Towards the GWAS pipeline: (i) revising the steps

Christian Werner

(Quantitative geneticist and biostatistician) EiB, CIMMYT, Texcoco (Mexico)

Filippo Biscarini

(Biostatistician, bioinformatician and quantitative geneticist) CNR-IBBA, Milan (Italy)

Oscar González-Recio

(Computational biologist and quantitative geneticist) INIA-UPM, Madrid (Spain)

Recap: demystifying the practicals

Illustrations

- local (your computer)
- RStudio
- R Markdown: interactive scripts that mix code and explanations

(more free to experiment/change as you please; beware of local settings and paths to data/scripts)

GWAS workflow

- on the server
- bash/R/stand-alone software (Plink, Beagle)
- self-contained scripts
- Pipeline

(common server settings, more structured workflow; hurdle of working on the server with tools like the Linux shell, vim and git)

The GWAS workflow

- 1. **Get the data**: phenotypes and genotypes
- 2. **Filter** the data
- 3. **Impute missing** SNP genotype data
- 4. Build and run the GWAS model

GWAS workflow in one slide

step 1 - getting the data

- 1.get_data.sh
 - Download the data
 - Prepare the data

step 2 - filter the data

- 2.steps_filtering.sh
 - Filter genotype data:
 - MAF
 - Missing rate

step 3 - imputing missing genotypes

- 3.step_imputation.sh
 - Impute missing genotype data:
 - LHCI

the stand-alone GWAS scripts

- Run GWAS programmatically
 - gwas_rrblup.R
 - gwas_statgengwas.R
 - gwas_sommer.R

step 4 - run the GWAS

4.gwas.sh

- Run GWAS through the stand-alone script
- (try multiple scripts: gwas_rrblup.R, gwas_statgengwas.R, gwas_sommer.R)

NEXT LECTURE

Collaborative exercise