

FIG. 1

FIG. 2

FIG. 3A

304- G \		
Expression statistic for gene G from organism	1 308- G -	-1
Expression statistic for gene G from organism		·
Expression statistic for gene G from organism		
Expression statistic for gene G from organism		_
•		7
Expression statistic for gene G from organism	N 308- G -	-N

FIG. 4

FIG. 5

FIG. 7

FIG. 8

FIG. 9

FIG. 10

(PRIOR ART) FIG. 11

nicotinamide nucleotide transhydrogenase

9530010C24Rik

ectonucleotide pyrophosphatase

EST AW456442

5' nucleotidase

EST AW540195

purine-nucleosi de phosphorylase

N-terminal Asn amidase

nicotinami de Nmethyltransferase

aldehyde oxidase 1

(PRIOR ART) FIG. 12

FIG. 13

FIG. 14

FIG. 15

FIG. 16

FIG. 17

FIG. 19

FIG. 20

FIG. 21

FIG. 22

FIG. 23

FIG. 24

Select a gender from reference species (e.g., a mouse gene) that was identified using quantitative genetics methods (e.g., a gene verified in processing step 222 of Fig. 2 or a gene that has been associated with clinical trait **T** in processing step 1920 of Fig. 19)

BLAST search of all known nucleotide sequences in target species using the nucleotide sequence of gene **G** to obtain best match **G**'

BLAST search of protein sequences in target species using the translated amino acid sequence for gene **G**, denoted **P**, to obtain best match **P**'

BLAST search of nucleotide sequences in reference species with G'

Ortholog to gene G in the target species has been identified

FIG. 25

2508

2512

2514

FIG. 26

Figure 27

 $\tt CGGGCCACGCTCAGACACTTCGATCGTCGAGTCTGTCACTGGGCATGGCGGGTCAGTTCCGCAGCTACGTCACTGGGCGGCTCAGGT$ GTGGGACCCGCTGCTGATCCTGTCGCAGATCGTCCTCATGCAGACCGTGTATTACGGCTCGCTGGGCCTG TGGCTGGCGCTGGTGGACGGGCTAGTGCGACAGCCCCTCGCTGGACCAGATGTTCGACGCCGAGATCCTG GGCTTTTCCACCCCTCCAGGCCGGCTCTCCATGATGTCCTTCATCCTCAACGCCCTCACCTGTGCCCTGG $\tt CAGCCCCTAAATCCAATGTCTAGAATCAGGCCCTTTGGACATCCTGCTGACACTTGGGCCCCTTAACACCC$ TTGGGCTGCTCAGACCCTCCAGATGAGGTCCAGCCCAGATCTGAGAGGAACCCTGGAAATGTGAAGTCTC ${\tt TGTTGGTTTGGGAGAGATAGTGAGGGGCCTGTCAAAGAAGGCAGGTAGCAGTCAGCATGACAGCTGCAAGA}$ ATGACCTCTGTCTGTTGAAGCCTTGGTATCTGAGAGGTCAGGAAGGGGACCTCTTTGAGGGTAATAACAG ${\tt CAAGGATATCTGATTGGAGCAAACCACTTCTTTAGTCATCTGTCTTACCCCCCTGGGACAGCTGTTACCT}$ TTGCAGTGTTGCCGAATCACAGCAGTTACCTTTGCAGTGTTGCCGAATCACAGCAGTTCTGTTGGAGAAA CGCTTGGTTTCCGGATCCAGAGCCACAGAAAGAAATGTAGGTGTGAAGTATTAGGCTGCTGTCAGGGAGA GGATGGCAGATGGAGGCATCAAGCACAAGGAAAATGCACAACCTGTGCCCTGTTATACACACGTTCATGT GCACCCAAGAACCTATGACTTTCTTCCAGTTCCTTCTACCAGGTCCCCATCCTGCTGCCAGCTCTCAACA TAGCAGGCCATAGGACCCAGAGAAGAATCCCAGCGTTGCTCAAAGTCTAACCATCATAAAGACACTGCCT $\tt CTTTGGCGGGAAGGGTATGATGGGTTCCCAGAGACAAGAAGCCCAACCTTCTGGCCTGGGCTGTGCTGAT$ AGTGCTGAGGGAGATAGGAATTTGCTGCTAAGATTTTTCTTTGGGGTGGAGTTTCCTCTGTGAGGGGCTT ACGGTTGAGATTGAGAGAGATCAGCGCAGCCAGGCAAGGGAACTTTAAAGAATTATTAGGCCACCTTCTC CCTTTCCTGGACCCCAGAGTCATTCCTCCATTTGGTTAAAATACTCAGTGCAGGGAACTCTTACATCCTG TCTCCTTCACTTGCAGCGTCCCCTGCTATGCCTCAGGTGAACCACATAATTCTTGGGTTTCCGTTCCTAC TTGCTAGTGATTTCTGAACATGTTCAATGGAGCGGCACACAGTCTAGACCCACTTCCGCATTGAAACCTT ${\tt CACTGTTCCTTTGGTTTCTTCAGAGCTTTCCCCAAGAGAGCTGTCAGTTTTCAGCTGTCAGTAACACAA}$ ATGAGTTTATGGTAACACAAATGAGTTTTGCTATCTCTCTGAGAAGCTCATCTGACCTCCTGACTCTCAG ATGAGGCACAGTAATCCTGGCTGCAGGGTCTAGGAGGTAAGACCAGCTGGGATGACCTTCCCTGGGTTAA TCAATTTCCCTCTAGACAACACAAACTGCAGGCATGTGACTAACTTTGAAAGAACACCCATCATGTGGCT GCTGTCACCCTTGACCAGCCGTGGTGGTTGCTCCATCTGTGGTTGGAGCGCCTCTTTGGGATTCACT TCAAGGTCTTGTGCCTATTTTTCTGCATATCTTCTGTGATGACAAATCTCTGTCCCCTGAGTGTTAATTT GATTTTTAGAAATGGCCAAAAGTCACGTGATCCAAACTTTTTTTCAGTAATATGGAGACTGAGCTGCATG GTAGTTGGGGATCAAAAATATGTGACCTTAATGAGATTTTTATGATTTCTAAAGTAACAATAAAAGCAGT ${\tt TTTTAGAGTTGAGTTCCAGAGAGGGCAGGGCAATGGCAGTGACATGTTTGTCATTTTAATAATAATAACACCCC}$ ATCTATTGAGTGCTTAA

