

İçerik

- Sayı sistemleri
 - Binary, Octal, Decimal, Hexadecimal
- Operatörler
 - · Aritmetik operatörler
 - Mantıksal (Logic) operatörler
 - Bitwise operatörler

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

İkili (Binary) Sayı Sistemi

- İkili sayı sisteminde sadece 0 ve 1 rakamları kullanılır.
 - İki sayısı «10» şeklinde ifade edilir.
 - Ondalık sayı sisteminde olduğu gibi toplamın iki olması durumunda bir sonraki haneye aktarılır.
- İkili sayı sistemindeki sayıların yazımı **genellikle** ondalık sisteme göre daha uzundur.
 - Bunun temel nedeni ikilik sistemde her hanenin onluk sisteme göre daha az bilgi ifade edebilmesidir.
 - Bundan dolayı ikilik sistemdeki hanelere bit adı verilir.

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

1

Sekizlik (Octal) Sayı Sistemi

- Sekizlik sayı sisteminde sayılar sadece 8 rakam kullanılarak ifade edilir.
 - 0, 1, 2, 3, 4, 5, 6 ve 7
- Sekizlik sayı sisteminde her hane ikilik sayı sistemindeki 3-biti ifade eder. (2³ = 8)
- Sekizli sayı sistemi 12-bit, 24-bit ve 36-bit yapısındaki .eşitli işlemcilerde kullanılmıştır.
 - Örnek: PDP-8, ICL 1900 ve IBM mainframe

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

4

29.1

Ondalık (Decimal) Sayı Sistemi

- Ondalık sayı sistemi
 - · Hindu Arabic, Arabic olarak ta bilinir.
 - 10 farklı rakam kullanılır.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8 ve 9
- Kesirli sayıların gösterimi için nokta işareti kullanılır.
- Ondalık sayı sisteminde 543.21 sayısı
 - $(5 \times 10^2) + (4 \times 10^1) + (3 \times 10^0) + (2 \times 10^{-1}) + (1 \times 10^{-2})$ şeklinde değerlendirilir.

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

Onaltılık (Hexadecimal) Sayı Sistemi

- Onaltılık sayı sisteminde sayıların ifade edilmesi için 16 değere ihtiyaç vardır.
 - Bunun için 10 rakam ve 6 harften yararlanılır.
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - A, B, C, D, E ve F
- Hanelerin kullanımı ondalık sayı sistemi ile aynıdır.
- Ondalık sayı sisteminde 256,058 sayısı
 - İkilik sayı sisteminde «11 1110 1000 0011 1010»
 - Sekizlik sayı sisteminde «764072»
 - Onaltılık sayı sisteminde «3E83A» şeklinde yazılır.

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

Sayı Sistemleri Arasında Geçiş

- Matematiksel olarak sayı sistemleri arasındaki geçiş çarpma ve bölme işlemleri ile yapılır.
 - Ondalık sayı sisteminde başka sayı sistemine geçerken bölme
 - Diğer sayı sistemlerinden Ondalık sisteme geçerken çarpma

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

Sayı Sistemleri Arasında Geçiş

- İkilik, sekizlik ve onaltılık sayı sistemleri arasındaki geçişler daha pratik şekillerde yapılabilir.
- Sekizlik sistemdeki her hane, ikilik sistemdeki üç haneye karşılık gelir.
 - 1 000 010 111 100 011
 - 173
- Onaltılık sistemdeki her hane, ikilik sistemde dört haneye karşılık gelir.
 - 1000 0101 1110 0011
 - A09C

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

8

Aritmetik Operatörler

- Toplama (+)
- Çıkarma ()
- Çarpma (*)
- Bölme (/)
- Mod (mod)

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

2

İlişkisel Operatörler

- Büyüktür (>)
- Küçüktür (<)
- Büyük eşit (>=)
- Küçük eşit (<=)
- Eşit (=)
- Eğit değil (≠)

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

Mantıksal Operatörler

- Mantiksal AND (AND)
- Mantiksal OR (OR)
- Mantiksal Negation (NOT)

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

11

Bitwise Operatörler

- AND (&)
- OR (|)
- Exclusive OR (XOR)
- Shift
 - Sol (<<)
 - Sağ (>>)
- Rotate
 - Sol / Sağ

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

12

AND Operatörü

 AND operatörü her iki bit değerinin 1 olması durumunda 1 değerini sonuca taşır.

