Dies ist der Titel der Abschlussarbeit der sich auch über mehrere Zeilen erstrecken kann

Abschlussarbeit

zur Erlangung des akademischen Grades Master of Science (M.Sc.)

an der

Hochschule für Technik und Wirtschaft Berlin Fachbereich Wirtschaftswissenschaften II Studiengang Angewandte Informatik

Prüfer: Max Mustermann
 Prüfer: Max Mustermann

Eingereicht von: Max Mustermann

Matrikelnummer: s0000000 Datum der Abgabe: 25.04.2017

Inhaltsverzeichnis

1	Einleitung	1
2	Finite Differenzen der stationären Gleichung 2.1 Lineare stationäre Gleichung	2 2
3	Implizite Einschrittverfahren 3.1 Entwicklung	4
\mathbf{A}	bbildungsverzeichnis	\mathbf{A}
Li	teratur	В

1 Einleitung

In dieser Hausarbeit sollen die Grundlagen einer Simulation der Dynamik in neuartigen Perowskit-Solarzellen gelegt werden. Diese Art der Dünnschicht Solarzellen erreicht hohe Wirkungsgeradde von über 20% und ist somit für die Forschung von großer Interesse[Pro].

2 Finite Differenzen der stationären Gleichung

Im folgendem Kapitel soll die stationäre Verteilung der Ladungsträger bei kontinuierlicher Bestrahlung modelliert werden. Dadurch kann die zeitliche Abhängigkeit vernachlässige werden $(\frac{\partial u}{\partial t} = 0)$

Die allgemeine DGL ist gegeben durch:

$$\frac{\partial u}{\partial t} = D \cdot \frac{\partial^2 u}{\partial z^2} - (k1 + k2 \cdot N_D) \cdot u - k2u^2 + s(t, z)$$
(2.1)

Mit $\frac{\partial u}{\partial t}=0$ folgt die stationäre Gleichung:

$$D \cdot \frac{du}{dt} - (k_1 + k_2 N_D) \cdot u - k_2 \cdot u^2 = -s(z), \quad 0 < z < d$$
 (2.2)

mit den Randbedingungen:

$$D \cdot \frac{\partial u}{\partial z}(0) = S_L u(0), \quad D \frac{\partial u}{\partial z}(d) = -S_R u(d)$$
 (2.3)

2.1 Lineare stationäre Gleichung

Im folgenden Kapitel soll nur der in u lineare Anteil der stationären, zeitunabhängigen Gleichung (Eq. 2.2) ohne den quadratischen Term $-k_2u^2$ behandelt werden [Pro].

$$D\frac{\partial^2 u}{\partial z^2} - kz = -s(z), \qquad 0 < z < d, \tag{2.4}$$

- Erster Punkt
- Zweiter Punkt

3 Implizite Einschrittverfahren

Hallo, dies ist ein Test. Einen Fehler

3.1 Entwicklung

 δ (3.1)

Abbildungsverzeichnis

Literatur

[Pro] Prof. Dr. Andreas Zeiser. Angewandte Mathematik: Projekt Zeitaufgelöste Photolumineszenz. Moodle.