

1 ×10	1 rain 1	Jatabase			
$8 \times 10^{3} - \frac{8}{2} \times 10^{3} - \frac{6}{4} \times 10^{3} - \frac{1}{2} \times 10^{3} $					 Observed Grey Model Neural Network STL ETS SARIMA Hybrid Model
20	2007	2008	2009	2010	

H: RMSE of Models

Method	Train	
Grey Model	1017.61	
Neural Network	578.77	
STL	363.68	
ETS	399.71	
SARIMA	572.52	
Hybrid Model*	435.82	

*Hybrid: Combined SARIMA, ETS, STL

and Neural Network model

I: R-squared of Models

Date

Method	Train	
Grey Model	0.29	
Neural Network	0.82	
STL	0.91	
ETS	0.89	
SARIMA	0.82	
Hybrid Model*	0.90	

*Hybrid: Combined SARIMA, ETS, STL and Neural Network model

J: MAE of Models

Method	Train
Grey Model	796.42
Neural Network	455.73
STL	299.69
ETS	319.54
SARIMA	366.67
Hybrid Model*	357.71
	337.71

^{*}Hybrid: Combined SARIMA, ETS, STL and Neural Network model