

Computer Science Fundamentals

Channel Coding – Fault-tolerant Codes / Introduction

Technische Hochschule Rosenheim Winter 2021/22 Prof. Dr. Jochen Schmidt

Overview

- Motivation
- Hamming distance
- m-out-of-n codes
- Noisy-channel coding theorem
- Parity check

Motivation

- Noisy channels may randomly alter single or multiple bits during transmission
- A channel may be, e.g.,
 - cables connecting devices, e.g., USB, network, HDMI, CAN, ...
 - wireless transmissions using protocols like Wifi, Bluetooth, ...
 - devices storing information, e.g., hard drives, SSDs, RAM, ...
- → We need to make messages robust to noise This is called channel coding (Kanalcodierung)

Motivation

- Channel coding follows source coding:
 - source coding: minimize redundancy (compression)
 - channel coding: systematically add redundancy to cope with errors
- We are looking for fault-tolerant codes
 - that allow the recipient to recognize whether an error occurred during transmission
 - and, if so, maybe even to correct it
- Error-detecting codes errors can be detected by recipient
- Error-correcting codes errors can be corrected by recipient

Can we measure how fault-tolerant a binary code is? YES: Hamming distance

Hamming Distance

- Hamming Distance of two strings of equal length
 - number of symbols that are different between the strings
 - we usually use the binary alphabet and compare binary code words
 - the distance between code words of variable length us undefined (is this a problem with Huffman?)
- Hamming Distance of a code
 - minimum value of all pairwise (mutually distinct) distances of all code words
 - measure for robustness against noise

Hamming Distance – Example

Decimal digits 1 to 4 coded directly in binary:

$$1 = 001$$
, $2 = 010$, $3 = 011$, $4 = 100$

	001	010	011	100
001	-	-	-	-
010	2	-	-	-
011	1	1	-	-
100	2	2	3	-

Hamming distance of code = 1

Fault-tolerance Capabilities

- For a given Hamming distance h of a code holds:
 - If a maximum of h-1 bits are incorrect in a code word, this can be detected
 - If a maximum of (h-1)/2 bits are incorrect, these errors can be corrected

or in other words:

- If a code has the Hamming distance h, all errors can be
 - detected that affect less than h bits
 - corrected that affect less than h/2 bits

this is mutually exclusive!

• Depending on the maximum number k of incorrectly transmitted bits that can be automatically detected or corrected in a code, we call it k-error-detecting or k-error-correcting code.

Fault-tolerance Capabilities

- h = 1
 - erroneous bits cannot be detected (e.g., ASCII)
- h = 2
 - 1-bit errors can be detected but not corrected (e.g., parity check)
- h = 3
 - 1-bit errors can be corrected (e.g., Hamming codes) OR
 - 1-bit and 2-bit errors can be detected but not corrected
- h = 4
 - 1-bit errors can be corrected, and 2-bit errors can be detected
 - 1-bit, 2-bit, and 3-bit errors can be detected but not corrected
- h = 5
 - 1-bit and 2-bit errors can be corrected OR
 - 1-bit, 2-bit, 3-bit, and 4-bit errors can be detected but not corrected

Hamming Distance – Example

Decimal digits 1 to 4 coded directly in binary: 1 = 001, 2 = 010, 3 = 011, 4 = 100

	001	010	011	100
001	-	-	-	_
010	2	-	-	-
011	1	1	-	-
100	2	2	3	-

Hamming distance of code h = 1 \rightarrow we cannot guarantee that all errors will be detected Decimal digits 1 to 4 coded differently: 1 = 000, 2 = 011, 3 = 101, 4 = 110

	000	011	101	110
000	-	-	-	-
011	2	-	-	-
101	2	2	-	-
110	2	2	2	-

Hamming distance of code h = 2 \rightarrow we can guarantee that all 1-bit errors will be detected

Linear Codes

- Consider a block code of length r:
 - the code words are elements of a vector space \mathbb{F}_q^r defined over a finite field \mathbb{F}_q
 - often (but not always), we will use binary codes, i.e., the field \mathbb{F}_2 containing only 0 and 1
- For binary codes, we get the vector space
 - with operations
 - AND = scalar product ("normal" multiplication)
 - XOR = vector addition (XOR = bitwise mod 2)
 - the neutral elements
 - One = 1 (scalar)
 - Zero = (0 0 ... 0) (vector)
 - inverse elements regarding XOR: -x = x (self-inverse, involution)

- A code $C \subseteq \mathbb{F}_q^r$ is called linear if C is a subspace of \mathbb{F}_q^r
 - i.e., C is itself a vector space
 - in particular this implies that *C* contains Zero and is algebraically closed wrt. vector addition and scalar multiplication
- Most of the codes discussed here will be linear codes
- Linear means in particular:
 - any linear combination of valid code words is also a code word
 - encoding/decoding can be formulated as matrix multiplications
 - we can use the power of linear algebra

