THE SOUTH AFRICAN MATHEMATICS OLYMPIAD

SECOND ROUND 1998: JUNIOR SECTION: GRADES 8 AND 9

SOLUTIONS AND MODEL ANSWERS

PART A: (Each correct answer is worth 3 marks)

2. ANSWER: A
L=12
B=2+8=10

$$\therefore$$
 P=2(10+12)=44

The original figure has the same perimeter as has the figure with the dotted lines.

3. ANSWER: B

$$6 \odot 2 = 6 \times 2 + \frac{6}{2}$$

 $12 + 3 = 15$

5.

4. ANSWER: A
$$A = \frac{1}{2}b \times \bot h$$

$$\therefore 24 = \frac{1}{2} \times 8 \times MP$$

$$\therefore MP = 6$$

$$MP = 6 \text{ and } PQ = 8 \text{ and}$$

$$MQ^{2} = MP^{2} + PQ^{2} \qquad (Pythagoras)$$

$$\therefore MQ = \sqrt{6^{2} + 8^{2}} = 10$$
But perimeter = $(MQ + PQ + MP)$

$$\therefore Perimeter is $10 + 8 + 6 = 24 \text{ cm}$$$

ANSWER: D

Total number of oranges is
$$m \times p$$
. Oranges lost = $mp - \frac{3}{4}mp = \frac{1}{4}mp$ and $\frac{1}{4}$ is the same as 25%

6. ANSWER: C

If the newspaper consists of 24 pages, then pp 1 and 2 have to be on the same sheet as pp 23 and 24. Pp 3 and 4 on same sheet together with pp 21 and 22. Thus 6 and 20 are on the same sheet together with pp 5 and 19.

Or look at it this way:

PART B: (Each correct answer is worth 5 marks)

7. ANSWER: D

LCM of 15 and 20

$$15 = 3 \times 5$$

$$20 = 2 \times 2 \times 5$$

LCM:
$$15 \times 4 = 60$$

$$60 \div 15 = 4$$

Thus after 4 rotations with the 15 teeth gear the marked teeth will be together again.

Or

Thus after 4 rotations with the 15 teeth gear and 3 rotations with the 20 teeth gear the marked teeth will be together again.

8. ANSWER: D

Each one is the power of 2 minus the previous expression:

(A)
$$2^2 - 2 + 1 = 4 - 2 + 1 = 3$$

Prime

(B)
$$2^3 - (2^2 - 2 + 1) = 8 - 3 = 5$$

Prime

(C)
$$2^4 - (2^3 - 2^2 + 2 - 1) = 16 - 5 = 11$$

Prime

(D)
$$2^5 - (2^4 - 2^3 + 2^2 - 2 + 1) = 32 - 11 = 21$$
 Not Prime

(E)
$$2^6 - (2^5 - 2^4 + 2^3 - 2^2 + 2 - 1) = 64 - 21 = 43$$
 Prime

9. ANSWER: C

The algebraic method:

Take length as x and width as y

$$\therefore Area_{orig} = l \times b$$

 $Perimeter_{orig} = 2(l+b)$

$$\therefore A_{orig} = xy$$

$$P_{orig} = 2(x+y)$$

For 2x and 2y:

$$A_{new} = 2x \times 2y = 4xy$$

$$P_{new} = 2(2x + 2y) = 2[2(x + y)]$$

- .. New area is 4 times the original area
- ∴ New perimeter is double the original perimeter

or

Take a few examples say:

For l = 2 and b = 1:

$$A=2$$
 and $P=6$

For l = 4 and b = 2:

$$A = 8$$
 and $P = 12$

Rule has to work for every special case of length and width

10. <u>ANSWER:</u> C

Top layer has 1 orange

2nd layer has 4 oranges

3rd layer has 9 oranges

4th layer has 16 oranges

5th layer has 25 oranges

6th layer has 36 oranges

Thus total is 1+4+9+16+25+36=91

11. ANSWER: E

$$n = 30^{\circ} + (180^{\circ} - m) (ext. \angle of \Delta)$$

$$n + m = 210^{\circ}$$

but
$$m = \frac{2}{3}n$$
 or $n = \frac{3}{2}m$

$$\therefore m + \frac{3}{2}m = 210^{\circ}$$

$$\therefore \frac{5}{2}m = 210^{\circ} \qquad \therefore m = 84^{\circ}$$

12. ANSWER: B

For each pair of two colours there are 4 possibilities:

$$3\times 4=12$$

Red & Green	Red & Yellow	Green & Yellow
RRRRG	YYYYR	GGGGY
RRRGG	YYYRR	GGGYY
RRGGG	YYRRR	GGYYY
RGGGG	YRRRR	GYYYY

There is a maximum number of 12 learners in the class.

