DATA description

A mini subset of size 125 MB of the original 12 GB customer log json data file will be used for creating the prediction model. The small dataset has 286'500 log entries with 18 unique columns.

The schema and info of dataset is given below:

Column's Name	Description	
artist	The artist being listened to	
auth	Whether or not the user is logged in	
firstName/lastName	Name of the user	
gender	Gender of the user	
itemInSession	Item number in session	
length	Length of time for current row of specific log	
level	Free or Paid user	
location	Physical location of user, including City and State	
method	Get or Put requests	
page	Which page are user on in current row	
registration	Users registration number	

Column's Name	Description	
sessionId	Session ID	
song	Song currently being played	
status	Web status	
ts	Timestamp of current row	
userAgent	Useragent of post or get in browser of users	
userId	User ID	

We use the Cancellation Confirmation events of page column to define the customer churn, and perform some exploratory data analysis to observe the behavior for users who stayed vs users who churned.

• churn

```
df_cleaned_cancel.dropDuplicates(['userId']).select('Churn').groupby('Churn').count().collect()
[Row(Churn=1, count=52), Row(Churn=0, count=173)]
```

So, there are 52 users have churned events in the dataset, it's about 23.1% churned rate. The rate of churn and not churn is roughly 1:3, so this is an unbalanced dataset.

gender

+		+
Churn	gender	count
0		
0	F	84
1	F	20
1	M	32
+	+	++

Can we say the gender has effect on Churn or not? We calculate the p-value and result is 0.20 over 0.05, so, we can't say like that.

page

We count each item in page column of different group and normalized data.

Obviously, NextSong has accounted for most of customers' events. Thumbs Up ,Thumbs Down , Home and Add to Playlist have effect on churn too.

userAgent

We extract the browser and platform of customers from userAgent column.

Customers using safari and iPad have more proportion in churn.

• time

We extract day-of-month, day-of-week and hour from ts column.

Customers from churn group have more events after 15th in one month, and have less events in weekend.

After the preliminary analysis on the data. We split the full dataset into train and test sets. Test out the baseline of four machine learning methods: Logistic Regression, Linear SVC, Decision Tree Classifier and Random Forest Classifier. Conclusion will be made based on the result of the modeling.