مارس **2021**

قسم التعليم الأساسي للرياضيات و الإعلام الآلي

امتحــان مقياس "الجــــبر 1"

التمـرين الأول: (<mark>5 نقاط</mark>)

أ- عن جدول الحقيقة للقضية $Q \wedge R$).

			(
1	1	1	?
1	1	0	?
1	0	1	?
1	0	0	?
0	1	1	?
0	1	0	?
0	0	1	?
0	0	0	?

$$orall n \in \mathbb{N}$$
: أولي $n \Rightarrow \begin{bmatrix} n=2 \end{bmatrix}$ فردي أو $n \Rightarrow \begin{bmatrix} n=2 \end{bmatrix}$ أولي $n \mapsto \begin{bmatrix} n & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$

 P_n اكتب نفي القضية -(1)

 P_n اكتب عكس نقيض القضية (2)-ا

<mark>التمــرين الثاني</mark>: (<mark>5 نقاط</mark>)

 $a\Delta b=a+b-a.$ ليكن القانون Δ معرف على $A=[-\infty,1]$ برهن المتراجحة Δ معرف على على على Δ و استنتج أن Δ قانون تركيب داخلي على Δ -1.

$a\Delta b-1$ على شكل جداء $a\Delta b-1$

رهن أن (G, Δ) لها بنية الزمرة التبديليه -2

التمــرين الثالث<mark>: (5 نقاط</mark>)

 $\forall (x,y) \in \mathbb{R}^2: x\mathcal{R}y \iff (\cos x)^2 + (\sin y)^2 = 1 : __ : __ \mathbb{R}$ لتكن \mathcal{R} علاقة معرفة على \mathbb{R} . \mathbb{R} علاقة تكافؤ على \mathbb{R} .

 $\dot{0}$ عين صنف التكافؤ $\dot{0}$.

$\forall \ x \in \mathbb{R}$: $(\cos x)^2 + (\sin x)^2 = 1$: للتذكير

<mark>التـمـرين الرابع</mark> : (<mark>5 نقاط</mark>)

$$f(x) = x^2 - 1$$
 ليكن $f: \mathbb{R} \to \mathbb{R}$ تطبيق معرف بـ

1- احسب الصورة المباشرة $f(\{-1,1\})$ و استنتج ان أن التطبيق f غير متباين.

. حسب الصورة العكسية $f^{-1}(\{-2\})$ و استنتج ان أن التطبيق f غير غامر.

$$g(x)=f(x)$$
 تطبیق معرف بـ $g\colon [0,\infty[\; o [-1,\infty[\; o]$ -3

 g^{-1} برهن أن التطبيق g متباين و غامر و استنتج أنه تقابلي. عين التطبيق العكسي

بالتوفيق

التمــرين الأول:

P	Q	R	$P \wedge R$	$\overline{P \wedge R}$	$[(P \land R) \Rightarrow Q] \Leftrightarrow [(\overline{P \land R}) \lor Q]$
1	1	1	1	0	1
1	1	0	0	1	1
1	0	1	1	0	0
1	0	0	0	1	1
0	1	1	0	1	1
0	1	0	0	1	1
0	0	1	0	1	1
0	0	0	0	1	1

2.00

$$ar{Q} \Rightarrow ar{P}$$
 هو $P \Rightarrow Q$ هو يقيض القضية P_n لدينا عكس نقيض القضية $P_n \Rightarrow Q$ المينا عكس نقيض القضية $P_n \Rightarrow Q$ ختابة عكس نقيض القضية عكس

(1.00) $\forall \ n \in \mathbb{N} \colon (n \neq 2) \land ($ اذن عکس النقیض هو $(n \Rightarrow n) \Rightarrow ($ اولي $(n \Rightarrow n) \Rightarrow ($ ادن عکس النقیض هو $(n \Rightarrow n) \Rightarrow ($

<mark>التمــرين الثاني:</mark>

$$(a,b) \in G^2 \Rightarrow a\Delta b - 1 < 0 \Rightarrow a\Delta b < 1 \Leftrightarrow a\Delta b \in G$$
.

 $0.50 a\Delta b = a + b - a.b = b + a - ba = b\Delta a.$

 $\forall (a,b,c) \in G^3$: $(a\Delta b)\Delta c = a\Delta (b\Delta c)$ يکون Δ تجميعي اذاکان

$$(a\Delta b)\Delta c = (a\Delta b) + c - (a\Delta b)c = a + b - ab + c - ac - bc + abc \quad (1).$$

$$a\Delta(b\Delta c) = a + (b\Delta c) + -a(b\Delta c) = a + b + c - bc - ab - ac + abc \quad (2).$$

بالمقارنة نجد Δ تجميعي 0.75

يقبل عنصر حيادي Δ نكتفي بحل معادلة واحدة $\exists e \in G, \forall a \in G: a\Delta e = e\Delta a = a \Rightarrow a + e - ae = a \Leftrightarrow e(1-a) = 0 \ et \ a \neq 1 \Rightarrow e = 0$. 1.00

لکل عنصر نظیر $\Leftrightarrow a \in G$, $\exists a' \in G$: $a\Delta a' = a'\Delta a = 0$ یکون Δ تبدیلي نکتفي بحل معادلة واحدة $a\Delta a' = 0 \Leftrightarrow a + a' - aa' = 0 \Leftrightarrow a'(1-a) = -a$ و $a \neq 1 \Rightarrow a' = -\frac{a}{1-a}$.