Figure 28

ATGGCGGGTCAGTTCCGCAGCTACGTGTGGGACCCGCTGCTGATCCTGTCGCAGATCGTCCTCATGCAGA
CCGTGTATTACGGCTCGCTGGGCCTGTGGCTGGCGCTGGTGGACGGCCTAGTGCACAGCCCCTCGCTGG
ACCAGATGTTCGACGCCGAGATCCTGGGCTTTTCCACCCCTCCAGGCCGGCTCTCCATGATGTCCTTCAT
CCTCAACGCCCTCACCTGTGCCCTGGGCTTGCTGTACTTCATCCGGCAGAAAGCAGTGTCTGGATTTC
ACTGTCACTGTCCATTTCTTTCACCTCCTGGGCTGGTTCTACAGCTCCCGTTTCCCCTCGGCGCTGA
CCTGGTGGCTGGTCCAAGCCGTGTGCATTGCACTCATGGCTGTCATCGGGGAGTACCTGTGCATGCGGAC
GGAGCTCAAGGAGATACCCCTCAACTCAGCCCC

Figure 29

MAGQFRSYVW	DPLLILSQIV	LMQTVYYGSL	GLWLALVDAL	VRSSPSLDQM	FDARTLGEST
PPGRLSMMSF	VLNALTCALG	LLYFIRRGKO	CLDFTVTVHF	FHLLGCWLYS	SPEPSALTWW
LVQAVCIALM	AVIGEYLCMR	TELKEIPLSS	APKSNV		DICTIDALLIN

Figure 30A

MALWACGWRW	WTRWCAQPVP	GPDVRRGDPG	LLHPSRPALN	DVLRPORPHI	CPGLAVLHPA
REAVPGFHCH	CAFLSPPGLL	ALQLPFPLGA	DLVAGPGCVH	CTHGRHRGVD	VHADGAQGDP
POLSP		-		O DELICITIES OF L	ATHEOGRAPH

Figure 30B

MAGQFRSYVW	DPLLILSQIV	LMQTVYYGSL	GLWLALVDAL	VRKPVPGPDV	RRGDPGLLHP
SRPALNDVLR	PQRPHLCPGL	AVLHPAREAV	PGFHCHCAFL	SPECILIATION	PFPLGADLVA
GPGCVHCTHG	RHRGVPVHAD	GAOGDPPOLS	P	DIT CHEM EN	FILLOWOHAW

Figure 30C

MAGQFRSYVW	DPLLILSQIV	LMQTVYYGSL	GLWLALVDAL	VRSSPSLDOM	FDAEILGEST
PPGRLSMMSF	VLNALTCALG	LLYFIRRGKQ	CLDFTVTVHF	FHLLGCWLYS	SRFPSALTWW
LVQAVCIALM					

Figure 30D

PFPGSRGPQL	FGLSRPAGPP	LHGPVCQRCV	RRPVPRSGRA	PTLRPSSRSR	VSRRPRDDGV
VALTGAGGCR	APRAGMAGOF	RSYVWDPLLI	LSOTVIMOTV	YVGST.GT.MMD	WWTRWCAQPV
PGPDVRRGDP	GLIHPSRPAT	מספס שלינות	T.CDCT.ATT.UD	TIODIODIMIC	HCAFLSPPGL
T.AT.OT.DEDT.C	ADLUACOCCU	MOVING QUEIL	DULLANDER	AREAVPGFHC	HCAFLSPPGL
HADODELEDG	ADTIANGEGCA	HCTHGKHKGV	PVHADGAQGD	PPQLSP	

Figure 30E

MAGQFRSYVW	DPLLILSQIV	LMQTVYYGSL	GLWLALVDAL	VRKPVPGPDV	RRGDPGLLHP
SKPALINDVLK	POKEHTCEGT	AVLHPAREAV	PGFHCHCAFL	SPPGLLALQL	PFPLGADLVA
GPGCVHCTHG	RHRGVPVHAD	GAQGDPPQLS	P		

Figure 30F

MAGQFRSYVW I	DPLLILSQIV	LMQTVYYGSL	GLWLALVDGL	VROPLAGDPV	REEDEGI.FUD
SRPALHDVLH P	PORPHLCPGL	AVLHPARKAV	SGFHCHCPFL	SPECIAVIOL	DEDI GADIAM
GPSRVHCTHG C	CHRGVPVHAD	GAQGDTPQLS	P	0110111111	TITDGADIVA

Figure 31

Figure 32A

2821		TCTACCAAGG		ATTGGGTATT	CTACCATCTA	CACGATGTTT
2941		CCCTGGTTTT AGGACCTGCT	GGACAAAGAC	GTGAAGTCGG	AAGTCGCCAT	GTTGTATCCT
3001		GCATCTATCA		CCACTGTCCT		
3061		TACACATCGT		ATCATGTACG TTCACATCCC		GCTGTTCGAG
	ATGGTGGCGC	TCACCATCCA	GACGTGGCAC	TGGCTCATGA	CAGTGGCCGA	TGAGCTACTG
3181	CTCCCTCCT	ACATTGCCTC	CCTGGTGTTC	CTCCATGAGT	TCATCGATGT	CTACTTCATT
	GCCACCCTGT	CATTCCTCTG	GAAGGTGTCC	GTCATCACCT	TECTEDACETC	TOTOGOGGGG
3361	TAAGCTGCAG	GGCTGCCTCG	GAGACGGTTC	TCCCCACCCA	GCTACTCGAA	GCTCACTTCC
3421			GGCAGGGCCT CCGCCTCTGC	TGGACGCTGC	ACTOATCCC	CAGGAGGAGG
2401	GCTTCGCTGA	GGCGACACTG	GGCACCTAAT	GGGGATGGAA	CATTGGTGGA	TOCCOT COCT
3541 3601	GGGACCTGAG	AGCTGTACCT	ATCAGAACCT	TGGGTGCTAA	CCTCTCCTCA	CCCCCCAAACA
3661	TGAACCTCTT	GCCTGCAGCC	TGAGGTTTGT	GGGGTCACTG	TGCAAGCTTC	CCTTATGGTT

Figure 32B

gene with protein product, function known or inferred

Symbol and Name (MGI)	Atp9a: ATPase, class II, type 9A	LocusID: 11981	Overview	Locus Type: gene with protein pro	known or inferred	Product: ATPase, class 2	Alternate IIa	Symbols:	Alias: Class II		ATPase 9A, class II	Function Sulbanis GeneraTF	Gene Ontology™;	Term	• membrane	
										LocusID Org Symbol Description	DI119811Mm Atp9a ATPase, class II, type	¥6	More Mm ATPase, class 2;	ATPase 9A, p type;	Class II; Albase 9A,	

