Identities satisfied by the generators of the Dirac algebra

Patrick L. Nash

M. S. 474, NASA Langley Research Center, Hampton, Virginia 23665

(Received 26 July 1983; accepted for publication 23 September 1983)

The geometry of real four-dimensional spinor space and its symmetry groups are reviewed from the perspective of $\overline{SO(3,3)}$. Two identities that concern the matrix generators of $\overline{SO(3,3)}$, and which were first proved by Dirac, are generalized.

PACS numbers: 02.20. + b, 02.40. + m

1. INTRODUCTION

This paper contains several new results relating to $\overline{SO(3,1)}$ spinor algebra that may be of general use. The main result, the lemma of Sec. 3, is a straightforward generalization of an identity discovered by Dirac, which is satisfied by the 4×4 matrix generators of the Dirac algebra. Section 2 is expository, $\overline{SO(3,1)}$ spinor algebra is discussed in detail from the perspective of $\overline{SO(3,3)}$. Section 4, provided in the interest of completeness, records the transformation properties of various geometric objects under $\overline{SO(3,1)}$.

Notations and conventions used in this paper are as follows: upper case Latin indices run from 1 to 6, while both Greek and early lower case Latin indices run from 1 to 4. If M is a matrix, then \widetilde{M} denotes the transpose of M. We work in a coordinate system such that the metric tensor $g_{\alpha\beta}$ on M_4 has components $g_{\alpha\beta} = \text{diag}(1,1,1,-1)$.

2. THE γ^{AB} MATRICES AND $\overline{SO(3,3)}$

Let $\gamma^{AB} = -\gamma^{BA}A$, B,... = 1,...,6 denote 15 elements, which are defined by $^{1-3}$

$$\gamma^{AB}\gamma^{CD} = \gamma_0 (g^{AD}g^{BC} - g^{AC}g^{BD}) - g^{AC}\gamma^{BD}
+ g^{AD}\gamma^{BC} + g^{BC}\gamma^{AD} - g^{BD}\gamma^{AC}
- \frac{1}{4}\epsilon^{ABCDEF}g_{EG}g_{EH}\gamma^{GH},$$
(1)

where

$$g_{AB} = g^{AB} = \text{diag}(1, 1, 1, -1, -1, -1),$$
 (2)

 γ_0 is the identity element, and ϵ^{ABCDEF} is the totally antisymmetric Levi-Cività tensor-density of weight + 1 in six dimensions, $\epsilon^{123456} = +1$. In virtue of Eq. (1), the set of elements $\{\pm \gamma_0, \pm \gamma^{AB}\}$ forms a finite group of order 32. We shall consider only real irreducible representations of this group in which the $\{\gamma_0, \gamma^{AB}\}$ are linearly independent. By Burnside's theorem, 4 a representation of a finite group of degree f is irreducible if and only if there occur f^2 linearly independent matrices in it; hence, the degree of this representation is four. Thus, each of the γ^{AB} is a real 4×4 matrix, and γ_0 is the 4×4 identity matrix. We shall denote the real four-dimensional vector space that carries this irreducible representation as D_4 , and refer to D_4 as (real four-dimensional) Dirac space. The vectors of D_4 will be called (real) contravariant spinors, for reasons that will become apparent below. The elements of D_{4}^{*} , the vector space dual to D_{4} , will be called (real) covariant spinors.

On account of the defining relations of Eq. (1), one finds that

$$\gamma^{AB}\gamma^{CD} - \gamma^{CD}\gamma^{AB} = [\gamma^{AB}, \gamma^{CD}]
= -2(g^{AC}\gamma^{BD} - g^{AD}\gamma^{BC}
-g^{BC}\gamma^{AD} + g^{BD}\gamma^{AC}),$$
(3)

so that the $-\frac{1}{2}\gamma^{AB}$ comprise a real 4×4 irreducible representation of a linearly independent basis of the $\overline{SO(3,3)}$ Lie algebra, so(3,3). Moreover, Eq. (1) implies that each of the γ^{AB} matrices has square equal to $\pm \gamma_0$, and either commutes or anticommutes with any other γ^{RS} matrix. Given a particular γ^{AB} , there exists another γ matrix, say τ , which anticommutes with it. Thus trace $(\gamma^{AB}) = \operatorname{tr}(\tau^{\gamma^{AB}}) = \operatorname{tr}(\tau\gamma^{\gamma^{AB}}) = \operatorname{tr}(\tau\gamma^{\gamma^{AB}}) = -\operatorname{tr}(\gamma^{\gamma^{AB}}) = 0$. Since the γ^{AB} are trace-free and linearly independent, one deduces the well-known real Lie algebra isomorphism so(3,3) \cong sl(4,R). Hence D_4 carries an irreducible representation of $\overline{SL(4,\mathbb{R})} \cong \overline{SO(3,3)}$; the vectors of D_4 are reduced $\overline{SO(3,3)}$ spinors.

Under the involutive automorphism $\gamma^{AB} \rightarrow -\tilde{\gamma}^{AB}$ of so(3,3), the Lie algebra decomposes into the eigenvalue (-1)and eigenvalue (+1) subspaces corresponding to, respectively, the nine linearly independent real traceless symmetric 4×4 matrices, and the six linearly independent real skewsymmetric 4×4 matrices. The eigenvalue (+1) subspace is the subalgebra so(4), which is the Lie algebra of $\overline{SO(4)}$, the maximal compact subgroup of $\overline{SL(4,R)}$. The subalgebra $so(4) \approx su(2) + su(2)$ may be further decomposed into the even (eigenvalue +1) and odd (eigenvalue -1) subspaces of the linear transformation of so(4) whereby $\tau \in so(4)$ is mapped into its dual, * τ . The even subspace under * of so(4) corresponds to self-dual tensors, and, say, the first su(2) in the direct sum; the odd subspace corresponds to anti-self-dual tensors, and the second su(2) in the direct sum. A basis for so(4) may be chosen as follows. Each of the six skew-symmetric γ matrices has the property that the square of the matrix is equal to $-\gamma_0$. By Eq. (1), these six matrices are given by (h=1,2,3),

$$2s^h = (\gamma^{23}, \gamma^{31}, \gamma^{21}), \tag{4}$$

and

$$2t^h = (\gamma^{45}, \gamma^{64}, \gamma^{65}). ag{5}$$

From Eq. (3), these matrices verify (h,k,m=1,2,3)

$$[s^h, t^k] = 0, \tag{6}$$

$$[s^h, s^k] = \epsilon^{hkm} s^m, \tag{7}$$

$$[t^h, t^k] = \epsilon^{hkm} t^m. \tag{8}$$

The s^h (resp. t^h) are anti-Hermitian generators of a real reducible unitary representation of SU(2). We shall assume that the s^h are self-dual, and the t^h are anti-self-dual. The six matrices s^h , t^h , comprise a linearly independent basis for the six-dimensional subalgebra so(4) of so(3,3).

