SC 627 Assignment 4 Instructions

S Deepak Mallya

March 2022

Reference

Lecture Slides titled "03-08-2022.pdf" (Find a copy in MS Teams under General -> Files -> Class Materials)

Problem Statement

Robotic Networks in Balancing

- Environment and Robot Definition
 - Number of Robots N=8
 - Fixed Left Robot Position $R_1 (0,0)$
 - Fixed Right Robot Position $R_8 (14, 0)$
 - Magnitude of Maximum Robot Velocity $V_{max} = 0.15m/s$
- Each Moving Robot R_i can access robot pose data for robots R_{i-1} and R_{i+1} at every instance
- At each instance (as frequently as possible) command a velocity vector (V_{x_i}, V_{y_i}) for every moving robot R_i such that the robots are balanced (equidistant from each other).
- Plot each robot's x-coordinate as a function of time

Requirements

To be added soon!

*Implementation To be added soon!

Submission

- \bullet Submission Deadline: ${\bf 10^{th}} April, 2022$ (For both Assignments 3 and 4)
- After creating the 'assignment_4' folder as described above run the following commands from the terminal
 - cd path_to_catkin_ws/src/sc627_assignments
 - git add .
 - git commit -m "assignment4_final"
 Assign this message only to the final version of your submission
 - git push -u origin master
 Verify that the folder is added to your github repository (online)
 - git log -pretty=oneline Copy the first string (the long one!) to the spreadsheet against your name under the appropriate column (https://docs.google.com/ spreadsheets/d/1bZN23JUzaHuUMvjP4L_9tu9Io85-VPG4_kNK7A25fTY/ edit?usp=sharing)