Caracterització, existència i unicitat dels cossos finits

Maria Bras-Amorós

29 de novembre de 2023

Algunes generalitats de cossos

Característica i cardinal d'un cos fini-

Ordre multiplicatiu i teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Solucions

Definició de cos

Isomorfismes de cossos

Algunes generalitats de cossos

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos finit

Característica d'un cos finit i cos primer

Cardinal d'un cos finit

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Unicital del cos initi de ρ^m elements

Factorització del polinomi $x^{p^m} - x$ Unicitat del cos finit de p^m elements

Definició de grup

Recordem les definicions.

Una operació binària * en un conjunt A pot tenir les següents propietats:

- ▶ Propietat associativa si a * (b * c) = (a * b) * c per tot $a, b, c \in A$.
- **Existència d'element neutre** si existeix un element de A, que anomenem e_n , tal que $a * e_n = e_n * a = a$ per tot $a \in A$.
- **Existència d'element invers** si per tot element $a \in A$ existeix un element de A, que anomenem e_a , tal que $a * e_a = e_a * e = e_n$.
- ▶ Propietat commutativa si a * b = b * a per tot $a, b \in A$.

Definició

Un **grup** és un conjunt *A* amb una operació associativa amb element neutre i invers. El grup és un **grup commutatiu** si l'operació és commutativa.

Definició de grup

Exemple

Considerem el conjunt $\{a, e, i\}$ amb l'operació * donada per la taula

*	а	e	i
а	е	i	а
е	i	а	е
i	а	e	i

Observem que l'operació és commutativa per ser la taula simètrica i que té com a element neutre l'element i. L'invers de a per * és e i l'invers de e per * és a. L'invers de i és ell mateix. També es pot comprovar que l'operació és associativa. Per tant, el conjunt $\{a,e,i\}$ amb l'operació * és un grup commutatiu.

Definició de grup

Exemple

Considerem el conjunt $\{a, e, i, o\}$ amb l'operació + donada per la taula

+	а	е	i	0
а	0	i	е	а
е	i	0	а	е
i	е	а	0	i
0	а	е	i	0

Observem que l'operació és commutativa per ser la taula simètrica i que té com a element neutre l'element o. Tots els elements es tenen a ells mateixos com al seu propi invers. També es pot comprovar que l'operació és associativa. Per tant, el conjunt $\{a,e,i,o\}$ amb l'operació + és un grup commutatiu.

Definició d'anell

Una segona operació ** en el conjunt A pot tenir la següent propietat respecte de la primera operació *.

▶ Propietat distributiva si a * *(b * c) = (a * *b) * (a * *c) per tot $a, b, c \in A$.

Definició

Un **anell** és un conjunt A amb dues operacions \oplus i \otimes tal que \oplus li confereix estructura de grup commutatiu i tal que \otimes és associativa i satisfà la proietat distributiva respecte de \oplus .

Exercici 1

Demostreu que en un anell amb les operacions \oplus i \otimes l'element neutre de \oplus multiplicat per qualsevol element de l'anell dona altra vegada el neutre respecte de \oplus .

Definició de cos

Diem que un anell és unitari i commutatiu si ⊗ té element neutre i satisfà la propietat commutativa, respectivament.

Definició

Un **cos** és un anell unitari i commutatiu on \otimes satisfà que tot element diferent del neutre de \oplus té invers. En aquest cas l'invers d'un element respecte de \oplus s'anomena el seu **element oposat**, i es deixa el nom d'**element invers** per a l'invers respecte de \otimes .

Definició de cos

Exemple

El conjunt $\{a, e, i, o\}$ dels exemples anteriors és un cos respecte de l'operació \oplus = + amb neutre o, i respecte l'operació \otimes = * ampliant-la amb el neutre de +, que multiplicat per qualsevol element dona o. És a dir

*	а	е	i	0
а	е	i	а	0
е	i	а	е	0
i	а	е	i	0
0	0	0	0	0

Només queda comprovar que l'operació * és distributiva respecte +, que ho deixem com a exercici.

Algunes generalitats de cossos

Definició de cos

Isomorfismes de cossos

Polinomie sobre un cos

Característica i cardinal d'un cos finit

Característica d'un cos finit i cos primer

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Exercitació del polinemi v^{p^m}

Factorització del polinomi $x^{p^m} - x$ Unicitat del cos finit de p^m elements

Definició

Un morfisme entre dos cossos E i F és una aplicació

$$f: E \to F$$

tal que per tot $a, b \in E$ es compleix f(a + b) = f(a) + f(b) i f(ab) = f(a)f(b).

Exercici 2

Demostreu que si f és un morfisme entre els cossos E i F, si 0_E i 0_F són els neutres per la suma de E i F, respectivament, i 1_E i 1_F són els neutres pel producte de E i F, respectivament, aleshores

$$f(0_F) = 0_F, f(1_F) = 1_F,$$

$$f(-a) = -f(a)$$
 i $f(a^{-1}) = (f(a))^{-1}$ per tot $a \in E \setminus \{0_E\}$.

Definició

Un **isomorfisme** entre dos cossos E i F és un morfisme injectiu i exhaustiu. Diem que dos cossos són **isomorfs** si existeix un isomorfisme entre ells. En aquest cas escrivim $E \cong F$.

Exemple

Considerem $E = \mathbb{Z}_2[x]/(x^3 + x^2 + 1)$ i anomenem α a la classe de x en E. Considerem $F = \mathbb{Z}_2[x]/(x^3 + x + 1)$ i anomenem β a la classe de x en F. Les taules d'equivalències a E i a F són

0	0
α^{0}	1
α^{1}	α
α^2	α^2
α^3	α^2 + 1
α^4	$\alpha^2 + \alpha + 1$
α^{5}	α + 1
α^6	$\alpha^2 + \alpha$

0	0
β^0	1
β^1	β
β^2	β^2
23	β + 1
β^4	$\beta^2 + \beta$
β^5	$\beta^2 + \beta + 1$
β^6	$\beta^2 + 1$

