

Inversion start site

|

ATTATA~~A~~AGGAAAAAGAAAATAACGCAATGGACAAG~~T~~GGTG
860 +-----+-----+-----+-----+ 900
TAATATTTCTTTCTTTATTGCCTTACCTGTTACCCAC (41)
Y K G K R K * R N G Q V V

AAGCTGTGAACTCAGGTGTGCACAATTATCAGGAACA CCCCCAAACCAAAGTGAGGTAGA
901 -----+-----+-----+-----+-----+-----+ 960
TTCGACACTTGAGTCCACACGTGTTAATAGTCCTTGTGGGGTTTGGTTCACTCCATCT (101)
K L * T Q V C T I I R N T P K P K * G R

AATAGCATGAGAACCGTGTGATGTTAATTATT
961 -----+-----+-----+----- 996
TTATCGTACTGTTGGCACAAACTACAATTAAATTAA (137)
N S M R S R V * C * L I

The inversion sequence of the apo-dystrophin-4 cDNA (SEQ ID NO 1)

Figure 1

Inversion start site
|

```

850 TAAAGAAAGAATTATAAAGGAAAAAGAAAATAACGCAATGGACAAGTGGTG      900
+-----+-----+-----+-----+-----+
ATTCTTTCTTAATATTCCTTTCTTTATTGCGTTACCTGTTACCCAC      (51)
* R K N Y K G K R K * R N G Q V V

901 AAGCTGTGAACTCAGGTGTGCACAATTATCAGGAACACCCAAAACCAAAGTGAGGTAGA      960
-----+-----+-----+-----+-----+
TTCGACACTTGAGTCCACACGTGTTAATAGTCCTTGTGGGGTTTGGTTCACTCCATCT      (111)
K L * T Q V C T I I R N T P K P K * G R

961 AATAGCATGAGAAGCCGTTTTGATGTTAATTAAATT      996
-----+-----+-----+
TTATCGTACTCTCGGCACAAACTACAATTAAATTAA (147)
N S M R S R V * C * L I

```

The inversion sequence of the apo-dystrophin-4 cDNA plus a 10 base-pair region 5' to the start of the inversion sequence (SEQ ID NO 1A).

Figure 1A

0 9 8 6 5 2 3 7 1 0 9 8 6 5 2 3 7

```

Start at 710
|
AACAAATGGCAG
+-----+ 720
TTGTTACCGTC (11)
Q W Q

721 GTTTTACACGTCTATGCAATTGTACAAAAAAGTTATAAGAAAACATGTAAAATCTTG
-----+-----+-----+-----+-----+-----+-----+
CAAATGTGCAGATACGTTAACATGTTTTCAATATTCTTTGATGTACATTTAGAAC 780
(71)
V L H V Y A I V Q K S Y K K T T C K I L

781 ATAGCTAAATAACTGCCATTCTTATATGGAACGCATTTGGGTTGTTAAAAATTAA
-----+-----+-----+-----+-----+-----+-----+
TATCGATTTATTGAACGGTAAAGAAATATACCTGCGTAAACCCAAACAAATTTAAAT 840
(131)
I A K * L A I S L Y G T H F G L F K N L
inversion start site
|
TAACAGTTATAAAGAAAGAATTATAAGGAAAAGAAAATAACGCAATGGACAAGTGGTG
841 -----+-----+-----+-----+-----+-----+-----+
ATTGTCAATATTCTTCTTAATATTCCTTTCTTTATTGCGTTACCTGTTACCCAC 900
(191)
* Q L * R K N Y K G K R K * R N G Q V V

901 AAGCTGTGAACTCAGGTGTGCACAATTATCAGGAACACCCAAAACCAAAGTGAGGTAGA
-----+-----+-----+-----+-----+-----+-----+
TTCGACACTTGAGTCCACACGTGTTAATAGTCCTGTTGGGTTTGGTTCACTCCATCT 960
(251)
K L * T Q V C T I I R N T P K P K * G R

961 AATAGCATGAGAAGCCGTGTTGATGTTAATTAAATT
-----+-----+-----+----- 996
TTATCGTACTCTTCGGCACAAACTACAATTAAATTAA (287)
N S M R S R V * C * L I

```

The inversion sequence of the apo-dystrophin-4 cDNA plus the upstream 150 bp from the start of the inversion at 860 to the Hpa I enzyme site (SEQ ID NO 1B)

Figure 1B

DRAFT - DRAFT

GTGGTTGATTGATAGTAAAAAAATGTCGTTAACAGTAGAGAGTAAGTAATCAAT
1 -----+-----+-----+-----+-----+-----+-----+-----+ 60
CACCAAACACTATCATTTTTTACAAGCAATTATGTTCATCTCTCATTCTATTAGTTA
V V * L I V K K M F V N T S R E * V I N

CAATCACTCATGCCAAGGTGGAAAAGATGTATCCCACATGGAAATATTCTGTTCTGAT
61 -----+-----+-----+-----+-----+-----+-----+-----+ 120
GTTAGTGAGTATCGGTTCCACCTTCTACATAGGGTAGTACCTTATAAGGACAAGACTA
Q S L I A K V E K M Y P I M E Y S C S D

AGAAATCTTGTGCTTATCTATGGAATTCTTTGATATATATTACATTGGAACCTGAAT
121 -----+-----+-----+-----+-----+-----+-----+-----+ 180
TCTTTAGAACACGAATAGATACCTTAAGAAAACATATATAAATGTAACCCTGGACTTA
R N L V L I Y G I L L I Y I Y I G N L N

GTAGCTTGACATTTCCATGTAAACACCAAGTAGCCTGATCCAACATTAAGCTGATACTA
181 -----+-----+-----+-----+-----+-----+-----+-----+ 240
CATCGAACTGTAAAAGGTACATTGTGGTCATGGACTAGGTTGTAATTGACTATGAT
V A * H F S M * T P V A * S N I K L I L

