1:145)

18 BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENT- UND MARKENAMT ® Offenlegungsschrift

_® DE 198 02 569 A 1

(7) Aktenzeichen: 198 02 569.6

23. 1.98 (2) Anmeldetag: 9. 9.99 (3) Offenlegungstag:

⑤ Int. Cl.6: C 12 N 9/10 A 61 K 38/45 // (C12N 9/10,C12R

(7) Anmelder: Albert-Ludwigs-Universität Freiburg, 79098 Freiburg, DE

(1) Vertreter: Lederer, Keller & Riederer, 80538 München (72) Erfinder:

Aktories, Klaus, Prof. Dr.Dr., 79189 Bad Krozingen, DE; Hofmann, Fred, Dr., 79110 Freiburg, DE

⑤ Entgegenhaltungen: Datenbank Swissprat AC J 40884, Gene, 161 (1995), S. 57-61; EMBL-Genbank AC X82638;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

- ⑤ Toxikologisch aktive Fragmente des lethalen Toxins von Clostridium sordellii und deren Verwendung in Immuntoxinen
- Offenbart werden biologisch aktive Fragmente des lethalen Toxins von Clostridium und Immuntoxine, die diese Fragmente und eine Zellbindungskomponente aufweisen.

Beschreihung

Bei den verschiedensten Therapieansätzen werden unterschiedliche Toxine eingesetzt. Bei den Toxinen handelt es sich um Stoftwechselprodukte von Mikroorganismen oder Pflanzen, die eine Gliftwirkung auf den Organismus von Säugetieren und insbesondere des Menschen hahen. Von bestimmten lebenden Bakterien werden die sogenannten Exotoxine, wie beispielsweise Cholera-, Diphtherie-, Tetanus-, Botulinus- oder Gashrandtoxin abesondert.

Die für die Therapie einsestzharen Exotoxine wirken innerhalb der Zelle. Üblicherweise binden die Toxine zunächst an Rezeptoren an der Zelloberfläche, werden dann durch Endozytose aufgenommen und durchqueren eine intrazelluläre Membran, um das Zytosol in der Zelle zu erreichen. Im Zytosol ruten die Toxine dann die zytotoxischen Elflekte hervor. 10 Häufig stören die Toxine in dem Zytosol essentielle Stoffwechselwege. Die Störung tritt häufig bei der Proteinsynthese auf. Wenn Stoffwechselwege hertoffen sind, die in jeder Zelle ablaufen, muß gewährleiste stein, das bei der herseinsyntheseisschen Anwendung das Toxin möglichst nur in die gewünsche Zielzelle gelangt, da anderenfalls die unerwünschten Nebenrackstionen überhand nehemen würden.

Die vorliegende Effindung berifft ein Fragment eines bakteriellen Exotoxins, nämlich des sogenamene letalen Tubra ins (LT), das von Clostridium sordelli gebildet wird. Das lethale Toxin von Clostridium sordelli gebild zu der Familie der großen Clostridienzyotoxine, die morphologische Veränderungen in Zellinien hervorrufen. Diese gehen einher mit einer Zerstörung des Aktinyvokseletts.

Das Iethale Töxin ist eine Glucosyltransferase, die UDP-Glucose als Co-Substrat zur Medifikation von GTPasen mit niedrigem Molekulargewicht verwendet. LT modifiziert selektiv Rac und Rap sowie Ras. Ras ist der Prototyp einer Unterfamilie der Superfamilie der GTPasen mit niedrigem Mokkulargewicht. LT modifiziert und inaktiviern Ras durch Glycosylterung eines essentiellen Thronimestes (35). Durch die Glycosylterung wird Ras inaktiviert, was zu einer Inhibierung des EGT (Epidermal Growth Factor) situmlierten MAP-Kinsseweges führ.

Gegenstand der vorliegenden Erfindung ist daher ein biologisch aktives Fragment des lethalen Töxins von Clostridium, das dadurch gekennzeichnet ist, daße side Aminosäuresceptung zemäß Sequenz-D.-Nr. I oder eine hierzu homologe Sequenz aufweist, wobei die Homologie zu der Aminosäuresequenz gemäß Sequenz-ID-Nr. I wenigstens 80% be-

In einer besonders bevorzugten Ausführungsform weist das biologisch aktive Fragment des lethalen Toxins die Aminosäuresequenz gemäß Sequenz-ID-Nr. 1 auf.

