EDA Adult Data Set

Python Librarys

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

Add column names to adult csv data set

```
column names =
['Age','Workclass','Fnlgwt','Education','Education num','Marital statu
s',
'Occupation', 'Relationship', 'Race', 'Sex', 'Capital gain', 'Capital loss'
           'Hours_per_week','Native_country','Income']
df = pd.read csv('adult.csv', names=column names)
df.head()
                                                 Education num \
   Age
                Workclass
                            Fnlgwt
                                     Education
0
    39
                            77516
                                     Bachelors
                                                            13
                State-gov
         Self-emp-not-inc
                                     Bachelors
                                                            13
1
    50
                            83311
2
                                                             9
    38
                  Private
                           215646
                                       HS-grad
3
    53
                                           11th
                                                             7
                  Private
                            234721
    28
                  Private 338409
                                     Bachelors
                                                            13
        Marital status
                                 Occupation
                                                Relationship
                                                                Race
Sex
    \
0
         Never-married
                               Adm-clerical
                                               Not-in-family
                                                               White
Male
    Married-civ-spouse
                            Exec-managerial
                                                     Husband
                                                               White
Male
                                               Not-in-family
2
              Divorced
                          Handlers-cleaners
                                                               White
Male
3
    Married-civ-spouse
                          Handlers-cleaners
                                                     Husband
                                                               Black
Male
    Married-civ-spouse
                             Prof-specialty
                                                        Wife
                                                               Black
Female
   Capital gain Capital loss
                                Hours per week
                                                 Native country
                                                                 Income
0
           2174
                             0
                                             40
                                                  United-States
                                                                   <=50K
1
              0
                             0
                                             13
                                                  United-States
                                                                   <=50K
```

2	Θ	0	40	United-States	<=50K
3	Θ	Θ	40	United-States	<=50K
J	U	U	40	OHITCH-States	\ - 50K
4	0	0	40	Cuba	<=50K

Handling missing values

```
df[df == ' ?'] = np.nan
df.isna().any()
Age
                   False
Workclass
                    True
Fnlgwt
                   False
Education
                   False
Education num
                   False
Marital status
                   False
Occupation
                    True
Relationship
                   False
Race
                   False
Sex
                   False
Capital gain
                   False
Capital loss
                   False
Hours_per_week
                   False
Native country
                   True
                   False
Income
dtype: bool
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32561 entries, 0 to 32560
Data columns (total 15 columns):
 #
                      Non-Null Count
     Column
                                       Dtype
- - -
 0
                                       int64
     Age
                      32561 non-null
 1
     Workclass
                      30725 non-null
                                       object
 2
     Fnlgwt
                      32561 non-null
                                       int64
 3
     Education
                      32561 non-null
                                       object
 4
     Education num
                      32561 non-null
                                       int64
 5
     Marital status
                      32561 non-null
                                       obiect
 6
     Occupation
                      30718 non-null
                                       object
 7
     Relationship
                      32561 non-null
                                       object
 8
     Race
                      32561 non-null
                                       object
 9
     Sex
                      32561 non-null
                                       object
 10
     Capital_gain
                      32561 non-null
                                       int64
 11
     Capital loss
                      32561 non-null
                                       int64
 12
     Hours per week
                      32561 non-null
                                       int64
```

```
13 Native_country 31978 non-null object
14 Income 32561 non-null object
dtypes: int64(6), object(9)
memory usage: 3.7+ MB
```

Recoding? as a Mode value of Categorial Variables

```
for col in ['Workclass', 'Occupation', 'Native_country']:
    df[col].fillna(df[col].mode()[0], inplace=True)
df.isna().any()
                  False
Age
Workclass
                  False
Fnlgwt
                  False
Education
                  False
Education num
                  False
Marital_status
                  False
Occupation
                  False
Relationship
                  False
Race
                  False
Sex
                  False
Capital gain
                  False
Capital loss
                  False
                  False
Hours per week
                  False
Native country
                  False
Income
dtype: bool
```

Checking the duplicates

```
df.duplicated() # True for duplicated in rows
0
         False
1
         False
2
         False
3
         False
         False
32556
         False
32557
         False
32558
         False
32559
         False
32560
         False
Length: 32561, dtype: bool
df.duplicated().sum() # Number of duplicated rows
24
```

```
len(df)
32561

df.drop_duplicates(inplace=True) # Dropping duplicated rows
len(df)
32537

df.duplicated().sum()
0
```

