Vortragender: Clemens Weber

Übung 01

Vom 20.12.2023

Vorbereitung zur Aufnahme auf das Studienkolleg

Organisation

		Mittwoch	Donnerstag	Freitag	Samstag	Kalenderpedi Informationen zum Kalend Sonntag
	2	3	4	5	6	7
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	1	2	3	4
	1 8 15 22	1 2 8 9 15 16 22 23	Montag Dienstag Mittwoch 1 2 3 8 9 10 15 16 17 22 23 24	Montag Dienstag Mittwoch Donnerstag 1 2 3 4 8 9 10 11 15 16 17 18 22 23 24 25	Montag Dienstag Mittwoch Donnerstag Freitag 1 2 3 4 5 8 9 10 11 12 15 16 17 18 19 22 23 24 25 26	Montag Dienstag Mittwoch Donnerstag Freitag Samstag 1 2 3 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 22 23 24 25 26 27

Themen-Gebiete Gesamt

- Vereinfachung von Bruchtermen
- o Polynomdivision
- Wurzelgleichungen Ungleichungen
- o Exponentialgleichungen & Logarithmusgleichungen
- o Trigonometrischen Funktionen
- o Erkennen von Funktionsgraphen
- Geometrie; vor allem Satzgruppe des Pythagoras, Strahlensätze, Kreisberechnungen, Flächen- und Volumenberechnungen

Potenzgesetze

- o Potenzgesetze anwenden
- Wurzeln als Potenz schreiben

Rechnen mit Potenzen

	Bei gleicher Basis	Bei gleichem Exponent
Multiplizieren	$a^n \cdot a^m = a^{n+m}$	$a^n \cdot b^n = (ab)^n$
Dividieren	$\frac{a^n}{a^m} = a^{n-m}; a \neq 0$ $Wenn \ n = m \Rightarrow a^0 = 1$	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n; b \neq 0$
Potenzen von Potenzen	$(a^n)^m = a^{nm}$	

Rechnen mit Wurzeln

	Bei gleichem Wurzelexponent
Multiplizieren	$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}; \ a, b \ge 0$
Dividieren	$\sqrt[n]{a}$: $\sqrt[n]{b} = \sqrt[n]{\frac{a}{\sqrt[n]{b}}} = \sqrt[n]{\frac{a}{b}}$; $a \ge 0, b \ge 0$

Zusammenhang zwischen Wurzeln und Potenzen $\sqrt[n]{a^m} = a^{\frac{m}{n}}$

Zum Rechnen wandelt man Wurzeln in Potenzen um.

Vereinfachung von Bruchtermen

- Ausklammern von Terme oder gemeinsamen Faktoren
- o Binomische Formeln erkennen
- O Auf gemeinsamen Nenner bringen
- o Kürzen

	Bei gleichen Nennern
Addieren	$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$
	$\frac{b}{b} + \frac{b}{b} - \frac{b}{b}$
	Bei verschiedenen Nennern
	$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}; \qquad a + \frac{b}{c} = \frac{a}{1} + \frac{b}{c} = \frac{ac + b}{c}$
	$\frac{1}{b} + \frac{1}{d} - \frac{1}{bd}$, $\frac{a+c-1}{c} - \frac{1}{1} + \frac{1}{c} - \frac{1}{c}$
	Bei gleichen Nennern
	$\frac{a}{b} - \frac{c}{b} = \frac{a - c}{b}$
Subtrahieren	
Gustianioron	Bei verschiedenen Nennern
	$\begin{vmatrix} a & c = ad - cb \\ = ad - cb \end{vmatrix}$: $\begin{vmatrix} a - b = a - b \\ = ad - b \end{vmatrix}$
	b d bd c d
Multiplizieren	$\frac{a}{b} - \frac{c}{d} = \frac{ad - cb}{bd}; \qquad a - \frac{b}{c} = \frac{a}{1} - \frac{b}{c} = \frac{ac - b}{c}$ $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}; \qquad a \cdot \frac{b}{c} = \frac{a}{1} \cdot \frac{b}{c} = \frac{ab}{c}$
•	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Dividieren	$a \cdot c = \frac{a}{b} = a \cdot d = a \cdot d$. $a \cdot b = a \cdot b = ac$
Dividieren	$\frac{a}{b} : \frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}; \qquad a : \frac{b}{c} = \frac{a}{1} : \frac{b}{c} = \frac{ac}{b}$
	$a _ ac$
Erweitern	$\frac{a}{b} = \frac{ac}{bc}$
	Der Zähler und der Nenner werden mit derselben Zahl multipliziert.
17	$\frac{ac}{bc} = \frac{a}{b}$
Kürzen	Der Zähler und der Nenner werden durch dieselbe Zahl dividiert.
	Beispiel:
Mehrfachbrüche	$\frac{a}{a} = \frac{a}{a} = \frac{a}{a} = \frac{a}{a} = \frac{a(af + e)}{a}$
	$\frac{a}{b + \frac{c}{d + \frac{e}{f}}} = \frac{a}{b + \frac{c}{\frac{df + e}{f}}} = \frac{a}{b + \frac{cf}{df + e}} = \frac{a}{\frac{b(df + e) + cf}{df + e}} = \frac{a(df + e)}{\frac{b(df + e) + cf}{df + e}} = \frac{a(df + e)}{bdf + be + cf}$

