

作品名稱:

天「次」良機-

利用Excel及幾何尺規作圖探討m次方根之探討

作者:陳彥岑、周怡辰

指導老師:林鳳美

中學生小論文比賽 - 數學類

中學生1110315梯次小論文寫作比賽 18件獲獎 4件優等

前言 (Introduction)

研究動機 (Research Motivation)

直式開n 的m次方根

- 證明出開平方根速算法
- Excel探討*m* 次方根
- 利用幾何尺規作圖

研究問題 (Research Problem)

1.n 如何開m次方根呢? 2.如何運用Excel探討m次方根? 3.如何尺規作圖出 $\sqrt[n]{n}$

研究架構 (Research Architecture)

直式開m次方法

推廣直式開方法至直式開 m 次方法

圖 1:直式開平方法

$$\sqrt{n} = a_0 \cdot a_1 a_2 a_3 L$$

$$\sqrt[3]{n} = a_0 \cdot a_1 a_2 a_3 L$$

$$x_2 = \alpha_0 \cdot \alpha_1 \alpha_2 a_3 L$$

$$x_2 = \alpha_0 \cdot \alpha_1 \alpha_2 a_3 L$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_3 = 2 \cdot 1 \quad 5$$

$$x_4 = 2 \cdot 1 \quad 5$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_3 = 2 \cdot 1 \quad 5$$

$$x_4 = 2 \cdot 1 \quad 5$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_3 = 2 \cdot 1 \quad 5$$

$$x_4 = 2 \cdot 1 \quad 5$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_3 = 2 \cdot 1 \quad 5$$

$$x_4 = 2 \cdot 1 \quad 5$$

$$x_3 = 2 \cdot 1 \quad 5$$

$$x_4 = 2 \cdot 1 \quad 5$$

$$x_4 = 2 \cdot 1 \quad 5$$

$$x_2 = 2 \cdot 1 \quad 5$$

$$x_3 = 2 \cdot 1 \quad 5$$

$$x_4 = 2 \cdot 1 \quad 5$$

圖 2:直式開立方法

開平方法的速算法原理

設n為正整數,若 $n = \alpha^2 + \beta$,其中 α 為正整數且 $0 \le \beta < 1$,則

$$\sqrt{n} = \alpha + \frac{\beta}{2\alpha + \frac{\beta$$

例如:

$\sqrt{n} \approx \alpha + \frac{\beta}{2\alpha}$	\sqrt{n} 的近似值	$\sqrt{n} \approx \alpha + \frac{\beta}{2\alpha}$	\sqrt{n} 的近似值
$\sqrt{312} \approx 17 + \frac{23}{2 \cdot 17} \approx 17.676$	$\sqrt{312} \approx 17.664$	$\sqrt{347} \approx 18 + \frac{23}{2 \cdot 18} \approx 18.639$	$\sqrt{347} \approx 18.628$
$\sqrt{325} \approx 18 + \frac{1}{2 \cdot 18} \approx 18.003$	$\sqrt{325} \approx 18.028$	$\sqrt{354} \approx 18 + \frac{30}{2 \cdot 18} \approx 18.833$	$\sqrt{354} \approx 18.815$
$\sqrt{334} \approx 18 + \frac{10}{2 \cdot 18} \approx 18.278$	$\sqrt{334} \approx 18.276$	$\sqrt{363} \approx 19 + \frac{2}{2 \cdot 19} \approx 19.053$	$\sqrt{363} \approx 19.053$

利用Excel探討根號n的近似值

SQRT函數

利用Excel中的特定功能SQRT函數求n的近似值,

其語法是: SQRT (number)

POWER函數

利用Excel中的特定功能

POWER函數求 ▽√n 的近似值,

其語法是: POWER (number, power)

	B2 ţ	8 0	fx = SQRT(A2)
	Α		В
1	輸入值		SQRT執行後
2		100	10
3		144	12
4		137	11.7046999

圖 3:SQRT函數

	B3 $ \updownarrow \otimes \bigcirc $		
	Α	В	С
1	底數	2	6
2	指數	0.25	0.5
3	函數值	1.18920712	2.44948974

