Email: sohamc@cmi.ac.in

Course: Quantum Algorithmic Thinking

Assignment - 1

Roll: BMC202175 Date: October 20, 2023

Problem 1

Find the eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices.

Solution: Pauli matrices are

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $\sigma_x = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $\sigma_y = \begin{bmatrix} 0 & i \\ -i & 0 \end{bmatrix}$ $\sigma_z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

For I for all vectors $v \ Iv = v$. So every vector is an eigenvector and its eigenvalue is 1. Since I is already in its diagonal representation I's diagonal representation is I itself.

Since
$$\sigma_x \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\sigma_x \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ we have

$$\sigma_{\scriptscriptstyle \mathcal{X}}\left(\begin{bmatrix}1\\0\end{bmatrix}+\begin{bmatrix}0\\1\end{bmatrix}\right)=\begin{bmatrix}0\\1\end{bmatrix}+\begin{bmatrix}1\\0\end{bmatrix}\quad\sigma_{\scriptscriptstyle \mathcal{X}}\left(\begin{bmatrix}1\\0\end{bmatrix}-\begin{bmatrix}0\\1\end{bmatrix}\right)=\begin{bmatrix}0\\1\end{bmatrix}-\begin{bmatrix}1\\0\end{bmatrix}=-\left(\begin{bmatrix}1\\0\end{bmatrix}-\begin{bmatrix}0\\1\end{bmatrix}\right)$$

So the for the eignevalue 1 the corresponding eignevector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and for the eigenvalue -1 the corresponding eignevector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

ing eigenvalue is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Since
$$\sigma_y \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -i \end{bmatrix}$$
 and $\sigma_y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} i \\ 0 \end{bmatrix}$ we have

$$\sigma_y\left(\begin{bmatrix}1\\0\end{bmatrix}+i\begin{bmatrix}0\\1\end{bmatrix}\right)=\begin{bmatrix}0\\-i\end{bmatrix}+i\begin{bmatrix}i\\0\end{bmatrix}=-1\left(i\begin{bmatrix}0\\1\end{bmatrix}+\begin{bmatrix}1\\0\end{bmatrix}\right) \quad \sigma_y\left(\begin{bmatrix}1\\0\end{bmatrix}-i\begin{bmatrix}0\\1\end{bmatrix}\right)=\begin{bmatrix}0\\-i\end{bmatrix}-i\begin{bmatrix}i\\0\end{bmatrix}=-i\begin{bmatrix}0\\1\end{bmatrix}+\begin{bmatrix}1\\0\end{bmatrix}$$

So the for the eigenvalue 1 the corresponding eigenvector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} - i \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and for the eigenvalue -1 the corresponding eigenvalue is $\begin{bmatrix} 1 \\ 0 \end{bmatrix} + i \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Since $\sigma_z \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\sigma_y \begin{bmatrix} 0 \\ 1 \end{bmatrix} = -\begin{bmatrix} 0 \\ 1 \end{bmatrix}$. So the for the eignevalue 1 the corresponding eignevector is $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

and for the eigenvalue -1 the corresponding eigenvalue is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Now σ_x , σ_y , σ_z has eigenvalues 1 and -1. So if we write in their corresponding eigenbasis then we will obtain the same diagonalized matrices where all the eigenvalues are in the diagonal positions i.e. $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Problem 2

Show that a normal matrix is Hermitian if and only if it has real eigenvalues. Show that a positive operator is necessarily Hermitian.

Solution:

• Let A is normal and it is hermitian. Then $A = A^{\dagger}$. Let v be an eigenvector of A with eigenvalue λ . Then $v^{\dagger}Av = v^{\dagger}\lambda v = \lambda |v|^2$. Also $v^{\dagger}Av = v^{\dagger}A^{\dagger}v = (Av)^{\dagger}v = \lambda^{\dagger}v^{\dagger}v = \lambda^{\dagger}|v|^2$. So we have $\lambda = \lambda^{\dagger}$. Which implies λ is real. Hence all eigenvalues of A are real.

For the opposite direction we need some lemmas.

Lemma 1. The product of two unitary matrices is unitary

Proof: Let
$$U, V$$
 are two unitary matrices then $(UV)^{\dagger} = V^{\dagger}U^{\dagger}$. Now $(UV)(UV)^{\dagger} = U(VV^{\dagger}U^{\dagger}) = UIU^{\dagger} = I$.

Lemma 2. If A is any square complex matrix then there is an upper triangular complex matrix T and a unitary matrix U so that $A = UTU^{\dagger}$

Proof: Let A is a $n \times n$ matrix. Let v_1 be a eigenvector of A with the corresponding eigenvalue λ_1 . We can take x_1 to be of unit length. Now by Gram-Schmidt process we can extend x_1 to an orthonormal basis $\{x_1, v_2, \ldots, v_n\}$; Let $S_0 = \begin{bmatrix} x_1 & v_2 & \cdots & v_n \end{bmatrix}$ then S_0 is unitary and

$$S_0^{\dagger} A S_0 = \begin{bmatrix} \lambda_1 & * \\ 0 & A_1 \end{bmatrix}$$

where A_1 is an $(n-1)\times (n-1)$ matrix. Again suppose x_2 is an eigenvector of A_1 and the corresponding eigenvalue is λ_2 . Then again for A_1 we extend x_2 to an orthonormal basis $\{x_2,\tilde{v}_2,\ldots,\tilde{v}_{n-1}\}$ and take $\hat{S}_1=[x_2,\tilde{v}_2,\cdots,\tilde{v}_{n-1}]$ then S_1 is also unitary and we have $\hat{S}_1^{\dagger}A_1\hat{S}_1=\begin{bmatrix}\lambda_2 & *\\ 0 & A_2\end{bmatrix}$ where A_2 is a $(n-2)\times (n-2)$ matrix. So we take $S_1=S_0\begin{bmatrix}1&0\\0&\hat{S}_1\end{bmatrix}$. Then

$$S_1^{\dagger} A S_1 = \begin{bmatrix} \lambda_1 & * & * \\ 0 & \lambda_2 & * \\ 0 & 0 & A_2 \end{bmatrix}$$

