Свойства свёртки функций

Дельтаобразные последовательности

Опр: 1. Дельтаобразной последовательностью функций называется всякая последовательность функций $\{\omega_n\}$, удовлетворяющая свойствам:

1)
$$\omega_n$$
 - интегрируема и $\int\limits_{-\infty}^{+\infty}\omega_n(t)dt=1;$

2) $\omega_n > 0$;

3)
$$\forall \delta > 0, \int_{|t| > \delta} \omega_n(t) dt \xrightarrow[n \to \infty]{} 0;$$

Следующая теорема дает представление об искомой единице для свёртки функций.

Теорема 1. Пусть f - непрерывная и ограниченная функция, $\{\omega_n\}$ - это дельтаобразная последовательность. Тогда: $\forall [a,b] \subset \mathbb{R}, \ f*\omega_n(x) \overset{[a,b]}{\underset{n\to\infty}{\Longrightarrow}} f(x).$

□ Рассмотрим разность между свёрткой и функцией:

$$f * \omega_n(x) - f(x) = \int_{-\infty}^{+\infty} f(t)\omega_n(x-t)dt - f(x) = \int_{-\infty}^{+\infty} f(t)\omega_n(x-t)dt - f(x) \cdot 1 =$$

$$= \int_{-\infty}^{+\infty} f(t)\omega_n(x-t)dt - f(x) \cdot \int_{-\infty}^{+\infty} \omega_n(t)dt = \int_{-\infty}^{+\infty} f(t)\omega_n(x-t)dt - \int_{-\infty}^{+\infty} f(x)\omega_n(t)dt =$$

$$= \int_{-\infty}^{+\infty} f(x-t)\omega_n(t)dt - \int_{-\infty}^{+\infty} f(x)\omega_n(t)dt = \int_{-\infty}^{+\infty} (f(x-t) - f(x))\omega_n(t)dt$$

Хотелось бы понять, бывает ли разность f(x-t)-f(x) маленькой? Да, например, если t - маленькие \Rightarrow надо будет разбить интеграл на два, где $|t| < \delta$ и $|t| \ge \delta$. Тогда на первом интеграле мы воспользуемся свойством непрерывности, а на втором свойством дельтаобразной последовательности.

По определению, функция f - непрерывна на отрезке \Rightarrow по теореме Кантора равномерно непрерывна на отрезке по x, тогда будет верно:

$$\forall \varepsilon > 0, \ \exists \ \delta \in (0,1): \ \forall x_1, x_2 \in [a-1,b+1], \ |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

где мы увеличили отрезок с [a,b] до [a-1,b+1], чтобы x-t попадало в этот отрезке:

$$x \in [a, b], \ \delta \in (0, 1) \Rightarrow |t| < \delta < 1 \Rightarrow x - t \in [a - 1, b + 1]$$

Пусть $M=\sup_{\mathbb{R}}|f|,$ он существует по условию ограниченности функции. Оценим разность:

$$\forall x \in [a, b], |f * \omega_n(x) - f(x)| \le \left| \int_{-\infty}^{\infty} (f(x - t) - f(x))\omega_n(t)dt \right| \le \int_{-\infty}^{\infty} |f(x - t) - f(x)| \omega_n(t)dt = 0$$

$$= \int\limits_{|t|<\delta} |f(x-t) - f(x)| \,\omega_n(t) dt + \int\limits_{|t|\geq\delta} |f(x-t) - f(x)| \,\omega_n(t) dt \leq \varepsilon \cdot 1 + 2M \int\limits_{|t|\geq\delta} \omega_n(t) dt$$

По свойству дельта
образной последовательности: $\exists \, N \colon \forall n > N, \, \int\limits_{|t| > \delta} \omega_n(t) dt < \varepsilon,$ тогда:

$$\forall x \in [a, b], |f * \omega_n(x) - f(x)| \le \varepsilon (1 + 2M)$$

И записывая всё вместе, получим равномерную сходимость по определению:

$$\forall \varepsilon > 0, \exists N : \forall n > N, \sup_{[a,b]} |f * \omega_n(x) - f(x)| < \varepsilon$$

