General Chemistry I

단원	Ch 6. Quantum Mechanics and Molecular Structure
학습 주제	MOT(1)

1 Quantum Picture of the Chemical Bond

* Valence Bond Theory vs Molecular Orbital Theory

구분	원자가 결합 이론(VBT)	분자 오비탈 이론(MOT)
기저	전자의 <mark>편재성</mark> 을 가정	전자의 <u>비편재성</u> 을 가정
가정	▷ 전자는 <mark>두 핵 사이에 존재</mark>	▷ 전자는 <u>분자 전체에 퍼짐</u>
의의	Lewis 방법과 VSEPR의 이론적 기반	Ligand Field Theory 등
의의 		<u>분자 양자역학</u> 에서 활용
그림	1s $2p$ sigma bond	$+2p_x^{\Lambda}$ $-2p_x^{\mathrm{B}}$ $\pi_{g2p_x}^*$ (반결함)

※ Molecular orbital의 정의 : 슈뢰딩거 방정식 $(\hat{\mathrm{H}}\psi=\mathrm{E}\,\psi)$ 을 풀어서 얻어낸 분자의 파동함수로서의 해

1. An simple interpretation of the formation of molecules

- cf. 일차원 PIB에서의 결론
- ① PIB의 에너지는 **양자화되어 있으며, 불연속적이다**.
- ② PIB의 최소 에너지는 0이 아니며, 양의 값을 갖는 **영점 에너지(zero-point energy,** E_0)로 정의된다.
- ▷ 분자에서 또한 에너지는 양자화되어 있으며, 불연속적이다.

분자가 갖는 에너지는 zero-point energy(bounded energy) 이상의 에너지 값만을 가질 수 있다.

< 문자 형성 과정의 에너지론>

2. Born-Oppenheimer Approx.

- ① Born-Oppenheimer 근사
- ⓐ Born-Oppenheimer 근사 : 원자핵은 그 질량이 전자에 비해 매우 크기 때문에 전자에 비해 상대적으로 매우 둔하게 운동한다. 즉, 전자들이 운동하는 동안에 핵들은 거의 정지된 상태에 있다고 가정한다.
 - \triangleright 원자핵의 속도(v)=0, 원자핵의 운동량(p)=0, 원자핵의 운동 에너지(K)=0
 - ▷ 세 가지 관점은 Schrodinger Equation에서의 Hamiltonian을 정의하거나, 3차원 운동을 기술할 때 사용
- ⑤ 유효 퍼텐셜 에너지 함수(effective potential energy function)
- ▷ 정전기적 유효 퍼텐셜은 **반발력에 관한 항과 인력에 관한 항의 합**으로 정의된다.

$$\stackrel{ ext{$\stackrel{\sim}{=}$}}{,} \quad V_{eff}(R) = K\!(R) + V\!(R)$$

- ▷ **비리얼 이론(Virial Theorem)**을 이용한 유효 퍼텐셜 에너지의 해석
- neinforce: Virial Theorem
 - ▷ 정전기적(electrostatic) 힘으로만 작용하는 입자의 계에서 평균 운동 에너지와 평균 포텐셜 에너지의 관계
 - $\ \, \triangleright \ \, \overline{\textit{K}}\!\!=\!\!-\frac{1}{2}\,\overline{\textit{V}} \ \, \cdots \ \, \triangle\,\overline{\textit{E}}\!\!=\!\Delta\,\overline{\textit{K}}\!\!+\!\Delta\,\overline{\textit{V}}\!\!=\!\frac{1}{2}\,\Delta\,\overline{\textit{V}}$

<PVirial Theorem을 통한 effective potential energy curve의 해석>

- (1) R이 큰 경우
- O Δ V가 양수이면 Δ K는 음수, Δ V_{eff} 는 Δ V를 따라가되, 그 변화량이 Δ V만큼 격동적이지는 않다.
- O Δ V나 Δ K, Δ V_{eff} 의 부호는 각각의 curve 위 특정 점에 서의 **도함수**를 구하여 해석할 수 있다.
- (2) R이 작은 경우
- O 어느 정도까지는 그 경향성을 따라가나, 두 입자가 매우 밀집한 곳에서는 매우 높은 반발(repulsion)이 나타나 포텐셜 에너지가 폭증
- O 이때는 입자계의 해석만이 아닌, 핵물리학에서의 binding energy 등을 참고하여야 함.
- ▷ 결합하는 과정에 의해 퍼텐셜 에너지가 낮아지며(분자가 안정화되며) 공유 결합이 형성된다.
- [그림 6.2] 분자 형성 과정의 에너지론

