Аналитическая геометрия.

Общие сведения.

Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых.

Компланарные вектора – три вектора называются компланарными, если они, будучи приведёнными к общему началу, лежат в одной плоскости.

Ортогональные = перпендикулярные / угол между ними 90° / векторное произведение равно 0.

Базисом векторного пространства называется любая упорядоченная тройка некомпланарных векторов (т.е. не лежащих в одной плоскости) пространства.

Операции над векторами:

1. Сложение:

2. Вычитание:

w=u-v если w+v=u

3. Умножение вектора на число:

Длина вектора по координатам:

Для $\vec{a}(x, y, z)$: $|\vec{a}| = \sqrt{x^2 + y^2 + z^2}$

Координаты вектора по двум точкам:

$$A(x_1, y_1, z_1)$$
 и $B(x_2, y_2, z_2)$: $\overrightarrow{AB}\{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$

28) Скалярное произведение векторов.

Определение:

Скалярное произведение - операция над двумя векторами, результатом которой является число (скаляр), не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. $\bar{a} \cdot \bar{b} = (\bar{a}, \bar{b}) = |\bar{a}| \cdot |\bar{b}| \cdot \cos \angle (\bar{a}, \bar{b})$

Данной операции соответствует умножение длины вектора x на проекцию вектора y на вектор x. *Свойства*:

Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.

- 1. Скалярное произведение вектора \bar{a} самого на себя называется скалярным квадратом: $(\bar{a}, \bar{a}) = \bar{a}^2$. Скалярный квадрат \bar{a}^2 вектора \bar{a} равен квадрату его модуля: $\bar{a}^2 = |\bar{a}|^2$.
- $(\bar{a}, \bar{b}) = (\bar{b}, \bar{a})$ коммунитативность (симметричность).
- 3. $(\lambda \bar{a}, \bar{b}) = \lambda(\bar{a}, \bar{b})$ линейность.
- 4. $\left(\bar{a} + \bar{b}, \bar{c}\right) = \left(\bar{a}, \bar{c}\right) + \left(\bar{b}, \bar{c}\right)$ линейность.
- 5. $(\bar{a}, \bar{a}) \geq 0$ неотрицательность, если же $(\bar{a}, \bar{a}) = 0$, то $\bar{a} = 0$.

6.
$$cos \varphi = \frac{(\bar{a}, \bar{b})}{|\bar{a}| \cdot |\bar{b}|} = \frac{x_1 x_2 + y_1 y_2 + z_1 z_2}{\sqrt{x_1^2 + y_1^2 + z_1^2} \cdot \sqrt{x_2^2 + y_2^2 + z_2^2}}$$

7. Два ненулевых вектора \bar{a} и \bar{b} ортогональны (перпендикулярны) тогда и только тогда, когда их скалярное произведение равно нулю.

1

8. Длина проекции вектора \bar{a} на ось, образованную вектором \bar{b} , равна скалярному произведению этих векторов, делённому на модуль вектора \vec{b} : Пр $_{\vec{b}}\vec{a}=\frac{(\vec{a},\vec{b})}{|\vec{b}|}$ (в числителе скалярное пр. в знаменателе – длина) $\Pi \mathrm{p}_{\vec{b}} \vec{a} = \frac{a_1 b_1 + a_2 b_2}{\int_{b_1^2 + b_2^2}}, \, \mathrm{rдe} \ \vec{a}(a_1; a_2) \ \mathrm{u} \ \vec{b}(b_1; b_2). \, \mathrm{Takme} \ \Pi \mathrm{p}_{\vec{b}} \vec{a} = |\bar{a}| \cdot \mathit{cos} \angle (\bar{a}, \bar{b}).$

9. Если векторы $\bar{a}=(a_1,a_2,a_3)$ и $\bar{b}=(b_1,b_2,b_3)$ заданы своими координатами, то их скалярное произведение равно сумме произведений соответствующих координат: $(\bar{a}, \bar{b}) = a_1 \cdot b_1 + a_2 \cdot b_2 + a_3 \cdot b_3$

29) Векторное произведение векторов, его свойства.

Определение:

Векторное произведение двух векторов - вектор, перпендикулярный обоим исходным векторам, длина которого равна площади параллелограмма, образованного исходными векторами, а выбор из двух направлений определяется так, чтобы тройка из по порядку стоящих в произведении векторов и получившегося вектора была правой.

Перестановка двух соседних векторов в тройке меняет её ориентацию на противоположную, а циклическая перестановка не меняет (переход от тройки $(\bar{u}, \bar{v}, \bar{w})$ к тройке $(\bar{v}, \bar{w}, \bar{u})$ или к тройке $(\bar{w}, \bar{u}, \bar{v})$.

Свойства:

1. $[\vec{a},\ \vec{b}] = -[\vec{b},\vec{a}]$ - антикоммутативность. $[\alpha \cdot \vec{a},\ \vec{b}] = [\vec{a},\ \alpha \cdot \vec{b}] = \alpha \cdot [\vec{a},\ \vec{b}]$ - ассоциативность умножения на скаляр.

 $[ec{a}+ec{b},\ ec{c}]=[ec{a},\ ec{c}]+[ec{b},\ ec{c}]$ - дистрибутивность по сложению.