ACAAAACAACGTGTAATGGCTTCATTAATAAGGCTTGCCTCTGGAAACTGGTAAA
241 -----+-----+-----+-----+-----+-----+-----+-----+ 300
TGTTTGTGACATTACCGAAGTAATTATCCGAAACGAAGAAGGACCTTGACCACTTT
T N N V * W L H * * G F A S S W K L V K

AATCAAACCTTGTGTCACCCCTCGATGCAGCTCTGTGTTGCTTCACCCAGAAATG
301 -----+-----+-----+-----+-----+-----+-----+-----+ 360
TTAGTTGGAACAAACACATGTGGAGCTACGTCGAAGACACAAACAGAAGTGGTCTTAC
N Q T L L C T P S M Q L L C C L H P E M

The polynucleotide sequence of apo-dystrophin-4 (SEQ ID NO 2)

Figure 2

D996696264 - D9923024

361	GGGAATGATTCCCAAATGGCAAAGAACAGAGTGATGCTATCTATCTGCACCTTTGTA -----+-----+-----+-----+-----+-----+-----+-----+-----+ CCCTTACTAAAGGGTTTACCGTTCTTGTCCTACGTAGATAGACGTGGAAAACAT G N D F P N G K E T E * C Y L S A P F V	420
421	AAGTCTGTCTTCTTCTCTTTGTTCCAGGACACAATGTAGGAAGTCTTCCACATG -----+-----+-----+-----+-----+-----+-----+-----+ TTCAGACAGAAAGAAAGAGAAACAAAGGTCTGTGTTACATCCTCAGAAAAGGTGTAC K S V F L S L C F P G H N V G S L F H M	480
481	GCAGATGATTGGGCAGAGCGATGGAGTCCTTAGTATCAGTCATGACAGATGAAGAAGGA -----+-----+-----+-----+-----+-----+-----+-----+ CGTCTACTAAACCGTCTCGCTACCTCAGGAATCATAGTCAGTACTGTCTACTTCTCCT A D D L G R A M E S L V S V M T D E E G	540
541	GCAGAATAATGTTTACAACCTCCTGATTCCCGATGGTTTATAATATTACATACAACA -----+-----+-----+-----+-----+-----+-----+ CGTCTTATTTACAAAATGTTGAGGACTAAGGGCGTACCAAAATATTATAAGTATGTTGT A E * M F Y N S * F P H G F Y N I H T T	600
601	AAGAGGATTAGACAGTAAGAGTTACAAGAAATAATCTATATTTTGTAAGGGTAGTG -----+-----+-----+-----+-----+-----+-----+ TTCTCCTAATCTGTCATTCTCAAATGTTCTTATTTAGATATAAAAACACTCCCACAC K R I R Q * E F T R N K S I F L * R V V	660
661	GTATTATACTGTAGATTCAGTAGTTCTAAGTCTGTTATTGTTGTTAACAAATGGCAG -----+-----+-----+-----+-----+-----+-----+ CATATAATGACATCTAAAGTCATCAAAGATTCAAGACAATAACAAAACAATTGTTACCGTC V L Y C R F Q * F L S L L L F C * Q W Q	720

Figure 2 (cont'd)

D9999999999999

721 GTTTTACACGTCTATGCAATTGTACAAAAAGTTATAAGAAAACATGTAAAATCTTG
721 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 780
CAAAATGTGCAGATACTTAAACATGTTTTCAATATTCTTTGATGTACATTTAGAAC
V L H V Y A I V Q K S Y K K T T C K I L

781 ATAGCTAAATAACTGCCATTCTTATATGGAACGCATTGGGTTGTTAAAAATTAA
781 -----+-----+-----+-----+-----+-----+-----+-----+-----+ 840
TATCGATTATTGAACGGTAAAGAAATATACCTTGCCTAAACCCAACAAATTTTAAAT
I A K * L A I S L Y G T H F G L F K N L

841 TAACAGTTATAAGAAAGAATTATAAGGAAAAGAAAATAACGCAATGGACAAGTGGTG
841 -----+-----+-----+-----+-----+-----+-----+-----+ 900
ATTGTCAATATTCTTCTTAATATTCCCTTTCTTTATTGCCTTACCTGTTACCCAC
* Q L * R K N Y K G K R K * R N G Q V V

901 AAGCTGTGAACTCAGGTGTGCACAATTATCAGGAACACCCAAAACCAAAGTGAGGTAGA
901 -----+-----+-----+-----+-----+-----+-----+ 960
TTCGACACTTGAGTCCACACGTGTTAATAGTCCTGTGGGTTTGGTTCACTCCATCT
K L * T Q V C T I I R N T P K P K * G R

961 AATAGCATGAGAAGCCGTGTTGATGTTAATTAAATT
961 -----+-----+-----+-----+-----+-----+-----+ 996
TTATCGTACTCTTCGGCACAAACTACAATTAAATTAA
N S M R S R V * C * L I

Figure 2 (cont'd)

