Solutions Manual

Introduction to Algorithms – A Creative Approach

September 1, 2013

Preface

This is a Solutions Manual for Udi Manber's Introduction to Algorithms – A Creative Approach, a reference book on many Algorithm Courses.

All the solutions were written by students, we can't guarantee that 100% of the solutions are correct, but you are more than welcome to contribute.

Contents

Pr	eface	iii
Co	ontents	iv
1	Introduction	1
2	Mathematical Induction	3
3	Analysis of Algorithms	5
4	Data Structures	7
5	Design of Algorithms by Induction	9
6	Algorithms Involving Sequences and Sets	11
7	Graph Algorithms	13
8	Geometric Algorithms	15
9	Algebraic and Numeric Algorithms	17
10	Reductions	19
11	NP-Completeness	21
12	Parallel Algorithms	23

Introduction

Exercises

Mathematical Induction

Drill exercises

Analysis of Algorithms

Drill exercises

3.5

a. We have that $f(n) = 100n + \log n$ and $g(n) = n + (\log n)^2$. Then let

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{100n + \log n}{n + (\log n)^2}$$

By L'Hôpital's rule

$$\lim_{n \to \infty} \frac{100n + \log n}{n + (\log n)^2} = \lim_{n \to \infty} \frac{100 + \frac{1}{n}}{1 + 2\frac{\log n}{n}} = 100$$

$$\therefore f(n) = O(g(n)) \tag{3.1}$$

Now, let

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n + (\log n)^2}{100n + \log n}$$

By L'Hôpital's rule

$$\lim_{n \to \infty} \frac{n + (\log n)^2}{100n + \log n} = \lim_{n \to \infty} \frac{1 + 2\frac{\log n}{n}}{100 + \frac{1}{n}} = \frac{1}{100}$$

$$\therefore g(n) = O(f(n)) \Leftrightarrow f(n) = \Omega(g(n))$$
(3.2)

From (3.1) and (3.2) we have that

$$f(n) = \Theta(g(n))$$

b. We have that $f(n) = \log n$ and $g(n) = \log n^2$. Note that

$$g(n) = \log n^2 = 2\log n = 2f(n)$$
$$\therefore f(n) = \Theta(g(n))$$

c. We have that $f(n) = \frac{n^2}{\log n}$ and $g(n) = n(\log n)^2$. Then let

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{\frac{n^2}{\log n}}{n(\log n)^2} = \lim_{n \to \infty} \frac{n}{(\log n)^3}$$

By L'Hôpital's rule

$$\lim_{n \to \infty} \frac{n}{(\log n)^3} = \lim_{n \to \infty} \frac{n}{3(\log n)^2} = \lim_{n \to \infty} \frac{n}{6 \log n} = \lim_{n \to \infty} \frac{n}{6} = \infty$$
$$\therefore f(n) \neq O(g(n))$$

Now, let

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{n(\log n)^2}{\frac{n^2}{\log n}} = \lim_{n \to \infty} \frac{(\log n)^3}{n}$$

By L'Hôpital's rule

$$\lim_{n \to \infty} \frac{(\log n)^3}{n} = \lim_{n \to \infty} \frac{3(\log n)^2}{n} = \lim_{n \to \infty} \frac{6\log n}{n} = \lim_{n \to \infty} \frac{6}{n} = 0$$
$$\therefore g(n) = O(f(n)) \Leftrightarrow f(n) = \Omega(g(n))$$

Data Structures

Drill exercises

Design of Algorithms by Induction

Drill exercises

Algorithms Involving Sequences and Sets

Drill exercises

Graph Algorithms

Drill exercises

Geometric Algorithms

Drill exercises

Algebraic and Numeric Algorithms

Drill exercises

Reductions

Drill exercises

NP-Completeness

Drill exercises

Parallel Algorithms

Drill exercises