RFVIFW

Gut *et al.*, *Microbiology*DOI 10.1099/mic.0.000709

Salmonella infection – prevention and treatment by antibiotics and probiotic yeasts: a review

Abraham Majak Gut, ¹ Todor Vasilievic, ¹ Thomas Yeager² and Osaana N. Donkor^{1,*}

Abstract

Global *Salmonella* infection, especially in developing countries, is a health and economic burden. The use of antibiotic drugs in treating the infection is proving less effective due to the alarming rise of antibiotic-resistant strains of *Salmonella*, the effects of antibiotics on normal gut microflora and antibiotic-associated diarrhoea, all of which bring a growing need for alternative treatments, including the use of probiotic micro-organisms. However, there are issues with probiotics, including their potential to be opportunistic pathogens and antibiotic-resistant carriers, and their antibiotic susceptibility if used as complementary therapy. Clinical trials, animal trials and *in vitro* investigations into the prophylactic and therapeutic efficacies of probiotics have demonstrated antagonistic properties against *Salmonella* and other enteropathogenic bacteria. Nonetheless, there is a need for further studies into the potential mechanisms, efficacy and mode of delivery of yeast probiotics in *Salmonella* infections. This review discusses *Salmonella* infections and treatment using antibiotics and probiotics.

INTRODUCTION

The global burden of morbidity and mortality from human enteric pathogenic bacteria, including *Salmonella* species, is immense, despite the presence of antibiotic drugs [1–3]. Research has estimated that *Salmonella* infection causes 2.8 billion cases of diarrhoea annually worldwide. *Salmonella enterica* serovar Typhi (*S.* Typhi), the causative agent of typhoid fever, is reported to cause 16–33 million infectious cases, with an estimated 500 000 to 600 000 deaths, while non-typhoidal *Salmonella* (NTS) infections account for 90 million cases and 155 000 deaths worldwide annually [4]. The incidence of *Salmonella* infections has been exacerbated by the

high prevalence of human immunodeficiency virus (HIV) infections in Africa, and it has been reported that there are 2000–7500 *Salmonella* infection cases per 100 000 HIV-infected adults [5]. In Australia, 127 195 cases of *Salmonella* infection were reported to the National Notifiable Diseases Surveillance System (NNDSS) from 2000 to 2013; however, the real cases of salmonellosis were underestimated, as it has been assumed that for every case of *Salmonella* infection reported, there are seven cases of salmonellosis in the community that have not been reported [6]. In 2010, Australia reported 40 000 salmonellosis cases, 2100 hospitalizations, 6750 complications and 15 deaths [6]. In the USA, *Salmonella*

Received 4 June 2018; Accepted 30 July 2018

Author affiliations: ¹Institute for Sustainable Industries and Livable Cities, College of Health and Biomedicine, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia; ²Institute for Sustainable Industries and Livable Cities, College of Engineering and Science, Victoria University, Werribee Campus, PO Box 14428, Melbourne, Victoria 8001, Australia.

*Correspondence: Osaana N. Donkor, osaana.donkor@vu.edu.au

Keywords: Salmonella infection; probiotics; opportunistic pathogens; prophylactic; therapeutic.

Abbreviations: AAD, antibiotic-associated diarrhoea; AGA1, A-agglutinin anchorage subunit; AP, activator protein; B cells, lymphocytes from bone marrow; Caco-2, human colonic epithelial cell lines; cAMP, adenosine 3', 5'-cyclic monophosphate; CD, cluster of differentiation; CED, cell death abnormality protein; CorA, magnesium transport protein CorA; CR3, complement receptor 3; DC, dendritic cell; EPS, extracellular polysaccharide; ERK 1/2, extracellular signal-regulated kinases; FAO, Food and Agriculture Organization; FIG2, factor-induced gene 2 protein; fliC, Salmonella flagellin gene; FLO, flocculation protein; G-CSF, granulocyte colony-stimulating factor; GIT, gastrointestinal tract; H antigen, flagella antigen; HIV, human immunodeficiency virus; IL, interleukin; IPEC, intestinal epithelial cell lines; JNK, c-Jun N-terminal kinases; kb, kilobase; Lg-FL01, gene encoding flocculin; Lpf, long polar fimbriae; LPS, lipopolysaccharide; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; MEL, mannosylerthritol lipids; MgtA, magnesium-transporting ATPase, P-type 1 for S. typhimurium; MgtB, magnesium-transporting ATPase, P-type 1 for E. coli; MSK1, mitogenand stress-activated protein kinase-1; MUC1, mucin-like protein; NF-kB, nuclear factor kappa-light-chain-enhancer of activated B cells; NNDSS, National Notifiable Diseases Surveillance System; NTS, non-typhoidal Salmonella; O antigen, capsular antigen; pH, potential hydrogen; PqsA, Pseudomonas quinolone signal gene A; S. Dublin, Salmonella enterica serovar Dublin; S. Enteritidis, Salmonella enterica serovar Enteritidis; S. Heidelberg, Salmonella enterica serovar Heidelberg; S. Newport, Salmonella enterica serovar Newport; S. paratyphi, Salmonella enterica serovar Paratyphi; S. Typhi, Salmonella enterica serovar Typhi; S. Typhimuriym, Salmonella enterica serovar Typhimurium; SAIF, S. boulardii anti-inflammatory factor; SAPK, stress-activated protein kinase; SCARF1, scavenger receptor class F member 1; SPI, Salmonella pathogenicity island; SREC, scavenger receptor from endothelial cells; T cells, lymphocytes that mature in thymus; T3SS, type III secretion system; Tafi, thin aggregative fimbriae; TcdA, C. difficile toxin B; TcdB, C. difficile toxin B; TLR, Toll-like receptor; TMP-SMX, trimethoprim/sulfamethoxazole; TNF, tumour necrosis factor; Trk, potassium uptake protein; tviA, virulence polysaccharide biosynthesis protein for S. paratyphi; tviB, virulence polysaccharide biosynthesis protein for S. Typhi; Ty21a, attenuated live S. Typhi vaccine; Vi, capsular polysaccharide vaccine for typhoid fever; Vi-rEPA, recombinant exoprotein A of Pseudomonas aeruginosa (VirEPA)/S. Typhi vaccine; ZnuABC, zinc import ATP-binding protein.

is the leading cause of foodborne infections and associated medical costs amounted to \$2.17 billion (for 1.4 million infections) in 2010 [7]. Bloodstream infections caused by *Salmonella enterica* in Asia accounted for 30 % of all community-acquired infections [8], while in Africa 29.1 % of community-acquired bloodstream infections were attributed to the same *Salmonella* species [9].

Antibiotics are becoming less effective against some bacterial pathogens, such as typhoidal *Salmonella* strains, and the rise of antibiotic-resistant bacteria means that there is a need for novel ways of preventing or treating infections caused by enteric pathogenic bacteria [10]. Studies on probiotics-based treatment/complementary treatment of *Helicobacter pylori* and *Clostridium difficile* have long been recognized as efficacious [11].

Probiotics are defined by the World Health Organization (WHO) and Food and Agriculture Organization (FAO) as 'live micro-organisms which when administered in adequate amounts confer a health benefit on the host' [12]. Species of *Lactobacillus* and *Bifidobacterium* are the most commonly used probiotics in the treatment of infectious diseases, including antibiotic-associated and travellers' diarrhoeas. Other micro-organisms, including *Saccharomyces boulardii*), *Streptococcus thermophilus*, *Enterococcus faecium*, *Leuconostoc* species, *Escherichia coli* Nissle 1917 strain and *Bacillus* species, are being researched *in vitro* or in animals and human trials, or are being used in humans for prophylaxis or therapeutic purposes [10, 13–15].

Specific criteria have been set for micro-organisms to qualify as effective probiotics. These include adherence to host cells in the gastrointestinal tract (GIT), ability to exclude or reduce the adherence of pathogens to the GIT, stimulation of immunity and the ability to persist and multiply in the GIT (resistance to acidic gastric juice, basic pancreatic juice, lysozyme and bile salts). Furthermore, other criteria include the ability to produce acids, hydrogen peroxide and bacteriocins that are antagonistic to the growth of pathogens and the ability to coaggregate to form a normal sustaining flora. They must possess some of these properties to qualify as probiotics. Moreover, probiotic micro-organisms should be non-invasive, non-carcinogenic and non-pathogenic [12, 16, 17].

The objective of this paper is to provide a critical review of *Salmonella* infections and current treatment of salmonellosis, and to understand the prophylactic and therapeutic potential of probiotic micro-organisms and their mechanisms of action in preventing and treating *Salmonella* and other enteric pathogens infections. In particular, this paper focuses on probiotic yeasts, although probiotic bacteria are also briefly discussed.

SALMONELLA: THE BACKGROUND

Salmonella is a genus of the family Enterobacteriaceae. It is a Gram-negative, non-spore-forming, rod-shaped and facultative anaerobic bacterium. Salmonella cells move by means of a peritrichous flagellum. They are 2–5 µm long by

 $0.5-1.5 \, \mu m$ wide and, depending on the serotype, the *Salmonella* genome ranges from 4460 to 4857 kb. The bacterium was first identified in a veterinary laboratory in the 19th century in the USA. *Salmonella* is a lactose fermenter (some sub-species) and a hydrogen sulfite producer, and is oxidase-negative and catalase-positive. It hydrolyzes urea, utilizes citrate and decarboxylates lysine as its sole carbon source [5, 7].

The genus is classified into two species: Salmonella enterica and Salmonella bongori. Biochemical and genomic analysis of Salmonella enterica has led to further classification into subspecies, including enterica, salamae, arizonae, diarizonae, houtenae and indica [7, 18, 19]. The clinically important Salmonella species are classified under Salmonella enterica, which is further classified into more than 2,579 serovars on the basis of their antigenicity [7, 20].

Salmonella species are harboured in the intestinal tract of humans and farm animals. Reptiles and insects also act as Salmonella reservoirs. Moreover, eggs, poultry meat, pork, beef, dairy products, nuts, vegetables and water act as sources of Salmonella. The risk of infection is high in low- and middle-income countries or societies, with more than 100 infections per 100 000 people per year [6, 7, 21, 22]. Some Salmonella serotypes are host-specific, while others can infect more than one type of warm-blooded animal [5]. The S. Typhi and Salmonella enterica serovar Gallinarum serovars are restricted to human and poultry hosts, respectively, whereas Salmonella enterica serotype Dublin (S. Dublin) and Salmonella enterica serovar Choleraesus are adapted to cattle and pigs, respectively, but can infect other warmblooded animals. However, other serovars, such as Salmonella enterica serovar Typhimurium (S. Typhimurium) and Salmonella enterica serovar Enteritidis (S. Enteritidis), are generalists and are able to infect any warm-blooded animal [5].

The bacterium can be transmitted through faecal–oral routes, where susceptible hosts may acquire *Salmonella* through contaminated foods and water and therefore transmissions can be controlled through foods and water [6]. Moreover, infection with *Salmonella* from food or water can also be prevented with vaccination. *Salmonella* vaccines include killed whole-cell, Vi, live oral Ty2la and Vi-rEPA. The use of vaccine may reduce infections, but availability, efficacy, safety and cost are some of the issues that hamper its use and effectiveness [22, 23].

