Contents

Contents			j
1		tor Spaces, Algebras, and Normed Spaces	
	1.1	Vector Spaces	1
		Algebras	
	1.3	Normed Vector Spaces	14
	1.4	Inner Product Spaces	20
	1.5	Normed Algebras	23

Last update: 2025 February 2

Chapter 1

Vector Spaces, Algebras, and Normed Spaces

For the entirety of this chapter assume F to be \mathbb{R} or \mathbb{C} .

§ 1.1. Vector Spaces

Definition 1.1.1. A vector space (or linear space) over F is a nonempty set V equipped with two operations:

$$V \times V \xrightarrow{+} V$$
 defined by $(v, w) \mapsto v + w$
 $F \times V \to V$ defined by $(\alpha, v) \mapsto \alpha v$

satisfying:

- (1) (V, +) is an abelian group:
 - (i) u + (v + w) = (u + v) + w for all $u, v, w \in V$;
 - (ii) there exists 0_V such that $v + 0_V = 0_V + v = v$ for all $v \in V$;
 - (iii) for all $v \in V$, there exists $w \in V$ satisfying $v + w = w + v = 0_V$;
 - (iv) v + w = w + v for all $v, w \in V$;
- (2) $\alpha(v + w) = \alpha v + \alpha w$ for all $\alpha \in F$, $v, w \in V$;
- (3) $\alpha(\beta \nu) = (\alpha \beta) \nu$ for all $\alpha, \beta \in F, \nu \in V$;
- (4) $1_{\mathsf{F}} \mathsf{v} = \mathsf{v}$ for all $\mathsf{v} \in \mathsf{V}$.

It can be shown that the vector 0_V is unique, the additive inverse in (iii) is unique (which we denote as $-\nu$), that $0\nu = 0_V$, and $(-1)\nu = -\nu$.

Exercise 1.1.1. Show (iv) follows from the other axioms.

Exercise 1.1.2. Show
$$nv = \underbrace{v + v + ... + v}_{n \text{ times}}$$
 for $n \in \mathbb{Z}_{\geq 1}$.

It can be shown that a subspace is a vector space in its own right.

Example 1.1.1. Let $\{W_i\}_{i\in I}$ be a family of vector spaces. Then $\bigcap_{i\in I} W_i$ is also a vector space.

Example 1.1.2. Planes and lines through the origin are subspaces of \mathbb{R}^3 .

Definition 1.1.2. Let V be a vector space and $S \subseteq V$ a subset.

- (1) A linear combination from S is a finite sum $\sum_{j=1}^n \alpha_j \nu_j$ with $\alpha_j \in F$, $\nu_j \in S$.
- (2) The linear span of S is:

$$\operatorname{span}(S) := \left\{ \sum_{j=1}^{n} \alpha_{j} \nu_{j} \mid n \in \mathbb{N}, \alpha_{j} \in F, \nu_{j} \in S \right\}.$$

Exercise 1.1.3. Show that $span(S) \subseteq V$ is a subspace and:

$$\mathrm{span}(S) = \bigcap \{ W \mid S \subseteq W, W \text{ is a subspace} \},\$$

that is, span(S) is the smallest subspace of V containing S.

Definition 1.1.3. Let V be a vector space and $S \subseteq V$ a subset.

- (1) S is spanning for V if span(S) = V.
- (2) S is independent if, given $n \in \mathbb{N}$, $\alpha_1, ..., \alpha_n \in F$, $\nu_1, ..., \nu_n \in S$, then $\sum_{j=1}^n \alpha_j \nu_j = 0$ implies $\alpha_j = 0$ for all j.

Our goal is to show that every vector space admits a basis. As such, recall the following definitions from a standard course in Real Analysis.

Definition 1.1.4. An *ordering* on a set X is a relation $R \subseteq X \times X$ on X that is reflexive, transitive, and antisymmetric. We write xRy as $x \leq_R y$. The pair (X, \leq_R) is called an *ordered set*. An ordering \leq on X is called *total* (or *linear*) if for all $x, y \in X$, $x \leq y$ or $y \leq x$.

Note that if (X, \leq) is an ordered set and $Y \subseteq X$ is a subset, then (Y, \leq) is an ordered set as well.

Definition 1.1.5. Let (X, \le) be an ordered set and $Y \subseteq X$. An *upper bound* for Y is an element $u \in X$ with $u \ge y$ for all $y \in Y$. An element $m \in X$ is called *maximal* if $x \in X$, $x \ge m$ implies x = m.

Lemma 1.1.1 (Zorn's Lemma). Let (X, \leq_X) be an ordered set. Suppose every subset $Y \subseteq X$ for which (Y, \leq_X) is totally ordered has an upper bound in X. Then X admits a maximal element.

The proof of Zorn's Lemma is outside the interest of this text.

Theorem 1.1.2. Every vector space admits a basis. Moreover, every independent set is contained in a basis.

Proof. Let $S \subseteq V$ be linearly independent. Define:

$$\mathfrak{T}(S) = \{ T \subseteq V \mid S \subseteq T, T \text{ linearly independent } \}.$$

Let $\mathfrak{C} \subseteq \mathfrak{T}(S)$ be a totally ordered subset. Set $R = \bigcup_{T \in \mathfrak{C}} T$. Clearly $R \supseteq S$. Assume $\sum_{j=1}^{n} \alpha_{j} \nu_{j} = 0$, where $\alpha_{j} \in F$ and $\nu_{j} \in R$. Since \mathfrak{C} is totally ordered, there exists $T_{0} \in \mathfrak{C}$ with $\nu_{j} \in T_{0}$ for all j = 1, ..., n. Since T_{0} is independent, $\alpha_{j} = 0$ for all j = 1, ..., n. Thus R is independent as well. Whence R is an upper bound for \mathfrak{C} . By Zorn's Lemma, $\mathfrak{T}(S)$ admits a maximal element, call it R.

Claim: B is a basis for V. Suppose towards contradiction it's not, then there exists $v_0 \in V \setminus \text{span}(B)$. Consider $B \cup \{v_0\}$ and let $\alpha_0 v_0 + \sum_{j=1}^n \alpha_j v_j = 0_V$. If $\alpha_0 \neq 0$, then $\sum_{j=1}^n \alpha_j v_j = -\alpha_0 v_0$, giving $v_0 \in \text{span}(B)$ which is a contradiction. If $\alpha_0 = 0$, then $\sum_{j=1}^n \alpha_j v_j = 0_V$. Since B is independent, $\alpha_j = 0$ for all j = 1, ..., n. Thus $B \cup \{v_0\}$ is independent, contradicting the maximality of B. Whence B is a basis for V.

Theorem 1.1.3. If B_1 and B_2 are bases for V, then $card(B_1) = card(B_2)$.

Definition 1.1.6. If V is a vector space, its *dimension* is the cardinality of any of its bases.

Corollary 1.1.4. If B is a basis for V, then every $v \in V$ can be written $v = \sum_{i=1}^{n} \alpha_k \beta_k$, $\alpha_k \in F$, $b_k \in B$ in a unique way.

Theorem 1.1.5. Let V be a linear space and $B \subseteq V$ a subset. The following are equivalent:

- (1) B is a basis for V;
- (2) B is a maximal element in $\mathfrak{T} = \{T \subseteq V \mid T \text{ independent}\};$
- (3) B is a minimal element in $\mathfrak{S} = \{S \subseteq V \mid S \text{ spans } V\};$

Definition 1.1.7. Let $\{V_i\}_{i\in I}$ be a family of vector spaces over a field F.

