Context-Free Parsing

He He

New York University

October 27, 2021

Logistics

- ► Homework 3 released
- Project proposal due next week (one page)
 - What problem are you tackling and why is it important?
 - ► What's your approach?
 - ► How do you plan to evaluate it?

Table of Contents

Context-free language

Probabilistic context-free grammars

Discriminative parsing

Langauge is a set of strings

Formal language:

- ► A set of **strings** consisting of **words** from an **alphabet**
- Well-formed according to a set of rules
- ► Studies the *syntactical* aspects of a language

Examples:

- ▶ Formulas (logic): $(p_1 \land p_2) \lor (\neg p_3)$
- ▶ Programming languages: int a, b = 0;
- ightharpoonup Sequences from the alphabet $\{a,b\}$ that ends with two a's

Questions:

- Formal language theory: How to describe languages (expressive power, recognizability etc.)
- ► Linguistics: Can we design formal languages that capture syntactic properties of natural language?

Natural language syntax

Construct a formal language to represent the syntax of natural language

- Expressivity: how many syntactic phenomena can it cover?
- Computation: how fast can we parse a sentence?

Context-free grammars for natural language

- Captures nested structures which are common in natural language [I told Mary that [John told Jane that [Ted told Tom a secret]]].
- Captures long-range dependencies
 the burnt and badly-ground Italian coffee
 these burnt and badly-ground Italian coffees
- Strikes a good balance between expressivity and computation

Context-free language

Context-free languages (CFL) are generated by a **context-free grammar** $G = (\Sigma, N, R, S)$:

- ightharpoonup a finite alphabet Σ of **terminals** (words)
- \triangleright a finite set of **non-terminals** N disjoint from Σ (word groups)
- ▶ a set of **production rules** R of the form $A \to \beta$, where $A \in N, \beta \in (\Sigma \cup N)^*$ (how to group words)
- ▶ a start symbol $S \in N$ (root of derivation)

Example:

- $S \rightarrow SS$
- $S \rightarrow (S)$
- $S \rightarrow ()$

Phrase-structure grammar for English

Sentences are broken down into **constituents**.

A constituent works as a single unit in a sentence.

Can be moved around or replaced without breaking grammaticality. (Abigail) and (her younger brother) (bought a fish).

Construct CFG for English

- Each word is a terminal, derived from its POS tag.
- Each sentence is derived from the start symbol S.
- Each phrase type is a non-terminal.
- Each constituent is derived from a non-terminal.

Grammar design: choose the right set of non-terminals that produces different constituents.

A toy example CFG

$$N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}$$

 $S = S$
 $\Sigma = \{\text{sleeps, saw, man, woman, dog, telescope, the, with, in}\}$

R =

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	\mathbf{VP}	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
NN	\rightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Lexicon: rules that produce the terminals

(Example from Mike Collins' notes)

Parsing

R =

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
NN	\rightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Can we derive the sentence "the man sleeps"?

Ambiguity

Can a sentence have multiple parse trees?

Exercise: find parse trees for

"She announced a program to promote safety in trucks and vans".

Table of Contents

Context-free language

Probabilistic context-free grammars

Discriminative parsing

PCFG

Notation: let \mathcal{T}_G be the set of all possible left-most parse trees under the grammar G.

Goal: define a probability distribution p(t) over parse trees $t \in \mathcal{T}_G$

Parsing: pick the most likely parse tree for a sentence s

$$\underset{t \in \mathcal{T}_G(s)}{\operatorname{arg max}} p(t)$$

Three questions:

- ▶ Modeling: how to define p(t) for trees?
- ▶ Learning: how to estimate parameters of the distribution p(t)?
- Inference: how to find the most likely tree efficiently?

