

LU3EE104 : Réseaux électriques et Electronique de puissance

VII. PERTES DANS LES COMPOSANTS ET CALCULS THERMIQUES

Pertes dans les composants et calculs thermiques

- Pertes par conduction, pertes par commutation
- Pertes dans une cellule de commutation
- Notions de thermique
- Dimensionnement d'un dissipateur

Ouvrage de référence : Electronique de puissance, 2^e édition - Luc Lasne Editions Dunod - ISBN 978-2-10-072135-1

Les interrupteurs ne sont pas parfaits

- Commutation non instantanée
- Tension résiduelle à l'état passant

[Figure extraite de « Electronique de puissance », 2e édition - Luc Lasne]

Exemple de signaux mesurés

Ex : hacheur BUCK sur charge I parfaitement lissée

A chaque instant :

- $i_{K1}(t) = I i_D(t)$
- $v_{K1}(t) = V + v_D(t)$

Les dynamiques de i_D et v_D contrôlent celles de i_{K1} et v_{K1} .

[Figure extraite de « Electronique de puissance », 2^e édition - Luc Lasne]

Ex: hacheur BUCK

Transistor

A chaque instant :

- $i_{K1}(t) = I i_D(t)$
- $v_{K1}(t) = V + v_D(t)$

[Figure extraite de « Electronique de puissance », 2^e édition - Luc Lasne]

Pertes dans le transistor

Ex: hacheur BUCK

A chaque instant :

•
$$i_{K1}(t) = I - i_D(t)$$

•
$$v_{K1}(t) = V + v_D(t)$$

[Figure extraite de « Electronique de puissance », 2º édition - Luc Lasne]

Pertes dans le transistor

Ex: hacheur BUCK

Diode

Transistor

Conséquence : 1) vK1 s'établit

Pertes dans le transistor

A chaque instant :

•
$$i_{K1}(t) = I - i_D(t)$$

• $v_{K1}(t) = V + v_D(t)$

[Figure extraite de « Electronique de puissance », 2º édition - Luc Lasne]

VKIon I

Ex: hacheur BUCK

Diode

Transistor

Conséquence : 2) iK1 passe à 0

Pertes dans le transistor

A chaque instant :

•
$$i_{K1}(t) = I - i_D(t)$$

• $v_{K1}(t) = V + v_D(t)$

[Figure extraite de « Electronique de puissance », 2º édition - Luc Lasne]

VKIon I

Ex: hacheur BUCK

A chaque instant :

- $i_{K1}(t) = I i_D(t)$
- $v_{K1}(t) = V + v_D(t)$

[Figure extraite de « Electronique de puissance », 2º édition - Luc Lasne]

Pertes dans le transistor

Ex: hacheur BUCK

Diode

Transistor

Conséquence : 2) iK1 s'établit

Pertes dans le transistor

A chaque instant :

•
$$i_{K1}(t) = I - i_D(t)$$

• $v_{K1}(t) = V + v_D(t)$

[Figure extraite de « Electronique de puissance », 2º édition - Luc Lasne]

VKIon I

Ex: hacheur BUCK

Transistor

Diode

Conséquence : 1) vK1 passe à 0

Pertes dans le transistor

A chaque instant :

•
$$i_{K1}(t) = I - i_D(t)$$

• $v_{K1}(t) = V + v_D(t)$

[Figure extraite de « Electronique de puissance », 2º édition - Luc Lasne]

VKIon I

Ex: hacheur BUCK

A chaque instant :

- $i_{K1}(t) = I i_D(t)$
- $v_{K1}(t) = V + v_D(t)$

[Figure extraite de « Electronique de puissance », 2º édition - Luc Lasne]

Pertes dans le transistor

Ex: hacheur BUCK

BILAN:

Pertes dans la cellule :

- Par commutation : transistor uniquement

$$W_{com} = \frac{1}{2}.V.I.(t_{on} + t_{off})$$

$$P_{com} = f.W_{com}$$

- Par conduction: transistor et diode

$$P_{cond} = V_{K1-ON}.\langle i_{k1} \rangle + V_{D-ON}.\langle i_{D} \rangle$$

- Calcul à partir des datasheets

[Figure extraite de « Electronique de puissance », 2º édition - Luc Lasne]

Dissipation thermique dans les composants

Composant de puissance monté sur un radiateur

Pertes = puissance thermique => ça chauffe!

Transistor en boîtier plastique et dissipateur adapté ; le transistor est accolé au dissipateur grâce à la vis

Notions de thermique générale

Température :

 Mesure du degré d'agitation thermique des atomes et molécules d'un corps, et donc de l'énergie interne

Chaleur ou « énergie thermique »

 Deux corps de températures différentes échangent de l'énergie thermique, appelée chaleur, avec 3 phénomènes possibles.

