Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Introduction

About This Lesson

Objectives

- High Dimensionality: When we have a very large number of predicting variables to consider, it can be difficult to interpret and work with the fitted model.
- Multicollinearity: When the predicting variables are correlated, it is important to select variables in such a way that the impact of multicollinearity is minimized.
- Prediction vs Explanatory Objective: The variables selected for the two objectives will most often be different.
- → Variable Selection addresses all these concerns.

Implications and Words of Caution

Controlling vs. Explanatory Variables

Consider research hypothesis as well as potential controlling variables

Targeted Predicting Variables

Include target variable in model if specified by research hypothesis

Over-Interpretation

- Selected variables are not necessarily special!
 - Highly influenced by correlations between variables
 - Interpretation of regression coefficients
 - Causality vs. Association

No Magic Bullet

- Variable selection for large number of predicting variables is an "unsolved" problem in statistics
- In some sense, model selection is "data mining"
- Data miners / machine learners often work with many predictors
- There are no magic procedures to get you the "best model"

"All models are wrong, but some are useful." —George Box

Notation

Given

 $S \subset \{1, ..., p\}$ a subset of indices

and

 $(x_i \text{ for } j \in S)$ the subset of predicting variables with indices in S:

- $\widehat{\beta}(S)$ is the vector of estimated regression coefficients for the submodel with $X_S = (x_i \text{ for } j \in S)$ predicting variables
- $\widehat{Y}(S)$ is the vector of fitted values for the submodel with $X_S = (x_j \text{ for } j \in S)$ predicting variables
 - E.g., for regression assuming normality, $\widehat{Y}(S) = X_S \widehat{\beta}(S)$
- → I will refer to this model as the S submodel.

Summary

Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Data Examples

About This Lesson

Ranking States by SAT Performance

SAT Mean Score by State – Year 1982 790 (South Carolina) – 1088 (Iowa)

- Which variables are associated with state average SAT scores?
- After accounting for selection biases, how do the states rank?
- Which states perform best for the amount of money they spend?

Response & Predicting Variables

The response variable is:

Y = State average SAT score (verbal and quantitative combined)

The predicting variables are:

takers % of eligible students (high school seniors) in state who took the exam

rank Median percentile ranking of test takers in their secondary school

classes

income Median income of families of test takers (in \$00's)

years Average years test takers had in social/natural sciences and humanities

expend State expenditure on secondary schools (in \$00's/student)

Regression Analysis

regression.line = Im(sat ~ log(takers) + rank + income + years + public + expend) summary(regression.line)

Coefficients:

t)
675
)32 *
734
107
928 **
168
271 **

→ NO. Perform variable selection.

Test for Statistical Significance

p-values

$$\hat{\beta}_{takers} \approx 0.02$$
 $\hat{\beta}_{rank} > 0.1$
 $\hat{\beta}_{income} > 0.1$
 $\hat{\beta}_{years} < 0.01$

 $\hat{\beta}_{public} > 0.1$ $\hat{\beta}_{expend} < 0.01$

Inference on Subset of Coefficients

7.6604 9.42e-05 ***

```
regression.red = Im(sat ~ log(takers) + rank)
anova(regression.red, regression.line)

Model 1: sat ~ log(takers) + rank
Model 2: sat ~ log(takers) + rank + income + years + public + expend
Res.Df RSS Df Sum of Sq F Pr(>F)
```

18945

```
Testing for a subset of regression coefficients:
```

 H_0 : Reduced Model (takers and rank only)

VS.

47

43

H_∆: Full Model

45530

26585

Partial F Test: F-value = 7.6604, P-value ≈ 0

Inference on Subset of Coefficients

```
regression.red = lm(sat ~ log(takers) + rank)
anova(regression.red, regression.line)
```

```
Model 1: sat ~ log(takers) + rank
Model 2: sat ~ log(takers) + rank + income + years + public + expend
```

Res.Df RSS Df Sum of Sq F Pr(>F) 1 47 45530

2 43 26585 4 18945 7.6604 9.42e-05 ***

- Controlling and explanatory variables: log(takers) and rank need to be in the model.
- Partial F test for explanatory variables: at least one predicting variable has explanatory power.
 Which ones?
- → Perform variable selection!!!

Predicting Bankruptcy

- Effective bankruptcy prediction is useful for investors and analysts, allowing for accurate evaluation of a firm's prospects.
- Roughly 40 years ago, Ed Altman showed that publicly available financial indicators can be used to distinguish between firms that are about to go bankrupt and those that are not.

Which financial indicators are associated with bankruptcy for telecommunications firms?

Bankruptcy Data

Data Sample:

- 25 telecommunication firms that declared bankruptcy 2000–2002
- 25 telecommunication firms that did not declare bankruptcy, "matched" according to the asset size of the bankrupt firms

Replicate Experimental Data Setting:

- Matching firms to be comparable with respect to meaningful factors
- Allowing for causal inference

Response & Predicting Variables

The response variable is:

Y = Whether the firm declared bankruptcy

The predicting variables are:

WC.TA Working capital as a percentage of total assets (in %)

RE.TA Retained earnings as a percentage of total assets (in %)

EBIT.TA Earnings before interest and taxes as a percentage of total assets (in %)

S.TA Sales as a percentage of total assets (in %)

BVE.BVL Book value of equity divided by book value of total liabilities

Exploratory Data Analysis

Read the data from the file## Exploratory analysis

bankruptcy = read.table("bankruptcy.dat", sep="\t", header=T, row.names=NULL)
attach(bankruptcy)

Exploratory analysis

par(mfrow=c(2,3))

boxplot(split(WC.TA,Bankrupt), style.bxp="old", xlab="Bankrupt", ylab="WC.TA", main="Boxplot of WC/TA")

boxplot(split(RE.TA,Bankrupt), style.bxp="old", xlab="Bankrupt", ylab="RE.TA", main="Boxplot of RE/TA")

boxplot(split(EBIT.TA,Bankrupt), style.bxp="old", xlab="Bankrupt", ylab="EBIT.TA", main="Boxplot of EBIT/TA")

boxplot(split(S.TA,Bankrupt), style.bxp="old", xlab="Bankrupt", ylab="S.TA", main="Boxplot of S/TA")

boxplot(split(BVE.BVL,Bankrupt), style.bxp="old", xlab="Bankrupt", ylab="BVE.BVL", main="Boxplot of BVE/BVL")

Exploratory Data Analysis

Regression Analysis

bank1 = glm(Bankrupt ~ WC.TA + RE.TA + EBIT.TA + S.TA + BVE.BVL, family=binomial) summary(bank1)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	7.42646	6.35770	1.168	0.243
WC.TA	-0.15587	0.12208	-1.277	0.202
RE.TA	-0.07605	0.06311	-1.205	0.228
EBIT.TA	-0.49111	0.32260	-1.522	0.128
S.TA	-0.08040	0.09216	-0.872	0.383
BVE.BVL	-2.07764	1.47488	-1.409	0.159

gstat [1,] 57.46799 4.049594e-11

Test for Statistical Significance

All p-values > 0.1

None of the coefficients are statistically significant.

Test for Overall Regression

p-value ≈ 0

The overall regression has predictive power.

Summary

Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Prediction Risk Estimation

About This Lesson

Bias-Variance Tradeoff

- Variable Selection: Bias vs. Variance
 - Many covariates
 - Low bias, high variance
 - Few covariates
 - · High bias, low variance
- Prediction Risk: Measure of the Bias-Variance Tradeoff

$$R(S) = \frac{1}{n} \sum_{i=1}^{n} E(\widehat{Y}_i(S) - Y_i^*)^2$$

with $\hat{Y}_i(S)$ the fitted response for submodel S and Y_i^* the future observation

We cannot obtain the prediction risk because we do not have the future observations.

How to estimate?

Training Risk

Replace future observations with actual observations

$$R_{\rm tr}(S) = \frac{1}{n} \sum_{i=1}^{n} (\widehat{\mathbf{Y}}_i(S) - \mathbf{Y}_i)^2$$

with $\hat{Y}_i(S)$ the fitted response for submodel S and Y_i the actual observation

- Uses data twice (data snooping): downward bias in prediction risk estimate
- Always prefers/selects larger/more complex model
- **→** Correcting for the bias

$$R_{tr}(S) + Complexity Penalty$$

Variable Selection Criteria

- \rightarrow Correcting for the bias: $R_{tr}(S) + Complexity Penalty$
- → Selection criteria differ through the complexity penalty as follows:
- **Mallow's Cp** with *Complexity Penalty* = $\frac{2|S|\hat{\sigma}^2}{n}$ where |S| is the model size (number of predictors) and $\hat{\sigma}^2$ is the estimated variance based on the full model.
- Akaike Information Criterion (AIC) with Complexity Penalty = $\frac{2|S|\sigma^2}{n}$ where |S| is the model size and σ^2 is the true variance.
 - For AIC, we need to replace σ^2 with an estimate (from the full model or from the S submodel).

Variable Selection Criteria (cont'd)

- \rightarrow Correcting for the bias: $R_{tr}(S) + Complexity Penalty$
- → Selection criteria differ through the complexity penalty as follows:
- Bayesian Information Criterion (BIC) with

Complexity Penalty =
$$\frac{|S|\sigma^2 \log(n)}{n}$$

where |S| is the model size and σ^2 is the true variance

- For BIC, we need to replace σ^2 with an estimate (from the full model or from the S submodel)
- BIC penalizes complexity more than other approaches
 - Preferred in model selection for prediction

Variable Selection Criteria (cont'd)

- \rightarrow Correcting for the bias: $R_{tr}(S) + Complexity Penalty$
- Leave-one-out Cross Validation

$$R_{\text{CV}}(S) = \frac{1}{n} \sum_{i=1}^{n} (\widehat{\mathbf{Y}}_{(i)}(S) - \mathbf{Y}_i)^2$$

where $\hat{Y}_{(i)}(S)$ is the *i*-th predicted value from the S submodel without the *i*-th observation

Leave-one-out Cross Validation Approximation

$$\hat{R}_{CV}(S) \approx R_{tr}(S) + \frac{2|S|\hat{\sigma}^2(S)}{n}$$

where $\hat{\sigma}^2(S)$ is the estimated variance based on the S submodel.

Generalized Linear Models

Training Risk for Generalized Linear Models (including for logistic regression and Poisson regression)

$$R_{\text{tr}}(S) = \frac{1}{n} \sum_{i=1}^{n} (2 Y_i \log[Y_i/\widehat{Y}_i(S)] + 2(n_i - Y_i) \log[(n_i - Y_i)/(n_i - \widehat{Y}_i(S))])$$

where $\hat{Y}_i(S)$ the fitted response for submodel S and Y_i the actual observation

- \rightarrow Correcting for the bias: $R_{tr}(S) + Complexity Penalty$
- AIC & BIC are commonly used for model selection for GLMs

Ranking States by SAT Performance

SAT Mean Score by State – Year 1982 790 (South Carolina) – 1088 (Iowa)

- Which variables are associated with state average SAT scores?
- After accounting for selection biases, how do the states rank?
- Which states perform best for the amount of money they spend?

