CRPL-F120 FOR OFFICIAL USE

vetional Bureau of Standards Library, N. W. Bidg.

AUG 2 7 1954

taken from the Library.

IONOSPHERIC DATA

ISSUED AUGUST 1954

U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

NATIONAL BUREAU OF STANDARDS CENTRAL RADIO PROPAGATION LABORATORY BOULDER, COLORADO

IONOSPHERIC DATA

CONTENTS

	Page
Symbols, Terminology, Conventions	2
World-Wide Sources of Ionospheric Data	5
Hourly Ionospheric Data at Washington, D. C	7, 12, 25, 52
Ionospheric Storminess at Washington, D. C	7, 37
Sudden Ionosphere Disturbances	7, 38
Radio Propagation Quality Figures	8, 39
Observations of the Solar Corona	10, 42
Relative Sunspot Numbers	10, 48
Observations of Solar Flares	10, 50
Indices of Geomagnetic Activity	11, 51
Errata	11
Tables of Ionospheric Data	12
Graphs of Ionospheric Data	52
Index of Tables and Graphs of Ionospheric Data in CRPL-F120	91

SYMBOLS, TERMINOLOGY, CONVENTIONS

Beginning with data reported for January 1952, the symbols, terminology, and conventions for the determination of median values used in this report (CRPL-F series) conform as far as practicable to those adopted at the Sixth Meeting of the International Radio Consultative Committee (C.C.I.R.) in Geneva, 1951. Excerpts concerning symbols and terminology from Document No. 626-E of this Meeting are given on pages 2-7 of the report CRPL-F89, "Ionospheric Data," issued January 1952. Reprints of these pages are available upon request.

Beginning with data for January 1945, median values are published wherever possible. Where averages are reported, they are, at any hour, the average for all the days during the month for which numerical data exist.

The following conventions are used in determining the medians for hours when no measured values are given because of equipment limitations and ionospheric irregularities. Symbols used are those given in Document No. 626-E referred to above.

a. For all ionospheric characteristics:

Values missing because of A, C, F, L, M, N, Q, S, or T are omitted from the median count.

b. For critical frequencies and virtual heights:

Values of for 2 (and for near sunrise and sunset) missing because of E are counted as equal to or less than the lower limit of the recorder. Values of h'F2 (and h'E near sunrise and sunset) missing for this reason are counted usually as equal to or greater than the median. Other characteristics missing because of E are omitted from the median count.

Values missing because of D are counted as equal to or greater than the upper limit of the recorder.

Values missing because of G are counted:

- 1. For foF2, as equal to or less than foF1.
- 2. For h'F2, as equal to or greater than the median.

The symbol W is included in the median count only when it replaces a height characteristic. This practice represents a change from that listed in issues previous to CRPL-F78.

Values missing for any other reason are omitted from the median count.

c. For MUF factor (M-factors):

Values missing because of G or W are counted as equal to or less than the median.

Values missing for any other reason are omitted from the median count.

d. For sporadic E (Es):

Values of fEs missing because of E or G (and B when applied to the daytime E region only) are counted as equal to or less than the median foE, or equal to or less than the lower frequency limit of the recorder.

Values of fEs missing for any other reason, and values of htEs missing for any reason at all are omitted from the median count.

Beginning with data for November 1945, doubtful monthly median values for ionospheric observations at Washington, D. C., are indicated by parentheses, in accordance with the practice already in use for doubtful hourly values. The following are the conventions used to determine whether or not a median value is doubtful:

- l. If only four values or less are available, the data are considered insufficient and no median value is computed.
- 2. For the F2 layer, if only five to nine values are available, the median is considered doubtful. The E and F1 layers are so regular in their characteristics that, as long as there are at least five values, the median is not considered doubtful.
- 3. For all layers, if more than half of the values used to compute the median are doubtful (either doubtful or interpolated), the median is considered doubtful.

The same conventions are used by the CRFL in computing the medians from tabulations of daily and hourly data for stations other than Washington, beginning with the tables in IRPL-F18.

The tables and graphs of ionospheric data are correct for the values reported to the CRPL, but, because of variations in practice in the interpretation of records and scaling and manner of reporting of values, may at times give an erroneous conception of typical ionospheric characteristics at the station. Some of the errors are due to:

- a. Differences in scaling records when spread schoes are present.
- b. Omission of values when for is less than or equal to for, leading to erroneously high values of monthly averages or median values.
- c. Omission of values when critical frequencies are less than the lower frequency limit of the recorder, also leading to erroneously high values of monthly average or median values.

These effects were discussed on pages 6 and 7 of the previous F-series report IRPL-F5.

Ordinarily, a blank space in the fEs column of a table is the result of the fact that a majority of the readings for the month are below the lower limit of the recorder or less than the corresponding values of foE. Blank spaces at the beginning and end of columns of h'Fl, foFl, h'E, and foE are usually the result of diurnal variation in these characteristics. Complete absence of medians of h'Fl and foFl is usually the result of seasonal effects.

The dashed-line prediction curves of the graphs of ionospheric data are obtained from the predicted zero-muf contour charts of the CRPL-D series publications. The following points are worthy of note:

- a. Predictions for individual stations used to construct the charts may be more accurate than the values read from the charts since some smoothing of the contours is necessary to allow for the longitude effect within a zone. Thus, in-asmuch as the predicted contours are for the center of each zone, part of the discrepancy between the predicted and observed values as given in the F series may be caused by the fact that the station is not centrally located within the zone.
- b. The final presentation of the predictions is dependent upon the latest available ionospheric and radio propagation data, as well as upon predicted sunspot number.

c. There is no indication on the graphs of the relative reliability of the data; it is necessary to consult the tables for such information.

The following predicted smoothed 12-month running-average Zurich sunspot numbers were used in constructing the contour charts:

Month	Predicted Sunspot Number									
	1954	1953	1952	1951	1950	1949	1948	1947	1946	1945
December November October September August July June May April March February		15 16 17 18 18 20 21 22 24 27	33 38 43 46 49 51 52 52 52	53 52 52 54 57 60 63 68 74 78 82	1950 86 87 90 91 96 101 103 102 101	1949 108 112 114 115 111 108 108 109 111 113	1948 114 115 116 117 123 125 129 130 133 133	1947 126 124 119 121 122 116 112 109 107 105 90	1946 85 83 81 79 77 73 67 62 51	38 36 23 22 20
January	14	29 30	51 53	85	105	112	130	88	42	

WORLD - WIDE SOURCES OF IONOSPHERIC DATA

The ionospheric data given here in tables 1 to 77 and figures 1 to 154 were assembled by the Central Radio Propagation Laboratory for analysis and correlation, incidental to CRPL prediction of radio propagation conditions. The data are median values unless otherwise indicated. The following are the sources of the data in this issue:

Commonwealth of Australia, Ionospheric Prediction Service of the Commonwealth Observatory:

Brisbane, Australia
Canberra, Australia
Hobart, Tasmania
Townsville, Australia

Australian Department of Supply and Shipping, Bureau of Mineral Resources, Geology and Geophysics: Watheroo, Western Australia

Meteorological Service of the Belgian Congo and Ruanda-Urundi: Leopoldville, Relgian Congo University of Sao Paulo: Sao Paulo. Brazil

British Department of Scientific and Industrial Research, Radio Research Board:

Falkland Is.

Inverness, Scotland

Khartoum, Sudan

Port Lockroy

Singapore, British Malaya

Slough, England

Defence Research Board, Canada:

Baker Lake, Canada

Churchill, Canada

Fort Chimo, Canada

Ottawa, Canada

Prince Rupert, Canada

Resolute Bay, Canada

St. John's, Newfoundland

Winnipeg. Canada

French Ministry of National Defense (Section of Scientific Research):
Djibouti, French Somaliland
Tananarive, Madagascar

National Laboratory of Radio-Electricity (French Ionospheric Bureau):
Casablanca, Morocco
Poitiers. France

Institute for Ionospheric Research, Lindau Uber Northeim, Hannover, Germany:

Lindau/Harz, Germany

The Royal Netherlands Meteorological Institute:
De Bilt. Holland

Icelandic Post and Telegraph Administration: Reykjavik, Iceland

All India Radio (Government of India), New Delhi, India: Bombay, India

Delhi, India

Madras, India

Tiruchy (Tiruchirapalli), India

Ministry of Postal Services, Radio Research Laboratories, Tokyo, Japan: Tokyo (Kokubunji), Japan

Christchurch Geophysical Observatory, New Zealand Department of Scientific and Industrial Research: Rarotonga, Cook Is.

Norwegian Defence Research Establishment, Kjeller per Lillestrom, Norway:
Oslo, Norway
Tromso, Norway

Manila Observatory: Baguio, P. I.

South African Council for Scientific and Industrial Research: Capetown, Union of South Africa Johannesburg, Union of South Africa

Research Laboratory of Electronics, Chalmers University of Technology, Gothenburg, Sweden: Kiruna, Sweden

Royal Board of Swedish Telegraphs, Radio Department, Stockholm, Sweden:

Lulea, Sweden

Post, Telephone and Telegraph Administration, Berne, Switzerland: Schwarzenburg, Switzerland

United States Army Signal Corps: Adak, Alaska White Sands, New Mexico

National Bureau of Standards (Central Radio Propagation Laboratory): Anchorage, Alaska Guam I.

Huancayo, Peru (Instituto Geofisico de Huancayo)

Maui. Hawaii

Narsarssuak, Greenland

Panama Canal Zone

Puerto Rico. W. I.

San Francisco, California (Stanford University)

Washington, D. C.

HOURLY IONOSPHERIC DATA AT WASHINGTON, D. C.

The data given in tables 78 through 89 follow the scaling practices given in the report IRPL-C61, "Report of International Radio Propagation Conference, pages 36 to 39, and the median values are determined by the conventions given above under "Symbols, Terminology, Conventions." Beginning with September 1949, the data are taken at Ft. Belvoir, Virginia.

IONOSPHERIC STORMINESS AT WASHINGTON, D.C.

Table 90 presents ionosphere character figures for Washington, D. C., during July 1954, as determined by the criteria given in the report IRPL-R5, "Criteria for Ionospheric Storminess, " together with Cheltenham, Maryland, geomagnetic K-figures, which are usually covariant with them.

SUDDEN IONOSPHERE DISTURBANCES

Table 91 shows that no sudden ionosphere disturbances were observed at Ft. Belvoir, Virginia, during the month of July 1954. Table 92 shows the sudden ionosphere disturbances observed at Enköping, Sweden, during April and June 1954.

RADIO PROPAGATION QUALITY FIGURES

Tables 94a and 94b give for June 1954 the radio propagation quality figures for the North Atlantic area, the relevant CRPL advance and short-term forecasts, a summary geomagnetic activity index and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, Qa, separately for each 6-hour interval of the Greenwich day, viz., 00-06, 06-12, 12-18, 18-24 hours UT (Universal Time or GCT).
- (b) whole-day radio quality indices (beginning October 1952). Each index is a weighted average of the four quarter-day Qa-figures, before rounding off, with half weight given to quality grades 5 and 6. This procedure tends to give whole-day indices suitable for comparison with whole-day advance fore-casts which designate whenever possible the days when significant disturbance or unusually quiet conditions will occur.
- (c) short-term forecasts, issued by CRPL every six hours (nominally one hour before 00^h, 06^h, 12^h, 18^h UT) and applicable to the period 1 to 13 (especially 1 to 7) hours ahead. Note that new scoring rules have been adopted beginning with October 1952 data.
- (d) advance forecasts, issued semiweekly (CRPL-J reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole-day quality indices.
- (e) half-day averages of the geomagnetic K indices measured by the Cheltenham Magnetic Observatory of the U. S. Coast and Geodetic Survey.
- (f) illustration of the comparison of short-term forecasts with Qa-figures and also with estimates of radio quality based on CRPL observations only.
- (g) illustration of the outcome of advance forecasts (1 to 3 or 4 days ahead) and, for comparison, the outcome of a type of "blind" forecast. For the latter the frequency for each quality grade, as determined from the distribution of quality grades in the four most recent months of the current season, is partitioned among the grades observed in the current month in proportion to the frequencies observed in the current month.

These radio propagation quality figures, Qa, are prepared from radio traffic data reported to CRPL by American Telephone and Telegraph Company, Mackay Radio and Telegraph Company, RCA Communications, Inc., Marconi Company, British Admiralty Signal and Radar Establishment, and the following agencies of the U.S. Government:—Coast Guard, Navy, Army Signal Corps, and U.S. Information Agency. The method of calculation, summarized below, is similar to that described in a 1946 report, IRPL-R31, now out of print. Only reports of radio transmission on North Atlantic paths closely approximating New York-London are included in the estimation of quality.

The original reports are submitted on various scales and for various time intervals. The observations for each 6-hour interval are averaged on the quality scale of the original reports. These 6-hour indices are then adjusted to the 1 to 9 quality-figure scale by a conversion table prepared by comparing the distribution of these indices for at least fourmonths, usually a year, with a master distribution determined from analysis of the reports originally made on the 1 to 9 quality-figure scale. A report whose distribution is the same as the master is thereby converted linearly to the Q-figure scale. The 6-hourly quality figures are (subjectively) weighted means of the reports received for that period. These 6-hourly quality figures replace, beginning January 1953, the half-daily quality figures which formerly appeared in this table. (These forecasts and quality indices are prepared by the North Atlantic Radio Warning Service, the CRPL forecasting center at Ft. Belvoir, Virginia,)

Table 93 gives for June 1954, the radio propagation quality figures for the North Pacific area, the relevant CRPL advance and short-term forecasts, and sundry comparisons, specifically as follows:

- (a) radio propagation quality figures, Qp, separately for each of three 9-hour intervals of the Greenwich day, viz., 03-12, 09-18 and 18-03 UT (Universal Time or GCT).
- (b) whole-day radio quality indices for each Greenwich day. These are derived from the same basic data as the 9-hour indices, separately reduced.
- (c) short-term forecasts, issued daily at 02, 09 and 18 hours UT.
- (d) advance forecasts, issued semiweekly (CRPL-Jp reports) and applicable 1 to 3 or 4 days ahead, 4 or 5 to 7 days ahead, and 8 to 25 days ahead. These forecasts are scored against the whole day quality indices.

These radio quality indices, Qp, refer to radio propagation on optimum frequencies over moderately long transmission paths in the North Pacific area. Typical paths are Anchorage (Alaska) to Seattle, or Anchorage to Tokyo. The indices are derived from reports submitted regularly by communications agencies of the U.S. Army and Air Force, and by Aeronautical Radio, Inc. The method of derivation of Qp differs from that of Qa. For data prior to June 1944, the reported quality ratings were reduced to a Q-scale with assumed mean and standard deviation for each of the periods of the day; the Qp published was the average converted rating for each date. Beginning with the data for June 1954 a ranking method has been used with the Q-scale bound statistically to magnetic character figures, as follows:

The original reports from the various contributors are used only to rank the days of the month in order of degree of disturbance. The numerical value of Qp assigned to each day is taken from a table which gives the Qp that corresponds in a statistical sense to the magnetic activity observed during the month, it being assumed that the one-month sample is large enough that the distribution of quiet and disturbance will be the same for magnetic and radio quality indices. This table comes from equating the expected distributions of magnetic activity indices and Qp (For the former, the years 1952-53 of K-Cheltenham were used; for the latter the distribution was arbitrary but strongly influenced by experience with Qa and the previous Qp.). In order to avoid the statistic "average rank," the raw scores for each reporterperiod are first converted to the 1-9 scale by ranking and the use of the same table. Mean quality indices for each day-period are then computed and these means ranked and converted by the table to give Qp.

The expected distributions adopted for Qp differ slightly for the different periods of the day for which quality figures are derived. For the 03-12, 18-03 and 00-24 periods 23% of the quality figures are 4 or less and for the 09-18 period 25% are. In the periods 18-03 and 00-24, indices of seven or greater are expected 25% of the time; in the 03-12 period 22% and in the 09-18 period 16%. (These forecasts and quality indices are prepared by the North Pacific Radio Warning Service, the CRPL forecasting center at Anchorage, Alaska.)

These quality figures are, in effect, a consensus of reported radio propagation conditions. The reasons for low quality are not necessarily known and may not be limited to ionospheric storminess. For instance, low quality may result from improper frequency usage for the path and time of day. Although, wherever it is reported, frequency usage is included in the rating of reports, it must often be an assumption that the reports refer to optimum working frequencies. It is more difficult to eliminate from the indices conditions of low quality because of multipath, interference, etc. These considerations should be taken into account in interpreting research correlations between the C-figures and solar, auroral, geomagnetic or similar indices.

Tables 95 through 97 give the observations of the solar corona during July 1954, obtained at Climax, Colorado, by the High Altitude Observatory of Harvard University and the University of Colorado. Tables 98 through 100 list the coronal observations obtained at Sacramento Peak, New Mexico, during July 1954, derived by Harvard College Observatory as a part of its performance of a research contract with the Upper Air Research Observatory, Geophysical Research Directorate, Air Force Cambridge Research Center. The data are listed separately for east and west limbs at 5-degree intervals of position angle north and south of the Solar Equator at the limb. The time of observation is given to the nearest tenth of a day, GCT.

Table 95 gives the intensities of the green (5303A) line of the emission spectrum of the solar corona; table 96 gives similarly the intensities of the first red (6374A) coronal line; and table 97, the intensities of the second red (6702A) coronal line; all observed at Climax in July 1954.

Table 98 gives the intensities of the green (5303A) coronal line; table 99, the intensities of the first red (6374A) coronal line; and table 100, the intensities of the second red (6702A) coronal line; all observed at Sacramento Peak in July 1954.

The following symbols are used in tables 95 through 100: a, observation of low weight for whole limb (if in date column) or for portion of limb indicated; -, corona not visible; and X, no observation for whole limb (if in date column) or for portion of limb indicated.

RELATIVE SUNSPOT NUMBERS

Table 101 lists the daily provisional Zürich relative sunspot number, Rz, for July 1954, as communicated by the Swiss Federal Observatory. Table 102 contains the daily American relative sunspot number, RA', for June 1954, as compiled by the Solar Division, American Association of Variable Star Observers.

OBSERVATIONS OF SOLAR FLARES

Table 103 gives the preliminary record of solar flares reported to the CRPL. These reports are communicated on a rapid schedule at the sacrifice of detailed accuracy. Definitive and complete records are published later in the Quarterly Bulletin of Solar Activity, I.A.U., in various observatory publications, and elsewhere. The present listing serves to identify and roughly describe the phenomena observed. Details should be sought from the reporting observatory.

Reporting directly to the CRPL are the following observatories: Mt. Wilson, McMath-Hulbert, U. S. Naval, Wendelstein, Kanzel and High Altitude at Sacramento Peak, New Mexico. The remainder report to Meudon (Paris) and the data are taken from the Paris-URSIgram broadcast, monitored fairly regularly by the CRPL. The data on solar flares reported from Sacramento Peak, New Mexico, communicated by the High Altitude Observatory at Boulder, Colorado, are provided by Harvard University as the result of work undertaken on an Air Materiel Command Research and Development Contract administered by the Air Force Cambridge Research Laboratories.

The table lists for each flare the reporting observatory, date, times of beginning and ending of observation, duration (when known), total area (corrected for foreshortening), and heliographic coordinates. For the maximum phase of the flare is given the time, intensity, area relative to the total area, and the importance. The column "SID observed" is to indicate when a sudden ionosphere disturbance, noted elsewhere in these reports, occurred at the time of a flare. Times are in Universal Time (GCT).

INDICES OF GEOMAGNETIC ACTIVITY

Table 104 lists various indices of geomagnetic activity based on data from magnetic observatories widely distributed throughout the world. The indices are: (1) preliminary international character-figures, C; (2) geomagnetic planetary three-hour-range indices, Kp; (3) magnetically selected quiet and disturbed days.

The C-figure is the arithmetic mean of the subjective classification by all observatories of each day's magnetic activity on a scale of 0 (quiet) to 2 (storm). The magnetically quiet and disturbed days are selected by the international scheme outlined on pages 219-227 in the December 1943 issue of Terrestrial Magnetism and Atmospheric Electricity. The details of the currently used method follow. For each day of a month, its geomagnetic activity is assigned by weighting equally the following three criteria: (1) the sum of the eight Kp's; (2) the greatest Kp; and (3) the sum of the squares of the eight Kp's.

Kp is the mean standardized K-index from 11 observatories between geomagnetic latitudes 47 and 63 degrees. The scale is 0 (very quiet) to 9 (extremely disturbed), expressed in thirds of a unit, e.g., 5- is 4 2/3, 50 is 5 0/3, and 5+ is 5 1/3. This planetary index is designed to measure solar particle-radiation by its magnetic effects, specifically to meet the needs of research workers in the ionospheric field. A complete description of Kp has appeared in Bulletin 12b, "Geomagnetic Indices C and K, 1948," published in Washington, D. C., 1949, by the Association of Terrestrial Magnetism and Electricity, International Union of Geodesy and Geophysics. Kp is available from 1937 to date as noted in Flo8.

The Committee on Characterization of Magnetic Disturbance, ATME, IUGG, has kindly supplied this table. The Meteorological Office, De Bilt, Holland, collects the data and compiles C and selected days. The Chairman of the Committee computes the planetary index. Current tables are also published quarterly in the Journal of Geophysical Research along with data on sudden commencements (sc) and solar flare effects (sfe).

ERRATA

CRPL-F118, p. 58, fig. 37: "No (M3000)F2 reported" does not belong on the figure. (M3000)F2 should read 3.2 for the 24 hours.

p. 60. fig. 45: At 20.4 hour line, delete "X" at 2.3.

CRPL-Fil9, p. 77, fig. 105: Values of Es from 03 to 10 are plotted one hour too far to the left.

TABLES OF IONOSPHERIC DATA

		(0		Tabl	€ 1			
*Ashin	ston. D. C.	(38.7	N, 77.1	W)				July 195-
Time	h'F2	foF2	h'Fl	foFl	h 'E	foE	fEs	(M3000)F2
00	270	(2.9)					3.0	3.2
01	280	(2.4)					3.8	(3.2)
02	(280)	(2.3)					3.7	3.2
03	(280)	(2.2)					3.8	(3.1)
04	(280)	(2.1)					3.4	(3.3)
0.5	260	2.5	****				2.8	3.3
06	330	3.4	230	3.2	120	1.8	3.7	3.3
C7	410	3.8	220	3.5	110	2.4	4.4	3.0
08	370	4.3	220	3.8	110	2.7	5.0	3.0
09	370	4.6	210	3.9	110	2.8	4.9	3.0
10	380	4.6	200	4.1	100	2.9	5.0	3.0
11	400	(4.7)	200	4.2	100	3.0	5.0	3.0
12	G	(4.3)	200	4.2	100	(3.1)	5.1	0
13	460	4.5	200	4.2	110	3.1	5.0	2.8
14	430	4.5	200	4.1	110	3.1	4.3	2.8
15	400	4.5	200	4.0	110	3.0	4.7	2.9
16	400	4.4	210	3.9	110	2.9	4.6	2.9
17	350	4.5	220	3.7	110	2.5	4.4	3.0
18	320	4.5	230	3.3	110	2.1	5.2	3.1
19	270	4.7	240				5.0	3.2
20	250	4.8		Apr. 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			4.3	3.2
21	2 50	4.3					4.2	3.2
22	250	3.8					3.3	3.2
23	(270)	(3.2)					3.2	3.2

Time: 75.00%.

Sweep: 1.0 Mc to 25.0 Mc ir 15 seconds.

San Francisco, California (37.4°N. 122.2°W) June 1954 Time h'F2 foF2 (M3000)F2 f Es foE (3.3) (3.2) (3.0) (3.0) (2.9) 5.4 (4.5) (4.1) 3.8 4.2 00 (260) (260) (270) (270) (270) (300) 330 340 350 390 420 430 380 360 380 350 390 276 (240) (240) (3.1) 01 (3.0) (3.1) (3.0) (3.1) 3.1 3.1 2.9 2.7 2.8 2.9 3.0 3.2 3.1 (3.2) (3.2) (3.2) (3.2) 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 250 230 220 200 (3.2) (2.0) (2.5) (2.8) (3.0) (3.3) 3.5 (3.8) (4.0) 4.1 4.1 (4.0) (4.0) (3.9) (3.7) (3.4) 120 4.4 110 (200) 200 (200) (200) (210) 210 5.0 100 (3.1) (3.2) (3.2) (3.2) (3.2) (3.0) (2.9) (2.6) (2.1) (100) (100) 4.7 4.8 5.0 5.2 5.2 5.2 5.0 5.0 4.8 5.4 (5.1) (4.4) (100) 110 220 (110) (230) 110 (230) (240) 110 22 (240) (250)

Time: 120.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	5			
Narear	suak, Gre	enland (61.2°N,	45.4°W)		_		May 1954
Time	h'F2	foF2	h'Fl	foFl	h'E_	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20	(300) (310) (310) (310) (310) (300) 340 400 410 420 400 410 420 430 410 430 370 380 370 380 (310) 280	(2,9) (2,8) (2,8) (2,8) (2,9) (3,8) (2,9) (2,9) (2,9) (3,8)	240 220 210 210 210 210 210 210 220 220 230 230	3.4 3.5 3.7 3.8 3.9 3.9 3.9 3.9 3.9 3.9	110 100 100 100 100 100 100 100 110 120 12	2.1 2.5 2.6 2.8 2.9 2.9 2.9 2.9 2.9 2.8 2.6 2.8	3.9 4.2 4.4 4.9 5.0 4.4 3.2 3.0	(3.35) (3.3) (3.3) 3.3 3.1 3.0 3.1 3.0 3.0 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
21 22 23	280 250 (250)	(3.5) (3.2) (2.8)					5.9 5.8 5.3	3.3 (3.3) (3.4) (3.3)

Time: 45.0° W.

Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Adak, A	llaska (51	.9°N, 17	6.6°W)					June 1954
Time	h'F2	foF2	h'Fl	· foFl ·	h'E	foE	fEs	(M3000)F2
00	240	4.2					2.4	3.2
01	250	3.8					2.3	3.1
02	250	3.8					2.4	3.1
03	260	3.6				-	2.4	3.1
04	310	3.9	240	2.6	130	1.5	2.4	3.0
05	340	4.3	240	3.1	120	1.9	2.8	3.0
06	350	4.6	230	3.4	110	2.3	4.8	3.0
07	360	4.6	240	3.7	100	2.6	5.9	3.0
08	< 370	4.8	230	3.8	100	2.8	6.2	3.0
09	360	4.8	220	4.0	100	3.0	7.4	3.0
10	390	4.8	210	4.0	100	3.0	6.6	2,95
11	390	4.6	200	4.1	100	3.0	6.1	3.0
12	390	4.6	200	4.1	100	3.0	5.4	3.0
13	470	4.4	200	4.1	100	3.0	5.2	2.7
14	141:0	4.4	200	4.0	100	2.9	4.9	2.8
15	420	4.3	210	4.0	100	2.8	4.2	2.85
16	380	4.4	220	3.8	100	2.7	5.2	3.0
17	360	4.4	230	3.7	110	2.4	5.2	3.1
18	320	4,5	240	3.4	110	2.1	4.8	3.1
19	< 300	4.8	240	3.0	120	1.6	4.6	3.15
20	260	5.5					4.8	3.15
21	250	5.9					3.9	3.2
22	230	5.6					3.7	3.3
23	240	4.7					3.5	3.2

Time: 180.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

	Table L										
Anchore	ge, Alack	a (61.2°	N. 149.9	0W)				May 1954			
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2			
00	290	(2.2)					2.4	(3.1)			
01	280	(1.8)					3.2	(3.0)			
02	280	1.8					2.6	3.0			
03	270	2.5					2.7	3.1			
04	320	3.0	230	2.8	120	1.6	2.9	3.0			
0.5	420	3.5	220	3.0	110	1.8	3.1	2.8			
06	450	3.7	210	3.3	110	2.1	3.3	2.8			
07	430	3.9	200	3.5	100	2.3	3.6	2.8			
08	440	4.0	200	3.6	100	2.6	3.4	2.8			
09	4 50	4.1	200	3.7	100	2.7	3.7	2.7			
10	480	4.2	200	3.8	100	2.8	3.3	2.7			
11	420	4.3	200	3.9	100	2.8	3.8	2.9			
12	430	4.3	200	3.9	100	2.8	3.2	2.8			
13	500	4.2	200	3.9	100	2.8	3.2	2.6			
14	430	4.3	200	3.9	100	2.8	3.0	2.8			
15	4 50	4.2	210	3.8	100	2.7	2.8	2.7			
16	390	4.2	210	3.7	100	2.6	2.7	3.0			
17	350	4.2	220	3.6	110	2.4		3.1			
18	320	4.2	220	3.3	110	2.1	2.5	3.1			
19	290	4.1	230	3.2	130	(1.8)	2.9	3.2			
20	240	4.0	5/10				3.3	3.2			
21	240	4.0					3.4	3.2			
22	240	3.7					2.8	3.2			
23	240	2.8					3 5	3.2			

Time: 150.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

adak, a	Adak, Alaska (51.9°K, 175.6°W) Table 6												
Time	h'F2	foF2	h'Fl	foFl	h'E_	foE	fEs	(M3000)F2					
00	2.50	3.9					3.4	3.1					
01	260	3.6					2.5	3.1					
02	270	3.6					2.2	3.0					
03	270	3.6					2.4	3.0					
04	300	3.7	250	2.4	140	1.5	2.0	3.0					
05	350	4.C	2! 0	3.1	120	1.8	2.9	3.0					
06	340	4.4	240	3.4	110	2.2	3.3	3.0					
07	340	4.9	230	3.6	110	2.5	4.4	3.0					
08	350	4.8	220	3.9	100	2.7	5.2	3.0					
09	350	4.8	210	4.0	100	2.9	6.2	3.1					
10	360	4.7	210	4.0	100	3.0	6.0	3.05					
11	400	4.6	210	4.1	100	3.0	5.2	2.9					
12	380	4.7	210	4.1	100	3.0	5.6	3.0					
13	410	4.6	200	4.1	100	2.9	4.8	2.9					
14	1+00	4.6	210	4.0	110	2.8	4.2	3.0					
15	400	4.5	220	3.9	110	2.8	4.1	2.9					
16	360	4.5	230	3.8	110	2.6	4.3	3.1					
17	320	4.6	230	3.6	110	2.4	3.8	3.1					
18	290	4.7	2H0	3.4	110	2.0	4.3	3.2					
19	270	4.8			130	1.5	3.7	3.2					
20	250	5.4					3.5	3.2					
21	240	5.4					3.0	3.2					
22	240	4.8					3.1	3.2					
23	240	4.3					3.4	3.2					

