

AUTHORS INDEX

ADAMS, C. M., JR., M. C. FLEMINGS and H. F. TAYLOR — Solidification and Riser of Gray Iron Castings	369
AFS MALLEABLE DIVISION CONTROLLED ANNEALING COMMITTEE — Malleable Iron Microstructures Effect and Cause	166
AHEARN, P. J., H. M. GREEN and J. ZOTOS — Ductile High Strength Titanium Castings by Induction Melting	225
ANTES, H. W., J. T. NORTON and R. E. EDELMAN — Foundry Characteristics of a Rammed Graphitic Mold Material for Casting Titanium	135
ASCHOFF, W. A. and D. H. BLAIR — Problems Encountered in Casting Reactive Metals	257
AUSMUS, S. L., E. D. CALVERT and F. W. WOOD — A Casting Technology for Reactive Metals	354
BAER, W. H., M. GLASSENBERG and A. H. HESSE — Occurrence and Elimination of Leakage in a Gun Metal Casting	231
BAKER, C. R., G. H. BASCOM and W. C. TRUCKENMILLER — Evaluation of Shell Molding Process Capability	81
BARLOW, T. E. and H. W. DIETER — Hot Deformation of Molding Sand	7
BASECOM, G. H., W. C. TRUCKENMILLER and C. R. BAKER — Evaluation of Shell Molding Process Capability	81
BLAIR, D. H. and W. A. ASCHOFF — Problems Encountered in Casting Reactive Metals	257
BOVARNICK, B. and F. C. QUIGLEY — Sintered Alumina Molds for Investment Casting of Steels	247
BRAMMER, W. N. — Melting Practice for Aluminum Casting Alloys	497
BRUCE, L. J. and G. A. BROUGHTON — Die and Permanent Mold Casting of Nonferrous Metals in the United Kingdom	466
BROOKS, M. E. and J. G. HOUSE — Induction Melting in a Magnesium Sand Foundry	87
BROUGHTON, G. A. and L. J. BRUCE — Die and Permanent Mold Casting of Nonferrous Metals in the United Kingdom	466
BUKOWSKI, A., E. A. LANGE and N. C. HOWELLS — Cast Age-Hardenable Austenitic Steels	519
CAINE, J. B. and C. E. MCQUISTON — The Theoretical Concepts of the Packing of Small Particles	36
CALVERT, E. D., F. W. WOOD and S. L. AUSMUS — A Casting Technology for Reactive Metals	354
CLARK, L. L., W. ROSTOKER and A. H. MURPHY — Improvement of Castings by Press Forging	105
COLLIGAN, G. A., L. H. VAN VLACK and R. A. FLINN — The Effect of Temperature and Atmosphere on Iron-Silica Interface Reaction	452
DAVIS, H. M. and A. PAL — On the Release of Hydrogen from Molten Aluminum	301
DAVIS, M. V. and R. V. SCALCO — Foundry Practice for Sand Casting Commercially Pure Aluminum	238
DAWSON, J. V. and L. W. L. SMITH — Gases in Cast Iron with Special Reference to Pickup of Hydrogen in Sand Molds	17
DEROSS, A. B. — High Strength Aluminum Alloy X357 Properties and Aging Practice	480
DICKERSON, R. F. and A. W. HARE — A Method of Casting Radiator-type Fuel Elements for A Nuclear Reactor	210
DIETER, H. W. and T. E. BARLOW — Hot Deformation of Molding Sand	7
DONOHO, C. K. and J. F. ELLIS — Magnesium Content and Graphite Forms in Cast Iron	203
DOST, F. J. and G. P. RIBAR — Prevention by the Ounce	433
DREHER, G. K. — How Patternmakers can Help to Sell Castings	583
ECKEL, E. J. — A study of the Ferritization of Nodular Iron	151
EDELMAN, R. E., H. W. ANTES and J. T. NORTON — Foundry Characteristics of a Rammed Graphitic Mold Material for Casting Titanium	135
ELLIS, J. F. and C. K. DONOHO — Magnesium Content and Graphite Forms in Cast Iron	203
EVANS, E. B. and J. F. WALLACE — Risering of Gray Iron Castings	49
FAIRFIELD, H. H. and J. A. ORTIZ — Some Factors Affecting the Toughness of Mild Steel Castings	344
FAUSEL, C. E. — Your Foundry and Preventive Maintenance	446
FEINBERG, I. J. and J. D. GRIMSLY — Tensile Properties of Microshrinkage-Graded AZ-63 Magnesium Alloy	409
FITTERER, G. R. and S. A. PRUSSIN — Some Requirements for Successful Fluidity Testing	143
FLEMINGS, D. — The Controlled-Slag Hot-Blast Cupola	113
FLEMINGS, M. C., H. F. TAYLOR and C. M. ADAMS, JR. — Solidification and Riser of Gray Iron Castings	369
FLEMINGS, M. C., H. F. TAYLOR and E. M. PASSMORE — Fundamental Studies on Effects of Solution Treatment, Iron Content and Chilling of Sand Cast Aluminum-Copper Alloy	96
FLEMINGS, M. C., H. F. TAYLOR and S. Z. URAM — Effect of Pressure During Solidification on Microporosity in Aluminum Alloys	129
FLEMINGS, M. C., R. W. STRACHAN, E. J. POIRIER and H. F. TAYLOR — Performance of Chills on High Strength Magnesium Alloy Sand Castings of Various Section Thicknesses	336
FLEMINGS, M. C., R. W. STRACHAN, E. J. POIRIER and H. F. TAYLOR — Rigging Design of High Strength Magnesium Alloy Castings	241
FLINN, R. A. and C. R. MIELKE — Effects of Foundry Variables upon Porosity of 85-5-5-5 Bronze	391
FLINN, R. A., G. A. COLLIGAN and L. H. VAN VLACK — The Effect of Temperature and Atmosphere on Iron-Silica Interface Reaction	452
GEARY, E. A. — Pattern Standards for Practical Foundry Usage	556
GERTSMAN, S. L. and A. E. MURTON — A Literature Review of Metal Penetration	1
GLASSENBERG, M., A. H. HESSE and W. H. BAER — Occurrence and Elimination of Leakage in a Gun Metal Casting	231
GREEN, H. M., J. ZOTOS and P. J. AHEARN — Ductile High Strength Titanium Castings by Induction Melting	225

AUTHORS INDEX

ADAMS, C. M., JR., M. C. FLEMINGS and H. F. TAYLOR — Solidification and Riser of Gray Iron Castings	369
AFS MALLEABLE DIVISION CONTROLLED ANNEALING COMMITTEE — Malleable Iron Microstructures Effect and Cause	166
AHEARN, P. J., H. M. GREEN and J. ZOTOS — Ductile High Strength Titanium Castings by Induction Melting	225
ANTES, H. W., J. T. NORTON and R. E. EDELMAN — Foundry Characteristics of a Rammed Graphitic Mold Material for Casting Titanium	135
ASCHOFF, W. A. and D. H. BLAIR — Problems Encountered in Casting Reactive Metals	257
AUSMUS, S. L., E. D. CALVERT and F. W. WOOD — A Casting Technology for Reactive Metals	354
BAER, W. H., M. GLASSENBERG and A. H. HESSE — Occurrence and Elimination of Leakage in a Gun Metal Casting	231
BAKER, C. R., G. H. BASCOM and W. C. TRUCKENMILLER — Evaluation of Shell Molding Process Capability	81
BARLOW, T. E. and H. W. DIETER — Hot Deformation of Molding Sand	7
BASECOM, G. H., W. C. TRUCKENMILLER and C. R. BAKER — Evaluation of Shell Molding Process Capability	81
BLAIR, D. H. and W. A. ASCHOFF — Problems Encountered in Casting Reactive Metals	257
BOVARNICK, B. and F. C. QUIGLEY — Sintered Alumina Molds for Investment Casting of Steels	247
BRAMMER, W. N. — Melting Practice for Aluminum Casting Alloys	497
BRUCE, L. J. and G. A. BROUGHTON — Die and Permanent Mold Casting of Nonferrous Metals in the United Kingdom	466
BROOKS, M. E. and J. G. HOUSE — Induction Melting in a Magnesium Sand Foundry	87
BROUGHTON, G. A. and L. J. BRUCE — Die and Permanent Mold Casting of Nonferrous Metals in the United Kingdom	466
BUKOWSKI, A., E. A. LANGE and N. C. HOWELLS — Cast Age-Hardenable Austenitic Steels	519
CAINE, J. B. and C. E. MCQUISTON — The Theoretical Concepts of the Packing of Small Particles	36
CALVERT, E. D., F. W. WOOD and S. L. AUSMUS — A Casting Technology for Reactive Metals	354
CLARK, L. L., W. ROSTOKER and A. H. MURPHY — Improvement of Castings by Press Forging	105
COLLIGAN, G. A., L. H. VAN VLACK and R. A. FLINN — The Effect of Temperature and Atmosphere on Iron-Silica Interface Reaction	452
DAVIS, H. M. and A. PAL — On the Release of Hydrogen from Molten Aluminum	301
DAVIS, M. V. and R. V. SCALCO — Foundry Practice for Sand Casting Commercially Pure Aluminum	238
DAWSON, J. V. and L. W. L. SMITH — Gases in Cast Iron with Special Reference to Pickup of Hydrogen in Sand Molds	17
DEROSS, A. B. — High Strength Aluminum Alloy X357 Properties and Aging Practice	480
DICKERSON, R. F. and A. W. HARE — A Method of Casting Radiator-type Fuel Elements for A Nuclear Reactor	210
DIETER, H. W. and T. E. BARLOW — Hot Deformation of Molding Sand	7
DONOHO, C. K. and J. F. ELLIS — Magnesium Content and Graphite Forms in Cast Iron	203
DOST, F. J. and G. P. RIBAR — Prevention by the Ounce	433
DREHER, G. K. — How Patternmakers can Help to Sell Castings	583
ECKEL, E. J. — A study of the Ferritization of Nodular Iron	151
EDELMAN, R. E., H. W. ANTOS and J. T. NORTON — Foundry Characteristics of a Rammed Graphitic Mold Material for Casting Titanium	135
ELLIS, J. F. and C. K. DONOHO — Magnesium Content and Graphite Forms in Cast Iron	203
EVANS, E. B. and J. F. WALLACE — Risering of Gray Iron Castings	49
FAIRFIELD, H. H. and J. A. ORTIZ — Some Factors Affecting the Toughness of Mild Steel Castings	344
FAUSEL, C. E. — Your Foundry and Preventive Maintenance	446
FEINBERG, I. J. and J. D. GRIMSLY — Tensile Properties of Microshrinkage-Graded AZ-63 Magnesium Alloy	409
FITTERER, G. R. and S. A. PRUSSIN — Some Requirements for Successful Fluidity Testing	143
FLEMINGS, D. — The Controlled-Slag Hot-Blast Cupola	113
FLEMINGS, M. C., H. F. TAYLOR and C. M. ADAMS, JR. — Solidification and Riser of Gray Iron Castings	369
FLEMINGS, M. C., H. F. TAYLOR and E. M. PASSMORE — Fundamental Studies on Effects of Solution Treatment, Iron Content and Chilling of Sand Cast Aluminum-Copper Alloy	96
FLEMINGS, M. C., H. F. TAYLOR and S. Z. URAM — Effect of Pressure During Solidification on Microporosity in Aluminum Alloys	129
FLEMINGS, M. C., R. W. STRACHAN, E. J. POIRIER and H. F. TAYLOR — Performance of Chills on High Strength Magnesium Alloy Sand Castings of Various Section Thicknesses	336
FLEMINGS, M. C., R. W. STRACHAN, E. J. POIRIER and H. F. TAYLOR — Rigging Design of High Strength Magnesium Alloy Castings	241
FLINN, R. A. and C. R. MIELKE — Effects of Foundry Variables upon Porosity of 85-5-5-5 Bronze	391
FLINN, R. A., G. A. COLLIGAN and L. H. VAN VLACK — The Effect of Temperature and Atmosphere on Iron-Silica Interface Reaction	452
GEARY, E. A. — Pattern Standards for Practical Foundry Usage	556
GERTSMAN, S. L. and A. E. MURTON — A Literature Review of Metal Penetration	1
GLASSENBERG, M., A. H. HESSE and W. H. BAER — Occurrence and Elimination of Leakage in a Gun Metal Casting	231
GREEN, H. M., J. ZOTOS and P. J. AHEARN — Ductile High Strength Titanium Castings by Induction Melting	225

