HI3_handl_and_expl

November 7, 2017

1 Hand-in 3, Part 1: Data handling and exploration

In this first notebook you will show us how you handle data being separated over several files, as well as exploring the quality and properties of your data.

Section 1: bash scripting You have downloaded a zip file containing 5 CSV files, each containing part of the data you need. First, use your bash tools to look at the headers and size of the file. What do the different files contain?

Write a bash script that concatenates the 4 data files (except the flow_criticality_data.csv file). Exlain in the markdown cell below, what each part of your script does.

Q#1 Explain your script here (by double clicking on this text).

• Define that we are using bash

```
#! /bin/bash
```

Quick explanation of what the bashscript does

```
# Joining the files
#
# Usage "./collect data.sh
```

Make temp1.csv containing half the data -t, means the file is comma seperated, -a1 and -a2 means that it will also print any unpairable line -oauto means that it will automatically format the data

```
join -t, -a1 -a2 -oauto energy_demand_data.csv exchange_data.csv > temp1.csv
```

• Make temp2.csv containing the other half of data

```
join -t, -a1 -a2 -oauto renewable_production_data.csv generator_production_data.csv > temp
```

Combine the temp files, to one whole file

```
join -t, -a1 -a2 -oauto temp1.csv temp2.csv > joined_data.csv
```

• Clean up by removing the temp files

```
rm temp1.csv
rm temp2.csv
```

1.1 Section 2: Visualizing the data

In [23]: # Importing the packages we need
 import pandas as pd

Here you will plot the resulting data file from the previous section, and plot it in order to identify missing data and see if you can already draw some conclusions on the data.

• Hint: remember the hint given in Exc.13.3, on how to find out if your data contains NaN values

```
import matplotlib.pyplot as plt
         import seaborn as sns
         %matplotlib notebook
         import numpy as np
         import scipy
In [24]: # Import of the data created with the bash script
         data = pd.read_csv('joined_data.csv')
In [25]: # Simple plots showing a small pick of our data
         data.plot(x='time',y='prod_gen_1',title='prod_gen_1')
         data.plot(x='time',y='load_node_130',title='load_node_130')
         data.plot(x='time',y='renew_node_24',title='renew_node_24')
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
/home/student/.local/lib/python3.5/site-packages/matplotlib/__init__.py:830: MatplotlibDepreca
 mplDeprecation)
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
Out [25]: <matplotlib.axes._subplots.AxesSubplot at 0x7f314fe04908>
```

would it be practical to plot all possible scatter plots (scatter matrix)?

Not really, unless you use a cluster to compute the data, as there are way too many datapoints and columns

Q#2 For this data, what is the reasonable approach to dealing with the NaN values? Why? As there is no directly observable pattern, interpolation does not seem like a good aproach. Therefor we will be dropping the NaN's.

1.1.1 Feature reduction

Since you must reduce the amount of sensors, you need to find out which ones you can get rid of. **Q#3** Why would PCA be useful for this?

It shows you which components are principal for your data. Thereby showing which sensors are impacting the overall data more

With that in mind, you can narrow down the amount of sensors, used to generate data. Obviously you will loose some data, but choosing the correct amount of components, you can get pretty close to the full data

```
In [27]: from sklearn.decomposition import PCA

# Removal of the time column, as this is not usable in math
datanotime = data_nona.drop('time',1)

# Removing any column where more than 90% of the data is zero
data_notime2 = datanotime.loc[:, (datanotime != 0).sum()>len(datanotime)*.1]

# First we standardize the data
data_stand = (data_notime2 - data_notime2.mean()) / data_notime2.std()

# The standardization created a lot of NaN's
# These came from dividing by zero, as a lot of the prod_gen sensors had only zero's
data_stand = data_stand.dropna(axis='columns',how='all')
```

