<u>Proof.</u> Let $u \in D(A)_+$, g = Au. Assume that $(Au)^- \in \overline{E}_u$. Then, if $0 \le \phi \in E_+^+$ such that $\langle u, \phi \rangle = 0$ one has $\langle f, \phi \rangle = 0$ for all $f \in \overline{E}_u^-$, hence $\langle (Au)^-, \phi \rangle = 0$ and consequently $\langle Au, \phi \rangle \ge 0$. This proves one direction. To prove the other assume that $g \notin \overline{E}_u^-$. Then there exists $\phi \in (E_u^-)^0$ such that $\langle g^-, \phi \rangle \neq 0$. Since $(E_u^-)^0$ has a generating cone (by [Schaefer (1974),II,4.7]), we can assume that $\phi > 0$.

Define $\psi_O(f) = \sup_{\phi([0,f] \cap E_{(g^-)})} \text{ for } f \in E_+$. Then ψ_O is positive homogeneous on E_+ . Thus the linear extension of ψ_O defines a positive linear form ψ on E. We have $\langle g^-, \psi \rangle = \langle g^-, \phi \rangle > 0$ and $\langle g^+, \psi \rangle = 0$. Thus $\langle Au, \psi \rangle = -\langle g^-, \psi \rangle < 0$. But $\langle u, \psi \rangle \leq \langle u, \phi \rangle = 0$. Thus (P) does not hold.

Bounded generators of positive semigroups can now be characterized as follows.

 $\underline{\text{Theorem}}$ 1.11. Let A be a bounded operator on a Banach lattice E . The following assertions are equivalent:

- (i) $e^{tA} \ge 0$ $(t \ge 0)$.
- (ii) $f \in E_+$, $\phi \in E_+'$, $\langle f, \phi \rangle = 0$ implies $\langle Af, \phi \rangle \ge 0$.
- (iii) $(Af)^- \in \overline{E_f}$ for all $f \in D(A)_+$.
- (iv) $A + ||A|| \cdot Id \ge 0$.

<u>Proof.</u> It follows by Proposition 1.7 that (i) implies (ii). Since $\|e^{tA}\| \le e^{t\|A\|}$ (t\ge 0), (ii) implies (i) by Theorem 1.8. The equivalence of (ii) and (iii) is established by Lemma 1.10. If (iv) holds, then $e^{t(A+\|A\|)} \ge 0$ (t\ge 0). Thus $e^{tA} = e^{-t\|A\|} e^{t(A+\|A\|)} \ge 0$ (t\ge 0). We have shown that (i), (ii) and (iii) are equivalent and (iv) implies (i).

It remains to show that (i) implies (iv). Since assertions (i) and (iv) are satisfied for A if and only if they are satisfied for A', we can assume that E is order complete (considering A' instead of A if necessary). Assume that (i) holds. Then by what we have proved above (iii) holds as well. In particular

(1.9)
$$(Au)^- \in \{u\}^{\mbox{dd}}$$
 for all $u \in E_+$.

Let $\lambda \ge 0$ and $f \in E_+$ such that $g = (A + \lambda)f \ngeq 0$. We have to show that $\lambda \le \|A\|$. Denote by P the band projection onto the band generated by g. Then PAf + λ Pf = Pg = g. < 0. Since by (1.9), [A(Id-P)f] $\in (Id-P)E$, it follows 0 > λ Pf + PAf = λ Pf + PAPf + PA(Id-P)f = λ Pf + PAPf + PA(Id-P)f = λ Pf + PAPf + PAPf .