Code

```
import numpy as np
A = np.matrix([
                           # 3x3 matrix
   [130, 120, 105],
   [4, 3, 1],
   [2, 5, 1]
   ])
B = np.matrix([
                     # 2x3 matrix
   [6, 7],
   [4, 5],
   [8, 9]
   ])
C = np.matrix([
                           # 3x3 matrix
   [5, 2, 7],
   [3, 5, 1],
   [7, 2, 1]
   ])
D = np.matrix([
                          # 1x3 matrix
   [245],
   [6],
   [7]
   ])
ctimesd = np.matmul(C, D)  # multiply matrices
x = np.linalg.solve(A, D) # solve linear matrix equation
status = np.allclose(np.dot(A, x), D) # Ensure true
print("A + C: \n%s" % aplusc)
print("A - C: \n%s" % aminusc)
print("AC: \n%s" % atimesc)
print("CD: \n%s" % ctimesd)
print("\n\nAx = D: \n%s\nThe solution is: %s" % (x, status))
```

Daniel W. Anner DSSA 5104 Deep Learning Week 3 Submission 1

A + C:

Results

[[135 122 112]
[7 8 2]
[9 7 2]]
A - C:
[[125 118 98]
[1 -2 0]
[-5 3 0]]
AC:
[[1745 1070 1135]
[36 25 32]
[32 31 20]]
CD:
[[1286]
[772]
[1734]]
Ax = D:
[[0.59278351]
[1.09278351]
[0.35051546]]
The solution is: True