

Advanced Numerical Algorithms (MU4IN920)

Tutorial-Practical 3 - Fast Fourier Transform

1. Tutorial

Exercise 1 (Practice with the fast Fourier transform).

- **1.** What is the sum of the *n*-th roots of unity?
- **2.** What is their product if *n* is even and if *n* is odd?
- 3. What is the FFT of (1,0,0,0)? What is the appropriate value of ω in this case? And of which vector is (1,0,0,0) the FFT?
- **4.** Find the unique polynomial of degree 4 that takes on values p(1) = 2, p(2) = 1, p(3) = 0, p(4) = 4 and p(5) = 0.

Exercise 2 (Practice with polynomial multiplication by FFT). Suppose that you want to multiply the two polynomials x + 1 and $x^2 + 1$ using FFT. Choose an appropriate power of 2, find the FFT of the 2 sequences, multiply the result componentwise, and compute the inverse FFT to get the final result.

Exercise 3 (FFT using modular arithmetic). As defined, the discrete Fourier transform requires computation with complex numbers, which can result in a loss of precision due to round-off errors. For some problems, the answer is known to contain only integers, and a variant of the FFT based on modular arithmetic can guarantee that the answer is calculated exactly. An example of such a problem is that of multiplying two polynomials with integer coefficients.

Let n be a power of 2 and k the smallest integer such that p = kn + 1 is prime. Let g be a generator of $(\mathbb{Z}/p\mathbb{Z})^*$ and let $\omega = g^k \pmod{p}$.

- **1.** Show that ω is a primitive n-th root of unity in $\mathbb{Z}/p\mathbb{Z}$.
- **2.** Explain why the FFT and the inverse FFT are well defined when ω is a primitive root n-th of the unit in $\mathbb{Z}/p\mathbb{Z}$.
- **3.** Explain why the FFT and its inverse can be computed in $\mathcal{O}(n \log n)$ if we suppose that the cost of the operations on the words of length $\mathcal{O}(\log n)$ is constant. We will assume that p and ω are given.
- **4.** Compute the FFT modulo p = 17 of the vector (0, 5, 3, 7, 7, 2, 1, 6).

2. Practical

Exercise 4 (recursive and iterative FFT).

- **1.** Implement the recursive version of the FFT.
- **2.** Implement the iterative version of the FFT.
- **3.** Compare in terms of efficiency your two implementations.
- **4.** Then compare your implementations with the MATLAB command fft.

Figure 1: Image size 320×200 pixels

Exercise 5 (Image compression via FFT). Figure 1 represents an image of 320×200 pixels corresponding to a matrix *X* of size 320×200 .

The display of the image in MATLAB is done as follows:

```
load clown.mat;
colormap('gray');
image(X);
```

We recall that we note

$$M_{n}(\omega) = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & \omega & \omega^{2} & \cdots & \omega^{n-1} \\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(n-1)} \\ & & \vdots & & \\ 1 & \omega^{j} & \omega^{2j} & \cdots & \omega^{(n-1)j} \\ & & \vdots & & \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{pmatrix} \text{ with } \omega = e^{2i\pi/n}.$$

How to compress an image with the FFT? After all, an image is a 2-dimensional array and so far we have only talked about only talked about the FFT of a one dimensional array. Let X be a matrix of size $m \times n$ (or an image). The FFT in 2 dimensions consists in to compute $ffX = M_m X M_n$. We can implement this calculation in the following way:

- for each column of X, we compute its FFT. Let us note fX the matrix obtained. In other words, the column i of fX is the FFT of the column i of X.
- for each row of fX, we compute its FFT. Let us note ffX the matrix obtained. In other words, the row i of ffX is the FFT of the line i of fX.

The matrix ffX is the 2-dimensional FFT of X. We use ffX for compression in the following way. We perform the FFT of the image but we store only the non-zero elements. In fact, to compress, we do not only remove the zeros but also all the elements whose absolute value is smaller than a threshold threshold ε .

- 1. Using the FFT, propose an algorithm for image compression. Test your algorithm on Figure 1.
- 2. Calculate the compression rate allowing to measure the quality of compression of the images.

Exercise 6 (Multiplication of polynomials using FFR). Implement the algorithm seen in class to calculate the product of two polynomials using FFT. Plot the time as a function of the degree of the polynomials. Compare with the classical method of polynomial multiplication.