

Digital Logic Design

數位邏輯設計會

第 6 章 組合邏輯電路設計及應用

- 6-1 組合邏輯電路設計步驟
- 6-2 加法器及減法器
- 6-3 二進碼十進數 (BCD) 加法器
- 6-4 解碼器及編碼器
- 6-5 多工器及解多工器

6-6 比較器

6-7 應用實例的認識

多工器的應用

第 6 章 組合邏輯電路設計及應用

數位邏輯電路可以區分為組合邏輯(combinational logic) 電路與循序邏輯(sequential logic)電路兩種類型。組合邏輯 電路是由各種邏輯閘所組成,其輸出的狀態只與目前的輸入狀態 有關,而與前一個輸出狀態無關,如圖6-1(a)所示。而循序邏輯 電路是由組合邏輯電路與記憶元件(即正反器)所組成,如圖6-1(b) 所示,由於記憶元件可以儲存前一個輸出的狀態,所以循序 邏輯的輸出狀態是由前一個輸出狀態與目前的輸入狀態來決定, 以達到循序的功能。

第 6 章 組合邏輯電路設計及應用

▲ 圖 6-1 組合邏輯與循序邏輯電路的方塊圖

本章將針對組合邏輯電路設計及應用做詳細的介紹,而正反器與循序邏輯電路將在第七、八章中介紹。

組合邏輯電路設計是將文字敘述的問題轉換成組合邏輯電路圖, 其設計的步驟如下:

- 1. 決定輸入與輸出變數的個數與名稱。
- 2. 定義輸入與輸出變數。
- 3. 依題意建立真值表。
- 4. 利用布林定理或卡諾圖,化簡輸出函數為最簡布林代數式。
- 5. 畫出組合邏輯電路圖。

例題 6-1 三人投票器 設計一個三人投票器。 解

- 1. 決定輸入與輸出變數的個數與名稱:
 - (1) 輸入變數3 個: *A*、*B*、*C*。
 - (2) 輸出變數1 個: F。
- 2. 定義輸入與輸出變數:
 - (1) 輸入變數 $A \setminus B \setminus C$: 贊成以1 表示,不贊成以0 表示。
 - (2) 輸出變數F:表決結果通過以1 表示,未通過以0 表示。

3. 依題意建立真值表:

輸入			輸出
A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

4. 利用卡諾圖, 化簡輸出函數F 為最簡SOP 布林代數式。

$$\therefore F(A, B, C) = AB + BC + AC$$

5. 畫出組合邏輯電路圖:

演練 1

設計一個兩輸入XOR 閘。

根據上一節所敘述的組合邏輯電路設計步驟,我們可以設計出各種不同的組合邏輯應用電路。一般而言,常用的組合邏輯應用電路有加法器、減法器、解碼器、編碼器、多工器、解多工器與比較器等。

一 加法器

兩個二進位數字相加,若和大於或等於2 即進位。我們以兩個1 位元的二進位數相加,以及兩個4 位元的二進位數相加為例,說明二進位的加法運算,如表6-1 所示。

▼表6-1 二進位的加法運算

執行二進位加法運算的電路稱為加法器。二進位加法器有半加器 (half adder;簡稱HA)與全加器 (full adder;簡稱FA)兩種,另外執行兩個多位元的二進位數加法運算的電路稱為並加器,

(一) 半加器

執行兩個一位元(被加數與加數)的二進位數加法運算之電路稱為半加器(HA),它有被加數與加數兩個輸入端,以及進位(carry)與和(sum)兩個輸出端。半加器設計的步驟說明如下:

- 1. 決定輸入與輸出變數的個數與名稱:
 - (1) 輸入變數2 個:被加數A、加數B。
 - (2) 輸出變數2 個:進位C、和S。

2. 定義輸入與輸出變數:

3. 依題意建立真值表,如表6-2 所示。

▼表6-2 半加器的真值表

輸入		輸出	
被加數	加數	進位	和
A	В	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

4. 依據表6-2 之真值表,寫出輸出函數C 與S 的最簡SOP 布林代數式:

進位
$$C(A, B) = AB$$

$$f \circ S(A,B) = \overline{AB} + A\overline{B} = A \oplus B$$

5. 畫出組合邏輯電路圖:如圖6-2 所示。

▲ 圖 6-2 半加器的邏輯電路圖

6. 半加器的符號:如圖6-3 所示。

(二)全加器

執行兩個一位元與前一級進位(共三個1 位元)的二進位數加法運算電路稱為全加器(FA),它具有被加數、加數與前一級進位三個輸入端,以及進位與和兩個輸出端。全加器設計的步驟說明如下:

- 1. 決定輸入與輸出變數的個數與名稱:
 - (1) 輸入變數3 個:被加數A、加數B、前一級進位 C_i 。
 - (2) 輸出變數2 個:進位 C_{c} 、和S

2. 定義輸入與輸出變數:

3. 依題意建立真值表,如表6-3 所示。

▼表6-3 全加器的真值表

輸入			輸	出
被加數	加數	前一級進位	進位	和
A	В	C_i	C_o	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- 4. 利用卡諾圖,化簡輸出函數 C_o 與S 為最簡SOP 布林代數式: 如表6-4 所示。
 - ▼ 表 6-4 輸出函數 C_0 與 S 的最簡布林代數式

	進位 C _o	和 S
卡諾圖	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A = \begin{bmatrix} BC_i \\ 00 & 01 & 11 & 10 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
最簡 布林 代數式	∴進位 $C_o(A, B, C_i) = AB + BC_i + AC_i$	∴和 $S(A, B, C_i)$ = $\overline{ABC_i} + \overline{ABC_i} + A\overline{BC_i} + ABC_i = A \oplus B \oplus C_i$ (因為當輸入端有奇數個 1 時,輸出端為 1)

6-2 加法器及减法器

5. 畫出組合邏輯電路圖:如圖6-4 所示。

6. 全加器的符號:如圖6-5 所示。

▲ 圖 6-5 全加器的符號

7. 全加器也可以由兩個半加器與一個OR 閘組成。

依據表 6-3 之真值表,寫出輸出端進位 C_o 與和S 的布林代數式為

進位
$$C_0(A, B, C_i) = \overline{ABC_i} + A\overline{BC_i} + AB\overline{C_i} + AB\overline{C_i} + AB\overline{C_i}$$

$$= AB(\overline{C_i} + C_i) + C_i(\overline{AB} + A\overline{B})$$
$$= AB \cdot 1 + C_i(A \oplus B)$$

$$C_o(A, B, Ci) = AB + C_i(A \oplus B)$$

和

$$S(A, B, C_i) = A \oplus B \oplus C_i = (A \oplus B) \oplus C_i$$

6-2 式

根據6-1 式與6-2 式,可以畫出由兩個半加器與一個OR 閘組成之全加器,如圖6-6 所示。

例題 6-2 全加器

若全加器輸入端A = 1,B = 0, $C_i = 1$,其輸出端進位 C_o 與和S的結果為何?

解

$$\begin{array}{c}
A \\
B \\
+ C_i \\
\hline
C_0 S
\end{array}
\longrightarrow
\begin{array}{c}
1 \\
0 \\
+ 1 \\
\hline
10
\end{array}$$

進位 $C_o = 1$;和S = 0。

演練 2

若全加器輸入端A = 1,B = 1, $C_i = 1$,其輸出端進位 C_o 與和S

(三) 並加器

全加器一般很少單獨使用,因為它只能執行兩個一位元與前一級進位的二進位數加法運算,若要執行多個位元的二進位數加法運算,則需要將數個全加器並列以串接方式連接在一起才能完成,我們稱之為並加器(parallel adder)。我們以四位元並加器為例,說明並加器的原理。

1. 四位元並加器的定義

兩個四位元的二進位數加法運算,舉例說明如下:

其中 A_3 、 A_2 、 A_1 、 A_0 為四個位元的被加數。 B_3 、 B_2 、 B_1 、 B_0 為四個位元的加數。 C_3 、 C_2 、 C_1 為前一級的進位。 S_3 、 S_2 、 S_1 、 S_0 為四個位元的總和。 C_4 為最高位元的進位。

2. 四位元並加器的電路圖

依據上述的定義,我們可以利用三個全加器與一個半加器,或四個全加器組成一個四位元並加器,如圖6-7 所示,其中最右邊的全加器 FA_0 只有執行兩個1 位元(A_0 與 B_0)的二進位數相加,並無前一級進位輸入,故將前一級的進位輸入 C_0 接地,相當於半加器。

▲ 圖 6-7 四位元並加器的電路圖

3. 四位元並加器的電路原理

如圖6-7所示,其被加數 $A_3A_2A_1A_0$ 與加數 $B_3B_2B_1B_0$ 雖同時送至全加器相加,但是必須先將最低有效位元(LSB) A_0 與 B_0 經過全加器 FA_0 相加後,和為 S_0 ,其進位 C_1 再與 A_1 與 B_1 經過全加器 FA_1 相加後,以此類推,才能得到四個位元的總和 S_3 、 S_2 、 S_1 、 S_0 與最高位元的進位 C_4 ,所以四位元並加器的進位有傳遞延遲現象,因此降低了並加器的運算速度。

