CS2102 Database Systems 2013/2014 Semester I

Tutorial #5 Functional Dependencies

1. Is the following rule correct?

$$\forall X \in R \ \forall Y \in R \ (if \ X \to Y \text{ then } Y \subseteq X)$$

The rule is not correct.

For instance, {id} -> {name}, but {name} is not a subset of {id}.

2. The following rule is called pseudo-transitivity. Use Armstrong axioms to prove it.

$$\forall X \in R \ \forall Y \in R \ \forall Z \in R \ \forall W \in R \ (if \ X \to Y \ and \ Z \to W \ and \ Z \subseteq Y, then \ X \to W)$$

Assume that $X \rightarrow Y$ (1), $Z \rightarrow W$ (2), and $Z \subseteq Y$ (3)

Since $Z \subseteq Y$ (3), then $Y \rightarrow Z$ (4) (reflexivity)

Since $X \to Y$ (1) and $Y \to Z$ (4), then $X \to Z$ (5) (transitivity)

Since $X \to Z$ (5) and $Z \to W$ (2) then $X \to W$ (transitivity)

3. Consider the set of functional dependencies:

$$F = \{ \{A\} \rightarrow \{B\}, \{C\} \rightarrow \{D\}, \{B, D\} \rightarrow \{E\}, \{D\} \rightarrow \{A, D\}, \{A, C\} \rightarrow \{E, B\} \}$$
 on the relation scheme $R = \{A, B, C, D, E\}.$

a. Give an example instance of R that complies with the functional dependencies.

Empty instance or an instance with only one tuple.

b. Give an example instance of R that violates the functional dependencies.

- c. Compute F⁺, the closure of F.
- d. Give an example of a trivial functional dependency in F⁺.

AB->A

e. Give an example of a non-trivial functional dependency in F⁺.

A->B

f. Compute $\{C\}^+$, the closure of the set of attributes $\{C\}$.

g. Compute a minimal cover of F.

1. Simplify the right-hand side
$$F' = \{ \{A\} -> \{B\}, \{C\} -> \{D\}, \{B,D\} -> \{E\}, \{D\} -> \{A\}, \{D\} -> \{D\}, \{A,C\} -> \{E\}, \{A,C\} -> \{B\} \}$$

2. Simplify the left-hand side $F''=\{\{A\}->\{B\},\{C\}->\{D\},\{D\}->\{E\},\{D\}->\{A\},\{D\}->\{D\},\{C\}->\{E\}\}\}$ $\{A,C\}->\{B\}$ can be removed because $\{A\}->\{B\}$ is there (and $\{A\}->\{A,B\})$ $\{B,D\}->\{E\}$, can be replaced by $\{D\}->\{E\}$, (because $\{D\}->\{A\}$ and $\{A\}->\{B\}$) $\{A,C\}->\{E\}$ can be replaced by $\{C\}->\{E\}$, (because $\{C\}->\{D\}$ and $\{D\}->\{E\}$)

3. Eliminate redundant rules

Min(F)={
$$\{A\} -> \{B\}, \{C\} -> \{D\}, \{D\} -> \{E\}, \{D\} -> \{A\} \}$$
 {D} -> {D}, can be removed because it is trivial {C}-> {E} can be removed because it can obtained from {C}-> {D}, {D}-> {E}.