Machine Learning 101

Shaukat Abidi

Postdoctoral Fellow @ LASC - CSIRO Data61

Machine Learning

- What is Machine Learning (Informal Definition)
 - Machine receives data, machine then finds out (or learn) some parameters that describe data

Machine Learning

- What is Machine Learning (Informal Definition)
 - Machine receives data, machine then finds out (or learn) some parameters that describe data

Classification of Famous Machine Learning Algorithms

- Supervised Learning
- Semi-Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

Classification of Machine Learning Algorithms

- Supervised Learning
 - Perceptron
 - Neural Networks
 - Deep Architecture lies here
 - Support Vector Machines
 - Binary, Multiclass, Structural SVM
 - Linear regression
 - Logistic Regression
 - O
- Semi-Supervised Learning
- Unsupervised Learning
 - Clustering algorithms (K-Means)
 - Neural Networks
 - Autoencoders, Generative Adversarial Networks ...
 - O ...

Classification of Machine Learning Algorithms

- Reinforcement Learning
 - Policy Iteration (Algorithm to solve basic Markov Decision Process (MDP))
 - Value Iteration (Algorithm to solve basic Markov Decision Process (MDP))

Throughout this presentation

We will see Supervised Machine Learning in pictures

Simple Line Plot

Simple Line Plot Y-Axis 104 X-Axis -8 8 -4

Our depicted line:

- Has parameters (w,b)
- Divides the entire 2D space into two portions
 - Upper Region
 - o Lower Region

- NO EQUATIONS HERE
- The most basic (yet powerful) supervised machine learning algorithm
- Given data (x), it finds out the parameters of linear decision boundary (w,b)
- We will see BINARY CLASSIFICATION ONWARDS.

Imagine you have some data points of TWO types (■ and ▲)

Imagine you have some data points of TWO types (■ and ▲)

Imagine you have some data points of TWO types (■ and ▲)

Imagine you have some data points of TWO types (■ and ▲)

Perceptron will try to find a line or decision boundary that separates these points

Imagine you have some data points of TWO types (■ and ▲)

Perceptron will try to find a line or decision boundary that separates these points

Imagine you have some data points of TWO types (■ and ▲)

Imagine you have some data points of TWO types (■ and ▶)

Imagine you have some data points of TWO types (■ and)

Perceptron will try to find a line or decision boundary that separates these points

This is the simplified case of linearly separable points! And perceptron is the basic building block of Neural **Networks (Deep learning these** days)

Imagine you have some data points of TWO types (■ and)

Perceptron will try to find a line or decision boundary that separates these points

This is the simplified case of linearly separable points! And perceptron is the basic building block of Neural **Networks (Deep learning these** days)

What we have seen until now

- Supervised machine learning algorithm
- Learning and Prediction phases

Algorithmic Flow

- ML-Algorithms goes through the following phases
 - Learning
 - algorithm estimates the desired parameters
 - Inference
 - Smart searching and estimation of values needed by algorithm
 - Classification / Regression
 - Once learning is concluded, new data points are assigned classes/values respectively

Image Classification

- Data points are images of apples and grapes
- This is just an illustration for the sake of understanding only

Document Classification

- Data points are documents (Spam and Non-Spam Emails)
- This is just an illustration for the sake of understanding only

k-means Clustering

k-means Clustering Continued (k=2)

What is happening these days

- As of today, May 2019
 - Deep learning dominates
 - Majority of classification problems in Computer Vision and Natural Language Processing are now being addressed by a variant of Deep Architecture (multilayered CNNs and BiLSTMS in general)
 - Such Deep Architecture needs
 - Computing resources
 - Large training times
 - And lots of data
 - But once training is done, you MAY BE rewarded by State-of-the-art performance ("May be or hopefully")

What we covered

- An intuition of what is meant by "machine learning"
- What happens when we build "machine learning classifier"
- Went through the classification of machine learning algorithms

Thank you and Questions please!