Теорема 2. Пусть f(x) и g(x) - непрерывны, хотя бы одна из них финитна и функция $g(x) \in C^k(\mathbb{R})$. Тогда: $f * g(x) \in C^k(\mathbb{R})$ и будет верно:

$$(f * g)^{(k)}(x) = f * g^{(k)}(x)$$

Rm: 1. Заметим, что при поточечном перемножении функций с аналогичными свойстами, если непрерывная функция не является дифференцируемой, то произведение таких функций не будет дифференцируемо, например при $g(x) \equiv 1, f(x) \in C(\mathbb{R})$ но не дифференцируема $\Rightarrow f(x)g(x) = f(x)$.

 \square Пусть $x \in (\alpha, \beta)$ - конечный интервал, если функция будет k раз дифференцируема на таком малом интервале, а мы можем взять любой такой интервал, то она будет везде k раз дифференцируема. Поскольку по определению f(x) или g(x) финитны, то:

$$\exists c > 0 \colon \forall x \in (\alpha, \beta), \ \forall |t| \ge c, \ f(t)g(x - t) = 0 \Rightarrow$$

$$\Rightarrow f * g(x) = \int_{-\infty}^{+\infty} f(t)g(x-t)dt = \int_{-c}^{c} f(t)g(x-t)dt$$

Таким образом, у нас получился собственный интеграл, где f - непрерывна, g - k-раз дифференцируема. По теореме о дифференцировании определенного интеграла мы получим:

$$(f * g)^{(k)}(x) = \int_{-c}^{c} f(t)g^{(k)}(x - t)dt = \int_{-\infty}^{+\infty} f(t)g^{(k)}(x - t)dt = f * g^{(k)}(x)$$

Примеры применения свёртки

Фундаментальное решение

Рассмотрим следующий объект:

$$Ly = y^{(n)} + a_{n-1}y^{(n-1)} + \ldots + a_0y, \forall k = \overline{0, n-1}, a_k \in \mathbb{R}$$

Пусть $f(x) \in C_0^{\infty}(\mathbb{R})$ - бесконечно гладкая финитная функция, нужно решить уравнение вида:

$$Ly = f$$

Обычно решается через решение однородного уравнения, а затем решение частного производится через систему уравнений. Но можно решение и угадать.

Утв. 1. Пусть u - решение следующей задачи Коши:

$$\begin{cases} Lu = 0 \\ u(0) = u'(0) = \dots = u^{(n-2)}(0) = 0 \\ u^{(n-1)}(0) = 1 \end{cases}$$

Одновременно с этим, определим функцию:

$$E(x) = \begin{cases} u(x), & x \ge 0\\ 0, & x < 0 \end{cases}$$

Тогда: y(x) = E * f(x) - решение Ly = f, где E(x) принято называть фундаментальным решением.

 \mathbf{Rm} : 2. Заметим, что это задача - частный случай мотивационного примера про прибор, где мы подаем сигнал в виде f(x) и получаем отклик в виде Ly. Этот прибор обладает свойством линейности и перестановочности со сдвигом по времени. Тогда мы знаем, что работа прибора должна описываться всего лишь одной аппаратной функцией.

 \square Поскольку f - финитная и бесконечно гладкая функция, E(x) - (n-2)-раза дифференцируемая функция (по условию для точки 0), то мы можем применить предыдущую теорему:

$$y^{(k)}(x) = E * f^{(k)}(x) = \int_{-\infty}^{+\infty} E(t)f^{(k)}(x-t)dt = \int_{0}^{+\infty} u(t)f^{(k)}(x-t)dt$$