09/06/2014 09:23:01

Figure 3A

Figure 3B

Figure 4A

Figure 4B

Figure 4C

Figur 4D

Figure 4E

Figure 5

D96C2647 · D96C2648

	... TAGTTTCTATTCAATGTATAAGTCACCAAAGGTCAATTCAAGAGTTATTATTATT	
-239	-----+-----+-----+-----+-----+-----+-----+-----+-----+	-180
	... ATCAAAGGATAAGTTACATATCACGTGGTTCCAGTTAAGTCTCAAATAATAAA	
	. * F P I Q C I V H Q R S I Q E F I I I	
	ATTTCAACCCAAGTAAAAGCAGAGAGAAAATGCCACCTCCACCATAGCCTCAGAACGA	
-179	-----+-----+-----+-----+-----+-----+-----+-----+	-120
	TAAAAGTTGGGTTCATTTCTCTCTTTATCGGTGGAGGTGGTATCGGAGTCTCGT	
	I F N P S K S R E K I A T S T I A S E A	
	AGCCAACAGCCTGAAACAGCTTGAAATGAAAAGTTGGTGTGGCGGTGATGGTGGCAGTG	
-119	-----+-----+-----+-----+-----+-----+-----+-----+	-60
	TCGGTTGTCGGACTTGTGAAACCTTACTTTCAACCACACGCCACTACCACCGTCAC	
	S Q Q P E T A L K * K V G V A V M V A V	
	ATAATGGTGACCGATGGTGGGTGCTGGTGATGGTAGTTGTGAAGGTGGTGATG	
-59	-----+-----+-----+-----+-----+-----+-----+-----+	0
	TATTACCACTGGCTACCAACCCACGACCACTACCATCACCATCACACTCCACCACTAC	
	I M V T D G W V L V M V V V V V V K V V M	
1	GTGGTTGATTGATAGTAAAAAAATGTCGTTAACAGTAGAGAGAGTAAT <u>CAAT</u>	60
	-----+-----+-----+-----+-----+-----+-----+-----+	
	CACCAAACACTATCATTTTTACAAGCAATTATGTTCATCTCATTCATTAGTTA	
	V V * L I V K K M F V N T S R E * V I N	
61	CAATCACTCATAGCCAAGGTGGAAAAGATGTATCCCACATGGAATATTCTGTTCTGAT	120
	-----+-----+-----+-----+-----+-----+-----+-----+	
	GTTAGTGAATCGGTTCCACCTTCTACATAGGGTAGTACCTTATAAGGACAAGACTA	
	Q S L I A K V E K M Y P I M E Y S C S D	
121	AGAAATCTTGTGCTTATCTATGGAATTCTTGTATATATTACATTGGAACCTGAAT	180
	-----+-----+-----+-----+-----+-----+-----+-----+	
	TCTTTAGAACACGAATAGATACTTAAGAAAATATATAAAATGTAACCCTGGACTTA	
	R N L V L I Y G I L L I Y I Y I G N L N	
181	GTAGCTTGACATTTCCATGTAAACACCAAGTAGCCTGATCCAACATTAAGCTGATACTA	240
	-----+-----+-----+-----+-----+-----+-----+-----+	
	CATCGAACTGTAAAAGGTACATTGTGGTCATCGGACTAGGGTAGTGTAAATTGACTATGAT	
	V A * H F S M * T P V A * S N I K L I L	
241	ACAAACAAACGTGTAATGGCTTCATTAATAAGGCTTGTCTTCCCTGGAAACTGGTAAA	300
	-----+-----+-----+-----+-----+-----+-----+-----+	
	TGTTTGTGCACATTACCGAAGTAATTATTCCGAAACGAAGAAGGACCTTGACCACTT	
	T N N V * W L H * * G F A S S W K L V K	
301	AATCAAACCTTGTGTACACCCCTCGATGCAGCTCTGTGTTGTCTTCACCCAGAAATG	360
	-----+-----+-----+-----+-----+-----+-----+-----+	
	TTAGTTGGAACACACATGTGGGAGCTACGTGCGAACACAAACAGAAGTGGTCTTAC	
	N Q T L L C T P S M Q L L C C L H P E M	
361	GGGAATGATTCCCAAATGGCAAAGAAACAGAGTGATGCTATCTATCTGCACCTTGT	420
	-----+-----+-----+-----+-----+-----+-----+-----+	
	CCCTTACTAAAGGGTTACCGTTCTTGTCTCACTACGATAGATAGACGTGGAAAACAT	
	G N D F P N G K E T E * C Y L S A P F V	

Figure 6

D S E C E D E T - D S E C D

begin exon 79

```

421 AAGTCTGTCTTCTTCTTTGTTCCAGGACACAATGTAGGAAGTCTTCACATG 480
-----+-----+-----+-----+-----+-----+
TTCAGACAGAAAGAAAGAGAACAAAAGGTCTGTGTTACATCCTCAGAAAAGGTGTAC
K S V F L S L C F P G H N V G S L F H M

481 GCAGATGATTGGGCAGAGCGATGGAGTCCTAGTATCAGTCATGACAGATGAAGAAGGA 540
-----+-----+-----+-----+-----+-----+
CGTCTACTAAACCGTCTCGCTACCTCAGGAATCATAGTCAGTACTGTCTACTTCTCCT
A D D L G R A M E S L V S V M T D E E G

541 GCAGAATAATGTTTACAACCTCTGATCCCGCATGGTTTATAATATTACATAACA 600
-----+-----+-----+-----+-----+-----+
CGTCTTATTACAAAATGTTGAGGACTAAGGGCGTACCAAAATATTATAAGTATGTTGT
A E * M F Y N S * F P H G F Y N I H T T

(----N----)
601 AAGAGGATTAGACAGTAAGAGTTACAAGAAATAATCTATATTTTGTAAGGGTAGTG 660
-----+-----+-----+-----+-----+-----+
TTCTCCTAATCTGTCATTCTCAAATGTTCTTATTAGATATAAAACACTTCCCACATCAC
K R I R Q * E F T R N K S I F L * R V V

661 GTATTATACTGTAGATTCAGTAGTTCTAAGTCTGTTATTGTTAACAATGGCAG 720
-----+-----+-----+-----+-----+-----+
CATAATATGACATCTAAAGTCATCAAAGATTCAAGACAATAACAAAACAATTGTTACCGTC
V L Y C R F Q * F L S L L F C * Q W Q

721 GTTTTACACGTCTATGCAATTGTACAAAAAGTTATAAGAAAACATGTAAAATCTG 780
-----+-----+-----+-----+-----+-----+
CAAATGTGCAGATACGTTAACATGTTTTCAATATTCTTTGATGTACATTAGAAC
V L H V Y A I V Q K S Y K K T T C K I L

781 ATAGCTAAATAACTGCCATTCTTATATGGAACGCATTTGGGTTGTTAAAAATTAA 840
-----+-----+-----+-----+-----+-----+
TATCGATTATTGAACGGTAAAGAAATATACCTTGCCTAAACCCAAACAATTAAAT
I A K * L A I S L Y G T H F G L F K N L
inversion start site
|
841 TAACAGTTATAAAGAAAGAATTATAAAGGAAAAAGAAAATAACGCAATGGACAAGTGGT 900
-----+-----+-----+-----+-----+-----+
ATTGTCAATATTCTTTCTTAATATTCCTTTCTTTATTGCGTTACCTGTTACCCAC
* Q L * R K N Y K G K R K * R N G Q V V

901 AAGCTGTGAACTCAGGTGTGCACAATTATCAGGAACACCCAAAACAAAGTGAGGTAGA 960
-----+-----+-----+-----+-----+-----+
TTCGACACTTGAGTCCACACGTGTTAATAGTCCTGTTGGGTTTGGTTCACTCCATCT
K L * T Q V C T I I R N T P K P K * G R

961 AATAGCATGAGAAGCCGTGTTGATGTTAATTAAATT 996
-----+-----+-----+-----+-----+
TTATCGTACTCTTCGGCACAAACTACAATTAAATTAA
N S M R S R V * C * L I

