CSC165H1: Problem Set 3 Sample Solutions

Due March 14, 2018 before 10pm

Note: solutions may be incomplete, and meant to be used as guidelines only. We encourage you to ask follow-up questions on the course forum or during office hours.

1. [4 marks] Special numbers. For each $n \in \mathbb{N}$, define $F_n = 2^{2^n} + 1$.

Prove that for all natural numbers n, $F_n - 2 = \prod_{i=0}^{n-1} F_i$.

Hints:

- Please review product notation, including empty products, on page 16 of the course notes.
- For all $n \in \mathbb{N}$, $2^{2^{n+1}} = (2^{2^n})^2$.

Solution

Proof. Let P(n) be the predicate " $F_n - 2 = \prod_{i=0}^{n-1} F_i$," where n is a natural number. We want to prove the statement $\forall n \in \mathbb{N}, P(n)$, and will do so by induction.

<u>Base case</u>: Let n = 0. We want to prove P(0). Using the definition of F_n we have that

$$F_0 - 2 = (2^{2^0} + 1) - 2$$
$$= (2^1 + 1) - 2$$
$$= 3 - 2$$
$$= 1.$$

In addition, using the rules for product notation, we know that

$$\prod_{i=0}^{0-1} F_i = \prod_{i=0}^{-1} F_i$$
= 1.

Hence $F_0 - 2 = \prod_{i=0}^{0-1} F_i$, and P(0), as required.

<u>Induction step</u>: Let $k \in \mathbb{N}$. We want to prove that $P(k) \Rightarrow P(k+1)$. Assume P(k), i.e., that $F_k - 2 = \prod_{i=0}^{k-1} F_i$. We want to show P(k+1), i.e., that $F_{k+1} - 2 = \prod_{i=0}^{k} F_i$.

We start with the right hand side of the desired equality and work towards the left hand side. We

have

$$\begin{split} \prod_{i=0}^k F_i &= F_k \cdot \prod_{i=0}^{k-1} F_i \\ &= F_k \cdot \left(F_k - 2 \right) \quad \text{(using the induction hypothesis)} \\ &= F_k^2 - 2 \cdot F_k \\ &= \left(F_k^2 - 2 \cdot F_k + 1 \right) - 1 \quad \text{(completing the square)} \\ &= \left(F_k - 1 \right)^2 - 1 \\ &= \left(2^{2^k} \right)^2 - 1 \quad \text{(applying the definition of } F_k \text{)} \\ &= 2^{2^{k+1}} - 1 \\ &= \left(2^{2^{k+1}} + 1 \right) - 2 \\ &= F_{k+1} - 2, \end{split}$$

and P(k+1), as required.

(Note that different sequences of equalities may be used to prove the inductive step.)

Page 2/10

2. [8 marks] Sequences. We define the following sequence of numbers $a_0, a_1, a_2 \dots$ recursively as:

$$a_0 = 1$$
, and for all $n \in \mathbb{N}$, $a_{n+1} = \frac{1}{\frac{1}{a_n} + 1}$

(a) [1 mark] What are the values of a_0 , a_1 , a_2 , and a_3 ?

Solution

We have
$$a_0 = 1$$
, $a_1 = \frac{1}{\frac{1}{a_0} + 1}$ $a_2 = \frac{1}{\frac{1}{a_1} + 1}$ and $a_3 = \frac{1}{\frac{1}{a_2} + 1}$

$$= \frac{1}{\frac{1}{1} + 1} = \frac{1}{\frac{1}{2} + 1} = \frac{1}{\frac{1}{3} + 1}$$

$$= \frac{1}{1 + 1} = \frac{1}{2 + 1} = \frac{1}{3 + 1}$$

$$= \frac{1}{2}, = \frac{1}{3}, = \frac{1}{4}.$$

(b) [3 marks] Find and prove a non-recursive formula for a_n that is valid for all natural numbers n. That is, the statement you will prove should be of the form

$$\forall n \in \mathbb{N}, \ a_n = \underline{\hspace{1cm}}$$

By "non-recursive" we mean that the formula you use to fill in the blank should not involve any a_i terms.

Solution

The observations given above suggest that a non-recursive formula for a_n is $\frac{1}{n+1}$.

Proof. Let P(n) be the predicate " $a_n = \frac{1}{n+1}$," where n is a natural number. We want to prove the statement $\forall n \in \mathbb{N}, P(n)$, and will do so by induction.