(1) The product of $\{V_i\}_{i\in I}$ is denoted:

$$\prod_{i \in I} V_i := \{(v_i)_{i \in I} \mid v_i \in V_i\}.$$

(2) The co-product (or sum) is denoted

$$\bigoplus_{i\in I} V_i := \left\{ (\nu_i)_{i\in I} \mid \nu_i \in V_i, \, \mathrm{supp} \big((\nu_i)_{i\in I} \big) < \infty \right\}.$$

Exercise 1.1.4.

(1) Show that $\prod_{i \in I} V_i$ equipped with pointwise operations:

$$(v_i)_{i \in I} + (w_i)_{i \in I} = (v_i + w_i)_{i \in I}$$

 $\alpha(v_i)_{i \in I} = (\alpha v_i)_{i \in I}$

is a linear space.

(2) Show that $\bigoplus_{i \in I} V_i$ is a subspace of $\prod_{i \in I} V_i$.

Proposition 1.1.6. Let V be a vector space over F and W \subseteq V. The (additive, abelian) quotient group V/W can be made into a vector space by defining multiplication by scalars as $\alpha(v + W) = \alpha v + W$ for all $\alpha \in F$, $v + W \in V/W$.

Example 1.1.3.

- (1) The set $F^n = \{(x_1, ..., x_n) \mid x_j \in F\}$ with component-wise operations is a vector space.
- (2) The set $M_{n,m}(F) = \{(a_{ij}) \mid a_{ij} \in F\}$ with linear operations is a vector space.
- (3) Let Ω be a nonempty set. Then $\mathcal{F}(\Omega, F) = \{f \mid f : \Omega \to F\}$ with pointwise operations is a vector space.
- (4) The set $\ell_{\infty}(\Omega, F) = \{ f \in \mathcal{F}(\Omega, F) \mid \|f\|_{\mathfrak{u}} < \infty \}$ with pointwise operations is a vector space.

Exercise 1.1.5. Show $\ell_{\infty}(\Omega, F) \subseteq \mathcal{F}(\Omega, F)$ is a subspace.

(5) Let $f: [a, b] \to \mathbb{R}$ be any function. Let $\mathcal{P} = \{a = x_0 < x_1 < ... < x_{n-1} < x_n = b\}$ be a partition of [a, b]. The *variation of* f on \mathcal{P} is defined as:

$$Var(f; \mathcal{P}) = \sum_{k=1}^n |f(x_k) - f(x_{k-1})|.$$

We say f is a bounded variation if:

$$\mathrm{Var}(f) := \sup_{\mathcal{P}} \mathrm{Var}(f;\mathcal{P}) < \infty.$$

The set of all functions of bounded variation is defined:

$$BV([a,b]) = \{f : [a,b] \to \mathbb{R} \mid Var(f) < \infty\}.$$

This is a vector space by defining addition and scalar multiplication componentwise.

Exercise 1.1.6. Show that $BV([a,b]) \subseteq \ell_{\infty}([a,b], \mathbb{R})$ is a subspace.

(6) Let $K \subseteq V$ be a convex subset of a vector space V, that is, for all $v, w \in K$ and $t \in [0,1]$, then $(1-t)v + tw \in K$. A function $f: K \to F$ is said to be *affine* if $x, y \in K$ and $t \in [0,1]$ implies f((1-t)x + ty) = (1-t)f(x) + tf(y). The set $Aff(K,F) = \{f \in \mathcal{F}(\Omega,F) \mid f \text{ affine}\}$ with pointwise operations is a vector space.

Exercise 1.1.7. Show $Aff(\Omega, F) \subseteq \mathcal{F}(\Omega, F)$ is a subspace.

(7) The set $C([a, b], F) = \{f : [a, b] \to F \mid f \text{ continuous}\}$ with pointwise operations is a vector space.

Exercise 1.1.8. Explain why $C([a,b],F) \subseteq \ell_{\infty}([a,b],F)$ is a subspace.

- (8) Consider the following sequence spaces:
 - $s = \{(a_k)_k \mid a_k \in F\} = \mathcal{F}(\mathbb{N}, F);$
 - $\ell_{\infty} = \ell_{\infty}(\mathbb{N}, F) = \{(\alpha_k)_k \mid \sup_{k \ge 1} |\alpha_k| < \infty\};$
 - $c = \{(a_k)_k \mid (a_k)_k \text{ converges }\};$
 - $c_0 = \{(a_k)_k \mid (a_k)_k \to 0\};$
 - $c_{00} = \{(a_k)_k \mid \text{supp}((a_k)_k) < \infty\};$
 - $\ell_1 = \{(\alpha_k)_k \mid \sum_{k=1}^{\infty} |\alpha_k| \text{ converges } \}.$

These are all vector spaces with pointwise operations. In fact, $c_{00} \subseteq c_0 \subseteq c \subseteq \ell_{\infty} \subseteq s$ are all subspaces.

Exercise 1.1.9. Show that $\ell_1 \subseteq c_0$ is a subspace.

- (9) Consider the following continuous function spaces on \mathbb{R} :
 - $C(\mathbb{R}) = \{f : \mathbb{R} \to F \mid f \text{ continuous } \};$
 - $C_b(\mathbb{R}) = C(\mathbb{R}) \cap \ell_\infty(\mathbb{R});$
 - $C_0(\mathbb{R}) = \{ f \in C(\mathbb{R}) \mid \lim_{x \to \pm \infty} f(x) = 0 \};$
 - Recall that a function is *compactly supported* if for all $\epsilon > 0$, there exists $\alpha > 0$ such that $|x| \ge \alpha$ implies f(x) = 0. The set of compactly supported functions is denoted $C_c(\mathbb{R}) = \{ f \in C(\mathbb{R}) \mid f \text{ compactly supported } \}$.

These are all vector spaces with pointwise operations, and $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq C_b(\mathbb{R}) \subseteq C(\mathbb{R})$ are all subspace inclusion.

Definition 1.1.8. If V and W are linear spaces over a common field F, a map $T: V \to W$ is called *linear* if $T(v_1 + \alpha v_2) = T(v_1) + \alpha T(v_2)$ for all $v_1, v_2 \in V$ and $\alpha \in F$.

Example 1.1.4. Let $A \in M_{m,n}(F)$. Then $T_A : F^n \to F^m$ defined by $T_A(\nu) = A\nu$ is linear. Let $\{e_1, ..., e_n\}$ be a basis for F^n . If $T : F^n \to F^m$ is linear, set:

$$[\mathsf{T}] = \Big(\mathsf{T}(e_1) \ \Big| \ \mathsf{T}(e_2) \ \Big| \ \dots \ \Big| \ \mathsf{T}(e_n)\Big).$$

This gives T(v) = [T]v for all $v \in F^n$. In fact, we also have $[T_A] = A$ and $T_{[T]} = T$.

Example 1.1.5. The canonical projection is linear:

$$\pi_j: \prod_{i\in I} V_i \to V_j \ \ \text{defined by} \ \ \pi_j\big((\nu_i)_i\big) = \nu_i.$$

We also have that the *coordinate exclusions* are linear:

$$\iota_j: V_j \hookrightarrow \bigoplus_{i \in I} V_i \ \ \text{defined by} \ \ \iota_j(\nu) = (\nu_i)_i \,, \ \ \text{where} \ \ \nu_i = \begin{cases} 0_{\nu}, & i \neq j \\ \nu_j, & \text{otherwise}. \end{cases}$$

The evaluation map is linear as well. For $s \in S$, consider:

$$e_s: \mathcal{F}(S, F) \to F$$
 defined by $e_s(f) = f(s)$.

