Statistical Methods in AI (CS7.403)

Lecture-11: PCA – 2, PPCA, FA, Feature Selection

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Center for Visual Information Technology (CVIT)

IIIT Hyderabad

PCA: Why eigenvectors?

PCA vs linear regression

In contrast: in regression we'd minimize square error on one dimension (x₂) using a linear combination the other dimensions

Computation of low-dimensional basis (i.e.,eigenfaces):

Step 1: obtain face images $I_1, I_2, ..., I_M$ (training faces)

(very important: the face images must be centered and of the same size)

Step 2: represent every image I_i as a vector Γ_i

Computation of the eigenfaces – cont.

Step 3: compute the average face vector Ψ :

$$\Psi = \frac{1}{M} \sum_{i=1}^{M} \Gamma_i$$

Step 4: subtract the mean face:

$$\Phi_i = \Gamma_i - \Psi$$

Step 5: compute the covariance matrix *C*:

$$C = \frac{1}{M} \sum_{n=1}^{M} \Phi_n \Phi_n^T = \frac{1}{M} A^T \quad (N^2 \times N^2 \text{ matrix})$$

where
$$A = [\Phi_1 \ \Phi_2 \cdots \Phi_M]$$
 $(N^2 \times M \text{ matrix})$

Computation of the eigenfaces – cont.

Step 6: compute the eigenvectors
$$u_i$$
 of $AA^T \longrightarrow AA^T u_i = \lambda_i u_i$

The matrix AA^T is very large --> not practical !!

Computation of the eigenfaces – cont.

Step 6: compute the eigenvectors
$$u_i$$
 of $AA^T \longrightarrow AA^T u_i = \lambda_i u_i$

The matrix AA^T is very large --> not practical!!

Step 6.1: consider the matrix A^TA (MxM matrix)

Step 6.2: compute the eigenvectors v_i of A^TA
 $A^TAv_i = \mu_i v_i$

What is the relationship between U_i and v_i ?

Computation of the eigenfaces – cont.

Step 6: compute the eigenvectors
$$u_i$$
 of $AA^T \longrightarrow AA^T u_i = \lambda_i u_i$

The matrix AA^T is very large --> not practical!!

Step 6.1: consider the matrix $A^T A$ ($M \times M$ matrix)

Step 6.2: compute the eigenvectors v_i of $A^T A$

$$A^T A v_i = \mu_i v_i$$

What is the relationship between U_i and v_i ?

$$A^T A v_i = \mu_i v_i \Longrightarrow A A^T A v_i = \mu_i A v_i \Longrightarrow$$

$$u_i = Av_i$$
 and $\lambda_i = \mu_i Av_i$

Thus, AA^T and A^TA have the same eigenvalues and their eigenvectors are related as follows: $u_i = Av_i$!!

Computation of the eigenfaces – cont.

Note 1: AA^T can have up to N^2 eigenvalues and eigenvectors.

Note 2: $A^T A$ can have up to M eigenvalues and eigenvectors.

Note 3: The M eigenvalues of $A^T A$ (along with their corresponding eigenvectors) correspond to the M largest eigenvalues of AA^T (along with their corresponding eigenvectors).

Step 6.3: compute the M best eigenvectors of AA^T : $u_i = Av_i$

(**important:** normalize u_i such that $||u_i|| = 1$)

Step 7: keep only K eigenvectors (corresponding to the K largest eigenvalues)

Eigendecomposition vs. Singular Value Decomposition

- Eigendecomposition
 - Must be a diagonalizable matrix
 - Must be a square matrix
 - Matrix (n x n size) must have n linearly independent eigenvector
 - e.g. symmetric matrix ..

Eigendecomposition vs. Singular Value Decomposition

- Eigendecomposition
 - Must be a diagonalizable matrix
 - Must be a square matrix
 - Matrix (n x n size) must have n linearly independent eigenvector
 - e.g. symmetric matrix ..