GREEN, P. W. — Salt Bath Heat Treatment vs. Quench and Temper Standard and Pearlitic Malleable	507	LANGE, E. A. and R. E. MOREY — Sodium Silicates for the CO ₂ Process	315
GREEN, R. D. — The Effect of Cooling Rate on the Grain Size of Magnesium Casting Alloys	380	LEMASTER, R. — A Little Knowledge of Plastics	197
GREENLEE, R. H. — Steel Scrap Specifications for Duplexing Cupola White Iron	268	LYSOBEY, W. R. and A. E. TULL — Foundry Applications of the Calcium Carbide Injection Process	327
GRIMSLY, J. D. and I. J. FEINBERG — Tensile Properties of Microshrinkage-Graded AZ-63 Magnesium Alloy	409		
GROTT, G. J. — Particle Packing — Principles and Limitations	553		
HARE, A. W. and R. F. DICKERSON — A Method of Casting Radiator-type Fuel Elements for a Nuclear Reactor	210	McQUISTON, C. E. and J. B. CAINE — The Theoretical Concepts of the Packing of Small Particles	36
HARRIS, R. C. — Deoxidation Practice for Copper Shell-Molded Castings	69	MAREK, C. T. and C. B. WARD — Gas Pressures in Green Sand Mold	361
HEINE, R. W. — Hardenability of Pearlitic Malleable Iron	12	MICHALOWSKI, C., J. PARISI and O. C. NUTTER — Sieve Ratios and Processing for Strong Molding Sands	278
HEINE, R. W. — Observations on Pinhole Defects in White Iron Castings	31	MIELKE, C. R. and R. A. FLINN — Effects of Foundry Variables upon Porosity of 85-5-5 Bronze	391
HEINE, R. W., E. H. KING and J. S. SCHUMACHER — Correlation of Green Strength, Dry Strength and Mold Hardness of Molding Sands	59	MOEHLING, J. P. — Aluminum Melting Practice in the Die Casting and Permanent Mold Fields	533
HEINE, R. W., E. H. KING and J. S. SCHUMACHER — The Problem of Hot Molding Sands	261	MOREY, R. E. and E. A. LANGE — Sodium Silicates for the CO ₂ Process	315
HEINE, R. W. and T. W. SEATON — Density of Sand Grain Fractions of the AFS Sieve Analysis	40	MORGENSTERN, D. — Progress in Vacuum Die Casting	199
HESSE, A. H., W. H. BAER and M. GLASSENBERG — Occurrence and Elimination of Leakage in a Gun Metal Casting	231	MURPHY, A. H., L. L. CLARK and W. ROSTCKER — Improvement of Castings by Press Forging	105
HLINKA, J. W. and V. PASCHKIS — Some Remarks on the Relationship of Interface Temperature and Solidification	213	MURTON, A. E. and S. L. GERTSMAN — A Literature Review of Metal Penetration	1
HOFMANN, F. — Investigations on the Effect of Heat on the Bonding Properties of Various Bentonites	305		
HORIGOME, T., I. IGARASHI, C. OHIRA, and K. IKAWA — Formation of Undercooled Graphite in Cast Iron	561	NELSON, B. J. — Effect of Impurities upon the Resistance of Magnesium Casting Alloys AZ92 and AZ63 to Corrosion	544
HOUSE, J. G. and M. E. BROCKS — Induction Melting in a Magnesium Sand Foundry	87	NESTOR, G. — Carbon Dioxide Cores in a Malleable Foundry	252
HOWARD V. J. — Improving Electric Furnace Refractory Life by Special Shell Cooling Techniques	46	NCRMAN, T. E. — Factors Influencing the Resistance of Steel Castings to High Stress Abrasion	187
HOWELLS, N. C., A. BUKOWSKI and E. A. LANGE — Cast Age-Hardenable Austenitic Steels	519	NORTON, J. T., R. E. EDELMAN and H. W. ANTES — Foundry Characteristics of a Rammed Graphitic Mold Material for Casting Titanium	135
HUELSEN, W. — Establishing an Effective Preventive Maintenance Program	439	NUTTER, O. C., C. MICHALOWSKI and J. PARISI — Sieve Ratios and Processing for Strong Molding Sands	278
IGARASHI, I., C. OHIRA, K. IKAWA and T. HORIGOME — Formation of Undercooled Graphite in Cast Iron	561		
IKAWA, K., T. HORIGOME, I. IGARASHI and C. OHIRA — Formation of Undercooled Graphite in Cast Iron	561	OHIRA, G. and K. IKAWA — Formation of Ferrite and Pearlite in Cast Iron	526
IKAWA, K. and C. OHIRA — Formation of Ferrite and Pearlite in Cast Iron	526	OHIRA, G., K. IKAWA, T. HORIGOME and I. IGARASHI — Formation of Undercooled Graphite in Cast Iron	561
JOHNSON, O. E. — The Use of Oil-Bentonite Sand for Higher Quality Finish in Brass and Bronze Castings	415	ORTGIES, R. C. — Dust Piping Modifications to Prevent Material Buildup and Wear	418
KANN, W. L., JR. and N. H. KEYSER — The Effect of Size of Scrap on the Tapping Temperature of a Cupola	397	ORTIZ, J. A. and H. H. FAIRFIELD — Some Factors Affecting the Toughness of Mild Steel Castings	344
KARNOWSKY, M. — An Improved Design for Cast Tensile Bar Molds	284	OTTO, G. — Experiences in Nonferrous Die Casting Die and Permanent Mold Life	184
KEENAN, R. M. — Practical Application of the Work Sampling Technique	578		
KEYSER, N. H. and W. L. KANN, JR. — The Effect of Size of Scrap on the Tapping Temperature of a Cupola	397	PAL, A. and H. M. DAVIS — On the Release of Hydrogen from Molten Aluminum	301
KIDNEY, D. C. — Gating and Risering Shell-Mold Pattern Equipment	312	PARISI, J., O. C. NUTTER and C. MICHALOWSKI — Sieve Ratios and Processing for Strong Molding Sands	278
KING, E. H., J. S. SCHUMACHER and R. W. HEINE — Correlation of Green Strength, Dry Strength and Mold Hardness of Molding Sands	59	PARKER, R. B. — Creating a Climate for Management Development	399
KING, E. H., J. S. SCHUMACHER and R. W. HEINE — The Problem of Hot Molding Sands	261	PARLANTI, C. A. and R. V. VENEKLASEN — The Parlanti Mould Process for the Casting of Metal by Controlled Rate of Heat Transfer	177
LAFORET, H. A. and F. J. WEBBERE — Duplexing Pays at Automotive Foundry	503	PASCHKIS, V. and J. W. HLINKA — Some Remarks on the Relationship of Interface Temperature and Solidification	213
LANGE, E. A., N. C. HOWELLS and A. BUKOWSKI — Cast Age-Hardenable Austenitic Steels	519	PASSMORE, E. M., M. C. FLEMINGS and H. F. TAYLOR — Fundamental Studies on Effects of Solution Treatment, Iron Content and Chilling of Sand Cast Aluminum-Copper Alloy	96
		PEDICINI, L. J. — Packing Characteristics of Typical Foundry Sands	421
		PIERCE, W. B., L. H. VAN VLACK and R. G. WELLS — Reduction of Silica in Large Shell Molds	459
		POIRIER, E. J., H. F. TAYLOR, M. C. FLEMINGS and R. W. STRACHAN — Performance of Chills on High Strength Magnesium Alloy Sand Castings of Various Section Thicknesses	336
		POIRIER, E. J., H. F. TAYLOR, M. C. FLEMINGS and R. W. STRACHAN — Rigging Design of High Strength Magnesium Alloy Castings	241

