#### STRUCTURING KNOWLEDGE: ABSTRACTION

#### Abstraction is fundamental!

- Abstraction is a logical and constructive procedure.
- Objects are being subsumed under a concept, if they have equal, explicitly denominable properties.

We arrange (associate) all objects, which have equal property (feature) instantiations, into one class.

- By means of this classification we define an equivalence relation:
  - Reflexivity  $\forall a.(a,a) \in R$ , also: aRa
  - Symmetry  $\forall a, b.(a, b) \in R \rightarrow (b, a) \in R$
  - Transitivity  $\forall a, b, c.(a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R$

G. Görz, FAU, Inf.8

#### **Abstraction Schema**

Abstraction is the transition from statements

about objects  $a,b,\ldots$  among which an equivalence relation  $\sim$  has been established, to statements

$$A(\tilde{a})$$

by means of the abstraction schema

$$A(\tilde{x}) \rightleftharpoons \forall y (x \sim y \to A(y))$$

In this way we introduce talking about abstract objects  $\tilde{a}, \tilde{b}, \dots$ 

If two objects a,b obey the relation  $a\sim b$ , we say that a and b represent the same abstract object  $\tilde{a}$  (or  $\tilde{b}$ , respectively).

#### **Abstractor**

- To express that certain statements are invariant wrt. to an equivalence relation, we use a *hypothetical abstract* object which has only the *common* properties.
- Invariant statements A are expressed in a new way by introducing an abstractor  $\alpha$ :  $A(\alpha x)$  with the abstract object  $\alpha x$

Example: The Natural Numbers

- Basic class: counting signs.
   Different number representations (lists of strokes, . . . )
- Abstractor: number (as abstract counting sign)
- Equivalence relation: consisting of as many counting signs

G. Görz, FAU, Inf.8 3–2

# Concepts

Concepts ("Begriffe"): Abstraction over predicators wrt. the equivalence relation of invariance relative to a rule system of terminological agreements ⇒ intension.

LEIBNIZ' theorem of indiscernibility: logical equality.

States of affairs ("Sachverhalte") are gained from statements by means of abstraction wrt. to equality of contents.

Facts: True states of affairs.

(Propositional) Knowledge of one or more persons:

A set of statements which satisfy certain conditions on their content, and the *truth* of which the persons can *justify* by (good) reasons they agree upon.

#### KNOWLEDGE AND COGNITION

The term "cognitive" is introduced as a general distinction of the areas of perception, thinking, and imagination from other mental areas like emotion or will.

Nagao: knowledge = cognition + logic ?!?

Truth??

Knowledge acquisition through cognition: perception and recognition of objects.

Without knowledge we cannot re-cognize anything.

Theoretical knowledge: analytic vs. synthetic

G. Görz, FAU, Inf.8 3–5

# Recording and Organizing Knowledge

Science arises with the invention of notation systems: Recording and structuring of knowledge as a prerequisite for the invention of the scientific method (Thales).

A brief look at structuring and organizing existing (scientific) knowledge from a top-down perspective

- Structuring in the large: Encyclopedias and systematics in the sciences
- Derivation of classifications according to content conceptual structure, e.g. library classification schemata
- Classification of items/instances in terms of properties, e.g. of books in a library: metadata
- Schematic descriptions of content: from thesauri to formal ontologies (cf. ch. 4, 9)
- Formal representation languages and inference, e.g. for automatic classification and querying: LOGIC

# **Knowledge and Cognition (2)**

Rational theory of cognition: Ability to acquire knowledge through the intellect (ratio). Focusing on the deductive-demonstrative function of knowledge acquisition and construction.

Experience theory of cognition: Ability to acquire knowledge on the basis of experiences we make when we interact with our environment. Focussing on induction, classification and description.

#### Historical remarks:

LOCKE: Empirism

DESCARTES: Three categories of ideas — those gained from sensual

data, from imaginations and from innate ideas BACON: Descriptive knowledge classification.

