Mixing Logic and Deep Learning: The 'Logic as Loss Function' Approach

Kyle Richardson

Allen Institute for Al

June 2022

Classical logic: designed for modeling *closed systems*.

Classical logic: designed for modeling *closed systems*.

```
 \forall x (0 \neq \mathbf{Succ}(x)) 
 \forall x, y (\mathbf{Succ}(x) = \mathbf{Succ}(y)) \rightarrow x = y 
 \forall x (x + 0 = x) 
 \forall x, y (x + \mathbf{Succ}(y) = \mathbf{Succ}(x + y)) 
 \forall x (x \cdot 0 = 0) 
 \forall \forall x, y (x \cdot \mathbf{Succ}(y) = x \cdot y + x) 
 \mathbf{Theorem:} \quad \forall x, y (x \cdot y = \mathbf{Succ}(0) \rightarrow x = \mathbf{Succ}(0) \land y = \mathbf{Succ}(0))
```

Classical logic: designed for modeling *closed systems*.

```
 \forall x (0 \neq \textbf{Succ}(x)) \\ \forall x, y (\textbf{Succ}(x) = \textbf{Succ}(y)) \rightarrow x = y \\ \forall x (x + 0 = x) \\ \forall x, y (x + \textbf{Succ}(y) = \textbf{Succ}(x + y)) \\ \forall x (x \cdot 0 = 0) \\ \forall \forall x, y (x \cdot \textbf{Succ}(y) = x \cdot y + x) 
 \textbf{Theorem:} \quad \forall x, y (x \cdot y = \textbf{Succ}(0) \rightarrow x = \textbf{Succ}(0) \land y = \textbf{Succ}(0))
```

deep learning: Used for modeling open systems, situations involving *partial information*, making (fast) <u>predictions</u> vs. explicit reasoning.

Classical logic: designed for modeling *closed systems*.

```
 \forall x (0 \neq \textbf{Succ}(x)) \\ \forall x, y (\textbf{Succ}(x) = \textbf{Succ}(y)) \rightarrow x = y \\ \forall x (x + 0 = x) \\ \forall x, y (x + \textbf{Succ}(y) = \textbf{Succ}(x + y)) \\ \forall x (x \cdot 0 = 0) \\ \forall \forall x, y (x \cdot \textbf{Succ}(y) = x \cdot y + x) 
 \textbf{Theorem:} \  \  \forall x, y (x \cdot y = \textbf{Succ}(0) \rightarrow x = \textbf{Succ}(0) \land y = \textbf{Succ}(0))
```

deep learning: Used for modeling open systems, situations involving *partial information*, making (fast) predictions vs. explicit reasoning.

Premise: A man with a hat is riding his bicycle down the street.
Hypothesis: A person is moving with the help of their legs.

Prediction: Entailment

Premise: A person is moving with the help of their legs.
Hypothesis: A person is moving

Prediction: Entailment

Two conceptual tools for relating logic and deep learning

- x1: A man with a hat is riding his bicycle down the street.
- x2: A person is moving with the help of their legs.

Prediction: Entailment

- x2: A person is moving with the help of their legs.
- x3: A person is moving

Prediction: Entailment

- x1: A man with a hat is riding his bicycle down the street.
- x2: A person is moving with the help of their legs.

Prediction: Entailment

- x2: A person is moving with the help of their legs.
- x3: A person is moving
- Prediction: Entailment

- x1: A man with a hat is riding his bicycle down the street.
- x2: A person is moving with the help of their legs.

Prediction: Entailment

- x2: A person is moving with the help of their legs.
- x3: A person is moving

Prediction: Entailment

x1: A man with a hat is riding his bicycle down the street.
x2: A person is moving with the help of their legs.
Prediction: Entailment
x2: A person is moving with the help of their legs.
x3: A person is moving
Prediction: Entailment

- x1: A man with a hat is riding his bicycle down the street. x2: A person is moving with the help of their legs.

 Prediction: Entailment
 - x2: A person is moving with the help of their legs.
- x3: A person is moving Prediction: Entailment

Proposition	Meaning
$\mathbf{E}(x,y)$	x entails y
$\mathbf{C}(x,y)$	x contradicts y
[Notation from	n Li et al. (2019)]

Why is this helpful?

Why is this helpful?

The different predictions a model (or set of models) might make:

The different predictions a model (or set of models) might make:

 x_1 : A man with a hat is riding his bicycle down the street entails x_2 : A person is moving with the help of their legs, x_3 : entails A person is moving

predictions	predictions correct	predictions consistent
$E(x_1,x_2) \wedge E(x_2,x_3) \wedge E(x_1,x_3)$	(3/3)	(3/3)
$\mathbf{C}(x_1, x_2) \wedge \mathbf{C}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	× (0/3)	(3/3)
$E(x_1, x_2) \wedge C(x_2, x_3) \wedge C(x_1, x_3)$	× (1/3)	√ (3/3)
$E(x_1, x_2) \wedge E(x_2, x_3) \wedge C(x_1, x_3)$	× (2/3)	× (0/3)

The different predictions a model (or set of models) might make:

 x_1 : A man with a hat is riding his bicycle down the street entails x_2 : A person is moving with the help of their legs, x_3 : entails A person is moving

predictions	predictions correct	predictions consistent
$E(x_1,x_2) \wedge E(x_2,x_3) \wedge E(x_1,x_3)$	(3/3)	(3/3)
$\mathbf{C}(x_1, x_2) \wedge \mathbf{C}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	× (0/3)	(3/3)
$E(x_1, x_2) \wedge C(x_2, x_3) \wedge C(x_1, x_3)$	× (1/3)	√ (3/3)
$\mathbf{E}(x_1, x_2) \wedge \mathbf{E}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	× (2/3)	× (0/3)

Thinking of predictions as **symbolic objects**; brings rigor to interpreting model behavior, can clarify what we mean by 'good' vs. 'bad'.

