EPFL, MATH-489 Spring 2024

Number theory in cryptography

- Exercise set 12 -

The exercises P12.1, P12.2 have to be handed in on Tuesday, 21st May 2024, 8:30 at latest.

THEORETICAL QUESTIONS

T 12.1 Let L be an n-dimensional lattice. Prove that the determinant of the lattice defined for a \mathbb{Z} -basis (v_1, \ldots, v_n) of L as $\det(L) = |\det(v_1 \ v_2 \ \ldots \ v_n)|$ is independent of the choice of the basis.

T 12.2 Given a (full-rank) "random" lattice $L \subset \mathbb{R}^n$, the Gaussian heuristic states that when n is large, we can expect the length $\lambda_1(L)$ of a shortest non-zero vector in L to be roughly of size

$$\lambda_1(L) \simeq \sqrt{\frac{n}{2\pi e}} \det(L)^{1/n}. \tag{12.2.1}$$

The purpose of this exercise is to find an explanation for this heuristic⁴. Let $B_n(0,r) \subset \mathbb{R}^n$ denote the ball of radius r > 0 centered at the origin in *n*-dimensional space. Heuristically, for a (full-rank) lattice $L \subset \mathbb{R}^n$ and for large r it is reasonable to expect:

$$\#\{v \in L : \|v\| < r\} \approx \frac{\operatorname{vol}(B_n(0,r))}{\det(L)},$$

since det(L) is the volume of a fundamental domain for L (a bounded domain whose translates by vectors in L partition \mathbb{R}^n).

From this, derive the Gaussian heuristic by finding R such that $\frac{\operatorname{vol}(B_n(0,R))}{\det(L)} = 1$.

Hint: the volume of a ball is given by $\operatorname{vol}(B_n(0,r)) = \frac{\pi^{n/2}}{\Gamma(1+n/2)}r^n$ and you may use Stirling's approximation $x! := \Gamma(x+1) = (2\pi)^{1/2}x^{x+\frac{1}{2}}e^{-x}(1+\mathcal{O}(x^{-1}))$ since x=n/2 is large here.

PROGRAMMING EXERCISES

P 12.1

- a) Implement Gram-Schmidt reduction algorithm on SAGE.
- b) Implement the LLL algorithm on SAGE as seen in class.

Test it on the lattices with \mathbb{Z} -basis [(512, 1024), (271, 512)] and [(314, 159, 265), (-27, 18, 28), (0, 1, 7)] respectively (and compare your results with SAGE pre-implemented LLL function⁵).

Hint: in SAGE, you may use vector([x0, x1]), which allows you to use the $methods\ v.inner_product(w)$, (or even v * w) and v.norm(), etc.

⁴This does not stand as a proof, since we did not even defined what we mean by "random" lattice here; this would require an important theorem proved by C. L. Siegel.

⁵Apparently SAGE only supports lattices $L \subset \mathbb{Q}^n$, while in principle LLL works fine for any lattice $L \subset \mathbb{R}^n$.

P 12.2 As seen in class, we can apply lattice reduction algorithms (as LLL) to a question in arithmetic. Given a prime number $p \equiv 1 \pmod{4}$, it is known that there are integers $a, b \in \mathbb{Z}$ such that $p = a^2 + b^2$ (Fermat's two squares theorem).

First, we find⁶ $\alpha \in \mathbb{Z}$ such that $\alpha^2 \equiv -1 \pmod{p}$ and then we consider the lattice $L = \langle (p,0), (\alpha,1) \rangle$.

By running the LLL algorithm on L, find integers a, b such that $p = a^2 + b^2$ where $p = 10^{100} + 949$.

⁶The existence of α follows from exercise T10.1. You may use a SAGE function to find α (it runs in time polynomial in $\log(p)$).