

Université Moulay ISMAÏL Faculté des Sciences et Techniques d'Errachidia Département de Mathématiques

Exercices corrigés d'Analyse Mathématiques Filière BCG (M222)

Pr. Samir KHALLOUQ

Année universitaire 2019-2020

Université Moulay ISMAÏL Faculté des Sciences et Techniques d'Errachidia Département de Mathématiques

Exercices corrigés d'Analyse Mathématiques Filière BCG (M222)

Pr. Samir KHALLOUQ

Année universitaire 2019-2020

Table des matières

Série 1 : Suites numériques	1
Série 2 : Fonctions d'une variable réelle	10
Série 3 : Étude des fonctions usuelles et développements limités	16
Série 4 : Calcul d'intégrales et équations différentielles linéaires	23

Année Universitaire 2018-2020 BCG S2, Module: M222

Série 1: Suites Numériques

Exercice 1 Soit $(u_n)_{n\in\mathbb{N}}$ une suite de \mathbb{R} . Indiquer si chacune des assertions suivantes est vraie ou fausse:

- 1. Si $(u_n)_n$ converge vers un réel ℓ alors $(u_{2n})_n$ et $(u_{2n+1})_n$ convergent vers ℓ .
- 2. Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, il en est de même de $(u_n)_n$.
- 3. Si $(u_{2n})_n$ et $(u_{2n+1})_n$ sont convergentes, de même limite ℓ , il en est de même de $(u_n)_n$.

Correction 1

- 1. Vraie. Toute sous-suite d'une suite convergente est convergente et admet la même limite (c'est un résultat du cours).
- 2. Fausse. Un contre-exemple est la suite $(u_n)_n$ définie par $u_n = (-1)^n$. Alors $(u_{2n})_n$ est la suite constante (donc convergente) de valeur 1, et $(u_{2n+1})_n$ est constante de valeur -1. Cependant la suite $(u_n)_n$ n'est pas convergente.
- 3. Vraie. La convergence de la suite $(u_n)_n$ vers ℓ , que nous souhaitons démontrer, s'écrit :

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ tel \ que \ (n \ge N \Rightarrow |u_n - \ell| < \epsilon).$$

Fixons $\epsilon > 0$. Comme, par hypothèse, la suite $(u_{2p})_p$ converge vers ℓ alors il existe N_1 tel

$$2p \ge N_1 \Rightarrow |u_{2p} - \ell| < \epsilon.$$

Et de même, pour la suite $(u_{2p+1})_p$ il existe N_2 tel que

$$2p + 1 \ge N_2 \Rightarrow |u_{2p+1} - \ell| < \epsilon.$$

Soit $N = \max(N_1, N_2)$, alors

$$n > N \Rightarrow |u_n - \ell| < \epsilon$$
.

Ce qui prouve la convergence de $(u_n)_n$ vers ℓ .

Exercice 2

a)
$$u_n = \frac{n + (-1)^n}{2n - (-1)^n}$$

b)
$$v_n = \frac{n \sin(n)}{n^2 + 1};$$

c)
$$w_n = \sqrt{n^2 + n} -$$

d)
$$s_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$$

e)
$$t_n = \sqrt[n]{n^2}$$

b)
$$v_n = \frac{n \sin(n)}{n^2 + 1}$$
;
d) $s_n = \frac{3^n - (-2)^n}{3^n + (-2)^n}$;
f) $x_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$;

2. Déterminer par comparaison, la limite des suites (S_n) suivantes :

a)
$$S_n = \sqrt[n]{2 + (-1)^n}$$
; b) $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$;

c)
$$S_n = \sum_{k=n+1}^{2n} \frac{1}{k^2}$$
; d) $S_n = \sum_{k=1}^{n} \frac{n}{n^2 + k}$.

3. a) Établir l'égalité (par récurrence):

$$1 + 2^2 + 3^2 + \ldots + n^2 = \frac{1}{6}n(n+1)(2n+1) \quad \forall n \in \mathbb{N}^*;$$

b) En déduire la limite de la suite définie sur N* − {1} par:

$$u_n = \frac{1 + 2^2 + 3^2 + \ldots + n^2}{(1 - n)^3}.$$

Correction 2

1. On détermine la limite, si celle-ci existe, des suites (u_n) suivantes:

a
$$u_n = \frac{n - (-1)^n}{2n - (-1)^n} = \frac{1 - \frac{(-1)^n}{n}}{2 + \frac{(-1)^n}{n}} \longrightarrow \frac{1}{2}$$

$$2n-(-1)^n \qquad 2+\frac{(-1)^n}{n}$$

$$n\sin(n) \qquad 0 \qquad 1$$

$$-1 \le sin(n) \le 1$$
 d'où

$$v_n = \frac{n sin(n)}{n^2+1}; \quad On \ a \qquad -1 \leq sin(n) \leq 1 \qquad d'où \qquad \qquad \frac{-n}{n^2+1} \leq \frac{n sin(n)}{n^2+1} \leq \frac{n}{n^2+1}$$

$$ainsi \qquad v_n \longrightarrow 0$$

$$v_n \longrightarrow 0$$

$$\mathbf{c} \qquad w_n = \sqrt{n^2 + n} - n$$

$$\lim w_n = \lim \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n} = \lim \frac{n}{n(\sqrt{1 + \frac{1}{n}} + 1)}$$

$$r \in sulte$$

$$\lim w_n = \frac{1}{2}$$

$$\mathbf{d} \qquad s_n = \frac{3^n - (-2)^n}{3^n + (-2)^n} = \frac{1 - \frac{(-2)^n}{3^n}}{1 + \frac{(-2)^n}{2^n}} \longrightarrow 1$$

 \mathbf{f}

$$t_n = \sqrt[n]{n^2} = e^{\frac{2}{n}ln(n)} \longrightarrow 1 \quad car \quad \frac{ln(n)}{n} \longrightarrow 0$$

$$(Remarque \quad a^b = e^{b.ln(a)})$$

$$(Remarque a^b = e^{b.ln(a)})$$

$$x_n = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n}$$

$$\lim x_n = \lim \frac{1}{2} \left(1 + \frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^{n-1}} \right) = \frac{1}{2} \lim \frac{1 - \left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}}$$

$$\lim x_n = 1$$

2. Déterminer par comparaison, la limite des suites (s_n) suivantes :

a
$$s_n = \sqrt[n]{2 + (-1)^n}$$

$$s_n = \sqrt[n]{2 + (-1)^n}$$
 on a $1 \le s_n \le \sqrt[n]{3} = e^{\frac{\ln(3)}{n}} \longrightarrow 1$

d'où

$$s_n \longrightarrow 1$$

b
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

on a $S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} \ge \sum_{k=1}^n \frac{1}{\sqrt{n}} = \frac{n}{\sqrt{n}} = \sqrt{n} \longrightarrow +\infty$

$$\mathbf{c} \ S_n = \sum_{k=n+1}^{2n} \frac{1}{k^2}$$

$$0 \le S_n \le \sum_{k=n+1}^{2n} \frac{1}{(n+1)^2} = \frac{n}{(n+1)^2} \longrightarrow 0$$

d
$$S_n = \sum_{k=1}^n \frac{n}{n^2 + k}$$

 $\sum_{k=1}^n \frac{n}{n^2 + n} \le S_n \le \sum_{k=1}^n \frac{n}{n^2 + 1} \Rightarrow \frac{n}{n+1} \le S_n \le \frac{n^2}{n^2 + 1}$

Finalement

$$S_n \longrightarrow 1$$

3. a Établir l'égalité (par récurrence)

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{1}{6}n(n+1)(2n+1)$$

* l'égalité est vrai pour n=1 en effet

$$1^2 = \frac{1}{6}1.(1+1)(2.1+1)$$

** On suppose que la relation est vraie pour n-1 c'est-à-dire on a

$$1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} = \frac{1}{6}(n-1)(n-1+1)(2(n-1)+1)$$

d'où

$$1^{2} + 2^{2} + 3^{2} + \dots + (n-1)^{2} + n^{2} = \frac{1}{6}n(n-1)(2(n-1)+1) + n^{2}$$

$$= \frac{n}{6}[(n-1)(2n-1)+6n]$$

$$= \frac{n}{6}[2n^{2} - n - 2n + 1 + 6n]$$

$$= \frac{n}{6}[2n^{2} + 3n + 1]$$

$$= \frac{n}{6}(n+1)(2n+1)$$

d'où le résultat

b En déduire la limite de la suite définie sur $\mathbb{N}^* - \{1\}$

$$U_n = \frac{\frac{n}{6}(n+1)(2n+1)}{(1-n)^3} \sim \frac{2n^3}{-6n^3} \longrightarrow \frac{-1}{3}$$

Exercice 3

On note

$$S_n = \sum_{p=0}^{n} \frac{2}{(2p+1)(2p+3)}$$

- a) Décomposer $\frac{2}{(2p+1)(2p+3)}$ en éléments simples.
- a) Donner l'expression de S_n en fonction de n.
- a) Déduire la limite de la suite S_n

Correction 3

a) la décomposition en éléments simples de S_n .

