

Lineáris leképezések

Összeállította: dr. Leitold Adrien egyetemi docens

Lineáris leképezés fogalma

Lineáris leképezés:

Az $A: \mathbb{R}^m \to \mathbb{R}^n$ típusú fv.-t lineáris leképezésnek nevezzük, ha bármely $\underline{x}, y \in \mathbb{R}^m$, $\lambda \in \mathbb{R}$ esetén:

$$A(\underline{x} + \underline{y}) = A(\underline{x}) + A(\underline{y})$$
 additív
 $A(\lambda \underline{x}) = \lambda \cdot A(\underline{x})$ homogén

Megjegyzések:

- Ha speciálisan m = n, akkor lineáris transzformációról beszélünk.
- Ha az A leképezés $R^m \rightarrow R^n$ típusú, akkor $dom(A) = R^m$, $im(A) \subseteq R^n$.

Lineáris leképezések tulajdonságai (Állítások)

- Bármely lineáris leképezés nullvektorhoz nullvektort rendel .
- Ha $\underline{v}_1, \underline{v}_2, ..., \underline{v}_k \in R^m$, $\lambda_1, \lambda_2, ..., \lambda_k \in R$, akkor $A(\lambda_1 \underline{v}_1 + ... + \lambda_k \underline{v}_k) = \lambda_1 \cdot A(\underline{v}_1) + ... + \lambda_k \cdot A(\underline{v}_k)$
- Legyen $A: \mathbb{R}^m \to \mathbb{R}^n$ lin. leképezés, $B = \{\underline{b}_1, ..., \underline{b}_m\}$ bázis \mathbb{R}^m -ben. Ekkor bármely $\underline{x} \in \mathbb{R}^m$ esetén az $A(\underline{x})$ képvektorra:

ha
$$\underline{x} = \lambda_1 \underline{b}_1 + ... + \lambda_m \underline{b}_m$$
, akkor $A(\underline{x}) = \lambda_1 A(\underline{b}_1) + ... + \lambda_m A(\underline{b}_m)$,

azaz a képvektort egyértelműen meghatározzák a bázisvektorok képei.

Magtér, képtér

Lineáris leképezés magtere:

Legyen $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezés. Az A leképezés magtere olyan \mathbb{R}^m -beli vektorokból áll, amelyekhez A az \mathbb{R}^n nullvektorát rendeli:

$$ker(A) = \{ \underline{x} \in R^m | A(\underline{x}) = \underline{o} \}$$

Megjegyzés: Minden lineáris leképezés magtere tartalmazza a nullvektort.

■ Lineáris leképezés képtere: a képvektorok halmaza. $im(A) = \{A(\underline{x}) \in R^n \mid \underline{x} \in R^m \}$

Megjegyzés: Igazolható, hogy minden lineáris leképezésnél a magtér altér R^m -ben, a képtér altér R^n -ben.

Lineáris leképezés mátrixa

Lineáris leképezés mátrixa:

Legyen $A: R^m \to R^n$ lineáris leképezés, $\underline{e}_1, \dots, \underline{e}_m$ a kanonikus bázis R^m -ben. Az A lin. leképezés (kanonikus bázisokra vonatkozó) mátrixán azt az $n \times m$ -es mátrixot értjük, amelynek oszlopvektorai az $A(\underline{e}_1), \dots, A(\underline{e}_m)$ képvektorok.

Jel.: *M*(*A*), *A*

Megjegyzés:

Az $\underline{x} \in R^m$ vektor képe az $M(A) \cdot \underline{x}$ mátrixszorzással is megkapható, ahol \underline{x} -et oszlopvektorként írjuk fel.

Műveletek lineáris leképezésekkel

Lineáris leképezések összege:

Legyenek $A: R^m \to R^n$, $B: R^m \to R^n$ lineáris leképezések.

Az A és B összege:

$$(A+B)(x)=A(x)+B(x)$$
, minden R^m -beli \underline{x} -re.

- Igazolhatóak az alábbiak:
 - Az A+B leképezés is lineáris.
 - M(A+B) = M(A) + M(B)

Műveletek lineáris leképezésekkel (folyt.)

Lineáris leképezés skalárszorosa:

Legyen $A: \mathbb{R}^m \to \mathbb{R}^n, \lambda \in \mathbb{R}$

Ekkor az A leképezés λ -szorosa:

$$(\lambda \cdot A)(\underline{x}) = \lambda \cdot A(\underline{x})$$
, minden R^m -beli \underline{x} -re.

- Igazolhatóak az alábbiak:
 - A λ A leképezés is lineáris.
 - $M(\lambda \cdot A) = \lambda \cdot M(A)$

Műveletek lineáris leképezésekkel (folyt.)