為了解決此一問題,可以將所有位元的被加數與加數,直接透過組合邏輯電路運算,以取得正確的進位,就可以提高並加器的運算速度,稱之為前瞻式進位(look ahead carry),例如TTL的7483 就是採用前瞻式進位的四位元並加器。

二 減法器

執行二進位減法運算的電路稱為減法器。二進位減法器有半減器 (half subtractor; 簡稱HS) 與全減器 (full subtractor; 簡稱FS) 兩種,另外執行兩個多位元的二進位數減法運算的電路稱為並減器,分別說明如下。

(一) 半減器

執行兩個一位元(被減數與減數)的二進位數減法運算之電路稱為半減器(HS),它具有被減數與減數兩個輸入端,以及借位(borrow)與差(difference)兩個輸出端。半減器設計的步驟說明如下:

- 1. 決定輸入與輸出變數的個數與名稱:
 - (1) 輸入變數2 個:被減數X、減數Y。
 - (2) 輸出變數2 個:借位B、差D。
- 2. 定義輸入與輸出變數:

3. 依題意建立真值表,如表6-5 所示。

▼表6-5 半減器的真值表

輸入		輸	出
被減數	減數	借位	差
X	Y	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

4. 依據表6-5 之真值表,寫出輸出函數B 與D 的最簡SOP 布林代數式:

借位
$$B(X,Y) = XY$$

差
$$D(X,Y) = \overline{XY} + X\overline{Y} = X \oplus Y$$

6-2 加法器及减法器

5. 畫出組合邏輯電路圖:如圖6-8 所示。

6. 半減器的符號:如圖6-9 所示。

(二) 全減器

執行兩個一位元與前一級借位(共三個1 位元)的二進位數 減法運算之電路稱為全減器(FS),它具有被減數、減數與前一 級借位三個輸入端,

以及借位與差兩個輸出端。全減器設計的步驟說明如下:

- 1. 決定輸入與輸出變數的個數與名稱:
 - (1) 輸入變數3 個:被減數X、減數Y、前一級借位 B_i 。
 - (2) 輸出變數2 個:借位 B_o 、差D。

2. 定義輸入與輸出變數:

3. 依題意建立真值表,如表6-6 所示。
▼表6-6 全減器的真值表

輸入			輸	出
被減數	減數	前一級 借位	借位	差
X	Y	B_i	B_o	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

- 4. 利用卡諾圖, 化簡輸出函數Bo 與D 為最簡SOP 布林代數式: 如表6-7 所示。
 - ▼表 6-7 輸出函數 B。與 D 的最簡布林代數式

	借位 <i>B</i> 。	差 D
卡諾圖	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$X = \begin{bmatrix} YB_i \\ 00 & 01 & 11 & 10 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$
最簡 布林 代數式	∴借位 $B_o(X, Y, B_i) = \overline{X}Y + \overline{X}B_i + YB_i$	∴ 差 $D(X, Y, B_i)$ = $\overline{XYB_i} + \overline{XYB_i} + \overline{XYB_i} + \overline{XYB_i} = X \oplus Y \oplus B_i$ (因為當輸入端有奇數個 1 時,輸出端為 1)

6-2 加法器及减法器

5. 畫出組合邏輯電路圖:如圖6-10 所示。

6. 全減器的符號:如圖6-11 所示。

7. 全減器也可以由兩個半減器與一個OR 閘組成。

依據表 6-6 之真值表,寫出輸出端借位 B_o 與差D 的布林代數式為

借位
$$B_o(X,Y,B_i) = \overline{XY}B_i + \overline{XY}\overline{B_i} + \overline{XY}B_i + \overline{XY}B_i + \overline{XY}B_i$$

$$= \overline{XY}(\overline{B_i} + B_i) + B_i(\overline{XY} + \overline{XY})$$

$$= \overline{XY} \cdot 1 + B_i(\overline{X} \oplus \overline{Y})$$

6-2 加法器及减法器

$$B_o(X,Y,B_i) = \overline{X}Y + B_i(\overline{X \oplus Y})$$

差

$$D(X, Y, B_i) = X \oplus Y \oplus B_i = (X \oplus Y) \oplus B_i$$

6-2 加法器及减法器

根據6-3 式與6-4 式,可以畫出由兩個半減器與一個OR 閘組成之全減器,如圖6-12 所示。

例題 6-3 全減器

如圖6-12 所示之全減器,若輸入端X = 0,Y = 0, $B_i = 1$,其輸出端借位 B_0 與差D 的結果為何?

解

$$X \rightarrow 0$$
 $\frac{-X}{B_o D}$
 $\frac{-0}{11}$
借位 $B_o = 1$; $\not \equiv D = 1$ 。

演練 3

如圖6-12 所示之全減器,若輸入端X = 0,Y = 1, $B_i = 1$,其輸出端借位 B_0 與差D 的結果為何?

(三) 並減器

全減器一般很少單獨使用,因為它只能執行兩個一位元與前一級借位的二進位數減法運算。通常在數位電路或計算機中,若要執行多個位元的二進位數減法運算,一般是利用加法器來做減法運算,以達到簡化電路結構的目的,常用的減法器有1的補數並減器與2的補數並減器兩種,分別說明如下。

1. 四位元1 的補數並減器

有關1的補數減法運算可以參考第5章的5-3節「二進位減法」之內容。因為兩數相減之差=被減數-減數

$$=A-B$$

 $=A+(-B)$
 $=A+(B)$ 取1的補數)
 $=A+\overline{B}$

所以1的補數減法器只要將減數B取1的補數(即 $0 \rightarrow 1$, $1 \rightarrow 0$),再與被減數A相加,即可完成1的補數減法運算,若有進位產生時,則需將進位與和的最低有效位元(LSB)相加,以獲得正確的答案,稱之為端迴進位(EAC)。在數位電路中,由於1的補數減法運算電路較複雜,故較少使用。

圖6-13 是利用四位元並加器與NOT 閘所組成的四位元1 的補數並減器。首先利用 4 個反閘將減數 $B_3B_2B_1B_0$ 取 1 的補數,即 $\overline{B_3B_2B_1B_0}$,再與被減數 $A_3A_2A_1A_0$ 相加,若 C_4 有進位產生時,則需將進位 C_4 與最低有效位元(LSB)相加,以獲得正確的答案,即端迴進位。

6-2 加法器及减法器

例題 6-4 四位元1 的補數減法

如圖6-13 所示電路,若 $A_3A_2A_1A_0 = 0110_{(2)}$, $B_3B_2B_1B_0 = 0010_{(2)}$,則其輸出端總和 $S_3 \times S_2 \times S_1 \times S_0$ 為多少?

解

- 1. 先將減數 $0010_{(2)}$ 取1 的補數= $1101_{(2)}$ 。
- 2. 再與被減數 0110(2) 相加。
- 3. 若 C_4 有進位產生時,則需將進位 C_4 與和的最低有效位元(LSB)相加,且其結果為正數。

$$0110_{(2)}$$
 $0110_{(2)}$ $0110_{(2)}$ $0110_{(2)}$ $0110_{(2)}$ $0110_{(2)}$ $0110_{(2)}$ $0100_{(2)}$ $0100_{(2)}$ $0100_{(2)}$ $0100_{(2)}$ $01100_{(2)}$ $01100_{(2)}$

演練 4

如圖6-13 所示電路,若 $A_3A_2A_1A_0 = 0010_{(2)}$, $B_3B_2B_1B_0 = 0110_{(2)}$,則 其輸出端總和 $S_3 \setminus S_2 \setminus S_1 \setminus S_0$ 為多少?

2. 四位元2 的補數並減器

有關2的補數減法運算可以參考第5章的5-3節「二進位減法」之內容。因為兩數相減之差=被減數-減數

$$= A - B$$

 $= A + (-B)$
 $= A + (B \text{ R} 2 \text{ bi in } \frac{1}{8})$
 $= A + (B \text{ R} 1 \text{ bi in } \frac{1}{8} + 1)$
 $= A + (\overline{B} + 1)$

所以2的補數減法器只要先將減數B取1的補數(即 $0 \rightarrow 1$, $1 \rightarrow 0$)且加1之後,再與被減數A相加,即可完成2的補數減法運算,若有進位產生時,則直接捨去進位後其結果即為解答。由於2的補數減法運算電路較簡單,所以目前在數位電路與計算機中,大多採用2的補數減法運算。

圖6-14 是利用四位元並加器7483 與NOT 閘所組成的四位元2的補數並減器。首先利用 4 個反閘將減數 $B_3B_2B_1B_0$ 取 1 的補數,即 $B_3B_2B_1B_0$,再與被減數 $A_3A_2A_1A_0$ 及 $C_O=1$ 相加,即可獲得兩數相減之差。

▲ 圖 6-14 四位元 2 的補數並減器

例題 6-5 四位元2 的補數減法

如圖6-14 所示電路,若 $A_3A_2A_1A_0=0110_{(2)}$, $B_3B_2B_1B_0=0010_{(2)}$,則 其輸出端最高位元的進位 C_4 與總和 S_3 、 S_2 、 S_1 、 S_0 為多少?