```

Figure 6 (cont'd)

Figure 7

099566644 " 099230

*cDNA map is not precisely drawn to scale

Figure 8

REPRODUCED BY OPTICAL SCANNER

Figure 9A

Figure 9B

Figure 10A

Figure 10B

0969696969696969

	50		1
Mgen1073
Hapo1234	ctagttcct attcaatgta	tagtgcacca	aaggtaatt caagagtttta
Consensus	-----	-----	-----
	51		100
Mgen1073
Hapo1234	ttattattat tttcaaccca	agtaaaagca	gagagaaaat agccacctcc
Consensus	-----	-----	-----
	101		begin GRAIL exon @149 150
Mgen1073	ttcACAGgCT	tAAgCAGCca gtAAATGAcA
Hapo1234	accatagcct cagaagcaag	ccaACAGCCT	gAAaCAGCtt tgAAATGAaA
Consensus	-----	---ACAG-CT	-AA-CAGC-- --AAATGA-A
	151		200
Mgen1073	AtT.....	T AtgtGgtAgt	cAgGtcactG
Hapo1234	AgTtgggtgtg	gcgggtatgg	tggcagtgtA AatgGtgAcc gAtGttggG
Consensus	A-T-----	-----T	A---G--A-- -A-G----G
	201		apo-4 5' end 250
Mgen1073	TGCTGGTaAT GGTgaTctTA	GcaGgcAgAG	aaGGTGgTaG TGaTTTGATA
Hapo1234	TGCTGGTgAT GGTgTggTA	GttGtgA.AG	gtGGTGaTgG TGgTTTGATT
Consensus	TGCTGGT-AT GGT--T--TA	G--G--A-AG	--GGTG-T-G TG-TTGAT-
	251	M1	300
Mgen1073	GtaAaagtgt AgActaTaCa	acAgaAtAAa	TAcAagtatA GTAA.....
Hapo1234	GatAgtaaaa AaAaTgTtCg	ttAatAcAAg	TAgAgagtaA GTAAAtcaatc
Consensus	G--A----- A-A-T-T-C-	--A--A-AA-	TA-A-----A GTAA-----
	301	M2	M3 350
Mgen1073atc caaCAAAgTG	tgAAAGgTGT	gTgCCATTAc acAtctTTCT
Hapo1234	aatcaactcat agcCAAgGTG	gaAAAGaTGT	aTcCCATcAt ggAataTTCc
Consensus	----- ---CAA-GTG	--AAAG-TGT	-T-CCAT-A- --A---TTC-
	351		400
Mgen1073	cG..... GtgAtaagag	cCTTgTCTAT	GaAgTTC... TGAgATgTgT
Hapo1234	tGttctgata GaaATcttgt	gCTTaTCTAT	GgAaTTCTtt TGAtATAaT
Consensus	-G----- G--AT-----	-CTT-TCTAT	G-A-TTC--- TGA-AT-T-T
	401		450
Mgen1073	TaggAagatG AAtCatcAat	TtaCaT....	TTcTcCCcat cAAAtgaCAC
Hapo1234	TtacAttggG AAcCtgaAtg	TagCtTgaca	TTtTtCCatg tAAAcacCAG
Consensus	T----A----G AA-C---A--	T--C-T----	TT-T-CC--- -AAA---CA-
	451		begin mouse GRAIL exon 500
Mgen1073	cAtgCTGATC CAgtATTAAG	CTaATACTAA C.....ACca	tgcAatGCTT
Hapo1234	tAgcCTGATC CAacATTAAG	CTgATACTAA	CaaacaACgt gtaAtgGCTT
Consensus	-A--CTGATC CA--ATTAAG	CT-ATACTAA	C----AC-- ---A--GCTT
	501		550
Mgen1073	CATTAACAAAG GaTTTGCTTC	TTgCTaGAAA	tgGGT..AAA AaCggACTgT
Hapo1234	CATTAAtAAG GcTTTGCTTC	TTcCTgGAAA	ctGGTgaAAA AtCaaACctT
Consensus	CATTAACAAAG G-TTTGCTTC	TT-CT-GAAA	--GGT--AAA A-C--AC--T
	551		600
Mgen1073	GgTcTGTAtA CCtTCaATGC	AGCTTATGTG	TTGTCTTttC C..tgAAatG
Hapo1234	GtTgTGTAcA CCCTCgATGC	AGCTTcTGTG	TTGTCTTcaC CcagaAAAtgG
Consensus	G-T-TGTA-A CC-TC-ATGC	AGCTT-TGTG	TTGTCTT--C C----AA--G

