MATH 601 HOMEWORK (DUE 9/4)

HIDENORI SHINOHARA

Exercise 0.1. Exercise 2.2 Let $*: G \times S \to S$ be a left action of G. Show that $s \star g = g^{-1} * s$ defines a right action of G on S.

Proof. Let $s \in S, g, h \in G$ be given.

$$(s \star g) \star h = h^{-1} * (s \star g)$$

$$= h^{-1} * (g^{-1} * s)$$

$$= (h^{-1}g^{-1}) * s$$

$$= (gh)^{-1} * s$$

$$= s \star (gh).$$

Let $e \in G$ denote the identity element and let $s \in S$ be given.

$$s \star e = e^{-1} * s$$
$$= e * s$$
$$= s.$$

Therefore, \star is indeed a right action of G on S.