Dashboard ► My courses ► 2301-CVL100 ► 16 November - 22 November ► Quiz 3

Started on	Sunday, 19 November 2023, 8:04 AM
State	Finished
Completed on	Sunday, 19 November 2023, 8:20 AM
Time taken	15 mins 34 secs
Grade	7.00 out of 10.00 (70 %)

Not answered Marked out of 1.00	How much time (in sec) the gas spends near the wall of the cyclone for effective capturing of the particle of diameter 2 µm. The diameter of outer helix is 1.8 m. The centrifugal velocity is 27 m/s. [Round off answer to 2 decimal place] Time spend by gas inside the cyclone (in sec) One possible correct answer is: 1.2566370614359	
	Your answer is incorrect.	
Question 5 Correct Mark 1.00 out of 1.00	The power generation unit in Korba has ESP for removal of 94 percent of the particles. Plant engineer suggested to improve the efficiency by increasing the drift velocity by 1.9 times using an additive. If we use the suggested additive and if the statement is true, what will the improved collection efficiency be? [Round off answer to 1 decimal place] Improved collection efficiency of ESP (in %) 99.5 One possible correct answer is: 99.523034050747	
	Your answer is correct.	
Question 6 Correct Mark 1.00 out of 1.00	Which control technology(ies) is best for removal of fine particles from corrosive flue gas emission from a steel industry. Select one: a. Adsorption b. Electrostatic precipitator c. Wet scrubber followed by cyclone d. Baghouse filter combined with electrostatic precipitator e. Baghouse filter followed by wet scrubber	
	Your answer is correct. The correct answer is: Wet scrubber followed by cyclone	