Modeling

Generate parse trees: iteratively sample a production rule to expand a non-terminal

R =

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
NN	\rightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

PCFG

A **PCFG** consists of

- ightharpoonup A CFG $G = (\Sigma, N, R, S)$
- ▶ Probabilities of production rules $q(\alpha \to \beta)$ for each $\alpha \to \beta \in R$ such that

$$\sum_{eta \colon X o eta \in R} q(X o eta) = 1 \quad orall X \in N$$

ι, q	=				
	S	\rightarrow	NP	VP	1.0
	VP	\rightarrow	Vi		0.3
	VP	\rightarrow	Vt	NP	0.5
	VP	\rightarrow	\mathbf{VP}	PP	0.2
	NP	\rightarrow	DT	NN	0.8
	NP	\rightarrow	NP	PP	0.2
	PP	\rightarrow	IN	NP	1.0

Vi	\rightarrow	sleeps	1.0
Vt	\rightarrow	saw	1.0
NN	\rightarrow	man	0.1
NN	\rightarrow	woman	0.1
NN	\rightarrow	telescope	0.3
NN	\rightarrow	dog	0.5
DT	\rightarrow	the	1.0
IN	\rightarrow	with	0.6
IN	\rightarrow	in	0.4

From HMM to PCFG

Probabilities of parse trees

Given a parse tree t consisting of rules $\alpha_1 \to \beta_1, \dots, \alpha_n \to \beta_n$, its probabilities under the PCFG is

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

Example:

Learning

Training data: treebanks

```
CCS
   (NP-SBJ (DT That)
                                     ((S
     (JJ cold) (, ,)
                                         (NP-SBJ The/DT flight/NN )
     (JJ empty) (NN sky) )
                                        (VP should/MD
                                          (VP arrive/VB
     (ADJP-PRD (JJ full)
                                             (PP-TMP at/IN
       (PP (IN of)
                                               (NP eleven/CD a.m/RB ))
         (NP (NN fire)
                                             (NP-TMP tomorrow/NN )))))
           (CC and)
           (NN light) ))))
   (...)
            Parsed sentences from the LDC Treebank3 version of the Brown (a) and ATIS
(b) corpora.
```

Given a set of trees (production rules), we can estimate rule probabilities by MLE.

$$q(\alpha \to \beta) = \frac{\mathsf{count}(\alpha \to \beta)}{\sum_{\beta' \colon \alpha \to \beta' \in R} \mathsf{count}(\alpha \to \beta')}$$

▶ Similar to estimate word probabilities $(\rightarrow \beta)$ given the document class (α) .

Parsing

Input: sentences, (P)CFG

Output: derivations / parse trees (with scores/probabilities)

Total number of parse trees for a sentence?

Consider a minimal CFG:

$$X \rightarrow XX$$

 $X o \mathsf{aardvark} | \mathsf{abacus} | \dots | \mathsf{zyther}$

Given a string, # of parse trees = # of strings with balanced brackets $((w_1w_2)(w_3w_4))$, $(((w_1w_2)w_3)w_4)$, ...

of strings with n pairs of brackets:

Catalan number
$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Chomsky normal form (CNF)

A CFG is in **Chomsky normal form** if every production rule takes one of the following forms:

- ▶ Binary non-terminal production: $A \rightarrow BC$ where $A, B, C \in N$.
- ▶ Unary terminal production: $A \rightarrow a$ where $A \in N, a \in \Sigma$.

Grammars in CNF produces binary parse trees.

Binarize a production rule: $VP \rightarrow VBD NP PP$ $VP \rightarrow VBD @VP-VBD$ $@VP-VBD \rightarrow NP PP$

We assume the grammar are in CNF.

Dynamic programming on the tree

$$p(t) = \underbrace{q(A \rightarrow BC)}_{ ext{top rule}} \times \underbrace{p(t_B)}_{ ext{left child}} \times \underbrace{p(t_C)}_{ ext{right child}}$$

What are the variables when constructing a tree rooted at A spanning x_i, \ldots, x_i ?