解

- 1. 先將減數 $0010_{(2)}$ 取1 的補數= $1101_{(2)}$ 。
- 2. 再與被減數 0110(2) 與1 相加。
- $3. 若 C_4$ 有進位產生時,則直接捨去 C_4 後,其結果即為解答,且為正數。

6-2 加法器及减法器

$$\therefore 0110_{(2)} - 0010_{(2)} = 0100_{(2)} = 4_{(10)}$$

所以最高位元的進位 $C_4 = 1$, 而總和 $S_3S_2S_1S_0 = 0100$ 。

演練 5

如圖6-14 所示電路,若 $A_3A_2A_1A_0 = 0010_{(2)}$, $B_3B_2B_1B_0 = 0110_{(2)}$,則 其輸出端最高位元的進位 C_4 與總和 S_3 、 S_2 、 S_1 、 S_0 為多少?

3. 四位元2 的補數並加/減法器

圖6-14 所示之電路,只能當成減法器使用,非常可惜,若將其稍加修改之後,即可當成加/減法器使用。圖6-15 是利用四位元並加器7483與XOR 閘組成一個四位元2 的補數並加/減法器。

其電路原理說明如下:

- (1) 當SUB = 0 時, $C_0 = 0$,XOR 閘的輸出端與減數B 相同,仍為 $B_3B_2B_1B_0$,所以執行 $A_3A_2A_1A_0 + B_3B_2B_1B_0$ 之運算,即加法運算 A + B。

例題 6-6 四位元2 的補數加減法

如圖6-15 所示電路,若 $A_3A_2A_1A_0 = 0010_{(2)}$, $B_3B_2B_1B_0 = 0101_{(2)}$,則當SUB = 0 與SUB = 1 時,其輸出端最高位元的進位 C_4 與總和 S_3 、 S_2 、 S_1 、 S_0 為多少?

解

$$\therefore 0010_{(2)} + 0101_{(2)} = 0111_{(2)} = 7_{(10)}$$

- 2. 當 **SUB** = **1** 時,執行減法運算 $A+(\overline{B}+1)=A-B$,即 $0010_{(2)}-0101_{(2)}$ 。
- (1) 先將減數 $0101_{(2)}$ 取1的補數 = $1010_{(2)}$

$$\Rightarrow$$
 取1's $+$ 1010₍₂₎
符號位元 = 1,表示結果為負數→1101₍₂₎ ←解答 ↓ 取2's

$$=$$
 $-0011_{(2)}$ $=$ $-3_{(10)}$

$$\therefore 0010_{(2)} - 0101_{(2)} = 1101_{(2)} = -3_{(10)}$$

所以最高位元的進位 $C_4 = 0$,而總和 $S_3S_2S_1S_0 = 1101$ 。

演練 6

如圖6-15 所示電路,若 $A_3A_2A_1A_0 = 0001_{(2)}$, $B_3B_2B_1B_0 = 0011_{(2)}$,則當SUB = 0 與SUB = 1 時,其輸出端最高位元的進位 C_4 與總和 S_3 、 S_2 、 S_1 、 S_0 為多少?

有關BCD的說明可以參考第5章的5-4節「二進碼十進數(BCD)」之內容,BCD是以4位元的二進位碼(0000~1001)來表示十進位的數字(0~9)。

- BCD 加法運算

BCD 的加法運算雖然與二進位的加法運算類似,但是因為BCD 的數值只有 $0_{(10)}$ 至 $9_{(10)}$,所以BCD 的加法運算必須適度地做修正,才能得到正確的結果,其修正的步驟敘述如下:

- (一) 將兩個BCD 碼,以四個位元為一組進行加法運算。
- (二) 若相加之和大於 $\mathbf{9}$ (即 $10_{(10)} \sim 15_{(10)}$) 或和有進位($C_4 = 1$,即 $16_{(10)} \sim 19_{(10)}$)時,則和必須再加上 $\mathbf{6}$ (即 $0110_{(2)}$) 進行修正,以得到正確的解答。

例題 6-7 BCD 加法運算

執行下列BCD 加法運算,其結果為何?

1.
$$6_{(10)} + 8_{(10)} = 0110_{(BCD)} + 1000_{(BCD)}$$

2.
$$9_{(10)} + 8_{(10)} = 1001_{(BCD)} + 1000_{(BCD)}$$

解 1.

十進位加法	BCD 加法
	0110 _(BCD)
6 ₍₁₀₎	+ 1000 _(BCD)
+ 8(10)	1110 (和>9)
$14_{(10)}$	<u>+ 0110</u> (+6)
	<u>0001</u> <u>0100</u> _(BCD)

$$\therefore 6_{(10)} + 8_{(10)} = 0110_{(BCD)} + 1000_{(BCD)} = 0001 \ 0100_{(BCD)}$$

_		
2.	十進位加法	BCD 加法
		1001 _(BCD)
	9 ₍₁₀₎	+ 1000 _(BCD)
	+ 8(10)	(進位C ₄ =1)→10001
	17 ₍₁₀₎	<u>+ 0110</u> (+6)
		<u>0001</u> <u>0111</u> _(BCD)

$$\therefore 9_{(10)} + 8_{(10)} = 1001_{(BCD)} + 1000_{(BCD)} = 0001 \ 0111_{(BCD)}$$

演練 7

執行 $3_{(10)} + 7_{(10)} = 0011_{(BCD)} + 0111_{(BCD)}$ 的BCD 加法運算,其結果為何?

>>> Digital Logic Design

6-3 二進碼十進數 (BCD) 加法器

▼ 表 6-8 兩個 BCD 相加的結果

二 BCD 加法器

因為BCD 的數值只有 $0_{(10)}$ 至 $9_{(10)}$,所以兩個最大的BCD 相加,加上前一級的進位,絕對不會超過 $19_{(10)}$ (: 9+9+1=19),表6-8 所示,列出兩個BCD 相加的結果。

	十進	二進位加法				BCD 加法					
	位數	C_4	S_3	S_2	S_1	S_0	Y_4	Z_3	Z_2	Z_1	Z_0
	0		0	0	0	0		0	0	0	0
	1		0	0	0	1		0	0	0	1
	2		0	0	1	0		0	0	1	0
	3		0	0	1	1		0	0	1	1
	4		0	1	0	0		0	1	0	0
	5		0	1	0	1		0	1	0	1
	6		0	1	1	0		0	1	1	0
	7		0	1	1	1		0	1	1	1
	8		1	0	0	0		1	0	0	0
	9		1	0	0	1		1	0	0	1
c c 1	10		1	0	1	0	1	0	0	0	0
$S_3S_1=1$	11		1	0	1	1	1	0	0	0	1
Г	12		1	1	0	0	1	0	0	1	0
$S_3S_2=1$	13		1	1	0	1	1	0	0	1	1
$J_3J_2 - 1$	14		1	1	1	0	1	0	1	0	0
L	15		1	1	1	1	1	0	1	0	1
	16	1	0	0	0	0	1	0	1	1	0
C 1	17	1	0	0	0	1	1	0	1	1	1
$C_4 = 1$	18	1	0	0	1	0	1	1	0	0	0
	19	1	0	0	1	1	1	1	0	0	1

由表6-8 可知,當兩個BCD 碼相加時,若和大於9(即 $10_{(10)}$ ~ $15_{(10)}$)或和有進位(C_4 =1,即 $16_{(10)}$ ~ $19_{(10)}$)時,則和必須再加6(即 $0110_{(2)}$)進行修正。因此利用兩個四位元並加器配合加6的調整電路,即可組成BCD 加法器,其電路設計之方法說明如下:

- (一) 首先利用一個四位元的二進位並加器7483(主加法器)作兩BCD 數的相加,其相加的結果為 $C_4S_3S_2S_1S_0$ 。
- (二)必須設計一個「超9與進位鑑別電路」,當兩數相加之和 $S_3S_2S_1S_0$ 大於9或 C_4 有進位時,則超9與進位鑑別電路之輸出 $Y_4=1$,如表6-9所示。

▼表6-9 超9與進位鑑別電路

兩數相加	若和 $S_3S_2S_1S_0$ 大於 9 (即 $10_{(10)} \sim 15_{(10)}$)	若 C ₄ 有進位 (即 16 ₍₁₀₎ ~ 19 ₍₁₀₎)		
布林代數式	$F(S_3, S_2, S_1, S_0) = \Sigma(10, 11, 12, 13, 14, 15)$	$C_4 = 1$		
最簡布林代數式	$S_3 S_2$ 00 01 11 10 00 01 11 11 10 $S_3 S_2$ 10 1 1 1 $S_3 S_2$ 10 $S_3 S_2 S_3 S_3 S_4$ $S_3 S_4 S_5 S_5 S_5 S_5 S_5 S_5 S_5 S_5 S_5 S_5$	$C_4 = 1$		

所以「超9與進位鑑別電路」之輸出端最簡布林代數式為

$$Y_4 = S_3 S_1 + S_3 S_2 + C_4$$

(三) 如圖6-16 所示為BCD 加法器,當「超9 與進位鑑別電路」之輸出端 $Y_4=1$,此時和 $S_3S_2S_1S_0$ 必須經過校正加法器做加6 (即 $0110_{(2)}$) 的修正,所得的結果才是正確的BCD 碼,即進位為 Y_4 ,和為 $Z_3Z_2Z_1Z_0$ 。

>>> Digital Logic Design

6-3 二進碼十進數 (BCD) 加法器

例題 6-8 BCD 加法運算

如圖6-16 所示之BCD 加法器,若 $A_3A_2A_1A_0=0101(BCD)$, $B_3B_2B_1B_0=0111_{(BCD)}$,則其輸出端 Y_4 與總和 Z_3 、 Z_2 、 Z_1 、 Z_0 為多少?

