Let $A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix}$. Use row and column operations on A to obtain a matrix B of the

form in Theorem 53. Use that work to find invertible matrices P, Q so that B = PAQ.

Proof. We perform the following row and column operations:

$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \xrightarrow{r_2 \to r_2 - r_1} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & -1 \end{pmatrix} \xrightarrow{r_3 \to r_3 - r_2} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{c_3 \to c_3 + c_1 - 2c_2} \xrightarrow{c_4 \to c_4 - c_1 + c_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Define this matrix we obtained as B. We will perform the same row and column operations above on I_3 and I_4 , respectively in order to define P and Q. We have that

$$\begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow[r_3 \to r_3 - 2r_1]{r_2 \to r_2 - r_1}
\begin{pmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{r_3 \to r_3 - r_2}
\begin{pmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & -1 & 1
\end{pmatrix}$$

and

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow[c_4 \to c_4 - c_1 + c_2]{c_3 \to c_3 + c_1 - 2c_2}
\begin{pmatrix}
1 & 0 & 1 & -1 \\
0 & 1 & -2 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

Let
$$P = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$$
, $Q = \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. We see that

$$PAQ = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
$$= B$$

as required

П

Question 2.

Let
$$A = \begin{pmatrix} 1 & -2 & -4 \\ 1 & 1 & -1 \\ 1 & 0 & -1 \end{pmatrix}$$

- (a) Verify that A is invertible, by row-reducing the augmented matrix $(A|I_3)$.
- (b) Use (a) to find A^{-1} .
- (c) Express A as a product of elementary matrices.

Proof.

(a): We see that

$$(A|I_{3}) = \begin{pmatrix} 1 & -2 & -4 & 1 & 0 & 0 \\ 1 & 1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_{2} \to r_{2} - r_{1}, r_{3} \to r_{3} - r_{1}} \begin{pmatrix} 1 & -2 & -4 & 1 & 0 & 0 \\ 0 & 3 & 3 & -1 & 1 & 0 \\ 0 & 2 & 3 & -1 & 0 & 1 \end{pmatrix}$$

$$\xrightarrow{r_{1} \to r_{1} + r_{3}, r_{2} \to r_{2} - r_{3}} \begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 2 & 3 & -1 & 0 & 1 \end{pmatrix} \xrightarrow{r_{3} \to r_{3} - 2r_{2}} \begin{pmatrix} 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 3 & -1 & -2 & 3 \end{pmatrix}$$

$$\xrightarrow{r_{1} \to r_{1} + \frac{1}{3}r_{3}} \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{3} & -\frac{2}{3} & 2 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 3 & -1 & -2 & 3 \end{pmatrix} \xrightarrow{r_{3} \to \frac{1}{3}r_{3}} \begin{pmatrix} 1 & 0 & 0 & -\frac{1}{3} & -\frac{2}{3} & 2 \\ 0 & 1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -\frac{1}{3} & -\frac{2}{3} & 1 \end{pmatrix}$$

Since A can be row reduced into the identity matrix, A is invertible.

(b):

By our row reductions above, we know that $A^{-1} = \begin{pmatrix} -\frac{1}{3} & -\frac{2}{3} & 2\\ 0 & 1 & -1\\ -\frac{1}{3} & -\frac{2}{3} & 1 \end{pmatrix}$.

(c):

To express A is a product of elementary matrices, we can apply the opposite row operations to the identity matrix in reverse order. That is,

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -\frac{1}{3} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}$$

Find the explicit formula for the linear transformation $T: \mathbb{Q}^4 \to \mathbb{Q}^3$ which satisfies

$$T\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \begin{pmatrix} 1\\2\\3 \end{pmatrix}, \quad T\begin{pmatrix} 2\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\1 \end{pmatrix}, \quad T\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \quad T\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \begin{pmatrix} 0\\0\\0 \end{pmatrix}.$$

Proof. Notice that

$$\beta = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} \right\}$$

is a basis for \mathbb{Q}^4 . We attempt to find the general form for a vector $(x, y, z, w) \in \mathbb{Q}^4$ in terms of these vectors. By inspection, we see that

$$\begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = (x - 2y + z) \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (y - z) \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + (z - w) \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + w \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

