```
In [1]: 1 import numpy as np import pandas as pd
```

Out[2]:

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation	mba_p	status	salary
0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0	Mkt&HR	58.80	Placed	270000.0
1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	Mkt&Fin	66.28	Placed	200000.0
2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0	Mkt&Fin	57.80	Placed	250000.0
3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0	Mkt&HR	59.43	Not Placed	NaN
4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96.8	Mkt&Fin	55.50	Placed	425000.0
210	211	М	80.60	Others	82.00	Others	Commerce	77.60	Comm&Mgmt	No	91.0	Mkt&Fin	74.49	Placed	400000.0
211	212	М	58.00	Others	60.00	Others	Science	72.00	Sci&Tech	No	74.0	Mkt&Fin	53.62	Placed	275000.0
212	213	М	67.00	Others	67.00	Others	Commerce	73.00	Comm&Mgmt	Yes	59.0	Mkt&Fin	69.72	Placed	295000.0
213	214	F	74.00	Others	66.00	Others	Commerce	58.00	Comm&Mgmt	No	70.0	Mkt&HR	60.23	Placed	204000.0
214	215	М	62.00	Central	58.00	Others	Science	53.00	Comm&Mgmt	No	89.0	Mkt&HR	60.22	Not Placed	NaN

215 rows × 15 columns

In [3]: 1 dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215 entries, 0 to 214
Data columns (total 15 columns):

#	Column	Non-Null Count	Dtype					
 0 1 2 3 4 5 6	sl_no gender ssc_p ssc_b hsc_p hsc_b hsc_s	215 non-null 215 non-null 215 non-null 215 non-null 215 non-null 215 non-null 215 non-null	int64 object float64 object float64 object object					
7	_ degree_p	215 non-null	float64					
8	degree_t	215 non-null	object					
9	workex	215 non-null	object					
10	etest_p	215 non-null	float64					
11	specialisation	215 non-null	object					
12	mba_p	215 non-null	float64					
13	status	215 non-null	object					
14	salary	148 non-null	float64					
<pre>dtypes: float64(6), int64(1), object(8) memory usage: 25.3+ KB</pre>								

In [4]: 1 dataset.isnull().sum().T 2 #print(a,end='')

Out[4]: sl_no 0 0 gender ssc_p 0 ssc_b 0 hsc_p 0 hsc_b 0 hsc_s 0 degree_p 0 degree_t 0 workex etest_p 0 specialisation 0 mba_p 0 status 0 salary 67