SALMONELLA PATHOGENESIS

After the ingestion of contaminated food or water, *Salmonella* colonizes the distal ileum and proximal colon [24, 25]. The infective dose for salmonellosis that is capable of establishing infection in the mucosa of the small intestine ranges from 10⁵ to 10⁶ cells [26]. *Salmonella* uses its flagella as a mode of movement as well as chemotaxis to target cells, the enterocytes. In humans, *Salmonella* cells use type I fimbriae, including long polar fimbriae (Lpf) and thin aggregative fimbriae (Tafi), to adhere to enterocytes. Type IV pili are

used by S. Typhi to attach to host cells [27]. Once Salmonella has adhered to the host cells on the apical side of M cells or enterocytes, it uses Salmonella pathogenicity islands (SPIs) - encoded type III secretion systems (T3SSs) - to be phagocytized into the receptive macrophages [27]. Salmo*nella* cells can then be exocytosed into the interstitial spaces of the lamina propria, where they are randomly picked by macrophages, dendritic cells and polymorphonuclear cells and distributed to the host efferent lymph in the mesenteric lymph nodes before being transported to the spleen and liver via the bloodstream [28]. The attachment of Salmonella to the receptive epithelial cells and internalization into lamina propria causes inflammatory responses, including the release of pro-inflammatory cytokines. Pro-inflammatory cytokines cause acute inflammatory responses which lead to diarrhoea, ulceration and the destruction of the mucosa cells [29].

Apart from the invasiveness of Salmonella cells, enterotoxin and cytotoxin have been identified across all of the Salmonella sub-species. These toxins are reported to be similar to cholera toxins. Some of them have been found to be either heat-labile or heat-stable, and they have been reported to be associated with diarrhoea [30-32]. Enterotoxin was reported to induce the accumulation of fluid in the ligated murine ileal loop and was also found to have cytotoxic activity [33]. Cytotoxin inhibits protein synthesis, and it has been reported that it is responsible for intestinal mucosal surface damage, as well as enteric symptoms and inflammatory diarrhoea [25]. S. Typhi toxin is reported to be associated with persistent infection and the signs and symptoms of typhoid fever [34]. On the other hand, another study reported that there were no differences in virulence between mutant Salmonella without toxin phenotypes and wild-type with toxin phenotypes [35].

O antigen lipopolysaccharide (LPS) plays a role in the pathogenesis of *Salmonella* infections. All parts of LPS are important in the pathogenesis of *Salmonella*, but the length, structure, composition and surface roughness of O sidechains can influence the virulence. Failure to produce a full length of chain decreases virulence. The length of the chain influences resistance to the lytic action of the complement cascade. Furthermore, smooth surface strains are more resistant to the lytic action of the cascade than rough surface strains, and this has been postulated to be due to steric hindrance of complement cascade binding to the *Salmonella* cell [25].

Salmonella pathogenesis is also influenced by the virulence plasmids, which contain virulence genes. S. Typhimurium, S S. Dublin and S. Enteritidis virulence plasmids have been reported to be responsible for systemic dissemination of infection in the mesenteric lymph nodes, spleen and liver. It has been reported that virulence plasmids are commonly found in Salmonella isolated from human or animal organs or blood, rather than in faeces, food, or environmental samples [25].

Salmonella also possesses other virulence factors (including flagella and flagellin), superoxide dismutase and ion acquisition systems [36]. Flagella increase invasiveness due to the motility of Salmonella, while flagellin has been reported to induce an inflammatory response. Bactericidal reactive oxygen species that have been produced against intracellular pathogens by the host can be inactivated by Salmonella superoxide dismutase. Moreover, Salmonella produces ion acquisition systems for the acquisition or transport of iron, magnesium, zinc and potassium, where their concentrations are low. Salmonella produces siderophores, including enterobactin and salmochelin. These siderophores are critical in accessing limited iron in the host. Salmonella also uses CorA, MgtA and MgtB systems to acquire limited magnesium. ZnuABC and Trk systems are used for zinc and potassium uptake, respectively. All of these ions are critical for the survival and pathogenesis of Salmonella [36].

DISEASES CAUSED BY SALMONELLA INFECTIONS

Infection of humans with *Salmonella* results in three main infectious diseases, namely typhoid fever, paratyphoid fever and NTS. Typhoid and paratyphoid fevers are caused by *S.* Typhi and *Salmonella enterica* serovar Paratyphi (*S.* Paratyphi), respectively, and are characterized by gastroenteritis and complications such as septicaemia, immunological symptoms, leukopenia and neurological sympotoms. These typhoidal and paratyphoidal complications account for deaths [7, 34]. On the other hand, *S.* Typhimurium, *S.* Enteritidis, *Salmonella enterica* serovar Newport (*S.* Newport) and *Salmonella enterica* serovar Heidelberg (*S. Heidelberg*) cause NTS infections, which are restricted to gastroenteritis (nausea, vomiting and diarrhoea) or occasional bacteraemia (dissemination of infection in the body), and are usually non-fatal [7].

LABORATORY DIAGNOSIS OF SALMONELLA INFECTION

Blood culture is the gold standard method for diagnosis of *S.* Typhi and *Salmonella* Paratyphi infections [37]. Blood volume, duration of illness, the presence of bacteraemia and antibiotic treatment commencement can impact on the reliability of the result obtained from blood culture [23].

Salmonella is serologically classified into six serotypes, which are detected on the basis of their antigenicity. The Widal test method, which detects the presence of Salmonella O and H antigens, is another method that can be used to diagnose Salmonella infections and is useful in areas where resources are limited. This method does not differentiate Salmonella species or serotypes and can cross-agglutinate with other non-Salmonella Enterobacteriaceae bacteria. False-negative Widal tests have been reported and false-positive results may also be expected in patients with malaria, dengue and disseminated tuberculosis [23]. The enzymelinked immunosorbent assay (ELISA), which detects IgM and IgG antibodies against Salmonella surface molecules, is

another useful tool in the diagnosis of *Salmonella* infection. The Typhidot ELISA kit detects both IgG and IgM. Its sensitivity and specificity have been reported as >95 %, and 75 %, respectively. Typhidot-M, which only detects IgM, has a sensitivity of 90 % and a specificity of 93 % [23].

Validated molecular biology methods are also employed in the diagnosis of *Salmonella* infections from blood, faeces, foods and environmental samples [25]. The nested multiplex polymerase chain reaction method (PCR), which targets the *Salmonella* flagellin gene (*fliC*), polysaccharide capsule gene and virulence (*vi*) genes (*tviA* and *tviB*), is reported to offer better specificity, sensitivity and turnaround times compared to the other methods discussed [38].

TREATMENT OF SALMONELLA INFECTIONS BY ANTIBIOTIC DRUGS

Antibiotic drugs are critical in the treatment of infectious diseases and have considerably improved quality of life, in addition to reducing the mortality associated with bacterial infections. The selectivity of antibiotic drugs against invading bacteria ensures minimal harm to the patients and at the same time guarantees maximum eradication of the target bacteria [10].

NTS infections do not usually require treatment with antibiotic drugs, however complications such as meningitis and septicaemia do occur and require treatment with antibiotic drugs, including ciprofloxacin, ceftriaxone and ampicillin [22, 39]. Infections caused by S. Typhi and S. Paratyphi may involve serious complications and require treatment with antibiotics such as cefixime, chloramphenicol, amoxicillin, trimethoprim/sulfamethoxazole (TMP-SMX), azithromycin, aztreonam, cefotaxime or ceftriaxone to prevent death [23]. Dexamethasone is a corticosteroid drug and may be used when a complication such as delirium, obtundation, stupor, coma or shock occurs [23].

CURRENT ISSUES WITH THE USE OF ANTIBIOTIC DRUGS FOR TREATING SALMONELLA INFECTIONS

Bacterial infections have traditionally been treated with antibiotic drugs; however, certain bacterial species have developed resistance to current antibiotics. Bacteria with the ability to grow or survive in a concentration of antibiotic drug that is normally sufficient to be bactericidal or bacteriostatic are referred to as antibiotic drug-resistant bacteria, whereas antibiotic-susceptible bacteria are species that can be killed or have their growth inhibited by the recommended dose of antibiotic drug [40]. Resistance to an antibiotic drug may be innate or acquired through exposure of the bacteria to the antibiotic drug. Conjugation, transduction and transformation are the genetic mechanisms used by bacteria to acquire antibiotic-resistant genes. Conjugation involves the transfer of DNA on plasmids from one organism to another. In transformation, naked DNA is

carried directly from one organism to another, while in transduction, the DNA is transferred by bacteriophage [40].

There is emerging resistance among *Salmonella* species to first-line antibiotic drugs, as well as to alternative medicines [21]. It was reported in Malawi in 2010 that 7 % of *S*. Typhi infection cases were multi-drug resistant, and in 2014 the figure increased to 97 % [41, 42]. In the USA, *S*. Enteritidis accounted for 50 % of ciprofloxacin-resistant infections, whereas *S*. Newport, *S*. Typhimurium and *S*. Heidelberg were reported to be responsible for 75 % of antibiotic-resistant infections, due to their resistance to ceftriaxone and ampicillin. The resistance of *Salmonella* species to antibiotic drugs has been shown to be serotype-specific according to metadata research [39].

The rise of antibiotic-resistance among pathogenic bacteria, including *Salmonella*, species is associated with a number of factors, including excessive use of antibiotic drugs as a result of easy access (over the counter and internet sales) in some countries [39]. The use of antibiotics for growth promotion in animal husbandry and for the protection of crops, together with poor hygiene practices, have also contributed to the overuse of antibiotic drugs, and hence resistance [10, 39, 40].

The inability to treat infectious bacterial diseases has resulted in high mortality and morbidity and substantial economic losses. It has been reported that in Europe, 25 000 people die and €1.5 billion is spent annually due to antibiotic-resistant infections, whereas in the USA, 23 000 deaths are reported and >\$20 billion is spent on nosocomial antibiotic-resistant infections in hospitals in a year [40].

The effect of antibiotic drugs on the human microbiome is of great significance. Antibiotic drug use has been associated with interference with the normal flora, and as a consequence, disorders such as inflammatory bowel disease or allergies may happen due to the altered microbiome [10]. Furthermore, antibiotic-associated diarrhoea (AAD) is caused by changes to the microbiome resulting from the administration of antibiotics. This reduces carbohydrate digestion and short-chain fatty acid absorption and thus results in induced osmotic diarrhoea. Long hospital stay due to AAD contributes to the risk of nosocomial infections and is an increased economic cost [10].

PREVENTION AND ALTERNATIVE/ COMPLEMENTARY TREATMENTS OF SALMONELLA INFECTION BY PROBIOTICS

Probiotic micro-organisms exert their prophylactic and therapeutic properties against pathogenic micro-organisms in three main ways: they may modulate both innate and acquired immunity, act directly on the pathogens and produce antibiotic molecules [43]. These mechanisms of action are influenced by the probiotics metabolism, the cell surface molecules, the ability to secrete antibacterial molecules and the genetic makeup of the organisms [43].

Probiotic bacteria such as Lactobacilli, Enterococci, Bifidobacteria, Pediococcus, E.coli, Streptococcus and Leuconostoc species are normally found in the human GIT, where they form normal flora [44], and are commonly included in popular fermented functional foods to make their delivery easy [44–47]. Probiotic products can also be in the form of lyophilized capsules or powders or aqueous solutions [48]. Probiotic bacteria have been widely used in the treatment of infectious bacterial diseases and their efficacious application are summarized in Table 1. Apart from the treatment of infectious diseases briefly discussed below, these organisms confer other benefits, such as appropriate digestion, epithelial cell function, metabolism, enteric nerve function and angiogenesis to the host [10].

PROPHYLACTIC AND THERAPEUTIC EFFICACIES OF YEASTS

Yeasts are eukaryotes and are classified into two groups: ascomycetes and basidiomycetes [49, 50]. The ascomycetes division contains yeast species with probiotic potential, such as the genera *Saccharomyces*, *Schizosaccharomyces*, *Kluveromyces*, *Zygosaccharomyces* and *Devaryomyces* [49].

Studies have indicated that yeast can be used in the prevention and treatment of infectious bacterial diseases, including typhoid, paratyphoid and NTS. Currently, *S. boulardii* is the yeast strain being used as a probiotic [51–53], while other yeast species and strains have been proven to be efficacious in *in vitro* and animal trials [54]. In contrast to probiotic bacteria, which are affected by drugs that target enteric pathogenic bacteria, yeasts are not targeted when they are used as a complementary therapy [48]. Fig. 1 summarizes the antagonistic mechanisms of probiotics against bacterial pathogens. These mechanistic properties of probiotic yeasts against pathogens are discussed below and further studies are summarized in Table 2. Yeasts also have a wide range of other beneficial applications for humans, as illustrated in Fig. 2.

