Team Entrepreneur

Exploratory Data Analysis on Fire Dataset

About the Dataset

• Dataset was given by taken from Fao website. All countries available were selected covering 30 years from 1990 to 2019, for Forests and Savanna fire data.

Steps performed

- EDA was perfomed in two steps
 - 1. EDA on whole dataset
 - 2. EDA on subcontinent countries

1. Import Libraries

Import necessary libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.express as px
```

2. Import dataset

• Import dataset and check dataset

```
df= pd.read_csv('fires_data_11-29-2021.csv')
df.head()
```

3. Shape of dataset

Check Shape of data

```
row, cols= df.shape
print("Number of rows:", row)
print("Number of columns:", cols)
```

4. Check data types

• Check data types of each column

```
df.dtypes
```

5. Check missing values

· Check missing values in each column

```
df.isnull().sum()
```

Only one column (Note) has missing values

6. Dropping unnecessary columns

Drop unnecessary columns and making changes in the dataset

```
df.drop(['Note','Domain Code','Element Code','Item Code','Flag
Description','Flag','Source Code'], axis=1, inplace=True)
```

7. Data Structure of dataset

· Check data structure of dataset

```
df.info()
```

- Data has RangeIndex: 47649 entries, starting from 0 to 47648
- Data has total 10 columns
- dtypes of columns are one float64, two int64 and seven object
- Memory usage of the data is 3.6 MB

8. Summery of dataset

Summery of dataset

```
df.describe()
```

9. Unique values in each column

• Unique values in each column

```
df.nunique()
```

- 238 Countries
- 30 Years
- 7 Items

10. Value counts

• Value counts of Item column

```
df['Item'].value_counts()
```

Seven different items are available in the dataset and their count are:

Humid tropical forest 6807

Other forest 6807

Closed shrubland 6807

Grassland 6807

Open shrubland 6807

Savanna 6807

Woody savanna 6807

EDA on whole Dataset

1. Land affected by fires yearly

```
s=df.groupby(["Year"]).sum().sort_values(by="Value", ascending=False).head(30)
s
```

Year	Value
2012	8.320688e+08
2007	8.303040e+08
2011	8.294422e+08
2002	8.285003e+08

2004 8.227932e+08 2005 7.998101e+08 2003 7.846035e+08 2006 7.715579e+08	
2003 7.846035e+08	3
2006 7.715579e+08	3
	3
2010 7.536716e+08	3
2008 7.461368e+08	3
2001 7.394390e+08	3
2017 7.011378e+08	3
2015 6.869739e+08	3
2014 6.793501e+08	3
2009 6.761442e+08	3
1995 6.640982e+08	3
1994 6.640982e+08	3
1993 6.640982e+08	3
1992 6.640982e+08	3
1990 6.640982e+08	3
1991 6.640982e+08	3
2016 6.469105e+08	3
2013 6.379084e+08	3
2018 6.311982e+08	3
2019 6.064821e+08	3
1998 3.534771e+08	3
2000 3.421322e+08	3
1999 3.396431e+08	3
1996 3.087709e+08	3
1997 3.022354e+08	3

- The highest value is in year 2012 value of 8.320688e+08
- The lowest value is in year **1997** value of **3.022354e+08**

Graphical Representation land affected by fires yearly

```
plt.figure(figsize=(5,3), dpi=150, linewidth=2)
sns.barplot(x=s.index,y='Value',data=s, palette="winter")
plt.xticks(rotation=90)
plt.title('Land affected by fires yearly')
```


2. Top 10 countries affected by fires

```
```python
a=df.groupby(["Area"]).sum().sort_values(by="Value", ascending=False).head(30)
a
```

Area	Value
Australia	2.650662e+09
Angola	1.927834e+09
Democratic Republic of the Congo	1.698499e+09
Sudan (former)	1.304401e+09
Zambia	1.204405e+09

Area	Value
Mozambique	1.040799e+09
Central African Republic	9.843985e+08
Brazil	8.904736e+08
United Republic of Tanzania	6.783696e+08
Russian Federation	4.573399e+08

• Australia has the highest value of 2.650662e+09

Graphical Representation of top 10 countries affected by fires

```
plt.figure(figsize=(5,3), dpi=150, linewidth=2)
sns.barplot(x=a.index,y='Value',data=a)
plt.xticks(rotation=90)
plt.title('Top 10 Countries affected by fires')
```



