Homework 2

Yucheng Zhang

0. Machine

- MacBook Pro 2017
- Compiler version: g++ (Homebrew GCC 8.2.0) 8.2.0.
- CPU: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80Ghz.
 - Details: https://ark.intel.com/products/97185/Intel-Core-i7-7700HQ-Processor-6M-Cache-u p-to-3-80-GHz-.
 - o Cores: 4, Threads: 8.
 - Max turbo frequency: 3.80 GHz.
 - Operations per cycle: 16 DP FLOPs/cycle for Intel Kaby Lake as found here https://stackoverflow.com/a/15657772.
 - o Max flop rate: Cores * Max turbo frequency * Operations per cycle = 243.2 Gflop/s.
 - Max memory bandwidth: 37.5 GB/s for 2 channels.

1. Finding Memory bugs.

- 1. Index exceeds the array range; free() should be used for memory allocated by maclloc.
- 2. Variable is used before initialized, while valgrind does not complain about this.

2. Optimizing matrix-matrix multiplication.

- Try different loop arrangements.
 - The outputs are shown in files/2-order-jpi.txt, files/2-order-jip.txt and files/2-order-jpj.txt.
 - We can see that the performance of order jpi is the best. This is because the matrices are stored in column major order. For order jpi, double A_ip = a[i + p * m]; double B_pj = b[p + j * k]; double C_ij = c[i + j * m]; are all read in continuous memory location, which can save a lot of time.
 - Similarly, we get the worst performance for order ipj, which would be the best if the matrices were stored in row major order.
- Implement a one level blocking scheme by using BLOCK_SIZE macro as the block size.
- Experiment with different values for BLOCK SIZE.
 - From the table below, we can see that we get better performance around BLOCK_SIZE = 64.

BLOCK_SIZE	Gflop/s (Average)	GB/s (Average)
4	6.089491	97.431855
8	3.242940	51.887047
16	2.426508	38.824121
32	15.953180	255.250880
64	19.541914	312.670619
128	16.749192	267.987077
256	14.572623	233.161976

- Parallelize your matrix-matrix multiplication code using OpenMP.
 - I parallelize the code on the for loop over blocks in C.
 - One thing to notice is how the cache is shared by all the threads. The optimal BLOCK_SIZE may be different when we use different number of threads. For example, when I use OpenMP with more than one thread, BLOCK_SIZE = 32 works better than BLOCK_SIZE = 64, which is optimal in the serial case.
- What percentage of the peak FLOP-rate do you achieve with your code?
 - I can achieve up to 22.6 % of the peak FLOP-rate.

3. Finding OpenMP bugs.

- 2. reduction should be used for simple sum. int and float may not be large enough in some case, which might depend on the machine.
- 3. For a function which may not be excuted by all threads, #pragma omp barrier inside may cause the program to get stuck.
- 4. private stack size is not very large.
- 5. lock may cause the program to get stuck if not used properly.
- 6. We may use global variables in order to be shared easily.

4. OpenMP version of 2D Jacobi/Gauss-Seidel smoothing.

- The following tables show the timings for different values of n and different numbers of threads. Number of iterations is n00.
- Jacobi method

N_thread	N=100	N=1000	N=10,000	N=20,000
1	0.002660 s	0.209642 s	19.760169 s	81.583017 s
2	0.004587 s	0.163366 s	13.533498 s	54.148035 s
4	0.005771 s	0.136099 s	12.947494 s	53.681173 s
8	0.007180 s	0.143475 s	13.939527 s	69.407606 s

Gauss-Seidel method

N_thread	N=100	N=1000	N=10,000	N=20,000
1	0.001833 s	0.204328 s	23.346515 s	94.526992 s
2	0.006006 s	0.186694 s	19.875444 s	78.298179 s
4	0.009349 s	0.177580 s	19.546787 s	79.597596 s
8	0.011964 s	0.199010 s	20.717127 s	81.617238 s

- We can see that for large N, 2 threads work better than 1 thread, but more threads (4 and 8) don't really perform better. I think it's related to the memory bandwidth and also the fact that I'm using other softwares during the timing.
- I also test the code on anther machine, which has Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz, with 24 cores and 1 thread per core. Timings are summarized below, with 100 iterations and N=20,000.
- Jacobi method

N_thread	1	2	4	8	16	24
Time (s)	137.929256	66.865910	38.367468	25.794236	21.755469	21.025227

Gauss-Seidel method

N_thread	1	2	4	8	16	24
Time (s)	172.466722	81.096346 s	43.46177	26.440732	21.187021	21.504986

• We see that on this more stable machine, we can reduce the time to half if we double the number of threads until N_thread = 8. For more threads, the performance may be restricted by the cache size and bandwidth.