Outlier Detection: Probabilistic and Density-Based Methods

Mining Massive Datasets

Prof. Carlos Castillo

Topic 20

Sources

 Data Mining, The Textbook (2015) by Charu Aggarwal (chapter 8) – slides by Lijun Zhang

Probabilistic methods

Related to probabilistic model-based clustering

- Assume data is generated from a mixture-based generative model
- Learn the parameters of the model from data
 - EM algorithm
- Evaluate the probability of each data point being generated by the model
 - Points with low values are outliers

Mixture-based generative model

- Data is generated by a mixture of k distributions with probability distributions G_1, \ldots, G_k
- Each point \overline{X} is generated as follows:
 - 1)Select a mixture component with probability α_i
 - Suppose it's component r
 - 2) Sample a data point from distribution G_r

Learning parameters from data

Probability of generating a point

$$f^{\text{point}}(\overline{X_j}|\mathcal{M}) = \sum_{i=1}^{k} P(\mathcal{G}_i, \overline{X_j})$$

$$= \sum_{i=1}^{k} P(\mathcal{G}_i) P(\overline{X_j}|\mathcal{G}_i)$$

$$= \sum_{i=1}^{k} \alpha_i f^i(\overline{X_j})$$

Learning parameters from data

• Probability of generating a point

$$f^{\text{point}}(\overline{X_j}|\mathcal{M}) = \sum_{i=1}^k \alpha_i f^i(\overline{X_j})$$

Probability of generating a dataset

$$f^{\mathrm{data}}(\mathcal{D}|\mathcal{M}) = \prod^n f^{\mathrm{point}}(\overline{X_j}|\mathcal{M})$$

• Learning: min log loss j=1

$$\min \mathcal{L}\left(\mathcal{D}|\mathcal{M}\right) = \log \left(\prod_{j=1}^{n} f^{\text{point}}\left(\overline{X_{j}}|\mathcal{M}\right)\right) = \sum_{j=1}^{n} \log \left(\sum_{i=1}^{k} \alpha_{i} f^{i}\left(\overline{X_{j}}\right)\right)_{7}$$

Identifying an outlier

Outlier score:

 $f^{\text{point}}(\overline{X_j}|\mathcal{M}) = \sum_{i=1}^k \alpha_i f^i(\overline{X_j})$

Clustering-based methods

Clustering for outlier analysis

- Clustering associate points to similar points
- Points either clearly belong to a cluster or are outliers
- Some clustering algorithms also detect outliers
 - Examples: DBSCAN, DENCLUE

Simple method

- Cluster data, associating each point to a centroid, e.g., using k-means
- Outlier score = distance of point to its centroid

Exercise

Spreadsheet does k-means to cluster the electric scooter database

- 1)Re-run with a new initial clustering
- 2)Do you see any interesting pattern in the final clustering assignment?
- 3)Find outliers according to the method from the previous slide

Answer in Google Spreadsheet

Improved method

- Cluster data
- Outlier score = local Mahalanobis distance with respect to center of cluster r

$$\operatorname{Maha}(\overline{X}, \overline{\mu_r}, \Sigma_r) = \sqrt{(\overline{X} - \overline{\mu_r})\Sigma_r^{-1}(\overline{X} - \overline{\mu_r})^T}$$

 μ_r is the mean of the cluster r

 \sum_{r} is the covariance matrix of cluster r

Improved method (cont.)

Remove tiny clusters

Density-based methods

Density-based methods

- Key idea: find sparse regions in the data
- Limitation: cannot handle variations of density

Histogram- and grid-based methods

Histogram-based method:

- 1)Put data into **bins**
- 2)Outlier score: num 1, where num is the number of items in the same **bin**

Clear outliers are alone or almost alone in a bin

Histogram- and grid-based methods

Grid-based method

- 1)Put data into a grid
- 2)Outlier score: num 1, where num is the number of items in the same **cell**

Clear outliers are alone or almost alone in a cell

Problems with grid-based methods

How to choose the grid size?

Grid size should be chosen considering data density, but density might vary across regions

If dimensionality is high, then most cells will be empty

Kernel-based methods

• Given n points $\overline{X_1}, \overline{X_2}, \dots, \overline{X_n}$

$$f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K_h(\overline{X} - \overline{X_i})$$

- K_h is a function peaking at \overline{X}_i with bandwidth h
- For instance, a Gaussian kernel:

$$K_h(\overline{X} - \overline{X_i}) = \left(\frac{1}{\sqrt{2\pi} \cdot h}\right)^d \cdot e^{-\left\|\overline{X} - \overline{X_i}\right\|^2/(2h^2)}$$

Kernel-based methods (cont.)

Example with a Gaussian kernel

$$\overline{X} = \langle -2.1, -1.3, -0.4, 1.9, 5.1, 6.2 \rangle$$

- Each K_h in red
- f = sum of K_h in blue

$$f(\overline{X}) = \frac{1}{n} \sum_{i=1}^{n} K_h(\overline{X} - \overline{X_i})$$

[Wikipedia: Kernel density estimation]

Summary

Things to remember

- Probabilistic methods
- Clustering-based methods
- Density-based methods

Exercises for TT19-TT21

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises 8.11 → all except 10, 15, 16, 17