

ZÁPADOČESKÁ UNIVERZITA

FAKULTA APLIKOVANÝCH VĚD

Semestrální práce předmětu KIV/ZVI

Otisky prstů

Petr Štechmüller

Contents

1	Úvod	2
2	Předzpracování obrazu2.1 Rozostření2.2 Binarizace2.3 Skeletizace	2 2 2 3
3	Zpracování obrazu	3
4	Seznámení s aplikací4.1 Spuštění aplikace4.2 Kód aplikace	3 3 4
5	Závěr	4
Ρi	řílohy	5

1 Úvod

Tato semestrální práce se zabývá zpracováním otisků prstů a rozpoznáním markantů. Zpracování otisku je velmi problémové. Setkal jsem se s velkým množstvím problémů, které jsem musel postupně řešit.

2 Předzpracování obrazu

Před samotným rozpoznáváním otisku bylo potřeba obraz předzpracovat. Předzpracování se skládalo ze tří částí:

- 1. rozostření
- 2. binarizace
- 3. skeletizace

2.1 Rozostření

Rozostření jsem provedl pomocí morfologické operace *closing*. Tento krok slouži jen jako pomocné předzpracování před binarizací obrazu. Bez tohoto kroku bylo ve výsledném binarizovaném otisku více artefaktů.

2.2 Binarizace

Binarizace transformuje obraz do dvou barev (černá a bílá), kde černá reprezentuje linii a bílá reprezentuje mezeru mezi liniemi. Pro binarizaci jsem vybral algoritmus adaptivního prahování, který se osvědčil jako nejlepší 1.

Figure 1: Příklad binarizace jednoduchého obrázku

Před adaptivním prahováním jsem implementoval algoritmus Otsu thresholding, který ale dával neuspokojivé výsledky. Výsledek otisku po adaptivním prahování je na obrázku 4.

2.3 Skeletizace

Skeletizace je proces, kdy se z obrazu získá jeho kostra. Algorigmus který jsem použil vychází z mediální osové transformace. Vytváří ve spojité oblasti jednoznačný skelet pro určitý objekt. Na obrázku 2 je vidět příklad fungování skeletizace na vzorovém obrázku. Výsledek skeletizace je na obrázku: 5 Tato

Figure 2: Příklad skeletizace vzorového obrázku

metoda má problém s "kouty" jak je vidět na obrázku výše, kdy detekuje falešný skelet.

3 Zpracování obrazu

V samotném zpracování otisu jsem si dal jednoduchý cíl: nalézt alespoň vidlice v otisku. Vidlice je jeden z devíti markantů. Příklad všech markantů je vidět na obrázku: 6.

K nalezení vidlice jsem zvolil tu nejjednodušší (a nejhloupější) možnou metodu. Vytvořil jsem masku o velikosti 3x3, která reprezentuje vidlici. V obrázku procházím pixel po pixelu a kontroluji, zda-li odpovídá masce. Pokud odpovídá, označím místo jako vidlice. Největší nevýhodou této metody je, že se označí příliš velké množství falešných vidlic. Výsledek je vidět na obrázku: 7.

4 Seznámení s aplikací

Výsledkem semestrální práce je webová aplikace 3, do které lze nahrávat otisky prstů 8.

Po nahrání je možné vybrat zvolený otisk a nechat si zobrazit vidlice. Celý proces předzpracování otisku je graficky vizualizován a náležitě okomentován 9.

4.1 Spuštění aplikace

Ke spuštění aplikace je potřeba jednoduchý webový server. Ideální řešení jsem našel ve formě python web serveru. Příkazem python3 —m http.server se spustí

Figure 3: Výsledná webová aplikace

web server pro aktuálně otevřenou složku. Poté stačí otevřít prohlížeč na výchozí adrese localhost:8000, kde se načte aplikace. Samozřejmě lze použít i jiný web server. Samozřejmostí je i online verze aplikace, která je dostupná na adrese: stechy1.github.io/fingerprints.

4.2 Kód aplikace

Aplikace je napsaná v jazyce TypeScript za použití frameworku Angular 5. Tuto kombinaci jsem zvolil, protože jako jeden z požadavků na práci byla co největší přenositelnost aplikace, což Angular spňuje velmi dobře. Samotný kód aplikace se nachází ve složce src/app. Veškeré filtry, které byly použity během předzpracování obrazu jsou ve složce src/app/shard a jsou nezávislé na frameworku, takže je lze aplikovat samostatně.

5 Závěr

Cílem semestrální práce bylo identifikovat vidlice v otiscích. Na omezeném vzorku otisků funguje identifikace velmi dobře. Největší problém v předzpracování otisku vidím v nedokonalé skeletizaci, která by si zasloužila více pozornosti. Tím by se dosáhly i lepší výsledky.

Přílohy

Figure 4: Binarizovaný otisk

Figure 5: Kostra otisku

Figure 6: Typy markantů

Figure 7: Nalezené vidlice

Figure 8: Možnost nahrání otisku je jen pro registrované uživatele

Figure 9: Vizualizace postupu zpracování otisku