Model Selection Criteria Using R

```
library(CombMSC)
n = nrow(datasat)
```

full model

```
c(Cp(regression.line, S2=summary(regression.line)$sigma^2).
AIC(regression.line, k=2) AIC(regression.line, k=log(n)))
[1] 7.016756 471.698197 486.994381
```

reduced model

```
c(Cp(regression.red, S2=summary(regression.line)$sigma^2).
AIC(regression.red, k=2) AIC(regression.red k=log(n))
[1] 29.67045 490.59880 498.24689
```

- Mallow's Cp: $\hat{\sigma} = 24.86$ is the estimated standard deviation for the full model
- BIC Similar to AIC but the AIC complexity is further penalized by log(n)
- The values of the three criteria are different and not comparable
- The full model is better according to all three criteria

Summary

Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Model Search

About This Lesson

Bias-Variance Tradeoff

- Variable Selection: Bias vs. Variance
 - Many covariates
 - Low bias, high variance
 - Few covariates
 - High bias, low variance
 - Too few covariates
 - High bias, high variance
- Prediction Risk: Measure of the Bias-Variance Tradeoff

$$R(S) = \frac{1}{n} \sum_{i=1}^{n} E(\widehat{Y}_i(S) - Y_i^*)^2$$

with $\hat{Y}_i(S)$ the fitted response for submodel S and Y_i^* the future observation

Given an estimate of the prediction risk for a submodel S, choose the submodel with the smallest prediction risk.

→ How to search over all submodels?

Model Search

- If p is the number of predicting variables, there are 2^p possible submodels
 - If p is small
 - Fit all submodels
 - If p is large
 - Search using heuristics/greedy search

Stepwise Regression

- Forward
 - Start with no predictors, add one at a time
- Backward
 - Start with all predictors, drop one at a time
- Forward-Backward
 - Add and drop one variable at a time iteratively

Model Search

- Stepwise regression is a greedy algorithm. It does not guarantee to find the model with the best score.
- Forward stepwise regression is preferable to backward stepwise regression.
- Forward stepwise regression does not necessarily select the same model as the one selected using backward stepwise regression.

Forward Stepwise Regression

- 1. Select criterion for model selection (e.g., AIC)
- 2. Establish minimum model, and compute its criterion value, C_0
- 3. Fit p marginal regressions for p predictors, V_i $(j = 1, \dots, p)$, that are not in minimum model
 - C_i is the criterion value for the model that includes the j-th predictor, V_i
 - If possible, select predictor $P_1 = V_k$ whose inclusion yields the <u>smallest</u> criterion value where $C_k < C_0$
 - If P_1 exists, add it to the minimum model and continue; otherwise, stop
- 4. Fit p-1 regressions, and use the same method to test if another predictor should be added
 - Regressions will now be based on models with the previous predictors, including P_1 , and with each V_j additionally included one at a time, for $j=1,\cdots,(k-1),(k+1),\cdots,p$
 - If possible, select predictor $P_2 = V_l$ whose inclusion yields the <u>smallest</u> criterion value where $C_l < C_k$
 - C_l is based on the current regressions; C_k is based on the regressions from the previous step
 - If P₂ exists, add it to the model and continue; otherwise, stop
- 5. Continue adding predictors one at a time until the criterion does not improve

Backward Stepwise Regression

- 1. Select criterion for model selection (e.g., AIC)
- 2. Establish the minimum model and the predictors that must be included
- 3. Fit full model with p additional predictors not in the minimum model, V_j ($j=1,\cdots,p$), and compute its criterion value, C_F
- 4. Fit p regressions, removing one predictor, V_j $(j = 1, \dots, p)$, each time
 - C_i is the criterion value for the model that excludes the j-th predictor, V_i
 - If possible, select predictor $P_1 = V_k$ whose removal yields the <u>smallest</u> criterion value where $C_k \le C_F$
 - If P₁ exists, remove it from the full model and continue; otherwise, stop
- 5. Fit *p*-1 regressions, and use the same method to test if another predictor should be removed
 - Regressions will now be based on models with the previous predictors, excluding P_1 , and with each remaining V_j removed one at a time, for $j=1,\cdots,(k-1),(k+1),\cdots,p$
 - If possible, select $P_2 = V_l$ whose removal yields the <u>smallest</u> criterion value where $C_l \le C_k$
 - C_l is based on the current regressions; C_k is based on the regressions from the previous step
 - If P_2 exists, remove it from the model and continue; otherwise, stop
- 6. Continue discarding predictors one at a time until the criterion does not improve

Forward vs Backward Stepwise Regression

Backward stepwise regression:

- Cannot be performed if there are more predictors than the sample size (p > n)
- Is more computationally expensive than forward stepwise regression
- Will select larger models if p is large

Summary

Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Model Search: Data Examples

About This Lesson

Ranking States by SAT Performance

SAT Mean Score by State – Year 1982 790 (South Carolina) – 1088 (Iowa)

- Which variables are associated with state average SAT scores?
- After accounting for selection biases, how do the states rank?
- Which states perform best for the amount of money they spend?

Compare All Models

library(leaps)

```
out = leaps(datasat[,-c(1,2)], sat, method = "Cp")
cbind(as.matrix(out$which),out$Cp)
 123456
1000001 34.026834
1 1 0 0 0 0 0 47.639512
1 0 1 0 0 0 0 187.387572
1 0 0 1 0 0 0 269,647903
1 0 0 0 1 0 0 306.188562
1 0 0 0 0 1 0 307.076043
6 1 1 1 1 1 1 7.000000
best.model = which(out$Cp==min(out$Cp))
cbind(as.matrix(out$which), out$Cp)[best.model,]
0.000000 0.000000 1.000000 1.000000 1.000000 1.000000 3.581157
```

The output includes all 64 combinations of predictors with specification of which predictors are in the model and the Cp score value for each model.

The best model with respect to Mallow's Cp criterion: years, public, expend, rank (last four predictors in the input dataset)

Does not allow for specification of controlling variables!!!

Stepwise Regression

Forward Stepwise Regression

step(lm(sat~log(takers)+rank), scope=list(lower=sat~log(takers)+rank, upper=sat~log(takers)+rank+expend+years+income+public), direction="forward")

Start: AIC=346.7 sat ~ log(takers) + rank

	Df	Sum of Sq	RSS	AIC
+ expend	1	13149.5	32380	331.66
+ years	1	9827.2	35703	336.55
<none></none>			45530	346.70
+ income	1	1305.3	44224	347.25
+ public	1	15.9	45514	348.69

Step: AIC=331.66

sat ~ log(takers) + rank + expend

IC.
23.90
31.66
33.01
33.17

Step: AIC=323.9

sat ~ log(takers) + rank + expend + years

Df	Sum of Sq	RSS	AIC
		26637	323.90
1	26.6165	26610	325.85
1	4.5743	26632	325.89
	1	1 26.6165	26637 1 26.6165 26610

Call:

Im(formula = sat ~ log(takers) + rank + expend + years)

Coefficients:

Intercept)	log(takers)	rank	expend	years
388.425	-38.015	4.004	2.423	17.857

Selected model: *expend* and *years*, with confounding variables log(*takers*) and *rank*

Stepwise Regression (cont'd)

Backward Stepwise Regression

full = Im(sat ~ log(takers) + rank + expend + years + income + public)
minimum = Im(sat ~ log(takers) + rank)
step(full, scope=list(lower=minimum, upper=full), direction="backward")

Start: AIC=327.8

sat ~ log(takers) + rank + expend + years + income + public

	Df	Sum of Sq	RSS	AIC
- public	1	25.0	26610	325.85
- income	1	47.0	26632	325.89
<none></none>			26585	327.80
- years	1	4588.8	31174	333.77
- expend	1	6264.4	32850	336.38

Step: AIC=325.85

sat ~ log(takers) + rank + expend + years + income

Df	Sum of Sq	RSS	AIC
1	26.6	26637	323.90
		26610	325.85
1	5452.8	32063	333.17
1	7430.3	34040	336.16
	1	1 26.6 1 5452.8	1 26.6 26637 26610 1 5452.8 32063

Step: AIC=323.9

sat ~ log(takers) + rank + expend + years

	Df	Sum of Sq	RSS	AIC
<none></none>			26637	323.90
- years	1	5743.5	32380	331.66
- expend	1	9065.8	35703	336.55

Call:

Im(formula = sat ~ log(takers) + rank + expend + years)

Coefficients:

(Intercept)	log(takers)	rank	expend	years
388.425	-38.015	4.004	2.423	17.857

Stepwise Regression (cont'd)

Backward Stepwise Regression

full = lm(sat ~ log(takers) + rank + expend + years + income + public) minimum = lm(sat ~ log(takers) + rank) step(full, scope=list(lower=minimum, upper=full), direction="backward")

Start: AIC=327.8

sat ~ log(takers) + rank + expend + years + income + public

Dt	Sum of Sq	RSS	AIC
1	25.0	26610	325.85
1	47.0	26632	325.89
		26585	327.80
1	4588.8	31174	333.77
1	6264.4	32850	336.38
	Dr 1 1 1	1 25.0 1 47.0 1 4588.8	1 25.0 26610 1 47.0 26632 26585 1 4588.8 31174

Step: AIC=325.85

sat ~ log(takers) + rank + expend + years + income

Df	Sum of Sq	RSS	AIC
1	26.6	26637	323.90
		26610	325.85
1	5452.8	32063	333.17
1	7430.3	34040	336.16
	1	 26.6 5452.8 	1 26.6 26637 26610 26637 1 5452.8 32063

- Selected model includes
 - expend and years
 - confounding variables log(takers) and rank
- The same model was selected using forward regression
 - Generally, for a large number of predictors, the two methods will select different models

Step: AIC=323.9

sat ~ log(takers) + rank + expend + years

	Df	Sum of Sq	RSS	AIC	
<none></none>			26637	323.90	
- years	1	5743.5	32380	331.66	
- expend	1	9065.8	35703	336.55	

Call:

Im(formula = sat ~ log(takers) + rank + expend + years)

Coefficients:

(Intercept)	log(takers)	rank	expend	years
388.425	-38.015	4.004	2.423	17.857

Predicting Bankruptcy

- Effective bankruptcy prediction is useful for investors and analysts, allowing for accurate evaluation of a firm's prospects.
- Roughly 40 years ago, Ed Altman showed that publicly available financial indicators can be used to distinguish between firms that are about to go bankrupt and those that are not.

Which financial indicators are associated with bankruptcy for telecommunications firms?

Compare All Models

library(bestglm)

input.Xy <- as.data.frame(cbind(WC.TA, RE.TA, EBIT.TA, S.TA,

BVE.BVL,Bankrupt))

bestBIC <- bestglm(input.Xy, IC="BIC", family=binomial)

bank2 = glm(Bankrupt~RE.TA+EBIT.TA+BVE.BVL, family=binomial, epsilon=1e-14, maxit=500, x=T) summary(bank2)

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.29478	1.12323	-0.262	0.7930
RE.TA	-0.05627	0.02745	-2.050	0.0404 *
EBIT.TA	-0.16763	0.09270	-1.808	0.0706 .
BVE.BVL	-0.62975	0.39435	-1.597	0.1103

The best model selected with respect to BIC: RE.TA, EBIT.TA, BVE.BVL

- RE.TA is now statistically significant at $\alpha = 0.05$
- Not all coefficients are statistically significant

- RE.TA is associated with a decrease in the odds of going bankrupt in the next year by 5.5% holding all else fixed
- EBIT.TA is associated with a decrease in the odds of going bankrupt by 15%

Compare All Models (cont'd)

Testing for subset of regression coefficients

The null (reduced model) is not rejected

Remove Outlier

```
bankrupt2 = bankruptcy[-1,]
attach(bankrupt2)
bank3 = glm(Bankrupt ~ WC.TA + RE.TA + EBIT.TA + S.TA +
BVE.BVL, family=binomial,
maxit=500, data=bankrupt2)
```

Warning message:

glm.fit: fitted probabilities numerically 0 or 1 occurred

summary(bank3)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	265.467	576281.709	0	1
WC.TA	-4.297	12439.717	0	1
RE.TA	-1.516	5131.146	0	1
EBIT.TA	-17.043	35543.170	0	1
S.TA	-2.859	7408.747	0	1
BVE.BVL	-77.540	184903.001	0	1

The model fits perfectly. This is complete separation, and the solution is to simplify the model if that is possible.

