第4章 复数项级数之基础

这一章我们学习复数项级数的一般理论并将其应用到复解析函数中。研究无穷级数的一个重要动机是,解析函数在其解析邻域总可以展开称泰勒级数(证明在这一章给出),因此即使对于不能通过初等函数表示的解析函数,我们也可通过级数来表示。如果我们需要在孤立奇点附近展开解析函数,这时我们需要洛朗展开。

4.1 复数项级数初步

形如

$$a_1 + a_2 + \dots + a_n + \dots \tag{4.1}$$

的无穷项求和称为无穷级数。出现无穷的地方往往都有一些违反直觉的现象。这里的无 穷指的是求和的项数是无穷多的。在给出无穷级数收敛性的定义和判据前,我们先来看 一些例子。

例 4.1 有任意多个长度为 L 的砖块,能否将这些砖块依次垒起来,要求每一层只有一块砖块,但是使得总长度任意长?

将第一块砖块的左侧放置在坐标原点,其右侧的坐标记为 C_1 ,显然有 $C_1 = L$ 。第二块砖块要垒在第一块之上,我们要尽量往右垒,记第二块最右侧的坐标为 C_2 。类似的,记第 n 块砖块的最右侧坐标为 C_n 。我们要找的就是这样一种垒法,使得 C_n 最大。解决这个问题的关键不是考虑如何从下往上垒,而是考虑从上往下每块砖块的关系。

首先,第n 块砖块的一半可以超出第n-1 块砖块而不掉下来。因此我们最多可以有

$$C_n = C_{n-1} + \frac{L}{2} \,. (4.2)$$

第n-1 块砖块要全在第n-2 块之上。为了保证不坍塌,要求第n-1 和n 块砖块的整体重心应落在第n-2 块砖块的右侧边缘以内,不妨就选在边缘以使得突出的长度最长。这样我们得到关系

$$C_{n-2} = \frac{C_n - \frac{L}{2} + C_{n-1} - \frac{L}{2}}{2}$$

$$= C_{n-1} - \frac{L}{4}, \tag{4.3}$$

或者

$$C_n = C_{n-2} + \frac{L}{2} + \frac{L}{4}. (4.4)$$

再来看第n-2 块如何垒在第n-3 块之上最好。重复上面的逻辑应有

$$C_{n-3} = \frac{1}{3} \left[C_n - \frac{L}{2} + C_{n-1} - \frac{L}{2} + C_{n-2} - \frac{L}{2} \right]$$

$$= \frac{1}{3} \left[C_{n-2} + \frac{L}{2} + \frac{L}{4} - \frac{L}{2} + C_{n-2} + \frac{L}{4} - \frac{L}{2} + C_{n-2} - \frac{L}{2} \right]$$

$$= C_{n-2} - \frac{L}{6}.$$
(4.5)

或者

$$C_n = C_{n-3} + \frac{L}{2} \left(1 + \frac{1}{2} + \frac{1}{3} \right) .$$
 (4.6)

到这里规律已经明显。容易求的 C_n 的一般表达式

$$C_n = \frac{L}{2} \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} \right).$$
 (4.7)

我们的问题是, $\lim_{n\to\infty} C_n$ 是否有限。答案是否定的。

定理 4.1. 调和级数发散

无穷级数

$$S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n} + \dots$$
 (4.8)

是发散级数。

 \vee

为了证明这一点,我们注意到

$$S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} + \cdots$$

$$\geq 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \cdots$$

$$= \infty. \tag{4.9}$$

如果对调和级数添加负号则可以得到一个有限的交错级数,

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2.$$
 (4.10)

但是处理交错级数需要非常小心,因为黎曼重排定理告诉我们,对收敛的交错级数重排列后可以得到任意值。以(4.10)为例,作如下重排

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \frac{1}{8} - \frac{1}{10} + \cdots$$

$$\stackrel{\text{\tiny III}}{=} 1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \frac{1}{5} - \frac{1}{10} + \cdots$$

$$= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \frac{1}{10} + \cdots$$

$$= \frac{1}{2} \left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots \right)$$

$$= \frac{1}{2} \ln 2. \tag{4.11}$$

欧拉是应用无穷级数的大师,但他并没有发展出一套严格的无穷级数理论,无穷级数在他手上更像是变魔术般帮助他得到正确结果。严格的无穷级数理论到了柯西手上才建立。

定理 4.2. 柯西判据

设有实或复无穷项级数

$$w_1 + w_2 + w_3 + \dots + w_n + \dots$$
 (4.12)

