Projeto Final do Módulo: Linguagem R

true

1. Tarefas do projeto final

O projeto final do módulo "Linguagem R" determina que seja criado um dataset com pelo menos 5 colunas numéricas e 3 colunas categóricas, através do uso de funções de criação de distribuições aleatórias.

Depois que o dataset for criado ele será gravado em disco e algumas tarefas básicas de análise de dados devem ser realizadas:

- 1. Calcular somas e médias através do uso das funções apply, lapply, sapply, etc.
- 2. Usar a função split
- 3. Criar gráficos simples
- 4. Colocar o projeto no GitHub

Nenhuma outra especificação a respeito de como deve ser o dataset foi fornecida então o que vale aqui é a criatividade na definição das variáveis do dataset e a demonstração de que o aluno aprendeu pelo menos o básio da linguagem R.

2. Conteúdo do meu dataset fictício

Parece claro para mim que a primeira coisa é definir o assunto (o *subject*) do dataset para depois definir quais seriam as variáveis (colunas) a serem simuladas. Assim, defini que meu dataset fictício se trata de uma *pesquisa a respeito de obesidade* em adultos jovens na qual foram coletados dados antropométricos, demográficos e de alguns fatores de risco.

As variáveis coletadas estão detalhadas na tabela abaixo (incluindo o tipo da variável, sua representação em R e outras informações importantes):

Variável	Observações	Tipo	Representação no R
idade	Em anos completos	Dimensional de razão, discreta	Numeric
altura	Em metros (m)	Dimensional de razão, contínua	Numeric
peso	Em quilo (Kg)	Dimensional de razão, contínua	Numeric
imc	peso/altura ²	Índice dimensional de razão, contínuo	Numeric
sexo	1 = Masculino 2 =	Nominal	Unordered Factor
	Feminino		
escolaridade	$0 = Analfabeto 1 = 1^{o}$	Ordinal	Ordered Factor
	grau completo $2 = 2^{\circ}$		
	grau completo $3 = 3^{\circ}$		
	grau completo $4 =$		
	mestrado 5 = doutorado 6		
	= pós-doutorado		
profissao	1 = Humanas 2 = Exatas	Nominal	Unordered Factor
	3 = Biológicas		
fumante	$0 = N\tilde{a}o 1 = Sim$	Binária	Ordered Factor
salario	Em reais (R\$)	Dimensional de razão, contínua	Numeric
carros	Número de carros	Dimensional de razão, discreta	Numeric
filhos	Número de filhos	Dimensional de razão, discreta	Numeric

3. Simulação das variáveis do dataset

Arbitrariamente decidi que o dataset conteria informações simuladas de 10.000 observações, retiradas aleatoriamente por algum processo de amostragem a partir de uma população de 100.000 indivídos. Esses parâmetros são definidos abaixo:

```
n <- 10000
p <- 100000
```

3.1. Variáveis dimensionais

3.1.1. Idade

A variável idade (em anos completos) foi simulada a partir de uma distrituição normal, com o uso da função rnorm ajustada para uma média de idade de 37 anos com desvio padrão de 7 anos. Para evitar quaisquer números negativos foi utilizada a função abs e para manter a idade em anos completos o resultado foi arredondado para zero casas decimais com a função round. A função set.seed foi utilizada para tornar os resultados reprodutíveis.

```
set.seed(1234)
idade <- abs(round(rnorm(n, 35, 7),0))</pre>
summary(idade)
##
      Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                 Max.
##
     11.00
             30.00
                      35.00
                               35.04
                                        40.00
                                                60.00
hist(idade,
     main = "Histograma da idade",
     ylab = "Freqüência",
     xlab = "Idade (em anos completos)")
```

Histograma da idade

A simulação acima atingiu o objetivo de manter a média em 37 anos, mas o range de dados foi um pouco maior do que eu gostaria, de 11 a 60 anos, mas não comprometerá a simulação.

