Homework2

```
CSCI-6351
```

Wen Liu

#Problem1.

```
a. For string = "ababbccab".

The output (y, L) as follow:

y =

9×1 char 数组

'c'
'b'
'b'
'a'
'a'
'a'
'a'
'a'
'b'
'c'
'b'
'c'
'b'
```

L = 2

For string = "the dog in the fog". We see # as the white space. The output (y,L) as follow:

```
y =

18×1 chax 数组

'e'
'e'
'g'
'n'
'h'
'h'
'h'
't'
't'
't'
't'
'g'
y =

L = 17
```

b.

```
function B = inverseBWT(y)
    %get the length of y
    [n,] = size(y);
    B = y;

for i = 1:n-1
    % sort the y
    tmp = sortrows(B);

    % get the last column of sorted newY
    last_column = tmp(1:n, i);

    % append the last column to the exist y
    B(1:n, i+1) = last_column;
end

%finally sort the y, we can get the B
    B = sortrows(B);
end
```

```
function x = getOriginalX(y, L)
    % get the matrix of B
    B = inverseBWT(y);
    % get the original x from B
    x = B(L, :);
end
```

d.

After BWT, we get the (y,L) where y is the last column of B, and L is the location of the original x in B; Therefore we just need to reconstruct the matrix of B from y. For original x, use the B(L) to return the x.

Construct the matrix of B from y: We know the y is the last column of B, and B is the rows of A lexicographically.

Pseudocode code:

```
B = y
For i = 1:length(y) - 1
    1. Sort the B and get
```

- Sort the B and get last column of B.
 (we use a temporary value to record the sorted B.)
- 2. append the last column of B to the exist $\ensuremath{\mathsf{B}}$

B = sort(B).

End.

#Problem2.

All the variables means:

```
Xfft is the Fourier transform of x, Yfft is similar.
```

Xabs is the magnitudes of the elements of Xfft, Yasb is similar

XHat is a column derived from Xfft by replacing each of the 11 smallest-magnitude elements of Xfft by 0, and leaving the other elements intact. YHat is defined similarly.

xHat is the inverse Fourier transform of XHat, yHat is similar.

```
table1 = [Xfft' Xabs' XHat'];
>> display(table1)
table1 =
  86.0000 86.0000 86.0000
  52.5483 52.5483 52.5483
  13.6569 13.6569 13.6569
          6.4797
  6.4797
  4.0000 4.0000
                    0
  2.8929 2.8929
                    0
  2.3431 2.3431
         2.0791
                    0
  2.0791
   2.0000
          2.0000
  2.0791
          2.0791
  2.3431 2.3431
  2.8929
         2.8929
                    0
         4.0000
  4.0000
  6.4797
          6.4797
  13.6569 13.6569 13.6569
  52.5483 52.5483 52.5483
table2 = [Yfft' Yabs' YHat'];
>> display(table2)
table2 =
 -8.0033 + 0.0000i 8.0033 + 0.0000i -8.0033 + 0.0000i
  4.9858 +11.4797i 12.5157 + 0.0000i
                              4.9858 +11.4797i
                              1.1<mark>4</mark>01 + 1.3960i
  1.1401 + 1.3960i 1.8024 + 0.0000i
  0.8148 + 0.8346i 1.1664 + 0.0000i 0.0000 + 0.0000i
  0.7077 + 0.5509i   0.8968 + 0.0000i   0.0000 + 0.0000i
  0.0000 + 0.0000i
                              0.0000 + 0.0000i
  0.6265 - 0.1086i   0.6358 + 0.0000i   0.0000 + 0.0000i
  0.6607 - 0.3661i 0.7554 + 0.0000i 0.0000 + 0.0000i
  0.8148 - 0.8346i 1.1664 + 0.0000i
1.1401 - 1.3960i 1.8024 + 0.0000i
                              0.0000 + 0.0000i
                              1.1401 - 1.3960i
  4.9858 -11.4797i 12.5157 + 0.0000i 4.9858 -11.4797i
```

table3 = [x' xHat'];

```
>> display(table3)
```

table3 = 16.0000 12.2500 12.6506 9.0000 10.0197 6.2500 6.6816 4.0000 3.6679 2.2500 1.6542 1.0000 0.7303 0.2500 0.5136 0.5136 0.2500 0.5136 1.0000 0.7303 2.2500 4.0000 3.6679

table4 = [y' yHat'];

6.6816

10.0197

12.6506

>> display(table4)