Conduction thermique

Notion de flux Φ ou de puissance thermique P_{th} :

- Soit une surface isotherme S traversée par l'énergie thermique Q
- On définit le flux (ou puissance thermique) par : $\Phi = P_{th} = \frac{dQ}{dt}$ [W]

Loi de Fourier:

- L'énergie thermique va « du chaud vers le froid »
- \circ λ : conductivité thermique et \vec{J} : densité surfacique de flux thermique
- Equation du phénomène de conduction : $\vec{J} = -\lambda$. $\overrightarrow{grad}T$

Résistance thermique

Conduction unidirectionnelle:

 R_{th} : résistance thermique

Capacité thermique

Capacité thermique d'un corps :

- Aptitude à stocker de l'énergie thermique Q
- On définit la capacité thermique par : $C_{th} = \frac{dQ}{dT}$ $\left[\frac{J}{K}\right]$ (relation entre l'énergie stockée et l'élévation de température associée)
- Lien avec la puissance thermique :

$$C_{th} = \frac{dQ}{dt} \cdot \frac{dt}{dT}$$
 \Rightarrow $P_{th \, stock\'ee} = C_{th} \cdot \frac{dT}{dt}$

Puissance thermique

Variation de température

Equation d'évolution de la température

Situation:

- Corps de capacité C_{th} , contenant une source de chaleur P_{th}
- \circ Échange par conduction avec l'environnement de température T_{amb}
- Température du corps T ?

□Équation de bilan thermique :

$$P_{th} = C_{th} \cdot \frac{dT}{dt} + \frac{1}{R_{th}} \cdot (T - T_{amb})$$
stockée évacuée

En régime permanent : $P_{th} = \frac{1}{R_{th}}$. $(T - T_{amb})$, d'où : $T = T_{amb} + R_{th}$. P_{th}

Dissipation thermique dans les composants

[extrait de « Electronique de puissance », 2^e édition - Luc Lasne]

Hacheur BUCK:

- Fd = 100 kHz
- $\alpha = 0.5$

Données constructeur

- VD-ON = 0.7 V
- RK-ON = 0,052 W
- tON = 47 ns et tOFF = 77 ns
- Rboitier = 2,8 °C/W
- TA =25°C
- On veut TJ < 100°C, que doit valoir Rradiateur?

[extrait de « Electronique de puissance », 2^e édition - Luc Lasne]

Hacheur BUCK:

- \circ Fd = 100 kHz
- $\alpha = 0.5$

Données constructeur

- VD-ON = 0.7 V
- RK-ON = 0,052 W
- tON = 47 ns et tOFF = 77 ns
- Rboitier = 2,8 °C/W
- TA =25°C
- On veut TJ < 100°C

Pertes par conduction dans la diode :
$$P_{cond} = V_{D-ON} \times i_D \times \alpha$$

$$P_{cond} = V_{D-ON} \times i_D \times \alpha$$

$$P_{cond} = 0.7 \times 10 \times 0.5$$

$$P_{cond} = 3.5 W$$

[extrait de « Electronique de puissance », 2^e édition - Luc Lasne]

Hacheur BUCK:

- Fd = 100 kHz
- $\alpha = 0.5$

Données constructeur

- VD-ON = 0.7 V
- RK-ON = 0,052 W
- tON = 47 ns et tOFF = 77 ns
- Rboitier = 2,8 °C/W
- TA =25°C
- On yeut TJ < 100°C

Pertes par conduction dans le transistor:

$$P_{cond} = R_{K-ON} \times i_T^2 \times \alpha$$

 $P_{cond} = 0.052 \times 10^2 \times 0.5$
 $P_{cond} = 2.6 W$

[extrait de « Electronique de puissance », 2^e édition - Luc Lasne]

Hacheur BUCK:

- Fd = 100 kHz
- $\alpha = 0.5$

Données constructeur

- VD-ON = 0.7 V
- RK-ON = 0,052 W
- tON = 47 ns et tOFF = 77 ns
- Rboitier = 2,8 °C/W
- TA =25°C
- On yeut TJ < 100°C

Pertes par commutation dans le transistor:

$$\begin{aligned} P_{com} &= \frac{1}{2} v_T i_T \times (t_{ON} + t_{OFF}) \times f \\ P_{com} &= \frac{1}{2} 50 \times 10 \times (47 + 77) \times 10^{-9} \times 10^5 \\ P_{com} &= 3.1 \ W \end{aligned}$$

[extrait de « Electronique de puissance », 2^e édition - Luc Lasne]

Hacheur BUCK:

- Fd = 100 kHz
- $\alpha = 0.5$

Données constructeur

- VD-ON = 0.7 V
- RK-ON = 0,052 W
- tON = 47 ns et tOFF = 77 ns
- Rboitier = 2,8 °C/W
- TA =25°C
- On yeut TJ < 100°C

Pertes totales:

$$P_{total} = P_{com} + P_{cond}$$

 $P_{total} = 3.5 + 2.6 + 3.1 = 9.2 W$

[extrait de « Electronique de puissance », 2^e édition - Luc Lasne]

Hacheur BUCK:

- Fd = 100 kHz
- $\alpha = 0.5$

Données constructeur

- VD-ON = 0.7 V
- RK-ON = 0,052 W
- tON = 47 ns et tOFF = 77 ns
- Rboitier = 2,8 °C/W
- TA =25°C
- On veut TJ < 100°C

Relation température/puissance:

$$T_J - T_A = R_{th} \times P_{totale}$$
 On Veut: $T_J < 100^{\circ}C$, donc $R_{th} < \frac{100 - T_A}{P_{totale}}$

Par ailleurs $R_{th} \approx R_{boitier} + R_{radiateur}$

Il faut donc:
$$R_{radiateur} < \frac{100-25}{9,2} - 2,8$$

 $\Rightarrow R_{radiateur} < 5,3 °C/W$