Geometric Interpretation of linear Codes

linear code of length r= vector space $\to n=2^r$ possible code words = corners of an r-dimensional (hyper) cube

$$r = 1$$

$$r = 2$$

(this is the projection of a 4-D hypercube to 3-D)

k errors correctable:

- sphere of radius k centered at each code word
- such that they do not overlap
- Hamming distance h = 2k + 1

An upper bound n_k for the number of code words with length r in a k-error-correcting code is

total "volume", i.e., total number
$$n_k \leq \frac{2^r}{V_k} = \frac{2^r \text{ of possible code words}}{1 + \sum_{i=1}^k \binom{r}{i}}$$
 "volume" of sphere of radius k

Codes that attain the bound are called perfect codes. They are dense and can always be decoded uniquely.

Perfect Codes – Example

Code length r=3, 1-error-correction code (k=1, Hamming distance h=3)

$$n_k \le \frac{2^3}{V_k} = \frac{8}{1 + \binom{3}{1}} = 2$$

$$n_k \le \frac{2^7}{V_k} = \frac{128}{1 + \binom{7}{1}} = 16$$

For example:

Are these linear codes?

We will see an example for such a code soon – the (7, 4) Hamming code

Exercise

Let's consider binary block codes of length 9 bit:

- 1. If we use each possible combination in the resulting code:
 - a) How many code words are available?
 - b) What is the Hamming distance of such a code?
 - c) How many erroneous bits can be detected or corrected?
- 2. If we want to use a 2-error-correcting code:
 - a) What Hamming distance is required?
 - b) What is the upper bound for the number of code words that are available in such a code?

m-out-of-n (m-oo-n) Codes

(Nonlinear) block codes with a word length of n

Each code word contains exactly

- m Ones and
- n m **Zeros**
- Special case: 1-out-of-n code: "one-hot" coding
- The code contains exactly $\binom{n}{m}$ code words

Examples:

<u>Digit</u>	2-00-5 code	1-00-10 code
0	00011	000000001
1	00101	000000010
2	00110	000000100
3	01001	000001000
4	01010	0000010000
5	01100	0000100000
6	10001	0001000000
7	10010	001000000
8	10100	0100000000
9	11000	1000000000

Parity Codes

- Parity Check (Paritätsprüfung)
- Widely used for error detection
- Idea
 - Add an additional bit to an existing block code (the parity bit) such that
 - the total number of ones in the code words are
 - even (even parity, gerade Parität) or
 - odd (odd parity, ungerade Parität)

Parity Codes – Example

7 bit ASCII code with added even parity

Α	10000010	G 10001110	м 10011010	s 10100110	Y 10110010
В	10000100	н 10010000	N 1001110 0	T 1010100 1	Z 10110100
C	10000111	I 1001001 1	0 10011111	U 10101010	
D	10001000	J 1001010 1	P 10100000	V 1010110 0	
Ε	10001011	К 10010110	Q 1010001 1	W 1010111 1	
F	10001101	L 1001100 1	R 1010010 1	X 1011000 1	

from: H. Herold, B. Lurz, J. Wohlrab, M. Hopf. *Grundlagen der Informatik*

Parity Codes – Example

We have received the following sequence of 7 bit ASCII characters (+ even parity bit on right):

```
10010000 H

11001010 e

11011000 |

11011110 o

01000001 (space)

10101110 W

11011110 o

11100100 r

11011000 |

11101001 ← Parity error!
```

Even Parity Codes are Linear – Example

All elements of vector space \mathbb{F}_2^3 :

Gray: Code words for even parity

These form a subspace $C \subset \mathbb{F}_2^3$

Basis:
$$\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \right\}$$

(you can use any pair of linear independent nonzero vectors, but then the parity bit will get mixed in between the original code words)

→ combine basis vectors in matrix to get the generator matrix (*Generatormatrix*)

Generator matrix for
$$C$$
: $G = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}$

$$c = Go$$

o: (original) 2-bit code word without parity bit (as column vector)

c: 3-bit code word with even parity bit on the right

Example:
$$\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 remember: "+" = mod 2 addition = XOR of all bits

remember:

= XOR of all bits

In many cases you will see

- the transposed generator: $G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$
- multiplication from left: c = oG
- $(1 \quad 1 \quad 0) = (1 \quad 1) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$ row vectors

Even Parity Codes are Linear – Example

All elements of vector space \mathbb{F}_2^3 :