POWELL, R. C. and H. F. TAYLOR — Shell Molding for Steel Castings	403
PRUSSIN, S. A. and G. R. FITTERER — Some Requirements for Successful Fluidity Testing	143
PULSIFER, V. — Some Structural Considerations in Nodular Iron	56
QUIGLEY, F. C. and B. BOVARNICK — Sintered Alumina Molds for Investment Casting of Steels	247
RABE, R. A. — Study of High Temperature Properties of Shell Molds	484
REHDER, J. E. and J. E. WILSON — Annealing of Malleable Iron: Effect of Repeated Annealing on Rate of Second Stage Graphitization	387
REMMERS, W. E. — Silicon: Present and Future	513
RENDA, R. B. and W. M. ZEUNIK — Ladle Heating in the Foundry	349
RIBAR, G. P. and F. J. DOST — Prevention by the Ounce	433
ROBERTS, D. and E. E. WOODLIFF — Mold Surface Behavior	74
ROSTOKER, W., A. H. MURPHY and L. L. CLARK — Improvement of Castings by Press Forging	105
RUDDLE, R. W. — The Chemical Treatment of Copper Alloys	271
RUTEMILLER, H. C. — New Aluminum-Magnesium-Zinc Casting Alloy	222
SCALCO, R. V. and M. V. DAVIS — Foundry Practice for Sand Casting Commercially Pure Aluminum	238
SCHALLER, G. S. and W. A. SNYDER — Industrial Applications of Olivine Aggregate	295
SCHUMACHER, J. S., R. W. HEINE and E. H. KING — Correlation of Green Strength, Dry Strength and Mold Hardness of Molding Sands	59
SCHUMACHER, J. S., R. W. HEINE and E. H. KING — The Problem of Hot Molding Sands	261
SCHWABE, W. E. — The Electric Arc in Melting Furnaces	571
SEATON, T. W. and R. W. HEINE — Density of Sand Grain Fractions of the AFS Sieve Analysis	40
SHELL MOLD and CORE COMMITTEE (8-N) — Shell Molding Survey	559
SMITH, L. W. L. and J. V. DAWSON — Gases in Cast Iron with Special Reference to Pickup of Hydrogen in Sand Molds	17
SNYDER, W. A. and G. S. SCHALLER — Industrial Applications of Olivine Aggregate	295
STRACHAN, R. W., E. J. PORRIER, H. F. TAYLOR and M. C. FLEMINGS — Performance of Chills on High Strength Magnesium Alloy Sand Castings of Various Section Thicknesses	336
STRACHAN, R. W., E. J. PORRIER, H. F. TAYLOR and M. C. FLEMINGS — Rigging Design of High Strength Magnesium Alloy Castings	241
TAYLOR, H. F., C. M. ADAMS, Jr. and M. C. FLEMINGS — Solidification and Risering of Gray Iron Castings	369
TAYLOR, H. F., M. C. FLEMINGS, R. W. STRACHAN and E. J. PORRIER — Performance of Chills on High Strength Magnesium Alloy Sand Castings of Various Section Thicknesses	336
TAYLOR, H. F., M. C. FLEMINGS, R. W. STRACHAN and E. J. PORRIER — Rigging Design of High Strength Magnesium Alloy Castings	241
TAYLOR, H. F., E. M. PASSMORE and M. C. FLEMINGS — Fundamental Studies on Effects of Solution Treatment, Iron Content and Chilling of Sand Cast Aluminum-Copper Alloy	96
TAYLOR, H. F. and R. G. POWELL — Shell Molding for Steel Castings	403
TAYLOR, H. F., S. Z. URAM and M. C. FLEMINGS — Effect of Pressure During Solidification on Microporosity in Aluminum Alloys	129
TAYLOR, H. F. and D. W. G. WHITE — The Effect of Some Gases on the Work of Adhesion Between a Novolak and Quartz	288
TOTE, L. D. and R. S. ZENO — The Effect of Vanadium on the High and Low Temperature Mechanical Properties of a 1Cr-1Mo Cast Steel	425
TRUCKENMILLER, W. C., C. R. BAKER and G. H. BASCOM — Evaluation of Shell Molding Process Capability ..	81
TULL, A. E. and W. R. LYSOBEY — Foundry Application of the Calcium Carbide Injection Process	327
URAM, S. Z., M. C. FLEMINGS and H. F. TAYLOR — Effect of Pressure during Solidification on Microporosity in Aluminum Alloys	129
VAN VLACK, L. H., R. A. FLINN and G. A. COLLIGAN — The Effect of Temperature and Atmosphere on Iron-Silica Interface Reaction	452
VAN VLACK, L. H., R. G. WELLS and W. B. PIERCE — Reduction of Silica in Large Shell Molds	459
VENEKLASEN, R. D. and C. A. PARLANTI — The Parlanti Mould Process for the Casting of Metal by Controlled Rate of Heat Transfer	177
VOGEL, E. G. — Purchase Specifications for Commonly used Steel Foundry Mold and Core Sand Binders	125
WALLACE, J. F. and E. B. EVANS — Risering of Gray Iron Castings	49
WALSH, E. L. — Noise Induced Hearing Loss	324
WARD, C. B. and C. T. MAREK — Gas Pressures in Green Sand Mold	361
WEBBERE, F. J. and H. A. LAFORET — Duplexing Pays at Automotive Foundry	503
WELLS, R. G., W. B. PIERCE and L. H. VAN VLACK — Reduction of Silica in Large Shell Molds	459
WHITE, D. W. G. and H. F. TAYLOR — The Effect of Some Gases on the Work of Adhesion Between a Novolak and Quartz	288
WILSON, J. E. and J. E. REHDER — Annealing of Malleable Iron: Effect of Repeated Annealing on Rate of Second Stage Graphitization	387
WOOD, F. W., S. L. AUSMUS and E. D. CALVERT — A Casting Technology for Reactive Metals	354
WOODLIFF, E. E. and D. ROBERTS — Mold Surface Behavior	74
WRIGHT, W. A. — Construction of Shell Mold Patterns and Core Boxes	495
WULFF, C. E. — Investigation of the Hardening of Sodium Silicate Bonded Sand	91
ZANG, V. E. — Construction Hints and Wear Characteristics of Plastic Patterns and Core Boxes	569
ZENO, R. S. and L. D. TOTE — The Effect of Vanadium on the High and Low Temperature Mechanical Properties of a 1Cr-1Mo Cast Steel	425
ZEUNIK, W. M. and R. B. RENDA — Ladle Heating in the Foundry	349
ZOTOS, J., P. J. AHEARN and H. M. GREEN — Ductile High Strength Titanium Castings by Induction Melting ..	225

SUBJECT INDEX

A

- Abrasion**
High stress, steel castings
resistance to 187-196
- Additions**
Aluminum 17, 18, 20, 34
Ammonium compounds 17
Argon gas 18, 20
Bentonites 1, 9, 10, 11
Bismuth 19, 564, 566
Carbon 6, 17, 18
Carbon dioxide gas 18
Cereal 1, 10
Coal dust 19, 27
Copper 544
Core oil 1
Deoxidizer 17
Ferro-cyanides 17
Ferro-silicons 24
Fire clay 1, 11
Fused salt 1
Iron 547
Magnesium 24
Manganese 16, 19, 20, 563
Nickel 544
Nitrogen 17
Oxygen 564
Pitch 10, 19, 27
Sea Coal 10
Selenium 564
Silica flour 1, 10, 11
Silicon 16, 544, 563
Sodium silicates 315-323
Sulfur 564
Tellurium 19, 564
Titanium 16
Wood flour 10, 11, 27
Vanadium 425-432
- Adhesion**
Ammonia effect 291-293
Between a novolak and quartz,
gases effect on 288-294
Nitrogen effect 291-293
Oxygen effect 291, 292
Water vapor effect 291-293
Work of 288
- Age Hardening**
Austenitic steels 519-525
- Aggregate**
Olivine, industrial
applications 295-300
- Aging Practices**
And properties, aluminum
alloy X357 480-483
- Air Quench**
Hardenability curves 13, 14
- Alloy**
Aluminum 129-134
Aluminum-magnesium-zinc,
new 222-224
Aluminum, melting practice 497-502

- Alloy (continued)**
Aluminum, X357, properties and
aging practices 480-483
Magnesium, AZ-63, tensile
properties 409-414
Magnesium castings,
rigging design 241-246
Magnesium, impurities effect on
corrosion resistance 544-552
Magnesium, sand castings,
chill performance 336-343
- Alloys, Copper**
Chemical treatment 271-277
- Alumina Molds**
Sintered, investment casting
steels 247-251
- Aluminum**
And ferrosilicon, pinholing effect 24
Briquette-treated melts 302
Castings, mechanical properties 178
Chill depth, effect on 18
Chilling effect, molten 534
Eliminates pinholes 34
Experimental melting stock 301-302
Forms of porosity 301
Furnaces for melting 534-542
Gas absorption 534
Gas vs. electric furnaces 542
Heat content 539
Hydrogen effect 534
Increase in use 533
Iron absorption 534
Layer density, cylindrical castings 302
Magnesium content vs.
test metal 303
Magnesium-zinc casting alloy 222-224
Mean density vs.
mold temperature 304
Melting practice, die casting and
permanent mold 533
Molten, hydrogen release from
..... 301-304
Nitrogen and chlorine fluxing 534
Pinholing, effect on 20, 22, 23
Porosity causes 539
Still bath vs. stirring action 542-543
- Aluminum Alloy**
Aging graphs 481, 482
Applied pressure, effect of 133
Artificial aging 480, 481
Average aging properties 483
Average brinell hardness 483
Casting temperatures used 481
Degassing techniques 129
Fluxing 500, 501
Furnace melting equipment 497-498
Grain refining 501, 502
Heat treating and testing 131
Holding furnace equipment 498
Hydrogen effect 133
Hydrogen vs. porosity,
equations 134
- Aluminum Alloy (continued)**
Hydrostatic pressure 129, 131
Ingot analysis 481
Inherent characteristics of 497
Inventory control 499
Mechanical properties vs.
various pressures 133
Melting, pouring, solidification
practice 130, 497-502
Metal cleanliness 498, 499
Microporosity vs. mechanical
properties 129
Microradiographs 132, 133
Modification 502
Nature of solidification 129
Radiographs 131, 132
Sludging 499
Solidification pressure vs.
microporosity 129-134
Solution heat treatments 481
Technique for melting,
importance 497
Temperature control 499
- Aluminum Castings**
Annealing 240
Application of 238
Chemical composition 239
Commercially pure,
sand casting 238-240
Factors influencing 238
Fluxing of melt 239
Gating and risering 239, 240
Mechanical and electrical
properties 178, 240
Melting and pouring practice 239
Sand practice 240
Sawing and grinding 240
Shakeout 240
Shrinkage allowance 240
- Aluminum-Copper**
Chemical analyses,
experimental heats 97
Solution treatment, iron content
and chilling effect 96-103
- Annealability**
vs. oxygen, malleable iron 18
- Annealing**
Of malleable iron 387-390
Rate of 389
Repeated, effect, second stage
graphitization 387-390
- Arc, Electric (see also Electric Arc)**
In melting furnaces 571-577
- Austenitic**
Gray iron risering 50
High manganese cast iron,
hydrogen pickup 19
- Austenitic Steel**
Age-hardening 519-525
Alloys used for tests 520-522, 525
Cr-Mn 522, 525

- Austenitic Steel (continued)
 Cr-Mn-Ni-V 522-523, 525
 Cr-Ni-P 520-522, 525
 Mn-V 523-524, 525
 Chemical composition of four types 520
 Machinability 525
 Nominal analyses-master alloys 519
 Sand mixtures for 520
 Solidification characteristics 524-525
 Solidus temperature vs. composition factor 525
 Austenitizing
 Pearlitic malleable, raises hardenability 12

