MA 372 : Stochastic Calculus for Finance July - November 2022

Department of Mathematics, Indian Institute of Technology Guwahati Exercises 6

November 17, 2022

1. Suppose that the price of a stock $\{S(t); t \geq 0\}$ follows geometric Brownian motion with drift 0.06 and volatility 0.2 so that it satisfies the stochastic differential equation

$$dS(t) = 0.06 S(t) dW(t) + 0.2 S(t) dt.$$

If the price of the stock at time zero is 40, determine the probability that the price of the stock at time t = 5 is less than 50.

- 2. Let $\mathcal{F}(t)$ be the filtration generated by Brownian motion W(t). Find the martingale representation for the following martingales;
 - a) $M(t) = \mathbb{E}[W^2(T)|\mathcal{F}(t)]$
 - b) $M(t) = \mathbb{E}[W^3(T)|\mathcal{F}(t)]$
 - c) $M(t) = \mathbb{E}[\exp{\{\sigma W(T)\}}|\mathcal{F}(t)]$
- 3. Let r(t) and $\sigma(t)$ be non-random functions. Suppose S(t) satisfies the following:

$$S(t) = S(0) \exp \left\{ \int_0^t \sigma(s) d\tilde{W}(s) - \frac{1}{2} \int_0^t (r(s) - \frac{1}{2} \sigma^2(s)) ds \right\}$$

where $\tilde{W}(t)$ is a Brownian motion under the risk neutral measure $\tilde{\mathbb{P}}$. The price of an European call at time t, given by the risk-neutral valuation formula is

$$c(0, S(0)) = \tilde{\mathbb{E}} \left[\exp \left\{ - \int_{0}^{T} r(s) ds \right\} \left(S(T) - K \right)^{+} \right]$$

Let

$$BSM(T, x, K, R, b) = xN\left(\frac{1}{b\sqrt{T}}\left[\log\left(\frac{x}{K}\right) + \left(R + \frac{b^2}{2}\right)T\right]\right)$$
$$-\exp\{-RT\}KN\left(\frac{1}{b\sqrt{T}}\left[\log\left(\frac{x}{K}\right) + \left(R - \frac{b^2}{2}\right)T\right]\right)$$

Show that

$$c(0, S(0)) = BSM(T, S(0), K, \frac{1}{T} \int_0^T r(t)dt, \sqrt{\frac{1}{T} \int_0^T \sigma^2(t)dt})$$

4. The BSM price of an European call at time zero, if the stock price is x is given by

$$c(0,x) = \tilde{\mathbb{E}}\left[\exp\left\{-rT\right\}\left(S(T) - K\right)^{+}\right]$$
$$= \tilde{\mathbb{E}}\left[\exp\left\{-rT\right\}\left(x\exp\left\{\sigma\tilde{W}(T) + (r - \frac{1}{2}\sigma^{2})T\right\} - K\right)^{+}\right]$$

Now if $h(s) = (s - K)^+$, then

$$\begin{array}{rcl} \frac{dh}{ds} & = & 0, \text{ if } s < K \\ & = & 1, \text{ if } s > K \end{array}$$

Using this and the fact that $\mathbb{P}(S(T) = K) = 0$. Show that $c_x(0, x) = \hat{\mathbb{P}}(S(T) > K)$ where $\hat{\mathbb{P}}$ is a probability measure equivalent to $\tilde{\mathbb{P}}$. Show that $\hat{W}(t) = \tilde{W}(t) - \sigma t$ is a Brownian motion under $\hat{\mathbb{P}}$. Rewrite S(T) in terms of $\hat{W}(T)$. Finally conclude that $\hat{\mathbb{P}}(S(T) > K) = N(d_+(\tau, x))$ where N(x) is the normal distribution function and

$$d_{+}(T,x) = \frac{1}{\sigma\sqrt{T}}[\log(\frac{x}{K}) + (r + \frac{\sigma^{2}}{2})T].$$

5. Let W(t), $0 \le t \le T$ be a Brownian motion on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, and let $\mathcal{F}(t)$, $0 \le t \le T$ be a filtration for this Brownian motion. Consider a stock price process whose differential is

$$dS(t) = \mu S(t)dt + \sigma S(t)dW(t), \ \mu, \sigma \in \mathbb{R}, \sigma > 0.$$

- (i) Write down the probability measure \mathbb{Q} under which the discounted stock price $Y(t) = e^{-rt}S(t)$ is a martingale with respect to $\mathcal{F}(t)$.
- (ii) Determine $d(e^{-rt}S(t))$ under the risk-neutral probability measure \mathbb{Q} .
- 6. Suppose the market has an arbitrage. So there is a portfolio value process satisfying $X_1(0) = 0$ and $\mathbb{P}(X_1(T) \ge 0) = 1$, $\mathbb{P}(X_1(T) > 0) > 0$, for some positive time T.
 - a) Show that if $X_2(0)$ is positive, then there exists a portfolio value process $X_2(t)$ satisfying at $X_2(0)$ and satisfying

$$\mathbb{P}\left(X_2(T) \ge \frac{X_2(0)}{D(T)}\right) = 1 \text{ and } \mathbb{P}\left(X_2(T) > \frac{X_2(0)}{D(T)}\right) > 0$$

- b) Suppose that the market has a portfolio process $X_2(t)$ such that $X_2(0)$ is positive and the above holds. Then show that the model has a portfolio value process $X_1(t)$ which is an arbitrage.
- 7. Consider a financial market consisting of a risk-free asset B(t) and a stock S(t), whose price at time t, t > 0 satisfy the following differentials:

$$dB(t) = 2 B(t)dt$$

$$dS(t) = S(t) \Big(7 dt + 2 dW(t) \Big)$$

- (i) Is the above market arbitrage free?
- (ii) Is the above market complete?

- (iii) Find the risk-neutral probability measure $\mathbb Q$ for the above market.
- (iv) Find dS(t) in terms of $\tilde{W}(t)$, where $\tilde{W}(t)$ is a Brownian motion under \mathbb{Q} .
- (v) Find the price of a European call whose payoff at time T is represented by $(S(T) K)^+$ by using risk-neutral pricing formula.
- 8. Consider a market with m stocks, each satisfying the stochastic differential equation

$$dS_i(t) = \alpha_i(t)S_i(t)dt + S_i(t)\sum_{i=1}^d \sigma_{ij}(t)dW_j(t),$$

for $i=1,2,\ldots,m$ and where $W=(W_1,W_2,\ldots,W_d)$ is a d-dimensional Brownian motion. Set $\sigma_i(t)=\sqrt{\sum_{j=1}^d\sigma_{ij}^2(t)}$, which we assume is never zero. Define $B_i(t)=\sum_{j=1}^d\int_0^t\frac{\sigma_{ij}(u)}{\sigma_i(u)}dW_j(u),\ i=1,2,\ldots,m$.

- (a) Prove that each $B_i(t)$ is a continuous martingale
- (b) Use Ito's product rule to show that $Cov(B_i(t), B_k(t)) = \mathbb{E}\left(\int_0^t \frac{\sum_{j=1}^d \sigma_{ij}(u)\sigma_{kj}(u)}{\sigma_i(u)\sigma_k(u)}du\right)$.