COMPSCI 250: Introduction to Computation

Lecture #30: Properties of the Regular Languages David Mix Barrington and Ghazaleh Parvini 13 November 2023

Properties of Regular Languages

- Induction on Regular Expressions
- The One's Complement Operation
- Proving Our Function Correct
- The Pseudo-Java RegExp Class
- The One's Complement Method
- Reversal of Languages
- Testing for the Empty Language

Induction on Regular Expressions

- Because the regular languages have an inductive definition, we can prove propositions for all of them by induction.
- Let P(R) be a predicate with one free variable of type "regular expression". We can prove that P(R) holds for any regular expression R by proving *two* base cases and *three* inductive cases.

Induction on Expressions

- These five cases are:
- P(∅),
- P(a) for all $a \in \Sigma$,
- $\bullet (P(R) \land P(S)) \rightarrow P(R + S),$
- $(P(R) \land P(S)) \rightarrow P(RS)$, and
- \bullet P(R) \rightarrow P(R*)

Induction on Expressions

- For example, we will define two operations on languages and show that the regular languages are **closed** under these operations.
- That is, if R is a regular expression, the result of applying the operation to L(R) gives us another regular language. We'll demonstrate an algorithm to compute this expression.
- We'll also show that we can test properties of R, such as whether $L(R) = \emptyset$.

One's Complement

- The **one's complement** of a binary string w, denoted oc(w), is the string of the same length obtained by replacing all 0's with 1's and all 1's with 0's. For example, oc(011001) = 100110.
- We can define oc(w) inductively, of course:
- $oc(\lambda) = \lambda$,
- \bullet oc(w0) = oc(w)1, and
- \bullet oc(w1) = oc(w)0.

One's Complement

- The one's complement of a *language* X is the language $\{oc(w): w \in X\}$ -- the set of strings whose one's complements are in X.
- We will prove that for any regular expression R, the language oc(L(R)) is a regular language.
- It's not hard to see how to convert R into a regular expression for oc(L(R)). We just replace 0's with 1's and 1's with 0's in R itself.

One's Complement

- Formally this is a recursive algorithm:
- \bullet oc(\varnothing) = \varnothing ,
- oc(0) = 1,
- oc(1) = 0,

- $\bullet \operatorname{oc}(R^*) = \operatorname{oc}(R)^*.$

Proving Our Function Correct

- We'll use induction to prove that this function f, from regular expressions to regular expressions, satisfies the property "L(f(R)) = oc(L(R))".
 We write this property as "P(R)".
- $P(\emptyset)$ says that $L(\emptyset) = oc(L(\emptyset))$, which is true because $\{oc(w): w \in \emptyset\} = \emptyset$.
- P(0) says "L(1) = oc(L(0))" and P(1) says "L(0) = oc(L(1))". Both are true.

Proving Our Function Correct

- Assume that P(R) and P(S) are true, so that L(f(R)) = oc(L(R)) and L(f(S)) = oc(L(S)).
- We must show that $L(f(R)) \cup L(f(S)) = oc(L(R+S))$, that L(f(R))L(f(S)) = oc(L(RS)), and that $L(f(R))^* = oc(L(R^*))$.
- Each of these three facts follow pretty directly from the definitions -- details are in the textbook.

Clicker Question #1

- To formally prove the statement " $oc(S^*)$ = $oc(S)^*$ ", I am trying to prove that " $oc(S^*)$ is a subset of $oc(S)^*$ ". Which *would* be a good inductive step of my proof?
- (a) $((u \in oc(S)^*) \land (v \in oc(S)^*) \rightarrow uv \in oc(S)^*$
- (b) $((u \in S^*) \land (v \in S)) \rightarrow uv \in oc(S)^*$
- (c) $((u \in oc(S^*)) \land (v \in oc(S)) \rightarrow uv \in oc(S^*)$
- (d) $((u \in oc(S^*)) \land (v \in oc(S)) \rightarrow uv \in oc(S)^*$