print("NaN's in data set: " + str(data_stand.isnull().sum().sum()))

```
# Then instantiate the data, and make the fit
         comp=data_stand.shape[1]
         pca = PCA(n_components=comp)
         pca_data=pca.fit(data_stand)
         # Plotting the explained variance
         fig = plt.figure(figsize=(8,8))
         sing_vals = np.arange(comp) + 1
         plt.plot(sing_vals, pca.explained_variance_ratio_, 'o-', linewidth=2)
         plt.title('Scree Plot')
         plt.xlabel('Principal Component')
         plt.ylabel('Cumulative explained variance')
         plt.plot(sing_vals, pca.explained_variance_ratio_.cumsum(), 'o-', linewidth=2)
         plt.legend(['Individual','Cumulative'], loc='best', borderpad=0.3,
                     shadow=False,
                     markerscale=0.4)
         # Saving the pca components
         data_components = pca.components_
         #with pd.option_context('display.max_rows', None, 'display.max_columns', 3):
         print((datanotime != 0).sum())
NaN's in data set: 0
<IPython.core.display.Javascript object>
<IPython.core.display.HTML object>
load_node_130
                 8311
load node 133
                 8311
load_node_134
                 8311
load_node_143
                 8311
load_node_16
                 8311
load_node_145
                 8311
load_node_21
                 8311
load_node_153
                 8311
load_node_154
                 8311
load_node_156
                 8311
load_node_159
                 8311
load_node_160
                 8311
load_node_162
                 8311
load_node_167
                 8311
load_node_43
                 8311
```

load_node_52	8311
load_node_181	8311
load_node_182	8311
load_node_184	8311
load_node_186	8311
load_node_60	8311
load_node_63	8311
load_node_64	8311
load_node_66	8311
load_node_68	8311
load_node_69	8311
load_node_197	8311
load_node_73	8311
load_node_77	8311
load_node_208	8311
prod_gen_22	3227
prod_gen_23	3304
prod_gen_24	0
prod_gen_25	3328
prod_gen_26	0
prod_gen_27	3103
prod_gen_28	0
prod_gen_29	3035
prod_gen_30	2238
prod_gen_31	3091
prod_gen_32	3210
prod_gen_33	2344
prod_gen_34	3083
prod_gen_35	750
prod_gen_36	0
prod_gen_37	3022
prod_gen_38	3086
prod_gen_39	3018
prod_gen_40	2963
prod_gen_41	2776
prod_gen_42	75
prod_gen_43	0
prod_gen_44	151
prod_gen_45	0
prod_gen_46	0
prod_gen_47	0
prod_gen_48	0
prod_gen_49	0
prod_gen_50	2
prod_gen_51	4829
dtype: int64	

with 21 components you explain 90.2140550348%

1.1.2 Scree plot

Q#4 How many principal components do you need to explain 90 % of the variance 26 pricipal components would be needed to explain more than 90% of the variance 26 components will explain 90.35% of the variance

1.1.3 Clustering

You want to reduce the amount of field sensors to 20. You should now have from the previous question, an array with all your loading vectors (pca.components_), one vector per principal component, with 137 elements (one per each sensor). Use clustering to group sensors that behave the same.