	B3 🕴 🛇 📀	fx = POWER(\$B\$1,B2)	
	Α	В	С
1	底數	7	20
2	指數	0.125	13
3	函數值	1.27537311	8.192E+16

圖 4: POWER函數

幾何尺規作圖√n

尺規作圖 \sqrt{n}

方法1:在圖5當中

以原點為圓心半徑為 $\sqrt{n+1}$ 畫弧交 X 軸於 (n+1,0)

方法2:在圖6當中

重複堆疊直角三角形繪出畢氏螺旋,以找到 \sqrt{n}

圖 5: 尺規作圖 \sqrt{n}

圖 6:畢式螺旋

建構2‴次方根

參考圖7可由**直角三角形母子性質**繪出n的 2^m 次方根

圖 7:建構⅔√√ 次方根

幾何作圖 $a+b\sqrt{n}$

$a + b\sqrt{n}$ 的近似值

- > 參考圖 6 ,從證明 $\phi = \frac{1+\sqrt{5}}{2}$ 可類推 $a+b\sqrt{n}$ 的近似值
- 》參考圖 7 · 若 ABF_1E_1 為黃金矩形, 則 $\frac{x+1}{x} = \frac{x}{1} = \phi$ 解得 $x = \frac{t+\sqrt{t^2+4}}{2}$

圖 8:黃金矩形

圖 9:
$$\phi = \frac{1+\sqrt{5}}{2} = x$$

圖
$$10: a + b\sqrt{n}$$
 的近似值

結論 (Conclusions)

- ▶利用直式開方法及直式立方法進而推廣至直式開*m* 次方
- \triangleright 開平方法的速算法當在 n 值越大時 \sqrt{n} 越精確
- \triangleright 由直角三角形的母子性質可知 n 的 $^{2^m}$ 次方根必為規矩數
- \triangleright 從建構黃金矩形類推出 $a + b\sqrt{n}$ 的近似值
- ✓ 藉由探討直式找到開m次方的公式,期許找到更加簡潔的方法
- ✓ 進一步探討√n 的幾何性質

參考文獻資料 (References)

- ▶ 丘宏義譯 (Mario Livio 著)。黃金比例。遠流出版公司
- ▶ 李政憲、陳柏昇、馮鈞羿 (2017)。從費氏數列到黃金矩形。**科學教育月刊**, 405 (12)。
- ➤ 孫文先編譯(1989)。**神祕有趣的數學**。九章出版社。
- ➤ 華羅庚 (1957)。**數論導引**。科學出版社。

心得感言

10103 周怡辰

課本和講義大多會提到開平方法的運算方式,但是卻很少人會提到關於開立方法的簡易運算,也不會有人想知道開立方法的原理,透過這次的研究,推論出開m次方根的方法。

在進行研究的過程當中,常常會遇到挫折,例如:套用了相同的公式,但是結果卻沒有規律。遇到挫折的同時,我們也在學習新的工具—Excel,這確實是以前沒碰過的工具,看似簡單,要控制卻還是有難度,明明是照著書上的函數寫,結果卻不如預期,試過很多遍,經過不斷修正,才將答案完美呈現。

在老師一步步的帶領下,我們運用以往的直式開平方法延伸出立方甚至m次方根、運用作圖來達成n的m次方根、運用Excel完成簡易函數...等。透過以往的文獻發展出新的理論,以及延伸出更多未知的問題。

心得感言

10109 陳彥岑

這篇小論文在探討n的m次方根,主要利用直式開方法、Excel函數及幾何性質來探討其近似值。透過文獻探討,從平方、立方到推廣m次方根了解了許多性質。

過程中我們遇到一些大大小小的問題,例如:在文獻探討的過程當中, 剛開始我們對於許多符號和性質都合不太熟悉,透過不斷累積經驗,慢慢 漸入佳境。或是,我們從文獻探討中得知開平方法的速算式,但始終卻證 明不出算式。從解決這些困境中,也許我們會花很多時間和心力,但更重 要的事我們從這些問題中獲得的知識與經驗。

經過這次的小論文研究,離開了原先在學校學習數學的思維,也從文獻探討中學到許多新知識,包括根號的性質、Excel特殊函數及幾何性質等等。這次研究我們也在原有的文獻的定理建立出許多未知的領域。