Chapter 7

Spread Spectrum - Introduction

- Modulation techniques aim to make efficient use of bandwidth.
- **Spread spectrum** techniques, on the other hand, use a much higher bandwidth than necessary.
 - There is unnecessary waste of bandwidth for a single user, but in multiple usage users can use the same bandwidth without interference.
 - Therefore, spread spectrum is an effective method in terms of bandwidth in multiple uses.

Spread Spectrum - Introduction

- Spread spectrum contains the spread of the bandwidth required for the data to be transmitted
- For example, it is a multiple access model based on the **CDMA** spread spectrum technique. In CDMA, each user using a common channel is given a signal (code) covering the same frequency band.
 - Many users can be found simultaneously on the same band
 - The data rate allocated to users can be adjusted according to variable load conditions.
- Spreading data across the wide bandwidth makes jamming and interception difficult.

Spread spectrum - introduction

- Narrowband interference
 - 6 channels for FDM multiplexing
 - Requires frequency planning
 - Channel quality depends on frequency. In other words, channel quality is a measure of the interference at that frequency.

Spread Spectrum - Motivation

narrowband channels

- Signal on channels 3 and 4 due to Narrowband interference
- it cannot be taken right by the buyer as its quality is very low
 - Solution?

Spread Spectrum - Motivation

- The narrow band signal is propagated as a broadband signal using a special code
 - Pseudo-noise (PN) sequence, pseudo-noise code
 - Seemingly random binary sequence (but can be reproduced by the receiver)
- spread spectrum improves resistance to narrowband interference

Spread Spectrum - Motivation

- It does not require frequency planning
- all narrowband signals propagate as broadband signals in the same (wide) frequency range

spread spectrum channels

Spread Spectrum - Gain

- What can be gained from apparent waste of spectrum?
 - Immunity from various kinds of noise and multipath distortion
 - Can be used for hiding and encrypting signals
 - Several users can independently use the same higher bandwidth with very little interference

Spreading and interference

- i) narrowband signal
- ii) the sender spreads the signal, converting the narrowband signal into a broadband signal (the same energy is spread over a larger frequency range)

Spreading and interference

- iii) During transmission, narrowband and broadband interference join the signal
- iv) Receiver collects the signal and emits narrowband interference
- v) Receiver uses a bandpass filter to obtain the original signal.

- Input is fed into a channel encoder
 - Produces analog signal with narrow bandwidth
- Signal is further modulated using sequence of digits
 - Spreading code or spreading sequence
 - Generated by pseudonoise, or pseudo-random number generator
- Effect of modulation is to increase bandwidth of signal to be transmitted

- On receiving end, digit sequence is used to demodulate the spread spectrum signal
- Signal is fed into a channel decoder to recover data

Figure 7.1 General Model of Spread Spectrum Digital Communication System

Frequency Hoping Spread Spectrum (FHSS)

- Signal is broadcast over seemingly random series of radio frequencies
 - A number of channels allocated for the FH signal
 - Width of each channel corresponds to bandwidth of input signal
- Signal hops from frequency to frequency at fixed intervals
 - Transmitter operates in one channel at a time
 - Bits are transmitted using some encoding scheme
 - At each successive interval, a new carrier frequency is selected

Frequency Hoping Spread Spectrum

- Channel sequence dictated by spreading code
- Receiver, hopping between frequencies in synchronization with transmitter, picks up message
- Advantages
 - Eavesdroppers hear only unintelligible blips
 - Attempts to jam signal on one frequency succeed only at knocking out a few bits

Frequency Hoping Spread Spectrum

Figure 7.2 Frequency Hopping Example

FHSS Using MFSK

- MFSK signal is translated to a new frequency every T_c seconds by modulating the MFSK signal with the FHSS carrier signal
- For data rate of *R*:
 - duration of a bit: T = 1/R seconds
 - duration of signal element: $T_s = LT$ seconds
- $T_c \ge T_s$ slow-frequency-hop spread spectrum
- $T_c < T_s$ fast-frequency-hop spread spectrum

