שיעור 13 חיתוך וסכום תת מרחב

13.1 הגדרה של חיתוך וסכום של תתי מרחבים

משפט 13.1 חיתוך של תת מרחב

 $V_1 \cap V_2$ איז איז $V_1 \cap V_2$ היא תת מרחב של על תתי מרחב של או תתי מרחב של א תת מרחב של אוניח ש

הוכחה:

 $ar{.0}\in V_1\cap V_2 \Leftarrow ar{0}\in V_2$ וגם $ar{0}\in V_1 \Leftarrow V_1$ מרחבים על , V_1 (1

$$v_1,v_2\in V_1\cap V_2$$
 נניח (2 $v_1,v_2\in V_2$ וגם $v_1,v_2\in V_1$ אז $v_1,v_2\in V_1$ תת מרחב $v_1+v_2\in V_1\Leftarrow v_1+v_2\in V_2$ תת מרחב $v_1+v_2\in V_1$ תי $v_1+v_2\in V_1\cap V_2$

. נניח
$$k\in\mathbb F$$
 ו ${
m v}\in V_1\cap V_2$ סקלר. ${
m v}\in V_2$ ו ${
m v}\in V_1$ אז ${
m v}\in V_1$ תת מרחב לכן ${
m c}$ תת מרחב לכן ${
m c}$ תת מרחב לכן ${
m c}$ ת ${
m c}$ ת ${
m c}$ ת ${
m c}$ ${
m c}$ ת ${
m c}$ ${
m c}$ ${
m c}$ ${
m c}$ ${
m c}$

דוגמה 13.1

V עבור $V_1 \cup V_2$ בהכרח תת מרחב ווקטורי עמל שדה $V_1 \cup V_2$ האם עבור מרחבים של מרחב של מרחב ווקטורי

פתרון:

 $\frac{\mathsf{LRah}}{\mathsf{LR}}$ בוגמה נגדית: $V = \mathbb{R}^2$

$$V_1 = \left\{ \begin{pmatrix} x \\ 0 \end{pmatrix} \middle| x \in \mathbb{R} \right\}, \qquad V_2 = \left\{ \begin{pmatrix} 0 \\ x \end{pmatrix} \middle| x \in \mathbb{R} \right\}.$$

$$\mathbf{v}_1+\mathbf{v}_2
otin V_1\cup V_2$$
 . אבל י $\mathbf{v}_2=egin{pmatrix}0\\1\end{pmatrix}\in V_2$, $\mathbf{v}_1=egin{pmatrix}1\\0\end{pmatrix}\in V_1$ אז

משפט 13.2 תת מרחב הקטן ביותר

נניח שV מרחב וקטורי מעל שדה \mathbb{F}_1 , \mathbb{F}_2 תתי מרחבים של V מרחב וקטורי מעל שדה

$$W = \{ \mathbf{v}_1 + \mathbf{v}_2 | \mathbf{v}_1 \in V_1, \mathbf{v}_2 \in V_2 \}$$

 $.V_2$ ו V_1 את היא הקטן ביותר שמכיל את היא תת מרחב הקטן ביותר שמכיל את V_1 ו מתקיים W' א"א לכל תת מרחב W' שמכיל את V_1 ו או ביים

הוכחה:

$\cdot V$ נוכיח שW תת מרחב של

א)
$$ar{0} \in V_2$$
 וגם $ar{0} \in V_1$ (א

$$\bar{0} = \bar{0} + \bar{0} \in W .$$

$$.w_2 = \mathrm{v}_1 + \mathrm{v}_2 \in W$$
 , $w_1 = u_1 + u_2 \in W$ ב) נניח

$$u_1, \mathsf{v}_1 \in V_2$$
 וגם $u_1, \mathsf{v}_1 \in V_1$ אז

.תני מרחבים V_2 , V_1

$$u_2 + v_2 \in V_2$$
 געם $u_1 + v_1 \in V_1$ לכן

מכאן

$$w_1 + w_2 = (u_1 + u_2) + (v_1 + v_2) = (u_1 + v_1) + (u_2 + v_2) \in W$$
.

