

- 1. Le prix d'une marchandise passe de 15000 euros en 2018 à 18000 en 2019. Quel est le taux d'évolution?
- **2.** Le prix d'une marchandise a baissé de 20% euros pour passer à 16000. Quel etait le prix initial?
- **3.** Une marchandise a augmenté globalement de 46,41% en quatre ans. Quel est le taux d'évolution annuel moyen?
- **4.** Calculer la dérivée de la fonction $3x^3 + x^2 + 2x + 1$.
- **5.** Calculer le discriminant de $10x^2 20x 1$.
- 6. Construire le tableau de signe de la fonction précédente.
- 7. Déterminer la droite de régression linéaire de *y* en *x* pour les suites de nombres suivants :

	Année	2020	2021	2022	2023	2024	2025	2026	2027
	x_i	1	2	3	4	5	6	7	8
ĺ	y_i	200	190	181	183	170	168	158	150

- 8. Quelles sont les coordonnées du point moyen de cette série statistique?
- **9.** On suppose que la droite trouvée précédemment est une bonne approximation des valeurs *y* dans l'avenir. Quelle sera la valeur de *y* en 2030?
- **10.** A partir de quelle année la valeur de *y* sera inférieure à 120?
- 11. Donner l'expression de u_n en fonction n sachant que (u_n) est une suite arithmétique de raison r=7 avec $u_0=7$
- **12.** Pour cette même suite, calculer $u_3 + ... + u_{20}$.
- **13.** Donner l'expression de u_n en fonction n sachant que (u_n) est une suite géométrique de raison r = 0.98 avec $u_0 = 150$.
- **14.** Pour cette même suite, calculer $u_3 + ... + u_{20}$.
- **15.** Pour cette même suite, la raison correspond à une diminution de quel pourcentage pour passer d'un terme au suivant?
- 16. Pour améliorer sa production, une usine se dote d'une deuxième machine. On sait que 60% des pièces sont fabriquées par la première machine M_1 , les autres pièces étant fabriquées par la nouvelle machine M_2 .

Par ailleurs, 90% des pièces fabriquées par la machine M_1 sont conformes, tandis que 80% le sont dans la machine M_2 . On prélève au hasard une pièce dans la production journalière globale de l'usine. On définit les événements suivants :

- $\implies A$: « La pièce prélevée provient de la machine M_1 . »
- $\implies \bar{A}$: « La pièce prélevée provient de la machine M_2 . »
- C: « La pièce est conforme. »

Faire un arbre de probabilité résumant la situation

- **17.** Calculer $P(A \cap C)$.
- **18.** Calculer P(C).
- **19.** Calculer la probabilité que, sachant que la pièce est conforme, elle vienne de la machine M_1 .
- **20.** Calculer la probabilité que, sachant que la pièce est conforme, elle vienne de la machine M_2 .