## Transformation (geometry) (HKMO Classified Questions by topics)

#### 1999 HG9

如圖,  $\angle MON = 20^{\circ}$ , A 為 OM 上的 -點, $OA = 4\sqrt{3}$ ,D 為 ON 上的一點,  $OD=8\sqrt{3}$ , C 為 AM 上的任意一點, B 為 OD 上的任意一點。





In the figure,  $\angle MON = 20^{\circ}$ , A is a point on OM,  $OA = 4\sqrt{3}$ , D is a point on ON,  $OD = 8\sqrt{3}$ , C is any point on AM, B is any point OD. If  $\ell = AB + BC + CD$ , find the least value of  $\ell$ .

## 1999 HG10

如圖,P為正方形 ABCD 內一點,  $PA = a \cdot PB = 2a \cdot PC = 3a (a > 0) \circ$ 若  $\angle APB = x^{\circ}$ , 求 x 的值。



# 2003 FG1.3

如圖, $\triangle ABC$  是一個等腰三角形, 其中 AB = AC。 若  $\angle B$  的角平分綫交 AC 於 D $\blacksquare BC = BD + AD \circ$ 設  $\angle A = c^{\circ}$ , 求 c 的值。



In the figure,  $\triangle ABC$  is an isosceles triangle and AB = AC. Suppose the angle bisector of  $\angle B$  meets AC at D and BC = BD + AD. Let  $\angle A = c^{\circ}$ , find the value of c.

#### 2004 HG9

在圖中, $\triangle ABC$  是等腰三角形,AB=AC 及  $\angle ABC=80^{\circ}$ 。若 P 是 AB 上一點使得 AP = BC,  $\angle ACP = k^{\circ}$ , 求 k 的值。 In the figure,  $\triangle ABC$  is an isosceles triangle with AB = AC and  $\angle ABC = 80^{\circ}$ . If P is a point on the AB such that AP = BC,  $\angle ACP = k^{\circ}$ , find the value of k.



#### 2006 HG7

如圖,正方形 ABCD 的周界是 16 cm,  $\angle EAF = 45^{\circ}$ ,  $AP \perp EF$ 。若 AP 的長度是 R m, 求 R 的值。 In the figure, ABCD is a square with perimeter equal to 16 cm,  $\angle EAF = 45^{\circ}$  and  $AP \perp EF$ .



If the length of AP is equal to R cm, find the value of R.

## 2010 HG10

在圖中,  $\triangle ABC$  滿足 AB = AC 且  $x \le 45$ 。若 P 和 Q 分別是 AC 及 AB 上的雨點,且 AP = PQ = QB = $BC \leq AO$ , 求 x 的值。 In the figure, in  $\triangle ABC$ , AB = AC,



 $x \le 45$ . If P and Q are two points on AC and AB respectively, and  $AP = PQ = QB = BC \le AQ$ , find the value of x.

## 2013 HI9

圖中所示為五邊形 ABCDE。AB=BC=DE=AE+CD A =3,且  $\angle A = \angle C = 90^{\circ}$ ,求該五邊形的面積。 The figure shows a pentagon ABCDE. AB = BC = DE = AE + CD = 3 and  $\angle A = \angle C = 90^{\circ}$ , find the area of the pentagon.



## Transformation (geometry) (HKMO Classified Questions by topics)

#### 2014 HI3

如圖所示,T為等邊三角形 POR 內一點, 其中 TP=3、 $TO=3\sqrt{3}$  及 TR=6。求  $\angle PTR$  的值。 As shown in the figure, a point T lies in an equilateral triangle *POR* such that TP = 3,  $TO = 3\sqrt{3}$  and TR = 6. Find the value of  $\angle PTR$ .



