

Better Life with Wireless

Application Note

For BK4819 High Performance Walkie-Talkie Transceiver IC BEKEN CORPORATION

Beken Corporation

Content Index

1.	MCU Interface - 3 Wire SPI	2
2.	Reigster Initialization	3
3.	Tx/Rx Audio	4
4.	CTCSS/CDCSS	7
5.	SELCALL	0
6.	DTMF	1
7.	FSK	2
8.	MDC1200	5
9.	NOAA SAME	6
10.	VoX1	7
11.	Power Saving1	8
12.	Tx/Rx Mode Switch1	9
13.	Squelch, RSSI, Ex-Noise, Gltich	20
14.	AFC, ALC, MIC AGC	!1
15.	Frequency Setting	22
16.	Tx Output Power	23
17.	Interrupt	<u>'</u> 4
18.	GPIO	:6
19.	XTAL	28
20.	Frequency Scan	29
21.	Channel Spacing 3	1
22.	Digital Walkie-Talkie	3
23.	Hardware Design 3	4
24.	Revision History3	35

1. MCU Interface - 3 Wire SPI

Parameter	Symbol	Min.	Тур.	Max.
SCK Frequency	fSCK	0 MHz	_	8 MHz
SCK High Time	tHIGH	25 ns	_	_
SCK Low Time	tLOW	25 ns	_	_
SDATA Input, SCN to SCK↑ Setup	tS	20 ns		_
SDATA Input to SCK↑ Hold	tHSDATA	10 ns	-	_
SCN Input to SCK↓ Hold	tHSCN	10 ns	-	_
SCK↓ to SDATA Output Valid	tCDV	2 ns	-	25 ns
SCK↓ to next SCK↑ after Address In	tNXT	1 us		_
SCK, SCN, SDATA, Rise/Fall Time	tR,tF	-		10 ns

2. Reigster Initialization

芯片上电后进行 Soft Reset、内部 Power Up 和其他初始化设置。使用 RF_Initial(),在 RF_Initial()里根据需求设置静噪门限、接收音量、接收 AGC、MIC 灵敏度、VoX 门限、调制深度、发射功率、亚音频等。

3. Tx/Rx Audio

- 1) 初始化后默认状态为正常 Speech 模式,可进行语音(300~3kHz)收发。
- 2) 开启压扩需要设置 RF_EnterCompander(), 关闭压扩使用 RF_ExitCompander()

Register	Default	Description
REG_31<3>	0	Enable Compander Function.
		1= Enable; 0=Disable
REG_28<15:14>	0b01	Expander (AF Rx) Ratio.
		00=Disable; 01=1:2; 10=1:3; 11=1:4
REG_28<13:7>	0x56	Expander (AF Rx) 0 dB point(dB)
REG_28<6:0>	0x38	Expander (AF Rx) noise point(dB)
REG_29<15:14>	0b10	Compress (AF Tx) Ratio.
		00=Disable; 01=1.333:1; 10=2:1; 11=4:1
REG_29<13:7>	0x56	Compress (AF Tx) 0 dB point(dB)
REG_29<6:0>	0x40	Compress (AF Tx) noise point(dB)
REG_6F<6:0>	Read Only	AF Tx/Rx Input Amplitude(dB)

3) 开启扰频需要设置 RF_EnterScramble(),关闭扰频使用 RF_ExitScramble()

Register	Default	Description
REG_31<1>	0	Enable Scramble Function.
		1=Enable; 0=Disable
REG_71<15:0>	0x8517	Scramble/Tone1 Frequency Control Word.
		=3300(Hz)* 10.32444 for XTAL 13M/26M or
		=3300(Hz)* 10.48576 for XTAL
		12.8M/19.2M/25.6M/38.4M.
		- The scrambler inversion mixing frequency should be
		kept between 2.6kHz and 3.5kHz

4) 滤波器开关使能

Register	Default	Description
REG_2B<10>	0	Disable AF Rx HPF300 filter.
		0=Enable; 1=Disable
REG_2B<9>	0	Disable AF Rx LPF3K filter.
		0=Enable; 1=Disable
REG_2B<8>	0	Disable AF Rx de-emphasis filter.
		0=Enable; 1=Disable
REG_2B<2>	0	Disable AF Tx HPF300 filter.
		0=Enable; 1=Disable
REG_2B<1>	0	Disable AF Tx LPF1 filter.
		0=Enable; 1=Disable
REG_2B<0>	0	Disable AF Tx pre-emphasis filter.
		0=Enable; 1=Disable
REG_43<8:6>	0b001	AF Tx LPF2 filter Band Width (Apass=1dB) Selection.
		100 = 4.5 kHz
		101 = 4.25 kHz
		110 = 4 kHz
		111 = 3.75 kHz
		000 = 3 kHz (for 25k Channel Space)
		001 = 2.5 kHz (for 12.5k Channel Space)
		010 = 2.75 kHz
		011 = 3.5 kHz