30

35

40

45

Sn

55

60

Seq.-ID-Nr. 1

M F E L	N R Y K	L H D	V Q N I	N E M N	K D S N K	A E E L	Q Y S T L	L V S D K	Q A V N K	K I V Y F	M L E L	V N K N E	Y A Y T Y	V L Y L	K E K K T	5
K M N N	S E L Y F	G V H I Y	R L F N D	N E I Q S	L W W N	K I K A	N G D F	N G V L	S Q N I L	L I S N E	T N D T	P D Y L	V T K R	E A V K E	K I K T N	10
I E Q Y	V N I L	E D I E S	S P Y E N	A E D N E	T F K P Y	D Q E S	Y K F K	N H I D	K F I L	F I D E N	Y D N A	R Y I L G	K Y I N	R K K	M S T Y I	15
I R Q R	E N E I L	E L S P	S V M G	L K E L I	N F R K Q	K A W E P	D N D D	T E L G L	A D A G	L A V K	V A Y S	R S L I	L D N	Y V K	N L D P I	20
D M M K S Q	S K L S	D D T	T K E K E	N E S V	T Y V E K	S I Q I I	W P R F	E G S L F	M Y F P A	T E L N	K S D N	K A D S	E N L I	A F S K I	D S V N	25
Q N S D K	A Q I K I	L I N L	K E A	N G S	L R T I L	K Y D S K	D K F N	S I N E G	Y L T D F	C N T N A	S D M M	D N K M D	L L F V Y	V N F M R	P S I S	35
T E E S E	L L Q Q	N M R E	E F I E	S K F T E	G D E S Y	P N F L K	G S P W K	V T K S G	Y N T F Y	T I K N F	G H I Q E	A L S A G	L Q R A	E L A L	P T K G	40

Darüber hinaus kann das biologisch aktive Fragment noch am N- und/oder C-Terminus weitere Sequenzen aufweisen. Bevorzugt ist jedoch, wenn das Fragment keine weiteren Sequenzen aufweist, die von Clostridium-DNA abgeleitet sind de Gegenstand der vorliegenden Effrindung sind auch Abwandlungen und Variationen des bevorzugt eingesetzten Fragments des lethalen Toxins. Die beanspruchten Fragmente weisen eine Hountogie zu der in Seq.- ID-Nr. 1 angegebenen Antinosäursequenz von wenigstens SØ/s auf. Eine Homotogie von 80% bedeutet, daß jeweits 80% der Aminosäuren an der jeweiligen Position der angegebenen Sequenz entsprechen, wehingegen 20% der Aminosäuren unterschiedlich sein können. Die essentiellen Bereiche des Proteinfragments müssen dabet unverändert belieben, jedoch ist es möglich, daß so Aminosäuren den nicht biologisch aktiven Bereichen ausgetauscht werden können, wobei bevorzugt die Aminosäuren durch ähnliche Aminosäuren ausgetauscht werden. Die Ahnlichkeit wird bedingt durch die Seitenketten, insbesondere durch ähnliche Aminosäuren der Seitenketten in sessendere durch die Polatifikt und die Ladung der Seitenketten.

Die erifindungsgemäßen Fragmente können bevorzugterweise in Immuntoxinen Verwendung finden. In einem weiteren Aspekt beirfilt die vorliegende Erifindung daher Immuntoxine, die erfindungsgemäß ein biologisch aktives Fragmen

Die Zellbindungskomponente kann ein Antikörper oder ein Teil davon (variable Regionen) sein, der spezifisch an eine Zielzelle bindet. Alternativ hierzu kann die Zellbindungskomponente ein Ligand sein, der spezifisch an einen Rezeptor der Zielzelle bindet kann.

Bei den Zielzellen handelt es sich bevorzugt um Tumorzellen.

Als weiteren Bereich können die erfindungsgemäßen Immunioxine ein Transportsystem oder einen Translokationsbereich aufweisen, der es emüglicht, daß das Toxin in das Zyusosl der Zelle eingebracht wird. Erfindungsgemäß wird besonders das Transportsystem des Pseudomonas Estoxin A oder das Diphherierotsins bevorzugt eingesetzt. In einer anderen bevorzugt eingesetzt an dusführungsform wird das Transportsystem des C2-Toxin bevorzugt eingesetzt, das in der deutsehen Patentamieldung 197 35 105.0 näher beschrieben ist. Das C2-Transportsystem beinhaltet die N-terminale G2-TDomäne des C2-Toxin bevorzugt eingesetzt.

