Oversigt

1 Lineær uafhængighed og basis

Dias 2/12

KØBENHAVNS UNIVERSITET

Repetition: Rækkeoperationer og determinant

(A) Betragt processen

$$\begin{pmatrix} 1 & 2 & 0 & 0 \\ 2 & 4 & 0 & 0 \\ 3 & 7 & 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Modul 1: forelæsning 3 Lineær uafhængighed og basis Matematik og modeller 2018

> Thomas Vils Pedersen Institut for Matematiske Fag vils@math.ku.dk

- Hvilke rækkeoperationer er brugt?
- Opskriv et ligningssystem, der har den første matrix som totalmatrix.
- 3 Aflæs løsningerne ved at bruge den sidste totalmatrix.
- (B) Forklar udregningen

$$\det \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 3 & 3 & 1 \end{pmatrix} = (-1)^{2+2} \cdot 1 \cdot \det \begin{pmatrix} 1 & 1 \\ 3 & 1 \end{pmatrix} + (-1)^{3+2} \cdot 3 \cdot \det \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$$
$$= 1 \cdot 1 \cdot (-2) + (-1) \cdot 3 \cdot 0 = -2$$

KØBENHAVNS UNIVERSITE

Linearkombination

Linearkombination

Lad $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$ være et sæt af m vektorer i \mathbb{R}^n .

En linearkombination af disse vektorer er en vektor \mathbf{x} på formen

$$\mathbf{x}=t_1\mathbf{a}_1+\ldots+t_m\mathbf{a}_m,$$

hvor t_1, \ldots, t_m er reelle tal.

Eksempel

Lad

$$\mathbf{b}_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad \mathbf{b}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

Så er

$$\mathbf{x} = \mathbf{b}_1 + 2\mathbf{b}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$

en linearkombination af \mathbf{b}_1 og \mathbf{b}_2 .

26. april 2018 — Dias 1/12

КØВ

Opgave

- ① Vis på tegningen at $\mathbf{x} = \mathbf{b}_1 + 2\mathbf{b}_2$ er en linearkombination af \mathbf{b}_1 og \mathbf{b}_2 .
- **2** Er $\binom{0}{3}$ en linearkombination af \mathbf{b}_1 og \mathbf{b}_2 ?
- **3** Er $\binom{2}{4}$ en linearkombination af \mathbf{b}_1 og \mathbf{b}_2 ?
- 4 Er $\binom{0}{0}$ en linearkombination af \mathbf{b}_1 og \mathbf{b}_2 ?

Dias 5/12

KØBENHAVNS UNIVERSITE

Proportionale vektorer

Definition

To vektorer \mathbf{v}_1 og \mathbf{v}_2 kaldes *proportionale*, hvis sættet $(\mathbf{v}_1, \mathbf{v}_2)$ er lineært afhængigt.

Det er det samme som at der findes $t \in \mathbb{R}$ sådan at $\mathbf{v}_2 = t\mathbf{v}_1$ eller $\mathbf{v}_1 = t\mathbf{v}_2$.

Eksempel

- Er $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ og $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ proportionale?
- **2** Er $\binom{1}{2}$ og $\binom{2}{4}$ proportionale?

KØBENHAVNS UNIVERSITE

Lineær uafhængighed

Lineær uafhængighed

Et sæt af m vektorer $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$ i \mathbb{R}^n kaldes *lineært uafhængigt*, hvis det af ligningen

$$\mathbf{0}=t_1\mathbf{a}_1+\ldots+t_m\mathbf{a}_m$$

følger at
$$t_1 = t_2 = ... = t_m = 0$$
.

Der er kun én måde $\mathbf{0}$ kan være en linearkombination af et sæt af lineært uafhængige vektorer, nemlig hvis alle t_1, \ldots, t_m er lig med nul.

