OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

Exercice 1. Soit ABC un triangle isocèle en A, dont l'angle en A n'est pas droit. Soit D le point de (BC) tel que $(AD) \perp (AB)$. Soit E le projeté orthogonal de D sur (AC). Soit enfin E le milieu de E le E.

Solution de l'exercice 1

Tout d'abord, comme les angles \widehat{AHD} et \widehat{AED} sont droits, les points A, H, E, D sont sur le cercle de diamètre [AD].

Notons $\theta = \widehat{CBA} = \widehat{ACB}$. Comme AHC est rectangle en H, $\widehat{HAC} = 90^{\circ} - \theta$. Comme BAD est rectangle en A, $\widehat{ADB} = 90^{\circ} - \theta$, et donc $\widehat{ADH} = \widehat{HAE}$.

Par cocyclicité de A, H, E, D, les angles \widehat{ADH} et \widehat{AEH} sont égaux ou supplémentaires, donc $\widehat{HAE} = \widehat{AEH}$ ou $\widehat{HAE} + \widehat{AEH} = 180^{\circ}$.

Le deuxième cas ne peut pas se produire car la somme des angles du triangle AEH vaut 180° , donc on a $\widehat{HAE} = \widehat{AEH}$. On en déduit que HAE est isocèle en H, d'où HA = HE.

Autre approche avec les angles de droites. On sait que si T est une tangente en un point A à un cercle (C) et si B et M sont deux autres points de (C), alors (T, AB) = (MA, MB).

Dans l'exercice, comme (AB) est perpendiculaire au diamètre (AD), elle est tangente au cercle donc d'après ce qui précède on a (AB,AH)=(EA,EH). Or, comme ABC est isocèle on a (AB,AH)=(AH,AC) donc (AH,AE)=(AH,AC)=(AB,AH)=(EA,EH). On en conclut que HAE est isocèle en H, d'où HA=HE.

Exercice 2. Trouver tous les entiers $m \ge 1$ et $n \ge 1$ tels que $\frac{5^m + 2^{n+1}}{5^m - 2^{n+1}}$ soit le carré d'un entier.

Solution de l'exercice 2 La démonstration qui suit est valable pour $m, n \in \mathbb{N}$.

Déjà, $5^m - 2^{n+1}$ doit diviser $5^m + 2^{n+1}$, donc divise $5^m + 2^{n+1} - (5^m - 2^{n+1}) = 2^{n+2}$, par conséquent c'est une puissance de 2. Or, $5^m - 2^{n+1}$ est impair, donc $5^m - 2^{n+1} = 1$.

Ecrivons $5^m + 2^{n+1} = a^2$. On a donc $(a-1)(a+1) = a^2 - 1 = 5^m + 2^{n+1} - 5^m + 2^{n+1} = 2^{n+2}$, donc a-1 et a+1 sont des puissances de 2.

Ecrivons $a - 1 = 2^c$ et $a + 1 = 2^d$ avec c + d = n + 2. Alors c < d donc $a - 1 = 2^c$ divise $2^d - 2^c = (a + 1) - (a - 1) = 2$, donc a - 1 = 1 ou a - 1 = 2.

Si a = 2 alors $2^d = a + 1 = 3$, ce qui est impossible.

On en déduit que a = 3, c = 1, d = 2 et n + 2 = 3, ce qui donne n = 1 et $5^m = 1 + 2^{m+1} = 5$, puis m = 1.

Finalement, m = n = 1.

Exercice 3. On considère 7 îles A_1, \ldots, A_7 . On est autorisé à construire des ponts, soit entre une île A_i et l'île suivante A_{i+1} (pour $i \in \{1, 2, \ldots, 6\}$), soit entre une île A_i et la dernière A_7 (pour $i \in \{1, 2, \ldots, 6\}$). De combien de manières peut-on réaliser ces constructions avec le moins de ponts possibles de sorte que l'on puisse se rendre d'une île vers n'importe quelle autre ?

Exemple pour 3 îles au lieu de 7 : les trois constructions possibles utilisant deux ponts sont

- 1) un pont entre A_1 et A_2 , et un pont entre A_1 et A_3
- 2) un pont entre A_1 et A_2 , et un pont entre A_2 et A_3
- 3) un pont entre A_1 et A_3 , et un pont entre A_2 et A_3 .

<u>Solution de l'exercice 3</u> On dira qu'une configuration est **bonne** si elle satisfait les conditions de l'énoncé.

