

DRDC September 2024 Update

Initial Simulation Results and Next Steps

Amos Hebb a.hebb@mail.utoronto.ca

University of Toronto

2024-09-10

Summary

After defending thesis, focused on simulation development.

In this presentation we will:

- Discuss the system model.
- Discuss the simulation environment.
- Review current state of simulation.
- Discuss next steps.

System Model

- Queue management situation.
- We consider a **Environment** to be a *Theatre* and a *Platform*.
- An **Agent** must select a *task* from the *queue*.
- **Theatre** is one or more *targets*.
 - ▶ **Target** is an object to detect, kinematics, arrival rate, *etc*.
- **Platform** is one or more *sensors* and a *processor*.
 - ▶ **Sensor** Initially, we an S-Band Multi-Function Radar that can:
 - **search:** detect previously undetected targets, or
 - track: update known targets
 - **Processor** processes sensor data and updates the *queue*.
- Queue are a list of tasks the Agent may choose to execute.

- Surveillance region is quantized into a set of N fixed non-overlapping cells
- The radar uses a number of beams $A = \{1, ..., A\}$, between which it must divide its time.
 - ullet time allocated to a beam to perform a task denoted as au_a
 - au_a is fixed, for the S-band radar, at $au_a = 0.01s$
 - Simulation Arena: ([0, 200] km, [0, 200] km, [0, 20] km)
 - Change Region: Azimuth $[0^{\circ}, 90^{\circ}]$, Elevation $[0^{\circ}, 30^{\circ}]$
 - ▶ 15 uniform azimuth cells, 5 unifrom elevation cells.
 - Change No range resolution.
- Change We assume a scan duration ΔT of 1 second.
 - Initially we assumed $\Delta T = 1$ second
 - Surveillance tasks have a norminal rate of once per ΔT
 - Cost-free search coefficient $\alpha \in (0, 1]$.
 - ▶ Define $\Delta T := \frac{n(A) \times \tau_a}{\alpha} = \frac{75 \times 0.01s}{0.5} = 1.5s$

Tracking

- Target motion per Singer trajectory model, we have four targets.
 - 1. Linear: $\sigma^2 = 0$
 - 2. Whiplash: $\sigma^2 \sim U\left[20\frac{m}{s^2}, 35\frac{m}{s^2}\right], \Theta \sim U[10s, 20s]$
 - 3. Zigzager: $\sigma^2 \sim U\left[0\frac{m}{s^2}, 5\frac{m}{s^2}\right], \Theta \sim U[1s, 4s]$
 - 4. Sweeper: $\sigma^2 \sim U\left[5\frac{m}{s^2}, 20\frac{m}{s^2}\right], \Theta \sim U[30s, 50s]$
- Targets are generated at random locations and velocities.
- In earlier work I've found uniform generated targets make evaluation difficult.
 - Developed a scenario specification format.

Tracking Tasks

- Revisit time t_r
 - $t_r = 0.4 \left(\frac{R_t \sigma_\theta \sqrt{\Theta}}{\Sigma}\right)^{0.4} \times \frac{U^{2.4}}{1 + \frac{U^2}{2}}$
 - R_t is target range.
 - Θ , Σ are Singer model parameters.
 - We use U = 0.3
 - Once a task has terminated, set $t_{\text{start}} \coloneqq t_r$
- Dwell time
 - $\tau_c = \tau_c^n \times \left(\frac{R_T}{R_0}\right)^4 \times SN_0$
 - $t_c^n = 0.01s, R_T$ from target, $R_0 = 184$ km

- **Gymnasium** (Gym) is a toolkit for developing and comparing reinforcement learning algorithms.
- *Game loop*: Time advances until a function releases a sensor, then the agent selects the next function to execute.
- Environment, theatre and platform.
 - ▶ Theatre is designed to support pre-defined scenarios.
 - Platform is designed to support multiple sensors.
- Observations: The queue.
 - Current idle sensor index as one-hot vector.
 - Single search task, t_{start} , t_{dwell} , $[t_{\text{elapsed}}...]$
 - ightharpoonup Each possible track task, $t_{
 m start}$, $t_{
 m dwell}$, priority
- Actions: Task index. (Executing a 200ms scheduling frame requires memory)
- Step: Execute the selected task, calculate reward, update the queue, update the theatre.

- JAX is a Python library for numerical computing
- Differentiable rigid body physics engine (BRAX) create and propagate many targets in 3D.
 - Most of the motion and geometry is included in BRAX.
- Run the simulation in parallel on GPU, much faster.

Amos Hebb DRDC September Update 2024-09-10 8 / 10

Demo the ESTesque simulation.

demo_est.py:

- Create a theatre and platform.
 - ► Theatre has 10 targets, all visible, 5 tracked.
 - ► Platform has 1 sensor.
- Define the scheduler.

est_scheduler.py:

- On each step:
 - ► If buffer has > 0 tasks, execute the first task.
 - ▶ Else: While the sum of dwell times is less than 200ms:
 - If all $t_{\text{start}} \geq \tau_a$: a = 0, add a search to buffer.
 - Else: $a=\min_{\{a_i\in {\bf A}\}}(t_{\rm start})$, add task earliest start time to buffer.

Next Steps

- Implement a multi-sensor platform.
 - Observaiton already supports multiple sensors.
 - ▶ Platform definition will need to be updated to support generalized coordinates.
- Implement a multi-sensor EST.
 - Similar, creates two buffers and re-populates both when either is empty.