 $ku_1\in V_1$ ג) עניח V_1,V_2 . $u_2\in V_2$ ו $u_1\in V_1$ אז $k\in \mathbb{F}$ ו $w=u_1+u_2\in W$ תתי מרחבים, גו נניח $ku_2\in V_2$ מכאן מכאן

$$kw = k(u_1 + u_2) = ku_1 + ku_2 \in W$$

נוכיח כי W התת מרחב הקטן ביותר (2

ברור כי V_2 ו מכיל את מכיל W כי

$$u=u+ar{0}\in W$$
 , $u\in V_1$ לכל

$$.u=ar{0}+u\in W$$
 , $u\in V_2$ וגם לכל

 V_2 ו ו את מכיל שמכיל ביותר מרחב מרחב הקטן ווכיח אוא W

 V_2 ו ו איזשהו תת מרחב שמכיל את נניח ש נניח א

 $.W\subseteq W'$ נוכיח כי

 $.u_2 \in V_2$, $u_1 \in V_1$ כאשר , $w = u_1 + u_2$ אז $.w \in W$ נקח וקטור

$$.u_1 \in W' \Leftarrow V_1 \in W'$$

$$.u_2 \in W' \Leftarrow V_2 \in W'$$

$$w=u_1+u_2\in W'$$
 תת מרחב, לכן W'

מש"ל.

למה 13.1

 V_1+V_2 ומסומן ב V_1 ו למרחב למרחב (המשפט הקודם) נקרא של של של W

משפט 13.3 סכום של תת מרחב שווה לפרישה של האיחוד

$$V_1 + V_2 = \operatorname{span}\left(V_1 \cup V_2\right) .$$

 $:V_1+V_2\subseteq \mathrm{span}\,(V_1\cup V_2)$ נוכיח כי $:V_1+V_2\subseteq \mathrm{span}\,(V_1\cup V_2)$

 $V_1,V_2\subseteq \operatorname{span}\left(V_1\cup V_2
ight)$ לכן, לפי משפט 13.2

,בי בוטבט בו,

 $V_1 + V_2 \subseteq \operatorname{span}(V_1 \cup V_2)$.

 $\operatorname{span}\left(V_1\cup V_2
ight)\subseteq V_1+V_2$ נוכיח כי

 $,lpha_1,\ldots,lpha_k\in\mathbb{F}$ וסקלרים $v_1,\ldots,v_n\in V_2$ ו $u_1,\ldots,u_k\in V_1$ אז קיימים $w\in\mathrm{span}\,(V_1\cup V_2)$ וטקלרים $\beta_1,\ldots,\beta_n\in\mathbb{F}$

 $w = \alpha_1 u_1 + \dots + \alpha_k u_k + \beta_1 v_1 + \dots + \beta_n v_n.$

 $.eta_1\mathbf{v}_1+\cdots+eta_n\mathbf{v}_n\in V_2$ וגם $lpha_1u_1+\cdots+lpha_ku_k\in V_1$ אז $w\in V_1+V_2$ לכן

 \Leftarrow span $(V_1\cup V_2)\subseteq V_1+V_2$ וגם $V_1+V_2\subseteq$ span $(V_1\cup V_2)$ הוכחנו כי $V_1+V_2=$ span $(V_1\cup V_2)$.

דוגמה 13.2

 $V_2=$ ו , $V_1=\left\{egin{pmatrix}x\\0\\0\end{pmatrix}igg|x\in\mathbb{R}
ight\}$: \mathbb{R}^3 נקח את המרחב ווקטורי . $V=\mathbb{R}^3$ נקח את המרחב ווקטורי

, קווים ישרים ב \mathbb{R}^3 . אז הסכום שלהם הינו א $\left\{egin{pmatrix} 0 \\ y \\ 0 \end{pmatrix} \middle| y \in \mathbb{R}
ight\}$

$$V_1 + V_2 = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} \middle| x, y \in \mathbb{R} \right\} ,$$