Notons a_n le nombre de bonnes configurations avec n îles. On a $a_1 = a_2 = 1$ et $a_3 = 3$.

Partant d'une bonne configuration avec n îles telle que A_{n-1} et A_n ne soient pas reliées, alors A_{n-1} et A_{n-2} sont nécessairement reliées, donc si on supprime l'île A_{n-1} on obtient une bonne configuration avec n-1 îles. Réciproquement, toute bonne configuration avec n-1 îles provient d'une et une seule bonne configuration avec n îles dont les deux dernières ne sont pas reliées : il suffit en effet d'intercaler une île entre les deux dernières et de mettre un pont entre celle-ci et la n-2-ième.

On en déduit qu'il y a a_{n-1} bonnes configurations avec n îles telles que A_{n-1} et A_n ne soient pas reliées.

D'autre part, partant d'une bonne configuration avec des ponts entre A_n et A_{n-1} , A_{n-1} et A_{n-2} ,..., A_{n-k+1} et A_{n-k} ($k \ge 1$) mais pas entre A_{n-k} et A_{n-k} , si on supprime les îles A_{n-1} ,..., A_{n-k} alors on obtient une bonne configuration avec n-k îles. On en déduit comme ci-dessus qu'il y a $a_{n-1} + a_{n-2} + \cdots + a_1$ bonnes configurations comportant un pont entre A_n et A_{n-1} .

On voit donc que $a_n = 2a_{n-1} + a_{n-2} + \cdots + a_1$.

On en déduit de proche en proche que $a_4 = 8$, $a_5 = 21$, $a_6 = 55$ et $a_7 = 144$.

Exercice 4. Déterminer toutes les fonctions f de \mathbb{R} dans \mathbb{R} telles que, pour tous x et y réels, on ait l'égalité

$$f(x + y) = f(x - y) + f(f(1 - xy)).$$

Solution de l'exercice 4 Pour y=0 on trouve que f(x)=f(x)+f(f(1)) donc f(f(1))=0. Pour x=0 on trouve f(y)=f(-y)+f(f(1)) donc f(y)=f(-y) pour tout y. Pour y=1 on obtient f(x+1)=f(x-1)+f(f(1-x)). En remplaçant x par -x+2, il vient f(-x+3)=f(-x+1)+f(f(x-1)).

Or, f(x-1) = f(1-x) donc f(f(1-x)) = f(f(x-1)). Par conséquent, f(x+1) = f(x-1) + f(-x+3) - f(-x+1) = f(x-3) puisque f(-t) = f(t) pour tout t.

On en déduit, en remplaçant x par x+1, que f(x+2)=f(x-2) pour tout x.

Prenons y=2 dans l'équation fonctionnelle. On a f(x+2)=f(x-2)+f(f(1-2x)), donc f(f(1-2x))=0 pour tout x. En remplaçant x par (1-t)/2, on trouve que f(f(t))=0 pour tout x.

On revient à l'équation fonctionnelle : f(x+y) = f(x-y) + f(f(1-xy)), donc f(x+y) = f(x-y) pour tous x et y. On prend x = y = t/2 : il vient f(t) = f(0), donc f est constante. Comme f(f(1)) = 0, cette constante est nulle, et finalement f(x) = 0 pour tout x.

Exercice 5. a) Trouver tous les entiers $m \ge 1$ et $n \ge 1$ tels que $\frac{5^m + 2^{n+1}}{5^m - 2^{n+1}}$ soit le carré d'un entier.

b) Plus généralement, trouver tous les entiers $m\geqslant 1$ et $n\geqslant 1$, ainsi que les nombres premiers p, tels que $\frac{5^m+2^np}{5^m-2^np}$ soit le carré d'un entier.

<u>Solution de l'exercice 5</u> a) Voir exercice 2 ci-dessus.

b) Supposons que p=5. Alors $\frac{5^{m-1}+2^n}{5^{m-1}-2^n}$ est le carré d'un entier. D'après la partie a) (qui marchait aussi dans le cas d'entiers $\geqslant 0$, on a m=n=2.

Supposons enfin $p \neq 2$ et $p \neq 5$. Soit d le PGCD de $5^m + 2^n p$ et de $5^m - 2^n p$. Alors d divise $5^m + 2^n p + 5^m - 2^n p = 2 \times 5^m$. Comme d est le PGCD de deux nombres impairs, il est impair, donc il divise 5^m .