- Singular Value Decomposition
 - Computable for any size (M x n) of matrix

PCA

- Pick a continuous value z, which will be used to combine the "prototypes" u in the model
- Pick the the point x from a spherical Gaussian centered on zu

• Assume the following generative model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$

• Note: We'll assume data to be centered, otherwise $x_n = \mu + \mathbf{W} z_n + \epsilon_n$

• Assume the following generative model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$

- Note: We'll assume data to be centered, otherwise $x_n = \mu + Wz_n + \epsilon_n$
- Think of it as low dimensional $z_n \in \mathbb{R}^K$ "generating" a higher-dimensional $x_n \in \mathbb{R}^D$ via a mapping matrix $\mathbf{W} \in \mathbb{R}^{D \times K}$, plus some noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$

• Assume the following generative model for each observation x_n

$$\mathbf{x}_n = \mathbf{W}\mathbf{z}_n + \epsilon_n$$

- Note: We'll assume data to be centered, otherwise $x_n = \mu + \mathbf{W} z_n + \epsilon_n$
- Think of it as low dimensional $z_n \in \mathbb{R}^K$ "generating" a higher-dimensional $x_n \in \mathbb{R}^D$ via a mapping matrix $\mathbf{W} \in \mathbb{R}^{D \times K}$, plus some noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2 \mathbf{I}_D)$

- Intuitively, this generative model is "inverse" of what the traditional PCA does. Here we assume a latent low-dim z_n that "generates" the high-dim x_n via the mapping W (plus adding some noise)
- A directed graphical model linking z_n and x_n via "edge weights" W

• Can also write $x_n = \mathbf{W} z_n + \epsilon_n$ as each example x_n being a linear comb. of columns of $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K]$, plus some example-specific random noise ϵ_n

$$\mathbf{x}_n = \sum_{k=1}^K \mathbf{w}_k \mathbf{z}_{nk} + \epsilon_n$$

• The K columns of \mathbf{W} (each \mathbb{R}^D) are like "prototype vectors" shared by all examples. Each x_n is a linear combination of these vectors (the combination coefficients are given by $z_n \in \mathbb{R}^K$ which is basically the low-dim rep. of x_n).

• Can also write $x_n = \mathbf{W} z_n + \epsilon_n$ as each example x_n being a linear comb. of columns of $\mathbf{W} = [\mathbf{w}_1, \dots, \mathbf{w}_K]$, plus some example-specific random noise ϵ_n

$$\mathbf{x}_n = \sum_{k=1}^K \mathbf{w}_k \mathbf{z}_{nk} + \epsilon_n$$

- The K columns of \mathbf{W} (each \mathbb{R}^D) are like "prototype vectors" shared by all examples. Each x_n is a linear combination of these vectors (the combination coefficients are given by $z_n \in \mathbb{R}^K$ which is basically the low-dim rep. of x_n).
- Some examples:
 - In case of images, columns of W would correspond to "basis images"
 - In case of text documents, columns of W (with non-negativity imposed on it)
 would correspond to "topics" in the corpus

Probabilistic PCA - EM

• Since noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ is Gaussian, the conditional distrib. of x_n

$$p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) = \mathcal{N}(\mathbf{W}\mathbf{z}_n, \sigma^2 \mathbf{I}_D)$$

• Given a set of observations $\mathbf{X} = \{x_1, \dots, x_N\}$, the goal is to learn \mathbf{W} and the low-dim. representation of data, i.e., $\mathbf{Z} = \{z_1, \dots, z_N\}$

Probabilistic PCA - EM

• Since noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ is Gaussian, the conditional distrib. of x_n

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W},\sigma^2) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}_D)$$

- Given a set of observations $\mathbf{X} = \{x_1, \dots, x_N\}$, the goal is to learn \mathbf{W} and the low-dim. representation of data, i.e., $\mathbf{Z} = \{z_1, \dots, z_N\}$
- Assume a Gaussian prior on the low-dimensional latent representation, i.e.,

$$p(\mathbf{z}_n) = \mathcal{N}(0, \mathbf{I}_K)$$

- Observed data: $\mathbf{X} = \{x_1, \dots, x_N\}$, latent variable: $\mathbf{Z} = \{z_1, \dots, z_N\}$
- Parameters: \mathbf{W}, σ^2
- The complete data log -likelihood

$$\log p(\mathbf{X}, \mathbf{Z}|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(x_n, z_n|\mathbf{W}, \sigma^2) = \log \prod_{n=1}^{N} p(x_n|z_n, \mathbf{W}, \sigma^2) p(z_n)$$

$$= \sum_{n=1}^{N} \{\log p(x_n|z_n, \mathbf{W}, \sigma^2) + \log p(z_n)\}$$

Benefits of Probabilistic PCA

- Can handle missing data (can treat it as latent variable in E step)
- Doesn't require computing the $D \times D$ cov. matrix of data and doing expensive eigen-decomposition. When K is small (i.e., we only want few eigen vectors), this is especially nice because only inverting $K \times K$ is required

