History

Type	Author	Citation	Literature Cutoff Date
Full Evaluation	G. Gürdal, E. A. Mccutchan	NDS 136, 1 (2016)	1-Jul-2016

 $Q(\beta^{-})=-10504\ 15$; $S(n)=13566.5\ 22$; $S(p)=6.11\times10^{3}\ 3$; $Q(\alpha)=-2748\ 3$ S(2n)=23883.1 17, S(2p)=9529.0 25 (2012Wa38).

⁷⁰Se <u>Levels</u>

Cross Reference (XREF) Flags

		A B C D	⁷⁰ Br ε de ⁹ Be(⁷⁰ Se	ecay (79.1 ms) E ${}^{40}\text{Ca}({}^{36}\text{Ar},\alpha 2\text{p}\gamma), {}^{58}\text{Ni}({}^{14}\text{N},\text{pn}\gamma)$ ecay (2.2 s) F ${}^{58}\text{Ni}({}^{14}\text{N},\text{pn}\gamma), {}^{60}\text{Ni}({}^{12}\text{C},2\text{n}\gamma)$ e, ${}^{70}\text{Se}'\gamma)$ G Coulomb excitation
E(level) [†]	\mathbf{J}^{π}	T _{1/2} ‡	XREF	Comments
0.0	0+	41.1 min <i>3</i>	ABCDEFG	$\%\varepsilon + \%\beta^{+} = 100$ T _{1/2} : from 1974Te04.
944.52 ^{&} 5	2+	2.23 ps <i>14</i>	BCDEFG	Q=+ (2007Hu03) T _{1/2} : from weighted average of 2.27 ps 26 (2014Ni09) and 2.22 ps 14 (2008Lj01) using recoil distance Doppler shift method. Others: 1.0 ps 2 from recoil distance Doppler shift method (1986He17) and 1.1 ps 3 (1975GuYV). J ^π : from 944.51γ E2 to 0 ⁺ . Q: from nuclear reorientation effect in Coulomb excitation (2007Hu03).
1599.9 ^a 3	2+	3.3 [#] ps 9	BCDEF	 T_{1/2}: Other: < 5.2 ps effective half-life from recoil distance Doppler shift method (2014Ni09). J^π: from 1600.1γ E2 to 0⁺.
2010.3 3	(0 ⁺)		EF	J^{π} : from 1000.1 γ E2 to 0°. J^{π} : (0 ⁺) from 1065.8 γ Q to 2 ⁺ in 1981Ah03. Authors tentatively assigned (0 ⁺) for this level based on isotropic angular distribution. Other: (0 ⁺) in 1980Wa19, based on the isotropic angular distribution.
2038.8 5	4+	0.97 ps 7	BCDEF	T _{1/2} : Others: < 3.3 ps, effective half-life from recoil distance Doppler shift method (2014Ni09) and 1.0 ps (1986He17) using recoil distance Doppler shift method deduced from singles data and 2.3 ps <i>6</i> (1975GuYV). J ^π : from 1094.4γ E2 to 2 ⁺ ; assumed E2 cascade member.
2382.5 ^a 4 2518.6 6	4 ⁺ 3 ⁽⁻⁾	<12 [@] ps <1.7 ps	B DEF CDEF	 J^π: from 782.6γ E2 to 2+; 1438.1γ E2 to 2+; assumed E2 cascade member. T_{1/2}: upper limit from effective half-life of 1.29 ps 40 from recoil distance Doppler shift method (2014Ni09). Other: 4.2 ps 6 using recoil distance Doppler shift method (1986He17) using singles data. J^π: from 1574.1γ D to 2+; 868.8γ from 5
2553.1 <i>10</i> 3003.2 ^{&} 5	6+	1.32 ps <i>21</i>	E B DEF	J^{π} : (4+) proposed in 40 Ca(36 Ar, α 2p γ), 58 Ni(14 N,pn γ). T _{1/2} : other: 2.7 ps 6 from recoil distance Doppler shift method, deduced using
2422 6 2				singles (1986He17). J^{π} : from 964.39 γ E2 to 4 ⁺ ; assumed E2 cascade member.
3139.6 <i>3</i> 3218.4 ^{<i>a</i>} <i>6</i> 3356.4 <i>11</i>	(6 ⁺)		F D E	J^{π} : from 835.9 γ to 4 ⁺ ; assumed E2 cascade member.
3387.4 5	5-	6.1 [#] ps 17	DEF	J^{π} : from 528 γ E2 from 7 ⁻ , 1348.6 γ to 4 ⁺ .
3524.1 <i>6</i> 3644 <i>10</i> 3788.9 <i>6</i>	(5 ⁻)	<9 [@] ps	DEF B DE DEF	J^{π} : from 1005.5 γ (E2) to 3 ⁽⁻⁾ ; 1485.2 γ (E1) to 4 ⁺ . Other: (4) in 1981Ah03. J^{π} : (6 ⁺) proposed in ⁴⁰ Ca(³⁶ Ar, α 2p γ), ⁵⁸ Ni(¹⁴ N,pn γ). J^{π} : J from D+Q 264.8 γ to (5 ⁻), π from systematics in 1980Wa19. Other: (5) in 1981Ah03.
3915.4 ^c 5 4037.6 ^{&} 5	7 ⁻ 8 ⁺	<15 [@] ps <4 [@] ps	B DEF B DEF	J^{π} : from 912.2 γ E1 to 6 ⁺ , 691.5 γ from 8 ⁺ . J^{π} : from 1034.4 γ E2 to 6 ⁺ ; assumed E2 cascade member.

E(level) [†]	J^{π}	T _{1/2} ‡	XREF	Comments
4187.4 ^a 8	(8 ⁺)		D	J^{π} : from 969.0 γ to (6 ⁺); assumed E2 cascade member.
4324.5 9			E	
4410.7 6	0+		DE	17 (0 ot) 6 P(DGO): 40G (364 - 2) 58N; (14N) 1603 7 + 6t
4607.0 ^b 6 4896.7 ^d 6	8+		B DE	J^{π} : (8,9 ⁺) from R(DCO) in 40 Ca(36 Ar, α 2p γ), 58 Ni(14 N,pn γ), 1603.7 γ to 6 ⁺ .
4955.0 12	(9-)		DE B E	J ^{π} : from 981.3 γ to 7 ⁻ ; 468.0 γ to (8 ⁻); assumed E2 cascade member. J ^{π} : (9) from 348.0 γ to 8 ⁺ suggested in ε decay (2000Pi15) but the placement of the γ transition is uncertain.
5205.8 ^{&} 5	(10^{+})		B DE	J^{π} : from 1168.12 γ to 8 ⁺ ; assumed E2 cascade member.
5209.1° 6	(9^{-})		DE	J^{π} : from 1293.6y to 7 ⁻ ; assumed E2 cascade member.
5308.1 ^a 10 5693.2 ^b 6	(10^+)		D D DE	J^{π} : from 1120 γ to (8 ⁺); assumed E2 cascade member.
5805.5 ^d 6	(10^+)		B DE	J^{π} : from 1086.2 γ to 8 ⁺ ; assumed E2 cascade member.
6017.0 <i>15</i>	(11^{-})		DE B E	J^{π} : from 908.7 γ to (9 ⁻); assumed E2 cascade member.
6490.0° 6	(11^{-})		DE	J^{π} : from 1280.9 γ to (9 ⁻); assumed E2 cascade member.
6510.2 ^{&} 5	(12^{+})		DE	J^{π} : from 1304.45 γ to (10 ⁺); assumed E2 cascade member.
6602 ^a 5	(12^{+})		D	J^{π} : from 1294 γ to (10 ⁺); assumed E2 cascade member.
6873.0 ^d 6	(13^{-})		DE	J^{π} : from 1967.5 γ to (11 ⁻); assumed E2 cascade member.
6956.9 ^b 6	(12^+)		DE	J^{π} : from 1263.6 γ to (10 ⁺); assumed E2 cascade member.
7305.8 9	(13-)	1.6 ns 2	Е	$T_{1/2}$: quoted by 1989My01; generalized centroid-shift method. J^{π} : from 796.5 γ to 12 ⁺ ; 348.0 γ to (12 ⁺); proposed based on Weisskopf estimates in 1989My01.
7554.0 ^c 7	(13^{-})		D	J^{π} : from 1064.0 γ to (11 ⁻); assumed E2 cascade member.
7940.8 & <i>5</i>	(14^{+})		DE	J^{π} : from 1430.6 γ to 12 ⁺ ; assumed E2 cascade member.
8017.7 ^d 7	(15^{-})		D	J^{π} : from 1144.7 γ to (13 ⁻); assumed E2 cascade member.
8029 ^a 5	(14^{+})		D	J^{π} : from 1427.2 γ to (12 ⁺); assumed E2 cascade member.
8316.3 ^b 6 8349.5 <i>13</i>	(14^{+})		D E	J^{π} : from 1359.4 γ to (12 ⁺); assumed E2 cascade member.
8771.8 ^c 8	(15^{-})		D	J^{π} : from 1217.8 γ to (13 ⁻); assumed E2 cascade member.
9430.3 ^b 6	(16^{+})		D	J^{π} : from 1114.0 γ to (14 ⁺); assumed E2 cascade member.
9496.2 ^{&} 6	(16^{+})		DE	J^{π} : from 1555.3 γ to (14 ⁺); assumed E2 cascade member.
9624.1 ^d 7	(17^{-})		D	J^{π} : from 1606.4 γ to (15 ⁻); assumed E2 cascade member.
10084.1° 8	(17 ⁻)		D	J^{π} : from 1312.3 γ to (15 ⁻); assumed E2 cascade member.
10646.2 ^b 6 11120.5 9	(18^{+})		D D	J^{π} : from 1215.9 γ to 16 ⁺ ; assumed E2 cascade member.
11268.5 <mark>&</mark> <i>11</i>	(18^{+})		D	J^{π} : from 1772.3 γ to (16 ⁺); assumed E2 cascade member.
11532.2 ^d 10	(19^{-})		D	J^{π} : from 1908.1 γ to (17 ⁻); assumed E2 cascade member.
11778.5° 12	(19 ⁻)		D	J^{π} : from 1694.4 γ to (17 ⁻); assumed E2 cascade member.
12267.7 ^b 7	(20^+)		D	J^{π} : from 1621.5 γ to (18 ⁺); assumed E2 cascade member.
13160.5 ^{&} 15	(20^+)		D	J^{π} : from 1892 γ to (18 ⁺); assumed E2 cascade member.
13181.4 ^d 11 13727.0 ^c 14	(21^{-})		D	J^{π} : from 1649.2 γ to (19 ⁻); assumed E2 cascade member.
13727.0° 14 14257.7 ^b 11	(21^{-})		D	J^{π} : from 1948.4 γ to (19 ⁻); assumed E2 cascade member.
$14257.7^{\circ}11$ $15251^{d}3$	(22^+) (23^-)		D D	J^{π} : from 1990.0 γ to (20 ⁺); assumed E2 cascade member. J^{π} : from 2070 γ to (21 ⁻); assumed E2 cascade member.
15806 ^c 7	(23^{-})		D D	J^{π} : from 2079 γ to (21 ⁻); assumed E2 cascade member.
16490 ^b 3	(24^{+})		D	J^{π} : from 2232 γ to (22 ⁺); assumed E2 cascade member.
17870 ^d 4	(25^{-})		D	J^{π} : from 2618 γ to (23 ⁻); assumed E2 cascade member.
17966 ^c 7	(25-)		D	J^{π} : from 2160 γ to (23 ⁻); assumed E2 cascade member.

E(level) [†]	J^{π}	XREF	Comments
19218 ^b 5	(26^+)	D	J^{π} : from 2728 γ to (24 ⁺); assumed E2 cascade member.
20246 ^c 8	(27^{-})	D	J^{π} : from 2280 γ to (25 ⁻); assumed E2 cascade member.

[†] From a least-squares fit to E γ 's, by evaluators. Δ E γ =1 keV is assumed when no uncertainty is available.

[‡] From recoil distance Doppler shift method (2008Lj01), unless otherwise noted.

[#] From recoil distance Doppler shift method (1986He17), using singles data.

[®] Effective lifetime from recoil distance method, not corrected for the side feedings (1986He17).

[&]amp; Band(A): g.s. yrast band.

^a Band(B): Band based on 1600, 2⁺.

^b Band(C): Band based on 4607, 8⁺.

^c Band(D): Band based on 3915, 7⁻.

^d Band(E): Band based on 4896, (9⁻).

γ (70Se)

Adopted Levels, Gammas (continued)

E_i (level)	\mathbf{J}_i^{π}	$E_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^π	Mult.&	δ^d	α^{e}	Comments
944.52	2+	944.51 5	100	0.0	0+	E2		4.82×10 ⁻⁴	α (K)=0.000429 6; α (L)=4.50×10 ⁻⁵ 7; α (M)=7.00×10 ⁻⁶ 10; α (N)=5.96×10 ⁻⁷ 9 B(E2)(W.u.)=19.7 13
1599.9	2+	655.1 5	100 <i>21</i>	944.52	2+	M1+E2 ^a	-1.0 +1-2	0.00109 4	$\alpha(K)$ =0.00097 3; $\alpha(L)$ =0.000103 3; $\alpha(M)$ =1.60×10 ⁻⁵ 5; $\alpha(N)$ =1.36×10 ⁻⁶ 4 B(E2)(W.u.)=33 14; B(M1)(W.u.)=0.009 4 δ : Other: 1.4 +2.3–0.6 (1980Wa19).
		1600.1 7	25 5	0.0	0+	E2		2.79×10 ⁻⁴	$\alpha(K)$ =0.0001367 20; $\alpha(L)$ =1.414×10 ⁻⁵ 20; $\alpha(M)$ =2.20×10 ⁻⁶ 3; $\alpha(N)$ =1.88×10 ⁻⁷ 3 B(E2)(W.u.)=0.19 8 Mult.: Q from $\gamma(\theta)$ in ⁵⁸ Ni(¹⁴ N,pn γ), ⁶⁰ Ni(¹² C,2n γ); M2 excluded by comparison to RUL.
2010.3	(0 ⁺)	1065.8 [@] 3	100 [@]	944.52	2+	(E2)		3.63×10^{-4}	$\alpha(K)$ =0.000323 5; $\alpha(L)$ =3.38×10 ⁻⁵ 5; $\alpha(M)$ =5.26×10 ⁻⁶ 8; $\alpha(N)$ =4.48×10 ⁻⁷ 7
2038.8	4+	438.9 5	0.8 7	1599.9	2+	[E2]		0.00415	$\alpha(K)$ =0.00368 6; $\alpha(L)$ =0.000400 6; $\alpha(M)$ =6.21×10 ⁻⁵ 9; $\alpha(N)$ =5.20×10 ⁻⁶ 8 B(E2)(W.u.)=17 15
		1094.4 <i>1</i>	100 3	944.52	2+	E2		3.41×10 ⁻⁴	$\alpha(K)$ =0.000304 5; $\alpha(L)$ =3.18×10 ⁻⁵ 5; $\alpha(M)$ =4.94×10 ⁻⁶ 7; $\alpha(N)$ =4.22×10 ⁻⁷ 6 B(E2)(W.u.)=21.5 18
2382.5	4+	782.6 <i>3</i>	100 12	1599.9	2+	E2 ^b		7.71×10^{-4}	$\alpha(K)$ =0.000687 10; $\alpha(L)$ =7.25×10 ⁻⁵ 11; $\alpha(M)$ =1.128×10 ⁻⁵ 16; $\alpha(N)$ =9.57×10 ⁻⁷ 14 B(E2)(W.u.)>5.2
		1438.1 7	8.×10 ¹ 5	944.52	2+	E2 b		2.54×10 ⁻⁴	$\alpha(K)$ =0.0001692 24; $\alpha(L)$ =1.755×10 ⁻⁵ 25; $\alpha(M)$ =2.73×10 ⁻⁶ 4; $\alpha(N)$ =2.33×10 ⁻⁷ 4 B(E2)(W.u.)>0.20
2518.6	3 ⁽⁻⁾	1574.1 9	100	944.52		D			δ : δ =-0.26 15 (1981Ah03); 0.0 (1980Wa19).
2553.1 3003.2	6+	1608.6 [‡] 620.7 9	100 [#] 3 <i>I</i>	944.52 2382.5		[E2]		1.45×10^{-3}	$\alpha(K)$ =0.001291 19; $\alpha(L)$ =0.0001376 21; $\alpha(M)$ =2.14×10 ⁻⁵ 4; $\alpha(N)$ =1.81×10 ⁻⁶ 3 B(E2)(W.u.)=8 3
		964.39 5	100 4	2038.8	4+	E2		4.58×10 ⁻⁴	$\alpha(K)$ =0.000408 6; $\alpha(L)$ =4.28×10 ⁻⁵ 6; $\alpha(M)$ =6.66×10 ⁻⁶ 10; $\alpha(N)$ =5.67×10 ⁻⁷ 8 B(E2)(W.u.)=29 5
3139.6 3218.4	(6 ⁺)	2195.0 [@] 3 215 5 835.9 4	100 [@] 11 <i>7</i> 100 <i>11</i>	944.52 3003.2 2382.5					
3356.4		973.9 [‡]	100 [#]	2382.5	4+				_
3387.4	5-	868.8 <i>4</i>	57 9	2518.6	3 ⁽⁻⁾	[E2]		5.91×10 ⁻⁴	$\alpha(K)$ =0.000526 8; $\alpha(L)$ =5.54×10 ⁻⁵ 8; $\alpha(M)$ =8.61×10 ⁻⁶ 13; $\alpha(N)$ =7.32×10 ⁻⁷ 11 B(E2)(W.u.)=4.0 14

γ (⁷⁰Se) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	$\alpha^{m{e}}$	Comments
	$\frac{3_i}{5^-}$	$\frac{L_{\gamma}}{1348.6 \ 4}$	$\frac{1\gamma}{100 \ 12}$	$\frac{2038.8}{2038.8} \frac{3_f}{4^+}$	$\frac{\text{E1(+M2)}^{\textit{C}}}{\text{E1(+M2)}^{\textit{C}}}$		δ : +0.12 with large error (1981Ah03); 0.0 (1980Wa19).
3387.4		1348.6 4	22 7	2518.6 3 ⁽⁻⁾	$(E2)^{b}$	4.15×10^{-4}	$\alpha(K)=0.000370 \ 6; \ \alpha(L)=3.87\times10^{-5} \ 6; \ \alpha(M)=6.02\times10^{-6} \ 9;$
3524.1	(5 ⁻)	1005.5 /	22 7	2318.0 3	(E2)°	4.13×10	α (N)=5.13×10 ⁻⁷ 8 B(E2)(W.u.)>0.64
		1485.2 5	100 13	2038.8 4+	(E1) ^C	3.29×10^{-4}	Mult., δ : D+Q, -0.06 +9-2 (1981Ah03). α (K)=8.00×10 ⁻⁵ 12; α (L)=8.22×10 ⁻⁶ 12; α (M)=1.278×10 ⁻⁶ 18; α (N)=1.095×10 ⁻⁷ 16 B(E1)(W.u.)>1.1×10 ⁻⁵
3644		1261 10	100	2382.5 4+			B(E1)(W.u.)>1.1×10
3788.9	(6-)	264.8 3	100	3524.1 (5 ⁻)	D+O		Mult., δ : D+Q, 0.0< δ <3.7 (1980Wa19). Other: Q (1981Ah03).
3915.4	7-	126.6 3	5.7 20	3788.9 (6 ⁻)	DiQ		(17011 mos).
5,161.	,	528.0 2	28.7 20	3387.4 5	E2 ^b	0.00233	$\alpha(K)$ =0.00207 3; $\alpha(L)$ =0.000223 4; $\alpha(M)$ =3.46×10 ⁻⁵ 5; $\alpha(N)$ =2.91×10 ⁻⁶ 4 B(E2)(W.u.)>11
		912.2 <i>I</i>	100 4	3003.2 6 ⁺	E1	2.17×10^{-4}	$\alpha(K)=0.000194 \ 3; \ \alpha(L)=2.00\times10^{-5} \ 3; \ \alpha(M)=3.12\times10^{-6} \ 5; \ \alpha(N)=2.66\times10^{-7} \ 4$ B(E1)(W.u.)>2.6×10 ⁻⁵
							Mult., δ : E1+M2 with δ =-0.15 5 (1981Ah03), however, this results in an M2 strength which exceeds the RUL.
4037.6	8+	1034.4 <i>I</i>	100	3003.2 6 ⁺	E2	3.89×10^{-4}	$\alpha(K)$ =0.000346 5; $\alpha(L)$ =3.62×10 ⁻⁵ 5; $\alpha(M)$ =5.64×10 ⁻⁶ 8; $\alpha(N)$ =4.80×10 ⁻⁷ 7 B(E2)(W.u.)>7.0
							Mult.: Q from R(DCO) in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); M2 excluded by comparison to RUL.
4187.4	(8^{+})	969.0 <i>6</i>	100	$3218.4 (6^+)$			
4324.5		937.0 [‡]		3387.4 5-			
		1321.3 [‡]		3003.2 6 ⁺			
4410.7		495.3 <i>3</i>	100	3915.4 7-			
4607.0	8+	569 2	18 8	4037.6 8 ⁺			
		691.5 6	56 8	3915.4 7			
40067	(0-)	1603.7 6	100 12	3003.2 6 ⁺			
4896.7	(9-)	486.0 <i>3</i> 981.3 2	29 9 100 7	4410.7 3915.4 7 ⁻			
4955.0		348.0 ^{f‡}	100 [#]	4607.0 8 ⁺			
5205.8	(10^+)	1168.12 8	100	4037.6 8+			
5209.1	(9-)	1293.6 <i>3</i>	100	3915.4 7			
5308.1	(10^{+})	1120.7 6	100	4187.4 (8+)			
5693.2	(10^{+})	1086.2 2	100 7	4607.0 8+			
5905 5	(11=)	1655.4 9	41 6	4037.6 8+			
5805.5	(11^{-})	908.7 <i>2</i> 1062.0 [‡]	100 100#	4896.7 (9 ⁻)			
6017.0		1062.0*	100"	4955.0			

S

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$\mathrm{I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	$I_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$
6490.0	(11^{-})	1280.9 2	100	5209.1 (9-)	9624.1	(17^{-})	1606.4 3	100	8017.7 (15-)
6510.2	(12^{+})	1304.45 9	100	5205.8 (10 ⁺)	10084.1	(17^{-})	1312.3 <i>3</i>	100	8771.8 (15 ⁻)
6602	(12^{+})	1294 5	100	5308.1 (10 ⁺)	10646.2	(18^{+})	1215.9 2	100	9430.3 (16+)
6873.0	(13^{-})	1067.5 2	100	5805.5 (11-)	11120.5	, ,	1624.3 <i>6</i>	100	9496.2 (16+)
6956.9	(12^{+})	1263.6 <i>3</i>	100 10	5693.2 (10 ⁺)	11268.5	(18^{+})	1772.3 9	100	9496.2 (16 ⁺)
		1750.9 9	37 5	5205.8 (10 ⁺)	11532.2	(19^{-})	1908.1 7	100	9624.1 (17-)
7305.8	(13^{-})	348.0 f‡		6956.9 (12+)	11778.5	(19^{-})	1694.4 9	100	10084.1 (17-)
		796.5 [‡]		6510.2 (12 ⁺)	12267.7	(20^+)	1621.5 <i>3</i>	100	10646.2 (18+)
7554.0	(13^{-})	1064.0 <i>3</i>	100	6490.0 (11 ⁻)	13160.5	(20^{+})	1892 <i>I</i>	100	11268.5 (18+)
7940.8	(14^{+})	1430.6 <i>I</i>	100	6510.2 (12 ⁺)	13181.4	(21^{-})	1649.2 <i>4</i>	100	11532.2 (19-)
8017.7	(15^{-})	1144.7 2	100	6873.0 (13 ⁻)	13727.0	(21^{-})	1948.4 <i>6</i>	100	11778.5 (19-)
8029	(14^{+})	1427.2 9	100	$6602 (12^+)$	14257.7	(22^{+})	1990.0 9	100	$12267.7 (20^{+})$
8316.3	(14^{+})	1359.4 <i>3</i>	100 8	6956.9 (12+)	15251	(23^{-})	2070 <i>3</i>	100	13181.4 (21-)
		1806.0 <i>6</i>	36 5	6510.2 (12 ⁺)	15806	(23^{-})	2079 7	100	13727.0 (21-)
8349.5		1043.7 [‡]	100 [#]	7305.8 (13 ⁻)	16490	(24^{+})	2232 3	100	$14257.7 (22^{+})$
8771.8	(15^{-})	1217.8 <i>3</i>	100	7554.0 (13-)	17870	(25^{-})	2618 2	100	15251 (23-)
9430.3	(16^{+})	1114.0 <i>3</i>	100 10	8316.3 (14 ⁺)	17966	(25^{-})	2160 2	100	15806 (23-)
		1489.4 <i>3</i>	63 7	7940.8 (14 ⁺)	19218	(26^+)	2728 <i>4</i>	100	16490 (24+)
9496.2	(16^{+})	1555.3 <i>3</i>	100	7940.8 (14 ⁺)	20246	(27^{-})	2280 4	100	$17966 (25^{-})$

[†] From 40 Ca(40 Ca, $^{2}\alpha^{2}$ p γ), unless otherwise noted.

6

[‡] From 40 Ca(36 Ar, α 2p γ).

[#] From ⁴⁰Ca(³⁶Ar,α2pγ). ^(a) From ⁵⁸Ni(¹⁴N,pnγ), ⁶⁰Ni(¹²C,2nγ).

[&]amp; From $\gamma(\theta)$, R_{DCO} and γ -deexcitation pattern in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ) (1981Ah03) or $\gamma(\theta)$ and linear polarization measurements in 60 Ni(12 C,2n γ) (1980Wa19), unless otherwise stated.

a D+Q from $\gamma(\theta)$ in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); $\Delta\pi$ = no from level scheme. b Q from $\gamma(\theta)$ in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); M2 excluded by comparison to RUL. c D+Q (or D) from $\gamma(\theta)$ in 58 Ni(14 N,pn γ), 60 Ni(12 C,2n γ); $\Delta\pi$ = yes from level scheme. d From $\gamma(\theta)$ in 58 Ni(14 N,pn γ) (1981Ah03).

^e Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

^f Multiply placed.

Level Scheme

Intensities: Relative photon branching from each level

 $^{70}_{34}{\rm Se}_{36}$

Level Scheme (continued)

Level Scheme (continued)

	Histor	У	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	D. Abriola(a), A. A. Sonzogni	NDS 111,1 (2010)	1-May-2009

 $Q(\beta^{-})=-8801\ 7;\ S(n)=12793\ 4;\ S(p)=7264\ 5;\ Q(\alpha)=-3314\ 3$ 2012Wa38

Note: Current evaluation has used the following Q record -8799 7 12796 7 7265 5 -3315 7 2009AuZZ.

⁷²Se Lev<u>els</u>

Cross Reference (XREF) Flags

E(level) [†]	J^{π} ‡	T _{1/2} &	XREF	Comments
0^a	0+	8.40 d 8	ABCDEF	%ε=100 T _{1/2} : from 1958Cu91. Other: 9.7 d (1950Ho26).
862.07 ^a 8	2+#	2.82 ps 20	ABCDEF	1/2, 1011 150000 17 0 1101 577 0 (15001020).
937.22 ^b 15	0+#	17.5 ns <i>17</i>	ABCDEF	$T_{1/2}$: unweighted average of delayed coincidence measurements: 19.3 ns 4 from 70 Ge(α ,2n γ) (1974Dr02) and 15.8 ns 10 from 72 Br ε decay (1974Ha04).
1316.68 8	2+	8.7 ps <i>3</i>	AB E	J^{π} : from $\gamma(\theta)$ in (HI,xn γ) and γ to 0^+ .
1636.86 ^a 12 1876.23 17	4 ⁺ (2,4)	2.07 ps <i>16</i>	A C EF A E	J^{π} : stretched E2 γ to 2 ⁺ .
1998.93 ^b 13 2150.1 8	2 ⁺ (2 ⁺)		A EF A	J^{π} : from γ' s to 0^+ and 2^+ , and $\gamma(\theta)$ (HI,xn γ). J^{π} : γ' s to 0^+ , 2^+ , and 4^+ .
2293.69 <i>11</i> 2371.50 <i>21</i>	(2)	<1.0 ps	A E	E(level): may be a doublet: $J^{\pi}=(2)^+$ from γ to 0^+ and log $ft=6.34$ from 3^+ , $J=(3)$ from $\gamma(\theta)$ in (HI,xn γ).
2405.74 21	3-#	<1.0 ps	DE	
2433.76 ^c 10	3 ^{-@}	<1.0 ps	A EF	
2466.77 ^a 15	6+	1.24 ps 8	C EF	J^{π} : stretched E2 γ to 4 ⁺ .
2586.35 <i>16</i>	(3)		A E	
2843	5-#		D	
2929	3-#		D	
2965.75 23			A	
3124.07 <i>21</i>	(4+)		A DE	J^{π} : L(p,t)=4 at 3138 20. γ 's to 2 ⁺ , (3).
3173.20 ^c 12	5-@	<1.0 ps	EF	The state of the s
3213.51 <i>16</i>	$(2^+,3,4^+)$		E	J^{π} : γ' s to (2^+) and (4^+) .
3226.2 <i>3</i> 3232.09 <i>13</i>	$(2,3,4^+)$		A E	J^{π} : γ' s to 2 ⁺ and log ft =6.43 from 3 ⁺ .
3239.3 9			A	
3349.91 <i>13</i> 3382.6 <i>3</i>	5-@	<1.0 ps	DE E	J^{π} : L(p,t)=(5) for E≈3340.
3424.77 ^a 25	8+	0.51 ps 5	EF	J^{π} : stretched E2 γ to 6^+ .
3450	2+#	0.51 ps 5	D	v. steeleled E2 y to v.
3521.95 <i>14</i>	6 ⁻ @	2.9 ps <i>3</i>	E	
3762	4 ^{+#}	2.9 ps 3		
	7 ⁻ @	2.0 2	D	
3769.99 <i>14</i>	•	2.8 ps 2	EF	
3917.25 ^c 15 4092.8 3	7 ^{-@}	0.79 ps <i>17</i>	EF E	

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &	XREF	Comments
4217.7 3			E	
4310	6 ^{+#}		D	
4325.7 4			E	J^{π} : π =– from placement in the band.
4504.3 ^a 3	10 ⁺	0.22 ps 2	EF	J^{π} : stretched E2 γ to 8^{+} .
4713.20 25			E	
4762.83 ^c 19	$(9^{-})^{\textcircled{0}}$	0.59 ps 8	EF	
5709.7 ^a 3	12 ⁺	0.14 ps 2	EF	J^{π} : stretched E2 γ to 10^+ .
5830.8° 9	$(11^{-})^{@}$	0.83 ps 10	EF	
6686.5 9	$(11^{-})^{@}$		EF	
7038.1 ^a 6	14 ⁺	0.097 ps 8	EF	J^{π} : stretched E2 γ to 12 ⁺ .
7041.9 ^c 12	$(13^{-})^{@}$	<0.69 ps	EF	
7190.7 10	$(12^{-})^{\textcircled{a}}$		EF	
7795.7 14	$(13^{-})^{@}$		EF	
8089.7 ^c 12	$(14^{-})^{\textcircled{0}}$		EF	
8495.1 ^a 12	16 ⁺	0.040 ps 7	EF	J^{π} : stretched E2 γ to 14 ⁺ .
10095.1 ^a 15	18 ⁺	0.042 ps 10	EF	J^{π} : stretched E2 γ to 16 ⁺ .
11832.2 ^a 18	20+	0.069 ps <i>14</i>	EF	J^{π} : stretched E2 γ to 18 ⁺ .
13742.2 ^a 21	22+	<0.05 ps	EF	J^{π} : stretched E2 γ to 20 ⁺ .
15896.2 ^a 23	24+	<0.3 ps	EF	J^{π} : stretched E2 γ to 22 ⁺ .
18216 ^a 3	(26^+)	<0.3 ps	E	E(level): 1991Ch14 observed a 26 ⁺ level at 18184 <i>3</i> which decays to the 24 ⁺ level.
20700(1.2	(20±)	0.2	_	J^{π} : stretched (E2) γ to 24 ⁺ .
20798 ^a 3	(28^{+})	<0.3 ps	E	J^{π} : stretched (E2) γ to (26 ⁺).

[†] Levels not connected to any other level are taken from 74 Se(p,t); other level energies are calculated from the adopted E γ data. ‡ From $\gamma(\theta)$ in (HI,xn γ) and γ decay mode, except as noted.

 $^{^{\#}}$ From L(p,t).

[@] From DCO ratios and systematics (1989My01). & From (HI,xn γ), except as noted.

^a Band(A): g.s. band.

^b Band(B): second 0⁺ band.

^c Band(C): negative parity.

		_ +	_		+	@	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	$E_f \underline{J_f^{\pi}}$	Mult.‡	α.	Comments
862.07	2+	862.03 12	100	0 0+	E2	6.03×10 ⁻⁴	$\alpha(K)$ =0.000537 8; $\alpha(L)$ =5.65×10 ⁻⁵ 8; $\alpha(M)$ =8.79×10 ⁻⁶ 13; $\alpha(N)$ =7.47×10 ⁻⁷ 11; $\alpha(N+)$ =7.47×10 ⁻⁷ 11 B(E2)(W.u.)=23.7 17
937.22	0+	75 2		862.07 2+	[E2]	2.4 3	$\alpha(K)$ =2.05 22; $\alpha(L)$ =0.32 4; $\alpha(M)$ =0.050 6; $\alpha(N)$ =0.0036 5; $\alpha(N+)$ =0.0036 5
		937		0 0+	E0		Mult.: from adopted J^{π} values. I(γ +ce)=100 17. B(E2)(W.u.)=162 28. Mult.: from ce data in (α ,4n γ). I(γ +ce)=37 17.
1316.68	2+	379.55 <i>23</i>	35 2	937.22 0+	[E2]	0.00666	$\alpha(K)$ =0.00591 9; $\alpha(L)$ =0.000648 10; $\alpha(M)$ =0.0001006 15; $\alpha(N)$ =8.38×10 ⁻⁶ 12
							α (N+)=8.38×10 ⁻⁶ <i>12</i> B(E2)(W.u.)=77 <i>6</i>
		454.70 <i>10</i>	76 <i>5</i>	862.07 2+		4	5
		1316.70 <i>10</i>	100 6	0 0+	E2	2.60×10^{-4}	$\alpha(K)$ =0.000203 3; $\alpha(L)$ =2.11×10 ⁻⁵ 3; $\alpha(M)$ =3.28×10 ⁻⁶ 5; $\alpha(N)$ =2.81×10 ⁻⁷ 4; $\alpha(N+)$ =3.20×10 ⁻⁵ 5 B(E2)(W.u.)=0.44 4
1636.86	4+	774.73 17	100	862.07 2+	E2	7.92×10 ⁻⁴	$\alpha(K)=0.000705 \ 10; \ \alpha(L)=7.45\times10^{-5} \ 11; \ \alpha(M)=1.158\times10^{-5} \ 17; \ \alpha(N)=9.83\times10^{-7} \ 14 \ \alpha(N+)=9.83\times10^{-7} \ 14$
							α(N+)=9.83×10 · 14 B(E2)(W.u.)=55 5
1876.23	(2,4)	559.34 <i>24</i> 1014.0 <i>8</i>	100 <i>6</i> 27 <i>14</i>	1316.68 2 ⁺ 862.07 2 ⁺			D(L2)(w.u.)=33-3
1998.93	2+	1061.69 <i>10</i>	79 <i>7</i>	937.22 0+	[E2]	3.66×10^{-4}	$\alpha(K)$ =0.000326 5; $\alpha(L)$ =3.41×10 ⁻⁵ 5; $\alpha(M)$ =5.30×10 ⁻⁶ 8; $\alpha(N)$ =4.52×10 ⁻⁷ 7; $\alpha(N+)$ =4.52×10 ⁻⁷ 7
		1136.87 12	100 10	862.07 2+			
2150.1	(2+)	512 ^{&} 2 832 2	100 <i>40</i> 100 <i>40</i>	1636.86 4 ⁺ 1316.68 2 ⁺			
2293.69	(2)	2150.7 <i>10</i> 977.1 <i>1</i> 1431.2 2	48 <i>14</i> 100 <i>8</i> 87 <i>3</i>	$0 0^{+} \\ 1316.68 2^{+} \\ 862.07 2^{+}$			
2371.50		1054.7 <i>3</i> 1433.6 <i>10</i> 1509.8 <i>4</i>	50 8 13 5 44 7	1316.68 2 ⁺ 937.22 0 ⁺ 862.07 2 ⁺			
		2371.9 7	100 10	$0 0^{+}$			
2405.74	3-	1088.9 <i>3</i>	100	1316.68 2+	[E1]	1.55×10^{-4}	$\alpha(K)$ =0.0001380 20; $\alpha(L)$ =1.422×10 ⁻⁵ 20; $\alpha(M)$ =2.21×10 ⁻⁶ 3; $\alpha(N+)$ =1.89×10 ⁻⁷ 3 B(E1)(W.u.)>0.00030
2433.76	3-	1117.2 <i>I</i> 1571.58 <i>I0</i> 2432.7 8	25.0 <i>19</i> 100 <i>5</i> 33 <i>7</i>	1316.68 2 ⁺ 862.07 2 ⁺ 0 0 ⁺			2(21)()/ 0.00000
2466.77	6+	830.1 2	100	1636.86 4 ⁺	E2	6.63×10^{-4}	$\alpha(K)=0.000590\ 9;\ \alpha(L)=6.22\times 10^{-5}\ 9;\ \alpha(M)=9.67\times 10^{-6}\ 14;$
1							

γ (72Se) (continued)

							•
E_i (level)	\mathtt{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.‡	$\alpha^{\textcircled{@}}$	Comments
							$\alpha(N)=8.22\times10^{-7} \ 12; \ \alpha(N+)=8.22\times10^{-7} \ 12$
							B(E2)(W.u.)=65 5
2586.35	(3)	710.12 18	47 10	1876.23 (2,4)			
		1269.5 5	24 12	1316.68 2 ⁺			
		1724.43 19	100 8	862.07 2+			
2965.75		379.9 <mark>&</mark> <i>3</i>	≤100	2586.35 (3)			
		1089.2 ^{&} 3	≤88	1876.23 (2,4)			
		1648.5 5	43 12	1316.68 2+			
3124.07	(4^{+})	537.6 3	24 8	2586.35 (3)			
3121.07	(1)	752.8 <i>4</i>	55 8	2371.50			
		1125.1 3	100 11	1998.93 2+			
		1807.4 6	33 7	1316.68 2+			
3173.20	5-	739.5 1	18 3	2433.76 3			
3173.20	J	879.3 2	≤13	2293.69 (2)			
		1536.1 3	100 4	1636.86 4+			
3213.51	$(2^+,3,4^+)$	807.7 2	100 18	2405.74 3			
3213.31	(2 ,5,1)	920.0 2	36 9	2293.69 (2)			
		1576.5 2	91 <i>18</i>	1636.86 4+			
3226.2	$(2,3,4^+)$	1227.3 4	47 19	1998.93 2+			
022012	(=,0,.)	1349.9 3	100 19	1876.23 (2,4)			
		1909.4 7	59 16	1316.68 2+			
3232.09		798.3 <i>1</i>	92 8	2433.76 3			
0202.00		1595.3 2	100 15	1636.86 4+			
3239.3		1089.2 3	100	2150.1 (2+)			
3349.91	5-	916.1 2	11.6 23	2433.76 3			
00.,,,1	C	1713.0 <i>I</i>	100 7	1636.86 4+			
3382.6		1088.9 3	100	2293.69 (2)			
3424.77	8+	958.0 2	100	2466.77 6 ⁺	E2	4.66×10^{-4}	$\alpha(K)=0.000415 \ 6; \ \alpha(L)=4.35\times10^{-5} \ 6; \ \alpha(M)=6.77\times10^{-6} \ 10;$
3121.77	O	750.0 2	100	2100.77	LL2	1.00/(10	$\alpha(N)=5.76\times10^{-7} 8$; $\alpha(N+)=5.76\times10^{-7} 8$
							B(E2)(W.u.)=77.8
3521.95	6-	172.0 <i>I</i>	45 <i>3</i>	3349.91 5-			D(L2)(W.d.)=77 0
3321.73	O	348.8 <i>I</i>	100 3	3173.20 5			
3769.99	7-	248.1	100 3	3521.95 6 ⁻			
3109.99	,	596.7 <i>1</i>	39 <i>3</i>	3173.20 5 ⁻			
		1303.3 <i>I</i>	100 3	2466.77 6 ⁺			
3917.25	7-	744.1 <i>I</i>	100 9	3173.20 5			
3711.23	,	1450.3 2	78 22	2466.77 6 ⁺			
4092.8		879.3 2	100	3213.51 (2 ⁺ ,3,4 ⁺)			
4217.7		1750.9 2	100	2466.77 6 ⁺			
4325.7		555.7 4	100	3769.99 7 ⁻			
4504.3	10 ⁺	1079.5 <i>1</i>	100	3424.77 8 ⁺	E2	3.52×10^{-4}	$\alpha(K)=0.000314\ 5;\ \alpha(L)=3.28\times10^{-5}\ 5;\ \alpha(M)=5.10\times10^{-6}\ 8;$
7JU4.J	10	1017.3 1	100	J+4+.11 O	كنا	J.J2×10	$u(\mathbf{X}) - 0.000314 J, u(\mathbf{L}) - 3.20 \wedge 10 J, u(\mathbf{M}) = 3.10 \wedge 10 O,$

γ (72Se) (continued)

E_i (level)	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}	E_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	$\alpha^{\textcircled{@}}$	Comments
								$\alpha(N)=4.35\times10^{-7} \ 6; \ \alpha(N+)=4.35\times10^{-7} \ 6$ B(E2)(W.u.)=99 9
4713.20		943.2 2	100	3769.99				
4762.83	(9-)	845.6 2	100 13	3917.25				
		992.8 <i>2</i> 1338.3	38 <i>13</i>	3769.99 3424.77				
5709.7	12+	1205.4 2	100	4504.3		E2	2.85×10^{-4}	$\alpha(K)=0.000246 \ 4; \ \alpha(L)=2.56\times10^{-5} \ 4; \ \alpha(M)=3.98\times10^{-6} \ 6; \ \alpha(N)=3.40\times10^{-7} \ 5;$
3707.1	12	1203.12	100	1501.5	10	22	2.037(10	$\alpha(N+)=9.54\times10^{-6}$ 14 B(E2)(W.u.)=89 13
5830.8	(11^{-})	1068.0	100	4762.83				
6686.5	(11^{-})	1923.6	100	4762.83				
7038.1	14 ⁺	1328.4 5	100	5709.7	12+	E2	2.58×10^{-4}	$\alpha(K)$ =0.000199 3; $\alpha(L)$ =2.07×10 ⁻⁵ 3; $\alpha(M)$ =3.22×10 ⁻⁶ 5; $\alpha(N)$ =2.75×10 ⁻⁷ 4; $\alpha(N+)$ =3.48×10 ⁻⁵ 5 B(E2)(W.u.)=79 7
7041.9	(13^{-})	1211.0	100	5830.8	(11^{-})			
7190.7	(12^{-})	504.2		6686.5	(11^{-})			
7795.7	(13^{-})	1359.8 605.0	100	5830.8 7190.7	(11^{-}) (12^{-})			
8089.7	(13^{-})	899.0	100	7190.7	(12^{-}) (12^{-})			
000)17	(1.)	1047.8		7041.9	(13^{-})			
8495.1	16 ⁺	1457	100	7038.1	14+	E2#	2.55×10 ⁻⁴	$\alpha(K)$ =0.0001648 23; $\alpha(L)$ =1.708×10 ⁻⁵ 24; $\alpha(M)$ =2.66×10 ⁻⁶ 4; $\alpha(N)$ =2.27×10 ⁻⁷ 4 $\alpha(N+)$ =7.05×10 ⁻⁵ 10 B(E2)(W.u.)=121 22
10095.1	18 ⁺	1600	100	8495.1	16 ⁺	E2#	2.79×10^{-4}	$\alpha(K)=0.0001367 \ 20; \ \alpha(L)=1.414\times10^{-5} \ 20; \ \alpha(M)=2.20\times10^{-6} \ 3; \ \alpha(N)=1.88\times10^{-7} \ 3$
10075.1	10	1000	100	0193.1	10	22	2.77/10	$\alpha(N+)=0.0001262$ 18 B(E2)(W.u.)=72 18
11832.2	20+	1737	100	10095.1	18+	E2#	3.17×10^{-4}	$\alpha(K)$ =0.0001165 17; $\alpha(L)$ =1.204×10 ⁻⁵ 17; $\alpha(M)$ =1.87×10 ⁻⁶ 3; $\alpha(N)$ =1.603×10 ⁻⁷ 23
								α(N+)=0.000186 3 B(E2)(W.u.)=29 6
13742.2	22+	1910	100	11832.2	20+	E2#	3.75×10^{-4}	$\alpha(K)=9.74\times10^{-5}$ 14; $\alpha(L)=1.005\times10^{-5}$ 14; $\alpha(M)=1.563\times10^{-6}$ 22; $\alpha(N)=1.339\times10^{-7}$ 19
								$\alpha(N+)=0.000266$ 4
								B(E2)(W.u.)>25
15896.2	24+	2154	100	13742.2	22 ⁺	E2#	4.72×10^{-4}	$\alpha(K)=7.82\times10^{-5}\ 11;\ \alpha(L)=8.06\times10^{-6}\ 12;\ \alpha(M)=1.253\times10^{-6}\ 18;$ $\alpha(N)=1.074\times10^{-7}\ 15$
								$\alpha(N+)=0.000385$ 6 B(E2)(W.u.)>2.3
18216	(26 ⁺)	2320	100	15896.2	24+	(E2)#	5.43×10^{-4}	$\alpha(K)=6.86\times10^{-5}\ 10;\ \alpha(L)=7.05\times10^{-6}\ 10;\ \alpha(M)=1.097\times10^{-6}\ 16;\ \alpha(N)=9.41\times10^{-8}$

S

γ (⁷²Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	α@	Comments
20798	(28+)	2582	100	18216	(26 ⁺)	(E2)#	6.54×10 ⁻⁴	α (N+)=0.000466 7 B(E2)(W.u.)>1.6 α (K)=5.70×10 ⁻⁵ 8; α (L)=5.86×10 ⁻⁶ 9; α (M)=9.11×10 ⁻⁷ 13; α (N)=7.81×10 ⁻⁸ 11; α (N+)=0.000591 9 B(E2)(W.u.)>0.92

 $^{^{\}dagger}$ γ data from levels above 3.3 MeV are from (HI,xn γ); for other γ radiations, data are from 72 Br ε decay and (HI,xn γ); averages have been calculated where

6

[‡] Mult=E2 from $\gamma(\theta)$ in (HI,xn γ) and RUL, except as noted.

[#] Stretched E2 transitions from DCO ratios ≈1, (HI,xnγ).

[@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Placement of transition in the level scheme is uncertain.

Level Scheme

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{72}_{34}\mathrm{Se}_{38}$ -8

8+

3424.77

2466.77

1636.86

862.07

862

Band(C): Negative parity

1062

1998.93

937.22

	Histor	У	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh, Ameenah R. Farhan	NDS 107,1923 (2006)	30-Apr-2006

 $Q(\beta^{-})=-6925 \ 6$; $S(n)=12057 \ 8$; $S(p)=8549 \ 4$; $Q(\alpha)=-4076.3 \ 9$ 2012Wa38

 74 As β⁻ decay (17.77 d) 74 Br ε decay (25.4 min)

Note: Current evaluation has used the following Q record -6907 15 12066 11 8545 4 -4074.5 19 2003Au03.

Mass measurements: 1985El01, 1977De20, 1963Ri07.

В

Additional information 1.

Nuclear structure calculations (levels): 2005Da31.

⁷⁴Se Levels

Cross Reference (XREF) Flags

G

 65 Cu(12 C,p2n γ) 70 Ge(α , γ)

L

Coulomb excitation

 75 As(p,2n γ)

		C 74 ₁ D 58 ₁	Br ε decay (25.4 mi Br ε decay (46 min) Ni(¹⁹ F,3pγ)	$\frac{H}{I}$ $\frac{^{72}\text{Ge}(^{3}\text{He,n})}{^{72}\text{Ge}(^{16}\text{O},^{14}\text{C})}$ $\frac{M}{I}$ $\frac{^{76}\text{Se}(p,t)}{^{76}\text{Se}(p,t)}$								
		E 641	$Ni(^{12}C,2n\gamma),^{60}Ni(^{16})$	O,2p γ) J 74 Se(p,p')								
E(level) ^{†‡}	J ^π @	T _{1/2} #	XREF	Comments								
0.0 ^f	0+	stable	ABCDEFGHIJKLM	$\%(\varepsilon)(\beta^+)=?$, $\%(\varepsilon)(\varepsilon)=?$ (see 1993Hy02 for experimental study of double β decay). $<\mathbf{r}^2>^{1/2}=4.070$ fm 20 (2004An14). \mathbf{J}^π : no hyperfine structure observed in microwave spectroscopy (1950Ge05, 1949St07), consistent with J=0.								
634.74 ^f 6	2+	7.08 ps 9	ABCDEFG IJKLM	 μ=0.86 5 (1998Sp03) Q=-0.36 7 (1989Ra17,1978Le22) μ: projectile excitation and transient-field technique (1998Sp03). See also 2005St24 compilation. Q: from Coul. ex. (1978Le22). See also 2005St24 compilation. β₂=0.337 (from (¹⁶O, ¹⁴C)), 0.26 4 (from (pol p,p')). βR=1.38 14 (from (p,p')). J^π: L(pol p,p')=L(p,t)=2. T_{1/2}: from B(E2)=0.388 5 in Coul. ex. other: 7.4 ps 6 (DSA method in in-beam γ). 2001Ra27 adopted 7.08 ps 15. 								
853.83 9	0+	0.75 ns 5	BC EFG JKLM	J ^π : (219γ)(635γ)(θ) in ⁷⁴ Br ε (46 min). L(p,p')=L(p,t)=0. T _{1/2} : from B(E2) in Coul. ex. others: 0.83 ns <i>14</i> (γγ(t) in ⁷⁴ Br ε (25.4 min)), 0.52 ns 6 (centroid-shift in (p,p')).								
1269.01 ^h 6	2+	4.0 ps <i>11</i>	ABCDEFG JKLM	 μ=1.10 18 (1998Sp03) XREF: M(1265). μ: projectile excitation and transient-field technique (1998Sp03). See also 2005St24 compilation. βR=0.23 3 (from (p,p')). J^π: L(p,p')=L(p,t)=2. T_{1/2}: other: 3.3 ps 15 (Coul. ex.). 								
1363.17 ^f 7	4+	1.86 ps 8	CDEFG JKLM	$ μ$ =2.0 4 (1998Sp03) $ μ$: projectile excitation and transient-field technique (1998Sp03). See also 2005St24 compilation. $ β$ ₄ =0.019 8 (from (pol p, p')). $ β$ R=0.09 $ I$ (from (p,p')). $ J$ ^{π} : L(p,t)=L(pol p,p')=4. $ T$ _{1/2} : from B(E2) in Coul. ex. other: 2.73 ps 20 (from 1979Ki17 and 1989Ad01, see 58 Ni(19 F,3pγ) dataset).								
1657.47 10	(0^{+})		B E G	J^{π} : γ to 2^+ . No γ' s to 0^+ and 4^+ .								

E(level) ^{†‡}	Jπ @	$T_{1/2}^{\#}$	XRI	EF	Comments
1838.65 9	(2 ⁺)		BC EFG	LM	J^{π} : γ to 0^+ .
1884.24 ⁸ 8	3+b	1.5 ps 6	BCDEF	L	,
2107.96 ^h 8	4+ b	1.9 ps 7	CDEF	LM	XREF: M(2101).
2146 25	•	F		M	
2231.45 ^f 10	6+ b	0.86 ps 17	CDEF	L	
2314.05 9	(2^{+})	•	BC E		J^{π} : γ to 0^+ .
2349.66 ^j 10	3-	23 ps 3	CDEF	IJKLM	XREF: M(2338).
					$\beta_3 = 0.140$ (from (16 O, 14 C)).
					$\beta R = 0.77 \ 8 \ (\text{from } (p,p')).$
					B(E3)(Coul. ex.)=0.021 <i>5</i> (2002Ki06,evaluation). J^{π} : L(p,t)=(pol p,p')=3.
2378.59 11	$(1,2^+)^{\&}$		В		J : L(p,t) = (por p,p) = J.
2477.7 6	(2)		F		J^{π} : $\Delta J=0 \ \gamma$ to 2^{+} .
2482 25	(2 ⁺)			M	J^{π} : L(p,t)=(2).
2563.43 9	$(2^+,3,4^+)^a$		CE	m	
2661.98 ^g 12	5 ⁺ b	1.7 ps 6	CDEF	Lm	
2718 10	0+		6.5	M	J^{π} : $L(p,t)=0$.
2818.32 <i>19</i>	$(2^+,3,4^+)^a$	10 2	CE		
2831.56^{k} 12	4 ⁻	10 ps 3	CDEF		J^{π} : $\Delta J=0$, (E1) γ to 4 ⁺ ; band assignment.
2842.63 ^j 10	5 ^{-b}	7.3 ps 8	DEF	L	III. I (/) 2. I (4) (2)
2843.72 <i>24</i> 2903 <i>2</i>	3 ⁻ 4 ⁺			J M J	J^{π} : L(p,p')=3; L(p,t)=(3). J^{π} : L(p,p')=4.
2918 25	(0^+)			M	J^{π} : L(p,t)=(0).
2918.43 <i>14</i>	$(2^+,3,4^+)^a$		CE		4// //
2986.65 ^h 13	6 ⁺ <i>c</i>		DEF		
3002 4				J	
3037.3 4	(2^{+})		C		J^{π} : γ to 0^+ .
3078.01 <i>14</i>	$(4)^{+}$		CE	J	XREF: J(3080). J^{π} : γ' s to 2^+ and 4^+ . $L(p,p')=4$ in (p,p') for a group at 3080 4.
3112.30 <i>23</i>	$(2^+,3,4^+)$		СЕ	M	XREF: M(3114).
	(= ,=,:)				J^{π} : γ' s to 2 ⁺ ; log ft =7.64 from 4 ⁽⁺⁾ .
3198.41 ^f 14	8+ b	0.38 ps 4	DEF	L	,
3200.17 17	(4)	1	C F		J^{π} : $\Delta J=(0) \gamma$ to 4^+ .
3250.11 <i>12</i>	$(1,2^+)^{\&}$		BC		
3250.9 4	(2 to 5)		E	m	L=4 in (p,t) corresponds to 3251 or 3253 level.
3253.3 <i>3</i>	(2 to 6) ^e		C E	1	J^{π} : γ to (3 ⁺); absence of γ' s to 0 ⁺ and 2 ⁺ disfavors J^{π} <4.
3233.3 3 3306.0 <i>3</i>	$(2 \text{ to } 6)^e$		C E C	J m	J^{π} : if L(p,p')=4 corresponds to this level, then $J^{\pi}=(4^+)$.
3379.38 25	(2^+)		C	M	J^{π} : $L(p,t)=(2)$.
3382.63 ^k 14	$6^{-\cancel{b}}$	4.9 ps <i>17</i>	DEF		NATION OF THE PROPERTY OF THE
3515.95 ^j 15	7- b	3.5 ps <i>3</i>	DEF		
3525.04 ^g 21	7+ b	0.72 ps <i>24</i>	DEF		
3529 4	5-	1		J	J^{π} : $L(p,p')=5$.
3538 25	(6+)			M	J^{π} : $L(p,t)=(6)$.
3539.72 11	$(1,2^+)^{\&}$		В		
3580.30 <i>25</i>	$(2^+)^a$		С	J	J^{π} : L(p,p')=(2).
3602 <i>4</i> 3624.46 <i>16</i>	5 ⁻ (2 ⁺)		В	J M	J^{π} : L(p,p')=5. XREF: M(2615).
3024.40 10	(2)		ь	rı	J^{π} : γ to 0^+ ; $L(p,t)=(2)$.
3674.85 <i>21</i>	$(2^+,3,4^+)^a$		CE		

E(level) ^{†‡}	Jπ @	$T_{1/2}^{\#}$	XRI	EF		Comments
3733.64 16	$(1,2^+)^{\&}$		В		M	XREF: M(3719).
3749 <i>4</i>	(4^+)			J		J^{π} : L(p,p')=4.
3771.91 <i>16</i>	$(4^{+})^{a}$		C	J	m	XREF: J(3780).
	, ,					J^{π} : $L(p,p')=4$.
3781.7 <i>3</i>			F			
3788.27 11	$(1,2^+)^{\&}$		В		m	
3841.69 ⁱ 19	7-		EF		M	XREF: M(3858).
						J^{π} : γ to 7^{-} ; $L(p,t)=(7)$; band assignment.
3845 <i>4</i>	3-			J		J^{π} : L(p,p')=3.
3928.62 24	(2 to 6)		C	J		XREF: J(3920).
1	1					J^{π} : log ft =7.16 from $4^{(+)}$; γ to $(4)^{+}$.
3929.2 ^l 4	$(8^+)^{d}$		F			
3930.56 18	$(0^+,1)$		BC			J^{π} : log $ft=5.9$ from (0^{-}) ; γ to 2^{+} .
3972.90 <i>17</i>	(2 ⁺)		В	_	m	J^{π} : γ to 0^+ ; if L(p,t)=(2) corresponds to this level.
3980 4	(6 ⁺)			J		J^{π} : $L(p,p')=(6)$.
4005 4	_			J	m	J^{π} : $L(p,p')=2$.
4044.37 25	$(1,2^+)^{\&}$		В			
4089.9 <i>4</i>	(2±)		F		M	VDEE. M(4100)
4094.44 20	(2^{+})		В		M	XREF: M(4109). J^{π} : γ to 0^+ ; L(p,t)=(2).
4118 <i>4</i>				J		J : Y to V : L(p,t)-(2).
4198.21 ^k 20	8- b	1.4 ps 3	DEF	_		
4224 <i>4</i>	O	1.4 ps 3	DEF	J		
4256.29 ^f 17	10 ⁺ b	0.21 ps 4	DEF			
4266.7 <i>4</i>	$(1,2^+)^{\&}$	•	В			
4279 <i>4</i>	4+			J		J^{π} : L(p,p')=4.
4309.17 18	$(3,4^+)$		C		m	XREF: Î(4330).
						J^{π} : γ to 2 ⁺ ; log ft =6.6 from 4 ⁽⁺⁾ .
4342.5 <i>4</i>	(2^{+})		В	J	m	XREF: J(4337).
10/0				_		J^{π} : γ to 0^+ ; $L(p,p')=(2)$.
4362 4	Q _r			J		
4379.9 <i>3</i>	$(1,2^+)^{\&}$		В			
4403.20 ^j 21	9- b	0.58 ps 6	DEF			
4441.67 <i>21</i>	$(3,4^+)$		CE			J^{π} : γ to 2 ⁺ ; log ft =6.1 from 4 ⁽⁺⁾ .
4449.64 ⁸ 23	9+ b	0.57 ps 9	DEF			
4487.2 <i>3</i>	$(1,2^+)^{\&}$		В			
4496.29 17	$(3,4^+)$		CE			J^{π} : γ to 2 ⁺ ; log ft =5.98 from 4 ⁽⁺⁾ .
4516.24 <i>18</i>	$(3,4^+)$		C			J^{π} : γ to 2 ⁺ ; log ft =6.03 from 4 ⁽⁺⁾ .
4536.49 24	$(1,2^+)^{\&}$		В			
4544.5 <i>3</i>			F			
4579.94 25	(3,4,5)		C		m	J^{π} : log ft =6.26 from $4^{(+)}$.
4586.15 20	$(3,4^+)$		C		m	J^{π} : γ to 2 ⁺ ; log ft =5.99 from 4 ⁽⁺⁾ .
4592.08 <i>16</i>	(4^{+})		C	J	m	XREF: J(4595).
						J^{π} : γ to 2 ⁺ ; log ft =5.65 from 4 ⁽⁺⁾ ; $L(p,p')$ =4.
4661.91 <i>19</i>	$(3,4^+)$		C		M	XREF: M(4628).
4677 4	2-			_		J^{π} : γ to 2 ⁺ ; log ft =5.83 from 4 ⁽⁺⁾ .
4677 4	3-			J		J^{π} : L(p,p')=3.
4699.5 <i>3</i>	$(3,4^+)$		C	,		J^{π} : γ to 2 ⁺ ; log ft =6.16 from 4 ⁽⁺⁾ .
4757.2 4	$(3,4^+)$		С	J	m	XREF: J(4758). J^{π} : γ to 2 ⁺ ; log ft =6.43 from 4 ⁽⁺⁾ ; if L(p,p')=(3) corresponds to this
						J ^{**} : γ to Z^* ; $\log \pi = 0.45$ from A^{**} ; if $L(p,p) = (3)$ corresponds to this level, then $J^{\pi} = (3^-)$.
						10,01, mon v = (5).