1. 主加法器:

主加法器之輸出
$$C_4S_3S_2S_1S_0 = A_3A_2A_1A_0 + B_3B_2B_1B_0 + C_0$$

= $0101 + 0111 + 0$
= $01100 (和S_3S_2S_1S_0 > 9)$

所以「超9與進位鑑別電路」之輸出端 $Y_4 = S_3S_1 + S_3S_2 + C_4 = 1 \cdot 0 + 1 \cdot 1 + 0 = 1$

2. 校正加法器:

因
$$Y_4=1$$
,所以校正加法器之 $A_3A_2A_1A_0=0110$,而校正加法器之 $B_3B_2B_1B_0=\pm$ 加法器之 $S_3S_2S_1S_0=1100$,因此校正加法器執行加 6 (即 $0110_{(2)}$)的修正,所以校正加法器之輸出 $C_4Z_3Z_2Z_1Z_0=A_3A_2A_1A_0+B_3B_2B_1B_0+C_0=0110+1100+0=10010$,其中 $C_4=1$ 捨棄不用。 故 BCD 加法器的解答 $Y_4Z_3Z_2Z_1Z_0=10010$ 。 ∴ $S_{(10)}+7_{(10)}=0101_{(BCD)}+0111_{(BCD)}=1\ 0010_{(BCD)}$ 。

演練 8

執行 $9_{(10)} + 9_{(10)} = 1001_{(BCD)} + 1001_{(BCD)}$ 的BCD 加法運算,其結果為何?

6-4 解碼器及編碼器

通常數位電路是使用二進位數來處理資料,而人類卻習慣使用十進位數來表示資料,因此解碼器 (decoder) 正好可以將二進位轉換為十進位,方便人類閱讀;相反的,編碼器 (encoder) 可以將十進位轉換為二進位,方便數位電路處理,分別說明如下:一解碼器

解碼器(decoder)可以將二進位轉換為十進位,一般而言,n 位元的二進位數可以表示 2^n 種狀態,所以若解碼器有n 個輸入端,則其輸出端有m 個輸出,且 $m=2^n$,稱之為n 對m 之全解碼器(full decoder),例如二對四解碼器、三對八解碼器等。

6-4 解碼器及編碼器

若解碼器有n個輸入端,則其輸出端有m個輸出,且 $m < 2^n$,稱之為n對m之部分解碼器(partial decoder),例如BCD對十進位解碼器、BCD對7段顯示器之解碼器等。解碼器的符號如圖6-17所示。

▲ 圖 6-17 *n* 對 *m* 解碼器的符號

我們以二對四解碼器、三對八解碼器為例,來說明全解碼器的原理。

6-4 解碼器及編碼器

(一) 二對四解碼器

二對四解碼器可區分為高態動作與低態動作兩種。

1. 高態動作的二對四解碼器

高態動作的二對四解碼器,有2個輸入端,因為2²=4,所以有4個輸出端,其符號如圖6-18所示,高態動作的二對四解碼器之設計的步驟說明如下:

(1) 決定輸入與輸出變數的個數與名稱:

輸入變數2個: $B \cdot A$,其中B為最高有效位元。

輸出變數4個: $Y_0 \cdot Y_1 \cdot Y_2 \cdot Y_3$ 。

▲ 圖 6-18 二對四解碼器的符號

(2) 定義輸入與輸出變數:

無論輸入端 $B \setminus A$ 為何種狀態,每次只能有一個輸出端為1,其它皆為0。

(3) 依題意建立真值表,如表6-10 所示。

▼表6-10 二對四解碼器的真值表

輸	入		輸出							
(MSB)	(LSB) A	Y_{0}	Y_1	Y_2	Y_3					
0	0	1	0	0	0					
0	1	0	1	0	0					
1	0	0	0	1	0					
1	1	0	0	0	1					

(4) 依據表6-10 的真值表,寫出輸出端 $Y_0 \sim Y_3$ 的最簡SOP 布林代數式:

$$Y_0 = \overline{B}\overline{A}$$
 $Y_1 = \overline{B}A$ $Y_2 = B\overline{A}$ $Y_3 = BA$

所以高態動作的二對四解碼器有2個輸入變數,其輸出端可

以產生 $2^2 = 4$ 個標準積項(最小項)。

(5) 畫出組合邏輯電路圖:如圖6-19 所示。

(6) 具有致能(或閃控)控制

在解碼器中,通常包含一個或多個致能(enable;簡稱E)或 閃控(strobe; 簡稱G)控制輸入端,可以控制解碼器是否接受輸 入端的信號。致能控制有高態動作與低態動作兩種類型。如圖6-20 所示為具有高態動作致能控制的二對四解碼器,當輸入致能端 E=1 時,解碼器能正常解碼,其輸出端 $Y_0 \sim Y_3$ 則視輸入選擇 線 $B \setminus A$ 而決定何者為1;當輸入致能端E = 0 時,解碼器不能正 常解碼,無論輸入選擇線 $B \cdot A$ 為何種狀態,其輸出端 $Y_0 \sim Y_3$ 全 為0。通常二對四解碼器IC 的致能控制為低態動作,只要將圖6-20(a) 之輸入致能端E 接一個反閘即可。

▲ 圖 6-20 具有高態動作致能控制的二對四解碼器

2. 低態動作的二對四解碼器(具有致能控制)

一般常用的低態動作之二對四解碼器為74139,它除了具有2個輸入端與4個輸出端之外,還多了一個低態動作的致能控制輸入端 \overline{G} ,故符號與接腳圖中以小圓圈表示低態動作,如圖6-21所示。

▲ 圖 6-21 低態動作的二對四解碼器 74139 的符號與接腳

74139 的真值表如表6-11 所示,其工作原理說明如下:

- (1) 當輸入致能端G=0 時,74139 能正常解碼,其輸出端 $Y_0 \sim Y_3$ 則視輸入選擇線BA 而決定何者為0(低態動作),而且每次 只能有一個輸出端為0,其它輸出端皆為1。
- (2) 當輸入致能端 G=1 時,74139 不能正常解碼,無論輸入選擇線B、A為何種狀態(以X 表示),其輸出端 $\overline{Y}_0 \sim \overline{Y}_3$ 全為1

▼表 6-11 低態動作的二對四解碼器 74139 的真值表

	輸入										
致能	選擇線		選擇線		選擇線		_	_	_	_	説明
\overline{G}	(MSB)	(LSB) A	\overline{Y}_{0}	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	6,0,73				
	0	0	0	1	1	1					
0	0	1	1	0	1	1	正常解碼				
	1	0	1	1	0	1	工品 群				
	1	1	1	1	1	0					
1	×	×	1	1	1	1	輸出全為1				

(二) 三對八解碼器

三對八解碼器可區分為高態動作與低態 動作兩種。

1. 高態動作的三對八解碼器

高態動作的三對八解碼器,有3個輸入端,因為2³ = 8,所以有8個輸出端,其符號如圖6-22所示,高態動作的三對八解碼器之設計的步驟說明如下:

▲ 圖 6-22 三對八解碼器的符號

- (1) 決定輸入與輸出變數的個數與名稱:
 輸入變數3個: C、B、A,其中C為最高有效位元(MSB)。
 輸出變數8個: Y₀、Y₁、Y₂、...、Y₇。
- (2) 定義輸入與輸出變數:

無論輸入端 $C \cdot B \cdot A$ 為何種狀態,每次只能有一個輸出端為1,其他皆為0。

(3) 依題意建立真值表,如表6-12 所示。

▼表 6-12 高態動作的三對八解碼器之真值表

	輸入		輸出								
(MSB) C	В	(LSB) A	Y_{0}	Y_1	Y_2	Y_3	Y_4	Y_5	Y_6	Y_7	
0	0	0	1	0	0	0	0	0	0	0	
0	0	1	0	1	0	0	0	0	0	0	
0	1	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	1	0	0	0	0	
1	0	0	0	0	0	0	1	0	0	0	
1	0	1	0	0	0	0	0	1	0	0	
1	1	0	0	0	0	0	0	0	1	0	
1	1	1	0	0	0	0	0	0	0	1	

(4) 依據表6-12 的真值表,寫出輸出端 $Y_0 \sim Y_7$ 的最簡SOP 布林代數式:

$$Y_0 = \overline{CBA}$$
 $Y_1 = \overline{CB}A$ $Y_2 = \overline{CB}\overline{A}$ $Y_3 = \overline{CB}A$ $Y_4 = \overline{CB}\overline{A}$
 $Y_5 = \overline{CB}A$ $Y_6 = \overline{CB}\overline{A}$ $Y_7 = \overline{CB}A$

