E SPACIOS MÉTRICOS SEPARABLES.

Def. Se dice que un $A \subset \overline{X}$ es denso en \overline{X} si $\overline{A} = \overline{X}$

Proposición:

(i) A es denso en $X \iff$ todo abierto no vucio de X contiene elementos de A, es decir:

 $\forall x \in \overline{X}, \forall r > 0, B(x,n) \cap A \neq \phi$

(ii) A es denso en $\overline{X} \iff \forall x \in \overline{X} \ni \{x_n\}_{n=1}^{\infty}$ unu sucesión en A de puntos de A que converge a x.

Dem:

De (i):

 \Rightarrow) Suponga que A es denso en X. Como A es denso en X entonces X = A = A UFrA. Sea $G \subseteq X$ un abiento no vacio, tenemos $A \subseteq X$ Casos:

a) G = A°, S; esto sucede como G + β] x ∈ G, lueyo x ∈ A° = A, as: x ∈ A

b) $G \not\subset A^\circ$, entonces como $X = A^\circ UFrA$, $\exists x \in G tulque x \in FrA$. Por estur en la frontera, como $G \in V(x)$ entonces $G \cap A \neq \emptyset$ y $G \cap CA \neq \emptyset$, luego $\exists y \in A tulque y \in G$.

Por a) y b), se cumple la condición.

E) Suponga que $\forall G \subset X$ abierto \exists ueG tul que ueA. Probaremos que $\overline{A} = \overline{X}$ em esecto, sea $x \in \overline{X}$. \forall $y \in \mathbb{N}$ \exists $y \in \mathbb{N}$ \exists $y \in \mathbb{N}$ tul que $y \in \mathbb{N}$ sea $\exists x \in \mathbb{N}$. In sucesión formada por estos elementos, claramente $\exists x \in \mathbb{N}$ converge a x, lueyo $x \in \overline{A}$, as: $\overline{X} \subset \overline{A}$. Como $\overline{A} \subset X$, se si yue que $\overline{A} = \overline{X}$, i.e., \overline{A} es denso en \overline{X} .

De (ii) Se deduce de la anterior.

Def. Se dice que un esp. métrico X es separable si contiene un conjunto denso a lo sumo numerable en X.

Ejemplo:

a) Un espacio métrico discreto X es separable => X es a lo sumo numerable.

Dem:

Si X es separable, como X es discreto, entonces V $A \subset X$, A es abiento Y cerrado. Si $A \neq X$, entonces $\overline{A} \neq \overline{X}$, luego \overline{X} es separable si Y silo si X es a lo sumo numerable, ques \overline{X} es el único conjunto que cumple que su cerradura es \overline{X} .

b) El espacio normado (lp, Np), 1 <p < 00 es separable.

Dem:

Sea $D = \{ a = \{ a(n) \}_{n=1}^{\infty} \mid a(n) \neq Q \neq n \in \mathbb{N} \ y \ni N \in \mathbb{N} \ m > N, en \}$ fonces $a(m) = 0 \}$. Claramente $D \subset L_p$, se a sirma que D es denso en L_p , en efecto. Sea $x \in L_p$ $y \in P > D$. Como $p \neq \infty$, enfonces

$$\sum_{n=1}^{\infty} |\chi(n)|^{p} < \infty$$

Ast pues, 3 NEN m

$$\sum_{n=l+1}^{\infty} |\chi(n)|^{p} < \frac{\varepsilon^{p}}{2} \dots (*)$$

Tome $a = \{u(n)\}_{n=1}^{\infty}$, como $a(n) = 0 \forall n > N y a(n) \in \mathbb{R}$ tal que: $|\chi(n) - a(n)| < \frac{\mathcal{E}}{(2N)^{1/p}}, \forall n \in J_N$

Clarumente aED, y

$$d(x,a) = \left[\sum_{n=1}^{\infty} |\chi(n) - a(n)|^{p} \right]^{1/p}$$

$$= \left[\sum_{n=1}^{2} |\chi(n) - u(n)|^{p} + \sum_{n=1}^{\infty} |\chi(n) - u(n)|^{p} \right]^{p}$$

$$= \left[\sum_{n=1}^{2} \frac{\xi^{p}}{2n} + \sum_{n=1}^{\infty} |\chi(n)|^{p} \right]^{p} < \left[\frac{\xi^{p}}{2} + \frac{\xi^{p}}{2} \right]^{p}$$

$$= \left[\xi^{p} \right]^{p} = \xi$$

Por tanto, $a \in B(x, E)$, lueyo por la proposición anterior, D es denso en lp, claramente D es numerable, as: (lp, Noo) es Separable.

c) El espacio normado (loo, N∞) no es separable.

