Data Mining Assignment.

Submitted By: Amrutha Dinesh CS A Roll no: 17

```
# Data Mining Assignment.
# Aim: To perform data preprocessing and do a classification.
#About: Data preprocessing using median is done for Titanic dataset. Random
Forest classifier is used for classification
# Submitted By : Amrutha Dinesh CS A Roll no:17
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list
all files under the input directory
import seaborn as sns
import os
import matplotlib.pyplot as plt
for dirname, _, filenames in os.walk('/kaggle/input'):
   for filename in filenames:
       print(os.path.join(dirname, filename))
# You can write up to 20GB to the current directory (/kaggle/working/) that
gets preserved as output when you create a version using "Save & Run All"
# You can also write temporary files to /kaggle/temp/, but they won't be saved
outside of the current session
/kaggle/input/titanic/train.csv
/kaggle/input/titanic/test.csv
/kaggle/input/titanic/gender_submission.csv
                                                                            [6]:
train_data = pd.read_csv("/kaggle/input/titanic/train.csv")
train_data.head()
                                                                            [6]:
                                                                         Embark
   Passenge Survive
                    Pcla
                                                 Par
                                                                   Cabi
                                                      Ticket
                           Name
                                  Sex
                                                              Fare
                                                                            ed
```

0	1	0	3	Braund, Mr. Owen Harris	male	22. 0	1	0	A/5 21171	7.250 0	NaN	S
1	2	1	1	Cuming s, Mrs. John Bradley (Florenc e Briggs Th	femal e	38. 0	1	0	PC 17599	71.28 33	C85	С
2	3	1	3	Heikkine n, Miss. Laina	femal e	26. 0	0	0	STON/O 2. 310128 2	7.925 0	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	femal e	35. 0	1	0	113803	53.10 00	C12 3	S
4	5	0	3	Allen, Mr. William Henry	male	35. 0	0	0	373450	8.050 0	NaN	S

test_data = pd.read_csv("/kaggle/input/titanic/test.csv")
test_data.head()

[7]:

[7]:

	Passengerl d	Pclas s	Name	Sex	Ag e	SibS p	Parc h	Ticket	Fare	Cabi n	Embarke d
0	892	3	Kelly, Mr. James	male	34. 5	0	0	330911	7.8292	NaN	Q

1	893	3	Wilkes, Mrs. James (Ellen Needs)	femal e	47. 0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62. 0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27. 0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen , Mrs. Alexande r (Helga E Lindqvist	femal e	22. 0	1	1	310129 8	12.287 5	NaN	S

Data Exploration

train_data.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890

Data columns (total 12 columns):

Column Non-Null Count Dtype

0 Passengerld 891 non-null int64

Survived 891 non-null int64

2 Pclass 891 non-null int64

3 Name 891 non-null object

4 Sex 891 non-null object

5 Age 714 non-null float64

6 SibSp 891 non-null int64

7 Parch 891 non-null int64

8 Ticket 891 non-null object

9 Fare 891 non-null float64

10 Cabin 891 non-null object

11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

Here I'am separating the attributes to those having numerical value and those that does'nt

[31]:

```
#distributions for all numeric variables
for i in df_num.columns:
   plt.hist(df_num[i])
   plt.title(i)
   plt.show()
```


We find that only Age is normalized and the others Sibsp, Fare and Parch needs normalization.

#Finding out how the different attributes relate to survival
compare survival rate across Age, SibSp, Parch, and Fare
pd.pivot_table(train_data, index = 'Survived', values =
['Age','SibSp','Parch','Fare'])

Age Fare Parch SibSp

Survived

- **0** 30.62 22.11788 0.32969 0.55373 6179 7 0 4
- **1** 28.34 48.39540 0.46491 0.47368 3690 8 2 4

Data Preprocessing

[42]:

```
#Data set is concatenated for data preprocessing
all_data = pd.concat([train_data,test_data])
```

#drop null 'embarked' rows. Only 2 instances of this in training and 0 in test all_data.dropna(subset=['Embarked'],inplace = **True**)

#The age value is substituted with its median, the fare value is also substituted with median

all_data.Age = all_data.Age.fillna(training.Age.median())

all_data.Fare = all_data.Fare.fillna(training.Fare.median())

train_data.describe()

	Passengerl d	Survived	Pclass	Age	SibSp	Parch	Fare
coun t	891.000000	891.00000 0	891.00000 0	714.00000 0	891.00000 0	891.00000 0	891.00000 0
mea n	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208

std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.32920 0

print(train_data.isnull().sum())

Passengerld Survived 0 0 **Pclass** Name 0 Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 Embarked 2 dtype: int64

#We found that 687 of the Cabin values are null so we can replace it with a value 'unknown' train_data.Cabin = train_data.Cabin.fillna('unknown')

train_data.Cabin = train_data.Cabin.fillna('unknown'
print(train_data.isnull().sum())

Passengerld 0 Survived 0 Pclass 0 Name 0

```
Sex
          0
Age
          177
SibSp
           0
Parch
           0
Ticket
           0
Fare
           0
Cabin
           0
Embarked
             2
dtype: int64
```

Classification

```
#Used RandomForest Classifier
from sklearn.ensemble import RandomForestClassifier

y = train_data["Survived"]

features = ["Pclass", "Sex", "SibSp", "Parch"]

X = pd.get_dummies(train_data[features])

X_test = pd.get_dummies(test_data[features])

model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(X, y)
predictions = model.predict(X_test)

output = pd.DataFrame({'PassengerId': test_data.PassengerId, 'Survived': predictions})
output.to_csv('submission.csv', index=False)
print("The predicted outputs are displayed below")
```

The predicted outputs are displayed below

```
output.head(10)
```

[20]:

Passengerld Survived

0 892 0

1	893	1
2	894	0
3	895	0
4	896	1
5	897	0
6	898	1
7	899	0
8	900	1
9	901	0
