Cavallaro, Jeffery Math 275A Homework #12

Theorem: 7.32

Let X and Y be topological spaces. The projection maps π_X and π_Y are continuous, surjective, and open.

Proof. Assume $U \in \mathscr{T}_X$. $\pi_X^{-1}(U) = U \times Y \in \mathscr{T}_{X \times Y}$. Therefore π_X is continuous.

Next, assume that $x \in X$. Now, assume that $y \in Y$, and so $(x,y) \in X \times Y$. Thus, $\pi_X(x,y) = X$. Therefore π_X is surjective.

Assume $W \in \mathscr{T}_{X \times Y}$. Then $W = \bigcup_{\alpha \in \lambda} U_{\alpha} \times V_{\alpha}$, where $U_{\alpha} \in \mathscr{T}_{X}$ and $V_{\alpha} \in \mathscr{T}_{Y}$. Now:

$$\pi_X(W) = \pi_X(\bigcup_{\alpha \in \lambda} U_\alpha \times V_\alpha) = \bigcup_{\alpha \in \lambda} \pi_X(U_\alpha \times V_\alpha) = \bigcup_{\alpha \in \lambda} U_\alpha \in \mathscr{T}_X$$

Thus, π_X is open.

A similar argument is used for π_Y .

Therefore, π_X and π_Y are continuous, surjective, and open.

Theorem: 7.36

Let X, Y, and Z be topological spaces. A function $g: Z \to X \times Y$ is continuous iff $\pi_X \circ g$ and $\pi_Y \circ g$ are both continuous.

Proof.

 \implies Assume that $g:Z\to X\times Y$ is continuous.

Since π_X and π_Y are continuous, and since the composition of continuous functions is continuous, $\pi_X \circ g$ and $\pi_Y \circ g$ are both continuous.

 \iff Assume that $\pi_X \circ q$ and $\pi_Y \circ q$ are both continuous.

Assume that $W \in \mathscr{T}_{X \times Y}$. So $W = \bigcup_{\alpha \in \lambda} U_{\alpha} \times V_{\alpha}$ where $U_{\alpha} \in \mathscr{T}_{X}$ and $V_{\alpha} \in \mathscr{T}_{Y}$. Then:

$$\begin{split} g^{-1}(W) &= g^{-1}(\bigcup_{\alpha \in \lambda} U_{\alpha} \times V_{\alpha}) \\ &= g^{-1}(\bigcup_{\alpha \in \lambda} ((U_{\alpha} \times Y) \cap (X \times V_{\alpha}))) \\ &= g^{-1}(\pi_X^{-1}(\bigcup_{\alpha \in \lambda} U_{\alpha}) \cap \pi_Y^{-1}(\bigcup_{\alpha \in \lambda} V_{\alpha})) \\ &= g^{-1}(\pi_X^{-1}(\bigcup_{\alpha \in \lambda} U_{\alpha})) \cap g^{-1}(\pi_Y^{-1}(\bigcup_{\alpha \in \lambda} V_{\alpha})) \\ &= (\pi_X^{-1} \circ g^{-1})(\bigcup_{\alpha \in \lambda} U_{\alpha}) \cap (\pi_Y \circ g^{-1})(\bigcup_{\alpha \in \lambda} V_{\alpha}) \end{split}$$

Now, since $\pi_X^{-1} \circ g^{-1}$ is continuous and $\bigcup_{\alpha \in \lambda} U_\alpha \in \mathscr{T}_X$, $(\pi_X^{-1} \circ g^{-1})(\bigcup_{\alpha \in \lambda} U_\alpha) \in \mathscr{T}_X$. Similarly, $(\pi_Y^{-1} \circ g^{-1})(\bigcup_{\alpha \in \lambda} V_\alpha) \in \mathscr{T}_Y$. Thus, $g^{-1}(W) \in \mathscr{T}_Z$.

Therefore $g:Z\to X\times Y$ is continuous.