PROTECTION AND PRESERVATION OF TIGHT JUNCTIONS

Tight junctions are the apical epithelial layers that separate the interface lumen of the GIT and deep cell layers. It is composed of transmembrane proteins, cytoplasmic adaptors and the actin cytoskeleton. Tight junctions attach adjacent cells to each other and provide intercellular seals. They function as a physical barrier that prevents noxious objects, including pathogenic organisms, from entering into deeper layers within tissues. However, some micro-organisms, such as Salmonella species, have developed mechanisms to evade this barrier [55]. Probiotic micro-organisms, including yeast species, have been reported to not only maintain normal functions of the gut mucosa, but also protect it from toxins, allergens and pathogens. The protective effects of probiotics are attributed to cytoprotection, cell proliferation, cell migration, resistance to apoptosis, synthesis of proteins and gene expression [56]. S. boulardii is reported to inhibit proinflammatory cytokines such as IL-8 production by the host and prevent the activation of MAP kinases Erk1 /2 and JNK/ SAPK. *S. boulardii* anti-inflammatory factor (SAIF) was postulated to be responsible for tight junction protection and preservation. Furthermore, *S. boulardii* produce produces proteases that break down toxins produced by bacterial pathogens [57].

Inflammatory bowel diseases such as irritable bowel syndrome, gluten intolerance, gastroenteritis and H. pylori infections disrupt tight junctions and this can predispose the susceptible host to Salmonella and other enteric pathogen infections [56]. Mice with genetic and inducible colitis (hence disrupted tight junctions) were more prone to be colonized and infected by S. Typhimurium than mice without inflammatory diseases [58]. These inflammatory diseases are currently prevented and/or treated using Saccharomyces species [56] and this shows how yeasts may be used prophylactically in infection prevention with respect to enteropathogenic bacteria such as Salmonella. The infection rate was reduced in the yeast-treated group due to the protection of tight junctions through cytoprotection, cell proliferation, cell migration, resistance to apoptosis, synthesis of proteins and gene expression.

IMMUNOMODULATORY PROPERTIES

The immunomodulatory properties of probiotics are associated with their cell wall components, DNA and metabolites, and therefore their ability to elicit immunity may be independent of the viability of probiotics such as yeast cells [43]. The target host cells for immunomodulation by probiotics are enterocytes and gastrointestinal-associated immune cells. The sensitive cells can be stimulated due to the presence of β -glucan and mannose receptors for probiotic fragments or whole cells. The adhesion of probiotic organisms to sensitive cells or the production and release of soluble factors may modulate immunity or trigger signalling cascades in immune cells [43]. Yeast cell wall components, including mannoproteins and β -glucan, induce immunomodulatory responses when they interact with dentritic or other immune cells with receptors [59]. For example, the attachment of S. boulardii to dendritic cells (DCs) was reported to induce the secretion of immunoglobulins A and M and cytokines, including interleukin (IL) -1β , IL-12, IL-6, TNF α and IL-10. This immunomodulatory mechanisms was postulated to be due to tumour necrosis factor alpha $(TNF\alpha)$ and the transcriptional upregulation of C-C chemokine receptor type 7 mRNAs by yeast cells [60].

The cell wall components of *Saccharomyces cerevisiae*, including mannoprotein, act as nonspecific immune stimulators by interacting with macrophages through receptors. Yeast cell components, including β -glucan and mannoprotein, have adjuvant effects and can activate neutrophils, eosinophils, macrophages and complements [61].

The immunomodulatory properties of pathogenic fungal species are postulated to be due to the presence of β -glucan receptors on a susceptible host [62]. Beta-glucan is also

 Table 1. Prophylactic and therapeutic properties of probiotic bacteria

Probiotic micro-organisms	Indicator enteric pathogens and/ or animal models	Treatment mechanisms and outcomes	References
L.casei 11578, Lactobacillus delbrueckii ssp. bulgaricus 11 842 (L. bulgaricus), Lactlbacillus fermentum 1493 (L. fermentum) and the commercial	Infection of neonatal broiler chicks with <i>S.</i> Enteritidis	Significant reduction of <i>S</i> . Enteritidis in the chick faeces in a time-dependent manner; feeding 24 h prior to infection was efficacious	[111]
probiotic product, PROB L. casei, L. bulgaricus, Lactobacillus cellobiosus (L. cellobiosus), Lactobacillus helveticus (L. helvetticus) and L. fermentum	Infection of 1-day-old broiler chicks with <i>S. Enteritidis</i>	Reduced colonization of chicks' gastrointestinal tract	[112–114]
L. casei, L. bulgaricus, L. cellobiosus, L. helveticus and L. fermentum	Infection of neonatal broiler chicks with <i>S</i> . Enteritidis and <i>S</i> . Typhimurium	Caecal tonsils load of <i>S</i> . Enteritidis was reduced by 60–70 %, while the <i>S</i> . Typhimurium load in caecal tonsil was reduced by 89–95 % as a result of treatment with probiotic compared to control	[115]
Commercial probiotic – floraMax	Infection of chicks and poults with S. Heidelberg	Reduced colonization and hence lower recovery of <i>S</i> . Heidelberg from caecal tonsil from both treated chicks and poults compared	[116]
Lactobacillus rhamnosus (L. rhamnosus) GG (ATCC 53103) and B. longum 46 (DSM14583)	V. cholerae	to control chicks and poults Removed 68 and 59 % enterotoxin in an aqueous solution, respectively	[117]
Bifidobacterium longum subsp. longum/ infantis	E.coli 0157: H7	Prevented the production of toxin in the caecum and translocation of toxin from the GIT to the blood stream and hence reduced mortality	[118]
Lactobacilli, <i>Bifidobacterium bifidum</i> strains Bb12 and <i>Lactobacillus kefir</i>	S. Typhimurium	Secrete molecules that prevent invasion of epithelial cells	[43]
Lactobacillus acidophilus (L.acidophilus)	In vitro trial using human colonic adenocarcinoma cell line infected with <i>S.</i> Typhimurium	Attenuation of inflammatory response triggered by <i>S.</i> Typhimurium infection	[119]
E.coli Nissle 1917	Stimulation of intestinal epithelial cell line	Suppression of TNF- α induced IL-8 transcription and production Only viable <i>E.coli</i> Nissle 1917 showed immunomodulation	[120]
L. fermentum ME-3 and ofloxacin antibiotic, L. plantarum cell-free extract with co-trimoxazole	S. Typhimurium	Prevented invasion of organs and completely eradicated <i>S.</i> Typhimurium	[121, 122]
E.coli Nissle 1917 (EcN)	Infection of Caco-2 cells with <i>C. perfringens</i>	IL-1 β , IL-6, G-CSF and GM-CSF production was significantly increased in the absence of EcN, but decreased in the presence of EcN	[123]
Lactobacillus rhamnosus G and	E. coli and S. Typhimurium in vitro	Significant co-aggregation of pathogens with probiotic bacteria	[124]
Bifidobacterium lactis Bb12. E.coli Nissle 1917 and L. acidophilus	experiment <i>E.coli</i> 0157:H7 and cell lines	Suppressed production of pro-inflammatory cytokines and	[125]
E.coli Nissle 1917	S. Typhimurium, Yersinia enterocolitica, Shigella flexneri, Legionella pneumophila and Listeria monocytogenes	inhibited <i>E.coli</i> 0157:H7 virulence The ability of these probiotic bacteria to inhibit invasion is not dependent on direct contact with the pathogen; rather it is due to the production of not-yet-identified molecules	[126]
Bifidobacterium longum Bar33 and B. lactis Bar30	Infection of Caco-2 cells with <i>S.</i> Typhimurium and <i>E. coli H10407</i>	Displaced pathogenic bacteria from attachment site of CaCo-2	[127]
E.coli Nissle 1917	C. difficile and C. perfringens	Inhibited production of and deactivated toxins	[123]
L. plantarum 299 v, L. rhamnosus GG, Bifidobacterium lactis Bb12 and L. rhamnosus LGG	Infection of human mucusa cells with enteropathogenic <i>E. coli</i> , <i>S.</i> Typhimurium ATCC 12028 and <i>Clostridium histolyticum</i> DSM 627	Competition for the same receptor in the GIT and stimulation of mucin production by probiotic resulted in inhibition of pathogenic bacteria adhesion to the GIT; probiotics also degrade carbohydrate receptors for pathogens, exclude pathogens by establishing biofilms, produce receptor analogue for pathogens to bind to instead of binding to host cells and prevent binding of	[43, 128]
Genetically engineered <i>L. lactis</i>	C. difficile and H. pylori in mice	pathogens by producing surfactants Elicited immunity by expressing non-toxic fragments of TcdA and TcdB and produced <i>H. pylori</i> lipoprotein Lpp20, which elicited immunity <i>in vivo</i> and therefore prevented or treated <i>H. pylori</i> infections	[129]
Single-strain <i>Lactobacillus</i> species	E. coli, Enterococci faecalis, Enterococcus faecium, Enterpbacter cloacae, Streptococcus salivarius, Listeria monocytogenes, S. aureus, Proteus mirabilis, P. aeruginosa and Bacteroides thetaiotaomicron in in	Inhibited growth due to antibacterial metabolites other than hydrogen peroxide because of inhibition in anaerobic condition	[130]

Table 1. cont.

Probiotic micro-organisms	Indicator enteric pathogens and/ or animal models	Treatment mechanisms and outcomes	References
Bifidobacterium breve (B. breve) strain	vitro experiment E. coli (STEC) O157: H7 in mouse	B. breve inhibited stx gene production by STEC cells	[131]
Yakult	model		
Clostridium butyricum strain MIYAIRI	Enteropathogenic <i>E.coli</i> (EHEC) 0157: H7 in mouse model	Inhibited toxin expression by producing butyric and lactic acid and reduced viability of EHEC <i>E.coli</i> 0157: H7 by producing butyric acid	[132]
Lactobacillus strains, three Pediococcus strains and four Bifidobacterium strains	E.coli (EHEC) 0157: H7 in in vitro experiment	All probiotics inhibit toxin production due to the production of organic acid, which resulted in low pH	[133]
Bifidobacterium thermophilum RBL67	Human colonic fermentation model using HT29-MTX cell lines; infection with <i>Salmonella</i> and <i>in</i> vitro trial	Probiotic prevented invasion and protected epithelial lining; probiotic also prevented expression of virulence factors by Salmonella	[134, 135]
Feed-grade lactobacilli (TGI)	Poultry (broiler) infection with Salmonella	Consumption of probiotic increased liveability in Salmonella- infected broilers compare to the control	[136]
L. plantarum MTCC5690	An animal trial using mice infected with Salmonella	Consumption of probiotic in fermented milk stimulated immunity and prevented GIT colonization by <i>Salmonella</i> and hence prevented infection	[137]
L. salivarius 59 and Enterococci faecium PXN33	An animal trial using poultry infected with Salmonella	Prevented colonization of Git by <i>S.</i> Enteritidis when used as multi- strain probiotic	[138]
L. rhamnosus GG (2×10 ⁹ organisms per day)	A human trial involving 400 adult travellers	Reduced traveller's diarrhoea to 3.9 % in the treatment group compared to 7.4 % in the placebo group	[139]
Genetically engineered <i>E. coli</i> Nissle 1917	Animal trial using turkey infected with Salmonella	Ninety-seven per cent lower carriage of Salmonella in the GIT in the treated group compared to the control group, postulated to be due to the production of antimicrobial molecules by <i>E. coli</i> Nissle 1917	[140]
Genetically modified non-pathogenic <i>S.</i> Typhimurium	S. Typhimurium and murine model	Protected murine model due to competition for nutrients with pathogenic strains	[141]

found in probiotic yeast species such as *S. cerevisiae* (in the cell wall) and therefore a non-pathogenic yeast species may have the potential to modulate cell-mediated and humoral immunity in a host with its receptors [60].

