Contents

Relational Schema Mapping	1
Mapping of Entity Types	1
Mapping Multivalued Attributes	2
Mapping Relationships	2
1:1 Relationships	2
1:N Relationships	3
Recursive Relationships	3
M:N Relationships	4

Relational Schema Mapping

- How to move from a conceptual database design
 - Entity Relationship Model
- ...to a logical database design
 - Relational Database Schema
- $\bullet~$ We follow a series of steps to map entity types, relationship snad attributes into relations
- The mapping will create:
 - Relations
 - * We simple, single-valued attributes
 - Constraints
 - * Primary keys
 - * Unique keys
 - * Referential integrity constraints

Mapping of Entity Types

- For each entity type E in the ER diagram, create a relation R that includes all the simple attributes of E
- Composite attributes

- When mapping composite attributes include only the simple component attributes in the new relation R
- Key attributes
 - Choose one of the key attributes of E as the primary key of R
 - Composite key attributes are included as a composite primary key
- Additional key attributes should be included as secondary unquie keys of the relation

Mapping Multivalued Attributes

- For each multivalued attribute A, create a new relation R
- The new relation R will include
 - An attribute corresponding to A
 - The primary key K from the relation that represents the tntity type that A came from
 - * This becomes a foreign key in R
 - The primary key of R is the combination of A and K

Mapping Relationships

- In addition to mapping the entity types from the ER model into the Relational Schema, we also need to map the relationship types
- Each relationship type is modeled differently
 - 1:1 One to one
 - 1:N One to many
 - M:N Many to many

1:1 Relationships

- There are two main approaches to mapping binary 1:1 relationships
 - Foreign Key Approach
 - * Most useful and most commonly used
 - Merged-Relation Approach
 - * Used in cases of total participation
- - Identify the relations S and T that correspond to the entity types participating in R

- Foreign Key Approach
 - Choose one of the participating relations, say S
 - Include as a foreign key in S the primary key of T
 - If possible, choose and entity type with $total\ participation$ in R for the role of S
 - Include all the simple attributes of the relationship type R as attributes of S
- Merged Relation Approach
 - This can only be used when both S and T have $total\ participation$ in the relationship type R
 - Merge the two entity types S and T and the relatnship type R into one single relation V
 - V should include all the simple component attributes of S, T and R
 - This is possible as the joint total participation indicates that the type tables will have an identical number of tuples at all time

1:N Relationships

- For each binary 1:N relationship type R
 - Identify the relation S that corresponds to the entity types on the N-side of R
- Include as a foreign key in S, the primary key of T, which is the relation representing the entity type at the other side of R
- Include any simple attributes of the relationship type R as attributes of S
 - Or simple component attributes of a composite attribute

Recursive Relationships

- Resursive Relationships
 - Where an entity instance can refer to another instance of the same entity type
- For each recursive relationship type R
 - Include the primary key of T, which is the relation representing the entity type involved, as a foreign key in the same relation, T
 - Include any simple attributes of the relationship type R as attributes of T
 - * Or simple component attributes of a composite attribute

M:N Relationships

- Many to many relationship types are more complex to map than 1:1 or $1 \cdot N$
- As each entity instance may reference many entity instances in the other participating entity type
 - You cannot use a foreign key attribute in either participating entity
 - You must create a new relation to represent the relationship type
- For each binary M:N relationship type R
 - Create a new relation S to represent R
- Include as foreign key attributes in S the primary keys of the relations that represent the participating entity types
 - The combination of these for eign keys is the composite primary key of ${\bf S}$
- Include any simple attributes of the relationship type R as attributes of S
 - Or simple component attributes of a composite attribute