Поскольку мы знаем как устроены производные функции u(t), то было бы удобно перебросить производную (k)-го порядка на u(t), тогда:

$$f^{(k)}(x-t) = \frac{d^k}{dt^k} \left((-1)^k f(x-t) \right) \Rightarrow \int_0^{+\infty} u(t) f^{(k)}(x-t) dt = \int_0^{+\infty} u(t) \cdot \frac{d^k}{dt^k} \left((-1)^k f(x-t) \right) dt =$$

$$= u(t) \cdot \frac{d^{k-1}}{dt^{k-1}} \left((-1)^k f(x-t) \right) \Big|_{t=0}^{+\infty} - \int_0^{+\infty} u'(t) \cdot \frac{d^{k-1}}{dt^{k-1}} \left((-1)^k f(x-t) \right) dt =$$

$$= -0 \cdot \frac{d^{k-1}}{dt^{k-1}} \left((-1)^k f(x) \right) + \lim_{b \to \infty} u(b) \frac{d^{k-1}}{dt^{k-1}} \left((-1)^k f(x-b) \right) -$$

$$-\int_{0}^{+\infty} u'(t) \cdot \frac{d^{k-1}}{dt^{k-1}} \left((-1)^{k} f(x-t) \right) dt = -\int_{0}^{+\infty} u'(t) \cdot \frac{d^{k-1}}{dt^{k-1}} \left((-1)^{k} f(x-t) \right) dt$$

где мы сначала воспользовались интегрированием по частям, а затем значением функции u(t) в нуле (через задачу Коши) и финитностью функции f(x). Продолжим пользоваться формулой интегрирования по частям далее:

$$-\int_{0}^{+\infty} u'(t) \cdot \frac{d^{k-1}}{dt^{k-1}} \left((-1)^k f(x-t) \right) dt = -u'(t) \cdot \frac{d^{k-2}}{dt^{k-2}} \left((-1)^k f(x-t) \right) \Big|_{t=0}^{+\infty} +$$

$$+ \int_{0}^{+\infty} u''(t) \cdot \frac{d^{k-2}}{dt^{k-2}} \left((-1)^k f(x-t) \right) dt = \int_{0}^{+\infty} u''(t) \cdot \frac{d^{k-2}}{dt^{k-2}} \left((-1)^k f(x-t) \right) dt = \dots$$

Рассмотрим случай $k \leq n-1$, тогда получим:

$$y^{(k)}(x) = (-1)^{2k} \int_{0}^{+\infty} u^{(k)} f(x-t) dt = \int_{0}^{+\infty} u^{(k)} f(x-t) dt$$

При k = n, в результате ситуация немного изменится:

$$y^{(n)}(x) = (-1)^{n-1}u^{(n-1)}(t) \cdot ((-1)^n f(x-t)) \Big|_{t=0}^{+\infty} + (-1)^n \int_0^{+\infty} u^{(n)}(t)(-1)^n f(x-t) dt =$$

$$= \lim_{b \to \infty} (-1)^{2n-1}u^{(n-1)}(b)f(x-b) - (-1)^{2n-1}u^{(n-1)}(0)f(x) + (-1)^{2n} \int_0^{+\infty} u^{(n)}(t)f(x-t) dt =$$

$$= f(x) + \int_0^{+\infty} u^{(n)}(t)f(x-t) dt$$

Подставим полученые формулы в Ly(x), внесем всё под один интеграл и получим:

$$Ly(x) = y^{(n)}(x) + a_{n-1}y^{(n-1)}(x) + \dots + a_0y(x) = f(x) +$$

$$+ \int_0^{+\infty} \left(u^{(n)}(t) + a_{n-1}u^{(n-1)}(t) + \dots + a_0u(t) \right) \cdot f(x-t)dt = f(x) + \int_0^{+\infty} 0 \cdot f(x-t)dt = f(x)$$

Пример: Решить уравнение: y'' + y = f с задачей Коши: $\begin{cases} u''(t) + u(t) &= 0 \\ u(0) &= 0, \ u'(0) = 1 \end{cases} .$

 \square Из задачи Коши сразу следует, что $u(t)=\sin t$, тогда $y(x)=\int\limits_0^{+\infty}\sin t\cdot f(x-t)dt$.

