Ion exchange appts. for treating liq. - esp. for metal recovery, with exchanger regeneration by electro-dialysis

Patent number:

DE4016000

Also published as:

CH681696 (A5)

Publication date:

1991-11-21

Inventor:

JOHANN JUERGEN DIPL ING (DE)

Applicant:

HAGER & ELSAESSER (DE)

Classification:

- international:

B01D15/04; B01D61/48; B01J49/00

- european:
Application number:

B01J47/08; B01J49/00H DE19904016000 19900518

Priority number(s):

DE19904016000 19900518

Abstract of DE4016000

In appts. for treating esp. metal-contg. liqs. by ion exchange and simultaneously or periodically regenerating the ion exchange resin by electrodialysis, the novelty is that the treatment vessel (1) has, starting at the anode (2) and ending at the cathode (8), a series of equi-spaced ion exchangers (5) which are loaded with cation exchange resin (23) and which are delimited by cation exchange membrane separator walls (4, 4a). Anolyte (12)-and catholyte (13)-contg. chambers (3, 6) are located respectively before and after the ion exchangers (5) and adjacent chambers (3, 6) are separated by anion exchange membrane separator walls (7). The anodic chambers (3) are connected respectively to the compression and suction sides of a circulation pump (10), while the cathodic chambers (6) are series-connected and connected as a gp. to the compression and suction sides of a circulation pump (11). USE/ADVANTAGE - The appts. is useful for metal recovery from aq. solns. It allows metal recovery in solid form, is adaptable to different solns. and concns., has extremely low consumption of chemicals and wash water and allows ion exchanger regeneration without waste water prodn.

Data supplied from the esp@cenet database - Worldwide

(9) BUNDESREPUBLIK
DEUTSCHLAND

PatentschriftDE 40 16 000 C 2

(51) Int. Cl.⁵:

B 01 J 49/00

B 01 D 15/04 B 01 D 61/48

DEUTSCHES PATENTAMT

②1) Aktenzeichen:

P 40 16 000.9-41

② Anmeldetag:

18. 5. 90

Offenlegungstag: 21.11.91

Veröffentlichungstag

der Patenterteilung: 21. 10. 93

Innerhalb von 3 Monaten nach Veröffentlichung der Erteilung kann Einspruch erhoben werden

(3) Patentinheber:

Hager + Elsässer GmbH, 7000 Stuttgart, DE

Erfinder:

Johann, Jürgen, Dipl.-Ing., 7000 Stuttgart, DE

Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

> DE 34 41 419 C1 DE 34 16 102 C1 DE-AS 11 15 715 DE 38 08 043 A1 DE 33 29 813 A1 EP 01 63 605 A1

DE-Z: STRATHMANN, Heiner;

CHMIEL, Horst: Die Elektrodialyse - ein

Membranverfahren mit vielen

Anwendungsmöglichkeiten. In: Chem.lng.-Tech. 58,

Nr., 1984, S.214-220;

- Derwent Abstract 86-185072/29 zu J6 1116-699-A;

⁽S) Vorrichtung zur Aufbereitung von metallhaltigen Flüssigkeiten durch loneneustausch und gleichzeitige oder periodische Regenerierung des Ionenaustauscherharzes durch Elektrodialyse

Beschreibung

Die Erfindung betrifft eine Vorrichtung zur Aufbereitung von metallhaltigen Flüssigkeiten durch lonenaustausch und gleichzeitige oder periodische Regenerierung des Ionenaustauscherharzes durch Elektrodialyse, bei der in einem Behälter zwischen zwei als Anode und Kathode ausgebildeten Elektroden lonenaustauscher. umgeben von Kammern für Anolyt und Katolyt, angebracht sind, wobei die lonenaustauscher von Membran- 10 trennwänden, bestehend aus lonenaustauschermembranen, begrenzt sind.

