Institut national des sciences appliquées de Rouen

INSA DE ROUEN

ASI 3.1

Analyse réelle et nombres complexes

Soufiane BELHARBI soufiane.belharbi@insa-rouen.fr

Résumé

Ce support contient quelques rappels sur des notions de base de l'analyse réelle et les nombres complexes avec quelques exercices. C'est fait pour les étudiants ASI3.1.

 ${\bf Merci\ de\ me\ signaler\ les\ \'eventuelles\ erreurs\ dans\ les\ supports: soufiane.belharbi@insarouen.fr.}$

 ${\it Keywords:}$ Analyse réelle, intégrale, dérivée, nombre complexe.

Table des matières

_	able deb illatteres	
1	Série 1 : Introduction rapide aux nombres complexes	3
2	Introduction rapide au calcul intégral	5
3	Introduction rapide au calcul des dérivées 3.1 Nombre dérivé	6 6
4	Retour aux intégrales	8
5	Nombres complexes	10
6	Intégration par partie et changement de variable	16
7	Décomposition en éléments simples des fractions rationnelles References 21	17

1 Série 1 : Introduction rapide aux nombres complexes

Un nombre complexe z se présente en général sous forme algébrique comme une somme a+ib, où a et b sont des nombres réels quelconques et où i est un nombre particulier tel que $i^2=-1$. Le a est appelé **partie réelle** de z et se note Re(z). Le réel b est sa **partie imaginaire** et se note Im(z).

Deux nombres complexes sont égaux si et seulement s'ils ont la même partie réelle et la même partie imaginaire.

Un nombre complexe z est dit **imaginaire pur** ou **totalement imaginaire** si sa partie réelle est nulle, dans ce cas il s'écrit sous la forme z=ib. Un nombre complexe dont la partie imaginaire est nulle est dit réel. Le nombre réel 0 est le seul qui soit à la fois réel et imaginaire.

Quelques propriétés

Si z = x + iy et z' = x' + iy' deux nombres complexes, où x, y, x', y' sont des réels, on a :

a. Somme : z + z' = (x + x') + i(y + y')

b. Produit : $z \cdot z' = (xx' - yy') + i(xy' + yx')$

c. Conjugué : $\bar{z} = x - iy$

d. Partie réelle : Re(z) = x

e. Partie imaginaire : Im(z) = y

f. Module: $|z| = \sqrt{z \cdot \bar{z}} = \sqrt{x^2 + y^2}$

g. Inverse : $\frac{1}{z} = \frac{x - iy}{x^2 + y^2} = \frac{\bar{z}}{|z|^2}$

Forme polaire

Pour tout couples de réels (a,b) différent du couple (0,0), il existe un réel positif r et une famille d'angle déterminés à un multiple de 2π près tels que $a = r\cos(\theta)$ et $b = r\sin(\theta)$.

Tout nombre complexe non nul peut être donc s'écrit sous une **forme trigonométrique**:

$$z = r(\cos(\theta) + i\sin(\theta)), \quad r > 0 \tag{1}$$

où r est appelé le module du complexe z et est noté |z|. Le réel θ est appelé l'argument du complexe z et est noté arg(z). (voir Fig.3)

Forme exponentielle

Formule d'Euler

Pour tout réel θ , on note la formule d'Euler (Fig.2) :

$$e^{i\theta} = \cos\theta + i\sin\theta \tag{2}$$

FIGURE 1 – Représentation géométrique d'un nombre complexe.

FIGURE 2 – La formule d'Euler.

