Micro-nageurs Stokesiens

Analyse du micro-nageur "parking 4-sphere swimmer" (SPr4)

Philipp Weder

CMAP - Ecole Polytechnique

Introduction

Introduction

- Premiers résultats sur le sujet par Purcell en 1977, en particulier le "scallop theorem"
- Analyse (partielle) de plusieurs mécanismes de micro-natation

Figure 1: Exemples de micro-nageurs

Introduction

- Problème mathématique: Re $\ll 1 \implies$ forces d'inertie négligeables
- Problème de contrôle
 - Question supplémentaire: Natation optimal, i.e. problème de contrôle optimale
- Contrôlabilité globale de SPR4 démontré dans [1], mais pas explicitement
- Dans ce projet: Analyse du nageur SPR4 sous l'hypothèse des mouvements petits de la structure des courbes de contrôle optimales pour une classe particulière de déplacements prescrits.

Table des matières

- 1. Introduction
- 2. Modélisation et symétries
- 3. Régime des petites courbes de contrôle
- 4. Optimisation
- 5. Le cas simple
- 6. Conclusions et perspectives

Modélisation et symétries

Notation et modèle

- Tétraèdre de référence avec sommets (S_1, S_2, S_3, S_4) centré à $c \in \mathbb{R}^3$ tel que $\operatorname{dist}(c, S_i) = 1$
- Quatre boules B_i, centrées à b_i de rayon a > 0 peuvent bouger le long de la demi-droite d'origine c passant par S_i
- La résistance visqueuse des bras est négligée
- Description complète par deux ensembles de variables:
 - 1. Les variables de forme: $\xi := (\xi_1, \xi_2, \xi_3, \xi_4) \in \mathcal{M} := (\sqrt{3/2}a, +\infty)^4$, où les ξ_i sont les longueurs des bras.
 - 2. Les variables de position: $p = (c, R) \in \mathcal{P} := \mathbb{R}^3 \times SO(3)$.
- $z_i := \overline{cS_i}$

Notation et modèle

Figure 2: Le tétraèdre de référence et le "parking 4-sphere swimmer" ($\mathrm{SPR4}$).

Notation et modèle

• Système dynamique trouvé dans [1]

$$\dot{p} = F(R, \xi)\dot{\xi} := \begin{pmatrix} F_c(R, \xi) \\ F_{\theta}(R, \xi) \end{pmatrix} \dot{\xi}, \tag{1}$$

tel que $\dot{c} = F_c(R, \xi)\dot{\xi}$ et $\dot{R} = F_{\theta}(R, \xi)\dot{\xi}$.

$$F_c(R,\xi) \in \mathcal{L}(\mathbb{R}^4,\mathbb{R}^3)$$
 et $F_{\theta}(R,\xi) \in \mathcal{L}(\mathbb{R}^4,T_RSO(3))$. (2)

Donc, dès qu'on a fixé des bases, on peut les exprimer comme des matrices de taille 3×4 .

6

Symétries

- Investigation du système de contrôle (1) sur la base des symétries des équations de Stokes
- \bullet Équations de Stokes \rightarrow invariantes sous rotations et changement de point de vue
- Pour trouver les symétries de F o appliquer les transformations correspondantes à une solution, puis différentiation

Symétries - Invariance rotationnelle

Pour toute rotation $R \in SO(3)$, on trouve

$$F_c(R,\xi) = RF_c(\xi)$$
 and $F_\theta(R,\xi) = RF_\theta(R,\xi)$, $\forall (R,\xi) \in SO(3) \times \mathcal{M},(3)$
où $F_c(\xi) := F_c(I,\xi)$ et $F_\theta(\xi) := F_\theta(I,\xi)$.

Symétries - Permutation des bras $||i \leftrightarrow \rangle||j|$

- Utiliser l'invariance sous changement de point de vue pour déterminer la symétrie de F sous permutation de deux bras
- $P_{ij} \in M_{4\times 4}(\mathbb{R})$ matrice de permutation t.q. les indices i et j sont échangés
- S_{ij} la réflexion t.q. $||i \mapsto ||j|$ et vice-versa dans l'orientation de référence I.

Symétries - Permutation des bras

 $||i \leftrightarrow ||j|$ correspond à regarder la trajectoire dans un miroir t.q. $||i \mapsto ||j|$ et vice-versa.

