Analisi I

Paolo Bettelini

Contents

1	Assiomi di Peano	1
2	Principio di induzione	3
3	Combinatorica	4
4	Funzione indicatrice	6
5	Altre proprietà	6
6	Interi relativi	7
7	Definizioni con ordini 7.1 Considerazioni	12
	1.4 ESCICIZI SUP	$_{\rm TO}$

1 Assiomi di Peano

Definizione Assiomi di Peano

Gli assiomi di Peano incudono i numeri naturali:

- il valore 1 è un numero;
- ogni numero n ha il suo successore S(n) = n + 1;
- se $m \neq n$, allora $S(m) \neq S(n)$;
- il numero 1 non è il successore di alcun numero;
- assioma induttivo: sia $E\subseteq \mathbb{N}$ tale che $1\in E,$ allora

$$n \in E \implies S(n) \in E$$

Allora l'insieme E è l'insieme \mathbb{N} .

La funzione successore è initettiva.

Definizione Sottoinsieme finale

Un sottoinsieme $E \subseteq \mathbb{N}$ si dice finale se $E = \{n_0, n_0 + 1, n_0 + 2, \dots\}$ per qualche $n_0 \in \mathbb{N}$.

Esiste quindi un valore $n\in\mathbb{N}$ tale che

$$E = \{ n \in \mathbb{N} \mid n \ge n_0 \}$$

Proposition

Usando l'assioma indutivo si deduce che se A è un insieme tale che $n_0 \in A$ e $\forall n \in A, S(n) \in A$, allora A è finale.

2 Principio di induzione

Teorema Principio di induzione

Sia P(n) una proposizione dove $n \in \mathbb{N}$, allora

$$P(0) \land (P(n) \implies P(n+1)) \implies \forall n \in \mathbb{N}, P(n)$$

Teorema Equivalenza principio e assioma di induzione

L'assioma induttivo è equivalente al principio di induzione.

Proof Equivalenza assioma e principio di induzione

Given a proposition P(n), let

$$E = \{ n \in \mathbb{N} \,|\, P(n) \}$$

 (\Longrightarrow) If $0 \in E$, then P(0) is true.

If $n \in E \implies S(n) \in E$, then $P(n) \implies P(S(n))$.

If the latter conditions are satisfied, then by the axiom of induction, $E = \mathbb{N}$, and thus

$$\forall n \in \mathbb{N}, P(n)$$

 (\Leftarrow) If P(0) is true, then $0 \in E$.

If $P(n) \implies P(S(n))$, then if $n \in E \implies S(n) \in E$.

If the latter conditions are satisfied, then by the principle of induction

$$\forall n \in \mathbb{N}, n \in E$$

and thus $E = \mathbb{N}$.

Proposition Principio di induzione forte

Il principio di induzione è equivalente alla seguente forma: sia P(n) una proposizione dove $n \in \mathbb{N}$ tale che

- P(1) è vera;
- P(k) è vera per tutte le $k \leq n$, allora P(n+1) è vera.

Allora P(n) è vera per tutte le n.

Esempio Principio di induzione

Dimostrare che per ogni $n \ge 1$, la somma

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

- Il caso base è dato da n = 1 dove $1 = \frac{2}{2} = 1$.
- Il caso induttivo è dato dato da $\xi = n + 1$

$$\frac{n(n+1)}{2} + \xi = \frac{n(n+1)}{2} + \frac{2n}{2} + \frac{2}{2}$$

$$= \frac{n^2 + 3n + 2}{2}$$

$$= \frac{(n+1)(n+2)}{2}$$

$$= \frac{\xi(\xi+1)}{2}$$

Considerando la serie

$$\sum_{k=1}^{n} a_k$$

e impostiamo j = n - k + 1, abbiamo che la sommatoria è pari a

$$\sum_{j=1}^{n} a_{n-j+1}$$

Esempio Principio di induzione

Dimostrare che

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(n+2)}{6}$$

Esempio Principio di induzione

Per ogni $n \ge 0$ e per ogni h > -1,

$$(1+h)^n \ge 1 + nh$$

3 Combinatorica

Il valore n! è pari alla cardinalità dell'insieme di tutte le funzioni fa F_n a F_n che sono biettive. Dove $F_n = \{1, 2, 3 \cdots, n\}$.

$$n! = |\{f \colon F_n \to F_n\}|$$

Proof Cardinalità di queste funzioni

- Il caso base è F_1 , che contiene solo 1 elemento e 1! = 1.
- Caso induttivo: notiamo che dato l'insieme F_n , aggiungendo un oggetto quest'ultimo possiamo posizionarlo in n+1 posizioni. Di conseguenza, il nuovo numero di permutazioni è n!(n+1) = (n+1)!.