FHSS Performance Considerations

- Large number of frequencies used
- Results in a system that is quite resistant to jamming
 - Jammer must jam all frequencies
 - With fixed power, this reduces the jamming power in any one frequency band

Direct Sequence Spread Spectrum (DSSS)

- Each bit in original signal is represented by multiple bits in the transmitted signal
- Spreading code spreads signal across a wider frequency band
 - Spread is in direct proportion to number of bits used
- One technique combines digital information stream with the spreading code bit stream using exclusive-OR (Figure 7.6)

Direct Sequence Spread Spectrum (DSSS)

Figure 7.6 Example of Direct Sequence Spread Spectrum

DSSS Using BPSK

Multiply BPSK signal,

$$s_d(t) = A \ d(t) \cos(2\pi f_c t)$$

by c(t) [takes values +1, -1] to get

$$s(t) = A d(t)c(t) \cos(2\pi f_c t)$$

- A =amplitude of signal
- f_c = carrier frequency
- d(t) = discrete function [+1, -1]
- At receiver, incoming signal multiplied by c(t)
 - Since, $c(t) \times c(t) = 1$, incoming signal is recovered

(a) Transmitter

(b) Receiver

Figure 7.7 Direct Sequence Spread Spectrum System

Code-Division Multiple Access (CDMA)

- Basic Principles of CDMA
 - D = rate of data signal
 - Break each bit into k chips
 - Chips are a user-specific fixed pattern
 - Chip data rate of new channel = kD

CDMA

spreading factor: 7

chipping sequence: 0110101

t_b: bit period

t_c: chip period

- XOR (or modulo-2 addition) of the signal with chipping sequence
 - many chips per bit (e.g., 128) result in higher bandwidth of the signal

CDMA Example

- If k=6 and code is a sequence of 1s and -1s
 - For a '1' bit, A sends code as chip pattern
 - <c1, c2, c3, c4, c5, c6>
 - For a '0' bit, A sends complement of code
 - <-c1, -c2, -c3, -c4, -c5, -c6>
- Receiver knows sender's code and performs electronic decode function

$$S_u(d) = d1 \times c1 + d2 \times c2 + d3 \times c3 + d4 \times c4 + d5 \times c5 + d6 \times c6$$

- \bullet <d1, d2, d3, d4, d5, d6> = received chip pattern
- < c1, c2, c3, c4, c5, c6 > =sender's code

CDMA Example

- User A code = <1, -1, -1, 1, -1, 1>
 - To send a 1 bit = <1, -1, -1, 1, -1, 1>
 - To send a 0 bit = <-1, 1, 1, -1, 1, -1>
- User B code = <1, 1, -1, -1, 1, 1>
 - To send a 1 bit = <1, 1, -1, -1, 1, 1>
- Receiver receiving with A's code
 - (A's code) x (received chip pattern)
 - User A '1' bit: 6 -> 1
 - User A '0' bit: -6 -> 0
 - User B '1' bit: 0 -> unwanted signal ignored

CDMA

 Codes whose product adds to 0 are called orthogonal (vertical) codes.

$$A \bullet B = \sum_{i=1}^{k} A_i B_i = 0$$
 then A and B orthogonal codes

- Two codes are said to be orthogonal when their inner product is zero.
 - The inner product, in the case of codes with elements +1 and −1, is the sum of all the terms we get by multiplying two codes element by element.
- Each bit of data is split into k small chunks called chips

Table 7.1 CDMA Example

(a) User's codes

User A	1	-1	-1	1	-1	1
User B	1	1	-1	-1	1	1
User C	1	1	-1	1	1	-1

(b) Transmission from A

Transmit (data bit = 1)	1	-1	-1	13	-1	1	
Receiver codeword	1	-1	-1	1	-1	1	7 PARTS
Multiplication	1	1	1	1	1	1	= 6
Transmit (data bit = 0)	-1	1	1	-1	1	-1	MISSES
Receiver codeword	1	-1	-1	1	-1	1	
Multiplication	-1	-1	-1	-1	-1	-1	= -6

(c) Transmission from B, receiver attempts to recover A's transmission

Transmit (data bit = 1)	1	1	-1	-1	1	1	
Receiver codeword	1	-1	-1	1	-1	1	Triville.
Multiplication	1	-1	1	-1	-1	1	= 0