lonenaustauscherharze ermöglichen es, aus verdünnten Lösungen mit Konzentrationen kleiner 100 ppm, die in Lösung befindlichen lonen mehr oder weniger selek- 15 tiv zu entfernen. Sobald das Harz mit lonen beladen ist, muß es regeneriert werden. Die Regenerierung erfolgt im Falle eines Kationenaustauschers mit einer Säure und im Falle eines Anionenaustauschers mit einer Base. Da der lonenaustausch aber stets ein Gleichgewichts- 20 prozeß ist, läßt sich eine vollständige Regenerierung des lonenaustauscherharzes nur dann erreichen, wenn man mit großem Säure- bzw. Basenüberschuß arbeitet und möglichst die bei der Regenerierung freigesetzten lonen aus der den lonenaustauscher umgebenden Li- 25 quidphase entfernt. Dies wird gewöhnlich dadurch erreicht, daß man eine wäßrige Säure bzw. Basenlösung kontinuierlich über die lonenaustauscherschüttung leitet. Bei dieser Art der Regenerierung wird jedoch ein Vielfaches der stöchiometrischen Säure bzw. Basen- 30 menge benötigt, so daß hierbei große Mengen stark verdünnter wäßriger Lösungen anfallen, welche nicht wirtschaftlich aufgearbeitet werden können. Außerdem können die Metallionen nur in zusätzlichen Verfahrensschritten aus dem Regenerat wiedergewonnen werden. 35

Die Rückgewinnung von lonen aus wäßrigen Lösungen durch Elektrodialyse ist auch bekannt. Mit Hilfe der Elektrodialyse ist es jedoch nicht möglich, die lonen vollständig aus der wäßrigen Lösung zu entfernen, so daß hierbei die aus dem Modul abfließende Lösung 40 noch eine Restkonzentration aufweist.

Durch die DE-OS 25 29 277 ist ein Verfahren zur elektrolytischen Regenerierung von mit schweren Metallen beladenen lonenaustauschern bekanntgeworden. Hierbei befindet sich das lonenaustauscherharz zwi- 45 schen zwei senkrechten Elektroden in einer Säule mit rechteckigem Querschnitt. Nach dem Beladen des Harzes und dem Auswaschen wird eine saure Lösung mit einem bestimmten pH-Wert in die Säule eingegeben. Elektroden angelegt und die Kationen werden an der Kathode abgeschieden. Diese Art der Regenerierung des lonenaustauschers, d. h. die Rückgewinnung der Metalle an der Kathode verläuft potentiostatisch, d. h. wachsender Regenerierung die lonenkonzentration sinkt, nimmt auch die Stromstärke immer mehr ab. Insgesamı sind dabei nur sehr niedrige Stromstärken möglich, so daß das Verfahren bei großen lonenaustauschermengen eine sehr lange Regenerierzeit benötigt.

Durch die Zeitschrift Chem.-Ing.-Tech 56 (1984) Nr. 3. Seite 214-220 - "Die Elektrodialyse - ein Membranverfahren mit vielen Anwendungsmöglichkeiten", ist ein Verfahren zur wasserfreien Regeneration von lonenaustauschern mittels Elektrodialyse auf den Seiten 217 und 218 beschrieben. Nachteilig ist jedoch bei diesem bekannten Verfahren, daß

1. keine Aufkonzentration möglich ist;

2. die Elektrodenspannungen in der Größenord-

nung der Zellspannungen liegen;

3. die für die Abscheidung der Metallionen benötigte Überspannung an den Elektroden viel kleiner ist als die für die Regenerierung benötigte Zellspannung, da die Konzentration in der Kathodenkammer sehr gering ist. Folglich ergibt sich hierbei nur eine sehr geringe Stromausbeute.

