関数解析後期メモ

百合川

2018年1月20日

目次

第1章	ノルム空間	1
1.1	ノルム空間と次元	1
1.2	商ノルム空間	4
第2章	Bochner 積分	7
2.1	ノーミング	7
2.2	Pettis の強可測性定理	10
2.3	Bochner 積分	10
第3章	共役作用素	11
3.1	ノルム空間の共役作用素	11
第4章	コンパクト作用素	19
4.1	コンパクト作用素の性質	19
4.2	Fredholm 性	25
4.3	直交射影	30
第 5 章	自己共役作用素のスペクトル分解	31
5.1	複素測度	31
5.2	複素測度に関する積分	37
5.3	複素測度の Riesz の表現定理	42
5.4	スペクトル測度	43
付録 A	弱収束	55
A.1	ノルム空間における弱収束....................................	55

第1章

ノルム空間

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とする. \mathbb{K} 上のノルム空間 X におけるノルムを $\|\cdot\|_X$ と表記し、X にノルム位相を導入する.

1.1 ノルム空間と次元

定理 1.1.1 (有限次元空間は完備).

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とし,X を \mathbb{K} 上のノルム空間とする. $\dim X < \infty$ ならばX は Banach 空間である.

証明. X の次元数 n による帰納法で証明する.

第一段 n=1 のとき X の基底を u_1 とすれば、X の任意の Cauchy 列は $(\alpha_m u_1)_{m=1}^\infty$ $(\alpha_m \in \mathbb{K}, \ m=1,2,\cdots)$ と表せる.

$$|\alpha_n - \alpha_m| \|u_1\|_X = \|\alpha_n u_1 - \alpha_m u_1\|_X \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立つから $(\alpha_m)_{m=1}^\infty$ は Cauchy 列であり、 $\mathbb K$ の完備性より或る $\alpha \in \mathbb K$ が存在して

$$\left|\alpha_{m_k} - \alpha\right| \longrightarrow 0 \quad (k \longrightarrow \infty)$$

を満たし

$$\|\alpha_{m_k}u_1 - \alpha u_1\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が従う.

第二段 n=k のとき定理の主張が成り立つと仮定し,n=k+1 として X の基底を u_1,\cdots,u_{k+1} と表す.X から任意に Cauchy 列 $(x_j)_{i=1}^\infty$ を取れば,各 x_j は

$$x_i = y_i + \beta_i u_{k+1} \quad (y_i \in \text{L.h.} [\{u_1, \dots, u_k\}], \beta_i \in \mathbb{K})$$

として一意に表示される. $(\beta_j)_{j=1}^\infty$ が有界列でないと仮定すると $\beta_{j_s} \geq s$ $(j_s < j_{s+1}, s=1,2,\cdots)$ を満たす部分列 $\left(\beta_{j_s}\right)_{s=1}^\infty$ が存在し, $(x_j)_{j=1}^\infty$ の有界性と併せて

$$\left\| u_{k+1} + \frac{1}{\beta_{i_s}} y_{j_s} \right\|_{Y} \le \left\| u_{k+1} + \frac{1}{\beta_{i_s}} y_{j_s} - \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} + \left\| \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} = \left\| \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} \longrightarrow 0 \quad (s \longrightarrow \infty)$$

が成り立つが、帰納法の仮定より $u_{k+1}\in \text{L.h.}\left[\{u_1,\cdots,u_k\}\right]$ が従い矛盾が生じる.よって $(\beta_j)_{j=1}^\infty$ は $\mathbb K$ の有界列 でなくてはならず、Bolzano-Weierstrass の定理より部分列 $\left(\beta_{j_\nu}\right)_{\nu=1}^\infty$ と $\beta\in\mathbb K$ が存在して

$$\left|\beta_{j_v} - \beta\right| \longrightarrow 0 \quad (v \longrightarrow \infty)$$

第1章 ノルム空間 **2**

を満たす.また $\left(x_{j_v}\right)_{v=1}^\infty$ と $\left(\beta_{j_v}u_{k+1}\right)_{v=1}^\infty$ が共に Cauchy 列であるから $\left(y_{j_v}\right)_{v=1}^\infty$ も Cauchy 列であり,帰納法の仮定より或る $y\in L.h.$ [$\{u_1,\cdots,u_k\}$] が存在して

$$\|y_{j_v} - y\|_{Y} \longrightarrow 0 \quad (v \longrightarrow \infty)$$

を満たす. よって

$$\|x_{j_{v}} - (y + \beta u_{k+1})\|_{Y} \le \|y_{j_{v}} - y\|_{X} + |\beta_{j_{v}} - \beta| \|u_{k+1}\|_{X} \longrightarrow 0 \quad (v \longrightarrow \infty)$$

が成り立ち、部分列の収束から $x_i \to y + \beta u_{k+1} (j \to \infty)$ が従う.

定理 1.1.2 (有限次元空間における有界点列の収束 (局所コンパクト性)).

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とし、 X を \mathbb{K} 上のノルム空間とする。 $\dim X < \infty$ ならば X の任意の有界点列は収束部分列を含む.

証明. X の次元数 n による帰納法で証明する.

第一段 n=1 のとき X の基底を u_1 とすれば,X の任意の有界点列は $(\alpha_m u_1)_{m=1}^\infty$ $(\alpha_m \in \mathbb{K}, m=1,2,\cdots)$ と表せる. $(\alpha_m)_{m=1}^\infty$ は有界列であるから,Bolzano-Weierstrass の定理より部分列 $(\alpha_{m_k})_{k=1}^\infty$ と $\alpha \in \mathbb{K}$ が存在して

$$\left|\alpha_{m_k} - \alpha\right| \longrightarrow 0 \quad (k \longrightarrow \infty)$$

を満たし

$$\|\alpha_{m_k}u_1 - \alpha u_1\|_{Y} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が従う.

第二段 n=k のとき定理の主張が成り立つと仮定し、n=k+1 として X の基底を u_1,\cdots,u_{k+1} と表す。X から任意に 有界列 $(x_j)_{j=1}^\infty$ を取れば、各 x_j は

$$x_{j} = y_{j} + \beta_{j} u_{k+1} \quad (y_{j} \in L.h. [\{u_{1}, \dots, u_{k}\}], \beta_{j} \in \mathbb{K})$$

として一意に表示される. $(\beta_j)_{j=1}^\infty$ が有界でないと仮定すると $\beta_{j_s} \geq s$ $(j_s < j_{s+1}, s=1,2,\cdots)$ を満たす部分列 $\left(\beta_{j_s}\right)_{s=1}^\infty$ が存在し, $(x_j)_{j=1}^\infty$ の有界性と併せて

$$\left\| u_{k+1} + \frac{1}{\beta_{i_s}} y_{j_s} \right\|_{Y} \le \left\| u_{k+1} + \frac{1}{\beta_{i_s}} y_{j_s} - \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} + \left\| \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} = \left\| \frac{1}{\beta_{i_s}} x_{j_s} \right\|_{Y} \longrightarrow 0 \quad (s \longrightarrow \infty)$$

が成り立つが、定理 1.1.1 より $u_{k+1} \in \text{L.h.}\left[\{u_1,\cdots,u_k\}\right]$ が従い矛盾が生じる.よって $(\beta_j)_{j=1}^\infty$ は \mathbb{K} の有界列でなくてはならず、Bolzano-Weierstrass の定理より部分列 $\left(\beta_{j(1,i)}\right)_{i=1}^\infty$ と $\beta \in \mathbb{K}$ が存在して

$$\left|\beta_{i(1,i)} - \beta\right| \longrightarrow 0 \quad (i \longrightarrow \infty)$$

を満たす.また $\left(y_{j(1,i)}\right)_{i=1}^{\infty}$ も有界列となるから,或る $y\in \mathrm{L.h.}\left[\left\{u_1,\cdots,u_k\right\}\right]$ と部分列 $\left(y_{j(2,i)}\right)_{i=1}^{\infty}$ が存在して

$$\|y_{j(2,i)} - y\|_X \longrightarrow 0 \quad (i \longrightarrow \infty)$$

を満たす. 従って

$$\|x_{j(2,i)} - (y + \beta u_{k+1})\|_{Y} \le \|y_{j(2,i)} - y\|_{Y} + |\beta_{j(1,i)} - \beta| \|u_{k+1}\|_{X} \longrightarrow 0 \quad (i \longrightarrow \infty)$$

が成り立つ.

第 1 章 ノルム空間 **3**

定理 1.1.3 (閉部分空間との点の距離). X をノルム空間, $L \subseteq X$ を閉部分空間とする. このとき任意の $1 > \epsilon > 0$ に対して或る $e \in X$ が存在し, $||e||_X = 1$ かつ次を満たす:

$$\inf_{x \in L} \|e - x\|_X > 1 - \epsilon.$$

証明. 任意に $y \in X \setminus L$ を取れば、L は閉であるから

$$\delta := \inf_{y \in I} \|y - x\|_X > 0$$

となる.

$$\lim_{n \to \infty} \|y - x_n\|_X = \delta \tag{1.1}$$

を満たすように点列 $x_n \in L(n = 1, 2, \cdots)$ を取り

$$e_n := \frac{1}{\|y - x_n\|_X} (y - x_n) \quad (n = 1, 2, \dots)$$

とおけば、 $\|e_n\|_X = 1$ 且つ任意の $x \in L$ に対して

$$\|e_n - x\|_X = \frac{1}{\|y - x_n\|_Y} \|y - x_n - \|y - x_n\|_X x\|_X \ge \frac{\delta}{\|y - x_n\|_Y}$$

が成り立つから

$$\inf_{x \in L} \|e_n - x\|_X \ge \frac{\delta}{\|y - x_n\|_X} \tag{1.2}$$

が従う. (1.1) より

$$\frac{\delta}{\|y-x_n\|_X}\longrightarrow 1 \quad (n\longrightarrow \infty)$$

であるから、任意の $1 > \epsilon > 0$ に対し $(1 - \epsilon) \|y - x_n\|_X < \delta$ となる n を取れば (1.2) より

$$\inf_{x \in L} \|e_n - x\|_X > 1 - \epsilon$$

が成り立つ.

定理 1.1.4 (単位球面がコンパクトなら有限次元). X をノルム空間, S を X の単位球面とする. S がコンパクトならば $\dim X < \infty$ である.

証明. 対偶を証明する. 距離空間のコンパクト性についての一般論より, S がコンパクトであることと S の任意の点列が S で収束する部分列を含むことは同値である. $\dim X = \infty$ と仮定する. 任意に一つ $e_1 \in S$ を取り $L_1 := \text{L.h.}[\{e_1\}]$ とおけば, L_1 は X の閉部分空間であるから定理 1.1.3 より或る $e_2 \in S$ が存在して

$$\inf_{x \in L_1} \|e_2 - x\|_X > \frac{1}{2}$$

第1章 ノルム空間 **4**

を満たす. $L_2\coloneqq \text{L.h.}[\{e_1,e_2\}]$ も X の閉部分空間であるから或る $e_3\in S$ が存在して

$$\inf_{x \in L_2} \|e_3 - x\|_X > \frac{1}{2}$$

を満たす. この操作を繰り返してSの点列 e_1,e_2,\cdots を構成すれば,

$$||e_n - e_m||_X > \frac{1}{2} \quad (\forall n, m \in \mathbb{N}, \ n \neq m)$$

が成り立ち $(e_n)_{n=1}^{\infty}$ は収束部分列を含みえない.

1.2 商ノルム空間

ノルム空間 X の閉部分空間 Y に対し

$$x \sim y \stackrel{\text{def}}{\Leftrightarrow} x - y \in Y \quad (\forall x, y \in X)$$

として X における同値関係 ~ を定める *1 . 以降,関係 ~ による $x \in X$ の同値類を [x] と表し,商集合を X/Y と表す.

定理 1.2.1 (商集合における線型演算). X/Y において

$$[x] + [y] := [x + y], \quad \alpha[x] := [\alpha x] \quad (\forall [x], [y] \in X/Y, \ \alpha \in \mathbb{K})$$

$$(1.3)$$

として演算を定義すれば、X/Y はこれを線型演算として線形空間となる.

証明.

well-defined 先ず (1.3) の定義が well-defined であることを示す. 任意に $u \in [x], v \in [v], \alpha \in \mathbb{K}$ を取り

$$[u+v] = [x+y], \quad [\alpha u] = [\alpha x]$$

が成り立つことをいえばよい. 実際 $x \sim u$ かつ $v \sim v$ であるから

$$(x + y) - (u + v) = (x - u) + (y - v) \in Y, \quad \alpha x - \alpha v = \alpha (x - u) \in Y$$

が成り立ち (1.3) が従う.

X が線形空間であるから X/Y は (1.3) の演算で閉じている. よってあとは以下の事項を確認すればよい.

加法 X/Y が加法について可換群をなすことを示す. 任意に $[x],[y],[z] \in X/Y$ を取れば

$$([x] + [y]) + [z] = [x + y] + [z] = [(x + y) + z] = [x + (y + z)] = [x] + [y + z] = [x] + ([y] + [z])$$

が成り立ち結合律が従う. 可換性は

$$[x] + [y] = [x + y] = [y + x] = [y] + [x]$$

により従い,また [x] の逆元は $(-1)[x]^{*2}$, X/Y の零元は Y = [0] である.

^{*1} $x,y,z \in X$ を取る. Y は線形空間であるから,反射率は $x-x=0 \in Y$ により従い,対称律は $x-y \in Y$ なら $y-x=-(x-y) \in Y$ が成り立つことにより従う.推移律についても, $x \sim y$ かつ $y \sim z$ が満たされているなら $x-z=(x-y)+(y-z) \in Y$ が成り立ち $x \sim z$ が従う.

 $^{*^{2}}$ [x] + (-1)[y] は [x] - [y] と表す.

第 1 章 ノルム空間 **5**

スカラ倍 任意に $[x],[y] \in X/Y$ と $\alpha,\beta \in \mathbb{K}$ を取れば以下が成り立つ:

- (1) $(\alpha\beta)[x] = [(\alpha\beta)x] = [\alpha(\beta x)] = \alpha[\beta x] = \alpha(\beta[x]),$
- (2) $(\alpha + \beta)[x] = [(\alpha + \beta)x] = [\alpha x + \beta x] = [\alpha x] + [\beta x] = \alpha[x] + \beta[x],$
- (3) $\alpha([x] + [y]) = \alpha[x + y] = [\alpha(x + y)] = [\alpha x + \alpha y] = [\alpha x] + [\alpha y] = \alpha[x] + \alpha[y],$
- (4) 1[x] = [x].

補助定理 1.2.2 (同値類は閉集合). 任意の $[x] \in X/Y$ は X において閉集合となる.

証明. 任意に $[x] \in X/Y$ を取る. 距離空間の一般論より $u_n \in [x]$ $(n = 1, 2, \cdots)$ が或る $u \in X$ に収束するとき $u \in [x]$ が成り立つことを示せばよい. 各 $n \in \mathbb{N}$ について $u_n - x \in Y$ であり、かつ

$$\|(u_n - x) - (u - x)\|_{\mathcal{X}} = \|u_n - u\|_{\mathcal{X}} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つから、Y が閉であることにより $u-x \in Y$ が従う.

定理 1.2.3 (商空間におけるノルムの定義). X/Y において

$$\| [x] \|_{X/Y} := \inf_{u \in [x]} \| u \|_{X} \quad (\forall [x] \in X/Y)$$
 (1.4)

として $\|\cdot\|_{X/Y}: X/Y \to \mathbb{R}$ を定めれば、これはノルムとなる.

証明.

正値性 $\|\cdot\|_{X/Y}$ が非負値であることは定義式 (1.4) 右辺の非負性による. また [x]=[0] である場合,

$$\inf_{u \in [x]} ||u||_X = ||0||_X = 0$$

が成り立ち $\|[x]\|_{X/Y} = 0$ が従う. 逆に $\|[x]\|_{X/Y} = 0$ である場合,

$$||u_n||_X \le \frac{1}{n} \quad (n = 1, 2, \cdots)$$

を満たす点列 $u_n \in [x]$ $(n=1,2,\cdots)$ が存在する. すなわち $u_n \longrightarrow 0$ $(n \longrightarrow \infty)$ であるから、補助定理 1.2.2 により $0 \in [x]$ が成り立ち [x] = [0] が従う.

同次性 任意に $[x] \in X/Y$ と $\alpha \in \mathbb{K}$ を取る. $\alpha = 0$ の場合は

$$||0[x]||_{X/Y} = ||[0]||_{X/Y} = 0 = 0 ||[x]||_{X/Y}$$

が成り立つ. $\alpha \neq 0$ の場合は

$$u \in [\alpha x] \quad \Leftrightarrow \quad \frac{1}{\alpha} u \in [x]$$

が成り立つから

$$\|\alpha[x]\|_{X/Y} = \|[\alpha x]\|_{X/Y} = \inf_{u \in [\alpha x]} \|u\|_X = |\alpha| \inf_{u \in [\alpha x]} \|(1/\alpha)u\|_X = |\alpha| \inf_{v \in [x]} \|v\|_X = |\alpha| \|[x]\|_{X/Y}$$

が従う.

第1章 ノルム空間 **6**

劣加法性 任意に $[x],[y] \in X/Y$ を取り

$$L \coloneqq \{\; u+v \; ; \quad u \in [x], \; v \in [y] \; \}$$

とおけば、任意の $u+v \in L$ に対し $(u+v)-(x+y) \in Y$ となるから $L \subset [x+y]$ が成り立つ。また

$$||u + v||_X \le ||u||_X + ||v||_X$$

により

$$\inf_{u'+v' \in I} \|u'+v'\|_{X} \le \|u\|_{X} + \|v\|_{X} \quad (\forall u \in [x], \ v \in [y])$$

が成り立つから,

$$\inf_{u'+v'\in L} \left\| \left. u'+v' \right\|_X \leq \inf_{u\in [x]} \left\| \left. u \right\|_X + \inf_{v\in [y]} \left\| \left. v \right\|_X = \left\| \left[x \right] \right\|_{X/Y} + \left\| \left[y \right] \right\|_{X/Y}$$

が従い

$$\| \left[x \right] + \left[y \right] \|_{X/Y} = \| \left[x + y \right] \|_{X/Y} = \inf_{w \in [x + y]} \| \, w \, \|_{X} \leq \inf_{u + v \in L} \| \, u + v \, \|_{X} \leq \| \left[x \right] \|_{X/Y} + \| \left[y \right] \|_{X/Y}$$

を得る.

定理 1.2.4 (商空間の完備性). X が Banach 空間ならば X/Y も Banach 空間である.

証明. 任意に X/Y から Cauchy 列 $([x_n])_{n=1}^{\infty}$ を取る.

$$\|[x_{n_k}] - [x_{n_{k+1}}]\|_{X/Y} < \frac{1}{2^k} \quad (k = 1, 2, \cdots)$$

を満たす部分列 $([x_{n_k}])_{k=1}^\infty$ を抜き取り、また $u_k \in [x_{n_{k+1}}-x_{n_k}]$ $(k=1,2,\cdots)$ を

$$||u_k||_X \le ||[x_{n_{k+1}} - x_{n_k}]||_{X/Y} + \frac{1}{2^k}$$

を満たすように取り

$$S_0 = 0$$
, $S_v := \sum_{k=1}^{v} u_k$ $(v = 1, 2, \dots)$

とおく. X が Banach 空間であるから $(S_{\nu})_{\nu=1}^{\infty}$ は X で収束し、かつ

$$[x_{n_k}] = [x_{n_1}] + \sum_{j=1}^{k-1} [x_{n_{j+1}} - x_{n_j}] = [x_{n_1}] + \sum_{j=1}^{k-1} [u_j] = [x_{n_1}] + [S_{k-1}] \quad (k = 1, 2, \dots)$$

を満たすから,

$$S := \lim_{v \to \infty} S_v \in X$$

とおけば

$$\|[x_{n_1} + S] - [x_{n_k}]\|_{X/Y} = \|[S - S_{k-1}]\|_{X/Y} \le \|S - S_{k-1}\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つ. 部分列の収束により $[x_n] \longrightarrow [x_{n_1} + S] (n \longrightarrow \infty)$ が従う.

第2章

Bochner 積分

本章を通じて係数体を \mathbb{C} とし,ノルム空間 E におけるノルムを $\|\cdot\|_E$ と書きノルム位相を導入する.また (X, M, μ) を σ -有限な測度空間 $(\mu$:正値測度), B を複素 Banach 空間とする.

2.1 ノーミング

定理 2.1.1 (Hahn-Banach の拡張定理). E を線形空間, F を E の線型部分空間とし, 或る $p:E\to\mathbb{C}$ が存在して

$$p(x+y) \le p(x) + p(y), \quad p(\lambda x) = |\lambda| p(x) \quad (\forall x, y \in E, \ \lambda \in \mathbb{C})$$
 (2.1)

が成り立つとする. このとき F 上の線型汎関数 f が

$$|f(x)| \le p(x) \quad (\forall x \in F)$$

を満たすなら、次の関係を持つ f の拡張線型汎関数 $\tilde{f}: E \to \mathbb{C}$ が存在する:

$$\left|\tilde{f}(x)\right| \le p(x) \quad (\forall x \in E).$$

証明. see Kreyszig.

系 2.1.2 (ノルム空間における拡張定理). E をノルム空間, F を E の部分ノルム空間とする.

- (1) 任意の $f^* \in F^*$ に対し、 f^* の拡張である $g^* \in E^*$ が存在して $\|g^*\|_{E^*} = \|f^*\|_{F^*}$ を満たす.
- (2) 任意の $x \in E$ に対し $||x||_E = \sup\{|g^*(x)|; g^* \in E^*, ||g^*||_{E^*} = 1\}$ が成り立つ.

証明.

(1) f^* は有界であるから

$$|f^*(x)| \le ||f^*||_{F^*} ||x||_E \quad (\forall x \in F)$$

第 2 章 Bochner 積分 8

が成り立つ. $E \ni x \mapsto \|f^*\|_{F^*} \|x\|_E$ は (2.1) を満たすから、定理 2.1.1 より或る f^* の拡張 $g^* \in E^*$ が存在して

$$|g^*(x)| \le ||f^*||_{F^*} ||x||_E \quad (\forall x \in E)$$

となり $\|g^*\|_{E^*} \leq \|f^*\|_{F^*}$ が従う. また $g^*|_F = f^*$ であるから

$$\|\,f^*\,\|_{F^*} = \sup_{\substack{x \in F \\ \|x\|_E \le 1}} |f^*(x)| = \sup_{\substack{x \in F \\ \|x\|_E \le 1}} |g^*(x)| \le \sup_{\substack{x \in E \\ \|x\|_E \le 1}} |g^*(x)| = \|\,g^*\,\|_{E^*}$$

も成り立ち $\|g^*\|_{E^*} = \|f^*\|_{F^*}$ を得る.