2 Exact molecular Orbitals for the simplest molecule: H₂+

※ Energy적 interpretation of H₂+

- \triangleright 수소 분자 이온 (H_2^+) 는 MO에 대한 해석을 하기 가장 단순한 모델임
- ① 동종핵 이원자 분자이기에 궤도함수의 선형 조합을 하기 용이함.
- ② 전자가 1개만 존재하는 단전자 분자이기에 <u>해당 전자의 궤도함수가 곧 분자궤도함수</u>임
- ▷ MO 논의의 확장

▷ 수소 분자 이온의 Hamiltonian

Born-Oppenheimer 근사 X

Born Oppenheimer 근사 O

$$\begin{split} \hat{H} &= -\frac{t^{2}}{2M} \left(\nabla_{A}^{2} + \nabla_{B}^{2} \right) - \frac{t^{2}}{2m_{e}} \cdot \nabla_{e}^{2} \\ &- \frac{e^{2}}{4\pi\epsilon_{0} \Gamma_{Ae}} - \frac{e^{2}}{4\pi\epsilon_{0} \Gamma_{Be}} + \frac{e^{2}}{4\pi\epsilon_{0} R} \end{split}$$

$$\hat{H} = -\frac{\hbar^2}{2m_e} \cdot \nabla_e^2 - \frac{e^2}{4\pi G_0 \Gamma_{Ae}} - \frac{e^2}{4\pi G_0 \Gamma_{Be}} + \frac{e^2}{4\pi G_0 R}$$

▷ 수소 분자 이온의 전체 에너지

$$V {=} {-} \frac{e^2}{4\pi\,\epsilon_0} \! \left(\frac{1}{r_{\!A}} {+} \frac{1}{r_{\!B}} \right) \! + \frac{e^2}{4\pi\,\epsilon_0} \! \left(\frac{1}{R_{\!A\!B}} \right) \! \! = V_{\!en} + V_{\!nn}$$

수소 분자 이온의 전자는 r, θ, ϕ 라는 $\frac{\textbf{7D}}{\textbf{4D}} = \frac{\textbf{4D}}{\textbf{4D}} = \frac{\textbf{4D}}{\textbf{4D}}$ 로 기술되는 것에 반해, 수소 분자 이온의 퍼텐셜 에너지는 r, θ, ϕ 중 r에 의한 의 조성만을 갖는다. 즉, <u>퍼텐셜 에너지는 각도와 무관하다.</u>

$1.~\mathrm{H_2^+}$ 이온의 분자 궤도함수

<요약> 분자 궤도함수는 Schrodinger equation을 풀어서 얻은 해이며, 결합 축은 ≥축이다.

2. 분자 궤도함수의 표기

① 그리스 문자 σ,ϕ 는 파동함수(MO)의 모양을 결정한다.

구분	각운동량 성분	각도 마디	특징	AO의 중첩
σ	0	없음	<u>원통 대칭</u>	$1s-1s$, $2s-2s$, $2p_z-2p_z$
π	+ħ, -ħ	있음	결합축을 포함한 절평면 축퇴된 2개의 파동함수	$2p_x-2p_x, \ 2p_y-2p_y$
δ	$+2\hbar$, $-2\hbar$			
φ	$+3\hbar$, $-3\hbar$			

② 윗첨자와 아랫첨자

구분	아래 첨자(g, u) : 원점 대칭성	별 첨자	정수
의미	파동함수의 대칭	반결합성 오비탈(antibonding orbital)	상대적인 에너지
정의 및 설명	O 관측점을 원점을 기준으로 대칭시켰을 때 위상 변화 (같으면 g, 반대이면 u) cf. gerade, ungerade	 '*' 표시가 있는 파동함수 는 반결합성 오비탈을 나타내며, 핵 사이 전자 밀도가 낮아지고, 에너지가 높아짐. 	○ 특정 각도 대칭성과 배향을 갖는 파동함수의 <u>에너지</u> 적 순서를 낮은 에너지의 게도함수부터 나열
도식	σ _g	$[\sigma_{u1s}^*]^2$	

[Problem 6.1] 5.1절에서 우리는 수소의 원자 궤도함수들을 각도에 따른 마디(각 마디별로 하나의 평면에 의해 정의됨)의 수와 중심으로부터의 거리에 따른 마디(각 마디별로 구형 표면에 의해 정의됨)의 수에 의거하여 분류하였다. 어떻게 우리는 이런 분석을 H_2^+ 의 분자 궤도함수로 확장할 수 있나?

