Доведіть, що перетворення Лоренца пояснюють результати експерименту Майкельсона-Морлі.

2. В СТВ так само, як і в ньютонівській механіці, енергія і імпульс є величини адитивні, тобто повна енергія і імпульс n всіх частинок дорівнює відповідно $E = \sum_{i=1}^{n} E_i$, $\vec{p} = \sum_{i=1}^{n} \vec{p}_i$ Вважаючи, що основними співвідношеннями СТВ для частинки, яка вільно рухається і для системи частинок є наступні: $E = \gamma \ mc^2$, $\vec{p} = \gamma \ m\vec{v}$, де $\gamma \equiv \frac{1}{\sqrt{1-\vec{v}^2/c^2}}$, E – енергія, \vec{p} –

імпульс, \vec{v} - швидкість, m - маса частинки, c - швидкість світла у вакуумі.

Доведіть, що якщо одна частинка рухається зі швидкістю світла, то її маса дорівнює нулю

2.2 З'ясуйте чи є маса адитивною в СТВ. (В Ньютонівській механіці маса є величиною адитивною, тобто сумарна маса M системи, яка складається з n

частинок, дорівнює сумі мас частинок: $M = \sum_{i=1}^{n} m_i$).

Як відомо фотон рухається зі швидкістю світла, тому його маса дорівнює нулю. Чому дорівнює маса системи, яка складається з двох фотонів? Знайдіть масу системи з двох фотонів з енергіями E_1 та E_2 , які летять під кутом α один до одного. Проаналізуйте випадок, коли $E_1 = E_2$, а фотони а) розлітаються в різні сторони, б) летять в одну сторону.

4. Виведіть співвідношення, яке є релятивістським узагальненим другого закону Ньютона $\vec{F} = m\vec{a}$ і покажіть, що на відміну від ньютонівського випадку, прискорення не направлено по силі. Розгляньте також випадки коли швидкість частинки а) перпендикулярна до діючої на неї сили - $\vec{F} \perp \vec{v}$, б) паралельна до діючої сили -

- Д (5) Знайдіть траєкторію зарядженої частинки маси m, яка рухається в полі постійного магнітного поля В (вважати, що поле направлене вздовж осі ОZ)
- 6. Зеркало рухається перпендикулярно до своєї площини зі швидкістю \vec{v} . Який кут утворює з нормаллю до зеркала утворює відбитий промінь світла, якщо падаючий промінь утворює з нормаллю кут $\acute{\alpha}$. Як змінюється при відбитті частота світла ?
- 0.25 7. Розв'яжіть попередню задачу у випадку, коли зеркало рухається паралельно до своєї площини.
- Фотон з довжиною хвилі λ налітає на стаціонарний електрон маси m і розсіюється на ньому під кутом θ. Знайдіть довжину хвилі фотона після розсіяння.