(2) x = 0 の場合は全ての $g^* \in E^*$ に対して $g^*(x) = 0$ となるから主張が得られる. $x \neq 0$ の場合,まずは

$$h^*(x) = ||x||_E, \quad ||h^*||_{E^*} = 1$$
 (2.2)

を満たす $h^* \in E^*$ が存在することを示す. 実際

$$F := \{ \lambda x ; \lambda \in \mathbb{C} \}$$

として E の部分ノルム空間を構成し

$$f^*: F \ni \lambda x \longrightarrow \lambda \|x\|_E$$

として等長作用素 $f^* \in F^*$ を定めれば,

$$f^*(x) = ||x||_E$$
, $||f^*||_{F^*} = 1$

が成り立ち, (1) より (2.2) を満たす f^* の拡張 $h^* \in E^*$ が存在する. 今, 任意の $g^* \in E^*$ に対して

$$\frac{|g^*(x)|}{\|g^*\|_{E^*}} \le \|x\|_E$$

が成り立っているが、 $g^* = h^*$ とすれば等号が成立するから

$$\sup_{\substack{g^* \in E^* \\ \|g^*\|_{E^*} = 1}} |g^*(x)| = \|x\|_E$$

を得る.

定義 2.1.3 (ノーミング). E をノルム空間, E_0 を E の部分集合とする. 或る E^* の部分集合 $\tilde{E^*}$ が存在して

$$\|x\|_{E} = \sup_{\substack{g^* \in E^* \\ \|g^*\|_{E^*} = 1}} |g^*(x)| \quad (\forall x \in E_0)$$
(2.3)

を満たすとき、 \tilde{E} * を E_0 のノーミング (norming) と呼ぶ. 系 2.1.2 より E* はノーミングの一つである.

補助定理 2.1.4 (単位球面上にノーミングが存在する). E をノルム空間とし,E の部分集合 E_0 が可分であるとする. E^* の部分集合 $\tilde{E^*}$ が E_0 のノーミングであるなら, E_0 のノーミングとなる単位点列 $(g_n^*)_{n=1}^\infty \subset \tilde{E^*}$ が存在する.

第 2 章 Bochner 積分 9

証明. $(x_n)_{n=1}^\infty$ が E_0 において稠密であるとし, $\delta_n\coloneqq 1/2^n$ とおく.(2.3) より各 $n\in\mathbb{N}$ に対し或る $g_n^*\in \tilde{E^*}$ が存在して

$$\|g_n^*\|_{E^*} = 1, \quad (1 - \delta_n) \|x_n\|_E \le |g_n^*(x_n)|$$

を満たす. 任意に $x \in E_0$, $\epsilon > 0$ を取れば, $(x_n)_{n=1}^\infty$ の稠密性と $\delta_n \longrightarrow 0$ より或る $n_0 \in \mathbb{N}$ が存在して

$$\|x-x_{n_0}\|_{E}<\epsilon, \quad \delta_{n_0}<\epsilon$$

を同時に満たす. $\|g_n^*\|_{E^*} = 1$ より

$$\left|g_{n_0}^*(x_{n_0})\right| \le \left|g_{n_0}^*(x_{n_0}) - g_{n_0}^*(x)\right| + \left|g_{n_0}^*(x)\right| < \epsilon + \left|g_{n_0}^*(x)\right|$$

が成り立つから

$$(1 - \epsilon) \|x\|_{E} \le (1 - \delta_{n_0}) \|x\|_{E} \le |g_n^*(x_{n_0})| < \epsilon + |g_{n_0}^*(x)|$$

が従い、 $\epsilon > 0$ の任意性から

$$||x||_E \le \sup_{n \in \mathbb{N}} |g_n^*(x)|$$

を得る. 系 2.1.2 と併せれば

$$||x||_E \le \sup_{n \in \mathbb{N}} |g_n^*(x)| \le \sup_{\substack{g^* \in E^* \\ ||g^*||_{F^*} = 1}} |g^*(x)| = ||x||_E$$

が成り立つから、 $(g_n^*)_{n=1}^{\infty}$ は E_0 のノーミングである.

定義 2.1.5 (分離). E をノルム空間, E_0 を E の部分集合とする. 或る E^* の部分集合 \tilde{E}^* が存在して、任意に二点 $x,y \in E_0, x \neq y$ を選んでも $g^*(x) \neq g^*(y)$ を満たす $g^* \in \tilde{E}^*$ が取れるとき、 \tilde{E}^* は E_0 を分離するという.

定理 2.1.6 (ノーミングは分離する). E をノルム空間, E_0 を E の部分集合とする. E^* の部分集合 \tilde{E}^* が E_0 のノーミングであるなら, \tilde{E}^* は E_0 を分離する.

証明. 背理法で証明する. \tilde{E}^* が E_0 のノーミングであるとき, $x \neq y$ を満たす或る組 $x,y \in E_0$ に対して

$$g^*(x) = g^*(y) \quad \left(\forall g^* \in \tilde{E}^* \right)$$

が成り立つとすると、(2.3)より

$$||x - y||_E = \sup_{\substack{g^* \in E^* \\ ||g^*||_{E^*} = 1}} |g^*(x - y)| = 0$$

が従い $x \neq y$ に矛盾する.

補助定理 2.1.7 (可分な集合は可算列により分離される). E をノルム空間, E_0 を E の可分な部分集合とする. E^* の部分集合 $\tilde{E^*}$ が E_0 を分離するとき, E_0 を分離する可算列 $(g_n^*)_{n=1}^\infty\subset \tilde{E^*}$ が存在する.

第 2 章 Bochner 積分 10

証明. \tilde{E}^* が E_0 を分離するなら、任意に $x \in E_0 \setminus \{0\}$ を取れば或る $g_x^* \in \tilde{E}^*$ が存在して $g_x^*(x) \neq g_x^*(0) = 0$ を満たす.

$$V_x := \{ y \in E_0 ; g_x^*(y) \neq 0 \}$$

と定めれば、 g_x^* の連続性より V_x は $E_0\setminus\{0\}$ の開集合である*1 . $x\in V_x$ ($\forall x\in E_0\setminus\{0\}$) が満たされているから $(V_x)_{x\in E_0\setminus\{0\}}$ は $E_0\setminus\{0\}$ の開被覆である。更に可分性より $E_0\setminus\{0\}$ は第二可算公理を満たし*2 Lindelöf 性が従うから、 $E_0\setminus\{0\}$ を覆う $(V_x)_{x\in E_0\setminus\{0\}}$ の可算部分列 $(V_{x_n})_{n=1}^\infty$ が取れる.ここで $g_n^*:=g_{x_n}^*$ $(n=1,2,\cdots)$ とおけば $(g_n^*)_{n=1}^\infty$ は E_0 を分離する.実際 $x\neq y$ を満たす任意の組 $x,y\in E_0$ に対し、或る $n\in\mathbb{N}$ が存在して $x-y\in V_{x_n}$ となるから

$$g_n^*(x - y) \neq 0 \implies g_n^*(x) \neq g_n^*(y)$$

が成り立つ.

2.2 Pettis の強可測性定理

補助定理 2.2.1 (距離空間値の可測関数列の極限は可測).

2.3 Bochner 積分

定義 2.3.1 (Bochner 積分). e

 $^{^{*1}}$ $E_0 \setminus \{0\}$ は E の部分位相空間であり V_x は E の開集合であるから,相対位相の意味で V_x は $E_0 \setminus \{0\}$ の開集合となる.

 $^{^{*2}}$ E のノルム位相は $d:(x,y)\mapsto \|x-y\|_E$ で定まる距離で導入する位相に一致し、また相対位相としての $E_0\setminus\{0\}$ の位相は相対距離により導入される位相に一致する。 従って $E_0\setminus\{0\}$ において可分であることと第二可算公理が満たされることは同値になる。

第3章

共役作用素

3.1 ノルム空間の共役作用素

係数体を \mathbb{K} とする. 以下ではノルム空間 X におけるノルムを $\|\cdot\|_X$ と表記し、位相はこのノルムにより導入されるものと考える.

定義 3.1.1 (共役作用素). X,Y をノルム空間, T を $X\to Y$ の線型作用素とする. T の定義域 $\mathcal{D}(T)$ が X で稠密であるとき, $g\in Y^*$ に対し

$$f(x) = g(Tx) \quad (\forall x \in \mathcal{D}(T))$$
 (3.1)

を満たす $f \in X^*$ が存在すれば、f の存在はg に対して唯一つであり *1 この対応を

$$T^*: g \longmapsto f$$

で表す. $T^*: Y^* \to X^*$ を T の共役作用素という.

上の定義でTが零作用素の場合,Tの定義域はX全体であるが(3.1)を満たすようなfは零作用素のみであり,一方でgとしては何を取っても成り立つから,共役作用素もまた零作用素となる.

定理 3.1.2 (共役作用素は閉線型). X,Y をノルム空間, T を $X \to Y$ の線型作用素とする. $\mathcal{D}(T)$ が X で稠密であるとき, T^* は閉線型作用素である.

この定理を証明するために以下にいくつか準備をする. $x \in X$ と $f \in X^*$ に対して f(x) を次の形式で表現する:

$$f(x) = \langle x, f \rangle_{XX^*}$$
.

$$\langle x, f \rangle_{X,X^*} = \langle Tx, g \rangle_{Y,Y^*} \quad (\forall x \in \mathcal{D}(T))$$

$$f(x) = f'(x) \quad (\forall x \in \mathcal{D}(T))$$

が成り立つ. $\mathcal{D}(T)$ は X で稠密であるから f, f' の連続性より f = f' が従う.

 $^{^{*1}}$ g に対し f とは別に (3.1) を満たす $f' \in X^*$ が存在すれば

と表現できる. また $A \subset X$, $B \subset X^*$ に対して

$$A^{\perp} \coloneqq \left\{ \, f \in X^* \, \; ; \quad \forall x \in A, \; \langle x, f \rangle_{X,X^*} = 0 \, \right\}, \quad {}^{\perp}B \coloneqq \left\{ \, x \in X \, \; ; \quad \forall f \in B, \; \langle x, f \rangle_{X,X^*} = 0 \, \right\}$$

と表記を定める. 例えばBに対して B^{\perp} と書いたらこれは X^{**} の部分集合を表す.

補助定理 3.1.3. $A \subset X$ に対し A^{\perp} は X^* において閉部分空間となる.

証明. A^{\perp} が X^* において完備部分空間であることを示せばよい.

線型性 任意の $f_1, f_2 \in A^{\perp}$ と $\alpha \in \mathbb{K}$ に対し

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = 0, \quad (\alpha f_1)(x) = \alpha f_1(x) = 0, \quad (\forall x \in A)$$

が成り立つ.

完備性 $f_n \in A^\perp$ が収束列であるとすれば X^* の完備性から $(f_n)_{n=1}^\infty$ は或る $f \in X^*$ に (作用素ノルムで) 収束する. 任意 の $x \in A$ に対して

$$|f(x)| = |f(x) - f_n(x)| \le ||f - f_n||_{X^*} ||x||_X \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $f \in A^{\perp}$ となる.

補助定理について補足 実際はさらに

$$^{\perp}(A^{\perp}) = \overline{\text{L.h.}[A]}$$

が成り立つ. $A \subset {}^{\perp}(A^{\perp})$ かつ ${}^{\perp}(A^{\perp})$ は X の閉部分空間であるから $\overline{\mathrm{L.h.}\,[A]} \subset {}^{\perp}(A^{\perp})$ が先ず判る. 逆向きの包含 関係について, $X = \overline{\mathrm{L.h.}\,[A]}$ の場合は成り立つが,そうでない場合は次のように考える. Hahn-Banach の定理の系によれば任意の $x_0 \in X \setminus \overline{\mathrm{L.h.}\,[A]}$ を一つ取って

$$f_0(x) = \begin{cases} 0 & (x \in \overline{\text{L.h.} [A]}) \\ f_0(x_0) \neq 0 & (x = x_0) \end{cases}$$

を満たす $f_0 \in X^*$ が存在する. $f_0 \in A^\perp$ であるが $x_0 \notin {}^\perp(A^\perp)$ となり ${}^\perp(A^\perp) \subset \overline{\text{L.h.}\,[A]}$ が従う.

二つのノルム空間 X,Y の直積空間 $X\times Y$ における直積ノルムを

$$||[x, y]||_{X \times Y} = ||x||_X + ||y||_Y \quad (\forall [x, y] \in X \times Y)$$

と表すことにする. $Y \times X$ の共役空間 $(Y \times X)^*$ の任意の元 F に対し

$$F_Y(y) := F[y, 0] \quad (y \in Y)$$

$$F_X(x) := F[0, x] \quad (x \in X)$$
 (3.2)

として F_Y , F_X を定義すれば,F の線型性,有界性から $F_Y \in Y^*$, $F_X \in X^*$ となり,特に $F[y,x] = F_Y(y) + F_X(x)$ が成り立つ.逆に $g \in Y^*$ と $f \in X^*$ に対し

$$F[y, x] = g(y) + f(x) \quad (\forall [y, x] \in Y \times X)$$

と定義すれば $F \in (Y \times X)^*$ となり、従って対応 $(Y \times X)^* \ni F \longmapsto [F_Y, F_X] \in Y^* \times X^*$ は全単射である.

補助定理 3.1.4. 次の写像

$$\varphi: (Y \times X)^* \ni F \longmapsto [F_Y, F_X] \in Y^* \times X^*$$

は線形, 同相である.

証明.

線型性 対応のさせ方 (3.2) に基づけば,任意の $[y,x] \in Y \times X$ と $F_1,F_2 \in (Y \times X)^*$, $\alpha \in \mathbb{K}$ に対して

$$\varphi(F_1 + F_2)[y, x] = (F_1 + F_2)[y, 0] + (F_1 + F_2)[0, x] = \varphi(F_1)[y, x] + \varphi(F_2)[y, x]$$
$$\varphi(\alpha F_1)[y, x] = (\alpha F_1)[y, 0] + (\alpha F_1)[0, x] = \alpha \varphi(F_1)[y, x]$$

が成り立つ.

同相 φ は Banach 空間から Banach 空間への線型全単射であるから, φ^{-1} が有界であるなら値域定理より φ も線型有界となり, 従って φ は同相写像となる. 実際

$$||[F_Y, F_X]||_{Y^* \times X^*} = ||F_Y||_{Y^*} + ||F_X||_{X^*}$$

であることと

$$\left\| \varphi^{-1}[F_Y, F_X] \right\|_{(Y \times X)^*} = \sup_{\substack{[y, x] \in Y \times X \\ [y, x] \neq [0, 0]}} \frac{|F_Y(y) + F_X(x)|}{\| [y, x] \|_{Y \times X}} \le \| F_Y \|_{Y^*} + \| F_X \|_{X^*}$$

により

$$\sup_{\substack{[F_Y, F_X] \in Y^* \times X^* \\ [F_Y, F_X] \neq [0, 0]}} \frac{\left\| \varphi^{-1}[F_Y, F_X] \right\|_{(Y \times X)^*}}{\left\| [F_Y, F_X] \right\|_{Y^* \times X^*}} \le 1$$

が成り立つ.

証明 (定理 3.1.2).

$$U: X \times Y \ni [x, y] \longmapsto [y, -x] \in Y \times X$$

として写像 U(等長,全単射)を定義する. T^* のグラフ $\mathcal{G}(T^*)$ は

$$\mathcal{G}(T^*) = \left\{ [g, T^*g] \in Y^* \times X^* ; \quad \forall [x, Tx] \in \mathcal{G}(T), \quad \langle Tx, g \rangle_{Y,Y^*} = \langle x, T^*g \rangle_{X,X^*} \right\}$$

で表される. 補助定理 3.1.4 により $[g, T^*g]$ に対応する $F_g \in (Y \times X)^*$ がただ一つ存在して

$$\langle Tx, g \rangle_{Y,Y^*} - \langle x, T^*g \rangle_{X,X^*} = F_g[Tx, -x] = F_gU[x, Tx], \quad ([x, Tx] \in \mathcal{G}(T))$$

と書き直せるから、補助定理 3.1.4 の同相写像 φ により

$$[U\mathcal{G}(T)]^{\perp} = \{ F \in (Y \times X)^* ; \forall [x, Tx] \in \mathcal{G}(T), FU[x, Tx] = 0 \} = \varphi^{-1}\mathcal{G}(T^*)$$
(3.3)

が成り立つ. 補助定理 3.1.3 より $[UG(T)]^{\perp}$ が $Y^* \times X^*$ の閉部分空間であるから, $G(T^*) = \varphi[UG(T)]^{\perp}$ は $(Y \times X)^*$ において閉部分空間となり, 従って T^* が閉線型作用素であると示された.

定理 3.1.5 (閉拡張の共役作用素は元の共役作用素に一致する).

X,Y をノルム空間, T を $X\to Y$ の線型作用素とし, $\mathcal{D}(T)$ が X で稠密でかつ T が可閉であるとする. このとき次が成り立つ:

$$\mathcal{G}(\overline{T}^*) = \mathcal{G}(T^*).$$

証明. (3.3) より $\mathcal{G}(\overline{T}^*) = \varphi \left[U \mathcal{G}(\overline{T}) \right]^{\perp}$ が成り立っているから,

$$\left[U\mathcal{G}(\overline{T})\right]^{\perp} = \left[U\mathcal{G}(T)\right]^{\perp}$$

を示せばよい.

 \subset について 任意の $[g,f] \in \left[U\mathcal{G}(\overline{T})\right]^{\perp}$ に対して

$$\langle \overline{T}x, g \rangle_{YY^*} = \langle x, f \rangle_{X,X^*} \quad (\forall [x, \overline{T}x] \in \mathcal{G}(\overline{T}))$$

が成り立っている.

$$G(T) \subset \overline{G(T)} = G(\overline{T})$$

より

$$\langle Tx, g \rangle_{YY^*} = \langle x, f \rangle_{XX^*} \quad (\forall [x, Tx] \in \mathcal{G}(T))$$

が従い $[g,f] \in [U\mathcal{G}(T)]^{\perp}$ が成り立つ.

⊃ について 任意に $[g,f] \in [U\mathcal{G}(T)]^{\perp}$ を取る. 任意の $[x,y] \in \mathcal{G}(\overline{T})$ に対して $[x_n,Tx_n] \in \mathcal{G}(T)$ を取り

$$||x_n - x||_Y \longrightarrow 0, \quad ||Tx_n - y||_Y \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つようにできるから,

$$\left| \langle y, g \rangle_{Y,Y^*} - \langle x, f \rangle_{X,X^*} \right| \leq \left| \langle y, g \rangle_{Y,Y^*} - \langle T x_n, g \rangle_{Y,Y^*} \right| + \left| \langle x_n, f \rangle_{X,X^*} - \langle x, f \rangle_{X,X^*} \right| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち

$$[g,f]\in \left[U\mathcal{G}(\overline{T})\right]^{\perp}$$

が従う.

補助定理 3.1.6 (定義域が稠密となるための条件). X,Y をノルム空間, T を $X \to Y$ の線型作用素とする. このとき $\mathcal{D}(T)$ が X で稠密であるための必要十分条件は, $[0,f] \in \varphi[U\mathcal{G}(T)]^{\perp}$ ならば f=0 となることである.

証明.

必要性 (3.3) より, $\overline{\mathcal{D}(T)} = X$ ならば T^* が存在して $\mathcal{G}(T^*) = \varphi [U\mathcal{G}(T)]^{\perp}$ を満たすから f = 0 となる. 十分性 $\varphi[0,f] \in [U\mathcal{G}(T)]^{\perp}$ なら

$$(\varphi[0,f])[Tx,-x] = -f(x) = 0 \quad (\forall [x,Tx] \in \mathcal{G}(T))$$

が成り立つ、そして

$$f(x) = 0$$
 ($\forall x \in \mathcal{D}(T)$) ならば $f = 0$ \Leftrightarrow $\overline{\mathcal{D}(T)} = X$

により $\overline{\mathcal{D}(T)} = X$ となる. 実際 $\overline{\mathcal{D}(T)} \subsetneq X$ である場合,Hahn-Banach の定理の系より $f \neq 0$ なる $f \in X^*$ で f(x) = 0 ($\forall x \in \mathcal{D}(T)$) を満たすものが存在する.逆に $\overline{\mathcal{D}(T)} = X$ であるなら, $f \in X^*$ の連続性より f(x) = 0 ($\forall x \in \mathcal{D}(T)$) ならば f = 0 が従う.

ノルム空間 X,Y の第二共役空間 X^{**},Y^{**} への自然な単射を J_X,J_Y と表す。そして

$$J: [X, Y] \ni [x, y] \longmapsto [J_X x, J_Y y] \in [X^{**}, Y^{**}]$$

としてJを定めればJは等長かつ線型単射となる.

定理 3.1.7. X,Y をノルム空間, T を $X \to Y$ の線型作用素とし $\mathcal{D}(T)$ が X で稠密であるとする.

(1) $\overline{\mathcal{D}(T^*)} = Y^*$ ならば T は可閉であり

$$JG(\overline{T}) \subset G(T^{**})$$

が成り立つ.

(2) Y が反射的 Banach 空間なら,T が可閉であることと $\overline{D}(T^*)=Y^*$ であることは同値となり

$$T^{**}J_X = J_Y \overline{T}$$

が成り立つ.

証明. (1) $\overline{\mathcal{D}(T^*)} = Y^*$ ならば T^* の共役作用素 $T^{**}: X^{**} \to Y^{**}$ が定義される. 任意の $x \in \mathcal{D}(T)$ に対し

$$\langle T^*g, J_X x \rangle_{X^*X^{**}} = \langle x, T^*g \rangle_{XX^*} = \langle Tx, g \rangle_{YY^*} = \langle g, J_Y Tx \rangle_{Y^*Y^{**}} \quad (\forall [g, T^*g] \in \mathcal{G}(T^*))$$

が成り立つから、 $J_X x \in \mathcal{D}(T^{**})$)かつ

$$T^{**}J_Xx = J_YTx \quad (\forall [x, Tx] \in \mathcal{G}(T))$$

が従う. すなわち

$$JG(T) \subset G(T^{**})$$

が成り立つ. また

$$J\overline{\mathcal{G}(T)} \subset \overline{J\mathcal{G}(T)} \subset \mathcal{G}(T^{**})$$
 (3.4)

が成り立つ. 実際定理 3.1.2 より T^{**} は閉線型であるから二番目の不等式は成り立つ. だから初めの不等式を示せばよい. 任意に $[J_{XX},J_{YY}]\in J\overline{G(T)}$ を取れば, $[x_n,Tx_n]\in G(T)$ を取り

$$||x_n - x||_X \longrightarrow 0$$
, $||Tx_n - y||_Y \longrightarrow 0$ $(n \longrightarrow \infty)$

が成り立つようにできる. J_X, J_Y の等長性より

$$||J_X x_n - J_X x||_{X^{**}} \longrightarrow 0, \quad ||J_Y T x_n - J_Y y||_{Y^{**}} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

となり $[J_Xx,J_Yy] \in \overline{J\mathcal{G}(T)}$ が判る. (3.4) より $[0,y] \in \overline{\mathcal{G}(T)}$ ならば $[0,J_Yy] \in \mathcal{G}(T^{**})$ が従い $J_Yy = 0$ となる. J_Y は単射であるから y = 0 となり $\overline{\mathcal{G}(T)}$ がグラフとなるから T は可閉である.