 \mathbb{R}^3 ב z=0 ומהווה את המישור

13.2 משפט המימדים של סכום וחיתוך

משפט 13.4 משפט המימדים

V מרחב וקטורי מעל שדה V_2 , V_1 , $\mathbb F$ מרחב וקטורי מעל מדה עניח מרחבים של

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

$$\dim(V_1\cap V_2)=m$$
 , $\dim(V_2)=n$, $\dim(V_1)=k$ נסמן: $m\leq k$ לכן: $V_1\cap V_2\subseteq V_1$. $m\leq n$ לכן: $V_1\cap V_2\subseteq V_2$. $V_1\cap V_2\subseteq V_2$. $V_1\cap V_2\subseteq U_2$. $V_1\cap V_2$ של u_1,\ldots,u_m נבחר בסיס של u_1,\ldots,u_m ונקבל נשלים אותו לבסיס של $u_1,\ldots,u_m,u_1,\ldots,u_{k-m}$. $u_1,\ldots,u_m,u_1,\ldots,u_{k-m}$. $u_1,\ldots,u_m,u_1,\ldots,u_m,u_1,\ldots,u_{m-m}$

$$:V_1+V_2={
m span}\,(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m}.)$$
 נוכיח כי

$$w = v_1 + v_2 \in V_1 + V_2$$
 נניח

$$\mathbf{v}_{1} = \alpha_{1}u_{1} + \ldots + \alpha_{m}u_{m} + \beta_{1}a_{1} + \ldots + \beta_{k-m}a_{k-m} \in V_{1} ,$$

$$\mathbf{v}_{2} = \alpha'_{1}u_{1} + \ldots + \alpha'_{m}u_{m} + \gamma_{1}b_{1} + \ldots + \gamma_{n-m}b_{n-m} \in V_{2} .$$

 $\mathbf{v}_{1} + \mathbf{v}_{2} = (\alpha_{1} + \alpha'_{1}) u_{1} + \ldots + (\alpha_{m} + \alpha'_{m}) u_{m}$ $+ \beta_{1} a_{1} + \ldots + \beta_{k-m} a_{k-m}$ $+ \gamma_{1} b_{1} + \ldots + \gamma_{n-m} b_{n-m}$

7"%

XI

$$\mathbf{v}_1 + \mathbf{v}_2 \in \operatorname{span}\left(u_1, \dots, u_m, a_1, \dots, a_{k-m}, b_1, \dots, b_{n-m}\right)$$

$$\operatorname{span}\left(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m}
ight)\in V_1+V_2$$
 נוכיח את ההכלה ההפוכה, כלומר

נניח

$$w\in \mathrm{span}\,(u_1,\ldots,u_m,a_1,\ldots,a_{k-m},b_1,\ldots,b_{n-m})$$
אז קיימים סקלרים $\alpha_1,\ldots,\beta_k,\ldots,\beta_{k-m},\gamma_1,\ldots,\gamma_{n-m}$ כך ש

$$w = \alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} + \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m}$$

נסמן

$$\mathbf{v}_1 = \alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m}$$

 $\mathbf{v}_2 = \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m}$

X

$$\mathbf{v}_1 \in V_1, \qquad \mathbf{v}_2 \in V_2, \qquad w = \mathbf{v}_1 + \mathbf{v}_2$$

 $w \in V_1 + V_2$ כלומר

נשאר להוכיח שוקטורים $\{u_1,\dots,u_m,a_1,\dots,a_{k-m},b_1,\dots,b_{n-m}\}$ בת"ל:

נניח:

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} + \gamma_1 b_1 + \dots + \gamma_{n-m} b_{n-m} = \bar{0}$$
 (*1)

X

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} = -\gamma_1 b_1 - \dots - \gamma_{n-m} b_{n-m} := v.$$
 (*2)

 $.V_1$ הוקטור באגף השמאל שייך ל

 $.V_2$ הוקטור באגף הימין שייך ל

לכן, לפי סקלרים סקלרים לכן δ_1,\dots,δ_m בסיס של $V_1\cap V_2$ נתון). לכן בסיס של בסיס עווי בסיס של בסיס של בסיס של לכן, לפי

$$\mathbf{v} = \delta_1 u_1 + \ldots + \delta_m u_m$$
.

