

Vorticity estimates for the 3D incompressible Navier–Stokes equation

10th International Congress on Industrial and Applied Mathematics

Jincheng Yang August 21st, 2023

The University of Chicago

Introduction

Consider the 3D Navier–Stokes equation

$$\begin{split} \partial_t u + u \cdot \nabla u + \nabla p &= \Delta u, \quad \text{div } u = 0 \\ u &= 0 \\ u|_{t=0} &= u_0 \end{split} \qquad \qquad \begin{aligned} &\text{in } (0,T) \times \Omega \\ &\text{on } (0,T) \times \partial \Omega \end{aligned}$$

The vorticity $\omega = \operatorname{curl} u$ is governed by the vorticity equation

$$\partial_t \omega + u \cdot \nabla \omega - \omega \cdot \nabla u = \Delta \omega, \quad \text{div } \omega = 0$$
 in $(0, T) \times \Omega$
 $u = \text{curl}^{-1} \omega$ Biot-Savart law

We want to study a priori estimates of u, ω and higher derivatives, and trace on a Lipschitz submanifold $\Gamma \subset \Omega$.

1

Introduction

LERAY-HOPF WEAK SOLUTION

Leray (1934) and Hopf (1951) established the global existence of weak solutions: for divergence-free $u_0 \in L^2(\Omega)$, there exists

$$u \in C_w(0,T;L^2(\Omega)) \cap L^2(0,T;\dot{H}^1_0(\Omega))$$

with energy inequality

$$\frac{1}{2}\|u\|_{L^{2}(\Omega)}^{2}(t) + \int_{0}^{t} \|\nabla u\|_{L^{2}(\Omega)}^{2}(s) \, \mathrm{d}s \leq \frac{1}{2}\|u_{0}\|_{L^{2}(\Omega)}^{2}$$

SUITABLE WEAK SOLUTION

Scheffer (1976), Caffarelli–Kohn–Nirenberg (1982): existence of suitable weak solutions:

$$\partial_t \frac{|u|^2}{2} + \operatorname{div}\left(u\left(\frac{|u|^2}{2} + p\right)\right) + |\nabla u|^2 \le \Delta \frac{|u|^2}{2}$$

Albritton–Brué–Colombo (2021): nonunique forced Leray solutions When is a weak solution regular and unique?

EXISTENCE, UNIQUENESS, REGULARITY

Solutions in anisotropic Lebesgue space $u \in L^p(0,T;L^q(\Omega))$

Scaling: $u_{\varepsilon}(t,x) = \varepsilon u(\varepsilon^2 t, \varepsilon x)$

 below energy space: existence of suitable weak solution (Scheffer 1976, CKN 1982)

$$2/p + 3/q = 3/2$$

 above critical scaling: uniqueness and full regularity (Ladyzhenskaya-Prodi-Serrin 1960s)

$$2/p + 3/q = 1$$

• energy conservation: $L_t^4 L_x^4$

REGULARITY CRITERIA

• Ladyzhenskaya–Prodi–Serrin: $u \in L_t^p L_x^q$ with

$$2/p + 3/q = 1$$

- Escauriaza–Serëgin–Šverák: $u \in L_t^{\infty} L_x^3$
- Beal-Kato-Majda: $\omega \in L^1_t L^\infty_x$
- Veiga: $\nabla u \in L_t^p L_x^q$ with

$$2/p + 3/q = 2$$

· Leray (1934), Hopf (1951): $u \in L^{\infty}_t L^2_x$, $\nabla u \in L^2_{t,x}$

· Leray (1934), Hopf (1951): $u \in L^\infty_t L^2_x$, $\nabla u \in L^2_{t,x}$, $u \in L^2_t L^6_x$

• Foiaş–Guillopé–Temam (1981), Duff (1990): $u \in L_t^1 L_x^{\infty}$

• Foiaș–Guillopé–Temam (1981), Duff (1990): $\nabla^n u \in L^{\frac{1}{n+1}}_t L^\infty_X \cap L^{\frac{2}{2n-1}}_t L^2_X$

- Constantin (1990), Lions (1996): $\nabla u \in L^\infty_t L^1_x$, $\nabla^2 u \in L^{\frac{4}{3},\infty}_{t,x}$

• Constantin (1990), Lions (1996): $\nabla u \in L^\infty_t L^1_x$, $\nabla^2 u \in L^{\frac{4}{3},\infty}_{t,x} \cap L^{2^-}_t L^1_x$

