CS211 Computer Architecture Fall 2020

Recitation 5

Today

- Decimals □ binary
- Binary □ decimal
- Decimal □ octal
- Decimal □ hex
- Signed magnitude
 - One's complement
 - Two's complement

Conversions

Decimal	Binary	Octal	Hexa- decimal
0	0	0	0
1	1	1	1
2	10	2	2
3	11	3	3
4	100	4	4
5	101	5	5
6	110	6	6
7	111	7	7

Decimal	Binary	Octal	Hexa- decimal
8	1000	10	8
9	1001	- 11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1102	15	D
14	1110	16	Е
15	1111	17	F

Binary and Hexadecimal

- · Decimal digits: [0 9]
- Binary digits: [0 1]
- · Octal digits: [0 7]
- Hex digits: [0 F]

JTGERS

2's Comp Review

- Represents signed numbers
 - MSB determines sign should be 1 for negative
- Why not 1's comp?
 - 1's comp. has 2 values for 0: Lecause of this • $\sqrt{0}$ = 11111; +0 = 00000 doviously there is only one 0
- 2's = 1's + 1
- Range of 2's Complement values
- Range of 2's Complement values

 For n bits, you can represent the following range of values in 2's comp
 - [-2n-1, +2n-1 1]
- 2's comp of a positive number is just the positive value in binary + 0

Future

· Will review floating point representation next week!