假如其满足如下柯西判据:

 $\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n > N \text{ and } \forall p \geq 1, \not \uparrow$

$$|w_{n+1} + w_{n+2} + \dots + w_{n+p}| < \varepsilon.$$
 (4.13)

为了理解柯西判据的起源需要从无穷级数的部分和和柯西序列说起,此处不赘述。 注意满足柯西判据的收敛级数必有 $\lim_{n\to\infty}|w_n|\to 0$,但反过来满足 $\lim_{n\to\infty}|w_n|\to 0$ 的级数并不一定收敛。调和级数就是这样一个例子。

无穷级数更强的收敛条件是绝对收敛。对于无穷级数

$$w_1 + w_2 + w_3 + \dots + w_n + \dots$$
 (4.14)

如若对每一项求绝对值后的级数

$$|w_1| + |w_2| + \dots + |w_n| + \dots$$
 (4.15)

满足柯西判据,则称(4.14)是**绝对收敛级数**。绝对收敛级数本身一定是收敛的,这是因为对于部分和我们总是有三角不等式

$$|w_{n+1} + w_{n+2} + \dots + w_{n+p}| \le |w_{n+1}| + |w_{n+2}| + \dots + |w_{n+p}|.$$
 (4.16)

我们今后讨论的主要是绝对收敛级数。

例 4.2 当 |r| < 1 时,几何级数

$$S = 1 + r + r^2 + r^3 + r^4 + \cdots (4.17)$$

绝对收敛。

我们记该几何级数各项绝对值的部分和

$$S_n = 1 + |r| + |r|^2 + |r|^3 + \dots + |r|^n.$$
(4.18)

容易求得

$$S_n = \frac{1 - |r|^{n+1}}{1 + |r|} \,. \tag{4.19}$$

当 |r| < 1 时显然有

$$\lim_{n \to \infty} S_n = \frac{1}{1+r} \,. \tag{4.20}$$

因此几何级数各项绝对值部分和是收敛序列,因此几何级数绝对收敛。在这个例子里我们并没有直接用到柯西判据,原因是部分和的解析表达式可以求出。在部分和无法解析求出时,柯西判据就变得有用。

绝对收敛级数具有一些好的性质:

- 对绝对收敛级数重排不改变结果。
- 绝对收敛级数之和和乘积仍绝对收敛。

对于无穷级数

$$S = a_1 + a_2 + a_3 + \dots + a_n + \dots, \tag{4.21}$$

有如下常用的绝对收敛判据:

- 比较法: 设有正项收敛级数 $b_1 + b_2 + \cdots + b_n + \cdots$, 且 $|a_n| < b_n$, 则 S 绝对收敛。
- **比值法**: 若极限 $\lim_{n\to\infty} |a_{n+1}/a_n| = L$ 存在,则当 L < 1 时级数绝对收敛;当 L > 1 时级数发散;当 L = 1 时无从判断。
- **根式法**: 如果极限 $\lim_{n\to\infty} |a_n|^{1/n} = L$ 存在,则当 L < 1 时级数绝对收敛;当 L > 1 时级数发散;当 L = 1 时无从判断。

例 4.3 判断级数

$$\sum_{n=1}^{\infty} \frac{1}{n!} = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \dots$$
 (4.22)

是否收敛。

例 4.4 判断级数

$$\sum_{n=1}^{\infty} \frac{n^n}{n!} \tag{4.23}$$

是否收敛。(提示: 斯特林公式: $\ln n! = n \ln n - n + O(\ln n)$)

当无穷级数

$$w_1(z) + w_2(z) + w_3(z) + \dots + w_n(z) + \dots$$
 (4.24)

的每一项本身也是函数时,称为函数项级数。函数项级数在某一确定点 z_0 变为常数项级数,其收敛判据与常数项级数也一致。定义在某个区域 D 上的函数项级数有两种可能的收敛形式。

