Maintenance benchmark on real world data 2

Esteban Marquer

6 november

Benchmark experiment setup

Time complexity

Results on each dataset

What next

Baselines Green: maintenance baseline avail. Red: not found

Dataset Name	Cases	Attributes	Classes	Accuracy (%)
Balance	625	4	3	85.12
Breast Cancer Diagnostic	569	30	2	96.90
Breast Cancer Prognostic	198	33	2	71.58
Breathalyser	127	5	2	71.60
Credit Approval	690	15	2	86.92
Dermatology	366	34	6	97.75
Glass Identification	214	9	7	69.05
Haberman's Survival	306	3	2	69.51
Heart Disease Cleveland	303	14	5	53.22
Hepatitis	155	19	2	80.63
Ionosphere	351	33	2	86.71
Iris	150	4	3	97.00
Lenses	24	4	3	72.50
Liver Disorders	345	6	2	64.20
Lung Cancer	32	56	3	48.00
Pima Indians Diabetes	768	8	2	70.78
Post-Operative Patient	90	8	3	64.71
Spam1	1000	699	2	93.35
Spam2	1000	699	2	94.3
Spam3	1000	699	2	98.25
Spam4	1000	699	2	97.05
Spam5	1000	699	2	94.8
Teaching Assistant Evaluation	151	5	3	55.33
Wine	178	13	3	96.67
Zoo	101	16	7	91.50
Average over twenty-five datasets	-	-	-	80.30

Current datasets

verbose name	found	has maintenance baseline
Lenses	True	True
Credit Approval	True	True
Zoo	True	False
Wine	True	False
Teaching Assistant Evaluation	True	False
Post-Operative Patient	True	False
Pima indians Diabetes	True	False
Lung Cancer	True	False
Liver Disorders	True	False
Iris	True	False
Ionosphere	True	False
Hepatitis	True	False
Heart Disease Cleveland	True	False
Haberman's Survival	True	False
Glass Identification	True	False
Dermatology	True	False
Breast Cancer Pronostic	True	False
Breast Cancer Diagnostic	True	False
Balance	True	False

Process

train/dev/test split: 60%/20%/20%, as in the thesis

train: cases in the CB at the start

dev: cases used for maintenance decision

test: cases used to mesure performance

Similarity

Numeric attribute: 1- normalized absolute distance

$$sim(x,y) = 1 - \frac{x - y}{max(X) - min(X)}$$

with x, y the value of the att. for 2 cases, X the values of the att. for all cases in the CB

Symbolic attribute:

$$sim(x, y) = 1$$
 if $x = y$ else 0

with x, y the value of the att. for 2 cases

Overall similarity: weighted similarity (Karabulut et al., 2019)¹

^{1&}quot;Weighted Similarity Measure for k-Nearest Neighbors Algorithm" B.

Karabulut, G. Arslan, H. M. Ünver, 2019, Celal Bayar University Journal of Science

Weight computation

 $C_i(a)$: set of values for attribute a belonging to class i

$$C_i(a) = \{X[k][a] : X[k] \in X \text{ and } y[k] = i\}$$

 $A_i(a)$: set of cases with attribute a within values of class i

$$A_i(a) = \{X[k] \in X : min(C_i(a)) \le X[k][a] \le max(C_i(a))\}$$

$$A_i(a) = \{X[k] \in X : X[k][a] \in C_i(a)\}$$
 for nominal att. (defined by me)

 $B_i(a)$: set of cases with attribute a within values of class i but not any other class

$$B_i(a) = A_i(a) - \bigcup_{i \neq j, j \in classes} A_j(a)$$

 w_a : weight for attribute a, average "ability to discriminate"

$$w_a = |\cup_{i \in classes} B_i(a)|/n, \ n : len(X)$$

$$w_a*=w_a/(\sum_{a'}w_{a'})$$
: normalized w_a

(in paper it was $w_a = (\bigcup_{i \in classes} |B_i(a)|)/n$, but it makes no sense)

Models

- ► MeATCube
- ► 1-NN, 5-NN, 10-NN, all-NN outcome obtained by voting, vote weight inversely proportional to similarity of the case with the target

Processing

Processing (MeATCube):

- find weights on the whole dataset for each feature in the similarity
- 2. (repeat) compress MeATCube using hinge competence
 - compute MeATCube prediction performance
 - compute 1-NN, 5-NN, 10-NN and all-NN performance

Theoretical time complexity

Time complexity of MeATCube prediction: $\Theta_{pred} = \Theta(|\mathcal{R}| |CB|^2)$ With \mathcal{R} the set of possible outcomes

Uselessly detailed value: $||\mathcal{R}| |CB| (3|CB| + 2)$

Time complexity of competence of 1 case with MeATCube: $\Theta_{\text{case comp.}} = \Theta(|CB_{ref}|\Theta_{pred})$ With CB_{ref} the case base on which we compute competence

For all cases at once: $\Theta_{\text{cases comp.}} = \Theta(|CB||CB_{ref}|\Theta_{pred})$

Time complexity of 1 MeATCube compression iteration:

 $\Theta_{\mathsf{cases\ comp.}} = \Theta(|\mathit{CB}|^3 |\mathit{CB}_{\mathit{ref}}| |\mathcal{R}|)$

Of which at least O(|CB|) is strongly CPU bound (cannot be fully GPU accelerated)

Metrics

Compression step: $step_i : |CB_i| = |CB_0| - i$

Position and value for the maximum accuracy for all models if multiple with same score, take the one with the smallest CB

