# **Data Analytics**

Registro de lanzamiento de cohetes



**Proyecto Personal** 

Cardozo, Ezequiel - 2023

# Índice de contenido

| INTRODUCCIÓN                           | 4  |
|----------------------------------------|----|
| OBJETIVO DEL PROYECTO                  | 4  |
| ALCANCE                                | 4  |
| HIPÓTESIS                              | 5  |
| APLICACIÓN Y USUARIO                   | 6  |
| HERRAMIENTAS UTILIZADAS                | 6  |
| CREACIÓN DE LA ESTRUCTURA DE DATOS     | 7  |
| Diagrama Entidad – Relación            | 7  |
| Modelo DER Versión 1.0                 |    |
| Modelo DER Versión Final               |    |
| LISTADO DE TABLAS                      |    |
| LISTADO DE COLUMNAS                    | 11 |
| MODIFICACIÓN Y DESARROLLO DE LOS DATOS | 13 |
| Creación de tablas                     | 13 |
| Modificación de los datos (Excel)      | 14 |
| MODIFICACIÓN DE LOS DATOS (POWERBI)    | 17 |
| DESARROLLO DEL DASHBOARD               | 18 |
| MEDIDAS CALCULADAS                     | 18 |
| MODELO RELACIONAL DE DATOS             | 20 |
| Versión 1.0                            | 20 |
| Versión FINAL                          | 20 |
| DASHBOARD                              | 21 |
| INFORMACIÓN Y FUNCIONALIDADES          | 21 |
| Glosario de botones                    | 21 |
| Filtros                                | 22 |
| SOLAPAS                                | 23 |
| Presentación                           | 23 |
| Lanzamientos                           | 24 |
| Carga                                  | 25 |
| Compañía                               | 26 |
| Sitios de lanzamiento                  | 27 |

# **Control de versiones**

|              | CONTROL DE CAMBIOS                                                  |                        |                                       |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------|------------------------|---------------------------------------|--|--|--|--|--|--|
| VERSIÓN      | DETALLE DE CAMBIO                                                   | ENTRADA EN<br>VIGENCIA | MOTIVO DEL CAMBIO                     |  |  |  |  |  |  |
| 1.0          | Introducción: Temática y Dataset                                    | 17/05                  | Inicio                                |  |  |  |  |  |  |
| 2.0          | Documentación de base de datos<br>(DER - Estructura de datos)       | 19/05                  | Nuevo contenido                       |  |  |  |  |  |  |
| 2.1          | Modificación en la redacción                                        | 16/06                  | Modificación y<br>actualización       |  |  |  |  |  |  |
| 3.0          | Documentación del PBIX y dataset                                    | 19/06                  | Nuevo contenido                       |  |  |  |  |  |  |
| 3.1          | Modelo DER<br>Medidas del PBIX<br>Estructura del dashboard          | 03/07                  | Actualización, adición y modificación |  |  |  |  |  |  |
| 4.0          | Funcionalidad y solapas del<br>dashboard<br>Contenido del documento | 05/07                  | Adición y actualización               |  |  |  |  |  |  |
| 5.0<br>FINAL | Glosario y definiciones                                             | 05/07                  | EN PROCESO                            |  |  |  |  |  |  |



#### Introducción

En este documento se encuentra el análisis de una compilación de datos relacionada con los lanzamientos de misiones espaciales, realizados por diferentes compañías con objetivos variados.

En el presente dashboard nos encontramos tanto con las misiones exitosas como las fallidas de un periodo entre los años de 1964 y 2020.

Cabe aclarar que en los datos no se encuentran pruebas ni testeos de los cohetes, únicamente las misiones.

Los datos utilizados para la construcción del dashboard provienen de <u>kaggle</u>, en forma de *dataset* donde se han compilado los datos de compañías como SpaceX, Boeing, la fuerza aérea estadounidense, la agencia espacial europea, Arianespace, la agencia espacial brasileña y la corporación Martin Marietta.

Dentro del dataset nos podemos encontrar tanto con las compañías que están a cargo de las misiones, como los objetos de las mismas, fechas y horas, los lugares de lanzamiento, las cargas, razones por fallos de la misión y datos específicos del ambiente y de los cohetes.

