CS 536 HW3

Language Syntax, Semantics, Runtime Errors

GROUP MEMBERS:

- Jinit Priyutkumar Parikh (A20517770) jparikh9@hawk.iit.edu
- Henilkumar Hareshbhai Patel (A20513297) (hpatel154@hawk.iit.edu)
- Swathi Alapati (A20521251) salapati3@hawk.iit.edu

Question 1

```
(a) x := 0;
   m := x;
   y=1;
   while (m<n)
   do
   m : = m+1;
   x : =x+1;
   y := y * x
   od;
   m := m+1
(b) m:=n;
   z : =1;
   x := z;
   m=m-1;
   while (m<n)
   do
   x : =x+1;
   x := x+2
   m = m-1
   od
(c) m:=n;
   x := 1;
   v := x;
   m := m-1;
   while (m<n)
   do
   x := x+1;
   v := v + x;
   m := m-1
   od
```

QUESTION 2

(a)
$$<$$
 IF ${x=3, y=5, z=9} >$

$$< x: = x*2, {x=3, y=5, z=9} > (\sigma(x>0) = T)$$

$$< E, \sigma [x \mapsto \alpha] >$$
Where $\alpha = \sigma(x*z)$

$$= \sigma (x \mapsto 3*9)$$

$$= \sigma (x \mapsto 21)$$
(b) $<$ IF, ${x=3, y=4, z=3} >$

$$< y: \neq y*z, {x=3, y=4, z=3y} >$$

$$< E, \sigma [y \mapsto \alpha] >$$
Where $\alpha = \sigma(y*z)$

$$= \sigma (y \mapsto 4*3)$$

$$= \sigma(y \mapsto 4*3)$$

$$= \sigma(y \mapsto 12)$$
(c) $<$ IF, ${x=5, y=-2, z=-2} >$

$$<$$
 IF $y>0$ then $y: = y*2$ else skip $f: \sigma$)
$$<$$
 skip, $\sigma>$

$$< E, \sigma>$$
Where $\sigma = {x=-5, y=-2, z=-2}$

QUESTION 3

Since S is going to execute multiple times, so its execution of S in an arbitrary state τ [m \mapsto α] [$x \mapsto \beta$] is

$$<$$
W, $\sigma_0>$

$$\rightarrow$$
²\sigma1[m \mapsto] [x \mapsto 2]> (After loop initialization)
 \rightarrow ³< W, σ 2[m \mapsto 2] [x \mapsto 6]> (one iteration)
 \rightarrow ³\sigma3 [m \mapsto 3] [x \mapsto 15]> (two iteration)
 \rightarrow ³\sigma4 [m \mapsto 4] [x \mapsto 31]> (three iteration)
< E, σ 4 [m \mapsto 4] [x \mapsto 31]> (now we stop as m \neq n is false)

OUESTION 4:

W= while m
$$\neq$$
n do s od
Where s=m: =m+1; x: = x+m \neq m
 $\sigma_0 = \{m=0, x=1, n=4\}$
(a) $<$ w, σ 0 $>$ = M (x: =x \neq 2, {x=3, y=5, z=9}) M (s, σ)
=M (s, σ)
=M(σ (x) $\mapsto \sigma$ (x) σ (z))
=M(σ (x) \mapsto 3*9)
=M(σ (x) \mapsto 27)

So, the value of x in σ state will be 27.

(b)
$$M (y: =y*z, \sigma)$$

 $M(\sigma(y) \mapsto \sigma(y)*\sigma(z))$
 $M(\sigma(y) \mapsto (4)*(3))$
 $M(\sigma(y) \mapsto 12)$

QUESTION 5:

$$S = m := m+1; X := X+m*m$$

W= while m≠n do s od

(a) Now we considering the τ for s then

$$M (s, \tau) = M (m: = m+1; X: = X+m*m, \tau [m \mapsto \beta] [x \mapsto \alpha])$$
$$= \{\tau[m \mapsto \beta+1] [x \mapsto \alpha+(\beta+1)*(\beta+1)]\}$$

(b) $\sigma 0 = \{m=0, x=0\}$

Here we are looking for the value in which the $\beta \in z$ that make M (w, $\sigma 0[n \mapsto \beta]$) = $\perp d$

So, from the entire loop condition, if the value of m and n is equal then loop is stops and in the given value of, is zero and it is increasing by 1 for the n<0 there is now option available for m equal to n.

```
(c) \sigma = \{m = \beta, x = \delta, n = \beta\}

From previous problem we know M(s, \tau) = \{\tau[m \mapsto \beta + 1] [x \mapsto \alpha + (\beta + 1)^*(\beta + 1)]\}

so the sequence of states M(S, \sigma_0[n \mapsto \beta]) = \{m = 1, x = 0 + (1^*1), n = \beta\}

M(S, \sigma_1[n \mapsto \beta]) = \{m = 2, x = (0 + (1^*1)) + 2^*2, n = \beta\}

M(S, \sigma_2[n \mapsto \beta]) = \{m = 3, x = ((0 + (1^*1)) + 2^*2, n = \beta\} and so on.

when m = \beta than x = 0 + 1^2 + 2^2 + 3^2 + ... + \beta^2

so by given statement in question we can say \delta = 0 + 1^2 + 2^2 + 3^2 + ... + \beta^2
```

which is sum of squares of all integers from 0 to β .

QUESTION 6

According to the given statement, three cases can be considered for Le

- 1. $\sigma(b[m+1]) = \bot e$ this diverges when array index out of bounds so we can write $\sigma(m+1)<0$ or $\sigma(m+1) \ge \sigma(size(b))$ iff $\alpha < -1$ or $\alpha \ge \delta -1$ $(\sigma(m) = \alpha, size of array = \delta)$
- 2. $\sigma(\operatorname{sqrt}(k)) = \bot e$ if k is negative, square root of negative number gives error. so iff $\sigma(k) < 0$ iff $\beta < 0$
- 3. $\sigma(k) = \pm e$ if k is 0, its square root will be 0. This will lead to division by zero error. iff $\beta = 0$

so from above cases we can say runtime errors occur when $\alpha < -1$ or $\alpha \ge \delta$ -1 or $\beta \le 0$