Carapinane use Carapinane on Carapinane in Management and Proposition of the Verwendung eines erfindungsgemäßen Fragments als Toxin, das zur Abtötung spezifischer Zellen eingesetzt werden kann.

Die erfindungsgemäßen Immunoxine weisen also in bevorzugier Ausführungsform wenigstens drei Bereiche auf. Der erse Bereich ist der Zellbindungsbereiches Mei. Hill des Zellbindungsbereiches dockt das Immunotoxin an die Zeldzelle an. Bei den natürich vorkomunenden Immunotoxine bindet dieser Bereich blötheweise an einen Rezeptor der Zielzelle, Beim Pseudomonas Exotoxin A bindet dieser Bereich beispielsweise un den Q-Makroglubolinrezeptor. Im Rahmen der vorliegenden Erfindung kann es sich bei der Zellbindungskomponente um einen Amlikörper oder ein Amlikörper bereich Bereich Beispielsweise die Fv-Fragmente sich daß der gesamte Amlikörper beim Immunoxin vorhanden ist. Ausseichent können beispielsweise die Fv-Fragmente sein, die die varjablen Regionen aus den Fab-Fragmenten einse Amlikörper darstellen.

Alternativ hierzu kann die Zellbindungskomponence ein Ligand sein, der an einen Rezeptor auf der Zelle bindet. Li10 ganden können beispielsweise Zytokine wie Imerferone, Interteukine. Tumornekrosefaktor usw. sein, die an die hier für
spezifischen Rezeptoren binden. Da üblicherweise eine möglichst hohe Zellspezifilät für die Immuntoxime gewünscht
wird, werden erfindungsgemiß bevorzugt solche Liganden eingesetzt, die an Rezeptoren binden, die sich nur oder zumindest überwiegend auf dem Ziebzlein finder.

Das erfindungsgemäße Fragment des lethalen Toxins kann besonders vorteilhaft bei Tumoren verwendet werden, da 15 das Toxinfragment zelleigene Enzyme inaktiviert, die bei der Krebsbildung außer Kontrolle geraten sind. Die Ras-Gene gehören zu den Onkogenen und werden besonders stark in Tumorzellen exprimiert. Wenn also die aufgrund des Tumors übermäßig stark exprimierten Ras-Genprodukte wieder inaktiviert werden können, ernöglicht diese eine effektive Tu-

Gegenüber dem unveränderten lethalen Toxin weisen die erfindungsgemäßen Fragmente den Vorteil auf, daß sie kleioner sind. Kleinere Proteine können aber von dem Zielzellen leichter aufgenommen werden und die toxische Wirkung kann sich daher besser im Zyoosol der Zielzelle en füllern.

Bei der Therapie mit Immuntoxinen hat sich die Bildung von Antikörpern gegendas Töxin als Problem herausgestellt. Da erfindungsgemäß nur ein Fragment des Holotoxins eingesetzt wird, ist die Gefahr der Bildung von (neutralissierenden) Antikörpern verringert.

Überraschenderweise wurde auch herausgefunden, daß die erfindungsgemäßen Toxinfragmente eine höhere Aktivität aufweisen als das unveränderte Holotoxin.

Die vorliegende Erfindung wird durch die nachfolgend beschriebenen Beispiele näher erläutert.

Beispiel I

Mit Hilfe der Polymerase Kettenreaktion wurden zwei Fragmente des leihalen Toxins von C.sordellii, Slamm 6018 amplifiziert. Einmal wurde dass erindungsgemäße Fragment mit den Aminosäuren 1 bis 546. Weiterhin wurde als Vergleich das Fragment mit den Aminosäuren 1 bis 517 durch Verkürzung des erstgenannten Fragments hergestellt.

Die Amplifikation der Fragmente wurde nit Hilfe des PCR-Systems 2400 von Perkin Elmer gemäß den Vorschriften des Herstellers durchgeführt, wobei das Primerpaar CSIO/CSIN eingesetzt wurde. Die Primer hatten folgende Sequen-

5'-AGATCTATGAACTTAGTTAACAAAGCC-3' Seq.-ID-Nr. 2
5'-GGATCCGAACCTTATCCTAAATCC-3' Seq.-ID-Nr. 3

Die Reaktion wurde mit 300 mod Primern, 250 ng shromosomater DNA in einem Gesamtvolumen von 100 µl in 30 Zylten durchgeführt (Denaturenng, 94°C, 10 Set., Annealing, 48°C, 30 Set., 12 Verlängerung, 68°C, 30 Min.). Die anplifizierien DNo-Fragmente wurden mit den Reatriktionsenzymen BgIII/BamHI verdaut und in den Expressionsvektor of ENCYT/EUGH.

