Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання лабораторної роботи №3 з дисципліни: «Фізичні основи сенсорики»

Оптичні сенсори газу (рідини)

Виконавець: Студент 4-го курсу	(підпис)	А.С. Мнацаканов
Перевірив:	(підпис)	ас. Коваль В. М.

Мета роботи – за допомогою інфрачервоного сенсору дослідити стан свого подиху та шкіри.

Порядок виконання роботи

- 1. Ввімкнути джерело постійного струму ИПТ Б5-49, виставити вихідну напругу 3 В.
- 2. Виміряти передаточну характеристику ІЧ-сенсору газу залежність вихідного струму сенсора від струму на його вході. Вхідний струм змінювати в межах 5...80 мА з кроком 5 мА. На передаточній характеристиці обрати робочу точку сенсора.
- 3. Дослідити кінетику десорбції парів газу, адсорбованого на робочій поверхні призми ІЧ-сенсора під час видоху людини. При цьому кожному студенту підгрупи пропонується вивчити стан свого подиху шляхом вимірювання за допомогою мікроамперметра М2027 та таймера залежності вихідного струму сенсору від часу в процесі десорбції. Після кожного вимірювання робочу поверхню призми ІЧ-сенсора потрібно ретельно очищати.
- 4. Вивчити стан шкіри кожного із студентів підгрупи за допомогою ІЧ-сенсора. Для цього потрібно виміряти за допомогою мікроамперметра М2027 відхилення струму сенсора від робочої точки при дотику пальцем до його робочої поверхні. Після кожного вимірювання робочу поверхню призми ІЧ-сенсора потрібно ретельно очищати.
- 5. Вимкнути джерело постійного струму ИПТ Б5-49.

Результати роботи

Тепер за допомогою знятих даних з лабораторних приладів, складемо таблиці та на їх основі побудуємо графіки.

(a) Дані для передаточної характеристики IЧ-сенсору газу.

· ·	
I_{BX} , MA	$I_{\text{вих}}$, мк A
10	8
20	19
30	32
40	43
50	54
60	65
70	75
80	85
90	95

(б) Передаточна характеристика ІЧ-сенсору газу з позначеної на ній робочою точкою сенсора.

Рис. 1

(a) Дані для графіку часової залежності процесу десорбції подиху кожного студента №1

$I_{\scriptscriptstyle \mathrm{BHX}},$ MK A	t, c
45	0
47	1
49	2
51	3
53	4
55	5

(б) Графік часової залежності процесу десорбції подиху кожного студента N_21

Рис. 2

Дивлячись на Рис.2а та Рис.3а можна стверджувати, що у студента №1 десорбція парів газу (подиху) з поверхні призми проходить швидше – це пояснюється тим, що у студента №1 в подиху налічується більше летких речови, ніж у студента №2.

(а) Дані для графіку часової залежності процесу десорбції подиху кожного студента $\mathbb{N}2$

$I_{\scriptscriptstyle \mathrm{BUX}},{\scriptscriptstyle \mathrm{MKA}}$	t, c
42	0
45	1
46	2
47	3
48	4
49	5

(б) Графік часової залежності процесу десорбції подиху кожного студента \mathbb{N}^2

Рис. 3

студент №1	студент №2
$I_{\mathtt{вих}} = 42 \; \mathtt{mkA}$	$I_{\mathtt{вих}} = 36 \ \mathtt{mkA}$
$\triangle = 54 - 42 = 12$	$\triangle = 54 - 36 = 18$

Дивлячись на дані зазначені вище, можна зробити висновок, що студент №2 має більше адсорбційних центрів ніж №1, тобто його стан шкіри більш забруднений або він просто сильніше натиснув на призму.

Контрольні запитання

- 1. На чому ґрунтуються оптичні методи вимірювання концентрації та складу газової суміші?
- 2. Які параметри електромагнітної хвилі змінюються при проходженні крізь простір з рівномірним розподілом досліджуваної речовини?
- 3. Які Ви знаєте різновидності оптичних методів вимірювання концентрації та складу газової суміші?
- 4. В чому полягає рефрактометричний метод аналізу газової суміші?
- 5. Який закон лежить в основі поляриметричного методу аналізу речовини?
- 6. На чому ґрунтується нефелометричний метод аналізу газової суміші? Вкажіть області його застосування.
- 7. В чому полягає колориметричний метод аналізу речовини?
- 8. Поясніть фізичну суть спектрального методу аналізу газів та рідин.
- 9. Що таке абсорбційна спектроскопія? Яке її практичне значення?
- 10. Напишіть математичний вираз закону Ламберта-Бугера-Берра. Який його фізичний зміст?