Cycle by Cycle Analysis

Workshop

10.08.23

By Sophia Snipes

Schedule

2:00-3:00 Presentation on how cycleby-cycle analysis works

3:00-3:30 Coffee break

3:30-5:30 Practical part

5:30-?? **Apero!**

Cycle-by-cycle analysis is for detecting oscillation bursts

Cycle-by-cycle analysis finds bursts of oscillations in the EEG so that they can be quantified based on their:

- Amplitudes
- Frequency
- Durations
- Spatial distribution

142

143

Shape

The alternatives for quantifying oscillations

Problem 1: the EEG is non-stationary

EEG oscillation bursts come and go, so simple power is not sufficient to quantify changes

Problem 2: EEG is made of both oscillations and "colored background noise"

Solution: cycle-by-cycle analysis finds bursts based on the shape of the signal

Other advantages:

- High temporal resolution
- High frequency resolution
- Robust to non-sinusoidal oscillations

What can you do with cycle-by-cycle analysis?

- Cross-frequency coupling
- Connectivity analysis
- Burst categorization by waveform
- Dissociate changes in amplitude from quantities of oscillations
- Travelling waves
- Infra-slow oscillations

If it involves oscillations, then this is the analysis for you!

When NOT to use cycle-by-cycle analysis?

When interested in the background activity

When interested in isolated waves

Certain cross-frequency coupling

How it works

Step 1:
Filter EEG
data

Step 2:
Detect all
the cycles

Step 3:
Group
periodic
cycles

Step 1: Filtering EEG data

Step 2: detect all the cycles

I:
Detect zero-crossings

II: Detect peaks

III: Divide into cycles

In **narrowband** data, identify all the positive and negative zero-crossings.

N.B. this is the <u>only</u> step on the narrowband data.

In the **broadband** data, detect positive and negative peaks between zero-crossings (max absolute value).

Each cycle is referenced to the negative peak, and starts and ends with the two neighboring positive peaks.

Step 3: group periodic cycles into bursts

I:
Assign properties to each cycle

II:
Bursts are when at least
N cycles in a row meet
all the criteria

For best results, apply multiple passes of burst detection

Criteria

Local minimum

Correct period (per band)

Consistent period

Consistent flank amplitudes

Consistent peak amplitudes

Monotonicity

NOT Criteria

Minimum amplitude

The nitty-gritty details

The process

The repository

https://github.com/ HuberSleepLab/Matcycle

When publishing, create a "release", so you immortalize the version actually used to obtain results

+Packages in MATLAB

The code The only part you need to care about Filter EEG data detect_bursts() Save! detect_cycles() detect_bursts_in_ Criteria sets all_channels() measure_cycle_ Sign properties() Save! Band aggregate_bursts_ aggregate_cycles by_frequency() _into_bursts() remove_overlap ping_bursts() burst_properties()

Save!

detect_zero_

crossings()

detect_peaks()

The Inputs

Criteria sets

```
>> CriteriaSets
CriteriaSets =
 1×2 struct array with fields:
    isTruePeak
    PeaksCount
    FlankConsistency
    MonotonicityInTime
    MonotonicityInAmplitude
    isProminent
    PeriodConsistency
    AmplitudeConsistency
    MinCyclesPerBurst
    VoltageNeg
    Amplitude
```

EEG data

```
>> EEGbroadband
EEGbroadband =
  struct with fields:
       srate: 250
        data: [123×7501 single]
    chanlocs: [1×123 struct]
>> EEGnarrowbands
EEGnarrowbands =
  1×4 struct array with fields:
    srate
    data
    chanlocs
```

The Output: Cycles

Cycle Detection

```
>> Cycles
Cycles =
   1×3381 struct array with fields:
```

NegPeakIdx PrevPosPeakIdx NextPosPeakIdx

Cycle Properties

```
>> AugmentedCycles
AugmentedCycles =
  1×3379 struct array with fields:
    NegPeakIdx
    PrevPosPeakIdx
    NextPosPeakIdx
    VoltagePrevPos
    VoltageNeg
    VoltageNextPos
    isTruePeak
    PeaksCount.
    PeriodPos
    PeriodNeg
    Frequency
    Amplitude
    AmplitudeRamp
    FlankConsistency
    MonotonicityInTime
    MonotonicityInAmplitude
    isProminent
    PeriodConsistency
    AmplitudeConsistency
```

The Output: Bursts

Bursts

```
>> Bursts
Bursts =
  1×437 struct array with fields:
    CyclesCount
    CycleIndexes
    NegPeakIdx
    PrevPosPeakIdx
    NextPosPeakIdx
    VoltagePrevPos
    VoltageNeg
    VoltageNextPos
    isTruePeak
    PeaksCount
    PeriodPos
    PeriodNeg
    Frequency
    Amplitude
    AmplitudeRamp
    FlankConsistency
    MonotonicityInTime
    MonotonicityInAmplitude
    isProminent
    PeriodConsistency
    AmplitudeConsistency
    Start
    End
    BurstFrequency
    Band
    ChannelIndex
    ChannelIndexLabel
    Sign
    CriteriaSetIndex
```

Burst Cluster

CyclesCount CycleIndexes NegPeakIdx PrevPosPeakIdx NextPosPeakIdx VoltagePrevPos VoltageNeg VoltageNextPos isTruePeak PeaksCount PeriodPos ChannelIndexLabel Sign CriteriaSetIndex ClusterBurstsIdx ClusterChannelIndexes ClusterChannelLabels ClusterStarts ClusterEnds ClusterCycleCounts ClusterSigns ClusterFrequency ClusterAmplitude ClusterAmplitudeSum ClusterPeaks ClusterStart ClusterEnd

ClusterGlobality

```
>> BurstClusters
BurstClusters =
 1×53 struct array with fields:
                     Cycle information
                     of reference burst
```

How to chose criteria and thresholds?

Diagnostics: which criteria were more aggressive?

Diagnostics: properties distributions

Practical Part

Recommended Steps

- 1. Download the repository: https://github.com/HuberSleepLab/Matcycle
- 2. Run **SingleBandExample.m**. To understand how the analysis works, try adapting:
 - The EEG channel (if you have it, try with your own data!)
 - The narrow band frequency range
 - Criteria set thresholds
- 3. Run & adapt MultiChannelExample.m for your own data
- 4. Exercise for home: how long does it take to fall asleep?
 - Automatically quantify the interval between the last alpha burst and the first sleep spindle for your data

Bibliography

- Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., ... & Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. *Nature neuroscience*, 23(12), 1655-1665.
- Cole, S., & Voytek, B. (2019). Cycle-by-cycle analysis of neural oscillations. *Journal of neurophysiology*, 122(2), 849-861.
- Snipes, S., Meier, E., Meissner, S. N., Landolt, H. P., & Huber, R. (2023). How and when EEG reflects changes in neuronal connectivity due to time awake. *iScience*.