Considerem l'aplicació

$$f: E \rightarrow F$$

$$0 \mapsto 0$$

$$\alpha^{i} \mapsto (\beta+1)^{i}$$

És a dir,

$$0 \mapsto 0$$

$$1 \mapsto 1$$

$$\alpha \mapsto \beta + 1 = \beta^{3}$$

$$\alpha^{2} \mapsto (\beta + 1)^{2} = (\beta^{3})^{2} = \beta^{6}$$

$$\alpha^{3} \mapsto (\beta + 1)^{3} = (\beta^{3})^{3} = \beta^{2}$$

$$\alpha^{4} \mapsto (\beta + 1)^{4} = (\beta^{3})^{4} = \beta^{5}$$

$$\alpha^{5} \mapsto (\beta + 1)^{5} = (\beta^{3})^{5} = \beta$$

$$\alpha^{6} \mapsto (\beta + 1)^{6} = (\beta^{3})^{6} = \beta^{4}$$

Per veure si és morfisme ompliu i observeu les taules de f(a+b) i de f(a)+f(b):

f(a+b)	a = 0	a = 1	a = α	$a = \alpha^2$	$a = \alpha^3$	$a = \alpha^4$	$a = \alpha^5$	$a = \alpha^6$
<i>b</i> = 0	f(0) = 0	f(1) = 1	$f(\alpha) = \beta^3$	$f(\alpha^2) = \beta^6$	$f(\alpha^3) = \beta^2$	$f(\alpha^4) = \beta^5$	$f(\alpha^5) = \beta$	$f(\alpha^6) = \beta^4$
b = 1	f(1) = 1	f(0) = 0	$f(\alpha + 1) = \beta$	$f(\alpha^2+1)=\beta^2$	$f(\alpha^3+1)=\beta^6$	$f(\alpha^4+1)=\beta^4$	$f(\alpha^5+1)=\beta^3$	$f(\alpha^6+1)=\beta^5$
$b = \alpha$								
$b = \alpha^2$								
$b = \alpha^3$								
$b = \alpha^4$								
$b = \alpha^5$								
$b = \alpha^6$								

f(a) + f(b)	a = 0	a = 1	a = α	$a = \alpha^2$	$a = \alpha^3$	$a = \alpha^4$	$a = \alpha^5$	$a = \alpha^6$
<i>b</i> = 0	0 + 0 = 0	1 + 0 = 1	$\beta^3 + 0 = \beta^3$	$\beta^6 + 0 = \beta^6$	$\beta^2 + 0 = \beta^2$	$\beta^5 + 0 = \beta^5$	β + 0 = β	$\beta^4 + 0 = \beta^4$
b = 1	0 + 1 = 1	1 + 1 = 0	$\beta^3 + 1 = \beta$	$\beta^6 + 1 = \beta^2$	$\beta^2 + 1 = \beta^6$	$\beta^5 + 1 = \beta^4$	$\beta + 1 = \beta^3$	$\beta^4 + 1 = \beta^5$
$b = \alpha$								
$b = \alpha^2$								
$b = \alpha^3$								
$b = \alpha^4$								
$b = \alpha^5$								
$b = \alpha^6$								

Ompliu i observeu les taules de f(ab) i de f(a)f(b):

f(ab)	a = 0	a = 1	a = α	$a = \alpha^2$	$a = \alpha^3$	$a = \alpha^4$	$a = \alpha^5$	$a = \alpha^6$
<i>b</i> = 0	f(0) = 0	f(0) = 0	f(0) = 0	f(0) = 0	f(0) = 0	f(0) = 0	f(0) = 0	f(0) = 0
b = 1	f(0) = 0	f(1) = 1	$f(\alpha) = \beta^3$	$f(\alpha^2) = \beta^6$	$f(\alpha^3) = \beta^2$	$f(\alpha^4) = \beta^5$	$f(\alpha^5) = \beta$	$f(\alpha^6) = \beta^4$
$b = \alpha$	f(0) = 0	$f(\alpha) = \beta^3$	$f(\alpha^2) = \beta^6$	$f(\alpha^3) = \beta^2$	$f(\alpha^4) = \beta^5$	$f(\alpha^5) = \beta$	$f(\alpha^6) = \beta^4$	f(1) = 1
$b = \alpha^2$								
$b = \alpha^3$								
$b = \alpha^4$								
$b = \alpha^5$								
$b = \alpha^6$								

f(a)f(b)	a = 0	a = 1	a = α	$a = \alpha^2$	$a = \alpha^3$	$a = \alpha^4$	$a = \alpha^5$	$a = \alpha^6$
<i>b</i> = 0	0 · 0 = 0	1 · 0 = 0	$\beta^3 \cdot 0 = 0$	$\beta^6 \cdot 0 = 0$	$\beta^2 \cdot 0 = 0$	$\beta^5 \cdot 0 = 0$	$\beta \cdot 0 = 0$	$\beta^4 \cdot 0 = 0$
b = 1	0 · 1 = 0	1 · 1 = 1	$\beta^3 \cdot 1 = \beta^3$	$\beta^6 \cdot 1 = \beta^6$	$\beta^2 \cdot 1 = \beta^2$	$\beta^5 \cdot 1 = \beta^5$	$\beta \cdot 1 = \beta$	$\beta^4 \cdot 1 = \beta^4$
$b = \alpha$	$0 \cdot \beta^3 = 0$	$1 \cdot \beta^3 = \beta^3$	$\beta^3 \cdot \beta^3 = \beta^6$	$\beta^6 \cdot \beta^3 = \beta^2$	$\beta^2 \cdot \beta^3 = \beta^5$	$\beta^5 \cdot \beta^3 = \beta$	$\beta \cdot \beta^3 = \beta^4$	$\beta^4 \cdot \beta^3 = 1$
$b = \alpha^2$								
$b = \alpha^3$								
$b = \alpha^4$								
$b = \alpha^5$								
$b = \alpha^6$								

Es tracta d'un morfisme? I d'un isomorfisme?

Algunes generalitats de cossos

Isomorfismes de cossos

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos finit

Característica d'un cos finit i cos primer

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Unicital del cos initi de ρ^m elements

Factorització del polinomi $x^{p^m} - x$ Unicitat del cos finit de p^m elements

MARIA BRAS-AMORÓS – COMPLITACIÓ ALGEBRAICA – ENGINYERIA MATEMÀTICA I FÍSICA – LIRV

Extensions de cossos

Definició

Si E és un cos, diem que $F \subseteq E$ és un subcòs de E si F també té estructura de cos amb les mateixes operacions que E. Diem que E és una extensió de F.

