Modularly Composing Typed Language Fragments (Supplemental Material)

Abstract

This document provides the full technical development described in the paper "Modularly Composing Typed Language Fragments" submitted to PLDI 2015.

1 Internal Language

We assume the statics of the IL are specified in the standard way by judgements for type formation $\Delta \vdash \tau$, typing context formation $\Delta \vdash \Gamma$ and type assignment $\Delta \Gamma \vdash \iota : \tau^+$. The internal dynamics are specified as a structural operational semantics with a stepping judgement $\iota \mapsto \iota^+$ and a value judgement ι val. The multi-step judgement $\iota \mapsto^* \iota^+$ is the reflexive, transitive closure of the stepping judgement and the evaluation judgement $\iota \downarrow \iota'$ is defined iff $\iota \mapsto^* \iota'$ and ι' val. Both the static and dynamic semantics of the IL can be found in any standard textbook covering typed lambda calculi (we directly follow [1]), so we assume familiarity and give the lemmas in this section without proof.

We use $\mathcal{L}\{ \rightharpoonup \forall \mu \ 1 \times + \}$, the syntax for which is shown in Figure 1, as representative of any intermediate language for a typed functional language.

```
internal types
```

```
\begin{array}{ll} \tau & ::= & \tau \rightharpoonup \tau \mid \alpha \mid \forall (\alpha.\tau) \mid t \mid \mu(t.\tau) \mid 1 \mid \tau \times \tau \mid \tau + \tau \\ \textbf{internal terms} \\ \iota & ::= & x \mid \lambda[\tau](x.\iota) \mid \iota(\iota) \mid \mathsf{fix}[\tau](x.\iota) \mid \Lambda(\alpha.\iota) \mid \iota[\tau] \\ & \mid & \mathsf{fold}[t.\tau](\iota) \mid \mathsf{unfold}(\iota) \mid () \mid (\iota,\iota) \mid \mathsf{fst}(\iota) \mid \mathsf{snd}(\iota) \\ & \mid & \mathsf{inl}[\tau](\iota) \mid \mathsf{inr}[\tau](\iota) \mid \mathsf{case}(\iota;x.\iota;x.\iota) \\ \textbf{internal typing contexts } \Gamma ::= \emptyset \mid \Gamma, x : \tau \\ \textbf{internal type formation contexts } \Delta ::= \emptyset \mid \Delta, \alpha \mid \Delta, t \end{array}
```

Figure 1: Syntax of $\mathcal{L}\{ \rightharpoonup \forall \mu \ 1 \times + \}$, our internal language (IL). Metavariable x ranges over term variables and α and t both range over type variables.

In fact, our intention is not to prescribe a particular choice of IL, so we will here only review the key metatheoretic properties that the IL must possess. Each choice of IL is technically a distinct dialect of $@\lambda$, but for the broad class of ILs that enjoy these properties, the metatheory in the remainder of the supplement should follow without trouble.

```
Lemma 1 (Internal Type Assignment). If \Delta \vdash \Gamma and \Delta \Gamma \vdash \iota : \tau then \Delta \vdash \tau.
```

Internal type safety follows the standard methodology of proving preservation and progress lemmas.

```
Lemma 2 (Internal Progress). If \emptyset \emptyset \vdash \iota : \tau then either \iota val or \iota \mapsto \iota'.
```

```
Lemma 3 (Internal Preservation). If \emptyset \emptyset \vdash \iota : \tau \text{ and } \iota \mapsto \iota' \text{ then } \emptyset \emptyset \vdash \iota' : \tau.
```

We assume substitution and simultaneous n-ary substitutions, δ and γ , have the standard semantics, and that typing and type formation contexts, Δ and Γ , obey standard properties of weakening, exchange and contraction. We assume that the names of variables and type variables are unimportant, so that α -equivalent terms, types and contexts can be identified implicitly throughout this work. In particular, we need the definitions of substitution validity shown in Figures 2 and 3 and the following lemmas.

$$\begin{array}{cccc} \boxed{\Delta \vdash \delta : \Delta} & \delta ::= \emptyset \mid \delta, \tau / \alpha \\ \\ & \underbrace{(\mathsf{tysub\text{-}emp})} & & \underbrace{\Delta \vdash \delta : \Delta' & \Delta \vdash \tau} \\ \hline \Delta \vdash \emptyset : \emptyset & & \underbrace{\Delta \vdash \delta : \Delta' & \Delta \vdash \tau} \\ \end{array}$$

Figure 2: Internal Type Substitution Validity

Lemma 4 (Internal Type Substitution on Types). *If* $\Delta \vdash \delta : \Delta'$ *and* $\Delta \Delta' \vdash \tau$ *then* $\Delta \vdash [\delta]\tau$.

