مواد ، در زندنی ما، نفسی سخرف و موتر دارند. صنایع عدا، پوسات، حمل و نفل، ساختمان، ارتباطات و عیره، دم
و پیش تحت تاثیر هستند. رشد و گسترش تمدن بشری در گرو کشف و شناخت مواد است. برای
رفع نیازها، باید مواد تولید شوند، یا با مواد، خواص آنها تغییر کند. شیمیدانها با پی بردن به رابطه
مواد با سازنده، دریافتند که « دادن» به مواد و « مواد به یکدیگر»، سبب «»،
و گاهی «» خواص آنها میشود. اکنون، میتوان موادی نو ، با ویژگیهای منحصر به فرد و دلخواه طراحی کرد.
خود را بیازمایید صفحه ۳: الف) مواد () ← فلز مواد () ← لاستیک نتیجه: منشاء اجزای این فرآورده، از است.
این فرآیند، شامل به دست آوردن مواد دلخواه از منابع مختلف، برای تولید مشخص است؛ یعنی:
اولیه تهیه دوچرخه، به طور قابل استفاده نیستند و باید شوند.
ب)، کنارههای ورق برشخورده و کنارههای بریده شده، دور ریخته پ) قسمتهای، ممکن است در تماس با هوا و رطوبت، زنگ بزنند.
قسمتهای و، فرسوده و کهنه میشوند.
رو و بیر دید. (مستقیما از کره زمین به دست می آیند؛ مانند فلزها، نفت، الماس و طلا
مستقیما از کره زمین به دست میآیند؛ مانند فلزها، نفت، الماس و طلا مواد <u>غیرمستقیم</u> از زمین به دست میآیند؛ (از مواد تهیه میشوند) مانند لاستیک و پلاستیک
ر <u>و</u>
پ) به تقریب، کل مواد در کره زمین، <u>ثابت</u> میماند. هر چیزی که از زمین استخراج شده، در نهایت به صورت
پسماند و زباله، به زمین باز م <i>یگردد.</i>
ت) هر چه میزان بهرهبرداری از منابع، بیشتر باشد، آن کشور توسعه یافتهتر است. (ندرست)
دلیل: «» ثروت ملی هستند. بهرهبرداری باید با مدیریت برداشت اصولی از همراه باشد:
میزان بهرهبرداری مدیریت شده از منابع، $^{\circlearrowleft}$ به داشتن برداشت منابع، داشتن «» های پیشرفته و $^{\circlearrowright}$
[©] آموزش درست «» بستگی دارد.
در نظر داشتن ۳ مورد بالا، به پیشرفت پایدار میانجامد.
خود را بیازمایید ۳ صفحه ۴: الف) حدود میلیارد تن ب) بیش از ۷۰ میلیارد تن برای هر سه (حدود ۱۲
میلیارد تن برای فلزها)
ميزان مصرف سه منبع: >
شیب مصرف سه منبع: > > (پس از سال ۲۰۰۵)
 پ) زمین، منبع عظیمی از هدایای ارزشمند و ضروری برای زندگی است. سالانه، مقادیر بسیار زیادی از منابع،
و برای مصارف گوناگون، استخراج و مورد استفاده قرار میگیرند. با پیشرفت «» و ساخت
<u>دستگاهها</u> و <u>ابزار</u> بهتر (بهتر و مدرن)، وابستگی (نیاز) به منابع، بیشتر
 دانشمندان بزرگ، میتوانند با برسی دقیق اطلاعات و یافتههای موجود درباره مواد و پدیده های گوناگون، ها،
ها و بین آنها را درک کنند. (مانند، که جدول دوره ای را طراحی نمود.)
شیمیدانها با مواد و انجام (استفاده از هر ۵) آنها را دقیق برسی میکنند. (آزمایش:
کنترل شده)
· · · · · · · · · · · · · · · · · · ·

هدف این برسیها، یافتن اطلاعات <u>بیشتر</u> و <u>دفیق تر</u> درباره های مواد است. برفراری بین این دادهها
(و اطلاعات) و نیز، یافتن ها و ها، گامی مهمتر و موثرتر در پیشرفت علم است.
مطالعه، و مفالعه، وسالعه،
علم شیمی: مطالعه مطالعه ، و وفتار عنصرها و مواد علم شیمی: و یادت کی مطالعه و مواد علم شیمی و یادت کی است از میان است و یادت کی مطالعت کی مطالعت کی مطالعت است و یادت کی مطالعت کی مطالع
جدول دورهای، مانند یک نقشه راه، به <u>سازمان دهی</u> ، و <u>تجزیه و تحلیل</u> دادهها در مورد، کمک میکند تا
های پنهان در رفتار عنصرها، آشکار شود. در جدول دورهای، عنصرها بر اساس بنیادی ترین ویژگی آنها، یعنی چیده شده است.
تذکر: جدول دورهای جدید بر مبنای اتمی و جدول دورهای مندلیف بر اساس اتمی مرتب شدهاند.
ر جدول دورهای، شامل دوره، و گروه است. می عنصرهای جدول، بر اساس شان در سه دسته، و قرار میگیرند.
تعیین موقیت عنصر در جدول، (تعیین و در جدول)، به پیشبینی خواص و رفتار عنصر، کمک
زیادی میکند. با برسی رفتارهای عناصر، میتوان:
 آنها را دستهبندی کرد. ۲) به ها و های موجود در خواص، پی برد.
پاسخ:
در عناصر همگروه، اتمها مشابه است. در عناصر همدوره، یکسان است. (عدد کوانتومی)
در عناصر هم گروه، اتمها مشابه است. در عناصر هم دوره، یکسان است. (عدد کوانتومی) الگوهای رفتاری فلزها
الگوهای رفتاری فلزها
الگوهای رفتاری فلزها .۱ رسانایی و
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان)
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته)
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته) ۴. خرد در اثر ضربه (خواری) فلزها در اثر ضربه، میپذیرند.
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته) ۴. خرد در اثر ضربه (خواری)
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته) ۴. خرد در اثر ضربه (خواری)
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته) ۴. خرد در اثر ضربه (خواری)
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته) ۴. خرد در اثر ضربه (خواری)
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته) ۴. خرد در اثر ضربه (خواری) → فلزها در اثر ضربه، میپذیرند. ۵. استحکام و مقاومت کششی بالا ۶ الکترون در واکنشهای شیمیایی شکل ۳ صفحه ۷: پل فلزی: وسایل آشپزخانه (و سیم)؛
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته) ۴. خرد در اثر ضربه (خواری) → فلزها در اثر ضربه، میپذیرند. ۵. استحکام و مقاومت کششی بالا ۶ الکترون در واکنشهای شیمیایی شکل ۳ صفحه ۷: پل فلزی: وسایل آشپزخانه (و سیم)؛
الگوهای رفتاری فلزها ۱. رسانایی و ۲. داشتن فلزی (سطح صیقلی و درخشان) ۳. قابلیت تبدیل به (برگه) و (رشته) ۴. خرد در اثر ضربه (خواری) → فلزها در اثر ضربه، می پذیرند. ۵. استحکام و مقاومت کششی بالا ۶ الکترون در واکنش های شیمیایی شکل ۳ صفحه ۷: پل فلزی: وسایل آشپزخانه (و سیم)؛