Per demostrar que un subconjunt F d'un cos E és un subcòs s'ha de comprovar que

- 1. Si $a, b \in F$, aleshores $a + b, a b \in F$ i $ab \in F$,
- 2. Si $a \in F$, aleshores a té invers a F.

Extensions de cossos

Exercici 3

Demostreu que si E és una extensió de F, aleshores E és un espai vectorial sobre F.

Definició

Anomenem grau de l'extensió de E sobre F a la dimensió de E com a F-espai vectorial, si aquesta és finita. La denotem [E:F].

Extensions de cossos

Exemple

 \mathbb{R} és una extensió de \mathbb{Q} de dimensió infinita mentres que \mathbb{C} és una extensió de \mathbb{R} de dimensió 2. Una base de \mathbb{C} respecte \mathbb{R} és $\{1, i\}$.

Exemple

 $\mathbb{Z}_2[x]/(x^3+x+1)$ és una extensió de \mathbb{Z}_2 de dimensió 3, que té per base respecte \mathbb{Z}_2 els elements $\{1, \alpha, \alpha^2\}$, on α és la classe de x.

٦ıy	uiii	U O	У	C	110	• 1	an	ια	ı	ue	CC	,50	50	3	
	_														

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos fini

Característica d'un cos finit i cos primer

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existencia d'un cos finit de p''' ele

Unicitat del cos finit de p^m elements

Factorització del polinomi $x^{p^m} - x$

Unicitat del cos finit de p^m elements

Polinomis sobre un cos

Donat un cos F direm F[X] al conjunt de polinomis amb coeficients a F en la indeterminada X.

Per exemple, si $F = \mathbb{Z}_3[x]/(x^2 + 2x + 2)$ i diem α a la classe de x en $\mathbb{Z}_3[x]/(x^2 + 2x + 2)$, aleshores $F = \{0, 1, \alpha, \alpha^2, \dots, \alpha^7\}$.

L'element $\alpha^2 X^7 + \alpha^6 X^4 + 2X^3 + 1$ serà un polinomi de F[X]. Podem avaluar-lo, per exemple, en α i ens donarà $\alpha^9 + \alpha^{10} + 2\alpha^3 + 1 = \alpha + \alpha^2 + \alpha^7 + 1 = \dots$

L'element $X^8 + X^5 + 2X + 1$ serà un polinomi que el podem veure tant com un polinomi de $\mathbb{Z}_3[X]$ com un polinomi de F[X] perquè els seus coeficients són de $\mathbb{Z}_3 \subset F$.

Quan la distinció entre x i X quedi clara pel context, emprarem x en ambdós casos. Així, si estem treballant a F, podrem dir que el polinomi $\alpha^2 x^7 + \alpha^6 x^4 + 2x^3 + 1$ és un polinomi de F[x].

Algunes generalitats de cossos

Característica i cardinal d'un cos finit

Ordre multiplicatiu i teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Solucions

Aiguries generalitats de cossos

leomorfiemes de cosso

Isomorfismes de cossos

Extensions de cossos Polinamis sabre un cas

Característica i cardinal d'un cos finit

Característica d'un cos finit i cos primer

Cardinal d'un cos finit

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Unicitat del cos finit de $p^{\prime\prime\prime}$ element

Factorització del polinomi $x^{p^m} - x$

Unicitat del cos finit de p^m elements

Definició

Diem que un cos té **característica** *a* si *a* és el menor enter positiu tal que

$$\underbrace{1+1+\cdots+1}_{a}=0,$$

si aquest enter existeix. Diem que la característica del cos és 0 en cas contrari.

Exemple

El cos $\{a, e, i, o\}$ definit en exemples anteriors té característica 2, el cos $\mathbb{Z}_3[x]/(x^2 + 2x + 2)$ té característica 3.

Lema 1

Si un cos té característica positiva, aleshores la seva característica és necessàriament un nombre primer.

Demostració

Diem F al cos. Si la característica a de F pogués descomposar de manera no trivial en dos enters positius, a = bc, aleshores,

$$0 = \underbrace{1 + 1 + \dots + 1}_{b} + \underbrace{1 + 1 + \dots + 1}_{b} + \dots + \underbrace{1 + 1 + \dots + 1}_{b}.$$

Com que b < a, l'element $\underbrace{1+1+\cdots+1}_{}$ és no nul i, per tant, té un invers

dins de F. Anomenem \tilde{b} aquest invers. Multiplicant la igualtat anterior per \tilde{b} obtenim que $1+1+\cdots+1=0$, en contradicció amb l'elecció de c.

Lema 2

En un cos F de característica p > 0, per tota col·lecció finita d'elements $a_1, \ldots a_i \in F$ es té

$$(a_1 + a_2 + \cdots + a_i)^p = a_1^p + a_2^p + \cdots + a_i^p.$$

Demostració

Per
$$i=2$$
, $(a_1+a_2)^p=\sum_{j=0}^p\binom{p}{j}a_1^ja_2^{p-j}$. Però tots els coeficients $\binom{p}{j}$ són múltiples de p llevat de $\binom{p}{0}$ i $\binom{p}{p}$, d'on es dedueix que $(a_1+a_2)^p=\binom{p}{0}a_2^p+\binom{p}{p}a_1^p=a_1^p+a_2^p$. Per $i>2$, utilitzant el cas anterior i la hipòtesi d'inducció, $(a_1+a_2+\cdots+a_i)^p=((a_1+a_2+\cdots+a_{i-1})^p+a_i^p=a_1^p+a_2^p+\cdots+a_i^p$.

Exercici 4

Què passa en el lema anterior si canviem algun + per -? Indicació: Podeu separar els casos de característica parell i de característica senar.

Cos primer d'un cos finit

Suposem que F és un cos de característica positiva i diem p a la característica de F. El conjunt

$$K = \{1, 1+1, \dots, \underbrace{1+1+\dots+1}_{p-1}, \underbrace{1+1+\dots+1}_{p} = 0\}$$

és un subcòs de F. De fet, K és isomorf a \mathbb{Z}_p .

Definició

El cos primer de
$$F$$
 és el seu subcòs $K = \{1, 1 + 1, \dots, \underbrace{1+1+\dots+1}_{p-1}, \underbrace{1+1+\dots+1}_{p} = 0\}$ o, simplement, \mathbb{Z}_p .

Cos primer d'un cos finit

Lema 3

El cos primer K d'un cos F de característica positiva p compleix que K és el conjunt d'arrels de $x^p - x \in F[x]$.

