AMENDMENTS TO THE CLAIMS

2

1. (Previously Presented) Compounds of general formula (I)

$$R_3$$
 N
 N
 R_1
 R_2
 R_1
 R_1

wherein

R is the following group of formula (II)

$$\begin{array}{c|c} & & & \\ \hline &$$

wherein

X is selected from the group consisting of O, S, CH_2 , COO, CH_2CO , $O(CH_2)_2O$, $O(CH_2)_3O$ and N; Z is selected from between N and CH_2N ;

Y is selected from aliphatic groups, linear or branched, saturated or unsaturated, having from 1 to 10 carbon atoms, and phenyl, or Y forms with Z a saturated or unsaturated heterocycle, selected from the group consisting of: morpholine, piperidine, pyrimidine, piperazine, pyrrolidine, pyrroline, aniline, julolidine (2,3,6,7-tetrahydro-1H,5H-pirido[3,2,1-*Ij*] quinoline, and substituted forms thereof;

R₄ and R₅, equal or different from each other, are selected from H and alkyl groups having from 1 to 3 carbon atoms, or they form with the Z group a saturated or unsaturated heterocycle, selected from

3

the group consisting of: morpholine, piperidine, pyrimidine, piperazine, pyrrolidine, pyrroline, aniline, julolidine (2,3,6,7-tetrahydro-1H,5H-pirido[3,2,1-*Ij*] quinoline), and substituted forms thereof;

R₆ is selected from H and aliphatic groups, linear or branched, saturated or unsaturated, having from 1 to 5 carbon atoms, comprising a saturated heterocycle selected from the group consisting of: morpholine, piperidine, piperazine, pyrrolidine, and substituted forms thereof;

d, m, and n, equal of different from each other, are selected from 0 and 1;

v and s, equal or different from each other, are integers comprised between 1 and 3;

R₁ is selected from H and a group of formula (III)

wherein

G is selected from H and P- $(CH_2)_1$ - $(W)_f$ - J, wherein

P is selected from the group consisting of O, CH₂, CO₂, NHCONH and CONH;

1 is an integer comprised between 0 and 5;

W is selected from the group consisting of O, CO₂, CONH and NHCONH;

f is selected from between 0 and 1;

J is H or an alkyl group (CH₂) _q-CH₃, wherein q is an integer comprised between 0 and 20;

 R_2 and R_3 , equal or different from each other, are selected from between R and R_1 , wherein R and R_1 are defined as above,

M is chosen from 2H and a metal selected from the group consisting of Zn, Mg, Pt, Pd, Si(OR_7)₂, Ge(OR_7)₂ and AlOR₇, wherein R₇ is chosen from between H and C1-C15 alkyl, and pharmaceutically acceptable salts thereof,

with the exception of the following compounds:

a) compound of formula (I) wherein M is 2H, $R_1 = R_3 = H$, $R = R_2$ is a group of formula (II) in which s is 1, X is O, Y is $(CH_2)_3$, v is 1, Z is N, n = d = 1, m is 0, and $R_4 = R_5 = H$; and

After Final Office Action of May 12, 2010

- b) compound of formula (I) wherein M is 2H, $R_1 = R_3 = H$, $R = R_2$ is a group of formula (II) in which s is 1, X is O, Y is $(CH_2)_3$, v is 1, Z is N, n = d = 1, m is 0, R_4 and R_5 form with Z a phthalimido group.
- 2. (Previously Presented) Compounds of general formula (I) according to claim 1, in which the group R comprises at least one substituent bearing tertiary or quaternary nitrogen.
 - 3. (Cancelled)
- 4. (Previously Presented) Compounds of general formula (I) according to claim 1, wherein the group

$$Y = \left(Z \underbrace{(R_4)_n}_{(R_5)_d} \right)_V$$

is selected from the group consisting of:

$$N(CH_3)_2 \qquad N^{+}(CH_3)_3 \quad | \quad N^{+}(C_2H_5)_2(CH_3) \quad | \quad N^{+}(C_2H_5)_2(CH_3) \quad | \quad N(CH_3)_2 \quad | \quad N^{+}(C_2H_5)_3 \quad | \quad N^{+}(C_2H_5)_2(CH_3) \quad | \quad N^{+}(C_2H_5)_2 \quad | \quad N^{+}(CH_3)_2 \quad$$

5

After Final Office Action of May 12, 2010

After Final Office Action of May 12, 2010

 $(H_3C)_3N^+I$

 $(H_3C)_2N$

5. (Original) Compounds of general formula (I) according to claim 1, selected from the group consisting of:5,10,15-tris-[4-(2-N,N,N-trimethylammoniumethoxy)-phenyl]-20-[(4-decyloxy)-phenyl] porphyrin triiodide,