Proposition 1.1.7. Let V be a vector space with basis B. Let W be a vector space and suppose $\phi: B \to W$ is a map. Then there exists a unique linear map $T_{\phi}: V \to W$ with $T_{\phi}(b) = \phi(b)$ for all $b \in B$. We have the following diagram.

$$B \xrightarrow{\iota} V \\ \downarrow \\ \varphi \downarrow \qquad \downarrow \\ T_{\varphi} \\ W$$

Proof. Define $T_{\varphi}: V \to W$ by:

$$T_{\varphi}(v) = T_{\varphi} \left(\sum_{j=1}^{n} \alpha_{j} b_{j} \right)$$
$$= \sum_{j=1}^{n} \alpha_{j} \varphi(b_{j}).$$

Let $v_1, v_2 \in V$ and $c \in F$. We have that:

$$\begin{split} T_{\varphi}(\nu_1 + c\nu_2) &= T_{\varphi}\left(\sum_{j=1}^n \alpha_j b_j + c \sum_{j=1}^n \beta_j b_j\right) \\ &= T_{\varphi}\left(\sum_{j=1}^n (\alpha_j + c\beta_j)b_j\right) \\ &= \sum_{j=1}^n (\alpha_j + c\beta_j)\varphi(b_j) \\ &= \sum_{j=1}^n \alpha_j \varphi(b_j) + c \sum_{j=1}^n \beta_j \varphi(b_j) \\ &= T_{\varphi}(\nu_1) + c T_{\varphi}(\nu_2). \end{split}$$

Thus T_{ϕ} is linear. Chasing the above diagram makes it clear that $T_{\phi}(b) = \phi(b)$. It remains to show that T_{ϕ} is unique. Let T be another linear transformation satisfying $T(b) = \phi(b)$ for all $b \in B$. Then:

$$T(v) = T\left(\sum_{j=1}^{n} \alpha_j b_j\right)$$
$$= \sum_{j=1}^{n} \alpha_j \varphi(b_j)$$
$$= T_{\varphi}\left(\sum_{j=1}^{n} \alpha_j b_j\right)$$
$$= T_{\varphi}(v).$$

Thus T_{φ} is unique.

Proposition 1.1.8. Let $T: V \to W$ be linear.

- (1) $\ker(T) = \{ v \in V \mid T(v) = 0_W \}$ is a linear subspace of V.
- (2) $\operatorname{im}(T) = \{T(v) \mid v \in V\}$ is a linear subspace of W.
- (3) $ker(T) = \{0_V\}$ if and only if T is injective.
- (4) im(T) = W if and only if T is surjective.

Proof. (1) Let $v_1, v_2 \in \ker(T)$ and $\alpha \in F$. Observe that:

$$T(v_1 + cv_2) = T(v_1) + cT(v_2)$$

Thus $v_1 + cv_2 \in \ker(T)$, giving $\ker(T)$ as a linear subspace of V.

(2) Let $w_1, w_2 \in \text{im}(T)$. Then there exists $v_1.v_2 \in V$ with $T(v_1) = w_1$ and $T(v_2) = w_2$. We have:

$$w_1 + cw_2 = T(v_1) + cT(v_2)$$

= $T(v_1 + cv_2)$.

Whence $w_1 + cw_2 \in \text{im}(T)$, giving im(T) as a linear subspace of W.

- (3) Let $\ker(T) = \{0\}$. Suppose $T(\nu_1) = T(\nu_2)$. Then $T(\nu_1) T(\nu_2) = T(\nu_1 \nu_2) = 0_W$. It must be that $\nu_1 \nu_2 = 0_W$, giving $\nu_1 = \nu_2$. Thus T is injective. Conversely, suppose T is injective and let $\nu \in \ker(T)$. Then $T(\nu) = 0_W = T(0_V)$. Hence $\nu = 0_V$, establishing $\ker(T) = \{0\}$.
 - (4) This is by definition of surjectivity.

Proposition 1.1.9. If $T: V \to W$ is linear and bijective, then the inverse map $T^{-1}: W \to V$ is linear.

Proof. We have that:

$$T(T^{-1}(w_1) + \alpha T^{-1}(w_2)) = w_1 + \alpha w_2 = T \circ T^{-1}(w_1 + \alpha w_2).$$

Applying T^{-1} to both sides gives the desired result.

Proposition 1.1.10 (Vector Spaces are Injective). Let U, V, W be vector spaces and $0 \to U \xrightarrow{j} V$ be exact (that is, j is injective). Let $\phi: U \to W$ be linear. There exists a linear map $\Psi: V \to W$ such that $\phi = \Psi \circ j$; i.e., the following diagram commutes:

$$0 \longrightarrow U \xrightarrow{j} V$$

$$\downarrow \psi \qquad \qquad \downarrow \psi \qquad$$

Proof. Let $\{u_i\}_{i\in I}$ be a basis for U. We must first show that $\{j(u_i)\}_{i\in I}$ is linearly independent. Notice that:

$$\begin{split} 0_V &= \sum_{i \in I} \alpha_i j(u_i) \\ &= j \left(\sum_{i \in I} \alpha_i u_i \right). \end{split}$$

By the injectivity of j, we have that $\sum_{i \in I} \alpha_i u_i = 0_U$. Thus $\alpha_i = 0$ for all $i \in I$, giving $\{j(u_i)\}_{i \in I}$ as linearly independent.

Since $\{j(u_i)\}_{i\in I}$ is linearly independent in V, we can extend it to a basis $B = \{v_i\}_{i\in J}$ where $I\subseteq J$ and $v_i = j(u_i)$ whenever $i\in I$. Now define $\psi: B\to W$ by:

$$\psi(v_i) = \begin{cases} \varphi(u_i), & i \in I \\ w, & i \in J \setminus I, \end{cases}$$

where $w \in W$ is arbitrary. Since this is a map of basis elements, there exists a unique linear map $\Psi: V \to W$ with $\Psi(v_i) = \psi(v_i)$ for all $v_i \in B$. We can finally see that:

$$\varphi(u_i) = \psi(v_i)$$

$$= \Psi(v_i)$$

$$= \Psi(j(u_i)).$$

This establishes that $\varphi = \Psi \circ j$.

Proposition 1.1.11 (Vector Spaces are Projective). Let U, V, W be vector spaces and $V \xrightarrow{\pi} U \to 0$ be exact (that is, π is onto). Let $\phi : W \to U$ be linear. There exists a linear map $\Psi : V \to W$ such that $\phi = \pi \circ \Psi$; i.e., the following diagram commutes:

$$V \xrightarrow{\Psi} V \xrightarrow{\pi} U \longrightarrow 0$$

Proof. Let $B = \{w_i\}_{i \in I}$ be a basis for W. Define $\psi : B \to V$ by $\psi(w_i) = \pi^{-1}(\varphi(w_i))$. Since this is a map of basis elements, it extends to a unique (dependent on π^{-1}) linear map $\Psi : W \to V$ with $\Psi(w_i) = \psi(w_i)$ for all $w_i \in B$. Moreover, we have that:

$$(\pi \circ \Psi)(w_i) = (\pi \circ \psi)(w_i)$$
$$= (\pi \circ (\pi^{-1} \circ \varphi))(w_i)$$
$$= \varphi(w_i).$$

Definition 1.1.9. Let V and W be vector spaces over F. A *linear isomorphism* between V and W is a bijective linear map $T: V \to W$. If such a T exists, we say V and W are *linearly isomorphic*, and write $V \cong W$.

