# Lesson 5

Sequence mapping part II

### NGS reads



# Sequencing depth



# Sequence mapping - BLAST







|   | Α                    | G  | С  | Т  |
|---|----------------------|----|----|----|
| Α | 10                   | -1 | -3 | -4 |
| G | -1                   | 7  | -5 | -3 |
| С | -3                   | -5 | 9  | 0  |
| Т | 10<br>-1<br>-3<br>-4 | -3 | 0  | 8  |

### By the end of this lesson you will...

- Know how to use BWA for short read mapping
- Understand the Sequence Alignment Map (SAM) and BAM file formats
- Be able to view and manipulate SAM/BAM files using samtools
- Be familiar with the IGV genome browser and how to use it for viewing BAM files

### Short read mapping

- Map (search and align) Illumina reads to a reference genome
- Find the most likely position of a read in the genome
- Probably the most common task in genomics



### Short read mapping to reference genome - why?

Variant calling / genotyping
 DNA

Gene expression profiling
 RNA



### The challenge - scale and speed

- We need to map millions to hundreds of millions of reads
- Can we use Blast?
- Blastn ~100 reads / sec
- Human genome ~ 3Gb

Assume 100bp reads

How long to map x10 data to the human genome?

Hint: how many reads do we need?

### Can we use Blast?

- Blastn ~100 reads / sec
- Human genome ~ 3Gb
- Assume 100bp reads

#### Data required:

3 Gb x 10 = 30 Gb

### **Reads required:**

30 Gb / 100 = 300 M reads

### Time to map:

300 M reads / (100 reads/sec) = 3M sec = ~ **35 days** 



### BWA - Burrows-Wheeler Aligner

- Specifically designed for mapping of short reads
- Maps ~2,200 reads / sec (one CPU)
- Allows parallel computing
- Contains three algorithms the most useful is BWA-MEM

### **BWA** - limitations

Only works for nucleotides (usually DNA, not RNA)

- Less effective when:
  - Queries are very long
  - Reads are highly diverged from the reference
  - Reads contain lots of sequencing errors

Usually offers a good accuracy-speed balance

### BWA algorithm overview

- Step 1: Index the reference genome
- Step 2: Search for reads
- Indexing is based on the Burrows-Wheeler's transformation
- Index allows easy searching:
  - Quick
  - Memory efficient

### The Burrows-Wheeler's transformation



**BWT(abracadabra\$) = ard\$rcaaaabb** 

### The Burrows-Wheeler's transformation

• BWT is **reversible** - we can get back from BWT(G) to G

• BWT(G) tends to cluster the same characters together - easy to compress

• Using some additional data structures, BWT(G) can be searched efficiently

**BWT(abracadabra\$) = ard\$rcaaaabb** 

# Aligners Comparison

| <u>Aligner</u> | <u>Index</u>       | <b>Applications</b> | <b>Availability</b> |
|----------------|--------------------|---------------------|---------------------|
| BWA-mem        | Burrows-Wheeler    | DNA, SE, PE         | open-source         |
| Bowtie2        | Burrows-Wheeler    | DNA, SE, PE         | open-source         |
| Novoalign      | Hash-Based         | DNA, SE, PE         | propriety           |
| TopHat         | Burrows-Wheeler    | RNA-seq             | open-source         |
| STAR           | Hash-Based (reads) | RNA-seq             | open-source         |
| GSNAP          | Hash-Based (reads) | RNA-seq             | open-source         |

### Aligners Comparison



### **BWA-MEM Workflow**

This takes a long time, but you do it once

Create BWT of reference genome.

\$ bwa index grch38.fa

Output is in SAM format.

Use multiple threads if you have a computer with multiple CPUs.

Align paired-end FASTQ to BWT index.

