Date: Mar 13 Made by Eric

Problem A. Suppose that ϕ and τ are equivalent representations of the same group G

Show

- (a) If ϕ is faithful, then so is τ .
- **(b)** If ϕ is irreducible, then so is τ .
- (c) If ϕ is of degree 1, then $\phi = \tau$. (They are exactly the SAME, not just being equivalent)

Definition 1. V is the FG-module defined by $\forall v \in V, g(v) = \phi(g)v$

Definition 2. V' is the FG-module defined by $\forall v' \in V', g(v') = \tau(g)v'$

Definition 3. n = dim(V) = dim(V') (V and V' have the same dimension since ϕ and τ are equivalent, so this is well defined)

Definition 4. E is the standard ordered basis of V

Definition 5. T is the matrix such $\forall g \in G, T\phi(g)T^{-1} = \tau(g)$

Definition 6. $A_g = \tau(g)$ and $\phi(g) = T^{-1}A_gT$

Definition 7. Let $B \in M(n, F)$. $(B)_i$ is the *i*-th column vector of B

(a)

Proof. We know $\phi(g) = I \iff g = e$

$$\begin{array}{lll} \tau(g) = I & \Longleftrightarrow & T\phi(g)T^{-1} = \tau(g) = I & \Longleftrightarrow & T\phi(g) = T & \Longleftrightarrow & \phi(g) = T^{-1}T = I & \Longleftrightarrow & g = e \end{array}$$

(b)

Proof. Assume V' have a submodule W' of dimension k

Let W' have a basis $\alpha'=\{w_1',w_2',\ldots,w_k'\}$ and extend it to a basis $\beta'=\{w_1',\ldots,w_n'\}$ of V'

So
$$\forall g \in G, \forall 1 \leq i \leq k, A_g w_i' = \tau(g) w_i' = g(w_i') \in W' \implies \forall g \in G, \forall 1 \leq i \leq k, A_g w_i' = \sum_{i=1}^k c_i w_i', \exists \{c_i \in F | i \leq 1 \leq k\}$$

Let $M', M \in GL(n, F)$ respectively be defined by $\forall 1 \leq i \leq k, M'_i = w'_i$ and $M = T^{-1}M'$

M' is an invertible matrix since the set of all column vectors $\{M'_1, M'_2, \ldots, M'_n\}$ of M' is a basis of V'. This give us $M = T^{-1}M'$ is invertible, thus the set of all column vectors $\{M_1, M_2, \ldots, M_k\}$ of M, which we now denote as $\{M_1, M_2, \ldots, M_k\} = \beta = \{w_1, w_2, \ldots, w_n\}$, is a basis of V

We now prove $span(w_1, w_2, \dots w_k)$ is a submodule of V, which CaC

$$\begin{array}{ll} M = T^{-1}M' \implies TM = M' \implies \forall 1 \leq i \leq n, TM_i = M_i' \implies \forall 1 \leq i \leq n, Tw_i = w_i' \implies \forall 1 \leq i \leq n, w_i = T^{-1}w_i' \end{array}$$

$$\forall 1 \leq i \leq k, g(w_i) = \phi(g)w_i = T^{-1}A_gTw_i = T^{-1}A_gw_i' = T^{-1}\sum_{i=1}^k c_iw_i' = \sum_{i=1}^k c_iT^{-1}w_i' = \sum_{i=1}^k c_iw_i \in span(w_1, w_2, \dots, w_k), \exists \{c_i \in F | 1 \leq i \leq k\}$$

So
$$\forall w \in span(w_1, w_2, \dots, w_k), g(w) = \sum_{i=1}^k d_i g(w_i) \in span(w_1, w_2, \dots, w_k), \exists \{d_i \in F | 1 \le i \le k\} \text{ (done)}$$

(c)

Proof.
$$\forall g \in G, \phi(g) \in GL(1, F)$$

Notice a one-dimensional matrix satisfy commutative law by triviality.

So
$$\forall g \in G, \tau(g) = T\phi(g)T^{-1} = \phi(g)TT^{-1} = \phi(g)$$

Problem B. Let V be a H-module, and $\theta:G\to H$ be a homomorphism. Show V is also a G-module by the following action

$$g(v) := \theta(g)(v)$$

Proof.
$$\forall g, l \in G, \forall v \in V, g(l(v)) = g(\theta(l)(v)) = \theta(g)(\theta(l)(v)) = (\theta(g)\theta(l))(v) = (\theta(g)\theta(l))(v) = (g(g)\theta(l))(v) = (g(g)\theta(l)$$

Let e' be the identity element of H, $\forall v \in V$, $e(v) = \theta(e)v = e'v = v$

V is at least a G-set

$$\forall g \in G, \forall v, w \in V, g(v+w) = \theta(g)(v+w) = \theta(g)(v) + \theta(g)(w) = g(v) + g(w)$$

$$\forall g \in G, \forall v \in V, \forall c \in F, cg(v) = c\theta(g)(v) = \theta(g)(cv) = g(cv)$$

Every g have action that is a linear transformation.

Problem C. Recall the quaternion group $Q_8 = \langle a, b | a^4 = b^4 = 1, a^2 = b^2, ba = a^{-1}b \rangle$. Define the map $\psi: Q_8 \to GL_4(\mathbb{C})$ by

$$\psi(a) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \psi(b) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- (1) Show that ψ give a representation of Q_8
- (2) Show that ψ is faithful

(1)

$$\textit{Proof. } \psi(a)^4 = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}^4 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 I_4

$$\psi(b)^4 = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}^4 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}^2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = I_4$$

$$\psi(a)^2 = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} = \psi(b)^2$$

$$\psi(b)\psi(a) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix}$$

$$\psi(a)^{-1} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}$$

$$\psi(a)^{-1}\psi(b) = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} = \psi(b)\psi(a)$$

(2)

Proof. Let
$$S = \{e, a, b, ab, a^3, b^3, ab^3, a^2\} \subseteq Q_8$$

We show $\psi[S]$ is a set of 8 distinct matrices, so $\psi:Q_8\to\psi[Q_8]$ must be onto, then by the fact that $|Q_8|=8<\infty$, ψ is faithful.

$$\psi(e) = I_4$$

$$\psi(a) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

$$\begin{split} \psi(b) &= \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \\ \psi(ab) &= \psi(a)\psi(b) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix} \\ \psi(a^3) &= \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}^3 = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix} \\ \psi(b^3) &= \psi(b)^3 &= \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}^3 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} \\ \psi(ab^3) &= \psi(a)\psi(b)^3 \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \\ \psi(a^2) &= \psi(a)^2 &= \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \end{split}$$

They are obviously all distinct to each other