PROJECT: INSURANCE CHARGES PREDICTION

3 stages of selection

- 1) Stage1 Machine Learning Domain
- 2) Stage2 Supervised Learning
- 3) Stage3 Regression

Project details

- 1) Problem statement: Predicting insurance charges based on provided input.
- 2) Basic information about dataset
 - No of rows in datasat 6 (Age, Sex, BMI, Children, Smoker, Charges)
 - No of columns in dataset 1338
 - Input / Independent data Age, Sex, BMI, Children, Smoker (5No's)
 - Output / Dependent data Charges
- 3) Preprocessing method Label encoder to convert ordinal categorical data (sex,smoker) into numerical data
- 4) Machine learning algorithms used
 - A. Multiple Linear Regression
 - B. Support Vector Machine
 - C. Decition Tree
 - D. Random Forest
- A) Algorithm: Multiple Linear Regression

B) Algorithm: Support Vector Machine

C N.	Parameters		DAZMALIE	Remarks
S.No	Kernel Penalty C R^2 VALU	R^2 VALUE		
1		1000	0.76493	
2	Linear	5000	0.74141	
3	Linear	10000	0.74142	
4		50000	0.74141	
5		1000	0.85664	
6	Poly	5000	0.85956	
7		10000	0.85917	
8		50000	0.85758	
9		1000	0.81020	
10	rbf	5000	0.87477	
11	roi	10000	0.87799	Best Value
12		50000	0.87477	
13		100	0.52761	
14	sigmoid	1000	0.28747	
15		5000	-7.5300	
16	Precomputed			Not applicable for this dataset

C) Algorithm: Decision Tree

S.No	Parameters			R^2	
	Criterion	Splitter	Max features	VALUE	Remarks
1	squared	best	None	0.70739	
2			sqrt	0.74088	Best Value
3			log2	0.73095	
4	error	random	None	0.71587	
5			sqrt	0.71638	
6			log2	0.5854	
7			None	0.68711	
8		best	sqrt	0.71901	
9	friedman_mse		log2	0.73386	
10			None	0.71288	
11		random	sqrt	0.67338	
12			log2	0.65476	
13			None	0.69672	
14		best	sqrt	0.73739	
15	absolute_		log2	0.72877	
16	error		None	0.72269	
17		random	sqrt	0.63633	
18			log2	0.66665	
19			None	0.66494	
20		best	sqrt	0.63372	
21	poisson		log2	0.66118	
22		random	None	0.62612	
23			sqrt	0.65671	
24			log2	0.68008	

D) Algorithm: Random forest

S.No	Parameters				
	Criterion	n_estimators	Max_ features	R^2 VALUE	Remarks
1		50	None	0.84988	
2			sqrt	0.86949	
3			log2	0.86950	
4	squared_ error	100	None	0.85392	
5			sqrt	0.87099	
6			log2	0.87099	
7			None	0.84999	
8		50	sqrt	0.87004	
9	fuic dunce and		log2	0.87004	
10	friedman_mse	nedman_mse 100	None	0.85400	
11			sqrt	0.87120	
12			log2	0.87094	
13		50	None	0.8529	
14			sqrt	0.87215	
15	absolute error		log2	0.872158	Best Value
16			None	0.85214	
17		100	sqrt	0.87172	
18			log2	0.87172	
19			None	0.83321	
20	poisson	50	sqrt	0.82878	
21			log2	0.82878	
22			None	0.83321	
23		100	sqrt	0.82932	
24			log2	0.82932	

5) Conclusion:

Comparison of results

S.No	Algorithm	Parameters	R_Value
1	Multiple Linear Regression		0.78947
2	Support Vector machine	Kernel=rbf, C=10000	0.87799
3	Decision Tree	Criterion= squared_ error, Splitter=best, Max features = sqrt	0.74088
4	Random Forest	Criterion=absolute_error, n_estimators=50, Max features =log2	0.87214

Finalized Result:

Finalized Algorithm : Support Vector Machine

Parameters: Kernel = rbf, C = 10000

R_value :0.87799