The different predictions a model (or set of models) might make:

 x_1 : A man with a hat is riding his bicycle down the street entails x_2 : A person is moving with the help of their legs, x_3 : entails A person is moving

predictions	predictions correct	
$E(x_1,x_2) \wedge E(x_2,x_3) \wedge E(x_1,x_3)$	(3/3)	
$\mathbf{C}(x_1,x_2) \wedge \mathbf{C}(x_2,x_3) \wedge \mathbf{C}(x_1,x_3)$	× (0/3)	
$E(x_1,x_2) \land C(x_2,x_3) \land C(x_1,x_3)$	× (1/3)	
$E(x_1,x_2) \land E(x_2,x_3) \land C(x_1,x_3)$	× (2/3)	

Thinking of predictions as **symbolic objects**; brings rigor to interpreting model behavior, can clarify what we mean by 'good' vs. 'bad'.

Annotations-as-logical-specifications: what we expect

```
Question: (q) Where is a frisbee in play likely to be? (m) 1) air 2) ...

Prediction (q, m \rightarrow a): (a) "air"

Prediction (q, m \rightarrow e, a): (e) "A frisbee floats on air", "air"

Prediction (q, m \rightarrow p): (p) "A frisby in play is likely to be in the air"
```

Annotations-as-logical-specifications: what we expect

```
Question: (q) Where is a frisbee in play likely to be? (m) 1) air 2) ...

Prediction (q, m \rightarrow a): (a) "air"

Prediction (q, m \rightarrow e, a): (e) "A frisbee floats on air", "air"

Prediction (q, m \rightarrow p): (p) "A frisby in play is likely to be in the air"
```

(Labeled) datasets specify what we want a model to do and learn.

instance	meaning	proposition (logic)
(q, m, a)	a is the correct answer to q in m	$\mathbf{Q}(q,a)$
(q, m, e, a)	e is the correct explanation of q with answer a	$\mathbf{E}\mathbf{x}(q, e+a)$
(q, m, p)	p is the correct proposition corresponding to q	P(q,p)
	and a.	

Annotations-as-logical-specifications: what we expect

```
Question: (q) Where is a frisbee in play likely to be? (m) 1) air 2) ...

Prediction (q, m \rightarrow a): (a) "air"

Prediction (q, m \rightarrow e, a): (e) "A frisbee floats on air", "air"

Prediction (q, m \rightarrow p): (p) "A frisby in play is likely to be in the air"
```

(Labeled) datasets specify what we want a model to do and learn.

instance	meaning	proposition (logic)
(q, m, a)	a is the correct answer to q in m	$\mathbf{Q}(q,a)$
(q, m, e, a)	e is the correct explanation of q with answer a	Ex(q, e + a)
(q, m, p)	p is the correct proposition corresponding to q	P(q,p)
	and a.	

We can also think of annotations as logical propositions and formulae.

$$\mathbf{Q}(q, a) \wedge \mathbf{Ex}(q, e + a) \wedge \mathbf{P}(q, p)$$

Annotations-as-logic-specifications: what we expect

```
Question: (q) Where is a frisbee in play likely to be? (m) 1) air 2) ...

Prediction (q, m \rightarrow a): (a) "air"

Prediction (q, m \rightarrow e, a): (e) "A frisbee floats on air", "air"

Prediction (q, m \rightarrow p): (p) "A frisby in play is likely to be in the air"
```

```
 \underbrace{ \mathbf{Q}(q,a) \wedge \mathbf{Ex}(q,e+a) \wedge \mathbf{P}(q,p)}_{\text{should make correct predictions}} \wedge \underbrace{ \forall q, p(\mathbf{P}(q,p) \rightarrow \mathbf{Bel}(p)) \wedge}_{\text{should believe propositions}} \wedge \underbrace{ \forall q, a, e(\mathbf{Ex}(q,e+a) \rightarrow \mathbf{Q}(q+e,a))}_{\text{Answer should be invariant given its explanation}
```

Why is this helpful? Be more clear about what we expect, understand gap between what we expect and what we actually do, imagine new tasks.

Conceptual Tools: Predictions-as-propositions, Annotations-as-specifications

Thinking of model predictions as symbolic objects; annotations and our expectations as logical formulas.

Conceptual Tools: Predictions-as-propositions, Annotations-as-specifications

Thinking of model predictions as symbolic objects; annotations and our expectations as logical formulas.

Conceptual Tools: Predictions-as-propositions, Annotations-as-specifications

Thinking of model predictions as symbolic objects; annotations and our expectations as logical formulas.

note: These are just conceptual tools, not particularly useful yet.

Technical Tool: Multi-valued Logic and the 'Logic as Loss Function' approach (see review in Marra et al. (2021)).

Logical propositions come in different flavors

Logical propositions come in different flavors

Fuzzy Logic: Logical operators $(\land, \lor, \neg, \rightarrow)$ are turned into real-valued functions (t-norms); generalizes Boolean logic to continuous values.

Logical propositions come in different flavors

Fuzzy Logic: Logical operators $(\land, \lor, \neg, \rightarrow)$ are turned into real-valued functions (t-norms); generalizes Boolean logic to continuous values.

see Li et al. (2019); Grespan et al. (2021)				
	Boolean Logic	Product	Łukasiewisz	Gödel
T-norm	$P_1 \wedge P_2$	$P_1 \cdot P_2$	$max(0, P_1 + P_2 - 1)$	$min(\mathbf{P}_1, \mathbf{P}_2)$
T-conorm	$P_1 \vee P_2$	$P_1 + P_2 - P_1 \cdot P_2$	$min(1, \mathbf{P}_1, +\mathbf{P}_2)$	$max(\mathbf{P}_1, \mathbf{P}_2)$
Negation	¬P	1 – P	1 - P	1 – P
Residuum	$P_1 \rightarrow P_2$	$\min(1, \frac{P_2}{P_1})$	$min(1,1-\textbf{P}_1+\textbf{P}_2)$	P_2

Logical propositions come in different flavors

Fuzzy Logic: Logical operators $(\land, \lor, \neg, \rightarrow)$ are turned into real-valued functions (t-norms); generalizes Boolean logic to continuous values.

see Li et al. (2019); Grespan et al. (2021)				
	Boolean Logic	Product	Łukasiewisz	Gödel
T-norm	$P_1 \wedge P_2$	$P_1 \cdot P_2$	$max(0, P_1 + P_2 - 1)$	$min(\mathbf{P}_1, \mathbf{P}_2)$
T-conorm	$P_1 \lor P_2$	$P_1 + P_2 - P_1 \cdot P_2$	$min(1, \mathbf{P}_1, +\mathbf{P}_2)$	$max(\mathbf{P}_1, \mathbf{P}_2)$
Negation	¬P	1 – P	1 - P	1 – P
Residuum	$P_1 \rightarrow P_2$	$\min(1, \frac{P_2}{P_1})$	$min(1,1-\textbf{P}_1+\textbf{P}_2)$	\mathbf{P}_2

Note: At the extremes 0 and 1, work exactly as classical counterparts.

