COMP5211: Machine Learning

Lecture 4

Gradient descent convergence rate

• Suppose f is convex and differentiable and its gradient is lipshcitz continuous, then if we run gradient for t iterations with a fixed step $\alpha \leq \frac{1}{I}$, it will yield a solution that satisfies:

•
$$f(w^t) - f(w^*) \le \frac{\|w^0 - w^*\|_2^2}{2\alpha t}$$

• Proof:

$$f(w^{t+1}) \leq f(w^t) + \nabla f(w^t)^T (w^{t+1} - w^t) + \frac{1}{2} \nabla^2 f(w^t) \| w^{t+1} - w^t \|^2$$

$$= f(w^t) + \nabla f(w^t)^T (w^{t+1} - w^t) + \frac{1}{2} L \| w^{t+1} - w^t \|^2$$

$$= f(w^t) + \nabla f(w^t)^T (w^t - \alpha \nabla f(w^t) - w^t) + \frac{1}{2} L \| w^t - \alpha \nabla f(w^t) - w^t \|^2$$

$$= f(x) - (1 - \frac{1}{2} L\alpha)\alpha \| \nabla f(x) \|_2^2 \leq f(w^t) - \frac{1}{2} \alpha \| \nabla f(x) \|_2^2$$

Large-scale problem

Machine learning: usually minimizing the training loss:

$$\min_{w} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(w^T x_n, y_n) \right\} := f(w) \text{ (linear model)}$$

$$\min_{w} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(f_{W}(x_n), y_n) \right\} := f(w) \text{ (general hypothesis)}$$

- ℓ : loss function (e.g., $\ell(a,b) = (a-b)^2$)
- Gradient descent:

Large-scale problem

• Machine learning: usually minimizing the training loss:

$$\min_{w} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathcal{E}(w^T x_n, y_n) \right\} := f(w) \text{ (linear model)}$$

$$\min_{w} \left\{ \frac{1}{N} \sum_{n=1}^{N} \mathcal{C}(f_{W}(x_n), y_n) \right\} := f(w) \text{ (general hypothesis)}$$

- ℓ : loss function (e.g., $\ell(a,b) = (a-b)^2$)
- Gradient descent:

$$\begin{array}{ccc} w \leftarrow w - \eta & \nabla f(w) \\ & & & \\ & &$$

• In general,
$$f(w) = \frac{1}{N} \sum_{n=1}^{N} f_n(w)$$
,

• Each $f_n(w)$ only depends on (x_n, y_n)

Stochastic gradient

• Gradient:
$$\nabla f(w) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w)$$
,

- Each gradient computation needs to go through all training samples
 - Slow when millions of samples
- Faster way to compare "approximate gradient"?

Optimization Stochastic gradient

• Gradient:
$$\nabla f(w) = \frac{1}{N} \sum_{n=1}^{N} \nabla f_n(w)$$
,

- Each gradient computation needs to go through all training samples
 - Slow when millions of samples
- Faster way to compare "approximate gradient"?
- Use stochastic sampling:
 - Sample a small subset $B \subseteq \{1,...,N\}$
 - Estimated gradient

•
$$\nabla f(w) \approx \frac{1}{B} \sum_{n \in B} \nabla f_n(w)$$

• |B|: batch size

Stochastic gradient descent

Stochastic Gradient Descent (SGD)

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize **w** (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a small batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \frac{\eta^t}{|B|} \sum_{n \in B} \nabla f_n(\mathbf{w})$$

• Extreme case: $|B| = 1 \Rightarrow$ Sample one training data at a time

Logistic Regression by SGD

Logistic regression

$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} \log(1 + e^{-y_n w^T x_n})$$
• $f_n(w)$

SGD for Logistic Regression

- Input: training data $\{x_n, y_n\}_{n=1}^N$
- Initialize w (zero or random)
- For $t = 1, 2, \cdots$
 - Sample a batch $B \subseteq \{1, \dots, N\}$
 - Update parameter

$$\mathbf{w} \leftarrow \mathbf{w} - \eta^t \frac{1}{|B|} \sum_{i \in B} \frac{-y_n \mathbf{x}_n}{1 + e^{y_n \mathbf{w}^T \mathbf{x}_n}}$$

Why SGD works?

