Development Team Project: Risk Identification Report For Pampered Pets

SRM_PCOM7E

(GROUP 3)

September 2023

Introduction	3
Justification	3
Risk Identification Table	8
Checklist	7
Threat Modeling	8
Digitalisation Risks Identification	9
Potential mitigations for the identified risks	13
Conclusion	14
References	15

Introduction

For the Risk Assessment Methodology for Pampered Pets(PP) checklists 1 and 2, we are employing the following frameworks: NIST 800-181 Business Impact Analysis (BIA), Qualitative Risk Assessment, ISO 27001, Payment Card Industry Data Security Standard (PCI DSS), GDPR (for European data processing), STRIDE, and Risk Assessment Matrix. The proposed risk rating is subject to adjustment based on the client's risk appetite. Our presentation word count is 1,093.

Justification:

We are employing a Qualitative Risk Assessment to identify risks and threats in PP's current business model, with a focus on financial and technical factors. This approach is backed by STRIDE threat modeling and Risk Assessment Matrix (RAM) for threat identification, mitigation, and risk impact prioritisation (Shostack, A. 2014).

NIST 800-181 BIA Framework analyses Financial, Reputation, Regulatory, Social, Production output, and Environmental risks' impact (Orbussoftware, N.D.).

ISO 27001 will safeguard sensitive data related to sales, inventory, logistics, and taxes post-digitalisation (Lecturecast 3).

PCI DSS compliance is necessary for handling credit/debit card information (BigCommerce, N.D.).

RISK IDENTIFICATION AND MITIGATION OF THE CURRENT BUSINESS MODEL
OF PP

Asset	Risk/ Threat	Impact	Rating	Mitigation

Wireless	→ Denial of	→ Network	High	→ Implement
Gateway	Service (DoS)	Flooding		switches and
& Hub	→ Information	→ Network		firewalls.
	Disclosure	Performanc		→ Utilise strong
	(Hub	е		passwords,
	Broadcast	Degradation		WPA3
		_		
	Issues)	and Data		encryption,
	→ Physical	Exposure		and MAC
	Security Risk	→ Mail Traffic		filtering (NIST
	(Rogue	Diversion		800-97).
	Access Point)	by Threat		→ Implement
	→ MAC Address	Actors		data
	Spoofing	→ Data		encryption
	→ Lack of Hub	Privacy		and use VPN
	Segmentation	Breaches		→ Enforce
	→ Data	→ Loss of		authentication
	Snooping	Sales		messaging
	→ Lack of	→ Sensitive		policy (SPF &
	Security	Information		DMARC).
	Features	Disclosure		→ Implement
		and Data		Antivirus,
		Theft		Intrusion
				Detection/Pre

				vention
				systems.
				→ Physical
				device Access
				controls.
				→ Active
				network
				monitoring.
Hardwar	→ Security	→ Exploitation	High	→ Change old
e (Old	vulnerabilities	of		computer to
Compute	(malware and	unpatched		newer
r) &	virus	vulnerabiliti		version.
Software	infections)	es.		→ Installation
Applicati	→ Data	→ Slow old		antivirus and
on	breaches.	computers		anti-malware.
	→ Reduced	affect		→ Implement
	productivity.	productivity.		Hardware/Dat
	→ Downtime	→ Incompatibil		a back-up
	and	ity with		solution and
	unreliability.	modern		recovery
		software.		mechanism.
		→ System		→ Deprovision of

		crashes		old
		leading to		applications.
		data loss		→ Encrypt
		and		sensitive data.
		regulatory		
		issues.		
		→ Data		
		breach:		
		leads to		
		reputation		
		damage		
		and legal		
		liabilities.		
Employe	→ Information	→ Unauthorise	Mediu	→ Implement
es	Disclosure	d access,	m	adequate
	→ Elevation of	data		Access
	privilege	loss/theft		control.
	→ Inefficient	→ Confidential		→ Security
	Processes	ity		Awareness
	→ Weak	breaches,		Training.
	Passwords	legal		→ Employees'
	→ Phishing/Vishi	consequenc		monitoring

ng Attacks	es	and behaviour
	→ Social	analytics
	Engineering	solution to
	incidents.	detect
	→ Employee	unusual/
	becomes a	suspicious
	competitor	activities.
	(with	→ Limit access
	access to	to the supplier
	both	and other
	suppliers	business
	and buyers)	trade secrets.
	→ Theft of raw	
	materials by	
	employees'	

Adhering to SO270001(ISMS) guidelines will provide further mitigation to the current challenges faced by PP.

Checklist 2:

Below are the proposed changes to achieve Pampered Pet's Digitalisation Business Model following the Industry 4.0 revolution.