Figure 3: La refléxion S_{12} appliquée à SPR4 dans l'orientation de référence correspondant à l'échangement ($||1 \iff ||2$)

Symétries - Permutation des bras

On trouve par un calcul technique

$$F_c(P_{ij}\xi) = S_{ij}F_c(\xi)P_{ij} \text{ et } F_\theta(P_{ij}\xi) = -S_{ij}F_\theta(\xi)P_{ij}.\forall \xi \in \mathcal{M}. \tag{4}$$

• Attention: Il faut toujours choisir la base canonique $\mathcal{E}=(e_1,e_2,e_3,e_4)$ pour \mathbb{R}^4 et la base $\mathcal{L}=(L_1,L_2,L_3)$ avec

$$L_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad L_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \qquad (5)$$

$$L_3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \tag{6}$$

pour justifier la notation!

Petites courbes

Petites courbes - Développement limité

On a la factorisation

$$F_c(R,\zeta) = RF_c(\zeta) \text{ et } F_\theta(R,\xi) = RF_\theta(\zeta), \forall R \in SO(3),$$
 (7)

où
$$F_c(\zeta) := F_c(I, \zeta)$$
 et $F_{\theta}(\zeta) := F_{\theta}(I, \zeta)$.

- On suppose que $\zeta = \xi_0 + \xi$, ξ_0 avec toutes les composantes égales
- $F_{c,\xi_0}(\xi) := F_c(\xi_0 + \xi), \ F_{\theta,\xi_0}(\xi) := F_{\theta}(\xi_0 + \xi)$
- Résultat de [1]: F et donc aussi $F_{c,\xi_0}, F_{\theta,\xi_0}$ analytiques
- On fait le développement limité

$$F_{c,\xi_0}(\xi)\eta = F_{c,0}\eta + \mathcal{H}_{c,0}(\xi \otimes \eta) + \mathcal{O}(|\xi|)\eta \tag{8}$$

$$F_{\theta,\xi_0}(\xi)\eta = F_{\theta,0}\eta + \mathcal{H}_{\theta,0}(\xi \otimes \eta) + \mathcal{O}(|\xi|)\eta, \tag{9}$$

pour tout $\eta \in \mathbb{R}^4$.

Petites courbes - Développement limité

 Substitution des conditions de symétrie de F dans le développement limité fournit

$$F_{c,0} = S_{ij} F_{c,0} P_{ij} (10)$$

$$F_{\theta,0} = -S_{ij}F_{\theta,0}P_{ij} \tag{11}$$

$$\mathcal{H}_{c,0}(P_{ij}\xi\otimes\eta)=S_{ij}\mathcal{H}_{c,0}(\xi\otimes P_{ij}\eta),\qquad\forall\xi,\eta\in\mathbb{R}^4$$
 (12)

$$\mathcal{H}_{\theta,0}(P_{ij}\xi\otimes\eta)=-S_{ij}\mathcal{H}_{\theta,0}(\xi\otimes P_{ij}\eta),\qquad\forall\xi,\eta\in\mathbb{R}^4$$
(13)

 On veut déterminer les espaces de solutions de ces systèmes d'équations vectorielles.

Petites courbes - Termes d'ordre zéro

Calcul élémentaire pour trouver

$$F_{c,0} = \mathfrak{a}(z_1|z_2|z_3|z_4),$$
 (14)

avec $\mathfrak{a} \in \mathbb{R}$ ou bien

$$F_{c,0} = -3\sqrt{3}\mathfrak{a}[\tau_1|\tau_2|\tau_3]^T,$$
 (15)

où
$$\tau_1 := \frac{1}{\sqrt{6}} (-2, 1, 1, 0)^T$$
, $\tau_2 := \frac{1}{\sqrt{2}} (0, 1, -1, 0)^T$, $\tau_3 := \frac{1}{2\sqrt{3}} (1, 1, 1, -3)^T$ forment une base orthonormale ensemble avec $\tau_4 := \frac{1}{2} (1, 1, 1, 1)^T$. Cette base sera utile plus tard.

• Des arguments similaires montrent que $F_{\theta,0}=0$, ce qui est intuitivement clair.

