Γεωμετρία Β' Λυχείου

10.1, 10.2, 10.3 - Εμβαδά

Εμβαδό τετραγώνου

ΘΕΩΡΗΜΑ

Το εμβαδόν Ε ενός τετραγώνου πλευράς α είναι α², δηλαδή:

$$\mathbf{E} = \boldsymbol{\alpha}^2$$
.

Εμβαδό ορθογωνίου

ΘΕΩΡΗΜΑ Ι

Το εμβαδόν ενός ορθογωνίου ισούται με το γινόμενο των πλευρών του.

Δηλαδή αν α, β, οι πλευρές και Ε το εμβαδόν είναι:

$$\mathbf{E} = \boldsymbol{\alpha} \cdot \boldsymbol{\beta}$$

ΑΠΟΔΕΙΞΗ

Έστω ένα ορθογώνιο $AB\Gamma\Delta$, με $AB=\alpha$ και $A\Delta=\beta$ (σχ.7). Προεκτείνουμε την πλευρά $A\Delta$ κατά τμήμα $\Delta E=\alpha$, την AB κατά $BI=\beta$ και σχηματίζουμε το τετράγωνο AIHE, το οποίο είναι φανερό ότι έχει πλευρά $\alpha+\beta$ και επομένως είναι:

$$(AIHE) = (\alpha + \beta)^2 \quad (1).$$

Προεκτείνοντας τις ΔΓ και ΒΓ σχηματίζονται τα τετράγωνα ΔΓΖΕ, ΒΙΘΓ με πλευρές α, β αντίστοιχα και το ορθογώνιο ΓΘΗΖ που είναι ίσο με το ΑΒΓΔ. Έτσι έχουμε

$$(\Delta \Gamma ZE) = \alpha^2$$
, $(BI\Theta\Gamma) = \beta^2 \kappa \alpha \iota (\Gamma \Theta HZ) = (AB\Gamma \Delta)$ (2)

Είναι φανερό όμως ότι

$$(AIHE) = (AB\Gamma\Delta) + (\Gamma\Theta HZ) + (BI\Theta\Gamma) + (\Delta\Gamma ZE),$$

από την οποία με τη βοήθεια των (1) και (2) προκύπτει ότι:

$$(\alpha + \beta)^2 = 2(AB\Gamma\Delta) + \alpha^2 + \beta^2.$$

Από αυτή μετά τις πράξεις καταλήγουμε στη σχέση

$$(AB\Gamma\Delta) = \alpha \cdot \beta.$$

Εμβαδό παραλληλογράμμου

ΘΕΩΡΗΜΑ ΙΙ

Το εμβαδόν Ε ενός παραλληλογράμμου ισούται με το γινόμενο μιας πλευράς του επί το ύψος που αντιστοιχεί σε αυτή.

$$\Delta \eta \lambda \alpha \delta \acute{\eta} \qquad \qquad \mathbf{E} = \alpha \mathbf{v}_{\alpha} = \beta \mathbf{v}_{\beta} \; , \label{eq:equation:equation:equation}$$

όπου α, β οι πλευρές και υα, υβ τα αντίστοιχα ύψη.

Σχήμα 8

ΑΠΟΔΕΙΞΗ

Ας θεωρήσουμε ένα παραλληλόγραμμο $AB\Gamma\Delta$ (σχ.8) και ας φέρουμε το ύψος AZ που αντιστοιχεί στη $B\Gamma$. Θα αποδείξουμε ότι $(AB\Gamma\Delta) = B\Gamma \cdot AZ$.

Από το Δ φέρουμε Δ Η κάθετη στην προέκταση της $B\Gamma$. Τότε τα τρίγωνα ZBA και $H\Gamma\Delta$ είναι ίσα $(\hat{Z}=\hat{H}=90^\circ,AB=\Delta\Gamma$ και $\hat{B}_1=\hat{\Gamma}_1)$, οπότε: $(ZBA)=(H\Gamma\Delta)$ (1).

Από το σχήμα όμως έχουμε ότι (ABΓΔ) = (ABZ) + (AZΓΔ), οπότε σύμφωνα με την (1) προκύπτει ότι

$$(AB\Gamma\Delta) = (AZ\Gamma\Delta) + (\Delta\Gamma H) = (AZH\Delta).$$

Επομένως σύμφωνα με το θεώρημα Ι έχουμε

$$(AB\Gamma\Delta) = (AZH\Delta) = A\Delta \cdot AZ = B\Gamma \cdot AZ,$$

που είναι το ζητούμενο.

Με τη βοήθεια του εμβαδού του παραλληλογράμμου θα υπολογίσουμε τον τύπο του εμβαδού τριγώνου.

$$(AB\Gamma\Delta) = (AZ\Gamma\Delta) + (\Delta\Gamma H) = (AZH\Delta).$$

Επομένως σύμφωνα με το θεώρημα Ι έχουμε

$$(AB\Gamma\Delta) = (AZH\Delta) = A\Delta \cdot AZ = B\Gamma \cdot AZ,$$

που είναι το ζητούμενο.

