C13 - Structures algébriques usuelles I. Lois de composition internes

Définition

Soit ${\cal M}$ un ensemble quelconque.

Une L.C.I. "⊤" sur M est une application

$$op: egin{cases} M imes M o M \ (x,y) \mapsto x op y \end{cases}$$

Remarque

Le couple (M, \top) est appelé un magma

Exemple

 $+ \operatorname{sur} \mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, 2\mathbb{N}, 42\mathbb{Z}$

imes sur $\mathbb{N},\mathbb{Z},\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{U},\mathbb{U}_n$

 \circ sur $\mathbb{R}^{\mathbb{R}}$, sur $Bij(\mathbb{R},\mathbb{R})$, $Inj(\mathbb{R},\mathbb{R})$, $Surj(\mathbb{R},\mathbb{R})$

 \oplus addition "sans retenue" sur $\mathbb N$

$$\begin{array}{r} 127 \\ + 398 \\ \hline 415 \end{array}$$

 \wedge Le produit vectoriel dans \mathbb{R}^3 euclidien orienté + et imes sur $M_2(\mathbb{R})$

$$egin{pmatrix} a & b \ c & d \end{pmatrix} egin{pmatrix} a' & b' \ c' & d' \end{pmatrix} = egin{pmatrix} aa' + bc' & ab' + bd' \ ca' + dc' & cb' + dd' \end{pmatrix}$$

 $\cup, \cap, \setminus, \triangle$ sue P(E) (ou E un ensemble) \wedge, \vee sur $\mathbb N$ ou $\mathbb Z$

Attention : Le produit scalaire dans \mathbb{R}^2 ou \mathbb{R}^3 n'est pas une LCI.

2. Propositions des LCI

Définition

Soit (M, \top) un magma Alors la loi \top

- Est associative ssi $\forall x,y,z\in M, (x\top y)\top z=x\top (y\top z)$
- Est commutative ssi $\forall x,y \in M, x \top y = y \top x$
- Admet $e \in M$ pour élément neutre ssi

$$orall x \in M, egin{cases} x op e = x \ e op x = x \end{cases}$$

Propriété

Avec ces notations, si \top admet un neutre alors ce neutre est unique.

Démonstration:

Soit e, e' deux neutres pour \top . Alors

$$e = e \top e' = e'$$

Définition

Soit (M, \top) unitaire i.e. tel que \top admette un neutre e qui est alors unique.

Pour $x, y \in M$,

On dit que x admet y pour symétrique (pout \top) ssi

$$\begin{cases} x \top y = e \\ y \top x = e \end{cases}$$

Propriété

Si (M, \top) est un magma unitaire associatif (i.e. \top est associative) Alors lorsque pour $x \in M$, si il admet un symétrique, ce symétrique est unique.

Démonstration:

Soit e le neutre de \top .

Soit $x \in M$, et y, y' deux symétriques de x.

 $y = y \top e \ e \ \text{neutre}$

 $=y\top(x\top y')$ (y' symétrique de x)

 $= (y \top x) \top y'$ (associativité)

 $=e \top y'$ (y symétrique de x)

=y' (e neutre)

Convention d'écriture

Dans de cadre (neutre et associativité), on peut donc parler du symétrique de $x\in M$ lorsqu'il existe et le noter avec une notation qu dépends de x

- 1. Lorsque la loi est notée + on convient de le noter -x et l'appeler l'opposé de x
- 2. La loi est notée \times (ou \cdot), on convient de noter x^{-1} le symétrique de x et de l'appeler l'inverse de x.

Propriété

Si (M, \top) est un magma unitaire associatif (i.e. \top est associative) Si $x,y \in M$, sont symétrisables, de symétriques x',y' alors xy est aussi symétrisables.

Démonstration :

$$(x \top y) \top (y' \top x') = x \top (y \top y') \top x' = (x \top e) \top x' = x \top x' = e$$

et

$$(y' \top x') \top (x \top y) = e$$

Notation additive

$$-(x+y) = (-y) + (-x) = (-x) + (-y)$$

car + est commutative

Notation multiplicative

$$(xy)^{-1} = y^{-1}x^{-1}$$

 $Car \times n$ 'est pas commutative

Exemple des propriétés

 $(\mathbb{N},+):A,C,N(0)$, seul 0 admet un opposé

 $(\mathbb{Z},+):A,C,N(0)$, tout élément admet un opposé.

 $(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+),()$

 $(\mathbb{N},\oplus):A,C,N(0)$, tout élément admet un opposé

 $(\mathbb{Z}, \times), A, C, N(1)$ Seuls -1 et 1 admettent un inverse(QQ)

 $(\mathbb{Q},)$

 $(\mathbb{R}^{\mathbb{R}},\circ)$, $A,\mathrm{non}C,N(Id_{\mathbb{R}})$ (seules les bijections ont un symétrique)

 $\mathrm{Bij}(E,E)=S_E$, (S_E,\circ) A,N,S non commutatif en général (non abélien)

Sur P(E):

 $\cap: A, C, N(E)$ pas beaucoup de symétriques

 $\cup: A, C, N(\emptyset)$ pas beaucoup de symétriques

 \setminus : nonA, nonC, -> bof bof...

 $\triangle:A,C,N(\varnothing)$, X admet X par symétrie (groupe abélien)

 $(\mathcal{M}_2(\mathbb{R}),+)$: $A,C,N(0_{\mathcal{M}_2(\mathbb{R})}),S$

 $(\mathcal{M}_2(\mathbb{R}), \times)$: $A, nonC, N(I_2)$ certaines non null admettent une inverse mais pas toutes.

