

OBJECTIVES

- > Data Science
- > Artificial Intelligence
- > What is Machine Learning?
- > ML Algorithms Types
- ML Use Case Types

Artificial Intelligence(AI)

Data Science

Data Science Components

Al vs Data Science

Types of Al

Narrow Al

Dedicated to assist with or take over specific tasks.

- Google Assistant
- Siri
- Alexa

General Al

Takes knowledge from one domain, transfers to other domain.

- Boston Dynamic Robot
- Sophia

Super Al

Machines that are an order of magnitude smarter than humans.

- Higher then Human
- Age of AI(Tony Stark)

Al Projects: Moley Robotic Kitchen

Al Projects: Self driving car

Al Projects: Amazon Go

amazon go

Al Projects: Boston Dynamics Robots

BOSTON DYNAMICS

Al Projects: Future farming

Precision Agriculture

Vertical Farming

Aquaponics

Artificial Intelligence(AI)

Computer Visions(CV)

Facial Recognition Software

Self driving cars

Manufacturing production line

NLP

Natural Language **Processing**

What is Machine Learning?

- Science of getting computers to learn & act like humans do.
- Learning can done by feeding them data & information.

Machine Learning

ML Applications

System

Traditional Vs. ML Approaches

<u>Dump</u> <u>System</u>

<u>Intelligence</u> <u>System</u>

Machine Learning Types

SUPERVISED LEARNING UNSUPERVISED LEARNING REINFORCEMENT LEARNING

When to use ML Algorithm

- Representation
 - A set of classifiers
 - The language that a computer understands.
- Evaluation
 - Objective/scoring function
- Optimization
 - Search method

CORPORATE

ML Algorithm Types & Use Cases

Supervised Learning

- Labelled data
- Direct feedback
- Predict outcome/future

Unsupervised Learning

- No Labels
- No feedback
- Find hidden structure

Reinforcement Learning

- Decision process
- Reward system
- Learn series of actions

Classification

Fraud detection

- Spam detection
- Diagnostics
- Image classification

Dimensionality Reduction

- Text Mining
- Face Recognition
- Big data Visualization
- Image Recognition

Recommendation Engine

- Gaming
- Finance Sector
- Manufacturing
- Inventory Management
- Robot Navigation

Regression

- Risk Assessment
- Score Prediction

Clustering

- Biology
- City Planning
- Targeted Marketing

Categorical

Continuous

How Supervised Works

CORPORATE

Supervised Learning Model

Unsupervised Learning

Reinforcement Learning

Types of Regressions

Linear Regressions

- Simple Linear Regression
- Multiple Linear Regression
- Polynomial Regression
- Logistic Regression
- Ridge Regression
- Lasso Regression

CORPORATE

- Bayesian Linear Regression
- Decision Tree Regression
- Random Forest Regression

Classifications

- Naive Bayes
- SVM- Support Vector Machine

Demo

Dataset

Why EDA

EDA

- Handle Missing value
- Removing duplicates
- Outlier Treatment
- Normalizing and Scaling (Numerical Variables)
- Encoding Categorical variables (Dummy Variables)
- Bivariate Analysis

CORPORATE

EDA

IRIS Flower

Iris Setosa

	1113 VC13	icoloi	1113 501034	1113 V	ii gii ii ca
	Α	В	C	D	E
1	Sepal Length	Sepal Width	Petal Length	Petal Width	Class
2,1	5.1	3.5	1.4	0.2	Iris-setosa
3	4.9	3	1.4	0.2	Iris-setosa
4	4.7	3.2	1.3	0.2	Iris-setosa
5	4.6	3.1	1.5	0.2	Iris-setosa
6	5	3.6	1.4	0.2	Iris-setosa
7	5.4	3.9	1.7	0.4	Iris-setosa
8	4.6	3.4	1.4	0.3	Iris-setosa
9	5	3.4	1.5	0.2	Iris-setosa
10	4.4	2.9	1.4	0.2	Iris-setosa
11	49	3 1	15	0.1	Iris-setosa

Fruits Separation Machine

Apple or Orange Data Set

Weight	Texture	Label
150g	Bumpy	Orange
170g	Bumpy	Orange
140g	Smooth	Apple
130g	Smooth	Apple

ML Library

Sklearn

Scikit-learn

- Simple & efficient tool for data mining & analysis.
- Built on Numpy, SciPy and Matplotlib.
- Used in
 - Classification
 - Identifying category of an object
 - Ex:
 - -Spam or Not
 - -Orange or Apple
 - -Cat or Dog
 - Regression

CORPORATE

- Predicting an attribute associated with an object
- Ex: Stock Prices Prediction

Usage of scikit-learn package

Clustering

Grouping of similar objects into sets

Classification

Predicting an attribute associated with an object

Model Selection

Comparing, Validating and choosing parameters & models

Regression

Identifying category of an object

<u>Dimensionality</u> Reduction

Comparing, Validating and choosing parameters & models

Regression

Identifying category of an object

Using Scikit-learn

Classification

Identifying which category an object belongs to Application: Spam detection

Regression

Predicting an attribute associated with an object Application: Stock prices prediction

Clustering

Automatic Grouping of similar objects into sets Application: Customer segmentation

Model Selection

Comparing, Validating and choosing & models
Application: Improving model accuracy via parameter tuning

Dimensionality reduction

Reducing the number of random variables to consider **Application**: To increase mode efficiency

Pre-Processing Feature extraction and normalization **Application**: Transforming input data such as text for use with machine algorithms

References

- https://www.mlstack.cafe/blog/kmeans-clustering-interview-questions
- https://www.fullstack.cafe/?utm_source=
 github&utm_medium=sud

NubeEra

https://www.youtube.com/c/NubeEra
 (for future reference we will upload here upcoming technology)

??? The Important thing is not to stop

Questioning