Für die C-terminale Deletionsvariante 1-517 wurde zusätzlich mit den Restriktionsenzymen Spel/EcoRI verdaut. Die verkürzten Fragmente wurden mit DNA-Polymerase I, Klenow-Fragment aufgefüllt und religiert.

Nach Sequenzierung wurde die DNA-Sequenz des Fragmentes 1-546 bestimmt. Dabei wurde folgende DNA-Sequenz ermittell:

Seq.-ID-Nr. 4

አጥር	AAC	ጥሞል	CTT	AAC	AAA	GCC	CAA	TTA	CAA	AAA	ATG	GTA	TAT	GTA	AAA
mmm	CCT	Δ TT	CAA	GAA	GAT	GAG	TAC	GTA	GCA	ATA	TTA	AAT	GCT	CTA	GAA
CAA	ጥልጥ	CAC	AAC	ATG	TCA	GAA	AGT	AGT	GTA	GTT	GAA	AAG	TAT	TTA	
TTTA	AAG	CAT	ΔΤΑ	AAT	AAT	CTC	ACA	GAT	AAT	TAC	CTG	AAC	ACA	TAT	AAA
777	TOT	CCA	AGG	AAT	AAA	GCC	TTA	AAA	AAA	TTT	AAA	GAA	TAT	CTA	ACT
አጥር	CAA	GTA	TTA	GAG	CTA	AAA	AAT	AAT	AGT	CTA	ACT	CCA	GTC	GAA	AAA
AAT	ጥጥል	CAT	ффф	ATA	TGG	ATT	GGA	GGA	CAA	ATA	AAT	GAT	ACC	GCT	ATC
	TAT	ATA	AAT	CAA	TGG	AAA	GAT	GTA	AAT	AGC	GAT	TAT	ACA	GTT	AAA
CTT	արդու	TAT	GAT	AGT	AAT	GCA	TTT	TTG	ATA	AAT	ACA	TTA	AAG	AAA	ACT
ስጥጥ	GTT	GAG	TCA	GCA	ACA	AAT	AAT	ACT	CTT	GAG	TCA	TTT	AGA	GAA	AAC
ጥጥል	ΔΑΤ	GAC	CCT	GAA	TTC	GAT	TAT	AAT	AAA	TTT	TAT	AGA	AAA	CGT	ATG
CAA	ΑΤΑ	АТА	TAT	GAT	AAA	CAA	AAA	CAT	TTT	ATA	GAT	TAT	TAT	AAG	TCT
CAG	ATA	GAA	GAG	AAT	CCT	GAA	TTT	ATA	ATT	GAT	\mathbf{AAT}	ATT	ATA	AAA	ACA
ጥልጥ	CTC	TCA	AAT	GAG	TAT	TCA	AAA	GAC	CTA	GAA	GCC	CTT	AAT	AAG	TAT
አጥጥ	CAA	GAA	ጥርጥ	TTA	AAT	AAA	ATT	ACT	GCT	AAT	AAT	GGT	AAT	GAT	ATC
AGA	AAT	CTA	GAA	AAA	TTT	GCT	GAT	GAG	GAT	TTG	GTA	AGA	TTA	TAT	AAT
CAA	GAA	TTA	GTA	GAA	AGA	TGG	AAT	TTG	GCT	GCT	GCT	TCT	GAT	ATA	TTA
CGA	ΔΨΔ	ጥርጥ	ATG	TTA	AAA	GAA	GAT	GGT	GGT	GTA	TAT	TTA	GAT	GTT	
A TOC	ጥጥል	CCA	CCT	ATA	CAA	CCA	GAT	TTA	TTT	AAA	TCT	ATA	AAC	AAG	CCT
CAT	TCG	ΑΤΑ	ACA	AAT	ACA	AGT	TGG	GAA	ATG	ATA	AAG	TTA	GAG	GCT	ATA
λ TC	AAA	TAT	AAG	GAA	TAT	ATA	CCA	GGG	TAT	ACG	TCA	AAG	AAT	TTT	GAC
ATIC	ттъ	CAT	GAA	GAA	GTT	CAA	CGC	AGT	TTT	GAA	TCT	GCT	TTA	AGT	TCT
AAA	TCA	GAT	AAG	TCA	GAA	ATT	TTT	TTG	CCA	CTT	GAT	GAT	ATA	AAA	GTA
TCC	CCG	TT Α	GAA	GTA	AAA	ATT	GCA	TTT	GCC	AAT	AAC	TCT	GTT	ATA	AAT
CAA	GCC	TTA	ATT	TCT	TTA	AAA	GAT	TCC	TAT	TGT	AGT	GAT	TTA	GTA	ATA
AAT	CAA	ATT	AAA	AAT	AGA	TAT	AAA	ATC		AAC					
TCC	ATT	AAT	GAA	GGT	ACT	GAC	TTT	AAT	ACT	ACA	ATG	AAA	ATT	TTT	AGT
GAC	AAA	TTA	GCA	TCT	ATT	TCT	AAT	GAA	GAT	AAT	ATG	ATG	TTT	ATG	
AAA	ATT	ACA	AAT	TAT	TTA	AAA	GTT	GGA	TTT	GCT	CCA	GAT	GTT	AGA	
ACT	ATT	AAC	TTA	AGT	GGA	CCT	GGA	GTA	TAT	ACA	GGA	GCT	TAT	CAA	
TTG	TTA	ATG	TTT	AAA	GAT	AAT	AGT	ACA	AAT	ATT	CAT	TTA	CTA	GAA	CCT
GAG	TTA	AGA	AAT	TTT	GAG	TTT	CCT	AAA	ACT	AAA	ATT	TCT	CAA	CCC	ACA
GAA	CAG	GAA	ATA	ACT	AGT	TTA	TGG	TCA	TTT	AAC	CAA	GCA	AGA	CDD	CCA
		TTT	GAA	GAA	TAT	AAA	AAA	GGT	TAT	TTT	GAA	GGT	GCA	CIT	GGA
GAA	GAT														

