SYDNEY TECHNICAL HIGH SCHOOL

YEAR 12 ASSESSMENT TASK

EXTENSION 2 MATHEMATICS

MARCH 2005

Instructions

- * Attempt all questions.
- * Answers to be written on the paper provided.
- * Start each question on a new page.
- * Marks may not be awarded for careless or badly arranged working.
- * Indicated marks are a guide and may be changed slightly if necessary.
- * These questions must be handed in attached to the top of your solutions.

Q1		Q2		Q3	TOTAL
	/16		/17	/18	

QUESTION 1

a) Find
$$|(3-4i)^n|$$
 (2)

b) (i) On an Argand diagram shade in the region determined by the inequalities

$$2 \le \operatorname{Im}(z) \le 4 \text{ and } \frac{\pi}{6} \le \operatorname{arg}(z) \le \frac{\pi}{4}.$$
 (3)

- (ii) Let z_0 be the complex number of maximum modulus satisfying the inequalities in (i). Express z_0 in the form x + iy. (1)
- c) Find pairs of integers x and y which satisfy the condition $(x+iy)^2 = -3 4i.$ (3)
- d) If $z = \cos\theta + i\sin\theta$ use De Moivres' Theorem or otherwise to simplify

$$z^4 + \frac{1}{z^4} \,. \tag{2}$$

Question 1 (Cont)

e)

The chord through the focus (ae, 0) of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at right angles to the x - axis meets the ellipse at P $(a\cos\theta, b\sin\theta)$. The normal at P passes through the point (0,-b).

(i) Show that
$$\cos \theta = e$$
 and $\sin \theta = \sqrt{1 - e^2}$. (2)

(ii) Given the equation of the normal at P is $ax \sin \theta - by \cos \theta = (a^2 - b^2) \sin \theta \cos \theta$, show that the condition for it to pass through (0, -b) is $e^4 + e^2 - 1 = 0$. (You may show instead that $e^6 - 2e^2 + 1 = 0$, which is another version of the above condition) (3)

QUESTION 2

a)

If P(0,b) lies on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where S and S' are the focii and N is a point on the directrix.

(i) Write down the value of the ratio
$$\frac{PS}{PN}$$
. (1)

- (ii) Hence or otherwise show that PS + PS' = 2a. (2)
- (iii) Explain why the perimeter of the triangle PSS' is always less than 4a units. (2)

b)

In the diagram AM = MD = OM = OB = OC and $AD \perp OM \perp BC$. O is the origin.

If M represents the complex number z

- (i) Which point represents the complex number iz? (1)
- (ii) Find, in terms of z, the complex number represented by the point D. (2)

Question 2 (Cont)

- c) (i) Sketch the curve $y = (x 1)^2$ and shade the region bounded by the curve, the x axis and the line x = 2. (1)
 - (ii) The region in (i) is rotated about the line y = -1. Find the volume of the solid formed by this rotation. (3)
- d) (i) Sketch the locus of the complex number z if |z-1|=1. (1)
 - (ii) Let z be a complex number which satisfies the locus in (i) and let $\arg(z) = \theta$. Explain with the aid of your graph or otherwise why $\arg(z-1) = 2\theta$. (2)
 - (iii) Find $\arg(z^2 3z + 2)$ in terms of θ . (2)

QUESTION 3

- a) (i) Express $z = \sqrt{3} + i$ in modulus/argument form. (2)
 - (ii) Show that z is a complex solution of the equation $x^7 + 64x = 0$. (2)
- b) If z = x + iy(i) Write $\frac{1}{z}$ as a complex number. (1)
 - (ii) Hence find the equations of the locus of z if $Re(z \frac{1}{z}) = 0$. (2)
- If the roots of the equation $z^8 = 1$ are $1, w, w^2, w^3, w^4, w^5, w^6, w^7$ where w is the complex root with the smallest positive argument
 - (i) Find w^3 in mod-arg form. (1)
 - (ii) Evaluate $w^2 + w^4 + w^6$ giving a reason. (2)

Question 3 (Cont).

d) (i) Differentiate
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
 implicitly. (2)

- (ii) Derive the equation of the tangent to the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1 \text{ at } (x_1, y_1).$ (2)
- (iii) Write down the equations of the directrices. (1)
- (iv) If $x_1 > 0$ and $y_1 > 0$ find the values of x_1 so that the tangent at (x_1, y_1) intersects the nearest directrix below the x axis. (3)

End of Exam

1. 6 - 12cz +1-10

(1-62)2= e4(1-62)

1-62 = 22/1-62

D

٤ و

1-222+24=24-66

of a'e (1-e2) = a2e3 [1-e2

ellipse breakings -0

