14 Chapter 14 : SOLVABLE PERMUTATION GROUPS

14.1 POLYNOMIAL OF PRIME DEGREE

Ex. 14.1.1 This exercise is concerned with the proof of part (a) of Lemma 14.1.2. Let $\theta = (12...p) \in S_p$.

- (a) Prove that $\tau \in S_p$ lies in the normalizer of $\langle \theta \rangle$ if and only if $\tau \theta = \theta^l \tau$ for some $1 \leq l \leq p-1$.
- (b) Prove that (14.1) implies that $\tau(i+j) = \tau(i) + jl$ for all positive integers j.

Proof. (a) The normalizer of $\langle \theta \rangle$ in S_p consists of all $\tau \in S_p$ such that $\tau \langle \theta \rangle \tau^{-1} = \langle \theta \rangle$. It means that for any $\tau \in S_p$:

$$\begin{split} \tau \langle \theta \rangle \tau^{-1} &= \langle \theta \rangle \iff \exists m, n \nmid p : \tau \theta^m \tau^{-1} = \theta^n \text{ (since } \langle \theta \rangle = \{ \theta^l \mid l \in \mathbb{Z} \}) \\ &\iff \exists k \nmid p, e : mk + pe = 1 \text{ (since } m \nmid p) \\ &\iff (\tau \theta^m \tau^{-1})^k = \theta^{nk} = \theta^l, \ l = nk \text{ (mod } p) \\ &\iff \tau \theta^{1-pe} \tau^{-1} = \tau \theta \tau^{-1} = \theta^l \text{ (since } \theta^p = e) \\ &\iff \tau \theta = \theta^l \tau \text{ for some } 1 \leq l \leq p-1. \end{split}$$

(b) By induction suppose that $\tau(i+j) = \tau(i) + jl$, then $\tau(i+j+1) = \tau(i+j) + l = \tau(i) + (j+1)l$. Case j=1 is valid by the identity (14.1). Hence, $\tau(i+j) = \tau(i) + jl$ for all positive integers j.

Ex. 14.1.2 Let H be a normal subgroup of a finite group G and let $g \in G$. The goal of this exercise is to prove Lemma 14.1.3.

- (a) Explain why $(gH)^{o(g)} = (gH)^{[G:H]} = H$ in the quotient group G/H.
- (b) Now assume that gcd(o(g), [G:H]) = 1. Prove that $g \in H$.

Proof. (a) Since $(gH)^2 = gHgH = g^2H$ and $g^{o(g)} = e$, $(gH)^{o(g)} = g^{o(g)}H = H$. Since $gH \in G/H$, exists some minimal l such that $(gH)^l = H$ and $l \mid [G:H]$, i.e. [G:H] = ql. Then $(gH)^{[G:H]} = (gH)^{ql} = H^q = H$.

(b) The assumption gcd(o(g), [G:H]) = 1 means that o(g)q + [G:H]l) = 1 for some $q, l \in \mathbb{Z}$. Then $gH = (gH)^{o(g)q + [G:H]l} = ((gH)^{o(g)})^q ((gH)^{[G:H]})^l = H^q H^l = H$, i.e. $g \in H$.

Ex. 14.1.3 Let G satisfy (14.2). Use (14.2) and the Third Sylow Theorem to prove that G has a unique p-Sylow subgroup H of order p. Then conclude that H is normal in G.

Proof. According to (14.2) |G| = pm where $1 \le m \le p-1$, hence p is the highest power of p dividing |G| and, by the First Sylow Theorem, G has a p-Sylow subgroup $H \subset G$ with |H| = p.

By the Second Sylow Theorem any two p-Sylow subgroups of G are conjugate in G. Therefore, group G acts on the set of p-Sylow subgroups by conjugation and this action

is transitive. Due to transitivity of the action of G on the set of p-Sylow subgroups, the orbit of a fixed p-Sylow subgroup H is the whole set of p-Sylow subgroups, i.e., the order of such orbit is equal to the number of p-Sylow subgroups N and, by the Fundamental Theorem of Group Actions, N divides |G| = pm.

By the Third Sylow Theorem the number N of p-Sylow subgroups of G is equal to one by modulo p, $N \equiv 1 \mod p$. We have $N \nmid p$, hence $N \mid m$, which is possible only if N = 1.

Suppose that there is exactly one p-Sylow subgroup H of G. For all $g \in G$, gHg^{-1} is another subgroup of G of order equal to |H|, hence gHg^{-1} is also a p-Sylow subgroup and so $gHg^{-1} = H$ for all $g \in G$. This says that H is normal in G.

Ex. 14.1.4 The definition of Frobenius group given in the Mathematical Notes involves a group G acting transitively on a set X. Prove that a group G is a Frobenius group if and only if G has a subgroup H such that 1 < |H| < |G| and $H \cap gHg^{-1} = \{e\}$ for all $g \notin H$.

Proof. Suppose that G has a Frobenius action on the set X. Let $x \in X$ be an element with a nontrivial isotropy subgroup $G_x = \{g \in G \mid g \cdot x = x\}$. Since G acts transitively on X and 1 < |X| < |G|, this element exists. Let fix such element and denote subgroup $H = G_x$ called a Frobenius complement. Due to transitivity, 1 < |H| < |G|.