Petites courbes - Termes d'ordre un

Même approche que [2]

$$A_k := (\mathcal{H}_{c,0}(e_i \otimes e_j) \cdot \hat{e}_k)_{i,j \in \mathbb{N}_4}, k \in \mathbb{N}_3$$
 (16)

$$B_k := (\mathcal{H}_{\theta,0}(e_i \otimes e_j) \cdot \hat{e}_k)_{i,j \in \mathbb{N}_4}, k \in \mathbb{N}_3. \tag{17}$$

• Ainsi, on a pour tout $\xi, \eta \in \mathbb{R}^4$

$$\mathcal{H}_{c,0}(\xi \otimes \eta) = \sum_{k \in \mathbb{N}_3} (A_k \eta \cdot \xi) \hat{\mathbf{e}}_k, \tag{18}$$

$$\mathcal{H}_{\theta,0}(\xi \otimes \eta) = \sum_{k \in \mathbb{N}_3} (B_k \eta \cdot \xi) L_k. \tag{19}$$

• À lieu de calculer directement les matrices A_k et B_k , on a calculé leurs parties symétriques et anti-symétriques en utilisant des arguments de symétrie. Notons les parties anti-symmétriques

$$M_k := \frac{1}{2} [A_k - A_k^T], k \in \mathbb{N}_3$$
 (20)

$$M_{k+3} := \frac{1}{2} [B_k - B_k^T], k \in \mathbb{N}_3.$$
 (21)

Petites courbes - Termes d'ordre un

Dans la suite seulement les parties anti-symétrique seront importantes:

$$M_1 = \alpha \begin{pmatrix} 0 & 3 & 3 & 2 \\ -3 & 0 & 0 & -1 \\ -3 & 0 & 0 & -1 \\ -2 & 1 & 1 & 0 \end{pmatrix}, \tag{22}$$

$$M_2 = \sqrt{3}\alpha \begin{pmatrix} 0 & 1 & -1 & 0 \\ -1 & 0 & -2 & -1 \\ 1 & 2 & 0 & 1 \\ 0 & 1 & -1 & 0 \end{pmatrix}, \tag{23}$$

$$M_3 = 2\sqrt{2}\alpha \begin{pmatrix} 0 & 0 & 0 & -1\\ 0 & 0 & 0 & -1\\ 0 & 0 & 0 & -1\\ 1 & 1 & 1 & 0 \end{pmatrix}. \tag{24}$$

Petites courbes - Termes d'ordre un

$$M_4 = \delta \begin{pmatrix} 0 & 1 & 1 & 0 \\ -1 & 0 & -2 & 3 \\ 1 & 2 & 0 & -3 \\ 0 & -3 & 3 & 0 \end{pmatrix}, \tag{25}$$

$$M_5 = \sqrt{3}\delta \begin{pmatrix} 0 & -1 & -1 & 2\\ 1 & 0 & 0 & -1\\ 1 & 0 & 0 & -1\\ -2 & 1 & 1 & 0 \end{pmatrix}, \tag{26}$$

$$M_6 = 2\sqrt{2}\delta \begin{pmatrix} 0 & 1 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 (27)

Petites courbes - Linéarisation

- Restriction de l'espace des contrôles à $H^1_{\mathrm{fl}}(J,\mathbb{R}^4)$, où $J:=[0,2\pi]$
- $\langle f \rangle := (2\pi)^{-1} \int_J f(t) dt$ pour $f \in H^1_\sharp(J,\mathbb{R}^4)$
- Dans la partie précédente, on a trouve que pour $\zeta=\xi_0+\xi$, on a autour de $\xi=0$

$$\begin{cases} \dot{c} = RF_{c,0}\dot{\xi} + R\sum_{k \in \mathbb{N}_3} (A_k \dot{\xi} \cdot \xi) \hat{e}_k \\ \dot{R} = R\sum_{k \in \mathbb{N}_3} (B_k \dot{\xi} \cdot \xi) L_k. \end{cases}$$
(28)

Petites courbes - Linéarisation

On définit les déplacements nets par

$$\delta c : \mathcal{H}^{1}_{\sharp}(J, \mathbb{R}^{4}) \to \mathbb{R}^{3}, \qquad \delta R : \mathcal{H}^{1}_{\sharp}(J, \mathbb{R}^{4}) \to \mathfrak{so}(3)$$

$$\xi \mapsto 2\pi \langle \dot{c}(\xi) \rangle, \qquad \xi \mapsto 2\pi \langle \dot{R}(\xi) \rangle$$
(29)

- Impossible d'évaluer ces expressions exactement à cause du R dans (28)!
- Un argument du calcul chronologique permet de linéariser autour de R₀ = I. Ainsi, on trouve

