段码液晶显示模块使用手册 WSM-6879A

深圳市精锐通实业有限公司(ShenZhen WELLSTART Industrial Co., Ltd)

电话(Tel): 0086-0755-83897405, 83428101

传真(Fax): 0086-0755-83428096

邮编(Postcode): 518048

地址:深圳市福田区福强路沙嘴工业区 309 栋 A 座 7 楼

★E-mail: PUBLIC@WST-LCD. COM

HTTP://WWW.WST-LCD.COM

服务文件目录

(一)概述	第	3	页
□外型尺寸	第	3	页
⑤电参数	-第	3	页
四数据传送时序图	-第	4	页
⑤接口引脚说明	-第	4	页
⇔指令表	第	5	页
(台)模块显示 RAM 对应表	-第	5	页
(N)应用程序举例	第	6	页

一. 概述

WSM-6879A 是一种段码液晶显示模块,它主要由液晶驱动器 HT1621 及 15位 7段码+21段提示符的液晶显示器组成。它可显示 15位 8字+21段提示符。

主要技术参数和性能:

- 1. 工作电压: 3.0V (背光 5V 蓝色)
- 2. 显示内容: 15 位 8 字+21 段提示符
- 3. 驱动方式: 1/3BIAS 1/4 DUTY
- 4. 工作温度: 0℃~50℃ 存储温度: -10℃~60℃
- 5. TN 正显示
- 6. 平均工作寿命>10000 小时

二. 外型尺寸图:

三. 电参数:

(振荡频率=256K HZ, 温度=25℃)

符号	说明		测试条件	最小	典型	最大	单位
		VDD	条件				
VDD	工作电压			2. 8	3. 0	3. 4	٧
VIL	输入低电平			VSS		0. 2VDD	٧
VIH	输入高电平			0. 8VDD		VDD	٧
IDD	工作电流	3V	不带负载		150	300	UA
Та	数据时钟宽度	3V	写状态	4			Us
Tb	数据建立时间	3V			120		Ns
Тс	数据保持时间	3V			120		Ns
Fosc	系统频率	3V	内带 RC 振荡		256K		HZ
RPH	上拉电阻	3V	DI, CLK, CS	30	60	100	$\mathbf{K} \Omega$
Istb	待机电流	3V	无负载, 掉电模式		0. 3	10	UA

四. 数据传送时序图: WRITE mode (command code: 1 0 1) CS WR 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 1 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 DATA Memory Address 1(MA1) Data(MA1) Memory Address 2(MA2) Data(MA2) WRITE mode(successive address writing) CS WR 1 0 1 A5 A4 A3 A2 A1 A0 D0 D1 D2 D3 D0 DATA Memory Address(MA) Data(MA) Data(MA+1) Data(MA+2) Data(MA+3) Command mode (command code: 1 0 0) CS ℩ոորորորորորությունորորորութ WR 1 0 0 C8 C7 C6 C5 C4 C3 C2 C1 C0 XXXX C8 C7 C6 C5 C4 C3 C2 C1 C0 XXXX DATA or Data Mode

五. 接口引脚说明:

	1 3 175 1 776	* * ·	
序号	符号	入/出形式	功能描述
1	VCC	3. 0V	正电源
2	GND		系统地
3	/CS	CMOS 入上拉	片选端, 低电平有效
4	/RD	CMOS 入上拉	串行时钟输入端 一读
5	/CLK	CMOS 入上拉	串行时钟输入端 - 写
6	DATA	CMOS 入上拉	串行数据输入端
7	LED+	5. 0V	背光电源 (约15mA)
8	LED-	0V	

六. 指令表:

命令	代码	功能说明
写数据	101a5a4a3a2a1a0d0d1d2d3	把数据写入 RAM
系统关	100 00000000X	关系统及液晶显示
系统开	100 00000001X	开系统
显示关	100 00000010X	关液晶显示
显示开	100 00000011X	开液晶显示
RC256K	100 000110XXX	选择内部 256KRC 振荡
1/3 分压	100 0010ABX1X	选择液晶驱动方式为 1/3 分 压 ab=00: 2 commons 模式 ab=01: 3 commons 模式 ab=10: 4 commons 模式

附:本模块的工作方式为,内部 256KRC 振荡, 1/3 分压, 4 commons 模式.