Search unique values in Variables

```
print(df.Workclass.unique())
[' State-gov' ' Self-emp-not-inc' ' Private' ' Federal-gov' ' Local-
gov'
' Self-emp-inc' ' Without-pay' ' Never-worked']
print(df.Education.unique())
[' Bachelors' ' HS-grad' ' 11th' ' Masters' ' 9th' ' Some-college'
 ' Assoc-acdm' ' Assoc-voc' ' 7th-8th' ' Doctorate' ' Prof-school'
'5th-6th' '10th' '1st-4th' 'Preschool' '12th']
print(df.Marital status.unique())
[' Never-married' ' Married-civ-spouse' ' Divorced'
' Married-spouse-absent' ' Separated' ' Married-AF-spouse' '
Widowed'l
print(df.Occupation.unique())
[' Adm-clerical' ' Exec-managerial' ' Handlers-cleaners' ' Prof-
specialty'
 'Other-service' 'Sales' 'Craft-repair' 'Transport-moving'
  Farming-fishing' 'Machine-op-inspct' 'Tech-support'
' Protective-serv' ' Armed-Forces' ' Priv-house-serv']
print(df.Relationship.unique())
[' Not-in-family' ' Husband' ' Wife' ' Own-child' ' Unmarried'
' Other-relative']
print(df.Native country.unique())
[' United-States' ' Cuba' ' Jamaica' ' India' ' Mexico' ' South'
 ' Puerto-Rico' ' Honduras' ' England' ' Canada' ' Germany' ' Iran'
 ' Philippines' ' Italy' ' Poland' ' Columbia' ' Cambodia' ' Thailand'
 'Ecuador' 'Laos' 'Taiwan' 'Haiti' 'Portugal' 'Dominican-
```

```
Republic'
'El-Salvador' 'France' 'Guatemala' 'China' 'Japan' 'Yugoslavia'
'Peru' 'Outlying-US(Guam-USVI-etc)' 'Scotland' 'Trinadad&Tobago'
'Greece' 'Nicaragua' 'Vietnam' 'Hong' 'Ireland' 'Hungary'
'Holand-Netherlands']
print(df.Income.unique())
[' <=50K' '>50K']
```

Exploratory Data Analysis

Univariate Analysis

Histograms for Continuous Data

```
Histogram_graphs=df.select_dtypes(include=['int'])
Histogram_graphs.hist(figsize=(10,12))
plt.show()
```


Draw a pair plot for dataset

sns.pairplot(df)
plt.show()

C:\Users\sanda\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118:
UserWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

Counts plots for variables

Workclass, Education, Marital_status, Occupation, Relationship, Race

```
categorical_columns = ['Workclass', 'Education', 'Marital_status',
'Occupation', 'Relationship', 'Race']
```

for colname in categorical_columns:

```
plt.title('Count Plot for ' + colname)
  (df[colname].value_counts().head(20).plot(kind='barh',
color='plum'))
  plt.show()
```


Count Plot for Education

Count Plot for Occupation

Count Plot for Relationship

Count Plot for Race


```
categorical_columns = ['Workclass', 'Education', 'Marital_status',
   'Occupation', 'Relationship', 'Race']

# Set up the matplotlib figure with subplots
fig, axes = plt.subplots(nrows=3, ncols=2, figsize=(10, 20))

# Flatten the axes for easier iteration
axes = axes.flatten()

# Loop through the categorical columns and create count plots
for i, column in enumerate(categorical_columns):
        sns.countplot(y=column, data=df, ax=axes[i])
        axes[i].set_title(f'Count Plot for {column}')

# Adjust layout to prevent overlapping
plt.tight_layout()

# Show the plot
plt.show()
```


Income

```
plt.figure(figsize=(4,4))
sns.countplot(x="Income", data=df)

<Axes: xlabel='Income', ylabel='count'>
```


Pie Chart for Gender

```
sex_counts = df['Sex'].value_counts()

# Plotting the pie chart
plt.figure(figsize=(8, 8))
plt.pie(sex_counts, labels=sex_counts.index, autopct='%1.1f%%',
startangle=90, colors=['skyblue', 'pink'])
plt.title('Distribution of Sex in the Dataset')
plt.show()
```

Distribution of Sex in the Dataset

Count Plots Based on Income

```
# Categorical columns in the dataset
categorical_columns = ['Workclass', 'Education', 'Education_num',
'Marital_status', 'Occupation', 'Relationship', 'Race', 'Sex',
'Native_country', 'Income']

# Set the style of seaborn for better visualization
sns.set(style="darkgrid")

# Plot count plots for each categorical variable
for column in categorical_columns:
```