Not the Answer

Clicker Answer #1

- To formally prove the statement " $oc(S^*)$ = $oc(S)^*$ ", I am trying to prove that " $oc(S^*)$ is a subset of $oc(S)^*$ ". Which *would* be a good inductive step of my proof?
- (a) $((u \in oc(S)^*) \land (v \in oc(S)^*) \rightarrow uv \in oc(S)^*$
- (b) $((u \in S^*) \land (v \in S)) \rightarrow uv \in oc(S)^*$
- (c) $((u \in oc(S^*)) \land (v \in oc(S)) \rightarrow uv \in oc(S^*)$
- (d) $((u \in oc(S^*)) \land (v \in oc(S)) \rightarrow uv \in oc(S)^*$

More Answer #1

- Goal is to prove " $oc(S^*) \subseteq oc(S)^*$ ".
- (a) $((u \in oc(S)^*) \land (v \in oc(S)^*) \rightarrow uv \in oc(S)^*$ This is true, but says nothing about $oc(S^*)$
- (b) $((u \in S^*) \land (v \in S)) \rightarrow uv \in oc(S)^*$ no reason to think that this is true
- (c) $((u \in oc(S^*)) \land (v \in oc(S)) \rightarrow uv \in oc(S^*)$ this gets the wrong conclusion for our goal
- (d) $((u \in oc(S^*)) \land (v \in oc(S)) \rightarrow uv \in oc(S)^*$

A Java RegExp Class

- Just as boolean or arithmetic expressions can be implemented by tree structures, we can define a real Java class RegExp whose objects are regular expressions.
- We will need methods to **parse** these objects, which means that they must determine their structure and component parts.

A Java RegExp Class

public class RegExp { public RegExp(); // returns RegExp equal to emptyset public RegExp(String w); // returns RegExp denoted by w public boolean isEmptySet(); // is it the empty set? public boolean isZero(); // is it "0"? public boolean isOne(); // is it "1"? public boolean isUnion(); // is it "S + T"?

A Java RegExp Class

```
public boolean isCat( );
  // is it "ST"?
public boolean isStar( );
  // is it "S*"?
public RegExp firstArg( );
public RegExp secondArg( );
public static RegExp
  plus (RegExp r, RegExp s);
public static RegExp
  cat (RegExp r, RegExp s);
public static RegExp
  star (RegExp r);
```

Computing One's Complement

- This definition lets us write code for the one's complement algorithm. The next slide has a recursive method that creates a RegExp object with the same structure as the method's argument, but with 0's and 1's switched.
- We've essentially proved this method correct by our usual method for recursive code -- we prove the base cases correct and then prove the rest correct assuming that the recursive calls are correct.

Computing One's Complement

```
public static RegExp f (RegExp s) {
   if (s.isEmptySet( ))
      return new RegExp();
   if (s.isZero())
      return new RegExp("1");
   if (s.isOne())
      return new RegExp("0");
   RegExp oc1 = f(s.firstArg());
   if (s.isStar()) return star(oc1);
   RegExp oc2 = f (s.secondArg());
   is (s.isPlus())
      return plus (oc1, oc2);
   else return cat (oc1, oc2);}
      // s.isCat( ) must be true here
```

Reversal of Languages

- A similar function from languages to languages is reversal, based on the familiar reversal operation on strings:
 - for any language X, $X^R = \{w^R : w \in X\}$.
- The regular languages are closed under reversal -- we can easily see that $\emptyset^R = \emptyset$ and that $a^R = a$ for any letter a. The string rule $(xy)^R = y^R x^R$ yields a language rule
 - $(TU)^R = U^R T^R$, and we have $(T+U)^R = T^R + U^R$ and $(T^*)^R = (T^R)^*$.

