

Tópicos Especiais em Recuperação de Informações

Profa. Solange Pertile

18/09/15

Fontes:

Prof. Viviane Moreira (UFRGS) Prof. Jairo de Souza (UFJF)

Relembrando Modelo Booleano...

 O Modelo Booleano leva em consideração apenas se o termo da consulta esta presente no documento

- Mas...
 - Um documento que menciona o termo da consulta mais vezes deve estar mais relacionado a ela
 - Com isto, e possível atribuir escores aos documentos
 - Usando os escores, monta-se um ranking

Relembrando Modelo Booleano...

- Até agora lidamos com consultas Booleanas
- Documentos casam ou não casam.
- Boa para usuários especialistas com um entendimento preciso das suas necessidades e da coleção
- Boa para aplicações: aplicações podem facilmente processar milhares de resultados.
- Ruim para a maioria dos usuários
- Incapazes de escrever consultas Booleanas (ou são, mas acham muito trabalhoso)
- Não querem procurar em milhares de resultados
 - Principalmente quando se trata de busca na Web

Relembrando Modelo Booleano...

- Problemas consultas booleanas
- Consultas Booleanas resultam ou em poucos (=0) ou em muitos (milhares) resultados
- Precisa-se de muita habilidade para produzir consultas que gerem um número razoável de resultados.
 - AND muito poucos; OR demais

- √ Vector space model (VSM)
- ✓ Associa peso aos termos de indexação.
- ✓ Atribui escores aos documentos.
- ✓ Possibilita ranking dos resultados da consulta.

- ✓ Em modelos de RI baseados em ranking, o sistema retorna uma ordenação dos documentos na coleção em relação a uma consulta.
- ✓ Consultas em texto livre: Em vez de uma linguagem de consulta com operadores e expressões, a consulta é apenas uma ou duas palavras em linguagem natural.

✓ Atribuição de peso

- ✓ Queremos retornar, em ordem de relevância, os documentos mais prováveis de satisfazer uma consulta.
- ✓ Como podemos ordenar (ranquear) os documentos em uma coleção de acordo com uma consulta?
- ✓ Atribuindo um peso digamos em [0, 1] para cada documento.
- ✓ Esse peso mensura quão bem o documento casa com a consulta.

- ✓ Atribuição de peso
 - ✓ Precisamos de uma forma de atribuir um peso para um par consulta/documento.
 - √ Vamos começar com consultas de um-termo.
 - ✓ Se o termo de consulta não ocorre no documento: peso deve ser 0.
 - ✓ Quanto mais frequente o termo de consulta no documento, maior o peso.

Term Frequency (tf)

 Cada termo em um documento recebe um peso que depende do número de ocorrências do termo no documento

$$tf_{t,d} = \frac{\textit{freq}_{t,d}}{\max_{l}}$$
 número de ocorrências do termo mais frequente em d

Alguns termos tem mais importância do que outros

TF-Scaling

- Mas usar tf puro não é uma boa ideia:
 - Um doc. com 10 ocorrências de um termo é mais relevante que um documento com 1 ocorrência do termo.
 - Mas não 10 vezes mais relevante.
- Relevância não aumenta proporcionalmente com tf.

$$wf_{t,d} = \begin{cases} 1 + \log_{10} & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$0 \to 0$$

$$1 \to 1$$

$$2 \to 1.3$$

$$0 \to 0$$

 $1 \to 1$
 $2 \to 1.3$
 $10 \to 2$
 $1000 \to 4$

Frequência de Documentos

- Termos raros são mais informativos que termos frequentes
- Lembre das stop words
- Considere um termo na consulta que seja raro na coleção (e.g., agorafobia).
- Um documento contendo esse termo é muito provável de ser relevante a consulta agorafobia.
- É razoável atribuir maior peso para termos raros como agorafobia.

Frequência de Documentos

- A frequência dos termos não é um indicador certo de relevância.
- Queremos um esquema que atribua maior peso aos termos raros em detrimento dos termos frequentes.

Peso IDF

- Seja df_t a freq. de documento para t: o número de documentos que contém t
- Df_t é uma medida inversa da informatividade de t
- df_t ≤ N
- O idf (inverse document frequency) de t é definido por

$$idf_t = \log_2 \frac{N}{df_t}$$

Peso IDF

- Seja df_t a freq. de documento para t: o número de documentos que contém t
- Df_t é uma medida inversa da informatividade de t
- df_t ≤ N
- O idf (inverse document frequency) de t é definido por

$$idf_t = \log_2 \frac{N}{df_t}$$

Exemplo: 1 milhão de documentos N= 1 milhão

Termo	df	idf
Cachorro	1	
Gato	100	
Rato	1.000	

Qual seria o IDF de cada termo na coleção??

