Завдання до Лабораторної роботи 8 Точкові відображення для генератора Ван-дер-Поля.

Випадок квазігармоніческіх коливань.

- Для случая, когда значение бифуркационного параметра меньше критического выбрать другое значение, которое также будет меньше критического. B отчет вставить три $y_{n}(x_{n}), x_{n+1}(x_{n}),$ графика: $x_{n+1}(n), x_n(n), x_{\perp}$ stat $z_{n+1}(n), z_n(n), x_{-}$ stat. Прокомментировать зависимостей $x_{n+1}(n), x_n(n), x_-$ stat таким образом: «На графике синяя кривая соответствует зависимости $x_{n+1}(x_n)$, представляющую собой функцию последования. Красная кривая соответствует зависимости $y_n(x_n)$ – биссектрисе. B точке пересечения графиков зависимостей $x_{n+1}(x_n)$ и $y_n(x_n)$ находится неподвижная точка колебательной системы, соответствующая устойчивому состоянию. В рассматриваемом случае $\lambda < \lambda_{\rm C}$ – этой точкой является устойчивый фокус. Из графиков зависимостей $y_n(x_n), x_{n+1}(x_n)$ видно, что точки на кривых уплотнятся по мере приближения к началу координат. Это означает, что колебания в системе затухают».
- 2) Для случая, когда значение бифуркационного параметра критического выбрать другое значение, которое также будет больше критического. B отчет вставить графика: три $y_n(x_n), x_{n+1}(x_n), x_n(n), x_{-}\operatorname{stat}(n), z_{n+1}(z_n), g_n(z_n)$ $x_{n+1}(n), x_n(n), x_{\perp}\operatorname{stat}(n), z_n(n).$ И Прокомментировать график зависимостей $y_n(x_n), x_{n+1}(x_n), x_n(n), x_- \operatorname{stat}(n), z_{n+1}(z_n), g_n(z_n)$ таким образом: «На графике часть синей кривой, лежащая ниже стационарного значения x_{stat} coombemcmbyem зависимости $x_{n+1}(x_n)$, а часть синей кривой, лежащая выше стационарного значения x_{-} stat соответствует зависимости $z_{n+1}(z_n)$. Обе части синей кривой соответствуют функции последования. Зависимость $x_{n+1}(x_n)$ берет начало при значении меньшим, чем стационарное значение амплитуды x_stat, а верхняя часть кривой – при значении большим, чем. Обе части кривых сходятся в точке, лежащей на пересечении неподвижной (стационарной) последования и биссектрисы (красная кривая, переходящая в зеленую штриховую). График биссектрисы состоит из двух частей: нижняя часть – зависимость $y_n(x_n)$ (красная линия) и верхняя часть — зависимость $g_n(z_n)$ (зеленая штриховая линия). Черная горизонтальная штриховая линия соответствует стационарному значению амплитуды x_{stat} . B рассматриваемом случае $\lambda > \lambda_{c}$ д неподвижная (стационарная) точка, лежащая на пресечении функции последования и биссектрисы, соответствует предельному циклу на фазовой плоскости с радиусом $x_{\text{stat}}=2\sqrt{\lambda}$. Это означает, что coвременем устанавливаются незатухающие колебания с постоянной амплитудой равной

 x_{-} stat= $2\sqrt{\lambda}$. Уплотнение точек на функции последования и биссектрисе в направлении неподвижнойной точки означает стремление системы к этой точке (предельному циклу) с течением времени. Установление стационарных колебаний с течением времени демонстрируют и зависимости $x_{n+1}(n), x_n(n), x_{-}$ stat $(n), z_n(n), n$ представляющие собой зависимости смещений от дискретного времени».