La funzione $\sigma(n)$ è una funzione di permutazione (funzione biettiva che permuta n elementi). Infatti, le permutazione di n sono n!, ossia la cardinalità, cioè tutte le funzioni biettive possibili per permutare gli oggetti.

Definizione Disposizioni

Le disposizioni di k oggetti scelti fra n oggetti, dove $1 \le k \le n$, sono il numero delle funzioni iniettive $f: F_k \to F_n$.

$$D_{n,k} = \frac{n!}{(n-k)!}$$

Definizione Combinazioni

Le combinazioni di k oggetti scelto fra n oggetti, dove $1 \le k \le n$, sono il numero di sottoinsiemi di F_n di cardinalità k.

$$C_{n,k} = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Abbimao che

$$D_{n,k} = k! \cdot C_{n,k}$$

Lemma Proprietà dei coefficienti binomiali

Per ogni $0 \le k \le n$

$$\binom{n}{k} = \binom{n}{n-k}$$

Teorema Leggi di De Morgan

$$(A \cap B)^c = A^c \cup B^c$$

е

$$(A \cup B)^c = A^c \cap B^c$$

con il complementare rispetto a qualche insieme X.

Proof Leggi di De Morgan

 $x \in (A \cap B)^c$ è equivalente a $x \notin A \cap B$, che è equivalente a $x \notin A$ o $x \notin B$. Allora $x \in A^c$ o $x \in B^c$, e quindi $x \in A^c \cup B^c$.

Teorema Teorema del binomio

Let $n \in \mathbb{N}$ and $x, y \in \mathbb{R}$.

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

4 Funzione indicatrice

Definizione Funzione indicatrice

Sia X un insieme e $E\subseteq X$. La funzione caratteristica di E è data da

$$1_E = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

Dati due insiemi E e F, abbiamo $E \neq F \implies 1_E \neq 1_F$.

La notazione y^x indica $\{f \colon x \to y\}$, cioè tutte le funzioni da x a y.

La funzione $\Xi: \mathcal{P}(X) \to \{0,1\}^X$ è biettiva. La funzione $f: X \to \{0,1\}$ è pari a $f=1_E$ per $E=\{x \mid f(x)=1\}$. Una funzione che ti dice 1 se l'elemento sta nel sottoinsieme, 0 altrimenti. Quindi

$$|\mathcal{P}(X)| = |\{0,1\}^X| = 2^n$$

5 Altre proprietà

$$\sum_{k=0}^{n} \binom{n}{k} \cdot (-1)^k = 0$$

Questa è la somma dei sottoinsiemi con un numero pari di elementi meno quelli con un numero dispari.

6 Interi relativi

In \mathbb{N} è definita la funzione $+: \mathbb{N}^2 \to \mathbb{N}$ dove $(m, n) \to m + n$.

Abbiamo chiaramente che $(a,b)=(a',b')\iff a=a'\land b=b'.$

Le prorpietà sono:

- è associativa;
- è distributiva;
- esiste un elemento neutro 0 tale che $m+0=m, \forall m \in \mathbb{N}$

Tuttavia, m-n è definito solo per $m \ge n$.

Definiamo $\mathbb Z$ come l'insieme

$$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \cdots\}$$

Abbiamo allora $\forall n \in \mathbb{Z}, \exists_{=1}n' = -n \mid n + (-n) = 0$, e quindi

$$n - m \triangleq n + (-m)$$

Abbiamo quindi la somma $+: \mathbb{Z}^2 \to \mathbb{Z}$ che gode di tutte le proprietà precedenti ma in più

$$\forall n \in \mathbb{Z}, \exists -n \mid n + (-n) = 0$$

Definizione Gruppo

Un insieme G con un operazione binaria \circ tale che

- associativa: $(a \circ b) \circ c = a \circ (b \circ c)$
- elemento neutro: $\forall a \in A, \exists 0 \in G \mid 0 \circ a = a \circ 0 = a$
- elemento opposto: $\forall a \in G, \exists a' \mid a + a' = a' \circ a = 0$

Se aggiungiamo la commutatività viene detto gruppo abeliano.