dtype: int64

Preprocessing Placement File - Jupyter Notebook 07/10/23, 9:25 PM

In [5]: dataset["salary"].fillna(0,inplace=True) dataset Out [5]: degree_t workex etest_p specialisation mba_p sl_no gender ssc_p ssc_b hsc_p hsc_b hsc_s degree_p status salary 0 1 Μ 67.00 Others 91.00 Others Commerce 58.00 Sci&Tech No 55.0 Mkt&HR 58.80 Placed 270000.0 2 1 78.33 77.48 Sci&Tech 86.5 66.28 Placed 200000.0 Μ 79.33 Central Others Science Yes Mkt&Fin 2 3 65.00 68.00 Central 64.00 Comm&Mgmt Mkt&Fin 57.80 Placed 250000.0 Central Arts No 75.0 59.43 3 4 56.00 Central 52.00 Central 52.00 Sci&Tech 66.0 Mkt&HR 0.0 Μ Science No Placed 5 4 55.50 Placed 425000.0 Μ 85.80 Central 73.60 Central Commerce 73.30 Comm&Mgmt 96.8 Mkt&Fin No Comm&Mamt 210 211 Μ 80.60 Others 82.00 Others Commerce 77.60 No 91.0 Mkt&Fin 74.49 Placed 400000.0 211 212 Μ 58.00 Others 60.00 Others Science 72.00 Sci&Tech No 74.0 Mkt&Fin 53.62 Placed 275000.0 67.00 213 67.00 Others Others Commerce 73.00 Comm&Mgmt 59.0 Mkt&Fin 69.72 Placed 295000.0 212 М Yes 66.00 60.23 Placed 204000.0 214 F 74.00 Others Others Commerce 58.00 Comm&Mgmt 70.0 Mkt&HR 213 No 62.00 Central 58.00 Others 60.22 0.0 214 215 Μ Science 53.00 Comm&Mgmt No 89.0 Mkt&HR Placed 215 rows × 15 columns In [6]: dataset.dropna(inplace=True) dataset Out[6]: degree_t workex etest_p specialisation mba_p status hsc_s degree_p sl_no gender ssc_p ssc_b hsc_p hsc_b salary 58.80 Placed 270000.0 0 1 Μ 67.00 Others 91.00 Others Commerce 58.00 Sci&Tech No 55.0 Mkt&HR 1 2 Μ 79.33 Central 78.33 Others Science 77.48 Sci&Tech Yes 86.5 Mkt&Fin 66.28 Placed 200000.0 Central 2 3 65.00 68.00 Central 64.00 Comm&Mgmt 75.0 Mkt&Fin 57.80 Placed 250000.0 М Arts No Not 3 4 52.00 Central Sci&Tech Μ 56.00 Central Science 52.00 No 66.0 Mkt&HR 59.43 0.0 Placed 5 M 85.80 Central 73.60 Central Commerce 73.30 Comm&Mgmt No 96.8 Mkt&Fin 55.50 Placed 425000.0 Others 80.60 82.00 77.60 Comm&Mgmt 74.49 Placed 400000.0 210 211 Others Commerce 91.0 Mkt&Fin Μ No 60.00 72.00 Sci&Tech 53.62 Placed 275000.0 211 212 58.00 Others Others Science Νo 74.0 Mkt&Fin 212 213 67.00 Others 67.00 Others Commerce 73.00 Comm&Mgmt Yes 59.0 Mkt&Fin 69.72 Placed 295000.0 66.00 213 214 74.00 Others Others Commerce 58.00 Comm&Mgmt No 70.0 Mkt&HR 60.23 Placed 204000.0 Not 60.22 214 215 62.00 Central 58.00 Others Science 53.00 Comm&Mgmt No 89.0 Mkt&HR 0.0 Placed 215 rows × 15 columns In [7]: dataset.isnull().sum() Out[7]: sl no 0 gender 0 0 0 ssc b 0 hsc_p hsc_b hsc_s degree_p degree_t workex etest_p specialisation 0 mba_p status

Defining Quan & Qual for Outlier Removal

salary

dtype: int64

Preprocessing Placement File - Jupyter Notebook 07/10/23, 9:25 PM

Out[9]: ['sl_no', 'ssc_p', 'hsc_p', 'degree_p', 'etest_p', 'mba_p', 'salary']

In [10]: 1 dataset[qual]

Out[10]:

	gender	ssc_b	hsc_b	hsc_s	degree_t	workex	specialisation	status
0	М	Others	Others	Commerce	Sci&Tech	No	Mkt&HR	Placed
1	М	Central	Others	Science	Sci&Tech	Yes	Mkt&Fin	Placed
2	М	Central	Central	Arts	Comm&Mgmt	No	Mkt&Fin	Placed
3	М	Central	Central	Science	Sci&Tech	No	Mkt&HR	Not Placed
4	М	Central	Central	Commerce	Comm&Mgmt	No	Mkt&Fin	Placed
•••								
210	М	Others	Others	Commerce	Comm&Mgmt	No	Mkt&Fin	Placed
211	М	Others	Others	Science	Sci&Tech	No	Mkt&Fin	Placed
212	М	Others	Others	Commerce	Comm&Mgmt	Yes	Mkt&Fin	Placed
213	F	Others	Others	Commerce	Comm&Mgmt	No	Mkt&HR	Placed
214	М	Central	Others	Science	Comm&Mgmt	No	Mkt&HR	Not Placed