- Upgrade PP Warehouse Management System (e.g. Oracle Warehouse Management Cloud).
- E-commerce Platform.
- Mobile Application.
- Data Backup and Recovery (Implementation of a Business Continuity Plan (BCP)
 and Data Recovery Plan (DRP)).
- Pro-active Employee Training and security best practice awareness. (SANS 2022)
- Digital Payments Infrastructure (payment gateway and APIs).

Risk and Threat Modeling Exercise

Threat profiling using STRIDE for Digitlised Pampered Pet

Spoofing: Unauthorised access to customers' accounts and phishing emails to employees.

Tampering: Unauthorised changes to inventory records or alteration of data and software configurations.

Repudiation: Customers deny placing orders or lack audit trails to prove who accessed or modified data in the cloud.

Information Disclosure: Misconfigured cloud storage settings leading to data exposure.

Denial of Service: Disruption of online services or resource exhaustion in a virtualised environment.

Elevation of Privilege: Unauthorised access to admin functions.

RISK ASSESSMENT OF PP PROPOSED DIGITALISED BUSINESS MODEL

Key	Risk	Event (Threat) Impact (Business		Risk
Areas	Description		effect)	Rating
DATA/CUST	Data	→ Poor Data	→ Financial loss	Low
OMER	Governance	lifecycle	→ Data exfiltration	
LIFECYCLE/		→ Customer	→ PII exposure	
		Negligence		
		→ Lack of		
		proper		
		classification		
DATA/	Disaster	→ Unplanned	→ Unavailability of	Medium
ASSET	Recovery	outage	pampered	
		→ Hosting	website	
		issues	→ Network	
			Downtime	
DATA/	Access Risk	→ Deletion of	→ Data loss	Medium
ASSET/EMP		data by staff	→ Availability issues	
LOYEE/		→ Technical	→ Stolen data or	
CUSTOMER		issues	proprietary	
LIFECYCLE/		→ Malicious	information	

		emplo	yee	→ Appl	ication/Websi	
		→ Poor		te ur	navailability.	
		emplo	yee			
		lifecyc				
		→ Syste				
		breacl				
		→ DDoS				
		→ Virus/	malwar			
		e on s	ystems			
ASSET	Technology	→ Techn	ologica	→ Pote	ntial losses	Medium
		l failur	es	(fina	ncial, data,	
		→ Scalal	oility,	time)	
		→ Comp	atibility			
		and a	ccuracy			
		of the				
		function	onality			
		of the				
		impler	mented			
		techno	ology			
		(Deloi	tte,			
		2018)				
ASSET/DATA	Cyber	→ Paym	ent	→ Iden	tity theft	Medium

		gateway	→ Ransomware	
		account	→ Malware	
		takeover.		
		→ Unauthorise	ed	
		access		
		usage		
		→ Delayed		
		vulnerability	,	
		manageme	nt	
		→ Poor netwo	rk	
		architecture		
		→ Eavesdropp	i	
		ng		
ASSET	Asset	→ Unplanned	→ Unavailability	Medium
	lifecycle	and Planne	d → Inability to use	
		maintenanc	e office	
		→ Fire in the	→ Remote code	
		office	execution (RCE)	
		→ Vulnerable	→ Data leakage	
		API or		
		third-party		
		plugin		

		→ Loss of		
		laptop		
		арюр		
DATA	Privacy	→ PII exposure	→ Problems with	High
		→ Cross border	data transfer	
		data	regulations.	
			→ Problems with	
			data classification	
			leading to	
Potential mitig	ations for the	identified risks and	threats under the propose sensitive data	d
Digitalised Bu	siness Model	for PP Pampered Pet		
1. Impleme	 entation of the o	vber security governa	exposure. nce framework to guide in	
-		n risks. Lack of	→ Breach of critical	Medium
2. Adopting	 g ਝੋਈਮੀਟੈਂਐrivate	 / hybrid ਫੈਰਿਜ਼ੀਮਰੀਵੈnnolo	gies (DelVate, 2018).	
3. Impleme	ingidents a se	cure dig <mark>italidayme</mark> nt g	ateway tolebility PCI-DSS	
guidelin	es.nd natural	response	continue business	
4. Enablin	disasters dinplementation	n and adaption of Arti	icial Intelligence/automatio	n (e.g.
SIEM or	SOAR produc	s from managed secu	rity providers)	
5. Impleme	nt user authen	tication leadfiologies a	nd access control mechani	sms to
prevent	unauthorised a	ccess (mitigatini) Spoo	ofing and Elevation of Privile	ge).
6. Impleme	ntation of firew	all and intrusion detec	tion system to monitor and	block
DATA maliciou	s traffic mitiga	ing Denial of Service a	attacks. Fines	Low
	•		process to ensure business Lost of business	
continui	ty and disaster	recovery.		

