Week 02 - Lecture 3 Slides

Dr. Yeganeh Bahoo

Created: 2023-09-17 Sun 11:29

Table of Contents

- Lecture 3 algorithm analysis (in a nutshell)
 - Algorithm Analysis: motivation
 - Algorithm analysis
 - Computing resources
 - Computing resource: running time
 - Running time
 - o Algorithm analysis: conclusions so far
 - Big-O notation
 - o Common big-O functions
 - o Obtaining the order of magnitude
 - Exercise
 - Solution

Lecture 3 - algorithm analysis (in a nutshell)

Learning objectives

By the end of this lecture you should be able to:

- 1. To describe why algorithm analysis is important.
- 2. Obtain the order of magnitude (aka order of growth) of a function.

Algorithm Analysis: motivation

• Given two different programs that compute the summation of a number n, i.e.:

$$\sum_{i=1}^{n} i$$

which one is "better"?

Algorithm analysis

- Comparison of programs depends on the criteria used for the comparison:
 - readability
 - the algorithm itself
- In Algorithm Analysis, as the name implies, we focus on the algorithm.
- In particular, we are concerned with comparing algorithms based upon the amount of computing resources that each algorithm uses.

Computing resources

- Two ways of looking at what "computing resources" an algorithm requires to solve a problem
 - The amount of **memory**
 - o The amount of **time**, usually referred as "execution time" or "running time"

Let's then consider this alternative way to compute the summation of an integer n:

$$\sum_{i=1}^n i = rac{n(n+1)}{2}$$

Now, considering the "running time" computing resource, which of the following functions is better?

Computing resource: running time

Suppose n is a big number, which of the following functions is better?

(defun sum-n2 (n) (/ (* n (+ n 1)) 2))

Algorithm analysis: conclusions so far

- The times recorded for SUM-N2 are shorter than SUM-N1.
- They are very consistent no matter what the value of n.
- But what does this benchmark technique tell us?
 - \circ apparently solutions involving a loop over n take longer as we increase n
 - but would we get the same result if we run the same function in a different computer?

- the actual execution time does not really provide a useful measurement.
- We need a characterization of execution time **of algorithms** that is independent of the program or computer.

Big-O notation

- In general, the running time of an algorithm grows with the size of the input.
- The notion for **input size** depends on the problem being studied (e.g.?)
- We can use a function T(n) to represent the **running time** ("the number of steps") of an algorithm on a input of size n. E.g.:

$$T(n) = 5n^2 + 27n + 1005$$

- The **Order of Magnitude** function, O(f(n)) describes the part f(n) of T(n) that increases the fastest when n grows.
- Notice:
 - \circ when n gets larger, the term n^2 becomes the most important
 - \circ Therefore the running time T(n) above has an order of magnitude $O(n^2)$.

Common big-O functions

f(n)	Name
1	Constant
$\log n$	Logarithmic
n	Linear
$n \log n$	Log Linear
n^2	Quadratic
n^3	Cubic
2^n	Exponential

Obtaining the order of magnitude

Steps: Given a function T(n)

1. Identify which term of T(n) increases its value the fastest when n grows

2. Remove the other terms from T(n)

Example:

$$T(n)$$
 36 $n^2 \log n + 3 \log n^3 + 4$ 3 $n \log n^3 + 360 n^2 + 40$ $O(T(n))$ $n^2 \log n$ > n^2

Example:

$$T(n)$$
 $\frac{n^{10}}{n^8+10}\log n^3+35$ n^3 $+40$ $36n^2\log n+3^n$ $+4$ $O(T(n))$ n^3 $< 3^n$

Exercise

Provide the order of magnitude (aka Order of growth, or Big O) for the following functions and indicate which one has larger order of growth.

$$T(n) = 36n^{11}\log n + 78 = 43\log n^{20} + 68 \ O(T(n)) \;\; ... \qquad \qquad ... \;\; ...$$

Solution

$$T(n)$$
 36 $n^{11} \log n + 78$ 43 $\log n^{20} + 68$ $O(T(n))$ $n^{11} \log n$ > $\log n$