We continue like this letting $S_k = S_{k-1} \begin{bmatrix} I_k & 0 \\ 0 & \hat{S}_k \end{bmatrix}$ thus at the end we obtain $U := S_n$ such that $U^{\dagger}AU = T$ which is an upper triangular matrix. Hence we have $A = UTU^{\dagger}$

Lemma 3. A matrix A is diagonalizable with a unitary matrix if and only if A is normal

Proof: Let A is normal. Then by Lemma 2 there is a unitary matrix U and a upper traingular matrix T such that $A = UTU^{\dagger}$. Then

$$TT^{\dagger} = U^{\dagger}AU(U^{\dagger}AU)^{\dagger} = U^{\dagger}AUU^{\dagger}A^{\dagger}U = U^{\dagger}AA^{\dagger}U$$
$$= U^{\dagger}A^{\dagger}AU = U^{\dagger}A^{\dagger}UU^{\dagger}AU = (U^{\dagger}AU)^{\dagger}U^{\dagger}AU = T^{\dagger}T$$

Now let $T+(t_{i,j})_{1\leq i,j\leq n}$. Then the first diagonal entry of TT^{\dagger} is

$$\sum_{i=1}^{n} t_{1,i} \overline{t_{1,i}} = \sum_{i=1}^{n} |t_{1,i}|^{2}$$

Now the first diagonal entry of $T^{\dagger}T$ is $t_{1,1}\overline{t_{1,1}}=|t_{1,1}|^2$. These two are equal. Hence for all $2 \le i \le n$ we have $t_{1,i}=0$. Similarly comparing the second diagonal entry of TT^{\dagger} and $T^{\dagger}T$ we have that all the nondiagonal entries of second row of T is 0. Continuing like this we have that T is diagonal.

• Suppose that A is any matrix such that there exists an unitary matrix U such that $U^{\dagger}AU = D$ where D is diagonal. Then

$$AA^{\dagger} = UDU^{\dagger}(UDU^{\dagger})^{\dagger} = UDU^{\dagger}UD^{\dagger}U^{\dagger} = UDD^{\dagger}U^{\dagger}$$
$$= UD^{\dagger}DU^{\dagger} = UD^{\dagger}U^{\dagger}UDU^{\dagger} = (UDU^{\dagger})^{\dagger}UDU^{\dagger} = A^{\dagger}A$$

So A is normal.

Now coming back to the original question we have that the eigenvalues of A are real. A is normal. Then there exists an unitary matrix U such that $U^{\dagger}AU = D$ where D is diagonal. Since all eigenvalues of A are real $D^{\dagger} = D$. Then we have

$$A^{\dagger} = (U^{\dagger}DU)^{\dagger} = U^{\dagger}D^{\dagger}U = U^{\dagger}DU = A$$

So *A* is hermitian

Now suppose A is positive operator. Then for all $v \in V$ we have

$$v^{\dagger}Av \ge 0 \implies v^{\dagger}Av = (v^{\dagger}Av)^{\dagger} = v^{\dagger}A^{\dagger}v \ge 0 \implies v^{\dagger}(A - A^{\dagger})v = 0$$

Now also we have

$$(A - A^{\dagger})(A - A^{\dagger})^{\dagger} = (A - A^{\dagger})(A^{\dagger} - A) = AA^{\dagger} - A^{\dagger}A^{\dagger} - AA + A^{\dagger}A$$
$$= (A^{\dagger} - A)(A - A^{\dagger}) = (A - A^{\dagger})^{\dagger}(A - A^{\dagger})$$

So $A - A^{\dagger}$ is a normal operator. Hence by Lemma 3 there exists an unitary matrix U such that $U^{\dagger}(A - A^{\dagger})U = D$ where D is a diagonal matrix. Now for standard basis for any e_i

$$e_i^{\dagger} D e_i = e^{\dagger} U^{\dagger} (A - A^{\dagger}) U e_i = (U e_i)^{\dagger} (A - A^{\dagger}) (U e_i) = 0$$

Now $e_i^{\dagger}De_i$ is the *i*-th diagonal element of D which we got is 0. Since this is true for all $i \in [n]$ we have D is a null matrix. So

$$U^{\dagger}(A - A^{\dagger})U = 0 \iff A - A^{\dagger} = U0U^{\dagger} = 0 \iff A = A^{\dagger}$$

Hence A is hermitian.

Problem 3

Suppose that A and B are Hermitian operators. Then show that the commutator [A, B] = 0 if and only if there exists an orthonormal basis such that both A and B are diagonal with respect to that basis.

Solution: If there exists an orthonormal basis such that both A and B are diagonal with respect to that basis then let we have $P^{\dagger}AP = D_A$ and $P^{\dagger}P - D_B$. Then

$$AB - BA = PD_A P^{\dagger} PD_B P^{\dagger} - PD_B P^{\dagger} PD_A P^{\dagger} = PD_A D_B P^{\dagger} - PD_B D_A P^{\dagger} = P(D_A D_B - S_B D_A) P^{\dagger} = 0$$

The last equality comes because D_A and D_B are diagonal matrices so $D_AD_B = D_BD_A$.

For the opposite direction suppose v be an eigenvector with corresponding eigenvector λ of A then $Av = \lambda v$. Now

$$A(Bv) = BAv = B\lambda v = \lambda Bv$$

Hence for any eigenvector v of A Bv is also an eigenvector and if Bv is zero then still it is an eigenvector of A for same eigenvalue.

