

Teresa M. Corbin (SBN 132360)
Christopher Kelley (SBN 166608)
Jaclyn C. Fink (SBN 217913)
HOWREY SIMON ARNOLD & WHITE, LLP
525 Market Street, Suite 3600
San Francisco, California 94105
Telephone: (415) 848-4900
Facsimile: (415) 848-4999

Attorneys for Plaintiff SYNOPSYS, INC.
and for Defendants AEROFLEX INCORPORATED,
AMI SEMICONDUCTOR, INC., MATROX
ELECTRONIC SYSTEMS, LTD., MATROX
GRAPHICS, INC., MATROX INTERNATIONAL
CORP., MATROX TECH, INC. and AEROFLEX COLORADO
SPRINGS, INC.

UNITED STATES DISTRICT COURT

NORTHERN DISTRICT OF CALIFORNIA

SAN FRANCISCO DIVISION

RICOH COMPANY, LTD.,
Plaintiff,
vs.
AEROFLEX INCORPORATED, et al.,
Defendants.

) Case No. C03-04669 MJJ (EMC)
)

) Case No. C03-2289 MJJ (EMC)
)

) **DECLARATION OF ERIK OLSON IN
SUPPORT OF DEFENDANTS' NOTICE OF
MOTION AND MOTION FOR SUMMARY
JUDGMENT OF NONINFRINGEMENT
UNDER 35 U.S.C. §271(g)**
)

SYNOPSYS, INC.,) Date: August 9, 2005
Plaintiff,) Time: 9:30 a.m.
) Courtroom: 11, 19th Floor
) Judge: Martin J. Jenkins

RICOH COMPANY, LTD.,)
Defendant.)

1 I, Erik Olson, declare as follows:

2 1. I am a Director of Applications Consulting at Synopsys, Inc. ("Synopsys") specializing
 3 in physical implementation engagements—sometimes known as "back end" design. I have been an
 4 employee of Synopsys since August 12, 1991. I have been involved in the design of ASICs since
 5 1989. I have two bachelors degrees, one in Computer Science and one in Computer Engineering, from
 6 University of Minnesota. I make this Declaration of my personal knowledge, and if called as a
 7 witness, I could and would testify competently to the statements contained herein.

8 2. The process of designing ASICs includes many steps. Because the design process itself
 9 has many hand offs, it is common to divide the design implementation process into at least two major
 10 portions: "front end" and "back end" design. In many cases, these two portions are performed by
 11 different companies and in some cases, even more than two. Even if done by a single company, in the
 12 majority of such cases it is done by completely different groups of people with very different skills and
 13 training. The end result of the overall design process is a mask data file that can be used—frequently
 14 by companies other than the designer—for photomask manufacturing processes.

15 3. The "front end" design steps for a circuit include the high level steps of:

- 16 i.) identification of functions to be performed by the new ASIC and preparation of
 design specifications identifying those functions;
- 17 ii.) design capture of logic to implement the functional specification (e.g. by
 describing the logic in textual Verilog, or VHDL, descriptions);
- 18 iii.) verification of the functionality of the captured description;
- 19 iv.) synthesis of the description into a netlist; and
- 20 v.) netlist verification.

21 4. The "back end" design steps for a circuit include the high level steps of:

- 22 i.) generating the design information known as physical layout using software for
 placement and routing of the components and their interconnections;
- 23 ii.) verification of the physical layout with the software processes used for timing
 characterization, design rule checking, etc.; and
- 24 iii.) generation of mask data from the physical layout.

25 5. The generation of a netlist is included in step 3(iv) above. I understand that the Court
 26 has defined a netlist as "a description of the hardware components (and their interconnections) needed
 27 to manufacture the ASIC as used by subsequent processes, e.g., mask development, foundry, etc."

1 6. Preparation of mask data from the netlist follows the high level steps described above
2 (step 3(v) followed by steps 4(i)-(iii)). Mask data is a set of instructions used by electron beam
3 equipment to make photomasks (the process of generating mask data is also referred to as
4 "fracturing").

5 7. There are many more detailed steps that take place in transforming a netlist (output of
6 step 3(iv)) into mask data (output of step 4(iii)). These steps include:

7 a) netlist verification:

8 (Part 1) Netlist verification checks that the netlist output by step 3(iv) matches the
9 functional description provided by the user and

10 (Part 2) Netlist verification checks that the netlist output meets the design
11 constraints, e.g. timing, area, power consumption, etc.

12

13 Users typically would use Synopsys tools such as Formality, Primetime, and VCS
14 for these sub-steps. Throughout this declaration I am addressing the Synopsys
15 products that I consider most relevant to the step being discussed; however, for
16 many of these steps competitor software companies offer tools that provide similar
17 functionality.

18 b) design planning: Sometimes referred to as floorplanning, design planning has three
19 main parts:

20 (Part 1) Design planning performs an overall floor plan for the placement of the
21 functional units of the chip, sometimes called "rough placement", and checks the
22 timing and top level routing between those functional units;

23 (Part 2) Design planning designs and routes the electrical power grid, including the
24 placement of power and ground wiring;

25 (Part 3) Design planning defines the pin positions for the inputs and outputs of the
26 chip.

27

28

1 Users can use one or more Synopsys tools such as Astro, IC Compiler, and
2 JupiterXT for this step.

3 c) physical implementation: Physical implementation has three main parts:
4 (Part 1) Placement defines a physical location in two dimensional space for the
5 position of each component in the netlist;
6 (Part 2) Clock tree design, sometimes called clock tree synthesis, creates and defines
7 the distribution of the previously defined clock signal (e.g. from the clock defined in
8 the previously input textual Verilog, or VHDL, descriptions) into the placed
9 components of the netlist; and
10 (Part 3) Interconnect routing provides the electrical connections between the placed
11 components—according to the connections defined in the netlist.

12
13 Users can use one or more Synopsys tools such as Astro and IC Compiler for this
14 step.

15 d) extraction and analysis:
16 (Part 1) Extraction comprises the extraction of electrical characteristics of the
17 interconnect components from the physical layout (created in the routing step
18 above) to produce a file for further analysis.
19 (Part 2) Analysis comprises both the review of the electrical characteristics file and
20 the physical layout itself to confirm that the design constraints are met, e.g. timing,
21 area, power grid analysis (IR Drop, voltage drop), power consumption, etc.

22
23 Users can use one or more Synopsys tools such as AstroRail, PrimeRail, Primetime,
24 and StarRC/XT for this step.

25 e) physical verification: Physical verification verifies the physical layout with other
26 software processes such as those for design rule checking, layout-versus-schematic,
27 etc. Users can use the Synopsys Hercules tool for this step.

1 f) resolution enhancement: Resolution enhancement uses software to perform
2 geometric manipulations to the physical layout to improve manufacturability. Users
3 can use one or more Synopsys tools such as Proteus, ProteusAF, and PSMGen for
4 this step.

5 g) mask data preparation: Sometimes called fracturing, mask data preparation is the
6 conversion of the physical layout into the instructions used by the electron beam
7 machines to make the photomasks. Users can use the Synopsys CATS tool for this
8 step.

9

10 I declare under penalty of perjury under the laws of the United States of America that the
11 foregoing is true and correct. This declaration was executed in Bellevue, Washington on June 14,
12 2005.

13
Erik Olson