定理 3.1.8 (共役作用素の有界性). X,Y をノルム空間, $T:X\to Y$ を線型作用素とし $\mathcal{D}(T)$ が X で稠密であるとする. T が有界なら T^* も有界で

$$||T^*||_{\mathcal{D}(T^*)} \le ||T||_{\mathcal{D}(T)}$$

が成り立ち、特に $T \in \mathbf{B}(X,Y)$ ならば $T^* \in \mathbf{B}(Y^*,X^*)$ かつ $\|T^*\|_{\mathbf{B}(Y^*,X^*)} = \|T\|_{\mathbf{B}(X,Y)}$ を満たす. *2

証明. 任意の $[x,Tx] \in \mathcal{G}(T)$ と $[g,T^*g] \in \mathcal{G}(T^*)$ に対して

$$\left| \langle x, T^* g \rangle_{X,X^*} \right| = \left| \langle Tx, g \rangle_{Y,Y^*} \right| \le \| T \|_{\mathcal{D}(T)} \| g \|_{Y^*} \| x \|_{X}$$

が成り立つから

$$||T^*g||_{X^*} = \sup_{0 \neq x \in X} \frac{\left|\langle x, T^*g \rangle_{X,X^*}\right|}{||x||_X} \le ||T||_{\mathcal{D}(T)} ||g||_{Y^*}$$

となる. 従って $\|T^*\|_{\mathcal{D}(T^*)} \leq \|T\|_{\mathcal{D}(T)}$ を得る. $T \in \mathbf{B}(X,Y)$ である場合, 任意の $g \in Y^*$ に対して

$$f: X \ni x \longmapsto g(Tx)$$

と定義すれば、 $f \in X^*$ となり (3.1) を満たすから $T^* \in \mathbf{B}(Y^*, X^*)$ が成り立つ. また

$$\|\,Tx\,\|_{Y} = \sup_{\substack{g \in Y^{*} \\ \|\,g\,\|_{Y^{*}} = 1}} |g(Tx)| = \sup_{\substack{g \in Y^{*} \\ \|\,g\,\|_{Y^{*}} = 1}} |T^{*}g(x)| \leq \sup_{\substack{g \in Y^{*} \\ \|\,g\,\|_{Y^{*}} = 1}} \|\,T^{*}g\,\|_{X^{*}} \,\|\,x\,\|_{X} \leq \|\,T^{*}\,\|_{\mathrm{B}(Y^{*},X^{*})} \,\|\,x\,\|_{X}$$

が成り立つから $\|T^*\|_{\mathbf{B}(Y^*,X^*)} = \|T\|_{\mathbf{B}(X,Y)}$ が従う.

定理 3.1.9 (共役作用素の合成). X,Y,Z をノルム空間, $T:X\to Y, U:Y\to Z$ を線型作用素とし $\overline{\mathcal{D}(T)}=X,\overline{\mathcal{D}(U)}=Y,\overline{\mathcal{D}(UT)}=X$ を満たすとする. このとき

$$T^*U^* \subset (UT)^*$$

が成り立ち、特に $U \in B(Y,Z)$ である場合は $T^*U^* = (UT)^*$ となる.

 $^{\|\}cdot\|_{\mathcal{D}(T)}, \|\cdot\|_{\mathcal{D}(T^*)}$ および $\|\cdot\|_{\mathcal{B}(X,Y)}, \|\cdot\|_{\mathcal{B}(Y^*,X^*)}$ は作用素ノルムを表す.

証明. 任意の $h \in \mathcal{D}(T^*U^*)$) に対して

$$\langle (UT)x, h \rangle_{Z,Z^*} = \langle Tx, U^*h \rangle_{Y,Y^*} = \langle x, T^*U^*h \rangle_{X,X^*} \quad (\forall [x, Tx] \in \mathcal{G}(UT))$$

が成り立つから, $h \in \mathcal{D}((UT)^*)$ かつ $(UT)^*h = T^*U^*h$ を満たす *3 . ゆえに

$$T^*U^* \subset (UT)^*$$

となる. $U \in \mathbf{B}(Y,Z)$ の場合, $\mathcal{D}(UT) = \mathcal{D}(T)$ と $U^* \in \mathbf{B}(Z^*,Y^*)$ (定理 3.1.8) が従うから, 任意の $h \in \mathcal{D}((UT)^*)$ に対して

$$\langle (UT)x, h \rangle_{Z,Z^*} = \langle x, (UT)^*h \rangle_{X,X^*} \quad (\forall x \in \mathcal{G}(T))$$

かつ

$$\langle (UT)x, h \rangle_{Z,Z^*} = \langle Tx, U^*h \rangle_{Y,Y^*} \quad (\forall x \in \mathcal{G}(T))$$

より $U^*h \in \mathcal{D}(T^*)$ となり $T^*U^*h = (UT)^*h$ を満たす. 従って $(UT)^* \subset T^*U^*$ が成り立ち

$$(UT)^* = T^*U^*$$

を得る.

定理 3.1.10 (共役作用素の和). X,Y をノルム空間, $T:X\to Y$, $U:X\to Y$ を線型作用素とし $\overline{\mathcal{D}(T)}=X$, $\overline{\mathcal{D}(U)}=X$, $\overline{\mathcal{D}(T+U)}=X$ を満たすとする. このとき

$$T^* + U^* \subset (T + U)^*$$

が成り立ち、特に $T, U \in B(X, Y)$ である場合は $T^* + U^* = (T + U)^*$ となる.

証明. 任意の $g \in \mathcal{D}(T^* + U^*)$ に対し,

$$\langle (T+U)x,g\rangle_{YY^*} = \langle Tx,g\rangle_{YY^*} + \langle Ux,g\rangle_{YY^*} = \langle x,T^*g\rangle_{XX^*} + \langle x,U^*g\rangle_{XX^*} \\ ^{*4} = \langle x,(T^*+U^*)g\rangle_{XX^*} \quad (\forall x\in\mathcal{D}(T+U))$$

が成り立つ. 従って $g\in\mathcal{D}((T+U)^*)$ かつ $(T+U)^*g=(T^*+U^*)g$ を満たす.特に $T,U\in B(X,Y)$ のとき,任意の $g\in\mathcal{D}((T+U)^*)$ に対し

$$\langle (T+U)x, g \rangle_{YY^*} = \langle x, (T+U)^*g \rangle_{XX^*} \quad (\forall x \in X)$$

かつ

$$\langle (T+U)x, g \rangle_{YY^*} = \langle Tx, g \rangle_{YY^*} + \langle Ux, g \rangle_{YY^*} = \langle x, (T^*+U^*)g \rangle_{XX^*} \quad (\forall x \in X)$$

が成り立つから $g \in \mathcal{D}(T^* + U^*)$ かつ $(T + U)^* = (T^* + U^*)$ が従う.

 $^{^{*3}}$ $\mathcal{G}(UT)$ は X で稠密であるから $(UT)^*h = T^*U^*h$ でなくてはならない.

^{*} 4 $\mathcal{D}(T+U)\subset\mathcal{D}(T),\mathcal{D}(U)$ である.

定理 3.1.11 (共役作用素のスカラ倍). X,Y をノルム空間, $T:X\to Y$ を線型作用素とし $\overline{\mathcal{D}(T)}=X$ を満たすとする. 任意の $\lambda\in\mathbb{K}$ に対し次が成り立つ.

$$(\lambda T)^* = \lambda T^*.$$

証明. $\lambda=0$ の場合,零作用素の共役作用素もまた零作用素となるから $(\lambda T)^*=\lambda T^*$ が成り立つ. $\lambda\neq0$ の場合,任意の $g\in\mathcal{D}((\lambda T)^*)$ に対して

$$\langle x, (\lambda T)^*g\rangle_{X,X^*} = \langle (\lambda T)x, g\rangle_{Y,Y^*} = \lambda \, \langle Tx, g\rangle_{Y,Y^*} = \lambda \, \langle x, T^*g\rangle_{X,X^*} \quad (\forall x \in \mathcal{D}(T))$$

が成り立つから $g \in \mathcal{D}(T^*)$ かつ

$$(\lambda T)^* g = \lambda T^* g$$

が成り立つ. 一方 $g \in \mathcal{D}(T^*)$ に対して

$$\langle (\lambda T) x, g \rangle_{Y,Y^*} = \lambda \, \langle x, T^* \rangle_{X,X^*} \quad (\forall x \in \mathcal{D}(T))$$

も成り立ち、 $g \in \mathcal{D}((\lambda T)^*)$ かつ

$$(\lambda T)^*g = \lambda T^*g$$

を満たす.

第 4 章

コンパクト作用素

4.1 コンパクト作用素の性質

係数体を \mathbb{C} , X,Y をノルム空間とし, K を X から Y への線型作用素とする. また X,Y 及び共役空間 X^*,Y^* における ノルムを $\|\cdot\|_X$, $\|\cdot\|_Y$, $\|\cdot\|_{Y^*}$, $\|\cdot\|_{Y^*}$ と表記し,位相はこれらのノルムにより導入する.

定義 4.1.1 (コンパクト作用素). K がコンパクト作用素 (compact operator) であるということを次で定義する:

• $\mathcal{D}(K) = X$ を満たし、かつ X の任意の有界部分集合 B に対して KB が相対コンパクト (KB の閉包 \overline{KB} がコンパクト) となる.

補助定理 4.1.2 (コンパクト作用素となるための十分条件の一つ). $\mathcal{D}(K) = X$ とする. $B_1 \coloneqq \{x \in X \; | \; \|x\|_X < 1\}$ に対して $\overline{KB_1}$ がコンパクトであるなら K はコンパクト作用素となる.

証明. $B \subset X$ が有界集合なら或る $\lambda > 0$ が存在して $B \subset \lambda B_1$ (= $\{\lambda x \; ; \; x \in B_1 \}$) が成り立つ. $\overline{K(\lambda B_1)}$ がコンパクトとなるならその閉部分集合である \overline{KB} もコンパクトとなるから, $\overline{K(\lambda B_1)}$ がコンパクトとなることを示せばよい. 先ず

$$\overline{K(\lambda B_1)} = \lambda \overline{KB_1}$$

が成り立つことを示す。 $x \in \overline{K(\lambda B_1)}$ に対しては点列 $(x_n)_{n=1}^{\infty} \subset K(\lambda B_1)$ が取れて $\|x_n - x\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ を満たす。 $y_n \coloneqq x_n/\lambda$ とおけば K の線型性により $y_n \in KB_1$ となり, $\|y_n - x/\lambda\|_X = \|x_n - x\|_X/\lambda \longrightarrow 0$ $(n \longrightarrow \infty)$ となるから $x/\lambda \in \overline{KB_1}$,すなわち $x \in \lambda \overline{KB_1}$ である。逆に $x \in \lambda \overline{KB_1}$ に対しては $x/\lambda \in \overline{KB_1}$ となるから,或る点列 $(t_n)_{n=1}^{\infty} \subset KB_1$ が存在して $\|t_n - x/\lambda\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ を満たす。 $s_n = \lambda t_n$ とおけば K の線型性により $s_n \in K(\lambda B_1)$ となり, $\|s_n - x\|_X = \lambda \|t_n - x/\lambda\|_X \longrightarrow 0$ $(n \longrightarrow \infty)$ が成り立つから $x \in \overline{K(\lambda B_1)}$ である。以上で $\overline{K(\lambda B_1)} = \lambda \overline{KB_1}$ が示された。 $\overline{K(\lambda B_1)}$ を覆う任意の開被覆 $\cup_{u \in M} O_u$ (M は任意濃度) に対し

$$\overline{KB_1} \subset \bigcup_{\mu \in M} \frac{1}{\lambda} O_{\mu}$$

が成り立ち *1 , 仮定より $\overline{KB_1}$ はコンパクトであるから,M から有限個の添数 μ_i ($i=1,\cdots,n$) を取り出して

$$\overline{KB_1} \subset \bigcup_{i=1}^n \frac{1}{\lambda} O_{\mu_i}$$

 $^{^{*1}}$ 開集合 O_{μ} は $1/\lambda$ でスケールを変えてもまた開集合となる.

第4章 コンパクト作用素

となる.

$$\overline{K(\lambda B_1)} = \lambda \overline{KB_1} \subset \bigcup_{i=1}^n O_{\mu_i}$$

が従うから $\overline{K(\lambda B_1)}$ はコンパクトである.

補助定理 4.1.3 (コンパクト作用素であることの同値条件). $\mathcal{D}(K)=X$ とする. (1)K がコンパクトであることと, (2)X の任意の有界点列 $(x_n)_{n=1}^\infty$ に対し点列 $(Tx_n)_{n=1}^\infty$ で収束する部分列を含むことは同値である.

証明.

- (1) \Rightarrow (2) $(x_n)_{n=1}^{\infty}$ は X において有界集合であるから $(Kx_n)_{n=1}^{\infty}$ は相対コンパクトである. 距離空間におけるコンパクト性の一般論により $\overline{(Kx_n)_{n=1}^{\infty}}$ は点列コンパクトとなり (2) が従う.
- (2) \Rightarrow (1) 距離空間の一般論より、任意の有界集合 $B \subset X$ に対して \overline{TB} がコンパクトとなることと \overline{TB} が点列コンパクトとなることは同値である。従って次の主張

主張(※)

TB の任意の点列が \overline{TB} で収束する部分列を含むなら \overline{TB} は点列コンパクトである.

を示せばよい。実際 (※) が示されたとする。TB から任意に点列 $(y_n)_{n=1}^{\infty}$ を取れば,これに対し或る $(x_n)_{n=1}^{\infty} \subset B$ が対応して $y_n = Tx_n$ $(n=1,2,\cdots)$ と表現され,(2) の仮定より $(y_n)_{n=1}^{\infty}$ は $\overline{(y_n)_{n=1}^{\infty}}$ で収束する部分列を持つ。 よって (※) と上の一般論により \overline{TB} はコンパクトとなる。(※) を示す。 \overline{TB} の任意の点列 $(y_n)_{n=1}^{\infty}$ に対して $\|y_n-z_n\|_Y<1/n$ $(n=1,2,\cdots)$ を満たす $(z_n)_{n=1}^{\infty}\subset TB$ が存在する。部分列 $(z_{n_k})_{k=1}^{\infty}$ が $y\in \overline{TB}$ に収束するなら,任意の $\epsilon>0$ に対し或る $K_1\in\mathbb{N}$ が取れて $k\geq K_1$ ならば $\|y-z_{n_k}\|_Y<\epsilon/2$ を満たす。更に或る $K_2\in\mathbb{N}$ が取れて $k\geq K_2$ なら $1/n_k<\epsilon/2$ も満たされるから,全ての $k\geq \max\{K_1,K_2\}$ に対して

$$\|y - y_{n_k}\|_{Y} \le \|y - z_{n_k}\|_{Y} + \|z_{n_k} - y_{n_k}\|_{Y} < \epsilon$$

が成り立つ.

定義 4.1.4 (コンパクト作用素の空間). ここで新しく次の表記を導入する:

 $B_c(X,Y) := \{ K : X \to Y ; K はコンパクト作用素 \}.$

Y = X の場合は $B_c(X, X) = B_c(X)$ と表記する. 有界作用素の空間に似た表記をしているが、定義右辺では作用素の有界性を要件に入れていない. しかし実際コンパクト作用素は有界である (命題 4.1.5).

第4章 コンパクト作用素 **21**

命題 4.1.5 (コンパクト作用素の有界性・コンパクト作用素の合成のコンパクト性).

- (1) $B_c(X,Y)$ は B(X,Y) の線型部分空間となる.
- (2) Z をノルム空間とする. $A \in B(X,Y)$ と $B \in B(Y,Z)$ に対して A 又は B がコンパクト作用素なら BA もまた コンパクト作用素となる.

証明.

(1) 任意に $K \in B_c(X,Y)$ を取れば、コンパクト作用素の定義より $\mathcal{D}(K) = X$ が満たされている。また $B_1 := \{x \in X \; ; \; \|x\|_X \le 1\}$ とおけば、 $\overline{KB_1}$ のコンパクト性により KB_1 は有界であるから

$$\sup_{0<\|x\|_{X}\leq 1}\|Kx\|_{Y}=\sup_{x\in B_{1}\setminus\{0\}}\|Kx\|_{Y}<\infty$$

となり $K \in \mathbf{B}(X,Y)$ が従う。次に $\mathbf{B}_c(X,Y)$ が線形空間であることを示す。 $K_1,K_2 \in \mathbf{B}_c(X,Y)$ と $\alpha \in \mathbb{C}$ を任意に取る。補助定理 4.1.3 より,X の任意の有界点列 $(x_n)_{n=1}^\infty$ に対して $((K_1+K_2)(x_n))_{n=1}^\infty$ と $((\alpha K_1)(x_n))_{n=1}^\infty$ が収束部分列を含むことを示せばよい。補助定理 4.1.3 により, $(K_1x_n)_{n=1}^\infty$ は $\overline{(K_1x_n)_{n=1}^\infty}$ で収束する部分列 $(K_1x_{n(1,k)})_{k=1}^\infty$ を持つ。また $(K_2x_{n(1,k)})_{k=1}^\infty$ で収束する部分列 $(K_2x_{n(2,k)})_{k=1}^\infty$ を持ち,更に $(K_1x_{n(2,k)})_{k=1}^\infty$ は収束列 $(K_1x_{n(1,k)})_{k=1}^\infty$ の部分列となるから, $((K_1+K_2)(x_{n(2,k)}))_{k=1}^\infty$ が収束列となり $K_1+K_2 \in \mathbf{B}_c(X,Y)$ が従う。 $(\alpha K_1x_{n(1,k)})_{k=1}^\infty$ もまた収束列であるから $\alpha K_1 \in \mathbf{B}_c(X,Y)$ も従う。以上より $\mathbf{B}_c(X,Y)$ は線形空間である。

(2) A がコンパクト作用素である場合 補助定理 4.1.3 により,X の任意の点列 $(x_n)_{n=1}^{\infty}$ に対し $(Ax_n)_{n=1}^{\infty}$ は収束部分列 $(Ax_{n_k})_{k=1}^{\infty}$ を持つ。B の連続性により $(BAx_{n_k})_{k=1}^{\infty}$ も収束列となるから,補助定理 4.1.3 より BA はコンパクト作用素である.

B がコンパクト作用素である場合 任意の有界集合 $S \subset X$ に対して、A の有界性と併せて AS は有界となる. 従って \overline{BAS} がコンパクトとなるから BA はコンパクト作用素である.

命題 4.1.6 (Y が完備なら $B_c(X,Y)$ は閉). Y が Banach 空間ならば $B_c(X,Y)$ は B(X,Y) の閉部分空間である.

証明. Y が Banach 空間ならば B(X,Y) は作用素ノルム $\|\cdot\|_{B(X,Y)}$ について Banach 空間となるから, $B_c(X,Y)$ の任意の Cauchy 列は少なくとも B(X,Y) で収束する.よって次を示せば補助定理 4.1.3 により定理の主張が従う.

• $A_n \in B_c(X,Y)$ $(n=1,2,\cdots)$ が Cauchy 列をなし $A \in B(X,Y)$ に収束するとき,X の任意の有界点列 $(x_n)_{n=1}^\infty$ に対して $(Ax_n)_{n=1}^\infty$ が Y で収束する部分列を持つ.

証明には対角線論法を使う。先ず A_1 について,補助定理 4.1.3 により $(A_1x_n)_{n=1}^\infty$ の或る部分列 $\left(A_1x_{k(1,j)}\right)_{j=1}^\infty$ は収束する。 A_2 についても $\left(A_2x_{k(1,j)}\right)_{j=1}^\infty$ の或る部分列 $\left(A_2x_{k(2,j)}\right)_{j=1}^\infty$ は収束する。以下収束部分列を抜き取る操作を繰り返し,一般の A_n に対して $\left(A_nx_{k(n,j)}\right)_{j=1}^\infty$ が収束列となるようにできる。ここで $x_{k_j}:=x_{k(j,j)}$ $(j=1,2,\cdots)$ として点列 $(x_{k_j})_{j=1}^\infty$ を定めれば,これは $(x_n)_{n=1}^\infty$ の部分列であり,また全ての $n=1,2,\cdots$ に対して $\left(A_nx_{k_j}\right)_{j=n}^\infty$ は収束列 $\left(A_nx_{k(n,j)}\right)_{j=1}^\infty$ の部分列となるから $\left(A_nx_{k_j}\right)_{j=1}^\infty$ は収束列である。この $\left(x_{k_j}\right)_{j=1}^\infty$ に対して $\left(Ax_{k_j}\right)_{j=1}^\infty$ が Cauchy 列をなすならば A のコンパクト性が

従う*2. $A_n \to A$ を書き直せば、任意の $\epsilon > 0$ に対して或る $N = N(\epsilon) \in \mathbb{N}$ が存在し、n > N なら $\|A_n - A\|_{\mathbf{B}(X,Y)} < \epsilon$ となる.また n > N を満たす n を一つ取れば、 $\left(A_n x_{k_j}\right)_{j=1}^{\infty}$ は収束列であるから或る $J = J(n,\epsilon) \in \mathbb{N}$ が存在し全ての $j_1, j_2 > J$ に対して $\left\|A_n x_{k_{j_1}} - A_n x_{k_{j_2}}\right\|_Y < \epsilon$ が成り立つ. $M \coloneqq \sup_{n \in \mathbb{N}} \|x_n\|_X < \infty$ とおけば、全ての $j_1, j_2 > J$ に対して

$$\left\|Ax_{k_{j_{1}}}-Ax_{k_{j_{2}}}\right\|_{Y}\leq M\left\|A-A_{n}\right\|_{\mathsf{B}(X,Y)}+\left\|A_{n}x_{k_{j_{1}}}-A_{n}x_{k_{j_{2}}}\right\|_{Y}+M\left\|A-A_{n}\right\|_{\mathsf{B}(X,Y)}<(2M+1)\epsilon$$

が従うから、 $\left(Ax_{k_{j}}\right)_{j=1}^{\infty}$ は Cauchy 列すなわち収束列である.

定理 4.1.7 (コンパクト作用素の共役作用素のコンパクト性).

- (1) $A \in B_c(X,Y) \Rightarrow A^* \in B_c(Y^*,X^*)$ が成り立つ.
- (2) Y が Banach 空間ならば、任意の $A \in B(X,Y)$ に対し $A^* \in B_c(Y^*,X^*) \Rightarrow A \in B_c(X,Y)$ が成り立つ.

証明.

