

SpaceX Falcon-9 First Stage Landing Predictions

ZHEREN LI

- 1. Executive Summary
- 2. Introduction
- 3. Methods
- 4. Results
- 5. Conclusion

Executive Summary

- ♦ Data collection
- Data Wrangling
- Exploratory Data Analysis
- ♦ EDA with Visualization
- Plotly and Dash
- ♦ Interactive Map with Folium
- Predictive Analysis with Machine Learning

Introduction

- Primary goals of SpaceX Falcon9
 - Reliable Access to Space
 - ♦ Reusable Rocketry
 - ♦ Commercial Satellite Launches
 - International Space Station Resupply
 - ⋄ Crewed Spaceflight

Source: https://i0.wp.com/spacenews.com/wp-content/uploads/2020/10/40126461411_a6e49a61f2_k.jpg?fit=2048%2C1365&ssl=1

Data Collection

	Flight No.	Date Time Version		Version Booster	Launch Site	Payload	Payload mass	Orbit	Customer	Launch outcome	Booster landing	
0	1	4 June 2010 18:45 F9 v1.0B0003		F9 v1.0B0003.1	CCAFS	Dragon Spacecraft Qualification Unit	0	0 LEO		Success\n	Failure	
1	2	8 December 2010	15:43	F9 v1.0B0004.1	CCAFS	Dragon	0	LEO	NASA	Success	Failure	
2	3	22 May 2012	07:44	F9 v1.0B0005.1	CCAFS	Dragon	525 kg	LEO	NASA	Success	No attempt\n	
3	4	8 October 2012	00:35	F9 v1.0B0006.1	CCAFS	SpaceX CRS-1	4,700 kg	LEO	NASA	Success\n	No attempt	
4	5	1 March 2013	15:10	F9 v1.0B0007.1	CCAFS	SpaceX CRS-2	4,877 kg	LEO	NASA	Success\n	No attempt\n	
116	117	9 May 2021	06:42	F9 B5B1051.10	CCSFS	Starlink	15,600 kg	LEO	SpaceX	Success\n	Success	
117	118	15 May 2021	22:56	F9 B5B1058.8	KSC	Starlink	~14,000 kg	LEO	SpaceX	Success\n	Success	
118	119	26 May 2021	18:59	F9 B5B1063.2	CCSFS	Starlink	15,600 kg	LEO	SpaceX	Success\n	Success	
119	120	3 June 2021	17:29	F9 B5B1067.1	KSC	SpaceX CRS-22	3,328 kg	LEO	NASA	Success\n	Success	
120	121	6 June 2021	04:26	F9 B5	CCSFS	SXM-8	7,000 kg	GTO	Sirius XM	Success\n	Success	

- Data collected from webscrapping via Request and Beautifulsoup
- Data frame was cleaned and filtered to only include Falcon 9 launches

Data Wrangling

df.head(5)																		
	FlightNumbe	r Date	BoosterVersion	PayloadMass	Orbit	LaunchSite	Outcome	Flights	GridFins	Reused	Legs	LandingPad	Block	ReusedCount	Serial	Longitude	Latitude	Class
0		2010-06-04	Falcon 9	6104.959412	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0003	-80.577366	28.561857	0
1	2	2 2012-05-22	Falcon 9	525.000000	LEO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0005	-80.577366	28.561857	0
2	3	2013-03-01	Falcon 9	677.000000	ISS	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B0007	-80.577366	28.561857	0
3	4	2013-09-29	Falcon 9	500.000000	PO	VAFB SLC 4E	False Ocean	1	False	False	False	NaN	1.0	0	B1003	-120.610829	34.632093	0
4	:	2013-12-03	Falcon 9	3170.000000	GTO	CCAFS SLC 40	None None	1	False	False	False	NaN	1.0	0	B1004	-80.577366	28.561857	0

We can use the following line of code to determine the success rate:

```
df["Class"].mean()
```

0.66666666666666

- Number of launches
- Number of occurrences of each orbit
- Mission outcomes
- Landing outcomes

EDA with SQL

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was acheived.

EDA with SQL

Task 6 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 "Seql select Society Version from SPACEXYSL WHERE Landing Outcome - "Success (drone whip)" and PAYLOAD PASS_KG > 4000 and PAYLOAD PASS_KG < 6000 * sqlite:///wy_datal.db Done. Booster Version F9 FT B1022 F9 FT 81026 P9 FT 61021.2 FR FT 81031.2 Task 7 List the total number of successful and failure mission outcomes Negl select count (Mission Outcome) From SPACEXTEL NMERE Hission Outcome - 'Success' or Mission Outcome - 'Failure (in flight) * sqlite:///wy_datal.db count(Mission Outcome) Task 8 List the names of the booster versions which have carried the maximum payload mass. Use a subquery %sql select Booster Version from SPACEXTBL where PAYLOAD MASS KG + (select max(PAYLOAD MASS KG) from SPACEXTBL * sqlite:///www.matal.db Done. Booster_Version F9 85 81048.4

- List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- List the total number of successful and failure mission outcomes
- List the names of the booster_versions which have carried the maximum payload mass. Use a subquery
- List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.
- Rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