For any $g \in G$ an isotropy group of the element $g \cdot x$ is $G_{g \cdot x} = \{\hat{g} \in G \mid \hat{g}g \cdot x = g \cdot x\}$ and, since $gHg^{-1} \cdot g \cdot x = gH \cdot x = g \cdot x$, $gHg^{-1} = G_{g \cdot x}$.

If $g \in H$, then $g \cdot x = x$ and $G_{g \cdot x} = G_x$, hence $gHg^{-1} = H$.

If $g \notin H$, then $g \cdot x \neq x$ and $G_{g \cdot x} \cap G_x = \{e\}$, hence $gHg^{-1} \cap H = \{e\}$.

Now suppose that G has a subgroup H such that 1 < |H| < |G| and $H \cap gHg^{-1} = \{e\}$ for all $g \notin H$.

Let define the set X as the full set of left cosets gH, i.e., $X = \{H, g_1H, g_2H, ..., g_nH\}$. Since 1 < |H| < |G|, then 1 < |X| < |G|. It is obvious that G acts transitively on X - for any two elements $g_jg_i^{-1}$ moves g_iH to g_jH . Let $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ is normalizer of H. Then $H \subset N_G(H)$ and,

Let $N_G(H) = \{g \in G \mid gHg^{-1} = H\}$ is normalizer of H. Then $H \subset N_G(H)$ and, since $H \cap gHg^{-1} = \{e\}$ for all $g \notin H$, for any $g \in N_G(H)$ we have $g \in H$, hence $N_G(H) = H$, i.e., H is normal subgroup.

An isotropy group of the element g_iH is $G_{g_iH}=\{g\in G\mid g\cdot g_iH=g_iH\}$ and, since $g_iHg_i^{-1}\cdot g_iH=g_iHH=g_iH,\ g_iHg_i^{-1}=G_{g_iH}.$

Let by contradiction exists $g \neq \{e\}$ fixing two different elements from X, i.e., $g \cdot g_i H = g_i H$ and $g \cdot g_j H = g_j H$. Then $g \in G_{g_i H} \cap G_{g_j H}$, $g \in g_i H g_i^{-1} \cap g_j H g_j^{-1}$ and $\{e\} \neq g_j^{-1} g g_j \in g_j^{-1} g_i H (g_j^{-1} g_i)^{-1} \cap H$, where $g_j^{-1} g_i \notin H$. This contradicts with the assumption that $H \cap g H g^{-1} = \{e\}$ for all $g \notin H$ and proves that group G and set X are corresponding to the Frobenius group definition given in the Mathematical Notes.

Ex. 14.1.5 Let F be a subfield of the real numbers, and let $f \in F[x]$ be irreducible of prime degree p > 2. Assume that f is solvable by radicals. Prove that f has either a single real root or p real roots.

Proof. This is the direct corollary from the Theorem 14.1.1. If $\alpha \neq \beta$ are two real roots of solvable by radicals polynomial f of prime degree, then $F(\alpha, \beta)$ extension of subfield F is the splitting field of f over F. Hence all other p roots are in $F(\alpha, \beta)$ extension.

Since any rational extension of a subfield of the real numbers by addition of real numbers is the subfield of real numbers, all p roots are real.

Since the degree of f is odd, at least one real roots always exists. Therefore f has either a single real root or p real roots.

Ex. 14.1.6 By Example 8.5.5, $f = x^5 - 6x + 3$ is not solvable by radicals over \mathbb{Q} . Give a new proof of this fact using the previous exercise together with the irreducibility of f and part (b) of Exercise 6 from Section 6.4.

Proof. The given polynomial f has prime degree 5 and only three real roots, according to part (b) of Exercise 6.4.6. Since f has more than one but less than 5 real roots, it is not solvable by radicals by Exercise 14.1.5.

Ex. 14.1.7 Use Lemma 14.1.3 and part (a) of Lemma 14.1.2 to give a proof of part (b) of Lemma 14.1.2 that doesn't use the Sylow Theorems.

Proof. Assume that $\tau \in S_p$ satisfies $\tau \theta \tau^{-1} \in AGL(1, \mathbb{F}_p)$. Then, since $\langle \theta \rangle$ is a group of order p, $\langle \tau \theta \tau^{-1} \rangle = \tau \langle \theta \rangle \tau^{-1}$ is a subgroup of $AGL(1, \mathbb{F}_p)$ of order p and each element of this subgroup has order p.

By part (a) of Lemma 14.1.2, $AGL(1, \mathbb{F}_p)$ is the normalizer of $\langle \theta \rangle$ in S_p , therefore $\langle \theta \rangle$ is normal in $AGL(1, \mathbb{F}_p)$ with $[AGL(1, \mathbb{F}_p) : \langle \theta \rangle] = (p-1)$. Order of each element from $\tau \langle \theta \rangle \tau^{-1}$ is relatively prime to (p-1), then, by Lemma 14.1.3, $\tau \langle \theta \rangle \tau^{-1} \subset \langle \theta \rangle$, i.e., $\tau \langle \theta \rangle \tau^{-1} = \langle \theta \rangle$, since both groups have the same order p.

Thus τ normalizes $\langle \theta \rangle$ and hence $\tau \in AGL(1, \mathbb{F}_p)$.