De plus, d divise $5^m + 2^n p - (5^m - 2^n p) = 2^{n+1} p$ et il est impair, donc il divise p. Comme p et 5 sont premiers entre eux, en en déduit que d = 1 et que $5^m - 2^n p = 1$; de plus, $5^m + 2^n p = a^2$ pour un certain entier a.

On a donc $(a-1)(a+1) = a^2 - 1 = 2^{n+1}p$.

Le PGCD de a-1 et de a+1 divise (a+1)-(a-1)=2, donc il vaut 1 ou 2. De plus, a-1 et a+1 sont de même parité, et leur produit est pair, donc leur PGCD vaut 2. On en déduit que $(a-1=2, a+1=2^n p)$ ou $(a-1=2p, a+1=2^n)$ ou (a-1=2p, a+1=2p).

Dans le premier cas on aurait a = 3, donc $4 = a + 1 = 2^n p$, ce qui est impossible.

Dans le deuxième cas, on a $p=2^{n-1}-1$. Comme p est premier, n=1 et n=2 ne conviennent pas donc $n\geqslant 3$. Par conséquent, $5^m=2^np+1\equiv 1$ [8]. Comme $5^{2\ell+1}=5\times 25^\ell\equiv 5\times 1^\ell=5$ [8], l'entier m est nécessairement pair. Posons $m=2\ell$, alors $(5^\ell-1)(5^\ell+1)=2^np$. L'un des facteurs est égal à 2p et l'autre à 2^{n-1} . Comme leur différence est égale 2, on a $\pm 2=2p-2^{n-1}=2p-(p+1)=p-1$, donc p=3, n=3 et m=2.

Dans le troisième cas, on a $p=2^{n-1}+1$. On ne peut pas avoir n=1, sinon p=2. Si n=2 alors p=3 et $5^m=1+2^np=13$. Impossible. Donc $n\geqslant 3$. Le même raisonnement que plus haut conduit à $m=2\ell$ avec $\pm 2=2p-2^{n-1}=2p-(p-1)=p+1$, ce qui contredit $p\geqslant 3$.

Exercice 6. Soit I le centre du cercle inscrit à un triangle ABC. Soit D le point diamétralement opposé à A sur le cercle circonscrit. On suppose que le point E de la demi-droite E0 et le point E1 de la demi-droite E1 satisfont la condition

$$BE = CF = \frac{AB + BC + CA}{2}.$$

Montrer que $(EF) \perp (DI)$.

Solution de l'exercice 6

Notons a, b, c les longueurs des côtés, r le rayon du cercle inscrit et p = (a + b + c)/2. Comme [AD] est un diamètre, les angles \widehat{ABD} et \widehat{ACD} sont droits donc

$$DE^{2} - DF^{2} = (DB^{2} + BE^{2}) - (DC^{2} + CF^{2}) = DB^{2} - DC^{2}$$
$$= (AD^{2} - DC^{2}) - (AD^{2} - DB^{2}) = AC^{2} - AB^{2}$$
$$= b^{2} - c^{2}.$$

D'autre part, si C' est le point de contact du cercle inscrit avec [AB], on sait que BC'=p-b, donc C'E=BE-BC'=b. Il vient $IE^2=(IC')^2+(C'E)^2=r^2+b^2$, et de même $IF^2=r^2-c^2$, donc

$$DE^2 - DF^2 = IE^2 - IF^2.$$

Ceci signifie que les points D et I ont la même différence de puissances par rapport à E et F (considérés comme des cercles de rayon nul), donc $(DI) \perp (EF)$.

Précision : expliquons pourquoi si C et C' sont deux cercles de centres O et O', et si $P_C(A) - P_{C'}(A) = P_C(B) - P_{C'}(B)$ alors $(AB) \perp (OO')$. Notons R et R' les rayons des cercles et C, D les projetés respectifs de A et B sur (OO').

On a $P_C(A) - P_{C'}(A) = OA^2 - O'A^2 - (R^2 - (R')^2) = OC^2 - O'C^2 - (R^2 - (R')^2)$, donc $OC^2 - O'C^2 = OD^2 - O'D^2$. Ceci s'écrit encore $(\overline{OC} - \overline{O'C})(\overline{OC} + \overline{O'C}) = (\overline{OD} - \overline{O'D})(\overline{OD} + \overline{O'D})$, ou encore $2\overline{O'O} \cdot \overline{MC} = 2\overline{O'O} \cdot \overline{MD}$ où M est le milieu de [O'O]. Par conséquent, C = D, et donc $(AB) = (AC) \perp (OO')$.