Compare All Models: Without Outlier

input.Xy <- as.data.frame(cbind(WC.TA, RE.TA, EBIT.TA, S.TA, BVE.BVL,Bankrupt))
bestBIC <- bestglm(input.Xy, IC="BIC", family=binomial)

bank4 = glm(Bankrupt ~ RE.TA + EBIT.TA + BVE.BVL, family=binomial, maxit=500) summary(bank4)

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.09166	1.47135	-0.062	0.9503
RE.TA	-0.08229	0.04230	-1.945	0.0517.
EBIT.TA	-0.26783	0.15854	-1.689	0.0912.
BVE.BVL	-1.21810	0.76536	-1.592	0.1115

exp(coef(bank2)[-1])

RE.TA EBIT.TA BVE.BVL 0.9452862 0.8456655 0.5327273

exp(coef(bank4)[-1])
RE.TA EBIT.TA BVE.BVL
0.9210091 0.7650371 0.2957930

The best model selected with respect to BIC: WC.TA, RE.TA, EBIT.TA, BVE.BVL

Stepwise Regression: Without Outlier

bank3.select=step(bank3, direction="backward")
summary(bank3.select)

Start: AIC=12

Bankrupt ~ WC.TA + RE.TA + EBIT.TA + S.TA +

BVE.BVL

	Df	Deviance	AIC
- S.TA	1	0.0000	10.000
<none></none>		0.0000	12.000
- WC.TA	1	9.3839	19.384
- RE.TA	1	10.7362	20.736
- EBIT.TA	1	14.7992	24.799
- BVE.BVL	1	19.0267	29.027

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	255.413	728539.823	0	1
WC.TA	-9.542	23920.936	0	1
RE.TA	-5.152	15669.825	0	1
EBIT.TA	-28.983	90578.211	0	1
BVE.BVL	-103.614	225264.760	0	1

Step: AIC=10

Bankrupt ~ WC.TA + RE.TA + EBIT.TA +

BVE.BVL

	Df	Deviance	AIC
<none></none>		0.0000	10.000
- WC.TA	1	9.3841	17.384
- RE.TA	1	12.8531	20.853
- EBIT.TA	1	14.8672	22.867
- BVE.BVL	1	19.1321	27.132

Stepwise regression selects the same four predictors as the best subset selection approach using BIC.

Summary

Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Regularized Regression: Penalties

About This Lesson

Bias-Variance Tradeoff

Prediction Risk: Measure of the Bias-Variance Tradeoff

$$R(S) = \frac{1}{n} \sum_{i=1}^{n} E(\widehat{Y}_i(S) - Y_i^*)^2$$

Irreducible error

Mean Square Error

$$= V(Y_i^*) + Bias^2(\widehat{Y}_i(S)) + V(\widehat{Y}_i(S))$$

for a submodel S, with $\hat{Y}_i(S)$ the fitted response for model S and Y_i^* the future observation.

- It is possible to find a model with lower MSE than the full model!
- It is "generic" in statistics: introducing some bias often yields in a decrease in MSE.

Bias-Variance Tradeoff

Biased Regression: Penalties

Not all biased models are better.

We need a way to find "good" biased models!

- Penalize large values of β s jointly
 - Should lead to "multivariate" shrinkage of the vector β
- Goal is really to penalize "complex" models
 - Heuristically, "large" is interpreted as "complex model"
 - If truth really is complex, this may not work!
 - It will then be hard to build a good model anyways

Regularized Regression

Without Penalization

Estimate $(\beta_0, \beta_1, ..., \beta_p)$ by minimizing the sum of squared errors

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2$$

With Penalization

Estimate $(\beta_0, \beta_1, ..., \beta_p)$ by minimizing the penalized sum of squared errors

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2 + \lambda Penalty(\beta_1, \dots, \beta_p)$$

The bigger lambda(λ), the bigger the penalty for model complexity.

Regularized Regression (cont'd)

The penalized sum of squared errors:

$$Q(\beta_{1},...,\beta_{p}) = \sum_{i=1}^{n} \left(y_{i} - \left(\beta_{0} + \beta_{1} x_{i1} + ... + \beta_{p} x_{ip} \right) \right)^{2} + \lambda Penalty(\beta_{1},...,\beta_{p})$$

We consider three choices for the penalty:

L_0 penalty

 $||\beta||_0 = \#\{j: \beta_j \neq 0\} \Rightarrow$ Minimizing Q means searching through all submodels

L_1 penalty (LASSO Regression)

$$||\beta||_1 = \sum_{j=1}^p |\beta_j| \Rightarrow \text{Minimizing Q forces many } \beta_j \text{s to be zeros}$$

L₂ penalty (Ridge Regression)

$$||\beta||_2 = \sum_{j=1}^p \beta_j^2 \Rightarrow$$
 Minimizing Q accounts for multicollinearity

Comparing Penalties

- L_0 penalty
 - Provides best model given a selection criterion
 - Requires fitting all submodels
- L₁ penalty
 - Measures sparsity
- L₂ penalty
 - Easy to implement
 - Does not do variable selection

Example: Consider vectors $\boldsymbol{u}=(1,0,\cdots,0)$ and $\boldsymbol{v}=(\frac{1}{\sqrt{p}},\cdots,\frac{1}{\sqrt{p}})$, both of length p.

Vector \boldsymbol{u} is sparse, because it contains mostly zeros.

Using the L_1 norm, we have $||u||_1 = \sum_{i=1}^p |u_i| = 1$ and $||v||_1 = \sum_{i=1}^p |v_i| = \sqrt{p}$.

Using the L_2 norm, we have $||u||_2 = \sum_{i=1}^p u_i^2 = 1$ and $||v||_2 = \sum_{i=1}^p v_i^2 = 1$.

The L_1 penalty rewards the sparsity of u; the L_2 penalty makes no distinction.

Summary

Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Regularized Regression: Approaches

About This Lesson

Variable Standardization & Notation

For regularized regression, center each column's values at zero and rescale so that the sum of squares of each column's values is 1. That is,

• Rescale the values for each j-th predicting variable, x_i , j=1,...,p, as follows:

$$\frac{1}{n}\sum_{i=1}^n x_{ij} = 0$$

and

$$\frac{1}{n}\sum_{i=1}^{n}x_{ij}^{2}=1$$

• It is also recommended to rescale the response variable in the same way:

$$\frac{1}{n}\sum_{i=1}^{n}y_{i}=0 \text{ and } \frac{1}{n}\sum_{i=1}^{n}y_{i}^{2}=1$$

→ Use the original scale when fitting the selected model for interpretation of the regression coefficients.

Ridge Regression

Minimizes SSE plus the penalty term

$$SSE_{\lambda}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

• Provides closed-form estimate of regression coefficients $(\widehat{\beta})$

$$\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X} + \widehat{\boldsymbol{\lambda}} \boldsymbol{I})^{-1} \boldsymbol{X}^T \boldsymbol{Y}$$

- I is the identity matrix
- $\lambda = 0$ gives least squares estimate (low bias, high variance)
- $\lambda \to \infty$ gives $\widehat{\beta} \to 0$ (high bias, low variance)
- Commonly used under multicollinearity
- Not used for model selection
 - Shrinks but does not "force" any $\hat{\beta}_i$ to equal 0

LASSO Regression

- Least Absolute Shrinkage and Selection Operator
- Normal Linear Regression minimizes

$$SSE_{\lambda}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Generalized Linear Model minimizes

$$SSE_{\lambda}(\boldsymbol{\beta}) = -\ell(\beta_0, \dots, \beta_p) + \lambda \sum_{j=1}^{p} |\beta_j|$$

- $\ell(\beta)$ is the log-likelihood function
- Estimated regression coefficients
 - Must use numerical algorithms
 - No closed-form expression
- Used for model selection
 - Does "force" some $\hat{\beta}_i$ to equal 0

LASSO Regression

- Least Absolute Shrinkage and Selection Operator
- Normal Linear Regression minimizes

$$SSE_{\lambda}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Generalized Linear Model minimizes

$$SSE_{\lambda}(\boldsymbol{\beta}) = -\ell(\beta_0, \cdots, \beta_p) + \lambda \sum_{j=1}^{p} |\beta_j|$$

- $\ell(\beta)$ is the log-likelihood function
- Estimated regression coefficients
 - Must use numerical algorithms
 - No closed-form expression
- Used for model selection
 - Does "force" some $\hat{\beta}_i$ to equal 0

- LASSO performs estimation of regression coefficients and variable selection simultaneously.
- The regression coefficients obtained from LASSO are less efficient than those obtained from Ordinary Least Squares (OLS).
- → After using LASSO to select the model, use OLS to estimate the (final) regression coefficients.

Choosing λ : Cross-Validation

Split the data $\{(x_{11}, \dots, x_{1p}), y_1\}, \dots, \{(x_{n1}, \dots, x_{np}), y_n\}$ into two sets.

Training set

- Use to fit the penalized model
 - Given λ , estimate $\hat{\beta}_0$, $\hat{\beta}_1$, ..., $\hat{\beta}_p$

Testing/Validation set

- Use to evaluate performance of model obtained with training set
 - Estimate mean squared error (MSE) for normal regression
 - Estimate classification error rate for logistic regression
 - Estimate sum of squared deviances for Poisson regression
 - Generally, estimate a scoring rule depending on the regression problem

The process can be repeated for multiple λs .

Cross Validation: How to Split Data?

K-fold cross-validation (KCV)

- Divide data into K chunks of approximately equal size
- For a range of λ penalty values, e.g., $\lambda_1, \dots, \lambda_B$, and for k=1 to K
 - The training set consists of data without the k-th fold of data, and the testing set consists of the k-th fold
 - Given λ , fit a model on the training data and predict responses
 - Given λ , compute mean squared error or classification error rate for the k-th fold testing data
 - Given λ , after K folds have been processed, compute overall error (e.g., MSE or classification error) for that λ for all folds
- Select λ penalty providing minimum overall error

Ridge vs. LASSO Regression

FIGURE 3.8. Profiles of ridge coefficients for the prostate cancer example, as the tuning parameter λ is varied. Coefficients are plotted versus $df(\lambda)$, the effective degrees of freedom. A vertical line is drawn at df=5.0, the value chosen by cross-validation.

FIGURE 3.10. Profiles of lasso coefficients, as the tuning parameter t is varied. Coefficients are plotted versus $s = t/\sum_{i=1}^{n} |\hat{\beta}_{i}|$. A vertical line is drawn at s = 0.36, the value chosen by cross-validation. Compare Figure 3.8 on page 65; the lasso profiles hit zero, while those for ridge do not. The profiles are piece-wise linear, and so are computed only at the points displayed; see Section 3.4.4 for details.

<u>Acknowledgement</u>: From Hastie, T., Tibshirani, R., Friedman, J. (2001), *The Elements of Statistical Learning*, Springer Series in Statistics.

LASSO: Limitations

- LASSO selects only up to n variables
 - n is the number of observations
 - If the number of potential predictors is greater than the number of observations, LASSO will select at most n of them
 - Since, normally, n > p, not a significant limitation
- If there are high correlations among predictors
 - LASSO is dominated by ridge regression
- If there is a group of variables with high correlation
 - LASSO tends to select only one variable from the group
 - LASSO doesn't care which one

Elastic Net

Elastic Net minimizes

$$\sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}))^2 + (\lambda_1 \sum_{j=1}^{p} |\beta_j|) + (\lambda_2 \sum_{j=1}^{p} \beta_j)^2$$

- L₁ penalty generates a sparse model
- L₂ penalty
 - Removes the limitation on the number of selected variables
 - Encourages group effect
 - Stabilizes the L₁ regularization path

Summary

Regression Analysis Model Selection

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Regularized Regression: Data Examples

About This Lesson

Ranking States by SAT Performance

SAT Mean Score by State – Year 1982 790 (South Carolina) – 1088 (Iowa)

- Which variables are associated with state average SAT scores?
- After accounting for selection biases, how do the states rank?
- Which states perform best for the amount of money they spend?

