2.1. Limit of functions

$$f(x) = x^2 \implies f(0,1) = 0.01;$$

and
$$f(0,01) = 0,0001$$
 and $f(10^{-3}) = 10^{-6}$

This suggests that $\lim_{x\to 0} x^2 = 0$.

Definition:

Let f be a function whose domain includes an open interval I containing x_0 , except perhaps for $x = x_0$. Let l be a number.

The limit of f, as x approaches x_0 , equals l

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I, |x - x_0| \le \delta \Rightarrow |f(x) - l| \le \varepsilon.$$

$$\lim_{x \to x_0} f(x) = l.$$

Example:

show that
$$\lim_{x\to 1} x + 2 = 3$$

We have $a = 1$, $\ell = 3$ et $f(x) = x + 2$.

Let
$$\varepsilon > 0$$
, is there a $\delta > 0$ such that $|x-1| \le \delta \Rightarrow |f(x)-3| \le \varepsilon$?

$$|f(x) - 3| \le \varepsilon \Leftrightarrow$$

$$|(x + 2) - 3| = |x - 1| \le \varepsilon$$

so just take
$$\delta = \epsilon$$
.

Example:
$$\lim_{x \to 1} \frac{1}{2x - 3} = \frac{1}{2x - 3}$$
 We have, $\left| \frac{1}{2x - 3} - (-1) \right| = \frac{2}{|2x - 3|} |x - 1|$ Bound above the term $\frac{2}{|2x - 3|}$. Let $|x| \in]1 - \alpha, 1 + \alpha[$ We have $|x| = 1 - \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha < x < 1 + \alpha[$ $|x| = 1 + \alpha[$ $|x| =$

 $\delta = \varepsilon/4$

2.1.2. Infinite (two-sided) limit

Let f(x) be defined for all inputs x in an open interval I containing x_0 , except perhaps at $x = x_0$

 $\checkmark f has limit -\infty at x_0$

$$\checkmark$$
 f has limit $+\infty$ at x_0

f has a vertical asymptote at x = a ssi:

$$\lim_{x\to a}f(x)=\pm\infty.$$

Example:

$$\lim_{x\to 0}\frac{1}{\sqrt{x}}=+\infty.$$

Let
$$A > 0$$
, we search $\delta > 0$ such that : $|x - 0| \le \delta \Rightarrow |f(x)| \ge A$.

$$\left|\frac{1}{\sqrt{x}}\right| \ge A \implies x \le \frac{1}{A^2}.$$

we can choose

2.2. Limit at infinity:

Let f(x) be defined for all inputs x in some open interval $I = (b, +\infty)$.

$$\lim_{x \to +\infty} f(x) = l.$$

2.2. Limit at infinity:

Let f(x) be defined for all inputs x in some open interval $I = (-\infty, b)$.

f has limit
$$l$$
 at $-\infty$

The function f has a horizontal asymptote in y = l if:

$$\lim_{x\to\pm\infty}f(x)=l$$

Example:

Show that
$$\lim_{x \to +\infty} \frac{x+1}{x-2} = 1$$
.

$$\forall x \in]2, +\infty[, we have \left| \frac{x+1}{x-2} - 1 \right| = \frac{3}{x-2}.$$

$$\varepsilon > 0, \exists ? A \in \mathbb{R}_{+}^{*}$$
 such that :

$$\forall x \in]2, +\infty[$$

$$\forall x \in]2, +\infty[, \qquad x \ge A \Rightarrow \left| \frac{x+1}{x-2} - 1 \right| \le \varepsilon.$$

$$\frac{3}{x-2} \le \varepsilon, \ c - \grave{a} - d \ x \ge 2 + \frac{3}{\varepsilon}.$$

$$A=2+\frac{3}{\varepsilon}.$$

2.2.2. Infinite limit at infinity

Let f(x) be defined for all inputs x in some open interval $I = (-\infty, \infty)$.