Beispiel 2

Es wurde die Glucosyltransforase-Aktivität des Holoenzyms verglichen mit der des erfindungsgemäßen Fragments (AS 1-546) und mit der des am C-Terminus deletierten Fragments mit den Aminosäuren 1-517.

Die Ergebnisse dieses Versuchs sind in Fig. 1 dargestellt. Hierzu wurde jeweils 1 jg Ras mit dem Holoenzym (schwarz ausgefülltes Dreisch | ▲ 1), gereinigtem N-terminalen Toxinfragment mit den Aminosäuren 1-546, dargestellt se schwarz ausgefüllte Quadrat | ■ 1, und Deletionsfragment mit den Aminosäuren 1-517 (sehwarz ausgefüllte Kreise (■ 0) inknibert. Eingesterzu wurden jeweils 1 mld des Toxins. Die Inkubation erfolgte in Gegenwart von UDP-1⁴C-J. Chaise (10 ph) für die ausgegeben 2ch. Dann wurden die Insakieren Proteine mit SDS PNGT und Phosphorbilddarstellung analysiert. Fig. 1 zeigt, daß das erfindungsgenuße Fragment eine höhere Aktivität aufweist als das Holotoxin. Die Aktivität ist bei deun weierdeleitenten Fragment (1-517) mahezu vollständig verforengegangen.

10

15

20

SEQUENZPROTOKOLL

(1) ALLGEMEINE INFORMATION:

ANMELDER:

- (A) NAME: Albert-Ludwigs-Universität Freiburg
 - (B) STRASSE: Werthmannplatz
 - (C) ORT: Freiburg (E) LAND: Germany
 - (F) POSTLEITZAHL: 79098

ANMELDETITEL:

15

20

25

30

35

40

45

50

65

Toxikologisch aktive Fragmente des lethalen Toxins von Clostridium sordellii und deren Verwendung in Immuntoxinen

ANZAHL DER SEGUENZEN: 4

COMPUTER-LESBARE FORM:

- (A) DATENTRÄGER: Floppy Disk
- (B) COMPUTER: IBM PC compatible (C) BETRIEBSSYSTEM: PC-DOS/MS-DOS
- (D) SOFTWARE: PADAT Sequenzmodul Version 1.0