Ferner ist durch die US-PS 2,812,300 eine Vorrichtung zur elektrolytischen Regenerierung von lonenaustauscherharzen bekanntgeworden. Nachteilig ist bei dieser bekannten Vorrichtung, daß

a) die aus dem Harz freigesetzten lonen unter der treibenden Kraft des elektrischen Feldes im Falle des Kationenaustauschs durch die Diaphragmen 22 (siehe Fig. 1, 2, 3) zur Kathode wandern, wo eine Abscheidung von zum Beispiel Metallionen erfolgt. Hierdurch muß die Kathode des öfteren gewechselt werden. Im Falle des Anionenaustausches wandern die Anionen durch die Diaphragmen 22 (siehe Fig. 1, 2, 3) zur Anode und hier kann zum Beispiel giftiges Chlorgas entstehen, wobei auch die Anode zerstört wird;

b) im Falle einer Mehrzellenanordnung, wobei die einzelnen Zellen durch Diaphragmen getrennt sind. die aus den Austauschern freigesetzten lonen schon regeneriertes Austauschermaterial einer Nachbarzelle wieder beladen können, so daß der Gesamtregeneriergrad sehr schlecht ist;

c) um dem in Fall b) beschriebenen Problem entgegenzuwirken, mehrere Elektroden in einer Apparatur untergebracht werden müssen;

d) keine kontinuierliche Regenerierung des Harzes beschrieben wird, sondern die Regenerierung des Austauscherharzes erfolgt, nachdem das Harz in seiner Kapazität erschöpft ist. Hierbei ergeben sich sehr lange Regenerierzeiten für sehr kleine Harzvolumina (für 60 ml Harz 23 h . . . 71 h);

e) eine Aufkonzentrierung der freigesetzten lonen nicht möglich ist, da keine selektiven lonenaustauschermembranen verwendet werden;

f) die während der Regenerierung freigesetzten lonen aus den Schüttungen ausgespült werden müs-

Aufgabe der Erfindung ist es, eine Vorrichtung 2u Danach wird eine elektrische Spannung zwischen den 50 schaffen, die es ermöglicht, die gute Reinigungsleistung von lonenaustauscherschüttungen in Kombination mit einer energiesparenden Regeneration durchzuführen, bei der die Metallionen mit möglichst geringem Chemikalien-Waschwasserverbrauch aus dem lonenaustaubei konstanter angelegter Spannung. Da jedoch mit 55 scher entfernt und in fester Form zurückgewonnen werden können.

> Diese Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruches 1 erfüllt. Vorteilhafte Ausführungen der Erfindung sind in 60 den abhängigen Unteransprüchen gekennzeichnet.

Durch die erfindungsgemäßen Maßnahmen wird eine Rückgewinnung von lonen aus Lösungen ermöglicht, wobei zum Beispiel Metalle in fester Form wiedergewonnen werden können. Durch Elektrodialyse ist gleichzeitig eine Regenerierung der lonenaustauscher möglich, bei welcher kein Abwasser entsteht. Weiterhin kann eine direkte Anpassung des Moduls an unterschiedliche Lösungsmengen und Konzentrationen ent-

weder durch den Einbau einer entsprechenden Anzahl von lonenaustauscherkammern oder aber durch Parallelschaltung mehrerer Module erfolgen.

Durch die Hintereinanderschaltung der Kammern mit Katolyt in der Kationenaustauschervorrichtung und der Kammern mit Anolyt in der Anionenaustauschervorrichtung kann eine Aufkonzentrierung der An- bzw. Kationen in einem Kreis erfolgen, wobei die höchste Konzentrierung in einer Abscheidevorrichtung vorliegt.

Durch die Möglichkeit der Erhöhung der Temperatur 10 des gesamten Systems wird ein Anstieg der elektrolytischen Leitfähigkeit um rund 3%/°C erreicht, wodurch sich der elektrische Energiebedarf für Regenerierung und Abscheidung verringert. Weiterhin ergibt eine Temperaturerhöhung eine größere Löslichkeit von Salts zen, wodurch die Aufkonzentrierung noch weiter gesteigert werden kann. Eine Temperierung läßt sich auf einfache Weise durch Wärmetauscher im Anolyt- und Katolytkreis erreichen.

ln sehr großen Modulen, d. h. in Modulen mit vielen 20 lonenaustauscherkammern sowohl in den Kationenaustauschereinheiten als auch in den Anionenaustauschereinheiten, kann durch eine Kombination von parallel und hintereinander durchströmten Katolytkammern bzw. Anolytkammern eine optimale Konzentration in 25 der Abscheideeinheit bzw. in der Kathodenkammer eingestellt werden.