 ۵: در گروه ۱۴، از بالا به پایین، خصلت فلزی یافته است.
(ع): در دوره سوم، از چپ به راست، خصلت فلزی و خصلت نافلزی می یابد.
قانون دوره ای عنصرها:
خصلت فلزی عنصرها در یک دوره از چپ به راست و در هر گروه از بالا به پایین مییابد.
V: یشترین خصلت فلزی در هر گروه، در (بالای) گروه است. (در گروه اول، عنصرِ)
(۸): در هر دوره از جدول دورهای ، از چپ به راست از خاصیت کاسته و به خاصیت افزوده
میشود. در گروههای ۱۵، ۱۶ و ۱۷، عنصرهای خاصیت نافلزی بیشتری دارند زیرا از بالا به پایین، خاصیت
زیاد میشود.
بیشتر عنصرهای جدول را (فلزها) تشکیل میدهند که به طور عمده در «سمت» و مرکز جدول جای دارند.
ها در سمت و بالای جدول چیده شدهاند. شبه فلزها، همانند مرزی بین فلزها و نافلزها قرار دارند.
برخی رفتارهای شبه فلزها (به قول کتاب: خواص فیزیکی) به شبیهتر
برخی رفتارهای شبه فلزها (به قول کتاب: خواص شیمیایی) به شبیهتر است.
رفتارها و خواص 🌡 به فلزهای شبیهتر:،، و، و، و
شبهفلزها کے به نافلزها شبیهتر: و
«نکاتی درباره فلزها» ۱. همه فلزها در دمای اتاق، حالت فیزیکی دارند. (به جز و)
۲. فلزها در هر ۴ دسته، و وجود دارند. تمام عناصر دستههای و
۱. فلرها در هر ۱ دسته،، و و جود دارند. نمام عناصر دسته های و و و و و و فلز هستند. عناصر دسته همگی فلز هستند به جز و فلزهای Pb ،Sn ،Al
ـــــــــــــــــــــــــــــــــــــ
۳. اکسیدهای فلزی اغلب، در واکنش با آب، اسید تولید میکنند. (اکسیدهای)
$ \left(N_{a} \wedge O(s) + H_{\gamma} O(l) \longrightarrow \underline{\qquad}(aq) + \underline{\qquad}(g)\right) \left(C_{a} O(s) + H_{\gamma} O(l) \longrightarrow \underline{\qquad}(aq) + \underline{\qquad}(g)\right) $
تذکر: فلزهای گروه ۱ و۲ (به جز) نیز در آب، اسید و گاز تولید میکنند:
۴. فلزها در واکنشهای شیمیایی، به صورت نوشته میشوند.
«نکاتی در باره نافلزها»
۱. در دمای اتاق، حالت فیزیکی مایع دارد. (۵ عنصر)،،، و
جامد هستند. سایر نافلزها شامل،،، و و نیز همه عناصر گروه
، در دمای اتاق، حالت فیزیکی گازی دارند.
 ۲. نافلزها عمدتا در دسته جای دارند. H) و He جز دسته)
 ۳. اکسیدهای نافلزی، اغلب، در واکنش با آب، تولید میکنند. (اکسیدهای)
$\boxed{SO_{\Upsilon}(g) + H_{\Upsilon}O(l) \longrightarrow \underline{\hspace{1cm}} (aq) \hspace{1cm}} \boxed{N_{\Upsilon}O_{\Diamond}(s) + H_{\Upsilon}O(l) \longrightarrow \underline{\hspace{1cm}} (aq)}$

_ و و و	اتمی دارند: (در حالت عنصری مولکول _	۴. ۷ عنصر نافلزی،
			و
نگ است. (شکل بالای صفحه ۸ کتاب	ِ دارد که جامدی ره	روپ گوگرد فرمول،	۵. معروفترين الوت
			درسى)
نای آنها در شکل بالای صفحه ۸ کتاب	ِ، و (دوت	ِپ مهم دارد: فسفر	۶. فسفر، سه الوترو
			درسی)
	ی درباره شبه فلزها	نكات	
اند. شبه فلزها:	و معرفي شدها	ل، در کتاب درسی فقط	از بین شبه فلزهای جدوا
(الکترون نمیگیرند و از دست نمیدهند)			
		ِ شكنندهاند. (در اثر ضربه	
ى الكتريكي: Ge (Si (دليل: افزايش	، دارند. (تاحدی) ← رسانای	ِ رسانایی گرمایی و الکتریکی	٣. همانند
		_ عناصر از بالا به پایین در هر	
	ند.	ِ سطح صیقلی و درخشان دار	۴. همانند
. هیچ خانهای در جدول خالی نیست، و			
ان به دنبال تهیه و تولید عناصر جدید به	رسیده است. اکنون دانشمندا	عناصر جدید، عملا به پایان ,	جستوجو برای کشف
ا بر مبنای عدد «»، «»	ليد) اين عنصرها، بايد آنها ر	تند. در صورت کشف ^(!) (توا	صورت «» هسا
)، در جدول دورهای، جایی وجود	جدید (عدد اتمی بیش از	ید قرار داد. برای عنصرهای -	و غیره، در خانههای جد
	دول « ژانت » است.	، جایگزینی جدول فعلی با جد	ندارد. یکی از پیشنهادها
ئتاب درسی)	Char) (صفحه ۱۰ و ۱۱ ک	جدول ژانت (les Janet	
_			
ت، عناصری با (+)		_	
عناصر دسته S، در جدول ژانت در سمت			
فعلی، از به است.]		ملی، در سمت قرار ه	
فعلی، از به			
		ا	
، ، کدام زیرلایه، ۱۱۸ عنصر کامل میشود؟			
,		 ای عنصر، و جدول	
رديف جدول ژانت است.	اه آنها در دسته و ر	منصرهای ۱۱۹ و ۱۲۰، جایگ	در صورت سنتز ع
	كسشى شمسيتشمنيستكمشسي	ااااااشيمنتشيسمنتيسمنتيشتيمك	
			شيسمنتيشمنستيش
			شسمنيتشسمني

 $(I.U.P.A.C) \hbox{: International \mathbf{U}} \overline{\text{nion of } \mathbf{Pure \& Applied Chemistry}}) \\$

ادامه بررسی جدول دورهای (تناوبی) فعلی

، و	گروه، دارای ۴ دسته	دوره (تناوب، و	عنصر،	دارای
				(
، و دسته	، عنصر، دسته _	عنصر، دسته	دسته،	تعداد عناصر:
			عنصر	.
	ر تناو یے	روندهای		
	ول دیده میشود. یعنی: تغییرات			
تناوبی مطرح شده در کتاب	عینا تکرار می شوند. روندهای کمابیش		_	_
	فلزی ب) خاصیت نافلزی		_	
,	ر هسته را بر لایه الکترونی بیرون و			
	ئترونی بیرونی، میشود.			
است، مىيابد.	است و قدرت هسته از چپ به ر			
	بیرونی، میشود.			
ا فاصله هسته تا لایه بیرونی	لا به پایین، میشود ام	عنصرهای یک گروه، از با	لیههای الکترونی در	دليل: تعداد لا
($F = K rac{qq'}{r'}$ طبق قانون کولن)	اثر مهمتر است.	بد.(اثر از	مىيا
مشخص نمایید:	.ه در کتاب در طرحهای روبهرو .	رد سه روند تناوبی ذکر شد	یند تغییرات را در مور	تمرین: رو
			as	sdadsdsa
			dsa	ı dsa dsa
				dsa
				dsadsa
				dsa dsa
	اتمى	شعاع		
سته و در الكتروني،	گیرند که در الکترونها پیرامون هم	مانند در نظر میً	ل «كوانتومي»، اتم را	مطابق مد
مد، اندازه آن بزرگتر است.	فت. هر چه شعاع اتم بزرگتر باش	یتوان «شعاعی» در نظر گر	اند. برای هر اتم، می	در حال حركت
	، شعاع اتمى	روند تغييرات		
۱۲ و ۱۳)	اد (جدولهای صفحه	مىشود. دليل: افزايش تعد	۱ به پایی <u>ن</u>	در گروه : از باا
دهد.	که خود به تنهایی باید شعاع را	بیشتر میشود $ ightarrow$	لا به پایین، تعداد	در هر گروه از با
	که خود به تنهایی باید شعاع را_			
	ریابد؛ نتیجه: اثر «تعداد لایه» از ا			
گی دارد اما با بار رابطه درجه	كترونها، با فاصله بستً	f نیروی جاذبه هسته بر ال	$=\mathrm{K}^{\mathrm{qq'}}_{\mathrm{r'}}$ انون کولن	(دليل: طبق ق
			(.	دارد

