Lab 4 - ARITHMETIC CIRCUITS

ITI 1100A- Digital Systems Winter 2024

School of Electrical Engineering and Computer Science University of Ottawa

Course Coordinator: Dr. Hussein T.Mouftah
Teaching Assistants: Siddhant Tiwari

Emilia Zielinska

Group 29:

Layth Eleissawi 300330109 Sameed Ahmed 300366534

Experiment Date:09/03/2024 **Submission Date:**19/03/2024

Objectives:

- 1. Develop and simulate a complete full adder.
- 2. Integrate the full adder into an 8-bit adder/subtractor.
- 3. Construct a hierarchical design incorporating elements like full adders, subtractors, and parallel multipliers using the QUARTUS II graphical editor.
- 4. Devise an overflow detection mechanism for implementation within a two's complement adder/subtractor.

Equipment

- Quartus sp13.0 64bit
- Altera DE2-115 Cyclone IV E EP4CE115F28C7

Part I: 1 Bit full Adder

Figure 1:Full Bit Adder comprised of 2 NOR gates and 2 AND gates and 1 OR

Figure 2: Simulation diagram of a circuit in Figure 1.

Part II: Parallel Adder:

Figure 3: 8 parallel Full-Bit Adders

Figure 2: Simulation diagram of a circuit in Figure 1.

	Table 1							
Grid	Binary Inputs	Carry	Binary Sum	Hex Equivalent				
1	01111111 + 00000001	0	10000000	(80)16				
2	11111111 + 00000001	1	00000000	(0)16				
3	11000000 + 01000000	1	00000000	(0)16				
4	11000000 + 10000000	1	01000000	(40)16				

Part III: Two's Complement Adder/Subtractor

	Table 2								
Grid	Binary Inputs	Overflow	Carry	Binary Sum	Hex Equivalent	Two's Compl.			
1	01111111 + 00000001	1	0	10000000	(80)16	10000000			
2	11111111 + 00000001	1	1	00000000	(0)16	00000000			
3	00000000 - 00000001	0	0	11111111	(FF)16	00000001			
4	00000000 - 01111111	0	0	10000001	(81)16	01111111			
6	11000000 + 01000000	1	1	00000000	(0)16	00000000			
6	11000000 + 10000000	1	1	01000000	(40)16	11000000			

Comparison of Expected Data and Processing Data PART 1 – One-Bit Full Adder

Α	В	C_IN	SUM	C_OUT
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

From analyzing the truth table, it becomes evident that the outputs of the circuits align with the anticipated outputs of a one-bit full adder.

PART 2 – Parallel Adder Comparison of results simulation with table 1

Simulation results							
Grid	Binary inputs (A7,A6,A5,A4,A3,A2,A1,A0 +B7,B6,B5,B4,B3,B2,B1,B0)	C_OUT (Carry)	Binary Sum (SUM7, SUM6, SUM5, SUM4, SUM3, SUM2, SUM1, SUM0)				
1 (0ps – 200ns)	01111111 + 00000001	0	10000000				
2 (200ns-400ns)	11111111 + 00000001	1	0000000				
3 (400ns-600ns)	11000000 + 01000000	1	0000000				
4 (600ns-800ns)	11000000 + 10000000	1	01000000				

Table 1

	TABLE 1							
Grid	Binary inputs	Carry	Binary Sum	Hex Equivalent				
1	01111111 + 00000001	0	10000000	7F + 01 = 80				
2	11111111 + 00000001	1	00000000	FF + 01 = 00				
3	11000000 + 01000000	1	00000000	C0 + 40 = 00				
4	11000000 + 10000000	1	01000000	C0 + 80 = 40				

The simulation outcomes correspond exactly to the data presented in Table 1.

PART 3 – Two's Complement Adder/Subtractor Comparison of results simulation with Table 2

Simulation Results							
Grid	Binary Inputs	V	C_OUT	Binary Sum			
(A7,A6,A5,A4,A3,A2,A1,A0		(Overflow)	(Carry)	(SUM7, SUM6, SUM5, SUM4,			
	+B7,B6,B5,B4,B3,B2,B1,B0)			SUM3, SUM2, SUM1, SUM0)			
1 (0ps-150ns)	01111111 + 00000001	1	0	10000000			
2 (150ns-300ns)	11111111 + 00000001	0	1	0000000			
3 (300ns-450ns)	00000000 - 00000001	0	0	1111111			
4 (450ns-600ns)	00000000 - 01111111	0	0	10000001			
5 (600ns-750ns)	11000000 + 01000000	0	1	0000000			
6 (750ns-900ns)	11000000 + 10000000	1	1	01000000			

Table 2

	TABLE 2							
Grid	Binary Inputs	Overflow	Carry	Binary Sum	Hex Equivalent	Two's Complement		
1	01111111 + 00000001	1	0	10000000	7F + 01 = 80			
2	11111111 + 00000001	0	1	00000000	FF + 01 = 00			
3	00000000 - 00000001	0	0	11111111	00 - 01 = FF	11111111 = FF =		
						(-1)10		
4	00000000 - 01111111	0	0	10000001	00 - 7F = 81	10000001 = 81 =		
						(-127)10		
5	11000000 + 01000000	0	1	00000000	C0 + 40 = 00			
6	11000000 + 10000000	1	1	01000000	C0 + 80 = 40			

As we can see the simulation results are the same as the data found in table 2.

As we can see the simulation results are the same as the data found in table 3.

Discussion and Conclusion

The experiment set out to accomplish multiple goals, beginning with the creation and simulation of a full adder and its integration into an 8-bit adder/subtractor. Additionally, it aimed to construct a hierarchical design incorporating full adders, subtractors, and parallel multipliers using the QUARTUS II graphic editor, while also designing an overflow detector for a two's complement adder/subtractor. Predicted outcomes were determined by calculating outputs for different combinations, including the carry input. Through the conducted experiments, these predictions were intended to be validated. In summary, the results matched the anticipated outcomes, effectively demonstrating the experiment's objectives without any deviations.

Challenges

No challenges were encountered

Binary Inputs	Carry	Binary Sum	Hex Equivalent
01111111 + 0000000	0	10000000	(80)_H
11111111 + 0000000	1	00000000	(00)_H
11000000 + 0100000	1	00000000	(00)_H
11000000 + 1000000	1	01000000	(40)_H

Binary Inputs	Overflow	Carry	Binary Sum	Hex Equivalent	Two's Complement
01111111 + 00000001	1	0	010000000	(80)_16	1000000
11111111 + 00000001	0	1	100000000	(100)_16	10000000
00000000 - 00000001	1	0	11111111	(FF)_16	0000001
00000000 - 01111111	1	0	10000001	(81)_16	01111111
11000000 + 01000000	0	1	100000000	(100)_16	10000000
11000000 + 10000000	1	1	110000000	(180)_16	01000000