Definition

✓
$$f$$
 hase a limit $-\infty$ at $+\infty$

$$\forall A \in \mathbb{R}, \exists B \in \mathbb{R}, \forall x \in I, (x \ge B \Rightarrow f(x) \le -A)$$

$$\iff \lim_{x \to +\infty} f(x) = -\infty$$

 \checkmark f has a limit $-\infty$ at $-\infty$

$$\forall A \in \mathbb{R}^*_+, \exists B \in \mathbb{R}^*_+, \forall x \in I,$$

 $(x \le -B \Rightarrow f(x) \le -A),$

$$\iff \lim_{x \to -\infty} f(x) = -\infty.$$

2.3. Right-hand limit, Left-hand limit

Definition

f admits l for right-hand limit (respLeft-hand limit) in α , if

$$\lim_{\substack{x \to a, \\ x > a}} f(x) = l \text{ or } \lim_{\substack{x \to a^+}} f(x) = l$$

(resp.
$$\lim_{\substack{x \to a \\ x < a}} f(x) = l$$
 or $\lim_{\substack{x \to a^-}} f(x) = l$).

and we have

$$\lim_{x \to a^+} f(x) = l$$

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I,$$

 $(0 < x - a \le \delta \Rightarrow |f(x) - l| \le \varepsilon).$

(resp.
$$\lim_{x \to a^{-}} f(x) = l$$

$$\forall \varepsilon > 0, \exists \delta > 0, \forall x \in I,$$

 $(0 < a - x \le \delta \Rightarrow |f(x) - l| \le \varepsilon).$

Example:

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{-x}{2x} = -\frac{1}{2}.$$

And
$$\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \frac{x}{2x} = \frac{1}{2}$$
.

2.4. Properties:

2.4.1. The uniqueness of the limits

Proposition:

The limit of a function is unique if it exists.

Demonstration:

$$\lim_{x \to a} f(x) = l \text{ et } \lim_{x \to a} f(x) = l'$$

$$l < l',$$

We put
$$\varepsilon = (l - l')/2$$
,

$$\exists \alpha > 0, |x - \alpha| < \alpha \ et \ x \in I \Rightarrow |f(x) - l| < \varepsilon$$

and

$$\exists \alpha' > 0, |x - \alpha| < \alpha' \ et \ x \in I \Rightarrow |f(x) - l'| < \varepsilon$$

The interval

$$]a - \alpha, a + \alpha[\cap]a - \alpha', a + \alpha'[\neq \emptyset]$$

Let
$$x_0 \in]a - \alpha, a + \alpha[\cap]a - \alpha', a + \alpha'[$$

Et on obtient:
$$\begin{cases} |f(x_0) - l| < \varepsilon \\ |f(x_0) - l'| < \varepsilon \end{cases}$$
$$|l - l'| = |l - f(x_0) + f(x_0) - l'|$$
$$< |l - f(x_0)| + |f(x_0) - l'|$$
$$< l - l'$$

2.4.2. Sequential limits in functions

Theorem (sequential criterion for limits)

Let $f: I \to \mathbb{R}$, where $I \subset \mathbb{R}$ and suppose that $a \in \mathbb{R}$, is any accumulation point of I. Then

$$\lim_{x \to a} f(x) = l.$$

$$\lim_{n \to +\infty} f(u_n) = l.$$

For every sequence $(u_n)_{n\in\mathbb{N}}$ in I with $u_n \neq a$ for all $n\in\mathbb{N}$

such that
$$\lim_{n\to+\infty} u_n = a$$
.

- Corollary . Suppose that $f:I\to\mathbb{R}$ and $a\in\mathbb{R}$ is an accumulation point of I. Then $\lim_{x\to a}f(x)$ does not exist if either of the following conditions holds:
- 1- There are sequences $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ in I with

$$u_n \neq a$$
 , $v_n \neq a$ such that $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} v_n = a$,

but
$$\lim_{n \to +\infty} f(u_n) \neq \lim_{n \to +\infty} f(u_n)$$

2-There is a sequence $(u_n)_{n\in\mathbb{N}}$ in I with such $u_n \neq a$ $\lim_{n\to+\infty} u_n = a$, but the sequence $(f(u_n))$ diverges.

Example:

$$f(x) = \sin\left(\frac{1}{x}\right).$$

$$\forall n \in \mathbb{N}^* \qquad u_n = \frac{1}{\frac{\pi}{2} + 2n\pi} \quad et \ v_n = \frac{1}{-\frac{\pi}{2} + 2n\pi}.$$

$$(u_n)$$
 et $(v_n) \rightarrow 0$

But we have

$$\forall n \in \mathbb{N}^* \quad f(u_n) = \sin\left(\frac{\pi}{2} + 2n\pi\right) = 1.$$

$$et f(v_n) = \sin(-\frac{\pi}{2} + 2n\pi) = -1.$$

2.4.3. Order properties.

As for limits of sequences, limits of functions preserve (non-strict) inequalities.