Finite dimensional vector spaces are boring. This is illustrated through the following theorem.

Theorem 1.1.12. Let V and W be finite-dimensional vector spaces over F. Then $V \cong W$ if and only if $\dim(V) = \dim(W)$.

Proof. Suppose $V \cong W$. Then there is an isomorphism taking basis of V to a basis of W. Therefore they have the same dimension.

Conversely, if $\dim(V) = \dim(W) = n$, then they are each isomorphic to F^n , giving that they are isomorphic to each other.

Example 1.1.6. Let V be a vector space, $W \subseteq V$ a subspace. The *natural projection*:

$$\pi: V \to V/W$$
 defined by $\pi(v) = v + W$

is a linear surjective map.

Theorem 1.1.13 (First Isomorphism Theorem for Vector Spaces). Let $T: V \to V'$ be a linear map and $W \subseteq V$ a subspace.

(1) If T "kills" W (that is, $W \subseteq \ker(T)$), then there exists a linear map $\widetilde{T} : V/W \to V'$ with $\widetilde{T} \circ \pi = T$; i.e., the following diagram commutes.

- (2) If ker(T) = W, then \widetilde{T} is injective.
- (3) If ker(T) = W and im(T) = V', then $V/W \cong V'$.

Proof. (1) As stipulated, define $\widetilde{\mathsf{T}}(v+W)=\mathsf{T}(v)$. We must show that $\widetilde{\mathsf{T}}$ is well-defined: suppose $v_1+W=v_2+W$ for some $v_1,v_2\in\mathsf{V}$. Then $v_1=v_2+w$ for some $w\in\mathsf{W}$. This gives:

$$\widetilde{\mathsf{T}}(v_1 + W) = \widetilde{\mathsf{T}}(v_2 + W + W)$$
$$= \widetilde{\mathsf{T}}(v_2 + W).$$

Whence $\widetilde{\mathsf{T}}$ is well-defined. Now given $\nu_1 + W, \nu_2 + W \in \mathsf{V}/\mathsf{W}$ and $\alpha \in \mathsf{F}$, observe that:

$$\widetilde{\mathsf{T}}\big((v_1+W)+c(v_2+W)\big) = \widetilde{\mathsf{T}}\big((v_1+cv_2)+W\big)$$

$$= \mathsf{T}(v_1+cv_2)$$

$$= \mathsf{T}(v_1)+c\mathsf{T}(v_2)$$

$$= \widetilde{\mathsf{T}}(v_1+W)+c\widetilde{\mathsf{T}}(v_2+W).$$

Thus $\widetilde{\mathsf{T}}$ is linear.

(2) If ker(T) = W, then:

$$\begin{split} \ker(\widetilde{\mathsf{T}}) &= \{ \nu + W \mid \widetilde{\mathsf{T}}(\nu + W) = 0_{V'} \} \\ &= \{ \nu + W \mid \mathsf{T}(\nu) = 0_{V'} \} \\ &= \{ \nu + W \mid \nu \in \ker(\mathsf{T}) \} \\ &= \{ \nu + W \mid \nu \in W \} \\ &= \{ 0 \}. \end{split}$$

Thus $\widetilde{\mathsf{T}}$ is injective.

(3) It remains to show that $\operatorname{im}(T) = V'$ implies \widetilde{T} is surjective. Observe that:

$$\begin{split} \operatorname{im}(\widetilde{\mathsf{T}}) &= \{\widetilde{\mathsf{T}}(\nu + W) \mid \nu + W \in V/W\} \\ &= \{\widetilde{\mathsf{T}}(\pi(\nu)) \mid \nu \in V\} \\ &= \{\mathsf{T}(\nu) \mid \nu \in V\} \\ &= \operatorname{im}(\mathsf{T}) \\ &= V'. \end{split}$$

Thus \widetilde{T} is surjective, which establishes it as a bijection. This gives $V/W \cong V'$.

Definition 1.1.10. Let S be a nonempty set. The *free vector space* of S is:

$$\mathbb{F}(S) = \{ f : S \to F \mid \text{supp}(f) < \infty \}.$$

Exercise 1.1.10. Show $\mathbb{F}(S) \subseteq \mathcal{F}(S, F)$ is a subspace.

Proposition 1.1.14. The set $\{\delta_s \mid s \in S\}$ is a basis for $\mathbb{F}(S)$, where $\delta_s : S \to F$ is defined by:

$$\delta_s(t) = \begin{cases} 1, & t = 0 \\ 0, & otherwise. \end{cases}$$

$$\begin{array}{l} \textit{Proof.} \ \ \text{If} \ f \in \mathbb{F}(S) \ \text{with} \ \text{supp}(f) = \{s_1,...,s_n\}, \ \text{then} \ f = \sum_{k=1}^n f(s_k) \delta_{s_k}. \ \ \text{If} \\ \sum_{k=1}^n \alpha_k \delta_{s_k} = 0, \ \text{then} \ \text{for} \ j = 1,...,n \ \ \text{we have} \ 0 = \left(\sum_{k=1}^n \alpha_k \delta_{s_k}\right)(s_j) = \alpha_j. \end{array} \quad \Box$$

Theorem 1.1.15. Given any vector space V and a map (of sets) $\varphi: S \to V$, there exists a unique linear map $T_{\varphi}: \mathbb{F}(S) \to V$ with $T_{\varphi} \circ \iota = \varphi$, where $\iota: S \to \mathbb{F}(S)$ is defined by $\iota(s) = \delta_s$ for all $s \in S$. The following diagram commutes:

$$S \xrightarrow{\iota} \mathbb{F}(S)$$

$$\downarrow^{\varphi} V$$

Proof. By the previous proposition, we have that $B = \{\delta_s \mid s \in S\}$ is a basis for $\mathbb{F}(S)$. Define $T: B \to V$ by $T(\delta_s) = \varphi(s)$. Since this is a map of basis elements, there exists a unique linear map $T_{\varphi}: \mathbb{F}(S) \to V$ with $T_{\varphi}(\delta_s) = T(\delta_s)$ for all $\delta_s \in B$. The diagram commutes because:

$$\begin{split} \phi(s) &= \mathsf{T}(\delta_s) \\ &= \mathsf{T}_{\phi}(\delta_s) \\ &= \mathsf{T}_{\phi}(\iota(s)). \end{split}$$

Moreover, if T' satisfies $\varphi = T' \circ \iota$, then:

$$T'(\delta_s) = T'(\iota(s))$$

$$= \varphi(s)$$

$$= T_{\varphi}(\iota(s))$$

$$= T_{\varphi}(\delta_s).$$

Thus T_{ω} is unique.

Definition 1.1.11. Let V and W be vector spaces. The set of linear transformations between V and W is $\mathcal{L}(V, W) = \{T \mid T : V \to W \text{ linear } \}$. The set of linear functionals is $V' := \mathcal{L}(V, F)$.

Exercise 1.1.11. Show $\mathcal{L}(V, W)$ is a vector space.

