Package 'Irspline'

May 30, 2021

	1124 5 6, 2021			
Type Package				
Title Low-rank Approximation of Smoothing Splines for Massive Data Version 0.1.0				
Maintainer Danqing Xu <	elisexu0308@gmail.com>			
_	Description Functions for approximating the smoothing spline estimates: (1) Lowrank Approximation via Eigensystem Truncation, (2) Nystrom Methods.			
License GPL-3				
Encoding UTF-8				
LazyData true				
Imports assist, mgcv				
RoxygenNote 7.1.1				
generate.eigen.cub hello Irspline.cubic	ted:			
eigenM	An example of grid points and eigendecomposition for reprodeing kernel of cubic spline.			
Description				
It contains e a list of e spaced points.	eigenvalues and eigenfunctions at grid points, xg a vector of 1000 even			
Usage				
data(eigenM)				

2 generate.eigen.cubic

Format

An object of class list of length 2.

Examples

```
data(eigenM)
## Not run:
# check the number of eigenvalues
length(eigenM$e$values)
## End(Not run)
```

generate.eigen.cubic

Grid Points and Eigendecomposition of Reproducing Kernal for Cubic Splines

Description

Generates eigendecomposition from grid points from an interval.

Usage

```
generate.eigen.cubic(N = 1000, a = 0, b = 1)
```

Arguments

N The number of grid bolints. It should be an integer. The default value is it	N	The number of grid points. It should be an integer. The default value is 1000
--	---	---

a The lower limit of the interval used for grid points. The default value is 0.

b The upper limit of the interval used for grid points. The default value is 1.

Value

It returns (and saves) a list of following components:

e A list of two elements of "values" and "vectors", which refer respectively, the eigenvalues and eigenfunctions of reproducing kernel for cubic splines at the

pre-selected grid points.

xg A vector of grid points.

Examples

```
## Not run:
eigen_res <- generate.eigen.cubic(N=1000,a=2,b=3)
## End(Not run)</pre>
```

hello 3

Description

Prints 'Hello, world!'.

Usage

hello()

Examples

hello()

lrspline.cubic

Low-rank Approximation Based on Eigenspaces for Cubic Smoothing Spline Estimates

Description

Computes a low-rank approximation based on eigenspaces, where estimation utilizes functions for linear mixed effect model (LME).

Usage

```
lrspline.cubic(x, y, xg, e, K = 30, method = "REML", pstd = FALSE)
```

Arguments

X	The values of independent variable. It should be a vector.
у	The values of dependent variable. It should be a vector.
xg	The grid points used for approximation of eigensystem.
e	A list of two elements of "values" and "vectors", which refer respectively, the eigenvalues and eigenfunctions of reproducing kernel for cubic splines at the pre-selected grid points (must agree with xg).
K	An integer value. The truncation parameter indicates the number of eigenvalues/eigenfunctions used in approximation. The default value is 30.
method	A character string. If "REML" the LME model is fit by maximizing the restricted log-likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".
pstd	An indicator of whether standard deviation is desired. The default value is FALSE.

Value

A vector(s) of following component(s):

fit The low-rank approximation of cubic smoothing spline estimate.

pstd The corrsponding posterior standard deviation.

4 nystrom.cubic

Examples

```
## Not run:
data(eigenM)
x <- runif(1000)
y <- sin(32*pi*x)-8*(x-.5)^2 + rnorm(1000)
lrspline.cubic(x,y,eigenM$xg,eigenM$e,K,method="REML",pstd=FALSE)
## End(Not run)</pre>
```

nystrom.cubic

Nystrom Approximation for Cubic Smoothing Spline Estimates

Description

Computes a Nystrom approximation based on randomly selected columns of \$\Sigma\$ matrix, where estimation utilizes functions for linear mixed effect model (LME).

Usage

```
nystrom.cubic(x, y, p = 30, method = "REML", pstd = FALSE)
```

Arguments

x	The values of independent variable. It should be a vector.
у	The values of dependent variable. It should be a vector.
p	An integer value. The selection parameter indicates the number of columns for random selection and approximation. The default value is 30.
method	A character string. If "REML" the LME model is fit by maximizing the restricted log-likelihood. If "ML" the log-likelihood is maximized. Defaults to "REML".
pstd	An indicator of whether standard deviation is desired. The default value is FALSE.
е	A list of two elements of "values" and "vectors", which refer respectively, the eigenvalues and eigenfunctions of reproducing kernel for cubic splines at the

Value

A vector(s) of following component(s):

The Nystrom approximation of cubic smoothing spline estimate.

The corrsponding posterior standard deviation.

pre-selected gridpoints (must agree with xg).

Examples

```
## Not run:
data(eigenM)
x <- runif(1000)
y <- sin(32*pi*x)-8*(x-.5)^2 + rnorm(1000)
nystrom.cubic(x,y,xg,e,K,method="REML",pstd=FALSE)
## End(Not run)</pre>
```

Index

```
* datasets
    eigenM, 1
eigenM, 1
generate.eigen.cubic, 2
hello, 3
lrspline.cubic, 3
nystrom.cubic, 4
```