Learning of Lifted Macro-Events for Heuristic-Search Temporal Planning

Paper #1117

1 Pseudo-code for the Empirical Selection of Macro-Events

Algorithm 1 Empirical Selection of Macro-Events 1: procedure Empirical Selection(ϑ , UME, \mathcal{T}_{val} , \aleph) 2: SORT(UME, Frequency) 3: $\mathcal{M}_1 \leftarrow \emptyset$; $i \leftarrow 0$ 4: while CumulativeFrequecyPercentage(\mathcal{M}_1 , UME) $< \vartheta$ do 5: $\mathcal{M}_1 \leftarrow \mathcal{M}_1 \cup \{UME \{ij\}; \ i \leftarrow i+1\}$ 6: SORT(UME, Support) 7: $\mathcal{M}_2 \leftarrow \emptyset$; $i \leftarrow 0$ 8: while CumulativeSupportPercentage(\mathcal{M}_2 , \mathcal{T}_{val}) $< \vartheta$ do 9: $\mathcal{M}_2 \leftarrow \mathcal{M}_2 \cup \{UME \{ij\}; \ i \leftarrow i+1\}$ 10: SelectedMacros $\leftarrow \mathcal{M}_1 \cup \mathcal{M}_2$ 11: if $\aleph \in \{PA+\}$ then RemoveSubMacros(SelectedMacros) 12: return SelectedMacros

Algorithm 1 describes the second round of lifted macro-events selection. In particular, it refines the set of used macros UME exploiting planner-specific empirical statistics extracted from the validation phase.

It takes as input a threshold $\vartheta \leq 1$, the set of used macros UME, the set of validation instances \mathcal{T}_{val} , and a planning approach $\aleph \in \{FA, PA\} \times \{\pm\}$. It computes \mathcal{M}_1 and \mathcal{M}_2 , namely the two minimal subsets of used macros UME, that cover at least $\vartheta \times 100\%$ of the total frequencies and of the size of \mathcal{T}_{val} , with the minimal cardinality and the highest value of cfp and csp, respectively. Indeed, it starts sorting UME according to the *frequency* values and then it constructs the set \mathcal{M}_1 adding one by one the lifted macros with higher frequency until the *cumulative frequency percentage* (cfp) is greater than or equal to the threshold ϑ . The procedure to compute \mathcal{M}_2 is similar, using the *support* values instead of frequencies. Then, the *SelectedMacros* is the union set of the two previously computed.

In conclusion, we recall that in the PA+ case, the presence of sub-macros is redundant. Since both partial applicability and intermediate nodes are supported, if a macro such as $\langle a,b,c,d \rangle$ is included in the final set, all its sub-macros $(\langle a,b \rangle,\langle a,b,c \rangle)$ can be safely removed (line 11).

2 Additional experimental results

Table 1 shows the results of the sensitivity analysis of the hyperparameter ϑ in terms of execution time: we report the average execution time (in seconds) for the instances successfully solved by the planner. When showing a value of 600, it corresponds to cases where no problem was solved and all runs reached the timeout limit, which, as a reminder, is set to 600 seconds. This table justifies the selection of the best result, highlighted in bold in Table 2 of the paper.

MAJSP - h_{add}					
ϑ	FA-	FA+	PA-	PA+	
0.5	6.71	600	600	8.67	
0.6	6.83	600	7.94	9.22	
0.7	7.06	600	8.61	9.19	
0.8	7.05	7.32	8.58	9.26	
0.9	5.98	8.35	7.59	11.07	
1	7.48	9.66	8.24	9.64	

	MAJSP - $h_{f\!f}$				
ϑ	FA-	FA+	PA-	PA+	
0.5	96.9	600	600	600	
0.6	100.1	600	175.07	600	
0.7	98.98	600	263.76	600	
0.8	99.47	87.26	63.74	67.4	
0.9	75.49	87.79	44.09	53.98	
1	89.58	57.27	81.37	67.1	

Kitting - h_{add}				
ϑ	FA-	FA+	PA-	PA+
0.5	111.01	111.13	110.69	110.22
0.6	111.01	174.02	110.69	110.22
0.7	111.01	153.32	18.02	110.22
0.8	110.43	153.71	17.94	70.29
0.9	163.15	120.56	153.94	47.34
1	88.96	139.17	235.82	220.69

Matchcellar - $h_{f\!f}$				
ϑ	FA-	FA+	PA-	PA+
0.5	32.91	283.3	32.76	296.4
0.6	32.91	283.3	32.76	296.4
0.7	32.91	283.3	32.76	296.4
0.8	32.93	283.18	131.53	293.61
0.9	127.12	285.71	133.58	298.16
1	141.35	282.14	220.19	308.98

Table 1. Sensitivity analysis of ϑ : for each planning approach, we report the average time (in seconds) of execution of the planner on instances solved. In bold we highlight the best result consistently with Table 2 of the paper.

For this reason, it is sometimes possible to observe a bold value that is higher than other entries: this is due to a higher coverage, meaning that more instances were solved, including some that required a greater computational effort. In these cases, that are FA+, PA-, PA+ for Kitting- h_{add} and PA+ for MAJSP - $h_{f\!f}$, the cactus plots in Figure 1 validate the selection. Moreover, the other two cactus plots, i.e., FA- and PA- for MAJSP with $h_{f\!f}$, represent the two cases in which, given the same coverage, the average execution times reported in Table 1 show a significant difference. All other cactus plots for every configuration are available in the additional material.

12

15

17

18

19

20

30

Figure 1. Cactus plots of interesting configurations.