Matrius i Vectors Grupo Mañana Examen final, problemas

Enero 2015

Todos los teléfonos deberán estar desconectados durante el examen. Pongan nombre y apellidos en cada hoja. Entreguen los problemas en hojas separadas y al menos una hoja por problema (aunque sea sólo con el nombre). En la parte de problemas pueden consultarse libros y apuntes propios.

Al terminar la parte de problemas dejen todo el material escrito en la tarima bajo la pizarra.

Horario:

• Problemas: de 9 a 12.50 horas

• Teoría: de 13 a 14 horas

1.- En \mathbb{R}^4 se consideran los subespacios

$$F = <(0, 1, 0, 1), (2, 1, 2, 1), (1, 0, 1, 0)>$$

y G, dado por las ecuaciones

$$x - y + z - t = 0$$
, $y - z = 0$.

Se pide calcular bases de F y G y determinar, mediante una base o ecuaciones independientes, $F \cap G$ y F + G, explicitando la dimensión de cada uno de los cuatro subespacios.

- 2.- Sean F,G y H subespacios de un espacio vectorial E que satisfacen $(F+G)\cap H=\{0\}$. Se pide:
- a) Probar que $F \cap H = 0$ y $G \cap H = 0$.
- b) Determinar $\dim(F+G+H)$ en función de $\dim F$, $\dim G$, $\dim H$ y $\dim F \cap G$.
- c) Demostrar que si e_1, \ldots, e_r es base de F, v_1, \ldots, v_s es base de $G, y w_1, \ldots, w_k$ es base de $H y F \cap G = 0$, entonces $e_1, \ldots, e_r, v_1, \ldots, v_s, w_1, \ldots, w_k$ es base de F + G + H.

3.-

a) Se considera la matriz

$$M_a = \left(\begin{array}{ccc} a & 0 & 0 \\ 1 & a & 0 \\ 0 & 1 & a \end{array} \right),$$

donde a es un número real. Se pide determinar los valores de a para los que la matriz M_a es regular y calcular para los mismos M_a^{-1} y $(M_a^t)^{-2}$.

b) Se consideran un espacio vectorial E de dimensión tres, una base $\mathcal{E} = (e_1, e_2, e_3)$ de E y el endomorfismo

$$f_a: E \longrightarrow E$$

que tiene matriz M_a en base \mathcal{E} . Se pide determinar en función de a, mediante una base o un sistema de ecuaciones independientes, el núcleo y la imagen de f_a , así como los valores de a para los que $\operatorname{Im}(f_a) \subset \ker(f_a^2)$.

4.- Sean f y g endomorfismos de un espacio vectorial E,

$$f,g:E\longrightarrow E,$$

y sean M y N sus respectivas matrices relativas a una base e_1, \ldots, e_n de E. Se pide demostrar que:

- a) $F = \{v \in E | f(v) = g(v)\}$ es un subespacio de E.
- **b)** $F \neq \{0\}$ si y sólo si $\det(M N) = 0$.