machine learning 笔记

徐世桐

1 基础定义

二元分类:输出分类个数为 2 **多元分类**:输出分类个数不限

one-versus-the-rest OvR: 计算属于每一分类的可能性,取可能性最大的分类为输出分类

one - versus - one OvO: 对所有分类两两使用二元分类,每一分类器训练只需一部分数据

multilabel 多标签分类:目标检测,对一图像中的物体加 label **multioutput 多类分类**:多标签分类,每一标签可包含多种信息

learning schedule: 根据迭代次数更新学习率

early stopping: 提早结束训练

对于每一 epoch, 当验证集 MSE 值增高时, 证明开始 overfit, 停止训练

即在 epoch-error 图中泛化误差最低时停止训练

semi-supervised learning: 部分样本有对应标签

weakly-supervised learning: 对样本标记包含的物体,而不标注对应目标的具体位置 non parametric model: 无法用有限的 distribution parameter 代表的模型,如 Nearest neighbour 在训练中使用正则化代价函数,训练结束后测试中代价函数不使用正则化项 curse of dimentionality

令 d 为特征数, e 为一特征覆盖范围

为了在 n 总样本中覆盖 k 个样本, 平均需要 e 满足 $e^d = \frac{n}{k}$

随 d 升高,e 值接近 1。即每一特征需覆盖大部分取值范围使得 k 样本每个参数能同时被 d 个特征 覆盖

其余 n-k 样本存在特征取值范围的边界上,即**距离 k 样本距离几乎相同远** imperative programming:按照代码给定顺序执行,没有优化空间,易于 debug symbolic programming:

仅当确定所需操作已经被全部定义才进行计算

将操作编译进可执行文件进行执行。提供输入,调用可执行文件得到结果。优化空间大 boosting

对一个模型多次初始化 学习,得到多个较弱训练结果。将参数按准确率加权求和做新模型参数轴自注意力机制:对图像行和列分别进行自注意力机制,一种将 transformer 应用在图像上的方法 denoising self-supervised pre-training task 即 BERT 中 mask 词后训练网络预测的训练方法 language model 即根据前句预测下一词输出的模型

消融实验: 去除部分算法, 观察是哪一更改对模型影响最大

autoregressive:使用模型上一输出做下一次预测的输入。如 GPT, RNN

2 数学计算 2

正向反向遍历时序分开进行预测仍属于 autoregressive, 如双向 RNN

autoencoder: 同时得到前后时序的输入, 预测当前被 mask 的词。

linear protocol: 迁移学习时只学习最后一 linear layer 参数

mlp: 全连接层+激活函数,模型可有多层全连接和激活函数,在于mlp并非单层全连接

知识蒸馏:拥有一 teacher 网络和一 student 网络, 教师网络较为复杂但有较高准确率。目标为使用较简

单的 student 网络学习教师网络。

2 数学计算

 $MSE = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)} - \bar{x})^2$

rigid regression: 回归方法, $J(\theta) = MSE(\theta) + \frac{\alpha}{2} \sum_{i} \theta_{i}^{2}$

降低所有权重值

lasso regression: 回归方法, $J(\theta) = MSE(\theta) + \alpha \sum_{i} |\theta_{i}|$

降低不重要的权重值

elastic net: 回归方法, $J(\theta) = MSE(\theta) + \gamma \alpha \sum_{i} |\theta_{i}| + (1 - \gamma) \frac{\alpha}{2} \sum_{i} \theta_{i}^{2}$

Normal Equation: $\hat{\theta} = (X^T X)^{-1} X^T y$

直接得到权重 $\hat{\theta}$,适用于仅有一个输出值的模型

X 为 (批量大小, 参数个数) 输入矩阵, y 为 (批量大小,) 向量

当 X^TX 无逆矩阵时,用 psudo inverse $\hat{\theta} = X^+y$

pseudo inverse:

对矩阵 $X = USV^T$, pseudo inverse $X^+ = VS^+U^T$ 。 S^+ 求法:

- 1. 对所有 S 元素,接近 0 的值赋为 0
- 2. 对所有非零元素取倒数
- 3. 取矩阵转置,得到 S^+

log loss: 代价函数

$$J(\theta) = -\frac{1}{|B|} \sum_{i=1}^{|B|} [y^{(i)} log(\hat{p}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{p}^{(i)})]$$

标签值 $y^{(i)}$ 为离散 1/0 值,计算值 $\hat{p}^{(i)} \in [0,1]$

微分: ** 推导 **

$$\frac{dJ(\theta)}{d\theta_{j}} = \frac{1}{|B|} \sum_{i=1}^{|B|} (\hat{p}^{(i)} - y^{(i)}) x_{j}^{(i)}$$

Hinge loss: 代价函数

 $HingeLoss(y, \hat{y}) = max(0, 1 - y * \hat{y})$

应用于 SVM, $y \in \{0,1\}$, $\hat{y} \in \mathbb{R}$

代表当预测值 \hat{y} 和 y 同号, $\hat{y} \ge 1$,则预测值和标签匹配,代价 = 0。否则 $y * \hat{y} < 1$ 。代价值上升

Gaussian Radial Basis Function RBF: 一种 similarity function

$$\phi_{\gamma}(x,l) = exp(-\gamma||x-l||^2)$$

l 为 landmark, 即 ϕ_{γ} 由一样本 x_i 和一 landmark 的距离得来

Lagrange multipliers method 拉格朗日乘数法

将 有前提的多项式求最值 问题转化为 无前提多项式最值问题 定义:

对输入向量 W, $g(W) \ge 0$ 为 constrain。目标为在满足 $g(W) \ge 0$ 的前提下取 f(W) 最值 Lagrange function $\mathcal{L}(W,\alpha) = f(W) - \alpha(g(W))$

3 分类模型 3

 α 为需要求解的变量之一,参与最终计算 W 的值。

当有多个 constrain $g^{(i)}(W)$ 时, $\vec{\alpha}$ 为向量,求偏导对每一 $\vec{\alpha}^{(i)}$ 求导

只有当 $\alpha \ge 0$ 或每一 $\vec{\alpha}^{(i)} \ge 0$, 结果才有效

 $\vec{\alpha}^{(i)} = 0$ 代表对应的 constrain $g^{(i)}(W)$ 为一个 support vector

计算:

对每一W的元素 和 α 取偏导,即向量

 $\begin{bmatrix} \frac{d\mathcal{L}(W,\alpha)}{dw_1} \\ \frac{d\mathcal{L}(W,\alpha)}{dw_n} \\ \dots \\ \frac{d\mathcal{L}(W,\alpha)}{dw_n} \\ \frac{d\mathcal{L}(W,\alpha)}{dw_n} \\ \frac{d\mathcal{L}(W,\alpha)}{d\alpha} \end{bmatrix}, 计算向量 = \vec{0} 时的 W, \alpha 取值$

Distance Metrics

Manhattan distance(L1-norm):
$$d(x^{(i)}, x^{(j)}) = \sum_{k} |x_k^{(i)} - x_k^{(j)}|$$

Euclidean distance(L2-norm): $d(x^{(i)}, x^{(j)}) = \sqrt{\sum_{k} (x_k^{(i)} - x_k^{(j)})^2}$
Chebyshev distance(Linf-norm): $d(x^{(i)}, x^{(j)}) = \max_{k} |x_k^{(i)} - x_k^{(j)}|$

information entropy

对单一一组数据
$$X=[x_1,...x_n]$$
, x_i 在 X 中出现百分比为 $p(x_i)$ X 的数据熵 $H(X)=-\sum_i p(x_i)log_2(p(x_i))$ 当 x_i 为 continuous,不为离散值时, X 即一分部。此时 $H(X)=-\int_x p(x)log_2(p(x))\,dx$

3 分类模型

classification:

binary classification: 拥有 2 类标签 Multi-class classification: 拥有多类标签

Milti-lable classification: 单个样本可以属于多个标签

logistic regression:

判断输入符合每一输出类别的可能性,

分类:

Simple regression: 单个样本变量个数为 1

Multiple regression: 样本变量个数 > 1

Mutivariate regression: 单个样本对应标签个数 > 1

前向计算:

$$\begin{aligned} 1.\hat{p} &= \sigma(\theta^T x + b) \\ 2.\hat{y} &= 1(if\hat{p} \geq 0.5) \\ &= 0(if\hat{p} < 0.5) \end{aligned}$$

代价函数为 log loss

SVM

找到分界,分离多种数据

support vector: 最靠近分界线的样本

hard margin classification 硬性分类:限制数据必须被分界隔开,同一类数据不可同时出现在分界 2端

3 分类模型 4

soft margin classification:与硬性分类相反,避免被 outlier 离群值影响

前向计算: $\hat{p} = f(x_1, x_2, ...)$, 其余同 logistic regression

区别: f 可为 polynomial, 非线性函数。可使用 kernel trick

线性分类训练: $\hat{p} = W^T x + b$, W 为参数**向量**

硬性分类:

||W||2 代表线性函数斜率

最小化 $\frac{1}{5}W^TW$, 使得分界平面的斜率最小, 最大化分界线和两种数据的距离

前提:对每一样本 $i, 1.y^{(i)}\hat{p}^{(i)} \geq 1$,即标签和计算结果相同

求解: 1. 直接解以上带前提的不等式

'当样本数高于参数数量时使用,由于 dual form 的复杂度为 $O(|S|^2)$ - $O(|S|^3)$,直接解复杂度为 O(|S|)'