Der Stofftransport an die Phasengrenze der ionenselektiven Membranen und an die Kathode ist dann intensiver, wenn die Dicke der Diffusionsgrenzschicht durch 30 erzwungene Konvektion verringert wird. Das läßt sich einerseits erreichen durch entsprechende Strömungsgeschwindigkeit des Anolyten bzw. des Katolyten und andererseits durch den Einbau von Abstandsvorrichtungen in den Kammern, welche auch gleichzeitig einen 35 Zeichnungen (Fig. 1 bis 5) erläutert. äquidistanten Abstand zwischen den Membranen be-

Die Erfindung ist auch zur Durchführung eines weiteren Verfahrens geeignet, wenn bei der Regenerierung der Kalionenaustauscherharze Metallionen anfallen, 40 welche in der elektrochemischen Spannungsreihe in der Nähe von Wasserstoff stehen oder aber elektrochemisch positiver als Wasserstoff sind. Handelt es sich hierbei um nur eine Metallionensorte, so kann das entwerden. Sind mehrere Metallionen in der Katolytlösung enthalten, so kann durch Einbau einer Anionenaustauschermembran vor der Kathode eine Abscheidung in der Kationenaustauschereinheit vermieden werden. Die einzelnen Metalle können dann in einer Abscheideein- 50 heit, welche zum Beispiel mehrere Elektrolysebäder enthält, selektiv durch Einstellen der jeweiligen Überspannung zurückgewonnen werden. Alternativ zur Abscheidung der Metallionen kann die aufkonzentrierte Lösung auch in einen vorgeschalteten Prozeß zurückge- 55 führt werden.

In weiterer Ausgestaltung der Vorrichtung ist ein zylindrischer Aufbau des gesamten Systems möglich. Hierbei befindet sich die Anode im Falle des Kationenaustausches bzw. die Kathode im Falle des Anionenaus- 60 tausches in der Mitte des Moduls. Koaxial um die Anode sind die Anodenkammer bzw. Kathodenkammer, die lonenaustauscherkammern, die Katolytkammern, die Anolytkammern und die Kathodenkammer bzw. Anodenkammer angeordnet. Die lonenaustauscherkam- 65 mern werden durch jeweils zwei Kationenaustauschermembranen begrenzt. Die gesamte Einheit wird durch ein Metallzylindergehäuse abgeschlossen, welches

gleichzeitig die Kathode bzw. Anode darstellt. In einer solchen zylindrischen Anordnung nimmt die Stromdichte in radialer Richtung ab, d. h. man erreicht eine hohe Stromdichte an der mittleren Elektrode und in den lonenaustauscherkammern, während die Stromdichte an der äußeren Elektrode wesentlich kleiner ist, was die Stromausbeute günstig beeinflußt.

Durch Einsatz einer Bandkathode, welche sich stückweise im Kathodenraum bewegt, kann zum Beispiel die Abscheidung von Metallionen in einer Kationenaustauschereinheit erfolgen. Dies ist im Falle hoher Metallionenkonzentrationen, welche in großen Modulen vorliegen, günstig, da hierdurch kein Auswechseln der Kathode in bestimmten Zeitintervallen nötig ist.

Im folgenden wird ein Laborversuch mit einer erfindungsgemäßen Anordnung näher erläutert:

Hierbei wurde ein mit Kupfer beladener, stark saurer Kationenaustauscher (Lewatit SP 112) verwendet. Das Elektrodialysemodul war, wie in Fig. 1 dargestellt, aus vier lonenaustauscherkammern aufgebaut. Als Anode wurde ein platiniertes Titannetz mit einer Fläche von 100 cm² verwendet. Als Kathode wurde ein Kupferblech mit einer Fläche von ebenfalls 100 m² eingesetzt. lm Anolytkreis wurde mit 5%iger H2SO4 und im Katolytkreis mit 7%iger H₂SO₄ gefahren. Die effektive Membranfläche betrug 100 cm². Die Dicken der lonenaustauscherkammern und Anolytkammern waren jeweils 5 mm, die der Katolytkammern betrugen 3 mm. Die Regenerierzeit wurde auf 6 Stunden festgelegt. Nach dieser Zeit wurden bei einer Stromdichte von 20 mA/cm² 60% des Kupfers an der Kathode abgeschieden. Die Stromausbeute lag bei diesem Versuch bei

