RMD-S 伺服电机驱动系统使用说明

RMD-S电机驱动系统采用 32-bit 高性能 MCU,结合优化版本的 FOC 控制技术,搭配海泰机电 DM 系列高性能无刷电机,专为高精度、高响应、大扭矩应用场景打造。电机与驱动的一体化设计,方便用户系统整合。驱动集成高精度绝对值编码器,配合简单易用的双闭环控制算法,大幅度提高了位置、速度反馈与力矩输出的精准度。

1. 总线

总线类型: RS485

总线接口芯片: MAX3485 总线接口电平: TTL 3.3V

波特率: 9600, 19200, 57600, 115200(默认)

数据<mark>位:8</mark> 奇偶校验:无 停止位:1

2. 驱动接口

40/50 电机;端子ZH1.5

70/90 电机 ;端子ZH1.5

接口	说明
GND	电源地
AUX1	无连接
485B	RS485-B
485A	RS485-A
5V	控制及总线电路供电,范围 4.2~8.4V
VCC	驱动电路供电,40/50 范围 7.4~20V;70/90 范围 7.4~32V

3. 线路连接

控制电路连接如下图所示:

如果使用 MCU 控制,推荐的主控电路如下,主控 $A \times B$ 端建议分别使用 220R 电阻上拉,防止整个总线在都处于接收状态时因电平不确定导致收发异常。其中 TX-EN 作为发送控制端口,发送命令前置高,使能发送,命令发送完成后需要拉低以放开总线,接收驱动的回复数据

RS485

3. 设定

● 上位机连接

电机驱动和上位机之间可以通过 USB 转 RS485 模块连接。

电机驱动出厂时默认波特率为 115200, 默认 ID 由拨码开关设定, 一般为 1, 因此, 上位机连接前的设置如下(其中 COM 根据实际情况选择), 点击 CONNECT 按钮后,连接设备。

● 基础设定, 在 Setting 页面中, 点击 Read 按钮读取电机和编码器信息

✓ Driver ID: 设置驱动的 ID 号。设置为 0 时, ID 由拨码开关选择, 两者对应关系如下表:

开关 1	开关 2	ID
0FF	0FF	#1
ON	0FF	#2
0FF	ON	#3
ON	ON	#4

设置为 1~32 时, ID 由该设定项确定。注意在设置完成后新的 ID 需要重新上电才能生效。

- ✓ Driver Baudrate: 设置驱动的波特率。注意在设置完成后新的波特率需要重新上电才能生效。
- ✓ Shutdown Time:设置电机的关闭时间。在该时间内没有收到控制命令,电机会关闭;设置为 0 时, 电机始终不会关闭。注意在设置完成后新的关闭时间需要重新上电才能生效。
- ✓ Angle: 角度环控制参数。Kp 和 Ki 修改角度环的 PI 参数, Max Angle 用于限制电机的最大转动角度, 例如设置为 3600 时, 电机的最大转动角度为±3600°, 即正反 10 圈。
- ✓ Speed: 速度环控制参数。Kp 和 Ki 修改速度环的 PI 参数, Max Speed 用于限制电机的最大转动速度, 例如设置为 720 时, 电机的最大转动角速度为±720°/S, 即每秒 2 圈。
- ✓ Other: Acceleration 限制了电机的最大加速度; Max Power 限制了最终输出到电机的功率。

注意:

- 1. 加速度 Acceleration 选项在当前版本驱动中没有生效,电机的实际加速度取决于 PI 参数、电机负载和驱动电压等。
 - 2. 参数修改后,点击 Write 按钮才能将参数保存到驱动中。
- 编码器设定,在 Encoder 页面中,点击 Read 按钮读取电机和编码器信息

❖ 光毓机电-电机配置软件 V1.0		- □ x
Select COM COM3 Setting Encoder Product	Baud Rate 115200 VID 1	DISCONNECT
Motor Poles	28 🗦	
Encoder Type	AS5600	
Motor/Encoder Ratio	989	
Motor/Encoder Offset	420	
Motor/Encoder Direction	Normal	
Motor/Encoder Align Power	150 Align	
Motor Zero Position	0 Set	Write
		Read

- ✓ Encoder Type: 编码器型号, 该参数为只读参数。
- ✓ Motor/Encoder Ratio: 电机和编码器校准的比值,该参数为只读参数,一般在 1000 左右,越接近 1000

