

Um Modelo Deve Ser Correto

Um modelo está correto quando não contém erros de modelagem. Podem ocorrer dois tipos de erros:

Sintáticos: Ocorrem quando o modelo não respeita as regras de construção de um modelo ER.

Ex: Associar atributos a atributos, associar relacionamentos a atributos, associar relacionamentos através de outros relacionamentos, especializar relacionamentos ou atributos.

Semânticos: Ocorrem quando o modelo, apesar de obedecer as regras de construção de modelos ER, reflete a realidade de forma inconsistente.

Ex: Estabelecer associações incorretas, usar uma entidade do modelo como atributo de outra entidade, usar o número incorreto de entidades em um relacionamento.

11

Um Modelo Deve Ser Completo

Um modelo completo deve fixar todas as propriedades desejáveis do banco de dados. Isso somente pode ser verificado por alguém que conhece profundamente o sistema a ser implementado.

Uma boa forma de verificar se o modelo é completo é ver se todos os dados que devem ser obtidos do banco de dados estão presentes e se todas as transações de modificação do banco de dados podem ser executadas sobre o modelo.

Entidade Isolada

Uma entidade isolada é uma entidade que não apresenta relacionamento com outras entidades. Em princípio, entidades isoladas não estão incorretas.

Ex: BD de uma UNIVERSIDADE.

- A entidade UNIVERSIDADE pode ser necessária, caso se deseje manter no BD alguns atributos da universidade.
- O modelo não deveria conter o relacionamento desta entidade com outras, como ALUNO ou CURSO:
 - BD modela uma única universidade
 - Não é necessário informar no BD em que universidade o aluno está inscrito.

Uso de uma ferramenta CASE

O software ideal para acompanhar o projeto de um banco de dados é uma ferramenta CASE (Computer Aided Software Engineering).

Uma ferramenta CASE pode apoiar o desenvolvimento de um BD, tanto na fase da modelagem quanto na fase de projeto do BD.

Uma ferramenta CASE deve ter:

- 1. Capacidade de edição diagramática
- 2. Dicionário de dados
- 3. Integração entre o diagrama ER e o dicionário de dados.

Ex: ERWIN, CaseStudio

19

Uso de Programas de Propósito Geral

Na falta de uma ferramenta CASE, pode-se recorrer ao uso de programas de propósito geral para editar o DER e montar o dicionário de dados:

Edição do DER – Pode-se utilizar um programa de desenho de propósito geral.

Ex: Corel Draw, Illustrator

Dicionário de Dados – Pode-se utilizar um processador de textos, uma planilha eletrônica ou um banco de dados (esta é a melhor opção). A escolha provavelmente irá recair sobre o programa que for mais conhecido e dominado na organização em questão.

Estratégias de Modelagem

Estratégia de Modelagem ER

O processo de construção de um modelo é um processo incremental, isto é, um modelo de um sistema não é construído em um único passo, mas em muitos pequenos passos, muitas pequenas transformações, desde o modelo inicial, até o modelo completo.

Gradativamente, o modelo vai sendo enriquecido com novos conceitos e estes vão sendo ligados aos existentes, ou os existentes vão sendo aperfeiçoados.

Uma estratégia de modelagem ER é uma sequência de passos (uma receita de bolo) de transformação de modelos.

Partindo de descrições de dados existentes

Esta situação ocorre quando deseja-se obter um modelo de dados para um sistema em computador existente.

Neste caso, usa-se como descrição dos dados as descrições dos arquivos utilizados pelo sistema em computador.

Este caso é conhecido por Engenharia Reversa, pois objetiva obter uma especificação (o modelo) a partir de um produto existente (o sistema em computador).

A construção de um modelo partindo de descrições de dados já existentes dá-se de acordo com a Estratégia Ascendente (Bottom-Up), onde a ideia é partir de conceitos detalhados e abstrair gradativamente.

O processo de modelagem inicia-se pelos atributos. Depois estes atributos são agregados em entidades, e as entidades são relacionadas e generalizadas.

Partindo do conhecimento de pessoas

Outra fonte de informações para a construção de modelos ER são os conhecimentos que pessoas possuem sobre o sistema sendo modelado.

Este é o caso quando novos sistemas, para os quais não existem descrições de dados, estão sendo concebidos. Para este caso podem ser aplicadas duas estratégias:

- 1. Estratégia descendente ("top-down")
- 2. Estratégia "inside-out"

1. Estratégia descendente (top-down)

A estratégia top-down consta de partir de conceitos mais abstratos ("de cima") e ir gradativamente refinando estes conceitos em mais detalhados.

O processo de modelagem inicia com a identificação de entidades genéricas. A partir daí, são definidos os atributos das entidades, seus relacionamentos, os atributos dos relacionamentos e as especializações das entidades.

Uma sequência de passos para obter um modelo usando a estratégia descendente é mostrada nos próximos slides:

25

Estratégia "top-down" processo (1)

- 1. Modelagem superficial:
 - a) Enumeração das entidades.
 - b) Identificação dos relacionamentos (cardinalidade máxima) e hierarquias de generalização/especialização entre as entidades.
 - c) Determinação dos atributos de entidades e relacionamentos.
 - d) Determinação dos identificadores de entidades e relacionamentos.
 - e) O banco de dados é verificado quanto ao aspecto temporal.

Estratégia "top-down" processo (2)

- 2. Modelagem detalhada:
 - a) Domínios dos atributos
 - b) Cardinalidades mínimas.
 - c) Demais restrições de integridade.
- 3. Validação do modelo:
 - a) Construções redundantes ou deriváveis a partir de outras no modelo.
 - b) Validação com o usuário.

21

2. Estratégia inside-out

A estratégia inside-out (de dentro para fora) consta de partir de conceitos considerados mais importantes (centrais, parte-se de "dentro") e ir gradativamente adicionando conceitos periféricos a eles relacionados (ir "para fora").

O processo inicia com a identificação de uma entidade particularmente importante no modelo e que, supõe-se, estará relacionada a muitas outras entidades. A partir daí, são procurados atributos, entidades relacionadas, generalizações e especializações da entidade em foco, e assim recursivamente até obter-se o modelo completo.

Um exemplo passo a passo é exemplificado nos próximos slides:

