§3. Определители высших порядков

1°. Понятие определителя *n***-го порядка и его основные свойства.** Понятие определителя n-го порядка вводится на основе изучения структуры определителей 2-го и 3-го порядков. Так, например, в силу формул (2.7) определитель 3-го порядка выражается через определители 2-го порядка. Рассмотрим квадратную матрицу 4-го порядка:

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix}.$$

По аналогии с формулой (2.8) определителем 4-го порядка назовём число:

$$a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} - a_{14}M_{14} = \sum_{k=1}^{4} (-1)^{k+1} a_{1k}M_{1k}$$

где через M_{1k} обозначен определитель 3-го порядка, соответствующий матрице, получаемой из матрицы A путём вычёркивания её первой строки и k-го столбца. Таким образом, вычисление определителя 4-го порядка сводится к вычислению четырёх определителей 3-го порядка. По аналогичной формуле вводится понятие определителя 5-го порядка, в результате его вычисление сводится к вычислению пяти определителей 4-го порядка и т. д.

Рассмотрим квадратную матрицу *n*-го порядка

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}. \tag{3.1}$$

Определение 3.1. Определителем n-го порядка, соответствующим матрице A из (3.1), называется число, равное $\sum_{k=1}^{n} (-1)^{k+1} a_{1k} M_{1k}$, где M_{1k} есть определитель (n-1)-го

порядка, соответствующий матрице, получаемой из матрицы A путём вычёркивания её первой строки и k-го столбца. Определитель n — го порядка обозначается одним

из символов: det
$$A$$
, Δ , Δ_n , $\begin{vmatrix} a_{11} & \cdots & a_{ln} \\ \cdot & \cdot & \cdot \\ a_{nl} & \cdots & a_{nn} \end{vmatrix}$.

Таким образом, по определению

$$\det A = \sum_{k=1}^{n} (-1)^{k+1} a_{1k} M_{1k} . \tag{3.2}$$

Определитель M_{1k} , k=1,2,...,n, из определения 3.1 называется *минором* (дополнительным минором) элемента a_{1k} матрицы A из (3.1). Наряду с ним рассматривается также минор M_{ik} любого элемента a_{ik} этой матрицы, являющийся определителем (n-1)-го порядка, соответствующим матрице, получаемой из матрицы A путём вычёркивания её i-той строки и k-го столбца, на пересечении которых находится элемент a_{ik} . Для элемента a_{ik} определителя n-го порядка

вводится также понятие алгебраического дополнения A_{ik} согласно формуле:

$$A_{ik} = (-1)^{i+k} M_{ik}, i=1,...,n, k=1,...,n.$$
(3.3)

В силу (3.3) равенство (3.2) можно переписать так:

$$\det A = \sum_{k=1}^{n} a_{1k} A_{1k} . {3.4}$$

Замечание 3.1. При n=3 формула (3.2) совпадает с равенством (2.8) для определителя 3-го порядка. При n=2 из (3.2) имеем:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = \sum_{k=1}^{2} (-1)^{k+1} a_{1k} M_{1k} = a_{11} M_{11} - a_{12} M_{12}.$$
 (3.5)

Под минором M_{ik} элемента a_{ik} определителя 2-го порядка будем понимать его элемент, оставшийся после вычёркивания i-той строки и k-го столбца, на пересечении которых находится элемент a_{ik} , i,k=1,2. Так, M_{11} = a_{22} , M_{12} = a_{21} . После подстановки последних равенств в (3.5), приходим к следующей формуле:

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21},$$

лишь обозначениями элементов отличающейся от равенства (2.4), являющегося определением определителя 2-го порядка.

Свойства определителя *n*-го порядка

Свойства определителя n-го порядка аналогичны свойствам определителей 2-го и 3-го порядков из §2, п. 2°, 3°.

Свойство 1. Если матрица A из (3.1) содержит две одинаковых строки, то $\det A = 0$.