Demostració

L'element 0 és òbviament una arrel de $x^p - x$ i, pel teorema petit de Fermat, també tots els elements de \mathbb{Z}_p no nuls són arrels de $x^p - x$. Com que F és un cos, el polinomi $x^p - x$ té com a molt p arrels i com que hem vist que els p elements de \mathbb{Z}_p són arrels, aquestes seran exactament totes les arrels.

Com a conseqüència, un element $a \in F$ pertany a K si i només si $a^p = a$.

Cos primer d'un cos finit

Lema 4

Sigui F un cos de característica p > 0. Un polinomi $f(x) \in F(x)$ pertany a $\mathbb{Z}_p[x]$ si i només si $(f(x))^p = f(x^p)$.

Demostració

```
Suposem que f(x) = a_0 + a_1x + a_2x^2 + \cdots + a_rx^r per algun enter r i per a_0, \ldots, a_r \in F.

Aleshores (f(x))^p = (a_0 + a_1x + a_2x^2 + \cdots + a_rx^r)^p = a_0^p + a_1^px^p + a_2^p(x^p)^2 + \cdots + a_r^p(x^p)^r mentres que f(x^p) = a_0 + a_1x^p + a_2(x^p)^2 + \cdots + a_r(x^p)^r.

Per tant, (f(x))^p = f(x^p) si i només si a_i^p = a_i per tot i entre 0 i r, és a dir, si i només si f(x) \in \mathbb{Z}_p[x].
```

Aiguiles generalitats de cossos

Delifficio de cos

Isomorfismes de cossos

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos finit

Característica d'un cos finit i cos primer

Cardinal d'un cos finit

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existencia d'un cos finit de p''' el

Unicitat del cos finit de p^m elements

Factorització del polinomi $x^{p^m} - x$ Unicitat del cos finit de p^m elements

Cardinal d'un cos finit

Teorema 1

Si un cos F és finit, aleshores el seu cardinal és p^m per algun primer p i un enter positiu m.

Demostració

Sigui p la caraterística i sigui K el cos primer de F. Per l'Exercici 3, sabem que F és un K-espai vectorial. Si la dimensió de F sobre K és m, aleshores existeix una base x_1, \ldots, x_m de F sobre K. Aleshores els elements de F són totes les combinacions lineals $\lambda_1 x_1 + \cdots + \lambda_m x_m$ amb tots els $\lambda_i \in K$. Com que K té p elements, necessàriament, $|F| = p^m$.

Algunes generalitats de cossos

Característica i cardinal d'un cos finil

Ordre multiplicatiu i teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Solucions

Aiguiles generalitats de cossos

Isomorfismes de cossos

isomorismes de cossos

Extensions de cossos

Característica i cardinal d'un cos fini

Característica d'un cos finit i cos primer

Ordre multiplicatiu i teorema de l'element primitiu Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^{m} ele

Unicitat del cos finit de p^m elements

Factorització del polinomi $x^{p^m} - x$

Unicitat del cos finit de p^m elements

Ordre multiplicatiu

Lema 5

En un cos finit F de q elements, qualsevol element $\alpha \in F \setminus \{0\}$ satisfà que $a^{q-1} = 1$.

Demostració

Per tot $\beta, \beta' \in F \setminus \{0\}$, es té que $\alpha\beta = \alpha\beta'$ si i només si $\beta = \beta'$ i, a més a més, $\alpha\beta \neq 0$. Per tant, $\{\alpha\beta : \beta \in F \setminus \{0\}\} = \{\beta : \beta \in F \setminus \{0\}\}$ i

$$\prod_{\beta \in F \smallsetminus \{0\}} \alpha \beta = \prod_{\beta \in F \smallsetminus \{0\}} \beta.$$

En conseqüència, $\alpha^{q-1}\prod_{\beta\in F\smallsetminus\{0\}}\beta=\prod_{\beta\in F\smallsetminus\{0\}}\beta$, d'on deduïm que $\alpha^{q-1}=1$, ja que el producte $\prod_{\beta\in F\smallsetminus\{0\}}\beta$ és invertible.

Definició

En un cos finit F, l'ordre multiplicatiu d'un element $\alpha \in F \setminus \{0\}$ és el mínim exponent i > 0 tal que $\alpha^i = 1$. L'anomenem $ord_F(\alpha)$.

Lema 6

En un cos finit F, si $\alpha \in F \setminus \{0\}$ satisfà $\alpha^c = 1$ amb c > 0, aleshores ord $_F(\alpha) \mid c$.

Demostració

Suposem que $a = \operatorname{ord}_F(\alpha)$. Sigui r el residu de la divisió euclidiana de c entre a. Tindrem $\alpha^r = \alpha^c = 1$ amb $0 \le r < a$. Això només és possible si r = 0 i, per tant, si a divideix c.

Corol·lari 1

Si F és un cos finit de q elements i $\alpha \in F \setminus \{0\}$, aleshores $\operatorname{ord}_F(\alpha) \mid q-1$.

Lema 7

En un cos finit F, si existeixen $\alpha, \beta \in F \setminus \{0\}$ amb $a = ord_F(\alpha)$ i $b = ord_F(\beta)$, aleshores existeix $\gamma \in F \setminus \{0\}$ tal que $ord_F(\gamma) = mcm(a, b)$.

Demostració

 $Si \operatorname{mcd}(a,b) = 1$, aleshores $\alpha\beta$ té ordre ab. En efecte, d'una banda $(\alpha\beta)^{ab} = 1^b 1^a = 1$. D'altra banda, si per algun c < ab es compleix $(\alpha\beta)^c = 1$, aleshores $1 = (\alpha\beta)^{bc} = \alpha^{bc}$. Deduïm que $a \mid bc$ i, com que $\operatorname{mcd}(a,b) = 1$, aleshores $a \mid c$. De manera anàloga podem veure que $b \mid c$. Per tant, $ab \mid c$, en contradicció amb l'elecció de c.

П

Lema 7

En un cos finit F, si existeixen $\alpha, \beta \in F \setminus \{0\}$ amb $a = ord_F(\alpha)$ i $b = ord_F(\beta)$, aleshores existeix $\gamma \in F \setminus \{0\}$ tal que $ord_F(\gamma) = mcm(a, b)$.

