Relaciones de equivalencia

Clase 16

IIC 1253

Prof. Cristian Riveros

Outline

Relaciones de equivalencia

Clases de equivalencia

Outline

Relaciones de equivalencia

Clases de equivalencia

Relaciones de equivalencia

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que R es una relación de equivalencia si R cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R$
- 2. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$

Relaciones de equivalencia

Sea A un conjunto y $R \subseteq A \times A$ una relación binaria.

Definición

Decimos que R es una relación de equivalencia si R cumple ser:

- 1. Refleja: $\forall a \in A. (a, a) \in R$
- 2. Simétrica: $\forall a, b \in A$. $(a, b) \in R \rightarrow (b, a) \in R$
- 3. Transitiva: $\forall a, b, c \in A$. $((a, b) \in R \land (b, c) \in R) \rightarrow (a, c) \in R$

¿qué otras relaciones de equivalencia conocen?

Mas ejemplos de relaciones de equivalencia

Personas y cumpleaños: (P, C).

- $P = \{p \mid p \text{ es una persona}\}$
- $C \subseteq P \times P$ tal que:

$$(p_1, p_2) \in C$$
 si, y solo si, p_1 esta de cumpleaños el mismo día que p_2 .

Rectas y paralelas: (L, ||).

- $L = \{\ell \mid \ell \text{ es una linea en } \mathbb{R}^2\}$
- $\| \subseteq L \times L$ tal que: $(\ell_1, \ell_2) \in \|$ si, y solo si, ℓ_1 es paralela a ℓ_2 .

Ejemplo de relaciones de equivalencia

Definición

Sea $\mathbb{N}^2 = \mathbb{N} \times \mathbb{N}$. Se define la relación $\downarrow \subseteq \mathbb{N}^2 \times \mathbb{N}^2$ como:

$$(a,b)\downarrow(c,d)$$
 si, y solo si $a-b=c-d$

- ¿Refleja? ✓
- 2. ¿Simétrica? ✓
- 3. ¿Transitiva? ✓

Ejemplo de relaciones de equivalencia

Definición

Sea $n \in \mathbb{N} - \{0\}$. Para $a, b \in \mathbb{Z}$ decimos que a es equivalente a b módulo n:

$$a \equiv_n b$$
 si, y solo si, $\exists k \in \mathbb{Z}. n \cdot k = (a - b)$

En otros palabras, $a \equiv_n b$ ssi $n \mid (a - b)$.

Ejemplos para n = 4

$$4\cdot (-2)=(0-8)$$

$$\forall k \in \mathbb{Z}. \ 4 \cdot k \neq (1-8)$$

$$4 \cdot 2 = (9-1)$$

$$4 \cdot 1 = (1 - (-3))$$

Ejemplo de relaciones de equivalencia

Definición

Sea $n \in \mathbb{N} - \{0\}$. Para $a, b \in \mathbb{Z}$ decimos que a es equivalente a b módulo n:

$$a \equiv_n b$$
 si, y solo si, $\exists k \in \mathbb{Z}. n \cdot k = (a - b)$

En otros palabras, $a \equiv_n b$ ssi $n \mid (a - b)$.

- ¿Refleja? ✓
- 2. ¿Simétrica? ✓
- 3. ¿Transitiva? ✓

Outline

Relaciones de equivalencia

Clases de equivalencia

Particiones

Sea A un conjunto y $S \subseteq 2^A$ (un conjunto de subconjuntos de A).

Definición

Decimos que S es una partición de A si:

1. todos los elementos de $\mathcal S$ son distinto de vacío.

$$\forall X \in \mathcal{S}. X \neq \emptyset$$

2. la unión de todos los elementos de S es igual a A.

$$\bigcup S = A$$

 $3.\,$ todos los elementos de ${\cal S}$ son disjuntos de a pares.

$$\forall X,Y\in\mathcal{S}.\ X\neq Y\ \rightarrow\ X\cap Y=\varnothing$$

Particiones (ejemplos)

Sea A un conjunto y $S \subseteq 2^A$ un conjunto de subconjuntos de A.

Definición

Decimos que S es una partición de A si:

- 1. $\forall X \in S$, $X \neq \emptyset$
- $2. \cup S = A$
- 3. $\forall X. Y \in S. X \neq Y \rightarrow X \cap Y = \emptyset$

Ejemplo

Sea $A = \{1, 2, 3, 4, 5, 6\}$, ¿cuáles son particiones?

- - **4** { 1, 3}, {2, 5}, {4, 6} **{** {1,2,3}, {4,5}, {3,6} }

 - **4** { 1}, {2}, {3}, {4}, {5}, {6}
 - **•** { {1,2,3}, {4,5} }

Particiones (ejemplos)

¿en qué se parecen las particiones a las relaciones de equivalencia?

