Contingency Tables Exact Tests

Demetris Athienitis

Exact inference

- The previous tests all assumed the sample size was large and that expected cell counts were big enough
- Need an approach that works for all sample sizes, Fisher's exact test provides us with one such option
- We will restrict attention to 2 x 2 tables, but it has been extended to bigger tables

Fisher's exact test

 $H_0: X, Y \text{ independent } \Leftrightarrow \theta = 1 \text{ (odds ratio } =1)$

- If we assume that the row totals and column totals are fixed, then n_{ij} follows a hypergeometric distribution
- In other words, the exact null distribution of $\{n_{ij}|n_{1+},n_{2+},n_{+1},n_{+2}\}$ is the *hypergeometric distribution*
- ullet Once we know n_{ij} then we know all other cell counts, since we know the margin totals

Fisher's exact test

The conditional distribution of n_{11} is as follows

$$p(n_{11}) = \frac{\binom{n_{1+}}{n_{11}} \binom{n_{2+}}{n_{+1} - n_{11}}}{\binom{n}{n_{+1}}}$$

where $n_{11} \in \{\max(0, n_{+1} + n_{1+} - n), \dots, \min(n_{+1}, n_{1+})\}$

- Since the margin totals are fixed, this expresses the probability for all 4 cells in the table
- ullet The p-value is the sum of all hypergeometric probabilities corresponding to values of n_{11} that are as least as favorable to H_1

Fisher's exact test

Example

A lady claims to be able to tell whether milk or tea is poured first and she is told that 4 of the 8 glasses have milk poured first

		Guess		
		Milk	Tea	
Poured	Milk	3	1	4
	Tea	1	3	4
		4	4	8

- $H_1: \theta > 1$, she is able to do better than random guessing
- In this case, n_{11} could have taken values $\{0, 1, 2, 3, 4\}$

Example (continued)

- p-value is p(3) + p(4) = 0.229 + 0.014 = 0.243
- $H_0: \theta=1$, or that her guess is independent of the actual order and to test $H_1: \theta \neq 1$ we would have used

$$p(0) + p(1) + p(3) + p(4) = 0.486$$

Remarks

In R you can use fisher.test

Remark

- The test can be conservative in many cases especially when sample size is small, total probability of 1 can only be split over a small number of scenarios and singularities will hold a lot of probability
- Confidence interval covers the true parameter more often than the chosen level

We learned

Can use Fisher's exact test that does not require aymptotic normality.

Being exact it can be used for small AND large sample sizes.