Gene Ontology ::		
Térm	Eviden	Evidence Source Pub
 membrane 	IEA	MGD
 hydrolase 	IEA	MGD
 metabolism 	IEA	MGD
 ATP binding 	IEA	MGD
 cation transport 	IEA	MGD
 magnesium binding 	IEA	MGD
 integral mernbrane protein 	IEA	MGD
 plasma membrane cation- transporting ATPase 	IEA	MGD

	20q13.11-13.2 ATP9A Hs	20q13.11-13.2 ATP9A Hs
Relationships Annual Human Homology Maps:	NCBI vs. MGD	UCSC vs. MGD

Category: NCBI Genome Annotation Sequences (RefSeq) NCBI Reference

NT 011362 Genomic Contig:

gb sv mv ev mm

Annotated transcripts/proteins for this locus:

Evidence:

supported by alignment with both mRNA and ESTs (27)

XM 030577 Model mRNA: XP 030577

Protein: Model

밁

뮵 뮵 Protein Gen Bank Sequences Ε Ε Ε

AK026513 BC016044

AK025559 AB014511

Nucleotide

Figure 34

1	MTDSIPLQPV	RHKKRVDSRP	RAGCCEWLRC	CGGGEPRPRT	VWLGHPEKRD	QRYPRNVINN			
61	QKYNFFTFLP	GVLFSQFRYF	FNFYFLLLAC	SQFVPEMRLG	ALYTYWVPLG	FVLAVTIIRE			
121	AVEEIRCYVR	DKEMNSQVYS	RLTSRGTVKV	KSSNIQVGDL	ILVEKNORVP	ADMIFLRTSE			
181					SYVYAEKPNI				
					RSVMNTSDPR				
					NIIPISLRVN				
					MVFKRLHLGT				
421	VQSHIFSIYT	QQSQDPPAQK	GPTVTTKVRR	TMSSRVHEAV	KAIALCHNVT	PVYESNGVTD			
481	QAEAEKQFED	SCRVYQASSP	DEVALVQWTE	SVGLTLVGRD	QSSMQLRTPG	DQVLNLTILQ			
541	VFPFTYESKR	MGIIVRDEST	GEITFYMKGA	DVVMAGIVQY	NDWLEEECGN	MAREGLRVLV			
601					MEMELLCLTG				
661	PTLETLRNAG	IKVWMLTGDK	LETATCTAKN	AHLVTRNQDI	HVFRLVTNRG	EAHLELNAFR			
721	RKHDCALVIS	GDSLEVCLKY	YEYEFMELAC	QCPAVVCCRC	APTQKAQIVR	LLQERTGKLT			
			GVEGKEGKQA	SLAADFSITQ	FKHLGRLLMV	HGRNSYKRSA			
	ALSQFVIHRS				STIYTMFPVF				
901	EVAMLYPELY	KDLLKGRPLS	YKTFLIWVLI	SIYQGSTIMY	GALLLFESEF	VHIVAISFTS			
961	LILTELLMVA	LTIQTWHWLM	TVAELLSLAC	YIASLVFLHE	FIDVYFIATL	SFLWKVSVIT			
1021 LVSCLPLYVL KYLRRRFSPP SYSKITS									

Figure 35

1	MTDNIPLQPV	RQKKRMDSRP	RAGCCEWLRC	CGGGEARPRT	VWLGHPEKRD	ORYPRNVINN
61	QKYNFFTFLP	GVLFNQFKYF	FNLYFLLLAC	SQFVPEMRLG	ALYTYWVPLG	FVLAVTVIRE
					IIVEKNORVP	
181	KNGSCFLRTD	QLDGETDWKL	RLPVACTQRL	PTAADLLQIR	SYVYAEEPNI	DIHNFVGTFT
241	REDSDPPISE	SLSIENTLWA	GTVVASGTVV	GVVLYTGREL	RSVMNTSNPR	SKIGLFDLEV
301	NCLTKILFGA	LVVVSLVMVA	LQHFAGRWYL	QIIRFLLLFS	NIIPISLRVN	LDMGKIVYSW
361	VIRRDSKIPG	TVVRSSTIPE	QLGRISYLLT	DKTGTLTQNE	MIFKRLHLGT	VAYGLDSMDE
421	VQSHIFSIYT	QQSQDPPAQK	GPTLTTKVRR	TMSSRVHEAV	KAIALCHNVT	PVYESNGVTD
481	QAEAEKQYED	SCRVYQASSP	DEVALVQWTE	SVGLTLVGRD	QSSMQLRTPG	DQILNFTILO
541	IFPFTYESKR	MGIIVRDEST	GEITFYMKGA	DVVMAGIVQY	NDWLEEECGN	MAREGLRVLV
601	VAKKSLAEEQ	YQDFEARYVQ	AKLSVHDRSL	KVATVIESLE	MEMELLCLTG	VEDOLOADVR
661	PTLETLRNAG	IKVWMLTGDK	LETATCTAKN	AHLVTRNQDI	HVFRLVTNRG	EAHLELNAFR
721	RKHDCALVIS	GDSLEVCLKY	YEYEFMELAC	QCPAVVCCRC	APTQKAQIVR	LLOERTGKLT
781	CAVGDGGNDV	SMIQESDCGV	GVEGKEGKQA	SLAADFSITQ	FKHLGRLLMV	HGRNSYKRSA
841	ALSQFVIHRS	LCISTMQAVF	SSVFYFASVP		STIYTMFPVF	
901	EVAMLYPELY	KDLLKGRPLS	YKTFLIWVLI	SIYQGSTIMY	GALLLFESEF	VHIVAISFTS
961	LILTELLMVA	LTIQTWHWLM	TVAELLSLAC	YIASLVFLHE	FIDVYFIATL	SFLWKVSVIT
1021	LVSCLPLYVL	KYLRRRFSPP	SYSKLTS			