• 逐点收敛: 对于 $\sum_{n=1}^{\infty} w_n(z)$, 当下列条件满足时,

$$\forall \varepsilon > 0, \quad \exists N(z), \quad \text{s.t. } \forall n > N(z), p \ge 1, \quad |\sum_{k=n+1}^{n+p} w_k| < \varepsilon$$
 (4.25)

则称该函数项级数逐点收敛。

• **一致收敛**: 对于 $\sum_{n=1}^{\infty} w_n(z)$, 当下列条件满足时,

$$\forall \varepsilon > 0, \quad \exists N, \quad \text{s.t. } \forall n > N, p \ge 1, \quad \left| \sum_{k=n+1}^{n+p} w_k \right| < \varepsilon$$
 (4.26)

则称该函数项级数一致收敛。

对于一致收敛级数,级数给出的函数

$$f(z) = w_1(z) + w_2(z) + \dots + w_n(z) + \dots$$
(4.27)

也是连续的。而对于逐点收敛级数则不然。

例 4.5

$$\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n} \tag{4.28}$$

在 \mathbb{R} 上逐点收敛, 但在 x=0 出不连续。

如果一个函数项级数在某个区域上既是一致收敛的也是绝对收敛的,则称为一致绝

4.2 幂级数 39

对收敛级数。魏尔斯特拉斯给出了一致收敛级数的 **M** 判别法。对于区域 D 上的函数项级数 $\sum w_n(z)$, 如果一个绝对收敛常数项级数 $\sum a_n$ 和某个常数 M, 使得当 n 充分大时,

$$|w_n(z)| < Ma_n \tag{4.29}$$

在D上恒成立,则 $\sum w_n(z)$ 一致绝对收敛。对于一致绝对收敛级数允许我们逐项积分或逐项求导。

△ 练习 4.1 证明对于下列函数项级数在 $x \in \mathbb{R}$ 上一致收敛。

$$\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}.$$

4.2 幂级数

一类非常重要的函数项级数是幂级数,定义为

$$\sum_{k=0}^{\infty} a_k z^k = a_0 + a_1 z + a_2 z^2 + a_3 z^3 + \dots + a_n z^n + \dots$$
 (4.30)

其中 a_k 是复系数。更一般的可以定义在 z_0 附近展开的幂级数

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k \,. \tag{4.31}$$

几何级数

$$1 + z + z^2 + z^3 + z^4 + \dots {(4.32)}$$

是最简单的一类幂级数。前面我们知道,当 |z| < 1 是几何级数收敛,

$$1 + z + z^2 + z^3 + z^4 + \dots = \frac{1}{1 - z}, \qquad |z| < 1.$$
 (4.33)

因此,几何级数在以z=0为圆心,1为半径的圆内收敛,在圆上及其外部发散,其和函数在该圆上有奇点。

例 4.6 对于任何 r > 0,幂级数

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} \tag{4.34}$$

 $|z| \le r$ 一致绝对收敛。事实上,这个级数给出的正是指数函数 $\exp(z)$ 。

关于幂级数的一个重要定理是由阿贝尔证明的。

定理 4.3. 阿贝尔定理

对于任意幂次级数(4.30), 总存在实数 R, $0 \le R \le \infty$, R 称为该级数的收敛半径, 该级数有如下性质,

- 该级数对于 |z| < R 上的任意一点绝对收敛。如果有 $0 \le \rho < R$,则该级数 在 $|z| \le \rho$ 上一致绝对收敛。
- 当 |z| > R 时该级数发散。
- 该级数在 |z| < R 上是解析函数,该解析函数的导数可通过对级数逐项求导得到,且导数的收敛半径不变。

|z| = R 称为收敛圆。

4.2 幂级数 40

注意这个定理无法判断在收敛圆上的级数收敛行为。通过根式判别法可以给出R的具体表达式,称作阿达玛的收敛半径公式,

$$\frac{1}{R} = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}, \tag{4.35}$$

其中 $\lim_{n\to\infty} \sup \sqrt[n]{|a_n|}$ 称作序列 $\{|a_n|\}$ 的 limit superior。如果定义 $\alpha_n = \sup\{|a_n| | k \ge n\}$,则

$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n|} = \lim_{n \to \infty} \alpha_n. \tag{4.36}$$