Figure 11

DRAFT - 09/28/04

		601			650
Mgen1073	GtAATGAcTc	CCaAtAgtGg	cAAccAgggG	tacaATaCT.TGCA
Hapo1234	GgAATGAtTt	CCcAaAtgGc	aAAgaAacaG	agtgATgCTa	tctatcTGCA
Consensus	G-AATGA-T-	CC-A-A--G-	-AA--A---G	----AT-CT-	-----TGCA
		651		exon79 700	
Mgen1073	CacTTTGTAA	A....cTCTT	TCTTTCTCTT	TGTTTTCCAG	<u>GACACAATGT</u>
Hapo1234	CctTTTGTAA	AgtctgTCTT	TCTTTCTCTT	TGTTTTCCAG	GACACAATGT
Consensus	C--TTTGTAA	A----TCTT	TCTTTCTCTT	TGTTTTCCAG	GACACAATGT
		701			750
Mgen1073	AGGAAGCCTT	TTCCACATGG	CAGATGATT	GGGCAGAGCG	ATGGAGTCCT
Hapo1234	AGGAAGtCTT	TTCCACATGG	CAGATGATT	GGGCAGAGCG	ATGGAGTCCT
Consensus	AGGAAG-CTT	TTCCACATGG	CAGATGATT	GGGCAGAGCG	ATGGAGTCCT
		751			800
Mgen1073	TAGTtTCAGT	CATGACAGAT	GAAGAAGGGAG	CAGAATAAAT	GTTTACAAC
Hapo1234	TAGTtTCAGT	CATGACAGAT	GAAGAAGGGAG	CAGAATAAAT	GTTTACAAC
Consensus	TAGT-TCAGT	CATGACAGAT	GAAGAAGGGAG	CAGAATAAAT	GTTTACAAC
		801			850
Mgen1073	TCCTGATTCC	CGCATGGTTT	TTATAATATT	CgTACAACAA	AGAGGATTAG
Hapo1234	TCCTGATTCC	CGCATGGTTT	TTATAATATT	CaTACAACAA	AGAGGATTAG
Consensus	TCCTGATTCC	CGCATGGTTT	TTATAATATT	C-TACAACAA	AGAGGATTAG
		851			900
Mgen1073	ACAGTAAGAG	TTTACAAGAA	ATaAAATCTA	TATTTTGTG	AAGGGTAGTG
Hapo1234	ACAGTAAGAG	TTTACAAGAA	AT.AAATCTA	TATTTTGTG	AAGGGTAGTG
Consensus	ACAGTAAGAG	TTTACAAGAA	AT-AAATCTA	TATTTTGTG	AAGGGTAGTG
		901			950
Mgen1073	GTAcTATACT	GTAGATTCA	GTAGTTCTA	AGTCTGTTAT	TGTTTGTGTTA
Hapo1234	GTAtTATACT	GTAGATTCA	GTAGTTCTA	AGTCTGTTAT	TGTTTGTGTTA
Consensus	GTA-TATACT	GTAGATTCA	GTAGTTCTA	AGTCTGTTAT	TGTTTGTGTTA
		951			1000
Mgen1073	ACAATGGCAG	GTTTTACACG	TCTATGCAAT	TGTACAAAAA	AGTTaaAAGA
Hapo1234	ACAATGGCAG	GTTTTACACG	TCTATGCAAT	TGTACAAAAA	AGTTAtAAGA
Consensus	ACAATGGCAG	GTTTTACACG	TCTATGCAAT	TGTACAAAAA	AGTTA-AAGA
		1001			1050
Mgen1073	AA...ACATG	AAAAATCTTG	ATAGCTAAAT	AACTTGCCAT	TTCTTATAT
Hapo1234	AAactACATG	AAAAATCTTG	ATAGCTAAAT	AACTTGCCAT	TTCTTATAT
Consensus	AA---ACATG	AAAAATCTTG	ATAGCTAAAT	AACTTGCCAT	TTCTTATAT
		1051			begin inversion@1100
Mgen1073	GGAACGCATT	TTGGGTTGTT	AAAAAATTa	TAACAGTTAT	AAAGAAAGAt
Hapo1234	GGAACGCATT	TTGGGTTGTT	AAAAAATTa	TAACAGTTAT	AAAGAAAGAa
Consensus	GGAACGCATT	TTGGGTTGTT	AAAAAATTa	TAACAGTTAT	AAAGAAAGA-
		1101			1100
Mgen1073	TgtAAActaA	Agtgtgttt	AtAAAAaAAG	ttgtTtataA	AaaccctAa
Hapo1234	TtatAAaggA	A.....aa	AgAAAAtAAC	gcaaTggacA	AgtggtaAg
Consensus	T---AA---A	A-----	A-AAAA-AA-	----T---A	A-----A-
		1151			1200
Mgen1073	acaaaACaC	AcGcacaCAC	AcacAcacac	AcacaCaCAC	AcaCACAcTG
Hapo1234	ctgtgaActC	AgGtgtgCAC	AattAtcagg	AacacCcCAA	AacCAAAGTG
Consensus	-----AC-C	A-G----CAC	A---A----	A---C-CA-	A--CA-A-TG
		1201			1243
Mgen1073	AGGcAGcAca	ttgtTttGcA	ttacTtTagc	gTGTatcaTA	t..
Hapo1234	AGGtAGaAat	agcaTgaGaA	gccgTgTtg	aTGTtaattTA	att
Consensus	AGG-AG-A--	----T-G-A	----T-T--	-TGT----TA	---

Figure 11 (cont'd)

09966264 - 092801

Figure 12A

-70 bp from 5' end of apo-4

|

Inr = GCCC TCAT TCTG GAGAC

apo-4 = GCGG TGAT GGTG GCAGT - 48% perfect homology with Inr

71% match on type of base

(purine vs. pyrimidine)

Figure 12B

DRAFT - 12/20/99

Figure 13

Y08260 "G0292660

Figure 14

Figure 15

Figure 16

09666644 0922604

Figure 17A

100 99 98 97 96 95

Figure 17B

Figure 17C

A.