# Objetivo del proyecto

Siendo el principal objetivo del análisis visualizar el aumento de misiones espaciales que se van dando a lo largo de los años y como el avance y el desarrollo tecnológico a través de los años en esta área, su éxito y la frecuencia con la que se realizan los lanzamientos.

#### Alcance

Mediante el análisis de este conjunto de datos tales como los periodos de tiempo, la cantidad de misiones realizadas y el resultado de la mismas podemos llegar a sugerir que tan frecuentes serán los viajes fuera de nuestra orbita en los siguientes años y cómo afectaría a los diferentes ámbitos tanto comerciales como de transporte ante la nueva era de transporte Inter espacial.

# **Hipótesis**

En base a los datos obtenidos podemos llegar a considerar un gran aumento de los lanzamientos, como se puede observar en el siguiente gráfico.



Dada la tendencia en aumento de las misiones, acompañada con el desarrollo tecnológico propio del paso del tiempo podemos asumir en base a las estadísticas que va a darse un abrupto aumento de misiones en la siguiente década, inclusive podría llegarse a estimar que se puedan doblar la cantidad de misiones realizadas durante 2010 – 2019 en un mismo periodo de tiempo, manteniendo el mismo margen de éxito.

Aplicación y usuario

El desarrollo de este dashboard es dirigido principalmente a empresas que

trabajan en un área de tecnología espacial, como fabricantes de satélites,

telescopios y/o entre otros que requieren que los productos lleguen fuera de

orbita, y consecuentemente necesitan un medio para ello.

Siendo el dashboard la herramienta para visualizar el éxito de las misiones por

cada empresa que fabrica los cohetes y además de la frecuencia con la que las

realizan las misiones. De esta manera poder tomar en cuenta esos datos y saber

cuál es la más fiable es su transporte.

Así como también, a esta recolección de información, se puede llegar a presentar

como un análisis más estratégico, es decir, a largo plazo (cuando se desarrolle

más esta tecnología) cuando el transporte de bienes utilizando como medio el

cohete sea una posibilidad conveniente. Permitiendo visualizar la fiabilidad y

efectividad de las empresas dispuestas a apostar por esta forma de traslado de

productos.

Herramientas utilizadas

Durante el desarrollo de este dashboard se implementaron las siguientes

herramientas informáticas:

**Excel:** Visualización de los datos

• **Draw.io:** Para la confección del diagrama entidad – relación

# Creación de la estructura de datos

A partir de esta sección se comienza a hacer uso de los datos del dataset y de esta manera hacer una estructura de datos que posteriormente utilizaremos.

# Diagrama Entidad – Relación

# Modelo DER Versión 1.0



# Modelo DER Versión Final



- Se elimino la entidad "Misión"
- Se movieron sus atributos a la entidad "Lanzamiento"

#### Listado de tablas

Hace referencia a cada una de las tablas que se encuentran en el modelo anterior con las respectivas claves primarias y foráneas.

- Compañía: Posee los datos de la compañía a las que se les adjudica la creación de un cohete.
  - o PK: ID\_Compañia
- Cohete: Contiene todos los datos relativa al cohete, sus tamaños, medidas, potencia y el nombre.
  - o PK: ID\_Cohete
  - o FK: ID\_Compañia
- Lanzamiento: Contiene los datos sobre el lanzamiento, como las fechas, horas y factores meteorológicos.
  - o PK: ID Lanzamiento
  - o FK: ID Cohete
  - FK: ID\_Carga
  - o FK: ID\_Lugar
  - o FK: ID\_Mision
- Lugar: Contiene los datos de la ubicación donde se realizó el lanzamiento.
  - o PK: ID Lugar

- Carga: Posee los datos respecto a la carga del cohete como el peso y el nombre.
  - o PK: ID\_Carga
  - o FK: ID\_Tipo
  - o FK: ID\_Orbita
- **Tipo de carga:** Contiene todos los tipos de carga que puede llevar un cohete.
  - o PK: ID\_Tipo
- Orbita: Posee las orbitas a las cuales va dirigida una carga.
  - o PK: ID\_Orbita