当极限 $\lim_{n\to\infty} \sqrt[n]{|a_n|}$ 存在时,有

$$\lim_{n \to \infty} \sup \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{|a_n|}. \tag{4.37}$$

lim superior 的好处是不管极限存不存在, lim superior 肯定存在。下面我们证明阿贝尔定理。

首先我们证明对于 |z| < R 上的任意点级数绝对收敛。为此我们选取 ρ 使得 $|z| < \rho < R$ 。因此

$$\frac{1}{\rho} > \frac{1}{R} \,. \tag{4.38}$$

由(4.35)可知存在 n_0 , 当 $n > n_0$ 时

$$\frac{1}{\rho} > \sqrt[n]{|a_n|} \,. \tag{4.39}$$

因此当 $n > n_0$ 时有

$$|a_n||z|^n < \frac{|z|^n}{\rho^n} \,. \tag{4.40}$$

由于 $|z|<\rho$,不等号右侧是一个收敛几何级数的第 n 项。由比较判别法知道级数绝对收敛。为了证明级数在 $|z|\leq\rho< R$ 上一致收敛,我们可以选取 ρ' ,使得 $\rho<\rho'< R$ 。对于充分大的 n 我们同样有

$$|a_n||z|^n < \frac{|z|^n}{\rho'^n} \le \frac{\rho^n}{\rho'^n}$$
 (4.41)

上面不等式最右端是一个绝对收敛的常数项级数,由魏尔斯特拉斯 M 判别法知道级数在 $|z| < \rho < R$ 上一致收敛。

为了证明当 |z| > R 是级数发散, 我们取 ρ 使得 $R < \rho < |z|$, 此时有

$$\frac{1}{R} > \frac{1}{a},\tag{4.42}$$

因此对于充分大的 n 总是有

$$\sqrt[n]{|a_n|} > \frac{1}{\rho}.\tag{4.43}$$

因此

$$|a_n||z|^n > \frac{z^n}{\rho^n} \to \infty. (4.44)$$

因此这个级数显然不收敛。

幂级数在其一致绝对收敛区域内的导数可以记为

$$\sum_{n=1}^{\infty} n a_n z^{n-1} \,. \tag{4.45}$$

为了证明导数具有同样的收敛半径 R,只需证明

$$\lim_{n \to \infty} \sup \sqrt[n]{n} = 1. \tag{4.46}$$

为此我们令 $\sqrt[n]{n} = 1 + \delta_n$, 显然 $\delta_n > 0$ 。两边求 n 次方得到

$$n = (1 + \delta_n)^n = 1 + n\delta_n + \frac{1}{2}n(n-1)\delta_n^2 + \dots > 1 + \frac{1}{2}n(n-1)\delta_n^2$$
 (4.47)

由此得到

$$\delta_n^2 < \frac{2}{n-1} \,, \tag{4.48}$$

因此 $\lim_{n\to\infty} \delta_n = 0$ 。

注

- $\exists R = \infty$ 时,级数对应的解析函数是整函数。
- 当 R = 0 是级数仅在一点收敛,此时级数没有对应的解析函数。
- 除了根式判别法给出的收敛半径外,有时也能用比值判别法求收敛半径,

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| . \tag{4.49}$$

例 4.7 求下述级数的收敛半径。

$$\sum_{n=1}^{\infty} nz^n , \qquad \sum_{n=0}^{\infty} n! z^n , \qquad \sum_{n=0}^{\infty} \frac{1}{n!} z^n . \tag{4.50}$$

注意不管幂级数在收敛圆上收敛与否,其所对应的解析函数在其收敛圆上必然存在 奇点。此处不作证明,但给出一些例子。

- $1 + z + z^2 + \dots = 1/(1-z)$ 在 |z| = 1 上不收敛。z = 1 是对应解析函数的奇点。
- $\sum_{n=1}^{\infty} z^n/n = -\ln(1-z)$ 在 z=1 发散, 其余各处收敛。

•

$$\frac{z^2}{1\cdot 2} + \frac{z^3}{2\cdot 3} + \dots + \frac{z^n}{n(n-1)} + \dots = z + (1-z)\ln(1-z)$$
 (4.51)

