Thomas Pattara STAT 560 Time Series Analysis

1. Analyze the attached final_data1 by three methods: ARIMA, exponential smoothing, and linear regression. The first column of final_data1 is the year; the second column is the coal production.

1.1 ARIMA model

1.1.1 Fit an ARIMA model to this time series, excluding the last 10 observations. If you are selecting the best model from multiple models, please do NOT include the selection procedures, just show the summary of the best model, and by saying that this model has the least AIC (AIC=***) comparing with others (AIC=**** for ARIMA(p1,d1,q1), AIC=**** for ARIMA(p2,d2,q2), etc.).

Figure 1: Time Series Analysis of Coal Production data excluding last 10 observations.

Figure 2: Summary of best fit

Figure 3: ACF and PACF after ARIMA(0,1,0) modelling

Comparing various ARIMA models on the Coal production data (excluding last 10 observations), I found ARIMA(0,1,0) to be the best model. From Figure 1, since ACF has exponential decay

and PACF cuts off at lag 1, we can say that AR would fit well for the data. Comparing the AIC's of different model, AR(1) has 1147.37, first differencing I(1) has 1114.51 and ARI(1,1) 1115.001. Hence clearly, ARIMA(0,1,0) has the lowest AIC and should be the best model for the data.

Therefore, (1-B)y_t =
$$\delta$$
 + ϵ _t = 12008.77 + ϵ _t.

1.1.2 Forecast the last 10 observations. Calculate the mean squared forecast error (MSE) and the mean absolute percent forecast error (MAPE). Please list only the 10 forecasts in a line, and MSE and MAPE in another line, do NOT include any other outputs.

MSE = 1009498466

Table 1: MSE Calculation

	Year	Actual Coal Production	Predicted Coal Production	(Actual- Predicted)^2
1	1996	1063855.513	1044982.549	356188766.4
2	1997	1089931.788	1056991.326	1085074017
3	1998	1117535.167	1069000.103	2355652399
4	1999	1100431.428	1081008.881	377235347.5
5	2000	1073611.561	1093017.658	376596589.1
6	2001	1127688.806	1105026.435	513583063.9
7	2002	1094283.061	1117035.212	517660375.1
8	2003	1071752.573	1129043.989	3282306370
9	2004	1112098.87	1141052.766	838328111
10	2005	1133253.474	1153061.544	392359617.3
11	•	•		•
12	•	•	MSE	1009498466

MAPE = 2.64976837

Table 2: MAPE calculation

	Year	Actual Coal Production	Predicted Coal	Actual-Predicted	Absolute Percentage
1	1996	1063855.513	1044982.549	18872.9639	1.774015707
2	1997	1089931.788	1056991.326	32940.4617	3.022249838
3	1998	1117535.167	1069000.103	48535.0636	4.343045752
4	1999	1100431.428	1081008.881	19422.5474	1.764993884
5	2000	1073611.561	1093017.658	19406.0967	1.807552881
6	2001	1127688.806	1105026.435	22662.3711	2.009629871
7	2002	1094283.061	1117035.212	22752.151	2.079183331
8	2003	1071752.573	1129043.989	57291.4162	5.345582333
9	2004	1112098.87	1141052.766	28953.8963	2.603536168
10	2005	1133253.474	1153061.544	19808.0695	1.747894002
11	•	•	•		•
12	•	•	•	MAPE	2.649768377

Table 3: Forecast of last 10 observation

	Year	Predicted Coal Production
48	1996	1044982.5491
49	1997	1056991.3263
50	1998	1069000.1034
51	1999	1081008.8806
52	2000	1093017.6577
53	2001	1105026.4349
54	2002	1117035.212
55	2003	1129043.9892
56	2004	1141052.7663
57	2005	1153061.5435

1.1.3 Show how to obtain the 95% prediction intervals (PIs) for the forecasts in 1.1.2). Your answer should include how to obtain the linear filter ψ is for $yt+\tau$, the formula of calculating PIs and the calculated intervals.