Turning Specifications into Loss Functions

	Boolean Logic	Product	Łukasiewisz	Gödel
T-norm	$P_1 \wedge P_2$	$P_1 \cdot P_2$	$max(0, P_1 + P_2 - 1)$	$min(\mathbf{P}_1, \mathbf{P}_2)$
T-conorm	$P_1 \vee P_2$	$P_1 + P_2 - P_1 \cdot P_2$	$min(1, \mathbf{P}_1, +\mathbf{P}_2)$	$max(\mathbf{P}_1, \mathbf{P}_2)$
Negation	¬P	1 – P	$1 - \mathbf{P}$	1 – P
Residuum	$P_1 \rightarrow P_2$	$\min(1, \frac{P_2}{P_1})$	$min(1,1-\textbf{P}_1+\textbf{P}_2)$	P_2

Why are these (T-norms) useful?

Turning Specifications into Loss Functions

	Boolean Logic	Product	Łukasiewisz	Gödel
T-norm	$P_1 \wedge P_2$	$P_1 \cdot P_2$	$max(0, P_1 + P_2 - 1)$	$min(\mathbf{P}_1, \mathbf{P}_2)$
T-conorm	$P_1 \vee P_2$	$P_1 + P_2 - P_1 \cdot P_2$	$min(1, \mathbf{P}_1, +\mathbf{P}_2)$	$max(\mathbf{P}_1, \mathbf{P}_2)$
Negation	¬P	1 – P	$1 - \mathbf{P}$	1 – P
Residuum	$P_1 \rightarrow P_2$	$\min(1, \frac{P_2}{P_1})$	$min(1,1-\textbf{P}_1+\textbf{P}_2)$	P_2

Why are these (T-norms) useful?

Specifications

Differentiable Loss Function

Turning Specifications into Loss Functions

	Boolean Logic	Product	Łukasiewisz	Gödel
T-norm	$P_1 \wedge P_2$	$P_1 \cdot P_2$	$max(0, P_1 + P_2 - 1)$	$min(\mathbf{P}_1, \mathbf{P}_2)$
T-conorm	$P_1 \vee P_2$	$P_1 + P_2 - P_1 \cdot P_2$	$min(1, \mathbf{P}_1, +\mathbf{P}_2)$	$max(\mathbf{P}_1, \mathbf{P}_2)$
Negation	¬P	1 – P	1 – P	1 – P
Residuum	$P_1 \rightarrow P_2$	$\min(1, \frac{P_2}{P_1})$	$min(1,1-\textbf{P}_1+\textbf{P}_2)$	P_2

Why are these (T-norms) useful?

Specifications

$$\boxed{ \mathbf{Q}(q,a) \wedge \mathsf{Ex}(q,e) \wedge \mathsf{P}(q,p) \wedge \underbrace{\left(\mathsf{P}(q,p) \to \mathsf{Bel}(p)\right) \wedge \left(\mathsf{Ex}(q,e+a) \to \mathsf{Q}(q+e,a)\right)}_{\mathsf{should \ make \ correct \ predictions} } \underbrace{\left(\mathsf{translation \ to \ T-norms}\right)}_{\mathsf{translation \ to \ T-norms} }$$

Differentiable Loss Function

$$\operatorname{Loss}_{model}\left(\mathbf{Q}(q,a) \wedge \operatorname{Ex}(q,e) \wedge ...\right) = \underbrace{\sum_{\mathbf{P} \in \left\{\mathbf{Q}(q,a), \operatorname{Ex}(q,e), ...\right\}} - \log \underbrace{p_{model}(\mathbf{P})}_{\text{fuzzy truth degree}}}_{\mathbf{Product T-norm (-log prob.)}}$$

Training Objectives as Logical Specifications

We can think of a (supervised) dataset $D = \{(x_j, y_j)\}_{j=0}^N$ as a set of true atomic propositions propositions $D_p = \{\mathbf{Y}_1, ..., \mathbf{Y}_N\}$ with constraints C.

Goal	Logical Formula	Loss Function (Product)
Make Correct Predictions	$\bigwedge_{\mathbf{Y}\in D_p}\mathbf{Y}$	$\sum_{\mathbf{Y} \in D_p} -\log p_{model}(\mathbf{Y})$
Believe your propositions	$\bigwedge_{P(q,p)\in\mathcal{D}_p}P(q,p)\toBel(p)$	$\sum_{\mathbf{P}(q,p) \in D_p} \mathbf{ReLU}(\log p_{model}(\mathbf{P}(q,p)) - \log p_{model}(\mathbf{Bel}(p)))$

Training Objectives as Logical Specifications

We can think of a (supervised) dataset $D = \{(x_j, y_j)\}_{j=0}^N$ as a set of true atomic propositions propositions $D_p = \{\mathbf{Y}_1, ..., \mathbf{Y}_N\}$ with constraints C.

Goal	Logical Formula	Loss Function (Product)
Make Correct Predictions	$\bigwedge_{\mathbf{Y}\in D_{n}}\mathbf{Y}$	$\sum_{\mathbf{Y} \in D_{\mathbf{p}}} -\log p_{model}(\mathbf{Y})$
Believe your		$\sum ReLU(\log p_{model}(P(q,p)) - \log p_{model}(Bel(p)))$
propositions	$P(q,p) \in D_p$	$P(q,p)\in D_p$

Observation (Rocktäschel et al., 2015; Li et al., 2019): Translating product conjunction to negative log space yields ordinary **cross-entropy** loss.

