インパルス性雑音の時間変動を考慮した マルチチャネル信号判定手法

名古屋大学 片山研究室 石牟礼涼太

大容量データ伝送のために

- 複数の帯域を利用してデータを伝送
 - マルチチャネル伝送システム
 - OFDM等

研究背景:通信におけるインパルス性雑音

ガウス雑音時間波形

• ガウス雑音

- 主に受信機内部で発生する 熱雑音が原因

インパルス性雑音

- 様々な要因による突発的な雑音
 - 電力線通信における電力線雑音[1]
 - レーダーのちらつき雑音[2] など

[1] N. Andreadou.et al. "Modeling the Noise on the OFDM Power-Line Communications System", IEEE Trans., 2010

Average Power = 1

インパルス性雑音時間波形

[2] S. Fang, et al., "Modeling and simulation of non-Gaussian correlated clutter," in Proc. CIE Int. Conf. Radar, 1996

雑音に関する知識を利用した信号判定

Noise(赤色のPDF)

シミュレーション諸元

変調方式	BPSK
符号化方式	ターボ符号
符号化率R	1/3

雑音に関する知識を利用した信号判定

雑音に関する知識を利用した信号判定

Eb/N0[dB]

6

研究目的

インパルス性雑音環境下での マルチチャネル伝送システムの特性向上

- 各チャネル間のインパルス性雑音の非独立性を 利用したマルチチャネル受信機構成の提案
- 同様のシステムモデルにおいて構成を簡単化した 信号判定手法を提案

MiddletonのクラスA雑音モデル[3]

インパルス性雑音を統計的に表したモデル

クラスA雑音の確率密度関数(PDF)

$$p(n) = \sum_{m=0}^{\infty} \frac{e^{-A}A^m}{m!} \frac{1}{\sqrt{2\pi\sigma_m}} \exp\left(-\frac{n^2}{2\sigma_m^2}\right)$$

$$\sigma_m^2 = \frac{m/A + \Gamma}{1 + \Gamma} \cdot \sigma^2$$

インパルス性の統計的性質を表す2つのパラメータA, Γ と 平均電力 σ^2 で決まる

[3]D. Middleton, "Statistical-physical models of electromagnetic interference", IEEE Trans. 1977

クラスA雑音の概念

ある時刻kにおいて、

 m_{k} 個の $\mathcal{N}(0,\sigma_I^2/A)$ に従う雑音が発生 m_{k} :平均Aのポアソン分布に従う

クラスA雑音の概念

ある時刻kにおいて、

 m_{k} 個の $\mathcal{N}(0,\sigma_I^2/A)$ に従う雑音が発生 m_{k} :平均Aのポアソン分布に従う

 $\mathcal{N}(0,\sigma_G^2)$ に従う 背景雑音は常に発生

クラスA雑音の概念

ある時刻kにおいて、

 m_{k} 個の $\mathcal{N}(0,\sigma_I^2/A)$ に従う雑音が発生 m_{k} :平均Aのポアソン分布に従う

 $\mathcal{N}(0,\sigma_G^2)$ に従う 背景雑音は常に発生

時間kごとに変化する雑音分布

m_k:ある時刻kにおいての インパルス雑音源数

$$p(m_k) = \frac{e^{-A}A^{m_k}}{m_k!}$$

 $\mathcal{N}(0,\sigma_{\mathrm{G}}^2)$

Background Noise

Impulse Noise

Source ∞

m_k:ある時刻kにおいての インパルス雑音源数

$$p(m_k) = \frac{e^{-A}A^{m_k}}{m_k!}$$

時間平均は、

$$p(n) = \sum_{m_k=0}^{\infty} \frac{e^{-A}A^{m_k}}{m_k!} \frac{1}{\sqrt{2\pi}\sigma_{m_k}} \exp(-\frac{n^2}{2\sigma_{m_k}^2})$$

時間平均は、

$$p(n) = \sum_{m_k=0}^{\infty} \frac{e^{-A} A^{m_k}}{m_k!} \frac{1}{\sqrt{2\pi} \sigma_{m_k}} \exp(-\frac{n^2}{2\sigma_{m_k}^2})$$