 $(\mathbb{N},\wedge):A,C,N(0)$, seul 0 est symétrique à lui même

 (\mathbb{Z},\wedge) : A,C

Distributivité:

 $(\mathbb{N},+,\times)$: × par rapport à +

 \mathbb{Z} : \times par rapport à +

 \mathbb{O} : \times par rapport à +

 \mathbb{R} : \times par rapport à +

 \mathbb{C} : imes par rapport à + mais

Exercice:

 $(\mathcal{M}_2(\mathbb{R}),+, imes)$:

$$(P(E), \triangle, \cap)$$
:

Définition

Soit (M, \top, \bot) un magma On dit que \bot est distribuable par rapport a \top ssi $\forall x,y,z\in M$,

$$egin{cases} xot(y op z) = (xot y) op (xot y) \ (x op y)ot z = (xot z) op (yot z) \end{cases}$$

3. Construction de nouvelles

a. Lois induites

Définition stabilité

Soit (M, \top) un magma. Une partie $A \subset M$ est dite stable par \top ssi

$$\forall x,y \in A, x \top y \in A$$

Propriété

Si A est une partie stable par M par \top , la loi induite \top_A définie par :

$$op_A: egin{cases} A imes A o A \ (x,y) \mapsto x op y \end{cases}$$

est bien définie et est une LCI sur A

Remarques:

- On peut dire que (A, \top_A) est un sous magma de (M, \top)
- En général la loi induite est souvent noté \top : on parle de magma (A,\top)

b. Produit cartésien de LCI

Définition: Produit cartésien de LCI

Soient (M_1, op_1) , (M_2, op_2) deux magmas. Alors $(M_1 imes M_2, op)$

$$op: egin{cases} (M_1 imes M_2) imes (M_1 imes M_2) op M_1 imes M_2 \ ((x_1,y_1),(y_1,y_2)) \mapsto (x_1 op_1 y_1, x_2 op_2 y_2) \end{cases}$$

c'est un magma appelé produit de (M_1, \top_1) et (M_2, \top_2) (abusivement de M_1 et M_2)

La loi \top est la LCI : produit de \top_1 et \top_2

• Exemple : $(\mathbb{R}^2, +)$

Extension du produit cartésien de LCI

Loi produit d'un nombre fini de lois

• Exemple : $(\mathbb{R}^n, +)$:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n)$$

c. Loi produit sur M^E

Définition

Soit (M, \top) un magma de E un ensemble quelconque. On définit la loi $\dot{\top}$ sur M^E par :

$$\dot{ op}: egin{cases} M^E imes M^E \ (f,g) \mapsto f \dot{ op} g: egin{cases} E o M \ x \mapsto f(x) otg g(x) \end{cases}$$

Remarque

On note par abus \top au lieu de $\dot{\top}$

Exemple

$$ext{Si } f,y \in \mathbb{R}^I ext{ alors } f+g: egin{cases} I o \mathbb{R} \ x \mapsto f(x) + g(x) \end{cases}$$

Ainsi $(\mathbb{R}^I,+)$ et (\mathbb{R}^I,\times) sont des magmas

d. Héritage des propriétés

Cas 1:

Soit (M,\top) un magma et $A\subset M$ stable par \top Ainsi,

- (M, \top) associatif $\Rightarrow (A, \top)$ associatif
- Si M admet un neutre $e \in A$ et $e \in A$, alors e est neutre de A
- Si $e \in A$ et $x \in A$ admet un symétrique x' dans M et $x' \in A$ alors x est symétrisable dans A

Cas 2 : Produit cartésien

Exo:

- Si (M_1, op_1) et (M_2, op_2) sont associatifs (resp. commutatifs) alors $M_1 imes M_2, op$ l'est aussi (op loi produit)
- Si (M_1, op_1) et (M_2, op_2) admettent un neutre (resp. e_1 et e_2) alors (e_1, e_2) est neutre de $M_1 imes M_2$
- Dans le cas précédent, si de plus $x=(x_1,x_2)\in M_1\times M_2$ vérifie que x_1 est symétrisable dans M_1 et x_2 symétrisable dans M_2 alors x est symétrisable

Cas 3 : M^E

De même pour le cas 2

II. Groupes

1. Structure de groupe

Définition

Un groupe est un magma associatif unitaire dont tout élément est symétrisable

Même ANS

Définition: Groupe Abélien

Un groupe est dit Abélien ou commutatif lorsque sa loi est commutative

• Exemple :

 $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathcal{M}_2(\mathbb{R})$ sont des groupes abélien pour la loi +: on parle de groupe additif et dans ce cas :

- -> Le neutre est toujours noté 0
- -> Le symétrique de x est appelé opposé et est noté -x
- -> Si x est un élément de ce groupe et $n\in\mathbb{Z}$ on définit $n\cdot x=nx$ par

$$0x = 0$$

$$nx = x + x + \cdots + x$$
 Si $n > 0$

$$nx = (-(-n)x)$$
 Si $n < 0$

• Exemple:

$$\mathbb{Q}^*, \mathbb{R}^*, \mathbb{C}^*, \mathbb{U}, \mathbb{U}_{\mathbb{D}}, GL_2(\mathbb{R})$$
 (ensemble des matrices 2×2 inversibles)
Sont des groupes pour \times

On parle de groupes "multiplicatifs" et dans ce cas :

- -> Le neutre est en général noté 1
- -> Le symétrique de x est appelé inverse et est noté x^{-1}
- -> Si x est dans le groupe et $n \in \mathbb{Z}$, on définit x^n aussi :

Si
$$n = 0$$
, $x^n = 1$

Si
$$n > 0$$
, $x^n = x \cdot x \cdot \cdots \cdot x < -n$ fois

Si
$$n < 0$$
, $x^n = (x^{(-n)})^{(-1)}$

Remarque importante

La notation additive n'est utilisé que pour des groupes abéliens La notation multiplicative peut être utilisé dans n'importe quel cadre. C'est pourquoi on fait en général la théorie avec la notation multiplicative On prend (G,\cdot) un groupe et on note 1 son élément neutre (par défault)

Définition

Si E est un ensemble quelconque,

On note $S_E = \text{Bij}(E, E)$ l'ensemble des bijections de E vers E.

