CLAIMS

What is claimed is.

A process of forming a memory device, comprising: 1. forming a first topology over a substrate; forming a subsequent topology over the first topology; 3 forming a first memory structure at the first topology; and 4 forming at least one subsequent memory structure at a corresponding at least one 5 subsequent topology. 2. The process according to claim 1, wherein the memory device includes a 1 2 ferroelectric memory device. 3. The process according to claim 2, wherein forming at least one subsequent 1 memory structure further includes: 2 3 forming a second topology; forming a second memory structure at the second topology; 4 forming an interlayer dielectric (ILD) layer over the second memory structure; 5 forming a third topology above the ILD layer; and 6 7 forming a third memory structure at the third topology. 1 4. The process according to claim 2, wherein forming at least one subsequent memory structure further includes: 2 forming a second topology; 3

4		forming a second memory structure at the second topology, wherein the second
5	memo	ory structure is formed comprising:
6		forming a ferroelectric layer over the first memory structure;
7		forming a conductive layer over the layer;
8		planarizing the conductive layer; and
9		patterning the conductive layer to form a third electrode; and
10		forming an interlayer dielectric (ILD) layer over the second memory structure;
111		forming a third topology above the ILD layer; and
12		forming a third memory structure at the third topology.
ge		
	5.	The process according to claim 2, wherein forming a first memory structure
1 2	further includ	des:
3		forming a first electrode over the substrate;
4		forming a first memory layer over the first electrode; and
5		forming a second electrode over the first memory layer.
1	6.	The process according to claim 2, wherein forming a first memory structure and
2	forming a sub	osequent memory structure further includes:
3		forming a first electrode over the substrate;
4		forming a first memory layer over the first electrode;
5		forming a second electrode over the first memory layer;
6		forming a second memory layer over the second electrode; and
7		forming a third electrode over the second memory layer.

2	forming a first topology above a substrate;
3	forming a subsequent topology over the first topology;
4	forming a first ferroelectric polymer memory structure at the first topology; and
5	forming at least one subsequent ferroelectric polymer memory structure at a
6	corresponding at least one subsequent topology.
1	8. The process according to claim 7, wherein forming a subsequent ferroelectric
2	polymer memory structure further comprises:
3	forming a second topology;
4	forming a second ferroelectric polymer memory structure at the second topology;
5	forming an interlayer dielectric (ILD) layer over the second ferroelectric polymer
6	memory structure;
7	forming a third topology above the ILD layer; and
8	forming a third ferroelectric polymer memory structure at the third topology.
1	9. The process according to claim 7, wherein forming a subsequent ferroelectric
2	polymer memory structure further comprises:
3	forming a second topology;
4	forming a second ferroelectric polymer memory structure at the second topology,
5	wherein the second ferroelectric polymer memory structure is formed comprising:

A process of forming a ferroelectric polymer memory device, comprising:

1

7.

6		forming a ferroelectric polymer layer over the tirst ferroelectric polymer
7		memory structure;
8		forming a conductive layer over the ferroelectric polymer layer;
9		planarizing the conductive layer; and
10		patterning the conductive layer to form a third electrode; and
11		forming an interlayer dielectric (ILD) layer over the second ferroelectric polymer
12	memo	ory structure;
13		forming a third topology above the ILD layer; and
14		forming a third ferroelectric polymer memory structure at the third topology.
1	10.	The process according to claim 7, wherein forming a first ferroelectric memory
2	structure furtl	her comprises:
3		forming a first electrode over the substrate;
4		forming a first ferroelectric memory layer over the first electrode; and
5		forming a second electrode over the first ferroelectric memory layer.
1	11.	The process of forming a memory device according to claim 7, wherein forming a
2	first ferroelec	tric polymer memory structure and forming a subsequent ferroelectric polymer
3	memory struc	eture further comprises:
4		forming a first electrode over the substrate;
5		forming a first ferroelectric polymer memory layer over the first electrode;
6		forming a second electrode over the first ferroelectric polymer memory layer;

7		forming a second ferroelectric polymer memory layer over the second electrode
8	and	
9		forming a third electrode over the second ferroelectric polymer memory layer.
1	12.	The process of forming a polymer memory device according to claim 7, whereir
2	forming a ferr	roelectric polymer memory structure comprises forming a layer selected from spir
3	on depositing.	, chemical vapor depositing, substrate dip depositing, Langmuir-Blodgett
4	depositing, an	d spray-on depositing.
1	13.	A process of forming a ferroelectric oxide memory device, comprising:
2		forming a first topology above a substrate;
3		forming a subsequent topology over the first topology;
4		forming a first ferroelectric oxide memory structure at the first topology; and
5		forming at least one subsequent ferroelectric oxide memory structure at a
6	corres	ponding at least one subsequent topology.
1	14.	The process according to claim 13, wherein forming a subsequent ferroelectric
2	oxide memor	y structure further comprises:
3		forming a second topology;
4		forming a second ferroelectric oxide memory structure at the second topology;
5		forming an interlayer dielectric (ILD) layer over the second ferroelectric oxide
6	memo	ery structure;

