Name:

Datum:

1.) Die Leistung einer Antenne kann in Blind- und Wirkleistung zerlegt werden. Welcher Leistungsanteil überwiegt im Fernfeld einer Antenne?

Welcher Leistungsanteil überwiegt im Nahfeld einer Antenne?

- 2.) Welche Bedeutung hat der Begriff Reziprozität bei Antennen?
- 3.) Nachfolgend sind die Feldkomponenten des Hertz'schen Dipols angegeben.

$$E_{r} = Z_{F0} \frac{I_{0} \Delta \cos(\vartheta)}{2\pi r^{2}} \left(1 + \frac{1}{j\beta_{0}r}\right) e^{-j\beta r}$$

$$E_{\vartheta} = j Z_{F0} \frac{\beta_{0} I_{0} \Delta \sin(\vartheta)}{4\pi r} \left(1 + \frac{1}{j\beta_{0}r} - \frac{1}{\left(\beta_{0} r\right)^{2}}\right) e^{-j\beta r}$$

$$H_{\varphi} = j \frac{\beta_{0} I_{0} \Delta \sin(\vartheta)}{4\pi r} \left(1 + \frac{1}{j\beta_{0}r}\right) e^{-j\beta r}$$

Gesucht ist der im Fernfeld wirkende Pointingvektor $\underline{S} = \frac{1}{2} (\underline{E} \times \underline{H}^*)$ als Funktion von:

- 4.) Welche Feldkomponenten überwiegen im Nahfeld des Hertz'schen Dipols?
- 5) Ein Satellit auf einer geostationären Bahn 36000 km über der Erdoberfläche strahlt eine Leistung von 50 W aus.

Die Sendeantenne hat einen Gewinn von 17 dB. Die Empfangsstation auf der Erde verwendet eine Parabolantenne mit einem Durchmesser von 2 m. Solche Schüsseln haben einen Gewinn von etwa 2/3 der effektiven Fläche.

Die Übertragungsfrequenz beträgt 4 GHz und die Freiraumdämpfung D_L = - 20 log (λ / 4 π d). Bestimmen Sie die Empfangsleistung P_r in dBm.

6.) Bei idealer Ausrichtung erzeugt ein Sender an einer Antenne, mit dem nachfolgend dargestellten Richtdiagramm, eine Antennenspannung von 8mV.

Auf welchen Wert verändert sich die Antennenspannung, wenn die Antenne um 25° gedreht wird?

7.) Welches Element wird durch folgende S-Parameter beschrieben?

$$S_{11} = 0$$

$$\underline{\mathbf{S}}_{12} = \mathbf{e}^{-\mathrm{j}\,\beta\,\mathbf{1}}$$

$$\underline{S}_{21} = e^{-j \beta 1}$$

$$S_{22} = 0$$

8.) Wie lautet die Definition für den Brechungsindex und welche Bedeutung hat er bei Lichtwellenleitern?

