Curbe eliptice peste corpuri finite

Adrian Manea

2 noiembrie 2019

Cuprins

1	Preliminarii			
	1.1 Varietăți algebrice			
	1.2 Varietăți proiective	5		
Index				
	Bibliografie	6		

1.1 Varietăți algebrice

Începem prezentarea cu cîteva preliminarii privitoare la varietăți algebrice și alte noțiuni elementare de algebră comutativă.

Vom folosi următoarele notații și obiecte:

- *K* este un corp perfect, i.e. unul pentru care orice extindere algebrică este separabilă;
- \overline{K} este o închidere algebrică fixată a lui K;
- $\operatorname{Gal}(\overline{K}/K) = G_{\overline{K}/K}$ este grupul Galois al extinderii $K \subseteq \overline{K}$.

În majoritatea exemplelor, K va fi (o extindere algebrică a lui) \mathbb{Q} , \mathbb{Q} sau \mathbb{F}_p .

Definiție 1.1: *Spațiul afin* peste corpul *K* este mulțimea de *n*-tupluri:

$$\mathbb{A}^n = \mathbb{A}^n(K) = \{ P = (x_1, \dots, x_n) \in \overline{K}^n \}.$$

Similar, se defineste *spațiul punctelor K-rationale* din \mathbb{A}^n , care conține restricția $P \in K^n$.

Fie $\overline{K}[X] = \overline{K}[X_1, ..., X_n]$ un inel de polinoame în n nedeterminate și fie $I \le \overline{K}[X]$ un ideal. Putem asocia fiecărui astfel de ideal o submulțime a lui \mathbb{A}^n :

$$V_I = \{ P \in \mathbb{A}^n \mid f(P) = 0, \quad \forall f \in I \}.$$

Definiție 1.2: O multime algebrică afină este o multime de forma V_I ca mai sus.

Dacă V este o astfel de mulțime, idealul lui V este:

$$I(V) = \{ f \in \overline{K}[X] \mid f(P) = 0, \forall P \in V \}.$$

Spunem că o mulțime algebrică este *definită* peste K dacă idealul său I(V) poate fi generat de polinoame din K[X] și notăm aceasta cu V/K.

Dacă V este definită peste K, multimea punctelor K-rationale ale lui V este multimea:

$$V(K) = V \cap \mathbb{A}^n(K).$$

Observație 1.1: Conform teoremei bazei a lui Hilbert, idealele lui $\overline{K}[X]$ și K[X] sînt finit generate.

Fie *V* o multime algebrică și considerăm idealul:

$$I(V/K) = \{ f \in K[X] \mid f(P) = 0, \forall P \in V \} = I(V) \cap K[X].$$

Se poate observa că *V* este definită peste *K* dacă si numai dacă are loc relatia:

$$I(V) = I(V/K) \cdot \overline{K}[X].$$

Presupunem acum că V este definită peste K și fie $f_1, \dots, f_m \in K[X]$, generatori ai idealului I(V/K). Rezultă că V(K) este mulțimea soluțiilor $x = (x_1, \dots, x_n)$ pentru ecuațiile polinomiale:

$$f_1(x) = \dots = f_m(x) = 0, \quad x_1, \dots, x_n \in K.$$

Exemplu 1.1: Fie V mulțimea algebrică din \mathbb{A}^2 dată de ecuația $X^2 - Y^2 = 1$.

Atunci V este definită peste orice corp K.

Presupunem acum char $K \neq 2$. Rezultă $V(K) \simeq \mathbb{A}^1(K) - \{0\}$, o bijecție fiind, de exemplu:

$$\mathbb{A}^{1}(K) - \{0\} \longrightarrow V(K)$$
$$t \longmapsto \left(\frac{t^{2} + 1}{2t}, \frac{t^{2} - 1}{2t}\right).$$

Exemplu 1.2: Mulțimea algebrică $V: X^n + Y^n = 1$ este definită peste $\mathbb Q$ și, folosind Marea Teoremă a lui Fermat, pentru orice $n \geq 3$, are loc:

$$V(\mathbb{Q}) = \begin{cases} \{(1,0),(0,1)\}, & n \text{ impar} \\ \{(\pm 1,0),(0,\pm 1)\}, & n \text{ par} \end{cases}.$$

Exemplu 1.3: Mulțimea algebrică $V: X^2 = Y^3 + 17$ are multe puncte Q-raționale. De fapt, se poate arăta că $V(\mathbb{Q})$ este infinită. Cîteva exemple sînt:

$$V(\mathbb{Q}) = \{(3, -2), (378661, 5234), \left(\frac{2651}{512}, \frac{137}{64}\right)\}.$$

Definiție 1.3: O multime algebrică (afină) se numește *varietate algebrică (afină)* dacă I(V) este un ideal prim al lui $\overline{K}[X]$.

Remarcăm că dacă V este definită peste K, atunci este suficient să verificăm dacă I(V/K) este ideal prim al lui K[X].