Among the host receptors that recognize β -glucan are complement receptor 3 (CR3), dectin-1, scavenger receptor class F member 1 (SCARF1), cluster of differentiation 36 (CD36) and cell death abnormality protein 1 (CED1) [which is found in nematodes and is similar to human scavenger receptor from endothelial cells (SREC)] [62, 63]. CR3 is an integrin dimer and is expressed by immune cells such as monocytes, macrophages, DCs, neutrophils and natural killer cells. Dectin-1 is primarily expressed by macrophages, dendritic cells and neutrophils, while SCARF1 is expressed on macrophages. The binding of stimulators such as β -glucan to the above receptors on immune cells elicits immune responses. Some of these immune responses have been found to include phagocytosis, oxidative burst, neutrophil degranulation, fungal killing and the production of inflammatory lipid mediators, cytokines and chemokines. Chemokines recruit and coordinate the activation of other immune cells, including T cells, B cells and natural killer cells [60, 62]. CD36 is a sensor for β -amyloid, modified low-density lipoprotein, bacterial diacylated lipoproteins and lipoteichoic acid. These receptors mediate the binding of Candida albicans and Cryptococcus neoformans to mammalian cells via β -glucan and induce inflammatory cytokines and chemokines. However, collaboration with Toll-like receptor 2 (TLR2) is needed in order for these receptors to induce immune responses [62].

Mannose receptor is expressed by activated macrophages. Mannose is also recognized by langerin and dectin-2 and these also act as its receptors. Stimulation of mannose receptors can lead to pro-inflammatory or anti-inflammatory responses. Langerin (also known as cluster of differentiation 207) is a receptor on Langerhans cells, whereas dectin 2 is a receptor for mannan on a fungal cell wall. The type of response is dependent on the yeast cell wall components (the presence of β -glucan and mannoproteins) and the host cell receptors. Additionally, dectin 2 has an affinity for α -glucan, while langerin has an affinity for chitin [64].

The immunomodulatory properties of yeasts was demonstrated in *S. boulardii*, which has strong immunomodulatory properties; it induced the production of immunoglobulin A (IgA), tumour necrosis factor-alpha (TNF- α) and many ILs, including IL-1 β , IL-5, IL-6, IL-10 and IL-12, as well as downregulating the production of IL-8 expression by acting on the NF-kB (nuclear factor kappalight-chain-enhancer of activated B cells) pathway in uninfected enterocytes and on mitogen-activated protein kinases (MAPKs) and AP-1activator protein-1 (AP-1) in *S.* Typhimurium-infected enterocytes [54, 65]. *S. boulardii* was shown to reduce the production of pro-inflammatory

Fig. 1. Antagonistic mechanisms of probiotics against pathogenic bacteria [3, 52, 54, 70, 74, 86, 89, 92].

immune factors, including IL-6 and TNF- α , in a pathogenic *E. coli* infection colitis and it prevented *E. coli*-mediated apoptosis of T84 colonic cell lines [54]. In contrast to the above findings, the ability of *S. boulardii* to modulate immunity in healthy mucosa was reported to be minimal in research conducted on a murine model [59].

Yeast genera (including *Saccharomyces*, *Kluyveromyces* and *Issatchenkia*) isolated from kefir milk showed downward regulation of intestinal epithelial innate immune responses when cells were subjected to TLR ligands such as *Salmonella* flagellin and *E. coli* LPS. *Kluyveromyces marxianus* inhibited the expression of TNF- α and IL-1 β cytokines by enterocytes when stimulated by LPS and flagellin. This yeast strain was also shown to block the NF-kB pathway and therefore inhibited pro-inflammatory cytokines, chemokines and the release of TNF α . The immunomodulatory ability of yeast species (especially *S. cerevisiae* CIDCA8112 and *Kluyveromyces marxianus*) isolated from kefir was shown to be dose-dependent. The viability of yeast cells was found to be a deciding factor in the downregulation of the

innate response by human colonic epithelial cell lines (Caco-2). The inactivation of yeast strains by heat and UV irradiation completely destroyed the immunomodulatory effects [66, 67].

BINDING OF PATHOGENIC BACTERIA ONTO YEAST CELL WALLS

Cell adhesion is defined as a process whereby cells attach to each other or to a foreign surface with the aid of adhesins. In this context, foreign surfaces may include other biotic or abiotic structures [68]. In yeasts, adhesins are protein mosaics on the surface of cell walls which are involved in development, symbiosis and pathogenesis [69]. Currently, eight *S. cerevisiae* adhesins have been identified and these include FLO1, FLO5, FLO9, FLO10, FLO11 (or MUC1), FIG2, LgFLO1 and AGA1. The expression of these adhesins is determined by genetic factors, such as yeast species or environmental growth conditions, including growth medium, aeration or acidity [68, 69].

Table 2. Prophylactic and therapeutic properties of yeasts

Probiotic micro-organisms	Indicator enteric pathogens and/ or animal models	Treatment mechanisms and outcomes	References
S. boulardii	Human trials	Improved tolerance to number of calories per day, reduced incidence of diarrhoea, reduced number of treatment days and reduced duration of diarrhoea	[74]
S. boulardii	Salmonella and E.coli in rat model	Neutralized LPS and therefore reduced its toxicity in the rat model; inflammatory lesions and necrotic bodies were seen in the control's liver and heart	[98]
S. cerevisiae UFMG A-905 from Brazilian distilled spirit cachaça, S. cerevisiae 982 from cheese and S. boulardii from chicken faeces	PBMCs (peripheral blood mononuclear cells) and mouse model	Reduction of inflammation and IL-6, TNF- α , interferon gamma (IFN- γ) and IL-10 by <i>S. cerevisiae</i> UFMG A-905 production, and stimulation of type 1 T helper (th1) response by <i>S. cerevisiae</i> 982 Induced TNF- α and IL-10 production Reduced the serum level of IL-6 in a mouse colitis model. Immunomodulatory properties through reduction of inflammation and IL-6, TNF- α , Interferon gamma (IFN- γ) and IL-10 production	[54]
S. cerevisiae	Salmonella species in in vitro experiment	Viable yeast bind better to Salmonella than non-viable yeast	[71]
Pichia kudriavzevii RY55	E. coli, Enterococcus faecalis, Klebsiella sp., S. aureus, Pseudomonas aeruginosa and Pseudomonas alcaligenes in in vitro experiment	Mycoccins inhibited the growth of pathogenic bacteria	[86]
Candida krusei isolated from fermented vegetables	E. coli, S. Typhimurium, S. aureus and Bacillus cereus in in vitro experiment	The killer toxin produced by yeast inhibited the growth of pathogenic bacteria	[88]
Yarrowia lipolytica	Bacterial species in in vitro experiment	Produces organic acids, including a-ketoglutaric, a pyruvic, citric and isocitric acid, which may have bactericidal or bacteriostatic effects on bacterial growth	[142]
S. cerevisiae	In vitro experiment on Enterobacteriaceae and lactic acid bacteria	Bactericidal or bacteriostatic effects due to production of carbon dioxide, sulfur dioxide, a high concentration of ethanol and secretion of organic acids which in turn reduce pH	[142, 143]
S. boulardii	V. cholerae, C. difficile and C. perfringens toxins in mouse model	Minimized the effects of toxin fluid secretion, and decreased mucosal permeability, mucosal damage and the release of inflammatory cytokines when administered to mice before they they were given the cholera toxin, and deactivated or inhibited production of toxins by <i>C. difficile</i> and <i>C. perfringens</i>	[74]
S. cerevisiae and C. albicans	Pseudomonas, Staphylococcus epidermidis and Burkholderia pseudomallei in in vitro experiment	Quorum-sensing molecules (farnesol) prevented biofilm formation by <i>Pseudomonas</i> and <i>Staphylococcus epidermidis</i> and enhanced the efficacy of B-lactams against <i>Burkholderia pseudomallei</i>	[3, 100]
S. boulardii	Human trial in children	Decreased severity and duration of infectious diarrhoea in children and shortened acute diarrhoea by almost a day in a clinical trial	[10]
S. cerevisiae IFST062013 isolated from fruit juice	In vitro experiment on Gram- negative and -positive bacteria	Significant antibacterial effects in gram-negative than gram- positive bacteria compared to antibiotic doxycycline, while cell lysate was more potent than whole cells or supernatants; induced pro- and anti-inflammatory mediators simultaneously and as a result enhanced the maintenance of balance between Th1- and Th2-type cytokines	[89]

Using *S. cerevisiae* as a model, yeast cells have been found to form six different communal structures. Sessile non-adhesive cells that do not produce adhesins on a solid surface exposed to air can form non-adhesive colonies, especially on laboratory agar media. However, in a liquid medium, non-adhesive yeast cells exist as individual cells in a planktonic form that makes the media look turbid. Yeast cells can produce self-adhesion genes and therefore auto-aggregate without aggregating to foreign biotic or abiotic surfaces. Alternatively, yeast cells can produce adhesins for self-

aggregation as well as an adherent to foreign surfaces and thereby form a biofilm. Furthermore, adhesin-producing yeast cells in liquid media can form flocs on the bottom or flor on the surface. Lastly, yeast cells can develop filaments when they produce adhesins and adhere to the bottom in liquid substrates [68].

Intimate binding of *S*. Typhimurium pili to yeast *S*. *boular-dii* has been demonstrated by transmission electron microscopy [70]. The underlying mechanism of binding is postulated to be due to the presence of mannose-specific

Fig. 2. Biotechnology applications of yeast [49].

adhesins/receptors such as fimbriae on bacteria cell walls that can bind to mannose on yeast cell walls. S. boulardii cell walls possess high mannose content and hence the capacity to bind bacteria pathogens with mannosebinding fimbriae [70, 71]. Bacterial pathogens, including Salmonella species, have been reported to bind better to probiotic yeasts than to parabiotic yeasts [71]. Moreover, adhesions of pathogenic bacterial cells onto yeast cell walls were found to be prominent when yeast growth was at the stationary phase compared to other growth phases [72]. The presence of sugars (including mannose, glucose and maltose media), and to some extent bile salts, in aqueous solutions was found to inhibit the binding of S. boulardii to pathogenic bacteria, including Salmonella species [70, 72]. Therefore, to improve the binding of S. boulardii to pathogenic bacteria, the consumption of foods or drinks rich in these sugars should be limited when yeast is used prophylactically or therapeutically.

Some bacteria, including *Salmonella* species, do show variation in the expression of fimbriae and therefore specific binding of yeast to the *Salmonella* may vary depending on the strains and/or genetic mutations [73]. Consequently, the efficacy of adhesion as a prophylaxis can be influenced by strains or genetic mutations that may occur over time.

Enteropathogenic bacteria, including *Salmonella* species and pathogenic *E.coli*, have been shown to preferentially and irreversibly bind to surfaces of *S. boulardii* [52, 71, 72]. The binding of pathogenic bacteria onto yeast cell walls limits their infectivity, since *S. boulardii* does not bind to the GIT; the bound bacterial cells pass transiently through the GIT and are excreted in the faeces [74].

The ability of *S. boulardii* to bind enteropathogenic bacteria is independent of viability; both probiotic and para-probiotic yeasts were shown to bind pathogenic bacterial cells [71, 75]. Interestingly, yeast species were reported not to bind to bacteria normally found in GIT, with the exception of the *S. cerevisiae* UFMG 905 strain, which bound *Bacteroides fragilis* [72]. *S. boulardii* has been reported to significantly reduce the internalization of *S.* Typhimurium in a human T84 cell monolayer when both yeast and the pathogen were applied together in an *in vitro* experiment [70]. Furthermore, *Pichia pastoris* X-33 and *S. boulardii* have been reported to reduce the binding of *S.* Typhimurium to human colorectal HCT-116 cells (by 47 and 37%, respectively) [76].