Lemma 5 (Internal Type Substitutions on Typing Contexts). *If* $\Delta \vdash \delta : \Delta'$ *and* $\Delta\Delta' \vdash \Gamma$ *then* $\Delta \vdash [\delta]\Gamma$.

Lemma 6 (Internal Type Substitutions on Terms). *If* $\Delta \vdash \delta : \Delta'$ *and* $\Delta\Delta' \vdash \tau$ *and* $\Delta\Delta' \vdash \Gamma$ *and* $\Delta\Delta' \vdash \Gamma$ *then* $\Delta [\delta]\Gamma \vdash [\delta]\iota : [\delta]\tau$.

Figure 3: Internal Term Substitution Validity

Lemma 7 (Internal Term Substitutions). *If* $\Delta \vdash \Gamma$ *and* $\Delta \vdash \Gamma'$ *and* $\Delta \Gamma \vdash \gamma : \Gamma'$ *and* $\Delta \Gamma \Gamma' \vdash \iota : \tau$ *then* $\Delta \Gamma \vdash [\gamma]\iota : \tau$.

2 Tycons

Figure 4: Syntax of tycons. Metavariables TC and **op** range over user-defined tycon and opcon names, respectively, and m ranges over natural numbers.

2.1 Tycon Contexts

Tycon contexts are ordered mappings from tycon names TC to tycon definitions. The tycon context well-definedness judgement $\vdash \Phi$ is specified in Figure 5.

$$\begin{array}{c} (\mathsf{tcc\text{-}ext}) \\ (\mathsf{tcc\text{-}emp}) \\ \hline \\ \vdash \cdot \end{array} & \begin{array}{c} (\mathsf{tcc\text{-}ext}) \\ \vdash \Phi \\ \vdash \cdot \end{array} & \begin{array}{c} (\mathsf{tcc\text{-}ext}) \\ \vdash \Phi \\ \vdash \Phi, \mathsf{tycon} \ \mathsf{TC} \ \{\mathsf{trans} = \sigma_{\mathsf{schema}} \ \mathsf{in} \ \omega\} \sim \mathsf{tcsig}[\kappa_{\mathsf{tyidx}}] \ \{\chi\} \end{array} & \begin{array}{c} (\mathsf{tcc\text{-}ext}) \\ \vdash \Phi, \mathsf{tycon} \ \mathsf{TC} \ \{\mathsf{trans} = \sigma_{\mathsf{schema}} \ \mathsf{in} \ \omega\} \sim \mathsf{tcsig}[\kappa_{\mathsf{tyidx}}] \ \{\chi\} \end{array} \\ & \begin{array}{c} \vdash \Phi, \mathsf{tycon} \ \mathsf{TC} \ \{\mathsf{trans} = \sigma_{\mathsf{schema}} \ \mathsf{in} \ \omega\} \sim \mathsf{tcsig}[\kappa_{\mathsf{tyidx}}] \ \{\chi\} \end{array} \end{array}$$

Figure 5: Tycon context well-definedness.

Opcon structures are checked against the tycon's signature.

$$[construct-intro) \\ intro[\kappa_{tmidx}] \in \chi \qquad \emptyset \vdash \kappa_{tmidx} \\ \frac{\emptyset \ \emptyset \vdash_{\Phi}^{0} \ \sigma_{def} :: \kappa_{tyidx} \to \kappa_{tmidx} \to List[Arg] \to ITm}{\vdash_{\Phi} \ ana \ intro} = \sigma_{def} \sim tcsig[\kappa_{tyidx}] \ \{\chi\} \\ (ocstruct-targ) \\ \vdash_{\Phi} \omega \sim tcsig[\kappa_{tyidx}] \ \{\chi\} \qquad \mathbf{op} \notin \mathrm{dom}(\chi) \qquad \emptyset \vdash \kappa_{tmidx} \\ \frac{\emptyset \ \emptyset \vdash_{\Phi}^{0} \ \sigma_{def} :: \kappa_{tyidx} \to \kappa_{tmidx} \to List[Arg] \to (Ty \times ITm)}{\vdash_{\Phi} \omega; \mathsf{syn} \ \mathbf{op} = \sigma_{def} \sim tcsig[\kappa_{tyidx}] \ \{\chi; \mathbf{op}[\kappa_{tmidx}]\}$$

Figure 6: Checking opcon structures against tycon signatures.

