EEE 333 - Optical Communication Devices

LED structures MCQ Questions

Taha Ahmed

MCQ Questions

1. Q Which of the following is a drawback of LEDs compared to injection lasers?
(a) Higher optical power coupled into a fiber
(b) Higher modulation bandwidth
© Harmonic distortion
d Simpler fabrication process
1. A (c)
2. Q LEDs typically have lower compared to injection lasers.
(a) Optical power coupled into a fiber
(b) Fabrication cost
© Modulation bandwidth
d all of the above
2. A (d)
3. Q What is the purpose of using a double-heterojunction (DH) structure in an LED?
(a) To enhance the light emission efficiency
3. A (a)
4. Q Which layers are sandwiched around the p-type GaAs layer in the double-heterojunction LED?
(a) p-type AlGaAs and p-type GaAs layers

4. A (a)
5. Q When a forward bias is applied to the double-heterojunction LED, where do the injected electrons from the n-type layer go?
(a) They are injected into the p-type GaAs layer
5. A (a)
6. Q What happens to the minority carriers (electrons) once they are injected into the p-type GaAs layer?
(a) They recombine with majority carriers (holes)
6. A (a)
7. Q What is the energy of the produced photons in the double-heterojunction LED?
(a) Equal to the bandgap energy of the p-type GaAs layer
7. A (a)
8. Q Why are the injected electrons inhibited from diffusing into the p-type AlGaAs layer?
(a) Due to the presence of a potential barrier at the p-p heterojunction
8. A (a)
9. Q electroluminescence only occurs in
(a) GaAs junction layer
9. A (a)

10. Q electroluminescence only occurs in the GaAs junction layer, providing
a good internal quantum efficiency
b high-radiance emission
(b) (a) and (a)
10. A (a)
11. Q What is the reason for light being emitted from the device without reabsorption?
(a) The bandgap energy in the AlGaAs layer is larger than that in GaAs
11. A (a)
12. Q Why is the DH structure preferred for applications in optical fiber communications?
(a) It provides the most efficient incoherent light sources
12. A (a)
13. Q What type of emission does forward current flow through the junction in a Planar LED produce?
(a) Lambertian spontaneous emission
13. A (a)
14. Q Why is the radiance of a Planar LED low?
(a) Due to total internal reflection, only a limited amount of light escapes the structure
14. A (a)

15. Q Which surfaces of the Planar LED emit light?
(a) All surfaces
(b) Only the top surface
© Only the side surfaces
15. A (a)
16. Q What is the structure of the Dome LED?
(a) A hemisphere of n-type GaAs surrounding a diffused p-type region
b A flat plane of p-type GaAs with a diffused n-type region
© A cylindrical shape with alternating n-type and p-type regions
16. A (a)
17. Q Why is the diameter of the dome chosen in the Dome LED?
(a) To maximize the amount of internal emission reaching the surface within the critical
b To minimize the amount of internal emission reaching the surface within the critical
17. A (a)
18. Q How does the external power efficiency of the Dome LED compare to the planar LED?
(\mathbf{a})
18. A (a)

19. Q How does the external power efficiency of the Dome LED compare to the planar LED?

- (a) The Dome LED has a higher external power efficiency than the planar LED
- (b) The Dome LED has a lower external power efficiency than the planar LED

 (\mathbf{c})

19. A (a)

20. Q What is the impact of the dome's geometry on the radiance of the Dome LED?

- (a) The radiance is reduced due to the larger size of the dome compared to the active recom
- (b) The radiance is increased due to the larger size of the dome compared to the active record
- (c) The radiance remains unaffected by the dome's geometry.

20. A (a)

21. Q Why does the larger size of the dome reduce the radiance of the Dome LED?

(a) To increases the internal reflections within the LED structure.