在 |z|=1 处处收敛,但其对应解析函数在 z=1 处有奇点。

- **练习 4.2** 求 $\frac{2z+3}{z+1}$ 在 $z_0 = 1$ 处的幂级数展开,并求其收敛半径。
- ▲ 练习 4.3 求下列级数的收敛半径:

$$\sum_{n=1}^{\infty} n! z^n \,, \qquad \sum_{n=1}^{\infty} q^{n^2} z^n \, \left(|q| < 1 \right), \qquad \sum_{n=1}^{\infty} z^{n!} \,.$$

- **练习 4.4** 设 $\sum_{n=0}^{\infty} a_n z^n$ 的收敛半径为 R, 求 $\sum_{n=0}^{\infty} a_n z^{2n}$ 和 $\sum_{n=0}^{\infty} a_n^2 z^n$ 的收敛半径。
- ▲ 练习 4.5 z 取何值时级数

$$\sum_{n=0}^{\infty} \left(\frac{z}{1+z} \right)^n$$

收敛?

4.3 泰勒级数展开 42

4.3 泰勒级数展开

定理 4.4. 泰勒展开定理

设复变函数 f(z) 在区域 D 上解析, z_0 是 D 上一点。则 f(z) 在 z_0 处有幂级数表示

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \qquad (4.52)$$

该幂级数的收敛半径是 z_0 离 D 的边界的最短距离,记为 r。因此上述泰勒展开只对 $|z-z_0| < r$ 有效。幂级数的系数由下式唯一确定

$$a_n = \frac{f^{(n)}(z_0)}{n!} = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz, \qquad (4.53)$$

其中 C 是 D 上以正定向绕 zn 的简单封闭围道。

证明:对于以 z_0 为圆心,r 为半径的开圆盘 $D_r(z_0)$ 内任意一点 z,总可以选取 r_1 和 r_2 ,使得

$$|z - z_0| < r_1 < r_2 < r. (4.54)$$

有柯西公式知道

$$f(z) = \frac{1}{2\pi i} \int_C \frac{f(w)}{w - z} dw, \qquad (4.55)$$

其中 C 是以 z_0 为圆心, r_2 为半径的正定向圆,显然在积分围道上有 $|w-z_0|=r_2$,因此

$$\frac{|z - z_0|}{|w - z_0|} < 1. (4.56)$$

因此对(4.55)的分母有

$$\frac{1}{w-z} = \frac{1}{w-z_0+z_0-z} = \frac{1}{w-z_0} \frac{1}{1-\frac{z-z_0}{w-z_0}} = \frac{1}{w-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{w-z_0}\right)^n. \tag{4.57}$$

将其带入柯西积分公式后得到

$$f(z) = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{C} \frac{f(w)(z-z_0)^n}{(w-z_0)^{n+1}} dw = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \int_{C} \frac{f(w)}{(w-z_0)^{n+1}} dw (z-z_0)^n.$$
 (4.58)

与(4.52)比较得到

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(w)}{(w - z_0)^{n+1}} dw = \frac{f^{(n)}(z_0)}{n!},$$
(4.59)

得证。

我们看到解析函数在解析邻域内一定有泰勒级数展开表示。事实上这正是"解析"一词的来源。对于复变函数其神奇之处在于:

- 在一个区域上只要一次导数处处存在,则任意阶导数也处处存在;
- 一定存在泰勒级数表示,而且其系数由柯西公式唯一确定;换句话说,解析函数的 泰勒级数是唯一的。

注意上述性质在实变量函数里并不存在。事实上,对于实函数,甚至无穷阶导数存在也 不能一定得到泰勒级数表示存在。 4.4 洛朗展开 43

例 4.8 函数

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0\\ 0, & x \le 0 \end{cases}$$
 (4.60)

的所有阶导数存在且连续,但 f(x) 在 x=0 处没有泰勒级数展开。

泰勒展开提供了对任意复杂解析函数在解析邻域内计算的方便手段。对于多值函数, 在指定了分支和割线后,同样能在解析邻域内做泰勒展开。

例 4.9 求 $\sin(z)$ 在 z=0 处的泰勒展开并给出收敛半径。

例 4.10 求

$$f(z) = \frac{e^z}{1 - z}$$

在z=0处的泰勒展开并给出收敛半径。

例 4.11 求出

$$f(z) = \frac{1}{1-z}$$

在 z = 5 处的泰勒展开并给出收敛半径。

例 4.12 求

$$f(z) = \ln(1+z)$$

在z=0的泰勒展开和收敛半径。

定理 4.5. 解析函数的零点孤立性定理

如果 f(z) 是区域 D 上的解析函数且不恒为零,则 f(z) 在 D 上的零点一定是孤立零点,即对 f(z) 的任意零点 z_0 ,一定能找到一个邻域 $D_\varepsilon(z_0)$,使得 f(z) 在 $D_\varepsilon(z_0)$ 上除了 z_0 外不再有零点。

