

IIC1253 — Matemáticas Discretas — 1' 2022

TAREA 4

Publicación: Viernes 13 de mayo.

Entrega: Jueves 19 de mayo hasta las 23:59 horas.

Indicaciones

• Debe entregar una solución para cada pregunta (sin importar si esta en blanco).

- Cada solución debe estar escrita en L⁴TEX. No se aceptarán tareas escritas a mano ni en otro sistema de composición de texto.
- Responda cada pregunta en una hoja separada y ponga su nombre y sección.
- Debe entregar una copia digital por el buzón del curso, antes de la fecha/hora de entrega.
- Se penalizará con 1 punto en la nota final de la tarea por cada regla que no se cumpla.
- La tarea es individual.

Pregunta 1

Sean $f_1: A \to B$ y $f_2: B \to C$ dos funciones cualquiera desde los conjuntos A a B y B a C respectivamente, con A, B y C distintos de vacío.

- 1. Demuestre que si $f_1 \circ f_2$ es sobreyectiva, entonces existe $i \in \{1, 2\}$ tal que f_i es sobreyectiva.
- 2. Demuestre que si $f_1 \circ f_2$ es inyectiva, entonces existe $i \in \{1,2\}$ tal que f_i es inyectiva.

Pregunta 2

Sea $n \in \mathbb{N}$. Para $A \subseteq \{0, ..., n\}$, decimos que A es un intervalo en $\{0, ..., n\}$ si existen $a, b \in A$ tal que:

$$A = \{c \in \{0, ..., n\} \mid a \le c \le b\}$$

y lo denotamos por [a, b]. Por otro lado, para $a, b \in \{0, ..., n\}$ definimos el intervalo absoluto entre a y b como

$$[a, b] := [\min(\{a, b\}), \max(\{a, b\})].$$

Sea $S \subseteq \{0,...,n\}$ un conjunto distinto de vacío. Considere la relación $\sim_S \subseteq \{0,...,n\} \times \{0,...,n\}$ tal que para todo $a,b \in \{0,...,n\}$, $a \sim_S b$ si, y solo si,

$$\llbracket a,b \rrbracket \cap S \neq \varnothing \rightarrow \llbracket a,b \rrbracket \subseteq S.$$

Por ejemplo, tomando n=20, para $S=\{1,4,5,6,7,10,11,15\}$ se cumple que 7 \sim_S 5 y 12 \sim_S 13 pero 3 $\not\sim_S$ 1. Demuestre que para un n cualquiera:

- 1. Para todo $S \subseteq \{0,...,n\}, \sim_S$ es una relación de equivalencia sobre $\{0,...,n\}$.
- 2. Para todo $S \subseteq \{0,...,n\}$ y $c \in \{0,...,n\}$, la clase de equivalencia $[c]_{\sim_S}$ es un intervalo en $\{0,...,n\}$.

Evaluación y puntajes de la tarea

Cada **item** de cada pregunta se evaluará con un puntaje de:

- 0 (respuesta incorrecta)
- 2 (con errores importantes)
- 3 (con errores menores)
- 4 (correcta).

Todas las preguntas tienen la misma ponderación en la nota final.