The nine symmetric trace-free γ matrices may be denoted as $\gamma^{h'k}$, h'=1',2',3', where 1'=6,2'=5,3'=4. The $\gamma^{h'k}$ comprise a linearly independent basis for the nine-dimensional symmetric subspace of so(3,3). They may be expressed in terms of s^h , t^h as follows: contracting Eq. (1) with ϵ_{RSABCD} yields:

$$\gamma_{RS} = -(1/4!)\epsilon_{RSABCD}\gamma^{AB}\gamma^{CD}, \qquad (9)$$

where $\gamma_{RS} = g_{RA}g_{SB}\gamma^{AB}$. Evaluating the left-hand side of Eq. (9) for $\gamma^{h'k}$ [after repeated use of Eq. (9)] gives

$$\gamma^{h'k} = -4g^{hn}t^n s^m g^{mk}, \tag{10}$$

where

$$g^{hk} = diag(1,1,-1), \tag{11}$$

and, as we have heretofore implicitly assumed, the summation convention is operative for repeated indices; here m and n assume the values 1, 2, and 3.

Let γ^{ABa}_b denote the *a*th row and *b* th column of γ^{AB} , where a,b=1,2,3,4. A concrete representation of the γ^{AB} is (h,k,m,n=1,2,3),

$$2(s^h)^a_{\ b} = -\epsilon_{hab4} - \delta_{ah}\delta_{b4} + \delta_{a4}\delta_{bh} \quad \text{(self-dual)}, \tag{12}$$

$$2(t^h)^a_b = -\epsilon_{hab\,4} + \delta_{ah}\delta_{b\,4} - \delta_{a4}\delta_{bh} \quad \text{(anti-self-dual), (13)}$$

and

$$(\gamma^{h'k})^a_{\ b} = g^{hm}g^{kn}(\delta_{ab}\delta_{mn} - \delta_{am}\delta_{bn} - \delta_{an}\delta_{bm} - 2\delta_{a4}\delta_{b4}\delta_{mn} + \delta_{a4}\epsilon_{mnb4} + \delta_{b4}\epsilon_{mna4}),$$
(14)

where ϵ_{abcd} is the totally antisymmetric Levi-Cività tensor density of weight (-1) on D_4 ; $\epsilon_{1234} = +1$, g^{hm} as defined in Eq. (11); and we have substituted Eqs. (12) and (13) into Eq. (10) to obtain Eq. (14). Denoting the right-hand side of Eq. (12) by s^h_{ab} , by self-dual we mean that $s^h_{ab} = \frac{1}{2} \epsilon_{abcd} s^h_{cd}$.

There does not exist a $\overline{SO(3,3)}$ invariant bilinear form (inner product) on D_4 . The $\overline{SO(3,3)}$ symmetry must be broken down to, say, $\overline{SO(4)}$, or $\overline{SO(3,2)}$ or $\overline{SO(3,1)}$ in order to define an invariant bilinear form on D_4 . To see this, suppose that $\tilde{\lambda} \in \lambda'$ is a $\overline{SO(3,3)}$ invariant bilinear form, where $\lambda, \lambda' \in D_4$, $\tilde{\lambda}$ denotes the transpose of λ , and ϵ is the "metric" spinor of covariant-rank two. Under

 $S = \exp(-\frac{1}{4}\omega_{AB}\gamma^{AB}) \in \overline{SO(3,3)}$ (the $\omega_{AB} = -\omega_{BA}$ are 15 real parameters), $\lambda' \to S\lambda$ and $\tilde{\lambda} \to \tilde{\lambda}\tilde{S}$; in order for $\tilde{\lambda} \in \lambda'$ to be an invariant under $\overline{SO(3,3)}$ ϵ must be invariant under automorphism by $S: \epsilon \to \tilde{S}\epsilon S = \epsilon$. This is equivalent to $\tilde{\gamma}^{AB}\epsilon = -\epsilon \gamma^{AB} (\tilde{\gamma}^{AB}$ denotes the transpose of γ^{AB}).

Let $\gamma^{AB} = s^h$ or t^h ; then ϵ must commute with each of these matrices, since each is skew-symmetric. Hence ϵ commutes also with the products, as defined in Eq. (10), and thus ϵ commutes with every matrix in the irreducible representation. Therefore, by the second part of Schur's lemma, $^4\epsilon$ is a numerical multiple of the unit matrix. However, each $\gamma^{h'k}$ is symmetric, and must therefore anticommute with ϵ : $\tilde{\gamma}^{h'k}\epsilon = \gamma^{h'k}\epsilon = -\epsilon \gamma^{h'k}$. Hence ϵ must be zero; there is no $\overline{SO(3,3)}$ invariant bilinear form on the real vector space D_4 . Another way to show this is to note that γ^{12} , γ^{34} , and γ^{56} commute and satisfy $\tilde{\gamma}^{12} = -\gamma^{12}$, $\tilde{\gamma}^{34} = \gamma^{34}$, $\tilde{\gamma}^{56} = -\gamma^{56}$, and $\gamma^{12}\gamma^{56} = \gamma^{34}$. However, $(-\tilde{\gamma}^{12})(-\tilde{\gamma}^{56}) = \gamma^{34} \neq -\tilde{\gamma}^{34}$, so that $-\tilde{\gamma}^{AB}$ is not equivalent to $\gamma^{AB} = \tilde{\gamma}^{AB} = \epsilon \gamma^{AB} \Rightarrow \epsilon = 0$.

There are a number of bilinear forms on D_4 that are defined by a nonsingular covariant rank-two spinor ϵ , which are invariant under a subgroup of $\overline{SO(3,3)}$. If ϵ is symmetric, $\tilde{\epsilon} = \epsilon$, then $\frac{1}{2}\epsilon \gamma^{AB}\omega_{AB}$ is skew-symmetric:

$$\frac{1}{2}\omega_{AB}\tilde{\gamma}^{AB}\epsilon = \frac{1}{2}\omega_{AB}\tilde{\gamma}^{AB}\tilde{\epsilon} = \widetilde{1}\tilde{\epsilon}\tilde{\gamma}^{AB}\omega_{AB} = -\frac{1}{2}\tilde{\epsilon}\gamma^{AB}\omega_{AB}.$$

Since there are six linearly-independent skew-symmetric real 4×4 matrices, the maximal subgroup of $\overline{SO(3,3)}$ that leaves ϵ invariant corresponds to the six-parameter subgroup of $\overline{SO(3,3)}$ generated by $\{s^h,t^h\}$, namely, a $\overline{SO(4)}$ subgroup of $\overline{SO(3,3)}$. A $\overline{SO(4)}$ invariant inner product may be defined on D_4 utilizing a symmetric ϵ .