(2) IN	FORM	ATIO	N ZU	SEQ	ID	NO:	1:									
	(i)	(A) LÄ	CHA NGE: T: A	546	Ami	nosäi										i
		(C) ST	RANG POLO	FORM	: Ei	nzel									11	.)
•	•			MOL			_									1:	5
(xi)	SEQU	JENZI	BESCI	HREIE	UNG:	SEC] ID	NO:	1:						2	0
Met 1		Leu	ı Val	Asr S		Ala	Gln	Leu	Glr 10		Met	Val	Tyr	Val 15		2	
Phe	Arg	Ile	Glr 20	Glu	Asp	Glu	Tyr	Val 25		Ile	Leu	Asn	Ala 30		Glu	-	,
Glu	Tyr	His 35		Met	Ser	Glu	Ser 40	Ser	Val	Val	Glu	Lys 45	Tyr	Leu	Lys	3	0
Leu	Lys 50	_	Ile	Asn	Asn	Leu 55	Thr	Asp	Asn	Tyr	Leu 60	Asn	Thr	Tyr	Lys	3	5
Lys 65	Ser	Gly	Arg	Asn	Lys 70	Ala	Leu	Lys	Lys	Phe 75	Lys	Glu	Tyr	Leu	Thr 80	4	ю
Met	Glu	Val	Leu	Ġ1u 85	Leu	Lys	Asn	Asn	ser 90	Leu	Thr	Pro	Val	Glu 95	Lys	4	15
Asn	Leu	His	Phe 100	Ile	Trp	Ile	Gly	Gly 105	Gln	Ile	Asn	Asp	Thr 110	Ala	Ile	:	50
Asn	Tyr	Ile 115	Asn	Gln	Trp	Lys	Asp 120	Val	Asn	Ser	Asp	Tyr 125	Thr	Val	Lys		
Val	Phe 130	Tyr	Asp	Ser	Asn	Ala 135	Phe	Leu	Ile	Asn	Thr 140	Leu	Lys	Lys	Thr		5.5
																•	ы

50

5	145					150				: Leu	155					160
	Leu	Asn	Asp	Pro	Glu 165		Asp	Tyr	Asn	Lys 170	Phe	Tyr	Arg	Lys	Arg 175	Met
10	Glu	Ile	Ile	Tyr 180		Lys	Gln	Lys	His 185	Phe	Ile	Asp	Tyr	Tyr 190	Lys	Ser
15	Gln	Ile	Glu 195		Asn	Pro	Glu	Phe 200	Ile	Ile	Asp	Asn	11e 205	Ile	Lys	Thr
20	Tyr	Leu 210		Asn	Glu	Tyr	Ser 215	Lys	Asp	Leu	Glu	Ala 220	Leu	Asn	Lys	Tyr
25	225					230				Ala	235					240
.30					245					Asp 250					255	
35				260					265	Ala				270		
40			275					280		Gly			285			
45		290					295			Phe		300				
	Asp 305	Ser	Ile	Thr	Asn	Thr 310	Ser	Trp	Glu	Met	Ile 315	Lys	Leu	Glu	Ala	11e 320
50	Met 		туг	Lys	Glu 325	Туг	Ile	Pro	Gly	Tyr 330	Thr	Ser	Lys	Asn	Phe 335	Asp
55	Met	Leu	Asp	Glu 340	Glu	Val	Gln	Arg	Ser 345	Phe	Glu	Ser	Ala	Leu 350	Ser	Ser
60	Lys	Ser	Asp 355	Lys	Ser	Glu	Ile	Phe 360	Leu	Pro	Leu	Asp	Asp 365	Ile	Lys	Val
65	Ser	Pro 370	Leu	Glu	Val	Lys	Ile 375	Ala	Phe	Ala	Asn	Asn 380	Ser	Val	Ile	Asn

Gln 385	Ala	Leu	Ile	Ser	Leu 390	Lys	Asp	Ser	Tyr	Cys 395	Ser	Asp	Leu	Val	11e 400		5
Asn	Gln	Ile	Lys	Asn 405	Arg	Tyr	Lys	Ile	Leu 410	Asn	Asp	Asn	Leu	Asn 415	Pro		,
Ser	Ile	Asn	Glu 420	Gly	Thr	Asp	Phe	Asn 425	Thr	Thr	Met	Lys	Ile 430	Phe	Ser		10
Asp	Lys	Leu 435	Ala	Ser	Ile	Ser	Asn 440	Glu	Asp	Asn	Meţ	Met 445	Fhe	Met	Ile		15
Lys	Ile 450	Thr	Asn	Tyr	Leu	Lys 455	Asn	Gly	Phe	Ala	Pro 460	Asp	Val	Arg	Ser		20
Thr	Ile	Asn	Leu	5er	Gly 470	Pro	Gly	Val	Tyr	Thr 475	Gly	Ala	Tyr	Gln	Asp 480		25
Leu	Leu	Met	Phe	Lys 485	Asp	Asn.	Ser	Thr	Asn 490	Ile	His	Leu	Leu	Glu 495	Pro		30
Glu	Leu	Arg	Asn 500	Phe	Glu	Phe	Pro	Lys 505	Thr	Lys	Ile	Ser	Gln 510	Leu	Thr		35
Glu		Glu 515	Ile	Arg	Ser	Leu	Trp 520	Ser	Phe	Asn	Gln	Ala 525	Arg	Ala	Lys		40
Ser	Gln 530	Phe	Glu	Glu	Tyr	Lys 535	Lys	Gly	Tyr	Phe	Glu 540	Gly	Ala	Leu	Gly		
Glu 545	Asp																45
																	50
																	55

