Exhaustive Combinatorial Enumeration

Mathieu Dutour Sikirić

Rudjer Bošković Institute and

Nagoya University

January 16, 2010

I. The problem

and the algorithm

Combinatorial enumeration

- Example of problem considered:
 - ► List all 3-valent plane graphs with faces of gonality 5 and 9 and all 9-gonal faces in pairs.
 - ► List all cliques of 600-cell.
 - ▶ List all triangulations of the sphere on *n* vertices.
 - List all isohedral (r, q)-polycycles.
- ► The main feature of the proposed problems is that we do not have any intelligent way of doing it.
- We do not want only enumeration, we want to have those objects so as to work with them.

Limitation of hope

- ▶ In the best scenario, the speed of computers multiply by 2 every year.
- ▶ In most combinatorial problems, the number of solutions grow much more than exponentially in the size of the problem.
- ▶ One typical example is the listing of all graphs with *n* vertices:
 - ▶ The number of labeled graphs with *n* vertices is $2^{\frac{n(n-1)}{2}}$.
 - ▶ The symmetric group Sym(n) act on those labeled graphs.
 - So, the number of unlabeled graph is around

$$2^{\frac{n(n-1)}{2}} \frac{1}{n!} \simeq \sqrt{2}^{n^2}$$

➤ So, the progress brought by computer should diminish as time goes on.

II. The automorphism and isomorphism problems

The graph isomorphism problem

▶ Suppose that we have a graph G on n vertices $\{1, \ldots, n\}$, we want to compute its automorphism group Aut(G). g is formed of all elements in Sym(n) such that

$$\{g(i),g(j)\}\in E(G)$$
 if and only if $\{i,j\}\in E(G)$

▶ Suppose that G_1 and G_2 are two graphs on n vertices $\{1,\ldots,n\}$, we want to test if G_1 and G_2 are isomorphic, i.e. if there is $g \in Sym(n)$ such that

$$\{g(i),g(j)\}\in E(G_1)$$
 if and only if $\{i,j\}\in E(G_2)$

▶ It is generally believed that those problems admit solution in a time bounded by a polynomial in *n*.

The program nauty

► The program nauty of Brendan McKay solves the graph isomorphism and the automorphism problems.

```
http://cs.anu.edu.au/people/bdm/nauty/
```

- ▶ nauty is extremely efficient in doing those computations.
- nauty can deal with directed graph but this is not recommended.
- nauty can deal with vertex colors.
- ▶ nauty iterates over all n! permutation but it prunes the search tree so as to obtain a fast running time.
- nauty has no problem at all for graph with several hundred vertices.

The reduction to a graph

Why focus on graph?

- ▶ We have many other combinatorial problems:
 - subset of vertex-set of a graph,
 - set system,
 - edge weighted graph,
 - plane graph,
 - partially ordered set, etc.
- ► If M is a "combinatorial structure", then we define a graph G(M), such that:
 - ▶ If M_1 and M_2 are two "combinatorial structure", then M_1 and M_2 are isomorphic if and only if $G(M_1)$ and $G(M_2)$ are isomorphic.
 - ▶ If M is a "combinatorial structure", then Aut(M) is isomorphic to Aut(G(M)).

Subset of vertex-set of a graph

▶ Suppose that we have a graph G, two subsets S_1 , S_2 of G, we want to know if there is an automorphism ϕ of G such that $\phi(S_1) = S_2$.

$$S_1 = \{1, 2, 4\}$$

 $S_2 = \{3, 5, 6\}$

▶ The method is to define two graphs associated to it:

Set systems

- ▶ Suppose we have some subsets S_1, \ldots, S_r of $\{1, \ldots, n\}$. We want to find the permutations of $\{1, \ldots, n\}$, which permutes the S_i .
- ▶ We define a graph with n + r vertices j and S_i with j adjacent to S_i if and only if $j \in S_i$
- ▶ Example $S = \{\{1, 2, 3\}, \{1, 5, 6\}, \{3, 4, 5\}, \{2, 4, 6\}\}$:

Edge colored graphs

▶ G is a graph with vertex-set $(v_i)_{1 \le i \le N}$, edges are colored with k colors C_1, \ldots, C_k :

- We want to find automorphisms preserving the graph and the edge colors.
- ▶ We form the graph with vertex-set (v_i, C_j) and
 - edges between (v_i, C_j) and $(v_i, C_{j'})$
 - edges between (v_i, C_j) and $(v_{i'}, C_j)$ if there is an edge between v_i and $v_{i'}$ of color C_j

We get a graph with kN vertices.

Edge colored graph

The picture obtained is:

- ▶ Actually, one can do better, if the binary expression of j is $b_1 ldots b_r$ with $b_i = 0$ or 1 then we form the graph with vertex-set (v_i, l) , $1 \le l \le r$ and
 - edges between (v_i, l) and (v_i, l')
 - ▶ edges between (v_i, I) and $(v_{i'}, I)$ if the binary number b_I of the expression of C_j is 1.

This makes a graph with $\lceil \log_2(k) \rceil N$ vertices.

Plane graphs

- ▶ If *G* is a simple 3-connected plane graph then the skeleton determine the embedding, we can forget the faces.
- ▶ If G has multiple edge and/or is not 3-connected we consider the graph formed by its vertices, edges and faces with adjacency given by incidence

This idea extends to partially ordered sets, face lattices, etc.

Canonical form

- nauty has yet another wonderful feature: it can compute a canonical form of a given graph.
- One possible canonical form of a graph is obtained by taking the lexicographic minimum of all possible adjacency matrix of a given graph.
- This canonical form is not the one used by nauty though I don't know which one is used.
- ▶ Suppose that one has *N* different graphs from which we want to select the non-isomorphic ones.
 - if one do isomorphism tests with nauty then at worst we have $\frac{N(N-1)}{2}$ tests.
 - ▶ If one computes canonical forms, then we have *N* calls to nauty and then string equality tests.
- This is a key to many computer enumeration goals.

Conclusion

- Computing the automorphism group of a given combinatorial structure is not difficult.
- ▶ The only difficulty is that one has to be careful in defining the graph G(M).
 - ▶ For example if K_n is the complete graph with edge colors, then the line graph $L(K_n)$ is a vertex colored graph
 - ▶ But $|Aut(K_4)| = 4!$ and $|Aut(L(K_4))| = 2 \times 4!$
- In many cases, most of the time is taken by the slow program writing the graph to a file.

III. Exhaustive enumeration

Plane graph example

- ▶ A $({a,b},k)$ -graph is a k-valent plane graph, whose faces have size a or b.
- $ightharpoonup A (\{a,b\},k)$ -graph is called:
 - $ightharpoonup aR_i$ if every a-gonal face is adjacent to exactly i a-gonal faces
 - $ightharpoonup bR_j$ if every b-gonal face is adjacent to exactly j b-gonal faces
- ▶ Suppose that one wants to enumerate the $({4,6},3)$ -graphs, which are $4R_0$ and $6R_3$
- ▶ We start with a single 4-gon

Next step

Next step

Conclusion of the process

▶ So, we are left with

▶ In the end we obtain the following graph:

Features of the exhaustive method

- We have a lot of intermediate steps, even if in the end we obtain a few or no objects.
 - For example the enumeration of $(\{4,9\},3)$ -graphs, which are $4R_1$, $9R_4$ took several days with in the end no graph found.
- ▶ The time run is unpredictable.
- ► The symmetry and the feature of the obtained objects cannot be used in their determination.
- ▶ At every step we have several possibilities. We need to make some choices.
- The method is essentially a computerized case by case analysis. But the program is actually more stupid than us and a priori it cannot do generalizations easily.