If ϵ is skew-symmetric, $\tilde{\epsilon} = -\epsilon$; then $\frac{1}{2}\epsilon \gamma^{AB}\omega_{AB}$ is symmetric

$$\frac{1}{2}\omega_{AB}\tilde{\gamma}^{AB}\epsilon = -\frac{1}{2}\tilde{\gamma}^{AB}\tilde{\epsilon} = -\frac{1}{2}\tilde{\epsilon}\tilde{\gamma}^{AB}\omega_{AB} = -\frac{1}{2}\epsilon\tilde{\gamma}^{AB}\omega_{AB}.$$

Since there are ten linearly-independent real symmetric 4×4 matrices, ϵ defines a nonsingular skew-symmetric bilinear form on D_4 whose maximal invariance group is one of the six possible ten-parameter subgroups $\overline{SO(3,2)}$ and $\overline{SO(2,3)}$ of $\overline{SO(3,3)}$ that are generated by ten of the fifteen $-\frac{1}{2}\gamma^{AB}$. (Which particular subgroup, of course, depends upon the choice of ϵ .) Since ϵ defines a symplectic form on D_4 , one deduces the real Lie algebra isomorphisms $so(3,2) \cong sp(2,R) \cong so(2,3)$, where sp(n,R) is the real symplectic Lie algebra whose defining representation is of degree 2n.

 $\overline{SO(3,1)}$ is a subgroup of $\overline{SO(3,2)}$, but not of $\overline{SO(2,3)}$, so that most interest lies with $\overline{SO(3,2)}$ invariant-symplectic forms ϵ . There are essentially three distinct choices for ϵ , namely, γ^{45} , γ^{56} , or γ^{64} . From

$$\frac{1}{2}\omega_{AB}\tilde{\gamma}^{AB}\epsilon = -\frac{1}{2}\epsilon\gamma^{AB}\omega_{AB} \tag{15}$$

and Eq. (1), one concludes the following:

(i) If $\epsilon = \gamma^{45}$, then one must set $\omega_{A6} = 0$ in order to satisfy Eq. (15); the generators of this $\overline{SO(3,2)}$ are therefore $\{-\frac{1}{2}\gamma^{\alpha\beta}, -\frac{1}{2}\gamma^{\alpha5}\}$, where $\alpha\beta = 1,2,3,4$.

(ii) If $\epsilon = \gamma^{56}$, then one must set $\omega_{A4} = 0$; the generators are $\{-\frac{1}{4}\gamma^{hk}, -\frac{1}{4}\gamma^{h5}, -\frac{1}{4}\gamma^{h6}, -\frac{1}{4}\gamma^{56}; h, k = 1, 2, 3\}$.

(iii) If $\epsilon = \gamma^{64}$, then one must set $\omega_{A5} = 0$; the generators are $\{-\frac{1}{2}\gamma^{\alpha 6}, -\frac{1}{2}\gamma^{\alpha 6}\}$.

 $\overline{SO(3,3)}$ transformations on D_4 may be associated with SO(3,3) transformations on a flat six-dimensional (three space, three time) Minkowski space-time M_6 , whose metric tensor is given by Eq. (2). By restriction to an appropriate four-dimensional affine subspace of M_6 , we can realize M_4 . For the sake of simplicity, we shall assume that the x^4 axis of M_4 coincides with the x^4 axis of M_6 in every coordinate system. It is customary to exclude choice (ii), $\epsilon = \gamma^{56}$, as an interesting symplectic form on D_4 . γ^{56} is invariant under those automorphisms of D_4 that correspond with the automorphisms of M_6 that leave the x^4 axis of M_6 invariant.

Which of the candidates, γ^{45} or γ^{64} , that is adopted for ϵ depends upon the association defined between γ^{a5} and γ^{a6} , and Dirac's γ^{a} matrices, and is also based on the fact that one must restrict the $\overline{SO(3,2)}$ symmetry to a $\overline{SO(3,1)}$ subgroup in order to be in accordance with relativity. As things stand, case (i) $\epsilon = \gamma^{45}$, implies that $\epsilon \gamma^{a6}$ is antisymmetric; γ^{a5} mixes with $\gamma^{a\beta}$ under SO(3,2), while $\{\gamma^{a6},\gamma^{56}\}$ is a SO(3,2) vector $(\omega_{A6}=0)$ (the transformation properties of the γ matrices are discussed in Sec. 4). Case (iii), $\epsilon = \gamma^{64}$, implies that $\epsilon \gamma^{a6}$ is symmetric, while $\epsilon \gamma^{a5}$ is skew-symmetric; γ^{a6} mixes with $\gamma^{a\beta}$ under SO(3,2), while $\{\gamma^{a5},\gamma^{65}\}$ is a SO(3,2) vector $(\omega_{A5}=0)$.

Equivalent formalisms are: case (i), $\epsilon = \gamma^{45}$; define $\gamma^{\alpha} = \gamma^{\alpha 5}$, and append to the constraint $\omega_{A6} = 0$, the restriction $\omega_{A5} = 0$, so that $\gamma^{\alpha 5}$ transforms as a vector under SO(3,1); case (iii), $\epsilon = \gamma^{64}$; define $\gamma^{\alpha} = \gamma^{\alpha 6}$, and append to the constraint $\omega_{A5} = 0$ the restriction $\omega_{A6} = 0$, so that $\gamma^{\alpha 6}$ transforms as a vector under SO(3,1). In both cases, the $\overline{\text{SO}(3,2)}$ symmetry is reduced to $\overline{\text{SO}(3,1)}$.

Without loss of generality, we shall utilize $\epsilon = \gamma^{64}$ as the symplectic form. In order to make contact with the usual conventions found in the literature, it is convenient to make the following definitions.