### 2014 HG4

如圖二所示,ABCD為一正方形。P為 ABCD內 A的一點使得  $AP = 2 \text{ cm} \cdot BP = 1 \text{ cm } \mathcal{B}$  $\angle APB = 105^{\circ} \circ \stackrel{\checkmark}{\approx} CP^2 + DP^2 = x \text{ cm}^2$ 求 x 的值。

As shown in Figure 2, ABCD is a square. P is a point lies in ABCD such that AP = 2 cm, BP = 1 cm and  $\angle APB = 105^{\circ}$ .

If  $CP^2 + DP^2 = x$  cm<sup>2</sup>, find the value of x.



#### 2016 HG5

圖中, $\angle AOB = 15^{\circ} \circ X \lor Y \neq OA$  上的點, $P \lor$  $O \cdot R \neq OB$  上的點使得 OP = 1 及 OR = 3。 若 s = PX + XQ + QY + YR, 求 s 的最小值。  $q_s$  15° In the figure,  $\angle AOB = 15^{\circ}$ . X, Y are points on OA, P, O, R are points on OB such that OP = 1



and OR = 3. If s = PX + XQ + QY + YR, find the least value of s.

## 2017 HG3

如圖所示,P、Q分別是正方形 ABCD 的邊 BC 及 CD上的點。已知  $\Delta PCO$  的周界的長等於正方形 ABCD 的周界的長的  $\frac{1}{2}$  , 求  $\angle PAQ$  的值。

As shown in the figure, P, Q are points on the sides BC and CD of a square ABCD. Given that the perimeter of  $\Delta PCQ$ is  $\frac{1}{2}$  of that of the square ABCD, find the value of  $\angle PAQ$ .



#### 2019 HG10

D 是等邊三角形 ABC 內的一點使得  $AD = BD = 5\sqrt{2}$  及 CD = 10。 設  $\triangle ABC$  的面積為 S, 求 S 的值。

D is a point inside the equilateral triangle ABC such that  $AD = BD = 5\sqrt{2}$  and CD = 10. Let the area of  $\triangle ABC$  be S, find the value of S.

## 2019 FG2.4

在正方形 ABCD 中, $E \cdot F \cdot G$  和 H 分別是  $AB \cdot$  $BC \cdot CD$  和 AD 的中點。DE 分別與 AF 和 CH 相 交於點 R 和  $S \circ BG$  分別與 AF 和 CH 相交於點 Q 和 P。若 U 是正方形 ABCD 的面積,而 V是四邊形 PQRS 的面積,求  $W = \frac{U}{V}$  的值。



In square ABCD, E, F, G, H are the mid-points of AB, BC, CD and AD respectively. DE intersects with AF and CH at R and S respectively. Moreover, BG

intersects with AF and CH at Q and P respectively. If U is the area of square ABCD and V is the area of the quadrilateral PQRS, determine the value of  $W = \frac{C}{V}$ 

## 2023 HI14

ABC 是一個等腰三角形,其中 AB=AC=18 及  $BC=12 \circ P$  為  $\triangle ABC$  內 的任意一點使得  $\angle ABP + \angle ACP = 90^{\circ}$  及  $AP = 15 \circ$  求  $BP^2 + CP^2$  的值。 ABC is an isosceles triangle with AB = AC = 18 and BC = 12.

P is any interior point of  $\triangle ABC$  such that  $\angle ABP + \angle ACP = 90^{\circ}$  and AP = 15. Find the value of  $BP^2 + CP^2$ .

# **Answers**

| 1999 HG9  | 1999 HG10           | 2003 FG1.3 | 2004 HG9         | 2006 HG7   |
|-----------|---------------------|------------|------------------|------------|
| 12        | 135                 | 100        | 10               | 4          |
| 2010 HG10 | 2013 HI9            | 2014 HI3   | 2014 HG4         | 2016 HG5   |
| 20        | 9                   | 120°       | $15 - 4\sqrt{2}$ | $\sqrt{7}$ |
| 2017 HG3  | 2019 HG10           | 2019 FG2.4 | 2023 HI14        |            |
| 45°       | $25\sqrt{3} + 37.5$ | 5          | 100              |            |