Proposition 3.1

Pour tout $\xi \in H^1_{\sharp}(J, \mathbb{R}^4)$, dans un voisinage de $0 \in H^1_{\sharp}(J, \mathbb{R}^4)$, on a les estimes suivants

$$\delta c(\xi) = 2\pi \sum_{k \in \mathbb{N}_3} \langle A_k \dot{\xi} \cdot \xi \rangle \hat{\mathbf{e}}_k + \mathcal{O}(||\xi||_{H^1_{\sharp}}^4),$$

$$\delta R(\xi) = 2\pi \sum_{k \in \mathbb{N}_3} \langle B_k \dot{\xi} \cdot \xi \rangle L_k + \mathcal{O}(||\xi||_{H^1_{\sharp}}^4).$$
(30)

Petites courbes - Linéarisation

• A symétrique $\stackrel{I.P.P.}{\Longrightarrow}$ $\langle A\xi\cdot\dot{\xi}\rangle=-\langle A\xi\cdot\dot{\xi}\rangle=0$ et donc

$$\langle A_k \dot{\xi} \cdot \xi \rangle = \langle M_k \dot{\xi} \cdot \xi \rangle, \qquad \forall k \in \mathbb{N}_3$$
 (31)

$$\langle B_k \dot{\xi} \cdot \xi \rangle = \langle M_{k+3} \dot{\xi} \cdot \xi \rangle, \qquad \forall k \in \mathbb{N}_3$$
 (32)

• Si on note $\{f_k\}_{k\in\mathbb{N}_6}$ la base canonique de \mathbb{R}^6 , un calcul montre que

$$\frac{\delta p}{2\pi} = -2\sqrt{6}\alpha \sum_{k \in \mathbb{N}_3} \langle \det(\xi|\dot{\xi}|\tau_{k+1}|\tau_{k+2}) \rangle f_k$$

$$-2\sqrt{6}\delta \sum_{k \in \mathbb{N}_3} \langle \det(\xi|\dot{\xi}|\tau_k|\tau_4) \rangle f_{k+3}, \tag{33}$$

où k pris mod 3.

 En particulier, on peut décrire les déplacements nets à deux paramètres scalaires près.

Optimisation

Optimisation - Notation

- Définition d'efficacité selon Lighthill [4]: Les mouvements optimaux sont ceux qui minimisent la dissipation d'énergie cinétique en atteignant un déplacement net prescrit.
- La dissipation d'énergie due à un mouvement $\xi \in H^1_\sharp(J,\mathbb{R}^4)$ s'écrit par une fonctionnelle d'énergie appropriée

$$\mathcal{G}(\xi) := \int_{J} \mathfrak{g}(\xi(t))\dot{\xi}(t) \cdot \dot{\xi}(t) dt. \tag{34}$$

• Sous l'hypothèse des petites courbes de contrôle, on peut supposer que $\mathfrak{g}(\xi)=\mathfrak{g}(0)+o(1)$, avec $\mathfrak{g}(0)$ une matrice symétrique définie positive dans $M_{4\times 4}(\mathbb{R})$. Ainsi, l'énergie s'écrit

$$\mathcal{G}(\xi) := \int_{J} Q_{\mathfrak{g}}(\dot{\xi}(t)) dt, \tag{35}$$

avec $Q_{\mathfrak{g}}(\eta) := \mathfrak{g}(0)\eta \cdot \eta$.

Optimisation - Notation

 Les propriétés de symétrie des équations Stokes impliquent en particulier que

$$Q_{\mathfrak{g}}(P_{ij}\eta) = Q_{\mathfrak{g}}(\eta), \ i, j \in \mathbb{N}_4. \tag{36}$$

■ La matrice G représentant $Q_{\mathfrak{g}}$ est de la forme suivante:

$$G = \begin{pmatrix} \kappa & h & h & h \\ h & \kappa & h & h \\ h & h & \kappa & h \\ h & h & h & \kappa \end{pmatrix}, \tag{37}$$

pour deux paramètres h et $\kappa > \max(h, -3h)$.

- On a $G\tau_k=(\kappa-h)\tau_k$ pour $k\in\mathbb{N}_3$ et $G\tau_4=(\kappa+3h)\tau_4$
- On notera $\mathfrak{g}_1:=\mathfrak{g}_2:=\mathfrak{g}_3:=\kappa-h$ et $\mathfrak{g}_4:=\kappa+3h$ t.q.

$$G = U \Lambda_{\mathfrak{g}} U^{\mathsf{T}}, \quad U := [\tau_1 | \tau_2 | \tau_3 | \tau_4], \quad \Lambda_{\mathfrak{g}} := \mathsf{diag}(\mathfrak{g}_i).$$
 (38)

