Homework 1

Jan 26, 2017

(804501476)

Problem 1.0:

 \mathbf{a}

 $L_{Shuffle}(L_1, L_2)$ not regular Let $L_1 = L_2 = \{0^n 1^n\}$ then

$$L_{Shuffle}(L_1, L_2) = \{0^n 0^n 1^n 1^n\}$$
(1.1)

$$L_{Shuffle}(L_1, L_2) = \{0^{2n}1^{2n}\} = \{0^m1^m | m = 2n\}$$
(1.2)

We know that $\{0^m1^m\}$ is not regular so $L_{Shuffle}(L_1, L_2)$ is not regular.

 $L_{Shuffle}(L_1, \bar{L}_2)$ not regular Let $L'_2 = \{2^n 3^n\} \subseteq \bar{L}_2$ then

$$L_{Shuffle}(L_1, \bar{L}_2) = \{\{02\}^n \{13\}^n\}$$
(1.3)

 $\{\{02\}^n\{13\}^n\}$ is not regular and therefore $L_{Shuffle}(L_1, \bar{L}_2)$ is also not regular.

b

Claim: For $x \in L_1$ and $y \in L_2$, s.t. |x| = |y| = n, \exists machines N_1 and N_2 s.t $N_1(x)$: Accepts and $N_2(y)$: Accepts $\iff \exists$ M that recognizes $w \in L_{shuffle}(x, y)$, M(w): Accepts.

Proof.

Let M be a DFA recognizing $L_{shuffle}$:

- $\bullet \ Q = Q_1 \cup Q_2$
- $\bullet \ q_0^{"}=q_0\in Q_1$
- $\bullet \ F^{''} = F^{'}$
- $\bullet \ \delta'(s \in Q, w_i) = \begin{cases} \delta_1(q_0, w_i), \ s = q_0 \\ \delta_2(s', w_i), \ s \in Q_1, \ s' \in Q_2 \\ \delta_1(s', w_i), \ s \in Q_2, \ s' \in Q_1 \end{cases}$

 (\Rightarrow) L_1 and L_2 be regular \Longrightarrow \exists DFAs N_1 and N_2 that accept x and y respectively. Now N_1 recognizes x as follows. \exists states a_1, a_2, \ldots, a_n s.t. $\delta_1(a_i, x_i) = \{a_j \in Q_1\}$ and $a_n \in F$. N_2 recognizes y since \exists states b_1, b_2, \ldots, b_n s.t $\delta_2(b_i, y_i) = \{b_j \in Q_2\}$. Now the states $a_1b_1a_2b_2\ldots a_nb_n$ is concatenation of paths on N_1 and N_2 from $q_0 \in Q_1$ to $q_n \in Q_2$ for for $L_{shuffle}(x, y)$.

(\Leftarrow) Now M recognizes $L_{Shuffle}$ as follows. Let $w=w_1w_2...w_m \in L_{shuffle}$, then \exists states $s_1,...s_{2n}$ s.t $s_1=a_1$ and $s_m=b_n$. Therefore a concatenation of their paths $a_1b_1a_2b_2...a_nb_n$ is an accepting computation path on M for w.

Problem 2.0:

\mathbf{a}

Proof. Assume $L_2 = b^* \cup L_1$ is regular. Then by Pumping Lemma $\exists p \in \mathbb{N}$ s.t $w = b^p = xyz$, $|xy| \leq p$ and $|y| \geq 1$. Now by Pumping Lemma we can pump so that $ab^ic \in L_2$ since b^* is the set off all possible strings created by concatenating any number i of b it will produce an $ab^ic \in L_2$. \square

b

Proof. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA recognizing L and n = k + p + m be the number of states in M. Let $s = s_1 s_2 \dots s_n$ be a string in L s.t a partion \exists where s = xyz as such:

- 1) $x = s_1 \dots s_k$
- 2) $y = s_{1'} \dots s_l \text{ s.t } |y| \ge p$
- 3) $z = s_{1''} \dots s_m$

Let abc be strings s.t y = abc. Observe $r_{1'} \dots r_{l+1}$ the sequence of states M enters while processing Y so $r_{i+1} = \delta(r_i, s_{i'})$ for $1' \le i \le l$. The sequence has length l+1 which is at least p+1. By the pigeonhole principle $\exists i, j \text{ s.t } r_i = r_j, 1' \le i < j \le l$.

Let $a = r_{1'} \dots r_{i-1}$, $b = r_i \dots r_{j-1}$, $c = r_j \dots r_l$ Since $i \neq j \implies |b| > 0$ and since x takes M r_1 to $r_{1'}$, a takes M from r_i to r_i , b takes M from r_i to r_i , c takes M from r_j to r_l , and z takes M from $r_{1''}$ to r_m then $xab^icz \in L$

 \mathbf{c}

Proof.

Assume for contradiction L_2 is regular

- \bullet By Pumping Lemma $\exists~p$
- Consider $\alpha^i \beta^n = xy$, where $y = \beta^n$ and n > p.
- By pumping lemma $\beta^n = abc$, |b| > 0
- Let |b| = q s.t $y = \beta^q \beta^{n-q}$
- Let $i = n + 1 \implies \beta^{q(n+1)}\beta^{n-q} = \beta^{n(q+1)}$
- If q = 1 then 2n is even or iff q > 1 then q + 1|n(q + 1) therefore
- $\alpha \beta^{n(q+1)} \notin L_2$ so L_2 is not regular.

Problem 3.0:

Given $0^*21^* \in L$ and L is regular. By inspection we note the following pattern:

L	$L_{\frac{1}{3}-\frac{1}{3}}(L)$
0 <u>2</u> 1	01
00 21 11	0011
000 211 111	000111
0000 2111 1111	00001111
i:	÷
$0^n 21^{ xyz -(n+1)}$	$0^{n}1^{n}$

Let $L_1 = \{0^n 21^{|xyz|-(n+1)}\} \in L$. Regular languages are closed under intersection so then $L_{\frac{1}{3}-\frac{1}{3}}(L_1) \cap L = \{0^n 1^n\}$, but we know that $\{0^n 1^n\}$ not regular.