Homework #4

Raymond Deneckere

Fall 2016

- 1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = 2x^3 3x^2 + 2y^3 + 3y^2$.
 - (a) Find the four points in \mathbb{R}^2 at which the gradient of f is equal to zero. Show that f has exactly one local maximum and one local minimum.
 - (b) Let S be the set of all $(x, y) \in \mathbb{R}^2$ at which f(x, y) = 0. Describe S as precisely as you can. Find those points of S that have no neighborhoods in which the equation f(x, y) = 0 can be solved for y in terms of x, or for x in terms of y.
- 2. Let $f: E \subset \mathbb{R}^n \to \mathbb{R}$ be of class C^1 , and suppose that E is open. Let $x \in E$ be such that f does not have a local maximum at x. Find the direction of greatest increase in f. (HINT: Compute the directional derivative of f in the direction of the vector u, where ||u|| = 1).
- 3. Suppose that f'(x) exists, g'(x) exists, $g'(x) \neq 0$, and f(x) = g(x) = 0. Prove that

$$\lim_{t \to x} \frac{f(t)}{g(t)} = \frac{f'(x)}{g'(x)}$$

4. Sundaram, #4, (a)-(b), p. 110