Visualize the relationship between Flight Number and Launch Site

Visualize the relationship between Payload and Launch Site

Visualize the relationship between success rate of each orbit type

Visualize the relationship between Payload and Orbit type

a line chart with x axis to be the extracted year and y axis to be the success rate

TASK 8: Cast all numeric columns to `float64` features one hot.astype(float) FlightNumber PayloadMass Flights GridFins Reused Legs Block ReusedCount Orbit_GEO ... Serial_B1048 Serial_B1049 Serial_B1050 Serial_B1051 Serial_B1054 Serial_B1056 Serial_B1058 Ser 0.0 0.0 1.0 6104.959412 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 525.000000 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 3.0 677.000000 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 500.000000 1.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ... 0.0 5.0 3170.000000 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 85 86.0 15400,000000 2.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 2.0 0.0 86 87.0 15400.000000 3.0 1.0 2.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 1.0 87 6.0 5.0 5.0 0.0 0.0 ... 0.0 0.0 0.0 1.0 0.0 15400.000000 1.0 1.0 1.0 0.0 0.0 89.0 15400.000000 0.0 0.0 0.0 0.0 0.0 89 90.0 3681.000000 1.0 1.0 0.0 1.0 5.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90 rows × 80 columns

Create dummy variables to categorical columns Cast all numeric columns to `float64`

Interactive Map with Folium

Plotly and Dash


```
import dash html components as html
import dash core components as dcc
from dash.dependencies import Input, Output
import plotly express as px
# Read the mirline data into pandas dataframe
spacex_df = pd,read_csv("spacex_launch_dash.csw")
max_payload = spacex_df['Payload Mass_(kg)'].max()
min_payload = Spacex_df['Payload Mass (kg)'].min()
# Create a dash application
app = dash.Dash(__naee__)
# Creste an app layout
app.layout - html.Div(children-
   html.H1('SpaceX Launch Records Dashboard',
            style=('textAlign': 'center', 'color': '#583D36', 'foot-size': 40}),
   # TASK 1: Add a dropdown list to enable Launch Site selection
   # The default select value is for ALL sites
   # dcc.Oropdown(Id='site-dropdown',...)
    dcc.Dropdown(
        ide'site-dropdown'.
        aptions-[
            ('label': 'All Sites', 'value': 'ALL').
            ('label': 'CCAFS LC-40', 'value': 'CCAFS LC-40').
            ('label': 'CCAFS SLC-48', 'value': 'CCAFS SLC-48'),
            ('label': 'KSC LC-39A', 'value': 'KSC LC-39A'),
            {'label': 'WAFR SLC-4E', 'value': 'WAFR SLC-4E'}
        placeholder="Select a Launch Site here",
        searchable-True
```

Predictive Analysis with Machine Learning

```
TASK 4
Create a logistic regression object then create a GridSearchCV object. Loging. CV. with cv. = 10. Fit the object to
parameters +["C":[8.81,8.1,1],
              'penelty's ['12'],
              'solver' (['linfgs'])
parameters + 1°C' ([0.03, 0.1,1], paralty' (['12'], 'sulver' (['15tgs'])# il Locos il ridge
 lr-LogisticRegression()
 logreg_cv = dridSearchCV(ir, param_grid-parameters,scoring="accuracy", cv-10)
 logreg_cv.flt(X_train, V_train)
lograg cv.best params
{'C': e.et, 'pecalty': 'II', 'solver': 'lefgs'}
We output the GradSearchCV object for logistic regression. We display the best parameters using the data after
print["tuned byyorparameters : [best parameters) ",logreg_cv.best_parama_y
print["accuracy :",logreg_cv.best_score_)
 tured hyperparameters : (best parameters) ("C": 0.91, "parally": "12", "solver": "lifgs")
accuracy : 0.8464285714285715
```

Accuracy: 0.8482142857142856

```
TASK 6
Chairs a support within marking object than creats a BESISSAFERY object live (it with co = 10. Fit the object to find the basi
parameters - ['hereal's['linear', 'ren', 'poly', 'ren', 'Algorid'],
            CV at Instruct 3, 3, 31,
              green repulsephone [ th. R. S]
non_ov = BriddeecchDi(von, param_grid-parameters_coming='annomay', c+-Di)
som ov. fit(% train, % train)
men, coulant parent.
["C": 1.0, "game": 0.65161277888168378, "kernel": "sigmoid")
print; forest byyogaraneters (first parameters) flace soldest parameters)
print["stermly I", non_cv.heet_tope_]
tured byperparameters (thest parameters) ["C": 1.4, "gomes": N.BISEITTHHILBERT, "Novem": "bigooid")
*courses : 0.000114385714386
TASK 7
Calculate the accuracy on the test data using the method incore.
son_cv.come(X_test_ %_test)
4.41555111111111111
```

Predictive Analysis with Machine Learning

All methods yields about the same results

Conclusion

- ♦ There is a correlation between success rate and launch site
- ♦ There is a positive correlation between payload mass and success rate
- ♦ SO orbit type has the least success rate
- ♦ The accuracy is about 84%