## IOWA STATE UNIVERSITY

Applied Linguistics and Technology Program, Department of English

# Automated rhetorical analysis: A hybrid approach to classification error analysis

#### **Elena Cotos**

Panel: Automatic Analysis of Complexity/Accuracy/Fluency CALICO 2018

University of Illinois, Urbana-Champaign, May 31, 2018



- Automated rhetorical analysis (ARA) for genre-based automated writing evaluation
- Hybrid approach to classification error analysis
- Further exploration and implications

Genre: culturally recognized text type (affidavit, research article) with conventional discourse structures, communicative purposes, and rhetorical functions

- Genre in Machine Learning
- Widely recognized class of texts defined by a
   'Move' communicative purpose or other functional traits, provided the
   'Step' function is connected to some formal cues and that the class is extensible (Kessler et al., 1997)
  - Detected by identifying functional styles of texts, provided the style markers are a set of pre-defined quantifiable measures (Stamatatos et al., 2000)

Automated categorization of genre

A general inductive process builds an automatic text classifier by learning, from a set of pre-classified documents, the characteristics of the categories of interest (Sebastiani, 2002)

- classifier 'learns' the characteristics of moves & steps in a human-coded corpus
- classifier identifies the move/step characteristics that new texts should have in order to be classified similarly to human coding
  - e.g., Naïve Bayes, Decision Tree, Rule-based, Neural Network, Maximum Entropy, Regression, Support Vector Machine









Cotos (2016)

# ARA performance

 Evaluation metrics vary across moves/steps (Cotos, Gilbert, & Sinapov, 2014; Cotos & Pendar, 2016; Cotos, Vajjala, Chapelle, & Kim, 2016)

| Move # | Move name                | Precision (%) | Recall (%) | F1 Score (%) |
|--------|--------------------------|---------------|------------|--------------|
| 1      | Establishing a territory | 73.3          | 89.0       | 80.4         |
| 2      | Identifying a niche      | 59.2          | 37.3       | 45.8         |
| 3      | Addressing the niche     | 78.4          | 57.2       | 66.1         |

| Step#     | Step name                    | Precision (%) | Recall (%) | F1 Score (%) |
|-----------|------------------------------|---------------|------------|--------------|
| 4 (Move2) | Indicating a gap             | 75.2          | 55.5       | 63.9         |
| 5 (Move2) | Highlighting a problem       | 64.7          | 79.9       | 71.5         |
| 6 (Move2) | Raising general questions    | 50.0          | 27.8       | 35.7         |
| 7 (Move2) | Proposing general hypotheses | 66.3          | 50.0       | 57.0         |
| 8 (Move2) | Presenting a justification   | 68.9          | 66.2       | 67.5         |





- Data sparseness for some rhetorical categories
- Rhetorical meaning not clearly encoded in functional language
- Multiple rhetorical functions
- Semantic ambiguity

# Need to understand ARA classification output

#### HYBRID ERROR ANALYSIS



Merge analytic paradigms

# Need to understand ARA classification output

#### HYBRID ERROR ANALYSIS

How do human and automated analyses compare?
What are the causes of classification errors?



How do the linguistic features contained within a sentence contribute to its move classification?

Merge analytic paradigms

# Prerequisite to error analysis

Pre-classification

Post-classification

Annotated corpus Formatting input data **Extracting features Extracting feature** metrics

Classification

**Building SVM model** 

Evaluating SVM model performance

Obtaining predictions

Extracting & creating move-based misclassification sets

Extracting feature importance metrics



Formatting for error analysis





Devising error categories

The error categories based on functional linguistic 'signals'

→ error categories not necessarily mutually exclusive

- Missing: no explicit linguistic signal of the function
- Unidentified: a feature indicative of a function is present, but isn't picked up on
- Misleading: a linguistic signal may have a functionrelated connotation, but doesn't carry this function in the sentence
- Ambiguous: a linguistic signal is indicative of several functions, but the actual function can only be determined from the context
- Underrepresented: fewer linguistic signals that are indicative of the actual function than signals that are not
- Competing: several linguistic signals indicative of primary and secondary functions in a multifunctional sentence



# Devising disagreement categories

Primary and secondary annotations from human coders

Probabilities from classifier

#### **Function-level**

- Agreement primary (AP): same primary step
- Agreement secondary (AS): same secondary step
- Disagreement primary (DP): different primary step
- Disagreement secondary (DS): different secondary step
- Flipped agreement (FA): same step, but primary and secondary switched

#### **Overall**

- Complete agreement: AP, AP+AS
- Partial agreement: AP+DS, DP+AS, FA
- Complete disagreement: DP, DP+DS



Devising error categories

Devising disagreement categories

#### M2 predicted as M1:

However, desegregative busing quickly became broadly unpopular.





Sentence-level coding

|              |               |              |           | Agreement    |                  |              |  |
|--------------|---------------|--------------|-----------|--------------|------------------|--------------|--|
| Actual       | Predicted     | Error 1      | Error 2   | Function 1   | Function 2       | Overall      |  |
|              |               |              |           |              | Disagreement     |              |  |
| m2,          | m1, providing | Unidentified | Competing | Disagreement | secondary        | Complete     |  |
| highlighting | general       | (however,    | (quickly, | primary      | (additional step | disagreement |  |
| a problem    | background    | unpopular)   | broadly)  |              | classified)      |              |  |



- So far:
  - Understanding of the nature of errors and disagreement
- Explore further:
  - Which error types are most pervasive/serious?
  - How do error and disagreement patterns relate?
  - How can human-identified error patterns help explain misclassifications?