12/23bp spacer

CACAGTG-----ACAAAAACC
heptamer nonamer

Figure 18A

B.

inversion breakpoint₁

	11640	11650	11660		11670	11680	
	*	*	*		*	*	
dystrophin	T TTATAACAGT	TATA <u>AAAGAAA</u> GA^TTGTAAAC	TAAAGTGTGC				
	A AATATTGTCA	ATATTCTTT	CT^AACATTTG	ATTCACACG			
			a				
apo-4 cDNA	840	850			870		
[138]	T TTATAACAGT	TATA <u>AAAGAAA</u> GA^TTaTAAAg	gAAAaaGaaa>				
	^ ^ ^ ^ ^ ^ ^	^ ^ ^ ^ ^ ^ ^	^ ^ v ^ ^ ^ v	v ^ ^ v v ^ v v			
dystrophin	T TTATAACAGT	TATA <u>AAAGAAA</u> GA^TTGTAAAC	TAAAGTGTGC				
<hr/>							
	11690	11700	11710		11720	11730	
	*	*	*		*	*	
dystrophin	TTTATAAAAA AAAGTTGTTT	ATAAAAACCC	CTAAAAACAA	AACAAACACA			
	AAATATTTTT	TTTCAACAAA	TATTTTG ^{GGG}	GATTTTGTT	TTGTTTG ^{TGT}		
apo-4 cDNA	880	890	900	910	920	930	
[138]	aTaAaAtggA	cAAGTgGTga	ATgtgAACtC	aggtgtgCAC	AAttAtCAgg>		
	v^v^v^v^vvv^	v^v^v^v^vv	^v^vvv^v^v^	vvvvvvv^v^v	^v^vv^v^v^vv		
dystrophin	TTTATAAAAA AAAGTTGTTT	ATAAAAACCC	CTAAAAACAA	AACAAACACA			
<hr/>							
	11740	11750					
	*	*					
dystrophin	CACACACACA	CATACACACA					
	GTGTGTGTGT	GTATGTGTGT					
apo-4 cDNA	940	950					
[138]	aACAC-CcCA	-AaAC-CAaA>					
	v^v^v^	v^v^v^					
dystrophin	CACACACACA	CATACACACA					

Figure 18B

DRAFT - NOT FOR DISTRIBUTION

	inv rsion breakpoint ₂				
	13130	13140	13150	13160	13170
dystrophin	AATTAGCTTT	TGGAGAGTGG	<u>GTTTTGTCCA</u>	<u>TTATTAATAA</u>	TTAATTAATT
	*	*	*	*	*
	TTAACGAAA	ACCTCTCACC	CAAAACAGGT	<u>AATAATTATT</u>	AATTAATTAA
apo-4	990 <u><AATTAATT</u> ~~~~~				
dystrophin	AATTAATT				
<hr/>					
	13180	13190	13200	13210	13220
dystrophin	AACATCAAAC	ACGGCTTCTC	ATGCTATTTC	TACCTCACTT	TGGTTTTGGG
	*	*	*	*	*
	<u>TTGTAGTTTG</u>	<u>TGCCGAAGAG</u>	TACGATAAAG	ATGGAGTGAA	ACCAAAACCC
apo-4	980	970	960	950	940
	<u><AACATCAAAC</u>	<u>ACGGCTTCTC</u>	<u>ATGCTATTTC</u>	<u>TACCTCACTT</u>	<u>TGGTTTTGGG</u>
	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
dystrophin	AACATCAAAC	ACGGCTTCTC	ATGCTATTTC	TACCTCACTT	TGGTTTTGGG
<hr/>					
	13230	13240	13250	13260	13270
dystrophin	GTGTTCCCTGA	TAATTGTGCA	CACCTGAGTT	CACAGCTTCA	CCACTTGTCC
	*	*	*	*	*
	CACAAGGACT	ATTAACACGT	GTGGACTCAA	GTGTCGAAGT	<u>GGTGAACAGG</u>
apo-4	930	920	910	900	890
	<u>&lt;GTGTTCCCTGA</u>	<u>TAATTGTGCA</u>	<u>CACCTGAGTT</u>	<u>CACAGCTTCA</u>	<u>CCACTTGTCC</u>
	~~~~~	~~~~~	~~~~~	~~~~~	~~~~~
dystrophin	GTGTTCCCTGA	TAATTGTGCA	CACCTGAGTT	CACAGCTTCA	CCACTTGTCC
<hr/>					
	13280	13290	13300	13310	13320
dystrophin	ATTGCGTTAT	TTTCTTTTTC	<u>CTTTATAATT</u>	<u>CTTTCTTTTT</u>	CCTTCATAAT
	*	*	*	*	*
	<u>TAACGCAATA</u>	<u>AAAGAAAAAG</u>	<u>GAAATATTAA</u>	GAAAGAAAAA	GGAAGTATTA
	 inversion breakpoint ₃				
apo-4	880	870	860	850	840
	<u><ATTGCGTTAT</u>	<u>TTTCTTTTTC</u>	<u>CTTTATAATT</u>	<u>CTTTCTTTaT</u>	aacTgtTAta
	~~~~~	~~~~~	~~~~~	^v^	vvv^vv^vv
dystrophin	ATTGCGTTAT	TTTCTTTTTC	CTTTATAATT	CTTTCTTTTT	CCTTCATAAT

Figure 18C

09966264 - 0992304



**Figure 18D**

inversion @ 860  
841 TAACAGTTATAAAGAAAAGAATTATAAAGGAAAAGAAAATAACGCAATGGACAAGTGGTG 900  
ATTGTCAATATTCCTTCTTAATATTCCTTTCTTTATTGCGTTACCTGTTACCCAC

**Figure 19**

**Description of *In Vitro* Transcription and Translation  
of the Apo-dystrophin cDNA in pBluescript SK+**



Linearize plasmid with either Hpa I (truncated) or Pst I (full length). Gene Clean and incubate with T7 polymerase and dNTPs to produce RNA in vitro.