Figure 36

ATGACGGACAACATCCCGCTGCAGCCGGTGCGCCAGAAGAAGCGGATGGACAGCAGGCCC CGCGCCGGGTGCTGCGAGTGGCTGAGATGCTGCGGTGGAGGGGAGGCCAGGCCCCGCACT GTCTGGCTGGGGCACCCCGAGAAGAGAGACCAGAGGTATCCTCGGAATGTCATCAACAAT CAGAAGTACAATTTCTTCACCTTTCTTCCTGGGGTGCTGTTCAACCAGTTCAAATACTTT TTCAACCTCTATTTCTTACTTCTTGCCTGCTCTCAGTTTGTTCCCGAAATGAGACTTGGT GCACTCTATACCTACTGGGTTCCCCTGGGCTTCGTGCTGGCCGTCACTGTCATCCGTGAG GCGGTGGAGGAGATCCGATGCTACGTGCGGGACAAGGAAGTCAACTCCCAGGTCTACAGC CGGCTCACAGCACGAGGCACAGTGAAGGTGAAGAGTTCTAACATCCAAGTTGGAGACCTT ATCATCGTTGAAAAGAACCAGCGGGTCCCTGCCGACATGATCTTCCTGAGGACATCAGAA AAAAACGGGTCATGCTTCTTGCGGACGGATCAGCTGGATGGGAGACGGACTGGAAGCTG CGGCTTCCCGTGGCCTGCACGCAGAGGCTCCCCACGGCCGCCGACCTTCTTCAGATTCGA TCGTATGTGTACGCAGAAGAGCCAAATATTGACATTCACAACTTCGTGGGAACTTTTACC CGAGAAGACAGCGACCCCCGATCAGCGAGAGCCTGAGCATAGAGAACACGCTGTGGGCT GGCACTGTGGTCGCATCAGGTACTGTTGTGGGTGTTGTTCTTTACACTGGCAGAGAACTC CGGAGTGTCATGAATACCTCAAATCCCCGAAGTAAGATCGGCCTGTTCGACTTGGAAGTG AACTGCCTCACCAAGATCCTCTTTGGTGCCCTGGTGGTGGTCTCGCTGGTCATGGTTGCC CTTCAGCACTTTGCAGGCCGTTGGTACCTGCAGATCATCCGCTTCCTCCTCTTGTTTTCC AACATCATCCCCATTAGTTTGCGTGTGAACCTGGACATGGGCAAGATCGTGTACAGCTGG GTGATTCGAAGGGACTCGAAAATCCCCGGGACCGTGGTTCGCTCCAGCACGATTCCTGAG ATGATTTTCAAACGGCTCCATCTCGGAACAGTAGCCTACGGCCTCGACTCAATGGACGAA GTACAAAGCCACATTTTCAGCATTTACACCCAGCAATCCCAGGACCCACCGGCTCAGAAG GGCCCAACGCTCACCACTAAGGTCCGGCGGACCATGAGCAGCCGCGTGCACGAAGCCGTG AAGGCCATCGCGCTCTGCCACAACGTGACTCCCGTGTATGAGTCCAACGGTGTGACTGAT GATGAGGTGGCCCTGGTACAGTGGACGGAAAGTGTGGGCTTAACCCTGGTGGGCCGAGAC CAGTCTTCCATGCAGCTGAGGACCCCTGGCGACCAGATCCTGAACTTCACCATCCTACAG ATCTTCCCTTTCACCTATGAAAGCAAACGTATGGGCATCATCGTGCGGGATGAATCAACT AATGACTGGTTGGAGGAAGAGTGTGGCAACATGGCCCGAGAAGGGCTGCGGGTGCTCGTG GTGGCAAAGAAGTCTCTTGCAGAGGAGCAGTATCAGGACTTTGAAGCCCGCTACGTCCAG GCCAAGCTGAGTGTGCACGACCGCTCCCTCAAAGTGGCCACGGTGATCGAGAGCCTGGAG CCCACGCTGGAGACCCTGAGGAATGCTGGCATCAAGGTTTGGATGCTGACAGGGGACAAG CTGGAGACAGCTACGTGCACAGCGAAGAATGCACATCTGGTGACCAGAAACCAAGACATC CACGTTTTTCGGCTGGTGACCAACCGCGGGGAGGCTCACCTCGAGCTGAACGCCTTCCGC AGGAAGCATGATTGTGCCCTGGTCATCTCGGGAGACTCCCTGGAGGTTTGCCTCAAGTAC TATGAGTACGAGTTCATGGAGCTGGCCTGCCAGTGCCCGGCCGTAGTCTGCCGATGT GCCCCACCCAGAAGGCCCAGATCGTGCGCCTGCTTCAGGAGCGCACGGGCAAGCTCACC TGTGCAGTAGGGGACGGAGGCAATGACGTCAGCATGATTCAGGAATCTGACTGCGGCGTG GGAGTGGAAGGAAAGGAAAACAGGCTTCGTTGGCTGCAGACTTCTCCATCACTCAA TTTAAGCATCTTGGCCGGTTGCTTATGGTGCATGGCCGGAACAGCTACAAGCGGTCAGCC GCCCTCAGCCAGTTCGTGATTCACAGGAGCCTCTGTATCAGCACCATGCAGGCTGTCTTT TCCTCCGTGTTTTACTTTGCCTCCGTCCCTCTCTATCAAGGATTCCTCATCATTGGGTAC TCCACAATTTACACCATGTTTCCTGTGTTTTCTCTGGTCCTGGACAAAGATGTCAAATCG GAAGTTGCCATGCTGTATCCTGAGCTCTACAAGGATCTTCTCAAGGGACGGCCGTTGTCC TACAAGACATTCTTAATATGGGTTTTGATTAGCATCTATCAAGGGAGCACCATCATGTAC GGGGCGCTGCTGTTTGAGTCGGAGTTCGTGCACATCGTGGCCATCTCCTTCACCTCG CTGATCCTCACCGAGCTGCTCATGGTGGCGCTGACCATCCAGACCTGGCACTGGCTCATG ACAGTGGCGGAGCTGCCTAGCCTGCTACATCGCCTCCCTGGTGTTCTTACACGAG TTCATCGATGTGTACTTCATCGCCACCTTGTCATTCTTGTGGAAAGTCTCCGTCATCACT CTGGTCAGCTGCCTCCCCCTCTATGTCCTCAAGTACCTGCGAAGACGGTTCTCTCCCCCC AGCTACTCAAAGCTCACATCA

