

Overview

- Analysis of hydraulic flocculators
 - Ratio of maximum to average energy dissipation rate
 - Inefficiency of energy use due to nonuniformity of energy dissipation rate
 - The great transition at H_e/S=5
- Flocculator Design
 - Head loss, collision potential, residence time
 - Geometry of a baffle space to obtain desired energy dissipation rate

Top View

W = Width of the flocculator channel

 $S = Space \underline{between}$ baffles

L = Length of a flocculator channel

Side View

- H = Water depth

- The white tephin L = L charged of the flocculator channel S = S pace between baffles S + T = BB =Perpendicular center to center distance between baffles
- Exit to the sedimentation tank entrance channel Minimum water level Upper baffle Lower baffle Port from previous channel

Design Considerations

- The length of the flocculator channels matches the length of the sedimentation tank
- Width of the flocculation channel?
 - Minimum? Human width
 - Material limitations (polycarbonate or concrete)
 - Vary to optimize flocculation efficiency (function of geometry
- Need to determine
 - Head loss
 - Residence time
 - Baffle spacing
 - Number of baffles

More Design Considerations

- Even number of channels for AguaClara design (to keep chemical dose controller near stock tanks), but this may change if flocculators get smaller
- Even or odd number of baffles depending on channel inlet and outlet conditions
- Begin with the energy source for the turbulence that creates shear that creates collisions: head loss for a baffle

Vena Contracta around a bend?

Sluice gate (almost closed)*

0.59

• Small hole in a tank

0.62

Exit from a pipe

No Vena Contracta

Vena Contracta (Π_{VC}) Conclusions

- Draw the most extreme streamline through the transition and determine the total change in direction
- If the change in direction for most of the fluid is 90°, then the Π_{VC} is approximately 0.62
- If the change in direction for most of the fluid is 180°, then the Π_{VC} is approximately 0.62²=0.384

Head Loss coefficient for a Baffle

 $h_e = rac{V_{out}^2}{2g} \left(rac{A_{out}}{A_{in}} - 1
ight)^2$ Head loss in an expansion

 $K_e = \left(\frac{A_{out}}{A_{in}} - 1\right)^2$ e - expansion

$$K_e = \left(\frac{1}{\Pi_{VCBaffle}} - 1\right)^2 = 2.56$$
 the contraction coefficient for a sharp
$$180^{\rm o}~{\rm bend}~(0.62^2)$$

We need to measure this in one of the new AguaClara plants!

Why a transition at H_e/S of 5?

- Jets expand in width at the rate of approximately 1 unit in width per 10 units forward
- Expansion length is 10(0.6S)
- Expansion requires a distance of approximately 6S
- ullet The H_e/S transition is related to the distance required for the jet to fully expand

- Efficiency will be a function of the variability of the energy dissipation rate $\prod_{\bar{\epsilon}}^{\epsilon_{Max}} = \frac{\varepsilon_{Max}}{\bar{\epsilon}}$
- We expect a relation of the form such that efficiency is 1 when Π_{ϵ}^{Max} =1 and efficiency is less than 1 for higher values of Π_{ϵ}^{Max}
- We "solve" this unknown by always designing efficient flocculators with 3<H/S<6

Prior to 2015 AguaClara used designs that were far from the optimum

- A compact plant layout was possible for small flows by using a vertical flow flocculator with a high H_e/S ratio
- For small plants the width of the channel was determined by the need to construct the channel using humans (45 cm or more)
- The space between baffles was very narrow and thus H_e/S was very high (for low flow plants)
- Small plants needed longer residence time and more baffles to achieve adequate flocculation because efficiency was reduced.

New Approach: Always efficient

- Add obstacles to have a maximum H_e/S ratio of between 3 and 6.
- Flocculation efficiency can be considered constant (and close to 1)

Viscous collisions or inertial collisions

Prior to 2016 I had assumed that the appropriate length scale comparison was particle separation distance and Kolmogorov length scale - thus concluded inertia was important

- Particle separation distances are smaller than inner viscous length scale
 - Collisions in turbulent flocculators are dominated by viscosity (fluid shear, not turbulent eddies)* * Edge of knowledge

Collision Potential

Not yet

- The target collision potential used for the design of AguaClara plants since about 2013 has been 37,000
- The actual collision potential in operating AguaClara plants may be lower because the head loss per baffle may be lower than we assumed