Α	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- A & B = ?
 - 0000 1100

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

13

OR Operatörü

Α	В	A B
0	0	0
0	1	1
1	0	1
1	1	1

- OR operatörü iki bit değerinden birinin 1 olması durumunda 1 değerini sonuca taşır.
- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- A | B = ?
 - 0011 1101

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

14

XOR Operatörü

- XOR operatörü her iki bit değerinin aynı olması durumunda 0, farklı olması durumunda 1 üretir.
- A sayısının 60, B sayısının 13 olması durumunda
 - A = 0011 1100
 - B = 0000 1101
- A XOR B = ?
 - 0011 0001

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

0

0

0

1

A XOR B

0

15

29.09.2018

SHIFT Operatörü

- A sayısı halen 60 değerine sahip ©
 - 0011 1100
- Sola doğru shift işlemi <u>iki kere</u> gerçekleştirildiğinde
 - A << 2
 - · 240 1111 0000
- Sağa doğru shift işlemi üç kere gerçekleştirildiğinde
 - A >> 3
 - 7 0000 0111

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

16

Bilgisayarda Sayı Sistemi – I

- Günümüz bilgisayarları ikili sayı sistemini kullanır.
- Dolayısıyla bilgisayarda işlem görecek veya saklanacak tüm bilgiler "bit"ler ile ifade edilir.
 - tam sayılar
 - kesirli sayılar
 - · harfler /karakter
 - · resimler, videolar vb.

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

18

Bilgisayarda Sayı Sistemi — II • Neden ondalık sayı sistemi değil ? • ENIAC ondalık sistemi kullanıyordu! • Daha fazla sinyal seviyesi ihtiyacı hassasiyet problemi yaratır. • Toplama, çarpma vb. işlemlerin gerçekleştirilmesi zorlaşır. • İkili sistemde bilginin aktarımı daha kolay! • parazit, gürültülere karşı daha dayanıklı 3.3V 2.8V 0.5V 0.0V **Tildiz Teknik Oniversitesi - Bilgisayar Mühendisliği Bölümü

Bilginin Eşlenmesi – I

- Herhangi bir veri tipinin bellekte tutulması için bir eşleme (mapping) işlemi yapılmalı
 - Aynı veri tipi için farklı eşleme yapıları bulunabilir.
 - Örnek:
 - ASCI American Standard Code for Information Interchange
 - EBCDIC Extended Binary Coded Decimal Interchange Code
 - UTF Unicode Transformation Format

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

29.09.2018

1911

20

Bilginin Eşlenmesi – II

1. Sistem	2. Sistem
101	000
011	001
111	010
000	011
110	100
010	101
001	110
100	111
	101 011 111 000 110 010

- Örneğin 0-7 arasındaki sayıları temsil edecek bir eşleme oluşturulması
- Hangi sistem daha iyi ?
 - Test etmek için aritmetik işlemleri deneyebilirsiniz

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

29.09.2018

21

Bilginin Eşlenmesi – III

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char	Decimal	Hex	Char
0	0	(NULL)	32	20	[SPACE]	64	40	@	96	60	N - W - W
1	1	(START OF HEADING)	33	21	1	65	41	A	97	61	a
2	2	[START OF TEXT]	34	22		66	42	В	98	62	b
3	3	[END OF TEXT]	35	23	#	67	43	C	99	63	C
4	4	(END OF TRANSMISSION)	36	24	\$	68	44	D	100	64	d
5	5	[ENQUIRY]	37	25	%	69	45	E	101	65	e
6	6	(ACKNOWLEDGE)	38	26	&	70	46	F	102	66	f
7	7	(BELL)	39	27	n - n - n	71	47	G	103	67	q
8	8	[BACKSPACE]	40	28		72	48	H	104	68	h
9	9	[HORIZONTAL TAB]	41	29	1)// //	73	49	10.00	105	69	1
10	A	(LINE FEED)	42	2A	*	74	4A	1	106	6A	
11	В	IVERTICAL TABI	43	2B	+	75	4B	K	107	6B	k
12	C	(FORM FEED)	44	2C		76	4C	L. T	108	6C	
13	D	[CARRIAGE RETURN]	45	2D		77	4D	M	109	6D	m
14	E /	ISHIFT OUTI	46	2E	11.	78	4E	N	110	6E	7 n// //
15	F/	(SHIFT IN)	47	2F	11	79	4F	0	111	6F	0
16	10	[DATA LINK ESCAPE]	48	30	0	80	50	P	112	70	p
17	11	IDEVICE CONTROL 11	49	31	1	81	51	0	113	71	q
18	12	IDEVICE CONTROL 21	50	32	2	82	52	R	114	72	-
19	13	[DEVICE CONTROL 3]	51	33	3	83	53	S	115	73	S
20	14	IDEVICE CONTROL 41	52	34	4	84	54	T	116	74	t
21	15	INEGATIVE ACKNOWLEDGE	53	35	5	85	55	U	117	75	u
22	16	(SYNCHRONOUS IDLE)	54	36	6	86	56	V	118	76	v
23	17	IENG OF TRANS, BLOCKI	55	37	7	87	57	w	119	77	w
24	18	[CANCEL]	56	38	8	88	58	X	120	78	×
25	19	(END OF MEDIUM)	57	39	9	89	59	Y	121	79	v
26	1A	(SUBSTITUTE)	58	3A		90	5A	Z	122	7A	z
27	18	(ESCAPE)	59	3B	;	91	5B	1	123	7B	1
28	10	(FILE SEPARATOR)	60	3C	<	92	5C	1	124	7C	
29	10	[GROUP SEPARATOR]	61	3D	=	93	5D	19 1	125	7D	1
30	1E	[RECORD SEPARATOR]	62	3E	>	94	5E	^	126	7E	~~// //
	160 1	CHANGE COLORS AND DEL	60	25		0.0	4				

