Московский Авиационный Институт

(Национальный Исследовательский Университет)

Факультет информационных технологий и прикладной математики Кафедра 806 "Вычислительная математика и программирование"

Курсовая работа

по курсу "Архитектура компьютера" 1 семестр

Задание 4. Процедуры и функции в качестве параметров

Студент: Старостина А.А.

Группа: М8О-108Б-22,

№ по списку: 19

Руководитель: Сахарин Н.А.

Дата: 08.01.2023

Оценка:

Содержание

1. Задание	3
2. Вариант	3
3. Общий метод решения	3
4. Общие сведения о программе5. Функциональное назначение	
6. Описание логической структуры	4
7. Описание переменных, констант и подпрограмм	5
8. Протокол	6
9. Входные данные	8
10. Выходные данные	8
11. Выводы	10

Задание

Составить программу на языке Си с процедурами решения трансцендентных алгебраических уравнений различными способами(итераций, Ньютона и половинного деления - дихотомии). Нелинейные уравнения оформить как параметры - функции, разрешив относительно неизвестной величины в случае необходимости. Применить каждую процедуру к решению двух уравнений, заданных двумя строками таблицы, начиная с варианта с заданным номером. Если метод неприменим, обоснование математическое графическую дать иллюстрацию.

Варианты

No	Уравнение	Отрезок,	Базовый	Приближенное
		содержа	метод	значение корня
		щий		
		корень		
19	$x - \frac{1}{3 + \sin 3.6x} = 0$	[0,0.85]	итерации	0.2624
20	$0.1x^2 - xlnx = 0$	[1,2]	Ньютона	1.1183

Общий метод решения

Вычисление приближенного значений функций при помощи метода дихотомии, метода итераций и метода Ньютона.

Метод дихотомии - деление отрезка пополам, учитывает что знак функции должен быть разным. До тех пор, пока длина отрезка не будет меньше значения машинного эпсилон, процесс деления будет выполняться. Приближенное значение корня к моменту окончания итерационного процесса будет находиться примерно в середине заданного отрезка.

Метод итераций заключается в замене исходного уравнения F(x)=0 уравнением f(x)=x. Начальным приближенным значением корня является середина заданного отрезка. Итерационный процесс имеет вид: $x^{k+1}=f\left(x^{(k)}\right)$. Процесс выполняется пока разность $x^{(k)}$ и $x^{(k+1)}$ не станет меньше значения машинного эпсилон.

Метод Ньютона - частный случай метода дихотомии. Итерационный процесс представляет собой: $x^{(k+1)} = x^{(k)} - F\left(x^{(k)}\right)/F'\left(x^{(k)}\right)$.

Общие сведения о программе

Аппаратное обеспечение: домашний ноутбук

Операционная система: Linux Ubuntu, версия 22.04.1 LTS

Язык и система программирования: C, GNU

Местонахождение файлов: /home/ann

Компиляция программы: gcc -lm kp4.c

Вызов программы: ./a.out

Функциональное назначение

Программа предназначена для вычисления приближенного значения трансцендентных алгебраических уравнений с использованием различных

численных методов и при помощи встроенных программных функций библиотеки языка Си.

Описание логической структуры

Программа получает на вход заданный отрезок, находит значение уравнения F(x) = 0 различными численными методами и выводит полученный корень уравнения.

Описание переменных, констант и подпрограмм

Функция	Входные аргументы	Описание
machine_epsilon		Функция для подсчета
		машинного є
F19,F20	long double x	Вычисляет значение входной
		функции
F19_first_derivat	long double x	Функция, вычисляющая
ive,		первую производную от
F20_first_derivat		входной функции
ive		
F19_second_deri	long double x	Функция, вычисляющая
vative,		вторую производную от
F20_second_deri		входной функции
vative		

f19_first_derivati ve, f20_first_derivati ve	long double x	Функция, вычисляющая первую производную от уравнения, в котором выражен х
dichotomya	long double (*F)(long double), long double a, long double b, long double abs_epsilon, long double otn_epsilon	значение уравнения $F(x) = 0$
iteration		Функция, вычисляющая значение уравнения F(x) = 0 методом итерации
newton	long double(* F)(long double), long double (*F_first_derivative)(lo	значение уравнения $F(x) = 0$

	ng double), long double		
	(*F_second_derivative)		
	(long double), long		
	double a, long double		
	b, long double		
	abs_epsilon, long		
	double otn_epsilon		
f19, f20	long double x	Функция,	вычисляющая
		выраженный х	

Таблица 1. Описание функций программы

Переменная	Значение
long double abs_epsilon	Машинный эпсилон (абсолютный)
long double otn_epsilon	Машинный эпсилон (относительный)
long double a,b	Границы отрезка
long double x	Значение аргумента функции

