WorkShop 5: Термодинамика

Задача 1

Давление газа зависит от объема по закону $p=\alpha\,\sqrt{V}$, где $\alpha=const.$ Найти, во сколько раз изменится температура газа при изменении давления в 2 раза.

Задача 2(Внутренняя энергия)

В сосуде содержится 0,1 моль азота. Среднеквадратичная скорость его молекул равна 400 м/с. Чему равна внутренняя энергия этой порции азота?

Задача 3(Внутренняя энергия)

Один моль аргона, находящийся в цилиндре при температуре $T_0=600~K$ и давлении $p_0=4\cdot 10^5~\Pi a$, расширяется и одновременно охлаждается так, что его температура при расширении обратно пропорциональна объёму. Конечное давление газа $p=10^5~\Pi a$.

- 1. Чему равна температура газа после расширения?
- 2. Чему равна внутренняя энергия газа после расширения?

Задача 4(Теплоемкость)

В некотором процессе над газом совершена работа $A'=100~{\rm Дж}$, при этом его внутренняя энергия возросла на $\Delta U=80~{\rm Дж}$, а температура увеличилась на $\Delta t=10^{\circ}{\rm C}$. Найти среднюю теплоемкость газа в этом процессе.

Задача 5(Теплоемкость)

Газообразный гелий нагревается (непрерывно повышается температура) от температуры T_0 в процессе, в котором молярная теплоёмкость газа зависит от температуры T по закону $C=\frac{2}{3}R\frac{T}{T_0}$. Найти температуру T, при нагревании до которой газ совершил работу, равную 0.

Задача 9 (Экспериментальное определение показателя адиабаты)

Экспериментально определить отношение теплоёмкостей газа при постоянном давлении и постоянном объёме $\gamma \equiv \frac{c_p}{c_V}$ можно следующим методом. Определённое количество молей газа ν , начальные значения объёма и давления которого равны V_0 и p_0 , нагревают дважды с помощью спирали, по которой пропускают один и тот же ток в течение одинакового времени:

сначала — при постоянном объёме, причём конечное давление составляет p, затем — при постоянном давлении, причём конечный объём составляет V^st .

- 1. Найдите по этим данным γ , считая газ идеальным.
- 2. Найдите число атомов в молекулах этого идеального газа.

Omsem:
$$\gamma = \frac{v_0(p-p_0)}{p_0(v^*-v_0)}$$
 $i = \frac{2 p_0(v^*-v_0)}{p v_0 - p_0 v^*}$

Задача 10

Идеальный газ расширяется в механизме, указанном на рисунке. Площадь поршня равна S. Коэффициент жесткости равен k.

- 1. Найти зависимость давления газа от объема p(V) = ?
- 2. Найти молярную теплоемкость газа в этом процессе.

Omeem:
$$p = \frac{k}{S^2}V$$
 $C = 2R$

Задача 11

В вакууме закреплён горизонтальный цилиндр. В цилиндре находится гелий, запертый поршнем. Поршень массой $M=90~\mathrm{r}$ удерживается упорами и может скользить влево вдоль стенок цилиндра без трения. В поршень попадает пуля массой $m=10~\mathrm{r}$, летящая горизонтально со скоростью $v=400~\mathrm{m/c}$, и застревает в нём. Температура гелия в момент остановки поршня в крайнем левом положении возрастает на $\Delta T=64~\mathrm{K}$. Чему равно количество вещества гелия в цилиндре? Считать, что за время движения поршня газ не успевает обменяться теплом с цилиндром и поршнем.

Ответ:
$$u = \frac{m^2 \, v^2}{3 \, (m+M)R \, \Delta T} pprox 0.1 \,$$
моль

Задача 12

В теплоизолированном сосуде под массивным поршнем, на котором лежит куча песка, находится идеальный газ. Объем газа V, давление p. Песок (по одной песчинке) снимают с поршня, и объем газа медленно увеличивается вдвое. Какой была бы кинетическая энергия поршня в тот момент, когда объем газа вырос вдвое, если бы песок сняли с поршня весь сразу? Атмосферное давление отсутствует.

Указание. В адиабатном процессе давление и объем газа связаны соотношением $pV^{\gamma} = const$, где γ — известное число ($\gamma > 1$)

Ответ:
$$pV\left(\frac{3}{2}-2^{2-\gamma}\right)$$

Задача 13

Зависимость внутренней энергии идеального газа от объема указана на рисунке. На каком из участков совершенная работа максимальна.

Ответ: 1-2

Краткая теоретическая сводка

Лекция 4	
Основное уравнение МКТ	$p = \frac{1}{3} m n \overline{v^2}$
Закон Дальтона для давления смеси газов	$p = p_1 + p_2 + \dots$
Постоянные Больцмана, число Авогадро и универсальная газовая постоянная	$N_A = 6 \cdot 10^{23} \frac{1}{\text{моль}}$ $k = 1.38 \cdot 10^{-23} \frac{\text{Дж}}{\text{К}}$ $R = k \cdot N_A = 8.31 \frac{\text{Дж}}{\text{К} \cdot \text{моль}}$
Уравнение Менделеева- Клапейрона (уравнение состояния ид. газа)	$pV = \nu RT$
Абсолютная температура. Связь с кинетической энергией.	$T = t(^{\circ}C) + 273$ $\overline{E_{\kappa}} = \frac{i}{2}kT$
Нормальные условия	1. $p = p_{\text{atm}} = 10^5 \text{ \Pia}$ 2. $T = 273 \text{ K}$
Изотермический процесс $(T = const, v = const)$	pV = const
Изобарный процесс $(p = const, v = const)$	$\frac{V}{T} = const$
Изохорный процесс $(V = const, v = const)$	$\frac{p}{T} = const$

Лекция 5	
Внутренняя энергия идеального газа	$U = \overline{E_{\kappa}} \cdot N$ $U = \frac{i}{2}kT \cdot N = \frac{i}{2}\nu RT = \frac{i}{2}pV$
Нулевое начало термодинамики	С течением времени в любой системе $T o const \ p o const \ V o const$
Теплоемкость (обычная, удельная(массовая), молярная)	$C \equiv \frac{Q}{\Delta T}$ $C_m \equiv \frac{Q}{m \Delta T}$ $C_\mu \equiv \frac{Q}{v \Delta T}$ $\Delta T \rightarrow 0$
Молярная теплоемкость (в термодинамике обычно	

Молярная теплоемкость (в термодинамике обычно пишут просто C вместо C_{μ})

Первое начало термодинамики	$Q = A + \Delta U$
Работа	A = S(под графиком p от V $)$
Количество теплоты	$Q = \nu \cdot S$ (под графиком C_{μ} от T)
кпд	$\eta \equiv rac{A_{ ext{полн}}}{Q_{ ext{получ}}} = rac{Q_{ ext{получ}} - \left Q_{ ext{отд}} ight }{Q_{ ext{получ}}}$