לכן

$$\delta_1 u_1 + \ldots + \delta_m u_m + \gamma_1 b_1 + \ldots + \gamma_{n-m} b_{n-m} = \delta_1 u_1 + \ldots + \delta_m u_m - (-\gamma_1 b_1 - \ldots - \gamma_{n-m} b_{n-m})$$

$$= \mathbf{v} - \mathbf{v}$$

$$= \bar{\mathbf{0}} ,$$

7"1

$$\delta_1 u_1 + \ldots + \delta_m u_m + \gamma_1 b_1 + \ldots + \gamma_{n-m} b_{n-m} = \bar{0}$$
 (*3)

רק אם (*3) מתקיים מתקיים בת"ל. לכן (נתון בסיס של $u_1, \ldots u_m, b_1, \ldots, b_{n-m}$

$$\delta_1 = \ldots = \delta_m = \gamma_1 = \ldots = \gamma_{n-m} = 0. \tag{*4}$$

מכאן מקבלים מ (1*) כי

$$\alpha_1 u_1 + \dots + \alpha_m u_m + \beta_1 a_1 + \dots + \beta_{k-m} a_{k-m} = \bar{0}$$
 (*5)

. בסיס לכן (נתון) א בסיס של $u_1, \ldots u_m, a_1, \ldots, a_{k-m}$ לכן מתקיים רק מתקיים (*5)

$$\alpha_1 = \ldots = \alpha_m = \beta_1 = \ldots = \beta_{k-m} = 0.$$
 (*6)

לכן, בגלל שהמקדמים ב (*1) כולם שווים ל 0, כפי שהוכחנו ב (*4) ו (*6), אז הוקטורים לכן, בגלל שהמקדמים ב (1*1) בת"ל. בת"ל. כלומר הם מהווים בסיס של $u_1,\dots u_m,a_1,\dots,a_{k-m},b_1,\dots b_{n-m}$ מכאן

$$\dim(V_1 + V_2) = m + (k - m) + (n - m) = k + n - m = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2)$$

מש"ל.

מסקנה 13.1

 $\dim(V_1\cap V_2)>0$ אז 2, אז מרחבים מחבים עניח $V_1,V_2\subseteq\mathbb{R}^3$ נניח

,?? לפי משפט . $\dim(V_1+V_2) \leq 3$ לכן \mathbb{R}^3 לפי משפט V_1,V_2 הוכחה:

$$4 = \dim(V_1) + \dim(V_2) = \dim(V_1 + V_2) + \dim(V_1 \cap V_2) \leq 3 + \dim(V_1 \cap V_2)$$

13.3 כיצד למצוא בסיס ומימד של סכום וחיתוך תת מרחב

נניח כי U, תתי מרחבים של \mathbb{R}^n ונניח ש

$$\{\mathbf{u}_1,\ldots,\mathbf{u}_k\}$$

בסיס של U ו

$$\{\mathbf{v}_1,\ldots,\mathbf{v}_l\}$$

:V ו U אם מסדר מהבסיסים מהרכב מסדר n imes(k+l) מסדר ערשום מטריצה אורכב V+W בסיס של V+W בסיס של

$$Q = \begin{pmatrix} | & | & & | & | & | & | \\ u_1 & u_2 & \dots & u_k & v_1 & v_2 & \dots & v_l \\ | & | & & | & | & | & | \end{pmatrix}$$

: Q שווה למרחב העמודות של U+V שו המרחב העמודות של

$$col(Q) = col(U + V)$$

U+V שווה גם לבסיס של $\operatorname{col}(Q)$ ובסיס של

$$B(Q) = B(U+V) .$$

Q במרחב במרחב בחיס של אניח נניח כי הוקטור אוווע"י המרחב האפס של ".NulQ ,Q אוווע"י המרחב האפס של ע"י המרחב איי המרחב x במרחב האפס של ג נניח כי הרכיבים של הרכיבים של א הם ג נניח כי הרכיבים של א

$$\mathbf{x} = \begin{pmatrix} a_1 \\ \vdots \\ a_k \\ b_1 \\ \vdots \\ b_t \end{pmatrix} .$$