Il existent a et b tels que:

$$\frac{2}{(2p+1)(2p+3)} = \frac{a}{2p+1} + \frac{b}{2p+3}$$

donc

$$\frac{2}{(2p+1)(2p+3)} = \frac{a(2p+3) + b(2p+1)}{(2p+1)(2p+3)}$$

d'où

$$\frac{2}{(2p+1)(2p+3)} = \frac{2p(a+b) + 3a + b}{(2p+1)(2p+3)}$$

par identification on obtient:

$$\begin{cases} a+b=0\\ 3a+b=2 \end{cases}$$

Après résolution de ce système il résulte que:

$$\begin{cases} a = 1 \\ b = -1 \end{cases}$$

Ainsi

$$\frac{2}{(2p+1)(2p+3)} = \frac{1}{2p+1} - \frac{1}{2p+3}$$

b) l'expression de S_n en fonction de n.

$$S_n = \sum_{p=0}^n \frac{2}{(2p+1)(2p+3)}$$

$$= \sum_{p=0}^n \frac{1}{2p+1} - \frac{1}{2p+3}$$

$$= (1 - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{5}) + \dots + (\frac{1}{2n-1} - \frac{1}{2n+1}) + (\frac{1}{2n+1} - \frac{1}{2n+3})$$

$$= 1 - \frac{1}{2n+3}$$

$$= \frac{2n+2}{2n+3}$$

c) Déduire la limite de la suite S_n .

$$\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \frac{2n+2}{2n+3} = 1$$

Exercice 4

On considère les deux suites :

$$u_n = 1 + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!} ; n \in \mathbb{N},$$

 $v_n = u_n + \frac{1}{n!} ; n \in \mathbb{N}.$

- 1. Montrer que (u_n) est croissante et (v_n) décroissante.
- 2. Montrer que $(u_n)_n$ et $(v_n)_n$ convergent vers une même limite.

Correction 4

1. La suite (u_n) est strictement croissante, en effet $u_{n+1} - u_n = \frac{1}{(n+1)!} > 0$. La suite (v_n) est strictement décroissante :

$$v_{n+1} - v_n = u_{n+1} - u_n + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{1-n}{(n+1)!}.$$

Donc à partir de $n \geq 2$, la suite (v_n) est strictement décroissante.

2. Comme $u_n \leq v_n \leq v_2$, alors (u_n) est une suite croissante et majorée. Donc elle converge vers $\ell \in \mathbb{R}$. De même $v_n \geq u_n \geq u_0$, donc (v_n) est une suite décroissante et minorée. Donc elle converge vers $\ell' \in \mathbb{R}$. De plus $v_n - u_n = \frac{1}{n!}$. Et donc $(v_n - u_n)$ tend vers 0 ce qui prouve que $\ell = \ell'$.

Exercice 5 Comportement asymptotique des suites géométriques

1. Démontrer l'inégalité de Bernoulli:

pour tout réel x positif et tout entier naturel n, on a: $(1+x)^n \ge 1 + nx$

- 2. Soit (u_n) une suite définie par: $u_n = a^n$ avec $a \in \mathbb{R}$. Démontrer que:
 - i Si $a \in]1; +\infty[$ alors (u_n) est divergente $(vers +\infty)$
 - ii Si a = 1 alors (u_n) est constante (donc convergente vers 1).
 - iii $Si \ a \in]-1;1[\ alors (u_n) \ est \ convergente \ vers \ 0.$
 - iv $Si \ a \in]-\infty;-1]$ alors (u_n) n'a pas de limite.

Correction 5

1. Soit $x \in \mathbb{R}_+$. Par récurrence pour n = 0 on a $(1+x)^0 \ge 1+0x$. Supposons que la proposition est vraie rang n càd (*) $(1+x)^n \ge 1+nx$ et montrons que $(1+x)^{n+1} \ge 1+(n+1)x$. Comme x > 0, on a aussi 1+x > 0. En multipliant l'inégalité (*) par (1+x), on obtient:

$$(1+x)^{n+1} \ge (1+nx)(1+x)$$

or

$$(1+nx)(1+x) = 1 + x + nx + nx^2 = 1 + (n+1)x + nx^2$$

Comme
$$nx^2 \ge 0$$
, on a: $D'où$

$$(1+nx)(1+x) \ge 1 + (n+1)x$$

 $(1+x)^{n+1} \ge 1 + (n+1)x \ D'où \ le \ résultat.$

- 2. Etude du comportement asymptotique des suites géométriques.
 - i Écrivons a=1+b avec b>0. Alors le binôme de Newton s'écrit $a^n=(1+b)^n=1+nb+\binom{n}{2}b^2+\cdots+\binom{n}{k}b^k+\cdots+b^n$. Tous les termes sont positifs, donc pour tout entier naturel n on $a:a^n\geq 1+nb$. Or $\lim_{n\to+\infty}(1+nb)=+\infty$ car b>0. On en déduit que $\lim_{n\to+\infty}a^n=+\infty$.
 - ii est évident.
 - iii Si a=0, le résultat est clair. Sinon, on pose $b=\lfloor\frac{1}{a}\rfloor$. Alors b>1 et d'après le point précédent $\lim_{n\to+\infty}b^n=+\infty$. Comme pour tout entier naturel n on $a:|a|^n=\frac{1}{b^n}$, on en déduit que $\lim_{n\to+\infty}|a|^n=0$, et donc aussi $\lim_{n\to+\infty}a^n=0$.
 - iv Supposons par l'absurde que la suite $(u_n)_{n\in\mathbb{N}}$ converge vers le réel ℓ . De $a^2\geq 1$, on déduit que pour tout entier naturel n, on a $a^{2n}\geq 1$. En passant à la limite, il vient $\ell\geq 1$. Comme de plus pour tout entier naturel n on a $a^{2n+1}\leq a\leq -1$, il vient en passant de nouveau à la limite $\ell\leq -1$. Mais comme on a déjà $\ell\geq 1$, on obtient une contradiction, et donc (u_n) ne converge pas.

Exercice 6

On définit la suite $(u_n)_{n\geq 0}$ par $u_0=\frac{1}{2}$ et par la relation

$$u_{n+1} = \frac{1}{2}(u_n + \frac{1}{u_n})$$

.

- 1. Montrer que si $n \ge 1$ alors $u_n \ge 1$ puis que $(u_n)_{n\ge 1}$ est décroissante.
- 2. Calculer la limite de la suite (u_n) quand n tend $vers +\infty$.

Correction 6

1. Montrons que si $n \ge 1$ alors $u_n \ge 1$ puis que $(u_n)_{n \ge 1}$ est décroissante.

On a

$$u_{n+1} = \frac{1}{2}(u_n + \frac{1}{u_n}).$$

donc $u_1 = \frac{1}{2}(u_0 + \frac{1}{u_0}) = \frac{1}{2}(\frac{1}{2} + 2) = \frac{5}{4} \ge 1$ Supposons que $u_n \ge 1$

$$u_{n+1} - 1 = \frac{1}{2}(u_n + \frac{1}{u_n}) - 1$$

$$= \frac{u_n^2 + 1 - 2u_n}{2u_n}$$

$$= \frac{u_n^2 - 2u_n + 1}{2u_n}$$

$$= \frac{(u_n - 1)^2}{2u_n}$$

$$\geq 0$$

donc $u_{n+1} \ge 1$ ce qui montre par récurrence que pour tout $n \ge 1$ on a $u_n \ge 1$. Maintenant montrons que $(u_n)_{n\ge 1}$ est décroissante.

$$u_{n+1} - u_n = \frac{1}{2}(u_n + \frac{1}{u_n}) - u_n$$

$$= \frac{u_n^2 + 1 - 2u_n^2}{2u_n}$$

$$= \frac{1 - u_n^2}{2u_n}$$

$$= \frac{(u_n + 1)(1 - u_n)}{2u_n}$$
< 0

ce qui montre que $(u_n)_{n\geq 1}$ est décroissante.

2. On a $(u_n)_{n\geq 1}$ est décroissante et minorée donc elle converge vers une limite $l\in \mathbf{R}^*$ de plus on a

$$u_{n+1} = \frac{1}{2}(u_n + \frac{1}{u_n}).$$

Alors

$$\lim_{n\to +\infty}u_{n+1}=\lim_{n\to +\infty}\frac{1}{2}(u_n+\frac{1}{u_n}).$$
 Test-à-dire

c'est-à-dire

$$l = \frac{1}{2}(l + \frac{1}{l}).$$

 \Rightarrow

$$l^2 = 1$$

 \Rightarrow

$$l = +1 \ ou \ -1$$

et comme $u_n \ge 1$, Alors

$$l = +1$$

Exercice 7 Étude d'une suite récurrente

Soit f la fonction définie sur $[-1, +\infty[$ par: $f(x) = \sqrt{\frac{1+x}{2}}$

- 1. Étudier la monotonie de f.
- 2. Soit (u_n) la suite définie par:

$$\begin{cases} u_0 = \frac{1}{2} \\ u_{n+1} = f(u_n) \end{cases}$$

- **a.** Démontrer que, pour tout $n \in \mathbb{N}$, on a: $0 < u_n < u_{n+1} < 1$
- **b.** En déduit que la suite (u_n) converge.
- **c.** Démontrer que, pour tout $n \in \mathbb{N}$, on a:

$$|u_{n+1} - 1| \le \frac{1}{2}|u_n - 1|$$

d. En déduit que, pour tout $n \in \mathbb{N}$, on a:

$$|u_n - 1| \le (\frac{1}{2})^n |u_0 - 1|$$

En déduit la limite de la suite (u_n) .