Let γ^{α} (Greek indices run from 1 to 4) denote four real 4×4 matrices (Dirac's γ matrices) that generate an irreducible representation of the pseudo-Clifford algebra C_4 (also known as the Dirac algebra). The γ^{α} are defined by

$$\gamma^{\alpha}\gamma^{\beta} + \gamma^{\beta}\gamma^{\alpha} = 2\gamma_{\alpha}g^{\alpha\beta},\tag{16}$$

where

$$g^{\alpha\beta} = g_{\alpha\beta} = \operatorname{diag}(1, 1, 1, -1) \tag{17}$$

is the metric tensor on M_4 , in a Cartesian coordinate system. Let

$$\gamma^{5} = -(1/4!)\epsilon_{\alpha\beta\mu\nu}\gamma^{\alpha}\gamma^{\beta}\gamma^{\mu}\gamma^{\nu}$$
$$= -\gamma^{1}\gamma^{2}\gamma^{3}\gamma^{4}, \tag{18}$$

where $\epsilon_{\alpha\beta\mu\nu}$ is the totally antisymmetric Levi-Cività tensor density of weight (-1) in four dimensions, $\epsilon_{1234}=+1$. A representation of a linearly independent basis for C_4 is

$$\gamma^{\alpha} = \gamma^{\alpha 6}, \tag{19}$$

$$\gamma^5 = \gamma^{56},\tag{20}$$

$$\gamma^{\alpha}\gamma^{5} = \gamma^{\alpha 5},\tag{21}$$

and defining

$$S^{\alpha\beta} = -\frac{1}{4} [\gamma^{\alpha}, \gamma^{\beta}], \tag{22}$$

$$S^{\alpha\beta} = -\frac{1}{2}\gamma^{\alpha\beta}.\tag{23}$$

The symplectic form ϵ on D_4 is defined to be

$$\epsilon = \gamma^{64}. \tag{24}$$

As a consequence of Eq. (1), and the definitions of Eqs. (16)—(24), are the identities

$$\tilde{\gamma}^{\alpha}\epsilon = -\epsilon\gamma^{\alpha},\tag{25}$$

$$\tilde{S}^{\alpha\beta}\epsilon = -\epsilon S^{\alpha\beta},\tag{26}$$

$$\begin{split} \left[S^{\alpha\beta}, \gamma_{\mu}\right] &= \delta^{\alpha}_{\mu} \gamma^{\beta} - \delta^{\beta}_{\mu} \gamma^{\alpha}, \\ \left[S^{\alpha\beta}, S^{\mu\nu}\right] &= g^{\alpha\mu} S^{\beta\nu} - g^{\alpha\nu} S^{\beta\mu} - g^{\beta\mu} S^{\alpha\nu} + g^{\beta\nu} S^{\alpha\mu}, (28) \end{split}$$

and

$$\gamma^5 S^{\alpha\beta} = \frac{1}{2} g^{\alpha\mu} g^{\beta\nu} \epsilon_{\mu\nu\lambda\sigma} S^{\lambda\sigma}. \tag{29}$$

We introduce a $\overline{SO(3,1)}$ index notation to compliment the matrix notation which we have been using. Associate $\overline{SO(3,1)}$ indices as follows: $D_4 \ni \lambda \leftrightarrow \lambda^a$; $D_4^* \ni \xi \leftrightarrow \xi_a$ (note that in matrix notation, $\xi\lambda$ denotes $\xi_a\lambda^a$, while $\lambda\xi$ denotes the 4×4 matrix with elements $\lambda^a\xi_b$; one has tr $\lambda\xi=\xi\lambda$); $\epsilon\leftrightarrow\epsilon_{ab}=-\epsilon_{ba}$; $\tilde{\lambda}\epsilon\leftrightarrow\lambda_b=\lambda^a\epsilon_{ab}$, where the tilde denotes the transpose of a matrix (mnemonic $b\leftrightarrow$ below); raise

 $\overline{SO(3,1)}$ indices with ϵ^{ab} according as $\xi^a = \epsilon^{ab}\xi_b$ (mnemonic: $a \leftrightarrow$ above). According to this convention $\epsilon^{ab} = \epsilon^{ac}\epsilon^{bd}\epsilon_{cd} = \epsilon^{ac}(\epsilon^{bd}\epsilon_{cd}) = \epsilon^{ac}\delta_c^b$; therefore,

$$(\epsilon^{-1})^{ab} = \epsilon^{ba} = -\epsilon^{ab},\tag{30}$$

$$\epsilon^{ac}\epsilon_{cb} = -\delta^a_b,\tag{31}$$

and we find the correspondence $\xi^a \leftrightarrow -\epsilon^{-1}\tilde{\xi}$. $\gamma^{AB} \leftrightarrow \gamma^{ABa}{}_b$. In index notation, Eq. (25) is $\gamma^{ac}{}_a \epsilon_{cb} = -\epsilon_{ac} \gamma^{ac}{}_b = \epsilon_{ca} \gamma^{ac}{}_b$, i.e.,

$$\gamma^{\alpha}{}_{ba} = \gamma^{\alpha}{}_{ab}. \tag{32}$$

Equation (26) is $S^{\alpha\beta c}{}_{a}\epsilon_{cb} = -\epsilon_{ac}S^{\alpha\beta c}{}_{b}$,

$$S_{ba}^{\alpha\beta} = S_{ab}^{\alpha\beta}. \tag{33}$$

 $\tilde{S} \in S = \epsilon, S \in \overline{SO(3,1)}$, reads

$$S^{c}_{a}\epsilon_{cd}S^{d}_{b}=\epsilon_{ab}. \tag{34}$$

Since $\tilde{\gamma}^{\alpha 5} \epsilon = \epsilon \gamma^{\alpha 5}$,

$$\gamma_{ba}^{a5} = -\gamma_{ab}^{a5}; \tag{35}$$

similarly, $\tilde{\gamma}^5 \epsilon = \epsilon \gamma^5$, so that

$$\gamma_{ba}^5 = -\gamma_{ab}^5. \tag{36}$$

The determinant of ϵ is given by $\det \epsilon = \epsilon^{abcd} \epsilon_{a1} \epsilon_{b2} \epsilon_{c3} \epsilon_{d4}$, or equivalently, $\epsilon_{a'b'c'd'} \det \epsilon = \epsilon^{abcd} \epsilon_{aa'} \epsilon_{bb'} \epsilon_{cc'} \epsilon_{dd'}$; since $\epsilon^2 = -\gamma_0$, ϵ has eigenvalues $\pm i$; since $\mathrm{tr} \ \epsilon = 0$, the eigenvalues occur with equal multiplicity. Hence $\det \epsilon = 1$, and thus

$$\epsilon_{a'b'c'd'} = \epsilon_{aa'}\epsilon_{bb'}\epsilon_{cc'}\epsilon_{dd'}\epsilon^{abcd}. \tag{37}$$