Cross Table Based on Sex

```
column_name=["Age", "Workclass", "Education", "Education_num",
"Marital_status", "Occupation", "Relationship", "Race", "Sex",
"Native country"]
for column in column name:
    if column != 'Income':
         print(pd.crosstab(df[column], df['Income'], margins=True,
margins name='Total'))
         print("\n")
Income
          <=50K >50K Total
Age
                       0
17
                             395
             395
             550
                             550
18
                       0
19
                       2
             706
                             708
20
             752
                       0
                             752
                       3
21
             715
                             718
. . .
             . . .
                             . . .
86
               1
                       0
                               1
87
               1
                               1
                       0
88
               3
                       0
                               3
90
                              42
              34
                       8
Total
          24698
                   7839
                          32537
[74 rows x 3 columns]
Income
                       <=50K >50K Total
Workclass
 Federal-gov
                         589
                                 371
                                          960
                        1476
                                 617
                                        2093
 Local-gov
 Never-worked
                           7
                                    0
                                            7
 Private
                       19357
                                5152
                                       24509
 Self-emp-inc
                         494
                                 622
                                        1116
 Self-emp-not-inc
                        1816
                                 724
                                        2540
 State-gov
                         945
                                 353
                                        1298
 Without-pay
                          14
                                    0
                                           14
Total
                       24698
                                7839
                                      32537
                  <=50K
                           >50K Total
Income
Education
 10th
                     871
                              62
                                     933
 11th
                    1115
                              60
                                    1175
                     400
                              33
 12th
                                     433
 1st-4th
                     160
                               6
                                     166
 5th-6th
                     316
                              16
                                     332
 7th-8th
                     605
                              40
                                     645
 9th
                     487
                              27
                                     514
```

Assoc-acdm 802 265 1067 Assoc-voc 1021 361 1382 Bachelors 3132 2221 5353 Doctorate 107 306 413 HS-grad 8820 1674 10494 Masters 763 959 1722 Preschool 50 0 50 Prof-school 153 423 576 Some-college 5896 1386 7282 Total 24698 7839 32537 Income <=50K >50K Total Education_num 1 50 0 50 2 160 6 166 3 316 16 332 4 605 40 645 5 487 27 514 6 871 62 933 7 1115 60 1175 8 400 33 433 9 8820 1674 10494 10 5896 1386 7282 11 1021 361 1382 12 802 265 1067 13 3132 2221 5353 14 763 959 1722 15 153 423 576 16 107 306 413 Total 24698 7839 32537 Income <=50K >50K Total Education_num 1 50 0 50 2 160 6 166 33 316 16 332 4 605 40 645 5 487 27 514 6 871 62 933 7 1115 60 1175 8 400 33 433 9 8820 1674 10494 10 5896 1386 7282 11 1021 361 1382 12 802 265 1067 13 3132 2221 5353 14 763 959 1722 15 153 423 576 16 107 306 413 Total 24698 7839 32537
Education_num 1
1 50 0 50 2 160 6 166 3 316 16 332 4 605 40 645 5 487 27 514 6 871 62 933 7 1115 60 1175 8 400 33 433 9 8820 1674 10494 10 5896 1386 7282 11 1021 361 1382 12 802 265 1067 13 3132 2221 5353 14 763 959 1722 15 153 423 576 16 107 306 413 Total 24698 7839 32537 Income <=50K >50K Total Marital_status Divorced 3978 463 4441 Married-AF-spouse 13 10 23 Married-civ-spouse 8280 6690 14970 Married-spouse-absent 384 34 418 Never-married 10176 491 10667 Separated 959 66 1025 Widowed 908 85 993
Marital_status 3978 463 4441 Married-AF-spouse 13 10 23 Married-civ-spouse 8280 6690 14970 Married-spouse-absent 384 34 418 Never-married 10176 491 10667 Separated 959 66 1025 Widowed 908 85 993
Divorced 3978 463 4441 Married-AF-spouse 13 10 23 Married-civ-spouse 8280 6690 14970 Married-spouse-absent 384 34 418 Never-married 10176 491 10667 Separated 959 66 1025 Widowed 908 85 993

