Odd cohomology of $A^{[2]}$

Grégoire Menet

December 7, 2015

With your notation, we consider the following exact sequence:

$$0 \longrightarrow \pi_*(H^k(\widetilde{A \times A}, \mathbb{Z})) \longrightarrow H^k(A^{[2]}, \mathbb{Z})/\operatorname{tors} \longrightarrow (\mathbb{Z}/2\mathbb{Z})^{\alpha_k} \longrightarrow 0,$$

with $k \in \{1, ..., 8\}$. We want to prove the following proposition.

Proposition 0.1. We have:

$$\alpha_3 = 0$$
 and $\alpha_5 = 4$.

1 Preliminary Lemmas

We denote $V = A \times A \setminus E$ and $U = V/\sigma_2$, where $\mathfrak{S}_2 = \langle \sigma_2 \rangle$.

Lemma 1.1. We have: $H^k(A \times A, \mathbb{Z}) = H^k(V, \mathbb{Z})$ for all $k \leq 3$.

Proof. We have $V = A \times A \setminus \Delta$. We have the following natural exact sequence:

$$\cdots \longrightarrow H^k(A\times A,V,\mathbb{Z}) \longrightarrow H^k(A\times A,\mathbb{Z}) \longrightarrow H^k(V,\mathbb{Z}) \longrightarrow \cdots$$

Moreover by Thom isomorphism $H^k(A \times A, V, \mathbb{Z}) = H^{k-4}(\Delta, \mathbb{Z}) = H^{k-4}(A, \mathbb{Z})$. Hence $H^k(A \times A, V, \mathbb{Z}) = 0$ for all $k \leq 3$. Hence $H^k(A \times A, \mathbb{Z}) = H^k(V, \mathbb{Z})$ for all $k \leq 2$. It remains to consider the following exact sequence:

$$0 \longrightarrow H^3(A \times A, \mathbb{Z}) \longrightarrow H^3(V, \mathbb{Z}) \longrightarrow H^4(A \times A, V, \mathbb{Z}) \stackrel{\rho}{\longrightarrow} H^4(A \times A, \mathbb{Z}) \; .$$

The map ρ is given by $\mathbb{Z}[\Delta] \to H^4(A \times A, \mathbb{Z})$. The class $\{x\} \times A$ is also in $H^4(A \times A, \mathbb{Z})$ and intersects Δ in one point. Hence the class of Δ in $H^4(A \times A, \mathbb{Z})$ is not trivial and the map ρ is injective. It follows

$$H^3(A \times A, \mathbb{Z}) = H^3(V, \mathbb{Z}).$$

Now we will calculate the invariant $l_{1,-}^2(A \times A)$ and $l_{1,+}^1(A \times A)$ defined in Section 1.2 of [1] (I also recall the definition in the redaction of the application).

Lemma 1.2. We have: $l_{1,-}^2(A \times A) = l_{1,+}^1(A \times A) = 0$.

Proof. By Künneth formula we have:

$$H^1(A \times A, \mathbb{Z}) = H^0(A, \mathbb{Z}) \otimes H^1(A, \mathbb{Z}) \oplus H^1(A, \mathbb{Z}) \otimes H^0(A, \mathbb{Z}).$$

The elements of $H^0(A, \mathbb{Z}) \otimes H^1(A, \mathbb{Z})$ and $H^1(A, \mathbb{Z}) \otimes H^0(A, \mathbb{Z})$ are exchanged under the action of σ_2 . It follows that $l_2^1(A \times A) = 4$ and necessary $l_{1,-}^1(A \times A) = l_{1,+}^1(A \times A) = 0$.

By Künneth formula we also have:

$$H^{2}(A \times A, \mathbb{Z}) = H^{0}(A, \mathbb{Z}) \otimes H^{2}(A, \mathbb{Z}) \oplus H^{1}(A, \mathbb{Z}) \otimes H^{1}(A, \mathbb{Z})$$
$$\oplus H^{2}(A, \mathbb{Z}) \otimes H^{0}(A, \mathbb{Z}).$$

As before every elements $x \otimes y \in H^2(A \times A, \mathbb{Z})$ are sent to $y \otimes x$ by the action of σ_2 . A such element is fixed by the action of σ_2 if x = y. It follows:

$$l_2^2(A \times A) = 6 + 6 = 12,$$

$$l_{1,+}^2(A \times A) = 4,$$

and necessary:

$$l_{1}^{2}(A \times A) = 0.$$

Lemma 1.3. The group $H^3(U, \mathbb{Z})$ is torsion free.