5) 音频响应调整使用 RF_SetAfResponse(u8 tx, u8 f3k, u8 db),其中参数 tx=1 发射/tx=0 接收,f3k=1 调整 3kHz/f3k=0 调整 300Hz,db=调整范围-1~+4dB。例如: 发射 300Hz 增大 2dB: RF_SetAfResponse(1,0,2); 接收 3kHz 减小 3dB: RF_SetAfResponse(0,1,-3);

Beken Corporation 5 / 35

6) 接收音量设置

Register	Default	Description
REG_48<11:10>	0b00	AF Rx Gain1.
		00=0dB;01=-6dB;10=-12dB;11=-18dB
REG_48<9:4>	0x3C	AF Rx Gain2.
		-26dB~5.5dB, 0.5dB/step.
		0x00=mute
REG_48<3:0>	0b1111	AF DAC Gain (after Gain1 and Gain2).
		1111=max; 0000=min; about 2dB/step

7) 发射调制设置及发射 mute

Register	Default	Description
REG_40<12>	1	Enable RF Tx Deviation.
		1=Enable; 0=Disable
REG_40<11:0>	0x4D0	RF Tx Deviation Tuning (Apply for both in-band signal
		and sub-audio signal).
		0=min; 0xFFF=max
REG_50<15>	0	Enable AF Tx Mute (for DTMF Tx or other applications).
		1=Mute; 0=Normal

8) MIC 灵敏度设置

Register	Default	Description
REG_7D<4:0>	0x10	MIC Sensitivity Tuning.
		0x00=min; 0x1F=max; 0.5dB/step

9) AF 输出选择使用 RF_SetAf(u8 mode),产生本地按键音、提示音可参考 RF_Key(),产生铃音并发射可参考 RF_Call()

Beken Corporation 6 / 35

4. CTCSS/CDCSS

- 1) 开启 CTCSS 需要设置 RF_SetCtcss()和 RF_SetCtc2(),其中后者仅用于接收频率 55Hz (或其他 100Hz 以内频率)的 CTCSS 尾音,前者用于接收和发射正常 CTCSS。
- 2) 开启 CDCSS 需要设置 RF_SetCdcss(), 需要设置 134.4Hz 码率和 CDCSS 码。
- 3) 关闭亚音频使用 RF_ExitSubau()
- 4) 发射结束时产生尾音使用 RF_GenTail(),相位尾音使用参数 CTC120/CTC180/CTC240,如 RF_GenTail(CTC180);换 频 尾 音 (如 55Hz)使用参数 CTC55,如 RF_GenTail(CTC55);在 CDCSS 模式下产生 134.4Hz 尾音使用参数 CTC134,如 RF GenTail(CTC134)
- 5) 读取 CTCSS 状态使用 RF_GetCtcss(),返回 1 表示收到 CTC1(主 CTC),返回 2 表示收到 CTC2(如 55Hz 尾音);读取 CDCSS 状态使用 RF_GetCdcss(),返回 1 表示收到 CDC 正码,返回 2 表示收到 CDC 反码;读取相位尾音状态使用 RF_GetTail(),返回 1 表示收到 120°相位变化尾音,返回 2 表示收到 180°相位变化尾音,返回 3 表示收到 240°相位变化尾音。

Register	Default	Description
REG_51<15>	0	1=Enable Tx CTCSS/CDCSS; 0=Disable
REG_51<14>	0	1= GPIO6 Input for CDCSS; 0=Normal Mode
REG_51<13>	0	1=Transmit negative CDCSS code
		0=Transmit positive CDCSS code
REG_51<12>	0	CTCSS/CDCSS mode selection.
		1=CTCSS, 0=CDCSS
REG_51<11>	0	CDCSS 24/23bit selection.
		1=24bit, 0=23bit
REG_51<10>	0	1050Hz Detection Mode.
		1=1050/4 Detect Enable, CTC1 should be set to
		1050/4 Hz
REG_51<9>	0	Auto CDCSS Bw Mode.
		1=Disable; 0=Enable.

Register	Default	Description
REG_51<8>	0	Auto CTCSS Bw Mode.
		0=Enable; 1=Disable
REG_51<6:0>	0	CTCSS/CDCSS Tx Gain1 Tuning.
		0=min; 0x7F=max
REG_2E<9:8>	0x10	CTCSS/CDCSS Tx Gain2 Tuning (after Gain1).
		00=12dB; 01=6dB; 10=0dB; 11=-6dB
REG_07<15:0>		When <13>=0 for CTC1 or CDCSS 134.4Hz
		<12:0>=CTC1 frequency control word
		= freq(Hz)* 20.64888 for XTAL 13M/26M or
		=freq(Hz)*20.97152 for XTAL
		12.8M/19.2M/25.6M/38.4M
		When<13>=1 for CTC2(Tail 55Hz Rx detection)
		<12:0>=CTC2 (should below 100Hz)frequency
		control word
		= 25391/freq(Hz) for XTAL 13M/26M or
		= 25000/freq(Hz) for XTAL
		12.8M/19.2M/25.6M/38.4M
REG_08<15:0>		<15>=1 for CDCSS high 12bit
		<15>=0 for CDCSS low 12bit
		<11:0>=CDCSS high/low 12bit code
REG_52<15>	0	Enable 120/180/240 degree shift CTCSS or 134.4Hz
		Tail when CDCSS mode.
		0=Normal, 1=Enable

Register	Default	Description
REG_52<14:13>	0b00	CTCSS tail mode selection (only valid when
		REG_52<15>=1).
		00= for 134.4Hz CTCSS Tail when CDCSS mode.
		01= CTCSS0 120°phase shift,
		10= CTCSS0 180°phase shift
		11= CTCSS0 240°phase shift
REG_52<12>	0	CTCSS Detection Threshold Mode,
		1=~0.1%; 0=0.1 Hz
REG_52<11:6>	0x0A	CTCSS found detect threshold.
REG_52<5:0>	0x0F	CTCSS lost detect threshold.
REG_0C<15:14>	Read Only	<14>:CDCSS positive code received
		<15>:CDCSS negative code received
REG_0C<13:12>	Read Only	CTCSS Phase Shift Received.
		00=No phase shift
		01=CTCSS0 120°phase shift,
		10= CTCSS0 180°phase shift
		11= CTCSS0 240°phase shift
REG_0C<10:11>	Read Only	<11>:CTC2(55Hz) received
		<10>:CTC1 received

5. SELCALL

- 1) 开启 SELCALL(5Tone)模式使用 RF_Enter5tone(),该函数仅对接收频率系数、接收门限、发射通路进行了设置,不会影响到正常音频收听。
- 2) 退出 SELCALL(5Tone)模式使用 RF_Exit5tone()
- 3) 发射 SELCALL(5Tone)使用 RF_5toneTransmit(),使用 MCU 计时根据发射码更换发射 SELCALL(5Tone)的频率(Tone1)。
- 4) 接收 SELCALL(5Tone)使用 RF_5toneReceive(), 返回 1 失败, 返回 0 成功

Beken Corporation 10 / 35

6. DTMF

- 1) 开启 DTMF 模式使用 RF_EnterDtmf(),该函数仅对 DTMF 接收频率系数、接收门限、发射通路进行了设置,不会影响到正常音频收听。
- 2) 退出 DTMF 模式使用 RF_ExitDtmf()
- 3) 发射 DTMF 使用 RF_DtmfTransmit(), 使用 MCU 计时根据发射码更换发射 DTMF 的频率(Tone1+Tone2)。
- 4) 接收 DTMF 使用 RF DtmfReceive(), 返回 1 失败, 返回 0 成功

Register	Default	Description
REG_70<15>	0	Enable TONE1
		1=Enable; 0=Disable.
REG_70<14:8>	0	TONE1 tuning gain
REG_70<7>	0	Enable TONE2
		1=Enable; 0=Disable.
REG_70<6:0>	0	TONE2/FSK tuning gain
REG_71<15:0>	0x8517	TONE1/Scramble frequency control word.
		=freq(Hz)* 10.32444 for XTAL 13M/26M or
		=freq(Hz)* 10.48576 for XTAL
		12.8M/19.2M/25.6M/38.4M.
REG_72<15:0>	0x2854	TONE2/FSK frequency control word
		=freq(Hz)* 10.32444 for XTAL 13M/26M or
		=freq(Hz)* 10.48576 for XTAL
		12.8M/19.2M/25.6M/38.4M.
REG_50<15>	0	Enable AF Tx Mute (for DTMF Tx or other
		applications).
		1=Mute; 0=Normal
REG_0B<11:8>	Read Only	DTMF/5Tone Code Received.

Beken Corporation

7. FSK

- 1) 开启 FSK 模式 使用 RF_EnterFsk(),不会影响到正常音频收听,且可以同时进入 DTMF/SELCALL 模式进行接收。FSK 速率寄存器与 Tone2 寄存器复用。使用 2400bps 模式 需要开启宏定义 FSK2400
- 2) 退出使用 RF_ExitFsk()
- 3) 发射 FSK 使用 RF_FskTransmit(), 返回 1 失败, 返回 0 成功
- 4) FSK 帧格式 (CRC 为可选), 如果要兼容 BK4815/BK4818 则需要在 Data 部分完成 BK4815/BK4818FSK 帧结构里的 Addr/Type/Size/CRCA/Payload/CRCB 数据组帧, 并且关掉 BK4819 FSK 帧结构的 CRC 部分,设置相同的 Preamble 和 SyncWord
- 5) 接收 FSK 使用 RF_FskReceive(), 返回 1 失败, 返回 0 成功

