A DECOMPOSITION OF CONTINUITY IN IDEAL BY USING SEMI-LOCAL FUNCTIONS

R. SANTHI AND M. RAMESHKUMAR

ABSTRACT. In this paper we introduce and investigate the notion of α - \mathcal{I}_s -open, semi- \mathcal{I}_s -open and pre- \mathcal{I}_s -open sets via idealization by using semi-local functions and we obtained new decomposition of continuity.

1. Introduction

Ideal in topological space have been considered since 1930 by Kuratowski [9] and Vaidyanathaswamy[14]. After several decades, in 1990, Jankovic and Hamlett[6] investigated the topological ideals which is the generalization of general topology. Where as in 2010, Khan and Noiri[7] introduced and studied the concept of semi-local functions. Tong [13] and Hatir et al.[4] introduced B-sets in 1989 and C-sets in 1996 respectively to obtain a decomposition of continuity in topological space. Finally in 2002 Hatir et al. [5] introduced $B_{\mathcal{I}}$ -sets, $C_{\mathcal{I}}$ -sets, $C_{\mathcal{I}}$ -sets, semi- \mathcal{I} -sets to obtain a decomposition of continuity in ideal topological spaces.

In this paper we introduce $B_{\mathcal{I}s}$ -sets, $C_{\mathcal{I}s}$ -sets, $S_{\mathcal{I}s}$ -sets, α - \mathcal{I}_s -sets, semi- \mathcal{I}_s -sets and pre- \mathcal{I}_s -sets to obtain a decomposition of continuity in ideal topological spaces by using semi-local functions.

2. Preliminaries

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , cl(A) and int(A) denote the closure and interior of A in (X, τ) respectively.

An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies: (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$ (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

²⁰¹⁰ Mathematics Subject Classification. 54A05, 54C10. Key words and phrases. α - \mathcal{I}_s -open, semi- \mathcal{I}_s -open and pre- \mathcal{I}_s -open sets.

If (X, τ) is a topological space and \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space or an ideal space.

Let P(X) be the power set of X. Then the operator $()^*: P(X) \to P(X)$ called a local function [9] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I},\tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$. We simply write A^* instead of $A^*(\mathcal{I},\tau)$ in case there is no confusion. For every ideal topological space (X,τ,\mathcal{I}) there exists topology τ^* finer than τ , generated by $\beta(\mathcal{I},\tau) = \{U \setminus J : U \in \tau \text{ and } J \in \mathcal{I}\}$ but in general $\beta(\mathcal{I},\tau)$ is not always a topology. Additionally $cl^*(A) = A \cup A^*$ defines Kuratowski closure operator for a topology τ^* finer than τ . Throughout this paper X denotes the ideal topological space (X,τ,\mathcal{I}) and also $int^*(A)$ denotes the interior of A with respect to τ^* .

DEFINITION 2.1. Let (X, τ) be a topological space. A subset A of X is said to be semi-open [10] if there exists an open set U in X such that $U \subseteq A \subseteq cl(U)$. The complement of a semi-open set is said to be semi-closed. The collection of all semi-open (resp. semi-closed) sets in X is denoted by SO(X) (resp. SC(X)). The semi-closure of A in (X, τ) is denoted by the intersection of all semi-closed sets containing A and is denoted by scl(A).

DEFINITION 2.2. For $A \subseteq X$, $A_*(\mathcal{I}, \tau) = \{ x \in X \mid U \cap A \notin \mathcal{I} \text{for every } U \in SO(X) \}$ is called the semi-local function [7] of A with respect to \mathcal{I} and τ , where $SO(X, x) = \{ U \in SO(X) : x \in U \}$. We simply write A_* instead of $A_*(\mathcal{I}, \tau)$ in this case there is no ambiguity.

