração de variável

```
<tipo de dado> <identificador>:
```

onde

<tipo de dado> é qualquer tipo de dado válido

<identificador> um ou mais nomes de identificadores separados por '.'

→ Exemplos: byte valor;

double totalPeso, salarios:

37

Iniciando a Programação OPERADOR DE ATRIBUIÇÃO

Realiza o armazenamento de um determinado valor, representado a direita do símbolo de igual (=), a um local de armazenamento na memória, representado por um identificador sempre à esquerda do símbolo (=).

Este valor a ser armazenado no identificador à esquerda do símbolo poder ser:

- um valor único → numero = 5; ou sexo = 'M';
- o resultado de uma expressão → total = 10 + 20;

Forma Geral à esquerda

símbolo <id>dentificador> = <expressão>;

Em Java é possível múltiplas atribuições, exemplo: aux = valor = contador = 21:

Iniciando a Programação CONSTANTE

- · Posição nomeada de memória usada para guardar um único valor que não pode ser modificado pelo programa
- Todas constantes em Java devem ser declaradas antes de serem usadas
- · Forma geral de definição de constate

final <tipo de dado> <identificador> = <valor>;

<tipo de dado> - qualquer tipo de dado válido em Java <id>dentificador> - nome da constante (seu identificador)

final -palavra reservada que identifica a criação da constante <valor> - valor atribuído a constante, sem poder alterar

 \rightarrow Exemplo: final int MAXIMO = 30;

Iniciando a Programação

OPERADORES ARITMÉTICOS

Operador Unário

38

40

menos (troca de sinal)

Operadores Binários

- adição
- subtração
- multiplicação
- divisão convencional (envolve ao menos um valor real)
- divisão inteira (envolve valores inteiros somente - div)
- mod resto da divisão inteira

Incremento e Decremento

++ incremento -- decremento

Prefixo a++ ou a--Sufixo ++a ou --a

Precedência

* / % 2

+ -3

39

Iniciando a Programação

EXPRESSÕES - Operadores Aritméticos de Atribuição

Estes operadores (+= , -= , *= , /= , %=) são usados com uma variável a sua esquerda e uma expressão a sua direita. A operação consiste em atribuir um novo valor à variável que dependerá do operador e da expressão à direita

<variável> <operador> = <expressão>;

Exemplos:

```
i + = 2;
                                        i = i + 2;
                       equivale a
x * = y + 1;
                       equivale a
                                        x = x * (y + 1);
t/=2.5;
                       equivale a
                                        t = t / 2.5;
p \% = 5;
                       equivale a
                                        p = p \% 5;
                       equivale a
d - = 3:
                                        d = d - 3:
  :
```

Iniciando a Programação

CUIDADOS COM ALGUMAS ATRIBUIÇÕES

- O tipo char corresponde a um inteiro especial, sendo exclusivamente positivo, representando um único Unicode (mais combinações que o padrão ASCII)
- As operações sobre inteiros resultará sempre em no mínimo um valor int, por exemplo:

byte x = 1;

byte y = 2;

byte total = x + y; // erro de compilação, sendo

// correto int total = x + y;

A atribuição de long e float deve ser feita com:

long x = 10L // ou L em minúsculo

float y = 2.4F // ou F em minúsculo

Tipo boolean só recebe true ou false e não 1 ou 0 (zero)

Iniciando a Programação

OPERADORES RELACIONAIS

Todas as expressões relacionais resultam em um valor lógico, ou seja, **true** ou **false** (verdadeiro ou falso respectivamente)

Operadores		Expressâ		
igualdade	==	x == y		
diferente	!=	x != y		
maior que	>	x > y		
menor que	<	x < y		
maior ou igual	>=	x >= y		
menor ou igual	<=	x <= y		

Iniciando a Programação

OPERADORES LÓGICOS

As expressões com operadores lógicos respeitam as definições da lógica convencional e suas propriedades matemáticas estudadas nos conteúdos representados por "tabelas verdades".

Operadores	Expressão	Realização
E &&	op1 && op2	só avalia op2 se op1 for true
E &	op1 & op2	sempre avalia op1 e op2
OU	op1 op2	só avalia op2 se op1 for false
OU	op1 op2	sempre avalia op1 e op2
NÃO!	! op1	nega ou troca valor de op1

43 44

Iniciando a Programação

CONVERSÃO OU CASTING

Casting é o processo de conversão de um tipo primitivo de dado para outro tipo, sendo comum nos dados numéricos.

Existem dois tipos de conversão: implícito e explícito.

- Implícito: realização automática quando tamanho do tipo a ser convertido é maior que o tipo original (ou atual)
- Explícito: necessidade de ser explícita porque o tamanho do tipo original (ou atual) é maior que o tipo a ser convertido Exemplo: double x = 6.4;

int y = 2;

int total = (int) (x / y); // converte resultado em int

Não é possível fazer casting para o tipo de dado boolean.