Preamble	Sync Word	Data	CRC(opt)
1∼16 bytes	2 or 4 bytes	Config (maximum 1024 words)	2 bytes
		1 word = 2 bytes	İ

Register	Default	Description
REG_58<15:13>	000	FSK Tx Mode Selection.
		000 for FSK1.2K and FSK2.4K Tx;
		001 for FFSK1200/1800 Tx;
		011 for FFSK1200/2400 Tx;
		101 for NOAA SAME Tx
REG_58<12:10>	000	FSK Rx Mode Selection.
		000 for FSK1.2K, FSK2.4K Rx and NOAA SAME Rx;
		111 for FFSK1200/1800 Rx;
		100 for FFSK1200/2400 Rx;
REG_58<9:8>	00	FSK Rx Gain.

Beken Corporation 12 / 35

Register	Default	Description
REG_58<5:4>	00	FSK Preamble Type Selection.
		11=0xAA; 10=0x55; 00=0xAA or 0x55 due to the MSB
		of FSK Sync Byte 0.
REG_58<3:1>	000	FSK Rx BandWidth Setting.
		100 for FSK 2.4K and FFSK1200/2400;
		000 for FSK 1.2K;
		001 for FFSK1200/1800;
		010 for NOAA SAME Rx
REG_58<0>	0	FSK Enable.
		1=Enable;
		0=Disable.
REG_59<15>	0	Clear TX FIFO, 1=clear
REG_59<14>	0	Clear RX FIFO, 1=clear
REG_59<13>	0	1=Enable FSK Scramble
REG_59<12>	0	1=Enable FSK RX
REG_59<11>	0	1=Enable FSK TX
REG_59<10>	0	1=Invert FSK data when RX
REG_59<9>	0	1=Invert FSK data when TX
REG_59<7:4>	0	FSK Preamble Length Selection
		0=1 byte; 1=2 bytes; 2=3 bytes;; 15=16 bytes.
REG_59<3>	0	FSK SyncLength Selection.
		1=4 bytes (FSK Sync Byte
		0,1,2,3) 0=2 bytes (FSK Sync
		Byte 0,1)
REG_5A<15:8>	0x85	FSK Sync Byte 0 (Sync Byte 0 first, then 1,2,3)
REG_5A<7:0>	0xCF	FSK Sync Byte 1

Register	Default	Description			
REG_5B<15:8>	0xAB	FSK Sync Byte 2			
REG_5B<7:0>	0x45	FSK Sync Byte 3			
REG_5C<6>	1	CRC Option			
		Enable. 1=Enable;			
		0=Disable.			
REG_5D<15:8>	0x0F	FSK Data Length(Byte)			
		Low 8bits(Total 11 bits for BK4819). For example, 0xF			
		means 16 bytes length.			
REG_5D<7:5>	0	FSK Data Length(Byte)			
		High 3bits(Total 11 bits for BK4819).			
REG_5E<9:3>	64	FSK Tx FIFO (Total 128 Words) Almost Empty			
		Threshold.			
REG_5E<2:0>	4	FSK Rx FIFO (Total 8 Words) Almost Full Threshold.			
REG_5F<15:0>	x	FSK Word Input/Output.			
REG_70<6:0>	0	TONE2/FSK tuning gain			
REG_72<15:0>	0x2854	TONE2/FSK frequency control word			
		=freq(Hz)*10.32444 for XTAL 13M/26M or			
		=freq(Hz)*10.48576 for XTAL			
		12.8M/19.2M/25.6M/38.4M.			
REG_0B<7>	Read Only	FSK Rx SyncN Found.			
REG_0B<6>	Read Only	FSK Rx SyncP Found.			
REG_0B<4>	Read Only	FSK Rx CRC Indicator. 1=CRC Pass; 0=CRC Fail.			

8. MDC1200

- 1) 开启 MDC 模式使用 RF_EnterMdc(),不会影响到正常音频收听,且可以同时进入 DTMF/SELCALL 模式进行接收。MDC 速率寄存器与 Tone2 寄存器复用。默认模式为 1200/1800, 若想使用 1200/2400 模式需要开启宏定义 MDC2400
- 2) 退出使用 RF_ExitMdc()
- 3) 发射 MDC 使用 RF_MdcTransmit(),返回 1 失败,返回 0 成功
- 4) 接收 MDC 使用 RF MdcReceive(), 返回 1 失败, 返回 0 成功
- 5) 可支持 HDC1200 模式

