No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose of gaining credits towards an NCEA qualification.

91261

Level 2 Mathematics and Statistics, 2015 91261 Apply algebraic methods in solving problems

KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

2.00 p.m. Tuesday 10 November 2015 Credits: Four

Achievement	Achievement with Merit	Achievement with Excellence
Apply algebraic methods in solving problems.	Apply algebraic methods, using relational thinking, in solving problems.	Apply algebraic methods, using extended abstract thinking, in solving problems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Sheet L2-MATHF.

Show ALL working.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

You are required to show algebraic working in this paper. Guess-and-check methods and correct answer(s) only will generally limit grades to Achievement.

Check that this booklet has pages 2–11 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Achievement

TOTAL 14

Annotated Exemplar Template

Ach	ieved exem _l	plar for 91261 2015 Total score 14				
Q	Grade score	Annotation				
1	M5	The two quadratic solutions in 1aiii provided only r ev of x = -2 (can't have a negative base) was overlooked could have contributed r evidence were incorrect or in	d. Other question			
2	N2	Question 2a provided u evidence, the cancelation wa 2 was dropped from the denominator.	s correct but the	factor of		
3	E7	Candidate solution to 3c provided t evidence, subseq was ignored. In 3d sufficient evidence for r was given as the discrir were correct and one constraint was given. No roots were found.	ninant with inequ	ality		

QUESTION ONE

ASSESSOR'S USE ONLY

Find the value of $\log_2 1024$. (a) (i)

U

4

(ii) Solve the equation $\log_4(3w+1)=2$.

$$\frac{4^{2} = 3w + 1}{16 = 3w + 1}$$

$$81 3w = 16 - 1$$

$$3w = 15$$

(iii) Luka says that the equation $\log_x(4x + 12) = 2$ has only one solution.

Is he correct?

Find the solution(s), justifying your answer.

$$\chi^2 = 4x + 12$$

$$\chi^2 - 4\chi = 12$$

$$x^2 - 42 - 12 = 0$$

 $\chi^2 - 4\chi = 12$ He is wrong as $\chi^2 - 4\chi - 12 = 0$ it formed a quadartic

(x-6)(x+2) formula giving

α	 6	α	=	-2	/1
	 7				71

2 x values 6 and

Make x the subject of the equation $a^{2x} = b^{x+1}$. (b)

109B

		3	
(c)	annu	market value of Sue's house has been increasing at a constant exponential rate of 3% per am since she bought it sixteen years ago at the start of 1999. At the start of 2015 it was th \$350000.	ASSESSOR'S USE ONLY
	(i)	Assuming the exponential growth is of the form $y = A r^t$, what was the value of the house at the start of 1999 when she bought it? SSOURCE SSOURCE STANDARD TO	
		QESEOCOO = A X 3316	
		WH 16=AB 3150000	
•		16=Ax350000 A=1200	
		y = 350000 (x 31° 16 °3)	/^
		y = 350000 mos 18	
	(ii)	A friend also bought a house at the start of 1999 that cost \$200 000.	
	(11)	Its market value also has been steadily increasing, but at a slightly higher exponential rate of 3.5%.	
		Its value, \$y, t years after the start of 1999, is given by the function	
		$y = 200000 \times (1.035)^t$	
		If the houses continue to keep increasing in value at the original rates, in which year will the two houses be worth the same amount?	
		$1 = 200000 \times (1.035)^{t}$	
			- 1

QUESTION TWO

(a) Simplify $\frac{2x^2 + 7x - 4}{2x^2 - 32}$

(b) If $a = y^{\frac{3}{4}}$, find an expression for $\underline{\underline{a}^7}$ in terms of y.

(c) Solve the equation $2u^{\frac{2}{3}} + 7u^{\frac{2}{3}} = 4$ $2u^{\frac{2}{3}} + 7u^{\frac{2}{3}} - 4 = 0$

(d) Talia used timber to form the exterior sides of her rectangular garden. The length of the garden is x metres, and its area is 50 m².

ASSESSOR'S USE ONLY

60=xy (i) A= xy

50

Show that the perimeter of the garden is given by $2x + \frac{100}{x}$

 $\frac{P = x + x + y + y}{A = xy}$

X

A = xy p = 5 + 5 + 10 + 10

=30 =30 $=22^{2}+\frac{10}{3}$

(ii) If she uses 33 m of timber to build the sides, find the dimensions of the garden.

Sione cycles on average 4 km per hour faster than David, and finishes half an hour earlier than David.

Find David's average speed.

You MUST use algebra to solve this problem. (Hint: average speed = $\frac{distance}{time}$)

2/4

S=4D

4x60=240 1/2h+4H

150

4.54=150

h=150

4.5

150

1/2 (33,3)+4(33.3)

D/4

4025

150

ASSESSOR'S USE ONLY

(a) Simplify, giving your answer with positive exponents:

(i)	$\left(\frac{a^{10}}{4a^5}\right)^{-2}\left(\frac{4a^5}{100}\right)^{-2}$	2	= 16a ¹⁰	~	1600
-----	---	---	---------------------	---	------

*	

(b) Solve the following equation for t:

$$\frac{1}{t(t-1)} - \frac{1}{t} = \frac{3}{t-1}$$

$$y = x^2 + (3k - 1)x + (2k + 10)$$

never touch the x-axis?

 $\frac{\text{M'}}{(3k-1)^2-4(1)(2k+10)} < 0$ (3k-1)(3k-1)-4(2k+10)40 9162-316-3K+1-816-40 60 9K2-14K-39K.0 values never touch x 62-4ac + (3k-1)2-4(1)(2k+1)0 2(1) -1- J(9K+13) (K-

(d) The quadratic equatio	(d)
---------------------------	-----

$$mx^2 - (m+2)x + 2 = 0$$

has two positive real roots.

Find the possible value(s) of m, and the roots of the equation.

b2-4ac>0

1(m+2)(m+2)-4×m×2

m2+2m+2m+4-4m X270

m2+4m+4-8m>0

m2-4m+4>0

(m-2)(m-2) > 0

 $A^{m+2} / / 2x^2 - 4x + 2 = 0$

E7

ASSESSOR'S USE ONLY