COLLEGE OF ENGINEERING & TECHNOLOGY

An AUTONOMOUS Institution

Approved by AICTE • Affiliated to JNTUK • Accredited by NBA, NAAC with "A+" Grade Recognized by UGC under section 2(f) and 12(B) of UGC Act, 1956

Ph: +91 99591 76665 Email: office@acet.ac.in Website: www.acet.ac.in

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

RELEVANCE TO PO's & PSO's:

Project Title: Implementation of 4-Bit RCA using Quantum

Dot Cellular Automata and Mentor Graphics.

Guide Name: T. Anjaiah, M.Tech(Ph.D), Associate Professor.

Students Name: D.Harsha(20P31A04J4)

P.Harshitha(20P31A04J5)

V.Dhanupya(20P31A04O1)

M.Sharan Teja(20P31A04L5)

ABSTRACT	PO's	PSO's
	Mapping	Mapping
QCA technology is a new platform, which is a		
transistor less and wire-less technology, hence it		
is one of the best alternatives to CMOS		
technology for developing low power and high-		
speed digital circuits at nano-scale level. The		
limitations of CMOS technology such as large	DO1	
number of transistors and wire connections in a	PO1 PO3	
small area was overcome by QCA technology.	PO5	PSO1 PSO2
Therefore, we have chosen the QCA	PO8 PO9	1302
technology. Adder is a basic architecture in	PO10 PO12	
constructing all digital circuits. First, a full	1012	
adder is designed in both QCA as well as		
Mentor Graphics which has improved		
performance in propagation delay and cell		
count. Then with the help of 4 full adders a 4-		
Bit Ripple Carry Adder is implemented in QCA		
and compared the results with the existing RCA		
in QCA. From the comparison, it is found that		
the proposed ripple carry adder has better		
performance than the existing adder circuits.		

PO1	To implement the knowledge of VLSI to implement RCA.					
PO3	Designed the QCA of 4-Bit RCA by using gates.					
PO5	We used modern tool named QCA to design the RCA.					
PO8	The basic rules have been followed while developing this project.					
PO9	Able to work effectively as an individual, and as a leader/member of team.					
PO10	Good communication among members for better output.					
PO12	The modifications can be done to this model for the other purpose.					
	PO1 PO2			PO3		
Eng	gineering	Pro	blem	Design		
Kn	Knowledge		alysis	&Development		
				of		
				Solution		
	PO4	PO5		PO6		
Investigations		Modern toolusage		The Engineer&		
			Society			
	PO7		O8	PO9		
	Environment &		hics	Individual		
Sustainability				&team		
				work		
			D11	PO12		
Communication		ProjectManagement		Life-		
		&Fi	nance	longLearning		
	PSO1 PSO2					
	Industry-ready in the area of			To provide well equipped		
			frastructure where			
VLSI. anindividual is mentored to develop			is mentored to			
			innovative electronics project			

CONCLUSION: QCA full adder circuit is proposed which is designed with minimum number of QCA cells. The proposed full adder requires only 39 QCA cells, an area of 0.06 μm2 to implement its function. Then an efficient 4-bit Ripple Carry Adder (RCA) is designed based on the proposed full adder that performs higher end addition in an effective way. Also, the simulation results shows that the proposed 4-bit Ripple Carry Adder (RC A) requires only 208 QCA cells, an area of 0.3 μm2 and delay of about 1.25 clock cycles to implement its function with enhanced performance in terms of delay, area and cell count. In future, high-speed adders which play an important role in multiplier designs could be designed and its computational performance could be improved further.