

Analog IC Design

Lecture 19 OTA Topologies

Dr. Hesham A. Omran

Integrated Circuits Laboratory (ICL)
Electronics and Communications Eng. Dept.
Faculty of Engineering
Ain Shams University

Outline

- ☐ Recapping previous key results
- ☐ OTA/op-amp overview
- Comparison of OTA topologies
- Gain-boosted OTA
- ☐ OTA output range in CL configuration
 - Unity-gain buffer configuration
 - Fully-differential amplifier configuration

Outline

- □ Recapping previous key results
- ☐ OTA/op-amp overview
- ☐ Comparison of OTA topologies
- Gain-boosted OTA
- ☐ OTA output range in CL configuration
 - Unity-gain buffer configuration
 - Fully-differential amplifier configuration

MOSFET in Saturation

☐ The channel is pinched off if the difference between the gate and drain voltages is not sufficient to create an inversion layer

$$V_{GD} \leq V_{TH}$$
 or $V_{DS} \geq V_{OV}$

Square-law (long channel MOS)

$$I_D = \frac{\mu_n C_{ox}}{2} \frac{W}{L} \cdot V_{ov}^2 (1 + \lambda V_{DS})$$

$$V_{SB} \uparrow \Rightarrow V_{TH} \uparrow$$

Regions of Operation Summary

17: Noise Fundamentals

High Frequency Small Signal Model

$$g_m = \frac{\partial I_D}{\partial V_{GS}} = \mu C_{ox} \frac{W}{L} V_{ov} = \sqrt{\mu C_{ox} \frac{W}{L} \cdot 2I_D} = \frac{2I_D}{V_{ov}}$$
$$g_{mb} = \eta g_m \qquad \qquad \eta \approx 0.1 - 0.25$$

$$r_O = \frac{1}{\partial I_D/\partial V_{DS}} = \frac{V_A}{I_D} = \frac{1}{\lambda I_D}$$
 $V_A \propto L \leftrightarrow \lambda \propto \frac{1}{L}$ $V_{DS} \uparrow V_A \uparrow$

$$V_A \propto L \leftrightarrow \lambda \propto \frac{1}{L}$$

$$V_{DS} \uparrow V_A \uparrow$$

$$C_{gb} \approx 0$$

$$C_{gs} \gg C_{gd}$$
 $C_{sb} > C_{db}$

$$C_{sb} > C_{db}$$

17: Noise Fundamentals

Rin/out Shortcuts Summary

$$r_o[1 + (g_m + g_{mb})R_S]$$
 H.I.N.

$$\frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o} \right)$$
L.I.N.

Summary of Basic Topologies

	CS	CG	CD (SF)		
	R_D $v_{in} \circ V_{out}$ R_S	R_D v_{out} R_S	R_D $v_{in} \circ V_{out}$ R_S		
	Voltage & current amplifier	Voltage amplifier Current buffer	Voltage buffer Current amplifier		
Rin	∞	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o}\right)$	∞		
Rout	$R_D r_o[1+(g_m+g_{mb})R_S]$	$R_D r_o$	$R_S \frac{1}{g_m + g_{mb}} \left(1 + \frac{R_D}{r_o} \right)$		
Gm	$\frac{-g_m}{1+(g_m+g_{mb})R_S}$	$g_m + g_{mb}$	$\frac{g_m}{1+R_D/r_o}$		

Differential Amplifier

	Pseudo Diff Amp	Diff Pair (w/ideal CS)	Diff Pair (w/ R _{SS})
A_{vd}	$-g_m R_D$	$-g_m R_D$	$-g_m R_D$
A_{vCM}	$-g_m R_D$	0	$\frac{-g_m R_D}{1 + 2(g_m + g_{mb})R_{SS}}$
A_{vd}/A_{vCM}	1	∞	$2(g_m + g_{mb})R_{SS} \\ \gg 1$

$$A_{vCM2d} = \frac{v_{od}}{v_{iCM}} \approx \frac{\Delta R_D}{2R_{SS}} + \frac{\Delta g_m R_D}{2g_{m1,2}R_{SS}}$$

$$CMRR = \frac{A_{vd}}{A_{vCM2d}}$$

17: Noise Fundamentals

Op-Amp

- An op-amp is simply a high gain differential amplifier
 - The gain can be increased by using cascodes and multi-stage amplification
- The diff amp is a key block in many analog and RF circuits
 - DEEP understanding of diff amp is ESSENTIAL

