Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II)

Nancy Hitschfeld, María Cecilia Rivara

Contenido

- Métodos numéricos para sistemas lineales
- Métodos directos
 - Ejemplo: Gauss
- Métodos iterativos
 - Jacobi
 - Gauss-Seidel
 - Sobrerelajación sucesiva

Métodos numéricos para sistemas lineales

- Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales
- Matrices pueden ser grandes y sparse (5 o 6 elementos distintos de cero por fila)
- Qué métodos existen?
 - Directos
 - Iterativos

Métodos numéricos para sistemas lineales

- Métodos directos (Ejemplo: Gauss):
 - Resuelve el sistema en forma "directa" (al usar punto flotante siempre hay errores)
 - Hay métodos (y software) especiales para manejar matrices sparse de manera eficiente. A pesar de esto requieren harto espacio de almacenamiento

Métodos iterativos:

- Requieren menos espacio de almacenamiento: Solo el asociado a los valores a calcular. En grilla de NxM cuadrados, en el caso de condiciones de Dirichlet requiere almacenar (N-1)x(M-1) valores
- Requieren de una solución inicial del sistema para comenzar
- Criterio de detención es complicado de manejar para asegurar precisión en la solución aproximada obtenida
- (capítulo 3, Mathews-Fink)

Métodos directos

Método de Gauss: La matriz ampliada de AX=B es la siguiente:

$$[m{A}|m{B}] = \left[egin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1N} & b_1 \ a_{21} & a_{22} & \cdots & a_{2N} & b_2 \ dots & dots & dots & dots \ a_{N1} & a_{N2} & \cdots & a_{NN} & b_N \end{array}
ight].$$

 Esta se resuelve usando operaciones elementales sobre sus filas (las variables xk sirven para marcar el sitio de los coeficientes y pueden ser omitidas hasta el final de los cálculos)

Métodos directos: método de Gauss

Operaciones elementales con las filas, pivotes y multiplicadores

Teorema 3.8 (Operaciones elementales con las filas). Cualquiera de las siguientes operaciones aplicada a la matriz ampliada (7) produce un sistema lineal equivalente.

(8) Intercambio: El orden de las filas puede cambiarse.

(9) Escalado: Multiplicar una fila por una constante no nula.

(10) Sustitución: Una fila puede ser reemplazada por la suma de esa fila

más un múltiplo de cualquier otra fila; o sea,

 $fila_r = fila_r - m_{rq} \times fila_q$.

Definición 3.3 (Pivotes y multiplicadores). El elemento a_{qq} de la matriz de los coeficientes en el paso q+1 que se usará en la eliminación de a_{rq} , para $r=q+1, q+2, \ldots, N$, se llama q-ésimo pivote y la fila q-ésima se llama fila pivote. Los números $m_{rq}=a_{rq}/a_{qq}$ $(r=q+1, q+2, \ldots, N)$ por los que se multiplica la fila pivote para restarla de las correspondientes filas posteriores se llaman multiplicadores de la eliminación.

Métodos directos: método de Gauss Ejemplo

Sistema de ecuaciones

$$x_1 + 2x_2 + x_3 + 4x_4 = 13$$

$$2x_1 + 0x_2 + 4x_3 + 3x_4 = 28$$

$$4x_1 + 2x_2 + 2x_3 + x_4 = 20$$

$$-3x_1 + x_2 + 3x_3 + 2x_4 = 6.$$

Matriz ampliada

Métodos directos: método de Gauss Ejemplo

Elementos primera columna eliminados

Elementos segunda columna eliminados

Métodos directos: método de Gauss Ejemplo

Elementos tercera columna eliminados

$$\begin{bmatrix} 1 & 2 & 1 & 4 & 13 \\ 0 & -4 & 2 & -5 & 2 \\ 0 & 0 & -5 & -7.5 & -35 \\ 0 & 0 & 0 & -9 & -18 \end{bmatrix}.$$