Свойство 2. Если элементы какой-либо строки матрицы A являются суммами двух слагаемых, то det $A = \det A' + \det A''$, где

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ a'_{s1} + a''_{s1} & \cdots & a'_{sn} + a''_{sn} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad A' = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots \\ a'_{s1} & \cdots & a'_{sn} \\ \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}, \quad A'' = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a''_{s1} & \cdots & a''_{sn} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}. \quad (3.6)$$

 $\it Cвойство 3.$ Общий множитель элементов какой-либо строки матрицы $\it A$ можно выносить за знак определителя.

Свойство 4. det A=det A^T , где A – матрица из (3.1), а A^T – матрица, полученная из A заменой строк на столбцы, то есть

$$A^{T} = \begin{pmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix}.$$
(3.7)

 $\it 3ameчaниe 3.2.$ Замена строк столбцами называется операцией $\it mpahcnohupoвahun$ матрицы, а сама матрица $\it A^T$ называется $\it mpahcnohupoвahhoù$ по отношению к матрице $\it A$.

Свойство 5. При перестановке двух любых строк в матрице A из (3.1) для полученной матрицы A' справедливо равенство

$$\det A' = -\det A. \tag{3.8}$$

Cвойство 6. Определитель матрицы A не меняется при элементарных преобразованиях второго типа над строками матрицы A.

Cвойство 7. Определитель матрицы A равен сумме произведений элементов какой-либо его строки или столбца на их алгебраические дополнения, т.е. справедливы равенства:

$$\det A = \sum_{k=1}^{n} a_{ik} A_{ik}, \ i = 1, 2, ..., n,$$
(3.9)

$$\det A = \sum_{i=1}^{n} a_{ik} A_{ik}, \ k = 1, 2, ..., n.$$
 (3.10)

Cвойство 8. Сумма произведений элементов какой-либо строки (столбца) определителя матрицы A на алгебраические дополнения элементов другой строки (столбца) равна нулю.

Замечание 3.3. Свойство 7, как и в случае определителя 3-го порядка, называют теоремой о разложении определителя n-го порядка по элементам какой-либо строки (столбца), а свойство 8 — теоремой аннулирования.

Доказательства свойств 1–8 приведены, например, в [3].

2°. Примеры вычисления определителей высших порядков.

Пример 3.1. Вычислить определитель 4-го порядка

$$\Delta = \begin{vmatrix} 1 & -1 & 2 & 3 \\ 1 & 2 & -3 & 0 \\ -2 & 4 & 0 & 6 \\ 3 & 0 & 0 & 3 \end{vmatrix}.$$

▶ Вынесем последовательно из 3-ей строки общий множитель 2 и из последнего столбца – общий множитель 3, по свойству 3 имеем:

$$\Delta = 2 \cdot 3 \begin{vmatrix} 1 & -1 & 2 & 1 \\ 1 & 2 & -3 & 0 \\ -1 & 2 & 0 & 1 \\ 3 & 0 & 0 & 1 \end{vmatrix}.$$

Пользуясь равенством (3.9), разложим полученный определитель по элементам последней строки:

$$\Delta = 6 \left(3 \cdot (-1)^{4+1} \begin{vmatrix} -1 & 2 & 1 \\ 2 & -3 & 0 \\ 2 & 0 & 1 \end{vmatrix} + 0 \cdot (-1)^{4+2} \begin{vmatrix} 1 & 2 & 1 \\ 1 & -3 & 0 \\ -1 & 0 & 1 \end{vmatrix} + 0 \cdot (-1)^{4+3} \begin{vmatrix} 1 & -1 & 1 \\ 1 & 2 & 0 \\ -1 & 2 & 1 \end{vmatrix} + 1 \cdot (-1)^{4+4} \begin{vmatrix} 1 & -1 & 2 \\ 1 & 2 & -3 \\ -1 & 2 & 0 \end{vmatrix} \right) = -18 \begin{vmatrix} -1 & 2 & 1 \\ 2 & -3 & 0 \\ 2 & 0 & 1 \end{vmatrix} + 6 \begin{vmatrix} 1 & -1 & 2 \\ 1 & 2 & -3 \\ -1 & 2 & 0 \end{vmatrix}.$$

Вычислив определители 3-го порядка, например, по правилу Саррюса, в результате получим

$$\Delta = -18(3+6-4)+6(-3+4+4+6)=-24$$
.

