Zdanic - stu	ricrdrenie	, Ltóre	ma jed	noznacznic	derestor	ng varto	န်င် 	
Vartosciovanic								
υ(p) = 1								
u(p) = 0								
			0					
	L	_						
Funktory zda								
negacja				9 PA Pr	1 1	•		
komunkya	٨		1	1 1 1	1	1		
alternalyx	a v		o	1 1 1 0 0 1 1 0 1 0 0 0		9		
implikoga	=>		0)	01010		T		
rounovažno								
T 1.1	, 4,							
Implikaga								
	$p \Rightarrow q$							
popned	mile	następnik						
4 -1.		A 1						
Jest p=q								
→ p jest			·					
- q jest	varantie	m koniccz	nym elle	P				
Dla implikac								
• 9 ⇒ (
	> 79	jest procei	140v					
• -q =	> 70	est precin	s tauna	(ו יסטוסטמב	ina)			

Rounousinose utedy i tylko utedy gdy Dla provdeivej p => q - p jest varantisem komicernym i vystavezaj grzym dla q $u \left[\left(\left(-5 \neq 1 \right) \iff \sin(\pi) = 0 \right) \implies \sqrt{2} > 1 \right]$ u [(fatsz ⇔ proudo) ⇒ prouda] u (false => provda) = 1 Tautología - zdanic, letore jest zousze proudrive niczalernic od zartości zmiennych zdanionych Sproudsenic czy zdanie [(p = q) 17q] = -p jest tautologia Mctoda 1. - tabela - zdame jest tautologia Metada 2. mic sprost Zalstadam, że zdanie mie jest teutologiez - może być falszyne i dazza do spreconosci $[(\rho \Rightarrow q) \land \neg q] \Rightarrow \neg \rho$ bo 1 = 0 jest falszyve [[(p =>q) / 7q] = 1 20(-0)=0 [v (p ⇒ q) = 1 | v (¬q) = 1 | v (p) = 1 $\begin{cases} \upsilon(p) = 1 \\ \upsilon(q) = 0 \\ \upsilon(1 \Rightarrow 0) = 1 \end{cases}$ Zdawe nic more byé fatsyve viçe musi byé tautologio

Podstavove prava rachunteu zdań (p^p) -> p (pvp) => p ~(~p) ⇔ p ~ (p ~ ~ p) ~ (p Aq) => (~p) v (~q) ~ (p vq) (~p) \ (~q) $(\rho \Rightarrow q) \Leftrightarrow (\sim q \Rightarrow \sim p)$ ~(p => q) => (p n ~q) p 1 q = q 1 p pvq = qvp $p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$ 10 $p \vee (q \vee r) \Leftrightarrow (p \vee q) \vee r$ $\rho \wedge (q \vee r) \Leftrightarrow (\rho \wedge q) \vee (\rho \wedge r)$ II. pv(q Ar) => (pvq) A (pvr) 12. $[(\rho \Rightarrow q) \land (q \Rightarrow r)] \Rightarrow (\rho \Rightarrow r)$ $(p \Leftrightarrow q) \Leftrightarrow [(p \Rightarrow q) \land (q \Rightarrow p)]$ 14


```
Funkcje zdaniove i kvantyfikatory
  Funlegia zdaniova jalnej zmiennej to vyrażenie Ф(x), x ∈ X ≠ Ø,
  które staje się zdaniem (proudzivym albo fatszyvym), gdy za zmienny
  x podstovi się clement zbioru X
  Zbior X to zales zmienrości funleji o
  Element x. EX spetmia funlega o jesti o(xa) jest zdaniem provolzívym
  Zbiór elementóv spetniajazcych funkcją $ {x6x: $\phi(x)}
    na pryktad:
    1) X = \mathbb{R} / \phi(x): x < 7
       2) X = N, \phi(x): x>3 \implies x=7
       \{x \in \mathbb{N} : \phi(x)\} = \{x \in \mathbb{N} : x \leq 3 \lor x - 7\} = \{1, 2, 3, 7\}
  Kwantyfikator ogólny (universalny) - dla kordego
       \forall x \in X \phi(x)
      ella kaidego elementa ze zbiora X zachadzi O(x)
      jest provoleine wheely i tyllo wheely gety {x \in X : \Phi(x)} = X
  Kvantyfikator szczególovy (egzystenjalny) 3 - ist nieje
        \exists x \in X \phi(x)
      istnicje element v zbione X dla którego zachodzi p(x)
      jest provdrive vtady i tylko vtady gdy {x \in X: \phi(x)} \def = \infty
```

```
Przykłady
   1) XER, y EZ, x+y = 17 - fuulcja zdaniova 2 zmiennych
   2) \exists y \in \mathbb{Z} (x + y = \pi) \rightarrow \text{funley} a zdemova 1 zmiennej
   3) \forall x \in \mathbb{R} \exists y \in \mathbb{Z} (x \cdot y = \pi) \rightarrow zdanie folszyve
   4) Vye Z 3 x ER (x+y=17) - zdanie pravdzive
Knowty fileatory ograniczone
       lla xeX, o(x) i A∈X
   • (\forall x \in A) \phi(x) \iff \forall x \in X (x \in A \Longrightarrow \phi(x))
   ((x) \phi \land A \Rightarrow x \Rightarrow \exists x \in X (x \in A \land \phi(x))
pryhiad: zbior elementor x & R spetnioj acych (x)
    1) \Phi(x): \forall y \in \mathbb{R} \times > sin(y)
       \left\{x \in \mathbb{R} : \phi(x)\right\} = (1 + \infty)
   2) φ(x): ∃y σ R x > sin (y)
         \left\{x \in \mathbb{R} : \phi(x)\right\} = \left(-1, +\infty\right)
```