Figure 37

Figure 38

score: 84 score: 88

> <u>Tetratricopeptide</u> repeats

NP 080272 RIKEN cDNA 2610100K07

7338 bps)									mRNA:	Protein:	Domains:			
Click to Display mRNA-Genomic Alignments (spanning 17338 bps)		.0100K07 gene	uct, function)7		TOM34 Mm Hs	IOM34 Mm Hs	TOMM34 Mm Hs	Am .	RefSeq			cDNA BL	score: 84
IRNA-Genomic Alignm	Official Gene me [MGI]	zo IUIUUKU/KIK: KIKEN CDNA 2610100K07 gene LocusID: 67145	Overview Submit GeneRIF Forction Locus gene with protein product, function	RIKEN CONA 2610100K07	X	20q12- q13.1	20q12- q13.1	20q12- q13.1	2	2 Re	eg). CTFD	NM 025996	NP 080272 RIKEN cDNA 2610100K07	TPR Domain
Click to Display mRNA-Gen	Symbol and Name (MGI)	ZOIUIUUKU/RIK LocusID: 67145	Overview Locus gen	Product: RIK	Human Homology Maps:	NCBI vs. MGD	UCSC vs. MGD	NCBI vs. MGD	Map Information Chromosome:	Cytogenetic:	NCBI Reference Sequences (RefSeq). Category: PREDICTED	mRNA:	Protein:	Domains:

Figure 39A

四四

NoBI Reference Sequences (RefSeq),		NP 006800 translocase of outer mitochondrial membrane 34		Tetratricopeptide repeats	BC007423	
NCBI Refe Sequences	Category: mRNA:	Protein:	Domains:	Ş	Source:	
Homo sapiens Official Gene	- mitochond	LocusID: 10953	he tr	mitochondrial protein import complex	Locus Type: gene with protein product, function known or inferred	Product: translocase of outer mitochondrial

gb sv mv ev mm Annotated transcripts/proteins for this locus: Category: NCBI Genome Annotation Evidence: supported by Genomic NT 011362 Contig: outer mitochondrial membrane translocase (34kD) TOM34, HTOM34P membrane 34 Function Submit GeneRIF

both mRNA and alignment with

XM 029822 ESTs (37)

Protein: mRNA: Model Model Tom34 unlike Tom20 does not interact mitochondrial precursor proteins with the leader sequences of GeneRIF: Gene References into Function; 11913975 11913976

Yeast two-hybrid screening identifies binding partners of human Tom34 that have ATPase activity and form a complex with Tom34 in the cytosol

score; 86 Tetratricopeptide score: 89 TPR Domain repeats

Domains:

찚

Alternate

Symbols:

Alias:

MAPKFPDSVEELRAAGNESFRNGQYAEASALYGRALRVLQAQGSSDPEEESVLYSNRAACHLKDGNCRDC IKDCTSALALVPFSIKPLLRRASAYEALEKYPMAYVDYKTVLQIDDNVTSAVEGINRMTRALMDSLGPEW RLKLPSIPLVPVSAQKRWNSLPSENHKEMAKSKSKETTATKNRVPSAGDVEKARVLKEEGNELVKKGNHK KAIEKYSESLLCSNLESATYSNRALCYLVLKQYTEAVKDCTEALKLDGKNVKAFYRRAQAHKALKDYKSS FADISNLLQIEPRNGPAQKLRQEVKQNLH

1	GGCACGAGGC	ארכא כא ככככ				
61	GGATGGCCCC	CDDDTTTCCC	GGAGGAAGGA	AGGAGCTCCC AGGAGCTCCG	AACTCGCCGG	CCTGGCCACG
121		CCAGTACGCC	. GACICIGIGG	AGGAGCTCCG	CGCCGCCGGC	AATGAGAGTT
181	AGGCGCAAGG	TTCTTCAGAC		CGCTCTACGG	CCGCGCGCTG	CGGGTGCTGC
241	. Troccoctaroo	GGATGGAAAC		AAAGTGTTCT		CGAGCAGCAT
301				GCATCAAAGA		GCACTGGCCT
361		CAGCATTAAG GGCCTATGTT		GGCGAGCATC	TGCTTATGAG	GCTCTGGAGA
421	CAGCCGTAGA	ACCCIATGTT	GACTATAAGA	CTGTGCTGCA	GATTGATGAT	AATGTGACGT
481	GGCGCCTCAA	COMOGGGGGG	AGAATGACCA	GAGCTCTCAT	GGACTCGCTT	GGGCCTGAGT
541	CCTTGCCTTC	GCTGCCCTCA	ATCCCCTTGG	TGCCTGTTTC	AGCTCAGAAG	AGGTGGAATT
601	2011000110		AAAGAGATGG	CTAAAAGCAA	ATCCAAAGAA	ACCACAGCTA
661	GCAATGAGCAG	AGIGCCTTCT.	GCTGGGGATG	TGGAGAAAGC	CAGAGTTCTG	AAGGAAGAAG
721	TCTTCTCTA	TGTAAAGAAG	GGAAACCATA	AGAAAGCTAT	TGAGAAGTAC	
781	TCITCICIA	CACACAR	TCTGCCACGT	ACAGCAACAG	AGCACTCTGC	TATTTGGTCC
841	ACCTCAACC	AUTOTAGAAGCA	GTGAAGGACT	GCACAGAAGC	CCTCAAGCTG	GATGGAAAGA
901	COTTORAGGC	ATTCTACAGA	CGGGCTCAAG	CCCACAAAGC	ACTCAAGGAC	TATAAATCCA
961	TGCGGCAGA		CTCCTACAGA		GAATGGTCCT	GCACAGAAGT
1021	てしていることがある。	CCCAGAGAAG		AAAAACCCAA		GGAACCCCTG
1081	ATGCCCCANA	CCCAGAGAAG	CCATGGGCCA		GCCCGCTCCT	GAAACCCAGC
1141	GAGGCTTTGC	TGAGCTCTGA		TCAATCCCTT	GATGGCCTCC	CACCCTGTAA
	AGAAAGGTCC		TAAACTCAGT	GTAGTCAAAC	ACAGACATGG	TTGTTGCACC
1261				GCTGAAGCTC	TGTCCCTATT	CCCCCAGCCC
1321				CAGCAAAGCA	TTTGGCTTTG	TCCTGCCCAA
1381	GTGGGCTGCA ATCTGAACAA	GACTGAGTGC	TGCCCTTGTA		ACCCCAACTC	ACTGCAGTTC
1441	ATCCAAAGCA		TGGGCCGGGG		GGGATAAACC	
1501	CTGTCCCTGC		CTGGTTCTCC		TCTCTCCAGG	TGTACAGCTG
1561			CCTTGCACAG		CTGAGCCCCA	GTGCCTTCTG
1621			GAAGGCAGAG	CCCTGACCCT	TGAATGGTTG	TCCTTGACTC
1681		CCTTCTGCAG		AAGCTGTTTA	AAGAGCCCAG	TGATTGTGGC
1741		AGAGGTGGGA		GGCCTCCTTG	GTCAGTGTCC	ATGCTTTCTG
1801		TGGTTTTTTG	TTCCAACAGT	GGCCTTCTCC		GTTCTTTGTA
1861	ATATGTTGAA	GITAATTTGA		TTTGTTGAAC	TGTGTGTTTA	AGCTGTTGCA
	TIAAAAAGCT	TTCTTCTACA	TCAATATCTG	ですですでですがある		
1001	AAAAAAA	CTCTGTAGTA	ATAATAAAAG	TTATTGCTTA	TTGGGCATTC	ΑΑΑΑΑΑΑΑ
T30T	AAAAAAA					

