Вариант 31

1. Определить для каждого $\varepsilon>0$ наименьшее число $N=N(\varepsilon)$ такое, что $|a_n-a|<arepsilon$ для всех n>N(arepsilon). Доказать, что $\lim_{n\to\infty}a_n=a$, где $a_n=\frac{6n-3}{3n+1}$, a = 2. Заполнить таблицу

ε	0.1	0.01	0.001
$N(\varepsilon)$			

2. Вычислить

2.1
$$\lim_{x \to 1} \frac{x^3 + 2x - 3}{x^5 - 2x^2 + 2x - 1}$$

2.2
$$\lim_{x\to 2} \frac{\sqrt{x+2}-2}{\sqrt[3]{x+6}-2}$$

2.3
$$\lim_{x \to \pi} (2 + \cos x)^{1/\sin x}$$

2.3
$$\lim_{x \to \pi} (2 + \cos x)^{1/\sin x}$$

2.3 $\lim_{x \to 3} \left(\frac{3x - 5}{x + 1}\right)^{1/(x - 3)}$

2.5
$$\lim_{x\to 0} x \left(\frac{1}{\ln(1+2x)} + \frac{1}{\ln(1+x)} \right)$$

3. а) Показать, что каждая из функций $f(x) = x^2 - x$ и $g(x) = \sqrt{x^2 + 1}$ является бесконечно малой или бесконечно большой при $x \to \infty$;

б) для каждой функции f(x) и g(x) записать главную часть (эквивалентную ей функцию вида $C(x-x_0)^{\alpha}$ при $x\to x_0$ или Cx^{α} при $x\to \infty$), указать их порядки малости (роста);

б) Сравнить функции f(x) и q(x), если это возможно.

4. Найти точки разрыва функции и определить их характер. Дать графическую иллюстрацию

$$f(x) = \begin{cases} \frac{1}{x}, & \text{если} \quad x < 0, \\ \ln x, & \text{если} \quad 0 < x < 1, \\ \sqrt{x - 1}, & \text{если} \quad x \geqslant 1. \end{cases}$$