Proof. Using the spectral sequence of equivariant cohomology, it follows from Proposition 2.6 of [1], Lemma 1.1 and 1.2.

2 Proof of $\alpha_3 = 0$

By Theorem 7.31 of Voisin, we have:

$$H^3(\widetilde{A \times A}, \mathbb{Z}) = H^3(A \times A, \mathbb{Z}) \oplus H^1(\Delta, \mathbb{Z}).$$
 (1)

It follows that

$$H^3(A^{[2]},\mathbb{Z}) \supset \pi_*(H^3(A \times A,\mathbb{Z})) \oplus \pi_*(H^1(\Delta,\mathbb{Z})).$$

Moreover by Künneth formula, we have:

$$H^{3}(A \times A, \mathbb{Z}) = H^{0}(A, \mathbb{Z}) \otimes H^{3}(A, \mathbb{Z}) \oplus H^{1}(A, \mathbb{Z}) \otimes H^{2}(A, \mathbb{Z})$$
$$\oplus H^{2}(A, \mathbb{Z}) \otimes H^{1}(A \mathbb{Z}) \oplus H^{3}(A, \mathbb{Z}) \otimes H^{0}(A, \mathbb{Z}).$$

Hence all elements in $H^3(A \times A, \mathbb{Z})^{\mathfrak{S}_2}$ are written $x + \sigma_2^*(x)$ with $x \in H^3(A \times A, \mathbb{Z})$. Since $\frac{1}{2}\pi_*(x + \sigma_2^*(x)) = \pi_*(x)$, it follows that $\pi_*(H^3(A \times A, \mathbb{Z}))$ is primitive in $H^3(A^{[2]}, \mathbb{Z})$. Moreover by (1):

$$l_2^3(\widetilde{A \times A}) = \operatorname{rk} H^3(A \times A, \mathbb{Z})^{\mathfrak{S}_2} = 28.$$
 (2)

and

$$l_{1,+}^3(\widetilde{A\times A}) = \operatorname{rk} H^1(\Delta, \mathbb{Z})^{\mathfrak{S}_2} = 4, \text{ and } l_{1,-}^3(\widetilde{A\times A}) = 0.$$
 (3)

It remains to prove the following lemma.

Lemma 2.1. The group $\pi_*(H^1(\Delta,\mathbb{Z}))$ is primitive in $H^3(A^{[2]},\mathbb{Z})$.

Proof. We consider the following commutative diagram:

By proof of Theorem 7.31 of [2], the map h is injective and its image in $H^3(\widetilde{A} \times A, \mathbb{Z})$ is $H^1(\Delta, \mathbb{Z})$. Hence Diagram 4 shows that g is also injective and has image $\pi_*(H^1(\Delta, \mathbb{Z}))$ in $H^3(A^{[2]}, \mathbb{Z})$. It follows the exact sequence:

$$0 \longrightarrow H^3(A^{[2]},U,\mathbb{Z}) \stackrel{g}{\longrightarrow} H^3(A^{[2]},\mathbb{Z}) \longrightarrow H^3(U,\mathbb{Z}) \; .$$

However, by lemma 1.3, $H^3(U,\mathbb{Z})$ is torsion free; it follows that $\pi_*(H^1(\Delta,\mathbb{Z}))$ is primitive in $H^3(A^{[2]},\mathbb{Z})$.

3 Proof of $\alpha_5 = 4$

By Theorem 7.31 of Voisin, we have:

$$H^5(\widetilde{A \times A}, \mathbb{Z}) = H^5(A \times A, \mathbb{Z}) \oplus H^3(\Delta, \mathbb{Z}).$$
 (5)

It follows that

$$H^5(A^{[2]},\mathbb{Z}) \supset \pi_*(H^5(A \times A,\mathbb{Z})) \oplus \pi_*(H^3(\Delta,\mathbb{Z})).$$

Moreover by Künneth formula, we have:

$$H^{5}(A \times A, \mathbb{Z}) = H^{1}(A, \mathbb{Z}) \otimes H^{4}(A, \mathbb{Z}) \oplus H^{2}(A, \mathbb{Z}) \otimes H^{3}(A, \mathbb{Z})$$
$$\oplus H^{3}(A, \mathbb{Z}) \otimes H^{2}(A, \mathbb{Z}) \oplus H^{4}(A, \mathbb{Z}) \otimes H^{1}(A, \mathbb{Z}).$$

