

UiO • Fysisk institutt
Det matematisk-naturvitenskapelige fakultet

Application of Supervised Machine Learning to the Search for New Physics in ATLAS data

A Study of Ordinary Dense, Parameterized and Ensemble Networks and their Application to High Energy Physics

William Hirst

May 20, 2023

Outline

- 1 Overview
- 2 Introduction & Motivation
- 3 The Implementation
- 4 Methods & Results
- 5 Conclusion & Outlook
- 6 References

Outline

- 1 Overview
- 2 Introduction & Motivation
- 3 The Implementation
- 4 Methods & Results
- 5 Conclusion & Outlook
- 6 References

Why apply machine learning to HEP problems?

How do we search for new physics?

Outline

- 1 Overview
- 2 Introduction & Motivation
- 3 The Implementation
- 4 Methods & Results
- 5 Conclusion & Outlook
- 6 References

A summary of the applied methods

Three neural network variants

- Ordinary dense neural network
- Ensemble networks utilizing Local-Winner-Takes-All (LWTA) layers
- Parameterized neural networks (PNN)

One boosted decision tree method

XGBoost using default settings

How are the methods compared?

Training strategy

Mass combinations of the chargino-neutralino pair

- Full signal grid
 - 89 mass combinations
- Original signal set: white corners
 - 30 mass combinations
- The smaller the masses, the larger the contribution

Outline

- 1 Overview
- 2 Introduction & Motivation
- 3 The Implementation
- 4 Methods & Results
- 5 Conclusion & Outlook
- 6 References

An introduction and study of each method

Ordinary dense neural network

Ensemble methods - LWTA

- Dropout
- What is LWTA?
- Competing nodes Units
- Encode information in pattern specific pathways

Channel-Out, SCO and Maxout

Layer	Separate Weights & Biases	Static Units
Channel-Out	Yes	Yes
SCO	<i>Yes</i>	No
Maxout	No	Yes

Visualization and study of sparse pathways

- A study of the implementation and effect of LWTA layers
- Visualize the activation and paths of 100 randomly sampled events
 - 50 background
 - 50 signal
- The bolder the line the more frequently the path is used.

Before training

After training

Background

Signal

Comparing activation of Maxout with SCO

Maxout

SCO

Ensemble network architecture

Comparing sensitivity of channel-out, SCO and maxout

- Maxout: 23/30
- SCO: 7/30
 - No trend for preferred masses
 - Possibly improve without layer on prediction

Parameterized neural network

- For diverse data set, X, dependent on a parameter, $X(\theta)$
 - Classical approach: One model for each parameter
 - PNN approach: Include θ as feature in feature set
- Signal events using masses $\{A, B\}_{GeV}$ to generate event during simulation will include the parameters A and B in feature set
- Background assigned parameters randomly using same distribution as signal
- Motivation
 - Network will associate parameters with trends in the data

PNN architecture

Study the effect of the parameters in the PNN

- Study if the parameters effect the training as intended
- Test: Manually assign all the events, both background and signal, the same parameters (mass combinations) thereby assigning most of the signal the wrong parameters
- Hypothesis: PNN performs better when events are assigned correct parameters
- First test: All events are given parameters {50,250}_{GeV}
- Second test: All events are given parameters {200,300}_{GeV}

Efficiency table

Channel Parameters	(50, 250)	(100, 200)	(150, 300)	(200, 300)
(50, 250)	80.8%	45.8%	77.5%	50.1%
(200, 300)	77.3%	54.6%	76.3%	59.0%

Boosted decision trees - XGBoost

Sensitivity grid

Comparing the sensitivity on a subset of the signal

Increasing sensitivity through a PCA

- What is PCA?
- Dimensionality reduction
- Creates new features using linear combination of original features
- Ranks from most to least variance
- This analysis
 - Demand conservation of 99.9% of variance/spread
 - 5 features removed

Compare methods with and without PCA

Comparing the methods to previous analysis

- Compare the expected limits of three best models to analysis made by ATLAS in 2021 [1]
- Introduce flat uncertainty for realistic comparison (20%, 10%, < 1%)
- Include top performing methods
 - Maxout model with PCA
 - PNN with PCA
 - Ordinary dense neural network withou PCA

Outline

- 1 Overview
- 2 Introduction & Motivation
- 3 The Implementation
- 4 Methods & Results
- 5 Conclusion & Outlook
- 6 References

References I

ATLAS Collaboration.

'Search for chargino–neutralino pair production in final states with three leptons and missing transverse momentum in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector'.

http://arxiv.org/abs/2106.01676

UiO: Fysisk institutt

Det matematisk-naturvitenskapelige fakultet

Application of Supervised Machine Learning to the Search for New Physics in ATLAS data A Study of Ordinary Dense, Parameterized and Ensemble Networks and their Application to High Energy Physics