Modèle linéaire généralisé et choix de modèles

Devoir maison obligatoire (Dauphine)

Paul Hardouin August 31, 2019

Contents

1. Introduct	tion	2
	1.1 Données et objectif	2
	1.2 Type de modèle à trouver	2
	1.3 Quatre méthodes pour trouver les modèles	2
2. Lecture e	et exploration des données	3
	2.1 Lecture	3
	2.2 Visualisation des données	3
3. Ajout et	suppression de covariables	5
	3.1 Ajout de covariables	5
	3.2 Suppression de covariables inutiles	6
4. Construc	tion des 4 modèles	7
	$4.1~\mathrm{Mod\`{e}le}~1:\mathrm{MANUEL}:\mathrm{s\'{e}lection}~\mathrm{de}~\mathrm{covariables}~\mathrm{en}~\mathrm{observant}~\mathrm{les}~\mathrm{donn\'{e}es}$	7
	$4.2~\mathrm{Mod\`{e}le}~2:$ $\mathrm{stepAIC}:$ recherche pas à pas en utilisant le crit\`{e}re AIC	9
	$4.3~\mathrm{Mod\`{e}le}~3$: step BIC : recherche pas à pas en utilisant le critère BIC	11
	4.4 Modèle 4 : COMPLET : utilisation de toutes les covariables	13
5. ACP sur	les modèles	16
6. Etude de performance par validation croisée		18
	6.1 Fonction pour faire la validation croisée	18
	6.2 Application de la validation croisée avec 10 blocs	19
	6.3 Observation des résultats	19
7. Application du modèle retenu au jeu de test		21

1. Introduction

1.1 Données et objectif

Pour cette étude, nous travaillons sur un jeu de données [source : **MeteoBlue**] sur les conditions météorologiques à Bale. Chaque ligne correspond à un jour entre 2010 et 2018. On y trouve les mesures de paramètres divers, ainsi qu'un booléen **pluie.demain** informant de la présence de pluie le lendemain du jour concerné.

1.2 Type de modèle à trouver

L'objectif est de trouver une valeur booléenne en fonction de covariables à valeurs continues. Il s'agit donc d'un problème de régréssion logistique.

Compte-tenu de la nature du problème, nous cherchons un modèle **LOGIT** [glm, family = binomial] On ne s'intéresse pas au probit, car la probabilité recherchée n'est pas très proche de 0 ou de 1.

Nous renoncons aux modèles suivants

- **PROBIT** [glm, family = binomial(link = "probit")]
- **BINOMIAL** [glm + cbind, family = binomial]
- MULTINOMIAL [multinom]
- CUMULATIF [clm]
- POISSON [glm, family = poisson]

1.3 Quatre méthodes pour trouver les modèles

- MANUEL : sélection de covariables en observant les données
- stepAIC : recherche pas à pas en utilisant le critère AIC
- stepBIC : recherche pas à pas en utilisant le critère BIC
- COMPLET : utilisation de toutes les covariables

2. Lecture et exploration des données

2.1 Lecture

```
d = read.csv("meteo.train.csv")
#summary(d)
```

2.2 Visualisation des données

On veut pouvoir observer facilement l'influence des covariables sur **pluie.demain** On crée donc la fonction \mathbf{myVisu} pour cela

```
# for(i in 1:ncol(d)){
# if(length(unique(d[, i])) >= 2 & colnames(d)[i] != "pluie.demain")
# {
# toto = myVisu(d,i,1)
# }
# }
```

On observe des covariables qui semblent pouvoir influer **pluie.demain** En effet, les distributions **TRUE/FALSE** sont différentes.

A l'inverse, on voit aussi des covariables pour lesquelles les distributions TRUE/FALSE sont très proches.

#myFig=myVisu(d, 8,0)
myFig=myVisu(d,28,0)

3. Ajout et suppression de covariables

3.1 Ajout de covariables

On sent intuitivement que le cycle des saisons peut avoir une influence sur la pluie. Pour appliquer une régréssion linéaire sur une telle information, on veut créer 2 covariables:

- le cosinus du jour julien
- le sinus du jour julien

myFig=myVisu(d,48,0)

On s'apercoit en réalite que la vraie périodicité est plutot de 6 mois. Les covariables créées sont donc les suivantes:

- la valeur absolue du cosinus du jour julien
- la valeur absolue du sinus du jour julien

```
tmp = do.call(paste, list(d$Month, d$Day, d$Year))
tmp = as.Date(tmp, format=c("%m %d %Y"))
d$mycosJD <- abs(cos(as.numeric(format(tmp, "%j"))/365*2*pi))
d$mysinJD <- abs(sin(as.numeric(format(tmp, "%j"))/365*2*pi))</pre>
```

On visualise la distribution suivante pour mycosJD

mycosJD Histogramme de distribution 1.00 -2.0 -Densité empirique 0.75 -Pluie Demain mycosJD pluie.demain **FALSE FALSE** 1.0 -0.50 TRUE **TRUE** 0.25 -0.00 -0.00 0.25 0.50 0.75 FALSE TRUE 1.00 mycosJD pluie.demain

myFig=myVisu(d,49,0)

3.2 Suppression de covariables inutiles

On supprime quelques covariables encombrantes. Les heures et les minutes.

d = d[,!colnames(d) %in% c("Hour", "Minute")]

4. Construction des 4 modèles

4.1 Modèle 1 : MANUEL : sélection de covariables en observant les données

Pour ce modèle, on fait une selection manuelle des covariables. Pour cela, on exporte **myVisu** pour toutes les covariables vues en haut. On sélectionne alors manuellement les covariables aui nous intéressent.

On obtient un modèle avec 11 covariables.

```
m_perso = glm(formula = pluie.demain ~ Mean.Sea.Level.Pressure.daily.mean..MSL. +
                                        Mean.Sea.Level.Pressure.daily.max..MSL. +
                                        Mean.Sea.Level.Pressure.daily.min..MSL. +
                                        Total.Cloud.Cover.daily.mean..sfc. +
                                        Sunshine.Duration.daily.sum..sfc. +
                                        Wind.Direction.daily.mean..10.m.above.gnd. +
                                        Wind.Direction.daily.mean..80.m.above.gnd. +
                                        Wind.Direction.daily.mean..900.mb. +
                                        High.Cloud.Cover.daily.max..high.cld.lay. +
                                        mycosJD +
                                        mysinJD,
        family = binomial,
        data = d
f_perso= formula(m_perso) # formule du modèle
n_perso = names(m_perso$coefficients) # nom des covariables retenues
summary(m_perso)
```

```
##
## Call:
   glm(formula = pluie.demain ~ Mean.Sea.Level.Pressure.daily.mean..MSL. +
##
       Mean.Sea.Level.Pressure.daily.max..MSL. + Mean.Sea.Level.Pressure.daily.min..MSL. +
##
       Total.Cloud.Cover.daily.mean..sfc. + Sunshine.Duration.daily.sum..sfc. +
##
       Wind.Direction.daily.mean..10.m.above.gnd. + Wind.Direction.daily.mean..80.m.above.gnd. +
       Wind.Direction.daily.mean..900.mb. + High.Cloud.Cover.daily.max..high.cld.lay. +
##
##
       mycosJD + mysinJD, family = binomial, data = d)
##
## Deviance Residuals:
##
      Min
                 10
                     Median
                                   30
                                           Max
## -2.2670 -0.9134 -0.2571
                               0.9338
                                        2.3929
##
## Coefficients:
##
                                                Estimate Std. Error z value
## (Intercept)
                                              98.9140668 10.9297545
                                                                      9.050
## Mean.Sea.Level.Pressure.daily.mean..MSL.
                                               0.1880782 0.1135358
                                                                      1.657
                                                                     -2.219
## Mean.Sea.Level.Pressure.daily.max..MSL.
                                              -0.1391341
                                                          0.0627025
## Mean.Sea.Level.Pressure.daily.min..MSL.
                                                                     -2.485
                                              -0.1477216 0.0594406
## Total.Cloud.Cover.daily.mean..sfc.
                                                          0.0057882
                                                                      0.726
                                               0.0042020
## Sunshine.Duration.daily.sum..sfc.
                                              -0.0004445
                                                          0.0005938
                                                                     -0.749
## Wind.Direction.daily.mean..10.m.above.gnd.
                                               0.0040049
                                                          0.0048134
                                                                      0.832
## Wind.Direction.daily.mean..80.m.above.gnd. -0.0063310 0.0050283
                                                                     -1.259
## Wind.Direction.daily.mean..900.mb.
                                               0.0055116 0.0011953
                                                                      4.611
```

```
## High.Cloud.Cover.daily.max..high.cld.lay.
                                              0.0076935 0.0017157
                                                                      4.484
## mycosJD
                                              0.7765446 0.5408170
                                                                      1.436
## mysinJD
                                              -0.3002482 0.5397814 -0.556
##
                                              Pr(>|z|)
## (Intercept)
                                               < 2e-16 ***
## Mean.Sea.Level.Pressure.daily.mean..MSL.
                                                0.0976 .
## Mean.Sea.Level.Pressure.daily.max..MSL.
                                                0.0265 *
## Mean.Sea.Level.Pressure.daily.min..MSL.
                                                0.0129 *
## Total.Cloud.Cover.daily.mean..sfc.
                                                0.4679
## Sunshine.Duration.daily.sum..sfc.
                                                0.4541
## Wind.Direction.daily.mean..10.m.above.gnd.
                                                0.4054
## Wind.Direction.daily.mean..80.m.above.gnd.
                                                0.2080
## Wind.Direction.daily.mean..900.mb.
                                              4.01e-06 ***
## High.Cloud.Cover.daily.max..high.cld.lay.
                                              7.32e-06 ***
## mycosJD
                                                0.1510
## mysinJD
                                                0.5780
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1724.5 on 1243 degrees of freedom
## Residual deviance: 1403.8 on 1232 degrees of freedom
## AIC: 1427.8
##
## Number of Fisher Scoring iterations: 4
```