On définit l'exponentielle d'un nombre complexe z=x+iy par :

$$e^z = e^x e^{iy} = e^x (\cos y + i \sin y) \tag{3}$$

Si z est un nombre complexe non nul de module r et d'argument θ , on peut alors écrire :

$$z = re^{i\theta} = r(\cos\theta + i\sin\theta), \quad \bar{z} = re^{-i\theta} = r(\cos\theta - i\sin\theta)$$
 (4)

Opérations sur la forme géométrique

Si
$$z=re^{i\theta}$$
 et $z'=r'e^{i\theta'}$ deux nombres complexes. on a : a. $\left(re^{i\theta}\right)\left(r'e^{i\theta'}\right)=\left(rr'\right)e^{i(\theta+\theta')}$

b.
$$(re^{i\theta})^{-1} = \frac{1}{r}e^{-i\theta}$$

Relation à la trigonométrie

$$\cos x = Re(e^{ix}) = \frac{e^{ix} + e^{-ix}}{2} \tag{5}$$

$$\sin x = Im(e^{ix}) = \frac{e^{ix} - e^{-ix}}{2i} \tag{6}$$

Relations

$$\cos^2 x = \frac{1 + \cos 2x}{2} \tag{7}$$

$$\sin^2 x = \frac{1 - \cos 2x}{2} \tag{8}$$

Introduction rapide au calcul intégral

Soit f une fonction définie sur un intervalle I=[a,b] de $\mathbb{R}.$ On note $F = \int_a^b f(x) dx$ la primitive de f sur I. On note : $\int_a^b f(x) dx = F(b) - F(a) =: [F]_a^b$.

Propriétés

1) $\int_a^b f(x) \, \mathrm{d}x \in \mathbb{R}$ (Fig.3)

FIGURE 3 – Exemple d'une intégrale.

- $2) \int_a^a f(x) \, \mathrm{d}x = 0$
- 3) Soit $c \in [a, b]$, on $a : \int_a^c f(x) dx + \int_c^b f(x) dx = \int_a^b f(x) dx$
- 4) $\int_b^a f(x) \, \mathrm{d}x = -\int_a^b f(x) \, \mathrm{d}x$
- 5) $\int_a^b (f + \lambda g)(x) dx = \int_a^b f(x) dx + \lambda \int_a^b g(x) dx$ 6) $\int f'(g(x)) \cdot g'(x) dx = f(g(x))$
- 7) $\frac{df(g(x))}{dx} = f'(g(x)).g'(x)$

Primitives usuelles

(Tab.1)

f	$F = \int f$
$x^{\alpha}, \ \alpha \neq -1$	$\frac{x^{\alpha+1}}{\alpha+1}$
$\frac{1}{x+\alpha}$	$\ln\left(x+\alpha\right)$
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$e^{\alpha x}$	$\frac{e^{\alpha x}}{\alpha}$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin x$
$\frac{1}{1+x^2}$	$\arctan x$
$\frac{1}{x^n} = x^{-n}$	$\frac{x^{-n+1}}{-n+1} = \frac{1}{(-n+1)x^{n-1}}$

Table 1 – Primitives usuelles.

Exercice 1

Calculer les intégrales suivantes :

`	c1 1	
a)	$\int_{\Omega} x dx$	•

b)
$$\int_{-1}^{1} x^3 dx$$

c)
$$\int_{-1}^{2} 10 dx$$

d)
$$\int_{1}^{3} x + 1 dx$$

e)
$$\int_{1}^{4} (2x+1)^{7} dx$$

f)
$$\int_{-\pi}^{\pi} \sin x dx$$

$$g) \int_{-\pi/2}^{\pi/2} \sin 4x dx$$

h)
$$\int_0^2 3e^x dx$$

$$i) \int_{-1}^{1} e^{2x} dx$$

j)
$$\int_{-\pi/2}^{\pi/2} \cos^2 x dx$$
 (avec deux méthodes)

3 Introduction rapide au calcul des dérivées

3.1 Nombre dérivé

Soit f une fonction définie continue dans un voisinage de x_0 contenant x_0 . f est dérivable en x_0 ssi :

$$f'(x_0) = \lim_{x \to +x_0} \frac{f(x) - f(x_0)}{x - x_0} \tag{9}$$

est définie.

Cette limite, noté $f'(x_0)$, est appelée nombre dérivé de f en x_0 .

3.2 Fonction dérivée

Soit $D = [x_0 \in \mathbb{R}], f'(x_0)$ existe.