در تناوب: از چپ به راست میشود. دلیل: در هر دوره، تعداد ثابت است اما قدرت از
چپ به راست بیشتر میشود.
پرسش: در هر دوره، با افزایش تعداد پروتونها، تعداد الکترونها نیز به همان اندازه افزایش مییابد، پس چرا اثر هسته
بر لایه بیر <i>ونی، ثابت <u>نمیماند</u>؟</i>
پاسخ: «نیرو»، دارای است و هر الکترونی که در این (جاذبه هسته) قرار گیرد، جاذبهای <u>مشخص</u> و
<u>ثابت</u> دریافت که افزایش الکترونها بر آن مؤثر («نیرو»، مانند «انرژی» نیست و تقسیم نمیشود.)
نتیجه: هر هر دوره از چپ به راست، با افزایش تعداد پروتونها، هر الکترون، جاذبه دریافت میکند.
بررسی نمودار ۱ صفحه ۱۳:
نکته (۱): در تناوب از چپ به راست، شعاع اتمی عنصرها کاهش مییابد.
نکته (۲): بیشترین تفاوت شعاع، بین عنصرهای گروههای و است. (عنصرهای و
(
نكته 🎔: تفاوت شعاع عناصر (در تناوب ٣): بين نافلزها 🔾 بين فلزها (يعني روند تغييرات شعاع، در اوايل تناوب
سوم، چشمگیرتر است.)
مقایسه تغییر شعاع و واکنش پذیری عنصرهای گروه ۱ و ۲ و ۱۷
شعاع اتمى
تعداد لایه ها
نماد لایه ظرفیت
آرایش الکترونی
نماد
شعاع اتمى
تعداد لایه ها
نماد لایه ظرفیت
آرایش الکترونی
نماد
با هم بیندیشیم صفحه ۱۲:
۱ آسانتر الکترون از دست میدهد، چون شعاع دارد.
۲. بیله ، چون شدت واکنش با گاز کلر، بیشتر است. (تر به کلر الکترون میدهد.)
در واکنش لیتیم، سدیم، پتاسیم به ترتیب نور، و ایجاد میشود.
(انرژی نور: >) (رنگ نور ایجاد شده، با رنگ شعله این ۳ عنصر، یکسان)
ر
هسته و نیروی هسته بر آن(ها) است. (در فلزهای گروههای اصلی)

واکنش فلز قلیایی خاکی (X) با گاز کلر:	واکنش فلز قلیایی (M) با گاز کلر: (واکنشها موازنه شود)
$X(s) + Cl_{\gamma}(g) \longrightarrow \underline{\hspace{1cm}}(\underline{\hspace{1cm}})$	$M(s) + Cl_{\Upsilon}(g) \longrightarrow \underline{\hspace{1cm}}(\underline{\hspace{1cm}})$
واكنشپذيرى: > >	واكنشپذيرى:>
$\mathrm{M} o \mathrm{M}^+$	واكنشپذيري: فلز قليايي 🔵 فلز قليايي خاكي (هم تناوب)
	دلیل: تعداد لایه اما هسته عنصرهای گروه
١ را مقايسه كنيد: >	تمرین: واکنش پذیری عنصرهای دارای اعداد اتمی ۱۲،۱۱ و ۳
	تذکر مهم: واکنشپذیری عنصرهای واسطه، در مواردی از نظام ً
یری آن، رابطه دارد.	نکته مهمتر: در گروههای اصلی، استحکام فلز با واکنش پذ
	ت مه، واکنش پذیری: فلزهای اصلی ن فلزهای واسطه
	واکنش پذیری: فلزهای اصلی نتیجه؛ نتیجه؛ استحکام: فلزهای اصلی نفلزهای واسطه
ره ۱۷ (هالوژنها)	روند واکنشپذیری نافلزهای گرو
می شود.) به علت شدن اثر هسته	در گروه ۱، از بالا به پایین، «خاصیت فلزی ≡ واکنشپذیری»
	در گروه ۱۷، از بالا به پایین، «خاصیت = واکنشپذیری»
	ب) واکنش پذیری: <
	دلیل: در گروه نافلزی؛ شعاع کمتر → فاصله هسته تا لایه بیرونی
رد.	در تولید لامپ چراغهای جلو خودرو از استفاده میشو
	پ) بالای جدول صفحه ۱۴
	ت) با افزایش شعاع، خاصیت نافلزی می شود.
I واكنش مىدهد؟	H_{Y} پرسش مهم: کدام هالوژن، در دمای ۴۰۰ درجه سانتی گراد با
ژنها	نکاتی درباره هالوژ
، و هستند.	 ۱. هالوژنها در حالت آزاد، میرسی و در حالت ترکیب او در حالت ترکیب
اغلب فلزها (به ویژه گروه) واکنش دهند و	۲. واژه «هالوژن» به معنی این نافلزها میتوانند با ا
	تولید کنند. مثال:)(
(:I _Y) (:Br _Y) (:Cl _Y	۳. حالت فیزیکی هالوژنها (در دمای اتاق): (F _۲ :) (
	۴. نقطه جوش هالوژنها:<<
، نیروی بین مولکولی میشود.	دلیل: در مولکولهای نظینی، با افزایش جرم و حجم مولکول،
$ ext{Cl} o ext{Cl}$ ه يون تبديل مىشوند. (۵. برای تشکیل ترکیب یونی، هالوژنها با یک الکترون بــــــــــــــــــــــــــــــــــــ
	(
	$^{$
ر درا $(Cl^- ightarrow $ ($Cl^- ightarrow $):می شوند. مثال	 ۷. آنیونهای تشکیل شده توسط هالوژنها، یون نامیده
	۸. هالوژنها در حالت آزاد (مولکول اتمی) بیر ^{نگ} هست

$(I_{\gamma}(s)$:) (Br _Y (l) :) (Cl _Y (g) :) (F _Y (g) :	۹. رنگ هالوژنها: (
	دارد.)	گ مايل به _	عالت بخار و محلول رنًا	غیر ^{رسمی} (تذکر: ۱ _۲ در -
6	هستند اما برخی			
			· · · · · · · · · · · · · · · · · · ·	محسوب نمیشوند مانند
				صفحه ۴۸)
		تارهای ویژه فلزها	رف	
رهای «»	یند به طوری که: هر فلز، رفتا	ی قابل توجهی نیز دار	شابه است اما تفاوتها:	رفتارهای «کلی» فلزها م
				خود را دارد. نمونه: (شکلها
از بین م <i>ی</i> رو د و	ک اکسیژن به سرعت کندی	قرهای آن در مجاورت	يده و جلاى ة	مديم: نزم است. با چاقو برر
				مىشود.
ش میدهد و به	هوا به واکن	در هوای خشک با <u></u>	ساخت در و پنجره) و	هن: محکم (برای م
				آهن تبديل مي شود.
تەھا با	یماند. برخی گنبدها و گلدس	ش رنگ و ه	خود را و خوا	اللا: در گذر زمان، جلای فلزی
	_			ازکی از طلا میشود.
	d 4	گی با عنصرهای دسه	دنیایی رن	
	فلزها رسانای و _			
				هستند، خوارند و قا
				دسته d به فلزهای واسته معروف
، دو اکسید طبیعی	نت میشوند. برای نمونه، آهن	، و غيره) ياه	_	در طبیعت به شکل ترکیبهای
				FeO () و FeO
				اغلب عناصر واسطه، د
بات عناصر واسطه) به علت وجود تركي	· () و زمر د (وزه ()، ياقوت	رنگ سنگهای قیمتی فیر
				در آنها است.
	له»	لكتروني فلزهاي واسع	«آرایش ا	
			حال پر شدن است:	زير لايه در آنها در
$_{\gamma }$ Fe $^{\gamma +}:$	$_{\gamma ho}\mathrm{Fe}^{\gamma +}$:	75 Fe : []	
الى مىشود: چون	دارد، و خ	د: چون سطح انرژي	ت به d:۳ <u>زودتر</u> پر می شو _{دیرتر}	نکته مهم: زیرلایه s۴ نسب
ِن •آنيون	اند باشد؟ •اتم •كاتيو	ورد از موارد زیر میتو	[Ar] متعلق به چند ه	
۵. فقط يون	۴. فقط كاتيون	۳. اتم و آنیون	·. فقط آنيون	۱. فقط اتم
	نصر واسطه دیگر)	رايش الكتروني چند ء	ه ۱۶ (به همراه تمرین آ	خود را بیازمایید ۲ صفح
				آرایش الکترونی نماد آراین

«نکاتی درباره عناصر واسطه تناوب ۴»

