

WoLLIC 2019

Bar-Hillel Theorem Mechanization in Coq

Sergey Bozhko, Leyla Khatbullina, Semyon Grigorev

JetBrains Research, Programming Languages and Tools Lab Saint Petersburg University

July 05, 2019

Automated Theorem Proving

- Yet another attemt to automate proof correctness checking
- In some systems a way to create correct by construction algorithms
 - Coq

Formal Language Theory Mechanization

- Nontrivial proofs checking
- Correctness of algorithms

The Bar-Hillel Theorem

Theorem (Bar-Hillel)

If L_1 is a context-free language and L_2 is a regular language, then $L_1 \cap L_2$ is context-free.

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar
 - $L(\mathbb{G}, A) = \{ w \mid A \Rightarrow^* w \}$

- $\mathbb{G} = (\Sigma, N, P)$ context-free grammar
 - $L(\mathbb{G}, A) = \{ w \mid A \Rightarrow^* w \}$
- G = (V, E, L) directed graph
 - $v \stackrel{1}{\rightarrow} u \in E$
 - L ⊆ Σ

- ullet $\mathbb{G}=(\Sigma, \mathit{N}, \mathit{P})$ context-free grammar
 - $L(\mathbb{G}, A) = \{ w \mid A \Rightarrow^* w \}$
- G = (V, E, L) directed graph
 - $v \stackrel{l}{\rightarrow} u \in E$
 - L ⊆ Σ
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$

- ullet $\mathbb{G}=(\Sigma, \mathit{N}, \mathit{P})$ context-free grammar
 - $L(\mathbb{G}, A) = \{ w \mid A \Rightarrow^* w \}$
- G = (V, E, L) directed graph
 - $v \stackrel{l}{\rightarrow} u \in E$
 - L ⊆ Σ
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R_A = \{(n, m) \mid \exists n\pi m$, such that $\omega(\pi) \in L(\mathbb{G}, A)\}$

- ullet $\mathbb{G}=(\Sigma, \mathit{N}, \mathit{P})$ context-free grammar
 - $L(\mathbb{G}, A) = \{ w \mid A \Rightarrow^* w \}$
- G = (V, E, L) directed graph
 - $v \stackrel{l}{\rightarrow} u \in E$
 - $L \subset \Sigma$
- $\omega(\pi) = \omega(v_0 \xrightarrow{l_0} v_1 \xrightarrow{l_1} \cdots \xrightarrow{l_{n-2}} v_{n-1} \xrightarrow{l_{n-1}} v_n) = l_0 l_1 \cdots l_{n-1}$
- $R_A = \{(n, m) \mid \exists n\pi m, \text{ such that } \omega(\pi) \in L(\mathbb{G}, A)\}$
- $P_A = \{\pi \mid \pi \text{ is a path in } G, \text{ such that } \omega(\pi) \in L(\mathbb{G}, A)\}$

Applications of CFPQ

- Graph data base querying
 - ► Yannacacis !!!
 - ► Static code analysis

Applications of CFPQ

- Graph data base querying
 - ► Yannacacis !!!
 - Static code analysis
- Static code analysis
 - ► Reps !!!
 - Static code analysis

1 Assume that there is a contextfree grammar G_{CNF} in Chomsky normal form, such that $L(G_{CNF}) = L_1$

- Assume that there is a contextfree grammar G_{CNF} in Chomsky normal form, such that $L(G_{CNF}) = L_1$
- ② Assume that there is a set of regular languages $\{A_1 ... A_n\}$ where each A_i is recognized by a DFA with precisely one final state and $L_2 = A_1 \cup ... \cup A_n$

- Assume that there is a contextfree grammar G_{CNF} in Chomsky normal form, such that $L(G_{CNF}) = L_1$
- ② Assume that there is a set of regular languages $\{A_1 \dots A_n\}$ where each A_i is recognized by a DFA with precisely one final state and $L_2 = A_1 \cup \ldots \cup A_n$
 - ▶ If $L \neq \emptyset$ and L is regular then L is the union of regular language A_1, \ldots, A_n where each A_i is accepted by a DFA with exactly one final state

- Assume that there is a contextfree grammar G_{CNF} in Chomsky normal form, such that $L(G_{CNF}) = L_1$
- ② Assume that there is a set of regular languages $\{A_1 \dots A_n\}$ where each A_i is recognized by a DFA with precisely one final state and $L_2 = A_1 \cup \ldots \cup A_n$
 - ▶ If $L \neq \emptyset$ and L is regular then L is the union of regular language A_1, \ldots, A_n where each A_i is accepted by a DFA with exactly one final state
- **3** For each A_i we can explicitly define a grammar of the intersection: $L(G_{CNF}) \cap A_i$

- Assume that there is a contextfree grammar G_{CNF} in Chomsky normal form, such that $L(G_{CNF}) = L_1$
- ② Assume that there is a set of regular languages $\{A_1 \dots A_n\}$ where each A_i is recognized by a DFA with precisely one final state and $L_2 = A_1 \cup \ldots \cup A_n$
 - ▶ If $L \neq \emptyset$ and L is regular then L is the union of regular language A_1, \ldots, A_n where each A_i is accepted by a DFA with exactly one final state
- **9** For each A_i we can explicitly define a grammar of the intersection: $L(G_{CNF}) \cap A_i$
- Finally, join them together with the operation of the union

Jana Hofmann provides mechanization of the part of CFL in the Coq

• Basic definitions: terminal, nonterminal, grammar, word, ...