Übung zu Bruchtermen

	Bei gleichen Nennern			
	$\left \frac{a}{b} + \frac{c}{b} \right = \frac{a+c}{b}$			
Addieren	$\frac{b}{b} + \frac{b}{b} - \frac{b}{b}$			
Addictori	Bei verschiedenen Nennern			
	$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}; \qquad a + \frac{b}{c} = \frac{a}{1} + \frac{b}{c} = \frac{ac + b}{c}$			
	$\frac{b}{b} + \frac{d}{d} - \frac{bd}{bd}$, $u + \frac{c}{c} - \frac{1}{1} + \frac{c}{c} - \frac{c}{c}$			
	Bei gleichen Nennern			
	$\left \frac{a}{b} - \frac{c}{b} \right = \frac{a - c}{b}$			
Subtrahieren				
Odbitallicien	Bei verschiedenen Nennern			
	$\frac{a}{a} - \frac{c}{c} - \frac{ad - cb}{c}$. $\frac{b}{a} - \frac{a}{b} - \frac{ac - b}{c}$			
	b d bd , u c 1 c c			
Multiplizieren	$\frac{a}{b} - \frac{c}{d} = \frac{ad - cb}{bd}; \qquad a - \frac{b}{c} = \frac{a}{1} - \frac{b}{c} = \frac{ac - b}{c}$ $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}; \qquad a \cdot \frac{b}{c} = \frac{a}{1} \cdot \frac{b}{c} = \frac{ab}{c}$			
Wataphizioren	$b d b \cdot d' a c 1 c c$			
	$\frac{a}{b} : \frac{c}{d} = \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{a \cdot d}{b \cdot c}; a : \frac{b}{c} = \frac{a}{1} : \frac{b}{c} = \frac{ac}{b}$			
Dividieren	$\left \frac{a}{b}\right \cdot \frac{d}{d} = \frac{b}{c} = \frac{a}{b} \cdot \frac{a}{c} = \frac{a}{b} \cdot \frac{a}{c}; a : \frac{c}{c} = \frac{a}{1} : \frac{c}{c} = \frac{a}{b}$			
;t	$\frac{a}{b} = \frac{ac}{bc}$			
Erweitern	b bc Der Zähler und der Nenner werden mit derselben Zahl multipliziert.			
	ac a			
Kürzen	$\frac{1}{bc} = \frac{1}{b}$			
TGIZOTI	Der Zähler und der Nenner werden durch dieselbe Zahl dividiert.			
	Beispiel:			
Mehrfachbrüche				
	$\frac{d}{dt} = \frac{d}{dt} $			
	$\frac{a}{b + \frac{c}{d + \frac{e}{f}}} = \frac{a}{b + \frac{c}{\frac{df + e}{f}}} = \frac{a}{b + \frac{cf}{df + e}} = \frac{a}{\frac{b(df + e) + cf}{df + e}} = \frac{a(df + e)}{bdf + be + cf}$			
	$\frac{a+f}{f}$			

