# Bil 470 / YAP 470

Introduction to Machine Learning (Yapay Öğrenme)

Batuhan Bardak

#### **SVM - Support Vector Machine**

**Date**: 17.10.2022

### Plan for today

- SVM for linearly separable classes
- SVM for linearly inseparable classes
- SVM for nonlinear decision boundaries
  - Kernel functions

#### SVM

- The Support Vector Machine (SVM) is a linear classifier that can be viewed as an extension of the Perceptron.
- The Perceptron guaranteed that you find a hyperplane if it exists. The SVM finds the maximum margin separating hyperplane.

### Which linear separator is best?







### Which linear separator is best?







### Maximal Margin Linear Separators

- The margin of a linear separator is the distance between it and the nearest training data point.
- Questions:
  - O How can we efficiently find a maximal-margin linear separator?
  - Why are linear separators with larger margins better?
  - What can we do if the data is not linearly separable?

#### Hyperplanes

• For linear models, decision boundaries are D-dimensional hyperplanes defined by a weight vector, [b, w]

$$\mathbf{w}^T \mathbf{x} + b = 0$$

 Problem: there are infinitely many weight vectors that describe the same hyperplane

• 
$$x_1 + 2x_2 + 2 = 0$$
 is the same line as  $2x_1 + 4x_2 + 4 = 0$ , which is the same line as  $1000000x_1 + 2000000x_2 + 2000000 = 0$ 

Solution: normalize weight vectors w.r.t. the training data

### Maximal Margin Linear Separators

- The margin of a linear separator is the distance between it and the nearest training data point.
- Questions:
  - O How can we efficiently find a maximal-margin linear separator?
  - Why are linear separators with larger margins better?
  - What can we do if the data is not linearly separable?

#### SVM



#### Linear models for binary classification



$$\hat{y} = ext{sign}(w^T\mathbf{x} + b) = ext{sign}\left(\sum_i w_i x_i + b
ight)$$

### Picking a loss?

$$\hat{y} = \operatorname{sign}(w^T \mathbf{x} + b)$$

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}} \sum_{i=1}^n 1_{y_i 
eq ext{sign}(w^T\mathbf{x} + b)}$$



### Max-Margin and Support Vectors



### Max-Margin and Support Vectors

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}} C \sum_{i=1}^n \max(0, 1 - y_i(w^T\mathbf{x} + b)) + ||w||_2^2$$

Within margin 
$$\Leftrightarrow y_i(w^Tx + b) < 1$$

Smaller  $w\Rightarrow$  larger margin

### Max-Margin and Support Vectors





## (soft margin) linear SVM

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}} C \sum_{i=1}^n \max(0, 1 - y_i(w^T\mathbf{x}_i + b)) + ||w||_2^2$$

$$\min_{w \in \mathbb{R}^p, b \in \mathbb{R}} C \sum_{i=1}^n \max(0, 1 - y_i(w^T \mathbf{x}_i + b)) + ||w||_1$$

#### Kernel SVMs

- Go from linear models to more powerful nonlinear ones.
- Keep convexity (ease of optimization).
- Generalize the concept of feature engineering.

#### Linear SVM

$$\min_{w \in \mathbb{R}^p, b \in \mathbf{R}} C \sum_{i=1}^n \max(0, 1 - y_i(w^T\mathbf{x} + b)) + ||w||_2^2$$

$$\hat{y} = \operatorname{sign}(w^T \mathbf{x} + b)$$

#### Reformulate Linear Models

• Optimization Theory

$$w = \sum_{i=1}^n lpha_i \mathbf{x}_i$$

(alpha are dual coefficients. Non-zero for support vectors only)

$$\hat{y} = ext{sign}(w^T \mathbf{x}) \Longrightarrow \hat{y} = ext{sign}\left(\sum_i^n lpha_i(\mathbf{x}_i^T \mathbf{x})
ight)$$

$$\alpha_i <= C$$

### Introducing Kernels

$$\hat{y} = \operatorname{sign}\left(\sum_{i}^{n} \alpha_{i}(\mathbf{x}_{i}^{T}\mathbf{x})\right) \longrightarrow \hat{y} = \operatorname{sign}\left(\sum_{i}^{n} \alpha_{i}(\phi(\mathbf{x}_{i})^{T}\phi(\mathbf{x}))\right)$$

$$\phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j) \longrightarrow k(\mathbf{x}_i, \mathbf{x}_j)$$

k positive definite, symmetric  $\Rightarrow$  there exists a  $\phi$ ! (possilby  $\infty$ -dim)

### Example of Kernels

$$k_{ ext{linear}}(\mathbf{x}, \mathbf{x}') = \mathbf{x}^T \mathbf{x}'$$
 $k_{ ext{poly}}(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^d$ 
 $k_{ ext{rbf}}(\mathbf{x}, \mathbf{x}') = \exp(-\gamma ||\mathbf{x} - \mathbf{x}'||^2)$ 
 $k_{ ext{sigmoid}}(\mathbf{x}, \mathbf{x}') = ext{tanh}(\gamma \mathbf{x}^T \mathbf{x}' + r)$ 
 $k_{\cap}(\mathbf{x}, \mathbf{x}') = \sum_{i=1}^p \min(x_i, x_i')$ 

ullet If k and k' are kernels, so are  $k+k',kk',ck',\ldots$ 

### Polynomial Kernel vs Features

$$k_{\text{poly}}(\mathbf{x}, \mathbf{x}') = (\mathbf{x}^T \mathbf{x}' + c)^d$$

Primal vs Dual Optimization

Explicit polynomials  $\rightarrow$  compute on n\_samples \* n\_features \*\* d Kernel trick  $\rightarrow$  compute on kernel matrix of shape n\_samples \* n\_samples

For a single feature:

$$(x^2,\sqrt{2}x,1)^T(x'^2,\sqrt{2}x',1)=x^2x'^2+2xx'+1=(xx'+1)^2$$

#### Kernels in Practice

Dual coefficients less interpretable

Long runtime for "large" datasets (100k samples)

- Real power in infinite-dimensional spaces: rbf!
- Rbf is "universal kernel" can learn (aka overfit) anything.

### Preprocessing

Kernel use inner products or distances.

StandardScaler or MinMaxScaler ftw

 Gamma parameter in RBF directly relates to scaling of data and n\_features – the default is 1/(X.var() \* n\_features)

#### Parameters for RBF Kernels

- Regularization parameter C is limit on alphas (for any kernel)
- ullet Gamma is bandwidth:  $k_{
  m rbf}({f x},{f x}')=\exp(-\gamma||{f x}-{f x}'||^2)$



#### Parameters for RBF Kernels



#### Next Class:

Decision Trees & Ensemble Learning