Exercises

Exercise 1

Taking into account the description of the following languages over $\{0, 1\}$:

$$L_{1} = \{0x : x \in \{0, 1\}^{*}\}$$

$$L_{2} = \{x1 : x \in \{0, 1\}^{*}\}$$

$$L_{3} = \{0x1 : x \in \{0, 1\}^{*}\}$$

$$L_{4} = \{x \in \{0, 1\}^{*} : |x|_{0} = 2\}$$

$$L_{5} = \{x \in \{0, 1\}^{*} : |x|_{0} = 2\}$$

$$L_{6} = \{x \in \{0, 1\}^{*} : 001 \in Suf(x)\}$$

$$L_{7} = \{x \in \{0, 1\}^{*} : 001 \notin Seg(x)\}$$

$$L_{8} = \{x \in \{0, 1\}^{*} : 001 \notin Suf(x)\}$$

Obtain a DFA for each of each of the defined languages.

Exercise 2

Consider the following automata:

Provide a description of the following right languages:

(a) Taking into account A_1 , the language R_{q_2}

Answer:

$$R_{q_2} = \{0, 1\}^*$$

(b) Taking into account the automata A_2 , the languages R_{q_2} and R_{q_3}

Answer:

$$R_{q_2} = \{x1 : x \in \{0, 1\}^*\}$$

$$R_{q_3} = \{x1 : x \in \{0, 1\}^*\} \cup \{\lambda\}$$

(c) Taking into account the automata A_3 , the language R_{q_3}

Answer:

$$R_{q_3} = \{x \in \{0,1\}^* : |x|_1 \neq 0\}$$

Exercise 3

Obtain a DFA equivalent to the following non-deterministic automata:

(a)

Answer:

Exercise 4

Consider the following λ -FA and compute the λ -closure of each state.

(a)

Answer:

$$\lambda - closure(q_1) = \{q_1, q_2\}$$

$$\lambda - closure(q_2) = \{q_2\}$$

$$\lambda - closure(q_3) = \{q_2, q_3\}$$

(b)

Answer:

$$\lambda - closure(q_1) = \{q_1, q_2\}$$

 $\lambda - closure(q_2) = \{q_1, q_2\}$
 $\lambda - closure(q_3) = \{q_1, q_2, q_3\}$

(c)

Answer:

$$\lambda - closure(q_1) = \{q_1, q_2, q_3\}$$

$$\lambda - closure(q_2) = \{q_1, q_2, q_3\}$$

$$\lambda - closure(q_3) = \{q_1, q_2, q_3\}$$

$$\lambda - closure(q_4) = \{q_4\}$$

Exercise 5

Obtain a DFA equivalent to each one of the following $\lambda\textsc{-}\textsc{FA}$

(a)

Answer:

(b)

Answer:

(c)