4.2 Modèle 2 : stepAIC : recherche pas à pas en utilisant le critère AIC

Pour ce modèle, on fait une recherche pas à pas en utilisant le critère AIC (par defaut). On fait une recherche avec la méthode progressive.

```
fit1 = glm(pluie.demain ~ ., family = binomial, data = d)
fit2 = glm(pluie.demain ~ 1, family = binomial, data = d)
m_AIC = step(fit2,direction="both" ,scope=list(upper=fit1,lower=fit2))
```

AIC: on obtient un modèle avec 9 covariables.

```
f_AIC = formula(m_AIC) # formule du modèle
n_AIC = names(m_AIC$coefficients) # nom des covariables retenues
summary(m_AIC)
```

```
##
## Call:
## glm(formula = pluie.demain ~ Mean.Sea.Level.Pressure.daily.min..MSL. +
       Medium.Cloud.Cover.daily.max..mid.cld.lay. + mysinJD + Wind.Direction.daily.mean..900.mb. +
##
       High.Cloud.Cover.daily.mean..high.cld.lay. + Mean.Sea.Level.Pressure.daily.max..MSL. +
##
       Mean.Sea.Level.Pressure.daily.mean..MSL. + Total.Cloud.Cover.daily.max..sfc. +
##
       Low.Cloud.Cover.daily.mean..low.cld.lay., family = binomial,
##
##
       data = d
##
## Deviance Residuals:
##
       Min
                 1Q
                      Median
                                    30
                                            Max
## -2.1953 -0.9195 -0.2912
                               0.9264
                                         2.3678
##
## Coefficients:
##
                                                 Estimate Std. Error z value
                                                                       8.811
## (Intercept)
                                               92.9910621 10.5539094
## Mean.Sea.Level.Pressure.daily.min..MSL.
                                               -0.1543399 0.0598128
                                                                      -2.580
## Medium.Cloud.Cover.daily.max..mid.cld.lay.
                                                                       4.589
                                                0.0111587
                                                           0.0024315
## mysinJD
                                               -0.9920768
                                                           0.2181659
                                                                      -4.547
## Wind.Direction.daily.mean..900.mb.
                                                           0.0009557
                                                                       4.019
                                                0.0038405
## High.Cloud.Cover.daily.mean..high.cld.lay.
                                                0.0104611
                                                           0.0036656
                                                                       2.854
## Mean.Sea.Level.Pressure.daily.max..MSL.
                                                                      -2.328
                                               -0.1444229
                                                           0.0620434
## Mean.Sea.Level.Pressure.daily.mean..MSL.
                                                0.2064663
                                                           0.1135267
                                                                       1.819
## Total.Cloud.Cover.daily.max..sfc.
                                               -0.0061293
                                                           0.0033261
                                                                      -1.843
## Low.Cloud.Cover.daily.mean..low.cld.lay.
                                                0.0038018 0.0024171
                                                                       1.573
##
                                               Pr(>|z|)
## (Intercept)
                                                < 2e-16 ***
## Mean.Sea.Level.Pressure.daily.min..MSL.
                                                0.00987 **
## Medium.Cloud.Cover.daily.max..mid.cld.lay. 4.45e-06 ***
## mysinJD
                                               5.43e-06 ***
## Wind.Direction.daily.mean..900.mb.
                                               5.86e-05 ***
## High.Cloud.Cover.daily.mean..high.cld.lay.
                                                0.00432 **
## Mean.Sea.Level.Pressure.daily.max..MSL.
                                                0.01992 *
## Mean.Sea.Level.Pressure.daily.mean..MSL.
                                                0.06896 .
## Total.Cloud.Cover.daily.max..sfc.
                                                0.06536 .
## Low.Cloud.Cover.daily.mean..low.cld.lay.
                                                0.11575
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1724.5 on 1243 degrees of freedom
## Residual deviance: 1394.8 on 1234 degrees of freedom
## AIC: 1414.8
##
## Number of Fisher Scoring iterations: 4
```