Ridge Regression

library(MASS)

predictorsexpend

0.1808

```
## Scale the predicting variables and the response variable
ltakers = log(takers)
predictors = cbind(ltakers, rank, income, years, public, expend)
predictors = scale(predictors)
sat.scaled = scale(sat)
## Apply ridge regression for a range of penalty constants
lambda = seg(0, 10, by=0.25)
out = lm.ridge(sat.scaled~predictors, lambda=lambda)
round(out$GCV, 5)
which(out\$GCV == min(out\$GCV))
2.25
  10
round(out$coef[,10], 4)
predictorsltakers predictorsrank predictorsincome predictorsyears predictorspublic
        -0.4771
                         0.4195
                                           0.0223
                                                            0.1796
```

The ridge regression outputs estimates for each lambda in the considered range (not shown)

The lambda is selected to minimize the (generalized) CV score

-0.0028

Ridge Regression

```
plot(lambda, out$coef[1,], type = "l", col=1, lwd=3,

xlab = "Lambda", ylab = "Coefficients",

main = "Plot of Regression Coefficients vs. Lambda

Penalty Ridge Regression",

ylim = c(min(out$coef), max(out$coef)))

for(i in 2:6)

points(lambda, out$coef[i,], type = "l", col=i, lwd=3)

abline(h = 0, lty = 2, lwd = 3)

abline(v = 2.25, lty = 2, lwd=3)
```

Plot of Regression Coefficients vs. Lambda Penalty Ridge Regression

LASSO Regression

```
library(lars)
object = lars(x=predictors, y=sat.scaled)
Object
```

Sequence of LASSO moves:

	Itakers	rank	years	expend	income	public
Var	1	2	4	6	3	5
Step	1	2	3	4	5	6

The selected model according to Malow's Cp is at the fourth variable introduced in the model.

LASSO Regression: First Implementation

```
library(lars)
object = lars(x=predictors, y=sat.scaled)
Object
```

Sequence of LASSO moves:

	Itake	rs r	ank ye	ears ex	pend i	ncome p	ublic
Var		1	2	4	6	3	5
Step		1	2	3	4	5	6

round(object\$Cp,2)
0 1 2 3 4 5 6
349.91 103.40 46.89 35.64 3.10 5.09 7.00

The selected model according to Malow's Cp is at the fourth variable introduced in the model.

- From the order the predictors were added, i.e., log(takers), rank, years, expend, income and public, the first four are selected
- After LASSO variable selection, apply ordinary least squares (OLS) with the selected predicting variables

LASSO Regression: First Implementation

plot.lars(object)
plot.lars(object, xvar="df", plottype="Cp")

LASSO Regression: First Implementation

plot.lars(object)
plot.lars(object, xvar="df", plottype="Cp")

From the order the predictors were added, i.e., log(takers), rank, years, expend, income and public, the first four are selected

LASSO Regression: Second Implementation

library(glmnet) # alpha=1 lasso, alpha=0 ridge Xpred= cbind(ltakers, rank, income, years, public, expend)

Find the optimal lambda using 10-fold CV satmodel.cv=cv.glmnet(Xpred, sat, alpha=1) nfolds=10)

Fit lasso model with 100 values for lambda satmodel = glmnet(Xpred, sat, alpha = 1) nlambda=100)

Extract coefficients at optimal lambda coef(satmodel, s=satmodel.cv\$lambda.min)

(Intercept) 516.519096 Itakers -37.244873 rank 3.420034 income . years 13.780563 public . expend 1.662338 Because CV uses random assignments, expect slightly different coefficients each time it is run.

Using LASSO and the penalty selected using 10-fold CV, the selected predictors are: log(takers), rank, years, and expend

LASSO Regression: Second Implementation

Plot coefficient paths

plot(satmodel,xvar="lambda", lwd=2) abline(v=log(satmodel.cv\$lambda.min), col='black', lty=2)

Elastic Net Regression

library(glmnet) # alpha=1 lasso, alpha=0 ridge
Xpred= cbind(ltakers, rank, income, years, public, expend)

Find the optimal lambda using 10-fold CV satmodel.cv=cv.glmnet(Xpred, sat, alpha=0.5, nfolds=10)

Fit elastic net model with 100 values for lambda satmodel = glmnet(Xpred, sat, alpha=0.5, nlambda = 100)

Plot coefficient paths

coef(satmodel, s=satmodel.cv\$lambda.min)

(Intercept)386.70798566Itakers-32.76143283rank4.24246653income0.01727723years16.40041447public.expend1.83649835

Because CV uses random assignments, expect slightly different coefficients each time it is run.

Using Elastic Net and the penalty selected using 10-fold CV, the selected predictors are: log(takers), rank, income, years, and expend

Elastic Net

Extract coefficients at optimal lambda

plot(satmodel, xvar="lambda", lwd=2) abline(v=log(satmodel.cv\$lambda.min), col='black', lty=2, lwd=2)

Overview of All Selection Approaches

I		Log(Takers)	Rank	Income	Years	Public	Expend
Ì	Best Subset & Mallow's Cp		×		×	×	×
Î	Stepwise & AIC	×	×		×		×
	LASSO & Mallow's Cp	×	×		×		×
	Lasso & 10-fold CV	×	×		×		×
	Elastic Net & 10-fold CV	×	×	×	×		×

- Rank, Years, and Expend are selected by all approaches
- Best Subset alone selects Public and does not select Takers
- Income is selected only by Elastic Net

Predicting Bankruptcy

- Effective bankruptcy prediction is useful for investors and analysts, allowing for accurate evaluation of a firm's prospects.
- Roughly 40 years ago, Ed Altman showed that publicly available financial indicators can be used to distinguish between firms that are about to go bankrupt and those that are not.

Which financial indicators are associated with bankruptcy for telecommunications firms?

LASSO Regression

```
library(glmnet)
X = cbind(WC.TA, RE.TA, EBIT.TA, S.TA, BVE.BVL)
```

10-fold CV to find the optimal lambda

bank5.cv = cv.glmnet(X, Bankrupt, family=c("binomial"),(alpha=1) type="class", nfolds=10)

Fit lasso model with 100 values for lambda

bank5 = glmnet(X, Bankrupt, family=c("binomial"), alpha=1, nlambda=100)

Extract coefficients at optimal lambda

coef(bank5, s=bank5.cv\$lambda.min)

(Intercept)	-0.95995368	
WC.TA		
RE.TA	-0.02874387	
EBIT.TA	-0.05757731	
S.TA		
BVE.BVL	-0.14135425	

Using LASSO and the penalty selected using 10-fold CV, the selected predictors are: *RE.TA*, *EBIT.TA*, and *BE.BVL*

LASSO Regression

Plot coefficient paths

plot(bank5, xvar="lambda", lwd=2) abline(v=log(bank5.cv\$lambda.min), col='black', lty 2, lwd=2)

Elastic Net Regression

```
library(glmnet) # alpha=1 lasso, alpha=0 ridge
X = cbind(WC.TA,RE.TA,EBIT.TA,S.TA,BVE.BVL)
```

```
## 10-fold CV to find the optimal lambda
```

bank6.cv = cv.glmnet(X, Bankrupt, family=c("binomial"), alpha= 0.5 type="class", nfolds=10)

Fit elastic net model with 100 values for lambda

bank6 = glmnet(X, Bankrupt, family=c("binomial"), alpha=0.5, nlambda=100)

Extract coefficients at optimal lambda

coef(bank6, s=bank6.cv\$lambda.min)

(Intercent)	0.57000500	
(Intercept)	-0.572208580	
WC.TA	-0.006693551	
RE.TA	-0.015677213	
EBIT.TA	-0.050962740	
S.TA		
BVE.BVL	-0.108940580	

Using Elastic Net and the penalty selected using 10-fold CV, the selected predictors are: WC.TA, RE.TA, EBIT.TA, and BVE.BVL

Elastic Net

Plot coefficient paths

plot(bank6, xvar="lambda", lwd=2) abline(v=log(bank6.cv\$lambda.min), col='black', lty=2, lwd=2)

Overview of All Selection Approaches

I		WC.TA	RE.TA	EBIT.TA	S.TA	BVE.BVL
I	Best subset AIC		×	×		×
Y	Stepwise & AIC		×	×		×
I	Lasso & 10-fold CV		×	×		×
	Elastic Net & 10-fold CV	×	×	×		×

Summary

Regression Analysis Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Emergency Department Healthcare Costs

About This Lesson

Emergency Department Healthcare Costs

Figure 1. Percentage who had selected reasons for last emergency room visit, among adults aged 18–64 whose last visit in past 12 months did not result in hospital admission: United States, January–June 2011

Research Question 1

What factors impact the healthcare cost due to emergency department encounters?

Research Question 2

Is access to primary care providers associated with healthcare costs due to emergency department encounters?

Emergency Department Healthcare Costs

Study Population

Adults enrolled in Medicaid in 2011 in four southeast states

- Alabama, Arkansas, Louisiana, and North Carolina
- Medicaid is a low-income health insurance program

Data Source

Medicaid Analytic eXtract (MAX) claims files available from the Centers of Medicare and Medicaid Services (CMS)

- Additional data sources: U.S. Bureau Census, Health Analytics Group at GT, Robert Wood Johnson Foundation, among others.
- <u>Disclaimer</u>: This analysis of healthcare cost for the Medicaid population using the MAX claims data is in compliance with the study protocol approved by the Georgia Tech Internal Review Board (IRB) and by CMS. Do NOT use the data provided for this analysis for purposes other than the study in this lesson.

Response Variable

EDcost

- Primary variable of interest
- Emergency Department cost aggregated at the census tract level
- Depends on number of enrollees (members) and lengths of their enrollments

PMPM

- Per Member Per Month
- Total number of enrollment months aggregated by census tract
- Used to scale EDcost for comparison across census tracts
 - Each census tract has different numbers of enrollees, and each enrollee can have a different length of enrollment
 - Scaling EDcost by PMPM allows a comparison of cost per enrollee month

Predicting Variables

Location

State and GEOID give state and census tract identification

Utilization

- Data must be scaled by PMPM
 - ED (number of emergency department claims)
 - HO (number of hospitalization claims)
 - PO (number of physician office claims)

Population characteristics

- Percentages of Medicaid-enrolled adults of various populations
 - BlackPop, WhitePop, OtherPop (race/ethnicity)
 - HealthyPop, ChronicPop, ComplexPop (health conditions)

Socioeconomic and Health Environment Factors

- 13 variables quantifying other possibly health-related factors
 - Includes unemployment, median income, urbanicity of the census tract, access to primary care, health rankings, and others

 Georgia

Controlling Variables

Selection Bias

- Adults with chronic or complex health problems tend to need emergency services more than the healthy population
- Controlling factors
 - *ChronicPop* (percentage of population with chronic conditions)
 - ComplexPop (percentage with complex health problems)

Confounding Variable

- The number of ED claims correlates with both response and predicting variables
 - It is a measure of the utilization of the emergency department
 - Utilization directly leads to ED healthcare costs
 - It is therefore a confounding variable
 - Do not include this confounding variable in the model

Summary

Regression Analysis Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Emergency Department Healthcare Costs: Exploratory Data Analysis

About This Lesson

Exploratory Data Analysis: Response Variable

```
## Read the data using read.csv() R command dataAdult = read.csv("DataADULT.csv", header=TRUE) attach(dataAdult)
```