2. Bruchterme:

2.1 Fassen Sie zusammen!

$$\frac{1}{a-b} - \frac{ab}{a^3 - b^3} =$$

2.2 Vereinfachen Sie soweit wie möglich!

a)
$$\frac{3\sqrt{3} + \sqrt{6}}{(\sqrt{6} - \sqrt{2})(2\sqrt{3} + 3)} =$$

b)
$$\frac{a^4b^3x^2y - u^2v^5x^2y + a^4b^3xy^2 - u^2v^5xy^2}{u^2v^5xy - a^4b^3xy - u^2v^5x^2y^2 + a^4b^3x^2y^2} =$$

c)
$$\frac{1}{2^n} + \frac{3}{2^3} + \frac{5}{2^{n-3}} - \frac{82}{2^{n+1}} =$$

d)
$$\frac{1-x^2}{x^8} + \frac{1+x}{x^6} - \frac{1}{x^5} =$$

Quadratische Gleichungen

- Nullstellen bestimmen
- Binomische Formeln erkennen
- In Termen schreiben
- Faktorisieren

https://de.khanacademy.org/ma/quadratics/solving-quadratic-eqfactoring/a/solving-quadratic-eqfactoring

Quadratische Ergänzung

https://www.studimup.de/abitur/lalgebra/quadratische-ergänzung

Lösen Quadratischer Gleichungen

Anwenden der Lösungsformel für Quadratische Gleichungen

Für die allgemeine Form
$$ax^2 + bx + c = 0$$
:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Der Ausdruck $D = b^2 - 4ac$ heißt Diskriminante.

Für die Normalform

$$x^2 + px + q = 0$$
:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Zerlegung in Linearfaktoren:

 x_1 und x_2 sind zwei Lösungen der quadratischen Gleichung:

$$ax^2 + bx + c = a \cdot (x - x_1) \cdot (x - x_2)$$

Lösen biquadratischer Gleichungen

$$ax^4 + bx^2 + c = 0$$

Lösung durch Substitution $z = x^2$ und anschließender Lösung der quadratischen Gleichung.

Binomische Formeln

Binomische Formeln:

$$(a+b)(c+d) = ac+ad+bc+bd$$

$$(a+b)^2 = (a+b) \cdot (a+b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a^2 + 2 \cdot a \cdot b + b^2$$

 $(a-b)^2 = (a-b) \cdot (a-b) = a \cdot a - a \cdot b - b \cdot a + b \cdot b = a^2 - 2 \cdot a \cdot b + b^2$
 $(a+b) \cdot (a-b) = a \cdot a - a \cdot b + b \cdot a - b \cdot b = a^2 - b^2$

Dritter Ordnung:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Mitternachtsformel

$$ax^2 + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Auswendig lernen!

Übung zu Quadratischen Gleichungen

Lösen Quadratischer Gleichungen

Anwenden der Lösungsformel für Quadratische Gleichungen

Für die allgemeine Form $ax^2 + bx + c = 0$:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Der Ausdruck $D = b^2 - 4ac$ heißt Diskriminante.

Für die Normalform

$$x^2 + px + q = 0$$
:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Zerlegung in Linearfaktoren:

 x_1 und x_2 sind zwei Lösungen der quadratischen Gleichung:

$$ax^2 + bx + c = a \cdot (x - x_1) \cdot (x - x_2)$$

Lösen biquadratischer Gleichungen

$$ax^4 + bx^2 + c = 0$$

Lösung durch Substitution $z = x^2$ und anschließender Lösung der quadratischen Gleichung.

b)
$$x^2 + 7x = 0$$
;

d)
$$x^2 + 6x - 3 = 0$$
;

f)
$$6x^2 - 5x - 6 = 0$$
;

h)
$$3x^2 - 10x + 6 = 0$$

j)
$$x^2 + x - 1 = 0$$
;

Übung zu Quadratischen Gleichungen

Lösen Quadratischer Gleichungen

Anwenden der Lösungsformel für Quadratische Gleichungen

Für die allgemeine Form $ax^2 + bx + c = 0$:

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Der Ausdruck $D = b^2 - 4ac$ heißt Diskriminante.