Energy use (head loss) in flocculation controls velocity gradient

- Head loss
 - High head loss results in a taller building for the water treatment plant
 - High head loss means higher velocities and that reduces settling of flocs in the flocculator
 - Some gravity flow water supplies don't have much elevation difference between source and storage tank
- Velocity gradient (G)
 - Higher \overline{G} allows lower residence time
 - Higher \bar{G} results in smaller flocs

- $h_{Floc} = \frac{\theta \bar{\varepsilon}}{a}$
- $h_e = K_e \frac{V^2}{2a}$

$$h_{Floc} = \sum K_e \frac{V^2}{2g}$$

$$\bar{G} = \sqrt{\frac{\bar{\varepsilon}}{\nu}}$$

$$\bar{\varepsilon}=\nu\bar{G}^2$$

$$h_{Floc} = \bar{G}\theta \frac{\nu G}{g}$$

The Influence of \bar{G} or G_{Max}

- The value of \bar{G} or $\bar{\varepsilon}$ determines the head loss through the flocculator
- Maximum size of the flocs is controlled by
 - \bar{G} or $\bar{\varepsilon}$ (assuming shear limits attachment)
 - G_{Max} or ε_{Max} (assuming floc break up controls max size)
- ε_{Max} = 10 mW/kg (G_{Max} = 100 Hz) was the AguaClara standard (2011-2015)
- Summer 2015 new designs have head loss of approximately 40 cm
 - Expect smaller flocs (but still captured by plate settlers)
 - Less sedimentation of flocs in flocculator
 - Smaller flocculator
- Casey Garland has tested \bar{G} values as high as 340 Hz

The design inputs for flocculation

 We need collisions and thus Gθ is a logical design specification

$$\bar{G}\theta = \frac{3}{2} \frac{\left(\Lambda^2 - \Lambda_0^2\right)}{k\pi d_D^2 \alpha}$$

- We need to specify energy use
 - Velocity gradient \bar{G}
 - Energy dissipation rate $\bar{\varepsilon}$
 - Total head loss h_{Floc}
- Or t (θ)

More time helps diffusion of coagulant nanoparticles to clay surfaces

Higher G means smaller flocs and more elevation drop (head loss) through flocculator

Current approach

Our current choice of parameter that sets energy input is head loss

• Head loss is independent of temperature

$$h_e = K_e \frac{V^2}{2g}$$

- Velocity gradient is f(temperature)
- Option 1 Start with $(\bar{G}, \bar{G}\theta)$ and coldest temperature
 - Calculate θ

$$\theta = \frac{G\theta}{G}$$

 $h_{Floc} = \bar{G}\theta \frac{\nu G}{g}$

- Calculate h_{Floc}

- $oxedsymbol{\Phi}^{ ext{ption 2}ullet}$ Start with $(h_{ ext{Floc}},ar{G} heta)$ and coldest temperature ullet Calculate $ar{G}$
 - Calculate θ

- \bar{G} (and hence $\bar{G}\theta$) will increase when the flocculator is operated at warmer temperatures due to decrease in viscosity

Design the reactor geometry to get the target velocity gradient

Kinetic energy dissipated per residence time

 $\bar{V} = \frac{Q}{WS} \text{ Rectangular geometry}$ $\bar{V} = \frac{Q}{WS} \text{ Rectangular geometry}$ $H_e \text{ is height of one expansion zone.}$ $\bar{G} = \sqrt{\frac{K_e}{2\nu H_e}} \left(\frac{Q}{WS}\right)^3$ Could be the depth of water if the only expansion is from the 180 degree bend

This is our general equation relating velocity gradient to reactor geometry

Solve for channel width to set constraints on viable solutions

$$\nu \bar{G}^2 = \frac{K_e}{2H_e} \left(\frac{Q}{WS}\right)^3$$

 $W = \frac{Q}{S} \left(\frac{K_e}{2H_e \nu G^2} \right)^{\frac{1}{3}} \qquad \mathcal{S} = \frac{H_e}{\Pi_{HS}} \qquad H_e = \Pi_{HS} S$

This is the minimum channel width if we set $\Pi_{HS} = 3$ and set the expansion height to equal water depth

As channel gets narrower the spacing between baffles

Channels narrower than this would have barely any or negative baffle overlap!