3.1.2. Altura

A altura (em metros) seguiu a mesma lógica da simulação da idade, utilizando-se uma distribuição normal com média 1,50 m e desvio padrão de 0,2 m. Entretanto, como a altura é uma variável dimensional de razão e contínua, utilizei duas casas decimais na simulação:

```
set.seed(1234)
altura <- abs(round(rnorm(n, 1.50, 0.1), 2))
summary(altura)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
             1.430
##
     1.160
                      1.500
                              1.501
                                       1.570
                                               1.860
hist(altura,
     main = "Histograma da altura",
     ylab = "Freqüência",
     xlab = "Altura (em metros)")
```

Histograma da altura

3.1.3. Peso

A variável peso (em Kg) seguiu a mesma lógica de simulação da altura, mas com média de 55 Kg e desvio padrão de 4 Kg (com duas casas decimais):

```
set.seed(1234)
peso <- abs(round(rnorm(n, 55, 4), 2))
summary(peso)</pre>
```

```
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
     41.42
##
             52.36
                     55.02
                              55.02
                                      57.68
                                              69.47
hist(peso,
     main = "Histograma do peso",
     ylab = "Freqüência",
     xlab = "Peso (em Kg)")
```

Histograma do peso

3.1.4. Índice de massa corpórea

O cálculo do índice de massa corpórea (IMC) foi feito utiliando-se os dados já simulados do peso e da altura, utilizando-se a fórmula padrão: peso/(altura)² (os dados foram arredondados para 2 casas decimais)

```
imc <- round(peso/altura^2, 2)</pre>
summary(imc)
##
      Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                  Max.
##
     20.01
              23.49
                      24.44
                               24.52
                                        25.46
                                                 30.78
hist(imc,
     main = "Histograma do IMC",
     ylab = "Freqüência",
     xlab = "IMC")
```

Histograma do IMC

3.1.5. Salário

A variável salário (em reais) também foi simulada através de uma distribuição normal:

```
set.seed(1234)
salario <- abs(round(rnorm(n, 3000, 400), 2))</pre>
summary(salario)
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
      1642
              2736
                       3002
                               3002
                                        3268
                                                4447
hist(salario,
     main = "Histograma do salário mensal",
     ylab = "Freqüência",
     xlab = "Salário mensal (em R$)")
```

Histograma do salário mensal

3.1.6. Carros

A variável número de carros foi simulada através de uma amostragem de valores de uma população de números (de 0 a 3). A população de valores foi criada com a função rep e a amostra foi retirada com a função sample.

```
pop.carros \leftarrow rep(c(0,1,2,3), p)
set.seed(1234)
carros <- sample(pop.carros, n)</pre>
rm(pop.carros)
summary(carros)
##
      Min. 1st Qu.
                      Median
                                 Mean 3rd Qu.
                                                   Max.
     0.000
              0.000
                                         2.000
##
                       1.000
                                1.492
                                                  3.000
table(carros)
## carros
##
      0
                  2
                       3
            1
## 2513 2512 2512 2463
```

3.1.7. Filhos

A variável número de filhos foi simulada com a mesma estratégia utilizada para simular o número de carros (uso das funções rep e sample):

```
pop.filhos <- rep(c(0, 1, 2), p)
set.seed(1234)
filhos <- sample(pop.filhos, n)</pre>
```

```
rm(pop.filhos)
summary(filhos)
                     Median
##
      Min. 1st Qu.
                                Mean 3rd Qu.
                                                 Max.
##
     0.000
             0.000
                      1.000
                               1.002
                                                2.000
                                        2.000
table(filhos)
## filhos
##
      0
           1
## 3331 3314 3355
```