所以高態動作的三對八解碼器有3個輸入變數,其輸出端可以產生23 = 8個標準積項(最小項)。

(5) 畫出組合邏輯電路圖:如圖6-23 所示。

2. 低態動作的三對八解碼器(具有致能控制)

一般常用的低態動作之三對八解碼器為74138,它除了具有3個輸入端與3個輸出端之外,還多了一個高態動作的致能控制輸入端300月,以及二個低態動作的致能控制輸入端31月,以及二個低態動作的致能控制輸入端32月,其符號與接腳如圖31月,

▲ 圖 6-24 低態動作的三對八解碼器 74138 的符號與接腳

74138 的真值表如表6-13 所示,其工作原理說明如下:

- (1) 當輸入致能端 $G_1 = 1 \cdot \overline{G}_{2A} = 0$ 與 $\overline{G}_{2B} = 0$ 時,74138 才能正常解碼,其輸出端 $Y_0 \sim Y_7$ 則視輸入選擇線 CBA 而決定何者為0(低態動作),而且每次只能有一個輸出端為0,其它輸出端皆為1。
- (2) 當輸入致能端 $G_1 = 0$ 或 $\overline{G}_{2A} = 1$ 或 $\overline{G}_{2B} = 1$ 時,74138皆不能正常解碼,無論輸入選擇線 $C \setminus B \setminus A$ 為何種狀態(以 \times 表示),其輸出端 $\overline{Y}_0 \sim \overline{Y}_7$ 全為1。

▼表 6-13 低態動作的三對八解碼器 74138 的真值表

	輸入						輸出																			
	致能		選擇線			<u> </u>	- .	<u>-</u> .	_	<u>-</u> .	- .		_	説												
G_1	\overline{G}_{2A}	\overline{G}_{2B}	(MSB)	В	(LSB) A	\overline{Y}_0	\overline{Y}_1	\overline{Y}_2	\overline{Y}_3	\overline{Y}_4	\overline{Y}_5	\overline{Y}_6	\overline{Y}_7	明												
			0	0	0	0	1	1	1	1	1	1	1													
				0	0			0	0	1	1	0	1	1	1	1	1	1								
		0	0														0	1	0	1	1	0	1	1	1	1
1						0	1	1	1	1	1	0	1	1	1	1	正常解									
'	0					U	U	1	0	0	1	1	1	1	0	1	1	1	解							
					1	0	1	1	1	1	1	1	0	1	1	碼										
									1	1	0	1	1	1	1	1	1	0	1							
							1	1	1	1	1	1	1	1	1	1	0									
0	×	×												輸												
×	1	×	×	×	×	×	×	×	×	×	×	1	1	1	1	1	1	1	1	輸出高態						
×	×	1												態												

例題 6-9 解碼器設計布林函數 試利用:

- 1. 高態動作的三對八解碼器與邏輯閘
- 2. 低態動作的三對八解碼器(74138)與邏輯閘

分別設計函數 $F(C,B,A) = CBA + CBA + CBA + CBA = \Sigma(0,2,4,6)$ 。

解

1. 高態動作的三對八解碼器:將解碼器的輸出端 $Y_0 \times Y_2 \times Y_4 \times Y_6$ 以OR 閘連接起來,因為OR 閘只要有一個輸入端為1,其輸出端即為1,所以可得到 $F(C, B, A) = \Sigma(0, 2, 4, 6)$,如下圖所示。

如上圖所示,當輸入端CBA = 000時,解碼器的輸出端 $Y_0 = 1$,其它 Y_1 ~ Y_7 皆為 0,所以OR 閘的輸出端F 為1,其它以此類推。

2. 低態動作的三對八解碼器:將解碼器的輸出端 \overline{Y}_0 、 \overline{Y}_2 、 \overline{Y}_4 、 \overline{Y}_6 以NAND 閘連接起來,因為NAND閘只要有一個輸入端為0,其輸出端即為1,所以可得到 $F(C, B, A) = \Sigma(0, 2, 4, 6)$,如下圖所示。

如上圖所示,當輸入端 CBA=000 時,解碼器的輸出端 $\overline{Y}_0=0$,其它 $\overline{Y}_1\sim\overline{Y}_7$ 皆為1,所以NAND 閘的輸出端F 為1,其它以此類推。

因此只要將解碼器搭配適當的邏輯閘,即可以實現布林代數式,以完成組合邏輯電路的設計。

演練9

試利用:

- 1. 高態動作的三對八解碼器與邏輯閘
- 2. 低態動作的三對八解碼器 (74138) 與邏輯閘

分別設計一個全加器,其和 $S(C_i, B, A) = \Sigma(1, 2, 4, 7)$,其進位 $C_o(C_i, B, A) = \Sigma(1, 2, 4, 7)$,其

(三) BCD 對7 段顯示器的解碼器

我們以BCD 對7 段顯示器的解碼器為例,說明部分解碼器的原理。

1. 7 段顯示器

7 段顯示器是使用7 個線段來顯示十進位的數字0 ~ 9,其 結構與顯示字型如圖6-25 所示,通常在一般電路中是使用發光二 極體(LED)所製成的7 段顯示器,可分為共陽極(common anode) 與共陰極(common cathode)兩種。

(a) 符號

(b) 顯示字型

▲ 圖 6-25 7 段顯示器之結構與顯示字型

所謂共陽極7段顯示器是將內部所有LED的陽極全部都接在一起,成為一個共同點(common),如圖6-26(a)所示,而每個LED的陰極則分別接成 $a \cdot b \cdot c \cdot d \cdot e \cdot f \cdot g$ 等7個端點。當共同點(common)接正電壓 $+V_{CC}$ (相當於1)時,只要將 $a \sim g$ 段中任何一個端點接地(相當於0),則該段LED 會發亮(即接0 發亮

反之,共陰極7段顯示器是將內部所有LED的陰極全部都接在一起,成為一個共同點(common),如圖6-26(b)所示,而每個LED的陽極則分別接成 $a \cdot b \cdot c \cdot d \cdot e \cdot f \cdot g$ 等7個端點。當共同點(common)接地(相當於0)時,只要a \sim g 段中任何一個端點接正電壓 $+V_{CC}$ (相當於1),則該段LED 會發亮(即接1 發亮)。

(a) 共陽極 7 段顯示器之結構

(b) 共陰極 7 段顯示器之結構

2. BCD 對7 段顯示器的解碼器 - 7447

常用的BCD 對7 段顯示器之解碼器有兩種,一種為推動共陽極7段顯示器(低態動作),例如TTL IC 中的7446、7447、74246、74247等;另一種為推動共陰極7 段顯示器(高態動作),例如TTL IC 中的7448、7449、74248 等,以及CMOS IC 中的4511。

我們以7447 為例,說明BCD 對7 段顯示器的解碼器原理,其符號與接腳如圖6-27 所示。

▲ 圖 6-27 7447 符號與接腳

如表6-14 所示為7447 解碼器之真值表,由真值表可知,當7447 處於正常的解碼狀態下(即 LT=1,RBI=1,BI/RBO=1),若輸入端DCBA 為0000 時,則輸出端 abcdefg 為0000001,使七段顯示器顯示"0"字型;若輸入端DCBA 為0001 時,則輸出端 abcdefg 為1001111,使七段顯示器顯示"1"字型;其他以此類推,如圖6-28 所示為7447 所有顯示的字型。

>>> Digital Logic Design

6-4 解碼器及編碼器

▼ 表 6-14 7447 的真值表

十進制值與			輸	λ			BI / RBO				輸出				備註
控制功能	ĪT	RBI	D	C	В	A	BI / KBO	a	\bar{b}	- c	\bar{d}	- e	\bar{f}	g	押缸
0	H	H	L	L	L	L	H	L	L	L	L	L	L	H	顯示 0
1	H	×	L	L	L	H	H	H	L	L	H	H	H	H	顯示 1
2	H	×	L	L	H	L	H	L	L	H	L	L	H	L	顯示 2
3	H	×	L	L	H	H	H	L	L	L	L	H	H	L	顯示 3
4	H	×	L	H	L	L	H	H	L	L	H	H	L	L	顯示 4
5	H	×	L	H	L	H	H	L	H	L	L	H	L	L	顯示 5
6	H	×	L	H	H	L	H	H	H	L	L	L	L	L	顯示 6
7	H	×	L	H	H	H	H	L	L	L	H	H	H	H	顯示 7
8	H	×	H	L	L	L	H	L	L	L	L	L	L	L	顯示8
9	Н	×	H	L	L	H	H	L	L	L	H	H	L	L	顯示 9
10	H	×	H	L	H	L	H	H	H	H	L	L	H	L	
11	H	×	H	L	H	H	H	H	H	L	L	H	H	L	
12	H	×	H	H	L	L	H	H	L	H	H	H	L	L	
13	H	×	H	H	L	H	H	L	H	H	L	H	L	L	
14	H	×	H	H	H	L	H	H	H	H	L	L	L	L	
15	H	×	H	H	H	H	H	H	H	H	H	H	H	H	
BI / RBO	×	×	×	×	×	×	L	H	H	H	H	H	H	H	全暗
\overline{LT}	L	×	×	×	×	×	H	L	L	L	L	L	L	L	全亮
RBI	H	L	L	L	L	L	L	H	H	H	H	H	H	H	不顯示 0