4. $[[\vec{a},\ \vec{b}],\ \vec{c}]+[[\vec{b},\ \vec{c}],\ \vec{a}]+[[\vec{c},\vec{a}],\ \vec{b}]=0$ - тождество Якоби.

6. $[\vec{a},\ [\vec{b},\ \vec{c}]] = \vec{b}\cdot\langle\vec{a},\ \vec{c}\rangle - \vec{c}\cdot\langle\vec{a},\ \vec{b}\rangle$ - тождество Лагранжа.

Особенности:

- 1. Необходимым и достаточным условием коллинеарности двух ненулевых векторов является равенство нулю их векторного произведения.
- 2. Модуль векторного произведения $[\bar{a}, \bar{b}]$ равняется площади S параллелограмма, построенного на приведённых к общему началу векторах \bar{a} и \bar{b} .
- 3. Векторное произведение перпендикулярно исходным векторам \bar{a} и \bar{b} : $\angle(\bar{a}\bar{c}) = \angle(\bar{b}\bar{c}) = \frac{\pi}{3}$
- 4. Длина векторного произведения: $|\bar{c}| = |\bar{a}| \cdot |\bar{b}| \cdot \sin \angle (\bar{a}\bar{b})$.
- 5. Тройка векторов \vec{a} , \vec{b} и \vec{c} имеет такую же ориентацию, что и заданная система координат.

Векторное произведение в координатах:

$$\overrightarrow{c} = \left[\overrightarrow{a} imes \overrightarrow{b}
ight] = \left[egin{array}{cccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \ a_x & a_y & a_z \ b_x & b_y & b_z \end{array}
ight]$$

Доказательство:

Пусть даны два вектора $a=a_xi+a_yj+a_zk$, $b=b_xi+b_yj+b_zk$. Найдём $a\times b$ через проекции a_x , a_y , a_z и b_x , b_y , b_z .

Предварительно найдём все парные векторные произведения единичных векторов i,j,k. Т.к. векторное произведение коллениарных векторов равно нульвектору, то $i \times i = j \times j = k \times k = 0$. Рассмотрим теперь, например. произведение $i \times j$. Модуль этого произведения: $|i \times j| = |i| \cdot |j| \cdot \sin \frac{\pi}{2} = 1$. Расположен вектор $i \times j$ на прямой, перпендикулярной плоскости векторов i и j, т.е. на оси ОZ. Направлен этот вектор в сторону положительного направления

оси OZ, т.к. при этом тройка будет правая. Следовательно, этот вектор совпадает с вектором k: $i \times j = k$ и $j \times i = -k$.

С помощью аналогичных рассуждения:

$$j \times k = i, k \times j = -i$$

 $k \times i = j, i \times k = -j.$

Рассмотрим $a \times b = (a_x i + a_y j + a_z k, b) \times (b_x i + b_y j + b_z k) = a_x b_x i \times i + a_y b_x j \times i + a_z b_x k \times i + a_x b_y i \times j + a_y b_y j \times j + a_z b_y k \times j + a_x b_z i \times k + a_y b_z j \times k + a_z b_z k \times k = a_y b_x (-k) + a_z b_x j + a_x b_y k + a_z b_y (-i) + a_x b_z (-j) + a_y b_z i = (a_y b_z - a_z b_y) i - (a_x b_z - a_z b_x) j + (a_x b_y - a_y b_x) k.$

Разности в скобках – определители второго порядка, поэтому:

 $a \times b = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} i - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} j + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} k$. Полученное выражение есть разложение определителя третьего порядка по элементам первой строки.

Доказательство антикоммутативности:

По определению
$$\begin{bmatrix}\overrightarrow{a} imes \overrightarrow{b}\end{bmatrix} = \begin{vmatrix}\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$
 и $\begin{bmatrix}\overrightarrow{b} imes \overrightarrow{a}\end{bmatrix} = \begin{vmatrix}\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ b_x & b_y & b_z \\ a_x & a_y & a_z \end{vmatrix}$. А если две строчки

матрицы переставить местами, то значение определителя матрицы должно меняется на

противоположное,следовательно,
$$\left[\overrightarrow{a} \times \overrightarrow{b}\right] = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix}$$

$$=-egin{bmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ b_x & b_y & b_z \\ a_x & a_y & a_z \end{bmatrix} =-egin{bmatrix} \overrightarrow{b} imes \overrightarrow{a} \end{bmatrix}$$
, что и доказывает антикоммутативность векторного произведения.

Доказательство 2-ого и 3-его (дистрибутивность), а также 4-ого свойств:

 2° . Для доказательства свойства 2° положим $\vec{m}=(\alpha\vec{a})\times\vec{b}$, $\vec{n}=\alpha(\vec{a}\times\vec{b})$ и прежде всего исключим тривиальные случаи, когда вектор \vec{a} коллинеарен \vec{b} или когда $\alpha=0$. В этих случаях (в силу НДУ коллинеарности векторов и определения произведения вектора на число) мы получим, что $\vec{m}=\vec{n}=\vec{0}$, и свойство 2° доказано.