- Küçük ve büyük harfler
- Noktalama işaretleri
- Matematiksel ifadeler
- Rakamlar
- Kontrol karakterleri

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

22

Bilginin Eşlenmesi – IV

Negatif Sayılar

- · 1's complement
 - En yüksek anlamlı bit (Most Significant Bit, MSB) işaret (sign) biti olarak kullanılır.
 - 0 : pozitif sayı
 - 1 : negatif sayı
 - Sayının ikilik sistemdeki yazımının her bitin 1'e göre tersi alınır.
 - 11:0000 1011
 - · -11:1111 0100
- · 2's complement
 - 1'e göre ters alma işleminde sıfır için iki farklı değer üretilir. 2'ye göre ters alma işleminde ise bu problem yoktur.
 - 1'e göre ters alma işleminden sonra sayıya 1 eklenir.

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

23

Bilginin Eşlenmesi – V

- Kesirli sayılar
 - IEEE Standard 754Floating Point Numbers
 - Single/Double precision
- Her iki formatta kullanılan yöntem benzerdir.
 - Kesirli sayının ifade edilmesi için kullanılacak 32-bit veya 64-bit uzunluğundaki alan **Sign**, **Exponent** ve **Mantissa** olarak adlandırılan 3 parçaya bölünür.

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

24

Bilginin Eşlenmesi – V

- İşaret (Sign) Bit
 - 0 pozitif bir sayıyı, 1 ise negatif bir sayıyı ifade eder.
- Üs (Exponent) Bit'leri
 - Hem pozitfi hem de negatif üs bilgisinin ifade edilebilmesi için biased notation adı verilen yöntem kullanılır. IEEE standardında single precision için bu değer 127, double precision için ise 1023'tür.
- Ondalıklı (Mantissa) bitler
 - · Normalizasyon yapılmış olarak saklanır.
 - İkili sistemde yapılan normalizasyon bir bit kazandıracaktır!

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

25

Bit, Byte, Word, vb.

Yıldız Teknik Universitesi - Bilgisayar Mühendisliği Bölümü

1911

26

Bellek Organizasyonu

- İşlemciler aritmetik lojik işlemleri farklı boyutlardaki bilgiler üzerinde gerçekleştirebilir.
 - İşlemcinin tek seferde işleyebildiği bilgi boyutu bit cinsinden ifade edilir.
 - 16-bit, 32-bit, 64-bit
 - Zaman zaman adres yolu ile veri yolu birbirinden farklı boyutta olan işlemcilerde olabilir.
- Günümüzde birçok kişisel bilgisayar 64-bit üzerinde işlem yapar.
 - 32-bit üzerinde işlem yapan bilgisayarların bellek adresleme kapasitesi 4GB ile sınırlıdır.

32-bit words	64-bit words	bytes	addr.
			0000
Addr:			0001
0000			0002
	Addr:		0003
	0000		0004
Addr: 0004			0005
			0006
			0007
			0008
Addr:			0009
8000			0010
	Addr:		0011
	0008		0012
Addr:			0013
0012)12		0014
			0015

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü 29.09.2018

27

Little Endian / Big Endian

- Endian verinin belleğe yerleşiminin nasıl yapılacağını belirler.
- 0x0001020304050607

00	01	02	03	04	05	06	07
a	a+1	a+2	a+3	a+4	a+5	a+6	a+7

BIG ENDIAN

LITTLE ENDIAN

07	06	05	04	03	03	02	01
a	a+1	a+2	a+3	a+4	a+5	a+6	a+7

Yıldız Teknik Üniversitesi - Bilgisayar Mühendisliği Bölümü

28