- Sometimes, we run into infinite loops with a non-terminating program even if the finiteness is proved beforehand.
 - ▶ All $({3,4},4)$ -graphs, which are $3R_0$ and $4R_3$ have 30 vertices
 - ► The program find those graphs but actually it continues with some partial structure of more than 30 vertices.
- ▶ A key point is some pruning functions with which one can prove that a structure admits no extension
 - Prove that a structure admits no extension

 ► All ({4,8},3)-graphs, which are 8R₄ satisfy to
 - $e_{4-4} = 12$ with e_{4-4} the number of edges separating two 4-gons
 - $x_0 + x_3 = 8$ with x_i the number of vertices contained in i 4-gons
- ▶ So, if $e_{4-4} > 12$ or $x_0 + x_3 > 8$, then we can discard this case.
- ▶ If we have several possible options, select the one with the minimal number of possibilities of extension.
- ► After the first stages, the speedup obtained by isomorphism rejection decrease and can result in a slow down.

A successful example

- ▶ We wanted to determine the $({4,9}, 3)$ -graphs $9R_1$
- ▶ With an exhaustive enumeration scheme, it took less than 1 hour, 21 graphs were generated, the largest of which is

IV. Augmentation schemes (or orderly generation)

Computing cliques up to symmetry

- ▶ If *G* is a graph, then a *k*-clique is a set *S* of *k* vertices such that any two elements in *S* are adjacent.
- ▶ We want to enumerate all cliques up to symmetry of the graph *G*, not just maximal cliques.
- The straightforward algorithm is the following:
 - ► Take the list of all *k*-cliques up to isomorphism.
 - For every k-clique, consider all possibilities of adding a vertex to it, i.e. the (k+1)-cliques it is included in.
 - ▶ Reduce by isomorphism this set of (k + 1)-cliques.
 - Iterate from 1 to the clique number of the graph.
- ▶ The problem is that one has to store the list of all *k*-cliques in memory.

Canonical augmentation for cliques

- ▶ We number the vertices of G. If $S \subset \{1, ..., n\}$ then its canonical form is the lexicographic minimum of its orbit under Aut(G).
- ▶ Suppose that $S = \{x_1, \dots, x_{k-1}, x_k\}$ is a lexicographically minimal k-clique. Then the subset

$$S' = \{x_1, \dots, x_{k-1}\}$$

is a (k-1)-clique, which is lexicographically minimal.

- ▶ The method is then the following
 - ► Take the list of *k*-cliques, which are lexicographically minimal.
 - ▶ For every lexicographically minimal k-clique $S = \{x_1, \dots, x_k\}$, consider all its extensions

$$S'' = \{x_1, \dots, x_k, t\}$$
 with $x_k < t$

and select the (k+1)-cliques amongst them, which are lexicographically minimal.

Feature of this scheme

For every lexicographically minimal k-clique $S_k = \{x_1, \dots, x_k\}$, we have a canonical path to obtain it:

$$S_{1} = \{x_{1}\}$$

$$S_{2} = \{x_{1}, x_{2}\}$$

$$\vdots$$

$$S_{k-1} = \{x_{1}, x_{2}, \dots, x_{k-1}\}$$

- The memory is no longer a problem.
- This method split extremely well on parallel or cluster computers.
- It is difficult to make this kind of schemes, you have to create a canonical way to construct a structure.

All cliques of 600-cells

- ▶ 600-cell has 120 vertices, and a symmetry group H_4 of size 14400.
- ► The cliques of the complement of 600-cell correspond to some polytopes, whose faces are regular polytopes.

k	nb						
1	1	7	334380	13	74619659	19	25265
2	7	8	1826415	14	54482049	20	1683
3	39	9	7355498	15	26749384	21	86
4	436	10	21671527	16	8690111	22	9
5	4776	11	46176020	17	1856685	23	1
6	45775	12	70145269	18	263268	24	1

Generating triangulations

- ► A triangulation of the sphere is a plane graph whose faces are 3-gons.
- ► Triangulations are generated by iteration of the following operations starting from the Tetrahedron:

- ▶ One can get a canonical path leading to a given triangulations.
- ► This method is used by the program plantri of Gunnar Brinkmann and Brendan McKay.