Training Objectives as Logical Specifications

$$\underbrace{ \begin{array}{c} \mathbf{Q}(q,a) \wedge \mathsf{Ex}(q,e) \wedge \mathsf{P}(q,p) \\ \text{Atomic predictions} \end{array}}_{\text{Atomic predictions}} \wedge \underbrace{ \begin{array}{c} \left(\mathbf{P}(q,p) \to \mathsf{Bel}(p)\right) \wedge \\ \text{should believe propositions} \end{array}}_{\text{Answer should be invariant given its explanation}}_{\text{Additional Constaints}}$$

We can think of a (supervised) dataset $D = \{(x_j, y_j)\}_{j=0}^N$ as a set of true atomic propositions propositions $D_p = \{\mathbf{Y}_1, ..., \mathbf{Y}_N\}$ with constraints C.

Goal	Logical Formula	Loss Function (Product)
Make Correct Predictions	$\bigwedge_{\mathbf{Y} \in D_p} \mathbf{Y}$	$\sum_{\mathbf{Y} \in D_p} -\log p_{model}(\mathbf{Y})$
Believe your propositions	$\bigwedge_{\mathbf{P}(q,p)\in D_p}\mathbf{P}(q,p)\to Bel(p)$	$\sum_{\mathbf{P}(q,p)\in D_p} \mathbf{ReLU}(\log p_{model}(\mathbf{P}(q,p)) - \log p_{model}(\mathbf{Bel}(p)))$

Observation: There is often a large gap between what we train models to do (e.g., make correct predictions) and we expect models to know.

Logical constraints serve as regularizer, *soft constraints* over hypothesis space that favor solutions closer to knowledge (undirected models).

$$\begin{tabular}{lll} \textbf{Loss} = & \underbrace{\textbf{Loss}_{CE}}_{\text{ordinary loss}} & + \underbrace{\lambda \textbf{Loss}_{\textit{constraints}}}_{\text{logical constraints}} \end{tabular}$$

Logical constraints serve as regularizer, *soft constraints* over hypothesis space that favor solutions closer to knowledge (undirected models).

$$\begin{tabular}{lll} \textbf{Loss} = & \underbrace{\textbf{Loss}_{CE}}_{\mbox{ordinary loss}} & + \underbrace{\lambda \textbf{Loss}_{constraints}}_{\mbox{logical constraints}} \end{tabular}$$

predictions	predictions	predictions	prediction	constraint
	correct	consistent	loss	loss
$E(x_1,x_2) \wedge E(x_2,x_3) \wedge E(x_1,x_3)$	(3/3)	(3/3)	low	low
$C(x_1, x_2) \wedge C(x_2, x_3) \wedge C(x_1, x_3)$	× (0/3)	(3/3)	high	low
$\mathbf{E}(x_1, x_2) \wedge \mathbf{C}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	× (1/3)	√ (3/3)	high	low
$\mathbf{E}(x_1, x_2) \wedge \mathbf{E}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	× (2/3)	× (0/3)	medium	high

Logical constraints serve as regularizer, *soft constraints* over hypothesis space that favor solutions closer to knowledge (undirected models).

$$\begin{tabular}{lll} \textbf{Loss} = & & \underbrace{\textbf{Loss}_{CE}} & + & \underbrace{\lambda \textbf{Loss}_{constraints}} \\ & & \text{logical constraints} \\ \end{tabular}$$

predictions	predictions	predictions	prediction	constraint
	correct	consistent	loss	loss
$E(x_1,x_2) \land E(x_2,x_3) \land E(x_1,x_3)$	(3/3)	(3/3)	low	low
$C(x_1, x_2) \wedge C(x_2, x_3) \wedge C(x_1, x_3)$	× (0/3)	(3/3)	high	low
$\mathbf{E}(x_1, x_2) \wedge \mathbf{C}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	× (1/3)	√ (3/3)	high	low
$\mathbf{E}(x_1, x_2) \wedge \mathbf{E}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	× (2/3)	× (0/3)	medium	high

Observation: constraint loss doesn't contribute much outside of penalizing the last case; need to be carefully constructed.

Logical constraints serve as regularizer, *soft constraints* over hypothesis space that favor solutions closer to knowledge (undirected models).

predictions	predictions consistent	constraint loss
$E(x_1,x_2) \wedge E(x_2,x_3) \wedge E(x_1,x_3)$	(3/3)	low
$\mathbf{C}(x_1, x_2) \wedge \mathbf{C}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	(3/3)	low
$\mathbf{E}(x_1, x_2) \wedge \mathbf{C}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	√ (3/3)	low
$\mathbf{E}(x_1, x_2) \wedge \mathbf{E}(x_2, x_3) \wedge \mathbf{C}(x_1, x_3)$	× (0/3)	high

Practical concerns: ensure consistency loss doesn't overwhelm your prediction loss; many tricks for this (loss weighting λ , annealing).

Li et al. (2019) apply to NLI, focus on basic order relations between inference types (transitivity, symmetry), study different t-norm approaches.

▶ NLP: NLI (Minervini and Riedel, 2018; Li et al., 2019), question-answering (Asai and Hajishirzi, 2020), relation extraction (Rocktäschel et al., 2015), other (Grespan et al., 2021).

▶ NLP: NLI (Minervini and Riedel, 2018; Li et al., 2019), question-answering (Asai and Hajishirzi, 2020), relation extraction (Rocktäschel et al., 2015), other (Grespan et al., 2021).

Can significantly improve consistency and training efficiency, mixed results on improving end-task performance, though.

▶ NLP: NLI (Minervini and Riedel, 2018; Li et al., 2019), question-answering (Asai and Hajishirzi, 2020), relation extraction (Rocktäschel et al., 2015), other (Grespan et al., 2021).

Can significantly improve consistency and training efficiency, mixed results on improving end-task performance, though.

Widely used elsewhere in neural-symbolic modeling (see Marra et al. (2021)), many open technical issues (see Grespan et al. (2021)). An Alternative Tool: Weighted Model Counting

An Alternative Tool: Weighted Model Counting

(The proper way to do things!)