证明:设 z_0 是 f(z)的零点,f(z)在 z_0 处有泰勒级数展开

$$f(z) = \sum_{n=1}^{\infty} a_n (z - z_0)^n.$$
 (4.61)

由于 f(z) 不恒为零,故其展开系数 a_n 不能恒为零。不妨令第一个非零的 a_n 为 a_N ,则

$$f(z) = (z - z_0)^N \left(\sum_{n=0}^{\infty} a_{N+n} (z - z_0)^n \right) := (z - z_0)^N g(z).$$
 (4.62)

由于 $a_N \neq 0$,因此 $g(z_0) \neq 0$ 。由 g(z) 的连续性可知一定存在 z_0 的某个邻域使得 $g(z_0) \neq 0$,因此在这个邻域内 $f(z) \neq 0$ 。证毕。

- **练习 4.6** 求 $1/(1+z^2)$ 在 $z_0 = a$ 处的泰勒展开通式,其中 a 是实数。
- ▲ 练习 4.7 勒让德多项式是如下生成函数在原点处的泰勒展开,

$$\frac{1}{\sqrt{1-2\alpha z+z^2}}=1+P_1(\alpha)z+P_2(\alpha)z^2+\cdots$$

求出 $P_1(\alpha)$, $P_2(\alpha)$, $P_3(\alpha)$, $P_4(\alpha)$.

△ 练习 4.8 对 $\ln(\frac{\sin z}{z})$ 在原点处做泰勒展开到 z^6 。

4.4 洛朗展开 44

4.4 洛朗展开

泰勒展开对于解析函数在解析邻域内的计算非常有用,但实际情况中我们也会碰到 解析函数在非解析邻域内的计算问题。一个简单的例子是

$$f(z) = \frac{1}{z(z-1)}$$

在 z = 0 处的展开。显然 0 < |z| < 1 是这个函数的解析邻域,但这是一个复连通区域, z = 0 是函数的奇点。为了讨论解析函数在孤立奇点(关于孤立奇点的定义我们后面再讨论,此处只需从字面上理解)处的展开问题,我们需要洛朗展开。

定理 4.6. 洛朗级数展开定理

设函数 f(z) 在带形区域

$$D: r_1 < |z - z_0| < r_2$$

上解析,则 f(z) 在该带形区域上可展开成如下无穷级数

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} + \sum_{n=0}^{\infty} a_n (z - z_0)^n,$$
 (4.63)

或者统一写为

$$f(z) = \sum_{n = -\infty}^{\infty} a_n (z - z_0)^n.$$
 (4.64)

其中

$$\sum_{n=0}^{\infty} a_n (z-z_0)^n$$

称作该洛朗级数的解析部分或正规部分, 其收敛区域是 $|z-z_0| < r_2$ 。

$$\sum_{n=1}^{\infty} \frac{b_n}{(z-z_0)^n}$$

称作主要部分或奇异部分,其收敛区域是 $|z-z_0| > r_1$ 。洛朗级数的展开系数可由如下积分公式给出

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz, \quad n \ge 0$$
 (4.65)

$$b_n = \frac{1}{2\pi i} \int_C f(z)(z - z_0)^{n-1} dz, \quad n \ge 1$$
 (4.66)

或者统一的

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z - z_0)^{n+1}} dz, \quad -\infty < n < \infty.$$
 (4.67)

其中 C 是在带形区域 $r_1 < |z - z_0| < r_2$ 中绕 z_0 一周的简单封闭正定向围道。

证明:对于解析区域内的任意一点 z,选取如图4.1所示积分围道 C_1 , C_2 , C_3 , C_4 ,其定向如图所示。有柯西积分公式有

$$f(z) = \frac{1}{2\pi i} \int_{C_1 + C_2 + C_3 + C_4} \frac{f(w)}{w - z} dw.$$
 (4.68)