(1) 定理 3.1.8 より $A \in B(X, Y)$ なら $A^* \in B(Y^*, X^*)$ が成り立つ.

$$S_1 := \{ \; x \in X \; ; \quad 0 < || \, x \, ||_X \le 1 \; \}$$

とおけば仮定より $L := \overline{AS}$ は Y のコンパクト部分集合であり、任意に有界点列 $(y_n^*)_{n=1}^\infty \subset Y^*$ を取り

$$f_n: L \ni y \longmapsto y_n^*(y) \in \mathbb{C} \quad (n = 1, 2, \cdots)$$

と定める. 関数族 $(f_n)_{n=1}^\infty$ は正規族となる*3 から、Ascoli-Arzela の定理により L 上の連続関数の全体 C(L) において収束する部分列 $(f_{n_k})_{k=1}^\infty$ を含む.

同等連続性 $(y_n^*)_{n=1}^\infty$ は有界であるから, $M\coloneqq\sup_{n\in\mathbb{N}}\left\|y_n^*\right\|_{Y^*}$ とおけば

$$|f_n(y_1) - f_n(y_2)| = |y_n^*(y_1) - y_n^*(y_2)| \le M ||y_1 - y_2||_Y \quad (\forall y_1, y_2 \in L, \ n = 1, 2, \cdots)$$

が成り立ち同等連続性が従う.

各点で有界 上で定めた M に対し

$$|f_n(y)| \le M ||y||_Y \quad (\forall y \in L, \ n = 1, 2, \cdots)$$

が成り立つ.

 $^{^{*2}}$ Y が Banach 空間であるから Cauchy 列であることと収束列であることは同値である.

^{*3} 関数族 $(f_n)_{n=1}^\infty$ の同等連続性と各点での有界性を示す.

が成り立つ. $(f_{n_k})_{k=1}^{\infty}$ が sup-norm について Cauchy 列をなすから $\left(A^*y_{n_k}^*\right)_{k=1}^{\infty}$ も Cauchy 列となり, X^* の完備性と補助定理 4.1.3 より $A^* \in \mathbf{B}_c(Y^*,X^*)$ が従う.

(2) 証明 1 $J_X: X \longrightarrow X^{**}, J_Y: Y \longrightarrow Y^{**}$ を自然な等長埋め込みとする. 任意に $x \in X$ を取れば

$$\langle A^*y^*,J_Xx\rangle_{X^*,X^{**}}=\langle x,A^*y^*\rangle_{X,X^*}=\langle Ax,y^*\rangle_{Y,Y^*}=\langle y^*,J_YAx\rangle_{Y^*,Y^{**}}\quad (\forall y^*\in Y^*=\mathcal{D}(A^*))$$

が成り立ち、 $\mathcal{D}(A^*) = Y^*$ であるから A^{**} が定義され

$$A^{**}J_X x = J_Y A x \quad (\forall x \in X) \tag{4.1}$$

が従う.また前段の結果と A^* のコンパクト性から A^{**} もコンパクト作用素となる.X から任意に有界点列 $(x_n)_{n=1}^\infty$ を取れば, J_X の等長性より $(J_Xx_n)_{n=1}^\infty$ も X^{**} において有界となり,補助定理 4.1.3 により $(A^{**}J_Xx_n)_{n=1}^\infty$ の或る部分列 $(A^{**}J_Xx_{n_k})_{k=1}^\infty$ は Cauchy 列となる.(4.1) より $(J_YAx_{n_k})_{k=1}^\infty$ も Cauchy 列となるから, J_Y の等長性より $(Ax_{n_k})_{k=1}^\infty$ は Banach 空間 Y で収束し $A \in B_c(X,Y)$ が従う.

証明 2 X の任意の有界点列 $(x_n)_{n=1}^{\infty}$ に対して

$$||Ax_n||_Y = \sup_{\|y^*\|_{Y^*} \le 1} |y^*(Ax_n)| = \sup_{\|y^*\|_{Y^*} \le 1} |\langle y^*, Ax_n \rangle_{Y^*, Y}| = \sup_{\|y^*\|_{Y^*} \le 1} |\langle A^*y^*, x_n \rangle_{X^*, X}| = \sup_{x^* \in V} |\langle x^*, x_n \rangle_{X^*, X}|$$

が成り立つ. ただし $V := \overline{\{A^*y^* \mid \|y^*\|_{Y^*} \le 1\}}$ としていて,また第1の等号は

$$||y||_{Y} = \sup_{\substack{0 \neq g \in Y^{*} \\ ||g||_{1/2} < 1}} \frac{|g(y)|}{||g||_{Y^{*}}} = \sup_{||g||_{Y^{*}} = 1} |g(y)| = \sup_{||g||_{Y^{*}} \le 1} |g(y)|$$

の関係を使った*⁴. A^* がコンパクトだから V が X^* のコンパクト集合となるから $M:=\sup_{x^*\in V}\|x^*\|_{X^*}$ とおけば $M<\infty$ である. また $(\|x_n\|_X)_{n=1}^\infty$ は $\mathbb R$ において有界列となるから収束する部分列 $(\|x_{n_k}\|_X)_{k=1}^\infty$ を取ることができる. この部分列と全ての $x^*\in V$ に対して

$$|x^*(x_{n_k}) - x^*(x_{n_i})| \le M \|x_{n_k} - x_{n_i}\|_{\mathbf{v}} \longrightarrow 0 \quad (k, j \longrightarrow \infty)$$

が成り立つから,

$$\left\|Ax_{n_k} - Ax_{n_j}\right\|_{Y} = \sup_{x^* \in V} \left|\left\langle x^*, x_{n_k} - x_{n_j}\right\rangle_{X^*, X}\right| \longrightarrow 0 \quad (k, j \longrightarrow \infty)$$

が従い $A \in B_c(X,Y)$ が判明する.

定理 4.1.8 (反射的 Banach 空間の弱点列コンパクト性).

X が反射的 Banach 空間なら,X の任意の有界点列は弱収束する部分列を含む.

定理 4.1.9 (有限次元空間における有界点列の収束). $A \in \mathrm{B}(X,Y)$ に対し $\mathrm{rank}\,A = \mathrm{dim}\,\mathcal{R}(A) < \infty$ ならば $A \in \mathrm{B}_c(X,Y)$ が成り立つ. また X,Y が Hilbert 空間であるなら逆が成立する.

証明. $\mathcal{R}(A) = AX$ は有限次元空間となるから主張の前半は定理 1.1.2 により従う. A コンパクト作用素なら AX は可分, \overline{AX} は Hilbert より完全正規直交系存在.

 $^{^{*4}}$ Hahn-Banach の定理の系を参照. 始めの \sup は $\|g\|_{Y^*} \le 1$ の範囲で制限しているが,等号成立する g のノルムが 1 であるから問題ない.

定理 4.1.10 (恒等写像がコンパクト作用素なら有限次元). X をノルム空間とする. X の恒等写像 I がコンパクト作用素であるなら $\dim X < \infty$ が成り立つ.

証明. X の単位球面を S と表す. S は X の閉集合である. 実際点列 $x_n \in S$ $(n=1,2,\cdots)$ が $x_n \to x \in X$ となるとき,

$$|\|x\|_{X} - \|x_n\|_{X}| \le \|x - x_n\|_{X} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

より $x \in S$ が従う. $I \in B_c(X)$ なら $\overline{IS} = \overline{S} = S$ は点列コンパクトとなるから,定理 1.1.4 より $\dim X < \infty$ となる.

定理 4.1.11 (コンパクト作用素は弱収束列を強収束列に写す).

X,Y をノルム空間とし、任意に $A \in B(X,Y)$ を取る.

- (1) $A \in B_c(X,Y)$ なら A は X の任意の弱収束列を強収束列に写す.
- (2) X が反射的 Banach 空間なら (1) の逆が成り立つ.
- 証明. (1) X から任意に弱収束列 $(x_n)_{n=1}^\infty$ を取り弱極限を $x \in X$ とする. このとき $(Ax_n)_{n=1}^\infty$ の任意の部分列が強収束する部分列を含み,且つその収束先が全て Ax であるならば,距離空間における点列の収束の一般論*5 により (1) の主張が従う. $(Ax_n)_{n=1}^\infty$ から任意に部分列 $(Ax_{n(1,k)})_{k=1}^\infty$ を取る. 定理 A.1.6 より $(x_{n(1,k)})_{k=1}^\infty$ は有界列であるから,定理 4.1.3 より部分列 $(Ax_{n(2,k)})_{k=1}^\infty$ が或る $y \in \overline{(Ax_{n(1,k)})_{k=1}^\infty}$ に強収束する. 定理 3.1.8 より A^* が存在して $Y^* = \mathcal{D}(Y^*)$ を満たすから,任意に $g \in Y^*$ を取れば

$$\langle x_{n(2,k)}, A^* g \rangle_{X,X^*} = \langle A x_{n(2,k)}, g \rangle_{Y,Y^*}$$

が成り立つ. 左辺は w- $\lim_{n\to\infty} x_n = x$ の仮定より

$$\langle x_{n(2,k)}, A^*g \rangle_{XX^*} \longrightarrow \langle x, A^*g \rangle_{XX^*} = \langle Ax, g \rangle_{YY^*} \quad (k \longrightarrow \infty)$$

を満たし、一方で右辺は $\lim_{k\to\infty} Ax_{n(2,k)} = y$ より

$$\langle Ax_{n(2,k)}, g \rangle_{YY^*} \longrightarrow \langle y, g \rangle_{YY^*} \quad (k \longrightarrow \infty)$$

を満たすから

$$\langle Ax, g \rangle_{YY^*} = \langle y, g \rangle_{YY^*} \quad (\forall g \in Y^*)$$

が成り立ち Ax = y が従う.

(2) X が反射的 Banach 空間ならば X の任意の有界点列は弱収束する部分列を含む. (2) の仮定よりその部分列を A で写せば Y で強収束するから,定理 4.1.3 より A のコンパクト性が従う.

$$d(s_{n_k}, s) \ge \epsilon \quad (\forall k = 1, 2, \cdots)$$

を満たすから、 $\left(s_{n_k}\right)_{k=1}^{\infty}$ のいかなる部分列も s には収束し得ない.

^{**} (S,d) を距離空間とし、S の点 S と点列 $(s_n)_{n=1}^{\infty}$ を取る。このとき $(s_n)_{n=1}^{\infty}$ 任意の部分列が S に収束する部分列を含むなら、 $(s_n)_{n=1}^{\infty}$ は S に収束する。 実際もし $(s_n)_{n=1}^{\infty}$ が S に収束しないとすれば、或る S のに対し部分列 $(S_{n_k})_{k=1}^{\infty}$ が存在して

4.2 Fredholm 性

補助定理 4.2.1 (商空間のコンパクト作用素). X を複素ノルム空間, Y を X の閉部分空間とする. $A \in B_c(X)$ が $AY \subset Y$ を満たすとき次が成り立つ:

- (1) $A_1: Y \ni y \mapsto Ay \in Y$ として A_1 を定めれば $A_1 \in B_c(Y)$ が成り立つ.
- (2) $A_2: X/Y \ni [x] \mapsto [Ax] \in X/Y$ として A_2 を定めれば $A_2 \in B_c(X/Y)$ が成り立つ.

証明.

- 任意に Y から有界点列 $(x_n)_{n=1}^\infty$ を取る。補助定理 4.1.3 より $(Ax_n)_{n=1}^\infty$ の部分列 $(Ax_{n_k})_{k=1}^\infty$ は或る $y \in X$ に収束し、Y が閉であるから $y \in Y$ を満たす。 $A_1x_{n_k} = Ax_{n_k}$ $(k=1,2,\cdots)$ より $A_1x_{n_k} \longrightarrow y$ $(k \longrightarrow \infty)$ が従い、補助定理 4.1.3 より $A_1 \in B_c(Y)$ が成り立つ。
- (2) well-defined A_2 の定義は well-defined である. つまり同値類の表示の仕方に依らない. 実際 [x] = [x'] なら

$$Ax - Ax' = A(x - x') \in Y$$

が成り立つから $A_2[x]=[Ax]=[Ax']=A_2[x']$ が従う. また $[x],[y]\in X/Y$ と $\alpha,\beta\in\mathbb{K}$ に対し

$$A_2(\alpha[x] + \beta[y]) = A_2[\alpha x + \beta y] = [A(\alpha x + \beta y)] = [\alpha Ax + \beta Ay] = \alpha[Ax] + \beta[Ay] = \alpha A_2[x] + \beta A_2[y]$$

が成り立つから A_2 は線型作用素である.

コンパクト性 B を X/Y の単位開球とする. B から任意に取った点列 $([x_n])_{n=1}^\infty$ に対して $(A_2[x_n])_{n=1}^\infty$ が X/Y で 収束する部分列を含むなら,定理 4.1.3 の証明中の (※) の主張により A_2B は相対コンパクトとなり,定理 4.1.2 により A のコンパクト性が従う.各 $n\in\mathbb{N}$ について $\|[x_n]\|_{X/Y}<1$ であるから $\|u_n\|_X\leq 2$ を満たす $u_n\in[x_n]$ が存在する.定理 4.1.3 より $(Au_n)_{n=1}^\infty$ の或る部分列 $(Au_{n_k})_{k=1}^\infty$ は或る $y\in Y$ に収束するから

$$||A_2[x_{n_k}] - [y]||_{X/Y} = ||[Ax_{n_k} - y]||_{X/Y} \le ||Ax_{n_k} - y||_{X} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つ.

定理 4.2.2 (複素 Banach 空間上のコンパクト作用素の値域の余次元,核の次元).

X を複素 Banach 空間, I を X 上の恒等写像とし, $0 \neq \lambda \in \mathbb{C}$ と $A \in B_c(X)$ に対して $T := \lambda I - A$ とおく. このとき $\mathcal{R}(T)$ は X の閉部分空間であり, $\dim \mathcal{N}(T) < \infty$ かつ $\operatorname{codim} \mathcal{R}(T) < \infty^{*6}$ が成り立つ.

証明.

 $\mathcal{R}(T)$ が閉となること

 $\hat{T}: X/\mathcal{N}(T) \ni [x] \longmapsto Tx \in \mathcal{R}(T)$

^{*6} $\operatorname{codim} \mathcal{R}(T) = \dim X / \mathcal{R}(T)$ である.

と定めれば \hat{T} は線型同型かつ連続となる:

全単射 \hat{T} が単射であることは,T[x] = T[x'] ならば $x - x' \in \mathcal{N}(T)$ より [x] = [x'] が従い,また任意の $y \in \mathcal{R}(T)$ に対して,y = Tx を満たす $x \in X$ の同値類 $[x] \in X/\mathcal{N}(T)$ が $\hat{T}[x] = y$ を満たすから \hat{T} は全射である.

線型性 任意に $[x],[y] \in X/N(T)$ と $\alpha,\beta \in \mathbb{C}$ を取れば

$$\hat{T}(\alpha[x] + \beta[y]) = \hat{T}([\alpha x] + [\beta y]) = T(\alpha x + \beta y) = \alpha Tx + \beta Ty = \alpha \hat{T}[x] + \beta \hat{T}[y]$$

が成立する.

連続性 定理 4.1.5 より A は有界であるから

$$\parallel T \parallel_{\mathsf{B}(X)} = \parallel \lambda I - A \parallel_{\mathsf{B}(X)} \leq |\lambda| + \parallel A \parallel_{\mathsf{B}(X)} < \infty$$

が成り立ち、任意の $[x] \in X/N(T)$ に対して

$$\|\hat{T}[x]\|_{Y} = \|Tx\|_{X} \le \|T\|_{B(X)} \|x\|_{X}$$

が従うから \hat{T} は連続である.

 $\mathcal{R}(T) = \mathcal{R}(\hat{T})$ であるから $\mathcal{R}(\hat{T})$ が X の閉部分空間となることを示せばよい. まず或る C > 0 が存在して

$$C \|\hat{T}[x]\|_{X} \ge \|[x]\|_{X/\mathcal{N}(T)} \quad (\forall x \in X)$$

$$\tag{4.2}$$

を満たすことを示す.

(4.2) の証明 このような C が存在しないなら

$$\|\hat{T}[x_n]\|_X < \frac{1}{n} \|[x_n]\|_{X/\mathcal{N}(T)} \quad (n = 1, 2, \cdots)$$
 (4.3)

を満たす X/N(T) の点列 $([x_n])_{n=1}^{\infty}$ が存在する.

$$[y_n] := \frac{1}{\|[x_n]\|_{X/N(T)}} [x_n] \quad (n = 1, 2, \dots)$$

とおけば $([y_n])_{n=1}^\infty$ も (4.3) を満たし、かつ $\hat{T}[y_n]=\hat{T}[u_n]=Tu_n$ であるから

$$||Tu_n||_X = ||\hat{T}[y_n]||_X < \frac{1}{n} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

$$\tag{4.4}$$

が成立する. $\|[y_n]\|_{X/N(T)}=1$ であるからノルムの定義 (1.4) より $\|u_n\|_X\leq 2$ となる $u_n\in [y_n]$ が存在し,定理 4.1.3 より $(Au_n)_{n=1}^\infty$ の或る部分列 $(Au_{n_k})_{k=1}^\infty$ は或る $y\in X$ に収束するから

$$\left\| y - \lambda u_{n_k} \right\|_X = \left\| y - A u_{n_k} - T u_{n_k} \right\|_X \le \left\| y - A u_{n_k} \right\|_X + \left\| T u_{n_k} \right\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立ち, 更に T の有界性と (4.4) より

$$\|\,Ty\,\|_{X} \leq \left\|\,Ty - \lambda Tu_{n_{k}}\,\right\|_{X} + |\lambda|\, \left\|\,Tu_{n_{k}}\,\right\|_{X} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

となり $y \in N(T)$ が従う. 一方で

$$\left| \left\| \left[y \right] \right\|_{X/\mathcal{N}(T)} - \left\| \lambda \left[y_{n_k} \right] \right\|_{X/\mathcal{N}(T)} \right| \leq \left\| \left[y \right] - \lambda \left[y_{n_k} \right] \right\|_{X/\mathcal{N}(T)} \leq \left\| y - \lambda u_{n_k} \right\|_X \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つから $\|[y]\|_{X/N(T)} = |\lambda| > 0$ が従い $y \in N(T)$ に矛盾する.

 $\mathcal{R}(\hat{T})$ の点列 $\left(\hat{T}[v_n]\right)_{n=1}^{\infty}$ が $\hat{T}[v_n] \to x \in X$ を満たすなら、(4.2) より

$$\| [v_n] - [v_m] \|_{X/\mathcal{N}(T)} \le C \| \hat{T}[v_n] - \hat{T}[v_m] \|_{Y} \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立ち、定理 1.2.4 より $([\nu_n])_{n=1}^\infty$ は或る $[\nu] \in X/N(T)$ に収束する. よって \hat{T} の連続性から

$$\left\| x - \hat{T}[v] \right\|_{Y} \le \left\| x - \hat{T}[v_{n}] \right\|_{Y} + \left\| \hat{T} \right\|_{\mathbb{R}(\hat{T})} \left\| [v_{n}] - [v] \right\|_{X} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $x = \hat{T}[v] \in \mathcal{R}(\hat{T})$ が従う.

 $\dim \mathcal{N}(T) < \infty$ となること $T = \lambda I - A$ より

$$\lambda x = Ax \quad (\forall x \in \mathcal{N}(T)) \tag{4.5}$$

が成り立つから

$$TAx = T\lambda x = \lambda Tx = 0 \quad (\forall x \in \mathcal{N}(T))$$

となり $AN(T) \subset N(T)$ が従う. よって N(T) から任意に有界点列 $(x_n)_{n=1}^\infty$ を取れば $(Ax_n)_{n=1}^\infty$ は閉部分空間 N(T) に含まれ,定理 4.1.3 より或る部分列 $(Ax_{n_k})_{k=1}^\infty$ は或る $x \in N(T)$ に収束する. そして (4.5) より

$$\left\| \frac{1}{\lambda} x - x_{n_k} \right\|_{X} = \frac{1}{|\lambda|} \left\| x - \lambda x_{n_k} \right\|_{X} = \frac{1}{|\lambda|} \left\| x - A x_{n_k} \right\|_{X} \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が成り立つから、定理 4.1.10 より $\dim X < \infty$ が従う.

 $\operatorname{codim} \mathcal{R}(T) < \infty$ となること $\mathcal{R}(T)$ は X の閉部分空間であるから商ノルム空間 $X/\mathcal{R}(T)$ を定義できる.

$$U: X/\mathcal{R}(T) \ni [x] \longmapsto [Ax] \in X/\mathcal{R}(T)$$

と定めれば定理 4.2.1 より U はコンパクト作用素である.

$$[0] = [Tx] = [\lambda x - Ax] = \lambda[x] - [Ax] = \lambda[x] - U[x] \quad (\forall x \in X)$$

が成り立つから、定理 4.1.10 より $\dim X/\mathcal{R}(T) < \infty$ が従う、

定理 4.2.3 (Fredholm の交代定理).

補助定理 4.2.4. E を複素ノルム空間, E_1, E_2 を E の線型部分空間とし $E = E_1 + E_2$ が成り立っているとする *7 . また $E, E_1 \times E_2$ におけるノルムをそれぞれ $\|\cdot\|_{E_1 \times E_2}$ としてノルム位相を導入し

$$\Phi: E \ni x \longmapsto [x_1, x_2] \in E_1 \times E_2 \quad (x = x_1 + x_2)$$

を定める. このとき次が成り立つ:

- (1) Φ は全単射かつ閉線型である.
- (2) Φ^{-1} は連続である.
- (3) Φ が連続ならば E_1, E_2 は閉部分空間である.
- (4) E が Banach 空間で E_1, E_2 が閉部分空間ならば Φ は線型同型かつ同相である.
- (5) $\dim E_1 < \infty$ かつ E_2 が閉ならば Φ は線型同型かつ同相である.

 $^{^{*7}}$ つまり $E_1\cap E_2=\{0\}$ であり、かつ E の任意の元 x は或る $x_1\in E_1, x_2\in E_2$ によって $x=x_1+x_2$ と一意に表される.一意性について、

証明.

(1) 全単射であること 任意に $[x_1, x_2] \in E_1 \times E_2$ を取れば $x_1 + x_2 \in E$ を満たすから Φ は全射である.また $E_1 \times E_2$ の二元が $[x_1, x_2] = [y_1, y_2]$ を満たせば $x_1 = y_1$ かつ $x_2 = y_2$ となるから Φ は単射である.

閉線型であること $x,y \in E, \alpha \in \mathbb{C}$ を任意に取り $\Phi x = [x_1, x_2], \Phi y = [y_1, y_2]$ とすれば、

$$\Phi(x+y) = [x_1 + y_1, x_2 + y_2] = [x_1, x_2] + [y_1, y_2] = \Phi x + \Phi y,$$

$$\Phi(\alpha x) = [\alpha x_1, \alpha x_2] = \alpha [x_1, x_2] = \alpha \Phi x$$

より Φ の線型性が従う. また $(x_n)_{n-1}^{\infty} \subset E$ が $x_n \to u \in X$ かつ $\Phi x_n \to [u_1, u_2] \in E_1 \times E_2$ を満たす場合,

$$||u - (u_1 + u_2)||_E \le ||u - x_n||_E + ||\Phi x_n - [u_1, u_2]||_{E_1 \times E_2} \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち $\Phi u = [u_1, u_2]$ が従うから Φ は閉作用素である.