						و	به جز	_ دارند، ب	اتا	۱. همه، ترکیب
(_	= <	_ (ظرفیت	و	(ظرفیت =)	د، به <i>ج</i> ز_	دارن	تهای	۲. همه، ظرفی
										۳. مجموع ارا
									'	(y, Fe →
. (به ج ز	است	و	ای	ِ الكترونھ	بر با شمار	ترتیب برا	. اتمی، به	ز)» در <i>عد</i> د	ن» و «یکار	۴. رقم « <u>دهگا</u>
-									و	,
v∘ Fe : [<i>A</i>	\r] ۴ s	—- ٣d—								
				سطه تناه ب	عناصہ ہا	. : ظ فيت) و بشت	· ظ فيديَ	ل (کمتاب	۵. ظرفیت اص
.,,,,,,	بر عی از ا ی ا		· · · · · ·	-942 —					می رستری میرکری بیر	
Zn	Cu	Ni	Co	Fe	1					نماد عنصر
	\circ									ظرفیت اصلی
										بيشترين ظرفيت
گاز نجيب	الكتروني	.، به آرایش	ِفیت» خود	ظر	ٰ بىلى) و «_					۶. فقط
										برسد.
	((به جز	است. (ِ با	فیت) برابر	كمترين ظر	، اصلی (ک	صر، ظرفیت	۷. در این عنا
								: 11	يد صفحه /	خود را بیازماب
و		انه، مانند_	وسايل خا	ل است. در	ول دورهاي	جد	نين فلز	_)، نخست	بم (الف) اسكاند،
									جود دارد.	برخی و۔
					() 5 11-				
					(_) שא				
										طلا افزون بر ویژگر
										است. (طلا به اند
										چند متر مربع تبدیا
										آن، است
										، واكنش
										زیادی دارند. طلا -
			_							برای استخراج آن،
٠	ہبرداری از _									زیست برجای می گ
			شد.	مماهنگ با	·	شو د و با _	یط زیستی	مح		منجر به کاهش_
			وند؟	يافت مىش	ر طبیعت	ه شکلی د	صرها به چ	عند		
کانیهای»	نههایی از « [']	، نمون	و	(II)		٠		٠		شکل ۹ صفحه ۱۸:
										موجود در طبیعت

اد در طبیعت وجود دارند. (البته نافلزهای مذکور، و نیز فا	و به شکل آزا	اغلب عناصر در طبیعت، به شکر و برخی فلزها مانند،
«زرد»، لابهلای خاک یافت می شود. (حاشیه صفحه ۱۸)		
	ے، اتمهای آن با اتم <u>ی</u>	«حالت آزاد» در یک عنصر یعنی
۲. دیگر پیوند نداده باشد.		۱. از عنصر دیگر پیوند نداده باشا
	بدروژن است؟	پرسش: چند مورد، حالت آزاد هب
7. H – H	$\mathrm{H}-\mathrm{Cl}$.Y	н.\
إزنه شوند.) (كاوش كنيد ١ صفحه ١٩) ج) آزمايش		
+)s(
يون است. پ) آزمايش ۲ صفحه ۱۹ (شناسايو		
aq(ب) (ب) مسوب) الموب عليه عليه الموب) عليه الموب		
نیز هست. تذکر: روش شناسایی یک ذره، باید		
یون شناساگر)، فقط با (یون مورد نظر/ یون شناساگر)		
()، فقط به شرطی واکنش میدهند ک	ترکیب یونی، در محلول	آن را ایجاد کند. نکته ۱: دو
نش جابهجایی دوگانه، ظرفیت هر ذره، در دو طرف واکنش	ٔید شود. نکته ۲: در واکن	يا توا
وند.) ابتدا، میخ زنگزده را در محلول Hcl وارد میکنیم	۱۹: (واكنشها موازنه ش	یکسان آزمایش ۳ صفحه
ــــــ	ں آبی «سود» میافزاییم: ب	(ب سپس، به این سامانه، محلوا
ش نشانگر وجود یون در زنگ آهن (ث) این دو واکنث)aq(+)s(ت) رسوب
فلزی میتوانند با (Hcl(aq یک مولار، واکنش دهند به ج	شیمی ۳): اغلب عناصر	است یادداشت (در حد کتاب درسی
_) كاوش كنيد ٢ صفحه ٢٠:		فلزهای APAC (،
ام است. (مىتواند به الكترو) واكنش را انجا	در واکنش ،(I) فلز سمت چپ (
را انجام است. (نمىتواند به	پ () واکنش	دهد.) در واکنش ،(II) فلز سمت چ
ست. نکته ۳: در واکنش جابهجایی یگانه، حتماً در واکنش	واكنشپذيرتر اس	الكترون دهد.) نتيجه: از_
حلول آبی کاتیون «فلز» دیگر، خود به خود انجامپذیر باشد	: اگر واکنش «فلزی» با م	بار ذره تغییر میکند. نکته ۴
. خود را بیازمایید:	خود به خودی است	واكنش عكس (برگشت)، حتماً
عنصر) تمایل آن را برای انجام نشا	فلز (و به طور کلی هر	واکنش پذیری واکنشپذیری هر
اتیون_ترکیب) اشاره دارد. عنصر می در حالت		
سایل آن را برای انجام واکنش (تبدیل به	,	•
ر سه دسته قرار گرفتهاند: با هم بیندیشیم صفحه ۲۰: (ر		
	J \ "	

< > مشوارتر است. (چون با کمترین >) تامین شرایط نکهداری فلزها با واکنشپدیری ، دشوارتر است. (چون با کمترین
مقدار مواد، از جمله هوا، واکنش میدهند و فعالیت شیمیایی آنها است.) ت) به طور کلی، در
هر واکنش شیمیایی که به طور طبیعی (خود به خود) انجام می شود؛ واکنش پذیری: واکنش دهنده ها فرآورده ها پایداری:
واكنش دهندهها ؟ فرآوردهها * اين مقايسه، در مورد واكنش پذيري عناصر در دو طرف واكنش است. با هم بينديشيم صفحه
۲۱: ت) واکنش پذیری:
ث) واكنش پذيرى:
به طور کلی: واکنش پذیری فلز واکنش پذیری نافلز واکنش پذیری
نافلز واکنشپذیری:
واكنش پذيرى:
واكنش پذيرى:
واكنش پذيرى:
آیا این واکنش انجامپذیر است؟ چون از واکنشپذیرتر است. روش استخراج
فلزی از () در معدن مس سرچشمه: (تمرین دورهای ۷) واکنش پذیری:
روش استخراج فلزی از () () در فولاد مبارکه: (صفحه ۲۱) واکنش
پذیری : (با هم بیندیشیم صفحه۲۱) روش دیگری برای استخراج آهن: آهن، ترین عنصر کره زمین
است و مصرف سالانه را بین فلزها در جهان دارد. برای جوش دادن خطوط آهن، از واکنشی موسوم به «
» استفاده می شود:) خود را بیازمایید صفحه ۲۴ (فلزها در طبیعت، اغلب به شکل یافت می شوند؛
هرچه فلزی واکنشپذیرتر باشد، استخراج آن است. هر چه تمایل فلز برای الکترون دهی بیشتر باشد تمایل کاتیون
آن برای الکترون گیری کمتر است. تمرین دورهای صفحه ۴۸: نتیجه ۱: Ne نماینده گروه کمترین
را بین عنصرهای دوره دارد. نتیجه ۲: بین عنصر گروه ۱ تا ۱۷، عنصر (نماینده گروه ۱۴)
کمترین را دارد. مسئله (خود را بیازمایید صفحه ۲۲) از واکنش ۴۰ گرم آهن (III) اکسید با کربن،
انتظار میرود چند گرم آهن به دست آید ؟ =۲۷Al= ،۵۶Fe= ،۱H= ،۱۶O= ،۱۲C
دنیای واقعی واکنشها ۱ - درصد خلوص ۲ - بازده گاهی واکنشهای شیمیایی، مطابق آنچه انتظار میرود پیش نمیروند.
ممكن است واكنش دهندهها ناخالص باشند (درصد خلوص)، واكنش به طور كامل انجام نشود (به دليل شرايط مختلف)
یا همزمان، واکنشهای ناخواسته دیگری انجام شود. (بازده) بازده درصدی وقتی واکنش به طور کامل در مسیر اصلی انجام
نوشد مقدار فرآورده تشکیل شده در آزمایش (مقدار) از آنچه در تئوری و روی کاغذ به دست آمده (مقدار
) تر خواهد بود. (مقدار < مقدار) پیوند با ریاضی: ۲- الف (صفحه ۲۳) (
۱۰۰ بازده) ۲ – ب :
مسئله ۱: از تخمیر ۵.۱ تن گلوکز موجود در پسماندهای گیاهی، چند تن سوخت سبز () تولید میشود؟(۸۰٪
Ra) =
مسئله ۲ (تمرین دورهای ۶): آهن (III) اکسید به عنوان در نقاشی به کار میرود. ۱۰ کیلوگرم از این ماده،
طبق واکنش زیر در واکنش با کار کربن مونواکسید،۵۲۰۰ گرم آهن تولید کرده است. بازده درصدی واکنش را به دست
آورید: (خود را بیازمایید ۲ صفحه ۲۵)
درصد خلوص پیوند با ریاضی(۱ - الف صفحه ۲۳): یعنی در هر گرم از این ماده معدنی (کانه)،
گرم و گرم مواد دیگر هست. ۱- ب درصد خلوص یا درصد خلوص مسئله ۳ –