# Listado de columnas

| <u>Compañía</u>  |              |               |  |  |  |  |
|------------------|--------------|---------------|--|--|--|--|
| Nombre del campo | Tipo de dato | Tipo de clave |  |  |  |  |
| ID_Compania      | INT          | PK            |  |  |  |  |
| nombre_Compania  | varchar(35)  | 1             |  |  |  |  |

|                  | <u>Cohete</u> |               |
|------------------|---------------|---------------|
| Nombre del campo | Tipo de dato  | Tipo de clave |
| ID_Cohete        | INT           | PK            |
| tipo_Cohete      | varchar(30)   | 1             |
| altura_Cohete    | decimal(3,1)  | 1             |
| diametro_Cohete  | decimal(2,1)  | 1             |
| potencia_Cohete  | INT           | 1             |
| ID_Compania      | INT           | FK            |

| <u>Tipo de carga</u>                        |             |    |  |  |  |  |
|---------------------------------------------|-------------|----|--|--|--|--|
| Nombre del campo Tipo de dato Tipo de clave |             |    |  |  |  |  |
| ID_tipoCarga                                | INT         | PK |  |  |  |  |
| nombre_Tipo                                 | varchar(35) | 1  |  |  |  |  |

|                  | <u>Orbita</u> |               |
|------------------|---------------|---------------|
| Nombre del campo | Tipo de dato  | Tipo de clave |
| ID_Orbita        | INT           | PK            |
| nombre_Orbita    | varchar(35)   | 1             |

|                  | <u>Carga</u> |               |
|------------------|--------------|---------------|
| Nombre del campo | Tipo de dato | Tipo de clave |
| ID_Carga         | INT          | PK            |
| nombre_Carga     | varchar(35)  | 1             |
| peso_Carga       | INT          | NULL          |
| ID_tipoCarga     | INT          | FK            |
| ID_Orbita        | INT          | FK            |

|                  | <u>Lugar</u> |               |
|------------------|--------------|---------------|
| Nombre del campo | Tipo de dato | Tipo de clave |
| ID_Lugar         | INT          | PK            |
| nombre_lugar     | varchar(35)  | 1             |

| <u>Lanzamiento</u> |              |               |  |  |  |  |  |
|--------------------|--------------|---------------|--|--|--|--|--|
| Nombre del campo   | Tipo de dato | Tipo de clave |  |  |  |  |  |
| ID_Lanzamiento     | INT          | PK            |  |  |  |  |  |
| fecha_lanzamiento  | DATE         | 1             |  |  |  |  |  |
| hora_lanzamiento   | HOUR         | 1             |  |  |  |  |  |
| temperatura        | SMALLINT     | NULL          |  |  |  |  |  |
| humedad            | SMALLINT     | NULL          |  |  |  |  |  |
| viento             | SMALLINT     | NULL          |  |  |  |  |  |
| ID_Cohete          | INT          | FK            |  |  |  |  |  |
| ID_Carga           | INT          | FK            |  |  |  |  |  |
| ID_Lugar           | INT          | FK            |  |  |  |  |  |
| ID_Mision          | INT          | FK            |  |  |  |  |  |

# Modificación y desarrollo de los datos

Con la estructuración realizada en base a lo que se apuntó se comienza a modificar el dataset para, posteriormente, poder exportarlo y utilizarlo en la herramienta de Power BI.

#### Creación de tablas

En el presente nos encontramos con una tabla conteniendo todos los registros (15 columnas).