A Probabilistic Approach

The semantics of Fuzzy logic has issues, not easy to translate back to ordinary Boolean logic, not amenable to probabilistic inference.

A Probabilistic Approach

The semantics of Fuzzy logic has issues, not easy to translate back to ordinary Boolean logic, not amenable to probabilistic inference.

```
Boolean Propositions<br/>(Probabilistic) Boolean PropositionsP \in \{0,1\}<br/>P is 1 with prob. p \in [0,1] (0 with prob. 1-p)<br/>P \in [0,1], truth degree t(P)
```

Example: Assume we have a proposition P with a weight 0.3 and we want to get a weight for $P \land P$ (see (Marra et al., 2021, p43))

A Probabilistic Approach

The semantics of Fuzzy logic has issues, not easy to translate back to ordinary Boolean logic, not amenable to probabilistic inference.

```
Boolean PropositionsP \in \{0,1\}(Probabilistic) Boolean PropositionsP \in \{0,1\}Real-Valued (Fuzzy) PropositionsP \in [0,1]P \in [0,1]
```

Example: Assume we have a proposition P with a weight 0.3 and we want to get a weight for $P \land P$ (see (Marra et al., 2021, p43))

```
\begin{split} & \rho(\mathbf{P} \wedge \mathbf{P}) = \rho(\mathbf{P}) & (\textit{possible world semantics}) \\ & t(\mathbf{P} \wedge \mathbf{P}) = t(\mathbf{P}) \times t(\mathbf{P}) = 0.15 & (\textit{product t-norm semantics}) \end{split}
```

world W	P ₁	P ₂	P ₃	p(W)
W_1	0	0	0	$(0.1 \times 0.2 \times 0.55) = 0.01$
W_2	1	1	1	$(0.9 \times 0.8 \times 0.45) = 0.32$
W ₃	0	0	1	$(0.1 \times 0.2 \times 0.45) = 0.009$
W_4	0	1	1	$(0.1 \times 0.8 \times 0.45) = 0.036$
W ₅	1	0	1	$(0.9 \times 0.2 \times 0.45) = 0.081$
W ₆	1	1	0	$(0.9 \times 0.8 \times 0.55) = 0.39$
W ₇	0	1	0	$(0.1 \times 0.8 \times 0.55) = 0.04$
W ₈	1	0	0	$(0.9 \times 0.2 \times 0.55) = 0.08$

world W	P ₁	P ₂	P ₃	p(W)
W_1	0	0	0	$(0.1 \times 0.2 \times 0.55) = 0.01$
W_2	1	1	1	$(0.9 \times 0.8 \times 0.45) = 0.32$
W ₃	0	0	1	$(0.1 \times 0.2 \times 0.45) = 0.009$
W_4	0	1	1	$(0.1 \times 0.8 \times 0.45) = 0.036$
W ₅	1	0	1	$(0.9 \times 0.2 \times 0.45) = 0.081$
W ₆	1	1	0	$(0.9 \times 0.8 \times 0.55) = 0.39$
W ₇	0	1	0	$(0.1 \times 0.8 \times 0.55) = 0.04$
W ₈	1	0	0	$(0.9 \times 0.2 \times 0.55) = 0.08$

$$p(W) = \prod_{\substack{\mathbf{P} \in W^1 \\ \text{true in } W, \ W^1}} p(\mathbf{P}) \times \prod_{\substack{\mathbf{P} \in W^0 \\ \text{false in } W, \ W^0}} 1 - p(\mathbf{P})$$

$$p_{query}(\mathbf{P}) = \sum_{W \text{ s.t. } W \in \mathbf{P}} p(W)$$

world W	P ₁	P ₂	P ₃	p(W)
W_1	0	0	0	$(0.1 \times 0.2 \times 0.55) = 0.01$
W_2	1	1	1	$(0.9 \times 0.8 \times 0.45) = 0.32$
W_3	0	0	1	$(0.1 \times 0.2 \times 0.45) = 0.009$
W_4	0	1	1	$(0.1 \times 0.8 \times 0.45) = 0.036$
W_5	1	0	1	$(0.9 \times 0.2 \times 0.45) = 0.081$
W_6	1	1	0	$(0.9 \times 0.8 \times 0.55) = 0.39$
W_7	0	1	0	$(0.1 \times 0.8 \times 0.55) = 0.04$
W ₈	1	0	0	$(0.9 \times 0.2 \times 0.55) = 0.08$

$$p(W) = \prod_{\substack{\mathbf{P} \in W^1 \\ \text{true in } W, \ W^1}} p(\mathbf{P}) \times \prod_{\substack{\mathbf{P} \in W^0 \\ \text{false in } W, \ W^0}} 1 - p(\mathbf{P})$$

$$p_{query}(\mathbf{P}) = \sum_{W \text{ s.t. } W \models \mathbf{P}} p(W)$$

world W	P ₁	P ₂	P ₃	p(W)
W_1	0	0	0	$(0.1 \times 0.2 \times 0.55) = 0.01$
W_2	1	1	1	$(0.9 \times 0.8 \times 0.45) = 0.32$
W ₃	0	0	1	$(0.1 \times 0.2 \times 0.45) = 0.009$
W_4	0	1	1	$(0.1 \times 0.8 \times 0.45) = 0.036$
W_5	1	0	1	$(0.9 \times 0.2 \times 0.45) = 0.081$
W ₆	1	1	0	$(0.9 \times 0.8 \times 0.55) = 0.39$
W_7	0	1	0	$(0.1 \times 0.8 \times 0.55) = 0.04$
W ₈	1	0	0	$(0.9 \times 0.2 \times 0.55) = 0.08$

$$p(W) = \prod_{\substack{\mathbf{P} \in W^1 \\ \text{true in } W, \ W^1}} p(\mathbf{P}) \times \prod_{\substack{\mathbf{P} \in W^0 \\ \text{false in } W, \ W^0}} 1 - p(\mathbf{P})$$

$$p_{query}(\mathbf{P}) = \sum_{W \text{ s.t. } W \models \mathbf{P}} p(W)$$

 Querying: generalizes to any propositional formula α and reducible to the problem of Weighted Model Counting (WMC) (Chavira and Darwiche, 2008)

$$p_{query}(\alpha) = \underbrace{\sum_{W \text{ s.t. } W \models \alpha} p(W)}_{\text{WMC}}$$