B

- Bar Molds
 Cast, tensile, improved design 284-287
 Cavity flow, percentage 285, 287
 Evaluation basis 284, 285
 Flow uniformity 287
 Ingates 287
 Bentonite
 Additions vs.
 hot deformation 9, 10, 11
 Base exchange capacity 305
 Correct temper moisture content 306
 Determination of bonding capacity 306
 Differential thermal analysis 306, 307, 309, 310, 311
 Dry strength vs. heating temperature 307, 308, 310, 311
 Green strength vs. heating temperature 307, 308, 309, 310
 Heat effect on bonding properties 305-311
 Heat treatment effect on bonding 306
 Properties with water 307, 308
 Soda addition 305
 Temper moisture content vs. heating temperature 308
 Western-type 305
 Western vs. southern 307, 308
 Bibliography
 Aluminum alloy melting practice 502
 Aluminum-copper alloy 103
 Aluminum-magnesium-zinc casting alloy 224
 Bronze, 85-5-5, porosity, foundry variables effect 396
 Cast iron, undercooled graphite formation 568
 Controlled-slag hot-blast cupola 124
 Copper alloys treatment 227
 Factors affecting steel castings 348
 Fluidity testing 149
 Gases effect on adhesion 294
 Gases in cast iron 29-30
 Graphitic molds for titanium 142
 Gray iron risering 55
 Heat effect on bentonite 311
 High strength titanium castings 230
 High stress abrasion, steel castings 196
 Hydrogen in molten aluminum 304
 Iron-Silica interface reaction 458
 Magnesium alloys, cooling rate effect on grain size 386
 Metal penetration 6
 Microporosity in aluminum alloys 134
 Mol gas pressure 367

- Bibliography (continued)
 Molding sand sieve ratios 283
 Nodular iron ferritization 165
 Reactive metal castings 360
 Sand grain fraction density 45
 Shell molded copper castings 73
 Silica reduction in shell molds 464
 Sintered alumina molds,
 investment casting 251
 Solidification and risering gray iron 379
 Theories of small particle compaction 39
 Vanadium effect on a cast steel 423
 Binders
 Steel mold and core sand, purchase specifications 125-128
 Bonded Sand
 Atmosphere effect 93
 Carbon dioxide hardening 91, 92
 Chemical hardening 93
 Core deterioration 93, 94, 95
 Gassing time vs. tensile strength 91, 92
 Hardening methods 91, 95
 Sodium silicate, hardening 91-95
 Temperature effect 94
 Testing materials 91
 Thermal hardening 92, 93, 94, 95
 Time effect 93, 94
 Water evaporation hardening 92
 Bonding
 Properties, bentonite, heat effect 305-311
 Brass
 And bronze castings, oil-bentonite sand use 415-417
 Bronze
 And brass castings, oil-bentonite sand use 415-417
 Centerline porosity 396
 Chills, effect of 394-396
 Complete 394, 395
 Partial 395, 396
 85-5-5, foundry variables effect on porosity 391-396
 Factors governing porosity 391
 Leak rates 392, 393
 Melting and pouring practice 391
 Moisture content of sand 393, 394
 Molding practice 391
 Pouring temperature 392
 Pressure testing 391, 392
 Temperature data, leakage 392
 Dry sand 392
 Geometrical distribution 392
 Green sand 392

C

- Calcium Carbide Injection
 Brinnell hardness vs. section size 334
 Case histories 329-332
 Chill vs. microstructures 333, 334
 Equipment for 327, 328
 Induction melting 335
 Physical properties 333, 335
 Principles of 327
 Process, applications of 327-335
 Carbon
 Content vs. metal penetration 1
 Losses in cast iron 18
 Carbon Dioxide
 Amount required to attain viscosity 320
 And air mixtures 323
 Concentration and flow rate vs. gassing time 323

- Carbon Dioxide (continued)
 Decreases hydrogen content 18
 Gassed strength 318
 Process, chemistry of 315-317
 Process, sodium silicates for 315-323
 Carbon Dioxide Cores
 Casting surface 253
 Chemical analysis, molasses used 252
 Comparison, carbon dioxide and core oil sand 253
 Core collapsibility 256
 Gassed properties 252, 253
 Gassing time vs. core storage life 254
 Green compressive strength 252
 In a malleable foundry 252-256
 Sand sieve analysis 253
 Sand temperature core weight relationship 254
 Sand temperature vs. core storage life 254
 Sand temperature vs. tensile strengths 254
 Sodium silicate sand mix 253, 256
 Temperature-hardness relationship 255

Casting

- Aluminum, foundry practice 238-240
 Die and permanent mold, nonferrous 184-186
 Gun-metal, occurrence and elimination of leakage 231-237
 Investment, sintered alumina molds 247-251
 Metal, by controlled heat transfer 177-183
 Nuclear reactor fuel elements, radiator type 210-212
 Reactive metals 257-260
 Technology, reactive metals 354-360

Castings

- Improvement by press forging 105-112
 Magnesium alloy, chill performance 336-343
 Magnesium, rigging design 241-246
 Shell-molded, copper 69-73
 Steel, factors affecting toughness 344-348
 Steel, resistance to high stress abrasion 187-196
 Titanium, high strength 225-230
 Titanium, rammed graphitic mold materials 135-142

Cast Iron

- Areal ratios, ferrite to pearlite, manganese added 527
 Base compositions and mechanical properties, test irons 203, 204
 Carbon content and graphite structure 561-563
 Eutectiform graphite and spherulite 207, 209
 Graphite, decomposed, in end-chilled pig iron 565-566
 Ferrite and pearlite formation 526-532
 Ferrite and pearlite formation in spheroidal graphite 530-531
 Ferrite of alloys melted, manganese added 527
 Ferrite vs. tin content 531
 Formation mechanism, ferrite and pearlite 526
 Gases in, effect 17-30
 Graphite classification 207

Cast Iron (continued)
 Graphite structure, additions
 effect 563-565, 566
 Hydrogen effect 17, 18, 19
 Hydrogen pickup, sand mold 19-28
 Hypereutectic iron 209
 Hypoeutectic iron 209
 Ledeburite decomposition on
 heating 567, 568
 Magnesium content and graphite
 forms in 203-209
 Magnesium content vs.
 elongation 205
 Magnesium content vs.
 tensile strength 203
 Magnesium content vs.
 yield strength 203
 Magnesium effect on graphite
 structure 205
 Manganese effect on
 structure 526-527
 Nitrogen effect 17
 Oxygen effect 17
 Pearlitic malleable
 hardenability 12-16
 Pearlite matrix formation 528
 Pearlite matrix with acicular
 cementite formation 527-528
 Phosphorus and tin effect
 on matrix 530
 Pinholing 19-29
 Aluminum effect 20, 23, 24, 25
 Appearance of 19
 Ferrosilicon effect 24, 25
 Hydrogen content effect 26
 Magnesium effect 24, 26
 Manganese effect 20, 22
 Minimized 19
 Other elements effect 26
 Prevention of 19
 Pouring temperature effect 28
 Titanium effect 21, 23, 26, 27
 Shell molded 459
 Structure of 526
 Undercooled graphite
 formation 18, 561-568

Cast Steel
 Chemical composition, test blocks 425
 Energy and fracture appearance
 graphs 429
 Heat treatments used, and hardness
 results 426
 Low alloy 425
 Mechanical properties, vanadium
 effect 425-432
 Parameter creep data 432
 Parameter rupture data 430, 431
 Room temperature tensile results 428
 V-notch charpy impact 429, 430
 X-ray results 428

Cereal
 Additions vs. hot deformation 10

Charpy
 Impact tests 153, 162, 163, 429

Chemical Composition
 Cast steel test blocks 425
 Hardenability, pearlitic malleable 12

Chemical Treatment
 Charcoal in melt, effect 271
 Copper alloys 271-277
 Flux vs. soundness and tensile
 properties 275
 Gas content assessment 277
 Gas removal, hydrogen 273
 Grain refinement 277
 Hydrogen, oxygen equilibrium
 in molten copper 274
 Melting fluxes 271, 272

Chemical Treatment (continued)
 Melting treatments vs. metal loss 272
 Prevention of compound gas
 unsoundness 273
 Oxidation-reduction
 treatment 274, 275, 276
 Residual phosphorous vs.
 porosity 275
 Solubility of hydrogen in
 copper alloys 273

Chilling
 Aluminum-copper alloy, effect 96-103

Committee and Research Reports
 Basic Concepts Committee
 (8-V) 40, 553
 Brass and Bronze Research Committee (3-C) 391
 Controlled Annealing Committee
 (6-D) 186
 Gray Iron Division Research 49
 Pearlitic Malleable Committee
 (6-E) 12
 Shell Mold and Core Committee
 (8-N) 599
 Shell Molding Committee (8-N) 484

Compaction
 Blending natural deposits 554
 Configurations 37
 Cubic packing 37
 Orthorhombic packing 37
 Crushed material, use of 553-554
 Density vs. GFN 422
 Distribution changes, density 38
 Green compressive strength vs.
 density at different ramming
 levels 422
 Green properties, bonded 423, 424
 Largest particle size effect on
 density 38
 Nonuniform particles 37
 Of small particles, theories 36-39
 Ottawa Sand 554
 Permeability vs. GFN 423
 Principles and limitations 553-555
 Properties at 10 psi green com-
 pressive strength 424
 Radius ratios 39
 Rammed density, bonded 422, 423
 Rammed density, dry 421, 422
 Sieve analysis of tested
 sands 422, 555
 Spherical particles 36
 Theoretical densities 37, 38
 Uniform particles 36, 37

Cooling Rate
 Effect on grain-size, magnesium
 alloys 380-386
 Vs. ferrite formation, nodular
 iron 154, 155

Copper
 Alloys, chemical treatment 271-277
 Shell-molded castings 69-73

Core Boxes
 And patterns, shell mold, con-
 struction 495-496
 Wear and construction, plastic
 patterns and 569-570