Sol.

Tome:

 $A = \{ \chi \in l_{\infty} \mid \chi_n \in \{0,1\} \ \forall \ n \in \mathbb{N} \ , \chi = \{\chi_n\}_{n=1}^{\infty} \}$

Veamos que Y x, y EA, x + y Se tiene que

 $d(x,y) = N_{\infty}(x-y) = \sup_{n \in \mathbb{N}} |x_n - y_n| = |$

d(x,y) = 1, pues s; d(x,y) = 0 (el único otro resultado posible), se tendría que $x_n = y_n \ \forall \ n \in \mathbb{N} \Rightarrow x = y_{*c}$, luego d(x,y) = 1.

Claramente A es no numerable (probado anteriormente), asi, seu

B={B(x,1/2)< 1, x ∈ A}

Bes no numerable, y $\forall x \in A$, $B(x, 1/2) \cap A = \{x\}$. Como B(x, 1/2) es abie rto, si los fuera separable (i.e. $\exists D \in los$ in D es numerable y $\overline{D} = los$), entonces $\forall B(x, 1/2) \in B \exists y \in D$ in $y \in B(x, 1/2)$. Claramente y solo puede pertenecer a una B(x, 1/2), pues de otra forma, si $y \in B(x, 1/2)$ y $y \in B(x, 1/2)$ donde $x \neq x'$, entonces

 $d(x,y) < \frac{1}{2}$ y $d(x',y) < \frac{1}{2}$ => $d(x,y') \le d(x,y) + d(y,x') < \frac{1}{2} + \frac{1}{2} = 1$

Portanto, y solo pertenece a un B(x,1/2), as: D debe ser no numerable

Des Sea B una familia de conjuntos abiertos en un esp. métrico (X,d).

Se dice que B es una base de la topología de X si todo abierto U C

X se puede escribir como unión de elementos de B.

Ejemplos:

1) Si B = 6, entonces Besbusede X.

2) En el caso de un espacio métrico discreto, la sumilia $B = \{\{x\} \mid x \in X\}$ es una base de la topología de X.

3) En (IR, Np) con 1≤p≤∞, una base de la topología de X es:

B={B(a, +) la & Q" y KEIN}

En efecto. Sea G C IR abiento, entonces $\forall x \in G \exists r_0 > 0 \text{ m } B(x,r_0) \in G$. Para este $r_0 > 0 \exists K \in \mathbb{N} \text{ m } \frac{2}{K} < r_0$, luego $B(x, \frac{1}{2K}) \in B(x, r_0)$. Por la densida d de los racionales en \mathbb{R}^n , $\exists u \in \mathbb{Q}^n$ \mathbb{m} $a \in B(x, \frac{1}{2K})$.

 $x \in B(a, \frac{1}{k})$, en efecto, como $d(x, a) < \frac{1}{2k} => d(a, x) < \frac{1}{2k} < \frac{1}{k}$, luego se tien e la pertenencia. Probaremos que $B(a, \frac{1}{k}) \subset G$.