- Vasseur (2010), Choi–Vasseur (2014): $\nabla^n u \in L^{\frac{4}{n+1},\infty}_t L^{\frac{4}{n+1},\infty}_\chi$
- Vasseur–Y. (2021): $\nabla^n \omega \in L_{\mathrm{t.}x}^{\frac{4}{n+2},\frac{4}{n+2}+}$

• Y. (2023):
$$\nabla^n u \in L^\infty_t L^{\frac{2}{n+1},\infty}_X$$

MAIN RESULT

Theorem (Y., 2023)

Let $T \in (0, \infty]$, $\Omega \subset \mathbb{R}^3$ be Lipschitz, and $\Gamma \subset \Omega$ be d-dimensional Lipschitz graph. There exists C > 0 depending on Lipschitzness and universal constants $c_n > 0$ such that the following is true for

$$\mathscr{W}(t,x):=\sum_{n=0}^{\infty}c_n|\nabla^n\omega(t,x)|^{\frac{1}{n+2}}$$
 (a) For any $0\leq d\leq 3$, it holds that

$$\left\| \mathcal{W} \mathbf{1}_{\left\{ \mathcal{W} > r_*^{-1} \right\}} \right\|_{L^{d+1,\infty}((0,T) \times \Gamma)}^{d+1} \le C \|\nabla u\|_{L^2((0,T) \times \Omega)}^2$$

(b) If
$$2 \le d \le 3$$
 then for every $t \in (0,T)$ it holds that
$$\left\| \mathscr{W}(t) \mathbf{1}_{\left\{\mathscr{W}(t) > r_*^{-1}(t)\right\}} \right\|_{L^{d-1},\infty(\Gamma)}^{d-1} \le C \|\nabla u\|_{L^2((0,T)\times\Omega)}^2$$

 r_* is the parabolic distance to the parabolic boundary $\partial_{\mathcal{P}}((0,T)\times\Omega)$

PROOF SKETCH

The proof relies on the blow-up method and ε -regularity.

Theorem (Vasseur-Y., 2021)

If
$$\int_{-1}^0 \int_{B_1} |\nabla u|^2 dx dt \le \eta$$
 and $\int_{B_1} u(t) dx = 0$ then $|\nabla^n \omega(0,0)| \le C_n$.

Navier–Stokes is invariant under the scaling $u_{\varepsilon}(t,x) = \varepsilon u(\varepsilon^2 t, \varepsilon x)$, so

Corollary

$$\text{If } f_{Q_\varepsilon(t,x)} \, |\nabla u|^2 \, dx \, dt \leq \eta \varepsilon^{-4} \, \text{then } |\nabla^n \omega(t,x)| \leq C_n \varepsilon^{-n-2}.$$

If we choose a sufficiently small scale $\varepsilon(t,x)$, the above holds, then $\mathscr{W}(t,x)=\sum_{n=0}^{\infty}2^{-n}|\nabla^n\omega(t,x)/\mathcal{C}_n|^{\frac{1}{n+2}}\leq \varepsilon(t,x)^{-1}$ pointwise.

Question: how small should $\varepsilon(t,x)$ be?

SCALE OPERATOR AND AVERAGE OPERATOR

Theorem (A generic theorem of the blow-up method)

 $f=|\nabla u|^2$ is a "pivot quantity", $g=|\nabla^n\omega|$ is a "controlled quantity"

$$f_{Q_{\rho}(t,x)} f \leq \rho^{-\alpha} \implies g(t,x) \leq \rho^{-\beta}$$

For $f \in L^1_{loc}(\mathbb{R} \times \mathbb{R}^D)$, $\alpha > 0$, define scale operator $\mathscr{S}_{\alpha}(f)(t,x) \in [0,\infty]$:

$$\mathscr{S}_{\alpha}(f)(t,x) := \inf_{0 < \rho < \infty} \left\{ \rho : \int_{Q_{\rho}(t,x)} f > \rho^{-\alpha} \right\}$$

It selects the *largest scale* below which ε -regularity is applicable.

Average operator
$$\mathscr{A}_{\alpha}(f)(t,x) = \int_{\mathbb{Q}_{\mathscr{A}_{\alpha}(f)(t,x)}(t,x)} f = \mathscr{S}_{\alpha}(f)(t,x)^{-\alpha}$$

Then $g \leq \mathscr{A}_{\alpha}(f)^{\frac{\beta}{\alpha}}$ pointwise.

ESTIMATE ON THE AVERAGE OPERATOR

Theorem

Let $f \in L^1_{loc}(\mathbb{R} \times \mathbb{R}^D)$, $\Gamma \subset \mathbb{R}^D$, $\dim(\Gamma) = d$. Suppose $\alpha > D - d$.