Thus

$$T \begin{pmatrix} x \\ y \\ z \\ w \end{pmatrix} = (x - 2y + z)T \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + (y - z)T \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + (z - w)T \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} + wT \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$= (x - 2y + z) \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + (y - z) \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} + (z - w) \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} + w \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} x - 2y + z \\ 2x - 3y + z \\ 3x - 5y + 3z - w \end{pmatrix}$$

Question 4

Let $\mathbb{F} = \mathbb{Q}$ and $V = \mathcal{M}_{2\times 2}(\mathbb{F})$. Consider the linear map $T : \mathcal{M}_{2\times 2}(\mathbb{F}) \to \mathcal{M}_{2\times 2}(\mathbb{F})$ given by $T(A) = A^T$. Set $\beta = \{E_{11}, E_{12}, E_{21}, E_{22}\}$ and $\gamma = \{E_{11}, E_{22}, E_{12} + E_{21}, E_{12} - E_{21}\}$.

(a) Find P - the change of coordinate matrix from γ to β coordinates. We have

$$P = ([E_{11}]_{\beta} \quad [E_{22}]_{\beta} \quad [E_{12} + E_{21}]_{\beta} \quad [E_{12} - E_{21}]_{\beta})$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

(b) Find P^{-1} - the change of coordinate matrix from β to γ coordinates. Similarly,

$$P^{-1} = \begin{pmatrix} [E_{11}]_{\gamma} & [E_{12}]_{\gamma} & [E_{21}]_{\gamma} & [E_{22}]_{\gamma} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & \frac{1}{2} & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$$

(c) Find $A = [T]_{\beta}$. We see that

$$A = \begin{pmatrix} [T(E_{11})]_{\beta} & [T(E_{12})]_{\beta} & [T(E_{21})]_{\beta} & [T(E_{22})]_{\beta} \\ = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(d) Find $B = [T]_{\gamma}$ Once again,

$$B = ([T(E_{11})]_{\gamma} [T(E_{22})]_{\gamma} [T(E_{12} + E_{21})]_{\gamma} [T(E_{12} - E_{21})]_{\gamma})$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

(e) Confirm that $A = PBP^{-1}$ using (a)-(d).

$$PBP^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{2} & -\frac{1}{2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$= A$$

as expected

Let $T: \mathcal{M}_{n \times n}(\mathbb{F}) \to \mathcal{M}_{n \times n}(\mathbb{F})$ be the linear map given by $T(A) = A + A^T$.

(a) Find N(T) and dim N(T).

We claim that N(T) is the set of all skew symmetric matrices with zeroes on the diagonal, which has dimension $\frac{1}{2}n(n-1)$.

Set $T(A) = A + A^T = 0$. We have that $A_{ij} + A_{ji} = 0$ for each $0 < i, j \le n$. In particular, we have that $A_{ij} = 0$ if i = j and $A_{ij} = -A_{ji}$ otherwise. But this describes exactly all skew symmetric matrices with zeroes on the diagonal. The basis for this set is

$$\beta = \{ E_{ij} - E_{ji} : 0 < i < j \le n \}$$

and there are $\frac{1}{2}n(n-1)$ vectors in this set, so dim $N(T) = \frac{1}{2}n(n-1)$.

(b) What is im(T)?

We claim that im(T) is the set of all symmetric matrices S_n . We see that

$$(A + A^t)_{ij} = A_{ij} + A^t_{ij} = A_{ij} + A_{ji} = A_{ji} + A^t_{ji} = (A + A^t)_{ji}$$

so im $(T) \subseteq S_n$. To show set equality, suppose that B is a symmetric matrix. Let $A = \frac{1}{2}B$ then

$$T(A) = \frac{1}{2}T(B) = \frac{1}{2}(B + B^t) = B$$

Thus $im(T) = S_n$ and has basis

$$\gamma = \{ E_{ij} : 0 < i \le j \le n \}.$$

and is dimension $\frac{1}{2}n(n+1)$.

(c) Is $\mathcal{M}_{n\times n}(\mathbb{F}) = \operatorname{im}(T) \oplus N(T)$?

Yes.