Q#5 How would you choose which sensors in each cluster you should keep?

```
In [28]: from sklearn.cluster import KMeans
        # Slice the components we need. We take 26 as that gives us about 90% explained varia
        slice=data_components[0:new_comp]
        # Instanciate and fit the clusters
        kmeans = KMeans(n_clusters=20, n_init=200, max_iter=300, tol=0.0001, verbose=0, random
        kmeans.fit(slice.T)
        cluster_pred = kmeans.predict(slice.T)
        # Prints the predicted clusters
        print(cluster_pred)
Γ 0 0 0 19 0 19
                        0
                           0 0 0 0 0
                                        0 0 0
                                                 0 0 0
                           0 0 14 13 17
                                         0
                                            4 0 14 18 14 10
  3 10 0 5 14 15 13 7 0 8 6 18 8 7 6 7 16 18 6 5 6 18 18 2 2
  2 9 11 9 11 10 11 13 10 0 1 15 12 14 14 3 15 1 3 15 4 1 1 1 3
  4 4 3 12 1 15 15 15 3 14]
In [29]: import scipy
        # Make a pandas dataframe of our sensors, and the clusters they belong to
        clust = pd.DataFrame(data_stand.columns, columns=['sensors'])
        clust['cluster'] = cluster_pred
```

```
temp = []
         for i in range(slice.T.shape[0]):
             A=slice.T[i]
             B=kmeans.cluster_centers_[clust.cluster[i]]
             temp.append(scipy.spatial.distance.euclidean(A, B))
         clust['dist to center'] = temp
         # Find the sensor in a cluster that is closest to the cluster centers
         x=0
         data_reduced = []
         sensor_cluster = []
         while x <= max(clust.cluster):</pre>
             temp_min = 100000
             temp_ind = 0
             for i in range(slice.shape[1]):
                 if clust.cluster[i] == x:
                     if clust.dist_to_center[i] < temp_min:</pre>
                         temp_min = clust.dist_to_center[i]
                         temp ind = i
             data reduced.append(clust.sensors[temp ind])
             x+=1
         # Make a new pandas dataframe witht the reduced sensor list
         data_reduced = pd.DataFrame(data_reduced, columns=['sensors'])
         # Sort the list of clusters by their distance to the center, for manual check up
         sorted_clust = clust.sort_values(by=['dist_to_center'])
         # For manual check
         #print(data_reduced.to_string(index=False))
         #with pd.option_context('display.max_rows', None, 'display.max_columns', 3):
              print(sorted_clust)
In [30]: x=0
         index = []
         for i in range(data_nona.shape[1]):
                for x in range(data_reduced.sensors.shape[0]):
                     if data_reduced.sensors.iloc[x] == data_nona.columns[i]:
                         #print(i)
                         #print(data stand.columns[i])
                         index.append(i)
                         x+=1
         data_reduced = data_nona[index]
         #print(data_stand.columns[0])
         #data_reduced.sensors.iloc[2]
```

calculate the distance from a sensor to the cluster center

print(data_reduced)

	•				
	load_node_21	load_node_98	export_node_130	export_node_68	\
0	215.2788	28.1763	-13.551973	-42.135706	
1	206.9927	26.2146	-11.235127	-39.463754	
2	197.3522	24.4661	-11.064903	-36.113954	
3	182.1743	23.3269	-8.057087	-33.309821	
4	170.3825	22.8990	-6.710398	-33.277878	
5	163.4111	22.8241	-11.968168	-33.750251	
6	159.7063	22.9061	-14.185416	-33.848466	
7	157.6746	22.5140	-7.571923	-32.970572	
8	147.4763	22.7774	-6.455184	-32.062082	
9	149.3885	24.1631	-4.704244	-28.566337	
10	163.1721	25.8698	-8.997888	-24.867395	
11	181.8954	26.7083	-9.447832	-12.307933	
12	198.4277	27.2846	-9.721543	-5.917242	
13	201.8139	27.2777	-11.967444	-0.099741	
15	186.0385	25.5938	-22.109946	13.994299	
16	187.3132	26.7856	-19.225204	18.059623	
17	194.3245	30.7734	-21.608521	25.246866	
18	227.8672	32.4311	-22.851104	1.513755	
19	239.9777	33.1325	-21.395720	-10.393060	
20	244.2801	33.7336	-21.962749	-12.033530	
21	246.4312	33.3345	-21.024712	24.105576	
22	241.3321	30.7683	-16.280193	47.409944	
23	231.7314	27.5392	-9.691951	55.242138	
24	211.1756	24.5830	-3.743955	101.539391	
25	193.1294	22.7913	2.064144	95.347934	
26	179.8637	22.0267	9.537699	98.124698	
27	171.8167	21.8283	13.120048	86.721774	
28	167.9127	22.6468	37.358496	47.567350	
29	166.3192	25.3687	54.988523	22.415660	
30	171.7768	29.1893	30.147381	23.104025	
• • •	• • •	• • •	• • •	• • •	
8752	201.1765	29.3094	-23.016304	-35.480752	
8754	239.3403	34.0242	-27.037347	-49.252993	
8755	253.2434	34.9559	-26.809996	-52.041206	
8756	257.5856	35.4617	-24.635875	-53.379236	
8757	256.5100	34.5375	-25.268615	-52.431439	
8758	250.4548	31.8630	-22.778341	-48.235997	
8759	238.3444	28.7036	-20.190085	-41.896757	
8760	215.9162	25.6054	-17.694564	-36.326660	
8761	196.0375	23.7367	-17.035022	-32.447554	
8762	178.5093	22.7860	-16.782579	-31.685681	
8763	168.8687	22.3913	-17.312934	-30.590878	
8764	165.9606	22.7150	-16.828392	-30.644860	
8765	165.2037	23.9888	-18.996376	-31.397702	
8766	166.9964	26.5631	-21.957257	-34.737374	