Per esempio $(\mathbb{Z}, +)$ è un gruppo abeliano.

La struttura algebrica (\mathbb{Z}, \circ) dove $(a, b) \to a \cdot b$ non è un gruppo abeliano, in quanto non c'è un inverso n^{-1} (c'è solamente per 1 e -1). La divisione si può fare solo se uno è un multiplo dell'altro.

TODO: definizione di anello

Per definire gli inversi di tutti i numeri $\neq 0$, si introducono le frazioni $\frac{m}{n}$ con $m \in \mathbb{Z}$ e $n \in \mathbb{N}^+$.

Si dice che due frazioni sono equivalenti $\frac{m'}{n'}$ e $\frac{m}{n}$ se mn'=m'n. I numeri razionali sono descritti dalle frazioni quando si identificano con frazioni equivalenti (classe di equivalenza), e le operazioni vengono fatte sulle frazioni. La classe di equivalenza è quindi data relazione $\frac{m}{n} \sim \frac{m'}{n'} \iff mn'=m'n$.

Abbiamo che

$$\frac{m}{n} \cdot \frac{p}{q} \to \frac{mq + pn}{nq}$$

Risulta che i razionali \mathbb{Q} con le operazioni + e \cdot introdotte. Quindi $(\mathbb{Q},+)$ è un gruppo abeliano, (\mathbb{Q}^*,\cdot) è anch'esso un gruppo abeliano (da notare l'assenza dello 0).

Vale la proprietà distributiva di prodotto rispetto alla somma

$$r \cdot (s+t) = r \cdot s + r \cdot t$$

Quindi $(\mathbb{Q}, +, \cdot)$ è un campo, per cui possiede le operazioni $+ e \cdot \text{con}$ le prorpietà alle quali siamo abituati.

In particolare, in \mathbb{Q} si possono risolvere le equazioni di primo grado.

$$ax + b = 0$$

 $con a, b, x \in \mathbb{Q}, x \neq 0.$

$$ax + b + (-b) = -b$$

$$ax = -b$$

$$a^{-1}(ax) = -a^{-1}b$$

$$a^{-1}ax = -a^{-1}b$$

$$x = -\frac{b}{a}$$

Il campo di $\mathbb Q$ ha un ordinamento totale dove $r \leq s$ se e solo se r-s è non-negativa.

In \mathbb{Q} è definito un ordinamento che è compatibile ocn le operazioni + e \cdot , cioè soddisfa le condizioni

$$r \le s \implies t + r \le t + s$$

con $t \in \mathbb{Q}$ e con $t \geq 0$ abbiamo $tr \leq ts$.

Definizione Campo ordinato

Un campo F nel quale è definito un ordinamento per il quale valgono le proprietà appena date, viene detto ordinato.

Non tutte le equazioni in \mathbb{Q} sono risolvibili.

Teorema Radice di due

L'equazione

$$x^2 = 2$$

non ha soluzioni in \mathbb{Q} .

Proof Radice di due

Supponiamo che esista una frazione ridotta ai minimi termini $r=\frac{m}{n}$, tale che $r^2=2$. Abbiamo quindi che $\frac{m^2}{n^2}=2$, quindi $m^2=2n^2$. Ciô ci dice che m^2 è pari. Allora, 2 è un fattore anche di m (siccome la fattorizazzione è unica e non cambia), quindi m è pari. Di conseguenza, se m è divisibile per 2, allora m^2 è divisibile per 4. Abbiamo quindi $4k=n^2$ e quindi n^2 è divisibile per 2, anche n, contro l'ipotesi del fatto che i due numeri fossero coprimi.

7 Definizioni con ordini

Definizione Insieme totalmente ordinato

Un insieme ordinato è una tupla (X, \leq) dove X è un insieme $e \leq$ è un ordinamento totale.