For the purposes of the SL, only the type signatures are relevant. We thus define judgements $\vdash \psi$, $\vdash \chi$ and $\vdash \Phi$ sigsok in Figure 7 for checking this only.

The following lemmas characterize these judgements.

Lemma 8 (Inversion on Tycon Context Well-Definedness). *If* (1)

$$\vdash \Phi$$
, tycon TC {trans = σ_{schema} in ω } \sim tcsig[κ_{tyidx}] { χ }

then (a)
$$\vdash \Phi$$
 and (b) $\mathsf{TC} \notin dom(\Phi)$ and (c) $\emptyset \vdash \kappa_{tyidx} = \mathsf{q}$ and (d) $\emptyset \emptyset \vdash_{\Phi}^{0} \sigma_{schema} :: \kappa_{tyidx} \to \mathsf{ITy}$ and (e) $\vdash_{\Phi,\mathsf{tycon}} \mathsf{TC} \{\mathsf{trans} = \sigma_{schema} \text{ in } \omega\} \sim \mathsf{tcsig}[\kappa_{tyidx}] \{\chi\}$.

Proof. Rule induction on assumption (1). Rule (tcc-emp) does not apply. Rule (tcc-ext) applies. The conclusions (a-e) are the five premises of (tcc-ext) and thus follow immediately. \Box

Lemma 9 (Tycon Context Composition). *If* $(i) \vdash \Phi_1$ *and* $(ii) \vdash \Phi_2$ *and* (iii) $dom(\Phi_1) \cap dom(\Phi_2) = \emptyset$ *then* $(a) \vdash \Phi_1\Phi_2$.

Figure 7: Tycon and Opcon Signature Well-Formedness

Proof. By syntactic case analysis on Φ_1 and Φ_2 .

If $\Phi_1 = \emptyset$ and $\Phi_2 = \emptyset$, then $\Phi_1 \Phi_2 = \emptyset$ and (a) follows by (tcc-emp).

If $\Phi_2 = \emptyset$ then $\Phi_1 \Phi_2 = \Phi_1$ and (a) follows by (1).

If $\Phi_1 = \emptyset$ then $\Phi_1 \Phi_2 = \Phi_2$ and (a) follows by (2).

If $\Phi_1 = \Phi_1'$, tycon $\operatorname{TC}_1 \{\theta_1\} \sim \psi_1$ and $\Phi_2 = \Phi_2'$, tycon $\operatorname{TC}_2 \{\theta_2\} \sim \psi_2$ then $\Phi_1\Phi_2 = \Phi_1'\Phi_2'$, tycon $\operatorname{TC}_1 \{\theta_1\} \sim \psi_1$, tycon $\operatorname{TC}_2 \{\theta_2\} \sim \psi_2$. Let (1-5) be the result of applying Lemma 8 on (i), and (6-10) be the result of applying Lemma 8 on (ii). By (iii) and the usual properties of domains of finite mappings, we have that (11) $\operatorname{dom}(\Phi_1') \cap \operatorname{dom}(\Phi_2') = \emptyset$ and further by (2) we have that (12) $\operatorname{TC} \notin \operatorname{dom}(\Phi_1'\Phi_2')$ and by (8) that (13) $\operatorname{TC}' \notin \operatorname{dom}(\Phi_1'\Phi_2')$. By the IH on (1), (6) and (11) we have that $(14) \vdash \Phi_1'\Phi_2'$. By (tcc-ext) on (14), (12), (3), (4) and on (5), we have that (15) $\vdash \Phi_1'\Phi_2'$, tycon $\operatorname{TC}_1 \{\theta_1\} \sim \psi_1$. By (tcc-ext) on (15), (13), (8), (9) and SAME on (10), we have (a).