Let $\lambda_1,\ldots,\lambda_k$ be the eigenvalues of A. Then the corresponding eigenspaces of A are V_{λ_i} for $i\in[k]$. Then we have $B(V_{\lambda_i})\subseteq V_{\lambda_i}$ for all $i\in[k]$. Now let β be an eigenvalue of B with corresponding eigenvector is y. Then for any $i\in[k]$ we can think $y=y_1+y_2$ where $y_1\in V_{\lambda_i}$ and and $y_2\in\bigoplus_{j\neq i}V_{\lambda_j}$. Then $By=\beta y=\beta y_1+\beta y_2$. also we have $By=By_2+By_2$. Since $B(V_{\lambda_i})\subseteq V_{\lambda_i}$ and $B\left(\bigoplus_{j\neq i}V_{\lambda_j}\right)\subseteq\bigoplus_{j\neq i}V_{\lambda_j}$ we can say $By_1=\beta y_1$ and $By_2=\beta y_2$. Now if the V_β is the corresponding eigenspace fo the eigenvalue β then

$$V_eta = \left[V_eta \cap V_{\lambda_i}
ight] \oplus \left[V_eta \cap igoplus_{j
eq i} V_{\lambda_j}
ight] = igoplus_{i=1}^k V_{\lambda_i} \cap V_eta$$

Now if β_1, \ldots, β_l are the eigenvalues of *B* then we have

$$\bigoplus_{i=1}^{l} V_{\beta_i} = \bigoplus_{i=1}^{l} \left(\bigoplus_{j=1}^{k} V_{\lambda_j} \cap V_{\beta_i} \right) = \bigoplus_{\substack{1 \le i \le l \\ 1 \le j \le k}} V_{\beta_i} \cap V_{\lambda_j}$$

Let us denote $V_{i,j} = V_{\beta_i} \cap V_{\lambda_j}$ then for each $V_{i,j}$ we take an orthogonal basis for all i, j. Then taking union of all of them we have an orthogonal basis for both A and B such that both A and B are diagonal. Now for each vector in the basis after normalizing we get an orthonormal basis such that both A and B are diagonal with respect to that basis.

Problem 4

Prove that a state $|\psi\rangle$ of a composite system AB is a product state if and only if it has Schmidt number 1. Prove that $|\psi\rangle$ is a product state if and only if the reduced density matrices ρ_A and ρ_B are pure states.

Solution:

• Let the $|\psi\rangle$ is a product state. Then $\exists |\psi_1\rangle \in A$, $|\psi_2\rangle \in B$ such that $|\psi\rangle = |\psi_1\rangle |\psi_2\rangle$. Now by Schmidt Decomposition there exists an orthonormal basis $\{|i_A\rangle\}$ for system A and orthonormal basis $\{|i_B\rangle\}$ for system B such that

$$\ket{\psi} = \sum_{i=1}^n \lambda_i \ket{i_A} \ket{i_B}$$

where $\lambda_i \in \mathbb{R}$ such that $\sum_{i=1}^n \lambda_i^2 = 1$. We have there exists at least one $\lambda_i \neq 0$. WLOG $\lambda_1 \neq 0$ Now we also have

$$|\psi_1
angle = \sum_{i=1}^n \lambda_{i,A} |i_A
angle \qquad |\psi_2
angle = \sum_{i=1}^n \lambda_{i,B} |i_B
angle$$

then we have

$$\sum_{i=1}^{n} \lambda_{i} \ket{i_{A}} \ket{i_{B}} = \ket{\psi} = \left(\sum_{i=1}^{n} \lambda_{i,A} \ket{i_{A}}\right) \left(\sum_{i=1}^{n} \lambda_{i,B} \ket{i_{B}}\right) = \sum_{1 \leq i,j \leq n} \lambda_{i,A} \lambda_{j,B} \ket{i_{A}} \ket{j_{B}}$$

Comparing the coefficients we have $\lambda_i = \lambda_{i,A}\lambda_{i,B}$ and for all $\lambda_{i,A}\lambda_{j,B} = 0$ where $i \neq j$. Since $\lambda_1 \neq 0$ we have $\lambda_{1,A}, \lambda_{1,B} \neq 0$. Since for all $j \neq 1$, $\lambda_{1,A}\lambda_{j,B} = 0$ we have $\lambda_{j,B} = 0$ for all $2 \leq j \leq n$. Similarly since for all $i \neq 1$, $\lambda_{i,A}\lambda_{1,B} = 0$ we have $\lambda_{i,A} = 0$ for all $2 \leq i \leq n$. So we have $\lambda_i = 0$ for all $2 \leq i \leq n$. So $|\psi\rangle = \lambda_1 |i_A\rangle |i_B\rangle$. Hence $|\psi\rangle$ has Schmidt Number 1.

For the opposite direction $|\psi\rangle$ has Schmidt Number 1. So $|\psi\rangle = |i_A\rangle |i_B\rangle$ Here are $|i_A\rangle$ is a state of system A and $|i_B\rangle$ is a state of system B. Hence $|\psi\rangle$ is already in a product state. Hence $|\psi\rangle$ is a product state of the composite system AB.

• $|\psi\rangle$ is a product state. Hence it has Schmidt Number 1. So there exists an orthonormal basis $\{|i_A\rangle\}$ for system A and orthonormal basis $\{|i_B\rangle\}$ for system B such that $|\psi\rangle = |i_A\rangle |i_B\rangle$. Then

$$\rho_{AB} = \ket{\psi}\bra{\psi} = (\ket{i_A}\ket{i_B})(\bra{i_A}\bra{i_B}) = \ket{i_A}\bra{i_A}\otimes\ket{i_B}\bra{i_B}$$

Now

$$\rho_A = tr_B(\rho_{AB}) = tr_B(|i_A\rangle \langle i_A| \otimes |i_B\rangle \langle i_B|) = |i_A\rangle \langle i_A| tr(|i_B\rangle \langle i_B|) = |i_A\rangle \langle i_A|$$

and similarly

$$\rho_B = tr_A(\rho_{AB}) = tr_A(|i_A\rangle \langle i_A| \otimes |i_B\rangle \langle i_B|) = tr(|i_A\rangle \langle i_A|) |i_A\rangle \langle i_B| = |i_B\rangle \langle i_B|$$

So ρ_A and ρ_B are pure states.