Die Erfindung wird anhand der Beschreibung und der

Fig. 1 Eine Vorrichtung mit vier Kationenaustauschern, bei der die Abscheidung der Kationen (Metalllonen) direkt an der Kathode erfolgt.

Fig. 2 Eine Vorrichtung mit vier Kationenaustauschern, bei der eine Anionenaustauscher-Membrantrennwand vor der Kathode angeordnet ist und der entweder aufkonzentrierte Katolyt in einer Vorlage gesammelt und in einen vorgeschalteten Prozeß zurückgesprechende Metall direkt an der Kathode abgeschieden 45 führt wird oder die Abscheidung der Metalle in einer Abscheidevorrichtung erfolgt.

Fig. 3 Eine Vorrichtung mit vier Anionenaustauschern, bei der eine Vorlage für das aufkonzentrierte Anolyt nachgeschaftet ist.

Fig. 4 Eine Vorrichtung zur Entfernung von Kationen und Anionen mit vier Kationenaustauschern und einer nachgeschalteten Vorrichtung mit vier Anionenaustauschern, wobei der Katolytkreis der ersten Vorrichtung und der Anolytkreis der zweiten Vorrichtung miteinander verbunden sind.

Fig. 5 Eine Hälfte einer zylindrischen Anordnung der Vorrichtung, in welcher die Anode in der Mitte und die Kathode außen angeordnet ist.

Für die Rückgewinnung von Metallen aus wäßrigen Lösungen, in welchen sich nur Metallionen einer Sorte befinden, wird eine Vorrichtung wie in Fig. 1 dargestellt verwendet. Der Behälter 1 umfaßt auch die Anode 2 und die Kathode 8. Der loncnaustauscher 5 ist mit Kationenaustauscherharzen 23 und die Kammern 3 bzw. 6 mit flüssigem Anolyt 12 bzw. Katolyt 13 gefüllt. Die benachbarten Kammern 3 und 6 sind jeweils durch die Anionenaustauscher-Membranwand 7 voneinander getrennt. Die Kammern 3 sind jeweils mit der Umwälz-

pumpe 10 druck- und saugseitig durch die Leitungen 14 bzw. 15 verbunden. Die Kammern 6 sind durch die Leitungen 17 hintereinandergeschaltet und als ganzes System mit der Umwälzpumpe 11 druck- und saugseitig durch die Leitungen 16 und 18 verbunden. Die Katio- 5 nenaustauscher 5 werden mit einer ionenhaltigen wässrigen Lösung durch die Leitungen 25 und 26 parallel durchströmt und die Metallionen von den Kationenaustauscherharzen aufgenommen. Eine elektrische Spannung wird während oder nach dem Beladen des lonen- 10 austauschers 5 erzeugt und an die Elektroden 2 (+) und 8 (-) angelegt. Die Umwälzpumpen 10 und 11 werden eingeschaltet und das Anolyt 12 durch die Kammern 3 und das Katolyt durch die Kammern 6 im Kreislauf geführt.

Die auf den Kationenaustauscherharzen befindlichen Metallionen werden durch Wasserstoffionen bzw. Kationen (z. B. Natrium-Ionen), welche aus Kammer 3, die unmittelbar nach der Anode 2 angeordnet ist, durch die Kationenaustauscher-Membrantrennwand 4, in den er- 20 sten Kationenaustauscher 5 eindringen, ersetzt. Die Metallionen gelangen durch die andere Kationenaustauscher-Membrantrennwand 4a in die Kammer 6, wo sie durch Hintereinanderschaltung derselben bis zur letzten Kammer 6 vor der Kathode 8 aufkonzentriert wer- 25 19 Vorlage für Aufkonzentrierung oder Abscheidung den. Durch die Anionenaustauscher-Membrantrennwände 7 wird verhindert, daß Metallionen direkt zur Kathode strömen. In der letzten Katolytkammer 6 werden die Metallionen an der Kathode 8 abgeschieden und Katolyt 13 strömt danach durch die Kammern 6.