Lemma 10 (Intro Opcon Existence and Well-Definedness). *If* $(1) \vdash_{\Phi} \omega \sim \mathsf{tcsig}[\kappa_{tyidx}] \{\chi\}$ *then* (a) intro $[\kappa_{tmidx}] \in \chi$ *and* $(b) \emptyset \vdash \kappa_{tmidx}$ *and* (c) and intro $[\kappa_{tmidx}] \in \omega$ *and* $(d) \emptyset \emptyset \vdash_{\Phi}^{0} \sigma_{def} :: \kappa_{tyidx} \rightarrow \kappa_{tmidx} \rightarrow \mathsf{List}[\mathsf{Arg}] \rightarrow \mathsf{ITm}$.

Proof. Rule induction on assumption (1). If rule (ocstruct-intro) applies then conclusion (c) follows syntactically and (a), (b) and (d) are the three premises and thus follow immediately. If rule (ocstruct-targ) applies, then we apply the IH to the first premise. \Box

Lemma 11 (Targeted Opcon Well-Definedness and Unicity). *If* $(1) \vdash_{\Phi} \omega \sim \mathsf{tcsig}[\kappa_{tyidx}] \{\chi\}$ and (2) syn $\mathbf{op} = \sigma_{def} \in \omega$ then $(a) \mathbf{op}[\kappa_{tmidx}] \in \chi$ and $(b) \emptyset \vdash \kappa_{tmidx}$ and $(c) \emptyset \emptyset \vdash_{\Phi}^{0} \sigma_{def} :: \kappa_{tyidx} \to \kappa_{tmidx} \to \mathsf{List}[\mathsf{Arg}] \to (\mathsf{Ty} \times \mathsf{ITm})$ and (d) if syn $\mathbf{op} = \sigma'_{def} \in \omega$ then $\sigma'_{def} = \sigma_{def}$ and (e) if $\mathbf{op}[\kappa'_{tmidx}] \in \chi$ then $\kappa'_{tmidx} = \kappa_{tmidx}$.

Proof. Rule induction on assumption (1). Rule (ocstruct-intro) does not apply by assumption (2). Rule (ocstruct-targ) applies. Conclusion (a) follows syntactically. Conclusions (b) and (c) are premises 3 and 4. Conclusion (d) follows because either $\sigma'_{\text{def}} = \sigma_{\text{def}}$ (i.e. we considering the

weakening
of
kinding
and
opcon
welldefinedness

current definition) or we can apply the IH to premise 1 and the assumption of (d). Conclusion (e) follows because premise 2 checks the unicity condition directly.

2.2 Full Examples

- 2.2.1 Regular Strings
- 2.2.2 Labeled Products
- 2.2.3 Records

3 Static Language

3.1 Kind Formation

$$\begin{array}{|c|c|c|c|c|} \hline \Delta \vdash \kappa \\ \hline (kf\text{-arrow}) & (kf\text{-alpha}) & (kf\text{-forall}) & (kf\text{-k}) & (kf\text{-ind}) \\ \hline \Delta \vdash \kappa_1 & \Delta \vdash \kappa_2 & \Delta \vdash \alpha & \Delta \vdash \kappa \\ \hline \Delta \vdash \kappa_1 \rightarrow \kappa_2 & \Delta \vdash \alpha & \Delta \vdash \forall (\alpha.\kappa) & \Delta \vdash k & \overline{\Delta} \vdash \mu_{\text{ind}}(\textbf{\textit{k}}.\kappa) & \overline{\Delta} \vdash 1 \\ \hline (kf\text{-prod}) & (kf\text{-sum}) & \overline{\Delta} \vdash \kappa_1 \rightarrow \kappa_2 & \overline{\Delta} \vdash \overline{\lambda} \vdash \overline{\lambda} \\ \hline \Delta \vdash \kappa_1 \times \kappa_2 & \overline{\Delta} \vdash \kappa_1 + \kappa_2 & \overline{\Delta} \vdash \overline{\lambda} & \overline{\Delta} \vdash \overline{\lambda} \\ \hline \end{array} \begin{array}{c} (kf\text{-itm}) & (kf\text{-itm}) \\ \hline \Delta \vdash \overline{\lambda} \vdash \overline{\lambda} & \overline{\lambda} \vdash \overline{\lambda} \\ \hline \end{array}$$

Figure 8: Kind Formation

Lemma 12 (Kind Variable Substitution - Kinds).