215 rows × 8 columns

Outlier Removal

Out[14]: ['hsc_p', 'degree_p', 'salary']

```
In [11]:
             descriptive=pd.DataFrame(index=["Mean","Median","Mode","Q1:25%","Q2:50%",
                                              "Q3:75%","99%","Q4:100%","IQR","1.5rule","Lesser","Greater","Min","Max"]
              for columnName in quan:
                  descriptive[columnName] ["Mean"] = dataset[columnName].mean()
                  descriptive[columnName]["Median"]=dataset[columnName].median()
                  descriptive[columnName] ["Mode"] = dataset[columnName].mode()[0]
                  descriptive[columnName] ["Q1:25%"] = dataset.describe() [columnName] ["25%"]
                  descriptive[columnName] ["Q2:50%"] = dataset.describe() [columnName] ["50%"]
                  descriptive[columnName] ["Q3:75%"] = dataset.describe() [columnName] ["75%"]
                  descriptive[columnName]["99%"]=np.percentile(dataset[columnName],99)
                  descriptive[columnName] ["Q4:100%"] = dataset.describe() [columnName] ["max"]
                  descriptive[columnName]["IQR"]=descriptive[columnName]["Q3:75%"]-descriptive[columnName]["Q1:25%"]
                  descriptive[columnName] ["1.5rule"]=1.5*descriptive[columnName] ["IQR"]
                  descriptive[columnName]["Lesser"]=descriptive[columnName]["Q1:25%"]-descriptive[columnName]["1.5rul
                  descriptive[columnName]["Greater"]=descriptive[columnName]["03:75%"]+descriptive[columnName]["1.5ru
                  descriptive[columnName]["Min"]=dataset[columnName].min()
                  descriptive[columnName] ["Max"] = dataset[columnName] max()
In [12]:
              lesser=[]
              greater=[]
              for columnName in quan:
                  if(descriptive[columnName]["Lesser"]>descriptive[columnName]["Min"]):
                      lesser.append(columnName)
                  if(descriptive[columnName] ["Greater"] < descriptive[columnName] ["Q4:100%"]):</pre>
                      greater.append(columnName)
In [13]:
             lesser
Out[13]: ['hsc_p']
In [14]:
             greater
```

/var/folders/07/ykgp85052b11h5kz22ghn8l40000gn/T/ipykernel_87072/3400726572.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.htm l#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

dataset[column][dataset[column]<descriptive[column]["Lesser"]]=descriptive[column]["Lesser"]
/var/folders/07/ykgp85052b11h5kz22ghn8l40000gn/T/ipykernel_87072/3400726572.py:4: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame</pre>

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

dataset[column][dataset[column]>descriptive[column]["Greater"]]=descriptive[column]["Greater"]

```
In [16]:
             descriptive=pd.DataFrame(index=["Mean","Median","Mode","Q1:25%","Q2:50%",
                                              "Q3:75%","99%","Q4:100%","IQR","1.5rule","Lesser","Greater","Min","Max"]
             for columnName in quan:
                  descriptive[columnName] ["Mean"] = dataset[columnName].mean()
                  descriptive[columnName]["Median"]=dataset[columnName].median()
                  descriptive[columnName] ["Mode"] = dataset[columnName].mode()[0]
                  descriptive[columnName] ["Q1:25%"] = dataset.describe() [columnName] ["25%"]
                  descriptive[columnName] ["Q2:50%"] = dataset.describe() [columnName] ["50%"]
                  descriptive[columnName] ["Q3:75%"] = dataset.describe() [columnName] ["75%"]
                  descriptive[columnName]["99%"]=np.percentile(dataset[columnName],99)
                  descriptive[columnName] ["Q4:100%"] = dataset.describe() [columnName] ["max"]
                  descriptive[columnName]["IQR"]=descriptive[columnName]["Q3:75%"]-descriptive[columnName]["Q1:25%"]
                  descriptive[columnName] ["1.5rule"]=1.5*descriptive[columnName] ["IQR"]
                  descriptive[columnName]["Lesser"]=descriptive[columnName]["Q1:25%"]-descriptive[columnName]["1.5rul
                  descriptive[columnName]["Greater"]=descriptive[columnName]["Q3:75%"]+descriptive[columnName]["1.5ru
                  descriptive[columnName]["Min"]=dataset[columnName].min()
                  descriptive[columnName] ["Max"] = dataset[columnName] . max()
```