↓  
Incubate RNA with Wheat Germ Extract or Rabbit Reticulocyte Lysates to produce *in vitro* translation

↓  
Separate translation products by SDS-PAGE. Fix, Amplify and Dry Gel. Perform Autoradiography

**Figure 20**

C O N S E C U T I V E D I G E S T I O N



**Figure 20A**

**Figure 20B**



**Figure 21**

PROTEIN IMMUNOREACTION



**Figure 22**



**Figure 23**



**Figure 24**

Y09260 * 49266660



**Figure 25A**



**Figure 25B**

**H2 starting at second methionine - 321 bp, predicted weight = 17.4Kd + 1 N-glycosylation site + 20.4 Kd.**

**Figure 26A**

**Splice sites for peptide**

MYPIMEYSCSDRNLVLIYGILLIYIYIGNLNMKKEQNKCFTTPDSRMVFIIIFIQQRGLDSKSLQEINL  
YFCEGFYTSMQLYKKVIRKLHKITQWTRTPQNQSEVEIA 107

**Figure 26B**

© 1995 Elsevier Science Ltd

Start	Exon No.	Exon Position	Exon Length	Intron No.	Intron Position	Intron Length
@88 bp	78.3	@74-180	106 bp	79.1	@181-529	349 bp
	79.1	@530-654	125 bp	79.4	@655-720	66 bp
	79.4	@721-769	49 bp	79.55	@770-875	105 bp
	79.55	@876-893	18 bp	79.75	@894-932	39 bp
	79.85	@933-966	33 bp			

Hydrophobicity Scale KD; Candidate membrane-spanning segments:

Certain      1      12- 32    1.8833

**Figure 26C**

09969264 - 09969269

### Predicted TM structure

> : Too long to be significative  
'< : Too short to be significative  
LL : Loop length  
KR : Number of Lys and Arg

KR Diff : Positive charge difference  
CE : Net charge energy  
CE Diff : Net charge difference  
CH Diff : Charge difference over N-term segments



Figure 26D

**A readthrough apo-4S product using the second available methionine**

**The Apo-4S peptide sequence**

P1                  Begin TM₁ (R)  
+30                |                  P2  
MYPIMEYSCSD RNLVLIYGIL LIYIYIGNLN VARHFSMKTP VARSNIKLIL 80  
  
TNNVKWLHKK GFASSWKLVK NOTLLCTPSM QLLCCLHPEM GNDFPNGKET 130  
P3  
ERCYLSAPFV KSVFLSLCFP GHNVGSLFHM ADDLGRAMES LVSVMTDEEG 180  
  
AEKMFYNSRF PHGFYNIHTT KRIRQKEFTR NKSIFLRRVV VLYCRFQKFL 230  
  
SLLLFCQWQ VLHVYAIQK SYKKTTCKIL IAKKLAISLY GTHFGLFKNL 280  
  
KQLKRKNYKG KRKKRNGQVV KLRTQVCTII RNTPPKRGR NSMRSRVRCK 330  
  
LI 332 (302aa in predicted polypeptide)

**Figure 27A**

**Candidate membrane-spanning segments:**

Certain	1	41-61	1.9073
Putative	2	101-121	0.8052
Certain	3	132-152	1.2552
Putative	4	217-237	1.1833
Putative	5	254-274	0.9240

Transmembrane segments included in structure No. 8: 1 2 3 4 5

Loop lengths: 11 39 10 64 16 58; K+R profile: 1 2 5 (9 > 22)

K+R difference: -23: -> Orientation: **N-out**

Charge-difference over N-terminal Membr. segs. ( $\pm 15$  residues): -4  
-> Orientation: **N-out**

CYT-EXT profile (neg. values indicate cytoplasmic preference): < -0.13 <

CYT-EXT difference: 0.13: -> Orientation: **N-out**

**Figure 27B**

> : Too long to be significative  
< : Too short to be significative  
LL : Loop length  
KR : Number of Lys and Arg

KR Diff : Positive charge difference  
CE : Net charge energy  
CE Diff : Net charge difference  
CH Diff : Charge difference over N-term segments



**Figure 27C**

**Structure no. 8**

0553964 092804



**Figure 28**

0996264-008260



**Figure 28 (cont'd)**

09966264 - 092804



**Figure 29**

0966264 - 092604



**Figure 29 (cont'd)**

09964226220



**Figure 30**

000000000000000000000000



**Figure 31**

00000000000000000



**Figure 31 (cont'd)**



Figure 32

0 9 9 6 2 6 4 - 0 2 8 0



Figure 32 (cont'd)

Figure 33



Figure 33

**Additional Oligonucleotide primers used for apo-dystrophin-4  
southern blotting and sequencing**

**FORWARD**

GTT CGT TAA TAC AAG TAG	F2.3(@28)	(SEQ ID NO 15)
GCC AAG GTG GAA AAG ATG	F2.2(@73)	(SEQ ID NO 16)
CCA GTA GCC TGA TCC AAC	F3.2(@208)	(SEQ ID NO 17)
GGC TTC ATT AAT AAG	F3.1(@257)	(SEQ ID NO 18)
GGC AAA GAA ACA GAG TG	F4.2(@379)	(SEQ ID NO 19)
CAG GAC ACA ATG TAG GA	F4.1(@449)	(SEQ ID NO 20)
GTT ATA AAG AAA GAA TTA TAA AG	FJn(@846)	(SEQ ID NO 21)
GAA AAT AAC GCA ATG GAC	F5.1(@875)	(SEQ ID NO 22)

**REVERSE**

GAT GGG ATA CAT CTT TTC C	R6.1(@99)	(SEQ ID NO 23)
CAA GCT ACA TTC AGG TTC CC	F2.2R(@188)	(SEQ ID NO 24)
GGA CTC CAT CGC TCT GCC	R4.1(@510)	(SEQ ID NO 25)
GAC TTA GAA ACT ACT G	R3.4(@694)	(SEQ ID NO 26)
ATA GAC GTG TAA AAC CTG C	R2.1(@735)	(SEQ ID NO 27)
AAC TGT TAT AAA TTT TTA	RSP2(@848)	(SEQ ID NO 28)
CTT TTT CCT TTA TAA TTC TTT C	R2.3o(@875)	(SEQ ID NO 29)

**Figure 34**

## An Additional Splice Product Predicted From The Apo-4 Gene

A second potential theoretical splice product which retains exon 78.3 is shown below.