Time: 180.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Tabl	e 7			
San Fr	ancisco. C	aliforni	R (37.4°	N. 122.2	OW)			May 1954
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	fEs	(M3000)F2
00	(280)	(3.3)					4.0	(3.0)
01.	(280)	(3.4)					(3.6)	(3.0)
02	(280)	(3.2)					(2.8)	(3.0)
03	(270)	(3.0)					(3.2)	(3.1)
04	(280)	(3.0)					(3.8)	(3.1)
05	(280)	(3.0)	270				(3.7)	(3.1)
06	310	(3.8)	250	(3.2)	(130)	(2.0)	(3.8)	(3.2)
07	350	4.3	240	(3.6)	110	(2.5)	4.3	3.0
08	350	4.7	230	(3.8)	110	(2.8)	4.8	3.05
09	360	4.8	220	(3.9)	110	(3.0)	5.4	3.0
10	390	5.0	210	(4.0)	110	(3.1)	5.7	2.9
11	380	4.9	(210)	4.1	110	(3.2)	5.5	2.9
12	400	4.9	220	4.2	110	(3.2)	5.5	2.8
13	380	5.2	(220)	4.2	110	(3.0)	4.8	2.9
14	370	5.0	230	4.1	(110)	(3.0)	4.0	2.9
15	370	5.1	230	(4.0)	110	(3.0)	4.5	3.0
16	340	5.0	230	(3.8)	110	(2.8)	4.2	3.0
17	330	4.9	230	(3.6)	120	(2.6)	3.8	3.1
18	300	4.9	240	(3.3)	120	(2.2)	3.7	3.1
19	260	5.0					4.0	3.1
20	(250)	5.6					3.8	3.2
21	(240)	(4.8)					3.7	(3.2)
22	(240)	(4.0)					(4.3)	(3.2)
23	(260)	(3.6)					(4.0)	(3.1)

Time: 120.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Maui, E	Hawaii (20	.8°N, 15	6.5°W)	Tabl	.e 9			May 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 28 19 20 21	300 290 290 280 290 280 330 380 410 370 360 350 220 240 250 250	3.8 3.8 3.8 3.1 2.9 3.9 5.5 5.6 6.1 6.6 7.7 10.6 9.8 7.0	250 230 230 210 210 210 220 230 230 240 250 250	3.66 4.0 4.2 4.3 4.3 4.3 4.3 4.1 4.0 3.8	120 120 110 110 110 110 120 120 120 130	2.1 2.6 2.9 3.1 3.2 3.3 3.2 3.1 2.9 2.5	3.5 3.0 2.6 2.6 2.2 2.8 5.6 5.6 5.6 5.4 5.5 5.2 4.2 4.2 4.3 3.8 3.6 3.6	2.9 3.1 3.2 3.1 3.0 3.1 3.2 3.15 3.0 2.8 2.6 2.7 2.8 2.9 3.1 3.2 3.1 3.2 3.1 3.2 3.1 3.2 3.1
22 23	260 290	4.6					3.5 3.7	2.9

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Guam I.	(13,6°¥,	(13.6°H, 144.9°E) Table 11											
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2					
00	320	3.2					3.2	2.9					
01	310	3.0					2.9	3.0					
02	300	3.0					2.2	3.2					
03	280	2.2					2.8	(3.4)					
OLL	270	2.3					2.3	3.45					
05	240	2.2					2.6	3.55					
05	240	3.5					2.9	3.5					
07	250	5.3	230		120	2.1	2.9	3.5					
08	280	6.0	220		110	2.6	3.6	3.3					
09	330	5.2	210	4.1	110	2.9	4.6	3.0					
10	380	6.5	200	4.2	110	3.1	4.7	2.7					
11	420	6.9	300	4.2	110	3.2	4.4	2.6					
12	420	7.1	200	4.3	110	3.3	4.6	2.4					
13	410	7.4	200	4.2	110	3.3	4.2	2.5					
14	400	7.8	220	4.2	110	3.2	5.0	2.6					
15	370	7.9	220	4.1	110	3.1	4.7	2.6					
16	350	8.2	220	3.9	110	2.8	4.4	2.8					
17	300	3.9	220		110	2.4	4.8	3.0					
18	(270)	9.0	230		120	1.6	4.2	3.0					
19	230	8.2					3.8	3.2					
20	240	6.6					4.3	3.2					
21	260	5.2					3.1	3.1					
22	300	4.5					2.8	3.0					
23	310	3.7					2.6	2.9					

Time: 150.0°2. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

to a c				Tabl				
	ands, New		(32.3°N,					May 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	3.3					3.5	3.0
01	280	3.3					2.6	3.0
02	270	3.3					2.5	3.1
03	260	3.2					2.5	3.1
04	270	3.0					3.0	3.1
05	260	3.1					2.9	3.2
06	280	4.0	230	3.2	120	1.8	4.2	3.2
07	310	4.5	230	3.6	120	2.4	5.8	3.1
08	3,30	4.8	220	3.9	120	2.7	5.0	3.0
09	340	5.0	210	4.0	120	3.0	5.3	3.1
10	370	4.8	200	4.2	120	3.1	5.2	3.0
11	400	5.0	200	4.2	120	3.2	5.0	2.9
12	400	5.0	200	4.2	120	3.3	4.7	2.8
13	400	5.1	200	4.2	120	3.2	4.5	2.8
14	360	5.6	220	4.1	120	3.1	4.5	2.9
15	340	5.6	220	4.0	120	3.0	4.6	3.0
16	320	5,6	220	3.9	120	2.8	4.8	3.1
17	300	5.5	230	3.6	120	2.4	4.7	3.1
18	280	5.6	240	3.2	120	1.9	4.0	3.1
19	240	5.7		,	-40	- 07	3.4	3.2
20	230	5.9					3.6	3.3
21	240	4.4					3.4	3.3
22	260	3.5					3.6	3.1
23	280	3.3					3.0	2.1

23 280 3.3

Time: 105.0°W.

Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Puerto	Rico, W.	I. (18.4	°N, 67.2	(W°				May 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	4.0					2.4	2.9
01	270	4.1					2.6	3.0
02	250	3.8					2.4	3.2
03	240	3.5						3.1
04	260	3.1						3.0
05	250	2.9					2.0	3.2
06	240	3.4					2.2	3.4
07	260	4.7	220	3.5	110	2.0	3.0	3.4
08	280	5.0	210	3.8	110	2.6	4.0	3.35
09	320	5.2	210	4.1	110	2.9	4.0	3.2
10	340	5.6	200	4.2	110	3.1	4.1	3.0
11	350	5.8	220	4.3	110	3.3	4.5	2.9
12	350	6.6	210	4.3	110	3.3	3.1	2.9
13	330	7.6	220	4.3	110	3.3	3.6	2.9
14	310	8.2	220	4.2	110	3.2	3.8	3.0
15	300	8.5	230	4.1	110	3.1	4.4	3.1
16	280	8.7	220	3.9	110	2.9	4.0	3.1
17	270	8.8	220	3.7	110	2.5	4.0	3.2
18	250	8.6	230				3.5	3.3
19	220	8.0					2.5	3.4
20	220	5.9					2.7	3.2
21	250	4.9					2.5	3.1
22	2 7 0	4.4					2.4	3.0
23	290	4.1					2.3	3.0

Time: 60.0°W. Sweep: 1.0 Mc tc 25.0 Mc in 15 meconds.

Panama	Canal Zone	(9.4°N,	79.9°W)	Tabl	e 12			May 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
					120 110 110 110 110 110 110 110	2.2 2.7 3.0 3.2 3.3 3.3 3.3 3.2 3.0 2.8 2.3	fEs 2.2 2.1 2.4 2.3 2.2 2.6 2.8 3.8 4.0 4.1 4.3 4.2 4.4 4.6	(M5000)F2 3.1 3.1 3.0 3.1 3.25 3.2 3.3 3.4 3.2 2.9 2.7 2.7 2.8 2.85 3.0 3.1 3.2
18 19	250 220 240	10.0 8.2 6.7	230				3.9 3.6 3.0	3.3 3.2 3.1
20 21 22 23	260 270 280	5.6 5.0 4.4					2.1	3.0 3.1 3.0

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabl	e 13			
Anchorne	e, Alask	a (61.2°	N, 149.9)°W)				April 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	320	(2.1)						(3.0)
01	330	(1.8)					2.4	(2.9)
02	340	(1.8)					2,5	(2.9)
03	350	(2.0)					2.4	(2.8)
04	300	2.3					2.7	2.9
95	310	2.7	250	2.7	110	1.6	1.8	2.9
06	640	3.1	230	3.0	110	1.9		2.35
07	780	3.4	210	3.2	110	2.2		2.15
80	560	3.6	210	3.4	110	2.4		2.5
09	600	3.8	210	3.6	110	2.5		2.45
10	580	3.9	210	3.7	110	2.6		2.4
11	500	4.1	200	3.7	110	2.7		2.6
12	480	4.2	200	3.8	110	2.7		2.7
13	480	4.1	200	3.8	110	2.7		2.7
14	430	4.2	210	3.7	110	2.7		2.8
15	370	4.2	220	3.7	110	2.6		3.0
16	330	4.2	220	3.5	110	2.4		3.1
17	310	4.0	230	3.3	110	2.1		3.2
18	280	3.9	240		120	(1.8)		3.2
19	2 50	3.8	240		140	(1.7)		3.2
20	250	3.4						3.1
21	260	3.1						3.0
22	290	(2.5)						(3.0)
23	310	(2.2)						(3.0)

Time: 150.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabl	e 15			
San Fr	ancisco. C	alifornia	a (37.4°1	1, 122.2	W)			April 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	(290)	3.1					(2.8)	2.9
01	(290)	(3.0)					(2.9)	(3.0)
02	(280)	(3.0)					2.3	(3.0)
03	(280)	(2.8)					(3.0)	(3.0)
04	(280)	(2.8)					2.9	(3.0)
05	(280)	(2.8)					2.8	(3.0)
06	(290)	(3.6)	260				(3.4)	(3.1)
07	320	4.3	240	(3.4)	120	(2.2)	(3.7)	3.2
08	340	4.8	230	(3.7)	110	(2.6)	3.9	3.1
09	340	5.0	220	(3.9)	110	(2.9)	4.0	3.1
10	360	5.0	220	(4.0)	110	(3.0)	3.9	3.0
11	40C	4.9	(220)	(4.1)	(110)	(3.2)	4.2	2.9
12	390	5.1	(220)	(4.1)	110		3.8	2.9
13	370	5.2	220	4.1	(110)	(3.2)	3.8	2.9
14	350	5.5	220	(4.0)	(110)	(3.1)	3.3	3.0
15	340	5.2	230	(4.0)	(110)	(3.0)	3.6	3.0
16	320	5.1	240	(3.9)	(120)	(2.7)	3.5	3.1
17	300	4.8	2 50	(3.5)	120	(2.3)	3.8	3.2
18	270	4.9	250				3.7	3.25
19	250	4.7					2.9	3.2
20	250	4.4					(3.0)	3.1
21	(250)	3.7					(3.6)	3.1
22	(260)	(3.4)					(3.2)	3.0
23	(290)	(3.1)					3.0	2.95

Time: 120.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Puerto	Rico, W.	I. (18.5	°N. 67.2	°W)				April 1954
Time	h'F2	foF2	h'F1	foF1	h'E	foE	f Es	(M3000)F2
00	280	3.8						3.0
01	270	3.7						3.0
02	250	3.6						3.2
03	240	3.3						3.35
04	260	2.9						3.2
0.5	250	2.7						3.1
06	240	3.0						3.3
07	240	4.6	220		110	1.8	2.5	3.5
08	270	5.2	220	3.9	110	2.5	3.0	3.4
09	300	5.4	220	4.1	110	2.8	3.4	3.3
10	330	5.5	210	4.2	110	3.1	3.7	3.1
11	340	6.3	230	4.3	110	3.2	2.8	2.9
12	330	7.4	220	4.3	110	3.3	2.8	2.9
13	300	8.4	230	4.3	110	3.3	3.1	3.1
14	280	9.0	230	4.3	110	3.2	2.5	3.2
15	270	8.7	230	4.2	110	3.1	4.1	3.2
16	260	8.1	220	4.0	110	2.9	4.2	3.3
17	270	7.2	230	3.7	110	2.4	4.0	3.3
18	250	6.8	230		110		3.3	3.4
19	220	6.5					3.0	3.4
20	220	5.1					2.8	3.15
21	260	4.2					2.4	3.0
22	290	3.8					2.1	2.9
23	290	3.6						2.9

Time: 60.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Narsurssuak, Greenland (61.2°N, 45.4°W)										
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	April 1954 (M3000)F2		
00	(300)	(2.7)					4.8			
01							4.4			
02							4.2			
03							4.6			
04							4.8			
05							4.4			
06	(260)	(3.2)					4.7	(3.3)		
07	(700)	3.5	220	3.3			3.0	2.45		
08	390	3.9	220	3.5	110	2.5	, , ,	3.0		
09	370	4.0	220	3.6	110	2.6		3.2		
10	380	4.2	220	3.7	110	2.7		3.05		
11	400	4.3	220	3.8	110	2.7		3.0		
12	400	4.4	220	3.8	110	2.7		3.0		
13	400	4.4	220	3.8	100	2.7		3.0		
14	390	4.3	220	3.7	110	2.5		3.05		
15	370	4.2	220	3.7	110	2.6		3.1		
16	380	4.0	230	3.5	110	2.4	2.3	3.1		
17	360	4.0	240	3.3	110	(2,2)	3.9	3.2		
18	(330)	(3.8)	2 50	(3.1)	110		4.0	(3.2)		
19	300	3.7					4.9	3.3		
20	280	(3.2)					5.6	(3.3)		
21	(300)	(3.0)					7.4	(3.2)		
22	(300)	(2.8)					6.7			
23							4.8			

Z3 --- --Time: 45.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

				Tabl	e 16			
White S	ands, New	Mexico	(32.3°N,	106.5°W)			April 195
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	300	3.1					2.4	2.9
01	300	3.1					3.0	2.9
02	280	3.2					2.4	3.0
03	280	3.0					2.4	2.9
04	270	3.1					2.2	3.0
05	280	2.9					2.3	3.0
06	270	3.8	240		-		3.5	3.2
07	300	4.7	230	3.5	120	2,2	4.4	3.2
08	310	5.0	220	3.8	120	2.6	5.2	3.2
09	350	4.9	210	4.0	120	2.8	5.3	3.0
10	360	5.2	200	4.1	120	3.0	4.9	2.95
11	380	5.2	200	4.2	110	3.1	4.6	2.9
12	380	5.6	200	4.2	120	3.2	4.6	2.9
13	350	5.7	210	4.2	120	3.2	4.0	2.9
14	330	6.2	220	4.2	120	3.1	4.7	3.0
15	320	6.0	220	4.0	120	2.9	3.7	3.05
16	310	5.8	230	3.9	120	2.6	4.0	3.1
17	290	5.6	240	3.5	120	2.3	3.7	3.2
18	2 50	5.6	240			-	3.6	3.3
19	240	5.2					2.9	3.3
20	240	4.3						3.3
21	250	3.4						3.0
22	290	3.0						3.0
23	300	3 1					2 2	2.0

23 300 3.1

Time: 105,0°W.
Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Tabl	e 18			
Guan 1.	(13.6°N,	144.9°E)						April 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	320	4.2					2.4	2.8
01	31C	4.0						3.0
02	280	3.9						3.1
03	260	3.8						3.35
04	240	3.4						3.5
05	240	2.7					1.8	3.6
06	260	2.9						3.35
07	240	5.4	230		120	1.8	2,3	3.6
08	270	6.3	230		120	2.5	3.0	3.35
09	310	7.0	220	(4.2)	110	2.9	4.2	3.0
10	350	7.4	210	4.3	(110)	3.1	3.9	2.6
11	370	7.9	210	4.3	110	3.2	3.7	2.4
12	370	8.2	210	4.4	110	3.3		2.3
13	370	8.2	210	4.4	110	3.3	3.5	2.4
14	370	8.7	210	4.3	110	3.2	3.6	2.5
15	340	9.6	220	4.2	110	3.0	3.4	2.6
16	320	10.2	220	(3.9)	(110)	2.8	3.8	3.8
17	290	10.9	230		120	2.4	3.7	3.0
18	260	10.4	240				3.9	3.15
19	240	9.4					3.1	3.2
20	250	7.6					3.4	3.1
21	260	6.6					3.0	3.0
22	280	5.4					3.2	3.0
23	310	4.9					3.3	2.9

Time: 150.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

				Table	19			
Panama	Canal Zone	(9.4° №.	79.9°W)					April 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	3.9						3.0
01	250	3.9						3.05
02	240	3.6						3.15
03	240	3.2					1.9	3.1
O4	250	3.1						3.2
05	240	2.8					1.8	3.3
06	250	3.0					2.0	3.1
07	240	4.6	220		120	2.0	3.4	3.4
08	310	5.2	220	4.2	110	2.6	3.5	3.1
09	360	5.8	230	4.2	110	3.0	4.0	2.9
10	340	7.2	230	4.3	110	3.2	4.2	2.9
11	360	8.2	220	4.3	110	3.3	4.3	2.8
12	360	9.4	220	4.3	110	3.4	4.6	2.9
13	330	10.4	220	4.3	110	3.4	4.7	2.95
14	310	10.8	220	4.3	110	3.2	4.7	3.0
15	300	11.0	230	4.2	110	3.1	4.6	3.1
16	290	11.0	230	4.1	110	2.8	4.3	3.1
17	270	10.8	230	3.8	110	2.3	4.0	3.2
18	240	9.8					4.0	3.3
19	220	7.8					3.0	3.2
20	240	6.4					2.2	3.05
21	250	5.4					2.2	3.0
22	270	4.6						3.0
23	280	4.3						3.0

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 eeconds.

		_	_	Table	e 21			
Tromso,	Norway	(69.7°N.	19.0°E)					March 1954
Time	h'F2	foF2	h'F1	foFl	h'E	foE	ſEs	(M3000)F2
00								
01								
02								
03								
Oth								
05							(- ·)	
06							(1.4)	4>
07		(3.2)					1.9	(3.3)
08	(260)		240					3.3
09	(250)		240					3.25
10	(340)		230	3.6				3.25
11	325	4.0	225	3.6	120	2.3		3.15
12	300	4.2	220	3.6	115	2.4		3.3
13	270	4.1	220		115	2.2		3.35
14	(270)		225		115	2.1	0.1	3.35
15	(240)		230		120	2.0	2.4	3.3
16	(250)		240		135	1.8	1.7	3.35
17	(240)				125	1.6	3.8 4.0	3.3 (3.15)
18	(260)	3.2					4.2	().1)
19							3.9	
20								
21							4.2	
22	į .						(4.6)	
23	1						(4.6)	

Time: 15.0°E.

Sweep: 0.6 Mc to 25.0 Mc in 5 minutee, automatic operation.

Lulea,	Sweden (65	5.6 N. 2	2.1 E)	Table	23			March 1954
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00 01	330	2.2					2.0	
02 03	(330)	2.1					1.8	
04	315	1.9						
05 06	255	3.0				1.8		
07 08	255	3.8	225	3.1	120	2.3		
09 10	305	4.3	205	3.5	110	2.5		
11 12	305	4.5	205	3.7	110	2.6		
14	270	4.5	205	3.5	110	2,4		
13 14 15 16 17 18	245	4.0	225	2.5	140	2,0		
18	250	3.4						
19 20	300	2.4						
21 22 23	325	2.1					2.6	

Time: 15.0°E. Sweep: 1.5 Mc to 10.0 Mc in 6 minutes.

Ecsolute Bay, Canada (74.7°N, 94.9°W) March 1954									
Resolut	е Вау, Са	nada (74	.7 N. 94	.9°W)				March 1954	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	240	2.8						3.2	
01	2 50	2.6						3.2	
02	240	2.6						3.2	
03	240	2.6						3.2	
04	250	2.5						3.2	
05	250	2.4			130	1.1		3.2	
06	250	3.0			110	1.4		3.2	
07	250	3.1	230		110	1.6		3.3	
08	250	3.2	220	(3.0)	110	1.7		3.25	
09	270	3.5	230	3.0	110	1.9		3.3	
10	300	3-6	220	3.1	110	2.0		3.15	
11	360	3.6	230	3.2	120	2.0		3.0	
12	360	3.7	220	3.1	110	2.0		3.05	
13	390	3.6	220	3.1	110	2.1		2.95	
14	360	3.6	230	3.1	120	2.1		3.0	
15	360	3.6	230	3.0	120	2.0		3.0	
16	310	3.7	230	3.0	120	2.0		3.1	
17	270	3.6	240	3.0	120	1.8		3.1	
18	260	3.7			110	1.6		3.2	
19	250	3.5			120	1.3		3.2	
20	240	3.7				1.1		3.2	
21	250	3.1						3.1	
22	230	3.5						3.2	
23	240	3.0						3.2	

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Kiruna.	Sweden	(67.8°N.	20.3°E)	Tabl	e 22			March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00							3.5	
01							3.7	
02	(350)	(2.0)					2.4	(2.9)
03							2.1	
04	(350)	(2.1)					2.1	(3,2)
05	(345)	(2.1)					(2.0)	3.25
06	(290)	(2.1)						(3.2)
07	260	3.0						3.3
08	270	3.6			110	2.0		3.35
09	260	3.7	240	3.2	110	2.0		3.5
10	280	3.7	240	3.2	110	2.0		3.4
11	305	3.8	230	3.2	110	2.0		3.4
12	300	3.9	230	3.3	110	2.1		3.4
13	285	3.9	230	3.2	2.10	2.1		3.4
14	280	3.9	230	3.2	110	2.0		3.4
15	265	3.8	230	2.9	110	2.0		3.5
16	260	3.6				1.9		3.45
17	260	3.3						3.4
18	275	3.1					2.0	3.4
19	260	3.0					2.8	3.4
20							3.2	
21							3.6	
22							3.5	
23							3.9	

Time: 15.0°E. Sweep: 0.8 Mc to 15.0 Mc in 30 seconds.

	ake, Cana					0.17		March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	250	2.2				E	3.3	3.1
01	250	2.0				E	3.7	3.1
02	250	1.8				E	5.3	3.1
03	250	1.9				E	5.7	3.0
04	270	1.8				X	4.2	3.0
05	260	(2.4)				E	4.5	(3.0)
06	250	2.6			120	1.5	4.0	(3.1)
07	250	2.9			120	1.8	3.3	3.2
08	250	3.3	200	2.9	120	2.1	3.0	3.2
09	300	3.5	240	3.4	120	2.4		3.1
10	320	3.9	250	3.6	110	2.8	4.2	3.1
11	370	3.9	230	3.5	120	2.8	3.9	2.9
12	400	4.0	240	3.5	110	2.8		2.9
13	380	4.1	230	3.5	120	2.8		2.9
14	360	4.3	230	3.4	120	2.8		2.95
15	340	4.2	230	3.3	120	2.6		2.8
16	320	3.9	230	3.2	120	2.3	3.0	3.0
17	260	3.8	230	3.0	120	2.0	3.0	3.1
18	270	3.3			120	1.8	4.0	3.0
19	250	3.3			120	1.5	3.7	3.1
20	240	3.0				E	3.7	3.0
21	240	2.9				E	3.8	3.05
22	230	2.8				K	3.1	3.2
23	240	2.5				E	4.0	3.2

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Reykjav	March 1954							
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00							5.0	
01	{						5.0	
0.2							5.2	
03							5.4	
04							5.2	
05							4.4	
06	(300)	(2.4)					2.8	(3.2)
07	(280)	(3.0)					2.1	(3.2)
08	(270)	3.2						3.35
09	(290)	(3.6)						(3.2)
10	320	4.0	240	3.4				(3.2)
11	330	4.2	220	3.6	110			3.2
12	340	4.2	240	3.6				3.2
13	340	4.3	230	3.6				3.2
14	330	4.3	240	3.6				3.2
15	320	4.3	230	3.5	120			3.3
16	310	4.0	240	3.3	110	2.1		3.2
17	300	3.9	250		120	2.1	2.3	3.2
18	(260)	3.7					4.2	(3.2)
19	(260)						4.6	
20							4.0	
21							4.4	
22							5.5	
23							4.8	

Time: 15.0°W.
Sweep: 1.0 Mc to 25.0 Mc in 18 seconds.

Oslo, h	Norway (60	.0°N, 11.	,1°E)	Tabl	e 27			March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	ſEs	(M3000)F2
00		(1.7)						
01	(340)	(1.6)						(2.9)
02	(325)	1.8						2.9
03	(300)	1.8						(3.0)
04	300	1.7						2.95
0.5	290	1.7						3.05
06	270	2.4					1.2	3.1
07	2 50	3.1	230		130	1.8		3.35
08	250	3.6	230		120	2.0		3.35
09	(335)	4.0	220	3.6	120	2.2	2.4	3.3
10	340	4.2	210	3.7	110	2.4	2.5	3.25
11	320	4.4	210	3.7	115	2.4	2.6	3.25
12	310	4.5	205	3.8	110	2.5	3.0	3.25
13	300	4.6	205	3.7	115	2.5	2.7	3.3
14	295	4.8	210	3.7	115	2.4		3.35
15	290	4.6	225	3.6	120	2.3		3.35
16	260	4.6	230		120	2.2		3.35
17	250	4.4	240		120	1.9		3.3
18	245	4.3	245					3.3
19	250	3.8						3.2
20	250	3.2						3.1
21	255	2.4						3.1
22		1.8						(3.05)

22 --- (1.7)

Time: 15.0°E.

Sweep: 0.6 Mc to 14.0 Mc in 8 minutes, automatic operation.

Fort Ch	March 19,4							
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00							6.0	
01							4.2	
02							3.8	
03					100	2.7	4.2	
04		< 3.0			100	3.2	2.6	
05	~						4.4	
06	(290)	(2.9)			100	2.7	4.2	
07	(260)	3.4			100	2.1	4.0	(3.5)
08	(340)	3.7	210	3.4	100	2.4		(3.2)
09	(340)	4.0	220	3.6	100	2.6		3.2
10	350	4.0	220	3.6	100	2.7		3.1
11	360	4.2	210	3.7	100	2.8		3.1
12	380	4.2	210	3.7	100	2.7		3.0
13	360	4.2	230	3.6	100	2.7		3.1
14	340	4.5	220	3.5	100	2.6		3.1
15	350	4.4	230	3.4	100	2.5	2.6	(3.0)
16	320	4.0	230	3.2	100	2.4	3.1	(3.05)
17	290	3.6	240		100	2.4	4.2	
18	(270)	3.2			100	2.3	6.0	
19	(220)	2.9				2.8	6.4	
20	(220)	2.8					6.7	
21	(260)	2.5					6.1	
22	(300)	(2.4)					6.2	
23		(2.2)					6.0	

Time: 75.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Nareare	March 1954							
Time	h'F2	foF2	h'Fl	foFl	h ' E	foE	fEs	(M3000)F2
00							5.0	
01							4.6	
02	}						4.8	
03							4.8	
04							5.1	
05							5.2	
06							4.8	
07	(280)	(3.6)					3.1	(3.4)
08	(270)	(3.8)	230		120	2.2	7-	(3.35)
09	340	3.9	220	3.4	120	2.4		3.3
10	340	4.0	220	3.6	110	2.6		3.2
11	350	4.2	220	3.6	100	2.6		3.2
12	330	4.2	220	3.6	110	2.6		3.2
13	360	4.2	220	3.6	110	2.5		3.1
14	360	4.3	230	3.6	110	2.4		3.2
15	360	4.1	230	3.4	110	2.2		3.2
16	340	3.9	250	3.4	110	2.1	3.9	3.3
17	280	3.7					4.7	3.2
18	(270)	(3.2)					5.0	(3.3)
19	260	(3.2)					5.1	(3.4)
20	(260)	(3.0)					5.9	(3.25)
21							7.5	
22							7.2	
23							5.6	

Time: 45.0°W. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Churchill, Canada (58.8°N, 94.2°W) Table 28 March 1954											
Churchi	111, Canad	a (58.8°	N. 94.2	W)	_			March 1954			
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2			
00	(290)	2.4					9.0	(3.0)			
01	(300)	(2.4)					6.4	(3.2)			
02	(300)	(2.6)					6.0				
03							5.6				
04							5.0				
05		~					4.6				
06	(380)	(3.1)					5.0				
07		(3.2)					5.7				
08	(350)	3.8					4.6	(3.0)			
09	430	3.8	(220)	3.6		2.8	4.3	3.1			
10	420	3.9	230	3.6	110	2.8	4.0	2.9			
11	460	4.0	220	3.7	110	2.8		2.8			
12	410	4.0	220	3.8	110	2.8		3.0			
13	390	4.2	230	3.7	110	2.8		3.0			
14	360	4.5	240	3.7	110	2.8		3.1			
15	350	4.6	230	3.5	110	2.7		3.15			
16	330	4.4	260	3.4	120	2.6		3.2			
17	310	4.2	260		120	2.3	3.9	3.2			
18	300	3.8	_				4.5	3.1			
19	340	3.2					5.0	3.0			
20	330	3.0					5.8	(3.2)			
21	310	3.0					8.0	(3.0)			
22	270	2.8					9.0	3.35			
23	280	2.6				~~~	8.0	(3.25)			

23 280 2.6

Time: 90.00%.
Sweep: 0.6 Mc to 10.0 Mc in 16 seconds.

					e 30			
Prince	Rupert,	Canada (5	4.3°N,	130.3°W)				March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	300	1.4						(3.0)
01	300	1.4					1.0	(3.0)
02	320	1.4					1.5	(2.9)
03	300	1.5					1.2	
04	310	1.5					2.0	
0.5	310	1.6					2.3	
06	300	1.8					1.6	(3.1)
07	270	2.6			110	1.7	2.0	3.15
08	250	3.4	230	3.2	120	2.0	~**	3.3
09	300	3.7	220	3.4	110	2.3		3.1
10	400	4.0	210	3.6	110	2.6		2.9
11	420	4.1	200	3.7	110	2.7		3.0
12	380	4.4	200	3.7	110	2.8		3.0
13	370	4.4	200	3.8	100	2.8		3.1
14	360	4.4	220	3.8	110	2.8		3.1
15	340	4.5	220	3.7	110	2.7		3.2
16	300	4.5	230	3.6	110	2.5		3.3
17	260	4.3	230	3.2	120	2.2		3.3
18	240	4.3	230		120	1.8		3.4
19	230	3.7			160	1.6		3.35
20	240	2.8			-0	-40		3.2
21	260	2.3						3.2
22	270	1.9						3.3
23	280	1.6						(3.1)

Time: 120.0°W. Sweep: 1.0 Mc to 10.0 Mc in 15 seconds.