- Resultado: sistema triangular superior
 - Se resuelve de abajo hacia arriba

$$-9x_4 = -18$$

Costo computacional del método de Gauss

- Para una matriz de NxN es de O(N³) (este es el orden del número de operaciones divisiones, multiplicaciones y restas que realiza el algoritmo)
 - Propuesto: contarlas! (http://en.wikipedia.org/wiki/Gaussian_elimination)
- Qué problemas trae esto?
 - Muy lento para grillas no muy grandes y usa harto espacio
 - Por ejemplo: un problema de Dirichlet requiere la resolución de un sistema de (n-2)(m-2) ecuaciones (n puntos en x y m en y)
 - Si la grilla de R es de 10x10 cuadrados, ¿cuántas ecuaciones e incógnitas son?
 Si R es de 100x100?
 - ¿De qué orden es el número de operaciones que realiza el algoritmo de Gauss?
 - ¿Cuanto se demora sobre un computador que tiene 2GHz (suponiendo que tiene la memoria suficiente)? 2GHz significa 2*10º tics por segundo. Supongamos que 1 operación de punto flotante necesita 4 tics => 500 megaflops por segundo (operaciones de punto flotante).

Métodos iterativos: Jacobi

- Sistema de ecuaciones
- Solución: (2,4,3)

$$4x - y + z = 7$$

 $4x - 8y + z = -21$
 $-2x + y + 5z = 15$.

Estas ecuaciones se pueden escribir como:

$$x = \frac{7 + y - z}{4}$$

$$y = \frac{21 + 4x + z}{8}$$

$$z = \frac{15 + 2x - y}{5}$$

• Qué sugiere esto?

Métodos iterativos: Jacobi

Sugiere un método iterativo:

$$x_{k+1} = \frac{7 + y_k - z_k}{4}$$
$$y_{k+1} = \frac{21 + 4x_k + z_k}{8}$$
$$z_{k+1} = \frac{15 + 2x_k - y_k}{5}.$$

- Qué necesitamos? Valores iniciales $(x_{0,}y_{0,}z_{0})$ para calcular $(x_{1,}y_{1,}z_{1})$
- Comencemos con $P_0 = (x_0, y_0, z_0) = (1,2,2)$

Parece converger a la solución

Modelación y computación gráfica para i nieros

$$x_1 = \frac{7+2-2}{4} = 1.75$$
 $y_1 = \frac{21+4+2}{8} = 3.375$
 $z_1 = \frac{15+2-2}{5} = 3.00.$

Métodos iterativos: Jacobi

Este proceso se conoce como: Método de iteración de Jacobi

- No sirve para resolver todos los sistemas lineales
- •En el ejemplo: 19 iteraciones

Tabla 3.2 Convergencia del método iterativo de Jacobi para el sistema (1).

\boldsymbol{k}	x_k	y_k	z_k		
0	1.0	· 2.0	2.0		
1	1.75	3.375	3.0		
2	1.84375	3.875	3.025		
3	1.9625	3.925	2.9625		
4	1.99062500	3.97656250	3.00000000		
5	1.99414063	3.99531250	3.00093750		
:	:	:	: .		
15	1.99999993	3.99999985	2.99999993		
:	:	:	:		
19	2.00000000	4.00000000	3.00000000		

Método iterativo de Jacobi: Ejemplo de divergencia

El mismo sistema de ecuaciones reordenado:

$$-2x + y + 5z = 15$$

 $4x - 8y + z = -21$
 $4x - y + z = 7$

Si escribimos estas ecuaciones como:

$$x = \frac{-15 + y + 5z}{3}$$

$$y = \frac{21 + 4x + z}{8}$$

$$z = 7 - 4x + y,$$

Método iterativo de Jacobi: Ejemplo de divergencia

Así, el método iterativo de Jacobi queda:

$$x_{k+1} = \frac{-15 + y_k + 5z_k}{3}$$

$$y_{k+1} = \frac{21 + 4x_k + z_k}{8}$$

$$z_{k+1} = 7 - 4x_k + y_k.$$

Y partimos con el mismo punto inicial $P_0 = (x_0, y_0, z_0) = (1,2,2)$

$$x_1 = \frac{-15 + 2 + 10}{2} = -1.5$$

$$y_1 = \frac{21 + 4 + 2}{8} = 3.375$$

$$z_1 = 7 - 4 + 2 = 5.00.$$

 El punto (1.5,3.375, 5) está más alejado de la solución que el punto inicial de la solución.