说明校准效果越好。

- ✓ Motor/Encoder Offset: 电机和编码器校准的 0 偏, 该参数为只读参数, 一般对电机驱动性能没有影响。
- ✓ Motor/Encoder Direction: 电机和编码器校准的方向,该参数为只读参数,一般对电机驱动性能没有影响。
- ✓ Motor/Encoder Align Power: 电机和编码器校准功率, 一般使用默认参数即可, 在负载较大时可适当加大以提高校准的效果。
- ✓ Align 按钮: 开始电机和编码器的校准。在该步骤前,需要保证电机的磁极数设置正确并选取适当的校准功率。点击 Align 按钮后,电机会往返转动以执行校准,校准完成后参数会自动保存到驱动中。
- ✓ Motor Zero Position: 电机起始位置,点击 Set 按钮后驱动会保存当前位置作为电机起始位置。

注意:

- 1. 电机<mark>和编码</mark>器的校准最好在电机空载情况下执行,如果在校准转动的过程中电机转动不顺畅,请检 查电机故<mark>障或者</mark>机械摩擦。
 - 2. 参数修改后,点击 Write 按钮才能将参数保存到驱动中。
- 产品信息,在 Product 页面中,点击 Read 按钮读取产品的硬件和软件版本

4. 控制命令

同一总线上共可以挂载多达 32 (视总线负载情况而定) 个驱动,为了防止总线冲突,每个驱动需要设置不同的 ID, 具体可参考上一节中的基础设定。

主控向驱动发送控制命令,对应 ID 的驱动接收到命令后解析数据,根据命令类型选择控制方式(角度闭环、速度闭环、开环),并在一段时间后(0.5ms内)向主控发送回复命令。

每条控制命令都是由 2 部分组成: 帧头 + 数据, 具体说明如下:

	数据描述	数据长度	
帧命令	头字节	1	帧头识别,0x3E
	命令字节	1	CMD
1	ID 字节	1	1~4
	数据长度字节	1	描述数据长度 0~60
	帧头校验字节	1	Header checkSum
帧数据	数据	0~60	命令附带的数据流
	数据校验字节	0 或 1	Data checkSum

目前 RMD-S 驱动电机支持的控制命令如下:

● 读取编码器命令,该命令不会改变电机当前状态,命令总长度:5byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0x90	CMD
3	ID 字节	0x01~0x20	#1 [~] #32
4	数据长度字节	0x00	
5	帧头校验字节	1~4 字节校验和	

例如,主机向 1#驱动发送读取编码器的命令如下(HEX)

3E 90 01 00 CF

驱动回复,数据长度: 8byte

	-123	说明	备注
1	头字节	0x3E	
2	命令字节	0x90	CMD
3	ID 字节	0x01~0x20	#1 [~] #32
4	数据长度字节	0x02	
5	帧头校验字节	1~4 字节校验和	
6	编码器数据低字节	=*(int8_t *)(&encoder)	编码器数据为为 16bit 整形数
7	编码器数据高字节	=*((int8_t *)(&encoder)+1)	据,数据范围和编码器精度相 关,一般为 0~4095(12bit)
8	数据校验字节	6~7 字节的校验和	97

例如, 1#驱动在收到读取编码器命令后回复的数据如下(HEX)

3E 90 01 02 D1 CF OF DE

● 开环控制命令,该命令中包含一个控制参数(电机 POWER),命令总长度:8byte

· · · · ·			
		说明	备注
1	头字节	0x3E	
2	命令字节	0xA0	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x02	
5	帧头校验字节	1~4 字节校验和	
6	电机 power 低字节	=*(int8_t *)(&power)	电机 power 代表了输出到电机
	93		的堵转扭矩比例(实际扭矩因
7	电机 power 高字节	=*((int8_t *)(&power)+1)	电机和驱动电压而异),为16bit
			整形数据,范围-850~+850。电
			机转动方向由POWER 值的符号

			决定。
8	数据校验字节	6~7 字节的校验和	

例如,主机向 1#驱动发送开环控制 POWER 值为 256 的命令如下(HEX)

3E AO 01 02 E1 00 01 01

主机向 1#驱动发送开环控制 POWER 值为 512 的命令如下(HEX) 3E A0 01 02 E1 00 02 02

驱动回复,数据长度:8byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0xA0	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x02	
5	帧头校验字节	1~4 字节校验和	
6	编码器数据低字节	=*(int8_t *)(&encoder)	编码器数据为为 16bit 整形数据,数据范围和编码器精度相
7	编码器数据高字节	=*((int8_t *)(&encoder)+1)	发,一般为 0~4095 (12bit)
8	数据校验字节	6~7 字节的校验和	125