8

- 5,10,15-tris-[4-(2-N,N,N-trimethylammoniumethoxy)-phenyl]-20-[(4-decyloxy)-phenyl]porphyrinate zinc (II) triiodide,
- 5,10,15-tris-[4-(2-N,N-dimethylaminoethoxy)phenyl]-20-[(4-decyloxy)phenyl] porphyrin],
- 5,10,15-tris-[4-(2-N,N-dimethylaminoethoxy)-phenyl]-20-[(4-decyloxy)phenyl] porphyrinate zinc (II),
- 5,10,15-tris-{[4-(N-methylpiperidin-4-yl)oxy]phenyl}-20-[(4-decyloxy)phenyl] porphyrin,
- 5,10,15-tris-{[4-(N,N-dimethylpiperidin-4-ium)oxy]phenyl}-20-[(4-decyloxy)phenyl] porphyrin triiodide,
- 5,10,15-tris-[3-(2-morpholin-4-ylethoxy)phenyl]-20-[(4-decyloxy)phenyl]porphyrin,
- 5,10,15-tris-{[3-(2-methylmorpholin-4-ium)ethoxy]phenyl}-20-[(4-decyloxy)phenyl] porphyrin triiodide,
- 5,10,15-tris-{4-[4-(N,N-dimethylamino)phenoxy]phenyl}-20-[(4-decyloxy)phenyl] porphyrin,
- 5,10,15-tris-{4-[4-(N,N,N-trimethylammonium)phenoxy]phenyl}-20-[(4-decyloxy)phenyl] porphyrin triiodide,
- 5,10,15-tris-{4-[3-(N,N-dimethylamino)phenyl]thiophenyl}-20-[(3-undecyloxy) phenyl] porphyrin,
- 5,10,15-tris-{4-[3-(N,N,N-trimethylammonium)phenyl]thiophenyl}-20-[(4-undecyloxy) phenyl]porphyrin triiodide,
- 5,10,15-tris-[3-(3-N,N-dimethylaminopropoxy)phenyl]-20-[(3-undecyloxy) phenyl] porphyrin,
- 5,10,15-tris-[3-(3-N,N,N-trimethylammoniumpropoxy)phenyl]-20-[(3-undecyloxy) phenyl] porphyrin triiodide,
- 5,10,15-tris-{4-[4-(N,N-dimethylamino)butoxy]phenyl]-20-[(4-undecyloxy) phenyl] porphyrin,
- 5,10,15-tris-{4-[4-(N,N,N-trimethylammonium)butoxy]phenyl}-20-[(4-undecyloxy) phenyl]porphyrin triiodide,
- 5-{4-{2,4,6-tris-[(dimethylamino)methyl]phenoxy}phenyl}-10,15,20-tris-[(4-decyloxy) phenyl] porphyrin,

5-{4-{2,4,6-tris-[(trimethylammonium)methyl]phenoxy}phenyl}-10,15,20-tris-[(4-decyloxy) phenyl]porphyrin triiodide,

