Kod ucznia	Liczba punktów			

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2019/2020 STOPIEŃ WOJEWÓDZKI – 20.02.2020 R.

- 1. Test konkursowy zawiera 22 zadania. Są to zadania zamknięte i otwarte. Na ich rozwiązanie masz 90 minut. Sprawdź, czy test jest kompletny.
- 2. Zanim udzielisz odpowiedzi, uważnie przeczytaj treść zadania.
- 3. Wszystkie odpowiedzi czytelnie i wyraźnie wpisuj w wyznaczonych miejscach.
- 4. Przy rozwiązywaniu zadań zamkniętych wyboru wielokrotnego wybierz jedną, prawidłową odpowiedź i zaznacz ją krzyżykiem, np.:

A X C D

Jeżeli się pomylisz i zechcesz wybrać inną odpowiedź, to złe zaznaczenie otocz kółkiem

X, po czym skreśl właściwą literę, np.:

A X D

- 5. W innych zadaniach samodzielnie sformułuj odpowiedź i wpisz ją lub wykonaj zadanie zgodnie z instrukcją zawartą w poleceniu. Przedstaw tok rozumowania prowadzący do wyniku.
- 6. Test wypełniaj długopisem, nie używaj korektora, ołówka ani gumki. Nie komunikuj się z innymi uczestnikami konkursu.
- 7. Sprawdź wszystkie odpowiedzi przed oddaniem testu.
- 8. Nie podpisuj testu, zostanie on zakodowany.
- 9. Brudnopis, dołączony do testu, nie podlega ocenie.

Numer zadania	1-18	19	20	21	22	Razem
Liczba						
punktów						

Zadanie 1. (1 p.)

Jednokrotne skserowanie teczki dokumentów zajmuje Joli 3 godziny, a Bożenie 2 godziny. Ile czasu trwałoby jednorazowe skserowanie tych dokumentów, gdyby Jola i Bożena nie zmieniły swojej wydajności oraz rozpoczeły ich kopiowanie na dwóch kserografach równocześnie?

A. 1 godz. 48 min. B. 1 godz. 20 min

C. 1 godz. 12 min

D. 1 godz. 10 min

Zadanie 2. (1 p.)

Średnia wieku członków pewnego sześcioosobowego zespołu muzycznego była równa 36 lat. Kiedy naistarsza osoba odeszła z zespołu, średnia wieku zmalała do 34 lat. Osoba, która opuściła zespół miała

A. 44 lata.

B. 46 lat.

C. 48 lat.

D. 50 lat.

Zadanie 3. (1 p.)

Suma liczb $\sqrt{48}$ i $\sqrt{27}$ jest równa

A. $\sqrt{21}$

B. $\sqrt{75}$

C. $\sqrt{147}$

D. $\sqrt{1296}$

Zadanie 4. (1 p.)

Liczba, którą otrzymamy po wykonaniu działań $2^{12} \cdot 5^8$ będzie miała

A. 10 cyfr.

B. 12 cyfr. C. 20 cyfr.

D. 96 cyfr.

Zadanie 5. (1 p.)

Po wyznaczeniu zmiennej a ze wzoru $P = \frac{a+b}{2} \cdot h$ otrzymamy

A. $a = \frac{2(P-b)}{h}$ B. $a = \frac{2(P-bh)}{h}$ C. $a = \frac{2P}{h} - b$ D. $a = \frac{2P-b}{h}$

Zadanie 6. (1 p.)

Liczba a jest o 20% większa od liczby b. Stosunek liczby b do liczby a jest równy

B. $\frac{5}{4}$

C. 1,2

D. 5

Zadanie 7. (1 p.)

Krzysiek zapomniał dwie ostatnie cyfry sześciocyfrowego kodu do swojego telefonu. Wpisuje dokładnie zapamiętane cztery pierwsze cyfry, a dwie ostatnie na chybił trafił. Prawdopodobieństwo, że Krzysiek za pierwszym razem odblokuje swój telefon jest równe

Zadanie 8. (1 p.)

Za pięć lat czworo dzieci będzie świętowało fakt, że mają razem 50 lat. Ile lat będą mieli razem za dwa lata?

A. 30

B. 34

C. 38

D. 36

Zadanie 9. (1 p.)

Ile jest liczb wymiernych wśród liczb: $\sqrt{24}$; $\sqrt{36}$; 0,(73); $\sqrt[3]{3\frac{3}{8}}$; $\frac{\sqrt{5}}{4}$; $\frac{\sqrt{25}}{2}$; $-1\frac{3}{4}$?