Rm: 3. Заметим, что эта формула работает не только для финитных носителей.

Теорема Вейерштрасса

Теорема 3. (Вейерштрасс) Если $f \in C([a,b])$, то $\exists P_n$ - многочлены: $P_n \overset{[a,b]}{\underset{n\to\infty}{\Longrightarrow}} f$.

 \square Доопределим функцию f(x) так, чтобы она была непрерывной и финитной на \mathbb{R} . Тогда найдется такое c>0, что $f(x)\equiv 0, \, \forall x\in \mathbb{R} \setminus [-c,c]$.

Рис. 1: Доопределение функции f(x) до непрерывной и финитной на \mathbb{R} .

В качестве δ -образной последовательности возьмем: $\omega_n(x) = n\psi(nx)$, где $\psi(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$. По сути это плотность нормального распределения (см. лекцию 8):

$$\int_{-\infty}^{+\infty} \psi(x)dx = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1, \ \psi(x) \ge 0, \ \forall x \in \mathbb{R}$$

также заметим, что $\omega_n(x)$ - бесконечно гладкая функция $\Rightarrow f * \omega_n(x)$ - тоже бесконечно гладкая \Rightarrow её легче приближать многочленом, чем просто непрерывную функцию. По теореме 1 мы знаем, что свёртка будет равномерно сходиться:

$$f * \omega_n(x) \stackrel{[a,b]}{\underset{n \to \infty}{\Longrightarrow}} f(x)$$

Следовательно, достаточно приблизить многочленами функцию $f * \omega_n(x)$ при фиксированном n: приблизили $f * \omega_n(x)$ многочленом с зазором ε , а $f * \omega_n(x)$ приблизили к f(x), также с зазором ε , тогда мы приблизили f(x) многочленом с зазором в 2ε . Фиксируем n, тогда:

$$f * \omega_n(x) = \int_{-\infty}^{+\infty} f(t) \frac{n}{\sqrt{2\pi}} e^{-\frac{n^2(x-t)^2}{2}} dt = \frac{n}{\sqrt{2\pi}} \int_{-c}^{c} f(t) e^{-\frac{n^2(x-t)^2}{2}} dt$$

Чтобы появились многочлены по переменной x необходимо разложить экспоненту в ряд Тейлора. Поскольку $x \in [a,b], t \in [-c,c],$ то:

$$\forall x \in [a, b], \forall t \in [-c, c], \exists M > 0 \colon n^2(x - t)^2 \le M \Rightarrow$$

$$\Rightarrow \forall x \in [a, b], \ \forall t \in [-c, c], \ e^{-\frac{n^2(x-t)^2}{2}} = \sum_{k=0}^{\infty} \frac{(-1)^k n^{2k} (x-t)^{2k}}{2^k k!} \Rightarrow \sum_{k=K}^{\infty} \left| \frac{(-1)^k n^{2k} (x-t)^{2k}}{2^k k!} \right| \leq \sum_{k=K}^{\infty} \frac{M^k}{k!} \to 0$$

Таким образом, мы получаем равномерную сходимость ряда при указанных x и $t \Rightarrow$ можно переставить ряд с интегралом, тогда:

$$f * \omega_n(x) = \frac{n}{\sqrt{2\pi}} \int_{-c}^{c} f(t)e^{-\frac{n^2(x-t)^2}{2}} dt = \frac{n}{\sqrt{2\pi}} \sum_{k=0}^{\infty} \frac{(-1)^k n^{2k}}{2^k k!} \int_{-c}^{c} f(t)(x-t)^{2k} dt$$

Рассмотрим хвост получившегося ряда:

$$\sum_{k=K}^{\infty} \left| \frac{(-1)^k n^{2k}}{2^k k!} \int_{-c}^{c} f(t)(x-t)^{2k} dt \right| = \sum_{k=K}^{\infty} \left| \frac{(-1)^k}{2^k k!} \int_{-c}^{c} f(t) n^{2k} (x-t)^{2k} dt \right| \le \sum_{k=K}^{\infty} \frac{M^k \int_{-c}^{c} |f(t)| dt}{k!}$$