Пусть теперь векторы \vec{a} и \vec{b} не коллинеарны и $\alpha \neq 0$. Докажем, что и в этом случае векторы \vec{m} и \vec{n} равны. Обозначим угол между векторами \vec{a} и \vec{b} - φ , а угол между векторами $\alpha \vec{a}$ и $\beta \vec{b}$ - $\gamma \vec{b}$. По определению векторного произведения и произведения вектора на число можно утверждать, что

$$|\vec{m}| = |\alpha| \cdot |\vec{a}| \cdot |\vec{b}| \sin \psi, \ |\vec{n}| = |\alpha| \cdot |\vec{a}| \cdot |\vec{b}| \sin \varphi. \tag{14}$$

Учтем теперь, что могут представиться два случая: 1) $\psi = \varphi$ (когда $\alpha > 0$ и векторы \vec{a} и $\alpha \vec{a}$ направлены в одну сторону); 2) $\psi = \pi - \varphi$ (когда $\alpha < 0$ и векторы \vec{a} и $\alpha \vec{a}$ направлены в противоположные стороны). В обоих случаях $\sin \psi = \sin \varphi$ и в силу формул (14) $|\vec{m}| = |\vec{n}|$, т.е. векторы \vec{m} и \vec{n} имеют одинаковую длину.

Далее, очевидно, что векторы \vec{m} и \vec{n} коллинеарны, ибо ортогональность к плоскости, определяемой векторами \vec{a} и $\alpha \vec{a}$, означает ортогональность и к плоскости, определяемой векторами \vec{a} и \vec{b} . Для доказательства равенства векторов \vec{m} и \vec{n} остается проверить, что эти векторы имеют одинаковое направление. Пусть $\alpha > 0$ ($\alpha < 0$); тогда векторы \vec{a} и $\alpha \vec{a}$ одинаково направлены (противоположно направлены), и, стало быть, векторы $\vec{a} \times \vec{b}$ и ($\alpha \vec{a}$)× \vec{b} также одинаково направлены (противоположно направлены), а это означает, что векторы $\vec{m} = (\alpha \vec{a}) \times \vec{b}$, $\vec{n} = \alpha (\vec{a} \times \vec{b})$ всегда одинаково направлены. Свойство 2° доказано.

- 3° . Для доказательства третьего свойства заметим следующее: если вектор \vec{a} единичный и \vec{b} ему ортогонален, то вектор $\vec{a} \times \vec{b}$ получится, если повернуть \vec{b} в плоскости, перпендикулярной \vec{a} , на прямой угол в таком направлении, чтобы он образовал с \vec{a} и \vec{b} правую тройку (наглядно: при взгляде на плоскость со стороны \vec{a} поворот должен быть виден как происходящий против часовой стрелки).
- 4° . Это свойство непосредственно следует из НДУ коллинеарности векторов и из того, что любой вектор \vec{a} коллинеарен сам с собой, [1], чтд.

НДУ - необходимое и достаточное условие коллинеарности векторов.

Для того, чтобы \bar{a} и \bar{b} ($\bar{a} \neq 0$) были коллениарны необходимо и достаточно, чтобы $\exists \lambda \in R$, такое, что $\bar{b} = \lambda \bar{a}$.

Двойным векторным произведением векторов \bar{a} , \bar{b} и \bar{c} называется векторное произведение векторов \bar{a} на векторное произведение векторов \bar{b} и \bar{c} .

$$\bar{a} \times (\bar{b} \times \bar{c}) = \bar{b} \cdot (\bar{a}\bar{c}) - \bar{c}(\bar{a}\bar{b})$$

Площадь параллелограмма, построенного на векторах \bar{x} и \bar{y} :

$$S = \sqrt{(x_2y_3 - x_3y_2)^2 + (x_1y_3 - x_3y_1)^2 + (x_1y_2 - x_2y_1)^2};$$

30) Смешанное произведение векторов и его свойства.

Смешанным произведением \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{d} является та величина, которая равняется $[\rightarrow \rightarrow]$ $\rightarrow \rightarrow \rightarrow$

скалярному произведению
$$\left[\overrightarrow{a} \times \overrightarrow{b}\right]$$
 и \overrightarrow{d} , где $\left[\overrightarrow{a} \times \overrightarrow{b}\right]$ - умножение \overrightarrow{a} и \overrightarrow{b} . Операцию

умножения \overrightarrow{a} , \overrightarrow{b} и \overrightarrow{d} зачастую обозначают $\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{d}$. Можно преобразовать формулу так:

$$\overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{d} = \left(\left[\overrightarrow{a} \times \overrightarrow{b} \right], \overrightarrow{d} \right).$$

Смешанное произведение в координатной форме:

Если вектора $\bar{a}(a_x, a_y, a_z)$, $\bar{b}(b_x, b_y, b_z)$, $\bar{c}(c_x, c_y, c_z)$ заданы своими координатами, то их смешанное произведение равно:

$$\bar{a} \cdot \bar{b} \cdot \bar{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ d_x & d_y & d_z \end{vmatrix}$$

Доказательство:

Векторное произведение в координатах имеет вид:

$$\left[\bar{a}\times\bar{b}\right] = \left(a_y\cdot b_z - a_z\cdot b_y\right)\cdot\bar{\iota} + \left(a_zb_x - a_xb_z\right)\bar{\jmath} + \left(a_xb_y - a_yb_x\right)\bar{k} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix}\bar{\iota} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix}\bar{\jmath} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}\bar{k},$$

