Technische Universität Berlin

Fakultät II – Institut für Mathematik Grigorieff, Penn-Karras WS 03/04 5.4.04

April – Klausur (Verständnisteil) Analysis II für Ingenieure

Name:	Vorna	me:				
MatrNr.:	Studi	engang	:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hil	fsmittel
Es sind keine Taschenrechner und H	andys	zugela	ssen.			
Die Lösungen sind in Reinschrift auf schriebene Klausuren können nicht ge			_	ben. M	Iit Blei	stift ge-
Dieser Teil der Klausur umfasst die Ver Rechenaufwand mit den Kenntnissen a wenn nichts anderes gesagt ist, immer	aus der	Vorles	sung lö	sbar se	in. Gel	_
Die Bearbeitungszeit beträgt 60 Minu	iten.					
Die Gesamtklausur ist mit 32 von 80 beiden Teile der Klausur mindestens 16				*	•	
Korrektur						
	1	2	3	4	5	\sum

1. Aufgabe 8 Punkte

Gegeben sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ durch

$$f(x,y) = 5x^3 + (y-1)^2 + 7x(y-1)$$

Bestimmen Sie die Taylorentwicklung von f an der Stelle (0, 1) bis zur 2. Ordnung. Vereinfachen Sie Ihr Resultat soweit wie möglich.

2. Aufgabe 8 Punkte

Es sei $\vec{v}(x,y,z)=(2x,2y,2z)$ und C der Halbkreisbogen auf der Kugel um den Ursprung mit Radius 2, der in der x,y-Ebene von (2,0,0) über (0,2,0) nach (-2,0,0) verläuft. Berechnen Sie das Kurvenintegral

$$\int_C \vec{v} \cdot d\vec{x} \ .$$

3. Aufgabe 8 Punkte

Es sei $\vec{f} : \mathbb{R}^2 \to \mathbb{R}^2$ eine differenzierbare Funktion, deren Ableitungsmatrix an der Stelle (1,0) gegeben ist durch

$$D\vec{f}(1,0) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

Weiter sei $\vec{g} \colon \mathbb{R}^2 \to \mathbb{R}^2$ gegeben durch

$$\vec{g}(x,y) = \begin{pmatrix} 3x + 4y + 1 \\ 5x - 7y \end{pmatrix}.$$

Berechnen Sie die Ableitungsmatrix von $\vec{f} \circ \vec{g}(x,y) = \vec{f}(\vec{g}(x,y))$ an der Stelle (0,0).

4. Aufgabe 8 Punkte

Ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, gegeben durch

$$f(x,y) = |x+y|,$$

differenzierbar an der Stelle (0,0)? (Begründen Sie auch hier Ihre Antwort.)

5. Aufgabe 8 Punkte

Entscheiden Sie, ob folgende Aussagen richtig oder falsch sind. Sie brauchen Ihre Antworten hier nicht zu begründen. Jede richtige Antwort gibt 1 Punkt, jede falsche -1 Punkt, keine Antwort 0 Punkte und insgesamt gibt es keine negative Punktzahl. (Lösungen **nicht** auf das Aufgabenblatt schreiben.)

- a) In Polarkoordinaten ist das Flächenelement $dx dy = r \sin \phi dr d\phi$.
- **b)** Ist f auf dem abgeschlossenen Quadrat $[0,1] \times [0,1]$ stetig, dann ist f auf dem offenen Quadrat $[0,1] \times [0,1[$ differenzierbar.
- c) Das Integral $\int_0^\infty \frac{1}{1+x^p} dx$ ist konvergent für alle p > 1.
- d) Ist C eine geschlossene Kurve in \mathbb{R}^2 und $\vec{v} = \operatorname{grad} u$ mit $u \colon \mathbb{R}^2 \to \mathbb{R}$, dann ist $\int_C \vec{v} \cdot d\vec{x} = 0$.
- e) Ist \vec{v} ein Vekorfeld im \mathbb{R}^3 mit div $\vec{v} = 0$ und ist S ein Flächenstück im \mathbb{R}^3 , dann ist das Oberflächenintegral $\int_S \vec{v} \cdot d\vec{O} = 0$.
- f) Die komplexe Fourierreihe der Funktion $f(x) = \sin(3x)e^{7ix}$ hat nur endlich viele Terme.
- g) Ist grad f(0,0) = (0,0) und die Determinante der Hesseschen Matrix an der Stelle (0,0) positiv, dann hat f an der Stelle (0,0) immer ein Minimum.
- h) Der Vektor $(1,0,\frac{\partial f}{\partial x}) \times (0,1,\frac{\partial f}{\partial y})$ (mit × Vektorprodukt) ist ein Normalenvektor an den Graphen der Funktion $x,y \to f(x,y)$.