例如,驱动在收到开环控制数据后回复的命令如下(HEX)

3E AO 01 02 E1 E8 03 EB

● 速度闭环控制,命令中包含一个控制参数,此参数定义了电机的运行速度,命令总长度: 10byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0xA2	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x04	
5	帧头校验字节	1~4 字节校验和	
6	电机速度低字节	=*(int8_t *)(&speed)	电机 speed 代表了电机转动角
7	电机速度	=*((int8_t *)(&speed)+1)	速度,为 32bit 整形数据,实际
8	电机速度	=*((int8_t *)(&speed)+2)	速度比值 0.01dps/LSB,即36000
9	电机速度高字节	=*((int8_t *)(&speed)+3)	代表 360dps。电机转动方向由
			速度值的符号决定。
10	数据校验字节	6~9 字节的校验和	

例如, 主机向 1#驱动发送角速度为 720dps 的命令如下

(HEX) 3E A2 01 04 E5 40 19 01 00 5A

主机向 1#驱动发送角速度为 360dps 的命令如下

(HEX) 3E A2 01 04 E5 A0 8C 00 00 2C

主机向 1#驱动发送角速度为 180dps 的命令如下 (HEX) 3E A2 01 04 E5 50 46 00 00 96

主机向 1#驱动发送角速度为 90dps 的命令如下(HEX)

3E A2 01 04 E5 28 23 00 00 4B

主机向 1#驱动发送角速度为 Odps 的命令如下(HEX)

3E A2 01 04 E5 00 00 00 00 00

主机向 1#驱动发送角速度为-90dps 的命令如下(HEX)

3E A2 01 04 E5 D8 DC FF FF B2

驱动回复,数据长度:8byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0xA2	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x02	
5	帧头校验字节	1~4 字节校验和	
6	编码器数据低字节	=*(int8_t *)(&encoder)	编码器数据为为 16bit 整形数
			据,数据范围和编码器精度相
7	编码器数据高字节	=*((int8_t *)(&encoder)+1)	关,一般为 0~4095(12bit)
8	数据校验字节	6~7 字节的校验和	

例如,驱动在收到速度闭环控制数据后回复的命令如下(HEX):

3E A2 01 02 E3 E8 03 EB

● 位置闭环控制 1,命令中包含一个控制参数,此参数定义了电机的目标位置(多圈角度累计值),该模式下的电机转动的最大速度由设定值中的 Max Speed 决定,命令总长度: 14byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0xA3	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x08	
5	帧头校验字节	1~4 字节校验和	
6	电机位置低字节	=*(int8_t *)(∠)	电机 angle 代表了电机转动角
7	电机位置	=*((int8_t *)(∠)+1)	度,为 64bit 整形数据,实际角
8	电机位置	=*((int8_t *)(∠)+2)	度比值 0.01degree/LSB,即
9	电机位置	=*((int8_t *)(∠)+3)	36000代表 360°。电机转动方
10	电机位置	=*((int8_t *)(∠)+4)	向由目标位置和当前位置的差
11	电机位置	=*((int8_t *)(∠)+5)	值决定。注意电机最大控制角
12	电机位置	=*((int8_t *)(∠)+6)	度由设定项中的 MAX_ANGLE
13	电机位置高字节	=*((int8_t *)(∠)+7)	限制
14	数据校验字节	6~13 字节的校验和	

例如, 主机向 1#驱动发送角度为 360°的命令如下(HEX)

3E A3 01 08 EA A0 8C 00 00 00 00 00 00 2C

主机向 1#驱动发送角度为 180°的命令如下(HEX)

3E A3 01 08 EA 50 46 00 00 00 00 00 00 96

主机向 1#驱动发送角度为-180°的命令如下(HEX)

3E A3 01 08 EA B0 B9 FF FF FF FF FF 63

主机向 1#驱动发送角度为 90°的命令如下(HEX)

3E A3 01 08 EA 28 23 00 00 00 00 00 00 4B

主机向 1#驱动发送角度为 0°的命令如下(HEX)

3E A3 01 08 EA 00 00 00 00 00 00 00 00 00

驱动回复,数据长度: 8byte

JE-73 I	文,然而以及: 50956		
		说明	备注
1	头字节	0x3E	
2	命令字节	0xA3	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x02	
5	帧头校验字节	1~4 字节校验和	

