Statistical analysis of temperature effect on *Wolbachia*-induced protection to viruses

Ewa Chrostek, Nelson Martins, Marta Marialva, and Luis Teixeira

24 June, 2020

Contents

Figure 1	1
Survival at different post-infections temperatures	1
DCV Titers at different post-infections temperatures	6
Wolbachia levels post-infection at different temperatures	
Figure 2 and S1	12
Effect of different pre and post-infection temperatures on survival	12
DCV levels and different pre-infection temperatures	16
Wolbachia levels and different pre-infection temperatures	18
Figure 3 and S2-4	20
Effect of pre-infection temperature on survival to DCV infection in different host and Wolbachia	
genetic backgrounds	20
Effect of pre-infection temperature on survival to FHV infection	25
Survival with temperature cycling	29
Effect of development and aging temperature before infection on survival	30
Figure 4 and S5	36
DCV levels at early infection	36
FHV levels at early infection	40
Wolbachia levels after antibiotics treatment	42
Survival to DCV after antibiotics	45
Bacteria levels in the gut after antibiotics	49
Session info	49

Figure 1

Survival at different post-infections temperatures

```
surv_2temp<-fread("dataset_s1.txt")

#make a variable describing each unique set of conditions
surv_2temp[,RepFull:=interaction(Temp,Wolb,Dose,Replicate,sep = "_")]
surv_2temp<-surv_2temp[,lapply(.SD,char_asfactor)]

##Diagnostics</pre>
```

```
#How many individuals were tested
ftable(xtabs(~Temp+Dose+Wolb,surv_2temp))
##
            Wolb Wolb- Wolb+
## Temp Dose
## 18C E5
                    50
                          50
##
       E6
                    50
                          50
##
       E7
                    50
                          50
##
       E8
                    50
                          50
##
       E9
                    50
                          50
## 25C
       E5
                    50
                          50
##
       E6
                    50
                          50
##
       E7
                    50
                          50
##
       E8
                    50
                          50
##
       E9
                    50
                          50
##Data analysis
# Wolbachia * Dose * Temperature comparisons
## Full model
cox_2temp_full<-coxme(Surv(Time,Status)~Wolb*Dose*Temp+(1 RepFull), surv_2temp)
# Anova Table
Anova(cox_2temp_full,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
                 LR Chisq Df Pr(>Chisq)
##
## Wolb
                   63.810 1 1.370e-15 ***
                  220.370 4 < 2.2e-16 ***
## Dose
## Temp
                   98.543 1 < 2.2e-16 ***
## Wolb:Dose
                   8.001 4
                                0.09154 .
## Wolb:Temp
                   19.497 1 1.007e-05 ***
## Dose:Temp
                   30.601 4 3.693e-06 ***
                    9.123 4
## Wolb:Dose:Temp
                                0.05810 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# minimum model
cox_2temp_final<-coxme(Surv(Time,Status)~Temp*(Dose+Wolb)+(1|RepFull), surv_2temp)
Anova(cox_2temp_final,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
##
            LR Chisq Df Pr(>Chisq)
## Temp
              94.853 1 < 2.2e-16 ***
             220.370 4 < 2.2e-16 ***
## Dose
## Wolb
              63.810 1 1.370e-15 ***
## Temp:Dose
              31.862 4 2.041e-06 ***
## Temp:Wolb
             17.551 1 2.798e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(cox_2temp_final)
```

Cox mixed-effects model fit by maximum likelihood

```
##
    Data: surv_2temp
##
    events, n = 655, 1000
##
    Iterations= 17 126
##
                     NULL Integrated
## Log-likelihood -4237.264 -3581.165 -3523.542
##
##
                      Chisa
                              df p
                                       AIC
## Integrated loglik 1312.20 12.00 0 1288.20 1234.38
   Penalized loglik 1427.44 52.22 0 1323.01 1088.85
##
## Model: Surv(Time, Status) ~ Temp * (Dose + Wolb) + (1 | RepFull)
## Fixed coefficients
                         coef exp(coef) se(coef)
                                                      z
## Temp25C
                    ## DoseE6
                    1.6146846 5.0263023 0.4537914 3.56 3.7e-04
## DoseE7
                    3.3818780 29.4259800 0.4337873
                                                   7.80 6.3e-15
## DoseE8
                    3.8383442 46.4485027 0.4323228 8.88 0.0e+00
## DoseE9
                    4.1150815 61.2572096 0.4318331 9.53 0.0e+00
## WolbWolb+
                   -1.8410024 0.1586583 0.1885979 -9.76 0.0e+00
## Temp25C:DoseE6
                    0.9830450 2.6725819 0.6366543 1.54 1.2e-01
## Temp25C:DoseE7
                    2.2328572 9.3264756 0.6158195 3.63 2.9e-04
## Temp25C:DoseE8
                    2.8684844 17.6103079 0.6146590 4.67 3.1e-06
## Temp25C:DoseE9
                    2.3895115 10.9081641 0.6126688 3.90 9.6e-05
## Temp25C:WolbWolb+ 1.0934571 2.9845742 0.2510025 4.36 1.3e-05
##
## Random effects
## Group Variable Std Dev
                              Variance
## RepFull Intercept 0.4178493 0.1745981
```

Significant interaction between Wolbachia and Temperature, and between Dose and Temperature. No interaction between Wolbachia and Dose.

```
#Comparisons between hazard ratios
#Hazards ratios between wolb+ and wolb- at both temp
contr_2temp_Wolb<-lsmeans::lsmeans(cox_2temp_final,pairwise~Wolb|Temp)
contr 2temp Wolb
## $1smeans
## Temp = 18C:
## Wolb
                     SE df asymp.LCL asymp.UCL
          lsmean
## Wolb- -0.0203 0.109 Inf
                               -0.234
                                          0.194
## Wolb+ -1.8613 0.137 Inf
                               -2.129
                                         -1.593
##
## Temp = 25C:
  Wolb
           lsmean
                     SE df asymp.LCL asymp.UCL
## Wolb- 1.3146 0.116 Inf
                                1.087
                                          1.542
## Wolb+ 0.5670 0.118 Inf
                                0.335
                                          0.799
## Results are averaged over the levels of: Dose
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
```

```
## $contrasts
## Temp = 18C:
  contrast
                 estimate
                             SE df z.ratio p.value
                     1.841 0.189 Inf 9.762 <.0001
## Wolb- - Wolb+
##
## Temp = 25C:
                              SE df z.ratio p.value
  contrast
                 estimate
## Wolb- - Wolb+
                     0.748 0.171 Inf 4.372
                                            < .0001
##
## Results are averaged over the levels of: Dose
## Results are given on the log (not the response) scale.
contrast(contr_2temp_Wolb$contrasts,method="pairwise",by="contrast")
## contrast = Wolb- - Wolb+:
## contrast1 estimate
                         SE df z.ratio p.value
                 1.09 0.251 Inf 4.356
## Results are averaged over the levels of: Dose
## Results are given on the log (not the response) scale.
```

Wolbachia has an effect at both temperatures, significantly stronger effect at 18°C post-infection temperature.

```
#Hazards ratios between temperatures, at all doses
mcp_temps_final<-lsmeans::lsmeans(cox_2temp_final,pairwise~Temp|Dose)
mcp_temps_final
## $1smeans
## Dose = E5:
## Temp lsmean
                  SE df asymp.LCL asymp.UCL
   18C -3.531 0.364 Inf
                           -4.2434
                                      -2.818
##
   25C -3.344 0.371 Inf
                           -4.0711
                                      -2.617
##
## Dose = E6:
  Temp lsmean
                  SE df asymp.LCL asymp.UCL
  18C -1.916 0.229 Inf
                           -2.3655
                                      -1.467
                           -1.1222
   25C -0.746 0.192 Inf
                                      -0.370
##
## Dose = E7:
  Temp lsmean
                  SE df asymp.LCL asymp.UCL
  18C -0.149 0.179 Inf
                           -0.4990
                                       0.201
##
   25C
         2.271 0.176 Inf
                            1.9256
                                       2.616
##
## Dose = E8:
   Temp 1smean
                  SE df asymp.LCL asymp.UCL
##
   18C
         0.308 0.172 Inf
                           -0.0299
                                       0.645
##
   25C
        3.363 0.185 Inf
                            3.0010
                                       3.725
##
## Dose = E9:
                  SE df asymp.LCL asymp.UCL
## Temp lsmean
  18C
        0.584 0.169 Inf
                            0.2526
                                       0.916
## 25C
        3.161 0.181 Inf
                            2.8050
                                       3.516
##
```

```
## Results are averaged over the levels of: Wolb
## Results are given on the log (not the response) scale.
  Confidence level used: 0.95
##
##
  $contrasts
##
  Dose = E5:
    contrast
              estimate
                           SE df z.ratio p.value
    18C - 25C
                -0.187 0.563 Inf
                                  -0.332 0.7402
##
##
##
  Dose = E6:
    contrast
              estimate
                           SE
                             df z.ratio p.value
                                  -3.804 0.0001
    18C - 25C
                -1.170 0.308 Inf
##
##
## Dose = E7:
##
    contrast
              estimate
                           SE df z.ratio p.value
##
    18C - 25C
                -2.420 0.254 Inf
                                  -9.527 <.0001
##
##
  Dose = E8:
##
    contrast
                          SE df z.ratio p.value
              estimate
##
    18C - 25C
                -3.055 0.251 Inf -12.170 <.0001
##
## Dose = E9:
    contrast
              {\tt estimate}
                           SE
                             df z.ratio p.value
    18C - 25C
                -2.576 0.245 Inf -10.514 <.0001
##
##
## Results are averaged over the levels of: Wolb
## Results are given on the log (not the response) scale.
```

Temperature has a significant effect in survival, except for lower dose ($10^5 \text{ TCID}/_{50}$), which has very low lethality even without *Wolbachia*.

Figures 1A and B

DCV Titers at different post-infections temperatures

```
#Read the data
DCV_bytemp<-fread("dataset_s2.txt")</pre>
DCV_bytemp<-DCV_bytemp[,lapply(.SD,char_asfactor)]</pre>
DCV_bytemp[,logRatio:=log10(Ratio)][,inter:=interaction(Wolb,Temp,Dose)]
str(DCV_bytemp)
## Classes 'data.table' and 'data.frame':
                                          100 obs. of 7 variables:
## $ Sample : Factor w/ 2 levels "138", "iso": 1 1 1 1 1 1 1 1 1 1 ...
## $ Wolb
             : Factor w/ 2 levels "Wolb-", "Wolb+": 2 2 2 2 2 2 2 2 2 2 ...
## $ Ratio : num 6.06e-04 2.77e-05 3.21e-05 9.63e-06 2.28e-05 ...
## $ Temp : Factor w/ 2 levels "18C", "25C": 1 1 1 1 1 1 1 1 1 1 ...
             : Factor w/ 5 levels "E5", "E6", "E7",..: 1 1 1 1 1 2 2 2 2 2 ...
## $ Dose
## $ logRatio: num -3.22 -4.56 -4.49 -5.02 -4.64 ...
## $ inter : Factor w/ 20 levels "Wolb-.18C.E5",..: 2 2 2 2 2 6 6 6 6 6 ...
## - attr(*, ".internal.selfref")=<externalptr>
##Diagnostics
#How many individuals were tested
ftable(xtabs(~Wolb+Temp+Dose,data=DCV_bytemp))
             Dose E5 E6 E7 E8 E9
##
## Wolb Temp
                   5 5 5 5 5
## Wolb- 18C
                   5 5 5 5 5
##
        25C
## Wolb+ 18C
                  5 5 5 5 5
                   5 5 5 5 5
        25C
##Data analysis
#linear model
mod.log<-lm(logRatio~Wolb*Temp*Dose,data=DCV_bytemp)</pre>
Anova(mod.log)
## Anova Table (Type II tests)
## Response: logRatio
##
                 Sum Sq Df F value
## Wolb
                ## Temp
                112.567 1 151.2427 < 2.2e-16 ***
## Dose
                107.331 4 36.0517 < 2.2e-16 ***
## Wolb:Temp
                 6.928 1 9.3086 0.003094 **
## Wolb:Dose
                  3.087 4 1.0369 0.393453
## Temp:Dose
                  4.650 4
                            1.5620 0.192507
## Wolb:Temp:Dose 24.034 4 8.0729 1.61e-05 ***
## Residuals
                59.543 80
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(mod.log)
##
## Call:
## lm(formula = logRatio ~ Wolb * Temp * Dose, data = DCV_bytemp)
##
## Residuals:
             1Q Median
##
      Min
                              3Q
                                     Max
```

```
## -2.8369 -0.2048 0.0012 0.1655 3.1067
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            -3.7890
                                        0.3858 -9.821 2.16e-15 ***
                                        0.5456 -1.093 0.27762
## WolbWolb+
                            -0.5964
## Temp25C
                             3.1187
                                        0.5456
                                                5.716 1.81e-07 ***
## DoseE6
                             1.2352
                                        0.5456
                                                 2.264 0.02629 *
## DoseE7
                             3.5966
                                        0.5456
                                                 6.592 4.27e-09 ***
## DoseE8
                             4.0454
                                        0.5456
                                                7.414 1.12e-10 ***
## DoseE9
                             4.3099
                                        0.5456
                                                 7.899 1.28e-11 ***
                                        0.7716 -2.901 0.00481 **
## WolbWolb+:Temp25C
                            -2.2382
## WolbWolb+:DoseE6
                            -1.5190
                                        0.7716 -1.969 0.05247
## WolbWolb+:DoseE7
                            -3.2261
                                        0.7716 -4.181 7.38e-05 ***
## WolbWolb+:DoseE8
                                        0.7716 -4.456 2.68e-05 ***
                            -3.4387
## WolbWolb+:DoseE9
                             -2.5312
                                        0.7716 -3.280 0.00154 **
                                        0.7716 -0.375 0.70899
## Temp25C:DoseE6
                            -0.2890
## Temp25C:DoseE7
                            -2.0023
                                        0.7716 -2.595 0.01125 *
                                        0.7716 -3.190 0.00203 **
## Temp25C:DoseE8
                            -2.4612
## Temp25C:DoseE9
                             -2.8632
                                        0.7716 -3.711 0.00038 ***
## WolbWolb+:Temp25C:DoseE6
                             2.0791
                                        1.0913
                                                1.905 0.06035 .
## WolbWolb+:Temp25C:DoseE7
                                        1.0913
                                                 4.273 5.28e-05 ***
                             4.6631
## WolbWolb+:Temp25C:DoseE8
                                                 4.695 1.09e-05 ***
                             5.1238
                                        1.0913
                                        1.0913
                                                 4.206 6.74e-05 ***
## WolbWolb+:Temp25C:DoseE9
                             4.5895
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.8627 on 80 degrees of freedom
## Multiple R-squared: 0.8649, Adjusted R-squared: 0.8328
## F-statistic: 26.94 on 19 and 80 DF, p-value: < 2.2e-16
```

