AD-A270 581

Report No. CG-D-18-93

Additional Seakeeping Model Tests of Two U.S. Coast Guard Notional Designs of 110 FT and 120 FT WPB Hulls

Walter E. Klosinski and P. Ward Brown

Davidson Laboratory
Stevens Institute of Technology
Castle Point Station
Hoboken, NJ 07030

FINAL REPORT JANUARY 1993

This document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161

Prepared for:

U.S. Coast Guard Research and Development Center 1082 Shennecossett Road Groton, Connecticut 06340-6096

and

U.S. Department Of Transportation United States Coast Guard Office of Engineering, Logistics, and Development Washington, DC 20593-0001

93-24105

ି ପି

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered expential to the object of this report.

The contents of this report reflect the views of the Coast Guard Research & Development Center. This report does not constitute a standard, specification, or regulation.

D. L. Motherway

Technical Director, Acting

United States Coast Guard

Research & Development Center

1082 Shennecossett Road

Groton, CT 06340-6096

Technical Report Documentation Page

		100	car report became	3a
1. Report No. CG-D-18-93	2. Government Acces	sion No.	3. Recipient's Catalog	No.
4. Title and Subtitle			5. Report Date	
			January 1993	
Additional Seakeeping Model Tests		auard	6. Performing Organiz	ation Code
Notional Designs of 110 FT and 1	20 FT WPB Hulls			
	·	 	8. Performing Organiz	ation Report No.
7. Author(s) Walter E. Klosinski and P. Ward	Drown		R&DC 09/91	
			<u> </u>	AIC
9. Performing Organization Name and Add	ress		10. Work Unit No. (TR.	AIS)
Davidson Laboratory			11. Contract or Grant	No.
Stevens Institute of Technology			DTCG23-85-C	i
Castle Point Station				
Hoboken, NJ 07030			13. Type of Report and	d Period Covered
12. Sponsoring Agency Name and Address			Final Report	
	Department of T	ransportation	<u></u>	
U.S. Coast Guard	U.S. Coast Guard	! 1 ! ! ! !	14. Sponsoring Agend	cy Code
Research and Development Center	_	-		
1082 Shennecossett Road	and Developmen			
Groton, Connecticut 06340-6096	Washington, D.C	20593-0001		
15. Supplementary Notes				
16. Abstract				
The research results presented two Notional WPB Designs, the conducted at 10 knots in irreguland at speeds from 25 to 70 knothe beam. Spectral analyses we octave RMS accelerations. All d	110 FT WPB and the lar head seas having the interest in the large transfer to the large transfer to the large transfer to the large transfer to the large transfer transfer to the large transfer transfe	e 120 FT WPB. g significant wav l seas having a s e motions and a	Model tests of the twee heights of 12.5% of ignificant wave heigh excelerations, including	o hulls were f the beam nt of 20% of
17. Key Words planing boat motic	nne	18. Distribution Sta	tement	
planing boat more		Document is a	vailable to the U.S.	public through
WPB notional hul			rechnical Information	
planing hulls	. .	Springfield, V		
19. Security Classif. (of this report)	20. SECURITY CLASS	IF. (of this page)	21. No. of Pages	22. Price
UNCLASSIFIED	UNCLASSIFIED			

Form DOT F 1700.7 (8/72)

Reproduction of form and completed page is authorized

METRIC CONVERSION FACTORS

ב כ	Approximate conversions to mento measures			5	',''	SS 		Approximate conversions non measures			ממאמות
Symbol	When You Know	Multiply By	To Find	Symbol	8		Symbol	When You Know	Multiply By	To Find	Symbo
		LENGTH	į		יניוניו	6		LENGTH	GTH		
.⊆	inches	* 2.5	centimeters	Ë	' 7		E	millimeters	0.04	inches	ē
¥	feet	30	centimeters	CI	\	81	cu3	Centimeters	0 .	inches	⊆ :
þ	yards	6.0	meters	E	'l''		E	meters		leet	= 1
Ē	miles	1.6	kilometers	¥	ייןיי 	۷. 	€ ₹	merers kilometers	- · · · · · · · · · · · · · · · · · · ·	yaros miles	ב ב
	1	AREA		•	'¦'¦' 6	91		AREA	!		
in ²	square inches	6.5	square centimeter	တ	ן'נ'	S	cm ²	square centimeters	0.16	square inches	<u>`</u> _
115	square feet	0.09	square meters	m ²	ij	.	32	square meters	- 2	square yards	ya2
۷q ۶	square yards	8.0	square meters	m ²	' <u> </u>		km ²	square kilometers	4:0	square miles	² ج
, E	square miles	2.6	square kilometers		יניין' 5			hectares(10,000 m ²)	2.5	acres	
	acres	4.0	hectares	et e	' '	E		MASS (WEIGHT)	(WEIGHT)		
		MASS (WEIGHT)	_		''' 		•	Swedo	0.035	307000	Ĉ
20	ounces	28	orams	•	']'}		- X	kilograms	2.2	oonings	S e
; <u> </u>	speriod	4	rilograms	ב ת	*) ¹		-	1000es (1000 kg)		short tone	!
?	short tons (2000 lb)		tonnes	?	' <u> </u>	01					
		VOLUME			#1111	6		VOLUME	UME		
1sp	teaspoons	S	milliiters	Έ	ניןי פ		Ē	millifters	0.03	fluid ounces	11 02
tbsp	tablespoons	15	milliliters	Ē	* 	8	_	liters	0.125	cnbs	ပ
fl 02	fluid ounces	30	milliliters	Ē	ייןי	12		liters	2.1	pints	ā
v	cups	0.24	liters	_			-	liters	1.06	quarts	5
ā	pints	0.47	liters	-	יןיין	9	_ '	liters	0.26	gaffons) 6
Ŧ	quarts	0.95	liters	_	2		e,	cubic meters	35	cubic feet	=
gal	gallons	3.8	liters	_	'!'}	S	Ę.	cubic meters	1.3	cubic yards	ָּ גע
e `	cubic feet	0.03	cubic meters	E	'J' 	*					
yd	cubic yards	0.76	cubic meters	È.	.1.l.			TEMPERATURE (EXACT)	URE (EXACT)		
	TEM	TEMPERATURE (EXACT)	EXACT)		1	ε	ပ	Cetsius	9/5 (then	Fahrenheit	40
n T	Fahrenheit	5/9 (after	Celsius	ပ	ייןיי	2		temperature	add 32)	temperature	
	temperature	subtracting 32)	temperature		inch			32	98.6	212°F	
						w 	i	-40°C			

R-2587

TABLE OF CONTENTS

NOMENCLATURE	Ε.	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii
INTRODUCTION	١.	•			•	•			•		•	•			•		•	•	•	1
MODEL AND IN	NSTRUM	ENTA	TION	١.	•		•				•	•		•				•	•	1
TEST FACILIT	TY.					•							•			•	•	•	•	2
MODEL TESTS			•			•		•	•		•	•	•			•		•	•	3
DATA PROCESS	SING	•				•			•		•	•			•	•	•			4
RESULTS .					•			•		•						•				5
DISCUSSION						•			•				•			•	•	•	•	7
CONCLUDING F	REMARK	S	• .				•	•	•	•		•		•	•	•	•	•	•	8
REFERENCES								•					•		•	•	•	•	•	8
							TAB	LES	;											
TABLE 1	HULL (CHAR	ACTE	RIS	TICS											•		•	•	9
TABLE 2	ROUGH	WAT	ER F	RUN I	DIRE	СТО	RY			•				•		•		•		10
TABLE 3	TOTAL	ROU	GH V	VATE	RE	SIS	TANC	Έ		•						•			•	11
TABLE 4	ACCEL	ERAT	ION	VAR	IANC	E SI	PECT	RAL	. DE	NSI	TY			•	•				•	12
TABLE 5	1/3-0	CTAV	E RN	1S A	CEL	ERA'	TION	S	•	•	•			•	•	•			•	23
TABLE 6	PITCH	VAR	IAN	CE SI	PECT	RAL	DEN	SIT	Υ		•									34
TABLE 7	HEAVE	VAR	IAN	CE S	PECT	RAL	DEN	ISIT	Υ	•	•							•		36
TABLE 8	WAVE	VARI	ANCE	E SP	ECTR	AL I	DENS	ITY	,				•	•	•					38
TABLE 9	ROUGH	WAT	ER F	RMS .	& ME	AN '	VALL	JES	OF	MOT	.IOV	IS A	ND	ACC	ELE	ERAT	ION	I S		40
TABLE 10	AVERA	GE C	REST	rs &	TRO	UGH:	S OF	MC	TIC	2NC	AND	AC	CEL	.ERA	TIC	SMC	•			41
TABLE 11	AVERA	GE 1	/3-H	HIGH	EST	CRE:	STS	& 1	ROL	JGHS	3	•	•	•		•		•	•	43
TABLE 12	AVERA	GE 1	/10-	-HIG	HEST	CR	ESTS	&	TRO)UGI+	łS		•	•		•	•	•	•	45
							FIG	URE	S											
FIGURE 1	PHOTO	GRAP	H Of	- 12	0 FT	WP	В АТ	46	3.4	KNC	TS	IN	4.3	3 F7	S	EAS	•	•	•	47
FIGURE 2	PHOTO	GRAP	н оғ	F 11	0 FT	WP	B AT	50	1.1	KNC	OTS	IN	5.0) F7	S	EAS	•	•	•	48
FIGURE 3	WPB P	ROFI	LES.		•	•	•		•	•	•						•	•		49
FIGURE 4	110 F	T WP	B B(YOC	LINE	s.	•	•	•	•	•	•	•	•		•	•	•	•	50
FIGURE 5	120 F	T WP	8 B(YOC	LINE	s.	•	•	•	•		•		•	•	•	•			51
FIGURE 6	LOCAT	IONS	OF	VER	TICA	LA	CCEL	.ERC	MET	TERS	6			•	•	•	•		•	52
FIGURE 7	110 F	T WP	в т	EST	WAVE	SP	ECTF	ĸ,	3.1	13 F	T S	SIGN	(IF	CAN	πı	HEIG	HT			53
FIGURE 8	110 F	T WP	B T	EST	WAVE	SP	ECTF	Ά,	5.0	FT	SI	GN1	FIC	TAA	H	EIGH	ŧΤ	•		54
FIGURE 9	120 F	T WP	8 TI	EST	WAVE	SP	ECTF	₩,	2.6	52 F	T 8	SIGN	NIF)	CAN	IT I	HEIG	THE	•	•	55
FIGURE 10	120 F	T WP	в т	EST 1	WAVE	SP	ECTF	RA.	4.2	26 F	T S	ADI6	IF1	CAN	IT I	HEIG	HT			56

R-2587

FIGURE	11	COMPARATIVE MOTION RESPONSE IN 20% BEAM SIGNIFICANT HEIGHT	•	57
FIGURE	12	CORRELATION BETWEEN AFT & MIDSHIP ACCELERATION, 110 FT WPB	•	58
FIGURE	13	CORRELATION BETWEEN FWD & MIDSHIP ACCELERATION, 110 FT WPB	•	59
FIGURE	14	CORRELATION BETWEEN AFT & MIDSHIP ACCELERATION, 120 FT WPB		60
FIGURE	15	CORRELATION BETWEEN FWD & MIDSHIP ACCELERATION, 120 FT WPB	•	61
FIGURE	16	LONGITUDINAL VARIATION OF RELATIVE ACCELERATION, 110 FT WPB	•	62
FIGURE	17	LONGITUDINAL VARIATION OF RELATIVE ACCELERATION, 120 FT WPB	•	63
FIGURE	18	COMPARATIVE ACCELERATIONS IN 20% BEAM SIGNIFICANT HEIGHT .		64

NOMENCLATURE

Ap	projected planing bottom area, sq.ft	
b	beam over chines, ft	
Co	drag coefficient based on beam squared, R/qb ²	
œ	center of gravity	
Cr	ATTC frictional resistance coefficient	
CF	frictional resistance coefficient based on beam	squared Ca(S/b2)
CP	center of pressure, intersection of the resultar	
G	force vector with the keel baseline	ic flydiodyflanio
CR	resistance coefficient, R/wb ³	
Ст	total resistance coefficient, R/qS	
Cv	velocity coefficient, V/√(gb)	
_		
C _A	load coefficient, A/wb ³	ill water level fo
u Fnv	transom draft, depth of keel at transom below st volume Froude Number, $V/\sqrt{(g\nabla^{1/3})} = C_V/C_\Delta^{1/6}$	iii watei level, it
f	• • • • • • • • • • • • • • • • • • • •	
	frequency, Hz	
fe f(b/a)	frequency of encounter, Hz	
f√(b/g)	non-dimensional frequency	
g	acceleration due to gravity, 32.17 fps²	
H1/3	significant wave height, 4 x RMS wave elevation,	ττ
k 	radius of gyration, ft	INCPECTED &
L/b		QUALITY INSPECTED 3,
LBP	length between perpendiculars, ft	
LOG	longitudinal position of the center of gravity (
	measured from the transom parallel to the kee	
LCP	longitudinal position of the hydrodynamic center measured from the transom parallel to the kee	
LOA	length overall, ft	
Lc	chine wetted length, ft	Accession For
Lk	keel wetted length, ft	MTIS GRA&I
Lm	mean wetted length, $(\ell_k + \ell_c)/2$	DTIC TAB
ℓm/b	mean wetted length-beam ratio	Justification
n	vertical acceleration or load factor, g units	Ву
р	waterplane coefficient	Distribution/
q	dynamic pressure, ½ ρ V ²	Availability Codes
•		Avail and/or Bist Special
	Vii	
		18 1

R-2587

R resistance. 1b Raw added resistance in waves, 1b RMS process root-mean-square RMSn RMS acceleration, g units **RMSe** RMS pitch, degrees R_n Reynolds Number S wetted area, sq.ft S/b2 non-dimensional wetted area t time, seconds $t\sqrt{g/b}$ non-dimensional time velocity, fps Vk speed, knots specific weight of water, 62.28 lb/cu.ft fresh water at 71.5°F, W 64.00 lb/cu.ft salt water at 59°F β deadrise angle, degrees displacement, 1b θ pitch angle excursion, degrees density of water, w/g τ trim angle of keel, degrees ∇ volumetric displacement, Δ/w. cu.ft

Area loading $A_p/V^{2/3} = p(L/b)/C_{\Delta}^{2/3}$ Slenderness ratio $L/V^{1/3} = (L/b)/C_{\Delta}^{1/3}$ Speed-length ratio $V_k/\sqrt{L} = 3.36 \text{ Cy}/\sqrt{(L/b)}$

Subscripts

s denotes full-size or ship scale

denotes model scale

Sign Convention

The trim is positive in the bow up sense and is zero when the afterbody keel is horizontal.

The pitch is positive in the bow up sense and is zero when the afterbody keel is horizontal.

The heave is the height of the tow point above the still water surface, is positive vertically upward, and is zero when the tow point is at the still water level.

The draft is the depth of the keel at transom below the still water surface; is positive vertically downward, and is zero when the keel at transom is at the still water level.

The drag is a horizontal force vector, positive aft in the bow-to-stern sense, and is zero when the boat is at rest.

The velocity is a horizontal vector, positive forward in the stern-to-bow sense, and is zero when the boat is at rest.

The vertical acceleration is a vertical vector, positive upward, and is zero when the boat is at rest.

INTRODUCTION

The Davidson Laboratory is conducting a series of planing boat studies in support of the U.S. Coast Guard's pursuit of R&D projects which will enable it to evaluate advanced marine vehicles and advanced technologies which enhance the effectiveness of ship resources. The experimental results obtained at the Davidson Laboratory are intended to contribute to a relevant technical data base for the evaluation of vessels which are in service and for designs which are being considered for service.

The objective of this research is to obtain basic hydrodynamic information about planing hulls through the use of captive model tests. This information is required for the study of the transverse stability, yaw/roll stability, course keeping, maneuvering and control of planing hulls, and for the study of seakeeping, and the loss of speed in a seaway, of planing hulls.

The research results presented in this report are concerned with the seakeeping characteristics of two Notional WPB Designs (the 110 ft WPB and the 120 ft WPB) in a comparatively modest sea state of significant wave height equal to 20 percent of the craft beam. This data supplements that previously obtained at the Davidson Laboratory^{1,2} with the same two hulls operating in seas having significant wave heights of 40 and 60 percent of the beam. As before the tests were conducted at speeds up to 65 knots. In addition tests were run at 10 knots in irregular waves having a significant height of 12.5 percent of the beam, for direct comparison with earlier tests in regular waves¹.