Figure 42

YLKDGNCTDC ALEGINRITR KSRVPSAGDV	IKDCTSALAL ALMDSLGPEW ERAKALKEEG	VPFSIKPLLR RLKLPPIPVV NDLVKKGNHK	RASAYEALEK PVSAQKRWNS KAIEKYSESL	YALAYVDYKT LPSDNHKETA LCSSLESATY	SVLYSNRAAC. VLQIDNSVAS KTKSKEATAT SNRALCHLVL
KQYKEAVKDC ROEVNONMN	TEALKLDGKN	VKAFYRRAQA	YKALKDYKSS	LSDISSLLQI	EPRNGPAQKL

MAPKFPDSVE ELRAAGNES HWKNGNCRDC IKDCTSAL	L VPFSIKPLLR	RASAYEALEK	YPMAYVDYKT	VLOIDDNVTS
AVEGINRMTR ALMDSLGPI KNRVPSAGDV EKARVLKEI KQYTEAVKDC TEALKLDGI ROEVKONLH	G NELVKKGNHK	KAIEKYSESL	LCSNLESATY	SNRALCYLVI

Figure 44

Figure 45

Figure 46

MNASVEGDTF (VTAPSTVQFV (VISLPTKSRT (CFSRKDKLKT (SSQLTVHLRS (KSHIRIKHSG (RIHCTERPFK (KTFHCDICDA (KKPTAPPAQK	RLGCCYPGCQ	TITVSAPEFV	FEHGYQTYLP	TESTDNQTAT
	HMRCHTGVKP	YKCKTCDYAA	FKTAYGMKDM	ERHLKIHTGD	KPHKCEVCGK
	HTGDAPFQCW	LCSAKFKISS	ADSSSLNKHL	RIHSDERPFK	CQICPYASRN
	NNFKCPHCDF	LGDSKSTLRK	DLKRHMRVHS	GEKPFKCEFC	NVRCTMKGNL
	CSYCSFDTKO	PSNLSKHMKK	HSRLHQSEHP	EKCPECSYSC	SSKAALRVHE
	CALCEDONA	TULKURSEYHS	KNSDVTVVQL	HLEPSKQPLR	PSP

Figure 48

VIAPSTVQFV VISLPTKSRT CFSRKDKLKT SSQLTVHLRS YPGCHFKTVH CDYAAVDSS FKISSDLKRH LEHSRLHQAD DKVHREGAKT	AEETEPATQT KKPTAPPAQK HMRCHTGVKP HTASVLENDV GMKDLDRHLR LKKHLRIHSD MIVHSGEKPF HPEKCPECSY ENRAPPGKDG	YKCKTCDYAA QKPAGLPAEE IHTGDKPHKC ERPYKCQLCP KCEFCDVRCT SCSNPAALRV PGESGPHHVP	TITVSAPEFV FKTAYGMKDM ADSSSLNKHL SDAQQAPAVT EFCDKCFSRK YASRNSSQLT MKANLKSHIR HSRVHCTDRP NVSTQRAFGC	FEHGYQTYLP ERHLKIHTGD RIHSDERPFK LSLEAKERTA DNLTMHMRCH VHLRSHTGDT IKHTFKCLHC FKCDFCSFDT DKCGASFVRD	TLGERTFNCR TSVKPHKCHL PFQCWLCSAK AFQGRDRADL
SDWGENKNSN	TINKAPPGKDG	PGESGPHHVP	NVSTQRAFGC	DKCGASFVRD	DSLRCHRKQH

MNASVEGDTF S VTAPSTVQFV F VISLPTKSRT F CFSRKDKLKT F SSQLTVHLRS F	KKPTAPPAQK HMRCHTGVKP	RLGCCYPGCQ YKCKTCDYAA	FKTAYGMKDM ADSSSLNKHI	FEHGYQTYLP	TESTDNQTAT
--	--------------------------	--------------------------	--------------------------	------------	------------

Figure 50

MAINGGRARAR	300110777				
PENASSEGESE	AGSVQLPGGT	TVLVELTPDI	HICGICKOOF	NNLDAFVAHK	OSGCOLTGTG
AAAPSTVOFV	SEETVPATOT	OTTTRTTTCE	サーサイクなり フロ	FVFEHGYQTY	ZDCCQLIGIS
איינודפו האצים	DUKKDUMDAY	STITUTION	TATTIASABE	FAREHGAÖ.LA	LPTESNENQT
WI ATOTICATO	KIKKPITPPA	ÖKKFWCGABG	CQFKTAYGMK	DMERHLKIHT	GDKPHKCEVC
GKCFSRKDKL	KTHMRCHTGV	KPYKCKTCDY	AVVISSSUVEV	HLRIHSDERP	DYGOT GD
DNGGOT.TRIET.	Detimonypao	Cut continue	MANDOCOUNT	UTKTUSDEKA	FRUQICPYAS
TOPOOLITY	KSHIGDAPFQ	CWLCSAKFKI	SSDLKRHMRV	HSGEKPFKCE	FCNVRCTMKG
NLKSHIRIKH	SGNNFKCPHC	DFLGDSKATL	RKHSRVHOSE	HPEKCSECSY	CCCCEATER
HERTHOTODD	FRCMVCcana	VODGMI Grame	***************************************	TIP BRCSECS I	SCSSKAALKI
2 TELEVISION OF THE	PICHICSEDI	VÕNDUTRKHM	KKEHGDMAKT	EALERKDTGR	OSSROVAKLD
AVVRAHCDIC	DASFMREDSL	RSHKROHSEY	NESKNSDVTV	LURUTUBERO	DAMINI INVICTOR
OVPLOPROVP	OFCECDUETT	VCHOUDONNE	711077777	IVPPALVAQN	PATPHIVGHL
0-1-1-0-1-0-1-1	OL SHOK AKTI	AGHÖA ÞÓÐM.T.	IVQAAAAAVN	IVPPALVAQN	PEELPGNSRL
ATTRANDITY	PPQSSRCPSE	AGAMTOPAVL	LALLHEOLDGA	TT.HOTT.TOTA	CCCDODGGGA
OTFITSSGIT	CTDFECTMAT.	TOPOTABLITA	TIODOCONTENT	ATTAPPVFSS	MDSDAQAGE
Retrost	CTOTTIGHTMAN	TOPGINE A.T.A	ANTAGRAGA	ATTAPPVFSS	SSQQELPKOT
YSTIOGAAHP	ALLCPADSTD	ת			

