Longest In-Decreasing Subsequence

Longest In-Decreasing Subsequence คือ ลำดับย่อยที่ยาวที่สุดจากลำดับที่กำหนดให้ โดยสมาชิกในลำดับย่อย ดังกล่าวจะพิจารณาจาก 3 กรณี คือ

- 1) สมาชิกในลำดับย่อยเริ่มจากลำดับที่เพิ่มขึ้น (Increasing order) แล้วตามด้วยลำดับที่ลดลง (Decreasing order) หรือ
- 2) ลำดับที่เพิ่มขึ้น หรือ

3) ลำดับที่ลดลง

Input: บรรทัดที่ 1 ขนาดของลำดับ (n) โดยที่ $1 \le n \le 1,000,000$

บรรทัดที่ 2 คือ ลำดับที่ประกอบด้วยจำนวนเต็ม n จำนวน โดยเว้นวรรคข้อมูลแต่ละตัว

Output: ขนาดของ Longest In-Decreasing Subsequence

Example:

Input	Output	Longest In-Decreasing Subsequence
9	7	14 15 19 17 16 13 11
14 12 15 19 17 16 20 13 11		
5	4	1 3 4 5
1 9 3 4 5		
5	4	5 4 3 1
5 4 3 9 1		

SendMap

ระหว่างการทำสงครามของ 2 คือประเทศ R และ U ประเทศ U เสียเมือง MP ซึ่งเป็นท่าสำคัญในให้กับประเทศ R ทำให้ประเทศ U ต้องการส่งหน่วยรบพิเศษเข้าไปช่วยเหลือประชาชนที่หลบภัย ณ. จุดหลบภัยซึ่งมีอยู่หลายแห่งใน เมือง MP อย่างไรก็ตามตำแหน่งของจุดหลบภัยเหล่านี้เป็นความลับและมีเพียงผู้ว่าการเมือง MP ที่ทราบตำแหน่ง ของจุดหลบภัยเหล่านั้น

ผู้ว่าการเมือง MP ต้องการส่งแผนที่ขนาด $M \times N$ (ดูรูปที่ 1) ที่ระบุตำแหน่งของจุดหลบภัยให้กับหน่วยรบพิเศษ โดยสัญลักษณ์บนแผนที่มีความหมายดังนี้

- ร หมายถึงตำแหน่งของจุดหลบภัย
- C หมายถึงตำแหน่งปลอดภัยที่หน่วยรบสามารถเดินทางผ่านได้
- X หมายถึงสิ่งกิดขวางหรือตำแหน่งอันตรายที่หน่วยรบ<u>ไม่สามารถ</u>เดินทางผ่านได้

หน่วยรบพิเศษสามารถเดินทางได้ 4 ทิศ คือ ขึ้น, ลง, ซ้าย และขวา เท่านั้น

รูปที่ 1

การส่งแผนที่ต้องทำผ่านระบบเครือข่ายที่อาจไม่ปลอดภัย ผู้ว่าการเมือง MP จึงมีความกังวลว่าข้อมูลจะถูกดักจับ โดยประเทศ R ทำให้เป็นอันตรายกับประชาชนที่หลบภัยอยู่ ผู้ว่าการเมือง MP จึงทำการแบ่งแผนที่ออกเป็น M ส่วน ดังแสดงในรูปที่ 2 และทำการส่งแต่ละส่วนผ่านหลายช่องทางการสื่อสารไปยังหน่วยรบพิเศษ

อย่างไรก็ตามเมื่อ M ส่วนของแผนที่เดินทางไปถึงหน่วยรบพิเศษแล้ว หน่วยรบพิเศษจะต้องทำการประกอบ M ส่วนของแผนที่เพื่อให้ได้แผนที่ฉบับเดิม ลำดับของการประกอบแผนที่ถูกเข้ารหัสโดยผู้ว่าการเมือง MP วิธีการ เข้ารหัสคือในแต่ละตำแหน่งของแผนที่ จะมีการเพิ่มจำนวนเต็มที่มีค่า 1 ถึง $M \times N$ ที่<u>ไม่ซ้ำกัน</u>เข้าไปด้วย ลำดับในการเรียงแผนที่จะถูกกำหนดโดย<u>ผลรวม</u>ของจำนวนเต็มทั้งหมดที่บรรจุในแต่ละส่วนของแผนที่ โดยเรียง จากผลรวมน้อยที่สุดไปยังมากที่สุด (ดูรูปที่ 3) และ<u>ไม่มีผลรวม</u>ของแผนที่ส่วนใดที่<u>ซ้ำกัน</u>