2. 使用拉格朗日乘数法得到 dual form,其中 $\vec{\alpha}$ 为向量。 $\mathbf{x}^{(i)}$ 为第 i 样本的特征值向量 $\mathcal{L} = \frac{1}{2}W^TW - \sum_{i=1}^{|B|} \vec{\alpha}^{(i)}(y^{(i)}\hat{p}^{(i)} - 1)$

使偏导向量为
$$\vec{0}$$
,得到 $2.W = \sum_{i=1}^{m} \vec{\alpha}_{i} y^{(i)} \mathbf{x}^{(i)}$, $3. \sum_{i=1}^{m} \vec{\alpha}_{i} y^{(i)} = 0$ 带入得 $\mathcal{L}(W, \vec{\alpha}) = \frac{1}{2} \sum_{i=1}^{|B|} \sum_{j=1}^{|B|} \vec{\alpha}_{i} \vec{\alpha}_{j} y^{(i)} y^{(j)} \mathbf{x}^{(i)^{T}} \mathbf{x}^{(j)} - \sum_{i=1}^{|B|} \vec{\alpha}^{(i)}$ $= \frac{1}{2} \vec{\alpha}^{T} (\mathbf{x} * y) (\mathbf{x} * y)^{T} \vec{\alpha} - \sum_{i=1}^{|B|} \vec{\alpha}^{(i)}$

其中 $(\mathbf{x} * y)$ 为广播乘法 将训练集矩阵每一样本乘以对应标签值,y 为标签列向量

使用 QP solver 得到使 $\mathcal{L}(W,\vec{\alpha})$ 最小, $\vec{a}^{(i)} \geq 0$ 的向量 $\vec{\alpha}$

解 W: 由 $\vec{\alpha}$ 带入 2. 式计算, $\vec{\alpha}$ 已被 clamp, 见经验 2.

解 b: 由于所有 support vector $\mathbf{x}^{(i)}$ 满足 1. 式,则对所有 support vector 计算 b 取平均值 $b = E_{a^{(i)} > 0}(y^{(i)} - W^T \mathbf{x}^{(i)})$

3. 直接进行梯度下降,代价函数 $J(W,b) = \frac{1}{2}W^TW + const\sum_i HingeLoss(y^{(i)},\hat{p}^{(i)})$

软性分类:

最小化 $\frac{1}{2}W^TW + C\sum_{i=1}^{|B|} \zeta_i$

 ζ_i 定义第 i 样本被忽视为误差样本的可能性,C 定义忽视率相对斜率的权重

前提:对每一样本 $i, y^{(i)}\hat{p}^{(i)} \geq 1 - \zeta^{(i)}$

非线性分类方法:

- 使用 polynomial 做 f

必须使用拉格朗日乘数法求解,目的为**对** $\phi(x)$ **得到线性权重和偏差**,求解使用 dual form,其中包含 $\phi(a)^T \cdot \phi(b)$ 项即可使用 kernel method

权重 W 公式不再适用,由于结果不为线性

偏差
$$b = \sum_{\vec{\alpha}^{(i)} \geq 0} y^{(i)} - \sum_{\vec{\alpha}^{(j)} \geq 0} \vec{\alpha}^{(i)} * y^{(j)} * K(\mathbf{x}^{(i)}, \mathbf{x}^{(j)})$$

- 使用 similarity function:

选择多个 landmark $\mathcal{L} = l_1, l_2, ..., l_n$,对每一样本 x_i 计算其和每一 l_j 的 ϕ_{γ} 值 $\phi_{\gamma}(x_i, l_j)$

每个样本用新的向量
$$x_i' = \begin{bmatrix} \phi_\gamma(x_i, l_1) \\ \phi_\gamma(x_i, l_2) \\ \dots \\ \phi_\gamma(x_i, l_n) \end{bmatrix}$$
 表示。新的向量组成训练集,进行 SVM 训练 $\phi_\gamma(x_i, l_n)$

kernel:

定义: 能够从输入向量 a,b, 不通过计算 $\phi(a),\phi(b)$ 直接得到点乘结果 $\langle \phi(a),\phi(b)\rangle$ 的函数 例: ** 是否通过取 linear 为 phi 得到 kernel 函数 **

4 KNN 5

linear: $f(a,b) = a^T b$

polynomial: $f(a,b) = (\gamma a^T b + r)^d$

poly 的 $\phi(x)$ 为对向量 x 每一元素进行 poly 运算,结果向量元素数不变

Gaussian RBF: $f(a,b) = exp(-\gamma||a-b||^2)$

Sigmoid: $f(a,b) = tanh(\gamma a^T b + r)$

经验总结:

1.QP solver 中需限定 $\sum_{i=1}^{m} \vec{\alpha}_{i} y^{(i)} = 0$,否则得出 $\hat{\alpha}$ 不遵循此等式

2. 当样本有重叠,仍可使用拉格朗日乘数法,异常样本被分入错误类别。 此时 $\vec{\alpha}$ 包含负值,对应的样本在计算权重 偏差时被忽略,即需 clamp 使 $\vec{\alpha} \geq 0$ 若不进行 clamp,得到的分界仅有略微差别,不会造成大幅误差。(在线性 非线性分类都有验

证)

3. 梯度下降直接得到最优 W, b,无法通过梯度下降得到 $\vec{\alpha}$ 由于梯度下降忽略限制条件

4.QP solver 需要 $(\mathbf{x}*y)(\mathbf{x}*y)^T$ 为 positive definite,计算时加上对角矩阵 $diag(\epsilon)$ 即可, ϵ 多取 10^{-4}

否则迭代解 QP 时出现 KKT condition not met 或 positive definite 条件不满足 条件不满足时中断得到的 $\vec{\alpha}$ 无法作为有效结果参与后续计算权重和偏差 优先将此矩阵转为 float64 类型,否则需要 ϵ 较大才能保证 positive definite

4 KNN

lazy learner: 仅在得到特征后进行计算,得到训练集后仅仅保存训练集 定义:

得到样本集 S,每次得到需要预测的特征向量 x

算法:

从样本特征集中选取 k 个最邻近 x 的样本,距离由 distance metric 计算,返回 k 个样本标签中占比较大的标签

distance weighted KNN

算法:

对 k 个邻近样本,每一分配权重 w_i 。

对 k 个样本中同一标签下的样本权重求和, 总和较高的标签作为结果

取 w_i 方法 1:

1.
$$w_i = \frac{1}{d(x^{(i)},x)}$$

2.
$$w_i = \frac{1}{2\pi} exp(-\frac{d(x^{(i)},x)^2}{2})$$

 $d(x^{(i)}, x) \not\equiv \exists$ distance metric

优劣:

- 1. k 值影响较小,由于较远的样本 w_i 较小
- 2. 受 curse of dimentionality 影响。可对每一特征加权重 或 feature extraction 解决

KNN regression

样本标签不为离散值,而为连续值,求 regression。

算法:

对所有可能的 feature 向量 x, 取距离 x 最近的 k 个样本。

5 决策树 6

x 的标签值为 k 个样本的平均值。此值即为 regression 结果

Locally weighted regression

distance-weighted KNN,将 K 个邻近样本的距离作为权重 w_i 。 计算 x 标签 = $\sum_i w_i \cdot d(x^{(i)}, x)$

5 决策树

定义:

节点 N_i :

节点条件: 判断样本进入哪一子节点, 叶节点没有节点条件

sample 属性 S_i : 有多少样本进入 N_i 节点,非满足 N_i 节点条件的样本个数

value 属性 $V_i = v_{i1}, ..., v_{in}$: S_i 进入节点的样本中 v_{ij} 个属于第 j 分类

子节点仅有2个,对应节点条件为true/false的情况

分类方式:数据从根节点开始,根据节点条件传向对应子节点。直到到达叶节点。叶节点中 V 属性中最大项即数据分类

在 imbalanced dataset 上训练效果不好

CART algorithm 创建决策树:

根节点初始化为叶节点,没有节点条件

对每一叶节点 S_i 选取一特征 k,一特征门槛 t_k ,将样本集分为 2 组 S_{true} , S_{false} 。

选取 (k, t_k) 方式: 使代价函数 $J(k, t_k) = \frac{S_{true}}{S_i} G_{true} + \frac{S_{false}}{S_i} G_{false}$ 最小

gini 属性 G_i : 数据混杂度, $G_i = 1 - \sum_{j=1}^n (\frac{v_{ij}}{S_i})^2$

直到决策树层数达到固定上限,或对所有分组条件 (k,t_k) , $J(k,t_k) \geq G_i$

information gain 创建决策树

允许单个节点 N_i 有多个子节点 $C_i = N_i$,(在特征为离散分类时)

选取子集方式: 最大化 information gain $IG(N_i, C_i) = H(N_i) - \sum_{N_i \in C_i} (\frac{S_i}{S_i} H(S_j))$

H() 为 information entropy, 替换 CART 法中的 gini 属性

所有特征为实数创建决策树:

将 S_i 样本按照实数特征排序,随后选择特征 门槛 (k,t_k) ,将数据分为 2 组,最大化 information gain

即 CART algorithm,使用不同数据混杂度函数

所有特征为类别参数:

选择类别特征 t, t 中每一类别对应一子节点。即 t 的值域 = 子节点数

避免 overfit

- 1. 设置决策树层数上限
- 2. 设置节点样本下限, 若样本数量低于下限则停止继续分类

3.pruning

使用决策树进行 regression

输入样本,分类进不同值域 更改:

每一节点 value 值为一常数,为 S_i 样本的平均值。 输出值为叶节点的 value,非最大 value 对应的类别 G_i 为 S_i 样本的方差 $\frac{1}{S_i}\sum_{j=1}^{S_i}(x_i^{(j)}-\bar{x}_i)^2$

6 ensemble learning & 随机森林

ensemble learning: 使用一组预测机制进行学习, 预测机制可为不同算法 dropout 为一种 ensemble learning, 由于丢弃神经元即改变网络结构 random forest 随机森林:

训练方法: 随机选择 n 个训练子集 $s_1, s_2, ..., s_n \in S$, 训练 n 个决策树 $t_1, ..., t_n$ 。

前向计算:对 n 个树产生的 n 个分类结果,选取投票最多的一分类作为结果

训练子集选取: bagging: 子集可重复选取一样本, pasting: 样本不重复

out-off-bag oob 样本: 当使用 bagging 选取时,平均只有 $1-e^{-1}$ 样本被选择,余下样本被称为 oob 样本

优化:

random patches 随机贴片:对特征和训练集同时取子集进行训练random subspace 随机子空间:对特征取子集,对整个总训练集进行训练

** 使用 bagging 无法减少 variance,需要对特征取子集提高效果 ** extra-trees 极度随机森林: '使用随机 t_k 而不使用最小化数据混杂度的 t_k '

kfeature importance 特征重要性: 对所有取 k 为判断条件的节点 N_i , 计算加权平均值 $\sum_i (S_i \text{imprity})$ 降低百分比)

(hypothesis) boosting: 合并多个预测机制据结果的方法

AdaBoost: 串联预测机制,对上一预测机制遗漏的样本加更高权重,进行训练 gradient boosting

gradient boosting

7 维度下降

根据 manifold assumption, 高维空间中训练集参数点稀疏。则将数据压缩到低维 principle component analysis PCA:

对训练集参数矩阵取 $SVDUSV^T$

取 V 中前 d 个向量 $V' = [v_1, ..., v_d]$,新训练集 $A_{compressed} = A_{origin}V'$

8 聚类分析 8

从 新训练集 延展回 原训练集纬度: $A_{expand} = A_{compressed}V^{T}$

Incremental PCA: 无需整个训练集存在内存中即可进行 SVD

kernel PCA: **

local linear Embedding LLE:

对每一样本 $x^{(i)}$ 寻找 k 个相邻样本 相邻样本 index 的集合称 $C_{x^{(i)}}$ 构建 (|S|, |S|) 矩阵 W:

每一行向量 $[W_{i1},...,W_{i|S|}]$ 满足 $x^{(i)} - \sum_{i \in C} W_{ij} x^{(j)}$

每一行向量 W_i 求和为 1: $\sum_{i=1}^{|S|} W_i = 1$

由 W 创建新训练集:

使所有 $z^{(i)}$ 满足最小化 $(z^{(i)} - \sum_{j=1}^{|B|} w_{ij} z^{(j)})^2$

聚类分析 8

K-mean:

将数据分为 k 个 cluster,每个 cluster 有中心点称 centroid 算法:

- 1. 初始化随机选择 k 个样本位置做 centroid, 避免得到空 cluster 当迭代过程中出现空 cluster, 从其他 cluster 中分配一随机参数点给此 cluster
- 2. 分配样本:每个样本分入距离最近的 centroid 的 cluster
- 3. 更新 centroid: 新 centroid 为 cluster 中样本坐标平均值。 重复第 2.3. 步,直至 centroid 不再移动,或移动距离小于定值

vornoid diagram:

画有不同 cluster 的分界线的图

迭代:

多次随机初始化 centroid,选择其中 inertia 最小的 centroid 取法进行训练

interia =
$$\frac{1}{|S|} \sum_{x} (C_x - x)^2$$
.

 C_x 为样本 x 距离最近的 centroid

k-mean++ 初始化 centroid:

- 1. 随机选择 1 个样本做 centroid
- 2. 剩余每一样本 $x^{(i)}$ 有 $\frac{D(x^{(i)})}{\sum_{j=1}^{|S|} D(x^{(j)})}$ 几率被选做新 centroid $D(x^{(i)})$ 为样本 $x^{(i)}$ 距离最近的 centroid 的距离
- 3. 重复 2. 步直至得到 k 个 centroid

选择 cluster 数量 k:

elbow approach:

实验多次,每次选择不同 k 值。记录最终 loss 大小, k-loss 图像应当最初快速减小,随后连 线平缓。选择拐点处的 k 值作为最优超参数

cross validation:

数据分为 n fold,得到 n 组训练集,验证集分配

选择不同 k 值,对每一 k 值 在每一训练集上训练,在验证集得到验证代价值。共得到 n*k 验 证代价

9

取 k 使得平均验证代价值最小

sihouette score: 所有样本的 sihouette coefficient 的均值

一样本 $x^{(i)}$ 的 sihouette coefficient: $\frac{b-a}{max(a,b)}$ a 为 $x^{(i)}$ 到同一 cluster 内所有样本的平均距离

 $b = \min(E_{x^{(j)} \in othercluster}(D(x^{(i)} - x^{(j)})))$

sihouette score [−1,1], 偏向取 score 高的 cluster 数

使用 k-mean 进行数据预处理:

将数据首先进行 k-mean 分类,将每一样本替换为 样本到最近的 centroid 距离,传入另一模型进行学习

用于半无监督学习:将数据进行 k-mean 分类,从每一 cluster 选取离 centroid 最近的样本,产生大小为 k 的训练集。则只需得到 k 个样本的标签即可进行训练

k-mode

选择 centroid 使每一特征值分别为 对应特征中出现次数最多的特征值

Probability Density Estimate PDE

得到样本分布的 pdf: \hat{p} , 对特征 x 输出可能性 $\hat{p}(x)$

non-parametic approach: 不对数据的分部做任何假设

根据整个训练集集 S 训练, lazy learning

kernel density estimation:

$$1.\hat{p}(x) = \frac{1}{|S|} \sum_{x^{(i)} \in S} \frac{1}{h^D} H(\frac{x - x^{(i)}}{h})$$

D 为 feature 个数, h 为 bandwidth, h^D 即 window 体积

H 称 Parzen Window/kernel function

$$H(x) = \begin{cases} 1 & \forall i \in \{1, ..., D\}, |x_i| < \frac{1}{2} \\ 0 & otherwise \end{cases}$$

$$H(\frac{x-\hat{x}^{(i)}}{h})$$
 即判断 x 是否在给定数据 $x^{(i)}$ h 大小 window 内 $2.\hat{p}(x) = \frac{1}{|S|} \sum_{x^{(i)} \in S} \frac{1}{(2\pi h^2)^{\frac{D}{2}}} exp(-\frac{||x-x^{(i)}||^2}{2h^2})$

parametic approach:

Gaussian distribution: 假设 pdf 为 Normal 分部

直接根据训练集得到最优参数,没有迭代

1.univariate Normal distribution: 仅有一特征

$$\begin{split} \hat{p}(x) &= N(x|\mu, \Sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{(x-\mu)^2}{2\sigma^2}) \\ \mu &= \frac{1}{|S|} \sum x^{(i)} \\ \sigma^2 &= \frac{1}{|S|} \sum (x^{(i)} - \mu)^2 \end{split}$$

即 multivariate Normal dis 中 D=1 情况

2.multivariate Normal distribution: 有多个特征

$$\hat{p}(\mathbf{x}) = N(\mathbf{x}|\mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^D |\Sigma|}} exp(-\frac{1}{2}(\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu))$$

 $|\Sigma|$ 项为 Σ determinant

$$\mu = \frac{1}{|S|} \sum_{x^{(i)} \in S} \mathbf{x}^{(i)}$$
 covariance matrix $\Sigma = \frac{1}{|S|} \sum_{x^{(i)} \in S} (\mathbf{x}^{(i)} - \mu) (\mathbf{x}^{(i)} - \mu)^T$

8 聚类分析 10

计算 performance: neg. log-likelihood

$$\mathcal{L} = -log(p(S|\mu, \Sigma)) = -\sum_{x^{(i)} \in S} log(p(\mathbf{x}^{(i)}|\mu, \Sigma))$$

Theorem: 当 neg. log-likelihood 最小化, μ 和 σ 有以上公式求解

$$= \frac{N}{2}log(2\pi) + \frac{N}{2}log(\sigma^2) + \frac{1}{2\sigma^2}\sum_{x^{(i)} \in S} (x^{(i)} - \mu)^2$$

当 $\frac{d\mathcal{L}}{d\mu} = 0$ 和 $\frac{d\mathcal{L}}{d\sigma^2} = 0$, μ 和 σ 有以上公式求解

Gaussian Mixtures Model(GMM): 一种 PDE, 假设所有子分部都为正态分部

参数:
$$\theta = \{\pi_k, \mu_k, \Sigma_k | k = 1..K\}$$

共 K 个子分部,每一分部 $\sim N(\mu_k, \Sigma_k)$

使用多个子分部之和代表样本 pdf 分部, $p(x) = \sum_{k=1}^K \pi_k N(x|\mu_k, \Sigma_k)$

x 可为向量,则 p(x) 计算方法同 Multivariate Normal Distribution 此时称多元混合高斯分布

 $0 \le \pi_k \le 1$, $\sum_{k=1}^K \pi_k = 1$, 保证产生的 pdf 积分为 1

迭代:

- 1. 随机初始化所有参数,仅保证 $\sum \pi_k = 1$
- 2.E-Step

对每一样本 i,子分部 k 计算 responsibility $r_{ik} = \frac{\pi_k N(\mathbf{x}^{(i)}|\mu_k, \Sigma_k)}{\sum_i^K \pi_j N(\mathbf{x}^{(i)}|\mu_j, \Sigma_j)}$

3.M-Step

定义
$$N_k = \sum_{i=1}^{|B|} r_{ik}$$
 对一子分部的 responsibility 求和

更新
$$\mu_k = \frac{1}{N_k} \sum_{i=1}^{|B|} r_{ik} \mathbf{x}^{(i)}$$

更新 covariance matrix $\Sigma_k = \frac{1}{N_k} \sum_{i=1}^{|B|} r_{ik} (\mathbf{x}^{(i)} - \mu_k) (\mathbf{x}^{(i)} - \mu_k)^T$ 使用当前 M-Step 已更新的 μ

更新
$$\pi_k = \frac{N_k}{|B|}$$

4. 当 θ 不再大幅改变,**或当 neg. log likelihood 不再下降**则停止,否则回到 2.

neg. log likelihood
$$\mathcal{L} = -\sum_{x^{(i)} \in S} log(p(\mathbf{x}^{(i)}|\mu, \Sigma))$$

p 为 K 个子分部加权求和值,即一样本输出的 fit 值

调参:选择子分部个数 K

$$BIC_K = \mathcal{L}(K) + \frac{P_K}{2}log(|B|)$$

 $\mathcal{L}(K)$ 为使用 K 类别时的 neg. log likelihood

当使用特征个数 n 时, $P_K = n * \frac{(n+1)n}{2} * k - 1$ 为使用的参数个数

n 对应使用的 μ 个数

 $\frac{(n+1)n}{2} \text{covariance}$ 参数个数,由于 \varSigma 为 n*n symmetric matrix

区别 K-mean:

GMM-EM 可得到一样本 i 属于每一类别 k 的可能性, 即 r_{ik}

GMM-EM cluster 等高线可以为非正圆,K-mean 每一 cluster 为正圆从 centroid 向外发散

GMM-EM cluster 等高线集中程度可不同,K-mean 每一 cluster 等高线间距相同

cluster 间分界不受等高线的弧形影响, 受交接的 2 子分部影响

DBSCAN

适用于一 cluster 内样本密度较高的训练集

算法:

1. 对每一样本 x_i 计算集合 $S_{i\varepsilon}$,称 ε – neighbourhood,包含所有距离在 ε 内的其他样本 $|S_{i\varepsilon}| >$ 超参数 s_{min} 的样本称 core instance

9 GAN 对抗网络 11

2. 所有属于同一 $S_{i\varepsilon}$ 的样本判为属于同一 cluster,当一样本 x_i 同时存在样本 x_i, x_j 的 ε – neighbourhood 中时,合并 $S_{i\varepsilon}, S_{i\varepsilon}$ 。

3. 没有被分配进任何 $S_{i\varepsilon}$ 的样本判为异常值

9 GAN 对抗网络

基本结构:

generator G: 得到正则噪声 \mathbf{z} , 生成伪数据 \mathbf{x}' 。目标为使 $D(\mathbf{x}')=1$

discriminator D,从实际数据集 \mathbf{x} 或伪数据集 \mathbf{x}' 得到数据判断真伪。即对伪数据输出 0 真数据 1。

一次训练:(首先进行 D 更新,后进行 G 更新)

两部分使用不同 trainer,每一部分计算代价值后立即更新参数

1.discriminator 部分:

得到一批量正则噪声 **z**, 计算伪数据 $\mathbf{x}' = G(\mathbf{z})$, 标签为 $\vec{0}$ 。

取一批量真实数据 \mathbf{x} , 标签为 $\vec{1}$ 。

对 2 批量数据分别使用二元交叉熵损失函数训练。最终代价值为两部分代价值平均值。

调用 D 部分的 trainer

2.generator 生成数据

与 D 部分使用同一批量正则噪声,使用未更新的 G 参数和**已更新的 G 参数**前向计算。输出的标签期望为 $\vec{1}$

即代价函数为 $J_G = -ylog(D(G(\mathbf{z})))$

 $=-log(D(G(\mathbf{z})))$ (y 必为 1,由于期望产生 \mathbf{x}' 使 $D(\mathbf{x}')=\vec{1}$)

调用 G 部分的 trainer

Deep Convolutional GAN

VAE Divergence

定义 divergence function $D: \mathcal{P} \times \mathcal{P} \to \mathbb{R}$

有 D(P,Q) > 0, D(P,P) = 0

Jensen's inequality

有函数 $f: \mathbb{R} \to \mathbb{R}$, random variable $\mathbf{x} \sim D$ 。 令 $p(\mathbf{x})$ 为 D 的 pdf

则有 $E_{p(\mathbf{x})}(f(\mathbf{x})) \geq f(E_{p(\mathbf{x})}(\mathbf{x}))$

Law of Unconscious Statisticians: $X^{\dagger}Y = g(\mathbf{x})$

若
$$E_{p_X(\mathbf{x})}(g(\mathbf{x})) < \infty$$
,则 $E_{p_Y(y)}(y) = E_{p_X(\mathbf{x})}(g(\mathbf{x}))$

Generalized Jensen's inequality: $E_{p_X(\mathbf{x})}(f(g(\mathbf{x}))) = f(E_{p_X(\mathbf{x})}(g(\mathbf{x})))$

Kullback-Leibler KL divergence

divergence KL: $KL(P||Q) = \int p(\mathbf{x}) \ln(\frac{p(\mathbf{x})}{q(\mathbf{x})}) dx$

令真实数据集分部 X_{data} , GAN 根据参数 θ 生成的数据集分部 X_{θ}

 θ 代价函数 $KL(X_{data}||X_{\theta}) = E_{p_{data}(\mathbf{x})}(\ln(p_{data}(\mathbf{x}))) - E_{p_{data}(\mathbf{x})}(\ln(p_{\theta}(\mathbf{x})))$

即最优化参数 θ 为最小化 $E_{p_{data}(\mathbf{x})}(\ln(p_{\theta}(\mathbf{x})))$

Variational Inference:

1. $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z}) dz$

z 为 GAN 生成使用的输入 Gaussian noise, 即 $\mathbf{z} \sim \mathcal{N}(\vec{0}, I)$

> $p_{\theta}(\mathbf{x}|\mathbf{z})$ 为使用 θ 生成 \mathbf{x} 特征的几率 由于对高维向量 z 求积分, 难以计算

2.
$$\log(p_{\theta}(\mathbf{x})) = \log \int p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z}) dz$$

 $= \log \int q(\mathbf{z}) \frac{p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{q(\mathbf{z})} dz$

 $= \log \int q(\mathbf{z}) \frac{1}{q(\mathbf{z})} dz$ $\geq \int q(\mathbf{z}) \log(\frac{p_{\theta}(\mathbf{x}|\mathbf{z})p(\mathbf{z})}{q(\mathbf{z})}) dz \text{ (\pm Jensen's inequality)}$

 $= E_{q(\mathbf{z})}(\log(p_{\theta}(\mathbf{x}|\mathbf{z}))) - KL(q(\mathbf{z})||p(\mathbf{z}))$

** 结论: $q(\mathbf{z}) \approx p_{\theta}(\mathbf{z}|\mathbf{x})$ 时 代价值 $E_{q(\mathbf{z})}(\log(p_{\theta}(\mathbf{x}|\mathbf{z})))$ 较小 **

Variational auto-encoder

根据上结论, 令 $q(\mathbf{z}) = q_{\phi}(\mathbf{z}|\mathbf{x})$, ϕ 为另一神经网络, 得到 \mathbf{x} , 输出 \mathbf{z} 。

令 $\vec{\mu}_{\phi}(\mathbf{x}), \log(\vec{\sigma}_{\phi}(\mathbf{x}))$ 为网络 $NN_{\phi}(\mathbf{x})$ 输出的均值 $\log \operatorname{std}$ 。有 $q_{\phi}(\mathbf{z}|\mathbf{x})$ 为 $\mathcal{N}(\vec{\mu}_{\phi}(\mathbf{x}), \operatorname{diag}(\vec{\sigma}_{\phi}^2(\mathbf{x})))$ VAE 目标即得到 ϕ, θ 使得 $L(\phi, \theta)$ 最大

$$L(\phi, \theta) = E_{p_{data}(\mathbf{x})}(E_{q_{\phi}(\mathbf{z}|\mathbf{x})}(\log(p_{\theta}(\mathbf{x}|\mathbf{z}))) - KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{x})))$$

Theorem: $KL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{x})) = \frac{1}{2}(||\vec{\mu}(\mathbf{x})||^2 + ||\vec{\sigma}(\mathbf{x})||^2) - 2(\log(\vec{\sigma}(\mathbf{x})) \cdot \vec{1} - d), d 为 z 向量元素数$ 求导:

Monte Carlo Estimation: $L(\phi, \theta) + E_{q_{\phi}(\mathbf{z}|\mathbf{x})}(\log(p_{\theta}(\mathbf{x}|\mathbf{z}))) \approx \log(p_{\theta}(\mathbf{x}|\mathbf{z}))$, $\sharp + \mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$

则对
$$\theta$$
 求导:
$$\frac{dL(x,\phi,\theta)}{d\theta} = \frac{d\log(p_{\theta}(x|z))}{d\theta}, \quad \text{其中 } \mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$$
 对 ϕ 求导:
$$\frac{dL(x,\phi,\theta)}{d\phi} = \frac{dE_{q_{\phi}(\mathbf{z}|\mathbf{x})}(\log(p_{\theta}(\mathbf{x}|\mathbf{z})))}{d\phi} - \frac{dKL(q_{\phi}(\mathbf{z}|\mathbf{x})||p(\mathbf{z}))}{d\phi}$$

Reparameterisation trick: $\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})$ iff $\mathbf{z} = \vec{\mu}_{\phi} + \vec{\sigma}_{\phi} \odot \vec{\epsilon}$, $\not\equiv \psi \in \mathcal{N}(\vec{0}, I)$

$$\begin{split} & \text{III} \ E_{q_{\phi}(\mathbf{z}|\mathbf{x})}(\log(p_{\theta}(\mathbf{x}|\mathbf{z}))) = E_{\vec{\epsilon} \sim \mathcal{N}(\vec{0},I)}(\log(p_{\theta}(\mathbf{x}|\vec{\mu}_{\phi} + \vec{\sigma}_{\phi} \odot \vec{\epsilon}))) \\ & \text{III} \ \frac{E_{q_{\phi}(\mathbf{z}|\mathbf{x})}(\log(p_{\theta}(\mathbf{x}|\mathbf{z})))}{d\phi} = E_{\vec{\epsilon} \sim \mathcal{N}(\vec{0},I)}(\frac{\log(p_{\theta}(\mathbf{x}|\vec{\mu}_{\phi} + \vec{\sigma}_{\phi} \odot \vec{\epsilon})}{d\phi})) \\ & = E_{\vec{\epsilon} \sim \mathcal{N}(\vec{0},I)}(\frac{d\mathbf{z}}{d\phi} \frac{\log(p_{\theta}(\mathbf{z}|\mathbf{z}))}{d\mathbf{z}}|_{\mathbf{z} = \vec{\mu}_{\phi} + \vec{\sigma}_{\phi} \odot \vec{\epsilon}}) \\ & = \frac{d\mathbf{z}}{d\phi} \frac{\log(p_{\theta}(\mathbf{x}|\mathbf{z}))}{d\mathbf{z}}|_{\mathbf{z} = \vec{\mu}_{\phi} + \vec{\sigma}_{\phi} \odot \vec{\epsilon}}), \quad \text{III} \quad \vec{\epsilon} \sim \mathcal{N}(\vec{0},I) \end{split}$$

应用:

 $p_{\theta}(\mathbf{x}|\mathbf{y})$ 中 y 代表期望产生的数据类别,生成网络输入为 y,z

RL 强化学习 10

基本定义

程序在 environment 环境中根据观测得到的 state 状态,选择 action 行为,得到 reward 反馈 模型整体符号定义 <A, S, R, P>

Action space A

State space S

Reward $R: \sum \times A \times S \to R$

Transition $P: \sum \times A \to S$

第 i 决策的符号定义:

 $a_i \in A$ 采取的行为

 $r_i \in R$ 得到的 reward,每一行为可以立即得到反馈值

exploring 探索: 模型尝试新行为

exploiting 利用:模型使用已知高反馈行为

policy

根据观测选择 a_i 的算法

stochastic policy: policy 中有随机性

随机性提高模型 explore 新行为

genetic algorithm: 遗传算法

policy gradients: 对参数求导, 更新参数

credit assignment:

对每一决策分配 discounted reward, 代表此决策对随后几次决策的反馈值影响 定义:

l 此次试验一共包含的决策数, γ 为 discount factor

计算:

第 l-1 决策有决策有 discounted reward: $d_i = r_i$

第 i 决策有 discounted reward: $d_i = r_i + \gamma * d_{i+1}$

正则化:对所有实验中每一次决策 r_i 取整体平均值,方差,求标准化

neural network policy

前向传播:使用神经网络得到行为可能性,根据可能性选择行为。属于 generic gradient policy **单次迭代**:

定义:一次决策

- 1. 从 policy 得到行为可能性
- 2. 用交叉熵代价函数求代价值, y_hat 为 1. 中可能性, y 为实际采取的行为
- 3. 根据代价函数求斜率,斜率使神经网络输出可能性更偏向采取的行为。但不立即使用斜率
- 1. 随机初始化 1 次模型,对 n 个随机初始化环境进行试验,每一试验中包含多个决策每一环境得到决策数不一定相同,取决于试验中进行的决策次数
- 2. 对每一决策求 discounted reward,结果包含 n 组数组,第 l_i 组数组对应第 i 次实验的 discount reward 数组
 - 3. 对所有 discounted reward 标准化,平均值 方差为所有 dis reward 值
- 4. 对每一参数每一决策的斜率乘对应决策的 dis reward。对结果中所有属于同一参数的乘积取平均值,为此参数的斜率
 - 5. 使用斜率更新参数值

Markov Decison Process MPD

每一状态 s_i 有可执行的行为集合 $A_{s_i}\subseteq A$ 。不同状态行为集合可有交集 行为 $a_{ij}\in A_{s_i}$ 代表状态 s_i 执行行为 a_j 。执行 a_{ij} 后有 p_{a_{ij},s_k} 几率到达状态 s_k optimal state value $V^*(s_i)$:

模型到达状态 s_i 后 选择最理想的 a_{ij} 能得到的 discounted reward 总和

$$V^*(s_i) = \max_i \sum_{s} [p_{a_{ij},s_k}(R(s_i, a_{ij}, s_j) + \gamma \cdot V^*(s_i))]$$

Q-value iteration algorithm:

得到 从 s_i 选择 a_{ij} 后期望的 discounted reward 值

迭代:
$$Q_{n+1}(s_i, a_{ij}) = \sum_j [p(a_{ij}, s_j)(R(s_i, a_{ij}, s_j) + \gamma \cdot max_{a_{jk}}(Q_n(s_k, a_{jk})))]$$
 policy: 状态为 s_i 时选取 $a_{ij} = max_{a_{ij}}Q^*(s_i, a_{ij})$

Temporal Difference Learning TD learing

在 p_{a_{ii},s_i} , R 未知的情况下迭代得到 $V(s_i)$

更新函数:
$$V(s) = (1 - \alpha)V(s) + \alpha \cdot (r + \gamma \cdot V(s'))$$

= $\leftarrow_{\alpha} r + \gamma \cdot V(s')$ 简介写法

s' 为状态 s 能达到的下一状态

 α 为学习率, γ 为 discount factor

Q-Learning

方法 1: 在 p_{a_{ij},s_j} , R 未知的情况下**每次决策更新一个** $Q(s_i,a_{ij})$ 值。每次决策选择 $Q_{s_i,a_{ij}}$ 最大的行为

更新函数: $Q(s_i, a_{ij}) \leftarrow_{\alpha} r + \gamma \cdot max_{a_{ik}}(Q(s_i, a_{jk}))$

 α 为学习率, γ 为 discount factor

所有 $Q(s_i, a_{ij})$ 初始化为 0

r 为实际得到的 reward

 $\max_{a_{jk}}(Q_n(s_j,a_{jk}))$ 为估计的 discounted reward 总和,取值为: 决策后**实际到达的下一状态** s_j 的所有 $Q(s_j,a_{jk})$ 中最大值

方法 2: 为避免需要过多实验才能得到准确的 $Q^*(s_i, a_{ij})$, 使用 ϵ – greedy policy。

决策时每一步有 ϵ 几率随机选择下一行为, $1-\epsilon$ 几率选择 $Q_{s_i,a_{ij}}$ 最大的行为

Q 更新函数同方法 1

方法 3: 另一随机 explore 算法, 使用 exploration function 根据行为被选择的次数判断行为被 explore 的程度

选择行为时仍选取 $max_{a_{ij}}Q(s_i, a_{ij})$

更新函数: $Q(s_i, a_{ij}) \leftarrow_{\alpha} r + \gamma * max_{a_{jk}} f(Q(s_j, a_{jk}), N(s_j, a_{jk}))$

 $N(s_i, a_{ik})$ 为行为 a_{ik} 在状态 s_i 下被选择的次数。

f(Q,N) 根据选择次数和 Q 值决定行为的优先级。例: $f(Q,N) = Q + \frac{\kappa}{1-N}$

Approximate Q-Learning

解决当模型的状态数 行为数过大时训练过慢的问题。通过找到方程 $Q_{\theta}(s_i,a_{ij})$ 估计实际 $Q^*(s_i,a_{ij})$,根据给定参数向量 $\vec{\theta}$

deep Q-networks DQNs

使用神经网络估计 $Q_{\theta}(s_i, a_{ij})$ 值,使用的神经网络称 DQN

DQN 得到 s_i ,返回 $Q_{\theta}(s_i, a_{ij})$ 。最终选取行为时根据 $Q_{target}(s_i, a_{ij}) = r + \gamma * max_{a_{jk}} Q_{\theta}(s_j, a_{jk})$ 得到训练集:

一个样本包含 s_i , a_{ij} , 得到的 rewardr, 进入的下一 s_j , bool 值 done 代表下一状态为终止状态 将所有样本加入集合 replay buffer,取样本时随机选取,避免相邻样本的 correlation 影响训练 s_i 可为图片,无需人工得到参数

迭代:

- 1. 进行多组试验,每组试验的每一决策加入 replay buffer。前几次迭代不进行训练,由于 replay buffer 中样本多样性较低
 - 2. 训练从 replay buffer 取一批量样本,对于每一样本 $(s_i, a_{ij}, r, s_j, done)$

得到 $Q_{target}(s_i, a_{ij})$

将下一状态 s_j 通过 DQN 得到向量 $Q_{\theta}(s_j, a_{jk})$,元素数为行为数

对 $Q_{\theta}(s_i, a_{ik})$ 取最大值, 即得到 $max_{a_{ik}}Q_{\theta}(s_i, a_{ik})$ 值

根据 $max_{a_{jk}}Q_{\theta}(s_j, a_{jk})$ 计算 s_i 的新 target 值 $Q_{target}(s_i, a_{ij})$

得到 $Q_{\theta}(s_i, a_{ij})$

将 s_i 传入 DQN,得到 $Q_{\theta}(s_i,a_{ij})$ 。并和 one hot 向量点乘 得到决策实际选取的行为 a_{ij} 的 $Q(s_i,a_{ij})$

3. 代价值为一批量的 $Q_{\theta}(s_i, a_{ij})$ 和 $Q_{target}(s_i, a_{ij})$ 的平均平方代价值,根据代价值梯度下降训练 DQN

Fixed Q-Value Target

使用 2 神经网络,分别负责计算 Q_{target} , Q_{θ}

两网络初始参数一致,每 n 次循环后将计算 Q_{θ} 的网络参数抄入 Q_{target} 网络

计算 target 时使用 s_i 传入 Q_{target} 网络的结果。即 使得 target 计算不再每一循环一更新而是每 n循环更新。训练更稳定

Double DQN

类似 Fixed Q-Value layer, 每次循环更新 Q_{target} 网络, 每 n 次循环后将 Q_{target} 抄入 Q_{θ}

Pritorized Experience Relay

Evolutionary algorithm

通过交换参数的一部分得到更优的参数组合

模型:

对参数向量 $\vec{x} = [x_1, x_2, ...]$ 评估方程 $f(\vec{x}) \in \mathbb{R}$

目标:得到 \vec{x} 使 $f(\vec{x})$ 值最大化

算法:

- 1. 随机初始化 n 参数向量
- 2. 每一迭代中取 m 个参数向量进入集合 S

取法 1: 每一参数向量 $\vec{x_i}$ 有 $\frac{f(x_i)}{\sum_i f(x_i)}$ 几率被选中进入 S

取法 2: 将每一参数向量 $\vec{x_i}$ 根据 $f(\vec{x_i})$ 排序,排名第 \mathbf{j} 向量有 $P(\vec{x_i}) = p*(1-p)^(j-1)$ 几率 被选中进入 S。第 \mathbf{m} 参数向量有可能性 1-(1 到 \mathbf{m} -1 参数可能性之和)

取法 3: 定义参数向量间间距 $D(\vec{x_i}, \vec{x_i})$, 用于保证选取的参数分部范围广泛

取 $f(\vec{x_i})$ 最大的 $\vec{x_i}$ 放入 m 集合

随后选取 m-1 个向量, 选取 $\vec{x_i}$ 使得 $f(\vec{x_i}) * E_{v \in S}(D(\vec{x_i}, v))$ 最大的

即选取参数向量使得 其与已经选择的向量平均距离 * 自身 $f(\vec{x_i})$ 值 最大化

tornament 取法: 每次随机选择 n 个参数向量, 选择其中 fit 值最高者加入 S

支持 concurrent 创建 S

无需准确得到 fit 值,只需能够比较两参数向量优劣即可

Elitism 取法:选择 fit 最优的部分参数向量直接加入 S,比例多取 10%

3. 根据最优 m 个参数向量,交换参数得到 m 个下一代参数向量,变异出剩余 n-m 个参数向量 交换参数: 对 $\vec{x} = [x_1, x_2, ...]$, $\vec{y} = [y_1, y_2, ...]$ 交换结果为 $\vec{x}' = [x_1, y_2, ...]$, $\vec{y}' = [y_1, x_2, ...]$ 交换元素的位置根据算法可变

变异向量由已有的 m 个后代参数向量变异得到

对 $\vec{x} = [x_1, x_2, ...]$,变异参数向量每一元素 x_i' 有 $x_i'U(-step_size + x_i, step_size + x_i)$ 使用的分部不一定为 Uniform 分部

4. 当迭代次数达到限制, 当一参数向量 fit 值达到限度, 当 fit 值不再大幅改变, 停止

Genetic algorithm

定义:

Gene: 单一可选的参数值

Genetype:一段二进制值,对应一参数向量

当参数使用编码导致可选值大于限定值域,将多余编码的评估值设为 0,使其不被选入下一 迭代

Phenotype:将 Genetype 分离成单个参数对应参数向量中每一元素

crossover 交换数据时交换 Genotype 一段 bit 值

mutation 变异: 每一 bit 有 m 几率取相反值,m 常取 $\frac{1}{genotype_length}$

Evolutionary strategy $(\mu + \lambda)$ - ES

定义:

Genotype: 一数组实数

 μ, λ 为给定超参数。常取 $\frac{\lambda}{\mu} = 5$

初始化: 随机创建 $\mu + \lambda$ 个参数向量

选择 S: 选择 fit 值最高的 μ 个参数向量

生成下一迭代参数:

- 1. 使用超参数 σ : 随机选择 λ 个向量 \vec{x}_i , 分别生成 $\vec{x}_i = \vec{x}_i + N(0, \sigma)$
 - + 为对每一 \vec{x}_i 中参数值加 normal 变量
 - σ 较大则数据分散。较小则学习率低,受局部最优影响。
- 2. 在迭代过程中改变 σ ,有超参数 $\tau_0 \propto \frac{1}{\sqrt{n}}$,n 为参数向量元素数 前一迭代有 σ_i ,选择 λ 个参数向量 \vec{x}_i 下一迭代有 $\sigma_i = \sigma_i exp(\tau_0 N(0,1))$

生成新参数向量 $\vec{x}_i = \vec{x}_i + \sigma_i N(0,1)$

Novelty Search

定义:

Novelty(x, A) = $\frac{1}{N}\sum_{i}^{N}d(x,x_{i})$, 即参数向量到 A 中 N 个邻近参数向量的平均距离。A 为 Novelty Archive,为一参数向量集合

behavioural descriptor: 定义参数向量对应的策略类型, Novelty Search 目标为找到合适的 behaviour descriptor

迭代:

fit 函数即 Novelty(x),一次迭代从参数向量中选择 Novelty 最高向量加入 Archive,由 archive 生成下一代参数向量

Novelty Search with Local Competition

为一 Multi-objective EA: 同时最大化 Novelty 和 Local Competition

Local Competition LC(x): 对 Archive 中邻近的 N 个参数向量,其中 fit 值 < f(x) 的向量个数 迭代时将 $f(x_i) < f(x)$ 的 x_i 替换为 x

MAP-Elites

将参数向量对应到 2d 网格,每一格仅存在 0-1 个向量。

向量在网格的分部不一定为 uniform

迭代时随机选择一个参数,变异。得到新的参数向量对应网格中一格,若已有一参数向量对应此格,则选择两参数向量中 fit 值较大的加入 archive,较小参数被移除

performance 计算:

diversity: archive size, 即网格中有参数对应的格数

fit 值: archive 中参数的最大或平均 fit 值

converge 速度

11 机器翻译 17

QD-Score: archive 中参数的 fit 值总和 假设 fit 值全部为正

同时考虑 diversity 和 fit 值的表现

11 机器翻译

分析翻译结果

Bilingual Evaluation understudy BLEU-n:

对预测翻译 $\hat{s} = [\hat{s}_1, \hat{s}_2, ...]$,计算和给定目标翻译 s 的相似度

BLEU-n= $BP * (\prod_{i=1}^{n} (i \cdot precision(i)))^{\frac{1}{n}}$

precision(i):

使用 i 词长度的窗口, 选取 \hat{s} 的子字符串 $\{[\hat{s}_1,...,\hat{s}_i],[\hat{s}_2,\hat{s}_{i+1}],...\}$

precision(i) = 子字符串中同时为目标翻译 substring 的个数 / 子字符串个数

BrevityPenaltyBP: 当输出远小于目标长度, 惩罚更多

 $BP = \min(1, \frac{|\hat{s}|}{|s|})$

BERTScore:

对预测和目标翻译每一词转为词向量

对每一目标词向量、和每一预测词向量点乘、取最高值作为权重

求目标词权重平均值, 当赋目标词权重时可计算加权平均值

Recurrent Network Machine Translate RNMT

使用两 RNN, 分别为 encoder, decoder

encoder RNN 得到输入句,产生隐藏状态作为 decoder 的隐藏状态。

decoder 初始输入为 < s > 代表句子开始产生词序,直至输出为 < /s > 作为句末结束

12 分析结果

训练过程

分离训练,验证,测试数据集:

- 将数据集按 (0.6, 0.2, 0.2) (0.8, 0.1, 0.1) 分为训练 验证 测试集
- cross validation

样本分为 N 个 fold $F = \{f_1, ..., f_N\}$

1.k-fold cross validation

当无需对超参数调参时使用,不能分离验证集的原因为:验证集过小,将没有代表性 算法:

 $f_1,...,f_N$ 分别作为测试集 f_i ,剩余 N-1 fold $\{F\setminus f_i\}$ 作为训练集。进行 N 次训练,得到 N 个**同一超参数**产生的训练结果

N 个训练后模型在对应测试集准确率为 $x_1,...,x_N$ 。模型的准确率为 $\frac{1}{N}\sum_i x_i$

2.nested k-fold cross validation

比较 M 组不同超参数 $p_1,...,p_M$ 时使用

算法:

 $f_1, ..., f_N$ 分别作为测试集 f_i ,在剩余 N-1 fold $\{F \setminus f_i\}$ 中每一 fold 分别作为验证集 f_i 。

12 分析结果 18

- 每次 tuning 使用 $\{F \setminus \{f_i, f_j\}\}$ 做训练集, f_j 做验证集。
- 每一 p_m 在 $f_i \in \{F \setminus f_i\}$ 上测试有平均验证代价值 $c_{(p_m,f_i)}$
- 对每一 p_m , 得到 p_m 的平均验证代价值。取代价值最小的模型 p_i^* 在测试集 f_i 上测试 最优模型在测试集上得到测试集代价值 $c_{(p_i^*f_i)}$ 。最终总代价值为 $\sum_i \frac{c_{(p_i^*f_i)}}{N}$

最终测试集代价平均值为选取模型的算法的代价值

hyperparameter tuning 得到最优模型设计:

使用不同超参数在训练集上训练,得到多个训练结束的模型。

在验证集上测试, 选取准确度最高的 hyperparameter。 选取 hyperparameter 后可将测试集和验证 集合并重新训练,使模型使用的训练数据集更大。

最终在测试集上运行,得到模型准确度。

confusion matrix 困惑矩阵:分析二元/多元分类

$$\begin{bmatrix} TP & FN \\ FP & TN \end{bmatrix}$$

一行对应同一期望输出,一列对应同一计算输出

T/F: 此位置的计算输出是否和期望输出一致

P/N: 此位置的计算输出是否为真

对一个类别/一元:

$$\mathbf{precision} = \frac{TP}{TP + FP}$$

即 P(计算结果匹配 | 计算结果为正): 所有计算为真的样本中预测正确的概率

$$recall = \frac{TP}{TP + FN}$$

即 P(计算结果匹配 | 期望结果为正): 所有期望为真的样本被正确预测的概率

specificity =
$$\frac{TN}{TN+FN}$$

$$F_1 = \frac{2}{\frac{1}{precision} + \frac{1}{recall}}$$

 $F_1 = rac{2}{rac{1}{precision} + rac{1}{recall}}$ precision 和 recall 的调和平均值

$$F_{\beta} = (1 + \beta^2) \cdot \frac{precision \cdot recall}{(\beta^2 \cdot precision) + recall}$$

 β : 当 precision 为 recall β 倍重要

$$\mathbf{accuracy} = \frac{TP + TN}{TP + TN + FP + FN}$$

classification error = 1 - accuracy

macro-average recall: 所有 recall 的平均值, 此处 recall 为每行正确预测的概率 macro-average precision: 所有 precision 平均值,即每列求 precision 取均值

多类标签 confusion matrix

$$egin{bmatrix} TP & FN & ... \ FP & TN & undefine \ ... & undefine & TN \end{bmatrix}$$

对第一类标签的 confusion matrix

micro-avaeraging:将所有类别的TP之和/所有类别的TP+FN之和 当所有样本只能符合一个类别时 = accuracy

imbalanced dataset

- 1 类标签样本数远多于另一样本
- 1. 将 confusion matrix 所有值换为关于横行的百分比, 假设所有期望类别下的样本数相同
- 2. down/up sample: 舍弃/复制部分样本,使每一期望类别下样本数相同

12 分析结果 19

无法反应整个模型 generalise 性,由于实际使用时数据为 imbalance 的

confidence interval

true $errorerror_D(h)$: 模型 h 实际的代价值

sample error $error_S(h)$: 模型 h 在测试集上运行的平均代价值 或预测错误类别的样本比例 error 的 confidence interval= $error_S(h) \pm Z_{\alpha/2} \sqrt{\frac{error_S(h)(1-error_S(h))}{n}}$

比较两个模型

randomisation test: 随机交换 2 模型多个测试结果, 比较交换前后模型 performance

two-sample T-test: 两模型在不同测试集上测试, 得到 performance 个数不同。使用 common variance 求 p 值

paired T-test: 两模型在相同测试集上测试, performance 个数相同。取 performance 差求 T-test p 值

p-hacking

定义:模型依赖于无关的参数得到 p 值 <sig. level

例:对 M pair 特征,验证是否两个参数存在相关性。当增加实验的特征对时,仅有小部分相关性真实存在

解决:

对 M 组特征的 p 值排序,得到 $p_i < ... < p_M$

第 i 位置的特征使用 sig. level $z_i = sig.level * \frac{i}{M}$

实际存在的特征对 i 为 $p_i < z_i$

ROC curve: 分析二元/多元分类

y 轴 recall 值, x 轴 false positive rate $FPR = \frac{FN}{FN+TN} = \frac{FN}{1-specificity}$ 期望的 ROC curve 为 recall 从 0 快速增长到 1。并保持直到 FPR 为 1。即期望曲线下方面积接近 1

learning curves: 观察模型是否有 over underfit

x 轴为一整次训练 (包含多次 epoch) 使用的训练集大小, y 轴为 root MSE。 画出训练集 测试集在使用不同训练集大小后的 root MSE。 13 数学系笔记 20

分析:

期望2曲线平缓值低且相近,

当 2 曲线平缓值差值较大,测试集平缓值较低,则过拟合

当 2 曲线平缓值较高,则欠拟合

模型复杂度-error epoch-error:

2 种图,形状类似, x 轴内容不同

13 数学系笔记

Spectral Factorization Theorem

Thoeorem: $\forall \exists Symmetric matrix A \in \mathbb{R}^{n \times n}$

存在 orthogonal matrix $U \in \mathbb{R}^{n \times n}$,对角矩阵 $D \in \mathbb{R}^{n \times n}$ 使得 $U^TAU = D$

Rayleigh quotient: $\forall \vec{x}$ symmetric matric A, $R_A(\vec{x}) = \frac{\vec{x}^T A \vec{x}}{\|\vec{x}\|}, \forall \vec{x} \neq \vec{0}$

由 Spectral Factorization Theorem: 令 $\lambda_{min}, \lambda_{max}$ 为 A 的最大最小 eigenvalue

则 $\lambda_{min} \leq R_A(\vec{x}) \leq \lambda_{max}$ open ball: $B(\vec{c}, r) = \{x | ||\vec{x} - \vec{c}|| < r\}$

closed ball: $B[\vec{c}, r] = \{x | ||\vec{x} - \vec{c}|| \le r\}$

interior point: 对集合 $U \subseteq \mathbb{R}^n$, $c \in U$

U 的 interior point 集合 $interior(U) = \{\vec{x} \in U | B(\vec{x}, r) \subseteq U, r > 0\}$

Closed Set

集合 $U \subseteq \mathbb{R}^n$ 为 closed: 对所有 converge 的子集 $\{\vec{x}_i\} \subseteq U$, $\lim_{i \to \infty} \vec{x}_i = \vec{x}^*$),则 $\vec{x}^* \in U$

Closure

对集合 $U \subseteq \mathbb{R}^n$ 的 closure $cl(U) = \bigcap \{T | U \subseteq T, Tclosed\}$

即最小的 close 集合 T 使得 $U \subseteq T$

求导

在

Directional derivative: 对定义在 $S \subseteq \mathbb{R}^n$ 上的函数 f,

 $\Leftrightarrow \vec{x} \in interior(S), \vec{d} \in \mathbb{R}^n$

若存在 $\lim_{x\to 0} \frac{f(\vec{x}+t\vec{d})}{t}$,则称此为 f 在 \vec{x} 沿 \vec{d} 方向的 directional derivative

Partial derivative: 当 Directional derivative 中 \vec{d} 为仅有 i 位置为 1,其余为 0 的向量 $\vec{e_i}$ 。

写作 $\frac{df}{d\vec{x}_i}|\vec{x}$

在点 \vec{x} ,对每一 \vec{x}_i 位置求 partial derivative: $\nabla f(\vec{x}) = [..., \frac{df}{d\vec{x}_i} | \vec{x}, ...]^T$

Continuous Differentiability: 当定义在 open set $S \subseteq \mathbb{R}^n$ 上的函数 f 所有的 partial derivative 都存

13 数学系笔记 21

写作 $(\nabla f(\vec{x}))^T d, \vec{x} \in U, \vec{d} \in \mathbb{R}^n$

Linear Approximation Theorem: 令函数 f 定义在 open set $S \subseteq \mathbb{R}^n$ 上

取 $\vec{x} \in U, r > 0$ 使得 $B(\vec{x}, r) \subseteq U$, 则对任意 $\vec{y} \in U$ 存在 $\xi \in [\vec{x}, \vec{y}]$ 使得

$$f(\vec{y}) = f(\vec{x}) + (\nabla f(\vec{x}))^T (\vec{y} - \vec{x}) + \frac{1}{2} (\vec{y} - \vec{x})^T \nabla^2 f(\xi) (\vec{y} - \vec{x})$$