17: Noise Fundamentals 10

Op-Amp vs OTA

- ☐ In short, an OTA is an op-amp without an output stage (buffer)
- ☐ Some designers just use op-amp name and symbol for both

	Op-amp	ОТА
Rout	LOW	HIGH
Model	$v_{in} \bigcirc \downarrow i_{in}$ $\downarrow i_{in}$ $\downarrow A_{v}v_{in}$ $\downarrow A_{v}v_{in}$	v_{in} i_{out} i_{out} v_{out} R_{in} R_{out}
Diff input, SE output		
Fully diff		

V-star (V^*)

lacktriangle V-star (V^*) is inspired by V_{ov} but calculated from actual simulation data

$$g_m = \frac{2I_D}{V^*} \leftrightarrow V^* = \frac{2I_D}{g_m} = \frac{2}{g_m/I_D}$$

 \Box Figures-of-merit in terms of V^*

$$g_m r_o = \frac{2I_D}{V^*} \cdot \frac{1}{\lambda I_D} = \frac{2}{\lambda V^*}$$

$$f_T = \frac{g_m}{2\pi C_{gg}} = \frac{1}{2\pi} \cdot \frac{2I_D}{V^*} \cdot \frac{1}{C_{gg}}$$

$$\frac{g_m}{I_D} = \frac{2}{V^*}$$

 \Box The boundary between weak and strong inversion ($n=1.2 \rightarrow 1.5$)

$$V_{ov}(SI) = V^*(WI) = 2nV_T \approx 60 \rightarrow 80mV$$

17: Noise Fundamentals

Negative Feedback

$$\beta = \frac{R_2}{(R_1 + R_2)}$$

$$A_{CL} = \frac{V_{out}}{V_{in}} = \frac{A_{OL}}{1 + \beta A_{OL}} = \frac{A_{OL}}{1 + \beta A_{OL}} \approx \frac{1}{\beta} = \frac{R_1 + R_2}{R_2} = 1 + \frac{R_1}{R_2}$$

$$\omega_{p,CL} = (1 + \beta A_{OLo})\omega_{P,OL}$$

Phase Margin and the Ultimate GBW

- \Box If $\omega_{p2}=\omega_u$: PM = 45°
 - Typically inadequate (peaking/ringing)
- \blacksquare Thus ω_{p2} should be $>\omega_u$ \rightarrow ω_{p1} \ll ω_u < ω_{p2}
 - ω_{p1} defines OL BW and ω_{p2} defines ultimate GBW (max CL BW)

→ noise amplification
 Time domain ringing
 → poor settling time

Noise Models

Resistor thermal noise

$$R = I_n$$

$$V_n(f) = \sqrt{4kTR} \approx \sqrt{\frac{R}{1 k}} \times 4 \frac{nV}{\sqrt{Hz}}$$

$$I_n(f) = \sqrt{\frac{4kT}{R}} \approx \sqrt{\frac{1 k}{R}} \times 4 \frac{pA}{\sqrt{Hz}}$$

MOSFET thermal and flicker noise

$$I_n^2(f) = 4kT\gamma g_m$$

$$V_n^2(f) = \frac{K}{C_{ox}WL} \frac{1}{f}$$

RMS noise

$$V_{noutrms}^{2} = 4kTR \times B_{N} = \frac{kT}{C}$$
$$B_{N} = \frac{1}{4RC} = \frac{\pi}{2} f_{p}$$

$$V_{noutrms} \approx \sqrt{\frac{1 p}{C}} \times 64 \,\mu Vrms$$

Noise Analysis Procedure

- Deactivate the input signal
- ☐ Identify the **dominant** noise sources → Model as $V_n^2(f)$ or $I_n^2(f)$
- \Box Find the output noise density for each source: $V_{nout,x}^2(f)$
- ☐ Calculate the rms output noise of each source