				Tabl	s 31			
De Bilt	, Holland	(52.1°B,	5.2°E)					March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	ſEs	'(M3000)F2
00	<300	2.5						3.0
01	< 300	2.5						2.9
02	< 300	2.4						3.0
03	< 280	2.3						3.0
04		2.1						3.1
05	< 260	1.9						3.1
06	< 260	2.9	230	2.3		E		3.4
07	250	3.7	240	2.3	130	2.0		3.4
08	280	4.3	230	3.5	130	2.3		3.3
09	300	4.8	240	3.8	125	2.5	2.2	3.4
10	300	5.0	230	3.9	120	2.6		3.3
11	300	5.0	225	4.0	125	2.8	2.4	3.4
12	300	5.2	230	4.0	120	2.9		3.4
13	310	5.1	235	3.9	120	2.8		3.4
14	300	5.2	240	3.8	125	2.7		3.4
15	280	5.0	240	3.6	125	2.5		3.4
16	270	5.0	2 50	3.3	130	2.2		3.4
17	250	4.8	250	2.8		1.8		3.4
18	240	4.6						3.3
19	< 245	4.2						3.3
20	< 260	3.5						3.2
21	< 260	3.0						3.2
22		2.6						3.0
23	< 280	2.5						3.0

Time: 0.0°. Sweep: 1.4 Mc to 11.2 Mc in 6 minutes, automatic operation.

				Tabl	e 33		1		
Winnipse	g, Canada	(49.9°N,	97.4°W)				,	March 1954	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	390	2.2					2.4	(2.9)	
01	400	2.0					3.0		
02	380	2.0					3.0		
03	(340)	(2.0)					3.3		
04	(330)	(2.0)					3.0		
05							3.0		
06	(290)	2.1					2.7	(3.15)	
07	260	3.0			130	1.8		3.2	
08	260	3.5	230	3.4	120	2.0		3.2	
09	360	3.7	220	3.6	120	2.4		3.1	
10	460	3.9	210	3.7	120	2.7		2.7	
11	440	4.1	200	3.8	110	2.8		2.8	
12	400	4.2	200	3.9	110	2.9		2.9	
13	430	4.3	210	3.9	110	2.9		2.9	
14	380	4.4	220	3.8	110	2.8		2.9	
15	360	4.5	220	3.8	120	2.7		3.0	
16	340	4.4	230	3.6	120	2.5		3.1	
17	300	4.3	240	3.3	120	2.1		3.2	
18	250	4.3	240		130	1.9		3.3	
19	250	3.8						3.2	
20	270	2.9						3.0	
21	290	2.3						3.0	
22	320	2.2						3.0	
22	330	2.0						(2.9)	

23 330 2.0

Time: 90.0°W.

Sweep: 1.0 Mc to 10.0 Mc in 16 seconds.

Table 35 Schwarzenburg, Switzerland (46.8°N, 7.3°E)										
Schwarz Time	h'F2	foF2	nd (45.8 h'Fl	foF1	h'E	foE	fEs	March 1954 (M3000)F2		
					11 22					
00	300	2.8						3.2		
01	300	2.8						3.2		
02	300	2.8						3.2		
03	300	2.8						3.3		
04	270	2.7						3.35		
05	250	2.6						3.5		
06	270	2.1						3.5		
07	210	3.3						3.6		
08	210	4.2				2.0		3.8		
09	220	4.5		3.6		2.4		3.65		
10	260	5.0		3.8		2.6		3.6		
11	290	5.2		4.0		2.8		3.6		
12	290	5.2		4.0		2.8		3.6		
13	300	5.2		4.0		2.8		3.6		
14	280	5.3.		4.0		2.8		3.6		
15	240	5.3		3.8		2.7		3.6		
16	200	5.0		3.6		2.5		3.6		
17	210	5.0				2.2		3.7		
18	200	5.0						3.8		
19	200	4.6						3.6		
20	210	4.5						3.5		
21	220	3.6						3.55		
22	250	3.1						3.4		
23	280	3.0						3.3		

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 seconds.

Lindau/	Harz, Ger	many (51	.6°N, 10	.1°E)	0 32			March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	290	2.6					2.0	3,1
01	270	2.6					2.0	3.1
02	265	2.6					2.0	3.1
03	260	2.5					2.0	3.1
04	255	2.4					2.1	3.2
05	250	2.0					2.0	3.25
06	260	2,2	-				2.0	3.3
07	240	3.4	220			1.7	2.2	3.5
08	255	4.1	220	3.3	115	2.0	2.5	3.6
09	280	4.5	210	3.6	110	2.4	2.7	3.4
10	290	4.9	205	3.8	105	2.5	3.5	3.4
11	290	5.2	200	3.9	105	2.6	3.5	3.4
12	290	5.2	205	3.9	105	2.8	3.4	3.5
13	280	5.2	205	3.9	105	2.8	3.4	3.4
14	280	5.2	205	3.85	105	2.7	3.3	3.5
15	260	5.2	215	3.7	105	2.6	3.0	3.5
16	260	5.2	225	3.5	110	2.3	2.9	3.5
17	240	5.0	225		120	1.9	2.8	3.5
18	230	4.8				/	2.2	3.4
19	230	4.6					2.0	3.3
20	240	3.9					2.0	3.3
21	250	3.4					2.0	3.3
22	260	2.9					2.0	3.2
23	280	2.6					2.0	3.1

Time: 15.0°E.
Swsep: 1.0 Mc to 16.0 Mc in 8 minutes.

						Tabl	e 34			11 20db
St.	Joh	m, e,	Newf	oundland	(47.6°N,	52.701	1)			March 1954
Tim	e	h	'F2_	foF2	h'Fl	foFl	h'E_	foE	fEs	(M3000)F2
00			370	1.9						2.8
01			380	1.8					2.6	2.8
02			370	1.8					2.8	(2.9)
03			340	1.6					3.0	2.9
04			320	1.5					3.0	3.0
05			300	1.5				E	1.6	2.8
06			260	2.8			120	1.6		3.2
07			260	3.6	220	3.3	150	2.0		3.3
08			300	4.1	210	3.6	110	2.4		3.2
09			320	4.3	200	3.8	110	2.7		3.1
10			360	4.5	200	3.9	110	2.9		3.1
11		ĺ	330	4.7	200	4.0	110	2.9		3.1
12	!		330	4.9	210	4.0	110	3.0		3.2
13			330	4.9	210	3.9	110	2.9		3.2
14			320	4.9	220	3.8	120	2.8		3.1
15			300	5.0	230	3.6	110	2.6		3.2
16			290	4.9	240	3.4	. 120	2.3		3.2
17		ĺ	260	4.8	250	2.9	130	1.8		3.1
18	3	1	240	4.8				E		3.2
19	}		240	4.2				E		3.0
20)		270	3.3						3.0
21			280	2.7						3.0
22	2		300	2.1						2.8
27	1	1	330	2.0						2.8

23 330 2.0

Time: 60.0°W.
Sveer: 0.8 Mc to 10.0 Mc ir 18 seconds.

				Tabl	e 36			
Ottawa,	Canada	(45.4°N,	75.9°W)					March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	370	1.9						(3.0)
01	400	1.8						(2.9)
02	400	1.8					3.0	
03	410	1.5					3.1	
04	(390)	(1.8)					3.8	
05	(380)						4.0	
06	290	2.2						3.2
07	250	3.3	230		130	1.9		3.4
08	300	3.8	220	3.6	120	2.3		3.3
09	310	4.1	210	3.8	120	2.6		3.2
10	360	4.5	200	3.8	120	2.8		3.1
11	360	4.8	210	4.0	120	3.0		3.1
12	370	4.9	200	4.0	120	3.0		3.1
13	350	5.0	210	4.0	120	3.0		3.0
14	330	4.9	2 20	3.9	120	2.9		3.1
15	320	4.9	230	3.8	120	2.8		3.2
16	300	5.0	230	3.7	120	2.5		3.2
17	270	4.9	240	3.2	130	2.0		3 .3
18	250	4.7			(140)	E		3.1
19	250	4.2						3.1
20	260	3.7						3.1
21	280	2.8						3.0
22	290	2.3						3.0
23	3 50	2.0						3.0

Time: 75.0°W. Sweep: 1.0 Mc to 10.0 Mc in 15 seconds.

_				Tabl	9 37			
Baguio,	P. I. (1	6.4°N, 1	20.6°E)					March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	240	4.9					1.7	3.2
01	220	5.0					1.8	3.4
02	210	4.4						3.6
03	220	2.7						3.5
04	250	1.9					2.1	3.2
05	(260)						2.3	
06	260	3.2					2.1	3.2
07	240	5.4			110	1.9	3.6	3.5
80	(280)	6.7	230		110	2.5	4.0	3.3
09	320	7.4	220		110	(2.9)	4.4	3.0
10	340	8.2	210	4.2	110	3.2	4.4	2.75
11	340	8.8	200	4.2	110	3.2	5.0	2.6
12	330	9.4	200	4.2	110	3.2	5.0	2.6
13	330	9.2	200	4.2	110	3.2	4.9	2.6
14	320	9.8	200		110	3.2	5.3	2.7
15	300	10.4	200		110	3.0	4.0	3.0
16	270	10.4	220		110	2.6	4.9	3.2
17	240	9.8		-	110	-	4.2	3.2
18	230	9.3					3.4	3.1
19	230	8.6					3.0	3.1
20	240	7.5					4.0	3.2
21	240	7.0					2.7	3.1
22	250	5.9					2.6	3.0
23	260	5.0					2.2	3.1

Tims: 120.0°E. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Euancayo, Peru (12.0°S, 75.3°W) Table 39										
								March 1954		
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2		
00	230	6.4						3.3		
01	230	5.4						3.3		
02	230	4.5						3.4		
03	230	3.5						3.4		
04	250	2.6						3.4		
05	250	1.8					4.0	3.4		
06	260	3.0				歪	4.2	3.15		
07	(280)	6.1	230		110	2.2	5.4	3.3		
08	(300)	7.4	210		110	2.7	10.0	3.1		
09	320	8.0	200	4.2	110		11.5	2.7		
10	350	7.6	200	4.3	100		11.5	2.6		
11	350	7.0	200	4.3	100		11.7	2.6		
12	350	7.1	200	4.4	100		11.8	2.7		
13	3 50	7.4	190	4.3	100		11.8	2.7		
14	330	7.7	200	4.3	100		11.6	2.7		
15	320	8.0	200	4.2	110		11.0	2.7		
16	(300)	8.4	200		110		9.4	2.7		
17	(270)	8.3	210		110		5.8	2.7		
18	250	8.1			120		4.8	2.7		
19	270	7.6						2.8		
20	270	7.3						2.9		
21	250	7.7						3.15		
22	230	7.7						3.3		
23	230	6.9						3.35		

Time: 75.0° W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

Watheroo,	W. Aus	tralia (30.3°s,	Table				March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	275 250 250 250 255 250 270 300 320 330 330 330 320 320 320 320 32	3.5 3.5 3.3 3.0 3.0 3.2 4.8 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6 5.6	240 220 220 220 200 200 200 210 240 250 240 240	3.0 3.7 4.2 4.3 4.3 4.3 4.0 4.0 5.5		2.0 2.5 3.0 3.2 3.3 3.2 3.3 3.2 3.0 2.7 2.4	2.7 2.0 1.5 2.2 2.7 1.3 2.7 3.5 3.6 3.8 3.8 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	2,9 3,1 3,1 3,1 3,1 3,1 3,1 3,4 3,3 3,5 3,0 3,0 3,1 3,1 3,1 3,1 3,0 3,0 3,0 3,0 3,1 3,1 3,1 3,2 3,3 3,2 3,0 3,0 3,0

Time: 120.0°E. Sweep: 1.0 Mc to 16.0 Mc in 2 minutes.

Leopold	iville. B	elgian Co	ngo (4.3	os, 15,3				March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M2000) F2
00	230	4.7						2.5
01	230	3.8					1.7	. 2.4
02	250	3.0						2.4
03	250	3.1					1.6	2.6
04	240	2.3					2.1	2.6
05	245	3.2					2.4	2.6
06	245	5.5	230		120	2.1	3.0	2.8
07	285	6.1	220	4.0	110	2.8	3.6	2.5
08	310	6.8	220	4.2	110	3.1	4.0	2.3
09	335	7.9	210	4.3	110	3.2	3.5	2.2
10	370	9.2	210	4.3	110	3.4	3.2	2.1
11	360	10.0	200	4.4	110	3.5	3.4	2.1
12	350	10.9	20 5	4.4	110	3.4	3.5	2.1
13	340	11.0	210	4.3	110	3.4	4.0	2.2
14	310	11.5	230	4.1	110	3.0	4.1	< 2.3
15	295	> 11.0	230	4.0	110	2.8	3.9	2.3
16	290	11.0	230		115	2.3	3.5	2.3
17	255	11.3					3.0	2.4
18	240	10.0					2.6	< 2.5
19	230	9.1					2.0	2.5
20	220	8.0						2.6
21	220	7.1						2.5
22	230	6.2						2.4
23	240	5.1					1.7	2.5

23 240 5.1 Time: 0.0°. Sweep: 1.0 Mc to 16.0 Mc in 7 seconds.

T 1:	, ,			Table				
	esburg, Ur	ion of S	. Africa	(26.2°s	28.1°	E)		March 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	250	3.4						3.0
01	250	3.3						3.1
02	240	3.2						3.15
03	240	2.8						3.1
04	240	2.6						3.1
05	< 250	2.6						3.1
06	240	3.2						3.2
07	240	4.9	230	3.2	120	2.0		3.4
08	270	5.7	220	3.8	110	2.6		3.3
09	280	6.0	210	4.1	110	2.9	3.8	3.2
10	290	6.6	200	4.3	110	3.1	3.7	3.1
11	300	7.1	200	4.4	110	3.3	3.6	3.1
12	300	7.3	200	4.4	110	3.3	3.7	3.1
13	300	7.3	200	4.4	110	3.3	3.6	3.1
14	290	7.3	200	4.3	110	3.2	3.7	3.1
15	290	7.6	220	4.2	110	3.1	3.7	3.2
16	270	7.1	220	3.9	110	2.8	3.6	3.3
17	250	6.6	220	3.4	120	2.3	3.2	3.3
18	230	6.2			120		2.6	3.3
19	230	5.3					2.4	3.3
20	230	4.4					1.8	3.2
21	240	3.7					1.8	3.1
22	250	3.6					-10	3.1
23	250	3.6						3.1

Time: 30.0°E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

Capetor	vn, Union	of S. Af	rica (34	.2°S, 18	,3°E)			3.1 3.1 3.0 3.05 3.2 3.2 3.4 3.4 3.3 3.1 3.1 3.1 3.1 3.2 3.3 3.3 3.3 3.3 3.4 3.4 3.3 3.3 3.3 3.3			
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2			
00	< 260	3.1						3.1			
01	250	3.1						3.1			
02	< 260	3.0						3.0			
03	< 260	3.0						3.05			
04	< 250	2.9									
05	240	2.8									
06	240	2.7									
07	240	3.9				1.6					
08	260	5.0	230	3.5	120	2.1					
09	280	5.5	220	3.8	120	2.6					
10	290	6.1	210	4.1	110	6.9	3.1				
11	310	6.5	200	4.3	110	3.1	3.4				
12	310	6.7	200	4.3	110	3.2	3.5				
13	310	7.1	210	4.3	110	3.2	3.4				
14	300	7.6	220	4.3	110	3.2					
15	300	7.2	230	4.2	110	3.1					
16	280	6.8	230	4.0	110	2.9	3.1				
17	260	6.1	220	3.6	110	2.6	3.1				
18	250	6.0	230	3.2	120	2.1	2.8				
19	230	5.3			-		2.4				
20	230	4.5									
21	230	3.6									
22	250	3.2									
23	250	3.2						3.1			

Time: 30.0° E. Sweep: 1.0 Mc to 15.0 Mc in 7 seconds.

		. (4)	0	Tabl	e 43			
	ake, Cana	da (64.3	м, 96.0	-W)			F	bruary 1954
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	250	2.0				E	6.4	3.2
01	250	2.0				E	6.0	(3.0)
02	250	2.0				E	5.6	(3.0)
03	250	1.7				Æ	5.2	(3.1)
04	240	2.0				E	4.1	
05	260	2.3				1.4	4.6	(3.1)
06	260	(2.5)			120	(1.6)	6.5	
07	250	(2.7)			140	1.8	5.7	(3.1)
08	240	3.0			120	2.2	5.1	(3.1)
09	260	3.3			110	2.3	5.0	3.2
10	260	3.8			110	2.4	3.8	3.3
11	280	4.0			120	2.6	3.6	3.2
12	280	4.0	240	3.4	110	2.6	, , ,	3.2
13	290	4.1	230	3.2	110	2.6		3.1
14	290	4.4	240	3.1	120	2.4		3.0
15	270	4.1	240	3.0	120	2.3		3.05
16	240	4.0	240	2.8	120	2,1	7.2	3.2
17	260	3.4			110	2.0	6.8	3.0
18	250	3.3			120	1.7	5.6	3.0
19	2 50	2.9				E	5.4	3.0
20	250	2.8				E	5.1	3.0
21	250	2.5				\mathbb{E}	3.9	3.0
22	230	2.3				E	6.2	3.1
23	240	2.0				'E	5.3	3.1

Time: 90.0°W. Sweep: 1.0 Mc to 25.0 Mc in 15 seconds.

					.e 45			
Schwars	enburg, S	witzerla	nd (46.8	°N, 7.3°	E)		Fr.	obruary 1954
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	250	3.0						3. ^L
01	260	3.0						3.4
02	260	3.0						3.3
03	250	3.0						3.4
04	250	2.8						2.45
05	240	2.6						3.5
06	240	2.2						3.6
07	210	2.5						3.7
08	200	3.9						3.9
09	200	4.6				2.1		3.9
10	200	4.8				2.4		4.0
11	200	5.0				2.6		3.8
12	220	5.6				2.6		3.8
13	200	5.4				2.7		3.8
14	200	5.2				2.6		3.8
15	200	5.2				2.5		3.8
16	200	5.1				2.2		3.8
17	200	4.8				2.0		3.9
18	200	4.4						3.85
19	210	3.8						3.5
20	210	3.6						3.6
21	220	3.1						3.55
22	260	2.9						3.5
23	2 50	3.0						3.4

Time: 15.0°E. Sweep: 1.0 Mc to 25.0 Mc in 30 seconde.

Delhi.	India (28	.6°N. 77	.1°E)	Tabl	e 47			January 1954
Time	•	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	290	2.6						3.2
01	280	2.6						3.25
02	(280)	2.5						3.4
03	1							
04	250	2.4						3.55
0.5	260	2.5						3.4
06	260	2.8						3.4
07	240	4.2						3.6
08	240	5.2						3.6
09	240	5.6						3.55
10	240	6.1						3.4
11	260	6.9						3.4
12	240	7.0						3.45
13	250	6.3						3.5
14	260	6.8						3.45
15	240	6.0						3.55
16	240	5.4						3.75
17	220	4.8						3.7
18	240	4.0						3.6
19	240	3.6						3.5
20	240	3.2						3.55
21	250	3.0						3.4
22	280	2.6						3.25
23	280	2.7						3.2

Time: 75.0°E.

Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

"Height at 0.83 foFz.

"Average values; other columns, msdian values.

		0	. 0	Table	41,			
Churchi	11. Canada	(58.8)	N, 94.2	W)			Fe	bruary 1954
Time	h'F2	foF2	h'F1	foFl	h'E	foE	f Es	(M3000)F2
00							7.8	
01							6.8	
02							4.9	
03							5.0	
04							5.0	
05							4.8	
06							5.5	
07							5.7	
08		(3.0)					5.0	
09	(300)	(4.0)					5.3	(3.45)
10	300	4.0						3.4
11	300	4.2	-					3.3
12	300	4.6	240	(3.6)	120	(2.5)		3.3
13	310	4.5	240	3.4	120	2.7		3.2
14	290	4.7	240	3.3	120	2.4		3.3
15	290	4.7	230	3.2	120	2,2		3.25
16	270	4.5		(3.0)	120	2.1	2.8	3.3
17	260	4.0			120	1.8	2.8	3.3
18	280	3.4			120	(1.8)	3.9	3.2
19	300	3.1					4.0	3.2
20	290	2.6					4.4	
21	(280)	(2.8)				~~~	7.0	
22	(290)	(2.6)			-		7.8	
23	(270)	(2.5)					6.0	

Time: 90.0°W.
Sweep: 0.6 Mc to 10.0 Mc in 16 eeconde.

Raroten	ga I. (21	.,3°S, 15		F	bruary 1954			
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	280	4.8					3.1	2.9
01	260	4.8					3.0	3.15
02	250	4.1					3.0	3.1
03	280	3.5					2.6	3.05
04	290	3.4					2.7	2.9
05	300	3.0					2.5	3.0
06	260	3.5					2.0	3.1
07	250	5.4	230	3.5		2.1	3.5	3.3
08	270	6.6	240	4.0	105	2.6	4.5	3.3
09	280	7.2	210	4.2	105	2.9	5.6	3.2
10	300	8.5	200	4.3	105	3.1	5.2	3.1
11	300	9.1	200	4.4	105	3.3	5.0	3.1
12	310	9.4	200	4.4	105	3.3	4.8	3.0
13	290	10.7	190	4.4	105	3.4	4.4	3.2
14	280	9.8	200	4.3	105	3.3	4.1	3.2
15	280	8.6	200	4.2	105	3.2	4.1	3.2
16	290	7.6	220	4.1	110	3.0	4.4	3.15
17	280	7.2	220	3.8	110	2.6	4.1	3,15
18	260	7.2			130	2.0	4.6	3.2
19	260	7.3					4.6	3.1
20	260	5.8					4.4	3.1
21	280	5.0					4.0	3.0
22	300	4.8					3.2	3.0
23	310	4.7					3.4	2.95

Time: 157.5°W.
Sweep: 2.0 Mc to 16.0 Mc, manual operation.

Bombay,	India	(19.0°M.	73.0°E)	260	LE 40			January 1954
Time	٠	foF2	h'Fl	foF1	h'E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08:30 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	270 300 330 360 390 390 420 420 390 390 360 330 300 270	6.4 6.8 7.5 6.8 8.8 9.6 10.5 11.1 11.4 11.4 11.3 10.7 9.0 10.7 9.0 10.7 9.0						3.35 3.1 2.95 2.9 2.8 2.7 2.65 2.55 2.55 2.6 2.7 2.85 2.95 3.15 3.25

Time: 75.0°E.
Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation,
"Height at 0.83 foW2.
"Average values; other columne, median values.

Madrae,	India (1	3.0°%, 8	0.2°E)	Tabl	January 195			
Time	6	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 03 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 21 22 23	300 330 360 390 420 420 420 420 390 360 360 330 330 (300)	> 4.1 5.7 6.8 7.0 6.8 7.0 7.3 7.7 7.8 7.8 7.9 6.4 6.0 5.5 > 4.9						3.5 2.95 2.8 2.7 2.6 2.55 2.45 2.45 2.6 2.7 2.7 2.7 2.8 2.9 3.0 3.5 3.15

Time: 75.0°E, Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation, "Height at 0.83 forz." "Average values; other columns, median values.

Table 51									
Sao Par	ulo, Brazil	L (23.5°	s. 46.5°	(A)				January 1954	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	260	4.3						(3,0)	
01	245	(4.3)						3.2	
02	240	(3.5)						(3.2)	
03	240	3.1						(3.1)	
04	240	2.7						(3.1)	
05	260	2.7						W 100-00	
06	220	4.4						3.5	
07	235	(5.1)						(3.3)	
08	(320)	5.8						(3.1)	
09	(400)	6.1						2.7	
10	450	6.8						2.7	
11	460	7.1						2.6	
12	##C	7.7						2.7	
13	420	8.4						2.7	
14	380	8.8						2.8	
15	320	9.8						3.1	
16	270	10.0						3.3	
17	260	9.4						3.4	
18	235	7.6						3.4	
19	240	6.9						3.2	
20	260	6.7						3.2	
21	260	6.2						3.15	
22	265	5.2						3.1	
23	280	4.5						(3.0)	

Time: Local. Sweep: 2.5 Mc to 20.0 Mc in 6 minutes.

Slough,	England	(51.5°№,	0.6°W)	Table	53*		De	cember 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23	260 255 255 250 250 250 250 220 220 225 220 225 220 225 220 225 220 225 220 226 220 227 220 227 220 227 220 227 220 227 220 227 220 220	3.1 3.1 2.5 2.7 2.0 2.0 2.0 2.0 3.7 4.7 5.8 5.8 5.6 5.4 4.4 3.5 2.5 2.6 2.0	(215) (215) (210)	(3.4) (3.4) (3.7)	140 125 125 120 120 125 125 135	(1.5) 1.9 2.1 2.3 2.3 2.3 2.1 1.9	2.6 2.5 2.8 2.6 3.1 2.4 2.6 3.0 3.2 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	3.05 3.05 3.05 3.00 3.05 3.15 3.2 3.1 3.5 3.6 3.7 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.1 3.1 3.1 3.1 3.2

Time: 0.00. Sweep: 0.55 Me to 16.5 Me in 5 minutes. "Average values except foF2 and fEs, which are median values.

Tiruchy,	Incia	Jamuary 1954						
Time	6	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	300 390 480 510 540 510 510 510 510 450 420 420	3.4 5.7 6.3 6.5 6.4 6.3 6.3 6.5 6.9 7.4 6.9 6.5 6.9						3.0 2.65 2.4 2.2 2.2 2.2 2.2 2.2 2.3 2.3 2.4 2.45 2.45 2.55

Time: 75.0°E.

Sweep: 1.5 Mc to 18.0 Mc in 5 minutes, manual operation.

"Height at 0.83 fof2.

"Average values; other columns, median values.

				Tabl	le 52°			
Inverse	es, Scotl	and (57.4	↓ H, 4.2	(W)			D	ecember 1953
Time	h'F2	foF2	h'Fl	foFl	h'E_	foE	fEs	(M3000)F2
00	280	1.8						3.0
01	280	1.7						3.0
02	290	1.7						2.9
03	290	1.6						2.9
04	285	(1.4)					2.0	2.9
05	280	1.3					2.2	2.9
06	(275)	1.4					2.4	3.1
07		1.4					2.4	3.2
08	285	(1.8)					2.0	3.0
09	220	3.5				(1.6)	2.6	3.5
10	215	4.4			140	1.7	2.6	3.7
11	220	4.8			140	1.9	2.4	3.7
12	215	5.2			140	2.0	2.5	3.7
13	210	5.2			140	2.0	2.5	3.7
14	215	5.0			(140)	1.8	2.3	3.7
15	210	4.7			(150)	(1.6)	2.4	3.6
16	210	4.0					2.4	3.5
17	235	3.2					2.2	3.3
18	250	2.4					2.3	3.3
19	275	1.9						3.1
20	290	(1.8)						2.9
21	295	1.7						3.0
22	300	(1.8)						3.1
23	305	(1.8)						2.9

Time: 0.0°. Sweep: 0.67 Mc to 25.0 Mc in 5 minutes. "Average values except foF2 and fEs, which are median values.

				Tabl	6 54°			7 3.1 5 2.9 5 3.0 9 3.1				
Singapo	re. Briti	sh Malaya	(1.3°H,	103.8°	E)		D∈					
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2				
00	240	3.4					2.7	3.1				
01	260	2.9					1.5					
02	275	2.8					2.5					
03	275	2.6					1.9					
04	265	2.4					2.7	3.1				
05	260	2.3					2.6	3.2				
06	2 50	3.2			(150)	1.2	2.8	3.3				
07	255	5.7	230.		120	2.1	3.0	3.2				
08	310	6.3	220	4.1	115	2.6	4.0	2.9				
09	390	6.6	215	4.2	115	3.0	4.0	2.6				
10	430	7.2	210	4.3	110	3.2	4.3	2.3				
11	430	7.5	205	4.3	110	3.3	6.1	2.2				
12	425	7.6	200	4.4	110	3.4	5.8	2.2				
13	425	8.0	200	4.3	110	3.3	5.6	2.2				
14	395	8.1	200	4.3	110	3.2	6.0	2.2				
15	360	8.1	215	4.2	115	3.0	5.5	2.3				
16	325	8.2	215	(4.1)	115	2.7	5.0	2.4				
17	(275)	8.3	235		125	2.2	5.4	2.5				
18	260	8.0			(150)	1.4	3.3	2.7				
19	270	7.6					3.8	2.8				
20	275	6.4					3.6	2.8				
21	270	6.2					3.0	2.9				
22	230	6.2					3.0	3.3				
23	210	4.9					2.9	3.4				

Time: 105.0°E.

Swsep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEe, which are median values.

Table 55									
Sao Pau	do, Brasil	(23.5°	s, 46.5°	¥)			De	ecember 1953	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00	280	(3.8)							
01	260	(4.1)						(3.1)	
02	260	3.9						(2.95)	
93	260	3.8						(3.0)	
04	260	3.2						3.4	
05	240	3.5						3.3	
06	230	4.9						(3.1)	
07	290	5.8						(3.1)	
08	360	6.0						2.8	
09	(450)	6.7						2.7	
10	440	7.2						2.7	
11	450	7.8						2.6	
12	420	8.4						2.7	
13	390	9.0						2.8	
14	320	9.5						3.0	
15	300	9.9						3.1	
16	280	9.9						3.2	
17	250	9.6						3.5	
18	230	8.4						3.4	
19	240	7.4						3.25	
20	270	6.8						3.1	
21	280	6.2						3.05	
22	280	5.6						3.0	
23	300	3.9						(3.0)	

Time: Local.
Sweep: 2.5 Mc to 20.0 Mc in 6 minutes.

