Neural Nets MVPs

Data Science Immersive

Objectives for today

- Identify how each of the most popular types of NNs is used
- Know what parameters to optimise in which functions
- Be aware of the data prep necessary for each type

True across types

While we think of these "models" they are actually "layers". Multiple layer types can be used in one network.

All use <u>Sequential()</u> at the start.

All use <u>.compile()</u> and <u>.fit()</u> at the end.

Neural Networks (Layers) types

Layers	When to use	Parameters	Keras functions	Data prep	Representation
Dense	Classification & Regression	epochs batch_size layers and nodes	<u>Dense</u>	Scale continuous	

Neural Networks (Layers) types

Layers	When to use	Parameters	Keras functions	Data prep	Representation
Dense	Classification & Regression	epochs batch_size layers and nodes	Dense	Scale continuous	
RNNs	Anything for which the sequence of data is important	seq_length output_dim	Embedding SimpleRNN	Tokenizing One-hot target Embeddings	

RNNs

Embeddings

Neural Networks (Layers) types

Layers	When to use	Parameters	Keras functions	Data prep	Representation
Dense	Classification & Regression	epochs batch_size layers and nodes	Dense	Scale continuous	
RNNs	Anything for which the sequence of data is important	seq_length output_dim	Embedding SimpleRNN	Tokenizing One-hot target Embeddings	
LSTM	When items far in the past are relevant	seq_length output_dim	LSTM	Tokenizing One-hot target Embeddings	

LSTM

Embeddings

Neural Networks (Layers) types

Layers	When to use	Parameters	Keras functions	Data prep	Representation
Dense	Classification & Regression	epochs batch_size layers and nodes	Dense	Scale continuous	
RNNs	Anything for which the sequence of data is important	seq_length output_dim	Embedding SimpleRNN	Tokenizing One-hot target Embeddings	

LSTM

CNNs

Image recognition

output dim

kernel_size strides pool size

Conv2D <u>Flatten</u>

MaxPooling2D

Image to tensor of integers Uniform aspect ratio

CNNs

Convolutional layer

Convolutional layer

Convolutional layer

Pooling layer

Pooling layer

Flatten layer

Output layer w/ soft(arg)max

Neural Networks (Layers) types

rtodiai itottvoiko (Edyoro) typoo						
Layers	When to use	Parameters	Keras functions	Data prep	Representation	
Dense	Classification & Regression	epochs batch_size layers and nodes	<u>Dense</u>	Scale continuous		
RNNs	Anything for which the sequence of data is important	seq_length output_dim	Embedding SimpleRNN	Tokenizing One-hot target Embeddings		
LSTM	When items far in the past are relevant	seq_length output_dim	LSTM	Tokenizing One-hot target Embeddings		
CNNs	Image recognition	kernel_size strides pool_size	Conv2D MaxPooling2D Flatten	Image to tensor of integers Uniform aspect		

ratio

From Keras creator

"Not all problems can be solved; just because you've assembled examples of inputs X and targets Y doesn't mean X contains enough information to predict Y"