7

forming a third topology above the ILD layer; and

1	15.	The process according to claim 13, wherein forming a subsequent ferroelectric
2	oxide memor	y structure further comprises:
3		forming a second topology;
4		forming a second ferroelectric oxide memory structure at the second topology.
5	where	ein the second ferroelectric oxide memory structure is formed comprising:
6		forming a ferroelectric oxide layer over the first ferroelectric oxide
7		memory structure;
8		forming a conductive layer over the ferroelectric oxide layer;
9		planarizing the conductive layer; and
10		patterning the conductive layer to form a third electrode; and
11		forming an interlayer dielectric (ILD) layer over the second ferroelectric oxide
12	memo	ory structure;
13		forming a third topology above the ILD layer; and
14		forming a third ferroelectric oxide memory structure at the third topology.
1	16.	The process according to claim 13, wherein forming a first ferroelectric oxide
2	memory struc	cture further comprises:
3		forming a first electrode over the substrate;
4		forming a first ferroelectric oxide memory layer over the first electrode; and
5		forming a second electrode over the first ferroelectric oxide memory layer.

forming a third ferroelectric oxide memory structure at the third topology.

8

1	17.	The process of forming a memory device according to claim 13, wherein forming
2	a first ferroel	lectric oxide memory structure and forming a subsequent ferroelectric oxide memory
3	structure furt	her comprises:
4		forming a first electrode over the substrate;
5		forming a first ferroelectric oxide memory layer over the first electrode;
6		forming a second electrode over the first ferroelectric oxide memory layer;
7		forming a second ferroelectric oxide memory layer over the second electrode; and
8		forming a third electrode over the second ferroelectric oxide memory layer.
1	18.	The process according to claim 13, wherein forming a ferroelectric oxide memory
2	structure con	nprises forming a layer selected from chemical vapor deposition, spin-on deposition,
3	and physical	vapor deposition.
	2	
1	19.	A ferroelectric memory device comprising:
2		a first topology disposed over a substrate;
3		a first ferroelectric structure disposed in the first topology; and
4		a subsequent topology disposed over the first topology, and a subsequent
5	ferroe	electric structure disposed in the subsequent topology.
1	20.	The ferroelectric memory device according to claim 19, wherein the first
2	ferroelectric	structure and a subsequent ferroelectric structure further comprise:
3		a first electrode disposed over the substrate;
4		a first ferroelectric polymer layer disposed over the first electrode;

	1
	2
	3
	1
sur væru v	2
300 300 300 200 200	3
1 F 1	4
## . *** } - 4	5
	6
	7

5	a second electrode disposed over the first ferroelectric polymer layer;
6	a second ferroelectric polymer layer disposed over the second electrode; and
7	a third electrode disposed over the second ferroelectric polymer layer.
1	21. The ferroelectric memory device according to claim 20, wherein the electrodes
2	have a width that is a minimum feature of a photolithography technology, selected from 0.25
3	micron, 0.18 micron, 0.13 micron, and 0.11 micron.
1	22. The ferroelectric memory device according to claim 20, wherein the first
2	ferroelectric structure and a subsequent ferroelectric structure further comprise:
3	a first electrode disposed over the substrate;
4	a first ferroelectric oxide layer disposed over the first electrode;
5	a second electrode disposed over the first ferroelectric oxide layer;
6	a second ferroelectric oxide layer disposed over the second electrode; and
7	a third electrode disposed over the second ferroelectric oxide layer.
1	23. The ferroelectric memory device according to claim 21, wherein the electrodes
2	have a width that is a minimum feature of a photolithography technology, selected from 0.25
3	micron, 0.18 micron, 0.13 micron, and 0.11 micron.
1	24. A system, comprising:

- A system, comprising: 24.
- 2 , a processor;
- 3 a ferroelectric memory system coupled to the processor;

4	an input/output (I/O) circuit coupled to the processor and the ferroelectric	
5	memory system; and	
6	the ferroelectric memory system including:	
7	a substrate;	
8	a first topology disposed over the substrate;	
9	a first ferroelectric structure disposed in the first topology; and	
10	a subsequent topology disposed over the first topology, and a subsequent	
11	ferroelectric structure disposed in the subsequent topology.	
1	25. The system according to claim 24, wherein the processor is disposed in a host	
2	selected from a clock, a television, a cell phone, a personal computer, an automobile, an	
3	industrial control system, and an aircraft.	
1	26. The system according to claim 24, wherein the ferroelectric memory structure is	
2	selected from a ferroelectric polymer memory structure and a ferroelectric oxide memory	
3	structure.	
1	27. The system according to claim 24, wherein the processor comprises a CMOS	
2	logic region disposed in the substrate, and wherein the ferroelectric memory system comprises	
3	die in a memory module.	

- 1 28. The system according to claim 24, wherein the processor comprises logic in a
- 2 memory controller, and wherein the ferroelectric memory system comprises a die in a memory
- 3 module.
- 1 29. The system according to claim 24, wherein the ferroelectric memory system
- 2 comprises a chip in a chipset.

j 4 4

Attorney Docket 00884.562US1