۱۰ گرم آهن با خلوص ۹۵٪ را در مقدار کافی محلول هیدروکلریک اسید میاندازیم. حجم(g) در شرایط ،STP
چند لیتر است؟
مهم خود را بیازمایید ۱ صفحه ۲۴: الف) فعالتر است، چون در واکنش خود بخودی سمت قرار
دارد (و را از ترکیبش خارج میکند.) بررسی تمرین دورهای ۲،۲،۳ و ۷:
«گیاه پالایی» یکی از روشهای بیرون کشیدن فلز از لابهلای خاک، استفاده از گیاهان است. ابتدا گیاه را میکارند،
گیاه، را جذب میکند. سپس گیاه را برداشت میکندد، و از آن، را جداسازی میکنند.
خود را بیازمایید ۳ صفحه ۲۵ الف:
ب: درصد نیکل در خاکستر پ: مقرون به صرفه (گیاهپالایی) درصد فلز در سنگ معدن درصد فلز در گیاه فلز
Au
Cu
Ni
Zn با مقایسه درصد «نیکل» و «روی» در سنگ معدن آنها، و با توجه به حجم گیاه و آب مصرفی، و نیز سطح زیادی
از زمین به که زیر کشت میرود، روش گیاه پالایی برای این دو فلز مقرون به صرفه پیوند با صنعت: گنجینه های
اعماق دریا اعماق دریا، در برخی مناطق محتوی چندین فلز واسطه (سولفیدی) (شکل ۱۱ پ صفحه
۲۶) و در برخی مناطق دیگر، به صورت ها و هایی غنی از فلزهایی مانند ، ،
، و است. (شکل ۱۱ ب صفحه ۲۶) غلظت گونه های فلزی «کف اقیانوس»، نسبت به
«ذخاير زيرزميني»، است.
جریان فلز بین «محیط زیست» و «جامعه» استخراج فلز از سنگ معدن، در نهایت به تولید و گوناگون
می انجامد. بر اساس توسعه پایدار، در تولید یک « » یا عرضه « »، باید همه هزینه ها و ملاحظه های
، و را در نظر گرفت. اگر مجموع هزینههای بهرهبرداری از یک معدن، با در نظر
گرفتن این ملاحظهها، مقدار ممکن باشد، در مسیر پیشرفت پایدار حرکت میکنیم، رفتارهای ما آسیب کمتری به
جامعه وارد میکند و زیست محیطی ما را کاهش میدهد. «فرآیند استخراج فلز از طبیعت و بازگشت آن
به طبیعت»
با هم بیندیشیم صفحه ۲۷: الف) یکسان (آهنگ مصرف آهنگ بازگست به طبیعت) ب) فلزها، منابعی -
تجدید با تمام شدن معادن، دسترسی به آنها ، و محدود به است. پ) بازیافت فلزها از
جمله آهن؛ ردپای را کاهش می دهد. (د / ن) سبب کاهش سرعت گرمای جهانی می شود. (د / ن) گونههای
زیستی بیشتری را از بین میبرد. (د / ن) به توسعه پایدار کشور کمک میکند. (د / ن) پسماند سرانه فولاد
کیلوگرم است. با انرژی ذخیره شده از بازگردانی ۷ قوطی فولادی، میتوان یک لامپ ۶۰ واتی را حدود ۲۵ ساعت روشن
نگه داشت. در استخراج ۱ کیلوگرم آهن، تقریباً کیلوگرم سنگ معدن آهن، و کیلوگرم از منابع معدنی
دیگر مصرف می شود. در استخراج فلز، درصد)کمی / زیادی (از سنگ معدن به فلز تبدیل می شود.
ارزیابی چرخه عمر چرخه عمر: میزان تأثیر یک فرآورده بر روی محیط زیست در طول مدت عمر آن. ارزیابی چرخه
عمر: تاثیرهای هر فرآورده را در ۴ مرحله، بررسی میکند: ۱: و مواد خام برای تولید فراورده ۲:
۳: ۴: ارزیابی چرخه عمر، شامل برسی و ارزیابی میزان (آب مصرفی)، (انرژی)(پایدار بودن
فرآیند تامین مواد خام)، (میزان زباله و پسماند ایجاد شده) و سهم حمل و نقل در همه مراحل) است. ارزیابی چرخه عمر،
حاصل تلاش برای یافتن شاخصهایی است که کمک میکنند صنایع در مسیر بهره گیری از دانش فنی و تخصصی سازگارتر

با محیط زیست حرکت کنند، و رفتار و عمل کرد خود را در مسیر رسیدن به توسعه پایدار «اصلاح» کنند. برسی چرخه عمر
برای کیسه پلاستیکی و پاکت کاغذی (صفحه ۲۹)
مرحله ١: استخراج و توليد مواد اوليه و خام ٢: مرحله توليد ٣: مرحله مصرف ٢ : مرحله دفع
نفت نفت خام، یکی از سوختهای است که به شکل مایعی ، رنگ یا (متمایل
به) از زمین بیرون کشیده می شود. نفت خام در دنیای کنونی، دو نقش اساسی دارد: «منبع تأمین » و «
اولیه برای تهیه مواد و کالاها» مصرف روزانه نفت خام (۰۰۰،۰۰۰ بشکه) است که: نیمی از آن در سوخت
(حدود ٪) و نیمی دیگر در تأمین و انرژی (حدود ٪) و تولید
و ، ها، مواد و ، ، مواد و (حدود
٪) نفت خام، مخلوطی از هزاران ترکیب شیمیایی است که بخش عمده آن را های (شامل
و) گوناگون تشکیل میدهند. عنصر اصلی سازنده نفت خام، است. کربن، اساس استخوانبندی
ها است. کربن در خانه شماره جدون دورهای جای دارد. (سرگروه گروه) و اتم
آن، در لایه ظرفیت خود الکترون دارد. خود را بیازمایید صفحه ۳۰: الف) آرایش الکترونی فشرده: ب) آرایش
الکترون نقطهای اتم کربن: پ) انواع پیوند اشتراکی (برای رسیدن به آرایش هشتایی): ، و
مثال) تشكيل متان ():
eC=
تمرین: آرایش الکترون نقطهای اتمهای زیر را رسم کنید: الف) بیشترین تعداد الکترون لایه ظرفیت، مربوط به کدام
گروه است؟ گروه (الكترون ظرفيتي) ب) بيشترين تعداد الكترون منفرد (تكي) مربوط به كدام گروه
است؟ گروه (تک الکترون) پ) ظرفیت عناصر کدام گروه، بیشتر است؟ چرا؟ گروه (ظرفیت
) ؟ ظرفیت اصلی گروه مشاهده: الف) اتم و میتوانند بیش از سایر فلزها پیوند اشتراکی ایجاد
كنند. (با ظرفيت اصلى خود) ب) اتم (و البته ، و) مىتوانند پيوندهاى دوگانه
و اتمهای ، و میتوانند پیوند سهگانه ایجاد کنند. نتیجه: بیشترین و متنوعترین ترکیبات، باید
مربوط به گروه باشد: شازنده اصلی مولکولهای زیستی و سازنده اصلی جهان غیرزنده است.
ترکیبات کربن از سیلیسیم بسیار است چون: ۱- پیوندهای تشکیل میدهد (دلیل: طول پیوند
) ۲ - توانایی تشکیل پیوند و را نیز دارد. (شکل ۱۵ و ۱۶ صفحه ۳۱) گفتیم که نفت خام،
مخلوطی از است. هیدروکربنها، دارای و گوناگونی هستند. البته کربن میتواند
علاوه بر H به و نیز به شیوههای گوناگون متصل شود؛ و ، ، ،
، ، و غیره را بسازد. همچین، کربنها میتوانند به روشهای گوناگون به هم متصل شوند و
دگرشکل (آلوتروپ) های مختلفی مانند ، و غیره را ایجاد کنند. یادآوری:تعریف و مقایسه «آلوتروپ،
ایزوتوپ، ایزومر» آلکانها () دستهای از هیدروکربنها هستند که در آنها، هر اتم کربن با پیوند یگانه به
اتمهای دیگر متصل شده است (یعنی حتماً با اتم دیگر پیوند دارد.) (C) سادهترین و نخستین عضو
خانواده آلکان است. سایر اعضای خانواده، تعداد های بیشتری دارند، که البته اتمهای آنها نیز بیشتر
می شود. آلکانها به دو دسته تقسیم می شوند: ۱ - آلکنهای : اتمهای همانند یک به
دنبال هم قرار دارند. (هر اتم کربن به یا اتم کربن در زنجیر کربنی متصل است.) (شکل ۱۸ الف) ۲ _