The fact that the s^h are self-dual, and the t^h are anti-self-dual, may be expressed covariantly in both matrix and index notation. Since $\epsilon^{-1} = -\epsilon$, $*\epsilon = -\epsilon$ may be written as

$$\epsilon = {}^*\epsilon^{-1}; \tag{38}$$

in index notation, Eq. (38) is $\epsilon_{ab}=\frac{1}{2}\epsilon_{abcd}(\epsilon^{-1})^{cd}=\frac{1}{2}\epsilon_{abcd}\epsilon^{dc}$, or

$$\epsilon_{ab} = -\frac{1}{2} \epsilon_{abcd} \epsilon^{cd}. \tag{39}$$

Using Eq. (1), one finds that

$$-\epsilon \gamma^{\alpha} \gamma^{5} = \tilde{\gamma}^{\alpha} \gamma^{5} \epsilon^{-1} = 2\delta^{\alpha}_{h} g^{hk} s^{k} - \delta^{\alpha}_{4} \gamma^{5}.$$
 Therefore,

$$-\epsilon \gamma^{\alpha} \gamma^5 = {}^*\gamma^{\alpha} \gamma^5 \epsilon^{-1} \tag{40}$$

expresses the fact that the s^h are self-dual for $\alpha=1,2,3$, and that γ^5 is anti-self-dual when $\alpha=4$. Noting that

$$(-\epsilon \gamma^{AB})_{ab} = \gamma^{AB}_{ab} (= -\epsilon_{ac} \gamma^{ABc}_{b} = \epsilon_{ca} \gamma^{ABc}_{b} = \gamma^{AB}_{ab}),$$

and

$$(\gamma^{AB}\epsilon^{-1})^{ab} = \gamma^{ABab} (= \gamma^{ABa}{}_c \epsilon^{-1cb} = \gamma^{ABa}{}_c \epsilon^{bc} = \gamma^{ABab}),$$

Eq. (40) may be expressed as $(\gamma^{\alpha}\gamma^{5})_{ab} = \frac{1}{2}\epsilon_{abcd}(\gamma^{\alpha}\gamma^{5})^{cd}$, which, using Eq. (21) yields

$$\gamma_{ab}^{\alpha 5} = \frac{1}{2} \epsilon_{abcd} \gamma^{\alpha 5cd}. \tag{41}$$

Lastly, from Eq. (1), $-\epsilon \gamma^5 = \gamma^{45} = -\gamma^5 \epsilon^{-1}$, which combined with * $\gamma^{45} = -\gamma^{45}$ gives

$$-\epsilon \gamma^5 = {}^*\gamma^5 \epsilon^{-1}, \tag{42}$$

i.e.,

$$\gamma_{ab}^5 = \frac{1}{2} \epsilon_{abcd} \gamma^{5cd}. \tag{43}$$

As an application of Eq. (39), we evaluate

$$\epsilon^{da}\epsilon^{bc} + \epsilon^{db}\epsilon^{ca} + \epsilon^{dc}\epsilon^{ab} = \frac{1}{2}\epsilon^{da'}\epsilon^{b'c'}\delta^{abc}_{a'b'c'}$$

$$= \frac{1}{2}\epsilon^{da'}\epsilon^{b'c'}\delta^{abce}_{a'b'c'e}$$

$$= \frac{1}{2}\epsilon^{abce}\epsilon_{a'b'c'e}\epsilon^{da'}\epsilon^{b'c'}$$

$$= -\epsilon^{abce}\epsilon^{da'}\epsilon_{a'e} \text{ [using Eq. (39)]}$$

$$= \epsilon^{abcd} \text{ [using Eq. (31)]}.$$

Thus

$$\epsilon^{abcd} = \epsilon^{da} \epsilon^{bc} + \epsilon^{db} \epsilon^{ca} + \epsilon^{dc} \epsilon^{ab}. \tag{44}$$

(See Ref. 5 for a clear exposition of the properties of the generalized Kronecker delta, ϵ^{abcd} , and ϵ_{abcd} .)

3. A BASIC LEMMA

Lemma: Let X be an arbitrary 4×4 matrix; then $\gamma^{56} X \gamma^{56} + \gamma^{64} \widetilde{X} \gamma^{64} + \gamma^{45} \widetilde{X} \gamma^{45}$ $= X - \gamma_0 \text{ tr } X + \gamma^{56} \text{ tr } \gamma^{56} X,$ (45)

where \widetilde{X} denotes the transpose of X, and tr X is the trace of X. This identity is valid for any cyclic permutation of $(\gamma^{56}, \gamma^{64}, \gamma^{45})$, and under the replacement $\gamma^{56} \rightarrow \gamma^{12}$, $\gamma^{64} \rightarrow \gamma^{31}$, and $\gamma^{45} \rightarrow \gamma^{23}$.

Proof: Eq. (45) is linear in X; we verify that this equation is true for $X = \gamma_0$, γ^{56} , γ^{a5} , γ^{a6} , and $\gamma^{a\beta}$. Note that only for $X = \gamma_0$ (resp γ^{56}) is tr X (resp tr $\gamma^{56}X$) nonvanishing.

(i) $X = \gamma_0$; since $(\gamma^{56})^2 = -\gamma_0 = (\gamma^{64})^2 = (\gamma^{45})^2$, Eq. (45) yields

$$(\gamma^{56})^2 + (\gamma^{64})^2 + (\gamma^{45})^2 = -3\gamma_0$$

= $\gamma_0 - \gamma_0$ tr $\gamma_0 + \gamma^{56}$ tr $\gamma^{56} = \gamma_0 - 4\gamma_0$;

(ii) $X = \gamma^{56}$; since $\tilde{\gamma}^{56} = -\gamma^{56}$, and γ^{56} anticommutes with both γ^{54} and γ^{45} ; Eq. (45) gives $-\gamma^{56} - \gamma^{64}\gamma^{56}\gamma^{64} - \gamma^{45}\gamma^{56}\gamma^{45} = -3\gamma^{56}$ $= \gamma^{56} - \gamma_0 \text{ tr } \gamma^{56} + \gamma^{56} \text{ tr}(-\gamma_0) = \gamma^{56} - 4\gamma^{56};$