4.4 洛朗展开 45

图 4.1: 计算洛朗级数的围道

由于 C_2 和 C_4 互为相反围道, 其贡献抵消, 因此有

$$f(z) = \frac{1}{2\pi i} \int_{C_1 + C_3} \frac{f(w)}{w - z} dw.$$
 (4.69)

我们分别计算这两个积分。对于 C_3 有

$$\frac{1}{2\pi i} \int_{C_3} \frac{f(w)}{w - z} dw = \frac{1}{2\pi i} \int_{C_3} \frac{f(w)}{w - z_0 - (z - z_0)} dw$$

$$= \frac{1}{2\pi i} \int_{C_3} \frac{1}{w - z_0} \frac{f(w)}{1 - \frac{z - z_0}{w - z_0}} dw$$

$$= \frac{1}{2\pi i} \int_{C_3} f(w) \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(w - z_0)^{n+1}} dw$$

$$= \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \int_{C_3} \frac{f(w)}{(w - z_0)^{n+1}} dw \right] (z - z_0)^n \tag{4.70}$$

同理对于 C_1 围道,有

$$\frac{1}{2\pi i} \int_{C_1} \frac{f(w)}{w - z} dw = \frac{1}{2\pi i} \int_{-C_1} \frac{f(w)}{z - z_0 - (w - z_0)} dw$$

$$= \frac{1}{2\pi i} \int_{-C_1} \frac{1}{z - z_0} \frac{f(w)}{1 - \frac{w - z_0}{z - z_0}} dw$$

$$= \frac{1}{2\pi i} \int_{-C_1} f(w) \sum_{n=0}^{\infty} \frac{(w - z_0)^n}{(z - z_0)^{n+1}} dw$$

$$= \frac{1}{2\pi i} \int_{-C_1} f(w) \sum_{n=1}^{\infty} \frac{(w - z_0)^{n-1}}{(z - z_0)^n} dw$$

$$= \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \int_{-C_1} f(w)(w - z_0)^{n-1} dw \right] \frac{1}{(z - z_0)^n} \tag{4.71}$$

有于 C_3 和 $-C_1$ 都是绕 z_0 的正定向围道,柯西定理的围道积分独立性告诉我们对于带形区域中的解析函数有

$$\int_{C} = \int_{C_3} = \int_{-C_1} \tag{4.72}$$

因此

$$f(z) = \sum_{n=1}^{\infty} \left[\frac{1}{2\pi i} \int_{C} f(w)(w - z_{0})^{n-1} dw \right] \frac{1}{(z - z_{0})^{n}} + \sum_{n=0}^{\infty} \left[\frac{1}{2\pi i} \int_{C} \frac{f(w)}{(w - z_{0})^{n+1}} dw \right] (z - z_{0})^{n}.$$
(4.73)

此即我们要证明的定理。显然,一旦指定了洛朗级数的展开点和带形区域,其系数就是唯一确定的。在实际计算问题中,除了直接应用洛朗级数系数的积分表示外,通常有更简便的代数技巧能直接得到系数。

例 4.13 计算

$$f(z) = \frac{1}{(z-1)(z-4)}$$

在 $z_0 = 1$ 处的洛朗展开,展开区域分别为环域 0 < |z-1| < 3 和 3 < |z-1|。

例 4.14 计算

$$f(z) = z^2 e^{\frac{1}{z}}$$

在 $z_0 = 0$ 处的洛朗展开。

例 4.15 计算

$$f(z) = \exp\left(\frac{1}{2}x(z - 1/z)\right)$$

在收敛环上的洛朗展开。

- ▲ 练习 4.9 求下列函数在对应环域上的洛朗展开:
 - z/(z+2), 2 < |z|
 - $\sin(1/z)$, 0 < |z|
 - $\cos(1/z)$, 0 < |z|
 - 1/(z-3), 3<|z|
- **练习 4.10** 令 $f(z) = \frac{1}{(z-1)(z-2)}$, 求 f 在下述环域上的洛朗展开:
 - |z| < 1
 - 1 < |z| < 2
 - 2 < |z|
- **练习 4.11** 证明 $1/(e^z 1)$ 在原点处的洛朗展开具有形式

$$\frac{1}{z} - \frac{1}{2} + \sum_{n=1}^{\infty} (-1)^{n-1} \frac{B_k}{(2k)!} z^{2k-1}$$