Let ρ_A and ρ_B are pure states. Let $|\psi\rangle = |\psi_1\rangle |\psi_2\rangle$ Then

$$|\psi\rangle\langle\psi| = \left(\sum_{i=1}^{n} \lambda_{i} |i_{A}\rangle |i_{B}\rangle\right) \left(\sum_{j=1}^{n} \lambda_{j} \langle j_{A} | \langle j_{B} | \right) = \sum_{i=1}^{n} \lambda_{i}^{2} |i_{A}\rangle \langle i_{A} | \otimes |i_{B}\rangle \langle i_{B} |$$

There exists at least one $\lambda_i \neq 0$. WLOG $\lambda_1 = \neq 0$. Now

$$ho_A = \operatorname{tr}_B \left(\sum_{i=1}^n \lambda_i^2 \ket{i_A} ra{i_A} \otimes \ket{i_B} ra{i_B} \right) = \sum_{i=1}^n \lambda_i^2 \ket{i_A} ra{i_A} \ket{t_A} ra{i_A} \ket{t_A} ra{i_A} = \sum_{i=1}^n \lambda_i^2 \ket{i_A} ra{i_A}$$

and

$$\rho_{B} = \operatorname{tr}_{A}\left(\sum_{i=1}^{n} \lambda_{i}^{2} \left|i_{A}\right\rangle \left\langle i_{A}\right| \otimes \left|i_{B}\right\rangle \left\langle i_{B}\right|\right) = \sum_{i=1}^{n} \lambda_{i}^{2} \operatorname{tr}(\left|i_{A}\right\rangle \left\langle i_{A}\right|) \left|i_{B}\right\rangle \left\langle i_{B}\right| = \sum_{i=1}^{n} \lambda_{i}^{2} \left|i_{B}\right\rangle \left\langle i_{B}\right|$$

Since ρ_A and ρ_B are pure states there exists $k,l \in [n]$ such that $\rho_A = \lambda_k |k_A\rangle \langle k_A|$ and $\rho_B = \lambda_l |l_B\rangle \langle l_B|$ since we already know that $\lambda_1 \neq 0$ we have k = l = 1 for all $2 \leq i \leq n$ $\lambda_i = 0$. So $\rho_A = |1_A\rangle \langle 1_A|$ and $\rho_B = |1_A\rangle \langle 1_B|$. Hence $|\psi\rangle = \lambda_1 |1_A\rangle |1_B\rangle$. So $|\psi\rangle$ has Schmidt Number 1. So $|\psi\rangle$ is a product state of the composite system AB.

Problem 5

Write a self-contained proof that single qubit gates and CNOT gates are universal.

Solution:

Lemma 4. Let U be an unitary matrix acting on \mathbb{C}^d . Then there are $N \leq \frac{d(d-1)}{2}$, 2-level unitary matrices i.e. unitary matrices which act on 2 or less dimensional subspaces U_1, \ldots, U_n such that

$$U_N U_{N-1} \cdots U_2 U_1 U = I$$

•

Proof: We will prove this by induction. Let d = 3. Then suppose $U = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$. Then first take

$$U_{1} = \begin{bmatrix} \frac{a^{\dagger}}{|a|^{2} + |b|^{2}} & \frac{b^{\dagger}}{|a|^{2} + |b|^{2}} & 0\\ \frac{b}{|a|^{2} + |b|^{2}} & \frac{-a}{|a|^{2} + |b|^{2}} & 0\\ 0 & 0 & 1 \end{bmatrix} \implies U_{1}U = \begin{bmatrix} 1 & d' & g'\\ 0 & e' & h'\\ c' & f' & i' \end{bmatrix} = \begin{bmatrix} a' & d' & g'\\ 0 & e' & h'\\ c' & f' & i' \end{bmatrix}$$

Now we take

$$U_{2} = \begin{bmatrix} \frac{a'^{\dagger}}{|a'|^{2} + |c'|^{2}} & 0 & \frac{c'^{\dagger}}{|a'|^{2} + |c'|^{2}} \\ 0 & 1 & 0 \\ \frac{c'}{|a'|^{2} + |c'|^{2}} & 0 & \frac{-a'}{|a'|^{2} + |c'|^{2}} \end{bmatrix} \implies U_{2}U_{1}U = \begin{bmatrix} 1 & d'' & g'' \\ 0 & e'' & h'' \\ 0 & f'' & i'' \end{bmatrix}$$

Clearly U_1 and U_2 are unitary matrix. Hence U_2U_1U is unitary matrix. Since U_2U_1U is a unitary matrix and $(U_2U_1U)^{\dagger} = U_2U_1U$ we have d'' = g'' = 0. Hence

$$U_2 U_1 U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e'' & h'' \\ 0 & f'' & i'' \end{bmatrix}$$

So we will take

$$U_3 = (U_2 U_1 U)^{\dagger} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & e''^{\dagger} & h''^{\dagger} \\ 0 & f''^{\dagger} & i''^{\dagger} \end{bmatrix}$$

Hence $U_3U_2U_1U = I \implies U = U_1^{\dagger}U_2^{\dagger}U_3^{\dagger}$.