$$V_{noutrms,x}^2 = V_{nout,x}^2(f) \times B_{N,x}$$

Calculate total rms noise

$$V_{noutrms,tot}^2 = V_{nrms,1}^2 + V_{nrms,2}^2 + \cdots$$

Calculate the input-referred rms noise voltage

$$V_{ninrms,tot}^2 = V_{noutrms,tot}^2 / A_v^2$$

 \square For low Z_{in} , input referred noise current must be added

Outline

- ☐ Recapping previous key results
- OTA/op-amp overview
- ☐ Comparison of OTA topologies
- Gain-boosted OTA
- ☐ OTA output range in CL configuration
 - Unity-gain buffer configuration
 - Fully-differential amplifier configuration

OTA / Op-Amp

- Integral part of many analog and mixed-signal systems
 - Amplification
 - Filtering
 - Any form of "signal-conditioning"
 - Voltage regulation
 - Reference generation
- Challenges
 - Complex interdependence between different specs
 - Supply voltage scaling
 - Channel length scaling
 - Energy efficiency

Finite Gain

- ☐ Negative feedback: Gain set by ratio of matched components
 - Very low sensitivity to PVT, load, and input variations

$$A_{CL} = \frac{V_{out}}{V_{in}} = \frac{A_{OL}}{1 + \beta A_{OL}} \approx \frac{1}{\beta}$$

- ☐ Open-loop gain is finite: still small dependence on OL gain
 - Static gain error $\epsilon_{s} = \left| \frac{A_{CLi} A_{CL}}{A_{CLi}} \right| = \left| 1 \frac{A_{CL}}{A_{CLi}} \right|$

$$\epsilon_{S} \approx 1 - \beta \times \frac{A_{OL}}{\beta A_{OL}} \left(1 - \frac{1}{\beta A_{OL}} \right) = \frac{1}{LG}$$

- \Box Example: $A_{CL} = 10$ and $\epsilon_s < 1\%$
 - $A_{OL} > 1000 = 60dB$

Finite Small-Signal Bandwidth

☐ How much bandwidth / speed is required by your application?

$$\omega_{u} = A_{OL}\omega_{p,OL} = A_{CL}\omega_{p,CL}$$

$$\tau_{OL} = \frac{1}{\omega_{p,OL}} = \frac{A_{OL}}{\omega_{u}}$$

$$\tau_{CL} = \frac{1}{\omega_{p,CL}} = \frac{A_{CL}}{\omega_{u}}$$

Outline

- ☐ Recapping previous key results
- ☐ OTA/op-amp overview
- Comparison of OTA topologies
- Gain-boosted OTA
- ☐ OTA output range in CL configuration
 - Unity-gain buffer configuration
 - Fully-differential amplifier configuration

Popular OTA Topologies

- ☐ Single-stage OTAs
 - 5T OTA
 - Telescopic cascode OTA
 - Folded cascode OTA
- ☐ Two-stage OTA
- ☐ Three-stage OTA
- Gain-Boosted OTA

Fully-Differential (FD) 5T OTA

- \Box Gain $\sim \frac{g_m r_o}{2}$
- \square Max output swing $\sim 2(V_{DD} 3V^*)$
- \Box $V_{in,max}$ and $V_{out,min}$ oppositely coupled
 - Fixed CM input @ max output swing
- ☐ Efficiency ~ 100%
 - FoM = $\frac{GBW \cdot C_L}{I_{total}}$ [MHz.pF/mA] ~?
- \square Noise: $\alpha \sim 2$
- ☐ Single pole

FD Telescopic Cascode OTA

- $\Box \quad \mathsf{Gain} \sim \frac{(g_m r_o)^2}{2}$
- \square Max output swing $\sim 2(V_{DD} 5V^*)$
 - Practically less (why?)
- \square $V_{in,max}$ and $V_{out,min}$ oppositely coupled
 - Fixed CM input @ max output swing
- \Box Efficiency $\left(\frac{GBW \cdot C_L}{I_{total}}\right) \sim 100\%$
- \square Noise: $\alpha \sim 2$
- \square $\omega_{p2} \sim \frac{\omega_T}{2}$