8767	173.7687	29.0247	-23.908185	-37.066422	
8768	179.5052	32.0381	-23.348965	-40.329824	
8769	198.8660	34.1407	-20.430098	-39.661120	
8770	219.4218	34.2206	-17.067493	-21.862124	
8771	228.7437	33.5561	-9.877864	6.029681	
8772	236.8704	33.5756	-0.209968	1.975116	
8773	234.9184	32.9186	0.502809	-0.810884	
8774	231.1339	32.0022	-0.078103	-14.927743	
8775	234.4802	31.6617	-11.544949	-4.827103	
8776	233.3249	32.5491	-23.345121	-6.086408	
8777	238.3045	36.0762	-29.924388	9.704716	
8778	263.5611	37.0401	-21.911372	-10.011761	
8780	251.9287	33.5002	-18.139910	7.433872	
8781	226.7120	30.6642	-8.244008	1.656642	
8782	214.1235	29.3810	5.043746	11.181359	
8783	207.5106	28.1166	31.612792	-3.659594	
	export_node_170	export_node_108	export_node_59	renew_node_24	\
0	-1483.942990	30.327760	-13.871218	153.470195	
1	-1426.811167	28.628956	-11.674057	146.519552	
2	-1374.632122	29.129438	-8.783290	138.456806	
3	-1311.463964	32.912220	-8.360663	102.313463	
4	-1285.376107	42.026312	-7.590000	77.569175	
5	-1256.864499	37.536154	-6.717537	82.851663	
6	-1267.533880	28.812487	-5.332699	64.223940	
7	-1245.461478	6.303337	2.196032	50.600680	
8	-1236.965450	2.706778	21.206081	66.453654	
9	-1265.019227	13.897688	41.972870	110.786784	
10	-1333.540199	25.724247	69.281997	161.459246	
11	-1370.919142	31.812092	78.626633	219.761975	
12	-1402.586240	32.023168	86.647138	258.969846	
13	-1416.671112	28.639073	104.007273	278.758641	
15	-1390.179914	20.114482	98.419034	274.565962	
16	-1525.414121	-3.407993	78.190772	241.326321	
17	-1756.506130	-12.513667	81.893064	274.133355	
18	-1860.564570	-9.606389	88.921471	264.958507	
19	-1897.724337	-12.220960	91.272087	260.232069	
20	-1930.662726	-9.507532	101.874609	429.271704	
21	-1898.906013	-4.281519	100.484876	260.232069	
22	-1734.363439	-11.985458	78.863836	197.120232	
23	-1487.705929	-9.456186	58.363388	309.442621	
24	-1276.601701	-14.704700	89.089751	330.294550	
25	-1133.655934	-13.635200	79.357536	263.846404	
26	-1269.043500	-13.183500	19.291446	266.626661	
27	-1258.139100	-13.070200	18.164159	312.222878	
28	-906.310744	-13.569000	17.763272	308.330518	
29	-1464.916600	-15.218300	24.181379	303.882107	
30	-1216.236898	-17.526800	28.037562	313.891032	