Quadratic Approximation Theorem:

同 Linear Approximation Theorem, 无需取 ξ , 有

$$f(\vec{y}) = f(\vec{x}) + (\nabla f(\vec{x}))^T (\vec{y} - \vec{x}) + \frac{1}{2} (\vec{y} - \vec{x})^T \nabla^2 f(\vec{x}) (\vec{y} - \vec{x}) + o(\|\vec{y} - \vec{x}\|^2)$$

o 为 complexity bonud

stationary point: 对集合 $U \subseteq \mathbb{R}^n$, 函数 f 定义在 $U \perp$

saddle point: 非 maximum 和 minimum 的 stationary point

若 f 在 \vec{x} 的 hessian matrix $\frac{d^2f(\vec{x})}{d\vec{x}^2}$ 为 indefinite, 则点 \vec{x} 为 saddle point

coerciveness: $\diamondsuit f: \mathbb{R} \to \mathbb{R}$ 为 continuous function

若 $\lim_{\|\vec{x}\|\to\infty} f(\vec{x}) = \infty$,则 f 为 coercive

Global Optimality Condition Theorem:

令函数 f 定义在 \mathbb{R}^n 上, 2 次 continuous differentiable, 对任意 $\vec{x} \in \mathbb{R}^n$ 有 $\nabla^2 f(\vec{x})$ semi positive definite。

令 $\vec{x}^* \in \mathbb{R}^n$ 为任意 f 上 stationary point,则 \vec{x}^* 为 fglobal minimum point 证明:

任取 $\vec{y} \in \mathbb{R}^n$ 。

由于 \vec{x} 为 stationary point, $\nabla f(\vec{x}) = \vec{0}$

由 Linear Approximation theorem, 有 $f(\vec{y}) = f(\vec{x}) + \vec{0}^T(\vec{y} - \vec{x}) + \frac{1}{2}(\vec{y} - \vec{x})^T \nabla^2 f(\xi)(\vec{y} - \vec{x})$

由于 $\nabla^2 f(\vec{x})$ semi positive definite, 有 $(\vec{y} - \vec{x})^T \nabla^2 f(\xi) (\vec{y} - \vec{x}) \ge 0$

则 $f(\vec{y}) > f(\vec{x}^*)$, \vec{x} 为最小值点

quatratic function: 函数 f 定义在 \mathbb{R}^n 上。

定义: $f(\vec{x}) = \vec{x}^T A x + 2 \vec{b}^T \vec{x} + c$, 其中 $A \in \mathbb{R}^{n \times n}$ symmetric, $b \in \mathbb{R}^n$, $c \in \mathbb{R}$

$$\nabla f(\vec{x}) = 2A\vec{x} + 2\vec{b}$$

$$\nabla f(\vec{x}) = 2A$$

 $\stackrel{\text{def}}{=} A = S^T S$, A semi positive definite

lemma: A positive definite iff f coercive

Theorem: $\forall \vec{x} \in \mathbb{R}^n, f(\vec{x}) \geq 0$ iff 矩阵 $\begin{bmatrix} A & b \\ b^T & c \end{bmatrix}$ semi positive definite

decent direction

 $\diamondsuit f: \mathbb{R}^n \to \mathbb{R}$ 为 continuous differentiable

定义 $\vec{d} \in \mathbb{R} \neq \vec{0}$ 为 \vec{x} 点的 decent direction: $\nabla f(\vec{x})^T \vec{d} < 0$

Lipschitz Gradient: 令函数 fContinuous differentiable, 定义在 \mathbb{R}^n

定义 f 有 Lipschitz Gradient:存在 L>0,使得对任意 $\vec{x}, \vec{y} \in \mathbb{R}^n$, $\|\nabla f(\vec{x}) - \nabla f(\vec{y})\| \leq L\|\vec{x} - \vec{y}\|$ L 称有 Lipschitz Constant

 $C_L^{1,1}(\mathbb{R}^n)$: 定义在 \mathbb{R}^n 上的,有 Lipschitz Const 为 L 的函数集合

linear function 属于 $C_0^{1,1}$

quadratic function $f(\vec{x}) = \vec{x}^T A \vec{x} + 2\vec{b}^T \vec{x} + c$, 最小 L 为 $2||A||_2$

Theorem:

22 13 数学系笔记

令 f 定义在 \mathbb{R}^n 上,二次 Continuous Differentiable。则 $f \in C_L^{1,1}(\mathbb{R}^n)$ iff $\forall \vec{x} \in \mathbb{R}^n, \|\nabla^2 f(\vec{x})\| \leq L$ stepsize selection(learning rate)α 每次迭代中选择学习率

每次更新中 $\vec{x}' = \vec{x} + \alpha \vec{d}$

 $constant: \alpha$ 为常数

Exact stepsize: $\alpha = argmin_{\alpha} f(\vec{x} + \alpha \vec{d})$

Backtracking (Armijo rule):

使用参数 s > 0, $a \in (0,1)$, $b \in (0,1)$

初始化 $\alpha = s$, 从较大 α 值开始, 即初始时

每次迭代 $\alpha = b\alpha$,直至代价函数减少量 $f(\vec{x}) - f(\vec{x} + \alpha \vec{d}) \ge -a\alpha \nabla f(\vec{x})^T \vec{d}$

减小量不等式称 Sufficient Decrease Property

Sufficient decrease of gradient method Lemma:

令 $f \in C_L^{1,1}$, $\{\vec{x}\}$ 为由 gradient method 产生的 \vec{x} 数列

有
$$f(\vec{x}_i) - f(\vec{x}_{i+1}) \ge M \|\nabla f(\vec{x}_i)\|^2$$

$$\mathbf{M} = \begin{cases} \alpha(1 - \frac{\alpha L}{2}) & const\alpha \\ \frac{1}{2L} & exact step size \\ \alpha \min(s, \frac{2(1 - \alpha)\beta}{L}) & back tracking \end{cases}$$
erge of Gradient method Theorem:

Converge of Gradient method Theorem:

令
$$f \in C_L^{1,1}(\mathbb{R}^n)$$
。存在 $m \in \mathbb{R}$,对任意 $\vec{x} \in \mathbb{R}^n$, $f(\vec{x}) > m$

则: 1.
$$f(\vec{x}_{i+1}) < f(\vec{x}_i)$$
, 除非 $\nabla f(\vec{x}_i) = 0$

2.
$$\lim_{i\to\infty} \nabla f(\vec{x}_i) = 0$$

令矩阵 $A \in \mathbb{R}^{n \times n}$ positive definite, 令 $\lambda_{max}, \lambda_{min}$ 为 A 最大 最小 eigenvalue

Kantorovich inequality:
$$\vec{x} \in \mathbb{R}^n, \vec{x} \neq \vec{0}, \ \ \ \ \ \ \ \frac{(xTx)^2}{(x^TAx)(x^TA^{-1}x)} \geq \frac{4\lambda_{max}\lambda_{min}}{(\lambda_{max}+\lambda_{min})^2}$$

Kantorovich inequality: $\vec{x} \in \mathbb{R}^n, \vec{x} \neq \vec{0}$, 有 $\frac{(xTx)^2}{(x^TAx)(x^TA^{-1}x)} \geq \frac{4\lambda_{max}\lambda_{min}}{(\lambda_{max}+\lambda_{min})^2}$ Theorem: $\{\vec{x}\}$ 为 gradient method 解 min \vec{x}^TAx 产生的 \vec{x} 数列,则 $f(\vec{x}_{k+1}) \leq (\frac{\lambda_{max}-\lambda_{min}}{\lambda_{max}-\lambda_{min}})^2 f(\vec{x}_i)$

由 Kantorovich inequality 证得,可得出 cond(A) 较高时 converge 缓慢

scaled gradient method:解决 converge 较慢问题

Lemma: 将代价函数 $f(\vec{x})$ 转为 $g(\vec{y}) = f(S\vec{y})$, 其中 $\vec{x} = S\vec{y}$, $\vec{x}, \vec{y} \in \mathbb{R}^n$, S 为 nonsingular 矩阵

则有
$$\nabla g(\vec{y}) = S^T \nabla f(Sy) = S^T \nabla f(\vec{x})$$
。带入 $g(\vec{y})$ 的迭代中, $\vec{y}_{i+1} = \vec{y}_i - \alpha_i S^T \nabla f(S\vec{y}_i)$
 $\vec{x}_{i+1} = \vec{x}_i - \alpha_i SS^T \nabla f(\vec{x}_i)$

由于 SS^T positive definite, $-SS^T\nabla f(\vec{x}_i)$ 为一新 decent gradient

选择 SS^T :

$$\nabla^2 g(\vec{y}) = S\nabla^2 f(Sy)S = S\nabla^2 f(\vec{x})S$$

目标为选择 S 使得 $S\nabla^2 f(\vec{x})S$ cond 值较小

方法 1. Newton's method: $SS^T = \nabla^2 f(\vec{x})^{-1}$

方法 2.
$$SS^T = diag((\frac{d^2 f(\vec{x})}{d\vec{x}_i^2})^{-1})$$