4.3 Modèle 3 : stepBIC : recherche pas à pas en utilisant le critère BIC

Pour ce modèle, on fait une recherche pas à pas en utilisant le critère BIC. Ce critère est plus favorable aux modèles restreint en nombre de covariables. Pour cela, on change la valeur du parametre k de la fonction step. Pour AIC, on a k = 2. Pour BIC, on a $k = \log(nrow(d))$ On fait une recherche avec la méthode progressive.

```
fit1 = glm(pluie.demain ~ ., family = binomial, data = d)
fit2 = glm(pluie.demain ~ 1, family = binomial, data = d)
m_BIC = step(fit2,direction="both" ,scope=list(upper=fit1,lower=fit2) ,k=log(nrow(d)))
```

BIC: on obtient un modèle avec 5 covariables.

##

AIC: 1416.5

f BIC = formula(m BIC) # formule du modèle

Null deviance: 1724.5 on 1243

Residual deviance: 1404.5 on 1238

Cela était prévisible, car BIC privilégie les modèles avec peu de covariables.

n_BIC = names(m_BIC\$coefficients) # nom des covariables retenues

```
summary(m_BIC)
##
## Call:
  glm(formula = pluie.demain ~ Mean.Sea.Level.Pressure.daily.min..MSL. +
       Medium.Cloud.Cover.daily.max..mid.cld.lay. + mysinJD + Wind.Direction.daily.mean..900.mb. +
##
##
       High.Cloud.Cover.daily.mean..high.cld.lay., family = binomial,
##
       data = d
##
## Deviance Residuals:
##
       Min
                                   3Q
                 1Q
                      Median
                                           Max
   -2.0793
           -0.9220
                    -0.3024
                               0.9385
                                         2.3060
##
## Coefficients:
##
                                                 Estimate Std. Error z value
## (Intercept)
                                               87.2840206 9.7798757
## Mean.Sea.Level.Pressure.daily.min..MSL.
                                               -0.0871380
                                                          0.0095828
                                                                      -9.093
## Medium.Cloud.Cover.daily.max..mid.cld.lay.
                                               0.0092403
                                                           0.0019891
                                                                       4.646
## mysinJD
                                               -0.9811577
                                                           0.2176748
                                                                      -4.507
## Wind.Direction.daily.mean..900.mb.
                                               0.0037996
                                                          0.0009394
                                                                       4.045
## High.Cloud.Cover.daily.mean..high.cld.lay.
                                               0.0104911
                                                          0.0036566
                                                                       2.869
##
                                               Pr(>|z|)
## (Intercept)
                                                < 2e-16 ***
## Mean.Sea.Level.Pressure.daily.min..MSL.
                                                < 2e-16 ***
## Medium.Cloud.Cover.daily.max..mid.cld.lay. 3.39e-06 ***
## mysinJD
                                               6.56e-06 ***
## Wind.Direction.daily.mean..900.mb.
                                               5.24e-05 ***
## High.Cloud.Cover.daily.mean..high.cld.lay. 0.00412 **
## --
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
```

degrees of freedom

degrees of freedom

##

Number of Fisher Scoring iterations: 4

4.4 Modèle 4 : COMPLET : utilisation de toutes les covariables

Pour ce modèle, on prend toutes les covariables du jeu de données.

```
m_full = glm(formula = pluie.demain ~ .,
    family = binomial,
    data = d)
print(mean(abs(round(predict(m_full, d, type = "response"))-d$pluie.demain)))
```