Με τη βοήθεια του εμβαδού του παραλληλογράμμου θα υπολογίσουμε τον τύπο του εμβαδού τριγώνου.

Εμβαδό τριγώνου

ΘΕΩΡΗΜΑ III

Το εμβαδόν Ε ενός τριγώνου είναι ίσο με το ημιγινόμενο μιας πλευράς επί το αντίστοιχο ύψος.

Δηλαδή
$$\mathbf{E} = \frac{1}{2} \boldsymbol{\alpha} \cdot \boldsymbol{v}_{\alpha} = \frac{1}{2} \boldsymbol{\beta} \cdot \boldsymbol{v}_{\beta} = \frac{1}{2} \boldsymbol{\gamma} \cdot \boldsymbol{v}_{\gamma}.$$

Σχήμα 9

ΑΠΟΔΕΙΞΗ

Με πλευρές ΑΒ και ΒΓ (σχ.9) σχηματίζουμε το παραλληλό-γραμμο ΑΒΓΔ, το εμβαδόν του οποίου είναι

$$(AB\Gamma\Delta) = \alpha \cdot v_{\alpha}$$
 (1).

Όμως τα τρίγωνα ΑΒΓ και ΔΑΓ είναι ίσα, οπότε:

$$(AB\Gamma) = (A\Delta\Gamma)$$
 (2).

Από το σχήμα έχουμε ότι (ΑΒΓΔ) = (ΑΒΓ) + (ΑΓΔ) η οποία, σύμφωνα με τις (1) και (2), μετατρέπεται στην

$$\alpha \cdot \nu_{\alpha} = 2(AB\Gamma) \quad \acute{\eta} \quad (AB\Gamma) = \frac{1}{2} \alpha \cdot \nu_{\alpha} .$$

Τέλος, τον τύπο του εμβαδού τριγώνου θα τον αξιοποιήσουμε για να υπολογίσουμε το εμβαδόν του τραπεζίου.

Εμβαδό τραπεζίου

ΘΕΩΡΗΜΑ ΙV

Το εμβαδόν τραπεζίου ισούται με το γινόμενο του ημιαθροίσματος των βάσεών του επί το ύψος του.

$$\Delta \eta \lambda \alpha \delta \dot{\eta} \qquad \quad \mathbf{E} = \frac{(\mathbf{B} + \boldsymbol{\beta})}{2} \cdot \boldsymbol{\upsilon} \; ,$$

όπου Β, β οι βάσεις του τραπεζίου και υ το ύψος του.

Σχήμα 10

ΑΠΟΔΕΙΞΗ

Θεωρούμε τραπέζιο ΑΒΓΔ (ΒΓ//ΑΔ) (σχ.10), με βάσεις $B\Gamma = B$, $A\Delta = \beta$ και ύψος υ . Φέρουμε τη διαγώνιο ΑΓ. Τότε έχουμε

$$E = (AB\Gamma\Delta) = (AB\Gamma) + (A\Gamma\Delta)$$
 (1).

Αλλά τα δύο τρίγωνα ΑΒΓ και ΑΓΔ έχουν το ίδιο ύψος υ και βάσεις Β, β αντίστοιχα και επομένως:

$$(AB\Gamma) = \frac{1}{2} B \cdot \upsilon$$
 και $(AB\Delta) = \frac{1}{2} \beta \cdot \upsilon$ (2).

Με αντικατάσταση των σχέσεων (2) στην (1) προκύπτει ότι $E = \frac{B+\beta}{2} \cdot \upsilon, \, \delta \eta \lambda \alpha \delta \dot{\eta} \, \tauo \, \zeta \eta \tauo \dot{\upsilon} \mu \epsilon vo.$

ΠΟΡΙΣΜΑ

Το εμβαδόν τραπεζίου ισούται με το γινόμενο της διαμέσου επί το ύψος του.

Ερωτήσειs Katavónσns

2. Ένα τετράγωνο έχει περίμετρο 16. Πόσο είναι το εμβαδόν του;

- 3. Ένα ορθογώνιο έχει διαστάσεις α = 9, β = 4 και είναι ισοδύναμο με τετράγωνο πλευράς x. Να βρεθεί το x.
- 6. Ένας χωρικός αντάλλαξε έναν αγρό, που είχε σχήμα τετραγώνου πλευράς 60 m, με έναν άλλο αγρό (με την ίδια ποιότητα χώματος) που είχε σχήμα ορθογωνίου με πλάτος 40 m και περίμετρο ίση με την περίμετρο του πρώτου. Έχασε ή κέρδισε ο χωρικός από την ανταλλαγή αυτή; Αιτιολογήστε την απάντησή σας.