Unit 3 Review #2: Trigonometric Functions

- 1. Convert the following to exact radian measure.
 - a) 230°
- b) -72°
- 2. Convert the following to degrees.
- b) 2.3 radians
- 3. State the principal angle, related acute angle, co-related acute angle, and two coterminal angles for each of the following. Give your answers in the same units as the given angle.
 - a) 197°
- c) 1045°

- e) $\frac{-18\pi}{13}$ f) $\frac{53\pi}{3}$
- 4. Use the definition of radian measure $\theta = \frac{a}{a}$ to find the arc length, radius or angle given the other two quantities.

- a) a = 8, r = 2 b) $a = 3\pi, r = 4$ c) $r = 5, \theta = \frac{\pi}{6}$ d) $r = 7.3, \theta = 1.2$

- e) $\theta = \frac{3\pi}{5}$, $a = 4\pi$ f) $\theta = 1.3$, a = 65 g) $\theta = 3\pi$, $r = \frac{1}{3}$ h) $a = \frac{2\pi}{3}$, $\theta = 2.6$
- 5. Given the point $P(-3,\sqrt{7})$ on the terminal arm of an angle, θ , in standard position, state the exact values of the six trig ratios.
- 6. The point $P(-\sqrt{33},-4)$ lies on the terminal arm of a rotation angle, θ , in standard position. **Evaluate:**
 - a) $\csc \theta$
- b) $3\tan\theta 2\cot\theta$ c) $1-\sin^2\theta$
- d) $\frac{\csc\theta + \sec\theta}{\tan\theta}$
- 7. $\cos \theta = \frac{-40}{41}$ and θ is in QII. Provide the exact value of:
 - a) $\sin \theta$
- b) $\csc(-\theta)$
- 8. Using special triangles, provide an exact value for the each of the following expressions. Provide a labelled diagram as part of your solution.
 - a) cos 225°
- b) $\sin \frac{7\pi}{6}$
- c) $\tan(-\pi)$ d) $\sec 120^{\circ}$

- e) $\csc\left(\frac{3\pi}{2}\right)$ f) $\cot\left(-150^{\circ}\right)$

9. State three equivalent expressions, including one containing an acute angle, for each of the following trigonometric ratios.

a)
$$\sin \frac{5\pi}{3}$$

b)
$$\csc \frac{3\pi}{4}$$

a)
$$\sin \frac{5\pi}{3}$$
 b) $\csc \frac{3\pi}{4}$ c) $\cot \left(-\frac{5\pi}{6}\right)$ d) $\cos \frac{5\pi}{9}$ e) $\tan \frac{11\pi}{8}$

d)
$$\cos \frac{5\pi}{9}$$

e)
$$\tan \frac{11\pi}{8}$$

10. Provide the required information for the given functions:

a)
$$y = \frac{-3}{2} \cos \left[3 \left(x - \frac{\pi}{3} \right) \right]$$

range, period, co-ordinates of a maximum point

b)
$$y = 6 \sec \left(\frac{3}{4}x + \frac{3\pi}{2}\right) - 2$$

b) $y = 6 \sec \left(\frac{3}{4}x + \frac{3\pi}{2}\right) - 2$ range, period, general expression for eq'n of VAs

c)
$$y = 2 \tan \left[\frac{\pi}{10} (x+3) \right]$$

range, period, general expression for eq'n of VAs

11. Graph **two** cycles of each of the following functions. State all required information.

a)
$$y = -3\sin\left[\frac{2}{3}\left(x + \frac{3\pi}{2}\right)\right] - 1$$
 b) $y = 2\sec\left[3\left(x - \frac{\pi}{6}\right)\right] + 1$

b)
$$y = 2 \sec \left[3 \left(x - \frac{\pi}{6} \right) \right] + 1$$

12. State the equation of a trigonometric function given:

a) cosine function, max. = 19, min. = 7, period =
$$5\pi$$
, phase shift = $\frac{-2\pi}{3}$

b) cosecant function, equation of axis
$$y = 3$$
, local max = 1, V.A.s at $\theta = \frac{\pi}{4} + \frac{\pi}{3}n$, $n \in I$

c)

d)

MHF4U1 Unit 3 Review #2

13. a) Graph $f(x) = \sec x \text{ for } -\pi \le x \le 2\pi$.