<u>Base case</u>: Let n = 0. We want to prove P(0). Since $\frac{1}{0+1} = 1$, and a_0 is given to be 1, P(0) follows

Induction step: Let $k \in \mathbb{N}$. We want to prove that $P(k) \Rightarrow P(k+1)$. Assume P(k), i.e., that $a_k = \frac{1}{k+1}$. We want to show P(k+1), i.e., that $a_{k+1} = \frac{1}{(k+1)+1}$.

Using the definition of a_{k+1} , we have that

$$a_{k+1} = \frac{1}{\frac{1}{a_k} + 1}$$

$$= \frac{1}{\frac{1}{\frac{1}{k+1}} + 1}$$
 (using the induction hypothesis)
$$= \frac{1}{(k+1) + 1},$$

and P(k+1), as required.

(c) [1 mark] Let's now generalize the previous part. For every natural number k greater than 1, we define an infinite sequence $a_{k,0}, a_{k,1}, \ldots$ recursively as follows:

$$a_{k,0} = k$$
, and for all $n \in \mathbb{N}$, $a_{k,n+1} = \frac{k}{\frac{1}{a_{k,n}} + 1}$

What are the values of $a_{2,0}$, $a_{2,1}$, $a_{2,2}$, and $a_{2,3}$? What are the values of $a_{3,0}$, $a_{3,1}$, $a_{3,2}$, and $a_{3,3}$?

Solution

We have
$$a_{2,0} = 2$$
, $a_{2,1} = \frac{2}{\frac{1}{a_{2,0}} + 1}$ $a_{2,2} = \frac{2}{\frac{1}{a_{2,1}} + 1}$ and $a_{2,3} = \frac{2}{\frac{1}{a_{2,2}} + 1}$

$$= \frac{2}{\frac{1}{2} + 1} \qquad = \frac{2}{\frac{1}{4} + 1} \qquad = \frac{2}{\frac{1}{8} + 1}$$

$$= \frac{2}{\frac{3}{2}} \qquad = \frac{2}{\frac{3}{4} + 1} \qquad = \frac{2}{\frac{7}{8} + 1}$$

$$= \frac{4}{3}, \qquad = \frac{2}{\frac{7}{4}} \qquad = \frac{2}{\frac{15}{8}}$$

$$= \frac{8}{7}, \qquad = \frac{16}{15}.$$

The numerator of $a_{2,k}$ appears to be 2^{k+1} and the denomiator appears to be $2^{k+1} - 1$. But let's explore another value of k before making a hypothesis about a general formula.

We have
$$a_{3,0} = 3$$
, $a_{3,1} = \frac{3}{\frac{1}{a_{3,0}} + 1}$ $a_{3,2} = \frac{3}{\frac{1}{a_{3,1}} + 1}$ and $a_{3,3} = \frac{3}{\frac{1}{a_{3,2}} + 1}$

$$= \frac{3}{\frac{1}{3}} + 1$$

$$= \frac{3}{\frac{4}{3}}$$

$$= \frac{3}{\frac{4}{9} + 1}$$

$$= \frac{3}{\frac{13}{27} + 1}$$

$$= \frac{9}{4}$$

$$= \frac{3}{\frac{13}{9}}$$

$$= \frac{3}{\frac{13}{27}}$$

$$= \frac{3}{\frac{40}{27}}$$

$$= \frac{81}{40}$$

The numerator of $a_{3,n}$ appears to be 3^{n+1} and the denomiator appears to be, not $3^{n+1} - 1$, but rather $\frac{3^{n+1} - 1}{2} = \frac{3^{n+1} - 1}{3 - 1}$.

Let's explore k = 4 even though it was not asked for, to test out the last hypothesis.

Page 4/10

We have
$$a_{4,0} = 4$$
, $a_{4,1} = \frac{4}{\frac{1}{a_{4,0}} + 1}$ $a_{4,2} = \frac{4}{\frac{1}{a_{4,1}} + 1}$ and $a_{4,3} = \frac{4}{\frac{1}{a_{4,2}} + 1}$

$$= \frac{4}{\frac{1}{4} + 1} \qquad = \frac{4}{\frac{1}{\frac{16}{5}} + 1} \qquad = \frac{4}{\frac{164}{21}} + 1$$

$$= \frac{4}{\frac{5}{4}} \qquad = \frac{4}{\frac{5}{16}} + 1 \qquad = \frac{4}{\frac{21}{64} + 1}$$

$$= \frac{16}{5} \qquad = \frac{4}{\frac{21}{16}} \qquad = \frac{4}{\frac{85}{64}}$$

$$= \frac{4^2}{\frac{4^2 - 1}{4 - 1}}, \qquad = \frac{64}{21} \qquad = \frac{256}{85}$$

$$= \frac{4^3}{\frac{4^3 - 1}{4 - 1}}, \qquad = \frac{4^4}{\frac{4^4 - 1}{4 - 1}}.$$

The numerator of $a_{4,n}$ again appears to be 4^{n+1} and the denomiator appears to be $\frac{4^{n+1}-1}{3} = \frac{4^{n+1}-1}{4-1}$.