Lineær uafhængighed i planen og rummet

- ① To vektorer i planen er et lineært uafhængigt sæt, hvis de (afsat fra (0,0)) ikke ligger på samme linje.
- 2 To vektorer i rummet er et lineært uafhængigt sæt, hvis de (afsat fra (0,0,0)) ikke ligger på samme linje.
- 3 Tre vektorer i rummet er et lineært uafhængigt sæt, hvis de (afsat fra (0,0,0)) ikke ligger i samme plan.

Dias 6/12

KØBENHAVNS UNIVERSITE

Eksempel

Lad

$$\mathbf{a}_1 = \begin{pmatrix} 2 \\ 1 \\ 1 \\ -3 \end{pmatrix}, \quad \mathbf{a}_2 = \begin{pmatrix} -1 \\ 1 \\ -2 \\ 0 \end{pmatrix}, \quad \mathbf{a}_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}, \quad \mathbf{a}_4 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

- Er \mathbf{a}_3 en linearkombination af $(\mathbf{a}_1, \mathbf{a}_2)$?
- 2 Er \mathbf{a}_4 en linearkombination af $(\mathbf{a}_1, \mathbf{a}_2)$?
- **3** Er $(\mathbf{a}_1, \mathbf{a}_2)$ et lineært uafhængigt sæt?
- 4 Er $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3)$ et lineært uafhængigt sæt?
- **5** Er $(\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_4)$ et lineært uafhængigt sæt?

Egenskaber ved lineært uafhængige sæt

Lineær uafhængighed og entydig linearkombination

Hvis sættet af vektorer $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$ i \mathbb{R}^n er lineært uafhængigt og

$$\mathbf{x} = t_1 \mathbf{a}_1 + \ldots + t_m \mathbf{a}_m$$

er en linearkombination, så er tallene t_1, \ldots, t_m entydigt bestemt: dvs. \mathbf{x} kan ikke skrives som en anden linearkombination af disse vektorer.

Sætning

Et sæt af vektorer i \mathbb{R}^n er lineært *afhængigt* hvis og kun hvis en af vektorerne er en linearkombination af de øvrige.

Bemærkning

Et sæt bestående af flere end n vektorer i \mathbb{R}^n kan ikke være lineært uafhængigt.

Dias 9/12

KØBENHAVNS UNIVERSITET

Den naturlige basis

Den *naturlige basis* for \mathbb{R}^n er $(\mathbf{e}_1, \dots, \mathbf{e}_n)$, hvor

$$\mathbf{e}_k = (0, \dots, 1, 0, \dots, 0)$$

(1-tallet står på den k'te plads).

For en vilkårlig vektor $\mathbf{x} \in \mathbb{R}^n$ gælder

$$\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x_1 \mathbf{e}_1 + \ldots + x_n \mathbf{e}_n.$$

(Koordinaterne for \mathbf{x} i den naturlige basis er netop talsættet (x_1, \dots, x_n) , og det er grunden til navnet.)

KØBENHAVNS UNIVERSITET

Basis

Definition

En basis for \mathbb{R}^n er et sæt af n lineært uafhængige vektorer i \mathbb{R}^n .

Egenskab for basis

At sættet $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$ er en basis for \mathbb{R}^n betyder:

For hver vektor **x** i \mathbb{R}^n findes *netop* et sæt af tal (t_1, t_2, \dots, t_n) sådan at

$$\mathbf{x}=t_1\mathbf{a}_1+\ldots+t_n\mathbf{a}_n.$$

Med andre ord: enhver vektor kan skrives på en og kun en måde som en linearkombination af vektorerne $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n)$.

Dias 10/12

Dias 12/12

KØBENHAVNS UNIVERSITE

Opgave: True or false

Hvilke af følgende påstande er sande?

- 1 Hvis sættet $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$ er lineært uafhængigt, så er et vilkårligt delsæt også lineært uafhængigt.
- 2 Hvis sættet $(\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_m)$ er lineært afhængigt, så er et vilkårligt delsæt også lineært afhængigt.
- Writing (a1, a2) er lineært uafhængigt, hvis (a2, a3) er lineært uafhængigt og hvis (a1, a3) er lineært uafhængigt, så er (a1, a2, a3) lineært uafhængigt.

Dias 11/12