Computing Reversal

```
public static RegExp rev (RegExp s) {
   if (s.isEmptySet( ))
      return new RegExp();
   if (s.isZero())
      return new RegExp("0");
   if (s.isOne())
      return new RegExp("1");
   RegExp rev1 = rev (s.firstArg( ));
   if (s.isStar()) return star (rev1);
   RegExp rev2 = rev (s.secondArg( ));
   if (s.isPlus())
      return plus (rev1, rev2);
   else return cat (rev2, rev1);}
      // s.isCat( ) is true in this case
```

Clicker Question #2

- For the case where s is a union, rev contains the line return plus(rev1, rev2); What would happen if we changed this line to return plus(rev2, rev1);?
- (a) rev would return a different expression, but equivalent to the one it returned before
- (b) rev would become the identity function
- (c) rev would return exactly the same expression
- (d) rev would return something not equivalent to the correct reversal, and also not the identity

Not the Answer

Clicker Question #2

- For the case where s is a union, rev contains the line return plus(rev1, rev2);
 What would happen if we changed this line to return plus(rev2, rev1);?
- (a) rev would return a different expression, but equivalent to the one it returned before for example we'd return "S+R" instead of "R+S"
- (b) rev would become the identity function
- (c) rev would return exactly the same expression
- (d) rev would return something not equivalent to the correct reversal, and also not the identity

Testing for the Empty Language

- The regular expression " \varnothing " denotes the empty language, but so do other regular expressions like $a(b+a)^*(\varnothing + a^*\varnothing)(bb)^*$.
- Exercise 5.5.4 asks you to write a method that takes a RegExp object R and returns a boolean that is true if and only if $L(R) = \emptyset$.

Testing for the Empty Language

- We solve the problem recursively.
- For the base cases, we should return true on \emptyset and return false on any letter a.
- If R and S are two regular expressions, L(R + S) is empty if and only if *both* L(R) and L(S) are empty, and L(RS) is empty if and only if *either* L(R) or L(S) is empty.
- And of course L(R*) is never empty.

Testing Properties of Expressions

- A similar problem is to tell whether L(R) = $\{\lambda\}$, or whether $\lambda \in L(R)$. Each of these may be solved by a recursive algorithm, because we know whether the property holds in the base cases, and how it behaves with respect to the three operations.
- But telling whether $L(R) = \Sigma^*$ is much harder, because L(R + S) could equal Σ^* in so many *different* ways.

Clicker Question #3

- Given a regular expression R over $\{a, b\}$, I would like to compute whether $L(R) = \{\lambda\}$. Which of these potential steps in an inductive definition of this property is *valid*?
- (a) $L(R^*) = {\lambda} \iff L(R) = \emptyset$
- (b) $L(RS) = {\lambda} \iff (L(R) = {\lambda}) \land (L(S) = {\lambda})$
- (c) $L(R+S) = \{\lambda\} \Leftrightarrow (L(R) = \{\lambda\}) \land (L(S) = \{\lambda\})$
- (d) $L(R+S) = {\lambda} \Leftrightarrow (L(R) = {\lambda}) \lor (L(S) = {\lambda})$

Not the Answer

Clicker Question #3

- Given a regular expression R over $\{a, b\}$, I would like to compute whether $L(R) = \{\lambda\}$. Which of these potential steps in an inductive definition of this property is *valid*?
- (a) $L(R^*) = {\lambda} \iff L(R) = \emptyset$
- (b) $L(RS) = \{\lambda\} \Leftrightarrow (L(R) = \{\lambda\}) \land (L(S) = \{\lambda\})$
- (c) $L(R+S) = \{\lambda\} \Leftrightarrow (L(R) = \{\lambda\}) \land (L(S) = \{\lambda\})$
- (d) $L(R+S) = \{\lambda\} \Leftrightarrow (L(R) = \{\lambda\}) \vee (L(S) = \{\lambda\})$ for $L(R+S) = \{\lambda\}$ we need one of L(R) or L(S) to be $\{\lambda\}$, and the other to be $\{\lambda\}$ or \emptyset