従来研究の多くは,時間平均した PDFを考慮したもの

時間平均は、

$$p(n) = \sum_{m_k=0}^{\infty} \frac{e^{-A} A^{m_k}}{m_k!} \frac{1}{\sqrt{2\pi} \sigma_{m_k}} \exp(-\frac{n^2}{2\sigma_{m_k}^2})$$

従来研究の多くは,時間平均した PDFを考慮したもの

時刻ごとの雑音の分布を知ることが

仮定:mkの推定

- 本研究ではマルチチャネル伝送システムを想定
 - 広帯域なインパルス雑音は複数の帯域に 影響を与えると想定できる

雑音状態 mょは複数のチャネルで共通だと仮定

雑音状態mょ:インパルス雑音数

想定システムモデル(1/2)

- マルチチャネル伝送システム
- インパルス性雑音チャネル

k:time index(k=1~K)

i:channel index(i=1~I)

想定システムモデル(2/2)

雑音状態m_kが決定 (各チャネルに共通)

想定システムモデル(2/2)

雑音状態m_kが決定 (各チャネルに共通)

想定システムモデル(2/2)

提案受信機の構成

- •各時刻のm_kを推定する
- •復号の前段階で行う
- •雑音観測用チャネルは設けない

複数チャネルの受信ベクトルからmょの推定

• 時刻kの受信成分 $(r_k^1, r_k^2, ..., r_k^i, ..., r_k^I)$ から m_k のベイズ推定法により事後確率分布を計算

ある時刻kに対して $p(m_k|\mathbf{r}_k)$ の事後確率分布が得られる

$p(m_k|\mathbf{r}_k)$ を利用した信号判定[RX1]

• $p(m_k|\mathbf{r}_k)$ の分布を利用する信号判定 [RX1]

事後確率分布 $p(m_k|\mathbf{r}_k)$ を $p(m_k)$ の分布の事前知識と置き換え

$$p(m_k) = rac{e^{-A}A^{m_k}}{m_k!}$$
平均Aのポアソン分布

尤度関数[RX1]

$$\Lambda_{P1}(s_k^i = s | r_k^i) = \sum_{j=0}^{\infty} p(m_k = j | \mathbf{r}_k) \frac{1}{\sqrt{2\pi\sigma_{m_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{m_k}^2})$$

数值例1

• 雑音の時間変動を考慮しない、従来型の最適手法と BER特性比較

尤度関数[RX1]

$$\Lambda_{P1}(s_k^i = s | r_k^i) = \sum_{i=0}^{\infty} p(m_k = j | \mathbf{r}_k) \frac{1}{\sqrt{2\pi\sigma_{m_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{m_k}^2})$$

尤度関数(従来手法)

$$\Lambda_C(s_k^i = s | r_k^i) = \sum_{m_k=0}^{\infty} \frac{e^{-A} A^{m_k}}{m_k!} \frac{1}{\sqrt{2\pi\sigma_{m_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{m_k}^2})$$

 理想的な場合として、m_kの推定が完璧な受信機の 特性を合わせて示す

シミュレーション諸元

クラスA雑音 パラメータ	A=Γ=0.1(インパルス性の強い環境), A=Γ=0.2(インパルス性の弱い環境)
変調方式	BPSK
符号化方式	ターボ符号(R=1/3)
繰り返し復号回数	10
Eb/N0	3~8[dB]
チャネル数	2~7
試行回数	100000

クラスA雑音パラメータ(A, Γ , σ^2)の推定は完全だと仮定

シミュレーション諸元

クラスA雑音 パラメータ	A= Γ=0.1(インパルス性の強い環境), A= Γ=0.2(インパルス性の弱い環境)
変調方式	BPSK
符号化方式	ターボ符号(R=1/3)
繰り返し復号回数	10
Eb/N0	3~8[dB]
チャネル数	2~7
試行回数	100000

m_kを推定するためのサンプル数に相当

数值例1:BER RX1

- 従来手法と比較してRX1のBER特性が改善
- チャネル数が4程度以上でほぼ理想的な特性

簡単化した信号判定手法[RX2]

• 推定値 \hat{m}_k を利用する信号判定[RX2]