6.2500

9.0000

12.2500

table4 =

0.7354 0.2655 0.9213 0.8489 1.0086 1.1297 0.9625 1.0866 0.7678 0.7922 0.4320 0.3629 -0.0151 -0.1007 -0.5248 -0.5495 -1.0366 -0.9809 -1.4863 -1.4010 -1.8157 -1.7811 -1.9806 -2.0418 -1.9578 -2.0777 -1.7482-1.8116 -1.3768 -1.2487-0.8892 -0.4962

b.

c.

xMSE = mean((xHat - x).^2) =
$$0.6107$$

yMSE = mean((yHat - y).^2) = 0.0296

d.

xSNR = 20 *
$$log10(x/(x-xHat)) = 17.9494$$

ySNR = 20 * $log10(y/(y-yHat)) = 12.3148$

#Problem3.

XDct be the DCT of x, and YDct the DCT of y.

XHatDct be derived from XDct by replacing the last 11 elements of XDct by zeros while keeping the rest of the elements the same YHatDct similarly from YDct. xHatDct be the inverse DCT of XHatDct, and yHatDct the inverse DCT of YHatDct.

a.	
<pre>table1 = [XDct' XHatDct'];</pre>	<pre>table2 = [YDct' YHatDct'];</pre>
table1 =	table2 =
21.5000 21.5000	-2.0008 -2.0008
4.5779 4.5779	4.1666 4.1666
18.2216 18.2216	0.9371 0.9371
0.5019 0.5019	-1.4285 -1.4285
4.4609 4.4609	0.1835 0.1835
0.1754 0	-0.3303 0
1.9048 0	0.0756 0
0.0849 0	-0.1463 0
1.0000 0	0.0392 0
0.0469 0	-0.0782 0
0.5682 0	0.0222 0
0.0268 0	-0.0440 0
0.3170 0	0.0123 0
0.0140 0	-0.0228 0
0.1434 0	0.0056 0
0.0044 0	-0.0071 0
<pre>table3 = [x' xHatDct'];</pre>	<pre>table4 = [y' yHatDct']; table4 =</pre>
<pre>table3 = [x' xHatDct']; table3 =</pre>	<pre>table4 = [y' yHatDct']; table4 =</pre>
	table4 =
	table4 = 0.7354 0.8674
table3 = 16.0000 14.9312 12.2500 12.9966	table4 = 0.7354 0.8674 0.9213 0.8894
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954	table4 = 0.7354 0.8674 0.9213 0.8894 1.0086 0.9087
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954 6.2500 6.3422	table4 = 0.7354 0.8674 0.9213 0.8894 1.0086 0.9087 0.9625 0.8813
table3 = 16.0000	table4 = 0.7354
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954 6.2500 6.3422 4.0000 3.5314 2.2500 1.7787	table4 = 0.7354
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954 6.2500 6.3422 4.0000 3.5314 2.2500 1.7787 1.0000 0.9546	table4 = 0.7354 0.8674 0.9213 0.8894 1.0086 0.9087 0.9625 0.8813 0.7678 0.7552 0.4320 0.4880 -0.0151 0.0672
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954 6.2500 6.3422 4.0000 3.5314 2.2500 1.7787	table4 = 0.7354 0.8674 0.9213 0.8894 1.0086 0.9087 0.9625 0.8813 0.7678 0.7552 0.4320 0.4880 -0.0151 0.0672 -0.5248 -0.4742
table3 = 16.0000	table4 = 0.7354
table3 = 16.0000	table4 = 0.7354 0.8674 0.9213 0.8894 1.0086 0.9087 0.9625 0.8813 0.7678 0.7552 0.4320 0.4880 -0.0151 0.0672 -0.5248 -0.4742 -1.0366 -1.0562 -1.4863 -1.5689
table3 = 16.0000	table4 = 0.7354 0.8674 0.9213 0.8894 1.0086 0.9087 0.9625 0.8813 0.7678 0.7552 0.4320 0.4880 -0.0151 0.0672 -0.5248 -0.4742 -1.0366 -1.0562 -1.4863 -1.5689 -1.8157 -1.9062
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954 6.2500 6.3422 4.0000 3.5314 2.2500 1.7787 1.0000 0.9546 0.2500 0.6207 0 0.4064 0.2500 0.2893 1.0000 0.6059 2.2500 1.7908	table4 = 0.7354
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954 6.2500 6.3422 4.0000 3.5314 2.2500 1.7787 1.0000 0.9546 0.2500 0.6207 0 0.4064 0.2500 0.2893 1.0000 0.6059 2.2500 1.7908 4.0000 4.0072	table4 = 0.7354
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954 6.2500 6.3422 4.0000 3.5314 2.2500 1.7787 1.0000 0.9546 0.2500 0.6207	table4 = 0.7354
table3 = 16.0000 14.9312 12.2500 12.9966 9.0000 9.7954 6.2500 6.3422 4.0000 3.5314 2.2500 1.7787 1.0000 0.9546 0.2500 0.6207 0 0.4064 0.2500 0.2893 1.0000 0.6059 2.2500 1.7908 4.0000 4.0072	table4 = 0.7354