On introduit le vocabulaire suivant :

Un bijection de E vers E est appelé une permutation de E

Propriété

 (S_E,\circ) est un groupe qu'on appelle groupe des permutations de E vers E ou un groupe symétrique de E

Démonstration:

ANS

Associative : IdE

Symétrique : Pour $\sigma \in S_E$, σ^{-1} est sa bijection réciproque

Remarque

On omet souvent le \circ dans les calculs i.e. on utilise la notation multiplicative (d'ou la notation σ^{-1} pour l'inverse)

Autre Exemples

 $\mathbb{Z}^n, \mathbb{R}^\mathbb{N}, \mathbb{R}^I$ (I, intervalle de \mathbb{R})

Définition

Pour $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ on note $GL_n(\mathbb{K})$ l'ensemble des matrices carré d'ordre n inversibles

Propriété (Avant première)

 $GL_n(\mathbb{K},\times)$ est un groupe

• Exercice : Determiner explicitement $GL_2(\mathbb{K})$ et trouver une formule pour a^{-1} si $A\in GL_2(\mathbb{K})$

Autre exemples

 (Sim^+,\circ) est un groupe

Définition

Pour $n\in\mathbb{N}^*$, On définit $S_n=S_{[1;\ldots;n]}$

Notation

 $\sigma \in S_n$ est noté sous forme "matricielle" aussi

$$\begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$$

Par exemple si n=4

$$\sigma = egin{pmatrix} 1 & 2 & 3 & 4 \ 4 & 2 & 1 & 3 \end{pmatrix}$$

est la bijection $\sigma: \llbracket 1,n
rbracket o [[1,n]]$ tel que

$$egin{cases} \sigma(1)=4\ \sigma(2)=2\ \sigma(3)=1\ \sigma(4)=3 \end{cases}$$

Dans cet exemple σ est appelé un 3-cycle et noté plus simplement (143)=(431)=(314)

Définition

Soit $p \in \llbracket 2, n
rbracket$

Un p-cycle de S_n est une transposition c telle qu'il existe $a_1,\ldots,a_p\in \llbracket 1,n
rbracket$ différents tq $\sigma(a_1)=a_2,\ldots\sigma(a_{p-1})=a_p$ et $\sigma(a_p)=a_1$ et pour tout $x
ot\in\{a_1,\ldots,a_p\},\,\sigma(x)=x$

On note alors $c=(a_1a_2\dots a_p)$ (= $a_2\dots a_pa_1$ etc)

$$\sigma = egin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \ 9 & 4 & 3 & 2 & 6 & 5 & 7 & 1 & 8 \end{pmatrix} \in S_9 \ S_9 = \mathrm{Bij}(\llbracket 1, 9
rbracket, \llbracket 1, 9
rbracket)$$

Diagramme de Venn : Excalibur 1.

 σ a deux points fixes : 3 et 7 et $\sigma=(1\ 9\ 8)\circ(2\ 4)\circ(5\ 6)$ C'est un résultat général

Théorème

Toute $\sigma \in S_n$ s'écrit comme un produit commutatif de cycles à supports disjoints

Définition

Si
$$\sigma \in S_n$$
, $sup(\sigma) = \{k \in \llbracket 1, n \rrbracket | \sigma(k) \neq k \}$ (support de k)

Lemme

Deux permutations à support deux à deux disjoints commutent

Définition

Un 2-cycle est appelé une transposition

Rappel

Les cycles sont de taille ≥ 2 (pas de monocycle)

Application

Avec l'exemple précédent que vaut σ^{2023}

On a

$$\sigma^{2023} = ((1\ 9\ 8)\circ(2\ 4)\circ(5\ 6))^{2023} = (1\ 9\ 8)^{2023}(2\ 4)^{2023}(5\)^{2023}$$

Car σ (commutent ils sont a supports disjoints 2 a 2)

Si on faisait la division euclidienne de 2023 par 3 On aurait :

$$2023 = 3q + r$$
 $(1\ 9\ 8)^{2023} = (1\ 9\ 8)^{3q}(198)^r = ((1\ 9\ 8)^3)^q(1\ 9\ 8)^r = (1\ 9\ 8)^r$

Ainsi si $k,l\in\mathbb{Z}$ tq $k\equiv l[3]$ alors

$$(198)^k = (198)^l$$

lci

$$2023 \equiv 2 + 0 + 2 + 3 \equiv 1[3]$$

Donc,

$$(198)^{2023} = (198)$$

On fait la meme avec les autres

$$\sigma^{2023} = \sigma$$

Remarque

$$\sigma^{2024} = (1\ 8\ 4)$$
 $(1234)^2 = (1234)(1234) = \begin{pmatrix} 1 & 2 & 3 & 4 \ 3 & 4 & 1 & 2 \end{pmatrix} = (13)(24)$

Une puissance d'un cycle n'est pas toujours un cycle

Exemple:

Soit,

$$\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\sigma\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 4 & 3 & 2 & 6 & 5 & 7 & 1 & 8 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}$$

$$\sigma\sigma'(1) = \sigma(\sigma'(1)) = \sigma(9) = 8$$

$$\sigma\sigma' = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 8 & 1 & 7 & 5 & 6 & 2 & 3 & 4 & 9 \end{pmatrix}$$

$$\sigma'\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 1 & 6 & 7 & 8 & 4 & 5 & 3 & 9 & 2 \end{pmatrix}$$

$$\sigma\sigma' = (184562)(37)$$

$$\sigma'\sigma = (265489)(37)$$

$$(\sigma')^{2024} = (19)^{2024}(28)^{2024}(37)^{2024}(46)^{2024} = 1$$

2. Sous-Groupes

Définition

Soir (G, \cdot) un groupe

Une parte de $H\subset G$ est appelé un sous-groupe de G (en fait de (G,\cdot)) ssi

- 1. H est stable par \cdot
- 2. H munie de la loi induite par \cdot est un groupe

Notation $H \subset G$

$$\mathcal{HT} \subset \operatorname{Sim}_+(\operatorname{par}\operatorname{la}\operatorname{loi}\circ)$$

 ${\cal HT}$ ensemble des réunions de l'ensemble des translations ($Id_{\cal P}$ composé)

Corollaire

- 1. La composé de 2 translations est une translation et les composées de 2 Homothéties est soit une Homothétie soit une translation donc, $\mathcal{HT}\cdot$ est stable par \circ
- 2. On pourrait vérifier qui la loi induite est $A \cdot$ admet $Id_{\mathcal{P}}$ comme neutre et que tout élément de \mathcal{HT} est inversible.