E(level) ^{†‡}	J ^π @	T _{1/2} #	XRI	EF	Comments
4794.45 21	(3,4,5)		С	m	J^{π} : log ft =5.98 from $4^{(+)}$; if $L(p,p')$ =(3) corresponds to this level, then J^{π} =(3 $^{-}$).
4848.7 ⁱ 3	(9-)	0.40 ps + 13 - 11	F		J^{π} : γ' s to 7 ⁻ and 9 ⁻ ; band assignment.
4877.49 ^l 24	(10^{+})	•	F		J^{π} : γ' s to 8^+ and 10^+ ; band assignment.
5060.2 4			F		
5146 4	3-			J	J^{π} : $L(p,p')=3$.
5209.2 ^k 4	10^{-b}	0.9 ps <i>3</i>	DEF		7T 7 () 0
5426 <i>4</i>	3-	0.40		J	J^{π} : L(p,p')=3.
5443.1 ^f 4	12^{+b}	0.12 ps <i>3</i>	DEF		
5491.2 ^j 4	11^{-b}	0.23 ps 2	DEF		
5492.9 ⁸ 4	11^{+b}		D F		
5928.5 ⁱ 4	$(11^{-})^{d}$	0.26 ps 7	F		
6014.8 ^l 4	(12^{+})		F		J^{π} : γ' s to 10^+ and 12^+ ; band assignment.
6253.6 ^k 5	12 ^{-b}	<0.74 ps	D F		are a contract of the contract
6685.9 ⁸ 5	(13^{+})		D F		J^{π} : γ' s to 11 ⁺ and 12 ⁺ ; band assignment.
6686.9^{j} 5	13^{-b}	0.22 ps <i>10</i>	DEF		
6735.6 ^f 5	14^{+b}	0.135 ps <i>14</i>	DEF		
7063.7^{i}_{i} 8	$(13^{-})^{d}$	<0.76 ps	F		
7206.9 ^l 8	(14 ⁺) ^C		F		
7451.6 ^k 7	14 ^{-c}		D F		
7844.8 7	15 ^{-c}		F		E(level): this level is also related to the 3 ⁻ band, could Be due to band crossing.
7944.0 ^g 6	$(15^+)^{\it c}$		F		to band crossing.
7978.7 ^j 6	15 ^{-c}		D F		
8116.7 ^f 7	16 ⁺	0.075 ps 15	D F		
8537.3 ^l 8	$(16^+)^{\it C}$	01076 ps 16	F		
8815.6 ^k 8	16 ^{-c}		F		
9294.4 ⁸ 9	$(17^+)^{d}$		F		
9300.3 ^j 7	17- <i>c</i>		F		
9680.5 ^f 9	18+ b	0.076 ps 21	D F		
10128.8 ^l 11	$(18^+)^{\it C}$	0.070 ps 21	F		
10370.5^{k} 11	$(18^{-})^{d}$		F		
10826.4 ^g 13	$(19^+)^{d}$		F		
10926.3^{j} 12	$(19^{-})^{d}$		F		
11360.2^f 12	20+c		D F		
12104.5^{k} 15	$(20^{-})^{d}$		D F		
$12104.3 \cdot 15$ 13202.3^f 15	22+c				
13202.3 13	22		F		

[†] Least squares fitted values from adopted γ -ray energies for levels populated in γ -ray studies. For levels populated in transfer reactions only, weighted average of available values taken.

[‡] In (³He,n), FWHM=500 keV, peaks are reported at 740 with L=(0), and at 2030(or 2330) and 3050 with L=(2), and at 3850.

[#] From DSA and recoil-Doppler shift method in in-beam γ , unless stated otherwise.

@ Parity not given when only a range of spin values given.

& γ to 0⁺. log ft value in ⁷⁴Br ε decay (25.4 min) will restrict J^{π} to 1 if J^{π} ⁷⁴Br g.s.=0⁻.

a γ 's to 2⁺ and 4⁺.

- b From $\gamma(\theta)$, $\gamma\gamma(\theta)$, $T_{1/2}$ and band assignment in in-beam γ -ray studies.
- ^c From $\gamma(\theta)$, $\gamma\gamma(\theta)$ and band assignment in in-beam γ -ray studies.
- d From band assignment in in-beam γ-ray studies. e γ to 4⁺. Absence of γ's to 0⁺ and 2⁺ disfavors J<4.
- f Band(A): g.s. band.
- ^g Band(B): 3⁺ band.
- ^h Band(C): 2⁺ band. ⁱ Band(D): 7⁻ band.
- j Band(E): 3^{-} band.
- ^k Band(F): 4[−] band.
- ¹ Band(G): (8⁺) band. Probably related to excitation of g_{9/2} neutron (1998Do09).

	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	δ	$\alpha^{@}$	$I_{(\gamma+ce)}$	Comments
634.74	2+	634.78 10	100	$0.0 0^{+}$	E2				B(E2)(W.u.)=42.0 6
853.83	0^{+}	219.06 <i>10</i>	100 4	634.74 2+	E2		0.047		B(E2)(W.u.)=77 7
		853.8		$0.0 0^{+}$	E0			0.82 9	$q_K^2(E0/E2)=0.203 \ 14, \ X(E0/E2)=0.011 \ 5, \ \rho^2(E0)=0.0231$
									¹ 22 (2005Ki02, evaluation).
1269.01	2+	634.26 10	100 8	634.74 2+	E2+M1	-5.6 <i>16</i>			B(M1)(W.u.)=0.0004 3; B(E2)(W.u.)=48 14
									δ : from $\gamma\gamma(\theta)$ in ⁷⁴ Br ε (46 min). Other: -2.6 2 from
									$\gamma\gamma(\theta)$ in ⁷⁴ As β^- .
		1269.02 7	52 3	$0.0 0^{+}$	E2				B(E2)(W.u.)=0.80 23
1363.17	4 ⁺	728.37 7	100	634.74 2+	E2				B(E2)(W.u.)=80 4
1657.47	(0^+)	1022.74 9	100	634.74 2+					
1838.65	(2^{+})	984.82 10	100 5	853.83 0 ⁺	DM1 E21				\$ 0.10 0 1.5 2 (1002P-(0))
1884.24	3 ⁺	1203.93 <i>9</i> 521.07 <i>12</i>	22 <i>11</i> 10 <i>3</i>	634.74 2+	[M1,E2]				δ =0.18 9 or 1.5 3 (1992Ba68).
1004.24	3	615.18 7	100 8	1363.17 4 ⁺ 1269.01 2 ⁺	(M1+E2)	+0.3 1			B(M1)(W.u.)=(0.029 <i>13</i>); B(E2)(W.u.)=(10 8)
		1249.45 15	89 12	634.74 2+	(M1+E2) (M1+E2)	TU.5 1			$D(W11)(W.u.) = (0.029 \ 13), \ D(E2)(W.u.) = (10 \ 0)$
2107.96	4+	744.75 8	40 4	1363.17 4+	(M1+E2)				B(M1)(W.u.)<0.0067; B(E2)(W.u.)<17
2107.70	7	744.75 0	70 7	1303.17	(WII + L2)				δ =-4.3 3 or 2.4 2 (1992Ba68).
									Mult.: $\Delta J=0$ transition.
		838.93 12	100 8	1269.01 2+	E2				B(E2)(W.u.)=24 9
		1473.21 12	25 <i>3</i>	634.74 2+	[E2]				B(E2)(W.u.)=0.35 14
2231.45	6 ⁺	868.21 9	100	1363.17 4 ⁺	E2				$B(E2)(W.u.)=72 \ 15$
2314.05	(2^{+})	1044.88 <i>13</i>	46 5	1269.01 2+					
		1460.3 2	100 8	853.83 0 ⁺					
		1679.4 2	92 10	634.74 2+					
2349.66	3-	511.0 <i>3</i>	≈14	$1838.65 (2^+)$					
		986.5 2	57 11	1363.17 4+	(E1)				$B(E1)(W.u.)=3.8\times10^{-6}$ 10
		1080.4 2	100 14	1269.01 2 ⁺	(E1)				$B(E1)(W.u.)=5.1\times10^{-6} 11$
		1714.9 <mark>&</mark> 2	91 9	634.74 2+	(E1)				$B(E1)(W.u.)=1.15\times10^{-6} 21$
2378.59	$(1,2^+)$	1109.6 2	50 6	1269.01 2+					
		1524.6 <i>4</i>	28 6	853.83 0+					
		1743.9 2	100 28	634.74 2+					
		2378.3 4	28 11	$0.0 0^{+}$					
2477.7	(2)	1843.1 <i>6</i>	100	634.74 2+	(D)				Mult.: $\Delta J=0$ transition.
2563.43	$(2^+,3,4^+)$	679.04 12	12 2	1884.24 3+					
		724.9 5	12 5	1838.65 (2 ⁺)					
		1200.37 12	100 11	1363.17 4+					
		1294.4 1	39 5	1269.01 2 ⁺					
2661.00	5+	1928.8 4	12 2	634.74 2+	E2				$D(E2)/W_{11} = 42.17$
2661.98	3.	777.68 <i>13</i> 1299.04 <i>20</i>	100 <i>7</i> 47 <i>16</i>	1884.24 3 ⁺ 1363.17 4 ⁺	E2				B(E2)(W.u.)=43 17
2818.32	$(2^+,3,4^+)$	979.04 <i>20</i>	25 5	1838.65 (2 ⁺)					
2010.32	(2 ,3,7)	119.3 4	233	1030.03 (2)					

γ (74Se) (continued)

$E_i(level)$	J_i^π	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f J_f^{π}	Mult.#	Comments
2818.32	$(2^+,3,4^+)$	1455.5 <i>3</i>	100 15	1363.17 4+		
2831.56	4-	481.5 <i>3</i>	<15	2349.66 3-		
		1468.43 <i>13</i>	100 13	1363.17 4+	(E1)	$B(E1)(W.u.)=1.1\times10^{-5} 4$
						Mult.: $\Delta J=0$ transition.
2842.63	5-	493.01 <i>11</i>	93 7	2349.66 3	E2	B(E2)(W.u.)=50 7
		611.4 2	48 5	2231.45 6 ⁺	(E1)	$B(E1)(W.u.)=4.1\times10^{-5}$ 7
		734.56 <i>15</i>	100 7	2107.96 4+	(E1)	$B(E1)(W.u.)=4.9\times10^{-5}$ 7
		1479.44 <i>15</i>	29 <i>3</i>	1363.17 4+	(E1)	$B(E1)(W.u.)=1.7\times10^{-6}$ 3
2918.43	$(2^+,3,4^+)$	1080.1 4	19 <i>4</i>	1838.65 (2 ⁺)		
		1555.4 <i>3</i>	13 2	1363.17 4+		
		1649.4 2	14 2	1269.01 2+		
		2283.5 2	100 15	634.74 2+		
2986.65	6+	878.68 10	100 13	2107.96 4+	_	
	(a.t.)	1623.5 7	95 18	1363.17 4+	Q	
3037.3	(2^{+})	2183.4 3	100	853.83 0 ⁺		
3078.01	$(4)^{+}$	763.6 2	3.7 8	2314.05 (2+)		
		1194.0 3	1.5 3	1884.24 3 ⁺		
		1714.9 <mark>&</mark> 2	100 10	1363.17 4+		
2112.20	(2+ 2 4+)	2443.7 4	6.0 15	634.74 2+		
3112.30	$(2^+,3,4^+)$	797.3 5	100	2314.05 (2+)		
		1843.1 3	<20	1269.01 2+		
		2478.4 ^{&} 4	<10	634.74 2+		
3198.41	8+	966.98 <i>10</i>	100	2231.45 6+	E2	B(E2)(W.u.)=95 10
3200.17	(4)	368.5 2	50 10	2831.56 4		
		723 ^a 1	<50	2477.7 (2)		
		850.1 3	100 50	2349.66 3-	(D)	M. I. Al. O
2250 11	(1.0±)	1837.6 3	50 15	1363.17 4+	(D)	Mult.: $\Delta J=0$ transition.
3250.11	$(1,2^+)$	871.4 5	3.5 17	2378.59 (1,2+)		
		936.4 2	10 2	2314.05 (2+)		
		1981.0 2	18 <i>I</i>	1269.01 2 ⁺ 853.83 0 ⁺		
		2396.1 2 2615.2 2	38 2 100 <i>3</i>	634.74 2+		
		3249.9 5	83 4	$0.0 0^{+}$		
3250.9	(2 to 5)	1366.6 4	100	1884.24 3 ⁺		
3253.3	(2 to 5)	1890.1 3	100	1363.17 4 ⁺		
3306.0	(2 to 6)	1198.0 5	57 14	2107.96 4+		
2200.0	(2 10 0)	1421.7 3	100 14	1884.24 3 ⁺		
3379.38	(2^{+})	1494.5 3	100 14	1884.24 3 ⁺		
20.7.00	(-)	2745.7 <i>4</i>	91 23	634.74 2+		
3382.63	6-	538.9 2	69 6	2842.63 5	(M1)	B(M1)(W.u.)=0.0064 24
		551.12 <i>15</i>	100 8	2831.56 4	E2	B(E2)(W.u.)=40 15

γ (74Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathbb{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	J_f^π	Mult.#	Comments
3382.63	6-	720.8 2	50 10	2661.98	5 ⁺	(E1)	$B(E1)(W.u.)=3.4\times10^{-5} 14$
		1151.0 2	90 13	2231.45		(E1)	$B(E1)(W.u.)=1.5\times10^{-5} 6$
3515.95	7-	529.2 4	<4	2986.65	6+	[E1]	$B(E1)(W.u.)=1.3\times10^{-5}$ 13
		673.38 <i>15</i>	100 8	2842.63	5-	E2	B(E2)(W.u.) = 58.8
		1284.5 <i>3</i>	8 1	2231.45	6+	[E1]	$B(E1)(W.u.)=3.8\times10^{-6}$ 7
3525.04	7+	863.4 <i>3</i>	100 12	2661.98		(E2)	B(E2)(W.u.)=63 24
		1293.0 <i>3</i>	41 <i>14</i>	2231.45			
3539.72	$(1,2^+)$	1161.3 <i>3</i>	12 4	2378.59			
		1225.7 <i>1</i>	81 8	2314.05			
		1700.9 3	46 8	1838.65			
		1882.3 2	96 12	1657.47			
		2270.6 <i>6</i> 2685.4 <i>6</i>	100 <i>19</i> 15 8	1269.01 853.83			
		2904.5 3	100 8	634.74			
		3539.8 7	38 8	0.0			
3580.30	(2^{+})	2217.1 3	100 20	1363.17			
	(-)	2945.5 ^{&} 4	<60	634.74			
3624.46	(2^{+})	1310.1 2	9 1	2314.05			
	(-)	2356.0 4	14 2	1269.01			
		2770.8 5	37 2	853.83			
		2990.1 <i>30</i>	6 2	634.74			
		3624.6 <i>3</i>	100 3	0.0			
3674.85	$(2^+,3,4^+)$	1566.4 3	10 2	2107.96			
		2312.1 6	100 14	1363.17			
		3040.4 ^{&} 3	<32	634.74			
3733.64	$(1,2^+)$	2465.0 3	54 7	1269.01			
		2879.7 2 3098.2 6	25 7	853.83			
		3098.2 0 3733.3 <i>4</i>	25 <i>7</i> 100 <i>7</i>	634.74 0.0			
3771.91	(4^{+})	1933.8 3	50 10	1838.65			
3//1.71	(1)	2408.7 3	100 40	1363.17			
		2502.3 5	19 5	1269.01			
		3137.1 <i>3</i>	70 10	634.74			
3781.7		399.2 <i>3</i>	100	3382.63	6-		
3788.27	$(1,2^+)$	1409.7 2	16 <i>3</i>	2378.59			
		1474.5 2	27 3	2314.05			
		1949.6 2	37 <i>3</i>	1838.65			
		2130.6 2	71 3	1657.47			
		2518.3 <i>8</i> 2934.2 <i>4</i>	14 <i>3</i> 19 <i>3</i>	1269.01 853.83			
		2934.2 <i>4</i> 3788.0 <i>3</i>	19 5	0.0			
		3700.0 3	100 5	0.0	U		

 ∞

γ (⁷⁴Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}^{\ddagger}$	$\mathbf{E}_f \qquad \qquad \mathbf{J}_f^{\pi}$	Mult.#	Comments
3841.69	7-	325.84 15	72 7	3515.95 7-	(D)	Mult.: $\Delta J=0$ transition.
		1609.6 <i>4</i>	100 <i>19</i>	2231.45 6 ⁺	Ď	
3928.62	(2 to 6)	850.6 2	100	$3078.01 (4)^{+}$		
3929.2	(8 ⁺)	730.5 8	100 67	3198.41 8 ⁺		
		942.7 5	37 10	2986.65 6 ⁺		
		1698.4 ^a 12	≈33	2231.45 6 ⁺		
3930.56	$(0^+,1)$	2661.6 2	100 6	1269.01 2+		
	. , ,	3295.5 <i>3</i>	53 <i>3</i>	634.74 2 ⁺		
3972.90	(2^{+})	2088.7 15	<14	1884.24 3 ⁺		
	,	2704.0 <i>3</i>	67 <i>6</i>	1269.01 2+		
		3119.0 <i>12</i>	39 6	853.83 0 ⁺		
		3338.6 18	19 6	634.74 2+		
		3972.7 2	100 6	$0.0 0^{+}$		
4044.37	$(1,2^+)$	2387.4 5	47 13	$1657.47 (0^{+})$		
		3190.2 4	100 <i>13</i>	853.83 0 ⁺		
		3410.0 <i>10</i>	40 13	634.74 2 ⁺		
		4044.1 <i>4</i>	87 <i>13</i>	$0.0 0^{+}$		
4089.9		573.9 <i>3</i>	100	3515.95 7-		
4094.44	(2^{+})	1715.7 2	100 14	$2378.59 (1,2^{+})$		
		2437.5 <i>4</i>	52 10	$1657.47 (0^{+})$		
		3241.0 <i>15</i>	48 10	853.83 0+		
		3460.0 12	90 10	634.74 2 ⁺		
		4093.9 7	38 10	$0.0 0^{+}$		
4198.21	8-	682.1 <i>3</i>	14 <i>3</i>	3515.95 7	D	
		815.6 2	100 8	3382.63 6	E2	B(E2)(W.u.)=53 13
4256.29	10 ⁺	1057.89 <i>10</i>	100	3198.41 8 ⁺	E2	B(E2)(W.u.)=110 21
4266.7	$(1,2^+)$	3631.9 <i>5</i>	100 8	$634.74 \ 2^{+}$		
		4266.5 5	43 8	$0.0 0^{+}$		
4309.17	$(3,4^+)$	1746.1 <i>4</i>	28 10	2563.43 (2+,3,4+)	
		1994.8 <i>3</i>	100 20	$2314.05 (2^{+})$		
		2945.5 <mark>&</mark> 4	<60	1363.17 4+		
		3040.4 ^{&} 3	<240	1269.01 2+		
4342.5	(2^{+})	3488.6 8	29 10	853.83 O ⁺		
	(-)	4342.4 4	100 14	$0.0 0^{+}$		
4379.9	$(1,2^+)$	2541.5 5	8 3	1838.65 (2 ⁺)		
	(-,-)	3110.2 18	8 3	1269.01 2+		
		3526.1 8	15 <i>3</i>	853.83 O ⁺		
		3745.1 6	15 <i>3</i>	634.74 2+		
		4379.6 4	100 6	$0.0 0^{+}$		
4403.20	9-	887.23 15	100	3515.95 7-	E2	B(E2)(W.u.)=96 10

9

γ (74Se) (continued)

4441.67 (3.4*) 3173.1 3	Comments	Mult.#	\mathbf{J}_f^{π}	E_f	${\rm I}_{\gamma}^{\ddagger}$	E_{γ}^{\dagger}	J_i^{π}	$E_i(level)$
3806.7 5 100 17 634.74 2* 4449.64 9* 94.53 15 100 6 355.54 7* E2 B(E2)(W.u.)=61 12 4487.2 (1.2*) 3852.4 3 100 10 634.74 2* 4486.9 10 15 10 0.0 0* 4496.29 (3.4*) 2388.1 2 81 13 2107.96 4* 3227.5 8 3 6.5 1269.01 2* 3861.8 5 100 19 634.74 2* 4516.24 (3.4*) 1853.8 3 45 9 2661.98 5* 1952.8 3 326 2563.43 (2*3,4*) 3153.3 3 100 18 1363.17 4* 3247.5 10 <45 1269.01 2* 3881.6 5 83 9 634.74 2* 4536.49 (1.2*) 2158.0 4 23 9 2378.59 (1.2*) 3267.5 8 36 9 1269.01 2* 3501.5 3 100 9 634.74 2* 4544.5 346.2 2 100 17 4198.21 8 4579.94 (3.4.5) 2472.2 4 100 13 2107.96 4* 4586.15 (3.4*) 1508.0 3 18 4 3078.01 (4)* 4586.15 (3.4*) 1508.0 3 18 4 3078.01 (4)* 4592.08 (4*) 2028.2 3 <12 2563.43 (2*3,4*) 2478.4 4 <38 2107.96 4* 2701.8 3 100 15 1884.24 3* 3323.2 4 15 3 1269.01 2* 3458.0 4 2028.2 3 <12 2563.43 (2*3,4*) 2485.6 4 10 3 2107.96 4* 2708.5 3 15 3 1884.24 3* 3323.2 4 15 3 1269.01 2* 3458.15 (3.4*) 1508.0 3 15 1884.24 3* 3323.2 4 15 3 1269.01 2* 3459.08 (4*) 2028.2 3 <12 2563.43 (2*3,4*) 2485.6 4 10 3 2107.96 4* 2708.5 3 15 3 1884.24 3* 3323.2 4 15 3 1269.01 2* 3459.08 (4*) 2028.2 3 <12 2563.43 (2*3,4*) 2485.6 4 10 3 2107.96 4* 2708.5 3 15 3 1884.24 3* 3323.2 4 15 3 1269.01 2* 3450.5 100 12 634.74 2* 4661.91 (3.4*) 2038.3 3 100 20 1363.17 4* 4699.5 (3.4*) 3338.8 4 <40 1269.01 2* 3469.5 (3.4*) 3333.3 3 100 15 1884.24 2* 4699.5 (3.4*) 3333.3 3 100 15 1884.24 2*				1269.01	100 17	3173.1 3	(3.4^+)	4441.67
4487.2							(-,.)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B(E2)(W.u.)=61 12	E2					9+	4449.64
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			2+	634.74	100 10	3852.4 <i>3</i>	$(1,2^+)$	4487.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					15 <i>10</i>	4486.9 <i>10</i>		
3861.8 5 100 19 634.74 2* 4516.24 (3,4*) 1853.8 3 45 9 2661.98 5* 1952.8 3 32 6 2563.43 (2*3,4*) 3153.3 3 100 18 1363.17 4* 3247.5 10 <45 1269.01 2* 3881.6 5 83 9 1269.01 2* 3881.6 5 83 9 1269.01 2* 3361.5 3 100 9 634.74 2* 4536.49 (1,2*) 2158.0 4 23 9 2378.59 (1,2*) 3267.5 8 36 9 1269.01 2* 3301.5 3 100 9 634.74 2* 4544.5 346.2 2 100 17 4198.21 8* 4579.94 (3,4.5) 2472.2 4 100 13 2107.96 4* 4586.15 (3,4*) 1508.0 3 18 4 3078.01 (4)* 4586.15 (3,4*) 1508.0 3 18 4 3078.01 (4)* 4592.08 (4*) 2028.2 3 <12 2563.43 (2*3,4*) 2478.4 4 (38 2107.96 4* 2701.8 3 3051.5 7 92 15 634.74 2* 4592.08 (4*) 2028.2 3 <12 2563.43 (2*3,4*) 2485.6 4 10 3 2107.96 4* 2708.5 3 15 3 1884.24 3* 3227.5 8 3 <22 1363.17 4* 4661.91 (3,4*) 2098.7 3 37 2563.43 (2*3,4*) 2825.1 10 10 26 634.74 2* 4661.91 (3,4*) 2098.7 3 37 2563.43 (2*3,4*) 3297.7 3 100 20 1363.17 4* 4699.5 (3,4*) 3336.3 3 100 15 1883.65 (2*) 3393.8 8 4 <40 1269.01 2* 4699.5 (3,4*) 3336.3 3 100 15 1363.17 4* Ey: level-energy difference=3298.7. 3393.8 8 4 <40 1269.01 2* 4699.5 (3,4*) 3336.3 3 100 15 1363.17 4* Ey: level-energy difference=3298.7.			4+	2107.96	81 <i>13</i>		$(3,4^+)$	4496.29
4516.24 (3,4*) 1853.8 3			2+	1269.01	< 56	3227.5 <mark>&</mark> <i>3</i>		
1952.8 3 32 6 2563.43 (2*,3,4*) 3153.3 3 100 18 1363.17 4* 3247.5 10 45 1269.01 2* 3881.6 5 83 9 634.74 2* 4536.49 (1,2*) 2158.0 4 23 9 2378.59 (1,2*) 3267.5 8 36 9 1269.01 2* 3901.5 3 100 9 634.74 2* 4538.0 20 9 5 0.0 0* 4544.5 346.2 2 100 17 4198.21 8* 762.9 4 83 25 3781.7 4579.94 (3,4,5) 2472.2 4 100 13 2107.96 4* 2695.5 3 100 13 1884.24 3* 4586.15 (3,4*) 1508.0 3 18 4 3078.01 (0)* 2478.4 4 4 38 2107.96 4* 2701.8 3 3051.5 7 92 15 634.74 2* 4592.08 (4*) 2028.2 3 15 3 1884.24 3* 3227.5 3 15 3 1884.24 3* 3227.5 3 4 22 1363.17 4* 4661.91 (3,4*) 2098.7 3 337 2563.43 (2*,3,4*) 2485.6 4 10 3 2107.90 4* 2708.5 3 15 3 1884.24 3* 3957.6 6 100 12 634.74 2* 3957.6 6 100 12 634.74 2* 4661.91 (3,4*) 2098.7 3 337 2563.43 (2*,3,4*) 2485.1 10 1838.65 (2*) 3393.8 4 40 1269.01 2* 4027.1 7 80 13 634.74 2* 4699.5 (3,4*) 3336.3 3 100 15 1363.17 4* 4699.5 (3,4*) 3336.3 3 100 15 1363.17 4* 4699.5 (3,4*) 3336.3 3 100 15 1363.17 4*			2+	634.74	100 <i>19</i>	3861.8 5		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			5 ⁺	2661.98	45 9	1853.8 <i>3</i>	$(3,4^+)$	4516.24
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							$(1,2^+)$	4536.49
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								4544.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			8					4544.5
4586.15 $(3,4^{+})$ 1508.0 3 18 4 3078.01 $(4)^{+}$ 2478.4 4 $(4)^{+}$ 38 2107.96 4 2701.8 3 100 15 1884.24 3 3951.5 7 92 15 634.74 2 4592.08 (4^{+}) 2028.2 3 (4^{+}) 22485.6 4 10 3 2107.96 4 2708.5 3 15 3 1884.24 3 3227.5 3 (4^{+}) 3323.2 4 15 3 1269.01 2 3957.6 6 100 12 634.74 2 4661.91 $(3,4^{+})$ 2098.7 3 33 7 2563.43 $(2^{+},3,4^{+})$ 22825.1 10 1838.65 (2^{+}) 3397.7 3 100 20 1363.17 4 4699.5 $(3,4^{+})$ 3336.3 3 100 15 1363.17 4 4700.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $(3,4^{+})$ 3490.4 4890.5 $($			4+				(2.4.5)	4570.04
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							(3,4,3)	4379.94
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							(3.1+)	<i>1</i> 586 15
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							(3,4)	4360.13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
4592.08 (4 ⁺) 2028.2 3								
2485.6 4 10 3 2107.96 4 ⁺ E _{γ} : level-energy difference=2484.1. 2708.5 3 15 3 1884.24 3 ⁺ E _{γ} : poor fit. Level-energy difference=3228.8. 3227.5 3 <22 1363.17 4 ⁺ E _{γ} : poor fit. Level-energy difference=3228.8. 323.2 4 15 3 1269.01 2 ⁺ 3957.6 6 100 12 634.74 2 ⁺ 4661.91 (3,4 ⁺) 2098.7 3 33 7 2563.43 (2 ⁺ ,3,4 ⁺) 2825.1 10 1838.65 (2 ⁺) 3297.7 3 100 20 1363.17 4 ⁺ E _{γ} : level-energy difference=3298.7. 3393.8 4 $^{\&}$ 4 <40 1269.01 2 ⁺ 4027.1 7 80 13 634.74 2 ⁺ 4699.5 (3,4 ⁺) 3336.3 3 100 15 1363.17 4 ⁺							(A ⁺)	4502.08
2708.5 3 15 3 1884.24 3^+ $3227.5^{\&}$ 3 <22 1363.17 4^+ E_{γ} : poor fit. Level-energy difference=3228.8. 3323.2 4 15 3 1269.01 2^+ $3957.6 6$ 100 12 634.74 2^+ 4661.91 (3,4 ⁺) 2098.7 3 33 7 2563.43 (2 ⁺ ,3,4 ⁺) $2825.1 \ 10$ 1838.65 (2 ⁺) $3297.7 \ 3$ 100 20 1363.17 4^+ E_{γ} : level-energy difference=3298.7. 393.8 4 <40 1269.01 2^+ $4027.1 \ 7$ 80 13 634.74 2^+ 4099.5 (3,4 ⁺) 3336.3 3 100 15 1363.17 4^+	F : level-energy difference=2484 1						(+)	4392.00
3227.5 $\frac{\&}{3}$ <22 1363.17 4+ E _{γ} : poor fit. Level-energy difference=3228.8. 3323.2 4 15 3 1269.01 2+ 3957.6 6 100 12 634.74 2+ 4661.91 (3,4+) 2098.7 3 33 7 2563.43 (2+,3,4+) 2825.1 10 1838.65 (2+) 3297.7 3 100 20 1363.17 4+ E _{γ} : level-energy difference=3298.7. 393.8 $\frac{\&}{4}$ <40 1269.01 2+ 4027.1 7 80 13 634.74 2+ 4027.1 7 80 13 634.74 2+ 4699.5 (3,4+) 3336.3 3 100 15 1363.17 4+	by. level energy difference—2 to 1.1.							
3323.2 4 15 3 1269.01 2^+ 3957.6 6 100 12 634.74 2^+ 4661.91 (3,4 ⁺) 2098.7 3 33 7 2563.43 (2^+ ,3,4 ⁺) 2825.1 10 1838.65 (2^+) 3297.7 3 100 20 1363.17 4^+ E _{γ} : level-energy difference=3298.7. 3393.8 4 4 40 1269.01 2^+ 4027.1 7 80 13 634.74 2^+ 4699.5 (3,4 ⁺) 3336.3 3 100 15 1363.17 4^+	F : poor fit Level energy difference-3228 8							
3957.6 6 100 12 634.74 2^+ 4661.91 $(3,4^+)$ 2098.7 3 33 7 2563.43 $(2^+,3,4^+)$ 2825.1 10 1838.65 (2^+) 3297.7 3 100 20 1363.17 4^+ E _{γ} : level-energy difference=3298.7. 3393.8 4 $<$ 40 1269.01 2^+ 4027.1 7 80 13 634.74 2^+ 4699.5 $(3,4^+)$ 3336.3 3 100 15 1363.17 4^+	L _γ . poor int. Lever-energy difference-3228.8.							
4661.91 (3,4 ⁺) 2098.7 3 33 7 2563.43 (2 ⁺ ,3,4 ⁺) 2825.1 10 1838.65 (2 ⁺) 3297.7 3 100 20 1363.17 4 ⁺ E _{γ} : level-energy difference=3298.7. 3393.8 4 4 4027.1 7 80 13 634.74 2 ⁺ 4027.1 7 80 15 1363.17 4 ⁺								
2825.1 10 1838.65 (2 ⁺) 3297.7 3 100 20 1363.17 4^+ E _{γ} : level-energy difference=3298.7. 3393.8 $\frac{\&}{4}$ <40 1269.01 2^+ 4027.1 7 80 13 634.74 2^+ 4699.5 (3,4 ⁺) 3336.3 3 100 15 1363.17 4^+							(3.4^{+})	4661.91
3297.7 3 100 20 1363.17 4^+ E _{γ} : level-energy difference=3298.7. 3393.8 $\frac{\&}{4}$ 40 1269.01 2^+ 4027.1 7 80 13 634.74 2^+ 4699.5 (3,4 $^+$) 3336.3 3 100 15 1363.17 4^+					00,		(2,.)	.001.71
$3393.8^{\&} 4$ <40 1269.01 2 ⁺ 4027.1 7 80 13 634.74 2 ⁺ 4699.5 (3,4 ⁺) 3336.3 3 100 15 1363.17 4 ⁺	E_{ν} : level-energy difference=3298.7.				100 20			
$4027.1 \ 7$ $80 \ 13$ $634.74 \ 2^{+}$ $4699.5 \ (3,4^{+})$ $3336.3 \ 3$ $100 \ 15$ $1363.17 \ 4^{+}$,							
$4699.5 (3,4^+) 3336.3 3 100 15 1363.17 4^+$								
							(3.4^{+})	4699.5
$4064.4 \ 11 \qquad 16.5 \qquad 634.74 \ 2^{+}$					16 5	4064.4 11	(5,.)	.0,,.0
$4757.2 (3,4^+) 3393.8 4 < 100 1363.17 4^+$							(3.4^{+})	4757 2
			•	1303.17	100	3373.0 7	(5,7)	1131.4

10

γ (⁷⁴Se) (continued)

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathtt{J}_f^{π}	Mult.#	Comments
4757.2	$(3,4^+)$	4123.5 12	120 8	634.74	2+		
4794.45	(3,4,5)	1022.7 2	31 4	3771.91	(4^{+})		
		3430.8 <i>3</i>	100 14	1363.17	4+		
4848.7	(9^{-})	445.5 <i>3</i>	17 <i>4</i>	4403.20		[M1,E2]	B(M1)(W.u.)<0.09; B(E2)(W.u.)<665
		1007.1 <i>3</i>	100 15	3841.69		[E2]	B(E2)(W.u.)=63 +22-25
4877.49	(10^{+})	621.2 2	100 <i>13</i>	4256.29		(D)	Mult.: $\Delta J=0$ transition.
		948.4 5	75 9	3929.2			
		1679 ^a 1	≈31	3198.41			
5060.2		657.0 <i>3</i>	100	4403.20			
5209.2	10-	1011.0 <i>3</i>	100	4198.21		(E2)	$B(E2)(W.u.)=32 \ 11$
5443.1	12+	1186.7 <i>4</i>	100	4256.29		E2	$B(E2)(W.u.)=1.1\times10^2 \ 3$
5491.2	11-	1088.0 <i>3</i>	100	4403.20		E2	B(E2)(W.u.)=87 8
5492.9	11+	1042.8 5	100 14	4449.64		Q	
		1236.9 5	24 6	4256.29		D	
5928.5	(11^{-})	1079.7 3	100	4848.7	(9-)	[E2]	B(E2)(W.u.)=80 22
6014.8	(12^{+})	571.7 3	100 14	5443.1	12+		
		1137.5 6	95 <i>48</i>	4877.49			
(252.6	1.2-	1759 2	≈48	4256.29		F-0	D/EQ/(NL) 22
6253.6	12-	1044.4 3	100	5209.2	10-	E2	B(E2)(W.u.)>33
6685.9	(13^{+})	1192.9 6	100 17	5492.9	11 ⁺ 12 ⁺	Q	
6686.9	13-	1243.1 <i>6</i> 1195.7 <i>3</i>	23 7 100	5443.1 5491.2	11-	E2	B(E2)(W.u.)=6.E+1 3
6735.6	13 14 ⁺	1193.7 3 1292.4 <i>4</i>	100	5443.1	12 ⁺	E2 E2	B(E2)(W.u.)=6.E+1 3 B(E2)(W.u.)=63 7
7063.7	(13^{-})	1135.2 6	100	5928.5	(11^{-})	[E2]	B(E2)(W.u.)>21
7206.9	(13^{+})	1193.2 0	100 33	6014.8	(11^{+}) (12^{+})	[E2]	D(E2)(W.u.)>21
7200.9	(14)	1763.3 10	53 13	5443.1	12+	(Q)	
7451.6	14-	1198.0 4	100	6253.6	12-	Q	
7844.8	15-	1157.8 5	100	6686.9	13-	(Q)	
7944.0	(15^{+})	1208.2 6	47 10	6735.6	14 ⁺	D	
,,	(10)	1258.2 5	100 8	6685.9	(13^{+})	Q	
7978.7	15-	1291.8 <i>4</i>	100	6686.9	13-	(Q)	
8116.7	16 ⁺	1381.1 <i>4</i>	100	6735.6	14 ⁺	E2	B(E2)(W.u.)=81 17
8537.3	(16^+)	1330.5 6	100 19	7206.9	(14^{+})		
		1801.6 8	19 7	6735.6	14+	(Q)	
8815.6	16-	1364.0 5	100	7451.6	14-	(Q)	
9294.4	(17^{+})	1350.4 6	100	7944.0	(15^{+})		
9300.3	17-	1321.6 4	100 16	7978.7	15-		
		1455.4 <i>4</i>	100 16	7844.8	15-	(Q)	
9680.5	18+	1563.8 <i>6</i>	100	8116.7	16 ⁺	E2	B(E2)(W.u.)=43 12
10128.8	(18^{+})	1591.5 7	100	8537.3	(16^{+})	Q	
10370.5	(18^{-})	1554.8 7	100	8815.6	16-		

γ (⁷⁴Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#
10826.4	(19^+)	1532 <i>1</i>	100	9294.4	(17^+)	·
10926.3	(19^{-})	1626 <i>1</i>	100	9300.3	17-	
11360.2	20^{+}	1679.7 <i>7</i>	100	9680.5	18 ⁺	Q
12104.5	(20^{-})	1734 <i>1</i>	100	10370.5	(18^{-})	
13202.3	22 ⁺	1842 <i>1</i>	100	11360.2	20^{+}	(Q)

 $^{^{\}dagger}$ Weighted average taken, whenever possible. ‡ Photon branching ratios. Weighted average from various studies. $^{\sharp}$ From measured $T_{1/2}$ of levels and RUL of Weisskopf estimates for transitions of E2 or M2 multipolarity.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Multiply placed.

^a Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{74}_{34}\mathrm{Se}_{40}$

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level

	History		
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balrai Singh, Jun Chen and Ameenah R. Farhan	NDS 194.3 (2024)	8-Jan-2024

 $Q(\beta^{-}) = -4963 \ 9; \ S(n) = 11153.79 \ 7; \ S(p) = 9506.7 \ 9; \ Q(\alpha) = -5090.96 \ 8$ 2021Wa16

S(2n)=19181.38 2, S(2p)=16407.45 2 (2021Wa16).

Other reactions:

⁷²Ge(⁶Li,d),E=34 MeV: 1984Co08, analyzed spectroscopic factors.

 76 Se(e,e),E=225 MeV: 1988Kh02 (also 1987Ku21,1987Kh07). Measured σ and comparison with theory.

⁷⁶Se(d, ³He),E=25 MeV: 1983Ro08, deduced g.s. proton occupation numbers.

Giant dipole resonances studied by 1976Ca06 using (γ, xn) reactions.

(12C,X),(16O,X),(18O,X),E=40-52 MeV: 1985GuZZ, GDR decay characteristics.

 (γ,xn) : GDR study: 1975Go16.

GDR experimental study in (12C,X) reaction.

Additional information 1.

For neutron resonances see 1971Fe01, 1969Ma15, 1964Co31.

 76 Ge(π^+,π^-): 1991Ka20, 1991Ci10.

Mass measurements: 2010Mo03, 2008Ra09, 2006Sc38, 2002Bf02, 2001Fr25, 2001Do08, 1993Hy02, 1991Hy01, 1985El01 (also 1984El01).

⁷⁶Se Levels

In ⁷⁴Ge(³He,n), a level is seen at 4.1 MeV I which may correspond to any of the 12 or so levels between 4.0 and 4.2 MeV.

Cross Reference (XREF) Flags

		B 76 Br $\varepsilon + \beta^+$ d C 76 Br ε decay	cay $(1.926 \times 10^{21} \text{ y})$ $n\gamma)$	I J K L M N O	75 As(3 He,d) 75 Se(n, γ) E=thermal 75 As(p,n) IAR 76 Se(p, γ) 76 Se(pol γ , γ ') 76 Se(n,n') 76 Se(n,n' γ) 76 Se(p,p'),(pol p,p')	Q R S T U V	76 Se(p,p' γ),(α , α ' γ) 76 Se(d,d'),(pol d,d') 76 Se(α , α ') Coulomb excitation 76 Br(n,p) E=thermal 77 Se(d,t) 78 Se(p,t)
E(level) [†]	$J^{\pi #}$	T _{1/2} ‡	XREF				Comments
0.0 ^b	0+	stable	ABCDEfGHIJ LMNO	PQRST	evaluation). J ^π : microwave a (1950Ge05,19 Valence protons measurements From (p,t) reacti	bsorp 49St(in g.s (200 ions,	07,1933Ra02) consistent with J=0. s. from transfer reaction
					pairing vibrati	ions f	n, 2013Ro10 deduce no evidence of for ⁷⁶ Se and ⁷⁶ Ge, and conclude a are for the ground states of both
559.103 ^b 5	2+	11.98 ps +16-40	ABC EfGHIJ LMNO	PQRST	Q=-0.35 4 (201) β_2 =0.28 <i>I</i> (1993) J ^{π} : E2 γ to 0 ⁺ .	9He0 3Mo0:	7,2021StZZ)

Continued on next page (footnotes at end of table)

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
				evaluation), based on the following measurements: mean lifetime τ =15.5 ps + $I3$ - $I9$ (1963Pr04 in (γ , γ')), 13 ps 2 (1960De08 in (γ , γ')), 33 ps 22 (1955Co55, $\gamma\gamma$ (t)). Coulomb excitation measurements: B(E2)↑=0.419 43 (1995Ka29, incident energy above the Coulomb barrier), 0.425 9 (1984Zo01, RDM and DSA), 0.423 6 (1977Le11), 0.42 2 (1974Ba80, superseded by 1977Le11), 0.390 40 (1970AgZV), 0.45 4 (1962Ga13), 0.480 43 (1962St02), 0.42 8 (1960An07), 0.43 6 (1956Te26). μ : transient-field method in Coul. ex. (2019Mc05), with measured g ⁷⁶ Se/g ⁷⁴ Se=0.96 7 for first 2+ states. Others: +0.806 46 (1998Sp03,transient-field method in Coul. ex.); +0.81 22 (1967Mu10, $\gamma\gamma$ (θ ,H) in 76 As β -), +0.80 22 (1969He11, IMPAC in Coul. Ex.). Q: reorientation in Coul. ex. (2019He07). Others: -0.34 7 (1977Le11, reorientation in Coul. ex.); -0.30 5 (1976VoZY). β 2(p,p'): 0.28 I (1993Mo05); 0.310 $I0$, 0.301 $I5$ (1984De01); 0.27 I , 0.28 I (1983Ma59); 0.278 I , 0.293 I (1979Ma28); 0.323 (1970He10). I 2(n,n'): 0.28 (1976La12). I 2(R=1.52 I 2 (1984Ku09), 1.72 I 3 (1981Br23). I 3(Coul. ex.): 0.265, 0.356 (1988Ba35). I 3(Coul. ex.): 0.268 (1977Le11), 0.309 (1974Ba80),
				0.319 (1970AgZV).
1122.279 8	0+	12.1 ps +39-24	AB IJ L OPQR T VW	$\beta_2(^{16}\text{O},^{14}\text{O})$: 0.326 (1976Co09). $T_{1/2}$: from B(E2) in Coul. ex. Otehr: 11 ps 5 from B(E2) ratios of unresolved 563 γ and 559 γ (1964By02) in Coul. ex.
				J^{π} : E0 transition to 0 ⁺ . Also $\gamma\gamma(\theta)$ in 76 As β^{-} and 76 Br ε decay.
1216.154 ^c 6	2+	3.3 ps <i>3</i>	AB E G IJ LM OPQRSTUVW	μ =0.61 <i>I1</i> (1998Sp03,2020StZV) Q=+0.19 4 (2019He07,2021StZZ) β_2 =0.28 <i>I</i> (1993Mo05)
				μ: transient-field method in Coul. ex. (1998Sp03), measured value of 0.70 <i>12</i> in 1998Sp03 is re-evaluated to 0.61 <i>11</i> in 2020StZV.
				Q: reorientaton in Coul. ex. (2019He07). J^{π} : E2 γ to 0 ⁺ . $T_{1/2}$: from B(E2) in Coul. ex. Other: 3.5 ps 14 (DSAM
				in $(\alpha,2n\gamma)$). $\beta_2(p,p')=0.085\ 2\ (1993Mo05)$. $\beta_2(\alpha,\alpha')=0.1\ (1988Ba35)$.
1330.872 ^b 8	4+	1.52 ps <i>3</i>	ABC E G IJ OPQR T VW	μ=2.2 4 (1998Sp03,2020StZV) Q=-0.29 4 (2019He07,2021StZZ) μ: transient-field method in Coul. ex. (1998Sp03), measured value of 2.56 36 in 1998Sp03 is re-evaluated
				to 2.2 4 in 2020StZV. Q: reorientaton in Coul. ex. (2019He07). J ^{π} : ΔJ =2, E2 γ to 2 ^{$+$} . Observed anisotropy forbids J=0. T _{1/2} : from B(E2) in Coul. ex. Others: 0.7 ps +5-4 (DSAM in $(\alpha,2n\gamma)$), 1.3 ps +5-1 (p,p' γ). $\beta_4(p,p')$ =0.049 10 or 0.012 (1986MoZR), 0.040 (1984De01), 0.014 5, 0.012 4 (1983Ma59); $\beta_4(n,n')$ =0 (1984Ku09).

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡		XR	REF		Comments
1688.971 ^d 7 1787.655 7	3 ⁺ 2 ⁺	3.2 ps +12-6 1.29 ps +42-24	AB AB	E G J	OPQ T OPQRST		J ^π : ΔJ=1 E2+M1 γ to 2 ⁺ ; γ to 4 ⁺ . J ^π : M1+E2 γ to 2 ⁺ ; γ rays to 0 ⁺ and 4 ⁺ and L(p,p')=2. T _{1/2} : weighted average of 1.18 ps +42-24 from DSAM in (n,n' γ) (2019Mu04) and 1.5 ps +5-4 from B(E2) for 1229 γ in Coul. ex.
1791.437 <i>21</i>	0+		AB		0 Q		$\beta_2(\alpha,\alpha')$ =0.07 (1988Ba35). J^{π} : from isotropic $\gamma(\theta)$ for 575.3 γ and comparison of excitation function data with statistical model calculations using CINDY code in $(n,n'\gamma)$; spin=0 also from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay (2018MoZZ).
2026.020 ^c 8	4+	1.6 ps 2	AB	E G IJ	OPQR T	VW	J ^{π} : $\Delta J=2$, E2 γ to 2 ⁺ and M1+E2 γ to 4 ⁺ . T _{1/2} : weighted average of 1.8 ps 4 from DSAM in $(\alpha,2n\gamma)$ and 1.6 ps 2 from B(E2) in Coul. ex.
2127.224 7	(2)+		AB	IJ	OPQR	V	J^{π} : L=1+3 in (³ He,d) from 3/2 ⁻ and γ rays to 0 ⁺ and 4 ⁺ .
2170.572 11	(0+)	1.5 ps +10-5	AB	IJ	OPQR	W	XREF: P(2177)R(2210). J ^π : L(p,t)=(0). But L(³ He,d)=(1+3) from 3/2 ⁻ suggests (1 ⁺ ,2 ⁺ ,3 ⁺). E(level): there may be two separate levels near this energy as indicated by contradictory L(p,t) and L(³ He,d).
2262.42 ^b 16	6+	0.58 ps 5		E G	OPQR T	•	XREF: R(2290). J^{π} : $\Delta J=2$, E2 γ to 4 ⁺ ; member of rotaional band. $T_{1/2}$: weighted average of 0.62 ps 7 from DSAM in $(\alpha,2n\gamma)$ and 0.56 ps 5 from B(E2) in Coul.ex.
2362.963 13				J		W	XREF: W(2347). J^{π} : γ to 2^{+} ; possible γ to 4^{+} .
2429.131 ^e 8	3-	8.9 ps +15-12	AB	GHIJ	NOPQRST	. M	$\beta_3 = 0.17 \ I \ (1993 Mo05)$ B(E3)=0.032 7 (2002Ki06 evaluation, from Coulomb ex.). J^{π} : L(d, ³ He)=4 from 3/2 ⁻ and L(p,p')=3. Also dipole γ rays to 2 ⁺ and 3 ⁺ ; 403 γ to 4 ⁺ can only be D,E2 from RUL.
							T _{1/2} : weighted average of 14 ps 7 from DSAM in $(\alpha,2n\gamma)$ and 8.7 ps +15-12 from B(E3) in Coul. ex. and adopted γ branching ratios. $\beta_3(p,p')$ =0.17 I (1993Mo05), 0.15 (1984De01), 0.164 (1979Ma28, 1979Ma41); $\beta_3(\alpha,\alpha')$ =0.183 (1988Ba35); β_3 (Coul. ex.)=0.185 (1974Ba80); β_3 (16O, 14O)=0.185 (1976Co09); β_3 R(n,n')=0.77 5 (1984Ku09).
2485.02 5	4+	485 fs +76-62			OpQ		XREF: p(2487). J^{π} : spin=4 from $\gamma(\theta)$ in $(n,n'\gamma)$; γ M1+E2 to 3 ⁺ .
2489.35 ^d 5	5 ⁺	0.9 ps +3-2		E G	OpQ		XREF: p(2487).
2514.681 <i>11</i>	2+	1.18 ps +39-24	AB	IJ	OPQR	W	J^{π} : ΔJ=2, E2 γ to 3 ⁺ ; E2+M1 γ to 4 ⁺ . XREF: R(2540). J^{π} : M1+E2 γ to 2 ⁺ ; 825.8 γ D+Q to 3 ⁺ ; 723.2 γ to 0 ⁺ . L(p,t)=(2) also supports (2 ⁺).
2558.73 8	1+ 2+	1.00	В		0	V	XREF: V(2570).
2604.09 <i>4</i> 2617.89 <i>6</i>	1 ⁺ ,2 ⁺ (4) ⁺	1.08 ps +64-30 402 fs +76-55	В	I	O OP	VW	J^{π} : M1+E2 γ to 2 ⁺ ; γ to 0 ⁺ . J^{π} : L(p,p')=4 and L(³ He,d)=3 from 3/2 ⁻ ; M1+E2 γ to 4 ⁺ and 3 ⁺ .
2655.383 <i>13</i>	1	0.82 ps +22-15	AB	J	OPQ	W	J^{π} : dipole γ to 0^+ .

E(level) [†]	${\rm J}^{\pi \#}$	T _{1/2} ‡		XRE	EF		Comments
2669.904 <i>14</i>	2-	0.89 ps +27-17	AB	IJ	O QR	W	J^{π} : L(³ He,d)=2+4 from 3/2 ⁻ ; dipole γ to 2 ⁺ ; γ to 0 ⁺ .
2691 2 2805.10 <i>15</i> 2812.130 <i>34</i>	(3 ⁻) (4 ⁺) (3 ⁺)	0.39 ps +10-7	В	J	P OP O Q	W	J^{π} : L(p,p')=(3). J^{π} : L(p,p')=4. XREF: B(?)w(2820). J^{π} : (M1+E2) γ rays to 2 ⁺ and 3 ⁺ ; (3 ⁺) from
2817.24 <i>4</i>	(2 ⁺)	98 fs 6	В	J	0	W	$(n,n'\gamma)$ based on γ decay pattern. XREF: w(2820).
2824.797 ^e 10	5-	6.2 ps +21-14		G iJ	0		J^{π} : γ s to 4 ⁺ and 0 ⁺ . XREF: i(2830). J^{π} : ΔJ =2, E2 γ to 3 ⁻ and E1 γ to 4 ⁺ . Also
2829.61 19	(1,2)		В	i			L(³ He,d)=4 from 3/2 ⁻ . XREF: i(2830).
2853 2	(4 ⁺)				P r	v	J^{π} : 2830 γ to 0 ⁺ . XREF: r(2870). J^{π} : L(p,p')=4.
2859.781 ^f 24	4-	1.2 ps 5	В	G IJ	0	v	J^{π} : $\Delta J=1$, M1+E2 γ to 3 ⁻ and $\Delta J=0$ or 2,
2869.34 5	$(1^+,2^+)$	82 ps 6	В	J	0 Qr	v	D+Q γ to 4 ⁺ . XREF: r(2870). J ^{π} : (M1+E2) γ to 2 ⁺ ; γ to 0 ⁺ .
2910.993 <i>18</i> 2917.32 8	(1 to 4) ^a (4) ⁺			IJ	OP	W W	XREF: P(2915). J^{π} : L(p,p')=4 and L(³ He,d)=3 from 3/2 ⁻ . But
2950.171 32	1+	92 fs <i>14</i>	В	J L	0 Q		5 ⁺ from $(n,n'\gamma)$. J^{π} : (M1) intense 2950 γ to 0 ⁺ ; M1+E2 γ to 2 ⁺ ; dipole γ to 0 ⁺ from $\gamma(\theta)$ in (γ,γ') . $T_{1/2}$: weighted average of 76 fs 13 from
2969.48 6	2-,3-,4-			IJ	OP r		(γ, γ') and 104 fs 11 from $(n, n'\gamma)$. XREF: I(2956).
2975.00 <i>5</i> 2975.98 ^c 29	$(2^+,3,4^+)$ 6^+	1.2 ps +7-4	В	E G	0 r 7	Γ	J^{π} : L(3 He,d)=4+2 from 3/ 2 . J^{π} : γs to 2 ⁺ and 4 ⁺ . J^{π} : ΔJ=2, E2 γ to 4 ⁺ ; γ to 6 ⁺ . $T_{1/2}$: other: 1.1 ps 4 from B(E2) in Coul. ex.
3007.75 8	(2)+	27.0 fs 21		IJ	OP	VW	XREF: $I(3022)P(3001)$. J^{π} : $L(p,p')=2$ and $L(^{3}He,d)=1+3$ from $3/2^{-}$;
3031.57 7	0+	98 fs 8			0		M1+E2 γ to 2 ⁺ ; γ to 0 ⁺ . J^{π} : from isotropic $\gamma(\theta)$ for 1815 and 2472 γ rays and comparison of excitation function data with statistical model calculations using
3042 <i>4</i> 3045.79 <i>8</i>	(6 ⁺) (5 ⁻)	0.39 ps +28-12		G	P 0		CINDY code in $(n,n'\gamma)$. J^{π} : $L(p,p')=6$. J^{π} : $(M1)$, $\Delta J=(0) \gamma$ to 5 ⁻ . $T_{1/2}$: from DSAM in $(n,n'\gamma)$. Other: <0.28 ns from $(\alpha,2n\gamma)$. Note that the quoted $T_{1/2}$ results in a large reduduced transition
3069.62 4	2+	457 fs +83-62	В	J	0 Q		strength for any of Mult=E1, M1, or E2. J^{π} : M1+E2 γ to 2 ⁺ ; 1380.5 γ dipole to 3 ⁺ ; ε feeding (log ft =5.95) from 1 ⁻ .
3084.58 6	$(1^+,2^+,3^+)^{\&}$	32.6 fs 21		I	OP	7.7	III. I (/-) 2
3105.48 <i>5</i> 3160.115 <i>32</i>	(3 ⁻) (2 ⁺)	202 fs 21 0.38 ps +21-10	B B	J J	OP O Qr	W	J^{π} : L(p,p')=3. J^{π} : γs to 4 ⁺ and 1 ⁺ ; ε feeding (log ft =6.4 from 1 ⁻). But 0 ⁺ proposed in (n,n'γ) from isotropic 2601γ(θ).
3161.80 5	(3-)	272 fs +63-43			OP r		J^{π} : (M1+E2) γ to (3 ⁻); γ to 4 ⁺ and 2 ⁺ .

E(level) [†]	$J^{\pi \#}$	‡		XRE	F			Comments
3191.67 8	(3) ⁺ &	112 fs 8	В	IJ	0			XREF: I(3198).
								J^{π} : (M1+E2) γ s to 2 ⁺ and 4 ⁺ .
3212.98 <i>10</i>	$1^+, 2^+$	11.1 fs <i>14</i>		i L	0			XREF: i(3212).
								J^{π} : γ to 0 ⁺ can only be D,E2 from RUL; M1+E2 γ to 2 ⁺ .
								γ to 2. T _{1/2} : from DSAM in (n,n' γ). Other: 11 fs 4 from
								(γ, γ') .
3216 <i>4</i>	$(3^-\&4^+)$				P		W	XREF: W(3232).
								J^{π} : L(p,p')=3+4; also L(p,t)=(3,4) for a possible
3219.428 <i>33</i>	$(2^+,3^+)$	56.1 fs 42	В	iJ	0			doublet. XREF: i(3212).
3217.420 33	(2 ,5)	30.1 13 42	Ъ	13	U			J^{π} : γ s to 2 ⁺ and 4 ⁺ ; $L(^{3}He,d)=1+3$ for a group at
								3212.
3225.7 5	$(6,8^+)$			G				J^{π} : $\Delta J=0$ or 2 γ to 6^+ .
								$T_{1/2}$: from DSAM in $(\alpha,2n\gamma)$ 1981KiZW give 1.1
								ps 3 but this value is not reported in authors' published work (1984Zo01).
3230.27 8	1,2+	0.7 ps +21-3			0			J^{π} : γ to 0 ⁺ can only be D,E2 from RUL.
3238.78 8	-,-	*** F* **** *		G	0			J^{π} : γ to 5 ⁻ .
3259.81 8			В		p)		XREF: p(3259).
3262.34^{f} 25	6-	12 ps 6		G	p)		XREF: p(3259).
								J^{π} : $\Delta J=2$, (E2) γ to 4 ⁻ , M1+E2 γ to 5 ⁻ and D+Q
3262.96 8		201 fs +97-55		IJ	0p)		γ to 6 ⁺ . XREF: p(3259).
2202.70 0		201 15 19, 00			· P			J^{π} : γ to 2^+ .
3267.57 6	$(2^+,3,4^+)$	395 fs +97-69	В	ij	0			XREF: i(3268).
2269.70.4	(1= 2)		ъ					J^{π} : γ s to 2^+ and 4^+ .
3268.70 <i>4</i>	$(1^-,2)$		В	ij				XREF: i(3268). J^{π} : ε feeding (log ft =7.2) from 1 ⁻ ; γ to (3 ⁻).
3269.75 ^b 33	8+	0.35 ps 7		E G		Т		J^{π} : $\Delta J=2$, E2 γ to 6^+ ; member of rotational band.
020,1,0 00		опес ро ,				_		$T_{1/2}$: other: 0.34 ps 8 from B(E2) in Coul. Ex.
3282.19 <i>11</i>	1,2+	101 fs 9			0			J^{π} : γ to 0^+ can only be D,E2 from RUL.
3294.8 <i>4</i>	(4^{+})			J	P	r	W	XREF: P(3289).
3295.02 12	$(1^+,2^+)$		В	i	0	r	W	J^{π} : L(p,p')=4. J^{π} : γ to 0+; L(³ He,d)=1+3 for a group at 3295.
3293.02 12	(1 ,2)		ь	1	U	1	vv	E(level), T _{1/2} : 69 fs 5 for a 3295.28 level in
								$(n,n'\gamma)$ could correspond to 3295.70+3297.05
								levels in 76 Br ε decay based on matching of
2206.2.6	(1+ 2+)		ъ					their decaying γ transitions.
3296.2 6	$(1^+,2^+)$		В	i	0	r	W	XREF: $i(3295)$. E(level), $T_{1/2}$: see comment at 3295.7 level.
								J^{π} : γ to 0 ⁺ ; L(³ He,d)=1+3 for a group at 3295.
3312.04 <i>30</i>	(6-)	0.14 ns +14-7		G			W	J^{π} : $\Delta J = 1$, D+Q ($\delta = 0.25$) γ to 5 ⁻ .
3331.51 8		229 fs +42-35			0			J^{π} : γ to 2^{+} .
3346.25 11					0p)		XREF: p(3342). J^{π} : γ s to 4 ⁺ .
3348.48 11	$(1^+, 2^+)$	0.3 ps + 15 - 2		i	0p)		XREF: i(3345)p(3342).
	(- ,-)	F		_				J^{π} : γ to 0^+ ; $L(^3\text{He,d})=1+3$ for a group at 3345.
3351.462 <i>30</i>	$(2)^{+}$	90 fs 9	В	iJ	0	Q		XREF: i(3345).
	·(+) - ·			_				J^{π} : M1+E2 γ to 2 ⁺ ; γ to 0 ⁺ ; γ s to 0 ⁺ and 3 ⁻ .
3376.37 12	$1^{(+)},2^+$	77 fs +49–29		i	0			XREF: i(3378). J^{π} : γ to 0 ⁺ can only be D,E2 from RUL;
								$L(^{3}\text{He,d})=1+3 \text{ from } 3/2^{-} \text{ for a group at } 3378$
								could correspond to 3376.3+3377.2 levels.