6	编码器数据低字节	=*(int8_t *)(&encoder)	编码器数据为为 16bit 整形数
7	编码器数据高字节	=*((int8_t *)(&encoder)+1)	据,数据范围和编码器精度相 关,一般为 0~4095(12bit)
8	数据校验字节	6~7 字节的校验和	

例如,驱动在收到位置闭环控制数据后回复的命令如下(HEX):

3E A3 01 02 E4 E8 03 EB

● 位置闭环控制 **2**,命令中包含 2 个控制参数,两个参数分别定义了电机的目标位置(多圈角度累计值)和到达此目标位置过程中电机转动的最大速度,命令总长度: 18byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0xA4	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x0C	11/62
5	帧头校验字节	1~4 字节校验和	-(G) 17 ³
6	电机位置低字节	=*(int8_t *)(∠)	电机 angle 代表了电机转动角
7	电机位置	=*((int8_t *)(∠)+1)	度,为 64bit 整形数据,实际角
8	电机位置	=*((int8_t *)(∠)+2)	度比值 0.01degree/LSB,即
9	电机位置	=*((int8_t *)(∠)+3)	36000代表 360°。电机转动方
10	电机位置	=*((int8_t *)(∠)+4)	向由目标位置和当前位置的差
11	电机位置	=*((int8_t *)(∠)+5)	值决定。注意电机最大控制角
12	电机位置	=*((int8_t *)(∠)+6)	度由设定项中的 MAX_ANGLE
13	电机位置高字节	=*((int8_t *)(∠)+7)	限制
14	电机速度低字节	=*(int8_t *)(&speed)	电机 speed 代表了电机转动角
15	电机速度	=*((int8_t *)(&speed)+1)	速度,为 32bit 整形数据,实际
16	电机速度	=*((int8_t *)(&speed)+2)	速度比值 0.01dps/LSB,即36000
17	电机速度高字节	=*((int8_t *)(&speed)+3)	代表 360dps,速度符号无效
18	数据校验字节	6~17 字节的校验和	

例如, 主机向 1#驱动发送角度为 360°, 速度为 90dps 的命令如下(HEX)

3E A4 01 0C EF A0 8C 00 00 00 00 00 28 23 00 00 77

主机向 1#驱动发送角度为 180°, 速度为 90dps 的命令如下(HEX)

3E A4 01 0C EF 50 46 00 00 00 00 00 28 23 00 00 E1

主机向 1#驱动发送角度为 90°, 速度为 90dps 的命令如下(HEX)

3E A4 01 0C EF 28 23 00 00 00 00 00 28 23 00 00 96

主机向 1#驱动发送角度为 0°, 速度为 90dps 的命令如下(HEX)

3E A4 01 0C EF 00 00 00 00 00 00 00 28 23 00 00 4B

驱动回复,数据长度: 8byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0xA4	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x02	
5	帧头校验字节	1~4 字节校验和	
6	编码器数据低字节	=*(int8_t *)(&encoder)	编码器数据为为 16bit 整形数
			据,数据范围和编码器精度相
7	编码器数据高字节	=*((int8_t *)(&encoder)+1)	关,一般为 0~4095(12bit)
8	数据校验字节	6~7 字节的校验和	

例如,驱动在收到位置闭环控制数据后回复的命令如下(HEX): 3E A4 01 02 E5 E8 03 EB

● 位置闭环控制 3,命令中包含 2 个控制参数,分别定义了电机的转动方向和目标位置(单圈角度值), 该模式下的电机转动的最大速度由设定值中的 Max Speed 决定,命令总长度:10byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0xA5	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x08	
5	帧头校验字节	1~4 字节校验和	
6	转动方向字节	0x00 或 0x01	0表示顺时针,1表示逆时针
7	电机位置低字节	=*(uint8_t *)(∠)	电机 angle 代表了电机转动角
8	电机位置	=*((uint8_t *)(∠)+1)	度,为 32bit 无符号整形数
9	电机位置高字节	=*((uint8_t *)(∠)+2)	据, 实际角度比值
			0.01degree/LSB, 数据范围为
			0~35999,代表角度
			范围 0°到 359.99°
10	数据校验字节	6~9 字节的校验和	

例如, 主机向 1#驱动发送角度为 315° 顺时针转动的命令如下(HEX)