_				•	
MNASSEGESF	AGSVQIPGGT	TVLVELTPDI	HICGICKOOF	NNLDAFVAHK	೧ಽ৫୯೧೩ೡ୯ೡಽ
AAAPSTVQFV	SEETVPATOT	QTTTRTITSE	TOTTTCCOFK	TAVOMEDMOD	HI WILLIAMS
HECEUCOROR	CD WDWT WERE	20111111111	TATTIOCOLK	TAIGHIDMER	HTYTHIGDKL
TINCEVCGACE	PKYDYTYJHM	RCHTGVKPYK	CKTCDYAAAD	SSSLNKHLRT	HSDERPERCO
ICPYASRNSS	OLTVHLRSHT	GDAPFQCWLC	CAREKTOOD	TO INCOME	TIDDDIKE FACO
Domitton to	2-1-1-1-1-1	COMPLIACATIO	DAVENTOODE	KKHMKVHSGE	KPFKCEFCNV
RCIMEGNIES	HIRIKHSGNN	FKCPHCDFLG	DSKATTRKHS	VACARADOM/A	CGECGAGGGG
KAALRIHERT	HCTDRDEKCM	YCSFDTKQPS	NIT CITATINGTETETAT		CORCDIBCBB
OTTO TEL DO TELLO	TTO TO THE TACK	rcarpingPa	MANYMENSCH	GDMVKTEALE	RKDTGROSSR
GAYVIDAKK 2	FHCDICDASF	MREDSLRSHK	ROHSEYSESK	NSDVTVLOEO	TDDCKODAMD
LTVGHLOVPI	OPSOVDORSE	GRVKIIVGHQ	IIDONNITTION	TODVI VIIQIQ	TOPOMOPALE
7077777	STOO AT OF OF	GKAKTTAGHŐ	A D Q WITT V Q A	AAAAVNIVPP	ALVAONPEEL
PGNSKTÖTTK	GARPITAL DOR	SRCPSEAGAM	TOPAVITITH	EOTICATI.EO	TE TENTA COOL
OEGSGNOTET	TERCTTON	EGLNALIQEG		POLIDOWITHO	THIPTASGGP
Spanarati	TOUGHTCIDE	EGTWATIÕEG	TAEVTVVSDG	GONIAVATTA	PPVFSSSSOO
ELPKQTYSII	QGAAHPALLC	PADSIPD			

ARAPSTVQFV ATVISLPAKS GKCFSRKDKL RNSSQLTVHL NLKSHIRIKH HERIHCTDRP AKKSFHCDIC QVPLQPSQVP QILRQVSLIA	RTKKPTTPPA KTHMRCHTGV RSHTGDAPFQ SGNNFKCPHC FKCNYCSFDT DASFMREDSL QFSEGRVKII PPQSSRCPSE	QTTTRTITSE QKRLNCCYPG KPYKCKTCDY CWLCSAKFKI DFLGDSKATL KQPSNLSKHM RSHKRQHSEY VGHQVPQANT AGAMTOPAVL	HICGICKQQF TQTITVSAPE CQFKTAYGMK AAADSSSLNK SSDLKRHMRV RKHSRVHQSE KKFHGDMVKT SESKNSDVTV IVQAAAAAVN LTTHEQTDGA	FVFEHGYQTY DMERHLKIHT HLRIHSDERP HSGEKPFKCE HPEKCSECSY EALERKDTGR LQFQIDPSKQ IVPPALVAQN TLHOTILIDTA	LPTESNENQT GDKPHKCEVC FKCQICPYAS FCNVRCTMKG SCSSKAALRI QSSRQVAKLD PATPLTVGHL PEELPGNSRL
OILKOVSLIA	PPQSSRCPSE	AGAMTOPAVL	LTTHEOTOGA	TI.HOTI.TOTA	CCCDORCOM
YSIIQGAAHP	ALLCPADSIP	DEGTAEVTV	VSDGGQNIAV	ATTAPPVFSS	SSQQELPKQT

Figure 53

80	
Ortholog identification module	5402
eQTL identification module	5404
cQTL identification module	5406
Determination module	5408
Classification module	5410
•	5410

Fig. 5.

49/91

Lod scores on mouse Chr. 13 (lep, ins, fat, hdl)

Human Association Analysis

Given a gene identified in mouse for EZE response, we can directly test whether polymorphisms in this gene in human populations are associated with this trait

Ex: Is the frequency of the polymorphism equal between EZE responders and non-responders?

F1g. 67

Fig. 69

Fig. 70

7102 Select a trait, optionally expose a portion of a plurality of organisms to a perturbation that affects the trait 7104 Measure gene expression / cellular constituent level data 50 in the secondary tissue of a plurality of organisms 46 7106 Transform gene expression / cellular constituent level data 50 into expression statistics 7150 Measure one or more phenotypes for all or a portion of the organisms 46 in the plurality of organisms 7152 Classify the plurality of organisms into distinct phenotypic groups based on the phenotypes exhibited by the organisms 7154 Identify the phenotypic extremes for the subpopulation with respect to the trait under study or a phenotype related to the trait under study 7156 Filter the cellular constituent data to identify which cellular constituents discriminate the organisms into the phenotypic extremes identified in step 7154 (e.g., application of a t-test) 7158 Optionally, reduce the number of cellular constituents from step 7156 using a reducing algorithm (e.g., stepwise regression, principal component analysis, a stochasitc search, etc.) 7160 Optionally, cluster (e.g., k-means clustering) cellular constituents from step 7158 (or step 7156) to identify further subgroups within each phenotypic subpopulation 7164, Fig. 71B **FIG. 71A**