Optimisation - Notation

On face le problème d'optimisation: Minimiser $\int_J Q_{\mathfrak{g}}(\dot{\xi}(t)) \mathrm{d}t$ sous la contrainte

$$\delta p = \mathfrak{h}_c \sum_{k \in \mathbb{N}_3} \left(\int_J \det(\xi(t)|\dot{\xi}(t)|\tau_{k+1}|\tau_{k+2}) dt \right) f_k$$

$$+ \mathfrak{h}_{\theta} \sum_{k \in \mathbb{N}_3} \left(\int_J \det(\xi(t)|\dot{\xi}(t)|\tau_k|\tau_4) dt \right) f_{k+3}$$
(39)

avec $\mathfrak{h}_c = -2\sqrt{6}\alpha$ et $\mathfrak{h}_\theta = -2\sqrt{6}\delta$.

Optimisation - Bivecteurs de \mathbb{R}^4

Figure 4: Affichage d'un bivecteur dans \mathbb{R}^3 [5]

 \blacksquare Les bivecteurs forment un espace vectoriel $\bigwedge^2\mathbb{R}^3$ avec une base donnée par

$$\{\hat{e}_1 \wedge \hat{e}_2, \hat{e}_1 \wedge \hat{e}_3, \hat{e}_2 \wedge \hat{e}_3\},$$
 (40)

si $\{\hat{e}_1,\hat{e}_2,\hat{e}_3\}$ est une base de \mathbb{R}^3 .

Optimisation - Bivecteurs de \mathbb{R}^4

Le produit scalaire est donné par

$$(u_1 \wedge u_2, v_1 \wedge v_2) = \det \begin{pmatrix} u_1 \cdot v_1 & u_1 \cdot v_2 \\ u_2 \cdot v_1 & u_2 \cdot v_2 \end{pmatrix}.$$
 (41)

• La norme d'un bivecteur $\omega=\omega_{12}\hat{\bf e}_1\wedge\hat{\bf e}_2+\omega_{13}\hat{\bf e}_1\wedge\hat{\bf e}_3+\omega_{23}\hat{\bf e}_2\wedge\hat{\bf e}_3$ est donnée par

$$|\omega| = \sqrt{\omega_{12}^2 + \omega_{13}^2 + \omega_{23}^2}. (42)$$

• Ces idées se généralisent facilement à dimension supérieure. En effet, si $\{e_1, e_2, e_3, e_4\}$ est la base canonique de \mathbb{R}^4 , alors une base de l'espace $\bigwedge^2 \mathbb{R}^4$ est donnée par

$$\{e_{12}, e_{13}, e_{14}, e_{23}, e_{24}, e_{34}\},$$
 (43)

où $e_{ij} := e_i \wedge e_j$.

Optimisation - Bivecteurs de \mathbb{R}^4

- Différence fondamentale: $\bigwedge^2 \mathbb{R}^3 \simeq \mathbb{R}^3$, mais $\bigwedge^2 \mathbb{R}^4 \not\simeq \mathbb{R}^4$
- $\bigwedge^2 \mathbb{R}^3 \simeq \mathbb{R}^3$ implique que tout $\omega \in \bigwedge^2 \mathbb{R}^3$ est *simple*, c'est-à-dire que

$$\forall \omega \in \bigwedge^2 \mathbb{R}^3 \exists u, v \in \mathbb{R}^3 : \omega = u \wedge v.$$
 (44)

- Ceci n'est plus le cas pour $\bigwedge^2 \mathbb{R}^4$, e.g. $e_{12} + e_{34} \in \bigwedge^2 \mathbb{R}^4$ n'est pas simple
- Après passage en Fourier, la contrainte s'identifiera à un bivecteur de R⁴. Si celui-ci est simple, nous pourrons résoudre le problème d'optimisaton de façon similaire à [2].

Optimisation - G-Orthogonalisation

• On pose $\eta(t):=U^T\xi(t)\in H^1_\sharp(J,R^4)$, ce qui permet d'écrire

$$\mathcal{G}_{U}(\eta) = \int_{J} \Lambda_{\mathfrak{g}} \dot{\eta}(t) \cdot \dot{\eta}(t) dt, \tag{45}$$

avec $\mathcal{G}_U(\eta) := \mathcal{G}(\xi) = \mathcal{G}(U\eta)$.