- ▶ The production rule $A \rightarrow BC$
- ▶ The splitting point s: B spans $x_i, ..., x_s$ and C spans $x_{s+1}, ..., x_j$

The CYK algorithm

Notation: $\mathcal{T}(i,j,X)$ is the set of trees with root node X spanning x_i,\ldots,x_j

Subproblem:

$$\pi(i,j,X) = \max_{t \in \mathcal{T}(i,j,X)} p(t)$$

Base case:

$$\pi(i,i,X) = egin{cases} q(X o x_i) & ext{if } X o x_i \in R \ 0 & ext{otherwise} \end{cases}$$

Recursion:

$$\pi(i,j,X) = \max_{\substack{Y,Z \in N \\ s \in \{i,\dots,j-1\}}} q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z)$$

Use backtracking to find the argmax tree.

Bottom-up parsing

R =

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
NN	\rightarrow	dog
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

	the	man	saw	the	dog 4
0	0	1	2	3	4
1					
2					
3					
4					

Variants of CYK

Argmax: find the most likely tree (analogous to Viterbi).

$$\pi(i,j,X) = \max_{s \in \{i,\dots,j-1\}} q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z)$$

Recognition: does the string belong to the language?

$$\pi(i,j,X) = \bigvee_{s \in \{i,\dots,j-1\}} \mathbb{I}\left[X \to YZ \in R\right] \wedge \pi(i,s,Y) \wedge \pi(s+1,j,Z)$$

Marginalization: what's the probability of the string being generated from the grammar? (the **inside algorithm**)

$$\pi(i,j,X) = \sum_{\substack{s \in \{i,\dots,j-1\}\\s \in \{i,\dots,j-1\}}} q(X \to YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z)$$

Summary

	NB	НММ	PCFG
output structure	category	sequence	tree
learning			
decoding	bruteforce	Viterbi	CKY
marginalization		$p(y_i \mid x), \\ p(y_i, y_{i-1} \mid x)$	$p(i,j,N\mid x)$
unsupervised learning			

Table of Contents

Context-free language

Probabilistic context-free grammars

Discriminative parsing

CRF for trees

Input: sequence of words $x = (x_1, \dots, x_n)$

Output: parse tree $y \in \mathcal{T}(x)$

Model: decompose by production rules

$$p(y \mid x; \theta) \propto \prod_{(r,s)} \psi(r, s \mid x; \theta)$$

- r: production rule
- ▶ s: start, split, end indices of the rule r

CRF parsing

Potential functions:

$$\psi(r, s \mid x; \theta) = \exp(\theta \cdot \phi(r, s, x))$$

$$\prod_{(r,s)\in\mathcal{T}(x)} \psi(r, s \mid x; \theta) = \exp\left(\sum_{(r,s)\in\mathcal{T}(x)} \theta \cdot \phi(r, s, x)\right)$$

Learning: MLE

- 1. Compute the partition function by the inside algorithm
- 2. Call autograd to compute the gradient (backpropagation)

Inference: CYK

Limitations of PCFG

Limited lexical information

Lexicalized PCFG

Attach the "head" (most important child in a rule) of the span to each non-terminal

Features

Easy to incorporate lexical information in features!

local score = $\theta \cdot \phi(VP \rightarrow VBD NP, (5, 6, 8), ...$ averted financial disaster...)

Figure: Less grammar, more features. [Hall+ 14]

Neural CRF parser

Figure: Neural CRF Parsing. [Durrett+ 15]

- $ightharpoonup f_w$: lexical features
- $ightharpoonup f_o$: rule features
- \blacktriangleright $h^T W f_o$: interaction between lexical and rule features

Evaluation

$$\mathsf{recall} = \frac{\#\mathsf{correct}\ \mathsf{constituents}}{\#\mathsf{total}\ \mathsf{constituents}\ \mathsf{in}\ \mathsf{gold}\ \mathsf{trees}}$$

$$precision = \frac{\# correct\ constituents}{\# total\ constituents\ in\ predicted\ trees}$$

$$\mathsf{F1} = \frac{2 \times \mathsf{precision} \times \mathsf{recall}}{\mathsf{precision} + \mathsf{recall}}$$

- ightharpoonup Constituent: (i, j, X)
- ▶ Labeled F1: the non-terminal node label must be correct
- Unlabeled F1: just consider the tree structure

Example