9. NOAA SAME

- 1) 接收 NOAA SAME 码使用 RF_EnterNoaa (),不会影响到正常音频收听,且可以同时进入 NOAA 模式进行接收。NOAA 速率寄存器与 Tone2 寄存器复用
- 2) 退出使用 RF_ExitNoaa()
- 3) 接收 FSK 使用 RF_NoaaReceive(),返回 1 失败,返回 0 成功,MCU 根据收到的码进行协议处理

10. VoX

- 1) 开启 VoX 使用 RF_EnterVox(); 关闭使用 RF_ExitVox()
- 2) 获取 VoX 状态使用 RF_GetVox(),返回 1 收到 MIC 语音,返回 0 未收到语音。
- 3) 获取 VoX 幅度使用 RF_GetVoxAmp(),返回值为 MIC 语音幅度,供 MCU 自行 VoX 判断使用。

Register	Default	Description			
REG_31<2>	0	Enable VOX detection.			
		1=Enable; 0=Disable			
REG_7A<15:12>	8	VoX=0 Detection delay, *128ms			
REG_46<10:0>	0x50	Voice Amplitude Threshold for VOX=1 detect			
REG_79<15:11>	8	VoX Detection Interval Time.			
REG_79<10:0>	0x40	Voice Amplitude Threshold for VOX=0 detect			
REG_64<15:0>	Read Only	Voice Amplitude Out.			
REG_0C<2>	Read Only	VoX Indicator 0: No 1: Yes			

11. Power Saving

- 1) 进入睡眠使用 RF_Sleep(),唤醒可以使用 RF_WakeUp(),也可以直接进入发射 RF_Txon()或接收 RF_Rxon()
- 2) 睡眠状态下电流约 200uA~300uA; 唤醒后 IDLE 电流约 3mA

Register	Default	Description			
REG_37<14:12>	0b001	DSP Voltage Setting.			
REG_37<11>	1	ANA LDO Selection. 1=2.7v, 0=2.4v			
REG_37<10>	1	VCO LDO Selection. 1=2.7v, 0=2.4v			
REG_37<9>	1	RF LDO Selection. 1=2.7v, 0=2.4v			
REG_37<8>	1	PLL LDO Selection. 1=2.7v, 0=2.4v			
REG_37<7>	0	ANA LDO Bypass. 1=Bypass, 0=Enable.			
REG_37<6>	0	VCO LDO Bypass. 1=Bypass, 0=Enable.			
REG_37<5>	0	RF LDO Bypass. 1=Bypass, 0=Enable.			
REG_37<4>	0	PLL LDO Bypass. 1=Bypass, 0=Enable.			
REG_37<3>	0	Reserved.			
REG_37<2>	0	DSP Enable.			
		1=Enable,			
		0=Disable.			
REG_37<1>	0	XTAL Enable.			
		1=Enable,			
		0=Disable.			
REG_37<0>	0	Band-Gap Enable. 1=Enable, 0=Disable.			

12. Tx/Rx Mode Switch

- 1) 发射使用 RF_Txon()
- 2) 接收使用 RF_Rxon()
- 3) 发射带侧音(如发送铃音)时,使用 RF_Txon_Beep()
- 4) 做基带接收(中频芯片解调后送至 MICP 或 MICN 脚,经滤波及解码后由 EARO 脚送 出至音频功放)时,使用 RF_Rxon_Disc(),可选择是否同时由 PAOUT 送出 VCO 信号 供外置混频器使用

Register	Default	Description
REG_30<15>	0	VCO Calibration Enable.
		1=Enable, 0=Disable
REG_30<13:10>	0	Rx Link Enable (include LNA/MIXER/PGA/ADC).
		1111=Enable, 0000=Disable
REG_30<9>	0	AF DAC Enable.
		1=Enable, 0=Disable.
REG_30<8>	0	DISC Mode Disable.
		1=Disable, 0=Enable.
REG_30<7:4>	0	PLL/VCO Enable.
		1111=Enable, 0000=Disable
REG_30<3>	0	PA Gain Enable.
		1=Enable, 0=Disable
REG_30<2>	0	MIC ADC Enable.
		1=Enable, 0=Disable
REG_30<1>	0	Tx DSP Enable.
		1=Enable, 0=Disable
REG_30<0>	0	Rx DSP Enable.
		1=Enable, 0=Disable