Exec-managerial Farming-fishing Handlers-cleaners Machine-op-inspct Other-service Priv-house-serv Prof-specialty Protective-serv Sales Tech-support	2097 877 1283 1751 3154 146 3930 438 2667 644	1968 115 86 249 137 1 2049 211 983 283	4065 992 1369 2000 3291 147 5979 649 3650 927
• •	_		_
Transport-moving	1277	320	1597
Total	24698	7839	32537

Income	<=50K	>50K	Total
Relationship			
Husband	7271	5916	13187
Not-in-family	7436	856	8292
Other-relative	944	37	981
Own-child	4997	67	5064
Unmarried	3227	218	3445
Wife	823	745	1568
Total	24698	7839	32537

Income	<=50K	>50K	Total
Race			
Amer-Indian-Eskimo	275	36	311
Asian-Pac-Islander	762	276	1038
Black	2735	387	3122
0ther	246	25	271
White	20680	7115	27795
Total	24698	7839	32537

<=50K	>50K	Total
9583	1179	10762
15115	6660	21775
24698	7839	32537
	9583 15115	9583 1179 15115 6660

Income	<=50K	>50K	Total
Native country			
Cambodia	12	7	19
Canada	82	39	121
China	55	20	75
Columbia	57	2	59
Cuba	70	25	95
Dominican-Republic	68	2	70

Ecuador	24	4	28
El-Salvador	97	9	106
England	60	30	90
France	17	12	29
Germany	93	44	137
Greece	21	8	29
	59	3	62
Guatemala		3 4	
Haiti	40		44
Holand-Netherlands	1	0	1
Honduras	12	1	13
Hong	14	6	20
Hungary	10	3	13
India	60	40	100
Iran	25	18	43
Ireland	19	5	24
Italy	48	25	73
Jamaica	71	10	81
Japan	38	24	62
Laos	16	2	18
Mexico	606	33	639
Nicaragua	32	2	34
Outlying-US(Guam-USVI-etc)	14	0	14
Peru	29	2	31
Philippines	137	61	198
Poland	48	12	60
Portugal	33	4	37
Puerto-Rico	102	12	114
Scotland	9	3	12
South	64	16	80
Taiwan	31	20	51
Thailand	15	3	18
Trinadad&Tobago	17	2	19
United-States	22420	7315	29735
Vietnam	62	5	67
Yugoslavia	10	6	16
Total	24698	7839	32537

Bivariate Analysis

Density Plots Hours_per_week and Age Based on Income

```
sns.displot(x='Age', hue='Income', data=df, kind='kde')
sns.displot(x='Hours_per_week', hue='Income', data=df, kind='kde')
C:\Users\sanda\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118:
UserWarning: The figure layout has changed to tight
self._figure.tight_layout(*args, **kwargs)
```

C:\Users\sanda\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118:
UserWarning: The figure layout has changed to tight
 self._figure.tight_layout(*args, **kwargs)

<seaborn.axisgrid.FacetGrid at 0x207eb0c9290>

Violine Plot for Age Based on Income

```
sns.violinplot(x = 'Income', y = 'Age', data = df, size = 6)
plt.title('Violin Plot of Age by Income')
Text(0.5, 1.0, 'Violin Plot of Age by Income')
```


Bar Plot For Income Vs Categoriacal Variables

```
df1 = df.copy()
# Convert 'Income' column to binary values (1 if '>50K', 0 otherwise)
df1['Income'] = df['Income'].apply(lambda x: 1 if x == ' >50K' else 0)
education_order = [' Preschool', ' 1st-4th', ' 5th-6th', ' 7th-8th', ' 9th', ' 10th', ' 11th', ' 12th', ' HS-grad', ' Some-college', ' Assocacdm', ' Assoc-voc', ' Bachelors', ' Masters', ' Doctorate', ' Prof-
school']
# List of categorical variables to include in the plot
categorical_vars = ['Workclass', 'Education', 'Education num',
'Marital_status', 'Occupation', 'Relationship', 'Race', 'Sex',
'Native country']
# Determine the number of rows and columns dynamically
num plots = len(categorical vars)
num_cols = min(1, num_plots)
num rows = (num plots - 1) // num cols + 1
# Create a grouped bar plot for each categorical variable
plt.figure(figsize=(18, 4 * num_rows))
for i, var in enumerate(categorical vars, 1):
    plt.subplot(num rows, num cols, i)
```

```
sns.barplot(x=var, y="Income", data=df1, order=education_order if
var == 'Education' else None, palette="Paired")
   plt.xticks(rotation=90)
   plt.title(f"Bar plot of Income Vs {var}")

plt.tight_layout()
plt.show()
```



```
# Categorical columns in the dataset
categorical_columns = ['Workclass', 'Education', 'Education num',
'Marital status', 'Occupation', 'Relationship', 'Race', 'Sex',
'Native country']
# Set the style of seaborn for better visualization
sns.set(style="darkgrid")
# Plot count plots for each categorical variable
for column in categorical columns:
    plt.figure(figsize=(12, 6))
    # Set the order for 'Education' variable
    if column == 'Education':
        order = sorted(df['Education'].unique(), key=lambda x: ['
Preschool', ' 1st-4th', ' 5th-6th', ' 7th-8th', ' 9th', ' 10th', '
11th', ' 12th',
' HS-grad', ' Some-college', ' Assoc-acdm', ' Assoc-
voc', ' Bachelors', ' Masters', ' Doctorate', ' Prof-
school'].index(x))
        sns.barplot(x=column, y='Income', data=df1, palette='Set2',
order=order)
    else:
        sns.barplot(x=column, y='Income', data=df1, palette='Set2')
    plt.title(f'Count Plot of {column} by Income', fontsize=16)
    plt.xticks(rotation=45, ha='right')
    plt.show()
```