Exercise 1.1.12. Show $M_{m,n}(F) \cong \mathcal{L}(F^m, F^n)$ by $a \mapsto T_a : (v \mapsto av)$.

§ 1.2. Algebras

Definition 1.2.1. An *algebra* over F is a linear space A over F equipped with a multiplication operation:

$$A \times A \rightarrow A$$
 defined by $(a, b) \mapsto ab$

satisfying:

- (1) (ab)c = a(bc) for all $a, b, c \in A$;
- (2) $(\alpha a)b = \alpha(ab) = \alpha(\alpha b)$ for all $a, b \in A, \alpha \in F$;
- (3) a(b+c) = ab + ac for all $a, b, c \in A$;
- (4) (a + b)c = ac + bc for all $a, b, c \in A$.

If ab = ba for all $a, b \in A$ we say that A is *commutative*. If there exists $1_A \in A$ with $1_A a = a1_A = a$ for all $a \in A$ we say A is *unital*.

Example 1.2.1.

- (1) $M_n(F)$ is a noncommutative unital algebra over F under the usual matrix multiplication.
- (2) If V is a vector space over F, $\mathcal{L}(V)$ is a unital algebra over F. It is noncommutative provided $\dim(V) > 1$.
- (3) $\mathcal{F}(S, F)$ is a unital commutative algebra over F.

Definition 1.2.2. Let B be a (unital) algebra over F.

(1) A (unital) *subalgebra* of B is a subspace $A \subseteq B$ ($1_B \in A$) satisfying the property that if $\alpha, \alpha' \in A$, then $\alpha\alpha' \in A$.

(2) An *ideal* of B is a subspace $I \subseteq B$ with $b \in B$, $a \in I$ implying $ba, ab \in I$.

Example 1.2.2.

- (1) $\ell_{\infty}(\Omega, F) \subseteq \mathcal{F}(\Omega, F)$ is a unital subalgebra.
- (2) $c_{00} \subseteq c_0 \subseteq c \subseteq \ell_{\infty} \subseteq s$ are all subalgebras. In particular, $c_0 \subseteq \ell_{\infty}$ and $c_{00} \subseteq s$ are ideals.
- (3) $C([a,b]) \subseteq \ell_{\infty}([a,b])$ is a unital subalgebra.
- (4) $C_c(\mathbb{R}) \subseteq C_0(\mathbb{R}) \subseteq C_b(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ are all subalgebras. In fact, $C_b(\mathbb{R}) \subseteq C(\mathbb{R})$ and $C_b(\mathbb{R}) \subseteq \ell_\infty(\mathbb{R})$ are unital, whereas $C_0(\mathbb{R}) \subseteq C_b(\mathbb{R})$ and $C_c(\mathbb{R}) \subseteq C(\mathbb{R})$ are ideals.
- (5) The set $T_n(F) = \{(a_{ij}) \in M_n(F) \mid a_{ij} = 0, i > j\}$ is a unital subalgebra of $M_n(F)$.

Example 1.2.3 (Group Algebra). Let Γ denote a group (not necessarily abelian). Take the free vector space $\mathbb{F}(\Gamma)$ and define multiplication as *convolution*: given $f, g \in \mathbb{F}(\Gamma)$ let:

$$(f * g)(r) = \sum_{\substack{\{(s,t) \mid \\ s \in \text{supp}(f), \\ t \in \text{supp}(g), \\ st = r}} f(s)g(t).$$

Since $\operatorname{supp}(f)$ and $\operatorname{supp}(g)$ are finite, this is a finite sum. We often suppress this notation and write $(f * g)(r) = \sum_{s t = r} f(s)g(t)$.

We can also make substitutions:

$$\begin{split} (f*g)(r) &= \sum_{st=r} f(s)g(t) \\ &= \sum_{t \in \Gamma} f(rt^{-1})g(t) \\ &= \sum_{s \in \Gamma} f(s)g(s^{-1}r). \end{split}$$

It is clear that:

$$(f+g)*h = f*h+g*h$$

 $g*(g+h) = f*g+f*h$
 $\alpha(f*g) = (\alpha f)*g = f*(\alpha g)$

for $f, g, h \in \mathbb{F}(\Gamma)$, $\alpha \in \Gamma$. Associativity can be similarly shown using the above definition. Rather, we will prove associativity by first show that $\delta_s * \delta_t = \delta_{st}$. Given:

$$(\delta_s * \delta_t)(r) = \sum_{q \in \Gamma} \delta_s(rq^{-1})\delta_t(q),$$

notice that:

$$\delta_s(\mathsf{rt}^{-1}) = \begin{cases} 1, & s = \mathsf{rt}^{-1} \\ 0, & \text{otherwise} \end{cases} = \begin{cases} 1, & r = \mathsf{st} \\ 0, & \text{otherwise} \end{cases} = \delta_{s\,t}(r).$$

Since $\{\delta_t \mid t \in \Gamma\}$ is a basis for $\mathbb{F}(\Gamma)$, every $f \in \mathbb{F}(\Gamma)$ looks like:

$$f = \sum_{t \in J} \alpha_t \delta_t, \ J \subseteq T \ finite.$$

Using distributivity we get:

$$\delta_{r} * (\delta_{s} * \delta_{t}) = \delta_{r} * \delta_{st}$$

$$= \delta_{rst}$$

$$= \delta_{rs} * \delta_{t}$$

$$= (\delta_{r} * \delta_{s}) * \delta_{t}.$$

Whence convolution is associative.

Exercise 1.2.1. Let $\{A_i\}_{i\in I}$ be a family of algebras over F.

- (1) $\prod_{i \in I} A_i$ is an algebra under $(a_i)_i(b_i)_i = (a_ib_i)_i$.
- (2) $\bigoplus_{i \in I} A_i \subseteq \prod_{i \in I} A_i$ is an ideal.

Exercise 1.2.2. Let A be an algebra over F and $I \subseteq A$ an ideal. Then A/I is an algebra under (a + I)(b + I) = ab + I.

§ 1.3. Normed Vector Spaces

To each vector ν in a vector space V, we want to assign a "length", denoted $\|\nu\|$.

Definition 1.3.1. A *norm* on a vector space V is a map:

$$\|\cdot\|: V \to [0,\infty), \ v \mapsto \|v\|$$

satisfying:

- (1) $\|\alpha v\| = |\alpha| \|v\|$ for all $\alpha \in F$, $v \in V$ (homogeneity);
- (2) $\|v + w\| \le \|v\| + \|w\|$ (triangle inequality);
- (3) If ||v|| = 0, then $v = 0_V$ (positive-definite).

If $\|\cdot\|$ satisfies (1) and (2), it is called a *seminorm*. The pair $(V, \|\cdot\|)$ is called a *normed space*.

Definition 1.3.2. Two norms $\|\cdot\|$ and $\|\cdot\|'$ on a vector space V are called *equivalent* if there exists $c_1 \ge 0$ and $c_2 \ge 0$ with $\|\nu\| \le c_1 \|\nu\|'$ and $\|\nu\|' \le c_2 \|\nu\|$ for all $\nu \in V$.

Exercise 1.3.1. If p is a seminorm on V, show that $|p(v) - p(w)| \le p(v - w)$.

Definition 1.3.3. Let (V, ||v||) be a normed space.