E(level) [†]	${ m J}^{\pi \#}$	T _{1/2} ‡	Х	KREF	Comments
3377.0 4	(1+,2+,3+)	-//-2	B i		XREF: i(3378). J^{π} : γ to 2 ⁺ ; L(³ He,d)=1+3 from 3/2 ⁻ for a group at 3378 could correspond to
3403.82 9	(2+,3+,4+)	32.6 fs <i>35</i>		0	3376.3+3377.2 levels. J^{π} : 592 γ to 3 ⁺ can't be pure E1, E2 or M2 based on RUL; γ to 4 ⁺ . Note that (5 ⁺) is proposed in (n,n' γ), but it would require a B(E2)(W.u.)=5.5×10 ³ +7-6 for 592 γ , which
3405.9 <i>7</i> 3407.91 <i>4</i> 3417 <i>10</i>	(1) (4 ⁺)	205 fs 33 0.52 ps +56-19	I	L OP	greatly exceeds RUL=300. J^{π} : (D) γ to 0 ⁺ . J^{π} : L(p,p')=4. J^{π} : L(³ He,d)=4 from 3/2 ⁻ suggests J=2 to 6.
3432.31 ^d 33 3436.09 16	7 ⁺ 1 ⁽⁺⁾ ,2 ⁺	0.8 ps +4-2 63 fs 5	E G I	0	J^{π} : $\Delta J=2$, E2 γ to 5 ⁺ and $\Delta J=1$, M1 γ to 6 ⁺ . J^{π} : γ s to 0 ⁺ can only be D,E2; (M1+E2) γ to
3441.27 22	(3-)			OP	2 ⁺ . W XREF: W(3458).
3441.54 ^e 26 3459.13 5	7 ⁻ (2 ⁺)	3.6 ps 7	G B I	Q	J^{π} : L(p,p')=3. Also L(p,t)=(3,4). J^{π} : ΔJ=2, E2 γ to 5 ⁻ and γ to 6 ⁺ . XREF: I(3467). J^{π} : ε feeding (log ft =6.6) from 1 ⁻ ; γ s to 3 ⁺ and
3466.39 11	(1,2,3)		В	0	3 ⁻ ; L(³ He,d)=1+3 from 3/2 ⁻ for a group at 3467. XREF: O(?).
3475 <i>4</i> 3528.69 <i>30</i>	(4 ⁺) 1 ⁺	50 fs 5	I	L O r	J ^π : γ s to 2 ⁺ and 2 ⁻ . J ^π : L(p,p')=4. XREF: O(?). J ^π : L(³ He,d)=1+3 from 3/2 ⁻ ; dipole γ to 0 ⁺
3552.89 7	(1,2)		B i	r	from $\gamma(\theta)$. $T_{1/2}$: from (γ, γ') . XREF: i(3558)r(3540).
3556.210 29	(2-)		В іЈ	Qr	J ^{π} : 2431 γ to 0 ⁺ . XREF: i(3558). J ^{π} : γ s to 1 ⁺ and 4 ⁻ ; ε feeding (log ft =6.4) from
3566.6 10	1(+)	157 fs 24	i	L P	1 ⁻ . XREF: i(3558). J ^π : dipole γ to 0 ⁺ in (γ, γ') ; L(³ He,d)=(1+3)
3604.192 <i>33</i>	1+	55 fs 5	в із	L Q	for a group at 3558. W XREF: I(3598)W(3591). J ^{π} : ε feeding (log fi =6.4) from 1 $^-$; γ to 0 $^+$ can only be D,E2 from RUL; L(3 He,d)=1+3 from 3/2 $^-$ for a group at 3598; dipole γ to 0 $^+$ in
3636.88 6	(2+)		В І	P	(γ, γ') . J^{π} : γ s to 0^+ and (3^-) ; $L(^3\text{He,d})=(1+3)$ for a
3651.88 9	(1+,2+,3+)		В іЈ	p	group at 3634. XREF: $i(3659)p(3655)$. J^{π} : $L(^{3}He,d)=1+3$ from $3/2^{-}$ for a group at 3659 and γ s to 1^{+} and 3^{+} suggests $(1^{+},2^{+},3^{+})$. But $L(p,p')=(4)$ for a 3655 group suggests (4^{+}) and may indicate a different level.
3657.7? 4	(1,2)		i	0p	XREF: $i(3659)O(?)p(3655)$. J^{π} : 3657.8γ to 0^{+} .
3670.2 4	1 ⁽⁺⁾	73 fs 8	i	L	XREF: i(3659). J^{π} : dipole γ to 0 ⁺ ; L(³ He,d)=1+3 from 3/2 ⁻ for a group at 3659.

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XRE	F	Comments
3696.27 28 3697 4 3716.52 6	(7 ⁻) 1 ⁺ ,2 ⁺ ,3 ⁺ & (2)	28 ps 7	G I B	P W	J ^π : ΔJ =1, (M1+E2) γ to (6 ⁻);and DJ=(0) γ to 7 ⁻ . J ^π : ε feednig (log ft =7.4 from 1 ⁻); ΔJ =0,2 γ to 2 ⁺ .
3730.8 <i>10</i> 3752.1 <i>14</i>	(3 ⁻) 1 ⁽⁺⁾	175 fs 50	J I L	P	J^{π} : L(p,p')=3. XREF: I(3741). J^{π} : L(³ He,d)=1+3 from 3/2 ⁻ ; dipole γ to 0 ⁺ .
3758.79 <i>20</i> 3776 <i>4</i> 3785.7 <i>4</i>	1 (4 ⁺) (8 ⁺)	6.0 fs 6 0.9 ps +5-3	L G	P	J^{π} : dipole γ to 0^+ . J^{π} : $L(p,p')=4$. J^{π} : $\Delta J=0,2$ γ to 6^+ ; γ to 8^+ is likely dipole from RUL.
3790 3806 <i>4</i> 3808 <i>10</i>	$(\leq 3^+)$ (5 ⁻) $1^+, 2^+, 3^+$ &		I	P	J ^{π} : L(³ He,d)=1(+3) from 3/2 ⁻ . J ^{π} : L(p,p')=5.
3853.75 ^c 33 3857.8 11 3861.11 32	(8) ⁺ 1 ⁺ (4 ⁺)	0.23 ps +8-5 171 fs 35	E G I L J	P W	 J^π: DJ=(0), M1+E2 γ to 8⁺ and γ to 6⁺. J^π: L(d, He)=1+3 from 3/2⁻; dipole γ to 0⁺. XREF: P(3862)W(3843). J^π: L(p,p')=4. Level in (p,t) probably corresponds to this level rather than 3857, 1⁺.
3880.46 <i>18</i> 3906.39 <i>30</i> 3915.48 <i>5</i>	1 ⁺ ,2 ⁺ ,3 ⁺ & (2 ⁻)		B IJ B J		J^{π} : γ s to 1 ⁺ and 4 ⁻ ; possible ε feeding (log ft =7.0
3917 <i>4</i> 3922.5 <i>4</i> 3930.02 <i>6</i>	(4 ⁺) 1 (1,2 ⁺)	42 fs <i>4</i>	L B J	P	from 1 ⁻). J^{π} : $L(p,p')=4$. J^{π} : dipole γ to 0 ⁺ . XREF: J(3926.9).
3932.7 <i>4</i> 3948 <i>4</i> 3970.407 <i>32</i>	(4 ⁺) (2 ⁺)		J B I	P	J ^{π} : ε feeding (log ft =7.0) from 1 ^{$-$} ; 1759 γ to 0 ^{$+$} . J ^{π} : L(p,p')=4. XREF: I(3955).
4001.81 23	(3 ⁻)		IJ	P W	J ^{π} : ε feeding (log ft =6.4) from 1 ⁻ ; γ to (30); L(³ He,d)=1+3 from 3/2 ⁻ for a group at 3955.
4005.1 8			G		suggests $(1^+, 2^+, 3^+)$. Additional information 2. J^{π} : γ to (7^-) suggests $(7, 8, 9)$.
4008.7 ^f 6 4045.61 10	(8 ⁻) 1 ⁺	2.2 ps 7 31.1 fs 29	G B iJ L	P	J^{π} : $\Delta J=2$, E2 γ to 6 ⁻ . XREF: i(4054). J^{π} : dipole γ to 0 ⁺ ; γ to 3 ⁺ can only be D,E2.
4055.22 30	1+	29.3 ps 26	i LM		XREF: $i(4054)$. J^{π} : M1 γ to 0^{+} .
4083.68 <i>6</i> 4086.58 <i>19</i> 4119 <i>4</i>	$(1^-,2)$ $(1,2,3^+)$ $2^-,3^-,4^-$		B B I	P	J ^{π} : ε feeding (log fi =6.9) from 1 ⁻ ; γ to 3 ⁻ . J ^{π} : γ s to 1 ⁺ , 2 ⁺ , 2 ⁻ . XREF: I(4103).
4125.5 10	1+	123 fs 25	I LM		J ^π : L(³ He,d)=2+4 from 3/2 ⁻ . XREF: I(4137). J ^π : M1 γ to 0 ⁺ . T _{1/2} : weighted average of 134 fs 25 from (γ, γ')
4151.36 6	(2)		В		and 98 fs 38 from (pol γ, γ'). J^{π} : ε feeding (log ft =7.2 from 1 ⁻); γ s to 3 ⁺ and 3 ⁻ .
4170 <i>4</i> 4174.33 <i>6</i>	(4 ⁺) (1,2)		B i	P w	J^{π} : L(p,p')=4.

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XR	EF	Comments
4199.19 <i>5</i> 4205.44 <i>5</i> 4214.0 <i>4</i>	(1 ⁻ ,2) (1 ⁻ ,2) (8 ⁻)	1.7 ps +15-8	B B J	w w	J ^{π} : ε feeding (log ft =6.9) from 1 ⁻ ; γ to 3 ⁻ . J ^{π} : Δ J=2, E2 γ to (6 ⁻).
4218 <i>4</i> 4218.81 <i>10</i>	(3 ⁻) 1 ⁺	2.98 fs <i>35</i>	I I	P .M	J^{π} : L(p,p')=3. XREF: I(4218). J^{π} : M1 γ to 0 ⁺ .
4240.54 <i>21</i> 4249.20 <i>28</i>	(1 to 4) ^a (1,2)		B iJ	P	XREF: $i(4250)$. XREF: $i(4250)$. J^{π} : 4249γ to 0^{+} .
4257.59 <i>13</i>	(1,2)		В іЈ		$XREF: i(4250).$ $J^{\pi}: 2087\gamma \text{ to } 0^{+}.$
4282.8 <i>4</i>	(2-,3-,4-)		iJ		XREF: i(4301). J^{π} : L(³ He,d)=2+4 from 3/2 ⁻ .
4298.87 9	$(1,2,3^+)$		B i		XREF: $i(4301)$. J^{π} : γ s to 1^+ , 2^- , 2^+ .
4299.5 ^b 5 4324.6 ^e 6 4328.36 7	10 ⁺ (9) ⁻ (1,2)	0.49 ps +10-7 1.4 ps 4	E G G		J ^{π} : ΔJ=2, E2 γ to 8 ⁺ ; member of rotational band. J ^{π} : ΔJ=2, E2 γ to 7 ⁻ ; band assignmetn. J ^{π} : 4328 γ to 0 ⁺ .
4329.2 <i>4</i> 4340 <i>4</i> 4347.53 <i>33</i>	1 (3 ⁻) (1,2)	6.1 fs <i>15</i>	i B i	P	J^{π} : $\gamma(\theta)$ in (γ, γ') ; dipole γ to 0^+ and 2^+ . J^{π} : $L(p,p')=3$. XREF: i(4343). J^{π} : 4347 γ to 0^+ .
4351.3 <i>7</i> 4366.55 <i>11</i> 4369.43 22	$(1 \text{ to } 4)^a$ (4^+)		B IJ		XREF: $i(4343)$. J^{π} : γ s to 2^{+} and 3^{+} . XREF: $I(4375)$.
4383.97 <i>15</i> 4399 <i>4</i>	1 ⁺ ,2 ⁺ ,3 ⁺ & (4 ⁺)		IJ	P	J^{π} : L(p,p')=4. XREF: I(4400). J^{π} : L(p,p')=4.
4405.9 ^d 4 4411.65 4	(9 ⁺) (2)	0.9 ps 2	E G B	W	J^{π} : $\Delta J=2$, (E2) γ to 7^+ ; band assignment. J^{π} : ε feeding (log $ft=6.3$) from 1^- ; γ s to 3^+ and 3^- .
4425 <i>10</i> 4437.72 <i>5</i>	$(3^-,4^+)$ $(1^+,2^+)$		В І	р	XREF: I(4425)p(4447). J^{π} : ε feeding (log ft =6.6) from 1 ⁻ ; 2267 γ to 0 ⁺ ;
4451.92 <i>11</i>	(1+,2+)		В І		$L(^{3}\text{He,d})=1+3$ for a group at 4425. XREF: I(4459). J^{π} : 4451.8 γ to 0+; $L(^{3}\text{He,d})=1+3$ from 3/2- for a
4473.46 8	(2+)		В іЈ	P	group at 4459. XREF: $i(4475)$. J^{π} : $L(p,p')=(2)$.
4489.23 6	(1,2)		В іЈ		$XREF: i(4475).$ $J^{\pi}: 2698\gamma \text{ to } 0^{+}.$
4523.47 <i>10</i> 4532.91 <i>12</i> 4534.93 <i>8</i> 4535.7 <i>5</i>	(3 ⁻) (1 ⁻ ,2,3) (0,1,2) 1 ⁺	10.1 fs <i>17</i>	B IJ B B I	P .M	J ^π : L(p,p')=3. J ^π : γ s to 2 ⁺ , 2 ⁻ , 3 ⁻ . J ^π : ε feeding (log ft =6.7 from 1 ⁻). J ^π : M1 γ to 0 ⁺ .
4576.11 <i>19</i>	(1,2)		в І		$T_{1/2}$: from (γ, γ') . Other: 10.1 fs 24 from (pol γ, γ'). XREF: I(4567).
4581.05 <i>10</i> 4603.26 <i>28</i>	(1,2) (1,2) ⁺		B B I		J ^π : 3453.8 γ to 0 ⁺ . J ^π : ε feeding (log ft =6.6) from 1 ⁻ ; 2152 γ to 3 ⁻ . XREF: I(4603). J ^π : 4603 γ to 0 ⁺ ; L(³ He,d)=1+3 from 3/2 ⁻ .
4603.3 <i>6</i> 4611 <i>4</i> 4647 <i>10</i>	1 ⁻ (3 ⁻) 1 ⁺ ,2 ⁺ ,3 ⁺ &	8.0 fs 24	I	M P	J^{π} : E1 γ to 0^{+} . J^{π} : L(p,p')=3.

E(level) [†]	$J^{\pi \#}$	‡]	XREF	7	Comments
4658 <i>4</i>	(3-)		I		P	XREF: I(4677).
1030 7	(3)		-		•	J^{π} : L(p,p')=3 and L(³ He,d)=2+4 from 3/2 ⁻ .
4663.08 <i>31</i>	1-	5.4 fs 9		LM		J^{π} : E1 γ to 0^+ .
4673.7 14	1+	54 fs <i>18</i>		M		J^{π} : M1 γ to 0^+ .
4687.21 11	$(1,2,3^+)$	54 15 10	В	- 11		J^{π} : γ s to 1^+ , (3).
4687.3 ^c 4	$(1,2,3)$ $(10)^+$	0.49 ps 7	E G			J^{π} : $\Delta J=2$, E2 γ to 8^+ and γ to $(10)^+$.
4720.6 5	1-	6.4 fs 9	В	LM		J^{π} : E1 γ to 0^+ and 2^+ .
4720.03	1	0.4 13 /	Б	LII		$T_{1/2}$: from (γ, γ') . Other: 6.4 fs 10 from (pol γ, γ').
4723.2 4	(3 ⁺)		B i		P	XREF: i(4729).
4700 ((J^{π} : L(3 He,d)=1+3 from 3/2 ⁻ for a 4729 group gives ${}^{1+}$,2 ⁺ ,3 ⁺ and L(p,p')=4 gives 4 ⁺ . However, J^{π} =3 ⁺ would agree with both if unnatural parity state is populated in (p,p').
4728.6 <i>6</i>			G			J^{π} : γ to 7^- suggests (7,8,9).
						$T_{1/2}$: for a 1287 γ , from DSAM 1981KiZW report $T_{1/2}$ =0.6 ps I , but this value is not reported in
4721 6 4	(+)		ъ .			authors' published work (1984Zo01).
4731.6 <i>4</i>	(+)		B i			XREF: i(4729).
						J^{π} : L(³ He,d)=1+3 from 3/2 ⁻ for a 4729 group gives 1 ⁺ ,2 ⁺ ,3 ⁺ .
4751.6 <i>5</i>	$1^+, 2^+, 3^+$		I.	J		
4766.96 <i>30</i>	1	17.4 fs 15		L		J^{π} : dipole γ to 0^+ .
4771 <i>4</i>	(3^{-})				P	J^{π} : $L(p,p')=(3)$.
4794.97 <i>13</i>	(1,2)		В			J^{π} : 3672.5 γ to 0 ⁺ .
4811 <i>4</i>	1+,2+,3+&		I		P	,
4836 10	1+,2+,3+&				•	
			I		D	1π , 1 (311-1) 1 + 2 from 2 (2= -11 (1+2+2+) but
4859 <i>4</i>	(*)		Ι		P	J^{π} : L(3 He,d)=1+3 from 3/2 ⁻ allows (1 ⁺ ,2 ⁺ ,3 ⁺) but L(p,p')=4 suggests 4 ⁺ . However, J^{π} =3 ⁺ agrees with both if an unnatural parity state is populated in (p,p').
4880.0 <i>4</i>	1-	19.7 fs 19		LM		J^{π} : E1 γ to 0^+ .
						$T_{1/2}$: weighted average of 19.9 fs 19 from (γ, γ') and
1007.07.20	1-	27 O f 22		T M		19 fs 4 from (pol γ, γ').
4887.07 <i>30</i>	1-	27.0 fs <i>33</i>		LM		J^{π} : E1 γ to 0^+ .
						$T_{1/2}$: from (γ, γ') . Other: 27 fs 9 from (pol γ, γ').
4911 10	1+,2+,3+&	- 0.0.0.1	I			TT T1
4931.6 <i>17</i>	1-	79 fs 2 <i>1</i>	_	LM	_	J^{π} : E1 γ to 0^+ .
4935 4	(3 ⁻)	40.0	I		P	J^{π} : L(p,p')=3.
4938.6 <i>15</i>	1	43 fs 8		L		J^{π} : dipole γ to 0^+ .
4971.5 <i>17</i>	1+	38 fs 7	I			J^{π} : L(³ He,d)=1+3 FROM 3/2 ⁻ ; dipole γ to 0 ⁺ .
4984.81 <i>31</i>	1-	6.0 fs 8		LM		J^{π} : E1 γ to 0^+ .
	0					$T_{1/2}$: from (γ, γ') . Other: 6.0 fs 11 from (pol γ, γ').
4998 <i>4</i>	$1^+, 2^+, 3^+$		I		P	XREF: I(5013).
5001.48 20	1-	8.4 fs 6		M		J^{π} : E1 γ to 0^+ .
5010.76 <i>21</i>	1-	3.65 fs <i>35</i>		LM		J^{π} : E1 γ to 0^+ .
5032.11 19	(2-,3-,4-)		1.	J		$T_{1/2}$: from (γ, γ') . Other: 3.7 fs 7 from (pol γ, γ'). XREF: I(5043).
						J^{π} : L(³ He,d)=2+4 from 3/2 ⁻ .
5068.1 ^f 8	$(10)^{-}$	1.0 ps +4-2	G			J^{π} : $\Delta J=2$, E2 γ to (8) ⁻ ; band assignment.
5074.00 10	1-	2.44 fs <i>15</i>		LM		J^{π} : E1 γ to 0^+ .
5001 4	(2)=		_		D.	$T_{1/2}$: from (γ, γ') . Other: 2.43 fs 28 from (pol γ, γ').
5081 4	(3)	25 5- 0	I		P	J^{π} : L(³ He,d)=2+4 from 3/2 ⁻ and L(p,p')=3.
5122.19 20	1	35 fs 8		L		J^{π} : dipole γ to 0^+ .
5128.59 10	1	25 fs 4		L		J^{π} : dipole γ to 0^+ .

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
5139.9 5	$(1 \text{ to } 4)^{a}$		J	
5142.3 7	ì	26.1 fs 32	L	J^{π} : dipole γ to 0^+ .
5174 <i>4</i>	(3^{-})		P	J^{π} : $L(p,p')=3$.
5195.00 <i>15</i>	1-	2.27 fs 17	J LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: from (γ, γ') . Other: 2.29 fs 28 from (pol γ, γ').
5217.8 <i>11</i>	1-	12.1 fs 26	M	J^{π} : E1 γ to 0^+ .
5239.6 8	1	9.6 fs <i>15</i>	L	J^{π} : dipole γ to 0^+ .
5261 <i>4</i>	(4^{+})		P	$J^{\pi}: L(p,p')=4.$
5284.40 <i>30</i>	1	8.4 fs 6	L	J^{π} : dipole γ to 0^+ .
5297.90 <i>30</i>	(1^+)	13.7 fs 8	M	J^{π} : (M1) γ to 0^+ .
5298.60 <i>10</i>	1-	1.98 fs <i>11</i>	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: 3.56 fs 23 in (pol γ, γ'), where only the 5298 γ
5000 4	(2-)		_	from this level was listed.
5303 4	(3-)	2.12.6.25	P	J^{π} : L(p,p')=3.
5324.18 29	1-	3.12 fs <i>35</i>	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: other: 8.8 fs 7 in (γ, γ') , where only the 5324 γ
5246 04 22	1-	2 1 5- 1	TM	from this level was listed.
5346.94 23	1-	3.4 fs <i>4</i>	LM	J^{π} : E1 γ to 0^+ .
5267 5 12	1	44 fo 10	Ţ	$T_{1/2}$: from (γ, γ') . Other: 3.5 fs 8 from (pol γ, γ'). J^{π} : dipole γ to 0^+ .
5367.5 <i>13</i>		44 fs <i>10</i>	L	
5368.3 ^d 5	(11^+)	1 40 6 10	E	J^{π} : γ to $(10)^+$; band assignment.
5375.45 18	1-	1.43 fs <i>13</i>	LM	J^{π} : E1 γ to 0^+ .
5405 2 10	1-	26.6.0	W D	$T_{1/2}$: from (γ, γ') . Other: 1.46 fs 14 from (pol γ, γ').
5405.2 18	1-	26 fs 8	M P	J^{π} : E1 γ to 0^+ .
5411.33 29	1-	1.53 fs <i>33</i>	LM	J^{π} : E1 γ to 0^+ . T _{1/2} : from (γ, γ') . Other: 1.5 fs 4 from (pol γ, γ').
5425.21 26	1-	3.6 fs 4	LM	J^{π} : E1 γ to 0^+ .
				,
5431.8 ^b 6	12+	0.2 ps <i>I</i>	E G	J^{π} : $\Delta J=2$, (E2) γ to 10^{+} ; member of rotaional band.
5510 <i>10</i>	1-	0.4 fo 24	I	μπ. Ε1 to 0 [†]
5551.8 <i>15</i>	1 1-	9.4 fs 24	M M	J^{π} : E1 γ to 0^+ .
5629.8 <i>15</i> 5637.7 <i>15</i>	1-	24 fs 8 24 fs 8	M	J^{π} : E1 γ to 0^+ . J^{π} : E1 γ to 0^+ .
5669.2 15	1-	24 Is 8 22 fs 8	M	J^{π} : E1 γ to 0^+ .
5685.5 4	1-	8.0 fs 7	LM	J^{π} : E1 γ to 0^+ .
5709.8 4	1-	7.4 fs 7	LM	J^{π} : E1 γ to 0 · .
5740.73 <i>30</i>	1-	5.6 fs 5	LM	J^{π} : E1 γ to 0 · .
5762.0 10	1-	15.7 fs <i>34</i>	M	J^{π} : E1 γ to 0^+ .
5773.3 10	1-	17.9 fs 26	LM	J^{π} : E1 γ to 0^+ .
	_			$T_{1/2}$: weighted average of 19.2 fs 32 from (γ, γ') and
				17.1 fs 26 from (pol γ, γ').
5781.24 20	1-	3.94 fs 29	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: weighted average of 3.90 fs 29 from (γ, γ') and
				4.4 fs 10 from (pol γ, γ').
5796.7 ^c 5	(12^+)		E	J^{π} : γ to 10^{+} ; band assignment.
5804.0 <i>6</i>	1-	2.8 fs 6	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: weighted average of 3.1 fs 8 from (γ, γ') and 2.6
				fs 6 from (pol γ, γ').
5813.9 5	1-	8.0 fs 8	LM	J^{π} : E1 γ to 0^+ .
5842.31 29	1-	3.1 fs 4	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: weighted average of 3.28 fs 24 from (γ, γ') and
#0<#	4-			2.1 fs 6 from (pol γ, γ').
5865.3 7	1-	7.6 fs 11	M	J^{π} : E1 γ to 0^+ .
5879.6 <i>6</i>	1-	14.8 fs <i>19</i>	LM	J^{π} : E1 γ to 0^+ .
5892.30 <i>31</i>	1-	3.4 fs 5	LM	J^{π} : E1 γ to 0^+ .
5939.0 <i>5</i>	$(1 \text{ to } 4)^{a}$		J	

E(level) [†]	$J^{\pi \#}$	T _{1/2} ‡	XREF	Comments
5996.1 9	1-	5.3 fs <i>12</i>	LM	J^{π} : E1 γ to 0^+ .
5770.17	•	3.3 15 12	2.1	$T_{1/2}$: other: 0.94 fs 21 in (γ, γ') .
6005 10			I	1/2, swiet (1) 13 21 m (7,7).
6035.4 5	1-	2.6 fs 4	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: other: 6.1 fs 6 in (γ, γ') for only the 6035 γ .
6099.3 4	1-	2.8 fs 5	LM	J^{π} : E1 γ to 0^+ .
6131.5 6	1-	11.5 fs <i>18</i>	LM	J^{π} : E1 γ to 0^+ .
6156.6 14	1-	55 fs <i>10</i>	M	J^{π} : E1 γ to 0^+ .
6165.1 11	1-	21 fs 6	M	J^{π} : E1 γ to 0^+ .
6196.2 11	1-	10.0 fs <i>13</i>	M	J^{π} : E1 γ to 0^+ .
6208.7 15	1-	5.0 fs <i>10</i>	M	J^{π} : E1 γ to 0^+ .
6242.7 6	1-	2.6 fs 11	LM	XREF: L(6247.4).
0242.7 0	1	2.0 18 11	Ln	
				E(level): evaluators assume that 6242.7 in (pol γ, γ') and
				6247.4 in (γ, γ') correspond to the same level.
				J^{π} : E1 γ to 0 ⁺ .
		7 < 0 0		$T_{1/2}$: other: 4.6 fs 6 in (γ, γ') .
6250.7 5	1-	5.6 fs 8	LM	XREF: L(6254.0).
				E(level): evaluators assume that 6250.7 in (pol γ, γ') and
				6254.0 in (γ, γ') correspond to the same level.
				J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: weighted average of 5.5 fs 8 from (γ, γ') and 5.8 fs 15
				from (pol γ, γ').
6297.9 <i>14</i>	1-	10.0 fs 15	LM	J^{π} : E1 γ to 0^+ .
6315.9 <i>4</i>	1-	3.1 fs 4	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: weighted average of 2.97 fs 25 from (γ, γ') and 5.1 fs
				12 from (pol γ, γ').
6336.8 20	1-	4.4 fs 23	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: unweighted average of 6.6 fs 13 from (γ, γ') and 2.1 fs
				10 from (pol γ, γ').
6342.64 29	1-	0.28 fs 7	LM	J^{π} : E1 γ to 0^+ .
00 .2.0 . 2	•	0.20 15 /		$T_{1/2}$: other: 5.1 fs 8 in (γ, γ') from only the 6342 γ .
6387.5 14	1-	6.7 fs 10	LM	J^{π} : E1 γ to 0^+ .
6438.1 19	1	8.4 fs <i>19</i>	L	J. El 7 to 0.
6449.0 20	1-	6.1 fs <i>10</i>	LM	J^{π} : E1 γ to 0^+ .
6497.7 6	1-	3.6 fs <i>14</i>	LM	J^{π} : E1 γ to 0 · .
0497.7 0	1	5.0 15 17	LII	$T_{1/2}$: unweighted average of 5.0 fs 6 from (γ, γ') and 2.2 fs
d -				7 from (pol γ, γ').
6500.8 ^d 6	(13^{+})		E	TT T4 01
6532.7 4	1-	3.05 fs 28	LM	J^{π} : E1 γ to 0^+ .
6551.00 <i>30</i>	1+	11.0 fs <i>19</i>	LM	J^{π} : M1 γ to 0^+ .
6562.9 9	1-	7.69 fs 28	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: from (pol γ, γ'). Other: 8.1 fs 15 from (γ, γ') .
6570.4 9	1-	4.9 fs 6	LM	J^{π} : E1 γ to 0^+ .
6596.2 7	1-	5.5 fs 7	LM	J^{π} : E1 γ to 0^+ .
6608.5 9	1-	6.0 fs 8	LM	J^{π} : E1 γ to 0^+ .
6631.8 7	1-	1.39 fs 28	LM	J^{π} : E1 γ to 0^+ .
6641.3 <i>17</i>	1-	5.5 fs 12	M	J^{π} : E1 γ to 0^+ .
6653.7 14	1-	3.3 fs 7	M	J^{π} : E1 γ to 0^+ .
6680.0 <i>18</i>	1-	6.1 fs 7	M	J^{π} : E1 γ to 0^+ .
6691.5 8	1-	9.9 fs 16	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: weighted average of 9.6 fs 16 from (γ, γ') and 10.2 fs
				17 from (pol γ, γ').
6700.3 20	1-	8.2 fs 21	M	J^{π} : E1 γ to 0^+ .
6709.0 <i>21</i>	1-	9.1 fs 25	M	J^{π} : E1 γ to 0^+ .
6736.2 15	1-	9.1 fs 25	M	J^{π} : E1 γ to 0 ⁺ .
	-	,		, ,

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$	XREF	Comments
6743.31 28	1-	1.11 fs <i>14</i>	LM	J^{π} : E1 γ to 0^+ .
6749.2 <i>4</i>	1-	1.32 fs 21	LM	J^{π} : E1 γ to 0^+ .
6751.5 ^b 7	(14^+)		E	
6813.9 20	1-	16 fs 6	_ M	J^{π} : E1 γ to 0^+ .
6830.2 15	1-	8.3 fs <i>18</i>	M	J^{π} : E1 γ to 0^+ .
6882.7 6	1-	1.52 fs 28	LM	J^{π} : E1 γ to 0^+ .
6908.3 20	1-	15 fs 4	M	J^{π} : E1 γ to 0^+ .
6913.3 <i>17</i>	1+	14 fs 4	M	J^{π} : M1 γ to 0 ⁺ .
6922.2 18	1-	12.6 fs <i>33</i>	M	J^{π} : E1 γ to 0^+ .
6970.3 5	1-	4.0 fs 9	LM	XREF: L(6973.0).
0710.5 5	1	4.0 13 2	LII	E(level): evaluators assume that 6970.3 in (pol γ, γ') and
				6973.0 in (γ, γ') correspond to the same level.
				J^{π} : E1 γ to 0^+ .
6992.9 5	1-	3.3 fs 5	LM	J^{π} : E1 γ to 0^+ .
7018.1 <i>18</i>	1-	11 fs 5	M	J^{π} : E1 γ to 0^+ .
7025.1 20	1+	12 fs 4	M	J^{π} : E1 γ to 0^+ .
7047.4 15	1+	14 fs 5	M	J^{π} : E1 γ to 0^+ .
7053.1 <i>19</i>	1-	12.5 fs 37	M	J^{π} : E1 γ to 0^+ .
7084.5 ^c 6	(14^{+})		E	•
7093.1 20	1-	11.2 fs 30	M	J^{π} : E1 γ to 0^+ .
7101.1 <i>19</i>	1-	11.4 fs 35	M	J^{π} : E1 γ to 0^+ .
7110.1 <i>19</i>	1+	10.0 fs 29	M	J^{π} : M1 γ to 0^+ .
7115.5 12	1-	2.9 fs 10	M	J^{π} : E1 γ to 0^+ .
7128.4 11	1-	0.80 fs 21	M	J^{π} : E1 γ to 0^+ .
7156.0 <i>17</i>	1-	7.6 fs 21	M	J^{π} : E1 γ to 0^+ .
7168.1 <i>18</i>	1-	11.8 fs <i>35</i>	M	J^{π} : E1 γ to 0^+ .
7195.6 14	1-	6.3 fs 18	M	J^{π} : E1 γ to 0^+ .
7225.6 20	1-	6.0 fs <i>15</i>	M	J^{π} : E1 γ to 0^+ .
7241.6 7	1-	4.5 fs 8	LM	J^{π} : E1 γ to 0^+ .
				$T_{1/2}$: weighted average of 4.3 fs 8 from (γ, γ') and 4.9 fs 10
				from (pol γ, γ').
7292.8 <i>15</i>	1-	4.0 fs 10	M	J^{π} : E1 γ to 0^+ .
7324.6 18	1-	8.3 fs 24	M	J^{π} : E1 γ to 0^+ .
7335.0 20	1-	10.3 fs <i>33</i>	M	J^{π} : E1 γ to 0^+ .
7342.2 14	1-	4.6 fs 12	M	J^{π} : E1 γ to 0^+ .
7362.2 21	1-	12 fs 4	M	J^{π} : E1 γ to 0^+ .
7392.6 8	1-	13 fs 4	M	J^{π} : E1 γ to 0^+ .
7406.0 11	1-	2.4 fs 12	M	J^{π} : E1 γ to 0^+ .
7427.1 <i>14</i>	1-	4.2 fs 11	M	J^{π} : E1 γ to 0^+ .
7455.5 <i>13</i>	1-	3.9 fs <i>13</i>	LM	XREF: L(7457.6).
				E(level): evaluators assume that 7455.5 in (pol γ, γ') and 7457.6 in (γ, γ') correspond to the same level.
				J^{π} : E1 γ to 0^+ . $T_{1/2}$: unweighted average of 5.1 fs 10 from (γ, γ') and 2.6 fs 6 from (pol γ, γ').
7464.9 <i>14</i>	1-	1.8 fs 6	M	J^{π} : E1 γ to 0^+ .
7508.4 8	1-	4.0 fs 5	LM	J^{π} : E1 γ to 0^+ .
7522.7 <i>5</i>	1-	1.18 fs 2 <i>1</i>	LM	J^{π} : E1 γ to 0^+ .
7546.9 <i>6</i>	1-	1.63 fs <i>14</i>	LM	J^{π} : E1 γ to 0^+ .
7540.7 0	1	1.03 13 17	LII	$T_{1/2}$: weighted average of 1.59 fs 14 from (γ, γ') and 1.66 fs 14 from (pol γ, γ').
7580.5 16	1-	8.3 fs 23	M	J^{π} : E1 γ to 0^+ .
7617.2 17	1-	5.5 fs <i>11</i>	M	J^{π} : E1 γ to 0^+ .
7627.8 15	1-	4.1 fs 8	M	J^{π} : E1 γ to 0^+ .
7643.3 17	1-	7.5 fs 19	M	J^{π} : E1 γ to 0^+ .
				•

E(level) [†]	$J^{\pi \#}$	$T_{1/2}^{\ddagger}$		XREF	Comments
7652.9 17	1-	4.1 fs 8		M	J^{π} : E1 γ to 0^+ .
7658.71 20	1-	6.4 fs <i>10</i>		LM	J^{π} : E1 γ to 0^+ .
7698.3 8	1-	0.97 fs 28		LM	J^{π} : E1 γ to 0^+ .
,0,0,0	•	0.57 15 20			$T_{1/2}$: other: 2.22 fs 28 in (γ, γ') from only the 7698 γ .
7729.7 16	1-	3.7 fs 8		M	J^{π} : E1 γ to 0^+ .
7781.6 18	1-	6.9 fs 22		M	J^{π} : E1 γ to 0^+ .
7817.5 <i>10</i>	1-	9.7 fs <i>35</i>		M	J^{π} : E1 γ to 0^+ .
7830.0 9	1-	9.0 fs <i>35</i>		M	J^{π} : E1 γ to 0.
		9.0 18 33	_	п	J. El y 10 0.
7846.9 ^d 7	(15^+)		E		77 74 04
7866.1 <i>17</i>	1-	8.3 fs 27		M	J^{π} : E1 γ to 0^+ .
7890.9 18	1-	7.8 fs 25		M	J^{π} : E1 γ to 0^+ .
7920.1 <i>17</i>	1-	5.1 fs <i>16</i>		M	J^{π} : E1 γ to 0^+ .
7927.6 17	1-	5.3 fs <i>17</i>		M	J^{π} : E1 γ to 0^+ .
7952.1 <i>21</i>	1-	7.1 fs 24		M	J^{π} : E1 γ to 0^+ .
7960.4 <i>18</i>	1-	5.9 fs <i>19</i>		M	J^{π} : E1 γ to 0^+ .
7979.0 8	1-	3.0 fs 6		LM	J^{π} : E1 γ to 0^+ .
					$T_{1/2}$: weighted average of 2.8 fs 6 from (γ, γ') and 3.3 fs 8
					from (pol γ, γ').
8017.9 <i>23</i>	1-	6.6 fs 21		M	J^{π} : E1 γ to 0^+ .
8062.5 22	1-	5.4 fs 17		M	J^{π} : E1 γ to 0^+ .
8082.7 18	1-	2.3 fs 8		M	J^{π} : E1 γ to 0^+ .
8107.3 22	1-	5.7 fs 17		M	J^{π} : E1 γ to 0^+ .
8132.1 22	1-	5.7 fs <i>17</i>		M	J^{π} : E1 γ to 0 ⁺ .
8154.9 <i>21</i>	1-	6.5 fs 19		M	J^{π} : E1 γ to 0^+ .
8170.1 22	1-	6.0 fs 17		M	J^{π} : E1 γ to 0^+ .
8198.0 <i>10</i>	1-	0.76 fs 14		LM	J^{π} : E1 γ to 0^+ .
8210.5 20	1-	4.0 fs <i>10</i>		M	J^{π} : E1 γ to 0^+ .
8222.5 20	1-	2.5 fs 6		M	J^{π} : E1 γ to 0^+ .
8251.9 23	1-	12 fs 5		M	J^{π} : E1 γ to 0^+ .
8268.5 ^b 8	(16^+)	12 15 0	E		0 1 21 7 10 0 1
8288.5 <i>23</i>	1-	3.6 fs 9	_	M	J^{π} : E1 γ to 0^+ .
8316.7 22	1-	6.1 fs 2 <i>I</i>		M	J^{π} : E1 γ to 0^+ .
8340.7 10	1-	4.4 fs <i>13</i>		M	J^{π} : E1 γ to 0^+ .
8394.9 19	1-	2.50 fs <i>35</i>		LM	J^{π} : E1 γ to 0^+ .
8453.5 21	1-	2.8 fs 7		M	J^{π} : E1 γ to 0.
8486.5 <i>18</i>	1-	0.91 fs 23		M	J^{π} : E1 γ to 0.
8528.1 <i>4</i>	1-	0.48 fs <i>10</i>		LM	J^{π} : E1 γ to 0.
8539.8 <i>11</i>	1 ⁻ 1 ⁻	0.94 fs <i>17</i>		M M	J^{π} : E1 γ to 0^+ .
8571.7 <i>19</i>		1.7 fs 5	-	n	J^{π} : E1 γ to 0^+ .
8573.8° 8	(16^{+})	225-0	E	w	III. E14- 0 [±]
8590.1 20	1-	2.3 fs 8		M	J^{π} : E1 γ to 0^+ .
8654.9 19	1-	2.0 fs 6		M	J^{π} : E1 γ to 0^+ .
8709.9 <i>13</i>	1-	1.66 fs 28		LM	J^{π} : E1 γ to 0^+ .
8719.5 <i>21</i>	1-	3.0 fs 10		M	J^{π} : E1 γ to 0^+ .
8770.9 23	1-	1.9 fs 6		M	J^{π} : E1 γ to 0^+ .
8843.4 14	1-	0.83 fs 42		M	J^{π} : E1 γ to 0^+ .
8864.8 20	1-	2.9 fs 9		M	J^{π} : E1 γ to 0^+ .
8890.8 19	1-	2.1 fs 6		M	J^{π} : E1 γ to 0^+ .
8918.8 <i>19</i>	1-	2.1 fs 6		M	J^{π} : E1 γ to 0^+ .
8935.6 20	1-	2.6 fs 8		M	J^{π} : E1 γ to 0^+ .
9394.7 <mark>d</mark> 8	(17^+)		E		
9963.8 ^b 10	(18^{+})		E		
11147.1 ^d 10	(10^{+})		E		
			E		I_{A}^{T} , a views continue in 75 So $(1)^{T}$ $5/2+1$
(11154.19 7)	$2^+,3^+$			J	J^{π} : s-wave capture in ⁷⁵ Se (g.g. $J^{\pi}=5/2^+$).

E(level) [†]	$J^{\pi \#}$	XREF	Comments
			E(level): S(n)=11153.79 7 (2021Wa16).
11774.8 <mark>b</mark> 11	(20^+)	E	
12528 [@]		K	
12578 [@]		K	
12678 [@]		K	
12718 [@]		K	
12788 [@]		K	
12888		K	
12938 [@]		K	
13138		K	
13278 [@]		K	
13418 [@]		K	
13478 [@]		K	
13528 [@]		K	
13598 [@]		K	
13681.3 ^b 12	(22^{+})	E	
13728 [@]		K	
13928		K	
14038		K	
14118 [@]		K	
14198 [@]		K	

[†] From a least squares fit to E γ data for levels populated in γ -ray studies. In other cases, values are mainly from (3 He,d), (p,p') and/or from primary transitions in (n, γ).

[‡] Unless otherwise indictated, values for high-spin states are from recoil-distance Doppler-shift (RDDS) or DSA methods in $(\alpha, 2n\gamma)$ (1984Zo01), DSAM in $(n,n'\gamma)$, (pol γ,γ'), and from cross section data in (γ,γ') for J=1 levels above 2900 keV.

[#] When deduced from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, it is assumed that a γ -transition with large quadrupole component is E2 rather than M2, unless a long lifetime is indicated. Above /2800, values are given in parentheses when available only from L(p,p') due to following reasons: 1. The agreement of $\sigma(\theta)$ fits to DWBA is not good over the whole angular range. 2. The correspondence between levels in different reactions is not unique due to large level density and large uncertainties in E(level) from particle reactions. Above 2900 keV, levels populated in (γ,γ') and $(\text{pol }\gamma,\gamma')$ are primarily J=1 states, determined from $\gamma(\theta)$ and $\gamma(\text{pol }\gamma,\gamma')$ data

[®] Isobaric analog resonances from 75 As(p,n). Uncertainty ≈25 keV. See 75 As(p,n) IAR for assignment to analog states in 76 As.

 $^{^{\&}amp;}$ L(3 He,d)=1+3 from 3/2 $^{-}$.

^a Primary γ from $2^+,3^+$ in (n,γ) .

^b Band(A): Yrast band based on ground state. First band crossing at $\hbar\omega\approx0.55$ MeV due to pair of $g_{9/2}$ neutrons, second crossing at $\hbar\omega\approx0.80$ MeV, due to pair of $g_{9/2}$ protons, and interpreted as shape transition from prolate to oblate (2015Xu09). Band parameters are: E₀=196.0, A=51.8, B=-0.12.

^c Band(B): γ band, even spin.

^d Band(b): γ band, odd spin.

^e Band(C): $K^{\pi}=3^{-}$ band. Band parameters are: E₀=2178.1, A=20.4, B=0.038.

^f Band(D): $\Delta J=2$ band. Band parameters are: $E_0=2514.8$, A=15.3, B=0.072.

Adopted Levels, Gammas (continued)	Adopted	Levels,	Gammas	(continued)
------------------------------------	---------	---------	--------	-------------

 γ (76Se)

Additional information 3.

	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	$I_{(\gamma+ce)}$	Comments
	559.103	2+	559.099 5	100	0.0	0+	E2		1.97×10 ⁻³ 3		B(E2)(W.u.)=45.1 +12-6 α (K)=0.001747 24; α (L)=0.0001872 26; α (M)=2.91×10 ⁻⁵ 4 α (N)=2.452×10 ⁻⁶ 34
	1122.279	0+	563.171 7	100	559.103	2+	E2		1.92×10 ⁻³ 3		B(E2)(W.u.)=47 11 α (K)=0.001710 24; α (L)=0.0001832 26; α (M)=2.85×10 ⁻⁵ 4 α (N)=2.400×10 ⁻⁶ 34
			1122.3 3		0.0	0+	E0			0.023 5	$q_{K}^{2}(E0/E2)=0.133$ 15, $X(E0/E2)=0.0246$ 31, $\rho^{2}(E0)=0.035$ +14-13 (2022Ki03 evaluation). $X(E0/E2)=0.023$ 4 (1986Gi12); $\rho(E0)=0.17$ 4 (1986Gi12), 0.19 4 (1983Pa10) from ce data in 76 Br ε decay.
10	1216.154	2+	657.041 5	100.0 22	559.103	2+	E2+M1(+E0)	+5.2 2	1.23×10 ⁻³ 2		data in ''Br ε decay. B(M1)(W.u.)=5.31×10 ⁻⁴ +71–59; B(E2)(W.u.)=44.7 +45–38 α (K)=0.001090 15; α (L)=0.0001159 16; α (M)=1.802×10 ⁻⁵ 25 α (N)=1.524×10 ⁻⁶ 21 Mult.,δ: from γ (θ) in ⁷⁶ As β ⁻ . Others: +6 1 ($\gamma\gamma$ (θ) in ⁷⁶ Br ε); +4.7 +11–20 (α ,2n γ). E0 from α (K)exp=0.00167 15 (1970Dz09) in ⁷⁶ Br ε decay. X(E0/E2)≤0.14; ρ (E0)≤0.41 (1986Gi12). q_K^2 (E0/E2)=0.25 14, X(E0/E2)=0.11 6, ρ^2 (E0)=0.140 80, %E0=19 (2022Ki03 evaluation).
			1216.149 25	58.0 22	0.0	0+	E2		0.000281 4		B(E2)(W.u.)=1.24 +13-11 α (K)=0.0002408 34; α (L)=2.508×10 ⁻⁵ 35; α (M)=3.90×10 ⁻⁶ 5 α (N)=3.33×10 ⁻⁷ 5; α (IPF)=1.090×10 ⁻⁵ 15 I _y : NRM weighted average; low value of 37.7 26 in (α ,2ny) is not used in averaging.
	1330.872	4+	771.757 9	100	559.103	2+	E2		0.000800 11		B(E2)(W.u.)=71.1 14 α (K)=0.000712 10; α (L)=7.52×10 ⁻⁵ 11;

γ (76Se) (continued)

							γ (**Se) (continu	ued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\ \sharp}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
1688.971	3+	358.099 7	4.1 17	1330.872	4 ⁺	(M1+E2)		0.0059 21	$\alpha(M)=1.170\times10^{-5}\ 16$ $\alpha(N)=9.93\times10^{-7}\ 14$ $\alpha(K)=0.0053\ 19;\ \alpha(L)=5.7\times10^{-4}\ 22;$ $\alpha(M)=8.9\times10^{-5}\ 33$ $\alpha(N)=7.5\times10^{-6}\ 27$
		472.813 7	36 4	1216.154	2+	M1+E2	+3.20 +27-24	0.00316 5	B(M1)(W.u.)=0.0044 21 if M1, B(E2)(W.u.)=46 22 if E2. δ : +1.8 +10-12 or +0.8 +20-3 from (n,n' γ). B(M1)(W.u.)=0.00148 44; B(E2)(W.u.)=92 +23-25 α (K)=0.00281 4; α (L)=0.000303 5; α (M)=4.71×10 ⁻⁵ 7 α (N)=3.95×10 ⁻⁶ 6
		1129.873 <i>16</i>	100 5	559.103	2+	E2+M1	+1.08 10	0.000309 4	I _γ : unweighted average of available values. δ: from ⁷⁶ Br ε decay. Others: +2.1 9, +0.75 44 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$; +0.01 to +0.73, >+2.5 or <-6.7 from $\gamma(\theta)$ in ⁷⁶ As β^- . B(M1)(W.u.)=0.00157 +40-42; B(E2)(W.u.)=1.93 +47-53 $\alpha(K)$ =0.000275 4; $\alpha(L)$ =2.86×10 ⁻⁵ 4; $\alpha(M)$ =4.44×10 ⁻⁶ 6
1787.655	2+	456.77 5	3.06 8	1330.872	4 ⁺	[E2]		0.00365 5	$\alpha(N)=3.80\times10^{-7}$ 5; $\alpha(IPF)=1.573\times10^{-6}$ 33 δ : from $\gamma\gamma(\theta)$ in ⁷⁶ As β ⁻ decay. Others: +1.8 12 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$, +0.57 to +3.55 from $\gamma(\theta)$ in ⁷⁶ As β ⁻ , +1.9 2 from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay. B(E2)(W.u.)=21.0 +48-51 $\alpha(K)=0.00324$ 5; $\alpha(L)=0.000351$ 5; $\alpha(M)=5.46\times10^{-5}$ 8
		571.495 9	8.7 10	1216.154	2+	(M1(+E2))	+0.13 12	1.29×10 ⁻³ 3	$\alpha(N)=4.58\times10^{-6}$ 6 B(M1)(W.u.)=0.0046 +11-13; B(E2)(W.u.)=0.32 +80-29 $\alpha(K)=0.001148$ 26; $\alpha(L)=0.0001203$ 29; $\alpha(M)=1.87\times10^{-5}$ 5 $\alpha(N)=1.60\times10^{-6}$ 4
								2	I _γ : NRM weighted average. High value of 31 from $(n,n'\gamma)$ is not used. δ: from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- decay. Other: $-0.13~34$ or >+1.37 from $\gamma(\theta)$ in ⁷⁶ As β^- . Parity is from the Adopted Levels.
		665.361 9	32.3 16	1122.279	0+	[E2]		1.19×10 ⁻³ 2	B(E2)(W.u.)=33.7 +77-82 α (K)=0.001062 <i>15</i> ; α (L)=0.0001128 <i>16</i> ;

γ (76Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\sharp}$	I_{γ}^{\ddagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
1787.655	2+	1228.600 20	100.0 19	559.103 2+	M1+E2	-0.51 5	0.000264 4	$\alpha(M)=1.755\times10^{-5} \ 25$ $\alpha(N)=1.484\times10^{-6} \ 21$ $\beta(M)=0.0043 + 10 - 11; \ \beta(E2)(W.u.)=1.00 \ 28$ $\beta(K)=0.0002259 \ 32; \ \alpha(L)=2.340\times10^{-5} \ 33;$
		1787.62 2	24.3 7	0.0 0+	[E2]		0.000333 5	$\alpha(M)=3.64\times10^{-6} 5$ $\alpha(N)=3.12\times10^{-7} 4$; $\alpha(IPF)=1.042\times10^{-5} 18$ Mult., δ : weighted average from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ in 76 As β^- . Others: $-0.19 5$ from $\gamma\gamma(\theta)$ in 76 Br ε , $-0.52 +9-7$ from $(n,n'\gamma)$. B(E2)(W.u.)=0.181 +42-44 $\alpha(K)=0.0001103 15$; $\alpha(L)=1.139\times10^{-5} 16$;
1791.437	0+	575.28 <i>3</i>	100.0 20	1216.154 2+	(E2)		$1.81 \times 10^{-3} \ 3$	$\alpha(M)=1.772\times10^{-6} 25$ $\alpha(N)=1.517\times10^{-7} 2I$; $\alpha(IPF)=0.0002089 29$ $\alpha(K)=0.001607 22$; $\alpha(L)=0.0001719 24$; $\alpha(M)=2.67\times10^{-5} 4$
		1232.40 5	13.6 4	559.103 2+	(E2)		0.000276 4	$\alpha(N)=2.253\times10^{-6} 32$ $\alpha(K)=0.0002340 33; \alpha(L)=2.436\times10^{-5} 34;$ $\alpha(M)=3.79\times10^{-6} 5$
2026.020	4+	239.11 10		1787.655 2 ⁺	[E2]		0.0333 5	$\alpha(N)=3.24\times10^{-7}$ 5; $\alpha(IPF)=1.373\times10^{-5}$ 19 $\alpha(K)=0.0293$ 4; $\alpha(L)=0.00335$ 5; $\alpha(M)=0.000520$ 7
		695.137 9	46.5 20	1330.872 4+	E2+M1	+1.7 +6-1	0.000999 27	α (N)=4.25×10 ⁻⁵ 6 B(M1)(W.u.)=0.00327 +57-73; B(E2)(W.u.)=26.3 +46-31
								$\alpha(K)=0.000889 \ 24; \ \alpha(L)=9.40\times 10^{-5} \ 26;$ $\alpha(M)=1.46\times 10^{-5} \ 4$ $\alpha(N)=1.240\times 10^{-6} \ 33$ I_{γ} : high value of 79 5 in $(\alpha,2n\gamma)$ is not used in
		809.828 11	100.0 22	1216.154 2+	E2		0.000706 10	averaging. B(E2)(W.u.)=35.5 +51-40 α (K)=0.000629 9; α (L)=6.63×10 ⁻⁵ 9; α (M)=1.031×10 ⁻⁵ 14
		1466.8 <i>3</i>	3.1 7	559.103 2+	[E2]		0.000256 4	$\alpha(N)=8.76\times10^{-7} 12$ B(E2)(W.u.)=0.056 +15-14 $\alpha(K)=0.0001626 23; \alpha(L)=1.685\times10^{-5} 24;$ $\alpha(M)=2.62\times10^{-6} 4$
2127.224	(2)+	335.87 <i>10</i> 339.569 <i>5</i>	6.7 <i>7</i> 19.8 <i>19</i>	1791.437 0 ⁺ 1787.655 2 ⁺				$\alpha(M) = 2.02 \times 10^{-6} 4$ $\alpha(N) = 2.241 \times 10^{-7} 31$; $\alpha(IPF) = 7.36 \times 10^{-5} 10$ E _{γ} : from (n, γ) E=thermal. Others: 339.62 10 from 76 Br $\varepsilon + \beta^+$ decay (16.14 h), 339.60 10 from $(n, n'\gamma)$,

γ (76Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f J	f^{π} Mu	ılt.#	$lpha^\dagger$	Comments
								and 338.0 15 from $(p,p'\gamma)$. I_{γ} : unweighted average of 21 5 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h), 16.1 16 from (n,γ) E=thermal, and 22.4 4 from $(n,n'\gamma)$.
2127.224	(2)+	438.253 5	44 6	1688.971 3	+			I _{γ} : unweighted average of 54.0 20 from ⁷⁶ As β^- decay, 45 4 from ⁷⁶ Br $\varepsilon + \beta^+$ decay (16.14 h), 26.8 29 from (n, γ) E=thermal, and 51.3 9 from (n, $\eta'\gamma$).
		796.10 <i>6</i>	1.49 33	1330.872 4	+			E _{γ} : weighted average of 796.44 26 from ⁷⁶ Br ε + β ⁺ decay (16.14 h), 796.08 6 from (n, γ) E=thermal, and 796.2 3 from (p,p' γ). I _{γ} : from ⁷⁶ Br ε + β ⁺ decay (16.14h). Other: 18.7 32 from (n, γ) E=thermal
		910.06 <i>10</i>	4.79 18	1216.154 2	+			questionable. E _{γ} : weighted average of 911.11 <i>13</i> from ⁷⁶ Br ε + β ⁺ decay (16.14 h) and 911.03 <i>10</i> from (n,n' γ). Other: 910.7 8 from (p,p' γ). I _{γ} : weighted average of 4.73 <i>14</i> from ⁷⁶ Br ε + β ⁺ decay (16.14 h) and 5.3 4
		1005.01 16	4.8 14	1122.279 0	+			from $(n,n'\gamma)$. E_{γ} : weighted average of 1005.06 22 from ⁷⁶ Br $\varepsilon + \beta^+$ decay (16.14 h) and 1004.98 16 from $(n,n'\gamma)$.
		1568.14 7	100.0 9	559.103 2	+			I _γ : unweighted average of 3.4 4 from ⁷⁶ Br $\varepsilon + \beta^+$ decay (16.14 h) and 6.1 4 from (n,n'γ). E _γ : weighted average of 1568.22 7 from ⁷⁶ As β^- decay, 1568.25 10 from ⁷⁶ Br $\varepsilon + \beta^+$ decay (16.14 h), 1568.02 7 from (n,γ) E=thermal, and 1568.07 12 from (n,n'γ). Other: 1568.1 5 from (p,p'γ).
		2127.30 <i>21</i>	18.3 4	0.0 0	+			I _{γ} : from (n,n' γ). Others: 100.0 13 from ⁷⁶ As β^- decay, 100 6 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h), and 100 13 from (n, γ) E=thermal. E _{γ} : unweighted average of 2127.0 1 from ⁷⁶ As β^- decay, 2127.69 20 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h), and 2127.21 8 from (n,n' γ). I _{γ} : weighted average of 18.0 13 from ⁷⁶ As β^- decay, 16.7 14 from ⁷⁶ Br
2170.572	(0 ⁺)	382.904 9	3.5 9	1787.655 2	+ [E2	2]	0.00647 9	$\varepsilon + \beta^+$ decay (16.14 h), and 18.4 4 from (n,n' γ). $\alpha(K) = 0.00574 \ 8$; $\alpha(L) = 0.000629 \ 9$; $\alpha(M) = 9.77 \times 10^{-5} \ 14$ $\alpha(N) = 8.14 \times 10^{-6} \ II$ B(E2)(W.u.)=70 +41-32 E _{γ} : from (n, γ) E=thermal. Other: 382.92 44 from ⁷⁶ Br $\varepsilon + \beta^+$ decay (16.14)
		954.49 9	15.7 7	1216.154 2	+ [E2	2]	0.000470 7	h). $I_{\gamma}: \text{ from }^{76}\text{Br }\varepsilon+\beta^{+} \text{ decay } (16.14 \text{ h}).$ $\alpha(K)=0.000418 6; \ \alpha(L)=4.39\times10^{-5} 6; \ \alpha(M)=6.83\times10^{-6} 10$ $\alpha(N)=5.81\times10^{-7} 8$ $B(E2)(W.u.)=3.3 +17-13$ $E_{\gamma}: \text{ weighted average of } 954.7 2 \text{ from } ^{76}\text{As } \beta^{-} \text{ decay, } 954.35 28 \text{ from } ^{76}\text{Br}$ $\varepsilon+\beta^{+} \text{ decay } (16.14 \text{ h}), 954.47 9 \text{ from } (n,n'\gamma), \text{ and } 953.9 10 \text{ from } (p,p'\gamma).$ $I_{\gamma}: \text{ weighted average of } 13.3 19 \text{ from } ^{76}\text{As } \beta^{-} \text{ decay, } 16.3 8 \text{ from } ^{76}\text{Br}$

γ (⁷⁶Se) (continued)