 Querying: generalizes to any propositional formula α and reducible to the problem of Weighted Model Counting (WMC) (Chavira and Darwiche, 2008)

$$p_{query}(\alpha) = \underbrace{\sum_{W \text{ s.t. } W \models \alpha} p(W)}_{\text{WMC}}$$

constraints								
$P_1 \rightarrow P_2 \wedge P_2 \rightarrow P_3$								
world W	P ₁	P ₂	P ₃	model?	p(W)			
W_1	0	0	0	yes	$(0.1 \times 0.2 \times 0.55) = 0.01$			
W_2	1	1	1	yes	$(0.9 \times 0.8 \times 0.45) = 0.32$			
W ₃	0	0	1	yes	$(0.1 \times 0.2 \times 0.45) = 0.009$			
W_4	0	1	1	yes	$(0.1 \times 0.8 \times 0.45) = 0.036$			
W_5	1	0	1	no	0.0			
W_6	1	1	0	no	0.0			
W_7	0	1	0	no	0.0			
W ₈	1	0	0	no	0.0			
				#SAT:4	WMC: 0.375			
					$p(\mathbf{P}_3) = 0.365/(1 - 0.365)$			

 Querying: generalizes to any propositional formula α and reducible to the problem of Weighted Model Counting (WMC) (Chavira and Darwiche, 2008)

$$p_{query}(\alpha) = \underbrace{\sum_{W \text{ s.t. } W \models \alpha} p(W)}_{\text{WMC}}$$

	constraints					
α	$\textbf{P}_1 \rightarrow \textbf{P}_2 \wedge \textbf{P}_2 \rightarrow \textbf{P}_3$					

world W	P_1	P_2	P ₃	model?	p(W)
W_1	0	0	0	yes	$(0.1 \times 0.2 \times 0.55) = 0.01$
W_2	1	1	1	yes	$(0.9 \times 0.8 \times 0.45) = 0.32$
W_3	0	0	1	yes	$(0.1 \times 0.2 \times 0.45) = 0.009$
W_4	0	1	1	yes	$(0.1 \times 0.8 \times 0.45) = 0.036$
W_5	1	0	1	yes	$(0.9 \times 0.2 \times 0.45) = 0.081$
W_6	1	1	0	yes	$(0.9 \times 0.8 \times 0.55) = 0.39$
W_7	0	1	0	yes	$(0.1 \times 0.8 \times 0.55) = 0.04$
W_8	1	0	0	yes	$(0.9 \times 0.2 \times 0.55) = 0.08$
					$p(\alpha) = 0.375$

 Querying: generalizes to any propositional formula α and reducible to the problem of Weighted Model Counting (WMC) (Chavira and Darwiche, 2008)

$$p_{query}(\alpha) = \underbrace{\sum_{W \text{ s.t. } W \models \alpha} p(W)}_{\text{WMC}}$$

	constraints					
I	$\alpha = \mathbf{P}_1 \to \mathbf{P}_2 \wedge \mathbf{P}_2 \to \mathbf{P}_3$					

world W	P_1	P ₂	P ₃	model?	p(W)
W_1	0	0	0	yes	$(0.1 \times 0.2 \times 0.55) = 0.01$
W_2	1	1	1	yes	$(0.9 \times 0.8 \times 0.45) = 0.32$
W_3	0	0	1	yes	$(0.1 \times 0.2 \times 0.45) = 0.009$
W_4	0	1	1	yes	$(0.1 \times 0.8 \times 0.45) = 0.036$
W_5	1	0	1	yes	$(0.9 \times 0.2 \times 0.45) = 0.081$
W_6	1	1	0	yes	$(0.9 \times 0.8 \times 0.55) = 0.39$
W_7	0	1	0	yes	$(0.1 \times 0.8 \times 0.55) = 0.04$
W ₈	1	0	0	yes	$(0.9 \times 0.2 \times 0.55) = 0.08$
					$p(\alpha) = 0.375$

Other: MARG or SUCC inference, *query probability*), (WMC), MPE/MAP, most likely world (MaxSAT) (De Raedt and Kimmig, 2015).

• Querying: generalizes to any propositional formula α and reducible to the problem of Weighted Model Counting (WMC) (Raedt et al., 2016)

$$p_{query}(\alpha) = \underbrace{\sum_{W \text{ s.t. } W \models \alpha} p(W)}_{WMC}$$

Efficient marginal computations through knowledge compilation (Darwiche and Marquis, 2002), many open-source compilers and tools.

• Querying: generalizes to any propositional formula α and reducible to the problem of Weighted Model Counting (WMC) (Raedt et al., 2016)

$$p_{query}(\alpha) = \underbrace{\sum_{W \text{ s.t. } W \models \alpha} p(W)}_{\text{WMC}}$$

Efficient marginal computations through knowledge compilation (Darwiche and Marquis, 2002), many open-source compilers and tools.

Provides an alternative to fuzzy semantics, compute marginal probabilities of formulas α over propositions P₁,..,P_n

$$\mathbf{Loss}_{\alpha} \propto -\log \sum_{W \text{ s.t. } W \models \alpha} \underbrace{\prod_{\mathbf{P} \in W^{1}} p_{model}(\mathbf{P}) \cdot \prod_{\mathbf{P} \in W^{0}} 1 - p_{model}(\mathbf{P})}_{\text{parameterized by our model}}$$

Provides an alternative to fuzzy semantics, compute marginal probabilities of formulas α over propositions P₁,..,P_n

Provides an alternative to fuzzy semantics, compute marginal probabilities of formulas α over propositions $P_1,..,P_n$

$$\mathsf{Loss}_{\alpha} \varpropto -\log \sum_{W \text{ s.t. } W \vDash \alpha} \prod_{\mathbf{P} \in \mathcal{W}^1} p_{model}(\mathbf{P}) \cdot \prod_{\mathbf{P} \in \mathcal{W}^0} 1 - p_{model}(\mathbf{P})$$

semantic loss function (Xu et al., 2018)

The semantic loss is proportional to a negative logarithm of the probability of generating a state that satisfies the constraint when sampling values according to p. Hence, it is the self-information (or 'surprise') of obtaining an assignment that satisfies the constraint...

