Master CSI-UE / Master CSI-THCS/Master ENSM MHT 723-Analyse de Fourier

Examen du 17 décembre 2010 Durée 1h30 - Documents autorisés

Exercice 1 (5 points)

- 1) Calculer les transformées de Fourier discrètes de f=[1,3,4,0] et g=[2,1,0,0] par FFT, décimation temporelle.
- 2) En déduire la valeur du produit des polynômes $1+3x+4x^2$ et 2+x, ainsi que le produit 431×12 .
 - 3) Déterminer les fonctions $h \in \mathbb{C}^4$ vérifiant l'équation $f_*h = [1, 1, 1, 1]$.

Exercice 2 (5 points)

On pose u = [1, 1, 1, -1, 1, -1, -1, -1].

- 1) Calculer la transformée de Walsh de u.
- 2) Calculer la compression de u à 25%.
- 3) On rappelle que si ϕ est une fonction booléenne sur $\mathbb{F}_2^3 = (\mathbb{Z}/2\mathbb{Z})^3$ et si $n = a_1 + 2a_2 + 4a_3 \in \{0, ..., 7\}$, avec $a_i \in \{0, 1\}$ pour i = 1, 2, 3, on pose $\phi^*[n] = (-1)^{\phi(\overline{a_1}, \overline{a_2}, \overline{a_3})}$. On pose $\phi = X_1X_2 + X_2X_3 + X_3X_1$. Vérifier que $\phi^* = u$. En déduire la distance de ϕ au fonctions affines (c'est à dire le minimum de $d(\phi, \psi)$, d désignant la distance de Hammings, quand ψ décrit l'ensemble des fonctions booléennes affines sur \mathbb{F}_2^3).

Exercice 3 (7 points)

Pour $t \in \mathbb{R}$, on pose $\phi(t) = cos(t), p(t) = 1$ pour $|t| \leq \frac{\pi}{2}$, $\phi(t) = p(t) = 0$ pour $|t| > \frac{\pi}{2}$, $\psi(t) = (1 + cos(t)) = 2cos^2(t/2)$ pour $|t| \leq \pi$, $\psi(t) = 0$ pour $|t| > \pi$. On rappelle (calculs faits en cours pour la fonction porte p, dans le corrigé de l'examen 2009 pour la fonction ϕ) que l'on a

$$\hat{\phi}(x) = \frac{2cos(\frac{\pi x}{2})}{1 - x^2} \text{ pour } x \neq \pm 1, \hat{p}(x) = \frac{2sin(\frac{\pi x}{2})}{x} \text{ pour } x \neq 0,$$

avec $\hat{\phi}(1) = \hat{\phi}(-1) = \frac{\pi}{2}, \hat{p}(0) = \pi.$

1) Vérifier que $\phi * p = \psi$, et en déduire la valeur de $\hat{\psi}$. Représenter ψ et $\hat{\psi}$ sur un même graphique.

2) Calculer

$$\int_0^{+\infty} \frac{\sin^2(\pi x)}{x^2(1-x^2)^2} dx.$$

- 3) On pose $h(t) = \frac{\sin(\pi t)}{t-t^3}$ pour $t \neq -1,0,1, \ h(-1) = h(1) = \frac{\pi}{2}, \ h(0) = \pi$. Montrer que h est continue et intégrable sur $\mathbb R$. En utilisant le théorème d'échantillonnage de Shannon, déterminer pour quelles valeurs positives de δ on peut reconstituer toutes les valeurs de h à partir de la suite $(h[\delta m])_{m \in \mathbb{Z}}$. Dans ce cas donner une formule explicite permettant de calculer h(t) à partir de la suite $h[\delta m])_{m \in \mathbb{Z}}$.
 - 4) En utilisant une formule sommatoire du cours, calculer $\sum\limits_{n\in\mathbb{Z}}h(cn)$ pour
- c>0. En déduire la valeur de $\sum\limits_{p=0}^{+\infty}\frac{(-1)^{p+1}}{(2p-1)(2p+1)(2p+3)}.$

Exercice 4 (3 points)

Déterminer les images numérisées à 2^{20} pixels qui sont égales à leur compression à 1 millionième.