MODEL AND INSTRUMENTATION

Two 1/18-scale models of the 110 ft WPB and the 120 ft WPB previously fabricated and tested were used in the tests. Photographs of the models under tests are included on Figures 1 and 2, and the WPB profiles are presented on Figure 3. Figures 4 and 5 present the body lines of each hull. The model hulls were made of fiberglass and epoxy to USCG specifications. Internal body frames and cut-out decks were included to make the models rigid but lightweight. A lower deck, made of marine plywood, was installed inside each model and extended for about a third of each model's length. These decks were used for attaching weights, instrumentation, and the apparatus which attached the models to the overhead towing carriage.

Each model was towed through a pitch pivot box, which had its axis located at the intersection of the thrust line with the LCG. Thus the towpoint was at the LuG at a height of 6.38 ft above the baseline. Here, as throughout this report, values are given in terms of full-size equivalents. pivot box a drag balance was mounted and attached to twin vertical heave supported by a standard free-to-heave apparatus. The models were towed at constant speed along the center line of the tank at zero roll and yaw with freedom to pitch and heave. Five accelerometers were mounted in each model as shown on Figure 6. An inclinometer mounted in the model measured the trim in calm water and a linear differential transformer attached to the heave poles was used to measure the heave. The pitch excursions in waves were measured by a rotary differential transformer. Thin mylar strips were fastened to both chines of the 110 ft WPB and to the lower chine of the 120 ft WPB to ensure sharp edges on the scaled models. The spray rail built into the 120 ft WPB at the upper chine was V-shaped in cross-section, which resulted in a sharp edge, and therefore no mylar strip was required. The models were ballasted to the scaled values presented in Table 1.

TEST FACILITY

Tests were conducted in the Davidson Laboratory Tank 3, which is 313 ft long, 12 ft wide and 5.5 ft deep. A monorail above the water extends down the tank's length. A towing carriage rides on this rail and is attached to the model below it through the heave poles. The carriage is towed by a steel cable driven by an electric motor at one end of the tank. The model is accelerated up to the required constant speed, and data are acquired in the data trap. The signals are transmitted by overhead cables to shore-based signal conditioning equipment and thence to an on-line computer for processing and storage.

A color video camera was mounted ahead and to port of the model being tested. All runs were monitored on a shore based monitor, and a video recording was made ' each run.

The Tank 3 wavemaker is an articulated double flap wet-back type in which the upper and lower flaps are powered by hydraulic cylinders. A dedicated computer generates the signals which control the movements of each of the hydraulic actuators.

The specified sea states had significant wave heights of 12.5 and 20 percent of each hull's maximum beam at the upper chine. These waves were generated and measured by a stationary wave-wire prior to tests with the model. When the specified waves were obtained their parametric settings were locked in the computer. A moving wave strut was mounted forward and to port of the model to monitor waves during model tests. The full size spectra of the generated sea states together with the Pierson-Moskowitz spectra are presented on Figures 7 to 10.

During the tests the water temperature was maintained at a value of 71.5° F which was checked twice daily.

MODEL TESTS

The ballast of each model was adjusted to obtain the specified radius of gyration in pitch equal to 25 percent of the LBP.

The models were tested at the half-load condition noted in Table 1 at three values of speed coefficient, Cv, equal to 1.5, 3.0, and 4.0, in two Pierson-Moskowitz seas having significant wave heights of 12.5 and 20 percent of each model's maximum chine beam. Pitch, heave, drag, and five vertical accelerations were measured.

Runs were made at the following matrix of test conditions:

Model Designation	Significant Wave Height	Speed
	percent beam	
110 ft WPB	12.5	10 knots
110 ft WPB	20.0	Cv = 1.5, 3.0, 4.0
120 ft WPB	12.5	10 knots
120 ft WPB	12.5	Cv = 1.5, 3.0, 4.0
120 ft WPB	20.0	Cv = 1.5, 3.0, 4.0

The model was accelerated to a steady speed and then data were acquired in the 150 ft data trap. Additional runs were made in different sections of the seaway, by inserting a known time offset into the wavemaker computer, until a minimum of 70 waves had been encountered at each test

condition. The statistics were then calculated for this group of combined runs. Table 2 summarizes the irregular wave test runs. The models running at speed in irregular waves are shown on Figures 1 and 2.

DATA PROCESSING

The instrumentation was calibrated by applying known displacements to the motion transducers and wave strut, known loads to the force balance, and gravity multiples to the accelerometers. All calibrations were linear and a least-squares technique was used to determine the calibration rates, which were checked daily.

The primary measured quantities included drag, pitch, CG heave, and five accelerations. Heave is defined as the height of the tow point above the still water surface. The transom draft was calculated from the average heave, the average pitch, i.e. the trim, and the known position of the towpoint.

A quantity known as the "static keel wetted length" (SKWL) was calculated from the trim and the transom draft. The SKWL is defined by the intersection of the still water surface with the keel profile in the running condition and does not allow for the wave rise at keel. The SKWL, and its use, is more fully described later in the Results section.

The velocities were computed from the time taken to travel through the data trap which was 150 ft long. During data collection all data channels were scanned at a rate of 250 Hz and the results stored in the computer for appropriate processing.

In addition a peak-trough analysis was carried out for the pitch, heave, and five accelerations. The peak-trough analysis computes for each signal the mean and rms, the number of oscillations, the average of the peaks and troughs, the average of the 1/3-highest and the 1/10-highest peaks and troughs, and the extreme values of the peaks and troughs. All data were scaled to full size units.

Wave height statistics generated from time-series data sometimes involve an analysis procedure which identifies wave crests and troughs as the maximum and minimum values of wave height occurring between zero crossings, or between crossings of a reference data level. This is not the procedure customarily employed at the Davidson Laboratory. The procedure used in this study identifies all maxima and minima regardless of magnitude, thereby avoiding a bias that would otherwise be introduced into the statistics.

Spectral analyses were performed on the five accelerations, the pitch and heave time histories, and the encountered waves. Additionally 1/3-octave RMS analyses were performed on the five accelerations for those who wish to assess the habitability of the designs.

RESULTS

All the rough water test results are given in terms of full-size equivalents and are presented in data tables and plots. A Run Directory is included as Table 2.

The resistance expansion of planing boats requires a knowledge of the wetted area which is calculated from the keel and chine wetted lengths observed in the calm water underwater photographs. In rough water, however, it is not possible to use underwater photography and some other means has to be used to find the mean wetted area. This is the function of the static keel wetted length, because the SKWL can be calculated from the mean trim and transom draft in both calm and rough water. The dynamic wetted lengths at keel and chine observed in the calm water underwater photographs may be correlated with the static keel wetted length to provide the means for estimating the wetted area in rough water.

The static keel wetted length is defined by the intersection of the still water surface with the keel profile in the running condition, and is computed from the observed trim, the transom draft, and the known geometry of the keel. The SKWL is shown in Sketch A:

Sketch A

The relationship of the keel and chine wetted lengths to the SKWL was established in the earlier study in this series for both WPB hulls. The SKWL was calculated for each rough water run in the present tests. The keel and chine wetted lengths were estimated from the SKWL using the established relationship. These estimated wetted lengths, together with the girths of each WPB, were used to compute the wetted area for each run, and these wetted areas were in turn used to calculate the full-size resistance given in Table 3.

A spectral analysis and a peak-trough analysis were performed on each group of runs tested at the same speed and sea state. The results of the spectral analysis are presented in Tables 4 to 8.

The full-size spectral estimates of the five accelerations on the 110 ft WPB and the 120 ft WPB are tabulated in Table 4. The center frequency of each pass band is tabulated in the left hand column, and the variance density in each pass band is given in subsequent columns for the five accelerometers from bow to transom, see Figure 6.

The maximum frequency of the analysis is chosen so that there is no contribution to the variance from frequencies above the maximum. numerical value of the maximum center frequency is somewhat arbitrary being a function of the scanning rate and the scale ratio. For example, in Table 4.1 at a speed of 10 knots the maximum frequency is 3.6828 Hz. The frequency scale is divided into 30 intervals resulting in bandwidths of 0.1228 Hz. 1/3-octave facilitates the transformation into the detailed analysis presentation and into the graphical presentations in the Appendices. Again in Table 4.1 at the center frequency of 0.37 Hz the variance density in the pass band for the #5 accelerometer is 0.1859 g²/Hz. Multiplying by the bandwidth of 0.1228 Hz, the contribution to the variance in this band is 0.0228 g^2 . Proceeding in this manner the detailed spectra can be transformed into broader and more practical bandwidths and into the 1/3-octave format.

The 1/3-octave rms accelerations are tabulated in Table 5 for the 110 ft and the 120 ft WPB. The center frequencies of these 1/3-octave bandwidths are those specified in International Standard ISO 2631 and in MIL-STD-1472A, and they are tabulated in the left hand column. The rms acceleration in each 1/3-octave pass band is given in the subsequent columns for the five accelerometers. It may be noted that the rms is simply the square root of the variance.

The pitch variance spectral density estimates are presented in Table 6 for the two hulls; heave spectral densities are presented in Table 7; and encountered wave spectral densities are presented in Table 8.

The results of the peak-trough analysis of the motions and accelerations of the two hulls are presented in Tables 9 to 12. The tabulated statistical quantities include the pitch, heave, and the outputs from the five accelerometers. The RMS and mean values are given in Table 9, and average values of the crests and troughs, (i.e. the maxima and minima in the time histories) are given in Table 10. The 1/3-highest statistics are presented in Table 11 and the 1/10-highest statistics in Table 12.

DISCUSSION

The pitch and heave motion characteristics of the 110 ft and 120 ft WPB are compared on Figure 11 in irregular waves having a significant height corresponding to 20 percent of the beam. The hull with the higher length-beam ratio, the 120 ft WPB, has about 40% less response to the waves.

The rms accelerations at various longitudinal locations throughout the boat are linearly related to the midship acceleration. This is demonstrated for the 110 ft WPB on Figures 12 and 13 where the acceleration at each station from stern to bow is plotted against the midship acceleration. (The accelerometer locations are given on Figure 6). Thus the acceleration at any station on the 110 ft WPB can be referred to that measured by the midship accelerometer, Accelerometer #3, located two beams forward of the transom, for all speeds and sea states. Similarly, the accelerations at any station on the 120 ft WPB may be referred to that measured by Accelerometer #3 located three beams forward of the transom, as shown on Figures 14 and 15. These linear relationships are summarized in terms of intercept (no) and slope on Figures 16 and 17 for the 110 ft and 120 ft WPB respectively. The acceleration data includes the new data together with that previously reported¹,².

The CG accelerations of the two designs operating in head seas of 20 percent beam significant are compared on Figure 18, where the rms acceleration of Accelerometer #2, located at the nominal LCG of each hull, is shown plotted versus the speed. The reduction in acceleration of the 120 ft WPB due to its higher beam loading is evident.

CONCLUDING REMARKS

The hydrodynamic characteristics of the two 110 ft and 120 ft WPB designs in irregular waves having significant heights equal to 20 percent of their maximum beam, and at speed coefficients, Cv, of 1.5, 3.0, and 4.0, are presented in tabular and graphical form. These test results are an extension of the previous tests¹ conducted at these same speeds in larger significant wave heights equal to 40 percent and 60 percent of the maximum chine beam.

Some of the previous work on the WPB's included tests in regular waves at 10 knots with wave heights equal to 12.5 percent of the maximum chine beam, and the present results in irregular waves provide the basis for verifying the linearity of response at low speed.

REFERENCES

- Klosinski, Walter E., and Brown, P. Ward: "Resistance and Seakeeping Model Tests Two USCG Notional Designs of 110 ft and 120 ft WPB Hulls" Davidson Laboratory Report 2548, February 1987.
- Klosinski, Walter E., and Brown, P. Ward: "Additional Resistance and Seakeeping Model Tests of a USCG 120 ft Notional WPB Design" Davidson Laboratory Report 2561, February 1987.

TABLE 1

HULL CHARACTERISTICS

110 ft WPB at Half Load

Displacement	119.0 <i>L</i> -tons	44.45 lb
LCG forward of AP	37.2 ft	24.8 in
VCG above baseline	8.9 ft	5.93 in
Maximum beam at upper chine	24.69 ft	16.46 in
Propeller shaft angle, degrees	15.0	15.0
Pich radius of gyration, percent LBP	25.0	25.0
LOA	110.0 ft	73.33 in
LBP	104.0 ft	69.33 in

120 ft WPB at Half Load

Displacement	135.0 <i>L</i> -tons	50.43 lb
LCG forward of AP	42.9 ft	26.8 in
VCG above baseline	7.66 ft	5.11 in
Maximum beam at upper chine	21.20 ft	14.13 in
Propeller shaft angle, degrees	10.0	10.0
Pich radius of gyratich, percent LBP	25.0	25.0
LOA	118.79 ft	79.20 in
LBP	110.0 ft	73.33 in

TABLE 2
ROUGH WATER RUN DIRECTORY

SPEED knots	c _V		RUNS			Number of Wave Encounter
			110 f	t WPB		
Sig	nificant	Wave !	Height	- 3.1	3 ft, 12.	5% Beam
10.0	0.60		126			75
Si	gnifican	t Wave	Heigh	t - 5.0	00 ft, 20	% Beam
25.0	1.5	121	122	123		103
50.1	3.0	118	119	120	124	91
66.8	4.0	134	135	136	124 137 1	38 93
			100 0			
			120 f	C MAR		
Sig	nificant	Wave 1	Height	- 2.6	2 ft, 12.	5% Beam
10.0	0.65	7 5				82
23.2	1.5	40	42			86
46.4	3.0	44	45	46		77
61.9	4.0	48	49	63	64	80
Si	gnifican	t Wave	Heigh	t - 4.2	26 ft, 20	% Beam
23.2	1.5	65	66			75
46.4	3.0	67	68	69		74
61.9	4.0	71	72	73	74	82

TABLE 3
TOTAL ROUGH WATER RESISTANCE

120 ft WPB

			Significant Wave Height 12.5% beam (2.62 ft)	Significant Wave Height 20% beam (4.26 ft)
SPEED knots	cv	Fn _∇	DRAG 1b	DRAG 1b
10.0 23.2 46.4 61.9	0.64 1.50 3.0 4.0	0.72 1.68 3.36 4.48	7,830 26,520 45,430 50,760	27,970 45,300 54,180

110 ft WPB

			Significant Wave Height 12.5% beam (3.13 ft)	Significant Wave Height 20% beam (5.0 ft)
SPEED knots	c _v	Fn⊽	DRAG 1b	DRAG 1b
10.0	0.60	0.74	8,400	-
25.0	1.50	1.86	~	28,540
50.08	3.0	3.72	-	47,990
66.78	4.0	4.96	-	56,520

R-2587

TABLE 4.1 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB 3.13 ft Significant Wave Height 12.5% Beam 37.2 ft LCG