• • •	• • •	• • •	•	• • • • • • • • • • • • • • • • • • • •
8752	-1664.042029	33.771070	-13.5395	74 316.393264
8754	-1947.256135	19.528014	-15.7394	84 164.591223
8755	-2001.417356	25.996428	-14.6293	50 160.976889
8756	-2027.311363	18.996654	-13.2424	04 118.716980
8757	-1973.037502	2.957761		
8758	-1813.443189	1.401071		
8759	-1617.384817	-0.805285		
8760	-1426.101490	-6.292839		
8761	-1330.370396	-8.963755		
8762	-1283.221927	-10.635380		
8763	-1260.634082	-10.760473		
8764	-1285.323462	-10.053062		
8765	-1362.106764	-11.374880		
8766	-1508.886286	-13.126104		
8767	-1638.146954	-10.631164		
8768	-1769.356791	-2.612952		
8769	-1836.639625	4.850390		
8770	-1806.669920	13.832932		
8771	-1728.653672	25.868577		
8772	-1680.653125	31.420050		
8773	-1638.752509	-19.731200	-17.8627	00 500.177665
8774	-1470.699471	-19.179600	-17.3633	00 499.261266
8775	-1452.690305	29.700201	-17.1742	00 442.218893
8776	-1491.993437	8.444941	98.3569	55 221.864521
8777	-1700.871891	4.081316	95.0202	73 259.397992
8778	-1872.246659	10.507576	90.0865	75 247.442887
8780	-1792.845586	39.009472	85.4632	38 331.962704
8781	-1627.009469	5.083337	80.6338	73 477.092127
8782	-1538.843315	-1.106469	93.2831	31 580.239668
8783	-1481.595250	-0.120091	86.6810	57 735.934068
	renew_node_154	renew_node_155	renew_node_25	renew_node_202 \
0	0.370617	29.337907	214.272551	72.803164
1	0.648579	23.361666	219.077178	61.440821
2	0.440107	20.916841	192.427051	48.605581
3	0.416944	16.706308	210.919682	52.813856
4	0.509598	13.446541	226.059443	48.605581
5	0.625416	11.952480	218.869784	44.818133
6	1.482467	10.458420	238.295688	51.340960
7	2.895443	9.371831	244.448376	55.128408
8	8.661745	42.433941	244.469218	70.159737
9	20.134604	105.891829	252.621585	133.034930
10	30.162869	154.510438	281.913241	206.621388
11	35.869314	200.357980	320.059947	254.185544
12	37.420754	218.053820	338.237217	301.456276
13	35.968062	203.690635	338.832409	363.278801
15	27.622524	140.441553	333.683362	387.746552
10	21.022024	110.111000	000.000002	001.11.0002

16	12.184026	48.217393	336.254779	236.715491
17	11.720755	75.382121	331.692112	324.668446
18	11.581774	86.791307	320.008917	224.301078
19	11.836573	102.411026	309.328127	155.706190
20	13.458021	124.686103	244.033588	189.161979
21	18.970945	148.862711	213.754066	227.457285
22	28.884943	219.491005	203.730024	175.905911
23	87.187592	253.718563	198.026689	143.712605
24	122.581492	262.275452	169.959370	119.094194
25	73.405281	244.210908	159.797065	78.694750
26	61.869835	303.565839	184.718908	65.017855
27	30.460065	422.411525	140.129202	51.340960
28	34.050414	434.907300	128.964492	48.605581
29	56.495892	416.163638	122.327885	41.872340
30	88.762713	545.060274	121.567440	49.236822
			• • •	
8752	0.579089	47.402451	138.539181	372.642786
8754	0.972869	32.597674	104.941356	289.529347
8755	1.111850	37.487325	107.430084	269.540039
8756	0.579089	37.623149	111.059478	207.888804
8757	0.416944	33.412616	119.113278	153.391638
8758	0.602252	36.536560	148.459527	119.515021
8759	0.486434	34.906676	205.320044	97.842403
8760	0.741234	38.166443	222.568310	95.738265
8761	0.972869	29.337907	228.962958	114.044263
8762	0.857051	19.558604	228.720999	128.562813
8763	1.436140	19.422781	232.177565	143.923018
8764	2.270028	14.261482	244.482941	139.083502
8765	2.038392	14.397306	276.214221	119.304607
8766	1.227668	10.322597	293.946407	95.107024
8767	2.038392	9.236008	302.622388	79.115577
8768	4.976219	25.274098	323.525866	102.943769
8769	6.186009	61.953969	337.450836	153.536165
8770	8.702043	113.131238	348.035808	214.968369
8771	11.755251	157.055922	347.885755	258.790909
8772	13.836786	213.047774	345.972212	284.008998
8773	25.800815	246.548254	345.180380	282.104378
8774	24.070193	203.415100	348.674041	251.512486
8775	13.016961	153.333330	342.565400	201.036896
8776	5.605578	68.590939	291.353982	53.865925
8777	11.164830	63.429641	227.303806	72.803164
8778	10.052979	58.404166	254.126762	52.393029
8780	4.447401	54.872751	175.420745	117.410883
8781	5.281289	76.468710	146.523850	143.081363
8782	7.667134	80.815067	126.060977	160.545706
8783	8.825311	77.012005	122.051360	143.502191
0100	0.020311	11.012000	122.001000	170.002191