Sia anche $E \subseteq X$ un insieme dove $E \neq \emptyset$.

Si dice che $m \in X$ è maggiorante di E se $\forall x \in E, x \leq m$.

Se un tale valore esiste, E si dice superiormente limitato. Si dice che $m \in X$ è minorante di E se $\forall x \in E, x \geq m$.

Se un tale valore esiste, E si dice inferiormente limitato.

L'insieme E si dice limitato se è limitato sia inferiormente che superiormente.

Un valore $m \in X$ si dice massimo di E se M è un maggiorante di E e $m \in E$.

Un valore $m \in X$ si dice *minimo* di E se M è un minorante di E e $m \in E$.

7.1 Considerazioni

Nel caso in cui l'insieme E sia finito, vi è un massimo ed un minimo. Tuttavia, in caso contrario, valori massimi e minimi non esistono necessariamente.

Consideriamo per esempio $X=\mathbb{Q}$ ed

$$E = \left\{ r_n = \frac{n-1}{n}, \quad n \in \mathbb{N}^* \right\}$$

Possiamo notare che il valore 0 è il minimo di E. Vi sono diversi minoranti di E, come -1, -30 etc. In generale, tutti i $x \le 0$ sono dei minoranti di E. I maggioranti di E sono tutti i valori $x \ge 1$.

Tuttavia, non vi è un massimo. Per dimostrarlo prendiamo $r_n \in E$. È facile vedere che r_n non può essere maggiorante in quando se n' > n, $r_{n'} > r_n$. Dato qualsiasi r_n , è possibile trovare un altro elemento in E che è maggiore, e per cui non esistono maggioranti.

Notiamo che il numero 1, che è il maggiorante, è infatti il più piccolo dei maggioranti: supponiamo che z < 1, verifichiamo quindi che z non è un maggiorante. Il valore z non è maggiorante di E se esiste una $x \in E$ tale che x > z. Esiste infatti n tale che $r_n > z$, studiamo quindi la disequazione

$$r_n - z = 1 - \frac{1}{n} - z = (1 - z) - \frac{1}{n} > 0$$

purché 1-z>1. Qualcunque numero più piccolo di z sia dato, si possono fare altri valori maggiori, dati quindi da

$$n > \frac{1}{1-z}$$

7.2 Estremi superiori e inferiori

Definizione Estremo superiore

Sia $E \subseteq X$ un sottoinsieme non-vuoto, diciamo che μ è l'estremo superiore di E se μ è un maggiorante di E e μ è il più piccolo del maggioranti. Scriviamo quindi

$$\mu = \sup E$$

Definizione Estremo inferiore

Sia $E \subseteq X$ un sottoinsieme non-vuoto, diciamo che μ è l'estremo inferiore di E se μ è un minorante di E e μ è il più grande del minoranti. Scriviamo quindi

$$\mu = \inf E$$

I valori di minimo, massimo, estremo inferiore, estremo superiore, sono unici se esistono. Ci sono sottoinsiemi di $\mathbb Q$ che non hanno estremi superiori (e quindi ci sono tante funzioni senza limiti, derivate e integrali. L'analisi in $\mathbb Q$ sarebbe quindi un disastro per questo motivo).

Teorema

Sia

$$E = \left\{ r \in \mathbb{Q} \,|\, r \ge 0 \land r^2 \le 2 \right\}$$

allora, E è non-vuoto, limitato superiormente, ma non esiste il suo estremo superiore.

Proof

- Per dimostrare che $E \neq \emptyset$ possiamo semplicemente darne un elemento, come per esempio 1.
- L'insieme E è banalmente limitato superiormente da tutti i valori $x \geq 2$.
- Supponiamo per assurdo che esista un μ = sup E. Notiamo che ovviamente μ > 0. Possiamo notare che μ² = 2 è impossibile per il teorema di Euclide. Allora, μ potrebbe essere minore di 2 oppure maggiore di 2. Supponiamo che μ² < 2, allora dimostro che ∃x ∈ E tale che x > μ e quindi che μ non è maggiorante. Consideriamo quindi i numeri razionali della forma

$$\mu + \frac{1}{n}$$

che sono chiaramente più grandi di μ . Possiamo quindi scegliere n sufficientemente grande tale che $(\mu + \frac{1}{n})^2 < 2$, e quindi $\mu + \frac{1}{n} \in E$ in quanto

$$2 - \left(\mu + \frac{1}{n}\right)^2 = 2 - \mu^2 + \frac{2\mu}{n} + \frac{1}{n^2}$$
$$= (2 - \mu^2) - \frac{2\mu}{n} - \frac{1}{n^2}$$

