·		1	
Matc?	hing	M/Ad	$\alpha \Delta$
wate.	ming	VVCu	Ľ

Pascal Michaillat www.pascalmichaillat.org

Ansumption. Each visit requires PE(0,1) services Service pur chased consumed. C (deliver utility) used for matching I conduct was to serre consumed 2 services purhased Lak between consumption le punchases. Mousehold conducts or wisits & aims to service pur chased = C + U x p 1 vint -> q(n) acrice (in expediation) 1 purchase -> 1/9(n) visits (cmi'r nan domned) $c + v \times p$ purchases \rightarrow require $c + v \times p$ visits q(x) $U = C + U \times P$ $\overline{q(n)} \qquad \overline{q(n)}$ $O\left(1-\frac{\rho}{q(n)}\right)=\frac{c}{q(nc)}$

 $\mathcal{J} = \mathcal{C} * q(x) - \rho$ Serva required for marching $P \times U = C \times P$ q(x) - PServe required for matching & consumy | service. $T(x) = \rho$ $q(x) - \rho$ T(n) is he matching wedge To consume I service, house hold purchades 1+ C(n) ocuras Consumption Marding Properties of T(2) - T(0) = p/(1-p)