١							γ(**Se) (com	inued)	
	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
	2170.572	(0 ⁺)	1611.65 8	100.0 7	559.103 2+	[E2]		0.000282 4	$\varepsilon+\beta^+$ decay (16.14 h), and 15.6 7 from (n,n' γ). Other: 330 120 in (n, γ) E=thermal indicates contamination. $\alpha(K)=0.0001347$ 19; $\alpha(L)=1.394\times10^{-5}$ 20; $\alpha(M)=2.168\times10^{-6}$ 30 $\alpha(N)=1.855\times10^{-7}$ 26; $\alpha(IPF)=0.0001310$ 18
	2262.42	6+	931.50 <i>20</i>	100	1330.872 4+	E2		0.000498 7	B(E2)(W.u.)=1.5 +8-6 E _γ : weighted average of 1611.5 3 from ⁷⁶ As $β$ ⁻ decay, 1611.71 12 from ⁷⁶ Br $ε$ + $β$ ⁺ decay (16.14 h), and 1611.63 8 from (n,n'γ). Other: 1611.7 5 from (p,p'γ). I _γ : (n,n'γ). Others: 100 4 from ⁷⁶ As $β$ ⁻ decay, ⁷⁶ Br $ε$ + $β$ ⁺ decay (16.14 h). B(E2)(W.u.)=72.7 +68-58 $α$ (K)=0.000444 6 ; $α$ (L)=4.66×10 ⁻⁵ 7 ; $α$ (M)=7.24×10 ⁻⁶ 10 $α$ (N)=6.16×10 ⁻⁷ 9
	2362.963		575.305 <i>11</i> 1032 ^b <i>1</i>	100 <i>10</i> <20	1787.655 2 ⁺ 1330.872 4 ⁺				
	2429.131	3-	301.96 5	0.67 3	2127.224 (2)	+ [E1]		0.00313 4	B(E1)(W.u.)= 8.8×10^{-6} 14 α (K)= 0.00279 4; α (L)= 0.000292 4; α (M)= 4.52×10^{-5} 6 α (N)= 3.83×10^{-6} 5
			403.094 7	1.83 7	2026.020 4+	[E1]		1.44×10 ⁻³ 2	B(E1)(W.u.)= $1.01\times10^{-5} + 16-15$ $\alpha(K)=0.001280 \ 18; \ \alpha(L)=0.0001334 \ 19;$ $\alpha(M)=2.072\times10^{-5} \ 29$ $\alpha(N)=1.759\times10^{-6} \ 25$
			740.147 20	8.49 <i>18</i>	1688.971 3+	(E1+M2)	-0.21 12	0.00040 9	B(E1)(W.u.)= $7.2 \times 10^{-6} + 11 - 12$ α (K)= 0.00036 8; α (L)= 3.7×10^{-5} 8; α (M)= 5.8×10^{-6} 13 α (N)= 5.0×10^{-7} 11 δ: from $\gamma \gamma(\theta)$ in 76 As β^- . Other: +0.08 16 from $\gamma(\theta)$ in 76 As β^- . Parity is from the Adopted Levels.
			1098.33 5	0.28 5	1330.872 4+	[E1]		0.0001521 21	B(M2)(W.u.)=2.7 +47-23 exceeds RUL=1. B(E1)(W.u.)=7.6×10 ⁻⁸ 18 α (K)=0.0001358 19; α (L)=1.400×10 ⁻⁵ 20; α (M)=2.176×10 ⁻⁶ 30 α (N)=1.861×10 ⁻⁷ 26

γ (⁷⁶Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
2429.131	3-	1212.980 <i>10</i>	100.0 5	1216.154	2+	(E1+M2)	+0.025 20	0.0001820 26	B(E1)(W.u.)= $2.02\times10^{-5} +32-29$; B(M2)(W.u.)= $0.039 +89-35$ α (K)= 0.0001136 17; α (L)= 1.170×10^{-5} 17;
									$\alpha(M)=1.818\times10^{-6} 27$
									$\alpha(N)=1.556\times10^{-7} \ 23; \ \alpha(IPF)=5.48\times10^{-5} \ 8$ δ : from $\gamma\gamma(\theta)$ in 76 As β^- . Others: $-0.27 \ 13$ from $\gamma(\theta)$
									in $(\alpha, 2n\gamma)$, +0.11 10 from $\gamma(\theta)$ in ⁷⁶ As β^- . Parity is the Adopted Levels.
		1870.02 2	3.87 13	559.103	2+	(E1+M2)	+0.17 3	0.000589 9	B(E1)(W.u.)= $2.07 \times 10^{-7} +33-31$; B(M2)(W.u.)= $0.0079 +32-28$
									$\alpha(K)=5.91\times10^{-5}$ 16; $\alpha(L)=6.06\times10^{-6}$ 16; $\alpha(M)=9.42\times10^{-7}$ 25
									$\alpha(N)=8.08\times10^{-8} 22$; $\alpha(IPF)=0.000523 9$
									δ : from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- . Other: +0.00 δ from $\gamma(\theta)$ in ⁷⁶ As β^- . Parity is from the Adopted Levels.
		2429.49 22	2.41 4	0.0	0^{+}	[E3]		0.000437 6	B(E3)(W.u.)=16.3 +26-24
									$\alpha(K)=9.90\times10^{-5} \ 14; \ \alpha(L)=1.025\times10^{-5} \ 14; \ \alpha(M)=1.596\times10^{-6} \ 22$
									$\alpha(N)=1.367\times10^{-7}$ 19; $\alpha(IPF)=0.000326$ 5
2485.02	4+	796.08 <i>6</i>	29.5 7	1688.971	3 ⁺	M1+E2	+0.20 +19-13	0.000621 14	$\alpha(K)=0.000553 \ 13; \ \alpha(L)=5.76\times10^{-5} \ 14; \ \alpha(M)=8.98\times10^{-6} \ 22$
									$\alpha(N) = 7.68 \times 10^{-7} \ 18$
									$B(M1)(W.u.)=0.0153 +21-28$; $B(E2)(W.u.)=1.3 +32-11$ $E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ only.
									Mult., δ : D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; E1+M2 ruled out
		1154.09 9	100 <i>I</i>	1330.872	4+	M1+E2	-0.35 5	0.000289 4	by RUL. $\alpha(K)=0.000255 \ 4; \ \alpha(L)=2.64\times10^{-5} \ 4; \ \alpha(M)=4.11\times10^{-6}$
									6 $\alpha(N)=3.52\times10^{-7}$ 5; $\alpha(IPF)=2.53\times10^{-6}$ 4
									B(M1)(W.u.)=0.0159 23; B(E2)(W.u.)=2.0 6
									$E_{\gamma}I_{\gamma}$: from $(n,n'\gamma)$ only. Mult., δ : D+Q from $\gamma(\theta)$ in $(n,n'\gamma)$; E1+M2 ruled out
									by RUL.
		1268.81 9	37.2 8	1216.154	2+	[E2]		0.000268 4	$\alpha(K)$ =0.0002198 31; $\alpha(L)$ =2.286×10 ⁻⁵ 32; $\alpha(M)$ =3.56×10 ⁻⁶ 5
									$\alpha(N) = 3.04 \times 10^{-7} \ 4; \ \alpha(IPF) = 2.098 \times 10^{-5} \ 29$
									B(E2)(W.u.)=4.1 6 E_{γ} , I_{γ} : from $(n,n'\gamma)$ only.
2489.35	5 ⁺	800.41 9	100.0 6	1688.971	3 ⁺	E2		0.000728 10	B(E2)(W.u.)=67+19-17

γ (76Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$_{I_{\gamma}}{^{\ddagger}}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
	_							$\alpha(K)=0.000648 \ 9; \ \alpha(L)=6.84\times10^{-5} \ 10;$ $\alpha(M)=1.063\times10^{-5} \ 15$ $\alpha(N)=9.03\times10^{-7} \ 13$ E_{γ} : weighted average of 800.6 5 from $(\alpha,2n\gamma)$ and 800.40 9 from $(n,n'\gamma)$.
2489.35	5+	1158.45 5	49.9 6	1330.872 4+	E2+M1	+2.9 8	0.000302 5	I _γ : from (n,n'γ). Other: 100 7 from (α,2nγ). B(M1)(W.u.)= $5.6 \times 10^{-4} + 46 - 23$; B(E2)(W.u.)= $4.7 \ 13$ α(K)= $0.000266 \ 4$; α(L)= $2.77 \times 10^{-5} \ 4$; α(M)= $4.31 \times 10^{-6} \ 6$ α(N)= $3.68 \times 10^{-7} \ 5$; α(IPF)= $3.57 \times 10^{-6} \ 9$ E _γ : from (n,n'γ). Other: 1158.4 5 from (α,2nγ). I _γ : from (n,n'γ). Other: 50.0 33 from (α,2nγ).
2514.681	2+	387.66 49	0.61 12	2127.224 (2)+	[M1,E2]		0.0047 15	$\alpha(K)=0.0042 \ 14$; $\alpha(L)=4.5\times10^{-4} \ 15$; $\alpha(M)=7.0\times10^{-5} \ 24$ $\alpha(N)=5.9\times10^{-6} \ 19$ B(M1)(W.u.)=0.00117 +39-37 if M1, B(E2)(W.u.)=10.5 +35-33 if E2.
		723.24 <i>11</i> 727.014 <i>10</i>	6.5 <i>12</i> 100.0 <i>15</i>	1791.437 0 ⁺ 1787.655 2 ⁺	M1+E2	+0.22 5	0.000759 11	$\alpha(K)=0.000676\ 10;\ \alpha(L)=7.06\times10^{-5}\ 11;$ $\alpha(M)=1.098\times10^{-5}\ 17$ $\alpha(N)=9.39\times10^{-7}\ 14$ B(M1)(W.u.)=0.028 7; B(E2)(W.u.)=3.4 +18-16 δ : weighted average of +0.188 52 from ⁷⁶ Br ε decay and +0.24 5 from (n,n' γ). Others: >+3.0 or <-0.10 from $\gamma(\theta)$ in ⁷⁶ As β^- decay.
		825.78 8	3.0 4	1688.971 3 ⁺	(M1+E2)		0.00062 5	$\alpha(K)=0.00055\ 5;\ \alpha(L)=5.8\times10^{-5}\ 5;\ \alpha(M)=9.0\times10^{-6}\ 8$ $\alpha(N)=7.7\times10^{-7}\ 7$ δ : $-3\ +18-3\ \text{or}\ -1\ +15-1\ \text{from}\ (n,n'\gamma).$ B(M1)(W.u.)= $6.0\times10^{-4}\ 17\ \text{if}\ M1,\ B(E2)(W.u.)=1.18\ 33$ if E2.
		1298.60 12	0.98 5	1216.154 2+	[M1,E2]		0.000254 9	$\alpha(K)$ =0.000205 5; $\alpha(L)$ =2.12×10 ⁻⁵ 6; $\alpha(M)$ =3.30×10 ⁻⁶ 9 $\alpha(N)$ =2.83×10 ⁻⁷ 8; $\alpha(IPF)$ =2.43×10 ⁻⁵ 33 B(M1)(W.u.)=5.0×10 ⁻⁵ 13 if M1, B(E2)(W.u.)=0.040 10 if E2.
		1392.36 12	2.1 4	1122.279 0+	[E2]		0.0002534 35	$\alpha(K)$ =0.0001808 25; $\alpha(L)$ =1.877×10 ⁻⁵ 26; $\alpha(M)$ =2.92×10 ⁻⁶ 4 $\alpha(N)$ =2.495×10 ⁻⁷ 35; $\alpha(IPF)$ =5.07×10 ⁻⁵ 7 B(E2)(W.u.)=0.060 19
		1955.53 4	53.4 12	559.103 2+	(M1+E2)	-0.21 +5-6	0.000348 5	$\alpha(K)=9.19\times10^{-5} \ 13; \ \alpha(L)=9.45\times10^{-6} \ 13;$ $\alpha(M)=1.471\times10^{-6} \ 21$

$\gamma(^{10}Se)$ (continued	$\gamma(^{76}Se)$	(continued)
------------------------------	-------------------	-------------

							γ (/6Se) (cont	inuea)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
					<u> </u>				$\alpha(N)=1.262\times10^{-7}$ 18; $\alpha(IPF)=0.000245$ 4 B(M1)(W.u.)=7.6×10 ⁻⁴ 19; B(E2)(W.u.)=0.012 +8-6 δ : from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay.
2558.73		1342.30 <i>14</i>	100.0 25	1216.154					•
		1999.74 <i>10</i>	31.3 14	559.103					
2604.09	1+,2+	816.47 <i>17</i>	6.2 10	1787.655	2+	[M1,E2]		0.00064 5	$\alpha(K)=0.00057 5$; $\alpha(L)=6.0\times10^{-5} 5$; $\alpha(M)=9.3\times10^{-6} 8$ $\alpha(N)=7.9\times10^{-7} 7$ B(M1)(W.u.)=0.0017 +7-6 if M1, B(E2)(W.u.)=3.4 +15-13
									if E2.
		1387.87 6	30.1 10	1216.154	2+	[M1,E2]		0.000244 10	$\alpha(K)$ =0.000179 4; $\alpha(L)$ =1.85×10 ⁻⁵ 5; $\alpha(M)$ =2.88×10 ⁻⁶ 7 $\alpha(N)$ =2.47×10 ⁻⁷ 6; $\alpha(IPF)$ =4.4×10 ⁻⁵ 6 E _y : weighted average of 1388.13 27 from ⁷⁶ Br ε + β +
									decay (16.14 h) and 1387.86 6 from $(n,n'\gamma)$.
									I_{γ} : weighted average of 28.6 14 from ⁷⁶ Br ε+β ⁺ decay
									(16.14 h) and 30.7 9 from $(n,n'\gamma)$. B(M1)(W.u.)=0.0017 +7-6 if M1, B(E2)(W.u.)=1.17 +46-40 if E2.
		2044.93 6	100.0 9	559.103	2+	M1+E2	-3.0 +14-60	0.000423 11	$\alpha(K)=8.58\times10^{-5} 12$; $\alpha(L)=8.84\times10^{-6} 13$; $\alpha(M)=1.375\times10^{-6} 20$
									$\alpha(N)=1.178\times10^{-7}$ 17; $\alpha(IPF)=0.000327$ 10
									B(M1)(W.u.)=1.7×10 ⁻⁴ +35-14; B(E2)(W.u.)=0.50 +18-21 E _{\gamma} : from (n,n'\gamma). Other: 2045.49 70 from ⁷⁶ Br $\varepsilon+\beta^+$
									decay (16.14 h). I_{γ} : from $(n,n'\gamma)$. Other: 100 4 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h).
									Mult., δ : D+Q from $\gamma\gamma(\theta)$ in ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h); E1+M2 ruled out by RUL.
		2604.10 <i>41</i>	0.91 4	0.0	0+	[M1,E2]		0.00063 4	$\alpha(K)=5.57\times10^{-5} 9$; $\alpha(L)=5.72\times10^{-6} 9$; $\alpha(M)=8.90\times10^{-7} 15$ $\alpha(N)=7.64\times10^{-8} 12$; $\alpha(IPF)=0.000567 35$
									B(M1)(W.u.)= $7.7 \times 10^{-6} + 31 - 26$ if M1, B(E2)(W.u.)= $0.0015 + 6 - 5$ if E2.
2617.89	$(4)^{+}$	830.41 <i>11</i>	26.8 7	1787.655	2+	[E2]		0.000662 9	+6-5 If E2. $\alpha(K)=0.000590 \ 8; \ \alpha(L)=6.21\times10^{-5} \ 9; \ \alpha(M)=9.67\times10^{-6} \ 14$
2017.09	(1)	050.71 11	20.0 /	1707.033	_	[22]		5.000002 7	$\alpha(N)=8.21\times10^{-7} II$ B(E2)(W.u.)=31.1 50
		928.82 <i>14</i>	15.5 5	1688.971	3+	M1+E2		0.000473 30	$\alpha(K)$ =0.000421 26; $\alpha(L)$ =4.40×10 ⁻⁵ 30; $\alpha(M)$ =6.8×10 ⁻⁶ 5 $\alpha(N)$ =5.8×10 ⁻⁷ 4
									δ : +8 +21-5 or +0.15 11 from (n,n' γ).
		1286.91 <i>10</i>	100 <i>I</i>	1330.872	4+	M1+E2	-0.22 4	0.0002480 35	B(M1)(W.u.)=0.0066 11 if M1, B(E2)(W.u.)=10.3 17 if E2. α (K)=0.0002041 29; α (L)=2.111×10 ⁻⁵ 30;

γ (76Se) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^π	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
2617.89	(4) ⁺	1401.70 11	18.0 7	1216.154	2+	[E2]		0.0002532 35	$\alpha(M)=3.29\times10^{-6}\ 5$ $\alpha(N)=2.82\times10^{-7}\ 4;\ \alpha(IPF)=1.918\times10^{-5}\ 29$ $B(M1)(W.u.)=0.0152\ 25;\ B(E2)(W.u.)=0.60\ +24-21$ $\alpha(K)=0.0001784\ 25;\ \alpha(L)=1.851\times10^{-5}\ 26;$ $\alpha(M)=2.88\times10^{-6}\ 4$ $\alpha(N)=2.461\times10^{-7}\ 34;\ \alpha(IPF)=5.32\times10^{-5}\ 7$
2655.383	1	484.69 <i>5</i> 528.15 <i>6</i> 863.90 <i>5</i>	1.33 <i>15</i> 0.62 <i>3</i> 1.79 <i>7</i>	2170.572 2127.224 1791.437	(2) ⁺ 0 ⁺				B(E2)(W.u.)=1.53 +24-26
		867.723 26	25 3	1787.655	2 ⁺	D(+Q)	+0.013 20		δ: from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay. Others: +0.08 7 from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- , +0.4 +6–3 from $\gamma(\theta)$ in ⁷⁶ As β^- .
		1439.211 <i>21</i>	48.3 8	1216.154	2+	D+Q	-0.043 19		δ: from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay. Others: +0.01 3, +0.13 9 from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- , -0.02 10 from $\gamma(\theta)$ in ⁷⁶ As β^- .
		1533.11 5	4.11 8	1122.279		D			δ : 0.0 from $\gamma(\theta)$ in ⁷⁶ As β^- .
		2096.17 3	100.0 8	559.103	2+	D(+Q)	-0.043 +43-42		δ: from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay. Others: +0.02 6 from $\gamma\gamma(\theta)$ in ⁷⁶ As β^- , 0.00 8 from $\gamma(\theta)$ in ⁷⁶ As β^- .
		2655.47 8	7.3 5	0.0	0_{+}				,
2669.904	2-	882.213 20	18.2 6	1787.655	2+	(E1)		0.0002325 33	$\alpha(K)=0.0002074 \ 29; \ \alpha(L)=2.144\times10^{-5} \ 30; \ \alpha(M)=3.33\times10^{-6} \ 5 \ \alpha(N)=2.85\times10^{-7} \ 4 \ B(E1)(W.u.)=6.7\times10^{-5} \ 16 \ \delta: \ +0.26 \ 15 \ from \ \gamma\gamma(\theta) \ in \ ^{76}As \ \beta^- \ but \ it \ would give a large B(M2)(W.u.) exceeding RUL.$
		980.80 8	13.0 5	1688.971	3+	(E1)		0.0001885 26	B(E1)(W.u.)=3.5×10 ⁻⁵ 8 α(K)=0.0001683 24; α(L)=1.737×10 ⁻⁵ 24; α(M)=2.70×10 ⁻⁶ 4 α(N)=2.307×10 ⁻⁷ 32 δ: <+0.24 or >+16.4 from $\gamma(\theta)$ in ⁷⁶ As β^- .
		1453.717 20	35.4 16	1216.154	2+	(E1+M2)	+0.045 19	0.000308 4	$\alpha(K)=8.34\times10^{-5}\ 13;\ \alpha(L)=8.57\times10^{-6}\ 13;\ \alpha(M)=1.333\times10^{-6}\ 20\ \alpha(N)=1.141\times10^{-7}\ 17;\ \alpha(IPF)=0.0002150\ 30\ B(E1)(W.u.)=2.9\times10^{-5}\ 7;\ B(M2)(W.u.)=0.13\ +13-90.0002150\ 30\ from\ \gamma\gamma(\theta)\ in\ ^{76}Br\ \varepsilon\ decay.\ Others:\ +0.05\ 2\ from\ \gamma\gamma(\theta),\ -0.11\ 12\ from\ \gamma(\theta)\ in\ ^{76}As\ \beta^$

γ (76Se) (continued)

						/(50) (00)		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
2669.904	2-	2110.75 5	100.0 7	559.103 2+	(E1+M2)	+0.047 12	0.000758 11	$\alpha(K)=4.64\times10^{-5}\ 7;\ \alpha(L)=4.75\times10^{-6}\ 7;\ \alpha(M)=7.39\times10^{-7}\ 11$ $\alpha(N)=6.34\times10^{-8}\ 9;\ \alpha(IPF)=0.000706\ 10$ $B(E1)(W.u.)=2.7\times10^{-5}\ 6;\ B(M2)(W.u.)=0.061\ +39-30$ E_{γ} : from ⁷⁶ As decay. Value of 2111.27 8 from ⁷⁶ Br decay fits poorly. Weighted average (NRM) of all available values is 2111.23 12. δ : from $\gamma\gamma(\theta)$ in ⁷⁶ Br ε decay. Others: -0.09 2 from
		2670.1 5	0.16 7	0.0 0+	[M2]		0.000460 6	$\gamma\gamma(\theta)$, -0.02 16 from $\gamma(\theta)$ in ⁷⁶ As β^- . $\alpha(K)=8.79\times10^{-5}$ 12; $\alpha(L)=9.08\times10^{-6}$ 13; $\alpha(M)=1.413\times10^{-6}$ 20 $\alpha(N)=1.213\times10^{-7}$ 17; $\alpha(IPF)=0.000362$ 5 B(M2)(W.u.)=0.014 +7-6
2805.10 2812.130	(4^+) (3^+)	1474.21 <i>15</i> 382.92 <i>17</i>	100 22.4 <i>9</i>	1330.872 4 ⁺ 2429.131 3 ⁻				
2012.130	(3)	1123.07 10	27.1 11	1688.971 3 ⁺	(M1+E2)		0.000312 12	$\alpha(K)$ =0.000277 11; $\alpha(L)$ =2.88×10 ⁻⁵ 12; $\alpha(M)$ =4.49×10 ⁻⁶ 18
				1000 070 14				$\alpha(N)=3.84\times10^{-7}$ 15; $\alpha(IPF)=1.29\times10^{-6}$ 21 Mult., δ : D+Q with $\delta=-1.61$ +30-21 or -0.045 12 from $(n,n'\gamma)$ are likely M1+E2.
		1481.48 <i>16</i> 1595.93 <i>13</i>	9.6 <i>11</i> 100.0 <i>11</i>	1330.872 4+	(M1(+E2))	. 0. 02. 2	0.0002500.25	$\alpha(K)=0.0001341 \ 19; \ \alpha(L)=1.383\times10^{-5} \ 19;$
		1595.93 13	100.0 11	1216.154 2+	(M1(+E2))	+0.03 3	0.0002500 35	$\alpha(K)=0.0001341 \ 79; \ \alpha(L)=1.385\times10^{-5} \ 19;$ $\alpha(M)=2.152\times10^{-6} \ 30$ $\alpha(N)=1.847\times10^{-7} \ 26; \ \alpha(IPF)=9.97\times10^{-5} \ 14$
		2253.00 18	27.0 12	559.103 2+	(M1+E2)		0.000485 30	$\alpha(K)=7.17\times10^{-5} \ 11; \ \alpha(L)=7.37\times10^{-6} \ 12;$ $\alpha(M)=1.147\times10^{-6} \ 18$ $\alpha(N)=9.84\times10^{-8} \ 16; \ \alpha(IPF)=0.000404 \ 30$ δ : $-1.0 + 14 - 2 \text{ or } -4.8 + 10 - 3 \text{ from } (n,n'\gamma).$
2817.24	(2+)	1486.67 <i>13</i>	1.3 4	1330.872 4+	[E2]		0.000258 4	$\alpha(K)=0.0001582\ 22;\ \alpha(L)=1.639\times10^{-5}\ 23;$ $\alpha(M)=2.55\times10^{-6}\ 4$ $\alpha(N)=2.181\times10^{-7}\ 31;\ \alpha(IPF)=8.06\times10^{-5}\ 11$
		1600.92 7	100.0 10	1216.154 2+	[M1,E2]		0.000265 15	B(E2)(W.u.)=0.33 <i>10</i> α (K)=0.0001349 25; α (L)=1.394×10 ⁻⁵ 27; α (M)=2.17×10 ⁻⁶ 4 α (N)=1.858×10 ⁻⁷ 34; α (IPF)=0.000114 <i>13</i> B(M1)(W.u.)=0.0331 2 <i>I</i> if M1, B(E2)(W.u.)=17.4 <i>11</i> if E2.
		2258.04 8	63.9 10	559.103 2+	[M1,E2]		0.000487 30	$\alpha(K)=7.14\times10^{-5} II; \alpha(L)=7.34\times10^{-6} I2;$ $\alpha(M)=1.142\times10^{-6} I8$

γ (⁷⁶Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	α^{\dagger}	Comments
									α (N)=9.80×10 ⁻⁸ 15; α (IPF)=0.000407 30 B(M1)(W.u.)=0.00752 +50-45 if M1, B(E2)(W.u.)=1.99 13 if E2.
2817.24	(2+)	2817.20 28	0.61 9	0.0	0+	[E2]		0.000753 11	$\alpha(K)=4.92\times10^{-5}$ 7; $\alpha(L)=5.05\times10^{-6}$ 7; $\alpha(M)=7.86\times10^{-7}$ 11 $\alpha(N)=6.74\times10^{-8}$ 9; $\alpha(IPF)=0.000698$ 10
2824.797	5-	335.5 5	5.8	2489.35	5+	(E1)		2.34×10 ⁻³ 3	B(E2)(W.u.)=0.0063 10 B(E1)(W.u.)=4.2×10 ⁻⁵ +15-14 α (K)=0.002089 30; α (L)=0.0002181 32; α (M)=3.39×10 ⁻⁵ 5 α (N)=2.87×10 ⁻⁶ 4 γ from (α ,2n γ) only. δ (M2/E1)=+0.35 15 gives B(M2)(W.u.)=210 180. RUL≤1 for M2 gives δ <0.01. Parity from the
		395.665 5	39 <i>3</i>	2429.131	3-	E2		0.00581 8	Adopted Levels. B(E2)(W.u.)=87 +27-23 α (K)=0.00515 7; α (L)=0.000563 8; α (M)=8.75×10 ⁻¹ α (N)=7.30×10 ⁻⁶ 10
		562.3 5	<20	2262.42	6+	[E1]		0.000625 9	$\alpha(N)=7.30\times10^{-6}$ B(E1)(W.u.)<4.2×10 ⁻⁵ $\alpha(K)=0.000557$ 8; $\alpha(L)=5.79\times10^{-5}$ 8; $\alpha(M)=9.00\times10^{-6}$ 13 $\alpha(N)=7.67\times10^{-7}$ 11
		798.83 6	100 8	2026.020	4+	(E1)		0.000285 4	B(E1)(W.u.)= $5.4 \times 10^{-5} + 16 - 14$ α (K)= 0.000254 4; α (L)= 2.63×10^{-5} 4; α (M)= 4.09×10^{-6} 6 α (N)= 3.49×10^{-7} 5 δ (Q/D)= $+0.04$ 4 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$. Parities from the Adopted Levels give mult=E1.
		1493.88 6	65 7	1330.872	4+	E1		0.000335 5	B(E1)(W.u.)= $5.4 \times 10^{-6} + 16 - 15$ $\alpha(K)=7.93 \times 10^{-5} 11$; $\alpha(L)=8.14 \times 10^{-6} 11$; $\alpha(M)=1.266 \times 10^{-6} 18$ $\alpha(N)=1.084 \times 10^{-7} 15$; $\alpha(IPF)=0.0002457 34$ δ : +0.03 5 from $\gamma(\theta, \text{pol})$ in $(\alpha, 2n\gamma)$.
2829.61	(1,2)	1041.18 <i>32</i> 2829.99 <i>24</i>	100 <i>6</i> 0.54 <i>18</i>	1787.655 0.0	2 ⁺ 0 ⁺				
2859.781	4-	430.649 27	71 9	2429.131	3-	M1+E2	-0.7 +4-12	0.0031 9	B(M1)(W.u.)=0.053 +41-32; B(E2)(W.u.)=1.9×10 ² +27-15 α (K)=0.0028 8; α (L)=2.9×10 ⁻⁴ 9; α (M)=4.6×10 ⁻⁵ 14

γ (76Se) (continued)

					/(50)	(-	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\sharp}$	$_{I_{\gamma}}\ddagger$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
								α (N)=3.9×10 ⁻⁶ 11 B(E2)(W.u.)=1.9×10 ² +27-15 upper bound exceeds RUL=300.
2859.781	4-	1170.85 8	35 7	1688.971 3+	[E1]		0.0001659 23	$\alpha(K)$ =0.0001208 17; $\alpha(L)$ =1.244×10 ⁻⁵ 17; $\alpha(M)$ =1.934×10 ⁻⁶ 27 $\alpha(N)$ =1.655×10 ⁻⁷ 23; $\alpha(IPF)$ =3.06×10 ⁻⁵ 4
		1528.87 8	100.0 13	1330.872 4+	(E1(+M2))	<0.1	0.000359 5	B(E1)(W.u.)= $3.3\times10^{-5} + 23-11$ B(E1)(W.u.)= $4.3\times10^{-5} + 37-15$ $\alpha(K)=7.74\times10^{-5} 15$; $\alpha(L)=7.95\times10^{-6} 16$; $\alpha(M)=1.235\times10^{-6} 24$ $\alpha(N)=1.058\times10^{-7} 21$; $\alpha(IPF)=0.000272 4$
2869.34	$(1^+,2^+)$	1653.06 <i>10</i>	51.7 <i>18</i>	1216.154 2+	(M1+E2)		0.000277 16	$\alpha(N)=1.058\times 10^{-7} 21$; $\alpha(IPF)=0.0002724$ δ : ≈ 0.4 for $\Delta J=0$ from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ is too high. From RUL(M2)=1, $\delta < 0.1$. B(M2)(W.u.)<1.6 upper limit exceeds RUL=1. $\alpha(K)=0.0001268$ 22; $\alpha(L)=1.310\times 10^{-5}$ 24;
2007.34	(1 ,2)	1033.00 10	31.7 76	1210.154 2	(WITTE2)		0.000277 10	$\alpha(\text{K})$ =0.0001208 22, $\alpha(\text{L})$ =1.510×10 24, $\alpha(\text{M})$ =2.04×10 ⁻⁶ 4 $\alpha(\text{N})$ =1.746×10 ⁻⁷ 31; $\alpha(\text{IPF})$ =0.000135 14 δ : +0.38 +14-12 or +1.1 +3-8 from (n,n' γ). B(M1)(W.u.)=1.76×10 ⁻⁵ +15-13 if M1, B(E2)(W.u.)=0.0086 7 if E2.
		2310.09 16	100.0 11	559.103 2+	(M1+E2)		0.000508 31	B(E2)(W.ii.)=0.0086 / If E2. $\alpha(K)=6.86\times10^{-5} \ 11; \ \alpha(L)=7.05\times10^{-6} \ 11;$ $\alpha(M)=1.097\times10^{-6} \ 18$ $\alpha(N)=9.41\times10^{-8} \ 15; \ \alpha(IPF)=0.000431 \ 31$ δ : $-0.52 \ 9 \ or -12 +52 -6 \ from \ (n,n'\gamma).B(M1)(W.u.)=1.25×10-5 \ 10 \ if M1,B(E2)(W.u.)=0.00314 \ +25-22 \ if E2.$
		2869.40 31	23.1 15	$0.0 0^{+}$				B(B2)(W.d.)=0.00311 123 22 II B2.
2910.993 2917.32	(1 to 4) (4) ⁺	548.028 ^b 12 1586.41 8	100 100	2362.963 1330.872 4 ⁺	(M1+E2)	+0.34 4	0.000251 4	$\alpha(K)$ =0.0001360 19; $\alpha(L)$ =1.403×10 ⁻⁵ 20; $\alpha(M)$ =2.183×10 ⁻⁶ 31
2950.171	1+	294.60 17	0.108 24	2655.383 1				$\alpha(N)=1.873\times10^{-7} \ 26; \ \alpha(IPF)=9.87\times10^{-5} \ 15$
		779.48 10	0.287 28	2170.572 (0+)	[M1]		0.000645 9	$\alpha(K)=0.000575 \ 8; \ \alpha(L)=5.99\times10^{-5} \ 8;$ $\alpha(M)=9.32\times10^{-6} \ 13$ $\alpha(N)=7.98\times10^{-7} \ 11$ $\alpha(M)=0.0010^{-4} \ 10^{-4} \ 10^{-15}$
		822.92 31	0.26 5	2127.224 (2)+	[M1,E2]		0.00063 5	$\alpha(K)=0.00056 \ 5; \ \alpha(L)=5.8\times10^{-5} \ 5;$ $\alpha(M)=9.1\times10^{-6} \ 8$ $\alpha(N)=7.7\times10^{-7} \ 7$

γ (⁷⁶Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
2950.171	1+	1158.68 <i>13</i>	1.64 20	1791.437	0+	[M1]		0.000284 4	B(M1)(W.u.)= $7.0 \times 10^{-4} + 20 - 16$ if M1, B(E2)(W.u.)= $1.38 + 39 - 31$ if E2. $\alpha(K)=0.0002512 \ 35; \ \alpha(L)=2.60 \times 10^{-5} \ 4;$ $\alpha(M)=4.05 \times 10^{-6} \ 6$
		1733.96 <i>19</i>	0.34 5	1216.154	2+	[M1,E2]		0.000298 18	$\alpha(N)=3.47\times10^{-7} 5$; $\alpha(IPF)=2.70\times10^{-6} 4$ B(M1)(W.u.)=0.00157 +35-28 $\alpha(K)=0.0001158 \ 20$; $\alpha(L)=1.195\times10^{-5} \ 2I$; $\alpha(M)=1.859\times10^{-6} \ 33$ $\alpha(N)=1.593\times10^{-7} \ 27$; $\alpha(IPF)=0.000168 \ 17$
		1828.22 39	0.59 18	1122.279	0+	[M1]		0.000305 4	B(M1)(W.u.)= $9.7 \times 10^{-5} + 24 - 19$ if M1, B(E2)(W.u.)= $0.044 + 11 - 8$ if E2. $\alpha(K)=0.0001039 \ 15$; $\alpha(L)=1.070 \times 10^{-5} \ 15$; $\alpha(M)=1.665 \times 10^{-6} \ 23$
		2391.14 <i>30</i>	57.2 14	559.103	2+	M1+E2	-0.058 +4-5	0.000509 7	$\alpha(N)=1.429\times10^{-7}\ 20;\ \alpha(IPF)=0.0001888\ 26$ $B(M1)(W.u.)=1.4\times10^{-4}\ 5$ $B(M1)(W.u.)=0.0062\ +12-9;\ B(E2)(W.u.)=0.0049$ +14-9
									$\alpha(K)=6.41\times10^{-5}~9;~\alpha(L)=6.58\times10^{-6}~9;~\alpha(M)=1.024\times10^{-6}~14$ $\alpha(N)=8.79\times10^{-8}~12;~\alpha(IPF)=0.000437~6$ Mult.: M1,E2 from $\alpha(K)$ exp and D+Q from $\gamma\gamma(\theta)$ in 76 Br ε decay.
		2950.49 9	100.0 13	0.0	0+	(M1)		0.000731 10	B(M1)(W.u.)=0.0058 +11-8 α (K)=4.47×10 ⁻⁵ 6; α (L)=4.58×10 ⁻⁶ 6; α (M)=7.13×10 ⁻⁷ 10 α (N)=6.12×10 ⁻⁸ 9; α (IPF)=0.000681 10
2969.48	2-,3-,4-	540.40 8	48.2 13	2429.131	3-	(M1+E2)		0.0018 4	Mult.: from $\alpha(K)$ exp in ⁷⁶ Br ε ; $\gamma(\theta)$ in (γ, γ') . $\alpha(K)$ =0.00161 32; $\alpha(L)$ =0.00017 4; $\alpha(M)$ =2.7×10 ⁻⁵
2975.00	$(2^+,3,4^+)$	1280.44 <i>10</i> 847.51 <i>11</i>	100.0 <i>13</i> 16.6 <i>16</i>	1688.971 2127.224					$\alpha(N)=2.3\times10^{-6} 5$ δ : -0.44 12 or -1.7 4 from (n,n' γ).
	, ,	1286.04 <i>11</i> 1644.28 <i>12</i> 1758.90 <i>12</i> 2415.96 <i>34</i>	100 <i>10</i> 9.1 <i>10</i> 6.8 <i>7</i> 9.9 <i>10</i>	1688.971 1330.872 1216.154 559.103	3 ⁺ 4 ⁺ 2 ⁺				
2975.98	6+	713.8 5	9.5	2262.42		[M1+E2]		0.00088 10	$\alpha(K)$ =0.00079 9; $\alpha(L)$ =8.3×10 ⁻⁵ 10; $\alpha(M)$ =1.29×10 ⁻⁵ 16

γ (76Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
								α (N)=1.09×10 ⁻⁶ 13 B(M1)(W.u.)=0.0044 +24–18 if M1, B(E2)(W.u.)=12 +7–5 if E2.
2975.98	6+	950.0 <i>5</i>	100 7	2026.020 4+	E2		0.000475 7	B(E2)(W.u.)=29 +15-11 α (K)=0.000423 6; α (L)=4.44×10 ⁻⁵ 6; α (M)=6.91×10 ⁻⁶ 10
3007.75	(2)+	1791.52 <i>12</i>	10.3 6	1216.154 2+	(M1+E2)		0.000314 20	$\alpha(N)=5.88\times10^{-7}~8$ $\alpha(K)=0.0001089~18;~\alpha(L)=1.123\times10^{-5}~19;~\alpha(M)=1.747\times10^{-6}$ 30
								$\alpha(N)=1.497\times10^{-7}$ 25; $\alpha(IPF)=0.000192$ 19 δ : +5 +58-2 or -0.21 19 from (n,n' γ). B(M1)(W.u.)=0.0127 12 if M1, B(E2)(W.u.)=5.3 5 if E2.
		2448.74 12	100.0 8	559.103 2+	M1+E2	-0.16 5	0.000533 8	$\alpha(K)=6.15\times10^{-5}$ 9; $\alpha(L)=6.31\times10^{-6}$ 9; $\alpha(M)=9.82\times10^{-7}$ 14 $\alpha(N)=8.43\times10^{-8}$ 12; $\alpha(IPF)=0.000464$ 7 B(M1)(W.u.)=0.0470 +38-36; B(E2)(W.u.)=0.27 +19-14
		3007.40 20	5.0 8	0.0 0+	[E2]		0.000832 12	$\alpha(K)=4.42\times10^{-5}$ 6; $\alpha(L)=4.53\times10^{-6}$ 6; $\alpha(M)=7.05\times10^{-7}$ 10 $\alpha(N)=6.05\times10^{-8}$ 8; $\alpha(IPF)=0.000782$ 11
3031.57	0+	1815.40 8	60.5 19	1216.154 2+	[E2]		0.000342 5	B(E2)(W.u.)=0.194 33 α (K)=0.0001072 15; α (L)=1.106×10 ⁻⁵ 15; α (M)=1.721×10 ⁻⁶ 24
		2472.39 12	100.0 19	559.103 2 ⁺	[E2]		0.000608 9	$\alpha(N)=1.473\times10^{-7} \ 2I; \ \alpha(IPF)=0.0002217 \ 3I$ B(E2)(W.u.)=5.8 +6-5 $\alpha(K)=6.14\times10^{-5} \ 9; \ \alpha(L)=6.31\times10^{-6} \ 9; \ \alpha(M)=9.82\times10^{-7} \ 14$
			100.0 19		[22]			$\alpha(N)=8.42\times10^{-8}$ 12; $\alpha(IPF)=0.000539$ 8 B(E2)(W.u.)=2.04 +19-16
3045.79	(5 ⁻)	221.21 <i>11</i>	100 6	2824.797 5	(M1)		0.0125 2	B(M1)(W.u.)=2.8 +13-11 α (K)=0.01111 16; α (L)=0.001191 17; α (M)=0.0001856 26 α (N)=1.578×10 ⁻⁵ 22
								Mult., δ : $\gamma(\theta)$ in $(\alpha,2n\gamma)$ consistent with $\Delta J=0$ or 2; $\delta(Q/D)=+0.6$ 3 from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ (1984Zo01) would require a B(E2)(W.u.)= 2.0×10^4 +17-15 exceeding RUL=300; POL from $(\alpha,2n\gamma)$ seems consistent with E1 but it would require a B(E1)(W.u.)= 0.048 15-34 exceeding RUL= 0.01 . B(M1)(W.u.)= 0.048 RUL= 0.01 .
		1714.73 10	87 6	1330.872 4+	[E1]		0.000491 7	B(E1)(W.u.)= $8.8\times10^{-5} + 40 - 33$ $\alpha(K)=6.35\times10^{-5} 9$; $\alpha(L)=6.51\times10^{-6} 9$; $\alpha(M)=1.012\times10^{-6} 14$
3069.62	2+	257.63 12	0.056 9	2812.130 (3 ⁺)				$\alpha(N)=8.67\times10^{-8} \ 12; \ \alpha(IPF)=0.000420 \ 6$

γ (76Se) (continued)

$E_i(level)$	\mathbf{J}_{i}^{π}	$\mathrm{E}_{\mathrm{v}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f J 2	™ Mult.#	δ#	$lpha^\dagger$	Comments
3069.62	2+	399.59 52	1.77 11	2669.904 2			1.47×10 ⁻³ 2	$\alpha(K)$ =0.001310 19; $\alpha(L)$ =0.0001365 20; $\alpha(M)$ =2.120×10 ⁻⁵ 31 $\alpha(N)$ =1.800×10 ⁻⁶ 26
		414.14 10	0.093 7	2655.383 1				$B(E1)(W.u.)=1.64\times10^{-4} 28$
		640.46 31	0.151 27	2429.131 3	[M2]		0.00281 4	$\alpha(K)$ =0.002498 35; $\alpha(L)$ =0.000269 4; $\alpha(M)$ =4.20×10 ⁻⁵ 6 $\alpha(N)$ =3.58×10 ⁻⁶ 5 B(M2)(W.u.)=38 +10-9 exceeds RUL=1.
		942.21 12	4.1 26	2127.224 (2)) ⁺ (M1(+E2))	+0.04 5	0.000431 6	$\alpha(K)=0.000384$ 5; $\alpha(L)=3.99\times10^{-5}$ 6; $\alpha(M)=6.21\times10^{-6}$ 9 $\alpha(N)=5.32\times10^{-7}$ 7 B(M1)(W.u.)=0.0017 +16-12;
		1380.52 9	20.6 28	1688.971 3 ⁺	(M1+E2)		0.000245 10	B(E2)(W.u.)<0.04 α (K)=0.000181 4; α (L)=1.87×10 ⁻⁵ 5; α (M)=2.91×10 ⁻⁶ 7 α (N)=2.49×10 ⁻⁷ 6; α (IPF)=4.2×10 ⁻⁵ 5
			100.0	1215171		0.007.4	0.00044	δ: +0.04 9 or -7 +14-3 from (n,n' $γ$). B(M1)(W.u.)=0.0027 5 if M1, B(E2)(W.u.)=1.91 37 if E2.
		1853.24 20	100.0 9	1216.154 2+	M1+E2	+0.035 4	0.000313 4	$\alpha(K)$ =0.0001013 14; $\alpha(L)$ =1.043×10 ⁻⁵ 15; $\alpha(M)$ =1.624×10 ⁻⁶ 23 $\alpha(N)$ =1.393×10 ⁻⁷ 20; $\alpha(IPF)$ =0.0001993 28 B(M1)(W.u.)=0.0054 9; B(E2)(W.u.)=0.0026 +8-7
		2510.68 <i>19</i>	12.7 16	559.103 2+	(M1+E2)	+0.069 6	0.000557 8	$\alpha(K)=5.88\times10^{-5} 8$; $\alpha(L)=6.04\times10^{-6} 8$; $\alpha(M)=9.40\times10^{-7} 13$ $\alpha(N)=8.07\times10^{-8} 11$; $\alpha(IPF)=0.000491 7$ $\beta(M1)(W.u.)=2.8\times10^{-4} 5$;
		3070.08 20	0.065 4	0.0 0+	[E2]		0.000857 12	B(E2)(W.u.)= $2.8 \times 10^{-4} + 8 - 7$ α (K)= $4.27 \times 10^{-5} 6$; α (L)= $4.38 \times 10^{-6} 6$; α (M)= $6.81 \times 10^{-7} 10$
								α (N)=5.85×10 ⁻⁸ 8; α (IPF)=0.000809 11 B(E2)(W.u.)=1.10×10 ⁻⁴ 19
3084.58 3105.48	$(1^+, 2^+, 3^+)$ (3^-)	2525.43 <i>6</i> 1774.58 <i>23</i>	100 33.8 <i>23</i>	559.103 2 ⁺ 1330.872 4 ⁺			0.000532 7	$\alpha(K)=6.01\times10^{-5} 8$; $\alpha(L)=6.17\times10^{-6} 9$; $\alpha(M)=9.59\times10^{-7} 13$ $\alpha(N)=8.21\times10^{-8} 12$; $\alpha(IPF)=0.000465 7$ $B(E1)(W.u.)=6.8\times10^{-5} +10-8$

29

γ (76Se) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{\ddagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.# δ #	α^{\dagger}	Comments
3105.48	(3-)	1889.2 6	31 9	1216.154 2+	[E1]	0.000610 9	$\alpha(K)=5.46\times10^{-5} 8$; $\alpha(L)=5.59\times10^{-6} 8$; $\alpha(M)=8.70\times10^{-7} 12$ $\alpha(N)=7.46\times10^{-8} 10$; $\alpha(IPF)=0.000549 8$
		2546.6 4	100.0 12	559.103 2+	[E1]	1.03×10 ⁻³ I	B(E1)(W.u.)= 5.2×10^{-5} 14 α (K)= 3.53×10^{-5} 5; α (L)= 3.61×10^{-6} 5; α (M)= 5.61×10^{-7} 8 α (N)= 4.81×10^{-8} 7; α (IPF)= 0.000986 14
3160.115	(2+)	209.92 10	1.86 9	2950.171 1+	[M1,E2]	0.034 20	B(E1)(W.u.)= $6.9\times10^{-5} + 9-7$ $\alpha(K)=0.030 \ 17; \ \alpha(L)=0.0034 \ 20; \ \alpha(M)=5.3\times10^{-4} \ 32$ $\alpha(N)=4.3\times10^{-5} \ 25$ B(M1)(W.u.)= $0.048 + 18-16$ if M1. B(E2)(W.u.)= $1.5\times10^3 + 6-5$ exceeds RUL=300 if E2.
		290.79 <i>35</i> 347.88 <i>10</i>	0.171 <i>18</i> 1.32 <i>18</i>	2869.34 (1 ⁺ ,2 ⁺) 2812.130 (3 ⁺)			b(E2)(w.u.)=1.3×10° +0-3 exceeds RUL=300 II E2.
		489.98 <i>13</i>	12.9 8	2669.904 2-	[E1]	0.000873 12	$\alpha(K)=0.000779 \ II; \ \alpha(L)=8.10\times10^{-5} \ II;$ $\alpha(M)=1.259\times10^{-5} \ I8$ $\alpha(N)=1.071\times10^{-6} \ I5$ B(E1)(W.u.)=4.5×10 ⁻⁴ +17-15
		504.54 10	10.7 25	2655.383 1	[E1]	0.000812 11	$\alpha(K)=0.000724 \ 10; \ \alpha(L)=7.53\times10^{-5} \ 11;$ $\alpha(M)=1.171\times10^{-5} \ 16$ $\alpha(N)=9.96\times10^{-7} \ 14$
		730.71 <i>11</i>	20.8 17	2429.131 3-	[E1]	0.000345 5	B(E1)(W.u.)= $3.4 \times 10^{-4} + 15 - 14$ $\alpha(K)=0.000307 \ 4$; $\alpha(L)=3.19 \times 10^{-5} \ 4$; $\alpha(M)=4.95 \times 10^{-6}$
		1032.58 10	25 5	2127.224 (2)+	[M1,E2]	0.000373 18	$\alpha(N)=4.23\times10^{-7} 6$ B(E1)(W.u.)=2.2×10 ⁻⁴ +8-7 $\alpha(K)=0.000333 \ 16; \ \alpha(L)=3.47\times10^{-5} \ 18;$ $\alpha(M)=5.39\times10^{-6} \ 28$ $\alpha(N)=4.61\times10^{-7} \ 22$
		1372.29 <i>13</i>	24.2 22	1787.655 2+	[M1,E2]	0.000245 10	B(M1)(W.u.)=0.0055 +22-20 if M1, B(E2)(W.u.)=6.9 +27-25 if E2. α (K)=0.000183 4; α (L)=1.89×10 ⁻⁵ 5; α (M)=2.95×10 ⁻⁶ 7
		1471.08 <i>7</i>	100.0 18	1688.971 3+	[M1,E2]	0.000245 11	$\alpha(N)=2.52\times10^{-7} 6$; $\alpha(IPF)=4.0\times10^{-5} 5$ B(M1)(W.u.)=0.0023 +9-8 if M1, B(E2)(W.u.)=1.6 +6-5 if E2. $\alpha(K)=0.0001592 \ 33$; $\alpha(L)=1.65\times10^{-5} \ 4$; $\alpha(M)=2.56\times10^{-6} \ 6$ $\alpha(N)=2.19\times10^{-7} 5$; $\alpha(IPF)=6.7\times10^{-5} \ 8$

30

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.#	δ#	α^{\dagger}	Comments
3160.115	(2+)	1830.80 <i>15</i>	0.72 6	1330.872 4+	[E2]		0.000347 5	B(M1)(W.u.)=0.0075 +27-24 if M1, B(E2)(W.u.)=4.7 +17-15 if E2. $\alpha(K)$ =0.0001055 15; $\alpha(L)$ =1.088×10 ⁻⁵ 15; $\alpha(M)$ =1.693×10 ⁻⁶ 24 $\alpha(N)$ =1.450×10 ⁻⁷ 20; $\alpha(IPF)$ =0.0002289 32
		1944.18 <i>10</i>	17.0 7	1216.154 2+	(M1(+E2))	+0.05 6	0.000342 5	B(E2)(W.u.)=0.0113 +42-37 α (K)=9.28×10 ⁻⁵ 13; α (L)=9.55×10 ⁻⁶ 13; α (M)=1.486×10 ⁻⁶ 21 α (N)=1.275×10 ⁻⁷ 18; α (IPF)=0.0002384 34 B(M1)(W.u.)=5.5×10 ⁻⁴ +28-24; B(E2)(W.u.)<0.0036
		2601.36 20	26.8 11	559.103 2+	(M1+E2)	+0.149 22	0.000595 8	$\alpha(K)=5.54\times10^{-5}$ 8; $\alpha(L)=5.68\times10^{-6}$ 8; $\alpha(M)=8.84\times10^{-7}$ 12 $\alpha(N)=7.59\times10^{-8}$ 11; $\alpha(IPF)=0.000533$ 7 B(M1)(W.u.)=3.6×10 ⁻⁴ +13-12; B(E2)(W.u.)=0.0016 +8-7 This γ is placed in $(n,n'\gamma)$ from a different level with $J^{\pi}=0^{+}$.
3161.80	(3-)	732.77 6	47.3 31	2429.131 3-	(M1+E2)	+0.2 +14-1	0.00074 12	$\alpha(K)$ =0.00066 11; $\alpha(L)$ =6.9×10 ⁻⁵ 12; $\alpha(M)$ =1.08×10 ⁻⁵ 19 $\alpha(N)$ =9.2×10 ⁻⁷ 15 B(M1)(W.u.)=0.045 +8-13; B(E2)(W.u.)=5 +14-4
		1830.79 8	60.2 21	1330.872 4+	[E1]		0.000570 8	$\alpha(K)=5.73\times10^{-5} 8$; $\alpha(L)=5.87\times10^{-6} 8$; $\alpha(M)=9.13\times10^{-7}$ 13 $\alpha(N)=7.83\times10^{-8} 11$; $\alpha(IPF)=0.000506 7$ B(E1)(W.u.)=6.5×10 ⁻⁵ 13
		1945.48 10	100.0 29	1216.154 2+	[E1]		0.000649 9	$\alpha(K)=5.22\times10^{-5} \ 7; \ \alpha(L)=5.35\times10^{-6} \ 7; \ \alpha(M)=8.32\times10^{-7} \ 12$ $\alpha(N)=7.13\times10^{-8} \ 10; \ \alpha(IPF)=0.000590 \ 8$ $B(E1)(W.u.)=9.1\times10^{-5} \ 17$
3191.67	(3)+	1502.74 20	100.0 32	1688.971 3+	(M1+E2)		0.000249 12	$\alpha(K)=0.0001526 \ 30; \ \alpha(L)=1.578\times10^{-5} \ 34;$ $\alpha(M)=2.46\times10^{-6} \ 5$ $\alpha(N)=2.10\times10^{-7} \ 4; \ \alpha(IPF)=7.7\times10^{-5} \ 9$ δ : +1.93 +28-34 or -0.14 5 from (n,n' γ). B(M1)(W.u.)=0.0392 +36-32 if M1, B(E2)(W.u.)=23.3 +22-19 if E2.
		1860.91 26	17 6	1330.872 4+	(M1+E2)	-0.2 +88-1	0.00032 4	$\alpha(K)=0.0001006 22; \ \alpha(L)=1.036\times10^{-5} 24; \ \alpha(M)=1.61\times10^{-6} 4 \ \alpha(N)=1.383\times10^{-7} 29; \ \alpha(IPF)=0.00020 4 \ B(M1)(W.u.)<0.0052; \ B(E2)(W.u.)<2.0$
		1975.6 6	17.5 10	1216.154 2+	(M1+E2)		0.000377 24	$\alpha(K) = 9.08 \times 10^{-5} \ I5; \ \alpha(L) = 9.35 \times 10^{-6} \ I5;$

ı							<u>-</u>			
	$E_i(level)$	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	δ#	α^{\dagger}	Comments
								_		$\alpha(M)=1.455\times10^{-6} \ 24$ $\alpha(N)=1.248\times10^{-7} \ 20; \ \alpha(IPF)=0.000275 \ 23$ δ : $-0.02 \ 9 \ or -4.6 \ +33-14 \ from \ (n,n'\gamma).B(M1)(W.u.)=0.00302 +33-29 \ if \ M1, \ B(E2)(W.u.)=1.04+11-10 \ if \ E2.$
	3191.67	(3)+	2632.9 5	13.4 34	559.103	2+	(M1+E2)		0.00064 4	$\alpha(K)=5.47\times10^{-5}$ 9; $\alpha(L)=5.61\times10^{-6}$ 9; $\alpha(M)=8.73\times10^{-7}$ 14 $\alpha(N)=7.49\times10^{-8}$ 12; $\alpha(IPF)=0.00058$ 4 δ : $+0.26$ 10 or $+14$ $+50$ –8 from $(n,n'\gamma)$. B(M1)(W.u.)= 9.8×10^{-4} 24 if M1, B(E2)(W.u.)= 0.189 $+48$ –46 if E2.
	3212.98	1+,2+	2653.82 10	100.0 4	559.103	2+	M1+E2		0.00065 4	$\alpha(K)=5.39\times10^{-5}$ 9; $\alpha(L)=5.54\times10^{-6}$ 9; $\alpha(M)=8.61\times10^{-7}$ 14 $\alpha(N)=7.39\times10^{-8}$ 12; $\alpha(IPF)=0.00059$ 4 δ : $+3.2$ $+7$ 4 or -0.10 5 from $(n,n'\gamma)$. B(M1)(W.u.)=0.098 +15-11 if M1, B(E2)(W.u.)=18.6 +28-21 if E2.
			3214.7 20	8.6 4	0.0	0+	[M1,E2]		0.00087 4	$\alpha(K)=3.92\times10^{-5}$ 7; $\alpha(L)=4.02\times10^{-6}$ 7; $\alpha(M)=6.25\times10^{-7}$ 11 $\alpha(N)=5.37\times10^{-8}$ 10; $\alpha(IPF)=0.00083$ 4 B(M1)(W.u.)=0.0047 +7-6 if M1, B(E2)(W.u.)=0.62 +9-7 if E2.
	3219.428	(2+,3+)	790.12 <i>4</i>	38 12	2429.131	3-	[E1]		0.000292 4	$\alpha(K)=0.000260 \ 4; \ \alpha(L)=2.69\times10^{-5} \ 4; \ \alpha(M)=4.19\times10^{-6} \ 6$ $\alpha(N)=3.57\times10^{-7} \ 5$ B(E1)(W.u.)=0.0033 +8-9
			1530.32 43	1.57 27	1688.971	3+	[M1,E2]		0.000252 13	$\alpha(K)$ =0.0001473 29; $\alpha(L)$ =1.523×10 ⁻⁵ 32; $\alpha(M)$ =2.37×10 ⁻⁶ 5 $\alpha(N)$ =2.03×10 ⁻⁷ 4; $\alpha(IPF)$ =8.7×10 ⁻⁵ 10 B(M1)(W.u.)=0.00110 +23–21 if M1, B(E2)(W.u.)=0.63 +13–12 if E2.
			1888.95 <i>36</i>	17.4 10	1330.872	4+	[M1,E2]		0.000346 22	$\alpha(K)=9.86\times10^{-5}\ 16;\ \alpha(L)=1.017\times10^{-5}\ 17;\ \alpha(M)=1.581\times10^{-6}\ 26$ $\alpha(N)=1.356\times10^{-7}\ 22;\ \alpha(IPF)=0.000235\ 21$ B(M1)(W.u.)=0.0065 +8-7 if M1, B(E2)(W.u.)=2.43 +31-27 if E2.
			2660.38 11	100.0 12	559.103	2+	[M1,E2]		0.00065 4	$\alpha(K)=5.37\times10^{-5}$ 9; $\alpha(L)=5.51\times10^{-6}$ 9; $\alpha(M)=8.58\times10^{-7}$ 14 $\alpha(N)=7.36\times10^{-8}$ 12; $\alpha(IPF)=0.00059$ 4 B(M1)(W.u.)=0.0133 +16-13 if M1, B(E2)(W.u.)=2.52 +29-25 if E2.
	3225.7 3230.27 3238.78 3259.81	(6,8 ⁺) 1,2 ⁺	963.3 5 1059.69 8 413.98 8 309.77 12 604.33 10	100 100 100 46.2 21 100 5	2262.42 2170.572 2824.797 2950.171 2655.383	(0 ⁺) 5 ⁻ 1 ⁺	[D,E2]			Mult.: $\gamma(\theta)$ in $(\alpha,2n\gamma)$ consistent with $\Delta J=0$ or 2. B(E2)(W.u.)=32 +25-16 if E2.
	3262.34	6-	402.7 5	27.3 23	2859.781		(E2)		0.00548 8	B(E2)(W.u.)=38 +32-13
- 1										

γ (⁷⁶Se) (continued)

					<u>/(</u>	"Se) (continu		
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
3262.34	6-	437.6 5	100 7	2824.797 5	M1+E2	-0.25 5	0.00247 6	$\alpha(K)=0.00486 \ 7; \ \alpha(L)=0.000531 \ 8;$ $\alpha(M)=8.25\times10^{-5} \ 12$ $\alpha(N)=6.88\times10^{-6} \ 10$ $\alpha(M)=0.00220 \ 5; \ \alpha(L)=0.000232 \ 5;$ $\alpha(M)=3.62\times10^{-5} \ 8$ $\alpha(N)=3.08\times10^{-6} \ 7$
		999.9 5	40.9 23	2262.42 6+	(E1+M2)	-0.23 17	2.2×10 ⁻⁴ 6	δ =-0.25 5 from (α,2nγ). RUL (for E2 and M2) favors M1+E2. B(E1)(W.u.)=7×10 ⁻⁶ +6-3 α(K)=1.9×10 ⁻⁴ 5; α(L)=2.0×10 ⁻⁵ 6; α(M)=3.1×10 ⁻⁶ 9 α(N)=2.7×10 ⁻⁷ 8 B(M2)(W.u.)=1.8 +42-15 exceeds RUL=1.
3262.96 3267.57	(2+,3,4+)	1135.73 8 1578.45 16 1936.54 24 2051.3 5	100 15 8 100.0 22 42 6	2127.224 (2) ⁺ 1688.971 3 ⁺ 1330.872 4 ⁺ 1216.154 2 ⁺				B(NI2)(W.d.)=1.0 142 13 exceeds ROL=1.
3268.70	(1 ⁻ ,2)	2708.8 <i>5</i> 163.35 <i>11</i> 318.74 <i>10</i> 456.75 <i>16</i> 598.78 <i>10</i> 613.35 <i>10</i> 1141.62 <i>14</i>	84.2 22 2.81 21 15.0 7 2.8 4 100 7 11.9 6 3.15 27	559.103 2 ⁺ 3105.48 (3 ⁻) 2950.171 1 ⁺ 2812.130 (3 ⁺) 2669.904 2 ⁻ 2655.383 1 2127.224 (2) ⁺)			
3269.75	8+	1007.2 5	100	2262.42 6+	E2		0.000414 6	B(E2)(W.u.)=82 +21-14 α (K)=0.000368 5; α (L)=3.86×10 ⁻⁵ 5; α (M)=6.00×10 ⁻⁶ 8 α (N)=5.11×10 ⁻⁷ 7
3282.19	1,2+	464.67 <i>20</i> 2160.00 <i>13</i>	50.6 <i>14</i> 100.0 <i>14</i>	2817.24 (2 ⁺) 1122.279 0 ⁺) [D,E2]			B(E2)(W.u.)=4.14 +40-36 if E2.
3295.02	(1+,2+)	1124.33 <i>13</i> 2736.6 <i>4</i>	11.2 8 100.0 <i>19</i>	2170.572 (0 ⁺) 559.103 2 ⁺				E _γ : unweighted average of 2737.07 24 from ⁷⁶ Br ε + β ⁺ decay (16.14 h) and 2736.21 10 from
		3295.6 6	42.6 34	0.0 0+	[M1,E2]		0.00090 4	$(n,n'\gamma)$. I_{γ} : from $(n,n'\gamma)$. Other: 100 6 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h). $\alpha(K)=3.77\times10^{-5}$ 7; $\alpha(L)=3.86\times10^{-6}$ 7; $\alpha(M)=6.00\times10^{-7}$ 11 $\alpha(N)=5.15\times10^{-8}$ 9; $\alpha(IPF)=0.00086$ 4