\$ bwa mem -t 16 grch38.fa 1.fq 2.fq > sample.sam

### FASTQ to BAM



### Sequence Alignment and Mapping

#### **BIOINFORMATICS APPLICATIONS NOTE**

Vol. 25 no. 16 2009, pages 2078–2079 doi:10.1093/bioinformatics/btp352

#### Sequence analysis

#### The Sequence Alignment/Map format and SAMtools

Heng Li<sup>1,+</sup>, Bob Handsaker<sup>2,+</sup>, Alec Wysoker<sup>2</sup>, Tim Fennell<sup>2</sup>, Jue Ruan<sup>3</sup>, Nils Homer<sup>4</sup>, Gabor Marth<sup>5</sup>, Goncalo Abecasis<sup>6</sup>, Richard Durbin<sup>1,\*</sup> and 1000 Genome Project Data Processing Subgroup<sup>7</sup>

<sup>1</sup>Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK, <sup>2</sup>Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA, <sup>3</sup>Beijing Institute of Genomics, Chinese Academy of Science, Beijing 100029, China, <sup>4</sup>Department of Computer Science, University of California Los Angeles, Los Angeles, CA 90095, <sup>5</sup>Department of Biology, Boston College, Chestnut Hill, MA 02467, <sup>6</sup>Center for Statistical Genetics, Department of Biotstatistics, University of Michigan, Ann Arbor, MI 48109, USA and <sup>7</sup>http://1000genomes.org

Received on April 28, 2009; revised on May 28, 2009; accepted on May 30, 2009

Advance Access publication June 8, 2009

Associate Editor: Alfonso Valencia

Table 1. Mandatory fields in the SAM format

| No. | Name  | Description                                        |  |
|-----|-------|----------------------------------------------------|--|
| 1   | QNAME | Query NAME of the read or the read pair            |  |
| 2   | FLAG  | Bitwise FLAG (pairing, strand, mate strand, etc.)  |  |
| 3   | RNAME | Reference sequence NAME                            |  |
| 4   | POS   | 1-Based leftmost POSition of clipped alignment     |  |
| 5   | MAPQ  | MAPping Quality (Phred-scaled)                     |  |
| 6   | CIGAR | Extended CIGAR string (operations: MIDNSHP)        |  |
| 7   | MRNM  | Mate Reference NaMe ('=' if same as RNAME)         |  |
| 8   | MPOS  | 1-Based leftmost Mate POSition                     |  |
| 9   | ISIZE | Inferred Insert SIZE                               |  |
| 10  | SEQ   | Query SEQuence on the same strand as the reference |  |
| 11  | QUAL  | Query QUALity (ASCII-33=Phred base quality)        |  |