Correction 7

1. Soient x et y de $[-1,+\infty[$ tels que x < y \Longrightarrow $\frac{1+x}{2}$ < $\frac{1+y}{2}$ \Longrightarrow $\sqrt{\frac{1+x}{2}}$ < $\sqrt{\frac{1+y}{2}}$ d'où f est $strictement\ croissante$

Deuxième méthode f est composée de deux fonctions $x \mapsto \sqrt{x}$ et $x \mapsto \frac{1+x}{2}$ qui sont strictement croissantes d'où f est strictement croissante

- 2. **a.** Démontrons P(n):pour tout $n \in \mathbb{N}$, on a: $0 < u_n < u_{n+1} < 1$
 - D'abord pour P(0): on a: $0 < u_0 < u_{0+1} < 1$ en effet

$$\begin{cases} u_0 = \frac{1}{2} \\ u_{0+1} = u_1 = \sqrt{\frac{1+u_0}{2}} = \frac{\sqrt{3}}{2} \end{cases}$$

$$0 < \sqrt{\frac{1}{2}} < \frac{\sqrt{3}}{2} < 1$$

• Maintenant supposons que $\mathbf{P}(n)$ est vraie et on montre que $\mathbf{P}(n+1)$ est vraie

Alors on a:
$$0 < u_n < u_{n+1} < 1$$
 et puisque f est strictement croissante donc $\sqrt{\frac{1}{2}} < f(u_n) < f(u_{n+1}) < 1$ c'est-à-dire $0 < u_{n+1} < u_{n+2} < 1$ ce qui montre que $\mathbf{P}(n+1)$ est vraie

b. En déduit que la suite (u_n) converge.

On a $0 < u_n < u_{n+1} < 1$ d'où (u_n) est croissante et majorée donc elle est convergente.

c. Démontrons que, pour tout $n \in \mathbb{N}$, on a:

$$|u_{n+1} - 1| \le \frac{1}{2}|u_n - 1|$$

$$u_{n+1} - 1 = \sqrt{\frac{1 + u_n}{2}} - 1$$

$$= \frac{\frac{1 + u_n}{2} - 1}{\sqrt{\frac{1 + u_n}{2}} + 1}$$

$$= \frac{\frac{u_n - 1}{2}}{\sqrt{\frac{1 + u_n}{2}} + 1}$$

$$= \frac{1}{2} \frac{u_n - 1}{\sqrt{\frac{1 + u_n}{2}} + 1}$$

Or $\sqrt{\frac{1+u_n}{2}} \ge 0$, d'où $\sqrt{\frac{1+u_n}{2}}+1 \ge 1$ on passe à l'inverse : $\frac{1}{\sqrt{\frac{1+u_n}{2}}+1} \le 1$ On obtient :

$$|u_{n+1} - 1| \le \frac{1}{2}|u_n - 1|$$

d. • En déduit que, pour tout $n \in \mathbb{N}$, on a:

$$|u_n - 1| \le (\frac{1}{2})^n |u_0 - 1|$$

Soit $\mathbf{Q}(n)$ la propriété définie par:

$$|u_n - 1| \le (\frac{1}{2})^n |u_0 - 1|$$

Q(0) est vraie car $u_0 = \frac{1}{2}$ et $|u_0 - 1| \le (\frac{1}{2})^0 |u_0 - 1|$

 $\mathbf{Q}(n+1)$ supposons $\mathbf{Q}(n)$ est vraie donc

$$|u_n - 1| \le (\frac{1}{2})^n |u_0 - 1|$$

et d'après la question c on a

$$|u_{n+1} - 1| \le \frac{1}{2}|u_n - 1|$$

d'où

$$|u_{n+1} - 1| \le \frac{1}{2} (\frac{1}{2})^n |u_0 - 1|$$

c'est-à-dire

$$|u_{n+1} - 1| \le (\frac{1}{2})^{n+1} |u_0 - 1|$$

ainsi $\mathbf{Q}(n+1)$ est vraie. d'après le principe de récurrence on en déduit que pour tout $n \in \mathbb{N}$, on a:

$$|u_n - 1| \le (\frac{1}{2})^n |u_0 - 1|$$

• En déduit la limite de la suite (u_n) . On a

$$\lim_{n \to +\infty} (\frac{1}{2})^n = 0$$

et

$$u_0 = \frac{1}{2}$$

On en déduit d'après ce qui précède que

$$\lim_{n \to +\infty} |u_n - 1| = 0$$

Finalement

$$\lim_{n \to +\infty} u_n = 1$$

Année Universitaire 2018-2020 BCG S2, Module: M222

Série 2: Fonctions d'une Variable Réelle

Exercice 8 Calculer lorsqu'elles existent les limites suivantes:

$$a) \lim_{x \to 0} \frac{x^2 + 2|x|}{x}$$

a)
$$\lim_{x \to 0} \frac{x^2 + 2|x|}{x}$$
 b) $\lim_{x \to -\infty} \frac{x^2 + 2|x|}{x}$ c) $\lim_{x \to 0} xE\left(\frac{1}{x}\right)$

c)
$$\lim_{x \to 0} xE\left(\frac{1}{x}\right)$$

$$d) \lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$$

d)
$$\lim_{x \to \pi} \frac{\sin^2 x}{1 + \cos x}$$
 e) $\lim_{x \to 0} \frac{\sqrt{1 + x} - \sqrt{1 + x^2}}{x}$ f) $\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}}$

$$f$$
) $\lim_{x \to +\infty} \frac{(x^x)^x}{x^{(x^x)}}$

$$g)\lim_{x\to 1}\frac{x-1}{x^n-1}$$

Correction 8

a)

$$\frac{x^2 + 2|x|}{x} = x + 2\frac{|x|}{x}.$$

Si x > 0 cette expression vaut x + 2 donc la limite à droite en x = 0 est +2.

 $Si \ x < 0 \ l'expression \ vaut - 2 \ donc \ la \ limite \ à gauche \ en \ x = 0 \ est - 2$.

Les limites à droite et à quuche sont différentes donc il n'y a pas de limite en x=0.

$$b) \ \frac{x^2+2|x|}{x} = x+2\frac{|x|}{x} = x-2 \ pour \ x<0. \ Donc \ la \ limite \ quand \ x \rightarrow -\infty \ est \ -\infty.$$

c) Pour tout réel y nous avons la double inégalité $y-1 < E(y) \le y$. Donc pour $y>0, \frac{y-1}{y} < \frac{E(y)}{y} \le 1$. On en déduit que lorsque y tend $vers + \infty$ alors $\frac{E(y)}{y}$ tend 1. On obtient le même résultat quand y tend vers $-\infty$. En posant y=1/x, et en faisant tendre x vers 0, alors $xE\left(\frac{1}{x}\right)=\frac{E(y)}{y}$ tend vers 1.

d)
$$\frac{\sin^2 x}{1 + \cos x} = \frac{1 - \cos^2 x}{1 + \cos x} = \frac{(1 - \cos x)(1 + \cos x)}{1 + \cos x} = 1 - \cos x$$

. Lorsque $x \to \pi$ la limite est donc 2.

e)
$$\frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} = \frac{\sqrt{1+x} - \sqrt{1+x^2}}{x} \times \frac{\sqrt{1+x} + \sqrt{1+x^2}}{\sqrt{1+x} + \sqrt{1+x^2}}$$

$$= \frac{1+x - (1+x^2)}{x(\sqrt{1+x} + \sqrt{1+x^2})}$$

$$= \frac{x-x^2}{x(\sqrt{1+x} + \sqrt{1+x^2})}$$

$$= \frac{1-x}{\sqrt{1+x} + \sqrt{1+x^2}}.$$

Lorsque $x \to 0$ la limite vaut $\frac{1}{2}$.

f) Pour
$$x > 0, (x^x)^x = e^{x \ln(x^x)} = e^{x^2 \ln x}$$
 et $x^{(x^x)} = e^{x^x \ln x}$. Par suite,

$$\forall x > 0, \frac{(x^x)^x}{x^{(x^x)}} = \exp(\ln x (x^2 - x^x))$$

Or,
$$x^2 - x^x = -x^x (1 - x^{2-x}) = -e^{x \ln x} (1 - e^{(2-x) \ln x}).$$

Quand x tend vers $+\infty$, $(2-x) \ln x$ tend vers $-\infty$.

Donc, $1 - e^{(2-x) \ln x}$ tend vers 1 puis $x^2 - x^x$ tend vers $-\infty$.

Alors, $\ln x \left(x^2 - x^x\right)$ tend vers $-\infty$, puis $\frac{\left(x^x\right)^x}{x^{(x^x)}} = \exp\left(\ln x \left(x^2 - x^x\right)\right)$ tend vers 0.

g) $\frac{x^n-1}{x-1}=1+x+x^2+\cdots+x^n$. Donc si $x\to 1$ la limite de $\frac{x^n-1}{x-1}$ est n. Donc la limite de $\frac{x-1}{x^n-1}$ en 1 est $\frac{1}{n}$.

Exercice 9 Soit f la fonction déjinie par

$$f(x) = \frac{\ln(|x|)}{x - 1}.$$

- 1. Dönner l'ensemble de définition D_f de f.
- 2. Sur quel erisemble peut on prolonger f par continuite?

Correction 9

- 1. $D_f =]-\infty, 0[\cup]0, 1[\cup]1, +\infty[$
- 2. Les fonctions qui à x associent $\ln |x|$ et $\frac{1}{x-1}$ sant continues respectivement sur \mathbb{R}^* et $\mathbb{R}\setminus\{1\}$. f est alors continues sur $\mathbb{R}\setminus\{0,1\}$ comme produit de fonctions continues.

D'autre part, $\lim_{x\to 0} \ln |x| = -\infty \Rightarrow \lim_{x\to 0} \frac{\ln |x|}{x-1} = +\infty$. Donc f ne peut pas être prolongée par contimité au pait 0.

Calculons $\lim_{x\to 1} f(x)$.

On pose u = x - 1, alors $u \to 0$ quand $x \to 1$.

On a $\lim_{u\to 0} \frac{\ln(1+u)}{u} = 1$. Pars suite, $\lim_{x\to 1} f(x) = 1$. f est donc prolongeable par contimité' sur R^* , son prolongement F est définie par:

$$F(x) = f(x) \quad \forall x \in]-\infty, 0[\cup]0, 1[\cup]1, +\infty[, F(1) = 1.$$

Exercice 10 Donner les ensembles de définition et calculer les dérivées des fonctions suivantes:

a)
$$f(x) = \frac{x^3 + x^2 + x + 1}{x^3 - x^2 - x + 1}$$
;

b)
$$f(x) = (x^2 + 1) \ln (x^3 + x^2 - 2);$$

c)
$$f(x) = \sqrt{e^{-3x+1}}$$
;

$$\mathbf{d)} \ f(x) = \frac{\sin\left(2x + \frac{\pi}{4}\right)}{\cos(3x - \pi)}.$$

Correction 10

a) *Df?*

1 est racine de $x^3 - x^2 - x + 1$ donc

$$\forall x \in \mathbb{R} \quad x^3 - x^2 - x + 1 = (x - 1)(x^2 - 1),$$

= $(x - 1)^2(x + 1)$.

Donc $D_f = \mathbb{R} \setminus \{-1, 1\}.$

Dérivé?

On pose

$$u(x) = x^3 + x^2 + x + 1,$$

 $v(x) = x^3 - x^2 - x + 1.$

$$\begin{split} f'(x) &= \left(\frac{u}{v}\right)'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{v^2}, \\ &= \frac{\left(3x^2 + 2x + 1\right)\left(x^3 - x^2 - x + 1\right) - \left(x^3 + x^2 + x + 1\right)\left(3x^2 - 2x - 1\right)}{\left(x^3 - x^2 - x + 1\right)^2} \\ &= \frac{-2x^4 - 4x^3 + 4x + 2}{\left(x^3 - x^2 - x + 1\right)^2}, \\ &= \frac{-2(x^4 - 1) - 4x(x^2 - 1)}{\left((x - 1)^2(x + 1)\right)^2}, \\ &= \frac{\left(x^2 - 1\right)\left(-2(x^2 + 1) - 4x\right)}{\left(x - 1\right)^4(x + 1)^2}, \\ &= \frac{-2(x^2 + 1) - 4x}{\left(x - 1\right)^3(x + 1)^2}. \end{split}$$

b) *Df?*

$$x \in D_f \Leftrightarrow x^3 + x^2 - 2 > 0$$
?

On a

$$x^{3} + x^{2} - 2 = (x - 1)(x^{2} + 2x + 2),$$

= $(x - 1)[(x + 1)^{2} + 1].$

On a $\forall x \in \mathbb{R} \ (x+1)^2 + 1 > 1$, donc $x^3 + x^2 - 2$ est du signe de x - 1, donc f est définie sur $]1, +\infty[$.

Dérivé?

$$f'(x) = (x^2 + 1)' \ln (x^3 + x^2 - 2) + (x^2 + 1) (\ln (x^3 + x^2 - 2))'$$

$$= 2x \ln (x^3 + x^2 - 2) + (x^2 + 1) (x^3 + x^2 - 2)' \frac{1}{x^3 + x^2 - 2},$$

$$= 2x \ln (x^3 + x^2 - 2) + \frac{(x^2 + 1) (3x^2 + 2x)}{x^3 + x^2 - 2},$$

$$= 2x \ln (x^3 + x^2 - 2) + \frac{3x^4 + 2x^3 + 3x^2 + 2x}{x^3 + x^2 - 2}.$$

c) Df?

On a $x \in D_f \Leftrightarrow e^{-3x+1} \ge 0 \quad \forall x \in \mathbb{R},$ donc $D_f = \mathbb{R}.$ Dérivé?

$$f'(x) = \left(\sqrt{e^{-3x+1}}\right)',$$

$$= \left(\left(e^{-3x+1}\right)^{1/2}\right)',$$

$$= \left(e^{-\frac{3}{2}x+\frac{1}{2}}\right)' = \left(-\frac{3}{2}x+\frac{1}{2}\right)'e^{-\frac{3}{2}x+\frac{1}{2}},$$

$$= -\frac{3}{2}\left(e^{-3x+1}\right)^{\frac{1}{2}} = -\frac{3}{2}\sqrt{e^{-3x+1}}.$$

 \mathbf{d}) Df?

On a

$$x \in D_f \Leftrightarrow \cos(3x - \pi) \neq 0,$$

$$\Leftrightarrow 3x - \pi \neq \frac{\pi}{2} + k\pi, \quad k \in \mathbb{Z},$$

$$\Leftrightarrow 3x \neq \frac{3\pi}{2} + k\pi, \quad k \in \mathbb{Z},$$

$$\Leftrightarrow x \neq \frac{\pi}{2} + k\frac{\pi}{3}, \quad k \in \mathbb{Z}.$$

Donc $D_f = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k \frac{\pi}{3} \middle| k \in \mathbb{Z} \right\}.$

Dérivé?

$$f'(x) = \left(\frac{\sin\left(2x + \frac{\pi}{4}\right)}{\cos(3x - \pi)}\right)',$$

$$= \frac{\left(\sin\left(2x + \frac{\pi}{4}\right)\right)'\cos(3x - \pi) - (\cos(3x - \pi))'\sin(2x + \frac{\pi}{4})}{\cos^2(3x - \pi)},$$

$$= \frac{2\cos\left(2x + \frac{\pi}{4}\right)\cos(3x - \pi) + 3\sin(3x - \pi)\sin\left(2x + \frac{\pi}{4}\right)}{\cos^2(3x - \pi)}.$$

On $a \forall x \in \mathbb{R} \cos(x - \pi) = -\cos x \ et \sin(x - \pi) = -\sin x \ donc$

$$f'(x) = \frac{-2\cos(2x + \frac{\pi}{4})\cos(3x) - 3\sin(2x + \frac{\pi}{4})\sin(3x)}{\cos^2(3x)}$$

Exercice 11 Application du théorème des valeurs intermédiaires

- 1. Montrer çue l'équation $x^6 10x 10$ admet au moins une solution dans l'intervalle [-1, 2].
- 2. Montrer que l'équation $\sqrt[3]{x^5 + x^2 x} + ax 1 = 0$ où $a \in \mathbb{R}^*$ admet au moins une solution dans l'intervalle $[0, +\infty[$.

Correction 11

- Soit f la fonction polynôme définie sur R par f(x) = x⁶ 10x 10.
 f est continue sur [0,2]. En outre, f(0) = -10 et f(2) = 34 donc f(0).f(2) < 0. D'après le théorème des valuurs intermédiaires, il existe c ∈]0,2[⊂ [-1,2]/f(c) = 0.
- 2. La fouction f difinie par $f(x) = \sqrt[3]{x^5 + x^2 x} + ax 1$ est continue sur $[0, +\infty[$. on $a \lim_{\to \infty} f(x) = \lim_{x \to +\infty} x^{\frac{5}{3}} = +\infty$. Donc $\forall A > 0 \quad \exists B > 0 / \quad \forall x \in]0, +\infty[(x > B \Rightarrow f(x) > A > 0)$. On a alors f(B+1) > 0. f étant continue sur [0, B+1] et $f(0) \cdot f(B+1) < 0$ (car f(0) = -1); d'aprés le théorème des valeurs intermédiaidires $\exists x_0 \in]0, B+1$ $[\subset [0, +\infty[/f(x_0) = 0]]$.

Exercice 12 Application du théorème de Rolle

- 1. Calculer la dérivée de $x \mapsto (x^2 + 1) \sin x$.
- 2. Montrer que l'équation $(x^2+1)\cos x + 2x\sin x = 0$ admet au moins une solution dans $[0,\pi]$.
- 3. Soit f 'une fonction de classe C^2 sur]0,1[s'annulant en 3 points de]0,1[. Montrer qu'il existe un point x_0 de]0,1[tel que $f''(x_0)=0$.

Correction 12

- 1. Soit $f(x) = (x^2 + 1)\sin(x) \Rightarrow f'(x) = 2x\sin(x) + (x^2 + 1)\cos(x)$
- 2. On a f est coutinue sur $[0,\pi]$, f est dérivable sur $]0,\pi[$ et $f(\pi)=f(0)=0$, alors d'aprés le théorème de Rolle $\exists e \in]0,\pi[$ telque $f'(e)=0 \Rightarrow f'(x)$ admet une racine sur $]0,\pi[$.
- 3. Soit $a_0 < a_1 < a_2$ dans [0,1[telque $f(a_{i=0,1,2}) = 0$.

D'aprés le théorème de Rolle sur $[a_0, a_1] \Rightarrow \exists e_1 \in]a_0, a_1[$ telque $f'(e_1) = 0$.

D'aprés le théorème de Rolle sur $[a_1, a_2] \Rightarrow \exists e_2 \in]a_1, a_2[$ telque $f'(e_2) = 0$.

On a f est une fonction de classe C^2 sur]0,1[et $f'(e_1)=f'(e_2)=0.$ En appliquant le théorème de Rolle à f' sur $[e_1,e_2]$, on a $\exists e_3 \in]e_1e_2[$ telque $f''(e_3)=0.$

Exercice 13 Application du théorème des accroissements finis pour le calcul des limites

1. A l'aide du théorème des accroissements finis déterminer

$$\lim_{x \to +\infty} \left((x+1)e^{\frac{1}{x+1}} - xe^{\frac{1}{x}} \right).$$

2. Montrer que

$$\forall x > 0, \frac{1}{1+x} < \ln(1+x) - \ln(x) < \frac{1}{x}.$$

En déduire, pour $k \in \mathbb{N} \setminus \{0, 1\}$,

$$\lim_{n \to +\infty} \sum_{p=n+1}^{kn} \frac{1}{p}.$$

Correction 13

1. Par le théorème des accroissements finis appliqué à la fonction $x \to xe^{1/x}$ entre x et x+1: il existe $c_x \in]x, x+1[$ tel que

$$(x+1)e^{1/(x+1)} - xe^{1/x} = \left(\frac{c_x - 1}{c_x}\right)e^{1/c_x}(x+1-x) = \left(\frac{c_x - 1}{c_x}\right)e^{1/x}.$$

Quand $x \to +\infty$, $c_x \to +\infty$ car $c_x \geqslant x$.