Rescale outcome/response variable

EDCost.pmpm = *EDCost/PMPM*

Rescale utilization

dataAdult\$PO = PO/PMPM dataAdult\$HO = HO/PMPM

Histogram of the response variable

```
par(mfrow=c(2,1))
hist(EDCost.pmpm, breaks=300, xlab="Emergency Department Cost", main="")
hist(log(EDCost.pmpm), breaks=300, xlab="Log-Emergency Department Cost", main="")
```


Exploratory Data Analysis: Response Variable

Log-Emergency Department Cost

Exploratory Data Analysis: Response vs Qualitative Predictors

```
log.EDCost.pmpm = log(EDCost.pmpm)

## Response variable vs categorical predicating variables

par(mfrow=c(2,1))

boxplot(log.EDCost.pmpm ~ State, main = "Variation of log of ED costs by state")

boxplot(log.EDCost.pmpm ~ Urbanicity, main = "Variation of log of ED costs by urbanicity")
```


Exploratory Data Analysis: Response vs Quantitative Predictors

Scatterplot matrix plots library(car)

Response vs Utilization

scatterplotMatrix(~ log(EDCost.pmpm) + HO + PO, smooth=FALSE)

Response vs Population Characteristics

scatterplotMatrix(~ log(EDCost.pmpm) + WhitePop + BlackPop + OtherPop + HealthyPop + ChronicPop + ComplexPop, smooth=FALSE)

Response vs Socioeconomic and Environmental Characteristics

scatterplotMatrix(~ log(EDCost.pmpm) + Unemployment + Income + Poverty + Education + Accessibility + Availability + ProvDensity, smooth=FALSE)

Response vs County Health Rankings

scatterplotMatrix(~ log(EDCost.pmpm) + RankingsPCP + RankingsFood + RankingsHousing + RankingsExercise + RankingsSocial, smooth=FALSE)

Response vs Quantitative Predictors

ED Cost vs. Utilization Measures: Number of Claims for HO and PO

Response vs Quantitative Predictors

ED Cost vs. Population Characteristics: WhitePop, BlackPop, OtherPop, HealthyPop, ChronicPop, ComplexPop

Response vs. Predicting Variables: Correlation Matrix Plot

Correlation matrix plot

library(corrplot)
corr = cor(cbind(log(EDCost.pmpm), dataAdult[,-c(1, 2, 3, 18)]))
corrplot(corr)

Summary

Regression Analysis Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Emergency Department Healthcare Costs: Model Fit and Assessment

About This Lesson

Multiple Linear Regression Model

```
## Exclude GEOID, scaling factor PMPM, and confounding factors EDCost and ED ## Exclude OtherPop & ComplexPop because of linear dependence dataAdult.red = dataAdult[, -c(1, 3, 4, 5, 10, 13)]
```

```
fullmodel = Im(log(EDCost.pmpm) ~ ., data=dataAdult.red) summary(fullmodel)
```


Multiple Linear Regression Model

(100000000000	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	2.208e+00	1.175e-01	18.788	< 2e-16 ***
StateAR	9.235e-01	1.610e-02	57.353	< 2e-16 ***
StateLA	9.081e-01	1.358e-02	66.853	< 2e-16 ***
StateNC	1.418e+00	1.650e-02	85.909	< 2e-16 ***
НО	1.168e+01	7.587e-01	15.401	< 2e-16 ***
PO	1.378e-01	4.114e-02	3.350	0.000815 ***
WhitePop	4.416e-03	5.800e-04	7.614	3.16e-14 ***
BlackPop	4.894e-03	5.824e-04	8.403	< 2e-16 ***
HealthyPop	-9.044e-04	8.160e-04	-1.108	0.267751
ChronicPop	-5.949e-03	2.052e-03	-2.899	0.003760 **
Unemployment	4.390e-04	7.377e-04	0.595	0.551797
Income	-2.556e-07	2.774e-07	-0.922	0.356769
Poverty	-3.306e-04	4.460e-04	-0.741	0.458529
Education	-1.447e-03	3.296e-04	-4.390	1.16e-05 ***
UrbanicitySuburban	-4.565e-04	1.369e-02	-0.033	0.973406
UrbanicityUrban	2.067e-02	1.269e-02	1.629	0.103356
Accessibility	-1.965e-03	7.094e-04	-2.770	0.005623 **
Availability	8.037e-02	1.975e-02	4.068	4.81e-05 ***
RankingsPCP	7.596e-04	1.819e-04	4.175	3.03e-05 ***
RankingsFood	6.586e-03	5.2030-03	1.266	0.205642
RankingsHousing	-4.642e-03	1.562e-03	-2.973	0.002967 **
RankingsExercise	3.993e-04	2.332e-04	1.712	0.086907 .
RankingsSocial	-3.895e-04	1.347e-03	-0.289	0.772497
ProvDensity	6 042e-02	1 573e-02	3 841	0 000124 ***
1				

Socioeconomic predicting variables *Unemployment, Income, Poverty* and *RankingsSocial* are **not** statistically significant given other predicting variables in the model.

Access to primary care variables *Accessibility* and *Availability* are statistically significant.

85% of the variability in the ED cost is explained.

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '.' 1
```

Residual standard error: 0.2321 on 4995 degrees of freedom Multiple R-squared: 0.8486 Adjusted R-squared: 0.8479 F-statistic: 1218 on 23 and 4995 DF, p-value: < 2.2e-16

Residual Analysis: Outliers & Normality

Residuals versus individual predicting variables

```
full.resid = rstandard(fullmodel)
cook = cooks.distance(fullmodel)
```

Check outliers

```
influencePlot(fullmodel)
plot(cook, type="h", lwd=3, col="red", ylab="Cook's Distance")
```

Check Normality

```
qqPlot(full.resid, ylab="Residuals", main = "")
qqline(full.resid, col="red", lwd=2)
hist(full.resid, xlab="Residuals", main = "", nclass=30, col="orange")
```


Residual Analysis: Outliers & Normality

Outliers

Observation 909 stands out.

Normality

Symmetric, but with heavy tails.

Residual Analysis: Constant Variance and Uncorrelated Errors

Check Constant Variance & Uncorrelated Errors

full.fitted = fitted(fullmodel)
par(mfrow=c(1,1))
plot(full.fitted, full.resid, xlab="Fitted Values", ylab="Residuals")

Constant Variance Assumption

No pattern

Uncorrelated Errors Assumption

Three well-defined clusters

Spatial Dependence

Residual Analysis: Linearity

Check Linearity crPlots(fullmodel, ylab="")

Residual Analysis: Linearity (cont'd)

RankingsExercise

RankingsSocial

RankingsHousing

RankingsFood

Summary

Regression Analysis Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Emergency Department Healthcare Costs: Variable Selection

About This Lesson

Lasso Regression

```
predictors = as.matrix(dataAdult[, -c(1, 2, 3, 4, 5, 10, 13, 18)])
# Set up indicator (dummy) variables for State and Urbanicity
# Leave out one indicator (dummy) variable for each group
\#AL = rep(0, length(State))
AR = rep(0, length(State))
LA = rep(0, length(State))
NC = rep(0, length(State))
#AL[as.numeric(factor(State))==1] = 1
AR[as.numeric(factor(State))==2] = 1
LA[as.numeric(factor(State))==3] = 1
NC[as.numeric(factor(State))==4]=1
\#rural = rep(0, length(Urbanicity))
suburban = rep(0, length(Urbanicity))
urban = rep(0), length(Urbanicity))
# rural[as.numeric(factor(Urbanicity))==1] = 1
suburban[as.numeric(factor(Urbanicity))=2] = 1
  urban[as.numeric(factor(Urbanicity))==3] = 1
predictors = cbind(predictors, AR, LA, NC, suburban, urban)
```


Lasso Regression

```
## 10-fold CV to find the optimal lambda
lassomodel.cv = cv.glmnet(predictors, log(EDCost.pmpm), alpha=1) nfolds=10)

## Fit lasso model with 100 values for lambda
lassomodel = glmnet(predictors, log(EDCost.pmpm), alpha=1) nlambda=100)

## Plot coefficient paths
plot(lassomodel, xvar="lambda", label=TRUE, lwd=2)
abline(v=log(lassomodel.cv$lambda.min), col='black', lty=2, lwd=2)

## Extract coefficients at optimal lambda
coef(lassomodel, lassomodel.cv$lambda.min)
```


Lasso Regression

(Intercept) 2.277008e+00 1.162649e+01 HO PO 1.389343e-01 WhitePop 3.767074e-03 BlackPop 4.246413e-03 HealthyPop -1.042170e-03 ChronicPop -5.704991e-03 3.421637e-04 Unemployment -2.307290e-07 Income Poverty -2.383079e-04 Education -1.451700e-03 -1.831102e-03 Accessibility Availability 7.664592e-02 RankingsPCP 7.194696e-04 RankingsFood 5.782113e-03 RankingsHousing -4.587208e-03 RankingsExercise 3.969711e-04 RankingsSocial ProvDensity 5.923880e-02 AR 9.183680e-01 LA 9.027530e-01 NC 1.410464e+00

-7.302043e-05

2.096038e-02

suburban

urban

High-coefficient path corresponds to *HO* variable

RankingsSocial dummy variable is not selected

Other largecoefficient paths correspond to State dummy variables (AR, LA, NC)

Elastic Net Regression

```
## 10-fold CV to find the optimal lambda
enetmodel.cv = cv.glmnet(predictors, log(EDCost.pmpm), alpha=0.5, nfolds=10)

## Fit elastic net model with 100 values for lambda
enetmodel = glmnet(predictors, log(EDCost.pmpm), alpha=0.5, nlambda=100)

## Plot coefficient paths
plot(enetmodel, xvar="lambda", label=TRUE, lwd=2)
abline(v=log(enetmodel.cv$lambda.min), col='black', lty=2, lwd=2)

## Extract coefficients at optimal lambda
coef(enetmodel, s=enetmodel.cv$lambda.min)
```


Elastic Net Regression

(Intercept) 2.288092e+00 HO 1.165709e+01 PO 1.478576e-01 WhitePop 3.688873e-03 BlackPop 4.184739e-03 HealthyPop -1.170339e-03 ChronicPop -5.767968e-03 Unemployment 3.568585e-04 Income -2.361412e-07 Poverty -2.646852e-04 Education -1.451879e-03 Accessibility -1.859399e-03 Availability 7.703073e-02 RankingsPCP 7.168545e-04 RankingsFood 5.944554e-03 RankingsHousing -4.569033e-03 RankingsExercise 4.221634e-04 RankingsSocial **ProvDensity** 5.941349e-02

9.140417e-01

8.996673e-01

1.404530e+00

-3.213212e-04

2.105330e-02

AR

LA

NC

suburban

urban

High-coefficient path corresponds to *HO* variable

RankingsSocial dummy variable is not selected

Other largecoefficient paths correspond to State dummy variables (AR, LA, NC)

Stepwise Regression

