Siddhardhan

Matrix Operations

Math for Machine Learning

Matrix Operations

- 1. Matrix Addition
- 2. Matrix Subtraction
- 3. Multiplying a Matrix by a Scalar
- 4. Multiplying 2 Matrices

Scalars; Vectors; Matrix

Scalar

24

Matrix

Matrix in Machine Learning

House Price Dataset

crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	b	Istat	price
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4

4 x 14 Matrix

Matrix Addition

Rule: Two Matrices can be added only if the have the same shape, that is, both the matrix should have the same number of rows and columns

$$\begin{bmatrix} 2 & 3 \\ 10 & 5 \end{bmatrix} + \begin{bmatrix} 10 & 5 \\ 20 & 4 \end{bmatrix} = \begin{bmatrix} 12 & 8 \\ 30 & 9 \end{bmatrix}$$
2 x 2
2 x 2

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 3 \end{bmatrix} + \begin{bmatrix} 5 & 2 \\ 3 & 6 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 7 & 3 \\ 7 & 8 \\ 8 & 8 \end{bmatrix}$$

$$3 \times 2$$

$$3 \times 2$$

$$3 \times 2$$

$$3 \times 2$$

Matrix Subtraction

Rule: Two Matrices can be subtracted only if they have the same shape, that is, both the matrix should have the same number of rows and columns

$$\begin{bmatrix} 2 & 3 \\ 10 & 5 \end{bmatrix} - \begin{bmatrix} 10 & 5 \\ 20 & 4 \end{bmatrix} = \begin{bmatrix} -8 & -2 \\ -10 & 1 \end{bmatrix}$$

$$2 \times 2$$

$$2 \times 2$$

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 3 \end{bmatrix} - \begin{bmatrix} 5 & 2 \\ 3 & 6 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} -3 & -1 \\ 1 & -4 \\ 4 & -2 \end{bmatrix}$$

$$3 \times 2$$

$$3 \times 2$$

$$3 \times 2$$

Multiplying a Matrix by a Scalar

$$\begin{array}{ccc}
5 & \mathbf{x} & \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} & = \begin{bmatrix} 5 \times 2 \\ 5 \times 4 \\ 5 \times 6 \end{bmatrix} & = \begin{bmatrix} 10 \\ 20 \\ 30 \end{bmatrix} \\
3 \times 1 & 3 \times 1
\end{array}$$

Note: Vectors are a type of Matrix with either one row or one column

Multiplying 2 Matrices

Rule: The number of columns in the First matrix should be equal to the number of rows in the Second Matrix

The resultant matrix will have the same number of rows as the first matrix & the same number of columns as the Second Matrix

Can be multiplied. Resultant matrix will have the shape 2 x 2

Cannot be multiplied.

Multiplying 2 Matrices

$$\begin{bmatrix} 2 & 4 \\ 3 & 6 \end{bmatrix} \qquad x \qquad \begin{bmatrix} 5 & 6 \\ 3 & 4 \end{bmatrix} \qquad = \qquad \begin{bmatrix} 2x5 + 4x3 & 2x6 + 4x4 \\ 3x5 + 6x3 & 3x6 + 6x4 \end{bmatrix} \qquad = \qquad \begin{bmatrix} 22 & 28 \\ 33 & 42 \end{bmatrix}$$

$$= 2x2$$

$$\begin{bmatrix} -6 \\ -4 \\ 27 \end{bmatrix} \qquad \begin{bmatrix} 10 & 5 \\ 20 & 10 \\ 30 & 15 \end{bmatrix} \qquad + \qquad \begin{bmatrix} 10 & 5 \\ 20 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 1 \\ 4 & 2 \\ 6 & 3 \end{bmatrix} + \begin{bmatrix} 5 & 2 \\ 3 & 6 \\ 2 & 5 \end{bmatrix} = ? \begin{bmatrix} 7 & 3 \\ 8 & 7 \\ 5 & 11 \end{bmatrix}$$