

Sok: Signatures With Randomizable Keys

Sofía Celi, Scott Griffy, <u>Lucjan Hanzlik</u>, Octavio Perez Kempner, Daniel Slamanig

Brave Software, Brown University, CISPA, NTT Social Informatics Laboratories, AIT Austrian Institute of Technology

WebAuthn Application

WebAuthn Application

WebAuthn Application

Digital Signatures: Different Notions

homomorphic randomizable

Digital Signatures: Different Notions

* Sok (in Polish) = Juice

Our Contribution

- Introduce signatures with randomizable keys
 - extend digital signatures
 - parametrizable security properties
- Revisit prior work and how it relates to our syntax and model
- Show what is required for specific applications

New Algorithms: Randomization and Adaptation

New Algorithms: Randomization and Adaptation

- Separate algorithms to randomize secret/public key (RandSK & RandPK)
 - take as input the original key and key randomizer
 - outputs randomized key, e.g., pk' = T(pk, r)

New Algorithms: Randomization and Adaptation

- Separate algorithms to randomize secret/public key (RandSK & RandPK)
 - take as input the original key and key randomizer
 - outputs randomized key, e.g., pk' = T(pk, r)
- Optional adaptation algorithm
 - takes as input signature, public key and key randomizer
 - outputs signature valid under pk'
 - adapted signatures look like fresh signatures (perfect) adaptation

New Security Properties

- Unforgeability no forged signatures
- Unlinkability randomized public keys are not linkable to original ones
- Unextractability cannot go back to original public key even knowing the key randomizer

(sk,pk)

(sk,pk)

from Oracle (if α =0)

Adv wins iff

- σ^* valid for pk* = T(pk,r*)
- r^* from Oracle (if α =0)

m*, σ*, r*

(sk0,pk0) $\beta=0$ (sk1,pk1)

(sk0,pk0) $\beta=0$ (sk1,pk1)

(sk0,pk0) $\beta=0$ (sk1,pk1)

(sk0,pk0) (sk1,pk1)

β=1

picks bit b and r

sk* = RandSK(skb,r)

Public parameters generated honestly (α =0) or by adversary (α =1)

(sk0,pk0) (sk1,pk1)

(sk0,pk0) (sk1,pk1)

picks bit b and r (if $\beta=0$)

(sk0,pk0) (sk1,pk1)

r β=1

picks bit b and r (if $\beta=0$)

(sk0,pk0) (sk1,pk1)

r β=1

picks bit b and r (if $\beta=0$)

sk* = RandSK(skb,r)

(sk0,pk0) (sk1,pk1)

r β=1

picks bit b and r (if $\beta=0$)

sk* = RandSK(skb,r)

(sk0,pk0) (sk1,pk1)

r β=1

picks bit b and r (if $\beta=0$)

sk* = RandSK(skb,r)

(sk0,pk0) (sk1,pk1)

r β=1

picks bit b and r (if $\beta=0$)

sk* = RandSK(skb,r)

(sk0,pk0) (sk1,pk1)

r β=1

picks bit b and r (if $\beta=0$)

sk* = RandSK(skb,r)

(sk0,pk0) (sk1,pk1)

r β=1

picks bit b and r (if $\beta=0$)

sk* = RandSK(skb,r)

pk* = RandPK(pkb,r)

Adv wins iff $b = b^*$

(sk0,pk0) (sk1,pk1)β=1 picks bit b and r (if $\beta=0$) $sk^* = RandSK(skb,r)$ pk*, r pk* = RandPK(pkb,r) access to all keys signing oracle b* **Adv** wins iff b = b*

Public parameters generated honestly (α =0) or by adversary (α =1)

BLS Signatures - Next Talk

- Support perfect adaptation
- Unforgeable against malicious randomizer (1-UNF)
- (1,1,3)-Unlinkable but are not unextractable
- Can be used for Deterministic Wallets and Stealth Addresses which can work with (0,0,3)-UNL and 1-UNF

BLS Signatures - Next Talk

- Support perfect adaptation
- Unforgeable against malicious randomizer (1-UNF)
- (1,1,3)-Unlinkable but are not unextractable
- Can be used for Deterministic Wallets and Stealth Addresses which can work with (0,0,3)-UNL and 1-UNF

See paper for full systematization

Thank you for your attention

