NPTEL Week-4 Live Session

on Machine Learning and Deep Learning - Fundamentals and Applications (noc24_ee146)

A course offered by: Prof. Manas Kamal Bhuyan, IIT Guwahati

NPTEL Quiz Solution: Week-3, Practice problem on Support Vector Machine

By

Arka Roy
NPTEL PMRF TA

Prime Minister's Research Fellow

Department of Electrical Engineering, IIT Patna

Web: https://sites.google.com/view/arka-roy/home

PMRF

Prime Minister's Research Fellows
Ministry of Education
Government of India

The MLE for the data samples
$$X = [x_1, x_2, ..., x_n]$$
 with the Bernoulli distribution is $X \sim B$ error alli Dist.

PMF = P^{X_1} (1- P) $I \sim X_1$ $\Rightarrow iid$ (identical and independent distribution).

$$\begin{array}{c}
X \sim B = x_1 \times x_2 \times x_1 \times x_2 \times x_2 \times x_1 \times x_2 \times x_2$$

9) Consider single observation X that depends on a random parameter. Suppose
$$\theta$$
 has a prior distribution
$$f_{\theta}(\theta) = \lambda e^{-\lambda \theta} \text{ for } \theta \ge 0, \lambda > 0$$

$$f_{\frac{\pi}{\theta}}(x) = \theta e^{-\theta x} |x| > 0$$
Find the MAP estimation of θ

$$\int_{\lambda + X}^{\lambda + X} |x| = \frac{1}{\lambda + X} |x| =$$

Suppose that X is a discrete random variable with the following probability mass function: where is a parameter.

The following 10 independent observations were taken from such a distribution:
$$(3,0,2,1,3,2,1,0,2,1)$$
. What is the maximum likelihood estimate of θ ?

$$\begin{array}{ccc} O_2 & \mathcal{L}(\theta) = & & & \\ & & & \\ O_1 & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

0

taken from such a distribution:

In likelihood estimate of
$$\theta$$
?

-P(x=0). P(x=2). P(x=1)

= $[P(x=3)]^{\frac{3}{2}}[P(x=0)]^{\frac{3}{2}}(P(x=2))^{\frac{3}{2}}(P(x=1))^{\frac{3}{2}}$

 $\left(\frac{1-\theta}{3}\right)^2 \cdot \left(\frac{2\theta}{3}\right)^2 \cdot \left(\frac{2}{3}\left(1-\theta\right)\right) \cdot \left(\frac{\theta}{3}\right)^2$

stimate of
$$\theta$$
?

X= { 3, 0, 2, 1, 3, 2, 1, 0, 2, 1

6) Suppose that X is a discrete random variable with the following probability mass function: where is a parameter.
$$(0 \le \theta \le 1)$$

$$(0 \le \theta \le 1$$

The following 10 independent observations were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1). What is the maximum likelihood estimate of θ ?

Large dataset -> KNN will have computational problem The disadvantage of using k -NN as classifier: Inference Time /Test Time taken by algo. M Fails while handling large dataset Fails while handling small dataset There is no need of training. high Blecause this is a non parametric method. Sensitive to outliers And it Just has to Columbra the distance Training is required 1 value from the sen point to True lobel of (P) = Dog) = près classificht Prediction is = Cot.) = près classificht Which of the following statements are true about k - nearest neighbor (KNN)dd value of "K" preferred over even values. Work well with high dimension. the optimum value of K for KNN is highly independent on the data.

Find the scalar projection of vector b = <-3, 2> onto vector a = <1,1>? <math>5 VM ·

a. 0
b.
$$\frac{1}{\sqrt{2}}$$

d. $\frac{-1}{2}$
Determinant = Deter

Find the scalar projection of vector b = <-3, 2 > onto vector a = <1,1>?

b.
$$\frac{1}{\sqrt{2}}$$

c.
$$\frac{-1}{\sqrt{2}}$$

Suppose there is a feature vector represented as [1, 4, 3]. What is the distance of this feature vector from the separating plane $x_1 + 2x_2 - 2x_3 + 3 = 0$. Choose the correct option.

$$W = [1, 2, -2]$$

 $X = [1 + 3]$

$$\frac{1}{3} = \frac{6}{3} = \frac{2}{3}$$

Find the distance of the 3D point, P = (-2,4,1) from the plane defined by

2x + 3y + 6z + 7 = 0?

- a. 3
- b. 4
- c. 0
- d. ∞ (infinity)

Suppose we have the below set of points with their respective classes as shown in the table. Answer the following question based on the table. X Class Label 1 +1 1 -1 -1 -1 +1 4-7 -1 2 +1 5 W M Corresponds to decesion boundary which gives
marginf the SVM for the given points? -1 1 -1

What can be a possible decision boundary of the SVM for the given points?

a.
$$y = 0$$

b. $x = 0$

c. $x = 0$

Suppose we have the below set of points with their respective classes as shown in the table. Answer the following question based on the table. Class Label 1 +1 1 -1 -1 -1 unique set of +1 Morgin = Distance between Decision Surface and Support

Morgin = Distance between Decision Surface and Support

Vertors, reliding at

at J(5)

= D(52 to Dec) + D(5) to Dec) different -1 +1 -1 -1 1 What can be a possible decision boundary of the SVM for the given points? -> M=2. Morgin ==12=1-414 /W=[11]; W ==-1

Suppose we have the below set of points with their respective classes as shown in the table.

Answer the following question based on the table.

0.0	The term of the second
Y	Class Label
1	+1
-1	-1
2	+1
2	+1
-1	-1
	1 -1 2 2

Point (1,-1)
$$X = (1,-1)$$

$$W^{t} \times + W_{0} = 0$$

$$(1,-1)$$

$$(x+y-1=0)$$

$$W^{t} \times + W_{0} = 0$$

What can be a possible decision boundary of the SVM for the given points?

a.
$$y = 0$$

b.
$$x = 0$$

c.
$$x = y$$

d.
$$x + y = 1$$