

Universidade Federal de Ouro Preto - UFOP

Disciplina: BCC326 - Processamento Digital de Imagens

Professor: Guillermo Cámara-Chávez

Aluno: Crico Silces No. 21.1.411

A cola não será tolerada. Se alguém for pego colando, será reprovado com Zero. É considerado cola: olhar/copiar da prova de outro ou deixar outro aluno olhar sua prova. A interpretação faz parte da avaliação. Não são permitidas perguntas ou qualquer outro tipo de comentários durante a prova

1ra. Avaliação

(2 pts) A função convolve do módulo signal da biblioteca SciPy permite calcular a convolução de uma matriz bidimensional com uma máscara. Essa função oferece a opção de definir o tamanho da matriz resultante através do parâmetro mode ('full' ou 'same'). No entanto, ela não possui um parâmetro para o tratamento das bordas da imagem através de padding, como na função convolve do módulo ndimage.

Abaixo, a sintaxe da função convolve do módulo signal:

convolve (in1, in2, mode='full', method='auto')

Implemente a função *imconv(img, mask, mode)* que utiliza a função *convolve* do módulo *signal*, permitindo o controle das opções de *padding*. Considere apenas as opções de preencher as bordas com zeros ou replicar as bordas.

		212.025					
2	1	6	4	2	1	1	9
1	5	2	8	7	6	4	4
3	2	5	7	9	9	1	2
2	9	8	4	2	7	7	6
3	2	4	2	1	2	3	2
0	5	7	5	5	2	2	7
8	5	2	2	6	2	3	2
2	2	9	8	5	9	1	6

1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1
1	1	1	1	1

máscara m de 5x5

matriz F

					1					1			
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	2	1	6	4	2	1	1	9	0	0	
	0	0	1	5	2	8	7	6	4	4	0	0	
164	0	0	3	2	5	7	9	9	1	2	30	0	
	Ó	0	2	9	8	4	2	7	7	6	0	0	
	0	0	3	2	4	12	1	2	3	2	0	0	
	0	0	0	5	7	5	5	2	2	7	0	0	
	0	0	8	5	2	P	6	2	3	2	0	0	
~	0	0	2	2	9	18	5	9	1	6	0	0	
-	0	0	0	0	0	0	0	0	0	0	0	0	
4 6	0	0	0	0	0	0	0	0	0	0	0	0	

			_		_						_
2	2	2	1	6	4	2	1	1	9	9	9
2	2	2	1	6	4	2	1	1	9	9	9
2	2	2	1	6	4	2	1	1	9	9	9
1	1	1	5	2	8	7	6	4	4	4	4
3	3	3	2	5	7	9	9	1	2	2	2
2	2	2	9	8	4	2	7	7	6	6	6
3	3	3	2	4	2	1	2	3	2	2	2
0	0	0	5	7	5	5	2	2	7	7	7
8	8	8	5	2	2	6	2	3	2	2	2
2	2	2	2	9	8	5	9	1	6	6	6
2	2	2	2	9	8	5	9	1	6	6	6
2	2	2	2	9	8	5	9	1	6	6	6

2. (2 pts) Observe a imagem abaixo. Conceba uma forma de eliminar a grade do formulário sem alterar a forma dos caracteres nela gravados. A grade e os caracteres são da cor preta.

E	X	Е	R	С	Ī	С	I	0	S
	1			-	•				_

3. (2 pts) Calcule a média (a través de uma operação de convolução) e a mediana do seguinte sinal. Use uma vizinhança de 1×3 . Todos os cálculos devem ser feitos na prova. Utilize um padding com simetria circular.

4. (2 pt) Explique em que consiste um filtro bilateral. Faça um desenho para facilitar a explicação

5. (2 pts) Dada a seguinte imagem com 5 níveis de cinza, calcule imagem equalizada

3	1	1	1
0	2	4	2
0	2	4	3
1	3	2	1