renew_node_86 renew_node_99 prod_gen_5 prod_gen_7 prod_gen_9 \

0	24.167230	11.497852	630.000000	216.0	2087.000000
1	22.190728	14.947207	630.000000	216.0	2087.000000
2	27.805791	16.096993	630.000000	216.0	2087.000000
3	26.795080	23.871730	630.000000	216.0	1285.816619
4	13.723213	28.525623	630.000000	216.0	1161.453333
5	12.083615	20.860388	630.000000	216.0	1187.137617
6	10.399096	13.304657	630.000000	216.0	1735.962751
7	6.962678	14.180684	630.000000	216.0	1610.288014
		16.849188			
8	10.405837		589.355080	216.0	0.000000
9	24.563587	21.137547	0.000000	216.0	0.000000
10	35.466481	34.093673	0.000000	0.0	0.000000
11	42.296404	58.418471	0.000000	0.0	0.000000
12	44.415270	73.544911	89.888871	0.0	0.000000
13	45.320811	91.973110	0.000000	0.0	0.000000
15	14.846226	96.301855	0.000000	0.0	0.000000
16	14.060117	123.848289	0.000000	0.0	0.000000
17	9.882511	119.741914	76.756049	0.0	0.000000
18	9.298544	153.523697	630.000000	43.2	0.00000
19	9.949891	199.077091	630.000000	0.0	0.000000
20	13.318929	173.289052	630.000000	0.0	0.000000
21	9.972352	179.147481	0.000000	216.0	0.000000
22	12.937105	183.801374	0.000000	0.0	0.000000
23	19.585339	227.493210	0.00000	0.0	0.00000
24	0.00000	285.365731	0.00000	0.0	0.00000
25	0.00000	319.476025	0.000000	0.0	0.000000
26	0.00000	385.123283	0.000000	0.0	0.000000
27	0.00000	388.736894	0.000000	0.0	0.000000
28	0.000000	344.388037	0.000000	0.0	0.000000
29	0.000000	346.194842	0.000000	0.0	0.000000
30	0.000000	287.720053	0.000000	0.0	0.000000
00					0.00000
8752	17.900820	10.293315	630.000000	216.0	2087.000000
8754	9.073941	16.480254	630.000000	216.0	2087.000000
8755				216.0	2087.000000
	6.131649	10.786080 9.307785	630.000000 630.000000	216.0	2087.000000
8756	1.976502				
8757	1.527297	14.290187	630.000000	216.0	2087.000000
8758	1.123013	14.454442	630.000000	216.0	2087.000000
8759	1.078092	18.944080	630.000000	216.0	2087.000000
8760	1.639598	22.393435	630.000000	216.0	2087.000000
8761	1.909121	19.272590	630.000000	0.0	2087.000000
8762	1.392536	17.301529	630.000000	0.0	2087.000000
8763	1.325155	26.335556	630.000000	0.0	2087.000000
8764	1.257774	28.087609	630.000000	0.0	2087.000000
8765	1.392536	26.992576	630.000000	0.0	2087.000000
8766	1.370075	33.234267	630.000000	0.0	2087.000000
8767	3.189356	41.611273	630.000000	0.0	2087.000000
8768	13.871550	75.015603	515.810531	0.0	2087.000000
8769	25.773008	118.563817	521.793750	0.0	2087.000000