Método iterativo de Jacobi: Ejemplo de divergencia

En este ejemplo, el método diverge!

k	x_k	y_k	z_k
)	. 1.0 .	2.0	2.0
L	-1.5	3.375	5.0
2	6.6875	2.5	16.375
3	34.6875	8.015625	-17.25
1	-46.617188	17.8125	-123.73438
5	-307.929688	-36.150391	211.28125
6	502.62793	-124.929688	1202.56836
:	· :		:

Método iterativo de Gauss-Seidel

- Podemos algunas veces acelerar la convergencia?
 - Basado en el método de Jacobi, la idea es que cada vez que tenemos un nuevo valor, usamos ese para obtener el valor de la siguiente ecuación
- Lo aplicamos al ejemplo anterior:

$$x_{k+1} = \frac{7 + y_k - z_k}{4}$$

$$y_{k+1} = \frac{21 + 4x_{k+1} + z_k}{8}$$

$$z_{k+1} = \frac{15 + 2x_{k+1} - y_{k+1}}{5}.$$

 El nuevo punto está más cerca de la solución que el punto obtenido con Jacobi

$$x_1 = \frac{7+2-2}{4} = 1.75.$$

$$y_1 = \frac{21 + 4(1.75) + 2}{8} = 3.75.$$

$$z_1 = \frac{15 + 2(1.75) - 3.75}{5} = 2.95.$$

Método iterativo Gauss-Seidel

Y se necesitaron 10 iteraciones!

Tabla 3.4 Convergencia del método iterativo de Gauss-Seidel para el sistema (1).

\boldsymbol{k}	x_k	y_k	z_k
0	1.0	2.0	2.0
1	1.75	3.75	2.95
2	1.95	3.96875	2.98625
3	1.995625	3.99609375	2.99903125
:	:	: "	
8	1.99999983	3.99999988	2.99999996
9	1.99999998	3.99999999	3.00000000
10	2.00000000	4.00000000	3.00000000

Cómo saber cuando convergen?

 Definición: Se dice que una matriz A de NxN es de diagonal estrictamente dominante cuando:

$$|a_{kk}| > \sum_{j=1, j \neq k}^{N} |a_{kj}|$$
 para $k = 1, 2, ..., N$

- Teorema (Método iterativo de Jacobi). Supongamos que A es una matriz diagonal estrictamente dominante. Entonces el sistema de ecuaciones lineales AX = B tiene solución única X=P. Además, el proceso iterativo de Jacobi produce una sucesión de vectores que converge a P cualquiera sea el vector de partida.
- Dem: Puede encontrarse en textos análisis numérico avanzado.
- Nota: Esta es una condición suficiente pero no necesaria...

Método sobrerelajación sucesiva

 Cómo se deduce? Recordemos la ecuación de diferencias de Laplace

$$u_{i+1j} + u_{i-1j} + u_{ij+1} + u_{ij-1} - 4u_{ij} = 0$$

y supongamos que conocemos los valores de u(x,y) en el contorno

$$u(x_{1}, y_{j}) = u_{1,j}$$
 para $2 \le j \le m-1$ (a la izquierda) $u(x_{i}, y_{1}) = u_{i,1}$ para $2 \le i \le n-1$ (abajo) $u(x_{n}, y_{j}) = u_{n,j}$ para $2 \le j \le m-1$ (a la derecha) $u(x_{i}, y_{m}) = u_{i,m}$ para $2 \le i \le n-1$ (arriba)

Métodos sobrerelajación sucesiva

La ecuación escrita de manera adecuada para iterar es:

$$u_{ij} = u_{ij} + r_{ij}$$

Siendo para la ecuación de Laplace

$$r_{ij} = \frac{u_{i+1j} + u_{i-1j} + u_{ij+1} + u_{ij-1} - 4u_{ij}}{4}$$

- con $2 \le i \le n-1$ y $2 \le j \le m-1$
- ¿Qué información adicional necesitamos?

Métodos sobrerelajación sucesiva

- Disponer de valores iniciales en los puntos interiores de la malla (grilla)
 - Usar por ejemplo la constante K definida como la media de los 2n
 + 2m -8 valores de contorno
- En que consiste cada iteración?
 - Hacer un barrido de todos los puntos interiores de la malla con la fórmula recursiva hasta que r_{ij} se "reduzca" a cero ($|r_{ij}| < \epsilon$, siendo ϵ una tolerancia prefijada)
- Se puede aumentar la velocidad de la convergencia a cero?
 - Si: usando método de sobrerelajación sucesiva

Métodos sobrerelajación sucesiva

Método de sobrerelajación sucesiva:

(22)
$$u_{i,j} = u_{i,j} + \omega \left(\frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j}}{4} \right) = u_{i,j} + \omega r_{i,j},$$

en la que el parámetro ω verifica $1 \leq \omega < 2$. En el método de sobrerrelajación sucesiva, cada paso de la iteración consiste en hacer un barrido de la malla con la fórmula recursiva (22) hasta que se tenga $|r_{i,j}| < \varepsilon$. Para elegir el valor óptimo del parámetro ω hay que estudiar los autovalores de la matriz que caracteriza el método iterativo que estamos usando para resolver un sistema lineal; en nuestro caso, dicho valor óptimo viene dado por la fórmula

(23)
$$\omega = \frac{4}{2 + \sqrt{4 - \left(\cos\left(\frac{\pi}{n-1}\right) + \cos\left(\frac{\pi}{m-1}\right)\right)^2}}.$$

Referencias: http://en.wikipedia.org/wiki/Successive_over-relaxation http://www.hectormora.info/mn.pdf

Ejemplo: Laplace- cond. Dirichlet

 Problema: determinar la solución aproximada de la ecuación de Laplace en el rectángulo donde u(x,y) denota la temperatura en un punto (x,y), los valores de frontera son:

•
$$u(x,0) = 20$$
 $0 < x < 4$

•
$$u(x,4) = 180$$
 0 < x < 4

•
$$u(0,y) = 80$$
 $0 < y < 4$

•
$$u(4,y) = 0$$
 $0 < y < 4$

Solución: dividimos el cuadrado en 64 cuadrados, usamos h = 0.5 y valor inicial puntos interiores = 70, para i=2,...,8 y j=2,...,8. $\omega = 1.44646$, n=9, m=9

Resultados

Tabla 10.6 Solución aproximada de la ecuación de Laplace con condiciones de Dirichlet.

	x_1	x_2	x_3	x_4	x_5	x_6	- x ₇	x_8	x_9
y_9	130.000	180.000	180.000	180.000	180.000	180.000	180.000	180.000	90.0000
y8	80.000	124.821	141.172	145.414	144.005	137.478	122.642	88.6070	0.0000
y ₇	80.000	102.112	113.453	116.479	113.126	103.266	84.4844	51.7856	0.0000
<i>y</i> 6	80.000	89.1736	94.0499	93.9210	88.7553	77.9737	60.2439	34.0510	0.0000
y ₅	80.000	80.5319	79.6515	76.3999	70.0003	59.6301	44.4667	24.1744	0.0000
y_4	80.000	73.3023	67.6241	62.0267	55.2159	46.0796	33.8184	18.1798	0.0000
y_3	80.000	65.0528	55.5159	48.8671	42.7568	35.6543	26.5473	14.7266	0.0000
y_2	80.000	51.3931	40.5195	35.1691	31.2899	27.2335	21.9900	14.1791	0.0000
y_1	50.000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	20.0000	10.0000

- Obtenido despues de 19 iteraciones
- $|r_{ij}| \le 0.000606 < 0.001$
- Uso de promedio en esquinas

Recordar solución con Gauss:

$$\mathbf{P} = \begin{bmatrix} p_1 & p_2 & p_3 & p_4 & p_5 & p_6 & p_7 & p_8 & p_9 \end{bmatrix}' \\
= \begin{bmatrix} 55.7143 & 43.2143 & 27.1429 & 79.6429 & 70.0000 \\
45.3571 & 112.857 & 111.786 & 84.2857 \end{bmatrix}'.$$

Métodos iterativos ...

Método de relajación sucesiva: Condiciones de Neumann

(24)
$$u_{i,1} = u_{i,1} + \omega \left(\frac{2u_{i,2} + u_{i-1,1} + u_{i+1,1} - 4u_{i,1}}{4} \right)$$
 (lado inferior), (25)
$$u_{i,m} = u_{i,m} + \omega \left(\frac{2u_{i,m-1} + u_{i-1,m} + u_{i+1,m} - 4u_{i,m}}{4} \right)$$
 (lado superior), (26)
$$u_{i,j} = u_{i,j} + \omega \left(\frac{2u_{2,j} + u_{1,j-1} + u_{1,j+1} - 4u_{1,j}}{4} \right)$$
 (lado izquierdo), (27)
$$u_{n,j} = u_{n,j} + \omega \left(\frac{2u_{n-1,j} + u_{n,j-1} + u_{n,j+1} - 4u_{n,j}}{4} \right)$$
 (lado derecho).