Таблица 2. Описание переменных

Протокол

Код программы:
#include <stdio.h></stdio.h>
#include <math.h></math.h>

```
typedef long double ldbl;
ldbl machine epsilon() {
  1db1 eps = 1.0;
  while (1 + eps / 2.0 != 1)
     eps = 2.0;
  return eps;
}
1db1 F19(1db1 x) {
  return x - 1/(3 + \sin(3.6*x));
}
ldbl f19(ldbl x)  {
  return 1/(3 + \sin(3.6 \times x));
}
ldbl f19 first derivative(ldbl x) {
  return -(3.6*\cos(3.6*x)/(3+\sin(3.6*x)*(3+\sin(3.6*x))));
}
ldbl F19 first derivative(ldbl x) {
  return 1 + (3.6*\cos(3.6*x)/(3+\sin(3.6*x)*(3+\sin(3.6*x))));
}
ldbl F19 second derivative(ldbl x) {
                        (-3.6*3.6*\sin(3.6*x)*(3+\sin(3.6*x))*(3+\sin(3.6*x))
(3.6*\cos(3.6*x))*2*3.6*\cos(3.6*x)*(3+\sin(3.6*x)))/(pow(3+\sin(3.6*x),4));
```

```
}
1db1 F20(1db1 x)  {
  return 0.1*x*x-x*logl(x);
}
1db1 f20(1db1 x) {
  return sqrt(10*x*logl(x));
}
ldbl f20_first_derivative(ldbl x) {
  return (10*logl(x)+1)/(2*sqrt(10*x*logl(x)));
}
ldbl F20_first_derivative(ldbl x) {
  return 0.2*x-logl(x)-1;
}
ldbl F20 second derivative(ldbl x) {
  return 0.2-1/x;
}
ldbl dichotomya(ldbl (*F)(ldbl), ldbl a, ldbl b, ldbl abs_epsilon, ldbl
otn epsilon) {
  1db1 x = a + (b - a) / 2;
  if (F(a) * F(b) < 0)
     while (fabs(a - b) > fmax(otn epsilon * fabs(x), abs epsilon)) {
       x = (a + b) / 2;
       if (F(x) * F(a) < 0)
```

```
b = x;
       else
          a = x;
     }
     return x;
  }
  else
     return 0;
}
ldbl iteration(ldbl (*f)(ldbl), ldbl (*f first derivative)(ldbl), ldbl a, ldbl b, ldbl
abs epsilon, ldbl otn epsilon)
{
  1db1 x = a + (b - a) / 2;
  if (fabs(f first derivative(x)) < 1) {
     while (fabs(f(x) - x) \ge fmax(otn epsilon * fabs(x), abs epsilon))
       x = f(x);
     return x;
  }
  else
     return 0;
}
ldbl
          newton(ldbl
                             (*F)(ldbl),ldbl
                                                   (*F first derivative)(ldbl),ldbl
(*F second derivative)(ldbl),ldbl a,ldbl b, ldbl abs epsilon, ldbl otn epsilon) {
  1db1 x = a + (b - a) / 2;
       if (fabs(F(x) * F second derivative(x)) < (F first derivative(x) *
F first derivative(x))) {
        while (fabs(F(x) / F first derivative(x)) > fmax(otn epsilon * fabs(x),
```

```
abs epsilon))
       x = F(x) / F first derivative(x);
     return x;
  }
  else
     return 0;
}
void result(ldbl d, ldbl i, ldbl n) {
 if (d != 0) printf("The dichotomya method: %.10Lf\n", d);
 else printf("The dechotomya method isn't suitable\n");
 if (i != 0) printf("The iteration method: \%.10Lf\n", i);
 else printf("The iteration method isn't suitable\n");
 if (n != 0) printf("The Newton's method: %.10Lf\n", n);
 else printf("The Newton's method isn't suitable\n");
}
int main() {
  1db1 a19 = 0, b19 = 0.85;
  1db1 a20 = 1, b20 = 2;
  ldbl abs epsilon = machine epsilon();
  ldbl otn epsilon = sqrt(abs epsilon);
  ldbl d19 = dichotomya(F19, a19, b19, otn epsilon, abs epsilon);
   ldbl i19 = iteration(f19, f19 first derivative, a19, b19, otn epsilon,
abs epsilon);
   ldbl n19 = newton(F19, F19 first derivative, F19 second derivative, a19,
b19, otn epsilon, abs epsilon);
  printf("Machine epsilon is %.40Lf\n", abs epsilon);
  printf("Function 19 var: x - 1/(3+\sin(3.6x))\n");
```

```
result(d19, i19, n19);
printf("\n");
ldbl d20 = dichotomya(F20, a20, b20, otn_epsilon, abs_epsilon);
    ldbl i20 = iteration(f20, f20_first_derivative, a20, b20, otn_epsilon, abs_epsilon);
    ldbl n20 = newton(F20, F20_first_derivative, F20_second_derivative, a20, b20, otn_epsilon, abs_epsilon);
printf("Function 20 var: 0.1*x^2-x*ln(x)\n");
result(d20, i20, n20);
return 0;
}
```

Входные данные

Отсутствуют

Выходные данные

Function 20 var: $0.1*x^2-x*ln(x)$

The dichotomya method: 1.1183255916

The iteration method isn't suitable

The Newton's method: 1.1183255916

Вывод

В результате выполнения данной курсовой работы были получены навыки работы по получению корня уравнения. Было изучено вычисление машинного эпсилона и различных численных методов, таких как: метод дихотомии, метод итераций и метод Ньютона. Оценивая полученные данные, можно сказать, что каждый из методов неидеален, так как для поиска корня необходимо знать точные границы отрезка.

Ответы совпали везде, где могли. Только в 20м варианте не удалось вычислить метод итерации, потому что не выполняется главное условие – модуль производной выбранной функции получается больше единицы (при любом x).