где интеграл в числителе это всего лишь константа. Как мы можем видеть, получившаяся оценка не зависит от $x \Rightarrow$ ряд сходится равномерно к $f * \omega_n(x)$ на [a,b]. Осталось заметить, что выражения вида:

$$\int_{-c}^{c} f(t)(x-t)^{2k} dt = \int_{-c}^{c} f(t) \sum_{j=0}^{2k} C_{2k}^{j} x^{j} (-1)^{2k-j} t^{2k-j} dt = \sum_{j=0}^{2k} C_{2k}^{j} x^{j} (-1)^{2k-j} \int_{-c}^{c} f(t) t^{2k-j} dt$$

есть ничто иное, как многочлен по x

Rm: 4. Доказывая теорему Вейерштрасса, мы параллельно доказали, что мы можем непрерывную функцию приблизить гладкой. Свёртка хороша тем, что она это делает явно.

Свёртка периодических функций

На практике бывает полезно использовать свёртку для периодических функций. Пусть f и g - интегрируемы на отрезке [0,T] и T-периодические: $\forall x \in \mathbb{R}, f(x+T) = f(x), g(x+T) = g(x).$

Опр: 2. Свёртка периодических функций определяется следующим образом:

$$f * g(x) = \int_{0}^{T} f(t)g(x-t)dt, \, \forall x \in \mathbb{R}$$

Заметим, что эта свёртка обладает всеми теми же свойствами, что и обычная на \mathbb{R} . Далее мы проверим те из них, которые нам понадобятся в дальнейшем.

 \mathbf{Rm} : 5. Сразу отметим, что никаких условий существования интеграла свёртки не нужно, поскольку достаточно интегрируемости функций f и g: в определенном интеграле произведение двух интегрируемых функций это интегрируемая функция.

Лемма 1. Если f - T-периодическая и интегрируемая по Риману, то верно:

$$\forall a \in \mathbb{R}, \ \int_{a}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt$$

 \square Сдвигая на kT, можно считать, что $0 \le a < T$.

Рис. 2: Сдвиг промежутка интегрирования на $a \in \mathbb{R}$ для периодической функции.

Воспользуемся периодичностью функции и сделаем замену переменной под интегралом:

$$\int_{0}^{a} f(t)dt = \int_{0}^{a} f(t+T)dt = \int_{T}^{a+T} f(t)dt \Rightarrow \int_{0}^{T} f(t)dt = \int_{0}^{a} f(t)dt + \int_{a}^{T} f(t)dt =$$

$$= \int_{T}^{a+T} f(t)dt + \int_{a}^{T} f(t)dt = \int_{a}^{T} f(t)dt + \int_{T}^{a+T} f(t)dt = \int_{a}^{a+T} f(t)dt$$

Упр. 1. Пусть f - непрерывная функция такая, что:

$$\forall a \in \mathbb{R}, \int_{a}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt$$

Верно ли, что f - T-периодическая?

 \square Сдвигая на kT, можно считать, что $0 \leq a < T.$ Рассмотрим свойство функции:

$$\int_{a}^{a+T} f(t)dt = \int_{a}^{T} f(t)dt + \int_{T}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt \Rightarrow \int_{T}^{a+T} f(t)dt = \int_{0}^{T} f(t)dt + \int_{T}^{a} f(t)dt \Rightarrow$$

$$\Rightarrow \int_{T}^{a+T} f(t)dt = |t = s + T| = \int_{0}^{a} f(s+T)ds = \int_{0}^{a} f(t)dt$$

Поскольку f - непрерывная, то продифференцируем интегралы по параметру a:

$$\frac{d}{da} \left(\int_{0}^{a} f(s+T)ds \right) = 1 \cdot f(a+T) = f(a+T) = \frac{d}{da} \left(\int_{0}^{a} f(t)dt \right) = f(a), \ \forall a \in \mathbb{R}$$

