Structural studies: slide 1 of 2

(first-principles at DFT-D accuracy, up to 1000 atoms in simulation cell)

Structural studies: slide 2 of 2

(first-principles at DFT-D accuracy, up to 1000 atoms in simulation cell)

Computer-aided design of materials

- Structure refinement
 - from experiment
 - from structural models
 - from force field models
- Benchmarking methods cmsos.github.io/bmcos

JCTC 19, 8481 (2023) - 67 crystals

- Exploring novel architectures
 - frameworks
 - ► 2D/3D polymers
 - wiremesh Chem Mater 33, 966 (2021)
 - **nonplanar** π -systems
 - interdigitated herringbone

Electronic properties of materials: slide 1 of 2

(scalable approaches \implies multiscale modeling, DFT-parametrized effective Hamiltonian)

Electronic/vibrational spectroscopy Commonly used to probe local structural and electronic properties

- Derive structural information
 J Phys Chem Lett 10, 3232 (2019) stilbene
 Chem Sci 13, 8161 (2022) charging
- Screen out inaccurate methods
 Chem Sci 13, 8161 (2022) by bandgap
- Understand spectral changes

ACS Appl Mater Interfaces 5, 4685 (2013) Chem Sci 6, 789 (2015)

Chem Phys 481, 133 (2016)

Charge carrier transport How to quickly estimate mobility?

What is the origin of nonmonotonic temperature dependence of luminescence kinetics?

Low Temperature Physics 28, 706 (2002)

Electronic properties of materials: slide 2 of 2

(scalable approaches \implies multiscale modeling, DFT-parametrized effective Hamiltonian)

more accurately than KMC?

Ongoing efforts:

- cmsos.github.io/escp
- cmsos.github.io/tbm (library of electronic prototypes)
- excited states
- add vibronic couplings