Assignment

11.15-23

ee23btech11215 - Penmetsa Srikar Varma

QUESTION:

- Q23) A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium.
- (a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propagation?
- (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after every 20 s), Is the frequency of note produced by whistle equal to 1/20 or 0.05 Hz?

SOLUTION:
Table of Parameters

Parameter	Name of Parameter
ν_0	first harmonic
$\nu_{ m n}$	n th harmonic
1	length of short pip
V	velocity of sound wave
λ	wavelength of sound wave
A	amplitude of sound wave
x,y	co-ordinates of point on wave
k	wave number
ω	angular frequency of wave
t	time

(a) Let us assume, equation of sound pulse (in resonance) produced in short pip and is given by:

$$y = A \sin kx \cos \omega t$$
 (1)

Hence from (1) we know that, if pip is closed at one end

$$v_{\rm n} = {\rm n} \left(\frac{{\rm V}}{2{\rm L}} \right) \text{ and } 1 = {\rm n} \left(\frac{\lambda}{2} \right)$$
 (2)

if pip is opened at both ends

$$v_{\rm n} = (2n+1) \left(\frac{\rm V}{4\rm L}\right) \text{ and } 1 = (2n+1) \left(\frac{\lambda}{4}\right)$$
 (3)

Therefore, from (2) and (3)

We can say that frequency ν_n and wavelength λ of sound pulse in pip are not constant bu velocity V of sound pulse in pip is constant

(b) And we know the relation that:

$$v_{\rm n} = n \left(\frac{\rm V}{2\rm L} \right) \text{ or } v_{\rm n} = (2\rm n + 1) \left(\frac{\rm V}{4\rm L} \right)$$
 (4)

Hence, The frequency of the note v_n produced will not be equal to 0.05 Hz or $\frac{1}{20}$ Hz