# Structogram of program constructs

## Sequence



## Selection/branches



|       | π | =     |  |
|-------|---|-------|--|
| $S_1$ |   | $S_2$ |  |

## Loop



## Algorithmic patterns over intervals

### **Summation**

$$A = (m:\mathbb{Z}, n:\mathbb{Z}, s:\mathcal{H})$$

$$Pre = (m = m' \land n = n')$$

$$Post = (Pre \land s = \sum_{i=m}^{n} f(i))$$

| s := 0        |  |
|---------------|--|
| i=mn          |  |
| s := s + f(i) |  |

### Counting

$$A = (m:\mathbb{Z}, n:\mathbb{Z}, c:\mathbb{N})$$

$$Pre = (m = m' \land n = n')$$

$$Post = (Pre \land c = \sum_{i=m \atop cond(i)}^{n} 1)$$



#### Maximum search

$$\begin{split} A &= (m:\mathbb{Z}, n:\mathbb{Z}, max:\mathcal{H}, ind:\mathbb{Z}) \\ Pre &= (m = m' \land n = n' \land m \leqslant n) \\ Post &= (Pre \land (max, ind) = \mathop{\mathit{MAX}}_{i=m}^{n} f(i)) \end{split}$$

$$max, ind := f(m), m$$

$$i = m + 1..n$$

$$max < f(i)$$

$$max, ind := f(i), i$$

$$SKIP$$

### Conditional maximum search

$$A = (m:\mathbb{Z}, n:\mathbb{Z}, l:\mathbb{Z}, max:\mathcal{H}, ind:\mathbb{Z})$$

$$Pre = (m = m' \land n = n')$$

$$Post = (Pre \land (l, max, ind) = \underset{i=m}{\overset{n}{MAX}} f(i))$$

$$cond(i)$$

| l := false                               |                     |      |                                          |  |  |
|------------------------------------------|---------------------|------|------------------------------------------|--|--|
|                                          | i = mn              |      |                                          |  |  |
| $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |                     |      | $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |  |  |
|                                          |                     |      | l, max, ind :=                           |  |  |
| SKIP                                     | max, ind := f(i), i | SKIP | true, f(i), i                            |  |  |

### Selection

$$\begin{split} A &= (m : \mathbb{Z}, i : \mathbb{Z}) \\ Pre &= (m = m' \land \exists k \geq m : cond(k)) \\ Post &= (Pre \land i = \textit{SELECT} cond(j)) \end{split}$$

$$i := m$$

$$\neg cond(i)$$

$$i := i + 1$$

### Linear search

$$\begin{split} A &= (m: \mathbb{Z}, n: \mathbb{Z}, l: \mathbb{L}, ind: \mathbb{Z}) \\ Pre &= (m = m' \land n = n') \\ Post &= (Pre \land (l, ind) = \underset{i = m}{\textbf{SEARCH}} cond(i)) \end{split}$$

| l,i:=false,m            |
|-------------------------|
| $\neg l \land i \leq n$ |
| l, ind := cond(i), i    |
| i := i + 1              |

## Optimistic linear search

$$\begin{split} A &= (m: \mathbb{Z}, n: \mathbb{Z}, l: \mathbb{L}) \\ Pre &= (m = m' \land n = n') \\ Post &= (Pre \land l = \forall \textit{SEARCH} \, cond(i)) \end{split}$$

| l,i:=true,m         |
|---------------------|
| $l \wedge i \leq n$ |
| l := cond(i)        |
| i := i + 1          |