Heat Map

```
numerical_columns = df.select_dtypes(include=['int64', 'float64'])

# Create a correlation matrix
correlation_matrix = numerical_columns.corr()

# Set up the matplotlib figure
plt.figure(figsize=(12, 10))

# Create a heatmap using seaborn to visualize the correlation matrix
sns.heatmap(correlation_matrix, annot=True, cmap="YlGn", fmt=".2f",
linewidths=.5)

# Show the plot
plt.title("Correlation Plot of Numerical Features")
plt.show()
```


Multivariate Analysis

```
mult_df = df.where(df.Income == "
>50K").pivot_table(values=['Income'],
index='Education',
columns='Workclass',
aggfunc='count')
mult_df.sort_index()

Income
Workclass Federal-gov Local-gov Private Self-emp-inc
Education
```

10th	NaN	1.0	49.0	3.0
11th	1.0	2.0	45.0	4.0
12th	NaN	2.0	25.0	1.0
1st-4th	NaN	NaN	5.0	NaN
5th-6th	NaN	1.0	9.0	2.0
7th-8th	NaN	1.0	20.0	5.0
9th	1.0	3.0	19.0	NaN
Assoc-acdm	19.0	28.0	176.0	18.0
Assoc-voc	15.0	25.0	269.0	19.0
Bachelors	95.0	162.0	1540.0	171.0
Doctorate	15.0	17.0	143.0	29.0
HS-grad	73.0	90.0	1164.0	119.0
Masters	47.0	173.0	552.0	57.0
Prof-school	23.0	19.0	179.0	78.0
Some-college	82.0	93.0	957.0	116.0

Workclass	Self-emp-not-inc	State-gov
Education		
10th	7.0	2.0
11th	7.0	1.0
12th	3.0	2.0
1st-4th	1.0	NaN
5th-6th	4.0	NaN
7th-8th	14.0	NaN
9th	4.0	NaN
Assoc-acdm	18.0	6.0
Assoc-voc	21.0	12.0
Bachelors	163.0	90.0
Doctorate	31.0	71.0
HS-grad	179.0	49.0
Masters	59.0	71.0
Prof-school	106.0	18.0
Some-college	107.0	31.0

plt.figure(figsize=(16, 8))
sns.heatmap(mult_df.sort_index(), annot=True, fmt='.1f', cbar_kws=
{'label':'Income >50K Counts range in categories'}, cmap='coolwarm')
plt.title('Incomes >50K counts of various Educated categories Vs Work
Class')

