TỐI ƯU CÓ RÀNG BUỘC

Khoa công nghệ thông tin Đại học PHENIKAA

Hà Nội - 2023

1. Bài toán tối ưu lồi có ràng buộc

3. Điều kiện cần và đủ cực trị

2. Điều kiện cần cực trị

Bài toán tối ưu lồi có ràng buộc

- ► Hàm mục tiêu (objective function): lồi
- ► Tập chấp nhận được (feasible set): lồi

- ▶ Hàm mục tiêu (objective function): lồi
- Tập chấp nhận được (feasible set): lồi

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

- x là biến số
- $f: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ là hàm mục tiêu
- $g_i: \mathbb{R}^n \to \mathbb{R}$ là các hàm lồi
- $h_i(x): \mathbb{R}^n \to \mathbb{R}$ là các hàm affine

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

- x là biến số
- $f: \mathcal{D} \subset \mathbb{R}^n \to \mathbb{R}$ là hàm mục tiêu
- $g_i: \mathbb{R}^n \to \mathbb{R}$ là các hàm lồi
- $h_i(x): \mathbb{R}^n \to \mathbb{R}$ là các hàm affine

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

- x là biến số
- $ullet f: \mathcal{D} \subset \mathbb{R}^n o \mathbb{R}$ là hàm mục tiêu
- $g_i: \mathbb{R}^n \to \mathbb{R}$ là các hàm lồi
- $h_i(x): \mathbb{R}^n \to \mathbb{R}$ là các hàm affine

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

- x là biến số
- $ullet f: \mathcal{D} \subset \mathbb{R}^n o \mathbb{R}$ là hàm mục tiêu
- $ullet g_i: \mathbb{R}^n o \mathbb{R}$ là các hàm lồi
- $h_j(x): \mathbb{R}^n \to \mathbb{R}$ là các hàm affine

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

- x là biến số
- $ullet f: \mathcal{D} \subset \mathbb{R}^n o \mathbb{R}$ là hàm mục tiêu
- $ullet g_i: \mathbb{R}^n o \mathbb{R}$ là các hàm lồi
- $h_i(x): \mathbb{R}^n \to \mathbb{R}$ là các hàm affine

- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming

- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming

- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming

- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming

- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming

- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming

- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming

- Least squares
- Linear programming
- Convex quadratic minimization with linear constraints
- Quadratic minimization with convex quadratic constraints
- Conic optimization
- Geometric programming
- Second order cone programming

- Portfolio optimization
- Worst-case risk analysis
- Optimal advertising
- Variations of statistical regression (including regularization and quantile regression)
- Model fitting (particularly multiclass classification)

- Portfolio optimization
- Worst-case risk analysis
- Optimal advertising
- Variations of statistical regression (including regularization and quantile regression)
- Model fitting (particularly multiclass classification)

- Portfolio optimization
- Worst-case risk analysis
- Optimal advertising
- Variations of statistical regression (including regularization and quantile regression)
- Model fitting (particularly multiclass classification)

- Portfolio optimization
- Worst-case risk analysis
- Optimal advertising
- Variations of statistical regression (including regularization and quantile regression)
- Model fitting (particularly multiclass classification)

- Portfolio optimization
- Worst-case risk analysis
- Optimal advertising
- Variations of statistical regression (including regularization and quantile regression)
- Model fitting (particularly multiclass classification)

- ▶ Electricity generation optimization
- Combinatorial optimization
- Non-probabilistic modelling of uncertainty
- Localization using wireless signals

- ▶ Electricity generation optimization
- Combinatorial optimization
- Non-probabilistic modelling of uncertainty
- Localization using wireless signals

- Electricity generation optimization
- Combinatorial optimization
- Non-probabilistic modelling of uncertainty
- Localization using wireless signals

- Electricity generation optimization
- Combinatorial optimization
- Non-probabilistic modelling of uncertainty
- Localization using wireless signals

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

$$\mathsf{D} \mathsf{a} \mathsf{t} \ I = \{1, 2, \dots, n\}, \ J = \{1, 2, \dots, p\}.$$

