P-uniform anytime-valid inference

ICSDS 2023 | Lisbon, Portugal

Ian Waudby-Smith

Carnegie Mellon University Pittsburgh, PA, USA

Ian Waudby-Smith
CMU Statistics

Aaditya Ramdas CMU Statistics

Given $X_1, \ldots, X_n \sim P$ with mean $\mu_P \equiv \mathbb{E}_P(X)$ and finite variance,

Given $X_1, \ldots, X_n \sim P$ with mean $\mu_P \equiv \mathbb{E}_P(X)$ and finite variance,

$$\lim_{n \to \infty} \mathbb{P}_P \left(\mu_P \notin \dot{C}_n \right) = \alpha,$$

Given $X_1, \ldots, X_n \sim P$ with mean $\mu_P \equiv \mathbb{E}_P(X)$ and finite variance,

$$\lim_{n \to \infty} \mathbb{P}_P \left(\mu_P \notin \dot{C}_n \right) = \alpha,$$

where $\alpha \in (0, 1)$ and

$$\dot{C}_n := \frac{1}{n} \sum_{i=1}^n X_i \pm \frac{\widehat{\sigma}_n \cdot \Phi^{-1}(1 - \alpha/2)}{\sqrt{n}}.$$

Given $X_1, \ldots, X_n \sim P$ with mean $\mu_P \equiv \mathbb{E}_P(X)$ and finite variance,

$$\lim_{n \to \infty} \mathbb{P}_P \left(\mu_P \notin \dot{C}_n \right) = \alpha,$$

where $\alpha \in (0,1)$ and

$$\dot{C}_n := \frac{1}{n} \sum_{i=1}^n X_i \pm \frac{\widehat{\sigma}_n \cdot \Phi^{-1}(1 - \alpha/2)}{\sqrt{n}}.$$

Only holds for a *fixed* and *prespecified* sample size n.

(Asymptotic) confidence sequences enable statistical inference at stopping times.

For example, continuously monitoring the CIs of a sequential experiment.

What does this mean mathematically?

What does this mean *mathematically*?

The guarantees of asymptotic confidence sequences $(\bar{C}_{k}^{(m)})_{k=m}^{\infty}$ hold *uniformly* for all sufficiently large sample sizes $k \ge m$.

What does this mean *mathematically*?

The guarantees of asymptotic confidence sequences $(\bar{C}_{k}^{(m)})_{k=m}^{\infty}$ hold *uniformly* for all sufficiently large sample sizes $k \ge m$.

Confidence interval	Confidence sequence
$\lim_{n \to \infty} \mathbb{P}_P \left(\mu_P \notin \dot{C}_n \right) = \alpha$	$\lim_{m \to \infty} \mathbb{P}_P \left(\exists \mathbf{k} \geqslant m : \mu_P \notin \bar{C}_{\mathbf{k}} \right) = \alpha$

What does this mean *practically*?

What does this mean practically?

Note that asymptotic CIs have an even stronger *P-uniform* guarantee.

Note that asymptotic CIs have an even stronger *P-uniform* guarantee. If

$$\sup_{P\in\mathcal{P}} \mathbb{E}_P |X - \mu_P|^{2+\delta} < \infty,$$

then the guarantees of \dot{C}_n hold *uniformly* in \mathcal{P} :

$$\lim_{n \to \infty} \sup_{P \in \mathcal{P}} \mathbb{P}_P \left(\mu_P \notin \dot{C}_n \right) = \alpha.$$

This paper: P-uniform anytime-valid inference

This paper: P-uniform anytime-valid inference

Can similar uniform statements be made for confidence **sequences**?

This paper: P-uniform anytime-valid inference

Can similar uniform statements be made for confidence **sequences**?

	Confidence interval	Confidence sequence
<i>P</i> -pointwise	$\lim_{n \to \infty} \mathbb{P}_P \left(\mu_P \notin \dot{C}_n \right) = \alpha$	$\lim_{m \to \infty} \mathbb{P}_P \left(\exists \mathbf{k} \geqslant m : \mu_P \notin \bar{C}_{\mathbf{k}} \right) = \alpha$
P -uniform	$\lim_{n \to \infty} \sup_{P \in \mathcal{P}} \mathbb{P}_P \left(\mu_P \notin \dot{C}_n \right) = \alpha$	$\lim_{m \to \infty} \sup_{P \in \mathcal{P}} \mathbb{P}_P \left(\exists k \geq m : \mu_P \notin \bar{C}_k \right) = \alpha$

The answer is "Yes", but this required first filling a gap in the probability literature (i.e. strong invariance principles).

The answer is "Yes", but this required first filling a gap in the probability literature (i.e. strong invariance principles).

Informal: Need to show that for iid $(X_n)_{n=1}^{\infty}$, there exist standard Gaussians $(Z_n)_{n=1}^{\infty}$ so that

$$\sum_{i=1}^{n} \frac{X_i - \mu_P}{\sigma_P} - \sum_{i=1}^{n} Z_i = o\left(\sqrt{n \log \log n}\right),\,$$

P-almost surely uniformly in $P \in \mathcal{P}$.

Theorem: \mathcal{P} -uniform asymptotic confidence sequences

Suppose $(X_n)_{n=1}^{\infty}$ have \mathcal{P} -uniformly bounded $(2+\delta)^{\text{th}}$ moments. Letting $\bar{C}_k^{(m)}$ be given by

$$\bar{C}_{k}^{(m)} := \widehat{\sigma}_{k} \sqrt{\frac{\Psi^{-1}(1-\alpha) + \log(k/m)}{k}}.$$

Theorem: P-uniform asymptotic confidence sequences

Suppose $(X_n)_{n=1}^{\infty}$ have \mathcal{P} -uniformly bounded $(2+\delta)^{\text{th}}$ moments. Letting $\bar{C}_{\mathbf{k}}^{(m)}$ be given by

$$\bar{C}_{k}^{(m)} := \widehat{\sigma}_{k} \sqrt{\frac{\Psi^{-1}(1-\alpha) + \log(k/m)}{k}}.$$

Then the asymptotic guarantees of $(\bar{C}_{k}^{(m)})_{k=m}^{\infty}$ hold *uniformly* in \mathcal{P} :

$$\lim_{m \to \infty} \sup_{P \in \mathcal{P}} \mathbb{P}_P \left(\exists k \ge m : \mu_P \notin \bar{C}_k^{(m)} \right) = \alpha.$$

Thank you! ianws.com