Für die Normalform

$$x^2 + px + q = 0$$
:

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q}$$

Zerlegung in Linearfaktoren:

 x_1 und x_2 sind zwei Lösungen der quadratischen Gleichung:

$$ax^{2} + bx + c = a \cdot (x - x_{1}) \cdot (x - x_{2})$$

Lösen biquadratischer Gleichungen

$$ax^4 + bx^2 + c = 0$$

Lösung durch Substitution $z = x^2$ und anschließender Lösung der quadratischen Gleichung.

g)
$$x - 6\sqrt{x} + 4 = 0;$$

i)
$$(3x^2 - 7)(2x^2 - 5) = x^2 - 1$$

Übung zu Potenzgesetzen

Rechnen mit Potenzen

	Bei gleicher Basis	Bei gleichem Exponent
Multiplizieren	$a^n \cdot a^m = a^{n+m}$	$a^n \cdot b^n = (ab)^n$
Dividieren	$\frac{a^n}{a^m} = a^{n-m}; a \neq 0$ $Wenn \ n = m \Rightarrow a^0 = 1$	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n; b \neq 0$
Potenzen von Potenzen	$(a^n)^m = a^{nm}$	

Rechnen mit Wurzeln

	Bei gleichem Wurzelexponent
	$\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}; \ a, b \ge 0$
Dividieren	$\sqrt[n]{a}$: $\sqrt[n]{b} = \sqrt[n]{\frac{a}{\sqrt[n]{b}}} = \sqrt[n]{\frac{a}{b}}$; $a \ge 0, b \ge 0$

Zusammenhang zwischen Wurzeln und Potenzen

$$\sqrt[n]{a^m} = a^{\frac{m}{n}}$$

Zum Rechnen wandelt man Wurzeln in Potenzen um.

i)
$$\left(x^{\frac{2}{5}} + 4\right)^{\frac{4}{3}} = 16$$
;

k)
$$(x-2)\sqrt{x^2-9}=0$$
;

m)
$$\sqrt{x^2 - 5} = x - 5$$
;

o)
$$(x+6)^{0.75} = 8;$$

Logarithmus und Exponential-Funktion

8.1 Formeln für Logarithmen:

$$b^x = y \quad \Leftrightarrow \quad x = \log_b y$$

$$(y \in IR^+ \text{ und } b \in IR^+ \text{ohne } \{1\})$$

z. B.
$$0.5^x = 3 \iff x = \log_{0.5} 3 = \frac{\lg 3}{\lg 0.5}$$

Der dekadische Logarithmus: $\log_{10} a =: \lg a; \quad \lg 1 = 0; \quad \lg 10 = 1; \quad \lg 100 = 2;$

Der natürliche Logarithmus: $\log_e x =: \ln x$; $\ln 1 = 0$; $\ln e = 1$; (e = 2,71828... heißt Eulersche Zahl)

Logarithmus und Exponential-Funktion

Rechengesetze für Logarithmen (u, v > 0)

$$\log_b(u \cdot v) = \log_b u + \log_b v$$

$$\log_b u^n = n \cdot \log_b u ,$$

$$\log_b b^n = n$$

 $\log_c a = \frac{\log_b a}{\log_b c}$ die Basisumrechnungsformel

$$\log_b \left(\frac{u}{v}\right) = \log_b u - \log_b v$$

$$\log_b 1 = 0$$

$$b^{\log_b n} = n$$

 $(a > 0 \text{ und } b, c \in IR \text{ ohne } \{1\})$

Übung zu $log(x) \& e^x$

Rechengesetze für Logarithmen (u, v > 0)

$$\log_b(u \cdot v) = \log_b u + \log_b v$$

$$\log_b \left(\frac{u}{v}\right) = \log_b u - \log_b v$$

$$\log_b u^n = n \cdot \log_b u ,$$

$$\log_b 1 = 0$$

$$\log_b b^n = n$$

$$b^{\log_b n} = n$$

$$\log_c a = \frac{\log_b a}{\log_b c}$$
 die Basisumrechnungsformel

$$(a > 0 \ und \ b, c \in IR \ ohne \{1\})$$

Vorlesung 6 Umfang

- oFragen zu Aufgaben?
- OGeraden-Gleichung oder Punkt Steigung Formel
- oExtremwerte einer Funktion:
 - oSchnittpunkte (Achsen)
 - oSattelpunkt
 - OMaximum oder Minimum

Feedback Runde Q&A

Wie findet ihr den Kurs?

