Let's recap where we are.

- Isotropic/homogenous universe leads to Robertson-Walker metric
- Using this metric in Einstein's General Relativity leads to the Friedmann Equations.
- The Friedmann equations determine the cosmic scale evolution of the universe.
- So are we done with this part of cosmology?
- Do question (1) on the worksheet and S T O P

(1b)
$$1 - \Omega(t) = \frac{H_o^2 (1 - \Omega_o)}{H(t)^2 a(t)^2}$$
 (1d) $|1 - \Omega(t)| \le 2 \times 10^{-6}$

(1c)
$$1 - \Omega(t) = \frac{(1 - \Omega_o) a^2}{\Omega_{r,o} + a \Omega_{m,o}}$$
 (1e) $|1 - \Omega(t)| \le 7 \times 10^{-16}$

(1f)
$$|1 - \Omega(t)| \le 2 \times 10^{-62}$$

This result is referred to as the *Flatness problem*. The problem simply stated is that to see the amount of *flatness* we see today requires Ω to be within 2×10^{-62} of unity. That's an incredible number.

We keep saying that the universe is isotropic and homogeneous, and that's a good thing we've said. But consider

- At the time of the last scattering, the distance to the horizon is 0.251 Mpc
- Today that distance translates to an angular separation of 1.1°
- The largest temperatures fluctuations in the CMB are on the order of 30 μ K
- There are about 40,000 patches in the sky of angular separation 1.1°
- Do question (2) on the worksheet and S T O P

This problem is referred to as the *horizon* problem.

The monopole problem

But Maxwell's equation allow for 🖁 n (and/or s)

These *monopoles* are not seen even though (at least in most modern theories) they should be as prevalent as *dipoles*.

Inflation to the rescue. Do question (3 a) on the worksheet and STOP. Finish question (3) on the worksheet and STOP

(3b)
$$P < -\frac{\epsilon}{3}$$
 (3c) $P = w \cdot \epsilon \Rightarrow w < -\frac{1}{3}$ (3d) $\frac{\ddot{a}}{a} = \frac{\Lambda}{3}$ $\left(\frac{\dot{a}}{a}\right)^2 = \frac{\Lambda}{3}$ solving for a $a \propto e^{H_i t} \left(H_i = \sqrt{\frac{\Lambda}{3}}\right)$

How does this work to solve problems?

Monday—Week08

Suppose universe had the following behavior
$$a(t) = \begin{cases} \sqrt{t/t_i} & t < t_i \\ ae^{H_i(t-t_i)} & t_i < t < t_f \end{cases}$$
 (pay attention to subscripts on t)

Do question (4 a) and STOP

- This scenario describes a universe that up until time t_i is growing `` normally",
- then between t_i and t_f undergoes exponential expansion
- After t_f, it resumes ``normal growth"

It is usual in studying inflation to compare the how much the scale factor changed between t_i and t_f by forming the ratio:

$$\frac{a(t_f)}{a(t_i)} = e^N$$
; where $N \equiv H_i(t_f - t_i)$; $H_i \equiv \sqrt{\frac{\Lambda}{3}}$

N is called the number of *e*-foldings

Finish problem 4

(4 b)
$$\epsilon_{\Lambda} = \frac{3c^2}{8\pi C} H_i^2 \approx 10^{105} \text{ TeV m}^{-3}$$
 (4 c) $|1 - \Omega(t_f)| = 2^{-2N} |1 - \Omega(t_i)|$ (4 d) $|1 - \Omega(t_f)| = 2^{-2N}$

The horizon problem. Recall that the horizon distance is given by the relation

$$d_{\text{hor}}(t) = a(t)c \int_0^t \frac{dt'}{a(t')}$$

Do question (5a) on the worksheet and STOP Do question (5b) and (5c) and STOP

(5 b)
$$d_{\text{hor}}(t_i) = a_i c \int_0^t \frac{dt'}{a_i \sqrt{t/t_i}} = 2ct_i$$
 (5c) $d_{\text{hor}}(t_f) = a_i c e^N \int_0^{t_i} \frac{dt'}{a_i \sqrt{t/t_i}} + \int_{t_i}^{t_f} \frac{dt}{a_i \exp[H_i(t - t_i)]}$

When N is large, then the integrals in (5c) yield $d_{\text{hor}}(t_f) = e^N c \left(2t_i + H_i^{-1}\right)$

Finish question (5) on the worksheet and STOP

$$d_{\text{hor}}(t_i) = 6 \times 10^{-28} \,\text{m}$$
 $d_{\text{hor}}(t_f) = 15 \,\text{m}$