- 1. Dokažite da za svaki prirodan broj n vrijedi:
 - (a) $n^3 \equiv n \pmod{6}$
 - (b) $n^5 \equiv n \pmod{30}$.
- 2. (a) Ako je $13x \equiv 13y \pmod{65}$, dokažite da je $x \equiv y \pmod{5}$. Vrijedi li obrat te tvrdnje?
 - (b) Ako je $a \equiv b \pmod{m}$, dokažite da je $a^2 \equiv b^2 \pmod{m}$. Vrijedi li obrat te tvrdnje? Obrazložite!
- 3. Riješite sljedeće kongruencije:
 - (a) $175x \equiv 252 \pmod{294}$
 - (b) $415x \equiv 15 \pmod{1115}$
 - (c) $238x \equiv 350 \pmod{420}$.
- 4. (a) Riješite kongruenciju $159x \equiv 66 \pmod{201}$.
 - (b) Odredite sve prirodne brojeve n iz intervala [1100, 1400] koji zadovoljavaju kongruenciju $159n \equiv 66 \pmod{201}$.
 - (c) Odredite sve prirodne brojeve m za koje vrijedi $159 \equiv 66 \pmod{m}$.
- 5. Riješite sljedeće sustave kongruencija:
 - (a) $x \equiv 7 \pmod{17}$, $x \equiv 18 \pmod{31}$, $x \equiv 33 \pmod{37}$
 - (b) $x \equiv 2 \pmod{5}$, $x \equiv 1 \pmod{6}$, $x \equiv 4 \pmod{11}$, $x \equiv 5 \pmod{17}$
 - (c) $5x \equiv 3 \pmod{7}$, $16x \equiv 7 \pmod{17}$, $25x \equiv 2 \pmod{37}$.
- 6. Riješite sljedeće sustave kongruencija:
 - (a) $x \equiv 10 \pmod{15}$, $x \equiv 19 \pmod{21}$, $x \equiv 25 \pmod{60}$
 - (b) $x \equiv 13 \pmod{16}$, $x \equiv 5 \pmod{24}$, $x \equiv 8 \pmod{27}$, $x \equiv 2 \pmod{5}$.

Napomena: Uočite da moduli nisu u parovima relativno prosti.

- 7. Odredite najmanji prirodan broj koji pri dijeljenju s brojevima 41, 42 i 43 daje ostatke 1, 2 i 3 (u tom redoslijedu).
- 8. (a) Odredite najmanji prirodan broj n takav da $3^2|n, 4^2|n+1$ i $5^2|n+2$.
 - (b) Postoji li prirodan broj n takav da $2^2|n, 3^2|n+1$ i $4^2|n+2$? Obrazložite!
- 9. Neka je p prost broj.
 - (a) Dokažite da je $\binom{p}{k} \equiv 0 \pmod{p}$ za $k \in \{1, 2, \dots, p-1\}$.
 - (b) Dokažite da za svaki cijeli broj n vrijedi $(n+1)^p \equiv n^p + 1 \pmod{p}$.

Uputa: Iskoristite binomni teorem.