Landmark Alternating Diffusion

Sing-Yuan Yeh¹, Hau-Tieng Wu², Ronen Talmon³, Mao-Pei Tsui¹ 1 National Taiwan University, 2 New York University, 3 Technion - Israel Institute of Technology

¹d10948003@ntu.edu.tw

Introduction

Alternating Diffusion (AD) [2] is a commonly applied diffusion-based sensor fusion algorithm. We propose Landmark AD (LAD), a variation of Alternating Diffusion, inspired by ROSELAND [1], to enhance computational efficiency while maintaining the benefits of AD. Theoretical analyses of LAD are provided, and its effectiveness is demonstrated in automatic sleep stage annotation using two EEG channels.

Manifold Setting

Assume the data is located on a manifold \mathcal{M} and the sensor collects data by ι . Hence, the dataset $\{s_i\}_{i=1}^n \subset \mathbb{R}^p$.

- (a) $\iota: \mathcal{M} \to \mathbb{R}^p$ a smooth d-dim manifold.
- (b) \mathcal{M} -valued random variable $X:(\Omega,\mathcal{F},\mathbb{P})\to\mathcal{M}$ induced $\mu = X_* \mathbb{P}$.
- (c) Assume $d\mu$ is absolutely continuous w.r.t. dV. Denote p.d.f. $p = \frac{d\mu}{dV}$.

Preliminary: Alternating Diffusion (AD)

- 1. Definition of a common manifold model
- (a) Two sensors collect data $\{(r_i, s_i)\}_{i=1}^n$ from common manifold \mathcal{M} via $\iota^{(\ell)}:\mathcal{M}\to\mathbb{R}^{p_\ell}$ where $\ell = 1, 2$.
- (b) Assume $d\mu$ is absolutely continuous w.r.t. $dV^{(\ell)}$. Denote p.d.f. $p^{(\ell)} = \frac{d\mu}{dV^{(\ell)}}$.

2. Algorithm of AD

- 1. Sample n pairs $\{(r_i, s_i)\}_{i=1}^n \subset \mathbb{R}^{p_1} \times \mathbb{R}^{p_2}$ by two seneors.
- 2. Construct affinity matrices $W_{ij}^{(\ell)}$ where $\ell = 1, 2$.
- 3. Let degree matrices $D_{ii}^{(\ell)} = \sum_{i=1}^{n} W_{ii}^{(\ell)}$.
- 4. Define alternative Markov matrix $M = D^{(1)^{-1}}W^{(1)}D^{(2)^{-1}}W^{(2)}$.

The computational complexity of AD is $\mathcal{O}(n^3)$ where n is the number

3. Computational complexity of AD

of data.

Landmark Diffusion

Landmark diffusion [1] reduces computational demands by using a smaller landmark set \mathcal{Z} for eigendecomposition instead of the entire dataset. Denote $p_{\mathcal{Z}}$ is p.d.f. of landmark set \mathcal{Z} with $|\mathcal{Z}| = m \ll n$.

$$\frac{1}{m} \sum_{k=1}^{m} \epsilon^{-d/2} K_{\epsilon} (x_i, z_k) K_{\epsilon} (z_k, x_j) = p_{\mathcal{Z}}(x_i) K_{2\epsilon}(x_i, x_j)$$
$$+ \mathcal{O}(\epsilon^{1/2}) + \mathcal{O}\left(\frac{\sqrt{\log(n)}}{n^{\beta/2} \epsilon^{d/4}}\right)$$

Algorithm of α -LAD

Input: A pair of datasets $\{(r_i, s_i)\}_{i=1}^n \subset \mathbb{R}^{p_1} \times \mathbb{R}^{p_2}$ are sampled simultaneously from two sensors and normalized constant $\alpha \in [0, 1]$.

- 1. Choose a landmark set \mathcal{Z} with size m. 2. Build $n \times m$ affinity matrix $W_{ik}^{(\ell)}$.
- 3. $m \times m \text{ matrix } D_{ii}^{(2)} = \text{diag}(W^{(2)}W^{(2)^{\top}}\mathbf{1}_m)$ 4. $n \times m \text{ matrix } M_{\alpha}^{(2)} = W^{(2)} D^{(2)^{-\alpha}}$
- 5. $n \times n \text{ matrix } D_{\alpha;ii}^{(1)} = \text{diag}(W^{(1)}M_{\alpha}^{(2)^{\top}}\mathbf{1}_n)$
- 6. $n \times m \text{ matrix } M_{\alpha}^{(1)} = D_{\alpha}^{(1)^{-1}} W^{(1)}$
- 7. EVD on $m \times m$ matrix $M_{\alpha}^{(2)} M_{\alpha}^{(1)} = V \Lambda V^{-1}$ 8. $U = M_{\alpha}^{(1)}V$ and choose top q vectors as U_q

Output: $e_i^{\mathsf{T}} \bar{\mathbf{U}}_q \bar{\mathbf{\Lambda}}_q^t$ as the embedded point of $(s_i, r_i), i = 1, \ldots, n$.

