RANGKAIAN ELEKTRONIKA II

Penguat Operasional

Mifta Nur Farid, S.T., M.T. miftanurfarid@lecturer.itk.ac.id

Teknik Elektro Institut Teknologi Kalimantan Balikpapan, Indonesia

Maret 8, 2021

Bahan Kajian

- 1. Pengantar
- 2. Op Amp 741
- 3. Inverting Amplifier
- 4. Non-inverting Amplifier
- 5. Aplikasi Op-Amp

Gambar. 1: Blok diagram sebuah op amp

 $V_1 \circ A_{VOL}(V_1 - V_2)$ $V_2 \circ A_{VOL}(V_1 - V_2)$ (b)

Gambar. 2: (a) Simbol dari op amp dan (b) rangkaian ekivalen dari op amp

Summary Table 16-1 Typical Op-Amp Characteristics				
Quantity	Symbol	Ideal	LM741C	LF157A
Open-loop voltage gain	A _{VOL}	Infinite	100,000	200,000
Unity-gain frequency	$f_{ m unity}$	Infinite	1 MHz	20 MHz
Input resistance	R _{in}	Infinite	2 M Ω	10 12 Ω
Output resistance	R _{out}	Zero	75 Ω	100 Ω
Input bias current	I _{in(bias)}	Zero	80 nA	30 pA
Input offset current	I _{in(off)}	Zero	20 nA	3 рА
Input offset voltage	$V_{in(off)}$	Zero	2 mV	1 mV
Common-mode rejection ratio	CMRR	Infinite	90 dB	100 dB

Gambar. 3: Perbandingan karakteristik op amp ideal dan op amp standar

Op Amp 741

- Monolitic amp μ A709 tahun 1965 oleh Fairchild Semiconductor
- lacktriangle μ A709 memiliki kekurangan ightarrow dibuatlah μ A741
- Banyak manufaktur yang membuat μ A741:
 - □ ON Semiconductor: MC1741
 - □ Texas Instruments: LM741
 - □ Analog Devices: AD741.
- Istilah umumnya op amp 741

Standar Industri

- Beberapa versi: 741, 741A, 741C, 741E, dan 741N
- Bergantung pada karakteristiknya (voltage gain, temp. range, noise level, dll)
- 741C ($C = Commercial\ grade$) \rightarrow sedikit lebih murah dan paling banyak digunakan
- $A_{VOL} = 100000$, $z_{in} = 2 \text{ M}\Omega$, $z_{o}ut = 75 \Omega$

Standar Industri

Gambar. 4: Op amp 741 pinouts (a) dual-in-line, (b) ceramic flatpak, (c) metal can

Rangkaian Ekivalen dari Op Amp 741

Gambar. 5: Rangkaian ekivalen dari op amp 741

- Input diff amp
- Final Stage
- Active Loading
- Frequency Compensation $C_{in(M)} = (A_v + 1)C_c$

Gambar. 6: Bode plot A_{VOL} 741C ideal

Bias & Offset

Gambar. 7: Penggunaan compensation dan nulling 741C

- Tidak ada input signal \rightarrow input bias dan offset \rightarrow error output
- Error output berkurang ← base resistor yang sama → hanya menghilangkan arus bias tapi tidak arus offset dan tegangan offset
- Solusi: menggunakan rangkaian nulling di datasheet

Gambar. 8: Grafik (a) Common-Mode Rejection Ratio (CMRR), (b) Maximum Peak-to-Peak Output (MPP), dan (c) Open-Loop Voltage Gain A_{VOL} dari 741C

Gambar. 9: (a) Respon ideal dan aktual terhadap tegangan step input, (b) ilustrasi definisi slew rate, (c) $S_R = 0.5 \text{ V}/\mu\text{s}$

• Persamaan slew rate, S_R

$$S_R = \frac{\Delta v_{out}}{\Delta t} \tag{1}$$

Exponential wave meningkat 0.5 V selama 1 mikrodetik pertama:

$$S_R = \frac{\Delta v_{out}}{\Delta t}$$

$$= \frac{0.5 \text{ V}}{1 \mu \text{s}}$$

$$= 0.5 \text{ V}/\mu \text{s}$$

Gambar. 10: (a) Initial slope dari gelombang sinus, (b) distorsi terjadi jika initial slope melebihi slew rate

- lacktriangle Sinyal dan frekuensinya sangat kecil ightarrow slew rate bukan masalah
- lacktriangle Sinyal dan frekuensinya sangat besar ightarrow slew rate akan mendistorsi sinyal ouput

$$S_S = 2\pi f V_p$$

• S_s : initial slope dari gelombang sinus, f: frekuensi, V_p : nilai peak

$$S_S \le S_R$$
 $2\pi f V_p \le S_R$
 $f \le \frac{S_R}{2\pi V_p}$

$$f_{max} = \frac{S_R}{2\pi V_p} \tag{2}$$

■ f_{max}: power bandwidth atau large-signal bandwidth

Gambar. 11: Grafik power bandwidth vs. peak voltage

Inverting Amplifier

Item

Non-inverting Amplifier

Item

Aplikasi Op-Amp

Item

TERIMA KASIH