$$var[e_{T}(\tau)] = \sigma^{2} \sum_{i=0}^{\tau-1} \psi_{i}^{2}$$

$$= \sigma^{2}(\tau), \tau = 1,2,3...$$

Prediction interval for
$$\mathbf{y}_{\mathsf{T+\tau}} = \widehat{y}_{\mathsf{T+\tau}}(\mathsf{T}) \pm Z_{\alpha/2} \sqrt{var[e_T(\tau)]}$$
$$= \widehat{y}_{\mathsf{T+\tau}}(\mathsf{T}) \pm Z_{\alpha/2} \sqrt{\sigma^2(\tau)}$$

Table 4: 95% prediction intervals (PIs) for the forecasts in 1.1.2

•		
	Upper PI (0.95) Coal Production	Lower PI (0.95) Coal Production
48	1130589.4594	959375.63894
49	1178057.7797	935924.87285
50	1217275.6214	920724.58548
51	1252222.701	909795.06018
52	1284440.5283	901594.78717
53	1314719.6834	895333.18642
54	1343529.807	890540.61712
55	1371176.8961	886911.08229
56	1397873.497	884232.03571
57	1423774.3632	882348.72378

1.2 Exponential Smoothing method

1.2.1 Use an exponential smoothing with the optimum value of λ to smooth the data, excluding the last 10 observations. Let the range of λ be [0.3, 1].

Figure 4: Exponential smoothing excluding the last 10 observations.

We find the optimum value of λ to smooth the data to be 0.31239

Figure 5: ACF and PACF after exponential smoothing.

1.2.2 Forecast the last 10 observations. Calculate the mean squared error (MSE) and the mean absolute percent forecast error (MAPE). Same requirement as question 1.1.2.

MSE = 1154974117

•	Year	Actual Coal Production	Predicted Coal Production	(Actual- Predicted)^2
1	1996	1063855.513	1043681.814	406978115.2
2	1997	1089931.788	1056604.18	1110729448
3	1998	1117535.167	1069526.546	2304827719
4	1999	1100431.428	1082448.911	323370903.3
5	2000	1073611.561	1095371.277	473485244.8
6	2001	1127688.806	1108293.643	376172355.6
7	2002	1094283.061	1121216.009	725383661
8	2003	1071752.573	1134138.374	3891988179
9	2004	1112098.87	1147060.74	1222332340
10	2005	1133253.474	1159983.106	714473200.1
11	•	•		•
12	•	•	MSE	1154974117

Table 5: MSE calculation

Table 6: MAPE calculation

	Year	Actual Coal Production	Predicted Coal Production	Actual- Predicted	Absolute Percentage
1	1996	1063855.513	1043681.814	20173.6986	1.896281812
2	1997	1089931.788	1056604.18	33327.6079	3.057770061
3	1998	1117535.167	1069526.546	48008.6213	4.295938304
4	1999	1100431.428	1082448.911	17982.5166	1.634133317
5	2000	1073611.561	1095371.277	21759.7161	2.026777364
6	2001	1127688.806	1108293.643	19395.1632	1.719903851
7	2002	1094283.061	1121216.009	26932.9475	2.461241379
8	2003	1071752.573	1134138.374	62385.8011	5.820914516
9	2004	1112098.87	1147060.74	34961.8698	3.143773521
10	2005	1133253.474	1159983.106	26729.6315	2.358663098
11	•	•			•
12	•	•		MAPE	2.841539722

Table 7: Forecast of last 10 observation

•	Year	Actual Coal Production	Predicted Coal Production
1	1996	1063855.513	1043681.814
2	1997	1089931.788	1056604.18
3	1998	1117535.167	1069526.546
4	1999	1100431.428	1082448.911
5	2000	1073611.561	1095371.277
6	2001	1127688.806	1108293.643
7	2002	1094283.061	1121216.009
8	2003	1071752.573	1134138.374
9	2004	1112098.87	1147060.74
10	2005	1133253.474	1159983.106

1.2.3 Show how to obtain the 95% prediction intervals for the forecasts in 1.2.2). Your answer should include the formula of calculating PIs and the calculated intervals.