On définit la correspondance suivante :

$$\forall x_0 \in D \to f'(x_0) \in \mathbb{R} \tag{10}$$

la fonction dérivée première de f.

Fonction dérivée sur un intervalle

Soit f dérivable sur l'intervalle [a, b[, alors :

- a) f est dérivable en $x_0 \ \forall x_0 \in]a, b[$
- b) f est dérivable à droite de a
- c) f est dérivable à gauche de b

Opérations sur les dérivées

- 1. [u(x) + v(x)]' = u'(x) + v'(x)
- 2. $[u(x) \cdot v(x)]' = u'(x) \cdot v(x) + u(x) \cdot v'(x)$
- 3. $(\lambda u(x))' = \lambda u'(x)$
- 4. $\left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)\cdot v(x) u(x)\cdot v'(x)}{v(x)^2}$
- 5. $[f[u(x)]]' = u'(x) \cdot f'[u(x)]$
- 6. $(a^f)' = a^f \cdot \ln(a) \cdot f'$
- 7. $(\log_a(f))' = \frac{f'}{f \cdot \ln a}$
- 8. $(f^g)' = q \cdot f^{g-1} \cdot f' + f^g \cdot \ln f \cdot q'$

Dérivées usuelles

(Tab.2)

Exercice 2

Calculer la fonction f' des fonctions f suivantes :

- 1) $f = 2x^2 + 4x^4 5x + 7$
- 2) $f = -7 + 5x 5/2x^2 3x^4$
- 3) $f = (-x+7)^4$
- 4) $f = (2x^2 + 5x 7)^9$
- 5) $f = 1/5x^{5/2} 1/3x^{3/2}$
- 6) $f = x^2 5)^{7/2}$
- 7) $f = \sqrt{1 x^3}$
- 8) $f = \sqrt[3]{3x^3 7}$
- 9) $f = \frac{6}{x} + \frac{7}{x^2} \frac{1}{2x^5}$ 10) $f = x^5(x+2)^2$
- 11) $f = (x+2)^3(x-1/2)^2$

- 12) $f = \frac{x+2}{x-2}$ 13) $f = \sin 2x$
- 14) $f = \cos(3x + 1)$
- 15) $f = tangx^2$
- 16) $f = 3\sin(3/2x^2 + 2)$
- 17) $f = 2\cos 2x + 7$
- 18) $f = \frac{1}{\sin x}$ 19) $f = 7^{x^2 5x + 4}$
- 20) $f = \ln 3x$
- 21) $f = e^{x^2}$

f	f'
C (constant)	0
x	1
$x^n, n \in \mathbb{N}$	nx^{n-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
$x^n, n \in \mathbb{Z}$	$\frac{-\frac{1}{x^2}}{nx^{n-1}}$
$x^{-n}, n \in \mathbb{Z}$	$-nx^{-(n+1)}$
$x^a, a \in \mathbb{R}^+$	ax^{a-1}
$\ln x$	$\frac{\frac{1}{x}}{e^x}$
e^x	e^x
$a^x, a \in \mathbb{R}^{+*}$	$\ln x \times a^x$
$\cos x$	$-\sin x$
$\sin x$	$\cos x$
tang x	$\frac{1}{\cos^2(x)}$
arcsin x	$\frac{1}{\sqrt{1-x^2}}$
actan x	$\frac{1}{1+x^2}$
arccos x	$\frac{-1}{1-x^2}$

Table 2 – Dérivées usuelles.

4 Retour aux intégrales

Opérations sur les primitives

(Tab.3) u et v sont des fonctions de primitives U et V sur un intervalle I.

f	$F = \int f$
u + v	U+V
$k \times u$	$k \times U$
$u'u^n$	$\frac{u^{n+1}}{n+1}$
$\frac{u'}{u^n}$	$\frac{-1}{(n-1)u^{u-1}}$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$
$u'\cos u$	$\sin u$
$u'\sin u$	$-\cos u$
$u'e^u$	e^u
$\frac{u'}{u}$	$\ln u$

Table 3 – Opérations sur les primitives.