Proposition:

fet
$$g \in \mathcal{F}(I, \mathbb{R})$$
, and $a \in \mathbb{R} \cup \{-\infty, +\infty\}$.

if
$$f(x) \le g(x)$$
 for all $x \in I$ and $\lim_{x \to a} f(x)$, $\lim_{x \to a} g(x)$ exist

Then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

2.4.4. The squeeze principle

Theorem (gendarmes theorem):

$$f, g \ et \ h \in \mathcal{F}(I, \mathbb{R}) \ \ and \ \alpha \in \mathbb{R} \cup \{-\infty, +\infty\}.$$

if
$$f(x) \le g(x) \le h(x)$$
 for all $x \in I$

If
$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = l$$
.

$$\lim_{\substack{x \to a}} g(x) = l$$

Example: Find
$$\lim_{x\to 0} x \sin(\frac{1}{x})$$
.

the fonction sinus is bounded.

$$\forall t \in \mathbb{R}, -1 \le \sin(t) \le 1$$

$$c - \dot{a} - d$$

$$-1 \le \sin\left(\frac{1}{x}\right) \le 1 \Longrightarrow -x \le x \sin\left(\frac{1}{x}\right) \le x$$

But
$$\lim_{x\to 0} x = \lim_{x\to 0} (-x) = 0.$$

$$\lim_{x\to 0} x \sin(\frac{1}{x}) = 0.$$

Limits of monotone functions

If a function $f:(a, b) \to \mathbb{R}$ is monotone on interval (a, b). Then the two limits $\lim_{x \to a^+} f(x)$

and $\lim_{x\to b^-} f(x)$ exists

Proof.

2.5. Algebraic properties

$\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})$	$\lim_{\mathbf{x}\to a}\mathbf{g}(\mathbf{x})$	$\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})+g(\mathbf{x})$	$\lim_{x \to a} (f(x) - g(x))$	$\lim_{x \to a} f(x)g(x)$		
ℓ	ℓ′	$\ell + \ell'$	$\ell-\ell'$	$\ell\ell'$		
0	-8	-8	+∞	F.I.		
0	+8	+8		F.I.		
-8	+∞	F.I.		-∞		
+∞	+∞	+8	F.I.	-∞		
-∞	-∞	-∞	F.I.	+∞		

IF: indeterminate form (F.I)

$\lim_{\mathbf{x}\to\mathbf{a}}f(\mathbf{x})$	ł	l	+∞	+∞	-8	-∞		> 0 ou + ∞	< 0 ou − ∞	ℓ > 0 ou + ∞	ℓ < 0 ou - ∞	0
$\lim_{\mathbf{x}\to a}\mathbf{g}(\mathbf{x})$	ℓ'	±8	ℓ′ > 0	ℓ′ < 0	ℓ' > 0	ℓ′ < 0	H 8	0+	0+	0-	0-	0
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{\ell}{\ell'}$	0	+8	-8	8	+∞	F.I.	+8	-8		+8	I.F

2.6. The indeterminate form (I.F)

$$(+\infty) + (-\infty), \frac{0}{0}, \frac{\infty}{\infty}, 0 \times (\pm \infty), (0^+)^0, 1^\infty.$$

2.7. Algebric methods pour for study the indeterminate form:

✓ Simplification of algebric expressions:

Exemple:
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 2)(x - 1)}$$

$$= \lim_{x \to 1} \frac{(x+1)}{(x-2)} = -2$$

✓ Changement de variable :

Exemple:
$$\lim_{x \to 1} \frac{\sqrt{x} - 1}{\sqrt[3]{x} - 1}$$
. $y = \sqrt[6]{x} \Rightarrow \begin{cases} \sqrt{x} = y^3 \\ \sqrt[3]{x} = y^2 \end{cases}$

$$\lim_{y \to 1} \frac{y^3 - 1}{y^2 - 1} = \lim_{y \to 1} \frac{(y - 1)(y^2 + y + 1)}{(y - 1)(y + 1)} = \frac{3}{2}.$$

✓ Using the conjugate:

Exemple:
$$\lim_{x \to +\infty} \sqrt{x+1} - \sqrt{x}$$

$$= \lim_{x \to +\infty} \frac{(\sqrt{x+1} - \sqrt{x})(\sqrt{x+1} + \sqrt{x})}{(\sqrt{x+1} + \sqrt{x})} = 0.$$

✓ Factoring :

Example:

$$\lim_{x \to -\infty} \frac{\frac{x}{\sqrt{x^2 + 1}}} = \lim_{x \to +\infty} \frac{\frac{x}{\sqrt{1 + \frac{1}{x}}}}{\frac{-x}{\sqrt{1 + \frac{1}{x}}}} \stackrel{=}{=} \lim_{x \to +\infty} \frac{-1}{\sqrt{1 + \frac{1}{x}}} = -1.$$

