Fall 2015

Homework # 6

(Due Monday, November 16)

Problem 1. Let $k:[0,1]\times[0,1]\to\mathbb{R}$ be a continuous function. Define the map $T:C([0,1]\to C([0,1])$ by

$$(Tf)(x) = \int_0^1 k(x,y)f(y)dy$$
, for all $f \in C([0,1])$. (1)

a) Let ||T|| denote the operator norm of T. Prove

$$||T|| = \sup_{x \in [0,1]} \int_0^1 |k(x,y)| dy.$$
 (2)

- b) Argue that the sup in (2) is attained in some $x \in [0, 1]$.
- c) Is it possible that ||T|| = 1 but $||T^2|| = 0$? Prove your answer.

Problem 2. Study Section 5.4 of the textbook.

Problem 3. Let X be the Banach space $l^2(\mathbb{N})$, defined by

$$l^{2}(\mathbb{N}) = \{z = (z_{n})_{n=1}^{\infty} \mid z_{n} \in \mathbb{C}, \sum_{n=1}^{\infty} |z_{n}|^{2} < \infty\},$$

and with the norm given by

$$||z|| = (\sum_{n=1}^{\infty} |z_n|^2)^{1/2}.$$

For m = 1, 2, ..., define $e_m \in X$ to be the sequence with elements $(e_m)_n = \delta_{n,m}$, and define $P_m : X \to X$ by $P_m z = z_m e_m$, for all $z \in X$.

- a) Prove that $P_m \in \mathcal{B}(X)$, for all $m \geq 1$.
- **b)** Verify $P_m P_n = \delta_{n,m} P_m$, for all $n, m \ge 1$.
- c) Prove that $||P_m|| = 1$, for all $m \ge 1$.
- d) For $m \geq 1$, define S_m by

$$S_m = \sum_{k=1}^m P_k.$$

Calculate $S_m S_n$, for all $n, m \ge 1$.

e) Show that $||S_m|| = 1$, for all $n \ge 1$.