It is given in [2] that $\tau^{*s}(\mathcal{I})$ is a topology on X, generated by the sub basis $\{U - E : U \in SO(X) \text{ and } E \in I \}$ or equivalently $\tau^{*s}\mathcal{I} = \{U \subseteq X : cl^{*s}(X - U) = X - U\}$. The closure operator cl^{*s} for a topology $\tau^{*s}(\mathcal{I})$ is defined as follows: for $A \subseteq X$, $cl^{*s}(A) = A \cup A_*$ and int^{*s} denotes the interior of the set A in $(X, \tau^{*s}, \mathcal{I})$. It is known that $\tau \subseteq \tau^*(\mathcal{I}) \subseteq \tau^{*s}(\mathcal{I})$. A subset A of (X, τ, \mathcal{I}) is called semi-*-perfect [8] if $A = A_*$. $A \subseteq (X, \tau, \mathcal{I})$ is called *-semi dense in-itself [8](resp. semi-*-closed [8]) if $A \subset A_*$ (resp. $A_* \subseteq A$).

DEFINITION 2.3. A subset A of a topological space X is said to be

- (1) α -open [12]if $A \subseteq int(cl(int(A)))$,
- (2) semi-open [10] if $A \subseteq cl(int(A))$,
- (3) pre-open [11] if $A \subseteq int(cl(A))$,
- (4) β -open if [1] $A \subseteq cl(int(cl(A)))$,
- (5) α^* -set [4] if int(A) = int(cl(int(A))),
- (6) C-set [4] if $A = U \cap V$, where U is an open set and V is an α^* -set,

- (7) t-set [13] if int(A) = int(cl(A)),
- (8) B-set [13] if $A = U \cap V$, where U is an open set and V is a t-set.

DEFINITION 2.4. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1) α - \mathcal{I} -open [5] if $A \subseteq int(cl^*(int(A)))$,
- (2) pre- \mathcal{I} -open [3] if $A \subseteq int(cl^*(A))$,
- (3) semi- \mathcal{I} -open [5] if $A \subseteq cl^*(int(A))$.

LEMMA 2.5. For a subset A of a topological space (X, τ) , the following properties hold:

- (1) $scl(A) = A \cup int(cl(A)),$
- (2) scl(A) = int(cl(A)), if A is open.

DEFINITION 2.6. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called

- (1) t- \mathcal{I} -set [5] if $int(cl^*(A)) = int(A)$,
- (2) α^* - \mathcal{I} -set[5] if $int(cl^*int(A)) = int(A)$,
- (3) s- \mathcal{I} -set [5] if $cl^*(int(A)) = int(A)$.

LEMMA 2.7. [7] Let (X, τ, \mathcal{I}) be an ideal topological space and A, B be subsets of X. Then for the semi-local function the following properties hold:

- (1) If $A \subseteq B$ then $A_* \subseteq B_*$.
- (2) If $U \in \tau$ then $U \cap A_* \subseteq (U \cap A)_*$
- (3) $A_* = scl(A_*) \subseteq scl(A)$ and A_* is semi-closed in X.
- $(4) (A_*)_* \subseteq A_*.$
- $(5) (A \cup B)_* = A_* \cup B_*.$
- (6) If $\mathcal{I} = {\phi}$, then $A_* = scl(A)$.
 - 3. α - \mathcal{I}_s -open, semi- \mathcal{I}_s -open and pre- \mathcal{I}_s -open sets

In this section we introduced α - \mathcal{I}_s -open, semi- \mathcal{I}_s -open and pre- \mathcal{I}_s -open sets and studied some of their properties.

DEFINITION 3.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (1) α - \mathcal{I}_s -open if $A \subseteq int(cl^{*s}(int(A)))$,
- (2) semi- \mathcal{I}_s -open set if $A \subseteq cl^{*s}(intA)$,
- (3) pre- \mathcal{I}_s -open set if $A \subseteq int(cl^{*s}(A))$.

PROPOSITION 3.2. For a subset of an ideal topological space the following hold:

- (1) Every α - \mathcal{I}_s -open set is α -open.
- (2) Every semi- \mathcal{I}_s -open set is semi-open.
- (3) Every pre- \mathcal{I}_s -open set is pre-open.

