Práctico 9 Diagonalización

Objetivos.

• Aprender a decidir si una matriz (o una transformación) es diagonalizable o no.

Ejercicios. Los ejercicios con el símbolo (a) tienen una ayuda al final del archivo para que recurran a ella después de pensar un poco.

- (1) (a) Decidir si las matrices del ejercicio 1 del Práctico 5 son diagonalizables sobre \mathbb{R} . En caso de serlo dar una matriz invertible P real tal que $P^{-1}AP$ es diagonal.
 - (b) Decidir si las matrices del ejercicio 1 del Práctico 5 son diagonalizables sobre \mathbb{C} . En caso de serlo dar una matriz invertible P compleja tal que $P^{-1}AP$ es diagonal.
- (2) Para cada una de las siguientes transformaciones lineales, hallar sus autovalores, y para cada uno de ellos, dar una base de autovectores del espacio propio asociado. Decidir si la transformación considerada es o no diagonalizable. En caso afirmativo, Hallar una base \mathcal{B} del espacio vectorial tal que $[T]_{\mathcal{B}}$ sea diagonal.
 - (a) $T : \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (6z, x 11z, y + 6z).
 - (b) $T: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ dada por $T(A) = 2A A^t$.
- (3) Sea V un espacio vectorial y $T:V\longrightarrow V$ una transformación lineal tal que $v\in V$ es un autovector de autovalor λ . Probar las siguientes afirmaciones.
 - (a) Si $\lambda = 0$, entonces $v \in \text{Nu}(T)$.
 - (b) Si $\lambda \neq 0$, entonces $v \in \text{Im}(T)$.
 - (c) Si $T^2 = 0$, entonces T Id es un isomorfismo.
- (4) Sea V un \mathbb{K} -espacio vectorial de dimensión n, y $T:V\longrightarrow V$ una transformación lineal. Supongamos que existe $v\in V$ tal que $T^n(v)=0$ pero $T^{n-1}(v)\neq 0$.
 - (a) (a) Probar que $\mathcal{B} = \{v, T(v), T^2(v), \dots, T^{n-1}(v)\}$ es una base de V.
 - (b) Calcular la matriz de T respecto de la base \mathcal{B} .
 - (c) Calcular los autovalores de T y sus correspondientes autoespacios. Decidir si T es diagonalizable.
- (5) Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\langle (1,2,3), (2,1,-1) \rangle$ es el autoespacio asociado a 0 y $\langle (3,1,1), (1,1,3) \rangle$ es el autoespacio asociado a 5.
 - (b) Existe una transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\langle (1,2,3) \rangle$ es el autoespacio asociado a 0 y $\langle (3,1,1) \rangle$ es el autoespacio asociado a 5.
 - (c) Si A es una matriz diagonalizable y nilpotente, entonces A=0.
 - (d) Si A posee autovalores repetidos, entonces A no es diagonalizable.
- (6) Sea $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \in \mathbb{R}^{2 \times 2}$.
 - (a) Hallar una matriz invertible P tal que $P^{-1}AP$ sea diagonal.
 - (b) Probar que dadas $B \in \mathbb{K}^{n \times n}$ y $Q \in \mathbb{K}^{n \times n}$ invertible se cumple que $(QBQ^{-1})^k = QB^kQ^{-1}$ para todo $k \in \mathbb{N}$. Utilizar esto para calcular A^n .
 - (c) Probar por inducción que $\begin{bmatrix} F_{n+1} \\ F_n \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^{n-1} \begin{bmatrix} F_2 \\ F_1 \end{bmatrix}$, donde F_n es el n-ésimo término de la sucesión de Fibonacci (es decir, $F_1 = 1$, $F_2 = 1$ y $F_n = F_{n-1} + F_{n-2}$ para $n \ge 3$).
 - (d) Hallar la fórmula general para el término n-ésimo de la sucesión de Fibonacci, F_n , para todo $n \in \mathbb{N}$.

Ejercicios de repaso. Los ejercicios que siguen son similares y le pueden servir para practicar antes de los exámenes.

- (7) Para cada una de las siguientes transformaciones lineales, hallar sus autovalores, y para cada uno de ellos, dar una base de autovectores del espacio propio asociado. Decidir si la transformación considerada es o no diagonalizable.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (y,0).
 - (b) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x + 2z, -x y + z, x + 2y + z).
 - (c) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (4x + y + 5z, 4x y + 3z, -12x + y 11z).
 - (d) $T: \mathbb{R}^4 \to \mathbb{R}^4$, T(x, y, z, w) = (2x y, x + 4y, z + 3w, z w).
- (8) Probar que toda¹ matriz simétrica real 2×2 es diagonalizable sobre \mathbb{R} .
- (9) (a) Probar que si A es diagonalizable, entonces p(A) también es diagonalizable para cualquier polinomio $p(x) = \sum_{i=0}^{n} a_i x^i$ (donde p(A) se define como en ejercicio 4 Práctico 5).
 - (b) Probar que si A es diagonalizable entonces A^t es diagonalizable.
 - (c) Probar que si A es diagonalizable e invertible entonces A^{-1} es diagonalizable.
- (10) ⓐ Utilizando diagonalización, hallar el término general de la sucesión definida por recurrencia como sigue:

$$u_1 = 3$$
, $u_2 = 5$, $u_n = 3u_{n-1} - 2u_{n-2}$, $n \in \mathbb{N}$, $n \ge 3$.

Ayudas. (4a) Basta ver que son LI (¿por qué?). Plantear $c_0v + c_1T(v) + \cdots + c_{n-1}T^{n-1}(v) = 0$ y aplicar T algunas (¿cuántas?) veces para lograr que $c_0 = 0$. Repetir el proceso para obtener $c_1 = 0$ y así siguiendo. Para fijar ideas pueden intentar primero el caso n = 3.

(10) Encontrar una matriz A conveniente para plantear una recurrencia similar a la del Ejercicio (6c), pruebe esta recurrencia por inducción y luego calcular A^n diagonalizandola. Combinar todo para dar el término general u_n .

¹Este hecho vale para $n \times n$ pero hacen falta más herramientas para poder probarlo