ผลรวมคือ 5+1+8+7+2=23 ซึ่งใช้ในการจัดลำดับของแผนที่ส่วนที่ **i**

รูปที่ 3

จงเขียนโปรแกรมเพื่อหา<u>ผลรวมของระยะทาง</u>จากจุดเริ่มต้นไปยังจุดหลบภัย<u>ทุกจุด</u>ที่หน่วยรบพิเศษสามารถ เดินทางไปถึงได้ และหา<u>จำนวนจุดหลบภัย</u>ที่หน่วยรบพิเศษไม่สามารถเข้าถึงได้ โดยหน่วยรบพิเศษจะ**เริ่มต้น** เดินทางจาก**พิกัดแกน X เป็น 1** และ **พิกัดแกน Y เป็น 1** และที่ตำแหน่งของพิกัดนี้จะมี**สัญลักษณ์เป็น C** เสมอ

ข้อมูลนำเข้า (Input)

จำนวน M+1 บรรทัด

บรรทัดแรกเป็นจำนวน M และ N ที่ระบุขนาดของแผนที่ $(3 \leq M, N \leq 1000)$ บรรทัดที่ 2 ถึง M+1 แต่ละบรรทัดมีจำนวนเต็ม N ตัว และตัวอักขระ N ตัว <u>สลับกันไป</u> โดยที่

- ullet จำนวนเต็ม แต่มีตัวมีค่าตั้งแต่ 1 ถึง $M\! imes\!N$ และ<u>ไม่มีค่าที่ซ้ำกัน</u>
- ตัวอักขระ แต่ละตัวเป็น S, C หรือ X เท่านั้น

(บรรทัดที่ 2 ถึง M+1 เรียงตามลำดับที่หน่วยรบพิเศษได้รับข้อมูลผ่านช่องทางการสื่อสารต่าง ๆ)

ข้อมูลส่งออก (Output)

จำนวนเต็ม 2 ตัวคือ

- (1) <u>ผลรวมของระยะทาง</u>จากจุดเริ่มต้นไปยังจุดหลบภัย<u>ทุกจุด</u>ที่หน่วยรบพิเศษสามารถเดินทางไปถึงได้
- (2) <u>จำนวนจุดหลบภัย</u>ที่หน่วยรบพิเศษไม่สามารถเข้าถึงได้

แสดงผลคั่นด้วยช่องว่าง 1 ช่อง

ตัวอย่างที่ 1

Input	Output
3 3 2 C 7 C 5 C 4 S 3 X 9 C 8 C 6 S 1 X	4 0

ตัวอย่างที่ 2

Input	Output
4 4	9 0
13 C 6 C 12 S 3 S	
5 C 7 C 9 C 8 C	
14 C 2 C 16 C 15 X	
11 C 1 C 4 C 10 X	

<u>ตัวอย่างที่ 3</u>

Input	Output
6 6 22 X 14 X 31 X 34 X 33 X 6 C 26 C 11 X 12 X 4 C 19 X 20 S 27 X 28 X 35 X 2 C 25 X 8 X 21 C 23 X 9 X 32 X 15 X 3 C 7 C 13 X 30 X 36 X 1 X 10 C 24 S 29 C 16 X 5 X 18 X 17 X	3 1

<u>คำแนะนำ</u>

สำหรับข้อนี้

- การเก็บข้อมูลใน vector อาจทำให้เขียนโปรแกรมได้ง่ายกว่าการเก็บด้วยอาร์เรย์
- ประกาศโครงสร้างข้อมูลที่มีจำนวนคอลัมน์เป็น N+1 เพื่อใช้คอลัมน์สุดท้ายในการเก็บผลรวมของแต่ แถวที่สามารถคำนวณพร้อมกับการรับข้อมูลได้

n-Cubes

n -Cubes หรือ n -dimensional hypercube เขียนแทนด้วย Q_n เป็นกราฟอย่างง่ายที่มีจุดยอด 2^n จุดยอด (เมื่อ $n \ge 1$) แต่ละจุดยอดแทนด้วยบิทสตริงความยาว n และมีเส้นเชื่อม $\left(\frac{n}{2}\right)2^n$ เส้น