Exercice 3

Calculer les primitives ${\cal F}$ des fonctions f suivantes :

1)
$$f(x) = 1$$

2)
$$f(x) = 3x$$

3)
$$f(x) = 2x^2$$

4)
$$f(x) = x + 3$$

5)
$$f(x) = 3x^3 + 2$$

6)
$$f(x) = x - 1$$

7)
$$f(x) = x^2 + x$$

8)
$$f(x) = (3x+2)^4$$

$$9) \ f(x) = \sin 4x$$

$$10) \ f(x) = 4\cos -x$$

11)
$$f(x) = -2\sin 2x$$

12)
$$f(x) = \frac{1}{e^x}$$

13)
$$f(x) = x^2 - e^{3x} + \sin 3x^2 - 1$$

14)
$$f(x) = 2x(x^2 - 3)^4$$

15)
$$f(x) = \frac{1}{\sqrt{3x-4}}$$

16)
$$f(x) = 2x + \cos 3x - 6\sin (3x - 1)$$

17)
$$f(x) = -9e^{-3x-1}$$

18)
$$f(x) = \frac{4x-2}{x^2-x+3}$$

19)
$$f(x) = \frac{\ln x}{x}$$

$$20) \ f(x) = \cos x \sin x$$

Intégration par partie

u et v sont deux fonctions.

$$\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx$$
 (11)

Exercice 4

Calculer les intégrales suivantes :

1)
$$\int_0^1 x e^x dx$$

2)
$$\int_0^1 x \sin x dx$$

3)
$$\int_0^1 x^2 \cos x dx$$

5 Nombres complexes

Soit : $x, y, u, v \in \mathbb{R}$ et $z, w \in \mathbb{C}$.

- 1) x = Re(z), y = Im(z)
- 2) $z = x + iy \iff (x, y)$ (Fig.4)
- 3) (x+iy) + (u+iv) = (x+u) + i(y+v) (Fig.5)
- 4) Le module : $|z| = \sqrt{x^2 + y^2}$
- 5) $|z+w| \le |z| + |w|$
- 6) $|z w| \ge |z| |w|$
- 7) (x+iy)(u+iv) = xu yv + i(xv + yu)
- 8) $i^2 = -1$
- 9) L'inverse : pour $z \neq 0$, z = x + iy, $\frac{1}{z} = \frac{x iy}{x^2 + y^2}$ (Fig.6)
- 10) 1/i = -1
- 11) Le conjugué de z: z = x + iy, $\bar{z} = x iy$
- 12) $\bar{z} = z$
- 13) $\overline{z+w} = \bar{z} + \bar{w}$
- 14) $\overline{zw} = \bar{z}\bar{w}$
- 15) $|z| = |\bar{z}|$
- 16) $|z|^2 = z\bar{z}$
- 17) $1/z = \bar{z}/|z|^2$
- 18) $Re(z) = (z + \bar{z})/2$
- 19) $Im(z) = (z \bar{z})/2i$
- 20) |zw| = |z||w|

Représentation Polaire

Chaque point $(x,y) \neq (0,0)$ de l'espace peut être décrit par des coordonnées polaires $r, \theta \in \mathbb{R}$.

- 1) z = x + iy
- 2) Argument : $r = \sqrt{x^2 + y^2} = |z|$, θ : angle entre (x, y) et l'axe x $(+ n2\pi, n \in \mathbb{N})$. (Fig.9)
- 3) $z = x + iy = r(\cos\theta + i\sin\theta)$
- 4) $\theta = arg(z)$
- 5) La valeur principale de l'argument : Arg(z) = arg(z) tel que : $-\pi < \theta \le \pi$
- 6) $arg(z) = \{Arg(z) + 2\pi k : k = 0, \pm 1, \pm 2, ...\}$ (Fig.??)
- 7) $Arg(i) = \pi/2$, $Arg(1-i) = -\pi/4$
- 8) $e^{i\theta} = \cos\theta + i\sin\theta$
- 9) La représentation polaire : $z = re^{i\theta}$, r = |z|, $\theta = arg(z)$