Table 57									
Sao Pau	lo, Brazi	11 (23.5°	s. 46.5	,A)			Ne	vember 1953	
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2	
00 ,	260	(6.7)						(3.2)	
01	235	6.7						(3.3)	
02	220	(6.0)						(3.5)	
03	220	5.0						3.4	
04	240	(4.5)						(3.2)	
05	230	4.4						3.4	
06	220	5.4						3.6	
07	250	6.2						3.3	
08	300	7.0						3.0	
09	340	7.4						2.9	
10	420	7.8						2.7	
11	420	8.5						2.7	
12	400	9.4						2.8	
13	360	10.2						2.9	
14	330	(10.6)						3.1	
15	280	11.3						3.2	
16	270	11.5						3.2	
17	260	11.4						3.4	
18	230	11.4						3.4	
19	220	10.5						3.35	
20	240	9.9						3.3	
21	240	(8.7)						(3.3)	
22	260	(7.4)						(3.1)	
23	270								

Time: Local. Sweep: 2.5 Mc to 20.0 Mc in 6 minutes.

Port Lockroy (64.8°S, 63.5°W) Table 59° Movember 1953										
Time	h'F2	foF2	h'Fl	foFl	h'E_	foE	fEs	(M3000)F2		
00	260	6.3						2.8		
01	265	5.5						2.9		
02	265	6.0					1.3	2.9		
03	270	5.6			(135)	(1.4)	1.3	2.8		
04	255	5.5			125	1.6		2.9		
05	250	5.6			110	1.8	2.9	3.0		
06	255	5.3			100	2.2	3.6	3.0		
07	255	5.0			100	2.4	4.3	3.1		
80	265	4.8			100	2.7	4.5	3.0		
09	(310)	4.9	(230)	(4.0)	100	2.9	4.6	(3.1)		
10	280	5.3	(240)	(4.2)	100	2.8	4.8	3.1		
11	290	5.1	215	(4.1)	100	2.9	5.3	3.1		
12	300	5.2	215	4.2	100	2.9	4.8	3.1		
13	305	5.0	215	4.1	100	2.9	4.6	3.2		
14	295	4.9	220		100	2.9	4.6	(3.2)		
15	290	5.0	220	(4.0)	100	2.8	3.6	3.2		
16	270	5.1	(235)		100	2.7	4.2	3.3		
17	245	5.1			100	2.4	3.1	3.1		
18	250	5.5			105	2.1	3.0	3.0		
19	260	6.2			110	1.8	3.1	3.0		
20	255	6.5			130	1.5	1.8	3.0		
21	260	6.9						2.9		
22	255	7.0						2.9		
23	255	6.8						2.9		

		(0.00	(0=)	Tabl	e 56°			h 3052
Khart cum,								vember 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	270	6.4					3.1	
01	255	(5.5)					3.1	(2.9)
02	230	6.1					3.1	
03	210	4.3					3.1	
04	220	2.7					3.1	
05	255	2.0					3.1	(3.2)
06	250	4.0					3.1	3.2
07	250	6.6	235	(3.6)	135	2.3	3.2	3.1
80	280	8.2	220	3.9	120	2.7	3.9	3.0
09	290	9.2	210	4.1	115	3.0	3.4	2.9
10	305	9.1	215	4.3		3.2	4.2	2,8
11	315	9.3	215	4.3		3.3	3.8	2.7
12	305	9.8	215	4.3		(3.4)	4.4	2.8
13	300	10.2	215	4.3	115	3.2	4.5	2.9
14	290	10.5	215	4.1	(120)	3.0	4.5	2,9
15	280	10.4	215	3.8	(120)	2.8	4.7	2.9
16	260	10.2	230	3.7	(125)	2.4	4.1	3.0
17	240	10.4					5.6	3.1
18	230	9.0					4.4	3.1
19	235	7.7					4.1	(3.0)
20	2 50	(7.3)					4.0	(2.8)
21	265	(7.0)					4.3	
22	255	6.5					4.0	(2.9)
23	270	6-3					3.1	

Time: 30.0°E, Sweer: 0.67 Mc to 25.0 Mc in 5 minutes. *Average values except foF2 and fEs, which are median values.

Falklan	d Is. (51.	.7°s, 57	.8°W)	Tabl	e 58*		No	vember 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	ſEs	(M3000)F2
00	295	5.5					3.1	2.8
01	290	5.3					2.9	2.8
02	285	5.0					1.3	2.8
03	280	4.9						2.8
04	265	5.0	(240)		145	1.4	1.5	2.9
05	240	5.4	(245)		120	1.8	2.4	3.2
06	(280)	5.3	235	3.7	115	2.3	3.1	3.2
07	(320)	5.4	240	3.9	110	2.6	3.8	3.1
08	(335)	5.6	(230)	4.1	105	2,9	4.1	3.0
09	(365)	5.8	215	4.2	105	3.0	5.8	2.9
10	355	6.0	220	4.3	105	3.1	5.4	2.9
11	335	6.7	230	4.3	105	3.1	5.0	2.9
12	325	6.6	225	4.4	105	3.1	4.6	2.9
13	315	6.8	225	4.3	105	3.1	5.0	3.1
14	305	6.3	220	4.2	105	3.1	4.4	3.2
15	305	6.2	220	4.2	105	2.9	4.6	3.1
16	290	6.0	225	4.0	110	2.7	4.4	3.2
17	285	6.0	225	3.8	110	2.4	4.6	3.2
18	275	6.2	240	3.4	125	2.0	4.7	3.2
19	265	6.4					3.6	3.1
20	260	6.6					3.2	3.0
21	270	6.4					2.8	2.9
22	280	6.1					3.4	2.9
23	275	5.8					3.1	2.9

Time: 60.0°W.

Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

"Average values except foF2 and fEe, which are median values.

				Tabl	٥ 60			
Townsvi	lle, Aust	ralia (1	9.3°s, 1	+6.8°E)			Sep	tember 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01	235 250	4.0					1.9	3.4 3.4
02 03	250 250	2.9					2.3	3.3 3.1
04	260 285	2.5					2.5	3.0 3.1
06 0 7	260 250	3.0 5.3			120	1.8	2.3	3 .1 3.3
08	290 280	6.6 >8.2	230 230	4.0	120 130	3.0	3.8	3.3 3.3
10 11	260 270	8.5	220 220	4.4	120 120	3.2 3.3	4.3	3.4 3.4
12 13	280 300	6.8 6.5	2 1 0 2 0 5	4.4	120 120	3.3	4.4	3.4 3.2
14 15	295 290	6.4	200 210	4.2	120 120	3.2 3.0	4.4	3.3 3.3
16 17	260 250	5.8	210	3.7 2.8	125 130	2.7	3.8 3.7	3.35 3.4
18	250 250	5.0 4.8	220	2.0		1.4	2.8	3.2 3.15
19 20	255	4.9					2.3	3.1 3.1
21 22 23	270 270 250	4.5 4.4 4.4					2.4	3.1 3.2

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 seconds.

Time: 60.0°W.
Sweep: 0.67 Mc to 25.0 Mc in 5 minutes.

*Average values except foF2 and fEs, which are median values.

				Tab1	e 61			
Brieban	e, Austra	lia (27.	5°s, 153	.0°E)			Sep	tember 1953
Time	h'F2	foF2	h'F1	foFl	h'E	foE	ſEs	(M3000)F2
00	260	3.9					3.0	3.1
01	245	3.7					2.6	3.2
02	240	3.7					2.3	3.3
03	230	3.2					2.8	3.1
04	260	2.9						3.1
05	270	2.9						3.0
06	240	4.2				1.8		3.3
07	250	5.2	240	3.9	110	2.2	2.8	3.4
08	280	5.8	230	4.2	110	2.8	3.2	3.3
09	280	6.0	220	4.4	110	3.0	2.0	3.3
10	300	6.3	210	4.5	100	3.2		3.2
11	300	6.6	210	4.6	100	3.3		3.3
12	280	6.8	200	4.6	100	3.4	3.5	3.3
13	270	6.9	210	4.5	100	3.4		3.3
14	275	6.4	210	4.4	100	3.3		3.4
15	260	6.0	210	4.2	110	3.0		3.4
16	250	5.8	220	3.7	120	2.6		3.4
17	230	5.4	240	2.8	120	2.0	1.9	3.4
18	240	5.0					3.2	3.1
19	250	4.6					3.2	3.1
20	260	4.4					2.3	3.0
21	280	4.3					2.0	3.0
22	260	4.3					3.3	3.1
23	260	4.3					2.5	3.1

Time: 150.0°E.
Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 eeconds.

Hobart.	Tasmania	(42,9°S,	147.3°E	Tabl	e 63		Se	ptember 1953
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00	300	2.0						2.9
01	300	1.9						2.9
02	300	1.9						2.9
03	300	1.8						
04	300	1.8						2.85
05		E						2.8
06	270	2.1				E		(2.9)
07	250	3.5			120	1.9		3.0
08	230	4.1			100	2.3		3.1
09	210	4.5	205	3.6	100	2.5		3.0
10	365	4.6	200	4.0	100	2.8		2.9
11	3 50	5.1	200	4.1	100	3.0		2.85
12	350	5.3	200	4.1	100	3.0		2.8
13	335	5.1	210	4.1	100	3.0		2.85
14	310	5.0	200	4.0	100			3.0
15	300	5.3	210	3.9	100	2.9		3.0
16	220	5.0	250	3.5	100	2.7		3.0
17	230	4.9	1-50	2.5	100	2.4		3.0
18	230	4.6				2.0		3.1
19	250	4.3						3.0
20	260	3.6						2.9
21	270	3.0						2.8
22	270	2.5						2.9
23	300	2.2						2.9
	,,,,,	۷٠٤						2.9

Time: 150.0°E.
Sweep: 1.0 Mc to 13.0 Mc in 1 minute 55 seconds.

Casabla		August 1953						
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22	<pre> < 280 < 285 < 250 < 250 < 250 240 260 270 310 345 355 345 345 320 310 280 280 240 < 225</pre>	3.76 3.21 2.8 3.0.2.3 4.8 5.0.2.4 5.6 5.6 6.6 6.5 6.5 6.6 5.7 6.8 7	220 220 210 200 200 210 210 210 225 225 230 230 240	3.2 3.7 4.0 4.3 4.4 4.3 4.4 3.8 3.5 3.0	110 100 100 100 100 100 100 100 100 100	2.0 2.4 2.8 3.0 3.2 3.3 3.3 3.3 3.2 3.0 2.7 2.2	3.5 3.1 3.0 2.6 3.0 3.5 3.8 5.5 4.8 3.9	2.95 2.9 2.9 2.9 3.0 3.35 3.6 3.55 3.6 3.4 3.25 3.1 3.0 3.05 3.2 3.1 3.2 3.3
23		4.0					3.6	3.1

Time: 0.0°. Sweep: 1.6 Mo to 16.0 Mc in 1 minute 15 seconds.

Table 62 Canberra, Ametralia (35.3°S, 149.0°Z) September 1953										
Canberra	. Austra.	lia (35.	3°5, 149	.0°E)			Sej	tember 1953		
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	fEs	(M3000)F2		
00		3.1					2.5	3.0		
01		3.0					2.7	3.0		
02		3.0					2.8	3.0		
03		3.0					3.2	3.1		
Oth		2.8					3.0	(3.1)		
05		2.5					2.9	(3.05)		
06	(240)	3.1					2.8	3.2		
07	240	4.3				1.7	3.2	3.3		
80	265	4.9	235	3.9	100	2.3	3.4	3.3		
09	290	5.2	210	4.0	100	2.8	3.5	3.2		
10	310	5.4	210	4.2	100	3.0	3.4	3.1		
11	310	5.5	200	4.2	100	3.1	3.5	3.2		
12	290	6.1	200	4.2	100	3.1	3.5	3.3		
13	290	6.0	200	4.2	100	3.1	3.5	3.3		
14	290	5.8	200	4.2	100	3.1	3.4	3.3		
15	275	5.6	200	4.0	100	2.9	3.4	3.3		
16	250	5.5	200	(3.7)	100	2.5	3.3	3.4		
17	240	5.0	210			1.8	3.2	3.3		
18	220	4.7				• •	3.0	3.2		
19	(230)	4.4					3.1	3.0		
20		4.0					2.6	3.0		
21		3.7					2.6	3.0		
22		3.5					2.5	3.0		
23		3.4					2.9	3.0		

Time: 150.0°E.

Sweep: 1.0 Mc to 16.0 Mc in 1 minute 55 eeconds.

Poitiere, France (46.6°E, 0.3°E) Table 64										
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2		
00	250	3.3					2.6	3.0		
01	< 270	3.0					2.4	2,95		
02	< 275	2.9					2.4	2.9		
03	< 275	2.8					2.4	(2.95)		
04	< 275	2.7					2.6	(2.95)		
05	250	3.1					2.8	3.0		
06	295	3.9	245	3.2	125	1.8	3.6	3.4		
07	320	4.4	230	3.6	110	2.4	3.7			
08	330	4.6	205	3.8	105	2.6	3.6	(3.5)		
09	330	4.9	210	4.0	100	2.8	3.9			
10	310	5.2	200	4.2	100	2.9	4.5	(2.9)		
11	355	5.0	200	4.3	100	3.0	4.3	(3.2)		
12	365	5.1	200	4.3	100	3.0	4.3	G		
13	360	4.9	205	4.2	100	3.0	3.8	(3.2)		
14	345	5.0	225	4.2	100	3.0	3.8			
15	345	4.9	215	4.2	100	2.9	3.8	(3.2)		
16	330	5.0	225	3.9	105	2.7	3.6	3.15		
17	305	5.2	230	3.6	110	2.4	4.0	3.15		
18	290	5.1	240	3.3		1.9	3.8	3.1		
19	260	5.7					3.9	3.1		
20	250	5.8					3.9			
21	240	5.2					3.6	3.3		
22	250	4.4					3.6	3.2		
23	250	3.7					3.2	3.15		

Time: 0.0°. Sweep: 1.6 Mc to 16.8 Mc in 1 minute.

				Tabl	e 66			
Poitiers,	France	(46.6°N,	0.3°E)					July 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	275	4.0					2.6	3.0
01	270	3.6					2.4	3.0
02	275	3.4					2.6	3.0
03	< 260	3.1					2.5	(3.05)
04	<270	3.0					3.0	(3.0)
05	275	3.6	240	2.8		E	2.8	3.1
06	340	4.1	230	3.4	110	2.1	3.9	3.2
07	305	4.8	220	3.8	105	2.5	4.7	3.35
08	345	4.7	210	4.0	105	2.8	4.7	(3.25)
09	345	5.1	205	4.1	100	2.9	4.7	(3.25)
10	380	4.8	200	4.2	100	3.0	4.6	G
11	355	5.1	205	4.3	100	3.1	4.6	(3.25)
12	400	5.2	205	4.3	100	3.2	5.0	
13	395	5.0	200	4.3	105	3.1	4.8	(2.9)
14	365	5.2	210	4.2	105	3.1	4.1	(3.05)
15	360	5.0	215	4.1	105	3.0	4.6	(3.2)
16	350	5.0	215	4.0	105	2.9	4.0	(3.05)
17	330	5.0	225	3.8	110	2.6	4.0	3.1
18	310	5.1	230	3.5	110	2.2	4.4	3.05
19	270	5.4	245	2.9		1.6	4.6	3.2
20	250	5.7					3.2	3.1
21	250	5.3					3.3	3.15
22	250	4.6					3.0	3.1
23	255	4.2					2.5	3.0

Time: 0.0°. Sweep: 1.6 Mc to 16.8 Mc in 1 minute.

	T-1- 10/2							
	nca, Moro							July 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00		4.4					3.7	3.0
01	< 270	4.2					3.5	3.0
02		3.8					3.2	3.0
03	< 265	(3.5)					3.5	(3.05)
04		(3.7)					3.1	(3.05)
05		(3.1)					3.4	3.1
06	245	3.5					3.8	3.35
07	250	4.6	225	3.5	110	2.1	4.0	3.5
08	265	5.0	210	3.8	105	2.6	4.9	3.5
09	275	5.3	220	4.0	105	2.8	4.9	3.6
10	325	5.0	220	4.2	100	3.1	4.8	3.3
11	385	5.0	205	4.3	105	3.2	5.2	3.0
12	350	5.5	200	4.3	100	3.3	4.5	3.0
13	340	6.0	200	(4.3)	100	3.3	4.1	3.0
14	350	6.0	220	4.3	100	3.3	4.3	2.95
15	325	6.7	220	4.2	105	3.2	4.0	3.1
16	305	6.5	205	4.0	105	3.0	4.5	3.1
17	295	6.1	230	3.8	105	2.7	4.9	3.15
18	280	6.2	230	3.6	110	2.4	4.2	3.2
19	255	6.5	230	3.0	115	1.8	4.2	3.2
20	240	5.9					3.8	3.35
21	< 240	5.3					3.5	3.2
22	< 250	4.7					3.6	3.05
23	< 250	4.6					4.0	3.0

Time: 0.0°. Sweep: 1.6 Mc to 16.0 Mc in 1 minute 15 seconds.

Table 69 Tananarive, Madagascar (18.8°S, 47.8°E)										
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	June 1953 (M3000)F2		
00	235	2.8						3.3		
01	250	2.5						3.1		
02	260	2.4						3.2		
03	260	2.3						3.2		
04	270	2.0						3.2		
05	275	1.8						3.2		
06	270	2.0						3.1		
07	240	4.5			147	1.9	2.9	3.5		
08	255	5.4	240		125	2.3	2.8	3.5		
09	260	5.8	232	4.0	121	2.7	3.1	3.4		
10	260	6.2	230	4.2	121	3.0	3.2	3.5		
11	275	5.8	225	4.3	121	3.1	3.4	3.4		
12	280	5.8	230	4.3	119	3.2	3.5	3.3		
13	290	5.7	225	4.3	121	3.1	3.3	3.3		
14	280	5.9	225	4.1	120	3.0	3.1	3.4		
15	260	5.3	235		119	2.8	3.1	3.5		
16	250	5.2	230		125	2.5	3.4	3.5		
17	235	5.1			131	1.9	2.8	3.5		
18	230	4.3					3.2	3.5		
19	220	3.0					3.0	3.5		
20	250	2.6					2.8	3.1		
21	260	2.8					2.8	3.2		
22	252	3.0					1.6	3.2		
23	242	2.9						3.3		

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Tabl	e 71			
Tananar	ive, Mada	ascar (18.8°s, 4	47.8°E)				April 1953
Time	h'F2	foF2	h'F1	foF1	h'E	foE	fEs	(M3000)F2
00	240	3.2						3.3
01	250	2.9					1.6	3.2
02	248	3.0					1.5	3.3
03	250	2.7					2.5	3.1
04	275	2.7					2.3	3.0
05	268	2.5					1.8	3.1
06	255	3.1						3.2
07	240	5.6			132	2.2		3.5
08	265	6.8	240		125	2.6		3.4
09	275	7.5	235	4.3	122	2.9	2.7	3.3
10	280	8.8	230	4.5	123	3.2	2.9	3.3
11	275	8.6	222	4.5	121	3.3		3.3
12	282	7.6	230	4.5	121	3.4		3.3
13	295	7.6	225	4.5	124	3.3		3.1
14	290	8.0	225	4.4	124	3.2	2.6	3.1
15	270	8.0	230		125	3.0		3.2
16	260	7.4	240		125	2.6	2.3	3.3
17	245	6.8	245			2.2		3.4
18	240	5.6					2.1	3.4
19	235	4.8					1.8	3.3
20	240	4.0						3.3
21	250	3.6						3.2
22	250	3.7						3.2
23	250	3.4						3.2

Time: Local. Swsep: 1.25 Mc to 20.0 Mc in 10 minutss, automatic operation.

				Table	68			
Tananar	ive, Mada	gascar	(18.8°s,	47.8°E)				July 1953
Time	h'F2	foF2	h'Fl	foFl	h¹E	foE	fEs	(M3000)F2
00 01 02	240 240 240	2.7 2.3 2.3						3.4 3.3 3.15
03 04 05	250 270 270	2.0 1.8 1.8						3.25 3.2 3.35
06 07 08	260 230 240	2.0 4.3 5.2	220		150	1.8	1.5	3.25 3.5
09 10	270 280	5.4	230 230 220	4.0	120 120 120	2.3 2.6 2.9	1.4 3.1 3.2	3.6 3.45 3.4
11 12 13	2 7 0 280 280	6.0 5.9 5.7	230 220 220	4.3 4.3 4.3	120	3.1 3.2	3.3 3.2	3.45 3.4
14 15	280 26 0	5.8 5.7	220 230	4.2	120 120 120	3.1 3.0 2.8	3.1 3.0 3.0	3.4 3.4 3.45
16 17 18	240 240 220	5.4 5.1 4.4	230 240		120 130	2.6	3.0 2.9	3.55 3.5
19 20	220 240	3.0					3.2 2.8 2.1	3.5 3.55 3.2
21 22 23	260 260 250	2.9 3.0 3.0						3.05 3.1
	-70	7.0						3.3

Time: Local. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Tabl	e 70			
Tananaz	ive, Mada	gaschr (18.8°S,	47.8°E)				May 1953
Time	h'F2	foF2	h'Fl	foF1	h'E	foE	fEs	(M3000)F2
00	245	2.8						3.2
01	258	2.6						3.2
02	2 55	2.4						3.2
03	250	2.6						3.3
04	250	2.2						3.2
0.5	255	2,2						3.1
06	262	2.6					1.5	3.1
07	240	5.3			139	2.0	2.7	3.5
80	255	6.2	240		124	2.5	2.9	3.5
09	265	6.5	230	4.1	121	2.8	3.0	3.5
10	270	7.0	225	4.3	121	3.0	3.1	3.4
11	270	6.8	225	4.4	121	3.1	3.0	3.4
12	280	6.8	220	4.4	122	3.2	3.0	3.3
13	272	6.6	215	4.3	121	3.2	2.9	3.4
14	270	6.1	225	4.2	123	3.0	2.9	3.4
15	265	5.9	230		125	2.8	2.9	3.4
16	250	5.7	240		124	2.5	3.1	3.4
17	235	5.3			132	1.9	2.9	3.5
18	225	4.6					3.0	3.5
19	230	3.6						3.4
20	232	2.8						3.2
21	250	3.2						3.2
22	240	3.1						3.3
23	248	3.0						3.3

23 248 3.0

Time: Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Table	72			
Djibout	i, French	Somalil	and (11.	5°N, 43.	1°E)			March 1953
Time	h'F2	foF2	h'F1	foFl	h'E	foE	fEs	(M3000)F2
00	270	>5.8						(2,95)
01	250	5.6						3.25
02	235	(4.8)						(3.4)
03	220	4.2						3.55
04	225	2.9						3,55
05	240	2.1						3.55
06	230	5.2			~	<1.4	3.0	3.5
07	260	7.1	220		113	2.4	3.4	3.4
08	300	8.4	210	4.3	107	3.0	4.1	3.1
09	310	8.9	210	4.4	110	3.2	6.5	2.7
10	325	8.4	210	4.6	105	3.5	7.0	2.8
11	330	8.4	200	4.6	107	3.6	6.9	2.75
12	330	8.2	200	4.7	106	(3.6)	7.0	2.75
13	320	9.0	202	4.6	108	3.6	6.3	2.8
14	310	9.6	205	4.5	111	3.4	5.2	2.9
15	290	10.0	210	4.3	111	3.1	4.9	3.0
16	280	9.8	215		115	2.8	4.4	3.0
17	240	>9.8	235			-	4.0	(3.0)
18	250	< 9.5					3.5	(3.1)
19	260	9.2					3.0	(3.0)
20	260	8.9					2.9	(3.05)
21	260	8.5					2.4	(3.1)
22	245	8.0					3.1	(3.15)
23	270	6.0					2.8	(3.05)

Time: 35.6°E. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Tabl	0 73			
Tananar	ive Mada	gascar	(18,8°s,	47.8°E)				March 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	3.9						3.0
01	252	4.0						3.2
02	245	3.4						3.3
03	242	2.7						3.2
04	260	2.3						3.1
05	285	2.2						2.9
06	265	3.1						3.1
07	250	5.1	250			2.3		3.3
08	300	6.3	240		123	2.7	3.0	3.2
09	315	7.2	235	4.5	123	3.1	3.1	3.0
10	310	8.2	230	4.6	122	3.3	3.1	3.0
11	310	8.3	230	4.7	119	3.5	3.0	3.0
12	320	8.6	230	4.7	121	3.5	3.0	3.0
13	310	8.7	230	4.7	121	3.5		3.0
14	300	8.8	230	4.6	121	3.4		3.0
15	290	8.7	230	4.5	123	3.2		3.1
16	275	8.0	232	4.3	123	2.9		3.3
17	260	7.5	240		130	2.5		3.4
18	240	6.5			140	1.8		3.3
19	240	5.7						3.2
20	248	5.0						3.1
21	260	4.1						3.1
22	280	4.0						3.0
23	280	3.9						3.0

Time: Local.
Sweep: 1,25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Tabl	0 75			
Tananat	ive, Kada	gascar	(18.8°s,	47.8°E)			J.e	bruary 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	270	4.8					1.8	3.1
01	250	4.5						3.2
02	255	3.8					1.6	3.2
03	260	3.1					2,2	3.1
04	260	2.8						3.0
05	280	2.4						3.0
06	260	3.6			163	1.6		3.3
07	260	5.0	250	*****	125	2.3		3.3
08	312	5.7	240	L.3	123	2.8	3.0	3.1
09	330	6.4	230	4.5	122	3.2	3.2	3.1
10	360	6.9	222	4.7	121	3.4		2.9
11	360	7.8	228	4.8	121	3.5		2.8
12	330	8.6	230	4.8	121	3.6	3.0	2.9
13	330	8.9	215	4.7	121	3.5		2.9
14	310	8.5	225	4.6	121	3.6		3.0
15	308	9.0	230	4.5	121	3.4		3.0
16	300	8.5	232	4.4	121	3.0	3.0	3.1
17	285	7.8	240		121	2.7		3.0
18	260	7.2	250		125	2.2	2.6	3.2
19	250	6.7					2.7	3.1
20	250	6.2					1.8	3.1
21	258	5.5					1.8	3.0
22	275	5.1					2.1	3.0
23	270	4.7					1.6	3.0

Time: Local.
Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

Tokyo,	Japan (35	.7°≝. 13	9.5°E)	Table	77			May 1947
Time	h'F2	foF2	h'Fl	foFl	h ' E	foE	fEs	(M3000)F2
00	300	9.3					3.0	2.6
01	300	9.1					3.0	2.6
02	280	8.7					2.8	2.6
03	270	8.1					3.0	2.6
04	290	7.8					2.8	2.6
05	270	8.6			100	1.6	2.9	2.7
06	240	10.0			100	2.6	3 .7	2.8
07	230	10.6			100	3.4	5.0	2.8
08	270	10.7	220		100	3.5	5.5	2.7
09	320	10.9	240		100	3.8	5.€	2.5
10	360	11.5	240	6.5	100	4.0	5.4	2.6
11	360	11.8	230	6.2			4.9	2.6
12	360	12.1	220	6.2			5.1	2.5
13	360	11.8	240	6.1			4.8	2.6
14	360	11.5	220	6.0			4.4	2.6
15	340	11.3	240		100	3.8	4.2	2.6
16	330	10.9	240		100	3.6	5.3	2.6
17	300	10.6	250		100	3.1	5.5	2.7
18	290	10.0	260		100	2.3	5.2	2.7
19	260	9.4					4.8	2.7
20	290	8.8					5.0	2.6
21	320	9.0					4.8	2.5
22	300	9.3					4.8	2.6
23	300	9.4					3.8	2.6

Time: 135,0°E. Sweep: 1.0 Mc to 15.0 Mo in 15 minutes, manual operation.

				Tabl				
Djibout	i, French	Somalil	and (11.	5°№, 43.	1°E)		ľ	ebruary 1953
Time	h'F2	foF2	h'Fl	foFl	h'E	foE	f Es	(M3000)F2
00	240	5.0						(3.2)
01	240	4.4						3.3
02	220	4.5						3.5
03	215	3.6						3.55
04	<225	2.5						3.5
05	235	1.7						3.65
06	240	4.2				< 1.5		3.45
07	(245)	6.8	222		112	2.4	3.4	3.35
08	285	7.8	215	4.2	108	2.8	3.8	3.2
09	320	8.6	205	4.4	108	3.2	4.4	2.8
10	340	7.4	200	4.5	107	3.4	6.4	(2,75)
11	350	7.2	195	4.6	105		6.4	2.75
12	350	8.1	200	4.6	107	(3.6)	6.4	2.8
13	335	8.0	195	4.5	107	3.4	4.4	2.85
14	320	8.6	205	4.4	107	3.3	4.2	2.95
15	300	9.2	205	4.3	111	3.0	3.8	3.05
16	280	9.3	220		109	2.6	3.6	(3.15)
17	240	> 9.0	235			1.9	3.4	(3.15)
18	245	> 9.2					2.6	(3.15)
19	250	8.2						<3.1
20	260	7.2					2.4	<3.05
21	245	7.0					3.0	(3.2)
22	240	(6.6)					2.2	(3.05)
23	240	> 5.0						3.2

Time: 35.6°E. Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, automatic operation.

				Tabl	e 76			
Tananar	ive, Mada	gascar	(18.8°S,	47.8°E)		_		January 1953
Time	h¹F2	foF2	h'Fl	foFl	h'E	foE	fEs	(M3000)F2
00	260	4.9						3.1
01	250	4.4					1.7	3.1
02	255	3.6						3.1
03	2 50	3.1						3.2
Off	260	2.6						3.1
05	290	2.4						2.9
06	250	4.2			132	1.8	2.7	3.2
07	308	5.3	240		1.22	2.5	3.1	3.2
08	3 5 5	6.0	230	4.4	120	3.0	3-2	2.9
09	352	6.7	220	4.6	118	3.2	3.5	2.9
10	370	7.6	21 5	4.7	119	3.5	3.7	2.8
11	380	7.9	210	4.8	120	3.6	3.5	2.7
12	365	8.3	210	4.8	120	3.7	3.5	2.7
13	340	9.0	230	4.8	121	3-6	3.3	2.9
14	320	9.2	218	4.7	120	3.5	3.3	3.0
15	320	8.6	225	4.6	120	3.4	3.5	3.0
16	310	7.6	230	4.5	120	3.1	3.4	3.0
17	308	6.8	235	4.2	120	2.8	3.2	3.0
18	260	6.5	245	-	126	2.1	2.8	3.1
19	260	6.2					2.8	3.0
20	260	5.1					2.3	3.0
21	270	5.6					2.1	3.0
22	280	5.3					1.5	2.9
22	220	6 2					1 2	3.0

23 270 5.2 1.7 3.0

Time: Local.

