CUDA Stream. Иерархия памяти в CUDA. Глобальная память.

Лекторы:

Боресков А.В. (ВМиК МГУ)

Харламов A.A. (NVidia)

План

- CUDA Compute Capability
- Типы памяти в CUDA
- Основы CUDA C API
- CUDA Streams
- Thrust

План

- CUDA Compute Capability
 - Получение информации о GPU
- Типы памяти
- Основы CUDA C API
- CUDA Streams
- Thrust

CUDA Compute Capability

- Возможности GPU обозначаются при помощи *Compute Capability*, например 1.1
- Старшая цифра соответствует архитектуре
- Младшая небольшим архитектурным изменениям
- Можно получить из полей *major* и *minor* структуры *cudaDeviceProp*

CUDA Compute Capability

GPU	Compute Capability
GeForce GTX 480	2.0
Tesla S1070	1.3
GeForce GTX 260	1.3
GeForce 9800 GX2	1.1
GeForce 9800 GTX	1.1
GeForce 8800 GT	1.1
GeForce 8800 GTX	1.0

RTM **Appendix A.1** CUDA Programming Guide

CUDA Compute Capability

- Compute Caps. доступная версия CUDA
 - Разные возможности HW
 - Пример:
 - В 1.1 добавлены атомарные операции в global memory
 - В 1.2 добавлены атомарные операции в shared memory
 - В 1.3 добавлены вычисления в double
 - В 2.0 добавлены управление кэшем и др. операции
- Сегодня Compute Caps:
 - Влияет на правила работы с глобальной памятью
- На курсе рассмотрим 1.3 & 2.0
 - Информация о 1.0 1.2 в дополнительных слайдах

Получение информации о GPU

```
int main ( int argc, char * argv [] )
   int
              deviceCount;
   cudaDeviceProp devProp;
   cudaGetDeviceCount ( &deviceCount );
                      ( "Found %d devices\n", deviceCount );
   printf
   for ( int device = 0; device < deviceCount; device++ )</pre>
   {
      cudaGetDeviceProperties ( &devProp, device );
      printf ( "Device %d\n", device );
      printf ( "Compute capability : %d.%d\n", devProp.major, devProp.minor );
      printf ( "Name
                                       : %s\n", devProp.name);
      printf ( "Total Global Memory
                                      : %d\n", devProp.totalGlobalMem );
      printf ( "Shared memory per block: %d\n", devProp.sharedMemPerBlock );
      printf ( "Registers per block
                                      : %d\n", devProp.regsPerBlock );
      printf ( "Warp size
                                       : %d\n", devProp.warpSize);
      printf ( "Max threads per block : %d\n", devProp.maxThreadsPerBlock );
      printf ( "Total constant memory : %d\n", devProp.totalConstMem );
   return 0;
```

План

- CUDA Compute Capability
- Типы памяти в CUDA
 - Глобальная
- Основы CUDA C API
- CUDA Streams
- Thrust

Типы памяти в CUDA

Типы памяти в CUDA

Тип памяти	Доступ	Уровень выделения	Скорость работы	Расположение
Регистры	R/W	Per-thread	Высокая	SM
Локальная	R/W	Per-thread	Низкая	DRAM
Shared	R/W	Per-block	Высокая	SM
Глобальная	R/W	Per-grid	Низкая	DRAM
Constant	R/O	Per-grid	Высокая	DRAM
Texture	R/O	Per-grid	Высокая	DRAM

Легенда:
-интерфейсы
доступа

Типы памяти в CUDA

- Самая быстрая *shared* (on-chip) и регистры
- Самая медленная глобальная (DRAM)
- Для ряда случаев можно использовать кэшируемую константную и текстурную память
- Доступ к памяти в CUDA
 - Отдельно для каждой половины warp'a (halfwarp) в СС 1.х
 - Целиком для warp'a в СС 2.х

План

- CUDA Compute Capability
- Типы памяти в CUDA
- Основы CUDA C API
 - Выделение глобальной памяти
 - Пример: умножение матриц
 - Coalescing
 - Pitch linear
 - Pinned
 - Работа с глобальной памятью
- CUDA Streams
- Thrust

Основы CUDA C API

- Не требуют явной инициализации
- Все функции возвращают cudaError_t
 - cudaSuccess в случае успеха
- Многие функции АРІ асинхронны:
 - Запуск ядра
 - Копирование функциями *Async
 - Копирование device <-> device
 - Инициализация памяти