• Si on envoie $\{f_k\}_{k\in\mathbb{N}_6}$ vers une certaine base de $\bigwedge^2\mathbb{R}^4$, on trouve

$$\Lambda_{\mathfrak{h}}^{-1}\delta p = \int_{J} \dot{\eta}(t) \wedge \eta(t) dt, \tag{46}$$

avec $\Lambda_{\mathfrak{h}} := \mathsf{diag}(\mathfrak{h}_c, \mathfrak{h}_c, \mathfrak{h}_c, \mathfrak{h}_{\theta}, \mathfrak{h}_{\theta}, \mathfrak{h}_{\theta}).$

• Ainsi, le problème d'optimisation devient: Minimiser $\int_J \Lambda_{\mathfrak{g}} \dot{\eta}(t) \cdot \eta(t) dt$ sous la contrainte

$$\Lambda_{\mathfrak{h}}^{-1}\delta p = \int_{J} \dot{\eta}(t) \wedge \eta(t) dt. \tag{47}$$

• On passe en Fourier car les courbes de contrôle sont 2π - périodiques par définition. On notera

$$\dot{\ell}^{2}(\mathbb{R}^{4}) := \{ \mathbf{u} = (u_{n})_{n \in \mathbb{N}} \mid (nu_{n})_{n \in \mathbb{N}} \in \ell^{2}(\mathbb{R}^{4}) \}. \tag{48}$$

Expansion en série de Fourier:

$$\eta(t) := \frac{1}{2} a_0 + \sum_{n \in \mathbb{N}} \cos(nt) a_n + \sin(nt) b_n, \tag{49}$$

avec
$$(a_n, b_n)_{n \in \mathbb{N}} \in \dot{\ell}^2(\mathbb{R}^4) \times \dot{\ell}^2(\mathbb{R}^4)$$
.

Substitution dans la fonctionnelle d'énergie et la contrainte fournit

$$\mathcal{G}_{U}(\eta) := \int_{J} \Lambda_{\mathfrak{g}} \dot{\eta}(t) \cdot \dot{\eta} dt = \pi \sum_{n \in \mathbb{N}} n^{2} (\Lambda_{\mathfrak{g}} a_{n} \cdot a_{n} + \Lambda_{\mathfrak{g}} b_{n} \cdot b_{n})$$
 (50)

$$= \frac{1}{2}||\mathbf{u}||_{\ell^2(\mathbb{R}^4)}^2 + \frac{1}{2}||\mathbf{v}||_{\ell^2(\mathbb{R}^4)}^2, \tag{51}$$

où on a posé

$$\mathbf{u} := (u_n)_{n \in \mathbb{N}} := \sqrt{2\pi\Lambda_{\mathfrak{g}}}(na_n)_{n \in \mathbb{N}}, \tag{52}$$

$$\mathbf{v} := (v_n)_{n \in \mathbb{N}} := \sqrt{2\pi\Lambda_{\mathfrak{g}}} (nb_n)_{n \in \mathbb{N}}, \tag{53}$$

et

$$\sqrt{\det \Lambda_{\mathfrak{g}}} (\Lambda_{\mathfrak{h}} \tilde{\Lambda}_{\mathfrak{g}})^{-1} \delta p = \sum_{n \in \mathbb{N}} \frac{v_n \wedge u_n}{n}, \tag{54}$$

avec
$$\tilde{\Lambda}_{\mathfrak{g}} := \operatorname{diag}(\mathfrak{g}_{c}, \mathfrak{g}_{c}, \mathfrak{g}_{c}, \sqrt{\mathfrak{g}_{c}\mathfrak{g}_{\theta}}, \sqrt{\mathfrak{g}_{c}\mathfrak{g}_{\theta}}, \sqrt{\mathfrak{g}_{c}\mathfrak{g}_{\theta}})$$
, où $\mathfrak{g}_{1} := \mathfrak{g}_{2} := \mathfrak{g}_{3} := \mathfrak{g}_{c} \text{ et } \mathfrak{g}_{4} := \mathfrak{g}_{\theta}.$

• Ceci prouve le résultat suivant:

Proposition 4.1

La $H^1_{\sharp}(J,\mathbb{R}^4)$ -minimisation de la fonctionelle \mathcal{G}_U donnée par (45) sous la contrainte (46) équivaut la minimisation de la fonctionnelle

$$\mathcal{F}(\mathbf{u}, \mathbf{v}) := \frac{1}{2} ||\mathbf{u}||_{\ell^{2}(\mathbb{R}^{4})}^{2} + \frac{1}{2} ||\mathbf{v}||_{\ell^{2}(\mathbb{R}^{4})}^{2}, \tag{55}$$

définie sur l'espace produit $\ell^2(\mathbb{R}^4) imes \ell^2(\mathbb{R}^4)$ et sous la contrainte

$$\sum_{n\in\mathbb{N}} \frac{1}{n} v_n \wedge u_n = \omega \text{ with } \omega := \sqrt{\det \Lambda_{\mathfrak{g}}} (\Lambda_{\mathfrak{h}} \tilde{\Lambda}_{\mathfrak{g}})^{-1} \delta p, \tag{56}$$

où $\delta p \in \mathbb{R}^3 \times \mathfrak{so}(3)$ est un déplacement net préscrit en position.

