Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 11		
P.F. Stadler, T. Gatter	Ausgabe am 11.06.2024	Lösung am 18.06.2024	Seite 1/3

Algorithmen und Datenstrukturen II SoSe 2024 – Serie 11

1 Randomisierte Algorithmen

Gegeben sei die folgende Fitnesslandschaft mit einer Lösungsmenge X mit den Parametern x_n und y_m :

	y_1	y_2	y_3	y_4	y_5	y_6
x_1	5	8	9	7	6	3
x_2	2	6	7	5	5	4
x_3	1	9	8.5	4	2	6
x_4	3	5	6	7	1	7
x_5	4	6	8	9	10	3
x_6	6	7	5	8	9	2

Im Folgenden soll so optimiert werden, dass die Fitness **minimiert** wird, wobei als Move die Änderung eines Parameters um 1 Schritt erlaubt ist (4er-Nachbarschaft ohne Diagonalen).

Geben Sie als Positionsbeschreibung jeweils den passenden Fitnesswert an, also bspw. 3 für die Position $\{x_1, y_6\}$.

a) Geben Sie alle Lösungswege für Gradient Descent Walks ausgehend von Position $\{x_3,y_3\}$ an (starten Sie also bei der Zelle mit dem Wert 8.5).

Lösung:

b) Geben Sie alle Lösungswege für Adaptive Walks ausgehend von Position $\{x_3,y_3\}$ an.

Lösung:

$$(8.5),4,2,1$$
 $(8.5),7,5,4,2,1$ $(8.5),6,5,3,1$ $(8.5),7,6,2,1$

2 Metropolis-Walks

Ein Objekt x_0 einer Fitness-Lanschaft habe die Nachbarn x_1 und x_2 . Die Fitnessfunktion f auf diesen Objekten sei gegeben durch

$$\begin{array}{c|cccc} \text{Objekt x} & x_0 & x_1 & x_2 \\ \hline \text{Fitness f(x)} & 4 & 5 & 1 \\ \end{array}$$

Betrachten Sie einen Metropolis-Walk ausgehend von x_0 .

Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 11		
P.F. Stadler, T. Gatter	Ausgabe am 11.06.2024	Lösung am 18.06.2024	Seite 2/3

a) Sei zunächst T=1. Geben Sie für $y=x_1$ und $y=x_2$ jeweils die in Schritt (2) bestimmte Wahrscheinlichkeit an, mit der der Move $x_0 \to y$ akzeptiert wird. Berechnen Sie diese auf zwei Nachkommastellen gerundet.

Lösung:

```
x_0 \to x_1: P = \exp(-(5-4)/1) = \exp(-1) \approx 0.36 \ x_0 \to x_2: P = 1;
```

b) Sei nun T=3. Geben Sie wieder die Akzeptanz-Wahrscheinlichkeiten für $x_0\to x_1$ und $x_0\to x_2$ an.

Lösung:

```
x_0 \to x_1: P = \exp(-(5-4)/3) = \exp(-1/3) \approx 0.71 \ x_0 \to x_2: P = 1;
```

- c) Wie degneriert ein Metropolis-Walk in den beiden folgenden Grenz-Fällen
 - i) die Temperatur wird sehr klein gewählt (nahe 0).
 - ii) die Temperatur wird schrittweise von einem großen Wert heruntergekühlt (geht mit der Zeit gegen 0.)

Wählen Sie die jeweils passendste Beschreibung unter den folgenden Begriffen "Uniform Random Walk", "Non-Uniform Random Walk", "Gradient-Descent", "Simulated Annealing", "Adaptive Walk". (Erschliessen Sie sich ggf. die Bedeutung der Begriffe.)

Lösung:

```
i) "Adaptive Walk" ii) "Simulated Annealing"
```

3 Genetische Algorithmen

Gegeben seien die beiden Individuen Maria und Mario.

$$x_1 = Maria = 1, 2, 3, 4, 5, 6, 7, 8, 9$$

 $x_2 = Mario = 9, 8, 7, 6, 5, 4, 3, 2, 1$

Geben Sie die Lösung an für die Rekombination der Individuen durch

a) 1-Punkt Crossover mit k=3

Lösung:

```
x_1' = 1, 2, 3, 6, 5, 4, 3, 2, 1 \text{ und } x_2' = 9, 8, 7, 4, 5, 6, 7, 8, 9
```

Universität Leipzig Institut für Informatik Bioinformatik/IZBI	Algorithmen und Datenstrukturen II SoSe 2024 – Freiwillige Serie 11		
P.F. Stadler, T. Gatter	Ausgabe am 11.06.2024	Lösung am 18.06.2024	Seite 3/3

b) Uniform Crossover mit dem Tauschvektor (*, -, -, *, -, *,-, -, *) * = tauschen

Lösung:

$$x_1' = 9, 2, 3, 6, 5, 4, 7, 8, 1 \text{ und } x_2' = 1, 8, 7, 4, 5, 6, 3, 2, 9$$

c) Elementweise Mittelwertbildung

Lösung:

```
5, 5, 5, 5, 5, 5, 5, 5
```

d) Elementweise Konvexe Kombination mit p=0.8

Lösung

$$x_1' = 2.6, 3.2, 3.8, 4.4, 5, 5.6, 6.2, 6.8, 7.4 \text{ und } x_2' = 7.4, 6.8, 6.2, 5.6, 5, 4.4, 3.8, 3.2, 2.6$$

e) Elementweise Konvexe Kombination mit p=1

Lösung

```
x_1'=1,\,2,\,3,\,4,\,5,\,6,\,7,\,8,\,9 \; \mathrm{und} \; x_2'=9,\,8\,\,,7,\,6,\,5,\,4,\,3,\,2,\,1
```