Sea A un conjunto y $\simeq \subseteq A \times A$ una relación de equivalencia.

Definición

Sea $x \in A$. Se define la clase de equivalencia de x según \simeq como:

$$[x]_{\simeq} = \{ y \in A \mid x \simeq y \}$$

 $[x]_{\simeq}$ son todos los elementos de A que son "equivalentes" a x.

Ejemplo

Considere la relación \downarrow , ¿cuáles son sus clases de equivalencia?

```
(a, b) \downarrow (c, d) si, y solo si a - b = c - d
[(0,0)]_{\downarrow} = \{(c,d) \mid 0 = c - d\} = \{(0,0), (1,1), (2,2), (3,3), \ldots\}
[(1,0)]_{\downarrow} = \{(c,d) \mid 1=c-d\} = \{(1,0),(2,1),(3,2),(4,3),\ldots\}
[(2,0)]_{\perp} = \{(c,d) \mid 2=c-d\} = \{(2,0),(3,1),(4,2),(5,3),\ldots\}
[(0,1)]_{\downarrow} = \{(c,d) \mid -1 = c - d\} = \{(0,1), (1,2), (2,3), (3,4), \ldots\}
[(0,2)]_{\downarrow} = \{(c,d) \mid -2 = c - d\} = \{(0,2), (1,3), (2,4), (3,5), \ldots\}
[(0,3)]_{\perp} = \{(c,d) \mid -3 = c - d\} = \{(0,3), (1,4), (2,5), (3,6), \ldots\}
```

Ejemplo Considere la relación 1, ¿cuáles son sus clases de equivalencia? (0,4) (1,4) (2,4) (3,4) (4,4) ... (0,3) (1,3) (2,3) (3,3) (4,3) ... (0,2) (1,2) (2,2) (3,2) (4,2) ... (0,1) (1,1) (2,1) (3,1) (4,1) ... (0,0) (1,0) (2,0) (3,0) (4,0) ...

Ejemplo

Considere ≡₄, ¿cuáles son sus clases de equivalencia?

```
a \equiv_4 b si, y solo si, \exists k \in \mathbb{Z}. 4 \cdot k = (a - b)
[0]_{\equiv a} = \{b \mid \exists k. \ 4 \cdot k = b\}
                                                           = \{0, 4, 8, 12, \dots, -4, -8, -12, \dots\}
[1]_{\equiv_A} = \{b \mid \exists k. \ 4 \cdot k + 1 = b\} = \{1, 5, 9, 13, \dots, -3, -7, -11, \dots\}
[2]_{\equiv a} = \{b \mid \exists k. \ 4 \cdot k + 2 = b\} = \{2, 6, 10, 14, \dots, -2, -6, -10, \dots\}
[3]_{\equiv_4} = \{b \mid \exists k. \ 4 \cdot k + 3 = b\} = \{3, 7, 11, 15, \dots, -1, -5, -9, \dots\}
[4]_{\equiv_{\Delta}} = \{b \mid \exists k. \ 4 \cdot (k+1) = b\} = [0]_{\equiv_{\Delta}}
[5]_{\equiv a} = \{b \mid \exists k. \ 4 \cdot (k+1) + 1 = b\} = [1]_{\equiv a}
```

Ejemplo

Considere ≡₄, ¿cuáles son sus clases de equivalencia?

$$a \equiv_4 b$$
 si, y solo si, $\exists k \in \mathbb{Z}$. $4 \cdot k = (a - b)$

$$[0]_{\equiv_4} = \{b \mid \exists k. \ 4 \cdot k = b\} = \{0,4,8,12,\ldots,-4,-8,-12,\ldots\}$$

$$[1]_{\equiv_4} = \{b \mid \exists k. \ 4 \cdot k + 1 = b\} = \{1,5,9,13,\ldots,-3,-7,-11,\ldots\}$$

$$[2]_{\equiv_4} = \{b \mid \exists k. \ 4 \cdot k + 2 = b\} = \{2,6,10,14,\ldots,-2,-6,-10,\ldots\}$$

$$[3]_{\equiv_6} = \{b \mid \exists k. \ 4 \cdot k + 3 = b\} = \{3,7,11,15,\ldots,-1,-5,-9,\ldots\}$$

Propiedades de las clases de equivalencia

Sea A un conjunto y $\simeq \subseteq A \times A$ una relación de equivalencia.

Definición

Sea $x \in A$. Se define la clase de equivalencia de x según \simeq como:

$$[x]_{\simeq} = \{ y \in A \mid x \simeq y \}$$

Propiedades

- 1. $\forall x \in A$. $x \in [x]_{\approx}$
- 2. $x \simeq z$ si, y solo si, $[x]_{\approx} = [z]_{\approx}$
- 3. si $x \neq z$, entonces $[x]_{\sim} \cap [z]_{\sim} = \emptyset$

Ejercicio!