Interaction between Wolbachia, Dose, and Temperature

```
#Least square means
#effect of Wolbachia at different doses, at different temperatures
lsm_bywolb.log<-lsmeans::lsmeans(mod.log,pairwise~Wolb|Dose:Temp,adj="none")
summary(lsm_bywolb.log,by=NULL,adj="holm")</pre>
```

```
## $1smeans
## Wolb Dose Temp lsmean
                              SE df lower.CL upper.CL
## Wolb- E5
               18C -3.789 0.386 80
                                      -4.994
                                               -2.584
## Wolb+ E5
               18C
                   -4.385 0.386 80
                                      -5.590
                                               -3.181
   Wolb- E6
               18C
                   -2.554 0.386 80
                                      -3.758
                                               -1.349
##
##
  Wolb+ E6
               18C
                   -4.669 0.386 80
                                      -5.874
                                               -3.465
  Wolb- E7
               18C
                   -0.192 0.386 80
                                      -1.397
                                               1.012
##
  Wolb+ E7
               18C
                   -4.015 0.386 80
                                      -5.219
                                               -2.810
##
   Wolb- E8
               18C
                     0.256 0.386 80
                                      -0.948
                                                1.461
## Wolb+ E8
                                      -4.983
               18C
                  -3.779 0.386 80
                                               -2.574
## Wolb- E9
               18C
                     0.521 0.386 80
                                      -0.684
                                               1.725
## Wolb+ E9
               18C
                   -2.607 0.386 80
                                      -3.811
                                               -1.402
## Wolb- E5
               25C
                   -0.670 0.386 80
                                      -1.875
                                                0.534
                                      -4.710
## Wolb+ E5
               25C -3.505 0.386 80
                                               -2.300
```

```
Wolb- E6
               25C
                     0.276 0.386 80
                                       -0.929
                                                 1.480
                    -1.999 0.386 80
##
   Wolb+ E6
               25C
                                       -3.203
                                                -0.794
                                       -0.281
                                                 2.128
##
  Wolb- E7
               25C
                     0.924 0.386 80
  Wolb+ E7
               25C
                    -0.474 0.386 80
                                       -1.678
                                                 0.731
##
##
   Wolb- E8
               25C
                     0.914 0.386 80
                                       -0.291
                                                 2.118
                                       -1.440
                                                 0.969
##
  Wolb+ E8
               25C
                    -0.236 0.386 80
                     0.776 0.386 80
                                       -0.428
   Wolb- E9
               25C
                                                 1.981
    Wolb+ E9
                                       -1.205
##
               25C
                     0.000 0.386 80
                                                 1.205
##
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 20 estimates
##
## $contrasts
##
  contrast
                  Dose Temp estimate
                                         SE df t.ratio p.value
## Wolb- - Wolb+ E5
                       18C
                                                       0.3173
                                0.596 0.546 80 1.093
##
    Wolb- - Wolb+ E6
                       18C
                                2.115 0.546 80 3.877
                                                       0.0011
                       18C
                                3.822 0.546 80 7.006
## Wolb- - Wolb+ E7
                                                       <.0001
## Wolb- - Wolb+ E8
                       18C
                                4.035 0.546 80 7.395
                                                       <.0001
## Wolb- - Wolb+ E9
                       18C
                                3.128 0.546 80 5.732
                                                       < .0001
## Wolb- - Wolb+ E5
                       25C
                                2.835 0.546 80 5.195
                                                       < .0001
## Wolb- - Wolb+ E6
                       25C
                                2.275 0.546 80 4.169
                                                       0.0005
## Wolb- - Wolb+ E7
                                1.398 0.546 80 2.561
                                                       0.0492
                       25C
## Wolb- - Wolb+ E8
                       25C
                                1.150 0.546 80 2.107
                                                       0.1148
   Wolb- - Wolb+ E9
                       25C
                                0.776 0.546 80 1.423
##
                                                       0.3173
##
## P value adjustment: holm method for 10 tests
```

Wolbachia has an effect at most doses and temperatures combinations. At 18°C Wolbachia effect is significant at all doses except lowest one. At 25°C Wolbachia effect is significant at the three lowest doses (out of 5) doses.

```
#effect of Wolbachia at different temperatures
lsm_bywolbtemp.log<-lsmeans::lsmeans(mod.log,pairwise~Wolb|Temp,adj="none")
## NOTE: Results may be misleading due to involvement in interactions
summary(lsm_bywolbtemp.log,by=NULL,adj="holm")
## $1smeans
                        SE df lower.CL upper.CL
  Wolb Temp 1smean
  Wolb- 18C -1.152 0.173 80 -1.59250
                                          -0.711
              -3.891 0.173 80 -4.33193
                                          -3.450
  Wolb+ 18C
## Wolb- 25C
               0.444 0.173 80 0.00302
                                          0.885
              -1.243 0.173 80 -1.68354
##
   Wolb+ 25C
                                         -0.802
##
## Results are averaged over the levels of: Dose
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 4 estimates
##
## $contrasts
## contrast
                  Temp estimate
                                  SE df t.ratio p.value
## Wolb- - Wolb+ 18C
                          2.74 0.244 80 11.227 <.0001
## Wolb- - Wolb+ 25C
                          1.69 0.244 80 6.912 <.0001
##
```

```
## Results are averaged over the levels of: Dose
## P value adjustment: holm method for 2 tests
#fold difference 18C
log_bywolbtemp_18C <- summary(lsm_bywolbtemp.log,by=NULL,adj="holm")$contrasts[1,3]
'^'(10,log_bywolbtemp_18C)
## [1] 548.8167
#fold difference 25C
log_bywolbtemp_25C <- summary(lsm_bywolbtemp.log,by=NULL,adj="holm")$contrasts[2,3]
'^'(10,log_bywolbtemp_25C)
## [1] 48.5923
#Directly test the differences
contrast(lsm_bywolbtemp.log$contrasts,"pairwise",by="contrast")
## contrast = Wolb- - Wolb+:
## contrast1 estimate
                         SE df t.ratio p.value
## 18C - 25C
                 1.05 0.345 80 3.051
                                       0.0031
##
## Results are averaged over the levels of: Dose
On average Wolbachia gives more resistance at 18°C
#effect of temp at different doses and Wolb presence
lsm_byTemp.log<-lsmeans::lsmeans(mod.log,pairwise~Temp|Dose:Wolb,adj="none")
summary(lsm_byTemp.log,by=NULL,adj="holm")
## $1smeans
##
  Temp Dose Wolb lsmean
                             SE df lower.CL upper.CL
             Wolb- -3.789 0.386 80
                                              -2.584
## 18C E5
                                     -4.994
## 25C E5
             Wolb- -0.670 0.386 80
                                     -1.875
                                               0.534
             Wolb- -2.554 0.386 80
## 18C E6
                                     -3.758
                                              -1.349
## 25C E6
             Wolb- 0.276 0.386 80
                                     -0.929
                                               1.480
##
  18C E7
             Wolb- -0.192 0.386 80
                                     -1.397
                                               1.012
   25C E7
##
             Wolb- 0.924 0.386 80
                                     -0.281
                                               2.128
## 18C E8
             Wolb- 0.256 0.386 80
                                     -0.948
                                               1.461
## 25C E8
             Wolb- 0.914 0.386 80
                                     -0.291
                                               2.118
## 18C E9
             Wolb- 0.521 0.386 80
                                     -0.684
                                               1.725
##
   25C E9
             Wolb- 0.776 0.386 80
                                     -0.428
                                               1.981
## 18C E5
             Wolb+ -4.385 0.386 80
                                     -5.590
                                              -3.181
##
  25C E5
             Wolb+ -3.505 0.386 80
                                     -4.710
                                              -2.300
  18C E6
             Wolb+ -4.669 0.386 80
##
                                     -5.874
                                              -3.465
##
   25C E6
             Wolb+ -1.999 0.386 80
                                     -3.203
                                              -0.794
##
  18C E7
             Wolb+ -4.015 0.386 80
                                     -5.219
                                              -2.810
  25C E7
             Wolb+ -0.474 0.386 80
                                     -1.678
                                              0.731
## 18C E8
             Wolb+ -3.779 0.386 80
                                     -4.983
                                              -2.574
             Wolb+ -0.236 0.386 80
   25C E8
                                     -1.440
##
                                               0.969
             Wolb+ -2.607 0.386 80
## 18C E9
                                     -3.811
                                              -1.402
   25C E9
             Wolb+ 0.000 0.386 80
                                     -1.205
##
                                               1.205
##
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 20 estimates
```

```
##
## $contrasts
  contrast Dose Wolb estimate
                                    SE df t.ratio p.value
## 18C - 25C E5 Wolb- -3.119 0.546 80 -5.716 <.0001
                 Wolb- -2.830 0.546 80 -5.186 <.0001
##
   18C - 25C E6
## 18C - 25C E7 Wolb- -1.116 0.546 80 -2.046 0.1762
## 18C - 25C E8 Wolb- -0.657 0.546 80 -1.205 0.4636
## 18C - 25C E9
                 Wolb-
                          -0.255 0.546 80 -0.468 0.6409
##
   18C - 25C E5
                 Wolb+
                          -0.880 0.546 80 -1.614 0.3317
## 18C - 25C E6
                 Wolb+
                          -2.671 0.546 80 -4.894 <.0001
## 18C - 25C E7
                  Wolb+
                          -3.541 0.546 80 -6.490 <.0001
## 18C - 25C E8
                  Wolb+
                          -3.543 0.546 80 -6.493 <.0001
## 18C - 25C E9
                  Wolb+
                          -2.607 0.546 80 -4.777 <.0001
##
## P value adjustment: holm method for 10 tests
#average effect of temperature
lsm_byTemponly.log<-lsmeans::lsmeans(mod.log,pairwise~Temp,adj="none")</pre>
## NOTE: Results may be misleading due to involvement in interactions
summary(lsm_byTemponly.log,by=NULL,adj="holm")
## $1smeans
## Temp lsmean
                  SE df lower.CL upper.CL
   18C -2.521 0.122 80
                          -2.800
                                   -2.243
## 25C -0.399 0.122 80
                          -0.678
                                   -0.121
##
## Results are averaged over the levels of: Wolb, Dose
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
##
## $contrasts
## contrast estimate
                         SE df t.ratio p.value
## 18C - 25C
              -2.12 0.173 80 -12.298 <.0001
##
## Results are averaged over the levels of: Wolb, Dose
On average DCV titres are lower at 18°C than 25°C
#average effect of Wolbachia
lsm_byWolbonly.log<-lsmeans::lsmeans(mod.log,pairwise~Wolb,adj="none")</pre>
## NOTE: Results may be misleading due to involvement in interactions
summary(lsm_byWolbonly.log,by=NULL,adj="holm")
## $1smeans
## Wolb lsmean
                   SE df lower.CL upper.CL
## Wolb- -0.354 0.122 80
                           -0.633 -0.0751
## Wolb+ -2.567 0.122 80
                           -2.846 -2.2881
## Results are averaged over the levels of: Temp, Dose
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 2 estimates
```

```
##
## $contrasts
## contrast estimate SE df t.ratio p.value
## Wolb- - Wolb+ 2.21 0.173 80 12.826 <.0001
##
## Results are averaged over the levels of: Temp, Dose</pre>
```

Figure 1C

Wolbachia levels post-infection at different temperatures

```
wolb_DCV<-fread("dataset_s3.txt")</pre>
unique(wolb_DCV$Treatment)
## [1] "buffer" "CTRL"
                          "DCV"
wolb_DCV[,pre_post:=interaction(Pre_Temp,Post_Temp,sep="_")][,inter:=droplevels(interaction(Treatment,D
wolb_DCV[,logWolb:=log10(Wolb)][,inter:=relevel(inter, "CTRL.day3.25C_18C")]
wolb_DCV<-wolb_DCV[,lapply(.SD,char_asfactor)]</pre>
#remove day 0 from analysis
wolb_DCV_day3 <- filter(wolb_DCV, Day != "day0")</pre>
head(wolb_DCV)
##
                  Sample Treatment Day Pre_Temp Post_Temp
                                                                  Wolb pre_post
## 1: buffer_day_3_18C_a
                            buffer day3
                                              25C
                                                         18C 1.4373219
                                                                        25C_18C
## 2: buffer_day_3_18C_b
                            buffer day3
                                              25C
                                                         18C 1.5426671
                                                                        25C_18C
## 3: buffer_day_3_18C_c
                                              25C
                                                                        25C_18C
                            buffer day3
                                                         18C 1.5763952
## 4: buffer_day_3_18C_d
                            buffer day3
                                              25C
                                                         18C 1.3177769
                                                                        25C 18C
## 5: buffer day 3 18C e
                            buffer day3
                                              25C
                                                         18C 1.0030623
                                                                        25C 18C
## 6: buffer_day_3_25C_a
                            buffer day3
                                              25C
                                                         25C 0.9432642
                                                                        25C_25C
##
                                logWolb
                    inter
## 1: buffer.day3.25C_18C
                           0.157554047
## 2: buffer.day3.25C_18C
                           0.188272227
## 3: buffer.day3.25C_18C
                           0.197665103
## 4: buffer.day3.25C_18C
                           0.119841880
## 5: buffer.day3.25C_18C
                           0.001327906
## 6: buffer.day3.25C_25C -0.025366649
```

```
#lm
wolb_model<-lm(logWolb~Treatment*Post_Temp,data=wolb_DCV_day3)
Anova(wolb_model)

## Anova Table (Type II tests)
##
## Response: logWolb
## Sum Sq Df F value Pr(>F)
## Treatment 0.016584 2 0.8847 0.4259
## Post_Temp 0.000217 1 0.0232 0.8803
## Treatment:Post_Temp 0.013996 2 0.7466 0.4846
## Residuals 0.224945 24
```

