DEVOIR SURVEILLÉ N°05

- ► La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- ▶ On prendra le temps de vérifier les résultats dans la mesure du possible.
- ► Les calculatrices sont interdites.

Problème 1 -

Partie I - Étude d'une fonction

Soit f la fonction définie sur \mathbb{R}^* par $f(x) = x \operatorname{sh}\left(\frac{1}{x}\right)$.

- 1. Étudier la parité de f.
- 2. a. Donner un équivalent de la fonction sh en 0 et en déduire les limites de f en $+\infty$ et $-\infty$.
 - **b.** Déterminer la limite de f en 0.
- **3.** Justifier que f est dérivable sur \mathbb{R}^* et que pour tout $x \in \mathbb{R}^*$,

$$f'(x) = \left(th\left(\frac{1}{x}\right) - \frac{1}{x} \right) ch\left(\frac{1}{x}\right)$$

- **4.** Montrer que pour tout $X \in \mathbb{R}_+^*$, th(X) < X.
- 5. En déduire le tableau de variations de f.
- **6.** Donner le développement limité à l'ordre 4 en 0 de la fonction $X \mapsto \frac{\sinh X}{X}$.
- 7. En déduire qu'au voisinage de $+\infty$ et $-\infty$, f admet un développement asymptotique de la forme

$$f(x) = a_0 + \frac{a_1}{x} + \frac{a_2}{x^2} + \frac{a_3}{x^3} + \frac{a_4}{x^4} + o\left(\frac{1}{x^4}\right)$$

où a_0 , a_1 , a_2 , a_3 , a_4 sont cinq réels que l'on précisera.

8. Montrer que la fonction $g: x \in \mathbb{R}^* \mapsto f\left(\frac{1}{x}\right)$ se prolonge sur \mathbb{R} en une fonction continue notée G, puis prouver que G est dérivable sur \mathbb{R} .

Partie II - Une équation différentielle

On considère l'équation différentielle (E) suivante que l'on va résoudre sur différents intervalles.

$$(E): xy' + y = ch x$$

9. Résoudre (E) sur \mathbb{R}_+^* .

- **10.** Donner sans justification les solutions de (E) sur \mathbb{R}_{-}^* .
- **11.** Justifier que la fonction G définie à la question **I.8** est l'unique fonction dérivable sur \mathbb{R} qui soit solution de (E) sur \mathbb{R} .

Partie III - Une fonction définie par une intégrale

Pour $x \in \mathbb{R}^*$, on pose $J(x) = \int_{\frac{x}{2}}^x f(t) dt$.

- 12. Déterminer la parité de J.
- **13.** Montrer que pour tout $x \in \mathbb{R}$, sh 2x = 2 sh x ch x.
- **14.** Justifier que J est dérivable sur \mathbb{R}_+^* et que pour tout $x \in \mathbb{R}_+^*$,

$$J'(x) = f(x) \left(1 - \frac{1}{2} \operatorname{ch} \frac{1}{x} \right)$$

- **15.** En déduire le signe de J' sur \mathbb{R}_+^* . On exprimera le (ou les) zéro(s) de J' à l'aide de la fonction ln.
- **16. a.** Montrer que pour tout $t \in \mathbb{R}_+$, sh $t \ge t + \frac{t^3}{6}$.
 - **b.** En déduire que

$$\forall x \in \mathbb{R}_+^*, \ J(x) \geqslant \frac{x}{2} + \frac{6}{x}$$

puis les limites de J en 0^+ et en $+\infty$.

- 17. Donner le tableau de variations de J sur \mathbb{R}_+^* .
- **18.** On pose $h(x) = \frac{\sinh x x}{x^3}$ pour $x \in \mathbb{R}^*$.
 - a. Montrer que h est prolongeable par continuité en 0. On note encore h son prolongement.
 - **b.** Montrer que pour tout $x \in \mathbb{R}_+^*$,

$$J(x) - \frac{x}{2} = \int_{\frac{1}{x}}^{\frac{2}{x}} h(u) du$$

c. Montrer

$$J(x) = \frac{x}{x \to +\infty} \frac{x}{2} + \frac{1}{6x} + o\left(\frac{1}{x}\right)$$

- **19.** Montrer que la courbe de J admet en $+\infty$ et en $-\infty$ une asymptote oblique dont on précisera une équation. On donnera également la position de la courbe de J par rapport à cette asymptote.
- 20. Tracer l'allure de la courbe représentative de J sur ℝ. On fera notamment figurer l'asymptote déterminée à la question III.19 ainsi que les tangentes horizontales éventuelles.

On donne pour le tracé
$$\frac{1}{\ln\left(2+\sqrt{3}\right)}\approx 0,76$$
 et J $\left(\frac{1}{\ln\left(2+\sqrt{3}\right)}\right)\approx 0,65$ à 10^{-2} près.

Exercice 1.

Dans cet exercice, on recherche les fonctions $f: \mathbb{R} \to \mathbb{R}$ de classe \mathcal{C}^2 vérifiant la relation.

(E)
$$\forall (x,y) \in \mathbb{R}^2$$
, $f(x+y) + f(x-y) = 2f(x)f(y)$

On se donne donc dans un premier temps une telle fonction f.

- **1.** Montrer que $f(0) \in \{0, 1\}$.
- **2.** Montrer que si f(0) = 0, alors f est la fonction nulle.

Dans les deux questions suivantes, on suppose f(0) = 1.

3. Montrer que

$$\forall (x, y) \in \mathbb{R}^2, \ f'(x + y) - f'(x - y) = 2f(x)f'(y)$$

En déduire la valeur de f'(0).

4. On pose r = f''(0). Montrer que

$$\forall x \in \mathbb{R}, f''(x) = rf(x)$$

En déduire une expression de f(x) en fonction de r et x. On distinguera les cas r = 0, r > 0 et r < 0.

5. Répondre à la question initialement posée.

EXERCICE 2.

Les affirmations suivantes sont-elles vraies ? On justifiera à chaque fois sa réponse.

- **1.** Si \mathcal{A} est une partie de \mathbb{R} dense dans \mathbb{R} , alors $\mathbb{R} \setminus \mathcal{A}$ n'est pas dense dans \mathbb{R} .
- **2.** \mathbb{Z} est dense dans \mathbb{R} .
- **3.** Si \mathcal{A} et \mathcal{B} sont deux parties de \mathbb{R} telles que $\mathcal{A} \subset \mathcal{B}$ et \mathcal{A} est dense dans \mathbb{R} , alors \mathcal{B} est également dense dans \mathbb{R} .
- **4.** Il existe des parties de \mathbb{R} bornées et denses dans \mathbb{R} .