Now suppose this statement is true for d-1. For d like the above process we need d-1 unitary matrices to make the first entry of the first column 1 and the rest entries of the first column to be 0. Let the unitary matrices are U_1, \ldots, U_{d-1} . So $U_{d-1} \cdots U_1 U = \begin{bmatrix} 1 & 0 \\ 0 & U' \end{bmatrix}$ where U' is a $(d-1) \times (d-1)$ matrix. Since U is unitary we have U'

is unitary. By induction hypothesis there exists $k \leq \frac{(d-1)(d-2)}{2}$ matrices U_1', \ldots, U_k' such that $U_k' \cdots U_1' U' = I_{d-1}$. Now $\forall i \in [k]$ we take the matrices

$$\tilde{U}_i = \begin{bmatrix} 1 & 0 \\ 0 & U_i' \end{bmatrix}$$

Then we have

$$(\tilde{U}_k \cdots \tilde{U}_1) (U_{d-1} \cdots U_1) U = I_d$$

Now

$$k+d-1 \le \frac{(d-1)(d-2)}{2} + d-1 = \frac{d-1}{2}(d-2+2) = \frac{d(d-1)}{2}$$

Hence there exists $N \leq \frac{d(d-1)}{2}$ unitary matrices U_1, \ldots, U_N such that $N \cdots U_1 U = I$.

Now if U is an unitary matrix acting on a n-qubit system then we can decompose U into product of 2-level unitary matrices using the previous lemma. So it is enought to see 2-level unitary matrices. Now denote U to be a 2-level matrix on an n-qubit system. Suppose U acts non-trivially on the space spanned by the computational basis $\{|x\rangle, |y\rangle\}$, where $bin(x) = x_{n-1} \cdots x_0$ and $bin(y) = y_{n-1} \cdots y_0$ are the binar expressions for x, y where $\forall i, j \in [n]$ we have $x_i, y_j \in \{0, 1\}$. Let $U |x\rangle = a |x\rangle + b |y\rangle$ and $U |y\rangle = c |x\rangle + d |y\rangle$. Therefore U is an $2^n \times 2^n$ matrix where U has 1 in all diagonal positions and 0 in all off diagonal positions except $U_{xx} = a$, $U_{xy} = c$, $U_{yx} = b$, $U_{yy} = d$. Take $\tilde{U} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Now we will try to reduce U to \tilde{U} using single qubit gates and CNOT gate. \tilde{U} can be thought of as a unitary matrix acting on a single qubit.

To reduce U to \tilde{U} we first take s sequence of binary numbers $\{a_1,\ldots,a_m\}$ such that $a_1=x$ and $a_m=y$ and for any $i\in[m-1]$, a_i,a_{i+1} differ in exactly one bit. Clearly $m\le n+1$ since there are n bits. Our main strategy is to find gates providing the sequence of state changes

$$|x\rangle = |x_1\rangle \rightarrow |x_2\rangle \rightarrow \cdots \rightarrow |x_{m-1}\rangle$$

then $|x_{m-1}\rangle$ and $|x_m\rangle = |y\rangle$ differs in only one position and then apply \tilde{U} on that specific bit position and then undo the sequence so that

$$|x\rangle = |x_1\rangle \leftarrow |x_2\rangle \leftarrow \cdots \leftarrow |x_{m-1}\rangle$$

Now to change the state $|x_i\rangle \to |x_{i+1}\rangle$ let $x_i=x_{i,n-1}\cdots x_{i,0}$ and the difference of x_i and x_{i+1} is at jth position. Then

$$x_{i+1} = x_{i,n-1} \cdots x_{i,j+1} \overline{x_{i,j}} x_{i,j-1} \cdots x_{i,0}$$

Then we apply $C^{n-1}(X)$ on jth bit along with sandwitching by X gate at lth bit, $l \neq j$ if $x_{i,l} = 0$. Thus jth bit is changed only if the other bits are equal to $|x_i\rangle$ state's bits in their respective positions. Lets denote the gate $C_i^n(X)$ for the change of state $|x_i\rangle \to |x_{i+1}\rangle$. We apply this this for all $i \in [m-2]$ to finally get $|x_{m-1}\rangle$

Now let x_{m-1} and $x_m = y$ differs in kth position. Let $x_{m-1} = x_{m-1,n-1} \cdots x_{m-1,0}$ then

$$x_m = x_{m-1,n-1} \cdots x_{m-1,k+1} \overline{x_{m-1,k}} x_{m-1,k-1} \cdots x_{m-1,0}$$

Then we apply $C^{n-1}(\tilde{U})$ where \tilde{U} is applied in k-th position along with sandwitching by X gates if at lth bit, $l \neq k$ if $x_{m-1,l} = 0$. Thus \tilde{U} is applied to kth bit only if the rest of the bits are equal to $x_{m-1,n-1}, \ldots, x_{m-1,k+1}, x_{m-1,k-1}, \ldots, x_{m-1,0}$ respectively.

Lemma 5. For any unitary gate U acting on a single qubit system $C^n(U)$ gate on a n qubit system can be constructed by $3C^{n-1}(V)$ and 3C(W) gates where V, W are unitary matrices. [I took this idea from algoassert.com]

Proof: We will prove drawing the circuit for n = 3.