(d) [3 marks] Find and prove a non-recursive formula for $a_{k,n}$ that is valid for all natural numbers k greater than 1, and all natural numbers n. Hint: as we saw in class, it's easiest to handle multiple universal quantifications in a proof by induction by first letting one variable be arbitrary, and then doing induction on the other variable.

Solution

The observations given above suggest that a non-recursive formula for $a_{k,n}$ is $\frac{k^{n+1}}{\frac{k^{n+1}-1}{k-1}} = \frac{(k-1)\cdot k^{n+1}}{k^{n+1}-1}$.

Note that since

$$\sum_{i=0}^{n} (k^i) = \frac{k^{n+1} - 1}{k - 1},$$

the expression may also be written as $a_{k,n} = \frac{k^{n+1}}{\sum_{i=0}^{n} (k^i)}$. This sample solution will proceed using the first expression.

The statement that we want to prove correct is

$$\forall k \in \mathbb{N}, k > 1 \Rightarrow \left(\forall n \in \mathbb{N}, a_{k,n} = \frac{(k-1) \cdot k^{n+1}}{k^{n+1} - 1} \right).$$

Proof. Let k represent a natural number that is greater than 1. And let $P_k(n)$ be the predicate " $a_{k,n} = \frac{(k-1) \cdot k^{n+1}}{k^{n+1}-1}$ " where n is a natural number. We want to prove the statement $\forall n \in \mathbb{N}$, $P_k(n)$, and will do so by induction.

Base case: Let n = 0. We want to prove $P_k(0)$.

Since
$$\frac{(k-1) \cdot k^{n+1}}{k^{n+1} - 1} = \frac{(k-1) \cdot k^{0+1}}{k^{0+1} - 1}$$

= $\frac{(k-1) \cdot k^{1} - 1}{k^{1} - 1}$
= k ,

and $a_{k,0}$ is given to be k, $P_k(0)$ follows.

Induction step: Let $m \in \mathbb{N}$. We want to prove that $P(m) \Rightarrow P(m+1)$. Assume P(m), i.e., that $a_{k,m} = \frac{(k-1) \cdot k^{m+1}}{k^{m+1}-1}$. We want to show $P_k(m+1)$, i.e., that $a_{k,m+1} = \frac{(k-1) \cdot k^{(m+1)+1}}{k^{(m+1)+1}-1}$. Using the definition of $a_{k,m+1}$, we have that

$$a_{k,m+1} = \frac{k}{\frac{1}{a_{k,m}} + 1}$$
$$= \frac{k \cdot a_{k,m}}{1 + a_{k,m}}$$

(can multiply numerator and denominator by $a_{k,m}$ since from the recursive formula $a_{k,m} \neq 0$)

$$= \frac{k \cdot \frac{(k-1) \cdot k}{k^{m+1}-1}}{1+a_{k,m}} \quad \text{(using the induction hypothesis)}$$

$$= \frac{(k-1) \cdot k^{m+2}}{(k^{m+1}-1)(1+a_{k,m})}$$

$$= \frac{(k-1) \cdot k^{m+2}}{k^{m+1}-1+(k-1) \cdot k^{m+1}} \quad \text{(using the induction hypothesis and multiplying in } (k^{m+1}-1))$$

$$= \frac{(k-1) \cdot k^{m+2}}{k^{m+1}-1+k^{m+2}-k^{m+1}}$$

$$= \frac{(k-1) \cdot k^{m+2}}{k^{m+2}-1}$$

and P(m+1), as required.

 $=\frac{(k-1)\cdot k^{(m+1)+1}}{k^{(m+1)+1}-1},$

Page 6/10

3. [11 marks] Properties of Asymptotic Notation.

Let $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$. We define the **cumulative sum of** f, denoted Sum_f , to be the function $Sum_f: \mathbb{N} \to \mathbb{R}^{\geq 0}$ defined as follows:

$$Sum_f(n) = \sum_{i=0}^n f(i) = f(0) + f(1) + \dots + f(n)$$

For example, we have previously proved in this course that if f(n) = n, then $Sum_f(n) = \frac{n(n+1)}{2}$.