G. Görz, FAU, Inf.8 3–6

# **Encyclopedic Structuring of Knowledge**

## Methodology and didactic purposes

- Aristotle's writings: logic, science (physics, astronomy, meteorology, biology, physiology, psychology), ethics, esthetics, metaphysics ("first philosophy")
- Ancient classification in mathematics and science: Pythagoras, Ptolemy, Pliny,...
- Cassiodorus (Martianus Capella, Isidor of Sevilla): Artes liberales
- Trivium grammar, rhetorics, dialectics
- Quadrivium arithmetics, geometry, astronomy, music
- Medieval encyclopedism

G. Görz, FAU, Inf.8 3–7 G. Görz, FAU, Inf.8 3–8

- From humanism to rationalism and modern science (Descartes, Bacon)
- First encyclopedias in alphabetical order
- Diderot and d'Alembert: L'Encylopédie Enlightenment
- Buffon, Linné: systematics in biology, empirical sciences
- Leibniz' program: universal encyclopedia, characteristica universalis, calculus rationcinator: ars inventoria
- Modern science: global view: Comte,. . . ; disciplinary views
- Non-European cultures: Chinese encyclopedism

G. Görz, FAU, Inf.8

# Using Primary, Secondary, and Tertiary Information



Figure 2.1 Systems for making use of various kinds of information.

# Factual Knowledge and its Organization

Systematization and Classification

Classification: library and information science

— static view (schema  $\leftrightarrow$  medium)

New terms through scientific and technological progress

Administration of knowledge corpora by computers: **Access** — **Search** 

- Primary information
- Secondary information, METADATA keywords, annotations of primary information

G. Görz, FAU, Inf.8

# Factual Knowledge

**Kinds/types of data** ⇒ "information" (interpretation relation)

Collection and organization of data

Classification:

System of concepts represented by a  $\mathit{system}$  of terms (words) —  $\mathit{THESAURUS}$ 

Condensation of data abstracting, indexing (manual/automatic)

Access methods: search in primary data and metadata

G. Görz, FAU, Inf.8 3–11 G. Görz, FAU, Inf.8 3–12

# **Dewey's Decimal Classification for Libraries**

#### Organisation von Faktenwissen: Dezimalklassifikation (Dewey)



Table 2.2 Division of the Nippon Decimal Classification

| 1(00)  | philosophy                    | class              |             |
|--------|-------------------------------|--------------------|-------------|
| 12(0)  | eastern philosophy            | code               |             |
| 121    | Japanese philosophy           | item               |             |
| 121.5  | modern                        | detailed item      |             |
| 121.52 | study of classical literature | more detailed item | small items |
| 121.54 | the doctrines of Chu-tzu      | more detailed item |             |

G. Görz, FAU, Inf.8 3–13 G. Gö



# **Principles of Decimal Classification**

- *Consistency:* each area is divided based on only one classification principle
- Exclusiveness: each subclass should not overlap with another
- Sufficiency: the classification should not leave anything out
- *Gradualism:* the classification should progress from broader concepts to narrower concepts, and should not leave gaps

**Complex classification:** combination of *feature structures* Example: A book about *economy and politics* 

G. Görz, FAU, Inf.8

# Organization of Factual Knowledge: Classification Schemata

General: Libraries and bibliographic information services

- Library of Congress classification
- Bibliographic classification of German,... libraries
- Taxonomies for web pages (Google, Yahoo!) automatic

Domain specific: for most disciplines, e.g. ACM Computing Classification System

G. Görz, FAU, Inf.8 3–15 G. Görz, FAU, Inf.8 3–16

## **Dublin** core

A common core of "metadata elements", i.e. property types, for resource description  $% \left( 1\right) =\left( 1\right) \left( 1$ 



G. Görz, FAU, Inf.8

#### Thesaurus

Thesaurus: Systematik von Termini (Wörtern)

ROGET: Hervorhebung von Synonymie vs. Begriffsumfang (enger/ weiter)