其中 B_k 称作伯努利数。求出 B_1, B_2, B_3 。

4.5 奇点的分类

洛朗展开适用于孤立奇点或非奇异点处的展开。为此我们需要定义何为孤立奇点。

4.5 奇点的分类 47

定义 4.1. 孤立起点

 z_0 是 f(z) 的孤立奇点,则一定有 z_0 的某个充分小邻域内使得 z_0 是其中的唯一奇点。反之则称为非孤立奇点。

如果 z_0 是函数 f(z) 的孤立奇点,则一定存在某个 r,使得 f(z) 在 $0 < |z - z_0| < r$ 上解析,并且有洛朗展开

$$f(z) = \sum_{n=1}^{\infty} \frac{b_n}{(z - z_0)^n} + \sum_{n=0}^{\infty} a_n (z - z_0)^n.$$
 (4.74)

此时奇点 20 又可以分为如下几类:

- **可去奇点**: 如果所有 $b_n = 0$,则 z_0 是 f(z) 的可去奇点。另外还有一些等价的可去奇点表述
 - $\lim_{z\to z_0} f(z)$ 存在且有限。
 - $\lim_{z \to z_0} (z z_0) f(z) = 0.$
 - 存在一个邻域 $D_{\varepsilon}(z_0)$,使得 f(z) 在 $D_{\varepsilon}(z_0)\setminus\{z_0\}$ 有界。
- **极点**: 如果只有有限个 b_n 不为零,则 z_0 是 f(z) 的极点。如果 $b_n \neq 0$, $b_m = 0$, $\forall m > n$,则 z_0 是 n 阶极点。一阶极点又称为单极点。另外还有一些等价的 m 阶极点判断方法:
 - $f(z) = \frac{g(z)}{(z-z_0)^m}, g \neq z_0 \text{ 解析}, \exists g(z_0) \neq 0.$
 - $\frac{1}{f(z)}$ 在 z_0 是 m 阶零点。
 - $\lim_{z\to z_0} (z-z_0)^{m+1} f(z) = 0 \not\sqsubseteq \lim_{z\to z_0} (z-z_0)^m f(z) \neq 0$
- **本性奇点**:如果有无穷多个 b_n 不为零,则 z_0 是本性奇点。另外一个判断方法是,如果一个奇点既非可去奇点也非极点,则肯定是本性奇点。
- **留数**: b_1 (或 a_{-1}) 称作 f(z) 在 z_0 的留数,记作 $\operatorname{res} f(z_0)$ 。 关于本性奇点,一个重要的定理是

定理 4.7. Casorati-魏尔斯特拉斯定理

设 z_0 是 f(z) 的本性奇点,令 D 是 z_0 的某个邻域,使得 f(z) 在 $U=D\setminus\{z_0\}$ 上解析。则 f(z) 在 U 上的取值是在 $\mathbb C$ 中处处稠密的,即对于 $\mathbb C$ 中任何复数, f(z) 在 U 上都可无限逼近。

证明:用反证法,设存在 $\alpha \in \mathbb{C}$ 及s > 0,使得

$$|f(z) - \alpha| > s$$
, $\forall z \in U$

定义函数

$$g(z) = \frac{1}{f(z) - \alpha},\tag{4.75}$$

显然 g(z) 在 U 上是解析函数且有界,因此 z_0 最多是 g(z) 的可去奇点,因此可将 g(z) 延 拓成 D 上的解析函数。从而 z_0 至多是 $\frac{1}{g(z)} = f(z) - \alpha$ 的极点。但这与 z_0 是 f(z) 的本性奇点矛盾,得证。

例 4.16 判断下列函数在 $z_0 = 0$ 处的奇点性质。对于孤立奇点,其留数是多少?

• $f(z) = \frac{1}{z^5}$

4.5 奇点的分类 48

- $f(z) = \frac{\sin z}{z}$ $f(z) = \frac{e^z 1}{z}$
- $f(z) = \frac{1}{\sin(1/z)}$
- $f(z) = \ln z$
- $f(z) = e^{1/z}$
- ▲ 练习 4.12∞ 是整函数 f(z) 的可去奇点当且仅当 f 是常函数。