• On observe que $\omega \in \bigwedge^2 \mathbb{R}^4$. et que ω est simple si et seulement si δp est simple.

• On veut réduire ce problème à un problème en dimension finie (c.f. [2]), i.e. trouver pour toute paire de suites de coefficients de Fourier $(\mathbf{u}, \mathbf{v}) \in \dot{\ell}^2(\mathbb{R}^4) \times \dot{\ell}^2(\mathbb{R}^4)$ un nombre fini de coefficients de Fourier, i.e. $(\tilde{\mathbf{u}}, \tilde{\mathbf{v}}) \in c_{00}(\mathbb{R}^4) \times c_{00}(\mathbb{R}^4)$ tel que

$$\mathcal{F}(\tilde{\mathbf{u}}, \tilde{\mathbf{v}}) = \mathcal{F}(\mathbf{u}, \mathbf{v}) \text{ et } \sum_{n=1}^{N} \frac{1}{n} \tilde{v}_n \wedge \tilde{u}_n = \sum_{n \in \mathbb{N}} \frac{1}{n} v_n \wedge u_n.$$
 (57)

ullet ightarrow Problème d'optimisation dans \mathbb{R}^N

Le cas simple

Le cas simple - Réduction à dimension finie

Supposons que $\omega=x\wedge y$ est un bivecteur simple. En effet, de manière similaire à [2], on trouve le résultat suivant:

Proposition 5.1

Si ω est un bivecteur simple, alors pour tout $(\mathbf{u}, \mathbf{v}) \in \ell^2(\mathbb{R}^4) \times \ell^2(\mathbb{R}^4)$ tel que la contrainte (56) soit satisfaite, il existe deux vecteurs $\mathbf{u}, \mathbf{v} \in \mathbb{R}^4$ tels que pour les suites $\mathbf{u}_* := \mathbf{e}_1 \mathbf{u}$ et $\mathbf{v}_* := \mathbf{e}_1 \mathbf{v} \in \ell^2(\mathbb{R}^4)$ on ait

$$\mathcal{F}(\mathbf{u}_{\star}, \mathbf{v}_{\star}) = \mathcal{F}(\mathbf{u}, \mathbf{v}) \text{ and } \mathbf{v} \wedge \mathbf{u} = \omega.$$
 (58)

Le cas simple - Théorème final

Ensuite, la résolution du problème d'optimisation en dimension finie fournit le résultat final:

Theorem 5.1

Soit $\delta p \in \mathbb{R}^3 \times \mathfrak{so}(3) \simeq \bigwedge^2 \mathbb{R}^4$ un déplacement net prescrit. De plus, supposons que $\delta p = x \wedge y$ soit un bivecteur simple. Alors, tout minimiseur $\xi \in H^1_\sharp(J,\mathbb{R}^4)$ de la fonctionnelle d'énergie (35) sous la contrainte (39) est de la forme

$$\xi(t) := (\cos t)a + (\sin t)b, \tag{59}$$

i.e. une ellipse de \mathbb{R}^4 centrée à l'origine et contenu dans le plan défini par les vecteurs a et b. On obtient les vecteurs a, $b \in \mathbb{R}^4$ comme ce qui suit:

Le cas simple - Théorème final

1. On calcule le vecteur ω via la relation

$$\omega := \operatorname{diag}\left(\frac{\sqrt{\mathfrak{g}_{c}\mathfrak{g}_{\theta}}}{\mathfrak{h}_{c}}, \frac{\sqrt{\mathfrak{g}_{c}\mathfrak{g}_{\theta}}}{\mathfrak{h}_{c}}, \frac{\sqrt{\mathfrak{g}_{c}\mathfrak{g}_{\theta}}}{\mathfrak{h}_{c}}, \frac{\mathfrak{g}_{c}}{\mathfrak{g}_{\theta}}, \frac{\mathfrak{g}_{c}}{\mathfrak{g}_{\theta}}, \frac{\mathfrak{g}_{c}}{\mathfrak{g}_{\theta}}\right) \delta p = \tilde{x} \wedge \tilde{y}. \quad (60)$$