จุดยอด 2 จุดยอดของ Q_n จะมีเส้นเชื่อมก็ต่อเมื่อบิทสตริงที่แทนจุดยอดทั้งสอง<u>มีค่าบิทที่ต่างกันเพียง 1 ตำแหน่ง</u> ตัวอย่างของ Q_1,Q_2 และ Q_3 แสดงในรูปที่ 1

จงเขียนโปรแกรมเพื่อแสดงเส้นเชื่อมทั้งหมดของ Q_n แสดงผลเรียงตามลำดับ lexicographic ข้อมูลนำเข้า (Input)

จำนวน 1 บรรทัด คือ n $(1 \le n \le 12)$

ข้อมูลส่งออก (Output)

จำนวน $\left(rac{n}{2}
ight)2^n$ บรรทัด แต่ละบรรทัดแสดงเส้นเชื่อมของ Q_n <u>เรียงตามลำดับ lexicographic</u>

<u>ตัวอย่างที่ 1</u>

Input	Output
1	0-1

<u>ตัวอย่างที่ 2</u>

Input	Output
2	00-01 00-10
	00-10
	01-11
	10-11

<u>ตัวอย่างที่ 3</u>

Input	Output
3	000-001
	000-010
	000-100
	001-011
	001-101
	010-011
	010-110
	011-111
	100-101
	100-110
	101-111
	110-111

ลูกอม (Candies)

ในวันก่อนปิดภาคการศึกษา มีการแสดงของนักเรียนอนุบาล คุณครูอลิษาต้องการซื้อลูกอมมาแจกนักเรียนแต่ ละคนที่ได้รับคะแนนจากการแสดง โดยกำหนดลำดับคะแนนตามการนั่งของนักเรียน และคุณครูอลิษามีเกณฑ์ การแจกลูกอมดังนี้

- 1) นักเรียนทุกคนต้องได้ลูกอมอย่างน้อย 1 เม็ด
- 2) นักเรียนที่นั่งติดกัน คนที่ได้คะแนนมากกว่าจะได้รับลูกอมมากกว่านักเรียนคนข้าง ๆ จำนวน 1 เม็ด
- 3) นักเรียนที่นั่งติดกันคะแนนเท่ากัน คนที่อยู่ทางด้านซ้ายมือจะได้มากกว่า เช่น นักเรียนจำนวน 3 คนมีลำดับคะแนนเป็น 1, 2, 2 ลำดับจำนวนลูกอมที่อลิษาต้องแจก คือ 1, 2, 1

ข้อมูลนำเข้า บรรทัดที่ 1 จำนวนเต็ม N แทนจำนวนนักเรียน โดยที่ $1 \le N \le 10^5$ บรรทัดที่ 2 ถึงบรรทัดที่ N+1 จำนวนเต็ม N จำนวนแทนคะแนนของนักเรียนแต่ละคน เรียงตามตำแหน่งที่นั่ง โดยที่ 1 < คะแนน 10^5

ข้อมูลนำออก แสดงจำนวนลูกอมที่คุณครูอลิษาต้องซื้อ<u>อย่างน้อยที่สุด</u>เพื่อให้เพียงพอกับจำนวนนักเรียน ตามเงื่อนไขที่กำหนด

ตัวอย่าง

Input	Output	คำอธิบาย
3	4	ลำดับจำนวนลูกอมที่อลิษาต้องแจก คือ
1 2		1 2 1 ดังนั้นจำนวนลูกอมทั้งหมดคือ 1+2+1 = 4
2 10 2 4 2 6 1 7 8 9 2 1	19	ลำดับจำนวนลูกอมที่อลิษาต้องแจก คือ 1 2 1 2 1 2 3 4 2 1 ดังนั้นจำนวนลูกอมทั้งหมดคือ 1+2+1+2+1+2+3+4+2+1 = 19
8 2 4 3 5 2 6 4 5	12	ลำดับจำนวนลูกอมที่อลิษาต้องแจก คือ 1 2 1 2 1 2 1 2 ดังนั้นจำนวนลูกอมทั้งหมดคือ 1+2+1+2+1+2 = 12