Despite challenges and risks, Pampered Pets should embrace digitalisation for growth beyond its local catchment area, ensuring resilience even during natural disasters or crises like COVID-19. This move will boost operational efficiency, cross-border sales, customer engagement, and competitiveness.

Conclusion

Pet product e-commerce research by Jacobovitz et al. (2022) indicates that the online presence of similar pet businesses like PP can boost annual business growth by at least 10%, reaching 50% within 5 years with efficacious implementation. Shifting to an international supply chain may not yield tangible cost reduction due to higher taxes on the importation of raw materials. We therefore conclude that digitalisation will enhance sales and profit margins. We recommend adopting a hybrid business model to prevent potential 33% customer losses.

References

- BigCommerce (N.D.). PCI Compliance: A Guide to Meeting Today's
 Requirements. Available from:
 https://www.bigcommerce.co.uk/articles/ecommerce/pci-compliance/. [Accessed
 September 14 2023].
- Deloitte (2018) Managing Risk in Digital Transformation. Available from:
 https://www2.deloitte.com/content/dam/Deloitte/za/Documents/risk/za_managing
 risk in digital transformation 112018.pdf [Accessed September 16 2023].
- Digital Adoption (2023). Data Lifecycle Management: Everything You Need To Know. Available from: https://www.digital-adoption.com/data-lifecycle-management/. [Accessed September 14 2023].
- ICT Instituite (2021). Example Risk Register. Available from: https://ictinstitute.nl/wp-content/uploads/2021/01/Example-risk-register.png. [Accessed September 14 2023].
- Jacobovitz, S. & Jolly, N. (2022). The impact of e-commerce on the pet sales landscape. Available from: https://www.dv
- m360.com/view/the-impact-of-e-commerce-on-the-pet-sales-landscape.
 [Accessed September 17 2023].
- 7. Juma.A,(2022). Ineed. Qualitative Risk Analysis: Definition, Methods, and Steps. Available from:
 - https://www.indeed.com/career-advice/career-development/qualitative-risk-analys is [Accessed September 15, 2023].

- Microsoft (2023). ISO/IEC 27001:2013 Information Security Management
 Standards Available from:
 https://learn.microsoft.com/en-us/compliance/regulatory/offering-iso-27001.
 [Accessed September 13 2023].
- NIST SP 800-97 (2007). Establishing Wireless Robust Security Networks: A
 Guide to IEEE 802.11i. Available from:
 https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-97.pdf.
 [Accessed September 12 2023].
- 10. Oracle (N.D.). What Is a Warehouse Management System (WMS)?. Available from:
 - https://www.oracle.com/uk/scm/logistics/warehouse-management/what-is-warehouse-management/. [Accessed September 16 2023].
- 11. Orbussoftware (N.D.). The 5 Key Business Impact Analysis Steps. Available from:
 - https://www.orbussoftware.com/resources/blog/detail/the-5-key-business-impact-analysis-steps#:~:text=The%20majority%20of%20businesses%20will,%2C%20P roduction%20output%2C%20and%20Environmental. [Accessed September 14 2023].
- 12. Petersen, R. et al. (NIST: 2020). Workforce Framework for Cybersecurity (NICE Framework). Available from: https://csrc.nist.gov/pubs/sp/800/181/r1/final.
 [Accessed September 12 2023].
- 13. SANS (2022). SANS 2022 Security Awareness Report: Human Risk Remains the Biggest Threat to Your Organization's Cybersecurity. Available from:

- https://www.sans.org/press/announcements/sans-2022-security-awareness-repor t-human-risk-remains-biggest-threat-organizations-cybersecurity/. [Accessed September 16 2023].
- 14. Shotstack. A,(2014). Threat Modeling: Designing for Security. Available from: https://ebookcentral.proquest.com/lib/universityofessex-ebooks/reader.action?do cID=1629177[Accessed September 9 2023].
- 15. Spears, J. & Barki, H. (2010). User Participation in Information Systems Security Risk Management. MIS Quarterly 34(3): 503. Available from: https://www-jstor-org.uniessexlib.idm.oclc.org/stable/25750689 [Accessed August 21 2023]
- 16. Sphera (N.D.). Digital Transformation Across the Complete Asset Lifecycle.
 Available from:
 https://sphera.com/digital-transformation-across-the-complete-asset-lifecycle/.
 [Accessed September 14 2023].
- 17. University of Essex Online Lecture-cast 3 (2023). Threat Management and Modelling. Available from:

https://www.my-course.co.uk/Computing/Cyber%20Security/SRM/SRM%20Lecturecast%202/content/index.html#/lessons/ieO_uo7-67ImlblEhYZpQttFUJjRJ6C8 [
Accessed August 29 2023].