	(2) INFORMATION ZU SEQ ID NO: 2:	
5	(i) SEQUENZ CHARAKTERISTIKA: (A) LÄNGE: 27 Basenpaare	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
10	(D) TOPOLOGIE: linear	
	(b) TOPOLOGIE: Timedr	
	(ii) ART DES MOLEKÜLS: Genom-DNA	
15	•	
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 2:	
20	AGATCTATGA ACTTAGTTAA CARAGCC	2
25		
	(2) INFORMATION ZU SEQ ID NO: 3:	
	(i) SEQUENZ CHARAKTERISTIKA:	
30	(A) I XNCP. 24 Page-	
	(B) ART: Nukleinsäure	
	(C) STRANGFORM: Einzel	
35	(D) TOPOLOGIE: linear	
	(ii) ART DES MOLEKÜLS: Genom-DNA	
40		
40		
	(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 3:	
	00170000110 07701700711	
45	GGATCCGAAC CTTATCCTAA ATCC	24

5

15

65

121	INFORMATION	zu	SEQ	ID	NO:	4

(i) SEQUENZ CHARAKTERISTIK.	Α:	
---	----	--

- (A) LÄNGE: 1638 Basenpaare(B) ART: Nukleinsäure
- (B) ART: Nukleinsaure
 - (C) STRANGFORM: Einzel
 - (D) TOPOLOGIE: linear

(ii) ART DES MOLEKÜLS: Genom-DNA

(xi) SEQUENZBESCHREIBUNG: SEQ ID NO: 4:

ATGAACTTAG TTAACAAAGC CCAATTACAA AAAATGGTAT ATGTAAAATT TCGTATTCAA GAAGATGAGT ACGTAGCAAT ATTAAATGCT CTAGAAGAAT ATCACAACAT GTCAGAAAGT 120 25 AGTGTAGTTG AAAAGTATTT AAAATTAAAG GATATAAATA ATCTCACAGA TAATTACCTG 180 AACACATATA AAAAATCTGG AAGGAATAAA GCCTTAAAAA AATTTAAAGA ATATCTAACT 240 30 ATGGAAGTAT TAGAGCTAAA AAATAATAGT CTAACTCCAG TCGAAAAAAA TTTACATTTT 300 ATATGGATTG GAGGACAAAT AAATGATACC GCTATCAACT ATATAAATCA ATGGAAAGAT 360 420 GTAAATAGCG ATTATACAGT TAAAGTTTTT TATGATAGTA ATGCATTTTT GATAAATACA TTAAAGAAAA CTATTGTTGA GTCAGCAACA AATAATACTC TTGAGTCATT TAGAGAAAAC 480 TTAAATGACC CTGAATTCGA TTATAATAAA TTTTATAGAA AACGTATGGA AATAATATAT 540 45 GATAAACAAA AACATTTTAT AGATTATTAT AAGTCTCAGA TAGAAGAGAA TCCTGAATTT 600 ATAATTGATA ATATTATAAA AACATATCTC TCAAATGAGT ATTCAAAAGA CCTAGAAGCC 660 50 CTTAATAAGT ATATTGAAGA ATCTTTAAAT AAAATTACTG CTAATAATGG TAATGATATC 720 AGAAATCTAG AAAAATTTGC TGATGAGGAT TTGGTAAGAT TATATAATCA AGAATTAGTA 780 GAAAGATGGA ATTTGGCTGC TGCTTCTGAT ATATTACGAA TATCTATGTT AAAAGAAGAT 840

