	1340s	1688s	180s	230s
K-NN	Manhattan	Euclid	condensed Manhattan	condensed Euclid
1-NN	0.957	0.971	0.931	0.935
3-NN	0.957	0.971	0.941	0.944
5-NN	0.957	0.970	0.945	0.949
10-NN	0.952	0.967	0.945	0.951
15-NN	0.946	0.962	0.944	0.948
	1120s	1480s	82s	108s
K-NN	edited Manhattan	edited Euclid	both Manhattan	both Euclid
1-NN	0,957	0,965	0.893	0.914
3-NN	0,957	0,965	0.889	0.911
5-NN	0,957	0,964	0.893	0.912
10-NN	0,952	0,961	0.886	0.909
15-NN	0,946	0,956	0.878	0.899

As we can see in the data, **euclid 1-NN and 3-NN** works best. However it also takes the most time to compute. If you condense the training set, it is fairly quick, and still has a relatively high accuracy.

Note: with 12G memory, the sample has to be split into three parts if the set is not condensed. Else out of memory error.