Gray: Code words for even parity

We can check whether a received code word c is correct using the (parity) check matrix H. It is built from the basis vectors of the orthogonal vector space C^{\perp} to C $C^{\perp} = \{v \mid v \cdot u = 0, u \in C\}$

In our example:
$$C^{\perp} = \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$$
This is a 1-D subspace with basis $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

Check matrix (*Kontrollmatrix*; row vectors): $\mathbf{H} = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix}$

By definition we get for correct code words: $Hc^T = 0$

c: (received) 3-bit code word with parity bit (as row vector)

Examples:

$$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = 1 + 1 + 0 = 0 \longrightarrow \text{no error detected}$$

$$(1 \quad 1 \quad 1) \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = 0 + 1 + 0 = 1 \longrightarrow \text{error detected}$$

remember:
"+" = mod 2 addition
= XOR of all bits

Even Parity Codes are Linear – Example

$$G = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$H = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
fill to correct dimension with identity matrix (here: 1x1)

If the first part of **G** is the identity matrix

- we say that G is in standard form (systematische Form)
- H can be determined easily directly from G

In general: For an r-dimensional vector space with s-dimensional code subspace C

- **G** has size $s \times r$
- in standard form $G = (I_{S \times S} \mid M)$ $(I_{S \times S} : S \times S \text{ identity matrix; } | = \text{concatenation})$
- the orthogonal space is (r s)-dimensional
- H has size $(r-s)\times r$
- $H = (-M^T \mid I_{(r-s)\times(r-s)})$
 - for binary codes (i.e., in \mathbb{F}_2) the "minus" has no effect and can be omitted:
 - $1+1 \equiv 0 \mod 2 \longrightarrow 1 \equiv -1 \pmod 2$

2-D Parity Check

- Extension of the one-dimensional parity check
- Check 2-D blocks of data
 - a parity bit is used for each individual code word
 - after the entire block of code words is transferred another code word is transferred that contains the parity bits to all columns of the transferred block


```
2-D parity check row parity bits
```

```
b
d
e
```

column parity bits

If only a single bit changes during transmission, this can be corrected

```
1 0 0 0 0 1 1
```


A double error (2 incorrect bits) can be detected


```
0 0 0 0 1 1
                  2 incorrect
                  parity bits
     0
     1 0 0
                   Correction
  0
                  not possible
```


A triple error (3 incorrect bits) can be detected

1	1	0	0	0	0	1	1	6 incorrect
1	1	0	0	0	1	0	1	parity bits
1	1	0	1	0	1	1(0	←
1	1	0	0	1	0	0	1	
1	1	0	0	1	1	1(0	←
1	1	0	0	1	1	0	0	
1	1	1	0	1	1	1(1	
1	1	0	1	0	0	0	1	Correction
0	0 (0	1	0(0	0	1	not possible
		1	1		1			

Detection of a quadruple error (4 incorrect bits) ...

```
1 1 0 0 0 0 1 1
      0
          0
 1 0 1 0 0 0 1
 0 0 1 0 0 0 1
```

... cannot be guaranteed!

- Binary coding of the word INFORMATIK using 7 bit ASCII
 - the total number of ones per character is padded to an even number with a parity bit
 - we use an additional word containing parities for the block after each 4th character
 - in contrast to the previous example the characters are arranged in columns rather than rows
 - this is obviously arbitrary, as in reality we have a linear memory layout anyway
 - row/column parities then change their role
- Transfer is performed by splitting the word into blocks
 - 1. and 2. block contain 4 characters
 - 3. block contains only 2 characters and is padded with zeros
- During transmission, 1-bit errors occur and the word ANFORMAPIK is received

	Received Data	block parities	Received Data	block parities	Received Data	block parities
	1111 0000 0000 0101 0111 0111 1001	0 0 0 1 1 1 0	1111 0000 1001 0100 0100 1000 0110	0 0 0 1 0 1 0	1100 0000 0000 1100 0000 0100	0 0 0 0 0 1 1
	1011	1	1001	0	1100	O Parity bits of single characters
	ANICO				11/2	Descived tout
	ANFO		RMAP -		IK	Received text
<i>></i>	> I					Corrections
	1000001 (A) → 1001001 (I)		1010 → 1010	0000 (P) 0100 (T)		

2-D Parity Check – Summary

- 2-D Parity Check is
 - 1-error-correcting (Correction of single errors and detection of double errors) OR
 - 3-error-detecting (Detection of single, double, and triple errors).
- Disadvantage: We must wait for whole blocks to be transferred before correction
- The concept can be generalized to more dimensions straightforwardly
 - the Hamming distance of a d-dimensional parity check is d+1
 - therefore, a maximum of d/2 erroneous bits can be corrected