а скалярное произведение векторов в прямоугольной системе координат равно сумме произведений соответствующих координат, поэтому,

соответствующих координат, поэтому,
$$([\bar{a} \times \bar{b}], \bar{d}) = \begin{pmatrix} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \bar{\iota} - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \bar{\jmath} + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \bar{k}, d_x \cdot \bar{\iota} + d_y \bar{\jmath} + d_z \bar{k} \end{pmatrix} = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} d_x - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} d_y + \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ d_x & d_y & d_z \end{vmatrix}$$

Свойства смешанного произведения:

Если \vec{a} , \vec{b} , \vec{c} и \vec{d} — произвольные векторы, а t — произвольное число, то:

1)
$$(\vec{a}, \vec{b}, \vec{c}) = (\vec{b}, \vec{c}, \vec{a}) = (\vec{c}, \vec{a}, \vec{b}) = -(\vec{a}, \vec{c}, \vec{b}) = -(\vec{c}, \vec{b}, \vec{a}) = -(\vec{b}, \vec{a}, \vec{c});$$

2)
$$(t\vec{a}, \vec{b}, \vec{c}) = (\vec{a}, t\vec{b}, \vec{c}) = (\vec{a}, \vec{b}, t\vec{c}) = t \cdot (\vec{a}, \vec{b}, \vec{c});$$

3)
$$(\vec{a} + \vec{b}, \vec{c}, \vec{d}) = (\vec{a}, \vec{c}, \vec{d}) + (\vec{b}, \vec{c}, \vec{d})$$
 - смешанное произведение дистрибутивно относительно сложения векторов по первому аргументу;

- 4) $(\vec{a}, \vec{b} + \vec{c}, \vec{d}) = (\vec{a}, \vec{b}, \vec{d}) + (\vec{a}, \vec{c}, \vec{d})$ смешанное произведение дистрибутивно относительно сложения векторов по второму аргументу;
- 5) $(\vec{a}, \vec{b}, \vec{c} + \vec{d}) = (\vec{a}, \vec{b}, \vec{c}) + (\vec{a}, \vec{b}, \vec{d})$ (смешанное произведение дистрибутивно относительно сложения векторов по третьему аргументу;
- 6) !!! Пусть (x_1, x_2, x_3) , (y_1, y_2, y_3) , (z_1, z_2, z_3) координаты векторов \vec{x} , \vec{y} , \vec{z} соответственно в некотором (произвольном) базисе. Тогда они *компланарны* только тогда, когда:

$$\begin{vmatrix} x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \\ z_1 & z_2 & z_3 \end{vmatrix} = 0$$

$$7) \frac{([\bar{a}, \bar{b}], \bar{c}) = \bar{b}(\bar{a}, \bar{c}) - \bar{a}(\bar{b}, \bar{c}); (\bar{a}, [\bar{b}, \bar{c}]) = \bar{b}(\bar{a}, \bar{c}) - \bar{c}(\bar{a}, \bar{b})}{(\bar{a}, [\bar{b}, \bar{c}]) + (\bar{b}, [\bar{c}, \bar{a}]) + (\bar{c}, [\bar{a}, \bar{b}]) = 0}$$

9) Смешанное произведение векторов $\bar{a}, \bar{b}, \bar{d}$ равно объему параллелепипеда $V_{\text{пар.}} = |(\bar{a}, \bar{b}, \bar{d})|$: Доказательство:

Отложим векторы $\bar{a}, \bar{b}, \bar{d}$ от одной точки и построим параллелепипед на этих векторах как на сторонах. Обозначим $\bar{c} = [\bar{a} \times \bar{b}]$. В этом случае смешанное произведение можно записать как $\bar{a} \cdot \bar{b} \cdot \bar{d} = |\bar{c}| \cdot |\bar{d}| \cdot \cos\left(\angle(\bar{c}, \bar{d})\right) = |\bar{c}| \cdot \operatorname{Пр}_{\bar{c}} \bar{d}$, где $\operatorname{Пр}_{\bar{c}} \bar{d}$ - числовая проекция вектора \bar{d} на направление вектора \bar{c} .

Абсолютная величина числовой проекции $\Pi p_{\bar{c}} \bar{d}$ равна высоте параллелепипеда, построенного на векторах \bar{a} , \bar{b} , \bar{d} . Также $|\bar{c}| = |[\bar{a} \times \bar{b}]|$ представляет собой площадь параллелограмма, построенного на векторах \bar{a} и \bar{b} . Таким образом, модуль смешанного произведения $|\bar{a} \cdot \bar{b} \cdot \bar{d}| = |\bar{c}| \cdot |\Pi p_{\bar{c}} \bar{d}|$ - это произведение площади основания на высоту параллелепипеда, построенного на векторах \bar{a} , \bar{b} , \bar{d} .

$$V_{ extsf{nup}} = rac{1}{6} |(ar{a}, ar{b}, ar{c})|$$

$$V_{mempa \ni \partial pa} = \frac{1}{6} \cdot \begin{vmatrix} \overrightarrow{a} \cdot \overrightarrow{b} \cdot \overrightarrow{d} \end{vmatrix}$$

www.cleverstudents.ru

31) Различные форму уравнения прямой на плоскости.