There are 4 cases arise:

- 1. **OFF, OFF**: If any of the first 2 states is $|0\rangle$ and the 3rd state is $|0\rangle$ then no gate is applied on the 4th state.
- 2. **ON, OFF**: If first 2 states are $|1\rangle$ and the 3rd state is $|0\rangle$ then after the first $C^2(X)$ gate the 3rd state becomes $|1\rangle$ so the \sqrt{U}^{\dagger} is applied on 4th state and after the second $C^2(X)$ the 3rd state becomes $|0\rangle$ so only the last \sqrt{U} is applied on 4th state. But we know $\sqrt{U}^{\dagger}\sqrt{U} = I$ so in the end nothing changes
- 3. **ON, ON**: If first 2 states are $|1\rangle$ and 3rd state is $|1\rangle$ then after the first $C^2(X)$ gate the 3rd state becomes $|0\rangle$ so the \sqrt{U}^{\dagger} is not applied on 4th state and after the second $C^2(X)$ the 3rd state becomes $|1\rangle$ so both the last two \sqrt{U} gate are applied on 4th state. Since $\sqrt{U}\sqrt{U} = U$ we can say when all the first 3 states are $|1\rangle$ U is applied to the 4th state.
- 4. **OFF, ON**: If any of the first 2 states is $|0\rangle$ and the 3rd state is $|1\rangle$ then after the first $C^2(X)$ gate the 3rd state doesn't change so it remains $|1\rangle$ so the \sqrt{U}^{\dagger} is applied on 4th state and after the second $C^2(X)$ the 3rd state still remains $|1\rangle$ so the first \sqrt{U} gate is applied but the last \sqrt{U} iis not applied since at least one of the first 2 states is $|0\rangle$

We will implement the same for any n. Here we are using $2 C^{n-1}(X)$ gate one $C^{n-1}(\sqrt{U})$ gate and one $C(\sqrt{U})$ and one $C(\sqrt{U})$ gate. So the lemma is true.

With this lemma we can constuct a $C^n(U)$ gate using $2 C^{n-1}(X)$ gate one $C^{n-1}(\sqrt{U})$ gate and one $C(\sqrt{U})$ and one $C(\sqrt{U})$ gate. So applying this procedure again and again we can finally reach where we are using only C(V) gates where V is an unitary gate acting on a single qubit.

Let SU(n) define the set of all $n \times n$ unitary matrices with determinant 1.

Lemma 6. $\forall U \in SU(2)$ there exists $a, b \in \mathbb{C}$ and $\theta \in \mathbb{R}$ with $|a|^2 + |b|^2 = 1$ such that

$$U = \begin{bmatrix} a & b \\ -b^* e^{i\theta} & a^* e^{i\theta} \end{bmatrix}$$

Proof: Let $U = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. We know $U^{\dagger} = U^{-1}$. Now

$$U^{-1} = \frac{1}{\det U} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \qquad U^{\dagger} = \begin{bmatrix} a^* & c^* \\ b^* & d^* \end{bmatrix}$$

So we have

$$d = a^* \det U$$
, $a = d^* \det U$, and $-b = c^* \det U$

So we have $d = d(\det U)^* \det U = d|\det U|$. So if $d \neq 0$ we have $|\det U| = 1 = (\det\{U\})^* \det U = \det U^{\dagger} \det U = \det(UU^{\dagger})$. So we can think $\det U = e^{i\theta}$ So we have

$$d = a^* e^{i\theta} \qquad c = -b^* e^{i\theta}$$

Hence $U = \begin{bmatrix} a & b \\ -b^*e^{i\theta} & a^*e^{i\theta} \end{bmatrix}$. Now

$$\det U = aa^*e^{i\theta} + bb^*e^{i\theta} = e^{i\theta}(|a|^2 + |b|^2) \implies |\det U| = 1 = |e^{i\theta}|(|a|^2 + |b|^2) = |a|^2 + |b|^2$$

Now since $|a|^2 + |b|^2 = 1$ so we can think $|a| = \sin \theta$ and $|b| = \cos \theta$. So $a = e^{i\lambda} \sin \theta$ and $b = e^{i\mu} \cos \theta$. So

$$U = \begin{bmatrix} e^{i\lambda}\sin\theta & e^{i\mu}\cos\theta \\ -e^{i(\theta-\mu)}\cos\theta & e^{i(\theta-\lambda)} \end{bmatrix} = e^{i\frac{\theta}{2}} \begin{bmatrix} e^{i(\lambda-\frac{\theta}{2})}\sin\theta & e^{i(\mu-\frac{\theta}{2})}\cos\theta \\ -e^{-i(\mu-\frac{\theta}{2})}\cos\theta & e^{-i(\lambda-\frac{\theta}{2})}\sin\theta \end{bmatrix}$$

So we take $\alpha = \lambda - \frac{\theta}{2}$ and $\beta = \mu - \frac{\theta}{2}$. Now introduce $\alpha = \phi + \psi$ and $\beta = \phi - \psi$. Then we have

$$U = e^{i\frac{\theta}{2}} \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix} \begin{bmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{bmatrix} \begin{bmatrix} e^{i\psi} & 0 \\ 0 & e^{-i\psi} \end{bmatrix}$$

Now for any 2×2 matrix A and for any element x we have xA = (xI)A. So here we can take the multiplication of $e^{i\frac{\theta}{2}}$ as multiplication of the matrix $e^{i\frac{\theta}{2}}I = \Phi(\frac{\theta}{2})$. To write in short we will take $\frac{\theta}{2} = \omega$. So $\Phi(\frac{\theta}{2}) = \Phi(\omega)$. Now for any angle γ we know

$$R_z(\gamma) = \begin{bmatrix} e^{i\frac{\gamma}{2}} & 0\\ 0 & e^{i\frac{\gamma}{2}} \end{bmatrix} \qquad R_y(\gamma) = \begin{bmatrix} \cos\frac{\gamma}{2} & \sin\frac{\gamma}{2}\\ -\sin\frac{\gamma}{2} & \cos\frac{\gamma}{2} \end{bmatrix}$$

Since $\cos \gamma = \sin(\frac{\pi}{2} - \gamma)$ we have

$$R_z(2\phi) = \begin{bmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{bmatrix} \quad R_y(\pi - 2\theta) = \begin{bmatrix} \cos\frac{\pi - 2\theta}{2} & \sin\frac{\pi - 2\theta}{2} \\ -\sin\frac{\pi - 2\theta}{2} & \cos\frac{\pi - 2\theta}{2} \end{bmatrix} = \begin{bmatrix} \sin\theta & \cos\theta \\ -\cos\theta & \sin\theta \end{bmatrix} \quad R_z(2\psi) = \begin{bmatrix} e^{i\psi} & 0 \\ 0 & e^{-i\psi} \end{bmatrix}$$

Hence $U = \Phi(\omega)R_z(2\phi)R_y(\pi - 2\theta)R_z(2\psi)$. Now we need to break C(U) into single qubit gates and CNOT gate.

