Parallel Computing I

Einführung in das Hochleistungsrechnen

Einführung

24. April 2012 Paralleles Rechnen SS 2012 Thorsten Grahs

Aufbau

Termine & Ansprechpartner

- VL: Mo. 11:30 13:00 RZ 124 Thorsten Grahs (t.grahs@tu-bs.de) RZ 120
- Üb. Do. 8:00 9:30 G40
 Marcell Kehmstedt (m.kehmstedt@tu-bs.de)

Scheinkriterien:

- min. 50 d. Punkte aus den Übungen Voraussetzung zur
- Mündliche Prüfung

Schwerpunkt

Verteilte Systeme MPI (Message Passing Interface)

- Hochleistungsrechnen
- Beschleunigung von numerischen Simulationen
- Einzelprozessorperformance
- Speicher- und Rechnerarchitekturen
- Performancebetrachungen
- Programmiermodelle
- Message Passing Interface (MPI)
- Iterative Löser/Bibliotheken

Parallel Computing

Wissenschaftliche Disziplin im Spannungsfeld von

- Informatik
- Mathematik
- Ingenieurswesen

Problemstellungen meist aus

- Ingenieurs-/Geowissenschaften
 - Klimamodellierung
 - Wetter/Sturmflutvorhersage
 - Simulation komplexer Systeme (Flugzeug, Fahrzeug)
 - Sternbildung (Astronomie)
 - Molekülsimulation (Chemie) (Vorhersage Stoffeigenschaften)

Parallel Computing

Wissenschaftliche Disziplin im Spannungsfeld von

- Informatik
- Mathematik
- Ingenieurswesen

Lösungen durch:

- Mathematik
 Numerischen Algorithmen
 - Diskretisierung partieller Differentialgleichungen
 - Iterative Gleichungssystemlöser
 - Domain Decomposition
 - Matrix/Vektor-Manipulationen
- Informatik
 - · effiziente Algorithmen
 - Kommunikation

Umbrüche im Parallelen Rechnen

- "Ablösung"der Dominanz der Vektorrechner durch Cluster Computing (Beowulf-Projekt)
 - Einsatz und Zusammenschluss von vielen Einzelrechner aus Standardkomponenten
 - kostengünstig
 - große Probleme
- GPUs (Graphical Processor Units)
 - getrieben durch Spielkonsolen/-industrie
 - Anwendung im wissenschaftlichen Rechnen
 - notwendig sind entsprechende Datenstrukturen

Umbrüche im Parallelen Rechnen

Cluster Computing

Alter Wein in neuen Schläuchen Paralleles Rechnen auf Systemen mit verteiltem Speicher

- Jahrzehntelang Randgebiet der Computerwissenschaften
- Paradigmenwechsel:
 - Probleme werden größer
 - Gap zwischen Vektorrechner und Standard-PCs kleiner
 - Standardkomponenten
 - Freie Betriebssysteme (Linux)

Beowulf-Projekt

Donald Becker & Thomas Sterling 1994, NASA

- Unterschied zu einem COW (Cluster of Workstations)
 - Ansprechbar als ein Rechner
 - 16 Motherboards mit 486DX4 Prozessoren
 - 16MB RAM pro Board,
 - Festplatte mit je 500 MB pro Board,
- Open Source Software
 - Unix/Linux
 - PVM/MPI

Beispiel: Wettervorhersage

Numerische Simulation der Atmosphäre

- Diskretisierung der Lufthülle
- Repräsentation durch 3-dimensionales Gitter
- Berechnung an jedem Gitterpunkt
- 3-Dimensionale Navier-Stokes-Gleichungen
 - Temperatur
 - Luftdruck
 - (Wind-)Geschwindigkeit

Beispiel: Wettervorhersage

Nichtlinearitäten:

Das Wetter in Deutschland hängt auch ab vom

- Azorenhoch
- Islandtief

 \Rightarrow Modell umfasst große Skalen

Andererseits müssen lokale Strukturen aufgelöst werden.

