Vishay Semiconductors

FEATURES

• Package type: leaded

· Package form: top view

• Dimensions (L x W x H in mm): 5.4 x 4.3 x 3.2

• Radiant sensitive area (in mm²): 7.5

· High photo sensitivity

· High radiant sensitivity

• Suitable for visible and near infrared radiation

Fast response times

• Angle of half sensitivity: $\varphi = \pm 65^{\circ}$

(Pb)-free component in accordance RoHS 2002/95/EC and WEEE 2002/96/EC

• High speed photo detector

DESCRIPTION

BPW34 is a PIN photodiode with high speed and high radiant sensitivity in miniature, flat, top view, clear plastic package. It is sensitive to visible and near infrared radiation. BPW34S is packed in tubes, specifications like BPW34.

PRODUCT SUMMARY			
COMPONENT	I _{ra} (μA)	φ (deg)	λ _{0.1} (nm)
BPW34	50	± 65	430 to 1100
BPW34S	50	± 65	430 to 1100

Test condition see table "Basic Characteristics"

ORDERING INFORMAT	TION			
ORDERING CODE	PACKAGING REMARKS		PACKAGE FORM	
BPW34	Bulk	MOQ: 3000 pcs, 3000 pcs/bulk	Top view	
BPW34S	Tube	MOQ: 1800 pcs, 45 pcs/tube	Top view	

Note

MOQ: minimum order quantity

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	60	V	
Power dissipation	T _{amb} ≤ 25 °C	P _V	215	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 100	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	t ≤ 3 s	T _{sd}	260	°C	
Thermal resistance junction/ambient	Connected with Cu wire, 0.14 mm ²	R _{thJA}	350	K/W	

T_{amb} = 25 °C, unless otherwise specified

COMPLIANT

Vishay Semiconductors

Silicon PIN Photodiode, RoHS Compliant

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Breakdown voltage	I _R = 100 μA, E = 0	V _(BR)	60			V
Reverse dark current	V _R = 10 V, E = 0	I _{ro}		2	30	nA
Diode capacitance	$V_R = 0 \text{ V, f} = 1 \text{ MHz, E} = 0$	C _D		70	- 0	pF
	$V_R = 3 \text{ V, f} = 1 \text{ MHz, E} = 0$	C _D		25	40	pF
Open circuit voltage	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	Vo		350	VB A	mV
Temperature coefficient of Vo	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{Vo}		- 2.6	101	mV/K
Short circuit current	E _A = 1 klx	I _k		70	6.00	μΑ
	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	I _k	/	47	4	μΑ
Temperature coefficient of I _k	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm}$	TK _{lk}		0.1		%/K
Reverse light current	$E_A = 1 \text{ klx}, V_R = 5 \text{ V}$	I _{ra}		75		μΑ
	$E_e = 1 \text{ mW/cm}^2, \lambda = 950 \text{ nm},$ $V_R = 5 \text{ V}$	I _{ra}	40	50		μΑ
Angle of half sensitivity		φ	A	± 65		deg
Wavelength of peak sensitivity		λρ	N.A.	900		nm
Range of spectral bandwidth		λ _{0.1}		430 to 1100		nm
Noise equivalent power	$V_R = 10 \text{ V}, \lambda = 950 \text{ nm}$	NEP	A - 7	4 x 10 ⁻¹⁴		W/√Hz
	- i	1		1 1		+

 $V_R = 10~V,~R_L = 1~k\Omega,~\lambda = 820~nm$

 $V_R = 10 \text{ V}, R_L = 1 \text{ k}\Omega, \lambda = 820 \text{ nm}$

Note

Rise time

Fall time

 T_{amb} = 25 °C, unless otherwise specified

BASIC CHARACTERISTICS

 T_{amb} = 25 °C, unless otherwise specified

Fig. 1 - Reverse Dark Current vs. Ambient Temperature

100

100

ns

ns

Fig. 2 - Relative Reverse Light Current vs. Ambient Temperature

Vishay Semiconductors

Silicon PIN Photodiode, RoHS Compliant

Fig. 3 - Reverse Light Current vs. Irradiance

Fig. 4 - Reverse Light Current vs. Illuminance

Fig. 5 - Reverse Light Current vs. Reverse Voltage

Fig. 6 - Diode Capacitance vs. Reverse Voltage

Fig. 7 - Relative Spectral Sensitivity vs. Wavelength

Fig. 8 - Relative Radiant Sensitivity vs. Angular Displacement

Silicon PIN Photodiode, RoHS Compliant

Vishay Semiconductors

PACKAGE DIMENSIONS in millimeters

TUBE PACKAGING DIMENSIONS in millimeters

Fig. 9 - Drawing Proportions not scaled