In Parts (a) and (c), you may not use any theorems that may have been shown in lecture/tutorial, and must use the formal definition of big-Oh.

(a) [4 marks] Prove that for all $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$, if $f \in \mathcal{O}(n)$, then $Sum_f \in \mathcal{O}(n^2)$.

Hint: be careful about choosing constants here! It may be tempting to say that " $f(n) \leq kn$," but this is only true after a certain point. Also remember that you can break up summations:

$$\sum_{i=a}^{b} f(i) = \sum_{i=a}^{c} f(i) + \sum_{i=c+1}^{b} f(i) \quad \text{for all } a \le c \le b.$$

Solution

Proof. Let $f: \mathbb{N} \to \mathbb{R}^{\geq 0}$, and assume that $f \in \mathcal{O}(n)$, i.e., that there exist $c_1, n_1 \in \mathbb{R}^+$ such that for all $n \in \mathbb{N}$, if $n \geq n_1$ then $f(n) \leq c_1 n$.

We want to prove that $Sum_f \in \mathcal{O}(n^2)$, i.e., that there exist $c_2, n_2 \in \mathbb{R}^+$ such that for all $n \in \mathbb{N}$, if $n \geq n_2$ then $Sum_f(n) \leq c_2 n^2$.

Let $c_2 = \left(\sum_{i=0}^{\lfloor n_1 \rfloor} f(i)\right) + c_1$, and let $n_2 = n_1$.* Let $n \in \mathbb{N}$ and assume that $n \geq n_2$. We'll prove

that $Sum_f(n) \leq c_2 n^2$.

A small claim we'll use below: since $n_1 \in \mathbb{R}^+$, we know that $\lceil n_1 \rceil \geq 1$. This means that since $n \in \mathbb{N}$ and $n \geq n_2 = n_1$, we know that $n \geq 1$ as well.

Back to the main proof. We start with the left-hand side expression of the inequality:

$$\begin{aligned} Sum_f(n) &= \sum_{i=0}^n f(i) & \text{(the definition of } Sum_f) \\ &= \sum_{i=0}^{\lfloor n_1 \rfloor} f(i) + \sum_{i=\lfloor n_1 \rfloor + 1}^n f(i) & \text{(splitting up the sum)} \\ &\leq \sum_{i=0}^{\lfloor n_1 \rfloor} f(i) + \sum_{i=\lfloor n_1 \rfloor + 1}^n c_1 i & \text{(by our Big-Oh assumption)} \\ &\leq \sum_{i=0}^{\lfloor n_1 \rfloor} f(i) + \sum_{i=\lfloor n_1 \rfloor + 1}^n c_1 n & \text{(since } i \leq n \text{ in the second sum)} \\ &= \left(\sum_{i=0}^{\lfloor n_1 \rfloor} f(i)\right) + (n - \lfloor n_1 \rfloor) c_1 n & \\ &\leq \left(\sum_{i=0}^{\lfloor n_1 \rfloor} f(i)\right) + c_1 n^2 & \text{(since } n - \lfloor n_1 \rfloor \leq n) \\ &\leq \left(\sum_{i=0}^{\lfloor n_1 \rfloor} f(i)\right) n^2 + c_1 n^2 & \text{(since } n \geq 1, \text{ and the summation is } \geq 0)} \\ &= c_2 n^2 & \end{aligned}$$

(b) [3 marks] Prove by induction that for all natural numbers n, $\sum_{i=1}^{2^n} \frac{1}{i} \ge \frac{n}{2}$.

Solution

We define the predicate $P(n): \sum_{i=1}^{2^n} \frac{1}{i} \ge \frac{n}{2}$, where $n \in \mathbb{N}$.

We'll prove that $\forall n \in \mathbb{N}, \ P(n)$ by induction.

Proof. Base case: let n = 0. The left side of the inequality in P(n) is $\sum_{i=1}^{2^0} \frac{1}{i} = 1$, while the right side is $\frac{0}{2} = 0$, so the inequality holds.

Induction step: let $k \in \mathbb{N}$ and assume that P(k) holds, i.e., that $\sum_{i=1}^{2^k} \frac{1}{i} \geq \frac{k}{2}$. We want to prove

that P(k+1) also holds, i.e., that $\sum_{i=1}^{2^{k+1}} \frac{1}{i} \ge \frac{k+1}{2}$.

