

HW-SW Co-design of Efficient and Scalable Training for Relational Graph Representation Learning

Lakshmi Sathidevi, Cong (Callie) Hao School of Electrical and Computer Engineering Georgia Center for Research into Tech Novel Computing Hierarchies

Georgia School of Electrical and Tech Computer Engineering

College of Engineering

Knowledge Representation

Being able to easily store and retrieve knowledge, as well as predict missing information using existing knowledge, is key to enabling a faster pace of R&D across a variety of high-impact domains.

Towards this, large-scale relational graph representation learning on knowledge graphs holds great promise.

Co-design of a Scalable Model

We propose **DMRAW** (DistMult with Relational Aggregation Wings) --- a SW model that **inductively learns on knowledge graphs** via self-supervised relational link prediction.

DMRAW is co-designed at the SW level considering HW level opportunities and limitations.

DistMult with Relational Aggregation Wings

DMRAW applies 1-hop relational aggregation and learns a linear transformation to generate node embeddings from the aggregate.

Key Feature

DMRAW is inductive, unlike **DistMult** and **RGCN** models.

DMRAW is stable during training, unlike **RGCN**.

DMRAW has **1-hop** receptive field, unlike **DistMult**.

DMRAW is by default **batchable and scalable**, unlike **RGCN**.

DMRAW is linear, unlike RGCN.

DMRAW is **parameter efficient** than **RGCN**.

Features	DistMult	RGCN	DMRAW (GPU)	DMRAW (FPGA)	
Inductive Capability					
Batchable by Nature					Cro
N-hop Receptive Field					Grea
Fast Convergence					Goo
Training Stability					Oka
Execution Speed					Poo
Scalability					Bad
Simple Gradient Computation					
Link Prediction Performance					

DMRAW's unique design makes it great for custom HW acceleration on FPGA.

Relational Link Prediction Performance

Test	tiny	small	small-moderate	moderate	large
MRR Score	Nations	UMLS	codex-s	WN18RR	FB15k-237
DistMult	0.773	0.685	0.305	0.393	0.181
RGCN	0.769	0.755	0.327	0.502	0.233
DMRAW	0.803	0.778	0.488	0.434	0.228

DMRAW performed on average 8.2% better than RGCN.

DMRAW performed on average 22% better than DistMult.

Despite being inductive, linear, and having just 1-hop receptive field.

Why Accelerate Relational Graph Representation Learning?

Works on very large datasets in domains like genomics and drug discovery, are seen to fall back to using older, simpler heuristics, to avoid the computational limitations of current relational representation learning schemes. This trend extends to various other highimpact domains.

HW Acceleration Opportunity

Execution Time (s)	small-moderate	moderate	
(160 Epochs)	codex-s	WN18RR	
GPU	1600	1600	
FPGA	383	924	
Minimum Expected Speed-Up	4.2x	1.7x	

HW architecture latency simulation indicates even a sparingly optimized custom HW architecture for DMRAW can give **significant speed-up on FPGA over GPU**, thanks to DMRAW's suitability for custom acceleration.

Future Scope

Our results for our co-designed SW model show promise for efficient, stable, inductive and scalable training on large-scale knowledge graphs by coupling with an optimized custom hardware acceleration architecture.