#7 Functions and continuity

Friday, 24 September 2021 9:11 am

Hour 7: continuity Read along: Spivak 11-14

F: R" > R"

- a machine/procedure

- if Ackn and Bcirm

⇒ F: A → B is defined domain > codomain, range

$$F: \mathbb{R}^n \to \mathbb{R}^m$$
 $Fl_{A}: A$

The notion of an inverse is better behaved! (?) $\Rightarrow F^{-1}(D_1 \cup D_2) = F^{-1}(D_1) \cup F^{-1}(D_2)$

 $\rightarrow F^{-1}(D_1 \cap P_2) = F^{-1}(D_1) \cap F^{-1}(D_2)$

→ F-1 (Dc) = F-1(D) c

on the other hand, $F(C_1 \cup C_2) \stackrel{?}{=} F(C_1) \cup F(C_2) \stackrel{\longrightarrow}{=} This is the$ $F(C_1 \cup C_2) \stackrel{?}{=} F(C_1) \cap F(C_2)$ $F(C_1) \stackrel{?}{=} F(C_2)$

Counter for Ω : take $f: x \mapsto x^2$, G = neg. reals, G = pos. reals.

1 Th

$$\underline{\text{Def}}: T_i: \mathbb{R}^n \to \mathbb{R} \quad \text{s.t.} \quad T_i: (x_1,...,x_n) = x_i$$

For all $F: \mathbb{R}^n \to \mathbb{R}^m$, there are m functions automatically defined $F_i: \mathbb{R}^n \to \mathbb{R}$ for i=1,...,m (aka coordinate functions)

$$F(x) = y = \begin{pmatrix} F_1(x) \\ F_N(x) \end{pmatrix}$$

-> F; = Ty oF

What is a graph?

F: R>R

$$\prod_{s} = \left\{ (x, f(x)) : x \in \mathbb{R}^n \right\}$$

$$c | \mathbb{R}^n \times \mathbb{R}^m = | \mathbb{R}^{n+m} |$$

F: Ac R" → R"; a∈ A $\lim_{x\to a} f(x) = b$

As a gets closer to the boundary, b gets doser-to the boundary (?)

VE>0 J8>0 st a≠xeBs(a) NA => F(2) ∈ Bz(b)

If limit exists it must be unique. If a outside & set,

Def: $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ is "continuous at $a \in A$ " if $\lim_{x \to a} f(x) = f(a)$ " $[= is cont. on A" \iff cont. at every <math>a \in A$ " (→ Vasa VE>0 38>0 Y26A: 12-a1<8 → (fla)-fla)1 < E

Thm: $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuos \iff for every open $V \subset \mathbb{R}^m$, $f^{-1}(V)$ is also open. More generally, $f: A \subset \mathbb{R}^n \to \mathbb{R}^m$ is cont. \iff for every open $V \subset \mathbb{R}^m$, there is an open $U \subset \mathbb{R}^n$ s.t $f^{-1}(V) = U \cap A$

Aside: Det BCA is open in A if JU open in 12" st B= UNA