Iniciando a Programação

PROMOÇÃO E CASTING

PARA: DE:	byte	short	char	int	long	float	double
byte	=	impl.	(char)	impl.	impl.	impl.	impl.
short	(byte)	=	(char)	impl.	impl.	impl.	impl.
char	(byte)	(short)	=	impl.	impl.	impl.	impl.
int	(byte)	(short)	(char)	=	impl.	impl.	impl.
long	(byte)	(short)	(char)	(int)	=	impl.	impl.
float	(byte)	(short)	(char)	(int)	(long)	=	impl.
double	(byte)	(short)	(char)	(int)	(long)	(float)	=
double	(byte)	(short)	(char)	(int)	(long)	(float)	=

impl. - corresponde a conversão implícita

45 46

Iniciando a Programação

CASTING EM OPERAÇÕES BINÁRIAS

- 4 regras básicas na operação binária de casting
 - Se um dos operantes é double, o outro operante é convertido para **double**
 - Se um dos operantes é float, o outro operante é convertido para **float**
 - Se um dos operantes é long, o outro operante é convertido para **long**
 - Senão todos os operantes são convertidos para int na resolução da operação

Iniciando a Programação

Exemplos:

Conversão Implícita

int idade; double medialdades:

idade = 16; medialdades = idade;

O processamento acima atribui o conteúdo inteiro de idade a variável double mediaIdades, efetivando um <u>casting</u> implícito.

Conversão Explícita

short ano = 2010; byte valor = ano; // erro byte valor = (byte) ano;

O processamento correto acima realiza um <u>casting</u> explícito para armazenar um dado short (maior) em um byte (menor em capacidade de armazenamento), podendo ocorrer **perda de dado**.

47 48

Exercício Proposto

1.a) Elabore um PROGRAMA em C que armazene três alturas de pessoas, onde esta quantidade de pessoas deverá estar definida em uma constante. Armazene nestas alturas os valores 1.58, 2.07 e 0.55 em três variáveis diferentes. Por fim, realize o cálculo da média aritmética destas alturas e as apresente ao usuário.

Após o término do PROGRAMA em C, que deverá estar completo e funcionando corretamente encerre este exercício e utilize o ambiente de desenvolvimento em Java indicado por seu professor.

Exercício Proposto

1.b) Depois do programa em C, deverá ser elaborada uma nova tradução para esta nova linguagem que se está começando a estudar (Java), onde as declarações e expressões de cálculos deverão ser escritos baseados nesta linguagem, mantendo os comandos, por enquanto, com as palavras reservadas usadas na Linguagem C.

49

50

Programando em Java

Restrições Importantes na Programação Java

- Programas Java são escritos em editores de texto comuns (ASCII e Unicode) e gravados com extensão java (.java)
- Estes arquivos (*.java*) consistem nos códigos fontes da Linguagem Java, sendo denominados classes
- Um programa (ou aplicação) Java é composto por uma ou várias classes
- O nome deste arquivo fonte DEVE ser o mesmo do nome da classe descrita por meio de seu texto
- Toda aplicação Java deve ter ao menos um método, sendo este o principal (main()), com exceção dos programas para Web (applets por exemplo)

Programando em Java

Execução por Linha de Comando

- Após salvar o arquivo fonte (.java), o mesmo deverá ser compilado para geração do arquivo bytecode
 - > Seguir para opção de Prompt de comando do S.O.
 - > Executar o compilador Java (javac)

javac <NomeArquivoFonte.java>

- Geração do arquivo bytecode com o mesmo nome e extensão .class
- Acionar o executor Java de bytecodes para execução do programa Java elaborado
- No Prompt de comando será acionado o executor java <NomeArquivoFonte>
- Não é necessária a extensão do arquivo a ser executado (.class)
- → Precedendo a esta execução é necessária a instalação de um JDK

51

52

54

Programando em Java

Parâmetros pela Linha de Comando

 É possível receber e manipular parâmetros através da linha de comando em Java, por exemplo:

System.out.println("Primeiro Parâmetro= " + args[0]);
System.out.println("Segundo Parâmetro= " + args[1]);

 Estes parâmetros são inseridos na linha de comando que aciona o executor java, após o nome do programa, por exemplo:

java c:/temp/TestaArgs Oi 32

- Observe que o caminho (path) onde um programa chamado TestaArgs se encontra no computador pode ser incluído no processo de compilação (javac) e execução (java) do mesmo.
- Todos os parâmetros de linha de comando são String.

Referência de Criação e Apoio ao Estudo

Material para Consulta e Apoio ao Conteúdo

- HORSTMANN, C. S., CORNELL, G., Core Java2 volume 1, Makron Books, 2001.
 - Capítulo 1 e 3
- FURGERI, S., Java 2: Ensino Didático: Desenvolvendo e Implementando Aplicações, São Paulo: Érica, 2002.
 - Capítulo 1 e 2
- ASCENCIO, A. F. G.; CAMPOS, E. A. V., Fundamentos da programação de computadores, 2 ed., São Paulo: Pearson Prentice Hall, 2007.
 - ➤ Capítulo 1
- Universidade de Brasília (UnB Gama)
 - > https://cae.ucb.br/conteudo/unbfga

(escolha a disciplina **Orientação a Objetos** no menu superior)