```
full = Im(log(EDCost.pmpm) ~ HealthyPop + ChronicPop + State + Urbanicity + HO + PO + BlackPop + WhitePop + Unemployment + Income + Poverty+ Education + Accessibility + Availability + ProvDensity + RankingsPCP + RankingsFood + RankingsExercise + RankingsSocial, data=dataAdult) minimum = Im(log(EDCost.pmpm) ~ HealthyPop + ChronicPop, data=dataAdult) # Forward Stepwise Regression forward.model = step(minimum, scope=list(lower=minimum, upper=full), direction="forward") summary(forward.model) # Backward Stepwise Regression backward.model = step(full, scope=list(lower=minimum, upper=full), direction = "backward") summary(backward.model) # Forward-Backward Stepwise Regression both.min.model = step(minimum, scope=list(lower=minimum, upper=full), direction = "both") summary(both.min.model)
```


Stepwise Regression

Observations

- Variables not selected:
 - Unemployment, Income, Poverty, RankingExercise, RankingsSocial
- Urbanicity was not statistically significant
- Variables selected first by forward stepwise regression, in order
 - State dummy variables (StateAR, StateLA, StateNC)
 - Number of inpatient claims per-member-per-month

Stepwise Regression Model

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   2.0271089 0.0995378
                                         20.365 < 2e-16 ***
HealthyPop
                  -0.0005092
                              0.0007837
                                         -0.650 0.515917
ChronicPop
                  -0.0051250
                              0.0020252
                                         -2.531 0.011418 *
StateAR
                   0.9324593
                              0.0155667
                                         59.901 < 2e-16
                   0.9003846 0.0118631 75.898 < 2e-16 ***
Statel A
StateNC
                   1.4268425 0.0157605 90.533 < 2e-16 ***
                  12.0476486 0.7237072
                                        16.647 < 2e-16 ***
HO
                  -0.0016689 0.0002312
                                        -7.218 6.08e-13
Education
ProvDensity
                   0.0605923 0.0156154
                                          3.880 0.000106
RankingsPCP
                   0.0007885 0.0001577
                                          5.000 5.94e-07 ***
Availability
                   0.0756249
                              0.0191618
                                          3.947 8.03e-05 ***
Accessibility
                  -0.0019930
                              0.0007001
                                         -2.847 0.004433 **
                                          3.029 0.002466
                   0.1232428 0.0406869
UrbanicitySuburban -0.0017746 0.0136754
                                         -0.130 0.896758
                                          1.820 0.068870
UrbanicityUrban
                   0.0226383 0.0124409
                                          9.076 < 2e-16 ***
BlackPop
                              0.0005596
                   0.0050790
WhitePop
                   0.0046371
                              0.0005522
                                          8.398 < 2e-16 ***
                                          3.894 9.98e-05 ***
RankingsFood
                   0.0158764
                              0.0040770
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2322 on 5001 degrees of freedom Multiple R-squared: 0.8483 Adjusted R-squared: 0.8478 F-statistic: 1645 on 17 and 5001 DF, p-value: < 2.2e-16

Both models explain the same amount of variance (about 84%). Prefer the smaller model.

Urbanicity is not statistically significant at $\alpha = 0.05$.

Access to primary care (*Accessibility* and *Availability*) is statistically significantly associated to ED cost.

Stepwise Regression Vs Full Models

Compare full model to selected model

```
reg.step = Im(log(EDCost.pmpm) ~ HealthyPop + ChronicPop + State + Urbanicity + HO
+ PO + BlackPop + WhitePop + Education + Accessibility + Availability
+ ProvDensity + RankingsPCP + RankingsFood, ,data=dataAdult)
```

```
anova(reg.step, full)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 5001 269.56

2 4996 269.46 5 0.10406 0.3859 0.8588
```

- P-value large
 - Do not reject the null hypothesis (reduced model)
- The reduced model is plausibly as good in terms of explanatory power as the full model

Residual Analysis: Outliers & Normality

```
red.resid = rstandard(reg.step)
red.cook = cooks.distance(reg.step)
```

Check outliers

```
influencePlot(reg.step)
plot(red.cook,type="h",lwd=3,col="red", ylab = "Cook's Distance")
```

Check normality

```
qqPlot(red.resid, ylab="Residuals", main = "")
qqline(red.resid, col="red", lwd=2)
hist(red.resid, xlab="Residuals", main = "", nclass=30, col="orange")
```


Residual Analysis: Outliers & Normality

Outliers

Observation 909 stands out

Normality

Symmetric but with heavy tails

Removing Outlier?

Regression Output: With Outlier

Regression Output: Without Outlier

```
Estimate Std. Error t value Pr(>|t|)
                     Estimate Std. Error t value Pr(>|t|)
                                                            (Intercept)
                                                                                 1.9356344
                                                                                            0.0991296
                                                                                                        19.526
                                                                                                                < 2e-16
                    2.0271089
                                0.0995378
                                           20.365
                                                   < 2e-16
(Intercept)
                                                            HealthyPop
                                                                                 0.0003798
                                                                                            0.0007824
                                                                                                         0.485 0.627430
HealthyPop
                   -0.0005092
                                0.0007837
                                           -0.650 0.515917
                                                                                -0.0010849
                                                                                            0.0020519
                                                                                                        -0.529 0.597031
                                                            ChronicPop
ChronicPop
                   -0.0051250
                                0.0020252
                                           -2.531 0.011418
                                                   < 2e-16 StateAR
                                                                                            0.0154403
                                                                                                        60.745
                                                                                                                < 2e-16
                                                                                 0.9379139
                    0.9324593
                                0.0155667
                                           59.901
StateAR
                                                   < 2e-16 StateLA
                                                                                 0.8989533
                                                                                            0.0117596
                                                                                                        76.444
                                                                                                                < 2e-16
                    0.9003846
                                0.0118631
                                           75.898
StateLA
                                                   < 2e-16 StateNC
                                                                                 1.4282364
                                                                                            0.0156224
                                                                                                        91.422
                                                                                                                < 2e-16
                    1.4268425
                                0.0157605
StateNC
                                           90.533
                                                            UrbanicitySuburban
                                                                                -0.0006647
                                                                                            0.0135555
                                                                                                        -0.049 0.960895
UrbanicitvSuburban
                   -0.0017746
                                0.0136754
                                           -0.130 0.896758
                                                            UrbanicityUrban
                                                                                 0.0222961
                                                                                            0.0123314
                                                                                                         1.808 0.070654
UrbanicityUrban
                    0.0226383
                                0.0124409
                                            1.820 0.068870
                                                                                11.5397384
                                                                                            0.7193214
                                                   < 2e-16 HO
                                                                                                        16.043
                                                                                                                < 2e-16
НО
                   12.0476486
                                0.7237072
                                           16.647
                                                                                 0.1338608
                                                                                            0.0403440
                                                                                                         3.318
PO
                                            3.029 0.002466 PO
                                                                                                               0.000913
                    0.1232428
                                0.0406869
BlackPop
                                                   < 2e-16 BlackPop
                                                                                            0.0005547
                                                                                                         9.105
                                                                                                                < 2e-16
                                                                                 0.0050502
                    0.0050790
                                0.0005596
                                                   < 2e-16 WhitePop
                                                                                 0.0044178
                                                                                            0.0005478
                                                                                                         8.064 9.14e-16
WhitePop
                    0.0046371
                                0.0005522
Education
                   -0.0016689
                                0.0002312
                                           -7.218 6.08e-13 Education
                                                                                -0.0017147
                                                                                            0.0002292
                                                                                                        -7.480 8.72e-14
                                           -2.847 0.004433 Accessibility
                                                                                            0.0006940
                   -0.0019930
                                0.0007001
                                                                                -0.0018658
                                                                                                        -2.688 0.007205
Accessibility
                                                                                 0.0755848
                                                                                            0.0189930
                                                                                                         3.980 7.00e-05
Availability
                    0.0756249
                                0.0191618
                                            3.947 8.03e-05 Availability
                    0.0605923
                                0.0156154
                                            3.880 0.000106 ProvDensity
                                                                                 0.0654339
                                                                                            0.0154862
                                                                                                         4.225 2.43e-05
ProvDensity
                                            5.000 5.94e-07 RankingsPCP
                                                                                 0.0007560
                                                                                            0.0001564
                                                                                                         4.835 1.37e-06
RankingsPCP
                    0.0007885
                                0.0001577
                                            3.894 9.98e-05 RankingsFood
                                                                                 0.0162198
                                                                                            0.0040412
                                                                                                         4.014 6.07e-05
RankingsFood
                    0.0158764
                                0.0040770
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '
Signif. codes:
```

Residual standard error: 0.2322 on 5001 degrees of freedom Residual standard error: 0.2301 on 5000 degrees of freedom

Multiple R-squared: 0.8483, Adjusted R-squared: 0.8478 Multiple R-squared: 0.8504, Adjusted R-squared:

Georgia Tech

Model Interpretation: State Differences

Comparing 2011 ED Costs by Location (AL, AR, LA, and NC)

- Controlling for utilization, access, and socioeconomics
 - In AR versus AL
 - ED cost PMPM is exp(0.938) = \$2.55 higher
 - ED cost per member per year is \$30.65 higher
 - In LA versus AL
 - ED cost PMPM is exp(0.899) = \$2.46 higher
 - ED cost per member per year is \$29.49 higher
 - In NC versus AL
 - ED cost PMPM is exp(1.428) = \$4.17 higher
 - ED cost per member per year is \$50.04 higher

Overall Interpretation: Controlling for many potential factors contributing to ED costs, North Carolina pays significantly more while Alabama pays significantly less per member on emergency care than do Louisiana and Arkansas.

Georgia

Model Interpretation: Utilization

Healthcare Utilization

- PO
 - Proxy of regular care utilization
 - Number of claims reimbursed for care in a physician's office
- · HO
 - Proxy of inpatient care utilization
 - Number of claims reimbursed for hospital care

Interpretation

- An increase of 1 claim PMPM for regular care results in a 0.133 increase in log of ED cost PMPM, given all other predictors fixed
- An increase of 1 claim PMPM for inpatient care results in a 11.54 increase in log of ED cost PMPM, given all other predictors fixed

Model Interpretation: Access to Care

Access to primary care

- Availability
 - Proxy of wait times for appointment
 - Takes values between 0 (low wait time) and 1 (high wait time)
- Accessibility
 - Travel distance to primary care providers, measured in miles

Interpretation

- An increase of 0.01 or 1% in lack of availability of primary care providers results in 0.000755 unit increase in log(ED cost PMPM) given all other predictors fixed
- A reduction of 1 mile in travel distance to primary care providers results in 0.002 unit increase in log(ED cost PMPM) given all other predictors fixed
- The correlation between the two measures is 0.696. If *Availability* is discarded from the model, *Accessibility* is not statistically significant.

Summary

Regression Analysis Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

Stewart School of Industrial and Systems Engineering

Emergency Department Healthcare Costs: Findings

About This Lesson

Access to Care: Intervention

Access to Primary Care

- Availability
 - Proxy for appointment wait times
 - Takes values between 0 (low wait times) and 1 (high wait times)

Interpretation

 An increase of 1% in lack of availability of primary care providers results in \$1.00075 unit increase in ED cost PMPM, given all other predictors fixed

Policy Research Question

 Does improvement in availability of primary care providers reduce the cost of ED care?

Findings: Access Intervention