Table 2.6 Roget's system

| Table 2.0 Roger a system        |                                                                                                |                                          |                                  |                                                                                                        |                                          |
|---------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------|
| class                           | section                                                                                        | given code                               |                                  |                                                                                                        |                                          |
| 1. abstract relations           | existence<br>relation<br>quantity<br>order<br>number                                           | 1-8<br>9-24<br>25-57<br>58-83<br>84-105  | 5. volition (the exercise of the |                                                                                                        |                                          |
|                                 | time<br>change<br>causation                                                                    | 106-139<br>140-152<br>153-179            | (1) individual volition          | volition in general<br>prospective volition<br>voluntary action<br>antagonism                          | 600-619<br>620-679<br>680-703<br>704-728 |
| 2. space                        | space in general<br>dimensions<br>form<br>motion                                               | 180-191<br>192-239<br>240-263<br>264-315 | (2) social volition              | results of action<br>general social volition<br>special social volition<br>conditional social volition | 729-736<br>737-759<br>760-767<br>768-774 |
| 3. matter                       | matter in general<br>inorganic matter<br>organic matter                                        | 316-320<br>321-356<br>357-449            | 6. emotion, religion, and mora   | possessive relations                                                                                   | 775–819<br>820–826                       |
| 4. intellect (the exercise of t | he mind)                                                                                       |                                          |                                  | personal emotion                                                                                       | 837-887                                  |
| (1) formation of ideas          | general<br>precursory conditions and<br>operations                                             | 450-454<br>455-466                       |                                  | personal emotion<br>interpersonal emotion<br>morality<br>religion                                      | 888-921<br>922-975<br>976-1000           |
|                                 | materials for reasoning<br>reasoning processes<br>results of reasoning<br>extension of thought | 467-475<br>476-479<br>480-504<br>505-513 |                                  | rengion                                                                                                | )                                        |
| \                               | creative thought                                                                               | 514-515                                  |                                  |                                                                                                        | /                                        |

# Classifying Items: Feature-based Classification

Example: Bibliographic entries

author, title, publisher, place, date, language, format, type, pages, number of figures, . . .

Combination of features:

- coarse grained classification (e.g. disciplines),
- fine grained classification by feature combination

#### Relations between subjects:

parallel, hierarchical, part—whole, opposition, comparison/ contrast, cause/effect, influence, main subject/ instance, main subject/ points of view, main subject/ purpose, theory/ application

G. Görz, FAU, Inf.8 3–18

# Thesaurus of Technical Terms:

Structure of the thematic field

Relations between nouns

- 1. Synonyms, antonyms
- 2. Broader, narrower terms
- 3. Similar words
- 4. Relations: part/whole, order, cause/effect, succession, logical relation, common features
- 5. Compound words, derivative words

G. Görz, FAU, Inf.8 3–19 G. Görz, FAU, Inf.8 3–20

# Partial Sample of the INSPEC Thesaurus



G. Görz, FAU, Inf.8

Formation of *lexical concepts* through **Synsets** (synonym sets); distinction of readings (seat: 6 senses; sense 3 = furniture. . . )

EuroWordNet: Polylingual extension of WordNet with background ontology "Inter-Lingual Index" (ILI)

## Thesauri / Semantic Word Nets: (Euro) WordNet

Hierarchical lexicon with representation of sense carrying relations between words — focus on linguistics (word usage), often not as rigid as formal ontologies.

#### Example:

```
seat (furniture that is designed for sitting on)
  chair
    armchair
    folding chair
     camp chair
  bench
    park bench
PARTS: seat, upholstery
```

G. Görz, FAU, Inf.8 3–22

#### **Relations in Word Nets**

- Lexical relations: **Synonymy**, synset-internal (*teacher*, *instructor*) and **Antonymy** (*birth* / *death*, *to love* / *to hate*, *beautiful* / *ugly*)
- Concept relations, holding for all realizations of a lexical concept within a synset
  - Hyponymy, inverse: hyperonymy, hierarchy-shaping (duck and bird)
  - Meronymy, inverse: holonymy, part-whole relation (roof and house)
  - Causation (kill and die, opening and open)
  - Entailment (succeed and try)