3.2. Variáveis ordinais e binárias

pop.escolaridade $\leftarrow rep(c(0, 1, 2, 3, 4, 5, 6), p)$

3.2.1. Escolaridade

A variável escolaridade segue uma escala ordinal, do analfabeto até o pós-doutorado, e será representada no R por um fator ordenado. A estratégia de simulação adotada será o uso da função rep para criar uma população de números variando entre 0 a 6 (0 = analfabeto, 6 = pós-doutorado) e da função sample para selecionar uma amostra dessa população. Depois será criado um fator com a função factor, utiliando os labels adequados para cada level dos fatores:

```
set.seed(1234)
escolaridade.temp <- sample(pop.escolaridade, n)</pre>
escolaridade <- factor(escolaridade.temp,</pre>
                        levels = c(0, 1, 2, 3, 4, 5, 6),
                        labels = c("Analfabeto", "1º Grau", "2º Grau", "3º Grau",
                                    "Mestrado", "Doutorado", "PósDoc"),
                        ordered = TRUE
rm(pop.escolaridade, escolaridade.temp)
str(escolaridade)
## Ord.factor w/ 7 levels "Analfabeto"<"1^{\circ} Grau"<...: 3 6 3 5 1 5 4 6 5 4 ...
summary(escolaridade)
                  1º Grau
                              2º Grau
                                         3º Grau
## Analfabeto
                                                    Mestrado Doutorado
##
         1459
                     1449
                                 1399
                                             1376
                                                         1398
                                                                    1438
##
       PósDoc
##
         1481
table(escolaridade)
## escolaridade
## Analfabeto
                  1º Grau
                              2º Grau
                                         3º Grau
                                                    Mestrado
                                                              Doutorado
##
         1459
                                 1399
                     1449
                                             1376
                                                         1398
                                                                    1438
##
       PósDoc
##
         1481
```

3.2.2. Fumante

A variável fumante (binária) foi simulada através do uso de uma distribuição binomial para obter uma proprção de fumantes de aproximadamente 34% com o uso da função rbinom.

Notar que decidi usar um fator ordenado para a variável fumante já que uma variável binária como essa é, na verdade, um subconjunto de uma variável ordinal maior. A variável criada foi chamada de fumante.f (f de fator).

Notar também que mantive no dataset a variável fumante.n, que é a versão numérica da variável.

3.3. Variáveis nominais

3.3.1. Sexo

A variável sexo foi simulada com o uso das funções rep e sample e depois transformada em um fator não ordenado:

3.3.3. Profissão

A variável profissão foi simulada com a mesma estratégia da variável sexo e depois transformada em um fator não ordenado:

```
pop.profissao <- rep(0:2, p)</pre>
set.seed(1234)
profissao.temp <- sample(pop.profissao, n)</pre>
profissao <- factor(profissao.temp,</pre>
                     levels = c(0, 1, 2),
                     labels = c("Humanas", "Exatas", "Biológicas"),
                     ordered = FALSE
rm(pop.profissao, profissao.temp)
str(profissao)
## Factor w/ 3 levels "Humanas", "Exatas", ...: 2 3 1 1 2 3 2 2 2 2 ...
summary(profissao)
##
      Humanas
                   Exatas Biológicas
##
         3331
                     3314
                                 3355
```

4. Criação do dataset

Com todas as variáveis já simuladas, para criar o dataset utilizamos a função data.frame para combinar todas as variáveis em um data frame do R. Também incluí aqui uma variável ID para identificar cada observação:

```
## 'data.frame':
                   10000 obs. of 13 variables:
##
   $ id
                 : int 1 2 3 4 5 6 7 8 9 10 ...
##
                 : num 27 37 43 19 38 39 31 31 31 29 ...
  $ idade
##
  $ altura
                 : num 1.38 1.53 1.61 1.27 1.54 1.55 1.44 1.45 1.44 1.41 ...
                 : num 50.2 56.1 59.3 45.6 56.7 ...
##
   $ peso
##
   $ imc
                 : num 26.3 24 22.9 28.3 23.9 ...
## $ sexo
                 : Factor w/ 2 levels "M", "F": 1 2 2 1 2 1 2 1 2 2 ...
## $ escolaridade: Ord.factor w/ 7 levels "Analfabeto"<"1º Grau"<..: 3 6 3 5 1 5 4 6 5 4 ...
                 : Factor w/ 3 levels "Humanas", "Exatas", ...: 2 3 1 1 2 3 2 2 2 2 ....
## $ profissao
## $ fumante.f
                 : Ord.factor w/ 2 levels "não"<"sim": 1 1 1 1 2 1 1 1 2 1 ...
## $ fumante.n
                 : int 0000100010...
## $ salario
                 : num
                        2517 3111 3434 2062 3172 ...
                 : num 1 3 0 1 2 1 2 2 0 3 ...
##
   $ carros
## $ filhos
                 : num 1 2 0 0 1 2 1 1 1 1 ...
```