Cores
 Carbon dioxide, malleable
 foundry 252-256
 Metal penetration in sand 1

Corrosion
 Resistance, magnesium alloy,
 impurities effect 544-552

Cupola
 Blast temperature 14
 Blast velocity vs. metal tempera-
 ture 118, 119

Cupola (continued)
 Cleaning system 114
 Coke charge used, scrap 397
 Conical design 118, 119
 Controlled-slag hot-blast 113-124
 Heat loss 119
 Heat sources vs. heat dissipation 123
 Hot-blast system 114
 Inferior fuels 122
 Melting rate vs. heat loss 121
 Metal analysis change 117
 Metal charges used, scrap 397
 Operation, scrap effect 397
 Recuperative system 114
 Recuperator installation 114, 115
 Automatic control equipment 115
 Blast temperature amplifier 115
 Pressure element 115
 Refractory lining contour 117, 118
 Size limitation 121, 122
 Slag 117, 119, 120, 123
 Chemistry and silicon content
 vs. metal temperature 123
 Tapping temperature, scrap
 size effect 397-398
 Temperature control 117
 The cupola proper 115, 116, 117
 Internal conditions 116
 Silica 116
 tuyere cooling vs. heat loss 121
 White iron duplexing, steel scrap
 specifications 268-270

D

Decarburization
 Lowers metal penetration 6

Density
 Of sand grain fractions, sieve
 analysis 40-45

Deoxidation
 Copper shell-molded castings 69-73

Design
 Improved, cast tensile bar
 molds 284-287
 Rigging, magnesium alloy
 castings 241-246

Die Casting
 Aluminum 185
 And permanent mold, aluminum
 melting practice 533-543
 Cold chamber process 201
 Die welding repair 185
 Draft vs. soldering 185
 Entrapped air problem 199
 Hot chamber process 199
 Mold coating and lubricants,
 effect 185
 Temperature vs. die life 186
 Vacuum, benefits 200
 Vacuum, progress in 199-202
 Water spraying, effect 185

Duplexing
 Advantages 503, 504
 Benefits 503-504, 506
 Chill control with 505
 Composition control with 505
 Cupola white iron, steel scrap
 specifications 268-270
 Disadvantages of 506
 In automotive foundry 503-506
 Increased productivity 506
 Plant arrangement for 504
 Scrap reduction with 505
 Temperature control with 505

Dust Piping
 Modifications, to prevent material
 buildup and wear 418-420
 Ventilation 418-420

- Dust Piping (continued)**
- Aerator 419
 - Elbow 418
 - Elevator 420
 - Rotary screen 420
 - Sand bin 420
 - Sand mixer 419
- E**
- Electric Arc**
- Characteristics of 575
 - Classification of 571
 - Dynamic characteristics 576
 - Electrodes for 576-577
 - Energy distribution of 573
 - External forces effect 574-575
 - Ignition of 572
 - In melting furnaces 571-577
 - Mechanical forces in 573
 - Melt-surface depression 574
 - Pinch effect 573-574
 - Potential distribution 572-573
 - Split 572
 - Static characteristics 575
 - Utilization of power in 576
- Electric Furnace**
- Arc 571-577
 - Electrode coolers 46, 47
 - Equipment used 46
 - Gland 46, 47
 - Refractory shell cooling techniques 46-48
 - Refractory thickness 47
 - Ring coolers 46, 47
 - Shell cooler 47, 48
- End Quench**
- Hardenability curves 12, 13, 14, 15, 16
- F**
- Ferrite**
- And pearlite formation, cast iron 526-532
 - Formation vs. cooling rates, nodular iron 154, 155
- Fire Clay**
- Additions vs. hot deformation 10, 11
 - Bonded sands 7
- Fluidity Testing**
- Calculation, dimensions, plant reservoir fluidimeter 149, 150
 - Fluidimeter 143
 - Fluidimeter mold 144, 145, 146
 - Flow cessation mechanism 147
 - Mechanism control 148
 - Method of measuring 143
 - Slag and metal flow 144
 - Some requirements for 143-150
 - Steel flow, curves 144
 - Temperature vs. fluidity in zinc 147, 148
 - Variables 143
- Foundry**
- Application, calcium carbide injection process 327-335
 - Automotive, duplexing 503-506
 - Induction melting, magnesium 87-90
 - Ladle heating 349-353
 - Malleable, carbon dioxide cores in 252-256
 - Pattern standards 556-558
 - Practice, sand casting aluminum 238-240
 - Purchase specifications, steel mold and core sand binders 125-128
- Foundry (continued)**
- Sand, packing characteristics 421-424
 - Variables effect on porosity, 85-5-5 bronze 391-396
- G**
- Gases**
- Adhesion between a novolak and quartz effect 288-294
 - Equations for calculating effect 289
 - In cast iron 17-30
 - Pinholing effect 33, 34, 35
 - Strength of bond effect 288, 289
- Gas Pressures**
- Batch properties 364
 - Blow-hole size 364
 - Changing zones in molds 361, 362
 - Compaction energy, equations 367, 368
 - Depth of sand vs. time 366
 - Experimental pressure data 368
 - Growth of zones, equations 366
 - In green sand mold 361-368
 - Moisture effect on mold gas pressure 365
 - Moisture effect on permeability 365
 - Mold-metal interface 361
 - Mold pressure 361, 366
 - Permeability 362, 363
 - Permeability effect, mold 365
 - Permeability, equations 367
 - Pressure measurement 362, 363, 364
 - Pressure vs. time 364
 - Sand conductivity, equations 367
 - Temperature measurement 363, 364
 - Time-temperature-distance from interface, relationship 365
 - Units of designation 368
- Gating**
- And risering shell-mold pattern equipment 312-314
 - To prevent pinholing 33, 34, 35
- Graphite**
- Forms and magnesium content, cast iron 203-209
 - Undercooled, formation, cast iron 561-568
- Graphite Films**
- Formation 19
 - White Iron 19
- Graphitization**
- First stage 387
 - Second stage, repeated annealing effect 387-390
- Gray Iron (see also Malleable Iron, Nodular Iron, Pearlitic Malleable)**
- Atmospheric pressure effect 377, 378
 - Austenite dendrites 50
 - Behavior of riser variations 376-379
 - Constants values, solidification calculations 373
 - Dimensional and volume changes 376
 - Exothermic risers 378, 375
 - Equations, solidification and risering 374, 375
 - Eutectic cells 50
 - Factors governing shrinkage 371
 - Ferstatic pressures 372
 - Freezing temperature range 50
 - Good riser recommendations 54
 - Graphite flakes 50
 - Graphite precipitation 371
 - Heat evolved in cooling 375
 - Hypoeutectic 50
 - Importance of dilation 372
 - Inoculation of 50
- Gray Iron (continued)**
- Iron-carbon-silicon system 373-374
 - Location of risers 53
 - Microporosity problems 50, 51
 - Molding and Risering conditions effect 371, 372
 - Mold materials effect on risering 50, 51, 52
 - Casting movement, solidification 51
 - Green and dry sand 50
 - Mold wall movement 50, 52
 - Shrinkage distribution 371, 372, 373
 - Volume changes, solidification 373, 374
 - Pearlitic malleable, hardenability 12-16
 - Phosphorus effect 50
 - Rate of solidification 374, 375
 - Research conclusions 369, 370, 371
 - Risering 49-55, 369-379
 - Riser neck selection 53-55
 - Dimensions 55
 - Recommendations 53, 54
 - Riser size selection 51-53
 - Dimensions 52
 - Equations for calculating 52
 - Liquid contraction 52
 - Variables 51, 52
 - Shrink behavior of a typical 375, 376
 - Solidification and risering 369-379
 - Solidification mechanism 49, 50, 51
 - Temperature vs. cooling time 376
 - Green Sand
 - Mold, gas pressures in 361-368
 - Gun-Metal Casting**
 - Blind risers 234, 235
 - Chills 236, 237
 - Dimensions, sprue, runner, gates 234
 - Melting 232
 - Molding and core sand mixtures 233
 - Occurrence and elimination of leakage 231-237
 - Pressure testing 233
 - Sand properties 235
 - Tensile properties 235
- H**
- Hardenability**
- Austenitizing raises 12
 - Chemical composition, test bars 12
 - Graphs 12, 13, 14, 15, 16
 - Iron with manganese and silicon 16
 - Normal range, pearlitic malleable 16
 - Pearlitic malleable 12-16
 - Testing, pearlitic malleable 12
- Hardening**
- Sodium silicate bonded sand 91-95
- Hearing**
- Audiometric examination 326
 - Loss, noise induced 324-326
- Heat Transfer**
- Controlled, process for casting 177-183
 - Limits metal penetration 2
- Heat Treatment**
- Vs. quench and temper, standard and pearlitic malleable 507-512
- Hot-Blast Cupola**
- Controlled-slag, the 113-124
- Hot Deformation**
- Additions vs. 9
 - Bentonite blends vs. 10
 - Hot Compressive strength vs. 8, 9
 - Moisture vs. 9
 - Temperature vs. 8, 9

Hot Deformation (continued)
 Ultimate hot deformation vs. 8
 Cushioning material to increase ... 7
 Equations for calculating 7
 Equipment for measuring 8
 Expression of 7
 Molding sands 7-11
 Rate of 7
 Hot Toughness
 Additions effect 10, 11
 At elevated temperatures 10, 11
 Meaning of 8
 Peaks 10, 11
 Sand 7
 Varies with bonds, additions,
 temperature 10
 Hoyt, Charles Edgar
 Memorial Lecture, Silicon:
 Present and Future 513
 Hydrogen
 Content raised, damp sand 19
 Factors affecting 29
 Flake-graphite iron, effect on 18
 Pickup from sand molds 19-28
 Pinholing effect 34
 Release from molten
 aluminum 301-304
 Solubility 29
 Titanium effect 18

I

Impurities
 Magnesium alloys resistance to
 corrosion, effect of 544-552
 Induction Melting
 Ductile high strength titanium
 castings 225-230
 Flux consumption 89
 In magnesium sand foundry 87-90
 Labor needed 89
 Meltdown metal loss 89
 Injection
 Process, calcium carbide 327-335
 Inoculation, Gray iron 50
 Investment Casting
 Economic advantages 250, 251
 Melt out and firing cycle 249, 250
 Metal casting 250, 251
 Mold properties 247
 Slip and mold preparation 248, 249
 Steels, sintered alumina
 molds 247-251
 Wax patterns 247
 Iron, Cast
 Ferrite and pearlite
 formation 526-532
 Gases in 17-30
 Magnesium content and graphite
 forms in 203-209
 Undercooled graphite formation
 in 561-568
 Iron Content
 Aluminum copper alloy
 effect 96-103
 Iron, Gray
 Risering 49-55
 Iron, Malleable
 Annealing of 387-390
 Microstructures, effect and
 cause 166-176
 Iron, Nodular
 Ferritization 151-165
 Structural considerations 56-58
 Iron-Silica
 Interface reaction, atmosphere and
 temperature effect 452-458

Iron, White
 Duplexing, cupola, steel scrap
 specifications 268-270

L

Ladle Heating
 Aspirator-type burner 352, 353
 In the foundry 349-353
 Premixing burner 349, 350, 351, 352
 Temperature-time
 curves 350, 351, 352
 Leakage
 In gun-metal casting, occurrence
 and elimination 231-237
 Liquid Quench
 Pearlitic malleable, graphs 13, 14