Mice infected with *S.* Typhimurium showed colonization along the GIT, but when the infected mice were administered with *S. boulardii*, the bacterial cells clustered around

the yeast cells, which was indicative of the adherence of *S*. Typhimurium onto *S. boulardii* cells [65].

GROWTH INHIBITION

The growth inhibitory properties of probiotics, especially yeasts, against bacteria have been proposed to include the production of a high concentration of ethanol, the synthesis of killer toxins, pH changes, organic acid production and competition for nutrients [77].

Competition for nutrients is considered to be the most important antagonistic property of yeast against other fungi in the context of postharvest fungal pathogens in fruits; yeast species have the capacity to quickly deplete glucose, fructose and sucrose, and therefore suppress the growth of other micro-organisms [77]. Moreover, some yeast species possess iron sequestering molecules that give them a competitive advantage to deplete iron, which is needed for growth and pathogenesis by many pathogens [77].

Killer toxins, also called mycocins, are extracellular proteins, glycoproteins or glycolipids that are produced by yeast species against other yeast species with receptors for the toxins. The toxins genes are carried on extra-chromosome elements, including double-stranded RNA virus and doublestranded linear DNA, or on a chromosome [77]. The toxins kill susceptible yeasts but do not affect the producer. The mechanism of action of killer toxins involves the inhibition of beta-glucan synthesis or the hydrolysis of beta-glucan in the cell wall of the target yeast, the inhibition of DNA synthesis in the target yeast, the cleavage of tRNA, the inhibition of calcium uptake and the leakage of ions due to the formation of channels on the cytoplasmic membrane [77]. Killer toxins are large glycoprotein molecules and consequently have the potential to induce unwanted immune responses in the host [78], and therefore further studies on molecular size and possible modification are needed with regard to antigenicity and toxicity before these toxins are used therapeutically[79]. Several yeast genera, including Saccharomyces, Candida, Cryptococcus, Debaryomyces, Kluyveromyces, Pichia, Torulopsis, Williopsis and Zygosac*charomyces*, can produce killer toxins [77].

Yeast metabolites such as sulfur dioxide, carbon dioxide and ethanol have been postulated to have antagonistic effects on enteropathogenic bacteria. Sulfur dioxide, which can be produced by yeasts during fermentation, when dissolved in aqueous medium, produces sulfuric acid, which lowers the pH and therefore exerts its bactericidal or bacteriostatic effect. Furthermore, sulfuric acid is postulated to block microbial enzyme activity through the reduction of disulfide linkage, resulting in an antagonistic property against microorganisms [80]. Moreover, the antibacterial property of carbon dioxide produced by yeast during fermentation is attributed to its dissolution in aqueous solution, which lowers the pH [81, 82]. Ethanol, a product of yeast metabolism, disrupts bacterial cell membranes through the denaturation of proteins and the dissolution of lipids, subsequently causing the lysis of bacterial cells in an in vitro experiment [83]. Concentrations of carbon dioxide and ethanol that are bactericidal may also be harmful to host cells. Ethanol has been reported to affect red blood cells physically and biochemically. Ethanol-induced membrane fluidization, decreased haemogloblin content and concentration in the cytoplasm have been reported [84]. Furthermore, it has been reported that ethanol has negative effects on neurons, hepatocytes and enterocytes [85], and therefore further studies are needed before potential therapeutic application.

A study on *Pichia kudriavzevii* RY55 found that mycocins produced by this yeast species have growth inhibition effects on potential bacterial pathogens, including *E. coli*, *Enterococcus faecalis*, *Klebsiella spp.*, *Staphylococcus aureus*, *Pseudomonas aeruginosa* and *Pseudomonas alcaligenes*. However, the optimum temperature and pH for the toxins were lower and higher, respectively, than in the normal human gut environment. The maximum activity of the enzyme was observed at 30 °C and pH 5 [86]. Moreover, a killer toxin produced by *Candida krusei* that was isolated from fermented vegetables showed growth inhibition towards *E. coli*, *S.* Typhimurium, *S. aureus* and *Bacillus cereus* [87]. It has been reported that the killer toxin produced by *Williopsis Saturnus* shows a lack of bactericidal activity against *Streptococcus pneumoniae* [88].

S. cerevisiae IFST062013 isolated from fruit juice demonstrated moderate antibacterial activity compared to antibiotic doxycycline; the antagonistic effect was more pronounced against Gram-negative than Gram-positive bacteria. Moreover, a comparison of the effects of whole cells, cells lysates and supernatants indicated that cell lysates were more potent, which may be indicative of the antibacterial properties coming from the cell components rather than extracellular secretions. Nonetheless, the yeast species was reported to produce killer toxin and siderophore, and showed strong inhibition of bacterial biofilm formation [89].

PREVENTION OF INVASIVENESS AND SYSTEMIC INFECTION

The attachment of enteric bacterial pathogens, especially *Salmonella*, to receptive epithelial cells leads to internalization and hence infection, leading to symptoms and signs, including diarrhoea, ulceration and the destruction of the mucosa cells [29]. One of the mechanisms that has been proposed to explain how probiotics prevent invasion is competitive exclusion. This is defined as the ability of normal flora or probiotics, including yeast species, to limit the colonization of GIT, competing with invading pathogens by creating a restrictive physiological environment due to the production of antagonistic molecules and competition for binding sites and nutrients [90].

Lactobacillus kefiri CIDCA 8348, L. plantarum CIDCA 8327 and Kluveromyces marxianus var. marxianus CIDCA 8154 isolated from cheese whey fermented with kefir grain reduced the invasiveness of Caco-2/TC7 cells by S.

Enteritidis CIDCA 101. The precise mechanism and which of the probiotic micro-organisms (if it was not a synergistic effect) is responsible for the prevention of enterocyte invasion could not be explicitly identified in the research, as the three probiotic micro-organisms were used together [91]. *S. boulardii* prevented the invasiveness of *S.* Typhimurium and subsequent translocation to the spleen and liver in treated mice compared to untreated control mice, which had high bacterial counts in these organs [65].

BIOFILM FORMATION INHIBITION

Biofilms are defined as communities of micro-organisms attached to biotic or abiotic surfaces [68]. Bacterial biofilm formation occurs in stages, including the reversible attachment of bacterial cells on abiotic or biotic surfaces using forces such van der Waal forces. This is followed by hydrophilic/hydrophobic interactions between bacterial flagella, fimbriae, LPS or adhesive proteins with the receptive surfaces. When the bacteria have been irreversibly attached, the production of extracellular polysaccharide (EPS) and extracellular DNA proliferation occur. The final stage involves the maturation of the biofilm and subsequent dispersal for establishment at another site [92].

Biofilm formation in the GIT and other associated organs such as the liver is one of the virulence factors of bacterial pathogens, including enteropathogenic strains. It has been reported that biofilms account for more than 60% of microbial infections in humans, and these infections are difficult to treat because of the antibiotic-resistant nature of micro-organisms in biofilms [92]. Typhoidal *Salmonella* infection, persistence and the asymptomatic carrier state are associated with biofilm formation in the gallbladder [93]. About 2–5% of typhoid patients developed persistence and the asymptomatic carrier state as a result of biofilm formation [94].

Alpha-amylase, an enzyme produced by yeast cells, has been reported to prevent bacterial pathogen biofilm formation [92]. Moreover, other mechanisms, such as the creation of restrictive physiological environment by probiotics, result in competition for binding sites and nutrients, which also prevents biofilm formation [90].

It has been reported that at 10, 20 and 100 μg ml⁻¹ doses of alpha-amylase decreased *S. aureus* biofilm formation by 72 %, 89 and 90% respectively, while it was able to reduce matrix formation by 82 % in an *in vitro* experiment [92]. *S. cerevisiae* and *Saccharomyces kluyveri* produce alpha-amylase [95], and so yeast probiotics may potentially be used to produce this enzyme to inhibit biofilm formation and thus prevent carrier stage development in patients infected with *S.* Typhi.

EFFECTS ON BACTERIAL TOXINS

Enteropathogenic bacteria, including *Clostridium perfringens*, *S. aureus*, *Vibrio cholerae*, *Shigella dysenteriae*, *C. difficile* and *E. coli* (Shiga toxin-producing), as well as

Salmonella species, produce toxins in the gastrointestinal tract. The expression of the Salmonella enterotoxin (stn) gene, which encodes a 29 kDa protein, is a hallmark of S. Typhimurium virulence. The toxin is responsible for symptoms that include nausea, vomiting, abdominal pain, fever and diarrhoea [33, 96].

V. cholerae pathogenesis involves the activation of adenosine 3', 5'-cyclic monophosphate (cAMP). Likewise, adenylate cyclase in the cytoplasmic membrane in enterocyte activation is mediated by Salmonella enterotoxins which lead to a high concentration of adenosine monophosphate [25]. This high concentration of adenosine monophosphate causes a loss of intestinal fluid. S. boulardii is reported to inhibit cholera toxin-stimulated chloride secretion through the reduction of cAMP [97], and therefore this ability of S. boulardii to inhibit chloride secretion and subsequent fluid loss due to V. cholerae toxin may well have similar effects on Salmonella-associated diarrhoea, since Salmonella toxin is genetically, immunologically and functionally similar to V. cholerae toxin [25, 97].

S. boulardii has been reported to deactivate or inhibit the production of toxins by C. difficile and C. perfringens. S. boulardii produces serine protease with proteolytic activity against C. difficile toxins [74]. Furthermore, S. boulardii minimized the effects of toxin fluid secretion, decreased mucosal permeability, decreased mucosal damage and decreased the release of inflammatory cytokines when administered to mice prior to them being given the V. cholerae toxin [74].

The ability of yeast to bind or neutralize bacterial toxin is possibly probiotic strain-specific. *S. cerevisiae* LV02/CNCM I-3856 provided no protection when porcine IPEC-1 (intestinal epithelial cell lines 1) was infected with enterotoxigenic *E.coli*. The integrity of the IPEC-1 barrier was disrupted, which indicates that this strain does not act on the *E.coli* toxin [54].

LPS, an endotoxin of *Salmonella* and *E.coli*, is associated with sepsis, which can be life-threatening [96]. Alkaline phosphatases, an enzyme produced by *S. boulardii*, was shown to neutralize LPS and reduce its toxicity in a rat model, as well as reducing inflammatory lesions and necrotic bodies in the liver and heart of the treatment group compared to the control group [98].

EFFECTS OF QUORUM SENSING ON PATHOGENS

Micro-organisms produce extracellular compounds that measure microbial population density in the surrounding area and, as a result, regulate their population. This phenomenon is referred to as quorum sensing [99]. Quorum sensing in poly-microbial populations has both synergistic and antagonistic effects. When quorum sensing compounds such as farnesol, *N*-Acyl homoserine lactones, tyrosol and dodecanol are produced in sufficient quantities they cause the expression of

genes within the population. Genes expression results in microbial growth mode, virulence gene expression, biofilm formation or morphological changes [3].

The quorum-sensing molecules produced by micro-organisms not only affect poly-microbial communities, but also the hosts. The immunomodulatory properties of farnesol have been documented, including stimulation of the NF- κ B pathway through MEK1/2-ERK1/2-MSK1-dependent phosphorylation of p65, which leads to the production of cytokines, namely IL-6 and IL-1 α [3]. However, on a negative note, the alteration of monocytes to dendritic cells by farnesol has been reported. In brief, the effects of farnesol on immune cells lead to reduced ability to recruit and activate T cells and hence compromised immunity [3].