אז $\mathrm{Nul}(Q)$ ב און שוקטור א

$$Q \cdot \mathbf{x} = \begin{pmatrix} | & | & & | & | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_k & \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_l \\ | & | & & | & | & | & | & | \end{pmatrix} \begin{pmatrix} a_1 \\ \vdots \\ a_k \\ b_1 \\ \vdots \\ b_l \end{pmatrix} = a_1 \mathbf{u}_1 + \dots + a_k \mathbf{u}_k + b_1 \mathbf{v}_1 + \dots + b_l \mathbf{v}_l = \bar{\mathbf{0}} . \quad \textbf{(1*)}$$

עכשיו נעביר את כל האיברים של הבסיס של האיברים את עכשיו נעביר את עכשיו עכשיו עכשיו איברים את איברים את

$$a_1 \mathbf{u}_1 + \ldots + a_k \mathbf{u}_k = -b_1 \mathbf{v}_1 - \ldots - b_l \mathbf{v}_l$$
 (*2)

V שימו לב הצירוף לינארי באגף השמאל הוא וקטור של שימו לב הצירוף לינארי באגף השמאל הוא וקטור של טימו לב הצירוף לינארי באגף השמאל הוא וקטור של יינארי באגף השמאל נקרא הוקטור היה או

$$\mathbf{y}:=a_1\mathbf{u}_1+\ldots+a_k\mathbf{u}_k=-b_1\mathbf{v}_1-\ldots-b_l\mathbf{v}_l$$
 (*3) כך קיבלנו וקטור \mathbf{y} השייך גם ל U ן גם ל U , או במילים אחרות
$$\mathbf{y}\in U\cap V\ .$$

דוגמה 13.3

נתונים וקטורים

$$u_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$
 , $u_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$, $u_3 = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $u_4 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 1 \end{pmatrix}$.

נסמן

 $V_1 = \text{span}(u_1, u_2)$, $V_2 = \text{span}(u_3, u_4)$.

 $V_1\cap V_2$ ו V_2 , ו מצאו בסיס ומימד של

פתרון:

 $:V_1$ בסיס של

$$\begin{pmatrix} 1 & 1 \\ 2 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 0 & 1 \\ 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $:V_1$ בסיס של

 $B(V_1)=\{\mathbf{u}_1,\mathbf{u}_2\}$

 $.\dim(V_1)=2$

 $:\!\!V_2$ בסיס של

$$\begin{pmatrix} 1 & 1 \\ 0 & 3 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 3 \\ 0 & -1 \\ 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 \\ 0 & 3 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

 $:V_2$ בסיס של

 $B(V_2) = \{\mathbf{u}_3, \mathbf{u}_4\}$

 $.\dim(V_2)=2$

$$Q = (\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4) = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 0 & 3 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{\substack{R_2 \to R_2 - 2R_1 \\ R_4 \to R_4 - R_1}} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{pmatrix}$$

$$\begin{array}{c}
R_3 \to R_2 + R_3 \\
R_4 \to R_4 - R_2 \\
\hline
0 & 0 & -1 & 1 \\
0 & 0 & 1 & -1
\end{array}
\right)
\begin{array}{c}
R_4 \to R_3 + R_4 \\
\hline
0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0
\end{array}$$

הוא $V_1 + V_2$ הוא לכן בסיס של 3,2 מובילות העמודות 1,

$$B(V_1 + V_2) = \{u_1, u_2, u_3\}$$

 $\dim(V_1 + V_2) = 3$ 1

לפי משפט המימדים:

$$\dim(V_1+V_2)=\dim(V_1)+\dim(V_2)-\dim(V_1\cap V_2)$$
 כיוון ש $\dim(V_1+V_2)=3$, $\dim(V_1+V_2)=3$, $\dim(V_1)=2$ סיוון ש

$$\dim(V_1 \cap V_2) = 1 .$$

. מסעיף הקודם המדורגת של NulQ נמצא את $V_1 \cap V_2$ נמצא בסיס של למצוא כדי למצוא את

$$Q \to \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -2 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