Puis on considère deux vecteurs $u, v \in \text{span}\{\tilde{x}, \tilde{y}\}$ tels que

$$|u|^2 = |v|^2 = |\omega| \text{ and } u \cdot v = 0.$$
 (61)

2. On pose $\hat{\omega} := \omega/|\omega|$ et on calcule les vecteurs aa et b via les relations

$$a := \frac{U\Lambda_{\mathfrak{g}}^{-1/2}}{\sqrt{2\pi}}u, \quad b := \frac{U\Lambda_{\mathfrak{g}}^{-1/2}}{\sqrt{2\pi}}v. \tag{62}$$

Alors, on a $v \wedge u = \omega$ et the la valeur minimum de \mathcal{G} est égale à $|\omega|$.

En outre, les vecteurs a et b sont \mathfrak{g} -orthogonaux, i.e. par rapport au produit scalaire défini pour tout $x,y\in\mathbb{R}^4$ par $(x,y)_{\mathfrak{g}}:=2\pi\Lambda_{\mathfrak{g}}x\cdot y$, et ils on la même \mathfrak{g} -norme $|a|_{\mathfrak{g}}^2=|b|_{\mathfrak{g}}^2=|\omega|$.

Conclusions et perspectives

Conclusions

- Détermination des symétries du système dynamique qui décrit le micro-nageur SPR4 à l'aide des propriétés des équations de Stokes.
- Identification de la dynamique de SPR4 à termes d'ordre élevé près sous l'hypothèse des petites courbes de contrôle ainsi que le déplacement net. Il reste cinq paramètres scalaires inconnus.
- Structure des courbes de contrôle optimales dans un cas particulier qui décrit déjà une variétés de déplacements nets.

Conjecture

- Pas de solution pour le problème d'optimisation général.
- Conjecture: En général, les courbes de contrôle optimales sont des ellipses situées dans un ou au plus deux plans totalement orthogonaux de R⁴. En outre, la fréquence de la rotation dans un des deux plans et le double de la fréquence dans l'autre plan.

On a les raisons suivantes pour cette conjecture:

1. Dans le cas simple ω définit le plan dans lequel la courbe optimale est située. Or, un bivecteur non-simple représente deux plans totalement orthogonaux. \to Construire les quatre coefficients de Fourier à partir des deux plans définis par ω

2. L'équation d'Euler-Lagrange associée au problème d'optimisation (c.f. [3]) s'écrit:

$$G\ddot{\xi} - \Omega(\mu)\dot{\xi} = 0, \tag{63}$$

avec $\Omega(\mu) = \sum_{k \in \mathbb{N}_6} \mu_k M_k$. La matrice $\Omega(\mu)$ étant toujours anti-symétrique, la solution est une rotation dans R^4 , c'est-à-dire elle est située dans deux plans totalement orthogonaux.

3. La dernière partie de la conjecture suit d'un argument de regroupement des suites **u** et **v**.

Perspectives

- Prouver la conjecture ci-dessus
- Faire l'approximation des bras longs pour simplifier le système encore une fois et déterminer les paramètres inconnus en termes de ξ_0 et a

Questions?

References

F. Alouges and G. D. Fratta, "Parking 3-sphere swimmer. i. energy minimizing strokes,", Sep. 2017. DOI: 10.31219/osf.io/7sfbj.

References ii

- A. DeSimone, F. Alouges, and A. Lefebvre, "Biological fluid dynamics, non-linear partial differential equations," in *Mathematics of Complexity and Dynamical Systems*, R. A. Meyers, Ed. New York, NY: Springer New York, 2011, pp. 26–31, ISBN: 978-1-4614-1806-1. DOI: 10.1007/978-1-4614-1806-1_3. [Online]. Available: https://doi.org/10.1007/978-1-4614-1806-1_3.
- M. J. Lighthill, "On the squirming motion of nearly spherical deformable bodies through liquids at very small reynolds numbers," *Communications on Pure and Applied Mathematics*, vol. 5, no. 2, pp. 109–118, May 1952. DOI: 10.1002/cpa.3160050201.
- P. Lounesto, Clifford Algebras and Spinors. Cambridge University Press, Jun. 15, 2006, 352 pp., ISBN: 0521005515. [Online].

 Available: https://www.ebook.de/de/product/2991827/pertti_lounesto_clifford_algebras_and_spinors.html.