We start with the left side of the inequality:

^{*}Note: choosing c_2 is definitely the hardest part of this question!

$$\sum_{i=1}^{2^{k+1}} \frac{1}{i} = \sum_{i=1}^{2^k} \frac{1}{i} + \sum_{i=2^k+1}^{2^{k+1}} \frac{1}{i}$$

$$\geq \frac{k}{2} + \sum_{i=2^k+1}^{2^{k+1}} \frac{1}{i}$$
(By the induction hypothesis)

The key idea for the second summation is that we don't need to calculate its exact value, but only find a lower bound for it. We observe that in the range $i \in \{2^k+1, 2^k+2, \dots, 2^{k+1}\}$, $i \leq 2^{k+1}$, and therefore $\frac{1}{i} \geq \frac{1}{2^{k+1}}$. Using this, we get

$$\begin{split} \sum_{i=1}^{2^{k+1}} \frac{1}{i} &\geq \frac{k}{2} + \sum_{i=2^{k+1}}^{2^{k+1}} \frac{1}{i} \\ &\geq \frac{k}{2} + \sum_{i=2^{k+1}}^{2^{k+1}} \frac{1}{2^{k+1}} \\ &= \frac{k}{2} + 2^k \cdot \frac{1}{2^{k+1}} \\ &= \frac{k}{2} + \frac{1}{2} \\ &= \frac{k+1}{2}, \end{split}$$

and P(k+1), as required.

(c) [4 marks] Using part (b), disprove the following claim: for all $f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}$, if $f(n) \in \mathcal{O}(g(n))$, then $Sum_f(n) \in \mathcal{O}(n \cdot g(n))$.

Solution

We'll prove the negation of this statement, namely:

$$\exists f,g: \mathbb{N} \to \mathbb{R}^{\geq 0}, \ f(n) \in \mathcal{O}(g(n)) \ \land \ Sum_f(n) \notin \mathcal{O}(n \cdot g(n)).$$

Proof. Let $f(n) = \frac{1}{n+1}$ and $g(n) = \frac{1}{n+1}$.*We need to prove that $f(n) \in \mathcal{O}(g(n))$ and that $Sum_f(n) \notin \mathcal{O}(n \cdot g(n))$.

Part 1: proving that $f(n) \in \mathcal{O}(g(n))$.

Let c = 1. For the given f(n) and g(n), we have that $\forall n \in \mathbb{N}$, f(n) = g(n). And so, $\forall n \in \mathbb{N}$, $f(n) \leq c \cdot g(n)$. Hence, we can let $n_0 = 0$, and have demonstrated that $\exists c, n_0 \in \mathbb{R}^+$, $\forall n \in \mathbb{N}$, $n \geq n_0 \Rightarrow f(n) \leq c \cdot g(n)$. That is, we have proven that $f(n) \in \mathcal{O}(g(n))$, as required.

Part 2: proving that $Sum_f(n) \notin \mathcal{O}(n \cdot g(n))$. Let's expand the definition (of Big-Oh, Sum_f , and f and g themselves):

$$\forall c, n_0 \in \mathbb{R}^+, \exists n \in \mathbb{N}, n \ge n_0 \land \left(\sum_{i=0}^n \frac{1}{i+1}\right) > c \cdot \frac{n}{n+1}$$

Page 9/10

Let $c, n_0 \in \mathbb{R}^+$. Let $n = 2^{\lceil 2c + n_0 \rceil} + \lceil n_0 \rceil$.

Part 2(a): For the first part of the AND, since $2^{\lceil 2c+n_0 \rceil} > 0$, we know that $n \ge \lceil n_0 \rceil \ge n_0$.

Part 2(b): For the second part of the AND, we start with the left side of the inequality.

$$\sum_{i=0}^{n} \frac{1}{i+1} = \sum_{i'=1}^{n+1} \frac{1}{i'}$$
 (substituting $i' = i+1$)
$$> \sum_{i'=1}^{n} \frac{1}{i'}$$
 (since $n > 0$ and $\frac{1}{i'} > 0$)
$$\ge \sum_{i'=1}^{2^{\lceil 2c+n_0 \rceil}} \frac{1}{i'}$$
 (since $n \ge 2^{\lceil 2c+n_0 \rceil}$)
$$\ge \frac{\lceil 2c+n_0 \rceil}{2}$$
 (by Part (b))
$$> c$$

$$> c \cdot \frac{n}{n+1}$$
 (since $0 < \frac{n}{n+1} < 1$)

^{*}We use $\frac{1}{n+1}$ rather than $\frac{1}{n}$ to make sure f and g are defined at 0.