No effect of DCV infection or post-infection temperature on Wolbachia levels

Figure 1D

Figure 2 and S1

Effect of different pre and post-infection temperatures on survival

```
#How many individuals were tested
ftable(xtabs(~Pre_Temp+Post_Temp+Wolb,surv_pre_post))
##
                      Wolb Wolb+ Wolb-
## Pre Temp Post Temp
## 18
            18
                             100
                                   100
##
            25
                             100
                                   100
## 25
            18
                             100
                                   100
            25
##
                             100
                                   100
ftable(xtabs(~Pre_Temp+Post_Temp+Wolb,surv_cyc))
                      Wolb Wolb- Wolb+
##
## Pre_Temp Post_Temp
                             100
                                 100
## cycling cycling
##Data analysis
# Full model
cox_pre_post_full<-coxme(Surv(Time,Status)~Wolb*Pre_Temp*Post_Temp+(1|RepFull),</pre>
                      surv_pre_post)
Anova(cox_pre_post_full)
## Analysis of Deviance Table (Type II tests)
## Response: Surv(Time, Status)
##
                                Chisq Pr(>Chisq)
                          Df
                           1 18.4874 1.710e-05 ***
## Wolb
## Pre_Temp
                           1 16.3617 5.233e-05 ***
## Post Temp
                           1 30.5079 3.325e-08 ***
## Wolb:Pre Temp
                           1 7.0238
                                       0.008043 **
## Wolb:Post_Temp
                           1 0.0049
                                       0.944290
## Pre_Temp:Post_Temp
                           1 0.0596
                                        0.807088
## Wolb:Pre_Temp:Post_Temp 1 2.3646
                                       0.124117
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#simpler model
cox_pre_post_final<-coxme(Surv(Time,Status)~Wolb*Pre_Temp+Post_Temp+(1 | RepFull),</pre>
                      surv_pre_post)
Anova(cox_pre_post_final)
## Analysis of Deviance Table (Type II tests)
##
## Response: Surv(Time, Status)
                     Chisq Pr(>Chisq)
               \mathtt{Df}
                 1 18.2611 1.926e-05 ***
## Wolb
## Pre_Temp
                 1 16.1596 5.822e-05 ***
## Post_Temp
                 1 29.8053 4.777e-08 ***
## Wolb:Pre_Temp 1 6.7722
                            0.009259 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(cox_pre_post_final)
## Cox mixed-effects model fit by maximum likelihood
##
     Data: surv_pre_post
##
     events, n = 500, 800
```

```
##
     Iterations= 14 77
##
                      NULL Integrated
                                         Fitted
## Log-likelihood -3137.045 -2996.654 -2909.238
##
##
                     Chisq
                              df p
                                      AIC
## Integrated loglik 280.78 5.00 0 270.78 249.71
## Penalized loglik 455.61 60.98 0 333.65 76.64
## Model: Surv(Time, Status) ~ Wolb * Pre_Temp + Post_Temp + (1 | RepFull)
## Fixed coefficients
##
                             coef exp(coef) se(coef)
## WolbWolb-
                        0.3450515 1.4120627 0.2736339 1.26 2.1e-01
## Pre_Temp25
                       -1.3396287 0.2619429 0.2876196 -4.66 3.2e-06
                        1.0147959 2.7588002 0.1858797 5.46 4.8e-08
## Post_Temp25
## WolbWolb-:Pre_Temp25 1.0392922 2.8272153 0.3993688 2.60 9.3e-03
##
## Random effects
## Group Variable Std Dev
                               Variance
## RepFull Intercept 0.7535451 0.5678303
```

Significant interaction between Wolbachia and pre-infection temperature

```
#Hazards ratios between wolb+ and wolb- at both temp
pre_temp_Wolb<-lsmeans::lsmeans(cox_pre_post_final,pairwise~Wolb|Pre_Temp)</pre>
summary(pre temp Wolb,by=NULL,adj="holm")
## $1smeans
## Wolb Pre_Temp lsmean
                            SE df asymp.LCL asymp.UCL
                   0.237 0.170 Inf
                                                 0.661
## Wolb+ 18
                                      -0.187
                                                 1.003
## Wolb- 18
                   0.583 0.168 Inf
                                       0.162
## Wolb+ 25
                                      -1.548
                  -1.102 0.179 Inf
                                                -0.656
## Wolb- 25
                   0.282 0.170 Inf
                                      -0.143
                                                 0.708
## Results are averaged over the levels of: Post_Temp
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 4 estimates
##
## $contrasts
## contrast
                 Pre Temp estimate
                                      SE df z.ratio p.value
## Wolb+ - Wolb- 18
                          -0.345 0.274 Inf -1.261 0.2073
## Wolb+ - Wolb- 25
                            -1.384 0.287 Inf -4.823 <.0001
##
## Results are averaged over the levels of: Post_Temp
## Results are given on the log (not the response) scale.
## P value adjustment: holm method for 2 tests
```

Wolbachia only makes a difference if pre-infection temperature is $25^{\rm o}{\rm C}$

```
#direct comparison of Wolb effect at different temp
contrast(pre_temp_Wolb$contrasts, "pairwise", by="contrast")
```

```
## contrast = Wolb+ - Wolb-:
## contrast1 estimate     SE df z.ratio p.value
## 18 - 25     1.04 0.399 Inf 2.602     0.0093
##
## Results are averaged over the levels of: Post_Temp
## Results are given on the log (not the response) scale.
```

Wolbachia effect is significantly different between pre-infection temperatures

```
#Hazards ratios between pre-temps when wolb is either present or not
Wolb_pre_temp<-lsmeans::lsmeans(cox_pre_post_final,pairwise~Pre_Temp|Wolb)
summary(Wolb_pre_temp,by=NULL,adj="holm")</pre>
```

```
## $1smeans
   Pre_Temp Wolb lsmean
                             SE df asymp.LCL asymp.UCL
##
   18
             Wolb+ 0.237 0.170 Inf
                                       -0.187
                                                  0.661
##
   25
             Wolb+ -1.102 0.179 Inf
                                       -1.548
                                                  -0.656
##
   18
             Wolb- 0.583 0.168 Inf
                                        0.162
                                                   1.003
             Wolb- 0.282 0.170 Inf
##
   25
                                       -0.143
                                                  0.708
##
## Results are averaged over the levels of: Post Temp
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 4 estimates
##
## $contrasts
   contrast Wolb estimate
                               SE
                                   df z.ratio p.value
##
   18 - 25 Wolb+
                       1.34 0.288 Inf 4.658
                                              <.0001
##
   18 - 25 Wolb-
                       0.30 0.276 Inf 1.090
                                               0.2759
##
## Results are averaged over the levels of: Post_Temp
## Results are given on the log (not the response) scale.
## P value adjustment: holm method for 2 tests
```

Pre-infection temperature only makes a difference if Wolbachia is present

Figures 2A and 2B

DCV levels and different pre-infection temperatures

```
#load data
pre_DCV<-fread("dataset_s5.txt")</pre>
pre_DCV<-pre_DCV[,pre_wolb:=paste(Pre_inf,Wolb,sep="_")][,lapply(.SD,char_asfactor)]</pre>
pre_DCV<-pre_DCV[,logRatio:=log10(Ratio)]</pre>
pre_DCV$Pre_inf<-as.factor(as.character(pre_DCV$Pre_inf))</pre>
head(pre_DCV)
                                   Ratio Rep pre_wolb logRatio
     Pre_inf Wolb Sample_name
##
## 1:
          18 Wolb+
                    CS 18 10 662.4316
                                          a 18_Wolb+ 2.821141
## 2:
          18 Wolb+
                      CS 18 5 1045.3680
                                          a 18 Wolb+ 3.019269
## 3:
          18 Wolb+
                       CS 18 6 713.7923 a 18_Wolb+ 2.853572
## 4:
          18 Wolb+
                       CS 18 7 1820.3450
                                          a 18_Wolb+ 3.260154
## 5:
          18 Wolb+
                    CS 18 8 1001.5730 a 18 Wolb+ 3.000683
                    CS 18 9 539.2514 a 18_Wolb+ 2.731791
## 6:
          18 Wolb+
#lmer
mod_DCV<-lmer(logRatio~Pre_inf*Wolb + (1|Rep),data=pre_DCV)</pre>
Anova(mod_DCV)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: logRatio
##
                 Chisq Df Pr(>Chisq)
                45.093 1 1.879e-11 ***
## Pre inf
               145.361 1 < 2.2e-16 ***
## Wolb
## Pre_inf:Wolb 33.996 1 5.522e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(mod_DCV)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: logRatio ~ Pre_inf * Wolb + (1 | Rep)
##
     Data: pre_DCV
##
## REML criterion at convergence: 148.4
## Scaled residuals:
      Min
              1Q Median
                               3Q
                                      Max
## -4.3523 -0.2458 0.1647 0.4542 2.2721
##
## Random effects:
## Groups
            Name
                        Variance Std.Dev.
## Rep
             (Intercept) 1.3033 1.142
                        0.5374
                                 0.733
## Residual
## Number of obs: 64, groups: Rep, 2
##
## Fixed effects:
##
                      Estimate Std. Error
                                              df t value Pr(>|t|)
## (Intercept)
                       3.1264 0.8281 1.0776 3.775 0.151
## Pre_inf25
                       -0.1621
                                 0.2592 59.0000 -0.625
                                                             0.534
```

There is interaction between pre-infection temperature and Wolbachia

```
lsm_pre_DCV_wolb<-lsmeans::lsmeans(mod_DCV,pairwise~Wolb|Pre_inf,adj="none")
summary(lsm_pre_DCV_wolb,by=NULL,adj="holm")
## $1smeans
## Wolb Pre_inf lsmean
                                df lower.CL upper.CL
                           SE
## Wolb- 18
                 3.126 0.828 1.08
                                      -29.1
                                                34.3
## Wolb+ 18
                 1.985 0.828 1.08
                                      -30.3
## Wolb- 25
                  2.964 0.828 1.08
                                      -29.3
                                                35.2
## Wolb+ 25
                 -0.314 0.828 1.08
                                      -32.6
                                                32.0
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 4 estimates
##
## $contrasts
## contrast
                 Pre_inf estimate
                                     SE df t.ratio p.value
## Wolb- - Wolb+ 18
                             1.14 0.259 59 4.402 <.0001
## Wolb- - Wolb+ 25
                             3.28 0.259 59 12.648 <.0001
## Degrees-of-freedom method: kenward-roger
## P value adjustment: holm method for 2 tests
#fold changes
'^'(10,summary(lsm_pre_DCV_wolb,by=NULL,adj="holm")$contrasts$estimate)
        13.83501 1896.84848
#direct comparison of Wolb effect at different temp
contrast(lsm_pre_DCV_wolb$contrasts,"pairwise",by="contrast")
## contrast = Wolb- - Wolb+:
## contrast1 estimate
                       SE df t.ratio p.value
## 18 - 25 -2.14 0.367 59 -5.831 <.0001
##
## Degrees-of-freedom method: kenward-roger
```

Wolbachia increases resistance at both pre-infection temperatures. But Wolbachia induces more resistance at pre-infection temperature of $25^{\rm o}{\rm C}$

```
#differences between pre-temp in absence or presence of Wolb
lsm_pre_DCV_temp<-lsmeans::lsmeans(mod_DCV,pairwise~Pre_inf|Wolb,adj="none")</pre>
summary(lsm pre DCV temp,by=NULL,adj="holm")
## $1smeans
   Pre_inf Wolb lsmean
                                 df lower.CL upper.CL
##
                            SE
##
            Wolb- 3.126 0.828 1.08
                                       -29.1
                                                  35.4
##
            Wolb- 2.964 0.828 1.08
                                       -29.3
                                                  35.2
                                                  34.3
##
   18
            Wolb+ 1.985 0.828 1.08
                                       -30.3
   25
            Wolb+ -0.314 0.828 1.08
                                       -32.6
                                                  32.0
##
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 4 estimates
##
## $contrasts
   contrast Wolb estimate
                               SE df t.ratio p.value
   18 - 25 Wolb-
                      0.162 0.259 59 0.625
                                             0.5341
##
   18 - 25 Wolb+
                      2.299 0.259 59 8.871
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: holm method for 2 tests
```

Pre-infection temperature only changes resistance when Wolbachia is present

Figures 2C and S1

Wolbachia levels and different pre-infection temperatures

```
##Fig 2D
#Wolbachia levels

pre_Wolb<-fread("dataset_s6.txt")[,lapply(.SD,char_asfactor)]
pre_Wolb[,Wolb:=rel_wolb][,logWolb:=log10(Wolb)]</pre>
```

```
##Data Analysis
#Linear model
pre_wolb_lm<-lm(logWolb~Temp, data=pre_Wolb)</pre>
summary(pre_wolb_lm)
##
## Call:
## lm(formula = logWolb ~ Temp, data = pre_Wolb)
##
## Residuals:
##
        Min
                   1Q
                         Median
                                        3Q
                                                 Max
## -0.103011 -0.047381 0.002781 0.047650 0.094834
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.002111
                          0.018891 -0.112
## Temp25C
               0.155470
                          0.026716
                                    5.819 1.63e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.05974 on 18 degrees of freedom
## Multiple R-squared: 0.653, Adjusted R-squared: 0.6337
## F-statistic: 33.87 on 1 and 18 DF, p-value: 1.635e-05
Anova(pre_wolb_lm)
## Anova Table (Type II tests)
##
## Response: logWolb
              Sum Sq Df F value
                                   Pr(>F)
            0.120854 1 33.866 1.635e-05 ***
## Residuals 0.064235 18
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#estimated fold differences in Wolbachia levels between pre-temp
'^'(10,pre_wolb_lm$coefficients)
## (Intercept)
                   Temp25C
                1.4304396
    0.9951519
1 / '^'(10,pre_wolb_lm$coefficients)
## (Intercept)
                   Temp25C
     1.0048717
                0.6990858
```

Wolbachia levels differ between development temperatures, are higher at higher temperature