b.


```
c.
xMSE = mean((xHatDct - x).^2) = 0.3196
yMSE = mean((yHatDct - y).^2) = 0.0092

d.
xSNR = 20 * log10(abs(x) / abs(x-xHatDct)) = 21.3106
ySNR = 20 * log10(abs(y) / abs(y-yHatDct)) = 20.0053
```

#Problem4.

 X_Hadam and Y_Hadam are the Hadamard transforms of x and y. X_Hadam_abs is the magnitudes of the elements of X_Hadam ,

Y_Hadam_abs is the same.

 X_{Hadam_Hat} is derived from X_{Hadam} by replacing the 11 smallest-magnitude elements of X_{Hadam} by zeros while keeping the rest of the elements the same. Y_{Hadam_Hat} is defined similarly.

 $smallx_Hadam_hat$ is the inverse Hadamard transforms of X_Hadam_Hat , $smally_Hadam_hat$ is the same.

a.

table1 = [X_Hadam X_Hadam_abs X_Hadam_Hat];

```
table1 =
  21.5000
           21.5000 21.5000
   0.5000
            0.5000
                          0
   1.0000
            1.0000
   1.0000
            1.0000
                          0
   2.0000
            2.0000
                          0
   2.0000
            2.0000
   4.0000
            4.0000
                          0
       0
                          0
   4.0000
            4.0000
                     4.0000
   4.0000
            4.0000
                     4.0000
   8.0000
                     8.0000
            8.0000
        0
                 0
                          0
  16.0000
            16.0000
                     16.0000
        0
                0
                          0
        0
                 0
                          0
        0
                 0
```

table2 = [Y_Hadam Y_Hadam_abs Y_Hadam_Hat];

```
table2 =
  -2.0008 2.0008 -2.0008
  0.1558
          0.1558
  0.3146
          0.3146
  0.0392
          0.0392
  0.6552
           0.6552
  0.0816
          0.0816
                     0
  0.1649
          0.1649
  -0.0128
           0.0128
          4.1447 4.1447
  4.1447
                  0 0
  0.1971
          0.1971
  0.3980
          0.3980
  -0.2422
          0.2422
          0.8288 0.8288
  0.8288
  -0.5743
          0.5743
  -1.1919 1.1919 -1.1919
  -0.0162 0.0162
```

table3 = [x' smallx_Hadam_hat];

```
table3 =
  16.0000 13.3750
  12.2500 11.3750
  9.0000 9.3750
   6.2500 7.3750
   4.0000 5.3750
  2.2500 3.3750
   1.0000 1.3750
   0.2500 -0.6250
       0 -2.6250
   0.2500 -0.6250
          1.3750
   1.0000
          3.3750
   2.2500
          5.3750
   4.0000
   6.2500
           7.3750
   9.0000
          9.3750
  12.2500 11.3750
```

table4 = [y' smally_Hadam_hat];

table4 =

```
0.7354 0.6090
        0.6090
 0.9213
 1.0086
        1.2050
 0.9625
        1.2050
 0.7678 0.4630
0.4320 0.4630
-0.0151 -0.1330
-0.5248
        -0.1330
-1.0366 -1.2818
-1.4863 -1.2818
-1.8157 -1.8778
-1.9806 -1.8778
-1.9578
        -1.7910
-1.7482 -1.7910
-1.3768 -1.1950
-0.8892 -1.1950
```

```
b.  xMSE = mean((smallx\_Hadam\_hat' - x).^2) = 1.6406   yMSE = mean((smally\_Hadam\_hat' - x).^2) = 55.4972
```

c.

d.

₩ xMSE2	0.6107
₩ xMSE3	0.3196
	1.6406
₩ yMSE2	0.0296
₩ yMSE3	0.0092
yMSE4	0.0465

DCT transform gives the best $MSE(x,\hat{x})$.

DCT transform gives the best $\mathit{MSE}(y, \hat{y})$.

#Problem5.

a.

h

The value of MSE increases as the value of n grows from 1 to 15.

c.

The value of MSE increases as the value of n grows from 1 to 15.