Теорема 4. Выполнены следующие свойства:

- 1) f * g(x) T-периодическая функция;
- 2) f * g(x) = g * f(x);
- 3) Если f(x) непрерывна, а $g(x) \in C^k(\mathbb{R})$, то $f * g(x) \in C^k(\mathbb{R})$ и $(f * g)^{(k)}(x) = f * g^{(k)}(x)$;
- \square По определению: $f * g(x) = \int_0^T f(t)g(x-t)dt$, тогда:
 - 1) $f * g(x+T) = \int_0^T f(t)g(x-t+T)dt = \int_0^T f(t)g(x-t)dt = f * g(x)$, так как g(x) T-периодическая;
 - 3) Используя дифференцирование по параметру собственного интеграла получаем требуемое;
 - 2) Поскольку f и g это T-периодические функции, то $f \cdot g$ тоже T-периодическая. Проверим свойство:

$$f * g(x) = \int_{0}^{T} f(t)g(x-t)dt = |x-t| = \int_{x-T}^{x} f(x-s)g(s)ds = \int_{0}^{T} f(x-s)g(s)ds = g * f(x)$$

где в предпоследнем равенстве мы воспользовались леммой 1 при x-T=a и x=a+T;

Дельтаобразная последовательность Т-периодических функций

Аналогично свёртке на всей прямой для свёртки T-периодических функций возникает проблема с единицей и мы вновь вводим определение дельтаобразной последовательности.

Опр: 3. Последовательность интегриуремых T-периодических функций ω_n называется дельтаобразной последовательностью, если выполнены следующие свойства:

1) $\forall x \in \mathbb{R}, \, \omega_n(x) \geq 0;$

$$2) \int_{0}^{T} \omega_n(t)dt = 1;$$

3)
$$\forall \delta \in (0,T), \int_{\delta}^{T-\delta} \omega_n(t)dt \xrightarrow[n \to \infty]{} 0;$$

Пример: Пусть $\omega_n(t) = c_n \cdot \cos^{2n} \frac{t}{2}$, где $c_n = \frac{1}{\frac{2\pi}{n}}$ и $T = 2\pi$. Проверим, что это δ -образная после-

довательность.

1) $\forall t \in \mathbb{R}, \forall n \in \mathbb{N}, \cos^{2n} \frac{t}{2} \ge 0 \Rightarrow c_n \ge 0 \Rightarrow \omega_n(t) \ge 0;$

2)
$$\int_{0}^{2\pi} \omega_n(t)dt = c_n \int_{0}^{2\pi} \cos^{2n} \frac{t}{2}dt = \int_{0}^{2\pi} \cos^{2n} \frac{t}{2}dt = 1;$$

3) Пусть $\delta \in (0, 2\pi)$, тогда:

$$\forall \frac{t}{2} \in \left(\frac{\delta}{2}, \pi - \frac{\delta}{2}\right) \Rightarrow \cos^{2n} \frac{t}{2} \leq \cos^{2n} \frac{\delta}{2} \xrightarrow[n \to \infty]{} 0$$

где последнее верно, так как $\cos^{2n} \frac{\delta}{2} < 1$. Хотелось бы понять, как себя ведёт c_n , поскольку там идёт деление на интеграл, то нужно оценивать его снизу:

$$\int_{0}^{2\pi} \cos^{2n} \frac{t}{2} dt = 2 \int_{0}^{\pi} \cos^{2n} t dt = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{2n} t dt = 4 \int_{0}^{\frac{\pi}{2}} \cos^{2n} t dt$$