Ejemplo: Laplace- Cond. Mixtas

 Problema: determinar la solución aproximada de la ecuación de Laplace en el rectángulo donde u(x,y) denota la temperatura en un punto (x,y), los valores de frontera son:

```
• u(x,4) = 180   0 < x < 4 (Dirichlet)

• u_y(x,0) = 0   0 < x < 4 (Neumann)

• u(0,y) = 80   0 < y < 4 (Dirichlet)

• u(4,y) = 0   0 < y < 4 (Dirichlet)
```

Solución: dividimos el cuadrado en 64 cuadrados, usamos h = 0.5, valor inicial puntos interiores 70, para i=2,...,8 y j = 2,...,8. ω = 1.44646 n=9, m=9, valor inicial para fila inferior j=1, i=2,...,8, interpolación lineal

Resultados

Tabla 10.7 Solución aproximada de la ecuación de Laplace con condiciones de contorno mixtas.

Т	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8	x_9
		180.000	180.000	180.000	180.000	180.000	180.000	180.000	90.0000
y_9	139.000	126.457	142.311	146.837	145.468	138.762	123.583	89.1008	0.0000
y_8	80.000 80.000	103.518	115.951	119.568	116.270	105.999	86.4683	52.8201	0.0000
y_7	80.000	91.6621	98.4053		94.0461	82.4936	63.4715	35.7113	0.0000
<i>y</i> 6	80.000	84.7247	86.7936	84.8347	78.2063	66.4578	49.2124	26.5538	0.0000
<i>y</i> 5	80.000	80.4424	79.2089		67.4860	55.9185	40.3665	21.2915	0.0000
<i>y</i> ₄	80.000	77.8354	74,4742	Land Communication and the	60.6944	49.3635	35.0435	18.2459	
y_3	80.000	76.4244	71.8842		56.9600	45.7972	32.1981	16.6485	0.0000
y_2 y_1	80.000	75.9774	71.0605		55.7707	44.6670	31.3032	16.1500	0.0000

- Obtenido despues de 29 iteraciones
- $|r_{ij}| \le 0.000998 < 0.001$
- Uso de promedio en esquinas

Recordar con Gauss:

$$Q = \begin{bmatrix} q_1 & q_2 & q_3 & q_4 & q_5 & q_6 & q_7 & q_8 & q_9 & q_{10} & q_{11} & q_{12} \end{bmatrix}'$$

= $\begin{bmatrix} 71.8218 & 56.8543 & 32.2342 & 75.2165 & 61.6806 & 36.0412 \\ 87.3636 & 78.6103 & 50.2502 & 115.628 & 115.147 & 86.3492 \end{bmatrix}'.$

Figura 10.21 Solución u = u(x, y) de un problema mixto.

EDPs Elípticas más generales

Método iterativo aplicado a ecuación de Poisson

Las ecuaciones de Poisson y Helmholtz

Consideremos la ecuación de Poisson

(28)
$$\nabla^2 u = g(x, y).$$

Usando la notación $g_{i,j} = g(x_i, y_j)$, la extensión de la fórmula (20) para resolver la ecuación (28) sobre una malla rectangular es

(29)
$$u_{i,j} = u_{i,j} + \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - 4u_{i,j} - h^2 g_{i,j}}{4}.$$

EDPs Elípticas más generales

Método iterativo aplicado a ecuación de Helmholz

Consideremos la ecuación de Helmholtz

(30)
$$\nabla^2 u + f(x, y)u = g(x, y).$$

Usando la notación $f_{i,j} = f(x_i, y_j)$, la extensión de la fórmula (20) para resolver la ecuación (30) sobre una malla rectangular es

(31)
$$u_{i,j} = u_{i,j} + \frac{u_{i+1,j} + u_{i-1,j} + u_{i,j+1} + u_{i,j-1} - (4 - h^2 f_{i,j}) u_{i,j} - h^2 g_{i,j}}{4 - h^2 f_{i,j}}$$

Estas fórmulas se analizarán con más detalle en los ejercicios.

Resumen

- Métodos para resolver sistemas lineales
 - Método de Gauss (exacto)
 - Método iterativo de Jacobi
 - Método iterativo de Gauss-Seidel
 - Método de sobrerelajación sucesiva (aplicado a la ecuación de Laplace)