Seu y \in $B(u, \frac{1}{K})$, entonces $d(a,y) < \frac{1}{K}$, y $d(a,x) < \frac{1}{K}$, luego $d(x,y) \le d(x,u)$ + $d(a,y) < \frac{1}{K} + \frac{1}{K} = \frac{2}{K} < v_0$, luego y \in $B(x,v_0) < G$, por funto $B(a,\frac{1}{K}) < G$. Lo anterior prueba que $\forall x \in G \exists a \in \mathbb{Q}^n y \ K \in \mathbb{N} \ m \ x \in B(a,\frac{1}{K}) < G$. Seu $\{B_x \in B \mid para x \in G \exists a \in \mathbb{Q}^n y \ K \in \mathbb{N} \ m \ x \in B(u,\frac{1}{K}) < G \}$. Clarumente

G = UBX

Proposición:

Si Bes unu base de la topologia de X, entonces existe un conjunto D denso en X tal que

Card D & Cord B

Dem:

Para cada $U \in B \setminus \{\phi\}$ se escoge $xu \in U$, y se define $D = \{x_u \in X \mid U \in B \setminus \{\phi\}\}$ y $x_u \in U\}$

Card D & Card B

Seaf: B -> U, donde f(u) = xu \ U ∈ Blip) Cluramente fes suprayectiva, asi CaraD \ Card B.

g.e.d.

leorema:

Un espació métrico es separable > su topología posee una base a lo sumo numerable.

Dem:

Suponga que la topologia de X posee una base B a lo Sumo numerable, esto es Curd B
 So. Por la proposición anterior existe un conjunto D denso en X ful que Card D
 Card B, luego D es denso en X y Card D
 So, por tunto (X,d) es separable.

=>) Suponya que I es separable, entonces existe un conjunto DCI denso en I a lo sumo numerable. Por un lema anterior podemos escrib-

in a D como:

Afirmamos que:

$$\beta = \{\beta_{n,\kappa} = \beta(x_n, \frac{1}{2\kappa}) \mid n, \kappa \in \mathbb{N}\}$$

es una base de la topología de X, la cual es a lo sumo numerable. Cla ramente es a lo sumo numerable, pues es numerable.

Sea ahora $G \subset X$ abjects no vacio arbitrario y sea $x \in G$. Con $x \in G$ entonces $\exists K \in \mathbb{N} \cap B(x, k) \subset G$

Por ser D denso en X, \exists $n \in \mathbb{N}$ $m \times n \in B(x, \frac{1}{2K}) \subset B(x, \frac{1}{K})$, lueyo:

$$d(x,x_n)<\frac{1}{2K}$$

$$\Rightarrow \alpha \in \beta(\alpha_n, \frac{1}{2K}) = \beta_{n,K}$$

Ahora, queda por probarque $B_{n,\kappa} \subset G$. En efecto: Seu $y \in B_{n,\kappa}$, entonces $d(y,x_n) < \frac{1}{2\kappa}$. Como $d(x,x_n) < \frac{1}{2\kappa}$

$$=>d(y,x)\leqslant d(y,x_n)+d(x_n,x)<\frac{1}{2K}+\frac{1}{2K}=\frac{1}{K}$$

$$=>y\in B(x,\frac{1}{K})\subset G$$

Esto se puede hacer $\forall x \in G$, lo que implica que G es unión de elementos de B, i.e B es una base de la topologia de X. g.e.d.

Teorema (de Lindelis)

Seu 162 de Juna Sumilia arbitraria de abientos en un espacio métrico separable X, y sea:

G = U G ~

Entonces existe una subfamilia a lo sumo numerable 16 n sn=1 de 16 a saci tal que

 $G = \bigcup_{i=1}^{\infty} G_i$

Dem:

Como X es separable, entonces J B una base de la topología de X a lo sum. o numerable, digamos B=(B; lielN).

Seu xeG, entonces] xeI m xeGx, por ser B base de la topologia de X, I no ElN m xe Bno CGx... (1).

Defina $B' = \{B_n \in B \mid \exists \alpha \in I \text{ m } B_n \subset G_n\}$. Claramente $B' \subset B$, luego B' es a lo sumo numerable, as: $B' = \{B_{B(n)} \mid n \in \mathbb{N}\}$. Por (1):

G C 0 B B(n)

Por como se definió B' Y nEIN 3 x(n) EIM BB(n) CGx(n), luego

$$=> C = \bigcup_{\infty}^{n=1} C^{\alpha(\nu)}$$

g.e.d

Seu = xn una serie convergente, entonces 4 E>O 3 NEIN m

Z xn < E

n=N+1