9

- 5-{3-[2-(dimethylamino)]-1-{[(dimethylamino)methyl]ethoxy}phenyl}-10,15,20-tris-[(3-decyloxy)phenyl]porphyrin,
- 5-{3-[2-(trimethylammonium)]-1-{[(trimethylammonium)methyl]ethoxy} phenyl}-10,15,20-tris-[(3-decyloxy)phenyl]porphyrin diiodide,
- 5,10,15-tris-{4-[3-(diethylamino)propoxy]phenyl}-20-[(4-decyloxy)phenyl] porphyrin,
- 5,10,15-tris-{4-[3-(trimethylammonium)propoxy]phenyl}-20-[(4-decyloxy)phenyl] porphyrin triiodide,
- 5,10,15-tris-[4-(2-aminoethoxy)phenyl]-20-[(4-decyloxy)phenyl] porphyrin,
- 5,10,15-tris-{[4-(2-trimethylammonium)ethoxy]phenyl}-20-[(4-decyloxy) phenyl] porphyrin triiodide,
- 5,10,15-tris-{{[4-(N,N,N-trimethylammonium)phenoxy]carbonyl}phenyl}-20-[(4-decyloxy) phenyl]porphyrin triiodide,
- 5-{4-{{2-(trimethylammonium)-1-[(trimethylammonium)methyl]ethoxy} carbonyl}phenyl}-10,15,20-tris-[(3-decyloxy)phenyl]porphyrin diiodide,
- 5,15-bis-[3-(3-N,N,N-trimethylammoniumpropoxy)phenyl] porphyrin diiodide,
- 5,15-bis-[4-(2-piperidin-1-ylethoxy)phenyl]porphyrin,
- 5,15-bis-[4-(2-N-methylpiperidin-1-iumethoxy)phenyl]porphyrin diiodide,
- 5,15-bis-[4-(3-N,N-dimethylaminopropoxy)phenyl]-10,20-bis-[(3-decyloxy)phenyl]porphyrin,
- 5,15-bis-[4-[3-N,N,N-trimethylammoniumpropoxy)phenyl]-10,20-bis-[(3-decyloxy)phenyl]porphyrin diiodide,
- 5,15-bis 4-{[2-(N,N-dimethylamino)ethylthio]phenyl}porphyrin,
- 5,15-bis-{4-[2-(N,N,N-trimethylammonium)ethylthio]phenyl}porphyrin diiodide,
- 5,15-bis-{4-{2-[3-(trimethylammonium)phenoxy]ethoxy}phenyl}porphyrin diiodide,
- 5,15-bis-{4-{2-[3-(N,N,N-trimethylammonium)phenyl]-2-oxoethyl}-10,20-bis-[(3-decyloxy)phenyl]porphyrin diiodide,
- 5,15-bis-[3-(3-N,N,N-trimethylammoniumpropoxy)phenyl]porphyrinate zinc(II) diiodide,
- 5,15-bis-[3-(3-N,N-dimethylaminopropoxy)phenyl]porphyrinate zinc(II),

Amendment dated

After Final Office Action of May 12, 2010

- 5,15-bis-[4-(4-N,N,N-trimethylammoniumphenoxy)phenyl] porphyrin diiodide,
- 5,15-bis-[4-(4-aminophenoxy)phenyl]porphyrin,
- 5,15-bis-[3-(4-N,N-dimethylaminophenoxy)phenyl]porphyrin,
- 5,15-bis-[3-(4-N,N,N-trimethylammoniumphenoxy)phenyl]porphyrin diiiodide,
- 5,15-bis-[3-(4-N,N-dimethylaminophenyl)thiophenyl]porphyrin,
- 5,15-bis-[3-(4-N,N,N-trimethylammoniumthiophenoxy)phenyl]porphyrin diiiodide,
- 5,15-bis-4-[3-(N,N-dimethylaminophenoxy)phenyl]-10,20-bis-[(4-decyloxy) phenyl]porphyrin,
- 5,15-bis-4-[3-(N,N,N-trimethylammoniumphenoxy)phenyl]-10,20-bis-[(4-decyloxy) phenyl]porphyrin diiodide,
- 5,10,15-tris-{4-[4-(N,N-dimethylamino)butoxy]phenyl}-20-[(4-undecyloxy)phenyl] porphyrinate zinc(II),
- 5,10,15-tris-{4-[4-(N,N,N-trimethylammonium)butoxy]phenyl}-20-[(4-undecyloxy) phenyl]porphyrinate zinc(II) triiodide,
- 5,15-bis-[4-(2-piperidin-1-ylethoxy)phenyl]porphyrinate zinc(II), and
- 5,15-bis-[4-(2-N-methylpiperidin-1-iumethoxy)phenyl]porphyrinate zinc(II) diiodide.
 - 6. (Cancelled)
 - 7. (Cancelled)
 - 8. (Cancelled)
 - 9. (Cancelled)
- 10. (Previously Presented) Pharmaceutical compositions comprising as the active principle at least a compound of general formula (I) as defined in claim 1 in combination with pharmaceutically acceptable excipients and/or diluents.

11-18. (Canceled)

19.

20. (Cancelled)

(Cancelled)

- 21-22. (Cancelled)
- 23. (Previously Presented) A method of sterilizing wounds, comprising administering to a patient in need of such a treatment an effective amount of at least a compound of general formula (I) as defined in claim 1, and thereafter irradiating the patient with light of appropriate wavelength.