زمرة تبديليه
$$(G,\Delta)$$
 و منه $a'-1=-rac{a}{1-a}-1=rac{-1}{1-a}<0\Rightarrow a'\in G$

```
التمـرين الثالث:
```

 $(\forall x \in \mathbb{R}: x \mathcal{R} x) \Leftrightarrow (انعکاسیة)$

$$oldsymbol{0.50}$$
 لدينا $oldsymbol{x}=1$ ادن $oldsymbol{x}$ ادن $oldsymbol{x}$ انعكاسية.

 $(\forall (x,y) \in \mathbb{R}^2 : x \mathcal{R} y \Rightarrow y \mathcal{R} x) \Leftrightarrow ($ تناظرية $\mathcal{R})$

$$x\mathcal{R}y \Rightarrow (\cos)^2 + (\sin y)^2 = 1 \Rightarrow \overbrace{1 - (\sin x)^2}^{(\cos x)^2} + \overbrace{1 - (\cos y)^2}^{(\sin y)^2} = 1 \Rightarrow (\cos y)^2 + (\sin x)^2 = 1$$
 لدن $x\mathcal{R}y = \cos x$ و منه $x\mathcal{R}y = \cos x$ علاقة تناظرية.

 $(\forall (x,y,z) \in \mathbb{R}^3 : x \mathcal{R} y \land y \mathcal{R} z \Rightarrow x \mathcal{R} z) \Leftrightarrow ($ متعدیة \mathcal{R}) -

$$x\mathcal{R}y \Leftrightarrow (\cos)^2 + (\sin y)^2 = 1$$

$$y\mathcal{R}z \Leftrightarrow (\cos y)^2 + (\sin z)^2 = 1$$

$$\Rightarrow (\cos x)^2 + (\sin z)^2 = 2 \Rightarrow (\cos x)^2 + (\sin z)^2 = 1 \Rightarrow x\mathcal{R}z$$

$$\Rightarrow x\mathcal{R}z \Leftrightarrow (\cos x)^2 + (\sin z)^2 = 1$$

و منه $oldsymbol{\mathcal{R}}$ علاقة متعدية في علاقة تكافؤ .

2- تعين صنف التكافؤ

$$\dot{0} = \{x \in \mathbb{R} : x \mathcal{R} \mathbf{0}\} = \{x \in \mathbb{R} : (\cos x)^2 + 0 = 1\} = \{x \in \mathbb{R} : \cos x = \pm 1\} = \{x = k\pi, k \in \mathbb{Z}\}$$

 $f(x) = x^2 - 1$ لىكن $\mathbb{R} \longrightarrow f \colon \mathbb{R} \longrightarrow \mathbb{R}$ تطبيق معرف بـ

f(-1,0) - اذن التطبيق f غير متباين لأن $f(-1,1)=\{f(-1),f(1)\}=\{0\}$ اذن التطبيق f غير متباين لأن f(-1)=f(1)f و نستنتج ان التطبيق $f^{-1}(\{-2\}) = \{x \in \mathbb{R}: f(x) = -2\} = \{x \in \mathbb{R}: x^2 = -1\} = \emptyset$ و نستنتج ان التطبيق -2 غير غامر لأن المعادلة f(x)=-2 ليست لها حلول غير غامر f(y)=-2 غير غامر المعادلة g(y)=g(y) غير غامر المعادلة عبر أ

$$g(x)=g(y)\Rightarrow x^2-1=y^2-1\Rightarrow x^2=y^2\Rightarrow x=\pm y$$
 لكينا $x\geq 0$ و $y\geq 0\Rightarrow x=y$ لكينا

(1.00) متباین. g متباین

$$ig(orall y \in [-1, \infty[$$
, $\exists x \in [0, \infty[: y = g(x)] \iff \bigcup_{i \in \mathcal{G}} g)$ (ب

$$y=g(x)\Rightarrow:y=x^2-1\Leftrightarrow x^2=y+1\geq 0$$
 لدينا $x\geq 0\Rightarrow x=\sqrt{y+1}\in [0,\infty[$ دونه $x\geq 0$ عامر.

(g) يقابلي: (g) تقابلي: (g) تقابلي (g) غامر و متباين (g)

 g^{-1} تعيين التطييق العكسي

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$$