где в последнем равенстве мы воспользовались чётностью подинтегральной функции. Сделаем замену: $\cos t = z \Rightarrow dz = -\sin t dt = -\sqrt{1-z^2} dt$, тогда:

$$4\int_{0}^{\frac{\pi}{2}}\cos^{2n}tdt = 4\int_{0}^{1}\frac{z^{2n}}{\sqrt{1-z^{2}}}dz = |z^{2}=u \Rightarrow 2zdz = 2u^{\frac{1}{2}}dz = du| = 2\int_{0}^{1}u^{n-\frac{1}{2}}(1-u)^{-\frac{1}{2}}du = 2\mathcal{B}\left(n+\frac{1}{2},\frac{1}{2}\right) = 2\frac{\Gamma\left(n+\frac{1}{2}\right)\Gamma\left(\frac{1}{2}\right)}{\Gamma(n+1)} = 2\Gamma\left(\frac{1}{2}\right)\frac{\left(n-\frac{1}{2}\right)\Gamma\left(n-\frac{1}{2}\right)}{n\Gamma(n)} = \dots = 0$$

$$=2\Gamma\left(\frac{1}{2}\right)\frac{\left(n-\frac{1}{2}\right)\cdot\left(n-1-\frac{1}{2}\right)\cdot\ldots\cdot\frac{3}{2}\cdot\frac{1}{2}\cdot\Gamma\left(\frac{1}{2}\right)}{n\cdot(n-1)\cdot(n-2)\cdot\ldots\cdot1}\geq 2\pi\cdot\frac{1}{2n}=\frac{\pi}{n}$$

Следовательно, мы можем оценить следующее слагаемое:

$$\frac{\int\limits_{\delta}^{2\pi-\delta}\cos^{2n}\frac{t}{2}dt}{\int\limits_{0}^{\delta}\cos^{2n}\frac{t}{2}dt} \leq \frac{2\pi\cos^{2n}\frac{\delta}{2}}{\frac{\pi}{n}} = 2n\cos^{2n}\frac{\delta}{2} = 2na^{2n}, \ a = \cos\frac{\delta}{2} < 1 \Rightarrow 2na^{2n} \xrightarrow[n \to \infty]{} 0$$

Rm: 6. Заметим, что в пункте 3) оценку снизу можно было дать гораздо проще. Воспользуемся формулой приведения: $\sin\left(\frac{\pi}{2} + t\right) = \cos t$, тогда:

$$\int_{0}^{2\pi} \cos^{2n} \frac{t}{2} dt = 2 \int_{0}^{\pi} \cos^{2n} t dt = 2 \int_{0}^{\pi} \sin^{2n} \left(t + \frac{\pi}{2} \right) dt = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^{2n} t dt = 4 \int_{0}^{\frac{\pi}{2}} \sin^{2n} t dt$$

где мы опять воспользовались четностью подинтегральной функции, используя неравенство:

$$\sin x \ge \frac{2x}{\pi}, \, \forall x \in \left[0, \frac{\pi}{2}\right]$$

мы получим оценку снизу:

$$4\int_{0}^{\frac{\pi}{2}} \sin^{2n}t dt \ge 4\int_{0}^{\frac{\pi}{2}} \left(\frac{2t}{\pi}\right)^{2n} dt = 2\pi \int_{0}^{1} s^{2n} ds = \frac{2\pi}{2n+1}$$

Теорема 5. Пусть f - непрерывная T-периодическая функция и $\{\omega_n\}$ - дельтаобразная последовательность. Тогда на всей прямой (или что тоже самое на [0,T]) будет верно: $f*\omega_n(x) \underset{n\to\infty}{\stackrel{[0,T]}{\Rightarrow}} f$.