è chiaramente più grande di $(2-\mu^2)-\frac{2\mu}{n}-\frac{1}{n}$. Ciò è dato dal fatto che $\frac{1}{n}>\frac{1}{n^2}$.

$$\frac{2\mu+1}{n} < 2 - \mu^2, \quad n > \frac{2-\mu^2}{2\mu+1}$$

Analogamente, si dimostra che μ^2 non può essere nemmeno maggiore di 2, e quindi μ non esiste.

È facile verificare che inf, sup, min, max se esistono sono unici. Se esiste il massimo di E, allora esiste il sup E e coincidono. Infatti, il massimo esiste se esiste sup E e sup $E \in E$.

In \mathbb{Q} (e poi in \mathbb{R}), se E non è limitato superiormente (cioè non ha maggiornate cioè $\forall M \in \mathbb{Q}, \exists e \in E$ tale che e > M) si dice che

$$\sup E = +\infty$$

Analogamente se E non è limitato inferiormente si dice che

$$\inf E = -\infty$$

Possiamo quindi notare che

$$\sup \emptyset = -\infty$$

 \mathbf{e}

$$\inf \emptyset = +\infty$$

Definizione Numeri reali

Definiamo \mathbb{R} come un campo totalmente ordinato nel quale vale la seguente proprietà del sup:

$$\forall E \subseteq \mathbb{R}, \quad E \neq \emptyset \land E \text{ limitato sup. esiste}$$

Bisogna tuttavia dimostrare l'unicità di questa costruzione e la sua esistenza.

Teorema di unicità

Siano F_1 e F_2 due campi ordinati nei quali vale la proprietà del sup di prima. Allora, esiste una biezione $\phi \colon F_1 \to F_2$ tale che è un isomorfismo del gruppo additivo $\phi(x+_{F_1}y) = \phi(x)+_{F_2}\phi(y)$ per ogni $x,y \in F_1$ e $\phi(-x) = -\phi(x)$ per ogni $x \in F_1$. Se aggiungiamo anche che $\phi(x\cdot_{F_1}y) = \phi(x)\cdot_{F_2}\phi(y)$ per tutte le $x,y \in F_1$ e $\phi(x^{-1}) = \phi(x)^{-1}$ abbiamo un isomorfismo di campo. Se aggiungiamo anche che $x \leq y \iff \phi(x) \leq \phi(y)$, abbiamo quindi un isomorfismo di campo ordinato.

Date le proprietà di un campo, ogni campo genera un insieme dei razionali \mathbb{Q} . Chiaramente, diversi campi generano \mathbb{Q} diversi ma con gli stessi elementi in un certo senso. Possiamo mappare un insieme dei razionali di un campo a quello di un altro.

È facile definire $\phi_0: \mathbb{Q}_1 \subseteq F_1 \to \mathbb{Q}_2 \subseteq F_2$. Usando la proprietà del sup possiamo eseguire tale mappatura. Dato $x \in F_1$, abbiamo $x = \sup\{r \in \mathbb{Q}_1 \mid r \leq x\} = \sup E_x$. Allora $\phi(x) = \sup\{\phi_0(r) \mid r \in E_x\}$. Così viene esteso ϕ a tutto. Bisognerebbe tuttavia dimostrare che le proprietà classiche vengano preservate.

Per dimostrare l'esistenza è necessario considerare

 $\mathbb{R} = \{ \text{ numeri decimali } n, a_1, a_2, a_3, \cdots \} \text{ finiti o infiniti periodici o meno}$

dove $a_k \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}.$

Con la prescrizione che $n, a_1, a_2, a_3, \dots, a_k, \overline{9} = n, a_1, \dots, a_{k-1}, (a_k+1)$.