Illustration

Eigendecomposition of a smaller matrix has a time complexity of $O(m^3)$, while eigenvector "interpolation" recover it with a complexity of $O(n^2m)$.

since we assume m < n.

Main Theorem

Based on the manifold setting of AD, suppose a function $f \in C^3(\mathcal{M})$ and $p \in C^2(\mathcal{M})$. Let $q_{\alpha}(x) := \frac{p_{\mathcal{Z}}^{(2)}(x)^{1-\alpha}}{p^{(2)}(x)^{\alpha}}$ where α is normalizer constant. Then, with probability $1 - \mathcal{O}(n^{-2})$, we have

$$\begin{split} \frac{1}{\epsilon} \left[\left(I_n - \left(D_{\alpha}^{(1)} \right)^{-1} W_{\alpha}^{(1)} M_{\alpha}^{(2)} \right) f \right] (i) \\ &= \frac{\mu_{2,0}^{(2)}}{2d} \Delta^{(2)} f(x_i) + \frac{\mu_{2,0}^{(1)}}{2d} \sum_{j=1}^d \lambda_j \nabla_{E_j E_j}^{(2)^2} f(x_i) + \frac{\mu_{2,0}^{(1)}}{d} \sum_{j=1}^d \lambda_j \left(\frac{\nabla_{E_j}^{(2)} p^{(2)}(x_i)}{p^{(2)}} + \frac{\nabla_{E_j}^{(2)} q_{\alpha}(x_i)}{q_{\alpha}(x_i)} \right) \nabla_{E_j}^{(2)} f(x_i) \\ &+ \frac{\mu_{2,0}^{(2)}}{d} \frac{\nabla^{(2)} p^{(2)}(x_i) \cdot \nabla^{(2)} f(x_i)}{p^{(2)}(x_i)} + \underbrace{\mathcal{O}(\epsilon^{1/2})}_{\text{Bias}} + \underbrace{\mathcal{O}(\epsilon^{1/2})}_{\text{Variance}} + \underbrace{\mathcal{O}(\epsilon^{1/2})}_{\text{Variance}} \end{split}.$$
where the rotation matrix is defined by

 $R_x = \left[d \exp_x^{(1)} \Big|_0 \right]^{-1} \left[d\iota^{(1)} \right]^{-1} \nabla \Phi \left[d\iota^{(2)} \right] \left[d^{(2)} \exp_x^{(2)} \Big|_0 \right].$

• Case 1 $\alpha = 0$: If $p^{(2)} =$ $p_{\mathcal{Z}}^{(2)}, \ \iota^{(1)} = \iota^{(2)}, \text{ then } 0$ LAD is Roseland.

Corollary

- Case 2 $\alpha = 1/2$: If $p^{(2)} =$ $p_{\mathcal{Z}}^{(2)}$, then $q_{\alpha} = 1$ and 1/2-LAD approach to AD.
- Case 3 $\alpha = 1$: 1-LAD is independent of $p_{\mathcal{Z}}$.
- Independent of the Landmark Distribution Sample 3000 pairs of points from the non-uniform PDF (blue on the

Sample 5000 pairs of data on the following two manifolds.

(red, yellow, purple, and green on the right).

left) and 1500 pairs of landmark points from the other distributions

ficient alternative to AD for extracting common brain dynamics

We demonstrate that 1/2-LAD

serves as a computationally ef-

from EEG signals, enabling reliable automatic annotation of five sleep stages, including awake, REM, N1, N2, and N3. 1 <u>epoch = 30 sec</u>

from 0.5-LAD and 0.5-LAD* closely match those from AD (inner products are close to 1).

AD. With a p-value threshold of 0.05, both methods showed no significant difference in accuracy or macro F1 compared to AD, according to the Wilcoxon sign-rank test; however, computation time decreased from 9 minutes to 14 seconds.

References

ternating diffusion: Analysis and applications, ACHA, (2019).

- C. Shen and H.-T. Wu, Scalability and robustness of spectral embedding:
- landmark diffusion is all you need, IMAIAI, (2022). R. Talmon and H.-T. Wu, Latent common manifold learning with al-

Acknowledgements

S.-Y. Yeh and M.-P. Tsui are supported in part by the National Science and Technology Council

grants 112-2115-M-002-015.