Existe um IDF para cada termo t em uma coleção.

$$idf_t = \log_2 \frac{N}{df_t}$$

idf é uma medida de quão informativo é um determinado termo

Exemplo: 1 milhão de documentos N= 1 milhão

Termo	df	idf	
Cachorro	1	6	
Gato	100	4	
Rato	1.000	3	

Existe um IDF para cada termo t em uma coleção.

$$idf_t = \log_2 \frac{N}{df_t}$$

Exemplo: 1 milhão de documentos N= 1 milhão

Termo	df	idf
calpurnia	1	
animal	100	
sunday	1,000	
fly	10,000	
under	100,000	
the	1,000,000	

$$idf_t = \log_2 \frac{N}{df_t}$$

Exemplo: 1 milhão de documentos N= 1 milhão

Termo	df	idf
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = \log_2 \frac{N}{df_t}$$

- Freq. Coleção vs. Freq. Documento
 - A frequência de coleção de t é o número de ocorrências de t na coleção
 - Exemplo:

Palavra	Frequencia da Coleção	Frequência de Documento
seguro	10440	3997
tentativa	10422	8760

 Qual palavra é um melhor termo de busca (e deveria obter um maior peso)?

Peso TF-IDF

- O peso tf-idf de um termo é o produto do seu peso tf e seu peso idf.
- O melhor esquema de pesos conhecido da RI
- Nomes alternativos: tf.idf, tf x idf
- Aumenta com o número de ocorrências dentro de um documento.
- Aumenta com a raridade do termo na coleção.

$$\mathbf{w}_{t,d} = tf_{t,d} \times \log_2(N/\mathrm{df}_t)$$

$$\mathbf{w}_{t,d} = tf \times idf$$

Exercícios

 Considere a tabela (a) de frequências para os 3 documentos denotados por Doc1, Doc2, Doc3 abaixo. Calcule os pesos tf-idf para os termos "car", "auto", "insurance" e "best", para cada documento, usando os valores de idf na tabela (b) abaixo.

	Doc1	Doc2	Doc3
car	27	4	24
auto	3	33	0
insurance	0	33	29
best	14	0	17

Tabela (a)

term	df_t	idf_t
car	18,165	1.65
auto	6723	2.08
insurance	19,241	1.62
best	25,235	1.5

Tabela (b)

Matriz de incidência binária

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Matriz de Frequência termo-documento

- Considere o número de ocorrências de um termo em um documento:
 - Cada documento é um vetor de nr. de ocorrências de termos

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	0
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Documentos como vetores

- ✓ Tem-se um espaço n-dimensional
 - Os termos são os eixos
 - Documentos são vetores neste espaço
 - Os vetores são muito esparsos
 - Mesmo com 0 o número de dimensões pode ser bem grande (>50 000)
 - Termos que não ocorrem no documento tem peso zero
 - O vetor de um documento j é definido por

$$d_{j} = (w_{1,j}, w_{2,j}, \dots, w_{t,j})$$
peso

Consultas como vetores

- ✓ <u>Ideia 1</u>: assim como os documentos, as consultas também são vetores no espaço
- ✓ Ideia 2: Ranquear os documentos pela proximidade com a consulta
- ✓ proximidade = similaridade de vetores
- ✓ proximidade ≈ inverso da distância
- √ Termos que não ocorrem na consulta têm peso zero
- ✓ O vetor da consulta q é definido por

$$q_{j} = (w_{1,q}, w_{2,q}, ..., w_{t,q})$$
peso

Ideia básica

✓ Documentos que estão próximos no espaço vetorial tem conteúdo similar

✓ Como computar a distância/proximidade entre docs?

✓ Portanto, um documento dj e uma consulta de usuário q são representados como vetores com t dimensões:

	Cachorro	gato	rato
Q_{i}	0.2	0.35	0.1

	Doc1	Doc2
Cachorro	0.3	0.5
Gato	0.0	0.4
Rato	0.5	0.3

- Primeiro corte: distância entre dois pontos (distância entre os pontos extremos dos dois vetores)
- Distância Euclidiana?
- Utilizar a Distância Euclideana é uma má ideia . . .
- . . . Porque resulta em valores muito grandes para vetores de diferentes comprimentos.

✔ Porque distância é uma má ideia

✓ A Distância Euclidiana entre a consulta q e o documento d2 é muito grande apesar de ambos terem uma distribuição similar de termos

- ✔O grau de similaridade do documento d_j em relação à consulta q é dado à partir da correlação entre os vetores d_i e q;
- ✓ Um meio de quantificar essa correlação é através do cálculo do cosseno entre os vetores d_i e q:

Por que cosseno?