21. A (a)

22. Q What is the purpose of having a larger effective emission area in the Dome LED?

(a) To reduce the radiance of the LED

22. A (a)
23. Q What is the key approach to achieving high radiance in Surface emitter LEDs?
(a) Restricting the emission to a small active region within the device
23. A (a)
24. Q What technique was pioneered by Burrus and Dawson to improve radiance in homostructure Surface emitter LEDs?
(a) Using an etched well in a GaAs substrate
24. A (a)
25. Q What purpose does the etched well in a GaAs substrate serve in Surface emitter LEDs?
(a) Preventing heavy absorption of emitted radiation
(b) Accommodate the fiber.
25. A (a)
26. Q What advantages are gained by employing DH structures in Surface emitter LEDs?

 $\begin{tabular}{c} \hline \end{tabular} \begin{tabular}{c} \hline \end{tabular} \begin{tabular$

(b) Reduced absorption of emitted radiation

 \bigodot Increased efficiency from electrical and optical confinement

8
26. A (a)
27. Q Why is the internal absorption in DH structures very low?
(a) Due to the larger bandgap-confining layers
27. A (a)
28. Q What contributes to good forward radiance in DH-based Surface emitt LEDs?
(a) High reflection coefficient at the back crystal face
28. A (a)
29. Q How can the emission from the active layer in Surface emitter LEDs described?
(a) Isotropic (same value in all directions)
29. A (a)
30. Q What causes the external emission distribution of Surface emitter LEDs appear Lambertian with a beam width of 120°?
(a) Refraction from a high to a low refractive index at the GaAs–fiber interface
30. A (a)

31. () How	does	the	addition	of	epoxy	resin	in	\mathbf{the}	etched	well	affect	\mathbf{the}	external
power	efficie	ency o	f the	e device?										

(a) Reduce the refractive index mismatch and increases the external power efficiency

31. A (a)

32. Q What is the purpose of using transparent guiding layers in Edge emitter LEDs?

(a) To reduce self-absorption in the active layer

32. A (a)

33. Q What is the advantage of having a very thin active layer in Edge emitter LEDs?

(a) It allows the light produced in the active layer to spread into the transparent guiding layer

33. A (a)

34. Q Why is most of the propagating light in Edge emitter LEDs emitted at one end face only?

(a) Due to a reflector on the other end face

34. A (a)

38. A (a)

35. Q How does the effective radiance at the emitting end face of Edge emitter LEDs compare to surface emitters?
(a) It can be very high, giving increased coupling efficiency into small-NA fiber
35. A (a)
36. Q Why do surface emitters generally radiate more power into air compared to edge emitters?
(a) The emitted light in surface emitters is less affected by reabsorption and interfacial recombination.
36. A (a)
37. Q In terms of coupling optical power into low numerical aperture (NA) fibers which type of LED performs better?
(a) Edge emitters
37. A (a)
38. Q For large numerical aperture (NA) fibers, which type of LED performs better in terms of power coupling?
(a) Surface emitters

39. Q What is the relationship between the optical bandwidth and the electrical bandwidth?

(a) The optical bandwidth is significantly greater than the electrical bandwidth.

39. A (a)

40. Q What is the relationship between the optical bandwidth and the electrical bandwidth, assuming a Gaussian system response?

(a) The optical bandwidth is a factor of $\sqrt{2}$ greater than the electrical bandwidth.

40. A (a)

41. Q What is one of the mechanisms that generally determines the modulation bandwidth of LEDs?

- (a) The doping level in the active layer.
- (b) The size of the LED package.
- © The forward voltage applied to the LED.

41. A (a)

42.	\mathbf{Q}	How	\mathbf{does}	the	reductio	n in	radiative	lifetime	due	\mathbf{to}	${\bf injected}$	carriers	affect
$\overline{\text{the}}$	mo	dulati	on ba	ndw	idth of I	\mathbf{ED}	s?						

- (a) It increases the modulation bandwidth.
- (b) It decreases the modulation bandwidth.
- (c) It has no effect on the modulation bandwidth.
- **42.** A (a)

43. Q What is one of the mechanisms that generally determines the modulation bandwidth of LEDs?

- (a) The doping level in the active layer.
- (b) The reduction in radiative lifetime due to the injected carriers
- (c) The parasitic capacitance of the device.
- (d) All of the above
- 43. A (d)