1. [12 pkt] Dany jest następujący algorytm w postaci schematu blokowego:

- a) [8] Wykonaj polecenia:
 - (a) Napisz program w kodzie RAM implementujący podany powyżej schemat blokowy. Twój program powinien być tak napisany, aby zmiennym *a* i *b* odpowiadały ustalone komórki pamięci oraz aby każdemu blokowi schematu odpowiadały ustalone instrukcje Twojego programu.
 - (b) Podaj numery komórek pamięci odpowiadających zmiennym a i b.
 - (c) Ponumeruj instrukcje Twojego programu kolejnymi liczbami naturalnymi i podaj, które instrukcje implementuja poszczególne bloki (A F) powyższego schematu:
- b) [4] Uzupełnij specyfikację algorytmu.

Specyfikacja
1 0

Wejście: a			eujemne

Wyjście:	 	 	

2. [16 pkt] Dana jest następująca funkcja:

```
funkcja zagadka(A, lw, pr)
   # A – tablica liczb całkowitych dodatnich
   # lw, pr - liczby całkowite nieujemne
   \# x, y – tablice dwuelementowe
1. jeżeli (lw = pr):
                            zwróć( A[lw], -1 )
2. jeżeli (lw = pr - 1):
       x[0] \leftarrow \max(A[lw], A[pr]), y[0] \leftarrow \min(A[lw], A[pr])
       zwróć( x[0], y[0] )
2b.
3. s \leftarrow (lw + pr) // 2 # // - dzielenie całkowitoliczbowe, zaokrąglenie w dół
4. (x[0], y[0]) \leftarrow zagadka(A, lw, s)
5. (x[1], y[1]) \leftarrow zagadka(A, s + 1, pr)
6. jeżeli (x[0] > x[1]):
7. w przeciwnym przypadku: i \leftarrow 1
8. z \leftarrow \max(x[1-i], y[i])
9. zwróć(x[i], z)
```

gdzie max(a, b) i min(a, b) to funkcja zwracająca odpowiednio większą i mniejszą z liczb a, b gdy $a \neq b$ oraz liczbę a gdy a = b.

- a) **[6]** Rozważ uruchomienie zagadka(A, 0, 9), gdzie komórki A[0...5] są wypełnione cyframi Twojego numeru indeksu a komórki A[6...9] są wypełnione cyframi bieżącego roku 2021. Podaj:
 - i) Wynik zwracany przez powyżej opisane wywołanie zagadka(A, 0, 9).
 - ii) Liczbę wywołań <u>rekurencyjnych</u> funkcji zagadka w trakcie uruchomienia zagadka(A, 0, 9).
 - iii) Wartości *lw* i *pr* dla wszystkich wywołań <u>rekurencyjnych</u>, w którym wartość argumentu *pr* jest równa 9.
- b) [3] Zapisz w postaci zależności rekurencyjnej asymptotyczną złożoność czasową funkcji zagadka, gdzie argumentem jest rozważana liczba elementów tablicy n = pr lw + 1. Możesz w swoim rozwiązaniu skorzystać z poniższej wskazówki ilustrującej niepełną postać tej zależności;

$$T(1) = T(2) = 1$$

 $T(n) = T(\dots) + \dots$ gdy n jest nieparzyste
 $T(n) = \dots$ gdy n jest parzyste

- c) [4] Załóżmy, że n jest naturalną potęgą dwójki czyli $n = 2^k$ dla nieujemnej całkowitej liczby k. Przy tym założeniu rozwiąż zależność rekurencyjną z punktu b) metodą podstawienia.
- d) [3] Uzupełnij specyfikację funkcji zagadka.

Specyfikacja

Wejście: A – tablica liczb całkowitych dodatnich lw, pr - liczby całkowite nieujemne

Wyjście: para liczb *x*, *z* taka, że

Imię i nazwisko:	WdI 2020/21, Kolokwium, IIn UWr
Indeks:	

3. [11 pkt] Napisz algorytm realizujący poniższą specyfikację:

Specyfikacja

Wejście:

s, $m_1,...m_6$, $c_1,...,c_4$ – liczby ze zbioru $\{0,1\}$ reprezentujące znak, mantysę i cechę (w U2) liczby zapisanej w reprezentacji zmiennopozycyjnej.

Wyjście:

Wartość liczby o zapisie zmiennopozycyjnym

znak	
S	

mantysa					
m_1	m_2	m_3	m_4	m_5	m_6

cecha				
c_1	c_2	<i>C</i> ₃	C4	

Przykład:

Dla zapisu zmiennopozycyjnego

mantysa					
0	1	0	0	0	0

cecha				
1	1	1	1	

Odpowiadającego ciągowi wejściowemu 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1 wynik jest równy 0,625, gdyż $0,625=(-1)^0\cdot 1,010000_{(2)}\cdot 2^{-1}$, czyli

- s = 0 odpowiada za znak dodatni liczby,
- $-m_1,...,m_6=0,1,0,0,0,0$ odpowiada mantysie 1,010000
- $c_1,..., c_4 = 1, 1, 1, 1$ to wykładnik –1 zapisany w U2 na 4 bitach.

4. [11 pkt] Dla funkcji:

$$f_1(n) = n \cdot (\log n)^2$$

$$f_2(n) = n^2 / 10$$

$$f_3(n) = \log n + 2^{10} \cdot n$$

wykonaj następujące polecenia:

- (a) Ustaw $f_1(n)$, $f_2(n)$ i $f_3(n)$ w takiej kolejności $f_i(n)$, $f_j(n)$, $f_k(n)$, że $f_i(n) = O(f_j(n))$ oraz $f_j(n) = O(f_k(n))$.
- (b) Udowodnij każdą z zależności $f_i(n) = O(f_i(n))$ oraz $f_j(n) = O(f_k(n))$.

Uwaga. W dowodach zależności można m.in. korzystać z faktu:

Jeżeli
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} < \infty$$
, to $f(n) = O(g(n))$.