Сборник задач по курсу "Машинное обучение"

авторы: Кантонистова Е.О., Титов В.В., Широков А., Поликарпов К. $7~{\rm сентябр} \ 2020~{\rm r}.$

Содержание

1	Mar	гричное дифференцирование	2
	1.1	Теория	2
	1.2	Семинар	2
	1.3	Домашняя работа	2

1 Матричное дифференцирование

1.1 Теория

Иногда при взятии производных по вектору или от вектор-функций удобно оперировать матричными операциями. Это сокращает запись и упрощает вывод формул. Введём следующие определения:

- При отображении вектора в число $f(x): \mathbb{R}^n \to \mathbb{R}$ $\nabla_x f(x) = [\frac{\partial f}{\partial x_1},...,\frac{\partial f}{\partial x_n}]^T.$
- При отображении матрицы в число $f(A): \mathbb{R}^{n \times m} \to \mathbb{R}$ $\nabla_x f(A) = (\frac{\partial f}{\partial A_{ij}})_{i,j=1}^{n,m}.$

Мы хотим оценить, как функция изменяется по каждому из аргументов по отдельности. Поэтому производной функции по вектору будет вектор, по матрице — матрица.

Полезные свойства:

- 1) $d(XY) = dX \cdot Y + X \cdot dY$
- 2) Если A матрица константа, то dA=0
- 3) d(X') = dX'
- 4) $d \det X = \det X tr(X^{-1} dX)'$

1.2 Семинар

Задача 1.1. Пусть $a \in \mathbb{R}^n$ — вектор параметров, а $x \in \mathbb{R}^n$ — вектор переменных. Необходимо найти производную их скалярного произведения по вектору переменных $\nabla_x a^T x$.

Задача 1.2. Пусть $A \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_A det A$.

Задача 1.3. Пусть $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_A tr(AB)$.

Задача 1.4. Пусть $x \in \mathbb{R}^n$, $A \in \mathbb{R}^{n \times m}$. Необходимо найти $\nabla_A x^T A y$.

Задача 1.5. Доказать в матричном виде, что $d(AB) = dA \cdot B + A \cdot dB$.

1.3 Домашняя работа

Задача 1.6. Пусть t — скалярная переменная, r, s — векторные переменные, R, S — матричные переменные. Кроме того, a, b — векторы констант, A, B — матрицы констант. Применив базовые правила дифференцирования найдите:

```
1. det(ARB)
2. det(r'r)
3. det(r'Ar)
4. det(R^{-1}), воспользовавшись тем, что R^{-1}\dot{R}=I
5. det(cos(r'r))
6. det(r'Ar/r'r)
```

Задача 1.7. Пусть $A \in \mathbb{R}^{n \times n}$. Необходимо найти $\nabla_x x^T A x$.