Лекции 15-16

Применение дифференциального исчисления.

Теоремы о дифференцируемых функциях

Предположим, что функция y = f(x) определена в некоторой окрестности точки x_0 .

Определение. Точка x_0 называется *точкой минимума (максимума)* функции y = f(x), если существует такая окрестность точки x_0 , для каждой точки $x \neq x_0$ которой выполняется неравенство $f(x) > f(x_0)$

$$(f(x) < f(x_0)).$$

Точки максимума и минимума функции называются ее точками экстремума. Значение функции в точке минимума (максимума) называется минимумом (максимумом) этой функции. Минимумы и максимумы функции называются ее экстремумами.

Теорема (Ферма). Пусть функция y = f(x) определена на (a,b) Предположим, что функция y = f(x) имеет локальный экстремум в точке x_0

интервала (a,b). Тогда, если в точке x_0 существует производная, то она равна нулю, т.е. $f'(x_0) = 0$.

◄Доказательство. Пусть в точке x_0 достигается локальный максимум. Тогда $f(x) - f(x_0) < 0 \ \forall x$ из окрестности x_0 .

Пусть
$$x > x_0 \Rightarrow x - x_0 > 0$$
, тогда $\frac{f(x) - f(x_0)}{x - x_0} < 0 \Rightarrow f'_{np}(x_0) \le 0$.

Пусть $x < x_0 \Rightarrow x - x_0 < 0$, тогда $\frac{f(x) - f(x_0)}{x - x_0} > 0 \Rightarrow f'_{n}(x_0) \ge 0$.

Поскольку
$$f'(x_0) = f'_{np}(x_0) = f'_{\pi}(x_0)$$
, то $f'(x_0) = 0$.

Геометрический смысл теоремы Ферма

Если функция y = f(x) на интервале (a,b) имеет локальный экстремум, то касательная, проведенная к графику функции в этой точке, параллельна оси Ox.

Следствие (необходимое условие экстремума). Если x_0 – точка экстремума функции y = f(x), то $f'(x_0) = 0$ или $f'(x_0)$ не существует.

Определение. Внутренние точки области определения функции y = f(x), в которых $f'(x_0) = 0$ называются *стационарными точками* этой функции.

Не всякая стационарная точка является точкой экстремума.

Пример. $y = x^3$, $y' = 3x^2$, $y' = 0 \Leftrightarrow x = 0$. Но x = 0 не является точкой экстремума.

Определение. Внутренние точки области определения функции y = f(x), в которых $f'(x_0) = 0$ или $f'(x_0)$ не существует, называются *критическими точками* этой функции.

Пример. $y = |x|, x \in (-1,1)$. Точка $x_0 = 0$ является критической, f'(0) не существует.

Таким образом, каждая точка экстремума является критической.

Теорема (теорема Ролля). Пусть на отрезке [a,b] определена функция f(x), причем:

- 1. f(x) непрерывна на отрезке[a,b];
- 2. f(x) дифференцируема на интервале (a,b);
- 3. f(a) = f(b).

Тогда существует точка $c \in (a,b)$, в которой f'(c) = 0.

◄Доказательство. Поскольку функция f(x) непрерывна на [a,b], то по второй теореме Вейерштрасса функция f(x) имеет на [a,b] наименьшее и наибольшее значение: $M = \max_{x \in [a,b]} f(x)$, $m = \min_{x \in [a,b]} f(x)$. Если M = m, то f(x) = const и f'(x) = 0 $\forall x \in (a,b)$. Пусть M > m. Тогда, по крайней мере одно из чисел M или m отлично от числа f(a) = f(b). Допустим, что $M \neq f(a)$. Тогда наибольшее значение M достигается в некоторой точке $c \in (a,b)$. Значит, c — точка локального максимума. По теореме Ферма f'(c) = 0. Случай $m \neq f(a)$ рассматривается аналогично. \blacktriangleright

Теорема неверна, если нарушено условие дифференцируемости.

Геометрический смысл теоремы Ролля

Геометрически теорема Ролля означает, что у графика непрерывной на отрезке [a,b] и дифференцируемой внутри этого отрезка функции, принимающей на его концах равные значения f(a) = f(b), существует точка (c;f(c)), в которой касательная параллельна оси Ох.

Теорема (теорема Лагранжа).

Пусть на отрезке [a,b] определена функция f(x), причем:

- 1. f(x) непрерывна на отрезке [a,b];
- 2. f(x) дифференцируема на интервале (a,b).

Тогда существует точка $c \in (a,b)$ такая, что справедлива формула

$$f(b)-f(a)=f'(c)(b-a)$$

(формула Лагранжа или формула конечных приращений).

Геометрический смысл теоремы Лагранжа

Величина $\frac{f(b)-f(a)}{b-a}$ является угловым коэффициентом секущей, проходящей через точки A (a;f(a)) и B (b;f(b)) графика функции f(x), а f'(c)— угловой коэффициент касательной к графику в точке (c;f(c)). Из теоремы Лагранжа следует, что существует точка "c" такая, что касательная к графику в точке C (c;f(c)) параллельна секущей AB. Таких точек может быть и несколько, но, по крайней мере, одна всегда существует.

Теорема (теорема Коши). Пусть функции f(x) и g(x) непрерывны на отрезке [a,b] и дифференцируемы на интервале (a,b). Пусть, кроме того, $g'(x) \neq 0$. Тогда существует точка $c \in (a,b)$ такая, что справедлива формула

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}$$

(формула Коши или обобщенная формула конечных приращений).

Замечание. Отметим, что $g(b) \neq g(a)$, так как в противном случае по теореме Ролля нашлась бы точка x_0 , в которой $g'(x_0) = 0$, что противоречит условию теоремы.

◀Доказательство. Рассмотрим функцию

$$F(x) = [f(b)-f(a)]g(x)-[g(b)-g(a)]f(x).$$

Функция F(x) непрерывна на отрезке [a,b] и дифференцируема на интервале (a,b). Легко проверить, что F(a) = F(b). Следовательно, по теореме Ролля найдется точка $c \in (a,b)$ такая, что F'(c) = 0. Очевидно,

$$F'(x) = [f(b) - f(a)]g'(x) - [g(b) - g(a)]f'(x),$$

$$F'(c) = [f(b) - f(a)]g'(c) - [g(b) - g(a)]f'(c) = 0.$$

Следовательно, [f(b)-f(a)]g'(c)=[g(b)-g(a)]f'(c), или

$$\frac{f(b)-f(a)}{g(b)-g(a)} = \frac{f'(c)}{g'(c)}. \blacktriangleright$$

 \blacktriangleleft Доказательство теоремы Лагранжа. Положим g(x) = x в теореме Коши. Тогда

$$\frac{f(b)-f(a)}{b-a} = \frac{f'(c)}{1},$$

T.e.
$$f(b) - f(a) = f'(c)(b-a)$$
. ►