Sweep: 1.25 Mc to 20.0 Mc in 10 minutes, eutomatic operation.

TABLE 78

Central Rodio Propagation Laboratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

Washington, D.C.

Observed of

J.W.P. J.J.S.

National Bureau of Standards (Institution)

Sweep 10 Mc to 250 Mc in 0.85 min Monual 🗀 Automotic 🛭 Form adapted June 1946

JWP. JJS.

E.J.W.

National Bureau of Standards

TABLE 79

Centrol Radia Propagatian Labaratory, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

0.0

Washington,

Observed of

foF2

J.W.P., J.J.S. 3/1 2) 324 (3.2) 1307 354 (34) (26)3 (36)5 12 915 3.0 + ν « (26)3 (30) (33) 5.2 38 3 3.5 3.0 7 7 53 - 5 2 ∞ ~ 23 2 3 (25) (3.8) 3.575 (24) (34) (41) S 303 3.55 (35) (39E) 204 7. 00 0 4 47 3.6 43 30 £, 5 4 0 4 5.6 33 ~ ~ 37 39 7 22 6 5 $\overline{}$ (3.7) P q (4.4) G 5) Calculated by: E.J.W. 3.874 73X (4 3)A · (0 h) 43 42 4.3 3-3.7 42 7 7 45 6.0 47 (96) 5.3 43 45 4.5 30 26 47 3.5 1 5 3.5 -3 2 14 b)A 5 0K (8 h) (46)3 (4 5) s 45 K (45) 3.5 465 13 G A 5.0 23 94 44 300 5.0 54 50 200 12 5 7 × 2.0 37 5.3 5.6 70 5.8 14 20 47 8 6 3 15134 49K 404 (46)-47 K 54 5.3 53 45 47 1.4 30 3.6 7 50 14 9 7 42 25 7. 4.7 14 5,2 77 7. 43 70 52 50 76 ۍ-د T <u>6</u> 46 A 4 7 4 7. (94) (45) 43 7. 7 % 64 7.0 300 5 6 7, 47 7 5.6 44 05 6 7 43 44 7. <u>@</u> 7 44 44 5 14 44 7, 4.4 2 T 7 4 × H 4.5 K 4 7 X 4 6 A 444 14.43 464 7 14 43 7 5 % 41 7. 77 45 15 20 5.0 5.0 76 4.7 47 5.6 7, 1.4 4.5 3 8 4.1 _ | K K 14 (2) A 4 6 X 4 6 A (44) 107 46A 121 (44) (HH) (4 3) j 461 エニング (43) 43.84 7 3.00 (15) 43 7 7 6 3 73 × 7-4.5 44 52 7. 17 7 42 7.7 30 イン 9 K 454 7346 イント 4.5 30 - × 142 7 7.67 70 77 43 47 9 7 7.4 45 64 439 45 7. 20 9 4 J. 7. 4.7 45 7.3 T 7 × 4 700 2 450 (4 3) 3 A × 4 4 5 G (45) 474 K40 4 5047 (B A) 44.19 54 197 9 4 イン 47 42 43 4.5 ∞ ~ 45 ر د 5.0 5.3 44 4.6 77 エン 047 4.7 4.4 4 8 4 T K AC X 45 H 4 3 A 4.5 # 1643A 4 42 G 4 S H 474 4416 464 7 4 6 G 5177 204× 24.09 マドック 7 7 7 7 7 4.51 7 47 7. 75 7 6 эc Ч 44 30 4.8 4.6 <u>10</u> T 5147 484 (45)A 5047 4774 4426 4 40 K M∘92 4 40 6 イイスタ 5 1 7 7 4426 4 426 5147 4426 (4.3) 4426 4426 5 5 - 7 : 43 45 05 47 (C F) 5.0 7.00 47 8.7 43 2 K A (7 H) 3(3 4) 1481 A (46) (4.3) 514 > 77 41.9 (48) 0 5 V 5 17 7 (45) 4409 × 1 514 > (8 4) 47 44 17 200 7 7 (44) 5 5 443 7 20 5 5 0 77 700 47 = Þ Þ 7 700 784 43 4399 4 4 A 454 76 4.6 (SF) 50 14 2042 (5.0) 77 7.7 4420 7.5) 73 200 43 5.2 53 5.0 53 (45) 47 17 200 8 0 A V. × 3.96 A 1/47 (9 6) 474 (46) (8 4) (44) 2.56 194 4.6 5 43 7.7 4 3) 9 7 √ √ 47 5.4 47 47 94 24 54 1 / 7 45 6 7 97 47 8 4 60 A K 39 A ∞ ∞ 4 6 H (44) P (42) 484 4.3 # 13 6 A 4376 43.76 467 2767 0 00 00 0 (G t) (4) 1400 4.3 30 7 4.7 70 7 75 08 47 × 7 7 43 7 4 3.7 77 K 7 S H 37# 7.17 < 3.06 < 3.3 G (3E) 134 G 136 6 (37) 300 о (т) 4.3 44 4.8 43 300 43 43 9 47 3.7 -7 3.00 30 30 37 37 34 37 30 07 7(0 h) H T T 3.9 H 3 6 A (3 4) 5 3.26 (3.4) 5 × 3.1 G A 10 4 3.6 47 30 т т 3.4 7. 3 3.5 ત્ર્યું (સું 3.0 3.5 33 3 3.4 3.7 34 A 3.3 3-1 90 (2 4) 7.40 3 2 3)5 (2.5) (47) 5 27 7.4 7 7 2 30 29 3.5 5 3 5 70 25 17 7 7 4.3 V Þ 3.40 (24) 13/0 2) (2 0) S 1193 (22)E 377 (23) 7-(1.9) (2 2) E (7:7) 0 () () 0 7: Wol ZZ low .00 25 K V 362 (25) 3 (8) 7 7 رت ان ک 5 (1 6) 22 77 (%) 12.2 (23) L CA 2 (23) 7 27 03 7 K 300 38.7°N (23) (23) 5 (2.1) ンンド (20) (302 (22) 7 4 (F 7) (7.5) 7 7 ος Υ 5-05 ~ (29) E 5 P T) (2 4) S 12(12) S 50 3(5 2) (2 4)3 3.4.5 2 40 2 (2. D) (3.1) 5 360 F 0 (2.6) (2.5) (2.0) % ~ おり 0 73 5 7 107 7 ō K [3 0] A (2 8)F (3 0) A (30)7 7 00 7 (36) (25) 2 3)P (23)5 (2 b) (C 7) (28)4 500 (2 9)E (5.5) 3 35 5 ~ 5 3.1 n ~ 00 90 ∢ 8 Medion Count 2 4 9 00 0 4 17 6 50 22 23 24 30 Doy σ 2 5 5 9 00 25 26 27 28 29 2

Sweep 1.0 Mc to 25.0 Mc In 0 25 min

Manual [] Automotic [3]

80 TABLE

form despited June 1946

J.W.P. J.J.S.

National Bureau of Standards

Central Radia Prapagatian Laboratary, National Bureau of Standords, Washington 25, D.C. DATA IONOSPHERIC

954

Washington, D.C.

Observed of ___

Day

9 7 Ø თ 0 ∾ 2 4 5 9 _ 8 6 20 2 22 23 24 25 56 27 28

=

J.W.P. J.J.S. 5 (2.5) 5 (3.3) 8 [3.1] A 17.47 (31) (2.2) (3.0) 2.4/5 (3.1) (3.7) > [32] 4 (3.7) \$ (2.9) (3.6) 2330 3.315 (32) (3.4) 77 (3.4) 5 (2.7) 3.0 4.0 < 7 (3.2) (3.6) 2230 (3.5) 4.0 (3.4) رم ش (2:5) 3.5 4.9 (3.0) 3,0 3 4.7 n 3. 4 (4.1) 5 4.2]A 4.2.4 3.9 8 (3.7) S Colculated by: EJ.W. 3,9 2030 2130 (3.9) 0.9 4.9 4.3 4.0 ار در 45 ก เม ار 0 5.4 7 3,7 (4.3) 4.0 (3.3) (0.F) (4.5)A [4.6] (3·h) 14.73 4.7 4.5 S (4.4) 4.2 2 (4.4) 4.73 5.5 4:3 4.3 5.1 5:3 4.7 6.7 3.5 4 4:7 4.4 2.9 5.7 4.9 4.4 4.7 3 3.8 4.7 (4.8) 2.4 1930 4.4 14.5,5 4.5 5 8.4 5.5 4.3 £.5 5,3 5.4 5.0 4.6 5.5 (3.4) 4.9 5.3 5.4 (4.5) 4.5 4.0 40 5.7 4.7 4.6 4.7 4.3 4.9 4.9 ⋖ 4.4 5.6 Y (4.5)A 4.3 K (4.1) 3 (39) " (4.2) A [3.8] \$ 1730 1930 4.50 , <u>,</u> 47 4.57 7. 4.4 4.6 4 4.7 4.8 5:3 4.8 4.3 W.7 4.5 4.4 4.4 5.0 4.9 ⋖ 5.3 (i) 4.9 K et. (4.5) 4.5 4.6 £. 4.6 14-1 6.7 5.3 5.4 4:7 ₽. 7 4.4 4.6 4.2 4.9 4.3 4.3 60 4.8 4.8 7 46 4.4 4.4 4.6 94. 4.3 4.6 ₹ A 7. V. 4.5 4.3× 4.5 1630 4.5 (45) 4.5 (4.6) 4.5 (1.41) 4.4 9.4 4.6 4.5 4.3 43 4.5 4.7 5.0 4.0 4.8 4.7 4.3 5.7 5.3 4.7 4.3 4.5 \triangleleft < e) (4.3) (4.2) 5 4.2.4 4.51 1230 1330 1430 1530 4.7 (4.5) S 4.4 4.7 14.5 4.4 4.3 7.7 5:5 4.7 4.5 4.5 エチ 4.7 5. 4.3 4.4 4.3 7 50 4.8 4.9 5.0 4.7 43.9 ∢ H.4 K (4.5) 14.4) 8 (4.8) M 4.5 4.5 4.5 6.4 4.7 4.6 7.6 (4.6) 4.5 4.9 5.4 4.8 4.6 4.0 5.0 ナンド 4.3 --2: 4.4 ₹ V <Mean Time 4.3° 24.06 5 0.4 × 4.6 4.5 4.6)4 4.5 4.4.2 4.6 8.4 4.8 4.6 4.9 4.6 7.6 78 30 4.7 44 1.4 > 14.0 14.3 5.3 0.47 54 (C) T K \forall \checkmark 4.5 × 4.10 4.5) 75°W × 4. (4.5) (H·3) 1,1 4.70 4.5 4.5 4.6 1.47 4.7 5.0 4.4 4.7 -1 4.7 7 1 5.0 £ 00 4.7 - H v 4.7 1.4.7 ----⋖ 4.5) (4.5) 4.5 , 1.4. 130 4.5 50 50 44.2 5 4.9 0.4 > 4.5 7.4 0.4 V ٥ . A 4: 1.7 4.3 4.8 44. 1.7 5.3 4.7 7 7 45 K ~ ⋖ (4.2) (4.5) 4.6 (4.2) 5 44.0 6 4.1 ° (4 6) 4.5,5 4.5 7 1 (K.H) 0801 0860 4.6 4.5 4.5 4.8 ナ・コ 4.7 2.4 × 4.0 4.8 1.4 > 1.4. 14.40 5.2 5.0 4.7 5.6 4.9 K 15 4.3 5.2 K (4.5) 4.6 62.4 4.5, 4.2 4:5 4.7 (1) 4, 4.8 4.6 4.8 4 0:5 4.7 4:3 4.7 -7 ↲ V H.4.7 A 0830 4.4 5.3 7.7 بر ۲ 4.8 5° × 3,5 7.7 2: 4.6 4:5 وب زين 7.6 4.3 4.8 4.4 7. 4.8 7 4.4 4.4 V (3.8) 5 (3.6) 0730 4.9 (4.1) 40 4.5 4.5 3.9 7.5 4.5 4.8 4.5 4.4 (4.0) 4.6 43.F 8 4.7 -1. 4.9 43.6 1.1 ⋖ (3.5) 3.8 4 (4.2) 3 0630 4.2 , r) 7.4 3.3 3,5 3 4 A 3,5 4.7 4.0 43 643 3 < 3,3° 7 رب س ō; 3.0 # (3.0) 3 0530 2.2] \$ (2.3) \$ (3.1) 8 (2.0) 5 4 3.1 6 (3.7) } 3.7 3.0 3.0 .-. (T) તું જ 3.6 3.7 30 3.6 5.4 ત ભં 'n 'n ci) 0 0.5 5:4 0130 0230 0330 0430 [2.7] [(2.8) 3 (2.3) 3 (2.0) 5 5(2,2) (1.4) 5 c(2.2) (2.2) (2.3) Lot 38.7°N Long 77.1°W 4 F. C (2.5) 3 1.9 2: 6.1 7.4 3 7.1 ⋖ (8.1) ٤ (٥.٤) 2.4) (3. L) 5.5 (2.2) (J.K) (2.0) 0: (ત:ત્ 6.3 (S.) 7:4 2,3 7:7 2.6 1 (3.E) (2.5) > 2. y d (2,3) (2.1) (2.1) 3 (1.2) 1.47 \$ (2.4) 3 5(5.3) 3.0 42 7.7 2.3 2.6 (1.2) 2 (2.2) 2 (2.1) (3.3) 3 (2.5) 3 (2.3) .4 .4 (F. 7) Ŋ (2.2) (3.1) 5 (2,4) £ (3.0) 4 (2.5) g (2.7) 5 (2.1) 5 (3.6) (2.8) [[3.0] 4 (2.7) 5 (2.7) 3 (2.8) (2.4) (2.4) 7.4 (2.9) [△] [3.2] 4.4 (2.8) 4 (2.7) (2.7) و ان 7.8 (2.5) 5 (2.2) (5.0) ربر بن 2.0 [2.2] 4 (2.1) (3.6) (2.4) (3.8) 5 0030 2.83 (3, 2, 1) ▲ [2.4] S 3. S. S. (2.4)5 (2.5) \$ (3.2) 5 2,5 ۲ 43 4 2.6 30 28 3. < ⋖ Median Count

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

59

8

3

Manuel

Automatic

Manuel

Form accepted June 1946

J.W.P. JJ.S.

Scaled by: E.J.W.

National Bureau. of Standards

 $\overline{\omega}$

Central Radia Prapagatian Laboratary, National Bureau of Standards, Washington 25, D.C

IONOSPHERIC

July (Month)

Kart)

(Characteristic)

J.W.P., J.J.S. 23 22 Calculated by: E.J.W. 2 2.40 20 _ } H X (230)5 250 A (240) 240 240 220 (250) (042) 220 260 230 230 (240) 250 250 6 120 d: S 17 D: # Ц. E. 吐 I Œ. 12. Н Н п E. [240]A (240) A 200 # (250)A [230]" × Y H 230 250 1220] 220 200 240 240 220 220 210 10 240 230 9 n-K Œ. D-H II. D. E. Щ П. П. IĘ. II. (240)A) (200)A 240 # 200 # 200 4 12207 2004 200 # 200 H Y H 220 X H 12007 [210]" 220" 230 220 H 230 230 220 220 200 61 Ħ K 7 12-H 2 Et: H Ľ, E. 1 (210) A A H 2004 210 # 230 H 200 4 220 H (200) ¥ Ħ 1220] 200 200 220 510 200 210 9 310 230 210 210 310 310 0 H II. Œ. II; Ц K Н ET: D, E 200 H 12,030 210 4 200 H 170 H 200 # 190 # (210) (200) X X 12207 [210] 220 200 200 200 200 210 200 18.0 230 210 190 130 200 2 щ 23 Ħ D. н. 匸 # H 200 A 220 H 210 # 200 H (200) 19011 130 # X H 210 4 180 H 2004 220 4 A A 170 # [200] A 200 200 190 180 220 200 202 220 200 4 4 210 H K n, E. ц; 1 щ (230)A 18.0 H (210)A 2004 X III 210 # 200 H 210 4 H 081 [220] A 170 M (200) (220)A 200 H 180 4 200 x 200 200 210 [200] 210 220 210 200 200 10 210 190 081 DE. 9 Œ DC. 200 H 2004 200 K H 061 H 061 200 4 170 4 12.03A 190 K [200]" 170 4 200 H 061 75° W 170 H 220 220" 220 190 200 061 200 210 170 Ħ 180 Ħ 23 7 H Œ: 17 E 吐 E-200 # 200 A H 081 # 081 1210JA 200 H 200 # 1904 H 081 210 A 2004 200 1904 190 (021) 190 2004 200 200 (200) 210 200 200 190 180 23 = Н Ħ K H E E. Þ н H 081 180 4 # 081 H061 220 H 200 # 180 # (240)A (200) 2004 [210]# [200]A [200] 200" 190 " 200 (220) 200 210 190 210 180 180 190 34 0 J K 11:-H Ľ-D. II. (220)4 210 H (200) 220 H (210) A (210)4 200 H 210 H (220)A 200 H (210)4 [2007] 220 230 12107 200 210 200 200 220# 200 220 210 60 190 190 200 310 73 II. H 17 П. K H П; E. 200 H (220)A (240)# 190 4 (220)4 [220] 200 H 12107# 210 # 230 (200)" 210 (220)4 (200) [200] 12007 230 250 230 12307 200 220 34 90 Щ Œ. IZ. E. II; ıt. æ 210 # (04 X 200 % (220)ª 210" 220 4 220 H (240)" 220 (220) 220 4 2104 220" 2107 220 220 220 220 220 230 300 [210] 200 230 230 12307 210 36 07 Н K Н Ħ DC. 2404 250H (230)" 230 H 230 240 230 (220) 230 250 240 250 230 220 230 200 240 240 230 200 230 220 240 2.50 90 210 210 240 26 Œ 12: U, H 240 220 05 Q } N Q Q Ø 0 Π_{i}^{-} Œ σ ŋ Lang 77.1°W 04 Washington, D.C. 03 Lat 38.7°N 02 0 00 Observed at Median Caunt Day c/ 4 9 00 6 0 5 9 17 8 6 22 24 25 S 12 4 5 20 2 1 23 26 27 28 29 30 = 3

Sweep 1.0 Mc to 25.0 Mc In 0 25 min

Manual

Automatic

Manual

82 TABLE

Form comptes June 1946

JWR. JJS.

Notional Bureau of Standards (Institution)

Scoled by: E.J.W.

Central Radio Propagation Labarotory, National Bureau of Standards, Washington 25, D.C. IONOSPHERIC DATA

1954

Washington, D.C.

Observed of

(Chorocteristic) (Unit)

J.W.P. J.J.S. 23 8 Colculated by: E.J.W. 2 50 ⋖ i 6 7 \ ₹ T ⋖ K K A(8.2) P(2.5) 3.4 M 3.5 M AK 4.0 2 9 5.7 M (3.8) A 30.5 AK 13.6JA (3.8) 3.6" 3.7 // 3.7 M 3.6 # J.63c 36 3.6 3.65 3.6 5.5 5,7 9.5 ر م ر يو T K 7 5 3.4# 3.9 K J. 8] A X X (3.9)5 3.9 # (3.9) 5(8.2) 2,5 (3.9) (S.8) (3,8)A الم يم 3.9 4.0 4 ≥ 0¢ 7.00 ¥ ر ر ر ري وو ۵. 2.2 5 5 3 57 < <u>ب</u> 9 K 4.0 # 4.0 5.9 R [3.9] ¥0 ¥ 404 3.9 # 3,9 K 14.03° (4.0)° 404 (3.9) 404 (3.4)5 3.9 K (4,0) 40 W 14.07 25. 27 4.0 40 4.0 4.0 3,9 40 5.0 4. ⋖ T K 404 4.21 (4.0)5 4-1 4.0 K 400 4.11 4.2# 4.1 117 4.0 # 14.0JA 404 4.0 1 7 - + + 4.0 + 4 4.0 42 + 7 갼 4 + T < < • K Mean Time 40 11 #1.4 42# #2# 4.21 4.17 (4.1)A 4.2 " 40 W 4.2 427 4.21 (4.2)A 4.24 404 [40] 27 4:3 4 42 4.2 4.3 4 4.2 34 40 4. 7 10 T 7 ⋖ 42" H-1 H 4.2 M 424 40x W°52 ¥ 0 + 4.2.7 42" 404 4.2 # 4.14 41 7.14 25 4:0 42 7. 4 4 4 4.7 4 40 4 T + ğ Ø. K 4.2.7 4,2 " 4.24 7 4.1 4 404 4.2# サンド 40 ±-411 421 414 424 4,2 4.0 24 25 24 4.2 4.2 4. 4.7 4 4.1 Œ Œ 7: V K K = K 4,21 40 W 14.0JA 4.1 4,0 # 40 M 4.04 4. 4. 4.0 4,0 4.2 4:0 2 4 + + サ U 0 ⋖ ∢ 7 + + ∢ K (3.9)A 4.0 # (3.9) (4:0)A 0 + 4.0 4 (3,9)5 الما ا 2. 3,9 4.0 4.0 3 2.9 4.0 3.9 + 3.9 4 60 ⋖ V T Œ \triangleleft V (3.9)A (3.8)A (3.9)5 30.7 (3.9)5 3.7" (3.7)5 37# 36 (3.7)A 30 4.7 [3.7]A 00 N 30 οc γ 30 3.7 رم م 3 3.7 30 M ₹ • 08 ⋖ ⋖ 3.5# 3 (6.5) S.5 H 3.75 26 3.6 1 1 to 3.2 λ 2,57 ري دع 3.6 3,5 # 300 3.6 9 و 3 3 3.4 J V 3 3 3 ∢ 07 K < < 3.44 3,2 3.2 3.0 3.2 -~ ~ 3,2 3.2 3.2 3,3 3 3.4 3 30 53 90 300 V. L < 7 T 3.1 F 0.5 do 1 9 ರ -1 d 00 ⋖ ⋖ S Ø Wolf 7710W 0 4 03 Lot 38.7°N 05 ō 00 Median Day 5 Count ю 4 10 9 8 2 9 ~ တ Ø 0 ΩI 4 99 6 2 24 92 = 7 QI. 22 23 25 27 28 29 8 5

Sweep 10 Mc to 25 0 Mc in 0.25 min Manual C Automotic B Form adopted June 1946

J.W.P. J.J.S

Notional Bureau of Standards

Central Radio Prapagation Laboratary, National Bureau of Standards, Washington 25, D.C

DATA IONOSPHERIC

(Charocteristic)

Day

ĽΩ _ ω _

Sweep 10 Mc to 250 Mc In 0.25 min Manual C Autamatic 20

Median Caunt

TABLE 84

Central Radia Prapagation Labaratary, National Bureau of Standards, Washington 25, D.C.

Form coopied June 1946

fc	- 1	Mc	ا	July	1954			Centre	0000		DAION DELEGION BUT				Central Radia Propagation Laboratory, National Bureau of Standards, Masnington 23, U.C.		<u>ز</u>		Notion	National Bureau of Standards	w of S	tondar	sp	1
(Chara	istic)	(Unit) Washington,		fonth)						2				[- [Scale	Scoled by: E.J.W.	, W.	(Institu	W.C	JWP. JJS.	(0)
ODServed of		Lat 38.7°N	1 1	Lang 77.1°W								75°W	Mean Time					Colc	Calculated by: EJ.W.	E.J.W.		W.C	JWP. JJS	
Day	00	00	Н	04	0.5	90	6 07	00	60	01	=	12	13	4			91	6	20	12	20	23		-
-					S	7		A	А	2.9	(3.0)	A	A	A (3		[2.8] 5	5 5(-	٧						
2					S	7	- 1		Ą	A	A	₹	A			2.8 # 2.6	6 2.3	S						
33					5		2.1 # 2.55		30	٦,	ر.	(32)	(3.2) [3.2] (2.8)P		(2.5)	(2.4) 5		Ŋ						
4					S	1.9	9 2.4#	(7.7) ^S	2.9	0.0 €	[5.0] ^A	5.0	3.0	(3.0)	3.0	2.9 2.6	(2.1)5	5						
5					5		А	٧	.2.		5	- 1	5.2	3.2 ((3.2) (3	(3.0) ⁵ (2.7)	5 5(1	5						
9				_	5		5 5(8.1)	(2.4)5	5 (26)5	2/8/21	2.9K	3.1K	(3.2)A	3.2K	3.0K 2	2.8K 25K	-K 2.1K	X X						
2					S	()	(1.8)A S	S	2.6		2.9	А	¥	A	3.1 2	2.9 2.5	5 2.1	5						
80					S	A	2.4		2.9	A		١ ٨	А		3.0	2,8 [(2.6)5	1.2 3.1	5	5					
o					2	_	(1.9)5 2.1		3.0	[]	(5.2)					A (2.5) ⁵	1.2 2.1	٧						
0					5		20H (2.4)P		4 (2.9)P	1 1	ا،د	(5.1) P	(3.2)#	3.2" (.	(3.0)		4 A	Α						
=							A (2.4)A	_	A (2.8) A	A	A	A	A ((2.9)P 2			A						
12						A	Y A	Y	А		A	A			į	3.0H 2 1	28# 2.4	1.8						
13							A (2.4)5	1 1	c (2.9)A	3.0		(3.2)	5.5	5.2" (1 1		1 2.1	¥						
14						1.8	8 2.3	-,	2.9	5.0	3.0 H	А	A	A		3.0# 2.7	l A	5						
15					5	"	18 # (24)5	(2.1)	5 [2.8]A	(2.8)	¥	V	3.2	32 [3	1	2.9 2.8	8 A	S						
91					S		1.8 # 24	2	A(0.5)	2.9	2.4	(2 9)A (2.9)A	2.97A	A B	[3.0] 2	2.7# 2.6	6 2.1	S				-		
1.1					S	1.9	9 (23)	# L Z 1 #	1 [2.8]A	5.0	3.0	(3.0)	3.1		A	2.7 2.5	SA	S						
8						1.7		3,6		5.0	5.0	3.1	5.0 ((2.6) A(2.4)	4)S A	5						
61							1,8 (25)5	15 2,8	(8.2)	P [5.0]	(5.2)	(5.2)	13.2jA	31 # 12	50# 2	2.84 (2.3)5	2 (2.1) 5	2						
20						()	(1.8)P (2.4)P	JF 2.6		A	A	A	3.1 #	5.1	5.0	2.9 26	-							
12					_	1.	1.8 2.4	1.8	2.9	3.0 #	3.0	(3.0) ((3.2) #	3.2#	3.2# 2	2.9 (2.4)		5						
22							1.8 2.2#	H 2.5	9 %	(2.7)P	(J.F)	A(2.2)	A	A	29 2	2.9H (2.5)A	5)A (2.2)A	A 5						
23						`	A 22		H	А	A	A	A		A	2.8 2.	2.7# 2.2	·Λ						
24			_			-	1.7 2.3		2.2	10 c]	\sim	V	- 1	- 1		3.0 (2.3)5	- 1	2						
25						`	A 12.3	2.5	2.7	2.9 #	2.0 H	3.0 K ((3.1) P	SOK	29K 2	2.9K [2.5] }	1× 2.1K	χ Υ						
26						-	1.8 2.3	0 1	2.7	29	(3.0)	(E.O)A	3.0	30	30 2	2.9 5.2	H.	~						
27		_				_	A 2.1	_	12						A	27 A	A	·V						
28						1.8	8 2.5#	1 (2.5) ⁵	P(12 7) A	- 1	2.9# (2.7) P	(2.7)A	3.1 #	7-		28 (2.5)P	P 2.0	S			-			
29						A	A		A	H	A	A	A	A (2		2.7 26	2,5	5						
30						٦	(1.7) A 2.4	1 26		(5.4)P	V	¥	A A	(1 D) (5	(3.0) \$	2.8 2.5	5 2.0	2						
31						¥	Y Y	2.7	J(8.7)	به د	A	A	Ą	Ā	A	AC	77	~						
Median						1.8	-	-	2.8	2.7	٠,٠٥	(3.1)	\dashv	5 1 5	3.0 2.9	9 2.5	5 2.1							
Count						7	1 24	1 26	7.4	2.3	20	15	17	20 0 2	26 2	29 27	8/ /	-						

Sweep 1.0 Mc to 25.0 Mc in 0.25 min

Monual 🗆 Automotic 🗷

Form adapted June 1946

National Bureau of Standards

Central Radia Prapagatian Labaratary, National Bureau af Standards, Washington 25, D.C.