Minimum number of expansions per depth of flocculator (given W)

$$\nu \bar{G}^2 = \frac{K_e}{2H_e} {\left(\frac{Q}{WS} \right)}^3 \qquad \Pi_{HS} = \frac{H_e}{S} \qquad S = \frac{H_{e_{Max}}}{\Pi_{HS_{Max}}} \; \; \text{Eliminate S}$$

$$H_{e_{Max}} = \left[\frac{K_e}{2\nu G^2} \left(\frac{Q\Pi_{HS_{Max}}}{W}\right)^3\right]^{\frac{1}{4}} \quad \text{Solve for maximum distance} \\ \text{between expansions, } H_e, \\ \text{using } \Pi_{HS_{Max}} = 6$$

$$N_{e_{Min}} = \frac{H_{Floc}}{H_{e_{Max}}}$$
 Round **up** to get the minimum number of expansions per depth of the flocculator

Our Design Approach Given energy (h_{Floc} or \overline{G}) and $G\theta$

- Start big and then design the details
 - Calculate volume of flocculator
 - approach as of summer 2015)
 - Split it into channels

channels to get target $\overline{\textbf{\textit{G}}}$

- Then design baffles, and obstacles to fill the
- We can use this design approach because we are assuming that we will design for high efficiency ($3 < H_e/S < 6$) and thus we don't have to add extra volume to account for inefficiencies. (Don't forget this requirement!)

Design Algorithm (as of 2016) Start with h_{Floc} and G θ

- Velocity gradient and flocculator volume given $\bar{G} = \frac{gh_{Floc}}{(\bar{G}\theta)_{H}}$ head loss and collision potential
- Minimum channel width required to achieve $W_{Min}=rac{\Pi_{HS}Q}{H_e}\Big(rac{K_e}{2H_e
 u^G^2}\Big)^rac{1}{3}$ $H_e/S > 3$ and required for constructability
- Number of channels by taking the total width and dividing by the minimum channel width (floor)
- Channel width (total width over number of channels)
- $H_{e_{Max}} = \left[\frac{K_e}{2\nu G^2} \left(\frac{Q\Pi_{HS_{Max}}}{W} \right)^3 \right]$ Maximum distance between expansions
- 6. Minimum number of expansions per baffle space
- 7. Actual distance between expansions
- 8. Baffle spacing
- Calculate the obstacle width to obtain the same jet expansion conditions as produced by the 180 degree bend

$$S = \left(\frac{K_e}{2H_eG^2\nu}\right)^{\frac{1}{3}} \frac{Q}{W}$$

$$N_{e_{Min}} = \frac{H_{Floc}}{H}$$

Viscous Collision Potential per Flow Expansion (the detailed perspective)

$$G\theta = \theta \sqrt{\frac{\varepsilon}{\nu}}$$

$$\theta_e = \frac{H_e}{V}$$

Collision potential for one flow expansion Height of one expansion zone (in a vertical flow flocculator) Hydraulic residence time for one expansion zone These are the average velocities through the expanded flow area

Energy dissipation rate is energy loss per time

$$G\theta_e = \frac{H_e}{\bar{V}} \sqrt{\frac{K_e}{\nu} \frac{\bar{V}^2}{2} \frac{\bar{V}}{H_e}}$$

Collision potential is a function of velocity. This suggests that a flocculator would perform poorly if the flow rate were decreases. I don't know if anyone has ever demonstrated that!

$$G\theta_e = \sqrt{\frac{H_e K_e Q}{2\nu W S}}$$

Almost Real Designs (Flocculator exit depth of 2 m)

- What sets maximum channel width?
- What sets minimum channel width?
- Why this cycle of channel widths?

Velocity guidelines?

- Why does V increase with flow rate?
- Why does V increase in steps?
- Why does V remain constant above 70 L/s?

Design Scaling (Design Engine version 7099)

More details

- The ports between channels should have the same cross sectional area as WS
- The number of chambers per canal (except in the last canal) is even - the number of baffles is
- The number of chambers in the last canal is odd - the number of baffles is even
- Why?

Use a Pipe with orifices to make a flocculator for small flows (S=D)

$$\nu \overline{G}^2 = \frac{K_e V^3}{2H}$$

$$v\overline{G}^2 = \frac{K_e V^3}{2H_e}$$
 $\overline{V} = \frac{4Q}{\pi D_{Pipe}^2}$ Continuity

$$H_e = \Pi_{\mathit{HS}} D_{\mathit{Pipe}}$$

Here we assume that S is like D

$$\nu \overline{G}^2 = \frac{K_e}{2\Pi_{HS} D_{Pipe}} \left(\frac{4Q}{\pi D_{Pipe}}^2 \right)^3$$

$$D_{Pipe} = \left[\frac{K_e}{2\Pi_{HS} v \overline{G}^2} \left(\frac{4Q}{\pi} \right)^3 \right]^{\frac{1}{7}}$$

Round to nearest inner pipe diameter? Or round down to get higher velocities to prevent sedimentation?