$\gamma(^{10}\text{Se})$ (continued)												
E_i (level)	J_i^π	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments			
									E _γ : unweighted average of 3296.14 20 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 3295.07 14 from (n,n'γ). I _γ : unweighted average of 45.9 17 from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 39.2 14 from (n,n'γ).			
3296.2	(1+,2+)	1508.4 9	80 41	1787.655	2+				E _{γ} : unweighted average of 1509.23 <i>16</i> from ⁷⁶ Br $\varepsilon+\beta^+$ decay (16.14 h) and 1507.52 <i>14</i> from (n,n' γ). I _{γ} : from ⁷⁶ Br $\varepsilon+\beta^+$ decay.			
		2173.9 8	100 7	1122.279	0+				E _{γ} : unweighted average of 2174.66 30 from ⁷⁶ Br $\varepsilon + \beta^+$ decay (16.14 h) and 2173.06 18 from (n,n' γ). I _{γ} : from ⁷⁶ Br $\varepsilon + \beta^+$ decay.			
3312.04	(6-)	266.1 5	100 8	3045.79	(5 ⁻)	(M1+E2)		0.015 7	$\alpha(K)$ =0.014 7; $\alpha(L)$ =0.0015 8; $\alpha(M)$ =2.3×10 ⁻⁴ 12 $\alpha(N)$ =1.9×10 ⁻⁵ 9 B(M1)(W.u.)=0.0045 +45-22 if M1,			
		487.1 5	85 8	2824.797	5-	(M1+E2)	+0.25 5	0.00191 4	B(E2)(W.u.)=9×10 ¹ +9-4 if E2. B(M1)(W.u.)=6×10 ⁻⁴ +6-3; B(E2)(W.u.)=0.21 +23-11 α (K)=0.001700 34; α (L)=0.000179 4; α (M)=2.79×10 ⁻⁵ α (N)=2.38×10 ⁻⁶ 5			
3331.51 3346.25		2772.35 <i>8</i> 1320.57 <i>18</i> 2015.13 <i>14</i>	100 100.0 <i>35</i> 73.3 <i>35</i>	559.103 2026.020 1330.872	4+				u(1)=2.50×10 5			
3348.48	(1+,2+)	1177.90 <i>11</i>	100	2170.572		[M1,E2]		0.000286 10	$\alpha(K)=0.000251 \ 8; \ \alpha(L)=2.60\times10^{-5} \ 10;$ $\alpha(M)=4.05\times10^{-6} \ 15$ $\alpha(N)=3.47\times10^{-7} \ 12; \ \alpha(IPF)=4.8\times10^{-6} \ 7$ $\alpha(M)=3.47\times10^{-7} \ 12; \ \alpha(IPF)=4.8\times10^{-6} \ 7$			
3351.462	(2)+	191.44 <i>30</i> 401.30 <i>11</i>	0.42 <i>33</i> 0.58 <i>4</i>	3160.115 2950.171		[M1,E2]		0.0042 13	$\alpha(K)$ =0.0037 12; $\alpha(L)$ =4.0×10 ⁻⁴ 13; $\alpha(M)$ =6.3×10 ⁻⁵ 21 $\alpha(N)$ =5.3×10 ⁻⁶ 17 B(M1)(W.u.)=0.0134 +18-15 if M1, B(E2)(W.u.)=112 +15-13 if E2.			
		539.25 <i>14</i> 681.44 <i>10</i>	0.148 <i>13</i> 7.8 <i>4</i>	2812.130 2669.904		[E1]		0.000402 6	$\alpha(K)$ =0.000358 5; $\alpha(L)$ =3.72×10 ⁻⁵ 5; $\alpha(M)$ =5.78×10 ⁻⁶ 8 $\alpha(N)$ =4.93×10 ⁻⁷ 7 B(E1)(W.u.)=6.3×10 ⁻⁴ +8-7			
		695.95 <i>10</i> 747.28 <i>13</i> 836.62 <i>10</i>	9.1 <i>5</i> 1.48 <i>11</i> 6.30 <i>31</i>	2655.383 2604.09 2514.681	$1^+, 2^+$	[M1,E2]		0.00060 5	$\alpha(K)=0.00054 \ 4; \ \alpha(L)=5.6\times10^{-5} \ 5; \ \alpha(M)=8.7\times10^{-6} \ 8$			

						•	y(Se) (conti	nued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
									α (N)=7.5×10 ⁻⁷ 6 B(M1)(W.u.)=0.0161 +20–17 if M1, B(E2)(W.u.)=30.9 +38–32 if E2.
3351.462	(2)+	922.21 <i>11</i>	0.51 8	2429.131	3-	[E1]		0.0002127 30	$\alpha(K)=0.0001898 \ 27; \ \alpha(L)=1.961\times10^{-5} \ 27; \ \alpha(M)=3.05\times10^{-6} \ 4 \ \alpha(N)=2.60\times10^{-7} \ 4 \ B(E1)(W.u.)=1.67\times10^{-5} \ +33-30$
		1180.71 <i>10</i>	2.10 <i>15</i>	2170.572	(0+)	[E2]		0.000294 4	$\alpha(K)=0.000257 \ 4; \ \alpha(L)=2.68\times10^{-5} \ 4; \ \alpha(M)=4.17\times10^{-6} \ 6$ $\alpha(N)=3.55\times10^{-7} \ 5; \ \alpha(IPF)=5.90\times10^{-6} \ 8$ $B(E2)(W.u.)=1.84 \ +25-21$
		1224.19 12	5.06 33	2127.224	(2)+	[M1,E2]		0.000270 9	$\alpha(K)=0.000231 \ 7; \ \alpha(L)=2.40\times10^{-5} \ 8; \ \alpha(M)=3.73\times10^{-6}$ 12 $\alpha(N)=3.19\times10^{-7} \ 10; \ \alpha(IPF)=1.07\times10^{-5} \ 16$
		1559.98 <i>10</i>	8.9 8	1791.437	0+	[E2]		0.000270 4	B(M1)(W.u.)=0.0041 5 if M1, B(E2)(W.u.)=3.70 +48-41 if E2. α (K)=0.0001437 20; α (L)=1.487×10 ⁻⁵ 21;
		1339.98 10	8.9 6	1791.437	U.	[E2]		0.000270 4	$\alpha(M)=2.314\times10^{-6} 32$ $\alpha(N)=1.979\times10^{-7} 28$; $\alpha(IPF)=0.0001091 15$
		1564.10 57	0.439 21	1787.655	2+	[M1,E2]		0.000258 14	B(E2)(W.u.)=1.94 +28-24 α (K)=0.0001411 27; α (L)=1.459×10 ⁻⁵ 29; α (M)=2.27×10 ⁻⁶ 5 α (N)=1.94×10 ⁻⁷ 4; α (IPF)=0.000100 11
		2135.60 8	17.06 <i>13</i>	1216.154	2+	(M1+E2)	-0.042 10	0.000411 6	B(M1)(W.u.)= $1.72 \times 10^{-4} + 2I - 18$ if M1, B(E2)(W.u.)= $0.094 + 12 - 10$ if E2. $\alpha(K)=7.83 \times 10^{-5}$ 11; $\alpha(L)=8.05 \times 10^{-6}$ 11; $\alpha(M)=1.252 \times 10^{-6}$ 18
		2229.91 22	0.390 29	1122.279	0+	[E2]		0.000504 7	$\alpha(M)=1.232\times 10^{-7}$ 15; $\alpha(IPF)=0.000323$ 5 B(M1)(W.u.)=0.00262 +30-24; B(E2)(W.u.)=0.0014 +8-6 $\alpha(K)=7.36\times 10^{-5}$ 10; $\alpha(L)=7.57\times 10^{-6}$ 11;
		2229.91 22	0.390 29	1122.279	U.	[E2]		0.000304 /	$\alpha(M)=1.177\times10^{-6} \ I6$ $\alpha(N)=1.009\times10^{-7} \ I4; \ \alpha(IPF)=0.000422 \ 6$
		2792.61 <i>21</i>	100.0 5	559.103	2+	M1+E2	-0.060 19	0.000670 9	B(E2)(W.u.)=0.0142 +20-17 α (K)=4.90×10 ⁻⁵ 7; α (L)=5.03×10 ⁻⁶ 7; α (M)=7.82×10 ⁻⁷ α (M)=7.82×10 ⁻⁸ 0. (IDE) 0.000(15.0)
									$\alpha(N)=6.72\times10^{-8}$ 9; $\alpha(IPF)=0.000615$ 9 B(M1)(W.u.)=0.0069 +8-6; B(E2)(W.u.)=0.0043 +32-23 Mult.: from $\alpha(K)$ exp in ⁷⁶ Br ε .
		3351.94 22	3.09 12	0.0	0+	[E2]		0.000967 14	$\alpha(K)=3.71\times10^{-5} 5$; $\alpha(L)=3.80\times10^{-6} 5$; $\alpha(M)=5.91\times10^{-7} 8$

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$\delta^{\#}$	$lpha^\dagger$	Comments
3376.37	1 ⁽⁺⁾ ,2 ⁺	3376.29 12	100	0.0	0+				α(N)=5.07×10 ⁻⁸ 7; α(IPF)=0.000926 13 B(E2)(W.u.)=0.0147 +18-15
3377.0	$(1^+,2^+,3^+)$	2160.80 <i>41</i>	100	1216.154	2+				
3403.82	(2+,3+,4+)	592.02 14	79.9 <i>34</i>	2812.130	(3+)	[M1]			B(M1)(W.u.)=1.45 +18-15 If E2, B(E2)(W.u.)=5.5×10 ³ +7-6 exceeds RUL=300; if E1, B(E1)(W.u.)=0.0248 28 exceeds RUL=0.01;
		2072.68 12	100.0 34	1330.872	4+	[M1,E2]		0.000413 26	$\alpha(K)=8.32\times10^{-5} \ 13; \ \alpha(L)=8.57\times10^{-6} \ 14;$ $\alpha(M)=1.333\times10^{-6} \ 22$ $\alpha(N)=1.143\times10^{-7} \ 18; \ \alpha(IPF)=0.000320 \ 25$
									B(M1)(W.u.)=0.042 +5-4 if M1,
3405.9	(1)	3405.8 7	100	0.0	0+	(D)			B(E2)(W.u.)=13.2 +17-13 if E2. If M1, B(M1)(W.u.)=0.0027 5. If E1,
3407.91	(4 ⁺)	548.12 <i>4</i>	100.0 24	2859.781	4-	[E1]		0.000664 9	B(E1)(W.u.)=4.7E-5 8. α (K)=0.000592 8; α (L)=6.16×10 ⁻⁵ 9;
3407.91	(4*)	348.12 4	100.0 24	2839.781	4	[EI]		0.000004 9	$\alpha(M) = 9.57 \times 10^{-6} \ 13$
									α (N)=8.15×10 ⁻⁷ 11 B(E1)(W.u.)=0.0035 +20–16
		1718.93 <i>10</i>	25.9 24	1688.971	3+	[M1,E2]		0.000294 18	$\alpha(K)=0.0001177 \ 20; \ \alpha(L)=1.215\times10^{-5} \ 22;$
									$\alpha(M)=1.890\times10^{-6} 34$ $\alpha(N)=1.620\times10^{-7} 28; \ \alpha(IPF)=0.000162 \ 16$
									$\alpha(N)=1.620\times10^{-7} 28$; $\alpha(1PF)=0.000162 16$ B(M1)(W.u.)=0.0017 +10-8 if M1,
3432.31	7+	942.8 5	100 8	2489.35	5+	E2		0.000484 7	B(E2)(W.u.)=0.78 +46-35 if E2. B(E2)(W.u.)=40 13
3432.31	,	942.8 3	100 8	2409.33	3	L2		0.000484 /	$\alpha(K)$ =0.000431 6; $\alpha(L)$ =4.52×10 ⁻⁵ 6; $\alpha(M)$ =7.03×10 ⁻⁶ 10
		1160 6 5	24.2	2262.42	~ ±	M1(. E2)	0.00.15	0.000200.4	$\alpha(N)=5.99\times10^{-7} 8$
		1169.6 5	24 2	2262.42	6'	M1(+E2)	+0.08 15	0.000280 4	B(M1)(W.u.)=0.0033 +18-15; B(E2)(W.u.)<0.25 α (K)=0.0002466 35; α (L)=2.55×10 ⁻⁵ 4; α (M)=3.97×10 ⁻⁶ 6
									$\alpha(N)=3.41\times10^{-7}$ 5; $\alpha(IPF)=3.46\times10^{-6}$ 8
3436.09	1 ⁽⁺⁾ ,2 ⁺	2876.40 28	100.0 14	559.103	2+	(M1+E2)	+0.64 +28-20	0.000724 16	$\alpha(K)=4.69\times10^{-5}$ 7; $\alpha(L)=4.81\times10^{-6}$ 7; $\alpha(M)=7.48\times10^{-7}$ 11
									α (N)=6.42×10 ⁻⁸ 9; α (IPF)=0.000672 16 B(M1)(W.u.)=0.0081 +16-20; B(E2)(W.u.)=0.54 +31-25
		3436.28 20	28.0 14	0.0	0+	[M1,E2]		0.00096 4	$\alpha(K)=3.52\times10^{-5}$ 7; $\alpha(L)=3.61\times10^{-6}$ 7; $\alpha(M)=5.61\times10^{-7}$ 10

						$\gamma(')$	^o Se) (continued)	
$E_i(level)$	J_i^π	$\mathrm{E}_{\gamma}^{\sharp}$	${\rm I}_{\gamma}^{\ddagger}$	E_f	\mathbf{J}^π_f	Mult.#	$lpha^\dagger$	Comments
								α (N)=4.82×10 ⁻⁸ 9; α (IPF)=0.00092 4 B(M1)(W.u.)=0.00188 +18–16 if M1, B(E2)(W.u.)=0.214 +20–18 if E2.
3441.27 3441.54	(3 ⁻) 7 ⁻	2882.11 22 179.2 5	100 8.1 <i>9</i>	559.103 3262.34		[M1]	0.02147 <i>34</i>	B(M1)(W.u.)=0.070 +20-14 α (K)=0.01907 30; α (L)=0.002056 33; α (M)=0.000321 5 α (N)=2.72×10 ⁻⁵ 4
		465.3 5	6.3	2975.98	6+	[E1]	0.000994 14	δ (E2/M1)<0.7 for RUL<300 for E2. B(E1)(W.u.)=5.3×10 ⁻⁵ + <i>18</i> - <i>13</i> α(K)=0.000886 <i>13</i> ; α(L)=9.22×10 ⁻⁵ <i>13</i> ; α(M)=1.433×10 ⁻⁵ 20
		616.8 5	100 7	2824.797	5-	E2	1.48×10 ⁻³ 2	$\alpha(N)=1.218\times10^{-6}$ 17 B(E2)(W.u.)=74 +18-13 $\alpha(K)=0.001314$ 19; $\alpha(L)=0.0001401$ 20; $\alpha(M)=2.178\times10^{-5}$ 31
		1179.1 5	9.0	2262.42	6 ⁺	[E1]	0.0001684 24	$\alpha(N)=1.840\times10^{-6}\ 26$ B(E1)(W.u.)= $4.7\times10^{-6}\ +15-11$ $\alpha(K)=0.0001193\ 17;\ \alpha(L)=1.228\times10^{-5}\ 17;$ $\alpha(M)=1.909\times10^{-6}\ 27$ $\alpha(N)=1.634\times10^{-7}\ 23;\ \alpha(IPF)=3.48\times10^{-5}\ 6$
3459.13	(2+)	191.68 <i>15</i> 267.47 <i>36</i> 353.68 <i>17</i> 389.50 <i>18</i> 647.05 <i>33</i> 789.09 <i>10</i> 803.59 <i>10</i> 1029.89 <i>15</i> 1671.78 <i>16</i> 1769.93 <i>41</i> 2900.53 <i>20</i>	0.88 18 0.26 5 1.17 9 1.77 23 0.63 13 74 5 87 4 100 11 14.2 6 6.3 6 63.4 26	3267.57 3191.67 3105.48 3069.62 2812.130 2669.904 2655.383 2429.131 1787.655 1688.971 559.103	2 ⁻ 1 3 ⁻ 2 ⁺ 3 ⁺			$\alpha(N)=1.034\times10^{-7} 23; \ \alpha(PF)=3.48\times10^{-9} 6$
3466.39	(1,2,3)	796.15 <i>19</i> 2250.64 <i>23</i> 2907.28 <i>24</i>	7.8 14 2.8 5 100 19	2669.904 1216.154 559.103	2 ⁻ 2 ⁺			
3528.69	1+	3528.6 3	100	0.0	0+	[M1]	0.000951 13	B(M1)(W.u.)=0.0100 +11-9 α (K)=3.33×10 ⁻⁵ 5; α (L)=3.41×10 ⁻⁶ 5; α (M)=5.31×10 ⁻⁷ 7 α (N)=4.56×10 ⁻⁸ 6; α (IPF)=0.000913 13 E _{γ} : from (γ, γ') .
3552.89	(1,2)	897.57 <i>11</i> 2337.37 <i>26</i>	31.5 <i>17</i> 35.0 <i>19</i>	2655.383 1216.154				Eγ. Holli (γ,γ).

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}^{π}_f	Mult.#	α^{\dagger}	Comments
3552.89	(1,2)	2431.38 24	38.2 20	1122.279	0+			
	() /	2994.27 20	100 6	559.103				
		3553.53 96	7.1 18	0.0	0_{+}			
3556.210	(2^{-})	287.32 25	1.32 13	3268.70	$(1^-,2)$			
		288.68 20	0.085 26	3267.57	$(2^+,3,4^+)$			
		336.61 <i>12</i>	2.1 5	3219.428	$(2^+,3^+)$			
		450.83 <i>13</i>	1.78 14	3105.48	(3^{-})			
		486.44 10	10.5 7	3069.62	2+			
		581.20 <i>11</i>	1.18 <i>16</i>	2975.00	$(2^+,3,4^+)$			
		605.97 14	2.3 4	2950.171				
		686.81 12	1.69 12	2869.34	$(1^+,2^+)$			
		696.39 10	5.4 33	2859.781				
		738.88 13	0.57 5	2817.24				
		744.40 45	0.44 4	2812.130				
		886.14 <i>12</i> 900.71 <i>10</i>	32.4 <i>21</i> 10.9 <i>5</i>	2669.904 2655.383				
		1127.15 23	15.4 22	2429.131				
		1428.91 10	27.5 18	2127.224				
		1768.52 10	24.5 10	1787.655				
		1867.35 10	13.8 13	1688.971				
		2339.53 21	6.54 26	1216.154				
		2997.40 8	100 4	559.103				
3566.6	1(+)	3566.5 10	100	0.0	0^{+}	(M1)	0.000964 14	$\alpha(K)=3.28\times10^{-5}$ 5; $\alpha(L)=3.36\times10^{-6}$ 5; $\alpha(M)=5.22\times10^{-7}$ 7
						(=:==)		$\alpha(N)=4.48\times10^{-8}$ 6; $\alpha(IPF)=0.000928$ 13
								B(M1)(W.u.)=0.0031 +6-4
3604.192	1+	734.78 <i>14</i>	0.238 19	2869.34	$(1^+,2^+)$			()(()
		934.26 12	4.9 <i>4</i>	2669.904		[E1]	0.0002073 29	$\alpha(K)=0.0001850\ 26;\ \alpha(L)=1.911\times10^{-5}\ 27;\ \alpha(M)=2.97\times10^{-6}\ 4$
						. ,		$\alpha(N)=2.54\times10^{-7} 4$
								$B(E1)(W.u.)=3.14\times10^{-4}+43-36$
		948.70 <i>13</i>	2.91 14	2655.383	1			2(21)((((a)) 2)1.(((12))
		999.96 10	2.46 18	2604.09				
		1089.42 10	5.17 27	2514.681		[M1,E2]	0.000332 14	$\alpha(K)=0.000296\ 12;\ \alpha(L)=3.08\times10^{-5}\ 14;\ \alpha(M)=4.79\times10^{-6}\ 21$
						. , ,		$\alpha(N)=4.10\times10^{-7}$ 17
								B(M1)(W.u.)=0.0122 +14-12 if M1, B(E2)(W.u.)=13.8 +16-14 if
								E2.
		1433.53 10	2.37 16	2170.572	(0^+)	[M1]	0.0002337 33	$\alpha(K)=0.0001648\ 23;\ \alpha(L)=1.702\times10^{-5}\ 24;\ \alpha(M)=2.65\times10^{-6}\ 4$
					,			$\alpha(N)=2.272\times10^{-7}$ 32; $\alpha(IPF)=4.90\times10^{-5}$ 7
								B(M1)(W.u.)=0.00245 +31-27
		1476.91 <i>10</i>	0.70 11	2127.224	$(2)^{+}$	[M1,E2]	0.000246 11	$\alpha(K)=0.0001579 \ 32; \ \alpha(L)=1.63\times10^{-5} \ 4; \ \alpha(M)=2.54\times10^{-6} \ 6$
			0 11		(-)	[,]		, , , , , , , , , , , , , , , , , , , ,
l								

						<i>y</i> (Sc)	(continued)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
								$\alpha(N)=2.18\times10^{-7}$ 5; $\alpha(IPF)=6.9\times10^{-5}$ 8 B(M1)(W.u.)=6.6×10 ⁻⁴ +13-12 if M1, B(E2)(W.u.)=0.41 +8-7 if E2.
3604.192	1+	1812.92 <i>12</i>	1.9 5	1791.437	0+	[M1]	0.000301 4	B(M1)(W.u.)= $9.7 \times 10^{-4} + 28 - 26$ α (K)= $0.0001055 \ I5; \ \alpha$ (L)= $1.087 \times 10^{-5} \ I5; \ \alpha$ (M)= 1.691×10^{-6} 24 α (N)= $1.451 \times 10^{-7} \ 20; \ \alpha$ (IPF)= $0.0001825 \ 26$
		1816.71 <i>12</i>	2.06 10	1787.655	2+	[M1,E2]	0.000322 21	$\alpha(K)=1.451 \times 10^{-12}$ $\alpha(E)=0.0001825 \times 20^{-12}$ $\alpha(K)=0.0001061 \times 18$; $\alpha(L)=1.094 \times 10^{-5} \times 19$; $\alpha(M)=1.701 \times 10^{-6}$ $\alpha(K)=1.458 \times 10^{-7} \times 24$; $\alpha(E)=0.000203 \times 19$ $\alpha(M)=0.00105 \times 12-11 \times 10^{-12}$ if M1, B(E2)(W.u.)=0.426
		2482.60 20	6.42 27	1122.279	0+	[M1]	0.000545 8	+49-42 if E2. B(M1)(W.u.)=0.00128 +15-12 α (K)=6.00×10 ⁻⁵ 8; α (L)=6.16×10 ⁻⁶ 9; α (M)=9.58×10 ⁻⁷ 13 α (N)=8.23×10 ⁻⁸ 12; α (IPF)=0.000478 7
		3045.51 20	2.15 24	559.103	2+	[M1,E2]	0.00081 4	$\alpha(K)=4.28\times10^{-5}$ 7; $\alpha(L)=4.39\times10^{-6}$ 8; $\alpha(M)=6.83\times10^{-7}$ 12 $\alpha(N)=5.86\times10^{-8}$ 10; $\alpha(IPF)=0.00076$ 4 B(M1)(W.u.)= 2.32×10^{-4} +37–32 if M1, B(E2)(W.u.)= 0.034 5
		3604.01 8	100 3	0.0	0+	(M1)	0.000978 14	if E2. B(M1)(W.u.)=0.0065 +7-6 α (K)=3.22×10 ⁻⁵ 5; α (L)=3.30×10 ⁻⁶ 5; α (M)=5.13×10 ⁻⁷ 7 α (N)=4.41×10 ⁻⁸ 6; α (IPF)=0.000941 13 E $_{\gamma}$: weighted average of 3603.99 8 from ⁷⁶ Br ε + β ⁺ decay (16.14 h) and 3604.3 3 from (γ , γ '). I $_{\gamma}$: from ⁷⁶ Br ε + β ⁺ decay (16.14 h).
3636.88	(2+)	531.36 <i>37</i> 767.61 <i>14</i> 966.78 <i>11</i> 981.24 <i>20</i> 1122.12 <i>43</i> 1466.13 <i>35</i> 1509.44 <i>11</i> 1845.58 <i>16</i> 1848.72 <i>72</i> 2421.08 <i>20</i> 2515.16 <i>59</i>	1.64 <i>18</i> 1.64 <i>18</i> 9.7 <i>7</i> 26.9 28 7.8 26 2.4 5 28.7 2 <i>1</i> 90 8 23.6 <i>13</i> 17.7 9 100 4 10.0 5	3105.48 2869.34 2669.904 2655.383 2514.681 2170.572 2127.224 1791.437 1787.655 1216.154 1122.279 559.103	2- 1 2+ (0+) (2)+ 0+ 2+ 2+ 0+			γ . Holli Bi $\varepsilon+p$ decay (10.14 ll).
3651.88	(1+,2+,3+)	3078.56 21 701.66 12 1963.00 34 2436.05 27	10.0 3 10.8 19 6.5 7 8.2 7	2950.171 1688.971 1216.154	1 ⁺ 3 ⁺			

γ (76Se) (continued)

$E_i(level)$	J_i^{π}	Ε _γ ‡	Ι _γ ‡	\mathbf{E}_f	$\frac{\mathbf{J}_f^{\pi}}{\mathbf{J}_f}$	Mult.#	δ#	$lpha^\dagger$	Comments
3651.88 3657.7?	$(1^+, 2^+, 3^+)$ (1,2)	3092.95 20 3098.3 ^b 5 3657.8 5	100 <i>6</i> 100	559.103 559.103 0.0					
3670.2	1 ⁽⁺⁾	3670.1 <i>4</i>	100	0.0	0+	(M1)		$1.00 \times 10^{-3} I$	$\alpha(K)=3.13\times10^{-5} 4$; $\alpha(L)=3.20\times10^{-6} 4$; $\alpha(M)=4.98\times10^{-7} 7$ $\alpha(N)=4.28\times10^{-8} 6$; $\alpha(IPF)=0.000965 14$
3696.27	(7 ⁻)	254.5 5	100 8	3441.54	7-	(M1+E2)	+0.045 5	0.00882 13	B(M1)(W.u.)=0.0061 +8-6 E _{γ} : from (γ , γ') only. B(M1)(W.u.)=0.019 +7-4; B(E2)(W.u.)=0.79 +36-23 α (K)=0.00784 12; α (L)=0.000838 12; α (M)=0.0001305 19
		384.2 5	42	3312.04	(6-)	(M1+E2)	≈-0.9	≈0.00464	$\alpha(N)=1.110\times10^{-5}\ 17$ Mult.: $\gamma(\theta)$ in $(\alpha,2n\gamma)$ consistent with $\Delta J=0$. B(M1)(W.u.)=0.0013 +8-5; B(E2)(W.u.)=9 6 $\alpha(K)\approx0.00412$; $\alpha(L)\approx0.000445$;
		434.1 5	28	3262.34	6-	[M1+E2]		0.0034 9	$\alpha(M) \approx 6.92 \times 10^{-5}$ $\alpha(N) \approx 5.82 \times 10^{-6}$ $\alpha(K) = 0.0030 \ 8; \ \alpha(L) = 3.2 \times 10^{-4} \ 9;$ $\alpha(M) = 5.0 \times 10^{-5} \ 15$ $\alpha(N) = 4.2 \times 10^{-6} \ 12$
		650.8 5	83	3045.79	(5-)	[E2]		1.27×10 ⁻³ 2	B(M1)(W.u.)=0.00106 +43-28 if M1, B(E2)(W.u.)=7.6 +31-20 if E2. B(E2)(W.u.)=3.0 +11-7 α (K)=0.001129 16; α (L)=0.0001201 17; α (M)=1.868×10 ⁻⁵ 26 α (N)=1.579×10 ⁻⁶ 22
3716.52	(2)	1060.87 <i>10</i> 1929.05 <i>11</i> 2028.04 <i>54</i>	24.2 <i>12</i> 14.9 <i>8</i> 7.6 <i>8</i>	2655.383 1787.655 1688.971	2 ⁺ 3 ⁺				
3752.1	1(+)	3157.64 <i>20</i> 3752.0 <i>14</i>	100 4	559.103	2 ⁺ 0 ⁺	D(+Q) (M1)	+0.004 +34-35	1.03×10 ⁻³ I	Mult.: $\gamma(\theta)$ in ⁷⁶ Br ε decay consistent with $\Delta J=0$ or 2. B(M1)(W.u.)=0.0024 +9-5 $\alpha(K)=3.02\times10^{-5}$ 4; $\alpha(L)=3.09\times10^{-6}$ 4; $\alpha(M)=4.81\times10^{-7}$ 7 $\alpha(N)=4.13\times10^{-8}$ 6; $\alpha(IPF)=0.000995$ 14
3758.79	1	2542.6 8 2636.1 6	19 5 42 6	1216.154 1122.279		D			IF M1, B(M1)(W.u.)=0.040 8. IF E1, B(E1)(W.u.)=0.00069 13.

40

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	δ#	α^{\dagger}	Comments
3758.79	1	3199.8 <i>3</i> 3758.6 <i>3</i>	47 <i>5</i> 100 <i>9</i>	559.103 0.0	2 ⁺ 0 ⁺	D			IF M1, B(M1)(W.u.)=0.033 5. IF E1, B(E1)(W.u.)=0.00057 9.
3785.7	(8+)	515.7 5	89	3269.75	8+	[M1+E2]		0.0021 4	$\alpha(K)$ =0.0018 4; $\alpha(L)$ =0.00020 4; $\alpha(M)$ =3.0×10 ⁻⁵ 7 $\alpha(N)$ =2.6×10 ⁻⁶ 6 B(M1)(W.u.)=0.084 +46-31 if M1. B(E2)(W.u.)=4.2×10 ² +23-16 exceeds RUL=300 if E2.
		1523.5 5	100	2262.42	6+	[E2]		0.000263 4	B(E2)(W.u.)=2.1 +11-8 α(K)=0.0001506 21; α(L)=1.560×10 ⁻⁵ 22; α(M)=2.427×10 ⁻⁶ 34 α(N)=2.076×10 ⁻⁷ 29; α(IPF)=9.44×10 ⁻⁵ 13 Mult.: $\gamma(\theta)$ in (α,2n γ) consistent with ΔJ=0,2.
3853.75	(8)+	583.9 5	58 4	3269.75	8+	M1+E2	-0.45 25	0.00131 8	B(M1)(W.u.)=0.147 49; B(E2)(W.u.)=1.2×10 ² +12-9 α (K)=0.00116 7; α (L)=0.000122 8; α (M)=1.90×10 ⁻⁵ 13 α (N)=1.62×10 ⁻⁶ 11
		878.3 1591.1 <i>5</i>	100	2975.98 2262.42	6 ⁺	[E2]		0.000277 4	E _y : γ from (12 C, α 2n γ) only. B(E2)(W.u.)=8.0 22 α (K)=0.0001382 19; α (L)=1.430×10 ⁻⁵ 20; α (M)=2.224×10 ⁻⁶ 31 α (N)=1.903×10 ⁻⁷ 27; α (IPF)=0.0001222 17
3857.8	1+	3857.7 11	100	0.0	0+	(M1)		1.07×10 ⁻³ 2	B(M1)(W.u.)=0.0022 +6-4 α (K)=2.89×10 ⁻⁵ 4; α (L)=2.96×10 ⁻⁶ 4; α (M)=4.60×10 ⁻⁷ 6 α (N)=3.95×10 ⁻⁸ 6; α (IPF)=0.001034 14
3880.46 3915.48	(2-)	1225.07 18 647.79 20 695.70 33 809.89 12 845.76 17 965.33 15 1055.90 13 1103.25 10 1245.49 32 1400.74 18 1787.99 32 2226.68 20	100 4.9 18 36 9 3.04 29 27.5 27 8.6 11 1.9 13 30 6 8.8 8 8.7 8 58 5 61 6	2655.383 3267.57 3219.428 3105.48 3069.62 2950.171 2859.781 2812.130 2669.904 2514.681 2127.224 1688.971	(2+,3,4+) (2+,3+) (3-) 2+ 1+ 4- (3+) 2- 2+ (2)+				

γ (⁷⁶Se) (continued)

$E_i(level)$	\mathbf{J}_i^π	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
3915.48	(2-)	2699.08 20	28.6 26	1216.154	2+			
		3356.87 20	100 5	559.103	2+			
3922.5	1	3922.4 <i>4</i>	100	0.0	0_{+}	D		If M1, B(M1)(W.u.)=0.0087 9. If E1, B(E1)(W.u.)=0.000149 15.
3930.02	$(1,2^+)$	1060.51 25	3.94 <i>32</i>	2869.34	$(1^+,2^+)$			
		1259.87 <i>19</i>	17.8 <i>13</i>	2669.904	2-			
		1759.34 <i>13</i>	1.23 13	2170.572				
		1802.65 <i>11</i>	26.1 <i>18</i>	2127.224	$(2)^{+}$			
		2142.50 <i>21</i>	10.5 7	1787.655				
		2714.09 20	37.8 25	1216.154	2+			
		2808.17 22	46.2 19	1122.279				
		3371.00 <i>20</i>	100 7	559.103				
		3929.96 <i>40</i>	65 4	0.0	0_{+}			
3970.407	(2^{+})	701.64 <i>10</i>	15.3 <i>14</i>	3268.70	$(1^{-},2)$			
		750.94 20	0.97 24	3219.428				
		778.84 12	7.0 13	3191.67	$(3)^{+}$			
		810.32 <i>18</i>	6.4 5	3160.115				
		864.93 11	2.92 22	3105.48	(3^{-})			
		900.82 <i>14</i>	27.7 18	3069.62	2+			
		995.41 <i>13</i>	11.9 <i>15</i>	2975.00	$(2^+,3,4^+)$			
		1020.32 11	7.1 4	2950.171				
		1101.07 <i>11</i>	21.6 15	2869.34	$(1^+,2^+)$			
		1153.14 10	21.8 18	2817.24	(2^{+})			
		1158.27 10	9.4 7	2812.130				
		1300.48 12	43.8 29	2669.904				
		1314.70 11	22.4 27	2655.383				
		1455.63 10	30.5 16	2514.681				
		1541.25 11	8.0 13	2429.131				
		2183.01 20	55.8 <i>24</i> 5.8 <i>6</i>	1787.655				
		2754.54 20		1216.154				
4005 1		3411.55 20	100 4	559.103				
4005.1 4008.7	(8-)	309.3 <i>5</i> 746.3 <i>5</i>	100 100	3696.27 3262.34	(7 ⁻) 6 ⁻	E2	0.000874 12	B(E2)(W.u.)=58 +27-14
4008.7	(0)	740.3 3	100	3202.34	0	E2	0.000874 12	$\alpha(K)=0.000778 \ 11; \ \alpha(L)=8.23\times10^{-5} \ 12; \ \alpha(M)=1.280\times10^{-5} \ 18$
4045.61	1+	1440.7 12	13.0 19	2604.09	1+,2+			$\alpha(N)=1.085\times10^{-6} \ 15$
		1918.41 <i>45</i>	56 <i>5</i>	2127.224		[M1,E2]	0.000356 23	$\alpha(K)=9.59\times10^{-5}$ 16; $\alpha(L)=9.88\times10^{-6}$ 16; $\alpha(M)=1.537\times10^{-6}$ 26
		22101 75	202	212,1221	(-)	[,22]	2.000220 22	$\alpha(N)=1.317\times10^{-7} \ 2I; \ \alpha(IPF)=0.000249 \ 22$ B(M1)(W.u.)=0.0151 +22-19 if M1, B(E2)(W.u.)=5.5 +8-7 if E2.
		2258.06 <i>23</i>	100 5	1787.655	2+	[M1,E2]	0.000487 30	$\alpha(K)=7.14\times10^{-5}$ 11; $\alpha(L)=7.34\times10^{-6}$ 12; $\alpha(M)=1.142\times10^{-6}$ 18 $\alpha(N)=9.80\times10^{-8}$ 15; $\alpha(IPF)=0.000407$ 30

						$\gamma(-s)$	e) (continued)	
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	E_f	\mathbf{J}^π_f	Mult.#	$lpha^\dagger$	Comments
								E _γ ,I _γ : from ⁷⁶ Br ε+β ⁺ decay (16.14 h). B(M1)(W.u.)=0.0165 +2 <i>1</i> - <i>1</i> 7 if M1, B(E2)(W.u.)=4.3 +6-5 if E2.
4045.61	1+	2356.89 21	38 5	1688.971	3 ⁺	[E2]	0.000558 8	$\alpha(K)=6.67\times10^{-5} 9$; $\alpha(L)=6.86\times10^{-6} 10$; $\alpha(M)=1.067\times10^{-6}$
								15 $\alpha(N)=9.15\times10^{-8}$ 13; $\alpha(IPF)=0.000484$ 7 B(E2)(W.u.)=1.33 +23-20
		2830.11 <i>23</i>	66 4	1216.154	2+	[M1,E2]	0.00072 4	$\alpha(K)$ =4.84×10 ⁻⁵ 8; $\alpha(L)$ =4.96×10 ⁻⁶ 8; $\alpha(M)$ =7.72×10 ⁻⁷
								$\alpha(N)=6.63\times10^{-8} \ 11; \ \alpha(IPF)=0.00067 \ 4$
								B(M1)(W.u.)=0.0055 +8-6 if M1, B(E2)(W.u.)=0.93 +13-10 if E2.
		4046.2 3	100	0.0	0_{+}	(M1)	$1.13 \times 10^{-3} 2$	B(M1)(W.u.)=0.0029 5 α (K)=2.69×10 ⁻⁵ 4; α (L)=2.75×10 ⁻⁶ 4; α (M)=4.27×10 ⁻⁷ 6
								$\alpha(N)=3.67\times10^{-8} 5$; $\alpha(IPF)=0.001100 15$
4055.22	1+	4055.1 3	100	0.0	0^{+}	M1	$1.13 \times 10^{-3} 2$	$B(M1)(W.u.)=1.13\times10^{-5} +11-9$
								$\alpha(K)=2.68\times10^{-5} 4$; $\alpha(L)=2.74\times10^{-6} 4$; $\alpha(M)=4.26\times10^{-7} 6$ $\alpha(N)=3.66\times10^{-8} 5$; $\alpha(IPF)=0.001102 15$
4083.68	$(1^-,2)$	816.29 <i>13</i>	1.55 24	3267.57	$(2^+,3,4^+)$			u(11)=3.50×10 3, u(11)=5.501102 13
		864.16 <i>70</i>	3.5 8	3219.428				
		979.0 <i>17</i>	0.66 10	3105.48				
		1133.70 <i>61</i>	7.7 4	2950.171				
		1271.45 12	5.8 5	2812.130				
		1413.70 <i>14</i>	2.66 24	2669.904				
		1428.61 57	5.7 34	2655.383				
		1568.63 14	8.6 <i>12</i> 41 <i>5</i>	2514.681				
		1654.57 <i>21</i> 2296.07 <i>26</i>	6.00 17	2429.131 1787.655				
		3524.99 20	100 4	559.103				
4086.58	$(1,2,3^+)$	1136.10 <i>71</i>	14.7 31	2950.171				
+000.30	(1,2,3)	1416.48 49	12.5 22	2669.904				
		1431.9 22	17.6	2655.383				
		2298.95 22	100 6	1787.655				
4125.5	1+	4125.4 10	100	0.0	0+	M1	$1.15 \times 10^{-3} 2$	B(M1)(W.u.)=0.0026 +7-4
		- /		~~~				$\alpha(K)=2.61\times10^{-5}$ 4; $\alpha(L)=2.66\times10^{-6}$ 4; $\alpha(M)=4.14\times10^{-7}$ 6 $\alpha(N)=3.56\times10^{-8}$ 5; $\alpha(IPF)=0.001124$ 16
4151.36	(2)	1481.34 <i>11</i>	78 <i>7</i>	2669.904	2-			
		1495.89 <i>13</i>	78 <i>4</i>	2655.383	1			
		1636.56 <i>10</i>	67.8 <i>35</i>	2514.681				
		1722.24 <i>12</i>	100 <i>15</i>	2429.131	3-			

							,	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
4151.36	(2)	2364.10 23	46.9 29	1787.655				
		2462.82 20	90 9	1688.971				
4174.33	(1,2)	1504.32 <i>10</i>	63 5	2669.904				
		1518.79 <i>10</i>	55.8 27	2655.383				
		1659.66 <i>30</i>	13.2 6	2514.681				
		2003.79 20	6.9 5	2170.572				
		2047.10 21	62 5	2127.224				
		2383.45 <i>20</i> 2386.77 <i>33</i>	53 8 100 <i>12</i>	1791.437 1787.655				
		3052.38 26	18.1 26	1122.279				
		3615.08 22	6.0 8	559.103				
		4174.22 40	20.0 16	0.0	0^{+}			
4199.19	$(1^{-},2)$	482.72 29	6.6 5	3716.52	(2)			
	(- ,-)	980.1 <i>13</i>	10.7 26	3219.428				
		1093.62 <i>10</i>	21.3 17	3105.48				
		1249.15 25	12.6 12	2950.171	1+			
		1329.77 30	5.0 4	2869.34				
		1543.69 <i>15</i>	12.9 8	2655.383				
		1684.40 <i>12</i>	10.1 6	2514.681				
		1770.02 10	56 8	2429.131				
		2072.05 22	71 5	2127.224				
		2411.79 <i>20</i> 2983.39 <i>20</i>	47.0 <i>23</i> 38.5 <i>21</i>	1787.655 1216.154				
		3639.99 20	100 5	559.103				
4205.44	$(1^-,2)$	937.73 13	8.6 13	3267.57				
.200	(1 ,=)	985.62 10	79 19	3219.428				
		1255.15 44	44 6	2950.171				
		1335.66 <i>34</i>	1.43 22	2869.34				
		1388.08 <i>11</i>	9.9 11	2817.24				
		1393.21 <i>10</i>	43 4	2812.130				
		1549.99 <i>14</i>	31.7 18	2655.383				
		1776.22 11	100 13	2429.131				
		2989.94 69	14.1 22	1216.154				
4214.0	(0=)	3646.17 <i>21</i>	50.1 24	559.103		DM1 - E21	0.0020.4	-(K) 0.0018 4(I) 0.00010 4(M) 2.0×10=5.7
4214.0	(8-)	518.0 5	37	3696.27	(7^{-})	[M1+E2]	0.0020 4	$\alpha(K)$ =0.0018 4; $\alpha(L)$ =0.00019 4; $\alpha(M)$ =3.0×10 ⁻⁵ 7 $\alpha(N)$ =2.5×10 ⁻⁶ 6
								$B(M1)(W.u.)=0.025 +22-12 \text{ if } M1, B(E2)(W.u.)=1.3\times10^2 +11-6 \text{ if } E2.$
		901.7 5	100 5	3312.04	(6-)	E2	0.000539 8	E2. B(E2)(W.u.)=21 +19-10
		701.7 3	100 5	JJ14.UT	(0)	LL L	0.000339 0	$\alpha(K)=0.000480 \ 7; \ \alpha(L)=5.05\times10^{-5} \ 7; \ \alpha(M)=7.85\times10^{-6} \ 11$
								$\alpha(N)=6.68\times10^{-7}$ 9
								w(11) 0100/110 /

						, ,		
E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
4218.81	1+	3659.6 1	100 8	559.103	2+	(M1)	0.000997 14	B(M1)(W.u.)=0.077 +11-9 α (K)=3.15×10 ⁻⁵ 4; α (L)=3.22×10 ⁻⁶ 5; α (M)=5.01×10 ⁻⁷ 7 α (N)=4.30×10 ⁻⁸ 6; α (IPF)=0.000962 13
		4218.8 <i>3</i>	95 8	0.0	0+	M1	1.18×10 ⁻³ 2	B(M1)(W.u.)=0.048 +7-6 α (K)=2.517×10 ⁻⁵ 35; α (L)=2.57×10 ⁻⁶ 4; α (M)=4.00×10 ⁻⁷
								$\alpha(N)=3.44\times10^{-8}$ 5; $\alpha(IPF)=0.001153$ 16
4249.20	(1,2)	2121.95 <i>38</i>	100 12	2127.224	$(2)^{+}$			
		4249.06 <i>41</i>	7.1 14	0.0	0_{+}			
4257.59	(1,2)	2087.00 28	14.7 <i>13</i>	2170.572	(0^+)			
		2470.0 11	91 7	1787.655	2+			
		3042.4 15	100 9	1216.154	2+			
		3698.41 26	47 5	559.103	2+			
		4257.79 <i>43</i>	14.7 <i>13</i>	0.0	0^{+}			
4298.87	$(1,2,3^+)$	1107.17 <i>11</i>	11.2 17	3191.67	$(3)^{+}$			
		1349.0 <i>13</i>	21.2 17	2950.171	1+			
		1481.59 20	30.7 29	2817.24	(2^{+})			
		1628.81 28	100 7	2669.904	2-			
		1643.28 28	23 4	2655.383	1			
		3082.92 <i>21</i>	61 8	1216.154	2+			
4299.5	10 ⁺	1029.8 5	100	3269.75	8+	E2	0.000393 6	B(E2)(W.u.)=52 9 α (K)=0.000350 5; α (L)=3.66×10 ⁻⁵ 5; α (M)=5.69×10 ⁻⁶ 8 α (N)=4.85×10 ⁻⁷ 7
4324.6	(9)-	883.0 <i>5</i>	100	3441.54	7-	E2	0.000568 8	B(E2)(W.u.)=39 +16-9 α (K)=0.000506 7; α (L)=5.32×10 ⁻⁵ 7; α (M)=8.27×10 ⁻⁶ 12 α (N)=7.03×10 ⁻⁷ 10
4328.36	(1,2)	724.15 11	13.3 7	3604.192	1+			
		976.89 <i>16</i>	7.9 8	3351.462	$(2)^{+}$			
		1672.95 <i>10</i>	100 5	2655.383	1			
		4328.36 42	0.33 6	0.0	0^{+}			
4329.2	1	3112.4 6	100 14	1216.154	2+			
		4329.7 6	30 6	0.0	0_{+}			
4347.53	(1,2)	3131.30 56	100 5	1216.154	2+			
	. , ,	4347.40 <i>41</i>	23.7 13	0.0	0^{+}			
4366.55		649.76 <i>40</i>	64 5	3716.52	(2)			
		1098.81 <i>15</i>	100 11	3267.57	$(2^+,3,4^+)$			
		1146.32 64	37 9	3219.428				
		2239.60 24	57 7	2127.224				
		2677.57 28	29.6 35	1688.971				
		3150.67 26	18.3 <i>35</i>	1216.154				
4383.97	$1^+, 2^+, 3^+$	2257 <i>ab</i>		2127.224				
1505.71	1 ,2 ,3	2231		2121.22T	(2)			

γ (76Se) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{ \ddagger}$	${\rm I}_{\gamma}^{\ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	
4405.9	(9+)	973.1 5	100	3432.31	7+	(E2)	0.000449 6	B(E2)(W.u.)=38 +11-7 α (K)=0.000400 6; α (L)=4.19 α (N)=5.55×10 ⁻⁷ 8
		1136.1		3269.75	8+			E_{γ} : from ($^{12}C, \alpha 2n\gamma$).
4411.65	(2)	859.45 12	7.1 11	3552.89	(1,2)			2y. 110111 (3,02117).
	(-)	945.27 18	26 7	3466.39	(1,2,3)			
		1143.89 12	16.3 12	3267.57	$(2^+,3,4^+)$			
		1191.79 <i>10</i>	17 <i>4</i>	3219.428				
		1219.73 59	8.2 11	3191.67	$(3)^{+}$			
		1342.03 12	40.0 27	3069.62	2+			
		1461.42 12	17.2 8	2950.171				
		1542.28 38	1.92 16	2869.34	$(1^+, 2^+)$			
		1599.21 25	38.2 29	2812.130				
		1741.51 <mark>b</mark> 10	100 7	2669.904				
		1756.42 11	27.2 14	2655.383				
		1896.96 <i>34</i>	1.14 26	2514.681				
		1982.31 46	17.0 29	2429.131				
		2284.54 24	6.0 5	2127.224				
		2624.11 20	20.6 12	1787.655				
		2722.99 21	5.1 5	1688.971				
		3195.52 20	13.8 9	1216.154				
		3853.03 45	0.10 5	559.103				
4437.72	$(1^+,2^+)$	721.22 11	5.8 5		(2)			
	(- ,-)	1277.59 15	26 4	3160.115	. ,			
		1782.38 11	14.2 6	2655.383				
		1833.61 25	19.9 <i>15</i>	2604.09	$1^+, 2^+$			
		1922.89 10	75 <i>4</i>	2514.681				
		2267.05 20	12.1 10	2170.572				
		2310.69 27	58 8	2127.224				
		2650.64 44	9.8 15	1787.655				
		3221.81 20	17.1 10	1216.154				
		3315.98 52	3.59 <i>33</i>	1122.279				
		3878.09 23	1.09 22	559.103				
		4437.33 40	100 6	0.0	0+			
4451.92	$(1^+,2^+)$	1501.99 24	28.9 22	2950.171				
	\ /- /	1796.56 <i>21</i>	21.7 17	2655.383				
		3235.88 22	28.3 17	1216.154				
		3892.32 20	100 6	559.103				
		4451.81 40	59.4 33	0.0	0^{+}			
4473.46	(2^{+})	1803.44 13	39 4	2669.904				
	` /	1817.96 <i>19</i>	39 5	2655.383				

46

Comments

 $\alpha(K)=0.000400 \ 6; \ \alpha(L)=4.19\times10^{-5} \ 6; \ \alpha(M)=6.52\times10^{-6} \ 9$ $\alpha(K)=5.55\times10^{-7} \ 8$ $\alpha(K)=6.52\times10^{-6} \ 9$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
4473.46	(2 ⁺)	3257.58 21	37.0 21	1216.154 2+			
	()	3913.93 <i>21</i>	100 6	559.103 2+			
4489.23	(1,2)	936.04 26	24.6 33	3552.89 (1,2)			
		1137.74 10	44.3 35	$3351.462 (2)^{+}$			
		1539.05 <i>30</i>	9.7 6	2950.171 1+			
		1819.27 <i>12</i>	9.0 8	2669.904 2-			
		1833.87 <i>10</i>	100 5	2655.383 1			
		2698.18 <i>21</i>	10.3 12	1791.437 0 ⁺			
		3366.2 19	9.9 6	1122.279 0 ⁺			
		3930.06 <i>40</i>	32.4 22	559.103 2 ⁺			
		4488.56 <i>40</i>	3.24 <i>34</i>	$0.0 0^{+}$			
4523.47	(3^{-})	1255.89 72	43 20	$3267.57 (2^+,3,4^+)$			
		1304.1 10	30 7	$3219.428 \ (2^+,3^+)$			
		1653.91 <i>63</i>	29.3 35	$2869.34 (1^+, 2^+)$			
		1711.26 <i>12</i>	80 13	2812.130 (3 ⁺)			
		2008.33 83	19.0 26	2514.681 2+			
		2835.30 <i>45</i>	25.9 <i>35</i>	1688.971 3 ⁺			
		3307.29 <i>21</i>	100 10	1216.154 2+			
4532.91	$(1^-,2,3)$	1265.30 78	30 11	$3267.57 (2^+,3,4^+)$			
		1862.81 <i>13</i>	100 8	2669.904 2-			
		2103.93 <i>60</i>	50 14	2429.131 3			
		2746.09 <i>47</i>	41 6	1787.655 2+			
		3974.67 <i>41</i>	55.4 27	559.103 2+			
4534.93	(0,1,2)	1584.72 <i>10</i>	57.9 28	2950.171 1+			
		1879.55 <i>12</i>	100 5	2655.383 1			
4535.7	1+	3977.2 11	68 <i>13</i>	559.103 2+	[M1]	$1.11 \times 10^{-3} 2$	B(M1)(W.u.)=0.0140 +35-29
							$\alpha(K)=2.76\times10^{-5} 4$; $\alpha(L)=2.82\times10^{-6} 4$; $\alpha(M)=4.39\times10^{-7} 6$
							$\alpha(N)=3.77\times10^{-8}$ 5; $\alpha(IPF)=0.001077$ 15
		4535.4 6	100 13	$0.0 0^{+}$	M1	1.28×10^{-3} 2	B(M1)(W.u.)=0.0139 +32-24
							$\alpha(K)=2.254\times10^{-5}$ 32; $\alpha(L)=2.304\times10^{-6}$ 32; $\alpha(M)=3.58\times10^{-7}$ 5
							$\alpha(N)=3.08\times10^{-8} 4$; $\alpha(IPF)=0.001260 18$
4576.11	(1,2)	1906.26 <i>35</i>	67 11	2669.904 2-			
	. , ,	1921.1 <i>12</i>	76 31	2655.383 1			
		3453.80 27	50 5	1122.279 0+			
		4575.70 <i>40</i>	100 11	$0.0 0^{+}$			
4581.05	(1,2)	1313.70 <i>81</i>	4.0 21	$3267.57 (2^+,3,4^+)$			
		1420.92 <i>49</i>	20 7	3160.115 (2 ⁺)			
		1605.80 88	4.1 6	2975.00 (2+,3,4+)			
		1911.10 <i>12</i>	9.2 10	2669.904 2-			
		2152.17 35	6.1 18	2429.131 3-			
			20.2 16				

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}{^{\ddag}}$	E_f	\mathbf{J}_f^π	Mult.#	$lpha^\dagger$	Comments
4581.05	(1,2)	3364.74 <i>32</i> 4021.65 <i>40</i>	11.2 <i>9</i> 100 <i>9</i>	1216.154 559.103	2+			
4603.26	$(1,2)^+$	4043.89 <i>40</i> 4603.27 <i>40</i>	61 <i>5</i> 100 <i>5</i>	559.103 0.0	2 ⁺ 0 ⁺			
4603.3	1-	4603.1 6	100 5	0.0	0+	E1	$1.91 \times 10^{-3} \ 3$	B(E1)(W.u.)= $4.8 \times 10^{-4} + 20 - 11$ α (K)= $1.624 \times 10^{-5} 23$; α (L)= $1.655 \times 10^{-6} 23$; α (M)= $2.57 \times 10^{-7} 4$ α (N)= $2.209 \times 10^{-8} 31$; α (IPF)= $0.001887 26$
4663.08	1-	4104.2 5	32 4	559.103	2+	(E1)	1.73×10 ⁻³ 2	B(E1)(W.u.)= $2.4 \times 10^{-4} + 6 - 5$ α (K)= $1.873 \times 10^{-5} 26$; α (L)= $1.910 \times 10^{-6} 27$; α (M)= $2.97 \times 10^{-7} 4$ α (N)= $2.55 \times 10^{-8} 4$; α (IPF)= $0.001713 24$
		4662.7 <i>4</i>	100 10	0.0	0+	E1	1.92×10 ⁻³ 3	B(E1)(W.u.)= $5.2 \times 10^{-4} + 11 - 8$ $\alpha(K)=1.598 \times 10^{-5} 22$; $\alpha(L)=1.629 \times 10^{-6} 23$; $\alpha(M)=2.532 \times 10^{-7}$ 35
4673.7	1+	4673.5 14	100	0.0	0+	M1	1.32×10 ⁻³ 2	$\alpha(N)=2.174\times10^{-8} \ 30; \ \alpha(IPF)=0.001905 \ 27$ $B(M1)(W.u.)=0.0040 \ +19-10$ $\alpha(K)=2.154\times10^{-5} \ 30; \ \alpha(L)=2.201\times10^{-6} \ 31; \ \alpha(M)=3.42\times10^{-7} \ 5$ $\alpha(N)=2.94\times10^{-8} \ 4; \ \alpha(IPF)=0.001299 \ 18$
4687.21	(1,2,3+)	1736.92 <i>17</i> 1875.23 <i>16</i> 2017.14 <i>46</i> 3470.50 <i>50</i> 4127.74 <i>50</i>	100 11 65 25 52 6 63 4 6.3 21	2950.171 2812.130 2669.904 1216.154 559.103	(3 ⁺) 2 ⁻ 2 ⁺			
4687.3	(10)+	388.0 5	30	4299.5	10+	[M1]	0.00314 4	B(M1)(W.u.)=0.108 +29-25 α (K)=0.00279 4; α (L)=0.000295 4; α (M)=4.60×10 ⁻⁵ 7 α (N)=3.92×10 ⁻⁶ 6 δ: RUL=300 for E2 suggests δ (E2/M1)<0.7.
		833.8 5	100	3853.75	(8)+	[E2]	0.000656 9	B(E2)(W.u.)=70 +14- $\overline{13}$ α (K)=0.000584 8; α (L)=6.15×10 ⁻⁵ 9; α (M)=9.56×10 ⁻⁶ 13
		1417.7 5	83 4	3269.75	8+	E2	0.0002532 35	$\alpha(N)=8.13\times10^{-7}$ 11 B(E2)(W.u.)=4.1 +9-6 $\alpha(K)=0.0001742$ 24; $\alpha(L)=1.808\times10^{-5}$ 25; $\alpha(M)=2.81\times10^{-6}$ 4 $\alpha(N)=2.404\times10^{-7}$ 34; $\alpha(IPF)=5.79\times10^{-5}$ 8
4720.6	1-	4161.3 6	100 10	559.103	2+	E1	$1.75 \times 10^{-3} \ 3$	B(E1)(W.u.)= $4.9 \times 10^{-4} + 9 - 7$ α (K)= 1.841×10^{-5} 26; α (L)= 1.877×10^{-6} 26; α (M)= 2.92×10^{-7} 4 α (N)= 2.505×10^{-8} 35; α (IPF)= 0.001732 24
		4720.5 7	66 8	0.0	0+	E1	1.94×10 ⁻³ 3	B(E1)(W.u.)= $2.22 \times 10^{-4} + 43 - 34$ α (K)= 1.574×10^{-5} 22; α (L)= 1.605×10^{-6} 22; α (M)= 2.494×10^{-7} 35 α (N)= 2.141×10^{-8} 30; α (IPF)= 0.001924 27