• Stochastic gradient is an unbiased estimator of full gradient:

$$\cdot \mathbb{E}\left[\frac{1}{|B|}\sum_{n\in B}\nabla f_n(w)\right] = \frac{1}{N}\sum_{n=1}^N \nabla f_n(w) = \nabla f(w)$$

Why SGD works?

• Stochastic gradient is an unbiased estimator of full gradient:

$$\mathbb{E}\left[\frac{1}{|B|}\sum_{n\in B}\nabla f_n(w)\right] = \frac{1}{N}\sum_{n=1}^N \nabla f_n(w) = \nabla f(w)$$

- Each iteration updated by
 - Gradient + zero-mean noise

OptimizationStochastic gradient descent

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?

OptimizationStochastic gradient descent

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers

Stochastic gradient descent

- In gradient descent, η (step size) is a fixed constant
- Can we use fixed step size for SGD?
- SGD with fixed step size cannot converge to global/local minimizers

• If
$$w^*$$
 is the minimizer, $\nabla f(w^*) = \frac{1}{N} \sum_{n=1}^N \nabla f_n(w^*) = 0$,

• But
$$\frac{1}{|B|} \sum_{n \in B} \nabla f_n(w) \neq 0$$
 if B is a subset

• (Even if we got minimizer, SGD will move away from it)

Stochastic gradient descent: step size

- To make SGD converge:
 - Step size should decrease to 0
 - $\eta^t \rightarrow 0$
 - Usually with polynomial rate $\eta^t \approx t^{-a}$ with constant a
- Step decay of learning rate

learning rate scheduling

Other cyclic learning rate scheduling

Stochastic gradient descent vs Gradient descent

- Stochastic gradient descent:
 - Pros:
 - Cheaper computation per iteration
 - Faster convergence in the beginning
 - Cons:
 - Less stable, slower final convergence
 - Hard to tune step size

Ex. Perception learning

- Given a classification data $\{x_n, y_n\}_{n=1}^N$
- Learning a linear model:

$$\min_{w} \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(w^T x_n, y_n)$$

Consider the loss:

•
$$\mathcal{E}(w^T x_n, y_n) = \max(0, -y_n w^T x_n)$$

What' the gradient?

Ex. Perception learning

•
$$\mathcal{E}(w^T x_n, y_n) = \max(0, -y_n w^T x_n)$$

- Consider two cases:
 - Case I: $y_n w^T x_n > 0$ (predict correctly)

$$\bullet \ \mathcal{E}(w^T x_n, y_n) = 0$$

$$\frac{\partial}{\partial w} \mathcal{E}(w^T x_n, y_n) = 0$$

Ex. Perception learning

•
$$\mathcal{E}(w^T x_n, y_n) = \max(0, -y_n w^T x_n)$$

- Consider two cases:
 - Case I: $y_n w^T x_n > 0$ (predict correctly)

•
$$\mathcal{E}(w^T x_n, y_n) = 0$$

$$\frac{\partial}{\partial w} \mathcal{E}(w^T x_n, y_n) = 0$$

- Case II: $y_n w^T x_n < 0$ (predict wrongly)
 - $\mathcal{E}(w^T x_n, y_n) = -y_n w^T x_n$

$$\frac{\partial}{\partial w} \mathcal{E}(w^T x_n, y_n) = -y_n x_n$$

Ex. Perception learning

•
$$\mathcal{E}(w^T x_n, y_n) = \max(0, -y_n w^T x_n)$$

- Consider two cases:
 - Case I: $y_n w^T x_n > 0$ (predict correctly)

$$\mathcal{L}(w^T x_n, y_n) = 0 \qquad \qquad \frac{\partial}{\partial w} \mathcal{L}(w^T x_n, y_n) = 0$$

• Case II: $y_n w^T x_n < 0$ (predict wrongly)

$$\mathcal{E}(w^T x_n, y_n) = -y_n w^T x_n \qquad \frac{\partial}{\partial w} \mathcal{E}(w^T x_n, y_n) = -y_n x_n$$

• SGD update rule: Sample an index *n*

•
$$w^{t+1}$$
 $\begin{cases} w^t, & \text{if } y_n w^T x_n \ge 0 \text{ (predict correctly)} \\ w^t + \eta^t y_n x_n, & \text{if } y_n w^T x_n < 0 \text{ (predict wrongly)} \end{cases}$