Was wünscht ihr euch für den Kurs?

Anregungen oder Fragen

Aufgaben:

Konstanz-Mathe-Formelsammlung

o https://www.maths2mind.com/schluesselwoemer/

https://mathe.aufgabenfuchs.de/funktion/funktion.shtm

 https://de.serlo.org/mathe/30680/aufgaben-zum-sinus-kosinus-und-tangens-imrechtwinkligen-dreieck

Ursprungs-Geraden in der Ebene (2D)

- Geraden durch den Ursprung x,y= (0,0)
- Besitzen eine Steigung (Steigungsdreieck)
- Steigung m =
 Weglänge in x Richtung/
 Dazugehörige Weglänge in y-Richtung
- Geraden-Gleichung durch den Ursprung:y = m*x

Ursprungs-Geraden in der Ebene (2D)

- Geraden durch den Ursprung x,y= (0,0)
- Besitzen eine Steigung (Steigungsdreieck)
- Steigung m =
 Weglänge in x Richtung/
 Dazugehörige Weglänge in y-Richtung
- Geraden-Gleichung durch den Ursprung:y = m*x

- Kann man als vom Ursprung verschobene Geraden betrachten.
- o Steigung m =

Weglänge in y Richtung/ Dazugehörige Weglänge in x-Richtung

- Steigung kann mit zwei Punkten (P & Q) die auf der Gerade liegen ermittelt warden
- o Geradengleichung:

$$y = m * (x - Schnittpunkt xAchse)$$

Oder

y = m * x + Schnittpunkt yAchse

o Geradengleichung:

$$y = m * (x - Schnittpunkt xAchse)$$

Oder

$$y = m * x + Schnittpunkt yAchse$$

- o Punkt einsetzen um Schnittpunkt(c1 oder c2) zu bestimmen:
- o $y_1 = x_1 * m + c_1$
- o $y_1 = m * (x_1 c_2)$

o Geradengleichung:

$$y = m * (x - Schnittpunkt xAchse)$$

Oder

$$y = m * x + Schnittpunkt yAchse$$

- Punkt einsetzen um Schnittpunkt
 (c1 oder c2) zu bestimmen:
- $y_1 = x_1 * m + c_1$
- O $y_1 = m * (x_1 c_2)$

Funktionsgleichung: Y-Achsenabschnitt und Steigungsdreieck berechnen

Eine Gerade verläuft durch die Punkte P(1|1) und Q(2|3). Bestimme die Funktionsgleichung.

Aus den gegebenen Punkten kann man das **Steigungsdreieck** bestimmen:

Steigung
$$m = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{3 - 1}{2 - 1} = 2$$

Für den y-Achsenabschnitt setzt man ein Punkt in die Funktionsgleichung:

$$y = 2x + c \quad mit \ P(1 \mid 1)$$

$$1=2+c \rightarrow c=-1$$

Daraus folgt die Funktionsgleichung: y = 2x - 1

Aufgabe: Schnittpunkte mit den Achsen Bestimmen

- o Gegeben sind zwei Geradengleichungen
- Bestimmen Sie jeweils die Schnittpunkte mit den Achsen