[1] 0.278135

```
f_full = formula(m_full) # formule du modèle
n_full = colnames(d) # nom des covariables retenues
summary(m_full)
```

```
##
## Call:
  glm(formula = pluie.demain ~ ., family = binomial, data = d)
## Deviance Residuals:
##
      Min
                 10
                     Median
                                   30
                                           Max
## -2.7240 -0.8609 -0.2049
                               0.8833
                                        2.3841
##
## Coefficients:
                                                  Estimate Std. Error z value
##
## (Intercept)
                                                -6.653e+04 9.189e+04 -0.724
## X
                                                -9.059e-02 1.251e-01 -0.724
## Year
                                                 3.314e+01 4.571e+01
                                                                        0.725
## Month
                                                 2.767e+00 3.806e+00
                                                                        0.727
## Day
                                                 8.086e-02 1.250e-01
                                                                        0.647
## Temperature.daily.mean..2.m.above.gnd.
                                                 8.910e-02 1.643e-01
                                                                        0.542
## Relative.Humidity.daily.mean..2.m.above.gnd. -4.739e-02
                                                            3.016e-02
                                                                      -1.571
## Mean.Sea.Level.Pressure.daily.mean..MSL.
                                                 1.557e-01 1.279e-01
                                                                        1.218
## Total.Precipitation.daily.sum..sfc.
                                                 1.100e-02 2.433e-02
                                                                        0.452
## Snowfall.amount.raw.daily.sum..sfc.
                                                 2.499e-01 3.103e-01
                                                                        0.805
## Total.Cloud.Cover.daily.mean..sfc.
                                                -4.240e-03 1.210e-02
                                                                       -0.351
## High.Cloud.Cover.daily.mean..high.cld.lay.
                                                 5.503e-03 6.827e-03
                                                                        0.806
## Medium.Cloud.Cover.daily.mean..mid.cld.lay.
                                                -2.699e-03 6.457e-03
                                                                      -0.418
## Low.Cloud.Cover.daily.mean..low.cld.lay.
                                                 9.919e-03 8.248e-03
                                                                        1.203
## Sunshine.Duration.daily.sum..sfc.
                                                -6.663e-04 8.806e-04
                                                                       -0.757
## Shortwave.Radiation.daily.sum..sfc.
                                                -2.216e-05 9.990e-05
                                                                      -0.222
## Wind.Speed.daily.mean..10.m.above.gnd.
                                                -2.851e-02 9.462e-02
                                                                      -0.301
## Wind.Direction.daily.mean..10.m.above.gnd.
                                                 9.916e-03 5.190e-03
                                                                        1.911
## Wind.Speed.daily.mean..80.m.above.gnd.
                                                -1.124e-01 6.589e-02 -1.706
                                                -1.077e-02 5.367e-03 -2.006
## Wind.Direction.daily.mean..80.m.above.gnd.
## Wind.Speed.daily.mean..900.mb.
                                                 1.328e-02 2.307e-02
                                                                        0.576
## Wind.Direction.daily.mean..900.mb.
                                                 6.938e-03 1.394e-03
                                                                        4.977
## Wind.Gust.daily.mean..sfc.
                                                 3.783e-02 3.570e-02
                                                                        1.059
## Temperature.daily.max..2.m.above.gnd.
                                                 1.122e-01 9.650e-02
                                                                        1.163
                                                                      -2.652
## Temperature.daily.min..2.m.above.gnd.
                                                -2.277e-01 8.586e-02
## Relative.Humidity.daily.max..2.m.above.gnd.
                                                 2.859e-02 1.958e-02
                                                                        1.460
## Relative.Humidity.daily.min..2.m.above.gnd.
                                                 2.561e-02 1.663e-02
                                                                        1.540
## Mean.Sea.Level.Pressure.daily.max..MSL.
                                                -1.454e-01 7.074e-02 -2.056
```

```
## Mean.Sea.Level.Pressure.daily.min..MSL.
                                                 -1.063e-01
                                                              6.706e-02
                                                                         -1.584
                                                 -4.559e-03
## Total.Cloud.Cover.daily.max..sfc.
                                                              4.787e-03
                                                                         -0.952
## Total.Cloud.Cover.daily.min..sfc.
                                                  1.798e-02
                                                              8.042e-03
                                                                          2.236
## High.Cloud.Cover.daily.max..high.cld.lay.
                                                  2.678e-03
                                                              2.785e-03
                                                                          0.962
## High.Cloud.Cover.daily.min..high.cld.lay.
                                                 -2.667e-02
                                                              2.569e-02
                                                                         -1.038
## Medium.Cloud.Cover.daily.max..mid.cld.lay.
                                                  1.049e-02
                                                              3.120e-03
                                                                          3.361
## Medium.Cloud.Cover.daily.min..mid.cld.lay.
                                                  4.047e-03
                                                              9.944e-03
                                                                          0.407
## Low.Cloud.Cover.daily.max..low.cld.lay.
                                                 -8.774e-04
                                                              3.381e-03