- (1) The closed unit ball is denoted $B_V = \{ v \in V \mid ||v|| \le 1 \}$.
- (2) The open unit ball is denoted $U_V = \{ v \in V \mid ||v|| < 1 \}$.
- (3) The unit sphere is denoted $S_V = \{ v \in V \mid ||v|| = 1 \}.$

Example 1.3.1. Let $V = F^n$ and $x = (x_1, ..., x_n)$. We define:

$$\begin{aligned} \|x\|_1 &= \sum_{j=1}^n |x_j|; \\ \|x\|_\infty &= \max_{j=1}^n |x_j|; \\ \|x\|_2 &= \left(\sum_{j=1}^n |x_j|^2\right)^{\frac{1}{2}}. \end{aligned}$$

For $p \ge 1$:

$$||x||_p = \left(\sum_{j=1}^n |x_j|^p\right)^{\frac{1}{p}}.$$

Exercise 1.3.2. Show that $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$ are norms

We aim to show that $\|\cdot\|_{\mathfrak{p}}$ is a norm for $\mathfrak{p} \in [0, \infty]$.

 $\begin{array}{ll} \textbf{Lemma 1.3.1.} \ \ \textit{Let} \ p, \, q \in [1, \infty] \ \, \textit{with} \ \, \frac{1}{p} + \frac{1}{q} = 1. \ \, \textit{Let} \ \, f : [0, \infty) \rightarrow \mathbb{R} \ \, \textit{be defined by} \\ f(t) = \frac{1}{p} t^p - t + \frac{1}{q}. \ \, \textit{Then} \ \, f(t) \geqslant 0 \ \, \textit{for} \ \, t \geqslant 0. \end{array}$

Proof. Note that $f'(t) = t^{p-1} - 1$. Since:

$$\begin{split} f'(1) &= 0 \\ f'(t) &> 0 \text{ for } t > 1 \\ f'(t) &< 0 \text{ for } 0 \leqslant t < 1, f65 qed'; lkjhgfdsa \end{split}$$

we can see that $f(t) \ge 0$ for all $t \ge 0$.

Lemma 1.3.2 (Young's Inequality). Let $p, q \in [0, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. If $x, y \ge 0$, then $xy \le \frac{1}{p}x^p + \frac{1}{q}y^q$.

Proof. By Lemma 1.3.1, $t \leq \frac{1}{p}t^p + \frac{1}{q}$. Multiplying both sides by y^q gives:

$$ty^q \leqslant \frac{1}{p}t^py^q + \frac{1}{q}y^q.$$

Let $t = xy^{1-q}$. Then:

$$xy^{1-q}y^{q} \le \frac{1}{p}x^{p}y^{p-pq}y^{q} + \frac{1}{q}y^{q}.$$

Since $\frac{1}{p} + \frac{1}{q} = 1$, we have that p - pq = -q. Whence:

$$xy \leqslant \frac{1}{p}x^p + \frac{1}{q}y^q.$$

Lemma 1.3.3 (Hölders Inequality). Let $p, q \in [0, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. Then for $x, y \in F^n$:

$$\left| \sum_{j=1}^{n} x_j y_j \right| \leqslant \|x\|_p \|y\|_q.$$

Proof. We proceed by cases.

Case 1: p = 1. Then:

$$\left| \sum_{j=1}^{n} x_{j} y_{j} \right| \leq \sum_{j=1}^{n} |x_{j}| |y_{j}|$$

$$\leq \sum_{j=1}^{n} |x_{j}| ||y||_{\infty}$$

$$= ||x||_{1} ||y||_{\infty}.$$

Case 2: $p = \infty$. This follows similarly to Case 1.

Case 3: $1 . Suppose <math>||x||_p = ||y||_q = 1$. Then:

$$\begin{split} \left| \sum_{j=1}^{n} x_{j} y_{j} \right| &\leq \sum_{j=1}^{n} |x_{j}| |y_{j}| \\ &\leq \sum_{j=1}^{n} \left(\frac{1}{p} |x_{j}|^{p} + \frac{1}{q} |y_{j}|^{q} \right) \\ &= \frac{1}{p} \left(\sum_{j=1}^{n} |x_{j}|^{p} \right) + \frac{1}{q} \left(\sum_{j=1}^{n} |y_{j}|^{q} \right) \\ &= \frac{1}{p} + \frac{1}{q} \\ &= 1. \end{split}$$

Whence the inequality holds. Now suppose $\|x\|_p = 0$ or $\|y\|_q = 0$. Then $x = 0_{F^n}$ or $y = 0_{F^n}$, whence the inequality holds. Suppose $\|x\|_p \neq 0$ and $\|y\|_p \neq 0$. Set:

$$x' = \frac{x}{\|x\|_p}$$
$$y' = \frac{y}{\|y\|_p}.$$

Then $||x'||_p = 1 = ||y'||_p$. Observe that:

$$1 \geqslant \left| \sum_{j=1}^{n} x_{j}' y_{j}' \right|$$
$$= \left| \sum_{j=1}^{n} \frac{x}{\|x\|_{p}} \frac{y}{\|y\|_{p}} \right|.$$

Multiplying both sides by $||x||_p ||y||_q$ gives the desired result.

Lemma 1.3.4 (Minkowski's Inequality). Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q} = 1$. For $x, y \in F^n$:

$$||x + y||_p \le ||x||_p + ||y||_p.$$

Proof. The only nontrivial case is for 1 . Observe that:

$$\begin{split} \left(\|x+y\|_{p}\right)^{p} &= \sum_{j=1}^{n} |x_{j} + y_{j}|^{p} \\ &= \sum_{j=1}^{n} |x_{j} + y_{j}| |x_{j} + y_{j}|^{p-1} \\ &\leqslant \sum_{j=1}^{n} |x_{j}| |x_{j} + y_{j}|^{p-1} + |y_{j}| |x_{j} + y_{j}|^{p-1} \\ &\leqslant \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{(p-1)q}\right)^{\frac{1}{q}} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{(p-1)q}\right)^{\frac{1}{q}} \\ &= \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{p-1\left(\frac{p}{p-1}\right)}\right)^{1-\frac{1}{p}} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{p-1\left(\frac{p}{p-1}\right)}\right)^{1-\frac{1}{p}} \\ &= \left(\sum_{j=1}^{n} |x_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{p}\right)^{1-\frac{1}{p}} + \left(\sum_{j=1}^{n} |y_{j}|^{p}\right)^{\frac{1}{p}} \left(\sum_{j=1}^{n} |x_{j} + y_{j}|^{p}\right)^{1-\frac{1}{p}} \\ &= (\|x\|_{p} + \|y\|_{p}) \frac{\|x + y\|_{p}^{p}}{\|x + y\|_{p}}. \end{split}$$

Multiplying boths sides by $\frac{\|x+y\|_p}{\|x+y\|_p^p}$ gives the desired inequality.

Theorem 1.3.5. Let $V = F^n$. Then $(F^n, \|\cdot\|_p)$ is a normed space.

Proof. Let $x = (x_1, ..., x_n) \in F^n$ and $\alpha \in F$. Observe that:

$$\|\alpha x\|_{p} = \left(\sum_{j=1}^{n} |\alpha x_{j}|^{p}\right)^{\frac{1}{p}}$$
$$= \left(\sum_{j=1}^{n} |\alpha|^{p} |x_{j}|^{p}\right)^{\frac{1}{p}}$$
$$= |\alpha| \|x\|_{p}.$$

This satisfies homogeneity. Moreover, Minkowski's Inequality satisfies the triangle inequality. It remains to show that $\|\cdot\|_p$ is positive-definite. If $\|x\|_p = 0$, then $x_j = 0$ for all $1 \le j \le n$. Thus $x = 0_{F^n}$.