Aufgabe: Verschiedene GeradenGleichungen

O Schreiben Sie je eine der Gera

$$y_1 = m * x + h$$

$$y_2 = m * (x - d)$$

o Oder Gemischt:

$$y_3 = m * (x - d) + h$$

Senkrechte Geraden

o GeradenGleichungen:

$$y_1 = m_1 * x + h_1$$

o
$$y_2 = m_2 * x + h_2$$
 oder $y_2 = m_2 * (x - d)$

 Eine Gerade steht senkrecht zu einer anderen, wenn:

o
$$m_1 = -\frac{1}{m_2}$$

Senkrechte Geraden Aufgabe

- o Gegeben ist g_2 .
- Bestimmen Sie eine Geradengleichung von der Gerade die:
 - o Senkrecht zu g_2
 - o Den Punkt (0,1) schneidet
- o GeradenGleichungen:

$$y_1 = m_1 * x + h_1$$

$$y_2 = m_2 * x + h_2 \text{ oder } y_2 = m_2 * (x - d)$$

- o Eine Gerade steht senkrecht zu einer anderen, wenn:
 - o $m_1 = -\frac{1}{m_2}$

- Kann man als vom Ursprung verschobene Geraden betrachten.
- o Steigung m =

Weglänge in y Richtung/ Dazugehörige Weglänge in x-Richtung

- Steigung kann mit zwei Punkten (P & Q) die auf der Gerade liegen ermittelt warden
- O Geradengleichung:

$$y = m * (x - Schnittpunkt xAchse)$$

Oder

y = m * x + Schnittpunkt yAchse

Waagerechte Gerade – Welche Steigung?

Aufgaben Zu Geraden

o https://mathe.aufgabenfuchs.de/funktion/funktion.sht

Lagebeziehungen von Geraden!

Geraden haben einen, keinen oder unendlich viele Schnittpunkte gemeinsam!

kein Schnittpunkt	genau ein Schnittpunkt	unendlich viele Schnittpunkte
Geraden sind parallel	Geraden sind nicht parallel und nicht identisch	Geraden sind identsich

Für die Geradengleichung y=mx + n gilt:

Extrem Punkte von Funktionen

o Schnittpunkte mit:

f(x) = x

Extrem Punkte von Funktionen

- Aufgaben:
 https://www.studimup.de/übungen/
 https://www.studimup.de/übungen/
 https://www.studimup.de/übungen/
 https://www.studimup.de/übungen/
- o Schnittpunkte mit:
 - o Achsen
 - Anderen Funktionen(Geraden sind Funktionen)

Minimum & Maximum

- Wenn die Steigung einer Funktion an einer Stelle Null ist, dann hat sie dort eine Extremstelle!
- O Die Ableitung einer Funktion entspricht der Steigung an einem gegeben x-Wert.
- Ausblick Ableitungs Regeln:

https://www.studimup.de/abitur/analysis/ableitung/

Ableitungen einer Geraden

Minimum & Maximum

- Wenn die Steigung einer Funktion an einer Stelle Null ist, dann hat sie dort eine Extremstelle!
- O Die Ableitung einer Funktion entspricht der Steigung an einem gegeben x-Wert.
- o Mit der Ableitung kann man leicht Extremwerte bestimmen!
- O Ausblick Ableitungs Regeln:

https://www.studimup.de/abitur/analysis/ableitung/

Ableitungen einer Parabel

Extrem Punkte von Funktionen

- Sattelpunkt entsprichtWendepunkt
- Die Funktion dreht sich erst nach rechts und dann nach links! (Wendepunkt)

Ableitungen einer Parabel

- o P(0,0) ist eine Extremstelle
- o Achtung! Aber kein Wende-Punkt
- O Die Funktion dreht sich immer nach links.

(Auto im Drift)

Ausblick Geraden in 3D

- Koordinaten haben drei Werte für x,z und z-Achse
- o Position= Koordinate
- Steigung als Vektor
- Vektor = Pfeil im Raum

Ausblick

• Geradengleichung mit $m = \lambda$

o Ebenen-Gleichung

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

Übung zu Studienkolleg Konstanz Musteraufgaben

Aus den letzten Vorlesungen

Trigonometrische Funktionen

Trigonometrische Funktionen

- o Längste Seite = Hypotenuse
- o liegt gegenüber des größten Winkels

Hier: c & γ

$$Sinus(alpha) = sin(\alpha) = \frac{Gegenkathete \, von \, alpha}{Hypotenuse}$$

Cosinus
$$(alpha) = \cos(\alpha) = \frac{Ankathete \, von \, alpha}{Hypotenuse}$$