Основы CUDA C API

```
// Получение информации о существующих в системе GPU
cudaError t cudaGetDeviceCount ( int * );
cudaError t cudaGetDevicePropertis ( cudaDeviceProp * props, int deviceNo );
// Получение информации об ошибках
         * cudaGetErrorString ( cudaError t );
char
cudaError t cudaGetLastError ();
// Синхронизация исполнения в текущем CPU потоке и в CUDA stream'е
cudaError t cudaThreadSynchronize ();
cudaError t cudaStreamSynchronize ();
// Средства управления событиями
cudaError t cudaEventCreate ( cudaEvent t * );
cudaError t cudaEventRecord
                                ( cudaEvent t *, cudaStream t );
cudaError t cudaEventQuery ( cudaEvent t );
cudaError t cudaEventSynchronize ( cudaEvent t );
cudaError t cudeEventElapsedTime ( float * time, cudaEvent t st, cudaEvent t sp );
cudaError t cudaEventDestroy ( cudaEvent t );
```

Работа с глобальной памятью в CUDA

 Функции для работы с глобальной памятью

Работа с глобальной памятью в CUDA

• Пример работы с глобальной памятью

```
// pointer to device memory
float * devPtr;
                         // allocate device memory
cudaMalloc ( (void **) &devPtr, 256*sizeof ( float );
                         // copy data from host to device memory
cudaMemcpy ( devPtr, hostPtr, 256*sizeof ( float ), cudaMemcpyHostToDevice );
                          // process data ...
                          // copy results from device to host
cudaMemcpy ( hostPtr, devPtr, 256*sizeof( float ), cudaMemcpyDeviceToHost );
                          // free device memory
cudaFree ( devPtr );
```

Пример: умножение матриц

- Произведение двух квадратных матриц А и В размера N*N, N кратно 16
- Матрицы расположены в глобальной памяти
- По одной нити на каждый элемент произведения
 - 2D блок 16*16
 - 2D grid

Умножение матриц. Простейшая реализация.

```
#define BLOCK SIZE 16
global void matMult ( float * a, float * b, int n, float * c )
 int bx = blockIdx.x;
 int by = blockIdx.y;
 int tx = threadIdx.x;
 int ty = threadIdx.y;
 float sum = 0.0f;
 int ia = n * BLOCK SIZE * by + n * ty;
      ib = BLOCK SIZE * bx + tx;
 int
      ic = n * BLOCK SIZE * by + BLOCK SIZE * bx;
  int
 for ( int k = 0; k < n; k++)
   sum += a [ia + k] * b [ib + k*n];
 c [ic + n * ty + tx] = sum;
```

Умножение матриц. Простейшая реализация.

```
numBytes = N * N * sizeof ( float );
int
float
         * adev, * bdev, * cdev ;
dim3
           threads ( BLOCK SIZE, BLOCK SIZE );
           blocks ( N / threads.x, N / threads.y);
dim3
               ( (void**)&adev, numBytes ); // allocate DRAM
cudaMalloc
cudaMalloc ((void**)&bdev, numBytes); // allocate DRAM
cudaMalloc ((void**)&cdev, numBytes); // allocate DRAM
                        // copy from CPU to DRAM
cudaMemcpy ( adev, a, numBytes, cudaMemcpyHostToDevice );
cudaMemcpy ( bdev, b, numBytes, cudaMemcpyHostToDevice );
matMult<<<ble>blocks, threads>>> ( adev, bdev, N, cdev );
cudaThreadSynchronize();
                    ( c, cdev, numBytes, cudaMemcpyDeviceToHost );
cudaMemcpy
                         // free GPU memory
cudaFree
                    ( adev );
cudaFree
                    ( bdev );
cudaFree
                    ( cdev );
```

Простейшая реализация.

- На каждый элемент
 - –2*N арифметических операций
 - 2*N обращений к глобальной памяти
- Узкое место доступ в память

Используем CUDA Profiler

- Основное время (84.15%) ушло на чтение из глобальной памяти
- Вычисления заняли всего около 10%

Работа с памятью в CUDA

- Основа оптимизации правильная работа с памятью:
 - Максимальное использование sharedпамяти
 - Лекция 3
 - Использование специальных шаблонов доступа к памяти
 - Coalescing

Оптимизация работы с глобальной памятью.