13. ANSWER: E

Upper rectangle has area 2.

Lower rectangle has area 3.

Therefore the ratio a:b is 2:3

14. <u>ANSWER:</u> E

$$3^1 = 3$$
 If looking at the last digits

$$3^2 = 9$$
 you get the following pattern:

$$3^4 = 81$$

$$3^5 = 243 \, etc.$$

Note that when the exponent is a multiple of 4, the answer ends in 1. 1998 is 2 less than 2000 (which is a multiple of 4), and hence ends in 1.

Therefore 3^{1998} ends in 9, and $\frac{9}{5}$ gives a remainder of 4.

PART C: (Each correct answer is worth 7 marks)

15. ANSWER: D

Fig.1
$$\rightarrow \frac{1}{2}(1^2 + 1) = 1$$

Fig.2 $\rightarrow \frac{1}{2}(3^2 + 1) = 5$
Fig.3 $\rightarrow \frac{1}{2}(5^2 + 1) = 13$
Fig.15 $\rightarrow \frac{1}{2}(29^2 + 1) = 421$

16. ANSWER: C

AB: 360° in 2 min

 $\therefore 180^{\circ} / \min$

1080° in 1min CD:

 $\therefore 1080^{\circ}$ / min

After *x* min they meet:

AB has covered 180x degrees and CD 1080x degrees:

 $180x + 1080x = 90^{\circ}$ (Total degrees moved are 90°)

$$\therefore 1260x = 90^{\circ}$$

$$\therefore x = \frac{1}{14} \min$$

$$\therefore x = 4\frac{2}{7}\sec \qquad (\frac{1}{14} \div 60)$$

17. ANSWER: B

Let *x* be the side length of square ABCD and y the side length of square XYCZ

and
$$DY^2 = x^2 + y^2$$
 ... 2 (Pyth. $\triangle DYC$)
 $\therefore 100 = x^2 + y^2$ (DY = 10, given)

$$\therefore y^2 = 100 - x^2$$

D

$$\therefore 2x^2 = 130$$

$$\therefore x^2 = 65 \qquad \therefore x = \sqrt{65}$$

$$\therefore CD = \sqrt{65}$$

$$18s + 6m = 5l$$
 ... eq. 1
 $2m + 1l = 10s$... eq. 2
 $?s = l$

$$(3 \times eq. 2)$$
 $6m + 3l = 30s$
Minus eq. 1: $18s + 6m = 5l$

$$-18s +3l = 30s -5l$$

$$\therefore 8l = 48s \quad \therefore l = 6s$$

Thus 6 small marbles weigh as much as 1 large marble

19. ANSWER: D

Take 2 houses with a tree between them, the total distance the children have to walk to the tree is exactly equal to the distance between the two houses.

If the tree was \underline{not} between the houses, the total distance the children have to walk to the tree would be more than the distance from one house to the other. H_1 H_2 T_2

The tree that we are looking for, therefore has to be <u>between</u> the 2 houses for the shortest distance. Thus we need to find a tree so that there are exactly as many houses on both sides of the tree. The answer is D.

20. ANSWER: E Follow steps (1) to (6)

20. <u>711</u>	15 WER. L TOHO	w steps (-) to (0)		
Girls	Distance (A)	Speed (S)		Time (t)
A				100
	100	S_a		$I_a - \overline{S_a}$
В		$s - \frac{90}{}$		
	90	$\frac{\mathbf{S}_b - \mathbf{T}_a}{\mathbf{t}_a}$	(3)	
В		s - ⁹⁰		t - 100t _a
	100	$\frac{\mathbf{S}_b - \mathbf{T}_a}{\mathbf{t}_a}$		10^{-1} 90 (4)
С	$A_c = \frac{72}{t} \times t_a = 72 \text{ m}$	$S_c = \frac{80}{1000} = \frac{80}{1000} \times 90 = \frac{1}{1000}$	72	
	$A_c = \frac{1}{t_a} \wedge t_a = 12 \text{ m}$	$S_c = \frac{80}{t_b} = \frac{80}{100t_a} \times 90 =$	$\overline{t_a}$ (5))

Or B ran $\frac{9}{10}$ of the distance of A and C ran $\frac{8}{10}$ of the distance of B. Thus C ran

$$\frac{8}{10} \times \frac{9}{10} = \frac{72}{100}$$
 the distance of A. Thus C ran 72 m when A finished (100 m),

therefore C was 28 m behind A.

THE END