Algorithmen und Wahrscheinlichkeit

Woche 7

Varianz

Sei X ein Zufallsvariable mit $\mu = \mathbb{E}[X]$

Varianz:
$$Var[X] := \mathbb{E}[(X - \mu)^2] = \sum_{x \in W_X} (x - \mu)^2 \cdot \Pr[X = x]$$

Standardabweichung von X: $\sigma = \sqrt{\text{Var}[X]}$

Varianz mit Erwartungswert: $Var[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$

Rechenregeln:

1)
$$\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

2)
$$\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$$

3)
$$Var[X + Y] = Var[X] + Var[Y]$$

4)
$$Var[X \cdot Y] \neq Var[X] \cdot Var[Y]$$

5)
$$Var[a \cdot X + b] = a^2 \cdot Var[X]$$

$$\forall X, Y$$

 $\forall X, Y$ unabhängig

 $\forall X, Y$ unabhängig

(in meisten Fällen)

$$\forall a, b \in \mathbb{R}$$

Abschätzen von Wahrscheinlichkeiten

Markovs Ungleichung:

$$\Pr[X \ge t] \le \frac{\mathbb{E}[X]}{t}$$

$$\forall X \geq 0$$

$$\forall t > 0, t \in \mathbb{R}$$

Chebyshevs Ungleichung:

$$\Pr[|X - \mathbb{E}[X]| \ge t] \le \frac{\text{Var}[X]}{t^2}$$

$$\forall X$$

$$\forall t > 0, t \in \mathbb{R}$$

Chernoffs Ungleichung:

1.
$$\Pr[X \ge (1 + \delta)\mathbb{E}[X]] \le e^{-\frac{1}{3}\delta^2\mathbb{E}[X]}$$

$$\forall X \sim \text{Bin}(n, p)$$

2.
$$\Pr[X \le (1 - \delta) \mathbb{E}[X]] \le e^{-\frac{1}{2}\delta^2 \mathbb{E}[X]}$$

$$\forall 0 < \delta \le 1$$

3.
$$\Pr[X \ge t] \le 2^{-t}$$

$$\forall t \geq 2e\mathbb{E}[X]$$

Randomisierte Algorithmen

Randomisierter Algorithmus : Eingabe $I \to Algorithmus A$ mit Zufallszahlen $R \to Ausgabe A(I,R)$

- deterministisch: selbe Eingabe, selber Output
- nicht-deterministisch: selbe Eingabe, nicht unbedingt selber Output

Monte Carlo Algorithmus: Primzahltest, Target-shooting

→ Korrektheit ist die Zufallsvariable

Las Vegas Algorithmus: Quicksort, Duplikate finden

- → Laufzeit ist die Zufallsvariable
- \rightarrow Geometrisch verteilt mit $p = \Pr[A(I) \neq "???"]$

- immer gleiche Laufzeit
- manchmal falsches Ergebnis
- immer korrekte Antwort
- manchmal dauert zu lange / gibt nach einer bestimmter Zeit "???" aus

Fehlerreduktion

Las-Vegas:

Sei A ein Las-Vegas-Algorithmus mit $\Pr[A(I) \text{ ist korrekt}] \geq \epsilon$

Sei A_{δ} für $\delta > 0$ ein Algorithmus, der entweder die erste Ausgabe verschieden von ??? ausgibt oder der nach $N = \lceil e^{-1} \cdot \ln(\delta^{-1}) \rceil$ Versuchen ??? ausgibt

dann gilt $\Pr[A_{\delta}(I) \text{ ist falsch}] \leq \delta$

ϵ	δ	N
0.1	0.01	47
0.5	0.01	10
0.5	10 ⁻⁸⁰	369
0.9	10 ⁻³⁰	77

Fehlerreduktion

Monte-Carlo - Einseitiger Fehler:

$$\Pr[A(I) = \text{Ja}] = 1$$
 für alle Ja-Instanzen $I \Longrightarrow \text{Wenn } A(I) = \text{Ja}$, dann könnte die Ausgabe falsch sein $\Pr[A(I) = \text{Nein}] \ge \epsilon$ für alle Nein-Instanzen $I \Longrightarrow \text{Wenn } A(I) = \text{Nein}$, dann ist die Ausgabe immer korrekt

Sei A_{δ} für $\delta>0$ ein Algorithmus, der entweder Nein ausgibt, sobald das erste Mal Nein vorkommt, oder der nach $N=\lceil \epsilon^{-1} \cdot \ln(\delta^{-1}) \rceil$ Versuchen Ja ausgibt

dann gilt:

$$\Pr[A_{\delta}(I) = \text{Ja}] = 1 \text{ für alle Ja-Instanzen } I$$

$$\Pr[A_{\delta}(I) = \text{Nein}] \geq 1 - \delta \text{ für alle Nein-Instanzen } I$$

Monte-Carlo - Zweiseitiger Fehler:

$$\Pr[A(I) \text{ ist korrekt}] \geq 0.5 + \varepsilon \text{ für alle Instanzen } I \\ A_{\delta} \text{ gibt die meiste Antwort aus nach } N \text{ Wiederholungen} \qquad \Longrightarrow \qquad \Pr[A(I) \text{ ist falsch}] \leq \delta \text{ für alle Instanzen } I$$

Kahoot

Aufgaben