(2) (1) より逆写像 $\Phi^{-1}: E_1 \times E_2 \to E$ (線形全単射) が存在し、任意の $[0,0] \neq [x_1,x_2] \in E_1 \times E_2$ に対して

$$\frac{\left\|\Phi^{-1}[x_1, x_2]\right\|_E}{\|[x_1, x_2]\|_{E_1 \times E_2}} = \frac{\|x_1 + x_2\|_E}{\|x_1\|_E + \|x_2\|_E} \le 1$$

を満たす.

- (3) ノルム空間において一点集合 $\{0\}$ は閉であるから,直積位相において $E_1 \times \{0\}$ 及び $\{0\} \times E_2$ は閉集合である. 従って Φ の連続性と $E_1 = \Phi^{-1}(E_1 \times \{0\})$ 及び $E_2 = \Phi^{-1}(\{0\} \times E_2)$ が成り立つことから E_1, E_2 は閉集合となる.
- (4) $E, E_1 \times E_2$ は Banach 空間でありかつ $\mathcal{D}(\Phi) = E$ が満たされているから,閉グラフ定理より Φ は有界となる. (1)(2) と併せれば Φ, Φ^{-1} は共に連続且つ線型全単射であるから主張が従う.
- (5) $E \rightarrow E$ の恒等写像を I と表す. また

$$p_1: E \ni x \longmapsto [x] \in E/E_2, \quad p_2: E/E_2 \ni [x] \longmapsto x_1 \in E_1 \quad (x = x_1 + x_2, x_1 \in E_1, x_2 \in E_2)$$

と定めれば p_1 は線型連続であり p_2 は線型同型かつ連続である:

 p_1 について 任意に $x, y \in E$ と $\alpha, \beta \in \mathbb{C}$ を取れば

$$p_1(\alpha x + \beta y) = [\alpha x + \beta y] = [\alpha x] + [\beta y] = \alpha [x] + \beta [y] = \alpha p_1 x + \beta p_1 y$$

が成り立ち p_1 の線型性が従う. また $x \in E$, $x \neq 0$ に対して

$$\frac{\|\,p_1x\,\|_{E/E_2}}{\|\,x\,\|_E} = \frac{\|\,[x]\,\|_{E/E_2}}{\|\,x\,\|_E} \le \frac{\|\,x\,\|_E}{\|\,x\,\|_E} = 1$$

となるから p_1 は連続である.

 p_2 について E から E_1 への線型準同型を

$$p: E \ni x \longmapsto x_1 \in E_1 \quad (x = x_1 + x_2, x_1 \in E_1, x_2 \in E_2)$$

$$E_1 \ni x_1 - y_1 = y_2 - x_2 \in E_2$$

 $x = y_1 + y_2 \ (y_1 \in E_1, y_2 \in E_2)$ が同時に成り立っているとすれば

第4章 コンパクト作用素

で定める. $\mathcal{R}(p)=E_1$ かつ $\mathcal{N}(p)=E_2$ であるから,準同型定理より p_2 は線型同型となる.また $\dim E_1<\infty$ であるから $\dim E/E_2=\dim E_1<\infty$ となり*8 p_2 の連続性が従う.

 Φ は p_1, p_2 を用いて

$$\Phi x = [p_2 p_1 x, (I - p_2 p_1) x] \quad (\forall x \in E)$$

と表現できるから

$$\|\Phi x\|_{E_1 \times E_2} = \|p_2 p_1 x\|_E + \|(I - p_2 p_1)x\|_E$$

により Φ の連続性が従い, (1)(2) と併せて主張を得る.

補助定理 4.2.5 (T が単射なら全射). X を複素 Banach 空間, I を X 上の恒等写像とし, $0 \neq \lambda \in \mathbb{C}$ と $A \in B_c(X)$ に対して $T := \lambda I - A$ とおく. このとき T が単射ならば T は全射である.

証明. 背理法で示す. 今Tが単射であり全射ではないとする. このとき

$$\mathcal{R}(T^k) \supseteq \mathcal{R}(T^{k+1}) \quad (k = 1, 2, \cdots)$$

が成り立つ *9 . 実際或る $k \in \mathbb{N}$ で $\mathcal{R}(T^k) = \mathcal{R}(T^{k+1})$ が成り立つなら、任意の $y \in X$ に対し或る $x \in X$ が存在して

$$T^k y = T^{k+1} x = T^k T x$$

を満たすが、 T^k が単射であるから y = Tx が従い T が全射でないという仮定に反する.

$$X_k := \mathcal{R}(T^k) \quad (k = 1, 2, \cdots)$$

と簡単に表せば、定理 4.2.2 より X_k は X の閉部分空間であり、定理 1.1.3 より

$$||x_k||_X = 1, \quad \inf_{x \in X_k} ||x_k - x||_X > \frac{1}{2}$$
 (4.6)

を満たす $x_k \in X_k \setminus X_{k+1}$ $(k = 1, 2, \dots)$ が存在する. n < m となる $n, m \in \mathbb{N}$ を取れば

$$Tx_n + Ax_m = Tx_n + \lambda x_m - Tx_m \in X_{n+1}$$

が成り立つから、(4.6) より

$$||Ax_n - Ax_m||_X = ||\lambda x_n - Tx_n - Ax_m||_X > \frac{|\lambda|}{2}$$

が従い $(Ax_k)_{k=1}^{\infty}$ は収束部分列を含み得ないが、これは定理 4.1.3 に矛盾する.

$$\alpha_1 f(x_1) + \dots + \alpha_k f(x_k) = 0$$

が成り立っている場合, f が線型かつ単射であるから

$$\alpha_1 x_1 + \cdots + \alpha_k x_k = 0$$

となり $f(x_1), \cdots, f(x_k)$ の線型独立性が従う。また任意に $y \in Y$ を取れば或る $x \in X$ が対応し f(x) = y を満たすから、

$$y = f(x) = f(\alpha_1 x_1 + \dots + \alpha_k x_k) = \alpha f(x_1) + \dots + \alpha f(x_k)$$

が成り立ち $Y = \text{L.h.}[\{f(x_1), \cdots, f(x_k)\}]$ が従う.

^{*8} 一般の線形空間 X,Y に対し、 $\dim X=k<\infty$ 且つ線型同型 $f:X\to Y$ が存在するなら $\dim Y=k$ が成り立つ。実際 X の基底を x_1,\cdots,x_k と すれば $f(x_1),\cdots,f(x_k)$ は Y の基底となる。 $\alpha_1,\cdots,\alpha_k\in\mathbb{C}$ に対し

 $^{*^9}$ 写像の性質より $\mathcal{R}(T^k)$ $\supset \mathcal{R}(T^{k+1})$ は既に成り立っている.実際任意の $x \in X$ に対し $T^{k+1}x = T^kTx \in T^kX$ が成り立つ.

4.3 直交射影

定義 4.3.1 (直交射影). H を複素 Hilbert 空間とする. $p: H \to H$ が直交射影であるとは, p に対して或る H の閉部分空間 H_0 が存在し, $x \in H$ とその直交分解 $x = x_1 + x_2$ ($x_1 \in H_0$, $x_2 \in H_0^{\perp}$) に対し次を満たすことをいう*10:

$$p: H \ni x \longmapsto x_1.$$

またH上の直交射影全体をProj(H)と書く.

命題 4.3.2 (直交射影の存在). H を複素 Hilbert 空間とする. H の任意の閉部分空間 L に対し或る $p \in \text{Proj}(H)$ が存在して $p: H \to L$ を満たす. 特に $\mathcal{R}(p) = L$ が成り立つ.

命題 4.3.3 (直交射影は冪等・自己共役). H を複素 Hilbert 空間とする. 任意の $p:H\to H$ に対し次は同値である:

- (1) $p \in \text{Proj}(H)$.
- (2) p は有界で $p^2 = p$ と $p^* = p$ を満たす.

命題 4.3.4 (直交射影の積・和の性質). H を複素 Hilbert 空間とする.

(1) $p, q \in \text{Proj}(H)$ に対し次が成り立つ:

$$\mathcal{R}(p) \perp \mathcal{R}(q) \Leftrightarrow pq = 0 \Leftrightarrow qp = 0.$$

(2) $p_1, \dots, p_n \in \text{Proj}(H)$ が $p_i \neq p_j$ $(i \neq j)$ を満たすなら, $p \coloneqq \sum_{i=1}^n p_i$ とおいて次が成り立つ:

$$p \in \text{Proj}(H) \iff p_i p_j = \delta_{ij} p_j \quad (i, j = 1, \dots, n).$$

ただし δ_{ij} は Kronecker のデルタである.

(3) $p_1, p_2, \dots \in \text{Proj}(H)$ が $p_i p_j = \delta_{ij} p_j \ (\forall i, j \in \mathbb{N})$ を満たすとして

$$H_0 := \overline{\text{L.h.}\left[\bigcup_{i=1}^{\infty} \mathcal{R}(p_i)\right]}$$

とおく. $p \in \text{Proj}(H)$ が $\mathcal{R}(p) = H_0$ であるとき次が成り立つ:

$$px = \sum_{i=1}^{\infty} p_i x \quad (\forall x \in H).$$

 $^{^{*10}}$ 射影定理より $x \in H$ の直交分解は一意に定まるから,p は写像として well-defined である.

第5章

自己共役作用素のスペクトル分解

5.1 複素測度

定義 5.1.1 (複素測度). (X, M) を可測空間とする. $\lambda: M \to \mathbb{C}$ が任意の互いに素な集合列 $E_i \in M$ $(i=1,2,\cdots)$ と $E:=\sum_{i=1}^{\infty} E_i$ に対して

$$\lambda(E) = \sum_{i=1}^{\infty} \lambda(E_i)$$
 (5.1)

を満たすとき, λを複素測度 (complex measure) という.

 λ は複素数値であるから任意の $E \in M$ に対して $|\lambda(E)| < \infty$ を満たす.従って (5.1) において右辺の級数は収束していなくてはならない. $\sigma: \mathbb{N} \to \mathbb{N}$ を任意の並び替え*1とすれば

$$E = \sum_{i=1}^{\infty} E_{\sigma(i)}$$

が成り立つから

$$\lambda(E) = \sum_{i=1}^{\infty} \lambda(E_{\sigma(i)})$$

を得る. 従って複素数列 $(\lambda(E_i))_{i=1}^\infty$ は無条件に $\lambda(E)$ に収束し、Riemann の級数定理より $(\lambda(E_i))_{i=1}^\infty$ は絶対収束する:

$$\sum_{i=1}^{\infty} |\lambda(E_i)| < \infty.$$

今, λ を支配するような或るM上の測度 μ ,つまり

$$|\lambda(E)| \le \mu(E) \quad (\forall E \in \mathcal{M})$$
 (5.2)

を満たすものを、できるだけ小さいものとして取ろうと考える *2 . このような μ は次を満たすことになる:

$$\sum_{i=1}^{\infty} |\lambda(E_i)| \le \sum_{i=1}^{\infty} \mu(E_i) = \mu(E).$$

$$\mu(E) \le \mu'(E) \quad (\forall E \in \mathcal{M})$$

を満たすものを選べるかどうかを考える.

^{*1} σ は N から N への全単射である

 $^{^{*2}}$ つまり (5.2) を満たす μ のうちから、同様に (5.2) を満たす任意の測度 μ' に対し

ゆえに

$$\mu(E) \ge \sup_{i=1}^{\infty} |\lambda(E_i)| \tag{5.3}$$

でなくてはならず (上限は E のあらゆる分割 $E = \sum_i E_i$ に対して取るものである), ここで M 上の関数を

$$|\lambda|(E) := \sup \sum_{i=1}^{\infty} |\lambda(E_i)| \quad (\forall E \in \mathcal{M})$$
 (5.4)

として定義してみれば、E 自体が E の一つの分割であるから (5.4) より $|\lambda|$ は λ を支配し、更に、後述することであるが、 $|\lambda|$ は M 上の測度でもあり (5.3) と併せて当座の問題の解となる.

定義 5.1.2 (総変動・総変動測度). 可測空間 (X, M) 上の複素測度 λ に対し,(5.4) で定めた $|\lambda|: M \longrightarrow [0, \infty)$ を λ の総変動測度 (total variation measure) といい, $|\lambda|(X)$ を λ の総変動 (total variation) という.特に λ が正値有限測度である場合は $\lambda = |\lambda|$ が成り立つ.*³

以降で | λ| の性質

- (1) |\(\alpha\) は測度である.
- (2) $|\lambda|(X) < \infty$ が成り立つ.

を証明する. 特に (2) により任意の $E \in M$ に対し

$$|\lambda(E)| \le |\lambda|(E) \le |\lambda|(X) < \infty$$

が従うから、複素測度は有界であると判明する.

定理 5.1.3 ($|\lambda|$ は測度). 可測空間 (X, M) 上の複素測度 λ に対して、(5.4) で定義する $|\lambda|$ は測度である.

証明. (5.4) により $|\lambda|$ は正値であるから,以下では $|\lambda|$ の完全加法性を示す.任意に $\epsilon>0$ とどの二つも互いに素な集合列 $E_i\in\mathcal{M}$ $(i=1,2,\cdots)$ を取る.示すことは $E:=\sum_{i=1}^\infty E_i$ に対して

$$|\lambda|(E) = \sum_{i=1}^{\infty} |\lambda|(E_i)$$

が成り立つことである. (5.4) により E_i の分割 $(A_{ij})_{i=1}^{\infty} \subset M$ を

$$|\lambda|(E_i) \ge \sum_{i=1}^{\infty} |\lambda(A_{ij})| > |\lambda|(E_i) - \epsilon/2^i$$

$$|\lambda|(E) = \sup \sum_{i=1}^{\infty} |\lambda(E_i)| = \sup \sum_{i=1}^{\infty} \lambda(E_i) = \sup \lambda(E) = \lambda(E)$$

が成り立つ.

^{*3} 複素測度の虚部が 0 であるものとして考えれば $0 \le \lambda(E) \le \lambda(X) < \infty$ ($\forall E \in M$) が成り立つ. また実際任意の $E \in M$ とその分割 $(E_i)_{i=1}^\infty$ に対して

を満たすように取ることができる.また $E = \sum_{i,j=1}^{\infty} A_{ij}$ でもあるから

$$|\lambda|(E) \ge \sum_{i,j=1}^{\infty} |\lambda(A_{ij})| \ge \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |\lambda(A_{ij})| > \sum_{i=1}^{\infty} |\lambda|(E_i) - \epsilon$$

が成り立つ. $\epsilon > 0$ は任意であるから

$$|\lambda|(E) \ge \sum_{j=1}^{\infty} |\lambda|(E_j)$$

が従う.一方で E の任意の分割 $(A_j)_{j=1}^\infty\subset M$ に対し

$$\sum_{j=1}^{\infty} |\lambda(A_j)| = \sum_{j=1}^{\infty} \left| \sum_{i=1}^{\infty} \lambda(A_j \cap E_i) \right| \le \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} |\lambda(A_j \cap E_i)| \le \sum_{i=1}^{\infty} |\lambda| (E_i)^{*4}$$

が成り立つから, 左辺の上限を取って

$$|\lambda|(E) \le \sum_{i=1} |\lambda|(E_i)$$

を得る.

定理 5.1.4 (総変動測度は有界). 可測空間 (X, M) 上の複素測度 λ の総変動測度 $|\lambda|$ について次が成り立つ:

$$|\lambda|(X) < \infty$$
.

先ずは次の補題を示す.

補助定理 5.1.5. z_1, \dots, z_N を複素数とする. 添数集合の或る部分 $S \subset \{1, \dots, N\}$ を抜き取れば次が成り立つ:

$$\left| \sum_{k \in S} z_k \right| \ge \frac{1}{2\pi} \sum_{k=1}^N |z_k|.$$

証明 (補題). $z_k = |z_k|e^{i\alpha_k}$ $(-\pi \le \alpha_k < \pi, \ k=1,\cdots,N)$ となるように α_1,\cdots,α_N を取る. ここで i は虚数単位である. また $-\pi \le \theta \le \pi$ に対し

$$S(\theta) := \{ k \in \{1, \dots, N\} ; \cos(\alpha_k - \theta) > 0 \}$$

$$\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} |\lambda(A_j \cap E_i)| = \sum_{i=1}^{\infty} \sum_{i=1}^{\infty} |\lambda(A_j \cap E_i)|$$

が成り立つ. これと (5.4) を併せれば最後の不等号が従う.

^{*4} 正項級数は和の順序に依らないから

とおく. このとき

$$\left| \sum_{k \in S(\theta)} z_k \right| = |e^{-i\theta}| \left| \sum_{k \in S(\theta)} z_k \right| = \left| \sum_{k \in S(\theta)} |z_k| e^{i(\alpha_k - \theta)} \right|$$

$$\geq \text{Re}\left[\sum_{k \in S(\theta)} |z_k| e^{i(\alpha_k - \theta)} \right] = \sum_{k \in S(\theta)} |z_k| \cos(\alpha_k - \theta) = \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta)^{*5}$$

が成り立ち、最右辺は θ に関して連続となるから $[-\pi,\pi]$ 上で最大値を達成する θ_0 が存在する. $S\coloneqq S(\theta_0)$ とすれば

$$\left| \sum_{k \in S} z_k \right| \ge \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta_0) \ge \sum_{k=1}^N |z_k| \cos^+(\alpha_k - \theta) \quad (\forall \theta \in [-\pi, \pi])$$

が成り立つから, 左辺右辺を積分して

$$\left| \sum_{k \in S} z_k \right| \ge \sum_{k=1}^N |z_k| \frac{1}{2\pi} \int_{[-\pi,\pi]} \cos^+(\alpha_k - \theta) \, d\theta = \frac{1}{2\pi} \sum_{k=1}^N |z_k|$$

が成り立つ*6.

証明 (定理 5.1.4).

第一段 或る $E \in \mathcal{M}$ に対し $|\lambda|(E) = \infty$ が成り立っていると仮定する. $t := 2\pi(1 + |\lambda(E)|)$ とおけば (複素測度であるから $|\lambda(E)| < \infty$) $|\lambda|(E) > t$ となるから,(5.4) より E の分割 $(E_i)_{i=1}^\infty$ を

$$\sum_{i=1}^{\infty} |\lambda(E_i)| > t$$

となるように取ることができる. 従って或る $N \in \mathbb{N}$ を取れば

$$\sum_{i=1}^{N} |\lambda(E_i)| > t$$

が成り立つ. $z_i \coloneqq \lambda(E_i)$ $(i=1,\cdots,N)$ として補題 5.1.5 を使えば、或る $S \subset \{1,\cdots,N\}$ に対し

$$\left| \sum_{k \in S} \lambda(E_k) \right| \ge \frac{1}{2\pi} \sum_{k=1}^{N} |\lambda(E_k)| > \frac{t}{2\pi} > 1$$

となる. $A := \sum_{k \in S} E_k$ とおいて B := E - A とすれば

$$|\lambda(B)| = |\lambda(E) - \lambda(A)| \ge |\lambda(A)| - |\lambda(E)| > \frac{t}{2\pi} - |\lambda(E)| = 1$$

が成り立つから、つまり $|\lambda|(E) = \infty$ の場合、E の直和分割 A, B で

$$|\lambda(A)| > 1$$
, $|\lambda(B)| > 1$

$$\int_{[-\pi,\pi]} \cos^+(\alpha-\theta) \ d\theta = \int_{[\alpha-\pi,\alpha+\pi]} \cos^+\theta \ d\theta = \int_{[-\pi,\pi]} \cos^+\theta \ d\theta = 1$$

が成り立つ.

^{*5} $\cos^+ x = 0 \lor \cos x \ (x \in \mathbb{R})$ である.

 $^{^{*6}}$ 三角関数の周期性を使えば任意の $lpha \in \mathbb{R}$ に対して

を満たすものが取れると示された. そして |\(\alpha\)| の加法性から

$$|\lambda|(E) = |\lambda|(A) + |\lambda|(B)$$

も成り立つから、この場合右辺の少なくとも一方は∞となる.

第二段 背理法により定理の主張することを証明する。 今 $|\lambda|(X)=\infty$ と仮定すると、前段の結果より X の或る直和分割 A_1,B_1 で

$$|\lambda|(B_1) = \infty$$
, $|\lambda(A_1)| > 1$, $|\lambda(B_1)| > 1$

を満たすものが取れる. B_1 についてもその直和分割 A_2 , B_2 で

$$|\lambda|(B_2) = \infty$$
, $|\lambda(A_2)| > 1$, $|\lambda(B_2)| > 1$

を満たすものが取れる.この操作を繰り返せば,どの二つも互いに素な集合列 $(A_j)_{j=1}^\infty$ で $|\lambda(A_j)| > 1$ $(j=1,2,\cdots)$ を満たすものを構成できる. $A:=\sum_{j=1}^\infty$ について, $|\lambda(A)|<\infty$ でなくてはならないから,Riemann の級数定理より

$$\lambda(A) = \sum_{i=1}^{\infty} \lambda(A_i)$$

の右辺は絶対収束する. 従って $0<\epsilon<1$ に対し或る $N\in\mathbb{N}$ が存在して n>N なら $|\lambda(A_n)|<\epsilon$ が成り立つはずであるが、これは $|\lambda(A_n)|>1$ であることに矛盾する. 背理法により $|\lambda|(X)<\infty$ であることが示された.

定理 5.1.6 (複素測度の空間・ノルムの定義). 可測空間 (X, M) 上の複素測度の全体を $Meas_{\mathbb{C}}$ と表す. $\lambda, \mu \in Meas_{\mathbb{C}}$, $c \in \mathbb{C}$, $E \in M$ に対し

$$(\lambda + \mu)(E) := \lambda(E) + \mu(E),$$

$$(c\lambda)(E) := c\lambda(E)$$
(5.5)

を線型演算として $Meas_{\mathbb{C}}$ は線形空間となり,特に定理 5.1.4 により $\lambda \in Meas_{\mathbb{C}}$ に対して $|\lambda| \in Meas_{\mathbb{C}}$ が成り立つ.また $\|\cdot\|: Meas_{\mathbb{C}} \to \mathbb{R}$ を

$$\|\lambda\| := |\lambda|(X) \quad (\lambda \in \text{Meas}_{\mathbb{C}})$$

と定義すればこれは $Meas_{\mathbb{C}}$ においてノルムとなり、 $(Meas_{\mathbb{C}}, \|\cdot\|)$ は Banach 空間となる.

証明. 総変動の正値性からノルムの正値性が従うから、以下では同次性と三角不等式が成り立つことを示す.

同次性 総変動測度の定義 (5.4) とスカラ倍の定義 (5.5) より、任意の $\lambda \in Meas_{\mathbb{C}}$ と $c \in \mathbb{C}$ に対し

$$||c\lambda|| = \sup \sum_{i} |(c\lambda)(E_i)| = \sup \sum_{i} |c\lambda(E_i)| = |c| \sup \sum_{i} |\lambda(E_i)| = |c| ||\lambda||$$

が成り立つ.

