Rensselaer Polytechnic Institute Department of Electrical, Computer, and Systems Engineering ECSE 4530: Digital Signal Processing, Fall 2019

Exam #2. Closed book, closed notes. November 21, 2019, 10:00-11:20 AM

Show all work for full credit.

- Electronic devices are not permitted.
- Reduce expressions involving exponentials, sines, and cosines as much as possible.
- If the sinc function is needed, use the definition $\operatorname{sinc}(x) = \frac{\sin x}{x}$.
- Useful ratio to dB conversion formula: $10\log_{10}(2) = 3$ dB.

Good luck!

1	25
2	25
3	25
4	25
Total	100

1.	(25 points.) True/false and fill in the blank questions. You do not need to explain your reasoning. Read each question carefully.
	1. The A fast Fourier transform (FFT) is an algorithm that computes the DFT of a sequence, or its inverse (IDFT).
	2. Cyclic convolution of two discrete time signals in time domain corresponds to multiplication of their discrete Fourier transforms (DFTs) in frequency domain.
	3. The Parseval's relation states that the sum (or integral) of the square of a function is equal to the sum (or integral) of the square of its transform. (Figure 15 130 set 05 it does not involve scaling)
	4. We cannot compute the DFT for aperiodic signals. (X[]) = \(\frac{2}{\text{N}}\) \(\frac{1}{\text{N}}\) \(\fra
	no to do not a source
	6. A linear-phase FIR filter is always even symmetric or odd symmetric about the middle tap.
	7. I A length N = 8 FFT diagram can be implemented in 3 stages. See Lective 14. We can divide a length N DFT into 109N stages, each involving the N DFT into 109N stages, each involving the N my hippiections. N = 1000 DFT involves
	8. A length 1000 DFT operation involves 10,000 multiplications.
	9. E Linear phase FIR filters are not stable.
	10. F The downsampler 13 is not linear. $\times \{n\} \rightarrow 13 \rightarrow \times \{3n\} = y(n)$
	11. The upsampler 12 is not time invariant.
	12. \prod If the original signal is sampled at M times just above the Nyquist rate, we do not need to prefilter it before we downsample it by a factor of M .
	13. The output of the cascaded system of a downsampler and an upsampler as shown below satisfies $y[n] = x[n]$.
	$x[n] \longrightarrow \boxed{\downarrow 2} \longrightarrow y[n] \text{Homework 5, 29}$
	14. The Remez exchange algorithm tries to maximize the number of extremal frequencies in designing Chebyshev FIR filters.
	15. We may have aliasing if the sampling rate is above the Nyquist rate.
	16. Linear interpolation is good when the adjacent signal samples are very close to each other.
	17. We cannot do discrete time processing of continuous time signals.

- 18. The Nyquist rate is twice the bandwidth of a bandlimited signal.
- 19. The fundamental element of a radix-2 FFT is colloquially known as a butterfly
- 20. Given a transfer function H(z) with pole-zero diagram as below, $H(\omega)$ is a band $\rho \alpha 5$ 5 filter.

- 21. Based on the pole-zero diagram as above, given that the above system is <u>causal</u> (or <u>right-sided</u>) then the filter is stable.
- 22. A twiddle factor, in FFT algorithms, is any of the trigonometric constant coefficients that are multiplied by the data in the course of the algorithm.
- 23. A bandlimited signal cannot be also time limited
- 24. Ideal low pass filtering of a signal after upsampling is equivalent to interpolation
- 25. DSP is _____

2. (25 points.) Transfer function.

We are given a transfer function for a linear and time invariant discrete-time system:

$$H(z) = \frac{(z-j)(z+j)}{z(z-0.5)(z+0.5)} = \frac{\mathsf{Y}(\mathcal{L})}{\mathsf{X}(\mathcal{L})}$$

(a) (6 points.) Determine the difference equation corresponding to this system.

$$X(z)(z-j)z+j) = Y(z)z(z-0.5)(z+0.5)$$

$$X(z)(z^2+1) = Y(z)(z^3-0.25z)$$

$$z^2X(z) + X(z) = z^2Y(z) - 0.25zY(z)$$
time shifting
$$X[n+2] + X[n] = y[n+3] - 0.25y[n+1]$$

$$y[n] = 0.25y[n-2] + x[n-1] + x[n-3]$$

(b) (6 points.) Give the pole-zero diagram of H(z).

Num =
$$(2-j)(2+j)$$
, zeros at $+j$ and $-j$
Den. = $\frac{2}{(2-0.5)(2+0.5)}$, poles at 0, 0.5 and -0.5

magnimue of

(c) (8 points.) Using the pole-zero diagram, plot the frequency response of $H(\omega)$ for $\omega \in (-\pi, \pi)$. Your plot does not need to be very precise, only indicate the values of H(0), $H\left(\frac{\pi}{2}\right)$ and $H\left(-\frac{\pi}{2}\right)$.