برخی انمهای کربن به سکل ساخه () به رنجیر اصلی منصل است. (برخی انمهای کربن
به یا اتم کربن در زنجیر متصل هستند.) (شکل ۱۸ ب) پرسش – کوچکترین آلکانی که همه انواع
کربن را دارد، چند اتم هیدروژن دارد؟ (حلقوی نباشد) مدل پیوند – خط در این روش، اتمهای کربن با نقطه و پیوند بین
آنها با خطتیره (پاره خط) نشان داده میشوند. اتمهای هیدروژن، و نیز پیوندهای C-H نشان داده (H متصل
به اتمهای دیگر، نشان داده) همچنین C-C-C با زاویه واقعی ۱۰۹/۵ نشان داده میشود. پیوندهای دوگانه یا
سهگانه نیز با دو یا سه خط نشان داده میشوند. سایر اتمها مانند O یا N نیز نمایش داده خود را بیازمایید
صفحه ۳۳: فرمول «ساختاری» یا «پیوند — خط» به همراه فرمول مولکولی را برای هر ترکیب نمایش دهید: الف)
ب)
پ)
ت)
تمرين: با مدل پيوند – خط نمايش دهيد:
شمار اتمهای کربن نقش مهمی در تعیین هیدروکربنها دارد. با تغییر تعداد ،C ولکول نیز
مولکولی تغییر مییابد ؟ تغییر نیروی مولکولی، نقطه و غیره
با هم بیندیشیم ۱ صفحه ۳۴: (جمعبندی مهم) بزرگ شدن اندازه مولکول: ۱ نقطه جوش ۲
فرار بودن (تمایل برای تبدیل به گاز) ۳ گران روی (مقاوت در برابر جاری شدن) الف) با افزایش
شمار کربن ؟ نقطه جوش آلکان در فشار ۱ اتمسفر ؟ تعداد مولکولهایی که تبخیر میگردند (
فشار بخار) ب) نقطه جوش: پ) گرانروی: فرار بودن: ت) گشتاور دو قطبی آلکانها صفر یا حدود است. (
یعنی هستند.) ث) نیروی بین مولکولی در آلکانها از نوع است. افزایش شمار
اتمهای کربن، باعث قدرت نیروی بین مولکولی، (و جرم و حجم مولکول) و باعث نقطه
جوش میشود. ج) با بزرگتر شدن زنجیر کربنی، گرانروی مییابد چون مقاومت مولکولهای بزرگتر ددر برابر
جاری شدن است. چسبندگی: (نیروی بین مولکولی (واندروالسی) در قویتر است.) (
) تا تا رید دمای ۲۲ صفحه ۳۵ الف) آلکانهای تا کربنه در دمای ۲۲
درجه سانتیگراد به حالت گاز هستند. ب) با افزایش جرم مولی آلکان، نقطه جوش مییابد!!! (این، ۴۰ بار!)
آلکانها به دلیل بودن، در آب و میتوان از آنها برای حفاظت استفاده کرد. قرار دادن فلز در
آلکانهای یا کردن سطح فلزها و وسایل فلزی با آنها، مانع از رسیدن به سطح فلز میشود
و از فلز جلوگیری میکند. آلکانها، ترکیباتی سیر هستند، (هر اتم کربن به اتم دیگر متصل
است). پیوندهای آنها فقط اشتراکی است. (دوگانه و سه گانه). آلکانها تمایل زیادی برای واکنش
شیمیایی اگر آلکانها را استنشاق کنیم، میزان سمی بودن آنها است و استنشاق آنها بر ششها و بدن،
تأثیر چندانی ندارد (فقط سبب کاهش در هوای دم میشوند) البته، ورود بخار به ششها از
گازهای تنفسی جلوگیری میکند و حتی ممکن است سبب مرگ شود.
خود را بیازمایید صفحه ۳۷: گشتاور دو قطبی مولکولهای سازنده چربیها، حدود است. (چربیها،
هستند.) الف) افرادی که با گریس کار میکنند، دستشان را با بنزین یا نفت (یا مخلوطی از هیدروکربنها)
می شویند چون شبیه، را حل میکند (هر دو دسته مواد، هستند) پس بنزین یا نفت سفید به عنوان
، گریس را حل میکند. ب) پس از شستن دست با بنزین، پوست نیز در بنزین و
شسته می شود و در نتیجه پوست می گردد. پ) شستن پوست یا تماس با آلکانهای مایع در دراز مدت به ساختار

ست آسیب میرساند زیرا قشر برداشته شده و پوست (خشک / مرطوب) و و مستعد ابتلا به عفونت،	پوس
بخوردن، اگزما یا آلرژی میشود. «نامگذاری آلکانها» (پیوند با ریاضی صفحه ۳۵) واژه «آلکان» از دو جزء ساخته	ترك
ه است. به جای لفظ «آلک» همواره کلمهای قرار میگیرد که اتم کربن را مشخص میکند. اعداد یونانی ا تا ۴ به	
یب ، ، و هستند که برای نامگذاری انتخاب نشده و به جای آنها واژههای دیگری	
کار میرود. اما پیشوندهای برای کربن به بالا، استفاده میشوند. «نامگذاری آلکانهای شاخهدار»	
ightarrow =	
ان () (نجیری که علی اید زنجیر اصلی را به درستی انتخاب کنیم: زنجیری که	
ـــــــــــــــــــــــــــــــــــــ	
نيد:	
نکته ۱: اگر بتوان برای هیدروکربنی، دو زنجیر اصلی با کربنهای برابر اما شاخههای فرعی متفاوت انتخاب کرد،	
خابی درست است که تعداد شاخه فرعی دارد: نکته ۲: گروه آلکیل (مانند متیل یا اتیل) در کربن ابتدایی یا	
نی زنجیر اصلی، درواقع، ادامه است و شاخه فرعی محسوب تمرین ۱: نامگذاری کنید: ۳) سپس،	پایا
جیر اصلی انتخاب شده ار از طرفی که به نزدیکتر است، شماره گذاری میکنیم. (شماره اتصال شاخه	
ی باید باشد.) (سه ترکیب قسمت ۲ را شماره گذاری نمایید.) ۴) نامگذاری: »> اگر تعداد شاخه یکی باشد:	
ىارە اتصال و نام شاخە و سپس نام <u>خ</u> كر مىشود:	
با هم بیندیشیم ۱ صفحه ۳۸: الف) اعداد، نشانگر شماره در اصلی است که فرعی به آن	
صل شده است و واژه بعد از آن، شاخه فرعی را نشان میدهد. واژه بعدی، نام است. ب	متص
اهت این دو ترکیب، در تعداد کل در ترکیب، و نیز تعداد کربن و نیز، تعداد کربن و نوع	
است. تفاوت این دو ترکیب، در اتصال شاخه فرعی است. ۳- متیل هگزان ۴-	
ل هپتان با هم بیندیشیم ۳:	
زنجير اصلي کربنه	
زنجير اصلي کربنه	
زنجير اصلي كربنه با هم بينديشيم ۴:	
انتخاب زنجير نام نادرست:	
جهت شماره گذاری انتخاب زنجیر نام نادرست:	
جهت شماره گذاری انتخاب زنجیر نام درست: نکته مهم: متیل در کربن اول، اتیل در کربن اول و دوم، پروپیل در	
بنهای اول، دوم و سوم زنجیر، شاخه فرعی و ادامه زنجیر محسوب خود را بیازمایید ۱	كرب
· • • • • • • • • • • • • • • • • • • •	اان

تمرین دورهای ۵ قسمت (پ):

خود را بیازمایید ۲ صفحه ۴۰: نکته: هالوژنها نیز می توانند به عنوان شاخه فرعی در ترکیبهای آلی محسوب شوند. در نامگذاری، پسوند «و» به نام هالوژن افزوده می شود. تذکر مهم: هالوژنها (برخلاف گروههای آلکیل) در کربن اول زنجیر نیز شاخه فرعی می توانند باشند.