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\ \ \sharp}$	E_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
4723.2	(3+)	1772.95 <i>59</i> 3507.05 <i>54</i> 4163.45 <i>98</i>	100 8 86 12 80 8	2950.171 1216.154 559.103	2+			
4728.6		1287.0 <i>5</i>	100	3441.54	7-			
4731.6	(+)	1781.37 <i>40</i>	100 6	2950.171				
1766 06	1	3515.7 11	46 6	1216.154	2 ⁺ 0 ⁺	D		If M1 D(M1)/W1, _0.0117 10 If E1 D(E1)/W1, _0.000200 10
4766.96 4794.97	(1.2)	4766.8 <i>3</i> 1982.95 <i>56</i>	100 36 <i>9</i>	0.0 2812.130	-	D		If M1, B(M1)(W.u.)=0.0117 10. If E1, B(E1)(W.u.)=0.000200 18.
4/24.2/	(1,2)	2139.93 26	60.4 27	2655.383				
		2365.29 27	100 15	2429.131				
		3672.54 22	19.5 14	1122.279				
		4235.89 <i>41</i>	53 4	559.103				
		4794.96 <i>40</i>	8.7 <i>7</i>	0.0	0_{+}			
4880.0	1-	4879.8 <i>4</i>	100	0.0	0_{+}	E1	$1.99 \times 10^{-3} \ 3$	B(E1)(W.u.)= $1.64 \times 10^{-4} + 18 - 15$
								$\alpha(K)=1.512\times10^{-5} 21; \ \alpha(L)=1.540\times10^{-6} \ 22; \ \alpha(M)=2.394\times10^{-7} \ 34$
							2	$\alpha(N)=2.056\times10^{-8} \ 29; \ \alpha(IPF)=0.001976 \ 28$
4887.07	1-	4886.9 <i>3</i>	100	0.0	0_{+}	E1	$2.00 \times 10^{-3} \ 3$	B(E1)(W.u.)= $1.19 \times 10^{-4} + 17 - 13$
								$\alpha(K)=1.509\times10^{-5} 21; \ \alpha(L)=1.538\times10^{-6} \ 22; \ \alpha(M)=2.390\times10^{-7} \ 33$
							2	$\alpha(N)=2.052\times10^{-8} \ 29$; $\alpha(IPF)=0.001978 \ 28$
4931.6	1-	4931.4 <i>17</i>	100	0.0	0_{+}	E1	$2.01 \times 10^{-3} \ 3$	B(E1)(W.u.)= $4.0 \times 10^{-5} + 14 - 9$
								$\alpha(K)=1.492\times10^{-5} 21; \ \alpha(L)=1.521\times10^{-6} \ 21; \ \alpha(M)=2.364\times10^{-7} \ 33$
1020 6		1020 1 15	100 10	0.0	0+	ъ		$\alpha(N)=2.029\times10^{-8}$ 28; $\alpha(IPF)=0.001993$ 28
4938.6	1 1 ⁺	4938.4 15	100 10	0.0	0^{+}	D	1.41×10 ⁻³ 2	If M1, B(M1)(W.u.)=0.0043 8. If E1, B(E1)(W.u.)=7.3×10 ₅ 14.
4971.5	1.	4971.3 <i>17</i>	100	0.0	0.	(M1)	1.41×10 ° 2	B(M1)(W.u.)=0.0047 +11-7 α (K)=1.964×10 ⁻⁵ 28; α (L)=2.006×10 ⁻⁶ 28; α (M)=3.12×10 ⁻⁷ 4
								$\alpha(K)=1.964\times10^{-8}$ 28; $\alpha(L)=2.006\times10^{-8}$ 28; $\alpha(M)=3.12\times10^{-7}$ 4 $\alpha(N)=2.68\times10^{-8}$ 4; $\alpha(IPF)=0.001390$ 19
4984.81	1-	4406 1 5	72 12	559.103	2+	(E1)	1.85×10 ⁻³ 3	$\alpha(N)=2.08\times10^{-6}$ 4; $\alpha(PF)=0.001390$ 19 B(E1)(W.u.)=3.1×10 ⁻⁴ +6-5
4984.81	1	4426.1 5	73 12	339.103	2.	(E1)	1.85×10 - 3	$\alpha(K)=1.705\times10^{-5}$ 24; $\alpha(L)=1.738\times10^{-6}$ 24; $\alpha(M)=2.70\times10^{-7}$ 4
								$\alpha(K)=1.703\times10^{-8}$ 24; $\alpha(L)=1.758\times10^{-24}$; $\alpha(M)=2.70\times10^{-4}$ $\alpha(N)=2.319\times10^{-8}$ 32; $\alpha(IPF)=0.001829$ 26
		4984.3 <i>4</i>	100 9	0.0	0+	E1	2.03×10 ⁻³ 3	$a(N)=2.519\times10^{-5}$ 32; $a(N)=0.001829$ 20 B(E1)(W.u.)=2.9×10 ⁻⁴ +5-4
		4904.3 4	100 9	0.0	U	EI	2.03×10 3	$\alpha(K)=1.473\times10^{-5}\ 2I;\ \alpha(L)=1.501\times10^{-6}\ 2I;\ \alpha(M)=2.333\times10^{-7}\ 33$
								$\alpha(N)=2.003\times10^{-8}$ 28; $\alpha(IPF)=0.002011$ 28
5001.48	1-	5001.3 2	100	0.0	0+	E1	2.03×10^{-3} 3	$a(N)=2.005\times 10^{-2}$ 26, $a(N)=0.002011$ 28 B(E1)(W.u.)=3.58×10 ⁻⁴ +27-24
5001.40	1	3001.3 2	100	0.0	U	ьı	2.03×10 3	$\alpha(K)=1.467\times10^{-5}\ 21;\ \alpha(L)=1.495\times10^{-6}\ 21;\ \alpha(M)=2.323\times10^{-7}\ 33$
								$\alpha(N)=1.407\times10^{-2}$ 21, $\alpha(L)=1.493\times10^{-2}$ 21, $\alpha(M)=2.323\times10^{-3}$ 33 $\alpha(N)=1.995\times10^{-8}$ 28; $\alpha(IPF)=0.002016$ 28
5010.76	1-	4451.8 <i>3</i>	36 <i>6</i>	559.103	2+	(E1)	1.86×10^{-3} 3	B(E1)(W.u.)=3.1×10 ⁻⁴ 5
2010.70	1	TTJ1.0 J	50 0	559.105	_	(L1)	1.00/10 3	$\alpha(K)=1.692\times10^{-5}$ 24; $\alpha(L)=1.725\times10^{-6}$ 24; $\alpha(M)=2.68\times10^{-7}$ 4
								$\alpha(N)=2.302\times10^{-8}$ 32; $\alpha(IPF)=0.001838$ 26
		5010.3 <i>3</i>	100 7	0.0	0^{+}	E1	2.04×10^{-3} 3	$a(N)=2.502\times 10^{-5}$ 52, $a(N)=0.001838$ 20 B(E1)(W.u.)=6.0×10 ⁻⁴ +7-6
		5010.55	100 /	0.0	J	L-1	2.07AIU J	D(D1)(11.0.)-0.0/10 1/ 0

γ (76Se) (continued)

Adopted Levels, Gammas (continued)

\mathbf{E}_{i}	(level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	α^{\dagger}	Comments
									$\alpha(K)=1.464\times10^{-5}\ 20;\ \alpha(L)=1.492\times10^{-6}\ 21;\ \alpha(M)=2.318\times10^{-7}\ 32$ $\alpha(N)=1.990\times10^{-8}\ 28;\ \alpha(IPF)=0.002019\ 28$
50	068.1	$(10)^{-}$	1059.4 5	100	4008.7	(8-)	E2	0.000368 5	$a(h)=1.990 \times 10^{-20}, a(hh)=0.002019 \times 20^{-20}$ B(E2)(W.u.)=22 6
		(-)				(-)			$\alpha(K)=0.000328 \ 5; \ \alpha(L)=3.43\times10^{-5} \ 5; \ \alpha(M)=5.33\times10^{-6} \ 7$
									$\alpha(N)=4.54\times10^{-7} 6$
50	074.00	1-	4515.8 <i>3</i>	35 <i>3</i>	559.103	2+	(E1)	$1.88 \times 10^{-3} \ \beta$	$B(E1)(W.u.)=4.34\times10^{-4}+48-42$
									$\alpha(K)=1.663\times10^{-5}$ 23; $\alpha(L)=1.695\times10^{-6}$ 24; $\alpha(M)=2.63\times10^{-7}$ 4
								2	$\alpha(N)=2.262\times10^{-8} 32$; $\alpha(IPF)=0.001859 26$
			5073.7 1	100 7	0.0	0_{+}	E1	$2.06 \times 10^{-3} \ 3$	$B(E1)(W.u.)=8.7\times10^{-4} 6$
									$\alpha(K)=1.442\times10^{-5}$ 20; $\alpha(L)=1.469\times10^{-6}$ 21; $\alpha(M)=2.283\times10^{-7}$ 32
l			~	100		0.1	_		$\alpha(N)=1.960\times10^{-8} \ 27; \ \alpha(IPF)=0.002039 \ 29$
	122.19	1	5122.0 2 5128.4 <i>I</i>	100 100	0.0	0^{+}	D D		If M1, B(M1)(W.u.)=0.0047 11. If E1, B(E1)(W.u.)=8.0×10 ₅ 19.
	128.59 142.3	1	5142.1 7	100	0.0 0.0	0+	D D		If M1, B(M1)(W.u.)=0.0065 11. IF E1, BE1W=0.000112 18. If M1, B(M1)(W.u.)=0.0062 8. If E1, B(E1)(W.u.)=0.000106 13.
	195.00	1-	4635.1 3	67 6	559.103	-	(E1)	1.91×10^{-3} 3	B(E1)(W.u.)=6.7×10 ⁻⁴ 7
	173.00	1	1033.1 3	07 0	337.103	_	(L1)	1.717/10 5	$\alpha(K)=1.610\times10^{-5}$ 23; $\alpha(L)=1.641\times10^{-6}$ 23; $\alpha(M)=2.55\times10^{-7}$ 4
									$\alpha(N)=2.190\times10^{-8}$ 31; $\alpha(IPF)=0.001897$ 27
			5194.5 <i>3</i>	100 7	0.0	0^{+}	E1	2.09×10^{-3} 3	B(E1)(W.u.)= 7.1×10^{-4} +7-6
									$\alpha(K)=1.401\times10^{-5}\ 20;\ \alpha(L)=1.427\times10^{-6}\ 20;\ \alpha(M)=2.219\times10^{-7}\ 31$
									$\alpha(N)=1.905\times10^{-8}\ 27;\ \alpha(IPF)=0.002074\ 29$
52	217.8	1-	5217.6 <i>11</i>	100	0.0	0^{+}	E1	2.10×10^{-3} 3	$B(E1)(W.u.)=2.2\times10^{-4}+6-4$
									$\alpha(K)=1.394\times10^{-5}\ 20;\ \alpha(L)=1.420\times10^{-6}\ 20;\ \alpha(M)=2.207\times10^{-7}\ 31$
									$\alpha(N)=1.895\times10^{-8} \ 27; \ \alpha(IPF)=0.002081 \ 29$
52	239.6	1	4023.1 10	28 6	1216.154				
			5239.7 12	100 18	0.0	0^{+}	D		If M1, B(M1)(W.u.)=0.012 4. If E1, B(E1)(W.u.)=0.00021 6.
	284.40	1	5284.2 <i>3</i>	100	0.0	0+	D	1.50 10-3.2	If M1, B(M1)(W.u.)=0.0178 <i>13</i> . If E1, B(E1)(W.u.)=0.000304 22.
52	297.90	(1^{+})	5297.7 3	100	0.0	0_{+}	(M1)	$1.50 \times 10^{-3} 2$	B(M1)(W.u.)=0.0108 6
									$\alpha(K)=1.788\times10^{-5}$ 25; $\alpha(L)=1.826\times10^{-6}$ 26; $\alpha(M)=2.84\times10^{-7}$ 4
	• • • • • • • • • • • • • • • • • • • •			• • •		0.4		1 = 5 10 = 3 2	$\alpha(N)=2.440\times10^{-8}$ 34; $\alpha(IPF)=0.001481$ 21
52	298.60	1-	4175.0 [@] 12	3.9 9	1122.279	0_{\pm}	(E1)	$1.76 \times 10^{-3} \ 3$	B(E1)(W.u.)= $8.6 \times 10^{-5} \ 20$
									$\alpha(K)=1.834\times10^{-5}$ 26; $\alpha(L)=1.870\times10^{-6}$ 26; $\alpha(M)=2.91\times10^{-7}$ 4
			.=					105 10-3 2	$\alpha(N)=2.495\times10^{-8} 35; \ \alpha(IPF)=0.001737 \ 24$
			4739.6 [@] 5	15.1 <i>16</i>	559.103	2+	(E1)	$1.95 \times 10^{-3} \ 3$	B(E1)(W.u.)= $2.26 \times 10^{-4} + 28 - 26$
									$\alpha(K)=1.567\times10^{-5}$ 22; $\alpha(L)=1.597\times10^{-6}$ 22; $\alpha(M)=2.482\times10^{-7}$ 35
1			5200 4 1	100 6	0.0	0+	E1	2.12×10 ⁻³ 3	$\alpha(N)=2.131\times10^{-8} \ 30; \ \alpha(IPF)=0.001930 \ 27$
1			5298.4 <i>1</i>	100 6	0.0	0_{+}	E1	2.12×10 5 3	B(E1)(W.u.)=0.00108 7 α (K)=1.368×10 ⁻⁵ 19; α (L)=1.394×10 ⁻⁶ 20; α (M)=2.166×10 ⁻⁷ 30
									$\alpha(K)=1.368\times10^{-5} 19$; $\alpha(L)=1.394\times10^{-5} 20$; $\alpha(M)=2.166\times10^{-7} 30$ $\alpha(N)=1.860\times10^{-8} 26$; $\alpha(IPF)=0.002102 29$
									$u(1N)=1.000\times 10^{-2}$ 20; $u(1PF)=0.002102$ 29

γ (76Se) (continued)

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\ \ddagger}$	${\rm I}_{\gamma}{^{\ddag}}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
5324.18	1-	4766.9 10	67 10	559.103	2+	[E1]	1.96×10 ⁻³ 3	B(E1)(W.u.)= 4.5×10^{-4} 7 α (K)= 1.556×10^{-5} 22; α (L)= 1.585×10^{-6} 22; α (M)= 2.464×10^{-7} 35 α (N)= 2.116×10^{-8} 30; α (IPF)= 0.001938 27
		5323.8 3	100 10	0.0	0+	E1	2.12×10 ⁻³ 3	B(E1)(W.u.)= $4.8 \times 10^{-4} + 7 - 6$ $\alpha(K)=1.360 \times 10^{-5} \ I9; \ \alpha(L)=1.386 \times 10^{-6} \ I9; \ \alpha(M)=2.154 \times 10^{-7} \ 30$ $\alpha(N)=1.849 \times 10^{-8} \ 26; \ \alpha(IPF)=0.002109 \ 30$
5346.94	1-	4131.5 9	38 6	1216.154	2+	(E1)	1.74×10 ⁻³ 2	B(E1)(W.u.)= 3.3×10^{-4} +7-6 α (K)= 1.858×10^{-5} 26; α (L)= 1.895×10^{-6} 27; α (M)= 2.94×10^{-7} 4 α (N)= 2.528×10^{-8} 35; α (IPF)= 0.001722 24
		4788.0 <i>3</i>	43 6	559.103	2+	(E1)	1.96×10 ⁻³ 3	B(E1)(W.u.)= $2.40 \times 10^{-4} + 45 - 39$ α (K)= $1.547 \times 10^{-5} 22$; α (L)= $1.577 \times 10^{-6} 22$; α (M)= $2.451 \times 10^{-7} 34$ α (N)= $2.104 \times 10^{-8} 29$; α (IPF)= $0.001945 27$
		5346.0 4	100 9	0.0	0+	E1	2.13×10 ⁻³ 3	B(E1)(W.u.)= $4.0 \times 10^{-4} + 6 - 5$ $\alpha(K)=1.353 \times 10^{-5} 19$; $\alpha(L)=1.379 \times 10^{-6} 19$; $\alpha(M)=2.143 \times 10^{-7} 30$ $\alpha(N)=1.840 \times 10^{-8} 26$; $\alpha(IPF)=0.002115 30$
5367.5 5368.3	1 (11 ⁺)	5367.3 <i>13</i> 681.4 962.0 1068.5	100	0.0 4687.3 4405.9 4299.5	0 ⁺ (10) ⁺ (9 ⁺) 10 ⁺	D		If M1, B(M1)(W.u.)=0.0032 8. If E1, B(E1)(W.u.)=5.5×10 ₅ 13.
5375.45	1-	4816.1 2	100 8	559.103		(E1)	1.97×10 ⁻³ 3	B(E1)(W.u.)=0.00129 +14-12 α (K)=1.536×10 ⁻⁵ 22; α (L)=1.565×10 ⁻⁶ 22; α (M)=2.433×10 ⁻⁷ 34 α (N)=2.089×10 ⁻⁸ 29; α (IPF)=0.001954 27
		5375.6 4	83 6	0.0	0+	E1	2.14×10 ⁻³ 3	B(E1)(W.u.)=7.7×10 ⁻⁴ +9-8 α (K)=1.344×10 ⁻⁵ 19; α (L)=1.369×10 ⁻⁶ 19; α (M)=2.129×10 ⁻⁷ 30 α (N)=1.828×10 ⁻⁸ 26; α (IPF)=0.002122 30
5405.2	1-	5405.0 18	100	0.0	0+	E1	2.15×10 ⁻³ 3	B(E1)(W.u.)=9.2×10 ⁻⁵ +40-22 α (K)=1.336×10 ⁻⁵ 19; α (L)=1.361×10 ⁻⁶ 19; α (M)=2.115×10 ⁻⁷ 30 α (N)=1.816×10 ⁻⁸ 25; α (IPF)=0.002130 30
5411.33	1-	4852.0 3	100 9	559.103	2+	(E1)	1.98×10 ⁻³ 3	B(E1)(W.u.)=0.00168 +46-32 α (K)=1.522×10 ⁻⁵ 21; α (L)=1.551×10 ⁻⁶ 22; α (M)=2.411×10 ⁻⁷ 34 α (N)=2.070×10 ⁻⁸ 29; α (IPF)=0.001966 28
		5412.4 <i>14</i>	28 7	0.0	0+	E1	2.15×10 ⁻³ 3	B(E1)(W.u.)= $3.4 \times 10^{-4} + 12 - 9$ $\alpha(K)=1.333 \times 10^{-5} 19$; $\alpha(L)=1.358 \times 10^{-6} 19$; $\alpha(M)=2.111 \times 10^{-7} 30$ $\alpha(N)=1.813 \times 10^{-8} 25$; $\alpha(IPF)=0.002132 30$
5425.21	1-	4865.9 <i>3</i>	100 10	559.103	2+	(E1)	1.99×10 ⁻³ 3	B(E1)(W.u.)= $4.5 \times 10^{-4} + 7 - 6$ $\alpha(K)=1.517 \times 10^{-5} \ 21; \ \alpha(L)=1.546 \times 10^{-6} \ 22; \ \alpha(M)=2.403 \times 10^{-7} \ 34$ $\alpha(N)=2.063 \times 10^{-8} \ 29; \ \alpha(IPF)=0.001971 \ 28$
		5425.1 5	100 10	0.0	0+	E1	$2.15 \times 10^{-3} \ 3$	$B(E1)(W.u.)=3.27\times10^{-4} +48-40$

51

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^{π} Mult.	α^{\dagger}	Comments
							$\alpha(K)=1.330\times10^{-5}$ 19; $\alpha(L)=1.354\times10^{-6}$ 19; $\alpha(M)=2.105\times10^{-7}$ 29
							$\alpha(N)=1.808\times10^{-8}$ 25; $\alpha(IPF)=0.002136$ 30
5431.8	12+	1133.0 5	100	4299.5 1	0^{+} (E2)	0.000318 4	$B(E2)(W.u.)=8\times10^1 +7-3$
							$\alpha(K)=0.000282$ 4; $\alpha(L)=2.94\times10^{-5}$ 4; $\alpha(M)=4.57\times10^{-6}$ 6
						2	$\alpha(N)=3.90\times10^{-7} 5$; $\alpha(IPF)=1.96\times10^{-6} 4$
5551.8	1-	5551.6 <i>15</i>	100	0.0 0) ⁺ E1	$2.19 \times 10^{-3} \ 3$	$B(E1)(W.u.)=2.3\times10^{-4} +8-5$
							$\alpha(K)=1.294\times10^{-5}$ 18; $\alpha(L)=1.317\times10^{-6}$ 18; $\alpha(M)=2.048\times10^{-7}$ 29
							$\alpha(N)=1.758\times10^{-8} \ 25$; $\alpha(IPF)=0.002171 \ 30$
5629.8	1-	5629.6 <i>15</i>	100	0.0 0)+ E1	$2.21 \times 10^{-3} \ 3$	
							$\alpha(K)=1.272\times10^{-5}$ 18; $\alpha(L)=1.296\times10^{-6}$ 18; $\alpha(M)=2.014\times10^{-7}$ 28
			400			2 24 40-3 2	$\alpha(N)=1.729\times10^{-8}$ 24; $\alpha(IPF)=0.002193$ 31
5637.7	1-	5637.5 15	100	0.0 0) ⁺ E1	$2.21 \times 10^{-3} \ 3$	$B(E1)(W.u.)=8.8\times10^{-5} +44-22$
							$\alpha(K)=1.270\times10^{-5}$ 18; $\alpha(L)=1.293\times10^{-6}$ 18; $\alpha(M)=2.010\times10^{-7}$ 28
5660.2		56600.15	100	0.0.0		2 22 10-3 2	$\alpha(N)=1.726\times10^{-8}$ 24; $\alpha(IPF)=0.002196$ 31
5669.2	1-	5669.0 <i>15</i>	100	0.0 0) ⁺ E1	$2.22 \times 10^{-3} \ 3$	$B(E1)(W.u.) = 9 \times 10^{-5} + 5 - 3$
							$\alpha(K)=1.262\times10^{-5}$ 18; $\alpha(L)=1.285\times10^{-6}$ 18; $\alpha(M)=1.997\times10^{-7}$ 28
5605.5	1-	5605.2.4	100	0.0.0	·	2 22 10-3 2	$\alpha(N)=1.715\times10^{-8}$ 24; $\alpha(IPF)=0.002205$ 31
5685.5	1-	5685.3 4	100	0.0 0)+ E1	$2.22 \times 10^{-3} \ 3$	B(E1)(W.u.)= $2.56 \times 10^{-4} + 25 - 21$
							$\alpha(K)=1.257\times10^{-5}$ 18; $\alpha(L)=1.280\times10^{-6}$ 18; $\alpha(M)=1.990\times10^{-7}$ 28 $\alpha(N)=1.709\times10^{-8}$ 24; $\alpha(IPF)=0.002209$ 31
5700 Q	1-	5709.6 <i>4</i>	100	0.0 0)+ E1	$2.23 \times 10^{-3} \ 3$	$\alpha(N)=1.709\times10^{-5}$ 24; $\alpha(PF)=0.002209$ 31 B(E1)(W.u.)=2.73×10 ⁻⁴ +29–23
5709.8	1	3709.0 4	100	0.0 0) El	2.23×10 5	$\alpha(K)=1.251\times10^{-5}$ 18; $\alpha(L)=1.274\times10^{-6}$ 18; $\alpha(M)=1.980\times10^{-7}$ 28
							$\alpha(K)=1.251\times10^{-1}$ 8; $\alpha(L)=1.274\times10^{-1}$ 8; $\alpha(M)=1.980\times10^{-1}$ 28 $\alpha(N)=1.700\times10^{-8}$ 24; $\alpha(IPF)=0.002216$ 31
5740.73	1-	5740.5 <i>3</i>	100	0.0 0)+ E1	$2.24 \times 10^{-3} \ 3$	$u(N)=1.700 \times 10^{-5} 24$; $u(PF)=0.002210 37$ B(E1)(W.u.)=3.55×10 ⁻⁴ +35-29
3740.73	1	3740.3 3	100	0.0 0	, E1	2.24×10 3	$\alpha(K)=1.243\times10^{-5}$ 17; $\alpha(L)=1.266\times10^{-6}$ 18; $\alpha(M)=1.967\times10^{-7}$ 28
							$\alpha(N)=1.243\times10^{-17}$, $\alpha(L)=1.200\times10^{-18}$, $\alpha(N)=1.907\times10^{-28}$ $\alpha(N)=1.689\times10^{-8}$ 24; $\alpha(IPF)=0.002224$ 31
5762.0	1-	5761.8 <i>10</i>	100	0.0 0)+ E1	$2.24 \times 10^{-3} \ 3$	$u(N)=1.089 \times 10^{-24}$; $u(PF)=0.002224 \times 31^{-24}$ B(E1)(W.u.)=1.25×10 ⁻⁴ +34-23
3702.0	1	3701.8 10	100	0.0 0	, Ei	2.24×10 3	$\alpha(K)=1.237\times10^{-5}$ 17; $\alpha(L)=1.260\times10^{-6}$ 18; $\alpha(M)=1.959\times10^{-7}$ 27
							$\alpha(N)=1.682\times10^{-8}$ 24; $\alpha(IPF)=0.002230$ 31
5773.3	1-	5773.1 10	100	0.0 0)+ E1	$2.25 \times 10^{-3} \ 3$	$B(E1)(W.u.)=1.09\times10^{-4}+19-14$
3113.3	1	3773.1 10	100	0.0 0	LI	2.23×10 3	$\alpha(K)=1.235\times10^{-5}$ 17; $\alpha(L)=1.257\times10^{-6}$ 18; $\alpha(M)=1.954\times10^{-7}$ 27
							$\alpha(N)=1.233\times10^{-17}$, $\alpha(E)=1.237\times10^{-18}$, $\alpha(N)=1.678\times10^{-8}$ 23; $\alpha(IPF)=0.002233$ 31
5781.24	1-	5781.0 2	100	0.0 0)+ E1	2.25×10^{-3} 3	$B(E1)(W.u.)=4.94\times10^{-4} +39-34$
3/01.24	1	3/01.0 2	100	0.0 0	. 1.1	2.23/10 3	$\alpha(K)=1.233\times10^{-5}$ 17; $\alpha(L)=1.255\times10^{-6}$ 18; $\alpha(M)=1.951\times10^{-7}$ 27
							$\alpha(N)=1.253\times10^{-17}$, $\alpha(E)=1.253\times10^{-18}$, $\alpha(N)=1.675\times10^{-8}$ 23; $\alpha(IPF)=0.002235$ 31
							E_{γ} : 5783.3 3 in (γ, γ') .
5796.7	(12^+)	1109.6		4687.3 (10) ⁺		2y. 0.00.0 0 (1,1).
	` /	1496.7		4299.5 1			

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\cup}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
5804.0	1-	5246.1 <i>14</i>	100 19	559.103	2+	(E1)	2.10×10 ⁻³ 3	B(E1)(W.u.)= $5.7 \times 10^{-4} + 16 - 12$ $\alpha(K)=1.385 \times 10^{-5} \ 19; \ \alpha(L)=1.410 \times 10^{-6} \ 20; \ \alpha(M)=2.192 \times 10^{-7} \ 31$ $\alpha(N)=1.882 \times 10^{-8} \ 26; \ \alpha(IPF)=0.002088 \ 29$
		5803.4 7	64 11	0.0	0+	E1	$2.25 \times 10^{-3} \ 3$	B(E1)(W.u.)= $2.7 \times 10^{-4} + 9 - 6$ $\alpha(K)=1.227 \times 10^{-5} \ I7; \ \alpha(L)=1.249 \times 10^{-6} \ I7; \ \alpha(M)=1.942 \times 10^{-7} \ 27$ $\alpha(N)=1.668 \times 10^{-8} \ 23; \ \alpha(IPF)=0.002241 \ 31$
5813.9	1-	5813.7 5	100	0.0	0+	E1	2.26×10 ⁻³ 3	B(E1)(W.u.)= $2.39 \times 10^{-4} + 27 - 22$ $\alpha(K)=1.224 \times 10^{-5} \ 17; \ \alpha(L)=1.247 \times 10^{-6} \ 17; \ \alpha(M)=1.938 \times 10^{-7} \ 27$ $\alpha(N)=1.664 \times 10^{-8} \ 23; \ \alpha(IPF)=0.002243 \ 31$
5842.31	1-	5283.8 ^{&} 10	25 8	559.103	2+	[E1]	2.11×10 ⁻³ 3	B(E1)(W.u.)= 1.7×10^{-4} 5 α (K)= 1.373×10^{-5} 19; α (L)= 1.398×10^{-6} 20; α (M)= 2.173×10^{-7} 30 α (N)= 1.866×10^{-8} 26; α (IPF)= 0.002098 29
		5842.0 <i>3</i>	100 11	0.0	0+	E1	$2.26 \times 10^{-3} \ 3$	B(E1)(W.u.)= $4.9 \times 10^{-4} + 8 - 6$ $\alpha(K)=1.217 \times 10^{-5} \ I7; \ \alpha(L)=1.240 \times 10^{-6} \ I7; \ \alpha(M)=1.927 \times 10^{-7} \ 27$ $\alpha(N)=1.654 \times 10^{-8} \ 23; \ \alpha(IPF)=0.002251 \ 32$
5865.3	1-	5865.1 7	100	0.0	0+	E1	2.27×10 ⁻³ 3	B(E1)(W.u.)= $2.45 \times 10^{-4} + 40 - 31$ $\alpha(K)=1.212 \times 10^{-5} \ I7; \ \alpha(L)=1.234 \times 10^{-6} \ I7; \ \alpha(M)=1.918 \times 10^{-7} \ 27$ $\alpha(N)=1.647 \times 10^{-8} \ 23; \ \alpha(IPF)=0.002256 \ 32$
5879.6	1-	5879.4 6	100	0.0	0+	E1	$2.27 \times 10^{-3} \ 3$	B(E1)(W.u.)= $1.25 \times 10^{-4} + 18 - 14$ $\alpha(K)=1.208 \times 10^{-5} \ 17; \ \alpha(L)=1.230 \times 10^{-6} \ 17; \ \alpha(M)=1.912 \times 10^{-7} \ 27$ $\alpha(N)=1.642 \times 10^{-8} \ 23; \ \alpha(IPF)=0.002260 \ 32$
5892.30	1-	5333.1 4	81 <i>11</i>	559.103	2+	(E1)	2.13×10 ⁻³ 3	B(E1)(W.u.)= 3.3×10^{-4} +7-5 α (K)= 1.357×10^{-5} 19; α (L)= 1.383×10^{-6} 19; α (M)= 2.149×10^{-7} 30 α (N)= 1.845×10^{-8} 26; α (IPF)= 0.002111 30
		5891.9 <i>5</i>	100 11	0.0	0+	E1	$2.28 \times 10^{-3} \ 3$	B(E1)(W.u.)= $3.0 \times 10^{-4} + 6 - 5$ $\alpha(K)=1.205 \times 10^{-5} \ I7; \ \alpha(L)=1.227 \times 10^{-6} \ I7; \ \alpha(M)=1.907 \times 10^{-7} \ 27$ $\alpha(N)=1.638 \times 10^{-8} \ 23; \ \alpha(IPF)=0.002263 \ 32$
5996.1	1-	5435.2 11	100 22	559.103	2+	(E1)	2.15×10 ⁻³ 3	B(E1)(W.u.)= $2.6 \times 10^{-4} + 9 - 6$ $\alpha(K)=1.327 \times 10^{-5}$ 19; $\alpha(L)=1.351 \times 10^{-6}$ 19; $\alpha(M)=2.101 \times 10^{-7}$ 29 $\alpha(N)=1.804 \times 10^{-8}$ 25; $\alpha(IPF)=0.002139$ 30 E _{γ} : 5438.0 4 in (γ, γ') due to very different branching ratio.
		5998.4 <i>14</i>	69 19	0.0	0+	E1	2.30×10 ⁻³ 3	B(E1)(W.u.)= $1.3\times10^{-4} + 5-4$ α (K)= 1.180×10^{-5} 17; α (L)= 1.201×10^{-6} 17; α (M)= 1.867×10^{-7} 26 α (N)= 1.603×10^{-8} 22; α (IPF)= 0.002289 32
6035.4	1-	5474.6 ^{&} 13	52 11	559.103	2+	[E1]	2.16×10 ⁻³ 3	I _{\gamma} : 21 5 IN (γ, γ') . B(E1)(W.u.)=3.0×10 ⁻⁴ +8-6 α (K)=1.315×10 ⁻⁵ 18; α (L)=1.340×10 ⁻⁶ 19; α (M)=2.082×10 ⁻⁷ 29 α (N)=1.788×10 ⁻⁸ 25; α (IPF)=0.002149 30

γ (⁷⁶Se) (continued)

	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	$lpha^\dagger$	Comments
	6035.4	1-	6035.4 5	100 12	0.0	0+	E1		$B(E1)(W.u.)=4.3\times10^{-4} +9-7$
	6099.3	1-	5540.2 7	54 6	559.103	2+	(E1)	$2.18 \times 10^{-3} \ 3$	$B(E1)(W.u.)=2.8\times10^{-4} +7-5$
									$\alpha(K)=1.297\times10^{-5} \ 18; \ \alpha(L)=1.321\times10^{-6} \ 18; \ \alpha(M)=2.053\times10^{-7} \ 29$
									$\alpha(N)=1.763\times10^{-8} \ 25; \ \alpha(IPF)=0.002168 \ 30$
			6098.9 <i>5</i>	100 11	0.0	0_{+}	E1		$B(E1)(W.u.)=3.9\times10^{-4}+9-6$
	6131.5	1-	6131.2 <i>6</i>	100	0.0	0_{+}	E1		$B(E1)(W.u.)=1.42\times10^{-4}+27-19$
	6156.6	1-	6156.3 <i>14</i>	100	0.0	0_{+}	E1		$B(E1)(W.u.)=2.9\times10^{-5}+7-5$
۱	6165.1	1-	6164.8 <i>11</i>	100	0.0	0_{+}	E1		$B(E1)(W.u.)=7.7\times10^{-5} +30-17$
۱	6196.2	1-	6195.9 <i>11</i>	100	0.0	0_{+}	E1		$B(E1)(W.u.)=1.59\times10^{-4}+24-18$
	6208.7	1-	6208.4 15	100	0.0	0_{+}	E1		$B(E1)(W.u.)=3.2\times10^{-4}+8-5$
١	6242.7	1-	6242.4 <i>6</i>	100	0.0	0_{+}	E1		$B(E1)(W.u.)=6.0\times10^{-4} +41-18$
									E_{γ} : 6247.4 9 in (γ, γ') .
	6250.7	1-	6250.4 <i>5</i>	100	0.0	0^{+}	E1		B(E1)(W.u.)= $2.76 \times 10^{-4} + 47 - 34$
١	(20 7 .0		6005 6 14	100	0.0	0.1	F-1		E_{γ} : 6254.0 9 in (γ, γ') .
١	6297.9	1-	6297.6 14	100	0.0	0+	E1		B(E1)(W.u.)= $1.51 \times 10^{-4} + 27 - 20$
۱	6315.9	1-	6315.6 4	100	0.0	0+	E1		$B(E1)(W.u.)=4.8\times10^{-4} +7-6$
١	6336.8	1-	6336.5 20	100	0.0	0+	E1		B(E1)(W.u.)= $3.4 \times 10^{-4} + 30 - 12$
١	6342.64	1-	5783.3 ^{&} 3	100 14	559.103	2+	[E1]	$2.25 \times 10^{-3} \ 3$	B(E1)(W.u.)=0.0054 +19-12
۱									$\alpha(K)=1.232\times10^{-5}\ 17;\ \alpha(L)=1.255\times10^{-6}\ 18;\ \alpha(M)=1.950\times10^{-7}\ 27$
١			6242.2.11	20. 7	0.0	0+	E1		$\alpha(N)=1.674\times10^{-8}$ 23; $\alpha(IPF)=0.002236$ 31
۱	6007.5	1-	6342.3 11	30 7	0.0	0^{+}	E1		B(E1)(W.u.)= $0.00122 +50-34$ B(E1)(W.u.)= $2.16 \times 10^{-4} +38-28$
۱	6387.5 6438.1	1-	6387.2 <i>14</i> 6437.8 <i>19</i>	100 100	0.0 0.0	0+	E1 D		If M1, B(M1)(W.u.)=0.0098 23. If E1, B(E1)(W.u.)=0.00017 4.
۱	6449.0	1 1-	6448.7 20	100	0.0	0^{+}	E1		B(E1)(W.u.)= 0.0098 23. If E1, B(E1)(W.u.)= 0.00017 4.
۱	6497.7	1-	6497.4 6	100	0.0	0^{+}	E1		B(E1)(W.u.)= $2.51\times10^{-4}+43-35$ B(E1)(W.u.)= $3.8\times10^{-4}+23-11$
۱	6500.8	(13+)	1069.3	100	5431.8	12 ⁺	EI		$B(E1)(W.u.) = 3.0 \times 10 + 23 - 11$
۱	0300.0	(13)	1132.0		5368.3	(11^{+})			
١	6532.7	1-	6532.4 <i>4</i>	100	0.0	0+	E1		B(E1)(W.u.)= $4.43\times10^{-4} + 45-38$
١	6551.00	1+	6550.7 <i>3</i>	100	0.0	0+	M1		B(M1)(W.u.)=0.0071 +15-11
١	6562.9	1-	6562.6 9	100	0.0	0^{+}	E1		$B(E1)(W.u.)=1.74\times10^{-4} 6$
	6570.4	1-	6570.1 9	100	0.0	0_{+}	E1		$B(E1)(W.u.)=2.71\times10^{-4}+38-31$
	6596.2	1-	6595.9 7	100	0.0	0_{+}	E1		$B(E1)(W.u.)=2.39\times10^{-4}+35-27$
	6608.5	1-	6608.2 9	100	0.0	0_{+}	E1		$B(E1)(W.u.)=2.18\times10^{-4}+33-26$
	6631.8	1-	6071.8 8	40 15	559.103	2+	(E1)		$B(E1)(W.u.)=3.5\times10^{-4}+15-12$
			6632.9 12	100 23	0.0	0_{+}	E1		$B(E1)(W.u.)=6.6\times10^{-4}+20-14$
									E_{γ} : 6630.8 4 in (γ, γ') .

54

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^{π} Mult.#	Comments
6641.3	1-	6641.0 <i>17</i>	100	0.0 0	+ E1	$B(E1)(W.u.)=2.3\times10^{-4} +7-4$
6653.7	1-	6653.4 <i>14</i>	100	0.0	+ E1	$B(E1)(W.u.)=3.9\times10^{-4}+11-7$
6680.0	1-	6679.7 18	100	0.0	+ E1	$B(E1)(W.u.)=2.07\times10^{-4}+26-22$
6691.5	1-	6691.2 8	100	0.0	+ E1	$B(E1)(W.u.)=1.27\times10^{-4}+24-18$
6700.3	1-	6700.0 <i>20</i>	100	0.0	+ E1	$B(E1)(W.u.)=1.5\times10^{-4}+6-3$
6709.0	1-	6708.7 <i>21</i>	100	0.0	+ E1	$B(E1)(W.u.)=1.4\times10^{-4}+5-3$
6736.2	1-	6735.9 <i>15</i>	100	0.0	+ E1	$B(E1)(W.u.)=1.4\times10^{-4}+5-3$
6743.31	1-	6182.8 7	30 5	559.103 2	+ (E1)	$B(E1)(W.u.)=3.3\times10^{-4}+7-6$
		6743.2 <i>3</i>	100 8	0.0		$B(E1)(W.u.)=8.5\times10^{-4}+13-10$
6749.2	1-	6190.0 <i>6</i>	52 <i>13</i>	559.103 2	+ (E1)	$B(E1)(W.u.)=4.1\times10^{-4}+12-10$
		6748.7 <i>5</i>	100 18	0.0	+ E1	$B(E1)(W.u.)=6.1\times10^{-4}+13-11$
6751.5	(14^{+})	1319.8			2+	
6813.9	1-	6813.6 20	100	0.0	+ E1	$B(E1)(W.u.)=7.5\times10^{-5} +43-21$
6830.2	1-	6829.9 <i>15</i>	100	0.0	+ E1	$B(E1)(W.u.)=1.43\times10^{-4}+39-26$
6882.7	1-	6323.4 6	86 24	559.103 2	+ (E1)	$B(E1)(W.u.)=4.5\times10^{-4}+12-11$
		6881.9 <i>14</i>	100 14	0.0	+ E1	$B(E1)(W.u.)=4.1\times10^{-4}+12-8$
6908.3	1-	6908.0 <i>20</i>	100	0.0	+ E1	$B(E1)(W.u.)=7.6\times10^{-5} +27-16$
6913.3	1+	6913.0 <i>17</i>	100	0.0	+ M1	B(M1)(W.u.)=0.0048 +19-11
6922.2	1-	6921.9 <i>18</i>	100	0.0	+ E1	$B(E1)(W.u.)=9.0\times10^{-5} +32-18$
6970.3	1-	6970.0 <i>5</i>	100	0.0	+ E1	$B(E1)(W.u.)=2.8\times10^{-4}+8-5$
						E_{γ} : 6973.0 8 in (γ, γ') .
6992.9	1-	6992.5 5	100	0.0		$B(E1)(W.u.)=3.3\times10^{-4}+6-5$
7018.1	1-	7017.7 <i>18</i>	100	0.0		$B(E1)(W.u.)=1.0\times10^{-4} +8-3$
7025.1	1+	7024.7 20	100	0.0		B(M1)(W.u.)=0.0053 +26-14
7047.4	1+	7047.0 <i>15</i>	100	0.0		B(M1)(W.u.)=0.0045 +25-12
7053.1	1-	7052.7 19	100	0.0 0		$B(E1)(W.u.) = 8.6 \times 10^{-5} + 37 - 20$
7084.5	(14^{+})	1287.5			12+)	
5002.1	4-	1653.0	100		2+	D(D1)(D1) (1) 0 4 10-5 24 24
7093.1	1-	7092.7 20	100	0.0		$B(E1)(W.u.) = 9.4 \times 10^{-5} + 34 - 21$
7101.1	1 ⁻ 1 ⁺	7100.7 19	100	0.0 0		$B(E1)(W.u.) = 9.2 \times 10^{-5} + 40 - 22$
7110.1		7109.7 19	100			B(M1)(W.u.)=0.0061 +26-14
7115.5	1-	6557.2 16	100 37	559.103 2		$B(E1)(W.u.)=2.4\times10^{-4}+15-9$
7100.4	1-	7113.6 19	96 <i>35</i>	0.0 0		$B(E1)(W.u.)=1.8\times10^{-4}+11-6$
7128.4	1-	6570.6 <i>19</i> 7127.3 <i>13</i>	30 22 100 <i>30</i>	559.103 2 0.0 0		B(E1)(W.u.)=3.8×10 ⁻⁴ +31-19 B(E1)(W.u.)=0.00100 +37-28
7156.0	1-	7127.3 13	100 30	0.0 0		B(E1)(W.u.)=0.00100+37-28 $B(E1)(W.u.)=1.4\times10^{-4}+5-3$
						$B(E1)(W.u.)=1.4\times10^{-5}+35-3$ $B(E1)(W.u.)=8.7\times10^{-5}+36-20$
7168.1	1-	7167.7 18	100			
7195.6	1-	7195.2 <i>14</i>	100	0.0	+ E1	$B(E1)(W.u.)=1.6\times10^{-4} +7-4$

$E_i(level)$	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{ \ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
7225.6	1-	7225.2 20	100	0.0	0+	E1	$B(E1)(W.u.)=1.7\times10^{-4} +6-4$
7241.6	1-	7241.2 7	100	0.0	0_{+}	E1	$B(E1)(W.u.)=2.21\times10^{-4} +49-34$
7292.8	1-	7292.4 15	100	0.0	0_{+}	E1	$B(E1)(W.u.)=2.4\times10^{-4}+8-5$
7324.6	1-	7324.2 18	100	0.0	0_{+}	E1	$B(E1)(W.u.)=1.16\times10^{-4} +47-26$
7335.0	1-	7334.6 20	100	0.0	0_{+}	E1	$B(E1)(W.u.)=9.3\times10^{-5} +44-23$
7342.2	1-	7341.8 <i>14</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=2.1\times10^{-4}+7-4$
7362.2	1-	7361.8 <i>21</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=7.9\times10^{-5} +37-20$
7392.6	1-	7392.2 8	100	0.0	0_{+}	E1	$B(E1)(W.u.)=7.2\times10^{-5} +31-17$
7406.0	1-	6846.0 <i>17</i>	45 29	559.103	2+	[E1]	$B(E1)(W.u.)=1.5\times10^{-4}+18-8$
		7406.0 <i>15</i>	100 38	0.0	0_{+}	E1	$B(E1)(W.u.)=2.7\times10^{-4}+23-11$
7427.1	1-	7426.7 <i>14</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=2.2\times10^{-4}+8-5$
7455.5	1-	7455.1 <i>13</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=2.3\times10^{-4}+12-6$
7464.9	1-	6905.8 21	82 <i>35</i>	559.103	2+	[E1]	$B(E1)(W.u.)=2.9\times10^{-4}+18-11$
		7464.3 18	100 <i>36</i>	0.0	0_{+}	E1	$B(E1)(W.u.)=2.8\times10^{-4} +16-10$
7508.4	1-	7508.0 8	100	0.0	0_{+}	E1	$B(E1)(W.u.)=2.23\times10^{-4} +32-25$
7522.7	1-	6963.9 7	56 12	559.103	2+	(E1)	$B(E1)(W.u.)=3.4\times10^{-4}+10-8$
		7521.7 7	100 19	0.0	0_{+}	E1	$B(E1)(W.u.)=4.8\times10^{-4}+12-9$
7546.9	1-	7546.5 <i>6</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=5.4\times10^{-4} +5-4$
7580.5	1-	7580.1 <i>16</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=1.04\times10^{-4} +41-23$
7617.2	1-	7616.8 <i>17</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=1.55\times10^{-4} +40-27$
7627.8	1-	7627.4 15	100	0.0	0_{+}	E1	$B(E1)(W.u.)=2.1\times10^{-4} +5-3$
7643.3	1-	7642.9 <i>17</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=1.13\times10^{-4} +39-23$
7652.9	1-	7652.5 17	100	0.0	0_{+}	E1	$B(E1)(W.u.)=2.05\times10^{-4} +49-34$
7658.71	1-	7658.3 2	100	0.0	0_{+}	E1	$B(E1)(W.u.)=1.31\times10^{-4} +24-18$
7698.3	1-	7137.0 <mark>&</mark> <i>20</i>	54 22	559.103	2+	[E1]	$B(E1)(W.u.)=3.8\times10^{-4}+20-14$
		7698.2 9	100 25	0.0	0^{+}	E1	$B(E1)(W.u.)=5.5\times10^{-4}+25-15$
7729.7	1-	7729.3 16	100	0.0	0^{+}	E1	$B(E1)(W.u.)=2.2\times10^{-4}+6-4$
7781.6	1-	7781.2 <i>18</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.2\times10^{-4}+6-3$
7817.5	1-	7817.1 <i>10</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.)=8.1\times10^{-5} +44-22$
7830.0	1-	7829.6 9	100	0.0	0^{+}	E1	$B(E1)(W.u.)=9\times10^{-5}+6-3$
7846.9	(15^+)	1095.5 1346.0		6751.5 6500.8	(14^+) (13^+)		
7866.1	1-	7865.7 <i>17</i>	100	0.0	0+	E1	$B(E1)(W.u.)=9.3\times10^{-5}+43-23$
7890.9	1-	7890.5 18	100	0.0	0^{+}	E1	$B(E1)(W.u.) = 9.8 \times 10^{-5} + 44 - 25$
7920.1	1-	7919.7 <i>17</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=1.5\times10^{-4}+7-4$
7927.6	1-	7927.2 <i>17</i>	100	0.0	0_{+}	E1	$B(E1)(W.u.)=1.4\times10^{-4}+7-4$
7952.1	1-	7951.6 2 <i>1</i>	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.1\times10^{-4}+6-3$
7960.4	1-	7959.9 18	100	0.0	0^{+}	E1	$B(E1)(W.u.)=1.3\times10^{-4}+6-3$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.#	Comments
7979.0	1-	7978.5 8	100	0.0 0+	E1	$B(E1)(W.u.)=2.5\times10^{-4} +6-4$
8017.9	1-	8017.4 23	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.1\times10^{-4} +5-3$
8062.5	1-	8062.0 22	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.3\times10^{-4}+6-3$
8082.7	1-	7521.3 25	100 58	559.103 2+	[E1]	$B(E1)(W.u.)=2.1\times10^{-4}+14-9$
		8084.2 26	85 46	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.4\times10^{-4}+11-7$
8107.3	1-	8106.8 22	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.2\times10^{-4}+6-3$
8132.1	1-	8131.6 22	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.23\times10^{-4}+50-29$
8154.9	1-	8154.4 <i>21</i>	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.07\times10^{-4} +42-25$
8170.1	1-	8169.6 22	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.15\times10^{-4}+45-26$
8198.0	1-	6982.8 <i>15</i>	92 22	1216.154 2+	(E1)	$B(E1)(W.u.)=7.0\times10^{-4}+19-15$
		8196.5 <i>13</i>	100 15	$0.0 0^{+}$	È1	$B(E1)(W.u.)=4.7\times10^{-4}+13-9$
8210.5	1-	8210.0 <i>20</i>	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.7\times10^{-4}+6-4$
8222.5	1-	8222.0 20	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.7\times10^{-4}+9-6$
8251.9	1-	8251.4 23	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=5.6\times10^{-5}+37-17$
8268.5	(16^+)	1517.0		6751.5 (14	+)	
8288.5	1-	8288.0 <i>23</i>	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.8\times10^{-4}+6-4$
8316.7	1-	8316.2 22	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.1\times10^{-4}+6-3$
8340.7	1-	8340.2 10	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.5\times10^{-4}+7-3$
8394.9	1-	8394.4 19	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.55\times10^{-4}+42-31$
8453.5	1-	8453.0 <i>21</i>	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.2\times10^{-4}+7-5$
8486.5	1-	8486.0 18	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=6.8\times10^{-4} +23-14$
8528.1	1-	7970.8 <i>6</i>	100 28	559.103 2+	(E1)	$B(E1)(W.u.)=7.9\times10^{-4}+25-19$
					,	E_{ν} : not used in the fitting procedure due to its poor fit. Level-energy difference=7967.4.
		8526.0 <i>5</i>	97 22	$0.0 0^{+}$	E1	$B(E1)(W.u.)=6.2\times10^{-4} +22-15$
8539.8	1-	7979.7 <i>13</i>	100 29	559.103 2+	[E1]	$B(E1)(W.u.)=4.9\times10^{-4}+15-12$
		8540.4 20	61 24	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.4\times10^{-4}+10-8$
8571.7	1-	8571.2 <i>19</i>	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=3.5\times10^{-4}+15-8$
8573.8	(16^{+})	1489.3		7084.5 (14	+)	
8590.1	1-	8589.6 20	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.6\times10^{-4}+14-7$
8654.9	1-	8654.4 19	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.9\times10^{-4}+13-7$
8709.9	1-	8709.4 <i>13</i>	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=3.4\times10^{-4}+7-5$
8719.5	1-	8719.0 <i>21</i>	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.9\times10^{-4}+10-5$
8770.9	1-	8770.4 23	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.9\times10^{-4}+14-7$
8843.4	1-	8283.3 20	47 29	559.103 2+	[E1]	$B(E1)(W.u.)=2.6\times10^{-4} +28-13$
		8843.2 18	100 38	$0.0 0^{+}$	E1	$B(E1)(W.u.)=4.5\times10^{-4}+40-18$
8864.8	1-	8864.2 20	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=1.9\times10^{-4}+9-5$
8890.8	1-	8890.2 19	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.6\times10^{-4}+10-6$
8918.8	1-	8918.2 <i>19</i>	100	$0.0 0^{+}$	E1	$B(E1)(W.u.)=2.5\times10^{-4}+10-6$

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.#	Comments
8935.6	1-	8935.0 20	100	0.0	0+	E1	$B(E1)(W.u.)=2.0\times10^{-4} +9-5$
9394.7	(17^+)	1547.8		7846.9	(15^{+})		
9963.8	(18^{+})	1695.3		8268.5	(16^{+})		
11147.1	(19^+)	1752.4		9394.7	(17^{+})		
(11154.19)	$2^{+},3^{+}$	8284.0 <i>5</i>	4.1 3	2869.34	$(1^+,2^+)$		
		8293.2 <i>5</i>	3.8 <i>3</i>	2859.781			
		8336.5 5	8.0 9	2817.24	(2^{+})		
		8341.8 5	8.1 9	2812.130			
		8483.7 <i>4</i>	11.2 6	2669.904			
		8639.6 10	0.61 11	2514.681			
		8724.4 5	100 5	2429.131			
		9027.4 13	0.40 10	2127.224			
		9127.3 7	2.45 16	2026.020			
		9365.9 9	2.07 14	1787.655			
		9464.9 9	2.06 14	1688.971			
		9937.5 14	4.7 4	1216.154			
		10031.5 16	1.22 10	1122.279			
		10594.5 25	16.0 9	559.103	0+		
11774 9	(20+)	11153.0 40	1.01 <i>11</i>	0.0			
11774.8	(20^+)	1810.9		9963.8	(18^+)		
13681.3	(22^{+})	1906.5		11774.8	(20^+)		

[†] Additional information 4. ‡ Weighted average of available values from various γ -ray studies. # From $\gamma(\theta)$, $\gamma\gamma(\theta)$, $\gamma(\text{lin pol})$ in $(\alpha,2n\gamma)$, $^{76}\text{As }\beta^-$ and some data in $^{76}\text{Br }\varepsilon$ decay, unless otherwise noted. @ The γ from (γ,γ') ; not given in $(\text{pol }\gamma,\gamma')$. & The γ from $(\text{pol }\gamma,\gamma')$; not given in (γ,γ') . a Multiply placed.

^b Placement of transition in the level scheme is uncertain.

Level Scheme

Level Scheme (continued)

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

 $^{76}_{34}\mathrm{Se}_{42}$

Level Scheme (continued)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

γ Decay (Uncertain) $\frac{1^{(+)}}{(2)}$ $\frac{(7^{-})}{(7^{-})}$ 3752.1 175 fs 50 3716.52 28 ps 7 3696.27 1⁽⁺⁾ (1,2) 3670.2 _ 3657.7_ $73~\mathrm{fs}~8$ 3441.54 3.6 ps 7 3312.04 3262.34 0.14 ns +14-7 12 ps 6 (5-) 3045.79 0.39 ps +28-12 2655.383 0.82 ps +22-15 1787.655 1.29 ps +42-24 3+ 1688.971 3.2 ps +12-6 559.103 11.98 ps +16-40 0.0 stable

 $^{76}_{34}\mathrm{Se}_{42}$

Level Scheme (continued)

Level Scheme (continued)

Intensities: Relative photon branching from each level

81

Level Scheme (continued)

Level Scheme (continued)

Legend

Level Scheme (continued)

Legend

Level Scheme (continued)

$$^{76}_{34}\mathrm{Se}_{42}$$

	Histor	У	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Ameenah R. Farhan, Balraj Singh	NDS 110,1917 (2009)	30-Jun-2009

 $Q(\beta^{-})=-3574 \text{ 4}; S(n)=10497.74 \text{ 17}; S(p)=10398.6 \text{ 18}; Q(\alpha)=-6028.38 \text{ 18}$ 2012Wa38

Note: Current evaluation has used the following Q record -3574 4 10497.7317 10398.418-6028.4 5 2009AuZZ,2003Au03.

S(2n)=17916.59 18, s(2p)=18390.90 19 (2009AuZZ,2003Au03). Values in 2003Au03 are within ≈ 0.1 keV of those in 2009AuZZ. Additional information 1.

Mass measurements: 1985El01, 1982Zu04, 1977De20.

Nuclear structure calculations: 2008Yo07 (high-spin levels, B(E2), shell-model); 2008Ah03 (levels, B(E2), g factor, projected shell model)

See 77 Se(n,n),(n, γ):resonances dataset for 38 resonances between 41.2 eV to 3.91 keV.

⁷⁸Se Levels

Cross Reference (XREF) Flags

	B Muor C ⁷⁸ Br D ⁷⁶ Ge(E ⁷⁶ Ge(F ⁷⁶ Se($β$ ⁻ decay (90.7 min) nic atom $ε$ decay (6.45 min) $(α,2nγ)$ $(^{16}O,^{14}C)$ t,p) $(n,γ)$ E=thermal	I $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ E=112.0 eV 0 $^{78}\mathrm{Se}(\mathrm{p},\mathrm{p'}\gamma),(\alpha,\alpha'\gamma)$ I $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ E=211.6 eV P $^{78}\mathrm{Se}(\alpha,\alpha')$ I $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ E=340.8 eV Q $^{78}\mathrm{Se}(\mathrm{d},\mathrm{d'})$ I $^{77}\mathrm{Se}(\mathrm{n},\gamma)$ E=864.0 eV R Coulomb excitation I $^{77}\mathrm{Se}(\mathrm{d},\mathrm{p})$ S $^{80}\mathrm{Se}(\mathrm{p},\mathrm{t})$ I $^{78}\mathrm{Se}(\mathrm{n},\mathrm{n'}\gamma)$ $^{78}\mathrm{Se}(\mathrm{p},\mathrm{p'}),(\mathrm{pol}\ \mathrm{p},\mathrm{p'})$
$E(level)^{\dagger}$ J^{π}	‡ T _{1/2}	XREF	Comments
0.0 [#] 0 ⁺ 613.727 [#] 3 2 ⁺		ABCDEFG LMNOF	
1308.644 [@] 5 2 ⁴	4.2 ps <i>3</i>	A CD FG KLMNOF	•

⁷⁸Se(e,e): 1988Kh02, 1987Ku21, 1986Kh07.

E(level) [†]	\mathbf{J}^{π} ‡	$T_{1/2}$	XRI	EF	Comments
					average of the two values is also 4.2 ps 3. J^{π} : from L(t,p)=2. Also, L=2 and vector analyzing power in (p,p') and J=2 from circular polarization in (n, γ).
1498.599 9	0+	45 ps 8	A C FG	LMNO qR	XREF: L(1510)q(1510). $T_{1/2}$: from B(E2)(\uparrow) in Coul. ex. J^{π} : 0 from $\gamma\gamma(\theta)$ in (n,γ) ; L(d,p)=1.
1502.825# 13	4+	1.04 ps <i>5</i>	A D G	MNOPqR	μ =1.6 5 (1998Sp03) Q=-0.68 15 (2003Ha15) XREF: q(1510). μ : from transient-field technique in Coul. ex. (1998Sp03). See also 2005St24 compilation. J ^π : $\gamma(\theta)$ and linear polarization in (α ,2n γ). T _{1/2} : weighted average of 1.05 ps 5 from B(E2) in Coul. ex. and 0.9 ps 2 from DSA in (α ,2n γ) (1987Sc07).
1758.689 <i>17</i>	0^{+}		A C G	MNO Q	J^{π} : J=0 from $\gamma \gamma(\theta)$ in (n,γ) ; γ' s to 2^+ .
1853.927 [@] 12	3+	1.2 ps 4	A D G	LMNO	XREF: L(1880). J^{π} : $\gamma(\theta)$ and polarization measurements in $(\alpha,2n\gamma)$. $T_{1/2}$: DSA in $(\alpha,2n\gamma)$ (1987Sc07).
1995.897 8	2+	4.6 ps +32-14	A C FGH	MNO QR	XREF: Q(2030). J ^π : L(t,p)=2; L(p,p')=2; J=2 from circular polarization in (n,γ). T _{1/2} : from B(E2)(↑) in Coulomb excitation.
2190.65 [@] 18	4+	0.7 ps <i>3</i>	D	MN Q	XREF: Q(2220). J^{π} : $\gamma(\theta)$ and polarization measurements in $(\alpha,2n\gamma)$. $T_{1/2}$: DSA in $(\alpha,2n\gamma)$ (1987Sc07).
2267.07 12	(.)		G		J^{π} : γ to 2^+ suggests 0^+ to 4^+ .
2299.8 <i>5</i> 2327.329 <i>19</i>	1,2 ⁽⁺⁾ 2 ⁺	0.28 ps +13-8	A C G	M MNO	J^{π} : γ to 0^+ . J^{π} : M1+E2 γ to 2^+ ; J=2 from $\gamma\gamma(\theta)$ in (n,γ) .
2335.24 <i>5</i> 2361.85 <i>14</i>	0 ⁺		A C G FG	M L	$T_{1/2}$: DSA in $(n,n'\gamma)$. J^{π} : log ft =5.91 from 1^+ ; J=0 from $\gamma\gamma(\theta)$ in (n,γ) . J^{π} : L(t,p)=0. But L(d,p)=1 for E=2360. It is possible that the (t,p) and (d,p) reactions correspond to the 2335 level.
2507.32 ^{&} 5	3-	6.2 ps <i>14</i>	A DEFG	MNOP R	B(E3) \uparrow =0.027 3 (2002Ki06,1974Ba80) B(E3) \uparrow : from Coul. ex. J ^{π} : L(p,p') and vector analyzing power in (p,p'). T _{1/2} : recoil-distance method in (α ,2n γ) (1987Sc07).
2536.94 <i>4</i>	2+	0.055 ps 7	A C FG	MNO	J^{π} : L(t,p)=2. T _{1/2} : DSA in (n,n' γ).
2546.3 <i>3</i>			G		J^{π} : γ to 4 ⁺ suggests 2 ⁺ to 6 ⁺ .
2546.51 [#] 15	6+	0.49 ps <i>14</i>	D	M	J ^{π} : $\gamma(\theta)$ and polarization in (α ,2n γ). T _{1/2} : DSA in (α ,2n γ).
2560? 2629.6 <i>5</i>	(1-,2-,3-)		D	L	 E(level): no uncertainty available. May correspond to adjacent level. J^π: L(d,p)=(2). J^π: γ to 4⁺.
2647.472 <i>13</i> 2682.110 <i>16</i>	(1,2) ⁺ 4 ⁺		A C G A FG	MNO MNO	J^{π} : log ft =6.24 from 1 ⁺ ; γ' s to 2 ⁺ and 3 ⁺ . J^{π} : L(t,p)=4, L(p,p')=4. J^{π} inconsistent with possible primary transition in (n, γ) and log $f^{1}u^{t}$ from 2 ⁻ small, but decay mode of 2682 level is consistent in (n, γ), β^{-} , and (p,p' γ); so only one level appears to Be involved.