Прямая на плоскости.

• Общее уравнение прямой в декартовой системе координат:

Ax + By + C = 0, где x, y - координаты точек прямой, A, B, C - действительные числа при условии $A^2 + B^2 \neq 0$:

• Нормальный вектор к прямой (нормаль):

• Уравнение прямой с угловым коэффициентом:

$$y = kx, k = \tan(\alpha) = \frac{y_2 - y_1}{x_2 - x_1}$$

• Уравнение прямой по точке и угловому коэффициенту:

 $y = y_0 + k(x - x_0)$, где $P(x_0, y_0)$ принадлежит прямой.

• Уравнение прямой, проходящей через 2 точки:

$$\left. egin{array}{c} rac{y-y_1}{y_2-y_1} = rac{x-x_1}{x_2-x_1} \end{array}
ight.$$
 или $\left. egin{array}{cccc} x & y & 1 \ x_1 & y_1 & 1 \ x_2 & y_2 & 1 \end{array}
ight| = 0.$

• Уравнение прямой, проходящей через заданную точку, ⊥ заданному вектору:

 $A(x-x_0)+B(y-y_0)=0$, где $\vec{n}(A,B)$ -перпендикулярный ненулевой вектор; $M(x_0,y_0)$.

• Уравнение прямой, проходящей через заданную точку, || заданному вектору:

 $\frac{x-x_0}{m} = \frac{y-y_0}{n}$ – каноническое уравнение прямой на плоскости, где $\vec{a} \neq 0$ – парал. вектор $\vec{a}(m,n)$, $M(x_0,y_0)$.

• Уравнение прямой в параметрической форме:

$$\int x = a_1 + tb_1$$

 $y = a_2 + tb_2$, где (a_1, a_2) являются координатами некоторой известной точки A, лежащей на прямой, (x,y) - координаты произвольной точки прямой, (b_1, b_2) - координаты вектора b, параллельного данной прямой, t - параметр.

• Уравнение прямой в отрезках:

32) Нормальное уравнение прямой на плоскости. Расстояние от точки до прямой. $xcos\beta + ysin\beta - p = 0$. Здесь $cos\beta$ и $sin\beta = cos(90° - \beta)$ - направляющие косинусы вектора нормали. Параметр р - расстоянию прямой от начала координат.

$$cos\alpha \cdot x + cos\beta \cdot y + cos\gamma \cdot z - p = 0$$

От общего уравнения можно перейти к нормальному уравнению, разделив члены уравнения на $\sqrt{A^2 + B^2}$, выбрав подходящий знак, который определяется при помощи противоположности знака слагаемого C.

Выведение:

Фиксируем на плоскости систему координат Oxy, где задаем прямую с точкой, через которую она проходит с нормальным вектором прямой. Нормальному вектору прямой дадим обозначение \overrightarrow{n} . Его начало обозначено точкой O. координатами являются $\cos \alpha$ и $\cos \beta$, углы которых расположены между вектором \overrightarrow{n} и положительными осями Ox и Oy. Это запишется так: $\overrightarrow{n} = \begin{pmatrix} \cos \alpha, & \cos \beta \end{pmatrix}$. Прямая проходит через точку A с расстоянием равным p, где $p \geq 0$ от начальной точки O при положительном направлении вектора \overrightarrow{n} . Если p = 0, тогда A считается совпадающей с точкой координат. Отсюда имеем, что |OA| = p. Получаем уравнение, при помощи которого задается прямая.

Имеем, что точка с координатами M (x, y) расположена на прямой тогда и только тогда, когда числовая проекция вектора \overrightarrow{OM} по направлению вектора \overrightarrow{n} равняется p, значит при выполнении условия $np_{\overrightarrow{N}}\overrightarrow{OM}=p$.

33) Различные формы уравнения плоскости в пространсве.

Плоскость – это геометрическая фигура, состоящая из отдельных точек. Каждой точке в трехмерном пространстве соответствуют координаты, которые задаются тремя числами. Уравнение плоскости устанавливает зависимость между координатами всех точек.

- Общее уравнения плоскости:
 - Всякая плоскость в прямоугольной системе координат O_{xyz} в трехмерном пространстве может быть задана уравнением вида Ax + By + Cz + D = 0, где A, B, C, D некоторые действительные числа, которые одновременно не равны нулю. Если все неравны 0, то уравнение полное. Коэффициенты A, B, C координаты нормального вектора плоскости \bar{n} . $A(x-x_0) + B(y-y_0) + C(z-z_0) + D = 0$, (x_0, y_0, z_0) через эту точку проходит плоскость.
- Уравнением плоскости в отрезках:
 - $\frac{z}{a} + \frac{y}{b} + \frac{z}{c} = 1$, где a, b, c отличные от нуля действительные числа. Абсолютные величины чисел a, b и c равны длинам отрезков, которые плоскость отсекает на координатных осях Ох, Оу и Оz соответственно, считая от начала координат. Знак чисел a, b и c показывает, в каком направлении (положительном или отрицательном) откладываются отрезки на координатных осях. Координаты точек (a, 0, 0), (0, b, 0), (0, 0, c) удовлетворяют уравнению плоскости в отрезках.
- Нормальное уравнение плоскости в пространстве: Рассмотрим плоскость, которая удалена на расстояние p ($p \ge 0$) единиц от начала координат в положительном направлении нормального вектора