(iii)
$$X = \gamma^{\alpha 5}$$
; from Eq. (1),
 $\gamma^{\alpha 5} \gamma^{56} = -\gamma^{56} \gamma^{\alpha 5}$, $\tilde{\gamma}^{\alpha 5} \gamma^{64} = \gamma^{64} \gamma^{\alpha 5}$, and
 $\tilde{\gamma}^{\alpha 5} \gamma^{45} = -\gamma^{45} \gamma^{\alpha 5}$; by Eq. (45),
 $\gamma^{56} \gamma^{\alpha 5} \gamma^{56} + \gamma^{64} \tilde{\gamma}^{\alpha 5} \gamma^{64} + \gamma^{45} \tilde{\gamma}^{\alpha 5} \gamma^{45}$

$$= (\gamma^{56})^2(-\gamma^{\alpha 5}) + (\gamma^{64})^2\gamma^{\alpha 5} + (\gamma^{45})^2(-\gamma^{\alpha 5}) = \gamma^{\alpha 5};$$

(iv)
$$X = \gamma^{\alpha 6}$$
; one deduces from Eq. (1) that $\gamma^{\alpha 6}\gamma^{56} = -\gamma^{56}\gamma^{\alpha 6}$, $\tilde{\gamma}^{\alpha 6}\gamma^{64} = -\gamma^{64}\gamma^{\alpha 6}$, and $\tilde{\gamma}^{\alpha 6}\gamma^{45} = \gamma^{45}\gamma^{\alpha 6}$; Eq. (45) becomes $\gamma^{56}\gamma^{\alpha 6}\gamma^{56} + \gamma^{64}\tilde{\gamma}^{\alpha 6}\gamma^{64} + \gamma^{45}\tilde{\gamma}^{\alpha 6}\gamma^{45}$

$$= (\gamma^{56})^2(-\gamma^{\alpha 6}) + (\gamma^{64})^2(-\gamma^{\alpha 6}) + (\gamma^{45})^2\gamma^{\alpha 6} = \gamma^{\alpha 6};$$

(v) $X = \gamma^{\alpha\beta}$; from Eq. (1), $\gamma^{\alpha\beta}\gamma^{56} = \gamma^{56}\gamma^{\alpha\beta}$, $\tilde{\gamma}^{\alpha\beta}\gamma^{64} = -\gamma^{64}\gamma^{\alpha\beta}$, and $\tilde{\gamma}^{\alpha\beta}\gamma^{A5} = -\gamma^{A5}\gamma^{\alpha\beta}$; Eq. (45) gives $\gamma^{56}\gamma^{\alpha\beta}\gamma^{56} + \gamma^{64}\tilde{\gamma}^{\alpha\beta}\gamma^{64} + \gamma^{45}\tilde{\gamma}^{\alpha\beta}\gamma^{A5}$

 $\gamma^{56}\gamma^{\alpha\beta}\gamma^{56} + \gamma^{64}\tilde{\gamma}^{\alpha\beta}\gamma^{64} + \gamma^{45}\tilde{\gamma}^{\alpha\beta}\gamma^{45}$ $= (\gamma^{56})^2\gamma^{\alpha\beta} + (\gamma^{64})^2(-\gamma^{\alpha\beta}) + (\gamma^{45})^2(-\gamma^{\alpha\beta}) = \gamma^{\alpha\beta}.$

Since $\gamma^{56} = \gamma^5$, $\gamma^{64} = \epsilon = -\epsilon^{-1}$, and $\gamma^{45} = \gamma^{46} \gamma^{56} = -\epsilon \gamma^5 = -\gamma^5 \epsilon^{-1}$, Eq. (45) may be written covariantly as $\gamma^5 X \gamma^5 - \epsilon^{-1} \widetilde{X} \epsilon + \gamma^5 \epsilon^{-1} \widetilde{X} \epsilon \gamma^5 = X - \gamma_0 \operatorname{tr} X + \gamma^5 \operatorname{tr} \gamma^5 X$.

 $\gamma^3 X \gamma^5 - \epsilon^{-1} X \epsilon + \gamma^5 \epsilon^{-1} X \epsilon \gamma^5 = X - \gamma_0 \text{ tr } X + \gamma^5 \text{ tr } \gamma^5 X$. Bringing X to the left-hand side of this equation, and then multiplying by $-\gamma^5$ gives

$$[X + \epsilon^{-1} \widetilde{X} \epsilon, \gamma^5]_{+} = \gamma^5 \operatorname{tr} X + \gamma_0 \operatorname{tr} \gamma^5 X, \tag{46}$$

where $[A,B]_{+} = AB + BA$ denotes the anticommutator of A and B. In index notation, $X + \epsilon^{-1} \tilde{X} \epsilon$ is $X^{a}_{b} + \epsilon^{-1ac} X^{d}_{c} \epsilon_{db}$ $= X^{a}_{b} + \epsilon^{ca} X^{d}_{c} \epsilon_{db} = X^{a}_{b} - \epsilon_{db} X^{d}_{c} \epsilon^{ac} = X^{a}_{b} - X^{a}_{b}$; Eq. (46) can be written as

$$(X_{c}^{a} - X_{c}^{a})\gamma^{5c}_{b} + \gamma^{5a}_{c}(X_{b}^{c} - X_{b}^{c})$$

$$= \gamma^{5a}_{b}X_{c}^{c} + \delta_{b}^{a}\gamma^{5c}_{d}X_{c}^{d}.$$
(47)

Eq. (45) is a simple but useful identity, and is a generalization of an identity first proved by Dirac² in 1963. The assertion that Eq. (45) is valid under permutation of γ^{56} , γ^{64} , γ^{45} is true because, as far as so(3,3) is concerned, no su(2) generator is to be preferred over the remaining two. Eq. (45) remains valid under the replacement $\gamma^{h'k'} \rightarrow \gamma^{hk}$ because of the symmetric roles played by the two su(2) subalgebras in the direct sum of so(4) [self-dual and anti-self-dual, required in order that the six skew-symmetric matrices be linearly independent, plays no role in Eq. (45)].