To show this, notice that $\beta \cap \gamma = \emptyset$, so $\operatorname{im}(T) \oplus N(T)$ has basis $\alpha = \beta \cup \gamma$. But notice that $|\alpha| = \frac{1}{2}n(n-1) + \frac{1}{2}n(n+1) = n^2$, which is the dimension of $\mathcal{M}_n(\mathbb{F})$. Therefore α is actually a basis for $\mathcal{M}_n(\mathbb{F})$ and thus $\mathcal{M}_n(\mathbb{F}) = \operatorname{im}(T) \oplus N(T)$.

Question 6

Let V, W be vector spaces over a field \mathbb{F} and $T: V \to W$ a linear map. Prove that T is injective if and only if $N(T) = \{\mathbf{0}_V\}$. (Make no assumption here about dim V, dim W.)

Proof. Suppose that T is injective. Let T(x) = 0, for some $x \in V$. Recall that T(0) = 0 for any linear map. Therefore by injectivity x = 0, so $N(T) = \{0\}$.

Conversely, suppose that $N(T) = \{0\}$. Let $x, y \in V$ such that T(x) = T(y). By linearity we have that T(x - y) = 0, but this implies that x - y = 0, so x = y and T is injective.

Let V, W be vector spaces over a field \mathbb{F} , and $T: V \to W$ a linear map. Find a condition on T which is equivalent to "T(S) spans W for any spanning set $S \subseteq V$ of V". (Hint: Write down the definition of T(S) is spanning to get started.)

Proof. We claim that this statement is equivalent to saying that T is surjective. Suppose that for any set $S \subseteq V$ that spans V, T(S) spans W. We prove that T is surjective. Let $w \in W$. We can write w as a linear combination of some number of vectors in T(S). That is, for some $k \in \mathbb{N}$ and $s_i \in S$, $c_i \in \mathbb{F}$, $i \in \{1, ..., k\}$,

$$w = \sum_{i=1}^{k} c_i T(s_i) = T\left(\sum_{i=1}^{k} c_i s_i\right)$$

so T is surjective.

Conversely, suppose that T is surjective. Let S be a spanning set of V. We will show that T(S) spans W. Let $w \in W$. By surjectivity, there exists $v \in V$ so that T(v) = w. We can rewrite

$$v = \sum_{i=1}^{k} c_i s_i$$

for some number of vectors $s_i \in S$ and $c_i \in \mathbb{F}$. Then

$$T\left(\sum_{i=1}^{k} c_i s_i\right) = w \implies \sum_{i=1}^{k} c_i T(s_i) = w$$

Notice that $T(s_i) \in T(S)$, from which it follows that T(S) spans W, and the proof is complete.

Question 8

Let $P \in \mathcal{M}_{n \times n}(\mathbb{F})$. Prove the following three conditions are equivalent.

- (a) P is invertible.
- (b) There exists bases β, γ of \mathbb{F}^n so that $P = [I_{\mathbb{F}^n}]_{\beta}^{\gamma}$.
- (c) For any *n*-dimensional vector space V over \mathbb{F} , there exists bases β, γ of V so that $P = [I_V]_{\beta}^{\gamma}$.

Proof. Suppose (a). We prove (b) and (c) at the same time.

Let $\beta = \{v_1, ..., v_n\}, \beta' = \{v'_1, ..., v'_n\}$ be bases for \mathbb{F}^n and V respectively. For i = 1, ..., n, let

$$u_i = \sum_{j=1}^n P_{ji} v_j$$
 and $u'_i = \sum_{j=1}^n P_{ji} v'_j$.

Define $\gamma = \{u_1, ..., u_n\}, \gamma' = \{u'_1, ..., u'_n\}$. We claim that they are bases for \mathbb{F}^n and V. We will only show that is the case for γ , because the argument is the same for γ' .