■ Lineáris leképezések összetétele (kompozíciója):

Legyenek $A: R^m \to R^n$ és $B: R^\ell \to R^m$ lin. leképezések. Ekkor az $A \circ B: R^\ell \to R^n$ leképezés is lineáris.

Igazolható:

$$M(A \circ B) = M(A) \cdot M(B)$$

Megjegyzés:

A fentiek alapján lineáris leképezések és mátrixok között kölcsönösen egyértelmű, művelettartó megfeleltetés létesíthető.

4

Speciális lineáris leképezések

Identikus leképezés:

$$id_{R^n}: R^n \to R^n$$
, $\underline{x} \mapsto \underline{x}$ mátrixa: $M(id_{R^n}) = E_{n \times n}$

k-adik projekció (vetítő) függvény:

$$pr_k: R^n \to R, (x_1,...,x_k,...,x_n) \mapsto x_k \quad \text{mátrixa}: M(pr_k) = [0...1...0]$$

$$k -^{\uparrow} \text{adik}$$

k-adik injekció (beágyazó) függvény:

$$in_k: R \to R^n$$
, $x \mapsto (0,...,0,x,0,...,0)$ mátrixa: $M(in_k) = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow k - adik$

Lineáris leképezés rangja

■ Lineáris leképezés rangja: Az $A:R^n \to R^n$ lineáris leképezés rangján a képtér dimenzióját értjük:

$$r(A) = dim(im(A))$$

■ Igazolható, hogy minden $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezésre:

$$r(A) = r(M(A))$$

Lineáris leképezésekre vonatkozó további állítások

- Az $A: R^m \to R^n$ lineáris leképezés injektív (invertálható) $\Leftrightarrow ker(A) = \{\underline{o}\}.$
- Bármely A:Rⁿ→Rⁿ lineáris leképezés esetén lineárisan összefüggő vektorok képvektorai is lineárisan összefüggőek.
- Az $A: R^m \to R^n$ lineáris leképezés injektív (invertálható) \Leftrightarrow lineárisan független vektorok képvektorai is lineárisan függetlenek.
- Az $A: \mathbb{R}^m \to \mathbb{R}^n$ lineáris leképezés ráképezés \iff generátorrendszer képe is generátorrendszer.
- Az $A: R^m \to R^n$ lineáris leképezés bijektív \iff bázis képe is bázis.

Lineáris transzformáció determinánsa

■ Az $A: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformáció determinánsán mátrixának determinánsát értjük:

$$det(A) = det(M(A))$$
.

Megjegyzés:Lineáris transzformáció mátrixa mindig négyzetes!

Lineáris transzformáció invertálhatósága

- Lin. transzformáció invertálhatóságának feltétele:
 - Az $A: \mathbb{R}^n \to \mathbb{R}^n$ lin. transzformáció invertálható \Leftrightarrow az A lin. transzformáció mátrixa invertálható.
 - Az $A: R^n \to R^n$ lin. transzformáció invertálható \Leftrightarrow $det(A) = det(M(A)) \neq 0$.
- Ha az $A: \mathbb{R}^n \to \mathbb{R}^n$ lin. transzformáció invertálható, akkor az inverz transzformáció is lineáris és az inverz transzformáció mátrixa:

$$M(A^{-1}) = (M(A))^{-1}$$
.

Lin. transzformáció sajátértéke, sajátvektora, sajátaltere

- 1. Legyen $A: R^n \to R^n$ típusú lineáris transzformáció. Az A lineáris transzformáció sajátértékének nevezzük a $\lambda \in R$ számot, ha van olyan $\underline{v} \in R^n$, $\underline{v} \neq \underline{o}$ vektor, amelyre $A(\underline{v}) = \lambda \cdot \underline{v}$ teljesül. Ekkor a $\underline{v} \in R^n$ vektort a λ sajátértékhez tartozó sajátvektornak nevezzük.
- 2. Az $A: R^n \to R^n$ lineáris transzformáció sajátalterét olyan $\underline{v} \in R^n$ vektorok alkotják, amelyekre $A(\underline{v}) = \lambda \cdot \underline{v}$ teljesül Jel.: $H(\lambda)$.
- 3. A $H(\lambda)$ sajátaltér dimenzióját a λ sajátérték geometriai multiplicitásának nevezzük.

Lin. transzformáció sajátértéke, sajátvektora, sajátaltere (folyt.)

- Megjegyzések:
- 1. A $H(\lambda)$ sajátaltér vektorai a λ sajátértékhez tartozó sajátvektorok és a nullvektor.
- 2. Igazolható, hogy a $H(\lambda)$ sajátaltér (ahogy az elnevezés is mutatja) altér R^n —ben.
- Állítás:

Egy lineáris transzformáció különböző sajátértékekhez tartozó sajátvektorai lineárisan függetlenek.