Provides an alternative to fuzzy semantics, compute marginal probabilities of formulas α over propositions P₁,..,P_n

$$\mathbf{Loss}_{\alpha} \propto -\log \sum_{W \text{ s.t. } W \models \alpha} \underbrace{\prod_{\mathbf{P} \in W^{1}} p_{model}(\mathbf{P}) \cdot \prod_{\mathbf{P} \in W^{0}} 1 - p_{model}(\mathbf{P})}_{\text{parameterized by our model}}$$

semantic loss function (Xu et al., 2018)

The semantic loss is proportional to a negative logarithm of the probability of generating a state that satisfies the constraint when sampling values according to p. Hence, it is the self-information (or 'surprise') of obtaining an assignment that satisfies the constraint...

As before, often used as undirected model (alternative (Manhaeve et al., 2018)):

$$\textbf{Loss} = \underbrace{\textbf{Loss}_{\text{prediction}}}_{\text{ordinary loss}} + \underbrace{\lambda \textbf{Loss}_{\alpha}}_{\text{logical constraints}}$$

- x1: A man with a hat is riding his bicycle down the street.
- x2: A person is moving with the help of their legs.

Prediction: Entailment

- x2: A person is moving with the help of their legs.
- x3: A person is moving

Prediction: Entailment

 $\underbrace{0.95 :: \mathbf{E}(x_1, x_2) \land 0.85 :: \mathbf{E}(x_2, x_3) \land 0.75 :: \mathbf{C}(x_1, x_3)}_{\text{(weighted) model predictions}} = \neg \mathbf{E}(x_1, x_3)}_{\neg \mathbf{E}(x_1, x_3)} = \neg \mathbf{E}(x_1, x_3)}$ $\xrightarrow{\alpha_{\text{constraints}}}_{\neg \mathbf{E}(x, y) \land \mathbf{E}(y, z) \rightarrow \mathbf{E}(x, z))}_{\forall x, y, z} (\mathbf{E}(x, y) \land \mathbf{E}(y, z) \rightarrow \mathbf{C}(x, z))}_{\forall x, y, z}$

world W	$\mathbf{E}(x_1, x_2)$	$E(x_2, x_3)$	$E(x_1, x_3)$	$W \vDash \alpha$	p(W)
W_1	0	0	0	yes	$(0.05 \times 0.15 \times 0.75) = 0.005$
W_2	1	1	1	yes	$(0.95 \times 0.85 \times 0.25) = 0.201$
W ₃	0	0	1	yes	$(0.05 \times 0.15 \times 0.25) = 0.001$
W_4	0	1	1	yes	$(0.05 \times 0.85 \times 0.25) = 0.010$
W ₅	1	0	1	no	$(0.95 \times 0.15 \times 0.25) = 0.03$
W_6	1	1	0	no	$(0.95 \times 0.85 \times 0.75) = 0.60$
W_7	0	1	0	yes	$(0.05 \times 0.85 \times 0.75) = 0.03$
W ₈	1	0	0	yes	$(0.95 \times 0.15 \times 0.75) = 0.10$

 $p(\alpha_{constraints}) \approx 0.34$

- x1: A man with a hat is riding his bicycle down the street.
- x2: A person is moving with the help of their legs.

Prediction: Entailment

- x2: A person is moving with the help of their legs.
- x3: A person is moving

Prediction: Entailment

 $\alpha_{constraints}$ (before grounding)

world W	$E(x_1, x_2)$	$E(x_2, x_3)$	$\mathbf{E}(x_1, x_3)$	$W \vDash \alpha$	p(W)
W_1	0	0	0	no	$(0.05 \times 0.15 \times 0.75) = 0.005$
W_2	1	1	1	no	$(0.95 \times 0.85 \times 0.25) = 0.201$
W ₃	0	0	1	no	$(0.05 \times 0.15 \times 0.25) = 0.001$
W_4	0	1	1	no	$(0.05 \times 0.85 \times 0.25) = 0.010$
W_5	1	0	1	no	$(0.95 \times 0.15 \times 0.25) = 0.03$
W_6	1	1	0	no	violates constraints
W_7	0	1	0	no	$(0.05 \times 0.85 \times 0.75) = 0.03$
W ₈	1	0	0	no	$(0.95 \times 0.15 \times 0.75) = 0.10$
					$p(\alpha_{\text{constraints}} \wedge \alpha_{\text{pred}}) = 0.0$

- x1: A man with a hat is riding his bicycle down the street.
- x2: A person is moving with the help of their legs.

Prediction: Entailment

- x2: A person is moving with the help of their legs.
- x3: A person is moving

Prediction: Entailment

$$\underbrace{0.95 :: \mathsf{E}(x_1, x_2) \land 0.85 :: \mathsf{E}(x_2, x_3) \land 0.75 :: \mathsf{C}(x_1, x_3) \equiv \neg \mathsf{E}(x_1, x_3)}_{\text{(weighted) model predictions, $\alpha_{\mathsf{pred}} = \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{C}(x_1, x_3)$} = \neg \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{C}(x_1, x_3) \Rightarrow \neg \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{C}(x_1, x_3) \Rightarrow \neg \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{C}(x_1, x_3) \Rightarrow \neg \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{E}$$

world W	$\mathbf{E}(x_1, x_2)$	$E(x_2, x_3)$	$\mathbf{E}(x_1, x_3)$	$W \vDash \alpha$	p(W)
W_1	0	0	0	no	$(0.05 \times 0.15 \times 0.75) = 0.005$
W_2	1	1	1	no	$(0.95 \times 0.85 \times 0.25) = 0.201$
W ₃	0	0	1	no	$(0.05 \times 0.15 \times 0.25) = 0.001$
W_4	0	1	1	no	$(0.05 \times 0.85 \times 0.25) = 0.010$
W_5	1	0	1	no	$(0.95 \times 0.15 \times 0.25) = 0.03$
W_6	1	1	0	yes	$(0.95 \times 0.85 \times 0.75) = 0.60$
W_7	0	1	0	no	$(0.05 \times 0.85 \times 0.75) = 0.03$
W ₈	1	0	0	no	$(0.95 \times 0.15 \times 0.75) = 0.10$
					$p(\alpha_{\text{pred}}) = 0.60$

- x1: A man with a hat is riding his bicycle down the street.
- x2: A person is moving with the help of their legs.