Figures 2D

Figure 3 and S2-4

Effect of pre-infection temperature on survival to DCV infection in different host and *Wolbachia* genetic backgrounds

```
#Figure 3 A and B
genotypes <- fread("dataset_s7.txt")

genotypes[,Gen:=gsub("c.*","",Gen)][,Gen:=tolower(Gen)][,RepFull:=paste(Gen,Dose,Preinf,Wolbachia,Test,Genotypes[,PlotSeries:=paste(Gen,Test,sep="_")][,Condition:=paste(Wolbachia,Preinf)]
genotypes<-genotypes[,lapply(.SD,char_asfactor)][,Preinf:=as.factor(Preinf)]

genotypes_toplot<-data.table(fitsurv(.(Gen,Wolbachia,Preinf,Dose),genotypes))

##Diagnostics
#How many individuals were tested
ftable(xtabs(~Dose+Wolbachia+Gen+Test+Preinf,genotypes))</pre>
```

##					Preinf	18	25
##	Dose	Wolbachia	Gen	Test			
##	E7	Wol-	alj1	01_12_2014		40	40
##				27_11_2014		40	40
##			w20	01_12_2014		40	40
##				27_11_2014		40	40
##		Wol+	alj1	01_12_2014		40	40
##				27_11_2014		40	40
##			w20	01_12_2014		40	40
##				27_11_2014		40	40
##	E8	Wol-	alj1	01_12_2014		40	40
##				27_11_2014		40	40
##			w20	01_12_2014		40	40
##				27_11_2014		40	40
##		Wol+	alj1	01_12_2014		40	40
##				27_11_2014		40	40
##			w20	01_12_2014		40	40

```
##
                       27_11_2014
                                         44 40
## F.9
       Wol-
                 alj1 01_12_2014
                                         40 40
                                         40 40
##
                       27 11 2014
##
                  w20 01_12_2014
                                         40 40
##
                       27_11_2014
                                         40 40
##
       Wol+
                  alj1 01 12 2014
                                         40 40
##
                       27 11 2014
                                         40 40
                  w20 01_12_2014
##
                                         40 40
##
                       27_11_2014
                                         40 40
##Models
#Analyse one genotype at a time
#Aljezur flies, Cox model
#Full model
alj_all<-genotypes[Gen=="alj1"]
alj_cox_full<-coxme(Surv(Time,Status)~Wolbachia*Dose*Preinf+(1|Test/RepFull),data=alj_all)
Anova(alj_cox_full,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
##
                         LR Chisq Df Pr(>Chisq)
## Wolbachia
                           22.498 1 2.104e-06 ***
## Dose
                           50.914 2 8.793e-12 ***
## Preinf
                            5.258 1
                                        0.02184 *
## Wolbachia:Dose
                            3.009 2
                                        0.22211
## Wolbachia:Preinf
                           27.037 1 1.996e-07 ***
## Dose:Preinf
                            0.729 2
                                        0.69451
## Wolbachia:Dose:Preinf
                           1.407 2
                                        0.49485
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#simplified model
alj_cox_model2<-coxme(Surv(Time,Status)~Wolbachia*Preinf+Dose+(1|Test/RepFull),data=alj_all)
Anova(alj_cox_model2,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
##
                   LR Chisq Df Pr(>Chisq)
## Wolbachia
                      22.376 1 2.242e-06 ***
## Preinf
                       5.223 1
                                    0.0223 *
                      50.914 2 8.793e-12 ***
## Dose
## Wolbachia:Preinf
                      26.183 1 3.105e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(alj cox model2)
## Cox mixed-effects model fit by maximum likelihood
##
     Data: alj_all
##
     events, n = 842, 960
     Iterations= 20 105
##
##
                       NULL Integrated
                                          Fitted
                              -5049.27 -4982.198
## Log-likelihood -5188.363
##
##
                      Chisq
                               df p
                                       AIC
                                              BIC
```

```
## Integrated loglik 278.19 7.00 0 264.19 231.03
## Penalized loglik 412.33 55.92 0 300.48 35.64
## Model: Surv(Time, Status) ~ Wolbachia * Preinf + Dose + (1 | Test/RepFull)
## Fixed coefficients
                                 coef exp(coef) se(coef)
##
## WolbachiaWol+
                         -0.04456881 0.9564098 0.1475228 -0.30 7.6e-01
                          0.29156245 1.3385172 0.1483443 1.97 4.9e-02
## Preinf25
## DoseE8
                          0.57182227 1.7714923 0.1307041 4.37 1.2e-05
                          1.05424879 2.8698185 0.1299828 8.11 5.6e-16
## DoseE9
## WolbachiaWol+:Preinf25 -1.14555241 0.3180482 0.2109993 -5.43 5.7e-08
## Random effects
                Variable
## Group
                            Std Dev
                                       Variance
## Test/RepFull (Intercept) 0.38367135 0.14720370
                 (Intercept) 0.17308333 0.02995784
```

Interaction between Wolbachia and temperature in Aljezur1 flies

```
#Test the effect of wolbachia at different pre-infection temperature
alj_cox_contr=lsmeans::lsmeans(alj_cox_model2,pairwise~Wolbachia|Preinf)
summary(alj_cox_contr$contrasts,by=NULL,adj="holm")
               Preinf estimate
  contrast
                                  SE df z.ratio p.value
## Wol- - Wol+ 18
                        0.0446 0.148 Inf 0.302
                                                  0.7626
                        1.1901 0.151 Inf 7.898
                                                  < .0001
## Wol- - Wol+ 25
## Results are averaged over the levels of: Dose
## Results are given on the log (not the response) scale.
## P value adjustment: holm method for 2 tests
#direct comparison of Wolb effect at different temp
contrast(alj_cox_contr$contrasts, "pairwise", by="contrast")
## contrast = Wol- - Wol+:
## contrast1 estimate
                         SE df z.ratio p.value
                -1.15 0.211 Inf -5.429 <.0001
## 18 - 25
## Results are averaged over the levels of: Dose
## Results are given on the log (not the response) scale.
```

Wolbachia only has an effect if flies raised at 25°C

```
#W20 flies, Cox model
#Full model
w20_all<-genotypes[Gen=="w20"]
w20_cox_full<-coxme(Surv(Time,Status)~Wolbachia*Dose*Preinf+(1|Test/RepFull),data=w20_all)
Anova(w20_cox_full,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
## LR Chisq Df Pr(>Chisq)
```

```
## Wolbachia
                          80.541 1 < 2.2e-16 ***
## Dose
                          53.989 2 1.889e-12 ***
## Preinf
                          19.556 1 9.771e-06 ***
## Wolbachia:Dose
                          1.083 2
                                        0.5819
## Wolbachia:Preinf
                          29.042 1 7.081e-08 ***
## Dose:Preinf
                          0.777 2
                                       0.6779
## Wolbachia:Dose:Preinf
                          0.836 2
                                        0.6584
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#Simplified model
w20_cox_model2<-coxme(Surv(Time,Status)~Wolbachia*Preinf+Dose+(1|Test/RepFull),data=w20_all)
Anova(w20_cox_model2,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
                   LR Chisq Df Pr(>Chisq)
## Wolbachia
                     80.263 1 < 2.2e-16 ***
## Preinf
                     19.451 1 1.032e-05 ***
                     53.989 2 1.889e-12 ***
## Dose
## Wolbachia:Preinf 28.363 1 1.006e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(w20_cox_model2)
## Cox mixed-effects model fit by maximum likelihood
    Data: w20 all
##
    events, n = 734, 964
##
    Iterations= 7 51
                     NULL Integrated
## Log-likelihood -4639.69 -4246.389 -4142.787
##
##
                     Chisq
                              df p
                                     AIC
## Integrated loglik 786.60 7.00 0 772.60 740.41
## Penalized loglik 993.81 72.38 0 849.04 516.18
## Model: Surv(Time, Status) ~ Wolbachia * Preinf + Dose + (1 | Test/RepFull)
## Fixed coefficients
##
                                coef exp(coef) se(coef)
## WolbachiaWol+
                         -1.21292804 0.2973254 0.2127377 -5.70 1.2e-08
                          0.01231417 1.0123903 0.2240180 0.05 9.6e-01
## Preinf25
## DoseE8
                          1.18444422 3.2688696 0.2018180 5.87 4.4e-09
## DoseE9
                          1.60143882 4.9601641 0.1982039 8.08 6.7e-16
## WolbachiaWol+:Preinf25 -1.80380488 0.1646711 0.3303489 -5.46 4.8e-08
##
## Random effects
                Variable
                            Std Dev
## Test/RepFull (Intercept) 0.6762892716 0.4573671789
                (Intercept) 0.0201313478 0.0004052712
## Test
```

Interaction between Wolbachia and temperature in W20 flies

```
#Test the effect of wolbachia at different pre-infection temperature (minimal model)**
w20_cox_contr=lsmeans(w20_cox_model2,pairwise~Wolbachia|Preinf)
```

summary(w20_cox_contr\$contrasts,by=NULL,adj="holm") Preinf estimate ## contrast SE df z.ratio p.value 1.21 0.213 Inf 5.702 <.0001 ## Wol- - Wol+ 18 Wol- - Wol+ 25 3.02 0.235 Inf 12.821 <.0001 ## ## ## Results are averaged over the levels of: Dose ## Results are given on the log (not the response) scale. ## P value adjustment: holm method for 2 tests #direct comparison of Wolb effect at different temp contrast(w20_cox_contr\$contrasts,"pairwise",by="contrast") ## contrast = Wol- - Wol+: contrast1 estimate SE df z.ratio p.value -1.8 0.33 Inf -5.460 <.0001 ## 18 - 25 ## ## Results are averaged over the levels of: Dose ## Results are given on the log (not the response) scale. Wolbachia has an effect at both temperatures, effect is stronger in flies raised at 25°C Figures 3A, 3B, S2A, S2B A Aljezur1, DCV Survival $10^7 \, \mathrm{TCID}_{50}/\mathrm{ml}$ $10^8\,\mathrm{TCID}_{50}/\mathrm{ml}$ 109 TCID50/ml 100% 18°C-18°C Wolb-75% 18°C-18°C Wolb+

25°C-18°C Wolb-

25°C-18°C Wolb+

ò

20

15

10

5

10

Days post infection

50%

25%

15

ò

5

10

15

B Oregon-R (W-20), DCV

B Oregon-R (W-20), DCV

Effect of pre-infection temperature on survival to FHV infection

```
###Effect of Pre-temp on FHV
##Data import
surv_FHV<-fread("dataset_s8.txt")

surv_FHV<-surv_FHV[,Preinf:=as.factor(Preinf)]
surv_FHV[,RepFull:=interaction(Preinf,Wolbachia,Dose,Replicate,sep = "_")][,Condition:=paste(Wolbachia,Surv_FHV<-surv_FHV[,lapply(.SD,char_asfactor)]

##Diagnostics
#How many individuals were tested
ftable(xtabs(~Test+Preinf+Dose+Wolbachia,surv_FHV))</pre>
```

##				Wolbachia	Wol-	Wol+
##	Test	${\tt Preinf}$	Dose			
##	09_02_2015	18	E6		50	51
##			E7		50	50
##			E8		49	50
##			E9		0	0
##		25	E6		49	48
##			E7		50	50
##			E8		50	50
##			E9		0	0
##	21_11_2014	18	E6		0	0
##			E7		50	50
##			E8		50	50
##			E9		50	50
##		25	E6		0	0

```
##
                     E7
                                      50
                                           50
##
                     F.8
                                           50
                                      50
##
                     E9
                                      50
                                           50
#Kill one fly of wolb+ 25-18 E6 sample, in the last day, to allow model to converge
surv FHVa <- surv FHV
surv_FHVa$Status[which(surv_FHVa$Genotype == "CS 25-18 E6")[1]]<-1</pre>
#Data analysis
#Cox models
#Full model
surv_FHV_cox_full<-coxme(Surv(Time,Status)~(Wolbachia*Dose*Preinf)+(1|Test/RepFull),</pre>
                    data=surv_FHVa)
Anova(surv_FHV_cox_full,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
                         LR Chisq Df Pr(>Chisq)
## Wolbachia
                          102.003 1
                                      < 2.2e-16 ***
## Dose
                          194.917 3 < 2.2e-16 ***
## Preinf
                           48.565
                                      3.195e-12 ***
                                  1
## Wolbachia:Dose
                            4.409 3
                                        0.22056
## Wolbachia:Preinf
                                      < 2.2e-16 ***
                          143.421
                                  1
## Dose:Preinf
                                        0.81143
                            0.958
                                   3
## Wolbachia:Dose:Preinf
                           10.825 3
                                        0.01271 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

There is a significant interaction between pre-infection temperature, Wolbachia, and dose of infection

```
#effect of Wolb at different temp and doses
surv_FHV_temp_contr=lsmeans::lsmeans(surv_FHV_cox_full,pairwise~Wolbachia|Preinf:Dose)
summary(surv_FHV_temp_contr,by=NULL,adj="holm")
```

```
## $1smeans
## Wolbachia Preinf Dose Ismean
                                    SE df asymp.LCL asymp.UCL
## Wol-
              18
                     E6
                          -1.772 0.313 Inf
                                              -2.698
                                                         -0.846
## Wol+
              18
                          -3.193 0.565 Inf
                                              -4.864
                                                         -1.522
## Wol-
              25
                     E6
                          -1.847 0.326 Inf
                                              -2.812
                                                         -0.882
## Wol+
              25
                     E6
                          -4.268 0.967 Inf
                                              -7.125
                                                         -1.411
## Wol-
              18
                     E7
                                               0.785
                                                          1.604
                           1.195 0.139 Inf
## Wol+
              18
                     E7
                           0.188 0.153 Inf
                                              -0.264
                                                          0.641
## Wol-
              25
                     E7
                           1.134 0.138 Inf
                                               0.725
                                                          1.542
## Wol+
              25
                     E7
                          -2.717 0.387 Inf
                                              -3.862
                                                         -1.572
## Wol-
              18
                     E8
                           2.370 0.140 Inf
                                               1.957
                                                          2.782
## Wol+
              18
                     E8
                           1.598 0.136 Inf
                                               1.197
                                                          1.999
## Wol-
              25
                     E8
                           2.406 0.140 Inf
                                               1.992
                                                          2.820
## Wol+
              25
                     E8
                          -3.132 0.469 Inf
                                              -4.517
                                                        -1.747
## Wol-
                     E9
              18
                           2.441 0.188 Inf
                                               1.887
                                                          2.995
## Wol+
              18
                     E9
                           2.032 0.187 Inf
                                               1.479
                                                          2.585
## Wol-
              25
                     E9
                           2.210 0.187 Inf
                                               1.657
                                                          2.762
## Wol+
              25
                     E9
                          -1.780 0.567 Inf
                                               -3.455
                                                        -0.106
##
```

Results are given on the log (not the response) scale.