E(level) [†]	J^{π}	T _{1/2}	X	REF	Comments
2719.3 5				M	
2735.0 [@] 6	(5 ⁺)	0.62 ps <i>21</i>	D	M	J^{π} : $\gamma(\theta)$ and band assignment in $(\alpha, 2n\gamma)$. $T_{1/2}$: DSA in $(\alpha, 2n\gamma)$ (1987Sc07).
2742.52 ^{&} 14	4-	0.42 ns <i>14</i>	D	N	J ^{π} : $\gamma(\theta)$ and polarization in $(\alpha,2n\gamma)$ (1987Sc07). E2 γ from 6 ⁻ and E1 γ to 4 ⁺ . T _{1/2} : recoil-distance method in $(\alpha,2n\gamma)$ (1987Sc07).
2753.03 <i>18</i> 2754.46 <i>17</i>	0+ 2+		F G	МО	J ^{π} : L(t,p)=0. J ^{π} : γ (circ pol) in (n,γ) ; γ to 0 ⁺ . E(level): from primary transition in (n,γ) . The 757 and 2140 γ 's are not seen in (n,γ) , and the 2156 γ is not seen in $(n,n'\gamma)$ or $(p,p'\gamma)$. It is possible that the γ transitions define more than one level, in particular, the 2753 10 + level reported in (t,p) is perhaps being excited. Transitions from the 2754.46 level are both included in the least-squares fit for determining the energies of other levels.
2838.49 7	(2^{+})		A G	MN	J^{π} : γ' s to 0^+ and 4^+ .
2864.12 7			G	N	J^{π} : γ to 3 ⁺ suggests 1 ⁺ :5 ⁺ .
2889.90 ^{&} 11	5-	18 ps 5	D F	МО	XREF: F(2893). $T_{1/2}$: recoil-distance method in $(\alpha,2n\gamma)$ (1987Sc07). J^{π} : L(t,p)=5; $\gamma(\theta)$ and polarization measurements in $(\alpha,2n\gamma)$.
2898.13 6	2		C G	MN	J^{π} : $\gamma\gamma(\theta)$ in (n,γ) .
2914.7 5	4+	0.24 ns +15-8	F	MNO	$T_{1/2}$: DSA in $(n,n'\gamma)$ (1989Do14). J^{π} : L(t,p)=4.
2949.19 16	4-	>1.4 ps	D _	LMNO	J^{π} : $\gamma(\theta)$ in $(\alpha,2n\gamma)$; $L(d,p)=4$. $T_{1/2}$: DSA in $(\alpha,2n\gamma)$.
3003 <i>9</i> 3005.70 <i>17</i>	3 ⁻		F C G	J MNO	J^{π} : L(t,p)=3.
3013.96 ^a 13	1,2 ⁺ 6 ⁻	3.0 ns 5	C G D F	J MNO	J ^{π} : log ft =6.28 from 1 ⁺ ; γ to 0 ⁺ . J ^{π} : $\gamma(\theta)$ and polarization data in $(\alpha,2n\gamma)$. T _{1/2} : $\gamma\gamma(t)$ in $(\alpha,2n\gamma)$ (1987Sc07).
3039.81 6	$(1^+ \text{ to } 4^+)$		G		J^{π} : γ' s to 2^+ and 3^+ .
3048.6 <i>10</i>	(3-)			NO	J^{π} : L(p,p')=(3); γ to 4 ⁺ .
3061 12	$0^{+}\&5^{-}$		F		J^{π} : L(t,p)=0+5.
3088.7 <i>21</i>	(5^{-}) (0^{+})		f C fG	N	J^{π} : L(p,p')=5. L(t,p)=0+4 for a doublet.
3089.73 <i>15</i> 3130?	$0^+, 1^+, 2^+$		C fG	M L	J^{π} : L(t,p)=0+4 for a doublet; γ to 2 ⁺ . E(level): may Be same as 3090 level. J^{π} : L(d,p)=1.
3133.3 5	3-		F	M	J^{π} : L(t,p)=3.
3139.7 15	4 ⁺		_	NO	J^{π} : L(p,p')=4.
3140.2 [@] 4	(6 ⁺)	0.28 ps +14-7	D		J^{π} : $\gamma(\theta)$ and band assignment in $(\alpha,2n\gamma)$. $T_{1/2}$: DSA in $(\alpha,2n\gamma)$ (1987Sc07).
3144.46 11	3-		A FG	M	J^{π} : L(t,p)=3; γ 's to 2 ⁺ and 4 ⁺ .
3181.9 5	(2) ⁺		f	MN	J^{π} : L(d,p)=1; γ to 0 ⁺ ; L(t,p)=2.
3186.37 <i>14</i>	2+		fG		J^{π} : L(t,p)=2; γ to 2 ⁺ .
3229.71 <i>13</i>	$(1^-,2,3)$		A	M	J^{π} : γ' s to 3 ⁻ and 2 ⁺ ; log ft =6.5 from 2 ⁻ .
3242.68 7	2+		G	MN	J ^{π} : L(p,p')=2. E(level): from primary transition in (n, γ). Deexciting transitions 3241.8 and 2627.87 (doubly placed) are placed by 1979BrZE, with additional transitions reported and placed by 1987Su05 (all from (n, γ)), and give excitation energies of 3242.8 3, 3242.8 2, 3241.5 2, 3243.3 3 and 3243.4 1. The spread in

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XRE	EF	Comments
3254.83 20 3288.27 6 3294.35 23	(0,1,2) ⁺ 1 ⁻ 4 ⁺		C G FG A F	M M N	excitation energies suggests that either one or more transitions are misplaced, or that there is more than one level at this energy. Transitions of energy 2629 and 3243 are reported also in $(n,n'\gamma)$ and placed from a 3242 level. The 1484 γ is not reported in $(n,n'\gamma)$. Transitions from this level are not used in the least-squares fit for determining the energies of the other levels. J^{π} : γ to 2^{+} ; $\log ft = 5.93$ from 1^{+} . J^{π} : $L(t,p) = 1$. XREF: N(3288). J^{π} : $L(t,p) = 4$; $L(t,p)' = 4$.
3306.79 ^{&} 16	6-	11 ps 4	D		J^{π} : $\gamma(\theta)$ and polarization data in $(\alpha,2n\gamma)$.
3309.9 20 3329 10 3372.6 3 3383.69 13 3386.0 5 3391? 8 3411.29 18 3439.6 4 3450.94 14	3 ⁻ 0 ⁺ to 4 ⁺ (2 ⁺) (5 ⁻) 3 ⁻ (1) 0 ⁺		F A C G f f A F G I FG	N L N M N	$T_{1/2}$: recoil-distance method in $(\alpha,2n\gamma)$ (1987Sc07). E(level): multiplet. J^{π} : $L(d,p)=1+4$ suggests a doublet, with opposite parities. J^{π} : $L(p,p')=3$. J^{π} : γ to 2^+ . J^{π} : γ to 2^+ and 0^+ ; $L(t,p)=2+5$ for doublet. J^{π} : $L(t,p)=2+5$ for a doublet. J^{π} : $L(t,p)=2+5$ for 0^+ ; $0^$
3453 <i>4</i>	3-	0.12 4		L N	J^{π} : L(t,p)=0; γ to 2^{+} . J^{π} : L(p,p')=3.
3488.2? 6 3494.40 8 3496.26 11 3522.91& 22	1,2 ⁽⁺⁾	0.12 ps 4	D G A		J^{π} : γ to 6^+ and population in $(\alpha, 2n\gamma)$ suggests $6,7,8^+$. $T_{1/2}$: DSA in $(\alpha, 2n\gamma)$ (1987Sc07). J^{π} : γ to 0^+ . J^{π} : γ' s to 2^+ and 3^- .
3522.91 22 3523.5 5 3527 14 3546 4 3550.15 ^a 24	7- 1,2 ⁽⁺⁾ 1- (2 ⁻ ,3 ⁻ ,4 ⁻) (7 ⁻)	1.4 ps +7 -4 3.5 ps 21	D G F F	L N	J^{π} : $\gamma(\theta)$ in $(\alpha,2n\gamma)$; M1 γ to 6 ⁻ . $T_{1/2}$: from DSA in $(\alpha,2n\gamma)$. J^{π} : γ to 0 ⁺ . J^{π} : L(t,p)=1. J^{π} : L(d,p)=(3). J^{π} : band assignment in $(\alpha,2n\gamma)$.
	` ,	-			$T_{1/2}$: DSA and recoil-distance methods in $(\alpha, 2n\gamma)$.
3585.0 [#] 3 3591.64 <i>15</i>	8 ⁺ (1 ⁻)	0.42 ps <i>14</i>	D FG		J^{π} : $\gamma(\theta)$ and polarization data in $(\alpha,2n\gamma)$. $T_{1/2}$: DSA in $(\alpha,2n\gamma)$. J^{π} : L(t,p)=1, assuming 3598 9 corresponds to 3591.6 level and not 3603.8; γ to 2^+ .
3603.8 <i>10</i> 3624.2 <i>4</i> 3628.1 <i>5</i> 3632.2 <i>4</i>	2 ⁺ 1,2 ⁽⁺⁾ (1 ⁺ ,2 ⁺)		fG fG	MN M	J^{π} : L(p,p')=2; γ to 2^+ . J^{π} : L(t,p)=2 for a possible doublet; γ to 0^+ . J^{π} : γ to 2^+ . J^{π} : γ' s to 0^+ and 3^+ .
3686.50 <i>16</i> 3704.0 [@] 8	3 ⁻ (7 ⁺)	0.83 ps <i>21</i>	FG D	LMN	J ^π : L(t,p)=3; L(d,p)=2. J ^π : $\gamma(\theta)$ and band assignment in $(\alpha,2n\gamma)$.
3711.3 <i>5</i> 3735.03 <i>17</i> 3754 <i>15</i>	(1,2,3) 0 ⁺ to 4 ⁺	-	A G F	N	$T_{1/2}$: DSA in $(\alpha, 2n\gamma)$. J^{π} : log $ft=7.0$ from 2^- ; γ to 2^+ . J^{π} : γ to 2^+ .
3774 4	3-		F	N	E(level): from (p,p') . J^{π} : $L(t,p)=3$; $L(p,p')=3$.
3830 3830.7 [@] 3	1 ⁻ ,2 ⁻ ,3 ⁻ 8 ⁺	0.55 ps <i>14</i>	D	L	J ^{π} : L(d,p)=2. J ^{π} : $\gamma(\theta)$ and polarization measurements in $(\alpha,2n\gamma)$. E(level): the 8 ⁺ member of β band is either 3831 or 4121 level. T _{1/2} : DSA in $(\alpha,2n\gamma)$.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XR	EF	Comments
3881 <i>4</i> 3894.55 <i>15</i>	3 ⁻ 2 ⁺		FG	N	J^{π} : L(p,p')=3. J^{π} : L(t,p)=2.
3933 9	2+		F		J^{π} : L(t,p)=2.
3959.93 24	$1,2^{(+)}$		G		J^{π} : γ to 0^+ .
3995 <i>4</i>	5-		EC	N	J^{π} : $L(p,p')=5$.
3999.33 <i>15</i> 4037.01 <i>21</i>	1 ⁻ (1 ⁻ ,3 ⁻)		FG f G		J^{π} : L(t,p)=1. J^{π} : L(t,p)=1+3 for a doublet; γ to 2^+ .
4038 10	$(1^-,3^-)$		f		J^{π} : L(t,p)=1+3 for a doublet, γ to Z . J^{π} : L(t,p)=1+3 for a doublet.
4048.0 ^{&} 6	8-	0.9 ps <i>3</i>	D		J^{π} : $\gamma(\theta)$ and polarization data in $(\alpha,2n\gamma)$.
.0.0.0		ors be c	_		$T_{1/2}$: DSA in $(\alpha, 2n\gamma)$.
4050 4	(5^{-})			N	$J^{\pi}: L(p,p')=(5).$
4079.7 <i>3</i>	$1,2^{(+)}$		G		J^{π} : γ to 0^+ .
4106 12	1-		F	_	J^{π} : $L(t,p)=1$.
4120?	0 ⁻ ,1 ⁻ 8 ⁺	>0.7 ps	D	L	J^{π} : L(d,p)=0. J^{π} : $\gamma(\theta)$ and polarization data in $(\alpha,2n\gamma)$.
4121.2 3	8.	>0.7 ps	D		$E(\text{level})$: this level may Be the 8^+ member of β band, although,
					3831 level is presently assigned as the 8 ⁺ member.
					$T_{1/2}$: DSA in $(\alpha, 2n\gamma)$. Upper limit is <0.35 ns from
					pulsed-beam γ -timing in $(\alpha,2n\gamma)$.
4122 4	4 ⁺		F	N	E(level): weighted average from (p,p') and (t,p) .
4153.10 <i>16</i>	(1)		GI		J^{π} : $L(t,p)=4$; $L(p,p')=4$. J^{π} : γ from 0^- resonance.
4155 4	3-		F	N	J^{π} : $L(p,p')=3$.
			_		E(level): weighted average from (p,p') and (t,p) .
4181.85 <i>14</i>	0^{+}		FG		J^{π} : L(t,p)=0.
4190?	0-,1-			L	J^{π} : $L(d,p)=0$.
4214.1 ^a 4	(8-)	>1.4 ps	D		J^{π} : $\gamma(\theta)$ and band assignment in $(\alpha, 2n\gamma)$.
4224 10	3-		F		$T_{1/2}$: DSA in $(\alpha,2n\gamma)$. E(level): an unplaced 6274.40 <i>16</i> transition in (n,γ) , if a
.22 . 10			-		primary, would define a level at 4222.75 17, but the transition
					would Be 1 ⁻ to 3 ⁻ .
10.15.1.5	(1)		_		J^{π} : L(t,p)=3.
4245.4 <i>5</i> 4253.11 <i>12</i>	(1) (2 ⁺)		I fG		J^{π} : γ from 0^- resonance. J^{π} : $L(t,p)=5+2$ for a doublet; γ' s to 2^+ .
4253.64 17	(5^{-})		f	N	E(level): from (p,p') .
1233.0117	(5)		-		J^{π} : L(t,p)=5+2 for a doublet; L(p,p')=(4) seems inconsistent
					unless S=1 is involved.
4265 10	0+		F		J^{π} : L(t,p)=0.
4297.38 15	2+		FG		J^{π} : L(t,p)=2.
4341.61 <i>13</i> 4345 <i>11</i>	1,2 ⁽⁺⁾ 3 ⁻		G F		J^{π} : γ to 0^+ . J^{π} : $L(t,p)=3$.
4366.61 15	(1)		fG I	L	J^{π} : L(t,p)=3+1 for a doublet; L(d,p)=2; γ' s to 0 ⁺ and 2 ⁺ ; γ
	()				from 0^- resonance.
4369 11	(3-)		f		J^{π} : L(t,p)=3+1 for a doublet.
4386.68 13	$(1,2^+)$ 2^+		G		J^{π} : γ to 0 ⁺ . Doubly-placed γ to 0 ⁺ .
4409 11	2.		F		E(level): an unplaced 6091.81 18 transition in (n,γ) , if a primary, would define a level at 4405.65 19.
					J^{π} : L(t,p)=2.
4412.02 ^{&} 24	(9-)		D		J^{π} : band assignment in $(\alpha, 2n\gamma)$.
4424 4	(2+)		_	N	E(level): an unplaced 6077.24 18 transition in (n,γ) , if a
					primary, would define a level at 4420.22 19.
1110 51 15	1.0(1)		_		J^{π} : L(p,p')=(2).
4448.24 15	$1,2^{(+)}$		G		J^{π} : γ' s to 0^+ and 2^+ .
4451 <i>11</i> 4468.6 <i>4</i>	$(0^+ \& 3^-)$ $1,2^{(+)}$		F G		J^{π} : L(t,p)=0+3. J^{π} : γ to 0 ⁺ .
11 00.0 <i>4</i>	1,4		G		<i>J</i> . γ ιο <i>O</i> .

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XI	REF	Comments
4483 11	4+	<u> </u>	F		J^{π} : L(t,p)=4.
			•	T M	J^{π} : L(d,p)=2. L(p,p')=(3).
4493 4	(3)		-	L N	
4509 11	2+		F		J^{π} : $L(t,p)=2$.
4528.8 <i>4</i>			G		J^{π} : 0^+ to 4^+ from possible γ to 2^+ .
4557 <i>4</i>				N	
4569 11	$(0^+ & 4^+)$		F		E(level): an unplaced 5932.03 21 transition in (n,γ) , if a primary, would define a level at 4565.45 22. J^{π} : L(t,p)=0+4.
4591 <i>11</i>	(3)		F	L	E(level): from (t,p). J^{π} : L(t,p)=(3); L(d,p)=2.
4616 <i>11</i>	4+		F		J^{π} : L(t,p)=4.
4622 <i>4</i>	5-			N	J^{π} : L(p,p')=5.
			ъ.		
4625.1 [#] 5	(10^{+})		D		J^{π} : band assignment in $(\alpha, 2n\gamma)$.
4639 11	3-		F		J^{π} : $L(t,p)=3$.
4672.8 <i>3</i>			G		
4684.30 17			G		
4689.8 <i>3</i>	(2^{+})		fG		J^{π} : γ to 0^{+} ; $L(t,p)=2$.
4697.07 <i>13</i>	(2^{+})		fG		J^{π} : γ to 0^+ ; $L(t,p)=2$.
4723.21 18	2+		FG		
	_			37	J^{π} : L(t,p)=2.
4758 11	$4^{+}\&1^{-}$		F	N	XREF: N(4741).
					E(level): doublet from mixed L-transfer.
					J^{π} : $L(p,p')=4$; $L(t,p)=4+1$.
4786.9 [@] 5	(10^{+})	>1.4 ps	D		J^{π} : $\gamma(\theta)$, pol in $(\alpha,2n\gamma)$.
	()	P.	_		$T_{1/2}$: DSA in $(\alpha, 2n\gamma)$.
4787.93 <i>21</i>	(1)		G	L	J^{π} : L(d,p)=0; γ to 2 ⁺ .
	0+			L	
4791.5 5			FG		J^{π} : $L(t,p)=0$.
4811.5 <i>3</i>	2+		FG		J^{π} : L(t,p)=2.
4819.2 ^a 6	(9-)	0.9 ps <i>3</i>	D		J^{π} : band assignment in $(\alpha,2n\gamma)$. $T_{1/2}$: DSA in $(\alpha,2n\gamma)$.
4857.0 [@] 9	(9+)	1.1 ps 4	D		J^{π} : $\gamma(\theta)$ and band assignment in $(\alpha, 2n\gamma)$. $T_{1/2}$: DSA in $(\alpha, 2n\gamma)$.
4857 11	1-		F		J^{π} : $L(t,p)=1$.
4879 11	3-		F		J^{π} : L(t,p)=3.
4902 4	3-		_	L N	J^{π} : L(p,p')=3; L(d,p)=2.
4904 10	2+		F	LN	J^{π} : L(t,p)=2.
	2 ⁺				
4944 11			F		J^{π} : L(t,p)=2.
4957.3 <i>3</i>	$1,2^{(+)}$		G		J^{π} : γ to 0^+ .
4972.3 <i>3</i>	1-		FG	L	XREF: F(4980)L(4970).
					J^{π} : L(t,p)=1; L(d,p)=2.
4998.3 5			G		
5004.65 23	$1,2^{(+)}$		G		J^{π} : γ' s to 0^+ and 2^+ .
5022.14 <i>17</i>	-,-		G		- ,
5029.63 24	2+		FG		J^{π} : L(t,p)=2.
	2				$J \cdot L(t,p)-2$.
5055 12			F		WDEE B(5001)
5090.8 <i>3</i>			FG		XREF: F(5081).
5094.8 8			D		
5101.9 5			FG		
5120?	$0^{-},1^{-}$			L	J^{π} : L(d,p)=0.
5126.52 <i>16</i>	(2,3,4)		FG		J^{π} : γ' s to 2^+ and 3^+ ; multiply-placed γ to 4^+ .
5136? 15			F		E(level): may Be same as 5126 level.
5164.05 16			FG		XREF: F(5169).
J107.0J 10			rd		
5100 5 5 55	1(±) 2(±)				J^{π} : doubly-placed γ' s to 2^+ .
5180.75 22	$1^{(+)}, 2^{(+)}$		FG		J^{π} : γ' s to 0^+ and 3^+ .
5205 <i>15</i>	1-,2-,3-		F	L	XREF: L(5210).
					J^{π} : L(d,p)=2.

E(level) [†]	Jπ‡	T _{1/2}	XI	REF	Comments
5235 15			F		
5247 <i>15</i>			F		
5290.22 18	$1,2^{(+)}$		G		J^{π} : γ' s to 0^+ and 2^+ .
5295.2 <i>3</i>	3-		FG	N	J^{π} : $L(p,p')=3$.
5339.7 <i>3</i>	$1,2^{(+)}$		G		J^{π} : γ' s to 0^+ and 2^+ .
5356.51 <i>17</i>	(2^{+})		G	L	J^{π} : L(d,p)=(2); γ to 2 ⁺ .
5391.0 <i>3</i>			FG		
5422 <i>15</i>			F		
5440.3 <i>3</i>			G		
5451.2 <i>4</i>	$1,2^{(+)}$		G		J^{π} : γ to 0^+ .
5480?	$(1^+, 2^+, 3^+)$			L	J^{π} : L(d,p)=(2).
5513.26 <i>19</i>	$1,2^{(+)}$		G		J^{π} : γ to 0^+ ; multiply-placed γ to (4^+) .
5580 <i>15</i>			F		
5610?	2+			L	J^{π} : L(d,p)=2.
5689.1 8			D		
5709 <i>15</i>			F		
5783.8 [#] 7	(12^{+})	>0.6 ps	D		J^{π} : band assignment.
					$T_{1/2}$: DSA in $(\alpha, 2n\gamma)$.
5837 <i>15</i>			F		
6161 <i>15</i>			F		

[†] From (n,γ) , $(\alpha,2n\gamma)$ or other γ -ray studies if populated in these sets. In addition to the states shown, broad peaks are reported at 1450, 1790, and 3560 in (16 O, 14 C), and at 2360, 2550, 2730, 2830, 2990, 3170, 3270, 3370, 3500, and 3560 in (d,d'). Target J^{π} =1/2⁻ for L(d,p) and 0⁺ for L(t,p).

[#] Band(A): g.s. band.

[@] Band(B): Probable β band.

[&]amp; Band(C): Probable octupole band.

^a Band(D): $\Delta J=1$ band based on 6⁻.

						<u> </u>	
$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.‡	δ^{\ddagger}	Comments
613.727	2+	613.725 3	100	$0.0 0^{+}$	E2		B(E2)(W.u.)=33.5 8
							Mult.: from $\gamma(\theta)$ and $\gamma(\text{pol})$ in $(\alpha, 2n\gamma)$.
1308.644	2+	694.916 <i>4</i>	100.0 20	613.727 2+	E0+M1+E2	+3.5 5	B(M1)(W.u.)=0.00067 19; B(E2)(W.u.)=22.2 18
							Mult., δ : mult from $\gamma(\theta)$ in Coul. ex., δ from (n,γ) . Others: +4.0
							7 in $(\alpha, 2n\gamma)$, +2.7 +9-6 in Coulomb excitation.
							$X(E0/E2)=0.10 1 \text{ in } (n,\gamma).$
		1308.59 <i>4</i>	75.0 <i>7</i>	$0.0 0^{+}$	E2		B(E2)(W.u.)=0.76 6
1498.599	0_{+}	884.861 <i>15</i>	100	613.727 2+	E2		B(E2)(W.u.)=1.17 21
		1498 <mark>b</mark>		$0.0 0^{+}$	[E0]		$X(E0/E2) \le 0.07$ in (n,γ) .
1502.825	4+	889.099 12	100	613.727 2+	E2		B(E2)(W.u.)=49.5 24
							Mult.: from $\gamma(\theta)$ in $(\alpha, 2n\gamma)$ and Coul. ex.
1758.689	0+	260.1 ^b		1498.599 0+	[E0]		$X(E0/E2) \le 1.36$ in (n,γ) .
1750.007	O	449.94 6	3.7 4	1308.644 2+			A(E0/E2/31.50 iii (ii, y).
		1144.959 <i>17</i>	100 4	613.727 2+	(E2)		Mult.: Q from $\gamma\gamma(\theta)$. $\Delta\pi$ =no from level scheme.
		1758 <mark>b</mark>	100 4	$0.0 0^{+}$	(E2)		
1853.927	3 ⁺	351.49 <i>17</i>	2.7 4	1502.825 4+	[EU]		$X(E0/E2) \le 0.27$ in (n,γ) .
1833.927	3	545.300 <i>13</i>	51 7	1302.823 4	M1+E2	+0.42 4	B(M1)(W.u.)=0.032 12; B(E2)(W.u.)=25 10
		343.300 13	31 /	1300.044 2	WIITE2	TU.42 4	δ : from $\gamma(\theta)$ in $(n,n'\gamma)$. Others: $+0.45\ 10$ in $(\alpha,2n\gamma)$.
							Mult.: from angular distribution and polarization measurements in
							1987Sc07 and 1982Ma45.
		1240.13 <i>3</i>	100 10	613.727 2+	M1+E2	-0.41 +13-31	$B(M1)(W.u.)=(0.0054 \ 20); B(E2)(W.u.)=(0.8 \ 5)$
		1240.13 3	100 10	013.727 2	WII+E2	-0.41 +13-31	Mult., δ : M1+E2 from $\gamma(\theta, \text{pol})$ in $(\alpha, 2n\gamma)$; δ from $\gamma\gamma(\theta)$ in
							(n, γ).
1995.897	2+	497.294 <i>7</i>	11 2	1498.599 0+	[E2]		B(E2)(W.u.)=10 +4-8
1993.097	2	687.254 7	57 5	1308.644 2+		-0.30 19	B(M1)(W.u.)=0.0034 +12-25; B(E2)(W.u.)=0.8 +10-8
		007.234 7	31 3	1300.044 2	WII+E2(+E0)	-0.30 19	Mult., δ : from $\alpha(K)$ exp and $\gamma\gamma(\theta)$ (1987Su05) in (n,γ) ; δ =0.12 to
							0.49; sign is negative.
							$X(E0/E2)=0.26$ to 9.5 in (n,γ) .
		1382.16 <i>3</i>	58 5	613.727 2+	E0+M1+E2	+0.44 10	B(M1)(W.u.)=0.00039 +13-28; $B(E2)(W.u.)=0.05 +3-4$
		1302.10 3	30 3	013.727 2	LOTIVITILE	10.44 10	$X(E0/E2)=11.4$ in (n,γ) .
							Mult., δ : from $\alpha(K)$ exp and $\gamma\gamma(\theta)$ (1987Su05) in (n,γ) .
		1995.87 8	100 4	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.09 +3-6
2190.65	4+	688.0 <i>3</i>	100 7	1502.825 4+			B(M1)(W.u.)=0.04 3
	-	881.7	<276	1308.644 2+	[E2]		B(E2)(W.u.)=40 +50-40
		301.7		-2000.0 2	[]		E_{γ} : from $(n,n'\gamma)$.
		1576 <i>1</i>	24 7	613.727 2+			$T = \{ (T, T) \}$
2267.07		271.1 8	24 8	1995.897 2+			
		958.37 19	40 6	1308.644 2+			
		1653.28 <i>15</i>	100 9	613.727 2+			
2299.8	$1,2^{(+)}$	2299.8 5	100	$0.0 0^{+}$			
2327.329	2+	331.2 3	1.6 3	1995.897 2+			
	-	221.20	1.00	1,,0.0,1 2			

γ (⁷⁸Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${ m I}_{\gamma}{}^{\dagger}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
2327.329	2+	568.7 <i>4</i>	2.2 3	1758.689 0+	[E2]		B(E2)(W.u.)=32 +11-16
		824.8 [#] 4	2.0 5	1502.825 4+			
		1018.65 5	6.1 3	1308.644 2+			
		1713.55 <i>3</i>	100 6	613.727 2+	E0+M1+E2	-1.85	B(M1)(W.u.)=0.0031 +17-20; B(E2)(W.u.)=4.5 +15-22
							Mult.: from $\alpha(K)$ exp in (n,γ) (1987Su05).
							$X(E0/E2)=1.21 \ 23 \text{ in } (n,\gamma).$
		2327.26 6	8 4	$0.0 0^{+}$	[E2]		B(E2)(W.u.)=0.10 +6-7
2335.24	0^{+}	575.0 ^{#b} 10	<41	1758.689 0 ⁺			
		1026.59 20	10.8 8	1308.644 2+			
		1721.50 5	100 6	613.727 2+	E2		Mult.: from $\alpha(K) \exp=0.00015 \ 5$ in (n,γ) (1987Su05).
2361.85	(0^{+})	1748.21 <i>15</i>	100	$613.727 \ 2^{+}$			
2507.32	3-	1004.73 20	20 4	1502.825 4+	[E1]		B(E1)(W.u.)=9.E-63
		1198.6 <i>3</i>	100 4	1308.644 2+	(E1(+M2))	+0.09 5	$B(E1)(W.u.)=2.5\times10^{-5} 6; B(M2)(W.u.)=(0.6 +8-6)$
							Mult.: from $\gamma(\theta)$ in $(\alpha,2n\gamma)$ (1987Sc07) and γ from 3 ⁻ to 2 ⁺ .
							δ : from $\gamma(\theta)$ in $(n,n'\gamma)$.
		1893.46 <i>6</i>	18 <i>6</i>	$613.727 \ 2^{+}$	(E1)		$B(E1)(W.u.)=1.1\times10^{-6} 5$
							Mult.: D+Q, $-0.05 < \delta < -3.0$ from $\gamma \gamma(\theta)$ in (n, γ) . $\Delta \pi$ =yes from level
							scheme.
2536.94	2+	203.3 [#] 5	4.1 10	$2335.24 0^+$			
		1039.3 <i>3</i>	3 1	1498.599 0+	[E2]		B(E2)(W.u.)=10 4
		1228.25 <i>17</i>	28 2	1308.644 2+			
		1923.15 <i>4</i>	100 6	613.727 2+	(M1+E2)	-1.1 <i>11</i>	Mult.: D+Q, δ <2.2, sign=– from $\gamma\gamma(\theta)$ in (n,γ) . $\Delta\pi$ =no from level
2546.3		279.0 8	100 17	2267.07			scheme.
2340.3				2267.07			
	c.1	1043.6 4	10 & 4	1502.825 4+	774		
2546.51	6 ⁺	1043.9 <i>3</i>	100	1502.825 4 ⁺	E2		B(E2)(W.u.)=47 14
2629.6		1106.0.5	100	1502.825 4+			Mult.: from ce measurements in $(\alpha,2n\gamma)$.
2629.6 2647.472	$(1,2)^+$	1126.8 <i>5</i> 286.4 <i>4</i>	15 5	2361.85 (0 ⁺)			
2071.712	(1,4)	320.3 3	11 4	2327.329 2+			
		651.573 11	43 3	1995.897 2 ⁺			
		793.5 3	14.2 20	1853.927 3 ⁺			
		1338.78 5	100 7	1308.644 2+			
2682.110	4+	174.2 3	2.2 5	2507.32 3-			E_{γ} : from β^- decay.
		354.735 25	21 4	2327.329 2+			,
		686.3 2	12 2	1995.897 2+			E_{γ} : from β^- decay.
		828.189 <i>13</i>	100 8	1853.927 3 ⁺	(M1+E2)	+1.0 7	Mult.: D+Q, δ =+0.32 to +1.63 from $\gamma\gamma(\theta)$ in (n,γ) . $\Delta\pi$ =no from level
							scheme.
		1373.48 6	54 <i>4</i>	1308.644 2+			
		2068.4 <i>4</i>	6.5 14	$613.727 \ 2^{+}$			
2719.3		1410.6 5	100	1308.644 2+			

9

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	α@	Comments
2735.0	(5^{+})	1232.2 6	100 14	1502.825 4+				
2742.52	4-	551.9 2	100 6	2190.65 4+	E1			$B(E1)(W.u.)=3.1\times10^{-6} 11$
		889 ^b 1	10	1853.927 3 ⁺	[E1]			$B(E1)(W.u.)=7.4\times10^{-8} 25$
					. ,			I_{γ} : from coin. No uncertainty given.
		1239.4 <i>3</i>	59	1502.825 4+	[E1]			$B(E1)(W.u.)=1.6\times10^{-7}$ 6
								I_{γ} : from coin. No uncertainty given.
2754.46	2+	757.2 5	35 8	1995.897 2+				E_{γ} : from $(n,n'\gamma)$. Observed only in $(n,n'\gamma)$ and $(p,p'\gamma)$.
		1256.7 <i>4</i>	38 8	1498.599 0 ⁺				E_{γ} : reported only in (n,γ) .
		1445.8 2	100 <i>15</i>	1308.644 2+				
		2140.8 9	35 11	$613.727 \ 2^{+}$				E_{γ} : from $(n,n'\gamma)$. Observed only in $(n,n'\gamma)$ and $(p,p'\gamma)$.
2838.49	(2^{+})	156.6 <i>3</i>	3.7 9	2682.110 4+				E_{γ} : from ⁷⁸ As β^- decay only.
		503.7 2	16.7 16	2335.24 0+				E_{γ} : from ⁷⁸ As β^- decay only.
		842.36 19	32 4	1995.897 2+				
		1079.67 22	46 <i>4</i>	1758.689 0+				I_{γ} : $I_{\gamma}(842\gamma)$: $I_{\gamma}(1080\gamma)$: $I_{\gamma}(1530\gamma)$ from (n,γ) . Values from $(n,n'\gamma)$
								are 233 67:100 33:100 33 and from β^- decay are 43 5:65 5: 100 7
		1529.60 <i>17</i>	100 6	1308.644 2+				
		2224.7 <i>3</i>	37 5	613.727 2+				E_{γ} : from ⁷⁸ As β^- decay only.
		2839.0 <i>3</i>	2.2 11	$0.0 0^{+}$				E_{ν} : from ⁷⁸ As β^- decay only.
2864.12		504.4 ^b 2	43 10	2361.85 (0+)				E_{γ} : very poor fit in level scheme. Level-energy difference=502.3. Placement is suspect.
		1010.19 6	100 10	1853.927 3 ⁺				
2889.90	5-	343.5 2	15.9 8	2546.51 6 ⁺	E1			$B(E1)(W.u.)=5.4\times10^{-5} 16$
2007.70		5 .5.6 2	10.5	20.001				Mult.: from $\gamma(\theta)$ and polarization data in $(\alpha,2n\gamma)$.
		382.42 17	33.3 15	2507.32 3-	E2		0.00650	B(E2)(W.u.)=43 13
		1387.4 2	100 5	1502.825 4+	E1			$B(E1)(W.u.)=5.2\times10^{-6}$ 15
		100/11.2	1000	10021020 .				Mult.: from $\gamma(\theta)$ and polarization data in $(\alpha, 2n\gamma)$.
2898.13	2	391.3 [#] 5	5 2	2507.32 3-				
2070.13	2	902.3# 3	11 3	1995.897 2 ⁺				
		902.3" 3 2284.37 <i>6</i>	11 3	613.727 2+	D+Q	-0.9 8		Mult: from $\alpha\alpha(\theta)$ in $(n\alpha)$ $\delta=0.11$ to 1.60; sign=pagetive
2914.7	4+	1411.9 <i>5</i>	100 12	1502.825 4+	D+Q	-0.9 8		Mult.: from $\gamma\gamma(\theta)$ in (n,γ) , δ =0.11 to 1.69; sign=negative.
2949.19	4 4 ⁻	441.7 2	100 11	2507.32 3	M1+E2	-0.6 3		B(M1)(W.u.)<0.076; B(E2)(W.u.)<250
<i>∠9</i> 1 9.19	7	771./ 2	100 11	2301.32 3	W11+L2	-0.0 3		Mult., δ : from $(\alpha, 2n\gamma)$.
		1095.2 5	56	1853.927 3 ⁺	[E1]			$B(E1)(W.u.) < 5.1 \times 10^{-5}$
		1446.7 5	50 67	1502.825 4+	[E1]			B(E1)(W.u.)<2.6×10 ⁻⁵
2005.50	1.2+				[E1]			D(E1)(W.U.)<2.0X10
3005.70	1,2+	2391.93 ^{&} 17	100 & 11	613.727 2+				78
2012.06	<i>(</i> =	3005.9 10	13 2	$0.0 0^{+}$	3.61		0.0755	E_{γ} : observed only in ⁷⁸ Br ε decay.
3013.96	6-	124.1 <i>I</i>	32.3 16	2889.90 5-	M1		0.0566	B(M1)(W.u.)=0.00077 14
		271 4 1	100.2	27.42.52	(E2)		0.0011	Mult.: from $(\alpha, 2n\gamma)$.
		271.4 <i>I</i>	100 3	$2742.52 4^-$	(E2)		0.0211	B(E2)(W.u.)=4.0 7
								Mult.: from $(\alpha,2n\gamma)$.

$E_i(level)$	\mathtt{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	Comments
3013.96	6-	467.4 2	24.2 16	2546.51 6+	E1		B(E1)(W.u.)= $1.8 \times 10^{-7} 4$ Mult.: from $(\alpha, 2n\gamma)$.
3039.81	$(1^+ \text{ to } 4^+)$	1043.6 & 4	14 <mark>&</mark> 5	1995.897 2+			
	,	1186.02 <i>12</i>	52 7	1853.927 3 ⁺			
		1731.11 7	100 7	1308.644 2+			
3048.6	(3^{-})	1545.8 10	100	1502.825 4+			
3089.73	(0^{+})	2475.96 15	100	613.727 2+			
3133.3	3-	2519.5 5	100	613.727 2+			
3139.7	4+	1831.0 <i>15</i>	100	1308.644 2+			
3140.2	(6^+)	593.7 5	61 6	2546.51 6 ⁺	M1(+E2)	$-0.2\ 2$	B(M1)(W.u.)=0.14 +4-8; $B(E2)(W.u.)=(20 +40-20)$
	. ,	949.6 <i>4</i>	100 12	2190.65 4+	[E2]		B(E2)(W.u.)=82 +24-43
3144.46	3-	462.2 2	41 4	2682.110 4+	. ,		
		637.1 2	14 2	2507.32 3-			
		1290.6 6	7 2	1853.927 3 ⁺			
		1642.0 3	11 3	1502.825 4+			
		1835.8 2	100 7	1308.644 2+			E_{γ} : weighted average from β^- decay and $(n,n'\gamma)$. E=1834.58 23 is reported in (n,γ) but is probably not the same transition.
3181.9	$(2)^{+}$	3181.8 5	100 17	$0.0 0^{+}$			
3186.37	2+	2572.60 14	100	613.727 2+			
3229.71	$(1^-,2,3)$	722.4 2	11 <i>1</i>	2507.32 3-			
		1732 ^b 1		1498.599 0 ⁺			E_{γ} : from $(n,n'\gamma)$.
		1921.3 3	100 24	1308.644 2+			<i>Ey.</i> Hom (n,n y).
		2615.8 2	52 8	613.727 2+			
3242.68	2+	595.89 10	28 3	2647.472 (1,2)+			
32 12.00	-	976.31 23	15 <i>3</i>	2267.07			
		1387.56 20	36 <i>4</i>	1853.927 3 ⁺			
		1484.12 17	94 6	1758.689 0 ⁺			
		1744.24 23	28 4	1498.599 0 ⁺			
		2627.87 ^{&} 14	82 ^{&} 10	613.727 2+			
		3241.8 <i>4</i>	100 14	$0.0 0^{+}$			
3254.83	(0.1.2)+			613.727 2+			
3234.83	$(0,1,2)^+$ 1	2641.05 <i>20</i> 1292.49 <i>10</i>	100 22 <i>3</i>	1995.897 2 ⁺			
3200.21	1						
		1979.57 8	6.9 23	1308.644 2 ⁺			
2204.25	4+	2674.36 <i>13</i>	100 15	613.727 2+			
3294.35	4	756.9 <i>3</i>	5 1	2536.94 2 ⁺			
		968.2 7	9 3	2327.329 2+			
		1440.9 7	19 6	1853.927 3 ⁺			
		1791.9 7	56 6	1502.825 4 ⁺			
		2681.3 7	100 <i>6</i>	$613.727 \ 2^{+}$			

$E_i(level)$	J_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.‡	δ^{\ddagger}	$\alpha^{\textcircled{@}}$	Comments
3306.79	6-	357.3 <i>3</i>	21.4 18	2949.19	4-	E2		0.00816	B(E2)(W.u.)=50 <i>19</i>
									Mult.: from $(\alpha,2n\gamma)$.
		416.9 2	100 6	2889.90	5-	M1+E2	-0.4 I		B(M1)(W.u.)=0.012 5; B(E2)(W.u.)=15 9
		564.4 <i>4</i>	27 4	2742.52	4-	E2			B(E2)(W.u.)=6.3
		760 4 3	12.0.10	2546.51	~ ±	(T-1)			Mult.: Q from $\gamma(\theta)$ in (n,γ) and RUL.
		760.4 <i>3</i>	42.9 18	2546.51	6+	(E1)			B(E1)(W.u.)= 1.7×10^{-5} 7
3372.6	3-	2064.1 5	100 33	1308.644	2+				Mult.: from $(\alpha, 2n\gamma)$.
3312.0	3	2758.8 <i>3</i>	100 33	613.727					
3383.69	0+ to 4+	2769.91 <i>13</i>	100 17	613.727					
3386.0	(2^{+})	2772.0 5	100 25	613.727					
2200.0	(2)	3387 <i>I</i>	50 13	0.0	0^{+}				
3411.29	3-	903.6 4	39 13	2507.32	3-				
		2797.6 2	100 13	613.727					
3439.6	(1)	3439.5 <i>4</i>	100	0.0	0_{+}				
3450.94	0+	2837.16 <i>14</i>	100	613.727	2+				
3488.2?		941.7 5	100	2546.51	6+				
3494.40	$1,2^{(+)}$	655.90 7	100 8	2838.49	(2^{+})				
		1159.09 <i>10</i>	82 22	2335.24	0_{+}				
		1499.1 <i>3</i>	65 <i>16</i>	1995.897					
3496.26		657.9 2	58 6	2838.49	(2^{+})				
		959.0 2	100 10	2536.94	2+				
		988.2 4	20 5	2507.32					
		1169.5 4	26 7	2327.329					
2522.01	7-	2187.8 2	78 8	1308.644		3.61		0.01227	
3522.91	7-	216.1 2 509 <i>I</i>	12.9 <i>16</i> 64	3306.79 3013.96	6 ⁻	M1		0.01327	
		633.0 5	100	2889.90	5 ⁻	E2			
		976.7 <i>4</i>	53 5	2546.51	6 ⁺	(E1)			
3523.5	$1,2^{(+)}$	3523.4 5	100	0.0	0+	(L1)			
3550.15	(7^{-})	536.2 2	100	3013.96	6-				
3585.0	8+	1038.6 3	100	2546.51	6 ⁺	E2			B(E2)(W.u.)=56 19
	-	- 300.0 0	-00		•	_ _			Mult.: from ce data in $(\alpha, 2n\gamma)$.
3591.64	(1^{-})	2977.85 15	100	613.727	2+				
3603.8	2+	2990 <i>1</i>	100	613.727					
3624.2	$1,2^{(+)}$	3624.1 & 4	100 <mark>&</mark>	0.0	0^{+}				
3628.1	,	2319.4 5	100	1308.644	2+				
3632.2	$(1^+,2^+)$	1778.3 <i>5</i>		1853.927					
	•	1873.5 5		1758.689	0_{+}				
		3632 <i>1</i>		0.0	0_{+}				
3686.50	3-	3072.71 <i>16</i>	100	613.727	2+				

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\dagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	δ^{\ddagger}	$\alpha^{@}$	Comments
3704.0	(7+)	969.0 5	100 8	2735.0	(5 ⁺)	E2			B(E2)(W.u.)=36 10 Mult.: from $(\alpha,2n\gamma)$.
		1158.7 ^{ab} 5	12 a	2546.51	6+				
3711.3	(1,2,3)	3097.5 5	100	613.727					
3735.03	0^{+} to 4^{+}	3121.24 <i>17</i>	100	613.727	2+				
3830.7	8+	245.6 2	33 2	3585.0	8+	M1		0.00960	B(M1)(W.u.)=0.67 18 Mult.: from $(\alpha, 2n\gamma)$.
		1284.1 <i>3</i>	100 6	2546.51	6+	E2			B(E2)(W.u.)=11 $\stackrel{?}{3}$ Mult.: from $(\alpha,2n\gamma)$.
3894.55	2+	2391.93 ^{&} <i>17</i>	100 <mark>&</mark> <i>17</i>	1502.825	4+				
		3893.7 3	5.8 17	0.0	0+				
3959.93	$1,2^{(+)}$	3345.8 <i>4</i>	86 <i>15</i>	613.727					
	-,-	3960.0 <i>3</i>	100 15	0.0	0+				
3999.33	1-	1672.8 <i>4</i>	74 29	2327.329					
		2003.1 6	74 29	1995.897					
		2240.1 8	58 29	1758.689	0_{+}				
		3385.88 21	100 6	613.727	2+				
		3998.2 <i>3</i>	19 <i>3</i>	0.0	0_{+}				
4037.01	$(1^-,3^-)$	3423.20 <i>21</i>	100	613.727	2+				
4048.0	8-	741.2 5	100	3306.79	6-	E2			B(E2)(W.u.)=140 50 Mult.: from $(\alpha,2n\gamma)$.
4079.7	$1,2^{(+)}$	4079.6 <i>3</i>	100	0.0	0_{+}				
4121.2	8+	290.5 2	100 11	3830.7	8+	M1		0.00633	B(M1)(W.u.)<0.55 Mult.: from $(\alpha,2n\gamma)$.
		536.2 2	56	3585.0	8+	M1+E2	-0.4 3		B(M1)(W.u.)<0.051; B(E2)(W.u.)<70 Mult.,δ: from $(\alpha, 2n\gamma)$.
		1574 <i>I</i>	78 22	2546.51	6+	(E2)			B(E2)(W.u.)<1.4 Mult.: $\Delta J=2$, (Q) from (α ,2n γ). RUL and $\Delta \pi=$ no from level scheme.
4181.85	0^{+}	2186.0 <i>10</i>	59 24	1995.897					
		2873.15 <i>14</i>	100 11	1308.644	2+				
4214.1	(8^{-})	664.0 <i>3</i>	80 10	3550.15	(7^{-})				
		1200 <i>I</i>	≈100	3013.96		[E2]			B(E2)(W.u.)<5
4253.11	(2^{+})	2257.53 20	100 20	1995.897					
		2944.20 <i>14</i>	54 <i>6</i>	1308.644					
	- 1	3639.7 5	22 4	613.727					
4297.38	2+	2988.67 15	100	1308.644					
4341.61	$1,2^{(+)}$	2843.02 ^{&} <i>14</i>	114 <mark>&</mark> <i>15</i>	1498.599					
		4341.2 3	100 8	0.0	0+				
4366.61	$(1)^{-}$	3057.90 <i>16</i> 4366.5 <i>3</i>	100 <i>17</i> 33 <i>11</i>	1308.644 0.0	2 ⁺ 0 ⁺				

	E_i (level)	${\rm J}_i^\pi$	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
ı	4386.68	$(1,2^+)$	2627.87 ^{&} 14	222 <mark>&</mark> 29	1758.689			
ı	4412.02	(0=)	3773.2 3	100 11	613.727			
ı	4412.02	(9-)	363.1 <i>4</i> 862.0 <i>5</i>	26 <i>3</i> 77 <i>9</i>	4048.0 3550.15	8 ⁻ (7 ⁻)		
ı			889.1 ^b 1			(<i>1</i>)		
ı	4449.24	1,2(+)	889.1° <i>1</i> 2452.27 <i>16</i>	100 67 <i>11</i>	3522.91			
ı	4448.24	1,2	2452.27 16 4448.2 3	100 21	1995.897 0.0	0+		
ı	4468.6	1,2(+)	3855.0 ^{&} 4	500 & 50	613.727			
ı	4408.0	1,2(*)	4468.0 <i>5</i>	100 25	0.0	0+		
ı	4528.8		3220.1 ^{&} 4	100 23	1308.644			
ı		(10+)	794.6 ^b 4			2 8 ⁺		
ı	4625.1	(10^{+})	1040.3 <i>6</i>	<21 100 <i>24</i>	3830.7 3585.0	8+		
ı	4672.8		4059.0 3	100 24	613.727			
ı	4684.30		3375.73 20	48 5	1308.644			
ı			4070.1 3	100 7	613.727			
ı	4689.8	(2^{+})	4689.6 <i>3</i>	100	0.0	0_{+}		
	4697.07	(2^{+})	2843.02 ^{&} <i>14</i>	526 <mark>&</mark> 68	1853.927			
			4697.2 3	100 37	0.0	0_{+}		
	4723.21	2+	3220.1 ^{&} 4	112 <mark>&</mark> 29	1502.825			
ı			3224.4 5	60 <i>30</i>	1498.599			
ı	4506.0	(1 O+)	3414.57 21	100 12	1308.644			
ı	4786.9	(10^{+})	161.9 2 955.9 5	≈87	4625.1	(10^{+})	(E2)	B(E2)(W.u.)<13
ı			955.9 <i>5</i> 1202.2 <i>6</i>	100 9 <13	3830.7 3585.0	8 ⁺ 8 ⁺	(E2) [E2]	B(E2)(W.u.)<13 B(E2)(W.u.)<0.3
ı	4787.93	$(1)^{-}$	3479.36 22	72 11	1308.644		[E2]	D(E2)(W.d.)\0.5
ı	1707.55	(1)	4173.3 5	100 17	613.727			
ı	4791.5	0^{+}	4177.7 5	100	613.727			
I	4811.5	2+	3503.6 5	52 18	1308.644			
I			4811.1 3	100 13	0.0	0+		
ı	4819.2	(9-)	1269.0 5	100	3550.15	(7^{-})	[E2]	B(E2)(W.u.)=10 4
ı	4857.0	(9^{+})	1152.9 4	100 6	3704.0	(7^{+})	[E2]	B(E2)(W.u.)=94
١	405= 3	1.0(±)	1273.2^{b} 5	50 13	3585.0	8+		
I	4957.3	$1,2^{(+)}$	4957.1 3	100	0.0	0^{+}		
I	4972.3 4998.3	1-	4972.1 <i>3</i> 3499.6 <i>5</i>	100 100	0.0 1498.599	0^{+}		
I		1,2(+)	3499.6 <i>3</i> 3245.6 <i>&</i> 4	81 ^{&} 24	1758.689			
I	5004.65	1,2	3245.6° 4 4391.2 <i>3</i>	81 24 100 10	613.727			
			5003.5 6	19 5	0.0	0+		
١	5022.14		3168.14 ^{&} 17	100 <mark>&</mark>	1853.927			
١	3022.17		5100.11 1/	100	1033.721	5		

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.‡	Comments
5029.63	2+	3720.8 4	100 27	1308.644	2+		
		5029.5 3	100 18	0.0	0^{+}		
5090.8		4476.9 <i>3</i>	100	613.727			
5094.8		1046.8 <i>6</i>	100 17	4048.0	8-		
5101.9		4488.0 5	100	613.727	2+		
5126.52	(2,3,4)	3131.8 4	50 9	1995.897			
		3272.13 19	100 14	1853.927	3 ⁺		
		3624.1 & 4	91 <mark>&</mark> <i>14</i>	1502.825	4+		
5164.05		3168.14 ^{&} <i>17</i>	46 <mark>&</mark> 8	1995.897	2+		
		3855.0 & 4	100 <mark>&</mark> 10	1308.644			
5180.75	$1^{(+)}, 2^{(+)}$	3326.4 <i>3</i>	100 10	1853.927	3 ⁺		
		3682.4 <i>3</i>	76 10	1498.599			
5290.22	$1,2^{(+)}$	3791.7 <i>3</i>	79 <i>14</i>	1498.599	0_{+}		
		4676.2 <i>3</i>	100 14	613.727	2+		
		5290.0 <i>3</i>	86 <i>14</i>		0_{+}		
5295.2	3-	4681.3 <i>3</i>	100	613.727			
5339.7	$1,2^{(+)}$	3840.9 <i>3</i>	100 <i>16</i>	1498.599			
		4031.3 6	47 6	1308.644			
5356.51	(2^{+})	3360.50 20	100 14	1995.897			
		4742.7 3	67 14	613.727			
5391.0		4777.1 3	100	613.727			
5440.3	4.0(1)	4826.4 3	100	613.727			
5451.2	1,2(+)	3952.5 4	100	1498.599	0_{\pm}		
5513.26	$1,2^{(+)}$	3245.6 ^{&} 4	122 <mark>&</mark> <i>37</i>	2267.07			
		4015.0 <i>3</i>	100 15	1498.599			
		5512.9 3	35 7	0.0	0+		
5689.1	(4 a ±)	902.2 6	100	4786.9	(10^{+})		TO THE STATE OF TH
5783.8	(12^{+})	1158.7 ^a 5	100 ^a	4625.1	(10^{+})	[E2]	B(E2)(W.u.)<23

[†] Weighted averages of all available data. For low-spin (up to about spin 4), the values are available from ⁷⁸As β^- decay; ⁷⁸Br ε decay; (α ,2n γ); (n, γ) E=thermal and (n,n' γ).

[‡] From $\gamma(\theta)$, $\gamma(\text{lin pol})$ and ce data (for a few transitions only) in $(\alpha,2n\gamma)$ for transitions from high-spin (J>4) states. The multipolarity and mixing ratios for transitions from low-spin states (J up to about 4) are from $\gamma(\theta)$, $\gamma(\text{circ pol})$ and ce measurements in (n,γ) E=thermal; and some from $\gamma(\theta)$ in $(n,n'\gamma)$.

[#] γ only from (n,γ) E=thermal.

[®] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&]amp; Multiply placed with undivided intensity.

^a Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- → γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

---- γ Decay (Uncertain)

Level Scheme (continued)

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level & Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

γ Decay (Uncertain)

Level Scheme (continued)

Legend

Intensities: Relative photon branching from each level

& Multiply placed: undivided intensity given @ Multiply placed: intensity suitably divided

279.0 10de 1923 15 (M/ EZ) 100 12825 (M/ EZ) 100 - 1/8/3 - 7. 1/8/3 - 7. 1/9/8 6 (E), 1/8 1/9/8 6 (E), 1/8 1/3 (E), 1/20) 1/00 | 1748.21 | 100 | 151/26 | 100 | 152/26 | 100 | 153/26 | 154/26 | 100 | 153/26 | 154/26 | 100 | 153/26 | 154/26 γ Decay (Uncertain) 2361.85 2335.24 2327.329 2299.8 2267.07 2546.3 2536.94 2507.32 0.055 ps 7 6.2 ps *14* $0.7\,\mathrm{ps}\,3$ 0.28 ps + I3 - 8

 $^{78}_{34}Se_{44}$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh	NDS 105,223 (2005)	22-Jun-2005

 $Q(\beta^{-})=-1870.5 \ 4$; $S(n)=9913.4 \ 13$; $S(p)=11412 \ 6$; $Q(\alpha)=-6971.5 \ 13$ 2012Wa38

Note: Current evaluation has used the following Q record \$ -1870.5 3 9913.7 16 11412 5 -6971.8 16 2003Au03.

Other reactions:

⁸⁰Se(e,e): 1988Kh02.

 82 Se(γ ,2n) GDR: 1976Ca06.

⁸²Se(n,3n): 1975FrZW.

Additional information 1. ⁸⁰Se(d, ³He): 1983Ro08 (g.s. proton occupation number for ⁸⁰Se).

 79 Se(n, γ) resonances: 1979EnZZ, 1976Ca06, 1969Ma15, 1964Co31, 1962Ju01.

Mass measurements: 1985El01 (also 1984ElZY), 1977De20, 1964Ba03, 1963Ri07.

IBM description of even-even Se isotopes: 1996Ra44. Nuclear structure theory (levels in ⁸⁰Se): 2004Da36.

80 Se Levels

Deformation parameters are available from (p,p'), (n,n'), (α,α') and Coul. ex. datasets. Only selected values are given here. See (p,p') for such data on many levels.

Cross Reference (XREF) Flags

		B Muc C ⁸⁰ Br D ⁷⁸ Se	as β^- decay (15.2 s) onic atom ϵ ϵ decay (17.68 min) $\epsilon(t,p)$ $\epsilon(\gamma,\gamma')$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &	XREF	Comments
0.0^{b}	0+	stable	ABCDEFGHI JKLMN	$\%2\beta^-=?$ $^{1/2}=4.1399$ fm 19 (2004An14). 2β decay: theoretical calculations: 2005Do07, 2001Ka15, 2000Bo05. No experimental information is available. Additional information 2.
666.27 ^b 7	2+	8.52 ps <i>21</i>	ABCDEFGHI JKLMN	B(E2)↑=0.253 6 (2001Ra27); $β_2$ =0.2318 27 (2001Ra27) $μ$ =0.87 5 (1998Sp03) Q=-0.31 7 (1977Le11,1989Ra17) J ^π : L(t,p)=L(p,p')=2. T _{1/2} : from B(E2) taken from evaluation of 2001Ra27. Other: 8.3 ps 8 (from $(γ,γ')$,1976KaYY). $μ$: transient-field technique in Coul. Ex. (1998Sp03). Other: 0.84 24 (IMPAC in Coul. ex.,1969He11,1989Ra17). Q: reorientation effect in Coul. ex. (1977Le11). Other: -0.35 12 (1976VoZY). $β_2$ (p,p')=0.21 (1993Mo05), 0.193 (1988Ba35,1986Og01), 0.22 1 (1986MoZR), 0.229 15 (1984De01), 0.195 30 (1983Ma59), 0.210 15 (1979Ma28), 0.234 (1970He10). $β_2$ (n,n')=0.225 (1990Go13), 0.244 10 (1988Ba35,1984Ku09), 0.265 20 or 0.293 25 (1984De01), 0.25 (1979Ef01,1976La12). $β_2$ (α,α')=0.255 or 0.190 (1988Ba35). $β_2$ (Coul. ex.)=0.232 2 (1977Le11), 0.224 2 (1974Ba80), 0.245 (1962St02).