100(1 – α /2) percent prediction interval for any Coal Production at time τ is

$$\left(2+\frac{\lambda}{1-\lambda}\tau\right)\hat{y}_{T}^{(1)}-\left(1+\frac{\lambda}{1-\lambda}\tau\right)\hat{y}_{T}^{(2)}\pm Z_{\alpha/2}\frac{c_{\tau}}{c_{1}}\hat{\sigma}_{e},$$

where

$$c_i^2 = 1 + \frac{\lambda}{(2 - \lambda)^3} [(10 - 14\lambda + 5\lambda^2) + 2i\lambda(4 - 3\lambda) + 2i^2\lambda^2].$$

Table 8: 95% prediction intervals for the forecasts in 1.2.2

•	Upper PI (0.95) Coal Production	Lower PI (0.95) Coal Production
48	1131718.53	955645.09881
49	1160411.0945	952797.26562
50	1191264.8312	947788.26028
51	1223980.1426	940917.68023
52	1258331.8103	932410.74392
53	1294151.0348	922436.25071
54	1331309.3591	911122.65784
55	1369706.8246	898569.92367
56	1409263.7698	884857.70978
57	1449915.2362	870050.9748

1.3 Linear regression model

1.3.1 Use a linear regression model to fit the data, excluding the last 10 observations.

Coal Production $(y_t) = 349159.7 + 13624.322(X)$, where X is the row order.

Figure 6: Linear fit excluding the last 10 observations.

1.3.2 Forecast the last 10 observations. Calculate the mean squared forecast error (MSE) and the mean absolute percent forecast error (MAPE).

MSE = 2412579187

Table 9: MSE calculation

	Year	Actual Coal Production	Predicted Coal Production	(Actual - Predicted)^2
1	1996	1063855.513	1003127.168	3687931850
2	1997	1089931.788	1016751.491	5355355942
3	1998	1117535.167	1030375.813	7596753059
4	1999	1100431.428	1044000.135	3184490852
5	2000	1073611.561	1057624.457	255587497.5
6	2001	1127688.806	1071248.779	3185476636
7	2002	1094283.061	1084873.101	88547341.56
8	2003	1071752.573	1098497.423	715287022.9
9	2004	1112098.87	1112121.746	523.2930754
10	2005	1133253.474	1125746.068	56361149.35
11	•	•		•
12	•	•	MSE	2412579187

MAPE = 3.586

Table 10: MAPE calculation

	Year	Actual Coal Production	redicted Coal Production	Actual - Predicted	Absolute Percentage
1	1996	1063855.513	1003127.168	60728.3447	5.708326362
2	1997	1089931.788	1016751.491	73180.2975	6.714208935
3	1998	1117535.167	1030375.813	87159.3544	7.799249364
4	1999	1100431.428	1044000.135	56431.2932	5.128106283
5	2000	1073611.561	1057624.457	15987.1041	1.489095748
6	2001	1127688.806	1071248.779	56440.0269	5.00492925
7	2002	1094283.061	1084873.101	9409.9597	0.859920073
8	2003	1071752.573	1098497.423	26744.8504	2.495431415
9	2004	1112098.87	1112121.746	22.8756	0.002056975
10	2005	1133253.474	1125746.068	7507.4063	0.662464883
11	•	•	•		•
12	•	•	•	MAPE	3.586378929

Table 11: Forecast of last 10 observations

•	Year	Coal Production	Predicted Coal
48	1996	1063855.513	1003127.1683
49	1997	1089931.788	1016751.4905
50	1998	1117535.167	1030375.8126
51	1999	1100431.428	1044000.1348
52	2000	1073611.561	1057624.4569
53	2001	1127688.806	1071248.7791
54	2002	1094283.061	1084873.1013
55	2003	1071752.573	1098497.4234
56	2004	1112098.87	1112121.7456
57	2005	1133253.474	1125746.0677

1.3.3 Show how to obtain the 95% prediction intervals for the forecasts in 1.3.2). Your answer should include the formula of calculating PIs and the calculated intervals.