三角不等式 任意の $\lambda, \mu \in \text{Meas}_{\mathbb{C}}$ に対し

$$||\lambda + \mu|| = |\lambda + \mu|(X) = \sup \sum_{i} |(\lambda + \mu)(E_i)| = \sup \sum_{i} |\lambda(E_i) + \mu(E_i)|$$

となるが,ここで

$$\sum_{i} |\lambda(E_i) + \mu(E_i)| \le \sum_{i} |\lambda(E_i)| + \sum_{i} |\mu(E_i)| \le ||\lambda|| + ||\mu||$$

が成り立つから

$$\|\lambda + \mu\| = \sup \sum_{i} |\lambda(E_i) + \mu(E_i)| \le \|\lambda\| + \|\mu\|$$

が従う.

可測空間 (X, M) において,実数にしか値を取らない複素測度を符号付き測度 (signed measure) という.

定義 5.1.7 (正変動と負変動・Jordan の分解). (X, \mathcal{M}) を可測空間とする. (X, \mathcal{M}) 上の符号付き測度 μ を取り

$$\mu^+ := \frac{1}{2}(|\mu| + \mu), \quad \mu^- := \frac{1}{2}(|\mu| - \mu)$$

として μ^+, μ^- を定めれば、どちらも正値有限測度となる*⁷. この μ^+ を μ の正変動 (positive variation) といい μ^- を μ の負変動 (negative variation) という.また

$$\mu = \mu^+ - \mu^-, \quad |\mu| = \mu^+ + \mu^-$$

が成り立ち、上の表現を符号付き測度 μ の Jordan 分解という.

定義 5.1.8 (絶対連続・特異). (X, M) を可測空間, μ を M 上の正値測度 *8 , $\lambda, \lambda_1, \lambda_2$ を M 上の任意の測度とする.

• λ が μ に関して絶対連続である (absolutely continuous) とは $\mu(E)=0$ となる全ての $E\in \mathcal{M}$ について $\lambda(E)=0$ が成り立つことを指し、

$$\lambda \ll \mu$$

と表記する.

• 或る $A \in M$ が存在して $\lambda(E) = \lambda(A \cap E)$ ($\forall E \in M$) が成り立つとき, λ は A に集中している (concentrated on A) という. λ_1, λ_2 に対し或る $A_1, A_2 \in M$ が存在し, λ_1 が A_1 に, λ_2 が A_2 に集中しかつ $A_1 \cap A_2 = \emptyset$ が満たされているとき, λ_1, λ_2 は互いに特異である (mutually singular) といい

$$\lambda_1 \perp \lambda_2$$

と表記する.

^{*&}lt;sup>7</sup> M上で $|\mu|(E) \ge |\mu(E)|$ であることと定理 5.1.4 による.

 $^{^{*8}}$ 正値測度という場合は ∞ も取りうる.従って正値測度は複素測度の範疇にはない. μ として例えば k 次元 Lebesgue 測度を想定している.

命題 5.1.9 (絶対連続性と特異性に関する性質). (X, M) を可測空間, μ を M 上の正値測度, $\lambda, \lambda_1, \lambda_2$ を M 上の複素測度とする. このとき以下に羅列する事柄が成り立つ.

- (1) λ が $A \in M$ に集中しているなら $|\lambda|$ も A に集中している.
- (3) $\lambda_1 \perp \mu \text{ bol } \lambda_2 \perp \mu \text{ abolit } \lambda_1 + \lambda_2 \perp \mu.$
- (4) $\lambda_1 \ll \mu \text{ in } \lambda_2 \ll \mu \text{ to if } \lambda_1 + \lambda_2 \ll \mu.$
- (5) $\lambda \ll \mu \text{ coid } |\lambda| \ll \mu.$
- (6) $\lambda_1 \ll \mu \text{ bol} \lambda_2 \perp \mu \text{ cold } \lambda_1 \perp \lambda_2.$

5.2 複素測度に関する積分

定理 5.2.1 (複素数値可測関数). (X, M) を可測空間とする. $f: X \to \mathbb{C}$ について次が成り立つ:

- (1) f が可測 $M/\mathfrak{B}(\mathbb{C})$ であることと f の実部虚部がそれぞれ可測 $M/\mathfrak{B}(\mathbb{R})$ であることは同値である.
- (2) $M/\mathfrak{B}(\mathbb{C})$ -可測関数列 $(f_n)_{n=1}^\infty$ が f に各点収束するなら f もまた可測 $M/\mathfrak{B}(\mathbb{C})$ となる.

定義 5.2.2 (積分の定義). (X, M) を可測空間とし、 μ を (X, M) 上の複素測度とする. μ の総変動測度 $|\mu|$ に関して可積分となる関数 $f: X \to \mathbb{C}$ について、f の μ に関する積分を次で定める:

f が可測単関数の場合 有限個の複素数 $\alpha_1, \cdots, \alpha_k$ と集合 $A_1, \cdots, A_k \in M$ によって

$$f = \sum_{i=1}^{k} \alpha_i \mathbf{1}_{A_i} \tag{5.6}$$

と表されるとき *9 , fの μ に関する積分を

$$\int_{X} f(x) \,\mu(dx) := \sum_{i=1}^{k} \alpha_{i} \mu(A_{i}) \tag{5.7}$$

で定める.

f が一般の可測関数の場合

$$\int_{X} f_n(x) |\mu|(dx) \longrightarrow \int_{X} f(x) |\mu|(dx)$$
(5.8)

を満たす f の可測単関数近似列 $(f_n)_{n=1}^\infty$ を取り、f の μ に関する積分を

$$\int_{X} f(x) \,\mu(dx) \coloneqq \lim_{n \to \infty} \int_{X} f_n(x) \,\mu(dx) \tag{5.9}$$

で定める.

定理 5.2.3 (積分の定義は well-defined). 定義 5.2.2 において, (5.7) は (5.6) の表示の仕方に依らずに定まり, (5.9) も (5.8) を満たす単関数近似列の選び方に依らずに定まる. 更に次が成り立つ:

$$\left| \int_X f(x) \, \mu(dx) \right| \le \int_X |f(x)| \, |\mu|(dx). \tag{5.10}$$

証明.

f が可測単関数の場合 f が (5.6) の表示とは別に

$$f = \sum_{j=1}^{m} \beta_{j} \mathbb{1}_{B_{j}} \quad (\beta_{j} \in \mathbb{C}, \ B_{j} \in \mathcal{M}, \ X = \sum_{j=1}^{m} B_{j})$$

と表現できるとしても

$$\sum_{i=1}^{k} \alpha_{i} \mu(A_{i}) = \sum_{i=1}^{k} \sum_{j=1}^{m} \alpha_{i} \mu(A_{i} \cap B_{j}) = \sum_{j=1}^{m} \sum_{i=1}^{k} \beta_{j} \mu(A_{i} \cap B_{j}) = \sum_{j=1}^{m} \beta_{j} \mu(B_{j})$$

 $^{^{*9}}$ A_1, \cdots, A_k は互いに素であり $X = \sum_{i=1}^k A_i$ を満たす.

が成り立つ. また (5.4) より

$$\left| \int_{X} f(x) \, \mu(dx) \right| = \left| \sum_{i=1}^{k} \alpha_{i} \mu(A_{i}) \right| \le \sum_{i=1}^{k} |\alpha_{i}| \, |\mu|(A_{i}) = \int_{X} |f(x)| \, |\mu|(dx) \tag{5.11}$$

も成り立つ.

f が一般の可測関数の場合 (5.9) は有限確定している. 実際 (5.8) を満たす単関数近似列 $(f_n)_{n=1}^\infty$ に対して (5.11) より

$$\left| \int_X f_n(x) \, \mu(dx) - \int_X f_m(x) \, \mu(dx) \right| \le \int_X |f_n(x) - f_m(x)| \, |\mu|(dx) \quad (\forall n, m \in \mathbb{N})$$

が成り立つから、 $\left(\int_X f_n(x) \mu(dx)\right)_{n=1}^\infty$ は $\mathbb C$ において Cauchy 列をなし極限が存在する。 $(f_n)_{n=1}^\infty$ とは別に (5.8) を満たす f の単関数近似列 $(g_n)_{n=1}^\infty$ が存在しても

$$\left| \int_{X} f_{n}(x) \, \mu(dx) - \int_{X} g_{m}(x) \, \mu(dx) \right| \leq \int_{X} |f_{n}(x) - g_{m}(x)| \, |\mu|(dx)$$

$$\leq \int_{X} |f_{n}(x) - f(x)| \, |\mu|(dx) + \int_{X} |f(x) - g_{m}(x)| \, |\mu|(dx) \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立つから,

$$\alpha := \lim_{n \to \infty} \int_X f_n(x) \, \mu(dx), \quad \beta := \lim_{n \to \infty} \int_X g_n(x) \, \mu(dx)$$

とおけば

$$|\alpha - \beta| \le \left| \alpha - \int_X f_n(x) \, \mu(dx) \right| + \left| \int_X f_n(x) \, \mu(dx) - \int_X g_m(x) \, \mu(dx) \right| + \left| \int_X g_m(x) \, \mu(dx) - \beta \right|$$

$$\longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が従い $\alpha = \beta$ を得る. また (5.11) より

$$\left| \int_X f_n(x) \, \mu(dx) \right| \le \int_X |f_n(x)| \, |\mu|(dx) \quad (n = 1, 2, \cdots)$$

が満たされているから、両辺で $n \longrightarrow \infty$ として (5.10) を得る.

定義 5.2.2 において,(5.9) は (5.7) の拡張となっている.実際 f が可測単関数の場合,(5.8) を満たす単関数近似列として f 自身を選べばよい.定理 5.2.3 より (5.9) による f の積分は一意に確定し (5.7) の左辺に一致する.

定理 5.2.4 (積分の線型性). 定義 5.2.2 で定めた積分について,任意の $f,g\in \mathcal{L}^1(X,\mathcal{M},|\mu|)$ と $\alpha,\beta\in\mathbb{C}$ に対し

$$\int_{Y} \alpha f(x) + \beta g(x) \, \mu(dx) = \alpha \int_{Y} f(x) \, \mu(dx) + \beta \int_{Y} g(x) \, \mu(dx)$$

が成り立つ.

証明.

第一段 f,g が可測単関数の場合、(5.7) で定める積分が線型性を持つことを示す。 $u_1,\cdots,u_k,v_1,\cdots,v_r\in\mathbb{C}$ と $A_1,\cdots,A_k,B_1,\cdots,B_r\in\mathcal{M}$ $(X=\sum_{i=1}^kA_i=\sum_{i=1}^rB_i)$ によって

$$f = \sum_{i=1}^{k} u_i \, \mathbb{1}_{A_i}, \quad g = \sum_{i=1}^{r} v_i \, \mathbb{1}_{B_j}$$

と表示されているとき,

$$\alpha f + \beta g = \sum_{i=1}^{k} \sum_{i=1}^{r} (\alpha u_i + \beta v_j) \mathbb{1}_{A_i \cap B_j}$$

と表現できるから

$$\int_X \alpha f(x) + \beta g(x) \mu(dx) = \sum_{i=1}^k \sum_{j=1}^r (\alpha u_i + \beta v_j) \mu(A_i \cap B_j)$$

$$= \alpha \sum_{i=1}^k u_i \mu(A_i) + \beta \sum_{j=1}^r v_j \mu(B_j) = \alpha \int_X f(x) \mu(dx) + \beta \int_X g(x) \mu(dx)$$

が成り立つ.

第二段 f,g を一般の可測関数とし、f,g それぞれについて (5.8) を満たす単関数近似列 $(f_n)_{n=1}^{\infty},(g_n)_{n=1}^{\infty}$ を一つ選ぶ.

$$\int_{X} |(\alpha f_n(x) + \beta g_n(x)) - (\alpha f(x) + \beta g(x))| \ |\mu|(dx)$$

$$\leq |\alpha| \int_{X} |f_n(x) - f(x)| \ |\mu|(dx) + |\beta| \int_{X} |g_n(x) - g(x)| \ |\mu|(dx) \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つから $\alpha f + \beta g$ の μ に関する積分は

$$\int_{X} \alpha f(x) + \beta g(x) \,\mu(dx) := \lim_{n \to \infty} \int_{X} \alpha f_n(x) + \beta g_n(x) \,\mu(dx)$$

で定義され, 前段の結果より

$$\begin{split} &\left| \int_{X} \alpha f(x) + \beta g(x) \, \mu(dx) - \alpha \, \int_{X} f(x) \, \mu(dx) - \beta \, \int_{X} g(x) \, \mu(dx) \right| \\ & \leq \left| \int_{X} \alpha f(x) + \beta g(x) \, \mu(dx) - \int_{X} \alpha f_{n}(x) + \beta g_{n}(x) \, \mu(dx) \right| \\ & + \left| \alpha \, \int_{X} f_{n}(x) \, \mu(dx) + \beta \, \int_{X} g_{n}(x) \, \mu(dx) - \alpha \, \int_{X} f(x) \, \mu(dx) - \beta \, \int_{X} g(x) \, \mu(dx) \right| \\ & \longrightarrow 0 \quad (n \longrightarrow \infty) \end{split}$$

が従う.

定理 5.2.5 (積分の測度に関する線型性). (X, M) を可測空間, μ, ν をこの上の複素測度とする. $f: X \to \mathbb{C}$ が $|\mu|$ と $|\nu|$ について可積分であるなら, $\alpha, \beta \in \mathbb{C}$ に対し $|\alpha\mu|$, $|\beta\nu|$, $|\alpha\mu + \beta\nu|$ についても可積分であり, 更に次が成り立つ:

$$\int_X f(x) \, (\alpha \mu + \beta \nu)(dx) = \alpha \, \int_X f(x) \, \mu(dx) + \beta \, \int_X f(x) \, \nu(dx).$$

証明. 第一段 f が可測単関数の場合について証明する. $a_i \in \mathbb{C}, A_i \in \mathcal{M} (i=1,\cdots,n, \sum_{i=1}^n A_i = X)$ を用いて

$$f = \sum_{i=1}^{n} a_i \mathbb{I}_{A_i}$$

と表されている場合,

$$\int_X f(x) (\alpha \mu + \beta \nu)(dx) = \sum_{i=1}^n a_i (\alpha \mu + \beta \nu)(A_i)$$

$$= \alpha \sum_{i=1}^n a_i \mu(A_i) + \beta \sum_{i=1}^n a_i \nu(A_i) = \alpha \int_X f(x) \mu(dx) + \beta \int_X f(x) \nu(dx)$$

が成り立つ.

第二段 f が一般の可測関数の場合について証明する. 任意の $A \in M$ に対して

$$|(\alpha\mu+\beta\nu)(A)| \leq |\alpha||\mu(A)| + |\beta||\nu(A)| \leq |\alpha||\mu|(A) + |\beta||\nu|(A)$$

が成り立つから、左辺で A を任意に分割しても右辺との大小関係は変わらず

$$|\alpha\mu + \beta\nu|(A) \le |\alpha||\mu|(A) + |\beta||\nu|(A)$$

となる. 従って f が $|\mu|$ と $|\nu|$ について可積分であるなら

$$\int_X |f(x)| \, |\alpha \mu + \beta \nu| (dx) \leq |\alpha| \int_X |f(x)| \, |\mu| (dx) + |\beta| \int_X |f(x)| \, |\nu| (dx) < \infty$$

が成り立ち前半の主張を得る. f の単関数近似列 $(f_n)_{n=1}^\infty$ を取れば、前段の結果と積分の定義より

$$\begin{split} \left| \int_{X} f(x) \left(\alpha \mu + \beta \nu \right) (dx) - \alpha \int_{X} f(x) \, \mu(dx) - \beta \int_{X} f(x) \, \nu(dx) \right| \\ & \leq \left| \int_{X} f(x) \left(\alpha \mu + \beta \nu \right) (dx) - \int_{X} f_{n}(x) \, \left(\alpha \mu + \beta \nu \right) (dx) \right| \\ & + |\alpha| \left| \int_{X} f(x) \, \mu(dx) - \int_{X} f_{n}(x) \, \mu(dx) \right| + |\beta| \left| \int_{X} f(x) \, \nu(dx) - \int_{X} f_{n}(x) \, \nu(dx) \right| \\ & \longrightarrow 0 \quad (n \longrightarrow \infty) \end{split}$$

が成り立ち後半の主張が従う.

定理 5.2.6 (収束定理). (X, M) を可測空間, μ をこの上の複素測度とする. $M/\mathfrak{B}(C)$ -可測関数列 $(f_n)_{n=1}^{\infty}$ が各点で収束し、かつ或る $g \in \mathscr{L}^1(X, M, |\mu|)$ が存在して $|f_n| \leq |g|$ $(n=1,2,\cdots)$ を満たすとき、次が成り立つ:

$$\int_{X} \lim_{n \to \infty} f_n(x) \, \mu(dx) = \lim_{n \to \infty} \int_{X} f_n(x) \, \mu(dx).$$

証明.

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (\forall x \in X)$$

とおく. Lebesgue の収束定理より $f \in \mathcal{L}^1(X, \mathcal{M}, |\mu|)$ かつ

$$\int_X f(x) |\mu|(dx) = \lim_{n \to \infty} \int_X f_n(x) |\mu|(dx)$$

が成り立つから、定理 5.2.4 及び定理 5.2.3 より

$$\left| \int_{V} f(x) \, \mu(dx) - \int_{V} f_n(x) \, \mu(dx) \right| \le \int_{V} |f(x) - f_n(x)| \, |\mu|(dx) \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が従う.

定理 5.2.7 (順序交換定理).

証明. $|\mu| \times |\nu| \le |\mu \times \nu|$ より $|\mu|, |\nu|, |\mu \times \nu|$ に Fubini の定理を適用.

$$\int_X \int_Y f_n(x,y) \ \nu(dy) \ \mu(dx) = \int_{X \times Y} f_n(x,y) \ (\mu \times \nu) (dx \times dy) = \int_Y \int_X f_n(x,y) \ \mu(dy) \ \nu(dx)$$

f が $|\mu \times \nu|$ に関して可積分なら

$$\int_{X\times Y} f(x,y) (\mu \times \nu) (dx \times dy)$$

が定義され, 更に

$$\int_{Y} |f(x,y)| \, |\nu|(dy) < \infty$$

だから

$$\int_{V} f(x, y) \, \nu(dy)$$

も定義される.

$$\left|\int_Y f(x,y)\;\nu(dy)\right|\leq \int_Y |f(x,y)|\;|\nu|(dy)$$

が |μ| について可積分であるから

$$\int_{Y} \int_{Y} f(x, y) \, \nu(dy) \, \mu(dx)$$

も定義される.

5.3 複素測度の Riesz の表現定理

定義 5.3.1 (空間 C_{∞}). 局所コンパクトな Hausdorff 空間 X に対し $C(X) := \{f: X \to \mathbb{C}; 連続 \}$ とおく.

$$C_{\infty}(X) := \{ f \in C(X) ;$$
 任意の $\epsilon > 0$ に対して $\{ x \in X ; |f(x)| \ge \epsilon \}$ がコンパクト. $\}$

として $C_{\infty}(X)$ を定め、またコンパクトな台を持つ $f \in C(X)$ の全体を $C_{c}(X)$ と表す.

 $f \in C_{\infty}(X)$ は遠方で 0 になる関数である. 特に $X = \mathbb{R}^d$ の場合は

$$C_{\infty}(\mathbb{R}^d) = \left\{ f : \mathbb{R}^d \to \mathbb{C} ; \lim_{|x| \to \infty} |f(x)| = 0 \right\}$$

が成り立つ.

定理 5.3.2 (C_c は C_∞ で稠密).

5.4 スペクトル測度

 $H \neq \{0\}$ を複素 Hilbert 空間としノルム位相を導入する. H 上の直交射影全体を Proj(H) とし, H における内積とノルムをそれぞれ $\langle \cdot, \cdot \rangle$, $\|\cdot\|$ で表す. また (X, M) を可測空間とする.

定義 5.4.1 (スペクトル測度). I を H 上の恒等写像とする. $E: M \to \text{Proj}(H)$ がスペクトル測度 (spectral measure) であるとは, E(X) = I かつ, 互いに素な列 $A_n \in M$ ($n = 1, 2, \cdots$) に対して次を満たすことをいう:

$$E(A_n) \neq E(A_m) \quad (n \neq m, \ A_n, A_m \neq \emptyset), \quad \sum_{n=1}^{\infty} E(A_n)u = E(\sum_{n=1}^{\infty} A_n)u \quad (\forall u \in H).$$
 (5.12)

補助定理 5.4.2 (スペクトル測度の積). M から Proj(H) へのスペクトル測度 H は次を満たす:

- $(1) E(\emptyset) = 0.$
- (2) $A, B \in \mathcal{M}$ に対し $E(A)E(B) = E(A \cap B)$.

証明.

$$E(\emptyset) = \sum_{n=1}^{\infty} E(\emptyset) = E(\emptyset) + \sum_{n=2}^{\infty} E(\emptyset)$$

が成り立ち*10

$$\sum_{n=2}^{\infty} E(\emptyset) = 0$$

が従う.

$$S := \sum_{n=2}^{\infty} E(\emptyset), \quad S_N := \sum_{n=2}^{N} E(\emptyset) \quad (N = 1, 2, \cdots)$$

とおけば、 $(S_N)_{N=2}^{\infty}$ は S にノルム収束するから Cauchy 列であり、

$$||S_{N+1} - S_N|| \longrightarrow 0 \quad (N \longrightarrow \infty)$$

より $E(\emptyset) = 0$ が得られる.

*10

$$a := \sum_{n=1}^{\infty} E(\emptyset), \quad a' := \sum_{n=2}^{\infty} E(\emptyset), \quad a_N := \sum_{n=1}^{N} E(\emptyset), \quad a'_N := \sum_{n=2}^{N} E(\emptyset)$$

とおけば

$$||a - (E(\emptyset) - a')|| \le ||a - a_N|| + ||a_N - (E(\emptyset) - a'_N)|| + ||a'_N - a'|| \longrightarrow 0 \quad (N \longrightarrow \infty)$$

が成り立つ.

(2) $F \cap G = \emptyset$ となる $F,G \in M$ に対し、F 又は G が \emptyset なら (1) より E(F)E(G) = 0、そうでない場合は (5.12) より

$$E(F) \neq E(G)$$
, $E(F) + E(G) = E(F + G) \in Proj(H)$

が成り立つから、命題 4.3.4 より E(F)E(G) = 0 が従う. これと命題 4.3.3 より、 $A,B \in \mathcal{M}$ に対し

$$E(A)E(B) = (E(A \cap B) + E(A \cap B^c))(E(A \cap B) + E(B \cap A^c)) = E(A \cap B)$$

が得られる.