| Launch Date 👊 L | aunch Time | Launch Site          | Temperature (° F) | Wind speed (MPH) | Humidity (%) | Vehicle Type     | Liftoff Thrust (kN) | Payload to Orbit (kg) | Rocket Height (m) |
|-----------------|------------|----------------------|-------------------|------------------|--------------|------------------|---------------------|-----------------------|-------------------|
| 7/3/2020 4      | :50        | Cape Canaveral       | 55                |                  | 55           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 17/2/2020 1     | 5:05       | Cape Canaveral       | 77                | 9                | 74           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 29/1/2020 1     | 4:06       | Cape Canaveral       | 72                | 8                | 68           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 19/1/2020 1     | 5:30       | Kennedy Space Center | 81                | 8                | 54           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 7/1/2020 2      | :19        | Cape Canaveral       | 48                | 5                | 93           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 17/12/2019 0    | :10        | Cape Canaveral       | 75                | 6                | 90           | Falcon 9 Block 5 | 7607                | 8300                  | 70                |
| 5/12/2019 1     | .7:29      | Cape Canaveral       | 58                | 7                | 72           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 11/11/2019 1    | 4:56       | Cape Canaveral       | 75                | 9                | 79           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 6/8/2019 2      | 3:23       | Cape Canaveral       | 77                | 6                | 90           | Falcon 9 Block 5 | 7607                | 8300                  | 70                |
| 25/7/2019 2     | 2:01       | Cape Canaveral       | 77                | 8                | 88           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 11/7/2019 1     | :53        | Guiana Space Centre  | 73                | 0                | 94           | Vega             | 2200                | 1436                  | 299               |
| 25/6/2019 6     | :30        | Kennedy Space Center | 84                | 3                | 94           | Falcon Heavy     | 22819               | 26700                 | 70                |
| 12/6/2019 1     | 4:17       | Vandenberg           | 72                | 12               | 64           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 24/5/2019 2     | ::30       | Cape Canaveral       | 77                | 8                | 64           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 4/5/2019 6      | :48        | Cape Canaveral       | 75                | 7                | 94           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 11/4/2019 2     | 2:35       | Kennedy Space Center | 79                | 6                | 74           | Falcon Heavy     | 22819               | 26700                 | 70                |
| 2/3/2019 7      | :49        | Kennedy Space Center | 72                | 5                | 94           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 22/2/2019 1     | :45        | Cape Canaveral       | 70                | 0                | 90           | Falcon 9 Block 5 | 7607                | 8300                  | 70                |
| 11/1/2019 1     | 5:31       | Vandenberg           | 60                | 13               | 64           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 23/12/2018 1    | 3:51       | Cape Canaveral       | 69                | 9                | 51           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 5/12/2018 1     | 8:16       | Cape Canaveral       | 53                | 8                | 52           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 3/12/2018 1     | 8:34       | Vandenberg           | 51                | 6                | 80           | Falcon 9 Block 5 | 7607                | 22800                 | 70                |
| 15/11/2018 2    | 0:46       | Kennedy Space Center | 63                | 5                | 88           | Falcon 9 Block 5 | 7607                | 8300                  | 70                |

La separación se realiza para que los atributos dependan de una sola clave primaria y no se encuentre una dependencia transitiva, es decir, que este normalizada hasta la tercera forma (3FN).

De esta manera quedando en 8 hojas de Excel (se muestran 2 ejemplos únicamente).

| Compania    | Cohete    | Mision     | Orbita  | tipo_Carga                     | Carga       | Lugar      | Lanzamiento |
|-------------|-----------|------------|---------|--------------------------------|-------------|------------|-------------|
|             |           |            |         |                                |             |            |             |
| ID_Compania | ▼ nomb    | re_Compa   | nia 🔻   | ID_Orbita ▼ Pa                 |             |            | ~           |
|             | 1 Cnass   | v          |         | 1 Lo                           | ow Earth Or | rbit       |             |
|             | 1 Space   | ٨          |         | 2 St                           | uborbital   |            |             |
| 1           | 2 Ariane  | espace     |         | 3 Geostationary Transfer Orbit |             |            |             |
|             |           | •          |         | 4 Medium Earth Orbit           |             |            |             |
|             | 3 Boein   | g          |         | 5 Su                           | un-Synchro  | nous Orbit |             |
| 1           | 4 Brazili | an Space A | \gency  | 6 Pc                           | olar Orbit  |            |             |
|             |           |            | _       | 7 H                            | igh Earth O | rbit       |             |
|             | 5 US Air  | Force      |         | 8 He                           | eliocentric | Orbit      |             |
| 1           | 6 Martir  | n Marietta |         | 9 St                           | un/Earth Or | rbit       |             |
|             | 7 Europ   | ean Space  | Δσεραν  |                                | arth-Moon   | L2         |             |
|             | / Europ   | ean space  | Agency, | 11 M                           | lars Orbit  |            |             |
|             | 1         |            | 1       | -                              |             |            |             |