In [17]: 1 descriptive

Out[17]:

	sl_no	ssc_p	hsc_p	degree_p	etest_p	mba_p	salary
Mean	108.0	67.303395	66.334744	66.358558	72.100558	62.278186	197615.116279
Median	108.0	67.0	65.0	66.0	71.0	62.0	240000.0
Mode	1	62.0	63.0	65.0	60.0	56.7	0.0
Q1:25%	54.5	60.6	60.9	61.0	60.0	57.945	0.0
Q2:50%	108.0	67.0	65.0	66.0	71.0	62.0	240000.0
Q3:75%	161.5	75.7	73.0	72.0	83.5	66.255	282500.0
99%	212.86	87.0	91.129	83.86	97.0	76.1142	629000.0
Q4:100%	215.0	89.4	91.15	88.5	98.0	77.89	706250.0
IQR	107.0	15.1	12.1	11.0	23.5	8.31	282500.0
1.5rule	160.5	22.65	18.15	16.5	35.25	12.465	423750.0
Lesser	-106.0	37.95	42.75	44.5	24.75	45.48	-423750.0
Greater	322.0	98.35	91.15	88.5	118.75	78.72	706250.0
Min	1	40.89	42.75	50.0	50.0	51.21	0.0
Max	215	89.4	91.15	88.5	98.0	77.89	706250.0

```
In [18]: 1 lesser=[]
greater=[]

for columnName in quan:
    if(descriptive[columnName]["Lesser"]>descriptive[columnName]["Min"]):
        lesser.append(columnName)
    if(descriptive[columnName]["Greater"]<descriptive[columnName]["Q4:100%"]):
        greater.append(columnName)</pre>
```

In [19]: 1 lesser

Out[19]: []

In [20]: 1 greater

Out[20]: []

Preprocessing Placement File - Jupyter Notebook 07/10/23, 9:25 PM

In [21]: 1 dataset

Out[21]:

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation	mba_p	status	salary
0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0	Mkt&HR	58.80	Placed	270000.0
1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	Mkt&Fin	66.28	Placed	200000.0
2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0	Mkt&Fin	57.80	Placed	250000.0
3	4	М	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0	Mkt&HR	59.43	Not Placed	0.0
4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96.8	Mkt&Fin	55.50	Placed	425000.0
											•••				
210	211	М	80.60	Others	82.00	Others	Commerce	77.60	Comm&Mgmt	No	91.0	Mkt&Fin	74.49	Placed	400000.0
211	212	М	58.00	Others	60.00	Others	Science	72.00	Sci&Tech	No	74.0	Mkt&Fin	53.62	Placed	275000.0
212	213	М	67.00	Others	67.00	Others	Commerce	73.00	Comm&Mgmt	Yes	59.0	Mkt&Fin	69.72	Placed	295000.0
213	214	F	74.00	Others	66.00	Others	Commerce	58.00	Comm&Mgmt	No	70.0	Mkt&HR	60.23	Placed	204000.0
214	215	М	62.00	Central	58.00	Others	Science	53.00	Comm&Mgmt	No	89.0	Mkt&HR	60.22	Not Placed	0.0

215 rows × 15 columns

Saving the Preprocessed dataset as a New File

Alternative Codes for Learning

mode_value = dataset['rbc'].mode()[0] dataset['rbc'].fillna(mode_value, inplace=True) #dataset['pc'].fillna(modes, inplace=True)

mode_value = dataset['pc'].mode()[0] dataset['pc'].fillna(mode_value, inplace=True) #dataset['pc'].fillna(modes, inplace=True)