Lemma 7. Let $U \in SU(2)$ then there exists $A, B, C \in SU(2)$ such that $U = \Phi(\delta)AXBXC$ where ABC = I and $X = \sigma_x$ for some $\delta \in \mathbb{R}$

Proof: By the previous construction there exists α , β , γ , $\delta \in \mathbb{R}$ such that $U = \Phi(\delta)R_z(\alpha)R_y(\beta)R_z(\gamma)$. Now take

$$A = R_z(\alpha)R_y\left(\frac{\beta}{2}\right)$$
, $B = R_y\left(-\frac{\beta}{2}\right)R_z\left(-\frac{\alpha+\gamma}{2}\right)$, $C = R_z\left(-\frac{\alpha-\gamma}{2}\right)$

Then

$$AXBXC = R_{z}(\alpha)R_{y}\left(\frac{\beta}{2}\right)XR_{y}\left(-\frac{\beta}{2}\right)R_{z}\left(-\frac{\alpha+\gamma}{2}\right)XR_{z}\left(-\frac{\alpha-\gamma}{2}\right)$$

$$= R_{z}(\alpha)R_{y}\left(\frac{\beta}{2}\right)\left[XR_{y}\left(-\frac{\beta}{2}\right)X\right]\left[XR_{z}\left(-\frac{\alpha+\gamma}{2}\right)X\right]R_{z}\left(-\frac{\alpha-\gamma}{2}\right)$$

$$= R_{z}(\alpha)R_{y}\left(\frac{\beta}{2}\right)R_{y}\left(\frac{\beta}{2}\right)R_{z}\left(\frac{\alpha+\gamma}{2}\right)R_{z}\left(-\frac{\alpha-\gamma}{2}\right)$$

$$= R_{z}(\alpha)R_{y}(\beta)R_{z}(\gamma)$$

We also need to verify that ABC = I. For that

$$ABC = R_z(\alpha)R_y\left(\frac{\beta}{2}\right)R_y\left(-\frac{\beta}{2}\right)R_z\left(-\frac{\alpha+\gamma}{2}\right)R_z\left(-\frac{\alpha-\gamma}{2}\right) = R_z(\alpha)R_y(0)R_z(-\alpha) = R_z(\alpha)R_z(-\alpha) = I$$

We know if U_1 and U_2 are two unitary gates acting on a single qubit then $C(U_1U_2) = C(U_1)C(U_2)$. Hence $C(U) = C(\Phi(\delta))C(AXBXC)$. Now we can impliment C(AXBXC) where ABC = I like this

$$= C B A$$

So if the control state is $|0\rangle$ then ABC = I is applied on the 2nd state but nothing changes. If the control state is $|1\rangle$ then AXBXC is applied on the 2nd state. Now we will try to simulate $C(\Phi(\delta))$.

Lemma 8. For any $\Phi(\delta)$ gate where $\delta \in \mathbb{R}$) Take

$$D = R_z(-\delta)\Phi\left(\frac{\delta}{2}\right)$$

then $C(\Phi(\delta)) = D \otimes I$

Proof: First simplify D.

$$D = R_z(-\delta)\Phi\left(\frac{\delta}{2}\right) = \begin{bmatrix} e^{-i\frac{\delta}{2}} & 0\\ 0 & e^{i\frac{\delta}{2}} \end{bmatrix} \begin{bmatrix} e^{i\frac{\delta}{2}} & 0\\ 0 & e^{i\frac{\delta}{2}} \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & e^{i\delta} \end{bmatrix}$$

Now we know

$$C(U) = |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes \Phi(\delta) = |0\rangle \langle 0| \otimes I + |1\rangle \langle 1| \otimes e^{i\delta}I = |0\rangle \langle 0| \otimes I + e^{i\delta} |1\rangle \langle 1| \otimes I$$

Also

$$D \otimes I = \begin{bmatrix} 1 & 0 \\ 0 & e^{i\delta} \end{bmatrix} \otimes I = \begin{bmatrix} |0\rangle \langle 0| + e^{i\delta} |1\rangle \langle 1| \end{bmatrix} \otimes I = |0\rangle \langle 0| \otimes I + e^{i\delta} |1\rangle \langle 1| \otimes I$$

Hence we have $C(\delta) = D \otimes I$.

Therefore for $C(\Phi(\delta))$ it is enought to apply the D gate to the control state.

Hence for any C(U) where $U \in SU(2)$ there exists $\delta \in \mathbb{R}$ and $A,B,C \in SU(2)$ such that $U = \Phi(\delta)AXBXC$ where ABC = I. Then let D be the gate $D = R_z(-\delta)\Phi\left(\frac{\delta}{2}\right)$. Then we impliment C(U) like this:

$$= \begin{array}{c} & & & \\ &$$

Now we have broken down C(U) into single qubit gates and CNOT gates. Therefore any unitary gate operating on n qubits can be broken down into single qubit gates and CNOT gates. Hence single qubit gates and CNOT gates are universal.