نکته: هنگامی که شاخه فرعی، فقط یک کربن اتصال در زنجیر اصلی دارد، شماره اتصال شاخه فرعی نباید ذکر شود. (برخی کتابها میگویند که بهتر است گفته نشود.) تذکر مهم: اگر تا رسیدن به وسط زنجیر بیش از یک موققیت برای شاخه فرعی وجود داست حتما شماره اتصال شاخه فرعه ذکر شود. تمرین: ترکیبی با فرمول مولکولی _____ چند ایزومر

رد؟	دا	ر ک	ختا	سا
رد:	دا	(5)	حیا	سا

نکته: هالوژن (میتواند / نمیتواند) در کربن اول زنجیر نیز شاخه فرعی باشد. نتیجه: عدد ۱ برای هالوژنها (به عنوان شاخه) ذکر _______. (در صورت لزوم) معرفی دو شاخه فرعی دیگر: و ادامه نامگذاری (قوانین):

>> تعداد شاخه فرعی بیش از یک دو حالت دارد: ۱ - دو یا چند شاخه فرعی اما از یک نوع ۲ - دو یا چند شاخه فرعی از گونههای متفاوت حالت ۱: دو یا چند شاخه فرعی اما از یک نوع اگر تعداد شاخه فرعی، بیش از یکی باشد (اما همه از یک نوع باشند)؛ ابتدا، «همه» شمارههای اتصال، از _____ به ____ نوشته می شود (حتی اگر _____ باشد.) سپس تعداد آن شاخه (با لفظ یونانی) و نام آن شاخه فرعی ذکر می شود.

(بهتر است که کربنهای بیشتر، در یک خط نوشته شوند که زنجیر اصلی، مستقیم باشد.) خود را بیازمایید ۱ (ج) صفحه ۴:

تذكر: وقتى بيش از يک شاخه فرعى داريم، شماره گذارى زنجير اصلى، «بايد» از طرفى انجام شود که بتوان با ارقام آنها عدد _____ ساخت.

خود را بیازمایید ۱ ت صفحه ۳۹

حالت دوم: دو یا چند شاخه فرعی از گونههای متفاوت اگر تعداد شاخه فرعی، بیش از یکی باشد اما از گونههای متفاوت باشند، شماره گذاری (بدون توجه به انواع شاخهها) از طرفی که ارقام کوچکتر انتخاب شوند انجام می شود. اما در نامگذاری: تقدم ذکر نام شاخه فرعی، بر اساس حرف اول نام آن (در انگلیسی) است. آ در این حالت، شماره اتصال و نام هر شاخه فرعی، جداگانه ذکر می شود.

یعنی: در نامگذاری، شاخه فرعی بر بر مقدم است، (به دلیل تقدم حرف اول نام) چه شماره اتصالش بیشتر باشد، چه کمتر و چه مساوی! خود را بیازمایید ۱ ب صفحه ۳۹:

نکته: اگر شماره گذاری دو نوع شاخه فرعی، از دو طرف ارقام یکسانی بدهد، شماره گذاری باید از طرف آن شاخه فرعی انجام شود که شاخه مقدم در نامگذاری شماره _____ داشته باشد: در نامگذاری ترکیبهای آلی، بین عدد و عدد: _____ ، بین عدد و کلمه: ____ ! نامگذاری کنید:

تمرین ۱: ایزومرهای ____ را رسم کنید (فرمول ساختاری و خط پیوند) و سپس نامگذاری نمایید:

تمرین ۲: در بین ایزومرهای ____ چند ایزومر داریم که ۴ کربن در زنجیر اصلی داشته باشند و نامگذاری کنید.

تمرین ۳: مثالهای زیر را با مدل نقطه – خط نمایش دهید (ابتدا زنجیر اصلی را بکشید، راحت تر است) الف) ۲ – کلرو – ۳ – فلوئورو – ۳،۴ – دی متیل پنتان

تمرین ۴: ترکیب زیر را نامگذاری کنید: (وقتی ترکیب شلوغه، نام هر شاخه را که نوشتی، در زنجیر خط بزن که تکراری ننویسی)

نکته: تعداد پیوندهای کربن — کربن در آلکانها (برحسب n): تعداد پیوندهای کربن — هیدروژن در آلکانها (برحسب n): تعداد پیوند اشتراکی در هیدروکربنها (n) (برحسب n): تعداد پیوند اشتراکی در آلکن (برحسب n): تعداد پیوند اشتراکی در آلکن (برحسب n): تعداد پیوند اشتراکی در آلکن (برحسب n): تعداد پیوند اشتراکی در آلکن (برحسب n): تعداد پیوند اشتراکی در آلکن (برحسب n): تعداد پیوند n کربن)، در آلکن (برحسب n): تعداد پیوند n

«آلکنها ()» این هیدروکربنها در ساختار خود، یک پیوند دوگانه _____ () دارند. برای نامگذاری، پسوند (پن» را به لفظ آلک میافزاییم. سادهترین آلکن ____ کربن دارد آ (فرمول ____) ___ یا ___ (فرمول ساختاری کوتاه شده) یا ____ (فرمول ____) (نام: ____) نام قدیمی اتن، (____ » بوده و در بیشتر گیاهان وجود دارد. اتن آزاد شده در گیاهانی نظیر ___ یا ___ یا ___ ، موجب رسیدن سریعتر میوههای

نارس می شود و از آن به عنوان استفاده می شود. تمرین ۱: نام، فرمول مولکولی و فرمول ساختاری و
مدل خط پیوند را برای آلکنی با ۳ کربن، نشان دهید.
نکته بسیار مهم: پیوند دوگانه، باید جزء زنجیر اصلی قرار گیرد، حتی اگر مجبور باشیم، بلندترین زنجیر ممکن را انتخاب
نکنیم!
تمرین ۲ : ، سه ایزومر آلکنی دارد. آنها را رسم و نامگذاری کنید. (نام: $ ightarrow$) (نام: $ ightarrow$
) (نام: \leftrightarrow) نکته: در آلکنهای چهارکربنه به بالا، باید پیش از ذکر لفظ «آلک»، شمارهای را ذکر کرد که جایگاه
پیوند دوگانه را نشان دهد از بین دو کربنی که پیوند دوگانه دارند، باید شماره را ذکر کرد. تمرین ۳ : ایزومرهای
آلکنی را رسم و نامگذاری کنید.
تمرین ۴ – نسبت تعداد H در «سومین آلکان» به «سومین آلکن» چند است؟
تمرین ۵ — بین آلکان و آلکن هم کربن، ایزومرهای کدام، بیشتر است؟
واكنشهاي آلكنها (سير شدن 🗈 فصل دوم — پليمر شدن 🗈 فصل سوم) سير شدن: آلكنها از آلكانها، واكنش پذيري
دارند، و به خاطر وجود پیوند دوگانه، سیر هستند. در (C = C) یکی از دو پیوند، از دیگر ضعیفتر
است آسانتر شکسته می شود و دو ذره ظرفیتی را به دو کربن، متصل میکند: بررسی تمرین دورهای ۸:
در واکنش سیرشدن، هر اتم کربن، از تمام امکان خود برای تشکیل پیوندهای استفاده میکند، (به جای اینکه
پیوند دوگانه و پیوند یگانه داشته باشد، پیوند یگانه خواهد داشت.) معمولا هر اتم کربن، ۴
پیوند اشتراکی دارد به جز:
* تذکر: واکنش آلکنها با Cl−Cl نیاز به کاتالیزگر دارد. تمرین دورهای ۵ فصل ۳ 🗈 !! تمرین — تفاوت
تعداد اتمهای H بین واکنش دهنده و فرآورده در واکنش «۲ و۳ – دیمتیل – ۲ – بوتن» با برم مایع چندتا است؟ نام فرآورده
چیست؟
وارد کردن آلکن در بخار برم مایع (قرمز) یا آب برم (قرمز)، ترکیبی رنگ ایجاد میکند که نشانگر انجام
واکنش، و مهمترین روش شناسایی ترکیبهای سیر نشده از سیر شده است. سایر هالوژنها نیز میتواندد چنین واکنشی
را انجام دهند و در مقابل ترکیب سیرنشده، رنگ شوند. تذکر: هالوژنها در حالت عنصری (آزاد)، (رنگی /
بیرنگ) و در حالت ترکیب هستند.
اسیدهای هیدرولیک نیز میتوانند در واکنش با آلکنها شرکت کنند. گاز اتن، سنگبنای صنایع پتروشیمی است. با
استفاده از اتن، حجم انبوهی از مواد گوناگونی تهیه میشود. از واکنش اتن با آب در حضور به عنوان کاتالیزگر،
تولید میشود. که الکلی کربنه، رنگ، و فرّار (نقطه جوش تر از آب) است. به هر
نسبتی در حل می شود. از مهمترین های صنعتی است و در تهیه مواد دارویی، آرایشی و بهداشتی و به
عنوان «ضد عفونی کننده» به کار می رود. * خود را بیازمایید ۱ صفحه ۴۲: گوشت رنگ بخار برم را از بین برده پس چربی آن
تركيبات سير (نيز) دارد. (كه با برم واكنش مىدهد.) در صنعت پتروشيمى، تركيبها، مواد و وسايل گوناگون
از یا طبیعی به دست میآید. (فرآوردههای پتروشیمیایی) در صنایع پتروشیمی کشورها، موادی نظیر
، و تولید می شوند. آلکینها () (سیر نشده تر از آلکنها!) آلکینها
در ساختتار خود، یک پیوند سهگانه کربن_کربن (-CTC) دارند. برای نامگذاری، پسوند «یین» را به لفظ آلک اضافه
میکنیم. سادهترین الکین کربن دارد: (گاز:) CH یا $-\mathrm{C}^{\mathrm{T}}\mathrm{C}$ نام قدیمی گاز اتین، است
که (از شعله آن) در کاری و کاری فلزها استفاده می شود و به آن، جوش نیز گفته می شود: $+ \leftarrow +$ در این روش، کلسیم () در یک مخزن نگهداری و با افزودن آب، به تبدیل می شود.

