# Sensitivity studies with NuGrid tools

Christian Ritter, Kathrin Göbel (Goethe University Frankfurt, Germany)

## Outline

- Nuclear sensitivity
- NUSENSI
- Tutorial

# Nuclear sensitivity

- Sensitivity: How sensitivity is the change of rates on my final abundance
  - Which are the strongest affected isotope by a rate?
  - What are the key rates influencing the abundance of isotope?
- Sensitivity factor:

Species i, rate j

$$S_{i,j} = \frac{\Delta X_i / X_i}{\Delta r_j / r_j}$$

# Nuclear sensitivity

$$S_{i,j} = \frac{\Delta X_i / X_i}{\Delta r_j / r_j} = \frac{\Delta X_i / X_i}{f - 1} \qquad \qquad r_j^1 = f * r_j^0$$

In networksetup.txt

- Local and global sensitivities
- Possible pot-holes:
  - Total abundance not reflected in factors (abundance could be neglible)
  - Decayed abundance important for comparison with observations

# Sensitivity study of network



#### Very recently accepted in ADNDT

Sensitivity study for s process nucleosynthesis in AGB stars

A. Koloczek<sup>a,b,e</sup>, B. Thomas<sup>a,e</sup>, J. Glorius<sup>a,b</sup>, R. Plag<sup>a,b</sup>, M. Pignatari<sup>c,e</sup>, R. Reifarth<sup>a,e</sup>, C. Ritter<sup>a,d,e</sup>, S. Schmidt<sup>a</sup>, K. Sonnabend<sup>a</sup>

<sup>a</sup>Goethe Universität, Frankfurt a.M., 60438, Germany <sup>b</sup>GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, 64291, Germany <sup>c</sup>Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland <sup>d</sup>University of Victoria, FP.O. Bos 3055, Victoria, B.C., V8W 3P6, Canada <sup>e</sup>NuGrid collaboration, http://www.nugridstars.org

#### Resutls available in web interface

http://exp-astro.physik.uni-frankfurt.de/sensitivities/

With NuGrid C13 example

# Why NUSENSI?

- Multiple calculations of the same nuclear site needed
  - NuGrid's 1-zone code with recently speed increase of factor ~8 (Sam Jones)
- Different nucleosynthesis sites provided by NuGrid (OzoNE), for example:
  - C13 pocket in AGB star

svn://forum.astro.keele.ac.uk/examples

- I process
- Nova
- Weak s process in massive star
- Distributes PPN calculations over multiple server (1 run 1 proc)
- Interactive sensitivity analysis suite (python)

#### Code structure and functional flow



degu, lascar: example server

#### **NUSENSI**

#### Analysis

- Simple python scripts
- Sensitivity matrix

Abunance of default run

|   |                     |         |           | reactions  |
|---|---------------------|---------|-----------|------------|
| • | Instantanious decay | Isotope | Abu       | C 13(a,n)  |
|   |                     | N-1     | 6.904E-27 | 0.000E+00  |
| • | Error calculation   | H-1     | 1.027E-19 | 0.000E+00  |
|   |                     | ⊢ H-2   | 2.966E-19 | 0.000E+00  |
|   |                     | He-3    | 1.000E-99 | 0.000E+00  |
|   | Isotopes            | He-4    | 4.039E-01 | -1.015E-03 |
|   |                     | Be-7    | 1.399E-25 | 0.000E+00  |
|   |                     | ↓ B-8   | 1.000E-99 | 0.000E+00  |
|   |                     | V Li-7  | 1.478E-19 | 0.000E+00  |
|   |                     | C-11    | 3.792E-20 | 0.000E+00  |
|   |                     | B-11    | 2.856E-09 | 0.000E+00  |
|   |                     | C-12    | 2.909E-01 | -5.465E-03 |
|   |                     | C-13    | 7.868E-09 | -7.217E+00 |

### **NUSENSI**















#### **Analysis**



# Verification: C13-pocket trajectory



#### Documentation

- Tutorial
- README files



# **Tutorial**

#### Sources

- PhD Thesis Koloczek, 2015,
  http://exp-astro.physik.uni-frankfurt.de/docs/koloczek\_15\_phd.pdf
- http://exp-astro.physik.uni-frankfurt.de/docs/goebel\_nugrid\_2015.pdf