Problem 6

Let S be a subspace of \mathbb{Z}_2^n . Define $S^{\perp} = \{t \in \mathbb{Z}_2^n \mid t \cdot s = 0 \text{ for all } s \in S\}$. Let $|S\rangle$ be the quantum stae that represents the uniform superposition over S. Compute the values of $H^{\otimes n} |S\rangle$ and $H^{\otimes n} |y + S\rangle$ for any

 \Box

 $y\in\{0,1\}^n.$

Solution: We have $|S\rangle = \frac{1}{\sqrt{|S|}} \sum_{x \in S} |x\rangle$. Now since S is a subspace of \mathbb{Z}_2^n it has a basis. Let $\{x_1, \ldots, x_k\}$ is a basis of S. Then $\forall x \in S \ \exists \ a_i^x \in \{0,1\}$. for all $i \in [k]$ such that $\sum_{i=1}^k a_i^x x_i = x$. So $|S| = 2^k$. Now

$$\begin{split} H^{\otimes n} \left| S \right\rangle &= \frac{1}{\sqrt{|S|}} \sum_{x \in S} H^{\otimes n} \left| x \right\rangle = \frac{1}{\sqrt{|S|}} \sum_{x \in S} \left[\sum_{i=0}^{2^{n}-1} (-1)^{\langle x, i \rangle} \left| i \right\rangle \right] \\ &= \frac{1}{\sqrt{|S|}} \sum_{x \in S} \left[\frac{1}{\sqrt{2^{n}}} \sum_{i=0}^{2^{n}-1} (-1)^{\sum_{j=1}^{K} a_{j}^{x} \langle x_{j}, i \rangle} \left| i \right\rangle \right] = \frac{1}{\sqrt{2^{n}|S|}} \sum_{i=0}^{2^{n}-1} \left[\sum_{x \in S} \prod_{j=1}^{k} (-1)^{a_{j}^{x} \langle x_{j}, i \rangle} \right] \left| i \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{i=0}^{2^{n}-1} \left[\sum_{a_{1}=0}^{1} \sum_{a_{2}=0}^{1} \cdots \sum_{a_{k}=0}^{1} \left(\prod_{j=1}^{k} (-1)^{a_{j} \langle x_{j}, i \rangle} \right) \right] \left| i \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{i=0}^{2^{n}-1} \left[\prod_{j=1}^{k} \left((-1)^{0 \times \langle x_{j}, i \rangle} + (-1)^{1 \times \langle x_{j}, i \rangle} \right) \right] \left| i \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{y \in S^{\perp}} \left[\prod_{j=1}^{k} (1 + (-1)^{0}) \right] \left| y \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{y \in S^{\perp}} 2^{k} \left| y \right\rangle = \frac{2^{k}}{\sqrt{2^{n} \times 2^{k}}} \sum_{y \in S^{\perp}} \left| y \right\rangle = \frac{1}{\sqrt{2^{n}-k}} \sum_{y \in S^{\perp}} \left| y \right\rangle = \left| S^{\perp} \right\rangle \end{split}$$

Now let $y \in \mathbb{Z}_2^n$. Then $|S+y\rangle = \frac{1}{\sqrt{|S|}} \sum_{x \in S} |x+y\rangle$. So now

$$\begin{split} H^{\otimes n} \left| S + y \right\rangle &= \frac{1}{\sqrt{|S|}} \sum_{x \in S} H^{\otimes n} \left| x + y \right\rangle = \frac{1}{\sqrt{|S|}} \sum_{x \in S} \left[\sum_{i=0}^{2^{n}-1} (-1)^{\langle x + y, i \rangle} \left| i \right\rangle \right] \\ &= \frac{1}{\sqrt{|S|}} \sum_{x \in S} \left[\sum_{i=0}^{2^{n}-1} (-1)^{\langle y, i \rangle} (-1)^{\langle x, i \rangle} \left| i \right\rangle \right] \\ &= \frac{1}{\sqrt{|S|}} \sum_{x \in S} \left[\frac{1}{\sqrt{2^{n}}} \sum_{i=0}^{2^{n}-1} (-1)^{\langle y, i \rangle} (-1)^{\frac{k}{j-1}} a_{j}^{x} \langle x_{j}, i \rangle} \left| i \right\rangle \right] \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{i=0}^{2^{n}-1} (-1)^{\langle y, i \rangle} \left[\sum_{x \in S} \prod_{j=1}^{k} (-1)^{a_{j}^{x}} \langle x_{j}, i \rangle} \right] \left| i \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{i=0}^{2^{n}-1} (-1)^{\langle y, i \rangle} \left[\sum_{a_{1}=0} \sum_{a_{2}=0}^{1} \cdots \sum_{a_{k}=0}^{1} \left(\prod_{j=1}^{k} (-1)^{a_{j} \langle x_{j}, i \rangle} \right) \right] \left| i \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{i=0}^{2^{n}-1} (-1)^{\langle y, i \rangle} \left[\prod_{j=1}^{k} \left((-1)^{0 \times \langle x_{j}, i \rangle} + (-1)^{1 \times \langle x_{j}, i \rangle} \right) \right] \left| i \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{i=0}^{2^{n}-1} (-1)^{\langle y, i \rangle} \left[\prod_{j=1}^{k} \left(1 + (-1)^{\langle x_{j}, i \rangle} \right) \right] \left| i \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{x \in S^{\perp}} (-1)^{\langle y, i \rangle} \left[\prod_{j=1}^{k} (1 + (-1)^{0}) \right] \left| x \right\rangle \\ &= \frac{1}{\sqrt{2^{n}|S|}} \sum_{x \in S^{\perp}} (-1)^{\langle y, x \rangle} 2^{k} \left| x \right\rangle = \frac{2^{k}}{\sqrt{2^{n} \times 2^{k}}} \sum_{x \in S^{\perp}} (-1)^{\langle y, x \rangle} \left| x \right\rangle = \frac{1}{\sqrt{2^{n-k}}} \sum_{x \in S^{\perp}} (-1)^{\langle y, x \rangle} \left| x \right\rangle \end{split}$$