80 Se Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} &		XREF	Comments
1449.35 7	2+	1.95 ps 7	A	DEFGHIJKL	μ =0.70 20 (1998Sp03) μ : transient-field technique in Coul. Ex. (1998Sp03). 1449 and 1479 are unresolved in (α , α'). J^{π} : L(p,p')=2 and $\gamma\gamma(\theta)$ in (γ , γ'). β_2 (p,p')=0.047 (from β_2 R=0.25 (1986Og01)), 0.082 20 or 0.065 5 (1986MoZR).
1478.82 9	0+	11.4 ps <i>17</i>	A	C EFGHIJKL	$\beta_2(\alpha,\alpha')$ =0.05 (1988Ba35). β_2 (Coul. ex.)=0.054 (1974Ba80). $T_{1/2}$: other: 0.2 ps +24-3 (DSAM in (n,n' γ)). XREF: F(?). J^{π} : (812 γ)(666 γ)(θ) in ⁸⁰ Br decay. Parity from log ft =5.3 5 from 1 ⁺ .
1701.45 ^b 11	4 ⁺	0.66 ps 2		FGHIJKL N	μ =2.7 10 (1998Sp03) μ : transient-field technique in Coul. Ex. (1998Sp03). J^{π} : L(p,p')=4. β_4 (p,p')=-0.033 (from β_4 R=-0.18 (1986Og01)), -0.026 8 or -0.034 10 (1983Ma59). Others: 1984De01, 1986MoZR. β_4 (α , α ')=0.07 or -0.02 (1988Ba35).
1873.40 <i>12</i>	(0)+		A	DEFG IJ	$T_{1/2}$: other: 0.7 ps +10-4 (DSAM in $(n,n'\gamma)$). J^{π} : L(t,p)=0 but L(p,p')=2. $\gamma\gamma(\theta)$ in (γ,γ') gives J=0 or 2; 0^+ supported by comparison of experimental and theoretical yields in $(n,n'\gamma)$.
1959.82 9	2+	0.38 ps +22-12	A	D FG IJ L	J^{π} : $\gamma\gamma(\theta)$ in (γ,γ') and $L(p,p')=2$. $T_{1/2}$: from DSAM in $(n,n'\gamma)$. Other: 2.8 ps +14-7 or 7 ps +9-3 (from B(E2) in Coul. ex.).
2121.12 <i>14</i>	(3+)			D FG IJ	XREF: D(2150?)J(2150). J^{π} : from comparison of experimental and theoretical yields in
2311.29 9	(2+)	0.152 ps +28-14	A	EFG Ij	$(n,n'\gamma)$. J^{π} : from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
2344.17 9	$(1^+, 2^+)$	0.35 ps +17-10		D FG Ij	J^{π} : L(t,p)=(2); 1 ⁺ from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
2494.77 23 2513.57 10	(4 ⁺) (2 ⁺)	1.1 ps 7 0.048 ps 7	A	FG Ij DEFG Ij	J ^{π} : L(p,p')=4. XREF: F(?). J ^{π} : L(t,p)=1, but $\gamma\gamma(\theta)$ in (γ,γ') suggests J=2; 2 ⁺ also supported from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
2627.40 19	(0^{+})			E I	J^{π} : primary transition in (γ, γ') from $1^{(-)}$; 0^+ from comparison of experimental and theoretical yields in $(n, n'\gamma)$.
2716.65 11	3-	0.38 ps <i>14</i>		D FGHIJ L	Comparison of experimental and theoretical yields in (ii,ii y). B(E3) \uparrow =0.030 10 (2002Ki06) J ^{π} : L(p,p')=L(t,p)=3. B(E3) adopted in evaluation by 2002Ki06 from (p,p') (1993Mo05, 1986Og01,1979Ma28). Other: B(E3)=0.0084 14 from Coul. ex. (1974Ba80). Average β_3 (from inelastic scattering)=0.154 from $\beta_3(\alpha,\alpha')$ =0.161 (1988Ba35); β_3 (n,n')=0.151 10 (from b3r=0.78 5,1984Ku09); β_3 (p,p')=0.163 (1993Mo05), 0.124 (deduced by 1988Ba35 from 1986Og01), 0.144 (deduced by 1988Ba35 from 1984De01), 0.17 1 (1986MoZR), 0.167 (1979Ma28). β_3 (from B(E3) in Coul. ex.)=0.083.
2774.3 <i>10</i> 2787? <i>5</i>	$(1,2^+)^{@}$		A	F	
2814.50 <i>16</i>	$(2^+,1^+)$			EF Ij	XREF: F(2819). J^{π} : 2 ⁺ from $\gamma\gamma(\theta)$ in (γ,γ') and $L(p,p')=(2)$; 1 ⁺ from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
2825.55 23	(6 ⁺)			Ij	J^{π} : γ to 4 ⁺ . 6 ⁺ from comparison of experimental and

80 Se Levels (continued)

E(level) [†]	\mathbf{J}^{π} ‡	T _{1/2} &		XR	.EF		Comments
2826.99 11	(2 ⁺)	0.18 ps 4		E G	Ιj		theoretical yields in $(n,n'\gamma)$. J^{π} : $\gamma\gamma(\theta)$ in (γ,γ') and γ to 0^+ . Parity from reduced strength for E1 transition in (γ,γ') .
2836.3 <i>10</i> 2895.5 ^b <i>10</i> 2947.54 <i>15</i>	$(1,2^+)^{\textcircled{0}}$ $(6^+)^{a}$ $(2^+,4^+)$	0.18 ps +11-6	A	F	j I	N	J^{π} : L(p,p')=(2); 4 ⁺ from comparison of experimental and
	(2 ,4)	0.18 ps +11-0			1		theoretical yields in $(n,n'\gamma)$.
2998? 5				F			
3025.17 <i>16</i>	$(1^+,2^+)^{@}$	0.049 ps <i>14</i>	A		Ι		J^{π} : 1 ⁺ from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
3033 4	(4 ⁺)			F	J		J^{π} : L(p,p')=4.
3036 10	(6^+)			d			J^{π} : L(t,p)=(2+6). E(level): doublet in (t,p).
3037.74 13	$(1^+,2^+)$	0.13 ps +9-5		d	I		J^{π} : L(t,p)=(2+6) and γ to 0 ⁺ ; 1 ⁺ from comparison of experimental and theoretical yields in $(n,n'\gamma)$.
3125.79 <i>16</i>	$(2^+)^{\#}$	0.028 ps 14		EF	I		$T_{1/2}$: from DSAM in $(n,n'\gamma)$ (1989Do14); not given by 1999Ko46.
3160 9	0+			D			J^{π} : $L(t,p)=0$.
3176.92 <i>19</i>	$(1,2^+)^{\bigcirc}$			F	I		
3199.4 <i>3</i>	(2) #			EF	Ι		XREF: F(?).
3224.28 19	(1,2)	0.070 ps 28			I		J^{π} : γ to $0^{(+)}$.
3226 4	(4 ⁺)			F			J^{π} : $L(p,p')=4$.
3248.3 5	$(2^+)^{\#}$			E			
3280.4 4	$(1,2^+)^{\textcircled{a}}$			d	Ι		
3284 <i>4</i>	(3 ⁻)			d F			J^{π} : $L(p,p')=3$.
3314? 5	#			F	j		
3316.4 10	(0) [#]			EF	j		XREF: F(?).
3349.95 20 3354 <i>4</i>	(1^+)			E D F	I		J^{π} : from $\gamma\gamma(\theta)$ in (γ,γ') . XREF: J(3370).
3334 4	(3 ⁻)			υг	J		J^{π} : L(p,p')=3 and L(t,p)=(3).
3390.75 24	(2+)			DEF	j		$XREF: j(3370).$ $J^{\pi}: L(t,p)=(2).$
3441.88 22 3491 <i>5</i>	$(0^+)^{\#}$			EF D F	I		J ^{π} : L(p,p')=2 but $\gamma\gamma(\theta)$ in (γ,γ') suggests 0 ⁺ . XREF: D(3484).
3567 <i>5</i>				F			MELL: D(3 10 1).
3606.4 <i>3</i>	(2) [#]		Α	E			
3619.7 <i>4</i>	$(0^+,2^+)^{\#}$		-	dEF			XREF: d(3635).
							J^{π} : L(t,p)=0 for a 3635 group suggests J^{π} =0 ⁺ for 3620 or 3640 level, but L(p,p')=(2) suggests 2 ⁺ .
3635.5 ^b 15	$(8^+)^a$					N	
3640 <i>5</i>				d F			XREF: d(3635).
3655.4 <i>10</i> 3675 <i>5</i>	(0,1,2)			E F			J^{π} : primary transition from $1^{(-)}$.
3727.2 5	(0,1,2)		A				J^{π} : log $ft=6.1$ from $1^{(+)}$.
3753 <i>4</i>	(3^{-})			d F	j		XREF: d(3760).
3774? 5				d F	4		J^{π} : L(p,p')=3. Also L(t,p)=(3) for a 3760 <i>10</i> group. XREF: d(3760).
3813.7 <i>4</i>	(6 ⁺)			иг	j I		J^{π} : γ to 4^{+} ; comparison of experimental and theoretical yields in
5015.7	(0)				-		$(n,n'\gamma)$.
3814.9 5	(8+)				I		
3826 5				F			
3845? 10				F			

⁸⁰Se Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
3870.0 4	(1^{-})	DEF	$\mathbf{J}^{\pi} \colon \mathbf{L}(\mathbf{t}, \mathbf{p}) = (1).$
3931 4	(2+)	F	$J^{\pi}: L(p,p')=(2).$
3951.9 <i>4</i>	(2+)	EF	XREF: F(3960).
	,		J^{π} : L(p,p')=(2) for a 3960 4 group.
3976 8	(1^{-})	D	J^{π} : L(t,p)=(1).
3996 <i>4</i>	(5^{-})	F	J^{π} : L(p,p')=5.
4039 <i>4</i>		F	4.4.7
4047.1 5	(2^{+})	D I	XREF: D(4063).
			J^{π} : L(t,p)=(2).
4062.2 <i>4</i>	$(0^+)^{\#}$	EF	XREF: F(?).
4129 8	0+	D	J^{π} : $L(t,p)=0$.
4130 4	(3-)	F	J^{π} : $L(p,p')=3$.
4173 <i>4</i>	2+	D F J	XREF: J(4180).
			J^{π} : L(t,p)=2.
4225 <i>4</i>		F	
4247 7	2+	D	J^{π} : L(t,p)=2.
4295 <i>4</i>		F	
4322 4	(2^{+})	D F	J^{π} : L(t,p)=(2).
4352 <i>4</i>	2+	D F	J^{π} : L(t,p)=2.
4420 <i>4</i>	(2^{+})	F	J^{π} : $L(p,p')=(2)$.
4436.6 <i>4</i>	(5^{-})	FI	J^{π} : $L(p,p')=5$.
4464 5	(1^{-})	D	J^{π} : L(t,p)=1.
4511 <i>4</i>	(4^{+})	F	J^{π} : L(p,p')=4.
4570 <i>4</i>		F	
4673.5 ^b 18	$(10^+)^a$	N	
4682 <i>4</i>	(4^{+})	D F	XREF: D(4712).
			J^{π} : L(p,p')=4.
4950 <i>4</i>		F	
4993 <i>4</i>		F	
5180 <i>30</i>		D	
5325 4	(3-)	F	$J^{\pi}: L(p,p')=3.$
7818.52 9	1 ⁽⁻⁾	E	J^{π} : γ to 0^+ . Parity from reduced strength for E1 transition in (γ, γ') .

[†] From least-squares fit to $E\gamma'$ s for levels populated in γ -ray studies. For others weighted averages of values available from different reactions have been taken.

 $^{^{\}ddagger}$ Above 2 MeV excitation energy, $J^{\pi'}$ s deduced from L(p,p') are given in parentheses due to high level density, ambiguity in level correspondence between different reactions, and tentative nature of L value.

[#] From $\gamma\gamma(\theta)$ in (γ,γ') . Parity is from a comparison of reduced strengths for E1 and M1 transitions with systematics of known E1 and M1 transitions in this mass region. The reduced strengths have been calculated by 1973Sz04 from relative intensities corrected for energy dependence, average level spacing and partial widths for the g.s. and the excited levels J^{π} assignments based on (γ,γ') study are considered tentative; first, because $\gamma(\theta)$ data are reported at only two angles and, second because transitions are assumed pure dipole with no quadrupole admixture.

 $^{^{\}tiny @}$ γ to 0^+ .

[&]amp; From B(E2) values in Coul. ex. for levels below 1900 keV. Above this, values are from DSA method in $(n,n'\gamma)$ (1999Ko46).

^a Systematics of yrast sequences in even-even nuclides populated in heavy-ion reactions.

^b Band(A): Yrast sequence.

					γ (80Se)		
$E_i(level)$	\mathtt{J}_{i}^{π}	$\mathrm{E}_{\gamma}{}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.&	δ&	Comments
666.27 1449.35	2 ⁺ 2 ⁺	666.15 <i>10</i> 783.1 <i>1</i>	100 66.6 <i>10</i>	0.0 0 ⁺ 666.27 2 ⁺	E2 ^a E2+M1	-5 +2-6	B(E2)(W.u.)=24.7 6 B(M1)(W.u.)=0.0004 3; B(E2)(W.u.)=18.5 10 Mult., δ : from $\gamma(\theta)$ in Coul. ex. δ =-0.71 +12-17 is also possible but less likely from systematics of second
1478.82 1701.45 1873.40 1959.82	0 ⁺ 4 ⁺ (0) ⁺ 2 ⁺	1449.4 <i>I</i> 812.4 <i>I</i> 1035.1 <i>I</i> 1207.1 <i>I</i> 1293.7 2	100 3 100 100 100 100 100 5	0.0 0 ⁺ 666.27 2 ⁺ 666.27 2 ⁺ 666.27 2 ⁺ 666.27 2 ⁺	[E2] E2 ^a E2 M1+E2	-1.1 +6-11	2 ⁺ states in even-even nuclei. B(E2)(W.u.)=1.33 7 B(E2)(W.u.)=6.9 11 B(E2)(W.u.)=35.2 11 δ: from M1 and E2 matrix elements in
2121.12	(3 ⁺)	1959.9 <i>1</i> 671.7 2	55 <i>5</i> 15 <i>3</i>	0.0 0 ⁺ 1449.35 2 ⁺	[E2]		Coul. Ex. (1995Ka29). Other: $-0.31\ 5$ or $+10\ +10\ -2$ from $\gamma(\theta)$ in $(n,n'\gamma)$. B(E2)(W.u.)= $0.9\ +3\ -6$
2311.29	(2+)	1454.9 2 861.9 <i>I</i> 1645.0 <i>I</i>	100 8 15 5 100 12	666.27 2 ⁺ 1449.35 2 ⁺ 666.27 2 ⁺	D+Q		δ: +1.95 7 or -0.09 +2-6 from $γ(θ)$ in (n,n' $γ$).
2344.17	(1+,2+)	470.5 <i>4</i> 894.8 [‡] <i>1</i> 1677.9 [‡] <i>1</i> 2344 [‡] <i>1</i>	55 9 100 9 55 9 9.1 18	1873.40 (0) ⁺ 1449.35 2 ⁺ 666.27 2 ⁺ 0.0 0 ⁺			
2494.77	(4 ⁺)	793.0 3	100 30	1701.45 4+	M1+E2	+1.1 1	B(M1)(W.u.)=0.012 9; B(E2)(W.u.)=28 21 δ : from $\gamma(\theta)$ in $(n,n'\gamma)$ and $T_{1/2}(2495$ level).
2513.57	(2+)	1046 ^{‡b} 1828.8 <i>3</i> 813.3 ^{@b} 2 1035.7 ^b 4	≈3 53 5 ≈40	1449.35 2 ⁺ 666.27 2 ⁺ 1701.45 4 ⁺ 1478.82 0 ⁺	[E2] [E2]		B(E2)(W.u.)=0.4 β Reported in (γ, γ') only. The placement is considered suspect since with the quoted intensity in (γ, γ') , it would have been seen in 80 As β^- decay and
2627.40 2716.65	(0 ⁺) 3 ⁻	1063.8 4 1847.3 I 2513.4 2 1178.2 [‡] 2 405.1 3 1015.1 2 2050.4 I (2716.6)	4.3 <i>14</i> 100 <i>9</i> 4.3 <i>14</i> 100 7.7 23 7.7 <i>15</i> 100 8 0.15 7	1449.35 2 ⁺ 666.27 2 ⁺ 0.0 0 ⁺ 1449.35 2 ⁺ 2311.29 (2 ⁺) 1701.45 4 ⁺ 666.27 2 ⁺ 0.0 0 ⁺	[E2] [E1] [E1] [E1] [E3]		in $(n,n'\gamma)$. B(E2)(W.u.)=0.17 7 B(E1)(W.u.)=0.0010 5 B(E1)(W.u.)=6.E-5 3 B(E1)(W.u.)=0.00010 4 B(E3)(W.u.)=10 6 I _{\gamma} : deduced (evaluator) from T _{1/2} and
2774.3 2814.50 2825.55	$(1,2^+)$ $(2^+,1^+)$ (6^+)	2774.2 <i>10</i> 2148.0 [‡] <i>3</i> 2814.6 2 1124.1 2	100 29 <i>14</i> 100 <i>14</i> 100	0.0 0 ⁺ 666.27 2 ⁺ 0.0 0 ⁺ 1701.45 4 ⁺			B(E3) for 2717 level. $E_{\gamma}: \text{ from } (\gamma, \gamma'). \ E_{\gamma} = 2817.7 \text{ in } (n, n'\gamma).$
2826.99 2836.3	(2^{+}) $(1,2^{+})$	2160.7 <i>I</i> 2826.9 <i>3</i> 2836.2 <i>10</i>	100 <i>15</i> 7.7 24 100	666.27 2 ⁺ 0.0 0 ⁺ 0.0 0 ⁺	[E2]		B(E2)(W.u.)=0.061 25

γ (80Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^π	Mult.&	Comments
2895.5	(6 ⁺)	1194		1701.45 4+		
2947.54	$(2^+,4^+)$	826.4 2	50 17	2121.12 (3 ⁺)		
		1498.1 2	100 33	1449.35 2+		
		2281.4 3	67 33	666.27 2+		
3025.17	$(1^+,2^+)$	1577.6 [‡] 3	50 17	1449.35 2+		E_{γ} : poor fit. Level-energy difference=1575.8.
		2358.2 2	100 25	666.27 2+		E_{γ} : level-energy difference=2358.86.
3037.74	$(1^+, 2^+)$	3024.8 <i>3</i> 1078.6 2	30 <i>20</i> 100 <i>20</i>	$0.0 0^{+}$ $1959.82 2^{+}$		E : laval anargy difference=1077.0
3037.74	(1 ,2)	1558.7 2	80 20	1939.82 2 1478.82 0 ⁺		E_{γ} : level-energy difference=1077.9.
		1587.9 2	56 12	1449.35 2 ⁺		
3125.79	(2^{+})	1677.0 [‡] <i>b</i> 5	≈1	1449.35 2 ⁺		
	(-)	2459.3 2	100	666.27 2 ⁺		
3176.92	$(1,2^+)$	1697.8 <i>5</i>	70 20	1478.82 0 ⁺		
		3176.9 2	100 20	$0.0 0^{+}$		
3199.4	(2)	3199.5 [‡] <i>5</i>	100	$0.0 0^{+}$		
3224.28	(1,2)	1522.8 2	100 13	1701.45 4+		
2200.4	(1.0+)	1745.5 3	43 22	1478.82 0+		
3280.4	$(1,2^+)$	2614.5 <i>5</i> 3280.0 <i>5</i>	73 <i>21</i> 100 <i>27</i>	666.27 2 ⁺ 0.0 0 ⁺		
3349.95	(1^+)	3348.4 5	100 27	$0.0 0^{+}$		
3390.75	(2^{+})	1909.9 5	100 20	1478.82 0 ⁺		E_{γ} : poor fit. Level-energy difference=1911.9.
	, ,	1941.9 5	100 20	1449.35 2 ⁺		, 1
3441.88	(0^+)	1097 [‡] <i>1</i>	80 20	2344.17 (1+,2+)		
		2775.9 3	100 30	666.27 2+		
3606.4	(2)	2156.9 [#] 5	100 50	1449.35 2+		
		2940.3 [#] <i>10</i>	100 50	666.27 2+		
3619.7	$(0^+,2^+)$	2953.7 5	100	666.27 2+		
3635.5	(8 ⁺)	740	100 50	$2895.5 (6^+)$		
3727.2	(0,1,2)	1415.9 5	100 50	2311.29 (2+)		
2012.7	(C+)	3060.8 ^b 20	50 50	666.27 2+		
3813.7 3814.9	(6^+) (8^+)	2112.2 <i>3</i> 989.3 <i>4</i>	100 100	1701.45 4 ⁺ 2825.55 (6 ⁺)		
3870.0	(o) (1 ⁻)	2391.9 5	100	1478.82 0 ⁺		
3951.9	(2^{+})	3286.1 5	100	666.27 2+		
4047.1	(2^{+})	2597.7 5	100	1449.35 2 ⁺		
4062.2	(0^+)	2612.7 5	100	1449.35 2+		
4436.6	(5 ⁻)	1941.8 <i>3</i>	100	2494.77 (4 ⁺)		
4673.5	(10^{+})	1038		3635.5 (8+)		
7818.52	1 ⁽⁻⁾	3756.1 4	4.3 4	$4062.2 (0^+)$	(E1)	
		3866.9 <i>4</i> 3949.1 <i>5</i>	3.0 <i>5</i> 3.0 <i>4</i>	3951.9 (2 ⁺) 3870.0 (1 ⁻)		
		4163 <i>1</i>	1.3 3	3655.4 (0,1,2)		
		4199.1 5	2.8 3	3619.7 (0,1,2)		
		4212.0 <i>4</i>	3.7 <i>3</i>	3606.4 (2)		
		4376.8 <i>3</i>	5.2 4	$3441.88 \ (0^+)$		
		4427.1 3	8.5 3	$3390.75 (2^+)$	(E1)	
		4468.2 2	9.2 4	3349.95 (1+)	(E1)	
		4502 <i>I</i> 4570.1 <i>5</i>	2.2 <i>4</i> 7.3 <i>3</i>	3316.4 (0) 3248.3 (2 ⁺)	(E1)	
		4619.1 3	5.5 <i>3</i>	3199.4 (2)	(E1)	
		4692.4 2	12.5 3	3125.79 (2 ⁺)	(E1)	
		4991.4 2	12.4 4	2826.99 (2+)	(E1)	
		5004.3 5	3.5 <i>3</i>	$2814.50 \ (2^+,1^+)$		
		5191.6 <i>4</i>	1.0 3	$2627.40 \ (0^+)$		

γ (80Se) (continued)

[†] Weighted averages taken when data of comparable precision are available from more than one dataset.

[‡] Reported in $(n,n'\gamma)$ only. # Reported in 80 As β^- only.

[@] Reported in $(p,p'\gamma)$ only.

[&]amp; From $\gamma(\theta)$ in $(n,n'\gamma)$ and RUL deduced from $T_{1/2}$. Mult=E1 for transitions from 7819 level is from $\gamma(\theta)$ in (γ,γ') and transition strengths.

^a From (813γ)(666γ)(θ) in ⁸⁰Br ε decay and T_{1/2} (levels).

^b Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

 $^{80}_{34}\mathrm{Se}_{46}$

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $Band (A) \hbox{:} \ Yrast \ sequence$

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	J. K. Tuli, E. Browne	NDS 157, 260 (2019)	1-Mar-2019

 $Q(\beta^-)=-95.2\ 11$; $S(n)=9276.21\ 97$; $S(p)=12349.6\ 27$; $Q(\alpha)=-8156.8\ 36$ 2017Wa10 Reference 2018Az05 compiled in XUNDL by B. Singh (McMaster), June 17, 2018. Other reactions:

Se(n,n),(n,n'): 1976La12, E=6 MeV to 10 MeV. Natural and enriched targets. Measured $\sigma(\theta)$ for elastic and inelastic scattering. No individual levels were observed for inelastic scattering. 2000Za09 (1999Za09,1999Za07 same authors): Calculated s and p wave n-strength functions, s-wave scattering length 1976La12,1981Br23: Coupled-channels calculations 1990Go13: Coupled-channel analysis of $\sigma(\theta)$ for (n,n) and (n,n') with excitation of the 2⁺ state at E=1.5, 2.0, 2.5, 3.0, 5.0, 6.0 MeV. Others: 1984Ko09 (E=1 MeV), 1980Ko17 (slow n's).

Theoretical calculations: 1982Ah06 (transition strengths); 1988Pe04 (Boson expansion theory).

Some (beyond 1994) Calculations for 0ν , 2ν 2β - decay $T_{1/2}$, Matrix elements, theory, study of various models: 2001St24, 2001St13, 2001Si33, 2001Ka15, 2001Fa10, 2000Ve05, 2000Su06, 2000Ra13, 2000Pa47, 2000Pa25, 2000Ki24, 2000Fa14, 2000Cl02, 2000Bo05, 2000Ba68, 2000Ba54, 1999Si18, 1999Ca62, 1999Ba38, 1998Ba05, 1998Su22, 1998Su19, 1998Sc11, 1998Ru08, 1998Kl25, 1998Kl18, 1998Kl10, 1998Fa19, 1998Fa17, 1998Be49, 1998Ba76, 1998Ba55, 1998Au04, 1997To05, 1997Ra09, 1997Kr01, 1997Ej01, 1997Ba19, 1996Si29, 1996Sc09, 1996Ru21, 1996Ru04, 1996Pa02, 1996Mo23, 1996Hi06, 1996Hi04, 1996Ej02, 1996Ca35, 1996Ca35, 1996Au07, 1995Ru18, 1995Ba17.

See 1981MuZQ for neutron resonances.

82Se Levels

Q value for $2\beta^{-}$ decay=2997.9 keV 5 (2017Wa10).

Cross Reference (XREF) Flags

```
82Se IT decay (6.6 ns)
        ^{82}As \beta^{-} decay (13.6 s)
                                                         ^{82}Se(p,p'\gamma)
        ^{82}As \beta^{-} decay (19.1 s)
                                                         Coulomb excitation
                                                                                                   (HI,xn\gamma)
        <sup>80</sup>Se(t,p)
C
                                                         82Se(d,d')
                                                G
        ^{82}Se(p,p'),(pol p,p')
                                                         ^{82}Se(n,n'\gamma)
                                                                                              Comments
              ABCDEFGHIJ
                                       \%2\beta^{-}=100
                                       T<sub>1/2</sub>: From 2012Si23 for T<sub>1/2</sub>(2\nu2\beta-)(^{82}Se 0<sup>+</sup> to 0<sup>+</sup>) other values: 0.83\times10^{20} y +9-7 (1999Pi08,1999Sa02), 10.8\times10^{20} y +26-6 from 1992El07 (see also 1987El11, 1987El10, 1986El01), 1.2\times10^{20} y I from geochemical
                                           measurements (1988Li11); 1.0×10<sup>20</sup> y 4 (1985Ma57), 2.8×10<sup>20</sup> y 9
                                           (1973Sr05), 1.4×10<sup>20</sup> y 3 (1970Ki21), all from isotopic anomaly of <sup>82</sup>Kr in
                                      geological samples, 0.9 \times 10^{20} y I (2002Ba52).

T_{1/2}: T_{1/2}(0v2\beta-)(^{82}Se\ 0^+\ to\ 0^+) > 3.2 \times 10^{23} y (90% confidence level); (2012Si23);>2.4 \times 10^{21} y (1999Sa02,2000Ar16, 2001Va34) other:>2.7 \times 10^{22} y (1002Ma24). Colombia T_{1/2} (2002Size) in 2002Size)
                                           (1993Mo36). Calculated T_{1/2} (2002Su13,2002Si12).
                                       T_{1/2}: >2.4E24 y lower limit for 0\nu\beta\beta decay mode (2018Az05); measured at
                                           90% credible interval, from a maximum likelihood analysis of events in the
                                           2800-3200 keV region. This half-life can be compared with T_{1/2}>3.6\times10^{23} y,
                                           obtained using NEMO detector with a larger 82 Se exposure of ≈3.5 kg y
                                           (2011Ba55).
                                       From the half-life limit, deduced effective Majorana neutrino mass of
                                           <(376-770) meV, depending on the nuclear matrix element calculations
                                           (2018Az05).
```

⁸²Se(pol d,d): 19887Nu03 E=12 MeV; measured d σ /d Ω and vector-analyzing power.

⁸²Se Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ‡	XRI	EF	Comments
654.71 [#] 16	2+	12.8 ps 7	ABCDE	FGHIJ	μ =+0.99 6(1978Br38,2014StZZ); Q=-0.22 7 (1977Le11,2016St14) J ^{π} : from angular distribution and vector-analyzing power in (pol p,p') (1984De01).
1410.22 <i>17</i>	0+	30 ps	BCDEI	F H	$T_{1/2}$: from 2016Pr01,deduced from B(E2). J^{π} : L(t,p)=0.
1731.51 10	2+	0.94 ps <i>11</i>	AB DEI	FgH J	$T_{1/2}$: from B(E2) deduced from Coulomb excitation. J^{π} : L(t,p)=2+4, L(p,p')=2+4 for the unresolved 1731+1735 doublet. $log\ ft=7.0$ from (1 ⁺) and γ to 0 ⁺ indicate that this is the 2 ⁺ member of 1731+1735 doublet. $T_{1/2}$: from B(E2) deduced from Coulomb excitation.
1735.10 [#] 24	4+	0.96 ps <i>15</i>	ABCDE	FgHIJ	μ =2.3 15 (1998Sp03,2014StZZ) J^{π} : see 1731.51 level. $T_{1/2}$: from B(E2) in Coul ex, other: 0.95 ps 25 in (n,n' γ).
2550.28 <i>16</i> 2624.1 <i>4</i>	(4^+) (0^+)	1.7 [@] ps <i>3</i> 0.04 ps <i>1</i>	A CDEI	F H J H	J^{π} : γ to 2^+ ; γ from $(4^-,5^-)$. J^{π} suggested in (HI,xn γ), Coul. Ex. J^{π} : from level feeding calculations in $(n,n'\gamma)$ (1998Ko52).
2893.66 <i>18</i> 3009.14 <i>19</i>	5 ⁻ 3 ⁻	>131.7 [@] ps 0.020 ps 5	A CD BCDE	H J H	J^{π} : L(p,p')=5. J^{π} : from angular distribution and vector-analyzing power in (pol p,p').
3103.3 4	(4 ⁺)		CD	Н	J^{π} : L(p,p')=4; in conflict to this L(t,p)=(5). (n,n' γ) supports adopted J^{π} .
3144.8 [#] 5 3238.78 21	6 ⁺ (4 ⁺)	0.39 [@] ps +13-9 0.30 ps +12-8	D	IJ H	J^{π} : assumed stretched E2 cascade. XREF: D(3293). J^{π} : L(p,p')=4. E(level): 1998Ko52 did not find a level at 3293, but saw a level at
3378.44 24	(3-)	0.12 ps 4	D	Н	3238 with similar J^{π} . XREF: D(3384). J^{π} : L(p,p')=3.
3445.9 <i>4</i>	0+		С	Н	XREF: C(3449). J^{π} : L(t,p)=0+(5). See also 3454 level.
3454.15 20	(5 ⁻)		A	Н	J^{π} : log $ft=5.5$ from (5 ⁻). γ to (3,4 ⁺). L(t,p)=0+(5) at 3449 keV. Note, however, that the angular momentum of the L=5 admixture is more speculated than established.
3517.8 [#] 5	8+	6.6 ns 4		IJ	%IT=100 J^{π} : From (HI,xn γ) assumed stretched E2 cascade. Expected Configuration= $(\nu g_{9/2})^{-2}$. Systematics of 8^+ isomers In N=48 nuclides (1999Ma21,2002Is03).
3591.67 20	2+	0.28 ps +12-8	CD	Н	$T_{1/2}$: from IT decay (1999Ma21). XREF: C(3586). J^{π} : L(t,p)=2.
3631.26 <i>21</i>	(0+)		D	Н	XREF: D(3624). J^{π} : from level feeding calculations In $(n,n'\gamma)$ (1998Ko52).
3664.0 <i>4</i>	2+		С	Н	J^{π} : L(t,p)=2.
3667.5 <i>3</i> 3688.9 <i>6</i>	$(1,2^+)$ (4^+)		B D	Н	J^{π} : log ft =6.2 from (2 ⁻) and γ to 0 ⁺ . XREF: D(3677).
3757.0 5	2+		CD	Н	J^{π} : L(p,p')=4. XREF: D(3750). J^{π} : L(t,p)=2.
3794.9 <i>5</i> 3798? <i>4</i>	(7 ⁻) (4 ⁺)		D	J	J^{π} : $L(p,p')=4$.
3831.0 <i>6</i> 3865.06 <i>25</i> 3917.9 <i>6</i> 4034.5 <i>4</i>	0 ⁺ (3 ⁻) 2 ⁺ 2 ⁺	0.17 ps +10-5	C D CD CD	H H H	E(level): level not seen in $(n,n'\gamma)$ and other studies. J^{π} : $L(t,p)=0$. J^{π} : $L(p,p')=3$. J^{π} : $L(t,p)=2$. XREF: D(4026).

⁸²Se Levels (continued)

E(level) [†]	J^π	$T_{1/2}^{\ddagger}$	XR	EF	Comments
4088.0 <i>4</i> 4094.3 <i>3</i> 4134 <i>6</i> 4231.8 <i>9</i>	(4 ⁻ ,5 ⁻) (5 ⁻) 2 ⁺		A C	н	J^{π} : L(t,p)=2. J^{π} : log ft =5.5 from (5 $^{-}$). γ to (3,4 $^{+}$). J^{π} : J=5 from (n,n' γ) calculations (1998Ko52). J^{π} : L(t,p)=2.
4244.98 20	(1^{-})		В		J^{π} : log $ft=5.4$ from (2^{-}) , γ to 0^{+} , 2^{+} .
4391.3 <i>4</i>	2+	0.13 ps <i>3</i>	C	H	J^{π} : L(t,p)=2.
4466 <i>4</i>	(4^{+})		C		J^{π} : L(t,p)=(4).
4535 7	(4^{+})		CD		XREF: C(4518).
4.50.4.4					$J^{\pi}: L(t,p)=(4).$
4584 <i>4</i>	(4^{+})		CD		$J^{\pi}: L(t,p)=(4).$
4809 <i>13</i>	(1^{-})		С		$J_{\underline{-}}^{\pi}$: L(t,p)=(1).
4881 <i>13</i>	(4^{+})		C		J^{π} : L(t,p)=(4).
4969 <i>11</i>			C		
4983.3 8	(9^+)			J	J^{π} : from (HI,xn γ).
5029 12	(1^{-})		C		J^{π} : L(t,p)=(1).
5046.3 12				J	
5192.0 <i>10</i>				J	
5457.0 [#] 8	(10^+)	<1.04 [@] ps		J	J^{π} : from (HI,xn γ).
5687.0 9	(11)	1		j	J^{π} : from (HI,xn γ).
6128.9 10	(12)			j	J^{π} : from (HI,xn γ).

 $[\]dagger$ Levels connected by γ' s to the g.s. are calculated from the adopted gammas using least-squares fit. Others are from (p,p'), (t,p), or weighted averages of both.

γ (82Se)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f J_f^{π}	Mult.	α [@]	Comments
654.71	2+	654.7 5	100	0 0+	[E2]	1.25×10^{-3}	$\alpha(K)$ =0.001111 <i>16</i> ; $\alpha(L)$ =0.0001181 <i>17</i> ; $\alpha(M)$ =1.84×10 ⁻⁵
							α (N)=1.553×10 ⁻⁶ 22 B(E2)(W.u.)=17.3 10
1410.22	0+	755.6 <i>1</i>	100	654.71 2+	[E2]	8.46×10^{-4}	$\alpha(K)=0.000753 \ 11; \ \alpha(L)=7.96\times10^{-5} \ 12; \ \alpha(M)=1.238\times10^{-5} \ 18$
							$\alpha(N)=1.050\times10^{-6}$ 15 B(E2)(W.u.)=3.62
1731.51	2+	1076.4 <i>4</i>	26 5	654.71 2+	[E2]	3.55×10^{-4}	$\alpha(K)=0.000316 5$; $\alpha(L)=3.30\times10^{-5} 5$; $\alpha(M)=5.14\times10^{-6} 8$ $\alpha(N)=4.38\times10^{-7} 7$
							B(E2)(W.u.)=4.1 10 E_{γ} : from β^- decay.
		1731.5 <i>1</i>	100 5	0 0+	[E2]	3.15×10^{-4}	$\alpha(K)=0.0001172\ 17;\ \alpha(L)=1.211\times10^{-5}\ 17;$ $\alpha(M)=1.88\times10^{-6}\ 3$
							α (N)=1.613×10 ⁻⁷ 23; α (IPF)=0.000184 3 B(E2)(W.u.)=1.45 21
1735.10	4+	1079.8 5	100	654.71 2+	[E2]	3.52×10^{-4}	B(E2)(W.u.)=19 3 α (K)=0.000314 5; α (L)=3.28×10 ⁻⁵ 5; α (M)=5.10×10 ⁻⁶ 8
							$\alpha(N)=0.000314$ 3, $\alpha(L)=3.28\times10$ 3, $\alpha(M)=3.10\times10$ 8 $\alpha(N)=4.35\times10^{-7}$ 7

[†] From DSA in $(n,n'\gamma)$, unless indicated otherwise. # Band(A): Yrast sequence (2009Po04). © From 2018Li20, recoil-distance DSA.

γ (82Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	α @	Comments
2550.28	(4+)	815.1 2 818.6 2	52 <i>13</i> 91 <i>13</i>	1735.10 4 ⁺ 1731.51 2 ⁺	[E2]	6.87×10 ⁻⁴	$\alpha(K)=0.000612 \ 9; \ \alpha(L)=6.45\times10^{-5} \ 9;$ $\alpha(M)=1.003\times10^{-5} \ 14$ $\alpha(N)=8.52\times10^{-7} \ 12$
		1895.5 <i>I</i>	100 9	654.71 2+	[E2]	3.70×10 ⁻⁴	B(E2)(W.u.)=16 4 α (K)=9.88×10 ⁻⁵ 14; α (L)=1.019×10 ⁻⁵ 15; α (M)=1.586×10 ⁻⁶ 23 α (N)=1.358×10 ⁻⁷ 19; α (IPF)=0.000259 4 B(E2)(W.u.)=0.26 6
2624.1	(0+)	1969.4 <i>3</i>	100	654.71 2+	[E2]	3.98×10 ⁻⁴	$\alpha(K)=9.21\times10^{-5}\ 13;\ \alpha(L)=9.49\times10^{-6}\ 14;$ $\alpha(M)=1.476\times10^{-6}\ 21$ $\alpha(N)=1.265\times10^{-7}\ 18;\ \alpha(IPF)=0.000295\ 5$ $B(E2)(W.u.)=23\ 6$
2893.66	5-	343.3 [‡] <i>1</i> 1158.3 [‡] 8	100 [‡] 17 10 [‡] 3	2550.28 (4 ⁺) 1735.10 4 ⁺			_(=)() == :
3009.14	3-	2354.4 1	100	654.71 2+	[E1]	9.10×10 ⁻⁴	$\alpha(K)=3.94\times10^{-5} 6$; $\alpha(L)=4.03\times10^{-6} 6$; $\alpha(M)=6.27\times10^{-7} 9$ $\alpha(N)=5.38\times10^{-8} 8$; $\alpha(IPF)=0.000865 13$
3103.3	(4 ⁺)	1368.2 2	100	1735.10 4+			B(E1)(W.u.)=0.0014 4
3144.8	6+	1409.7‡ 4	‡	1735.10 4+	[E2]	2.53×10 ⁻⁴	$\alpha(K)=0.0001763 \ 25; \ \alpha(L)=1.83\times10^{-5} \ 3;$ $\alpha(M)=2.85\times10^{-6} \ 4$ $\alpha(N)=2.43\times10^{-7} \ 4; \ \alpha(IPF)=5.55\times10^{-5} \ 8$
3238.78	(4 ⁺)	1507.3 3	75 19	1731.51 2 ⁺	[E2]	2.61×10^{-4}	B(E2)(W.u.)=12 +3-5 α (K)=0.0001539 22; α (L)=1.594×10 ⁻⁵ 23; α (M)=2.48×10 ⁻⁶ 4
							α (N)=2.12×10 ⁻⁷ 3; α (IPF)=8.82×10 ⁻⁵ 13 B(E2)(W.u.)=4.9 +19-24
		2584.0 2	100 10	654.71 2 ⁺	[E2]	6.55×10^{-4}	$\alpha(K)=5.69\times10^{-5} 8$; $\alpha(L)=5.85\times10^{-6} 9$; $\alpha(M)=9.10\times10^{-7} 13$
							α (N)=7.80×10 ⁻⁸ 11; α (IPF)=0.000591 9 B(E2)(W.u.)=0.44 +14-19
3378.44	(3-)	1646.9 <i>3</i>	96 20	1731.51 2+	[E1]	4.44×10^{-4}	$\alpha(K)=6.77\times10^{-5}\ 10;\ \alpha(L)=6.94\times10^{-6}\ 10;$ $\alpha(M)=1.079\times10^{-6}\ 16$
							α (N)=9.25×10 ⁻⁸ 13; α (IPF)=0.000368 6 B(E1)(W.u.)=0.00033 14
		2723.7 3	100 10	654.71 2 ⁺	[E1]	1.12×10^{-3}	$\alpha(K)=3.21\times10^{-5} 5$; $\alpha(L)=3.28\times10^{-6} 5$; $\alpha(M)=5.10\times10^{-7} 8$
							α (N)=4.38×10 ⁻⁸ 7; α (IPF)=0.001086 16 B(E1)(W.u.)=8.E-5 3
3445.9	0^+	1714.4 <i>3</i>	100	1731.51 2+			B(E1)(W.u.)=0.E 3 3
3454.15	(5^{-})	560.5 1	100 20	2893.66 5 ⁻ 2550.28 (4 ⁺)			
3517.8	8+	903.7 <i>3</i> 373.0 2	20 <i>4</i> 100	3144.8 6 ⁺	[E2]	0.00706	$\alpha(K)$ =0.00626 9; $\alpha(L)$ =0.000687 10; $\alpha(M)$ =0.0001067 15
							α(N)=8.88×10 ⁻⁶ 13 B(E2)(W.u.)=0.56 4
3591.67	2+	1859.9 2	100 17	1731.51 2 ⁺	[E2]	3.57×10^{-4}	$\alpha(K)=0.0001024 \ 15; \ \alpha(L)=1.056\times10^{-5} \ 15;$ $\alpha(M)=1.643\times10^{-6} \ 23$
		2102.0.3	165.15	1410.00 0±	FE 23	4.04. 10=1	$\alpha(N)=1.407\times10^{-7} \ 20; \ \alpha(IPF)=0.000242 \ 4$ B(E2)(W.u.)=3.3 +12-16
		2182.0 3	16.7 <i>17</i>	1410.22 0+	[E2]	4.84×10^{-4}	$\alpha(K)=7.65\times10^{-5} II; \alpha(L)=7.87\times10^{-6} II;$ $\alpha(M)=1.224\times10^{-6} I8$

γ (82Se) (continued)

$E_i(level)$	\mathtt{J}_{i}^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	E_f	J_f^{π}	Mult.	α @	Comments
3591.67	2+	3591 <i>I</i>	12 5	0	0+	[E2]	1.05×10 ⁻³	$\alpha(N)=1.049\times10^{-7}$ 15; $\alpha(IPF)=0.000398$ 6 B(E2)(W.u.)=0.25 +9-12 $\alpha(K)=3.33\times10^{-5}$ 5; $\alpha(L)=3.41\times10^{-6}$ 5; $\alpha(M)=5.30\times10^{-7}$ 8 $\alpha(N)=4.55\times10^{-8}$ 7; $\alpha(IPF)=0.001017$ 15
								B(E2)(W.u.)=0.015 +8-10
3631.26	(0^{+})	1899.7 <i>3</i> 2976.5 <i>2</i>	67 <i>14</i> 100 <i>20</i>	1731.51 654.71				
3664.0	2+	1113.7 <i>3</i> 3009 <i>1</i>	100 20 100 17 33 9	2550.28 654.71	(4^{+})			
3667.5	$(1,2^+)$	3667.4 [#] <i>3</i>	100 [#]	0	0^{+}			
3688.9	(4 ⁺)	3034.1 5	100	654.71				
3757.0	2+	2346 <i>1</i> 3102.4 <i>5</i>	32 <i>11</i> 100 <i>11</i>	1410.22 654.71				
3794.9	(7-)	901.2 [‡] 4	100 11	2893.66				
3831.0	0+	3176.2 5	100	654.71	2+			
3865.06	(3^{-})	970.4 3	100 17	2893.66				
3917.9	2+	2134.5 <i>3</i> 3263.1 <i>5</i>	83 <i>9</i> 100	1731.51 654.71				
4034.5	2 ⁺	1410.4 2	100	2624.1	(0^+)	[E2]	2.53×10^{-4}	$\alpha(K)=0.0001761 \ 25; \ \alpha(L)=1.83\times10^{-5} \ 3;$ $\alpha(M)=2.84\times10^{-6} \ 4$
								$\alpha(N)=2.43\times10^{-7} \ 4; \ \alpha(IPF)=5.57\times10^{-5} \ 8$ B(E2)(W.u.)=28 +9-17
4088.0 4094.3	$(4^-,5^-)$ (5^-)	1539.6 <i>3</i> 1544.0 2	100 100	2550.28 2550.28				
4231.8	, ,	1087.0 [‡] 7	100‡	3144.8	6+			
4244.98	(1^{-})	2513.3 [‡] 2	87 [‡] 5	1731.51	2+			
		2835.0 [‡] <i>3</i>	100‡ 6	1410.22	0_{+}			
4391.3	2+	2981.0 <i>3</i>	100	1410.22	0+	[E2]	8.21×10^{-4}	$\alpha(K)=4.48\times10^{-5}$ 7; $\alpha(L)=4.60\times10^{-6}$ 7; $\alpha(M)=7.15\times10^{-7}$ 10
								$\alpha(N)=6.14\times10^{-8} 9$; $\alpha(IPF)=0.000771 11$
								B(E2)(W.u.)=0.87 21
4983.3	(9^+)	1465.4 8	100‡	3517.8	8+			
5046.3		1252‡& 1	‡	3794.9	(7^{-})			
5192.0		960.2‡ 5	100‡	4231.8				
5457.0	(10^+)	473.7‡ 5	100‡	4983.3	(9+)		4	5
		1939.3 [‡] 8	7 [‡] 3	3517.8	8+	[E2]	3.86×10^{-4}	$\alpha(K)=9.47\times10^{-5}$ 14; $\alpha(L)=9.77\times10^{-6}$ 14; $\alpha(M)=1.519\times10^{-6}$ 22
								α (N)=1.301×10 ⁻⁷ 19; α (IPF)=0.000280 4 B(E2)(W.u.)>0.061
5687.0	(11)	230.0 [‡] 3	100‡	5457.0	(10^{+})			
6128.9	(12)	441.9 [‡] 5	100 [‡]	5687.0	(11)			

 $^{^{\}dagger}$ From $(n,n'\gamma)$, unless given otherwise. ‡ From $(HI,xn\gamma)$. $^{\#}$ From 82 As β^- Decay (19.1 s). $^{@}$ Additional information 1. $^{\&}$ Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{82}_{34}\mathrm{Se}_{48}$ -6

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Band(A): Yrast sequence (2009Po04)

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	A. A. Sonzogni, M. Fadil, and B. Pfeiffer	NDS 110,2815 (2009)	30-Sep-2009

 $Q(\beta^{-})=1835\ 26$; $S(n)=8678\ 4$; $S(p)=13567\ 3$; $Q(\alpha)=-8837.3\ 28$ 2012Wa38 S(2n)=14496.4 24, S(2p)=25110.6 30 (2012Wa38).

Additional information 1. ⁸⁴Se evaluated by A.A. Sonzogni, M. Fadil, and B. Pfeiffer .

Precise atomic mass measurement: 2008Ha23 (Penning-trap system). Other: 2006Ha62.

A 1360 γ has been assigned feeding the 2121 level in ²⁵²Cf SF decay, while a 1361.4γ in ²⁰⁸Pb(¹⁶O,Fγ) (2004Pr10) and a 1361.5γ in ²³⁸U(p,Fγ) (2013DrZY) has been placed feeding the 3537 level from a 4898 level. Evaluator treats the placement in ²⁵²Cf SF decay as uncertain.

⁸⁴Se Levels

Cross Reference (XREF) Flags

A B C D	⁸⁴ As $β$ ⁻ decay (4.02 s) ⁸⁵ As $β$ ⁻ n decay (2.021 s) ²⁵² Cf SF decay ⁸² Se(t,p)	E F G H	Coulomb excitation 192 Os(82 Se, $X\gamma$) 9 Be, 197 Au(84 Se, 84 Se' γ) 208 Pb(18 O, $X\gamma$)	I J	238 U(P,F γ):prompt γ 238 U(82 Se, 84 Se γ)
	T VDEE				C

	_	Se(t,p)	•••	10(0,11/)
E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0@	0+	3.26 min <i>10</i>	ABCDEFGHIJ	$\%\beta^-$ =100 $T_{1/2}$: weighted average of 3.1 min 1 (1974KrZG), 3.1 min 2 (1975Hu02), 3.5 min 1 (1970Ei02), 3.1 min 2 (1968Re12), and 3.3 min 3 (1960Sa05).
1454.55 [@] 8	2+	0.42 ps 7	ABCDEFGHIJ	B(E2) \uparrow =0.105 <i>15</i> (2010Ga14) B(E2) from ¹⁹⁷ Au(⁸⁴ Se, ⁸⁴ Se γ); deduced T _{1/2 1/2} =0.42 ps 7.
1967 <i>3</i> 2097 <i>11</i>	(0^+) (1^-)		D D	1/2 1/2 1
	. ,			
2121.65 [@] 10	4+	20.2 ps +41-26	ABC EFGHIJ	J^{π} : E2 γ to 2 ⁺ ; systematics of N=50 nuclei. $T_{1/2}$: From RDDS, plunger method (2015Li42).
2244 7	0^{+}		D	1/2
2461.38 9	$(1,2^+)$		Α	J^{π} : γ rays to 0^+ and (2^+) .
2654 <i>4</i>	0+		D	· /J· · · · · · · · · · · · · · · · · ·
2699.47 12	(2,3,4)		AB	J^{π} : γ' s to (2^+) and (4^+) .
2716 10	(0^+)		D	· / · · · · (· /)
2740 11	(0^{+})		D	
2984.75 13	2+		A D J	
3024.30 12	(2^{+})		A D	
3069.77 22	()		Α	
3125.97 <i>15</i>			Α	
3232.43 14			Α	
3297.05 12			AB	
3370.54 16	(6 ⁺)	8.2 ps +17-39	A C F HIJ	J^{π} : γ to 4 ⁺ ; shell-model prediction (2013DrZY). T _{1/2} : From RDDS, plunger method (2015Li42).
3408.73 <i>14</i>			A J	XREF: J(?).
3439.15 <i>13</i>			A J	MLI . J(.).
3481.7? 10			C	E(level): assuming 1360 γ feeds the 2121.6 level. See comment on top.
3537.09 18	(5^{+})		C F HIJ	J^{π} : level fed from (6 ⁺) and γ to (4 ⁺), supported by shell model
			C 1 1113	calculations.
3541.23 <i>10</i>	2+		A d G	J^{π} : L(t,p)=2 for E(level)=3544 6.
3548.3 <i>3</i>			A d	J^{π} : L(t,p)=2 for E(level)=3544 6.
3698 <i>6</i>			D	

⁸⁴Se Levels (continued)

E(level)‡	Jπ†	XREF	Comments
3701.47 ^{&} 19 3862.5 10	(6 ⁺)	C F HIJ	J^{π} : Q γ to (4 ⁺) and D γ to (5 ⁺), supported by shell model calculations.
3872.01 <i>14</i> 3928 <i>9</i>	2+	A D G	XREF: D(3934). E(level): assumed that 3934 8 in (t,p) is the same as 3916 11 in (84 Se, 84 Se' γ); listed level energy is the weighted average of the two.
3985.27 22 4082.18 22	2+	A D	level energy is the weighted average of the two.
4106 <i>17</i>	0_{+}	D	
4116.33 <i>17</i> 4226 <i>4</i>	2+	A D	
4282.12 <i>11</i>	(2+)	Α	
4307 <i>7</i> 4405.8 [#] & <i>3</i>	(2^+) (7^+)	D C F HI	J^{π} : γ to (6^+) .
4445.19 [#] 22	(4^{+})	A D	<i>3</i> . <i>y</i> to (0).
4602 6	2+	D	MARIE 1/0)
4641.0 4670 9	(2 ⁺)	D IJ	XREF: J(?).
4723 6		D	
4813 <i>5</i> 4898.5 <i>4</i>	(2^+) (6^+)	D HI	E(level): assuming 1361 γ feeds the 3537 level. See comment on top.
4070.5 4		111	J^{π} : shell-model prediction (2013DrZY).
4903 7	$(2^+,0^+)$	D	
4981 9 5139 6	1 ⁻ 2 ⁺	D D	
5161.17 <i>18</i>		A	
5185 <i>6</i>	2+	D	
5221.96 <i>16</i> 5258 <i>6</i>	4+	A D	
5295 9	2+	D	
5329.9&	(8^{+})	I	
5373 9 5437 [#] 9	(5-)	D D	
5507 9	2+	D	
5596.16 20	3-	A D	
5627 <i>9</i> 5637.6 <i>3</i>	2+	D A	
5661.53 23		A	
5725 <i>14</i>	2+	D	
5815 <i>12</i> 5869.34 <i>23</i>	2	D A	
5890.1 <i>3</i>	$(3^-,1^-)$	A D	
5922 [#] 9	(4 ⁺)	D	
6005 [#] <i>12</i> 6019.90 <i>19</i>	(4+)	D A	
6249.60 2 <i>1</i>		A A	
6329 <i>21</i>	2+	D	
6400.4 <i>3</i> 6414.4	4+	A D	
6414.4°C	(9,10)	A	
6604.6 3		A	

⁸⁴Se Levels (continued)

ν(84	S	e)

$E_i(level)$	\mathbf{J}_{i}^{π}	${\rm E}_{\gamma}{}^{\dagger}$	I_{γ}^{\dagger}	$\mathrm{E}_f \qquad \mathrm{J}_f^\pi$	Mult.	Comments
1454.55	2+	1454.66 10	100	0.0 0+	E2	B(E2)(W.u.)=9.6 <i>14</i> E _γ : weighted average of 1454.55 <i>10</i> (⁸⁴ As β^- decay), 1455.1 2 (⁸⁵ As β^- n decay), 1454.5 2 (²⁰⁸ Pb(¹⁸ O,Xγ)), 1454.7 <i>1</i> (¹⁹² Os(⁸² Se,Xγ)). Other: Eγ=1455.1 (²⁵² Cf SF decay). Mult.: from ²⁰⁸ Pb(¹⁸ O,Xγ).
2121.65	4+	666.99 7	100	1454.55 2+	E2	B(E2)(W.u.)=10.0 +16-17 E _{\gamma} : weighted average of 666.97 10 (⁸⁴ As β^- decay), 667.1 2 (⁸⁵ As β^- n decay), 666.8 3 (²⁰⁸ Pb(¹⁸ O,X\gamma)), 667.0 1 (¹⁹² Os(⁸² Se,X\gamma)). Other: E\gamma=667.1 (²⁵² Cf SF decay). Mult.: from ²⁰⁸ Pb(¹⁸ O,X\gamma).
2461.38	$(1,2^+)$	1007.12 <i>10</i> 2461.35 <i>15</i>	41.9 <i>17</i> 100 <i>5</i>	1454.55 2 ⁺ 0.0 0 ⁺		
2699.47	(2,3,4)	577.77 14	100 3	2121.65 4+		E _y : weighted average of 577.84 10 (84 As β^- decay), 577.5 2 (85 As β^- n decay). I _y : weighted average of 100 3 (84 As β^- decay), 100 15 (85 As β^- n decay).
		1245.0 4	82 6	1454.55 2+		E _{γ} : weighted average of 1245.3 2 (⁸⁴ As β ⁻ decay), 1244.6 2 (⁸⁵ As β ⁻ n decay). I _{γ} : weighted average of 85 5 (⁸⁴ As β ⁻ decay), 67 12 (⁸⁵ As β ⁻ n decay).
2984.75	2+	522.2 1530.19 <i>10</i>	9.5 100 <i>5</i>	2461.38 (1,2 ⁺) 1454.55 2 ⁺		
3024.30	(2^{+})	325.03 <i>10</i> 1569.53 <i>10</i>	5.3 <i>16</i> 100 <i>3</i>	2699.47 (2,3,4) 1454.55 2 ⁺		
3069.77		1615.2 2	100 29 <i>15</i>	1454.55 2 ⁺		
3125.97		426.4 2 1671.45 <i>15</i>	100 8	2699.47 (2,3,4) 1454.55 2 ⁺		
3232.43		1110.77 10	100	2121.65 4+		5
3297.05		1175.9 2 1843.24 24	9.8 8 100 <i>3</i>	2121.65 4 ⁺ 1454.55 2 ⁺		E_{γ} , I_{γ} : observed only in ⁸⁴ As β^- decay. E_{γ} : weighted average of 1843.13 10 (⁸⁴ As β^- decay), 1843.7 2 (⁸⁵ As β^- n decay). I_{γ} : from ⁸⁴ As β^- decay.
3370.54	(6+)	1248.88 <i>13</i>	100	2121.65 4+	[E2]	B(E2)(W.u.)=1.1 +8-2 E _γ : weighted average of 1249.0 2 (⁸⁴ As $β$ ⁻ decay), 1248.7 2 (²⁰⁸ Pb(¹⁸ O,Xγ)), 1249.0 3 (¹⁹² Os(⁸² Se,Xγ)). Other: E _γ =1249.6 (²⁵² Cf SF decay).
3408.73		1287.06 10	100	2121.65 4+		
3439.15		1317.45 <i>10</i> 1984.7 <i>2</i>	100 <i>5</i> 23.6 <i>14</i>	2121.65 4 ⁺ 1454.55 2 ⁺		
3481.7?	(5±)	1360	100	2121.65 4+		E 11.1 C1415 2 2 208 D1 48 0 37 32
3537.09	(5^+)	1415.30 <i>17</i>	100	2121.65 4+		E_{γ} : weighted average of 1415.3 2 (208 Pb(18 O,X γ)),

 $^{^{\}dagger}$ From L-values observed in $^{82}Se(t,p)$ (1988Mu02), unless otherwise stated. ‡ Levels connected by γ rays are from least-squares fit to Ey; others are from $^{82}Se(t,p)$.

[#] L(t,p) has possible admixture of L=0 indicating possibility for a doublet.

Band(A): Ground state sequence.
 Band(B): Sequence based on (6⁺).

γ (84Se) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	${\rm I}_{\gamma}{}^{\dagger}$	E_f	\mathbf{J}_f^{π}	Mult.	Comments
							1415.3 3 (192 Os(82 Se,X γ)). Other: E γ =1415 (252 Cf SF decay).
3541.23	2+	1080.15 <i>10</i> 2086.69 <i>10</i>	15.8 <i>7</i> 100 <i>4</i>	2461.38 1454.55			
3548.3		1426.6 <i>3</i>	100	2121.65		_	20019
3701.47	(6 ⁺)	164.18 <i>21</i>	41 8	3537.09	(5+)	D	E _{γ} : weighted average of 164.1 2 (208 Pb(18 O,X γ)), 164.7 5 (192 Os(82 Se,X γ)). Other: E γ =165 (252 Cf SF decay). I _{γ} : weighted average of 80 40 (208 Pb(18 O,X γ)), 39 8
							(192 Os(82 Se,X γ)). Mult.: from $\gamma(\theta)$ in 192 Os(82 Se,X γ).
		1580.00 <i>21</i>	100 15	2121.65	4+	Q	E _y : weighted average of 1579.8 3 (208 Pb(18 O,Xy)), 1580.2 3 (192 Os(82 Se,Xy)). Other: Ey=1580 (252 Cf SF decay). I _y : weighted average of 100 21 (208 Pb(18 O,Xy)), 100
							22 (192 Os(82 Se,X γ)). Mult.: from $\gamma(\theta)$ in 192 Os(82 Se,X γ).
3862.5		492.0 [‡]	100	3370.54	(6 ⁺)		Main. 1011 7(0) III - 05(50,117).
3872.01		573.9	21.4	3297.05	(0)		
		1750.35 10	100 4	2121.65	4+		
3928	2+	2462 11	100	1454.55			
3985.27	2+	1863.6 2	100	2121.65			
4082.18 4116.33		1960.5 2 574.9	100 77	2121.65			
4110.55		2661.74 <i>15</i>	100 5	3541.23 1454.55			
4282.12		741.23 10	100 9	3541.23			
0		985.20 10	61.3 21	3297.05	_		
		2159.0 2	31.7 21	2121.65	4+		
		4280.9 <i>3</i>	27.9 17	0.0	0_{+}		200 10
4405.8	(7+)	704.34 24	100	3701.47	(6+)		E _γ : weighted average of 704.4 4 (208 Pb(18 O,Xγ)), 704.3 3 (192 Os(82 Se,Xγ)). Other: Eγ=703.5 (252 Cf SF decay).
4445.19	(4^{+})	2323.5 2	100	2121.65	4+		•
4641.0		1270.0		3370.54			
4898.5	(6^{+})	1361.4 4	100	3537.09			
5161.17		3039.46 15	100	2121.65	4'		
5221.96		1925.5 <i>2</i> 2522.10 <i>15</i>	73 <i>5</i> 100 <i>5</i>	3297.05 2699.47	(2.3.4)		
5329.9	(8+)	924.4	100 5	4405.8	$(2,3,4)$ (7^+)		
5596.16	3-	2299.0 2	90 7	3297.05	(,)		
		3474.6 <i>3</i>	100 7	2121.65	4+		
5637.6		4182.9 <i>3</i>	100	1454.55			
5661.53		2962.0 2	100	2699.47			
5869.34		3169.4 3	100 6	2699.47			
5000 1	(2- 1-)	3748.0 3	94 6	2121.65			
5890.1 6019.90	$(3^-,1^-)$	4435.4 <i>3</i> 2722.80 <i>15</i>	100 100	1454.55 3297.05	2		
6249.60		2840.8 2	53 13	3408.73			
		4127.9 3	100 7	2121.65	4+		
6400.4	4+	4945.7 <i>3</i>	100	1454.55			
6414.4	(9,10)	1084.5		5329.9	` '		
6541.5		5086.8 <i>3</i>	100	1454.55			
6604.6		5149.9 3	100	1454.55	2		

γ (84Se) (continued)

 † From the corresponding dataset when only one XREF is available. Otherwise, see individual comments for the source. ‡ Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

 $^{84}_{34}\mathrm{Se}_{50}$

$$^{84}_{34}\mathrm{Se}_{50}$$