■ 05a_retail_forecast_vertex_ai_notebook_execution.md

Retail Forecast using Serverless Spark through Vertex AI managed notebooks

Following are the lab modules:

- 1. Understanding Data
- 2. Solution Architecture
- 3. Execution
- 4. Logging

1. Understanding Data

The datasets used for this project are

- 1. Aisles data.
- 2. Departments data.
- 3. Orders data.
- 4. Products data.
- 5. Order products prior.
- 6. Order products train.
- Aisles: This table includes all aisles. It has a single primary key (aisle_id)
- Departments: This table includes all departments. It has a single primary key (department_id)
- Products: This table includes all products. It has a single primary key (product_id)
- Orders: This table includes all orders, namely prior, train, and test. It has single primary key (order_id).
- Order_products_train: This table includes training orders. It has a composite primary key (order_id and product_id) and indicates whether a product in an order is a reorder or not (through the reordered variable).
- Order_products_prior: This table includes prior orders. It has a composite primary key (order_id and product_id) and indicates whether a product in an order is a reorder or not (through the reordered variable).

2. Solution Architecture

3. Execution

3.1. Run the Batch by creating session.

©Creating Notebook in Vertex AI

Select Workbench from the left scroll bar of the Vertex AI main page. Select the Managed Notebooks tab. In the Managed Notebooks tab, click the New Notebook icon.

™Next, fill in the following values in the Notebook creation window as shown in the images below:

- Notebook Name A unique identifier for your Notebook
- Region The region name provided by the Admin team
- Permission Type Single User Only (Single user only mode restricts access to the specified user)
- Provide a name and region to the notebook and select 'Single User Only' and click 'Create'. We will let the 'Advanced Settings' remain as the default values.

• Once the notebook is running, click the 'OPEN JUPYTERLAB' option next to the Notebook name as shown below

• Follow the on screen instructions to launch the JupyterLab session

©Create Serverless Spark Session

• Click on the File and the New launcher and select Serverless Spark

∞Follow the on screen instructions to create Session

3.2. Provide the details for the Session

Next, fill in the following values in the session creation window as shown in the images below:

- Session Name A unique identifier for your session
- **Region** The region name provided by the Admin team
- Language Pyspark
- Autoshutdown 24 hours
- **Service Account** <UMSA_NAME>@<PROJECT_ID>.iam.gserviceaccount.com
- Network Configuration Select the network and subnetwork provided by the Admin team
- **History Server Cluster** projects/<PROJECT_ID>/regions/<REGION_NAME>/clusters/<HISTORY_SERVER_NAME>
- **Properties** spark.jars=gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar
- Click the **SUBMIT** button to create the session.

Create Serverless Spark Session PREVIEW

Basic info

The session will automatically shutdown after 24 hours.

Execution configuration

Service Account

Enter your service account

If not provided, the default GCE service account will be used. Learn More

Network configuration

Private IP Google Access must be enabled on the network.

- Networks in this project
- Networks shared from host project: "undefined"

▲ ADVANCED OPTIONS

History server cluster

Choose a history server cluster to store logs in.

projects/terrial description of the project description of the pro

Properties

Input parameters (optional) -

spark.jars=gs://spark-lib/bigquery/spark-bigquery-with-dependencies_2.12-0.22.2.jar

Each parameter needs to be separated by commas (Example:a=x,b=y)

Labels

Input parameters (optional)

Enter your comma separated parameters (Example:a=x,b=y)

Each parameter needs to be separated by commas (Example:a=x.b=v)

• Once the Session is created select 'No Kernel' from the kernel dropdown list and then delete the notebook

- Next, using the browser option from JupyterLab, navigate to the Notebook file located at: <bucket_name> > 'retail_forecast_vertex_ai' > 00-scripts > retail-forecast.ipynb
- From the kernel dropdown list, select the kernel for the session created in section 3.2
- Pass the values to the variables project_name, dataset_name, bucket_name as provided by the Admin and replace user_name by your username
- Next, hit the **Execute** button as shown below to run the code in the notebook.

3.3. Check the output table in BQ

Navigate to BigQuery Console, and check the **retail_forecast** dataset.

Once the data preparation batch is completed, four new tables '<your_name_here>_train_data', '<your_name_here>_test_data', '<your_name_here>_predictions_data' and '<your_name_here>_eval_output' will be created:

To view the data in these tables -

- Select the table from BigQuery Explorer by navigating 'project_id' > 'dataset' > 'table_name'
- Click on the **Preview** button to see the data in the table

Note: If the **Preview** button is not visible, run the below queries to view the data. However, these queries will be charged for the full table scan.

```
SELECT * FROM `'roject_name>.<dataset_name>.<your_name_here>_train_data` LIMIT 1000
SELECT * FROM `roject_name>.<dataset_name>.<your_name_here>_test_data` LIMIT 1000
SELECT * FROM `roject_name>.<dataset_name>.<your_name_here>_predictions_data` LIMIT 1000
SELECT * FROM `roject_name>.<dataset_name>.<your_name_here>_eval_output` LIMIT 1000
```

Note: Edit all occurrences of and <dataset_name> to match the values of the variables PROJECT_ID, and BQ_DATASET_NAME respectively

∞4. Logging

34.1 Persistent History Server logs

To view the Persistent History server logs, click the 'View History Server' button on the Sessions monitoring page and the logs will be shown as below:

http://localhost:6419/ Page 11 of 12

As the session is still in active state, we will be able to find the logs in show incomplete applications.

http://localhost:6419/ Page 12 of 12