Sind mehrere Sorten von Metallionen in wäßriger Lösung vorhanden, wird eine Vorrichtung gemäß Fig. 2 eingesetzt. Hierbei wird durch den Einbau einer Anionenaustauscher-Membrantrennwand 9 vor der Kathode 8 die Abscheidung von Metallen im Behälter 1 verhin- 35 29 Leitung dert. Die aufkonzentrierte Katolytlösung 13 durchströmt die Abscheidevorrichtung 19, die durch die Leitungen 27 und 28 hintereinandergeschalteten Elektrolysezellen 20, 21 und 22, in welche die Metalle selektiv abgeschieden werden. Nach Durchströmen der Elektro- 40 lysezellen 20, 21, 22 wird das Katolyt 13 durch die Leitung 28 wieder der Kathode vorletzten vorgeschalteten Katolytkammer 6 zugeführt.

in der Vorrichtung nach Fig. 3 befindet sich vor jeder lonenaustauscherkammer 5 eine Kammer 3, die Katolyt 45 enthält, aus welcher die zur Regenerierung des Anionenaustauscherharzes 24 benötigten Anionen, unter der treibenden Kraft des elektrischen Feldes, über Anionenaustauschermembranen 4 in die lonenaustauscherkammern 5 wandern. Die aus den lonenaustauschern frei- 50 werdenden Anionen gelangen über das darauffolgende Anionenaustauschermembran 4a in die Kammern 6, die Anolyt enthalten, welche so miteinander verbunden sind, daß eine Aufkonzentrierung erfolgt und die höchste Konzentration in der Abscheidevorrichtung 19 vor- 55

In Fig. 4 ist eine Vorrichtung zur gemeinsamen Abtrennung von An- und Kationen dargestellt, wobei eine Vorrichtung gemäß Fig. 1 und eine Vorrichtung gemäß Fig. 2 hintereinandergeschaltet und durch die Leitungen 60 30, 31 und 32 miteinander verbunden sind. Die Leitung 16 und die Pumpe (Fig. 1) sowie die Leitung 18 (Fig. 3) fallen weg.

In Fig. 5 ist ein Schnitt durch die Hälfte einer zylindrischen Vorrichtung dargestellt, bei welcher die Abschei- 65 dung der Metallionen an der äußeren Kathode stattfindet. Auch hier kann durch Einbau einer Anionenaustauschermembran vor der Kathode die Abscheidung der

Metallionen in Elektrolysezellen 20, 21, 22, wie in Fig. 2 dargestellt, außerhalb des Moduls erfolgen.

- 1 Behälter
 - 2 Elektrode
 - 3 Kammer
 - 4 Membrantrennwand
- 4a Membrantrennwand
- 5 Ionenaustauscher
- 6 Kammer
- 7 Membrantrennwand
- 8 Elektrode
- 15 9 Membrantrennwand
 - 10 Umwälzpumpe
 - 11 Umwälzpumpe
 - 12 Anolyt
 - 13 Katolyt
 - 14 Leitung
 - 15 Leitung
 - 16 Leitung 17 Leitung

 - 18 Leitung
- 20 Elektrolysezelle
- 22 Elektrolysezelle
- 22 Elektrolysezelle
- 23 Kationenaustauscherharz
- 30 24 Anionenaustauscherharz
 - 25 Zuführleitung
 - 26 Austrittsleitung
 - 27 Leitung
 - 28 Leitung

 - 30 Verbindungsleitungen
 - 31 Elektrolyt-Verbindungsleitung
 - 32 Elektrolyt-Verbindungsleitung