```
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 16 estimates
##
## $contrasts
## contrast
               Preinf Dose estimate
                                        SE df z.ratio p.value
## Wol- - Wol+ 18
                      E6
                               1.420 0.660 Inf 2.153 0.0648
## Wol- - Wol+ 25
                               2.421 1.054 Inf 2.297 0.0648
                       E6
## Wol- - Wol+ 18
                       E7
                               1.006 0.186 Inf 5.405 <.0001
                               3.851 0.432 Inf 8.920
## Wol- - Wol+ 25
                       E7
                                                       < .0001
## Wol- - Wol+ 18
                       E8
                               0.772 0.167 Inf 4.632
                                                       <.0001
## Wol- - Wol+ 25
                       E8
                               5.538 0.523 Inf 10.596
                                                       <.0001
## Wol- - Wol+ 18
                       E9
                               0.409 0.229 Inf 1.786 0.0742
                               3.990 0.606 Inf 6.581 <.0001
## Wol- - Wol+ 25
                       E9
##
## Results are given on the log (not the response) scale.
## P value adjustment: holm method for 8 tests
#interaction of Wolb and temp at different doses
surv_FHV_temp_contr_inter=contrast(surv_FHV_temp_contr$contrasts, by=c("contrast", "Dose"), method="pairwi
summary(surv_FHV_temp_contr_inter,by=NULL,adj="holm")
## contrast1 contrast
                          Dose estimate
                                           SE df z.ratio p.value
## 18 - 25
             Wol- - Wol+ E6
                                  -1.00 1.244 Inf -0.805 0.4208
             Wol- - Wol+ E7
                                                         <.0001
## 18 - 25
                                  -2.84 0.469 Inf -6.069
## 18 - 25
              Wol- - Wol+ E8
                                  -4.77 0.544 Inf -8.757
                                                         <.0001
                                  -3.58 0.647 Inf -5.536 <.0001
## 18 - 25
              Wol- - Wol+ E9
## Results are given on the log (not the response) scale.
## P value adjustment: holm method for 4 tests
Wolbachia effect is stronger at pre-infection temperature of 25°C at all doses except 10^6 TCID<sub>50</sub>/ml
#effect of pre-infection temp with and without Wolb
summary(lsmeans::lsmeans(surv_FHV_cox_full,pairwise~Preinf | Dose:Wolbachia),by=NULL,adj = "holm")
## $1smeans
## Preinf Dose Wolbachia 1smean
                                    SE df asymp.LCL asymp.UCL
                                              -2.698
          E6
              Wol-
                          -1.772 0.313 Inf
                                                        -0.846
## 25
           E6
               Wol-
                          -1.847 0.326 Inf
                                              -2.812
                                                        -0.882
## 18
           E7
               Wol-
                           1.195 0.139 Inf
                                               0.785
                                                         1.604
## 25
          E7
               Wol-
                           1.134 0.138 Inf
                                               0.725
                                                         1.542
##
  18
          E8
               Wol-
                           2.370 0.140 Inf
                                              1.957
                                                         2.782
   25
##
          E8
               Wol-
                           2.406 0.140 Inf
                                               1.992
                                                         2.820
##
   18
          E9
               Wol-
                           2.441 0.188 Inf
                                              1.887
                                                         2.995
   25
               Wol-
##
           E9
                           2.210 0.187 Inf
                                              1.657
                                                         2.762
##
   18
           E6
               Wol+
                          -3.193 0.565 Inf
                                              -4.864
                                                        -1.522
##
   25
           E6
               Wol+
                          -4.268 0.967 Inf
                                              -7.125
                                                        -1.411
   18
##
           E7
                Wol+
                           0.188 0.153 Inf
                                              -0.264
                                                         0.641
##
   25
          E7
               Wol+
                          -2.717 0.387 Inf
                                              -3.862
                                                        -1.572
  18
##
          E8
               Wol+
                           1.598 0.136 Inf
                                              1.197
                                                         1.999
##
   25
           E8
                Wol+
                          -3.132 0.469 Inf
                                              -4.517
                                                        -1.747
  18
##
          E9
               Wol+
                           2.032 0.187 Inf
                                               1.479
                                                         2.585
##
   25
           E9
              Wol+
                          -1.780 0.567 Inf
                                              -3.455
                                                        -0.106
##
```

```
## Results are given on the log (not the response) scale.
  Confidence level used: 0.95
   Conf-level adjustment: bonferroni method for 16 estimates
##
##
   $contrasts
##
    contrast Dose Wolbachia estimate
                                             df z.ratio p.value
                                          SE
    18 - 25
                  Wol-
                               0.0746 0.449 Inf
                                                  0.166
                                                         1.0000
##
             E6
                  Wol-
    18 - 25
                               0.0613 0.172 Inf
                                                  0.357
                                                          1.0000
##
             E7
##
    18 - 25
             E8
                  Wol-
                              -0.0364 0.162 Inf -0.224
                                                          1.0000
             E9
##
    18 - 25
                                                  1.021
                                                          1.0000
                  Wol-
                               0.2314 0.227 Inf
##
    18 - 25
             E6
                  Wol+
                               1.0756 1.159 Inf
                                                  0.928
                                                         1.0000
##
    18 - 25
             E7
                  Wol+
                               2.9055 0.436 Inf
                                                  6.660
                                                         <.0001
    18 - 25
                                                  9.109
                                                         < .0001
##
             E8
                  Wol+
                               4.7299 0.519 Inf
    18 - 25
             E9
                               3.8121 0.606 Inf
                                                  6.292
                                                         <.0001
##
                  Wol+
##
## Results are given on the log (not the response) scale.
## P value adjustment: holm method for 8 tests
```

Pre-infection temperature is not significant in the absence of *Wolbachia*. It is significant in the presence of *Wolbachia* at all doses except 10^6 TCID₅₀/ml.

Figures 3C, S2C

Survival with temperature cycling

```
#Cox model
cox_cycling<-coxme(Surv(Time,Status)~Wolb+(1|RepFull),surv_cyc)</pre>
Anova(cox_cycling, test.statistic = "LR")
## Analysis of Deviance Table
## Cox model: response is Surv(Time, Status)
## Terms added sequentially (first to last)
##
##
        loglik Chisq Df Pr(>|Chi|)
## NULL -737.91
## Wolb -725.48 24.867 1 6.142e-07 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(cox_cycling)
## Cox mixed-effects model fit by maximum likelihood
##
    Data: surv cyc
##
     events, n = 156, 200
##
     Iterations= 7 32
                       NULL Integrated
##
                                          Fitted
## Log-likelihood -737.9147 -725.4812 -709.5113
##
##
                     Chisq
                              df
                                          p
                                              AIC
## Integrated loglik 24.87 2.00 3.9828e-06 20.87 14.77
  Penalized loglik 56.81 12.61 1.4132e-07 31.60 -6.85
##
##
## Model: Surv(Time, Status) ~ Wolb + (1 | RepFull)
## Fixed coefficients
##
                   coef exp(coef) se(coef)
## WolbWolb+ -0.6671881 0.5131495 0.2719185 -2.45 0.014
##
## Random effects
## Group
           Variable Std Dev
                               Variance
```

Wolbachia increases survival in cycling temperatures

RepFull Intercept 0.4861021 0.2362953

Figure S3

Effect of development and aging temperature before infection on survival

```
Surv_aging <- fread("dataset_s9.txt")[,lapply(.SD,char_asfactor)]</pre>
Surv_aging<-Surv_aging[,Rep:=paste(Test,Wolbachia, Development_temperature, Aging_temperature,Replicate
Surv_aging$Development_temperature<-as.factor(as.character(Surv_aging$Development_temperature))
Surv_aging$Aging_temperature<-as.factor(as.character(Surv_aging$Aging_temperature))
#Tested individuals
xtabs(~Wolbachia+RepTemp+Test,Surv_aging)
## , , Test = A
##
##
           RepTemp
## Wolbachia 18_18 18_25 25_18 25_25
##
       Wol- 50 50 50 50
                     50 50
                                 49
##
       Wol+
               50
##
##
  , , Test = B
##
##
           RepTemp
## Wolbachia 18_18 18_25 25_18 25_25
       Wol- 50 50 50 50
##
##
       Wol+
               50
                     50
                           50
                                 50
##
## , , Test = C
##
##
           RepTemp
## Wolbachia 18_18 18_25 25_18 25_25
##
       Wol-
               50
                     50
                           50
                                 50
##
       Wol+
               50
                     50
                           50
                                 50
#full model
cox_Surv_aging_full<-coxme(Surv(Time,Status)~Wolbachia*Development_temperature*Aging_temperature+(1|Tes
Anova(cox_Surv_aging_full,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
##
                                                      LR Chisq Df Pr(>Chisq)
## Wolbachia
                                                        75.774 1 < 2.2e-16 ***
                                                        29.275 1 6.279e-08 ***
## Development_temperature
## Aging_temperature
                                                         0.035 1 0.85061
                                                        40.163 1 2.336e-10 ***
## Wolbachia:Development_temperature
## Wolbachia:Aging_temperature
                                                         6.521 1
                                                                   0.01066 *
## Development_temperature:Aging_temperature
                                                         0.633 1
                                                                    0.42637
## Wolbachia:Development_temperature:Aging_temperature
                                                         0.513 1
                                                                     0.47375
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#simpler model
cox_Surv_aging_simple <-coxme(Surv(Time,Status)~Wolbachia*Aging_temperature+Wolbachia*Development_tempe
Anova(cox_Surv_aging_simple,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
##
                                    LR Chisq Df Pr(>Chisq)
                                      75.576 1 < 2.2e-16 ***
```

Wolbachia

```
0.035 1
## Aging_temperature
                                                    0.85061
                                                  6.279e-08 ***
## Development_temperature
                                       29.275 1
## Wolbachia: Aging temperature
                                        6.348
                                              1
                                                    0.01175 *
## Wolbachia:Development_temperature
                                       39.902 1
                                                  2.671e-10 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(cox_Surv_aging_simple)
## Cox mixed-effects model fit by maximum likelihood
##
     Data: Surv aging
##
     events, n = 1064, 1199
##
     Iterations= 12 64
                       NULL Integrated
##
                                          Fitted
## Log-likelihood -6774.882 -6532.167 -6463.197
##
##
                      Chisq
                               df p
                                       AIC
                                              BIC
## Integrated loglik 485.43 7.00 0 471.43 436.64
   Penalized loglik 623.37 58.64 0 506.08 214.63
##
                                                                                 Development_temperatur
## Model: Surv(Time, Status) ~ Wolbachia * Aging_temperature + Wolbachia *
## Fixed coefficients
                                                   coef exp(coef) se(coef)
## WolbachiaWol+
                                           -0.237051814 0.7889504 0.1447667 -1.64
                                            0.222724245 1.2494760 0.1175657 1.89
## Aging_temperature25
## Development_temperature25
                                           -0.001842135 0.9981596 0.1174962 -0.02
## WolbachiaWol+:Aging_temperature25
                                           -0.431474262 0.6495508 0.1699900 -2.54
## WolbachiaWol+:Development temperature25 -1.158294456 0.3140213 0.1713643 -6.76
##
## WolbachiaWol+
                                           1.0e-01
                                           5.8e-02
## Aging_temperature25
## Development_temperature25
                                           9.9e-01
## WolbachiaWol+:Aging_temperature25
                                           1.1e-02
## WolbachiaWol+:Development_temperature25 1.4e-11
##
## Random effects
## Group
             Variable
                         Std Dev
                                    Variance
## Test/Rep (Intercept) 0.31406601 0.09863746
## Test
             (Intercept) 0.48075177 0.23112226
```

There is a significant interaction between *Wolbachia* and aging temperature, and between *Wolbachia* and development temperature.