 $C_V = 0.60$ Speed = 10 knots

Run	126

Accelerometer	#5	₩ 1	#3	#2	#1
Frequency Hz		Spectr	al Estimates	g ² /Hz	
0.00	-0.5220E-03	-0.2209E-03	-0.4765E-04	-0.1085E-04	0.1956E-04
0.12	0.6637E-02	0.2874E-02	0.8375E-03	0.4018E-03	0.5526E-03
0.25	0.9344E-01	0.4050E-01	0.1088E-01	0.4107E-02	0.3652E-02
0.37	0.1859E+00	0.8092E-01	0.2158E-01	0.7693E-02	0.5675E-02
0.49	0.9216E-01	0.4024E-01	0.1071E-01	0.3691E-02	0.2440E-02
0.61	0.9313E-02	0.4084E-02	0.1102E-02	0.3652E-03	0.2043E-03
0.74	0.4169E-02	0.1928E-02	0.6082E-03	0.2220E-03	0.3081E-04
0.86	0.5039E-02	0.2327E-02	0.7378E-03	0.2773E-03	0.4859E-04
0.98	0.2554E-02	0.1148E-02	0.3545E-03	0.1391E-03	0.4474E-04
1.11	0.1166E-02	0.4863E-03	0.1238E-03	0.4843E-04	0.2696E-04
1.23	0.6458E-03	0.2771E-03	0.6415E-04	0.2489E-04	0.7210E-05
1.35	0.3115E-03	0.1466E-03	0.3543E-04	0.1524E-04	0.5883E-05
1.47	0.1687E-03	0.8427E-04	0.2392E-04	0.1139E-04	0.2225E-05
1.60	0.1135E-03	0.5721E-04	0.1738E-04	0.1162E-04	0.3872E-05
1.72	0.7998E-04	0.4270E-04	0.1569E-04	0.9601E-05	0.2857E-05
1.84	0.4270E-04	0.2704E-04	0.1811E-04	0.1270E-04	0.1737E-04
1.97	0.2869E-04	0.2098E-04	0.2028E-04	0.1427E-04	0.2700E-04
2.09	0.1279E-04	0.8232E-05	0.1127E-04	0.8135E-05	0.1468E-04
2.21	0.9633E-05	0.6825E-05	0.8019E-05	0.7946E-05	0.4913E-05
2.33	0.6785E-05	0.7664E-05	0.6495E-05	0.7759E-05	0.4601E-05
2.46	0.7374E-05	0.9010E-05	0.1197E-04	0.8851E-05	0.5586E-05
2.58	0.4342E-05	0.6120E-05	0.1133E-04	0.8881E-05	0.6432E-05
2.70	0.5190E-05	0.5884E-05	0.8410E-05	0.1085E-04	0.3688E-05
2.82	0.3760E-05	0.5236E-05	0.7158E-05	0.1221E-04	0.3475E-05
2.95	0.6371E-05	0.9308E-05	0.1037E-04	0.1263E-04	0.5445E-05
3.07	0.1090E-04	0.1428E-04	0.1921E-04	0.1821E-04	0.1236E-04
3.19	0.1007E-04	0.8780E-05	0.1317E-04	0.1597E-04	0.8113E-05
3.32	0.1096E-04	0.4612E-05	0.1183E-04	0.1612E-04	0.5169E-05
3.44	0.1630E-04	0.7203E-05	0.1874E-04	0.2585E-04	0.7208E-05
3.56	0.1868E-04	0.5432E-05	0.2237E-04	0.3154E-04	0.5815E-05
3.68	0.1605E-04	0.4341E-05	0.2286E-04	0.2489E-04	0.3630E-05

TABLE 4.2 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB 5.00 ft Significant Wave Height 20% Beam 37.2 ft LCG

 $C_V = 1.5$ Speed = 25.0 knots

Accelerometer	#5	#14	#3	#2	#1
Frequency Hz		Spectra	al Estimates	g ² /Hz	
n2		opec or e	.1 0001000	8 /	
0.00	0.4682E-01	0.2713E-01	0.1487E-01	0.1131E-01	0.9100E-02
0.25	0.2081E+00	0.1124E+00	0.5564E-01	0.4022E-01	0.3504E-01
0.49	0.3217E+00	0.1653E+00	0.7464E-01	0.5111E-01	0.4605E-01
0.74	0.1493E+00	0.7221E-01	0.2798E-01	0.1659E-01	0.1438E-01
0.98	0.4745E-01	0.2222E-01	0.7190E-02	0.2818E-02	0.9289E-03
1.23	0.2897E-01	0.1365E-01	0.4463E-02	0.1741E-02	0.4917E-03
1.47	0.1625E-01	0.7569E-02	0.2466E-02	0.9559E-03	0.2585E-03
1.72	0.9986E-02	0.4593E-02	0.1484E-02	0.5277E-03	0.6631E-04
1.97	0.6407E-02	0.2977E-02	0.1043E-02	0.4142E-03	0.1163E-03
2.21	0.3852E-02	0.1728E-02	0.5940E-03	0.2027E-03	0.5255E-05
2.46	0.2846E-02	0.1289E-02	0.4891E-03	0.2072E-03	0.5801E-04
2.70	0.1754E-02	0.7476E-03	0.2708E-03	0.9591E-04	-0.3892E-05
2.95	0.1422E-02	0.6386E-03	0.2712E-03	0.1381E-03	0.4214E-04
3.19	0.8817E-03	0.3552E-03	0.1434E-03	0.7126E-04	-0.2536E-05
3.44	0.8427E-03	0.3519E-03	0.1611E-03	0.1040E-03	0.2816E-04
3.68	0.5323E-03	0.1937E-03	0.7384E-04	0.3747E-04	-0.6675E-05
3.93	0.5212E-03	0.2097E-03	0.9302E-04	0.5202E-04	0.2053E-04
4.17	0.3197E-03	0.9998E-04	0.3770E-04	0.9094E-05	-0.6076E-05
4.42	0.3354E-03	0.1262E-03	0.6592E-04	0.3434E-04	0.1806E-04
4.67	0.1937E-03	0.5075E-04	0.2715E-04	0.5794E-05	-0.2495E-05
4.91	0.2201E-03	0.7665E-04	0.4555E-04	0.2572E-04	0.1474E-04
5.16	0.1133E-03	0.2053E-04	0.1316E-04	0.1854E-05	-0.3855E-05
5.40	0.1508E-03	0.5467E-04	0.3518E-04	0.2190E-04	0.1190E-04
5.65	0.7828E-04	0.1023E-04	0.9201E-05	0.2253E-05	-0.3494E-05
5.89	0.1280E-03	0.4118E-04	0.2784E-04	0.2064E-04	0.1033E-04
6.14	0.7231E-04	0.6892E-05	0.6036E-05	0.2768E-05	-0.2834E-05
6.38	0.1212E-03	0.3649E-04	0.2423E-04	0.1843E-04	0.9511E-05
6.63	0.6005E-04	0.2960E-05	0.5700E-05	0.3007E-05	-0.2286E-05
6.88	0.8590E-04	0.2606E-04	0.2071E-04	0.2117E-04	0.8528E-05
7.12	0.3107E-04	-0.2646E-05	0.3232E-05	0.2130E-04	-0.1438E-05
7.37	0.6140E-04	0.1976E-04	0.1785E-04	0.3484E-04	0.8116E-05

TABLE 4.3 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB 5.00 ft Significant Wave Height 20% Beam 37.2 ft LCG

 $C_V = 3.0$ Speed = 50.1 knots

Runs 118,119,120,124

Accelerometer	#5	#4	#3	#2	#1
Frequency		0	1. Pakimaka	2/11-	
Hz		Spectra	al Estimates	g /nz	
0.00	0.1836E-01	0.1087E-01	0.5927E-02	0.4240E-02	0.3128E-02
0.25	0.2134E+00	0.1260E+00	0.6831E-01	0.4926E-01	0.3013E-01
0.49	0.5985E+00	0.3515E+00	0.1886E+00	0.1340E+00	0.8143E-01
0.74	0.6070E+00	0.3525E+00	0.1863E+00	0.1278E+00	0.8231E-01
0.98	0.3973E+00	0.2232E+00	0.1118E+00	0.7126E-01	0.4708E-01
1.23	0.2754E+00	0.1483E+00	0.6899E-01	0.4087E-01	0.2461E-01
1.47	0.1754E+00	0.9263E-01	0.4285E-01	0.2511E-01	0.1705E-01
1.72	0.1085E+00	0.5632E-01	0.2658E-01	0.1566E-01	0.1247E-01
1.97	0.8015E-01	0.4064E-01	0.1911E-01	0.1107E-01	0.8856E-02
2.21	0.5937E-01	0.2902E-01	0.1332E-01	0.7615E-02	0.6107E-02
2.46	0.4277E-01	0.2011E-01	0.9108E-02	0.5163E-02	0.4364E-02
2.70	0.3235E-01	0.1463E-01	0.6515E-02	0.3543E-02	0.2709E-02
2.95	0.2335E-01	0.1027E-01	0.4619E-02	0.2524E-02	0.1716E-02
3.19	0.1552E-01	0.6704E-02	0.3211E-02	0.1845E-02	0.1063E-02
3.44	0.1242E-01	0.5068E-02	0.2449E-02	0.1333E-02	0.6739E-03
3.68	0.1015E-01	0.4045E-02	0.2042E-02	0.1079E-02	0.4380E-03
3.93	0.7473E-02	0.2875E-02	0.1597E-02	0.8627E-03	0.3323E-03
4.17	0.5429E-02	0.2020E-02	0.1210E-02	0.6460E-03	0.2544E-03
4.42	0.4775E-02	0.1632E-02	0.1045E-02	0.5371E-03	0.2270E-03
4.67	0.4489E-02	0.1453E-02	0.9736E-03	0.5267E-03	0.1902E-03
4.91	0.3453E-02	0.1036E-02	0.7534E-03	0.4574E-03	0.1869E-03
5.16	0.2973E-02	0.8321E-03	0.6231E-03	0.4140E-03	0.1689E-03
5.40	0.2615E-02	0.6601E-03	0.5264E-03	0.3599E-03	0.1591E-03
5.65	0.2214E-02	0.5310E-03	0.4672E-03	0.3174E-03	0.1334E-03
5.89	0.1661E-02	0.3456E-03	0.3285E-03	0.2326E-03	0.1231E-03
6.14	0.1282E-02	0.2456E-03	0.2514E-03	0.1863E-03	0.9761E-04
6.38	0.1006E-02	0.1731E-03	0.2050E-03	0.1548E-03	0.8357E-04
6.63	0.8253E-03	0.1381E-03	0.1780E-03	0.1370E-03	0.6368E-04
6.88	0.6446E-03	0.8575E-04	0.1406E-03	0.1240E-03	0.6337E-04
7.12	0.5471E-03	0.7041E-04	0.1299E-03	0.1351E-03	0.5199E-04
7.37	0.4661E-03	0.4449E-04	0.1076E-03	0.1250E-03	0.5748E-04

TABLE 4.4 ACCELERATION VARIANCE SPECTRAL DENSITY 110 ft WPB 5.00 ft Significant Wave Height 20% Beam 37.2 ft LCG

 $C_V = 4.0$ Speed = 66.8 knots

Runs 134,135,136,137,138

Accelerometer	#5	#4	#3	#2	#1
Frequency		Saaataa	l Estimates	2/11-	
Hz		Spectra	1 Estimates	g /nz	
0.00	0.4302E-02	0.2842E-02	0.1810E-02	0.1324E-02	0.8051E-03
0.25	0.1541E+00	0.9164E-01	0.5095E-01	0.3669E-01	0.2423E-01
0.49	0.6040E+00	0.3577E+00	0.1968E+00	0.1393E+00	0.9049E-01
0.74	0.7718E+00	0.4613E+00	0.2589E+00	0.1808E+00	0.1231E+00
0.98	0.6111E+00	0.3681E+00	0.2132E+00	0.1487E+00	0.1134E+00
1.23	0.4538E+00	0.2622E+00	0.1474E+00	0.1027E+00	0.8617E-01
1.47	0.2912E+00	0.1583E+00	0.8553E-01	0.5979E-01	0.5490E-01
1.72	0.2380E+00	0.1261E+00	0.6736E-01	0.4584E-01	0.4161E-01
1.97	0.1989E+00	0.1038E+00	0.5652E-01	0.3850E-01	0.3634E-01
2.21	0.1411E+00	0.7072E-01	0.3827E-01	0.2607E-01	0.2578E-01
2.46	0.9798E-01	0.4673E-01	0.2386E-01	0.1550E-01	0.1445E-01
2.70	0.7667E-01	0.3482E-01	0.1721E-01	0.1124E-01	0.1065E-01
2.95	0.7129E-01	0.2991E-01	0.1366E-01	0.8643E-02	0.8756E-02
3.19	0.5517E-01	0.2186E-01	0.9408E-02	0.5745E-02	0.5787E-02
3.44	0.3709E-01	0.1386E-01	0.6083E-02	0.3852E-02	0.3905E-02
3.68	0.3201E-01	0.1162E-01	0.5146E-02	0.3040E-02	0.2674E-02
3.93	0.2341E-01	0.7979E-02	0.3571E-02	0.2148E-02	0.1839E-02
4.17	0.1844E-01	0.6002E-02	0.2845E-02	0.1845E-02	0.1542E-02
4.42	0.1434E-01	0.4451E-02	0.2339E-02	0.1513E-02	0.1273E-02
4.67	0.1236E-01	0.3713E-02	0.2132E-02	0.1388E-02	0.1019E-02
4.91	0.9913E-02	0.2825E-02	0.1897E-02	0.1351E-02	0.9539E-03
5.16	0.6825E-02	0.1863E-02	0.1314E-02	0.9877E-03	0.6823E-03
5.40	0.6234E-02	0.1406E-02	0.9752E-03	0.6697E-03	0.4853E-03
5.65	0.6760E-02	0.1534E-02	0.1170E-02	0.8454E-03	0.5710E-03
5.89	0.5326E-02	0.1054E-02	0.8750E-03	0.6790E-03	0.4773E-03
6.14	0.3806E-02	0.7383E-03	0.6539E-03	0.5052E-03	0.3647E-03
6.38	0.2730E-02	0.4242E-03	0.4882E-03	0.3981E-03	0.3134E-03
6.63	0.2653E-02	0.4346E-03	0.5069E-03	0.3921E-03	0.2708E-03
6.88	0.2242E-02	0.2866E-03	0.4588E-03	0.3617E-03	0.2393E-03
7.12	0.1567E-02	0.2319E-03	0.3642E-03	0.3265E-03	0.2027E-03
7.37	0.9477E-03	0.7157E-04	0.2509E-03	0.2606E-03	0.1785E-03

TABLE 4.5 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB 2.62 ft Significant Wave Height 12.5% Beam 42.9 ft LCG

 $C_V = 0.65$ Speed = 10 knots

Pun	75
מנוא	17

Accelerometer	#5	₩ Ħ	#3	#2	#1
Frequency Hz		Spectr	al Estimates	g ² /Hz	
0.00	-0.2175E-03	-0.1419E-03	-0.4117E-04	-0.3074E-05	-0.6409E-05
0.12	0.1646E-02	0.1124E-02	0.4101E-03	0.1204E-03	0.3354E-03
0.25	0.2836E-01	0.1914E-01	0.6681E-02	0.1172E-02	0.3272E-02
0.37	0.5815E-01	0.3928E-01	0.1387E-01	0.2185E-02	0.5287E-02
0.49	0.2925E-01	0.1986E-01	0.7237E-02	0.1161E-02	0.2085E-02
0.61	0.3237E-02	0.2261E-02	0.9313E-03	0.2158E-03	0.1685E-03
0.74	0.1244E-02	0.8369E-03	0.3387E-03	0.8227E-04	0.8934E-04
0.86	0.1449E-02	0.9772E-03	0.3712E-03	0.7397E-04	0.7670E-04
0.98	0.8757E-03	0.6125E-03	0.2309E-03	0.4506E-04	0.4332E-04
1.11	0.3005E-03	0.2175E-03	0.8576E-04	0.1884E-04	0.2281E-04
1.23	0.9876E-04	0.7028E-04	0.3481E-04	0.7928E-05	0.5707E-05
1.35	0.6897E-04	0.4722E-04	0.2331E-04	0.9340E-05	0.1064E-04
1.47	0.5546E-04	0.3649E-04	0.1972E-04	0.9935E-05	0.5815E-05
1.60	0.3800E-04	0.2383E-04	0.1285E-04	0.1105E-04	0.9935E-05
1.72	0.3966E-04	0.2166E-04	0.1185E-04	0.1010E-04	0.9362E-05
1.84	0.6198E-04	0.3264E-04	0.1972E-04	0.3407E-04	0.3830E-04
1.97	0.6328E-04	0.3750E-04	0.2403E-04	0.4004E-04	0.4301E-04
2.09	0.3033E-04	0.1774E-04	0.1545E-04	0.1650E-04	0.2581E-04
2.21	0.2242E-04	0.1074E-04	0.1226E-04	0.9000E-05	0.1629E-04
2.33	0.1385E-04	0.8733E-05	0.9075E-05	0.6503E-05	0.1133E-04
2.46	0.1380E-04	0.1328E-04	0.1038E-04	0.7865E-05	0.1220E-04
2.58	0.1628E-04	0.1296E-04	0.9965E-05	0.1026E-04	0.1502E-04
2.70	0.1806E-04	0.1165E-04	0.1061E-04	0.9783E-05	0.1166E-04
2.82	0.1222E-04	0.8302E-05	0.1069E-04	0.4980E-05	0.1021E-04
2.95	0.2163E-04	0.1279E-04	0.1542E-04	0.1245E-04	0.1919E-04
3.07	0.4039E-04	0.1823E-04	0.2114E-04	0.2628E-04	0.4174E-04
3.19	0.2614E-04	0.1235E-04	0.1448E-04	0.1569E-04	0.2454E-04
3.32	0.1168E-04	0.5262E-05	0.9653E-05	0.5568E-05	0.1026E-04
3.44	0.1313E-04	0.5847E-05	0.1034E-04	0.6563E-05	0.9917E-05
3.56	0.9351E-05	0.4502E-05	0.7588E-05	0.5143E-05	0.7633E-05
3.68	0.9216E-05	0.4762E-05	0.6884E-05	0.5940E-05	0.7844E-05