Example: Exercise 7.44

Construct a Möbius band explicitly as an identification space of $X = [0, 8] \times [0, 1]$.

$$X^* = \{\{(x,y)\} \,|\, x \in (0,8), y \in [0,1]\} \cup \{(0,y), (8,1-y) \,|\, y \in [0,1]\}$$

Example: Exercise 7.45

Construct a torus explicitly as:

1. An identification space of a cylinder C.

$$C = \{ (R \sin \theta, R \cos \theta, \ell) \mid \theta \in [0, 2\pi), \ell \in [0, L] \}$$

$$C^* = \{ \{ (R \sin \theta, R \cos \theta, \ell) \} \mid \theta \in [0, 2\pi), \ell \in (0, L) \} \cup$$

$$\{ \{ (R \sin \theta, R \cos \theta, 0), (R \sin \theta, R \cos \theta, L) \} \mid \theta \in [0, 2\pi) \}$$

2. An identification space of $X = [0, 1] \times [0, 1]$.

$$X^* = \{\{(x,y)\} \mid x \in (0,1), y \in (0,1)\} \cup \{\{(x,0),(x,1)\} \mid x \in (0,1)\} \cup \{\{(0,y),(1,y)\} \mid y \in [0,1]\}$$

3. An identification space of \mathbb{R}^2 .

$$(x,y) \sim (u,v) \iff x-u \in \mathbb{Z} \text{ and } y-v \in \mathbb{Z}$$

Theorem: 7.47

The quotient topology actually defines a topology.

Proof. Assume X is a topological space, Y is a set, and $f: X \to Y$ is surjective.

- 1. $f^{-1}(\emptyset) = \emptyset \in \mathscr{T}_X$. Therefore $\emptyset \in \mathscr{T}_Y$.
- 2. $f^{-1}(Y) = X \in \mathcal{T}_X$. Therefore $Y \in \mathcal{T}_Y$.
- 3. Assume that $U, V \in \mathscr{T}_Y$. This means that $f^{-1}(U), f^{-1}(V) \in \mathscr{T}_X$ and so:

$$f^{-1}(U)\cap f^{-1}(V)=f^{-1}(U\cap V)\in\mathscr{T}_X$$

Therefore $U \cap V \in \mathscr{T}_Y$.

4. Assume that $\{U_\alpha:\alpha\in\lambda\}\subset\mathscr{T}_Y$. This means that for all $a\in\lambda,$ $f^{-1}(U_\alpha)\in\mathscr{T}_X$ and so:

$$\bigcup_{\alpha \in \lambda} f^{-1}(U_{\alpha}) = f^{-1}(\bigcup_{\alpha \in \lambda} U_{\alpha}) \in \mathscr{T}_X$$

Therefore $\bigcup_{\alpha \in \lambda} U_{\alpha} \in \mathscr{T}_{Y}$.

Therefore, the quotient topology on Y defines a topology.

Theorem: 7.48

Let X be a topological space and Y be a set, and let $f:X\to Y$ be surjective. The quotient topology on Y is the finest topology that makes f continuous.

Proof. ABC there exists some topology \mathscr{T} on T that is finer than T_Y . Thus, there exists $U \in \mathscr{T}$ but $U \notin \mathscr{T}_Y$. This would mean that $f^{-1}(U)$ is not open in X, contradicting the continuity of f.

Therefore
$$\mathscr{T}=\mathscr{T}_Y$$
.

Theorem: 7.49

Let X and Y be topological spaces and let $f:X\to Y$ be a continuous, surjective, open map. f is a quotient map.

Proof. Let $\mathscr{T}_Y^f = \{U \subset Y \mid f^{-1}(U) \in \mathscr{T}_X\}$. Since \mathscr{T}_Y^f is the finest topology that makes f continuous, it must be the case that $\mathscr{T}_Y \subset \mathscr{T}_Y^f$.

WTS: $\mathscr{T}_{Y}^{f} \subset \mathscr{T}_{Y}$.

Assume $U \in \mathscr{T}_Y^f$. Then, by definition, $f^{-1}(U) \in \mathscr{T}_X$. But f is open and surjective, so:

$$f(f^{-1}(U)) = U \in \mathscr{T}_Y$$

Therefore $\mathscr{T}_Y^f \subset \mathscr{T}_Y$ and hence $T_Y^f = T_Y$.

Theorem: 7.53

Let X,Y, and Z be topological spaces and let $f:X\to Y$ be a quotient map. The map $g:Y\to Z$ is continuous iff $g\circ f$ is continuous.

Proof.

 \implies Assume $g:Y\to Z$ is continuous.

But the composition of continuous functions is continuous.

Therefore $g \circ f$ is continuous.

 \iff Assume $g \circ f$ is continuous.

Assume $W \in \mathscr{T}_Z$, and thus $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)) \in \mathscr{T}_X$. But f is a quotient map, and so by definition, $g^{-1}(W) \in \mathscr{T}_Y$.

Therefore g is continuous.