As an application of this lemma, we prove that

$$\gamma_{\alpha}\lambda\xi\gamma^{\alpha} = \gamma_{0}\xi\lambda + \gamma^{5}\xi\gamma^{5}\lambda + \epsilon^{-1}\tilde{\xi}\tilde{\lambda}\epsilon + \gamma^{5}\epsilon^{-1}\tilde{\xi}\tilde{\lambda}\epsilon\gamma^{5}.$$
(48)

The starting point of this evaluation is to replace γ^{56} , γ^{64} , and γ^{45} in Eq. (45) with, respectively, γ^{12} , γ^{23} , γ^{31} . This yields

$$\gamma^{12} X \gamma^{12} + \gamma^{23} \widetilde{X} \gamma^{23} + \gamma^{31} \widetilde{X} \gamma^{31} = X - \gamma_0 \operatorname{tr} X + \gamma^{12} \operatorname{tr} \gamma^{12} X.$$
(49)

Let X be an arbitrary symmetric matrix, $\widetilde{X} = X$; then tr $\gamma^{12}X = 0$, because X may be expanded in terms of γ_0 and $\gamma^{h'k}$; each of these matrices, when multiplied by γ^{12} , has vanishing trace [see Eq. (10)]. Consider

$$\gamma^{34}(\gamma^{12}X\gamma^{12} + \gamma^{23}X\gamma^{23} + \gamma^{31}X\gamma^{31})\gamma^{34}$$

$$= \gamma^{5}X\gamma^{5} - \gamma^{24}X\gamma^{24} - \gamma^{14}X\gamma^{14}$$
[using Eqs. (1) and (9)]
$$= \gamma^{34}(X - \gamma_{0} \operatorname{tr} X)\gamma^{34} = \gamma^{34}X\gamma^{34} - \gamma_{0} \operatorname{tr} X.$$

Hence
$$\gamma^{h4}X\gamma^{h4} = \gamma_0$$
 tr $X + \gamma^5X\gamma^5$; since X is an arbitrary symmetric matrix, this implies that (for convenience we write α^{ABg} or α^{AB} in this paragraph)

symmetric matrix, this implies that (for convenience we write γ^{ABa}_{b} as γ^{AB}_{ab} in this paragraph)

$$\gamma_{ab}^{h\,4}\gamma_{cd}^{h\,4} + \gamma_{ac}^{h\,4}\gamma_{bd}^{h\,4} = 2\delta_{ad}\delta_{bc} + \gamma_{ab}^5\gamma_{cd}^5 + \gamma_{ac}^5\gamma_{bd}^5.$$

Holding d fixed, one may obtain two similar equations by cyclically permuting (a,b,c). Upon adding two of these equations and subtracting the third, one finds that

$$\begin{split} \gamma_{ab}^{h4}\gamma_{cd}^{h4} &= -\delta_{ab}\delta_{cd} + \delta_{ac}\delta_{bd} + \delta_{ad}\delta_{bc} + \gamma_{ac}^5\gamma_{bd}^5 + \gamma_{ad}^5\gamma_{bc}^5. \\ \text{Contracting this result with } \lambda_b\xi_c \text{ yields} \\ \gamma^{h4}\lambda\xi\gamma^{h4} &= -\lambda\xi + \tilde{\xi}\tilde{\lambda} + \gamma_0\xi\lambda + \gamma^5\tilde{\xi}\tilde{\lambda}\gamma^5 - \gamma^5\xi\gamma^5\lambda. \\ \text{Therefore.} \end{split}$$

$$\begin{split} \gamma_4 (\gamma^{h\, 4} \lambda \xi \gamma^{h\, 4} + \lambda \xi) \gamma^4 &= \gamma^{h\, 4} \gamma^{A6} \lambda \xi \gamma^{h\, 4} \gamma^{A6} + \gamma_4 \lambda \xi \gamma^4, \\ \gamma_\alpha \lambda \xi \gamma^\alpha &= \epsilon^{-1} (\tilde{\xi} \tilde{\lambda} + \gamma_0 \xi \lambda + \gamma^5 \tilde{\xi} \tilde{\lambda} \gamma^5 - \gamma^5 \xi \gamma^5 \lambda) \epsilon \\ &= \gamma_0 \xi \lambda + \gamma^5 \xi \gamma^5 \lambda + \epsilon^{-1} \tilde{\xi} \tilde{\lambda} \epsilon \\ &+ \gamma^5 \epsilon^{-1} \tilde{\xi} \tilde{\lambda} \epsilon \gamma^5. \end{split}$$

An orthogonality relationship satisfied by the γ^{AB} is

$$-\frac{1}{2}\gamma^{ABa}{}_b\gamma_{AB}{}^c{}_d = 4\delta^a_d\delta^c_b - \delta^a_b\delta^c_d. \tag{50}$$

To prove this, construct a matrix $Y(X) = -\frac{1}{2} \gamma^{AB} X \gamma_{AB} + X$, where X is an arbitrary 4×4 matrix. Since $(\gamma^{AB})^{-1} = -\gamma_{AB}$, this may be written as $Y = X + \sum_{i=1}^{15} \gamma^i X(\gamma^i)^{-1}$, where $\gamma^{AB} \leftrightarrow \gamma^i, i = 1,...,15$. If τ is any γ^{AB} matrix, then $\tau Y = \tau X \tau^{-1} \tau + \sum_{i=1}^{15}$ $\tau \gamma^{\prime} X (\tau \gamma^{\prime})^{-1} \tau = Y \tau$; hence $\gamma^{AB} Y = Y \gamma^{AB}$, and since the γ^{AB} comprise an irreducible set, Y is a multiple $T^c_{\ b}X^b_{\ c}$ of γ_0 : $\begin{array}{l} \delta^a_d T^c_b X^b_c = X^b_c (-\frac{1}{2} \gamma^{ABa}_b \gamma_{AB}{}^c_d + \delta^a_b \delta^c_d). \text{ Thus} \\ \delta^a_d T^c_b = -\frac{1}{2} \gamma^{ABa}_b \gamma_{AB}{}^c_d + \delta^a_b \delta^c_d, \text{ which implies} \end{array}$ $T^a_b = -\frac{1}{2} \gamma^{ABc}_b \gamma_{AB}^a + \delta^a_b = 4\delta^a_b$, which in turn implies Eq. (50).