Beken Corporation 19 / 35

13. Squelch, RSSI, Ex-Noise, Gltich

可通过 RF_GetRssi(), RF_GetNoise(), RF_GetGlitch()获取相应的参数, 便于设置静噪等级

Register	Default	Description
REG_78<15:8>	0x48	RSSI threshold for Squelch=1, 0.5dB/step
REG_78<7:0>	0x46	RSSI threshold for Squelch =0, 0.5dB/step
REG_4F<14:8>	0x2F	Ex-noise threshold for Squelch =0
REG_4F<6:0>	0x2E	Ex-noise threshold for Squelch =1
REG_4D<7:0>	0x20	Glitch threshold for Squelch =0
REG_4E<7:0>	0x08	Glitch threshold for Squelch =1
REG_4E<13:11>	0b101	Squelch=1 Delay Setting.
REG_4E<10:9>	0b111	Squelch=0 Delay Setting.
REG_67<8:0>	Read	0.5dB/step, RSSI (dBm) ~= REG_67<8:0>/2 - 160.
	Only	
REG_65<6:0>	Read	Ex-noise indicator, dB/step.
	Only	
REG_63<7:0>	Read	Glitch indicator.
	Only	
REG_0C<1>	Read	Squelch result output.
	Only	1=Link; 0=Loss

14. AFC, ALC, MIC AGC

MIC PGA 增益自动控制可扩展 MIC 信号动态范围,使较大幅度 MIC 信号不失真发射。用在 DMR 方案中发射时应该关掉此功能($REG_19<15>=1$),同时 ALC 功能也应关闭($REG_4B<5>=1$)。

Register	Default	Description						
REG_73<13:11>	0b000	Automatic Frequency Correction(AFC) Range						
		Selection.						
		000=max; 111=min						
REG_73<4>	0	Automatic Frequency Correction(AFC) Disable.						
		1=Disable; 0=Enable.						
REG_19<15>	1	Automatic MIC PGA Gain Controller(MIC AGC) Disable.						
		1=Disable; 0=Enable.						
REG_4B<5>	0	AF Level Controller(ALC) Disable.						
		1=Disable; 0=Enable.						

15. Frequency Setting

设置频率使用 RF_SetFreq(u16 freq_hi16, u16 freq_lo16), 注意换算公式: Frequency(Hz)= (freq_hi16<<16 + freq_lo16)*10

Register	Default	Description
REG_38<15:0>	0x3A98	Frequency(Hz)= (freq_hi16<<16 + freq_lo16)*10
REG_39<15:0>	0x0271	

如设置 409.75MHz 频点,则 RF_SetFreq((40975000>>16)&0xFFFF, 40975000&0xFFFF)

16. Tx Output Power

Register	Default	Description				
REG_36<15:8>	0	PA Bias output 0~3.2V				
		0x00=0V				
		0xFF=3.2V				
REG_36<7>	0	1=Enable PACTL output; 0=Disable(Output 0 V)				
REG_36<5:3>	0b111	PA Gain1 Tuning.				
		111(max)->000(min)				
REG_36<2:0>	0b111	PA Gain2 Tuning.				
		111(max)->000(min)				

功率输出表 (近似)

Power(dBm)	PA Gain1							
PA Gain2	111	110	101	100	011	010	001	000
111	7.26	7.01	6.67	6.17	5.39	4.10	1.52	-5.02
110	6.38	6.08	5.67	6.06	4.12	2.53	-0.72	-9.45
101	5.65	5.30	4.82	4.13	3.03	1.18	-2.58	-13.4
100	5.01	4.62	4.08	3.30	2.08	0.01	-4.16	-16.9
011	4.19	3.73	3.11	2.21	0.84	-1.48	-6.11	-20.5
010	2.60	2.04	1.24	0.13	-1.56	-4.25	-9.50	-22.9
001	1.04	0.35	-0.63	-1.98	-3.90	-6.80	-12.3	-23.7
000	-0.70	-1.51	-2.65	-4.16	-6.20	-9.35	-14.9	-24.3

Beken Corporation

17. Interrupt

- 1) 中断信号可由任意 GPIO 送出(见 GPIO 设置函数),也可轮询 *REG_0C<0>*位,高有效,默认低。
- 2) 中断可由芯片任意 GPIO 口输出,中断通过对 *REG_02* 寄存器写任意值来清除,如 RF_Write (0x02,0x0000); //clear interrupt
- 3) 中断高电平(或中断寄存器 *REG_0C<0>*为 1) 有效,得到中断时,要先清除中断,才能去读取中断向量表。

Register	Default	Description
REG_0C<0>	Read Only	Interrupt Indicator.
		1=Interrupt Request; 0=No Request.
REG_3F<15>	0	FSK Tx Finished Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<14>	0	FSK FIFO Almost Empty Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<13>	0	FSK Rx Finished Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<12>	0	FSK FIFO Almost Full Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<11>	0	DTMF/5TONE Found Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<10>	0	CTCSS/CDCSS Tail Found Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<9>	0	CDCSS Found Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<8>	0	CDCSS Lost Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<7>	0	CTCSS Found Interrupt Enable.
		1=Enable; 0=Disable.