I numeri reali possono essere anche definiti mediante le sezioni di Dedekind. Alternativamente si possono definire mediante le successioni di Cauchy.

Definizione di somma e prodotto: Prendiamo $x = n, a_1, \dots, a_k \dots$ e $y = m, b_1, \dots, b_k \dots$ che sono due numeri decimali, nessuno dei quali con period 9, allora

$$x = y \iff n = m \land a_k = b_k$$

е

$$x < y \iff n < m \lor (n = m \land a_i = b_i, i < k \land a_k < b_k)$$

Le operazioni sono definite mediante troncamenti. Verificiamo che questo modello di \mathbb{R} soddisfi la proprietà del sup.

Prendiamo quindi $E \subseteq \mathbb{R}$ non vuoto e sup limitato. Costruiamo il sup mediante un algoritmo.

$$\sup E = \mu = n, a_1, a_2, a_3, \cdots, a_k, \cdots$$

Per ogni $x \in E$ scriveremo $n_x, a(x)_1, a(x)_2, \cdots$. E è non-vuoto e limitato sup, per cui

$$\{n_x \mid x \in E\}$$

è un insieme di numeri in $\mathbb Z$ limitato superiormente. Sia

$$N = \max\{n_x \colon x \in E\}$$

Prendiamo ora tutti gli insiemi

$$E_0 = \{x \in E \mid n_x = N\} \neq \emptyset$$

Poniamo $a_1 = \max\{a(x)_1 \mid x \in E_0\}$ Abbiamo quindi

$$E_1 = \{x \in E_0 \mid a(x)_1 = a_1\} \neq \emptyset$$

Poniamo ora $a_2 = \max\{a(x)_2 \mid x \in E_1\}$. Con lo stesso metodo troviamo a_3, a_4, \dots , ossia

$$a_k = \max\{a(x)_k \mid x \in E_{k-1}\}$$
 $a_{k+1} = \max\{a(x)_{k+1} \mid x \in E_k\}$

Trovando quindi

$$\mu = N, a_1, a_2, \cdots$$

Dico che μ è un maggiorante di E, e che se $z < \mu$, z non è maggiorante. Sia allora $\overline{x} \in E$, quindi

$$\overline{x} = n_{\overline{x}}, a(\overline{x})_1, a(\overline{x})_2, \cdots$$

Allora $n_{\overline{x}} \leq N$ se $n_{\overline{x}} < N$. $\overline{x} < \mu$. Gli elementi in E_0 sono al massimo a_1 . Se $n_{\overline{x}} = N$ e $n_{\overline{x}} \in E_0$ e $a_1(\overline{x}) = a_1$.

Se $a(\overline{x})_1 < a_1 \implies \overline{x} < \mu$.

Se invece $a(\overline{x})_1 = a_1 \implies \overline{x} \in E_1 \in a(\overline{x})_2 \le a_2$

Fino che ad un certo punto non trovo un decimale diverso.

Iterando, se $\exists k$ tale che $a(\overline{x})_k < a_k \implies \overline{x} < \mu$. Se $\forall k, a(\overline{x})_k = a_k$, allora $\overline{x} = \mu$ e μ è il max di E. Questo procedimento non dimostra che $\mu \in E$.

Mostriamo ora che è il più piccolo dei maggioranti. Sia

$$z = n_z, a(z)_1, a(z)_2, \dots < \mu$$

Deve quindi succedere che o $n_z < N$, e allora $\forall x \in E_0 \neq \emptyset, z < x$, oppure $n_z = N$ e $a(z)_j = a_j$ per tutte le j < k ma $a(z)_k < a_k$. Allora $\mu \sup E$.

7.3 Conseguenze della prorpietà del sup

Le conseguenze della prorpietà del sup sono:

- proprietà archimedea: $\forall x \in \mathbb{R}, \forall a > 0, \exists n \in \mathbb{N} \mid na > x$ (in realtà vale anche in \mathbb{Q}).
- densità dei razionali nel reali: $\forall x, y \in \mathbb{R}$ dove x < y, esiste $r \in \mathbb{Q} \mid x < r < y$.

