B. Stat - B. Math UGA 2012

Ananda Biswas

3. Consider the functions $f_1(x) = x$, $f_2(x) = 2 + \log_e x$, x > 0 (where e is the base of natural logarithm). The graphs of the functions intersect

- (A) once in (0,1) and never in $(1,\infty)$
- (B) once in (0,1) and once in (e^2,∞)
- (C) once in (0,1) and once in (e,e^2)
- (D) more than twice in $(0, \infty)$.

Answer ::

For $x = e^{-2} < 1$, $f_1(e^{-2}) = e^{-2}$ and $f_2(e^{-2}) = 2 - 2 = 0$. $f_1(e^{-2}) > f_2(e^{-2})$(i)

Agian for x = 1, $f_1(1) = 1$ and $f_2(1) = 2$. $f_1(1) < f_2(1)$(ii)

As f_1 and f_2 are always continuous $\forall x > 0$, from (i) and (ii) we can conclude that, f_1 and f_2 must intersect once in $(e^{-2}, 1)$. $0 < e^{-2} < 1$. f_1 and f_2 intersect once in (0, 1).

Again,
$$f_1(e) = e$$
 and $f_2(e) = 2 + 1 = 3$. $2 < e < 3$. $f_1(e) < f_2(e)$(iii)

Also,
$$f_1(e^2) = e^2$$
 and $f_2(e^2) = 2 + 2 = 4$. $4 < e^2 < 9$. $f_1(e^2) > f_2(e^2)$(iv)

From (iii) and (iv) we can conclude that, f_1 and f_2 must intersect once in (e, e^2) .

(C) once in (0,1) and once in (e,e^2)

7. A function $f: \mathbb{R} \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} e^{-\frac{1}{x}}, & x > 0\\ 0, & x \le 0. \end{cases}$$

Then

- (A) f is not continuous
- (B) f is differentiable but f' is not continuous
- (C) f is continuous but f'(0) does not exist
- (D) f is differentiable and f' is continuous.

Answer ::

From the given information, f(x) is continuous everywhere, except at x = 0 where the continuity is questionable. So let's check the continuity of f(x) at x = 0.

We have
$$f(0) = 0$$
; $\lim_{x \to 0^{-}} f(x) = 0$. Now, $\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} e^{-\frac{1}{x}} = e^{-\infty} = 0$

 $\lim_{x\to 0^-} f(x) = f(0) = \lim_{x\to 0^+} f(x)$ f(x) is continuous at x=0 and hence f(x) is continuous everywhere.

Again from the given information, f(x) is differentiable everywhere, except at x = 0 where the differentiability is questionable. So now let's check the differentiability of f(x) at x = 0.

Now,
$$\lim_{x\to 0^-} \frac{f(x) - f(0)}{x - 0} = \lim_{x\to 0} \frac{0}{x} = 0.$$

And,
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{e^{-\frac{1}{x}}}{x} = \lim_{h \to \infty} he^{-h} = \lim_{h \to \infty} \frac{h}{e^h} = \frac{\text{tends to } \infty}{\text{tends to } e^{\infty}} = 0.$$
 $\left[x = \frac{1}{h} \right]$

 $\therefore Lf'(0) = Rf'(0)$. $\therefore f(x)$ is differentiable at x = 0 and hence f(x) is differentiable everywhere.

Now,

$$f'(x) = \begin{cases} \frac{e^{-\frac{1}{x}}}{x^2}, & x > 0\\ 0, & x \le 0. \end{cases}$$

Clearly,
$$f'(0) = 0$$
; $\lim_{x \to 0^{-}} f'(x) = 0$.

Now,
$$\lim_{x \to 0^+} f'(x) = \lim_{x \to 0} \frac{e^{-\frac{1}{x}}}{x^2} = \lim_{h \to \infty} h^2 e^{-h} = \lim_{h \to \infty} \frac{h^2}{e^h} = \frac{\text{tends to } \infty}{\text{tends to } e^{\infty}} = 0$$

So, f' is continuous everywhere.

(D) f is differentiable and f' is continuous.

19. What is the limit of

$$\left(1 + \frac{1}{n^2 + n}\right)^{n^2 + \sqrt{n}}$$

as $n \to \infty$?

- (A) e
- (B) 1
- (C) 0
- (D) ∞ .

Answer ::

The given limit is of the format 1^{∞} .

So, the result of the limit is of the form e^A where $A = \lim_{n \to \infty} \left(\frac{n^2 + \sqrt{n}}{n^2 + n} \right)$.

Now,
$$A = \lim_{n \to \infty} \left(\frac{1 + \frac{1}{n\sqrt{n}}}{1 + \frac{1}{n}} \right) = \left(\frac{1 + 0}{1 + 0} \right) = 1.$$

$$\therefore \lim_{n \to \infty} \left(1 + \frac{1}{n^2 + n} \right)^{n^2 + \sqrt{n}} = e^1 = e.$$

(A) *e*

- 20. Consider the function $f(x) = x^4 + x^2 + x 1, x \in (-\infty, \infty)$. The function
 - (A) is zero at x = -1, but is increasing near x = -1
 - (B) has a zero in $(-\infty, -1)$
 - (C) has two zeros in (-1,0)
 - (D) has exactly one local minimum in (-1,0).

Answer ::

$$f(-1) = 1 + 1 - 1 - 1 = 0$$
, $f(0) = 0 + 0 + 0 - 1 = -1$ and $f(1) = 1 + 1 + 1 - 1 = 2$
So there is a root of $f(x)$ in $(0,1)$.

f(x) is a polynomial. So f(x) is continuous and differentiable everywhere. f(x) is concave up and its graph looks like this.

Clearly, $\forall x \in (-\infty, -1), f(x) > 0.$

So, option (B) is incorrect.

$$\therefore f'(x) = 4x^3 + 2x + 1$$
. $\therefore f'(-1) = -4 - 2 + 1 = -5 < 0$. So $f(x)$ is decreasing at $x = -1$ So, option (A) is incorrect.

Again,
$$f'(1) = 4 + 2 + 1 = 7 > 0$$
. So $f(x)$ is increasing at $x = 1$

Also,
$$f'(0) = 0 + 0 + 1 = 1 > 0$$
. So $f(x)$ is increasing at $x = 0$

Observe that, f'(-1) < 0 and f'(0) > 0. So $\exists c \in (-1,0)$ such that, f'(c) = 0. And at c, the change of sign must be from negative to positive.

So, f(x) has one local minimum in (-1,0). Now we have to check whether this is the only minimum in (-1,0).

Now, $f''(x) = 12x^2 + 2$. So, $f''(x) > 0 \ \forall x \in (-1,0)$. So, f'(x) is always increasing in (-1,0). Therefore, f'(x) can have maximum one root in between (-1,0). So, there exists only one $c \in (-1,0)$ such that f'(c) = 0. Hence, f(x) has exactly one local minimum in (-1,0).

So, option (D) is correct.

We shall also show that, f(x) cannot have two zeros in (-1,0). If so, then the graph of f(x) must look like this.

Then we would have 3 points p, q, r such that f' is zero. But we just showed that in (-1,0), f' cannot have more than one root. Consequently, in (-1,0), f cannot have any zero.

(D) has exactly one local minimum in (-1,0)