Momentum

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information

Momentum

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information
- The momentum update rule:

•
$$v_t = \beta v_{t-1} + (1 - \beta) \nabla f(w_t)$$

•
$$w_{t+1} = w_t - \alpha v_t$$

- $\beta \in [0,1)$: discount factors, α : step size
- Equivalent to using moving average of gradient

•
$$v_t = (1 - \beta) \nabla f(w_t) + \beta (1 - \beta) \nabla f(w_{t-1}) + \beta^2 (1 - \beta) \nabla f(w_{t-2}) + \dots$$

Momentum

- Gradient descent: only using current gradient (local information)
- Momentum: use previous gradient information
- The momentum update rule:

•
$$v_t = \beta v_{t-1} + (1 - \beta) \nabla f(w_t)$$
 $w_{t+1} = w_t - \alpha v_t$

- $\beta \in [0,1)$: discount factors, α : step size
- Equivalent to using moving average of gradient

•
$$v_t = (1 - \beta) \nabla f(w_t) + \beta (1 - \beta) \nabla f(w_{t-1}) + \beta^2 (1 - \beta) \nabla f(w_{t-2}) + \dots$$

Another equivalent form:

•
$$v_t = \beta v_{t-1} + \alpha \nabla f(w_t)$$

$$\bullet \ \ w_{t+1} = w_t - v_t$$

Momentum gradient descent

Momentum gradient descent

- Initialize $\mathbf{w}_0, \mathbf{v}_0 = 0$
- For $t = 1, 2, \cdots$
 - Compute $\mathbf{v}_t \leftarrow \beta \mathbf{v}_{t-1} + (1 \beta) \nabla f(\mathbf{w}_t)$
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \alpha \mathbf{v}_t$
- α : learning rate
- β : discount factor ($\beta = 0$ means no momentum)

Momentum gradient descent

Momentum stochastic gradient descent

- Initialize $\mathbf{w}_0, \mathbf{v}_0 = 0$
- For $t = 1, 2, \cdots$
 - Sample an $i \in \{1, \dots, N\}$
 - Compute $\mathbf{v}_t \leftarrow \beta \mathbf{v}_{t-1} + (1-\beta) \nabla f_i(\mathbf{w}_t)$
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \alpha \mathbf{v}_t$

• Optimizing
$$f(w) = \frac{1}{N} \sum_{i=1}^{N} f_i(w)$$

- α : learning rate
- β : discount factor ($\beta = 0$ means no momentum)

Nesterov accelerated gradient

- Using the "look-ahead" gradient
 - $v_t = \beta v_{t-1} + \alpha \nabla f(w_t \beta v_{t-1})$
 - $\bullet \ \ w_{t+1} = w_t v_t$

Nesterov momentum update "lookahead" gradient step (bit different than original) actual step

Why momentum works?

- Reduce variance of gradient estimator for SGD
- Even for gradient descent, it's able to speed up convergence in some cases:

Left - SGD without momentum, right - SGD with momentum. (Source: Genevieve B. Orr)

Adagrad: Adaptive updates

- SGD update: same step size for all variables
- Adaptive algorithms: each dimension can have a different step size

Adagrad

- Initialize **w**₀
- For $t = 1, 2, \cdots$
 - Sample an $i \in \{1, \dots, N\}$
 - Compute $\mathbf{g}^t \leftarrow \nabla f_i(\mathbf{w}_t)$
 - $G_i^t \leftarrow G_i^{t-1} + (g_i^t)^2$
 - Update $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t \frac{\eta}{\sqrt{G_i^t + \epsilon}} g_i^t$
- η : step size (constant)
- ϵ : small constant to avoid division by 0

Adagrad

- For each dimension i, we have observed T samples g_i^1, \ldots, g_i^t
- Standard deviation of g_i :

• Assume step size is η/\sqrt{t} , then the update becomes

$$w_i^{t+1} \leftarrow w_i^t - \frac{\eta}{\sqrt{t}} \frac{\sqrt{t}}{\sqrt{(G_i^t)^2}} g_i^t$$