Corollary 1.3.6. Let $p \in [1, \infty]$. Then $\ell_p = \left\{ (\alpha_k)_k \mid \sum_{k=1}^{\infty} |\alpha_k|^p < \infty \right\}$ with norm $\|(\alpha_k)_k\|_p = \left(\sum_{k=1}^{\infty} |\alpha_k|^p\right)^{\frac{1}{p}}$ is a normed space.

Proof. Homogeneity and positive-definiteness are trivial to prove. Let $(x_k)_k, (y_k)_k \in \ell_p$. It is clear that:

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{\frac{1}{p}} \leqslant \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}}$$

$$\leqslant \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{\infty} |y_k|^p\right)^{\frac{1}{p}}$$

$$= \|(x_k)_k\|_p + \|(y_k)_k\|_p.$$

We have that $\sum_{k=1}^{n}|x_k+y_k|^p$ is increasing and bounded above by $(\|(x_k)_k\|_p+\|(y_k)_k\|_p)^p$. By the Monotone Convergence Theorem $\liminf_{n\to\infty}\sum_{k=1}^n|x_k+y_k|^p=\sum_{k=1}^{\infty}|x_k+y_k|^p$ exists. Whence $\left(\sum_{k=1}^{\infty}|x_k+y_k|^p\right)^{\frac{1}{p}}=\|(x_k)_k+(y_k)_k\|_p\leqslant \|(x_k)_k\|_p+\|(y_k)_k\|_p$

Example 1.3.2.

- (1) $(\ell_{\infty}(\Omega, F), \|\cdot\|_{\mathfrak{u}})$ where $\|f\|_{\mathfrak{u}} = \sup_{x \in \Omega} |f(x)|$ is a normed space. This includes its subspaces, such as $C([\mathfrak{a}, \mathfrak{b}], F) \subseteq \ell_{\infty}([\mathfrak{a}, \mathfrak{b}], F)$ and $C_{\mathfrak{c}}(\mathbb{R}) \subseteq C_{\mathfrak{0}}(\mathbb{R}) \subseteq \ell_{\infty}(\mathbb{R})$, all with $\|\cdot\|_{\mathfrak{u}}$.
- (2) Take $\Omega = \mathbb{N}$ in the previous example. Then $(\ell_{\infty}, \|\cdot\|_{\infty})$ is a normed space. This includes its subspaces $c_{00} \subseteq c_0 \subseteq \ell_{\infty}$ with $\|\cdot\|_{\infty}$.
- (3) $(\ell_1, ||\cdot||_1)$ is a normed space.
- (4) $(C([a,b]), ||\cdot||_1)$ with $||f||_1 = \int_a^b |f(t)| dt$ is a normed space.
- (5) $(BV([a,b]), ||\cdot||_{BV})$ where $||f||_{BV} = |f(a)| + Var(f)$ is a normed space.
- (6) Let $(V, \|\cdot\|_V)$ and $(W, \|\cdot\|_W)$ be normed spaces. Then $(B(V, W), \|\cdot\|_{op})$ is a normed space, where $B(V, W) = \{T \in \mathcal{L}(V, W) \mid \|T\|_{op} < \infty\}$ is the set of bounded linear maps and $\|T\|_{op} = \sup_{v \in B_V} \|T(v)\|_W$. Intuitively, $\|T\|_{op}$ measures the radius of the smallest ball which contains B_V .

Exercise 1.3.3. Show that $V^* := B(V, F)$ is a subspace of V'.

(7) Let S be a nonempty set. Both $(\mathbb{F}(S),\|\cdot\|_1)$ and $(\mathbb{F}(S),\|\cdot\|_p)$ are normed spaces, where $\|f\|_1 = \sum_{s \in S} |f(s)|$ and $\|f\|_p = (\sum_{s \in S} |f(s)|^p)^{\frac{1}{p}}$. Note that since $f(s) \neq 0$ for finitely many $s \in S$, both $\|\cdot\|_1$ and $\|\cdot\|_p$ are well-defined.

Exercise 1.3.4. Show that $\|f\|_{\infty} := \sup_{s \in S} |f(s)|$ is a norm on $\mathbb{F}(S)$.

§ 1.4. Inner Product Spaces

Before defining what an inner product space is, we must introduce new terminology.

Definition 1.4.1. Let V be a vector space over F and $\varphi : V \times V \to F$ a map.

- (1) The map φ is said to be a *bilinear form* if is is linear in the first and second variable separately; i.e., for all $v_1, v_2, v \in V$ and $c \in F$ we have:
 - (i) $\varphi(cv_1 + v_2, v) = c\varphi(v_1, v) + \varphi(v_2, v)$
 - (ii) $\varphi(v, cv_1 + v_2) = \varphi(v, v_1) + c\varphi(v, v_2)$.
- (2) The map φ is said to be a *sesquilinear form* if it is linear in the first variable and conjugate linear in the second variable; i.e., for all $v_1, v_2, v \in V$ and $c \in F$ we have:
 - (i) $\varphi(cv_1 + v_2, v) = c\varphi(v_1, v) + \varphi(v_2, v)$
 - (ii) $\varphi(v, cv_1 + v_2) = \overline{c}\varphi(v, v_1) + \varphi(v, v_2)$.

If we wish to keep track of a bilinear form on V we write (V, φ) .

Definition 1.4.2. Let V be a vector space over F.

- (1) A bilinear form φ on V is said to be *symmetric* if $\varphi(v, w) = \varphi(w, v)$ for all $v, w \in V$.
- (2) A sesquilinear form φ on V is said to be *Hermitian* if $\varphi(v, w) = \overline{\varphi(w, v)}$ for all $v, w \in V$.

Definition 1.4.3. Let (V, φ) be a vector space over F such that if φ is symmetric, then $F = \mathbb{R}$ or if φ is Hermitian, then $F = \mathbb{C}$. We say φ is *positive-definite* if for all nonzero $v \in V$ we have $\varphi(v, v) > 0$.

Definition 1.4.4. Let (V, φ) be a vector space over \mathbb{R} with φ a positive-definite symmetric bilinear form or over \mathbb{C} with φ a positive-definite Hermitian sesquilinear form. Then we say φ is an *inner product* on V and write φ as $\langle \cdot, \cdot \rangle$. We say $(V, \langle \cdot, \cdot \rangle)$ is an *inner product space*.

With that out of the way, we will now show that every inner product space induces a norm.

Definition 1.4.5. If V is an inner product space we define $\|v\|_2 = \langle v, v \rangle^{\frac{1}{2}}$.

Definition 1.4.6. Let V be an inner product space. Two vectors $v, w \in V$ are *orthogonal* if $\langle u, v \rangle = 0$. We denote this as $u \perp v$.

Theorem 1.4.1 (Pythagorean Theorem). Let $v_1, ..., v_n$ be mutually orthogonal. Then $\sum_{j=1}^{n} \|v_j\|_2^2 = \|\sum_{j=1}^{n} v_j\|_2^2$.