 $Par\ suite$

$$\left(\frac{c_x - 1}{c_x}\right) e^{1/c_x} \to 1.$$

 $et\ donc$

$$\lim_{x \to +\infty} \left((x+1)e^{1/(x+1)} - xe^{1/x} \right) = 1.$$

2. On applique le théorème des accroissements finis à la fonction $x\mapsto \ln x$ sur [x,x+1], il existe alors $c\in]x,x+1[$ tel que

$$\ln(1+x) - \ln x = \frac{1}{c}.$$

 $Or \ x < c < x + 1 \ donne$

$$\frac{1}{x+1} < \frac{1}{c} < \frac{1}{x}.$$

d?où le résultat.

On en déduit que

$$\sum_{p=n+1}^{kn} \ln(p+1) - \ln p \leqslant \sum_{p=n+1}^{kn} \frac{1}{p} \leqslant \sum_{p=n+1}^{kn} \ln p - \ln(p-1).$$

Ce qui donne

$$\ln \frac{kn+1}{n+1} \leqslant \sum_{p=n+1}^{\ln n} \frac{1}{p} \leqslant \ln k.$$

Par le théorème des Gendarmes

$$\lim_{n \to \infty} \sum_{p=n+1}^{\text{lin}} \frac{1}{p} = \ln k.$$

Année Universitaire 2018-2020 BCG S2, Module: M222

Série 3: Étude des fonctions usuelles et développements limités

Exercice 14 Calculer:

$$a)\lim_{x\to +\infty}e^{-x}(\operatorname{ch}^3 x-\operatorname{sh}^3 x) \quad et \quad b)\lim_{x\to +\infty}(x-\ln(\operatorname{ch} x)).$$

Correction 14

a)

Par la formule du binôme de Newton nous avons

$$\operatorname{ch}^{3} x = \left(\frac{e^{x} + e^{-x}}{2}\right)^{3},$$

$$= \frac{1}{8}(e^{3x} + 3e^{x} + 3e^{-x} + e^{-3x}).$$

$$\operatorname{sh}^{3} x = \left(\frac{e^{x} - e^{-x}}{2}\right)^{3},$$

$$= \frac{1}{8}(e^{3x} - 3e^{x} + 3e^{-x} - e^{-3x}).$$

Donc

$$e^{-x}(\cosh^3 x - \sinh^3 x) = \frac{1}{8}e^{-x}(6e^x + 2e^{-3x})$$

= $\frac{3}{4} + \frac{1}{4}e^{-4x}$

qui tend vers $\frac{3}{4}$ lorsque x tend vers $+\infty$.

b)

$$x - \ln(\operatorname{ch} x) = x - \ln(\frac{e^x + e^{-x}}{2})$$

$$= x - \ln(e^x + e^{-x}) + \ln 2$$

$$= x - \ln(e^x (1 + e^{-2x})) + \ln 2$$

$$= x - x + \ln(1 + e^{-2x}) + \ln 2$$

$$= \ln(1 + e^{-2x}) + \ln 2$$

Lorsque $x \to +\infty$,

$$\ln(1+e^{-2x}) \to 0$$

donc

$$x - \ln(\operatorname{ch} x) \to \ln 2$$

Exercice 15 Soit $x \in \mathbb{R}$. On pose $t = \arctan(\operatorname{sh} x)$.

1. Établir les relations

a)
$$\tan t = \sinh x$$
; b) $\frac{1}{\cos t} = \cosh x$; c) $\sin t = \tan x$.

2. Montrer que $x = \ln\left(\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)\right)$.

Correction 15

1. a) Remarquons d'abord que, par construction, $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, t est donc dans le domaine de définition de la fonction tan.

En prenant la tangente de l'égalité $t = \arctan(\operatorname{sh} x)$ on obtient directement $\tan t = \tan \left(\arctan(\operatorname{sh} x)\right) = \operatorname{sh} x$.

- **b)** $\frac{1}{\cos^2 t} = 1 + \tan^2 t = 1 + \tan^2 \left(\arctan(\sinh x)\right) = 1 + \sinh^2 x = \cosh^2 x$. Or la fonction ch ne prend que des valeurs positives, et $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ donc $\cos t > 0$. Ainsi $\frac{1}{\cos t} = \cosh x$.
- c) On $a ext{ } \sin t = \tan t \cdot \cos t$ et puisque $\tan t = \sin x$ et $\frac{1}{\cos t} = \cot x$, alors $\sin t = \sin x \cdot \frac{1}{\cot x} = \cot x$.
- 2. Puisque $t \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, on a $0 < \frac{t}{2} + \frac{\pi}{4} < \frac{\pi}{2},$ donc $\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)$ est bien défini et strictement positif. Ainsi $y = \ln\left(\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)\right)$ est bien défini. on a

$$\begin{split} \mathrm{sh}\,y &= \frac{e^y - e^{-y}}{2}, \\ &= \frac{e^{\ln\left(\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)\right)} - e^{-\ln\left(\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)\right)}}{2}, \\ &= \frac{1}{2}\tan\left(\frac{t}{2} + \frac{\pi}{4}\right) - \frac{1}{2}\frac{1}{\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)}, \\ &= \frac{\sin^2\left(\frac{t}{2} + \frac{\pi}{4}\right) - \cos^2\left(\frac{t}{2} + \frac{\pi}{4}\right)}{2\cos\left(\frac{t}{2} + \frac{\pi}{4}\right)\sin\left(\frac{t}{2} + \frac{\pi}{4}\right)}, \\ &= \frac{-\cos\left(t + \frac{\pi}{2}\right)}{\sin\left(t + \frac{\pi}{2}\right)}, \end{split}$$

 $car \sin(2u) = 2\cos u \sin u \ et \cos(2u) = \cos^2 u - \sin^2 u.$

$$sh y = \frac{-\cos\left(t + \frac{\pi}{2}\right)}{\sin\left(t + \frac{\pi}{2}\right)}.$$

Enfin, puisque $\cos\left(t+\frac{\pi}{2}\right)=-\sin t$ et $\sin\left(t+\frac{\pi}{2}\right)=\cos t$, on $a \sin y=\frac{\sin t}{\cos t}=\tan t=\sin x$.

Puisque la fonction sh est bijective de \mathbb{R} dans \mathbb{R} , on en déduit y = x.

Conclusion: $x = y = \ln\left(\tan\left(\frac{t}{2} + \frac{\pi}{4}\right)\right)$.

Exercice 16 Vérifier

a)
$$\arcsin x + \arccos x = \frac{\pi}{2}$$
 et b) $\arctan x + \arctan \frac{1}{x} = sgn(x)\frac{\pi}{2}$.

Correction 16

a)

Première méthode:

Soit f la fonction définie sur [-1,1] par

$$f(x) = \arcsin x + \arccos x.$$

On a f est continue sur l'intervalle [-1,1] et dérivable sur]-1,1[. Pour tout $x \in]-1,1[$, $f'(x)=\frac{1}{\sqrt{1-x^2}}+\frac{-1}{\sqrt{1-x^2}}=0$. Ainsi f est constante sur]-1,1[, donc sur [-1,1](car continue aux extrémités).

Or $f(0) = \arcsin 0 + \arccos 0 = \frac{\pi}{2}$ donc pour tout $x \in [-1, 1]$, $f(x) = \frac{\pi}{2}$.

Deuxième méthode:

On pose

$$y = \arccos x - \frac{\pi}{2}$$

$$y + \frac{\pi}{2} = \arccos x,$$

$$\cos(y + \frac{\pi}{2}) = x,$$

et

$$\cos(y + \frac{\pi}{2}) = -\sin y = \sin(-y) = x,$$

d'où

$$\arcsin x = -y = -\arccos x + \frac{\pi}{2}.$$

b)

Première méthode:

Soit

$$g(x) = \arctan x + \arctan \frac{1}{x}$$
.

Cette fonction est définie sur $]-\infty,0[$ et sur $]0,+\infty[$ (mais pas en 0). On a

$$g'(x) = \frac{1}{1+x^2} + \frac{-1}{x^2} \cdot \frac{1}{1+\frac{1}{x^2}} = 0,$$

donc g est constante sur chacun de ses intervalles de définition: $g(x) = c_1 \text{ sur }] - \infty, 0[$ et $g(x) = c_2 \text{ sur }] 0, +\infty[$. Sachant que $\arctan 1 = \frac{\pi}{4}$, on calcule g(1) et g(-1) on obtient $c_1 = -\frac{\pi}{2}$ et $c_2 = +\frac{\pi}{2}$.

Deuxième méthode:

On remarque que pour tout x > 0, si θ désigne l'arctangente de $x : \theta = \arctan x \Rightarrow \tan \theta = x$ alors

$$\frac{1}{x} = \frac{1}{\tan \theta} = \tan \left(\frac{\pi}{2} - \theta\right) \quad et \quad 0 < \frac{\pi}{2} - \theta < \frac{\pi}{2},$$

d'où

$$\arctan \frac{1}{x} = \frac{\pi}{2} - \theta = \frac{\pi}{2} - \arctan x.$$

Finalement

$$\arctan \frac{1}{x} + \arctan x = \frac{\pi}{2}.$$

Exercice 17 Donner

- 1. Le Développement limité en 1 à l'ordre 3 de $f(x) = \sqrt{x}$.
- 2. Le Développement limité en 1 à l'ordre 3 de $g(x) = e^{\sqrt{x}}$.