七. 模块显示 RAM 对应表:

地址	D0	D1	D2	D3	地址	D0	D1	D2	D3
00	S6	15C	15B	15A	10	P1	7C	7B	7A
01	15D	15E	15G	15F	11	7D	7E	7G	7F
02	P8	14C	14B	14A	12	S 7	6C	6B	6A
03	14D	14E	14G	14F	13	6D	6E	6G	6F
04	P7	13C	13B	13A	14	S8	5C	5B	5A
05	13D	13E	13G	13F	15	5D	5E	5G	5F
06	P6	12C	12B	12A	16	/	4C	4B	4A
07	12D	12E	12G	12F	17	4D	4E	4G	4F
80	P5	11C	11B	11A	18	S9	3C	3B	3A
09	11D	11E	11G	11F	19	3D	3E	3G	3F
OA	P4	10C	10B	10A	1A	S10	20	2B	2A
0B	10D	10E	10G	10F	1B	2D	2E	2G	2F
OC	P3	9C	9B	9A	1C	电池	1C	1B	1A
OD	9D	9E	9G	9F	1D	1D	1E	1G	1F
0E	P2	8C	8B	8A	1E	S4	S 3	S2	S 1
0F	8D	8E	8G	8F	1F	天线	S5	P9	/

八. 应用程序举例:

```
CSPIN
           BIT
                  P1. 2
                          :用户自定义 LOAD 对应引脚
CLKPIN
           BIT
                  P1. 0
                          ;用户自定义 CLK 对应引脚
DIPIN
           BIT
                  P1. 1
                          ;用户自定义 DI 对应引脚
LCDBUF
           EQU
                  10H
                              ;用户自定义 LCD 缓冲区首地址
                  LCDBUF+10
LCDBUFEND
           EQU
                              ;用户自定义 LCD 缓冲区末地址
                              ;控制器掉电(控制字)
CMDOFF
           EQU
                  0
                              ;控制器上电(控制字)
CMDON
           EQU
                  1
CMDLCDOFF
           EQU
                  2
                              ;控制器液晶关闭(控制字)
CMDLCDON
           EQU
                  3
                              ;控制器液晶显示(控制字)
CMDB3C4
           EQU
                  29H
                          ;控制器液晶模式设置(控制字)(1/3BAIS 1/4DUTY)
CMDRC
           EQU
                  18H
                          :控制器模式设置(内部 256K RC 振荡方式)
       ORG 0000H
       JMP
               START
       ORG
              0040H
START:
       MOV
               SP, #60H
       CALL
               LCDRESET
MAIN:
       CALL
               USERCONT
               TRANSRAM;送 LCD 缓冲区到 LCD 控制器
       CALL
       JMP
USERCONT:
                   :用户在此根据模块地址表填写 LCD 缓冲区
           RET
TRANSRAM:
           CALL
                  LCDRESET
           MOV
                  B. #0
           MOV
                  R1, #LCDBUF
           MOV
                  A, @R1
TSR_PA:
                  LCDWD
           CALL
           INC
                  В
           INC
                  В
           INC
                  R1
           CJNER1, #LCDBUFEND+1, TSR PA
           RET
LCDWC:
           SETBCSPIN
                      ;送控制字子程序
                  CSPIN
           CLR
                          ;A: 命令控制字
           SETB
                  C
                  LCDWBIT
           CALL
           CLR
                  C
                  LCDWBIT
           CALL
                  LCDWBIT
           CALL
           MOV
                  RO, #8
LWC PA:
           RLC
           CALL
                  LCDWBIT
           DJNZ
                  RO, LWC_PA
           RLC
                  LCDWBIT
           CALL
           SETB
                  DIPIN
                  CSPIN
           SETB
           RET
LCDWD:
           SETB
                  CSPIN
                          :送数子程序
           CLR
                  CSPIN
                          ;B: LCDRAM 地址
                     ;A: 数据字节
           SETB
                  С
                  LCDWBIT
           CALL
           CLR
                  LCDWBIT
           CALL
```

```
С
             SETB
             CALL
                     LCDWBIT
             XCH
                     A, B
             RLC
                     Α
             RLC
             MOV
                     RO. #6
LWD_PA:
             RLC
                     Α
             CALL
                     LCDWBIT
             DJNZ
                     RO, LWD PA
             RLC
                     Α
             XCH
                     A, B
             MOV
                     R0, #8
LWD_PB:
             RRC
                     Α
                     LCDWBIT
             CALL
                     RO, LWD_PB
             DJNZ
             RRC
                     DIPIN
             SETB
             SETB
                     CSPIN
    RET
             MOV
                     DIPIN. C
LCDWBIT:
             SETB
                     CLKPIN
             CLR
                     CLKPIN
                     CLKPIN
             SETB
    RET
                     A, #CMDOFF
LCDRESET:
             MOV
                                   ;控制器复位子程序
             CALL
                     LCDWC
             MOV
                     A. #CMDLCDOFF
             CALL
                     LCDWC
             MOV
                     A, #CMDXTAL
             CALL
                     LCDWC
             MOV
                     A. #CMDON
             CALL
                     LCDWC
             MOV
                     A, #CMDLCDON
             CALL
                     LCDWC
             MOV
                     A, #CMDB3C4
                     LCDWC
             CALL
    RET
```

注:为了优化程序,本程序的子程序 LCDWD (写数据子程序)是一次写入两个连续地址的数据 (两个 4 位数据,拼成一个 8 位数据). 较低位地址放入 B 中,数据放入 A 中. 其中低地址的 4 位数据放入 A 的低 4 位, 高地址的 4 位数据放入 A 的高 4 位. 例如, B=0, A=0FH 时,地址 0 对应的显示全开(F=1111),地址 1 对应的显示全关(0=0000).