```
newdata=dataAdult.no.out
index = which(newdata$Availability >= 0.5)
```

Improve Availability to at most 0.5 congestion experienced by all communities newdata\$Availability[index] = 0.5

Predict by changing Availability with all other predictors fixed EDCost.predict = predict(reg.step.no.out, newdata, interval="prediction")[,1]

Compare predicted to fitted for those communities with intervention

EDCost.diff.fitted = exp(fitted(reg.step.no.out)) - exp(EDCost.predict)
hist(EDCost.diff.fitted[index], xlab="Difference in Expected versus Predicted ED Cost",
main="Predicted vs. Fitted with Intervention", col="orange")

Compare predicted to observed for those communities with intervention

EDCost.diff.observed = EDCost.pmpm[-909] - exp(EDCost.predict)
summary(EDCost.diff.observed[index])
hist(EDCost.diff.observed[index], xlab="Difference in Observed versus Predicted ED Cost",
main="Predicted vs. Observed with Intervention", col="red")

Findings: Access Intervention

Findings: State Variations

- Large variations in ED healthcare cost across the four states
 - North Carolina leads and Alabama trails in ED care cost. Why?
 - Medicaid programs vary by state
 - Different health policies and reimbursements levels
 - North Carolina leads and Alabama trails also in ED utilization PMPM

The correlation between ED cost and ED utilization is 0.899

Findings: Utilization

- Utilization of physician office visits is positively associated with ED cost of care given the other predicting variables fixed in the model
 - Correlation between utilization of physician office visits and utilization of ED is high (0.54)
 - There may be communities with higher utilization of healthcare in general and thus higher ED costs
- Utilization of inpatient care (hospitalizations) is positively associated with ED cost of care given the other predicting variables fixed in the model
 - There is a very weak correlation between utilization of inpatient care and utilization of ED
 - Further investigation is needed

Findings: Other Variables

- Education is the only socioeconomic variable selected in the reduced model
 - Other socioeconomic variables do not add additional explanatory power given the other predicting variables in the model
- Availability of primary care providers is statistically significantly associated with ED cost of care
 - Intervening to improve availability shows a reduction in the expected ED cost of care according to the fitted model
 - Such analysis relies on causal inference
 - Whether living in urban or rural communities is not statistically significantly associated to ED cost of care given other predicting variables in the model

Summary

Regression Analysis

Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

Customer Churn Analysis in the Telecom Sector

About This Lesson

Customer Churn Analysis

Customer Churn is of great interest in industries where revenues are heavily dependent on subscriptions.

Dataset: Customer data for 7,043 telecom clients, all located in CA, USA.

Data Source: IBM Business Analytics Community

Acknowledgement: This example was prepared with support from students in the Masters of Analytics program, including Jared Babcock, Rishi Bubna, Marta Bras, Aymee Garcia Lopez Gavilan, and Artur Bessa Cabral.

Response & Predicting Variables

Response variables:

• Churn Value: 1 = the customer left the company. 0 = the customer remained with the company.

Predicting variables:

- **Demographics:** 4 variables including customer's gender (*Gender*), marital status (*Partner*) among others.
- **Location:** 7 variables including customer's primary residence ZIP Code (*Zip Code*), latitude (*Latitude*) among others.
- **Services:** 15 variables including customer's subscriptions to home phone (*Phone Services*), internet (*Internet services*), tech support (*Tech Support*) among others services.
- **Status:** 6 variables including customer's ID (*CustomerID*), reason for leaving the company (*Churn Reason*), customer's lifetime value (CLTV) among others.

Objective and Methods

- Predict which customers are likely to churn.
 - Logistic Regression
 - K Nearest Neighbors
 - Decision Tree
 - Random Forest

Exploratory Data Analysis in R

Correlation among the numeric variables

```
# Select numerical variables
dat.num <- na.omit(dat[ , which(sapply(dat, is.numeric))])
```

```
# Create correlation matrix corr <- cor(dat.num)
```

Create correlation plot col <- colorRampPalette(c(buzzgold,"white", gtblue))(10) corrplot(corr, method = "number", type = "upper", tl.col="black", col = col)

There appears to be strong correlation among some of the predicting variables.

Relationship between binary response and numerical variables

```
par(mfrow=c(2,2))
boxplot(Total.Charges ~ Churn.Value, main="", xlab="Churn Value", ylab="Total Charges", col=c(techgold,buzzgold), data=dat)
```

boxplot(Monthly.Charges ~ Churn.Value, main="", xlab="Churn Value", ylab="Monthly Charges", col=c(techgold,buzzgold), data=dat)

boxplot(Tenure.Months ~ Churn.Value, main="", xlab="Churn Value", ylab="Tenure Months", col=c(techgold,buzzgold), data=dat)

Customers that remain with the company appear to have higher total charges and tenure months but lower monthly charges than customers that have churned.


```
## Relationship between binary response and categorical variables
par(mfrow=c(1,3))
tb obgender = xtabs(~dat$Churn.Value+ dat$Gender)
barplot(prop.table(tb_obgender),axes=T,space=0.3, cex.axis=1.5, cex.names=1.5,
       xlab="Proportion of churn vs not churn",
       horiz=T, col=c(gtblue,buzzgold),main="Churn by Gender")
tb citizen = xtabs(~dat$Churn.Value+ dat$Senior.Citizen)
barplot(prop.table(tb_citizen),axes=T,space=0.3, cex.axis=1.5, cex.names=1.5,
       xlab="Proportion of churn vs not churn".
       horiz=T, col=c(gtblue,buzzgold),main="Churn by Senior citizen (Y/N)")
tb_Dependents = xtabs(~dat$Churn.Value+ dat$Dependents)
barplot(prop.table(tb_Dependents),axes=T,space=0.3,cex.axis=1.5, cex.names=1.5,
       xlab="Proportion of churn vs not churn ",
      horiz=T, col=c(gtblue,buzzgold),main="Churn by dependents (Y/N)",
      legend.text = c("No", "Yes"))
```


There seems to exist significant differences in the proportions for each group in the predicting variables *Senior Citizen* and *Dependents*.

Summary

Regression Analysis

Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

Predicting Churn Values of Customers: Regression & Variable Selection

About This Lesson

Logistic Regression

```
## Create full model
full.model <- glm(Churn.Value~ ., family = "binomial", data =
train)
summary(full.model)
## Finding insignificant variables
which(summary(full.model)$coeff[,4]>0.05)
```

The overall regression seems to have explanatory power ## Model Assessment: Multicollinearity *vifs <- vif(full.model)*

Not statistically significant in the full model:

Gender, Senior Citizen, Phone Service, Multiple Lines, Internet Service, Online Security, Online Backup, Device Protection, Tech Support, Streaming TV, Streaming Movies, Payment Method, Monthly Charges

Logistic Regression (cont'd)

```
## Create full model

full.model <- glm(Churn.Value~ ., family = "binomial", data =

train)

summary(full.model)

## Finding insignificant variables

which(summary(full.model)$coeff[,4]>0.05)

## The overall regression seems to have explanatory power
```

The overall regression seems to have explanatory power ## Model Assessment: Multicollinearity vifs <- vif(full.model)

	GVIF	Df	GVIF^(1/(2*Df))
Gender	1.003414	1	1.001705
`Senior Citizen`	1.112401	1	1.054704
Partner	1.248636	1	1.117424
Dependents	1.098666	1	1.048173
`Tenure Months`	15.612548	1	3.951272
`Phone Service`	35.526189	1	5.960385
`Multiple Lines`	7.434935	1	2.726708
`Internet Service`	382.924211	2	4.423624
`Online Security`	5.158636	1	2.271263
`Online Backup`	6.520493	1	2.553526
`Device Protection`	6.611606	1	2.571304
`Tech Support`	5.409603	1	2.325855
`Streaming TV`	25.075402	1	5.007534
`Streaming Movies`	25.317771	1	5.031677
Contract	1.625406	2	1.129121
`Paperless Billing`	1.128532	1	1.062324
`Payment Method`	1.413278	3	1.059346
`Monthly Charges`	694.903171	1	26.361016
`Total Charges`	20.166529	1	4.490716

Variable Selection

Reduce the number of factors in the model

- 1. Overfitting
 - Model with large # of factors can fit too closely, cause random effects
 - It can cause bad estimates
- 2. Simplicity
 - Less chance of insignificant factors
 - Easier to interpret

Variable Selection (cont'd)

Forward-Backward Stepwise Regression

```
# Create minimum model including an intercept
min.model <- glm(Churn.Value~ 1, family = "binomial", data = train)
# Perform stepwise regression
step.model <- step(min.model, scope = list(lower = min.model, upper = full.model),
direction = "both", trace = FALSE)
```

- Not selected: Gender, Senior Citizen, Online Backup, Device Protection, Monthly Charges
- Not statistically significant: Payment Method by Mailed check and by Credit Card

Variable Selection (cont'd)

LASSO Regression

```
# Set predictors and response to correct format

x.train <- model.matrix(Churn.Value ~ ., train)[,-1]

y.train <- train$Churn.Value

# Use cross validation to find optimal lambda

cv.lasso <- cv.glmnet(x.train, y.train, alpha = 1, family = "binomial")

# Train Lasso and display coefficients with optimal lambda

lasso.model <- glmnet(x.train, y.train, alpha = 1, family = "binomial")

coef(lasso.model, cv.lasso$lambda.min)
```

Elastic Net Regression

```
# Use cross validation to find optimal lambda

cv.elnet <- cv.glmnet(x.train, y.train, alpha = 0.5, family = "binomial")

# Train Elastic Net and display coefficients with optimal lambda

elnet.model <- glmnet(x.train, y.train, alpha = 0.5, family = "binomial")

coef(elnet.model, cv.elnet$lambda.min)
```

Not selected for both models: Monthly Charges

Summary

Regression Analysis

Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

Predicting Customer Churn

About This Lesson

Prediction

```
## Using the full model
pred.full = predict(full.model.red, newdata =
test.reduced, type = "response")
## Using the model from stepwise selection
## Variables not selected : Gender, Senior Citizen, Online
Backup and Device Protection
pred.step = predict(step.model, newdata =
test.reduced, type = "response")
## Using the model from LASSO
## Variables not selected : Online Backup and Payment
Method
pred.lasso = predict(lasso.retrained, newdata =
as.data.frame(new_test), type = "response")
## Using the model from Elastic Net (All selected)
pred.elnet = as.vector(predict(elnet.model, newx =
x.test, type = "response", s = cv.elnet$lambda.min))
```

Use classification threshold = 0.5

Predicted churn probability < 0.5 => Churn prediction = 0 Predicted churn probability > 0.5 => Churn prediction = 1

Prediction (cont'd)

```
## Using the full model
pred.full = predict(full.model.red, newdata =
test.reduced, type = "response")
## Using the model from stepwise selection
## Variables not selected : Gender, Senior Citizen, Online
Backup and Device Protection
pred.step = predict(step.model, newdata =
test.reduced, type = "response")
## Using the model from LASSO
## Variables not selected : Online Backup and Payment
Method
pred.lasso = predict(lasso.retrained, newdata =
as.data.frame(new_test), type = "response")
## Using the model from Elastic Net (All selected)
pred.elnet = as.vector(predict(elnet.model, newx =
x.test, type = "response", s = cv.elnet$lambda.min))
```

Prediction Output								
	Actual							
Customers		predClass.	predClass.	predClas.	predClass.			
in Test Data	Value	full	step	lasso	elnet			
6	0	0	0	0	0			
122	1	0	0	0	0			
139	0	0	0	0	0			
257	0	0	0	0	0			
522	0	0	0	0	0 (
594	1	1	1	1	1			
733	0	0	0	0	0			
951	0	0	0	0	0			
982	1	0	0	0	0			
1078	0	0	0	0	0			
1091	0	0	0	0	0			
1094	0	1	1	1	- COO (1			
1123	0	0	0	0	0			
1161	1	0	0	0	0			
1249	0	0	0	0	0			
1429	0	0	0	0	0			

Use classification threshold = 0.5

Predicted churn probability < 0.5 => Churn prediction = 0 Predicted churn probability > 0.5 => Churn prediction = 1

Classification Accuracy

Classification Evaluation Metrics

- Accuracy:
 - Proportion of response values Y_i (churn value) predicted correctly
- Sensitivity (True Positive Rate):
 - Proportion of responses with $Y_i = 1$ (customers who left the company) predicted correctly
- Specificity (True Negative Rate):
 - Proportion of responses with $Y_i = 0$ (customers who remained with the company) predicted correctly

Model Comparison via Classification Evaluation Metrics

