Professor: Ekaterina Kostina Tutor: Philipp Elja Müller

Aufgabe 1

- (a) Diese Aussage ist falsch, betrachte f(x) = b + 42 x. Es gilt $f(x) \neq 42$ für $x \neq b$ und f(b) = b b + 42 = 42.
- (b) Diese Aussage ist wahr.

Beweis. Annahme: Es gilt f(42) > g(42), und $f(x_0) < g(x_0)$ für ein $x_0 \in \mathbb{R}$. Dann betrachte h(x) = f(x) - g(x). Es gilt h(42) = f(42) - g(42) > 0, aber $h(x_0) = f(x_0) - g(x_0) < 0$. Betrachte h(x) über dem kompakten Intervall $I = [42, x_0]$. Nach Zwischenwertsatz ist also h(x) = 0 für ein $x_1 \in I$. Dort gilt dann auch $0 = h(x_1) = f(x_1) - g(x_1) \implies f(x_1) = g(x_1)$. Das ist allerdings ein Widerspruch zur Voraussetzung $f(x) \neq g(x) \forall x \in \mathbb{R}$.

Aufgabe 2

(a) Sei f Lipschitz-stetig. Dann gilt $\forall x_1, x_2 \in \mathbb{R} : |f(x_1) - f(x_2) \leq L \cdot |x_1 - x_2|$. Behauptung: f ist gleichmäßig stetig.

Beweis. Sei
$$\epsilon > 0$$
. Dann wähle $\delta = \frac{\epsilon}{L}$. Dann gilt $\forall x_1, x_2 \in \mathbb{R} : |x_1 - x_2| < \delta \implies |f(x_1) - f(x_2)| < L \cdot |x_1 - x_2| \le L \cdot \delta = L \cdot \frac{\epsilon}{L} = \epsilon$.

(b) Behauptung: Die Funktion $f(x) = \sqrt{x}$ ist 1. gleichmäßig stetig, aber 2. nicht Lipschitz-stetig auf $D = [0, \infty)$.

Beweis. 1. Sei $\epsilon > 0$. Dann wähle $\delta = \frac{\epsilon^2}{4}$. Seien $x_1, x_2 \in D$ mit $|x_1 - x_2| < \delta$. Die Wurzelfunktion ist monoton steigend. Daher gilt (wegen $x_1, x_2 \geq 0$) die Ungleichung $\sqrt{x_1} + \sqrt{x_2} \geq \sqrt{|x_2 + x_1|} \geq \sqrt{|x_2 - x_1|}$ Dann gilt $|f(x_1) - f(x_2)| = |\sqrt{x_1} - \sqrt{x_2}| = \frac{|x_1 - x_2|}{\sqrt{x_1 + \sqrt{x_2}}} \leq \frac{|x_1 - x_2|}{\sqrt{|x_1 - x_2|}} = \sqrt{|x_1 - x_2|} = \sqrt{\delta} < \epsilon$.

2. Angenommen f ist Lipschitz-stetig. Dann gilt

$$|f(x) - f(y)| \le L|x - y|$$

$$|\sqrt{x} - \sqrt{y}| \le L|x - y|$$

$$\frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le L|x - y|$$

$$\frac{1}{L} \le \sqrt{x} + \sqrt{y}$$

Wähle nun $x = \frac{1}{16L^2}$ und $y = \frac{1}{4L^2}$

$$\frac{1}{L} \le \frac{1}{4L} + \frac{1}{2L} = \frac{3}{4} \cdot \frac{1}{L}$$
$$1 \le \frac{3}{4}$$

Die Annahme führt zu einem Widerspruch, also kann f nicht Lipschitz-stetig sein.

(c) Sei f gleichmäßig stetig. Dann gilt

$$\forall \epsilon > 0 : \exists \delta > 0 : \forall x_1, x_2 \in \mathbb{R} : |x_1 - x_2| < \delta : |f(x_1) - f(x_2)| < \epsilon$$

Das ist äquivalent zu

$$\forall x_2 \in \mathbb{R} : \forall \epsilon > 0 : \exists \delta > 0 : \forall x_1 \in \mathbb{R} : |x_1 - x_2| < \delta : |f(x_1) - f(x_2)| < \epsilon$$

Also f ist stetig auf \mathbb{R} .

(d) Siehe Skript 4.4 Bemerkung 3. Alternativ: Die Funktion $f(x) = e^x$ ist stetig auf \mathbb{R} , aber nicht gleichmäßig stetig auf \mathbb{R} .