It suffices to show that γ is linearly independent, as it is a set of n vectors, from which it will follow that γ is a basis for \mathbb{F}^n . For constants $c_i \in \mathbb{F}$, let

$$\sum_{i=1}^{n} c_i \sum_{i=1}^{n} P_{ji} v_j = 0$$

By the linear independence of β , for each i.

$$\sum_{i=1}^{n} c_i P_{ji} = 0$$

But this is the same as saying

$$P\begin{pmatrix}c_1\\ \vdots\\ c_n\end{pmatrix} = \bar{0}$$

Since P^{-1} exists, we perform left multiplication by P^{-1} to see that

$$\begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix} = 0$$

which means that $c_i = 0$ for all i, thus showing that γ is linearly independent and indeed a basis for \mathbb{F}^n , and by the same argument, γ' is also a basis for V.

Finally, notice that for each u_i , $[u_i]_{\beta}$ is equal to the *i*th row of P which confirms that $P = [I_{\mathbb{F}^n}]_{\gamma}^{\beta}$. The same applies for u_i' so $P = [I_V]_{\gamma'}^{\beta'}$.

Consider the linear transformation $T_P: \mathbb{F}^n \to \mathbb{F}^n$. Let β be an ordered basis for \mathbb{F}^n . We will show that $\gamma = T_P(\beta)$ is also an ordered basis for \mathbb{F}^n . Since P is invertible, T_P has an inverse $(T_P)^{-1} = T_{P^{-1}}$, so T_P is surjective and span $(T_P(\beta)) = \mathbb{F}^n$. Since $|T_P(\beta)| = n$, $T_P(\beta)$ is indeed an ordered basis. Thus we can conclude that P is a change of basis matrix from β to γ .

Suppose (c). We prove (a).

For some bases $\beta, \gamma, P = [I_V]_{\beta}^{\gamma}$. We claim that $P^{-1} = [I_V]_{\gamma}^{\beta}$. Indeed,

$$PP^{-1} = [I_V]^{\gamma}_{\beta}[I_V]^{\beta}_{\gamma} = [I_V]_{\gamma} = I_{m}$$

This covers all the equivalences and we are done.

Consider the relation \equiv on $\mathcal{M}_{m\times n}(\mathbb{F})$ defined by $A \equiv B$ if $A \to B$ using a combination of row and/or column operations.

- (a) Prove that \equiv is an equivalence relation on $\mathcal{M}_{m\times n}(\mathbb{F})$.
- (b) Find a condition on A, B which is equivalent to $A \equiv B$. (Hint: Theorem 53.)
- (c) Classify the equivalence classes for this relation, and prove that there are exactly $1 + \min\{n, m\}$ such classes.

Proof.

(a):

We show reflexivity, symmetry, and transitivity in that order.

Reflexivity: Since IA = A, and I is considered a row operation, $A \equiv A$.

Symmetry: Suppose that $A \equiv B$ then for some invertible matrices P, Q we have that PAQ = B. But at the same time this means that $P^{-1}BQ^{-1} = A$ so $B \equiv A$.

Transitivity: Suppose that $A \equiv B$ and $B \equiv C$. Then for invertible matrices P, Q, R, S, PAQ = B and RBS = C, so (RP)A(QS) = R(PAQ)S = RBS = C. Since RP, QS are also invertible, we have that $A \equiv C$.

(b):

We claim that an equivalent condition is $\operatorname{rank} A = \operatorname{rank} B$. Suppose that $A \equiv B$. Then PAQ = B for some invertible matrices P, Q, but it is known that rank is preserved by multiplication with invertible matrices, so $\operatorname{rank} A = \operatorname{rank} PAQ = \operatorname{rank} B$.

Conversely, suppose that $r := \operatorname{rank} A = \operatorname{rank} B$. By Theorem 53, there exist row/column operations so that

$$A, B \to \left(\frac{I_r \mid 0}{0 \mid 0} \right).$$

We denote this matrix by J_r . that is, for invertible matrices P, Q, R, S, PAQ = I' = RBS. It follows that $R^{-1}PAQS^{-1} = B$, so $A \equiv B$ as desired.

(c):

We can classify the equivalence classes by matrix rank. That is, each equivalence class is of the form

$$[J_r] = \{ A \in \mathcal{M}_{m \times n}(\mathbb{F}) : \operatorname{rank} A = r \}.$$

The possible ranks of $m \times n$ matrices range from 0 to $\min\{n, m\}$, so there are $\min\{n, m\} + 1$ different values of r. We will verify that these equivalence classes are exhaustive and disjoint. Every $m \times n$ matrix must have a rank, so it belongs to at least one of the classes, but at the same time, a matrix can possibly only have one rank, so it necessarily belongs to exactly one equivalence class.