```
#Contrasts
#Contrast between with and without Wolbachia at different development temperatures
contr_Wolb_Dev<-lsmeans::lsmeans(cox_Surv_aging_simple,pairwise~Wolbachia|Development_temperature)
summary(contr_Wolb_Dev)

## $lsmeans
## Development_temperature = 18:
## Wolbachia lsmean SE df asymp.LCL asymp.UCL
## Wol- 0.5159 0.0728 Inf 0.3732 0.659</pre>
```

```
0.0631 0.0727 Inf -0.0795
## Wol+
                                              0.206
##
## Development temperature = 25:
## Wolbachia lsmean
                         SE df asymp.LCL asymp.UCL
## Wol-
             0.5140 0.0730 Inf
                                  0.3710
                                              0.657
## Wol+
             -1.0970 0.0785 Inf -1.2510
                                             -0.943
## Results are averaged over the levels of: Aging_temperature
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## Development_temperature = 18:
                           SE df z.ratio p.value
## contrast estimate
## Wol- - Wol+ 0.453 0.118 Inf 3.838 0.0001
##
## Development_temperature = 25:
## contrast estimate
                          SE df z.ratio p.value
## Wol- - Wol+ 1.611 0.125 Inf 12.858 <.0001
##
## Results are averaged over the levels of: Aging_temperature
## Results are given on the log (not the response) scale.
contrast(contr_Wolb_Dev$contrasts, "pairwise", by="contrast")
## contrast = Wol- - Wol+:
## contrast1 estimate
                         SE df z.ratio p.value
## 18 - 25 -1.16 0.171 Inf -6.759 <.0001
##
## Results are averaged over the levels of: Aging_temperature
## Results are given on the log (not the response) scale.
Wolbachia has an effect at both development temperatures but effect is higher at 25°C
#Contrast between with and without Wolbachia at different aging temperatures
contr_Wolb_Aging<-lsmeans::lsmeans(cox_Surv_aging_simple,pairwise~Wolbachia Aging_temperature)
summary(contr_Wolb_Aging)
## $1smeans
## Aging_temperature = 18:
## Wolbachia lsmean
                        SE df asymp.LCL asymp.UCL
## Wol- 0.404 0.0728 Inf
                                 0.261
                                             0.546
## Wol+
             -0.413 0.0741 Inf
                                  -0.558
                                            -0.267
##
## Aging_temperature = 25:
## Wolbachia lsmean
                        SE df asymp.LCL asymp.UCL
## Wol- 0.626 0.0731 Inf
                                 0.483
                                           0.770
                                            -0.472
## Wol+
             -0.621 0.0760 Inf
                                  -0.770
##
## Results are averaged over the levels of: Development_temperature
## Results are given on the log (not the response) scale.
```

Confidence level used: 0.95

##

```
## $contrasts
## Aging_temperature = 18:
## contrast
               estimate
                           SE df z.ratio p.value
## Wol- - Wol+ 0.816 0.120 Inf 6.806 <.0001
## Aging_temperature = 25:
## contrast
               estimate
                           SE df z.ratio p.value
## Wol- - Wol+ 1.248 0.122 Inf 10.186 <.0001
##
## Results are averaged over the levels of: Development_temperature
## Results are given on the log (not the response) scale.
contrast(contr_Wolb_Aging$contrasts,"pairwise",by="contrast")
## contrast = Wol- - Wol+:
## contrast1 estimate SE df z.ratio p.value
               -0.431 0.17 Inf -2.538 0.0111
## Results are averaged over the levels of: Development_temperature
## Results are given on the log (not the response) scale.
```

Wolbachia has an effect at both aging temperatures but effect is higher at 25°C

#Contrast between with and without Wolbachia at different development temperatures and aging temperature
contr_Wolb_dev_temp_Aging<-lsmeans::lsmeans(cox_Surv_aging_simple,pairwise~Wolbachia|Development_temper
summary(contr_Wolb_dev_temp_Aging,adj="holm",by=NULL)</pre>

```
## $1smeans
## Wolbachia Development_temperature Aging_temperature lsmean
## Wol-
                                      18
                                                         0.4045 0.0931 Inf
## Wol+
              18
                                      18
                                                         0.1675 0.0951 Inf
## Wol-
              25
                                      18
                                                         0.4027 0.0940 Inf
## Wol+
              25
                                      18
                                                        -0.9927 0.0982 Inf
## Wol-
             18
                                      25
                                                        0.6273 0.0941 Inf
## Wol+
             18
                                      25
                                                        -0.0413 0.0951 Inf
## Wol-
              25
                                      25
                                                        0.6254 0.0934 Inf
## Wol+
              25
                                      25
                                                        -1.2014 0.1010 Inf
##
  asymp.LCL asymp.UCL
##
      0.1500
                 0.659
##
     -0.0927
                 0.428
##
      0.1457
                 0.660
     -1.2612
                -0.724
##
                 0.884
##
      0.3700
##
     -0.3013
                 0.219
##
      0.3699
                 0.881
##
     -1.4777
                -0.925
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 8 estimates
##
## $contrasts
## contrast
                Development_temperature Aging_temperature estimate
                                                                      SE df
```

```
0.237 0.145 Inf
## Wol- - Wol+ 18
                                       18
## Wol- - Wol+ 25
                                       18
                                                            1.395 0.150 Inf
## Wol- - Wol+ 18
                                       25
                                                            0.669 0.146 Inf
## Wol- - Wol+ 25
                                       25
                                                            1.827 0.153 Inf
##
   z.ratio p.value
    1.637 0.1015
##
    9.305 <.0001
##
    4.578 < .0001
##
## 11.953 <.0001
##
## Results are given on the log (not the response) scale.
## P value adjustment: holm method for 4 tests
contrast(contr_Wolb_dev_temp_Aging$contrasts,"pairwise",by="contrast")
## contrast = Wol- - Wol+:
## contrast1
                estimate
                             SE df z.ratio p.value
## 18,18 - 25,18 -1.158 0.171 Inf -6.759 <.0001
## 18,18 - 18,25
                  -0.431 0.170 Inf -2.538 0.0542
## 18,18 - 25,25
                  -1.590 0.242 Inf -6.558 <.0001
                  0.727 0.240 Inf 3.024 0.0133
## 25,18 - 18,25
## 25,18 - 25,25 -0.431 0.170 Inf -2.538 0.0542
                  -1.158 0.171 Inf -6.759 <.0001
## 18,25 - 25,25
##
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 4 estimates
#Contrast between development temperatures with and without Wolbachia
contr_Dev_Wolb<-lsmeans::lsmeans(cox_Surv_aging_simple,pairwise~Development_temperature | Wolbachia)
summary(contr_Dev_Wolb)
## $1smeans
## Wolbachia = Wol-:
## Development_temperature lsmean
                                       SE df asymp.LCL asymp.UCL
## 18
                            0.5159 0.0728 Inf
                                                 0.3732
                                                            0.659
## 25
                            0.5140 0.0730 Inf
                                                 0.3710
                                                            0.657
##
## Wolbachia = Wol+:
## Development temperature lsmean
                                       SE df asymp.LCL asymp.UCL
## 18
                            0.0631 0.0727 Inf
                                                -0.0795
                                                            0.206
## 25
                           -1.0970 0.0785 Inf
                                                -1.2510
                                                           -0.943
##
## Results are averaged over the levels of: Aging_temperature
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## Wolbachia = Wol-:
## contrast estimate
                        SE df z.ratio p.value
## 18 - 25 0.00184 0.117 Inf 0.016 0.9875
##
## Wolbachia = Wol+:
## contrast estimate
                        SE df z.ratio p.value
## 18 - 25 1.16014 0.124 Inf 9.338
##
```

```
## Results are averaged over the levels of: Aging_temperature
## Results are given on the log (not the response) scale.
```

Development temperature only has an effect in the presence of Wolbachia

```
#Contrast between aging temperatures with and without Wolbachia
contr_Aging_Wolb <-lsmeans::lsmeans(cox_Surv_aging_simple,pairwise~Aging_temperature|Wolbachia)
summary(contr_Aging_Wolb)
## $1smeans
## Wolbachia = Wol-:
## Aging_temperature lsmean
                                SE df asymp.LCL asymp.UCL
                       0.404 0.0728 Inf
                                            0.261
                                                      0.546
## 18
## 25
                       0.626 0.0731 Inf
                                            0.483
                                                      0.770
##
## Wolbachia = Wol+:
## Aging_temperature lsmean
                                SE df asymp.LCL asymp.UCL
## 18
                     -0.413 0.0741 Inf
                                           -0.558
                                                     -0.267
## 25
                                                     -0.472
                     -0.621 0.0760 Inf
                                           -0.770
##
## Results are averaged over the levels of: Development temperature
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
##
## $contrasts
## Wolbachia = Wol-:
## contrast estimate
                         SE df z.ratio p.value
              -0.223 0.118 Inf -1.894 0.0582
## 18 - 25
##
## Wolbachia = Wol+:
                        SE df z.ratio p.value
## contrast estimate
               0.209 0.123 Inf 1.703 0.0886
## 18 - 25
## Results are averaged over the levels of: Development_temperature
## Results are given on the log (not the response) scale.
```

Aging temperature does not have an effect in direct contrasts. The interaction significance comes from slightly deleterious effect of higher temperature in the absence of *Wolbachia* and slightly beneficial effect in its presence.

Figure S4

Figure 4 and S5

DCV levels at early infection

```
DCV_early <- fread("dataset_s10.txt")[,lapply(.SD,char_asfactor)]</pre>
DCV_early <- filter(DCV_early, Treatment == "DCV")</pre>
DCV_early$logDCV <- ifelse(is.na(DCV_early$rel_DCV),log10(min(DCV_early$rel_DCV,na.rm = T)/10),log10(DC
DCV_early$Time <- as.factor(as.character(DCV_early$Time))</pre>
#linear model
lm_DCV_early <- lm(logDCV~Wolb*Time, data=DCV_early)</pre>
Anova(lm_DCV_early)
## Anova Table (Type II tests)
##
## Response: logDCV
              Sum Sq Df F value
                                    Pr(>F)
              26.662 1 63.4876 2.462e-10 ***
## Wolb
             288.807 5 137.5440 < 2.2e-16 ***
## Time
## Wolb:Time 15.928 5
                          7.5856 2.571e-05 ***
## Residuals 20.158 48
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lm_DCV_early)
##
## Call:
## lm(formula = logDCV ~ Wolb * Time, data = DCV_early)
```

```
##
## Residuals:
                   Median
##
                1Q
## -2.06961 -0.29621 -0.01134 0.20753 1.55543
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
                               0.28981 -5.749 6.04e-07 ***
## (Intercept)
                    -1.66618
## WolbWolb+
                    0.29534
                               0.40985
                                       0.721 0.474652
## Time0.25
                    -0.09621
                               0.40985 -0.235 0.815412
## Time0.5
                     2.17278
                             0.40985
                                       5.301 2.87e-06 ***
## Time1
                              0.40985
                                       7.793 4.52e-10 ***
                     3.19419
## Time2
                     ## Time3
                     6.99756 0.40985 17.073 < 2e-16 ***
## WolbWolb+:Time0.25 -0.49534 0.57962 -0.855 0.397022
## WolbWolb+:Time0.5 -2.37547
                               0.57962 -4.098 0.000159 ***
## WolbWolb+:Time1 -1.79437
                               0.57962 -3.096 0.003273 **
## WolbWolb+:Time2
                    -2.28847
                               0.57962 -3.948 0.000257 ***
## WolbWolb+:Time3
                    -2.81762
                               0.57962 -4.861 1.29e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.648 on 48 degrees of freedom
## Multiple R-squared: 0.9427, Adjusted R-squared: 0.9295
## F-statistic: 71.74 on 11 and 48 DF, p-value: < 2.2e-16
```

There is an interaction between Wolbachia and time of infection

```
#compare effect of Wolb at the several time points
lsm_lm_DCV_early <- lsmeans::lsmeans(lm_DCV_early, pairwise~Wolb|Time,adj="none")
summary(lsm_lm_DCV_early,by=NULL,adj="holm")

## $lsmeans
## Wolb Time lsmean SE df lower.CL upper.CL
## Wolb- 0 -1.666 0.29 48 -2.538 -0.794
## Wolb+ 0 -1.371 0.29 48 -2.243 -0.499</pre>
```

```
-0.890
## Wolb- 0.25 -1.762 0.29 48
                              -2.634
## Wolb+ 0.25 -1.962 0.29 48
                              -2.834
                                      -1.090
## Wolb- 0.5
              0.507 0.29 48
                              -0.365
                                        1.379
## Wolb+ 0.5 -1.574 0.29 48
                               -2.446
                                      -0.701
## Wolb- 1
               1.528 0.29 48
                               0.656
                                        2.400
## Wolb+ 1
               0.029 0.29 48
                              -0.843
                                        0.901
## Wolb- 2
               3.827 0.29 48
                                2.955
                                         4.699
## Wolb+ 2
               1.834 0.29 48
                                0.962
                                         2.706
## Wolb- 3
               5.331 0.29 48
                                4.459
                                         6.203
## Wolb+ 3
              2.809 0.29 48
                                1.937
                                         3.681
##
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 12 estimates
##
## $contrasts
## contrast
                 Time estimate
                                 SE df t.ratio p.value
```

Wolb- - Wolb+ 0

-0.295 0.41 48 -0.721 0.9493

```
## Wolb- - Wolb+ 0.25
                         0.200 0.41 48 0.488 0.9493
## Wolb- - Wolb+ 0.5
                         2.080 0.41 48 5.075
                                              <.0001
                         1.499 0.41 48 3.657 0.0019
## Wolb- - Wolb+ 1
## Wolb- - Wolb+ 2
                         1.993 0.41 48 4.863 0.0001
## Wolb- - Wolb+ 3
                         2.522 0.41 48 6.154 <.0001
##
## P value adjustment: holm method for 6 tests
log_DCV_early <- summary(lsm_lm_DCV_early,by=NULL,adj="holm")$contrasts[,3]</pre>
'^'(10,log_DCV_early)
```

[1] 0.5065949 1.5848932 120.2627078 31.5522757 98.4306741 332.8744891

Wolbachia has a significant effect from 12h on.

Figure 4A

Time:Dose


```
#another data set of early time points of DCV infection
DCV_early_doses <- fread("dataset_s11.txt")[,lapply(.SD,char_asfactor)]
DCV_early_doses$Time <- as.factor(as.character(DCV_early_doses$Time))</pre>
DCV_early_doses$logDCV <- ifelse(is.na(DCV_early_doses$Ratio),log10(min(DCV_early_doses$Ratio,na.rm = T
lm_DCV_early_doses <- lm(logDCV~Genotype*Time*Dose, data=DCV_early_doses)</pre>
Anova(lm_DCV_early_doses)
## Anova Table (Type II tests)
##
## Response: logDCV
##
                      Sum Sq Df F value
                                           Pr(>F)
## Genotype
                      18.178 1 23.2119 2.473e-05 ***
                      55.014 1 70.2489 4.473e-10 ***
## Time
                      16.738 1 21.3727 4.491e-05 ***
## Dose
## Genotype:Time
                       0.790 1 1.0092 0.321608
## Genotype:Dose
                       0.775 1 0.9895 0.326331
```

7.165 1 9.1498 0.004505 **

Genotype:Time:Dose 0.037 1 0.0469 0.829772