在表6-14的真值表中,有 \overline{LT} 、 \overline{RBI} 與 \overline{BI} / \overline{RBO} 三個控制接腳,其中 \overline{BI} / \overline{RBO} 的優先權最高,其次為 \overline{LT} ,而 \overline{RBI} 的優先權最低,其接腳功能說明如下:

(1) $\overline{BI}/\overline{RBO}$: 遮沒輸入/ 漣波遮沒輸出 (blanking input / ripple blanking output) 控制端,此控制端同時具有輸入與輸出功能。若 $\overline{BI}/\overline{RBO}=1$,則當作輸入端使用,此時7447 進入完全遮沒狀態,不管 \overline{LT} 、 \overline{RBI} 或輸入端 DCBA 為何種狀態(以×表示),其輸出端 $\overline{abcdefg}$ 為1111111,使七段顯示器全不亮;反之,當 $\overline{BI}/\overline{RBO}=1$ 時,則7447 正常解碼。

- (2) \overline{LT} :燈泡測試(lamp test)輸入端。當 \overline{BI} / $\overline{RB0}$ = 1且 \overline{LT} = 0 時,不管 \overline{RBI} 或輸入端DCBA 為何種狀態(以×表示),7447 處於燈泡測試的情況,其輸出端 abcdefg 為0000000,使七段顯示器全亮,顯示"8"字型;反之,當 \overline{LT} = 1時,則7447 正常解碼。
- (3) \overline{RBI} : 連波遮沒輸入 (ripple blanking input) 控制端,又稱為零遮沒控制端。當 $\overline{LT}=1$ 、 $\overline{RBI}=0$ 且輸入端DCBA 為0000 時,7447 進入連波遮沒狀態,其輸出端 abcdefg 為1111111,使七段顯示器不顯示"0"字型,此時 $\overline{BI}/\overline{RB0}$ 可作為零遮沒輸出指示用,所以 $\overline{BI}/\overline{RB0}$ 輸出0,以傳遞給下一級7447 使用;反之,當 $\overline{RBI}=1$ 且輸入端DCBA 為0000時,則輸出端 abcdefg 為000001,使七段顯示器顯示"0"字型。

二 編碼器

編碼器(encoder)的功能與上一節所敘述的解碼器恰好相反 ,它是將人類熟悉的十進位轉換為適合電腦處理的二進位,所以 若編碼器有m個輸入端,則其輸出端有n個輸出,且 $m \le 2^n$,稱之

m對n編碼器的符號 圖 6-29

編碼器可以區分為基本型編碼器與優先編碼器等兩種類型。

(一) 基本型編碼器—四對二編碼器

我們以四對二編碼器為例,來說明基本型編碼器的原理。

四對二編碼器有4 個輸入端, 因為 $4=2^2$,所以有2 個輸出端,其符號如圖6-30 所示,四對二編碼器之設計的步驟說明如下

•

▲ 圖 6-30 四對二編碼器的符號

- 1. 決定輸入與輸出變數的個數與名稱:
- (1) 輸入變數4 個: $D_0 \cdot D_1 \cdot D_2 \cdot D_3 \circ$
- (2) 輸出變數2 個: $B \times A$,其中B 為最高有效位元。
- 2. 定義輸入與輸出變數,每次只能有一個輸入端為1,不能有其他種情況發生。 ▼表6-15 四對二編碼器的真值表
- 3. 依題意建立真值表, 如表6-15 所示。

		輸	出					
D_0	D_1	D_2	D_3	(MSB)	SB) (LSB) A			
1	0	0	0	0	0			
0	1	0	0	0	1			
0	0	1	0	1	0			
0	0	0	1	1	1			

4. 依據表6-15 的真值表,寫出輸出端B 與A 的最簡SOP 布林代數式:

$$B = D_2 + D_3$$
$$A = D_1 + D_3$$

5. 畫出組合邏輯電路圖:如圖6-31 所示。

(二) 優先編碼器

前面所介紹的基本型編碼器是高態動作,每次只能有一個輸入端為1,其輸出端才能得到正確的編碼,如果同時有多個輸入端為1時,則輸出端無法得到正確的編碼。為了解決類似的問題,我們必須定義每個輸入端的優先權,只要同時有多個輸入端為1時,會針對優先權較高的輸入端進行編碼,這就是優先編碼器。

在TTL IC 中,一般常用的優先編碼器有十對四的優先編碼器 74147 及八對三的優先編碼器 74148,我們以 74147 來說明優先編碼器的原理。

1. 優先編碼器(低態動作) - 74147

74147 的符號與接腳如圖6-32 所示,其輸入端與輸出端之小 圓圈代表低態動作,而74147 的真值表如表6-16 所示。

(a) 符號

(b)接腳

▲ 圖 6-32 74147 的符號與接腳

▼ 表 6-16 74147 的真值表

	輸入						輸出					
1	2	3	4	5	6	7	8	9	D	С	В	A
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
×	×	×	×	×	×	×	×	L	L	Н	Н	L
×	×	×	×	×	×	×	L	Н	L	Н	Н	Н
×	×	×	×	×	×	L	Н	Н	Н	L	L	L
×	×	×	×	×	L	Н	Н	Н	Н	L	L	Н
×	×	×	×	L	Н	Н	Н	Н	Н	L	Н	L
×	×	×	L	Н	Н	Н	Н	Н	Н	L	Н	Н
×	×	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
×	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

雖然74147 只有九個輸入端與四個輸出端,但是從真值表中可以看出它有十種輸入的狀態,所以是十對四的優先編碼器,其工作原理說明如下:

- (1) 74147 的輸入為1、2、···、9 號,當提出編碼要求時,其輸入為0(低態動作),所以從真值表中可以發現輸入9 號的優先權最高,而輸入1 號的優先權最低。
- (2) 當全部的輸入1 ~ 9 號皆為1 時,可以視同無任何輸入提出編碼要求,所以輸出DCBA 皆為高態1111。
- (3) 當輸入9 號提出編碼要求為0 時(低態動作),不管其它輸入為何種狀態(以x表示),輸出DCBA 編碼為0110。

- (4) 當輸入9 號為1 且輸入8 號提出編碼要求為0 時(低態動作),不管其它輸入為何種狀態(以x表示),輸出DCBA編碼為0111。
- (5) 其它以此類推。

2. 74147 的應用 - 十進位按鍵轉換為BCD 之優先編碼器

由於74147的輸出是採補數輸出(低態動作),故欲得到正確的二進位值,必須再加反閘以得到正確的BCD碼,如圖6-33所不為十進位按鍵轉換為BCD之優先編碼器。

假設開關 SW_7 與 SW_4 同時被按下(ON)時,由於輸入7號的優先權較高,所以編碼器74147的輸出DCBA編碼為1000,經過反閘之後的輸出WXYZ為0111 $_{(BCD)}$ (即7 $_{(10)}$);假設只有開關 SW_0 被按下(ON)時,全部的輸入1~9號皆為1,所以編碼器74147的輸出DCBA編碼為1111,經過反閘之後的輸出WXYZ為0000 $_{(BCD)}$ (即0 $_{(10)}$)。

>>> Digital Logic Design

6-4 解碼器及編碼器

▲ 圖 6-33 十進位按鍵轉換為 BCD 之優先編碼器

例題 6-10 74147 優先編碼器

如圖6-33 所示為十進位按鍵轉換為BCD之優先編碼器,當開關 SW_5 與 SW_2 同時被按下 (ON) 時,其輸出WXYZ 為多少?解假設開關 SW_5 與 SW_2 同時被按下 (ON) 時,由於輸入5 號的優先權較高,所以編碼器74147 的輸出DCBA 編碼為1010,經過反閘之後的輸出WXYZ 為0101(BCD) (即 $5_{(10)}$)。

演練 10

如圖6-33 所示為十進位按鍵轉換為BCD 之優先編碼器,當開關 SW_8 與 SW_3 同時被按下(ON) 時,其輸出WXYZ 為多少?