V. The homomorphism principle

An example

➤ Suppose that one wants to generate 4-valent plane graphs with faces of size 2, 4, 6 such that every vertex is contained in exactly one face of size 2

- ▶ If one collapse the 2-gons to edges, one obtains a ({4,6},3)-sphere. The 2-gons correspond to a perfect matching in it.
- The method is then
 - ► List all ({4,6},3)-graphs
 - ▶ For every $({4,6},3)$ -graph, list its perfect matching.

We factorize the difficulties.

Isohedral (r, q)-polycycles

- ▶ A (r, q)-polycycle is a plane graph, whose interior faces are r-gons and all vertices are of degree q except those on the boundary, which have degree in [2, q].
- ▶ It is isohedral if its symmetry group act transitively on the *r*-gonal faces. Below is an isohedral (5, 3)-polycycle

▶ By the isohedrality, we simply need to define the image along the edges of an *r*-gon

The method used

- ▶ If we have the *r*-gon, then we first specify:
 - the edges which are boundary edges,
 - the vertices which are interior vertices,
 - ▶ the stabilizer of the *r*-gon.
- ▶ Then we enumerate all possibilities around all interior edges.
- One example:

Enumeration results

$r \downarrow q \rightarrow$	3	4	5	6	7	8
3	2	3	4	4	4	4
4	3	6	9	11	11	13
5	7	17	24	38	37	51
6	12	45	67	130	123	196
7	28	157	257	518	452	896
8	58	486	894	2095	1781	3823

Number of isohedral (r, q)-polycycle for $r, q \leq 8$.

Some references

- P. Kaski, P. Ostergard, Classification algorithms for codes and designs, Springer Verlag 2006.
- ▶ P. Ostergard, Constructing combinatorial objects via cliques, Surveys in combinatorics 2005, 57–82, London Math. Soc. Lecture Note Ser., 327.
- G. Brinkmann and B.D. McKay. Fast generation of planar graphs, to appear in MATCH Commun. Math. Comput. Chem.
- B. McKay, Isomorph-free exhaustive generation, J. Algorithms, 26 (1998) 306–324.
- G. Brinkmann, Isomorphism rejection in structure generation programs, Discrete mathematical chemistry, DIMACS Ser.
 Discrete Math. Theoret. Comput. Sci. 51 (Amer. Math. Soc., 2000) 25–38.

Some references

- ► A. Kerber, *Applied finite group actions*, 2nd edition, Springer-Verlag, 1999.
- ▶ B. McKay, *Practical graph isomorphism*, Congressus Numerantium **30** (1981) 45–87.
- C.J. Colbourn, R.C. Read, Orderly algorithms for graph generation, Internat. J. Comput. Math. 7-3 (1979) 167–172.
- ▶ R.C. Read, Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations, Algorithmic aspects of combinatorics (Conf., Vancouver Island, B.C., 1976). Ann. Discrete Math. 2 (1978) 107–120.
- ▶ I.A. Faradzev, Generation of nonisomorphic graphs with a given distribution of the degrees of vertices (Russian)
 Algorithmic studies in combinatorics "Nauka", Moscow, 185
 (1978) 11–19.

1-factorizations of K_{2n}

- ▶ A 1-factor of K_{2n} is a set of 2n-1 perfect matchings in K_{2n} , which partition the edge-set of K_{2n} .
- ▶ The graph K_6 has exactly one 1-factorization with symmetry group Sym(5), i.e. the group Sym(5) acts on 6 elements.

graph	isomorphism types	authors
<i>K</i> ₆	1	
K ₈	6	1906, Dickson, Safford
K ₁₀	396	1973, Gelling
K ₁₂	526915620	1993, Dinitz, Garnick, McKay

THANK YOU