TD 07 - Convergence de variables aléatoires et (encore) partiel de l'an dernier

Exercice 1. Suite de bits aléatoires

On se donne X_i une suite infinie de bits aléatoires non biaisés.

- 1. Montrer que presque sûrement tout mot fini apparaît dans la suite X_i .
- 2. En déduire que la presque sûrement tout mot fini apparaît une infinité de fois dans la suite X_i .

Exercice 2.

Algorithme probabiliste pour calculer la médiane

On étudie un algorithme probabiliste ¹ pour déterminer la médiane d'un ensemble $E = \{x_1, \dots, x_n\}$ de n nombres réels en temps O(n). On rappelle que m est une médiane de E si au moins $\lceil n/2 \rceil$ des élements de E sont inférieurs ou égaux à m, et au moins $\lceil n/2 \rceil$ des élements de E sont supérieurs ou égaux à E. Pour simplifier on suppose E impair (ce qui fait que la médiane est unique) et on suppose aussi que les éléments de E sont tous distincts.

Voici comment fonctionne l'algorithme

- (a) Soit $(Y_i)_{1 \le i \le n}$ une suite de v.a. i.i.d. de loi de Bernoulli de paramètre $n^{-1/4}$. On considère le sous-ensemble aléatoire de E défini par $F = \{x_i : Y_i = 1\}$. Si card $F \le \frac{2}{3}n^{3/4}$ ou card $F \ge 2n^{3/4}$ on répond «ERREUR 1».
- (b) On trie F et on appelle d le $\lfloor \frac{1}{2}n^{3/4} \sqrt{n} \rfloor$ ème plus petit élément de F, et u le $\lfloor \frac{1}{2}n^{3/4} \sqrt{n} \rfloor$ ème plus grand élément de F.
- (c) On détermine le rang de d et de u dans E (l'élément minimal a rang 1, l'élément maximal a rang n), que l'on note respectivement r_d et r_u . Si $r_d > n/2$ ou $r_u < n/2$ on répond «ERREUR 2».
- (d) On note $G = \{x_i \in E : d < x_i < u\}$. Si card $G \ge 4n^{3/4}$ on répond «Erreur 3».
- (e) On trie G et on renvoie le $(\lceil n/2 \rceil r_d)$ ème élement de G.
- 1. Justifier pourquoi l'algorithme retourne la médiane en temps O(n) lorsqu'il ne répond pas de message d'erreur.
- **2.** Montrer que pour $i \in \{1,2,3\}$, on a

 $\lim_{n\to\infty} \Pr\left(\text{l'algorithme retourne "ERREUR } i \right) = 0.$

Pour simplifier l'analyse et éviter d'écrire des symobles $\lfloor \cdot \rfloor$ ou $\lceil \cdot \rceil$, on pourra supposer implicitement que des nombres tels que \sqrt{n} , $\frac{1}{2}n^{3/4}$, ... sont des entiers

Exercice 3. Approximation de Poisson

On se place dans le modèle *Balls and Bins* où l'on jette m balles au hasard dans n paniers. Le problème est que les v.a. X_i représentant le nombre de balles dans le i-ème panier ne sont pas indépendantes (intuitivement, car $X_1 + \cdots + X_n = m$). On voudrait approximer le modèle *Balls and Bins* par le modèle *Approximation de Poisson*, dans lequel $Y_1, \ldots Y_n$ sont des variables aléatoires indépendantes qui suivent chacune une loi de Poisson de moyenne $\mu = m/n$ (la variable Y_i est donc pensée pour être la version simplifiée de X_i).

- **1.** Montrer que $Y = \sum_{i=1}^{n} Y_i$ suit une loi de Poisson dont on précisera le paramètre.
- **2.** Montrer que la distribution de (Y_1, \ldots, Y_n) conditionnée au fait que Y = m est la même que la distribution de (X_1, \ldots, X_n) .

Note : on peut en fait obtenir un résultat légèrement plus général. Si (X_1, \ldots, X_n) représente la charge de n paniers après avoir lancé au hasard k balles, et que les Y_i sont n v.a. indépendantes suivant chacune une loi de Poisson de paramètre m/n, alors la distribution de (Y_1, \ldots, Y_n) conditionnée au fait que Y = k est la même que la distribution de (X_1, \ldots, X_n) , indépendamment de la valeur de m.

^{1.} Remarque : il existe un algorithme déterministe de même performance

3. Soit f une fonction sur n variables, à valeurs réelles positives ou nulles. Prouver que

$$\mathbf{E}\left[f(X_1,\ldots,X_n)\right] \leq e\sqrt{m}\mathbf{E}\left[f(Y_1,\ldots,Y_n)\right].$$

On pourra prouver comme étape intermédiaire que $m! < e\sqrt{m} \left(\frac{m}{e}\right)^m$.

- **4.** En déduire le corollaire suivant : soit \mathcal{E} un événement qui dépend de la charge des paniers. Supposons que \mathcal{E} arrive avec probabilité p dans l'Approximation de Poisson, c'est-à-dire si la charge des paniers est (Y_1, \ldots, Y_n) . Alors \mathcal{E} arrive avec probabilité au plus $pe\sqrt{m}$ dans le modèle Balls and Bins, c'est-à-dire si la charge des paniers est (X_1, \ldots, X_n) .
- 5. Application : On jette n balles dans n paniers selon le modèle Balls and Bins. Montrer qu'avec probabilité au moins 1 1/n (pour n assez grand), la charge maximale est $\geq \ln n / \ln \ln n$.

Exercice 4. Conditions de convergence Soit X_n une suite infinie de variables de Bernoulli indépendantes de paramètres $1-p_n$, avec $0 \le p_n \le 1/2$ (i.e. $\mathbf{P}\{X_n=1\}=1-p_n$ et $\mathbf{P}\{X_n=0\}=p_n$).

- 1. Donner une condition nécessaire et suffisante pour que la suite X_n converge en distribution.
- **2.** Donner une condition nécessaire et suffisante pour que la suite X_n converge en probabilité.
- 3. Donner une condition suffisante (nécessaire ce sera la semaine prochaine) pour que la suite X_n converge presque sûrement.