Register	Default	Description
REG_3F<6>	0	CTCSS Lost Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<5>	0	VoX Found Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<4>	0	VoX Lost Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<3>	0	Squelch Found Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<2>	0	Squelch Lost Interrupt Enable.
		1=Enable; 0=Disable.
REG_3F<1>	0	FSK Rx Sync Interrupt Enable.
		1=Enable; 0=Disable.
REG_02<15>	Read Only	FSK Tx Finished Interrupt.
REG_02<14>	Read Only	FSK FIFO Almost Empty Interrupt Enable.
REG_02<13>	Read Only	FSK Rx Finished Interrupt Enable.
REG_02<12>	Read Only	FSK FIFO Almost Full Interrupt.
REG_02<11>	Read Only	DTMF/5TONE Found Interrupt.
REG_02<10>	Read Only	CTCSS/CDCSS Tail Found Interrupt.
REG_02<9>	Read Only	CDCSS Found Interrupt.
REG_02<8>	Read Only	CDCSS Lost Interrupt.
REG_02<7>	Read Only	CTCSS Found Interrupt.
REG_02<6>	Read Only	CTCSS Lost Interrupt.
REG_02<5>	Read Only	VoX Found Interrupt.
REG_02<4>	Read Only	VoX Lost Interrupt.
REG_02<3>	Read Only	Squelch Found Interrupt.
REG_02<2>	Read Only	Squelch Lost Interrupt.
REG_02<1>	Read Only	FSK Rx Sync Interrupt.

18. **GPIO**

- 1) 根据对应的 PIN 及输出的模式使用 RF_SetGpioOut(u8 num, u8 type, u8 val),其中 num 为内部编号,type 为输出模式,val 为 GPIO 输出模式下输出值。输出模式详见参考代码 driver.c
- 2) 获取 GPIO 输入值使用 RF_GetGpioIn(u8 num), 其中 num 为内部编号。

Register	Default	Description
REG_0A<6>	Read Only	GPIO6 Input Indicator. 1=High; 0=Low.
REG_0A<5>	Read Only	GPIO5 Input Indicator. 1=High; 0=Low.
REG_0A<4>	Read Only	GPIO4 Input Indicator. 1=High; 0=Low.
REG_0A<3>	Read Only	GPIO3 Input Indicator. 1=High; 0=Low.
REG_0A<2>	Read Only	GPIO2 Input Indicator. 1=High; 0=Low.
REG_0A<1>	Read Only	GPIO1 Input Indicator. 1=High; 0=Low.
REG_0A<0>	Read Only	GPIO0 Input Indicator. 1=High; 0=Low.
REG_33<14>	1	GPIO6 Output Disable. 1=Disable; 0=Enable.
REG_33<13>	1	GPIO5 Output Disable. 1=Disable; 0=Enable.
REG_33<12>	1	GPIO4 Output Disable. 1=Disable; 0=Enable.
REG_33<11>	1	GPIO3 Output Disable. 1=Disable; 0=Enable.
REG_33<10>	1	GPIO2 Output Disable. 1=Disable; 0=Enable.
REG_33<9>	1	GPIO1 Output Disable. 1=Disable; 0=Enable.
REG_33<8>	1	GPIO0 Output Disable. 1=Disable; 0=Enable.
REG_33<6>	0	GPIO6 Output Value(if enabled). 1= High; 0=Low
REG_33<5>	0	GPIO5 Output Value(if enabled). 1= High; 0=Low
REG_33<4>	0	GPIO4 Output Value(if enabled). 1= High; 0=Low
REG_33<3>	0	GPIO3 Output Value(if enabled). 1= High; 0=Low
REG_33<2>	0	GPIO2 Output Value(if enabled). 1= High; 0=Low
REG_33<1>	0	GPIO1 Output Value(if enabled). 1= High; 0=Low
REG_33<0>	0	GPIO0 Output Value(if enabled). 1= High; 0=Low

Register	Default	Description
REG_34<15:12>	0x0	GPIO3 Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_34<11:8>	0x0	GPIO2 Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_34<7:4>	0x0	GPIO1 Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_34<3:0>	0x0	GPI00 Output Type Selection. 0=High/Low
		1=Interrupt
		2=Squelch 3=VoX
		4=CTCSS/CDCSS Compared Result
		5=CTCSS Compared Result
		6=CDCSS Compared Result
		7=Tail Detected Result
		8=DTMF/5Tone Symbol Received Flag
		9=CTCSS/CDCSS Digital Wave
		Others=Reserved
REG_35<11:8>	0x0	GPIO6 Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_35<7:4>	0x0	GPIO5 Output Type Selection.
		The Definitions is the same as REG_34<3:0>.
REG_35<3:0>	0x0	GPIO4 Output Type Selection.
		The Definitions is the same as REG_34<3:0>.