Proof.

- (1) Let A be a α - \mathcal{I}_s -open set. Then we have $A \subseteq int(cl^{*s}(int(A))) = int((int(A))_* \cup int(A) \subseteq int(scl(int(A)) \cup int(A)) \subseteq int(cl(int(A)) \cup int(A)) \subseteq int(cl(int(A)))$. This shows that A is an α -open.
- (2) Let A be a semi- \mathcal{I}_s -open set. Then we have $A \subseteq cl^{*s}(int(A)) = (int(A))_* \cup int(A) \subseteq scl(int(A)) \cup int(A) \subseteq cl(int(A)) \cup int(A)) \subseteq cl(int(A))$. This shows that A is semi-open.
- (3) Let A be a pre- \mathcal{I}_s -open set. Then we have $A \subseteq int(cl^{*s}(A)) = int(A_* \cup A) \subseteq int(scl(A) \cup A) \subseteq int(cl(A) \cup A) \subseteq int(cl(A))$. This shows that A is pre-open.

REMARK 3.3. Converse of the Proposition 3.2 need not be true as seen from the following example.

EXAMPLE 3.4. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathcal{I} = \{\phi, \{b\}, \{c\}, \{b, c\}\}\}$. Set $A = \{b, c\}, B = \{a, b, c\}$. Then A is semi-open but not semi- \mathcal{I}_s -open, B is an α -open but it is not an α - \mathcal{I}_s -open set.

EXAMPLE 3.5. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\phi, \{b\}, \{c\}, \{b, c\}\}\}$. Set $A = \{a, b, c\}$. Then A is pre-open but not pre \mathcal{I}_s -open.

PROPOSITION 3.6. Every open set of an ideal topological space is an α - \mathcal{I}_s -open set.

Proof. Let A be any open set. Then we have $A = int(A) \subseteq int(((int(A))_* \cup int(A)) = int(cl^{*s}(int(A)))$. This shows that A is an α - \mathcal{I}_s -open set.

REMARK 3.7. Converse of the Proposition 3.6 need not be true as seen from the following example.

EXAMPLE 3.8. Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{a, c\}, X\}$ and $\mathcal{I} = \{\phi\}$. Set $A = \{a, b\}$. Then A is an α - \mathcal{I}_s -open set but $A \notin \tau$.

PROPOSITION 3.9. Every α - \mathcal{I}_s -open set is both pre- \mathcal{I}_s -open and semi- \mathcal{I}_s -open set.

Proof. The proof is obvious.

REMARK 3.10. Converse of the Proposition 3.9 need not be true as seen from the following example.

EXAMPLE 3.11. Let $X = \{a, b, c, d\}$, $\tau = \{\phi, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{d\}, \{c\}, \{c, d\}\}\}$. Set $A = \{a\}$ is pre- \mathcal{I}_s -open but it is not an α - \mathcal{I}_s -open set. In Example 3.4, $A = \{a, b, c\}$ is semi- \mathcal{I}_s -open but it is not an α - \mathcal{I}_s -open set.

PROPOSITION 3.12. For a subset of an ideal topological space the following hold.

- (1) Every α - \mathcal{I}_s -open set is an α -I-open.
- (2) Every semi- \mathcal{I}_s -open set is semi-I-open.
- (3) Every pre- \mathcal{I}_s -open set is pre-I-open.

Proof. The proof is obvious.

REMARK 3.13. Converse of the Proposition 3.12 need not be true as seen from the following example.

EXAMPLE 3.14. In Example 3.4, $A = \{a, b, c\}$ is an α - \mathcal{I} -open but it is neither α - \mathcal{I}_s -open nor pre- \mathcal{I}_s -open. In Example 3.11, $A = \{a, b, c\}$ is semi- \mathcal{I} -open but it is not semi- \mathcal{I}_s -open. In Example 3.5, $A = \{a, b, c\}$ is pre- \mathcal{I} -open but it is not pre- \mathcal{I}_s -open.

EXAMPLE 3.15. In Example 3.4, $A = \{a, b, d\}$ is α - \mathcal{I}_s -open but it is not \mathcal{I} -open.

PROPOSITION 3.16. We have the following diagram among several sets defined above.

PROPOSITION 3.17. Let (X, τ, \mathcal{I}) be an ideal topological space and A an open subset of X. Then the following hold, if $\mathcal{I} = \{\phi\}$, then

- (1) A is α - \mathcal{I}_s -open if and only if A is α -open.
- (2) A is semi- \mathcal{I}_s -open if and only if A is semi-open.
- (3) A is pre \mathcal{I}_s -open if and only if A is pre -open.

Proof. If $\mathcal{I} = \{\phi\}$, then $A_* = scl(A)$ for any subset A of X and hence $cl^{*s}(A) = A_* \cup A = scl(A)$.

- (1) By Proposition 3.2, every α - \mathcal{I}_s -open set is an α -open. Conversely, if A is α -open then $A \subseteq int(cl(int(A))) = scl(int(A)) = cl^{*s}(int(A))$. Hence $A = int(A) \subseteq int(cl^{*s}(int(A)))$. Therefore A is α - \mathcal{I}_s -open. Thus A is α - \mathcal{I}_s -open if and only if A is α -open.
- (2) By Proposition 3.2, every semi- \mathcal{I}_s -open set is semi-open. Conversely, if A is semi-open then $A \subseteq cl(int(A))$. Hence $A = int(A) \subseteq int(cl(int(A))) = scl(int(A)) = cl^{*s}(int(A))$. Therefore A is semi- \mathcal{I}_s -open. Thus A is semi- \mathcal{I}_s -open if and only if A is semi-open.
- (3) By Proposition 3.2, every pre $-\mathcal{I}_s$ -open set is pre -open. Conversely, if A is pre -open then $A \subseteq int(cl(A)) = scl(A) = cl^{*s}(A)$. Hence $A = int(A) \subseteq int(cl^{*s}(A))$. Therefore A is pre- \mathcal{I}_s -open. Thus A is pre $-\mathcal{I}_s$ -open if and only if A is pre-open.

4. $B_{\mathcal{I}s}$ -SETS, $C_{\mathcal{I}s}$ -SETS AND $S_{\mathcal{I}s}$ -SETS

In this section we introduce $B_{\mathcal{I}s}$ -sets, $C_{\mathcal{I}s}$ -sets and $S_{\mathcal{I}s}$ -sets and studied some of their properties.

DEFINITION 4.1. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called

- (1) t- \mathcal{I}_s -set if $int(cl^{*s}(A)) = int(A)$,
- (2) $\alpha^* \mathcal{I}_s$ -set if $int(cl^{*s}(int(A))) = int(A)$,
- (3) s- \mathcal{I}_s -set if $cl^{*s}(int(A)) = int(A)$.

DEFINITION 4.2. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called

- (1) $B_{\mathcal{I}s}$ -set if $A = U \cap V$, where $U \in \tau$ and V is a t- \mathcal{I}_s -set,
- (2) $C_{\mathcal{I}s}$ -set if $A = U \cap V$, where $U \in \tau$ and V is an α^* - \mathcal{I}_s -set,
- (3) $S_{\mathcal{I}s}$ -set if $A = U \cap V$, where $U \in \tau$ and V is a s- \mathcal{I}_s -set.

PROPOSITION 4.3. Let (X, τ, \mathcal{I}) be an ideal topological space and A be a subset of X. Then the following holds:

- (1) If A is a t-set then A is a t- \mathcal{I}_s -set.
- (2) If A is an α^* -set then A is an α^* - \mathcal{I}_s -set.
- (3) If A is a semi-*-perfect then A is a t- \mathcal{I}_s -set.
- (4) If A is a t- \mathcal{I}_s -set then A is an α^* - \mathcal{I}_s -set.