Demostració

 $Si \operatorname{mcd}(a, b) = d > 1,$

- Podem descompondre d en producte de primers $d = p_1^{e_1} \cdot \dots \cdot p_s^{e_s}$ de manera que $p_1^{e_1+1} \nmid a, \dots, p_k^{e_k+1} \nmid a$ mentres que $p_{k+1}^{e_{k+1}+1} \nmid b, \dots, p_s^{e_s+1} \nmid b$. Diem $d_1 = p_1^{e_1} \cdot \dots \cdot p_k^{e_k}, d_2 = p_{k+1}^{e_{k+1}} \cdot \dots \cdot p_s^{e_s}$. Tindrem $mcd(\frac{a}{d_1}, \frac{b}{d_2}) = 1$ mentres que $mcm(a, b) = \frac{a}{d_1} \cdot \frac{b}{d_2}$.
- α^{d_1} té ordre $\frac{a}{d_1}$. En efecte, d'una banda $(\alpha^{d_1})^{\frac{a}{d_1}} = 1$. D'altra banda, si per algun enter $c < \frac{a}{d_1}$ es compleix $(\alpha^{d_1})^c = 1$, aleshores $\alpha^{d_1c} = 1$ i, per tant, a $|d_1c$. Deduïm que $\frac{a}{d_1}|c$. Anàlogament, β^{d_2} té ordre $\frac{b}{d_2}$.
- ► Com que $mcd(\frac{a}{d_1}, \frac{b}{d_2}) = 1$, aleshores $\alpha^{d_1} \beta^{d_2}$ té ordre $\frac{a}{d_1} \frac{b}{d_2} = mcm(a, b)$.

Aiguiles generalitats de cossos

Isomorfismes de cossos

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos fini

Característica d'un cos finit i cos primer

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Essterització del polinemi x^{p^m}

Factorització del polinomi $x^{p^m} - x$ Unicitat del cos finit de p^m elements

Lema 8

Suposem que en un cos finit F els ordres multiplicatius de tots els elements no nuls són a_1, a_2, \ldots, a_k . Aleshores existeix un element $\xi \in F \setminus \{0\}$ tal que $ord_F(\xi) = mcm(a_1, \ldots, a_k)$.

El lema es pot demostrar per inducció utilitzant el resultat demostrat per dos elements i la recurrència

$$mcm(a_1,\ldots,a_k) = mcm(mcm(a_1,\ldots,a_{k-1}),a_k).$$

Lema 9

En un cos finit de q elements, el mínim comú múltiple dels ordres de tots els elements no nuls del cos és q - 1.

Demostració

Diem M al mínim comú múltiple dels ordres de tots els elements no nuls del cos. D'una banda $M \le q-1$, ja que tots els ordres de tots elements no nuls del cos són divisors de q-1 i, per tant, M serà un divisor de q-1. D'altra banda es pot veure que $M \ge q-1$. En efecte, per a tot $\alpha \in F \setminus \{0\}$ es té $\alpha^M = 1$, per tant tot $\alpha \in F \setminus \{0\}$ és arrel de $x^M - 1 \in F[x]$ i, com que F és un cos, $q-1 \le M$.

Definició

Diem que un element no nul ξ d'un cos finit F de q elements és un **element primitiu** del cos si el seu ordre multiplicatiu és q-1.

De tots els lemes anteriors es dedueix el teorema següent:

Teorema 2: Teorema de l'element primitiu

Tot cos finit té un element primitiu.

Exercici 5

Demostreu que en un cos finit de q elements hi ha exactament $\phi(q-1)$ elements primitius.

Lema 10

En un cos finit F de q elements, per a tot divisor de q-1 existeix un element del cos amb ordre multiplicatiu igual a aquest divisor.

Demostració

Sigui ξ un element primitiu de F i sigui d un divisor de q-1. L'element $\xi'=\xi^{(q-1)/d}$ tindrà ordre d. En efecte, d'una banda $\xi'^d=1$. D'altra banda, si $\xi'^c=1$, aleshores $\xi^{c(q-1)/d}=1$ amb el que $c(q-1)/d\geq q-1$ i, per tant, $c\geq d$.

Algunes generalitats de cossos

Característica i cardinal d'un cos fini-

Ordre multiplicatiu i teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Solucions

Algunes generalitats de cossos

Isomorfismes de cossos

Isomorfismes de cossos

Extensions de cossos

Característica i cardinal d'un cos finit

Característica d'un cos finit i cos primer

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p''' elements

Factorització del polinomi $x^{p^m} - x$

Unicitat del cos finit de p^m elements

Polinomi mínim

Suposem que tenim un cos finit F de p^m elements.

Observem que si un element $\gamma \in F$ té $ord_F(\gamma) = r$, aleshores anul·la els polinomis $x^r - 1$ i $x^{p^m - 1} - 1$.

Considerem el polinomi

$$m_{\gamma}(x) = (x - \gamma)(x - \gamma^{p})(x - \gamma^{p^{2}}) \cdot \cdots \cdot (x - \gamma^{p^{s-1}}) \in \mathbb{Z}_{p}[x],$$

on s és el mínim enter positiu tal que $\gamma^{p^s} = \gamma$.

En particular, $s \le m$ i, si γ és primitiu, aleshores s = m.

Veurem que $m_{\gamma}(x) \in \mathbb{Z}_p[x]$ i que té grau mínim d'entre tots els polinomis de $\mathbb{Z}_p[x]$ que s'anul·len quan els avaluem a γ .

Per això s'anomena el **polinomi mínim** de γ respecte \mathbb{Z}_p

Polinomi mínim

Lema 11

Sigui F un cos finit i sigui $\gamma \in F \setminus \{0\}$.

- 1. $m_{\gamma}(x) \in \mathbb{Z}_p[x]$.
- 2. Tot polinomi de $\mathbb{Z}_p[x]$ que s'anul·li a γ serà un múltiple de $m_{\gamma}(x)$.
- 3. $m_{\gamma}(x)$ és irreductible a $\mathbb{Z}_p[x]$.