```
## Residuals
                     28.976 37
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
lm_DCV_early_doses_simple <- lm(logDCV~Genotype+Time*Dose, data=DCV_early_doses)</pre>
Anova(lm_DCV_early_doses_simple)
## Anova Table (Type II tests)
##
## Response: logDCV
##
            Sum Sq Df F value
                                 Pr(>F)
## Genotype 18.178 1 23.7496 1.771e-05 ***
## Time
            54.720 1 71.4915 1.929e-10 ***
            16.611 1 21.7026 3.490e-05 ***
## Dose
## Time:Dose 6.981 1 9.1213 0.004387 **
## Residuals 30.616 40
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lm_DCV_early_doses_simple)
##
## Call:
## lm(formula = logDCV ~ Genotype + Time * Dose, data = DCV_early_doses)
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -2.4281 -0.2828 0.1308 0.4261 1.3118
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
                                       2.776 0.008330 **
                   0.7896
                              0.2844
## (Intercept)
## GenotypewMelCS -1.2750
                              0.2616 -4.873 1.77e-05 ***
## Time24
                   1.4349
                              0.3654
                                       3.927 0.000331 ***
## DoseE9
                   0.4480
                              0.3654
                                       1.226 0.227349
## Time24:DoseE9
                   1.5771
                              0.5222
                                       3.020 0.004387 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.8749 on 40 degrees of freedom
## Multiple R-squared: 0.7593, Adjusted R-squared: 0.7352
## F-statistic: 31.54 on 4 and 40 DF, p-value: 6.901e-12
```

Wolbachia confers significant resistance at these early time points

Figure S5A

FHV levels at early infection

```
FHV_early <- fread("dataset_s12.txt")[,lapply(.SD,char_asfactor)]</pre>
FHV_early <- filter(FHV_early, Treatment == "FHV")</pre>
FHV_early$logFHV<- ifelse(is.na(FHV_early$rel_FHV),log10(min(FHV_early$rel_FHV,na.rm = T)/10),log10(FHV
FHV_early$Time <- as.factor(as.character(FHV_early$Time))</pre>
#linear model
lm_FHV_early <- lm(logFHV~Wolb*Time, data=FHV_early)</pre>
Anova(lm_FHV_early)
## Anova Table (Type II tests)
##
## Response: logFHV
##
             Sum Sq Df F value
                                   Pr(>F)
## Wolb
              1.123 1 42.3198 2.428e-06 ***
## Time
             95.652 4 901.1750 < 2.2e-16 ***
## Wolb:Time 0.421 4
                         3.9703
                                  0.01571 *
## Residuals 0.531 20
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lm_FHV_early)
##
## Call:
## lm(formula = logFHV ~ Wolb * Time, data = FHV_early)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                    ЗQ
                                             Max
## -0.27644 -0.05261 0.00000 0.02928 0.41231
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   -1.247e+00 9.405e-02 -13.257 2.29e-11 ***
## WolbWolb+
                    3.430e-16 1.330e-01
                                          0.000 1.000000
## Time1
                    1.673e+00 1.330e-01 12.578 5.90e-11 ***
```

```
## Time2
                   2.757e+00 1.330e-01 20.731 5.44e-15 ***
## Time3
                   3.912e+00 1.330e-01 29.412 < 2e-16 ***
## Time6
                   5.352e+00 1.330e-01 40.240 < 2e-16 ***
## WolbWolb+:Time1 -4.261e-01 1.881e-01
                                       -2.265 0.034751 *
## WolbWolb+:Time2 -7.455e-01 1.881e-01
                                       -3.963 0.000766 ***
## WolbWolb+:Time3 -4.046e-01 1.881e-01 -2.151 0.043894 *
## WolbWolb+:Time6 -3.586e-01 1.881e-01 -1.906 0.071085 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1629 on 20 degrees of freedom
## Multiple R-squared: 0.9946, Adjusted R-squared: 0.9921
## F-statistic: 407 on 9 and 20 DF, p-value: < 2.2e-16
```

There is a significant interaction between Wolbachia and time

```
#compare effect of Wolb at the several timepoints
lsm_lm_FHV_early <- lsmeans::lsmeans(lm_FHV_early, pairwise~Wolb|Time,adj="none")</pre>
summary(lsm_lm_FHV_early,by=NULL,adj="holm")
## $1smeans
## Wolb Time lsmean
                         SE df lower.CL upper.CL
## Wolb- 0
              -1.247 0.094 20
                                 -1.543
                                          -0.950
                                          -0.950
## Wolb+ 0
              -1.247 0.094 20
                                 -1.543
## Wolb- 1
               0.426 0.094 20
                                  0.130
                                           0.723
                                          0.297
## Wolb+ 1
               0.000 0.094 20
                                 -0.297
## Wolb- 2
               1.510 0.094 20
                                 1.214
                                         1.807
## Wolb+ 2
               0.765 0.094 20
                                  0.468
                                           1.062
## Wolb- 3
                                  2.369
               2.665 0.094 20
                                           2.962
## Wolb+ 3
               2.261 0.094 20
                                  1.964
                                           2.557
               4.105 0.094 20
## Wolb- 6
                                  3.809
                                           4.402
## Wolb+ 6
               3.747 0.094 20
                                  3.450
                                           4.043
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 10 estimates
##
## $contrasts
## contrast
                 Time estimate
                                   SE df t.ratio p.value
## Wolb- - Wolb+ O
                         0.000 0.133 20 0.000
                                                1.0000
## Wolb- - Wolb+ 1
                          0.426 0.133 20 3.204
                                                 0.0178
## Wolb- - Wolb+ 2
                          0.746 0.133 20 5.605
                                                 0.0001
## Wolb- - Wolb+ 3
                          0.405 0.133 20 3.042
                                                 0.0193
## Wolb- - Wolb+ 6
                          0.359 0.133 20 2.696
                                                 0.0278
## P value adjustment: holm method for 5 tests
log_FHV_early <- summary(lsm_lm_FHV_early,by=NULL,adj="holm")$contrasts[,3]</pre>
'^'(10,log_FHV_early)
```

Wolbachia has a small significant effect from 1 day on (2 to 6 fold)

[1] 1.000000 2.667471 5.565594 2.538451 2.283328

Figure S5B

Wolbachia levels after antibiotics treatment

```
Antibiotics_levels <- fread("dataset_s13.txt")[,lapply(.SD,char_asfactor)]</pre>
Antibiotics_levels$logratio <- log10(Antibiotics_levels$ratio)</pre>
Antibiotics_levels$timepoint <- as.factor(as.character(Antibiotics_levels$timepoint))
Antibiotics_levels[,treatment:=relevel(treatment,"water")]
Antibiotics_treat <- filter(Antibiotics_levels, timepoint != "0")</pre>
#linear model
lmer_ant <- lmer(logratio~treatment*timepoint + (1|replicate), data=Antibiotics_treat)</pre>
Anova(lmer_ant)
## Analysis of Deviance Table (Type II Wald chisquare tests)
##
## Response: logratio
##
                           Chisq Df Pr(>Chisq)
                       1869.3483 5 < 2.2e-16 ***
## treatment
## timepoint
                          0.1531
                                 1
                                         0.6956
## treatment:timepoint
                         29.3365 5 1.992e-05 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(lmer_ant)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: logratio ~ treatment * timepoint + (1 | replicate)
##
      Data: Antibiotics treat
##
## REML criterion at convergence: -116
##
## Scaled residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -2.5493 -0.6249 -0.1255 0.5181 3.7513
##
```

```
## Random effects:
                         Variance Std.Dev.
## Groups
             Name
   replicate (Intercept) 0.0008164 0.02857
                         0.0207875 0.14418
## Residual
## Number of obs: 155, groups: replicate, 2
##
## Fixed effects:
##
                                     Estimate Std. Error
                                                                df t value
## (Intercept)
                                      1.01457
                                                 0.04481 12.97522 22.642
## treatmentampicillin
                                     -0.07155
                                                 0.05772 142.02299 -1.239
## treatmentethanol
                                     0.05314
                                                 0.05655 142.00000
                                                                     0.940
## treatmentrifampicin
                                     -0.93840
                                                 0.05655 142.00000 -16.594
                                     -0.01454
## treatmentstreptomycin
                                                 0.05655 142.00000 -0.257
## treatmenttetracycline
                                     -0.95028
                                                 0.05655 142.00000 -16.804
## timepoint30
                                     0.11133
                                                 0.05655 142.00000
                                                                     1.969
## treatmentampicillin:timepoint30
                                     -0.03037
                                                 0.08011 142.04098
                                                                    -0.379
## treatmentethanol:timepoint30
                                     -0.01597
                                                 0.07998 142.00000
                                                                   -0.200
## treatmentrifampicin:timepoint30
                                     -0.35046
                                                 0.07999 142.03508 -4.381
## treatmentstreptomycin:timepoint30
                                                 0.08081 142.01176 -1.466
                                     -0.11843
## treatmenttetracycline:timepoint30
                                     -0.20667
                                                 0.07998 142.00000 -2.584
##
                                    Pr(>|t|)
## (Intercept)
                                    8.17e-12 ***
## treatmentampicillin
                                      0.2172
## treatmentethanol
                                      0.3490
## treatmentrifampicin
                                     < 2e-16 ***
## treatmentstreptomycin
                                      0.7975
## treatmenttetracycline
                                     < 2e-16 ***
## timepoint30
                                      0.0509
## treatmentampicillin:timepoint30
                                      0.7052
## treatmentethanol:timepoint30
                                      0.8420
## treatmentrifampicin:timepoint30
                                    2.28e-05 ***
## treatmentstreptomycin:timepoint30
                                      0.1450
## treatmenttetracycline:timepoint30
                                      0.0108 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
               (Intr) trtmntm trtmntth trtmntr trtmnts trtmnttt tmpn30 trtmntm:30
## trtmntmpcll -0.618
## tretmntthnl -0.631 0.490
## trtmntrfmpc -0.631 0.490
                              0.500
## trtmntstrpt -0.631 0.490
                             0.500
                                       0.500
                                       0.500
## trtmntttrcy -0.631 0.490
                             0.500
                                               0.500
## timepoint30 -0.631 0.490
                             0.500
                                       0.500
                                               0.500
                                                       0.500
                             -0.353
                                      -0.353 -0.353
                                                     -0.353
## trtmntmp:30 0.445 -0.721
                                                               -0.706
## trtmntth:30 0.446 -0.346
                             -0.707
                                      -0.354 -0.354
                                                      -0.354
                                                               -0.707 0.499
## trtmntrf:30 0.446 -0.347
                             -0.353
                                      -0.707 -0.353
                                                      -0.353
                                                               -0.707 0.499
## trtmntst:30 0.442 -0.343 -0.350
                                      -0.350 -0.700
                                                     -0.350
                                                               -0.700 0.494
## trtmnttt:30 0.446 -0.346 -0.354
                                      -0.354 -0.354 -0.707
                                                               -0.707 0.499
              trtmntth:30 trtmntr:30 trtmnts:30
## trtmntmpcll
## tretmntthnl
## trtmntrfmpc
## trtmntstrpt
```

```
## trtmntttrcy
## timepoint30
## trtmntmp:30
## trtmntth:30
## trtmntrf:30 0.500
## trtmntst:30 0.495 0.495
## trtmnttt:30 0.500 0.500 0.495
```

There is an interaction between treatment and timepoint

```
#pairwise comparison of treatments at each time point
lsm_ant <- lsmeans::lsmeans(lmer_ant, pairwise~treatment|timepoint,adj="none")</pre>
summary(lsm_ant,by=NULL,adj="holm")
## $1smeans
  treatment
                 timepoint lsmean
                                       SE
                                            df lower.CL upper.CL
##
   water
                 10
                            1.0146 0.0448 13.0
                                                 0.8591
                                                          1.1700
## ampicillin
                 10
                            0.9430 0.0463 14.6
                                                 0.7859
                                                          1.1001
## ethanol
                 10
                            1.0677 0.0448 13.0
                                                 0.9122
                                                          1.2232
## rifampicin
                 10
                            0.0762 0.0448 13.0
                                               -0.0793
                                                          0.2316
##
   streptomycin 10
                            1.0000 0.0448 13.0
                                                 0.8446
                                                          1.1555
## tetracycline 10
                            0.0643 0.0448 13.0
                                               -0.0912
                                                          0.2198
## water
                 30
                            1.1259 0.0448 13.0
                                                 0.9704
                                                          1.2814
                 30
## ampicillin
                            1.0240 0.0435 11.6
                                                 0.8694
                                                          1.1786
##
   ethanol
                 30
                            1.1631 0.0448 13.0
                                                 1.0076
                                                          1.3185
                 30
## rifampicin
                           -0.1630 0.0448 13.0 -0.3184 -0.0075
  streptomycin 30
                            0.9929 0.0463 14.6
                                                 0.8358
                                                          1.1500
##
   tetracycline 30
                           -0.0311 0.0448 13.0 -0.1865
                                                          0.1244
##
## Degrees-of-freedom method: kenward-roger
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 12 estimates
##
## $contrasts
##
  contrast
                                timepoint estimate
                                                       SE df t.ratio p.value
##
   water - ampicillin
                                10
                                            0.0715 0.0577 142
                                                                1.239 1.0000
##
   water - ethanol
                                10
                                           -0.0531 0.0566 142
                                                              -0.940 1.0000
## water - rifampicin
                                10
                                            0.9384 0.0566 142 16.594 <.0001
                                10
## water - streptomycin
                                            0.0145 0.0566 142
                                                                0.257 1.0000
   water - tetracycline
                                10
                                            0.9503 0.0566 142 16.804 <.0001
##
                                10
##
   ampicillin - ethanol
                                           -0.1247 0.0577 142 -2.160 0.3248
   ampicillin - rifampicin
                                10
                                            0.8668 0.0577 142 15.014 <.0001
   ampicillin - streptomycin
                                10
##
                                           -0.0570 0.0577 142
                                                               -0.987 1.0000
   ampicillin - tetracycline
                                10
                                            0.8787 0.0577 142
                                                               15.220 < .0001
                                10
                                            0.9915 0.0566 142 17.533 <.0001
##
   ethanol - rifampicin
  ethanol - streptomycin
                                10
                                            0.0677 0.0566 142
                                                                1.197 1.0000
   ethanol - tetracycline
                                10
##
                                            1.0034 0.0566 142 17.743 <.0001
   rifampicin - streptomycin
                                10
                                           -0.9239 0.0566 142 -16.337 <.0001
##
   rifampicin - tetracycline
                                10
                                            0.0119 0.0566 142
                                                                0.210 1.0000
## streptomycin - tetracycline 10
                                            0.9357 0.0566 142 16.547 <.0001
## water - ampicillin
                                30
                                            0.1019 0.0555 142
                                                                1.835 0.6175
##
   water - ethanol
                                30
                                           -0.0372 0.0566 142 -0.657 1.0000
## water - rifampicin
                                30
                                            1.2889 0.0566 142 22.771 <.0001
```