FD Folded Cascode OTA

- $\Box \quad \mathsf{Gain} \sim \frac{(g_m r_o)^2}{4}$
- \square Max output swing $\sim 2(V_{DD} 4V^*)$
 - Practically less (why?)
- Flexible CMIR
- \Box Efficiency $\left(\frac{GBW \cdot C_L}{I_{total}}\right) \sim 50\%$
- \square Noise: $\alpha \sim 3$
- \square $\omega_{p2} \sim \frac{\omega_T}{3}$
- ☐ The most popular OTA due to flexible CMIR benefit

Folded Cascode with Rail-to-Rail CMIR

19: OTA Topologies [Razavi, 2017]

26

FD Two-Stage Miller OTA

- $\Box \quad \text{Gain} \sim \frac{(g_m r_o)^2}{4}$
- ☐ Higher gain if first stage is telescopic/folded cascode
- \square Max output swing $\sim 2(V_{DD} 3V^*)$
- CMIR better than 5T OTA (why?)
- \square Efficiency $\left(\frac{GBW \cdot C_L}{I_{total}}\right) < 50\%$
- \Box Noise: $\alpha \sim 2 + 2\beta$
- $\square \omega_{p2} \sim \frac{G_{m2}}{C_{Ltot}}$

OTAs Comparison

Spec	Best		Worst
DC gain			
Swing			
CMIR			
Efficiency			
$\left(\frac{GBW \cdot C_L}{I_{total}}\right)$			
Noise			
Stability			

OTAs Comparison

Spec	Best			Worst	
DC gain Miller		Telescopic	Folded	5T	
Swing	Miller	5T	Folded	Telescopic	
CMIR Folded		Miller	5T	Telescopic	
Efficiency $\left(\frac{GBW \cdot C_L}{I_{total}}\right)$	5T	Telescopic	Folded	Miller	
Noise	5T	Telescopic	Folded	Miller	
Stability	5T	Telescopic	Folded	Miller	

Outline

- ☐ Recapping previous key results
- ☐ OTA/op-amp overview
- ☐ Comparison of OTA topologies
- Gain-boosted OTA
- ☐ OTA input range in buffer configuration
- ☐ OTA output swing in feedback amplifier configuration

Gain-Boosted OTA

- Very high gain and good output swing
- ☐ But higher noise, higher power (less efficient), complicated stability (many poles), and slow settling (pole-zero doublets)

19: OTA Topologies [Razavi, 2017]

Gain-Boosted OTA: Auxiliary Amplifier

- ☐ Folded-cascode used as auxiliary amplifier
- No headroom limitation
 - $V_{X,Y} \ge V_{ov1} + V_{ISS1}$

19: OTA Topologies [Razavi, 2017]

Quiz: Gain-Boosted OTA

 \square Calculate the voltage gain. Assume all transistors have the same gm and ro. Assume the load is identical to R_{out} (not drawn).

Quiz: Gain-Boosted OTA

- \Box $G_m \approx g_{m1}$
- \square $R_{out} \approx r_{o3}(1 + g_{m3,super}r_{o1}) \approx r_{o3}(A_1g_{m3}r_{o1})$

Outline

- ☐ Recapping previous key results
- ☐ OTA/op-amp overview
- ☐ Comparison of OTA topologies
- Gain-boosted OTA
- ☐ OTA output range in CL configuration
 - Unity-gain buffer configuration
 - Fully-differential amplifier configuration

5T OTA as a Buffer

- \Box V_{in} OL: $V_T + V_{ov1,2} + V_{ov5} < V_{in} < V_{DD} V_{ov3,4}$
- $\Box V_{out} \text{ OL: } V_{ov1,2} + V_{ov5} < V_{out} < V_{DD} V_{ov3,4}$

- \square Max swing $\sim (V_{DD} V_T 3V^*)$
- $oxed{\Box}$ Example: $V_{DD}=1.2~V, V_T=0.3~V,$ and $V_{ov}=0.1~V$
 - $V_{in}(V_{out}) = 0.5 \rightarrow 1.1 V$
 - Max swing = 0.6 V