Agora que o dataset está criado, vamos salvar em um diretório específico, usando as funções setwd e write.table:

```
setwd("~/repositoriosGit/ApoemaTraining/abrantesasf/projeto01")
write.table(df, file = "projeto01.csv", sep = ",", col.names = TRUE, fileEncoding = "UTF-8")
```

5. Uso de algumas funções com o dataset

Vamos calcular o sumário de todas as variáveis dimensionais:

```
sapply(df[,c("idade", "altura", "peso", "imc", "salario", "carros", "filhos")],
       summary)
##
           idade altura peso
                                 imc salario carros filhos
## Min.
           11.00 1.160 41.42 20.01
                                        1642 0.000 0.000
                                        2736 0.000 0.000
## 1st Qu. 30.00 1.430 52.36 23.49
## Median 35.00 1.500 55.02 24.44
                                        3002 1.000
                                                      1.000
           35.04 1.501 55.02 24.52
## Mean
                                        3002
                                              1.492
                                                      1.002
## 3rd Qu. 40.00 1.570 57.68 25.46
                                        3268
                                              2.000
                                                      2.000
           60.00 1.860 69.47 30.78
                                        4447 3.000 2.000
## Max.
Agora vamos obter a soma de todas as variáveis dimensionais:
apply(df[,c("idade", "altura", "peso", "imc", "salario", "carros", "filhos")],
      2,
      sum)
##
         idade
                    altura
                                                         salario
                                                                       carros
                                   peso
##
     350405.00
                  15005.75
                              550244.99
                                          245243.83 30024463.54
                                                                     14925.00
##
        filhos
##
      10024.00
Tabelas das variáveis ordinais e nominais:
sapply(df[,c("sexo", "escolaridade", "profissao", "fumante.f")],
       table)
## $sexo
##
##
## 5068 4932
##
## $escolaridade
##
## Analfabeto
                 1º Grau
                             2º Grau
                                        3º Grau
                                                   Mestrado Doutorado
##
         1459
                     1449
                                1399
                                            1376
                                                       1398
                                                                  1438
##
       PósDoc
##
         1481
##
## $profissao
##
##
      Humanas
                  Exatas Biológicas
##
         3331
                    3314
                                3355
##
## $fumante.f
##
```

```
## não sim
## 6605 3395
```

A tabela acima demonstra uma limitação do método de simulação utilizado: a distribuição dos valores em cada variável está muito uniforme, com praticamente a mesma quantidade de observações em cada categoria. Para fins de simulação neste projeto tudo bem mas, para fins de simulações mais compatíveis com a vida real este dataset não seria adequado.

Boxplot de algumas variáveis de acordo com sexo e salário:

```
boxplot(df$peso ~ df$sexo,
    main = "Box-and-Whisker Plot do Peso por Sexo",
    ylab = "Peso",
    xlab = "Sexo")
```

Box-and-Whisker Plot do Peso por Sexo


```
boxplot(df$peso ~ df$escolaridade,
    main = "Box-and-Whisker Plot do Peso por Escolaridade",
    ylab = "Peso",
    xlab = "Escolaridade",
    cex.axis = 0.8)
```

Box-and-Whisker Plot do Peso por Escolaridade

Escolaridade

Distribuição do peso e altura (histogramas e scatter plot):

```
hist(df$peso,
    main = "Histograma do peso",
    xlab = "Peso (em Kg)",
    ylab = "Freqüência")
```

Histograma do peso


```
hist(df$altura,
    main = "Histograma da altura",
    xlab = "Altura (em m)",
    ylab = "Freqüência")
```

Histograma da altura


```
plot(df$peso, df$altura,
    main = "Scatter Plot do Peso e Altura",
    xlab = "Peso (em Kg)",
    ylab = "Altura (em m)")
```

Scatter Plot do Peso e Altura

Devido ao método de simulação utilizado, a correlação entre o peso e a altura foi praticamente 1:

```
cor(df$peso, df$altura)
```

[1] 0.9995717