Übungsblatt 14 zur Kommutativen Algebra

Aufgabe 1. (2) Ein Gegenbeispiel zu einer Verstärkung des Krullschen Satzes Finde einen noetherschen Ring zusammen mit einem Ideal $\mathfrak{a} \neq (1)$ mit $\bigcap_{n=0}^{\infty} \mathfrak{a}^n \neq (0)$.

Aufgabe 2. (2+m+2) Dimension des Polynomrings im nicht-noetherschen Fall Sei A ein Ring.

- a) Zeige: $\dim A[X] \ge 1 + \dim A$.
- b) Sei $\mathfrak p$ ein Primideal von A. Zeige, dass die Primideale $\mathfrak q$ von A[X] mit $A \cap \mathfrak q = \mathfrak p$ in Eins-zu-Eins-Korrespondenz zu den Primidealen von $k(\mathfrak p)[X]$ stehen. Dabei ist $k(\mathfrak p)$ der Körper $A_{\mathfrak p}/\mathfrak p A_{\mathfrak p}$.
- c) Zeige: $\dim A[X] \le 1 + 2 \dim A$.

Aufgabe 3. (3) Beispiele für Poincarésche Reihe und Hilbertsches Polynom

Berechne die Poincarésche Reihe und das Hilbertsche Polynom des gewichteten K[X,Y]Moduls $K[X,Y]/(X^2,XY)$ bezüglich \dim_K .

Aufgabe 4. (1) Dualität zwischen symmetrischer und äußerer Algebra

Sei K ein Körper. Sei $S=K[X_1,\ldots,X_n]$ und sei E die zugehörige äußere Algebra der antikommutativen Polynome, wo $X_iX_i=0$ und $X_iX_j=-X_jX_i$ gilt. Sei $\lambda=\dim_K$. Zeige: $\lambda(S,t)\cdot\lambda(E,-t)=1$.

Aufgabe 5. (0) Rationale Binomialkoeffizienten

Für rationale Zahlen x und natürliche Zahlen k setzen wir $\binom{x}{k} := x(x-1)\cdots(x-k+1)/k! \in \mathbb{Q}$. Solche Binomialkoeffizienten kommen in Taylor-Entwicklungen vieler wichtiger Funktionen vor.

- a) Zeige: Genau dann kommt im gekürzten Nenner einer rationalen Zahl a/b nicht der Primfaktor p vor, wenn es eine p-adische Ganzzahl u mit bu=a gibt.
- b) Verwende die Dichtheit von \mathbb{Z} in \mathbb{Z}_p und die Stetigkeit von Polynomen über \mathbb{Z}_p , um zu folgern: Im gekürzten Nenner eines rationalen Binomialkoeffizienten $\binom{x}{k}$ können nur solche Primfaktoren vorkommen, die auch im gekürzten Nenner von x vorkommen.

