k-Nearest Neighbor (k-NN) as Classification

Previous Class

- Advanced Data Management & Graphics in R/RStudio
- Advanced Operations
 - > Tidying
 - Binding
 - > Appending
 - > Merging
 - ➤ Long ↔ Wide
 - **>**

Announcement

- Homework 1 due by midnight
- Midterm1
 - Next Tuesday (19th April 2022); Multiple choice quiz on canvas
 - Topics discussed until the end of the next class
 - > Open book
 - ➤ Conceptual knowledge
 - ➤ Identifying the appropriateness of different techniques for different business problems/scenarios
 - > Identifying strengths and shortcomings of the techniques
 - ➤ Interpret results of analyses
 - Code errors, output

Today's class

- Advanced operations Handling missing values
- k-Nearest Neighbor (k-NN) as Classification
- Application of *k*-NN in R/RStudio and Inference

Handling Missing values

- Missing numeric/character data in R is represented by NA
- Missing values can lead to incorrect analysis
- Pay keen attention to missing values
- Actions
- > Delete observations
- Replace with a value
- No correct action
- Depends on data, context, the extent to which it is a problem
- Make conscious action and support why you are doing it

Mandatory steps

- Open RStudio project
- Open "data_mgmt2_code_complete.R" file within RStudio present in the path "oba_455_555_ddpm_r/rproject/d.data_mgmt2"

Supervised Learning

Regression

- Goal is to predict a continuous numerical outcome
- Predicting House price
- Predicting patients' length of stay (LOS) in an outpatient department
- Predicting Sales of a brick & mortar retail store based on traffic, labor

Classification

- ➤ Goal is to predict a categorical outcome
- > Two classes: Is the email spam or not spam?

Is the tumor benign or malignant?

Is the arriving patient high risk or low risk?

Multi-class: Classifying fruits into Apple, Orange, Banana based on shape, color...

Classifying a new movie into one of the groups - PG, TV-14, G

k-NN

- Simple Machine Learning/Predictive algorithm
- Used for
 - ➤ Classification (of a categorical outcome)
 - Regression (of a numerical outcome)
- Method relies on finding "similar" observations in the data
- Referred as "Neighbors."
- "Neighbors" are used to derive a prediction for a new observation

k-NN as Classification

- Identify k neighboring observations in the dataset that are similar to the new observation you wish to classify
- Assign the **predominant class** of neighbors to a new observation

- Identify 1 observation in the dataset that is near to the new observation you wish to classify
- Assign the class of neighboring observation to new observation
- Sample data with three variables V1, V2, Class

V1	V2	Class
64	94	1
18	70	2
24	9	1
46	20	2
72	91	2
66	1	1
12	11	1

V1	V 2	Class
60	60	٠.

New observation

:

Scatter plot

New observation (yellow point)

New observation prediction = **Class 1**

New observation prediction = **Tie**

New observation prediction = **Class 1 (predominant)**

New observation prediction = Class 2 (predominant)

- Neighbors
 - Nearest to the new observation
 - ➤ What do you mean by **Nearest**? Distance?
 - **Euclidean distance:** Computationally cheap and most popular
- Other distance measures
 - > Bregman divergence
 - Mahalonobis distance
 - > Bhattacharya distance
 - > Hellinger distance
 - Manhattan distance

•

:

Euclidean Distance

$$\sqrt{(X2-X1)^2+(Y2-Y1)^2}$$

Euclidean Distance

- Numbers must be same unit/unit free
- In practice, numbers have units
- Example: Toyota Corolla
 - > price variable is in euro
 - **km** variable is in **kilometers**
- Distance computation should be unit free
- X1, X2, Y1, Y2 all must be unit free/same unit
- Solution
 - Standardization/Normalization

Standardization/Normalization

- Transformation of data
- Subtract mean from each observation
- Divide the result by standard deviation

X	
64	m = mean(c(64, 18, 24, 46, 72))
18	- 1/ /// 40 04 4/ 50))
24	s = sd(c(64, 18, 24, 46, 72))
46	$X_norm = (X-m)/s$
72	(11 111)/ 0

X_norm	
0.8076	
-1.1273	
-0.8749	
0.0505	
1.1441	

- Mean of normalized data is 0
- Standard deviation of normalized data is 1

Data on Riding Mowers

 Riding-mower manufacturer would like to find a way of classifying families in a city into an owner or non-owner

Attributes

Income: Income of the household in thousand of dollars

Lot Size: Lot size in thousand of square foot

➤ Ownership: Owner or Non-owner

Income	Lot_Size	Ownership
60	18.4	Owner
85.5	16.8	Owner
64.8	21.6	Owner
61.5	20.8	Owner

Income	Lot_Size	Ownership
75	20	5

New observation

:

Scatter plot of entire data

Owner (blue triangle) or Nonowner (red circle)

Scatter plot of entire data post normalization

- If k = 1, prediction is Nonowner
- If k = 2, prediction in theory "tie" (algorithm gives "Nonowner" randomly)
- If k = 3, prediction is Owner
- If k = 4, prediction is Owner
- If k = 5, prediction is Owner

Today's class mandatory steps

- Create a folder name "e.knn_classifer" within the folder
 "oba_455_555_ddpm_r/rproject"
- Download "knn_classifier_code.R", and all csv files from canvas
- Place all downloaded files in
 - "oba_455_555_ddpm_r/rproject / e.knn_classifer"
- Open RStudio project
- Open "knn_classifier_code.R" file within RStudio

k-NN as classification model in R

- Step 1: Main data
 - > Standardize the numeric input variables
 - Convert input character variables into dummy (binary) variables
- Step 2: Pick only standardized input numeric & dummy variables in main data
 - Standardized main data
- Step 3: New data prediction of interest
 - > Standardize the numeric input variables
 - Convert input character variables into dummy variables
- Step 4: Pick only standardized input numeric & dummy variables in new data
 - Standardized new data
- Step 5: Track the output variable in the main data
 - Main data output
- Step 6: Execute the function "knn" to predict for new observation

Choosing k

- Too Low (E.g., k = 1)
 - We may be fitting noise in the data
 - ➤ Ignoring a lot of information
 - Overfitting
- Too High (E.g., k = 20/number of observations in the data)
 - Loss of ability to capture local structure of the data
 - Underfitting
- Balance between overfitting and underfitting
- How to achieve balance?
- How to choose *k*?
 - Best Classification/Regression (Prediction) performance
 - We will discuss this is more scientifically 2-3 classes from now

(Dis)Advantages of k-NN

- Simplicity and lack of parametric assumptions
- Time taken to find nearest neighbors in large datasets can be unaffordable
 - > Reduce time taken to compute distance by using **dimension reduction** techniques
 - Sophisticated data structures such as **search trees** to speed up identifying the nearest neighbor
- Number of observations required increases exponentially with the number of variables/predictors in the data
 - E.g., in *k*-NN as a classifier for ridge mowers data, we have two variables Income, Lot Size
- Lazy learner
 - For every prediction, the algorithm computes distances for all the data points

Next class

- k-Nearest Neighbor (k-NN) as Regression
- Application of *k*-NN in R/RStudio and Inference

Thank You