SIMPLE LINEAR REGRESSION

PROJECT OVERVIEW

• You own an ice cream business and you would like to create a model that could predict the daily revenue in dollars based on the outside air temperature (degC).

• Dataset:

- Input (X): Outside Air Temperature
- Output (Y): Overall daily revenue generated in dollars

	Temperature	Revenue
0	24.566884	534.799028
1	26.005191	625.190122
2	27.790554	660.632289
3	20.595335	487.706960
4	11.503498	316.240194
5	14.352514	367.940744
6	13.707780	308.894518
7	30.833985	696.716640
8	0.976870	55.390338
9	31.669465	737.800824
10	11.455253	325.968408
11	3.664670	71.160153

Source: https://www.goodfreephotos.com/vector-images/ice-cream-stand-vector-clipart.png.php

SIMPLE LINEAR REGRESSION

- In simple linear regression, we predict the value of one variable Y based on another variable X.
- X is called the independent variable and Y is called the dependent variable.
- Why simple? Because it examines the relationship between two variables only.
- Why linear? when the independent variable increases (or decreases), the dependent variable increases (or decreases) in a linear fashion.

	Temperature	Revenue
0	24.566884	534.799028
1	26.005191	625.190122
2	27.790554	660.632289
3	20.595335	487.706960
4	11.503498	316.240194
5	14.352514	367.940744
6	13.707780	308.894518
7	30.833985	696.716640
8	0.976870	55.390338
9	31.669465	737.800824
10	11.455253	325.968408
11	3.664670	71.160153

SIMPLE LINEAR REGRESSION: SOME MATH!

- Goal is to obtain a relationship (model) between outside air temperature and ice cream sales revenue. Simply you need to find "m" and "b".
- This "trained" model can be later used to predict any Revenue (dollars) based on the outside air Temperature.

LEAST SUM OF SQUARES

HOW TO GET MODEL PARAMETERS? LEAST SUM OF SQUARES

- Least squares fitting is a way to find the best-fit curve or line for a set of points.
- The sum of the squares of the offsets (residuals) is used to estimate the best-fit curve or line.
- Least squares method is used to obtain the coefficients m and b.

TRAINING VS. TESTING DATASET

- Data set is divided into 75% for training and 25% for testing.
 - Training set: used for model training.
 - Testing set: used for testing trained model. Make sure that the testing dataset has never been seen by the trained model before.

SIMPLE LINEAR REGRESSION: PRACTICE OPPORTUNITY

• Match the equations to the figures:

Regression Analysis

- Statistical process for estimating the relationships among variables
- The predictor is a continuous variable
- Relationship between a dependent variable and one or more independent variables (or 'predictors')
- Can also be used to infer causal relationships between dependent and independent variables.

Simple Linear Regression

Simple Regression:

$$y = b_0 + b_1 x$$

Only one Dependent Only one Independent

Simple Linear Regression

Hrs Studied	Marks	
(X)	(Y)	
0	40	
2	52	
3	53	
4	55	
4	56	
5	72	
6	71	
6	88	
7	56	
7	74	
8	89	
9	67	
9	89	
5.38	66.31	
Mean		

X – Mean (A)	Y – Mean (B)	A^2	A*B
-5.38	-26.31	28.99	141.66
-3.38	-14.31	11.46	48.43
-2.38	-13.31	5.69	31.73
-1.38	-11.31	1.92	15.66
-1.38	-10.31	1.92	14.27
-0.38	5.69	0.15	-2.19
0.62	4.69	0.38	2.89
0.62	21.69	0.38	13.35
1.62	-10.31	2.61	-16.65
1.62	7.69	2.61	12.43
2.62	22.69	6.84	59.35
3.62	0.69	13.07	2.50
3.62	22.69	13.07	82.04
		89.08	405.46
		Sum	

$$y = b_0 + b_1 x$$

$$b_1 = \frac{\sum (X - \overline{X}) (Y - \overline{Y})}{\sum (X - \overline{X})^2}$$

Simple Linear Regression

Hrs Studied	Marks		
(X)	(Y)		
0	40		
2	52		
3	53		
4	55		
4	56		
5	72		
6	71		
6	88		
7	56		
7	74		
8	89		
9	67		
9	89		
5.38	66.31		
Mean			

$$y = b_0 + b_1 x$$

$$b_1$$
 = 4.55

$$b_0 = 41.8$$

SCIKIT-LEARN

SCIKIT-LEARN

- Scikit-learn is a free machine-learning library developed for python.
- Scikit-learn offers several algorithms for classification, regression, and clustering.
- Several famous models are included such as support vector machines, random forests, gradient boosting, and k-means.
- Scikit learn can be efficiently used in data preprocessing.