Farnesol, an alcohol derivative produced by *S. cerevisiae* or *C. albicans*, has been shown to prevent bacterial biofilm formation [3, 100]. Farnesol was reported to antagonize the production of quinolone signal via the inhibition of *Pseudomonas* quinolone signal gene A (PqsA). Furthermore, farnesol has the potential to be used as a complementary therapy for bacterial infections. It was shown to increase the susceptibility of *S. aureus* to antibiotics and had synergistic effects on the efficacy of nafcillin and vancomycin in the prevention of biofilm formation by *Staphylococcus epidermidis*. Additionally, farnesol enhanced the efficiency of B-lactams against *Burkholderia pseudomallei* [3].

An*in vitro* experiment in murine showed that macrophage cell line RAW264.7 acted in synergy with farnesol and yeast cell walls to increase the expression of pro-inflammatory cytokines [3].

ANTIBACTERIAL PROPERTIES OF YEASTS BIO-SURFACTANTS

Bio-surfactants, also referred to as glycolipids, are compounds made up of one or two sugar molecules, especially glucose or galactose residues in alpha or beta configuration on a lipid backbone. Bio-surfactants are found in bacteria, fungi, plants and animal cell membranes such as glycosylceramides, diacylglycerolglycosides and sterylglycosides [101]. Bio-surfactants are classified as rhamnolipids, sophorolipids, trehalolipids and man-nosylerythritol lipids. These bio-surfactants are produced by micro-organisms, some of which are probiotic bacteria or yeasts [102, 103]. These bio-surfactants have been reported to be functional in bioactive compounds such as glycosylceramides, sphingolipids, glycosphingolipids, sphingosines and ceramides. Their bioactivity has been associated with anti-proliferative responses, such as the inhibition of cell growth, proliferation, differentiation, interruption of the cell cycle, signal transduction, senescence transformation, inflammation and apoptosis [101].

Phytosphingosine, an endogenous bioactive molecule in fungi, plant and human skins, has been shown to inhibit Gram-positive bacteria growth and also has anti-inflammatory properties. Moreover, sphingolipids such as cerebrosides and gangliosides have antibiotic properties, in that

they can bind pathogens or their toxins and remove them from the GIT [101].

Biosurfactants have been reported to prevent pathogenic bacteria adhesion from infection sites as well as biofilm formation. Candida sphaerica UCP 0995 biosurfactant, also known as lunasan, has anti-adhesive properties against some grampositive bacteria, including S. aureus and Streptococcus agalactiae, while the polymeric biosurfactant produced by Candida lipolytica UCP 0988 has anti-adhesive properties against S. aureus, Lactobacillus casei, Streptococcus mutan and E.coli [101]. Mannosylerthritol lipids (MEL) and cellobiose lipids produced by fungi have antibacterial activities through the disruption of cell membranes, which leads to cell lysis. MEL types A and B produced by Candida antarctica and Schizonella melanogramma have antagonistic properties against gram-positive and gram-negative bacteria [101].

PROBLEMS ASSOCIATED WITH THE PROPHYLACTIC AND THERAPEUTIC USE OF PROBIOTICS

The safety of probiotic products is an important aspect that needs consideration before they are used. *S. boulardii* is generally safe when used in a healthy population; however, in 2012, 100 cases of fungaemia were reported worldwide in individuals with gastrointestinal track issues and those who were immunocompromised [51]. *Saccharomyces* fungaemia is critically severe in patients with gastrointestinal diseases [51]. Moreover, an allergic reaction from the administration of *S. boulardii* was been reported in an infant who had previously been diagnosed with food protein-induced enterocolitis syndrome [104].

Candida species have also been reported to possess virulence factors, including glycosidases, proteases, haemolysin, lipases and phospholipases [105]. The ability of yeast species to exist in a dimorphic form (e.g. through the formation of hyphae) has been reported to be one of their virulence factors, and both the Saccharomyces and Candida species have been shown to form hyphae [106]. The formation of hyphae was found to be triggered by nutrient deficiency, as well as the presence of 0.5% isoamyl alcohol [107]. This is of great significance when kefir is used as a probiotic. Kefir is a probiotic low-content alcoholic drink [46], and therefore the potential for yeast species to develop hyphae is a safety risk and needs further research. Moreover, yeasts also have negative impacts on humans, including being food spoilers [52].

Prophylactic and therapeutic use of probiotic bacteria in infectious diseases caused by pathogens such as *Salmonella* has some drawbacks due to the risk of multi-drug resistance gene acquisition [45]. Antibiotic-resistant genes have been detected in *Enterococci* and *Lactobacillus lactis* [74]. Both *Bacillus subtilis* and *E.coli* Nissle 1917 are known to be susceptible to most antibiotic drugs and therefore pose no risk of antibiotic resistance, and so are safe to use as probiotics in prophylaxis, however their susceptibility to antibiotics

makes these bacteria unsuitable for complementary therapy in infectious bacteria treatment [108, 109]. Furthermore, probiotic bacteria have been implicated in sepsis and endocarditis in patients who are immunosuppressed or predisposed to translocation and systemic dissemination of bacteria [110]. These issues associated with probiotic bacteria make their use less attractive in infectious bacterial diseases and hence there is a need for alternative probiotic micro-organisms.

EFFECTS OF PROBIOTIC PRODUCT FORMULATION ON EFFICACY

Probiotics are commonly included in popular fermented functional foods, such as yoghurt, milk, cheese, soybean, fruits, sourdough, kefir and vegetable products, making their consumption easier and more enjoyable, while at the same time providing prophylactic and therapeutic benefits to consumers [44–46]. Probiotic products can also be in the form of lyophilized capsules or aqueous solutions. The survival of probiotics in lyophilized form during delivery in *in vivo* experiments has been reported to be higher than that observed in the aqueous suspension form [48]. However, 7–16 days at the optimum temperature (between 15–25 °C) is needed to resuscitate lyophilized yeasts cells. These requirements do not fit the temperature in the human GIT or the time period that substances stay in there, which may make the lyophilized yeast probiotic products less effective [48].

Furthermore, studies have shown that *S. boulardii* exhibited different revival rates in lyophilized form (between 50 and 60%), whereas *S. cerevisiae* was found to have an even lower revival rate of about 20% in aqueous solutions. These differences in the revival rates could be due to the different freeze-drying methods used by different manufacturers. Previous studies on *S. boulardii* and other *Saccharomyces* species that examined survival and recovery from different preserved forms showed diverse kinetics, such as viability for long storage times, revival and survival in the GIT. Despite this variability, lyophilization is the preferred method of preservation [48].

CONCLUSION AND FUTURE PERSPECTIVES

Probiotic bacteria and yeasts are currently used for prophylaxis and complementary therapy against infectious and non-infectious diseases. The rise of antibiotic resistance and the potential of probiotic bacteria to carry antibiotic-resistant genes, coupled with opportunistic pathogens, has increased the need for alternative biotherapeutic drugs. Yeast species isolated from various sources have antagonistic properties against enteric bacterial pathogens. The antagonistic mechanisms have been reported in many *in vitro* experiments and a few animal trials. The use of yeasts in humans as s probiotic is very limited. Currently, *S. boulardii* is the only probiotic yeast used for prophylaxis and therapies in various ailments, but it has been implicated in fungaemia and allergic reactions. Other yeast species with prophylactic

and therapeutic potential with respect to infectious diseases such as *Salmonella* need further research.

Funding information

This research work was supported by Victoria University as part of a PhD research project.

Conflicts of interest

The authors declare that there are no conflicts of interest.

References

- Kirk MD, Pires SM, Black RE, Caipo M, Crump JA et al. World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis. PLoS Med 2015;12:e1001921.
- Petri WA, Miller M, Binder HJ, Levine MM, Dillingham R et al. Enteric infections, diarrhea, and their impact on function and development. J Clin Invest 2008;118:1277–1290.
- Dixon EF, Hall RA. Noisy neighbourhoods: quorum sensing in fungal-polymicrobial infections. Cell Microbiol 2015;17:1431– 16/61
- Bula-Rudas FJ, Rathore MH, Maraqa NF. Salmonella infections in childhood. Adv Pediatr 2015;62:29–58.
- Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 2012;379:2489– 2499.
- Ford L, Glass K, Veitch M, Wardell R, Polkinghorne B et al. Increasing incidence of Salmonella in Australia, 2000–2013. PLoS One 2016;11:e0163989.
- Andino A, Hanning I. Salmonella enterica: survival, colonization, and virulence differences among serovars. ScientificWorldJournal 2015;2015:520179.
- Deen J, von Seidlein L, Andersen F, Elle N, White NJ et al. Community-acquired bacterial bloodstream infections in developing countries in south and southeast Asia: a systematic review. Lancet Infect Dis 2012;12:480–487.
- Reddy EA, Shaw AV, Crump JA. Community-acquired bloodstream infections in Africa: a systematic review and meta-analvsis. Lancet Infect Dis 2010:10:417–432.
- Nami Y, Haghshenas B, Abdullah N, Barzegari A, Radiah D et al. Probiotics or antibiotics: future challenges in medicine. J Med Microbiol 2015;64:137–146.
- Sanz Y, Nadal I, Sánchez E. Probiotics as drugs against human gastrointestinal infections. Recent Pat Antiinfect Drug Discov 2007;2:148–156.
- 12. FAO/WHO. Probiotics in food Health and nutritional properties and guidelines for evaluation:Report of a Joint FAO/WHO Expert Consultation on Evaluation of health and Nutritional Properties of Probiotics in Food including powder Milk with Live lactic Acid bacteria. Cordoba, Argentina 2002; Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food London, Ontario, Canada 2002 FAO and WHO Report 2002
- 13. **Bakken JS.** Staggered and tapered antibiotic withdrawal with administration of kefir for recurrent Clostridium difficile infection. *Clin Infect Dis* 2014;59:858–861.
- Bekar O, Yilmaz Y, Gulten M. Kefir improves the efficacy and tolerability of triple therapy in eradicating *Helicobacter pylori*. J Med Food 2011;14:344–347.
- Ahmad K, Fatemeh F, Mehri N, Maryam S. Probiotics for the treatment of pediatric helicobacter pylori infection: a randomized double blind clinical trial. *Iran J Pediatr* 2013;23:79–84.
- Kaur IP, Chopra K, Saini A. Probiotics: potential pharmaceutical applications. Eur J Pharm Sci 2002;15:1–9.
- 17. Pérez-Sotelo LS, Talavera-Rojas M, Monroy-Salazar HG, Lagunas-Bernabé S, Cuarón-Ibargüengoytia JA et al. In vitro

