Instituto Superior Técnico

LICENCIATURA EM ENGENHARIA ELETROTÉCNICA E DE COMPUTADORES

Probabilidades e Estatística Resumo Teórico

João Barreiros C. Rodrigues,
nº 99968 , aka Ex-Machina,

CONTENTS CONTENTS

Contents

1	2 ominguo innomacica de 1 reseasinadas, segundo incinidores.			2
	1.1	Conse	quências da definição axiomática	2
	1.2	Defini	ção de Probabilidade Condicionada	2
	1.3	Lei da	s Probabilidades Compostas	2
	1.4	Lei da	Probabilidade Total	2
		1.4.1	Teorema de Bayes	3
2	Variáveis Aleatórias			
	2.1	Axiom	atica Introdutória	3
	2.2	Função	o de Distribuição e Tipos de variáveis aleatórias	3
		2.2.1	Propriedades das funções de probabilidade	3
	2.3	Distrib	ouições tipo de probabilidades discretas	4
		2.3.1	Distribuição de Bernoulli	4
		2.3.2	Distribuição binomial	4
		2.3.3	Distribuição geométrica	4
		2.3.4	Distribuição de Poisson	4
	2.4	Distrib	ouições tipo de probabilidades contínuas	4
		2.4.1	Distribuição de uniforme	4
		2.4.2	Distribuição exponencial	4
		2.4.3	Distribuição normal	4
	2.5	Pares	Aletórios	4
		2.5.1	Definição	4
		2.5.2	Distribuições Marginais	4

1 Definição Axiomática de Probabilidade, segundo Kolmagorov

1.1 Consequências da definição axiomática

Propriedade 0

$$0 \ge P(A) \le 1, \forall A \in \mathfrak{A} \tag{1}$$

Propriedade 1

$$P(\overline{A}) = 1 - P(A) \iff P(\overline{A}) + P(A) = 1 = P(\Omega)$$
 (2)

Propriedade 2

$$P(A) = P(A) \iff P(A) - P(A) = 0 \iff P(\emptyset) = 0 = P(\overline{\Omega})$$
 (3)

Propriedade 3

$$P(A \backslash B) = P(A) - P(A \cap B) \tag{4}$$

Propriedade 4

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) \tag{5}$$

1.2 Definição de Probabilidade Condicionada

Pode definir-se uma probabilidade condicionada com uma simples proposição mental:

"Tendo em conta que ocorreu um evento B, qual a probabilidade do evento A suceder."

Assim têm-se, para um evento B com P(B) > 0:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \tag{6}$$

1.3 Lei das Probabilidades Compostas

$$P(A|B) \times P(B) = P(A \cap B) = P(B|A) \times P(B) \tag{7}$$

Ou para n eventos A_i , tal que $0 < P(A_i) \le 1, \forall i, i \in [0, n]$

$$Iwill dothis later$$
 (8)

1.4 Lei da Probabilidade Total

Se A_i , $\forall i$, $i \in [1, n]$ tal que $\forall i$, $A_i \in \Omega \land P(A_i) > 0$ então:

$$P(B) = \sum ni = 1P(B|A_i) \times P(A_i), \forall B \in \Omega$$
(9)

1.4.1 Teorema de Bayes

Se $A_i \in \Omega, \forall i$, $i \in [1, m]$ formam uma partição de $\Omega talqueP(A_i) > 0$, $\forall i$, $i \in [1, m]$. Então para qualquer evento B com P(B) > 0 e qualquer $j \in [1, m]$ tem-se:

$$P(A_i|B) = \tag{10}$$

$$\frac{P(B|A_j) \times P(A_j)}{P(B)} = \tag{11}$$

$$\frac{P(B|A_j) \times P(A_j)}{\sum mi = 1P(B|A_i) \times P(A_i)}$$
(12)

2 Variáveis Aleatórias

2.1 Axiomática Introdutória

Dado (r, d, P) uma variável aleatória (v, a) é uma função:

$$X: \Omega \longrightarrow \mathbb{R}, \omega \longrightarrow X(\omega) |$$

$$X^{-1}([-\infty, n]) = \omega \in \Omega : X(\omega) \le n \in \mathcal{A}, \forall n \in \mathbb{R}.$$

$$Assim:$$

$$P(X = x) : P(\omega \in \Omega : X(\omega) = n)$$
(13)

2.2 Função de Distribuição e Tipos de variáveis aleatórias

Define-se a função de distribuição (cumulativa) de uma variável aleatória $\mathbf X$ como:

$$F_x : \mathbb{R} \longrightarrow [0,1]|$$

$$F_x(n) = P(X^{-1}] - \infty, n]) = P(X \le n)$$
(14)

2.2.1 Propriedades das funções de probabilidade

Propriedade 0

$$0 \le Fx(n) \le 1, \forall n \in \mathbb{R} \tag{15}$$

Propriedade 1

$$Paran_1 \le n_2 \Longrightarrow Fx(n_0) \le Fx(n_1) : F_x \text{ \'e crescente}$$
 (16)

Propriedade 2

$$lim_{n \to -\infty} F_x(n) = 0 \tag{17}$$

Propriedade 3

$$\lim_{n \to +\infty} F_x(n) = 1 \tag{18}$$

Propriedade 4

$$lim_(n \to n_0^+)F_x(n) = F_x(n_0^+) : F_x \text{ \'e contínua \`a direita}$$
 (19)

Propriedade 5

$$P(X = n_0) = F_x(n_0) - \lim(n \to n_0^+) F_x(n)$$
(20)

Propriedade 6

$$F_x(n_1) - F_x(n_0), P(n_0 < X \le n_1), for all n_0 < n_1$$
 (21)

- 2.3 Distribuições tipo de probabilidades discretas
- 2.3.1 Distribuição de Bernoulli
- 2.3.2 Distribuição binomial
- 2.3.3 Distribuição geométrica
- 2.3.4 Distribuição de Poisson
- 2.4 Distribuições tipo de probabilidades contínuas
- 2.4.1 Distribuição de uniforme
- 2.4.2 Distribuição exponencial
- 2.4.3 Distribuição normal
- 2.5 Pares Aletórios
- 2.5.1 Definição
- 2.5.2 Distribuições Marginais