 \square Аналогично теореме для обычной свёртки, рассмотрим разность $f*\omega_n(x)-f(x)$ и оценим её:

$$f * \omega_n(x) - f(x) = \int_0^T (f(x-t) - f(x))\omega_n(t)dt \Rightarrow |f * \omega_n(x) - f(x)| \le \int_0^T |f(x-t) - f(x)|\omega_n(t)dt$$

Поскольку функция f - непрерывная и T-периодическая, то она равномерно непрерывна на отрезке (по теореме Кантора) \Rightarrow равномерно непрерывна всюду на числовой прямой:

$$\forall \varepsilon > 0, \exists \delta > 0 \colon \forall x_1, x_2, |x_1 - x_2| < \delta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon$$

Из периодичности и непрерывности функции f также следует существование $M = \max_{[0,T]} f = \max_{\mathbb{R}} f$. Тогда оценим интересующий нас интеграл:

$$\int_{0}^{T} |f(x-t) - f(x)|\omega_{n}(t)dt = \int_{0}^{\delta} |f(x-t) - f(x)|\omega_{n}(t)dt + \int_{T-\delta}^{T} |f(x-t) - f(x)|\omega_{n}(t)dt + \int_{0}^{T} |f(x-t) - f(x)|\omega_{$$

$$+ \int_{\delta}^{T-\delta} |f(x-t) - f(x)| \omega_n(t) dt = \int_{0}^{\delta} |f(x-t) - f(x)| \omega_n(t) dt + \int_{-\delta}^{0} |f(x-t) - f(x)| \omega_n(t) dt + \int_{-\delta}^{T-\delta} |f(x-t) - f(x)| \omega_n(t) dt + \int_{\delta}^{T-\delta} |f(x-t) - f(x)| \omega_n(t) dt = \int_{|t| < \delta} |f(x-t) - f(x)| \omega_n(t) dt + \int_{\delta}^{T-\delta} |f(x-t) - f(x)| \omega_n(t) dt \le \varepsilon \int_{|t| < \delta} \omega_n(t) dt + 2M \int_{\delta}^{T-\delta} \omega_n(t) dt \le \varepsilon + 2M \int_{\delta}^{T-\delta} \omega_n(t) dt$$

По определению дельтаобразной последовательности:

$$\exists N \colon \forall n > N, \int_{\delta}^{T-\delta} \omega_n(t) dt < \varepsilon$$

Следовательно, мы получаем требуемое:

$$\forall \varepsilon > 0, \ \exists N : \forall n > N, \ |f * \omega_n(x) - f(x)| \le \varepsilon + 2M \int_{\varepsilon}^{T - \delta} \omega_n(t) dt < 2\varepsilon$$

Теорема Вейерштрасса

Опр: 4. Выражение вида:

$$T_n(t) = \frac{a_0}{2} + \sum_{k=1}^{n} (a_k \cos kt + b_k \sin kt)$$

называется тригонометрическим многочленом.

Rm: 7. Заметим, что тригонометрический многочлен это просто линейная комбинация тригонометрических функций и единицы: 1, $\sin kt$, $\cos kt$.

Упр. 2. Полезно иметь в виду, что сумма и произведение тригонометрических многочленов это тригонометрический многочлен.

Теорема 6. (Вейерштрасса) Если f - 2π -периодическая и непрерывная функция, то \exists последовательность тригонометрических многочленов T_N такая, что: $T_N \stackrel{\mathbb{R}}{\Longrightarrow} f$.

Rm: 8. Эту теорему можно получить как следствие теоремы Вейерштрасса для обычной свёртки.

 \square Возьмем $\omega_n(t) = c_n \cos^{2n} \frac{t}{2}$, а в качестве многочлена возьмем свёртку: $T_n(x) = f * \omega_n(x)$. Из предыдущей теоремы мы знаем, что:

$$T_n(x) \underset{n \to \infty}{\overset{\mathbb{R}}{\Longrightarrow}} f(x)$$

Рассмотрим функцию $T_n(x)$ по определению:

$$T_n(x) = c_n \int_0^{2\pi} f(t) \cos^{2n} \left(\frac{x-t}{2}\right) dt = c_n \int_0^{2\pi} f(t) \left(\frac{\cos(x-t)+1}{2}\right)^n dt =$$

$$= \frac{c_n}{2^n} \int_{0}^{2\pi} f(t)(\cos x \cos t + \sin x \sin t + 1)^n dt$$

Отсюда уже видно, что при раскрытии степеней мы получим тригонометрический многочлен.