TABLE 4.6 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB 2.62 ft Significant Wave Height 12.5 \$ Beam 42.9 ft LCG

 $C_V = 1.5$ Speed = 23.2 knots

Accelerometer	#5	#4	#3	#2	#1
Frequency Hz		Spectra	l Estimates	g ² /Hz	
0.00	0.1640E-02	0.12 37E-0 2	0.6636E-03	0.3667E-03	0.3433E-03
0.25	0.1334E-01	0.9686E-02	0.4760E-02	0.2447E-02	0.3063E-02
0.49	0.2581E-01	0.1831E-01	0.8447E-02	0.4041E-02	0.5919E-02
0.74	0.1347E-01	0.9344E-02	0.4065E-02	0.1642E-02	0.2655E-02
0.98	0.4714E-02	0.3226E-02	0.1412E-02	0.3774E-03	0.3149E-03
1.23	0.2926E-02	0.2000E-02	0.8468E-03	0.2182E-03	0.1513E-03
1.47	0.1296E-02	0.8997E-03	0.3736E-03	0.1005E-03	0.7429E-04
1.72	0.6388E-03	0.4302E-03	0.1820E-03	0.5452E-04	0.5139E-04
1.97	0.3866E-03	0.2530E-03	0.1095E-03	0.4079E-04	0.4711E-04
2.21	0.2033E-03	0.1324E-03	0.5465E-04	0.1979E-04	0.2630E-04
2.46	0.1213E-03	0.8574E-04	0.4507E-04	0.2586E-04	0.2413E-04
2.70	0.6779E-04	0.4781E-04	0.2521E-04	0.1910E-04	0.1937E-04
2.95	0.6270E-04	0.4129E-04	0.2972E-04	0.2698E-04	0.3424E-04
3.19	0.5110E-04	0.2911E-04	0.2351E-04	0.1844E-04	0.3018E-04
3.44	0.3616E-04	0.2392E-04	0.1884E-04	0.1152E-04	0.1116E-04
3.68	0.2324E-04	0.1492E-04	0.9970E-05	0.6670E-05	0.5561E-05
3.93	0.2045E-04	0.1362E-04	0.8763E-05	0.83 75E-0 5	0.5272E-05
4.17	0.1550E-04	0.8687E-05	0.5588E-05	0.5174E-05	0.4964E-05
4.42	0.1958E-04	0.1098E-04	0.9580E-05	0.9018E-05	0.9563E-05
4.67	0.2238E-04	0.9418E-05	0.8953E-05	0.85 99E-0 5	0.1584E-04
4.91	0.1547E-04	0.8401E-05	0.8281E-05	0.8261E-05	0.8962E-05
5.16	0.6831E-05	0.3388E-05	0.3887E-05	0.4543E-05	0.3970E-05
5.40	0.6654E-05	0.4387E-05	0.4651E-05	0.8718E-05	0.4343E-05
5.65	0.4480E-05	0.2480E-05	0.3425E-05	0.7417E-05	0.4321E-05
5.89	0.4997E-05	0.3956E-05	0.4979E-05	0.9015E-05	0.4624E-05
6.14	0.3566E-05	0.2041E-05	0.2976E-05	0.6315E-05	0.4137E-05
6.38	0.4916E-05	0.3491E-05	0.4030E-05	0.2643E-04	0.4097E-05
6.63	0.4641E-05	0.2561E-05	0.3904E-05	0.6162E-04	0.4457E-05
6.88	0.5501E-05	0.4090E-05	0.5524E-05	0.5413E-04	0.4429E-05
7.12	0.8015E-05	0.4105E-05	0.7811E-05	0.1498E-03	0.5479E-05
7.37	0.1678E-04	0.7505E-05	0.1540E-04	0.4224E-03	0.8331E-05

TABLE 4.7 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB 2.62 ft Significant Wave Height 12.5 \$ Beam

42.9 ft LCG

 $C_V = 3.0$ Speed = 46.4 knots

Runs 44, 45, 46

Accelerometer	* #5	# 1	#3	#2	#1
Frequency Hz		Spectra	al Estimates	g ² /Hz	
0.00 0.25	-0.4111E-04 0.3237E-02	-0.3614E-04 0.2396E-02	0.9730E-05 0.1336E-02	0.6518E-04 0.7033E-03	0.2061E-04 0.5247E-03
0.49	0.3055E-01	0.2211E-01	0.1133E-01	0.4923E-02	0 3451E-02
0.74	0.8490E-01	0.6088E-01	0.2986E-01	0.1145E-01	0.7101E-02
0.98	0.9673E-01	0.6897E-01	0.3304E-01	0.1207E-01	0.5968E-02
1.23	0.6152E-01	0.4354E-01	0.2081E-01	0.7745E-02	0.2995E-02
1.47	0.3687E-01	0.2572E-01	0.1241E-01	0.4564E¬02	0.1768E-02
1.72	0.2415E-01	0.1684E-01	0.8085E-02	0.2853E-02	0.1142E-02
1.97	0.1479E-01	0.1043E-01	0.4987E-02	0.1746E-02	0.6443E-03
2.21	0.8834E-02	0.6066E-02	0.2920E-02	0.9945E-03	0.3725E-03
2.46	0.4709E-02	0.3164E-02	0.1554E-02	0.5018E-03	0.2306E-03
2.70	0.2520E-02	0.1652E-02	0.8382E-03	0.2817E-03	0.1561E-03
2 .95	0.1480E-02	0.9304E-03	0.5037E-03	0.1854E-03	0.1235E-03
3.19	0.7877E-03	0.4824E-03	0.2782E-03	0.1153E-03	0.8117E-04
3.44	0.3884E-03	0.2286E-03	0.1394E-03	0.5289E-04	0.3784E-04
3.68	0.2834E-03	0.1658E-03	0.1019E-03	0.3741E-04	0.2114E-04
3.93	0.2370E-03	0.1335E-03	0.8818E-04	0.3501E-04	0.1482E-04
4.17	0.2766E-03	0.1478E-03	0.9859E-04	0.4272E-04	0.1301E-04
4.42	0.2587E-03	0.1321E-03	0.9023E-04	0.3929E-04	0.1063E-04
4.67	0.2108E-03	0.9839E-04	0.7421E-04	0.4230E-04	0.9755E-05
4.91	0.1526E-03	0.6784E-04	0.6103E-04	0.3970E-04	0.8018E-05
5.16	0.1340E-03	0.6436E-04	0.5656E-04	0.3978E-04	0.9278E-05
5.40	0.9646E-04	0.4374E-04	0.4024E-04	0.3603E-04	0.1081E-04
5.65	0.8572E-04	0.3423E-04	0.3315E-04	0.3791E-04	0.1218E-04
5.89	0.5885E-04	0.1948E-04	0.2168E-04	0.3383E-04	0.1020E-04
6.14	0.4633E-04	0.1428E-04	0.1567E-04	0.3229E-04	0.8142E-05
6.38	0.3493E-04	0.9350E-05	0.1149E-04	0.6050E-04	0.7569E-05
6.63	0.3856E-04	0.1096E-04	0.1205E-04	0.1081E-03	0.6185E-05
6.88	0.3357E-04	0.9560E~05	0.1037E-04	0.1250E-03	0.4907E-05
7.12	0.4209E-04	0.1299E-04	0.1848E-04	0.2786E-03	0.7431E-05
7.37	0.5490E-04	0.1375E-04	0.3419E-04	0.5953E-03	0.9533E-05

TABLE 4.8 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB 2.62 ft Significant Wave Height 12.5% Beam 42.9 ft LCG

 $C_V = 4.0$ Speed = 61.9 knots

Runs 48, 49, 63, 64

Accelerometer	#5	#4	#3	#2	#1
Frequency Hz		Spectra	al Estimates	g ² /Hz	
0.00	0.9233E-03	0.7047E-03	0.3909E-03	0.1961E-03	0.4409E-04
0.25	0.4198E-02	0.3155E-02	0.1788E-02	0.8614E-03	0.4309E-03
0.49	0.2673E-01	0.1998E-01	0.1104E-01	0.5204E-02	0.2582E-02
0.74	0.9068E-01	0.6741E-01	0.3670E-01	0.1649E-01	0.7565E-02
0.98	0.1643E+00	0.1209E+00	0.6469E-01	0.2997E-01	0.1239E-01
1.23	0.1636E+00	0.1194E+00	0.6324E-01	0.3022E-01	0.1193E-01
1.47	0.1034E+00	0.7502E-01	0.3972E-01	0.1876E-01	0.7668E-02
1.72	0.6379E-01	0.4582E-01	0.2432E-01	0.1123E-01	0.4595E-02
1.97	0.4686E-01	0.3336E-01	0.1772E-01	0.8148E-02	0.3281E-02
2.21	0.3211E-01	0.2255E-01	0.1191E-01	0.5471E-02	0.2401E-02
2.46	0.2132E-01	0.1476E-01	0.7680E-02	0.3392E-02	0.1726E-02
2.70	0.1202E-01	0.8162E-02	0.4258E-02	0.1914E-02	0.1182E-02
2 .9 5	0.6677E-02	0.4142E-02	0.2304E-02	0.1138E-02	0.9571E-03
3.19	0.5044E-02	0.2810E-02	0.1664E-02	0.8820E-03	0.8365E-03
3.44	0.2831E-02	0.1510E-02	0.9013E-03	0.4878E-03	0.4591E-03
3.68	0.1374E-02	0.7532E-03	0.4463E-03	0.2530E-03	0.2252E-03
3.93	0.9752E-03	0.5425E-03	0.3199E-03	0.1723E-03	0.1569E-03
4.17	0.7990E-03	0.4489E-03	0.2755E-03	0.1570E-03	0.1247E-03
4.42	0.8139E-03	0.4324E-03	0.2885E-03	0.1599E-03	0.7498E-04
4.67	0.8869E-03	0.4358E-03	0.3075E-03	0.2047E-03	0.4924E-04
4.91	0.7969E-03	0.3672E-03	0.2826E-03	0.2222E-03	0.3782E-04
5.16	0.6923E-03	0.3132E-03	0.2551E-03	0.2247E-03	0.4092E-04
5.40	0.6087E-03	0.2421E-03	0.2132E-03	0.1973E-03	0.4166E-04
5.65	0.5629E-03	0.2021E-03	0.1894E-03	0.2081E-03	0.4759E-04
5.89	0.5447E-03	0.1785E-03	0.1668E-03	0.2132E-03	0.4446E-04
6.14	0.5022E-03	0.1567E-03	0.1370E-03	0.2272E-03	0.4659E-04
6.38	0.4263E-03	0.1231E-03	0.1074E-03	0.2272E-03	0.3840E-04
6.63	0.3457E-03	0.9346E-04	0.7301E-04	0.2290E-03	0.3135E-04
6.88	0.3573E-03	0.8460E-04	0.5557E-04	0.2321E-03	0.3015E-04
7.12	0.3634E-03	0.8429E-04	0.5423E-0 ¹	0.2610E-03	0.4252E-04
7.37	0.3634E-03	0.7878E-04	.0.5134E-04	0.3140E-03	0.6235E-04

TABLE 4.9 ACCELERATION VARIANCE SPECTRAL DENSITY 120 It WPB 4.26 ft Significant Wave Height 20% Beam 42.9 ft LCG

 $C_V = 1.5$ Speed = 23.2 knots

Runs	65.	66
ii wis	~ ~ .	~~

Accelerometer	#5	#4 #3		#2	#1
Frequency Hz		Spectr	al Estimates	g ² /Hz	
nz		bpec or c	ai booimaocc	G ,	
0.00	0.2702E-01	0.2048E-01	0.1172E-01	0.6932E-02	0.6372E-02
0.25	0.1028E+00	0.7602E-01	0.4092E-01	0.2316E-01	0.2506E-01
0.49	0.1364E+00	0.9858E-01	0.4995E-01	0.2652E-01	0.3243E-01
0.74	0.5328E-01	0.3731E-01	0.1706E-01	0.7337E-02	0.9586E-02
0.98	0.1959E-01	0.1349E-01	0.5729E-02	0.1491E-02	0.5402E-03
1.23	0.1254E-01	0.8644E-02	0.3711E-02	0.9760E-03	0.3691E-03
1.47	0.6522E-02	0.4505E-02	0.2006E-02	0.5431E-03	0.1927E-03
1.72	0.3745E-02	0.2543E-02	0.1125E-02	0.2781E-03	0.7565E-04
1.97	0.2620E-02	0.1788E-02	0.8157E-03	0.2502E-03	0.1339E-03
2.21	0.1494E-02	0.9752E-03	0.4368E-03	0.1044E-03	0.3977E-04
2.46	0.1135E-02	0.7335E-03	0.3478E-03	0.1112E-03	0.6627E-04
2.70	0.5467E-03	0.3348E-03	0.1472E-03	0.3500E-04	0.1008E-04
2.95	0.5093E-03	0.3533E-03	0.1763E-03	0.6864E-04	0.5350E-04
3.19	0.2123E-03	0.1443E-03	0.6750E-04	0.1970E-04	0.1776E-04
3.44	0.2576E-03	0.1677E-03	0.8914E-04	0.4150E-04	0.3010E-04
3.68	0.9977E-04	0.4754E-04	0.2383E-04	0.7259E-05	-0.1672E-06
3.93	0.1659E-03	0.1044E-03	0.5636E-04	0.2765E-04	0.2219E-04
4.17	0.6513E-04	0.2589E-04	0.1370E-04	0.3798E-05	0.6071E-05
4.42	0.1242E-03	0.7286E-04	0.4582E-04	0.2558E-04	0.2345E-04
4.67	0.3160E-04	0.8448E-05	0.1174E-04	0.4839E-05	0.2457E-05
4.91	0.8086E-04	0.4923E-04	0.3451E-04	0.2095E-04	0.1597E-04
5.16	0.7380E-05	-0.3375E-05	0.3011E-05	0.4704E-05	0.1917E-05
5.40	0.5297E-04	0.3392E-04	0.2488E-04	0.2509E-04	0.1337E-04
5.65	-0.7765E-05	-0.1007E-04	-0.6170E-06	0.1419E-04	0.1262E-05
5.89	0.3679E-04	0.2489E-04	0.1822E-04	0.2138E-04	0.1150E-04
6.14	-0.1086E-04	-0.9742E-05	-0.2829E-05	0.8721E-05	0.7830E-06
6.38	0.3164E-04	0.2287E-04	0.1499E-04	0.4015E-04	0.1001E-04
6.63	-0.8340E-05	-0.7373E-05	-0.3353E-05	0.7387E-04	0.1556E-05
6.88	0.2843E-04	0.1914E-04	0.1209E-04	0.7350E-04	0.1031E-04
7.12	-0.3079E-05	-0.7726E-05	-0.9046E-06	0.1391E-03	0.4427E-05
7.37	0.4107E-04	0.1972E-04	0.2028E-04	0.3748E-03	0.1609E-04

TABLE 4.10 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB 4.26 ft Significant Wave Height 20% Beam 42.9 ft LCG

