DYDAKTYCZNE LABORATORIUM FIZYKI UNIWERSYTET RADOMSKI

im. Kazimierza Pułaskiego w Radomiu

Wydział: WTEiI

Kierunek: Informatyka

Rok Akademicki: 2024/2025

Semestr: II

Grupa: 3

Zespół: 2

Data: 11.03.2025

Prowadzący ćwiczenie: dr B. Winiarska

Nr ćwiczenia: 2

Temat ćwiczenia:

Siły Sprężyste (Współczynik Sprężystości)

Wykonujący ćwiczenie:

- Jakub Oleszczuk
- Mikołaj Majewski
- Mateusz Ofiara

Oceny:

1. 2. 3.

Wstęp

Celem ćwiczenia było zbadanie zależności między masą zawieszonego ciężarka a wydłużeniem sprężyny. Wykorzystano dwie metody pomiarowe: Metodę A, polegającą na pomiarze długości sprężyny przy różnych masach, oraz Metodę B, polegającą na pomiarze okresu drgań wahadła z różnymi masami.

Teoria

Ruch drgający harmoniczny to szczególny przypadek ruchu okresowego, w którym wychylenie ciała z położenia równowagi zmienia się zgodnie z funkcją sinusoidalną:

$$x(t) = A \cdot \sin(\omega t + \varphi_0) \tag{1}$$

gdzie:

- x(t) wychylenie w czasie t,
- A amplituda drgań,
- ω częstość kołowa drgań,
- φ_0 faza początkowa.

Częstość drgań ω dla układu masa–sprężyna wynosi:

$$\omega = \sqrt{\frac{k}{m}} \tag{2}$$

Okres drgań:

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{3}$$

gdzie:

- m masa obciążnika,
- k współczynnik sprężystości sprężyny.

W praktyce uwzględniamy również masę sprężyny m_s , co prowadzi do modyfikacji wzoru:

$$T = 2\pi \sqrt{\frac{m + m_s/3}{k}} \tag{4}$$

Zgodnie z prawem Hooke'a, siła sprężystości:

$$F = k \cdot x \tag{5}$$

a współczynnik sprężystości można wyrazić jako:

$$k = \frac{F}{\Delta x} \tag{6}$$

W przypadku równowagi statycznej (Metoda A), zależność między długością sprężyny L a masą obciążnika m opisuje wzór:

$$L = \frac{g}{k} \cdot m + L_0 \tag{7}$$

co odpowiada równaniu prostej $Y = A \cdot X + B$, gdzie $A = \frac{g}{k}$, $B = L_0$.

Opis Metod

Metoda A - statyczna

Polega na pomiarze długości sprężyny L w stanie równowagi statycznej po zawieszeniu obciążników o różnych masach m. Znając siłę ciężkości $F=m\cdot g$ oraz odpowiadające jej wydłużenie $\Delta L=L-L_0$, wyznaczamy współczynnik sprężystości k z równania:

$$k = \frac{g}{A}$$

gdzie A to współczynnik kierunkowy prostej regresji L(m).

Metoda B – dynamiczna

W tej metodzie wyznacza się okres drgań harmonicznych T układu masa—sprężyna po wprawieniu go w ruch. Wzór uwzględniający masę sprężyny:

$$T = 2\pi \sqrt{\frac{m + m_s/3}{k}}$$

Stąd wyznaczamy k:

$$k = \frac{4\pi^2(m + m_s/3)}{T^2}$$

Dla każdego pomiaru okresu drgań i znanej masy obciążnika obliczamy osobną wartość k, a następnie wyznaczamy wartość średnią i niepewność.

Dane Pomiarowe i Pomiary

Masy ciężarków do Metody A

- Masa 1: $m = 0.051 \,\mathrm{kg}$
- Masa 2: $m = 0.050 \,\mathrm{kg}$
- Masa 3: $m = 0.050 \,\mathrm{kg}$
- Masa 4: $m = 0.049 \,\mathrm{kg}$
- Masa 5: $m = 0.050 \,\mathrm{kg}$

Tabela pomiarów Metodą A:

L.p.	M [kg]	L [m]
1	0,0507	0,27
2	0,101	0,29
3	0,151	0,315
4	0,201	0,335
5	$0,\!252$	0,36

Masy ciężarków do Metody B

• Masa 1: $m = 0.117 \,\mathrm{kg}$

• Masa 2: $m = 0.065 \,\mathrm{kg}$

• Masa 3: $m = 0.099 \,\mathrm{kg}$

Tabela pomiarów Metodą B:

L.p.	M [kg]	t1 [s]	t2 [s]	T [s]
1	0,117	8,59	8,83	0,435
2	0,064	7,44	7,08	0,363
3	0,099	8,26	8,48	0,418