Proof.

- (1) Let A be a t-set. Then we have $int(cl^{*s}(A)) = int(A_* \cup A) \subseteq int(scl(A) \cup A) \subseteq int(cl(A) \cup A) = int(cl(A)) = int(A)$. Now $A \subseteq cl^{*s}(A)$ and $int(A) \subseteq int(cl^{*s}(A))$. Therefore we obtain $int(cl^{*s}(A)) = int(A)$.
- (2) Let A be an α^* -set. Then we have $int(cl^{*s}(int(A))) = int((int(A))_* \cup int(A)) \subseteq int(scl(int(A)) \cup int(A)) \subseteq int(cl(int(A))) = int(cl(int(A))) = int(cl(int(A))) = int(A)$. Now $int(A) \subseteq cl^{*s}(int(A))$ and $int(A) \subseteq int(cl^{*s}(int(A)))$. Therefore we obtain $int(cl^{*s}(int(A))) = int(A)$.
- (3) Let A be a semi-*-perfect. Then $int(cl^{*s}(A)) = int(A_* \cup A) = int(A)$.
- (4) Let A be a t $-\mathcal{I}_s$ -set. Then we have $int(A) = int(cl^{*s}(A)) \supseteq int(cl^{*s}(int(A))) \supseteq int(A)$ and hence $int(cl^{*s}(int(A))) = int(A)$.

REMARK 4.4. Converse of the Proposition 4.3 need not be true as seen from the following example.

EXAMPLE 4.5. In Example 3.4, $A = \{a, b, d\}$ is both t- \mathcal{I}_s -set and α^* - \mathcal{I}_s -set but it is neither t-set nor α^* -set

EXAMPLE 4.6. Let $X = \{a, b, c, d\}, = \{\phi, \{c\}, \{a, b\}, \{a, b, c\}, X\}$ and $\mathcal{I} = \{\phi, \{a\}\}\}$. Set $A = \{b, c, d\}$ is $\alpha^* - \mathcal{I}_s$ -set but it is not $t - \mathcal{I}_s$ -set also $B = \{a, c, d\}$ is $t - \mathcal{I}_s$ -set but it is not semi-*-perfect.

PROPOSITION 4.7. Let (X, τ, \mathcal{I}) be an ideal topological space and A be a subset of X. Then the following holds:

- (1) If A is a t- \mathcal{I}_s -set then A is a $B_{\mathcal{I}_s}$ -set.
- (2) If A is an α^* - \mathcal{I}_s -set then A is a $C_{\mathcal{I}_s}$ -set.
- (3) If A is a s- \mathcal{I}_s -set then A is a $S_{\mathcal{I}_s}$ -set.

Proof.

- (1) Let A be a t- \mathcal{I}_s -set. If we take $U = X \in \tau$, then $A = U \cap A$ and hence A is a $B_{\mathcal{I}s}$ -set.
- (2) This is obvious.
- (3) Trivial.

REMARK 4.8. We have the following diagram among several sets defined above.

EXAMPLE 4.9. In Example 4.6, $A = \{b, c, d\}$ is s- \mathcal{I}_s -set but it is not t- \mathcal{I}_s -set. Therefore A is a $S_{\mathcal{I}_s}$ -set but not a $B_{\mathcal{I}_s}$ -set. For $cl^{*s}(int(A)) = cl^{*s}(\{c\}) = \{c\} \cup \{c\} = int(A) \text{ and hence } A \text{ is a } S_{\mathcal{I}_s}$ -set. Since $A_* = X$, $int(cl^{*s}(A)) = int(A_* \cup A) = X \neq \{c\} = int(A)$ and hence A is not a t- \mathcal{I}_s -set and A is not a $B_{\mathcal{I}_s}$ -set.