تمرین ۱ — فرمول ساختاری و مولکولی، مدل پیوند — خط، و نام آلکین سه کربنه چیست؟ (فرمول پیوند — خط)
تمرین ۲ – ایزومرهای آلکنی را رسم و ناگذاری کنید: (چرا کلمه آلکنی گفته شده؟ *)
تمرین ۳ — واکنش ۱ مول پروپین با ۱ مول برم مایع را بنویسید:
تمرین ۴ – واکنش ۱ مول اتین را با ۲ مول گاز کلر بنویسید:
تمرین ۵ – هر مول اتین برای سیرشدن کامل، به چند مول گاز هیدروژن نیاز دارد؟
تمرین ۶ — یک آلکین در اثر سیر شدن کامل با گاز هیدروژن، ۱۰٪ افزایش جرم دارد. تعداد هیدروژن آلکان همکربن
اين آلكين چند تا است؟
تمرین ۷ – ترکیب برای سیر شدن کامل: اولاً) به چند مول نیاز دارد؟ دوم) چند مول فرآورده تشکیل می شود؟
*سوم) این ترکیبا با ۱ _ بوتین ایزومر است یا با ۱ _ بوتن؟ واکنش سوختن کامل (پارامتری بر حسب n) آلکان، الکن و آلکین
(با n اتم کربن) پرسش – آیا این گفته درست است؟ «کربن دارای پیوند سه گانه در آلکین، نمی تواند شاخه فرعی داشته
باشد.»
هیدروکربنهای حلقوی خود را بیازمایید الف و ب صفحه ۴۲ : الف) هیدروکربنهای حلقوی سیرشده (
آلکان) 🗈 معروفترین آنها است: حلقه در سیکو هگزان سطح (است / نیست) .
قلمرو پیوندی اطراف هر اتم کربن زاویه پیوندی: همه قلمرو ها در یک صفحه : (مدل خط –
پیوندی)
فرمول مولكولي
ب) آروماتیک ؟ ممکن است دارای یک ، دو (یا بیشتر) باشند ؟ معروف ترین ترکیب
آروماتیک، با حلقه و پیوند دوگانه است. نفتالن نیز از ترکیبات آروماتیک
(دو حلقهای) است. (و در پیوند دوگانه دارد) (H)
يا يا
نفتالن به عنوان برای نگهداری و به کار میرود. تمرین – هر مول بنزین، چند
مول اتم هیدروژن از هر مول هگزان کم دارد؟
تست – یک آلکن، در صورت هم کربن بودن، با کدامیک هم پار است؟ ۱) آلکین ۲) سیکلوآلکان ۳) آلکان ۴)
آروماتیک تمرین – جرم مولی آلکان، آلکن، آلکین و سیکلوآلکان را بر حسب n بنویسید. نفت، مادهای که اقتصاد جهان
را دگرگون ساخت نفت خام به طور عمده مخلوطی از و به مقدار کم برخی ، ، و
غیره است. مقدار نمک و اسید در نفت خام و در مناطق گوناگون، است. دلیل: شرایط و
نحوه نفت خام ال بخش عمده هیدروکربنهای نفت خام را تشکیل میدهند که به دلیل واکنشپذیری
به عنوان به کار میروند. ۱ بیش از ۹۰٪ نفت خام صرف و تأمین میشود و مقدار
کمی از آن در صنایع کاربرد دارد. با هم بیندیشیم صفحه ۴۳: بنزین و خوراک پتروشیمی: >
= خفت سفيد: = خفت سفيد
کازوبیل: > > یفت کوره: <
حــــــ حـــــــ الف) اندازه مولكول: نفت كوره بنزين (
فرّارتر ؟ نقطه جوش تر ؟ جرم و اندازه مولكول كمتر است) ب) در نفت سنگين،
بیشتری هست. در نفت سبک، « و » ، « » و « » بیشتری هست. پ) ملاک
دسته بندی نفت خام به سبک و سنگین، تشکیل دهنده آن است. (نفت کوره ملاک است) ت) گران ترین

ه نفت و نفت ، به ترتیب، بیشتری و کمترین قیمت	است و در نتیج	بخش نفت خام، _
کردن ، و ، نفت خام را پالایش میکنند. با استفاده		
ر به ، هنگامی صورت میگیرد که نقطه جوش اجزاء مخلوط،		
به صورت هایی با نزدیک به هم، جدا میشوند.	د.) هیدروکربنهای آن،	به هم نزدیک باشن
میدهند و آن را به تقطیر هدایت میکنند. در برج تقطیر، دما از	در محفظهای بزرگ	ابتدا، نفت خام را
سردتر است) نفت خام داغ به قسمت وارد میشود. مولکولهای	کم میشود (به
: از بیرون آمده و به سوی برج حرکت	تر، از جمله مواد	تر و
روند، شده و به تبدیل میشوند، و در هایی که در	كه مولكولها بالاتر مي,	میکنند. به تدریج
و از برج میشوند. پالایش نفت خام، سوخت و مناسب در	ن برج هستند، وارد شده	فاصلەهاي گوناگو
ر به تولید انرژی ارزان م <i>یگردد.</i> با افزایش اهمیت و کاربرد بیرویه،	میدهد و از سویی منج	اختيار صنايع قرار
ً) یکی دیگر از سوختهای است که عمر زخایر آن به ۵۰۰	ان میرود. زغالسنگ (نفت خام رو به پای
ن ، جایگزین نفت شود، البته باعث ورود مقدار بیشتری از به	رسنگ، میتواند به عنوار	سال مىرسد. زغال
ىكند: بنزين: ، و زغالسنگ:	ثر را تشدید م	هوا نیز میشود و ا
_ و گرمای آزاد شده (به ازای ۱ گرم): بنزین زغالسنگ	··	·
های بهبود کارآیی زغالسنگ: ۱) و زغالسنگ برای حذف	.ه: بنزین زغالسنگ راه	مقدار C تولید شد
انداختن گاز خارج شده از دودکش ها به کمک شرایط	سیهای دیگر ۲) به	و ناخالص
نطرناک است و معادل زغالسنگ، بارها دچار یا	گ نیز بسیار دشوار و خ	زغالسنًا
آزاد شده هنگام استخراج زغالسنگ است. میدانیم که متان گازی (سبک/	دلیل گاز	شدهاند. انفجار به
ی و اگر مقدار آن به بیش از درصد برسد، احتمال وجود دارد.	و بى است	سنگین)، ب <u>ی</u>
خواهد بود. «پیوند با صنعت» حمل و نقل هوایی ترین حالت	اشد، احتمال انفجار نيز ِ	هرچه متان بیشتر با
مزایا: – عدم نیاز به سازی و جاده – مسافرت	و رو به گسترش است.	حمل و نقل بوده
معایب: سوخت هواپیما از پالایش در برج		
عمده از نفت تشکیل شده است. (مخلوطی از با تا		
ین سوخت، آن به مراکز توزیع و استفاده از آن است. که حدود ۶۶٪ از	کی از مسائل مهم در تأم	كربن) ي
، ، جادهپیما و های نفتی انجام میشود. تمرین	_ و تعبيه از طريق	طريق خط
ر اکسیژن کافی، به طول کامل میسوزند. اگر گرمای حاصل، بتواند دمای ۲.۸		
۱۰ درجه برساند، جرم اتیلن در مخلوط به تقریب، چند گرم است؟	۲۰ درجه سانتیگراد به ۰	کیلوگرم آب را از ۰