

به نام خدا

تمرين امتيازي

معماري كامپيوتر

دكتر شريعتمدار مرتضوى

نيمسال دوم 1402-1401

انشگاه صنعتی امیر کبیر

يياده سازى الگوريتم CORDIC

واژه CORDIC مخفف عبارت Cordinate Rotation Digital Computer است و از نقطه نظر پیاده سازی یک الگوریتم کامال بهینه یا اصطالحاً Hardware-Efficient است که با استفاده از یک متد تکرار شونده مبتنی بر چرخش و دوران، برای پیاده سازی سخت افزاری رنج وسیعی از توابع پایهای ریاضی بکار برده می شود .برای آشنایی اولیه با الگوریتم CORDIC به لینک زیر مراجعه و مطالب آن را مطالعه نمایید:

https://hexalinx.com/software/use-the-xilinx-cordic-to-generate-sine-and-cosine-functions

اسالیدهای فایل CORDIC_ppt.pdf به طور کامل الگوریتم CORDIC و پیادهسازی آن را مورد بررسی قرار میدهد. به منظور درک کامل الگوریتم پیشنهاد می شود که پس از مطالعه ی مطلب سایت hexalinx ، این اسالیدها را مطالعه کنید.

عـلاوه بـر اینهـا، در ادامهـی صـورت گـزارش، فرمـول کلـی الگـوریتم و مثـالی بـرای پیادهسـازی-Fixed Pointاین الگوریتم برای محاسبهیSinh و Cosh ارائه شده است.

فرمول كلى الگوريتم CORDIC به شكل زير است:

$$\begin{bmatrix} X_{k+1} \\ Y_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & m\delta_k 2^{-k} \\ \delta_k 2^{-k} & 1 \end{bmatrix} \begin{bmatrix} X_k \\ Y_k \end{bmatrix}$$
$$Z_{k+1} = Z_k + \delta_k \theta_k,$$

جدول مربوط به CORDIC با تعریف X , Y , Z به عنوان پارامترهای مربوطه در ادامه آمده است:

\overline{m}	$Z_K o 0$	$Y_K o 0$
1	$X_K = K_1(X_0 \cos(Z_0) - Y_0 \sin(Z_0))$ $Y_K = K_1(Y_0 \cos(Z_0) + X_0 \sin(Z_0))$	$X_K = K_1 \sqrt{X_0^2 + Y_0^2}$ $Z_K = Z_0 + \arctan(Y_0/X_0)$
0	$X_K = X_0$ $Y_K = Y_0 + X_0 \times Z_0$	$X_K = X_0$ $Z_K = Z_0 + Y_0/X_0$
-1	$X_K = K_{-1}(X_0 \cosh(Z_0) - Y_0 \sinh(Z_0))$ $Y_K = K_{-1}(Y_0 \cosh(Z_0) + X_0 \sinh(Z_0))$	$X_K = K_{-1}\sqrt{X_0^2 - Y_0^2}$ $Z_K = Z_0 + \tanh^{-1}(Y_0/X_0)$

rotation باشد و در مود m=-1 باشد و در مود $Sinh(z_0)$ و $Cosh(z_0)$ باشد و در مود $M_k=Cosh(z_0)$ باشد و در مود $M_k=Sinh(z_0)$ عمل کنیم در صورتی که $M_k=Sinh(z_0)$ و $M_k=Sinh(z_0)$ قرار دهیم, $M_k=Sinh(z_0)$ عمل کنیم در صورتی که $M_k=Sinh(z_0)$ و $M_k=Sinh(z_0)$ عمل کنیم در ادامه جدول مربوط به نحوه محاسبه زوایای تتا دنبالهی شیفتهایی که باید بدهیم و ضریبی که در شعاع ضرب می شود $M_k=Sinh(z_0)$ آمده است.

Mode	Angle θ_k	Shift sequence	Radius factor
circular $m = 1$	$\tan^{-1}(2^{-k})$ 2^{-k} $\tanh^{-1}(2^{-k})$	$0, 1, 2, \dots$	$K_1 = 1.65$
linear $m = 0$		$1, 2, \dots$	$K_0 = 1.0$
hyperbolic $m = -1$		$1, 2, 3, 4, 4, \dots$	$K_{-1} = 0.80$

زوایایی که از رابطه ی بالا به دست آمده در جدول 3 قابل مشاهده است. زوایا برحسب رادیان، به صورت-Fixed و ایتی با 7 بیت اعشار و بدون علامت تبدیل و استفاده شدهاند.

نحوهی به دست	زاویه (درجه)	زاویه (رادیان)	زاویه (fixed-point)
آمدن			
Atanh(2 ⁻¹)	P1.4749	۰.۵۴۹۳	"01000110"
Atanh(2 ⁻²)	1 4.5 4 1	o.100f	"00100001"
$Atanh(2^{-3})$	٧.٢٠٠٠	۰.۱۲۵۷	"00010000"
$Atanh(2^{-4})$	۳۰۵۸۵۷	۰.۰۶۲۵۸	"0000 000"
Atanh(2 ⁻⁵)	1.7911	0.08185	"00000100"
$Atanh(2^{-6})$	۰۰۸۹۵۳	۰.۰۱۵۶۳	"00000010"
$Atanh(2^{-7})$	۰.۴۴۷۶	۰۰۰۰۷۸۱۳	""

نکته ی دیگری که باید به آن اشاره شود، نحوه ی محاسبه ی K_{-1} و تکرار (Repetition) بعضی از تکرارها (K_{-1} است. K_{-1} و محدوده ی مجاز برای زاویه ی K_{-1} برای رسیدن به همگرایی است. K_{-1} همان ضریبی است که برای داشتن چرخش خالص آن را از ابتدا حذف کردهایم و سپس تاثیر کلی آن را روی اندازهی بردار اعمال میکنیم. این مقدار از فرمول زیر قابل محاسبه است:

$$K_{-1} = \prod_{i=1}^{n} \cosh\left(\alpha_{i}\right)$$

برای از بین بردن اثر آن کافی است که مقدار X_0 ورودی را برابر معکوس این مقدار قرار دهیم که برابر X_0 خواهد بود. اگر کل زاویه ها به دست آمده را با یکدیگر جمع کنیم، محدوده ی همگرایی به دست می آید .برای رسیدن به همگرایی نیاز است که بعضی از تکرارها مجددا انجام شوند که شماره ی آنها در پاراگراف قبلی آمده است. با توجه به ذات Sinh و Cosh و پریودیک نبودن آن، زوایای بیشتر و کمتر از این مقدار با این الگوریتم قابل محاسبه نخواهد بود. محدوده ی همگرایی این الگوریتم به صورت زیر خواهد بود:

$$-\sum_{k=1}^n \theta_k \leq \emptyset < \sum_{k=1}^n \theta_k$$

هدف از این تمرین، پیادهسازی الگوریتم CORDIC برای محاسبهی موارد زیر است:

- Tan⁻¹ X .1
- Sin⁻¹ X .2
 - E^X .3

برای گرفتن نمره کامل امتیازی کافی است 2 مورد از موارد بالا رو کدنویسی کنید. توجه داشته باشید که که برای هرکدام باید 1 پروژه جدا تعریف کنید نمره امتیازی حداکثر 1.5 نمره دارد و مهلت انجام آن هم تا انجام پروژه اصلی درس است. در گزارش کار نیاز است موارد زیر قرار گیرد:

- 1. شماتیک مدار
 - 2. تست بنچ
- 3. توضیحات کارهای انجام شده
- 4. سطح مصرفی و منابع مصرفی