11

- 24. (Cancelled)
- 25. (Previously Presented) Compounds of general formula (I) according to claim 1, wherein R₆ is selected from aliphatic groups, linear or branched, saturated or unsaturated, having from 1 to 5 carbon atoms, substituted with alkylamine or alkylammonium groups having alkyl chains comprising from 1 to 5 carbon atoms.
 - 26. (Previously Presented) Compounds of general formula (I)

$$R_3$$
 N
 R
 R_1
 R_2
 R_1
 R_1

wherein

Application No. 10/532,278 Amendment dated After Final Office Action of May 12, 2010

R is the following group of formula (II)

$$\begin{array}{|c|c|}\hline & & & \\ \hline & & \\ \hline$$

Docket No.: M1100.70002US00

wherein

X is selected from the group consisting of O, S, CH_2 , COO, CH_2CO , $O(CH_2)_2O$, $O(CH_2)_3O$ and N; Z is selected from between N and CH_2N ;

Y is selected from aliphatic groups, linear or branched, saturated or unsaturated, having from 1 to 10 carbon atoms, and phenyl or Y forms with Z a pyridine or substituted pyridine heterocycle;

 R_4 and R_5 , equal or different from each other, are selected from H and alkyl groups having from 1 to 3 carbon atoms, or they form with the Z group a pyridine or substituted pyridine heterocycle;

R₆ is selected from H and aliphatic groups, linear or branched, saturated or unsaturated, having from 1 to 5 carbon atoms, or comprising a saturated heterocycle selected from the group consisting of: morpholine, piperidine, piperazine, pyrrolidine, and substituted forms thereof;

d, m, and n, equal of different from each other, are selected from 0 and 1;

v and s, equal or different from each other, are integers comprised between 1 and 3;

R₁ is selected from H and a group of formula (III)

wherein

G is selected from H and P- (CH₂)₁- (W)_f- J, wherein

P is selected from the group consisting of O, CH₂, CO₂, NHCONH and CONH;

1 is an integer comprised between 0 and 5;

W is selected from the group consisting of O, CO₂, CONH and NHCONH;

f is selected from between 0 and 1;

J is H or an alkyl group (CH₂) _q-CH₃, wherein q is an integer comprised between 0 and 20;

After Final Office Action of May 12, 2010

 R_2 and R_3 , equal or different from each other, are selected from between R and R_1 , wherein R and R_1 are defined as above,

Docket No.: M1100.70002US00

M is chosen from 2H and a metal selected from the group consisting of Zn, Mg, Pt, Pd, $Si(OR_7)_2$, $Ge(OR_7)_2$ and $AlOR_7$, wherein R_7 is chosen from between H and C1-C15 alkyl, and pharmaceutically acceptable salts thereof,

with the exception of the following compounds:

- a) compound of formula (I) wherein M is 2H, $R_1 = R_3 = H$, $R = R_2$ is a group of formula (II) in which s is 1, X is O, Y is $(CH_2)_3$, v is 1, Z is N, n = d = 1, m is 0, and $R_4 = R_5 = H$; and b) compound of formula (I) wherein M is 2H, $R_1 = R_3 = H$, $R = R_2$ is a group of formula (II) in which s is 1, X is O, Y is $(CH_2)_3$, v is 1, Z is N, n = d = 1, m is 0, R_4 and R_5 form with Z a phthalimido group.
- 27. (Previously Presented) Compounds of general formula (I) according to claim 26, wherein the group

$$Y - \left(Z - \frac{(R_4)_n}{(R_5)_d} \right)_V$$

is selected from the group consisting of:

28. (Previously Presented) Compounds of general formula (I)

Amendment dated
After Final Office Action of May 12, 2010

$$R_3$$
 N
 M
 R_1
 R_1
 R_2
 R_1

wherein

R is the following group of formula (II)

wherein

X is selected from the group consisting of O, S, CH₂, COO, CH₂CO, O(CH₂)₂O, O(CH₂)₃O and N;

wherein the group

$$Y = \left(Z \underbrace{(R_4)_n}_{(R_5)_d} \right)_V$$

is selected from the group consisting of:

After Final Office Action of May 12, 2010

v and s, equal or different from each other, are integers comprised between 1 and 3;

R₁ is selected from H and a group of formula (III)

wherein

G is selected from H and P- $(CH_2)_1$ - $(W)_f$ - J, wherein

P is selected from the group consisting of O, CH₂, CO₂, NHCONH and CONH;

1 is an integer comprised between 0 and 5;

W is selected from the group consisting of O, CO₂, CONH and NHCONH;

f is selected from between 0 and 1;

J is H or an alkyl group (CH₂) _q-CH₃, wherein q is an integer comprised between 0 and 20;

 R_2 and R_3 , equal or different from each other, are selected from between R and R_1 , wherein R and R_1 are defined as above,

M is chosen from 2H and a metal selected from the group consisting of Zn, Mg, Pt, Pd, Si $(OR_7)_2$, Ge $(OR_7)_2$ and AlOR₇, wherein R₇ is chosen from between H and C1-C15 alkyl, and pharmaceutically acceptable salts thereof.

29. - 34 (Cancelled)