Matricula(s):	Nome(s):

TRABALHO 2

Questão 1 (2,5 pontos): Resolver por Gauss-Jacobi com **4** decimais e erro menor ou igual a **0,05** o sistema abaixo:

$$\begin{cases} x_1 + 5x_2 - 10x_3 = 10 \\ 10x_1 - 2x_2 + x_3 = 5 \\ x_1 + 12x_2 + 5x_3 = 3 \end{cases}$$

Os resultados devem ser apresentadas nas tabelas no formato apresentado a seguir.

Tabela 1: Atribuição inicial

X ₁	X ₂	X ₃

Tabela 2: Gauss-Jacobi

N	X ₁	X ₂	X ₃	error x ₁	error x ₂	error x ₃

Questão 2 (2,5 pontos):

Ajustar os pontos da tabela abaixo à equação $\varphi(x) = \alpha_1 + \alpha_2 x + \alpha_3 x^2$ utilizando Método dos Quadrados Mínimos e fazendo ajuste polinomial.

İ	1	2	3	4	5	6	7
\mathbf{X}_{i}	-3	-1,7	-0,5	1	2,3	3,1	5,1
f(x _i)	-35	-20,5	-5,7	7,6	16,8	21,4	27,4

Calcular a soma dos quadrados dos resíduos e valor da função ϕ no ponto **x=4**. Os resultados devem ser apresentadas nas tabelas no formato apresentado a seguir com **4** decimais.

Tabela 3: Matriz A e vetor Y

	Υ	

Tabela 4: Função φ

φ (x) =	
φ (4) =	

Tabela 5: Função φ e resíduos

i	1	2	3	4	5	6	7
φ(x _i)							
r(x _i)							
r²(x _i)							
Soma dos quadrados dos resíduos							

Questão 3 (2,5 pontos): Calcular uma aproximação com 4 casas decimais com arredondamento para

$$\int_{1}^{2} 2x + \frac{1}{x} dx$$

usando regra dos trapézios e a regra de Simpson com n = 10.

Os resultados devem ser apresentadas nas tabelas no formato apresentado a seguir.

Tabela 6: Regra dos trapézios

i	Xi	f(x _i)	Ci	c _i * f(x _i)		
Soma						
T(h ₁₀)=						

Tabela 7: Regra de Simpson

i	Xi	f(x _i)	C _i	c _i * f(x _i)		
Soma						
S(h ₁₀)=						

Questão 4 (2,5 pontos):

Escreva um programa em linguagem de programação C (ou outra linguagem de sua preferência) que implementa a solução de uma das questões anteriores (pode escolher entre Questão 1, Questão 2 e Questão 3).

Faça uma análise comparativa entre os resultados obtidos resolvendo o mesmo problema usando técnicas diferentes.

O código do programa deve ser entregue junto com o Trabalho 2 como um arquivo .c ou como um link de compartilhamento.

Dica: Para escrever o código pode usar o compilador online https://www.onlinegdb.com/