Cada una de las tablas también se le introdujo las FK necesarias como se indicaron en el DER (Diagrama Entidad-Relación)

| ID_Lanzamiento ▼ | Launch Date 🔻 | Launch Time | temperatura 🔻 | vel_viento 🔻 | humedad 🔻 | ID_Cohete 💌 | ID_Carga ▼ | ID_Lugar ▼ | ID_Mision ▼ |
|------------------|---------------|-------------|---------------|--------------|-----------|-------------|------------|------------|-------------|
| 1                | 7/3/2020      | 4:50        | 55            | 22           | 55        | 1           | 1          | 1          | 1           |
| 2                | 17/2/2020     | 15:05       | 77            | 9            | 74        | 1           | 2          | 1          | 2           |
| 3                | 29/1/2020     | 14:06       | 72            | 8            | 68        | 1           | 3          | 1          | 3           |
| 4                | 19/1/2020     | 15:30       | 81            | 8            | 54        | 1           | 4          | 2          | 4           |



# Modificación de los datos (Excel)

Durante el desglosamiento de los datos para pasarlos a la forma normal también requirió que los mismos sean reemplazados en un formato homogéneo ya que presentarían problemas a futuro

• El tipo de carga se presentaban espacios en blanco, los cuales fueron reemplazados por "None" y posteriormente con números.

| Payload Name                         | Payload Type                     |
|--------------------------------------|----------------------------------|
| AsiaSat 6                            | Communication Satellite          |
| AsiaSat 8                            | Communication Satellite          |
| OG2 Mission 1 (6 OG2 Satellites)     | Communication Satellite          |
| SpaceX CRS-3                         | Space Station Supplies           |
| Thaicom 6                            | Communication Satellite          |
| SES-8                                | Communication Satellite          |
| CASSIOPE                             | Communication/Research Satellite |
| SpaceX CRS-2                         | Space Station Supplies           |
| Orbcomm-OG2                          | Communication Satellite          |
| SpaceX CRS-1                         | Space Station Supplies           |
| SpaceX CRS (Dragon C2+)              | Space Station Supplies           |
| SpaceX CRS (Dragon C1)               | Space Station Supplies           |
| Dragon Spacecraft Qualification Unit |                                  |
| RazakSAT                             | Weather Satellite                |
| RatSat (DemoSat)                     |                                  |
| Trailblazer                          | Communication Satellite          |
| PRESat, NanoSail-D                   | Research Satellites              |
| Explorers                            | Human Remains                    |
| DemoSat                              | Mass simulator                   |
| FalconSAT-2                          | Research Satellite               |
| DemoSat / 3CS-1 & 2                  | Research Satellite               |
| SATEC, UNOSAT                        | Research Satellites              |
| ICESat                               | Research Satellite               |



• En la tabla tipo de carga se presentaban 2 tipos iguales ("Research Satellite"), pero uno estando en plural, por lo que fue eliminado.

| 18 reusable uncrewed spacecraft        |
|----------------------------------------|
| 19 Earth observation satellite         |
| 20 high-speed mobile broadband service |
| 21 Weather Satellite                   |
| 22 Communication/Research Satellite    |
| 23 Research Satellites                 |
| 24 Human Remains                       |
| 25 Mass simulator                      |
| 26 Space Probe                         |
|                                        |

| 1 | Space Station Supplies                |
|---|---------------------------------------|
| 2 | Communication Satellite               |
| 3 | in-flight abort test                  |
| 4 | optical reconnaissance system         |
| 5 | Research Satellite                    |
| 6 | Earth observation satellites          |
| 7 | Uncrewed Test Commercial Crew program |

• En la tabla "Cohete" se cambio el formato y de sus datos, y por ende su valor.

|                   | _   |
|-------------------|-----|
| Rocket Height (m) | ¥   |
|                   | 70  |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 684 |
|                   | 549 |
|                   | 549 |
|                   | 549 |
|                   | 549 |
|                   | 549 |
|                   |     |

| altura_Cohete | ~    |
|---------------|------|
|               | 70,0 |
|               | 29,9 |
|               | 70,0 |
|               | 70,0 |
|               | 70,0 |
|               | 70,0 |
|               | 68,4 |
|               | 54,9 |
|               | 22,3 |
|               | 72,0 |
|               | 19,0 |
|               | 38,9 |
|               | 53,0 |
|               | 62,5 |
|               | 38,1 |
|               | 38,9 |
| ,             | 38,1 |
|               | 38,9 |
|               | 38,1 |
|               | 35,0 |
|               | 38.9 |