3E A5 01 04 E8 00 0C 7B 00 87

主机向 1#驱动发送角度为 180° 顺时针转动的命令如下(HEX)

3E A5 01 04 E8 00 50 46 00 96

主机向 1#驱动发送角度为 90° 顺时针转动的命令如下(HEX)

3E A5 01 04 E8 00 28 23 00 4B

主机向 1#驱动发送角度为 315° 逆时针转动的命令如下(HEX)

3E A5 01 04 E8 01 0C 7B 00 88

主机向 1#驱动发送角度为 180° 逆时针转动的命令如下(HEX)

3E A5 01 04 E8 01 50 46 00 97

主机向 1#驱动发送角度为 90° 逆时针转动的命令如下(HEX)

3E A5 01 04 E8 01 28 23 00 4C

驱动回复,命令总长度:8byte

		说明	备注
_	St. 3 . 11.		田江
1	头字节	0x3E	
2	命令字节	0xA5	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x02	
5	帧头校验字节	1~4 字节校验和	
6	编码器数据低字节	=*(int8_t *)(&encoder)	编码器数据为为 16bit 整形数
			据,数据范围和编码器精度相
7	编码器数据高字节	=*((int8_t *)(&encoder)+1)	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		关,一般为 <mark>0~40</mark> 95(12bit)
8	数据校验字节	6~7 字节的校验和	

例如, 1#驱动在收到位置闭环控制数据后回复的命令如下(HEX)://

3E A5 01 02 E6 00 0A 0A

● 位置闭环控制 **4**,命令中包含 3 个控制参数,分别定义了电机的转动方向、目标位置(单圈角度值)和 到达此目标位置过程中电机转动的最大速度,命令总长度:14byte

说明	备注
----	----

1	头字节	0x3E	
2	命令字节	0xA6	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x0C	
5	帧头校验字节	1~4 字节校验和	
6	转动方向字节	0x00 或 0x01	0表示顺时针,1表示逆时针
7	电机位置低字节	=*(uint8_t *)(∠)	电机 angle 代表了电机转动角
8	电机位置	=*((uint8_t *)(∠)+1)	度,为 32bit 无符号整形数
9	电机位置高字节	=*((uint8_t *)(∠)+2)	据,实际角度比值
			0.01degree/LSB, 数据范围为
			0~35999,代表角度
			范围 0°到 359.99°
10	电机速度低字节	=*(int8_t *)(&speed)	电机 speed 代表了电机转动角
11	电机速度	=*((int8_t *)(&speed)+1)	速度,为 32bit 整形数据,实际
12	电机速度	=*((int8_t *)(&speed)+2)	速度比值 0.01dps/LSB,即36000
13	电机速度高字节	=*((int8_t *)(&speed)+3)	代表 360dps, 速度符号无效
14	数据校验字节	6~13 字节的校验和	-137

例如,主机向 1#驱动发送角度为 180°, 顺时针转动, 速度为 10dps 的命令如下(HEX) 3E A6 01 08 ED 00 50 46 00 E8 03 00 00 81

主机向 1#驱动发送角度为 90°, 顺时针转动, 速度为 90dps 的命令如下(HEX) 3E A6 01 08 ED 00 28 23 00 28 23 00 96

主机向 1#驱动发送角度为 315°, 逆时针转动, 速度为 180dps 的命令如下(HEX) 3E A6 01 08 ED 01 0C 7B 00 50 46 00 00 1E

主机向 1#驱动发送角度为 45° , 逆时针转动, 速度为 45dps 的命令如下(HEX) 3E A6 01 08 ED 01 94 11 00 94 11 00 00 4B

驱动回复,命令总长度: 8byte

		说明	备注
1	头字节	0x3E	
2	命令字节	0xA6	CMD
3	ID 字节	0x01~0x20	#1~#32
4	数据长度字节	0x02	
5	帧头校验字节	1~4 字节校验和	
6	编码器数据低字节	=*(int8_t *)(&encoder)	编码器数据为为 16bit 整形数
			据,数据范围和编码器精度相
7	编码器数据高字节	=*((int8_t *)(&encoder)+1)	关,一般为 0~4095(12bit)
8	数据校验字节	6~7 字节的校验和	

例如, 1#驱动在收到位置闭环控制数据后回复的命令如下(HEX):

3E A6 01 02 E7 00 0A 0A

扫描二维码逛本店