Adam: Momentum + Adaptive updates

Adam

- Initialize $w_0, m_0 = 0, v_0 = 0,$
- For $t = 1, 2, \cdots$
 - Sample an $i \in \{1, \dots, N\}$
 - Compute $\mathbf{g}_t \leftarrow \nabla f_i(\mathbf{w}_t)$
 - $m_t \leftarrow \beta_1 m_{t-1} + (1 \beta_1) g_t$
 - $\mathbf{v}_t \leftarrow \beta_2 \mathbf{v}_{t-1} + (1 \beta_2) \mathbf{g}_t^2$
 - \bullet $\hat{\boldsymbol{m}}_t \leftarrow \boldsymbol{m}_t/(1-\beta_1^t)$
 - \bullet $\hat{\mathbf{v}}_t \leftarrow \mathbf{v}_t/(1-\beta_2^t)$
 - Update $\mathbf{w}_t \leftarrow \mathbf{w}_t 1 \alpha \cdot \hat{\mathbf{m}}_t / (\sqrt{\hat{\mathbf{v}}_t} + \epsilon)$

Batch size selection

- Larger batch size ⇒ more computation per update, less noise
- Usually, choose batch size large enough that
 - Fits in (GPU) memory
 - Can fully utilize the computation resource
- For example, 512 batch size for ImageNet training on a standard GPU.

Large batch training

- What if we want to train a model with hundreds or thousands of GPUs
- Data parallel distributed computing:
 - Increasing the batch size linearly with number of devices.
 - ⇒ Large batch training

Problem of large batch training

 Tend to converge to models with lower test accuracy when using very large batch size

(Goyal et al., 2017) Training Imagenet in 1 hour

Sharp vs wide local minimum

- Large-batch SGD/Adam:
 - Usually converge to a sharp local minimum (not enough inherent noise in SGD)
 - Harder to generalize to test data

A simple but practical solution: learning rate scaling

•
$$\operatorname{Var}\left[\frac{1}{|B|}\sum_{n\in B}g_{n}\right]\approx O(\frac{1}{|B|})$$

- Batch size ↑, learning rate ↑
 - LR scaling: LR as $O(\sqrt{|B|})$ or O(|B|)
- However, LR has to be bounded for convergence (as for GD)
 - $LR \leq O(1/L)$ L: Lipchitz constant
- Can't unlimitedly increase LR

Non-uniform updates between different layers

Some layer becomes the bottleneck of LR

Layers $ w _2$ $ \nabla w _2$ $ w _2/ \nabla w _2$ fc8.0 20.24 0.078445 258 fc8.1 0.316 0.006147 51 fc7.0 20.48 0.110949 184 fc7.1 6.400 0.004939 1296 fc6.0 30.72 0.097996 314 fc6.1 6.400 0.001734 3690 conv5.0 6.644 0.034447 193
fc8.1 0.316 0.006147 51 fc7.0 20.48 0.110949 184 fc7.1 6.400 0.004939 1296 fc6.0 30.72 0.097996 314 fc6.1 6.400 0.001734 3690
fc7.0 20.48 0.110949 184 fc7.1 6.400 0.004939 1296 fc6.0 30.72 0.097996 314 fc6.1 6.400 0.001734 3690
fc7.1 6.400 0.004939 1296 fc6.0 30.72 0.097996 314 fc6.1 6.400 0.001734 3690
fc6.0 30.72 0.097996 314 fc6.1 6.400 0.001734 3690
fc6.1 6.400 0.001734 3690
conv5.0 6.644 0.034447 193
conv5.1 0.160 0.000961 166
conv4.0 8.149 0.039939 204
conv4.1 0.196 0.000486 403
conv3.0 9.404 0.049182 191
conv3.1 0.196 0.000511 384
conv2.0 5.545 0.057997 96
conv2.1 0.160 0.000649 247
conv1.0 1.866 0.071503 26
conv1.1 0.098 0.004909 20

Another solution

Use Layer-wise Adaptive LR Scaling

$$w^{(i)} \leftarrow w^{(i)} - \eta \frac{\|w^{(i)}\|}{\|g^{(i)}\|} g^{(i)},$$

- where $(\cdot)^{(i)}$ means the i-th layer of neural network
- LARS: g is the stochastic gradient
- LAMB: g is the Adam update
- Google and Nvidia both use LAMB to train BERT within 1 minute (4096 TPU / 2048 GPU)