Telescopic Cascode as a Buffer

- $\Box V_{in} \text{ OL: } V_T + V_{ov1.2} + V_{ISS} < V_{in} < V_{B1} V_{ov3}$
- $\Box V_{out} \text{ OL: } V_{B1} V_T < V_{out} < V_{B2} + V_T$

- \square Max swing $\sim (V_T V_3^*)$
 - Independent of V_{DD} !
- - $V_{in}(V_{out}) = (V_{B1} 0.3) \rightarrow (V_{B1} 0.1)$
 - Max swing = 0.2 V

Folded Cascode as a Buffer

- \Box V_{in} OL: $V_T + V_{ov1,2} + V_{ISS1} < V_{in} < V_{DD} + V_T V_{ov5,6}$
- \square V_{out} OL: $V_{cascn} V_T < V_{out} < V_{cascp} + V_T$

- \blacksquare Max swing $\sim (V_{DD} 4V^* V_T)$
 - Depends on V_{DD}
- \Box Example: $V_{DD} = 1.2 V$,

$$V_T = 0.3 \ V$$
, and $V_{ov} = 0.1 \ V$

• Max swing = 0.5 V

Outline

- ☐ Recapping previous key results
- ☐ OTA/op-amp overview
- ☐ Comparison of OTA topologies
- Gain-boosted OTA
- ☐ OTA output range in CL configuration
 - Unity-gain buffer configuration
 - Fully-differential amplifier configuration

Telescopic Cascode Output Swing (CL)

- ☐ Input and output CM levels are equal (why?) → Same as buffer
- Input swing is negligible (why?)

- \square Set CM level at its max value w.r.t. V_{in} : $V_{CM} = V_b V_3^*$
- \square Max Diff Swing = $2 \times 2 \times (V_T V_3^*) = 0.8V$

19: OTA Topologies [Razavi, 2017]

Folded Cascode Output Swing (CL)

- ☐ Input and output CM levels are equal (why?) → Same as buffer
- Input swing is negligible (why?)

- \square V_{in} and V_{out} ranges NOT oppositely coupled \rightarrow Set CM to $V_{DD}/2$
- \Box Max Diff Swing = $2(V_{DD} 4V^*) = 1.6V$

19: OTA Topologies [Razavi, 2017]

Thank you!

References

- ☐ B. Razavi, "Design of Analog CMOS Integrated Circuits," McGraw-Hill, 2nd ed., 2017.
- ☐ T. C. Carusone, D. Johns, and K. W. Martin, "Analog Integrated Circuit Design," 2nd ed.,
 Wiley, 2012.
- ☐ B. Murmann, EE214 Course Reader, Stanford University.

SE 5T OTA Trade-offs Matrix

■ <u>Note</u>: In simulations and interviews, you will usually encounter the case of constant W rather than constant gm/ID

Spec	I_{SS}	L_{12}	$\left \left(\frac{g_m}{I_D} \right)_{12} \right $	L_{34}	$\left \left(\frac{g_m}{I_D} \right)_{34} \right $	L_5	$\left(rac{g_m}{I_D} ight)_5$
DC gain ↑							
GBW ↑							
Thermal Noise ↓							
Flicker Noise↓							
РМ↑							
$C_{in} \downarrow \text{(Fanout } \uparrow \text{)}$							
Output swing							
CMRR @DC↑							

Clever Telescopic Cascode Biasing

- \square V_{B1} tracks V_{inCM}
- $\Box V_{in} \text{ OL: } V_T + V_{ov1,2} + V_{ISS} < V_{in} < V_{B1} V_{ov3,4}$
- $\Box V_{out} \text{ OL: } V_{B1} V_T < V_{out} < V_{B2} + V_T$
- \square Set $V_{B1} \ge V_{in,CM} + V_{ov3} \rightarrow V_{ovB} \ge V_{ov1,2} + V_{ov3,4}$
- Input/output ranges extended

Gain-Boosted OTA Frequency Response

☐ See [Razavi, 2017] Section 9.4.3

19: OTA Topologies [Razavi, 2017]

46