Benefits of Probabilistic PCA

- Can handle missing data (can treat it as latent variable in E step)
- Doesn't require computing the $D \times D$ cov. matrix of data and doing expensive eigen-decomposition. When K is small (i.e., we only want few eigen vectors), this is especially nice because only inverting $K \times K$ is required
- Easy to "plug-in" PPCA as part of more complex problems, e.g., mixtures of PPCA models for doing nonlinear dimensionality reduction, or subspace clustering (i.e., clustering when data in each cluster lives on a lower dimensional subspace).
- Possible to give it a fully Bayesian treatment (which has many benefits such as inferring K)

Factor Analysis

• Similar to PPCA except that the Gaussian conditional distribution $p(x_n|z_n)$ has diagonal instead of spherical covariance

$$x_n \sim \mathcal{N}(\mathbf{W}z_n, \mathbf{\Psi})$$

where Ψ is a diagonal matrix

Probabilistic PCA - EM

• Since noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ is Gaussian, the conditional distrib. of x_n

$$p(\mathbf{x}_n|\mathbf{z}_n,\mathbf{W},\sigma^2) = \mathcal{N}(\mathbf{W}\mathbf{z}_n,\sigma^2\mathbf{I}_D)$$

Factor Analysis

• Similar to PPCA except that the Gaussian conditional distribution $p(x_n|z_n)$ has diagonal instead of spherical covariance

$$x_n \sim \mathcal{N}(\mathbf{W}z_n, \mathbf{\Psi})$$

where Ψ is a diagonal matrix

 In Factor Analysis, the projection matrix W is also called the Factor Loading Matrix and z_n is called the factor scores for example n

Probabilistic PCA - EM

• Since noise $\epsilon_n \sim \mathcal{N}(0, \sigma^2)$ is Gaussian, the conditional distrib. of x_n

$$p(\mathbf{x}_n|\mathbf{z}_n, \mathbf{W}, \sigma^2) = \mathcal{N}(\mathbf{W}\mathbf{z}_n, \sigma^2\mathbf{I}_D)$$

PCA vs mixtures of Gaussians

Mixture of Gaussians

For each point:

- Pick the index of the (latent) Gaussian Z=k
- Pick the the point x from that the k-th Gaussian, x ~ N(μ_k,Σ_k)

PCA vs mixtures of Gaussians

 $p(\mathbf{x}|\hat{z})$

PCA

 Pick a continuous value z, which will be used to combine the "prototypes" u in the model

 x_2

 Pick the the point x from a spherical Gaussian centered on zu

PCA vs mixtures of Gaussians

Recognizing Human Activities from Constituent Actions

Mixture of PPCAs/Mixture of Factor Analyzers

 PPCA and FA learn a linear projection of the data (i.e., are linear dimensionality reduction methods)

 Similar to mixture of Gaussians, except that now each Gaussian is replaced by a PPCA or FA model

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA)

Also known as "Fisher Discriminant"

- Does dimensionality Reduction
 - Also use the label "y"
 - Or Supervised Dimensionality Reduction
- PCA, LDA are both linear -- there are also nonlinear Dimensionality Reduction schemes (kernel PCA, t-SNE, autoencoders)

Beyond PCA

Are the maximal variance dimensions the relevant dimensions for preservation?

Neighborhood Component Analysis (NCA)

Beyond PCA

Should the goal be finding independent rather than pair-wise uncorrelated dimensions

•Independent Component Analysis (ICA)

PCA vs ICA

PCA (orthogonal coordinate)

ICA (non-orthogonal coordinate)

References

- Bishop PRML, 12.1, 12.2, 12.4
- https://jeremy9959.net/Math-3094-UConn/published_notes/notes/PCA.pdf
- https://www.cse.iitk.ac.in/users/piyush/courses/pml_winter16/slides_lec10.pdf