Пример 3.2. Доказать, что определитель n-го порядка

$$\Delta_n = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{11}a_{22} \cdot \ldots \cdot a_{nn} = \prod_{i=1}^n a_{ii}.$$

- ▶ Доказательство проведём методом математической индукции.
- 1. Проверим наличие базы для индукции. При n = 2 имеем:

$$\Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ 0 & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12} \cdot 0 = a_{11}a_{22}.$$

2. Выдвигаем индукционную гипотезу: пусть справедливо равенство

$$\Delta_{n-1} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} \\ 0 & a_{22} & \cdots & a_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n-1,n-1} \end{vmatrix} = a_{11}a_{22} \cdot \dots \cdot a_{n-1,n-1}.$$

3. Докажем законность индукционного перехода. Разложим определитель Δ_n по элементам последней строки. Имеем:

$$\Delta_{n} = \begin{vmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2n} \\ 0 & 0 & a_{33} & \cdots & a_{3n} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & a_{nn} \end{vmatrix} = a_{nn} (-1)^{n+n} \Delta_{n-1}.$$

Используя индукционное предположение, окончательно получим:

$$\Delta_n = a_{nn} \Delta_{n-1} = a_{11} a_{22} \cdots a_{n-1,n-1} a_{nn} = \prod_{i=1}^n a_{ii}$$
.

В примере 3.2 рассмотрен определитель от треугольной матрицы или *треугольный определитель*. Как было показано, он равен произведению элементов, находящихся на главной диагонали. При вычислении определителей высших порядков удобно с помощью свойств определителя привести его к определителю от треугольной матрицы.

Пример 3.3. Вычислить определитель из примера 3.1, приведя его к определителю от треугольной матрицы.

▶Вычтем из второй строки определителя первую строку, к третьей строке прибавим первую строку, умноженную на 2, а из последней строки вычтем первую, умноженную на 3. Определитель при этом не изменится:

$$\Delta = \begin{vmatrix} 1 & -1 & 2 & 3 \\ 1 & 2 & -3 & 0 \\ -2 & 4 & 0 & 6 \\ 3 & 0 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 1 & -1 & 2 & 3 \\ 0 & 3 & -5 & -3 \\ 0 & 2 & 4 & 12 \\ 0 & 3 & -6 & -6 \end{vmatrix}.$$

Из третьей строки вынесем общий множитель 2, а из четвёртой строки вынесем множитель 3, после чего переставим местами вторую и третью строки, при этом определитель изменит знак:

$$\Delta = -6 \begin{vmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 2 & 6 \\ 0 & 3 & -5 & -3 \\ 0 & 1 & -2 & -2 \end{vmatrix}.$$

Из последней строки вычтем вторую, а из третьей строки вычтем вторую строку, умноженную на 3, после этого вынесем из последней строки общий множитель (–4) и переставим две последние строки, получим:

$$\Delta = -24 \begin{vmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 2 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & -11 & -21 \end{vmatrix}.$$

Чтобы получить определитель от треугольной матрицы, осталось к последней строке прибавить третью, умноженную на 11:

$$\Delta = -24 \begin{vmatrix} 1 & -1 & 2 & 3 \\ 0 & 1 & 2 & 6 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{vmatrix} = -24. \blacktriangleleft$$

При вычислении определителей *n*-го порядка часто пользуются рекуррентными соотношениями, выражающими определитель *n*-го порядка через определитель меньшего порядка, имеющий ту же структуру. Поясним этот способ на примере вычисления определителя Вандермонда, который потребуется далее при изучении теории линейных дифференциальных уравнений.