DATA IONOSPHERIC

954

July (Month)

Mc, Km

E S (Characteristic)

J.W. (Institution) J.W.P., J.J.S.	E.J.W. J.W.P., J.J.S.	21 22 23	42,10	4 6110	3.1/10		4.3,10	(30)50	11.0,0 43,10 8.6,110	01108	120,00	5.57	0 6 6 %	23,10	011/5	50/00	5:0110	24110	2330 5430 29120	23/20	3.275	70,10	(0 5)	3.7,20 4.3,10 3.9,10	28,20	30110	33/10		E	E	3.2,20	3.0,10		42 3.3 3.2
Scaled by: E.J.	Catculated by:	20	52110	7.2110	24/20	50 /(2)	3.7110	27120	11.310	60/20	47,10	6 6,20	32,20	01108	84110	(40)50	5.2110	30,10	(37,00)	E	3.0/30	5.7,10	3.7/10	2.9120	3.010	5.0/10	40,20	5.7,10	47,20	E	Ш	7.0,20	43,20	:0 43
0,		18	40130	160,10	'n	5.8 H	60,20	5.2,10	01109	5.7,10	72,20	4.2 H	48,20	58120	5.6/10	018.01	1.810	44110	3.3,3	295	47,20	3.7 #	B	49,20	19110	53 H	7.0,20	62,20	48,10	3.7,20	04182	7.2,20	18,30	5.2 5.
		16 17	(3.2) 5	39/40	(3.0)5	5.9,20	4.6,20 44,20		4.720 84,20	5.4,20 5.3,10	3.9,10 4.5,30	68,10 120,10	5.1130	7.60	85,20	4.9,30	(3.2) S S.O. H	3.8,20 5.7120	4.2,20 39,20	3.9,10 3.0,20	44,30 41,20	4.0/20 4.420	9.3,20 41,20	5.0110	3.7,10	43,30	4.7,30	3.2 40	4.9,10	<u>ئ</u> ج	3.0,20 43,20	10.0 12.5	47,0 C	46 44
1 - 1		14 15	(36)	3.3,30	4000	49,20	4.7,30	0115.11	7.6,20	4.5,20	4.2,10	60,20	-5	4930	49,20	5	U	J	34,10	4.0,10	5.630	68120 11120	5.6/30	5.0 H	01104	3.9,00	49130	4.3,30	7.4.10	B	42,20	6.6,20	4.9,10	43 4.7
	Mean Time	13	5.8100	40100	34/10	(b)	5.0/30	12.5/10	5.3	4.3110	0110	5.4 120	31 110	42,00	50,20	00/	3.5 11	3.2110	4.3/10	59110	6/110	68120	3.5/20	4.7,00	66,00	0110 4	130	02/4/30	011	B	01154	1001	62,00	50 4
	75°W	11 12	00/06 00/5:5	40110 41100	7.6 110 6.6/00		33/10 39/10	01/6 0 01/54	4.2,10 45,00	10.2,00 8.4,00	3.7,20 45/10	58,20	5.4110 4.240			53/10 6.3/10	00184 00184			3.6,10 5.1,10	<u>5</u>	7.8,00 7.0110	43110 40112	28110 5.2119		5.2,30 6.3,10		_	5.0 54	7.0%0 3.0,10	42,00 40110	2.8	7.600 06,00	50 5.1
2		0	011 17	5.4130	43/10	47110	011 6.9	J	37110	88,00	0110	7.5 /2071	4.7,10	400189	7.17	01/95	5.0110	5.6110	56,10	4400	3.7110	7.2,00	43,10	3.8/10	5.3/10	42/10	5.0,10	401108	7/10	3.3,20	47,00	47,10	110 5.3 110	050
			00/9	42110	5.6	5.8,20	7.2,10	01140	101	43,20	16.0	66,20	5.6/20	01154	5-3 110	50110	47,20	4.9120	50,10	19 120	011 67	39 110	01114	7.0,24	4.3 H	4.3,00	43/20	10.0 1	5.6	3.7,20	5.0 120	62 20 44	3 2	4 0.5
		20 90	47,10		62,0		1.7,20 44110	110 5.8 110	20	2 7 2 5	120 4 620	4.4120	5.0120	17 S.17 10 %	5.6110	22,20 3.5,30	(29150 43110	4 3/20	66/23	27,30	40,20 52,20	22,20 3.6,10	31/30 39/20		52100 5.0HG	2.0,20 39,20	42,20 33,20	47,20	38,20	34110	38,10	25 4	01101	3.7 44
		0 5 0	G 30	42 110	01108	y	(5		43,10 4.7	66,00 43	7 + 120	2.7 100		3.7/10	32,20	E 22	P	P	Ŋ	U)	38,10	(33) 5	2.7100	43	7.4 110	E	19,20	30,00	904,04	ш	21110	7.8%	28/10 20	28 3
(Month)	Mol 27 Land	03 04	E	130 5.0 130	01103 5.0 17	-	(21) \$ 2.7 100	2/20 E	4.0110 41 110	7	S 110 5.0 H	50/00 3.4/10	42110 5.7 110	2	3 0110 E				(28),5 2.4100	(33) 5	30110 3.4110	56/10 E	1,30 30100	F	9 100 37 100	0110 2.9110	23130 6.4110	3.4100 42,00	42,00 474		49/00 42/00	01/0 (0:5) 5	EE	3.8 3.4
(Unit) Washinaton.	Lat 38.7°N	0.2	F	E3	49 110		36100	1	(37) 5	54100	40/10	54100	01195	E	ш	2.2 120	56/00/35/52 43 3	70,00 50,00 4.9,10	0.001	ш	72110	E	42,00 (38),50 41) E	31,00 49	2.7120 30	E	38100	58110	F	48,00	70110	\sim 1	3.7
ustic)		00	E	7 113 E	39110 54 120	24) 30 E	30	E + 120	7	52 110 45110	(2.4)5 30 120	2110 68100		501,0 30,00	E (23/25)	271,30 21,30	\$ 2 100 58 100	5.9 100 7 0,00	70,50 80,10	24,10 35,10	E 40,10	16110 47 9,00	6,00 42,00		25,10 E	EE	3.0,00 28,00	w	0110		30,00 58,10	w	(30) 50 47110	30 3.8
(Chare	Observed at	Day		2 4			5	9	7	ψ ₂ Φ	6	10 7	-	12	5	4	15	16	17 7	18	6	20	21	22 3	23 2	24	25 3	26 ⁶	27 4	28	29 3	30 2	31 (edian

Sweep 1.0 Mc ta 25.0 Mc in 0.25 min

86 TABLE

Form dappted June 1946

J.J.S.

JWP,

E.J.W.

Scaled by:

National Bureau of Standards

Central Radia Prapagatian Labaratary, Natianal Bureau af Standards, WashIngtan 25, D.C.

DATA ONOSPHERIC

1954

(MI500) F2

Washington, D.C.

Observed at

J.W.P., J.J.S. (23) (2.0) 2 2.2 7.1 (2.1) (2.2) 20 2 3 23 3 (2.1) (23) ~ (2) (2) 22 Œ Щ $_{\rm H}$ Ħ Œ щ 4 12.11° (2.1) (2.4)3 2 2 (2.4) 23 7 22 5.3 3.5 5.3 2.2 (22) 2.0 33 61 3.2 T. S E.J.W. (2.3) (2.3) 3 2.2 (2.0) 2.1 جر جن 3. 7 2.0 2.1 3 ~ (23) 2.3 2.3 33) 4 5 2 Œ Calculated by: (22)5 (2.3) 3 2.2 ~ (2.3) 2 4 3. 0. 2 2 36 20 (23) 2 20 22 2.2 Щ 2.2 7 7:7 3 33 2.2 7 DC. 22 (23) 3 e, 6, 2.5 8 4 8 200 3 0. 7 8 4 3 3 7 ~ 60 1.2 6 T. H Et. (2.1)3 \forall \forall 1.8 3 0 2.2 2 2 2.2 30 30.0 0 20 6.3 0. 2.1 -3 6.1 2.1 2.1 6. Sc ev 8 6.1 EC. Ц-25 30 2.0 3.5 0 2.3 0 50 0.5 23 7.7 3 2 2. 100 50 23 0 00 23 6.1 1.7 17 6. t. U 36 1.9 H D: н (2.1) (08) (0.0) (9.7 0.5 6.1 2.0 7:7 1.3 5 2 2 (6.7) 33 20 (6.7) 1.7 61 25 2.1 6.1 6.1 5/ 6.1 9 61 E. b K b H П: П-DC: 0 30 6.1 61 5.0 1.7 1.9 9.1 1.9 00 00 20 £.4 €.4 8 6. 5 61 b Q. Ъ Ц. H 1.7 61 Œ U J II. 5 1.8 # (1.9) (17) (1.9) なな 2.0 (9.1) 00 6.1 ço ' 00 30 52 4 (8.1) 00 1.9 7.7 00 1.8 1 Ħ 叮 ·b b Ь 12 E D. 1.7 H 0 1.7 1.8 0 7 1.9 1.9 7:7 6.1 1.9 8. 0 7 1.4 8 52 <u>10</u> 1.6 1.7 6.1 6.1 Ф Ф Œ P P II. Ъ Œ ъ Ħ I P E. ± 8/ (20)A Œ. 75°W 33 5 7 2 2.1 7:5 3.0 6.1 P 1.7 P 1.9 Ь 1 b P P Ъ Ь Ъ Ь b K b P T. b TT. b (2.0) 50 2.0 0.5 22 2.0 7. 1.7 2.1 0.0 0,7 74 2.4 (2.3) 2.3 = 7:1 b Ъ B b Ħ H DE: b ш n т. (0.9) 5 (91) (1.8) 20 50 2.2 7 2.1 6.1 7.1 33 7.7 2 (20) 3 2.0 51 6.1 1.9 b 4 0 U ш b Ц b (20)0 2.2 # (2.1) (2.2) 2 (2.3) 8 33 2.2 2.0 200 6.1 20.0 8/ 1.8 7:7 60 (2.0) Tt-2.0 1.8 2.1 ь, 7 b 0 2 2.1 Œ II, P Œ Ħ (2.4)5 22 H 2.2 1 2.1 # 20 100 2.2) 33 2.2 3 2.3 1.7 0 90 1.9 Ь b P 6: 77 P Į. Œ Œ P b 吐 b 1 4 £ 80 . 0 2.1 7 (0,2) 3 22 14 7.9 6. (15) 7. 0 17 30 ジャ 1.9 1.9 es, wi 9. N 9. Ъ 20 b ь b H (2.3) 7 (2.3) p 2.4 H 2.5 4 4 7.7 17 1 % 22) 7 7 90 1 5 3 7. 30 P 7.1 8 b ф Ь b Ь Œ Щ. b K 3) 5 (2.3) 12.4) K.3) P 22)3 (23) 23 (2.0) 3. 23 2.3 24 7.7 122) 7 80 0.5 7 22 1.2 2. 2.2 3 R 7.7 7 7(1.5) (2.3) (21) 5 2.3) (22) (2.3) (2.3) (2.2) (2.4) P 3.05 211 (2.3) (2.2) (22) 7 DE (2.2) Vol 27.10 W 04 21) 20 (19) 2.1 7.7 Н Е Ъ) 5 н 1225 (23) (20) 22.27 (2.1) (21) (23) 2.0.5 R.3)2 (47) 57 LL 21 (2.5) 03 6.1 53 7:7 12 1.9 3 -I Ь 5 I. 5 S 170 H (21)3 (2.1) F 232 (2.2)5 (22) 225 (2.3)5 (2.2) (2.2) 2 Lat 38 7°N (2.2) . н 7 5 (2.2) 22 1.9 23 22 23 7.7 22 2 7 05 h Œ S 4 EC. Ь S E K (22) (2.1) F (2.3) A (20)5 (21) s (23)3 21 4 (2.3) 5 (22) (20) 5 (2.2) P (22) (2.1) 202 30 ار ا 7 7 2,0 (22) es W 33 22 5 5 h Щ П Ь щ Ь I (22)S (2) (23) 4 (23) 4 8 es. 4 22 7.7 3 (2.3) 33 73 es 62 (2.2) 68 22 8 (6:1) 2 68 20 2 Ħ E Ь Ħ K Ħ Щ Median Count Ö α 4 2 9 œ 6 0 2 <u>m</u> 4 2 9 _ 8 6 20 24 = 26 22 23 25 27 29 30 2 28

weep 1.0 Mc ta 25.0 Mc in 0.25 min Manual

Autamatic

Manual National Bureau of Standards (Institution)

TABLE 87

Central Radia Prapagatian Labaratary, National Bureau of Standards, Washington 25, D.C.

IONOSPHERIC DATA

(M3000) F2 (Unit) (Month) 19.54

J.J.S.	J. J.S.																																			
J.W.P.	J.W.P., J	23	₹.	(53)	べつ	5.2	3.1	((1))	9(1.5)	3.2F	Y.	А	Ą	3(46)	5.3	۸ ×	(21)	(30)5	3.0	(52)	3.1	A	5.2	(3.0)-	3.2	3.1	A.	(3.1)	3.2	(3.2)5	3.0	(3.3)5	200		32	24
(Institution		22	7	2,	2	75	2	5.5) >	.n	3.2) €	3.17	3.2	3.0	5.4	77	2	(3.1) \$	3.1	25	(3.5)	1	≺	5.2	(5.1)	3.2	3.1	3.7	2	3.2	ر ا	3.15	3,	α,		3.2	7.4
N.	E.J.W.	21	3.3)5	77	7 7	3.1	32	30 × (<	3.1	3.2	3.1	20.	3.1	4.5	(2.3)	(5.3) (1	(5.4)>	33 (3.1	υ. Ω	6(25)	32 (5.3	2	А	3.3)2	2	(3.0) 3	30	2)	3.15		3.3	17
E. J. W.	by:	20	32 (3.2	30	5.3	3.2	3.1 K	N X	3.2	3.1	A	J. J.	3.0	33	3.1	(3.3)> (8(65)	5.1	3.4	7 f	g(c 5)	5.2	J. J.	3.2	5.3	3.2 K) 5(0.0	3.1	5	2	3.2	3.2 5		3.2	2 %
Scaled by:	Calculated	6	3.1	∀.	3.1	J.	52	2.4 K	J	33	3.2	32	33	30	A	32	3.2	5.3	(3.3)2	3.1	3.3	3.2	3.3	34	3.2	3.7	9.3 K	3.2 (30	3.1	3.1	₹	3.1		3.2	200
		<u>8</u>	2.5	3.1)5	3.1	2 2	31	XYX	30	32	3.2	32	3.3	3.1	5.3	K .	32	300	33 (3	5.0	1.5	(31)	(32)3	3.1	3.0	31	AK	3.2	3.0	3.0	3.0	A	5 7		31	00°
		1	2.9	30 (.	32	1.5	3.3	XXX	200	31	3,2	A	3.1	30	V	A	33	3.0	3.2	26	3.0 H	304 (3.0 (3.4	3.0	30	2.4K	30	3.1	2.7	3.1	4	J		30 3	٦٠
		91	30	2.4	30	A	(3.1)	X	5	31	3.1	31	2 %	∀.	A	5	2.9	20	4.5	(24)5	2, 2,	HAC	, <	304	4(6.6)	2.6	(2.5)	3.0)5	4(0 €)	24	2.4	Æ	3.1)2		4	51
		22	ري	30	244	3.0	31 (3	× 5	₹	5	2	28	2.7	3.1	30	3	.)))	3.1 4	7.6 (24	₹.	4.4	2.4	29 (200	2.5K (2	2.7 (.) V	9	0	4	~		4	23
[- []		4	4(8	1.7	7	4 /	2 %	X	2.7	0 2	20	28	2.7	30	A	₹	5 (46)	5(45)	3.1	2.7	(28) 2	₹	2.8	5	(25) 3	5	2 7 2	50	3.1	7 2	6)3	K	A		8	25
	Mean Time	13	<u>ح</u>	24 8	2.6	2.8	26# 2	×	3	24 3	28 2	24	784	30	3.1	3	2.6 (2)	2.7 H (2	2	A A	x 7.7	5	50 2	5	A (2)	2.8	* 5	7	0	5	2.4 (2	V	₹		8	25
	- 1	12	4	3.1		30	2.6 2	×	5	A	z z	PA	24	5	3	3	3	7	33 2	2 %	3	2 %	الح	5	28	7	× 5	<u> </u>	24 3.	3	n	3	4(0		5	27 2
	75° W	=	30)1		S H 3.	7	3) 2	×	5	A	2	A	A 2	30 (3.4 (7	c	31	3.0 3	5	2	2	3.3 (2	3.0 2	(2.6)3	5	3)3	0	(30){	7	V	()		0	
2	·	0	6) 6	5.2 3.	~	2	2	J	<u>5</u>	3.1	(3.0)A 3	A	3.4	3.1 3	3.2 3	(50)A 2	3.2 2.2	A	J. J.	(2.8)	3.0 H	n	J > 3	7	3.1 3.	3.0 (2.	3	1 (3	0 3	>0	4	18/86	H (0	1.5
-		1 60	0)6 2	2	A J.	3.1	7	A	5	3.0 3.	31 (5	3.2	34 3.	34 3	A 3	A (5	(3.1) 3		a	7	(30) S 3.	0	3)3	2),	0	7	H	1 A	1 3.	5	7	3.1 (2	33 14 5.5		0	-
		0 80	34 (3	5) 3	324	33 3	3 3 K	-		_		I	_		Q A	A	.5	2 A	7 3.	7		0) 3.	(3	(3)	6 3.	5	5	3.0 3	3.1 3.	-	m ح	A				7
		\vdash	7	(3E) #	0	5		0 V	5	2 3.2	7 " A	3.14 3.1	8 6c	4 j.3	1 (3.2)			7 3.2	5	× ×	4 2.9	3 (5.0)	1 3.4	h	4 26	7	ž.		33	5) 5(0.		2)8	24 24		\dashv	74
		6 07	2.	3) 1 3	N	62	1.5 3.1	4 3	3)2	5 3.	ł	44 3.		4.0	(5.5) 3 A	5	5	0	3 34	5	3 2.	λ,	1 3.1		2	7 3.	4 2.7	5	2	SH (3.0	7	~	4 3		mi	3.0
		5 0	2	3 (3	A 2(7	7	J	3 (3	SF	3 35		A	5	3) > (5.	5	5 56	4 3	3/2 3	5	5	7	5	5	4 3.	n	ω,	J	1	77	2	J 36/	3.		J.	27
	%	4 0	5	5 S.	(00)	3.1)3 3.	3)3 33	A	2	n	(53) 3.3	(1) } 3.4	3.1	5	(28) [(3.	ν, γ	3	2	೨	54/8 3	(35)	J.	2	(33)	92	J.	Ω.	3 3.0	۷ ,	.~		(3.4) (34)	3 3.			29
D. C.	9771°W	3 0	2)2 (53)	31) 3 ()	A (0	~	Ů	5)3	0 (3.3) 5	(35) }		Н	А	(18)		, D	(37)	(5.2) (6.2)	1) 5 3.	\sim	5	J & J	J) 5 (31)3	A	5.7	1	2	A (()	7	(3	(3.4) (3.	5 3		1) (3	2
on. D.	N , Lang	0	E) (3	31)2 (3.1	(30)	5	1 (00)	0	(30)5	(3 C) 5	1.6 3	4.4	A	8(10)	24	F	Λ	2	0	1) (0 2) 5	5	(10)	, A	(7.5)) P A		ردر	<	(5.2)	~	\dashv	(3.5	·)		(3)	î.
Washington.	Lat 38.7°N	0.2	32	1) { (3	(31) 5	1	3 (23)	2) 3 A	2	Ą	1) 32)3 A	A	18 3.2	2 2 4	15 31	2	(33)) > A	16 (33) 5	5 (22)	3.2	A	12 . 2	(5.2)	4) 3 3 2	\subseteq	1) 5 3	0), 3.1	2	3)4 3.2	N	0) 5 3 3		2	۲
	2	0 0	30	5 (5)	F 33	h	77	5)	7	A	3) [(3.2) }	(3.3)3	A	3(15)	<u></u>	(30)	5 >) 3 A	2 (34)2	J.	D 10	3 37	A	2) { (5.2)	3 33	2	7)	2	(3.0)	J.	0) (3 3	2	~	\neg	_	22
(Charocrenstic)	Observed of	00	32	(28)	5.5	3.5	32	h		×	ئ	K	A	7		(3.2)	A	(-3)	3.2	31	(632)	3		٣	(33	2	3.0	4	∀	3	5	2	(° °)		4	7 7
d	5	Day		2	10	4	5	9	7	00	6	2	=	2		4	15	9	1.7	8	61	20	2	22	23	24	25	26	27	28	29	30	150		Median	Count

Sweep 1.0 Mc to 25.0 Mc In 0.25 min

Manual (1) Automatic (2)

88 TABLE Centrol Rodio Propogotjon Loborotory, National Bureou of Stondords, Woshington 25, D.C.

Form adopted June 1946

J.W.P. J.J.S.

National Bureau of Standards (Institution)

Scoled by: E.J.W.

DATA IONOSPHERIC

, 19 <u>54</u>

(M3000)FI Observed of _

J.W.P., J.J.S. 23 22 Colculoted by: E.J.W. 2 20 1 6 ablaZ, Þ (3.6)4 3.7 # 3.5 # 3.9 H × A 9 3.5 3 3 3.6 < 3,0 7 ⋖ K K ₹ T ≺ ⋖ ₹ ∢ 3.7 H 3.7 # X 3.6 # 4.0F I 3.5 5 3.6 3.7 K ∢ ∢ K T T ∢ T 3.0 H (4.0)A 3.6 z × (3.9)5 3.74 392 04 و ٣ 32 y 30 T V T 4 T ∢ 402 4.1# 17 X 4 1 1 3.4 30 7 2.5 W So 70 K 5 U ⋖ V ⋖ Ţ \langle 3.9# 39 # 404 × HO 7 4.04 3.9 E 34 # 707 20 (41) 20 4.0 0 / 50 m >9 4 K ∢ T K ∢ ⋖ K Mean 7≀me 39 H 3 g x 404 40 H 39 H 4.0 H 34 404 4/4 39H 404 (4.0)x AA 39 % 3.5 3.9 3.9 42 6. 40 43 3 --3 3 10 ⋖ ₹ ⋖ V T H / # 4 OH 4.0 7 40 K 75°W 404 414 40年 394 1/5 401 3.9 414 3.9 + 0 4 4.2 40 3.4 3.9 + 30 ¥ 3. 8 Þ \leftarrow Þ 4 4/4 HOH 39 X t . T オーエ 404 J X 7.0 2 3.8 # 39 % 407 I C I 40 K 40 40 7 40 4.2 1 + 1 5 7 43 = K ∢ 3.5 V K Þ K ₹ なのは 40 1 404 3.4 T 10 T 7.7 HO# 404 0 4 40 J 17 7.0 40 43 04 2.2 0 1 3 0 ⋖ 4 ₹ \langle ₹ 39# 5 0 # 70 60 V 30 39 40 2 £, ∞ 7 4 \forall Þ K ₹ ≺ ∢ K ₹ (3.4)A 7 00 00 40 # A(4:E) (4.0)A 34 2 3.8 H 70 (3.7) ∞ 8 40 n. ν .χ 08 Þ < ⋖ V ∢ 4 4 ₹ Λ ñ 38 # 3.7 H 3.6 H 3.8 H 3.7 H 3.5 H 3.5 H 355 3.6 # 3 S 364 36 3.7 3.6 3.6 27 ω 00 2.5 70 07 K 4 T 344 ر. در. 3.6 3.6 34 3 3.4 3.4 3 90 53 3 00 M Ţ 11 ₹ ~ 4 V 7 1 05 S T 3 T T Washington, D.C. 0 4 03 02 5 00 Medion Day M 22 N 4 S 9 7 ω 0 0 Ξ 2 <u>m</u> 4 2 9 7 80 6 20 21 23 24 25 56 27 28 59 30 3-

weep 1.0 Mc to 25.0 Mc in 0.25 min

50

576

Count

5

Manuel

Automotic

Manuel

Form adopted June 1946

National Bureau of Standards (Institution)

80 TABLE Centrol Rodio Propogotion Loborotory, Notional Bureau of Standards, Woshington 25, D.C

DATA IONOSPHERIC

1954

July (Month)

(MISOO) E

Doy

C/J 147 4 9

~ 00

2

თ

0 Ξ 2 2 4 -2 91 1 8 6

J.W.P. J.J.S. J.W.P., J.J.S. 23 22 Colculoted by: E.J.W. 2 Scoled by: E.J.W. 20 6 45) X 7 Y 447 4 3 シャ 44 4.3 5 h 56 12 43 Þ <u>®</u> V ∢ Þ Þ (4 5) > 43 H 444 7 7 X J (8 4) (37) (H.H) (44) (44) 1/44 (44) 15h 144 4.7 4 3 7-5 7-~ T 43 7-5 _ 44 444 (HH) 474 424 4 3 H 43.4 4 74 74 1 7 7 75 h h 7.7 43 24 ~ 43 44 44 44 5 7 S 9 Þ K 4(5 h) ソイケ 462 4 3 H 4 7 7 (44) # 5 h (H H) 16.5 (2.5) 7.4 7 7 7 43 7. 5 4 75 43 2 Ø Ø 434 (4 H) 3 454 4.3 H 777 (45)A 45)" 464 1285 45) 74 43 44 4 7 7 ₹ Q. K V Œ Þ Meon Time #(44) 467 H 5 H 45)4 7 7.1 7. 7-4.5 7 <u>10</u> Ø K ⋖ Ø T A V 45 75°W 444)4 スナエ 45) 4.47 (44) d (44) 1(54) 75 5 2 K T ∢ Þ Þ 4 65 H) 4 4 K 4(36) 4 (3 h) 2, (24.47) 5 7 45 56 43 5 7 5 4 5 = V. V V A V 477 HAA 4.3 H 45 4 1(5 4) (45) 44 7 4 45 7. 7.5 4 0 Þ T K A K V V T A(G. H) A (44) (4.5)A (7 5) A (42) 45 7.4 7 7 45 45 HH 74 60 Þ 45 57 V V. T A (4 4)A (H H) # 4.4 434 4 7 4 I 77 77 0 4 4 (44) (A F) (44) 7 7 44 45 2 43 77 hh 7-08 ∢ V 4 47 H h H 44 > 4(hh) d(h h) (45) J(4 4) (45) (4 3) 43 44 7. (44) 7-7-7 7 4.7 07 T # 44 444 43# c (4 h) # 44 (4 4)A (44) > (4 5) A 4(5 H) 7. 74 43 45 42 44 7 7 44 90 6 V K ∢ Ø 4 5 5 0.5 Long 77.10 W 04 Washington, D.C. 03 Lot 38.7°N 02 0 00 Observed of

Sweep LO Mc to 25.0 Mc in 0.25 min

(

4.4

7-

4.4 77

4.4

44 70

74

(44)

4.5

4.4

7.5

44

4.4 74

44

Median Count

17

7

7-

5-

00

ط ح

74

44

100

43 5

7

43 7

(G F)

A

A T

V T

4

T

451

A

V

7.

4 4 4

43 4

45)A

9(4 Y)

44

E

434

V

4 (4 h)

44

V

hh 7-

V

A

A

74

7 4

75

15

(h h) (44)

7.7

7. 7

7 4

43

45 45

43

2 -5 X

Z T T

4 4 4

H h h

45

74

43 44

Þ

20

21

23 22

24 25 56 27 28 29 30 5

h h

(44)

(4.4)A

T

(H F)

7.5

7 43

74

A(44)

V.

14.4)P

7

Monuol

Automotic

Monuol

Table 90

Ionospheric Storminess at Washington, P. C.

July 1954

Day	Ionospheric character* 00-12 GCT 12-24 GCT	Principal storms Beginning End GCT GCT	Geomagnetic character** 00-12 GCT 12-24 GCT
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	1 3 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 1 2 1	1100 2100	2 1 1 2 1 1 1 1 2 3 2 2 2 1 2 2 2 1 2 2 2 2 3 3 3 3 2 3 3 3 3
18 19 20 21 22 23 24 25 26 27 28 29 30	2 3 1 2 3 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1200 2000	2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

^{*}Ionosphere character figure (I-figure) for ionospheric storminess at Washington, D. C., during 12-hour period, on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

^{**}Average for 12 hours of Cheltenham, Maryland, geomagnetic K-figures on an arbitrary scale of 0 to 9, 9 representing the greatest disturbance.

[#]No I-figure owing to insufficient data; conditions probably severely disturbed.

Table 91

Sudden Ionosphere Disturbances Observed at Washington, D. C.

July 1954

No sudden ionosphere disturbances were observed during the month of July.

Table 92

Sudden Ionosphere Disturbances Reported by Direction Generale des

Telecommunications de Suede-Stockholm, as Observed at Enköping, Sweden

1954 Day	GCT Beginnin		Location of transmitters
April 1	1220	1230	Budapest, Beirut, Belgrad, Istanbul
June 22	1024	1028	Buenos Aires

Note: Observers are invited to send to the CRPL information on times of beginning and end of sudden ionosphere disturbances for publication as above. Address letters to the Central Radio Propagation Laboratory, National Bureau of Standards, Boulder, Colorado; Attention: Mr. Vaughn Agy.