4. TRANSFORMATION PROPERTIES OF γ^{AB}

The γ^{ABa}_{b} are numerically invariant under combined SO(3,3) transformations of M_6 indices $\{A,B\}$, and $\overline{SO(3,3)}$ transformations of spinor indices $\{a,b\}$. To see this, suppose $L^{A}_{B} \in SO(3,3)$; then the metric on M_{6} , g_{AB} of Eq. (2), is invariant under automorphism by L:

$$g_{AB} \rightarrow L^{C}_{A} g_{CD} L^{D}_{B} = g_{AB}. \tag{51}$$

The matrices $L^{A}_{C}L^{B}_{D}\gamma^{CD}$ satisfy Eq. (1) on account of Eq. (51), and the fact that (L^A_B) det $(L^A_B) = 1$: $\epsilon^{A'B'C'D'E'F'}L^A_{A'}L^B_{B'}L^C_{C'}$ $L^{D}_{D} L^{E}_{E} L^{F}_{F'} = \det L \cdot \epsilon^{ABCDEF}$. Hence the $L^{A}_{C} L^{B}_{D} \gamma^{CD}$

provide a real 4×4 irreducible representation of the group. The sum of the squares of the degrees of the irreducible representations of the group equals the order of the group, $32 = 1^2 + 4^2 + \cdots$ (the degree one irrep is the trivial representation), so that there can be only one irreducible representation of degree four. Therefore, $L^{A}_{C}L^{B}_{D}\gamma^{CD}$ is equivalent

to γ^{AB} , there exists a real nonsingular 4×4 matrix S=S(L)such that

$$\gamma^{AB} = L^{A}{}_{C}L^{B}{}_{D}S\gamma^{CD}S^{-1}. \tag{52}$$

S may be assumed to have determinant equal to +1, and is determined up to a factor of ± 1 . The set of all such matrices S provides an irreducible representation

 $\overline{SL(4,\mathbb{R})} \cong \overline{SO(3,3)}$. A special Lorentz transformation $x \rightarrow x' = Lx$ on M_6 is accompanied by a $\overline{SO(3,3)}$ transformation on D_4 : $\lambda \rightarrow \lambda' = S\lambda$. By Eq. (3), S is generated by $-\frac{1}{2}\gamma^{AB}$; for if

 $L_B^A = \delta_B^A - \omega_B^A + \cdots = (e^{-\omega})_B^A$, where $\omega_{AB} = -\omega_{BA}$ are 15 real parameters, then

$$S = \gamma_0 - \frac{1}{4}\omega_{AB}\gamma^{AB} + \dots = \exp\{-\frac{1}{4}\omega_{AB}\gamma^{AB}\}$$
 (53) satisfies Eq. (52).

One can construct a 2-1 representation of $\overline{SO(3,3)}$ onto SO(3,3) as follows. Let Γ^A denote six matrices defined by

$$\Gamma^h = 2g^{hk} \begin{pmatrix} 0 & s^k \\ -s^k & 0 \end{pmatrix} \tag{54}$$

and

$$\Gamma^{h'} = 2g^{hk} \begin{pmatrix} 0 & t^k \\ t^k & 0 \end{pmatrix}, \tag{55}$$

where h, k = 1, 2, 3; h' = 1', 2', 3' and 1' = 6, 2' = 5, 3' = 4; and $g^{hk} = \text{diag}(1,1,-1)$. One may easily verify that the Γ^{A} satisfy

$$\Gamma^{A}\Gamma^{B} + \Gamma^{B}\Gamma^{A} = 2g^{AB}I, \tag{56}$$

where I denotes the 8×8 unit matrix

$$-\frac{1}{2}[\Gamma^{A},\Gamma^{B}] = -\frac{1}{2}\begin{pmatrix} \gamma^{AB} & 0\\ 0 & -\tilde{\gamma}^{AB} \end{pmatrix}; \tag{57}$$

and

$$\Gamma^{A} = L^{A}_{B} M \Gamma^{B} M^{-1}, \tag{58}$$

where

$$M = \begin{pmatrix} S & 0 \\ 0 & \tilde{S}^{-1} \end{pmatrix}, \tag{59}$$

S being defined in Eq. (53). Therefore, given $S \in \overline{SO(3,3)}$, the map $\overline{SO(3,3)} \rightarrow SO(3,3)$ defined by

$$L^{A}_{B} = \frac{1}{6} \operatorname{tr} \left(M^{-1} \Gamma^{A} M \Gamma_{B} \right) \tag{60}$$

is a 2-1 representation of $\overline{SO(3,3)}$ onto SO(3,3).

Concomitant with the identification of γ^{64} as a $\overline{SO(3,1)}$ invariant symplectic form on D_4 is the reduction of $\overline{SO(3,3)}$ symmetry to $\overline{SO(3,1)}$ defined by setting $\omega_{A,5} = 0 = \omega_{A,6}$. According to this restriction, we have $L_6^A = \delta_6^A$, $L_5^A = \delta_5^A$, and $L^{\alpha}_{\beta} = \delta^{\alpha}_{\beta} - \omega^{A}_{\beta} + \dots = (e^{-\omega})^{\alpha}_{\beta}$, where $\omega_{\alpha\beta} = -\omega_{\beta\alpha}$ are six real parameters. $S \in \overline{SO(3,1)}$ is given by

$$S(\omega) = \exp\{\lambda \omega_{\alpha\beta} S^{\alpha\beta}\},\tag{61}$$

where $S^{\alpha\beta}$ is defined in Eqs. (22) and (23). Under the restriction to a $\overline{SO(3,1)}$ subgroup of $\overline{SO(3,3)}$, the γ^{AB} decompose into sets transforming as tensors under $\overline{SO(3,1)}$:

$$\epsilon \rightarrow \tilde{S}\epsilon S = \epsilon,$$
 (62)

$$\gamma^{\alpha} \to L^{\alpha}{}_{\beta} S \gamma^{\beta} S^{-1} = \gamma^{\alpha}, \tag{63}$$

$$\gamma^5 \rightarrow S \gamma^5 S^{-1} = \gamma^5, \tag{64}$$

and

$$S^{\alpha\beta} \longrightarrow L^{\alpha}_{\mu} L^{\beta}_{\nu} S S^{\mu\nu} S^{-1} = S^{\alpha\beta}. \tag{65}$$

Let $\lambda \in D_4$ and $\xi \in D_4^*$; under $\overline{SO(3,1)}$,

$$\lambda \rightarrow S\lambda$$
 (66)

and

$$\xi \to \xi S^{-1}. \tag{67}$$

ACKNOWLEDGMENT

Most of this work was conducted in the Department of Mathematics at the University of Arizona at Tucson. I

would like to thank the Department for its hospitality during my most enjoyable stay in Tucson.

¹Sir A. S. Eddington, *Fundamental Theory* (Cambridge U. P., Cambridge, 1949), Section 54.

²P. A. M. Dirac, J. Math. Phys. 4, 901 (1963).

³P. L. Nash, J. Math. Phys. 21, 1024 (1980).

 ⁴H. Boerner, Representation of Groups (North-Holland, Amsterdam, 1969).
 ⁵D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles (Wiley, New York, 1975).