3 Molecular Orbital Theory and the LCAO Approx. for H₂

- 1. 원자 오비탈의 선형 조합(Linear Combination of Atomic Orbitals : LCAO)
- ※ 선형 조합

- 서로 다른 함수를 <mark>일차항적으로 조합</mark>하면 이를 두 함수가 선형 조합되었다고 이야기함.
- (ex) 두 함수 f(x), g(x)에 대하여 af(x) + bg(x)
- (ex) p-orbital에서 spherical harmonics를 조합하여 $2p_x$, $2p_y$ 의 angular wavefunction을 구하는 과정

calculation	picture
$\psi_{2p_{x}} = \frac{1}{\sqrt{2}} \left(\psi_{2:1:1} - \psi_{2:1:-1} \right) = r \sin\theta \cos\phi f(r) = x f(r)$	
$\psi_{2p_{y}} = \frac{i}{\sqrt{2}} \left(\psi_{2,1,1} + \psi_{2,1,-1} \right) = r \sin \theta \sin \phi f(r) = y f(r)$	x

- ① LCAO 방법을 통한 MO의 형성 조건
- 적당한 대칭성을 가진 AO 사이의 상호작용 \triangleright 실효 겹침(S)이 발생한다 $(S \neq 0)$, 겹침이 클수록 결합 형성
- 비슷한 에너지를 가진 AO들 사이의 상호작용
- -n개의 AO의 상호작용을 토대로 n개의 MO가 형성되어야 한다.
- ② LCAO-MO를 통한 Molecular Orbital의 형성
- % LCAO-MO를 통한 H_2^+ 의 파동함수 해석

$$\psi = C_A \psi_1 \pm C_B \psi_2$$

cf. $C_1=C_2$ 인 경우 핵에 대해 대칭, C_1,C_2 는 두 AO에 대한 상대적인 점유에 관한 가중치

구분	결합성 MO	반결합성 MO	
ψ_{MO}	$\psi_{M\!O} = C_1(\psi_1 + \psi_2)$	$\psi_{M\!O}^* = C_2(\psi_1 - \psi_2)$	
(wavef.)	상수 C_1, C_2 는 각각의 파동함수를 <mark>정규화시켜서(normalization)</mark> 얻을 수 있음.		
	$\psi^2 = C_1^2 ((\psi_1)^2 + 2\psi_1 \psi_2 + (\psi_2)^2)$	$\psi^2 = C_1^2((\psi_1)^2 - 2\psi_1\psi_2 + (\psi_2)^2)$	
전자 밀도	$A \qquad B$	$[\sigma_{u_{1s}}^*]^2$	
특성	○ 두 AO가 중첩되어 전자가 발견될 확률이 핵 간에서 +2(\psi_1)(\psi_2)가 됨. ○ 결합성 MO를 전자가 점유하면 분자는 에 너지적으로 안정화(에너지가 낮아짐) ▷ 낮아지는 에너지가 <mark>결합의 추진력</mark> (결합 형성)	○ 두 AO가 중첩되어 전자가 발견될 확률이 핵 사이에서 $-2(\psi_1)(\psi_2)$ 가 됨. ○ 반결합성 MO를 전자가 점유하면 분자는 에너지적으로 불안정화(에너지가 높아 집) ▷ 높아지는 에너지가 <u>결합의 장애물</u> (결합 절단)	

③ 겹침 적분(overlap integral, S) : 두 AO가 겹쳐지는 정도(실효 겹침)를 표현

$$S = \int \psi \, \psi^* d\tau$$

- ho 겹침 적분(S)을 이용한 파동함수의 <mark>정규화(normalization)</code> ho $\int \psi^2 d au = 1$ </mark>
- ⓐ 결합성 궤도함수 $\psi = \psi_1 + \psi_2$ 인 경우 $\psi^2 = \psi_1^2 + \psi_2^2 + 2\psi_1\psi_2$

▷ 적분하면
$$\int \psi^2 d au = C^2 \int \psi_1^2 d au + C^2 \int \psi_2^2 d au + 2C^2 \int \psi_1 \psi_2 d au = C^2 (2+2S) = 1$$

- \triangleright 정규화 상수(normalization constrant) = $\frac{1}{\sqrt{2+2S}}$
- ⑤ 반결합성 궤도함수 $\psi=\psi_1-\psi_2$ 인 경우 $\psi^2=\psi_1^2+\psi_2^2-2\psi_1\psi_2$

$$ight
angle$$
 적분하면 $\int \psi^2 d au = C^2 \int \psi_1^2 d au + C^2 \int \psi_2^2 d au - 2\,C^2 \int \psi_1\psi_2 d au = C^2(2-2S) = 1$

