) t 1		
$ au_1^{\#2}$	0	0	0	$-\frac{i}{k(1+2k^2)(r_1+r_5)}$	$\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$	0	$\frac{6 k^2 (r_1 + r_5) + t_1}{(1 + 2 k^2)^2 (r_1 + r_5) t_1}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{1}{\sqrt{2} (k^2 + 2 k^4) (r_1 + r_5)}$	$\frac{6 k^2 (r_1 + r_5) + t_1}{2 (k + 2 k^3)^2 (r_1 + r_5) t_1}$	0	$-\frac{i(6k^2(r_1+r_5)+t_1)}{\sqrt{2}k(1+2k^2)^2(r_1+r_5)t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{1}{k^2 \left(r_1 + r_5\right)}$	$-\frac{1}{\sqrt{2} \; (\kappa^2 + 2 k^4) (r_1 + r_5)}$	0	$\frac{i}{k(1+2k^2)(r_1+r_5)}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#_2}$		$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_1^{\#1}{}_+\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\tau_{1}^{\#1} + \alpha \beta \frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha\beta}$	$\sigma_{1^-}^{\#1} +^\alpha$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_1^{\#2} + \alpha$

Source constraints	
SO(3) irreps	#
$\sigma_{0}^{\#1} == 0$	1
$\tau_{0^{+}}^{\#1} == 0$	1
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 \bar{\imath} k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 \bar{i} k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5
Total #:	17

Lagrangian density

 $\frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\alpha\beta\theta} + \frac{2}{3}r_{1}\partial_{\theta}\omega_{\alpha\beta}^{}\partial_{\kappa}\omega^{\theta\alpha\beta} - r_{5}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial_{\kappa}\omega^{\theta\kappa\lambda} +$

 $r_5\,\partial_\theta\omega_\lambda^{\ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda}-r_5\,\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\kappa\lambda\theta}+2\,r_5\,\partial_\theta\omega_\lambda^{\ \alpha}_{\ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta}-$

 $\frac{1}{2}\,t_1\,\partial^\alpha f_{\,\theta \kappa}\,\partial^\kappa f_{\,\alpha}^{\ \ \theta} - \frac{1}{2}\,t_1\,\partial^\alpha f_{\,\kappa\theta}\,\partial^\kappa f_{\,\alpha}^{\ \ \theta} - \frac{1}{2}\,t_1\,\partial^\alpha f^{\,\lambda}_{\ \ \kappa}\,\partial^\kappa f_{\,\alpha\lambda} +$

$\sigma_{2^{-}}^{\#1}{}_{lphaeta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$
$\tau_{2}^{\#1}_{\alpha\beta}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$. –	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	0
	$\sigma_{2}^{\#1} + ^{lphaeta}$	$\tau_{2}^{#1} + \alpha \beta$	$\sigma_{2^{-}}^{\#1} +^{lphaeta\chi}$

0

0

0

0

 $\tau_0^{\#2}$

 $\sigma_{0}^{\#1}$ $\tau_{0}^{\#1}$

0

0

0

0

 $\sigma_{0}^{#1} + \tau_{0}^{#1} + \tau_{0}^{#1} + \tau_{0}^{#1} + \tau_{0}^{#2} + \tau_{0}^{*2} + \tau_{0}^{*2} + \tau_{0}^{*2} + \tau_{0}^{*2} + \tau_{0}^{*2} + \tau_{$

0

0

0

0

_			
$\omega_{2^{-}}^{\#1}{}_{\alpha\beta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$
$f_{2}^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_{2}^{\#1}{}_{\alpha\beta}\; f_{2}^{\#1}{}_{\alpha\beta}$	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
,	$\omega_{2}^{\#1} + ^{lphaeta}$	$f_2^{#1} + \alpha \beta$	$\omega_{2}^{#1} +^{lphaeta\chi}$

- 1

0

0

0

 $\sigma_{0}^{\#1}$ \dagger

		ω_1^{\sharp}	$\omega_1^{\#2}$	f#]
$\omega_{0^{\text{-}}}^{\#1}$	0	0	0	<i>-t</i> ₁
$f_0^{\#2}$	0	0	0	0
$f_{0}^{\#1}$	0	0	0	0
$\omega_{0}^{\#1}$	0	0	0	0
	$\omega_{0}^{\#1}$ †	$f_{0}^{\#1}$ †	$f_0^{#2} \uparrow$	$\omega_{0}^{\#1}$ \dagger

	Massive particle			
? $J^P = 2^-$	Pole residue:	$-\frac{1}{r_1} > 0$		
?	Polarisations:	5		
	Square mass:	$-\frac{t_1}{2r_1} > 0$		
; ?	Spin:	2		
	Parity:	Odd		

 $\frac{1}{3}t_{1}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{1}{3}t_{1}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{2}{3}t_{1}\;\partial^{\alpha}f_{\;\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{1}{3}t_{1}\;\partial_{\kappa}f^{\lambda}_{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+$

 $2t_1\ \omega_{ik\theta}\ \partial^k f^{i\theta} - \tfrac{1}{3}t_1\ \omega_{i\alpha}^{}\ \partial^k f^{\prime}_{} - \tfrac{1}{3}t_1\ \omega_{i\lambda}^{}\ \partial^k f^{\prime}_{} + \tfrac{1}{2}t_1\ \partial^\alpha f^\lambda_{}\ \partial^k f_{\lambda\alpha} +$

 $\frac{2}{3} r_1 \partial_\kappa \omega^{\alpha\beta\theta} \partial^\kappa \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_\kappa \omega^{\theta\alpha\beta} \partial^\kappa \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^\beta \omega_{\alpha}^{\ \alpha\lambda} \partial_\lambda \omega_{\alpha\beta}^{\ \prime} -$

 $\frac{1}{2}t_1\partial_\kappa f_{\theta}^{\ \lambda}\partial^\kappa f_{\lambda}^{\ \theta} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\ \theta}\partial^\kappa f_{\lambda}^{\ \theta} - \frac{1}{3}t_1\partial^\alpha f^{\lambda}_{\ \alpha}\partial^\kappa f_{\lambda\kappa} +$

 $\frac{8}{3}r_1\partial^{\beta}\omega_{\lambda}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime} + r_5\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa} - r_5\partial_{\theta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}$

Added source term: $f^{\alpha\beta} \, \iota_{\alpha\beta} + \omega^{\alpha\beta\chi} \, \sigma_{\alpha\beta\chi}$

Unitarity conditions $r_1 < 0 \&\& r_5 < -r_1 \&\& t_1 >$

					$\frac{1}{3}$ \bar{I}		
$f_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	8 <u>1</u> 3	0	$-\frac{1}{3}ikt_1 \left -\frac{1}{3}i\sqrt{2}kt_1 \right $
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) + \frac{t_1}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$-rac{1}{3}ar{\it{l}}\it{k}t_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}_{+\alpha\beta}\ f_{1}^{\#1}_{+\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1+}^{\#1} + \alpha \beta k^2 (2 r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
	βχ	$\alpha \beta$	αβ	$+^{\alpha}$	$^{\dagger_{\alpha}}$	σ	σ
	$\omega_1^{\#1} + c$	$\omega_1^{#2} + \alpha \beta$	$f_1^{\#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} + \alpha$

 $\sqrt{2} kt_1$

*ikt*133

0

0

0

 $\frac{2k^2t_1}{3}$

0