Preliminary Results

A constraint of [NII] 122 μ m and a new dust continuum detection of a z = 7.15 Lyman Break Galaxy with ALMA

Yuma Sugahara (NAOJ / Waseda Univ.)

A. K. Inoue, S. Yamanaka, T. Hashimoto, S. Fujimoto,

Y. Tamura, H. Matsuo, E. Zackrisson, C. Binggeli

B14-65666 ω z = 7.15

- O[OIII] 88um, [CII] 158um, dust continuum detected
 - □ Big Three Dragon (大三元), Hashimoto+19

ALMA new observation

- O Cycle 7, Band 7 observation (PI: A. K. Inoue)
 - □ targets: [NII] 122um, dust continuum
 - \square exp time: 2.4 h

Image

O Dust (120 um)

- $\square \sim 19\sigma$ detect
- \square 218 \pm 19 uJy

○ [NII] 122 um

- \square 3 σ upper limit
- \square < 0.025 Jy/beam km/s

FIR SED Fitting

T > 30 K, but difficult to set upper limit

[NII]/L_{FIR}

Discussion

O What can we know from [NII] 122um observation?

□ N/O abundance at high redshift

Strategy

○ SED fitting (Hashimoto+19)

SFR, metallicity Z

- Cloudy calculation
 - □ [OIII] 88um

 U, n_H, Z

□ [NII] 122um

O[OIII]/[CII] (Harikane+20)

Ionization parameter U Hydrogen density n_H

N/O abundance

N/O abundance

Discussion

O What can we know from [NII] 122um observation?

□ N/O abundance at high redshift

□ Redshift evolution of BPT diagram

BPT diagram

○ From multi-wavelength SED fitting (Hashimoto+19)

- \square SFR_{SED} \longrightarrow Ha
- □ SFR_{SED} Kenniccut+02 Hb

- Cloudy calculation
 - □ [OIII] 88um [OIII] 5007 A
 - $\square \text{ [NII] } 122\text{um} \xrightarrow{\text{U, n_H, Z}} \text{[NII] } 6583 \text{ A}$

BPT diagram

- O 18σ dust detection & 3σ [NII] upper limit on B14-65666
 - □ Dust temperature T > 30K
 - □ Sub solar N/O if high-Z
 - \square Evolutional trend at $z \sim 0 \rightarrow 7$ on BPT diagram

FIR SED Fitting

O Beta, T free

Strategy