Tangens
$$(alpha) = \tan(\alpha) = \frac{Cos(\alpha)}{Sin(\alpha)} = \frac{Ankathete}{Gegenkathete}$$

Hypotenuse

Summe aller Winkel: $a+\beta + \gamma = 180$ °

Satz des Pythagoras für Dreiecke mit Rechtem Winkel (90 Grad)

$$a^2 + b^2 = c^2$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

Annimation:

https://www.youtube.com/watch?v=w-hXOYZ2gpo

$$Sin^2(a) = 1 - Cos^2(a)$$

Wertetabelle:

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

$$Sin^2(a) = 1 - Cos^2(a)$$

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°	
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π	
sin(a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0	
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1	

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
a°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Sinus-Satz

OBeziehung zwischen den Winkeln eines allgemeinen Dreiecks und den gegenüberliegenden Seiten.

$$\sin lpha = rac{h_c}{b}$$

$$\sin eta = rac{h_c}{a}$$

$$a \cdot \sin \beta = b \cdot \sin \alpha$$

Sinus-Satz

• Gilt in **jedem** Dreieck

$$\sin lpha = rac{h_c}{b}$$

$$\sin eta = rac{h_c}{a}$$

$$a \cdot \sin \beta = b \cdot \sin \alpha$$

Sinus-Satz

• Gilt in **jedem** Dreieck

Cosinus-Satz

O Beziehung zwischen den Winkeln eines allgemeinen Dreiecks und den Seiten.

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

$$h^2=b^2-e^2$$
 (Satz des Pythagoras für das rechte Teildreieck) $d^2=(a-e)^2=a^2-2\cdot a\cdot e+e^2$ (binomische Formel)

Cosinus-Satz Herleitung Ansatz

Cosinus-Satz

 Beziehung zwischen den Winkeln eines allgemeinen Dreiecks und den Seiten.

$$a^2 = b^2 + c^2 - 2bc \, \cos lpha$$
 $b^2 = c^2 + a^2 - 2ca \, \cos eta$ $c^2 = a^2 + b^2 - 2ab \, \cos \gamma$

Trigonomerischer Zusammenhang

o Lernspruch:

o Sinus: SiCo CoSi

Cosinus: CoCo SiSi

$$\sin(x \pm y) = \sin x \cdot \cos y \pm \cos x \cdot \sin y^{[4]}$$

 $\cos(x \pm y) = \cos x \cdot \cos y \mp \sin x \cdot \sin y^{[4]}$

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

E-Funktion Exponential Funktion

o Natürliche e-Funktion

$$oe = 2.7182...$$

Besondere Eigenschaft:

Steigung = Wert der Fkt

An jedem Punkt!

e-Funktion Erklärung und Beis

Natürliche Logarithmus: ln(x)

$$\ln(e^x) = x = e^{\ln(x)}$$

$$b^{x} = (e^{\ln(b)})^{x} = e^{\ln(b) \cdot x}$$

Logarithmus Gesetze

8.1 Formeln für Logarithmen:

$$b^x = y \iff x = \log_b y$$

$$(y \in IR^+ \text{ und } b \in IR^+ \text{ohne } \{1\})$$

z. B.
$$0.5^x = 3 \iff x = \log_{0.5} 3 = \frac{\lg 3}{\lg 0.5}$$

Der dekadische Logarithmus: $\log_{10} a =: \lg a; \lg 1 = 0; \lg 10 = 1; \lg 100 = 2;$

Der natürliche Logarithmus: $\log_e x =: \ln x$; $\ln 1 = 0$; $\ln e = 1$; (e = 2,71828... heißt Eulersche Zahl)

