ALL PROGRAMMABLE

5G Wireless • Embedded Vision • Industrial IoT • Cloud Computing

Base Overlay – Microblazes & PYNQ

Agenda

- Base Overlay Microblazes
- PYNQ Microblaze Compilation
- Python to C to Microblaze C

Base Overlay Microblazes

x2 PMOD Microblazes, x1 Arduino Microblaze

PYNQ Microblazes

Pmod IO Processor

Arduino IO Processor

Different SoCs, Same Processor Subsystem

Microblazes are identical

The Peripherals are different

Microblaze IO Switch

- ➤ Programmable I/O
 - Any controller can talk to any pin

Microblaze IO Switch

Allows peripherals with different interfaces to be used in the same overlay without needing a new FPGA design

Pythonic Control of the Switch to define pin functionality

Microblaze Software

Example projects (GitHub)

- Source code and projects available on GitHub for a range of peripherals
 - Grove and Pmod
 - Some Arduino shield examples
 - Can be used as starting point for a new project
- API available
 - IIC, SPI, GPIO, Configurable switch
 - Simple low level API's; Read(), Write()
 - pmod.c, pmod.h; arduino.c, arduino.h
- Make flow to build IOP projects available

Software directory (GitHub)

- Various software projects grouped according to interface and overlay related reside under ./pynq/lib/
 - Arduino, logictools, Pmod
- Under each group reside related software projects, bsp, makefile, bin (binary executable files), and Python class file
- mailbox
 - Enables data and command/status exchanges
 between AP and IOP

Pythonic Microblaze Programming

```
In [4]: test_string = 'HELLO, WORLD!'.encode()
lower_case.stream.write(test_string)
result = None
while not result:
    result = lower_case.stream.read()
print(result.decode())

hello, world!
```

Cell magic %%microblaze

Builds executable

stdin stdout

Pipes for Microblaze printf

Conclusions Python, ARM C, Microblaze C

IOP as standalone processor

- Dual core ARM Cortex A9 vs MicroBlaze
 - 32-bit ARM Cortex A9: ~650 MHz
 - 32-bit MicroBlaze: ~100MHz
- Several IOPs can execute in parallel
 - ~5% device utilization PYNQ-Z1
- MicroBlaze can be dedicated to real-time applications
- MicroBlaze can offload background processing tasks

Python and C: a symbiotic relationship

Code Pythonically; exploit libraries; extend with C if needed

PYNQ's CFPI enables multiple soft processors

Summary: Soft processors in the fabric as offload engines for real-time performance