 $C_V = 3.0$ Speed = 46.4 knots

Runs 67, 68, 69

Accelerometer	#5	#11	#3	#2	#1
Frequency Hz		Spectra	al Estimates g	3 ² /H2	
Hz 0.00 0.25 0.49 0.74 0.98 1.23 1.47 1.72 1.97 2.21 2.46 2.70 2.95 3.19 3.68 3.93 4.17 4.42 4.67 4.91 5.16 5.40 5.65	0.4820E-02 0.6734E-01 0.2411E+00 0.2968E+00 0.1848E+00 0.9935E-01 0.6946E-01 0.3702E-01 0.3702E-01 0.1604E-01 0.1604E-01 0.168E-01 0.7560E-02 0.5148E-02 0.2350E-02 0.2350E-02 0.2011E-02 0.1530E-02 0.1058E-02 0.9149E-03 0.7252E-03 0.5359E-03 0.4346E-03 0.3124E-03	Spectra 0.3766E-02 0.5132E-01 0.1803E+00 0.2175E+00 0.1329E+00 0.7053E-01 0.4873E-01 0.3514E-01 0.2522E-01 0.1685E-01 0.1685E-01 0.7539E-02 0.4636E-02 0.3091E-02 0.292E-02 0.1382E-02 0.1159E-02 0.8969E-03 0.6027E-03 0.4793E-03 0.4793E-03 0.3497E-03 0.2342E-03 0.1758E-03 0.1758E-03	0.2457E-02 0.3019E-01 0.9985E-01 0.1133E+00 0.6594E-01 0.3438E-01 0.1678E-01 0.1678E-01 0.1212E-01 0.1212E-01 0.8156E-02 0.5181E-02 0.5181E-02 0.5181E-02 0.1720E-02 0.1720E-02 0.1320E-02 0.1320E-02 0.8515E-03 0.7620E-03 0.4299E-03 0.3716E-03 0.2870E-03 0.2144E-03 0.1809E-03 0.1323E-03	0.1414E-02 0.1749E-01 0.5250E-01 0.5250E-01 0.5126E-01 0.1286E-01 0.8328E-02 0.5773E-02 0.4019E-02 0.4019E-02 0.1217E-02 0.1603E-02 0.1217E-02 0.7824E-03 0.5646E-03 0.4561E-03 0.2942E-03 0.2942E-03 0.2196E-03 0.2196E-03 0.2104E-03 0.1797E-03 0.1494E-03 0.1316E-03 0.1073E-03	0.8686E-03 0.1438E-01 0.4260E-01 0.3865E-01 0.1541E-01 0.5095E-02 0.2933E-02 0.2035E-02 0.1494E-02 0.1010E-02 C.5846E-03 0.4890E-03 0.4890E-03 0.1806E-03 0.9399E-04 0.6569E-04 0.3638E-04 0.4277E-04 0.3787E-04 0.3787E-04 0.3500E-04 0.2196E-04 0.2628E-04 0.2812E-04
5.89 6.14 6.38 6.63 6.88 7.12 7.37	0.2062E-03 0.1508E-03 0.1091E-03 0.7035E-04 0.6524E-04 0.7385E-04 0.1154E-03	0.7048E-04 0.4889E-04 0.3184E-04 0.1806E-04 0.1470E-04 0.1539E-04 0.2182E-04	0.8710E-04 0.7134E-04 0.4524E-04 0.3278E-04 0.2397E-04 0.3451E-04 0.7321E-04	0.8627E-04 0.9509E-04 0.1237E-03 0.1672E-03 0.2240E-03 0.5619E-03 0.1315E-02	0.1825E-04 0.1792E-04 0.1083E-04 0.1372E-04 0.1200E-04 0.2027E-04 0.2887E-04
			-		

TABLE 4.11 ACCELERATION VARIANCE SPECTRAL DENSITY 120 ft WPB 4.26 ft Significant Wave Height 20% Beam 42.9 ft LCG

 $C_V = 4.0$ Speed = 61.9 knots

Runs 71, 72, 73, 74

Accelerometer	#5	#4	#3	#2	#1
Frequency Hz		Spectra	al Estimates	g ² /Hz	
0.00	0.7953E⇒03	0.6020E-03	0.3204E-03	0.1757E-03	0.3567E-04
0.25	0.3560E-01	0.2793E-01	0.1724E-01	0.1020E-01	0.6321E-02
0.49	0.2147E+00	0.1656E+00	0.9905E-01	0.5477E-01	0.3412E-01
0.74	0.4070E+00	0.3098E+00	0.1799E+00	0.9309E-01	0.5616E-01
0.98	0.3972E+00	0.2982E+00	0.1692E+00	0.8904E-01	0.4885E-01
1.23	0.2508E+00	0.1859E+00	0.1042E+00	0.5680E-01	0.2986E-01
1.47	0.1587E+00	0.1158E+00	0.6321E-01	0.3225E-01	0.1718E-01
1.72	0.1310E+00	0.9420E-01	0.5036E-01	0.2420E-01	0.1212E-01
1.97	0.8997E-01	0.6384E-01	0.3430E-01	0.1680E-01	0.9106E-02
2.21	0.5996E-01	0.4195E-01	0.2286E-01	0.1161E-01	0.6930E-02
2.46	0.5310E-01	0.3641E-01	0.1994E-01	0.9480E-02	0.5292E-02
2.70	0.3943E-01	0.2604E-01	0.1407E-01	0.6473E-02	0.4176E-02
2.95	0.2462E-01	0.1518E-01	0.8305E-02	0.4193E-02	0.2888E-02
3.19	0.1931E-01	0.1150E-01	0.6477E-02	0.3489E-02	0.2156E-02
3.44	0.1398E-01	0.8190E-02	0.4838E-02	0.2588E-02	0.1388E-02
3.68	0.1115E-01	0.6371E-02	0.3863E-02	0.1992E-02	0.1075E-02
3.93	0.8312E-02	0.4597E-02	0.2829E-02	0.1329E-02	0.7551E-03
4.17	0.6418E-02	0.3425E-02	0.2144E-02	0.1049E-02	0.5848E-03
4.42	0.4742E-02	0.2314E-02	0.1537E-02	0.8325E-03	0.3794E-03
4.67	0.4474E-02	0.2171E-02	0.1509E-02	0.9303E-03	0.3032E-03
4.91	3.3751E-02	0.1704E-02	0.1275E-02	0.7592E-03	0.2079E-03
5.16	0.2781E-02	0.1206E-02	0.9446E-03	0.5224E-03	0.1921E-03
5.40	0.2128E-02	0.8110E-03	0.7212E-03	0.4667E-03	0.1433E-03
5.65	0.2184E-02	0.8551E-03	0.7584E-03	0.6275E-03	0.1400E-03
5.89	0.1448E-02	0.5103E-03	0.4962E-03	0.5529E-03	0.1138E-03
6.14	0.1366E-02	0.4708E-03	0.4576E-03	0.5701E-03	0.1215E-03
6.38	0.9572E-03	0.2516E-03	0.3156E-03	0.5423E-03	0.9778E-04
6.63	0.8470E-03	0.2553E-03	0.2769E-03	0.6453E-03	0.1201E-03
6.88	0.5700E-03	0.1288E-03	0.1644E-03	0.6497E-03	0.1057E-03
7.12	0.5975E-03	0.1672E-03	0.1809E-03	0.7146E-03	0.1280E-03
7.37	0.4528E-03	0.7679E-04	0.1259E-03	0.7942E-03	0.1134E-03

TABLE 5.1

1/3 OCTAVE RMS ACCELERATIONS

110 ft WPB

3.13 ft Significant Wave Height

12.5\$ Beam

37.2 ft LCG

 $C_V = 0.60$ Speed = 10 knots

Run 1	2	b
-------	---	---

Accelerometer	#5	#4	#3	#2	#1
Center					
Frequency		-	3 Octave RM		
Hz		1	meters/sec ²	•	
0.099	0.121	0.080	0.043	0.030	0.035
0.125	0.136	0.089	0.048	0.033	0.039
0.157	0.153	0.100	0.054	0.038	0.044
0.198	0.593	0.390	0.202	0.125	0.118
0.250	0.722	0.475	0.246	0.151	0.143
0.315	1.035	0.682	0.353	0.212	0.186
0.397	1.225	0.809	0.418	0.249	0.213
0.500	0.978	0.646	0.333	0.196	0.159
0.630	0.339	0.225	0.118	0.068	0.048
0.794	0.286	0.194	0.109	0.066	0.027
1.000	0.231	0.155	0.085	0.053	0.030
1.260	0.128	0.084	0.041	0.026	0.016
1.587	0.065	0.046	0.026	0.020	0.010
2.000	0.033	0.027	0.026	0.022	0.027
2.520	0.018	0.020	0.023	0.023	0.017
3.175	0.028	0.024	0.032	0.036	0.023
4.000	0.035	0.018	0.046	0.044	0.019
5.040	0.030	0.023	0.033	0.046	0.024
6.350	0.037	0.024	0.028	0.055	0.035
8.000	0.009	0.008	0.012	0.022	0.011
10.079	0.000	0.000	0.000	0.000	0.000
12.699	0.000	0.000	0.000	0.000	0.000
16.000	0.000	0.000	0.000	0.000	0.000

TABLE 5.2 1/3 OCTAVE RMS ACCELERATIONS 110 ft WPB 5.00 ft Significant Wave Height 20% Beam 37.2 ft LCG

 $C_V = 1.5$ Speed = 25.0 knots

Runs 121,122,123					
Accelerometer	#5	#4	#3	#2	#1
Center				40	
Frequency		-	3 Octave RM		
Hz		I	meters/sec ²	•	
0.099	0.322	0.245	0.181	0.158	0.142
0.125	0.635	0.469	0.332	0.283	0.263
0.157	0.855	0.628	0.442	0.376	0.351
0.198	0.959	0.705	0.496	0.422	0.394
0.250	1.077	0.791	0.557	0.473	0.442
0.315	1.209	0.888	0.625	0.531	0.496
0.397	1.638	1.178	0.796	0.661	0.626
0.500	1.893	1.357	0.912	0.755	0.716
0.630	1.723	1.218	0.793	0.638	0.602
0.794	1.527	1.061	0.657	0.502	0.462
1.000	1.013	0.693	0.394	0.247	0.141
1.260	0.857	0.588	0.336	0.210	0.111
1.587	0.680	0.463	0.264	0.162	0.076
2.000	0.517	0.351	0.205	0.126	0.057
2.520	0.377	0.251	0.152	0.095	0.037
3.175	0.272	0.178	0.116	0.086	0.040
4.000	0.196	0.119	0.078	0.054	0.023
5.040	0.137	0.075	0.058	0.039	0.023
6.350	0.111	0.053	0.046	0.043	0.022
8.000	0.082	0.038	0.045	0.109	0.045
10.079	0.061	0.032	0.058	0.059	0.029
12.699	0.051	0.034	0.034	0.033	0.026
16.000	0.021	0.017	0.013	0.013	0.013

TABLE 5.3

1/3 OCTAVE RMS ACCELERATIONS

110 ft WPB

5.00 ft Significant Wave Height

20\$ Beam

37.2 ft LCG

 $C_V = 3.0$ Speed = 50.1 knots

Runs	118	119	120.	124
nuis	110		, , ,	167

Accelerometer	#5	#4	#3	#2	#1
Center		1/3	3 Octave RM	ıs	
Frequency Hz		-	meters/sec ²		
0.099	0.201	0.155	0.114	0.097	0.083
0.125	0.617	0.474	0.349	0.296	0.233
0.157	0.865	0.665	0.490	0.416	0.325
0.198	0.971	0.746	0.550	0.467	0.365
0.250	1.090	0.838	0.617	0.524	0.410
0.315	1.224	0.941	0.692	0.588	0.460
0.397	2.179	1.670	1.224	1.032	0.805
0.500	2.582	1.979	1.450	1.222	0.953
0.630	2.912	2.223	1.621	1.351	1.073
0.794	3.178	2.417	1.752	1.445	1.161
1.000	2.941	2.201	1.555	1.240	1.006
1.260	2.668	1.955	1.333	1.025	0.803
1.587	2 .238	1.621	1.107	0.848	0.722
2.000	1.849	1.313	0.898	0.684	0.611
2.520	1.512	1.035	0.695	0.521	0.468
3.175	1.097	0.719	0.491	0.366	0.284
4.000	0.794	0.490	0.365	0.266	0.168
5.040	0.610	0.330	0.281	0.220	0.140
6.350	0.399	0.173	0.181	0.158	0.111
8.000	0.239	0.070	0.119	0.147	0.103
10.079	0.145	0.024	0.097	0.099	0.042
12.699	0.066	0.000	0.046	0.049	0.022
16.000	0.000	0.000	0.006	0.010	0.000

TABLE 5.4

1/3 OCTAVE RMS ACCELERATIONS

110 ft WPB

5.00 ft Significant Wave Height

20 Beam

37.2 ft LCG

 $C_V = 4.0$ Speed = 66.8 knots

Runs 134,135,136,137,138	Runs	134.	135.	136.	.137	.138
--------------------------	------	------	------	------	------	------

Accelerometer	# 5	#4	#3	#2	#1
Center Frequency		1.	/3 Octave	RMS	
Hz			meters/se	c²	
0.099	0.098	0.079	0.063	0.054	0.042
0.125	0.515	0.397	0.297	0.252	0.204
0.157	0.735	0.567	0.423	0.359	0.292
0.198	0.826	0.637	0.475	0.403	0.327
0.250	0.927	0.715	0.533	0.452	0.367
0.315	1.040	0.802	0.598	0.507	0.412
0.397	2,169	1.669	1.238	1.042	0.840
0.500	2.594	1.996	1.481	1.246	1.004
0.630	3.160	2.440	1.822	1.526	1.250
0.794	3.628	2.806	2.107	1.761	1.466
1.000	3.654	2.833	2.154	1.799	1.575
1.260	3.427	2.593	1.939	1.619	1.492
1.587	3.058	2.241	1.643	1.366	1.306
2.000	2.865	2.062	1.518	1.253	1.220
2.520	2.313	1.593	1.140	0.925	0.903
3.175	1.960	1.241	0.827	0.654	0.658
4.000	1.415	0.827	0.561	0.440	0.407
5.040	0.997	0.523	0.420	0.350	0.297
6.350	0.699	0.298	0.296	0.262	0.219
8,000	0.387	0.110	0.189	0.185	0.155
10.079	0.339	0.070	0.229	0.230	0.097
12.699	0.098	0.000	0.059	0.064	0.011
16.000	0.000	0.000	0.000	0.000	0.000

TABLE 5.5

1/3 OCTAVE RMS ACCELERATIONS

120 ft WPB

2.62 ft Significant Wave Height

12.5% Beam

42.9 ft LCG

 $C_V = 0.65$ Speed = 10 knots

R	,,	n	7	75
	ш			

Accelerometer	# 5	≇ #	#3	# 2	#1
Center					
Frequency		1.	/3 Octave		
Hz			meters/se	e²	
0.099	0.060	0.050	0.030	0.016	0.027
0.125	0.068	0.056	0.034	0.018	0.031
0.157	0.076	0.063	0.038	0.021	0.034
0.198	0.326	0.268	0.158	0.067	0.111
0.250	0.398	0.327	0.193	0.081	0.135
0.315	0.577	0.474	0.281	0.113	0.179
0.397	0.686	0.564	0.336	0.133	0.205
0.500	0.551	0.454	0.274	0.110	0.147
0.630	0.198	0.165	0.106	0.051	0.046
0.794	0.154	0.127	0.079	0.037	0.038
1.000	0.130	0.108	0.067	0.030	0.030
1.260	0.057	0.048	0.032	0.017	0.017
1.587	0.040	0.031	0.023	0.019	0.017
2.000	0.045	0.034	0.028	0.034	0.038
2.520	0.029	0.025	0.024	0.021	0.026
3.175	0.038	0.027	0.031	0.029	0.037
4.000	0.029	0.022	0.027	0.026	0.030
5.040	0.032	0.025	0.032	0.038	0.032
6.350	0.066	0.035	0.060	0.159	0.037
8.000	0.016	0.012	0.017	0.058	0.015
10.079	0.000	0.000	0.000	0.000	0.000
12.699	0.000	0.000	0.000	0.000	0.000
16.000	0.000	0.000	0.000	0.000	0.000

TABLE 5.6

1/3 OCTAVE RMS ACCELERATIONS

120 ft WPB

2.62 ft Significant Wave Height

12.5% Beam

42.9 ft LCG

 $C_V = 1.5$ Speed = 23.2 knots

Runs	40.	42
Runs	70.	76

Accelerometer	#5	#4	#3	#2	#1
Center			·		
Frequency			3 Octave RM		
Hz		ď	meters/sec ²		
0.099	0.060	0.052	0.038	0.028	0.028
0.125	0.156	0.133	0.094	0.067	0.074
0.157	0.216	0.184	0.129	0.093	0.104
0.198	0.243	0.207	0.145	0.104	0.116
0.250	0.273	0.232	0.163	0.117	0.131
0.315	0.306	0.261	0.183	0.131	0.147
0.397	0.459	0.387	0.264	0.183	0.220
0.500	0.536	0.452	0.307	0.212	0.257
0.630	0.501	0.420	0.281	0.188	0.232
0.794	0.460	0.383	0.253	0.159	0.200
1.000	0.319	0.264	0.175	0.090	0.082
1.260	0.269	0.222	0.144	0.074	0.061
1.587	0.185	0.153	0.099	0.052	0.047
2.000	0.126	0.102	0.067	0.040	0.043
2 .52 0	0.079	0.066	0.046	0.035	0.036
3.175	0.059	0.047	0.041	0.037	0.042
4.000	0.042	0.033	0.027	0.025	0.023
5.040	0.037	0.026	0.026	0.029	0.030
6.350	0.027	0.021	0.025	0.075	0.025
8.000	0.065	0.033	0.057	0.186	0.037
10.079	0.036	0.026	0.038	0.047	0.032
12.699	0.029	0.027	0.033	0.029	0.035
16.000	0.013	0.013	0.015	0.013	0.015

