- 1. Prove constructively: $A \wedge (B \vee C) \vdash (A \wedge B) \vee (A \wedge C)$
- 2. Prove constructively: $B \to A \vdash (A \to C) \to (B \to C)$
- 3. Prove constructively: $A \to \neg B \vdash B \to \neg A$
- 4. Prove constructively: $\neg\neg\neg A \vdash \neg A$
- 5. Prove constructively: $A \rightarrow \neg A \vdash \neg A$
- 6. Prove classically: $\neg A \rightarrow A \vdash A$
- 7. Prove classically: $\neg(\neg A \land \neg B) \vdash A \lor B$
- 8. Prove constructively: $A \lor B \vdash \neg(\neg A \land \neg B)$
- 9. Note that the problems 7 and 8 are converses of each other. How does this tell us that \vee Introduction cannot be used as the last step of the proof of $\neg(\neg A \land \neg B) \vdash A \lor B$?
- 10. Use propositional logic to prove this set-theoretic inclusion: If $A \subseteq C$ and $B \subseteq C$ then $A \cup B \subseteq C$?
- 11. Use propositional logic to prove this set-theoretic identity:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

- 12. State, in your own words, the difference in meanings of $\Gamma \vdash A$ vs. $\Gamma \vDash A$, where Γ is a set of statements and A is a statement.
- 13. Using a truth table, determine whether or not

$$(A \to B) \to C \vDash (A \land B) \to C.$$

14. Show that, in classical logic,

$$\Gamma \vdash A$$
 if, and only if, $\Gamma \cup \{\neg A\} \vdash \bot$

15. Show that, in classical logic,

$$\varGamma \vDash A$$
 if, and only if, $\varGamma \cup \{\neg A\} \vDash \bot$