Proof. Because $v_i \perp v_j$ for $1 \leq i, j \leq n$, we have $\langle v_i, v_j \rangle = 0$. Observe that:

$$\left\| \sum_{j=1}^{n} v_j \right\|_2^2 = \left\langle \sum_{j=1}^{n} v_j, \sum_{j=1}^{n} v_j \right\rangle$$

$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \langle v_j, v_i \rangle \right)$$

$$= \sum_{j=1}^{n} \langle v_j, v_j \rangle$$

$$= \sum_{i=1}^{n} \left\| v_i \right\|_2^2.$$

Definition 1.4.7. Let V be an inner product space and $w \in V$ nonzero. The *projection* of a vector $v \in V$ onto w is a map $P_W : V \to V$ defined by $P_W(v) = \frac{\langle v, w \rangle}{\langle w, w \rangle} w$.

Proposition 1.4.2. * Let V be an inner product space and $w \in V$ a nonzero vector. Then $P_w(v) \perp v - P_w(v)$.

Corollary 1.4.3. * Let V be an inner product space and $w \in W$ a nonzero vector. Then $\|v\|_2^2 = \|P_w(v)\|_2^2 + \|v - P_w(v)\|_2^2$.

Lemma 1.4.4 (Cauchy-Schwartz Inequality). Let V be an inner product space and $v, w \in V$. Then $|\langle v, w \rangle| \leq ||v||_2 ||w||_2$.

Proof. The previous corollary gives $\|v\|_2 \ge \|P_w(v)\|_2$. We have that:

$$\|v\|_{2} \ge \left\| \frac{\langle v, w \rangle}{\langle w, w \rangle} w \right\|_{2}$$

$$= \frac{|\langle v, w \rangle|}{\|w\|_{2}^{2}} \|w\|_{2}$$

$$= \frac{\langle v, w \rangle}{\|w\|_{2}}.$$

Multiplying both sides by $||w||_2$ gives the desired result.

Theorem 1.4.5. Let V be an inner product space. Then $(V, \|\cdot\|_2)$ is a normed space.

Proof. Let $v, w \in V$ and $\alpha \in F$. We have that:

$$\|\alpha v\|_{2} = \langle \alpha v, \alpha v \rangle^{\frac{1}{2}}$$

$$= (\alpha \overline{\alpha} \langle v, v \rangle)^{\frac{1}{2}}$$

$$= (|\alpha|^{2} \langle v, v \rangle)^{\frac{1}{2}}$$

$$= |\alpha| \|v\|_{2}.$$

Thus $\|\cdot\|_2$ satisfies homogeneity. It follows from the Cauchy-Schwartz Inequality that:

$$\begin{aligned} \|v + w\|_{2}^{2} &= \langle v + w, v + w \rangle \\ &= \langle v, v \rangle + \langle v, w \rangle + \langle w, v \rangle + \langle w, w \rangle \\ &= \|v\|_{2}^{2} + \langle v, w \rangle + \overline{\langle v, w \rangle} + \|w\|_{2}^{2} \\ &= \|v\|_{2}^{2} + 2\Re(\langle v, w \rangle) + \|w\|_{2}^{2} \\ &\leq \|v\|_{2}^{2} + 2|\langle v, w \rangle| + \|w\|_{2}^{2} \\ &\leq \|v\|_{2}^{2} + 2\|v\|_{2}\|w\|_{2} + \|w\|_{2}^{2} \\ &= (\|v\|_{2} + \|w\|_{2})^{2}, \end{aligned}$$

where we used the fact that $2\Re(\langle v, w \rangle) = 2|\langle v, w \rangle|$. Squaring both sides proves that $\|\cdot\|_2$ satisfies the triangle inequality. It remains to show positive-definiteness. Suppose $\|v\|_2 = 0$. Then $\langle v, v \rangle = 0$, but since the inner-product is by definition positive-definite, we get that $v = 0_V$.

Example 1.4.1.

 $(1) \ \ell_2^n = F^n \ \text{is an inner product space where} \ \langle (x_1,...,x_n), (y_1,...,y_n) \rangle := \textstyle \sum_{j=1}^n x_j \overline{y_j}.$

(2) ℓ_2 is an inner product space where $\langle (a_k)_k, (b_k)_k \rangle := \sum_{k=1}^\infty a_k \overline{b_k}$. Note that:

$$\begin{split} \sum_{k=1}^{n} \left| \alpha_{k} \overline{b_{k}} \right| &= \sum_{k=1}^{n} |\alpha_{k}| |b_{k}| \\ &\leq \left(\sum_{k=1}^{n} |\alpha_{k}|^{2} \right)^{\frac{1}{2}} \left(\sum_{k=1}^{n} |b_{k}|^{2} \right)^{\frac{1}{2}} \\ &\leq \left(\sum_{k=1}^{\infty} |\alpha_{k}|^{2} \right)^{\frac{1}{2}} \left(\sum_{k=1}^{\infty} |b_{k}|^{2} \right)^{\frac{1}{2}} \\ &= \left\| (\alpha_{k})_{k} \right\|_{2} \left\| (b_{k})_{k} \right\|_{2} \\ &< \infty \qquad \qquad \text{(Because } (\alpha_{k})_{k}, (b_{k})_{k} \in \ell_{2}). \end{split}$$

Since $\sum_{k=1}^{n} |a_k \overline{b_k}|$ is increasing and bounded above, the Monotone Convergence Theorem says $\sum_{k=1}^{\infty} |a_k \overline{b_k}|$ exists and is finite. Whence $\langle (a_k)_k, (b_k)_k \rangle$ converges.

- (3) Recall that $\operatorname{Tr}: M_n(\mathbb{C}) \to \mathbb{C}$ is defined by $\operatorname{Tr}(a_{ij}) = \sum_{i=1}^n a_{ii}$. Then $M_n(\mathbb{C})$ is an inner product space where $\langle a_{ij}, b_{ij} \rangle := \operatorname{Tr}(b_{ij}^* a_{ij})$.
- (4) C([0,1]) is an inner product space where $\langle f,g \rangle := \int_0^1 f(x) \overline{g(x)} dx$.

§ 1.5. Normed Algebras

Definition 1.5.1. A normed algebra is an algebra A equipped with a norm $\|\cdot\|_A$ such that $\|ab\|_A \le \|a\|_A \|b\|_A$. If A is unital, we require $\|1\|_A = 1$.

Example 1.5.1.

- (1) $\ell_{\infty}(\Omega)$ equipped with $\|\cdot\|_{\mathfrak{U}}$ is a normed algebra.
- (2) $C_c(\mathbb{R})$, $C_0(\mathbb{R})$, and C([0,1]) are all normed algebras when equipped with $\|\cdot\|_{\mathfrak{U}}$.
- (3) $M_n(F)$ equipped with $\|\cdot\|_{op}$ is a normed algebra.
- (4) If V is a normed space, then B(V,V) with $\|\cdot\|_{op}$ is a normed algebra: for $T,S\in B(V,V)$ and $v\in B_V$, we have that

$$\|(T \circ S)(v)\| \le \|T\|_{op} \|S(v)\|$$

 $\le \|T\|_{op} \|S\|_{op}.$

Taking the supremum over all $v \in B_V$ gives $\|T \circ S\|_{op} \leq \|T\|_{op} \|S\|_{op}$.

(5) Let S be a group. Equip the algebra $\mathbb{F}(S)$ with $\|\cdot\|_1$. We get a normed algebra.

Exercise 1.5.1. For $a, b \in \ell_1(\mathbb{Z})$, define $a * b : \mathbb{Z} \to F$ by $(a * b)(n) = \sum_{k \in \mathbb{Z}} a(n - k)b(k)$. Show that $\ell_1(\mathbb{Z})$ with this multiplication is a normed algebra.