Conjunto cuociente

Sea A un conjunto y $\simeq \subseteq A \times A$ una relación de equivalencia.

Definición

El conjunto cuociente A/\simeq de A con respecto a \simeq se define:

$$A/\simeq = \{ [x]_{\simeq} \mid x \in A \}$$

Conjunto cuociente (ejemplos)

Ejemplo

Considere la relación ↓ y sus clases de equivalencia:

```
 [(0,0)]_{\downarrow} = \{(0,0),(1,1),(2,2),(3,3),\ldots\} 
 [(1,0)]_{\downarrow} = \{(1,0),(2,1),(3,2),(4,3),\ldots\} 
 [(2,0)]_{\downarrow} = \{(2,0),(3,1),(4,2),(5,3),\ldots\} 
 \vdots 
 [(0,1)]_{\downarrow} = \{(0,1),(1,2),(2,3),(3,4),\ldots\} 
 [(0,2)]_{\downarrow} = \{(0,2),(1,3),(2,4),(3,5),\ldots\} 
 \vdots
```

Entonces:

```
\mathbb{N} \times \mathbb{N} / \downarrow = \{ \dots, [(0,2)], [(0,1)], [(0,0)], [(1,0)], [(2,0)], \dots \}
```

Conjunto cuociente (ejemplos)

Ejemplo

Considere ≡₄ y sus clases de equivalencia:

```
[0]_{\equiv_4} = \{0, 4, 8, 12, \dots, -4, -8, -12, \dots\}
[1]_{\equiv_4} = \{1, 5, 9, 13, \dots, -3, -7, -11, \dots\}
[2]_{\equiv_4} = \{2, 6, 10, 14, \dots, -2, -6, -10, \dots\}
[3]_{\equiv_4} = \{3, 7, 11, 15, \dots, -1, -5, -9, \dots\}
```

Entonces:

$$\mathbb{Z}/\equiv_4 = \{ [0], [1], [2], [3] \}$$

Sea A un conjunto y $\simeq \subseteq A \times A$ una relación de equivalencia.

Definición

El conjunto cuociente A/\simeq de A con respecto a \simeq se define:

$$A/\!\!\simeq \ = \ \big\{ \ \big[x \big]_{\simeq} \ \big| \ x \in A \ \big\}$$

Teorema

El conjunto cuociente A/\simeq es una partición de A.

Demostración

Sea $A/\simeq = \{ [x]_\simeq \subseteq A \mid x \in A \}.$

¿ que debemos demostrar?

- 1. $\forall X \in A/\simeq$. $X \neq \emptyset$
- $2. \cup A/\simeq = A$
- 3. $\forall X, Y \in A/\simeq$. $X \neq Y \rightarrow X \cap Y = \emptyset$

Demostración

Sea $A/\simeq = \{ [x]_\simeq \subseteq A \mid x \in A \}.$

1. $\forall X \in A/\simeq$. $X \neq \emptyset$

Sea $X \in A/\simeq$.

PD: $X \neq \emptyset$.

D 10...

Por definición de A/\simeq , sabemos que existe un $x \in A$ tal que $X = [x]_\simeq$

$$\Rightarrow x \in [x]_{\simeq}$$

(¿por qué?)

$$\Rightarrow x \in X$$

Por lo tanto, $X \neq \emptyset$.

Demostración

Sea
$$A/\simeq = \{ [x]_\simeq \subseteq A \mid x \in A \}.$$

2.
$$\bigcup A/\simeq = A$$

PD:
$$\bigcup A/\simeq \subseteq A$$
 y $A \subseteq \bigcup A/\simeq$.

Sea
$$x \in A$$
.

$$X \in A$$
.

$$\Rightarrow [x]_{\cong} \in A/\!\!\! \simeq y \ x \in [x]_{\cong}$$

$$\Rightarrow x \in \bigcup A/\simeq$$

Por lo tanto, $\bigcup A/\simeq = A$.

(por definición de A/\simeq)

Demostración

Sea $A/\simeq = \{ [x]_\simeq \subseteq A \mid x \in A \}.$

3. $\forall X, Y \in A/\simeq . X \neq Y \rightarrow X \cap Y = \emptyset$

Sea $X, Y \in A/\simeq$ tal que $X \neq Y$.

PD: $X \cap Y = \emptyset$.

Sea $x, y \in A$ tal que $[x]_{\simeq} = X$ y $[y]_{\simeq} = Y$.

Como $[x]_{\approx} \neq [y]_{\approx}$, entonces $x \not= y$ (¿por qué?)

Como $x \not= y$, entonces $[x]_{\cong} \cap [y]_{\cong} = \emptyset$ (¿por qué?)

Por lo tanto, concluimos que $X \cap Y = \emptyset$.