Teorema Esistenza delle radici nei reali

$$\forall y > 0, \forall n \in \mathbb{N}, n \ge 1, \exists_{=1} x > 0 \mid x^n = y$$

Proof

Sia

$$E = \{ z \in \mathbb{R} \,|\, z > 0 \land z^n \le y \}$$

Dobbiamo quindi mostrare che E non è vuoto, ed è limitato superiormente. Definiamo $x=\sup E$ e mostriamo che $x^n=y$.

- Non vuoto: se $y \ge 1$, basta scegliere x = 1 in quanto $x^n = 1 \le y$. Altrimenti, se y < 1, poniamo x = y e notiamo che, perché y < 1, allora $y^n < y$, e quindi $y \in E$.
- Limitato superiormente: E è limitato superiormente, infatti 1+y è un maggiorante di E. Se $z \ge (1+y)$, poiché la funzione $t \to t^2$ è crescente per t > 0, si ha $z^n \ge (1+y)^n > (1+y) > y \implies z \notin E$. Sia $x = \sup E$. Dico che $x^n = y$. Dimostro che se suppongo $x^n > y$ allora per k grande

$$\left(x - \frac{1}{k}\right)^n > y$$

e quindi $x - \frac{1}{k}$ è ancora un maggiorante di E, contro l'ipotesi impossibile perché x, che è il sup E, è il più piccolo maggiorante. Invece, se $x^n < y$ allora per k grande

$$\left(x + \frac{1}{k}\right)^n < y$$

allora $x + \frac{1}{k} \in E$ ed è più grande di x, e x non è quindi un maggiorante (assurdo). Visto che x non può essere nè più grande nè più piccolo, $x^n = y$.

• Unicità: notiamo che se $0 < t_1 < t_2 \implies t_1^n < t_2^n$

Possiamo anche mettere $z \geq 0$ così dimostrare che $E \neq \emptyset$ è più facile.

Esercizio: dimostrazione per induzione che $0 < y < 1 \implies y^n < y$, per n > 1. (Che abbiamo usato nell'ultima dimostrazione).

7.4 Esercizi sup

Esercizio

Let

$$E = \left\{ x \in \mathbb{R} \,|\, \frac{1}{2} \le x < 5 \right\}$$

and the sequence

$$F = \{x = x_n \mid x_n = \frac{n+1}{n+2}, \quad n \in \mathbb{N}^*\}$$

Trova inf, sup, min, max (se esistono) di $E, F, E \cup F$ e $E \cap F$.

- E è limitato superiormente e inferiormente. Il minimo è $\frac{1}{2}$, mentre 5 è un maggiorante, è il più piccolo dei maggioranti quindi sup E=5, ma non vi è un massimo.
- F è limitato superiormente in quanto

$$x_n = \frac{n+1}{n+2} < \frac{n+2}{n+2} = 1$$

È limitato inferiormente perché $x_n > 0$. Per verificare sup e inf, è comodo riscrivere

$$x_n = 1 - \frac{1}{n+2}$$

Il temrine n+2 cresce con n, quindi $\frac{1}{n+2}$ decresce al crescere di n e quindi x_n cresce approcciando 1. Allora con n=1 il termine assume il valore più piccolo, ossia $\frac{2}{3}$, quindi il minimo di F. Allora siccome ci avviciamo arbitrariamente a 1, è lecito ipotizzare sup F=1.

Il massimo di F non esiste. Rimane da far vedere che se z<1 allora z non è maggiorante di F cioè

$$x_n - z = (1 - z) - \frac{1}{n+2} > 0$$

- purché $\frac{1}{n+2} < 1-z$ cioè $n > \frac{1}{1-z}-2$. Quindi z non è maggiorante e sup E=1.

 TODO: esercizio verificare che sup $(E \cup F) = \max\{\sup E, \sup F\}$ e analogamente inf con il min. Mostrare con un esempio che non c'è qualcosa di analogo per l'intersezione.
- Esercizio: posto -E = {-x | x ∈ E} mostrare che sup -E = inf E e inf -E = sup E.
 Esercizio: Posto E + F = {x + y | x ∈ E, y ∈ F} cosa si può dire di sup E + F e inf E + F.

Dimostrare che il max esiste se e solo se sup E è finito e appartiene a E. Analogamente per il min.