                                                                         -0.260
## Low.Cloud.Cover.daily.min..low.cld.lay.
                                                 -1.818e-02
                                                              8.067e-03
                                                                         -2.254
## Wind.Speed.daily.max..10.m.above.gnd.
                                                  2.086e-02
                                                              3.369e-02
                                                                          0.619
## Wind.Speed.daily.min..10.m.above.gnd.
                                                  1.093e-01
                                                              5.850e-02
                                                                          1.868
## Wind.Speed.daily.max..80.m.above.gnd.
                                                 -8.994e-04
                                                              2.764e-02
                                                                         -0.033
## Wind.Speed.daily.min..80.m.above.gnd.
                                                  8.916e-03
                                                              4.076e-02
                                                                          0.219
## Wind.Speed.daily.max..900.mb.
                                                                          0.395
                                                  4.287e-03
                                                              1.085e-02
## Wind.Speed.daily.min..900.mb.
                                                 -1.549e-02
                                                              1.725e-02
                                                                         -0.898
## Wind.Gust.daily.max..sfc.
                                                  7.163e-03
                                                              1.735e-02
                                                                          0.413
## Wind.Gust.daily.min..sfc.
                                                 -2.135e-02
                                                              2.646e-02
                                                                         -0.807
## mycosJD
                                                  1.064e+00
                                                              5.840e-01
                                                                          1.822
## mysinJD
                                                 -2.838e-01 5.777e-01
                                                                         -0.491
                                                 Pr(>|z|)
## (Intercept)
                                                 0.469083
## X
                                                 0.469067
## Year
                                                 0.468459
## Month
                                                 0.467280
## Day
                                                 0.517654
## Temperature.daily.mean..2.m.above.gnd.
                                                 0.587541
## Relative.Humidity.daily.mean..2.m.above.gnd. 0.116095
## Mean.Sea.Level.Pressure.daily.mean..MSL.
                                                 0.223327
## Total.Precipitation.daily.sum..sfc.
                                                 0.651031
## Snowfall.amount.raw.daily.sum..sfc.
                                                 0.420565
## Total.Cloud.Cover.daily.mean..sfc.
                                                 0.725927
## High.Cloud.Cover.daily.mean..high.cld.lay.
                                                 0.420148
## Medium.Cloud.Cover.daily.mean..mid.cld.lay.
                                                 0.675904
## Low.Cloud.Cover.daily.mean..low.cld.lay.
                                                 0.229161
## Sunshine.Duration.daily.sum..sfc.
                                                 0.449267
## Shortwave.Radiation.daily.sum..sfc.
                                                 0.824469
## Wind.Speed.daily.mean..10.m.above.gnd.
                                                 0.763181
## Wind.Direction.daily.mean..10.m.above.gnd.
                                                 0.056067 .
## Wind.Speed.daily.mean..80.m.above.gnd.
                                                 0.087973 .
## Wind.Direction.daily.mean..80.m.above.gnd.
                                                 0.044809 *
## Wind.Speed.daily.mean..900.mb.
                                                 0.564750
## Wind.Direction.daily.mean..900.mb.
                                                 6.45e-07 ***
## Wind.Gust.daily.mean..sfc.
                                                 0.289415
## Temperature.daily.max..2.m.above.gnd.
                                                 0.244970
## Temperature.daily.min..2.m.above.gnd.
                                                 0.008013 **
## Relative.Humidity.daily.max..2.m.above.gnd.
                                                 0.144385
## Relative.Humidity.daily.min..2.m.above.gnd.
                                                 0.123450
## Mean.Sea.Level.Pressure.daily.max..MSL.
                                                 0.039801 *
## Mean.Sea.Level.Pressure.daily.min..MSL.
                                                 0.113091
## Total.Cloud.Cover.daily.max..sfc.
                                                 0.340882
## Total.Cloud.Cover.daily.min..sfc.
                                                 0.025364 *
## High.Cloud.Cover.daily.max..high.cld.lay.
                                                 0.336152
## High.Cloud.Cover.daily.min..high.cld.lay.
                                                 0.299270
## Medium.Cloud.Cover.daily.max..mid.cld.lay.
                                                 0.000777 ***
```

```
## Medium.Cloud.Cover.daily.min..mid.cld.lay.
                                                0.684032
## Low.Cloud.Cover.daily.max..low.cld.lay.
                                                0.795244
## Low.Cloud.Cover.daily.min..low.cld.lay.
                                                0.024209 *
## Wind.Speed.daily.max..10.m.above.gnd.
                                                0.535736
## Wind.Speed.daily.min..10.m.above.gnd.
                                                0.061714 .
## Wind.Speed.daily.max..80.m.above.gnd.
                                                0.974046
## Wind.Speed.daily.min..80.m.above.gnd.
                                                0.826857
## Wind.Speed.daily.max..900.mb.
                                                0.692902
## Wind.Speed.daily.min..900.mb.
                                                0.369347
## Wind.Gust.daily.max..sfc.
                                                0.679679
## Wind.Gust.daily.min..sfc.
                                                0.419794
                                                0.068403 .
## mycosJD
## mysinJD
                                                0.623208
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 1724.5 on 1243 degrees of freedom
## Residual deviance: 1325.8 on 1197 degrees of freedom
## AIC: 1419.8
## Number of Fisher Scoring iterations: 5
```

