05_MPC

1. Conceptions

2. Design a Stable MPC

Problem of Standard MPC Model

Main Idea

Lyapunov Stability Analysis

Zero Terminal Cost Case

More General Terminal State Case

Asymptotic Stability Analysis

Extension to Nonlinear MPC

Summary

1. Conceptions

Definition: Feasible Set: Feasible Set

The feasible set \mathcal{X}_N is defined as the set of **initial states** x for which the MPC problem with horizon N is feasible, i.e.

$$\mathcal{X}_N := \{x \mid \exists \left[u_0, \ldots, u_{N-1}
ight] ext{ such that } Cu_i + Dx_i \leq b, i = 1, \ldots, N\})$$

Definition: Recursive Feasibility

The MPC problem is called **recursively feasible**, if for all feasible initial states, feasibility is guaranteed at **every state along** the closed-loop trajectory

Definition: Lyapunov Stability

The equilibrium point at the origin of system

$$x_{k+1} = Ax_k + B\kappa\left(x_k\right) = f_\kappa\left(x_k\right)$$

is said to be **(Lyapunov) stable** in $\mathcal X$ if for every $\epsilon>0$, there exists a $\delta(\epsilon)>$ such that, for every $x(0)\in(X)$

$$||x(0)|| < \delta(\epsilon) \Rightarrow ||x(k)|| < \epsilon \quad \forall k \in \mathbb{N}$$

2. Design a Stable MPC

Problem of Standard MPC Model

Model: MPC Model Without Terminal Set

$$egin{aligned} \min_{x,u} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i \ ext{s.t. } x_{i+1} = A x_i + B u_i \ b &> C x_i + D u_i \end{aligned}$$

Because we only use Finite-Horizon MPC without terminal cost, there may be two big problems here:

- we cannot guarantee feasibility: the MPC problem may not have a solution now or later
- · we cannot guarantee stability: the trajectory may not converge to the origin

Main Idea

Introduce terminal cost and constraints to explicitly ensure stability and feasibility.

Model: MPC with Terminal Cost

$$J^*(x) = \min_{x,u} \sum_{i=0}^{N-1} x_i^T Q x_i + u_i^T R u_i + x_N^T P x_N ext{ Terminal cost}$$
 s.t. $x_{i+1} = A x_i + B u_i$ $C x_i + D u_i \leq b$ $x_N \in \mathcal{X}_f ext{ Terminal constraint}$ $x_0 = x$

Lyapunov Stability Analysis

Zero Terminal Cost Case

Assumption:

Terminal constraint $X_N=0$

Property:

By doing:

- Assume feasibility of x and let $\left[u_0^*,u_1^*,\ldots,u_{N-1}^*
 ight]$ be the optimal control sequence computed at x
- At x^+ the control sequence $\left[u_1^*,u_2^*,\ldots,u_{N-1}^*,0
 ight]$ is feasible (apply 0 control input $\Rightarrow x_{N+}=0$)

Then the controller meet **recursive feasibility** and we can prove that $J^*(x)$ is a Lyapunov function.

$$egin{aligned} J^*\left(x_0
ight) &= \sum_{i=0}^{N-1} I\left(x_i^*, u_i^*
ight) \ J^*\left(x_1
ight) &\leq J\left(x_1
ight) = \sum_{i=1}^{N} I\left(x_i^*, u_i^*
ight) \ &= \sum_{i=0}^{N-1} I\left(x_i^*, u_i^*
ight) - I\left(x_0, u_0^*
ight) + I\left(x_N, u_N
ight) \ &= J^*\left(x_0
ight) - \underbrace{I\left(x, u_0^*
ight)}_{ ext{Subtract cost}} + \underbrace{I(0, 0)}_{ ext{at stage }0} ext{ staying at } 0 \end{aligned}$$

More General Terminal State Case

The terminal constraint $X_N=0$ reduce the feasible set. We can somehow loose the constraints. We can prove that if the following assumptions hold:

- The stage cost is a **positive definite function**, i.e. it is strictly positive and only zero at the origin
- Th**e terminal set is invariant** under the local control law $\kappa_f(x)$

$$x^+ = Ax + B\kappa_f(x) \in \mathcal{X}_f \quad ext{ for all } x \in \mathcal{X}_f$$

All state and input constraints are satisfied in \mathcal{X}_f : terminal state

$$\mathcal{X}_f\subseteq\mathbb{X}, \kappa_f(x)\in\mathbb{U} ext{ for all } x\in\mathcal{X}_f$$

i.e. we can find a "virtual terminal controller"

• Terminal cost is a **continuous Lyapunov function** in the terminal set \mathcal{X}_f :

$$V_f\left(x^+
ight) - V_f(x) \leq -l\left(x, \kappa_f(x)
ight) ext{ for all } x \in \mathcal{X}_f$$

Then we have the following theorem:

Proposition: MPC with Established Terminal Set

The closed-loop system under the MPC control law $u_0^*(x)$ is stable and the system $x^+ = Ax + Bu_0^*(x)$ is invariant in the feasible set \mathbb{X}_N .

Notes:

Although better than zero terminal constraints, this method still reduces the region of attraction.

Asymptotic Stability Analysis

Definition: Asymptotic Stability

Given a positively invariant set $\mathcal X$ including the origin as an interior-point, the equilibrium point at the origin of system $x_{k+1}=f_k\left(x_k\right)$ is said to be **asymptotically stable** in $\mathcal X$ if it is

- (Lyapunov) stable
- ullet attractive in $\mathcal X$, i.e. $\lim_{k o\infty}\|x_k\|=0$ for all $x(0)\in\mathcal X$

Theorem:

If the continuous Lyapunov function additionally satisfies

$$V\left(x_{k+1}
ight) -V\left(x_{k}
ight) <0\quad orall x
eq0$$

then the closed loop system converges to the origin and is hence asymptotically stable.

Proposition: MPC with Established Terminal Set

Recall: Decrease of the optimal MPC cost was given by

$$J\left(x_{k+1}
ight) - J\left(x_{k}
ight) \leq -l\left(x_{k}, u_{0}^{st}
ight)$$

where the stage cost was assumed to be positive and only 0 at 0.

So, the closed-loop system under the MPC control law is asymptotically stable

Extension to Nonlinear MPC

Model: Nonlinear MPC Problem

$$J^*(x) = \min_{x,u} \sum_{i=0}^{N-1} I\left(x_i, u_i
ight) + V_f\left(x_N
ight) \ ext{s.t. } x_{i+1} = f\left(x_i, u_i
ight) \ g\left(x_i, u_i
ight) \leq 0 \ x_N \in \mathcal{X}_f \ x_0 = x$$

Notes:

Previous assumptions on the terminal set and cost did not rely on linearity, so the result can be directly extended to nonlinear systems. However, computing the sets \mathcal{X}_f and V_f may be very difficult in a nonlinear system.

Summary

Finite-horizon MPC may not be stable!
Finite-horizon MPC may not satisfy constraints for all time!

- An infinite-horizon provides stability and invariance.
- We 'fake' infinite-horizon by forcing the final state to be in an invariant set for which there exists an invariance-inducing controller, whose infinite-horizon cost can be expressed in closed-form.
- These ideas extend to non-linear systems, but the sets are difficult to compute.
- **Finite-Horizon MPC** cannot guarantee feasibility and stability because the finite-horizon. We can solve this problem by introducing **terminal set and terminal cost**.
- However, then a big problem is how to guarantee stability and feasibility with terminal set and terminal cost.
- We have shown that for **zero terminal set**, it will be **stable and feasible**.
- And we can prove that more generally, if we can build a **final virtual controller and final cost meet 3 assumptions**, we will get a **feasible and stable** MPC controller.
- The next problem is, how can we find the virtual controller and build a final cost meet the assumptions.

05_MPC