Đặt
$$C = \{x \in \mathbb{R}^n : g_i(x) \leqslant 0 \ \forall i \in I, \ h_j(x) = 0 \ \forall j \in J\}$$

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

Dặt
$$I = \{1, 2, ..., n\}, J = \{1, 2, ..., p\}.$$

Đặt
$$C = \{x \in \mathbb{R}^n : g_i(x) \leqslant 0 \ \forall i \in I, \ h_j(x) = 0 \ \forall j \in J\}$$

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

Dặt
$$I = \{1, 2, ..., n\}, J = \{1, 2, ..., p\}.$$

Đặt
$$C = \{x \in \mathbb{R}^n : g_i(x) \leqslant 0 \ \forall i \in I, \ h_j(x) = 0 \ \forall j \in J\}$$

(P) min
$$f(x)$$

sao cho $g_i(x) \le 0, i = 1, 2, ..., n$
 $h_j(x) = 0, j = 1, 2, ..., p$
 $x \in \mathbb{R}^n$.

Dặt
$$I = \{1, 2, ..., n\}, J = \{1, 2, ..., p\}.$$

Dăt
$$C = \{x \in \mathbb{R}^n : g_i(x) \leq 0 \ \forall i \in I, \ h_j(x) = 0 \ \forall j \in J\}$$

Điều kiện cần cực trị

Định lý KKT1

Nếu x^* là một nghiệm tối ưu của bài toán P thì tồn tại các hằng số λ_i $(i \in I)$, μ_i $(j \in J)$ sao cho

$$\begin{cases}
\nabla f(x^*) + \sum_{i \in I} \lambda_i \nabla g_i(x^*) + \sum_{j \in J} \mu_j \nabla h_j(x^*) = 0 \\
\lambda_i g_i(x^*) = 0 \quad \forall i \in I \\
g_i(x^*) \leq 0 \quad \forall i \in I, \ h_j(x^*) = 0 \quad \forall j \in J \\
\lambda_i \geq 0 \quad \forall i \in I, \ \mu_j \in \mathbb{R} \quad \forall j \in J
\end{cases} \tag{1}$$

Điểm \mathbf{x}^* thỏa mãn hệ (1) được gọi là một điểm KKT (Karush-Kuhn-Tucker) của bài toán

- Diều kiện $\lambda_i g_i(x^*) = 0$: điều kiện bù
- lacktriangle Các nhân tử Lagrange

Điểm \mathbf{x}^* thỏa mãn hệ (1) được gọi là một điểm KKT (Karush-Kuhn-Tucker) của bài toán

- Điều kiện $\lambda_i g_i(x^*) = 0$: điều kiện bù
- Các nhân tử λ_i , μ_i : nhân tử Lagrange

Điều kiện chính quy Slater

Điều kiện chính quy **Slater** (CQ) thỏa mãn đối với bài toàn P nếu tồn tại $u \in C$ sao cho

$$g_i(u) < 0 \quad \forall i = 1, \ldots, m.$$

Điều kiện cần và đủ cực trị

Định lý KKT2

- Điều kiện chính quy Slater thỏa mãn
- x^* là một điểm chấp nhận được của bài toán x^* là một nghiệm tối ưu của bài toán (P) khi và chỉ khi tồn tại các hằng số λ_i $(i \in I)$, μ_j $(j \in J)$ sao cho

$$\begin{cases} \nabla f(x^*) + \sum_{i \in I} \lambda_i \nabla g_i(x^*) + \sum_{j \in J} \mu_j \nabla h_j(x^*) = 0 \\ \lambda_i g_i(x^*) = 0 \quad \forall i \in I \\ g_i(x^*) \leq 0 \quad \forall i \in I, \ h_j(x^*) = 0 \quad \forall j \in J \\ \lambda_i \geq 0 \quad \forall i \in I, \ \mu_j \in \mathbb{R} \quad \forall j \in J \end{cases}$$