Fie V/K o varietate, adică V este varietate definită peste K. Atunci *inelul coordonatelor afine* al V/K este:

$$K[V] = \frac{K[X]}{I(V/K)}.$$

De asemenea, deoarece I(V/K) este ideal prim, rezultă că K[V] este domeniu de integritate. Corpul său de fracții se notează K(V) și se numește *corpul de funcții* al lui V/K.

Similar putem formula înlocuind K cu \overline{K} .

În plus, orice element al $\overline{K}[V]$ se definește pînă la un element din $I(V/\overline{K})$, deci pînă la un polinom ce se anulează pe V. Rezultă că $f \in \overline{K}[V]$ induce o funcție $f: V \to \overline{K}$.

Definiție 1.4: Fie *V* o varietate algebrică.

Dimensiunea varietății, notată dim V, este gradul de transcendență al extinderii $\overline{K}(V)$ peste \overline{K} .

Exemplu 1.4: dim $\mathbb{A}^n = n$, deoarece $\overline{K}(\mathbb{A}^n) = \overline{K}(X_1, \dots, X_n)$.

Dacă $V \subseteq \mathbb{A}^n$ este dat de o ecuație polinomială neconstantă $f(X_1, ..., X_n) = 0$, atunci dim V = n - 1.

Vom fi interesați de proprietatea de *netezime*, care se definește prin analogul condiției de existență a planului tangent:

Definiție 1.5: Fie V o varietate algebrică, $P \in V, f_1, \dots, f_m \in \overline{K}[X]$ o mulțime de generatori pentru I(V).

V se numește nesingulară (netedă) în P dacă matricea jacobiană $\left(\frac{\partial f_i}{\partial X_j}(P)\right)$ are rangul n – $\dim V$.

Exemplu 1.5: Fie V dată de o ecuație polinomială neconstantă $f(x_1, ..., x_n) = 0$.

Atunci dim V = n - 1, deci P este singularitate dacă și numai dacă $\frac{\partial f}{\partial x_i}(P) = 0$, $\forall 1 \le i \le n$. Totodată, f(P) = 0, deci în total obținem n + 1 condiții pe n nedeterminate.

Exemplu 1.6: Fie două varietăți:

$$V_1: Y^2 = X^3 + X$$
 si $V_2: Y^2 = X^3 + X^2$.

Punctele lor singulare trebuie să satisfacă:

$$V_1^{\text{sing}}: 3X^2 + 1 = 2Y = 0$$
 si $V_2^{\text{sing}}: 3X^2 + 2X = 2Y = 0$.

Rezultă că V_1 nu are singularități, dar V_2 are, originea (0,0).

Putem formula și o altă caracterizare a netezimii, prin funcții definite pe varietate. Fie P un punct arbitrar din V. Definim idealul $M_P ext{ } ext{$

$$M_P = \{ f \in \overline{K}[V] \mid f(P) = 0 \}.$$

Se poate observa că M_P este maximal, deoarece avem izomorfismul:

$$\overline{K}[V]/M_P \to \overline{K}$$
 $f \mapsto f(P).$

Rezultă că grupul factor M_P/M_P^2 este un \overline{K} -spațiu vectorial finit dimensional. Are loc:

Propoziție 1.1: Fie V o varietate algebrică.

Punctul $P \in V$ este nesingular dacă și numai dacă $\dim_{\overline{K}} M_P/M_P^2 = \dim V$.

Exemplu 1.7: Reluăm cazul anterior al varietăților V_1 și V_2 (exemplul 1.6) și fie P = (0,0). În ambele cazuri, M_P este generat de X și Y, deci M_P^2 este generat de X^2 , XY și Y^2 . Pentru V_1 avem:

$$X = Y^2 - X^3 \equiv 0 \bmod M_p^2,$$

deci M_p^2 este generat doar de Y.

Dar pentru V_2 nu avem nicio relație netrivială între X și Y modulo M_P^2 , deci ambele nedeterminate sînt necesare ca generatori.

Rezultă că V_1 e netedă, dar V_2 nu este, deoarece dim $V_{1,2} = 1$.

Folosind idealul maximal, avem:

Definiție 1.6: *Inelul local* al varietății V în P, notat $\overline{K}[V]_P$, este localizatul în M_P , adică:

$$\overline{K}[V]_P = \{ F \in \overline{K}(V) \mid F = f/g, \quad f, g \in \overline{K}[V], g(P) \neq 0 \}.$$

Remarcăm că din F = f/g rezultă că F(P) = f(P)/g(P) este corect definită. Funcțiile din $\overline{K}[V]_P$ se numesc regulate (sau definite) în P.

1.2 Varietăți proiective

		INDEX
		INDEX

M spațiul
mulțime punctelor raționale, 2
algebrică afină, 2
algebrică definită, 3
V varietate

S afină, 3
spațiu dimensiune, 4
afin, 2
netedă, 4