Estimate the orifice diameter

We need to estimate Ke!

- The head loss for these orifices spaced so closely may be less than what we calculate
 - Vena contracta may not be as severe for orifices that are close to the inner diameter of the pipe
 - Insufficient length for full expansion before next orifice

Estimate the orifice diameter using the correct value of Ke

$$H_e = \Pi_{HS} D_{Pine}$$

$$h_e = K_e \frac{V^2}{2\sigma}$$

Need to find actual Ke given pipe diameter to develop target G

$$\begin{split} \overline{G} = \sqrt{\frac{gh_c}{\theta \nu}} & \text{Replace residence time with volume/Q} \\ \overline{G} = \sqrt{\frac{4gh_cQ}{\nu \pi H_c D_{pqe}^2}} & \longrightarrow h_c = \frac{\overline{G}^2 \nu \pi H_c D_{pqe}^2}{4gQ} \\ h_c = K_c \frac{V^2}{2g} = K_c \frac{16Q^2}{2g\pi^2 D_{pqe}^4} & \frac{\overline{G}^2 \nu \pi H_c D_{pqe}^2}{4gQ} & \longrightarrow K_c = \frac{\pi^3 D_{pqe}^7 \overline{G}^2 \nu \Pi_{HSMax}}{32Q^3} \end{split}$$

$$h_e = K_e \frac{V^2}{2g} = K_e \frac{16Q^2}{2g\pi^2 D_{ploc}^4} = \frac{G^2 v \pi H_e D_{ploc}^2}{4gQ} \longrightarrow K_e = \frac{\pi^3 D_{ploc}^7 G^2 v \Pi_{HSMet}}{32Q^3}$$

$$D_{Orifice} = \frac{D_{Pipe}}{\sqrt{\prod_{vc} \left(\sqrt{K_{e_{orifice}}} + 1\right)}}$$

Use a Pipe with orifices to make a flocculator for small flows (H=D)

$$\nu \overline{G}^2 = \frac{K_e V^3}{2H}$$

$$v\overline{G}^2 = \frac{K_e V^3}{2H_e}$$
 $\overline{V} = \frac{4Q}{\pi D_{Pipe}^2}$ Continuity

$$H_e = D_{Pipe}$$

Here we assume that S is like D

$$\nu \overline{G}^2 = \frac{K_e}{2D_{Pine}} \left(\frac{4Q}{\pi D_{Pine}^2} \right)^3$$

$$D_{Pipe} = \left[\frac{K_e}{2\nu \overline{G}^2} \left(\frac{4Q}{\pi} \right)^3 \right]^{\frac{1}{7}}$$

Round to nearest inner pipe diameter? Or round down to get higher velocities to prevent sedimentation?

An interesting design No this wasn't AguaClara...

A few Reflections

- Floc size doesn't seem to be a significant constraint for flocculator design
- We may increase energy dissipation rate significantly as we experiment with maintaining small flocs that primary particles can attach to
- Our broad goal is to maximize performance at minimum cost. Thus cost minimization may be an important constraint for setting the target velocity gradient.
- Maintaining the flocs in suspension is another important constraint

Reflection Questions

- How does the collision potential in a flocculator change with flow rate?
- What is the ratio of G_{Max} to \bar{G} for well designed hydraulic flocculators?
- Why might mechanical flocculators break more flocs than hydraulic flocculators?

Reflection Questions

- What are some alternate geometries?
- How else could you generate head loss to create collisions?

Reflection Questions

- What is the relationship between potential energy loss and the average velocity gradient in a flocculator?
- How did AguaClara get around the 45 cm limitation?
- How does the non uniformity of ε (or G) influence efficiency of energy use?

Conclusions

- Energy dissipation rate determines the spacing of the baffles.
- Energy is used most efficiently to create collisions when the energy dissipation rate is uniform. Therefore H/S between 3 and 6 is best.
- Collision potential is a function of geometry and a function of flow rate