(d) Transmission from C, receiver attempts to recover B's transmission

Transmit (data bit = 1)	1	1	-1	-1	1	-1	
Receiver codeword	1	1	-1	-1	1	1	The same of the sa
Multiplication	1	1	1	-1	1	-1	= 2

(e) Transmission from B and C, receiver attempts to recover B's transmission

B (data bit = 1)	1	1	-1	-1	1	1	OF HUN
C (data bit = 1)	1	1	-1	1	1	-1	
Combined signal	2	2	-2	0	2	0	
Receiver codeword	1	1	-1	-1	1	1	
Multiplication	2	2	2	0	2	0	= 8

Categories of Spreading Sequences

- Spreading Sequence Categories
 - PN sequences
 - Orthogonal codes
- For FHSS systems
 - PN sequences most common
- For DSSS systems not employing CDMA
 - PN sequences most common
- For DSSS CDMA systems
 - PN sequences
 - Orthogonal codes

PN Sequences

- PN generator produces periodic sequence that appears to be random
- PN Sequences
 - Generated by an algorithm using initial seed
 - Sequence isn't statistically random but will pass many test of randomness
 - Sequences referred to as pseudorandom numbers or pseudonoise sequences
 - Unless algorithm and seed are known, the sequence is impractical to predict

Important PN Properties

- Randomness
 - Uniform distribution
 - Balance property
 - Run property
 - Independence
 - Correlation property
- Unpredictability

Linear Feedback Shift Register Implementation

Figure 7.12 Binary Linear Feedback Shift Register Sequence Generator

Linear Feedback Shift Register Implementation

(a) Shift-register implementation

State	B ₃	B_2	B_1	\boldsymbol{B}_0	$B_0 \approx B_1$	output
Initial = 0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	1	0
3	1	0	0	1	1	1
4	1	1	0	0	0	0
5	0	1	1	0	1	0
6	1	0	1	1	0	1
7	0	1	0	1	1	1
8	1	0	1	0	1	0
9	1	1	0	1	1	1
10	1	1	1	0	1	0
11	1	1	1	1	0	1
12	0	1	1	1	0	1
13	0	0	1	1	0	1
14	0	0	0	1	1	1
15 = 0	1	0	0	0	0	0

(b) Example with initial state of 1000

Figure 7.13 Circuit with Shift Registers for Generating PN Sequence

LFSR consists of n bits The number of XOR gates is between 1 and (n-1) Generates a random sequence of length n = 2n-1

 Maximal -length or Msequence

Advantages

- Generates near random sequences
- Easy to apply

Orthogonal Codes

- Orthogonal codes
 - All pairwise cross correlations are zero
 - Fixed- and variable-length codes used in CDMA systems
 - For CDMA application, each mobile user uses one sequence in the set as a spreading code
 - Provides zero cross correlation among all users
- Types
 - Welsh codes
 - Variable-Length Orthogonal codes

Walsh Codes

Set of Walsh codes of length n consists of the n rows of an n 'n Walsh matrix:

$$\mathbf{W}_{1} = (0) \qquad \mathbf{W}_{2n} = \begin{pmatrix} \mathbf{W}_{n} & \mathbf{W}_{n} \\ \mathbf{W}_{n} & \overline{\mathbf{W}}_{n} \end{pmatrix}$$

- n = dimension of the matrix
- Every row is orthogonal to every other row and to the logical not of every other row
- Requires tight synchronization
 - Cross correlation between different shifts of Walsh sequences is not zero

$$W_1 = (0)$$

$$(a) 1 \times 1$$

$$W_2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$W_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$(b) 2 \times 2$$

$$W_4 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

$$W_8 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Figure 7.17 Walsh Matrices

(d) 8 × 8

Typical Multiple Spreading Approach

- Spread data rate by an orthogonal code (channelization code)
 - Provides mutual orthogonality among all users in the same cell
- Further spread result by a PN sequence (scrambling code)
 - Provides mutual randomness (low cross correlation) between users in different cells