- Обращения идут через 32/64/128- битовые слова
- При обращении к t[i]
 - sizeof(t [0]) равен 4/8/16 байтам
 - t [i] выровнен по sizeof (t [0])
- Вся выделяемая память всегда выровнена по 256 байт

Использование выравнивания.

```
{
    float x, y, z;
};

struct __align__(16) vec3
{
    float x, y, z;
};
```

struct vec3

- Размер равен 12 байт
- Элементы массива не будут выровнены в памяти

- Размер равен 16 байт
- Элементы массива всегда будут выровнены в памяти

Объединение запросов к глобальной памяти.

- GPU умеет объединять ряд запросов к глобальной памяти в транзакцию одного сегмента
- Длина сегмента должна быть 32/64/128 байт
- Сегмент должен быть выровнен по своему размеру

Объединение (coalescing) 1.2/1.3

- Нити обращаются к
 - 8-битовым словам, дающим один 32байтовый сегмент
 - 16-битовым словам, дающим один 64байтовый сегмент
 - 32-битовым словам, дающим один 128байтовый сегмент
- Объединение происходит на уровне полу-варпов

Объединение (coalescing) 1.2/1.3

- Если хотя бы одно условие не выполнено
 - объединяет их в набор сегментов
 - для каждого проводится отдельная транзакция

Объединение (coalescing) 2.x

- На мультипроцессоре есть L1 кэш
 - Физически там, где разделяемая память
- Мультипроцессоры имеют общий L2 кэш
- Флаги компиляции
 - Использовать L1 и L2 :-Xptxas -dlcm=ca
 - Использовать L2:-Xptxas -dlcm=cg
- Кэш линия 128В
- Объединение происходит на уровне варпов

Объединение (coalescing) 2.x

• Если L1 кэш включен: всегда 128В сегменты

2 транзакция по 128В

Если L2 кэш выключен: всегда 32В сегменты

Объединение (coalescing)

- Увеличения скорости работы с памятью на порядок
- Лучше использовать не массив структур, а набор массивов отдельных компонент
 - Проще гарантировать условия выполнения coalescing'a

Использование отдельных массивов

```
struct vec3
  float x, y, z;
};
vec3 * a;
float x = a [threadIdx.x].x;
float y = a [threadIdx.x].y;
float z = a [threadIdx.x].z;
float * ax, * ay, * az;
float x = ax [threadIdx];
float y = ay [threadIdx];
float z = az [threadIdx];
```

He можем использовать coalescing при чтении данных

Поскольку нити одновременно обращаются к последовательно лежащим словам памяти, то будет происходить *coalescing*

Pitch linear

- Для работы с 2D данными
 - cudaMallocPitch(&ptr, &p, w, h)
 - В &р возвращает ширину выделенной памяти в байтах
 - $-p \ge w * sizeof()$
- Для 1.х р кратно 64
- Для 2.х р кратно 128

Архитектура Tesla 10

Pinned память

- Для ускорения передачи по PCI-E
 - cudaMallocHost(&hostPtr, size)
 - cudaHostAlloc(&hostPtr, size, flag)
 - cudaHostFree(hostPtr)
- Флаги при выделении памяти
 - **DEFAULT**: эквивалентно cudaMallocHost
 - PORTABLE : для работы со множеством GPU из одного потока
 - **MAPPED**: для систем с общей памятью
 - WRITE-COMBINED: память не кэшируется на CPU, передача по PCI-Е быстрее, чтение на CPU медленное

Работа с глобальной памятью

- threadfence() дождаться, когда для всех активных блоков, текущие обращения в память завершаться
 - Не является средством синхронизации блоков
 - Блоки могут быть в разных состояниях
- threadfence_block() дождаться пока все операции записи в память завершаться для вызвавшего блока

Работа с глобальной памятью

• volatile указывает, что переменная может быть изменена извне.

```
_global__ foo(float *p)
{
  float R1 = p[threadIdx.x];
  p[threadIdx.x + 1] = 0.0f;
  float R2 = p[threadIdx.x];
}
```


• В примере R1 == R2

Работа с глобальной памятью 2.x

- Глоабльный и локальный контроль за кэшем
 - cudaThreadSetCacheConfig()
 - cudaFuncSetCacheConfig
- cudaFuncCachePreferNone: значение по умолчанию
- cudaFuncCachePreferShared: бОльший объем разделяемой памяти предпочтительней
- cudaFuncCachePreferL1: бОльший объем L1 кэша предпочтительней

План

- CUDA Compute Capability
- Типы памяти в CUDA
- Основы CUDA C API
- CUDA Streams
 - CUDA Stream API
- Thrust

CUDA Streams

- Независимость отдельных задач выражается через stream'ы
- По умолчанию все операции проходят в stream'e с номером 0
 - Это влечет неявную зависимость между всеми копированиями памяти и ядрами

