

4.2 Hidden Markov Models

Edwin Simpson

Papartment of Co

Department of Computer Science,

University of Bristol, UK.

From Naïve Bayes to a Sequential Model: NB for Single Tokens

$$P(y_i|x_i) \propto P(x_i|y_i)P(y_i)$$

Maximum likelihood parameter estimates

$$P(y_i = c) = \frac{\text{num_tokens_with_tag_c}}{\text{total_num_toks}}$$

$$P(x_i = w | y_i = c) = \frac{count(w | c) + 1}{\sum_{w' \in V} (count(w' | c) + 1)}$$

From Naïve Bayes to a Sequential Model:

$$P(y_i|x_i) \propto P(x_i|y_i)P(y_i|y_i)$$

bristol.ac.uk

From Naïve Bayes to a Sequential Model:

$$P(y_i|x_i) \propto P(x_i|y_i)P(y_i|y_i) \approx P(x_i|y_i)P(y_i|y_{i-1})$$

bristol.ac.uk

Markov Models and Hidden Markov Models

Markov assumption: $P(y_i|y_-) \approx P(y_i|y_{i-1})$

Hidden Markov model (HMM): the states (y variables) are hidden and we observe x instead.

Transition Matrix

$$P(y_i|x_i) \propto P(x_i|y_i)P(y_i|y_{i-1})$$

Transition matrix, <i>A</i>	Current tag y _i	
Previous	0.5	0.5
tag y_{i-1}	0.9	0.1

Initial probabilities π for p(y_1) instead of the transition matrix		
0.9	0.1	

Maximum likelihood parameter estimate

$$P(y_i = c | y_{i-1} = d) = \frac{\text{num_tokens_with_tag_c_preceded_by_d}}{\text{total_num_toks_with_tag_d}}$$

Observation Model

$$P(y_i|x_i) \propto P(x_i|y_i)P(y_i|y_{i-1})$$

- $P(x_i|y_i)$ is defined by the **observation** or **emission model**, **B**;
- The HMM generalises the observation model to allow any type of word features:
 - Word embeddings multivariate Gaussian as observation distribution;
 - -D binary features, e.g., presence in sentiment lexicons $-\prod_{d=1}^{D} P(x_{id}|y_i)$

Section 8.4, Speech and Language Processing (3rd edition draft), Jurafsky & Martin (2019).

Learning the Observation Model

Words as observations (as in naïve Bayes):

Maximum likelihood parameter estimate

$$P(x_i = w | y_i = c) = \frac{count(w | c) + 1}{\sum_{w' \in V} (count(w' | c) + 1)}$$

Word embeddings as Gaussian-distributed observations:

Maximum likelihood parameter estimates

$$P(\vec{x}_i = w | y_i = c) = \mathcal{N}(\vec{x}_i, \mu_c, \Sigma_c)$$

Summary

- The HMM models token likelihoods similarly to naïve Bayes.
- It also models the transition probabilities.
- To make learning and prediction tractable, we use the Markov assumption: the probability of each tag depends only on *m* predecessors in an order-m Markov model.