On a vu pleins d'autres sous groupes de Sim_+ (Le groupe des rotations qui fixent un point (en incluant Id_P))

$$Sim_+ \mathop{\subset}\limits_{sg} S_{\mathcal{P}}$$

Soit X in ensemble quelconque non vide et $x \in X$ alors

$$\{\sigma\in S_X|\sigma(x)=x\}(=Fix(x))\mathop{\subset}\limits_{sg}S_X$$

Si $E \subset F$,

$$P(F) \subset_{sg} P(E)$$

Aussi:

$$\{u\in\mathbb{R}^{\mathbb{N}}|u\subset v\} \mathop{\subset}\limits_{sg}\mathbb{R}^{\mathbb{N}}$$

Pour +

Lemme

Soit (G, \cdot) un groupe et $H \subset G$,

$$H \mathrel{\mathop\subset}_{sg} G \Rightarrow 1_H = 1_G$$

Démonstration:

Supposons que $H \subset G$,

On note 1_G le neutre de G et 1_H ne neutre de H On a dans H :

$$1_{H \cdot_{_H}} 1_H = 1_H$$

On a : 1_H est le neutre de H et $1_H \in H$ Mais comme \cdot_H est la loi induite sur H par \cdot , alors $1_H \cdot 1_H = 1_H$ en multipliant par 1_H dans G, on obtient : s

$$1_H = 1_G$$

Caractérisation

Soit *G* un groupe,

Alors les trois propositions sont équivalentes, Pour H un ensemble.

1.
$$H \subset_{sg} G$$

2.
$$\begin{cases} H \subset G \\ H \neq \varnothing \\ H \text{ est stable par } \cdot \\ H \text{ est stable par passage a l'inverse} \end{cases}$$

3.

$$egin{cases} H\subset G\ 1_G\in H\ orall x,y\in H,xy^{-1}\in H \end{cases}$$

Démonstration : $1 \Rightarrow 2$

Supposons que $H \subset G$,

Alors $H \subset G$ et H est stable par \cdot (par définition des sous groupes)

De plus $1_H \in H$ ((H, \cdot) est un groupe)

Donc $H \neq \emptyset$

Soit $x \in H$,

En notant x' l'inverse de x dans H

On a $x \cdot_{{}_H} x' = 1$ et $x' \cdot_{{}_H} x = 1$

Donc $x \cdot x' = 1$ et $x' \cdot x = 1$

Donc par l'unicité de l'inverse dans G, $x'=x^{-1}$

Donc $x^{-1} \in H$.

Démonstration : $2 \Rightarrow 3$

Supposons que

$$\left\{egin{aligned} H\subset G\ H
eqarnothing \ H ext{ est stable par} \cdot\ H ext{ est stable par passage a l'inverse} \end{aligned}
ight.$$

On a alors $H\subset G$

Comme $H \neq \emptyset$, on peut prendre $x \in H$

Comme H est stable par passage a l'inverse, $x^{-1} \in H$

Comme H est stable par produit $1_G = xx^{-1} \in H$

Soient $x, y \in H$,

Comme H est stable par passage a l'inverse $y^{-1} \in H$ Comme H est stable par produit

$$xy^{-1} \in H$$

Démonstration : $3 \Rightarrow 1$

Supposons

$$egin{cases} H\subset G\ 1_G\in H\ orall x,y\in H,xy^{-1}\in H \end{cases}$$

On a alors $H \subset G$

Soit $x \in H$,

Comme $1_G \in H$ et $x \in H$ alors $1_G \cdot x^{-1} \in H$ i.e. $x^{-1} \in H$

Soient $x, y \in H$, $y^{-1} \in H$.

Puis $x(y^{-1})^{-1} \in H$ ie $xy \in H$

Ainsi d'une part, H est stable par produit

D'autre part H est stable par passage a l'inverse donc \cdot_{H} vérifie :

- Elle admet un neutre (car $1_G \in H$ et est neutre pour $\cdot_{_H}$)
- Tout $x \in H$ admet un inverse pour $\cdot_{\scriptscriptstyle H}$ car son inverse pour $\cdot_{\scriptscriptstyle G}$ est dans H
- Par "héritage" de la loi $\cdot_{\scriptscriptstyle G}$, la loi $\cdot_{\scriptscriptstyle H}$ est associative

Ainsi,

$$(H,\cdot_{{}_{H}})$$
 est un groupe donc $:H\subset_{sg}G$

Remarque

Pour montrer $H \subset G$ on se sert toujours des caractérisations

Théorème

Les sous groupes de $(\mathbb{Z},+)$ sont les $n\mathbb{Z}$ où $n\in\mathbb{N}$

Démonstration (Importante) :

Soit $n \in \mathbb{N}$.

Mq $n\mathbb{Z}\in \subset _{sg}\mathbb{Z}$ par la caractérisation des sous groupes :

- $n\mathbb{Z} \subset \mathbb{Z}$ (car un produit d'entiers est entier)
- $0 \in n\mathbb{Z}$ ($0 \equiv 0[n]$)
- Soient $a,b\in n\mathbb{Z}$ (Comme $a\equiv 0[n]$ et $b\equiv 0[n]$, alors $a-b\equiv 0[n]$ i.e. $a-b\in n\mathbb{Z}$)

$$n\mathbb{Z} \subset_{sg} \mathbb{Z}$$

Réciproquement, soit $H \subset \mathbb{Z}$ Montrons qu'il existe $n \in \mathbb{N}$ tel que $H = n\mathbb{Z}$.