## Classification-driven

Input Space

Feature Space

Comparing pre-post classification metrics per feature & per sentence

#### M2 predicted as M1:

Airway functional abnormalities, ranging from persistent increases in airway resistance and hyperresponsiveness to asthma, may develop following acute viral infections, especially in young children.

| N-gram   | Pre-class | sification | Post-classification |
|----------|-----------|------------|---------------------|
| feature  | m2_OR     | m1_OR      | Feature weight      |
| mai      | 0.251     | 0.178      | -0.817              |
| persist  | -0.101    | 0.322      | -0.258              |
| infect   | -0.184    | 0.577      | -0.175              |
| especi   | 0.099     | 0.339      | -0.173              |
| rang     | -0.449    | 0.697      | -0.165              |
| resist   | -0.210    | 0.492      | -0.161              |
| follow   | -1.036    | 0.305      | -0.113              |
| develop  | -0.421    | 0.559      | -0.065              |
| to       | -0.622    | 1.285      | -0.025              |
| from     | -0.544    | 0.631      | 0.054               |
| increas  | -0.459    | 0.726      | 0.179               |
| young    | -0.489    | 0.511      | 0.243               |
| children | -0.263    | 0.615      | 0.325               |



Defining & identifying confusing features per sentence

Low OR for actual move & high feature weight

→ potentially confusing

## Classification-driven

| N-gram feature    | Pre-classifi | cation | Post-classification |  |  |
|-------------------|--------------|--------|---------------------|--|--|
|                   | m2_OR        | m1_OR  | Feature weight      |  |  |
| surviv            | -0.690       | 0.824  | 0.648               |  |  |
| note              | -0.317       | 0.788  | 0.636               |  |  |
| last              | -1.184       | 0.994  | 0.627               |  |  |
| found             | -0.984       | 1.020  | 0.619               |  |  |
| advantag          | -0.743       | 1.020  | 0.617               |  |  |
| length            | -0.765       | 1.020  | 0.615               |  |  |
| hold              | -0.635       | 1.020  | 0.613               |  |  |
| inclus            | -0.372       | 1.020  | 0.608               |  |  |
| origin            | -0.724       | 1.020  | 0.586               |  |  |
| studi_of_the      | -0.177       | 1.020  | 0.572               |  |  |
| demonstr_that_the | -1.022       | 1.020  | 0.552               |  |  |
| aspect            | -0.354       | 1.020  | 0.537               |  |  |
| shown             | -1.069       | 1.020  | 0.533               |  |  |
| et_al1997         | -1.064       | 1.020  | 0.500               |  |  |
| the_us_of         | -0.476       | 1.020  | 0.493               |  |  |



Defining & identifying confusing features per sentence

High OR for actual move & low feature weight

→ potentially useful

## Classification-driven

| N-gram feature  | Pre-class | ification | Post-classification |                |  |
|-----------------|-----------|-----------|---------------------|----------------|--|
|                 | m2_OR     | m1_OR     |                     | Feature weight |  |
| unclear         | 1.270     | -0.666    |                     | -1.219         |  |
| is_difficult_to | 1.147     | -0.544    |                     | -1.043         |  |
| have_not_been   | 0.831     | -0.302    |                     | -1.749         |  |
| unknown         | 0.801     | -0.239    |                     | -0.679         |  |
| difficult       | 0.731     | -0.294    |                     | -1.265         |  |
| ha_not_been     | 0.671     | -0.154    |                     | -0.958         |  |
| howev_the       | 0.573     | -0.100    |                     | -0.607         |  |
| lack            | 0.454     | 0.011     |                     | -0.891         |  |
| challeng        | 0.451     | -0.028    |                     | -0.839         |  |
| complic         | 0.286     | 0.186     |                     | -0.737         |  |
| mai             | 0.251     | 0.178     |                     | -0.817         |  |
| might           | 0.211     | -0.055    |                     | -0.900         |  |
| fail            | 0.131     | 0.330     |                     | -0.915         |  |
| constraint      | 0.065     | 0.140     |                     | -0.670         |  |



## Classification-driven

#### So far:

 Features with low/negative log OR (actual class) and high/positive feature weights → 'confusing'

## Explore further:

- Would removing 'confusing' features from the preclassification feature set enhance performance?
- What can be learned from features weighted sum per sentence?
- How to compare/integrate with human-driven error analysis results?

# **Implications**

"[W]e have to ask whether genre can be reliably identified by means of computationally tractable cues" (Kessler et al.,1997, p. 1)

- Augmented ARA
  - Knowledge-based approach & human-generated hand-written rules (e.g., Madnani et al., 2012)
  - Feature engineering
  - Ranking of classification decisions based on higher probabilities to distinguish bw primary & secondary functions
- Voting algorithm that would pass final classification decisions considering the output of several independent analyzers (e.g., Burstein et al., 2003)





### Research assistants Erin Todey and Ziwei Zhou

Elena Cotos, ecotos@iastate.edu

https://works.bepress.com/elena\_cotos

https://cce.grad-college.iastate.edu/about-us/directory/elena-cotos