SOLAR ENERGY GENERATION PREDICTION

By: JEFF ALEXANDER

CONTENTS OF THIS PRESENTATION

- Purpose of Investigation
- Data Collection
- Initial Findings
- Modeling
- Conclusions/ Recommendations
- Future Research
- Streamlit App

PURPOSE OF INVESTIGATION

PROBLEM STATEMENT

Using the solar generation output of a specific solar farm site, along with the corresponding weather data, can a model predict the solar generation output of that specific site within 10% of max output?

Furthermore, can the same model architecture optimized for a specific site be used to predict the generation of another site or even an entire campus?

Data Collection

DATA COLLECTION

Two years of high-granularity solar energy generation data from 42 sites across five campuses at La Trobe University, Victoria, Australia.

<u>Includes</u>:

- Solar Generation Data reported at 15 minute intervals
- Weather data from Australian Bureau of Meteorology (BOM) using longitude and latitude of each campus
 - Includes Apparent Temp, Air Temp, Dew Point Temp, Relative Humidity, Wind Speed, Wind Direction

INITIAL FINDINGS

INITIAL FINDINGS

01

CAMPUS/SITE VARIABILITY

Campuses ranging from 1 to 27 Solar Generation Sites 05

DAILY VARIABILITY

Weather and electrical architecture variability

03

SEASONALITY

Seasonality present on daily and seasonal scales

04

CORRELATION

Auto- and partial autocorrelation reflects seasonality and variability

CAMPUS / SITE VARIABILITY

DAILY VARIABILITY

SEASONALITY

CORRELATION

CAMPUS 5

CAMPUS 3 - SITE 10

MODELING

MODELING

RMSE: 1.934

 \mathbf{U}

RMSE: 2.447

UI	UC	UJ	דט	UJ
BASELINE	ARIMA	LAGGED LINEAR	UNIVARIATE	MULTIVARIATE
MAE: 1.141	MAE: 1.524	MAE: 0.260	MAE: 0.1871	MAE: 0.4346

RMSE: 0.629

 \mathbf{n}

 \mathbf{U}

RMSE: 0.5765

UE

RMSE: 0.8450

ARIMA (10, 0, 7)

LAGGED LINEAR

BEST MODEL APPLIED TO ALL (MIN/MAX SCALED)

Campus/Site	MAE Testing	RMSE Testing	Max Production
Campus 5	0.02992	0.09386	6.281
Campus 1	0.03372	0.08035	488.088
Campus 2	0.03548	0.09301	57.363
Campus 3	0.03617	0.09281	200.215
Campus 4	0.03916	0.12786	21.938
Site 6	0.028186	0.07417	28.734
Site 8	0.03348	0.0897	26.969
Site 10	0.03832	0.11368	7.75
Site 12	0.05323	0.15264	17.594

Campus I

Site 10

Campus/Site	Preds MAE	Preds RMSE
Campus 5	0.0571	0.0757
Campus 5 Subracted	0.0406	0.0601
Campus 1	0.0458	0.0651
Campus 1 Subtracted	0.0383	0.0601
Site 10	0.0468	0.0692
Site 10 Subtracted	0.0399	0.0653

CONCLUSIONS/ RECOMMENDATIONS

CONCLUSIONS

Based on the wide variety of analyses and modeling conducted, the best model <u>could</u> predict solar generation within 10% of max output.

Moreover, the same model architecture <u>can</u> be used to predict the generation of other sites and even entire campuses.

FUTURE RESEARCH

FUTURE RESEARCH

01

SUNLIGHT

Accurate Sunrise and Sunset Feature

05

CLOUD COVER

Weather Data
Specific to Cloud
Cover

03

ALL SITES/CAMPUSES

Employ different models to each site/campus and levels 04

ARCHITECTURE VARIABILITY

Maintenance schedules or electrical malfunction reports feature

FUNCTIONING STREAMLIT APP

THANKS

Do you have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**