Text(0.5, 1.0, 'Incomes >50K counts of various Educated categories Vs Work Class')


```
mult df1 = df.where(df.Income == "
>50K").pivot table(values=['Income'],
index='Occupation',
columns='Workclass',
aggfunc='count')
mult df1.sort index()
                           Income
                                                         Self-emp-inc
Workclass
                     Federal-gov
                                   Local-gov
                                               Private
Occupation
Adm-clerical
                            101.0
                                         33.0
                                                  321.0
                                                                   9.0
Armed-Forces
                              1.0
                                          NaN
                                                    NaN
                                                                   NaN
Craft-repair
                             21.0
                                         40.0
                                                 721.0
                                                                  38.0
 Exec-managerial
                             92.0
                                        102.0
                                                 1295.0
                                                                 254.0
 Farming-fishing
                              2.0
                                          2.0
                                                   30.0
                                                                  15.0
Handlers-cleaners
                                          7.0
                              2.0
                                                   73.0
                                                                   NaN
Machine-op-inspct
                              2.0
                                          2.0
                                                 224.0
                                                                   5.0
Other-service
                              3.0
                                         12.0
                                                  100.0
                                                                   6.0
 Priv-house-serv
                              NaN
                                          NaN
                                                    1.0
                                                                   NaN
 Prof-specialty
                             95.0
                                        254.0
                                                 1198.0
                                                                 121.0
                             14.0
                                        135.0
                                                                   2.0
 Protective-serv
                                                   30.0
Sales
                              5.0
                                          3.0
                                                 684.0
                                                                 160.0
                                         15.0
Tech-support
                             25.0
                                                  221.0
                                                                   2.0
Transport-moving
                                         12.0
                                                  254.0
                              8.0
                                                                  10.0
```

Workclass	Self-emp-not-inc	State-gov
Occupation		
Adm-clerical	16.0	27.0
Armed-Forces	NaN	NaN
Craft-repair	95.0	14.0
Exec-managerial	144.0	81.0
Farming-fishing	64.0	2.0
Handlers-cleaners	3.0	1.0
Machine-op-inspct	11.0	5.0
Other-service	12.0	4.0
Priv-house-serv	NaN	NaN
Prof-specialty	210.0	171.0
Protective-serv	1.0	29.0
Sales	128.0	3.0
Tech-support	11.0	9.0
Transport-moving	29.0	7.0

plt.figure(figsize=(16, 8))
sns.heatmap(mult_df1.sort_index(), annot=True, fmt='.1f', cbar_kws=
{'label':'Income >50K Counts range in categories'}, cmap='coolwarm')
plt.title('Incomes >50K counts of various Occupation categories Vs
Work Class')

Text(0.5, 1.0, 'Incomes >50K counts of various Occupation categories
Vs Work Class')

mult_df2 = df.where(df.Income == "
>50K").pivot_table(values=['Income'],

```
index='Race',
columns='Education',
aggfunc='count')
mult df2.sort index()
                    Income
                      10th 11th 12th 1st-4th 5th-6th 7th-8th
Education
9th
Race
Amer-Indian-Eskimo
                       NaN
                             2.0
                                                              NaN
                                   NaN
                                            NaN
                                                     NaN
Asian-Pac-Islander
                       1.0
                             1.0
                                   1.0
                                                     3.0
                                            NaN
                                                              NaN
1.0
Black
                       6.0 7.0 5.0
                                            1.0
                                                     NaN
                                                              2.0
4.0
0ther
                       1.0
                             NaN
                                   NaN
                                            NaN
                                                     1.0
                                                              NaN
NaN
White
                      54.0 50.0 27.0
                                            5.0
                                                    12.0
                                                             38.0
22.0
Education
                     Assoc-acdm Assoc-voc Bachelors Doctorate HS-
grad
Race
                                                             2.0
Amer-Indian-Eskimo
                            1.0
                                       1.0
                                                  8.0
11.0
Asian-Pac-Islander
                            8.0
                                       9.0
                                                 97.0
                                                            18.0
34.0
Black
                           19.0
                                      18.0
                                                 96.0
                                                             9.0
86.0
                            2.0
                                                  5.0
0ther
                                       NaN
                                                             1.0
2.0
White
                          235.0
                                     333.0
                                               2015.0
                                                           276.0
1541.0
Education
                     Masters Prof-school Some-college
Race
Amer-Indian-Eskimo
                         3.0
                                                    6.0
                                      2.0
Asian-Pac-Islander
                        43.0
                                     27.0
                                                   33.0
Black
                        40.0
                                      8.0
                                                   86.0
0ther
                         2.0
                                      4.0
                                                    7.0
White
                       871.0
                                    382.0
                                                 1254.0
```

plt.figure(figsize=(16, 8))
sns.heatmap(mult_df2.sort_index(), annot=True, fmt='.1f', cbar_kws=
{'label':'Income >50K Counts range in categories'}, cmap='coolwarm')
plt.title('Incomes >50K counts of various Race categories Vs Education
categories')

Text(0.5, 1.0, 'Incomes >50K counts of various Race categories Vs Education categories')