EXAMPLE 4.10. Let $X = \{a, b, c, d\}, = \{\phi, \{b\}, \{c, d\}, \{b, c, d\}, X\}$ and $\mathcal{I} = \phi$, set $A = \{b\}$ is a t- \mathcal{I}_s -set and hence a $B_{\mathcal{I}s}$ -set. But $A = \{b\}$ is not a $S_{\mathcal{I}s}$ -set. For $cl^{*s}(int(A)) = cl^{*s}(\{b\}) = \{b\} \cup \{a, b\} = \{a, b\} \neq a = int(A)$ and hence A is not a s- \mathcal{I}_s -set.

EXAMPLE 4.11. In Example 3.4, $A = \{a\}$ is both α - \mathcal{I}_s -open and semi- \mathcal{I}_s -open but it is neither $C_{\mathcal{I}s}$ -set nor $S_{\mathcal{I}s}$ -set.

REMARK 4.12. The notion of pre- \mathcal{I}_s -openness (resp. α - \mathcal{I}_s -openness, semi- \mathcal{I}_s -openness) is different from $B_{\mathcal{I}s}$ -sets (resp. $C_{\mathcal{I}s}$ -sets, $S_{\mathcal{I}s}$ -sets).

EXAMPLE 4.13. In Example 3.4, $A = \{a, b, c\}$ is a pre- \mathcal{I}_s -open, but it is not a $B_{\mathcal{I}_s}$ -set. Since A is not a t- \mathcal{I}_s -set. $B = \{b, c\}$ is a t- \mathcal{I}_s -set and hence B is a $B_{\mathcal{I}_s}$ -set but it is not a pre- \mathcal{I}_s -open.

EXAMPLE 4.14. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\}$ and $\mathcal{I} = \{\phi, \{d\}\}$. Set $A = \{a, b, c\}$ is a semi- \mathcal{I}_s -open, but it is not a $S_{\mathcal{I}s}$ -set. Since A is not a s- \mathcal{I}_s -set. $B = \{b, c\}$ is a s- \mathcal{I}_s -set and hence B is a $S_{\mathcal{I}s}$ -set but it is not a semi- \mathcal{I}_s -open.

EXAMPLE 4.15. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\mathcal{I} = \{\phi, \{c\}\}\}$. Set $A = \{a, b, c\}$ is an α - \mathcal{I}_s -open, but it is not a $\mathcal{C}_{\mathcal{I}s}$ -set. Since A is not a α^* - \mathcal{I}_s -set. $B = \{b, c\}$ is a $S_{\mathcal{I}s}$ -set and hence B is a $\mathcal{C}_{\mathcal{I}s}$ -set but it is not a α - \mathcal{I}_s -open.

PROPOSITION 4.16. Let (X, τ, \mathcal{I}) be an ideal topological space and A be a subset of X. Then the following conditions are equivalent:

- (1) A is open.
- (2) A is pre- \mathcal{I}_s -open and $B_{\mathcal{I}_s}$ -set.
- (3) A is α - \mathcal{I}_s -open and $C_{\mathcal{I}_s}$ -set.
- (4) A is semi- \mathcal{I}_s -open and $S_{\mathcal{I}_s}$ -set.

Proof. $(a) \Rightarrow (b), (a) \Rightarrow (c)$ and $(a) \Rightarrow (d)$ are obvious.

 $(b) \Rightarrow (a)$: By the pre- \mathcal{I}_s -openness of A, $A \subseteq int(cl^{*s}(A)) = int(cl^{*s}(U \cap V))$, where $U \in \tau$ and V is a t- \mathcal{I}_s -set. Hence $A \subseteq int(cl^{*s}(U)) \cap int(cl^{*s}(V))$. Now $A \subseteq U \cap A \subseteq U \cap [int(cl^{*s}(U)) \cap int(V)] = U \cap int(V) = int(A)$. This shows that A is open. $(c) \Rightarrow (a)$:

By the α - \mathcal{I}_s -openness of A, $A \subseteq int(cl^{*s}(int(A))) = int(cl^{*s}(int(U \cap V)))$, where $U \in \tau$ and V is a α^* - \mathcal{I}_s -set. Hence $A \subseteq int(cl^{*s}(int(U))) \cap int(cl^{*s}(int(V)))$. Now $A \subseteq U \cap A \subseteq U \cap [int(cl^{*s}(int(U))) \cap int(V)] = U \cap int(V) = int(A)$. This shows that A is open. $(d) \Rightarrow (a)$:

By the semi- \mathcal{I}_s -openness of A, $A \subseteq cl^{*s}(int(A)) = cl^{*s}(int(U \cap V))$, where $U \in \tau$ and V is a s- \mathcal{I}_s -set. Hence $A \subseteq cl^{*s}(int(U)) \cap cl^{*s}(int(V))$. Now $A \subseteq U \cap A \subseteq U \cap [cl^{*s}(int(U)) \cap int(V)] = U \cap int(V) = int(A)$. This shows that A is open

5. Decomposition of Continuity

In this section we introduce α - \mathcal{I}_s -continuous, semi - \mathcal{I}_s -continuous, pre - \mathcal{I}_s -continuous and studied some of their properties.

DEFINITION 5.1. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be α - \mathcal{I} -continuous [5] (resp. semi - \mathcal{I} -continuous[5], pre - \mathcal{I} -continuous[3]) if for every $V\in\sigma$, $f^{-1}(V)$ is an α - \mathcal{I} -set (resp. semi - \mathcal{I} -set, pre - \mathcal{I} -set) of (X,τ,\mathcal{I}) .

DEFINITION 5.2. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be α -continuous[12] (resp. semi -continuous[10], pre -continuous[11] if for every $V\in\sigma$, $f^{-1}(V)$ is an α -open (resp. semi-open, pre-open) of (X,τ) .

DEFINITION 5.3. A function $f:(X,\tau) \to (Y,\sigma)$ is said to be α - \mathcal{I}_s -continuous(resp. semi - \mathcal{I}_s -continuous, pre - \mathcal{I}_s -continuous) if for every $V \in \sigma$, $f^{-1}(V)$ is an α - \mathcal{I}_s -set (resp. semi- \mathcal{I}_s -set, pre - \mathcal{I}_s -set) of (X,τ,\mathcal{I}) .

PROPOSITION 5.4. If a function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be α - \mathcal{I}_s -continuous (resp. semi - \mathcal{I}_s -continuous, pre - \mathcal{I}_s -continuous) then f is α -continuous (resp. semi-continuous, pre-continuous).

Proof. This is an immediate consequence of Proposition 3.2

PROPOSITION 5.5. If a function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be $\alpha\text{-}\mathcal{I}_s\text{-}continuous(resp. semi \text{-}\mathcal{I}_s\text{-}continuous, pre \text{-}\mathcal{I}_s\text{-}continuous)}$ then f is $\alpha\text{-}\mathcal{I}\text{-}continuous$ (resp. semi \text{-}\mathcal{I}\text{-}continuous, pre \text{-}\mathcal{I}\text{-}continuous).

Proof. This is an immediate consequence of Proposition 3.12

DEFINITION 5.6. A function $f:(X,\tau)\to (Y,\sigma)$ is said to be B-continuous[13] (resp. C-continuous[4]) if for every $V\in\sigma, f^{-1}(V)$ is a B-set (resp. C-set) of (X,τ) .

DEFINITION 5.7. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be $B_{\mathcal{I}}$ -continuous [5] (resp. $C_{\mathcal{I}}$ -continuous[5], $S_{\mathcal{I}}$ -continuous[5]) if for every $V\in\sigma$, $f^{-1}(V)$ is an $B_{\mathcal{I}}$ -set (resp. $C_{\mathcal{I}}$ -set, $S_{\mathcal{I}}$ -set) of (X,τ,I) .