TABLE 5.7 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB 2.62 ft Significant Wave Height 12.5% Beam 42.9 ft LCG

 $C_V = 3.0$ Speed = 46.4 knots

Runs 44, 45, 46					
Accelerometer	#5	#4	#3	#2	#1
Center		1./) Ostava Ph	10	
Frequency			3 Octave RM meters/sec ¹		
Hz		1.	necei 3/3ec		
0.099	0.000	0.000	0.005	0.012	0.007
0.125	0.074	0.063	0.048	0.035	0.030
0.157	0.107	0.092	0.068	0.050	0.043
0.198	0.120	0.103	0.077	0.056	0.048
0.250	0.134	0.116	0.086	0.063	0.054
0.315	0.151	0.130	0.097	0.070	0.061
0.397	0.481	0.409	0.293	0.194	0.162
0.500	0.583	0.496	0.355	0.234	0.196
0.630	0.957	0.811	0.570	0.357	0.285
0.794	1.240	1.049	0.733	0.452	0.350
1.000	1.448	1.222	0.846	0.512	0.358
1.260	1.255	1.055	0.730	0.445	0.277
1.587	1.038	0.867	0.601	0.362	0.227
2.000	0.789	0.660	0.457	0.270	0.166
2.520	0.496	0.407	0.285	0.164	0.111
3.175	0.249	0.196	0.147	0.091	0.075
4.000	0.153	0.114	0.092	0.059	0.037
5.040	0.128	0.087	0.080	0.066	0.033
6.350	0.080	0.045	0.048	0.111	0.033
8.000	0.140	0.061	0.103	û.256	0.043
10.079	0.080	0.040	0.060	0.066	0.037
12.699	0.042	0.031	0.035	0.033	0.034
16.000	0.015	0.011	0.012	0.011	0.014

TABLE 5.8

1/3 OCTAVE RMS ACCELERATIONS

120 ft WPB

2.62 ft Significant Wave Height

12.5% Beam

42.9 ft LCG

 $C_V = \frac{1}{4}.0$ Speed = 61.9 knots

Runs	ЫB	11 Q	63	64
Runs	40.	47.	U) .	דט

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Accelerometer	#5	#4	#3	#2	#1
Center		• •) O a traver DN	10	
Frequency			3 Octave RM		
Hz		IJ	meters/sec ²	•	
0.093	0.045	0.039	0.029	0.021	0.010
0.125	0.090	0.078	0.059	0.041	0.028
0.157	0.121	0.105	0.079	0.055	0.039
0.198	0.136	0.118	0.089	0.062	0.044
0.250	0.153	0.133	0.100	0.069	0.049
0.315	0.172	0.149	0.112	0.078	0.055
0.397	0.452	0.391	0.291	0.200	0.141
0.500	0.546	0.472	0.351	0.241	0.170
0.630	0.974	0.840	0.621	0.418	0.285
0.794	1.352	1.164	0.857	0.577	0.385
1.000	1.913	1.641	1.200	0.817	0.525
1.260	2.055	1.755	1.277	0.882	0.556
1.587	1.717	1.460	1.063	0.727	0.465
2.000	1.401	1.181	0.860	0.583	0.375
2.520	1.030	0.856	0.619	0.415	0.299
3.175	0.584	0.445	0.338	0.243	0.230
4.000	0.298	0.221	0.173	0.129	0.115
5.040	0.286	0.192	0.170	0.153	0.071
6.350	0.249	0.135	0.124	0.179	0.075
8.000	0.330	0.140	0.174	0.285	0.098
10.079	0.230	0.097	0.164	0.157	0.080
12.699	0.022	0.000	0.024	0.031	0.040
16.000	0.000	0.000	0.006	0.010	0.019

TABLE 5.9 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB 4.26 ft Significant Wave Height 20% Beam 42.9 ft LCG

 $C_V = 1.5$ Speed = 23.2 knots

Runs	65	66
KUNS	חים.	ספ

Accelerometer	#5	#4	#3	#2	#1
Center				••	
Frequency			3 Octave R		
Hz		ľ	meters/sec ²	•	
0.099	0.244	0.213	0.161	0.124	0.119
0.125	0.451	0.388	0.286	0.216	0.222
0.157	0.601	0.517	0.379	0.285	0.297
0.198	0.674	0.580	0.425	0.320	0.333
0.250	0.757	0.651	0.477	0.359	0.374
0.315	0.850	0.730	0.536	0.403	0.419
0.397	1.076	0.916	0.655	0.479	0.526
0.500	1.233	1.048	0.746	0.544	0.601
0.630	1.081	0.913	0.637	0.447	0.500
0.794	0.917	0.767	0.517	0.335	0.377
1.000	0.652	0.541	0.353	0.180	0.108
1.260	0.561	0.466	0.306	0.157	0.096
1.587	0.425	0.353	0.235	0.120	0.069
2.000	0.326	0.268	0.180	0.095	0.065
2.520	0.229	0.183	0.124	0.066	0.047
3.175	0.151	0.125	0.088	0.055	0.049
4.000	0.100	0.074	0.055	0.037	0.033
5.040	0.068	0.048	0.044	0.040	0.031
6 .35 0	0.041	0.031	0.030	0.084	0.030
8.000	0.088	0.043	0.066	0.198	0.043
10.079	0.047	0.028	0.038	0.045	0.032
12.699	0.039	0.030	0.030	0.027	0.037
16.000	0.020	0.015	0.015	0.012	0.017

TABLE 5.10 1/3 OCTAVE RMS ACCELERATIONS 120 ft WPB 4.26 ft Significant Wave Height 20% Beam 42.9 ft LCG

 $C_V = 3.0$ Speed = 46.4 knots

Runs 67, 68, 69					
Acceleromete:	#5	# 7	#3	#2	#1
Center			. .		
Frequency			3 Octave R		
Hz		ī	meters/sec ²	_	
0.099	0.103	0.091	0.074	0.056	0.044
0.125	0.345	0.301	0.232	0.176	0.159
0.157	0.486	0.424	0.325	0.248	0.225
0.198	0.546	0.476	0.365	0.278	0.252
0.250	0.613	0.535	0.410	0.312	0.283
0.315	0.688	0.600	0.460	0.350	0.318
0.397	1.373	1.188	0.886	0.644	0.580
0.500	1.639	1.417	1.055	0.765	0.689
0.630	1.971	1.693	1.234	0.852	0.750
0.794	2.216	1.895	1.364	0.911	0.783
1.000	1.993	1.690	1.190	0.744	0.571
1.260	1.614	1.359	0.947	0.577	0.360
1.587	1.457	1.217	0.842	0.499	0.296
2.000	1.243	1.026	0.712	0.409	0.250
2.520	0.932	0.758	0.530	0.298	0.184
3.175	0.622	0.485	0.358	0.206	0.117
4.000	0.398	0.303	0.245	0.158	0.064
5.040	0.266	0.184	0.170	0.135	0.057
6.350	0.136	0.076	0.090	0.157	0.048
8.000	0.213	0.089	0.143	0.343	0.066
10.079	0.100	0.043	0.083	0.078	0.043
12.699	0.000	0.000	0.026	0.043	0.032
16.000	0.000	0.000	0.009	0.013	0.014

TABLE 5.11
1/3 OCTAVE RMS ACCELERATIONS
120 ft WPB
4.26 ft Significant Wave Height
20% Beam
42.9 ft LCG

 $C_V = 4.0$ Speed = 61.9 knots

Runs	71	72.	73.	74
nuns		. 16.	13.	17

Accelerometer	# 5	#4	#3	# 2	#1
Center		• •	2 O-4 DI	40	
Frequency		-	3 Octave RN		
Hz		I	meters/sec ²		
0.099	0.042	0.036	0.027	0.020	0.009
0.125	0.247	0.219	0.172	0.132	0.104
0.157	0.353	0.313	0.246	0.189	0.149
0.198	0.397	0.351	0.276	0.212	0.167
0.250	0.445	0.394	0.310	0.238	0.188
0.315	0.500	0.443	0.348	0.268	0.211
0.397	1.283	1.127	0.872	0.649	0.512
0.500	1.547	1.358	1.051	0.781	0.617
0.630	2.177	1.903	1.455	1.055	0.823
0.794	2.677	2.333	1.775	1.278	0.985
1.000	2.933	2.541	1.913	1.389	1.028
1.260	2.545	2.188	1.635	1.202	0.872
1.587	2.262	1.926	1.416	0.998	0.719
2.000	1.947	1.639	1.203	0.844	0.625
2.520	1.644	1.355	1.000	0.690	0.532
3.175	1.166	0.905	0.679	0.491	0.389
4.000	0.834	0.617	0.486	0.344	0.253
5.040	0.602	0.402	0.350	0.275	0.154
6.350	0.392	0.223	0.226	0.293	0.128
8.000	0.444	0.188	0.255	0.420	0.140
10.079	0.250	0.110	0.197	0.156	0.105
12.699	0.016	0.008	0.041	0.057	0.047
16.000	0.000	0.000	0.009	0.024	0.020

TABLE 6.1 PITCH VARIANCE SPECTRAL DENSITY 110 ft WPB

Column	Run 126			
	Runs 121, 122, 123			
2 3	Runs 118, 119, 120,	124		
4	Runs 134, 135, 136,			
	Significant Wave Ho	eight Signif	icant Wave H	leight
	3.13 ft		5.00 ft	
	12.5% Beam		20% Beam	
SPEED	10	25.0	50.1	66.8
knots				
$c_{\mathbf{v}}$	0.60	1.5	3.0	4.0
Fre-				
quency			•	
Hz	Sp	ectral Estimates	deg ² /Hz	
	-		J	
0.00	0.2018E+00	0.4572E+00	0.5959E-01	0.4515E-01
0.04	0.3601E+00	0.4421E+00	0.8494E-01	0.1746E+00
0.08	0.4765E+00	0.4675E+00	0.1838E+00	0.2560E+00
0.12	0.2878E+00	0.4373E+00	0.2168E+00	0.2195E+00
0.16	0.1444E+00	0.3375E+00	0.2299E+00	0.2100E+00
0.20	0.8474E+00	0.5184E+00	0.2488E+00	0.2863E+00
0.24	0.2571E+01	0.2000E+01	0.2622E+00	0.2624E+00
0.28	0.5143E+01	0.4661E+01	0.3313E+00	0.2274E+00
0.35	0.1097E+02	0.9825E+01	0.3045E+01	0.4062E+00
0.39	0.6805E+01	0.8363E+01	0.4826E+01	0.1372E+01
0.43	0.2316E+01	0.5912E+01	0.4895E+01	0.3154E+01
0.47	0.5872E+00	0.4328E+01	0.3916E+01	0.2649E+01 0.2361E+01
0.51	0.1462E+00	0.3162E+01	0.2793E+01 0.1946E+01	0.2434E+01
0.55	0.2969E-01	0.1640E+01	0.1584E+01	0.1787E+01
0.59	-0.1214E-02	0.7772E+00 0.3824E+00	0.1948E+01	0.1422E+01
0.63	0.9703E-03	0.3824E+00	0.5503E+00	0.1026E+01
0.67	0.2885E-02 0.1407E-02	0.1030E+00	0.4527E+00	0.7400E+00
0.71	-0.5828E-03	0.8511E-01	0.4439E+00	0.7534E+00
0.75 0.79	0.5742E-02	0.2916E-01	0.3103E+00	0.7248E+00
0.83	0.4574E-02	0.3945E-01	0.2808E+00	0.3935E+00
0.87	0.7328E-02	0.2748E-01	0.2634E+00	0.2946E+00
0.90	0.3836E-02	0.5996E-01	0.1606E+00	0.3142E+00
0.94	0.2812E-02	0.9169E-01	0.2488E+00	0.6104E+00
0.98	-0.7003E-03	0.1056E+00	0.6170E+00	0.1123E+01
1.02	0.7945E-03	0.5955E-01	0.8249E+00	0.1487E+01
1.06	-0.1905E-02	0.4692E-01	0.7172E+00	0.1318E+01
1.10	-0.4779E-04	0.4035E-01	0.3251E+00	0.9435E+00
1.14	-0.1822E-02	0.5044E-01	0.1834E+00	0.9481E+00
1.18	0.1378E-03	0.4097E-01	0.1577E+00	0.1274E+01
	- · · · · · ·			

TABLE 6.2 PITCH VARIANCE SPECTRAL DENSITY 120 ft WPB

			120) It WPB			
Column 1 2 3 4 5	Run 75 Runs 40, 42 Runs 44, 45, Runs 48, 49, Runs 65, 66 Runs 67, 68,	63, 64 69					
7	Runs 71, 72,	73, 74					
		Significant 2.62 12.5%	ft		Signii	Picant Wave He 4.26 ft 20% Beam	eight
SPEED knots	10	23.2	46.4	61.9	23.2	46.4	61.9
c _v	0.65	1.5	3.0	4.0	1.5	3.0	4.0
Fre-							
quency	7			2	•		
Hz			Spectral Est	timates deg^2	/Hz		
0.00	0.4344E-01	0.1830E+00	0.8179E-02	0.1344E-01	0.1955E+00	0.2593E-01	0.1513E-01
0.04	0.1484E+00	0.1030E+00	0.8479E-02	0.1876E-01	0.1755E+00	0.2393E-01	0.3826E-01
0.08	0.2708E+00	0.9138E-01	0.1234E-01	0.2566E-01	0.1910E+00	0.3393E-01	0.5117E-01
0.12	0.1512E+00	0.9002E-01	0.1924E-01	0.3252E-01	0.7491E-01	0.3165E-01	0.3801E-01
0.16	0.5244E-01	0.3983E-01	0.2029E-01	0.1887E-01	0.1255E+00	0.2192E-01	0.3258E-01
0.20	0.1900E+00	0.2938E-01	0.2456E-01	0.1639E-01	0.1863E+00	0.3814E-01	0.7810E-01
0.24	0.7937E+00	0.1296E-01	0.2289E-01	0.2311E-01	0.1280E+01	0.8187E-01	0.8157E-01
0.28	0.2118E+01	0.3557E-01	0.1569E-01	0.2710E-01	0.3376E+01	0.7452E-01	0.1493E+00
0.32	0.4312E+01	0.1470E+00	0.1973E-01	0.3136E-01	0.6411E+01	0.1498E+00	0.2054E+00
0.35	0.5090E+01	0.5150E+00	0.4723E-01	0.4151E-01	0.7974E+01	0.6920E+00	0.3068E+00
0.39	0.3080E+01	0.7719E+00	0.5429E-01	0.6367E-01	0.6353E+01	0.1487E+01	0.4904E+00
0.43	0.1021E+01	0.7525E+00	0.4663E-01	0.1232E+00	0.4599E+01	0.1823E+01	0.4507E+00
0.47	0.2266E+00	0.6649E+00	0.5159E-01	0.9580E-01	0.2888E+01	0.2072E+01	0.4753E+00
0.51	0.4544E-01	0.5309E+00	0.7644E-01	0.4027E-01	0.1450E+01	0.2036E+01	0.8374E+00
0.55	0.1105E-01	0.2927E+00	0.1187E+00	0.3991E-01	0.7260E+00	0.1838E+01	0.1016E+01
0.59	0.2719E-02	0.1174E+00	0.1349E+00	0.4099E-01	0.4104E+00	0.1450E+01	0.9357E+00
0.63	0.1278E-02	0.5719E-01	0.1246E+00	0.7200E-01	0.1150E+00	0.1049E+01	0.8557E+00
0.67	0.2475E-02	0.2315E-01	0.1398E+00	0.1157E+00	0.4529E-01	0.6914E+00	0.7701E+00
0.71	0.2939E-02	0.1030E-01	0.1357E+00	0.1419E+00	0.2178E-02	0.5534E+00	0.7071E+00
0.75	0.5588E-02	0.1011E-02	0.1276E+00	0.1407E+00	0.1846E-01	. 0.5499E+00	0.6811E+00
0.79	0.7857E-02	0.2445E-02	0.1441E+00	0.1093E+00	0.4770E-01	0.4454E+00	0.5477E+00
0.83	0.5547E-02	0.1284E-02	0.1405E+00	0.1387E+00	0.1001E+00	0.3359E+00	0.5568E+00
0.87	0.1728E-02	0.3535E-02	0.1296E+00	0.1750E+00	0.6842E-01	0.2857E+00	0.7629E+00
0.90	0.9530E-03	0.5004E-02	0.1119E+00	0.2180E+00	0.8842E-01	0.4128E+00	0.9579E+00
0.94 0.98	0.9411E-03 0.9429E-03	0.1658E-01 0.1841E-01	0.1311E+00	0.2724E+00 0.3889E+00	0.6687E-01 0.5546E-01	0.5299E+00	0.1158E+01
1.02	0.1494E-03	0.1215E-01	0.1622E+00 0.1637E+00	0.3840E+00	0.5546E-01	0.4007E+00 0.1930E+00	0.1160E+01 0.7074E+00
1.06	-0.1079E-03	0.7213E-01 0.5513E-02	0.1242E+00	0.3302E+00	0.1690E-01	0.1930E+00 0.1213E+00	0.7074E+00
1.10	-0.3764E-03	0.6784E-02	0.1148E+00	0.2614E+00	0.3686E-02	0.7658E-01	0.3095E+00
	- +5, - +5	J.U.J.= UL			1.50000 02	3.,0,00	J. J. J. J. J. J. G.