- 1. If Δ , $\alpha \vdash \kappa$ and $\Delta \vdash \kappa'$ then $\Delta \vdash [\kappa'/\alpha]\kappa$.
- 2. If $\Delta, \mathbf{k} \vdash \kappa$ and $\Delta \vdash \kappa'$ then $\Delta \vdash [\kappa'/\mathbf{k}]\kappa$.

???

Figure 9: Positive Kinds

3.2 Equality Kinds

Need an equational theory for SL to state equality kind property, but not important for other metatheory.

Lemma 13 (Equality Kind Well-Formedness). *If* $\emptyset \vdash \kappa$ eq *then* $\emptyset \vdash \kappa$.

$$\mathbf{\Delta} \vdash \mathbf{\Gamma}$$

$$\frac{\text{(kctx-emp)}}{\Delta \vdash \emptyset} \qquad \frac{\Delta \vdash \Gamma \qquad \Delta \vdash \kappa}{\Delta \vdash \Gamma, x :: \kappa}$$

Figure 10: Kinding Context Formation

3.3 Kinding

3.4 Static Dynamics

Lemma 14 (Static Canonical Forms). ...

Discussion of decidability and weak normalization.

3.5 Type Translations

3.6 Typing Context Translations

3.7 Arguments

Definition 1 (Argument Interface Kind). The kind abbreviated Arg is defined as

$$\mathsf{Arg} := (\mathsf{Ty} \to \mathsf{ITm}) \times (1 \to \mathsf{Ty} \times \mathsf{ITm})$$

3.8 Kind Safety

Kind Safety Kind safety ensures that normalization of well-kinded static terms cannot go wrong. We can take a standard progress and preservation based approach.

Theorem 1 (Static Progress). If $\emptyset \emptyset \vdash_{\Phi}^{n} \sigma :: \kappa \ and \vdash \Phi \ and \ |\overline{e}| = n \ and \vdash_{\Phi} \Upsilon \leadsto \Gamma \ then \ \sigma \ val_{\overline{e};\Upsilon;\Phi}$ or $\sigma \in \operatorname{err}_{\overline{e};\Upsilon;\Phi} \ or \ \sigma \mapsto_{\overline{e};\Upsilon;\Phi} \sigma'$.

Theorem 2 (Static Preservation). *If* $\emptyset \emptyset \vdash_{\Phi}^{n} \sigma :: \kappa \ and \vdash \Phi \ and \ |\overline{e}| = n \ and \vdash_{\Phi} \Upsilon \leadsto \Gamma \ and \sigma \mapsto_{\overline{e}:\Upsilon:\Phi} \sigma' \ then \ \emptyset \emptyset \vdash_{\Phi}^{n} \sigma' :: \kappa.$

The case in the proof of Theorem 2 for syn[n] requires that the following theorem be mutually defined. The mutual induction is well-founded because the total number of argument lists in the terms being considered decreases.

Theorem 3 (Type Synthesis). *If* $\vdash \Phi$ *and* $\vdash_{\Phi} \Upsilon \leadsto \Gamma$ *and* $\Upsilon \vdash_{\Phi} e \Rightarrow \sigma \leadsto \iota$ *then* $\vdash_{\Phi} \sigma \leadsto \tau$ *(and thus* σ *type* $_{\Phi}$).

4 External Language

4.1 Additional Desugarings

4.2 Typing

Unicity The rules are structured so that if a term is well-typed, both its type and translation are unique.

Theorem 4 (Unicity). *If* $\vdash \Phi$ *and* $\vdash_{\Phi} \Upsilon \leadsto \Gamma$ *and* $\vdash_{\Phi} \sigma \leadsto \tau$ *and* $\vdash_{\Phi} \sigma' \leadsto \tau'$ *and* $\Upsilon \vdash_{\Phi} e \Leftarrow \sigma \leadsto \iota$ *and* $\Upsilon \vdash_{\Phi} e \Leftarrow \sigma' \leadsto \iota'$ *then* $\sigma = \sigma'$ *and* $\tau = \tau'$ *and* $\iota = \iota'$.

4.3 Proof of Regular String Soundness Tycon Invariant

could move this whole thing to supplement if room needed

References

[1] R. Harper. *Practical Foundations for Programming Languages*. Cambridge University Press, 2012.