On fait une disjonction de cas :

- Si $H=\{0\}$ alors $H=0\mathbb{Z}$ avec $0\in\mathbb{N}$
- Sinon il existe $a \in H \backslash \{0\}$ et quitte à changer a en $-a \in H$, on peut supposer a>0

Ainsi
$$H \cap \mathbb{N}^* \neq \emptyset$$

Toute partie non vide de \mathbb{N}^* admet un plus petit élément $n=min(H\cap\mathbb{N}^*)$

Montrons que $H=n\mathbb{Z}$ par double inclusion soit $a\in n\mathbb{N}$. Alors il existe $k\in\mathbb{Z}$ tel que a=nk

• Si k>0, $a=n+n+\cdots+n\in H$

Car H est stable par addition

- Si k=0, alors $a=0\in H$
- Si k < 0,

 $-a=n(-k)\in H$ par le cas ci dessus car -k>0

Puis H étant stable par passage à l'opposé, $a=-(-a)\in H$

Dans tous les cas : $a \in H$

Ainsi $n\mathbb{Z}\subset H$

Soit $a \in H$, On fait la division euclidienne de a par n ($n \neq 0$ par définition)

$$a=nq+r ext{ avec } q \in \mathbb{Z} ext{ et } r \in \llbracket 0,n-1
rbracket$$

Alors comme $n\mathbb{Z}\subset H$ (inclusion précédente) $nq\in H$ et donc $r=a-nq\in H$

Comme r < n il ne peut être strictement positif, sinon cela contredirait $n = min(H \cap \mathbb{N}^*)$

Ainsi
$$r=0$$
 et $a=nq\in n\mathbb{Z}$

Ainsi $H \subset n\mathbb{Z}$ et finalement $H = n\mathbb{Z}$

3. Morphismes de groupes

Définition

Soient $(G, \cdot_{\scriptscriptstyle G})$ et $(G', \cdot_{\scriptscriptstyle G'})$

Deux groupes

Un morphisme (de groupes) de G vers G' est une application $\phi:G\to G'$ qui préserve la loi

$$orall x,y \in G, \phi(x\cdot_{_G}y) = \phi(x)\cdot_{_{G'}}\phi(y)$$

Exemple

$$ext{e ilde{x}p}:(\mathbb{R},+) o(\mathbb{R}_+^*, imes)$$

est un morphisme de groupe puisque

$$orall x,y \in \mathbb{R}, \exp(x+y) = \exp(x)\exp(y)$$

Propriété

Soit $\phi:G o G'$ un morphisme de groupes. Alors

1.
$$\phi(1_G) = 1_{G'}$$

2.
$$\forall x \in G, \phi(x^{-1}) = (\phi(x))^{-1}$$

Démonstration:

1.
$$\phi(1_G)=\phi(1_G1_G)=\phi(1G)\phi(1G)$$

En multipliant par $\phi(1_G)^{-1},1_{G'}=\phi(1_G)$

2. Soit $x \in G$,

$$\phi(x)\phi(x^{-1})=\phi(xx^{-1})=\phi(1_G)=1_{G'}$$

$$\phi(x^{-1})\phi(x) = \phi(x^{-1}x) = \phi(1_G) = 1_{G'}$$

Donc $\phi(x^{-1})$ est l'inverse de $\phi(x)$

Propriété

Soient $\phi:G o G'$

et $\Psi:G' o G''$

Deux morphismes de groupes

Alors,

$$\Psi\circ\phi:G o G''$$

est un morphisme de groupes

Demonstration: TRIVIALE

Propriété

$$\phi: (\mathbb{Z},+) o (G,\cdot)$$

Un morphisme,

est uniquement déterminé par $g=\phi(1)$:

$$orall n \in \mathbb{Z}, \pi(n) = g^n$$

Démonstration:

Soit ϕ un tel morphisme et $g = \phi(1)$

Pour n > 0,

$$\phi(n) = \phi(1+1\cdots+1) \ (ext{n fois}) = g^n$$

Pour n=0,

$$\phi(0)=1_G=g^0$$

Pour n < 0,

$$\phi(n) = \phi(-(-n)) = \phi(-n)^{-1} = (g^{-n})^{-1} = g^n$$

Exemple

$$egin{cases} (GL_2(\mathbb{K}), imes) o (\mathbb{K}^*, imes) \ egin{pmatrix} a & b \ c & d \end{pmatrix} \mapsto ad-bc \end{cases}$$

est un morphisme de groupe

$$\mathrm{e} ilde{ ilde{\mathbf{x}}} \mathrm{p} : egin{cases} (\mathbb{C}, +)
ightarrow (\mathbb{C}^*, \circ) \ z \mapsto e^z \end{cases}$$

$$g:egin{cases} (\mathbb{R},+)
ightarrow (\mathbb{U},\circ) \ t\mapsto e^{it} \end{cases}$$

est un morphisme

$$f: egin{cases} (\mathbb{R}^2,+)
ightarrow (\mathbb{R}^2,+) \ (x,y) \mapsto (2x-y,x+y) \end{cases}$$

est un morphisme

$$\phi: egin{cases} (\mathcal{C}^0_\mathbb{R}([0,1]),+)
ightarrow (\mathbb{R},+) \ f \mapsto \int_0^1 f \end{cases}$$

est un morphisme de groupes

Remarque

Ces deux derniers exemples préservent plus que l'addition, elles préservent les combinaisons linéaires -> il y a une "superstructure" d'espace vectorielle

