TheNumbersBook.com 2010

Stewart: # 9.1, 9.5

9.1 Let $K = \mathbb{Q}(\sqrt{-5})$ and let P, Q, R be the ideals defined in Exercise 2 of Chapter 5 (page 124). Let H be the class group. Show that in H we have

$$[P]^2 = [O_K]$$
 $[P][Q] = [O_K]$ $[P][R] = [O_K]$

and hence show that *P*, *Q*, *R* are equivalent.

Let \mathcal{P} be the set of all fractional principal ideals and \mathcal{F} be the group of fractional ideals with group operation defined as [P][Q] = [PQ]. We begin by noting that $O_K = \langle 1 \rangle$ so $O_K \in \mathcal{P}$. Furthermore, any principal ideal is in \mathcal{P} (the constant 1 will trivially translate the ideal into O_K).

Note that $P^2 = \langle 2 \rangle$ so $P^2 \in \mathcal{P}$. Since $O_K \in \mathcal{P}$, O_K and P^2 are equivalent (definition on page 152) and so $[P^2] = [O_K]$. Using the defined group operation, we arrive at our desired result:

$$[O_K] = [P^2]$$
$$= [P][P]$$
$$= [P]^2$$

For PQ, we have that $PQ = \langle 1 + \sqrt{-5} \rangle$ so $PQ \in \mathcal{P}$. Thus, $[PQ] = [O_K]$ and so $[O_K] = [PQ] = [P][Q]$.

Finally, for $PR = \langle 1 - \sqrt{-5} \rangle$, we have $PR \in \mathcal{P}$ so $[PR] = [O_K]$. Thus, $[O_K] = [PR] = [P][R]$.

Finally, we show that P, Q, R are equivalent. From above, we have that $[P]^2 = [P][Q] = [P][R]$. Multiplying the whole expression by [P], we have

$$[P]([P]^2 = [P][Q] = [P][R])$$

 $[P][P]^2 = [P]^2[Q] = [P]^2[R]$
 $[P]^2[P] = [P]^2[Q] = [P]^2[R]$
 $[O_K][P] = [O_K][Q] = [O_K][R]$ (proven above)
 $[O_K P] = [O_K Q] = [O_K R]$ (multiplicative property of \mathcal{H})

Now since P, Q, R are ideals in O_K , we know that $O_KP = P$, $O_KQ = Q$ and $O_KR = R$. Thus, the above equality reduces to

$$[P] = [Q] = [R]$$

which immediately implies that *P*, *Q*, *R* are equivalent.

9.5 Find all squarefree integers d in -10 < d < 10 such that the class number of $\mathbb{Q}(\sqrt{d})$ is 1 (Hint: look up a few theorems!)

The squarefree integers between -10 and 10 are $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6, \pm 7$. By Theorem 9.1, h = 1 iff factorization in O_K is unique.

First, note that -5, -6 have non-unique factorization in O_K by Theorem 4.10. Thus, the class number corresponding to $\mathbb{Q}(\sqrt{-5})$ and $\mathbb{Q}(\sqrt{-6})$ is not 1.

Now by Theorem 4.17 and 4.19, O_K is Euclidean for $d = -1, \pm 2, \pm 3, 5, 6$ and ± 7 . Since Euclidean domains are PID and PID are UFD (this we showed in class), the above values of d have a unique factorization. By Theorem 9.1, their class number is 1.

The remaining value to check is d=1. This corresponds to \mathbb{Q} , whose ring of integers is \mathbb{Z} (verified either by common sense or Theorem 3.2b). \mathbb{Z} is clearly a UFD, so d=1 corresponds h=1 by Theorem 9.1. Thus, the squarefree integers d in -10 < d < 10 that have a class number of 1 are

$$d = \pm 1, \pm 2, \pm 3, 5, 6, \pm 7$$