Prava rachunku kvantyfikatorów Ugrożenie jest pravem jeśli provdzive ella dovolnej interpretacji vystą pujących w nim symboli i funlecji zelaniowych

 $\Phi(x)$, $\Psi(x)$ to funkcje zdemove, $x \in X \neq \emptyset$

- $(x)_{\phi} \times \exists (x) \Rightarrow \exists x \phi(x)$
- 2. $\sim (\forall \times) \phi(x) \iff \exists \times (\sim \phi(x))$
 - $((3x)\phi(x) \iff \forall x (\sim \phi(x))$
- 3. \(\neg \) \(\
- 4. $\exists \times (\phi(x) \vee \psi(x)) \iff \exists \times \phi(x) \vee \exists \times \psi(x)$
- 5. $\exists \times (\phi(x) \land \psi(x)) \Rightarrow \exists \times \phi(x) \land \exists \times \psi(x)$
- 6. $\forall \times \phi(x) \vee \forall \times \psi(x) \Rightarrow \forall \times (\phi(x) \vee \psi(x))$

Prova utorczania i uytarzania kvantyvikotorów

- mich $\phi(x)$ funkcja zdamiova, $x \in X \neq \emptyset$ β zdamic ϕ doubling ϕ symbolo ϕ ϕ , ϕ , ϕ
- 1. $\forall \times (\beta \diamond \phi(x)) \iff \beta \diamond \forall \times \phi(x)$
 - $oroz \quad \forall x (\phi(x) \Rightarrow \beta) \iff (\exists x \phi(x) \Rightarrow \beta)$
- 2. $\exists (\beta \diamond \phi(x)) \Leftrightarrow \beta \diamond \exists x \phi(x)$
 - $\text{ONUZ} \quad \exists \times (\phi(x) \Rightarrow \beta) \iff (\forall \times \phi(x) \Rightarrow \beta)$

Prova przestaviania krantyfilostovów

- da o(x,y), x ex, y e y
- 1. ∀x ∀y φ(x,y) ⇒ ∀y ∀x φ(x,y)
- 2. $\exists x \exists y \phi(x,y) \iff \exists y \exists x \phi(x,y)$
- 3. $\exists \times \forall y \phi(x,y) \Rightarrow \forall y \exists x \phi(x,y)$