הוא $Q\mathbf{x}=0$ הוא הכללי של המשוואה ההומוגנית

כלומר

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix} w$$

אחד: $\mathrm{Nul}Q$ הוא מורכב וקטור אחד

$$B\left(\operatorname{Nul}(Q)\right) = \left\{ \mathbf{x} = \begin{pmatrix} -1\\ -1\\ 1\\ 1 \end{pmatrix} \right\} \ .$$

ק, לכן על מקיים את משוואת ההומוגנית אל Q מקיים את משוואת הוקטור

$$Q \cdot \mathbf{x} = \bar{\mathbf{0}} \qquad \Rightarrow \qquad (\mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \ \mathbf{u}_4) \cdot \begin{pmatrix} -1 \\ -1 \\ 1 \\ 1 \end{pmatrix} = \bar{\mathbf{0}}$$

לכן נקבל

$$-1 \cdot u_1 - 1 \cdot u_2 + 1 \cdot u_3 + 1 \cdot u_4 = \bar{0}$$
 \Rightarrow $u_1 + u_2 = u_3 + u_4$.

נגדיר את שני האגפים להיות הוקטור y:

$$y := u_1 + u_2 = u_3 + u_4$$

נציב את הוקטורים ונמצא כי

$$\mathbf{y} = \begin{pmatrix} 2\\3\\1\\1 \end{pmatrix} .$$

לכן בסיס של $V\cap U$ הוא

$$B(V \cap U) = \{\mathbf{y}\} = \left\{ \begin{pmatrix} 2\\3\\1\\1 \end{pmatrix} \right\}$$

דוגמה 13.4

נניח כי תת מרחב עם בסיס $U \in \mathbb{R}^5$

$$u_1 = \begin{pmatrix} 1 \\ 3 \\ -2 \\ 2 \\ 3 \end{pmatrix} , \quad u_2 = \begin{pmatrix} 1 \\ 4 \\ -3 \\ 4 \\ 2 \end{pmatrix} , \quad u_3 = \begin{pmatrix} 1 \\ 3 \\ 0 \\ 2 \\ 3 \end{pmatrix} ,$$

ונניח כי מרחב תת מרחב $W \in \mathbb{R}^5$ ונניח

$$w_1 = \begin{pmatrix} 2\\3\\-1\\-2\\9 \end{pmatrix} , \quad w_2 = \begin{pmatrix} 1\\5\\-6\\6\\1 \end{pmatrix} , \quad w_3 = \begin{pmatrix} 2\\4\\4\\2\\8 \end{pmatrix} .$$

 $U\cap W$ מצאו המימד והבסיס של

פתרון:

$$Q = \begin{pmatrix} 1 & 1 & 1 & 2 & 1 & 2 \\ 3 & 4 & 3 & 3 & 5 & 4 \\ -2 & -3 & 0 & -1 & -6 & 4 \\ 2 & 4 & 2 & -2 & 6 & 2 \\ 3 & 2 & 3 & 9 & 1 & 8 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 5 & 0 & 0 \\ 0 & 1 & 0 & -3 & 2 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\mathrm{Nul}(Q)$ מכאן נקבל בסיס של

$$B_{\text{Nul}(Q)} = \left\{ b_1 = \begin{pmatrix} -5\\3\\0\\1\\0\\0 \end{pmatrix}, b_2 = \begin{pmatrix} 0\\-2\\1\\0\\1\\0 \end{pmatrix} \right\}$$

$$Qb_1 = 0 \Rightarrow -5u_1 + 3u_2 + w_1 = 0$$
,
 $Qb_2 = 0 \Rightarrow -2u_1 + u_3 + w_2 = 0$.

 $:U\cap W$ מכאן נקבל בסיס מכאן

$$B_{U\cap W} = \{x_1, x_2\}$$

כאשר

$$x_1 = 5u_1 - 3u_2 = \begin{pmatrix} 2\\3\\-1\\-2\\9 \end{pmatrix} = w_1, \qquad x_2 = 2u_1 - u_3 = \begin{pmatrix} 1\\5\\-6\\6\\1 \end{pmatrix} = w_2.$$