Demostració

- 1. Observem que $(m_{\gamma}(x))^p = (x^p \gamma^p)(x^p \gamma^{p^2}) \cdot \dots \cdot (x^p \gamma^{p^{s-1}})(x^p \gamma) = m_{\gamma}(x^p)$. Per tant, $m_{\gamma}(x) \in \mathbb{Z}_p[x]$.
- Si un polinomi f(x) ∈ ℤ_p[x] satisfà f(γ) = 0, aleshores (f(γ))^{p'} = 0 per qualsevol i. Però (f(γ))^{p'} = f(γ^{p'}) = 0 i, per això, f haurà de tenir les arrels γ, γ^p, ..., γ^{ps-1}. En conseqüència, haurà de ser un múltiple de m_γ(x).
- Com que m_γ (γ) = 0, algun dels factors irreductibles de m_γ (x) s'haurà d'anul·lar també a γ. Pel
 punt anterior, aquest factor irreductible haurà de ser un múltiple de m_γ (x) amb el que no queda
 més remei que m_γ (x) sigui el propi factor irreductible.

Algunes generalitats de cossos

Isomorfismes de cossos

isomorismes de cossos

Extensions de cossos

O = = = t = x' = t = = i = = = l = l' = = l = l' = = l

Característica i cardinal d'un cos fini

Característica d'un cos finit i cos primer

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p''' elements

Factorització del polinomi $x^{p^m} - x$

Factoritzacio del polinomi $x^p - x$ Unicitat del cos finit de p^m elements

Caracterització dels cossos finits

Teorema 3: Caracterització dels cossos finits

Tot cos finit és de la forma $\mathbb{Z}_p/(f(x))$ amb p primer i f(x) un polinomi irreductible de $\mathbb{Z}_p[x]$.

Demostració

Sigui F un cos finit i sigui p la seva característica. Considerem un element primitiu $\xi \in F$ i el seu polinomi mínim $m_{\xi}(x) \in \mathbb{Z}_p[x]$. Aleshores F és el cos $\mathbb{Z}_p[x]/(m_{\xi}(x))$.

MARIA BRAS-AMORÓS – COMPUTACIÓ ALGERRAICA – ENGINYERIA MATEMÀTICA I EÍSICA – LIBV

Algunes generalitats de cossos

Característica i cardinal d'un cos finit

Ordre multiplicatiu i teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Solucions

Aiguries generalitats de cossos

Definicio de cos

Isomorfismes de cossos

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos finit

Característica d'un cos finit i cos primer

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p'' elements

Factorització del polinomi $x^{p^m} - x$

Unicitat del cos finit de p^m elements

MARIA BRAS-AMORÓS - COMPLITACIÓ ALGERRAICA - ENGINYERIA MATEMÀTICA I FÍSICA - LIRV

Donat un cos qualsevol F i un polinomi f(x) de F[x] podem definir les classes de congruència dels elements de F[x] mòdul el polinomi f(x) tal i com havíem fet per $\mathbb{Z}_p[x]$.

El conjunt de classes formarà un cos si i només si el polinomi f(x) és irreductible a F[x]. El grau de l'extensió serà el grau del polinomi.

Exemple

El polinomi $x^2 + 1$ és irreductible a $\mathbb{R}[x]$. En el conjunt de classes de $C = \mathbb{R}[x]/(x^2 + 1)$ podem anomenar i a la classe de x. Qualsevol element de C el podrem escriure com a + bi amb $a, b \in \mathbb{R}$. Les operacions suma i producte seran

$$(a+bi) + (a'+b'i) = (a+a') + (b+b')i,$$

$$(a+bi)(a'+b'i) = (aa') + (ab'+a'b)i + (bb')i^2 = (aa'-bb') + (ab'+a'b)i.$$

Observem que $C \cong \mathbb{C}$.

Definició

Donat un cos F i un polinomi irreductible $f(x) \in F[x]$, del cos format pel conjunt de classes de congruència mòdul el polinomi f(x) en diem l'extensió de F pel polinomi f(x) i el denotem F[x]/(f(x)).

És fàcil comprovar que F[x]/(f(x)) tindrà la mateixa característica i el mateix cos primer que F.

Observem com el polinomi f(x), que no tenia arrels a F, ara té l'arrel corresponent a la classe de x dins de F[x]/(f(x)). En particular, el nombre d'arrels de f(x) ha augmentat, de F a F[x]/(f(x)).

Lema 12

Per tot enter positiu m existeix una extensió de \mathbb{Z}_p que conté totes les arrels de $x^{p^m} - x$.

Demostració

Diem $E_1 = \mathbb{Z}_p$. Suposem que totes les arrels de $x^{p^m} - x$ dins de E_1 són $\alpha_1 = 0, \alpha_2, \dots, \alpha_{n_1}$ (poden ser repetides). Aleshores.

$$x^{p^m} - x = x(x - \alpha_2) \cdots (x - \alpha_{n_1}) t_1(x)$$

per un únic polinomi mònic $f_1(x) \in E_1[x]$. Diem $i_1(x)$ a un qualsevol dels factors irreductibles de $f_1(x)$ dins de $E_1[x]$. Construïm $E_2 = E_1[x]/(i_1(x))$.

Ara suposem que totes les arrels de $x^{p^m} - x$ dins de E_2 són $\alpha_1 = 0, \alpha_2, \dots, \alpha_{n_1}, \dots, \alpha_{n_2}$ (amb repeticions si cal). Necessàriament, $n_2 > n_1$ per la manera com hem construït E_2 . A més, com que E_2 és un $\cos, n_2 \le \operatorname{grau}(x^{p^m} - x) = p^m$. Així,

$$n_1 < n_2 \le p^m.$$

Mentres $n_i < p^m$ podem repetir el procediment. És a dir, considerem l'únic polinomi mònic $f_2(x) \in E_2[x]$ tal que

$$x^{p^m}-x=x(x-\alpha_2)\cdots(x-\alpha_{n_2})f_2(x).$$

Diem $i_2(x)$ a un qualsevol dels factors irreductibles de $f_2(x)$ dins de $E_2[x]$ i construïm $E_3 = E_2[x]/(i_2(x))$. Ara totes les arrels de $x^{p^m} - x$ dins de E_3 seran $\alpha_1 = 0, \alpha_2, \ldots, \alpha_{n_1}, \ldots, \alpha_{n_2}, \ldots, \alpha_{n_3}$ amb

$$n_1 < n_2 < n_3 \le p^m$$
.

En algun moment n_i coincidirà amb p^m i, en aquest moment, E_i contindrà totes les arrels de $x^{p^m} - x$.