Пример 3.4. Вычислить определитель Вандермонда *n*-го порядка

$$\Delta_n(x_1,x_2,...,x_n) = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ x_1 & x_2 & x_3 & \cdots & x_n \\ x_1^2 & x_2^2 & x_3^2 & \cdots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_1^{n-1} & x_2^{n-1} & x_3^{n-1} & \cdots & x_n^{n-1} \end{vmatrix} \text{при } \forall x_1,x_2,...,x_n \in \mathbf{R}.$$

▶ Из каждой строки, начиная со второй, вычтем предыдущую, умноженную на x_1 , определитель при этом не изменится:

$$\Delta_{n}(x_{1},x_{2},...,x_{n}) = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1\\ 0 & x_{2}-x_{1} & x_{3}-x_{1} & \cdots & x_{n}-x_{1}\\ 0 & x_{2}(x_{2}-x_{1}) & x_{3}(x_{3}-x_{1}) & \cdots & x_{n}(x_{n}-x_{1})\\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots\\ 0 & x_{2}^{n-2}(x_{2}-x_{1}) & x_{3}^{n-2}(x_{3}-x_{1}) & \cdots & x_{n}^{n-2}(x_{n}-x_{1}) \end{vmatrix}.$$

Разложим полученный определитель по элементам первого столбца и после этого вынесем из каждого столбца полученного определителя общий множитель $(x_i - x_1)$, где i = 2, 3, ..., n,

$$\Delta_n(x_1, x_2, ..., x_n) = (x_2 - x_1)(x_3 - x_1) \cdot ... \cdot (x_n - x_1) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ x_2 & x_3 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n-2} & x_3^{n-2} & \cdots & x_n^{n-2} \end{vmatrix}.$$

Заметим, что определитель в правой части последнего равенства является определителем Вандермонда (n-1)-го порядка. Таким образом, получаем рекуррентное соотношение:

$$\Delta_n(x_1, x_2, ..., x_n) = \prod_{i=2}^n (x_i - x_1) \cdot \Delta_{n-1}(x_2, x_3, ..., x_n).$$

Используя это соотношение, имеем

$$\Delta_{n}(x_{1},x_{2},...,x_{n}) = \prod_{i=2}^{n} (x_{i} - x_{1}) \cdot \prod_{i=3}^{n} (x_{i} - x_{2}) \cdot ... \cdot \prod_{i=n-1}^{n} (x_{i} - x_{n-2}) \Delta_{2}(x_{n-1},x_{n}).$$
Учитывая, что $\Delta_{2}(x_{n-1},x_{n}) = \begin{vmatrix} 1 & 1 \\ x_{n-1} & x_{n} \end{vmatrix} = x_{n} - x_{n-1}$, приходим к равенству:
$$\Delta_{n}(x_{1},x_{2},...,x_{n}) = \prod_{\substack{2 \leq i \leq n \\ 1 \leq j \leq i-1}} (x_{i} - x_{j}). \tag{3.11}$$

Таким образом, заключаем, что определитель Вандермонда равен произведению всевозможных разностей (x_i-x_j) , где i>j. Определитель Вандермонда обращается в нуль тогда и только тогда, когда среди чисел $x_1,x_2,...,x_n$ есть равные.

Пример 3.5. Вычислить определитель

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 5 & -3 & 4 \\ 25 & 9 & 16 \end{vmatrix}.$$

▶ Данный определитель является определителем Вандермонда 3-го порядка, $\Delta = \Delta_3(x_1, x_2, x_3)$, где $x_1 = 5$, $x_2 = -3$, $x_3 = 4$. В силу формулы (3.11) имеем:

$$\Delta = \prod_{\substack{2 \le i \le 3 \\ 1 \le j \le i-1}} (x_i - x_j) = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2) = (-3 - 5)(4 - 5)(4 - (-3)) = 56. \blacktriangleleft$$