Table 93

Radio Propagation Quality Figures

(Including Comparisons with Short-Term and Advance Forecasts)

June 1954

Day	9	th Pac - hou	rly	3	Short casts		fore-	Whole day quality index	(J _p rep	e forecasts ports) for lay; issued	National of Publica
D. 0,7	03 to 12	09 to 18	18 to 03		02	09	18		l-4 days	4-7 8-25 days days	
1 2 3 4 5	6 5 6 6 7	6 6 6 7	G 5 G 6		7 6 6 6 7	7 6 6 5 6	7 7 7 7 7	6 6 6 7	6 7 7 6 6	6 6 6 6	
6 7 8 9 10	6 7 6 7 6	6 7 6 6	7 7 7 7 7		6 7 7 7 7	6 7 7 6 6	7 7 7 7 7	6 7 7 7 6	6 6 7 7	0 6 6 6 6	
11 12 13 14 15	6 6 7 7	6 5 6 7	6 6 6 7		7 3 6 7	6 6 6	7 7 6 7 7	6 5 6 7	7 7 6 6 6	6 7 7 6 6	
16 17 18 19 20	6 7 6 6 7	6 6 6 7	7 6 7 7		7 7 7 7 7	7 7 6 6 6	7 7 7 7	6 7 7 7	7 7 7 7 7	6 6 6 7 7	
21 22 23 24 25	7 7 6 7 5	7 7 6 3 6	7 7 7 7 3		7 7 7 7	6 3 7 7 3	7 7 7 7 7	7 7 7 7 7 6	7 7 7 7 7	7 7 7 7 7	
26 27 28 29 50	6 7 6 7 7	6 6 6	7 6 7 3 6		7 7 7 6 7	6 7 6 6	7 7 6 7 7	G 7 3 6 7	7 7 7 7 7	7 7 7 7 7	
Score:	Quiet	; Per'i	.ods	P S U F	18 14 0 0	16 14 0 0	16 13 1 0		14 15 1	17 12 1 0	
Dist	urbed	Perio	ods	P S U F	0 0 0	0 0 0	0 0 0		0 0 0	0 0 0	

Scales:

Q-scale of Radio Propagation Quality

- (1) useless (2) Very poor (3) poor (4) poor to fair 5 fair 6 fair to good
- 7 good 8 very good
- 9 excellent

- Scoring: (beginning October 1952)
 - P Perfect: forecast quality equal to observed S Satisfactory: (beginning October 1952) forecast quality one grade different
 - from observed
 - U Unsatisfactory: forecast quality two or more grades different from observed when both forecast and observed were ≥5, or both≤5
 - F Failure: other times when forecast quality two or more grades different from observed

Symbols:
X - probable disturbed date

Note: All times are UT (Universal Time or GCT)

Table 94a

Radio Propagation Quality Figures

(Including Comparisons with Short-Term and Advance Forecasts)

June 1954

Day	North Atlantic 6-hourly quality figures	Short-term forecasts issued about one hour in advance of:	Whole day (J-reports) for quality whole day; issued index in advance by:	Geomag- netic K _{Ch}
	00 06 12 18 to to to to 06 12 18 24	00 06 12 18	l-4 4-7 8-25 days days days	Hali day
1 2 3 4 5	7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 7	7 6 7 7 6 6 7 7 6 6 7 7 7 7 7 7 7 7 7 7	7 X 7 7 6 7 7 7 7 7 7 6	2 1 3 1 2 2 3 2 0 2
6 7 8 9 10	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 6 6	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 6 6 6 7 7 7 7 6 7 7	2 2 2 3 2 2 2 2 (4) 2
11 12 13 14 15	7 6 7 7 7 7 7 7 7 6 7 7 7 6 7 7 6 5 7 7	6 6 7 7 6 6 7 6 6 6 7 7 6 6 7 6 7 6 7 7	7 6 7 7 7 7 7 6 7 6 7 6	1 1 1 2 2 3 2 2 2 2
16 17 18 19 20	6 6 7 7 7 7 7 7 7 6 7 7 7 6 7 7 7 7 7 7	6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 1 1 2 1 2 2 2 2 1
21 22 25 24 25	7 7 7 7 7 7 7 7 7 7 6 7 7 7 7 7 7 7 7 7	7 7 7 / 7 6 6 7 7 7 7 7 7 6 7 7 7 7 7 /	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 2 2 2 2 2 1 2 1 2
26 27 28 29 30	/ 7 / 7 7 6 7 7 6 6 7 7 6 7 7 7 7 6 7 7	7 7 7 7 7 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7	7 7 7 7 7 7 7 7 7 7 7 7 7 7 6 7 7 7 7 7	2 2 2 3 3 2 2 1 2 2
Score:	uiet periods	P 21 20 26 27 S 9 9 4 3 U U 1 U 0 F 0 U 0 0	21 26 8 4 0 0 0 0	
Dis	•		0 0 0 U U 0 0 U	

Scales:

Q-scale of Radio Propagation Quality

- (1) useless (2) very poor (3) poor (4) poor to fair 5 fair 6 fair to good 7

 - good
- very good excellent

K-scale of Geomagnetic Activity to 9, 2 representing the greatest disturbance; K_{Ch} > 4 indicates significant finturbance, en lose i in () for emphasis

Scoring: (beginning October 1952)

P - Perfect: forecast quality equal to observed
S - Satisfactory: (beginning October 1952)
forecast quality one grade different

from observed
U - Unsatisfactory: forecast quality two or more
grales different from observed when both forecast and observed were \$5, or both \$5
F - Failure: other times when forecast quality

two or more grades different from observed

X - probable disturbed date

Note: All times are UT (Universal Time or GCT)

<u>Table</u> 94b
Short-Term Forecasts--- June 1954

T-ble 95a

Coronal observations at Climax, Colorado (5303A), east limb

Date				Dea	ree	s r	nort	h c	if t	he	sol	ar	egu	ato	7			_	_				Deg	ree	s s	out	h o	f t	he	sol	ar	equ	ato	r			-
	90	85	80	75	70	65	60	55	50	7.5	4.0	35	30	25	20	15	10	-5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954				12.	10				7	72	40		20						_								-				-		-				-
Jul 1.6	-	_	_	-	_	_	_	_	-	-	_	٠_	-	-	_	_	-	-	_	-	_	-	_	_	_	-	-	-	-	-	-	-	_	_	_	-	_
2.7	_	_	-	_	-	_	_	2	2	1	1	1	-	_	_	_	_	-	_	-	_	-	_	-	-	_	_	-	-	-	-	-	-	_	_	_	-
3.6	_	_	-	-	-	_	-	_	_	-	_	_	-	-	-	-	_	-		-	-	-	_	-	-	-	-	-	-	-	-	_	-	_	-	-	_
4.7a	_	_	_	-	_	_	-	-	-	_	_	_	-	_	_	_	_	-	_	-	_	_	_	-	_	-	-	_	-	-	_	_	-	-	-	_	-
5.6	-	_	_	_	_	_	_	_	1	1	1	_	_	_	_	_	-	-	-	-	_	_	_	_	-	-	-	-	-	_	-	-	_	_	-	_	_
6.7	-	_	_	_	-	-	-	_	-	-	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	-	-	-	_	-	-	_	_	-	-	_	_
7.x																																					
3.x																																					
9.x																																					
10.7a	_	_	_	_	_	_	-	_	_	-	-	_	-	_	-	-	_	-	-	-	_	-	-	_	-	-	-	-	_	-	-	-	-	-	-	_	-
11.x																																					
12.7	-	_	-	_	-	-	_	_	-	_	-	_	-	_	_	_	_	-	-	-	-	_	-	_	-	-	1	1	1	1	-	-	-	-	-	-	-
13.6	-	_	_	_	_	_	-	_	_	_	-	-	_	_	-	_	_	-	-	-	_	_	_	-	-	-	-	-	-	-	-	-	-	_	_	-	-
14.x																																					
15.x																																					
16.x																																					
17.x																																					
18.x																				1																	
19.6	_	-	-	_	-	_	-	_	-	_	_	_	-	_	_	_	-	-	-	-	_	-	-	_	-	_	_	-	_	-	_	-	-	-	-	-	-
20.7	-	_	-	-	_	-	_	_	_	_	1	1	2	1	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	_	-	-	_	-	-	-	-
21.6	-	-	-	-	_	-	-	-	_	-	-	_	_	_	_	-	_	-	-	-	-	-	_	-	-	-	_	-	-	-	-	-	-	-	_	-	-
22.x											_		_			_		_									_										
24.0	_	_	-	_	-	-	_	-	-	-	1	2	1	1	1	1	3	5	2	-	-	_	_	-	-	-	1	-	-	-	-	-	_	-	-	-	-
24.x									,	-	,																										
25.6	_	_	_	-	_	_	_	_	Τ	Τ.	Τ.	_	_	_	-	-	_	-	-	-	_	-	-	_	-	-	-	_	_	-	-	-	-	-	-	-	-
26.6	_	-	-	-	-	_	-	-	_	_	1	1	-	-	-	-	_	-	-	-	-	-	-	-	-	-	1	2	1	-	-	_	-	-	-	-	-
27.8	_	-	_	_	_	-	_	2	2	2	Ţ	-	_	_	_	-	_	-	-	-	_	_	_	_	_	_	-	_	_	-	-	_	-	-	-	_	_
26.7	-	-	-	_	_	-	1	1	7	1	1	-	_	_	_	-	_	-	-	-	_	1	1	-	-	_	-	-	_	-	-	-	-	_	_	-	-
29.7	-	_	_	-	_	_	1	1	Τ	1	7	7	_	-	_	-	-	-	-	_	_	_	-	_	-	-	-	_	-	-	-	-	-	-	-	-	-
30.7	-	-	-	-	-	-	_	-	_	_	7	1	1	1	_	_	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-
31.94	-	-	-	-	-	-	-	-	1	1	1	2	2	,	1	-	-	-	-	-	~	_	-	-	_	-	_	-	-	-	-	-	_	-	-	-	-

Tatle 90a

Coronal observations at Climax, Colorado (6374A), east limb

				75-					7 1					- 4 -						_			T .					7 ×									_
ate		35			ree											3 C	3.0		-	-	3.0			ree											40	0.5	
UT	90	05	80	75	70	02	00	52	50	45	40	35	30	22	20	12	TO	5	0	12	TO	72	20	25	30	35	40	45	50	55	60	02	70	75	80	85	90
1954		_	,	,							7	-			,		,	_	1	1	^	^	_	_	_	-			٠,				-			_	
Jul 1.6	2	2	Τ.	Τ	_	-	_	-	-	_	<u> </u>	2	4	>	4	4	4	>	2	+	-	-	^	4	~	<u>+</u>	Τ.	Τ	Ţ	7	Ţ	Ţ	Ţ	Ţ	1	2	2
2.7	Ţ	Ţ	Ţ	_	_	-	-	-	_	_	-		-		-	-	-		-	:	- :		~	Ţ	÷	2	1	~	1	Ţ	Ţ	1	Ţ	1	1	1	1
3.6	2	2	1		_	_	_	_	_	_	1	2		3	2	2	2	2	2	3	2	2	2	2	4	2	2	1	1	1	1	1	1	1	1	2	2
4.7a	1	1	1	1	1	1	1	1	1	1	2	2	3		-	3	2	3	3	3	3	3	2	2	_	_	-	_	_	_	_	_	-	_	1	1	1
5.6	2	2	1	1	1	1	1	1	1	1	2	4	5	5	5	5	6	5	6	6	6	5	5	4	4	4	5	3	1	1	1	1	1	1	1	2	2
6.7	1	1	1	1	1	1	1	1	1	1	3	5	6	6	6	6	6	6	6	6	6	6	5	3	3	4	4	2	1	1	1	1	1	1	1	2	2
7.×																																					
8.x																																					
9.x																																					
10.7a	2	1	1	1	1	1	_	-	_	-	3	4	ン	4	4	3	3	4	5	5	5	5	3	1	1	1	2	2	2	2	1	1	1	1	1	2	2
11.x																																					
12.7	2	1	1	1	1	1	1	1	1	2	2	3	4	3	3	3	3	3		14	4	4	4	3	3	3	2	1	1	2	2	2	2	2	2	2	2
13.6	2	1	1	1	-	_	_		_	-	2	3	4,	5	4	2	3	3	3	4	4	4	3	3	3	4	3	2	1	1	1	1	1	1	1	2	2
14.x																																					
15.x																																					
16.x																				ŀ																	
17.x																																					
18.x																																					
19.6	2	2	2	1	1	1	1	1	1	1	1	1	3	4	4	4	4	5	5	5	4	4	4	3	3	3	2	1	1	1	1	2	2	2	2	2	2
20.7	2	2	1	1	1	1	1	1	1	2	2	3	4	5	4	5	5	5	5	5	5	4	3	3	3	3	3	1	1	ı	1	1	ī	2	2	2	2
21.6	2	2	1	1	7	1	1	ī	1	1	1	1	i	5	3	5	5	5	4	4	6	5	4	7	1.	۷.	7.	Z	4	2	2	2	2	2	2	ĩ	ĩ
22.x									_	_	_	_	_						`	1			_	_	_	~	_	_	_	-	~	-	~	-	~	_	_
24.0	2	1	1	1	1	1	1	1	1	7	1	2	2	3	4	4	10	13	9	5	5	4	4	4	3	3	3	2	2	1	1	1	1	1	1	2	2
24.x		_		_	_		_	_	_	_	_									_		_	-	~				~	~	_	_	_	_	_	_	~	~
25.6		2	2	2	2	1	1	1	1	1	1	1	2	5	5	6	8	8	7	7	5	5	5	5	6	6	7.	1	٦	٦	٦	٦	2	2	2	2	2
26.6	2	2	2	7	ī	ī	ī	ī	ī	2	2	2	3	3	1	5	5	5	4	4	1.	1	1	1	1	3	3	2	2	2	i	i	ì	ñ	ì	ĩ	2
27.8	3	2	î	ī	7	i	'n	ī	2	2	2	3	1	5	-	5	5	5	3	4	7	7	3	3	7	,	2	2	5	2	2	2	2	2	2	2	2
28.7	2	ī	1	ī	î	i	ī	i	2	2	3	5	-4	1	1	1	4	-	4	4	3	3	3	3	3	4	2	2	7	1	1	1	1	'n	2	2	2
29.7	2	1	i	i	i	1	1	i	î	2	3	1	1	7	7	5	4	4	4		-,	,	3	2	2	2	2	2	1	1	7	1	7	7	2	2	2
30.7	2	1	1	'n	i	ז	Ť	i	1	'n	2	3	7	6	4	5	3	3	3	3	3	3	7	3	3	2	2	2	7	1	1	1	2	2	2	2	2
31.9a	2	1	7	7	7	7	7	7	7	7	2	2	77	3.2			3	3	3	1 .		_	4	2	2	2	2	~	~	Τ.	1	1	Τ.	1	2		
)1.9ª	~						Т	1	Т	Т		~	тт	14		-		2	13	3	2	~	~	3	2	٢	~	Τ.	Τ_	1	1	1	1	1	2	2	2

Table 95b

Coronal observations at Climax, Colorado (5303A), west limb

Date				Dec	ree	S S	Out	h o	of t	he	50	ar	601	ato	7°								Des	rea	s n	ort	h c	of t	ha	ടവ്	ar	equ	ato	79			
UT	90	85	80	75	70	65	60	55	50	7.5	7.0	35	30	25	20	75	10	-5	0	5	10	75	20	25	30	35	7.0	7.5	50	35	60	65	70	75	20	25	90
1954			-		, ,	~	-			32	7,0			~/	-				Ť	ŕ				~/			40						10				_
Jul 1.6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	
2.7	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_		_	_	_	_
3.6	-	_	_	_	_	_		-	_	_	_	_	_	_		_		_	_	-	_	-			_	_	_	_	****	_	_	-		_	_		
4.7a	_	_	_	_	_	_	-	_	_	_	-	_	_	-	_	-	-	_	_	_	negro	_	_	-	_	_	_	1	1	1	_	-		_	_	_	-
5.6	_	_	_	-	_	_	_	_	_	1	1	_	_	_	_	-	_	_	_	_	_	_	-	_	-	_	_	_	_	_	_		_	-	_	_	_
4.7a 5.6 6.7	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	_	-	-	-	_	_	_	_	_	_	_	_	_		_			_	-	_	_	_
7.x																																					
8.x																																					
9.x																																					
10.7	-	-	_	-	-	-	_	-	-	_	-	_	-		_	-	_	-	-	-	-	_	-	-	-	-	-	_		_	_			-		_	
ll.x																																					
12.7a	-	_	_	-	_	_	_	_	-	_	-	_	-	_	-	_	_	-	-	-	_	\rightarrow	_	_	_	-	_		_	_	-	_	_	_		_	_
13.6	-	-	_	-	-	-	_	_	-	-	-	_	-	140	-	-	-	_		-	_	-			_	-	-	_	-	-	_	_	_	_	-		_
14.x																																					
15.x																				ĺ																	
16.x																																					
17.x																																					
18.x																																					
19.6	_	-	_	-	-	-	_	-	-	-	-	-		_	_	-	-	_	-	-	-	_	-	_	-	-	1	2	1	1	_	-	_	-	-	-	_
20.7	-	_	_	_	_	_	-	-	-	_	-	-	-	-	-	-	_	_	-	-	-	_	-	_	_	_	_	_	_	-	-	_	-	-	-	-	-
21.6	_	-	-	_	_	-	_	-	-	_	_	_	_	-	_	_	_	_	-	-	-	-	-	-	_	-	_	1	1	-	-	-	-	_	-	-	_
22.x											,	,	_						1																		
24.0a	_	_	_	_	_	-	-	_	_	_	Τ	Τ	Τ	-	_	-	_	_	-	-	_	-	-	1-010	-	-	-	-	-	-	_	_	-	-	-	-	-
24.x	_	_	_	_	_	_	_	_	_						٦	7			1						7	7	7	,	-								
25.6 26.6a	_	_	_	_	-	_	_	-	_	-	-	_	_	-	Τ	1	_	_	-	-	-	-	-	-	Τ	Τ	Ţ	Ţ	Τ	-	-	-	-	_	_	-	-
27.8a	_	_	_	_	_	_	_	_	7	7	7	1	-	_	-	-	-	-	_	-	-	-	_	-	-	-	Τ	1	-	-	-	-	-	-	-		-
28.7	_	_	_	_	_	_	_	_			1	Т	-	_	_	_	-	-	-	_		Т	Τ	_	_	_	-		_	-	-	-		-	-	-	_
29.7		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1-010	-	-	-		-	-	_	140	-	_	-	-	_	-	_	-	_	140	-	_
30.7a	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	-	_	_	_	_	_	-	-	-	-	-	-	-	_	-	-	-
31.9a	_	_	_	_	_	_	_	_	_	_	_	Ξ	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
)I • 74		_				_		_						_						1-	_				_		_	_									_

Table 966

Coronal observations at Climax, Colorado (6374A), west limb

Date				Deg	roe	3 S	out	h o	ft	he	sol	ar	equ	ato	r								Dea	ree	s n	ort	h o	f t	he	s ol	ar	equ	ato	r			
	90	85	80	75	70	65	60	55	50	45	40	35	3Ô	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90
1954 Jul 1.6	2	2	1	1	1	1	1	1	1	1	1	2	3	3	3	4	5	5	4	0.0	3	3	3	3	3	3	2	2	2	1	1	1	1	1	1	2	2
2.7 3.6 4.7a	2	1	1	1	1	1	1	1	1	1	2	3	2	2	3	3 3	3	4 3	437	3 4	3 3 5	3 5	3 6	3	3	2 2	2 2	2 2	1 2	1	1 2	1 2	1	1	2	2	2
5.6 6.7	2 2	2	2	i	i	î	1	1	1 2	2 2	2 2	3 2	4 3 2	4 3 2	3	3 3	4 3 3	4	4 3 4	5	5	6	6	4	3	2	3 2	1 2	1 2	1 2	1 2	î	i	i	i	1 2	2
7.x : 8.x 9.x	~	~	_	_	_	_	_	_	~	~	~	~	~	~	7		7	7	7	*	**	+	-	7	7		~	~	~	~			_	_	-	~	~
10.7 11.x	2	2	1	1	1	1	1	1	1	1	1	2	2	2	2	3	3	3	4	4	3	3	3	2	2	2	3	2	1	1	1	1	1	2	2	2	2
12.7a 13.6	2	2	1	1	1	1 2	1	1	1	2 3	2	3 3	3	4 3	4	3 4	2 4	5	5 4	5 5	5 5	4 5	3 5	3 4	2	2	2	3	2	1	1	1	1	1	1	2	2
14.x 15.x 16.x 17.x																																					
18.x 19.6 20.7 21.6	2 2 1	1 3 1	1 2 1	2 2 1	2 2 1	1 2 1	1 2 1	1 - 2 1	1 1	1 1 3	2 3 4	2 6 4	3 5 4	3 3 4	3 3 4	4 4 4	455	5 5 5	6 5 6	6 6 9	6 6 11	5 5 3	5 5 5	4 5 5	4 6 5	3 5 5	2 2 2	2 1 2	2 1 1	2 1 1	2 1 1	2 1 1	2 1 1	2 2 1	2 2 1	2 2 2	2 2 2
22.x 24.00	2	2	2	1	2	1	1	1	1	1	1	2	2	3	3	4	4	6	6	6	10	9	8	7	7	6	4	2	1	1	2	1	1	2	2	2	2
24.x 25.6 26.6a 27.8a 28.7 29.7	2 2	22222	2 2 2 1	1 2 2 1	1 2 2 1	1 2 1 1	1 2 1 1	1 1 2 1	1 2 1 1	22222	32222	32342	43453	53433	63553	6 4 5 5 4	6 4 5 5 5 5	7 46665	10 5 5 5 6	10 6 5 5 4	7 4 4 6 4	7 4 3 2 2 2	94332	7 5 4 3 2 2	6 5 5 4 4 2	6 4 4 3 5 0	4333340	33332	1 3 2 2 1	2 1 2 2 1	2 1 2 1	2 1 2 2 2 2	2 1 2 2 2	2 1 2 2 2 2	32222	323320	22322
30.7a 31.9a	2	2	2	2	2	2	2	2	2	2	2	2	3	3	43	3	4	4	3	2 2	2	2	2	2	3	4	3	2	2	1	1	1	2	1	2	2	2

Table 97a

Coronal observations at Climax, Colorado (6702A), east limb

Date			Deg	rees	no	rth	of	the	e s	olar	e	qua	tor																			ator			-
บา [90 85	80	75	70 6	5 6	0 5	5 50	0 4	5 4	0 35	3	0 2	5 2	0 1	5 1	0	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70 7	5 80	85 90	5
1954																																			
Jul 1.6																																			
2.7																																			
3.6																																			
4.7a																																			
5.6																																			
6.7																																			
7.x		Пос					7 2							- 4	- 1			7.7	. 1-		o e	4	, 41		oh a		. 44 .		20-1-						
8.x		rne i	0/02	c	oroi	Ila I	LID	e w	as	not	VI	.S10	те	at	the	e e	ist	ΤJ	mo (on	any	01	. UI	ie i	005	erv	atic	MI C	ale	5 1	П с	luly.			
9.x 10.7a																																			
11.x																																			
12.7																																			
13.6																																			
14.x																																			
15.x																																			
16.x																																			
17.x																																			
18.x																																			
19.6																																			
20.7																																			
21.6																																			
22.x 24.0																																			
24.x																																			
25.6																																			
26.6																																			
27.8																																			
28.7																																			
29.7																																			
30.7																																			
31.94																																			

<u>Table 98a</u>

Coronal observations at Sacramento Peak, New Mexico (5303A), east <u>limb</u>

Date				Deg	ree	s r	ort	h c	of t	he	sol	ar	equ	ato	r					T		_	Deg	ree	g 5	out	h c	f t	he	sol	ar	equ	ato	r			_
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	9 0
1954																																					_
Jul l.x																																					
2.x																																					
3.7a	_	_	_	_	_	-	_	_	2	3	5	4	4	3	2	2	2	3	2	3	3	3	2	_	_	_	_	_	_	_	_	_	_	_	_	X	Х
4.6a	_	_	_	_	_	_	_	2	2	3	5	4	4	3	_	_	_	3	2	3 2	2	3	_	_	_	_	_	2	2	3	_	_	_	_	_	_	_
5.x																			-										~	_							
6.6a	_	-	_	_	_	-	-	_	_	-	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7.6a	_	_	-	_	-	_	_	-	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_
8.7	-	_	_	_	_	_	2	3	3	3	3	3	2	2	2	_	_	_	_	_	2	3	3	2	_	_	_	_	_	_	_	_	_	_	_	_	_
9.6	_	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
10.6	_	-	_	_	-	_	-	_	_	_	_	-	-	_	-	_	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	-	_	_
11.6	_	_	_	_	_	_	_	_	_	2	3	3	2	3	_	_	_	-	-	_	_	_	_	2	2	3	3	2	3	3	2	_	_	_	_	_	_
12.6	_	_	_	_	-	-	-	-	_	_	_	_	_	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
13.7a	-	_	_	_	_	_	_	_	_	2	3	3	3	2	_	_	_	-	-	-	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
14.7a	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_
15.6	-	-	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	-	-	-	_	_	_	_	-	_	-	_	_	_	_	_	_	_	_	_	_
16.6	-	_	-	_	-	_	_	_	_	_	-	_	_	_	-	_	_	_	-	-	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_
17.9a	-	-	_	_	-	-	_	_	2	3	3	3	2	_	_	_	_	-	-	-	-	_	-	_	_	_	2	3	3	3	2	_	_	_	_	_	_
18.6	_	-	_	_	_	_	-	_	_	-	_	_	_	_	_	_	_	_	-	-	_	_	_	_	-	_	_	_	_	_	_	2	3	3	2	_	_
19.6	_	_	_	. —	_	_	_	_	_	2	3	3	3	4	3	2	-	-	-	-	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_
20.7a	_	-	_	_	_	_	_	_	-	_	2	3	3	2	_	_	_	_	-	-	_	_	-	-	-	_	_	_	-	_	_	_	_	_	_	_	_
21.x																																					
22.7	_	-	_	_	_	_	_	_	2	2	3	3	2	_	-	_		14	3	2	_	-	-	-	_	-	_	_	-	-	_	_	_	_	_	_	_
23.98	_	_	_	_	_	_	_	2	3	4	5	4	_	_	2	3	8	12	7	5	3	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_
24.9a	-	_	_	_	-	-	_	_	-	_	_	_	_	_	_	_	_	-	-	-	_	_	_	_	_	-	_	_	-	_	-	-	-	_	_	_	_
25.x																																					
26.8a	_	_	-	-	_	-	-	_	_	2	3	3	4	3	2	2	_	-	-	-	_	-	-	_	_	_	2	3	3	3	2	_	_	_	_	_	_
27.7a	_	_	-	_	_	-	_	\leftarrow	-	2	2	3	2	2	-	_	_	-	-	_	_	_	-	_	_	_	2	3	4	3	3	2	_	_	_	_	_
28.x																																					
29.x																																					
30.x																																					
31.x																																					

Table 97b

Coronal observations at Climax, Colorado (6702A), west limb

Date	Т		De	gre	es	sout	h	of	the	sola	r e	qua	tor								Des	ree	s n	ort	h о.	f th	ne s	ola	r e	quate	or		
UT	90	85 8	0 75	70	65	60	55	50	45	40 3	5 3	0 2	5 20	0 1	5 10) 5	0	5	10	15	20	25	30	35	40 4	45 3	0 5	5 6	0 6	5 70	75 8	0 85	90
1954																				-						-							
Jul 1.6																																	
2.7	1																																
3.6	1																																
4.7a	1																																
5.6 6.7	1																																
6.7	1																																
7.x	1																																
8.x	1	The	670	1 20	cor	ona]	L l	ine	wa	s not	vi.	sib	le:	at	the	wes	t 1:	dmi	on	any	of	the	. 0	bse	rvat	tior	្រាំខ	tes	in	July			
9.x	1																																
10.7																																	
11.x																																	
12.7a																																	
13.6	1																																
14.x																																	
15.x	1																																
16.x	1																																
17.x																																	
18.x	1																																
19.6																																	
20.7	1																																
21.6	1																																
22.x																																	
24.0a																																	
24.x																																	
25.6	1																																
26.6a																																	
27.8a																																	
28.7																																	
29.7																																	
30.7a																																	
31.9a																																	
			-																														

Table 98b

Coronal observations at Sacramento Peak, New Mexico (5303A), west limb

Date			_	Des	ree	s s	out	h c	of t	the	sol	ar	equ	ato	r				_				Deg	ree	s n	ort	h c	of t	he	so]	ar	equ	ato	r			
UT	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	5	10										60				80	85	90
1954 Jul 1.x 2.x									_				-																					-			_
3.7a	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х	Х	Х	X	X	Х	X	х	X	X	Х	Х	Х	Х	X	X	X	X	X	Х	_	_	_	_	_	_	
4.6a	-	-	-	-	-	-	-	2	3	3	2	2	2	2	3	3	2	2	2	3	3	2	2	-	-	3	3	4	5	4	2	2	-	-	-	-	-
5.x 6.6a	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
7.6a	_	-	_	_	_	-	_	_	-	_	_	_	_	_	-	_	_	_	_	_	_	-	-	_	_	_	_	-	_	_	_	_	_	-	_	_	_
8.7	-	-	_	-	_	-	-	-	2	2	3	3	2	_	_	2	_	-	-	-	_	-	_	2	3	2	2	2	2	-	-	-	-	-	-	-	-
9.6a	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	***	-	-	-	-	-	-	-	-	-	-	-	-
10.6	-	-	-	_	-	-	_	-	-	_	_	_	_	-	-	_	_	_	-	-	-	-	-	-	_	_	_	_	_	_	-	-	_	-	-	-	-
11.6	-	-	-	-	-	-	-	-	-	2	2	3	3	3	2	-	-	-	-	-	-	-	-	2	3	3	4	3	3	4	2	-	_	_	-	-	-
12.6a	_	_	_	_	_	_	_	_	_	-	-	_	-	-	-	_	-	_	-	-	_	_	_	_			_ v				_	_	_	_	-	-	-
1.3.7a 14.7a		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	2	2	3	3	3	2	3	2	2	_	_	_	_	_
15.6a	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	~	~	_	_	_	~	_	~	~	_	_	_	_	_
16.6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	2	2	7.	3	3	3	3	4	3	2	_	_	_	_	_
17.9a	l –	_	_	_	_	_	_	_	-	2	3	3	2	_	_	_	-	-	e-co	_	_	_	2	3	5	4	3	3	3	2	_	_	_	_	_	_	_
18.6a	-	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	-	_	2	3	3	5	4	3	3	2	2	2	3	5	4	2	_	_	_	-	-
19.6	-	_	-	_	-	-	-	_	-	_	-	_	_	_	_	-	_	_	-	-	_	_	_	_	2	2	2	3	2	2	-	_	_	-	_	-	_
20.7a	-	-	-	-	_	-	-	-	-	_	-	-	_	-	_	_	-	_	-	-	_	-	-	-	2	3	3	3	2	-	_	_	_	-	_	_	_
21.x															_																						
22.7	-	-	-	-	-	-	-	-	-	-	-	2	3	3	2	-	_	-	-	-	_	-	_	_	_	-	_	-	_	-	-	-	-	-	-	-	-
23.9a		_	_	_	_	_	_	-	-	_	-	_	_	-	_	_	_	_	-	-	_	_	_	_	-	-	-	_	_	_	_	_	_	_	_	_	_
24.9a	-	-	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	-	_	_	-	_	_	-	-	_	_	_	_	_	_	_	_	_	-
25 .x 26.8a	_	_	_	_	_	_	2	2	3	3	2	_	_	_	_	_	_	_	_	_	_	2	3	3	2	2	_	3	3	2	_	_	_	_	_	_	_
27.7a		_	-	_	_	_	~	~	_	2	3	3	2	_	_	_	_	_	_	-	_	~	_	_	2	3	3	2	2	~	_	_	_	_	_	_	_
28.x										~			~												~			~	~								
29.x																				1																	
30.x																																					
31.x																																					