This is known as

- a notch filter, i.e.
- a band-stop filter with a narrow stopband.

$$H(z)$$
 has zeros at $z=\pm j \Rightarrow H(\overline{z})=H(-\overline{z})=0$

$$w = 0 =$$
 $z = e^{jw} = 1$

$$w=0 \Rightarrow z=e^{jw}=1$$
 $H(z)=\frac{(1-j)(1+j)}{1.(1-0.5)(1+0.5)}=\frac{2}{3/4}=\frac{8}{3}$

$$w=TT \Rightarrow \xi=e^{jT}=-1$$

$$w = T = \frac{1.(1-0.5)(1+0.5)}{1.(1-0.5)(1+0.5)} = \frac{3}{3}$$
(5 points.) Determine the value of $\frac{1}{2}H(\omega)$ at $\omega = \pi/4$

(d) (5 points.) Determine the value of $|H(\omega)|$ at $\omega = \pi/4$.

$$H(\omega) = \frac{(e^{j\omega} - j)(e^{j\omega} + j)}{e^{j\omega}(e^{j\omega} - 0.5)(e^{j\omega} + 0.5)}$$

$$= \frac{e^{2jw} + 1}{e^{jw} (e^{2jw} - 0.25)}$$

$$H(\frac{\Pi}{4}) = \frac{e^{\int \frac{\pi}{2}} + 1}{e^{\int \frac{\Pi}{4}} (e^{\int \frac{\pi}{2}} - 0.25)} = \int H(\frac{\Pi}{4}) = \frac{\sqrt{1^2 + 1^2}}{\sqrt{1^2 + 0.25^2}} = \frac{\sqrt{2}}{\sqrt{17/16}} = \frac{4\sqrt{2}}{\sqrt{17}}$$

$$(e^{\int \frac{\Pi}{2}} = \frac{1}{2})$$

3. (25 points.) Sampling Theorem. We consider a real signal x(t) with a Fourier transform $X(\omega)$ as shown below.

(a) (2 points.) What is the Nyquist rate of x(t)?

The Nyquist rate is twice the bandwidth

=) 3 rad/sec

(b) (3 points.) We have a complex filter h(t), which has a flat passband extending only from 0.5 to 1.5 rad/sec. The passband has a 3 dB gain in the range $0.5 < \omega < 1.5$, but otherwise has a value of $0 (-\infty)$ in dB), including for all negative values of ω . Plot the Fourier transform (continuous time) of h(t) in the frequency range [-2, 2].

(c) (5 points.) x(t) is bandpass filtered with the complex filter h(t). Call the resulting signal y(t). Plot the Fourier transform (continuous time) of y(t) in the frequency range [-6, 6].

(d) (5 points.) The continuous time signal y(t) is sampled with a sampling period of $T = \frac{\pi}{2}$ seconds. Call the resulting signal y[n]. Plot the Fourier transform (DTFT) of y[n] in the corresponding frequency range, namely $\omega \in [-3\pi, 3\pi]$.

(e) (5 points.) Now assume that x[n] is obtained from the original signal x(t) by sampling it with a sampling period of $T = \frac{\pi}{4}$. Next, x[n] is downsampled by a factor of 2 as shown above. Call the resulting signal $x_1[n]$. Plot the Fourier transform (DTFT) of $x_1[n]$ in the frequency range $\omega \in [-3\pi, 3\pi]$.

$$X[n] = X(nT)$$
 where $T = \prod_{ij}$

- 6

(f) (5 points.) The downsampled signal $x_1[n]$ is then converted from discrete sequence to continuous with $T_1 = \frac{\pi}{2}$, and a new signal is reconstructed with an ideal low-pass filter with cutoff frequency 2 and gain $\frac{\pi}{2}$, as illustrated above. What is the reconstructed signal $y_1(t)$? Plot the continuous time frequency responses of $X_1(\omega)$ and $Y_1(\omega)$.

2

4. (25 points.) Linear-phase FIR filter design. We want to design a Type-I, length N = 15 FIR digital filter with linear phase that approximates the ideal amplitude response as illustrated below:

$$A_d(\omega) = \begin{cases} 1, & \text{for } |\omega| \le \frac{\pi}{3} \\ 0, & \text{for } \frac{\pi}{3} < |\omega| \le \pi. \end{cases}$$

$$\frac{T=511}{3}$$

(a) (5 points.) Design the filter using the frequency-sampling method by taking N=15 samples equally-spaced by $\frac{2\pi}{15}$ starting at $\omega=0$. What is the vector A_d of desired amplitude response samples?

(b) (5 points.) What will the value of the frequency response of the designed filter be at $\omega = \frac{4}{5}\pi$? Determine both the magnitude and the phase response.

$$W = \frac{h}{5} \Pi = \frac{12}{15} \Pi$$

$$A_{d}(\omega) = A[7] = 0 \Rightarrow H[7] = 0$$

$$W = \frac{2\Pi}{15} \times 6$$

$$Linear phase \Rightarrow e^{-\frac{1}{3}} A[7] = H[7]$$

area symmetric

(c) (5 points.) Roughly sketch the amplitude response $A(\omega)$. You do not need to be very precise here. Is the response symmetric about $\omega = 0$? Is it symmetric about $\omega = \pi$? Explain your reasoning.

(d) (10 points.) Recall that a Type-I linear-phase filter satisfies the equation

$$h[n] = \frac{1}{N} \left[A[0] + \sum_{k=1}^{M} 2A[k] \cos\left(\frac{2\pi(n-M)k}{N}\right) \right], \text{ where } M = \frac{N-1}{2},$$

where A[k]'s are samples of amplitude response of the filter h[n].

1. (3 points.) Determine the filter coefficients h[5], h[7], and h[9].

2. (4 points.) How many equations you need to simultaneously solve in order to determine h[n]? Why?

Since it is
$$\frac{1}{1}$$
 ype I , length $N=15$, it is symmetric about $h(7)$.

If we solve for $h(0)$, $h(1)$, ..., $h(7)$, we can fully characterie $h(n)$.

 $\Rightarrow M+L=8$ equations

3. (3 points.) Is h[n] real or complex valued? Does it have any symmetry properties? Explain.

Blank page for extra work

Blank page for extra work