	GGTGGTGTAT ATTTAGATGT TCACATGTTA CCAGGTATAC AACCAGATTT ATTTAAATCT	90
5	ATAAACAAGC CTGATTCGAT AACAAATACA AGTTGGGAAA TGATAAAGTT AGAGGCTATA	960
	ATGAAATATA AGGAATATAT ACCAGGGTAT ACGTCAAAGA ATTTTGACAT GTTAGATGAA	1020
10	GAAGTTCAAC GCAGTTTTGA ATCTGCTTTA AGTTCTAAAT CAGATAAGTC AGAAATTTTT	1080
	TTGCCACTTG ATGATATAAA AGTATCCCCG TTAGAAGTAA AAATTGCATT TGCCAATAAC	1140
	TCTGTTATAA ATCAAGCCTT AATTTCTTTA AAAGATTCCT ATTGTAGTGA TTTAGTAATA	1200
10	AATCAAATTA AAAATAGATA TAAAATCTTG AACGACAACT TAAATCCATC CATTAATGAA	1260
	GGTACTGACT TTAATACTAC AATGAAAATT TTTAGTGACA AATTAGCATC TATTTCTAAT	1320
5	GAAGATAATA TGATGTTTAT GATAAAAATT ACAAATTATT TAAAAGTTGG ATTTGCTCCA	1380
	GATGTTAGAA GTACTATTAA CTTAAGTGGA CCTGGAGTAT ATACAGGAGC TTATCAAGAT	1440
0	TTGTTAATGT TTAAAGATAA TAGTACAAAT ATTCATTTAC TAGAACCTGA GTTAAGAART	1500
5	TTTGAGTTTC CTAAAACTAA AATTTCTCAA TTAACAGAAC AGGAAATAAC TAGTTTATGG	1560
	TCATTTAACC AAGCAAGAGC CAAGTCTCAA TTTGAAGAAT ATAAAAAAGG TTATTTTGAA	1620
)	GGTGCACTTG GAGAAGAT	1638

Patentansprüche

- 45 1. Fragment des Iethalen Toxins von Clostridium, dadurch gekennzziehnet, daß es die Aminosäuresequenz gemäß Sequenz: DN: 1 oder eine hierzu homologe Sequenz aufweist, wobei die Homologie zu der Aminosäuresequenz gemäß Sequenz: DN: 1 venigstens 80% berigät.
 - 2. Fragurent gemäß Anspruch I, dadurch gekennzeichnet, daß die Homologie zu der Aminosäuresequenz gemäß Sequenz-ID-Nr. I wenigstens 90% beträgt.
- Fragment gemäß Anspruch 1, dadurch gekennzeichnet, daß die Homologie zu der Aminosäuresequenz gemäß Sequenz-ID-Nr. 1 wenigstens 95% beträgt.
 - 4. Immuntoxin, dadurch gekennzeichnet, daß es
 - a) ein Fragment gemäß einem der Ansprüche 1–3 und
 - b) eine Zellbindungskomponente

aufweist.

41

55

- Immunioxin gemäß Anspruch 4, dadurch gekennzeichnet, daß die Zellbindungskomponente (b) ein Antikörper oder ein Teil davon ist, der spezifisch an eine Zielzelle bindet.
- Immunioxin gemäß Anspruch 4, dadurch gekennzeichnet, daß die Zellbindungskomponente (b) ein Ligand ist, der spezifisch an einen Rezeptor der Zielzelle binden kann.
 Immunioxin gemäß Anspruch Soder 6, dadurch gelegengeichten der Bereichte in der Bereichten der Bereic
- Immuntoxin gemäß Anspruch 5 oder 6, dadurch gekennzeichnet, daß es sich bei der Zielzelle um eine Tumorzelle handelt.
 - Immunioxin nach einem der Ansprüche 4-7, dadurch gekennzeichnet, daß es weiterhin c) ein Transportsystem
 - outumet
- Immunitoxin nach Anspruch 8, dadurch gekennzeichnet, daß das Transportsystem die Translokationsdomäne des Pseudomonas Exotoxins A ist.
 - Immuntoxin nach Anspruch 8, dadurch gekennzeichnet, daß das Transportsystem die Translokationsdomäne des C2-Toxins von Clostridium ist.

11. Verwendung eines Fragments gemäß einem der Ansprüche 1 bis 3 als zielzellspezifisches Toxin.

Hierzu I Seite(n) Zeichnungen

20

Zeit (min.)

30

10

Nummer:

DE 198 02 569 A1

40

Fig. 1

ò

ZEICHNUNGEN SEITE 1