MATH re MAXIMUM LIKELIHOOD

Basic premise:

- Best estimate of parameters is that giving the highest probability that the actual measurements would be made.
- To find parameters $\{a\}$ (e.g, C and k for the CCN distribution), express the probability of making the actual observations $\{x\}$ (e.g., $\{N_1, N_2, ...\}$ given values $\{a\}$ for the parameters: $\phi(x_i; \{a\})$. The probability must be normalized.
- The "likelihood" is the product of probabilities of all the observations:

$$\mathscr{L}(a) = \prod_{i} \phi(x_i; \{a\})$$
 and $\mathscr{W} = \log \mathscr{L}(\{a\}) = \sum_{i} \log(\phi(x_i; \{a\}))$

• The estimated values of the parameters $\{a\}$ are then the values that lead to the maximum value of \mathcal{W} .