### The SAM format sections

- Header
  - Lines start with '@'
  - Meta-data General information about the file
- Alignments
  - Contains the actual read mapping information
  - Each line has 11 mandatory fields (columns)
  - Additional fields may be included
  - Fields are separated by tabs

```
SN:SL4.0ch00
                      LN:9643250
@SQ
@SQ
       SN:SL4.0ch01
                      LN:90863682
@SQ
       SN:SL4.0ch02
                      LN:53473368
                                                                          What command
@SQ
       SN:SL4.0ch03
                      LN:65298490
@SQ
       SN:SL4.0ch04
                      LN:64459972
@SQ
       SN:SL4.0ch05
                      LN:65269487
                                                                          will fetch only
@SQ
       SN:SL4.0ch06
                      LN:47258699
@SQ
                      LN:67883646
       SN:SL4.0ch07
                                                                          header lines?
@SQ
       SN:SL4.0ch08
                      LN:63995357
@SQ
       SN:SL4.0ch09
                      LN:68513564
@SQ
       SN:SL4.0ch10
                      LN:64792705
@SQ
                      LN:54379777
       SN:SL4.0ch11
@SO
       SN:SL4.0ch12
                      LN:66688036
       ID:bwa PN:bwa VN:0.7.12-r1039 CL:bwa mem -t 10 /groups/itay_mayrose/nosnap/liorg.....rojects/GPAD/data/S_lycopersi
@PG
cum chromosomes.4.00.fa /groups/itay mayrose/nosnap/liorglic/Projects/GPAD/data/SRR1572628 1.fastq /groups/itay mayrose/nosn
ap/liorglic/Projects/GPAD/data/SRR1572628 2.fastg
                                                                                                   TGAAGGCGTTTGACTGG
SRR1572628.1
              83
                      SL4.0ch05
                                     25938772
                                                    60
                                                           100M
                                                                          25938399
                                                                                         -473
GCATGGAGTTTAAGAGTGAAACAAACACTTTTTGAAACTTAAGGTCTAAAATAAGTCAGAAATTGTGTGGCTGTAAATCA
                                                                              NM:i:0
                                                                  MD: Z:100
                                                                                  AS:i:100
                                                                                                XS:i:21
                                                                          25938772
SRR1572628.1
              163
                      SL4.0ch05
                                     25938399
                                                    60
                                                           100M
                                                                                         473
                                                                                                CACAGATGCTGGGAGATCTA
CCCFFFFFHHHHHDDIDDDDDDI
                                                                                  AS:i:100
                                                                                                XS: i: U
JJJJJJJJJJHIJJIJJJJJJJJJJJJJIIJJIHHHHFFFDDDBBCCDEEDEEDDD@CDD
                                                           NM:i:0
                                                                  MD: Z:100
SRR1572628.2
              83
                      SL4.0ch11
                                     27210743
                                                    60
                                                           100M
                                                                          27210394
                                                                                         -449
                                                                                                TCACAAGCATGACGGACCAT
CACAAGCTCCGTAACCCCACACTTAGTCAGACATCCCTATCTTCAATCAGCAACTGCACTAAGCTGCAACCTACGGACCG
                                                                              3A<A@<CC?895@>3@CC@;CBCC@?=(DPC?:5GGGC=C
=GFAGFDHHD?D3DIIHFB?DEFDEG?GGFHF@CA?CBIHIHFGGEC+CHFCADDDD@@@
                                                           NM:i:0
                                                                  MD: Z:100
                                                                                  AS: i:100
                                                                                                XS:i:65
SRR1572628.2
              163
                      SL4.0ch11
                                     27210394
                                                           100M
                                                                          27210743
                                                                                         449
                                                                                                CTCCAAACTTCATGACGAAC
@@@FFFFFHHHHGIIIII6FGGGIIIG>BGHFH:FBFIB=
CG>FGIGHGGAHFECDF?BCBECDCB?ABD@BB7<8?<CCDCC@@A>39CCC@CDD<CCC
                                                           NM:i:0
                                                                                  AS:i:100
                                                                  MD:Z:100
                                                                                                XS:i:25
SRR1572628.3
                                                                                         -474
                                                                                                TCTATCATCTTCGTGTTTAG
              83
                      SL4.0ch01
                                     55877048
                                                    60
                                                           100M
                                                                          55876674
GATTATTGGTGAAATAGTACTACCACATAGAACTTTTTGGCAACACGCCTACTGTTCTTTTTCACCGCCTATTTGATCCT
                                                                              CDEDDDDDDDDDDDDDDCCDDEDDCBDEDDEEDEFC@A@F
CAHE?HEEIJIHJJIJJJJIGFIIJIIIHEJJJJJIJJJIHF@IHIHGHHHFFFFFCCC
                                                           NM: i:0
                                                                  MD:Z:100
                                                                                  AS:i:100
                                                                                                XS:i:0
SRR1572628.3
              163
                      SL4.0ch01
                                     55876674
                                                    60
                                                           100M
                                                                          55877048
                                                                                         474
                                                                                                TAGCTAGACGTAAACAAAAG
GAAGAAAATGATCCCAAATAGACATAACATCAACCGAGTATGATAATTTTTCTCCATTCAAGTCTAGGATGAAGAATGTT
                                                                              BCCFFDFFGHFHHJJJJIJJJJJJJJJIJJJIJJJJIJJ
                                                                                  AS:i:100
                                                                                                XS:i:0
JBFHCHIGHGECHIJJIICEHIJGIHFEGHHFFFFFFEEECCCCCDDDDDDDDDCCCAC
                                                           NM:i:0
                                                                  MD: Z:100
```

### **SAM** Format

| Col# | Name  | Meaning                               | Example                       |  |
|------|-------|---------------------------------------|-------------------------------|--|
| 1    | QNAME | Read or Pair name                     | HWI:ST156_1:278:1:1058:4544:0 |  |
| 2    | FLAG  | Bitwise FLAG                          | soon!                         |  |
| 3    | RNAME | Reference sequence name               | chr1                          |  |
| 4    | POS   | 1-based alignment start coordinate    | 8,724,005                     |  |
| 5    | MAPQ  | Mapping quality                       | soon!                         |  |
| 6    | CIGAR | Extended CIGAR string                 | soon!                         |  |
| 7    | MRNM  | If paired, the mate's reference seq.  | chr1                          |  |
| 8    | MPOS  | If paired, the mate's alignment start | 8,724,505                     |  |
| 9    | ISIZE | If paired, the insert size            | 562                           |  |
| 10   | SEQ   | The sequence of the query/mate        | ACAAATTCAG                    |  |
| 11   | QUAL  | The quality string for the query/mate | HHH\$^^%\$\$\$                |  |
| 12   | OPT   | Optional Tags                         | XA:i:2, MD:Z:0T34G15          |  |

http://samtools.sourceforge.net/samtools.shtml

### SAM Format



### **MAPQ**

MAPQ - mapping quality

Definition: –10 log<sub>10</sub>Pr{mapping position is wrong}

The higher - the better

Usually between 0 and 60

Calculation of MAPQ is differ between aligners

It considers alignment score, Phred score and alternative mappings

As a rule of thumb:

- MAPQ > 30 is considered a good mapping
- MAPQ 0 usually means ambiguous mapping

| base2       | base10 | base16 | Meaning                                                    | Applies to: |
|-------------|--------|--------|------------------------------------------------------------|-------------|
| 0000000001  | 1      | 0x0001 | The read originated from a paired sequencing molecule      | Both        |
| 0000000010  | 2      | 0x0002 | The read is mapped in a <b>proper</b> pair                 | Pairs only  |
| 0000000100  | 4      | 0x0004 | The query sequence itself is unmapped                      | Both        |
| 0000001000  | 8      | 0x0008 | The query's mate is unmapped                               | Pairs only  |
| 0000010000  | 16     | 0x0010 | Strand of the query (0 for forward; 1 for reverse strand)  | Both        |
| 00000100000 | 32     | 0x0020 | Strand of the query's mate                                 | Pairs only  |
| 00001000000 | 64     | 0x0040 | The query is the first read in the pair                    | Pairs only  |
| 00010000000 | 128    | 0x0080 | The read is the second read in the pair                    | Pairs only  |
| 00100000000 | 256    | 0x0100 | The alignment is not primary                               | Both        |
| 01000000000 | 512    | 0x0200 | The read fails platform/vendor quality checks              | Both        |
| 10000000000 | 1024   | 0x0400 | The read is either a PCR duplicate or an optical duplicate | Both        |

























ST-E00223:32:H5J57CCXX:4:1220:14651:8868 99 1 10086

| base2       | base10 | base16 | Meaning                                                    | Applies to: |
|-------------|--------|--------|------------------------------------------------------------|-------------|
| 0000000001  | 1      | 0x0001 | The read originated from a paired sequencing molecule      | Both        |
| 0000000010  | 2      | 0x0002 | The read is mapped in a <b>proper</b> pair                 | Pairs only  |
| 0000000100  | 4      | 0x0004 | The query sequence itself is unmapped                      | Both        |
| 0000001000  | 8      | 0x0008 | The query's mate is unmapped                               | Pairs only  |
| 0000010000  | 16     | 0x0010 | Strand of the query (0 for forward; 1 for reverse strand)  | Both        |
| 00000100000 | 32     | 0x0020 | Strand of the query's mate                                 | Pairs only  |
| 00001000000 | 64     | 0x0040 | The query is the first read in the pair                    | Pairs only  |
| 00010000000 | 128    | 0x0080 | The read is the second read in the pair                    | Pairs only  |
| 00100000000 | 256    | 0x0100 | The alignment is not primary                               | Both        |
| 01000000000 | 512    | 0x0200 | The read fails platform/vendor quality checks              | Both        |
| 10000000000 | 1024   | 0x0400 | The read is either a PCR duplicate or an optical duplicate | Both        |

## 00001100011

#### **Decoding SAM flags**

$$2^{6}+2^{5}+2^{1}+2^{0} = 64+32+2+1 = 99$$

https://broadinstitute.github.io/picard/explain-flags.html

## Concise Idiosyncratic Gapped Alignment Report (CIGAR)

#### Encoding the details of the alignment

| Operation | Meaning                    |
|-----------|----------------------------|
| М         | Match*                     |
| D         | Deletion w.r.t. reference  |
| -         | Insertion w.r.t. reference |
| N         | Split or spliced alignment |
| S         | Soft-clipping              |
| Н         | Hard-clipping              |
| P         | Padding                    |