- b) Using your graph,
 - i) state the equations of all vertical asymptotes
 - ii) state the range of f(x)
 - iii) solve f(x) > 0

ANSWERS:

1.a)
$$\frac{23\pi}{18}$$
 b) $\frac{-2\pi}{5}$ or $\frac{8\pi}{5}$ 2.a) 67.5° b) ≈ 131.8 °

3.a) 197°, 17°, 73°, 557°, 917° (note: many answers possible for the two coterminal angles)

b)
$$108^{\circ},72^{\circ},18^{\circ},468^{\circ},828^{\circ}$$
 c) $325^{\circ},35^{\circ},55^{\circ},685^{\circ},-35^{\circ}$ d) $\frac{8\pi}{5},\frac{2\pi}{5},\frac{\pi}{10},\frac{-2\pi}{5},\frac{18\pi}{5}$

e)
$$\frac{8\pi}{13}$$
, $\frac{5\pi}{13}$, $\frac{3\pi}{26}$, $\frac{34\pi}{13}$, $\frac{60\pi}{13}$ f) $\frac{5\pi}{3}$, $\frac{\pi}{3}$, $\frac{\pi}{6}$, $\frac{11\pi}{3}$, $\frac{-\pi}{3}$

4.a)
$$\theta = 4$$
 b) $\theta = \frac{3\pi}{4}$ c) $a = \frac{5\pi}{6}$ d) $a = 8.76$ e) $r = \frac{20}{3}$ f) $r = 50$ g) $a = \pi$ h) $r = \frac{10\pi}{39}$

5.
$$\sin\theta = \frac{\sqrt{7}}{4}$$
, $\cos\theta = \frac{-3}{4}$, $\tan\theta = \frac{-\sqrt{7}}{3}$, $\csc\theta = \frac{4\sqrt{7}}{7}$, $\sec\theta = \frac{-4}{3}$, $\cot\theta = \frac{-3\sqrt{7}}{7}$

6.a)
$$-\frac{7}{4}$$
 b) $-\frac{3\sqrt{33}}{22}$ c) $\frac{33}{49}$ d) $\frac{-28 - 7\sqrt{33}}{16}$

7. a)
$$\frac{9}{41}$$
 b) $\frac{-41}{9}$

8. a)
$$\frac{-\sqrt{2}}{2}$$
 b) $\frac{-1}{2}$ c) 0 d) -2 e) -1 f) $\sqrt{3}$

9.a)
$$-\sin\frac{\pi}{3}$$
, $-\cos\frac{\pi}{6}$, $-\cos\frac{11\pi}{6}$ b) $\csc\frac{\pi}{4}$, $\sec\frac{\pi}{4}$, $-\csc\frac{5\pi}{4}$ c) $\cot\frac{\pi}{6}$, $\tan\frac{\pi}{3}$, $\tan\frac{4\pi}{3}$

d)
$$-\cos\frac{4\pi}{9}$$
, $-\sin\frac{\pi}{18}$, $-\sin\frac{17\pi}{18}$ e) $\tan\frac{3\pi}{8}$, $\cot\frac{\pi}{8}$, $\tan\frac{15\pi}{8}$

10.a)
$$\left\{ y \in R \mid -1.5 \le y \le 1.5 \right\}, \frac{2\pi}{3}, \left(\frac{2\pi}{3}, \frac{3}{2} \right)$$
 b) $\left\{ y \in R \mid y \le -8 \text{ or } y \ge 4 \right\}, \frac{8\pi}{3}, x = \frac{4\pi}{3}n, n \in I$

c)
$$\{ y \in R \}$$
, $10, x = 2 + 10n, n \in I$

12.a)
$$y = \pm 6\cos\left[\frac{2}{5}\left(x + \frac{2\pi}{3}\right)\right] + 13 \text{ b}) \quad y = \pm 2\csc\left[3\left(\theta - \frac{\pi}{4}\right)\right] + 3 \text{ c}) \quad y = 3\sin\left[3\left(x + \frac{\pi}{6}\right)\right] - 1$$

d)
$$y = 3\sin\left(\frac{2}{3}x\right) + 4$$

13.b) i)
$$x = -\frac{\pi}{2}x = \frac{\pi}{2}, x = \frac{3\pi}{2}$$
 ii) $\left\{ y \in R | y \le -1 \text{ or } y \ge 1 \right\}$

iii)
$$\left\{ x \in R \middle| -\frac{\pi}{2} < x < \frac{\pi}{2} \text{ or } \frac{3\pi}{2} < x \le 2\pi \right\}$$