Γ

Question 10.

Let V, W be finite dimensional vector spaces over \mathbb{F} , and $T: V \to W$ a linear map with rank T=2. Set $n=\dim V$, $m=\dim W$. Let $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{F}^n$ be two non-parallel vectors. Prove there exists bases β, γ of V, W respectively, so that $[T]_{\beta}^{\gamma} = (\mathbf{x}_1 \ \mathbf{x}_2 \ \mathbf{0} \ \cdots \ \mathbf{0})$. (Hint: use problems 7,8.)

Proof. Define

$$A = \begin{pmatrix} \mathbf{x}_1 & \mathbf{x}_2 & 0 & \cdots & 0 \end{pmatrix}$$

rank A=2 because there are 2 linearly independent rows. Fix two arbitrary bases β' , γ' and consider $[T]_{\beta'}^{\gamma'}$, which is rank 2 by assumption. By question 9, we can perform a sequence of row and column operations to turn $[T]_{\beta'}^{\gamma'}$ into A. In particular, for invertible matrices $P \in \mathcal{M}_m(\mathbb{F}), Q \in \mathcal{M}_n(\mathbb{F})$,

$$P[T]^{\gamma'}_{\beta'}Q = A$$

Using question 8, and noting that the choice of β was arbitrary in its proof, we can say that $P = [I_W]_{\gamma'}^{\gamma}$ and $Q^{-1} = [I_V]_{\beta'}^{\beta}$ for some basis γ of W and β of V. Thus we have that

$$A = P[T]_{\beta'}^{\gamma'}Q = [I_W]_{\gamma'}^{\gamma}[T]_{\beta'}^{\gamma'}[I_V]_{\beta'}^{\beta'} = [T]_{\beta}^{\gamma}$$

which is what we wanted.

П

Question 11.

Let $T: V \to V$ be linear. We say that a subspace $W \subseteq V$ is "T-invariant" if $T(W) \subseteq W$. For example, if $T: \mathbb{R}^3 \to \mathbb{R}^3$ is counter-clockwise rotation around the z-axis by angle θ , then $P_{xy} = \{(x, y, 0) \in \mathbb{R}^3\}$ is T-invariant, as is L_z (the z-axis).

- (a) Verify the claims made above, by showing that P_{xy} and L_z are T-invariant.
- (b) Show that $\mathbb{R}^3 = P_{xy} \oplus L_z$ by finding a basis $\beta = \beta_1 \cup \beta_2$ for \mathbb{R}^3 so that β_1 is a basis for P_{xy} and β_2 is a basis for L_z .
- (c) Using your basis β from (b), find $[T]_{\beta}$.

Proof.

(a):

We begin by finding an expression for T. Notice that

$$T(e_1) = (\cos \theta, \sin \theta, 0)$$

$$T(e_2) = (-\sin \theta, \cos \theta, 0)$$

$$T(e_3) = (0, 0, 1)$$

In the case of e_1, e_2 , the projection onto the xy-plan lies on the unit circle, and thus each vector is rotated θ and $\theta + \frac{\pi}{2}$ radians respectively (relative to the point (0,1)). Then we have that

$$T(x, y, z) = x(\cos \theta, \sin \theta, 0) + y(-\sin \theta, \cos \theta, 0) + z(0, 0, 1)$$

= $(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta, z)$

Now, let $(x, y, 0) \in P_{xy}$. Then

$$T(x, y, 0) = (x\cos\theta - y\sin\theta, x\sin\theta + y\cos\theta, 0) \in P_{xy}$$

Additionally, let $(0,0,z) \in L_z$. Then

$$T(0,0,z) = (0,0,z) \in L_z$$

Thus P_{xy} and L_z are T-invariant subspaces.

(b):

Let $\beta_1 = \{e_1, e_2\}, \beta_2 = \{e_3\}$. It is clear that β_1 is a basis for the *xy*-plane and β_2 is a basis for the *z*-axis. Then $\beta = \{e_1, e_2, e_3\}$ is the standard ordered basis for \mathbb{R}^3 , which was what we wanted to show.