плоскости \bar{n} . Будем считать, что длина вектора \bar{n} равна единице. Тогда его координаты равны направляющим косинусам, то есть, $\bar{n}=(cos\alpha,cos\beta,cos\gamma)$, причем $|\bar{n}|=\sqrt{cos^2\alpha+cos^2\beta+cos^2\gamma}$. Насстояние от точки до плоскости: |ON|, то есть, точка N лежит на плоскости и длина отрезка ON равна р.

По определению скалярного произведения векторов \bar{n} и \overline{OM} = (x, y, z): $(\overline{n}, \overline{OM}) = |\overline{n}| \cdot |\overline{OM}| \cdot cos \angle (\overline{n}, \overline{OM}) = |\overline{n}| \prod p_{\overline{n}} \overline{OM} = p$ В координатной форме: $(\bar{n}, \overline{OM}) = \cos\alpha \cdot x + \cos\beta \cdot y + \cos\gamma \cdot z$ Уравнением плоскости в нормальном виде:

$$cos\alpha \cdot x + cos\beta \cdot y + cos\gamma \cdot z - p = 0$$

- Уравнение плоскости по трём точкам, не лежащим на одной прямой $M(x_1, y_1, z_1)$, $N(x_2, y_2, z_2)$,
- $\overrightarrow{c} = \left[\overrightarrow{a} imes \overrightarrow{b}
 ight] = \left| egin{array}{ccc} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \ a_x & a_y & a_z \ b_x & b_u & b_z \end{array}
 ight|$ 1. Находим векторное произведение векторов \overline{MN} и \overline{MP} (должны быть не коллениарны), т.е. находим вектор, перпендикулярный векторам, лежащим в этой плоскости, а значит нормаль к этой плоскости.
- 2. Записываем общее уравнение плоскости по точке и перпендикулярному вектору.
- 34) Нормальное уравнение плоскости в пространстве, расстояние от точки до плоскости. Нормальное уравнение см. прерыдущий пункт.

Расстояние от точки $M_1(x_1, y_1, z_1)$ до плоскости X – длина перпендикуляра, опущенного из точки на эту плоскость.

Пусть H_1 - основание перпендикуляра, проведенного из точки M_1 к плоскости X. Она - точка пересечения заданной плоскости X и прямой, проходящей через точку M_1 , перпендикулярно к плоскости $X \to \cos$ составив уравнение прямой, проходящей через заданную точку перпендикулярно к заданной плоскости (нормаль к плоскости – напрявляющий вектор данной прямой). От канонического уравнения прямой переходим к прямой, заданной пересечением двух плоскостей (для этого каждую из дробей приравниваем к какому-то параметру λ и и разрешаем относительно параметров). Далее решаем систему их трёх уравнений (+уравнение исходной плоскости), находим точку H_1 и расстояние между ней и M_1 .

9

Также можно через:

Пусть плоскость задана уравнением:

$$A \cdot x + B \cdot y + C \cdot z + D = 0$$

Точка имеет координаты:

$$(x_0;y_0;z_0)$$

Тогда расстояние от точки до плоскости можно найти по формуле:

$$p=rac{A\cdot x_0+B\cdot y_0+C\cdot z_0+D}{\sqrt{A^2+B^2+C^2}}$$

35) Различные формы уравнения прямой в пространстве.

• Прямая, образованная пересечением двух плоскостей:

• Параметрические уравнения прямой в пространстве:

$$\begin{cases} x = x_1 + a_x \cdot \lambda \\ y = y_1 + a_y \cdot \lambda \end{cases}$$

Где x_1, x_2, x_3 – координаты некоторой точки прямой, a_x, a_y, a_z (одновременно не равны нулю) - соответствующие координаты направляющего вектора прямой, а λ - некоторый $y = y_1 + a_y \cdot \lambda$ параметр, который может принимать любые действительные значения.

Проходит через точку $M(x_1, y_1, z_1)$ и имеющая направляющий вектор $\vec{a} = (a_x, a_y, a_z)$

• Канонические уравнения прямой в пространстве: Разрешив каждое из параметрических уравнений прямой в параметрическом виде, относительно параметра λ можно перейти к:

$$\frac{x - x_1}{a_x} = \frac{y - y_1}{a_y} = \frac{z - z_1}{a_z}$$

36) Взаимное расположение двух плоскостей в пространстве.

Пусть плоскости π_1 и π_2 заданы общими уравнениями:

$$\alpha_1: A_1x + B_1y + C_1z + D_1 = 0,$$
 $\alpha_2: A_2x + B_2y + C_2z + D_2 = 0,$

 \overline{n}_1 и \overline{n}_2 — нормальные векторы этих плоскостей соответственно.

