Pauta de Corrección

Segundo Certamen Informática Teórica

22 de junio de 2024

1. No es decidible. Reducimos el problema ACCEPTS (¿La máquina de Turing M acepta σ ?) a este problema. Sabemos que ACCEPTS no es decidible. Construimos una máquina de Turing M' que acepta Σ^* , y preguntamos si hay σ tal que $\sigma \in \mathcal{L}(M)$ y que $\sigma \in \mathcal{L}(M')$. Decidir esto es decidir ACCEPTS, que sabemos imposible.

Alternativamente, tomando $M_1=M_2$, decidir si hay ω tal que $\omega \in \mathcal{L}(M_1) \wedge \omega \in \mathcal{L}(M_2)$ es lo mismo que decidir si $\mathcal{L}(M_1)=\varnothing$, que sabemos imposible.

Total		25
Plantear una reducción desde un problema no decidible	5	
Demostrar la reducción	20	

- 2. Una solución es escribir programas que hagan las tareas correctamente, justificando que siempre se ejecutan en tiempo finito. Usaremos C++ al efecto. Dados lenguajes L_1 y L_2 , suponemos funciones bool f1(std:: string sigma); y bool f2(std:: string sigma); que deciden si sigma pertenece a L_1 o L_2 , respectivamente. Entonces:
 - a) Para reconocer si sigma está en $L_1 \cup L_2$ podemos escribir la función del listado 1.

```
bool in_union(std::string sigma)
{
    return f1(sigma) || f2(sigma);
}
```

Listado 1: Decidir unión $L_1 \cup L_2$

Es claro que si f1(sigma) y f2(sigma) siempre terminan dando la respuesta correcta, la función in_union(sigma) siempre termina dando la respuesta correcta.

b) Para reconocer si sigma está en $L_1 \cdot L_2$ podemos escribir la función del listado 2.

```
bool in_concatenation(std::string sigma)
{
    for(int k = 0; k <= sigma.length(); ++k) {
        std::string sigma1 = sigma.substr(0, k);
        std::string sigma2 = sigma.substr(k);
        if(f1(sigma1) && f2(sigma2))
            return true;
    }
    return false;
}</pre>
```

Listado 2: Decidir concatenación $L_1 \cdot L_2$

Es claro que si f1(sigma) y f2(sigma) siempre terminan dando la respuesta correcta, la función in_concatenation(sigma) siempre termina dando la respuesta correcta, prueba un número finito de subdivisiones de sigma.

Total			30
a) Unión		15	
Construcción clara	8		
Justificar tiempo finito	7		
b) Concatenación		15	
Construcción clara	8		
Justificar tiempo finito	7		

- 3. Cada uno por turno, con una breve explicación. Consideramos problemas D_i decidibles, I_i no decidibles, E_i computacionalmente enumerables no decidibles.
 - *a*) $I_1 \le D_1$: Esto es imposible. Si fuera posible, podríamos decidir si $\sigma \in I_1$ aplicando la reducción y decidiendo si el resultado pertenece a D_1 .
 - *b*) $E_2 \le I_2$: Posible. Los lenguajes computacionalmente enumerables no decidibles incluso son un subconjunto de los no decidibles.
 - c) $\overline{E}_3 \le E_4$: Si E_3 es enumerable no decidible, su complemento no es ni siquiera enumerable. Esto es imposible.
 - *d*) $\overline{D_2} \le D_3$: Si D_2 es decidible, lo es su complemento $\overline{D_2}$. Esto es posible.

Total		20
a) Explicación y conclusión	5	
b) Explicación y conclusión	5	
c) Explicación y conclusión	5	
d) Explicación y conclusión	5	

- 4. Cada uno por turno, con una breve explicación. Consideramos problemas $P_i \in P$, $N_i \in NP$, C_i es NP-completo, y X_i es desconocido; queremos saber qué se puede concluir sobre X_i en cada caso.
 - *a*) $X_1 \leq_p N_1$ y $P_1 \leq_p X_1$: De $X_1 \leq_p N_1$ tenemos que X_1 está en NP, $P_1 \leq_p X_1$ no aporta información adicional.
 - b) $C_2 \le X_2$: Nada podemos concluir, ya que la reducción no es polinomial.
 - c) $X_2 \le P_2$ y $X_2 \le_p C_2$: De $X_2 \le P_2$ solo podemos concluir que X_2 es decidible (los problemas en P son decidibles), $X_2 \le_p C_2$ permite concluir que X_2 está en NP.
 - *d*) $C_4 \leq_p X_4$ y $X_4 \leq_p N_4$: De $C_4 \leq_p X_4$ concluimos que X_4 es NP-duro, de $X_4 \leq_p N_4$ sabemos que X_4 está en NP; con lo que X_4 es NP-completo.

Total		20
a) Explicación y conclusión	5	
b) Explicación y conclusión	5	
c) Explicación y conclusión	5	
d) Explicación y conclusión	5	

5. Para demostrar que DOUBLE SAT es NP-completo debemos demostrar que está en NP y que es NP-duro.

Para demostrar que está en NP, un certificado es dos juegos de valores de las variables de ϕ , llamémosles \mathbf{x} y \mathbf{x}' . Debemos verificar que $\mathbf{x} \neq \mathbf{x}'$, lo que es posible de hacer en tiempo O(n); y verificar que $\phi(\mathbf{x})$ y $\phi(\mathbf{x}')$ son ambos verdaderos, cosa que toma tiempo proporcional al largo de ϕ en un lenguaje de programación como Python.

Para demostrar que es NP-duro, reducimos desde el problema SAT: Dada una fórmula $\phi(x_1,...,x_n)$, agregamos una nueva variable z y creamos la fórmula:

$$\phi'(x_1,\ldots,x_n,z)=(\phi(x_1,\ldots,x_n))\wedge(z\vee\overline{z})$$

Es claro que si se puede satisfacer $\phi(x_1,\ldots,x_n)$, entonces $\phi'(x_1,\ldots,x_n,z)$ puede satisfacerse de al menos dos formas (con z verdadero o falso); si $\phi(x_1,\ldots,x_n)$ no puede satisfacerse, tampoco puede satisfacerse $\phi'(x_1,\ldots,x_n,z)$, en particular, no se satisface de dos formas. Es una reducción, y la traducción claramente se efectúa en tiempo polinomial.

Como está en NP y es NP-duro, es NP-completo.

Total			30
Hay que demostrar NP y NP-duro		4	
Demostrar que está en NP		6	
Demostrar que es NP-duro		20	
— Detalles de la reducción	15		
— Justificar que es polinomial	5		