(c):

We have already found all we need from the previous parts:

$$[T]_{\beta} = ([T(e_1)]_{\beta} \ [T(e_2)]_{\beta} \ [T(e_3)]_{\beta}) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Question 12

Let V be a finite dimensional vector space over \mathbb{F} , $T \in \mathcal{L}(V)$, and $W_1 \subseteq V$ a T-invariant subspace with basis β_1 . Set $k = \dim W_1$.

We will generalize what we saw in #11c.

- (a) Extend β_1 to a basis β of V. Show that $[T]_{\beta} = \left(\frac{A \mid C}{O_{n-k,k} \mid B}\right)$, where A is $k \times k$, B is $(n-k) \times (n-k)$, and C is $k \times (n-k)$.
- (b) Suppose that W_2 is a subspace so that $V = W_1 \oplus W_2$. Let $\beta = \beta_1 \cup \beta_2$, where β_2 is any basis for W_2 .

Prove that if W_2 is T-invariant, then $[T]_{\beta} = \left(\frac{A \mid O_{k,n-k}}{O_{n-k,k} \mid B}\right)$ is block diagonal.

(c) Is the converse of (b) true or false? Justify your answer.

Proof.

(a)

Question 13

Determine if the statements below are true or false. If true, give a proof. If false, explain why, and/or provide a counterexample.

- (a) Let $\beta = \{e_1, \dots, e_n\}$ be the standard basis for \mathbb{F}^n , and $\gamma = \{v_1, \dots, v_n\}$ a basis for \mathbb{F}^n . Then there exists a sequence of row operations that takes β to γ . (That is, v_i is obtained from e_i using the same row operations for all i.)
- (b) Let V be a finite dimensional vector space over \mathbb{F} and $T:V\to V$ a linear map. If β,γ are bases for V so that $[T]^{\gamma}_{\beta}=I_n$, then $T=I_V$.
- (c) Let V be a finite dimensional vector space over \mathbb{F} and $S, T : V \to V$ linear maps. If rank T = rank S, then there exist bases $\beta, \beta', \gamma, \gamma'$ for V so that $[S]_{\beta}^{\gamma} = [T]_{\beta'}^{\gamma'}$.
- (d) Let $A, B \in \mathcal{M}_{n \times n}(\mathbb{F})$. If $A^2 \sim B^2$, then $A \sim B$.

Proof.

(a):

This statement is true. Consider the linear operator $T: \mathbb{F}^n \to \mathbb{F}^n$ defined by $T(e_i) = v_i$ for all $i \in \{1, ..., n\}$. Notice that T is surjective, as $\operatorname{span}(T(\beta)) = \operatorname{span}(\gamma) = \mathbb{F}^n$. It follows that T is invertible, so $[T]_{\beta}^{\gamma}$ is invertible, so it can be decomposed into a number of elementary matrices and thus represent a sequence of row operations. But notice that $[T]_{\beta}^{\gamma}$ is exactly the matrix that maps e_i to v_i , so we have what we wanted.

(b):

This is false. Let $V = \mathbb{F}^n$. Take β as the standard basis. As well, let $\gamma = \{e_1, e_2, ..., e_{n-1}, -e_n\}$, so that γ is just β only with the last basis vector multiplied by -1. Consider the linear map T defined in the previous part. Then $T(e_n) = -e_n$, so T is not the identity map, but it is not hard to see that $[T]_{\beta}^{\gamma} = I_n$.

(c):

This is true. Let k = rank T = rank S. Take k vectors $e_1, ..., e_k$. By Question 10, there exists bases $\beta, \gamma, \beta', \gamma'$ such that

$$[T]^{\gamma}_{\beta} = \left(\begin{array}{c|c} I_k & O \\ O & O \end{array} \right) = [S]^{\gamma'}_{\beta'}$$

as desired.

(d):

This is false. Consider $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $B = 0_n$, the zero matrix. Then

$$A^2 = B^2$$

But rank A = 1 and rank B = 0, so for any invertible matrix P

$$\operatorname{rank} PAP^{-1} = 1$$

so A is not similar to B