Chapter 9, Solution 80.

200 mH
$$\longrightarrow$$
 j ω L = j(2 π)(60)(200×10⁻³) = j75.4 Ω

$$\mathbf{V}_{o} = \frac{j75.4}{R + 50 + j75.4} \mathbf{V}_{i} = \frac{j75.4}{R + 50 + j75.4} (120 \angle 0^{\circ})$$

- (a) When $R = 100 \Omega$, $\mathbf{V}_{0} = \frac{\mathbf{j}75.4}{150 + \mathbf{j}75.4} (120 \angle 0^{\circ}) = \frac{(75.4 \angle 90^{\circ})(120 \angle 0^{\circ})}{167.88 \angle 26.69^{\circ}}$ $\mathbf{V}_{0} = \mathbf{53.89} \angle \mathbf{63.31^{\circ} V}$
- (b) When $R = 0 \Omega$, $\mathbf{V}_{0} = \frac{j75.4}{50 + j75.4} (120 \angle 0^{\circ}) = \frac{(75.4 \angle 90^{\circ})(120 \angle 0^{\circ})}{90.47 \angle 56.45^{\circ}}$ $\mathbf{V}_{0} = \mathbf{100} \angle \mathbf{33.55^{\circ}} \mathbf{V}$
- (c) To produce a phase shift of 45°, the phase of $V_o = 90^\circ + 0^\circ \alpha = 45^\circ$. Hence, $\alpha = \text{phase of } (R+50+j75.4) = 45^\circ$. For α to be 45°, R+50=75.4 Therefore, $R=25.4~\Omega$