Лабораторная работа № 7

Модель распространения рекламы

Покрас Илья Михайлович

Содержание

Цель работы		
Задание	5	
Ход выполнения лабораторной работы:	6	
Теоретическое введение	6	
Код на Julia:	7	
Код на OpenModelica	12	
Вывод	16	
Список Литературы	17	

Список иллюстраций

1	Переменные и библиотеки	7
2	ОДУ	8
3	Решение ОДУ	8
4	Заполнение векторов	9
5	Визуализация	9
6	Мат. модель первого случая	10
7	Мат. модель второго случая	11
8	Мат. модель третьего случая	12
9	Код - I случай	13
10		13
11	Код - III случай	13
12	Мат. модель первого случая	14
13	Мат. модель второго случая	14
14	Мат. модель третьего случая	15

Цель работы

Целью данной работы является построение модели распространения рекламы.

Задание

Построить график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.618 + 0.000013n(t))(N-n(t))$$

2.
$$\frac{dn}{dt} = (0.0000117 + 0.25 n(t))(N-n(t))$$

3.
$$\frac{dn}{dt} = (0.5 sin(10t) + 0.4 cos(2t)n(t))(N-n(t))$$

Ход выполнения лабораторной работы:

Теоретическое введение

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным. Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, N - общее число потенциальных платежеспособных покупателей, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом $\alpha_1(t)(N-n(t))$, где $\alpha_1>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$. эта величина увеличивается с увеличением потребителей узнавших о товаре.

Код на Julia:

Подключим библиотеки для дальнейшей дальнейшей работы. Далее создадим переменные общего числа потенциальных платежеспособных покупателей и числа уже информированных клиентов.. (@fig:001).

```
using Plots
using DifferentialEquations
N = 1234
n_o = 7
```

Рис. 1: Переменные и библиотеки

Создадим ОДУ с помощью Differential Equations системы (@fig:002).

```
function ode_fn1(du, u, p, t)
  du[1] = (0.618 + 0.000013*u[1])*(N - u[1])
end
function ode_fn2(du, u, p, t)
  du[1] = (0.0000117 + 0.25*u[1])*(N - u[1])
end
function ode_fn3(du, u, p, t)
  du[1] = (0.5*sin(10t) + 0.4*cos(2t)*u[1])*(N - u[1])
end
```

Рис. 2: ОДУ

С помощью solve получим решения ОДУ и сохраним данные решений в отдельные вектора(@fig:003 - @fig:004).

```
function ode_fn1(du, u, p, t)
  du[1] = (0.618 + 0.000013*u[1])*(N - u[1])
end
function ode_fn2(du, u, p, t)
  du[1] = (0.0000117 + 0.25*u[1])*(N - u[1])
end
function ode_fn3(du, u, p, t)
  du[1] = (0.5*sin(10t) + 0.4*cos(2t)*u[1])*(N - u[1])
end
```

Рис. 3: Решение ОДУ

```
n<sub>1</sub> = [u[1] for u in sol<sub>1</sub>.u]
T<sub>1</sub> = [t for t in sol<sub>1</sub>.t]
n<sub>2</sub> = [u[1] for u in sol<sub>2</sub>.u]
T<sub>2</sub> = [t for t in sol<sub>2</sub>.t]
n<sub>3</sub> = [u[1] for u in sol<sub>3</sub>.u]
T<sub>3</sub> = [t for t in sol<sub>3</sub>.t]
```

Рис. 4: Заполнение векторов

Визуализируем решение с помощью Plots(@fig:005).

```
plt = plot( dpi = 300, title = "Эффективность рекламы(1 случай)", legend = false)
plot!(plt, T<sub>1</sub>, n<sub>1</sub>, color = :red)
savefig(plt, <u>"model1.png"</u>)
plt2 = plot( dpi = 300, title = "Эффективность рекламы(2 случай)", legend = false)
plot!(plt2, T<sub>2</sub>, n<sub>2</sub>, color = :red)
savefig(plt2, <u>"model2.png"</u>)
plt3 = plot( dpi = 300, title = "Эффективность рекламы(3 случай)", legend = false)
plot!(plt3, T<sub>3</sub>, n<sub>3</sub>, color = :red)
savefig(plt3, <u>"model3.png"</u>)
```

Рис. 5: Визуализация

Результат(Julia) (@fig:006 - @fig:008)

Эффективность рекламы(1 случай)

Рис. 6: Мат. модель первого случая

Эффективность рекламы(2 случай)

Рис. 7: Мат. модель второго случая

Рис. 8: Мат. модель третьего случая

Код на OpenModelica

Для начала создадим переменные общего числа потенциальных платежеспособных покупателей и числа уже информированных клиентов. Далее запишем ОДУ (@fig:008 - @fig:010).

```
model Model1
Real N = 1234;
Real n;
initial equation
n = 7;
equation
der(n) = (0.618 + 0.000013*n)*(N-n);
annotation(experiment(StartTime=No, StopTime=30, Tolerance=1e-6, Interval=0.05));
end Model1
```

Рис. 9: Код - І случай

```
model Model2

Real N = 1234;

Real n;

initial equation

n = 7;

equation

der(n) = (0.0000117 + 0.25*n)*(N-n);

annotation(experiment(StartTime=No, StopTime=1, Tolerance=1e-6, Interval=0.01));

end Model2;
```

Рис. 10: Код - II случай

```
model Model3
Real N = 1234;
Real n;
initial equation
n = 7;
equation
der(n) = (0.5*sin(10*time) + 0.4*cos(2*time)*n)*(N-n);
annotation(experiment(StartTime=No, StopTime=4, Tolerance=1e-6, Interval=0.01));
end Model3;
```

Рис. 11: Код - III случай

Результат(Julia) (@fig:010 - @fig:012)

Рис. 12: Мат. модель первого случая

Рис. 13: Мат. модель второго случая

Рис. 14: Мат. модель третьего случая

Вывод

В результате проделанной работы был написан код на Julia и OpenModelica и были построены математические модели распространения рекламы.

Список Литературы

[1] Задания к лабораторной работе №7 (по вариантам) - https://esystem.rudn.ru/pluginfile.php/дание%20к%20лабораторной%20работе%20№202%20%20%281%29.pdf

[2] Руководство по выполнению лабораторной работы №7 - https://esystem.rudn.ru/pluginfile.p бораторная%20работа%20№%206.pdf