Beweis. Stetigkeit folgt sofort aus der Vorlesung. Angenommen, e^x ist gleichmäßig stetig. Dann gilt $\forall \epsilon > 0: \exists \delta > 0: \forall x_1, x_2 \in \mathbb{R}$ mit $|x_1 - x_2| < \delta: |e^{x_1} - e^{x_2}| < \epsilon$. Wähle $\epsilon = 1$. Es gibt also ein $\delta > 0$, das die geforderte Eigenschaft erfüllt. Betrachte also $x_1 = \ln(\frac{\epsilon}{|1 - e^{\frac{\delta}{2}}|})$ und $x_2 = x_1 + \frac{\delta}{2}$.

Es gilt
$$|x_1 - x_2| < \delta$$
 und $|f(x_1) - f(x_2)| = |e^{x_1} - e^{x_1} \cdot e^{\frac{\delta}{2}}| = \frac{2\epsilon}{|1 - e^{\frac{\delta}{2}}|} \cdot |1 - e^{\frac{\delta}{2}}| = 2\epsilon$. Das ist aber größer als ϵ . Das ist ein Widerspruch.

Aufgabe 3

- (a) $\bullet \sin(0) = 0$ folgt sofort aus $\Im(e^{i \cdot 0}) = \Im(1) = 0$. Analog $\cos(0) = \Re(1) = 1$.
 - Es gilt $\sin^2(x) + \cos^2(x) = 1$. Daher erhalten wir $\sin(\frac{\pi}{2}) = \sqrt{1 \cos^2(\frac{\pi}{2})} = 1$.
 - Wir benutzen die Additionstheoreme und erhalten: $\sin(\pi) = \sin(\frac{\pi}{2} + \frac{\pi}{2}) = \sin(\frac{\pi}{2}) \cdot \cos(\frac{\pi}{2}) + \sin(\frac{\pi}{2}) \cdot \cos(\frac{\pi}{2}) = 0$
 - $\cos(\pi) = \cos(\frac{\pi}{2} + \frac{\pi}{2}) = \cos^2(\frac{\pi}{2}) \sin^2(\frac{\pi}{2}) = 0 1 = -1$
 - $\sin\left(\pi + \frac{\pi}{2}\right) = \sin(\pi) \cdot \cos\left(\frac{\pi}{2}\right) + \cos(\pi) \cdot \sin\left(\frac{\pi}{2}\right) = 0 1 = -1$
 - $\cos\left(\pi + \frac{\pi}{2}\right) = \cos(\pi) \cdot \cos\left(\frac{\pi}{2}\right) \sin(\pi) \cdot \sin\left(\frac{\pi}{2}\right) = 0.$
 - $\sin(2\pi) = \sin(\pi + \pi) = \sin(\pi)\cos(\pi) + \cos(\pi)\sin(\pi) = 0.$
 - $\cos(2\pi) = \cos^2(\pi) \sin^2(\pi) = 1$
- (b) Es gilt mit (a) $e^{i\frac{\pi}{2}} = \cos(\frac{\pi}{2}) + i\sin(\frac{\pi}{2}) = 0 + i \cdot 1 = i$
 - Es gilt $e^{i\pi} = e^{i\frac{\pi}{2}} \cdot e^{i\frac{\pi}{2}} = i^2 = -1$
 - Es gilt $e^{\frac{i3\pi}{2}} = e^{i\pi} \cdot e^{i\frac{\pi}{2}} = -1 \cdot i = -i$
 - Es gilt $e^{i2\pi} = e^{i\pi} \cdot e^{i\pi} = (-1)^2 = 1$

Aufgabe 4

Der Logarithmus ist als Umkehrfunktion der Exponentialfunktion stetig differenzierbar.

(a) $f(x) = (x^x)^x = (e^{\ln(x) \cdot x})^x = e^{\ln(x) \cdot x^2}$. Nach Vorlesung ist die Exponentialfunktion stetig differenzierbar, also gilt $f'(x) = (x + \ln(x) \cdot 2x) \cdot e^{\ln(x) \cdot x^2} = x \cdot (1 + 2\ln(x)) \cdot (x^x)^x$.