1. If $f \in L^1(\mathbb{R} \times \mathbb{R}^D)$, then

$$\left\| (\mathscr{A}_{\alpha} f)^{1 - \frac{D - d}{\alpha}} \right\|_{L^{1, \infty}_{t, x}(\mathbb{R} \times \Gamma)} \le C(\alpha, D, d, L) \|f\|_{L^{1}(\mathbb{R} \times \mathbb{R}^{D})}$$

2. If $f \in L^p(\mathbb{R} \times \mathbb{R}^D)$ for some $p \in (1, \infty]$, then

$$\left\| (\mathscr{A}_{\alpha} f)^{1 - \frac{D - d}{p\alpha}} \right\|_{L^{p}_{t,x}(\mathbb{R} \times \Gamma)} \le C(p, \alpha, D, d, L) \|f\|_{L^{p}(\mathbb{R} \times \mathbb{R}^{D})}$$

ESTIMATE ON THE AVERAGE OPERATOR

Theorem

Let $f \in L^1_{loc}(\mathbb{R} \times \mathbb{R}^D)$, $\Gamma \subset \mathbb{R}^D$, $\dim(\Gamma) = d$. Suppose $\alpha > D - d + 2$.

3. If $f \in L^1(\mathbb{R} \times \mathbb{R}^D)$, then for every $t \in \mathbb{R}$,

$$\left\| \left[\mathscr{A}_{\alpha}(f)(t) \right]^{1 - \frac{D - d + 2}{\alpha}} \right\|_{L^{1,\infty}(\Gamma)} \leq C(\alpha, D, d, L) \|f\|_{L^{1}(\mathbb{R} \times \mathbb{R}^{D})}$$

4. If $f \in L^p(\mathbb{R} \times \mathbb{R}^D)$ for some $p \in (1, \infty]$, then for every $t \in \mathbb{R}$,

$$\left\| \left[\mathscr{A}_{\alpha}(f)(t) \right]^{1 - \frac{D - d + 2}{p\alpha}} \right\|_{L^{p}(\Gamma)} \le C(p, \alpha, D, d, L) \|f\|_{L^{p}(\mathbb{R} \times \mathbb{R}^{p})}$$

ANISOTROPIC ESTIMATE ON THE AVERAGE OPERATOR

Proposition

Let
$$0 < p_1, q_1, p_2, q_2 < \infty$$
, $1 \le q_1 < p_1$, $\alpha q_2 > d$. Define
$$\frac{1}{r_1} = \alpha - \frac{2}{p_1} - \frac{D}{q_1}, \qquad \frac{1}{r_2} = \alpha - \frac{2}{p_2} - \frac{d}{q_2}.$$
 Let $f \in L_t^{p_1} L_x^{q_1}(\mathbb{R} \times \mathbb{R}^D)$. If $0 < \frac{r_2}{r_1} < \frac{p_2}{p_1} \wedge \frac{q_2}{q_1}$, then
$$\|\mathscr{A}_{\alpha}(f)\|_{L_t^{p_2} L_x^{q_2}(\mathbb{R} \times \Gamma)}^{r_2/r_1} \le C\|f\|_{L_t^{p_1} L_x^{q_1}(\mathbb{R} \times \mathbb{R}^D)}.$$
 If $r_1 = r_2 = \infty$, $0 < \delta < \frac{p_2}{p_1} \wedge \frac{q_2}{q_1}$, then
$$\|\mathscr{A}_{\alpha}(f)\|_{L_t^{p_2} L_x^{q_2}(\mathbb{R} \times \Gamma)}^{\delta} \le C\|f\|_{L_t^{p_1} L_x^{q_1}(\mathbb{R} \times \mathbb{R}^D)}.$$

PROOF OF THE ANISOTROPIC ESTIMATE

$$D=d=3$$
, $\Gamma=\Omega$, $\alpha=4$, $f=|\nabla u|^2$, $g=|\nabla^n\omega|^{\frac{4}{n+2}}\leq \mathscr{A}_{\alpha}(f)$.

REMARKS

Some minor issues:

- 1. blow-up argument misses a remainder term depending on the distance from the parabolic boundary
- 2. local theorem requires zero mean velocity condition
- 3. ω can be replaced by ∇u when $\Omega = \mathbb{R}^3$ or \mathbb{T}^3
- **4.** Γ can change in time: $\Gamma_t \subset \Omega$
- 5. a priori estimate also works for suitable weak solutions over the regular set

Thank you for your listening!

https://arxiv.org/abs/2308.09350