Reference: ACCTGTC - - TACCTTACG

Experimental: ACCT-TCCATACTTTATC

4M 1D 2M 2l 7M 2S

CIGAR string: 4M1D2M2I7M2S

**\** 

LENGTH/OPERATION

### **CIGAR Extended**

| Operation | Meaning                    |
|-----------|----------------------------|
| =         | Exact match                |
| X         | Mismatch                   |
| D         | Deletion w.r.t. reference  |
| 1         | Insertion w.r.t. reference |
| N         | Split or spliced alignment |
| S         | Soft-clipping              |
| Н         | Hard-clipping              |
| Р         | Padding                    |

Reference: ACCTGTC - - TACCTTACG

Experimental: ACCT-TCCATACTTTATC

CIGAR string: 4=1D2=2I3=1X3=2S

#### SAM Additional fields

- Alignment software may output additional fields containing more information
- Additional fields will always look like:

```
<Tag>:<type>:<value>
```

- Should be specified in software documentation
- Some examples:
  - NM number of mismatches
  - AS raw alignment score

#### SAM to BAM

Do it once

Create BWT of reference genome.

\$ bwa index grch38.fa

Output is in SAM format

Align paired-end FASTQ to BWT index.

\$ bwa mem -t 16 grch38.fa 1.fq 2.fq > sample.sa

Output is in BAM format.

Unsorted! random genomic order as reads are randomly placed in FASTQ by sequencer.

Convert SAM to BAM

\$ samtools view -b sample.sam > sample.bam

## SAM - unmapped reads

- A read appears even if it is unmapped!
- Unmapped reads have:
  - o flag 4
  - o MAPQ 0
  - Missing info for other fields (\* or 0)



What could

cause a read to



### SAM - paired-end data

- Both reads of a pair appear (as separate records)
- Records contain information about the paired read
- Several flags relate to paired information
- Especially flag 2 "Read mapped in proper pair"



## BAM & CRAM - binary SAM

- Compressed smaller size
- Faster to read by a computer
- Impossible to read by humans must use some conversion tool
- Required by some bioinformatic tools
- CRAM might contain only varitional changes from reference

## Working with SAM files

- SAM files are text files
- You can view them use less
- You can use Linux commands to manipulate the file:

E.g.: get first 5 alignments:

```
grep -v '^@' aln.sam | head -5
```

Or you can use a dedicated command line tool - samtools

## Samtools allows you to...

- View SAM and BAM files
- Select records that satisfy some criteria
- Convert between formats
- Manipulate SAM/BAM files
  - Sorting
  - Indexing
- Extract statistics

## Running samtools

```
$ samtools
Program: samtools (Tools for alignments in the SAM format)
Version: 1.9 (using htslib 1.9)
Usage: samtools <command> [options]
```

- samtools features many commands
- Each command has its own function and options
- Today we'll look at three commands:
  - samtools view
  - samtools sort
  - samtools index

## samtools view - viewing files

View sam/bam

```
$ samtools view aln.bam | less
```

View sam/bam including header

```
$ samtools view -h aln.bam | less
```

View just header of sam/bam

```
$ samtools view -H aln.bam | less
```

### Samtools sort

Sort a bam file by location

```
$ samtools sort aln.bam > aln.sort.bam
```

Sort a bam file by read name

```
$ samtools sort -n aln.bam > aln.sort name.bam
```

#### Samtools index

- Useful for quick handling of a bam file
- Takes a while for large bam files
- Required by some software tools
- Only works on sorted BAM files
- Creates a new .bai file

\$ samtools index aln.sort.bam

#### samtools view - filter records

Only print records with MAPQ >= 20

```
$ samtools view -q 20 aln.bam | less
```

Only print records with third bit enabled (unmapped)

```
$ samtools view -f 4 aln.bam | less
```

Only print records with third bit disabled (mapped)

```
$ samtools view -F 4 aln.bam | less
```

#### samtools view - filter records

Only print records mapped to chromosome 3 (indexed files only)

```
$ samtools view aln.bam chr03 | less
```

Only print records mapped to chromosome 3 positions 1000-2000 (indexed files only)

```
$ samtools view aln.bam chr03:1000-2000 | less
```

Random access requires sorted and indexed bam

## Samtools view - converting formats

#### Convert sam to bam

\$ samtools view -bh aln.sam > aln.bam

#### Convert bam to sam

\$ samtools view -h aln.bam > aln.sam

#### Combine with filtration

\$ samtools view -bh -q 30 -f 2 aln.sam > aln.HQ.mapped.bam

# Integrative Genomics Viewer (IGV)

Visualization tool for exploring and analyzing genomic

data



