Probability Distribution Table

Tony Yuan

	Distribution	$\mathbf{Mean}(E[X])$	Variance(Var(X))	${ m p.m.f/p.d.f}$	c.d.f	p.g.f	m.g.f.	Median	Mode	Fisher Information
Discrete	<u>Bernoulli</u>	p	p(1-p)	$\begin{cases} 1 - p & if \ x = 0 \\ p & if \ x = 1 \end{cases}$	$\begin{cases} 0 & if \ x < 0 \\ 1 - p & if \ 0 \le x < 1 \\ 1 & if \ x \ge 1 \end{cases}$	1-p+ps	$1 - p + p^t$	$\begin{cases} 0 & if \ p < \frac{1}{2} \\ [0,1] & if \ p = \frac{1}{2} \\ 1 & if \ p > \frac{1}{2} \end{cases}$	$\begin{cases} 0 & if \ p < \frac{1}{2} \\ 0, 1 & if \ p = \frac{1}{2} \\ 1 & if \ p > \frac{1}{2} \end{cases}$	$\frac{1}{p(1-p)}$
	$\underline{X \sim Bin(n,p)}$	np	np(1-p)	$\binom{n}{x}p^x(1-p)^{n-x}$	$\sum_{i=0}^{\lfloor x\rfloor} p.m.f \text{ or Check the table}.$	$(1-p+pz)^n$	$(1-p+pe^t)^n$	$\lfloor np \rfloor$ or $\lceil np \rceil$	$\lfloor (n+1)p \rfloor$ or $\lceil (n+1)p \rceil - 1$	$\frac{n}{p(1-p)},$ for fixed n
	$\underline{X \sim Geom(p)}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$(1-p)^{x-1}p$	$1 - (1 - p)^x$	$\frac{pz}{1 - (1 - p)z}$	$\frac{pe^t}{1 - (1 - p)e^t},$ for $t < -\ln(1 - p)$	$\lceil \frac{-1}{log_2(1-p)} \rceil$	1	
	$X \sim Pois(\lambda)$	λ	λ	$\lambda^x \frac{e^{-\lambda}}{x!}$		$e^{\lambda(z-1)}$	$e^{\lambda(e^t-1)}$	$\approx \lfloor \lambda + \frac{1}{3} - \frac{0.02}{\lambda} \rfloor$	$\lceil \lambda ceil - 1, \lfloor \lambda floor$	$\frac{1}{\lambda}$
	$X \sim NB(r, p)$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\binom{k-1}{r-1}p^r(1-p)^{k-r}$						
	Discrete Uniform	$\frac{a+b}{2}$	$\frac{n^2-1}{12}$	$\frac{1}{n}$	$\frac{\lfloor k \rfloor - a + 1}{n}$	$\frac{s^a - s^{b+1}}{n(1-s)}$	$\frac{a+b}{2}$	NA		
	Hyper-geometric	$\frac{An}{A+B}$	$\frac{ABn(A+B-n)}{(A+B)^2(A+B-1)}$	$\frac{\binom{A}{k}\binom{B}{n-k}}{\binom{A+b}{n}}$						
Continuous	$\underline{\mathbf{X}} \sim U(a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\begin{cases} \frac{1}{b-a} & if \ x \in [a,b] \\ 0 & otherwise \end{cases}$	$\begin{cases} 0 & if \ x < a \\ \frac{x-a}{b-a} & if \ x \in [a,b] \\ 1 & if \ x > b \end{cases}$		$\frac{a+b}{2}$	any value in (a, b)		
	Exponential	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$	$\begin{cases} 1 - e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases}$		$\frac{ln2}{\lambda}$	0		
	$X \sim N(\mu, \sigma^2)$	μ	σ^2	$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$	Check the table		μ	μ		
	$\underline{X \sim Gamma(\alpha, \beta)}$	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^2}$	$\begin{cases} \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x} if \ x \ge 0 \\ 0 if \ x < 0 \end{cases}$	$\frac{1}{\Gamma(\alpha)}\gamma(\alpha,\beta x)$		NA	$\frac{\alpha-1}{\beta} \text{ for } \alpha \ge 1$		
	$\underline{X \sim Beta(\mu, \sigma^2)}$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$\begin{cases} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1} & if \ x \in (0,1) \\ 0 & otherwise \end{cases}$						