Result: Lenses

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris

Haberman's Survival Glass Identification Dermatology Breast Cancer Pronostic Breast Cancer Diagnostic Balance

Heart Disease Cleveland

Hepatitis

Result: Credit Aproval

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere

Heart Disease Cleveland

Breast Cancer Propostic

Breast Cancer Diagnostic

Haberman's Survival

Glass Identification Dermatology

Hepatitis

Balance

using MeATCube and hinge competence Best MeATCube acc.: 80.15% Rest 1-NN acc - 75 57% Best 5-NN acc.: 74.81% Best 10-NN acc.: 68.70% Best all-NN acc.: 68.70% 100% Datacetcredit+approval 80% Vertical lines Highest model performance 60% Line opacity: Light: actual values Dark: smoothed values 40% Models MeatCube --- 1-NN 20% ----- 5-NN ---- 10-NN --- all-NN 100 150 200 250 300 350 400 step Model accuracy when compressing the CB

Model accuracy when compressing the CB.

Result: Zoo

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris

Haberman's Survival Glass Identification Dermatology Breast Cancer Pronostic Breast Cancer Diagnostic Balance

Heart Disease Cleveland

Ionosphere Hepatitis

Result: Wine

Lenses Credit Approval Zoo Wine Teaching Assistant Evaluation Post-Operative Patient Pima indians Diabetes Lung Cancer Liver Disorders Iris Ionosphere Hepatitis Heart Disease Cleveland Haberman's Survival Glass Identification Dermatology Breast Cancer Propostic

Breast Cancer Diagnostic

Balance

Result: Teach. Aassistant

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere
Hepatitis

Dermatology Breast Cancer Pronostic Breast Cancer Diagnostic Balance

Heart Disease Cleveland

Glass Identification

Result: Post-Op. Patient

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders

Heart Disease Cleveland Haberman's Survival Glass Identification Dermatology Breast Cancer Pronostic Breast Cancer Diagnostic Balance

Iris

Ionosphere Hepatitis

Result: Pima

Lenses

Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere
Hepatitis
Heart Disease Cleveland
Haberman's Survival
Glass Identification
Dermatology

Breast Cancer Propostic

Balance

Breast Cancer Diagnostic

Result: Lung Cancer

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders

Heart Disease Cleveland Haberman's Survival Glass Identification Dermatology Breast Cancer Pronostic Breast Cancer Diagnostic Balance

Iris

Ionosphere Hepatitis

Result: Liver Disorders

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders

Heart Disease Cleveland Haberman's Survival Glass Identification Dermatology Breast Cancer Pronostic Breast Cancer Diagnostic

Iris

Ionosphere Hepatitis

Balance

Result: Iris

Lenses Credit Approval Zoo Wine Teaching Assistant Evaluation Post-Operative Patient Pima indians Diabetes Lung Cancer Liver Disorders Iris Ionosphere Hepatitis Heart Disease Cleveland Haberman's Survival Glass Identification Dermatology

Breast Cancer Pronostic

Breast Cancer Diagnostic

Balance

Result: Ionosphere

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere

Glass Identification Dermatology Breast Cancer Pronostic Breast Cancer Diagnostic Balance

Heart Disease Cleveland

Haberman's Survival

Hepatitis

Result: Hepatitis

Lenses

Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere
Hepatitis
Heart Disease Cleveland
Haberman's Survival

Glass Identification Dermatology

Balance

Breast Cancer Propostic

Breast Cancer Diagnostic

Result: Heart

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere
Hepatitis
Heart Disease Cleveland

Ionosphere
Hepatitis
Heart Disease Cleveland
Haberman's Survival
Glass Identification
Dermatology
Breast Cancer Pronostic
Breast Cancer Diagnostic
Balance

Result: Haberman's

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere
Hepatitis

Heart Disease Cleveland Haberman's Survival

Breast Cancer Diagnostic

Glass Identification
Dermatology
Breast Cancer Propostic

Balance

Result: Glass

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere
Hepatitis
Heart Disease Cleveland

Haberman's Survival

Breast Cancer Pronostic Breast Cancer Diagnostic

Glass Identification Dermatology

Balance

Result: Dermatology

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris

Dermatology
Breast Cancer Pronostic
Breast Cancer Diagnostic
Balance

Heart Disease Cleveland Haberman's Survival Glass Identification

Ionosphere

Hepatitis

Result: Breast Cancer Pronostic

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders

Heart Disease Cleveland Haberman's Survival Glass Identification Dermatology <u>Breast Cancer Pronostic</u> Breast Cancer Diagnostic Balance

Iris

Ionosphere Hepatitis

Result: Breast Cancer Diagnostic

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris

Dermatology Breast Cancer Pronostic Breast Cancer Diagnostic Balance

Heart Disease Cleveland

Glass Identification

Ionosphere

Hepatitis

Result: Balance

Lenses
Credit Approval
Zoo
Wine
Teaching Assistant Evaluation
Post-Operative Patient
Pima indians Diabetes
Lung Cancer
Liver Disorders
Iris
Ionosphere
Hepatitis
Heart Disease Cleveland
Haberman's Survival
Glass Identification

Dermatology

Balance

Breast Cancer Pronostic

Breast Cancer Diagnostic

What next

Datasets to add?

Fixing the weights: how?

Apply the baselines instead of copying them Apply more recent baselines

Cross-validation