- 10) $e^{\theta+2\pi m} = e^{i\theta}, \ m = 0, \pm 1, \pm 2, \dots$
- 11) $e^{i\pi}=-1, \ e^{i\pi/2}=i, \ e^{i\pi/3}=\frac{1+\sqrt{3}i}{2}, \ e^{i\pi/4}=\frac{1+i}{2}$ (Fig.7)
- 12) $e^{2\pi mi} = 1$, $m = 0, \pm 1, \pm 2, \dots$
- 13) $|e^{i\theta}| = 1$
- 14) $\overline{e^{i\theta}} = e^{-i\theta}$
- 15) $1/e^{i\theta} = e^{-i\theta}$
- 16) $e^{i(\theta+\varphi)} = e^{i\theta}e^{i\varphi}, -\infty < \theta, \varphi < \infty$
- 17) $\cos(\theta + \varphi) + i\sin(\theta + \varphi) = (\cos\theta + i\sin\theta)(\cos\varphi + i\sin\varphi)$
- 18) $arg(\bar{z}) = -arg(z)$
- 19) arg(1/z) = -arg(z)
- 20) $arg(z_1z_2) = arg(z_1) + arg(z_2)$
- 21) $z_1 z_2 = r_1 r_2 e^{i\theta_1} e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$
- 22) $\cos n\theta + i \sin n\theta = e^{in\theta} = (e^{i\theta})^n = (\cos \theta + i \sin \theta)^n$

Figure 4 - .

Figure 5 – .

Figure 6 - .

Figure 7-.

Figure 8 - .

FIGURE 9 – Représentation géométrique d'un nombre complexe (retour).

sin et cos des angles connues

1)
$$\sin -\theta = -\sin \theta$$

2)
$$\cos -\theta = \cos \theta$$

3)
$$\tan -\theta = -\tan \theta$$

4)
$$\sin \cos -\theta = \sin \cos \theta$$

5)
$$\cos \sin -\theta = \cos - \sin \theta = \cos \sin \theta$$

6)
$$\sin \theta + \cos \theta = 1$$

7)
$$\sin(a \pm b) = \sin a \cos b \pm \sin b \cos a$$

8)
$$\cos(a \pm b) = \cos a \cos b \mp \sin a \cos b$$

9)
$$\sin(2a) = 1\sin a\cos a$$

10)
$$\cos(2a) = 1 - 2\sin^2 a = 2\cos^2 a - 1$$

11)
$$\tan(2a) = \frac{2\tan a}{1-\tan^2 a}$$

12)
$$\sin(\theta/2) = \pm \sqrt{\frac{1-\cos\theta}{2}}$$

13)
$$\cos(\theta/2) = \pm \sqrt{\frac{1+\cos\theta}{2}}$$

14)
$$\tan \theta/2 = \pm \sqrt{\frac{1-\cos \theta}{1+\cos \theta}}$$

15)
$$\sin a \pm \sin b = 2\sin\left(\frac{a\pm b}{2}\right)\cos\left(\frac{a\mp b}{2}\right)$$

16)
$$\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$$

16)
$$\cos a + \cos b = 2 \cos \frac{a+b}{2} \cos \frac{a-b}{2}$$

17) $\cos a - \cos b = -2 \sin \frac{a+b}{2} \sin \frac{a-b}{2}$

Exercice 5

Mettre sous la forme
$$x+iy$$
 les nombres suivants :
$$\tfrac{3+6i}{3-4i};\ \left(\tfrac{1+i}{2-i}\right)^2+\tfrac{3+6i}{3-4i};\ \tfrac{2+5i}{1-i}+\tfrac{2-5i}{1+i}.$$

Exercice 6

Mettre sous la forme x + iy les nombres complexes suivants :

