Bonus Lecture! Yay!

Jonas Hartmann

EMBL Bio-IT Course: *Image Processing with Python*

8. – 10. May 2017

EMBL Heidelberg

Agenda

- **▶** Smart microscopy
- **▶** Tracking objects
- ► Machine learning: pixel prediction
- ► Single-cell data analysis
- ► Machine learning: deep learning

- Direct coupling of microscopy and image analysis
- **▶** Example 1: Region of interest auto-detection
 - Identify object of interest in low-res high-FOV image
 - Instruct microscope to image object of interest in high-res

Published 2011 in Nature Methods by Ellenberg & Pepperkok groups

- Direct coupling of microscopy and image analysis
- Example 2: Live tracking
 - Identify leading edge of migrating cells in low-res high-speed image
 - Instruct microscope to follow the leading edge to take high-res slow images

- Direct coupling of microscopy and image analysis
- ► Example 2: Live tracking
 - Identify leading edge of migrating cells in low-res high-speed image
 - Instruct microscope to follow the leading edge to take high-res slow images

- Direct coupling of microscopy and image analysis
- Example 2: Live tracking
 - Identify leading edge of migrating cells in low-res high-speed image
 - Instruct microscope to follow the leading edge to take high-res slow images

Tracking

- ► Goal: assign each labeled object at time t0 a corresponding object at t1
 - Approach: segment independently, then link objects (by optimization)
 - Linking based on: space, feature space, object physics
 - Easier for small δt
 - Challenges: poor segmentation, overlapping objects, dividing/merging objects

From Fiji's TrackMate plugin

From Eric Betzig's group

Machine Learning: Pixel Prediction

- Goal: foreground-background detection by machine learning
 - This is a classification task: classify pixels into groups
 - Approach: supervised learning
 - Manually label example pixels
 - Extract features (raw intensity, filtered intensity, neighborhood)
 - Train classifier (e.g. random forest)
 - Make prediction for all other pixels

Outcome quality differs... Also useful as 'preprocessing' (use probabilities)!

- What to do with single cell data?
 - Correlate and quantify features at a per-cell level
 - Explore cell-cell variability (dimensionality reduction)
 - Identify groups, subgroups (clustering, classification)
 - Identify relationships, trajectories, population structures (graphs)
 - Infer models predicting cell variability and behavior (machine learning)

▶ What to do with single cell data?

Features

▶ What to do with single cell data?

▶ What to do with single cell data?

▶ What to do with single cell data?

- Deep Learning skips feature extraction (by also learning that)
- ► Some very recent interesting stuff: www.allencell.org

Autoencoder (deep neural network)

- ▶ `Deep Learning` skips feature extraction (by also learning that)
- ► Some very recent interesting stuff: www.allencell.org

Adapted from allencell.org

- ▶ `Deep Learning` skips feature extraction (by also learning that)
- ► Some very recent interesting stuff: www.allencell.org

Adapted from allencell.org

- Deep Learning skips feature extraction (by also learning that)
- ► Some very recent interesting stuff: www.allencell.org

Adapted from allencell.org

- ► Advantages: really cool, allows construction of 'atlases', ...
- Disadvantages: encoded model is a 'black box'

