<u>סיכום תכונות אלגוריתמים</u> פתרון בעיות באמצעות חיפוש

Single Agent Path Finding Problems

ע	שלמות	אופטימליות	סיבוכיות זמן ריצה	סיבוכיות זכרון	תנאי עצירה	closed-list?	מבנה נתונים של ה-open list
/ BFS	V	V	$O(b^d)$	$O(b^d)$	GOAL- פיתוח קודקוד	loop רק עם avoidance	תור
DFS	Х	Х	$O(b^m)$	O(m) :רקורסיבי , מחסנית: O(bm)	GOAL-פיתוח קודקוד	X	מחסנית
Limited DFS	$d \leq l$ אם	Х	$O(b^l)$	O(bl)			
/ DFID	V	V	$O(b^m)$	0(mb) or 0(m)	כשהקודקוד שמקבלים ב-limited dfs הוא ה-goal (ילד שנשלח ברקורסיה) ואז מחזירים את path לפונקציה השנייה / כשמוחזר fail	X	hash table
/ Bi-direction al Search	V	V	$O(b^d)$ ואם זמן ההשוואה קבוע אז $O(b^{d/2})$	$O(b^{d/2})$			

usc	רק אם מניחים חסם תחתון על משקל הצלעות	V	$O(b^{\lfloor c^*/e \rfloor + 1})$	$O(b^{\lfloor c^*/e \rfloor + 1})$	הוצאת קודקוד ה-GOAL מתור העדיפויות	V	תור עדיפויות
Greedy Search	X	Х	$O(b^m)$	$O(b^m)$	USC כמו	V	תור עדיפויות
A*	רק אם הגרף סופי או שמתקיים תנאי 1 (למטה)	רק אם $h(n)$ היא consistent	$f = g$ אם $O(b^{\lfloor c^*/e \rfloor + 1})$ אם $f = g + h^*$ $O(bd)$	כמו סיבוכיות הזמן (זה החיסרון העיקרי שלו)	USC כמו	V	תור עדיפויות
IDA*	V (ללא תלות ביוריסטיקה)	רק אם $h(n)$ היא admissible	במקרה גרוע יכול להיות בחזקת 2 מ-*A, אבל לפעמים מהיר יותר	$O(b[c^*/e] + 1$	שלא עובר GOAL פיתוח $cop(G)$ שלא עובר את ה $f(g) \leq t$	X	מחסנית
DFBnB	V	V בהינתן lower-bound heuristic	בגרף עץ - כמו *A. בגרף כללי - *A יעיל יותר כי הוא גוזם צמתים כפולים (כאלו שב-open list)	O(bd)	המחסנית ריקה (עברנו על כל העץ), חוזר result שיכול להיות null אם מעולם לא מצאנו GOAL, או דרך כלשהי לGOAL	X	מחסנית

:פרמטרים

b = branching factor m = the maximum depth of search tree e = the minimum non-zero edge cost h* = the true cost to the goal d = solution depthI = the depth limit (cutoff)c* = the cost of optimal solution

:1 תנאי

In an infinite graph: if all edge costs are finite and have a minimum positive value, and all heuristic values are finite and non-negative. Under those conditions the cost of nodes will eventually increase without bound. Therefore, there could not be an infinite loop.

תכונות / משפחות של אלגוריתמים:

- - . Informed-search מההתחלה עד USC מההתחלה Uninformed-search •
 - וגם DFID וגם Iterative Deepening
 - DFID, A* רק Optimally efficient
 - :BFS אלגוריתמי
 - :DFS אלגוריתמי
- מרשבו ביותר שהוא הצליח למצוא עד כה). בכל שלב יכול לעצור ולהחזיר פתרון כלשהו (הטוב ביותר שהוא הצליח למצוא עד כה).
- אלגוריתמים המשתמשים ב-global cost bound גם *DA וגם *IDA. רק שהראשון מחזיק חסם עליון ומקטין אותו תוך כדי, והשני חסם תחתון ומגדיל אותו.
 - לכולם יש open-list, למי שיש closed-list •

השוואת *IDA לאחרים:

Q: What are the advantages of IDA* over:

- A*?

- DFS (no closed list)?

Uniform-Cost (closed list)?

	Alg.	Endless branch	Informed pruning	Space	Optimality
	Adv.				
	A*			V	
	DFS	V	V		V
ł					
	UC		V	V	

ו-*IDA מפתחים יותר קודקודים מאשר DFBnB

הסיבה: *IDA מרחיב רק קודקודים עם עלות נמוכה מ-*c, אבל יכול להרחיב את אותו אחד כמה פעמים. DFBnB מרחיב כל קודקוד פעם אחת (אם יש אליו מסלול אחד), אבל יכול להרחיב קודקודים עם עלות גבוהה מ-*c.

Constraint-Satisfaction Problems

	מה פותר	סיבוכיות זמן ריצה	סיבוכיות זכרון
AC-3	Arc Consistency	$O(n^2d^3)$	
backtracking search	מציאת goal (אחד) ב-CSP (לאחר שעשינו constraint prop)	$d^n = a$	פחות מ $n\cdot d\cdot n$ זכרון קבוע. כי הוא יוצר פעם אחת מצב ורק מעדכן אותו, לא יוצר קודקודים חדשים כל פעם

פרמטרים:

b = branching factor d = (max) domain size

n = number of variables

Local Search, Genetic

Adversarial Search

	סיבוכיות זמן ריצה	סיבוכיות זכרון
Minimax		אם שומרים לכל פעולה שהיריב יעשה את התגובה האופטימלית, אז $O(b^m)$ ואם משתמשים ב-DFS עבור כל פעולה (מחדש) אז $O(bm)$
alpha-beta pruning	$O(b^{m/2})$ almost perfect ordering" "עם עומק החיפוש יכול להיות כפול	
Expectiminimax	$O(b^m b^n)$	

:פרמטרים

b = branching factor m = Number of moves (depth) n = the number of distinct rolls