補助定理 5.4.3 (スペクトル測度で導入する複素測度). $E: \mathcal{M} \to \operatorname{Proj}(H)$ をスペクトル測度とする. 各 $u, v \in H$ に 対し $\mu_{u,v}: \mathcal{M} \to \mathbb{C}$ と $\mu_u: \mathcal{M} \to [0,\infty)$ を次で定める:

$$\mu_{u,v}(\Lambda) := \langle E(\Lambda)u, v \rangle \quad (\forall \Lambda \in \mathcal{M}), \quad \mu_u := \mu_{u,u}$$
 (5.13)

- (1) μ_{uv} は (X, M) 上の複素測度であり、 μ_{u} は (X, M) 上の実数値有限測度である.
- (2) 任意の $\Lambda \in M$ に対し次が成り立つ:

$$|\mu_{u,v}(\Lambda)| \le \mu_u(\Lambda)^{\frac{1}{2}} \mu_v(\Lambda)^{\frac{1}{2}}.$$
 (5.14)

(3) $M/\mathfrak{B}([0,\infty))$ -可測関数 f,g に対して次が成り立つ:

$$\int_X f(x) g(x) \; |\mu_{u,v}|(dx) \leq \left(\int_X |f(x)|^2 \; \mu_u(dx) \right)^{\frac{1}{2}} \left(\int_X |g(x)|^2 \; \mu_v(dx) \right)^{\frac{1}{2}}.$$

証明.

(1) (5.13) より $\mu_{\mu\nu}$ は複素数値である. また命題 4.3.3 より

$$\langle E(\Lambda)u, v \rangle = \langle E(\Lambda)^2 u, v \rangle = \langle E(\Lambda)u, E(\Lambda)^* v \rangle = \langle E(\Lambda)u, E(\Lambda)v \rangle$$
(5.15)

が成り立つから $\mu_u(\Lambda) = ||E(\Lambda)u||^2$ を得る. 互いに素な列 $A_1, A_2, \dots \in M$ を取れば, (5.12) より

$$\left|\left\langle \sum_{n=1}^{\infty} E(A_n)u, v \right\rangle - \left\langle \sum_{n=1}^{N} E(A_n)u, v \right\rangle \right| \le \left\| \sum_{n=1}^{\infty} E(A_n)u - \sum_{n=1}^{N} E(A_n)u \right\| \|v\| \longrightarrow 0 \quad (N \longrightarrow \infty)$$

が成り立つから,

$$\left\langle \sum_{n=1}^{N} E(A_n)u, v \right\rangle = \sum_{n=1}^{N} \left\langle E(A_n)u, v \right\rangle$$

の右辺も収束し

$$\left\langle \sum_{n=1}^{\infty} E(A_n)u, v \right\rangle = \sum_{n=1}^{\infty} \left\langle E(A_n)u, v \right\rangle$$

が得られ $\mu_{u,v}$ の完全加法性が従う.

(2) (5.15) より

$$|\mu_{u,v}(A)| = |\langle E(A)u, E(A)v \rangle| \le ||E(A)u|| ||E(A)v|| = \mu_u(A)^{\frac{1}{2}} \mu_v(A)^{\frac{1}{2}} \quad (\forall A \in \mathcal{M})$$

が成り立つから、任意の $\Lambda \in M$ とその有限分割 $\Lambda = \sum_{i=1}^n A_i \ (A_i \in M)$ に対し

$$\sum_{i=1}^{n} \left| \mu_{u,v}(A_i) \right| \leq \sum_{i=1}^{n} \mu_u(A_i)^{\frac{1}{2}} \mu_v(A_i)^{\frac{1}{2}} \leq \left(\sum_{i=1}^{n} \mu_u(A_i) \right)^{\frac{1}{2}} \left(\sum_{i=1}^{n} \mu_v(A_i) \right)^{\frac{1}{2}} = \mu_u(\Lambda)^{\frac{1}{2}} \mu_v(\Lambda)^{\frac{1}{2}}$$

が得られ、左辺で分割の取り方の上限を取り (5.14) が従う.

(3) f,g が可測単関数の場合,

$$f = \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}}, \quad g = \sum_{i=1}^{n} \beta_{i} \mathbb{1}_{A_{i}} \quad (\alpha_{i}, \beta_{i} \in [0, \infty), \ \sum_{i=1}^{n} A_{i} = X)$$

と表されているとして

$$\int_{X} f(x)g(x) |\mu_{u,v}|(dx) = \sum_{i=1}^{n} \alpha_{i}\beta_{i}|\mu_{u,v}|(A_{i})$$

$$\leq \sum_{i=1}^{n} \alpha_{i}\mu_{u}(A_{i})^{\frac{1}{2}}\beta_{i}\mu_{v}(A_{i})^{\frac{1}{2}} = \left(\int_{X} |f(x)|^{2} |\mu_{u}(dx)|^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx)|^{\frac{1}{2}} \right)^{\frac{1}{2}}$$

が成り立つ.一般の可測関数については、単関数近似と単調収束定理より主張が従う.

以後は $E: \mathcal{M} \to \text{Proj}(H)$ をスペクトル測度とし、次の記号を定める:

$$MF = MF(X, \mathcal{M}) := \{ f : X \to \mathbb{C} ; f は \mathcal{M}/\mathfrak{B}(\mathbb{C})$$
-可測関数. $\},$ $MSF = MSF(X, \mathcal{M}) := \{ f : X \to \mathbb{C} ; f は \mathcal{M}/\mathfrak{B}(\mathbb{C})$ -可測単関数. $\}.$

定義 5.4.4 (MSF-近似列). $f \in MF$ に対し $\lim_{n\to\infty} f_n(x) = f(x)$ ($\forall x \in X$) かつ $|f_n| \le |f|$ ($n=1,2,\cdots$) を満たす $f_n \in MSF$ ($n=1,2,\cdots$) を f の MSF-近似列と呼び,特に $(|f_n|)_{n=1}^\infty$ が単調増加なら MSF-単調近似列と呼ぶ.

命題 5.4.5 (MSF-単調近似列の存在). 任意の $f \in MF$ に対して MSF-単調近似列が存在する.

証明. 任意に $f \in MF$ を取り、f の実部と虚部をそれぞれ g,h と表す。 $g^+ \coloneqq g \mathbb{1}_{\{g \ge 0\}}, g^- \coloneqq g^+ - g$ と定め、同様に h^+,h^- を定めれば、 g^+,g^-,h^+,h^- はそれぞれ非負で可測 $M/\mathfrak{B}(\mathbb{R})$ であるから MSF-単調近似列 $(g_n^+)_{n=1}^\infty$ が存在する。

$$|g_n|^2 = |g_n^+|^2 + |g_n^-|^2 \le |g^+|^2 + |g^-|^2 = |g|^2$$

が成り立つから,

$$f_n := g_n^+ - g_n^- + i(h_n^+ - h_n^-) \quad (n = 1, 2, \cdots)$$

とおけば

$$|f_n|^2 = |g_n^+ - g_n^-|^2 + |h_n^+ - h_n^-|^2 \le |g|^2 + |h|^2 = |f|^2$$

が得られる.

定義 5.4.6 (スペクトル積分). $f \in MF$ に対し、スペクトル積分 (spectral integral) T_f を以下で定める:

f が可測単関数の場合 $\alpha_i \in \mathbb{C}$ と $A_i \in \mathcal{M}, \sum_{i=1}^n A_i = X$ によって

$$f = \sum_{i=1}^{n} \alpha_i \mathbb{1}_{A_i}$$

と表示されているとき,

$$\mathcal{D}(T_f) := H, \quad T_f := \sum_{i=1}^n \alpha_i E(A_i)$$
 (5.16)

と定める.

f が一般の可測関数の場合 f の MSF-近似列 $(f_n)_{n=1}^{\infty}$ を一つ取り

$$\mathcal{D}(T_f) := \left\{ u \in H \; ; \quad \int_X |f(x)|^2 \, \mu_u(dx) < \infty \right\},$$

$$T_f u := \lim_{n \to \infty} T_{f_n} u \quad (\forall u \in \mathcal{D}(T_f))$$

$$(5.17)$$

$$T_f u := \lim_{n \to \infty} T_{f_n} u \quad (\forall u \in \mathcal{D}(T_f))$$
 (5.18)

と定める.

作用素の線型演算 $f,g \in MF$ に対して

$$(T_f + T_g)u := T_f u + T_g u \quad (u \in \mathcal{D}(T_f) \cap \mathcal{D}(T_g)),$$
$$(\lambda T_f)u := \lambda T_f u \quad (u \in \mathcal{D}(T_f))$$

として線型演算を定める. また上式の通り $\mathcal{D}(T_f + T_g) = \mathcal{D}(T_f) \cap \mathcal{D}(T_g)$, $\mathcal{D}(\lambda T_f) = \mathcal{D}(T_f)$ である. T_f の積分表示 上で定義した T_f を、スペクトル測度 E による積分に見立てた形式で次の様に表現する:

$$T_f = \int_X f(x) E(dx).$$

補助定理 5.4.7. (5.16) による T_f の定義は f の表示に依らない.

$$f = \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}} = \sum_{j=1}^{m} \beta_{i} \mathbb{1}_{B_{i}}$$

と表示されているとき,

$$\sum_{i=1}^{n} \alpha_{i} E(A_{i}) = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} E(A_{i} \cap B_{j}) = \sum_{i=1}^{m} \sum_{j=1}^{n} \beta_{j} E(A_{i} \cap B_{j}) = \sum_{i=1}^{m} \beta_{j} E(B_{j})$$

が成り立つ.

補助定理 5.4.8. $f,g \in MSF$, $\alpha,\beta \in \mathbb{C}$, $u,v \in H$ に対して次が成り立つ:

- (1) $T_{\alpha f + \beta g} = \alpha T_f + \beta T_f$, $T_f T_g = T_{fg}$, $T_f^* = T_{\overline{f}}$, $T_{1 \hspace{-1.5pt} 1_A} = E(A)$ $(\forall A \in \mathcal{M})$. (2) $\langle T_f u, T_g v \rangle = \int_X f(x) \overline{g(x)} \, \mu_{u,v}(dx)$.

証明.

 $a_i, b_i \in \mathbb{C}, A_i \in \mathcal{M} \sum_{i=1}^n A_i = X$ によって (1)

$$f = \sum_{i=1}^{n} a_i \mathbb{1}_{A_i}, \quad g = \sum_{i=1}^{n} b_i \mathbb{1}_{A_i}$$

と表示されているとする. 先ず

$$T_{\alpha f + \beta g} = \sum_{i=1}^{n} (\alpha a_i + \beta b_i) E(A_i) = \alpha \sum_{i=1}^{n} a_i E(A_i) + \beta \sum_{i=1}^{n} b_i E(A_i) = \alpha T_f + \beta T_f$$

が成り立つ. また補題 5.4.2 より

$$T_f T_g = \sum_{i=1} a_i b_i E(A_i) = T_{fg}$$

が従い, また命題 4.3.3 より

$$T_f^* = \left(\sum_{i=1}^n a_i E(A_i)\right)^* = \sum_{i=1}^n \overline{a_i} E(A_i)^* = T_{\overline{f}}$$

も得られる. $T_{1_A} = E(A)$ は (5.16) による.

命題 4.3.3 と命題 5.4.2 より $\mathcal{R}(E(A_i)) \perp \mathcal{R}(E(A_k))$ $(j \neq k)$ が成り立つから、(5.15) より (2)

$$\left\langle T_f u, T_g v \right\rangle = \sum_{i=1}^n a_i \overline{b_i} \left\langle E(A_i) u, E(A_i) v \right\rangle = \sum_{i=1}^n a_i \overline{b_i} \left\langle E(A_i) u, v \right\rangle = \int_X f(x) \overline{g(x)} \, \mu_{u,v}(dx)$$

を得る.

定理 5.4.9. (5.18) で定める T_f は well-defined であり、特に (5.16) による定義の拡張となっている.

証明.

第一段 (5.18) の極限が存在することを示す. $f \in MF$ に対し MSF-近似列 $(f_n)_{n=1}^\infty$ を取れば

$$||T_{f_n}u - T_{f_m}u|| = ||T_{f_n - f_m}u|| = \int_X |f_n(x) - f_m(x)|^2 \mu_u(dx) \quad (\forall u \in \mathcal{D}(T_f))$$

が成り立つ. $|f_n - f| \le 2|f|$ かつ各点で $|f_n(x) - f(x)| \longrightarrow 0$ となるから、Lebesgue の収束定理より

$$\int_{X} |f_{n}(x) - f_{m}(x)|^{2} \mu_{u}(dx) \leq 2 \int_{X} |f_{n}(x) - f(x)|^{2} \mu_{u}(dx) + 2 \int_{X} |f_{m}(x) - f(x)|^{2} \mu_{u}(dx) \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が得られる.従って $\left(T_{f_n}u\right)_{n=1}^\infty$ は Hilbert 空間 H において Cauchy 列であり極限が存在する.

第二段 (5.18) の極限が近似列に依存しないことを示す. 前段の f に対し別の MSF-近似列 $(g_m)_{m=1}^\infty$ を取り

$$T_1u := \lim_{n \to \infty} T_{f_n}u, \quad T_2u := \lim_{m \to \infty} T_{g_m}u \quad (\forall u \in \mathcal{D}(T_f))$$

とおく. 各 $u \in \mathcal{D}(T_f)$ に対し

$$\|T_{f_n}u - T_{g_m}u\|^2 = \int_X |f_n(x) - g_m(x)|^2 \ \mu_u(dx)$$

$$\leq 2 \int_Y |f_n(x) - f(x)|^2 \ \mu_u(dx) + 2 \int_Y |f(x) - g_m(x)|^2 \ \mu_u(dx) \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が成り立つから

$$||T_1u - T_2u|| \le ||T_1u - T_{f_n}u|| + ||T_{f_n}u - T_{g_m}u|| + ||T_{g_m}u - T_2u|| \longrightarrow 0 \quad (n, m \longrightarrow \infty)$$

が従い極限の一意性を得る. $f \in MSF$ の場合は $f_n = f$ を MSF-近似列とすれば後半の主張が得られる.

補助定理 5.4.10 ($\mathcal{D}(T_f)$ は線型・稠密). (5.17) で定めた $\mathcal{D}(T_f)$ は H の線型部分空間で $\overline{\mathcal{D}(T_f)} = H$ を満たす.

証明.

線型性 $u, v \in \mathcal{D}(T_f)$ に対して

$$\int_X |f(x)|^2 \, \mu_u(dx) < \infty, \quad \int_X |f(x)|^2 \, \mu_v(dx) < \infty$$

が満たされている. (5.15) より任意の $\Lambda \in M$ に対して

$$\mu_{u+v}(\Lambda) = ||E(\Lambda)(u+v)||^2 \le 2 ||E(\Lambda)u||^2 + 2 ||E(\Lambda)v||^2 = 2\mu_u(\Lambda) + 2\mu_v(\Lambda)$$

が成り立つから

$$\int_{X} |f(x)|^{2} \mu_{u+v}(dx) \le 2 \int_{X} |f(x)|^{2} \mu_{u}(dx) + 2 \int_{X} |f(x)|^{2} \mu_{v}(dx) < \infty$$

が従い $u+v\in \mathcal{D}(T_f)$ を得る. また任意に $\lambda\in\mathbb{C}$ を取れば

$$\mu_{\lambda u}(\Lambda) = ||\lambda E(\Lambda)u||^2 = |\lambda|^2 \mu_u(\Lambda)$$

が成り立ち $\lambda u \in \mathcal{D}(T_f)$ も従う.

稠密性 任意に $u \in H$ を取る.

$$A_k := \{ x \in X ; |f(x)| \le k \} (k = 1, 2, \cdots)$$

に対して $u_k \coloneqq E(A_k)u$ とおけば、 $(A_k)_{k=1}^{\infty}$ は単調に増加し X に収束するから

$$||u - u_k|| = ||E(X)u - E(A_k)u|| \longrightarrow 0 \quad (k \longrightarrow \infty)$$

$$(5.19)$$

が成り立つ. 一方で任意の $\Lambda \in M$ に対して, 命題 5.4.2 と (5.15) より

$$\mu_{u_k}(\Lambda) = \langle E(\Lambda)E(A_k)u, E(A_k)u \rangle = \langle E(\Lambda \cap A_k)u, u \rangle = \mu_u(\Lambda \cap A_k)$$

と表せるから μ_{u_k} は A_k に集中している. よって

$$\int_X |f(x)|^2 \, \mu_{u_k}(dx) = \int_{A_k} |f(x)|^2 \, \mu_{u_k}(dx) \le k^2 \mu_u(A_k) < \infty$$

が成り立ち $u_k \in \mathcal{D}(T_f)$ が従い、(5.19) より主張を得る.

定理 5.4.11 (T_f の定義域は 0 ではない). 任意の $f \in MF$ に対し $\mathcal{D}(T_f) \neq \{0\}$ が成り立つ.

証明. Hausdorff 位相空間において一点集合は閉だから, $\mathcal{D}(T_f)$ = $\{0\}$ なら H = $\{0\}$ が従い本章の仮定に反する.

定理 5.4.12 (T の性質). $f,g \in MF$ とする.

- (1) T_f は H から H への線型作用素である.
- (2) $u \in \mathcal{D}(T_f), v \in \mathcal{D}(T_g)$ ならば次が成り立つ:

$$\int_X \left| f(x) \overline{g(x)} \right| \ |\mu_{u,v}|(dx) \leq \| f \|_{\mathrm{L}^2(\mu_u)} \, \| \, g \, \|_{\mathrm{L}^2(\mu_v)} \,, \quad \int_X f(x) \overline{g(x)} \, \mu_{u,v}(dx) = \left\langle T_f u, T_g v \right\rangle.$$

- (3) $T_f + T_g \subset T_{f+g}$ が成り立ち、特に g が有界なら等号が成立する.
- (4) $T_f T_g \subset T_{fg}$ が成り立ち、特に g が有界なら等号が成立する.
- (5) $T_f^* = T_{\overline{f}}$ が成り立つ. 特に T_f は閉作用素であり、また f が $\mathbb R$ 値なら T_f は自己共役である.
- (6) $\lambda \in \mathbb{C}$ が $\lambda \neq 0$ なら $T_{\lambda f} = \lambda T_f$ が成り立つ.

証明.

(1) 補題 5.4.10 より T_f の定義域は線形空間であるから,後は T_f が線型演算を満たすことを示せばよい. f の MSF-近似列 $(f_n)_{n=1}^\infty$ を取れば,定義式 (5.16) より T_{f_n} は線型作用素であるから

$$\left\| T_{f}(\alpha u + \beta v) - \alpha T_{f}u - \beta T_{f}v \right\| \leq \left\| T_{f}(\alpha u + \beta v) - T_{f_{n}}(\alpha u + \beta v) \right\| + |\alpha| \left\| T_{f}u - T_{f_{n}}u \right\| + |\beta| \left\| T_{f}v - T_{f_{n}}v \right\|$$

$$\longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つ.

(2) $f,g \in MSF$ のとき, 任意の $u,v \in H$ に対して

$$\int_{X} |f(x)\overline{g(x)}| \ |\mu_{u,v}|(dx) \le \|f\|_{L^{2}(\mu_{u})} \|g\|_{L^{2}(\mu_{v})}, \quad \langle T_{f}u, T_{g}v \rangle = \int_{X} f(x)\overline{g(x)} \ \mu_{u,v}(dx)$$

が成り立つ. 第二式は補題 (5.4.8) による. 第一式について,

$$f = \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{A_{i}}, \quad g = \sum_{i=1}^{n} \beta_{i} \mathbb{1}_{A_{i}}$$

と表示されているとして

$$\int_{X} \left| f(x) \overline{g(x)} \right| |\mu_{u,v}|(dx) = \sum_{i=1}^{n} |\alpha_{i}| |\beta_{i}| |\mu_{u,v}|(A_{i}) \leq \sum_{i=1}^{n} |\alpha_{i}| |\beta_{i}| |\mu_{u}(A_{i})^{\frac{1}{2}} \mu_{v}(A_{i})^{\frac{1}{2}} \leq \left(\int_{X} |f(x)|^{2} |\mu_{u}(dx) \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx) \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx) \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx)|^{2} \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx)|^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx)|^{\frac{1}{2}} \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx)|^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx)|^{\frac{1}{2}} \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx)|^{\frac{1}{2}} \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{2} |\mu_{v}(dx)|^{\frac{1}{2}} \left(\int_{X} |g(x)|^{\frac{1}{2}} |\mu_{v}(dx)|^{\frac{1}{2}} \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{\frac{1}{2}} |\mu_{v}(dx)|^{\frac{1}{2}} \left(\int_{X} |g(x)|^{\frac{1}{2}} |\mu_{v}(dx)|^{\frac{1}{2}} \right)^{\frac{1}{2}} \left(\int_{X} |g(x)|^{\frac{1}{2}} |\mu_{v}(dx)|^{\frac{1}{2}} \left(\int_{X} |g(x)|^{\frac{1}{2}} |\mu_{v}(d$$

が成り立つ. 一般の $f,g \in MF$ については、MSF-近似列と Fatou の補題より従う.

(3) $\mathcal{D}(T_f + T_g) = \mathcal{D}(T_f) \cap \mathcal{D}(T_g)$ であるから、任意の $u \in \mathcal{D}(T_f + T_g)$ に対して

$$\int_X |f(x)|^2 \, \mu_u(dx) < \infty, \quad \int_X |g(x)|^2 \, \mu_u(dx) < \infty$$

が満たされ

$$\int_{X} |f(x) + g(x)|^{2} \mu_{u}(dx) \le 2 \int_{X} |f(x)|^{2} \mu_{u}(dx) + 2 \int_{X} |g(x)|^{2} \mu_{u}(dx) < \infty$$

が従い $u\in\mathcal{D}(T_{f+g})$ が成り立つ。 また任意の $u\in\mathcal{D}(T_f+T_g)$ に対して,内積を展開し (2) の結果を適用すれば

$$\|T_{f+g}u - T_{f}u - T_{g}u\|^{2} = \int_{X} |f + g|^{2} d\mu_{u} + \int_{X} |f|^{2} d\mu_{u} + \int_{X} |g|^{2} \mu_{u}$$

$$-2 \int_{X} \operatorname{Re}[(f + g)f] d\mu_{u} - 2 \int_{X} \operatorname{Re}[(f + g)g] d\mu_{u} + 2 \int_{X} \operatorname{Re}[fg] d\mu_{u} = 0$$

が成り立ち $T_f + T_g \subset T_{f+g}$ が従う. g が有界な場合、補題 5.4.3 より全ての $u \in H$ に対して μ_u が有限測度であるから、 $\mathcal{D}(T_g)$ は H に一致し $\mathcal{D}(T_f + T_g) = \mathcal{D}(T_f)$ が成り立つ. また任意の $u \in \mathcal{D}(T_{f+g})$ に対して

$$\int_X |f(x)|^2 \, \mu_u(dx) \le 2 \int_X |f(x) + g(x)|^2 \, \mu_u(dx) + 2 \int_X |g(x)|^2 \, \mu_u(dx) < \infty$$

となり $u \in \mathcal{D}(T_f + T_g)$ が従うから、前半の結果と併せて $T_f + T_g = T_{f+g}$ が得られる.