TABLE 7.1 HEAVE VARIANCE SPECTRAL DENSITY 110 ft WPB

		110 10 412	•	
1 2 3 4	Run 126 Runs 121, 122, 123 Runs 118, 119, 120, Runs 134, 135, 136,			
	Significant Wave Ho 3.13 ft 12.5% Beam	eight Signi	ificant Wave He 5.00 ft 20% Beam	ight
SPEED knots	10	25.0	50.1	66.8
c _v	0.60	1.5	3.0	4.0
•				
Fre quency Hz		Spectral Estima	tes ft ² /Hz	
0.00	0.4166E-02	0.6043E+00	0.2559E-01	0.9259E-02
0.04	0.2114E-01	0.3435E+00	0.4509E-01	0.7289E-01
0.08	0.5152E-01	0.1224E+00	0.1020E+00	0.1238E+00 0.1818E+00
0.12	0.5618E-01	0.1025E+00	0.1703E+00	0.1818E+00
0.16	0.4353E-01	0.1363E+00	0.1933E+00 0.1891E+00	0.3218E+00
0.20	0.1332E+00	0.4499E+00 0.1637E+01	0.1091E.00	0.3366E+00
0.24 0.28	0.2897E+00 0.3821E+00	0.1037E-01	0.4202E+90	0.3136E+00
0.20	0.5543E+00	0.4982E+01	0.1202E+01	0.3469E+00
0.35	0.6709E+00	0.5246E+01	0.2474E+01	0.4744E+00
0.39	0.4342E+00	0.3631E+01	0.3479E+01	0.1182E+01
0.43	0.1465E+00	0.1950E+01	0.3746E+01	0.2408E+01
0.47	0.3379E-01	0.1053E+01	0.3335E+01	0.2344E+01
0.51	0.6105E-02	0.6822E+00	0.2333E+01	0.2242E+01
0.55	0.1618E-02	0.2961E+00	0.1523E+01	0.2069E+01
0.59	0.1171E-04	0.1160E+00	0.1157E+01	0.1335E+01
0.63	0.4702E-03	0.5149E-01	0.7144E+00	0.1048E+01
0.67	-0.1874E-03	0.3311E-01	0.3826E+00	0.6955E+00
0.71	0.2982E-03	0.1569E-01	0.3031E+00	0.4914E+00
0.75	-0.2813E-04	0.1940E-01	0.3488E+00	0.3923E+00
0.79	0.4563E-03	0.5628E-02	0.2447E+00	0.3665E+00 0.1940E+00
0.83	0.1664E-03	0.1336E-01	0.1291E+00	0.1940E+00
0.87	0.4777E-03	0.8199E-02	0.8326E-01	0.9847E-01
0.90	-0.4587E-04	0.1018E-01	0.5621E-01 0.2139E-01	0.1377E+00
0.94	0.1716E-03	0.4401E-02	0.3462E-01	0.1011E+00
0.98	-0.1712E-03	0.8870E-02 0.1452E-02	0.4466E-01	0.7378E-01
1.02	0.1312E-03	0.5363E-02	0.2828E-01	0.5261E-01
1.06	-0.1540E-03 0.1021E-03	-0.3043E-04	0.2020E 01	0.8492E-01
1.10 1.14	-0.1858E-03	0.6219E-02	0.1917E-01	0.7010E-01
1.18	0.9995E-04	0.0219E 02	0.3573E-02	0.5770E-01
1.10	U • 7777E -U7	U121/JU UL		- - • • • •

TABLE 7.2 HEAVE VARIANCE SPECTRAL DENSITY 120 ft WPB

			120	o ft WPB			
Column 2 3 4 5 6 7	Run 75 Runs 40, 42 Runs 44, 45, Runs 48, 49, Runs 65, 66 Runs 67, 68, Runs 71, 72,	63, 64 69					
		Significant 2.62 i 12.5% E	ft		Sign	ificant Wave I 4.26 ft 20% Beam	Height
SPEED knots	10	23.2	46.4	61.9	23.2	46.4	61.9
c _v	0.65	1.5	3.0	4.0	1.5	3.0	4.0
Fre-							
quency	<i>t</i>			•			
Hz			Spectral Est	timates ft ² /H	lz		
0.00	0.1729E-01	0.1435E+00	0.1328E-01	0.2052E-01	0.3070E+00	-0.6565E-03	C.2406E-01
0.04	0.2611E-01	0.8379E-01	0.1555E-01	0.1506E-01	0.1711E+00	0.6688E-02	0.4209E-01
0.08	0.4383E-01	0.1789E-01	0.1900E-01	0.1028E-01	0.5648E-01	0.2521E-01	0.4259E-01
0.12	0.3121E-01	0.1049E-01	0.2316E-01	0.1699E-01	0.2190E-02	0.2506E-01	0.4140E-01
0.16	0.1429E-01	0.3851E-02	0.2079E-01	0.1274E-01	0.1524E-01	0.2437E-01	0.5537E-01
0.20	0.2871E-01	0.4161E-02	0.1532E-01	0.1267E-01	0.1020E+00	0.3502E-01	0.7997E-01
0.24	0.8663E-01	0.2420E-02	0.1033E-01	0.1492E-01	0.7168E+00	0.5999E-01	0.8628E-01
0.28	0.1329E+00	0.1412E-01	0.7298E-02	0.1916E-01	0.1789E+01	0.6688E-01	0.1754E+00
0.32	0.1754E+00	0.5973E-01	0.1057E-01	0.2210E-01	0.3161E+01	0.1474E+00	0.2371E+00
0.35	0.1890E+00	0.2006E+00	0.2294E-01	0.2700E-01	0.3406E+01	0.5314E+00	0.2593E+00
0.39	0.1181E+00	0.2821E+00	0.2387E-01	0.3901E-01	0.2237E+01	0.9894E+00	0.4286E+00
0.43	0.4236E-01	0.2329E+00	0.1852E-01	0.6640E-01	0.1298E+01	0.1035E+01	0.4787E+00
0.47	0.1188E-01	0.1586E+00	0.1927E-01	0.5412E-01	0.5899E+00	0.1004E+01	0.4901E+00
0.51	0.4914E-02	0.9659E-01	0.2614E-01	0.2126E-01	0.2129E+00	0.8509E+00	0.5974E+00
0.55	0.2285E-02	0.4347E-01	0.3877E-01	0.2176E-01	0.7021E-01	0.6596E+00	0.6146E+00
0.59	0.1255E-02	0.9239E-02	0.4456E-01	0.2765E-01	0.3928E-01	0.4606E+00	0.5411E+00
0.63	0.2426E-03	0.3554E-02	0.3970E-01	0.3569E-01	0.6540E-02	0.3109E+00	0.4751E+00
0.67	0.1441E-03	0.1341E-02	0.3256E-01	0.4561E-01	0.9457E-02	0.1984E+00	0.3997E+00
0.71 0.75	0.1583E-03	0.2465E-02	0.3379E-01	0.4425E-01	-0.7944E-03	Q.1465E+00	0.3077E+00
0.79	0.2993E-03 0.1533E-03	0.1208E-02 0.2064E-02	0.3549E-01	0.3476E-01	0.9182E-02	0.1348E+00	0.2315E+00
0.83	0.1533E-03 0.2428E-03	0.2004E-02 0.1338E-02	0.2756E-01	0.2571E-01 0.3016E-01	0.2067E-02	0.9661E-01	0.1806E+00
0.87	0.6611E-04	0.1701E-02	0.1860E-01 0.1446E-01	0.3708E-01	0.1025E-01 0.2080E-02	0.5197E-01	0.1477E+00
0.90	0.1242E-03	0.5548E-03	0.1446E-01	0.3035E-01	0.8456E-02	0.2637E-01	0.1211E+00 0.8113E-01
0.94	0.1242E-03	0.5546E-03	0.9709E-02	0.2461E-01	0.2478E-02	0.2196E-01 0.1893E-01	0.6951E-01
0.98	0.8103E-04	0.5447E-03	0.6988E-02	0.2242E-01	0.6845E-02	0.1893E-01 0.1317E-01	0.8353E-01
1.02	-0.2227E-04	0.1102E-02	0.6987E-02	0.1856E-01	0.9169E-04	0.4248E-02	0.9381E-01
1.06	0.4995E-04	0.2483E-03	0.6710E-02	0.1886E-01	0.5277E-02	0.72225-02	0.5999E-01
1.10	0.1233E-04	0.8319E-03	0.4164E-02	0.1907E-01	-0.4460E-03	0.8829E-02	0.4370E-01
	51, 233 0,	uj., , a uj	31.1312 02	J J J U		0.000,000	J J. UL U.

TABLE 8.1 WAVE VARIANCE SPECTRAL DENSITY 110 ft WPB

Column 1 2 3 4	Run 126 Runs 121, 122, 123 Runs 118, 119, 120 Runs 134, 135, 137), 124		
	Significant Wave 3.13 ft 12.5% Beam	Height Signifi	cant Wave He 5.00 ft 20 % Beam	eight
SPEED knots	10	25.0	50.1	66.8
$c_{\mathbf{v}}$	0.60	1.5	3.0	4.0
Fre- quency Hz		Spectral Estimates	ft ² /Hz	
0.00 0.06 0.11 0.16 0.22 0.27 0.33 0.44 0.49 0.55 0.60 0.71 0.76 0.82 0.87 0.93 0.98 1.04 1.09 1.15 1.20 1.31 1.37	0.4235E+00 0.6051E+00 0.3985E+00 0.1719E+00 0.4713E+00 0.1062E+01 0.1790E+01 0.1940E+01 0.1464E+01 0.1127E+01 0.8853E+00 0.5388E+00 0.3217E+00 0.3200E+00 0.3200E+00 0.1572E+00 0.1572E+00 0.1572E+00 0.1292E+00 0.1001E+00 0.6541E-01 0.2693E-01 0.1703E-01 0.1215E-01 0.9126E-02 0.4434E-02 0.2847E-02 0.2211E-03 0.9858E-03	0.4131E+00 0.2730E+00 0.1095E+00 0.1405E+00 0.8187E+00 0.2331E+01 0.3714E+01 0.3943E+01 0.3600E+01 0.3168E+01 0.1873E+01 0.1873E+01 0.1300E+01 0.9723E+00 0.8243E+00 0.6408E+00 0.5113E+00 0.4034E+00 0.5114E+00 0.1588E+00 0.1206E+00 0.1206E+00 0.3557E-01 0.3005E-01 0.1664E-01 0.7303E-02	0.3878E-01 0.5788E-01 0.6059E-01 0.1154E+00 0.1028E+00 0.1780E+00 0.5068E+00 0.1488E+01 0.2433E+01 0.2883E+01 0.3009E+01 0.2361E+01 0.2361E+01 0.2139E+01 0.2139E+01 0.2120E+01 0.1214E+01 0.1053E+01 0.9261E+00 0.3875E+00 0.3875E+00 0.3130E+00 0.1981E+00 0.1078E+00 0.5623E-01 0.4196E-01	0.2897E-01 0.3882E-01 0.5612E-01 0.6189E-01 0.9727E-01 0.1318E+00 0.1772E+00 0.4589E+00 0.1072E+01 0.1600E+01 0.2053E+01 0.2297E+01 0.2322E+01 0.2664E+01 0.2756E+01 0.2756E+01 0.1694E+01 0.1864E+01 0.1954E+01 0.1869E+01 0.1269E+01 0.3433E+00 0.3433E+00 0.1863E+00 0.8033E-01 0.4324E-01
1.42 1.47 1.53 1.58 1.64	-0.3054E-03 -0.3054E-03 -0.6197E-03 -0.4239E-03 0.6372E-03	0.7303E-02 0.4676E-03 0.2477E-02 -0.3098E-03 0.1930E-02	0.2863E-01 0.2270E-01 0.1114E-01 0.1671E-01	0.3468E-01 0.1387E-01 0.1842E-01 0.2059E-01

TABLE 8.2 WAVE VARIANCE SPECTRAL DENSITY 120 ft WPB

				120 ft WPB			
Column	1						
1	์ Run 75						
2	Runs 40, 42						
3	Runs 44, 45,	46					
4	Runs 48, 49,						
5	Runs 65, 66	03, 0 .					
6	Runs 67, 68,	60					
7	Runs 71, 72,						
•	nuis (1, 12,	13,17					
		Significant	Wave Weight		Signi	ficant Wave He	ight
		2.62			218	4.26 ft	. 10
		12.5%				20% Beam	
		12.50) e a m			LOW Deam	
SPEED	10	23.2	46.4	61.9	23.2	46.4	61.9
knots		-3		0.05	-5	•••	
KIIOUS							
C _v	0.65	1.5	3.0	4.0	1.5	3.0	4.0
- V	_					-	
Fre-							
quency	,			•			
Hz			Spectral Est	timates ft ² /H	Z		
							_
0.00	0.2557E+00	0.2958E+00	0.9401E-01	0.1514E+00	0.5149E+00	0.8307E-01	0.5587E-01
0.06	0.3140E+00	0.1746E+00	0.7014E-01	0.1259E+00	0.2522E+00	0.8756E-01	0.5827E-01
0.11	0.2002E+00	0.8218E-01	0.2989E-01	0.6175E-01	0.4786E-01	0.5388E-01	0.4625E-01
0.16	0.6317E-01	0.8523E-01	0.3593E-01	0.6392E-01	0.2410E-01	0.5928E-01	0.2833E-01
0.22	0.1516E+00	0.5536E-01	0.3926E-01	0.6619E-01	0.3809E+00	0.3005E-01	0.3367E-01
0.27	0.5160E+00	0.2636E-01	0.4094E-01	0.7601E-01	0.1353E+01	0.4718E-01	0.3505E-01
0.33	0.1123E+01	0.1021E+00	0.5154E-01	0.6765E-01	0.2288E+01	0.1887E+00	0.7023E-01
0.38	0.1504E+01	0.3320E+00	0.7234E-01	0.5719E-01	0.2292E+01	0.5176E+00	0.9260E-01
0.44	0.1327E+01	0.5678E+00	0.7390E-01	0.5032E-01	0.2379E+01	0.9694E+00	0.3653E+00
0.49	0.1038E+01	0.6492E+00	0.1496E+00	0.6077E-01	0.2389E+01	0.1795E+01	0.8250E+00
0.55	0.8149E+00	0.7064E+00	0.2249E+00	0.9568E-01	0.1867E+01	0.2231E+01	0.1204E+01
0.60	0.5671E+00	0.7012E+00	0.3414E+00	0.1568E+00	0.1502E+01	0.1952E+01	0.1637E+01
0.66	0.3794E+00	0.6285E+00	0.4239E+00	0.2443E+00	0.1222E+01	0.1675E+01	0.2002E+01
0.71	0.3350E+00	0.6112E+00	0.5143E+00	0.4285E+00	0.9519E+00	0.1647E+01	0.2080E+01
0.76	0.2661E+00	0.5193E+00	0.7018E+00	0.4457E+00	0.7434E+00	0.1970E+01	0.1839E+01
0.82	0.1595E+00	0.3642E+00	0.8524E+00	0.4476E+00	0.6295E+00	0.1931E+01	0.1458E+01
0.87	0.1400E+00	0.3107E+00	0.7995E+00	0.6366E+00	0.4383E+00	0.1428E+01	0.1448E+01
0.93	0.1280E+00	0.3396E+00	0.6620E+00	0.7003E+00	0.3454E+00	0.1032E+01	0.1670E+01
0.98	0.7778E-01	0.2802E+00	0.6430E+00	0.7605E+00	0.2062E+00	0.8699E+00	0.1654E+01
1.04	0.3693E-01	0.1661E+00	0.6281E+00	0.8280E+00	0.1588E+00	0.5904E+00	0.1376E+01
1.09	0.2560E-01	0.1424E+00	0.5085E+00	0.6612E+00	0.1373E+00	0.5922E+00	0.9637E+00
1.15	0.1380E-01	0.8123E-01	0.3057E+00	0.5309E+00	0.8116E-01	0.4723E+00	0.6825E+00
1.20	0.1087E-01	0.3219E-01	0.2030E+00	0.4552E+00	0.4424E-01	0.2504E+00	0.4467E+00
1.26	0.4529E-02	0.2363E-01	0.1202E+00	0.2673E+00	0.5677E-01	0.1259E+00	0.2462E+00
1.31	0.5636E-02	0.1482E-01	0.8309E-01	0.1545E+00	0.2908E-01	0.1059E+00	0.1364E+00
1.37	0.1988E-02	0.9288E-02	0.5480E-01	0.9774E-01	0.1190E-01	0.5945E-01	0.1025E+00
1.42	0.1784E-02	0.6842E-02	0.4079E-01	0.7597E-01	0.1336E-02	0.4483E-01	0.7685E-01
1.47	-0.4104E-03	0.4322E-02	0.2043E-01	0.5770E-01	0.4917E-02	0.1496E-01	0.5859E-01
1.53	0.1188E-02	0.2385E-02	0.1351E-01	0.3580E-01	-0.2143E-02	0.1560E-01	0.3257E-01
1.58	-0.4838E-03	0.2332E-02	0.7971E-02	0.2618E-01	0.2005E-02	0.4868E-02	0.2901E-01
	57.050 5 05	J.23320 VL	J. ; J ; 10 QE	J.25.02 01		317000 VE	J. 4, J. 10 VI