0770	25 70004.4	400 000440	000 505540	0.0	0.000000
8770	35.709014		232.585510	0.0	0.000000
8771	37.095782		0.000000	0.0	0.000000
8772	38.916159		0.000000	0.0	0.000000
8773	30.477718		0.000000	0.0	0.000000
8774	27.523778		0.000000	0.0	0.000000
8775	15.317891		0.000000	0.0	0.000000
8776	10.264335		0.000000	0.0	0.000000
8777	9.029021		0.000000	0.0	0.000000
8778	12.442979		0.000000	0.0	2087.000000
8780	13.588452		0.000000	0.0	2087.000000
8781	12.600201		0.000000	0.0	40.513982
8782	18.619548		0.000000	0.0	0.000000
8783	14.329640	253.171746	0.000000	216.0	690.879932
	nrod con OF	nrod gon 31 nr	od_gen_41		
0	prod_gen_25 957.000000	prod_gen_31 pro 146.000000	0.000000		
1	957.000000	146.000000	0.000000		
2	957.000000	146.000000	0.000000		
3	957.000000	146.000000	0.000000		
3 4	957.000000	146.000000	0.000000		
4 5	957.000000	146.000000	0.000000		
5 6	957.000000	146.000000	0.000000		
7			0.000000		
8	957.000000	146.000000			
	191.400000	146.000000	0.000000		
9	0.000000	10.990596	0.000000		
10	0.000000	0.000000	0.000000		
11	0.000000	0.000000	0.000000		
12	0.000000	0.000000	0.000000		
13	0.000000	0.000000	0.000000		
15	0.000000	0.000000	0.000000		
16	0.000000	0.000000	0.000000		
17	957.000000	0.00000	0.000000		
18	957.000000	146.000000	0.000000		

18.209404

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

146.000000

146.000000

19

20

21

22

23

24

25

26

27

28

29

30

... 8752

8754

957.000000

957.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

957.000000

957.000000

0.00000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.00000

0.000000

0.00000

1400.000000

```
8755
       957.000000
                     146.000000 1400.000000
8756
       957.000000
                     146.000000 1400.000000
                     146.000000
8757
       957.000000
                                 1400.000000
8758
       957.000000
                     146.000000
                                 1400.000000
8759
       957.000000
                     146.000000
                                 1400.000000
8760
       957.000000
                     146.000000
                                 1400.000000
8761
       957.000000
                     146.000000
                                 1400.000000
8762
       957.000000
                      28.429972
                                 1323.121084
8763
       957.000000
                       0.000000
                                  582.484027
8764
       957.000000
                       0.000000
                                  188.162833
8765
       957.000000
                       0.000000
                                  871.768327
8766
       957.000000
                       0.000000
                                 1400.000000
8767
       957.000000
                       0.000000
                                 1400.000000
8768
       957.000000
                       0.000000
                                  881.359767
8769
         0.000000
                       0.000000
                                     0.000000
8770
         0.000000
                       0.000000
                                    0.000000
8771
         0.000000
                       0.000000
                                    0.000000
8772
         0.000000
                       0.000000
                                    0.000000
8773
         0.000000
                       0.000000
                                    0.000000
8774
         0.000000
                       0.000000
                                    0.000000
8775
         0.000000
                       0.000000
                                    0.000000
8776
         0.000000
                       0.000000
                                    0.000000
8777
         0.000000
                       0.000000
                                    0.000000
8778
         0.000000
                       0.000000
                                    0.000000
8780
       957.000000
                       0.000000
                                    0.000000
8781
       389.722301
                       0.000000
                                    0.000000
8782
        41.189710
                       0.000000
                                    0.000000
8783
         0.000000
                       0.000000
                                     0.000000
```

[8311 rows x 20 columns]

1.1.4 Save your chosen sensors

Now that you have chosen 20 sensors which are representative of your data, create a DataFrame that contains these sensors. You can save them to csv file using the code in the following cell.

/home/student/.local/lib/python3.5/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarni: A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.htm This is separate from the ipykernel package so we can avoid doing imports until