

State-of-the-art Multicore **Debugging and Tracing** concepts

Alexander Merkle, Lauterbach GmbH

Agenda

► AMP or SMP introduction

- Debug
 - Hardware aspects for off-chip debug
 - Operating system points of view
- Trace
 - Hardware aspects for off-chip trace
 - Trace timestamping

AMP – Asymmetric MultiProcessing

AMP – Asymmetric MultiProcessing

SMP – Symmetric MultiProcessing

SMP – Symmetric MultiProcessing

Mixed SMP and AMP configuration

Agenda

AMP or SMP introduction

Debug

- Hardware aspects for off-chip debug
- Operating system points of view

Trace

- Hardware aspects for off-chip trace
- Trace timestamping

AMP or SMP – the offchip debuggers Point of View

AMP or SMP – the offchip debuggers Point of View

- The SMP-Operating-System (OS) dispatches TASKs to COREs.
- As all cores are equal the core to which the task is dispatched is dynamic.
- In case of SMP we need to look to the SMP-SYSTEM in total
 - Debug features must be synchronous to the whole SMP-SYSTEM
 - → debugging must be synchronous on all cores
 - ightarrow onchip hardware assistance for synchronous Go/Break required
 - The external debug tool needs to be aware of the OS and the OS core assignment.

AMP or SMP – the offchip debuggers Point of View

AMP / SMP debug concept

Multiple TRACE32 PowerView instances

Single TRACE32 PowerView instance

Agenda

- AMP or SMP introduction
- Debug
 - Hardware aspects for off-chip debug
 - Operating system points of view

► Trace

- Hardware aspects for off-chip trace
- Trace timestamping

Offchip Trace - Introduction

Trace - Timestamping

Challenge:

Trace data is interleaved among all cores of the chip. => Timing information is lost.

Trace - Timestamping

Challenge:

Trace data is interleaved among all cores of the chip.

=> Timing information is lost.

Goal:

- Reconstruct original "internal" concurrent trace streams
- Correlate the concurrent trace streams
- Using either or a mixture of
 - Assembly level runtime interpolation
 - Chip global timestamps
 - Cycle accurate traces

Problem:

Bandwidth

Trace - Outlook

Parallel to Serial

- Low lane count with high bandwidth.
- Not only in High-Performance but also in Mid-Range (Realtime) market.
- Reuse of standard peripherals like USB, PCI-Express, SATA
- Challenges:
 - trace port is no longer optimized according to it's use-case

System Traces

- Instrusive but selective trace of data (software based)
- Higher-level evaluation, protocol dependent

Conclusion

- Multiprocessor systems use symmetric & asymmetric configurations
- **Debugging challenges**
 - Target operating system
 - Chip/core level synchronization (Go/Break)
 - Debug port bottleneck
- Trace challenges
 - Trace stream correlation/timestamping
 - Trace port bandwidth

Thank you for your Attention

Questions?