5. ACP sur les modèles

On affiche les ACP des différents modèles, pour voir si certains discriminent mieux pluie.demain

- Le modèle BIC semble le mieux (61% expliqués par 2 PC + ellipses un peu séparées)
- Ensuite, les modèle AIC (60% expliqués par 2 PC + ellipses un peu séparées)
- Ensuite, le modèle manuel (58% expliqués par 2 PC + ellipses un peu séparées)
- Enfin, le modèle complet semble plus médiocre (40% expliqués par 2 PC + ellipses très proches)

```
library('FactoMineR')
library("factoextra")
```


toto = data.frame(res.pca\$ind\$coord,res.pca\$call\$quali.sup\$quali.sup)
toto\$pluie.demain = toto\$pluie.demain=="TRUE"

6. Etude de performance par validation croisée

6.1 Fonction pour faire la validation croisée

Métrique : Pour ce calcul, on cherche a mesurer le taux d'erreur de prédicition. On compare donc les vraies valeur de **pluie.demain** au arrondis des prédictions.

Partitions : Comme les données consécutives ont de la cohérence, on ne va pas les couper en K blocs consécutifs. A la place, pour le kieme bloc, on prend une ligne toutes les K lignes, en commencant par la kieme ligne.

Critère de choix : MOYENNE des erreurs : On choisira le modèle donnant le moins d'erreur moyenne sur la cross-validation. Les coefficients finaux seront donc la moyenne ponderée des coefficients de la validation croisèe. Le modèle contenant ces coefficient finaux est la seconde sortie de la fonction.

```
myCrossValidation = function(formule,dataFrame,nParts)
    errV = numeric(0)
    for (k in 1:nParts)
        indTest = seq(k,nrow(dataFrame),nParts)
        df_test = dataFrame[indTest,]
        df_train = dataFrame[-indTest,]
        modele = glm(formule, family = binomial, data = df_train)
        if (k==1)
          { MODEL = modele
            N_TRAIN = nrow(df_train)
            MODEL$coefficients = modele$coefficients*N TRAIN
            N_SUM = N_TRAIN }
        else
          { N TRAIN = nrow(df train)
            MODEL$coefficients = MODEL$coefficients + modele$coefficients*N_TRAIN
            N_SUM = N_SUM + N_TRAIN }
        pred = predict(modele, df_test, type = "response")
        err = mean(abs(round(pred)-df_test$pluie.demain))
        #print(mean(abs(round(predict(modele, dataFrame, type = "response"))-dataFrame$pluie.demain))
        errV = rbind(errV,err)
   MODEL$coefficients = MODEL$coefficients/N SUM
    return(list(erreur = errV, modele = MODEL))
```