(4)

(5) 補題 5.4.10 より $\mathcal{D}(T_f)$ が H で稠密であるから T_f^* が定義される. (2) の結果より

$$\langle T_f u, v \rangle = \int_X f(x) \, \mu_{u,v}(dx) = \langle u, T_{\overline{f}} v \rangle \quad (\forall u, v \in \mathcal{D}(T_f) = \mathcal{D}(T_{\overline{f}}))$$
 (5.20)

が成り立ち、先ず $T_{\overline{f}} \subset T_f^*$ が従う.後は $\mathcal{D}(T_f^*) = \mathcal{D}(T_{\overline{f}})$ が成り立つことを示せばよい.

$$A_k := \{ x \in X ; |f(x)| \le k \} (k = 1, 2, \cdots)$$

とおいて、任意に $v \in \mathcal{D}(T_f^*)$ を取り

$$v_k := T_{\overline{f}_{1}} v \quad (k = 1, 2, \cdots)$$

とすれば、各 $k \in \mathbb{N}$ について

$$\left\|T_f v_k\right\| = \left\|T_f T_{\overline{f}}\right\|_{A_k} v \left\|^2 = \int_{A_k} |f(x)|^4 \mu_v(dx) < k^4 \mu_v(A_k) < \infty$$

が成り立つから $v_k \in \mathcal{D}(T_f)$ である. (5.20) と同様にすれば

$$\| v_k \|^2 = \left\langle T_{\overline{f} \prod_{A_k} v}, T_{\overline{f} \prod_{A_k} v} \right\rangle = \left\langle T_{f \prod_{A_k} T_{\overline{f} \prod_{A_k} v}}, v \right\rangle = \left\langle T_f v_k, v \right\rangle = \left\langle v_k, T_f^* v \right\rangle$$

となり、Schwartz の不等式より

$$\|v_k\| \le \|T_f^*v\| \tag{5.21}$$

が得られる. 一方で

$$\|v_k\|^2 = \|T_{\overline{f}}\|_{A_k} v\|^2 = \int_{A_k} |f(x)|^2 \mu_{\nu}(dx)$$

が成り立つから、(5.21) と併せて

$$\int_{A_k} |f(x)|^2 \, \mu_\nu(dx) \leq \left\| \, T_f^* v \, \right\|^2$$

が従う. $(A_k)_{k=1}^\infty$ は単調増大列で $\bigcup_{k=1}^\infty A_k = X$ を満たすから、単調収束定理より

$$\int_{V} |f(x)|^2 \, \mu_{\nu}(dx) \le \left\| T_f^* v \right\|^2$$

となり $v \in \mathcal{D}(T_f)$ が得られる.特に $T_f = T_{\overline{f}}^*$ が従い,共役作用素が閉線型であるから T_f も閉作用素である.

(6) $\lambda=0$ の場合は, $\mathcal{D}(T_{\lambda f})=\mathcal{D}(T_0)=H$ であるが $\mathcal{D}(T_f)=H$ とは限らないから主張が従わない. $\lambda\neq 0$ の場合

$$\int_X |\lambda f(x)|^2 \, \mu_u(dx) < \infty \quad \Leftrightarrow \quad \int_X |f(x)|^2 \, \mu_u(dx) < \infty$$

が成り立つから $\mathcal{D}(T_{\lambda f})=\mathcal{D}(T_f)=\mathcal{D}(\lambda T_f)$ である。また f の MSF-近似列 $(f_n)_{n=1}^\infty$ については補題 5.4.8 より

$$T_{\lambda f_n} u = \lambda T_{f_n} u \quad (u \in \mathcal{D}(T_{\lambda f}))$$

が満たされているから、任意の $u \in \mathcal{D}(T_{\lambda f})$ に対して

$$\|T_{\lambda f}u - \lambda T_{f}u\| \le \|T_{\lambda f}u - T_{\lambda f_{n}}u\| + |\lambda| \|T_{f}u - T_{f_{n}}u\| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が従う.

系 5.4.13. $f,g \in MF$ とする.

- (1) $T_f = T_g$ であることと $E(\{x \in X; f(x) \neq g(x)\}) = 0$ (零写像) であることは同値である.
- (2) f が有界ならば $T_f \in \mathbf{B}(H)$ であり $\|T_f\|_{\mathbf{B}(H)} \leq \sup_{x \in X} |f(x)|$ が成り立つ.
- (3) 或る L > 0 に対し $E(\{x \in X; |f(x)| > L\}) = 0$ が成り立つとき、 $T_f \in B(H)$ であり次が成り立つ:

$$||T_f||_{\mathbf{B}(H)} = \inf\{L > 0 ; E(\{x \in X ; |f(x)| > L\}) = 0\}.$$

(4) $\lambda \in \mathbb{C}, \epsilon > 0$ に対し $U_{\epsilon}(\lambda) := \{z \in \mathbb{C} ; |z - \lambda| < \epsilon \}$ とおく. T_f のレゾルベント集合*¹¹は

$$\rho(T_f) = \left\{ \lambda \in \mathbb{C} \; ; \quad 或る \; \epsilon > 0 \; が存在して \; E\left(f^{-1}(U_\epsilon(\lambda))\right) = 0 \; を満たす. \, \right\} \tag{5.22}$$

で与えられ,さらに $\lambda \in \rho(T_f)$ に対して $\epsilon > 0$ が $E\left(f^{-1}(U_{\epsilon}(\lambda))\right) = 0$ を満たすとすれば

$$\left(\lambda I - T_f\right)^{-1} = T_{\frac{1}{\lambda - f}} \mathbf{1}_{X \setminus f^{-1}(U_{\epsilon}(\lambda))}$$

が成り立つ. ただしIはH上の恒等写像を表す.

 $^{^{*11}}$ 定理 5.4.12 より T_f は閉作用素であるからレゾルベントを考察できる.

証明.

(1) $今 N := \{x \in X; f(x) \neq g(x)\}$ とおく、 $T_f = T_g$ が成り立っているとすると、 $u \in \mathcal{D}(T_f)$ に対し

$$0 = \|T_f u - T_g u\|^2 = \|T_{f-g} u\|^2 = \int_Y |f(x) - g(x)|^2 \mu_u(dx)$$
 (5.23)

が従い $\mu_u(N) = \|E(N)u\|^2 = 0$ となる。 $\mathcal{D}(T_f)$ の稠密性と直交射影 E(N) の連続性より E(N) = 0 を得る。逆に E(N) = 0 の場合,任意の $u \in \mathcal{D}(T_f)$ に対して $\mu_u(N) = \|E(N)u\|^2 = 0$ が成り立つから

$$\int_X |g(x)|^2 \, \mu_u(dx) \leq 2 \int_X |f(x) - g(x)|^2 \, \mu_u(dx) + 2 \int_X |f(x)|^2 \, \mu_u(dx) = 2 \int_X |f(x)|^2 \, \mu_u(dx) < \infty$$

となり、(5.23) と併せて $T_f \subset T_g$ が従う. 同様に $T_g \subset T_f$ も成り立つから $T_f = T_g$ を得る.

(3) $E(\{x \in X; |f(x)| > L\}) = 0$ を満たす L > 0 に対し

$$A_L := \{ x \in X ; |f(x)| \le L \}$$

とおけば、任意の $u \in H$ に対し

$$\mu_u(\Lambda) = \langle E(\Lambda)u, u \rangle = \langle E(\Lambda \cap A_L)u, u \rangle = \mu_u(\Lambda \cap A_L)$$

が成り立つから μ_u は A_L に集中している. 従って定理 5.4.12(2) と μ_u の定義 (5.13) より

$$\|T_f u\|^2 = \int_X |f(x)|^2 \, \mu_u(dx) = \int_{A_I} |f(x)|^2 \, \mu_u(dx) \le L^2 \mu_u(X) = L^2 \|u\|^2 < \infty$$

となるから、 $\mathcal{D}(T_f) = H$ 且つ $\|T_f\|_{\mathbf{B}(H)} \le L$ を得る. これにより $T_f \in \mathbf{B}(H)$ と

$$||T_f||_{B(H)} \le \inf\{L > 0 ; E(\{x \in X ; |f(x)| > L\}) = 0\}$$

が成り立つ.ここで $\|T_f\|_{\mathrm{B}(H)} < \inf\{L>0 \; ; \quad E(\{x\in X\; ; \quad |f(x)|>L\})=0\}$ が成り立つとすると (4) $\lambda\in\mathbb{C}$ を固定する.任意の $\epsilon>0$ に対し $V_\epsilon:=f^{-1}(U_\epsilon(\lambda))$ とおけば f の可測性から $V_\epsilon\in M$ であり,また

$$x \in V_{\epsilon} \quad \Leftrightarrow \quad |\lambda - f(x)| < \epsilon$$

が成り立つから、 $X \setminus V_{\epsilon}$ 上で $1/|\lambda - f| \le 1/\epsilon$ が満たされる.

第一段 $E(V_{\epsilon}) = 0$ を満たす ϵ が存在しない場合,任意に $\epsilon > 0$ を取り固定する. $E(V_{\epsilon}) \neq 0$ であるから $\|u_{\epsilon}\|^2 = 1$ である $u_{\epsilon} \in \mathcal{R}(E(V_{\epsilon}))$ が存在し,或る $v_{\epsilon} \in H$ が対応し $E(V_{\epsilon})v_{\epsilon} = u_{\epsilon}$ を満たす.任意に $\Lambda \in M$ を取れば

$$\mu_{u_{\epsilon}}(\Lambda) = \langle E(\Lambda)u_{\epsilon}, E(\Lambda)u_{\epsilon} \rangle = \langle E(\Lambda \cap V_{\epsilon})v_{\epsilon}, E(\Lambda \cap V_{\epsilon})v_{\epsilon} \rangle = \mu_{v_{\epsilon}}(\Lambda \cap V_{\epsilon})$$

が成り立つから $\mu_{u_{\epsilon}}$ は V_{ϵ} に集中し、従って

$$\int_X |f(x)|^2 \, \mu_{u_{\epsilon}}(dx) = \int_{V_{\epsilon}} |f(x)|^2 \, \mu_{u_{\epsilon}}(dx) \le (\epsilon + |\lambda|)^2 \, \mu_{u_{\epsilon}}(V_{\epsilon}) < \infty$$

となり $u_{\epsilon} \in \mathcal{D}(T_f)$ を得る. 定理 5.4.12 より

$$(\lambda I - T_f)u = (\lambda T_1 - T_f)u = T_{\lambda - f}u \quad (\forall u \in \mathcal{D}(T_f))$$

が成り立ち、特に $u_{\epsilon} \in \mathcal{D}(T_f)$ であるから次を得る:

$$\left\| \left(\lambda I - T_f \right) u_{\epsilon} \right\|^2 = \int_{V_{\epsilon}} |\lambda - f(x)|^2 \, \mu_{u_{\epsilon}}(dx) \le \epsilon^2 \mu_{u_{\epsilon}}(X) = \epsilon^2 \| u_{\epsilon} \|^2.$$

ここで逆作用素 $\left(\lambda I-T_f\right)^{-1}$ が存在する場合,或る $w_\epsilon\in H$ が存在して $u_\epsilon=\left(\lambda I-T_f\right)^{-1}w_\epsilon$ を満たすから

$$\|w_{\epsilon}\| \le \epsilon \|(\lambda I - T_f)^{-1} w_{\epsilon}\|$$

が従い

$$\frac{1}{\epsilon} \le \frac{\left\| \left(\lambda I - T_f \right)^{-1} w_{\epsilon} \right\|}{\left\| w_{\epsilon} \right\|} \le \left\| \left(\lambda I - T_f \right)^{-1} \right\|_{\mathcal{B}(H)}$$

が成り立つが, $\epsilon>0$ の任意性より $\left(\lambda I-T_f\right)^{-1}$ は有界ではない.よって $\lambda\not\in \rho(T_f)$ が得られる.

第二段 前段の結果より (5.22) の等号を \subset に置き換えたものは真である.次は逆向きの包含関係を示す.今,或る $\epsilon > 0$ が存在して $E(V_{\epsilon}) = 0$ を満たすとする.

$$\left| \frac{1}{\lambda - f} \, \mathbb{1}_{X \setminus V_{\epsilon}} \right| \le \frac{1}{\epsilon}$$

が成り立つから $(1/(\lambda - f))$ $\mathbb{1}_{X\setminus V_{\epsilon}}$ は有界であり、定理 5.4.12 より

$$\left(\lambda I - T_f\right) T_{\frac{1}{1-\epsilon}} \mathbf{1}_{X \setminus V_{\epsilon}} = T_{\lambda - f} T_{\frac{1}{1-\epsilon}} \mathbf{1}_{X \setminus V_{\epsilon}} = T_{\mathbf{1}_{X \setminus V_{\epsilon}}} = E(X) - E(V_{\epsilon}) = I$$

が成り立つ. 同様に

$$T_{\frac{1}{\lambda-f}} \mathbf{1}_{X \setminus V_{\epsilon}} \left(\lambda I - T_f \right) = I$$

も得られ, 写像の性質の一般論より

$$\left(\lambda I - T_f\right)^{-1} = T_{\frac{1}{\lambda - f}} \mathbf{1}_{X \setminus V_{\epsilon}}$$

が従う. (2) の結果より $T_{\frac{1}{L}} \mathbb{1}_{X \setminus V_e} \in \mathbf{B}(H)$ であるから $\lambda \in \rho(T_f)$ となる.

系 5.4.14. $(X, \mathcal{M}) = (\mathbb{R}^d, \mathfrak{B}(\mathbb{R}^d))$ の場合,

として E の台を定める. このとき任意の連続写像 $f: \mathbb{R}^d \to \mathbb{C}$ について

$$\sigma(T_f) = \overline{f(\operatorname{supp} E)}$$

が成り立つ. 特に $\operatorname{supp} E$ がコンパクトなら $\sigma(T_f) = f(\operatorname{supp} E)$ となる.

証明. 任意に $x \in \operatorname{supp} E$ を取る. f(x) の任意の ϵ 近傍 $U_{\epsilon} = U_{\epsilon}(f(x))$ に対し,f の連続性から $f^{-1}(U_{\epsilon})$ は x の開近傍となるから, $E(f^{-1}(U_{\epsilon})) = 0$ が成り立ち $f(x) \in \sigma(T_f)$ が従う。 $\sigma(T_f)$ は閉集合であるから $\overline{f(\operatorname{supp} E)} \subset \sigma(T_f)$ を得る.逆に任意に $\lambda \in \overline{f(\operatorname{supp} E)}$ を取れば,或る $\epsilon > 0$ が存在して $U_{\epsilon}(\lambda) \cap \overline{f(\operatorname{supp} E)} = \emptyset$ を満たすから $f^{-1}(U_{\epsilon}(\lambda)) \cap \operatorname{supp} E = \emptyset$ が成り立つ。 $f^{-1}(U_{\epsilon}(\lambda))$ に属する \mathbb{R}^d の有理点全体を \mathbb{Q}_f と表せば,各 $r \in \mathbb{Q}_f$ に対し或る開近傍 V_r が存在して $E(V_r) = 0$ を満たすから $E(V_r \cap f^{-1}(U_{\epsilon}(\lambda))) = 0$ ($\forall r \in \mathbb{Q}_f$) が従う。 \mathbb{Q}_f は可付番であり添数を変えれば

$$f^{-1}(U_{\epsilon}(\lambda)) = \bigcup_{n \in \mathbb{N}} V_n \cap f^{-1}(U_{\epsilon}(\lambda))$$

と表されるから、任意の $u \in H$ に対し

$$E\left(f^{-1}(U_{\epsilon}(\lambda))\right)u=\lim_{N\to\infty}E\left(\cup_{n=1}^NV_n\cap f^{-1}(U_{\epsilon}(\lambda))\right)u=0$$

が成り立ち $\lambda \in \rho(E)$ となる. 連続写像によるコンパクト集合の像はコンパクトであるから後半の主張を得る.

定理 5.4.15.

付録A

弱収束

A.1 ノルム空間における弱収束

 \mathbb{K} を \mathbb{R} 又は \mathbb{C} とする. ノルム空間 X のノルムを $\|\cdot\|_X$ と表記し、また $J_X:X\to X^{**}$ を自然な等長単射とする.

定義 A.1.1 (弱収束). X を \mathbb{K} 上のノルム空間とする. X の点列 $(x_n)_{n=1}^\infty$ が $x \in X$ に弱収束するとは

$$\lim_{n \to \infty} f(x_n) = f(x) \quad (\forall f \in X^*)$$

が成り立つことを言い、w- $\lim_{n\to\infty} x_n = x$ と表記する.

定義 A.1.2 (汎弱収束). X を \mathbb{K} 上のノルム空間とする. X^* の列 $(f_n)_{n=1}^\infty$ が $f \in X^*$ に汎弱収束するとは

$$\lim_{n \to \infty} f_n(x) = f(x) \quad (\forall x \in X)$$

が成り立つことを言い、 $*w-\lim_{n\to\infty} f_n = f$ と表記する.

定理 A.1.3 (弱収束及び汎弱収束極限の一意性). X を \mathbb{K} 上のノルム空間とする. X の点列 $(x_n)_{n=1}^\infty$ が $u,v\in X$ に弱収束するなら u=v が従い, X^* の列 $(f_n)_{n=1}^\infty$ が $f,g\in X^*$ に汎弱収束するなら f=g が従う.

証明. $(x_n)_{n=1}^{\infty}$ が $u,v \in X$ に弱収束するとき、任意の $f \in X^*$ に対して

$$|f(u) - f(v)| \le |f(u) - f(x_n)| + |f(x_n) - f(v)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち、Hahn-Banach の定理の系より u=v が従う.また $(f_n)_{n=1}^\infty$ が $f,g\in X^*$ に汎弱収束するとき,任意の $x\in X$ に対して

$$|f(x) - g(x)| \le |f(x) - f_n(x)| + |f_n(x) - g(x)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち f = g が従う.

定理 A.1.4 (弱収束と自然な等長単射の関係). X を \mathbb{K} 上のノルム空間とする. $x_n \in X$ $(n=1,2,\cdots)$ が $x \in X$ に弱収束することと $J_X x_n \in X^{**}$ $(n=1,2,\cdots)$ が $J_X x \in X^{**}$ に汎弱収束することは同値である.

付録 A 弱収束 56

証明. 自然な等長単射の定義より任意の $f \in X^*$ について $f(x_n) = J_X x_n(f)$ であるから,

$$\lim_{n \to \infty} f(x_n) = f(x) \quad (\forall f \in X^*)$$

が成り立つことと

$$\lim_{n\to\infty}J_Xx_n(f)=J_Xx(f)\quad (\forall f\in X^*)$$

が成り立つことは同じである.

定理 A.1.5 (汎弱収束列の有界性). X を \mathbb{K} 上のノルム空間とし $X \neq \{0\}$ を仮定する. X^* の列 $(f_n)_{n=1}^\infty$ が各点 $x \in X$ で Cauchy 列をなすとき, $(f_n)_{n=1}^\infty$ は有界となりさらに汎弱収束極限 $f \in X^*$ が存在して次が成り立つ *1 :

$$||f||_{X^*} \leq \liminf_{n\to\infty} ||f_n||_{X^*}.$$

証明. 任意の $x \in X$ に対して $(f_n(x))_{n=1}^\infty$ は有界であるから、一様有界性の原理より $(\|f_n\|_{X^*})_{n=1}^\infty$ が有界となる. また

$$f(x) := \lim_{n \to \infty} f_n(x) \quad (\forall x \in X)$$
 (A.1)

として $f: X \to \mathbb{K}$ を定めれば、f は X^* に属する:

線型性 任意に $x, x_1, x_2 \in X$ と $\alpha \in \mathbb{K}$ を取れば

$$|f(x_1 + x_2) - f(x_1) - f(x_2)| \le |f(x_1 + x_2) - f_n(x_1 + x_2)| + |f(x_1) - f_n(x_1)| + |f(x_2) - f_n(x_2)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

$$|f(\alpha x) - \alpha f(x)| \le |f(\alpha x) - f_n(\alpha x)| + |\alpha| |f(x) - f_n(x)| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立つ.

有界性 絶対値の連続性より

$$|f(x)| = \lim_{n \to \infty} |f_n(x)| \le \liminf_{n \to \infty} ||f_n||_{X^*} ||x||_X$$

が成り立ち、特に $||x||_X = 1$ として

$$\sup_{\|x\|_{X}=1} |f(x)| \le \liminf_{n \to \infty} \|f_n\|_{X^*} < \infty$$

が従う.

f が f_n の汎弱収束極限であることは (A.1) より従う.

$$\inf_{v \ge n} \| f_n \|_{X^*} \le \sup_{n \in \mathbb{N}} \| f_n \|_{X^*} = M$$

が成り立つから

$$\liminf_{n\to\infty} \|f_n\|_{X^*} \leq M$$

が従う.

 $^{^{*1}}$ 右辺は有限確定する.実際 $(f_n)_{n=1}^\infty$ が有界であるとして $M:=\sup_{n\in\mathbb{N}}\|f_n\|_{X^*}$ とおけば,任意の $n\in\mathbb{N}$ に対し

付録 A 弱収束 57

定理 A.1.6 (弱収束列の有界性). X を \mathbb{K} 上のノルム空間とし $X \neq \{0\}$ を仮定する. X の列 $(x_n)_{n=1}^\infty$ が $x \in X$ に弱収束するとき, $(x_n)_{n=1}^\infty$ は有界列であり次が成り立つ:

$$||x||_X \le \liminf_{n \to \infty} ||x_n||_X.$$

証明. 定理 A.1.4 より $(J_X x_n)_{n=1}^\infty$ が $J_X x \in X^{**}$ に汎弱収束するから,定理 A.1.5 より $(J_X x_n)_{n=1}^\infty$ は有界列で

$$||J_X x||_{X^{**}} \le \liminf_{n \to \infty} ||J_X x_n||_{X^{**}}$$

が成り立つ. J_X は等長であるから定理の主張が従う.

定理 A.1.7 (反射的 Banach 空間の点列が弱収束するための十分条件). X を \mathbb{K} 上の反射的 Banach 空間として点列 $(x_n)_{n=1}^\infty$ を取る。任意の $f \in X^*$ に対して $(f(x_n))_{n=1}^\infty$ が Cauchy 列となるなら, $(x_n)_{n=1}^\infty$ は或る $x \in X$ に弱収束する.

証明. $f(x_n) = J_X x_n(f)$ であることと定理の仮定より、任意の $f \in X^*$ で $(J_X x_n(f))_{n=1}^\infty$ は $\mathbb K$ の Cauchy 列をなすから、

$$J(f) := \lim_{n \to \infty} J_X x_n(f) \quad (\forall f \in X^*)$$

として $J:X^* \to \mathbb{K}$ を定めれば定理 A.1.5 より $J \in X^{**}$ が成り立つ. X の反射性から J に対し或る $x \in X$ が存在して $J=J_{XX}$ を満たし,定理 A.1.4 より定理の主張を得る.