Prediction: Entailment

- x2: A person is moving with the help of their legs.
- x3: A person is moving

Prediction: Entailment

$$\underbrace{0.95 :: \mathsf{E}(x_1, x_2) \land 0.85 :: \mathsf{E}(x_2, x_3) \land 0.75 :: \mathsf{C}(x_1, x_3) \equiv \neg \mathsf{E}(x_1, x_3)}_{\text{(weighted) model predictions, $\alpha_{\mathsf{pred}} = \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{C}(x_1, x_3)$} = \neg \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{C}(x_1, x_3) \Rightarrow \neg \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{C}(x_1, x_3) \Rightarrow \neg \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{C}(x_1, x_3) \Rightarrow \neg \mathsf{E}(x_1, x_2) \land \mathsf{E}(x_2, x_3) \land \mathsf{E}$$

world W	$\mathbf{E}(x_1, x_2)$	$E(x_2, x_3)$	$\mathbf{E}(x_1, x_3)$	$W \vDash \alpha$	p(W)
W_1	0	0	0	no	$(0.05 \times 0.15 \times 0.75) = 0.005$
W_2	1	1	1	no	$(0.95 \times 0.85 \times 0.25) = 0.201$
W ₃	0	0	1	no	$(0.05 \times 0.15 \times 0.25) = 0.001$
W_4	0	1	1	no	$(0.05 \times 0.85 \times 0.25) = 0.010$
W ₅	1	0	1	no	$(0.95 \times 0.15 \times 0.25) = 0.03$
W_6	1	1	0	yes	$(0.95 \times 0.85 \times 0.75) = 0.60$
W_7	0	1	0	no	$(0.05 \times 0.85 \times 0.75) = 0.03$
W ₈	1	0	0	no	$(0.95 \times 0.15 \times 0.75) = 0.10$
					$p(\alpha_{\text{pred}}) = 0.60$

Ordinary loss is again special case: $-\log p(\alpha_{\text{pred}}) = \textbf{Loss}_{\text{ordinary loss}}$

Conclusion

 Neural Symbolic modeling, focusing on the 'logic as loss function' and 'logic in weights' approaches, undirected models

conceptual tools connecting logic and DL: thinking of model predictions as symbolic objects, annotations as logical specifications

technical tools: fuzzy and soft logic relaxations, model counting (probabilistic approach), translating logic to loss functions.

Still a niche area in NLP, many exciting topics to explore.

Credits and Additional Reading

Many ideas and examples taken from the following (beyond what's cited):

```
Guy Van den Broeck et al. tutorial: https://web.cs.ucla.edu/~guyvdb/talks/IJCAI16-tutorial/, (Fierens et al., 2015; Raedt et al., 2016; Manhaeve et al., 2021),

Additional resources: Problog: https://dtai.cs.kuleuven.be/problog/, PySDD: https://github.com/wannesm/PySDD, Pylon: https://pylon-lib.github.io/
```

Thank you.

References I

- Asai, A. and Hajishirzi, H. (2020). Logic-guided data augmentation and regularization for consistent question answering. arXiv preprint arXiv:2004.10157.
- Chavira, M. and Darwiche, A. (2008). On probabilistic inference by weighted model counting. *Artificial Intelligence*, 172(6-7):772–799.
- Darwiche, A. and Marquis, P. (2002). A knowledge compilation map. *Journal of Artificial Intelligence Research*, 17:229–264.
- De Raedt, L. and Kimmig, A. (2015). Probabilistic (logic) programming concepts. *Machine Learning*, 100(1):5–47.
- Fierens, D., Van den Broeck, G., Renkens, J., Shterionov, D., Gutmann, B., Thon, I., Janssens, G., and De Raedt, L. (2015). Inference and learning in probabilistic logic programs using weighted boolean formulas. *Theory and Practice of Logic Programming*, 15(3):358–401.
- Grespan, M. M., Gupta, A., and Srikumar, V. (2021). Evaluating relaxations of logic for neural networks: A comprehensive study. arXiv preprint arXiv:2107.13646.
- Li, T., Gupta, V., Mehta, M., and Srikumar, V. (2019). A logic-driven framework for consistency of neural models. arXiv preprint arXiv:1909.00126.
- Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T., and De Raedt, L. (2018). Deepproblog: Neural probabilistic logic programming. Advances in Neural Information Processing Systems, 31.

References II

- Manhaeve, R., Dumančić, S., Kimmig, A., Demeester, T., and De Raedt, L. (2021). Neural probabilistic logic programming in deepproblog. *Artificial Intelligence*, 298:103504.
- Marra, G., Dumančić, S., Manhaeve, R., and De Raedt, L. (2021). From statistical relational to neural symbolic artificial intelligence: a survey. arXiv preprint arXiv:2108.11451.
- Minervini, P. and Riedel, S. (2018). Adversarially regularising neural nli models to integrate logical background knowledge. arXiv preprint arXiv:1808.08609.
- Raedt, L. D., Kersting, K., Natarajan, S., and Poole, D. (2016). Statistical relational artificial intelligence: Logic, probability, and computation. Synthesis lectures on artificial intelligence and machine learning, 10(2):1–189.
- Rocktäschel, T., Singh, S., and Riedel, S. (2015). Injecting logical background knowledge into embeddings for relation extraction. In *Proceedings of the 2015 conference of the north American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pages 1119–1129.
- Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Broeck, G. (2018). A semantic loss function for deep learning with symbolic knowledge. In *International conference on machine learning*, pages 5502–5511. PMLR.