```
## Calculate the Accuracy, the Sensitivity and the Specificity metrics to
evaluate these models at 0.5 threshold
pred metrics = function(modelName, actualClass, predClass) {
 cat(modelName, '\n')
 conmat <- confusionMatrix(table(actualClass, predClass))
 c(conmat$overall["Accuracy"], conmat$byClass["Sensitivity"],
  conmat$byClass["Specificity"])
##Full model
pred_metrics("Full Model",test$Churn.Value, predClass.full)
##Stepwise selection model
pred metrics("Stepwise Regression Model",test$Churn.Value, predClass.step)
##Lasso model
pred_metrics("Lasso Regression Model",test$Churn.Value, predClass.lasso)
##Elastic Net model
pred_metrics("Elastic Regression Model",test$Churn.Value, predClass.elnet)
```


Model Comparison via Classification Evaluation Metrics

Full Model

Accuracy Sensitivity Specificity 0.8180 0.8577 0.6832

Stepwise Regression Model

Accuracy Sensitivity Specificity 0.8174 0.8582 0.6807

Lasso Regression Model

Accuracy Sensitivity Specificity 0.8168 0.8576 0.6799

Threshold value: 0.5

All models have very similar prediction metrics. In this case, correctly identifying positives is more important for us. Therefore, we should choose a model with higher Sensitivity.

Classification Evaluation Metrics: Different Threshold

Full Model

Accuracy Sensitivity Specificity 0.7742 0.9116 0.5521

Stepwise Regression Model

Accuracy Sensitivity Specificity 0.7776 0.9136 0.5567

Lasso Regression Model

Accuracy Sensitivity Specificity 0.7759 0.9111 0.5547

Threshold value: 0.3

All models have very similar prediction metrics. Sensitivity has improved while the specificity has decreased as well as the overall accuracy.

Goodness of fit

```
## Measure how well the Logistic Regression model (after variable selection through Stepwise Selection) fits on the training data

# Removing variables not selected by stepwise regression

step.predictors <- names(coef(full.model.red)[index.step])

x.train <- as.data.frame(x.train)

train.final <- x.train[, - which(colnames(x.train) %in% step.predictors)]
```

Aggregating the data

```
obdata.agg.n = aggregate(y.train \sim . , data = train.final, FUN = length) \\ obdata.agg.y = aggregate(y.train \sim . , data = train.final, FUN = sum) \\ dat.aggr <- cbind(obdata.agg.y, total = obdata.agg.n$y.train)
```

Fitting the model

```
mod.aggr = glm(y.train / total \sim . , data = dat.aggr, weight = total, family = binomial) summary(mod.aggr)
```


Goodness of fit (cont'd)

Find the Chi-square test statistics and the corresponding p-value to test the given null hypothesis.

res = resid(mod.aggr, type="deviance") cbind(statistic = sum(res^2), pvalue = 1-pchisq(sum(res^2), mod.aggr\$df.resid))

Test statistic =
$$X^2 = \sum_{i=1}^{p} r_i^2 \sim \chi^2$$
 with $dof = n - (p+1)$
 $P \ value = 1 - P(\chi^2_{n-(p+1)} < X^2)$

→

Chi-Square Test Statistics 4180.503

P-value

P-value is equal to 1, so our model reasonably fits the training data.

Goodness of fit (cont'd)

Checking the normality of deviance residuals assumption hist(res, main="Histogram of deviances",breaks = 8,xlab = "r_i") qqnorm(res)

Normality assumption seems to be violated due to bi-modality in the data.

Summary

Regression Analysis

Regression Analysis in Practice

Nicoleta Serban, Ph.D.

Professor

School of Industrial and Systems Engineering

Predicting Customer Churn using Other Modeling Techniques

About This Lesson

K Nearest Neighbors (KNN): Introduction

- Classify new observations, in this case customers, according to K most similar observations.
- Class of the new observations = most found class among
 K nearest observations
- Supervised Learning: The labels of some observations (churn values for some customers) are known.
- Requires definition of a similarity measure (distance).

Assume that we have only two continuous features for the churn dataset. The plot represents the customer with known labels and a new customer with no information on customer's churn value

Assume the green dot represents the new customer and the contour lines represent the equal distance from the green dot.

How do we classify the new customer if

- K = 3?
- K = 5?

K Nearest Neighbors (KNN): Introduction

- Classify new observations, in this case customers, according to K most similar observations.
- Class of the new observations = most found class among
 K nearest observations
- Supervised Learning: The labels of some observations (churn values for some customers) are known.
- Requires definition of a similarity measure (distance).

Defining Similarity

Assuming all features are continuous variables, let $X_{new} \in \mathbb{R}^p$ define the feature vector of new observation and X_i define the feature vectors of all available data where $i \in \{1,2,...,N\}$. We find the similarity between observations (customers) using Similarity between the new customer and i^{th} customer

$$= (\sum_{k=1}^{p} (|X_{new}^k - X_i^k|)^q)^{1/q}$$

lf

- q = 1 => Manhattan distance
- q = 2 => Euclidean distance
- $q \in \mathbb{R}^+ \cup \{0\} => Minkowski distance$

If features are categorical,

Similarity between the new customer and i^{th} customer

$$= D_H = \sum_{i=1}^p D_i$$
 where

$$D_i = 0 \text{ if } X_{new}^k = X_i^k$$

$$D_i = 1 \text{ if } X_{new}^k \neq X_i^k$$

K Nearest Neighbors (KNN): Implementation

Kernel-Weighted Average Classification

What if we would like to assign more importance to the closer (more similar) observations in classifying the new observation?


```
## Convert response to factor
v.train <- as.factor(train$`Churn Value`)</pre>
y.test <- as.factor(test$`Churn Value`)</pre>
## Dummify categorical features
dummies.train <- dummyVars(`Churn Value` ~ ., data =
train)
dummies.test <- dummy Vars (`Churn Value` ~ .. data =
test)
## Create data frames containing the predictors
x.train.knn <- data.frame(predict(dummies.train, newdata =
train))
x.test.knn <- data.frame(predict(dummies.test, newdata =
test))
## Use leave-one-out cross-validation to find the
optimal value of "k"
(kknn.train \leftarrow train.kknn(y.train \leftarrow ., x.train.knn, kmax = 50,
    kernel = c("triangular", "rectangular",
             "epanechnikov", "optimal"),
              scale = TRUE)
## Plot of missclassification errors vs. k for different
kernels
plot(kknn.train)
                                                Georgia
```

K Nearest Neighbors (KNN): Fitting

Leave-one-out CV

- Leave one data point out and fit a KNN model given the kernel (uniform, triangle etc.) and the value of parameter K
- Find whether the model classifies the data point correctly
- Apply the same method for all data points
- Find the misclassification rate = incorrectly classified data points / number of all data points

Optimal K = 31 and kernel = rectangular

K Nearest Neighbors (KNN): Prediction

Predict the labels on the test set using Rectangular kernels and K=31

pred.knn <- predict(kknn.train, x.test.knn)</pre>

Calculate classification Evaluation Metrics pred_metrics("KNN", y.test, pred.knn)

KNN

Accuracy Sensitivity Specificity 0.7957907 0.8606811 0.6158798

Chosen KNN model is more successful in identifying the people who churn compared to identifying people who do not churn.

Decision Trees: Introduction

Decision Trees (DT) are non-parametric supervised learning models used for classification and regression. The goal is to create a model that predicts the value of a target variable by learning simple decision rules inferred from the data features.

- Classification tree partitions the feature space into a set of rectangles
- Fit a simple model (like a constant) in each one In our case of classification, partitioning occurs according to a specific rule and each rectangle takes the value 0 or 1 according to some other specific rule.

Greedy Procedure for partitioning and classification under continuous features:

• Consider a splitting variable j and split point $s \in \mathbb{R}$ and define half-spaces

$$R_1(j,s) = \{X | X_j \le s\} \& R_2(j,s) = \{X | X_j > s\}$$

Solve the problem

$$\min_{j,s} \left[\min_{c_1} \sum_{x_i \in R_1(j,s)} (y_i - c_1)^2 + \min_{c_2} \sum_{x_i \in R_2(j,s)} (y_i - c_2)^2 \right]$$

$$\hat{c}_1 = majority(y_i | x_i \in R_1(j,s))$$

$$\hat{c}_2 = majority(y_i | x_i \in R_2(j,s))$$

Partitioning in a feature space ∈ R² with two features

Decision Trees: Implementation

Building model

set.seed(300)
decision_tree <- rpart(Churn.Value~., data = train, method = "class")

Plotting model

rpart.plot(decision_tree, box.palette = c(buzzgold, gtblue),
shadow.col = "gray", nn=TRUE)

How to read the decision tree?

The first number in the node corresponds to the classification of the node (0 if not churn and 1 if churn). The second number in the node corresponds to the predicted probability of churn. The third value in the node measures the total % of customers that are included in that node.

Decision Trees: Interpretation

- The most important variable in determining churn rate is duration of contract. If the contract is 1 year, or 2 years the probability to not churn is 93%. The probability of not churning is lower if the contract is month-to-month. 45% of the total customers in the testing dataset fall in this category.
- If the customer has a month-to-month contract, has fiber optic, is in default for more than 15 months, and has dependents, then the probability of churn is only 9%, with 2% of customers in this node.
- The higher churn occurs for month-to-month contracts, fiber optic, tenure higher than 15 months but lower than 52 months, no dependents and multiple lines. In that case, churn rate is 57%.
- Overall, the probabilities of churn are high for month-to-month contracts. The company can create incentives for customers to subscribe to longer contracts.

Decision Trees: Prediction

Visualize cross-validation in table format printcp(decision_tree)

Plot the complexity parameter table plotcp(decision_tree,minline = TRUE, Ity = 3,col = buzzgold)

Predict Churn Score

predicted_churn_score <predict(decision_tree,test,type="class")</pre>

Create Confusion Matrix

confusionMatrix(data = as.factor(predicted_churn_score),
reference = as.factor(test\$Churn.Value), positive = "1")

- Complexity Parameter finds the size of the tree that balances the size of the tree and the goodness of fit
- Note that tree size 7 minimizes the CP

		Total Control of the
Prediction\Actual	0	1
0	1220	284
1	71	183

Random Forest: Implementation

- A main issue of the tree-based method is large variance
- Trees (if grown deep enough) have low bias: can capture complicated structure but are known to be very noisy (Bias-variance tradeoff)
- Random forest: averaging

Build Random Forest Model

rf <- randomForest(factor(Churn.Value)~.,data = train)

Predict using Random Forest Model

pred_test <- predict(rf, test, type="class")</pre>

Confusion Matrix

rf\$confusion
accuracy_rf <(rf\$confusion[1,1]+rf\$confusion[2,2])/(rf\$confusion[1,1]+rf\$conf
usion[1,2]+rf\$confusion[2,1]+rf\$confusion[2,2])
accuracy_rf
pred_metrics("Random Forest Model",test\$Churn.Value,
pred_test)

Random Forest			
Accuracy	Sensitivity	Specificity	
0.7969283	0.8384058	0.6455026	

Prediction\Actual	0	1
0	3515	357
1	684	718

In this case, the accuracy of the random forest model was just slightly better than decision tree.

Conclusion

Full Model

Accuracy Sensitivity Specificity 0.8139932 0.8528551 0.6785714

Stepwise Regression Model

Accuracy Sensitivity Specificity 0.8134243 0.8532649 0.6759494

Lasso Regression Model

Accuracy Sensitivity Specificity 0.8156997 0.8536942 0.6828645

Elastic Net Regression Model

Accuracy Sensitivity Specificity 0.8156997 0.8526623 0.6847545

Accuracy Sensitivity Specificity 0.798066 0.8111702 0.7204724

KNN
Accuracy Sensitivity Specificity
0.7957907 0.8606811 0.6158798

Accuracy Sensitivity Specificity 0.7969283 0.8384058 0.6455026

From the classification metrics above, we can see that both the Lasso Regression and Elastic Regression models have slightly better metrics than the other models. Therefore, those could be the chosen ones to continue to tune and work with.

Summary