- evaluation of the binding capacity of Saccharomyces cerevisiae Sc47 to adhere to the wall of Salmonella spp. Rev Latinoam Microbiol 2005;47:70–75.
- Brenner FW, Villar RG, Angulo FJ, Tauxe R, Swaminathan B et al. Salmonella nomenclature. J Clin Microbiol 2000;38:2465– 2667
- 19. Tindall BJ, Grimont PA, Garrity GM, Euzéby JP. Nomenclature and taxonomy of the genus Salmonella. Int J Syst Evol Microbiol 2005;55:521–524.
- Monte AS, De Santos PE. Salmonella. Classification, Genetics, and Disease Outbreaks. New York: Nova Biomedical/Nova Science Publishers. Inc.: 2012.
- Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive Salmonella infections. Clin Microbiol Rev 2015;28:901–937.
- WHO. Background document: the diagnosis, treatment and prevention of typhoid fever. 2003.
- 23. Kumar P, Kumar R. Enteric Fever. Indian J Pediatr 2017;84:227–230
- 24. Lönnermark E, Lappas G, Friman V, Wold AE, Backhaus E et al. Effects of probiotic intake and gender on nontyphoid Salmonella infection. J Clin Gastroenterol 2015;49:116–123.
- Hocking AD. Foodborne microorganisms of public health significance: Australian Institute of Food Science and Technology Incorporated (AIFST Inc). 2012.
- Xu H, Lee HY, Ahn J. Growth and virulence properties of biofilm-forming Salmonella enterica serovar typhimurium under different acidic conditions. Appl Environ Microbiol 2010;76:7910– 7917.
- Wagner C, Hensel M. Adhesive Mechanisms of Salmonella enterica. In: Linke D and Goldman A (editors). Bacterial Adhesion: Chemistry, Biology and Physics. Dordrecht: Springer Netherlands; 2011. pp. 17–34p..
- Velge P, Wiedemann A, Rosselin M, Abed N, Boumart Z et al. Multiplicity of Salmonella entry mechanisms, a new paradigm for Salmonella pathogenesis. Microbiologyopen 2012;1:243–258.
- 29. Baron S. Epidemiology-Medical Microbiology. Galveston: University of Texas Medical Branch; 1996.
- Ashkenazi S, Cleary TG, Murray BE, Wanger A, Pickering LK. Quantitative analysis and partial characterization of cytotoxin production by Salmonella strains. *Infect Immun* 1988;56:3089– 3094.
- Rumeu MT, Suárez MA, Morales S, Rotger R. Enterotoxin and cytotoxin production by Salmonella enteritidis strains isolated from gastroenteritis outbreaks. J Appl Microbiol 1997;82:19–31.
- Song J, Gao X, Galán JE. Structure and function of the Salmonella Typhi chimaeric A2B5 typhoid toxin. Nature 2013;499:350– 354.
- Chopra AK, Huang JH, Xu X, Burden K, Niesel DW et al. Role of Salmonella enterotoxin in overall virulence of the organism. Microb Pathog 1999;27:155–171.
- 34. Chong A, Lee S, Yang YA, Song J. The role of typhoid Toxin in *Salmonella* Typhi virulence. *Yale J Biol Med* 2017;90:283–290.
- 35. Nakano M, Yamasaki E, Ichinose A, Shimohata T, Takahashi A et al. Salmonella enterotoxin (Stn) regulates membrane composition and integrity. Dis Model Mech 2012;5:515–521.
- Ibarra JA, Steele-Mortimer O. Salmonella virulence factors that modulate intracellular survival. *Cellular Microbiology* 2009;11: 1579–1586.
- Siba V, Horwood PF, Vanuga K, Wapling J, Sehuko R et al. Evaluation of serological diagnostic tests for typhoid fever in Papua New Guinea using a composite reference standard. Clin Vaccine Immunol 2012;19:1833–1837.
- 38. Prabagaran SR, Kalaiselvi V, Chandramouleeswaran N, Deepthi KNG, Brahmadathan KN et al. Molecular diagnosis of Salmonella typhi and its virulence in suspected typhoid blood samples

- through nested multiplex PCR. J Microbiol Methods 2017;139: 150–154.
- Medalla F, Gu W, Mahon BE, Judd M, Folster J et al. Estimated incidence of antimicrobial drug-resistant nontyphoidal Salmonella infections, United States, 2004–2012. Emerg Infect Dis 2016;23:29–37.
- Sabtu N, Enoch DA, Brown NM. Antibiotic resistance: what, why, where, when and how? Br Med Bull 2015;16:105–113.
- Feasey NA, Gaskell K, Wong V, Msefula C, Selemani G et al. Rapid emergence of multidrug resistant, H58-lineage Salmonella typhi in Blantyre, Malawi. PLoS Negl Trop Dis 2015;9: e0003748.
- Wong VK, Baker S, Pickard DJ, Parkhill J, Page AJ et al. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events. Nat Genet 2015;47:632–639.
- 43. **Oelschlaeger TA.** Mechanisms of probiotic actions A review. *Int J Med Microbiol* 2010;300:57–62.
- Priyodip P, Prakash PY, Balaji S. Phytases of probiotic bacteria: characteristics and beneficial aspects. *Indian J Microbiol* 2017; 57:148–154.
- 45. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T et al. Probioticbacteria: safety, functional and technological properties. J Biotechnol 2000;84:197–215.
- 46. Prado MR, Blandón LM, Vandenberghe LP, Rodrigues C, Castro GR et al. Milk kefir: composition, microbial cultures, biological activities, and related products. Front Microbiol 2015;6:1177.
- Plessas S, Nouska C, Mantzourani I, Kourkoutas Y, Alexopoulos A et al. Microbiological exploration of different types of kefir grains. Fermentation 2016;3:1.
- Martins FS, Veloso LC, Arantes RM, Nicoli JR. Effects of yeast probiotic formulation on viability, revival and protection against infection with Salmonella enterica ssp. enterica serovar Typhimurium in mice. Lett Appl Microbiol 2009;49:738–744.
- Walker GM. Yeast Physiology and Biotechnology. New York: Chichester; 1998.
- Watkinson SC, Boddy L, Money N. The Fungi, 3rd ed. Saint Louis: Elsevier Science; 2015.
- Kelesidis T, Pothoulakis C. Efficacy and safety of the probiotic Saccharomyces boulardii for the prevention and therapy of gastrointestinal disorders. Therap Adv Gastroenterol 2012;5:111– 125.
- Rajkowska K, Kunicka-Styczyńska A. Probiotic activity of Saccharomyces cerevisiae var. boulardii against human pathogens. Food Technol Biotechnol 2012;50:230–236.
- Tomicic Z, Colovic R, Cabarkapa I, Vukmirovic D, Djuragic O et al. Beneficial properties of probiotic yeast Saccharomyces boulardii. Food Feed Res 2016;43:103–110.
- 54. Palma ML, Zamith-Miranda D, Martins FS, Bozza FA, Nimrichter L et al. Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement? Appl Microbiol Biotechnol 2015;99:6563–6570.
- 55. **Guttman JA, Finlay BB.** Tight junctions as targets of infectious agents. *Biochim Biophys Acta* 2009;1788:832–841.
- Rao RK, Samak G. Protection and restitution of gut barrier by probiotics: nutritional and clinical implications. *Curr Nutr Food Sci* 2013;9:99–107.
- Pothoulakis C. Review article: anti-inflammatory mechanisms of action of Saccharomyces boulardii. Aliment Pharmacol Ther 2009; 30:826–833.
- Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 2007;5:e244.
- 59. Hudson LE, McDermott CD, Stewart TP, Hudson WH, Rios D et al. Characterization of the probiotic yeast Saccharomyces

- boulardii in the Healthy Mucosal Immune System. PLoS One 2016;11:e0153351.
- Stier H, Bischoff S. Saccharomyces boulardii CNCM I-745 on the gut-associated immune system. Clin Exp Gastroenterol 2016;9: 269–279.
- 61. Ch H, Yun CW, Paik HD, Kim SW, Kang CW et al. Preparation and analysis of yeast cell wall mannoproteins, immune enchancing materials, from cell wall mutant Saccharomyces cerevisiae. J Microbiol Biotechnol 2006;16:247–255.
- 62. Means TK, Mylonakis E, Tampakakis E, Colvin RA, Seung E et al. Evolutionarily conserved recognition and innate immunity to fungal pathogens by the scavenger receptors SCARF1 and CD36. J Exp Med 2009;206:637–653.
- 63. **Zhou Z, Hartwieg E, Horvitz HR.** CED-1 is a transmembrane receptor that mediates cell corpse engulfment in *C. elegans. Cell* 2001;104:43–56.
- Levitz SM. Innate recognition of fungal cell walls. PLoS Pathog 2010;6:e1000758.
- 65. Pontier-Bres R, Munro P, Boyer L, Anty R, Imbert V et al. Saccharomyces boulardii modifies Salmonella typhimurium traffic and host immune responses along the intestinal tract. PLoS One 2014;9:e103069.
- 66. Romanin D, Serradell M, González Maciel D, Lausada N, Garrote GL et al. Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir. Int J Food Microbiol 2010;140:102–108.
- 67. Lawrence T. The nuclear factor NF-kappaB pathway in inflammation. *Cold Spring Harb Perspect Biol* 2009;1:a001651.
- Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2012;36:25–58.
- Dranginis AM, Rauceo JM, Coronado JE, Lipke PN. A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. *Microbiol Mol Biol Rev* 2007;71:282–294.
- Martins FS, Dalmasso G, Arantes RM, Doye A, Lemichez E et al. Interaction of Saccharomyces boulardii with Salmonella enterica serovar Typhimurium protects mice and modifies T84 cell response to the infection. PLoS One 2010;5:e8925.
- 71. Posadas GA, Broadway PR, Thornton JA, Carroll JA, Lawrence A et al. Yeast pro-and paraprobiotics have the capability to bind pathogenic bacteria associated with animal disease. Translational Animal Science 2017;1:60–68.
- 72. Tiago FC, Martins FS, Souza EL, Pimenta PF, Araujo HR et al. Adhesion to the yeast cell surface as a mechanism for trapping pathogenic bacteria by Saccharomyces probiotics. J Med Microbiol 2012;61:1194–1207.
- 73. Kisiela DI, Chattopadhyay S, Libby SJ, Karlinsey JE, Fang FC et al. Evolution of Salmonella enterica virulence via point mutations in the fimbrial adhesin. PLoS Pathog 2012;8:e1002733.
- 74. Czerucka D, Piche T, Rampal P. Review article: yeast as probiotics Saccharomyces boulardii. Aliment Pharmacol Ther 2007;26: 767–778.
- 75. **Gedek BR.** Adherence of *Escherichia coli* serogroup 0 157 and the *Salmonella typhimurium* mutant DT 104 to the surface of *Saccharomyces boulardii*. *Mycoses* 1999;42:261–264.
- França RC, Conceição FR, Mendonça M, Haubert L, Sabadin G et al. Pichia pastoris X-33 has probiotic properties with remarkable antibacterial activity against Salmonella Typhimurium. Appl Microbiol Biotechnol 2015;99:7953–7961.
- 77. **Muccilli S, Restuccia C**. Bioprotective role of yeasts. *Microorganisms* 2015;3:588–611.
- 78. **Hatoum R, Labrie S, Fliss I.** Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. *Front Microbiol* 2012;3:421.
- 79. Schaffrath R, Meinhardt F, Klassen R. Yeast Killer Toxins: Fundamentals and Applications; 2018. pp. 87–118.