A. trzy

B. cztery

C. pięć

D. sześć

Zadanie 10. (1 p.)

Z kartki w kształcie kwadratu o przekątnej równej $14\sqrt{2}\ cm$ wycięto możliwie największe koło. Obwód wyciętego koła jest równy

A. 49π cm

B. 28π cm

C. 14π cm

D. 7π cm

Zadanie 11. (1 p.)

Stosunek miar kątów wewnętrznych pewnego trójkąta jest równy 2:7:9. Jest to trójkąt

A. równoramienny.

B. prostokątny.

C. równoboczny.

D. ostrokątny.

Zadanie 12. (1 p.)

W trójkącie prostokątnym ABC (patrz rysunek) |AB|=8, |AC|=6, |AD|=4. Obwód trójkąta ABC jest większy od obwodu trójkąta ABD o

A. $4(3-\sqrt{4})$

B. $4(3-\sqrt{3})$

C. $4(2-\sqrt{5})$

D. $4(3-\sqrt{5})$

Zadanie 13. (1 p.)

Pole jednego kwadratu jest 9 razy większe od pola drugiego kwadratu. Ile razy obwód małego kwadratu jest mniejszy od obwodu większego kwadratu?

A. 2 razy

B. 3 razy

C. 6 razy

D. 9 razy

WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 2019/2020 – STOPIEŃ WOJEWÓDZKI

Zadanie 14. (1 p.)

W prostokącie ABCD punkt E jest środkiem boku BC, zaś F jest środkiem boku CD (patrz rysunek obok). Jeżeli pole trójkąta AEF jest równe 15 cm^2 , to pole prostokąta ABCD wynosi

A. $24 cm^2$

B. $30 cm^2$

C. 40 cm^2

D. 44 cm²

Zadanie 15. (1 p.)

Okrąg o średnicy 8 *cm* narysowano w pewnej skali, uzyskując okrąg o promieniu 12 *cm*. Rysunek wykonano w skali

A. 2:3

B. 1:3

C. 3:2

D. 3:1

Zadanie 16. (1 p.)

W trójkącie prostokątnym ABC przyprostokątna |AB|=4cm, przeciwprostokątna |CB|=5cm. Wysokość tego trójkąta opuszczona z wierzchołka A na przeciwprostokątną jest równa

A. 3,0 cm

B. 2,4 cm

C. 1,4 cm

D. 1,2 cm

Zadanie 17. (1 p.)

Figura, która ma środek symetrii, a nie ma osi symetrii jest

- A. trójkąt równoboczny.
- B. równoległobok.
- C. trapez równoramienny.
- D. okrąg.

Zadanie 18. (1 p.)

Średnia arytmetyczna długości krawędzi graniastosłupa prostego o podstawie równoległoboku, wychodzących z jednego wierzchołka, jest równa 12 *cm*. Suma długości wszystkich krawędzi tego graniastosłupa jest równa

A. 36 cm

B. 48 cm

C. 72 cm

D. 144 cm

WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 2019/2020 – STOPIEŃ WOJEWÓDZKI

Zadanie 19. (3 p.)

Hodowca kur przyniósł na targ 100 jajek, które chciał sprzedać za 64 złote. Gdy sprzedał dwie piąte wszystkich jajek spostrzegł, że część pozostałych jajek jest popękanych. Nie mógł ich sprzedać i odłożył je na bok. Jednak, aby zarobić zamierzone 64 złote, pozostałe nieuszkodzone jajka sprzedał po 80 groszy za sztukę. Ile było popękanych jajek?

Zadanie 20. (3 p.)

Uzasadnij, że suma kwadratów dwóch kolejnych liczb parzystych zwiększona o 4 jest zawsze podzielna przez 8.

Zadanie 21. (3 p.)

Odcinek AB ma długość 12 cm. Przez oba końce tego odcinka prowadzimy proste k i l do niego prostopadłe (patrz rysunek). W jakiej odległości od punktu A należy zaznaczyć punkt C, aby prosta przechodząca przez ten punkt przecinała proste k i l w punktach M i N tak, aby |MA| = 2cm i |BN| = 3cm.

Zadanie 22. (3 p.)

Figura na rysunku jest siatką ostrosłupa prawidłowego czworokątnego. Wiedząc, \dot{z} e |AB|=4cm, $|BC|=2\sqrt{5}cm$, oblicz objętość tego ostrosłupa.

WOJEWÓDZKIE KONKURSY PRZEDMIOTOWE 2019/2020 – STOPIEŃ WOJEWÓDZKI