DEFINITION 5.8. A function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be $B_{\mathcal{I}s}$ -continuous (resp. $C_{\mathcal{I}s}$ -continuous, $S_{\mathcal{I}s}$ -continuous) if for every $V\in \sigma, f^{-1}(V)$ is an $B_{\mathcal{I}s}$ -set (resp. $C_{\mathcal{I}s}$ -set, $S_{\mathcal{I}s}$ -set) of (X,τ,I) .

PROPOSITION 5.9. If a function $f:(X,\tau,\mathcal{I})\to (Y,\sigma)$ is said to be B-continuous(resp. C-continuous) then f is $B_{\mathcal{I}s}$ -continuous (resp. $C_{\mathcal{I}s}$ -continuous).

Proof. Proof is obvious.

THEOREM 5.10. Let (X, τ, \mathcal{I}) be an ideal topological space for a function $f: (X, \tau, \mathcal{I}) \to (Y, \sigma)$ the following conditions are equivalent:

- (1) f is continuous.
- (2) f is pre - \mathcal{I}_s -continuous and $B_{\mathcal{I}s}$ -continuous.
- (3) f is α - \mathcal{I}_s -continuous and $C_{\mathcal{I}_s}$ -continuous.
- (4) f is semi - \mathcal{I}_s -continuous and $S_{\mathcal{I}s}$ -continuous.

Proof. Proof is trivial from Proposition 4.16

COROLLARY 5.11. Let (X, τ, \mathcal{I}) be an ideal topological space and $\mathcal{I} = \{\phi\}$ and A is open. For a function $f : (X, \tau, \mathcal{I}) \to (Y, \sigma)$ the following conditions are equivalent:

- (1) f is continuous.
- (2) f is pre-continuous and B-continuous.
- (3) f is α -continuous and C-continuous.

Proof. Since $\mathcal{I} = \{\phi\}$, we have $A_* = scl(A)$ and $cl^{*s}(A) = A_* \cup A = scl(A)$ for any open subset A of X. Therefore we obtain (a) α - \mathcal{I}_s -open (resp. pre - \mathcal{I}_s -open) if and only if it is α -open (resp. Pre-open) (b) A is a $C_{\mathcal{I}s}$ -set (resp. $B_{\mathcal{I}s}$ -set) if and only if it is a C-set (resp. B-set). The proof follows from Theorem 3.10

References

- [1] M. E. Abd El-Monsef, S. N. El-Deep and R. A. Mahmoud, β -open sets and β -continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
- [2] M.E. Abd El-Monsef, E.F. Lashien and A.A. Nasef, *Some topological operators via ideals*, Kyungpook Math. J., 32, No. 2 (1992), 273-284.

- [3] J. Dontchev, *Idealization of Ganster-Reilly decomposition theorems*, http://arxiv.org/abs/ Math. GN/9901017, 5 Jan. 1999(Internet).
- [4] E. Hatir, T.Noiri and S. Yuksel, A decomposition of continuity, Acta. Math. Hungar. 70(1996), 145-150.
- [5] E. Hatir and T.Noiri, On decompositions of continuity via idealization, Acta. Math. Hungar. 96(4)(2002), 341-349.
- [6] D. Jankovic and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4) (1990), 295-310.
- [7] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(1) (2010), 36-42.
- [8] M. Khan and T. Noiri, On gI-closed sets in ideal topological spaces, J. Adv. Stud. in Top., 1(2010),29-33.
- [9] K. Kuratowski, Topology, Vol. I, Academic press, New York, 1966.
- [10] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [11] A. S. Mashhour, M. E. Abd. El-Monsef and S. N. El-deeb, *On pre-continuous and weak pre-continuous mapping*, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47-53.
- [12] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [13] J. Tong, On decompositions of continuity in topological space, Acta. Math. Hungar. 54(1989), 51-55.
- [14] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.
- R. Santhi, Department of Mathematics, NGM College, Pollachi-642001, Tamil Nadu, India
- M. Rameshkumar, Department of Mathematics, P. A College of Engineering and Technology, Pollachi-642002, Tamil Nadu, India