6.2 Application de la validation croisée avec 10 blocs

```
cv_perso = myCrossValidation(f_perso, d, 10)
cv_AIC = myCrossValidation(f_AIC , d, 10)
cv_BIC = myCrossValidation(f_BIC , d, 10)
cv_full = myCrossValidation(pluie.demain ~ . , d, 10)
cv_acp = myCrossValidation(pluie.demain ~ . , toto, 10)
```

6.3 Observation des résultats

Voici l'ensemble des taux d'erreur pour les différentes méthodes

```
myResults = data.frame(cv_perso$erreur,cv_AIC$erreur,cv_BIC$erreur,cv_full$erreur,cv_acp$erreur)
myResults
```

```
##
         cv_perso.erreur cv_AIC.erreur cv_BIC.erreur cv_full.erreur
               0.3840000
                              0.3760000
                                            0.3760000
## err
                                                            0.3200000
## err.1
               0.2960000
                              0.3280000
                                            0.3120000
                                                            0.3040000
                              0.3040000
                                            0.2800000
## err.2
               0.3040000
                                                            0.3200000
## err.3
               0.3760000
                              0.3440000
                                            0.3680000
                                                            0.3600000
## err.4
               0.3145161
                              0.3548387
                                            0.3145161
                                                            0.3548387
## err.5
               0.2903226
                              0.2903226
                                            0.2580645
                                                            0.2419355
## err.6
                              0.2822581
               0.2903226
                                            0.2903226
                                                            0.2822581
## err.7
               0.3225806
                              0.3306452
                                            0.3225806
                                                            0.3387097
## err.8
               0.2338710
                              0.2419355
                                            0.2419355
                                                            0.2822581
                              0.2661290
                                            0.2419355
                                                            0.2580645
## err.9
               0.2500000
##
         cv_acp.erreur
## err
             0.3920000
## err.1
             0.3120000
## err.2
             0.2400000
## err.3
             0.3760000
## err.4
             0.3387097
## err.5
             0.2741935
             0.2903226
## err.6
## err.7
             0.3064516
             0.2500000
## err.8
## err.9
             0.2741935
```

En observant les métriques ci-dessous, on choisit de retenir le modèle BIC. En effet, le le modèle BIC obtient la moyenne la plus faible avec 0.3005

summary(myResults)

```
##
   cv_perso.erreur cv_AIC.erreur
                                      cv_BIC.erreur
                                                       cv_full.erreur
  Min.
          :0.2339
                    Min.
                           :0.2419
                                     Min.
                                            :0.2419
                                                              :0.2419
                                                      Min.
  1st Qu.:0.2903
                    1st Qu.:0.2843
                                     1st Qu.:0.2635
                                                       1st Qu.:0.2823
## Median :0.3000
                    Median :0.3160
                                     Median :0.3012
                                                      Median : 0.3120
         :0.3062
## Mean
                    Mean
                          :0.3118
                                     Mean :0.3005
                                                              :0.3062
                                                      Mean
```

```
## 3rd Qu.:0.3206 3rd Qu.:0.3407 3rd Qu.:0.3206 3rd Qu.:0.3340
## Max. :0.3840 Max. :0.3760 Max. :0.3760 Max. :0.3600
## cv_acp.erreur
## Min. :0.2400
## 1st Qu.:0.2742
## Median :0.2984
## Mean :0.3054
## 3rd Qu.:0.3320
## Max. :0.3920
```

7. Application du modèle retenu au jeu de test

- Lecture des données + création des features mycosJD et mysinJD.
- Prédiction avec le modèle moyenné **BIC** retenu.
- Nettoyage des features.
- Export du data frame dans le fichier hardouin_meteo.predict.csv.

```
# Lecture des données à prédire
   df_test = read.csv("meteo.test.csv")
# Ajout de mycosJD et mysinJD
   tmp = do.call(paste, list(df_test$Month, df_test$Day, df_test$Year))
   tmp = as.Date(tmp, format=c("%m %d %Y"))
   df_test$mycosJD <- abs(cos(as.numeric(format(tmp, "%j"))/365*2*pi))
   df_test$mysinJD <- abs(sin(as.numeric(format(tmp, "%j"))/365*2*pi))
# Prédiction
   prediction = round(predict(cv_BIC$modele, df_test, type = "response"))
# Nettoyage
   df_test = df_test[,c("X","Year","Month","Day")]
   df_test$pluie.demain.prediction = prediction
# Export
   write.csv(df_test,"hardouin_meteo.predict.csv")</pre>
```