Definició

Donat un cos F i un polinomi $f(x) = \sum_{i=0}^{d} a_i x^i \in F[x]$, definim la **derivada formal** de f(x) com

$$f'(x) = \sum_{i=1}^d ia_i x^{i-1}.$$

Exercici 6

Comproveu les següents propietats:

- (f(x)g(x))' = f(x)'g(x) + f(x)g'(x),
- (f(g(x)))' = f'(g(x))g'(x).

Lema 13

Si una extensió E de F conté totes les arrels de $f(x) \in F[x]$, aleshores totes les arrels en E són diferents si i només si mcd(f(x), f'(x)) = 1.

Demostració

```
Si f(x) tingués una arrel múltiple \alpha, aleshores f(x) = (x-\alpha)^2 g(x) amb g(x) un polinomi de grau dos menys que el grau de f(x). Aleshores f'(x) = 2(x-\alpha)g(x) + (x-\alpha)^2 g'(x). Observem que en aquest cas (x-\alpha) divideix tant f(x) com f'(x) i, per tant, mcd(f(x), f'(x)) \neq 1. Recíprocament, si mcd(f(x), f'(x)) \neq 1, el polinomi r(x) = mcd(f(x), f'(x)) \neq 1 també tindrà totes les arrels a E. Sigui \alpha una arrel de r(x). Escrivim f(x) = (x-\alpha)h(x) amb h(x) un polinomi de grau un menys que el grau de f(x). Tindrem f'(x) = h(x) + (x-\alpha)h'(x), d'on deduïm que (x-\alpha) ha de dividir h(x) i, per tant, \alpha és una arrel múltiple de f(x).
```

El lema següent és una conseqüència del Lema 12, el Lema 13, i el fet que la derivada formal de $x^{p^m} - x$ és -1 a \mathbb{Z}_p .

Lema 14

Per tot enter positiu m existeix una extensió de \mathbb{Z}_p que conté totes les arrels de $x^{p^m} - x$ i totes elles són diferents.

Aiguries generalitats de cossos

Definicio de cos

Isomorfismes de cossos

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos fini

Característica d'un cos finit i cos primer

Cardinal d'un cos finit

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Factorització del polinomi $x^{p^m} - x$

Unicitat del cos finit de p^m elements

Existència d'un cos finit de p^m elements

Teorema 4: Existència de cossos finits

Per tot enter positiu m existeix un cos finit de cardinal p^m .

Demostració

Pel Lema 14 existeix una extensió E de \mathbb{Z}_p que conté totes les arrels de $x^{p^m} - x$ i totes elles són diferents. Considerem el conjunt $A \subseteq E$ de totes les arrels de $x^{p^m} - x$. Com que sabem que són diferents i el grau de $x^{p^m} - x$ és p^m podem afirmar que el cardinal de A és exactament p^m . Vegem que A és un subcòs de E (i, per tant, és un cos). Suposem que A A0, aleshores hem de comprovar que A1, A2, A3, A4, A5, A6, A7, A8, A9, A9,

$$(a+b)^{p^m}-(a+b)=a^{p^m}+b^{p^m}-a-b=(a^{p^m}-a)+(b^{p^m}-b)=0,$$

$$(a-b)^{p^m}-(a-b)=a^{p^m}-b^{p^m}-a+b=(a^{p^m}-a)-(b^{p^m}-b)=0,$$

•
$$(ab)^{p^m} - (ab) = a^{p^m}b^{p^m} - ab = ab - ab = 0,$$

$$(a^{-1})^{p^m}-a^{-1}=(a^{p^m})^{-1}-a^{-1}=a^{-1}-a^{-1}=0.$$

Algunes generalitats de cossos

Característica i cardinal d'un cos finil

Ordre multiplicatiu i teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Solucions

algunes generalitats de cossos

Delinicio de cos

Isomorfismes de cossos

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos fini

Característica d'un cos finit i cos primer

Cardinal d'un cos finit

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Factorització del polinomi $x^{p^m} - x$ Unicitat del cos finit de p^m elements

Lema 15

En un cos finit F de p^m elements, els seus p^m elements són exactament les arrels de $x^{p^m} - x$. És a dir,

$$\prod_{\alpha \in F} (\mathbf{X} - \alpha) = \mathbf{X}^{p^m} - \mathbf{X}$$

Demostració

Com que els p^m elements de F són arrels de x^{p^m} – x tenim que $\prod_{\alpha \in F} (x - \alpha)$ divideix x^{p^m} – x. Però com que tots dos polinomis són mònics i tenen el mateix grau, han de coincidir.

En particular, totes les arrels de x^{p^m} – x dins de F són diferents.

Exercici 7

Demostreu que els factors irreductibles de la descomposició de x^{ρ^m} – x dins de $\mathbb{Z}_{\rho}[x]$ són tots diferents.

Exercici 8

Demostreu que si $f(x) \in \mathbb{Z}_p[x]$ és irreductible a $\mathbb{Z}_p[x]$, aleshores f(x) ha de dividir $x^{p^{\text{grau}(f)}} - x$.

Exercici 9

Sigui F un cos finit de p^m elements. Si $\gamma \in F$ definim $C_{\gamma} = \{\gamma, \gamma^p, \gamma^{p^2}, \dots, \gamma^{p^{s-1}}\}$ on s és el mínim enter positiu tal que $\gamma^{p^s} = \gamma$.

- ▶ Qui són C₀ i C₁?
- ▶ Demostreu que si $\gamma' \notin C_{\gamma}$, aleshores $C_{\gamma} \cap C_{\gamma'} = \emptyset$.
- ▶ Demostreu que existeix un subconjunt $\Gamma(F) = \{\gamma_1, \dots, \gamma_r\} \subseteq F$ tal que F és la unió disjunta de $C_{\gamma_1}, \dots, C_{\gamma_r}$.
- Demostreu que

$$x^{p^m}-x=\prod_{\gamma\in\Gamma(F)}m_\gamma(x).$$

Exercici 10

Demostreu que en un cos finit F de p^m elements,

- Si $p^m \neq 2$, $\sum_{\alpha \in F \setminus \{0\}} \alpha = 0$

algunes generalitats de cossos

Definició de cos

Isomorfismes de cossos

Extensions de cossos

Polinomis sobre un cos

Característica i cardinal d'un cos fini

Característica d'un cos finit i cos primer

Cardinal d'un cos finit

Ordre multiplicatiu i teorema de l'element primitiu

Ordre multiplicatiu

Teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Polinomi mínim

Caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Existència d'un cos amb les arrels de $x^{p^m} - x$

Unicitat del cos finit de p^m elements

Factorització del polinomi $x^{p^m} - x$

Unicitat del cos finit de p^m elements

Teorema 5: Unicitat del cos finit de p^m elements

Tots els cossos finits del mateix cardinal són isomorfs.