FIG. 71B

,	Phenotype 1		Phenotype M	CC 48-1	• • •	CC 48-Z
Organism 46-1	Amount 7201-1-1	•••	Amount 7201-1-M	Level 50-1-1	• • •	Level 50-1-Z
Organism 46-2	Amount 7201-2-1	• • •	Amount 7201-2-M	Level 50-2-1	• • •	Level 50-2-Z
•	•	• • •	•	•	• • •	•
Organism ⁻ 46-N	Amount 7201-N-1	• • •	Amount 7201-N-M	Level 50-N-1	• • •	Level 50-N-Z

FIG. 72

FIG. 73

Fig. 74

Fig. 75A

Figure 75B

Genotype BB

rigure /or

Figure 75D

Fig. 76

Fig. 77

Fig. 78

-7902

Genotype a population under study and, optionally, use pedigree information for the population

7904

Phenotype the population with respect to a trait or traits of interest and map quantitative trait loci (cQTL) for each phenotype, resulting in a set of cQTL linked to the trait

7906

Obtain abundance data for a plurality of cellular constituents from one or more tissues in each member of the population under study

7908

Identify cellular constituents (association set **D**) whose abundance levels accross the population significantly associate with the trait of interest (e.g., by use of Pearson correlations, basic discriminant analysis, regression models, etc.)

7910

For each cellular constituent i in association set D, perform quantitative genetic analysis, in which abundance levels of cellular constituent i across the population serve as a quantitative trait, in order to identify eQTL for cellular constituent i

7912

Remove all cellular constituents from association set **D** that do not have at least one eQTL that is coincident with (within a support interval of) a cQTL for the trait of interest in order to form the candidate causative cellular constituent set. Optionally, require that all coincident eQTL/cQTL pass a pleiotropy test in order to be considered coincident. Cellular constituents removed from association set **D** form a candidate reactive cellular constituent set.

7914

FIG. 79A

- 7916

For each cellular constituent i in the candidate causative cellular constituent set, determine the amount of genetic variation in the trait of interest that is explained by the eQTL of cellular constituent i coincident with the cQTL from the trait of interest. Rank order the cellular constituents in the candidate causative cellular constituent set based upon the amount of genetic variation in the trait of interest that is explained by each cellular constituent determined in this manner.

- 7918

For each eQTL of each cellular constituent i in the candidate causative cellular constituent set, test for the relationship:

$$P(T,Q|G) = P(T|G)P(Q|G)$$

where,

T is variance in the trait of interest,

Q is variance in the genome at the position where the eQTL (assoicated with cellular constituent i) overlaps with a cQTL linked to the trait of interest, and

G is variance in the abundance level of cellular constituent i

7920

Optionally, determine whether each cellular constituent i in the candidate causative cellular constituent set includes a druggable domain

7922

Optionally, rank cellular constituents in the candidate causative cellular constituent set based on the rank assigned in step 716 and the results of step 7918 and/or step 7920

7924

Optionally, validate top ranking cellular constituents using gene knock outs/ins, transgenic construction, siRNA, drug treatments targeting candidate genes, time series experiments, etc.

Pł	enotypic statistic set for clinical trait 1	8000-1		
	Phenotypic value for organism 1	8004-1-1		
ļ. 1	Phenotypic value for organism 2	8004-1-2		
i !	Phenotypic value for organism 3	8004-1-3		
	•	0004-1-0		
	Phenotypic value for organism Q	8004-1-Q		
	• •	300.14		
Pr	enotypic statistic set for clinical trait Z	8000-Z		
	Phenotypic value for organism 1	8004-Z-1		
	Phenotypic value for organism 2	8004-Z-2		
	Phenotypic value for organism 3	8004-Z-3		
	•	000+ 2-0		
	Phenotypic value for organism Q	8004-Z-Q		
	,			

FIG. 81

5

Abundance statistic for gene G from organism N	8108- G -N
•	
Abundance statistic for gene G from organism 4	8108- G -4
Abundance statistic for gene G from organism 3	8108- G -3
Abundance statistic for gene G from organism 2	8108- G -2
Abundance statistic for gene G from organism 1	8108- G -1
8104- G	

FIG. 83

Abundance statistic set	8104-1
Position 1	8404-1-1
Statistical score	8406-1-1 8404-1-2
Position 2	
Statistical score	8406-1-2
Position X	8404-1-X
Statistical score	8406-1-X
:	
Abundance statistic set	8104-M
Position 1	18404-M-1
Statistical score	8406-M-1
Position 2	8404-M-2
Statistical score	8406-M-2
Position X	8404-M-X
Statistical score	8406-M-X

FIG. 85A

FIG. 85B

Fig. 86A

Lod Score Curve for LEP Chromosome 13 QTL

Lod Score Curve for CHDL Chromosome 13 QTL

1 mdvvdsllvn gsnitppcel glenetlfcl dqprpskewq pavqillysl ifllsvlgnt 61 lvitvlirnk rmrtvtnifl lslavsdlml clfcmpfnli pnllkdfifg savcktttyf 121 mgtsvsvstf nlvaislery gaickplqsr vwqtkshalk viaatwclsf timtpypiys 181 nlvpftknnn qtanmcrfll pndvmqqswh tflllilfli pgivmmvayg lislelyqgi 241 kfeasqkksa kerkpsttss gkyedsdgcy lqktrpprkl elrqlstgss sranrirsns 301 saanlmakkr virmlivivv lfflcwmpif sanawraydt asaerrlsgt pisfilllsy 361 tsscvnpiiy cfmnkrfrlg fmatfpccpn pgppgargev geeeeggttg aslsrfsysh 421 msasvppq (SEQ ID NO: 30)

Fig. 88

CCKAR haplotypes associate with high body fat in females

Percentage body fat (top 15%) females

	1		1	
Info	0.81	0.75		
S E	282	279		9002
Ctrl fra	0.03	0.03		Ĵ
Naff	281	281		
Aff_frq	0.11	0.11		
PAR	0.163	0.163		
RRisk	4.0	4.2		
P-unc	8.42E-07	1.43E-06		
P cor	0.002	0.002		
•				

23% obese vs 6% thin and Relative Risk >4 Carrier frequency:

Controls: Thin females

Fig. 90

CCKAR haplotypes associate with thinness

in females

-9102

Thin (BMI<20) females at ages > 40 yrs

. cor P-unc RRisk PAR Aff fra N aff Ctri fra N ctri Info 0.02 1.61E-05 4.4 0.119 0.08 282 0.02 421 0.643 0.02 1.84E-05 4.2 0.120 0.08 282 0.02 421 0.647

17% thin vs 4% obese and Relative Risk >4 Carrier frequency:

Fig. 91

Controls: Obese females