Toán rời rạc	GV: Nguyễn Hoàng Thạch (lý thuyết)
	Lý thuyết đồ thị (tiếp)
29/10/2018	GV: Hoàng Anh Đức (bài tập)

Bài 1. Các cặp đồ thị sau có đẳng cấu hay không? Vì sao?

Bài 2. Cho G=(V,E) là một đồ thị đơn vô hướng gồm n đỉnh. Đồ thị bù \bar{G} của G là đồ thị (V,E') với $E'=V\times V\setminus E$. Chứng minh rằng

- (a) nếu G và \bar{G} đẳng cấu với nhau thì n hoặc n-1 chia hết cho 4; và
- (b) nếu n hoặc n-1 chia hết cho 4 thì tồn tại một đồ thị G gồm n đỉnh thỏa mãn điều kiện G và \bar{G} đẳng cấu với nhau. (Gợi ý: Khi n chia hết cho 4, tổng quát hóa cấu trúc của P_4 bằng cách chia các đỉnh thành bốn nhóm. Khi n chia cho 4 dư 1, thêm một đỉnh vào đồ thị đã xây dựng cho trường hợp n-1.)
- **Bài 3.** Chứng minh rằng nếu G là một đồ thị liên thông gồm n đỉnh thì G có ít nhất n-1 canh.
- **Bài 4.** Chứng minh rằng nếu G là một đồ thị đơn và u là một đỉnh bậc lẻ của G thì luôn tồn tại một đường đi trong G từ u đến một đỉnh bậc lẻ v nào đó của G với $v \neq u$.
- **Bài 5.** Chứng minh rằng một đỉnh c trong một đồ thị đơn vô hướng liên thông G là một đỉnh cắt khi và chỉ khi tồn tại các đỉnh u và v đều khác c thỏa mãn điều kiện mọi đường đi nối u và v đều đi qua c.
- Bài 6. Gọi G = (V, E) là một đồ thị vô hướng liên thông. Ký hiệu $\kappa(G)$ và $\lambda(G)$ lần lượt là số đỉnh nhỏ nhất và số cạnh nhỏ nhất cần bỏ đi từ G để thu được một đồ thị con G' không liên thông. (Bỏ đi một đỉnh v từ G nghĩa là bỏ đi v và tất cả các cạnh kề với v.) Ta cũng quy ước $\kappa(K_n) = n 1$ với K_n là đồ thị đầy đủ gồm n đỉnh, và $\lambda(G) = 0$ với G là đồ thị chỉ gồm một đỉnh. Chứng minh rằng $\kappa(G) \leq \lambda(G) \leq \min_{v \in V} \deg(v)$.
- **Bài 7.** Chứng minh rằng một đồ thị đơn gồm n đỉnh và k thành phần liên thông có nhiều nhất (n-k)(n-k+1)/2 cạnh.
- **Bài 8.** Giả sử G là một đồ thị vô hướng không chứa khuyên. Chứng minh rằng nếu
 - (a) $\deg(v) \geq 2$ với mọi đỉnh v thuộc G thì G có chứa một chu trình đơn;
 - (b) $\deg(v) \geq 3$ với mọi đỉnh v thuộc G thì G có chứa một chu trình đơn có độ dài chẵn.
- **Bài 9.** Chứng minh rằng nếu G là một đồ thị có hướng với $\deg^+(v) \geq 1$ với mọi đỉnh v của G thì G có chứa một chu trình đơn (có hướng). Kết luận này còn đúng không nếu thay điều kiện $\deg^+(v) \geq 1$ bằng $\deg^-(v) \geq 1$?
- **Bài 10.** Chứng minh rằng nếu G là một đồ thị có hướng gồm n đỉnh và không có chu trình đơn thì các đỉnh của G có thể được sắp xếp theo thứ tự v_1, v_2, \ldots, v_n thỏa mãn điều kiện nếu $(v_i, v_j) \in E(G)$ thì $i < j \ (i, j \in \{1, 2, \ldots, n\})$.