Intermixing-driven surface and bulk ferromagnetism in the quantum anomalous Hall candidate $MnBi_6Te_{10}$

Abdul V. Tcakaev,^{1,2} Bastian Rubrecht,³ Jorge I. Facio,^{3,4} Volodymyr B. Zabolotnyy,^{1,2} Laura T. Corredor,³

Laura C. Folkers,^{5,2} Ekaterina Kochetkova,³ Thiago R. F. Peixoto,^{6,2} Philipp Kagerer,^{6,2} Simon Heinze, Hendrik Bentmann, And Robert J. Green, Pierluigi Gargiani, Manuel Valvidares, 10 Eugen Weschke, ¹¹ Maurits W. Haverkort, Friedrich Reinert, ^{6,2} Jeroen van den Brink, ^{3,12,2} Bernd Büchner,^{3,5,2} Anja U. B. Wolter,^{3,2} Anna Isaeva,^{13,3,*} and Vladimir Hinkov^{1,2,†} ¹Physikalisches Institut (EP-IV), Fakultät für Physik und Astronomie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany ² Würzburg-Dresden Cluster of Excellence ct.qmat, Germany ³Leibniz Institut für Festkörper- und Werkstoffforschung (IFW) Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany ⁴Centro Atómico Bariloche, Instituto de Nanociencia y Nanotecnología (CNEA-CONICET) and Instituto Balseiro. Av. Bustillo 9500, Bariloche (8400), Argentina. ⁵Institut für Festkörper- und Materialphysik, Technische Universität Dresden, 01062 Dresden, Germany ⁶Physikalisches Institut (EP-VII), Fakultät für Physik und Astronomie, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany ⁷Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany ⁸Department of Physics and Astronomy and Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada ⁹Department of Physics and Engineering Physics, University of Saskatchewan, SK S7N 5E2 Saskatoon, Canada ¹⁰ALBA Synchrotron Light Source, E-08290 Cerdanyola del Vallès, Barcelona, Spain ¹¹Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, D-12489 Berlin, Germany ¹²Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany ¹³ Van der Waals-Zeeman Institute, Department of Physics and Astronomy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands (Dated: February 3, 2023)

The recent realizations of the quantum anomalous Hall effect (QAHE) in MnBi₂Te₄ and MnBi₄Te₇ benchmark the (MnBi₂Te₄)(Bi₂Te₃)_n family as a promising hotbed for further QAHE improvements. The family owes its potential to its ferromagnetically (FM) ordered MnBi₂Te₄ septuple layers (SL). However, the QAHE realization is complicated in MnBi₂Te₄ and MnBi₄Te₇ due to the substantial antiferromagnetic (AFM) coupling between the SL. An FM state, advantageous for the QAHE, can be stabilized by interlacing the SL with an increasing number n of Bi₂Te₃ layers. However, the mechanisms driving the FM state and the number of necessary QLs are not understood, and the surface magnetism remains obscure. Here, we demonstrate robust FM properties in MnBi₆Te₁₀ (n = 2) with $T_c \approx 12\,\mathrm{K}$ and establish their origin in the Mn/Bi intermixing phenomenon by a combined experimental and theoretical study. Our measurements reveal a magnetically intact surface with a large magnetic moment, and with FM properties similar to the bulk. Our investigation thus consolidates the MnBi₆Te₁₀ system as perspective for the QAHE at elevated temperatures.

I. INTRODUCTION

Theory provides a seemingly straightforward avenue towards novel quantum effects such as the quantum anomalous Hall (QAH) effect [1–5] and axion electrodynamics [6–9], namely to induce a long-range ferromagnetic (FM) order in topological insulators (TI) [10, 11]. The vision of observing Majorana fermions and implementing topological qubits at superconductor/QAH insulator interfaces [12], ultra low-power electronics [13] and applications in spintronics [14] has ignited substantial experimental efforts in this direction. Yet, hitherto

* Corresponding address: a.isaeva@uva.nl

† Corresponding address: hinkov@physik.uni-wuerzburg.de

the QAH effect (QAHE) has only been demonstrated in the (sub-) kelvin range [3, 4, 15]. The experimental realization of the QAHE is complicated by several simultaneous requirements to a candidate system: The Dirac point (DP) of the parent TI should be well within its bulk band gap; the chemical potential has to be tuned to the DP; the introduced magnetic subsystem should lead to a substantial surface ferromagnetism to open a large exchange gap at the DP; and the material's bulk should remain insulating.

The first materials to exhibit the QAHE were extrinsically doped $(V/Cr)_x(Bi,Sb)_{2-x}Te_3$, which consist of van-der-Waals coupled quintuple layers (QL, see Fig. 1). However, band engineering by tuning the Bi/Sb ratio does not move the DP sufficiently above the valence band [16], V/Cr impurity bands overlap with the alleged exchange gap [17] and residual bulk conductance destroys