Плоскости α_1 и α_2 параллельны или совпадают тогда и только тогда, когда векторы \overline{n}_1 и \overline{n}_2 коллинеарны. Записывая условие коллинеарности векторов, получаем: если $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}$, то

плоскости параллельны; если $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2}$, то плоскости совпадают.

Если же координаты векторов \overline{n}_1 и \overline{n}_2 не пропорциональны, то плоскости пересекаются по некоторой прямой l. Очевидно, что

$$\pi_1 \perp \pi_2 \iff \overline{n}_1 \perp \overline{n}_2 \iff \overline{n}_1 \cdot \overline{n}_2 = 0$$
.

Отсюда получаем условие перпендикулярности плоскостей

$$A_1 A_2 + B_1 B_2 + C_1 C_2 = 0.$$

Как и для двух прямых на плоскости можно вывести следующую формулу:

$$\cos \varphi = \frac{\overline{n}_1 \cdot \overline{n}_2}{\left|\overline{n}_1\right| \cdot \left|\overline{n}_2\right|} = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}},$$

где ϕ — один из смежных двугранных углов между плоскостями.

Расстояние от точки до прямой.

Расстояние d от точки $M_0(x_0, y_0, z_0)$ до плоскости α : Ax + By + Cz + D = 0 вычисляется по формуле:

$$d = \frac{\left| Ax_0 + By_0 + Cz_0 + D \right|}{\sqrt{A^2 + B^2 + C^2}}.$$

37) Взаимное расположение прямой и плоскости, угол между прямой и плоскостью.

• Параллельность прямой и плоскости:

$$\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$$
 и $Ax + By + Cz + D = 0$, если:

Скалярное произведение нормали плососкости и направляющего вектора прямой равно 0, т.е. $\bar{n} \cdot \bar{s} = 0$ или Aa + Bb + Cc = 0.

• Перпендикулярность прямой и плоскости:

Если вектор нормали паралелен направляющему вектору прямой $(\bar{n} \parallel \bar{s})$, т.е. их векторное произведение равно

0 или
$$\frac{A}{a} = \frac{B}{b} = \frac{C}{c}$$

• Точка пересечения прямой и плоскости:
$$\frac{x-x_1}{m} = \frac{y-y_1}{n} = \frac{z-z_1}{p}$$
 и $Ax + By + Cz + D = 0$

1. Находим параметрические уравнения прямой. Для этого полагаем: $\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p} = t$, откуда:

$$\begin{cases} x = x_1 + mt \\ y = y_1 + nt \\ z = z_1 + pt \end{cases}$$

- 2. Подставляя эти выражения для x, y, z в уравнение плоскости и решая его относительно t. Находим значение параметра $t = t_0$, при котором происходит пересечение прямой и плоскости.
- 3. Найденное значение подставляем в параметрические уравнения прямой и получаем искомые координаты точки пересечения:

$$\begin{cases} x_0 = x_1 + mt_0 \\ y_0 = y_1 + nt_0 \\ z_0 = z_1 + pt_0 \end{cases}$$

Если в результате решения уравнения относительно параметра t получим противоречие, то прямая и плоскость параллельны.

• Угол между прямой и плоскостью:

Углом между прямой и плоскостью называют угол между этой прямой и ее проекцией на плоскость, причём прямая не перпендикулярна к ней. Значит, для прямой с направляющим вектором $\bar{s} = \{l; m; n\}$ и плоскостью, заданной уравнением α : Ax + By + Cz + D = 0 (нормаль $\overline{q}\{A; B; C\}$), угол будет равен:

$$sin\varphi = \frac{|A \cdot l + B \cdot m + C \cdot n|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{l^2 + m^2 + n^2}}$$

Получение формулы: из уравнения прямой можно найти направляющий вектор прямой, из уравнения плоскости вектор нормаль плоскости, из формул скалярного произведения векторов найдем косинус угла между нормалью к плоскости и направляющим вектором прямой $cos\psi = \frac{(\bar{q}\cdot\bar{s})}{|\bar{s}|\cdot|\bar{a}|}$, а т.к. $\varphi = 90^{\circ} - \psi$, то синус угла между прямой и плоскостью $sin\varphi = cos\psi$.

38) Взаимное расположение двух прямых в пространстве.

Возможны четыре различных случая расположения двух прямых в пространстве:

- прямые скрещивающиеся, т.е. не лежат в одной плоскости;
- прямые пересекаются, т.е. лежат в одной плоскости и имеют одну общую точку;
- прямые параллельные, т.е. лежат в одной плоскости и не пересекаются;
- прямые совпадают.

 $l_1: \frac{x-x_1}{a_1} = \frac{y-y_1}{b_1} = \frac{z-z_1}{c_1}, l_2: \frac{x-x_2}{a_2} = \frac{y-y_2}{b_2} = \frac{z-z_2}{c_2} \,. \ \Gamma$ де $M_1(x_1,y_1,z_1), M_2(x_2,y_2,z_2)$ - точки, принадлежащие прямым l_1 и l_2 соответственно, а $\overrightarrow{p_1}=a_1 \vec{i}+b_1 \vec{j}+c_1 \vec{k}$, $\overrightarrow{p_2}=a_2 \vec{i}+b_2 \vec{j}+c_2 \vec{k}$ - направляющие векторы. Обозначим через $\vec{m} = \vec{M_1} \vec{M_2} = (x_2 - x_1)\vec{i} + (y_2 - y_1)\vec{j} + (z_2 - z_1)\vec{k}$ - вектор, соединяющий заданные точки.

