AI24BTECH11003 - Badde Vijaya Sreyas

17) If the number of five digit numbers with distinct digits and 2 at the 10^{th} place is 336k, then k is

c) 4

c) (3,3)

 $\sum_{i=1}^{10} (x_i - 5) = 10$ and $\sum_{i=1}^{10} (x_i - 5)^2 = 40$. If μ and λ are the mean and variance of observations, $(x_1 - 3), (x_2 - 3), \dots, (x_1 0 - 3)$, then the ordered pair (μ, λ) is equal to:

c) $\left(\frac{1}{2}\right)\left(f(1) + 3f\left(\frac{1}{2}\right)\right)$ d) $\frac{1}{6}\left(f(0) + f(1) + 4f\left(\frac{1}{2}\right)\right)$

d) 6

d) (6,6)

16) If for all real triplets (a, b, c), $f(x) = a + bx + cx^2$; then $\int_0^1 f(x) dx$ is equal to

b) 7

18) Let the observations x_i ($1 \le i \le 10$) satisfy the equations,

b) (3,6)

a) $2\left(3f(1) + 2f\left(\frac{1}{2}\right)\right)$ b) $\left(\frac{1}{3}\right)\left(f(0) + f\left(\frac{1}{2}\right)\right)$

equal to:

a) 8

a) (6,3)

is:

y(2) = 0, then y(3) is equal to:

25) The coefficient of x^4 in the expansion of $(1 + x + x)^{10}$ is

19) The integral \int_{0}^{∞}	$\frac{dx}{(x+4)^{\frac{8}{7}}(x-3)^{\frac{6}{7}}}$ is equal to			
a) $-\left(\frac{x-3}{x-4}\right)^{-\frac{1}{7}} + C$ b) $\frac{1}{2}\left(\frac{x-3}{x-4}\right)^{\frac{3}{7}} + C$		c) $\left(\frac{x-3}{x-4}\right)^{\frac{1}{7}} + C$	c) $\left(\frac{x-3}{x-4}\right)^{\frac{1}{7}} + C$	
b) $\frac{1}{2} \left(\frac{x-3}{x-4} \right)^{\frac{1}{7}} + C$		d) $-\frac{1}{13} \left(\frac{x-3}{x-4} \right)^{-}$	$\frac{1}{7}$ + C	
20) In a box, there are 20 cards out of which 10 are labelled as A and remaining 10 are labelled as B. Cards are drawn at random, one after the other and with replacement, till a second A-card is obtained. The probability that the second A-card appears before the third B-card is:				
a) $\frac{15}{16}$	b) $\frac{9}{16}$	c) $\frac{13}{16}$	d) $\frac{11}{16}$	
21) If the vectors \vec{p} are coplanar and	$\vec{c} = (a+1)\hat{i} + a\hat{j} + a\hat{k}, \overrightarrow{q}$ $d 3(\overrightarrow{p} \cdot \overrightarrow{q})^2 - \lambda \overrightarrow{r} \times \overrightarrow{q} ^2$	$= a\hat{i} + (a+1)\hat{j} + a\hat{k}, a$ $= 0, \text{ then the value of}$	and $\overrightarrow{r} = a\hat{i} + a\hat{j} + (a+1)\hat{k}$ (a)	$i \in R$)
			and $(2, -4, 11)$ on the line jo	ining
	(2,3) and $(3,-2,10)$ is			
23) The number of	distinct solutions of the e	equation $\log_{\frac{1}{2}} \sin x = 2$	$2 - \log_{\frac{1}{2}} \cos x $ in the interval	[0, 2]

24) If for $x \ge 0$, y = y(x) is the solution of the differential equation $(1 + x) dy = \left[(1 + x)^2 + y - 3 \right] dx$,