Propriété

Soit $\phi:G o G'$

Le morphisme de groupes

Alors

1. Pour tout $H \subset G$,

On a
$$\phi(H) \underset{sg}{\subset} G'$$

2. Pour tout $H' \subset_{sg} G'$,

On a
$$\phi^{-1}(H') \mathop{\subset}\limits_{sq} G$$

Démonstration:

1. On utilise la caractérisation des sous groupes Soit $H \subset G$ Alors

- $\phi(H) \subset G'$ (par définition de l'image directe)
- $ullet \ 1_{G'} = \phi(1_G) \in \phi(H) \ \mathsf{car} \ 1_G \in H$ $ullet \ \mathsf{car} \ H \subset G$
- Soient $x',y'\in\phi(H)$ Par définition de $\phi(H)$, il existe $x,y\in H$ tel que $egin{cases} \phi(x)=x' \\ \phi(y)=y' \end{cases}$

On a alors

$$\phi'(y')^{-1} = \phi(x)(\phi(y))^{-1} = \phi(x)\phi(y^{-1}) = \phi(xy^{-1})$$

Car ϕ est un morphisme

Or
$$x,y\in H$$
 et $H \underset{sg}{\subset} G$ donc $xy^{-1}\in H$

Donc
$$x'(y')^{-1} \in \phi(H)$$

Ainsi
$$\phi(H) \subset G'$$

Définition

Avec les notations précédentes :

On note ${\rm Im}(\phi)=\phi(G)$ l'image de ϕ qui est un sous groupe de G' par la propriété

On note:

$$Ker\,\phi=\phi^{-1}(\{1_{G'}\})$$

Le noyau de ϕ qui est un sous groupe de G pa la propriété

Propriété

Avec ces notations

 ϕ est surjective ssi ${
m Im}\,\phi=G'$ et ϕ est injective ssi $Ker\,\phi=\{1_G\}$

Démonstration

Pour l'image c'est la définition de la sujectivité.

Montrons la deuxième équivalence :

Supposons que ϕ est injective Comme $\phi(1_G)=1_{G'}$

Par injectivité

$$\phi^{-1}(\{1_{G'}\}) = \{1_G\}$$

Réciproquement, supposons que $Ker \phi = \{1_G\}$

Soient $x, y \in G$ tel que $\phi(x) = \phi(y)$

Alors $\phi(x)(\phi(y))^{-1}=1_{G'}$

et comme ϕ est un morphisme

$$\phi(xy^{-1})=1_{G'}$$

Comme

$$Ker \, \phi = \{1_G\}, xy^{-1} = 1_G$$

Donc x = y

Ainsi ϕ est injective

Définition

Un morphisme de groupes es un morphisme de groupes bijectif un automorphisme d'un groupe G est un isomorphisme de G vers G (l'ensemble des automorphismes de G est noté Aut(G))

Propriété

Soir $\phi:G\to G'$ un isomorphisme de groupes

Alors $\phi^{-1}:G'\to G$ est "automatiquement" un morphisme de groupe (Donc un isomorphisme)

Démonstration:

Pour $x', y' \in G'$,

$$\phi(x't') = \phi^{-1}(\phi(\phi^{-1}(x'))\phi(\phi^{-1}(y'))) = \phi^{-1}(x')\phi^{-1}(y')$$

Exemple

$$ext{e ilde{x}p}:(\mathbb{R},+) o(\mathbb{R}_+^*, imes)$$

est un isomorphisme (l'isomorphime réciproque étant In)

Propriété

Soit (G, \cdot) un groupe Pour $g \in G$ fixé on note

$$C_g: egin{cases} G o G \ x \mapsto gxg^{-1} \end{cases}$$

(conjugaison par g) qui est un automorphisme de G

Exercice

- 1. $(Aut(G), \circ)$ est un groupe
- 2. $\{C_g;g\in G\}$ est un sous groupe de Aut(G)

Proposition

Soit G un groupe

Alors

$$G o S_G \ g\mapsto egin{cases} G o G \ x\mapsto gx \end{cases}$$

est un isomorphisme de groupes injectif

(Tout groupe se prolonge dans un groupe symétrique i.e. "peut être vu" comme un sous groupe du groupe symétrique)

Théorème : Avant première

Pour $n\geq 2$ il existe un unique morphisme ϵ non trivial $(\neq (x\mapsto 1))$ de (S_n,\circ) vers $(\{\pm 1\},x)$

Il vérifie que pour toute transposition τ (2-cycle)

$$\epsilon(au) = -1$$

 ϵ s'appelle la signature.

Définition

$$Ker \ \epsilon = A_n$$

est le sous groupe symétrique alterné qui est un sous groupe de S_n

$$S_4 = (1 \quad 2 \quad 3 \quad 4)$$

Théorème de Cayley

$$S(G) = bij(G, G)$$

Soit G un groupe alors il existe un morphisme injectif $\phi:G\to S(G)$ i.e. G est isomorphe à un sous-groupe de S(G)

 $\mathbb{Z}/_{n\mathbb{Z}} \tilde{\longrightarrow} \mathbb{U}_{\mathbb{D}}$ isomorphisme

Démonstration

On pose pour $g \in G$,

$$\phi(g): egin{cases} G o G \ x \mapsto gx \end{cases}$$

Soit $g \in G$,

On remarque que $\phi(g)\circ\phi(g^{-1})=Id_G$ et $\phi(g^{-1})\circ\phi(g)=Id_G$

Ainsi $\phi(g^{-1})$ est application réciproque de $\phi(g)$ donc ϕ est bijective ie $\phi(g) \in S(G)$

On a construit ainsi:

$$\phi: egin{cases} G
ightarrow S(G) \ g \mapsto \phi(g) \end{cases}$$

Montrons que ϕ est un morphisme de groupes :

Soient $g, g' \in G$

Alors $\phi(gg') \in G^G$

Et par composition $\phi(g)\circ\phi(g')\in G^G$

Pour montrer que ces applications sont égales il suffit de montrer qu'elles donnent la même image pour chaque $x \in G$:

$$(\phi(gg'))(x) = (gg')x = (\phi(g))(\phi(g'))(x) = (\phi(g) \circ \phi(g'))(x)$$

