Analysis of whistler weather data

Benjamin, Ethan and Nathan Stat 300 Project, Fall 2015

December 2, 2015

Outline

Objectives

- 1. Determine start, peak and end of winter season
- 2. Determine how much snow is present at different points in year
- 3. Determine trends and odd behaviors in data

Background

- Whistler Blackcomb
 - Dependent on snow
- Data
 - ► Elevation: 650m
 - Precipitation and wind not used

Figure: Whistler temperature and snowfall from 2006–2014

Methods

- Exploratory
- Statistical techniques
 - 1. Regression: trend
 - 2. Time series techniques: compare different winter seasons
 - 3. Correlation: relationship between temperature and snowfall
- ► Winter: period when one week moving average for snowfall was greater than 15 cm

Snowfall trend

- ► Linear regression
- ▶ *p*-value < 0.001
- Temperature trend is not as noticeable

Figure: Downwards trend of 4.42 cm per year

Average smoothing

- Period shown is July 1 – June 30
- Maximum
 - Snow all months except July, August
- Minimum
 - Snow from December to mid–April

Figure: Amount of snow present at each day during the year

Length of winter

► Longest: 2006-2007

▶ Shortest: 2009–2010

Earliest start: 2013–2014

► Earliest end: 2009–2010

Winter	Start Date	End Date	Length	Peak Date
2006–2007	Nov 18	Apr 4	137 days	Jan 19
2007-2008	Nov 27	Apr 11	135 days	Feb 7
2008-2009	Dec 22	Apr 4	103 days	Mar 17
2009-2010	Nov 14	Feb 7	85 days	Jan 2
2010-2011	Nov 24	Apr 1	128 days	Mar 5
2011-2012	Nov 24	Apr 9	136 days	Mar 15
2012-2013	Dec 7	Mar 16	99 days	Jan 9
2013-2014	Jan 7	Apr 4	87 days	Mar 6
Average	Dec 3	Mar 26	114 days	Feb 12

Table: Dates of winter seasons based of a threshold of 15 cm of snow

Severity of winter

- ▶ 2009–2010 winter was least severe
 - Peak snowfall: 58 cm
 - ► Average snowfall: 30 cm

Figure: Average amount of snow over each winter season

Correlation

► Average snow and temperature: -0.15

▶ Peak and average snow: 0.96

Winter	Peak snow	Average snow	Average temperature
2006–2007	113 cm	72 cm	-0.56 °c
2007-2008	125 cm	73 cm	$-1.23~^{\circ} c$
2008-2009	75 cm	48 cm	$-1.80~^{\circ}$ c
2009-2010	58 cm	30 cm	$-1.17~^{\circ}$ c
2010-2011	94 cm	59 cm	-1.31 $^{\circ}$ c
2011–2012	68 cm	38 cm	-0.37 °c
2012-2013	81 cm	41 cm	-1.26 $^{\circ}$ c
2013-2014	78 cm	37 cm	-0.17 $^{\circ}$ c
Average	86 cm	50 cm	-0.98 °c

Table: Snow and temperature measurements for winter seasons

Conclusion

- Winter season starts Dec 3, ends Mar 26
- Average snow present is 50 cm
- Snowfall downward trending
- ▶ 2009–2010 was least severe winter
- Limitations
 - No projections predictive ARIMA model could be used
 - Didn't account for wind, precipitation