Logica Propozițională. Seminar 2 - Fișă de exerciții (07.10.2019 - 11.10.2019)

- 1. Reamintiti definiția multimii LP din curs.
- 2. Fie mulțimea de variabile propoziționale $A = \{p, q, r, p_1, p', \ldots\}$. Arătați că următoarele cuvinte sunt formule propoziționale (adică elemente ale mulțimii LP), explicând care sunt pasii de construcție (pas de bază, respectiv unul dintre cei trei pasi inductivi):
 - (a) $\neg q$; (b) $(p_1 \land q)$; (c) $\neg (p \lor q)$; (d) $(\neg p \lor \neg q)$; (e) $(\neg p \land \neg q)$.
- 3. Arătați că următoarele cuvinte nu sunt elemente ale mulțimii *LP* (indicație: arătați că niciuna dintre cele 4 reguli de formare nu poate fi aplicată):
 - (a) $(\neg)q$; (b) $q \land \neg$; (c) pq; (d) $p \land q$; (e) $(p) \land (q)$.
- 4. Care dintre următoarele cuvinte sunt formule din LP și care nu sunt:
 - (a) p_1 ; (b) $p_1 \vee q_1$; (c) $(p_1 \vee q_1)$; (d) $(\neg p_1 \vee q_1)$; (e) $\neg (p_1 \vee q_1)$; (f) $(\neg p)$?
- 5. Definiți inductiv funcția $subf: LP \rightarrow 2^{LP}$, care calculează toate subformulele unei formule.
- 6. Calculați, folosind funcția de mai sus, mulțimea de subformule ale formulelor:
 - (a) $((p \land \neg q) \land r)$; (b) $((p \lor \neg q) \land r)$; (c) $\neg ((p \lor \neg q) \land r)$.
- 7. Definiți funcția $arb: LP \to Arb$ care calculează arborele abstract asociat unei formule. Mulțimea Arb este mulțimea tuturor arborilor cu rădăcină (această mulțime o vom considera intuitiv, fără definitie).
- 8. Calculați arborii abstracți ai următoarelor formule:
 - $(a) \ ((p \wedge \neg q) \wedge \texttt{r}); \quad \ (b) \ ((p \vee \neg q) \wedge \texttt{r}); \quad \ (c) \ \neg ((p \vee \neg q) \wedge \texttt{r}); \quad \ (d) \ (\neg (p \vee \neg q) \wedge \texttt{r}).$
- 9. Definiți funcția $height: LP \to \mathbb{N}$ care calculează înălțimea arborelui abstract al formulei (astfel încât height(p) = 0 și $height((p \land \neg q)) = 2)$.
- 10. Definiți funcția $size: LP \to \mathbb{N}$ care calculează numărul de noduri ale arborelui abstract al formulei (astfel încât size(p) = 1 și $size((p \land \neg q)) = 4)$.
- 11. Arătați prin inducție structurală că $height(\varphi) \leq size(\varphi)$ pentru orice formulă $\varphi \in LP$.
- 12. Definiți funcția $prop: LP \to 2^A$, care calculează pentru fiecare formulă mulțimea variabilelor propoziționale care apar în formulă.
- 13. În practică, când scriem formule din LP, nu scriem parantezele decât dacă este strict necesar. La fel cum dacă scriem $5 \times -3 + 2$ înțelegem $(5 \times (-3)) + 2$, la fel în loc de $p \wedge \neg q \vee r$ vom înțelege $((p \wedge \neg q) \vee r)$. În acest sens, negația \neg este operatorul cu prioritatea cea mai mare, urmat de \wedge și apoi urmat de \vee . Putem ține minte această convenție asociind \neg cu minusul unar, \wedge cu înmulțirea și \vee cu adunarea. De asemenea, vom arăta mai târziu că operatorii \wedge și \vee sunt asociativi și comutativi. Din acest motiv, vom permite scrierea $p \wedge q \wedge r$ în loc de $((p \wedge q) \wedge r)$ sau de $(p \wedge (q \wedge r))$.

Exprimați cu cât mai puține paranteze următoarele formule:

- (a) $((p \land \neg q) \land r)$; (b) $((p \lor \neg q) \land r)$; (c) $\neg ((p \lor \neg q) \land r)$.
- 14. Scrieți arborele abstract pentru următoarele formule, având grijă să le parantezați conform ordinii de prioritate a operatorilor:
 - (a) $p \land q \lor r$; (b) $\neg p \land \neg q \lor \neg r$; (c) $p \land \neg q \lor r$; (d) $\neg p \land \neg (q \lor r)$; (e) $p \lor \neg p \land \neg (q \lor r)$;
- 15. Dați exemple de 5 formule interesante (cu cât mai mulți operatori, variabile etc.) și calculați pentru fiecare dintre ele arborele abstract, subformulele și scrieți-le cu cât mai puține paranteze.