The Formal Semantics of Flix

Magnus Madsen

1 Model-theoretic Semantics

A Flix program P = (C, L) is a set of constraints C and a set of complete lattices L.

A constraint is a rule $A \Leftarrow A_1, \ldots, A_n$ where A is an atom (called the head of the rule) and A_1, \ldots, A_n are atoms (called the body of the rule). A fact is a rule with an empty body. An atom is of the form $p_\ell(t_1, \ldots, t_n)$ where p is a predicate symbol, $\ell \in L$ is the lattice associated with p, and t_1, \ldots, t_n are terms. A term is either a wildcard variable, a named variable or a constant value. The possible values are the unit value (), the booleans (true, false), the integers (-5, 3, 7), tagged unions of values (e.g. Tag v) and tuples of values (e.g. (1, true, 42)).

A complete lattice $l \in L$ is a 6-tuple $l = (E, \bot, \top, \sqsubseteq, \sqcup, \sqcap)$ where E is a set of elements $E \subseteq V, \bot \in E$ is the least element, $\top \in E$ is the greatest element, \sqsubseteq is the partial order on E, \sqcup is the least upper bound, and \sqcap is the greatest lower bound.

The Herbrand Universe \mathcal{U} of a Flix program P is the set of all possible ground terms. A ground term is non-wildcard, non-variable term. That is, the Herbrand Universe is exactly the set of values.

The Herbrand Base \mathcal{B} of P is the set of all possible ground atoms whose predicate symbols occur in P and where the arguments are drawn from the Herbrand Universe.

We define a partition of the Herbrand Base such that two ground atoms $A = p_{\ell}(v_1, \ldots, v_n)$ and $B = p'_{\ell'}(v'_1, \ldots, v'_m)$ are in the same subset if they have the same predicate symbol (i.e. p = p') and the same number of terms (i.e. n = m). Notice that all predicate symbols in a subset have the same associated lattice ℓ . For each subset S we introduce a complete lattice L_S on its ground atoms where $L_S = (S, \bot_S, \top_S, \sqsubseteq_S, \sqcup_S, \sqcap_S)$. Given two ground atoms $A = p_{\ell}(v_1, \ldots, v_n)$ and $B = p_{\ell}(v'_1, \ldots, v'_n)$ we define their partial order as: If n = 1 then $A \sqsubseteq_S B$ when $v_1 \sqsubseteq v'_1$. If n > 1 then $A \sqsubseteq_S B$ when $v_1 = v'_1, \ldots, v_{n-1} = v'_{n-1}$ and $v_n \sqsubseteq v'_n$. The other

components are defined in a similar way.

What this means is that for any subset in the partion of the Herbrand Base we have a complete lattice on the ground atoms in that subset.

An interpretation I of a Flix program P is a subset of the Herbrand Base \mathcal{B} . A ground atom A is true w.r.t. an interpretation if $\exists A' \in I$ such that $A \sqsubseteq A'$. A conjunction of atoms A_1, \dots, A_n is true w.r.t. an interpretation if each atom is true in the interpretation. A ground rule is true if either the body conjunction is false, or the head is true.

A model M of P is an interpretation that makes each ground instance of a each rule in P true.

A model M is *compact* iff (i) every subset S in the partition of M has one unique element, and (ii) this element is non-bottom according the lattice associated with the subset S.

We define a partial order \sqsubseteq_M on compact models. Given two compact models M_1 and M_2 we say that M_1 is less than or equal to M_2 if for every ground atom $A_1 \in M_1$, associated with the subset S, there is a ground atom $A_2 \in M_2$, also associated with S, such that $A_1 \sqsubseteq_S A_2$.

A model M is minimal if it is compact and there is no other model less than or equal to M according the partial order \sqsubseteq_M .

Example. The Flix program P with constraints:

$$A_{\ell}(\text{Even})$$
 $A_{\ell}(\text{Odd})$ $B_{\ell}(\text{Odd})$

and lattices $\{\ell=(\bot,\top,\mathtt{Even},\mathtt{Odd}\},\sqsubseteq,\sqcup,\sqcap)\}$ has the Herbrand Universe:

$$\mathcal{U} = \{\bot, \top, \mathsf{Even}, \mathsf{Odd}\}$$

and the Herbrand Base:

$$\mathcal{B} = \{ A_{\ell}(\bot), A_{\ell}(\mathtt{Even}), A_{\ell}(\mathtt{Odd}), A_{\ell}(\top), B_{\ell}(\bot), B_{\ell}(\mathtt{Even}), B_{\ell}(\mathtt{Odd}), B_{\ell}(\top) \}$$

An interpretation of P is a subset of \mathcal{B} . For example,

$$\begin{split} I_1 &= \{A_{\ell}(\top)\} \\ I_2 &= \{A_{\ell}(\top), B_{\ell}(\bot)\} \\ I_3 &= \{A_{\ell}(\top), B_{\ell}(\texttt{Odd}), B_{\ell}(\top)\} \\ I_4 &= \{A_{\ell}(\texttt{Even}), A_{\ell}(\texttt{Odd}), B_{\ell}(\texttt{Odd})\} \\ I_5 &= \{A_{\ell}(\top), B_{\ell}(\top)\} \\ I_6 &= \{A_{\ell}(\top), B_{\ell}(\texttt{Odd})\} \end{split}$$

The interpretation I_1 is not a model of P since it does not make $B_{\ell}(\texttt{Odd})$ true. I_2 is also not a model of p since it does not make $B_{\ell}(\texttt{Odd})$ true. I_3 is a model of p, but it is not compact. I_4 is a model of p, but it is not reduced. I_5 is a model of p, it is compact and reduced, but it is not minimal as evidenced by I_6 .

Example. The Flix program P with constraints:

$$A_{\ell}(1, \operatorname{Pos})$$
 $A_{\ell}(2, \operatorname{Pos})$ $A_{\ell}(2, \operatorname{Neg})$

and lattices $\{\ell=(\bot,\top,\mathtt{Neg},\mathtt{Zer},\mathtt{Pos}\},\sqsubseteq,\sqcup,\sqcap)\}$ has the Herbrand Universe:

$$\mathcal{U} = \{1, 2, \bot, \top, \texttt{Neg}, \texttt{Zer}, \texttt{Pos}\}$$

and the Herbrand Base:

$$\mathcal{B} = \{ A_{\ell}(1,1), A_{\ell}(1,2), A_{\ell}(1,\perp), A_{\ell}(1,\top), \cdots \\ A_{\ell}(2,1), A_{\ell}(2,2), A_{\ell}(2,\perp), A_{\ell}(2,\top), \cdots \\ A_{\ell}(\perp,1), A_{\ell}(\perp,2), A_{\ell}(\perp,\perp), A_{\ell}(\perp,\top), \cdots \\ \cdots \}$$

An interpretation of P is a subset of \mathcal{B} . For example,

$$\begin{split} I_1 &= \{A_{\ell}(1,\top)\} \\ I_2 &= \{A_{\ell}(1,\top), A_{\ell}(2,\top)\} \\ I_3 &= \{A_{\ell}(1,\operatorname{Pos}), A_{\ell}(1,\operatorname{Zer}), A_{\ell}(2,\top)\} \\ I_4 &= \{A_{\ell}(1,\operatorname{Pos}), A_{\ell}(2,\top)\} \end{split}$$

Here I_2 , I_3 and I_4 are models and I_4 is minimal.