M

Machinability
 Pearlitic malleable 12
 Magnesium
 Content, and graphite forms,
 cast iron 203-209
 Pinholing effect 21, 23, 26, 27
 Vs. sulfur, nodular iron 58
 -Aluminum-zinc casting alloy 222-224
 Magnesium Alloy
 Acid dip test, AZ92
 Aluminum content, test specimen 410
 Chemical composition control 410
 Chrome-pickle treatment 544
 Composition limits, AZ92 and
 AZ63 544
 Composition, properties and corro-
 sion losses 546-548
 Copper effect on AZ92 and
 AZ63 544, 547, 552
 Corrosion tests made, AZ92 and
 AZ63 545
 Determination of tensile
 properties 411-413
 Equations for 411-413
 Mean, and scatter 411
 Regression coefficient 411, 412
 Standard deviations 411
 Elongation minima 413
 Gradations in microshrinkage 410
 Impurities effect on corrosion
 resistance, AZ92 and AZ63 544-552
 Industrial atmosphere tests,
 AZ92 and AZ63 551
 Iron effect, AZ92 and AZ63 547
 Mean elongation 412
 Mean ultimate tensile strength 412
 Mean yield strength 412
 Nature of microshrinkage 409, 410
 Nickel effect, AZ92 and
 AZ63 544-545, 547, 551-552
 Radiographic classification 411
 Radiographs for quality
 control 409, 410
 Salt peroxide spray tests, AZ92
 and AZ63 545
 Salt spray tests, AZ92 and
 AZ63 545, 547
 Silicon effect, AZ92 and AZ63 544
 Temps used for tests, AZ92
 and AZ63 544
 Tensile tests, AZ92 and AZ63 544
 Types of microshrinkage 409
 Ultimate strength minima 413
 Yield strength minima 413

Magnesium Castings
 Achieving fine grain size 380
 Alloy composition, for tests 380, 381
 Chemical analysis 338
 Chemical analysis,
 experimental heats 242, 342

Magnesium Castings (continued)
 Chemical control and melting
 practice 241, 242, 337
 Chills used 243
 Chilling vs. mechanical
 properties 341
 Chilling vs. tensile strength 241
 Cleaning and heat treatment 244
 Cooling range 382, 383
 Cooling rate vs. grain size 383-385
 End chills 338
 Foundry data large and small
 gimbal castings 242, 243
 Gating, risering, molding 337
 Grain refinement 337
 Grain sizes 339-340
 Heat treatment 337
 High strength sand castings,
 chill performance 336-343
 Markets for 336
 Mechanical properties 245, 246
 Chilled 337, 338, 339, 342
 Specifications 340, 341
 Metallographic examination 337, 338
 Microstructure rating 338
 Molding procedure, gimbal
 castings 242, 243, 244
 Rigging design 241-246, 341
 Solidification progress
 micrographs 381-384
 Spectroanalysis, test
 composition 380, 381
 Tensile properties 338
 Maintenance
 A matter of logic 439
 And mechanization 446
 Compressed air 438
 Cranes and hoists 437, 438
 Definition of 446
 Engineering for preventive 444
 Engineering standards and inspec-
 tion follow-up 444, 445
 Fuel burning appliances 438
 In management 445
 Inspection frequency 441
 Material handling 436-437
 Belt and gravity conveyors 437
 Bucket elevator boot and clam-
 shell buckets 437
 Molding machines 437
 Self-propelled vehicles 436
 Towed or pushed vehicles 436, 437
 Melting equipment 438
 Per cent maintenance workers
 in plants 446
 Plan for preventive 441
 Plant department duties 433
 Power supply 433-434
 Prevention by the ounce 433-438
 Preventive, in foundry 446-451
 Program, establishing an
 effective 439-445
 Programs 447-449, 451
 Air cylinder 448
 Departmental 451
 Inspection 451
 Lubrication 447
 Truck 448, 449
 Records 443
 Utilities importance 439-441
 Utilization apparatus inspection
 and 434, 435, 436
 Electric motors 434
 Generator and rectifiers 435
 Heating 436
 Lifting magnets and magnetic
 pulleys 435, 436
 Lighting 436

- Maintenance (continued)
 Magnetic brakes 435
 Motor controllers 434, 435
 Signals 436
 Visual record board 443, 444
- Malleable Iron
 Annealing rate 389
 Basic chemistry, standard and
 pearlitic 507
 Black heart 387
 Charge, typical, standard and
 pearlitic 507
 First stage graphitization 387
 Foundry, carbon dioxide cores
 in 252-256
 Hardness determinations 389, 390
 Hardness values, standard and
 pearlitic 510
 Holding time effect 389
 Mechanical properties, typical,
 standard and pearlitic
 507, 508, 510
 Microstructures 167-175
 Microstructures, effect and
 cause 166-176
 Number of anneals vs. hardness
 and annealing rate 388
 Number of traverses vs. maximum
 cooling rate 389
 Oxygen vs. annealability 18
 Pearlite, hardenability 12-16
 Pinholing 31
 Repeated annealing effect, second
 stage graphitization 387-390
 Salt bath heat treatment 510, 512
 Slow-cool process 387
 Standard and pearlitic, heat
 treatment vs. quench and
 temper 507-508, 510
 Surface effects 388, 390
 Ways of eliminating pearlite,
 second stage graphitization 387
 White iron composition, test metal,
 annealing 388
- Management
 Broadening the experience of potential 400
 Development, creating a climate for 399-402
 Intangible qualities of good 399
 Job switching 401, 402
 Putting ideas into practice of potential 400
 Selection of candidates for 399
 Training program, a 399
- Manganese
 As pinholing cause 19
 Pinholing, effect on 20, 22
 In pearlitic malleable, hardenability 16
- Melting, Induction
 Ductile, high strength titanium castings 225-230
 Magnesium sand foundry 87-90
- Melting Practice
 Aluminum casting alloys 497-502
 Aluminum, die casting and permanent mold 533-543
- Metal Casting
 By controlled heat transfer 177-183
 Casting design 183
 Cooling rate, metal mold
 materials 178
 Copper alloys 182
 Cores 180
 Feed metal vs. physical properties, aluminum, effect 179

- Metal Casting (continued)
 High thermal conductivity,
 aluminum 178
 Light metals 181
 Mechanical properties, aluminum
 castings 178
 Permanent mold 177
 Process, effect of 179
 Risers effect 177
 Sand 177
 Steel 182
 Vacuum techniques 182
- Metal Penetration
 Alleviated by washes 4
 As a gas 1
 As an oxide 1
 Depth vs. pressure 5
 Elimination by core mixes 6
 In cores and molds 1
 Increases with metal head 3
 Increases with temperature 3
 Literature review 1-6
 Major causes 1
 Metal head effect 4
 Resistance 4
 Decreased with excessive
 ramming 4
 Increased with ramming 4
 Test castings used for metal 1, 2, 3
- Metals
 Nonferrous, die and permanent
 mold casting 466-479
 Reactive, casting 257-260
 Reactive, casting technology 354-360
- Microporosity
 Problem, gray iron castings 50, 51
 Vs. solidification pressure,
 aluminum alloys 129-134
- Microshrinkage
 -Graded AZ-63 magnesium alloy,
 tensile properties 409-414
- Microstructures
 Malleable iron, effect and
 cause 166-176
- Moisture
 Control to prevent pinholing 33
 Sand, hot deformation rate 9
 Vs. hydrogen content 18
- Mold
 Controls necessary 76
 Expansion graphs 76-80
 Metal penetration in sand 1
 Penetration for steel 4
 Rammed graphite material,
 titanium castings 135-142
 Rammed, movement 74
 Ramming vs. penetrating pressure 3
 Rate of expansion, data 77
 Steel and core sand binders,
 purchase specifications 125-128
 Surface behavior 74-80
 Temperature ranges 76
 Thermal growth 74
- Mold Hardness
 Molding sands 59-68
- Mold Materials
 Risering, gray iron, effect 50, 51
- Mold Process
 Metal casting, by controlled heat transfer 177-183
- Molding Sand (see also Sand)
 Additions vs. hot
 deformation 9, 10, 11
 Additives effect, metal penetration 1
 At elevated temperatures 7
 Bentonites vs. hot
 deformation 9, 10, 11
 Clay effect 61, 62
- Molding Sand (continued)
 Clay type equivalence 64
 Compressive hot strength 7
 Compressive load, rammed
 specimen 7
 Cooling hot sands 263
 Correlation, method of 59, 60, 61
 Cubical volume relationship 280
 Cubic packing 279, 280
 Cushioning material 7
 Developing properties in 265
 Dry compressive
 strength 265, 266, 267
 Dry strength and green strength
 combinations 68
 Dry strength vs. per cent of water 66
 External load 7
 Fire clay 63
 Fool-proof sand 280, 281
 Green compressive
 strength 265, 266, 267
 Green strength, dry strength, mold
 hardness, correlation 59-68
 Green strength vs. dry strength 60-68
 Hot deformation 7-11
 Hot toughness 7, 8, 10, 11
 Internal loading 7
 Inter-sand-grain movement 7
 Mixes 7
 Mixing and uniformity 282
 Moisture in sands 263, 264
 Moisture vs. hot deformation 9
 Mold hardness vs. green and dry
 strength 60
 Mold hardness vs. green
 strength 61, 63-67
 Mulling 283
 Effect 262, 263
 Time change, effect 265-267
 Time vs. green and dry
 strength 265
 Time vs. temperature and
 moisture 262, 263
 Time vs. temperature, moisture,
 green and dry strength 262
 To prevent pinholing 33
 Preparation 283
 Problem of hot 261-267
 Relative mesh-cube volumes 280
 Restraining loads 7
 Rhombohedral and Rhombic
 packing 278, 279
 Sand temperature vs. cooling
 during mulling 265
 Screen-size distribution 278
 Sieve ratios and processing for
 strong 278-283
 Silica sand expansion forces 7
 Southern bentonite 63
 Southern bentonite properties 261
 Steel casting sands 7
 Support balls estimation 281
 Thermal-static pressure 7
 Temperature vs. hot deformation 8, 9
 Temperature vs. sand control
 properties 261
 Temperature vs. vapor pressure
 and heat of evaporation 262
 Water needed to cool 264
 Western bentonite 62
 Western bentonite properties 261
- Molding, Shell
 Copper castings 69-73
 Process capability evaluation 81-86
 Survey of 559-560
- Molds, Alumina
 Sintered, investment casting
 steels 247-251