Beispiel: Wettervorhersage II

Theor. Wettermodell

- Globales Modell 1 km Grid-Spacing
- Höhe: 20 km $\Rightarrow \approx 10^{10}$ Gitterpunkte
- Zeitliche Auflösung abhängig von räumlicher (CFL-Kriterium)
 - $\Delta t \approx 10$ Sekunden
 - ⇒ Simulation für 3 Tage im Voraus
 - ca 26.000 Zeitschritte
- Berechnung aller phys. Größen (5 partielle DGLen)
- Annahme: 100 Operationen pro Zeitschritt

Beispiel: Wettervorhersage III

$2,6 \times 10^{16}$ Operationen

• PC 10 GigaFLOP $(10 \times 10^9 \text{ Floating Point Op./Sek.}$ Simulationsdauer: 30 Tage

Großrechner 1 TerraFLOP
 Simulationsdauer: 8 Stunden

Beispiel: Wettervorhersage III

Seymour Cray (1925 – 1996)

If you were plowing a field, what would you rather use? Two strong oxen for 1024 chickens?

Allerdings: Problem Speicherdichte

- Daten können nicht schnell genug zum zur CPU gelangen
- in 10⁻¹² Sek. legt das Licht 0,3mm zurück
 Speicher muss im Radius v. 0,3 mm um CPU angeordnet werden.
- Daten der Simulation
- 20 Zahlen p.Gitterpunkt (T, V, P, k, ...)
- pro Zahle 32 Bit für 10¹⁰ Gitterpunkte
- $6,4 \times 10^{12}$ Bit
- \Rightarrow Speicherdichte von 1 Bit pro Atom.

Beispiel: Wettervorhersage III

W. Groppe, E. Lusk, A. Skjellum Using MPI

To pull a bigger wagon, it is easier to add more oxen than to grow a gigantic oxen

Idee:

Nutze z.B. 1000 Standard-Computer mit 109-Operationen p. Sek.

- Domain Decomposition
- Jeder Prozessor behandelt 10⁷ Gitterpunkte
 Aufgrund der geringeren Geschwindigkeit kann der Abstand
 Speicher-CPU ca 300 mm betragen
- ⇒ Benötigter Speicher ca. 800 MByte p. CPU

Rechenleistung

FLOP

Durchführung von elementaren arithmetischen Operationen

Vektoraddition

```
#define N 1000000
unsigned long i;
double a[N], sum=0.0;
...
for (i=0; i<N; ++i)
   sum=sum+a[i];</pre>
```

Sequentieller Rechner (Prozessor P, Speicher M) von-Neumann-Modell

Befelsliste (Compiler)

- Hole nächsten Befehl aus den Speicher in das Befehlsregister
- Interpretiere diesen Befehl
- Lade erstes Argument (sum) aus dem Speicher in ein Register
- Lade zweites Argument (a[i]) aus dem Speicher in ein anderes Register
- Führe den Befehl aus und schreibe Ergebnis in ein drittes Register
- Schreibe das Ergebnis (sum) zurück in den Speicher

GFlops = GHZ?

Für vektorielle oder superskalare Prozessoren, allerdings nur unter optimalen Bedingungen (peak performance). Für praktischen Anwendungen ist dies jedoch meist nicht zu erreichen.

Von-Neumann Flaschenhals

Haupthindernis Speicher (DRAM)

Dynamic Random Access Memory, zb. 1066 MHz

Nur ein Bruchteil der Taktfrequenz moderner Rechner. Hauptspeicher bremst den Rechenprozess des von-Neumann-Modell aus.

Abhilfe

L1,L2,L3-Cache

Performance-Vergleich

Linpack-Benchmark

BLAS (Basic Linear Algebra Subroutines) Steigerung der Anzahl der Variablen (Matrixgröße)