Prediction interval =

$$\hat{y} \pm t_{n-2} s_y \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{(n-1)s_x^2}}$$

Table 12: 95% prediction intervals for the forecasts in 1.3.2

•	Year	Coal Production	Predicted Coal	Lower 95% Indiv Coal	Upper 95% Indiv Coal
48	1996	1063855.513	1003127.1683	843206.01157	1163048.325
49	1997	1089931.788	1016751.4905	856414.41324	1177088.5677
50	1998	1117535.167	1030375.8126	869606.98136	1191144.6439
51	1999	1100431.428	1044000.1348	882783.84313	1205216.4264
52	2000	1073611.561	1057624.4569	895945.12895	1219303.7849
53	2001	1127688.806	1071248.7791	909090.97226	1233406.5859
54	2002	1094283.061	1084873.1013	922221.50935	1247524.6932
55	2003	1071752.573	1098497.4234	935336.87917	1261657.9677
56	2004	1112098.87	1112121.7456	948437.22321	1275806.268
57	2005	1133253.474	1125746.0677	961522.68529	1289969.4502

2. The data final_data_560 contains 7 years of monthly data on the number of airline miles flown in the United Kingdom. This is a seasonal data. Develop an appropriate ARIMA model (Same requirement as question 1.1.1). And calculate the prediction intervals for the eighth year (next 12 months).

Model	Sumn	nary								
DF					68	Stable	Yes			
Sum of Squared Errors				43.6	6184603	Invertible	Yes			
Variance Estimate				0.64	1144795					
Standard Deviation				0.80	0090445					
Akaike's 'A' Information Criterion				179	.947612					
Schwarz's Bayesian Criterion			186	.735651						
RSquare			0.84604664							
RSquare Adj			0.8	3415186						
MAPE			5.5	1406149						
MAE			0.60	0373546						
-2LogLikelihood				173	.947612					
Param	neter E	stim	ates							
Term	Factor	Lag	Estim	nate	Std En	or t Rati	o P	rob> t	Constant	Mu
MA1,1	1	1	0.80010	946	0.10356	78 7.7	3 <	.0001*	Estimate	0.00755811
MA2,12	2	12	0.62561	362	0.12592	18 4.9	7 <	.0001*	0.00755811	
Intercept	1	0	0.00755	011	0.01128	14 0.6	7 0	.5052		

Figure 12: Seasonal ARIMA (0,1,1) X (0,1,1)₁₂ model summary

Comparing to other models, this model has the lowest AIC. SARIMA(0,1,1) X $(0,1,1)_{12}$ has AIC value 179.94 , SARIMA(0,1,0) X $(0,1,0)_{12}$ has 213.54 and SARIMA(0,0,1) X $(0,0,1)_{12}$ has 271.24. Therefore, we select SARIMA(0,1,1) X $(0,1,1)_{12}$ and the fitted model is:

(1-B) (1-B¹²)
$$y_t$$
 = (1 + 0.8001B) (1 + 0.62561B¹²) ε_t

Table 13: Prediction intervals for the eighth year (next 12 months)

	Upper PI (0.95) Miles, in Millions	Lower PI (0.95) Miles, in Millions
84	14.350268257	11.210780485
85	13.341378799	10.201891026
86	12.996702761	9.7951082562
87	15.527269509	12.264750349
88	14.955293895	11.632967125
89	16.018176385	12.637099772
90	17.592476403	14.1536535
91	17.045730338	13.550114962
92	17.360075528	13.808575739
93	18.801034816	15.194516459
94	15.722654832	12.061944716
95	14.492603191	10.778491932
96	15.746765374	11.980009961

Table 14: Predicted values for next 12 months

•	Actual Miles, in Millions	Month	Predicted Miles, in Millions
85		12/1970	11.771634912
86		01/1971	11.395905508
87		03/1971	13.896009929
88		03/1971	13.29413051
89		04/1971	14.327638079
90		05/1971	15.873064951
91		06/1971	15.29792265
92		07/1971	15.584325633
93		08/1971	16.997775637
94		09/1971	13.892299774
95		10/1971	12.635547561
96		11/1971	13.863387668