Se realizo lo mismo con el diámetro del cohete y se le asigno espacios en blanco a aquellos valores que eran "NA" para mantener el mismo tipo de dato en la columna

| Fairing Diameter (m) |
|----------------------|
| 3                    |
| 2.9                  |
| 2.9                  |
| 2.9                  |
| 2.9                  |
| 3                    |
| 4                    |
| 1                    |
| 2.9                  |
| 3                    |
| NA                   |
| 2.9                  |
| NA                   |
| 3                    |
| NA                   |
| NA                   |
| 3                    |

| diametro_Cohete | ~   |
|-----------------|-----|
|                 | 2,9 |
|                 | 3,0 |
|                 | 2,9 |
|                 | 3,0 |
|                 | 2,9 |
|                 | 4,0 |
|                 | 3,0 |
|                 | 3,0 |
|                 | 2,9 |
|                 | 3,0 |
|                 |     |
|                 |     |
|                 | 3,0 |
|                 |     |
|                 | 3,0 |
|                 | 1,5 |
|                 | 3,0 |
| ·               |     |

### Modificación de los datos (PowerBI)

Una vez importado los datos a Power BI se encontró con una serie de datos que no habían sido transformados con su respectiva ID



(Se pueden ver que algunos si lo tienen ya que la screenshot se tomó durante la trasformación)

Por lo que mediante la misma herramienta se reemplazo los datos como se debieron previamente.

```
let

Origen = Excel.Workbook(File.Contents("C:\Users\Eze\Downloads\CoderHouse\Data Analytics\Entregable 3\Registro de lanzamiento de cohetes - Carga_Sheet = Origen([Item="Carga", Kind="Sheet"])[Data],

#"Encabezados promovidos" = Table.PromoteHeaders(Carga_Sheet, [PromoteAl1Scalars=true]),

#"Tipo cambiado" = Table.TransformColumnTypes(#"Encabezados promovidos",{{"ID_Carga", Int64.Type}, {"nombre_Carga", type text}, {"peso_Ca #"Valor reemplazado" = Table.ReplaceValue(#"Tipo cambiado","Low Earth Orbit","1, Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado1" = Table.ReplaceValue(#"Valor reemplazado1","Geostationary Transfer Orbit","3",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado2" = Table.ReplaceValue(#"Valor reemplazado1","Geostationary Transfer Orbit","3",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado3" = Table.ReplaceValue(#"Valor reemplazado3", "Sun-Synchronous Orbit","5",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado5" = Table.ReplaceValue(#"Valor reemplazado3", "Sun-Synchronous Orbit","5",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado6" = Table.ReplaceValue(#"Valor reemplazado5","High Earth Orbit","7",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado6" = Table.ReplaceValue(#"Valor reemplazado5","Heliocentric Orbit","9",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado6" = Table.ReplaceValue(#"Valor reemplazado6","Heliocentric Orbit","9",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado6" = Table.ReplaceValue(#"Valor reemplazado7","#Inv.Valor Orbit","9",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado6" = Table.ReplaceValue(#"Valor reemplazado7","#Inv.Valor Orbit","9",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado8" = Table.ReplaceValue(#"Valor reemplazado8","Barth-Moon L2","10",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado9" = Table.ReplaceValue(#"Valor reemplazado8","Barth-Moon L2","10",Replacer.ReplaceValue,("ID_Orbita")),

#"Valor reemplazado10" = Table.ReplaceValue(#"Valor reemplazado
```

#### Desarrollo del Dashboard

Esta parte es adentrada exclusivamente en la parte del uso de la herramienta Power BI y donde se utilizan y visualizan los datos.

#### Medidas calculadas

Las medidas creadas en el dashboard:

1) Promedio de la humedad

```
o avgHumedad = AVERAGE(Lanzamiento[humedad])
```

2) Promedio de peso de las cargas

```
o avgPesoCarga = AVERAGE(Carga[peso_Carga])
```

3) Promedio de la potencia de los cohetes

```
o avgPotencia = AVERAGE(Cohete[potencia_Cohete])
```

4) Promedio de temperatura

```
o avgTemp = AVERAGE(Lanzamiento[temperatura])
```

5) Promedio de la velocidad del viento

```
o avgVelViento = AVERAGE(Lanzamiento[vel_viento])
```

6) Cantidad de lanzamientos

```
o cantidadLanzamientos = COUNT(Lanzamiento[ID_Lanzamiento])
```