Table 99a

Coronal observations at Sacramento Peak, New Mexico (6374A), east limb

3 - 23 - 3	3 3 -	75 3 - 2 -	70 6	2 2 2	- - 2 - 2	- 2 - 2 - 2	_	2 2 3 - 3	2	4	5 L3 1 3 4	7	5	4 8 4	4 7 5	5 3 5	3 6	5 . 4· 7	5 8	4 5	3	3	0 35 2 4 9 8	3	2 5	2 3	2 2	2 -	2 2	3			X -
1 2 3	3	3 - 2	2 -	2 - 2 -	2 - 2	-	2 2 2	2 2 3 - 3	2 2	4 11 1				4 8	4 7 5	3 5	3 6							3 7	2 5	2	2 2	2 _	2 2	3		<u>x</u>	X
1 2 3	3	3 - 2	2 -	2 - 2 -	2 2	-	2 2 2	2 2 3 - 3	2 2	4 L1 1 2 3				4 8	4 7 5	3 5	3							3 7	2 5	2	2 2	2	2 2	3		X -	X -
1 2 3	3	3 - 2	2 -	2 - 2 -	2 - 2 - 2	-	2 2 2	2 2 3 - 3	2 2	4 11 1 2 3				4 8	47	3 5	3							3	2 5	2	2	2	2	3		<u>x</u>	X
1 2 3	3	3 - 2	2 -	2 - 2 -	2 - 2	-	2 2 2	22 3 3	2 2	4 1 2 3				8	7	5	6							7	5	3	2	_	2	3		_	A -
1 2 3	3	3 - 2	2 -	2 - 2 -	2 2	-	2 - 2	3 3	2 2	2 3	3 4	4 4	9	4	7	5	6	7	8	5	8 1	.0	9 8	7	2	3	2	-	2	3	3	_	_
_	3 -	2 -	2 - 2	2 - 2 2	2 2	2	2 - 2	3 - 3	2 2	2	3	4	4	4	5																		
_	3 -	2 -	2 - 2	2 - 2 2	2 2	2	2 2	3 - 3	2	3	3	4	4	4	- 5			_				2		_	_	_		_	_				
_	3 -	2 -	2 - 2	2	- - 2	2	2	3	2	3	4	/.		44	-	4	4	3	4	4	4	3	2 3 3	~	2	2	_	2	2	-	-	-	-
_	3	2	2 - 2	2 -	2	2	2	3					4	5	5	5	4	4	4	3	3	2	5 5	3	2	_	_	_	2	_	_		_
_	3	- -	- 2	_	2	_			2	4	5	5	7	7	7	8	8	7	7	8	7	2	4 4 2 2	4	3	ر	2	2	2	2	~	2	2
_	3	_	2	_	2	~	_	_	2	3	4	5	4	5	2	4	6	6	8	1	5	2	ر ر د م	. ~	ر	2	2	2	2	2	2	2	2
_	3	_	2		0	2	2	3	3	3	0 1	7	8	9	6	7	7	8	8	9]	נט וכו	2	4) 8 6	~	ر	ر	2	2	2	2	2	2	2
3	_			2	2	2	~	3	3	6	9 1		TO	9	1	6	-	9:	В.	TT 1	72 J	-0	o c	4	3	4	2	~	~		2)	うっ
- 5	3	_	_	~	-	_	2	3	3	5	0	0	5	5	4	3	6	8	0	7	7	0	66	-	3	ر	2	_	_		2	2	2
	3	2	2	2	-	2	3	_	2	3	7	7	8	7	5	5	6	3	2	8	-	7	, ,	2	4	ر	~	2	2)	2	2	2
2	_	_	_	-	_	_	2	2	3	3	>	2	3	2	2	5	4	1 -	2	2	2	2	4 <i>)</i>	2	2	2	2	2	~	-	_	~	~
		2	_	_	2	~	2	2	2	2	4	2	2	2	4					_	4	4	2 4	~	2	~	2	2	_	_	_	2	2
~)))	2	2	2	_	2	2	2	0	/	2	2	0			1	7	C _	7	2))	4	2	~	~	2	~	2	~	2	2
_	_	_	_	-	_	-	_	2	2	2	2	0	2	2	2	4			4	2	0	2	4 2	4	~	2,	2			_	~		2
-	-	_	-	_	<u> </u>	_	_	-	_	2	2	1	7	2		- (2	4	4	4	2 2	2	2	4	2		2	~	_	_	~
_	_	_	-	~)	2	~	2	_	2			4	2	_	,			-	- /		2			4	4	2	-	~	_	_	_	Ξ
_	_	_	_	_	_	_	-	~	~)	4)	4))	4)	1	0	1)	0	4 4	.)	~	~)	~	_	_	_	_	_
_	_	_	_	_	_	_	_	2	3	,	6	5	5	0 -	75	16	רר	- 2	5	Q	0 1	12	7 0	6	5	5	,	2	2	2	_	2	3
_	_	_	_	_	_	_	2	2	ر	4	-	,	5						0	7	7 1		6 6		,	7	3	2	2	2	2		3
2	_	2	_	_	_	_			2	2	2	4	7						7	5	5				3	4	_		2		~		_
~		~	_			_	~	~	~))	-	4	7	0 .		10	"	1	,	-	7	4)					~	~	_		~	
_	_	_	_	_	_	2	2	2	3	3	,	5	6	5	5	6	5	5	5	,	3	3	, 3	3	,	3	2	2	2	2	_	2	2
_	2	2	3	2	2	2	2		2	~	7.			5				5			7	6							~	~	_	~	_
	~	-		~	~	~	~		~	-	4	-	0		-			-	-	0	,	0	, ,	-	4			~					
																		1															
	32 2	2 3	2 3 3	2 3 3 3	2 3 3 3 2	2 3 3 3 2 2 2 2 3 3	2 3 3 3 2 2 2 2 2 3 2	2 3 3 3 2 2 2 - 2 3 2 2 2 3 2 2 2 3 2 2 2 - 2 2	2 3 3 3 2 2 2 - 3 2 2 2 3 2 2 - 2 2 3 2 2 2 2 3 2 2 2 2 - 2 2 3 2 2	2 3 3 3 2 2 2 - 3 3 2 2 2 3 2 2 2 2 3 2 2 2 2 2 3 5 5 2 - 2 2 2 2	2 3 3 3 2 2 2 - 3 3 5 5 2 2 3 3 2 2 3 3 5 5 3 5 5 3 5 5 3	2 3 3 3 2 2 2 - 3 3 5 3 2 2 3 3 2 3 2 2 2 2 2 3 2 2 2 2 3 4 2 3 5 5 5 2 - 2 2 2 2 3 3	2 3 3 3 2 2 2 - 3 3 5 3 7 2 2 3 3 6 2 3 2 2 2 2 3 2 3 2 2 2 2 3 4 5 2 3 5 5 5 4 2 - 2 2 2 2 3 3 3	2 3 3 3 2 2 2 - 3 3 5 3 7 5 2 2 3 3 6 5 2 3 2 2 - 2 2 3 3 2 3 2 2 - 2 2 3 4 6 5 5 2 3 4 6 5 5 2 3 5 5 5 4 5 2 - 2 2 2 2 3 3 4	2 3 3 3 2 2 2 - 3 3 5 3 7 5 5 5 2 2 3 3 6 5 5 5 5 6 4 5 7 5 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	2 3 3 3 2 2 2 - 3 3 5 3 7 5 5 6 2 2 3 3 6 5 5 5 2 3 2 2 - 2 2 3 3 3 6 5 5 5 2 3 2 2 - 2 2 3 3 3 3 3 7 2 3 2 2 - 2 2 3 4 6 5 5 8 15 2 3 5 5 5 4 5 7 16 2 - 2 2 2 2 3 3 3 3 4 5 6	2 3 3 3 2 2 2 - 3 3 5 3 7 5 5 6 7 2 2 3 3 6 5 5 5 4 4 5 6 6 7 2 3 2 2 2 2 3 3 3 6 5 5 5 5 4 5 7 6 6 6 7 2 3 2 2 3 3 3 5 5 5 5 4 5 7 16 11 2 - 2 - 2 2 2 3 3 3 3 4 5 6 11	2 3 3 3 2 2 2 2 - 3 3 5 3 7 5 5 6 6 7 8 2 2 2 3 3 6 5 5 5 5 4 4 4 2 2 2 3 3 3 6 5 5 5 5 4 4 4 5 6 6 5 5 6 6 7 8 7 6 6 7 8 7 7 6 6 7 8 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7	2 3 3 3 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 8 2 2 2 3 3 3 6 5 5 5 4 4 4 5 5 6 7 7 6 5 7 7 7 7 7 7 7 7 7 7 7 7 7	2 3 3 3 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 8 9 2 2 3 3 3 6 5 5 5 4 4 5 5 5 6 7 8 8 8 9 2 2 2 3 3 3 6 5 5 5 4 4 6 5 5 5 6 7 8 6 5 7 8 6 5 7 8 6 7 8 6 7 8 6 7 8 7 8 6 7 8 7 8 7 8	2 3 3 3 2 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 8 9 8 2 2 3 3 6 5 5 5 5 4 4 5 5 4 5 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	2 3 3 3 2 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 9 8 9 2 2 3 3 6 5 5 5 5 4 4 5 6 5 5 6 7 8 7 8 7 6 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	2 3 3 3 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 9 8 9 5 2 2 2 3 3 6 5 5 5 4 4 5 6 5 5 5 4 4 4 5 6 5 5 5 5	2 3 3 3 2 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 8 9 8 9 5 5 5 5 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	2 3 3 3 2 2 2 2 - 3 3 5 5 3 7 5 5 6 7 8 8 9 8 9 5 5 5 4 4 5 4 5 6 5 4 5 4 5 4 5 6 5 4 5 4	2 3 3 3 3 2 2 2 2 - 3 3 5 5 3 7 5 5 6 7 8 8 8 9 8 9 5 5 5 4 3 2 2 3 3 6 5 5 5 4 4 5 5 5 5 5 4 4 5 5 6 5 4 5 4	2 3 3 3 2 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 8 9 8 9 5 5 5 5 4 3 2 2 2 2 3 3 6 5 5 5 5 4 4 5 6 5 4 5 4 5 6 5 4 5 4 2 2 2 2 - 2 2 3 3 3 6 5 5 5 4 4 5 6 5 5 5 5 4 4 4 5 5 5 5 5	2 3 3 3 3 2 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 8 9 8 9 5 5 5 4 3 2 2 2 2 3 3 3 6 5 5 5 4 4 5 6 5 4 5 4 5 6 5 4 5 4 2 2 2 2 2 2 3 3 3 6 5 5 5 4 4 5 6 6 5 4 5 4 5 5 5 5 4 3 2 2 2 2 3 3 3 3 7 7 6 6 5 5 4 4 4 5 5 5 5 5 4 3 3 2 2 3 3 4 5 4 5 5 5 4 5 7 8 7 6 6 5 5 4 4 3 2 2 3 3 3 3 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	2 3 3 3 3 2 2 2 2 - 3 3 5 5 3 7 5 5 6 7 8 8 8 9 8 9 5 5 5 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 3 3 3 2 2 2 2 - 3 3 5 5 3 7 5 5 6 7 8 8 8 9 8 9 5 5 5 4 3 2 2 2 2 2 2 2 2 3 3 6 5 5 5 5 4 4 5 6 5 5 5 5 5 5 5 5 5 5 5	2 3 3 3 3 2 2 2 2 - 3 3 5 5 3 7 5 5 6 7 8 8 8 9 5 5 5 4 3 2 2 2 2 2 2 2 2 3 3 6 5 5 5 5 4 4 5 5 5 5 5 4 3 2 2 2 2 2 2 2 3 3 3 6 5 5 5 5 4 6 5 5 5 5 5 5 5 5 5 5 5 5 5	2 3 3 3 3 2 2 2 2 - 3 3 5 3 7 5 5 6 7 8 8 8 9 8 9 5 5 5 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 3 3 3 3 2 2 2 2 - 3 3 5 5 3 7 5 5 6 7 8 8 8 9 8 9 5 5 5 4 3 2 2 2 2 2 2 2 2 3 3 2 2 2 3 3 6 5 5 5 5 4 4 5 5 6 5 4 5 4 5 6 5 4 5 4

T.ble 100a Coronal observations at Sacramento Peak, New Mexico (6702A), east limb

ate				Deg	roe	s r	ort	h o	of 1	the	sol	ar	equ	mat c	77.0					1_			Te.	Te:	8 8	out	h c	of t	he	90]	ar	egu	ie ta	r		
UT	90	85	80	75	70	6 5	60	55	50	45	40	35	30	25	20	15	10	5	0	3	10	13	20	25	30	35	40	45	50	35	60	65	70	75	80	85 9
954																																				
ıl l.x																																				
2.2																				l																7.5
3.7a	-	-	-	-	-	_	-	_	-	-	_	-	_	_	-	_	_	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_	-	-	X	X
4.60	_	_	-	_	_	_	-	_	_	_	_	_	-	_	_	_	_	-	-	-	_	_	-	_	-	_	-	_	_	_	-	_	-	_	_	_
5.2																				1																
6.6a 7.6a	_	_	-	_	-	-	-	-	_	-	-	_	-	-	-	-	_	-	-	-	-	-	-	_	-	-	-	_	-	-	-	-	_	-	_	_
7.6a	-	-	-	_	-	-	-	_	_	-	_	-	_	_	_	-	_	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	_	-
8.7	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-	-
9.6	-	_	-	-	-	_	-	-	_	_	-	_	_	-	_	_	-	-	-	-	-	_	-	_	_	-	-	-	-	_	-	_	-	-	-	_
10.6	-	_	-	_	\rightarrow	-	-	-	-	_	_	-	\rightarrow	_	-	-	-	-	-	-	_	-	-	_	-	-	-	_	_	_	_	-	-	-	-	-
11.6	-	-	_	-	-	-	_	_	-	-	-	-	\rightarrow	-	-	_	-	-	-	-	_	_	-	_	_	_	-	-	_	_	-	_	-	-	-	-
12.6	-	_	-	_	-		-	-	_	_	_	_	-	_	-	-	-	-	-	-	_	-	_	_	-	-	-	-	-	-	-	_	-	-	-	-
13.7a	-	_	-	-01-0		\rightarrow		-	-	_	-	_		-	-			-	-	-	-	_	-		_	-	_	-	_			_	-	_	-	-
14.7a	-	_	-	_	-	\rightarrow	-	-	_	-	_	-	_	-	_	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-
15.6	-	_	-	_	_	-	-	-	-	_	_	_	-	_	_	-	_	-	-	-	_	-	-	-	-	-	_	_	-	-	-	-	-	-	_	-
16.6	-	-	-	\rightarrow	-	-	-	-	-	\rightarrow	**	-	_	_	-	-	-	-	-	-	-	-	\rightarrow	_	-	\rightarrow	-	_	_	\neg	-	_	-	-	-	-
17.9a	-	-	_	_	-	_	_	_	_	_	_	-	_	_	-	_	-	-	-	-	_	_	_	-	_	-	_	_	-	_	_	_	-	-	-	-
18.6	-	_	-	_	_	-	_	-	_	-	\rightarrow	-	-	-	_	-	-	-	-	-	_	-	_	_	\rightarrow	-	_	_	_	-	-	-	_	-	-	-
19.6	_	-	_	_	-	-	_	-	_	-	-	-	-	_	-	-	_	-	-	-	-	-	-	_	_	-	_	-	-	-	-	-	_	-	-	-
20.7a	_	_	_	-	_	_	_	-	_	_	-	_	-	_	_	-	-	-	-	-	_	-	-	_	_	-	-	-	-	-	-	-	_	-	-	-
21.x																																				
22.7	-	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	2	3	2	-	_	_	_	-	_	_	_	_	-	_	-	_	-	-	_	_
23.9a	_	-	-	_	-	-	-	-	_	_	_	_	_	_	-	_	2	2	2	-	_	-	-	_	-	-	\rightarrow	_	_	-	_	-	-	-	_	-
24.98	-	_	_	_	_	_	-	_	-	_	-	_	_	-	-	_	2	3	2	-		_	_	_	_	_	-	-	_	-	-	_	_	_	-	-
25.x																																				
26.8a	-	_	-	_	_	_	_	_	-	_	-	_	_	_	_	-	-	-	-	-	-	_	_	-	_	_	_	_	_	_	-	_	-	_	-	-
27.7a	_	_	_	-	_	-	_	-	-	_	_	_	-	_	_	_	-	-	-	-	_	_	-	_	_	-	-	_	_	-	-	-	-	-	_	-
28.x																																				
29.x																																				
30.x																																				
31.x																				i																

Table 99b

Coronal observations at Sacramento Peak, New Mexico (6374A), west limb

Date	_			De	ree	s s	cut	h c	of t	he	sol	ar	equ	ato	er					Г			Ъe	are	es i	nort	h c	of t	he	sol	ar	eau	ato	r			
	90	85	80	75	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	1 3	10	15	20	25	30	35	40	45	50	55	60	65	70	75	30	85_	90
1954 Jul 1.x																																					
2.x 3.7a	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	X	X	Х	Х	X	Х	X	Х	X	X	Ä	X	Х	Х	Х	X	, i	X	Ä	_	_	_	_	_	_	_
4.6a	3	2	_	2	2	2	2	-	2	3	6	5	7	8		10	8	9							10	5	3	2	_	2	3	3	3	2	2	-	3
5.x 6. 6 a	_	_	_	_	_	_	_	_	_	2	3	3	2	2	3	2	2	3	3	3	3	3	3	3	3	2	3	2	_	_	_	_	_	_	_	_	_
7.6a	-	-	-	-	-	-	-	-	-	2	3	4	2	4	2	4	5	4	4	3	5	4	4	3	3	2	_	_	-	2	-	-	-	-	-	-	-
8.7 9.6a	3	3	2	3	3	2	_	_	2	2	3	3	4	5	5	8	7	5	3	5	5	5	5	5	5	6	5	4	3	2	_	-	_	-	_	_	_
10.6	2	3	2	2	2	_	_	2	_	2	3	4	5	7	8	8	7	7	7	8	7	6	5	5	3	2	2	2	2	2	2	_	2	2	2	2	3
11.6	4	4	3	3	2	3	2	-	2	3	5	6	7	11	10	9	8	8	8	9 5	8	7 8	6	6	5	3	4	2	2	2	2	2	2	2	2	2	3
12.6a 13.7a	2	3	3	2	2	_	~	_	2	3	4	3	6	4	5	5	5	5	7	8	8	9	7	7	X	Ä	X	Α	X	Ā	3	2	3	3	2	2	3
14.7a	3	3	2	2	2	2	3	-	2	3	3	3	4	5	5	6	5	5	6	6	8	8	7	7	6	5	4	3	2	2	-	_	_	_	-	-	_
15.6a 16.6	2	2	5	5	2	2	2	2	2	2	3	2	3	8	3	_	3 10	2	10	4 9	5 8	6 9	6	15	16	3	2	3	2	2	2	2	_	2	2	2	2
17.9a	2	3	2	3	2	2	-	2	-	-	2	2	3	3	3	3	4	5	5	6	6	7	8	10	11	10	2	2	2	2	_	-	-	_	_	_	_
18.6a 1 9.6	2	2	2	3	3	2	2	2	2	2	_	2	3	4	4	3	5	4	5	5 5	5	6 8	6	8	7	7	6	6	3	2	_	_	_	_	-	_	_
20.7a	_	_	-	2	2	_	_	2	2	_	3	5	8	2	3	5	6	4	4	5	5	8	7	6	5	4	5	4	2	_	_	_	_	_		→	_
21.x 22.7	3	2	3	,	2	2	_		3	2	3	5	7	5	6	5	,	5	4	5	14	13	11	3	2	5	2	2									
23.9a	2	3	3	2	3	2	2	_	_	3	_	4	5	6	5	5	4		ıĩ	12			13		10	8	6	5	2	3	2	_	_	_	_	_	_
24.9a	-	3	3	2	2	2	-	-	2	-	2	2	3	3	4	3	3	4	5	6	7	8	4	5	4	4	3	2	2	2	_	-	-	***	-	-	-
25.x 26.8a	2	3	3	_	_	_	_	_	_	2	2	3	4	4	5	5	6	5	5	5	4	4	4	5	E	4	3	2	3	2	_	_	_	_	_	_	_
27.7ª	-	_	_	-	-	-	-	-	2	2	2	3	3	2	2	4	3	4	4	4	5	3		3	4	3	2	2	_	2	2	2	2	_	_	-	_
28.x 29.x																																					
30.x																																					
31.x																																					

Table 100b

Coronal observations at Sacramento Peak, New Mexico (6702A), west limb

Date	Degrees south of the solar equator Degrees north of the Solar equator
UT	90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
1954	
Jul l.x	
2.x	
3 .7 a	
4.6a	
5.x	
6.6a	
7.62	
8.7	in July; the position ungles observed were the same is . The bit words. This
9 .6 a 10 .6	
11.6	
12.6a	,
13.7a	
14.7a	
15.6a	
16.6	
17.92	
18.6a	
19.6	
20.7a 21.x	
22.7	
23.9e	
24.9e	
25.x	
26.8	
27.7ª	
28 .x	
29.x	
30.x	
31.x	

Table 101
Zurich Provisional Relative Sunspot Numbers
July 1954

Date	RZ*	Date	R _*
1	0	17	7
2	0	18	7
3	8	19	0
4	0	20	0
5	0	21	0
6	0	22	0
7	0	23	0
8	7	24	8
9	0	25	10
10	0	26	7
11	0	27	0
12	7	28	10
13	10	29	7
14	15	30	7
15	8	31	6
16	15	Mean:	4.5

^{*}Dependent on observations at Zurich Observatory and its stations at Locarno and Arosa.

Table 102
American Relative Sunspot Mumbers

June	1954

Date	R A ⁴	Date	R _A [†]
1	2	17	0
2	1	18	0
3	0	19	0
4	0	20	0
5	0	21	С
6	0	22	1
7	0	23	1
8	0	24	0
´ 9	0	25	0
10	0	26	0
11	0	27	0
12	0	28	0
13	0	29	0
14	0	30	0_
15	0		
16	0	Mean:	0.2

Errata: The mean \mathbf{R}_A ' for $\mbox{pril 1954}$ is 0.6 and not 4.0 as published in F 118.

Table 103 Solar Flares, July 1954

No solar flares were reported for the month of July.

Table 104

Indices of Geomagnetic Activity for June 1954

Preliminary values of international character-figures, C; Geomagnetic planetary three-hour-range indices, Kp; Magnetically selected quiet and disturbed days

Gr.		Values Kp		Final
Day	С	Three-hour interval		Selected
1954		1 2 3 4 5 6 7 8	Sum	Days
1	0.2	20 2- 0+ 1+ 1+ 10 0+ 1+	9+	Five
2	0.3	1+ 2+ 1+ 30	120	Quiet
3	0.2	lo 1+ 2+ 1+ lo 0+ lo 2-	100	Quite 0
4	0.4	20 20 3+ 2+ 1- 10 20 10	14+	5
5	0.1	0+ 00 00 0+ 1- 1+ 10 2-	5+	8
				11
6	0.2	10 10 0+ 1- 2- 1+ 1+ 2-	90	16
7	0.6	1+ 10 1- 1- 30 2- 2+ 20	13-	24
8	0.0	1+ 10 1+ 1- 1- 0+ 1- 10	70	
9	0.3	2+ 1+ 1- 2- lo 1+ lo 20	11+	
10	0.8	3+ 3- 4+ 3- 1+ 20 2+ 2-	20+	
11	0.1	10 1- 0+ 20 2- 1- 1- 1-	8-	Five
12	0.6	00 0+ 00 1+ 2- 30 40 20	12+	Disturbed
13	0.6	2- 1+ 10 2- 1+ 30 30 20	150	
14	0.6	10 2- 1+ 20 4- 20 2- 10	14+	10
15	0.2	1+ 1+ 2- 1- 0+ 0+ 1- 2-	80	12
				13
16	0.0	2-1+1-2- 0+0+0+10	7+	14
17	0.2	10 0+ 0+ 1- 1+ 1- 10 2+	8-	28
18	0.5	1-0+0+0+0+0+2-4-2+	10-	
19	0.3	10 1+ 1- 2- 1+ 10 20 2-	11-	
20	0.3	20 1+ 1+ 1+ 10 1- 10 2-	10+	
21	0.5	0+ 00 10 2- 2- 10 1+ 3+	10+	Ten
22	0.5	30 3- 2- 10 10 2- 1+ 20	14+	Quiet
23	0.4	20 10 0+ 10 1-2-3-2-	110	
24	0.1	1+ 2- 1- 1- 1- 10 1+	80	1
25	0.3	0+ 10 1- 10 3+ 2- 1- 10	10-	5
26	0.4	1- 10 10 2- 1+ 1+ 20 20	110	6 8
27	0.5	1+ 10 10 1+ 20 20 20 3-	13+	11
28	0.8	4- 3- 30 20	17+	15
29	0.2	1- 1+ 2+ 10 1- 1- 0+ 1+	8+	16
30	0.6	1-1-2-2- 1+10103+	11+	17
				24
Mean	0.36			29

Errata: Incorrect Kp for May 1954 were received and published as Table 99 in F-119. The revised table will appear in F-121.

Index of Tables and Graphs of Ionospheric Data

in CRPL-F120

	Table page Fig	ure page
Adak, Alaska		
June 1954	. 12	52
May 1954	. 12	54
Anchorage, Alaska		
May 1954		53
April 1954	. 14	58
Baguio, P. I.		
March 1954	. 18	70
Baker Lake, Canada		40
March 1954	-	63
February 1954	. 19	73
Bombay, India	9.0	
January 1954	. 19	75
Brisbane, Australia	0.0	00
September 1953	. 22	82
Canberra, Australia	00	0.0
September 1953	. 22	82
Capetown, Union of S. Africa	. 18	20
March 1954	. 10	72
Casablanca, Morocco August 1953	. 22	84
July 1953		85
Churchill, Canada	. 2)	0)
March 1954	. 16	65
February 1954		-
De Bilt, Holland	• •7	73
March 1954	. 17	67
Delhi, India	• -1	07
January 1954	. 19	75
Djibouti, French Somaliland	• -/	1)
March 1953	. 23	87
February 1953		88
Falkland Is.		00
November 1953	. 21	80
Fort Chimo, Canada	•	
March 1954	. 16	66
Guam I.		
May 1954	. 13	57
April 1954	. 14	60
Hobart, Tasmania		
September 1953	. 22	83

Index (CRPL-F120, continued)

	Table page	Figure page
Huancayo, Peru		
March 1954	. 18	71
Inverness, Scotland	22	
December 1953	. 20	7 7
March 1954	. 18	71
Khartoum, Sudan	•	, –
November 1953	. 21	79
Kiruna, Sweden	3.6	/2
March 1954	. 15	62
March 1954	. 18	70
Lindau/Harz, Germany		•
March 1954	. 17	67
Lulea, Sweden	37	/2
March 1954	. 15	63
January 1954	. 20	76
Maui, Hawaii		
May 1954	. 13	56
Narsarssuak, Greenland	. 12	r).
May 1954		54 58
March 1954	• –	64
Oslo, Norway		
March 1954	. 16	65
Ottawa, Canada	10	/0
March 1954	. 17	69
May 1954	. 13	5 7
April 1954		61
Poitiers, France		•
August 1953		83 84
July 1953		04
November 1953	. 21	81
Prince Rupert, Canada		
March 1954	. 16	66
Puerto Rico, W. I.	10	
May 1954	_	56 60
Rarotonga I.	• 2.1	00
February 1954	. 19	74
Resolute Bay, Canada		
March 1954	. 15	61

Index (CRPL-F120, concluded)

	Table page	Figure page
Reykjavik, Iceland		
March 1954	. 16	64
St. John's, Newfoundland	• -0	,
March 1954	. 17	68
San Francisco, California	•	•
June 1954	. 12	53
May 1954		55
April 1954	. 14	59
Sao Paulo, Brazil		
January 1954		77
December 1953		7 9
November 1953	. 21	80
Schwarzenburg, Switzerland		
March 1954		69
February 1954	. 19	74
Singapore, British Malaya		
December 1953	. 20	78
Slough, England		- •
December 1953	. 20	78
Tananarive, Madagascar		0 -
July 1953	-	85
June 1953		86
May 1953		86
April 1953	_	87
March 1953		88
February 1953	- •	89
January 1953	. 24	89
Tiruchy, India	20	0/
January 1954	. 20	76
Tokyo, Japan	. 24	90
May 1947	. 24	9 0
Townsville, Australia September 1953	. 21	81
Tromso, Norway	• 61	01
March 1954	. 15	62
Washington, D. C.	• •/	0~
July 1954	. 12	52
Watheroo, W. Australia	• 4~	<i>)~</i>
March 1954	. 18	72
White Sands, New Mexico	•	7-
May 1954	. 13	55
April 1954		59
Winnipeg, Canada	<u> </u>	<i>)</i> /
March 1954	. 17	68
	-1	00

CRPL Reports

[A detailed list of CRPL publications is available from the Central Radio Propagation Laboratory upon request]

Radio disturbance forecasts, every half hour from broadcast stations WWV and WWVH of the National Bureau of Standards.

Telephoned and telegraphed reports of ionospheric, solar, geomagnetic, and radio propagation data.

Semiweekly:

CRPL-J. North Atlantic Radio Propagation Forecast (of days most likely to be disturbed during following month).

month).

CRPL—Jp. North Pacific Radio Propagation Forecast (of days most likely to be disturbed during following month).

Semimonthly:

CRPL—Ja. Semimonthly Frequency Revision Factors For CRPL Basic Radio Propagation Prediction Reports.

Monthly:

CRPL—D. Basic Radio Propagation Predictions—Three months in advance. (Dept. of the Army, TB 11-499-, monthly supplements to TM 11-499; Dept. of the Navy, DNC 13 () series; Dept. of the Air Force, TO 16-1B-2 series.) On sale by Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address cognizant military office.

CRPL—F. Ionospheric Data. Limited distribution. This publication is in general disseminated only to those individuals or scientific organizations which collaborate in the exchange of ionospheric, solar, geomagnetic or other radio propagation data or in exchange for copies of publications on radio, physics and geophysics for the CRPL library.

Circulars of the National Bureau of Standards pertaining to Radio Sky Wave Transmission:

NBS Circular 462. Ionospheric Radio Propagation.

NBS Circular 465. Instructions for the Use of Basic Radio Propagation Predictions.

These circulars are on sale by the Superintendent of Documents, U. S. Government Printing Office, Washington 25, D. C. Members of the Armed Forces should address the respective military office having cognizance of radio wave propagation.

The publications listed above may be obtained without charge from the Central Radio Propagation Laboratory, unless otherwise indicated.

