Иррациональность

Определение. Число называется рациональным, если его можно представить в виде $\frac{m}{n}$, где $m \in \mathbb{Z}, n \in \mathbb{N}$. Действительные числа, не представимые в таком виде, называются иррациональными.

- 1 Докажите, что числа $\sqrt{2}$, $\sqrt[3]{2}$, $\sqrt[5]{2^3}$ иррациональны.
- 2 Может ли:
 - (а) Сумма двух иррациональных чисел быть рациональной?
 - (b) Произведение двух иррациональных чисел быть рациональным?
 - (с) Произведение иррационального с рациональным быть рациональным?
 - (d) Иррациональное число в рациональной степени быть рациональным?
- $\boxed{3}$ Докажите, что \sqrt{n} , где n натурально, является либо целым числом, либо иррациональным.
- $\boxed{4}$ Пусть x такое число, что $10^x = 2$. Докажите, что x иррационально.
- [5] Пусть a, b, c рациональные числа, $\sqrt{a} + \sqrt{b} = c$. Докажите, что \sqrt{a}, \sqrt{b} рациональные числа.
- [6] Пусть m, n целые числа, такие, что $\sqrt{m} + \sqrt[3]{n} \in \mathbb{Z}$. Верно ли, что оба слагаемых целые числа?
- 7 Иррациональны ли числа:

(a)
$$\sqrt{7+4\sqrt{3}} + \sqrt{7-4\sqrt{3}}$$

(b)
$$\sqrt{17 - 4\sqrt{9 + 4\sqrt{5}}} + \sqrt{5}$$

(c)
$$\sqrt{5\sqrt{2}-1} + (\sqrt{2}-3)\sqrt{\sqrt{2}+1}$$

(d)
$$\sqrt{2} + \sqrt{3} + \sqrt{5}$$

8 Последовательность задана соотношением $x_{n+1} = 1 - |1 - 2x_n|$, $0 < x_0 < 1$. Докажите, что эта последовательность периодична тогда и только тогда, когда x_0 рационально.