Assignment 4

Quinn Perfetto, 104026025 60-454 Design and Analysis of Algorithms

April 3, 2017

Question 1. Proof. First we show that $\Pi \in \mathbf{NP}$

Let $\pi \in \Pi$.

As every Π logical expression is a CNF logical expression with exactly three literals, $\pi \in 3SAT$.

Since 3SAT is \mathbf{NP} -complete, there exists a polynomial time nondeterministic algorithm N solving 3SAT.

Now,

 π is a yes-instance of Π $\iff \pi$ is a yes-instance of 3SAT \iff algorithm N outputs a yes on input π

Therefore $\Pi \in \mathbf{NP}$.

Next, we prove that $3SAT\alpha\Pi$.

Let $C = c_1 \wedge c_2 \wedge ... \wedge c_m$ be a CNF logical expression in which each c_i contains exactly three literals, i.e. C is a problem instance of 3SAT. Let $U = \{u_1, u_2, ..., u_n\}$ be the set of variables in C.

For each c_i , $1 \le i \le m$ we shall construct a Π logical expression $c'_i \in \{x_i, y_i, z_i, a_i, b_i, c_i, d_i\}$ such that the Π CNF expression $C' = c'_1 \wedge c'_2 \wedge ... \wedge c'_m$ is satisfiable with exactly 1 literal per clause being assigned a true value if and only if C is satisfiable.

Let $c_j = x_j \vee y_j \vee z_j$. The corresponding c'_j is defined as

$$(\neg x_j \lor a_j \lor b_j) \land (y_j \lor b_j \lor c_j) \land (\neg z_j \land c_j \land d_j)$$

where a_j, b_j, c_j, d_j are newly created literals. Let $U' = U \cup (\bigcup_{j=1}^m \{a_j, b_j, c_j, d_j\})$.

By construction each clause of C' contains exactly three literals.

It is also easily verifiable that $|c'_j| = 3|c_j|$ since each clause in C produces exactly 3 clauses in C'. Additionally, 4 new variables are introduced into U' for each clause in C, i.e. |U'| = 4|U|.

Thus the transformation takes a total of O(3|C|+4|U|) = O(|C|+|U|) operations. I.e. the transformation can be done in polynomial time.

Next we shall show that,

C' is satisfiable if and only if C is is satisfiable

Let $t: U \to \{true, false\}$ be a truth assignment satisfying C. As $C = c_1 \land c_2 \land ... \land c_2$ is true under t, at least one literal in each c_i must evaluate

As $C = c_1 \wedge c_2 \wedge ... \wedge c_2$ is true under t, at least one literal in each c_j must evaluate to true. 7 cases arise: (note that unassigned variables are assumed to be false)

- 1. $t(x_j) = true$. In this case we assign $a_j = true$ and $b_j = true$. We thus have a single literal in each clause of c'_j evaluated to true, and the expression is satisifed.
- 2. $t(y_j) = true$. c'_j is true, and each clause has a single true literal.
- 3. $t(z_j) = true$ We assign $c_j = true$ and thus have a single positive literal in each clause, and the expression is satisifed.
- 4. $t(x_j, y_j) = true$ We assign $a_j = true$ and $d_j = true$.
- 5. $t(x_j, z_j) = true$ We assign $a_j = true$ and $c_j = true$.
- 6. $t(y_j, z_j) = true$ We assign $d_j = true$.
- 7. $t(x_j, y_j, z_j) = true$ See case 4.

In all of the above cases,

C is satisfiable \Rightarrow C' is satisfiable and each clause has a single true literal

Conversely let $t': U \to \{true, false\}$ be a truth assignment satisfying C' such that each clause contains a single true literal.

Suppose in the original 3SAT expression $\exists c_i, x_i = y_i = z_i = false$, i.e. c_i is unsatisfiable. Since t' was assumed to be a valid truth assignment for Π , one of b_i or c_i must be true

(otherwise we have a contradiction). If b_i is true, we have $\neg x$ and b_i both true in the same clause, which contradicts the assumption that t' is a valid truth assignment. Similarly if c_i is true, we have $\neg z$ and c_i belonging to the same clause, a contradiction of the validity of t'. Therefore c_i must be satisifiable.

I.e.,

C' is satisfiable and each clause has a single true literal \Rightarrow C is satisfiable. Thus we have,

C is satisfiable \iff C' is satisfiable and each clause has a single true literal

Hence we have 3SAT α Π .

Thus $\Pi \in \mathbf{NP} \wedge 3\mathrm{SAT}\alpha\Pi$.

Hence $\Pi \in \mathbf{NP}\text{-}\mathbf{Complete}$.