Patentansprüche

1. Vorrichtung zur Aufbereitung von metallhaltigen Flüssigkeiten durch

lonenaustausch und gleichzeitige oder periodische Regenerierung des lonenaustauscherharzes durch Elektrodialyse, bei der in einem Behälter

zwischen zwei als Anode und Kathode ausgebildeten Elektroden lonenaustauscher, umgeben von Kammern für Anolyt und Katolyt, angebracht sind. wobei die lonenaustauscher von Membranwänden, bestehend aus lonenaustauschermembranen, begrenzt sind, dadurch gekennzelchnet, daß, beginnend an der Elektrode (2), die als Anode und endend an der Elektrode (8), die als Kathode dient, der Behälter (1) mit mehreren hintereinander, mit gleichem Abstand voneinander angeordneten lonenaustauschern (5) versehen ist, die mit Kationenaustauscherharz (23) beladen und jeweils durch eine Membrantrennwand (4), (4a), die aus Kationenaustauschermembranen gebildet ist, abgegrenzt ist, wobei die Kammern (3) bzw. (6), die Anolyt (12) bzw. Katolyt (13) enthalten, jeweils vor bzw. nach den lonenaustauschern (5) angeordnet sind und benachbarte Kammern (3), (6) jeweils durch eine Membrantrennwand (7), die aus Anionenaustauschermembranen gebildet ist, getrennt und die Kammern (3) jeweils mit der Umwälzpumpe (10) druck- und saugseitig verbunden und die Kammern

- (6) hintereinandergeschaltet und als Ganzes mit der Umwälzpumpe (11) druck- und saugseitig verbunden sind.
- 2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Elektrode (2) als Kathode und die 5 Elektrode (8) als Anode dient, die Kammern (3) bzw. (5) Katolyt (13) bzw. Anolyt (12) enthalten, die lonenaustauscher (5) mit Anionenaustauscherharz (24) beladen und ihre begrenzenden Membrantrennwände (4), (4a) durch Anionenaustauschermembranen gebildet sind, wobei die Membrantrennwände (7) und (9) durch Kationenaustauschermembranen gebildet sind und die Membrantrennwand (9) als Kationenaustauschermembran unmittelbar vor der Elektrode (8) angeordnet ist.
- 3. Vorrichtung nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Membrantrennwände (4), (7), (9), die lonenaustauscher (5) und die Elektrode (8) koaxial zur Elektrode (2) angeordnet sind.
- 4. Vorrichtung nach Anspruch 1, 2 u. 3, dadurch 20 gekennzeichnet, daß die lonenaustauscher (5) parallelgeschaltet sind.
- 5. Vorrichtung nach Anspruch 1, 2 u. 3, dadurch gekennzeichnet, daß die lonenaustauscher (5) hintereinandergeschaltet sind.
- 6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Membrantrennwand (9), die durch Anionenaustauschermembrane gebildet ist, unmittelbar vor der Elektrode (8) angeordnet ist und der Umwälzpumpe (11) eine Vorlage für Aufkonzentrierung oder Abscheidung (19) z. B. mit mehreren Elektrolysezellen (20), (21), (22) nachgeschaltet ist.
- 7. Vorrichtung nach Anspruch 1, 2 u. 3, dadurch gekennzeichnet, daß die Verbindung zwischen der Kammer (3) und der Umwälzpumpe (10) sowie der 35 Kammer (6) und der Umwälzpumpe (11) jeweils mit einer Heizvorrichtung versehen ist.
- 8. Vorrichtung nach Anspruch 1 u. 3, dadurch gekennzeichnet, daß die Elektrode (8) als Bandkathode ausgeführt wird.

Hierzu 5 Seite(n) Zeichnungen

45

50

55

60

65

DE 40 16 000 C2 B 01 J 49/00

Int. Cl.5:

DE 40 16 000 C2

1nt. Cl.⁵:

B 01 J 49/00

DE 40 16 000 CZ

Int. C1.5:

B 01 J 49/00

Nummer: Int. Cl.5:

DE 40 16 000 C2 B 01 J 49/00

DE 40 18 000 C2

Int. Cl.5:

B 01 J 49/00