Định lý KKT2

- Điều kiện chính quy Slater thỏa mãn
- x* là một điểm chấp nhận được của bài toán

 x^* là một nghiệm tối ưu của bài toán (P) khi và chỉ khi tồn tại các hằng số λ_i $(i \in I)$, μ_j $(j \in J)$ sao cho

$$\begin{cases} \nabla f(x^*) + \sum_{i \in I} \lambda_i \nabla g_i(x^*) + \sum_{j \in J} \mu_j \nabla h_j(x^*) = 0 \\ \lambda_i g_i(x^*) = 0 \quad \forall i \in I \\ g_i(x^*) \leq 0 \quad \forall i \in I, \ h_j(x^*) = 0 \quad \forall j \in J \\ \lambda_i \geq 0 \quad \forall i \in I, \ \mu_i \in \mathbb{R} \quad \forall j \in J \end{cases}$$

Định lý KKT2

- Điều kiện chính quy Slater thỏa mãn
- x^* là một điểm chấp nhận được của bài toán x^* là một nghiệm tối ưu của bài toán (P) khi và chi khi tồn tại các hằng số λ_i $(i \in I)$, μ_i $(j \in J)$ sao cho

$$\begin{cases} \nabla f(x^*) + \sum_{i \in I} \lambda_i \nabla g_i(x^*) + \sum_{j \in J} \mu_j \nabla h_j(x^*) = 0 \\ \lambda_i g_i(x^*) = 0 \quad \forall i \in I \\ g_i(x^*) \leq 0 \quad \forall i \in I, \ h_j(x^*) = 0 \quad \forall j \in J \\ \lambda_i \geqslant 0 \quad \forall i \in I, \ \mu_i \in \mathbb{R} \quad \forall j \in J \end{cases}$$

Tìm cực tiểu của hàm số $f(x,y)=(x-1)^2+y-2$ thỏa mãn

$$\begin{cases} x + y - 2 \le 0 \\ x - y + 1 = 0 \end{cases}$$

Điểm dừng $(x^*, y^*) = (1/2, 3/2)$ ứng với cặp nhân tử $(\lambda, \mu) = (0, 1)$.

Tìm cực tiểu của hàm số $f(x,y)=(x-1)^2+y-2$ thỏa mãn

$$\begin{cases} x + y - 2 \leqslant 0 \\ x - y + 1 = 0 \end{cases}$$

Diếm dừng $(x^*, y^*) = (1/2, 3/2)$ ứng với cặp nhân tử $(\lambda, \mu) = (0, 1)$.

Tìm cực đại của hàm số $f(x,y)=x^2+y^2+4x-6y$ thỏa mãn

$$\begin{cases} x + y \le 3 \\ -2x + y \le 2 \end{cases}$$

Điểm KKT
$$(x^*, y^*) = (\frac{1}{3}, \frac{8}{3})$$

Tìm cực đại của hàm số $f(x,y)=x^2+y^2+4x-6y$ thỏa mãn

$$\begin{cases} x + y \le 3 \\ -2x + y \le 2 \end{cases}$$

Diểm KKT $(x^*, y^*) = (\frac{1}{3}, \frac{8}{3})$

Tìm cực đại của hàm số f(x,y)=xy thỏa mãn

$$\begin{cases} x^2 + y^2 \le 2 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

Tìm cực tiểu của hàm số f(x,y) = 2x + y thỏa mãn

$$\begin{cases} 3x + y \le 6 \\ x + y \le 4 \\ x \ge 0 \\ y \ge 0 \end{cases}$$

Một số ví dụ bài toán tối ưu lồi

Bài toán quy hoạch tuyến tính

min
$$c^T x + d$$

thỏa mãn $Gx \le h$
 $Ax = b$,

trong đó, $G \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$, $c, d, h, b \in \mathbb{R}^n$.

Một số ví dụ về bài toán tối ưu lồi

Bài toán quy hoạch toàn phương lồi

min
$$(1/2)x^T P x + q^T x + r$$

thỏa mãn $Gx \le h$
 $Ax = b$,

trong đó, $P \in \mathbb{R}^{n \times n}$, $P \geq 0$, $G \in \mathbb{R}^{m \times n}$, $A \in \mathbb{R}^{p \times n}$.