Wykres

Rysunek 1: Wykres zależności długości od masy dla Metody A

Rysunek 2: Wykres zależności okresu od masy dla Metody B

Wyniki Pomiarów

Metoda A

- Nachylenie (a): $0.4483 \,\mathrm{m/kg}$
- Przecięcie (b): 0.2463 m
- Niepewność standardowa u(a): 0.0012 m/kg
- Niepewność standardowa u(b): 0.0012 m
- Stała sprężyny $k = 21,881 \,\mathrm{N/m}$
- Niepewność stałej sprężyny $u(k) = 0.057 \,\mathrm{N/m}$
- Długość początkowa $L_0=0.2200\,\mathrm{m}$ nie odpowiada przecięciu $y~b=0.2463\,\mathrm{m}$

Metoda B

- Nachylenie (a): 1.3982 s/kg
- Przecięcie (b): 0.2744 s
- Niepewność standardowa u(a): 0.0041 s/kg
- Niepewność standardowa u(b): 0.0041 s
- Średnia arytmetyczna stałej sprężyny $k = 22.0712 \,\mathrm{N/kg}$
- Odchylenie standardowe stałej sprężyny: 2.0826 N/kg

Analiza Błędów

Powstałe błędy mogą wynikać z kilku czynników, takich jak:

- niedokładność pomiaru długości,
- błędy w odczycie czasu,
- nieprecyzyjne umiejscowienie ciężarków na wahadle,
- wpływ tarcia na ruch wahadła.
- niepewność pomiaru masy ciężarków.
- niepewność pomiaru długości sprężyny.

Obliczenia

Obliczenia: W celu obliczenia współczynnika sprężystości k dla sprężyny, należy dopasować prostą do danych pomiarowych. W tym celu można użyć metody najmniejszych kwadratów. Współczynniki regresji liniowej A i B można obliczyć z następujących wzorów:

$$A = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sum (X_i - \bar{X})^2}$$
$$B = \bar{Y} - A \cdot \bar{X}$$

gdzie:

- X_i masa ciężarka,
- Y_i długość sprężyny,
- \bar{X} średnia masa ciężarka,
- \bar{Y} średnia długość sprężyny.
- u(a) niepewność nachylenia,
- u(b) niepewność przecięcia wykresu.

$$T = 2\pi \sqrt{\frac{m + m_s/3}{k}}$$
$$k = \frac{4\pi^2}{T^2} \cdot (m + m_s/3)$$

gdzie:

- T okres drgań,
- m masa ciężarka,
- m_s masa sprężyny.
- k współczynnik sprężystości.

Wnioski

Sprawdzono zgodność obu metod poprzez porównanie przedziałów ufności:

$$\langle k_A - 2u(k_A), k_A + 2u(k_A) \rangle$$
 i $\langle k_B - 2u(k_B), k_B + 2u(k_B) \rangle$

Ponieważ przedziały te mają część wspólną, można uznać, że wyniki metod A i B są zgodne w granicach niepewności pomiarowych.

Przeprowadzone doświadczenie pozwoliło na empiryczne wyznaczenie współczynnika sprężystości sprężyny spiralnej przy użyciu dwóch niezależnych metod: statycznej oraz dynamicznej. Obie metody wykazały zbliżone wartości wyznaczanego parametru, co potwierdza spójność otrzymanych wyników oraz poprawność założeń teoretycznych. Otrzymane różnice mieszczą się w granicach niepewności pomiarowych i mogą wynikać z niedokładności pomiarowych, takich jak opóźnienie reakcji podczas pomiaru czasu, nieidealne warunki laboratoryjne czy odchylenia w kształcie sprężyny.

Zastosowanie dwóch metod pomiarowych umożliwiło również ocenę dokładności i czułości każdej z nich. Metoda statyczna wykazała się większą stabilnością wyników, podczas gdy metoda dynamiczna okazała się bardziej podatna na czynniki zewnętrzne. Niemniej jednak, oba podejścia prowadzą do wartości współczynnika sprężystości pozostających w dobrej zgodności z teorią i oczekiwaniami.

Badanie to stanowi dobrą ilustrację praktycznego zastosowania prawa Hooke'a oraz zasad dynamiki Newtona w układach sprężystych, a także potwierdza zasadność stosowania analizy regresji liniowej w obliczeniach eksperymentalnych.

Podsumowanie

W ćwiczeniu zbadano zależność między masą zawieszonego ciężarka a wydłużeniem sprężyny oraz okresem drgań wahadła. Przeprowadzone pomiary i obliczenia pozwoliły na wyznaczenie współczynnika sprężystości dla sprężyny oraz okresu drgań wahadła.