TABLE 9 ROUGH WATER RMS AND MEAN VALUES OF MOTIONS AND ACCELERATIONS

110 ft WPB

RUN GROUP	SPEED knots	cv	PITCH deg	ROOT HEAVE ft	MEAN:		VALUES ELERATIO #3	ON, g #2	# 1	MEAN HEAVE ft	VALUES PITCH deg
			3.13 ft	Signific	cant Wa	ve Heig	ht, 12.	5% Beam			
126	10.0	0.60	1.254	0.333	0.222	0.147	0.076	0.047	0.040	1.41	-0.85
			5.00 f	t Signif:	icant Wa	ave Hei	ght, 20	% Beam			
121	25.0	1.5	1.439	0.985	0.450	0.321	0.213	0.173	0.159	1.82	1.79
118				0.949			0.433				
134	66.8	4.0	1.045	0.835	0.986	0.733	0.546	0.455	0.401	4.40	1.74
					120 f	t WPB					
			2.62 f	t Signif:	icant W	ave Hei	ght, 12	.5% Bea	m		
7 5	10.0	0.65	0.828	0.191	0.124	0.102	0.062	0.031	0.039	1.16	0.41
40	23.2	1.5	0.421	0.224			0.072				
44	46.4	_	_	0.153			0.179	-			3.23
48	61.9	4.0	0.383	0.176	0.432	0.366	0.269	0.187	0.121	3.66	3.12
			4.26 f	t Signif	icant W	ave Hei	ght, 20	% Beam			
65	23.2	1.5	1.207	0.742	0.296	0.251	0.178	0.128	0.133	1.23	2.57
67	46.4	3.0	0.818	0.523	0.527	_	0.323		0.177	7	
71	61.9	4.0	0.775	0.495	0.693	0.592	0.448	0.327	0.244	3.66	3.17

TABLE 10.1
ROUGH WATER AVERAGE CRESTS AND TROUGHS
OF MOTIONS AND ACCELERATIONS
110 ft WPB

RUN	SPEED	c_{v}	PITCH	HEAVE		ACCE	LERATION	, g	
GROUP	knots	•	deg	ft	# 5	#4	#3	#2	#1
		3.1	3 ft Sign	ificant W	ave Heigl	nt, 12.5	≴ Beam		
			•		ests				
				C.	6303				
126	10.0	0.60	0.85	1.85	0.31	0.21	0.15	0.12	0.10
				Tro	ughs				
126	10.0	0.60	-2.36	0.97	-0.36	-0.25	-0.18	-0.14	-0.10
		5.0	00 ft Sig	nificant	Wave Hei	ght. 20%	Beam		
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,			
				Cr	ests				
121	25.0	1.5	3.60	2.95	0.68	0.45	0.26	0.21	0.20
118	50.1	3.0	3.93	4.96	1.34	0.98	0.65	0.48	0.39
134	66.8	4.0	3.50	5.40	1.32	1.14	0.82	0.61	0.58
				Tro	ughs				
121	25.0	1.5	0.25	0.70	-0.58	-0.43	-0.32	-0.27	-0.24
118	50.1	3.0	1.23	2.69	-0.69	_		-0.38	
			1 4 4 3	E . U 7	0.03	0.00	V • ¬ >		

TABLE 10.2

ROUGH WATER AVERAGE CRESTS AND TROUGHS

OF MOTIONS AND ACCELERATIONS

120 ft WPB

RUN	SPEED	Cv	PITCH	HEAVE		ACCEL	ERATION,	g	
GROUP	knots	٧	deg	ft	#5	#4	#3	#2	#1
		2.62	ft Sig	nificant	Wave Heig	ght, 12.5	S Beam		
				Cr	ests				
75	10.0	0.65	1.58	1.45	0.24	0.16	0.12	0.09	0.10
40	23.2	1.5	3.30	1.55	0.24	0.20	0.14	0.11	0.11
44	46.4	3.0	4.12	3.03	0.45	0.37	0.27	0.19	0.13
48	61.9	4.0	4.02	3.93	0.59	0.50	0.37	0.27	0.21
				Tro	ughs				
				11.0	n9110				
7 5	10.0	0.65	-0.61	0.88	-0.25	-0.21	-0.15	-0.10	-0.11
40	23.2	1.5	2.12	0.96	-0.27	-0.21	-0.18	-0.13	-0.13
44	46.4	3.0	3.13	2.61	-0.39		-0.25	-0.20	-0.16
48	61.9	4.0	2.93	3.42	-0.52	-0.43	-0.35	-0.26	-0.19
		4.2	6 ft Sig	nificant	Wave Hei	ght, 20%	Beam		
					`				
				Cr	ests				
65	23.2	1.5	4.23	2.16	0.43	0.34	0.24	0.18	1.18
67	46.4	3.0	4.67	3.50	0.88	0.71	0.49	0.31	0.22
71	61.9	4.0	4.68	4.27	0.97	0.87	0.64	0.45	0.35
				Tro	ughs				
				1.0	~0.1~				
65	23.2	1.5	1.34	0.35	-0.45	-0.37	-0.30	·-0.22	-0.22
67	46.4	3.0	2.63	2.14	-0.54	-0.47	-0.38	-0.31	-0.30
71	61.9	4.0	2.61	3.05	-0.64	-0.54	-0.47	-0.34	-0.29

TABLE 11.1

ROUGH WATER AVERAGE 1/3 HIGHEST CRESTS AND TROUGHS

OF MOTIONS AND ACCELERATIONS

110 ft WPB

RUN	SPEED	C _v	PITCH	HEAVE		ACCEI	ERATION	g	
GROUP	knots	٧	deg	ft	# 5	#4	#3	#2	#1
		3.1	3 ft Sign	ificant W	ave Heigh	nt, 12.59	6 Beam		
			•		ests				
126	10.0	0.60	2.00	2.15	0.45	0.31	0.18	0.14	0.12
120	10.0	0.80	2.00	2.15	0.45	0.51	0.10	0.11	0
				Tro	ughs				
126	10.0	0.60	-3.26	0.72	-0.55	-0.38	-0.24	-0.19	-0.12
		-	00 84 04		Ways Wate	-h+ 20 4	P.o.m		
		5.	oo it Sig	mificant	wave nei	gnt, 20%	реаш		
				Cr	ests				
121	_	1.5		3.91	1.16				
118	50.1			5.91	2.48			0.83	
134	66.8	4.0	4.31	6.18	2.87	2.12	1.47	1.14	1.06
				Tro	ughs				
121	25.0	1.5	-0.73	-0.03	-0.87	-0.66			-
118	50.1	3.0	0.35	2.09	-1.04			-0.64	
134	66.8	4.0	0.11	2.91	-1.23	-0.92	-0.80	-0.76	-0.72

TABLE 11.2

ROUGH WATER AVERAGE 1/3 HIGHEST CRESTS AND TROUGHS

OF MOTIONS AND ACCELERATIONS

120 ft WPB

RUN	SPEED	$c_{\mathbf{v}}$	PITCH	HEAVE		ACCEL	ERATION,	g	
GROUP	knots	- V	deg	ſt	# 5	#4	#3	#2	#1
		2.62	ft Sign	nificant	Wave Heig	tht, 12.5	5 Beam		
				Cr	ests				
75	10.0	0.65	2.32	1.60	0.31	0.22	0.15	0.11	0.12
40	23.2	1.5	3.67	1.75	0.34	0.27	0.18	0.14	0.14
44	46.4	3.0	4.33	3.15	0.71	0.59	0.40	0.26	0.17
48	61.9	4.0	4.27	4.10	0.98	0.81	0.59	0.41	0.31
				Tro	ughs				
					-6				
75	10.0	0.65	-1.26	0.74	-0.36	-0.29	-0.21	-0.12	-0.14
40	23.2	1.5	1.85	0.82	-0.39	-0.32		-0.18	-0.18
44	46.4	3.0	2.94	2.49	-0.59	-0.49		-0.28	-0.22
48	61.9	4.0	2.67	3.33	-0.78	-0.65	-0.52	-0.39	-0.28
	• • • • • • • • • • • • • • • • • • • •			3.33					
		4.3	26 ft Sig	nificant	Wave Hei	ght, 20%	Beam		
				Cr	ests				
65	23.2	1.5	5.39	2.83	0.71	0.56	0.37	0.27	0.27
67	46.4	3.0	5.20	3.89	1.55	1.25	0.83	0.47	0.33
71	61.9	4.0	5.20	4.72	1.93	1.61	1.16	0.80	0.62
, ,	01.9	4.0	5.20	7.12	1.73	1.01			
				Tro	oughs				
65	23.2	1.5	0.34	-0.24	-0.75	-0.63	-0.49	-0.36	-0.34
67	46.4	3.0	1.96	1.81	-0.89	-0.78	-0.63	-0.51	-0.45
71	61.9	4.0	2.06	2.73	-0.98	-0.85	-0.73	-0.60	-0.50
, ,	0						· -		

TABLE 12.1

ROUGH WATER AVERAGE 1/10 HIGHEST CRESTS AND TROUGHS

OF MOTIONS AND ACCELERATIONS

110 ft WPB

RUN	SPEED	c _v	PITCH	HEAVE		ACCEL	ERATION,	g	
GROUP	knots	•	deg	ft	# 5	#4	#3	#2	#1
		3.1	3 ft Sign	ificant W	ave Heigh	nt, 12.55	& Beam		
				Cr	ests				
126	10.0	0.60	2.79	2.32	0.54	0.36	0.22	0.17	0.15
				Tro	ughs				
126	10.0	0.60	-3.57	0.58	-0.70	-0.47	-0.30	-0.23	-0.14
		5.0	00 ft Sig	nificant	Wave Heig	ght, 20 %	Beam		
				Cr	ests				
121 118	25.0 50.1	1.5 3.0	6.13 5.33	4.82 6.59	1.84 3.35		0.60 1.64		_
134	66.8		4.82	6.75	4.15		1.99		1.60
				Tro	ughs				
121 118	25.0 50.1	1.5 3.0	-1.63 -0.34	-0.54 1.71	-1.09 -1.19			-0.58 -0.79	-0.47 -0.72
134	66.8	4.0	-0.46	2.53	-1.42				-0.86

TABLE 12.2

ROUGH WATER AVERAGE 1/10 HIGHEST CRESTS AND TROUGHS
OF MOTIONS AND ACCELERATIONS
120 ft WPB

RUN	SPEED	СV	PITCH	HEAVE		ACCEL	ERATION,	g	
GROUP	knots	•	deg	ft	#5	#4	#3	#2	#1
		2.62	ft Sig	nificant	Wave Heig	tht, 12.5	% Beam		
				Cr	ests				
75	10.0	0.65	2.80	1.73	0.34	0.24	0.16	0.13	0.12
40	23.2	1.5	3.92	1.87	0.42	0.32	0.21	0.15	0.17
44	46.4	3.0	4.46	3.24	0.90	0.74	0.50	0.30	0.20
48	61.9	4.0	4.43	4.23	1.19	1.00	0.70	0.47	0.39
				Tro	ughs				
75	10.0	0.65	-1.65	0.66	-0.45	-0.37	-0.25	-0.16	-0.17
40	23.2	1.5	1.60	0.73	-0.47	-0.28	-0.28	-0.21	-0.22
में मे	46.4	3.0	2.77	2.42	-0.71	-0.61	-0.48	-0.34	-0.29
48	61.9	4.0	2.51	3.26	-0.93	-0.77	-0.62	-0.47	-0.35
		4.2	6 ft Sig	nificant	Wave Hei	ght, 20%	Beam		
				Cr	ests				
65	00.0		6 05	3.29	1.07	0.87	0.53	0.31	0.33
65	23.2 46.4	1.5 3.0	6.05 5.50	3.29 4.16	2.13	1.72	1.14	0.58	0.41
67 71	61.9	4.0	5.50	5.20	2.61	2.11	1.56	1.11	0.98
()	01.9	4.0	5.50	7.20	2.01	2411	1.50		0.70
				Tro	ughs				
65	23.2	1.5	-0.22	-0.66	-0.94	-0.80	-0.61	-0.45	-0.45
67	46.4	3.0	1.39	1.49	-1.03	-0.90	-0.74	-0.60	-0.53
71	61.9	4.0	1.68	2.54	-1.09	-0.96	-0.84	-0.73	-0.63

FIGURE 1 120 FT WPB, SPEED 46.4 KNOTS 4.3 FT SIGNIFICANT WAVE HEIGHT

FIGURE 2 110 FT WPB, SPEED 50.1 KNOTS 5.0 FT SIGNIFICANT WAVE HEIGHT

WPB PROFILES

FIGURE

FIGURE 4 110 FT WPB BODY LINES

FIGURE 6 LOCATIONS OF VERTICAL ACCELEROMETERS

FIGURE 7 110 FT WPB TEST WAVE SPECTRUM 3.13 FT SIGNIFICANT WAVE HEIGHT

FIGURE 8 110 FT WPB TEST WAVE SPECTRUM 5.0 FT SIGNIFICANT WAVE HEIGHT

FIGURE 9 120 FT WPB TEST WAVE SPECTRUM 2.62 FT SIGNIFICANT WAVE HEIGHT

FIGURE 10 120 FT WPB TEST WAVE SPECTRUM
4.26 FT SIGNIFICANT WAVE HEIGHT

O 120 FT WPB Δ 110 FT WPB

FIGURE 11 COMPARATIVE MOTION RESPONSE IN IRREGULAR WAVES, 20% BEAM SIGNIFICANT HEIGHT

FIGURE 12 CORRELATION BETWEEN AFT AND MIDSHIP ACCELERATION 110 FT WPB

FIGURE 13 CORRELATION BETWEEN FORWARD AND MIDSHIP ACCELERATION 110 FT WPB

FIGURE 14 CORRELATION BETWEEN AFT AND MIDSHIP ACCELERATION 120 FT WPB

FIGURE 15 CORRELATION BETWEEN FORWARD AND MIDSHIP ACCELERATION 120 FT WPB

FIGURE 16 LONGITUDINAL VARIATION OF RELATIVE ACCELERATION 110 FT WPB

(RMS Acceleration at x/b) - n_0

(RMS Acceleration at x/b = 3)

FIGURE 17 LONGITUDINAL VARIATION OF RELATIVE ACCELERATION 120 FT WPB

O 120 FT WPB △ 110 FT WPB

FIGURE 18 COMPARATIVE ACCELERATION CHARACTERISTICS IN IRREGULAR WAVES, 20% BEAM SIGNIFICANT HEIGHT