Furthermore: **Cross classification** (banana as plant and food) **Subcategorization frame**: Syntax-semantics interface

G. Görz, FAU, Inf.8 3–23 G. Görz, FAU, Inf.8 3–24

### The Semantics of Word Net

... lies in its **structure**, depending on the interpretation of the relations:

- synonymy equivalence relation
- antonymy complement/negation
- mereonymy axioms, transitivity

#### G. Görz, FAU, Inf.8 3–25

# Language Independent Modules Language Independent Independent Modules Language Independent Mod

# (Euro) WordNet Synsets



Figure 1: Synsets related to "car" in its first sense in WordNet1.5.

G. Görz, FAU, Inf.8 3–26



G. Görz, FAU, Inf.8 3–27 G. Görz, FAU, Inf.8 3–28

| 1stOrderEntity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2ndOrderEntity°                                                                                                                                                                                                                                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Origin' Namaral Living'' Human' Human' Creatment Ard fact '' Addiad'' Ard fact '' Solide' Clayted' Clayted' Composition' Form' Par' Yenical LanguageRepresentation' LanguageRepresentation' LanguageRepresentation' LanguageRepresentation' LanguageRepresentation' LanguageRepresentation' LanguageRepresentation' LanguageRepresentation' Clayted' Control of | SituationType*  Dyname.  Dyname.  BandeedSevent*  EinboundeefSevent*  Sartie*  Property*  Relation*  SituationComponent*  Cause*  Agenthe*  Sentomenan!*  SituationComponent*  Communication*  Communication*  Communication*  Edistence*  Edistence*  Bastence*  Mental*  Modail*  Proyects in*  Perposes in*  Perposes in*  Perpose in*  Purpose*  Socialitie*  Time**  Usage* |  |

G. Görz, FAU, Inf.8 3–29

- How can computer-interpretable knowledge be extracted from documents?
- How can knowledge from multiple sources be combined and used?

# Important Issues in KNOWLEDGE REPRESENTATION

(Fikes)

- What knowledge needs to be represented to answer given questions?
- How is incomplete or vague information represented?
- How is qualitative knowledge represented?
- How are assumptions represented and reasoned with?
- How can knowledge be encoded so that it is reusable?
- How can knowledge be reformulated for a given purpose?
- How can effective automatic reasoning be done with large-scale knowledge bases?

G. Görz, FAU, Inf.8 3–30

# FORMAL REASONING AND COMPUTATIONAL LOGICS

#### Reasoning

- Computational methods for creating "new" knowledge from existing knowledge
  - Primarily task-specific methods,
     e.g. planning, scheduling, constraint satisfaction, diagnosis,. . .
  - Methods for managing reasoning,
     e.g. hybrid reasoning, parallel processing,...
- Analysis of reasoning methods: soundness, completeness, required resources
- Methods for creating explanations of reasoning results

G. Görz, FAU, Inf.8 3–31 G. Görz, FAU, Inf.8 3–32

# Computational Logics: Proof Procedures, Resolution and Unification

(Acknowledgement: Enrico Franconi, Richard Fikes)

In logic, clearly distinguish the definitions of

- the formal language syntax and semantics || expressive power
- the reasoning problem decidability || computational complexity
- the problem solving procedure soundness and completeness || (asymptotic) complexity

G. Görz, FAU, Inf.8 3–33

# Reasoning: First-Order Logic and Knowledge Representation

Consider First-Order Logic (FOL) as a language for the formal representation of knowledge and reasoning.

#### RFMINDFR:

Operations can be defined formally (proof theory) and receive semantic properties (truth theory):  $\vdash \equiv \models$ 

#### Well-defined semantics!

Problem: Undecidability (Semidecidability)

Even if the decision problem is made solvable by language restrictions, it is in general not solvable within realistic time.

