Linear Independence

Objectives

- 1. Define linear independence
- a. Define a basis and what it means visually

Example 1: Are vectors
$$\vec{v_i} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 and $\vec{v_z} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ linearly independent?

We need
$$C_1 \vec{V_1} + C_2 \vec{V_2} = \vec{0}$$

Spen
$$\{\vec{v_i}, \vec{v_z}\}\$$
 $C_1\begin{bmatrix}1\\-1\end{bmatrix} + C_2\begin{bmatrix}-1\\1\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \longrightarrow C_1 - C_2 = 0$
 $C_1 + C_2 = 0$

Since $C_1 = Cz \neq 0$, then $\vec{v_1}$ and $\vec{v_2}$ are linearly dependent.

Example 2: Are vectors
$$\vec{V}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $\vec{V}_2 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ lineary independent?

We need
$$C_1 \overline{V_1} + C_2 \overline{V_2} = \overline{O}$$

$$C_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} C_1 + 3C_2 = 0 \\ C_1 = 0 \end{array}$$

$$\longrightarrow \begin{bmatrix} 1 & 3 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$PREF \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
Unique solution
$$C_1 = C_2 = 0$$

Since $C_1 = (z = 0)$, then $\vec{v_i}$ and $\vec{v_z}$ are linearly independent.

* Linear Independence

For vectors $\overrightarrow{V_1}$, $\overrightarrow{V_2}$, ..., $\overrightarrow{V_K}$. They are linearly independent if and only if the only scalars $c_1, c_2, ..., c_K$ such that $c_1\overrightarrow{V_1}+c_2\overrightarrow{V_2}+...+c_3\overrightarrow{V_3}=\overrightarrow{0}$ are $c_1=c_2=...=c_K=0$.

In other words,
$$\sum_{i=1}^{K} C_i \vec{v_i} = \vec{0}$$
 is only true if $C_i = 0$ for all $i = \{1, 2, ..., K\}$.

Example 3:

Are vectors
$$\vec{V_1} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
, $\vec{V_2} = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$, and $\vec{V_3} = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$ linearly independent?

We need
$$C_1\overrightarrow{V_1} + C_2\overrightarrow{V_2} + C_3\overrightarrow{V_3} = \overrightarrow{O}$$

Spen $\{V_1, V_2, V_3\}$

$$C_{1}\begin{bmatrix}1\\1\\0\end{bmatrix}+C_{2}\begin{bmatrix}-2\\0\\2\end{bmatrix}+C_{3}\begin{bmatrix}0\\-1\\1\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix} \longrightarrow C_{1}-2C_{2}=0$$

$$C_{1}-2C_{2}=0$$

$$C_{1}-2C_{2}=0$$

$$C_{1}-2C_{2}=0$$

$$C_{1}-2C_{2}=0$$

$$\begin{array}{c|ccccc}
 & -2 & 0 & 0 \\
 & 0 & -1 & 0 \\
 & 0 & 2 & 1 & 0
\end{array}$$

Since C1=Cz=Cz=0, then Vi, Vz, and Vz are linearly independent.

Example 4: Using the vectors from Example 3, is $\vec{v}_1, \vec{v}_2, \vec{v}_3$ a basis of \mathbb{R}^3 ?

- · Let \mathbb{R}^3 be a vector space and ∇_1^2 , ∇_2^2 , ∇_3^2 $\in \mathbb{R}^3$.
- Spzn needs to be in \mathbb{R}^3 : Spzn $\{V_1, V_2, V_3\} = C_1 \overrightarrow{V_1} + C_2 \overrightarrow{V_2} + C_3 \overrightarrow{V_3} = \overrightarrow{V} \in \mathbb{R}^3$
- $\overrightarrow{V_1}$, $\overrightarrow{V_2}$, $\overrightarrow{V_3}$ needs to be linearly independent: $C_1\overrightarrow{V_1}+C_2\overrightarrow{V_2}+C_2\overrightarrow{V_3}=\overrightarrow{O}$ only if $C_1=C_2=C_3=O$, which we have shown in the previous example.

* Bosis

Let $\vec{V_1}, \vec{V_2}, ..., \vec{V_K}$ be some vectors in rector aprice V.

The vectors are a basis of V if:

- 1. The vectors must be linearly independent; $C_1\vec{V}_1 + C_2\vec{V}_2 + ... + C_K\vec{V}_K = \vec{O}$ only if $C_1 = C_2 = ... = C_K = 0$.
- a. the vectors must span \overline{V}_1 , \overline{V}_2 ,