Logarithmus Rechengesetze

Rechengesetze für Logarithmen (u, v > 0)

$$\log_b(u \cdot v) = \log_b u + \log_b v$$

$$\log_b \left(\frac{u}{v}\right) = \log_b u - \log_b v$$

$$\log_b u^n = n \cdot \log_b u ,$$

$$\log_b 1 = 0$$

$$\log_b b^n = n$$

$$b^{\log_b n} = n$$

$$\log_c a = \frac{\log_b a}{\log_b c}$$
 die Basisumrechnungsformel

$$(a > 0 \text{ und } b, c \in IR \text{ ohne } \{1\})$$

Logarithmus als Umkerhfunktion der Exponentialfunktion

Trigonometrische Funktionen

Trigonometrische Funktionen

- o Längste Seite = Hypotenuse
- liegt gegenüber des größten Winkels

Hier: c & γ

$$Sinus(alpha) = sin(\alpha) = \frac{Gegenkathete \, von \, alpha}{Hypotenuse}$$

Cosinus
$$(alpha) = \cos(\alpha) = \frac{Ankathete \, von \, alpha}{Hypotenuse}$$

Tangens
$$(alpha) = \tan(\alpha) = \frac{Cos(\alpha)}{Sin(\alpha)} = \frac{Ankathete}{Gegenkathete}$$

Hypotenuse

Summe aller Winkel: $a+\beta + \gamma = 180$ °

Satz des Pythagoras für Dreiecke mit Rechtem Winkel (90 Grad)

$$a^2 + b^2 = c^2$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

$$Sin^2(a) + Cos^2(a) = \frac{a^2}{c^2} + \frac{b^2}{c^2} = 1$$

Annimation:

https://www.youtube.com/watch?v=w-hXOYZ2gpo

$$Sin^2(a) = 1 - Cos^2(a)$$

Wertetabelle:

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π
sin a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1

$$Sin^2(a) = 1 - Cos^2(a)$$

Winkel in Grad	0 °	30 °	45°	60°	90°	180°	270°	360°	
Winkel in Bogenmaß	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3}{2}\pi$	2π	
sin(a = y	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0	
cos a = x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1	

α	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π
a°	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
sin α	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
cos a	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1

Ziel der Veranstaltung:

Ihr besteht ALLE den Aufnahmetest für das Studienkolleg :)

Kommutativ Gesetz

$$a + b = b + a$$
$$a * b = b * a = ba$$

Distributiv Gesetz

$$oldsymbol{o} a(b+c) = ab + ac$$

$$o(b+c)/a = b/a + c/a$$

$$a \cdot (b \pm c) = a \cdot b \pm a \cdot c$$

$$a + a = a + c = a +$$

Binomische Formeln

Binomische Formeln:

$$(a+b)(c+d) = ac+ad+bc+bd$$

$$(a+b)^2 = (a+b) \cdot (a+b) = a \cdot a + a \cdot b + b \cdot a + b \cdot b = a^2 + 2 \cdot a \cdot b + b^2$$

 $(a-b)^2 = (a-b) \cdot (a-b) = a \cdot a - a \cdot b - b \cdot a + b \cdot b = a^2 - 2 \cdot a \cdot b + b^2$
 $(a+b) \cdot (a-b) = a \cdot a - a \cdot b + b \cdot a - b \cdot b = a^2 - b^2$

Dritter Ordnung:

$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

 $(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$

Erste Binomische Formel

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

Zweite Binomische Formel

$$(a-b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

Dritte Binomische Formel

$$a^2 - b^2 = (a+b) \cdot (a-b)$$

Kopfrechen Tricks

Trick mit den Binomischen Formel:

$$37^2 = (30+7)^2 = 30^2 + 2 \cdot 30 \cdot 7 + 7^2 = 900 + 420 + 49 = 1369$$

ler

$$37^2 = (40 - 3)^2 = 40^2 - 2 \cdot 40 \cdot 3 + 3^2 = 1600 - 240 + 9 = 1369$$

Kopfrechen Tricks

Addition und Subtraktion der Wurzel:

$$\sqrt{a} + \sqrt{b} = \sqrt{\left(\sqrt{a} + \sqrt{b}\right)^2} = \sqrt{a + b + 2\sqrt{ab}}$$

Mitternachtsformel

$$ax^2 + bx + c = 0$$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Auswendig lernen!