# The Ideal Computational Logic

- expressive
- with decidable reasoning problems
- with sound and complete reasoning procedures
- with efficient reasoning procedures possibly sub-optimal
- ⇒ Specialized logic-based representation formalisms

**Description Logics** — explore the "most" interesting expressive decidable logics with "classical" semantics, equipped with "good" reasoning procedures.

G. Görz, FAU, Inf.8 3–34

# Preliminary Remarks on the Automation of Reasoning

How can we get around undecidability/semidecidability, the fundamental problem for automatic theorem proving in full FOL?

- Use heuristics ⇒ loss of completeness or soundness
- Restrict the language to a decidable fragment

#### Common inference procedures

- Resolution: Generalization of the propositional resolution calculus to FOL with unification
- Tableau calculi: Generalization of formal logic dialogues to tableaux in particular for Description Logics

G. Görz, FAU, Inf.8 3–35 G. Görz, FAU, Inf.8 3–36

# **Problems and Algorithms**

A problem is a "general question" to be answered. It is described by giving

- a general description of all its parameters, and
- a statement of which properties the answer, or solution, is required to satisfy.

An *instance* of a problem is obtained by specifying values for all parameters.

An **algorithm** is a finite, effective and determined instruction for solving problems.

G. Görz, FAU, Inf.8 3–37

# **Reasoning Procedures**

A reasoning procedure is an algorithm trying to solve *specific instances* of a *specific reasoning problem* in a *given logic*.

- Whenever a **sound** reasoning procedure claims to have found a solution for a given instance of a problem, then this is actually a solution.
  - "no wrong inferences are drawn"
  - A sound procedure may fail to find a solution for some instances of the problem, when they actually have one.
- Whenever an instance of a problem has a solution, a complete reasoning procedure computes the solution for that instance.
  - "all the correct inferences are drawn"
- A complete procedure may claim to have found a solution for some instances of the problem, when they do not have one.

An algorithm is said to *solve* a problem  $\Pi$ , if

- ullet it can be applied to any instance I of  $\Pi$ , and
- ullet it is guaranteed to always produce a solution for  $\Pi$ .

G. Görz, FAU, Inf.8 3–38

# Pragmatic Aspect: Use — Basic Operations

- Tell (Store): Add a statement to the knowledge base; may include
- testing for consistency
- deriving consequences and storing them
- Untell (Remove) a statement from the knowledge base non-monotonic!
- must include removing derived statements: **Reason Maintenance**
- Ask
  - whether a statement is entailed (theorem proving)
- for entailed instances of a statement schema (query answering)
- for variable values that satisfy constraints (constraint satisfaction, CSP).

G. Görz, FAU, Inf.8 3–39 G. Görz, FAU, Inf.8 3–40

in particular

find truth values for variables that satisfy a propositional logic theory (SAT)

- for the effects of performing an action in a state (projection)
- for a plan to achieve a goal (planning)
- for models that explain observations (diagnosis)

- . . .

G. Görz, FAU, Inf.8

# A Few Historical Remarks on KR Languages

- Early history (late 1950's to 1970's)
  - Research on problem solving and natural language "understanding"
  - Many ad hoc representation schemata
  - "Procedural" vs. "declarative" konwledge controversy
  - No formal semantics
- (Dedicated) Knowledge Representation Languages (1970's and 1980's)
- "Semantic" (associative) networks, "Conceptual graphs" (Sowa)
- Frames: introducing more structure, object-oriented descriptions with inheritance, prototypes
- Production rule systems: if-then inference rules, situation-action rules, hybrid procedural-declarative representation

# "Intelligent" Reasoning

- Provides a conception of "intelligent inference"
- Sanctions a set of inferences, i.e. what can we infer from what we know?
- Recommends a set of inferences,
   i.e. what ought we to infer from what we know?

G. Görz, FAU, Inf.8 3–42

- Qualitative physics: representation and reasoning with incomplete knowledge, qualitative descriptions
- FOL and extensions: declarative representations, rigorous theoretical analysis, resolution theorem proving, formal semantics

G. Görz, FAU, Inf.8 3–43 G. Görz, FAU, Inf.8 3–44