- Molds, Bar
 Cast tensile, improved design .284-287
Molds, Permanent (see also Die Casting)
 And die life, nonferrous die
 casting184-186
Molds, sand
 Green, gas pressures in361-368
Molten
 Aluminum, hydrogen release .301-304
 Penetrating pressure vs. surface
 tension2, 6
Mulling
 Molding sand33, 262-265, 283
- N**
- Nitrogen
 Aluminum affinity to17
 As a carbide stabilizer17
 Content increased17
 By ammonium compounds17
 By ferrocyanides17
 In cast iron17
 Large additions, porosity17
Pinholing effect34
Retains eutectic carbide17
Retains pearlite17
Titanium affinity to17
- Nodular Iron
 Analysis56
 Austenitizing temperature156
 Cementite151
 Chemical composition, test irons ..152
 Composition56
 Ductility attainment151
 Elongation graphite156
 Eutectic fineness57
 Ferrite formation vs. cooling
 rates154, 155
 Ferrite zones57
Ferritization151-165
 Of martensite156, 157, 158
 Of pearlite155, 156
Graphite growth rate57
Heat treatments151, 152
Impact ductility, martensite164
Impact tests153, 162, 163
 Values vs. unnotched bars163
Interfacial energy58
Isothermal growth57
Isothermal transformation158-162
 Evaluation, treated reheated163
 For cooled specimens158, 159
 For reheated
 specimens160, 161, 162
Magnesium vs. sulfur58
Mechanical properties vs. per
 cent ferrite155
Normalizing treatment omission
 effect164
Per cent ferrite vs. time155
Pinholing19, 24
Properties, test irons153
Quenching, fast56
Quenching temperature vs.
 properties obtained157
Secondary graphite157
Shotting56
Slow cool57
Solidification mechanism56
Structural considerations56-58
Surface energy58
Tensile properties vs. heat
 treatment153, 154
Undercooling56, 58
- Nodules
 Formation, nodular iron56-58
Noise
 Effects of325, 326
- Noise (continued)
 Induced hearing loss324-326
 What it is324, 325
 Why be interested in325
- Nonferrous
 Die casting, die and permanent
 mold life184-186
- Nonferrous Metals
 Alloys used, United Kingdom468
- Pattern
 Casting machines469
 Die and permanent mold casting,
 United Kingdom466-479
- Dies469, 470
Fettling and finishing472
Industrial standards,
 United Kingdom472
Inspection and quality control473
Mechanical handling471
Mechanical properties, alloy467
Melting equipment468
Standard aluminum alloy467, 468
Standard copper alloy468, 473
Standard Magnesium alloy468, 472
Standard zinc alloy468, 473
Surface treatments473, 474
Tensile and impact properties .476-479
Variation of properties with
 temperature477
- Novolak
 And quartz, adhesion between,
 gases effect on288-294
- Nuclear Reactor Castings
 Cores211
 Hexagonal castings212
 Melting and molding210, 211
 Mold design210
 Radiator type, fuel elements .210-212
- O**
- Olivine
 Accurate castings from299, 300
 Aggregate, industrial applica-
 tions295-300
 Gray iron applications297, 298
 Gray iron mixtures298
 High manganese-steel applica-
 tions298, 299
 Nonferrous applications296
 Nonferrous sand formulations296
 Prior studies of295, 296
 Shell-molding applications297
 Shell-molding mixture297
 Steel applications298
 Steel mixtures, green sand298
 Thermal properties296
- Oxygen
 Chill depth, effect on18
 Content increase17
 In cast iron17
 Increase in ladle17
 Increase in low silicon iron17
 Stabilizing effect17, 18
 Vs. annealability18
- P**
- Packing
 Of small particles, theories36-39
 Particle, principles and
 limitations553-555
- Particles
 Packing, principles and
 limitations553-555
 Small, packing theories36-39
- Pattern
 Equipment, foundry556-558
 Equipment, shell mold, gating
 and risering312-314
 Margin of safety557
- Pattern (continued)
 Plastics, a little knowledge of .197-198
 Shell mold, and core boxes, con-
 struction495-496
 Standards556-558
 Wear and construction, plastic
 core boxes and569-570
- Pattermakers
 Common problems of36-39
 Engineering problems of585
 How to help sell castings583-586
 Market factors583
 Pattern engineer and
 duties584, 585-586
- Pearlite
 And ferrite formation, cast
 iron526-532
- Pearlitic Malleable
 Air quench13-14
 And standard, heat treatment vs.
 quench and temper507-512
- Austenitizing increases
 hardenability12
Chemical composition12
End quench12-16
End quench graphs13-16
Hardenability12-16
Hardenability tests12
Heat treatment12
Liquid quench13, 14
Machinability12
Matrix hardness15
Normal hardness range16
Quench hardening12
Rockwell hardness12-15
- Penetration, Metal
 Literature review of1-6
- Permanent Mold
 And die casting, aluminum
 melting practice533-543
 And die casting, nonferrous
 metals466-479
 And die life, nonferrous
 casting184-186
- Pinholing
 Additions effect27
 Aluminum effect20, 23, 24, 25
 Appearance of19
 Aspiration type34
 Gating against34
 Causes31
 Evolution type34, 35
 Ferrosilicon effect24, 25
 Hydrogen content effect26
 In white iron castings31-35
 Isolated type35
 Magnesium effect24, 26
 Manganese effect20, 22
 Pouring temperature effect28
 Prevention of19
 Reaction type31, 32, 33
 Titanium effect21, 23, 26, 27
- Plastic
 A little knowledge of197-198
 Early difficulties197
Patterns and core boxes,
 construction and wear569-570
- Specification problems198
- Surface coat, pattern569
- Uses other than patterns198
- Upkeep, patterns and core boxes570
- Versatility and workability197
- Porosity
 85-5-5 bronze, foundry variables
 effect391-396
- Press Forging
 Aluminum alloys105
- Pressure
 Gas, in green sand molds361-368

Pressure (continued)	
Increase promotes metal penetration	5
Solidification vs. microporosity, aluminum alloys	129-134
Prevention	
By the ounce	433-438
Establishing an effective maintenance program	439-445
Foundry preventive maintenance	446-451
Process	
Calcium carbide injection	327-335
Capability, shell molding, evaluation	81-86
Carbon dioxide, sodium silicates for	315-323
Processing	
And sieve ratios, strong molding sands	278-283
Properties	
And aging practice, aluminum alloy X357	480-483
Bonding, bentonites, heat effect	305-311
High temperature, shell molds	484-494
Mechanical, aluminum castings	178
Mechanical, cast steel, vanadium effect	425-432
Nodular iron	153, 154
Tensile vs. heat treatment	153, 154
Press forged magnesium castings	111
Tensile, AZ-63 magnesium alloy	409-414
Purchase Specifications	
Bentonite	127, 128
Cold set oil	126, 127
Core oil	126
Corn cereal	126
Inspection program	125
Liquid phenolic plastic	126
Shell mold and core sand binders	125-128
Tests and equipment used	125
Q	
Quench Hardening, Pearlitic malleable iron	12
R	
Rammed	
Graphitic mold materials, titanium castings	135-142
Ramming	
Vs. penetrating pressure	3
Reaction	
Iron-silica interface, atmosphere and temperature effect	452-458
Pinholes, white iron castings	31-33
Reactive Metal Casting	
Alloy casting effects	258, 259
Arc-current variation effect	328
Carbon analysis	360
Consumable-electrode arc furnace	354, 355, 358, 360
Corrosion rates, zircaloy	357
Gas porosity	257
Hafnium	356
Heat distribution and metal yield	358, 359
Heat loss, arc operation	359, 360
Machined graphite molds	355, 359
Method for	354, 355
Problems	257-260
Process variables	357
Sales problem	259, 260

Reactive Metal Casting (continued)	
Scrap utilization	259
Shrinkage and warping in baking molds	259
Spin casting	356
Technology for	354-360
Temperature controlling	257
Temperature, poured metal	358, 359
Thermopile device	257
Titanium	355, 356, 357
Vacuum-arc furnace	257
Variable alloy effect	358, 359
Variable ladle size effect	358, 359
Variable pressure effect	358
Variables vs. temperature of melt	257
Zircaloy	356, 357
Zirconium	357
Reduction	
Of silica, large shell molds	459-465
Refractory	
Cupola, lining contour	117, 118
Electric furnace, shell cooling techniques	46-48
Rigging	
Design, magnesium castings	241-246
Ring Coolers	
Electric furnace	46-48
Risering	
And gating, shell mold pattern equipment	312-314
Gray iron	49-55
And solidification	369-379
Location	53
Neck size selection	53, 54
Recommendations	53, 54
Size selection	51, 52
S	
Sand (see also Molding Sand)	
Aluminum Castings	240
Bentonite additions vs. hot deformation	9
Base exchange capacity	305
Heat effect on bonding	305
Castings, aluminum	283
Aluminum-copper	96
Controlled heat transfer	177
Magnesium alloy	336
Compaction	36, 421, 553
Cores, CO ₂	252
Dry and green, effect on risering	50
Dry strength	59
Fire clay bonded	7
Grain fractions, density, sieve analysis	40
Grains, lose, pinholing	35
Green, gas pressures in molds	361
Green strength	59
Hot compressive strength	8
Hot deformation	7
Hot deformation vs. fire clay additions	10
Hot, problem of	261
Hot toughness	7
Hydrogen pickup from	19
Iron interface, freezing graphs	214
Magnesium foundry, induction melting	87
Metal penetration in, surface tension	290
Mixes, for steel casting	7
Mixtures, austenitic steels	520
Moisture, hot deformation rate	9
Mold	
Metal penetration in	1
Metal reaction	452
Ramming effect	3
Sand (continued)	
Surface behavior	74
Mulling of	33, 262, 283
Olivine, industrial applications	295
Properties, gun-metal castings	235
Shell mold, cold-coated mixes	492
Dry mixes	489
Mixtures	559
Size distribution	461
Uses, for tests	484
Sieve ratios for strong	278
Sodium silicate, for the CO ₂ process	315
Sodium silicate, hardening	91
Ventilation, bin and mixer	419
Voids, metal penetration	6
Sand, Compaction	
Small particles, theories	38-39
Sand Grain Fractions	
Compacting samples, method of	41, 42
Densities vs. jolting energy	43, 44
Density	40-45
Graphs, sand fractions	42, 43
Michigan bank	42
Michigan city	43
Ottawa	42
Wisconsin bank	43
Wisconsin silica	42
Iron determination	43
Microscopic examination	43
Ramming effects	42, 44
Sieve analysis	40, 41
Sieve fractions preparation	40, 42
Test sands used	40
Sand Grains	
Loose, pinholing	35
Sand Mixes	
Large steel castings	7
Sand Mold	
Green, gas pressures in	361-368
Hydrogen pickup, green and dry sand	19
Scrap	
Cupola operation, effect on	397
Metal charges used	397
Size and weight effect, tapping temperature and coke cost	398
Size effect, cupola tapping temperature	397-398
Types of, used	397, 398
Sea Coal	
Additions vs. hot deformation	10
Shell Mold	
Basic materials used	495
Casting defects	488
Casting diameter measurement	487
Cavities inserted	496
Cold-coated mixes	488
Cope and drag swell measurement	485, 487
Defect formation, effect on	461
Designing of gating	313
Direct and indirect pressure-type gates	314
Dry shell mixes	486, 487
High temperature expansion	488
High temperature tests	486
Metal poured for tests	485
Mixing procedure	484
Mold composition, effect	462
Mold design, for tests	459
Pattern equipment, gating and risering	312-314
Patterns and core boxes, construction of	495-496
Placing gates and risers	314
Planning gating system	312, 313