Ainsi:

$$\phi(gg') = \phi(g) \circ \phi(g')$$

Donc ϕ est un morphisme de groupes

Pour montrer que ϕ est injectif, on calcule son noyau

Remarquons qu'on a toujours $1_G \in Ker \phi$ (puisque $\phi(1_G) = Id_G$ et plus généralement l'image d'un neutre par un

morphisme est le neutre du groupe d'arrivée)

En pratique pour montrer l'injectivité

ie $Ker\ \phi=\{1_G\}$ on montre seulement $Ker\ \phi\subset\{1_G\}$

ie on prend $g \in G$ tq $\phi(g) = Id_G$ et on montre que $g = 1_G$

Soit $g \in G$ tq $\phi(g) = Id_G$ ie

$$orall x \in G, gx = x$$

On a en particulier $g1_G=1_G$ donc $g=1_G$

Ainsi $Ker \phi = \{1_G\}$

Donc ϕ est injectif

Remarque

Si G est fini |S(G)| = |G|!

III. Anneaux et corps

1. Anneaux

Définition Anneau

Un anneau est un magma $(A, +, \times)$ qui vérifie :

- (A, +) est un groupe abélien (de neutre 0_A)
- imes est associative et imes admet un neutre $1_A
 eq 0_A$
- ullet x est distributive par rapport a + (a gauche et a droite)

Définition Anneau commutatif

Un anneau commutatif est un anneau $(A, +, \times)$ tq \times soit commutative

Remarque

On ne dit pas anneau Abélien

Exemple

 $(\mathbb{N},+,\times)$ n'est pas un anneau

$$(\mathbb{Z},+, imes)$$

...

$$(\mathbb{C},+,\times)$$

Sont des anneaux

$$(\mathcal{M}_2(\mathbb{R}),+, imes)$$
 est un anneau

Démo:

 $(\mathcal{M}_2(\mathbb{R}),+)$ est un groupe abélien "coefficient par coefficient" avec neutre

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 \times est associative (faire le calcul)

$$I_2=egin{pmatrix}1&0\0&1\end{pmatrix}$$

est neutre pour \times

 \times est distributive par rapport a + (à gauche et a droite) (faire les deux calculs)

Soit E un ensemble quelconque Alors,

 $(P(E),\Delta,\cap)$ est un anneau

Associativité de Δ :

On utilise

$$\mathbb{1}: egin{cases} P(E)
ightarrow \{\overline{0},\overline{1}\}^E \ A
ightarrow egin{pmatrix} \mathbb{1}_A: egin{pmatrix} E
ightarrow \{\overline{0},\overline{1}\} \ x
ightarrow egin{pmatrix} \overline{1} & ext{si } x \in A \ \overline{0} & ext{si } x
otin A \end{pmatrix} \end{cases}$$

Dont on a déjà vu qu'elle est bijective

Pour $A, B \in P(E)$

$$\mathbb{1}_{A\Delta B} = \mathbb{1}_{A\Delta B} \stackrel{\cdot}{+} \mathbb{1}_{B}$$

ou $\dot{+}$ est addition modulo 2

Donc pour $A, B, C \in P(E)$

$$\mathbb{1}_{(A\Delta B)\Delta C} = \mathbb{1}_{A\Delta B} \dotplus \mathbb{1}_C = (\mathbb{1}_A \dotplus \mathbb{1}_B) \dotplus \mathbb{1}_C = \mathbb{1}_A \dotplus (\mathbb{1}_B \dotplus \mathbb{1}_C) = \mathbb{1}_A \dotplus \mathbb{1}_{B\Delta C} =$$

Comme $\ensuremath{\mathbb{1}}$ est bijective, elle est injective Donc

$$(A\Delta B)\Delta C = A\Delta (B\Delta C)$$

Plus conceptuellement $(\mathbb{Z}/2\mathbb{Z},\dot{+},\dot{\times})$ est un anneau commutatif

Automatiquement avec les tables d'addition et de multiplication $(\mathbb{Z}/2\mathbb{Z})^E$ est muni d'une addition et d'une multiplication

(déjà vu,
$$f+g:x\mapsto f(x)\stackrel{.}{+}g(x)$$
).

On voit forcément que $((\mathbb{Z}/2\mathbb{Z})^E,\dot{+},\dot{\times})$ est un anneau commutatif

Par ailleurs on a une bijection

$$\mathbb{1}: P(E) \to (\mathbb{Z}/2\mathbb{Z})^E$$

Donc on peut ramener les lois sur P(E) pour $A, B \in P(E)$, on pose

$$A\tilde{+}B = \mathbb{1}^{-1}(\mathbb{1}_A + \mathbb{1}_B)$$

$$A\tilde{\times}B=\mathbb{1}^{-1}(\mathbb{1}_A\stackrel{.}{ imes}\mathbb{1}_B)$$

et on obtiens un anneau $(P(E), \tilde{+}, \tilde{\times})$

On remarque que

$$\begin{cases} \tilde{+} = \Delta \\ \tilde{\times} = \cap \end{cases}$$

car pourtant $A, B \in P(E)$,

$$\begin{cases} \mathbbm{1}_{A\tilde{+}B} = \mathbbm{1}_A \dot{+} \mathbbm{1}_B = \mathbbm{1}_{A\Delta B} \\ \mathbbm{1}_{A\tilde{\times}B} = \mathbbm{1}_A \dot{\times} \mathbbm{1}_B = \mathbbm{1}_{A\cap B} \end{cases}$$

On dit que $(P(E), \Delta, \cap)$ et $((\mathbb{Z}/2\mathbb{Z})^E, \dot{+}, \dot{\times})$ sont des anneaux isomorphes

