About equality on infinite terms

Remark We assume the following (not formally shown yet):

Any $t \in \mathtt{GTC}$ has a unique normal form $\mathtt{Lim}(t)$ (limit of safe-reductions).

Purpose of this article We want to characterlize the limit equivalence of terms in GTC, which means two terms have the same limit: Lim(t) = Lim(u). More formally, we try to coinductively define a binary relation \approx that satisfies:

$$t \approx u \iff \operatorname{Lim}(t) = \operatorname{Lim}(u).$$

A 1-context is a finite context with several number of distinguished holes [-].

Definition 0.1 (0-context)
$$C := x \mid \lambda x.C \mid CC \mid 0 \mid S(C) \mid cond(C, [-])$$

We write C[-,-,-] if C has three holes, and write C[t,u,v] for the resulting term obtained by filling terms t,u,v for the holes.

A term can be divided into the 0-context part and the terms part filling the holes of the 0-context, namely the following lemma holds.

Lemma 0.2 For any $t \in \mathbb{A}$, there uniquely exists (C, \vec{u}) such that $t = C[\vec{u}]$.

For a binary relation R on terms, we write $(t_1, \ldots, t_n) R(u_1, \ldots, u_n)$ if $t_i R u_i$ holds for all i.

Let NF₀ be the set of 0-safe normal forms. Note that if both $C_1[\vec{t_1}]$ and $C_2[\vec{t_2}]$ are 0-safe normal forms of t, then $C_1 = C_2$.

Definition 0.3 (0-bisimulation) A binary relation R on Δ is said to be a θ -bisimulation if it satisfies the following:

$$tRu \text{ and } t\mapsto_{0,\mathtt{safe}}^* C_t[\vec{t}] \in \mathtt{NF_0} \text{ and } u\mapsto_{0,\mathtt{safe}}^* C_u[\vec{u}] \in \mathtt{NF_0}$$
 implies $C_t = C_u \text{ and } \vec{t}R\vec{u}.$

We define \approx by the largest 0-bisimulation.

Lemma 0.4 \approx is an equivalence relation.

Proof Reflexivity for \approx holds by $=\subseteq\approx$, since = is a 0-bisimulation. Symmetricty holds by $\approx^{-1}\subseteq\approx$, since \approx^{-1} is a 0-bisimulation. Transitivity holds by $(\approx\circ\approx)\subseteq\approx$, since $\approx\circ\approx$ is a 0-bisimulation.

Finally we show the relation \approx characterizes the limit equivalence.

Proposition 0.5 $t \approx u$ and Lim(t) = Lim(u) are equivalent.

Proof (\Leftarrow): Let R be the limit equivalence relation, namely $tRu \Leftrightarrow \mathtt{Lim}(t) = \mathtt{Lim}(u)$. Then R is a 0-bisimulation. Hence $\mathtt{Lim}(t) = \mathtt{Lim}(u)$ implies $t \approx u$ by $R \subseteq \approx$.

 (\Rightarrow) : We show this direction by proof by contradiction. Define

$$X = \{(t, u) \mid t \approx u \text{ and } \operatorname{Lim}(t) \neq \operatorname{Lim}(u) \}.$$

Assume that $X \neq \emptyset$ (there is a counter example of the (\Rightarrow) -direction). For $(t,u) \in X$, we define the difference depth $\sharp(t,u)$ by $\min\{|\pi| \mid (\operatorname{Lim}(t))_{\pi} \neq (\operatorname{Lim}(u))_{\pi}\}$. Fix a $(t_0,u_0) \in X$ that has the least difference depth. Take 0-safe normal forms $C_t[\vec{t'}]$ and $C_u[\vec{u'}]$ of t_0 and u_0 , respectively. Then, by $t_0 \approx u_0$, we have $C_t = C_u$ and $\vec{t'} \approx \vec{u'}$. Also we have $C_t[\operatorname{Lim}(t')] = \operatorname{Lim}(t_0)$ and $C_u[\operatorname{Lim}(t')] = \operatorname{Lim}(u_0)$. By $\operatorname{Lim}(t_0) \neq \operatorname{Lim}(u_0)$ and $C_t = C_t$, there is t_t such that $\operatorname{Lim}(t'_t) \neq \operatorname{Lim}(u'_t)$. Hence we have $(t'_t, u'_t) \in X$. However we also have t_t t_t from the root of t_t , there must be at least one cond on the path. This contradicts the leastness of t_t t_t from the root of t_t . Therefore we have t_t t_t from the root of t_t there must be at least one cond on the path. This contradicts the leastness of t_t from the root of t_t