19. XTAL

芯片支持 26M, 25.6M, 13M, 12.8M, 19.2M 和 38.4M 的晶体或温补。默认 26M, 若使用 26M 外的其他频率晶体或温补使用 RF_SetXtal(u8 mode), 如 RF_SetXtal(XTAL19M2)

20. Frequency Scan

- 1) 扫频使用 RF_FreqScan()可以获取 LNAIN 脚的射频频率 (需要较大幅度>-40dBm), 返回 1 表示失败, 返回 0 表示成功。频率写入到全局变量 *FRQ_HI16* 和 *FRQ_LO16*
- 2) 扫到频率后,设置接收频率到该频点,使用 RF_CtcDcsScan()可获取 CTCSS 频率或 CDCSS 码,返回 0 表示失败,返回 1 表示收到 CTCSS 且频率写入全局变量 CtC_FREQ , 返回 2 表示收到 CDCSS 且写入全局变量 DCS_HI12 和 DCS_LO12

Register	Default	Description
REG_32<15:14>	0b00	Frequency Scan Time.
		00=0.2 Sec; 01=0.4 Sec; 10=0.8 Sec; 11=1.6 Sec
REG_32<0>	0	Frequency Scan Enable.
		1=Enable; 0=Disable.
REG_0D<15>	Read Only	Frequency Scan Indicator.
		1=Busy; 0=Finished.
REG_0D<10:0>	Read Only	Frequency Scan High 16 bits.
REG_0E<15:0>	Read Only	Frequency Scan Low 16 bits.
		= REG_0D<10:0><<16 + REG_0E<15:0>, unit is
		10Hz
REG_68<15>	Read Only	CTCSS Scan Indicator.
		1=Busy; 0=Found.
REG_68<12:0>	Read Only	CTCSS Frequency.
		Frequency(Hz)
		= REG_68<12:0>/20.64888 for 13M/26M XTAL and
		= REG_68<12:0>/ 20.97152 for
		12.8M/19.2M/25.6M/38.4M XTAL
REG_69<15>	Read Only	CDCSS Scan Indicator.
		1=Busy; 0=Found.
REG_69<14>	Read Only	23 or 24 bit CDCSS Indicator.(for BK4819) 1=24 bit;
		0=23 bit.

Register	Default	Description
REG_69<11:0>	Read Only	CDCSS High 12 bits.
REG_6A<11:0>	Read Only	CDCSS Low 12 bits.

21. Channel Spacing

芯片支持多种带宽,包括常见的 12.5k/25k/6.25k/20k,使用 RF_SetChnSpace(u8 space),输入参数 SPACE_12K5/SPACE_25K/SPACE_6K25/SPACE_20K 即可。可根据实际需求设置发射接收带宽。

Register	Default	Description
REG_43<14:12>	0b100	RF filter bandwidth (Apass=0.1dB)
		000 = 1.7 kHz
		001 = 2 kHz
		010 = 2.5 kHz
		011 = 3 kHz
		100 = 3.75 kHz
		101 = 4 kHz
		110 = 4.25 kHz
		111 = 4.5 kHz
		if REG_43<5>=1, RF filter bandwidth *=2;
REG_43<11:9>	0b000	RF filter bandwidth when signal is weak
		(Apass=0.1dB)
		000 = 1.7 kHz
		001 = 2 kHz
		010 = 2.5 kHz
		011 = 3 kHz
		100 = 3.75 kHz
		101 = 4 kHz
		110 = 4.25 kHz
		111 = 4.5 kHz
		if REG_43<5>=1, RF filter bandwidth *=2;
REG_43<8:6>	0b001	AF Tx LPF2 filter Band Width (Apass=1dB) Selection.
		100 = 4.5 kHz
		101 = 4.25 kHz

Beken Corporation

BK4819 Application Note v1.0

Register	Default	Description
		110 = 4 kHz
		111 = 3.75 kHz
		000 = 3 kHz (for 25k Channel Space)
		001 = 2.5 kHz (for 12.5k Channel Space)
		010 = 2.75 kHz
		011 = 3.5 kHz
REG_43<5:4>	0600	BW Mode Selection.
		00=12.5k; 01=6.25k; 10=25k/20k

22. Digital Walkie-Talkie

当做数字收发机使用时需要 bypass 所有音频滤波器,使用 RF_EnterBypass(),退出该模式使用 RF ExitBypass()。以下函数在参考代码中可以找到。

```
void RF_EnterBypass() //for dMR
{
    RF_Write(0x47,REG_47 | 9<<8 | 3); //[11:8]=9 for Rx; [1]=1 for
gain; [0]=1 for Tx
    RF_Write(0x7E,REG_7E & 0xFFC7); //[5:3]=000b for Tx DCC bypass
}

void RF_ExitBypass()
{
    RF_SetAf(MUTE);
    RF_Write(0x7E,REG_7E);
}</pre>
```

23. Hardware Design

24. Revision History

Version	Date	Description
1.0	September 18, 2021	Initial release