✓ Por que cosseno?

- Classificar os documentos de acordo com o seu ângulo em relação à consulta
- Experimento: escolha um documento d e duplique seu conteúdo. Chame esse documento de d'.
- Apesar de d' ter o dobro do tamanho de d, eles representam "semanticamente" o mesmo conteúdo.
- O ângulo entre os dois documentos é 0, correspondendo a similaridade máxima . . .
- . . . mas a distância Euclidiana entre os dois pode ser muito grande.

 Grau de similaridade entre um determinado documento e uma consulta, no modelo vetorial, é dado por:

Produto interno dos vetores do documento e da consulta

q é o peso (e.g. tf-idf) do termo i na consulta

d, é o peso (e.g. tf-idf) do termo i no documento

✓ Cosseno de vetores normalizados

• Um vetor pode ser normalizado (fazer seu comprimento=1) se dividirmos cada um de seus componentes pelo comprimento do vetor.

$$cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_i q_i \cdot d_i$$

• Para vetores normalizados, o cosseno iguala-se ao produto interno.

- O grau de similaridade (sim(dj,q)) varia entre 0 e 1;
 - Ao invés de adotar um critério binário, os documentos são ordenados com base no grau de similaridade;
 - Assim, um documento pode ser recuperado, mesmo que ele satisfaça a consulta apenas parcialmente.
- Quanto mais próximo de 1, mais bem ranqueado será o documento dj com relação a consulta q;
 - Valores próximos de 1 para cos(θ) representam maior "proporcionalidade" entre os vetores dj e q.

- As consultas são tratadas como pseudo-documentos.
- A similaridade entre um documento e uma consulta é calculada pelo cosseno do ângulo entre eles.
- O comprimento dos vetores não é levado em consideração, apenas suas direções.

	Cachorro	gato	rato
Q_{i}	0.2	0.35	0.1

Termo	Doc1	Doc2
Cachorro	0.3	0.5
Gato	0.0	0.4
Rato	0.5	0.3

$$sim(DOC1, Q) = 0.45$$

 $sim(DOC2, Q) = 0.92$
 $sim(DOC1, DOC2) = 0.73$

Grau de Similaridade

```
Doc1 Doc2 Doc3
        115
                                       Frequência dos termos
affection
                    20
jealous
         10
                    11
gossip
         2
               0
                    6
        Doc1 Doc2 Doc3
affection 0.996 0.993 0.847
                                       Normalização
jealous 0.087 0.12
gossip 0.017 0.00
                  0.254
```

Consulta q = jealous gossip \rightarrow Vetor normalizado da consulta q = (0, 0.707, 0.707)

```
Sim(doc1, q) = 0*0.996 + 0.707*0.087 + 0.707*0.017 = 0.074
Sim(doc2, q) = 0*0.993 + 0.707*0.120 + 0.707*0 = 0.084
Sim(doc3, q) = 0*0.847 + 0.707*0.466 + 0.707*0.254 = 0.509
```


Grau de Similaridade

Consulta q = jealous gossip \rightarrow Vetor normalizado da consulta q = (0, 0.707, 0.707)

```
Sim(doc1, q) = 0*0.996 + 0.707*0.087 + 0.707*0.017 = 0.074
Sim(doc2, q) = 0*0.993 + 0.707*0.120 + 0.707*0 = 0.084
Sim(doc3, q) = 0*0.847 + 0.707*0.466 + 0.707*0.254 = 0.509
```


Quais documentos são mais similares entre si?

$$sim(d_j, d_k) = \vec{d}_j \bullet \vec{d}_k = \sum_{i=1}^t w_{i,j} \times w_{i,k}$$

- As consultas s\u00e3o sequ\u00e9ncias de palavras-chave sem conectores booleanos
- Calcula-se o cosseno entre a consulta e cada um dos documentos
- Os documentos são ordenados de forma decrescente, de acordo com seu cosseno com a consulta
- Os top-k documentos são recuperados

• E preciso computar o cosseno entre a consulta e todos os documentos?

- E preciso computar o cosseno entre a consulta e todos os documentos?
 - Não. Os documentos que não possuem nenhuma das palavras da consulta podem ser descartados.