A Appendix

$$\begin{array}{c} (\text{s-ty-stcp}) \\ \frac{\sigma \mapsto_{A} \sigma'}{c\langle \sigma \rangle \mapsto_{A} c\langle \sigma' \rangle} \\ \hline (s \mapsto_{A} \sigma') \\ \hline (s \mapsto_{A} \sigma') \\ \hline (s \mapsto_{A} \sigma') \\ \hline (tycase \mid_{C} \mid_{C} (\sigma) \times \pi_{1}, \sigma_{2}) \\ \hline (tycase \mid_{C} \mid_{C} (\sigma) \times \pi_{1}; \sigma_{2}) \mapsto_{A} tycase \mid_{C} \mid_{C} (\sigma'; x.\sigma_{1}; \sigma_{2}) \\ \hline (tycase \mid_{C} \mid_{C} (\sigma; x.\sigma_{1}; \sigma_{2}) \mapsto_{A} tycase \mid_{C} \mid_{C} (\sigma'; x.\sigma_{1}; \sigma_{2}) \\ \hline (tycase \mid_{C} \mid_{C} (\sigma; x.\sigma_{1}; \sigma_{2}) \mapsto_{A} tycase \mid_{C} \mid_{C} (\sigma'; x.\sigma_{1}; \sigma_{2}) \\ \hline (tycase \mid_{C} \mid_{C} (\sigma; x.\sigma_{1}; \sigma_{2}) \mapsto_{A} tycase \mid_{C} \mid_{C} (\sigma'; x.\sigma_{1}; \sigma_{2}) \mapsto_{A} tycase \mid_{C} \mid_{C} (\sigma; x.\sigma_{1}; \sigma_{2}) \mapsto_{A} \sigma_{2} \\ \hline (tkeq-k) \\ \frac{k \in \Delta}{\Delta \vdash k \mid_{E} \mid_{E} } \\ \frac{(keq-k)}{\Delta \vdash k \mid_{E} \mid_{E} } \\ \frac{(keq-ind)}{\Delta \vdash k \mid_{E} \mid_{E} } \\ \frac{(keq-ind)}{\Delta \vdash k \mid_{E} \mid_{E} } \\ \frac{\Delta \vdash_{E} \mid_{E} \mid_{E} }{\Delta \vdash k \mid_{E} \mid_{E} } \\ \frac{(keq-sind)}{\Delta \vdash k \mid_{E} \mid_{E} } \\ \frac{\Delta \vdash_{E} \mid_{E} \mid_{E} }{\Delta \vdash k \mid_{E} \mid_{E} } \\ \frac{(keq-sind)}{\Delta \vdash k \mid_{E} \mid_{E} \mid_{E} } \\ \frac{\Delta \vdash_{E} \mid_{E} \mid_{E} \mid_{E} }{\Delta \vdash k \mid_{E} \mid_{E} \mid_{E} } \\ \frac{(keq-sind)}{\Delta \vdash_{E} \mid_{E} \mid_{E} \mid_{E} } \\ \frac{(keq-sind)}{\Delta \vdash_{E} \mid_{E} \mid_{E} \mid_{E} } \\ \frac{(keq-sind)}{\Delta \vdash_{E} \mid_{E} \mid_{E} \mid_{E} \mid_{E} } \\ \frac{(keq-sind)}{\Delta \vdash_{E} \mid_{E} \mid_{E} \mid_{E} \mid_{E} } \\ \frac{(keq-sind)}{\Delta \vdash_{E} \mid_{E} \mid_{E$$

This judgement is defined by the following straightforward rules:

$$\begin{array}{c} \text{(tstore-emp)} \\ \hline \emptyset \leadsto \emptyset : \emptyset \end{array} \qquad \begin{array}{c} \text{(tstore-ext)} \\ \hline \mathcal{D} \leadsto \delta : \Delta \\ \hline (\mathcal{D}, \sigma \leftrightarrow \tau/\alpha) \leadsto (\delta, \tau/\alpha) : (\Delta, \alpha) \end{array}$$