Következmény:

Egy $A: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformációnak legfeljebb n darab különböző sajátértéke lehet.

Négyzetes mátrix sajátértéke, sajátvektora

Legyen $A n \times n$ -es mátrix. Az A mátrix sajátértékének nevezzük a $\lambda \in R$ számot, ha van olyan \underline{v} $n \times 1$ -es oszlopvektor, ahol $\underline{v} \neq \underline{o}$, és amelyre $A \cdot \underline{v} = \lambda \cdot \underline{v}$ teljesül.

Ekkor a \underline{v} oszlopvektort a λ sajátértékhez tartozó sajátvektornak nevezzük.

Megjegyzés:

- 1. \underline{v} pontosan akkor λ sajátértékhez tartozó sajátvektora az A négyzetes mátrixnak, ha nemtriviális megoldása az $(A-\lambda \cdot E)\cdot \underline{x}=\underline{o}$ homogén egyenletrendszernek.
- 2. Az $(A \lambda \cdot E) \cdot \underline{x} = \underline{o}$ homogén egyenletrendszernek pontosan akkor van triviálistól különböző megoldása, ha $det(A \lambda \cdot E) = 0$.

Karakterisztikus polinom, karakterisztikus egyenlet

- 1. Legyen $A n \times n$ -es mátrix. Az A négyzetes mátrix karakterisztikus polinomján a $P(\lambda) = det(A \lambda \cdot E)$ polinomot, karakterisztikus egyenletén a $P(\lambda) = det(A \lambda \cdot E) = 0$ egyenletet értjük.
- Lineáris transzformáció karakterisztikus polinomján mátrixának karakterisztikus polinomját értjük.
 Lineáris transzformáció karakterisztikus egyenletén mátrixának karakterisztikus egyenletét értjük.

Megjegyzések:

- 1. Ha $A n \times n$ -es mátrix, akkor a karakterisztikus polinom λ -ra nézve n-ed fokú polinom, míg a karakterisztikus egyenlet n-ed fokú algebrai egyenlet.
- 2. A sajátértékek a karakterisztikus egyenlet gyökei.
- 3. A λ sajátérték algebrai multiplicitása az a szám, amely megmutatja, hogy λ hányszoros gyöke a $P(\lambda) = 0$ karakterisztikus egyenletnek.
- 4. Igazolható, hogy egy λ sajátérték geometriai multiplicitása mindig kisebb vagy egyenlő, mint az algebrai multiplicitás.

Összefoglalás: A sajátértékek, sajátvektorok meghatározása

Adott: $A: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformáció.

- 1. Felírjuk az A lin. transzformáció mátrixát. $\Rightarrow A_{n \times n}$
- 2. Felírjuk a karakterisztikus egyenletet: $P(\lambda) = det(A \lambda \cdot E) = 0$
- 3. Megoldjuk a karakterisztikus egyenletet. $\Rightarrow \lambda$ sajátértékek λ hányszoros gyöke a karakterisztikus egyenletnek? \Rightarrow algebrai multiplicitás
- 4. Minden λ sajátérték esetén az ismert λ sajátértékkel felírjuk az $(A-\lambda \cdot E)\cdot \underline{x} = \underline{o}$ homogén lin. egyenletrendszert és bázistranszformációval megoldjuk azt. $\Rightarrow M$ megoldáshalmaz
- 5. A λ sajátértékű sajátvektorok összessége: $M \setminus \{\underline{o}\}$
- 6. A λ sajátértékű sajátaltér: $H(\lambda) = M$
- 7. A λ sajátérték geometriai multiplicitása: $dim(H(\lambda))$

Cayley-Hamilton tétel

- Minden lineáris transzformáció illetve négyzetes mátrix gyöke a saját karakterisztikus egyenletének. Azaz:
- 1. Legyen $A: \mathbb{R}^n \to \mathbb{R}^n$ lineáris transzformáció, melynek a karakterisztikus egyenlete: $P(\lambda) = a_n \lambda^n + ... + a_1 \lambda + a_0 = 0$.

Ekkor: $P(A) = a_n A^n + ... + a_1 A + a_0 i d_{R^n} = O$,

ahol $O: \mathbb{R}^n \to \mathbb{R}^n, \ \underline{x} \mapsto \underline{o}$ az azonosan nulla leképezés.

2. Legyen $A n \times n$ -es mátrix, melynek a karakterisztikus egyenlete: $P(\lambda) = a_n \lambda^n + ... + a_1 \lambda + a_0 = 0$.

Ekkor: $P(A) = a_n A^n + ... + a_1 A + a_0 E = O$,

ahol O az $n \times n$ -es nullmátrix.