## 3.Item type burned by fire over years

• Item type burned by fire over years

```
b=df.groupby(["Item"]).sum().sort_values(by="Value", ascending=False)
b
```

Item Value

Item	Value
Savanna	7.831523e+09
Grassland	6.801505e+09
Woody savanna	1.957280e+09
Open shrubland	1.365417e+09
Humid tropical forest	1.132681e+09
Other forest	4.478974e+08
Closed shrubland	9.897531e+07

- Savanna is most burned item type with value of **1.957280e+09**
- Closed shrubland is least burned item type with value of **9.897531e+07**

#### Graphical Representation of item type affected by fire

```
plt.figure(figsize=(5,3), dpi=150)
sns.barplot(x=b.index,y='Value',data=b)
plt.xticks(rotation=90)
plt.title("Item type affected by fires")
```



## 4. Maximum area burned in a year in a country

• Maximum area burned in a year in a country

```
df.groupby(["Year","Area"]).sum().sort_values(by="Value",
ascending=False).head(10)
```

Yea	Year Are		Value
200	)1	Australia	1.840483e+08
201	12	Australia	1.783090e+08
201	11	Australia	1.737702e+08
200	)2	Australia	1.530490e+08

Year	Area	Value
2004	Australia	1.255536e+08
2006	Australia	1.134671e+08
2007	Australia	1.025287e+08
2018	Australia	1.013396e+08
2017	Australia	9.615384e+07
2014	Australia	9.246523e+07

• For most Forest and Savanna burned in a year in a country Australia has 10 top values of the burned area in a country in a year.

Graphical Representation of maximum area burned in a year in a country

-- Groupby Area, Area code and year and sum the values and rest index will give sum of all the tyoes of forest burned in a year in a country

```
df1 = df.groupby(["Area", "Area Code (ISO3)", "Year"])
["Value"].sum().reset_index()
df1.head()
```

• Ploting the graph

```
plt.figure(figsize=(15,3), dpi=150)
fig = px.line(df1, x="Year", y="Value",color='Area', title='World Burned Area')
fig.show()
```

#### World Burned Area



## 5. Item type burned most in a year

• Item type burned most in a year

```
df.groupby(["Year","Item"]).sum().sort_values(by="Value",
ascending=False).head(10)
```

Year	Item	Value
2005	Savanna	3.487667e+08
2003	Savanna	3.414789e+08
2007	Savanna	3.294614e+08
2004	Grassland	3.285651e+08
2002	Grassland	3.209670e+08
2007	Grassland	3.209456e+08
2008	Savanna	3.151744e+08
2010	Savanna	3.136204e+08
2004	Savanna	3.135659e+08
2005	Grassland	3.107788e+08

For most Forest and Savanna burned in a year Savanna has the highest value of 3.487667e+08 in year
 2005

## 6. Which type of item is burned most in a year and in which country

```
df.groupby(["Year","Area","Item"]).sum().sort_values(by="Value",
ascending=False).head(10)
```

Year	Area	Item	Value
2011	Australia	Open shrubland	1.052085e+08
2012	Australia	Open shrubland	9.431891e+07
2001	Australia	Open shrubland	9.156779e+07
2002	Australia	Open shrubland	8.998342e+07
2001	Australia	Grassland	7.639979e+07
2004	Australia	Grassland	6.797964e+07
2012	Australia	Grassland	6.456851e+07
2011	Australia	Grassland	5.287709e+07
2017	Australia	Open shrubland	5.209256e+07
2006	Australia	Grassland	5.006097e+07

- For most Forest and Savanna burned in a year in a country Open shrubland has the highest value which is **1.052085e+08** in year **2011** in Australia
- Open shrubland and Grassland are most burned item type in a year in a country.
- Both item type are most burned in Australia in a year.