Признаки расположения прямых:

- прямые l_1 и l_2 скрещивающиеся ⇔ векторы \overrightarrow{m} , $\overrightarrow{p_1}$, $\overrightarrow{p_2}$ не компланарны;
- прямые l_1 и l_2 пересекаются \Leftrightarrow векторы \overrightarrow{m} , $\overrightarrow{p_1}$, $\overrightarrow{p_2}$ компланарны и векторы $\overrightarrow{p_1}$, $\overrightarrow{p_2}$ не коллинеарны;
- прямые l_1 и l_2 параллельные \Leftrightarrow векторы $\overrightarrow{p_1}$ и $\overrightarrow{p_2}$ коллинеарны, а векторы \overrightarrow{m} и $\overrightarrow{p_2}$ не коллинеарны;
- прямые l_1 и l_2 совпадают ⇔ векторы \overrightarrow{m} , $\overrightarrow{p_1}$, $\overrightarrow{p_2}$ коллинеарны.

Эти условия можно записать, используя свойства смешанного и векторного произведений:

$$(\overrightarrow{m}, \overrightarrow{p_1}, \overrightarrow{p_2}) = \begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}.$$

Равенство нулю смешанного произведения векторов является необходимым и достаточным условием

- прямые l_1 и l_2 скрещивающиеся ⇔ определитель отличен от нуля;
- прямые l_1 и l_2 пересекаются \Leftrightarrow определитель равен нулю, а вторая и третья его строки не

пропорциональны, т.е. $rang\begin{pmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{pmatrix} = 2;$

— прямые l_1 и l_2 параллельные \Leftrightarrow вторая и третья строки определителя пропорциональны, т.е.

 $ranginom{a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2}=1,$ а первые две строки не пропорциональны, т.е. $ranginom{x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_2 & c_2}=2;$

- прямые
$$l_1$$
 и l_2 совпадают \Leftrightarrow все строки определителя пропорциональны, т.е. $rang\begin{pmatrix} x_2-x_1 & y_2-y_1 & z_2-z_1 \\ a_1 & b_2 & c_2 \\ a_2 & b_2 & c_2 \end{pmatrix}=1.$

Вывод формулы Эйлера.

http://portal.tpu.ru:7777/SHARED/k/KONVAL/Sites/Russian sites/ComplexN/006.htm

$$e^{i\varphi} = \cos\varphi + i\sin\varphi. \tag{1}$$

Доказательство формулы Эйлера основано на представлении этих функций в виде степенных рядов и при первом чтении может быть опущено без ущерба для понимания последующего изложения.

$$\cos \varphi = \operatorname{Re}(e^{i\varphi}),$$

 $\sin \varphi = \operatorname{Im}(e^{i\varphi}).$ (2)

Выполним в формуле Эйлера замену $\phi \rightarrow -\phi$:

$$e^{-i\varphi} = \cos\varphi - i\sin\varphi. \tag{3}$$

Выполнив почленное сложение и вычитание выражений в обеих частях равенств (1) и (3), получим

$$e^{i\varphi} + e^{-i\varphi} = 2\cos\varphi,$$

$$e^{i\varphi} - e^{-i\varphi} = 2i \sin \varphi$$

что влечет

$$\cos \varphi = \frac{1}{2} \left(e^{i\varphi} + e^{-i\varphi} \right),$$

$$\sin \varphi = \frac{1}{2i} \left(e^{i\varphi} - e^{-i\varphi} \right).$$
(4)

Таким образом, тригонометрические функции $\sin \phi$ и $\cos \phi$ представлены в виде линейных комбинаций экспоненциальных функций $e^{i\phi}$ и $e^{-i\phi}$

Тангенс аргумента ϕ выражается через $e^{i2\phi}$

$$\label{eq:phi} \operatorname{tg} \phi = \frac{\sin \phi}{\cos \phi} = \frac{e^{\mathit{i}\phi} - e^{-\mathit{i}\phi}}{\mathit{i} \left(e^{\mathit{i}\phi} + e^{-\mathit{i}\phi} \right)} = \frac{e^{\mathit{i}2\phi} - 1}{\mathit{i} \left(e^{\mathit{i}2\phi} + 1 \right)}$$

Оглавление

Аналитическая геометрия	1
Общие сведения	
28) Скалярное произведение векторов	1
29) Векторное произведение векторов, его свойства	2
30) Смешанное произведение векторов и его свойства.	5
31) Различные форму уравнения прямой на плоскости	7
32) Нормальное уравнение прямой на плоскости. Расстояние от точки до прямой	8
33) Различные формы уравнения плоскости в пространсве	8
34) Нормальное уравнение плоскости в пространстве, расстояние от точки до плоскости	9
35) Различные формы уравнения прямой в пространстве	10
36) Взаимное расположение двух плоскостей в пространстве	11
37) Взаимное расположение прямой и плоскости, угол между прямой и плоскостью	11
38) Взаимное расположение двух прямых в пространстве.	13
Вывод формулы Эйлера	13