Demostració

Suposem que E i F són dos cossos finits amb el mateix cardinal. Pel Teorema 1 sabem que aquest cardinal és p^m per algun primer p i algun enter positiu m. Pel Teorema 2 sabem que E té un element primitiu que anomenem E. Com que E és primitiu, el grau del seu polinomi mínim és E m. Per l'Exercici 9 sabem que el polinomi mínim de E coincidirà amb el polinomi mínim d'algun element E E sabem que E suna E base de E mentres que E suna E base de E i que, per tot exponent E i, les coordenades de E en la base E in E suna E coincidiran amb les coordenades de E en la base E suna E coincidiran amb les coordenades de E en la base E suna E coincidiran amb les coordenades de E en la base E suna E coincidiran amb les coordenades de E en la base E suna E sun

MARIA BRAS-AMORÓS – COMPUTACIÓ AI GEBRAICA – ENGINYERIA MATEMÀTICA I FÍSICA – URV

П

Teorema 5: Unicitat del cos finit de p^m elements

Tots els cossos finits del mateix cardinal són isomorfs.

Demostració

Definim l'aplicació $f: E \to F$ que assigna $0 \in E$ a $0 \in F$ i que per tot i > 0 assigna $f(\xi^i) = \zeta^i$. Vegem que és un isomorfisme.

$$\begin{split} f(\xi^i + \xi^j) &=& f\left(\ (\lambda^i_0 + \lambda^j_1 \xi + \dots + \lambda^i_{m-1} \xi^{m-1}) \ + \ (\lambda^j_0 + \lambda^j_1 \xi + \dots + \lambda^j_{m-1} \xi^{m-1}) \ \right) \\ &=& f\left(\ (\lambda^i_0 + \lambda^j_0) 1 + (\lambda^i_1 + \lambda^j_1) \xi + \dots + (\lambda^i_{m-1} + \lambda^j_{m-1}) \xi^{m-1} \ \right) \\ &=& f\left(\xi^{\log\left(\ (\lambda^i_0 + \lambda^j_0) 1 + \dots + (\lambda^i_{m-1} + \lambda^j_{m-1}) \xi^{m-1} \ \right) \right) \\ &=& \zeta^{\log\left(\ (\lambda^i_0 + \lambda^j_0) 1 + \dots + (\lambda^i_{m-1} + \lambda^j_{m-1}) \zeta^{m-1} \ \right) \\ &=& (\lambda^i_0 + \lambda^j_0) 1 + \dots + (\lambda^i_{m-1} + \lambda^j_{m-1}) \zeta^{m-1} \\ &=& (\lambda^i_0 + \lambda^j_1 \zeta + \dots + \lambda^j_{m-1} \zeta^{m-1}) \ + \ (\lambda^j_0 + \lambda^j_1 \zeta + \dots + \lambda^j_{m-1} \zeta^{m-1}) \\ &=& \zeta^i + \zeta^j = f(\xi^i) + f(\xi^j). \end{split}$$

Teorema 5: Unicitat del cos finit de p^m elements

Tots els cossos finits del mateix cardinal són isomorfs.

Demostració

De la mateixa manera podem provar que $f(\xi^i - \xi^j) = f(\xi^i) - f(\xi^j)$. D'altra banda,

$$\begin{array}{lll} f(\xi^{i}\xi^{j}) & = & f(\xi^{i+j}) & f((\xi^{i})^{-1}) & = & f(\xi^{p^{m}-1-i}) \\ & = & \zeta^{i+j} & = & \zeta^{p^{m}-1-i} \\ & = & \zeta^{i}\zeta^{j} & = & (\zeta^{i})^{-1} \\ & = & f(\xi^{i})f(\xi^{j}), & = & (f(\xi^{i}))^{-1}. \end{array}$$

Pel teorema anterior, donada una potència de primer p^m podem escriure \mathbb{F}_{p^m} per denotar *l'únic* cos finit de p^m elements.

Exercici 11

Construïu \mathbb{F}_9 utilitzant dos polinomis generadors diferents.

- Doneu les taules d'equivalències potencial polinòmica en ambdós casos.
- Expliciteu l'isomorfisme que existeix entre els dos cossos.

Exercici 12

Pel que hem dit, el cos finit $\{a, e, i, o\}$ que té taula de sumes i de producte

+	а	е	İ	0
а	0	i	е	а
е	i	0	а	е
i	е	а	0	i
0	а	е	i	0

*	а	e	i	0
а	е	i	а	0
е	i	а	e	0
i	а	е	i	0
0	0	0	0	0

ha de ser isomorf a \mathbb{F}_4 . Construïu \mathbb{F}_4 a partir del seu cos primer i un polinomi generador i doneu la correspondència entre els elements obtinguts en aquesta construcció i els elements $\{a, e, i, o\}$.

Algunes generalitats de cossos

Característica i cardinal d'un cos fini-

Ordre multiplicatiu i teorema de l'element primitiu

Polinomi mínim i caracterització dels cossos finits

Existència d'un cos finit de p^m elements

Unicitat del cos finit de p^m elements

Solucions

Solució de l'Exercici 1

Sigui *a* un element de l'anell i sigui 0 el neutre per l'operació ⊕. Tenim

$$0 \otimes a = (0 \oplus 0) \otimes a = (0 \otimes a) \oplus (0 \otimes a).$$

Si ara sumem l'oposat de $0 \otimes a$ a banda i banda de la igualtat obtenim que

$$0 = 0 \otimes a$$

com volíem veure.

Torna a l'exercici (p.7)

Solució de l'Exercici 2

Sigui *a* un element de l'anell i sigui 0 el neutre per l'operació ⊕. Tenim

$$0 \otimes a = (0 \oplus 0) \otimes a = (0 \otimes a) \oplus (0 \otimes a).$$

Si ara sumem l'oposat de $0 \otimes a$ a banda i banda de la igualtat obtenim que

$$0 = 0 \otimes a$$

com volíem veure.

Torna a l'exercici (p.11)