事後確率分布 $p(m_k|\mathbf{r}_k)$ から推定値 \hat{m}_k を決定して利用(MAP推定)

尤度関数[RX2]

$$\Lambda_{P2}(s_k^i = s | r_k^i) = \frac{1}{\sqrt{2\pi\sigma_{\hat{m}_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{\hat{m}_k}^2})$$

簡単化した信号判定手法[RX2]の利点

尤度関数がRX1より簡単

RX1:
$$\Lambda_{P1}(s_k^i = s | r_k^i) = \sum_{j=0}^{\infty} p(m_k = j | \mathbf{r}_k) \frac{1}{\sqrt{2\pi\sigma_{m_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{m_k}^2})$$

RX2:
$$\Lambda_{P2}(s_k^i = s | r_k^i) = \frac{1}{\sqrt{2\pi\sigma_{\hat{m}_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{\hat{m}_k}^2})$$

- $p(m_k|\mathbf{r}_k)$ の分布が必要な判定[RX1]と比較して、 推定値 \hat{m}_k を求める計算コストが一般的に小さい
 - 分布全体の計算は不要

簡単化した信号判定手法[RX2]の利点

尤度関数がRX1より簡単

RX1:
$$\Lambda_{P1}(s_k^i = s | r_k^i) = \sum_{j=0}^{\infty} p(m_k = j | \mathbf{r}_k) \frac{1}{\sqrt{2\pi\sigma_{m_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{m_k}^2})$$

RX2:
$$\Lambda_{P2}(s_k^i = s | r_k^i) = \frac{1}{\sqrt{2\pi\sigma_{\hat{m}_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{\hat{m}_k}^2})$$

- $p(m_k|\mathbf{r}_k)$ の分布が必要な判定[RX1]と比較して、 推定値 \hat{m}_k を求める計算コストが一般的に小さい
 - 分布全体の計算は不要

構成を簡単化したことにより特性が劣化する可能性

数值例2

雑音PDFを直接利用する従来手法と比較し、 提案手法の有効性を示す

尤度関数(RX2)

$$\Lambda_{P2}(s_k^i = s | r_k^i) = \frac{1}{\sqrt{2\pi\sigma_{\hat{m}_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{\hat{m}_k}^2})$$

尤度関数(従来手法)

$$\Lambda_C(s_k^i = s | r_k^i) = \sum_{m_k=0}^{\infty} \frac{e^{-A} A^{m_k}}{m_k!} \frac{1}{\sqrt{2\pi\sigma_{m_k}^2}} \exp(-\frac{(r_k^i - s)^2}{2\sigma_{m_k}^2})$$

- 2通りの提案受信機の性能差を観察する
 - 分布 $p(m_k|\mathbf{r}_k)$ を利用したRX1と 推定値 \hat{m}_k を利用し構成を簡単化したRX2の特性比較

シミュレーション諸元

クラスA雑音 パラメータ	A=Γ=0.1(インパルス性の強い環境), A=Γ=0.2(インパルス性の弱い環境)
変調方式	BPSK
符号化方式	ターボ符号(R=1/3)
繰り返し復号回数	10
Eb/N0	3~8[dB]
チャネル数	1,2,4
試行回数	100000

クラスA雑音パラメータ(A, Γ , σ^2)の推定は完全だと仮定

数值例2:BER RX1,RX2比較

- チャネル数が1,2程度では、RX2の特性はRX1と比較して悪い
- チャネル数が4程度あればRX1とRX2の性能差は小さい

まとめ

マルチチャネル通信システムにおいて インパルス性雑音の非独立性を利用した受信機を提案

提案受信機

- ・複数チャネルの受信信号から状態mょを推定し信号判定利用
- ·状態m』は信号判定前に推定
- 従来手法と比較してBER特性が向上
- 分布 $p(m_k|\mathbf{r}_k)$ を利用する判定手法[RX1]と 推定値 \hat{m}_k を利用し構成を簡単化した手法[RX2]を提案
 - RX1と比較してRX2のBER特性は劣るが、 チャネル数が一定数(4程度)以上ある場合には性能差は小さい

発表実績

- ·電子情報通信学会 WBS研究会 2012年11月発表
- ·電子情報通信学会 英文論文誌 2013年(投稿予定)