Nichtdeterministische Endliche Automaten

Definition:

Ein NEA wird immer so angegeben A = (X, S, S_0, δ, F)

X → Endliches Eingabealphabet -> nie leer

S → Endliche Zustandsmenge -> nie leer

 $S_0 \rightarrow Menge der Startzustände \subseteq S$

 $\delta \rightarrow$ Zustandsübergangsfunktion: $\delta: S \times X \rightarrow P(S)$

 $F \rightarrow$ Endzustände, $F \subseteq S$

A = ({Alphabet}, {alle Zustände}, {Startzustand}, δ gemäß Graph, {Endzustand}) *Hinweis:* Nie vergessen das Tupel hinzuschreiben, das führt sonst unnötigen Punktabzügen!

Aufgabe 1:

Gegeben ist das Alphabet $X = \{X, Y, Z\}$.

Konstruiere einen nichtdeterministischen endlichen Automaten, der alle Wörter akzeptiert, welche die Zeichenkette XXYZX enthalten.

Aufgabe 2:

Gegeben sei folgender nichtdeterministischer endlicher Automat. L = ($\{a, b\}, \{S_0, S_1, S_2\}, \{S_0\}, \delta$ gemäß Graph, $\{S_2\}$)

Konstruiere den zugehörigen deterministischen endlichen Automaten in Form einer Zustandsübergangsfunktion als Tabelle und anschließend als Graphen.

Aufgabe 3:

Gegeben sei folgender nichtdeterministischer endlicher Automat:

A = $({a, b}, {S_0}, {S_1}, {S_2}), {S_0}, \delta$ gemäß Tabelle, ${S_2}$

δ	а	b
{S₀}	{S ₁ }	{S ₂ }
{S ₁ }	$\{S_1\}, \{S_2\}$	{}
{S ₂ }	{}	{}

Konstruiere den zugehörigen endlichen deterministischen Automaten. Gib das Tupel und die Zustandsübergangsfunktion als Tabelle an.

Aufgabe 4:

Konstruiere mit den mit dem Alphabet:

L = {xⁿ y^m x^k | n, m \in N, k \in N₀ \wedge k mod 3 \equiv 0 } einen nicht deterministischen endlichen Automaten.