7) Cantidad de lanzamientos <u>exitosos</u>

```
o Exito = CALCULATE(COUNTA(Lanzamiento[ID_Cohete]),
    Lanzamiento[estado Mision]="Success")
```

8) Cantidad de lanzamientos exitosos por década

```
ExitoDecada = CALCULATE(COUNTA(Lanzamiento[ID_Cohete]),
Lanzamiento[estado_Mision]="Success", DATESINPERIOD(Lanzamiento[Launch
Date],LASTDATE(Lanzamiento[Launch Date]), -10, YEAR))
```

#### 9) Cantidad de lanzamientos fallidos

```
o Fracaso = CALCULATE(COUNTA(Lanzamiento[ID_Cohete]),
    Lanzamiento[estado_Mision]="Failure")
```

#### 10) Cantidad de lanzamientos fallidos por década

```
o FracasoDecada = CALCULATE(COUNTA(Lanzamiento[ID_Cohete]),
    Lanzamiento[estado_Mision]="Failure", DATESINPERIOD(Lanzamiento[Launch
Date],LASTDATE(Lanzamiento[Launch Date]), -10, YEAR))
```

#### 11)Peso máximo de las cargas totales

```
o maxPesoCarga = MAX(Carga[peso_Carga])
```

#### 12) Velocidad del viento máxima total

```
o maxVelViento = MAX(Lanzamiento[vel_viento])
```

#### 13) Cantidad de cargas por orbita a la que se dirige

```
o orbitaDirigida = COUNTX(Carga, Carga[ID_Orbita])
```

# Modelo relacional de datos

Este modelo se nos genera en Power BI una vez importados los datos de Excel.

# Versión 1.0



# Versión FINAL



#### **Dashboard**

La interfaz interactiva donde toda la información se encuentra transformada y presentada.

## Información y funcionalidades

## Glosario de botones



Al presionarlo, nos lleva a la solapa de información de los <u>lanzamientos</u> de los cohetes.



Al presionarlo, nos lleva a la solapa de información sobre las <u>cargas</u> que se almacenan en los cohetes.



Al presionarlo, nos lleva a la solapa de información sobre las empresas fabricantes de cohetes.



Al presionarlo, nos lleva a la solapa de información sobre los sitios de lanzamiento de los cohetes.



Al presionarlo/s navegaras entre las solapas entre las anteriores y las posteriores



Se encuentra al final del espacio asignado a los filtros, al presionarlo limpiara todos los filtros que se aplicaron.

#### **Filtros**

O también conocido como "segmentación de datos" se encuentran en la parte superior derecha de cada solapa de datos.



Cada una posee una serie de filtros determinados que ayudan a una mejor visualización del contenido.

Entre los filtros podemos encontrar:

Filtro de tiempo



Filtro por compañía



Filtro por resultado de misión (Éxito o fracaso)



Filtro por orbita dirigida



## Solapas

## Presentación

Describe un poco por encima el contenido del dashboard.

En la solapa nos podemos encontrar con los botones de navegación para una mejor experiencia a la hora de buscar los datos que se deseen.



## **Lanzamientos**

Se encuentra la información recopilada del total de lanzamientos realizados, un grafico que muestra el éxito y el fracaso de las misiones a lo largo de los años y otros dos numéricos que lo indican por década; además de una tabla con las fallas y un gráfico de columnas con los lugares donde se realizan los lanzamientos.



## <u>Carga</u>

Indica lo relacionado con las cargas que llevan los cohetes (los cuales suelen ser en gran parte el objeto de las misiones), ya sea el máximo y el promedio de peso de las mismas y un grafico de anillos demostrando un top 9 de los tipos de carga más comunes.



# Compañía

Demuestra datos relacionados con las compañías y los cohetes que fabrican, como la cantidad de modelos y su total de cohetes, asi como también las misiones que se llevaron a cabo con los cohetes de cada compañía y su margen de éxito y fracaso (demostrado en un grafico de columnas) y la potencia promedio de todos los cohetes de todas las compañías.



# Sitios de lanzamiento

En esta solapa se encuentran los datos relacionados con los lugares donde despegan los cohetes, ya sean medidas como la temperatura, humedad y velocidad del viento. Además de mostrar en un mapa la ubicación geográfica de los mismos.