Correction 17

1. Première méthode:

On applique la formule de Taylor (autour du point x = 1)

$$f(x) = f(1) + f'(1)(x-1) + \frac{f''(1)}{2!}(x-1)^2 + \frac{f'''(1)}{3!}(x-1)^3 + o((x-1)^3).$$

Comme $f(x) = \sqrt{x} = x^{\frac{1}{2}}$ alors $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$ et donc $f'(1) = \frac{1}{2}$. Ensuite on calcule f''(x) (puis f''(1)), f'''(x) (et enfin f'''(1)).

On trouve le dl de $f(x) = \sqrt{x}$ au voisinage de x = 1

$$\sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 + o((x-1)^3).$$

Deuxième méthode:

Posons h = x - 1 (et donc x = h + 1). On applique la formule du dl de $\sqrt{1 + h}$ autour de h = 0.

$$\begin{split} f(x) &= \sqrt{x}, = \sqrt{1+h}, \\ &= 1 + \frac{1}{2}h - \frac{1}{8}h^2 + \frac{1}{16}h^3 + o(h^3), \\ &\quad c'est\ la\ formule\ du\ dl\ de\ \sqrt{1+h}, \\ f(x) &= \sqrt{x} = 1 + \frac{1}{2}(x-1) - \frac{1}{8}(x-1)^2 + \frac{1}{16}(x-1)^3 + o((x-1)^3). \end{split}$$

2. Première méthode:

La première méthode consiste à calculer $g'(x) = \frac{1}{2\sqrt{x}} \exp \sqrt{x}$, g''(x), g'''(x) puis g(1), g''(1), g'''(1) pour pouvoir appliquer la formule de Taylor conduisant à

$$\exp(\sqrt{x}) = e + \frac{e}{2}(x-1) + \frac{e}{48}(x-1)^3 + o((x-1)^3).$$

(avec $e = \exp(1)$).

Deuxième méthode:

Commencer par calculer le dl de $k(x) = \exp x$ en x = 1 ce qui est très facile car pour tout n, $k^{(n)}(x) = \exp x$ et donc $k^{(n)}(1) = e$:

$$\exp x = e + e(x-1) + \frac{e}{2!}(x-1)^2 + \frac{e}{3!}(x-1)^3 + o((x-1)^3).$$

Pour obtenir le dl $g(x) = h(\sqrt{x})$ en x = 1 on écrit d'abord :

$$\exp(\sqrt{x}) = e + e(\sqrt{x} - 1) + \frac{e}{2!}(\sqrt{x} - 1)^2 + \frac{e}{3!}(\sqrt{x} - 1)^3 + o((\sqrt{x} - 1)^3).$$

Il reste alors à substituer \sqrt{x} par son dl obtenu dans la première question.

Exercice 18 Application du développement limité pour le calcul des limites Donner

1.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{\arcsin x}\right)$$
.

2.
$$\lim_{x\to+\infty} \left(\frac{\ln(x+1)}{\ln x}\right)^x$$
.

Correction 18

1.
$$\frac{1}{\sqrt{1-x^2}} = 1 + \frac{x^2}{2} + \frac{3x^4}{8} + o(x^4)$$
, et donc

$$\arcsin x = x + \frac{x^3}{6} + \frac{3x^5}{40} + o(x^5).$$

Puis.

$$\frac{1}{\arcsin x} \stackrel{=}{\underset{x\to 0}{=}} \frac{1}{x} \left(1 + \frac{x^2}{6} + \frac{3x^4}{40} + o(x^4) \right)^{-1},$$

$$= \frac{1}{x} \left(1 - \frac{x^2}{6} - \frac{3x^4}{40} + \frac{x^4}{36} + o(x^4) \right),$$

$$= \frac{1}{x} - \frac{x}{6} - \frac{17x^3}{360} + o(x^3).$$

car

$$\left(1 + \frac{x^2}{6} + \frac{3x^4}{40} + o(x^4)\right)^{-1} = \left(1 - \frac{x^2}{6} - \frac{3x^4}{40} + \frac{x^4}{36} + o(x^4)\right).$$

En effet on pose

$$u = \frac{x^2}{6} + \frac{3x^4}{40} + o(x^4),$$

alors

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + o(x^n) \ d'où$$

$$(1+u)^{-1} = 1 - u + u^2 + o(x^4),$$

$$= 1 - (\frac{x^2}{6} + \frac{3x^4}{40}) + (\frac{x^2}{6} + \frac{3x^4}{40})^2 + o(x^4),$$

$$= 1 - \frac{x^2}{6} - \frac{3x^4}{40} + (\frac{x^2}{6} + \frac{3x^4}{40})^2 + o(x^4),$$

$$= 1 - \frac{x^2}{6} - \frac{3x^4}{40} + \frac{x^4}{36} + o(x^4).$$

Donc

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{\arcsin x} \right) = \lim_{x \to 0} \left(\frac{x}{6} + \frac{17x^3}{360} + o(x^3) \right) = 0.$$

2. Quand x tend vers $+\infty$.

$$\ln(x+1) = \ln x + \ln\left(1 + \frac{1}{x}\right) = \ln x + \frac{1}{x} + o\left(\frac{1}{x}\right),$$

en effet, si on pose $u = \frac{1}{x}$ on $a \ln(1+u) = u + o(u)$

puis,

$$\frac{\ln(x+1)}{\ln x} = 1 + \frac{1}{x \ln x} + o\left(\frac{1}{x \ln x}\right).$$

Ensuite,

$$x \ln \left(\frac{\ln(x+1)}{\ln x} \right) = x \ln \left(1 + \frac{1}{x \ln x} + o\left(\frac{1}{x \ln x} \right) \right) = \frac{1}{\ln x} + o\left(\frac{1}{\ln x} \right) \to 0.$$

De même si on pose $u = \frac{1}{x \ln x} + o\left(\frac{1}{x \ln x}\right)$ alors $\ln(1+u) = u + o(u)$.

Donc,
$$\left(\frac{\ln(x+1)}{\ln x}\right)^x = exp\left(x\ln\left(\frac{\ln(x+1)}{\ln x}\right)\right) \to e^0 = 1.$$

$$\lim_{x \to +\infty} \left(\frac{\ln(x+1)}{\ln x} \right)^x = 1.$$

Exercice 19 Soit f la fonction réelle d'une variable réelle définie par : $f(x) = \frac{2x^2 - 3}{x + 1}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Donner le tableau de variation de f.
- 3. Donner le DL à l'ordre 2 au voisinage de 0 de f.
- 4. En déduire la position de la courbe (C) de f par rapport à sa tangente au point 0.
- 5. Donner le DL à l'ordre 2 au voisinage de 0 de la fonction : $F(x) = \frac{2-3X^2}{X+1}$.
- 6. En déduire le DL à l'ordre 1 au voisinage de l'infini de f.
- 7. Quelle est la position de la courbe (C) par rapport à ses asymptotes.

Correction 19

- 1. La fonction f est définie si et seulement si $x + 1 \neq 0$ donc f est définie sur $\mathbb{R} \setminus \{-1\}$.
- 2. La fonction f est dérivable sur $\mathbb{R} \{-1\}$ et

$$f'(x) = \frac{4x(x+1) - (2x^2 - 3) \times 1}{(x+1)^2} = \frac{2x^2 + 4x + 3}{(x+1)^2} = \frac{2(x+1)^2 + 1}{(x+1)^2}.$$

On remarque que $f^{'}(x) > 0 \ \forall x \in \mathbb{R} - \{-1\}$ D'autre part

$$\lim_{x \to -\infty} f(x) = +\infty, \ \lim_{x \to +\infty} f(x) = +\infty.$$

$$\lim_{x \to (-1)^{-}} f(x) = +\infty, \ \lim_{x \to (-1)^{+}} f(x) = -\infty.$$

x	$-\infty$		-1		$+\infty$
f'(x)	+			+	
		$+\infty$			$+\infty$
f(x)		7		7	
	$-\infty$			$-\infty$	

3. $f(x) = \frac{2x^2 - 3}{x + 1}$ sur $\mathbb{R} - \{-1\}$. Et Le le DL à l'ordre 2 au voisinage de 0 de $\frac{1}{x + 1}$ est :

$$\frac{1}{x+1} = 1 - x + x^2 + o(x^2).$$

$$f(x) = (2x^2 - 3)(1 - x + x^2) + o(x^2) = 2x^2 - 3 + 3x - 3x^2 + o(x^2).$$

d'où

$$f(x) = -3 + 3x - x^2 + o(x^2).$$

4. La tangente à la courbe (C) de f au voisinage de 0 a pour équation y = 3x - 3 donc

$$f(x) - y = -x^2 + o(x^2).$$

La courbe est ainsi au dessus de sa tangente.

5. On a

$$F(X) = \frac{2 - 3X^2}{X + 1} = (2 - 3X^2)(1 - X + X^2) + o(X^2),$$

= 2 - 2X - X^2 + o(X^2).

6. On pose $X = \frac{1}{x} donc$

$$f(x) = f(\frac{1}{X}) = \frac{2(\frac{1}{X})^2 - 3}{\frac{1}{X} + 1} = \frac{\frac{1}{X^2}(2 - 3X^2)}{\frac{1}{X}(1 + X)} = \frac{1}{X}\left(\frac{2 - 3X^2}{1 + X}\right) = \frac{1}{X}F(X).$$

d'où

$$f(x) = \frac{1}{X}(2 - 2X - X^2 + o(X^2)) = \frac{2}{X} - 2 - X + o(X).$$

Finalement

$$f(x) = 2x - 2 - \frac{1}{x} + o(\frac{1}{x}).$$

7. On a

$$f(x) = 2x - 2 - \frac{1}{x} + o(\frac{1}{x}).$$

On pose y = 2x - 2 ainsi

$$f(x) - y = -\frac{1}{x} + o(\frac{1}{x}).$$

Par suite, la courbe de f:

est au-dessus de l'asymptote au voisinage de $-\infty$, et est au-dessous de l'asymptote au voisinage de $+\infty$.

