$$\begin{split} \hat{H} &= \hbar [D(\hat{S}_z^2 - \frac{2}{3}I_3) + E(\hat{S}_x^2 - \hat{S}_y^2) + \gamma_{nv}\vec{B} \cdot \hat{\vec{S}}] \\ \Delta E_{[m_s = +1]} &= +g_e\mu_B \mid \vec{B} \cdot \hat{u} \mid \\ \Delta E_{[m_s = -1]} &= -g_e\mu_B \mid \vec{B} \cdot \hat{u} \mid \\ \Delta E_{[m_s = 0]} &= 0 \\ \hat{H} &= \hbar [D(\hat{S}_z^2 - \frac{2}{3}I_3) + \gamma_{nv}B_z\hat{S}_z] \\ m_s &= +1 \\ m_s &= -1 \\ \Delta \nu_i &= \nu_{i[+1]} - \nu_{i[-1]} \\ B_i &= \Delta \nu_i / \gamma_{nv} \end{split}$$

$$\begin{cases}
\Delta \nu_i = \nu_{i[+1]} - \nu_{i[-1]} \\
B_i = \Delta \nu_i / \gamma_{nv}
\end{cases}$$
(1)

 $[\hat{u}_1, \hat{u}_2, \hat{u}_3, \hat{u}_4]; [-1, -1, 1, 1]$

$$\begin{cases}
\vec{B} \cdot \hat{u}_{list}[i]_1 = B_1 \\
\vec{B} \cdot \hat{u}_{list}[i]_2 = B_2 \\
\vec{B} \cdot \hat{u}_{list}[i]_3 = B_3
\end{cases}$$

$$\begin{cases}
\vec{B} \cdot \hat{u}_1 = B_i \\
\vec{B} \cdot \hat{u}_2 = B_i \\
\vec{B} \cdot \hat{u}_3 = B_i
\end{cases}$$
(3)

$$\begin{cases} \vec{B} \cdot \hat{u}_1 = B_i \\ \vec{B} \cdot \hat{u}_2 = B_i \\ \vec{B} \cdot \hat{u}_3 = B_i \end{cases}$$
 (3)

Calcolated			Hall	
$B_x [mT]$	$B_y [mT]$	$B_z [mT]$	$B_x [mT]$	$B_z [mT]$
3.60 ± 0.18	0.58 ± 0.19	-1.78 ± 0.18	3.50 ± 0.17	-1.70 ± 0.09
4.00 ± 0.18	0.70 ± 0.20	-2.43 ± 0.19	4.10 ± 0.20	-2.40 ± 0.12
5.42 ± 0.18	0.56 ± 0.17	-3.08 ± 0.17	5.30 ± 0.27	-3.00 ± 0.15
8.01 ± 0.19	1.09 ± 0.18	-3.33 ± 0.18	7.80 ± 0.39	-3.40 ± 0.17
8.53 ± 0.15	0.79 ± 0.16	-4.62 ± 0.15	8.00 ± 0.40	-4.70 ± 0.23
9.95 ± 0.17	0.66 ± 0.20	-5.85 ± 0.19	9.90 ± 0.49	-5.70 ± 0.28
12.01 ± 0.15	0.68 ± 0.16	-9.12 ± 0.17	11.70 ± 0.58	-9.00 ± 0.45