As before, $\pi_*(H^5(A \times A, \mathbb{Z}))$ is primitive in $H^5(A^{[2]}, \mathbb{Z})$. Moreover by (5):

$$l_2^5(\widetilde{A \times A}) = \operatorname{rk} H^5(A \times A, \mathbb{Z})^{\mathfrak{S}_2} = 28, \tag{6}$$

and

$$l_{1,+}^{5}(\widetilde{A\times A}) = \operatorname{rk} H^{3}(\Delta, \mathbb{Z})^{\mathfrak{S}_{2}} = 4, \text{ and } l_{1,-}^{5}(\widetilde{A\times A}) = 0.$$
 (7)

Lemma 3.1. The lattice $\pi_*(H^3(\widetilde{A} \times A, \mathbb{Z}) \oplus H^5(\widetilde{A} \times A, \mathbb{Z}))$ has discriminant 2^8 .

Proof. By Definition-Proposition 1.7 2) and 3) of [1], (2) and (6):

$$\frac{H^{3}(\widetilde{A\times A},\mathbb{Z})\oplus H^{5}(\widetilde{A\times A},\mathbb{Z})}{H^{3}(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_{2}}\oplus H^{5}(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_{2}}\oplus \left(H^{3}(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_{2}}\oplus H^{5}(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_{2}}\right)^{\perp}}=(\mathbb{Z}/2\,\mathbb{Z})^{l_{2}^{3}(\widetilde{A\times A})+l_{2}^{5}(\widetilde{A\times A})}.$$

Since $H^3(\widetilde{A \times A}, \mathbb{Z}) \oplus H^5(\widetilde{A \times A}, \mathbb{Z})$ is an unimodular lattice, it follows that

$$\operatorname{discr} H^{3}(\widetilde{A \times A}, \mathbb{Z})^{\mathfrak{S}_{2}} \oplus H^{5}(\widetilde{A \times A}, \mathbb{Z})^{\mathfrak{S}_{2}} = 2^{l_{2}^{3}(\widetilde{A \times A}) + l_{2}^{5}(\widetilde{A \times A})}$$

Then by Lemma 2.18 3) of [1],

$$\operatorname{discr} \pi_*(H^3(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_2} \oplus H^5(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_2}) = 2^{l_2^3(\widetilde{A\times A}) + l_2^5(\widetilde{A\times A}) + \operatorname{rk}\left[H^3(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_2} \oplus H^5(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_2}\right]}.$$

Then by Proposition 1.6 of [1]:

$$\operatorname{discr} \pi_*(H^3(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_2} \oplus H^5(\widetilde{A\times A},\mathbb{Z})^{\mathfrak{S}_2}) = 2^{2\left(l_2^3(\widetilde{A\times A}) + l_2^5(\widetilde{A\times A})\right) + l_{1,+}^3(\widetilde{A\times A}) + l_{1,+}^5(\widetilde{A\times A})}$$

Then by Lemma 2.17 and 2.3 of [1],

$$\operatorname{discr} \pi_*(H^3(\widetilde{A\times A},\mathbb{Z})\oplus H^5(\widetilde{A\times A},\mathbb{Z}))=2^{l^3_{1,+}(\widetilde{A\times A})+l^5_{1,+}(\widetilde{A\times A})}=2^8.$$

The lattice $H^3(A^{[2]}, \mathbb{Z}) \oplus H^5(A^{[2]}, \mathbb{Z})$ is unimodular. Hence:

$$\frac{H^3(A^{[2]},\mathbb{Z})\oplus H^5(A^{[2]},\mathbb{Z})}{\pi_*(H^3(\widetilde{A\times A},\mathbb{Z})\oplus H^5(\widetilde{A\times A},\mathbb{Z}))}=(\mathbb{Z}\,/2\,\mathbb{Z})^4.$$

However, by Section 2, we know that $\pi_*(H^3(\widetilde{A \times A}, \mathbb{Z})) = H^3(A^{[2]}, \mathbb{Z})$. It follows

$$\frac{H^5(A^{[2]},\mathbb{Z})}{\pi_*(H^5(\widetilde{A\times A},\mathbb{Z}))} = (\mathbb{Z}/2\,\mathbb{Z})^4.$$

References

- [1] G. Menet On the integer cohomology of quotients of Kähler manifolds, arXiv:1312.1584v3[math.AG] 4 Mar 2015.
- [2] C. Voisin, *Hodge Theory and Complex Algebraic Geometry. I,II*, Cambridge Stud. Adv. Math., 76, 77, Cambridge Univ. Press, 2003.