Introdução à classe de problemas NP-Completos: Redução de problemas

J. Pascoal Faria, R. Rossetti, L. Ferreira FEUP, MIEIC, CAL, 2017/2018

Índice

- Revisão da aula anterior
- Exemplos de reduções
- Problema do caixeiro viajante

Revisão da aula anterior

Classes P, NP, NP-complete e NP-hard

Exemplos de problemas NPC e reduções

Exemplos de reduções

Undirected Hamiltonian Cycle (UHC) é NPC?

<u>Problema</u>: Sabendo-se que o problema UHC (*Undirected Hamiltonian Cycle*) é NP-completo, provar que o problema DHC (*Directed Hamiltonian Cycle*) é também NP-completo

Resolução:

- a) Um ciclo Hamiltonian candidato é facilmente verificável em tempo polinomial, logo $\overline{DHC} \in \overline{NP}$
- b) O problema UHC é facilmente redutível ao problema DHC em tempo polinomial (ver slide seguinte), logo <u>DHC</u> ∈ <u>NP-hard</u>

Redução de UHC a DHC

- Dado grafo não dirigido G=(V,E), cria-se grafo dirigido G'=(V,E') pela substituição de cada aresta {u, v}∈E por duas arestas dirigidas (u, v) e (v, u) ∈ E'
- É fácil de constatar que G terá um ciclo Hamiltoniano sse G' também o tiver!
 - Excetua-se caso de grafo nãodirigido completo com 2 vértices, que, por convenção, não se considera Hamiltoniano

Vertex Cover (VC)

• Uma cobertura de vértices de um grafo G = (V, E) é um subconjunto $V_C \subseteq V$, tal que toda aresta $(a, b) \in E$ é incidente em pelo menos um vértice $u \in V_C$.

- Vértices em V_c "cobrem" todas as arestas em G.
- Problema de decisão (VC):
 - O grafo *G* tem uma cobertura de vértices de tamanho ≤*k*?

Independent Set (IS)

• Um conjunto independente de um grafo G = (V, E) é um subconjunto $V_i \subseteq V$, tal que não há dois vértices em V_i que partilham uma aresta de E

u, v ∈ V_I não podem ser vizinhos em G.

- Problema de decisão (IS):
 - O grafo G tem um conjunto independente de tamanho $\geq k$?

Dualidade VC ↔ IS

- Dado grafo não dirigido G=(V,E), seja I, J uma partição de V em dois subconjuntos disjuntos (i.e., $I \cup J = V$ e $I \cap J = \emptyset$)
- Se I é um conjunto independente de vértices, então não podem existir arestas do tipo a, logo os vértices em J tocam todos as arestas de G, logo J é uma cobertura de vértices
- Se J é uma cobertura de vértices, então não podem existir arestas do tipo a, logo I é um conjunto independente de vértices.
- I é um conj. indep. de vértices $\Leftrightarrow V \setminus I$ é uma cobertura de vértices

Vertex Cover é NPC?

- Problema: Sabendo-se que $IS \in NPC$, provar que $VC \in NPC$
- Resolução:
 - a) Dada um conjunto candidato de vértices V_C , é fácil verificar em tempo polinomial $se \mid V_C \mid \leq k$ e se toca em todas as arestas, logo $\underline{VC \in NP}$
 - b) Para provar que <u>VC ∈ NP-hard</u>, indicamos de seguida uma redução de tempo polinomial de IS em VC

Redução de IS a VC

- Seja uma instância qualquer de IS: G = (V, E), k
- Pela propriedade da dualidade, G tem um conjunto independente de vértices (V_l) de tamanho $\geq k$ sse tiver uma cobertura de vértices (V_c) de tamanho $\leq k$, com k'=|V|-k
- Assim, a conversão de entradas é trivial:
 - Dada uma instância qualquer de IS: G = (V, E), k
 - Constrói-se uma instância de VC: G = (V, E), k' = |V| k
- A conversão de saídas é também trivial:
 - Conversão de 'certificados': $V_c \rightarrow V_l = V \setminus V_c$
 - Conversão de decisão: mantém-se a mesma decisão

Problema do Caminhada (Jogging (J))

- Considere um grafo n\u00e3o dirigido G, admitindo arestas paralelas e an\u00e9is, com pesos inteiros positivos nas arestas, no qual se distingue um v\u00e9rtice home.
- O problema da caminhada (Jogging (J)) consiste em verificar se existe um caminho de peso total k, começando e terminando em home, sem repetir arestas.

 Prove que é um problema NPC, sabendo-se que o problema da soma de subconjuntos é NPC.

