Sprint - 2

Date	04 Nov 2022
Team ID	PNT2022TMID47541
Project name	IoT Based Smart Crop Protection System for Agriculture

1.MIT App Design

Screen3

Screen 4

2.MIT App Inventor Blocks

Screen3

Screen4

3. Python code to water the plant automatically

```
motorstatus = ""

44 waterlevel=random.randint(1,20)

45 Waterusing=""

46 if waterlevel < 2:

47 waterusing =str(waterlevel) + " feet Water Level Low"

48 else:

49 waterusing =str(waterlevel) + " feet Using rain water"

50

51 soilmoisture=random.randint(0,872)

52 if soilmoisture <200:

53 motorstatus="Motor on automatically"

54

55 else:

66 motorstatus="Motor off automatically"
```

4. Python code to ON and OFF the motor using button

```
def myCommandCallback(cmd):
    print("Command received: %s" % cmd.data['command'])
    status="motoron":
        print("Notor is on")
    elif status == "motoroff":
        print('Notor is off")
    else :
        print('Potor is off')
```

5. Watering the plant through Rain Water Harvesting

6. Watering the plant through Ground Water

7. Payload sent to IBM Watson IoT Platform

8. Node-Red flows

9. Payload sent from IBM Watson IoT Platform to Node-Red

10.Node-Red Dashboard

11. App Screenshots