多工器(multiplexer;簡稱MUX)又稱為資料選擇器(data selector),顧名思義,它能從多個輸入端中,選擇其中一個輸入端信號來輸出;而解多工器(demultiplexer;簡稱DEMUX)的功能與多工器恰好相反,它能將唯一的輸入端信號傳送給多個輸出端中的其中一個,故解多工器又稱為資料分配器(data distributer)。

一多工器

多工器能從多個輸入端中,選擇其中一個輸入端信號來輸出,因此多工器若有2ⁿ個輸入端,就必須有n條選擇線才能選擇其中一個輸入信號來輸出,例如一個16對1的多工器,因為16=2⁴,所以須有4條選擇線。因此一個多工器具有2ⁿ個輸入端、n條選擇及一個輸出端,其符號與等效開闢圖如圖6-34所示。

(b) 等效開關

▲ 圖 6-34 多工器的符號與等效開關

多工器的應用很廣泛,例如家中音響的音源輸入選擇開關,可以選擇雷射唱片、廣播電台或電視機等多個音源信號中的其中一個信號,輸出到放大器。我們以四對一多工器為例,來說明多工器的原理。

(一) 四對一多工器

四對一多工器具有4個輸入端,因為4= 2²,所以需要2條選擇線及1個輸出端,其 符號如圖6-35所示,四對一多工器設計的 步驟說明如下:

▲ 圖 6-35 四對一多工器的符號

- 1. 決定輸入與輸出變數的個數與名稱:
- (1) 輸入變數4 個: $I_0 \cdot I_1 \cdot I_2 \cdot I_3 \circ$
- (2) 選擇線2 個: $S_1 \times S_0$, 其中 S_1 為最高有效位元。
- (3) 輸出變數1 個: Y。

- 2. 定義輸入與輸出變數:
- (1) 當選擇線 $S_1S_0=00$ 時,多工器的輸出端 $Y=I_0$ 。
- (2) 當選擇線 $S_1S_0 = 01$ 時,多工器的輸出端 $I = I_1$,其他以此類推。

- 3. 依題意建立真值表,如表6-17 所示。
- 4. 依據表6-17 的真值表,寫出輸出端I 的最簡SOP 布林代數式: $Y = \overline{S_1S_0I_0} + \overline{S_1S_0I_1} + S_1\overline{S_0I_2} + S_1S_0I_3$
- 5. 畫出組合邏輯電路圖:如圖6-36 所示。

▼表 6-17 四對一多工器的真值表

選擇	睪線	輸出	説明	
S_1 S_0		Y	武功	
0	0	I_0	$Y=I_0$	
0	1	I_1	$Y=I_1$	
1	0	I_2	$Y=I_2$	
1	1	I_3	$Y=I_3$	

▲ 圖 6-36 四對一多工器的邏輯電路圖

(二) 具有閃控(或致能)控制的四對一多工器

大部分的多工器與解碼器相同,都具有閃控(strobe)或致 能 (enble) 控制輸入端,以控制多工器是否接受輸入端的信號。 閃控控制有高態動作與低態動作兩種類型,如圖6-37 所示為具有 低態動作閃控控制的四對一多工器,當輸入閃控端G=0時,多 工器才能依輸入選擇線 S₁ S₀ 選擇多個輸入端中一個輸入端信號來 輸出;反之,當輸入閃控端G=1時,多工器無論輸入選擇線 S_1S_0 為何種狀態(0或1),其輸出端I皆為0。其輸出端I的最簡布 林代數式為

$$Y = \overline{GS_1S_0}I_0 + \overline{GS_1S_0}I_1 + \overline{GS_1S_0}I_2 + \overline{GS_1S_0}I_3$$

▲ 圖 6-37 具有低態動作閃控控制的四對一多工器

二 解多工器

解多工器能將唯一的輸入端信號傳送給多個輸出端中的其中一個,因此解多工器若有2n個輸出端,則必須有n條選擇線才能將唯一的輸入信號傳輸給其中一個輸出端,所以解多工器具有一個輸入端、n條選擇線及2n個輸出端,其符號與等效開關圖如圖6-38所示。

▲ 圖 6-38 解多工器的符號與等效開關

我們以一對四解多工器為例,來說明解多工器 的原理。

(一)一對四解多工器

一對四解多工器具有1個輸入端、4個輸出端 ,因為 $4 = 2^2$,所以需要2條選擇線,其符號如圖6 - 1

39 所示,一對四解多工器設計的步驟說明如下:

- 1. 決定輸入與輸出變數的個數與名稱:
- (1) 輸入變數1個:I。
- (2) 輸入選擇線2條: $S_1 \setminus S_0$,其中 S_1 為最高有效位 元。

- 2. 定義輸入與輸出變數:
- (1) 當選擇線 $S_1S_0 = 00$ 時,解多工器的輸出端 $Y_0 = I$,其它輸出端皆為0。
- (2) 當選擇線 $S_1S_0 = 01$ 時,解多工器的輸出端 $Y_1 = I$,其它輸出端皆為0,其他以此類推。
- 3. 依題意建立真值表,如表6-18 所示。

>>> Digital Logic Design

6-5 多工器及解多工器

▼表 6-18 一對四解多工器的真值表

選擇	睪線		≐兴□日			
S_1	S_0	Y_{0}	Y_1	Y_2	Y_3	説明
0	0	I	0	0	0	$Y_0 = I$
0	1	0	I	0	0	$Y_1 = I$
1	0	0	0	I	0	$Y_2 = I$
1	1	0	0	0	I	$Y_3 = I$

4. 依據表6-18 的真值表,寫出輸出端 $Y_0 \sim Y_3$ 的最簡SOP 布林代數式: $Y_0 = \overline{S_1} \overline{S_0} I$

$$Y_1 = \overline{S}_1 S_0 I$$

$$Y_2 = S_1 \overline{S}_0 I$$

$$Y_3 = S_1 S_0 I$$

5. 畫出組合邏輯電路圖:如圖6-40 所示。

(二) 以解碼器完成解多工器

解多工器亦可由具有致能控制的解碼器來完成,如圖6-20 所示電路,只要將解碼器的輸入致能端E 當成解多工器的資料輸入端I,將B、A 當成輸入選擇線 S_1S_0 ,而 $Y_0 \sim Y_3$ 為4 個輸出端,其電路功能就是一對四解多工器了。

所以低態動作的三對八解碼器 74138 也可以當成一對八解多工器使用,只要將解碼器的輸入致能端 G_{2A} 當成解多工器的資料輸入端I,且 $G_1=1$ 、 $G_{2B}=0$,將C、B、A 當成輸入選擇線 $S_2S_1S_0$,而 Y_0 ~ Y_7 為8 個輸出端,其電路功能就是一對八解多工器了。

在日常生活中,我們常將十進位數做數值大小的比較,在數位電路中,我們也需將二進位數做比較,以決定驅動電路是否運作。例如除濕機的濕度感測器偵測到目前的濕度高於設定數值時,除濕機便開始運轉,使濕度下降,當濕度感測器偵測到目前的濕度低於設定數值時,除濕機便停止運轉。此時就需使用比較器、個於設定數值時,除濕機便停止運轉。此時就需使用比較器不比較器、二位元比較器為例,來說明比較器的原理。

- 一 一位元比較器
- 一位元比較器有2個輸入端、3個輸出端,其符號如圖6-41所示,一位元比較器設計的步驟說明如下:

- (一) 決定輸入與輸出變數的個數與名稱:
- 1. 輸入變數2個: *A*、*B*。
- 2. 輸出變數3個: $F_{A>B}$ 、 $F_{A=B}$ 、 $F_{A<B}$ 。

▲ 圖 6-41 一位元比較器的符號

(二) 定義輸入與輸出變數:

- 1. 當輸入端A > B 時,輸出端 $F_{A>B} = 1$,其它 $F_{A=B} \cdot F_{A<B}$ 皆為0。
- 2. 當輸入端A = B 時,輸出端 $F_{A=B} = 1$,其它 $F_{A>B} \cdot F_{A<B}$ 皆為0。
- 3. 當輸入端A < B 時,輸出端 $F_{A < B} = 1$,其它 $F_{A > B} \land F_{A = B}$ 皆為0。
- (三)依題意建立真值表,如表6-19所示。

▼表6-19 一位元比較器的真值表

輸	入	輸出			
A	В	$F_{A>B}$	$F_{A=B}$	$F_{A < B}$	
0	0	0	1	0	
0	1	0	0	1	
1	0	1	0	0	
1	1	0	1	0	

>>> Digital Logic Design

6-6 比較器

(四) 依據表6-19 的真值表,寫出輸出端 $F_{A>B}$ 、 $F_{A=B}$ 、 $F_{A<B}$ 的最簡 SOP 布林代數式:

$$\begin{split} F_{A>B} &= AB \\ F_{A=B} &= \overline{AB} + AB = \overline{A \oplus B} = A \odot B \\ F_{A$$

(五) 畫出組合邏輯電路圖:如圖6-42 所示。

▲ 圖 6-42 一位元比較器的邏輯電路圖

二 二位元比較器

二位元比較器與一位元比較器類似,只是由最高有效位元開始,逐次比較各位元之大小。二位元比較器有4個輸入端、3個輸出端,其符號如圖6-43所示,二位元比較器設計的步驟說明如下:

▲ 圖 6-43 二位元比較器的符號

- (一) 決定輸入與輸出變數的個數與名稱:
- 1. 輸入變數4 個: $A_1A_0 \cdot B_1B_0$, 其中 $A_1 \cdot B_1$ 為最高有效位元。
- 2. 輸出變數3個: $F_{A>B}$ 、 $F_{A=B}$ 、 $F_{A<B}$ 。
- (二) 定義輸入與輸出變數:
- 1. A > B 的情況有下列二種,其中任何一種皆可:

當輸入端 $A_1 > B_1$ 時,或 $A_1 = B_1$ 且 $A_0 > B_0$ 時,輸出端 $F_{A > B} = 1$

,其它 $F_{A=B}$ 、 $F_{A<B}$ 皆為0。所以輸出端 $F_{A>B}$ 的布林代數式為

$$F_{A>B} = A_1 \overline{B}_1 + (\overline{A_1 \oplus B_1}) \cdot A_0 \overline{B}_0$$

2.A = B 的情況只有一種:

當輸入端 $A_1 = B_1$ 且 $A_0 = B_0$ 時,輸出端 $F_{A=B} = 1$,其它 $F_{A>B}$ 、 $F_{A<B}$ 皆為0。所以輸出端 $F_{A=B}$ 的布林代數式為

$$F_{A=B} = (\overline{A_1 \oplus B_1}) \cdot (\overline{A_0 \oplus B_0})$$

3. A < B 的情況有下列二種,其中任何一種皆可:

當輸入端 $A_1 < B_1$ 時,或 $A_1 = B_1$ 且 $A_0 < B_0$ 時,輸出端 $F_{A < B} = 1$,其它 $F_{A > B}$ 、 $F_{A = B}$ 皆為0。所以輸出端 $F_{A < B}$ 的布林代數式為

$$F_{A < B} = A_1 \overline{B}_1 + (\overline{A_1 \oplus B_1}) \cdot A_0 \overline{B}_0$$

(三) 畫出組合邏輯電路圖:如圖6-44 所示。

多工器除了具有資料選擇的功能之外,亦可以實現布林代數 式完成組合邏輯電路,所以可以減少邏輯閘使用的數量與降低電 路的複雜度,達到電路簡化的目的。

一 多工器電路的分析

一般來說,一個2ⁿ 對1 的多工器,具有n 條選擇線,所以可以完成n+1 個輸入變數的布林代數式。例如4 對1 的多工器,因為4 = 2²,所以具有2 條資料選擇線,可以表示2 個輸入變數,另外1 個輸入變數接至多工器的輸入端,所以可以完成3 個輸入變數的布林代數式。若要寫出多工器輸出端的布林代數式,其電路分析的步驟如下:

- (一) 寫出多工器的真值表。
- (二) 依據真值表寫出輸出端的布林代數式。

例題 6-11 多工器電路的分析 如右圖所示,寫出多工器輸出端F(A, B, C)的布林代數式。

解

1. 寫出多工器的真值表:

選掛	睪線	輸			
S_1 S_0			積項		
A	В	Y			
0	0	I_0	1	\overline{AB} · 1	
0	1	I_1	0	$\overline{A}B \cdot 0$	
1	0	I_2	С	$A\overline{B} \cdot C$	
1	1	I_3	\overline{C}	$AB \cdot \overline{C}$	

2. 依據真值表,寫出輸出端F的布林代數式為

$$F(A,B,C) = \overline{AB} \cdot 1 + \overline{AB} \cdot 0 + A\overline{BC} + AB\overline{C}$$
$$= \overline{AB} + A\overline{BC} + AB\overline{C}$$
$$= \overline{ABC} + \overline{ABC} + AB\overline{C}$$
$$= \Sigma(0,1,5,6)$$

演練 11

如右圖所示,寫出多工器輸出端F(A, B, C)的布林代數式。

二 以多工器實現布林代數式

若布林代數式有II 個輸入變數,則以多工器實現布林代數式的方法有下列兩種:

(一)使用2n 對1 多工器

布林代數式有n個輸入變數,可將n個輸入變數直接接至多工器的資料選擇線,所以使用 2^n 對1多工器。例如布林代數式有3個輸入變數,可將3個輸入變數直接接至多工器的資料選擇線,因為 $2^3 = 8$,所以使用8對1多工器。舉例說明布林代數式 $F(A, B, C) = \Sigma(1, 2, 5, 7)$,使用 2^3 對1多工器完成組合邏輯電路設計步驟。

1. 寫出布林代數式 $F(A, B, C) = \Sigma(1, 2, 5, 7)$ 之真值表 $F(A, B, C) = \Sigma(1, 2, 5, 7)$ 之真值表,如表6-20 所示。

2. 將n個輸入變數接至多工器的資料選擇線

將布林代數式的3個輸入變數 $A \cdot B \cdot C$,依序接至8對1多工器的資料選擇線 $S_2 \cdot S_1 \cdot S_0$,如圖6-45所示。

▼ 表 6-20 $F(A, B, C) = \Sigma(1, 2, 5, 7)$ 之真值表

	輸出		
A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

▲ 圖 6-45 多工器組合邏輯電路

3. 依據真值表,決定多工器輸入端的資料

依據表 6-20 之真值表,決定多工器 $I_0 \sim I_7$ 輸入端的資料為0 (接地)或 $1(+V_{CC})$,如圖6-45 所示。當多工器的選擇線 $S_2S_1S_0=ABC=000$ 時,多工器的輸出端 $F=I_0=0$;當多工器的選擇線 $S_2S_1S_0=ABC=001$ 時,多工器的輸出端 $F=I_1=1$;其它以此類推,如此即可完成布林代數式 $F(A,B,C)=\Sigma(1,2,5,7)$ 之多工器組合邏輯電路。

(二)使用 2^{n-1} 對1多工器

若要以 2^{n-1} 對一多工器實現布林代數式,則將其中一個輸入變數當作資料輸入,再將其他輸入變數接至多工器的資料選擇線。舉例說明布林代數式 $F(A,B,C)=\Sigma(1,2,5,7)$,使用 2^{3-1} 對1多工器組合邏輯電路設計步驟。

1. 若布林代數式有n個輸入變數,則使用2n-1對1多工器

若布林代數式有 n 個輸入變數,則將其中一個輸入變數當作資料輸入,再將其他的n-1 個輸入變數接至多工器的資料選擇線,所以使用2n-1 對1 多工器。例如布林代數式有3 個輸入變數A、B、C,選擇其中一個輸入變數當作資料輸入,再將其他的2 個輸入變數接至多工器的資料選擇線,因為22=4,所以使用4 對1 多工

2. 任選其中一個輸入變數當作資料輸入,再將其他的n - 1 個輸入變數接至多工器的資料選擇線

例如布林代數式有3 個輸入變數 $A \cdot B \cdot C$,選擇其中一個輸入變數A 當作資料輸入,再將其他的輸入變數 $B \cdot C$ 接至多工器的資料選擇線,如圖6-46 所示。

3. 寫出執行表,並將布林代數式的最小項所對應的數字圈選起來,以決定輸入端的資料

執行表類似卡諾圖,其差別是變數依序為連續的二進位數值而非格雷碼。例如布林代數式有3個輸入變數 $A \cdot B \cdot C$,則必須畫出 $2^3 = 8$ 個方格,每一個方格代表一個標準積項(或最小項),如圖6-47 所示為常用的3 變數執行表(配合圖6-46)。

如圖6-47 所示,若以A 當多工器的資料輸入,而BC 接多工器的資料選擇線 S_1S_0 ,BC 兩變數依序為連續的二進位數 $00 \cdot 01 \cdot 10$ 、11 ,其中0號方格表示輸入變數 ABC 為 $000_{(2)}$,即標準積項(或最小項) $\overline{ABC} = m_0$,其它以此類推。首先將布林代數式的最小項所對應的數字 $1 \cdot 2 \cdot 5 \cdot 7$ 圈選起來,再由下列方法決定輸入端的資料是 $0 \cdot 1 \cdot A$ 或 \overline{A} 。

- (1) 當選擇線 $S_1S_0 = BC = 00$ 時,多工器的輸出端 $F = I_0$,因0 與4 號皆未圈選,故 $I_0 = 0$ 。
- (2) 當選擇線 $S_1S_0 = BC = 01$ 時,多工器的輸出端 $F = I_1$,因1 與5 號皆被圈選,故 $I_1 = 1$ 。

- (3) 當選擇線 $S_1S_0 = BC = 10$ 時,多工器的輸出端 $F = I_2$,因2 號被圈選,故 $I_2 = \overline{A}$ 。
- (4) 當選擇線 $S_1S_0 = BC = 11$ 時,多工器的輸出端 $F = I_3$,因7 號被圈選,故 $I_3 = A$ 。

4. 畫出多工器組合邏輯電路圖,如圖6-48 所示。

▲ 圖 6-47 執行表

▲ 圖 6-48 多工器組合邏輯電路

例題 6-12 利用多工器實現布林代數式 利用多工器實現布林代數式 $F(A, B, C) = \Sigma(0, 3, 6, 7)$ 解

- 1. 若布林代數式有3個輸入變數,則選擇線為2條,使用4對1多工器。
- 2. 選擇其中一個輸入變數A 當作資料輸入,再將其他的2 個輸入變數BC 接至多工器的資料選擇線 S_1S_0 。

>>> Digital Logic Design

6-7 應用實例的認識-多工器的應用

3. 寫出執行表,並將布林代數式的最小項所對應的數字圈選起來,以決定輸入端的資料。 資料選擇線

4. 畫出多工器組合邏輯電路圖。

演練 12

利用多工器實現布林代數式 $F(A, B, C) = \Sigma(0, 3, 6, 7)$,以C 當多工器的資料輸入,其他輸入變數AB 接至多工器的資料選擇線 S_1S_0 。