```
30
                                             0.1330 0.0577 142
                                                                  2.303 0.2542
##
    water - streptomycin
                                                                20.458 < .0001
    water - tetracycline
                                 30
                                             1.1569 0.0566 142
##
    ampicillin - ethanol
                                                                -2.504 0.1744
##
                                 30
                                            -0.1391 0.0555 142
    ampicillin - rifampicin
                                 30
                                             1.1869 0.0555 142
                                                                21.369 < .0001
##
##
    ampicillin - streptomycin
                                 30
                                             0.0311 0.0568 142
                                                                  0.547 1.0000
    ampicillin - tetracycline
                                 30
##
                                             1.0550 0.0555 142 18.994 <.0001
    ethanol - rifampicin
                                 30
##
                                             1.3260 0.0566 142
                                                                 23.427 < .0001
    ethanol - streptomycin
##
                                 30
                                             0.1701 0.0577 142
                                                                  2.947 0.0526
##
    ethanol - tetracycline
                                 30
                                             1.1941 0.0566 142
                                                                 21.115 < .0001
                                 30
##
    rifampicin - streptomycin
                                            -1.1559 0.0578 142 -19.984 <.0001
   rifampicin - tetracycline
                                 30
                                            -0.1319 0.0566 142
                                                                -2.331 0.2542
    streptomycin - tetracycline 30
                                             1.0240 0.0577 142 17.736 <.0001
##
##
## Degrees-of-freedom method: kenward-roger
## P value adjustment: holm method for 30 tests
```

Wolbachia levels in rifampicin and tetracycline flies significantly different from controls and other antibiotics at both time points (p < 0.001 for all). Rifampicin and tetracycline not significantly different at both time points (p > 0.25 for both). Other samples not significantly different from each other at each time point (p > 0.05 for all).

Figures 4B and S5C

Survival to DCV after antibiotics

```
#load data
Survival_antibiotics <- fread("dataset_s14.txt")[,lapply(.SD,char_asfactor)]
Survival_antibiotics <- tidyr::separate(Survival_antibiotics, Condition, c("Wolbachia", "Treatment"), "
Survival_antibiotics <- tidyr::unite(Survival_antibiotics, RepFull, Treatment,Wolbachia,Test,Replicate,
Survival_antibiotics <- Survival_antibiotics[,lapply(.SD,char_asfactor)]
Survival_antibiotics[,Treatment:=relevel(Treatment,"water")]</pre>
```

```
#Diagnostics
#How many individuals were tested**
ftable(xtabs(~Test+Wolbachia+Treatment,Survival antibiotics))
                 Treatment water ampicillin ethanol rifampicin streptomycin tetracycline
##
## Test Wolbachia
## A
       CS
                              50
                                        50
                                                50
                                                           50
                                                                        50
                                                                                    50
##
       iso
                              50
                                         50
                                                50
                                                           50
                                                                        50
                                                                                    49
## B
       CS
                                                50
                              50
                                        50
                                                           50
                                                                       50
                                                                                    50
##
                              50
                                        50
                                                50
                                                           50
                                                                       50
                                                                                    50
       iso
##Data analysis
#Full model
Survival_antibiotics_cox<-coxme(Surv(Time,Status)~Wolbachia*Treatment+(1|RepFull)+(1|Test), Survival_an
Anova(Survival_antibiotics_cox,test.statistic = "LR")
## Analysis of Deviance Table (Type II tests)
                      LR Chisq Df Pr(>Chisq)
## Wolbachia
                        70.955 1 < 2.2e-16 ***
                        41.817 5 6.416e-08 ***
## Treatment
## Wolbachia:Treatment
                        67.167 5 3.977e-13 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
summary(Survival_antibiotics_cox)
## Cox mixed-effects model fit by maximum likelihood
##
    Data: Survival_antibiotics
##
    events, n = 653, 1199
    Iterations= 13 110
##
                      NULL Integrated
## Log-likelihood -4406.166 -4058.574 -3957.027
##
##
                     Chisq
                             df p
                                    AIC
                                           BIC
## Integrated loglik 695.18 13.0 0 669.18 610.92
## Penalized loglik 898.28 76.8 0 744.67 400.48
## Model: Surv(Time, Status) ~ Wolbachia * Treatment + (1 | RepFull) +
                                                                          (1 | Test)
## Fixed coefficients
                                          coef
                                                 exp(coef) se(coef)
## Wolbachiaiso
                                     2.6484521 14.13214648 0.4222592 6.27
## Treatmentampicillin
                                    ## Treatmentethanol
                                     0.4252938 1.53003993 0.4674664 0.91
## Treatmentrifampicin
                                     2.5392613 12.67030856 0.4202059 6.04
## Treatmentstreptomycin
                                    -1.4907877 0.22519521 0.7079285 -2.11
## Treatmenttetracycline
                                     2.5743570 13.12287695 0.4210857 6.11
## Wolbachiaiso:Treatmentampicillin
                                     0.4011888 1.49359923 0.6407198 0.63
## Wolbachiaiso:Treatmentethanol
                                    ## Wolbachiaiso:Treatmentrifampicin
                                    -2.4678268 0.08476888 0.5416011 -4.56
## Wolbachiaiso:Treatmentstreptomycin 1.3697108 3.93421287 0.7856511 1.74
## Wolbachiaiso:Treatmenttetracycline -2.5054517 0.08163871 0.5435895 -4.61
##
                                    3.6e-10
## Wolbachiaiso
## Treatmentampicillin
                                    3.5e-01
```

```
## Treatmentethanol
                                      3.6e-01
## Treatmentrifampicin
                                      1.5e-09
## Treatmentstreptomycin
                                      3.5e-02
## Treatmenttetracycline
                                      9.7e-10
## Wolbachiaiso:Treatmentampicillin
                                      5.3e-01
## Wolbachiaiso:Treatmentethanol
                                      7.0e-01
## Wolbachiaiso:Treatmentrifampicin
                                      5.2e-06
## Wolbachiaiso:Treatmentstreptomycin 8.1e-02
## Wolbachiaiso:Treatmenttetracycline 4.0e-06
##
## Random effects
## Group Variable Std Dev
                                 Variance
## RepFull Intercept 0.65522621 0.42932138
## Test
            Intercept 0.29563700 0.08740124
```

There is an interaction between Treatment and Wolbachia

```
# Comparison of hazard ratios of Wolb versus no-Wolb at each treatment
mcp_Survival_antibiotics<-lsmeans::lsmeans(Survival_antibiotics_cox,pairwise~Wolbachia|Treatment)
summary(mcp_Survival_antibiotics,adj="holm",by=NULL)
```

```
## $1smeans
## Wolbachia Treatment
                          lsmean
                                    SE df asymp.LCL asymp.UCL
## CS
                          -1.629 0.331 Inf
                                             -2.576
                                                       -0.681
             water
## iso
             water
                           1.020 0.239 Inf
                                               0.336
                                                        1.703
## CS
             ampicillin -2.133 0.387 Inf
                                             -3.243
                                                       -1.024
## iso
             ampicillin
                          0.916 0.240 Inf
                                              0.230
                                                       1.603
## CS
             ethanol
                          -1.203 0.297 Inf
                                              -2.054
                                                       -0.353
## iso
             ethanol
                           1.226 0.236 Inf
                                              0.550
                                                        1.901
## CS
                           0.910 0.236 Inf
                                              0.234
             rifampicin
                                                        1.587
             rifampicin
## iso
                           1.091 0.239 Inf
                                              0.408
                                                        1.774
## CS
             streptomycin -3.120 0.568 Inf
                                              -4.748
                                                       -1.491
## iso
             streptomycin 0.899 0.238 Inf
                                               0.216
                                                        1.581
## CS
             tetracycline 0.946 0.237 Inf
                                               0.266
                                                        1.626
             tetracycline 1.089 0.242 Inf
                                               0.396
                                                        1.781
##
## Results are given on the log (not the response) scale.
## Confidence level used: 0.95
## Conf-level adjustment: bonferroni method for 12 estimates
##
## $contrasts
## contrast Treatment
                         estimate
                                     SE df z.ratio p.value
## CS - iso water
                           -2.648 0.422 Inf -6.272 <.0001
## CS - iso ampicillin
                           -3.050 0.477 Inf -6.388 <.0001
## CS - iso ethanol
                           -2.429 0.388 Inf -6.261 <.0001
## CS - iso rifampicin
                           -0.181 0.339 Inf -0.532 1.0000
## CS - iso streptomycin
                          -4.018 0.659 Inf -6.099 <.0001
## CS - iso tetracycline
                          -0.143 0.343 Inf -0.417 1.0000
## Results are given on the log (not the response) scale.
## P value adjustment: holm method for 6 tests
```

#Wolb is protective in CTR, amp, and strp. Not in tet, rifa
contrast(mcp_Survival_antibiotics\$contrasts,"pairwise",by="contrast")

```
## contrast = CS - iso:
##
    contrast1
                                estimate
                                             SE df z.ratio p.value
##
   water - ampicillin
                                  0.4012 0.641 Inf
                                                    0.626
                                                           0.9891
##
   water - ethanol
                                 -0.2193 0.578 Inf -0.380
                                                            0.9990
##
   water - rifampicin
                                 -2.4678 0.542 Inf -4.557
                                                            0.0001
   water - streptomycin
                                                           0.5029
##
                                  1.3697 0.786 Inf
                                                    1.743
   water - tetracycline
                                 -2.5055 0.544 Inf -4.609
                                                            0.0001
##
##
   ampicillin - ethanol
                                 -0.6204 0.618 Inf -1.003
                                                            0.9170
   ampicillin - rifampicin
                                 -2.8690 0.585 Inf -4.903
   ampicillin - streptomycin
##
                                  0.9685 0.817 Inf
                                                    1.186
                                                            0.8440
   ampicillin - tetracycline
                                 -2.9066 0.587 Inf -4.952
                                                            <.0001
##
##
   ethanol - rifampicin
                                 -2.2486 0.516 Inf -4.355
                                                            0.0002
   ethanol - streptomycin
##
                                  1.5890 0.768 Inf
                                                    2.070
                                                            0.3029
##
   ethanol - tetracycline
                                 -2.2862 0.518 Inf -4.412
                                                            0.0001
##
   rifampicin - streptomycin
                                  3.8375 0.740 Inf
                                                    5.184
                                                            <.0001
   rifampicin - tetracycline
                                 -0.0376 0.484 Inf -0.078
                                                           1.0000
##
##
   streptomycin - tetracycline
                                 -3.8752 0.742 Inf -5.226
                                                           <.0001
##
## Results are given on the log (not the response) scale.
## P value adjustment: tukey method for comparing a family of 6 estimates
```

Wolbachia is protective in all conditions except in flies treated with tetracycline and rifampicin

Bacteria levels in the gut after antibiotics

Figure S5D

CFUs per gut (log10)

Session info

```
sessionInfo()
```

```
## R version 4.0.0 (2020-04-24)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Catalina 10.15.5
##
## Matrix products: default
          /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## attached base packages:
## [1] stats
                graphics grDevices utils
                                               datasets methods
                                                                   base
##
## other attached packages:
  [1] broom_0.5.6
                          lmerTest_3.1-2
                                            lme4_1.1-23
                                                              Matrix_1.2-18
## [5] reshape2_1.4.4
                                                              multcomp_1.4-13
                          car 3.0-7
                                            carData_3.0-3
## [9] TH.data_1.0-10
                          MASS_7.3-51.5
                                            mvtnorm_1.1-0
                                                              lsmeans_2.30-0
                          data.table_1.12.8 coxme_2.2-16
## [13] emmeans_1.4.6
                                                              bdsmatrix_1.3-4
## [17] survival_3.1-12
                          lemon_0.4.4
                                            forcats_0.5.0
                                                              stringr_1.4.0
## [21] dplyr_0.8.5
                          purrr_0.3.4
                                            readr_1.3.1
                                                              tidyr_1.0.2
                          ggplot2_3.3.0
## [25] tibble 3.0.1
                                            tidyverse 1.3.0
                                                              plyr_1.8.6
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-147
                            pbkrtest_0.4-8.6
                                                fs_1.4.1
## [4] lubridate_1.7.8
                            httr 1.4.1
                                                numDeriv_2016.8-1.1
## [7] tools_4.0.0
                            backports_1.1.6
                                                R6_2.4.1
## [10] DBI 1.1.0
                            colorspace_1.4-1
                                                withr 2.2.0
## [13] tidyselect_1.0.0
                            gridExtra_2.3
                                                curl_4.3
## [16] compiler_4.0.0
                            cli_2.0.2
                                                rvest_0.3.5
```

		70 4 0 4		
#		xm12_1.3.1	sandwich_2.5-1	labeling_0.3
#	# [22]	scales_1.1.0	digest_0.6.25	foreign_0.8-78
#	# [25]	minqa_1.2.4	rmarkdown_2.1	rio_0.5.16
#	# [28]	pkgconfig_2.0.3	htmltools_0.4.0	dbplyr_1.4.3
#	# [31]	rlang_0.4.5	readxl_1.3.1	rstudioapi_0.11
#	# [34]	farver_2.0.3	generics_0.0.2	zoo_1.8-7
#	# [37]	jsonlite_1.6.1	zip_2.0.4	magrittr_1.5
#	# [40]	Rcpp_1.0.4.6	munsell_0.5.0	fansi_0.4.1
#	# [43]	abind_1.4-5	lifecycle_0.2.0	stringi_1.4.6
#	# [46]	yaml_2.2.1	grid_4.0.0	parallel_4.0.0
#	# [49]	crayon_1.3.4	lattice_0.20-41	haven_2.2.0
#	# [52]	splines_4.0.0	hms_0.5.3	knitr_1.28
#	# [55]	pillar_1.4.3	boot_1.3-24	estimability_1.3
#	# [58]	codetools_0.2-16	reprex_0.3.0	glue_1.4.0
#	# [61]	evaluate_0.14	modelr_0.1.7	vctrs_0.2.4
#	# [64]	nloptr_1.2.2.1	cellranger_1.1.0	gtable_0.3.0
#	# [67]	assertthat_0.2.1	xfun_0.13	openxlsx_4.1.4
#	# [70]	xtable_1.8-4	statmod_1.4.34	ellipsis_0.3.0