**H2 p1-124 spliced product =351 bp, 117 amino acids + 10 from vector + 1 N-glycosylation site; predicted weight = 21.9 Kd**

**Figure 35A**

### Peptide Generated

MFVNTTKVEKMYPIMEYSCSDRNLVLIYGILLIYIYIGNLNMKKEQNKCFTTPDSRMVFII  
FIQQRGLDSKSLQEINLYFCEGFYTSMLYKKVIRKLHKITQWTRTPQNQSEVEIA (117  
amino acids) (SEQ ID NO 30)

**Figure 35B**

Start	Exon No.	Exon Position	Exon Length	Intron No.	Intron Position	Intron Length
@26 bp	78.1	@16-41	26 bp	78.3	@42-74	33 bp
	78.3	@75-181	106 bp	79.1	@182-530	349 bp
	79.1	@531-655	125 bp	79.4	@656-721	66 bp
	79.4	@722-770	49 bp	79.55	@771-876	105 bp
	79.55	@877-894	18 bp	79.75	@895-933	39 bp
	79.85	@934-967	33 bp			

Hydrophobicity Scale KD; Candidate membrane-spanning segments:

Certain 1 22- 42 1.8833

**Figure 35C**

Predicted TM structure  
> : Too long to be significantive  
< : Too short to be significantive  
LL : Loop length  
KR : Number of Lys and Arg

KR Diff : Positive charge difference  
CE : Net charge energy  
CE Diff : Net charge difference  
CH Diff : Charge difference over N-term segments



Figure 35D

### Nucleic Acid Subsequence Sites Identified In Apo-4

<u>Motif</u>	<u>Position</u>	<u>Significance</u>
CpG	-7, (+28, +106)	DNA methylation site
CAAT	-132, (+127, +131)	Binding of CAAT factors
TATAAT (5/6)	-120, -114, (+10)	TFIID Binding site
TATA	-154	Binds RNA polymerase II and TFIID
CCATTCA	-162, -131	Cap Site I
TATCAGT	+12, (+25)	Cap Site II
TGGCTGCAAGCCCCAA (10/14)	-57, (+41)	Binds CTF/NF-I protein
GTGATGG	-140, -4, +11, +32	Eucaryotic Transcription Initiation Site

**Figure 36**

**Top Pred predicts 4-5 transmembrane domains for a full-length apo-4F product in which all the stop codons are suppressed.**

**Protein sequence and position of predicted TM domains**

Begin TM1 (R)

P1 | P2

MFVNTSREKV INQSLIAKVE KMYPIMEYSCSD RNLVLIYGIL LIYIYIGNLN VARHFSMK60

TPVARSNIKL ILTNNVKWLH **KKGFASSWKL** VKNQTLCTP SMQLLCCLHP EMGNDFPNKG 120  
P3

ETERCYLSAP FVKSFLSLC FPGHNVGSLF HMADDLGRAM ESLVSVMTDE EGAEKMFYNS180

RFPHGFYNIH TTKRIROKEF TRNKSIFLRR VVVLYCRFQK FLSLLLFCQ WQVLHVYAIIV 240

QKSYKKTTCK ILIAKKLAIS LYGTHFGLFK NLKQLKRKNY KGKRKKRNGQ VVKLRTQVCT 300

IIRNTPKPKR GRNSMRSRVR CKLI (324 amino acids) (SEQ ID NO 31)

Hydrophobicity Scale KD

**Figure 37A**

**Apo-4F : Candidate membrane-spanning segments:**

Certain	1	33- 53	1.9073
Putative	2	93- 113	0.8052
Certain	3	124- 144	1.2552
Putative	4	209- 229	1.1833
Putative	5	246- 266	0.9240

I. Transmembrane segments included in structure 8: **1 2 3 4 5**; Loop lengths: 32 39 10 64  
16 58

**Figure 37B**

K+R difference: -19; -> Orientation: **N-out**; Charge-difference over N-terminal Membr. segs.

(±15 residues): -3; -> Orientation: **N-out**

CYT-EXT profile (neg. values indicate cytoplasmic preference): < < < < -0.13 <

CYT-EXT difference: 0.13

-> Orientation: **N-out**

II. Transmembrane segments included in structure 7: **1 3 4 5**; Loop lengths: 32 70 64 16  
58

K+R profile: 5 > 22 > 5; K+R difference: 22 -> Orientation: **N-in**

Charge-difference over N-terminal Membr. segs. (±15 residues): -3; -> Orientation: **N-out**

CYT-EXT profile (neg. values indicate cytoplasmic preference): < -0.13 < -0.26 <

CYT-EXT difference: 0.13; -> Orientation: **N-out**

### Figure 37B (cont'd)

000000000000000000

## TopPred predicts a cytoplasmic N-terminus for four TM domains

> : Too long to be significative  
< : Too short to be significative  
LL : Loop length  
KR : Number of Lys and Arg

KR Diff : Positive charge difference  
CE : Net charge energy  
CE Diff : Net charge difference  
CH Diff : Charge difference over N-term segments



Figure 37C



**Figure 38A**

Structure of the apo-4 inversion element before rearrangement



**Figure 38B**



**Figure 39A**



**Figure 39B**