Propriété

Soit $(A, +, \times)$ un anneau

Alors 0_A est absorbant pour $imes \$ie orall x \in A, x imes O_A = O_A imes = O_A \$$

Démonstration

Soit $x \in A$,

$$O_Ax=O_Ax+x-x=(O_A+1_A)x-x=1_Ax-x=x-x=O_A$$

Théorème Binôme de Newton

Soit (A,+, imes) un anneau, $x,y\in A$ et $n\in\mathbb{N}$

Si xy = yx, alors

$$(x+y)^n = \sum_{k=0}^n inom{n}{k} x^{n-k} y^k$$

Démonstration la même que dans \mathbb{R}, \mathbb{C}

Formule de Bernoulli

Soit (A,+, imes) un anneau, $x,y\in A$ et $n\in\mathbb{N}$,

Si xy = yx, alors

$$x^{n+1}-y^{n+1}=(x-y)\sum_{k=0}^n x^{n-k}y^k$$

Démonstration la même que dans \mathbb{R}, \mathbb{C}

Notation

Soit $(A, +, \times)$

On note A^{\times} (se dit "A croix") l'ensemble des éléments de A i.e. l'ensemble des éléments x de A qui admettent un symétrique pour \times ($x \in A \operatorname{tq} xx' = x'x = 1_A$ qui est alors unique puisque \times est associative, et qu'on note x^{-1})

Propriété

Pour la loi induite par \times sur A^{\times} , qu'on note encore \times

$$(A^{\times}, \times)$$
 est un groupe

appelé groupe des inversibles de l'anneau A

Démonstration:

- 1. La loi induite est bien définie car A^{\times} est stable par \times puisqu'on sait qu'un produit d'inversibles x,y est inversible et $(xy)^{-1}=y^{-1}x^{-1}$
- 2. La loi induite hérite de l'associativité de \times sur A
- 3. $1_A \in A^{ imes}$ ($1_A 1_A = 1_A$) et est évidement neutre par la loi induite
- 4. Pour tout $x \in A^{\times}$, x est inversible dans A est l'inverse x^{-1} or x^{-1} est inversible (d'inverse x) donc $x^{-1} \in A^{\times}$ est donc l'inverse de x pour la loi induite. Ainsi (A^{\times}, \times) est un groupe

Exemple

$$egin{aligned} \mathbb{Z}^{ imes} &= \{-1,1\} \ \mathbb{Q}^{ imes} &= \{x \in \mathbb{Q} | x
eq 0\} = \mathbb{Q}^* \ \mathbb{R}^{ imes} &= \mathbb{R}^* \ \mathbb{C}^{ imes} &= \mathbb{C}^* \end{aligned}$$

$$(\mathcal{M}_{2(\mathbb{K})})^{ imes} = \left\{ egin{pmatrix} a & b \ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K}) | ad - bc
eq 0
ight\}$$

Propriété

Si $ad-bc \neq 0$

$$egin{pmatrix} a & b \ c & d \end{pmatrix}^{-1} = rac{1}{ad-bc} egin{pmatrix} d & -b \ -c & a \end{pmatrix} \ P(E)^{ imes} = \{E\}$$

2. Corps

Définition

Idée : on rajoute à la définition d'un anneau \times commutative et tout non nul est inversible mais c'est pas ouf.

Un corp K est un anneau commutatif tq $K^{ imes}=Kackslash\{0\}=K^*$

Exemple

$$\mathbb{Q}, \mathbb{R}, \mathbb{C}, (\mathbb{Z}/2\mathbb{Z}, \dot{+}, \dot{ imes})$$

Sont des corps mais \mathbb{Z} et $\mathcal{M}_2(\mathbb{K})$

Exercice

Est-ce que $\mathbb{Z}/4\mathbb{Z}$ est un corp Pour quels $n\in\mathbb{N}\backslash\{0,1\}$ $\mathbb{Z}/n\mathbb{Z}$ est il un corp

3. Sous-anneaux et morphismes

Soit A un anneau

Définition

Un sous anneau de A est un sous-groupe additif de A qui contient $\mathbf{1}_A$ et est stable par multiplication

Exemple

- $\mathbb Z$ Sous anneau de $\mathbb Q$ de $\mathbb R$ de $\mathbb C$
- $\mathbb Q$ sous anneau de $\mathbb R$

Propriété

Une partie d'un anneau est un sous anneau ssi :

- Elle contient 1
- Elle est stable par addition, passage à l'opposé et produit

Démonstration

 \Rightarrow trivial

 \Leftrightarrow : Soit A un anneau et $B\subset A$

tq $1 \in B$ et B soit stable par +, passage à l'oposé et \times .

Comme $B \neq \emptyset$ et est stable par + et passage a l'opposé, c'est un sous groupe additif de A.

Or il contient 1 et stable par x donc par la définition précédente c'est un sous anneau de A

Définition

 $\phi:A o A'$ (A et A' deux anneaux) est un morphisme d'anneaux ssi $\phi(1_A)=1_{A'}$

$$orall x,y\in A, egin{cases} \phi(x+y)=\phi(x)+\phi(y)\ \phi(xy)=\phi(x)\phi(y) \end{cases}$$

En particulier ϕ est un morphisme de groupes de (A,+) vers A',+ donc $\phi'(0_A)=O_{A'}$

Définition

Pour ϕ un morphisme d'anneaux,

$$Im\phi = \phi(A) \ Ker\phi = \phi^{-1}(\{O_{A'}\})$$

Propriété

 $Im\phi$ est un sous-anneau de A' $Ker\phi$ est un sous-groupe de A

Remarque

 ϕ est en particulier un morphisme de groupes,

 ϕ est surjective ssi $Im\phi=A'$

 ϕ est injective ssi $Ker\phi=\{O_A\}$

Définition

Un isomorphisme d'anneaux est un morphisme d'anneaux bijectif

Propriété

L'image d'un corp par un morphisme d'anneau est un corps