, as specified by the judgement $\mathcal{G} \rightsquigarrow \gamma : \Gamma$ defined by the following rules:

$$\begin{array}{c} \text{(ttrs-emp)} \\ \hline \emptyset \leadsto \emptyset : \emptyset \end{array} \hspace{1cm} \begin{array}{c} \text{(ttrs-ext)} \\ \hline \mathcal{G} \leadsto \gamma : \Gamma \\ \hline (\mathcal{G}, n : \sigma \leadsto \iota/x : \tau) \leadsto (\gamma, \iota/x) : (\Gamma, x : \tau) \end{array}$$

$$\frac{\Delta \Gamma \vdash_{\Phi}^{n} \blacktriangleright(\hat{\tau}) :: \text{ITy} \qquad \Delta \Gamma \vdash_{\Phi}^{n} \rhd(\hat{\iota}) :: \text{ITm}}{\Delta \Gamma \vdash_{\Phi}^{n} \blacktriangleright(\hat{\tau}) :: \text{ITm}}$$

$$\frac{\Delta \Gamma \vdash_{\Phi}^{n} \blacktriangleright(\hat{\tau}) :: \text{ITm}}{\Delta \Gamma \vdash_{\Phi}^{n} \blacktriangleright(\hat{\iota}) :: \text{ITm}}$$

$$\frac{(\text{k-raise})}{\Delta \Gamma \vdash_{\Phi}^{n} \text{ raise}[\kappa] :: \kappa} \qquad \frac{(\text{s-raise})}{\text{raise}[\kappa] \text{ err}_{\mathcal{A}}}$$

$$\frac{(\text{s-syn-success})}{\text{syn}[n] \vdash_{e;\Upsilon;\Phi} (\sigma, \rhd(\text{syntrans}[n]))} \qquad \frac{(\text{s-syn-fail})}{\text{syn}[n] \text{ err}_{\bar{e};\Upsilon;\Phi}} \qquad \frac{(\text{s-syn-fail})}{\text{syn}[n] \text{ err}_{\bar{e};\Upsilon;\Phi}}$$

$$\frac{(\text{k-itm-syntrans})}{\Delta \Gamma \vdash_{\Phi}^{n} \rhd(\text{syntrans}[n']) :: \text{ITm}}$$

$$\frac{(\text{k-itm-syntrans})}{\Delta \Gamma \vdash_{\Phi}^{n} \rhd(\text{syntrans}[n']) :: \text{ITm}}$$

$$, \text{e.g. for lambdas:}$$

$$\frac{(\text{abs-lam})}{\frac{\hat{\tau}}{\lambda[\hat{\tau}](x.\hat{\iota})} \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\text{TC}} \uparrow \parallel \mathcal{D}' \circlearrowleft_{e;\Upsilon;\Phi} \downarrow \parallel \mathcal{D}'' \circlearrowleft_{e;\Upsilon;\Phi} \downarrow}{\lambda[\hat{\tau}](x.\hat{\iota})} \parallel \mathcal{D}'' \hookrightarrow_{e;\Upsilon;\Phi} \downarrow \parallel \mathcal{D}'' \circlearrowleft_{e;\Upsilon} \uparrow}{\lambda[\hat{\tau}](x.\hat{\iota})} \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\text{TC}} \uparrow \parallel \mathcal{D}' \hookrightarrow_{e;\Upsilon} \uparrow}{\lambda[\hat{\tau}](x.\hat{\iota})} \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\text{TC}} \uparrow \parallel \mathcal{D}' \hookrightarrow_{e;\Upsilon} \uparrow}{\lambda[\hat{\tau}](x.\hat{\iota})} \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\text{TC}} \uparrow \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\text{TC}} \uparrow}{\lambda[\hat{\tau}](x.\hat{\iota})} \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\text{TC}} \uparrow \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\text{TC}} \uparrow}{\lambda[\hat{\tau}](x.\hat{\iota})} \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\text{TC}} \uparrow}{\lambda[\hat{\tau$$