Année Universitaire 2018-2020 BCG S2, Module: M222

Série 4: Calcul d'intégrales et équations différentielles linéaires

Exercice 20 Calculer les intégales suivantes:

a)
$$\int_{\frac{1}{a}}^{a} \frac{\ln x}{1+x^2} dx$$
 $(0 < a)$.

b)
$$\int_{\frac{1}{2}}^{a^2} \left(1 + \frac{1}{x^2}\right) \arctan x dx.$$

Correction 20 a) On pose $t = \frac{1}{x}$ et donc $x = \frac{1}{t}$ et $dx = -\frac{1}{t^2}dt$. On obtient

$$I = \int_{\frac{1}{a}}^{a} \frac{\ln x}{1+x^2} dx = -\int_{a}^{\frac{1}{a}} \frac{\ln(\frac{1}{t})}{1+\frac{1}{4}^2} \frac{1}{t^2} dt = -\int_{\frac{1}{a}}^{a} \frac{\ln t}{1+t^2} dt = -I, \ et \ donc \ I = 0.$$

b) On pose $u = \frac{1}{x}$. On obtient

$$I = \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{x^2} \right) \arctan x dx = \int_{2}^{\frac{1}{2}} \left(1 + u^2 \right) \arctan(\frac{1}{u}) \frac{-du}{u^2}.$$

On sait que $\arctan x + \arctan \frac{1}{x} = \frac{\pi}{2}$ voir série 3. Donc

$$I = -\int_{2}^{\frac{1}{2}} \left(1 + \frac{1}{u^{2}} \right) \left(\frac{\pi}{2} - \arctan u \right) du = \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{u^{2}} \right) \left(\frac{\pi}{2} - \arctan u \right) du = \frac{\pi}{2} \int_{\frac{1}{2}}^{2} \left(1 + \frac{1}{u^{2}} \right) du - I.$$

Donc

$$2I = \frac{\pi}{2}[u - \frac{1}{u}]_{\frac{1}{2}}^2 = \frac{\pi}{2}((2 - \frac{1}{2}) - (\frac{1}{2} - 2))$$

Par suite, $I = \frac{3\pi}{4}$

Exercice 21 Calculer les primitives suivantes par intégration par parties.

- 1. $\int x^2 \ln x \, dx$.
- 2. $\int x \arctan x \, dx$.
- 3. $\int \ln x \, dx$ puis $\int (\ln x)^2 \, dx.$
- 4. $\int \cos x \exp x \, dx$.

Correction 21

1. Considérons l'intégration par parties avec $u = \ln x$ et $v' = x^2$. On a donc $u' = \frac{1}{x}$ et $v = \frac{x^3}{3}$. Donc

$$\int \ln x \times x^2 dx = \int uv' = \left[uv\right] - \int u'v,$$

$$= \left[\ln x \times \frac{x^3}{3}\right] - \int \frac{1}{x} \times \frac{x^3}{3} dx,$$

$$= \left[\ln x \times \frac{x^3}{3}\right] - \int \frac{x^2}{3} dx,$$

$$= \frac{x^3}{3} \ln x - \frac{x^3}{9} + c.$$

2. Considérons l'intégration par parties avec $u = \arctan x$ et v' = x. On a donc $u' = \frac{1}{1+x^2}$ et $v = \frac{x^2}{2}$.

Donc

$$\begin{split} \int \arctan x \times x \, dx &= \int uv' = \left[uv \right] - \int u'v, \\ &= \left[\arctan x \times \frac{x^2}{2} \right] - \int \frac{1}{1+x^2} \times \frac{x^2}{2} \, dx, \\ &= \left[\arctan x \times \frac{x^2}{2} \right] - \frac{1}{2} \int \left(1 - \frac{1}{1+x^2} \right) \, dx, \\ &= \frac{x^2}{2} \arctan x - \frac{1}{2}x + \frac{1}{2} \arctan x + c, \\ &= \frac{1}{2} (1+x^2) \arctan x - \frac{1}{2}x + c. \end{split}$$

3. Pour la primitive $\int \ln x \, dx$, regardons l'intégration par parties avec $u = \ln x$ et v' = 1. On a $u' = \frac{1}{x}$ et v = x.

Donc

$$\int \ln x \, dx = \int uv' = [uv] - \int u'v,$$

$$= [\ln x \times x] - \int \frac{1}{x} \times x \, dx,$$

$$= [\ln x \times x] - \int 1 \, dx,$$

$$= x \ln x - x + c.$$

Pour la primitive $\int (\ln x)^2 dx$, par l'intégration parties avec $u = (\ln x)^2$ et v' = 1. On a $u' = 2\frac{1}{x} \ln x$ et v = x.

Donc

$$\int (\ln x)^2 dx = \int uv' = [uv] - \int u'v,$$
$$= [x(\ln x)^2] - 2 \int \ln x dx,$$
$$= x(\ln x)^2 - 2(x \ln x - x) + c.$$

Pour obtenir la dernière ligne on a utilisé la primitive calculée précédemment.

4. Notons $I = \int \cos x \exp x \, dx$.

Regardons l'intégration par parties avec $u = \exp x$ et $v' = \cos x$. Alors $u' = \exp x$ et $v = \sin x$.

Donc

$$I = \int \cos x \exp x \, dx = \left[\sin x \exp x\right] - \int \sin x \exp x \, dx.$$

Si on note $J = \int \sin x \exp x \, dx$, alors on a

$$I = \left[\sin x \exp x \right] - J. \tag{1}$$

Pour calculer J on refait une deuxième intégration par parties avec $u = \exp x$ et $v' = \sin x$. Ce qui donne

$$J = \int \sin x \exp x \, dx = \left[-\cos x \exp x \right] - \int -\cos x \exp x \, dx,$$
$$= \left[-\cos x \exp x \right] + I.$$

Nous avons ainsi une deuxième équation :

$$J = \left[-\cos x \exp x \right] + I. \tag{2}$$

Repartons de l'équation (1) dans laquelle on remplace J par la formule obtenue dans l'équation (2).

$$I = \left[\sin x \exp x\right] - J = \left[\sin x \exp x\right] - \left[-\cos x \exp x\right] - I.$$

D'où $2I = [\sin x \exp x] + [\cos x \exp x].$

Ce qui nous permet de calculer notre intégrale :

$$I = \frac{1}{2}(\sin x + \cos x)\exp x + c.$$

Exercice 22 Calculer les primitives des fractions irrationnelles suivantes:

a)
$$f(x) = \frac{2\sqrt[3]{x} + x}{\sqrt{x^3} - 8x}$$
.
b) $g(x) = \frac{\sqrt[4]{x^3} + \sqrt{x}}{x(\sqrt{x} - 1)}$.

Correction 22

a) On commence à chercher le dénominateur commun k des exposants rationnels de x: on a $\frac{1}{3}$ et $\frac{3}{2}$ donc k = 6 posons alors $x = t^6 \Longrightarrow dx = 6t^5dt$. soit F une primitive de f, on a

$$F(x) = \int \frac{2t^2 + t^6}{t^9 - 8t^6} \cdot 6t^5 dt = 6 \int \frac{2t + t^5}{t^3 - 8} dt.$$

On décompose maintenant en élément simple

$$\frac{t^5 + 2t}{t^3 - 8} = t^2 + \frac{8t^2 + 2t}{t^3 - 8} = t^2 + 2\frac{4t^2 + t}{(t - 2)(t^2 + 2t + 4)}.$$

On a

$$\frac{4t^2 + t}{(t-2)(t^2 + 2t + 4)} = \frac{a}{t-2} + \frac{bt + c}{t^2 + 2t + 4},$$

$$= \frac{a}{t-2} + \frac{bt + c}{t^2 + 2t + 4},$$

$$= \frac{(a+b)t^2 + (2a+c-2b)t + 4a - 2c}{(t-2)(t^2 + 2t + 4)}.$$

Donc

$$\begin{cases} a+b & = 4, \\ 2a+c-2b & = 1, \\ 4a-2c & = 0. \end{cases} \implies \begin{cases} a=\frac{3}{2}, \\ c=3, \\ b=\frac{5}{2}. \end{cases}$$

Par la suite

$$\begin{split} \frac{t^5+2t}{t^3-8} &= t^2 + \frac{3}{t-2} + \frac{5t+4}{t^2+2t+4} \\ F(x) &= 6 \left(\int t^2 dt + \int \frac{3}{t-2} dt + \int \frac{5t+4}{t^2+2t+4} dt \right), \\ &= 6 \left(\int t^2 dt + \int \frac{3}{t-2} dt + \frac{5}{2} \int \frac{2t+2}{t^2+2t+4} + \int \frac{dt}{t^2+2t+4} \right). \\ \Longrightarrow F(x) &= 2t^3 + 18ln(|t-2|) + 15ln(|t^2+2t+4|) + \frac{6}{\sqrt{3}} \arctan(\frac{t+1}{\sqrt{3}}) + Cste. \end{split}$$

Pour le calcul de $\int \frac{dt}{t^2 + 2t + 4} dt$, on a

$$\int \frac{dt}{t^2 + 2t + 4} = \int \frac{dt}{(t+1)^2 + 3},$$

$$= \frac{1}{\sqrt{3}} \int \frac{\frac{1}{\sqrt{3}}}{\left(\frac{t+1}{\sqrt{3}}\right)^2 + 1} dt,$$

$$= \frac{1}{\sqrt{3}} \arctan(\frac{t+1}{\sqrt{3}}).$$

b) Soit G une primitive de g.