N= 6 documentos

Docs Termos	Tom e Jerry	Super Mouse	Garfield	Scooby Doo	PiuPiu e Frajola	Mônica
Cachorro	2	1	3	1	0	2
Casa	1	0	2	0	1	3
Gato	2	0	4	0	1	0
Menino	0	0	0	2	0	2
Passarinho	2	0	3	0	5	0
Rato	1	4	0	0	0	0

$$idf_t = \log_2 \frac{N}{df_t}$$

Termo	df	idf	
Cachorro	5	0,2630	
Casa	4	0,5850	
Gato	3	1	
Menino	2	1,5850	
Passarinho	3	1	
Rato	2	1,5850	

TF-IDF

$$w_t = tf * idf$$

Docs Termos	Tom e Jerry	Super Mouse	Garfield	Scooby Doo	PiuPiu e Frajola	Mônica
Cachorro	2	1	3	1	0	2
Casa	1	0	2	0	1	3
Gato	2	0	4	0	1	0
Menino	0	0	0	2	0	2
Passarinho	2	0	3	0	5	0
Rato	1	4	0	0	0	0

Docs	Tom e	Super	Garfield	Scooby	PiuPiu e	Mônica
Termos	Jerry	Mouse		Doo	Frajola	
Cachorro	0,5261	0,2630	0,7891	0,2630	0	0,5261
Casa	0,5850	0	1,1699	0	0,5850	1,7549
Gato	2	0	4	0	1	0
Menino	0	0	0	3,1699	0	3,1699
Passarinho	2	0	3	0	5	0
Rato	1,5850	6,3399	0	0	0	0

Termo	Q
Cachorro	0,2630
Casa	0
Gato	1
Menino	0
Passarinho	0
Rato	1,5850

$$sim(Q, D_1) = \frac{0,5261 \times 0,2630 + 2 \times 1 + 1,5850 \times 1,5850}{\sqrt{0,5261^2 + 0,5850^2 + 2^2 + 2^2 + 1,5850^2} \times \sqrt{0,2630^2 + 1^2 + 1,5850^2}} = 0,7366$$

$$sim(Q, D_2) = \frac{0,2630 \times 0,2630 + 6,3399 \times 1,5850}{\sqrt{0,2630^2 + 6,3399^2} \times \sqrt{0,2630^2 + 1^2 + 1,5850^2}} = 0,8426$$

$$sim(Q, D_3) = \frac{0,7891 \times 0,2630 + 4 \times 1}{\sqrt{0,7891^2 + 1,1699^2 + 4^2 + 3^2} \times \sqrt{0,2630^2 + 1^2 + 1,5850^2}} = 0,4279$$

Docs	sim(D, Q;)	
Tom e Jerry	0.7366	
Super Mouse	0.8426	
Garfield	0.4279	
Scooby Doo	0.0115	
PiuPiu e Frajola	0.1030	
Mônica	0.0200	

Ranking

$$sim(Q, D_1) = \frac{0,5261 \times 0,2630 + 2 \times 1 + 1,5850 \times 1,5850}{\sqrt{0,5261^2 + 0,5850^2 + 2^2 + 2^2 + 1,5850^2} \times \sqrt{0,2630^2 + 1^2 + 1,5850^2}} = 0,7366$$

$$sim(Q, D_2) = \frac{0,2630 \times 0,2630 + 6,3399 \times 1,5850}{\sqrt{0,2630^2 + 6,3399^2} \times \sqrt{0,2630^2 + 1^2 + 1,5850^2}} = 0,8426$$

$$sim(Q, D_3) = \frac{0,7891 \times 0,2630 + 4 \times 1}{\sqrt{0,7891^2 + 1,1699^2 + 4^2 + 3^2} \times \sqrt{0,2630^2 + 1^2 + 1,5850^2}} = 0,4279$$

Docs	sim(D, Q;)	
Tom e Jerry	0.7366	
Super Mouse	0.8426	
Garfield	0.4279	
Scooby Doo	0.0115	
PiuPiu e Frajola	0.1030	
Mônica	0.0200	

Ranking

Rank	Doc	
1	Super Mouse	
2	Tom e Jerry	
3	Garfield	
4	PiuPiu e Frajola	
5	Mônica	
6	Scooby Doo	

Vantagens em relação ao booleano

- Permite o ranking dos resultados
- Permite a comparação entre documentos
- Um índice do modelo vetorial pode ser usado para resolver consultas booleanas, mas o contrário não e verdade.

1) Considere a tabela da frequência de termos para três documentos (doc1, doc2, doc3). Compute os valores de tf-idf (usando tf-scaling (log)).

termo	doc1	doc2	doc3
auto	3	33	0
best	14	0	17
car	27	4	24
insurance	0	33	29

2) Considere a coleção de documentos abaixo:

e a consulta q = "to do". Vamos calcular o grau de similaridade entre cada documento e a consulta. Apresente os documentos e ordem decrescente de similaridade.

3. Quais documentos são mais similares entre si?

$$sim(d_j, d_k) = \vec{d}_j \bullet \vec{d}_k = \sum_{i=1}^t w_{i,j} \times w_{i,k}$$