- Chichester D, Tanner F. Antimicrobial food additives. CRC handbook of food additives 1972;1:115–184.
- Erkmen O. Effects of high-pressure carbon dioxide on Escherichia coli in nutrient broth and milk. Int J Food Microbiol 2001;65: 131–135
- 82. White C, Zainasheff J. Yeast: The Practical Guide to Beer Fermentation. Brewers Publications; 2010.
- Mcdonnell G, Russell AD. Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 1999;12:147–179.
- Lee SY, Park HJ, Best-Popescu C, Jang S, Park YK. The effects of ethanol on the morphological and biochemical properties of individual human red blood cells. PLoS One 2015;10:e0145327.
- Manzo-Avalos S, Saavedra-Molina A. Cellular and mitochondrial effects of alcohol consumption. Int J Environ Res Public Health 2010;7:4281–4304.
- 86. **Bajaj BK, Raina S, Singh S.** Killer toxin from a novel killer yeast *Pichia kudriavzevii* RY55 with idiosyncratic antibacterial activity. *J Basic Microbiol* 2013;53:645–656.
- Waema S, Maneesri J, Masniyom P. Isolation and identification of killer yeast from fermented vegetables. Asian J Food Agro-Industry 2009;2:126–134.
- Ochigava I, Collier PJ, Walker GM, Hakenbeck R. Williopsis saturnus yeast killer toxin does not kill Streptococcus pneumoniae. Antonie van Leeuwenhoek 2011;99:559–566.
- Fakruddin M, Hossain MN, Ahmed MM. Antimicrobial and antioxidant activities of Saccharomyces cerevisiae IFST062013, a potential probiotic. BMC Complement Altern Med 2017;17:64.
- 90. **Revolledo L, Ferreira CS, Ferreira AJ.** Prevention of *Salmonella Typhimurium* colonization and organ invasion by combination treatment in broiler chicks. *Poult Sci* 2009;88:734–743.
- Londero A, Iraporda C, Garrote GL, Abraham AG. Cheese whey fermented with kefir micro-organisms: Antagonism against Salmonella and immunomodulatory capacity. Int J Dairy Tech 2015; 68:118–126.
- Sadekuzzaman M, Yang S, Mizan MFR, Ha SD. Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf 2015;14:491–509.
- 93. Gonzalez-Escobedo G, Gunn JS. Gallbladder epithelium as a niche for chronic *Salmonella* carriage. *Infect Immun* 2013;81: 2920–2930.
- 94. Gunn JS, Marshall JM, Baker S, Dongol S, Charles RC *et al.* Salmonella chronic carriage: epidemiology, diagnosis, and gallbladder persistence. *Trends Microbiol* 2014;22:648–655.
- Møller K, Sharif MZ, Olsson L. Production of fungal alpha-amylase by Saccharomyces kluyveri in glucose-limited cultivations. J Biotechnol 2004;111:311–318.
- 96. Lubran MM. Bacterial toxins. Ann Clin Lab Sci 1988;18:58-71.
- 97. Czerucka D, Roux I, Rampal P. Saccharomyces boulardii inhibits secretagogue-mediated adenosine 3',5'-cyclic monophosphate induction in intestinal cells. Gastroenterology 1994;106: 65–72.
- Buts JP, Dekeyser N, Stilmant C, Delem E, Smets F et al. Saccharomyces boulardii produces in rat small intestine a novel protein phosphatase that inhibits Escherichia coli endotoxin by dephosphorylation. Pediatr Res 2006;60:24–29.
- 99. **Hogan DA.** Talking to themselves: autoregulation and quorum sensing in fungi. *Eukaryot Cell* 2006;5:613–619.
- Muramatsu M, Ohto C, Obata S, Sakuradani E, Shimizu S. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae. J Biosci Bioeng 2009;108:52–55.
- 101. Cortés-Sánchez AJ, Hernández-Sánchez H, Jaramillo-Flores ME. Biological activity of glycolipids produced by microorganisms: new trends and possible therapeutic alternatives. *Microbiol Res* 2013;168:22–32.
- Fariq A, Saeed A. Production and biomedical applications of probiotic biosurfactants. Curr Microbiol 2016;72:489–495.

- Jolly M. Inhibitory effect of biosurfactant purified from probiotic yeast against biofilm producers. J Environ Sci Toxicol Food Technol 2013;6:5155.105
- 104. Hwang JB, Kang KJ, Kang YN, Kim AS. Probiotic gastrointestinal allergic reaction caused by Saccharomyces boulardii. Ann Allergy Asthma Immunol 2009;103:87–88.
- Luo G, Samaranayake LP, Yau JY. Candida species exhibit differential in vitro hemolytic activities. J Clin Microbiol 2001;39: 2971–2974.
- 106. Yang YL. Virulence factors of Candida species. J Microbiol Immunol Infect 2003:36:223–228.
- 107. Ceccato-Antonini SR, Sudbery PE. Filamentous growth in Saccharomyces cerevisiae. Braz J Microbiol 2004;35:173–181.
- 108. Algburi A, Volski A, Cugini C, Walsh EM, Chistyakov VA et al. Safety Properties and probiotic potential of Bacillus subtilis KAT-MIRA1933 and Bacillus amyloliquefaciens B-1895. Adv Microbiol 2016;6:432.
- 109. Gronbach K, Eberle U, Müller M, Olschläger TA, Dobrindt U et al. Safety of probiotic Escherichia coli strain Nissle 1917 depends on intestinal microbiota and adaptive immunity of the host. Infect Immun 2010;78:3036–3046.
- Alvarez-Olmos MI, Oberhelman RA. Probiotic agents and infectious diseases: a modern perspective on a traditional therapy. Clin Infect Dis 2001;32:1567–1576.
- 111. Higgins JP, Higgins SE, Wolfenden AD, Henderson SN, Torres-Rodriguez A et al. Effect of lactic acid bacteria probiotic culture treatment timing on Salmonella enteritidis in neonatal broilers. Poult Sci 2010;89:243–247.
- 112. Higgins SE, Erf GF, Higgins JP, Henderson SN, Wolfenden AD et al. Effect of probiotic treatment in broiler chicks on intestinal macrophage numbers and phagocytosis of Salmonella enteritidis by abdominal exudate cells. Poult Sci 2007;86: 2315–2321.
- 113. Higgins SE, Torres-Rodriguez A, Vicente JL, Sartor CD, Pixley CM et al. Evaluation of intervention strategies for idiopathic diarrhea in commercial turkey brooding houses. J Appl Poult Res 2005:14:345–348.
- 114. Higgins SE, Higgins JP, Wolfenden AD, Henderson SN, Torres-Rodriguez A et al. Evaluation of a Lactobacillus-based probiotic culture for the reduction of Salmonella enteritidis in neonatal broiler chicks. Poult Sci 2008;87:27–31.
- 115. Higgins JP, Higgins SE, Vicente JL, Wolfenden AD, Tellez G et al. Temporal effects of lactic acid bacteria probiotic culture on Salmonella in neonatal broilers. Poult Sci 2007;86:1662– 1666
- 116. Menconi A, Wolfenden AD, Shivaramaiah S, Terraes JC, Urbano T et al. Effect of lactic acid bacteria probiotic culture for the treatment of Salmonella enterica serovar Heidelberg in neonatal broiler chickens and turkey poults. Poult Sci 2011;90:561–565.
- 117. Heikkilä JE, Nybom SM, Salminen SJ, Meriluoto JA. Removal of cholera toxin from aqueous solution by probiotic bacteria. *Pharmaceuticals* 2012;5:665–673.
- 118. Yoshimura K, Matsui T, Itoh K. Prevention of Escherichia coli 0157:H7 infection in gnotobiotic mice associated with Bifidobacterium strains. Antonie van Leeuwenhoek 2010;97:107–117.
- 119. Huang IF, Lin IC, Liu PF, Cheng MF, Liu YC et al. Lactobacillus acidophilus attenuates Salmonella-induced intestinal inflammation via TGF- β signaling. BMC Microbiol 2015;15:203.
- 120. Kamada N, Maeda K, Inoue N, Hisamatsu T, Okamoto S et al. Nonpathogenic Escherichia coli strain Nissle 1917 inhibits signal transduction in intestinal epithelial cells. Infect Immun 2008;76: 214–220.
- 121. **Rishi P, Preet S, Kaur P.** Effect of L. plantarum cell-free extract and co-trimoxazole against *Salmonella* Typhimurium: a possible adjunct therapy. *Ann Clin Microbiol Antimicrob* 2011;10:9.

- 122. Truusalu K, Mikelsaar RH, Naaber P, Karki T, Kullisaar T et al. Eradication of Salmonella Typhimurium infection in a murine model of typhoid fever with the combination of probiotic Lactobacillus fermentum ME-3 and ofloxacin. BMC Microbiol 2008;8: 132
- 123. Jiang Y, Kong Q, Roland KL, Wolf A, Curtiss R. Multiple effects of Escherichia coli Nissle 1917 on growth, biofilm formation, and inflammation cytokines profile of Clostridium perfringens type A strain CP4. Pathog Dis 2014;70:390–400.
- Collado MC, Meriluoto J, Salminen S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 2007;45:454–460.
- 125. Jacobi CA, Grundler S, Hsieh CJ, Frick JS, Adam P et al. Quorum sensing in the probiotic bacterium Escherichia coli Nissle 1917 (Mutaflor) evidence that furanosyl borate diester (Al-2) is influencing the cytokine expression in the DSS colitis mouse model. Gut Pathog 2012;4:8.
- 126. Altenhoefer A, Oswald S, Sonnenborn U, Enders C, Schulze J et al. The probiotic Escherichia coli strain Nissle 1917 interferes with invasion of human intestinal epithelial cells by different enteroinvasive bacterial pathogens. FEMS Immunol Med Microbiol 2004;40:223–229.
- 127. **Vuotto C, Longo F, Donelli G.** Probiotics to counteract biofilm-associated infections: promising and conflicting data. *Int J Oral Sci* 2014:6:189–194.
- 128. Collado MC, Meriluoto J, Salminen S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 2007;45:454–460.
- Chua KJ, Kwok WC, Aggarwal N, Sun T, Chang MW. Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol 2017;40:8–16.
- Dubourg G, Elsawi Z, Raoult D. Assessment of the in vitro antimicrobial activity of Lactobacillus species for identifying new potential antibiotics. *Int J Antimicrob Agents* 2015;46: 590–593.
- 131. Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A et al. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli 0157:H7. Infect Immun 2004;72:2240–2247.
- 132. Takahashi M, Taguchi H, Yamaguchi H, Osaki T, Komatsu A et al. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli 0157:H7 infection in mice. FEMS Immunol Med Microbiol 2004;41:219–226.
- Carey CM, Kostrzynska M, Ojha S, Thompson S. The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohemorrhagic *Escherichia coli* O157:H7. *J Microbiol Methods* 2008;73:125–132.
- 134. Zihler A, Gagnon M, Chassard C, Lacroix C. Protective effect of probiotics on *Salmonella* infectivity assessed with combined in vitro gut fermentation-cellular models. *BMC Microbiol* 2011;11:264.
- 135. Tanner SA, Chassard C, Rigozzi E, Lacroix C, Stevens MJ. Bifidobacterium thermophilum RBL67 impacts on growth and virulence gene expression of *Salmonella enterica* subsp. enterica serovar Typhimurium. *BMC Microbiol* 2016;16:46.
- 136. Okuneye O, Oloso N, Adekunle O, Ogunfolabo L, Fasanmi O. Protective properties of probiotics on commercial broilers experimentally infected with Salmonella enteritidis. J Vet Sci Anim Husb 2016;4:307.
- 137. Rokana N, Singh R, Mallappa RH, Batish VK, Grover S. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690 a probiotic strain of Indian gut origin. J Med Microbiol 2016;65:1482–1493.
- Carter A, Adams M, La Ragione RM, Woodward MJ. Colonisation of poultry by Salmonella Enteritidis S1400 is reduced by combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN-33. Vet Microbiol 2017;199:100–107.

- 139. McFarland LV. Meta-analysis of probiotics for the prevention of traveler's diarrhea. *Travel Med Infect Dis* 2007;5:97–105.
- Forkus B, Ritter S, Vlysidis M, Geldart K, Kaznessis YN. Antimicrobial probiotics reduce Salmonella enterica in Turkey Gastrointestinal Tracts. Sci Rep 2017;7:40695.
- 141. Sabag-Daigle A, Blunk HM, Gonzalez JF, Steidley BL, Boyaka PN et al. Use of attenuated but metabolically competent Salmonella as a probiotic to prevent or treat Salmonella infection. Infect Immun 2016;84:2131–2140.
- 142. Finogenova TV, Morgunov IG, Kamzolova SV, Chernyavskaya OG. Organic acid production by the yeast *Yarrowia lipolytica*: a review of prospects. *Appl Biochem Microbiol* 2005;41:418–425.
- 143. Viljoen BC. Yeast ecological interactions. Yeast'Yeast, Yeast'-Bacteria, Yeast'Fungi interactions and yeasts as biocontrol agents. In: Querol A and Fleet G (editors). Yeasts in Food and Beverages. Berlin, Heidelberg: Springer Berlin Heidelberg; 2006. pp. 83–110.

Five reasons to publish your next article with a Microbiology Society journal

- 1. The Microbiology Society is a not-for-profit organization.
- 2. We offer fast and rigorous peer review average time to first decision is 4–6 weeks.
- 3. Our journals have a global readership with subscriptions held in research institutions around the world.
- $4. \quad 80\%$ of our authors rate our submission process as 'excellent' or 'very good'.
- 5. Your article will be published on an interactive journal platform with advanced metrics.

Find out more and submit your article at microbiologyresearch.org.