- (b) $f(x) = \ln(x)^x = e^{\ln(\ln(x)) \cdot x}$. Nach Vorlesung ist die Exponentialfunktion stetig differenzierbar, also ist $f'(x) = \left(\frac{1}{x} \cdot \frac{1}{\ln(x)} \cdot x + \ln(\ln(x))\right) \cdot e^{\ln(\ln(x)) \cdot x} = \left(\frac{1}{\ln(x)} + \ln(\ln(x))\right) \cdot \ln(x)^x$
- (c) Nach Vorlesung sind Ganzrationale Funktionen ohne Polstellen stetig differenzierbar. Daher ist $f'(x) = \frac{(4x^3 + 6x^2 1)(x^3 + 1) (x^4 + 2x^3 x)(3x^2)}{(x^3 + 1)^2}.$
- (d) $f(x) = (\sqrt{x} + 1) \left(\frac{1}{\sqrt{x}} 1\right) = \frac{1}{\sqrt{x}} \sqrt{x}$ Die Wurzelfunktion ist stetig differenzierbar. Also gilt $f'(x) = -\frac{1}{2}x^{-\frac{3}{2}} \frac{1}{2}x^{-\frac{1}{2}}$.
- (e) $f(x) = \frac{\ln(x)}{1+x^2}$. Nach Vorlesung ist $\ln(x)$ stetig differenzierbar, außerdem Quotienten von stetig differenzierbaren Funktionen. Also gilt $f'(x) = \frac{\frac{1}{x} \cdot (1+x^2) (\ln(x) \cdot 2x)}{(1+x^2)^2}$
- (f) $f(x) = (\sin(x))^{\cos(x)} = e^{\ln(\sin(x)) \cdot \cos(x)}$. Die Exponentialfunktion, $\ln(x)$ für x > 0, sowie trigonometrische Funktionen sind stetig differenzierbar. Daher gilt

$$f'(x) = \left(\cos(x) \cdot \frac{1}{\sin(x)} \cdot \cos(x) + \ln(\sin(x)) \cdot - \sin(x)\right) \cdot e^{\ln(\sin(x)) \cdot \cos(x)}$$
$$= (\cot(x) \cdot \cos(x) - \ln(\sin(x)) \cdot \sin(x)) \cdot \sin(x)^{\cos(x)}$$

(g) $f(x) = \ln(\tan(x)) - \frac{\cos(2x)}{\sin^2(2x)}$. Nach Vorlesung ist $\ln(x)$ stetig differenzierbar für x > 0 und alle trigonometrischen Funktionen sowie Quotienten von stetig differenzierbaren Funktionen solange der Nenner $\neq 0$ ist. Daher gilt

$$f'(x) = \frac{1}{\cos^2(x)} \cdot \frac{1}{\tan(x)} - \frac{2 \cdot (-\sin(2x)) \cdot \sin^2(2x) - \cos(2x) \cdot 2 \cdot \sin(2x) \cdot 2 \cdot \cos(2x)}{\sin^4(2x)}$$
$$= \frac{\cot(x)}{\cos^2(x)} + \frac{2 \cdot \sin^2(2x) + 4\cos^2(2x)}{\sin^3(2x)}$$

Bonusaufgabe

(a) Punktweise Konvergenz:

Behauptung: Die Folge $f_n(x)$ konvergiert punktweise gegen $\begin{cases} 1|x\in\{0,\pi\}\\0|\text{sonst} \end{cases}.$

Beweis. Fallunterscheidung:

Fall 1: x = 0. Dann ist $|\cos(x)| = 1$ und dementsprechend $f_n(x) = |\cos^n(x)| = 1$.

Fall 2: $x = \pi$. Dann ist $|\cos(x)| = |-1| = 1$ und analog zu Fall 1 $f_n(x) = 1$.

Fall 2: $0 < x < \pi$. Dann ist $|\cos(x)| < 1$ und daher $\lim_{n \to \infty} f_n(x) = |\cos^n(x)| = 0$.

Gleichmäßige Konvergenz Behauptung: Die Folge $f_n(x)$ ist nicht gleichmäßig konvergent.

Beweis. Ist die Folge gleichmäßig konvergent, so konvergiert sie gegen die Funktion, gegen die sie auch punktweise konvergiert. Wir wählen $\epsilon = \frac{2}{3}$. Dann gilt $\forall n \in \mathbb{N} : \exists x = \arccos\left(\sqrt[n]{\frac{1}{2}}\right) : |f_n(x) - f(x)| \stackrel{0 < \sqrt[n]{\frac{1}{2}} < 1}{=} |f_n(x) - 0| = |\cos(x)|^n = \sqrt[n]{\frac{1}{2}}^n = \frac{1}{2} < \frac{2}{3} = \epsilon$.

(b) Diese Funktion konvergiert gleichmäßig gegen f(x) = 0.

Beweis. Sei
$$1 > \epsilon > 0$$
. Dann wähle $n_{\epsilon} = \arccos(\sqrt[n]{\frac{\epsilon}{2}})$. Es gilt: $\forall n > n_{\epsilon} : \forall x \in D : |f_n(x) - f(x)| = |\cos(x)|^n = |\frac{\epsilon}{2}| < \epsilon$.

Folglich ist $f_n \in \tilde{D}$ gleichmäßig konvergent und folglich auch punktweise konvergent.