treelab - UFVJM | Prof. Eric Bastos Gorgens v.1.0

o nome do método vem de B - área basal remanescente, D de diâmetro máximo desejado e do q - quociente de Liocourt.

- Construa uma planilha semelhante contendo inicialmente os seguintes campos: CC centro de classe em cm, Nha número de árvores por hectare, AB área basal em m² por hectare e Vol volume em m³ por hectare
- Definir o **q** alvo.
- Calcular **b1** $b_1 = -\frac{ln(q)}{lC}$
- Calcular para cada classe diamétrica CCj $CC_j^2 * exp(b_1 * CC_j)$

	hed	ctare.									
4	Α	В	С	D	(8)	F	G	Н	T.		9
1	CC	Nha	AB	Vol	CC2*exp(b1*CC)					NBal	Diff
2	15	336,4	5,3647	54,2	60,52		q alvo =	2,4		339,6	3,2
3	25	125,5	5,8008	64,2	70,04					141,5	16,0
4	35	47,2	4,3616	51,3	57,20					59,0	11,7
5	45	22,7	3,4918	43,0	39,40	(2	b1 =	-0,087546874		24,6	1,9
6	55	13,5	3,0725	39,2	24,52					10,2	-3,2
7	65	5,0	1,6039	21,1	14,27					4,3	-0,7
8	75	2,8	1,1861	16,0	7,92		b0 =	7,140946498		1,8	-1,0
9	85	2,2	1,2358	17,1	4,24					0,7	-1,5
10	95	1,0	0,6642	9,4	2,21					0,3	-0,6
11	105	0,3	0,2765	4,0	1,12					0,1	-0,2
12	115	0,2	0,1804	2,6	0,56					0,1	-0,1
13	125	0,2	0,2155	3,2	0,28					0,0	-0,2
14	145	0,1	0,1471	2,2	0,06					0,0	-0,1
15	155	0,1	0,1625	2,5	0,03					0,0	-0,1
16	165	0,0	0,0960	1,5	0,01					0,0	0,0
17	205	0,0	0,1428	2,3	0,00					0,0	0,0
18											
19	(5	Sum AB =	28,00219006	Sum =	282,38						
20		Intervenção	0								
21	6	AB rem =	28,00219006								
22											

- Estimar o número de árvores para cada classe $NBal_{i} = exp(b_{0} + b_{1} * CC_{i})$
- Calcular a diferença entre número de árvores ideal (NBal) e número de árvores real (Nha) $Nbal_{i}-Nobs_{i}$

A recomendação de corte deve buscar transformar a distribuição diamétrica atual (observada) na distribuição diamétrica balanceada (bdq). Classes de diâmetro da distribuição diamétrica observada que apresentam mais árvores do que na distribuição diamétrica balanceada são classes em que árvores podem ser removidas.

Calcular fator para cada centro de classe

$$\sum_{i=1}^{N} CC_j^2 * exp(b_1 * CC_j)$$

Calcular área basal da floresta

$$\sum_{j=1}^{N} AB_j$$

Com base no valor definido de intervenção, calcular área basal remanescente

$$AB_{rem} = AB - (\%interv * AB)$$

$$b_0 = ln(\frac{40000 * passo6}{\pi * passo4})$$