Problema da Soma de Subconjuntos (SS)

Dado um conjunto de inteiros positivos, S, há um subconjunto, S' em S, tal que a soma dos elementos de S' seja k?

Find S' with sum = 15!

Problema da Caminhada é NPC

- Um caminho candidato é facilmente verificável em tempo polinomial, logo $J \in NP$
- Para provar que $J \in NP$ -hard, reduz-se SS a J em tempo polinomial da seguinte forma:
 - Dado um conjunto S, cria-se um grafo G com um único vértice home e um anel de peso x para cada elemento x∈S

S tem um subconjunto de soma k sse G tem um caminho de peso total k sem repetir arestas

Problema do caixeiro viajante

Travelling Salesman Problem (TSP)

- Problema de optimização: dado um grafo não dirigido G=(V, E) com pesos inteiros não negativos, encontrar um ciclo de peso total mínimo que passa em todos os vértices (cidades)
- Problema de decisão: dado um grafo não dirigido G=(V, E) com pesos inteiros não negativos, existe um ciclo de peso ≤ k (k inteiro não negativo) que passa em todos os vértices?
- Pré-processamento habitual: constrói-se um grafo completo com as distâncias mínimas entre todos os pares e vértices; trata-se então de encontrar um ciclo Hamiltoniano de peso mínimo (ou peso ≤ k)

TSP é NP-Completo?

- Provar que TSP ∈ NPC, sabendo-se que UHC ∈ NPC:
 - a) Uma solução candidata é facilmente verificável em tempo polinomial, logo $\overline{\text{TSP}} \in \overline{\text{NP}}$
 - b) Para provar que $\underline{\mathsf{TSP}} \in \mathsf{NP}\text{-hard}$, reduz-se UHC a TSP em tempo polinomial da seguinte forma:
 - Dada uma instância de UHC, num grafo não dirigido G=(V,E), constrói-se um grafo completo pesado G' = (V, E'), com peso 0 nas arestas {u,v} ∈ E, e peso 1 nas arestas {u,v} ∉ E
 - G tem um ciclo Hamiltoniano sse G' tem um ciclo Hamiltoniano de peso ≤ 0 .

Algoritmos para resolver TSP

- Algoritmos exatos (n = nº de vértices, m = nº de arestas):
 - Testar todas as permutações \rightarrow T(n) = O(n!) (tratável até n ~ 10)
 - Resolver o problema de forma recursiva, com programação dinâmica, para todos os subconjuntos de vértices (algoritmo Held-Karp), usando um mapa de bits para representar cada subconjunto → T(n) = O(n² 2ⁿ) (tratável até n ~ 20)
- Heurísticas e algoritmos aproximados de tempo polinomial
 - Heurística (gananciosa) do vizinho mais próximo é fácil de implementar, mas não dá garantias de aproximação no caso geral
 - Quando se verifica a desigualdade triangular (caso de mapas de estradas), visita em pré-ordem de árvore de expansão mínima dá solução de peso que não excede 2x o ótimo
 - No mesmo pressuposto, algoritmo de Christofides, garante solução que não excede em 1.5x o ótimo

TSP e MST

Grafo original (pesos omitidos)

Árvore de expansão mínima

Visita em pré-ordem começando em a

Percurso correspondente

Percurso ótimo

* Solução exata de TSP com prog.dinâmica

Definição recursiva para encontrar percurso dirigido de custo mínimo entre vértices s e t (iguais ou distintos), passando por um conjunto U de outros vértices (s,t ∉U)

$$minCost(s,t,U) = \begin{cases} dist(s,t), & se \ U = \{\} \\ min\{dist(s,u) + minCost(u,t,U \setminus \{u\}) \mid u \in U\}, se \ U \neq \{\} \end{cases}$$

- Inicialmente, procura-se minCost(s, s, V\{s})
- Memoriza-se a solução para cada combinação de argumentos
 - U pode ser representado por um mapa de bits
 - t pode ser omitido pois n\u00e3o muda
 - Em vez de guardar a solução completa de cada sub-problema (sequência de vértices), basta guardar o vértice *u* escolhido

Referências e mais informação

- T. Cormen et al. (2009) "Introduction to Algorithms."
 Cambridge, MA: MIT press.
 - Capítulo 34 NP-Completeness
 - Capítulo 35 Approximation Algorithms
- R. Johnsonbaugh & M. Schaefer (2004) "Algorithms." Upper Saddle River, NJ: Prentice Hall.
- C.A. Shaffer (2001) "A Practical Introduction to Data Structures and Algorithm Analysis." Upper Saddle River, NJ: Prentice Hall.