On commence à chercher le dénominateur commun k des exposants rationnels de x: on a $\frac{3}{4}$ et $\frac{1}{2}$ donc k=4, posons alors $x=t^4\Longrightarrow dx=4t^3dt$.

D'où

$$G(x) = \int \frac{t^3 + t^2}{t^4(t^2 - 1)} \cdot 4t^3 = 4 \int \frac{t^2 + t}{t^2 - 1}.$$

Par la suite

$$\begin{split} G(x) &= 4 \left(\int \frac{t^2 + t}{t^2 - 1} dt \right), \\ &= 4 \left(\int \frac{t^2 - 1}{t^2 - 1} dt + \int \frac{t + t}{t^2 - 1} dt \right), \\ &= 4 \left(\int 1 dt + \int \frac{1}{t - 1} dt \right), \\ &= 4 \left(t + \ln(|t - 1|) + Cste. \\ &= 4 \left(\sqrt[4]{x} + \ln(|\sqrt[4]{x} - 1|) \right) + Cste. \end{split}$$

Exercice 23 Soit $I_n = \int_0^1 \frac{x^n}{1+x} dx$.

- 1. En majorant la fonction intégrée, montrer que $\lim_{n\to+\infty} I_n = 0$.
- 2. Calculer $I_n + I_{n+1}$.
- 3. Déterminer $\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \right)$.

Correction 23

1. Pour x > 0 on a $\frac{x^n}{1+x} \leqslant x^n$, donc

$$I_n \leqslant \int_0^1 x^n dx = \left[\frac{1}{n+1}x^{n+1}\right]_0^1 = \frac{1}{n+1}.$$

Donc $I_n \to 0$ lorsque $n \to +\infty$.

2.

$$I_n + I_{n+1} = \int_0^1 x^n \frac{1+x}{1+x} dx = \int_0^1 x^n dx = \frac{1}{n+1}.$$

3. Soit $S_n = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \pm \frac{1}{n} = \sum_{k=1}^n \frac{(-1)^{k+1}}{k}$. Par la question précédente nous avons $S_n = (I_0 + I_1) - (I_1 + I_2) + (I_2 + I_3) - \cdots \pm (I_{n-1} + I_n)$. Mais d'autre part cette somme étant télescopique cela conduit à $S_n = I_0 \pm I_n$. Alors la limite de S_n et donc de $\sum_{k=1}^n \frac{(-1)^{k+1}}{k}$ (quand $n \to +\infty$) est I_0 car $I_n \to 0$. Un petit calcul montre que $I_0 = \int_0^1 \frac{dx}{1+x} = \ln 2$. Donc la somme alternée des inverses des entiers converge vers $\ln 2$.

Exercice 24 Soit l'équation différentielle

$$(E) \qquad y' + 2xy = x.$$

- 1. Résoudre l'équation homogène associée.
- 2. Calculer la solution de (E) vérifiant y(0) = 1.

Correction 24

- 1. Les primitives de la fonction a(x) = 2x sont les fonctions $A(x) = x^2/2 + k$ où $k \in \mathbb{R}$ est une constante réelle quelconque. Donc les solutions de l'équation homogène associée à E sont toutes les fonctions définies sur \mathbb{R} du type : $y(x) = ce^{-x^2}$ où $c \in \mathbb{R}$ est une constante arbitraire.
- 2. On cherche maintenant une solution particulière de E sous la forme $y_p(x) = c(x)e^{-x^2}$ (méthode de la variation de la constante).

On $a: y_p'(x) + 2xy_p(x) = c'(x)e^{-x^2}$. Donc y_p est solution de E si et seulement si : $c'(x) = xe^{x^2}$ pour tout $x \in \mathbb{R}$.

On choisit la fonction c parmi les primitives de la fonction xe^{x^2} , par exemple : $c(x) = 1/2e^{x^2}$. Donc la fonction y_p telle que $y_p(x) = 1/2e^{x^2}e^{-x^2} = 1/2$ est solution de E.

Par conséquent les solutions de E sont toutes les fonctions de la forme:

$$y(x) = ce^{-x^2} + \frac{1}{2}; c \in \mathbb{R}.$$

Pour y solution de E, la condition y(0) = 1 équivaut à : c = 1/2.

Exercice 25 Intégrer les équations différentielles suivantes:

1.

$$(E_1)$$
 $y'' - 3y' + 2y = e^x$.

2.

$$(E_2)$$
 $y'' + 2y' + 3y = 2e^{-x}\cos(\sqrt{2}x).$

3.

$$(E_3) y'' + y' - 2y = e^x + \cos(x).$$

Correction 25

1. L'équation caractéristique est (r-1)(r-2)=0 et les solutions de l'équation homogène sont donc toutes les fonctions :

$$y(x) = c_1 e^x + c_2 e^{2x} \text{ avec } c_1, c_2 \in \mathbb{R}.$$

On est dans la situation où $f(x) = P(x)e^{\alpha x}$ avec P(x) = 1 et $\alpha = 1$ racine de (E_1) , donc on cherche une solution particulière de la forme $y_p(x) = Q(x)x^se^x$ avec $Q(x) = c \in \mathbb{R}$, s = 1 càd que $y_p(x) = cxe^x$, en remplaçant $y_p(x)$ dans (E_1) on obtient c = -1. Les solutions de l'équation sont donc les fonctions:

$$y(x) = (c_1 - x) e^x + c_2 e^{2x} \text{ avec } c_1, c_2 \in \mathbb{R}$$

2. L'équation caractéristique, $r^2+2r+3=0$ relative à léquation homagène admet deux racines complexes conjuguées:

$$r_1 = -1 - i\sqrt{2} \ et \ r_2 = -1 + i\sqrt{2}$$

La solution génêale de lequation sans second membre est:

$$y = (\alpha \cos \sqrt{2}x + \beta \sin \sqrt{2}x)e^{-x}$$
 où $(\alpha, \beta) = \in \mathbb{R}^2$.

Le second membre s'écrit :

$$2e^{-x}\cos\sqrt{2x} = e^{(-1-i\sqrt{2})x} + e^{(-1+i\sqrt{2})x}$$
$$= e^{r_1x} + e^{r_2x}.$$

On cherchera une solution particulière de sous la forme: $y_p = x(a\cos\sqrt{2}x + b\sin\sqrt{2}x)e^{-x}$.

 $De \ l\grave{a}, \ y_p' = (a\cos\sqrt{2}x + b\sin\sqrt{2}x)e^{-x} - xe^{-x}(a\cos\sqrt{2}x + b\sin\sqrt{2}x) + xe^{-x}(-a\sqrt{2}\sin\sqrt{2}x + b\sqrt{2}\cos\sqrt{2}x).$ $y_p'' = e^{-x}[-2a\cos\sqrt{2}x + 2b\sqrt{2}\cos\sqrt{2}x - 2b\sin\sqrt{2}x - 2a\sqrt{2}\sin\sqrt{2}x] + xe^{-x}[-a\cos\sqrt{2}x - 2b\sqrt{2}\cos\sqrt{2}x - b\sin\sqrt{2}x + 2a\sqrt{2}\sin(\sqrt{2}x).$

Alors,

$$y_p'' + 2y_p' + 3y_p = 2e^{-x}\cos\sqrt{2}x.$$

Par suite, a = 0 et $b = \frac{\sqrt{2}}{2}$.

Ce qui nous donne

$$y_p = \frac{\sqrt{2}}{2} x e^{-x} \sin \sqrt{2} x.$$

La solution générale est :

$$Y = y + y_p = e^{-x} \left[\alpha \cos \sqrt{2}x + \beta \sin \sqrt{2}x + \frac{\sqrt{2}}{2}x \sin \sqrt{2}x. \right]$$

où α et β sont deux racines réelles.

3. L'équation caractéristique, $r^2+r-2=0$ relative à l'équation homogène admet deux racines : $r_1=-2$ et $r_2=1$. La salution générale de l'équation sans second membre est:

$$y = Ae^{-2x} + Be^x \text{ où } (A, B) \in \mathbb{R}^2.$$

Une solution particulière de l'équation: $y'' + y' - 2y = e^x$ se met sous la forme $y_0 = axe^x, a \in \mathbb{R}$.

$$y_0' = ae^x + axe^x$$
 et $y_0'' = 2ae^x + axe^x$.

Alors, $y_0'' + y_0' - 2y_a = 3ae^x = e^x$.

D'où $a = \frac{1}{3}$ et $y_0 = \frac{x}{3}e^x$.

Une solution particulière de l'équation: $y'' + y' - 2y = \cos x$ se met sous la forme $y_1 = \alpha \cos x + \beta \sin x$, $(\alpha, \beta) \in \mathbb{R}^2$.

$$y_1' = -\alpha \sin x + \beta \cos x$$
 et $y_1'' = -\alpha \cos x - \beta \sin x$.

Alors,
$$y_1'' + y_1' - 2y_1 = (-3\alpha + \beta)\cos x - (3\beta + \alpha)\sin x = \cos x$$

$$D'où$$
, $-3\alpha + \beta = 1$ et $3\beta + \alpha = 0$.

Ce qui nous donne : $\alpha = -\frac{3}{10}$ et $\beta = \frac{1}{10}$.

Ainsi, $y_1 = -\frac{3}{10}\cos x + \frac{1}{10}\sin x$.

Lo solution générale est:

$$Y = y + y_0 + y_1 = Ae^{-2x} + Be^x + \frac{x}{3}e^x - \frac{3}{10}\cos x + \frac{1}{10}\sin x,$$

où A et B sont deux constantes rélles.