Теоретическое домашнее задание от 24.09 Дифференциальные уравнения и динамические системы

Глеб Минаев @ 204 (20.Б04-мкн)

27 сентября 2021 г.

Задача 4. Поскольку (x_0, y_0) — точка неединственности, то есть два решения γ_1 и γ_2 задачи Коши с этими начальными данными, определённые в некоторой окрестности x_0 и отличные в любой окрестности x_0 . WLOG γ_1 и γ_2 отличны в любой правой окрестности x_0 . Тогда есть некоторая точка (x_1, y_1) , что $x_1 > x_0$

$$(\gamma_1(x_1) - y_1)(\gamma_2(x_1) - y_1) < 0,$$

т.е. y_1 находится строго между $\gamma_1(x_1)$ и $\gamma_2(x_1)$.

Докажим, что есть решение той же задачи Коши на отрезке $[x_0; x_1]$. Для этого рассмотрим множество S решений α уравнения y' = f(x,y) на некотором интервале $(t;x_1]$ $(x_0 \le t < x_1; t$ у каждого α своё), проходящих через (x_1,y_1) и лежащих нестрого между γ_1 и γ_2 . Введём на S отношение \leq по правилу

$$\alpha \preccurlyeq \beta \iff \operatorname{dom}(\alpha) \subseteq \operatorname{dom}(\beta) \land \alpha = \beta|_{\operatorname{dom}(\alpha)},$$

где $\mathrm{dom}(f)$ — область определения функции f. Пусть в данном ЧУМ имеется некоторая цепь Σ . Тогда для всякой точки $t \in [x_0; x_1]$ верно, что $\alpha(t)$ для любой $\alpha \in \Sigma$, что $t \in \mathrm{dom}(\alpha)$, не зависит от α . Действительно, если $\alpha_1, \alpha_2 \in \Sigma$ и $t \in \alpha_1, t \in \alpha_2$, то α_1 и α_2 сравнимы (WLOG $\alpha_1 \leq \alpha_2$), а тогда

$$\alpha_2(t) = (\alpha_2|_{\operatorname{dom}(\alpha_1)})(t) = \alpha_1(t).$$

Таким образом можно взять "объединение" функций Σ: рассмотреть функцию

$$\widetilde{\alpha}:\bigcup_{\alpha\in\Sigma}\mathrm{dom}(\alpha)\to\mathbb{R},t\mapsto \alpha(t)$$
 для любого $\alpha\in\Sigma,$ определённой на t

(с точки зрения теории множеств это будет буквальным объединением функций). Очевидно $\widetilde{\alpha}$ — верхняя граница Σ . Это значит, что построенный ЧУМ удовлетворяет условию леммы Цорна. Следовательно есть максимальный элемент.

Также заметим, что если имеется некоторое решение $\alpha:(t;x_1]\to\mathbb{R}$, лежащее между γ_1 и γ_2 , то $|\alpha'|$ ограничен, так как область

$$G := \{(x; y) \mid x \in [x_0; x_1] \land y \in [\gamma_1(x); \gamma_2(x)]\}$$

ограничена, а значит f на ней ограничена. Следовательно

$$\lim_{p \to t^+} \alpha(p)$$

определён, так как иначе по теореме Лагранжа о среднем значении в окрестности t будут достигаться сколь угодно большие по модулю значения α' . Следовательно

$$\lim_{p \to t^+} \alpha'(p) = \lim_{p \to t^+} f(p, \alpha(p)) = f(t, \alpha(t)),$$

а тогда по известной теореме α и α' доопределяются на $[t;x_1]$, оставляя α решением рассматриваемого уравнения.

Ещё заметим, что если $\alpha:[t;x_1]$ ($x_0 < t < x_1$) есть решение, лежащее между γ_1 и γ_2 , что $\alpha(t) = \gamma_1(t)$, то склеив $\gamma_1|_{[x_0;t]}$ и $\alpha|_{[t;x_1]}$ получаем решение того же уравнения; при этом если α проходило через ($x_1;y_1$), то мы получили корень уравнения на [$x_0;x_1$], проходящий чрез ($x_0;y_0$) и ($x_1;y_1$). Если $\alpha(t)$ не совпадает с $\gamma_1(t)$ и $\gamma_2(t)$, то есть решение задачи Коши в точке ($t;\alpha(t)$), а тогда склеивая его часть до t и α , получаем небольшое продолжение α влево по прямой, лежащее в S.

Таким образом максимальный элемент в S не может быть определён на $(t; x_1]$, где $t > x_0$, так как тогда его можно замкнуть и продолжить немного левее. Значит максимальный элемент определён на $(x_0; x_1]$. Замыкая его, мы получаем решение уравнения на $[x_0; x_1]$, проходящее через $(x_0; y_0)$ и $(x_1; y_1)$.

Таким образом мы получили для всякого y_1 решение α на $[x_0; x_1]$, что $\alpha(x_1) = y_1$. Поскольку $y_1 \in (\gamma_1(x_1); \gamma_2(x_1))$, то имеется континуальное количество таких решений. Чтобы каждое из этих решений превратить в решение задачи Коши, их все нужно доопределить немного левее x_0 ; это можно несложно сделать, если склеить каждую из функций с частью γ_1 до x_0 .