Using the logarithms and exponentiels:

Example:
$$\lim_{x \to +\infty} (1+x)^{\frac{1}{x}} = \lim_{x \to +\infty} e^{\frac{\ln(1+x)}{x}} = e.$$

2.8. Some usual limits to know

$$\lim_{x\to 0}\frac{\sin x}{x}=1,$$

$$\lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2},$$

$$\lim_{x\to 0}\frac{\cos x-1}{x}=0,$$

$$\lim_{x\to 0}\frac{tgx}{x}=1.$$

$$\lim_{x\to 0}\frac{\ln(1+x)}{x}=1\,,$$

$$\lim_{x\to 0}\frac{e^x-1}{x}=1.$$

$$\lim_{x\to 0^+}xlnx=0.$$

$$\lim_{x \to +\infty} \frac{lnx}{x} = 0.$$

$$\lim_{x \to +\infty} \frac{e^x}{x} = +\infty.$$

$$\lim_{x\to-\infty} xe^x = 0.$$

Proposition

2.8. Theorem limit of composite functions:

$$f: I \to \mathbb{R}, g: J \to \mathbb{R}$$
 such that $f(I) \subset J$

if
$$\lim_{x \to a} f(x) = b$$
 and $\lim_{x \to b} g(x) = c$,

$$a, b \ and \ c \in \mathbb{R} \cup \{-\infty, +\infty\}.$$

Then
$$\lim_{x\to a} g(f(x)) = c$$
.

2.9. Equivalents in the neighborhood of a point

Definition:

$$f\ et\ g\in \mathcal{F}(I,\mathbb{R}),$$
 are equivalents on some reduced neighborhood of a

1

$$\exists h \text{ telle que } \lim_{x \to a} h(x) = 1$$
and

$$\exists \delta > 0, \forall x \in I, (0 < |x - a| < \delta)$$
$$\Rightarrow f(x) = g(x)h(x)$$

we use the notation $f \sim g$ at V(a)

Definition:

f and g are equivalents on neighborhood

of
$$-\infty$$
)

$$\exists B \in \mathbb{R}^*_+$$
 and a function h , defined on I , and verify

$$x \leq -B$$

such as

$$\lim_{x \to -\infty} h(x) = 1$$

and that

$$f(x) = g(x)h(x).$$

We use the notation

$$f \sim_{-\infty} g$$

Examples

• $x \mapsto x \text{ et } x \mapsto sinx \text{ are}$ equivalents at V(0). $sinx \sim x$

- $x \mapsto x \text{ et } x \mapsto \ln(1+x) \text{ are}$ equivalents at V(0). $\ln(1+x) \sim x$
- $x \mapsto x^4$ et $x \mapsto x^4 + 2x 5$ are equivalents at $V(+\infty)$ (or $V(-\infty)$).

Proposition

Si f et g are equivalents on neighborhood $a \in \mathbb{R}$ and that f has a limit at a, then g also has this limit this limit at a

Properties:

- $f \sim f_1 \text{et } g \sim g_1 \Rightarrow fg \sim f_1 g_1$
- $f \sim f_1 \implies \frac{1}{f} \sim \frac{1}{f_1}$ if f and f_1 do not zero near x_0
- $f \sim f_1$ et $g \sim g_1 \Longrightarrow \frac{f}{g} \sim \frac{f_1}{g_1}$

if g et g_1 do not zero near x_0 .

- $f \sim f_1 \implies f^n \sim f_1^n, n \in \mathbb{N}$
- $f \sim f_1 \implies f^{\alpha} \sim f_1^{\alpha}, \alpha \in \mathbb{R}$

if f et f_1 are positives strictly au near x_0 .

Attention:

•
$$f \sim f_1 \text{et } g \sim g_1 \Rightarrow f + g \sim f_1 + g_1$$

•
$$f \sim f_1 \implies e^f \sim e^{f_1}$$

•
$$f \sim f_1 \implies ln(f) \sim ln(f_1)$$

Example:
$$\lim_{x \to 0} \frac{\sin(x)}{\ln(1+x)} = ?$$

We have $sinx \sim_0 x$ and $ln(1+x) \sim_0 x$

$$\implies \sin(x)/\ln(1+x) \sim 1 \text{ au } V(0)$$

$$\implies \lim_{x \to 0} \frac{\sin(x)}{\ln(1+x)} = 1.$$