(abs-syntrans-new)

$$\frac{n \notin \mathrm{dom}(\mathcal{G}) \qquad \mathrm{nth}[n](\overline{e}) = e \qquad \Upsilon \vdash_{\Phi} e \Rightarrow \sigma \leadsto \iota \qquad \mathrm{trans}(\sigma) \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\mathrm{TC}} \tau \parallel \mathcal{D}' \qquad (x \text{ fresh})}{\mathrm{syntrans}[n] \parallel \mathcal{G} \mathrel{\mathcal{D}} \hookrightarrow_{\overline{e};\Upsilon;\Phi}^{\mathrm{TC}} x \parallel \mathcal{G}, n : \sigma \leadsto \iota/x : \tau \mathrel{\mathcal{D}}'}$$

$$(\text{etctx-emp}) \\ \frac{\vdash_{\Phi} \emptyset \leadsto \emptyset}{\vdash_{\Phi} \emptyset \leadsto \emptyset} \\ \frac{\vdash_{\Phi} \Upsilon \leadsto \Gamma \quad \sigma \text{ type}_{\Phi} \quad \vdash_{\Phi} \sigma \leadsto \tau}{\vdash_{\Phi} \Upsilon, x \Rightarrow \sigma \leadsto \Gamma, x : \tau}$$

Description	Concrete Form	Desugared Form
index projection	e_{targ} # n	$targ[\mathbf{idx}; n](e_{targ}; \cdot)$
label projection	e_{targ} #1b1	$targ[\mathbf{prj}; 1b1](e_{targ}; \cdot)$
explicit invocation	$e_{targ} {\cdot} \mathbf{op}[\sigma_{tmidx}](\overline{e})$	$targ[\mathbf{op}; \sigma_{tmidx}](e_{targ}; \overline{e})$
	$e_{ ext{targ}} \cdot \mathbf{op}(\overline{e})$	$targ[\mathbf{op};()](e_{targ};\overline{e})$
	$e_{targ} \cdot \mathbf{op}(\mathtt{1bl}_1 = e_1, \dots, \mathtt{1bl}_n = e_n)$	$targ[\mathbf{op}; [1bl_1, \dots, 1bl_n]](e_{targ};$
		$e_1;\ldots;e_n)$
labeled case analysis	$e_{\mathrm{targ}}\cdot\mathbf{case}$ {	$targ[\mathbf{case}; [\sigma_1, \dots, \sigma_n]](e_{targ};$
	$ \sigma_1 \langle x_1, \dots, x_k \rangle \Rightarrow e_1$	$\lambda(x_1\lambda(x_k.e_1));$
		;
	$\mid \sigma_n \langle x_1, \dots, x_k \rangle \Rightarrow e_n \}$	$\lambda(x_1\lambda(x_k.e_n)))$

For example,

$$\begin{array}{c} \text{(abs-prod)} \\ \frac{\hat{\tau}_1 \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\mathsf{TC}} \tau_1 \parallel \mathcal{D}' \qquad \hat{\tau}_2 \parallel \mathcal{D}' \hookrightarrow_{\Phi}^{\mathsf{TC}} \tau_2 \parallel \mathcal{D}''}{\hat{\tau}_1 \times \hat{\tau}_2 \parallel \mathcal{D} \hookrightarrow_{\Phi}^{\mathsf{TC}} \tau_1 \times \tau_2 \parallel \mathcal{D}''} \end{array}$$

The argument interfaces that populate the list provided to opcon definitions is derived from the argument list by the judgement $args(\overline{e}) =_n \sigma_{args}$, defined as follows:

$$\frac{(\text{args-s})}{\text{args}(\cdot) =_0 ~\textit{nil} [\text{Arg}]} \qquad \frac{(\text{args-s})}{\text{args}(\overline{e}; e) =_{n+1} ~\textit{rcons} [\text{Arg}] ~\sigma ~(\lambda \textit{ty}:: \text{Ty}. \text{ana}[n](\textit{ty}), \lambda_{-}:: 1. \text{syn}[n])}$$

We assume that the definitions of the standard helper functions $nil :: \forall (\alpha. \mathsf{List}[\alpha])$ and $rcons :: \forall (\alpha. \mathsf{List}[\alpha] \to \alpha \to \mathsf{List}[\alpha])$, which adds an item to the end of a list, have been substituted into these rules. The result is that the nth element of the argument interface list simply wraps the static terms $\mathsf{ana}[n](\sigma)$ and $\mathsf{syn}[n]$.

Lemma 15. If $\Delta \Gamma \vdash_{\Phi}^{n'} \sigma :: \kappa \text{ and } n > n' \text{ then } \Delta \Gamma \vdash_{\Phi}^{n} \sigma :: \kappa$.