Jana Hofmann provides mechanization of the part of CFL in the Coq

- Basic definitions: terminal, nonterminal, grammar, word, ...
- Context-Free grammar to the Chomsky Normal Form convertion

Jana Hofmann provides mechanization of the part of CFL in the Coq

- Basic definitions: terminal, nonterminal, grammar, word, ...
- Context-Free grammar to the Chomsky Normal Form convertion

```
Inductive ter : Type :=
    | T : nat -> ter.
    Jana Hofmann
```

Jana Hofmann provides mechanization of the part of CFL in the Coq

- Basic definitions: terminal, nonterminal, grammar, word, ...
- Context-Free grammar to the Chomsky Normal Form convertion

```
Inductive ter : Type :=
    | T : nat -> ter.
    Jana Hofmann
```

We need an arbitrary type for terminals and nontermianls!

Jana Hofmann provides mechanization of the part of CFL in the Coq

- Basic definitions: terminal, nonterminal, grammar, word, ...
- Context-Free grammar to the Chomsky Normal Form convertion

```
Inductive ter : Type :=
    | T : nat -> ter.
    Jana Hofmann
```

We need an arbitrary type for terminals and nontermianls!

And now we should carefully rewrite all existing stuff . . .

DFA Splitting

If $L \neq \emptyset$ and L is regular then L is the union of regular language A_1, \ldots, A_n where each A_i is accepted by a DFA with precisely one final state

DFA Splitting

```
If L \neq \varnothing and L is regular then L is the union of regular language A_1, \ldots, A_n where each A_i is accepted by a DFA with precisely one final state

Lemma correct_split:
forall dfa w,
dfa_language dfa w <->
exists sdfa,
In sdfa (split_dfa dfa) /\ s_dfa_language sdfa w.
```

Chomsky Induction

Lemma

Let G be a grammar in CNF. Consider an arbitrary nonterminal $N \in G$ and phrase which consists only of terminals w. If w is derivable from N and $|w| \geq 2$, then there exists two nonterminals N_1 , N_2 and two phrases w_1 , w_2 such that: $N \to N_1 N_2 \in G$, $der(G, N_1, w_1)$, $der(G, N_2, w_2)$, $|w_1| \geq 1$, $|w_2| > 1$ and $w_1 + + w_2 = w$.

Chomsky Induction

Lemma

Let G be a grammar in CNF. Consider an arbitrary nonterminal $N \in G$ and phrase which consists only of terminals w. If w is derivable from N and $|w| \geq 2$, then there exists two nonterminals N_1 , N_2 and two phrases w_1 , w_2 such that: $N \to N_1 N_2 \in G$, $der(G, N_1, w_1)$, $der(G, N_2, w_2)$, $|w_1| \geq 1$, $|w_2| \geq 1$ and $w_1 + + w_2 = w$.

Chomsky Induction in Coq

Languges Union

```
Variable grammars: seq (var * grammar).
Theorem correct_union:
forall word,
  language (grammar_union grammars) (V (start Vt))
           (to_phrase word)
  <->
  exists s_1,
    language (snd s_l) (fst s_l) (to_phrase word)
    In s_l grammars.
```

The Final Theorem

Theorem

For any two decidable types Tt and Nt for types of terminals and nonterminals correspondingly. If there exists a bijection from Nt to \mathbb{N} and syntactic analysis is possible (in the sense of our definition), then for any DFA dfa and any context-free grammar G, there exists the context-free grammar G_{INT} , such that $L(G_{INT}) = L(G) \cap L(dfa)$.

The Final Theorem in Coq

```
Theorem grammar_of_intersection_exists:
    exists
    (NewNonterminal: Type)
    (IntersectionGrammar: @grammar Terminal NewNonterminal)
    St,
    forall word,
    dfa_language dfa word /\ language G S (to_phrase word)
    <->
    language IntersectionGrammar St (to_phrase word).
```

Conclusion

- We present mechanized in Coq proof of the Bar-Hillel theorem on the closure of context-free languages under intersection with the regular languages
- We generalize the results of Jana Hofmann and Gert Smolka
 - ► The definition of the terminal and nonterminal alphabets in context-free grammar were made generic
 - ► All related definitions and theorems were adjusted to work with the updated definition
- All results are published at GitHub and are equipped with automatically generated documentation

Future work

- Ruy J. G. B. de Queiroz vs Jana Hifmann
 - We use results of Jana Hofman
 - Results of Ruy J. G. B. de Queiroz looks more mature
 - Is it possible to create one "true" solution in this area?
 - ★ Wether our grammar-based proof is always better then PDA-based one?

Future work

- Ruy J. G. B. de Queiroz vs Jana Hifmann
 - We use results of Jana Hofman
 - ▶ Results of Ruy J. G. B. de Queiroz looks more mature
 - ▶ Is it possible to create one "true" solution in this area?
 - ★ Wether our grammar-based proof is always better then PDA-based one?
- Mechanization of practical algorithms which are just implementation of the Bar-Hillel theorem
 - Context-free path querying algorithm, based on CYK or even on GLL parsing algorithm
 - Certified algorithm for context-free constrained path querying for graph databases

Contact Information

- Semyon Grigorev:
 - s.v.grigoriev@spbu.ru
 - Semen.Grigorev@jetbrains.com
- Sergey Bozhko:
 - Max Planck Institute for Software Systems (MPI-SWS), Saarbrcken, Germany
 - sbozhko@mpi-sws.com
- Leyla Khatbullina:
 - ► St.Petersburg Electrotechnical University "LETI", St.Petersburg, Russia
 - ▶ leila.xr@gmail.com
- Sources: https://github.com/YaccConstructor/YC_in_Coq

Thanks!