- Shell Mold (continued)**
- Plate defect 489
 - Pouring 485
 - Pressure-type gates 313, 314
 - Primary steps to consider in construction 495
 - Problems of 312
 - Rattail defect 489
 - Reaction mechanisms 462, 463
 - Resins used 484
 - Sands used 484, 486
 - Section size, effect 460, 461
 - Shell bonding 485
 - Shell making 484
 - Shell tensile strength 486
 - Silicon-oxygen reactions 462
 - Size distribution, sand used 461
 - Sprue and runner basins 313
 - Standardization of parts 496
 - Strengths of shell mixes 486
 - Surface imperfections in large 459
 - Temperature, effect 460
 - Test data and results, cold-coated mixes 492-494
 - Test data and results, dry mixes 489-492
 - Test pattern 484
 - Use of gates 313
- Shell Molding**
- Advantages 82
 - Automatic transmission casting 81, 82
 - Average deviations 85
 - Calcium carbonate effect 405, 406
 - Calcium boride 71
 - Composite molds 407
 - Copper, deoxidation practice 69-73
 - Deterrent to steel castings 403
 - Differential case test 83
 - Dimensional accuracy 81
 - Dimensional control 81
 - Dimensional variation 559
 - Dissociation temperature, calcium carbonate 406
 - Electrical conductivity 70, 71, 72
 - Embrittlement, hydrogen 69, 70
 - Enthalpy changes 406
 - Equations for calculating deoxidation 69
 - For steel castings 403-408
 - Forsterite effect 404
 - Histograms, distribution frequency 84, 85
 - Hydrogen pickup 72, 73
 - Hydrogen vs. copper oxide 69, 72
 - Liquid bonding resin 81, 82
 - Manganese dioxide effect 405, 406
 - Molding practice 70
 - Mold material coefficients 405
 - Oxygen 70
 - Pattern dimensions 83
 - Problems, production 560
 - Process, capability evaluation 81-86
 - Quality control 560
 - Reaction equilibrium, carbon and carbon dioxide 406
 - Sand and sand-resin mixtures 559-560
 - Shell core blowing 84
 - Shell core dimensions 85
 - Skip formation
 - Surface defect causes 403, 404
 - Survey of 559-560
 - Thermal conductivity, olivine 405
 - Titanium effect on deoxidation 71
 - Zircon effect 404, 405
- Shrinkage**
- Distribution, gray iron 371
- Silica**
- Reduction, large shell molds 459-465
- Silica Flour**
- Bonded sands 7
 - Eliminates metal penetration 6
 - Hot deformation vs. 10, 11
- Silicon**
- In pearlitic malleable iron 16
 - Losses in cast iron 17
 - Low, in cast iron 17
 - Raises oxygen content 17
 - of scrap effect, cupola tapping temperature 397-398
- Sodium Silicate**
- Bonded sand, hardening 91-95
 - Bonding characteristics 318-319
 - Colloidal nature of 316
 - Composition after gassing 320
 - Composition of 317
 - Compressive strength vs. gassing 321
 - Concentration vs. viscosity 316
 - Density vs. composition 316
 - Dry strength 322
 - For the carbon dioxide process 315-322
 - Mixing order 318
 - Mixing order vs. gassed strength 318
 - Physical characteristics 317
- Solidification**
- Mechanism, gray iron riser 49, 50, 54
 - Pressure vs. microporosity, aluminum alloys 129-134
 - Vs. interface temperature 213-221
- Solution Treatment**
- Aluminum-copper alloys effect 96-103
- Specifications**
- Purchasing steel mold and core sand binders 125-128
 - Steel scrap, duplexing cupola white iron 268-270
- Steel**
- Cast, effect of vanadium on mechanical properties 425-432
 - Castings, factors affecting toughness 344-348
 - Castings, resistance to abrasion 187-196
 - Investment casting, sintered alumina molds 247-251
 - Mold penetration depth 4
 - Mold, purchase specifications 125-128
- Steel Castings**
- Abrasive hardness influence 195
 - Abrasive hardness vs. wear rates 195
 - Acid or basic steel 344, 345
 - Acid slag viscosity vs. metal quality 346
 - Alloying elements effect 191
 - Alloy recovery from slag 346
 - Austenitic steels 193, 194
 - Austenitizing temperature vs. wear rates 190
 - Boil phase effect 345
 - Calcium carbonate effect 405, 406
 - Carbon content vs. abrasion resistance 191
 - Carbon steel 345
 - Composite shell molds for 407
 - Deterrent to shell molding of 403
 - Dissociation temperature, calcium carbonate 406
 - Enthalpy changes, shell molding 406
 - Factors affecting toughness 344-348
 - Forsterite effect 404
 - Hydrogen effect 345, 346
 - In ball and rod mills 188
- Steel Castings (continued)**
- Iron oxide in slag vs. metal quality 346
 - Manganese dioxide effect 405, 406
 - Martensitic steels vs. martensitic white irons 192
 - Mold material coefficients 405
 - Pearlitic steels 192, 193
 - As-cast vs. normalized 192
 - Carbon effect 193
 - Hardness effect 193
 - Pearlite and bainite 193
 - Tempering effect 193
 - Reaction equilibrium, carbon and carbon dioxide 406
 - Reduction of area 344-347
 - Resistance to high stress
 - abrasion 187-196
 - Rockwell hardness 188
 - Shell molding for 403-408
 - Short-time wear test 188
 - Skin formation 405
 - Slag and temperature adjustment 346
 - Slag-metal reactions 347
 - Slag vs. metal quality 348
 - Solidification equation 405
 - Sulfur effect 344, 345
 - Surface defect causes, shell molding 403, 404
 - Tap-hole size vs. metal quality 347
 - Tempering vs. abrasion resistance 191
 - Tensile strength 344
 - Thermal conductivity, olivine 405
 - Time vs. wear testing materials 188
 - Wear rates, liner steels 189, 190
 - Zircon effect 404, 405
- Steel Scrap**
- Cost vs. loss 269
 - Loss reduction through control 270
 - Melting loss due to scrap preparation 269, 270
 - Raw material cost per ton 269
 - Specifications, duplexing cupola white iron 268-270
 - Steel melting scrap 270
 - Undesirable, effects 268, 269
- Structural**
- Considerations, nodular iron 56-58
- Sulfur**
- Magnesium, nodular iron vs. 58
- Surface Tension**
- Ammonia effect 291-293
 - And contact angle, helium 290, 291
 - Equations for calculating 294
 - Liquid, measurement 290, 291
 - Nitrogen effect 291-293
 - Oxygen effect 291, 292
 - Penetrating pressure vs. 2
 - Water vapor effect 291-293
- T**
- Temperature**
- And atmosphere effect, iron-silica interface reaction 452-458
 - High and low, mechanical properties, cast steel, vanadium effect 425-432
 - High, properties, shell molds 484-494
 - Interface vs. solidification 213-221
 - Metal, increase, lessens penetrating pressure 5
 - Pouring, increases metal penetration 1
 - Pouring, pinholing effect 28
 - Tapping, coke needed to produce 398

Témpérature (continued)	
Tapping, cupola, scrap size effect	397-398
Vs. hot deformation	8, 9
Vs. penetrating pressure	2
Tensile	
Cast bar molds, improved design	284-287
Properties, AZ-63 magnesium alloy	409-414
Tin	
Penetrating pressure vs. temperature	2
Rammung vs. penetrating pressure	3
Titanium Castings	
As-cast surfaces	228
Carbon contamination	225, 226
Chemical analysis, ingot	227, 228
Chemical reactivity	226
Consumable electrode-vacuum arc furnace	135
Difficulties with	225
Heat treatments	227
High strength, by induction melting	225-230
Knoop hardness vs. distance into metal	139, 141
Macroetch surface	228
Mechanical properties	228, 229
Melting process	226
Molds, graphitic	
Absolute permeability,* equation	136
Baked compressive strength vs. per cent water	138
Compressive strength	136, 137, 141
Fired compressive strength vs. mold pressure	138
Titanium Castings (continued)	
Green compressive strength vs. per cent water	138
Material composition	136
Penetration	137, 140
Permeability	136, 138, 141
Permeability vs. per cent water	139
Preparation procedure	142
Rammed material for	135-142
Refractories	135
Sieve analysis, electric furnace graphite	135
Optimum strength-ductility	230
Shrinkage	136, 137
Surface contamination	137, 139
Surface evaluation	136, 137
Thermal conductivity	137, 139, 140
Toughness	
Factors affecting, mild steel castings	344-348
Treatment	
Chemical, copper alloys	271-277
Heat, vs. tensile properties, nodular iron	153, 154
U	
Undercooled Graphite	
Formation	18, 561-568
V	
Vacuum	
Die casting, progress in	199-202
Vanadium	
Mechanical properties, effect on cast steel	425-432
Voids	
Determine penetrating pressure	6
Size, pressure and temperature work together	6
W	
Washes	
Alleviate metal penetration	4
Detergents make effective	4
Silica flour effect	4
Zircon flour effect	4
Wear	
And buildup, material, dust piping to prevent	418-420
White iron	
Duplexing, cupola, steel scrap specifications	268-270
Pinholing defects, causes and types of	31-35
Wood Flour	
Additions vs. hot deformation	10, 11
Work Sampling	
Acceptable tolerances in	580
Confidence levels of	579-580
Day-to-day variation in	579
Nomographs for	580, 581
Observation interval for	579
Step-by-step procedure in	581-582
Technique, practical application of	578-582
Theory of random sampling in	578-579
Z	
Zinc	
-Aluminum-Magnesium casting alloy	222-224