- \triangleright 정규화 상수(normalization constant) = $\frac{1}{\sqrt{2-2S}}$
- 3. 에너지론 해석
- ① 분자가 반결합성 궤도함수를 점유하는 것보다 <u>결합성 궤도함수를 점유</u>하는 것이 **에너지적으로 더욱 안정함**.
- 반결합성 궤도함수는 R에 상관없이 $모두 \[\frac{\pm q}{q} \] 이 작용하며, 핵 간의 반발은 결합을 방해한다.$
- 결합성 궤도함수의 경우 평형 길이 (R_e) 까지는 인력이 작용하고,
 - 그 이후에는 척력이 작용한다.
 - ▷ 반결합성 궤도함수에 비해 더욱 에너지적으로 안정하다.
- ② 상관 도표(correlation diagram)
 - : MO의 에너지를 가시적으로 표현하기 위해서 사용하는 도표
- ⓐ 상관 도표의 규칙
 - 분자 오비탈 형성에 관여하는 AO는 양 끝에 가로 실선으로 표기한다.
- AO의 상호작용으로 형성된 MO는 **에너지가 낮은 것부터 가로 실선**으로 그린다.
- AO와 그 상호작용으로 형성된 MO는 점선으로 연결한다.
- AO와 MO에는 AO와 동일한 배치 규약에 의거하여 (바닥상태) 전자를 배치한다.
- ⑤ 상관 도표를 통한 결합성 오비탈과 반결합성 오비탈의 해석

구분	MO의 에너지	전자가 채워질 때의 변화
결합성 MO	분리된 원자보다 에너지가 낮은 오비탈을 채워나간다. ▷ <u>-△E<mark>만큼 안정</mark></u>	<u>분자를 안정화, 화학 결합 형성</u>
반결합성 MO	분리된 원자보다 에너지가 높은 오비탈을 채워나간다. ▷ <u>+△E<mark>만큼 불안정</mark></u>	분자를 불안정화, 화학 결합 파괴

- ② LCAO-MO 근사에 대한 타당성
 - 실제 경험적으로 관찰된 MO와 LCAO 방법으로 형성된 MO는 재현성을 가짐.
 - ▷ LCAO는 MO에 관한 합리적인 근사 방법으로 간주할 수 있음.

표 6.1	
동종핵 이원자 분자들의 분자 궤도함수들	
완벽한 MO 표기	LCAO MO 표기
$1\sigma_g$	σ_{g1s}
$1\sigma_u^*$	$\sigma_{u_{1s}}^{*}$
$2\sigma_g$	σ_{g2s}
$2\sigma_u^*$	σ_{u2s}^*
$1\pi_u$	$\pi_{u2p_\chi},\pi_{u2p_\chi}$
$3\sigma_g$	$\sigma_{g2 ho_Z}$
$1\pi_g^*$	$\pi_{g2 ho_X}^*,\pi_{g2 ho_Y}^*$
$3\sigma_u^*$	$\sigma^*_{^{u2p_Z}}$

4 Homonuclear diatomic molecules: First-period atoms

- 1. 동핵 이원자 분자 : 1주기 원자
- ① 1주기 분자의 경우 전자의 최대 개수가 4개 $(q \ge 0)$
- ② 결합 차수(bond order) : 결합 차수가 클수록 결합력이 강하다. ▷ 결합 길이가 짧아지고, 결합 에너지가 <u>커짐</u>
- @ BO의 정의
- 고전적 : 몇 쌍의 전자가 공유(share)되고 있는가?
- MO에서

Bond Order(BO) : <u>결합성 MO의 전자수-반결합성 MO의 전자수</u>

- **b** BO와 bond length, bond energy
- bond length : 결합성 MO를 전자가 더 많이 점유할수록 <u>원자핵을 전자가 더 끌어당기며</u> 결합 길이 감소
- bond energy : 결합성 MO 점유할수록 <u>안정화되는 에너지(△E)가 더 커진다.(상관도표)</u>

[Example 6.2] He; 분자 이온의 바닥 상태 전자 배치와 결합 차수를 쓰시오.

③ 1주기 원자로 이루어진 분자(& 분자 이온)

화학종	H_2	He ⁺	He ₂
상관 도표	원자 분자궤도 원자 궤도함수 (원자 B) σ_{g1s}^{*} σ_{g1s}^{*}	원자 제도함수 제도함수 제도함수 (원자 B) $\frac{1}{\sigma_{a1s}^{*}}$ $\frac{1}{\sigma_{g1s}}$	$1s \xrightarrow{\uparrow \downarrow} \sigma_{1s} \xrightarrow{*} 1s$
전자 배치	$(\sigma_{g1s}^{\;2})$	$\sigma_{g1s}^2 {\sigma_{u1s}^*}^{^1}$	$\sigma_{g1s}^2\sigma_{u1s}^{*2}$
결합 차수	1	0.5	0
- 결합 에너지	431kJ/mol	251kJ/mol	He ₂ 의 경우 <mark>결합 차수가 0</mark> 이므로
결합 길이	0.74 Å	1.08 Å	실질적인 화학 결합이 일어나지 않는다.

■ Problem Set 8: 예제 + p303 문제, 6.1, 6.7, 6.17, 6.21, 6.67