## **EDA on Subcontinent countries**

#### 1. Select countries

• Select sub-continent countries

```
df_selected = df[df["Area"].isin(["India", "Pakistan","Bangladesh"])]
```

• India, Pakistan and Bangladesh are the selected countries in south Asia

Area	Value
India	6.546250e+07
Bangladesh	2.536032e+06

Area	Value
Pakistan	1.015368e+06

 From the above analysis we can say that India is the most affected country in subcontinent with value of 6.546250e+07

• Pakistan is least affected country in subcontinent with value of 1.015368e+06

### 2. Item type burned by fire in selected countries

• Item type burned by fire in selected countries

```
df_selected.groupby(["Item"]).sum().sort_values(by="Value",
ascending=False).head(10)
```

Item	Value
Other forest	2.952491e+07
Woody savanna	1.180380e+07
Humid tropical forest	1.146947e+07
Grassland	8.249579e+06
Savanna	7.762407e+06
Open shrubland	1.553655e+05
Closed shrubland	5.010989e+04

- From the subcontinent countries, the most burned item type was **Other forest** with value of **2.952522e+07**
- Least burned item type is **Closed shrubland** with value of **5.624728e+04**

### 3. Most burned area in selected countries in a year

Most burned area in selected countries in a year

```
df_selected.groupby("Year").sum().sort_values(by="Value", ascending=False)
```

Year	Value
2009	5.705159e+06
2012	5.201674e+06
2010	4.037667e+06

Year	Value
2017	3.677225e+06
2018	3.413118e+06
2004	3.239376e+06
2007	2.952916e+06
2013	2.908165e+06
2014	2.762922e+06
2016	2.710776e+06
2011	2.484390e+06
2008	2.388524e+06
1995	2.302982e+06
1994	2.302982e+06
1993	2.302982e+06
1991	2.302982e+06
1992	2.302982e+06
1990	2.302982e+06
2006	2.230222e+06
2003	1.952966e+06
2019	1.895419e+06
2015	1.893740e+06
2005	1.841006e+06
2001	1.098290e+06
2002	6.435178e+05
1999	5.964729e+05
1998	4.256860e+05
1996	4.232155e+05
2000	3.992597e+05
1997	3.143008e+05

- From the above table it is clear the most area burned in a year is in year **2009** with value of **5.705159e+06**
- Minimum area burned in a year is in year 1997 with value of 3.143008e+05

#### Graph of yearly area burned in subcontinent countries

```
plt.figure(figsize=(5,3), dpi=150, linewidth=2)
sns.barplot(x="Year",y='Value',data=sy, palette="winter")
plt.xticks(rotation=90)
plt.title('Land affected by fires yearly in subcontinent')
```



## 4. Line graph of subcontinent countries

Graphical analysis of selected countries

```
plt.figure(figsize=(15,8), dpi=150)
sns.set(font_scale=1)
sns.set_style("whitegrid")
sns.lineplot(x="Year",y="Value",hue="Area",style="Item",data=df_selected)
plt.title("Fires by year and area")
```



 Above graph is visualized to show the fires by year and area of selected countries with the style of line for the item type.

## 5. Graph of subcontinent countries showing yearly fire area

• Graph of subcontinent countries showing yearly fire area

```
fig = px.line(df2, x="Year", y="Value",color='Area', title='Subcontinent Burned
Area')
fig.show()
```

#### Subcontinent Burned Area



## **Conclusion**

#### 1. For World

- The highest value of burned area was in year 2012 which 8.320688e+08
- The lowest value of burned area was in year 1997 which is 3.022354e+08
- A **sudden increase** in burned area value was observed after year **2000**
- From the available data **year 2002 to year 2012** has observes an increase burned area value, and a decrease after year 2012
- Australia is most affected country with area affected was 2.650662e+09
- Savanna is most burned item type with value of 1.957280e+09
- Closed shrubland is least burned item type with value of 9.897531e+07
- For most Forest and Savanna burned in a year in a country **Australia** has 10 top values of the burned area in a country in a year.
- For most Forest and Savanna burned in a year Savanna has the highest value which is 3.487667e+08
  in year 2005
- For most Forest and Savanna burned in a year in a country **Open shrubland** has the highest value which is **1.052085e+08** in year **2011** in **Australia**
- Open shrubland and Savanna are in top 10 item type most burned in Australia in a year.

## 2. Subcontinent countries Analysis

- India is the most affected country from Subcontinent with value of 6.546250e+07
- Pakistan is least affected country from Sub continent with value of 1.015368e+06
- From the subcontinent countries, the most burned item type was **Other forest** with value of **2.952522e+07**
- Least burned item type is **Closed shrubland** with value of **5.624728e+04**
- Most area burned in a year in subcontinent was in year 2009 having value 5.705159e+06
- Minimum area burned in a year in subcontinent was in year 1997 having value 3.143008e+05