FIT3031-Tutorial 3

ASYMMETRIC ENCRYPTION

Review

- Q1 What is message authentication? List three approaches to message authentication.
- Q2 What is a message authentication code?
- Q3 Briefly describe the three schemes illustrated in the Figures below.

- Q4 What properties must a hash function have to be useful for message authentication?
- Q5 What are the principle components of a public key cryptosystem?
- Q6 List and briefly define three uses of a public key cryptosystem.
- Q7 What is the difference between a private key and a secret key?
- Q8 What are a digital signature and a digital certificate?
- Q9 What is a public key certificate?
- Q10 How can public key encryption be used to distribute a secret key?

Problems:

Modular Arithmetic Applications

- Q1 Find the integers x such that
 - a. $5x \equiv 4 \pmod{3}$
 - b. $7x \equiv 6 \pmod{5}$
 - c. $9x \equiv 8 \pmod{7}$
- Q2 Perform encryption and decryption using the RSA algorithm as in Figure 3.9 (of the text book) for the following;
 - a. p=3; q=11; e=7; M=5;
 - b. p = 5; q = 11; e = 3; M = 9;

Hint: Decryption is not as hard as you think;

- Q3 In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user whose public key is e = 5, n = 35. What is the plaintext M?
- Q4 Consider a Diffie-Hellman scheme with a common prime q = 17 and a primitive root $\alpha = 3$.
 - a. If user A has private key $X_A=4$, what is A's public key, Y_A ? (*Hint:* 17x5=68)
 - b. A sends Y_A to B. If B has a private key X_B =6, what is the shared secret key, K that B can calculate and share with A? (*Hint:17*6=102;* 17*9=153:15*17=255:)

c. If B computes Y_B and sends it to A₁, what is the shared secret Key, K computed by A? (*Hint:* 13*17=221)

Other Problems:

- Suppose Bob uses RSA cryptosystem with a very large modulus, *n* for which the factorisaton cannot be found in a reasonable amount of time. Suppose Alice sends a message to Bob by representing each alphabetic character as an integer between 0 and 25 (A→0,Z→25), and then encrypting each number separately using Bob's public key *e* and a large *n*. Is this scheme secure? If not, describe the most efficient attack against this encryption method.
- **Q6** State the value of the padding field in SHA-512 if the length of the message is
 - a. 1919
 - b. 1920
 - c. 1921
- Q7 State the value of the length field in SHA-512 if the length of the message is
 - a. 1919
 - b. 1920
 - c. 1921