CUDA Stream API

```
cudaStream t stream; // объявление
cudaStreamCreate(&stream); // создание
// асинхронное копирование памяти
cudaMemcpyAsync(dst, src, s, kind, stream);
// запуск ядра в своем stream'e
Kernel<<<br/>b, t, smem, stream>>>()
// дождаться завершения выполнения в stream'е
cudaStreamSynchronize()
cudaStreamDestroy(stream); // освобождение
```

CUDA Stream 1.3

Stream 0:

MemcpyH2D

Kernel A

MemcpyD2H

MemcpyH2D

Kernel B

MemcpyD2H

Stream 1:

MemcpyH2D

Kernel A

MemcpyD2H

Stream 2:

MemcpyH2D

Kernel B

MemcpyD2H

CUDA Stream 2.x

Stream 0: Memcpy H₂D Kernel A Kernel B Kernel C Memcpy D2H

Stream 1: Stream 2: Stream 3: Memcpy H₂D Kernel B Kernel A Kernel C Memcpy D2H

Ресурсы нашего курса

- Steps3d.Narod.Ru
- Google Site CUDA.CS.MSU.SU
- Google Group CUDA.CS.MSU.SU
- Google Mail CS.MSU.SU
- Google SVN
- Tesla.Parallel.Ru
- Twirpx.Com
- Nvidia.Ru

Дополнительные слайды

• Объединение (coalescing) для GPU с CC 1.0/1.1

Объединение (coalescing) для GPU с CC 1.0/1.1

- Нити обращаются к
 - 32-битовым словам, давая 64-байтовый блок
 - 64-битовым словам, давая 128-байтовый блок
- Все 16 слов лежат в пределах блока
- *k*-ая нить *half-warp* а обращается к *k*-му слову блока

Объединение (coalescing) для GPU с CC 1.0/1.1

Thread 0 Address 12	Thread 0	Address 128	
Thread 1 Address 13	Thread 1	Address 132	Coalescing
Thread 2 Address 13	Thread 2	Address 136	
Thread 3 Address 14	Thread 3	Address 140	
Thread 4 Address 14	Thread 4	Address 144	
Thread 5 Address 14	Thread 5	Address 148	
Thread 6 Address 15	Thread 6	Address 152	
Thread 7 Address 15	Thread 7	Address 156	
Thread 8 Address 16	Thread 8	Address 160	
Thread 9 Address 16	Thread 9	Address 164	
Thread 10 Address 16	Thread 10	Address 168	
Thread 11 Address 17	Thread 11	Address 172	
Thread 12 Address 17	Thread 12	Address 176	
Thread 13 Address 18	Thread 13	Address 180	
Thread 14 Address 18	Thread 14	Address 184	
Thread 15 Address 18	Thread 15	Address 188	

Объединение (coalescing) для GPU с CC 1.0/1.1

Thread 0 Address 128	Thread 0 Address 128	
Thread 1 Address 132	Thread 1 Address 132	No Coalescii
Thread 2 Address 136	Thread 2 Address 136	
Thread 3 Address 140	Thread 3 Address 140	
Thread 4 Address 144	Thread 4 Address 144	
Thread 5 Address 148	Thread 5 Address 148	
Thread 6 Address 152	Thread 6 Address 152	
Thread 7 Address 156	Thread 7 Address 156	
Thread 8 Address 160	Thread 8 Address 160	
Thread 9 Address 164	Thread 9 Address 164	
Thread 10 Address 168	Thread 10 Address 168	
Thread 11 Address 172	Thread 11 Address 172	
Thread 12 Address 176	Thread 12 Address 176	
Thread 13 Address 180	Thread 13 Address 180	
Thread 14 Address 184	Thread 14 Address 184	
Thread 15 Address 188	Thread 15 Address 188	
		•

Объединение (coalescing)

- Если хотя бы одно условие не выполнено
 - 1.0/1.1 16 отдельных транзакций
- Для 1.0/1.1 порядок в котором нити обращаются к словам внутри блока имеет значения (в отличии от 1.1/1.3)

Intellisence для CUDA

- Start → Run → Regedit
- HKEY_LOCAL_MACHINE
 - Software
 - Microsoft
 - Visual Studio
 - 9.0 MSVS 2008 или
 - 8.0 MSVS 2005
 - Languages
 - Language Services
 - C/C++
 - NCB Default C/C++ Extensions
 - Добавить .cu;
- Перезапустить VS