Dégrés	Radians	cos	sin	tan
0	0	1	0	0
30	$\pi/6$	$\sqrt{3}/2$	1/2	$\sqrt{3}/3$
45	$\pi/4$	$\sqrt{2}/2$	$\sqrt{2}/2$	1
60	$\pi/3$	1/2	$\sqrt{3}/2$	$\sqrt{3}$
90	$\pi/2$	0	1	pas définie
120	$2\pi/3$	-1/2	$\sqrt{3}/2$	$-\sqrt{3}$
135	$3\pi/4$	$-\sqrt{2}/2$	$\sqrt{2}/2$	-1
150	$5\pi/6$	$-\sqrt{3}/2$	1/2	$-\sqrt{3}/3$
180	π	-1	0	0
210	$7\pi/6$	$-\sqrt{3}/2$	-1/2	$\sqrt{3}/3$
225	$5\pi/4$	$-\sqrt{2}/2$	$-\sqrt{2}/2$	1
240	$4\pi/3$	-1/2	$-\sqrt{3}/2$	$\sqrt{3}$
270	$3\pi/2$	0	-1	undefined
300	$5\pi/3$	1/2	$-\sqrt{3}/2$	$-\sqrt{3}$
315	$7\pi/4$	$\sqrt{2}/2$	$-\sqrt{2}/2$	-1
330	$11\pi/6$	$\sqrt{3}/2$	-1/2	$-\sqrt{3}/3$
360	2π	1	0	0

Table $4 - \cos$, sin et tan de quelques angles.

- 1. Nombre de module 2 et d'argument $\pi/3$.
- 2. Nombre de module 3 et d'argument $-\pi/8$.

Exercice 7

Calculer le module et l'argument de $u = \frac{\sqrt{6}-i\sqrt{2}}{2}$; v = 1-i. En déduire le module et l'argument de w = u/v.

Exercice 8

On donne θ_0 un réel tel que : $\cos \theta_0 = 2/\sqrt{5}$ et $\sin \theta_0 = 1/\sqrt{5}$. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ_0) :

1.
$$z_1 = 3i(2+i)(4+2i)(i+1)$$
.

2.
$$z_2 = \frac{(4+2i)(-1+i)}{(2-i)3i}$$
.

Exercice 9

Mettre sous la forme algébrique (x+iy) les nombres complexes suivants :

1)
$$z_1 = 1e^{2i\pi/3}$$

2)
$$z_2 = \sqrt{2}e^{i\pi/8}$$

3)
$$z_3 = 3e^{-7i\pi/8}$$

4)
$$z_4 = (2e^{i\pi/4})(3e^{-3i\pi/4})$$

$$5) \ z_5 = \frac{2e^{i\pi/4}}{3e^{-3i\pi/4}}$$

6)
$$z_6 = (2e^{i\pi/3})(3e^{5i\pi/6})$$

7)
$$z_7 = \frac{2e^{i\pi/3}}{3e^{5i\pi/6}}$$

8) z_8 , le nombre de module 2 et d'argument $\pi/3$.

9) z_9 , le nombre de module 3 et d'argument $-\pi/8$.

Exercice 10

Soit
$$u = 1 + i$$
 et $v = -1 + i\sqrt{3}$.

- 1) Déterminer les modules de u et v.
- 2) Déterminer un argument de u et un argument de v.
- 3) Déterminer le module et un argument de $\frac{u}{v}$.
- 4) En déduire les valeurs de $\cos(-5\pi/12)$ et $\sin(-5\pi/12)$.

Exercice 11

Soit z un nombre complexe de module ρ , d'argument θ , et soit son conjugué \bar{z} . Calculer $(z + \bar{z})(z^2 + \bar{z}^2) \dots (z^n + \bar{z}^n)$ en fonction de ρ et θ .

Exercice 12

Soit
$$z = \sqrt{2 + \sqrt{3}} + i\sqrt{2 - \sqrt{3}}$$
.

- 1. Calculer z^2 , puis déterminer le module et un argument de z^2 , puis écrire z^2 sous forme trigonométrique.
- 2. En déduire le module et un argument de z. $(0 \leq arg(z) \leq \pi)$
- 3. En déduire $\cos(\pi/12)$ et $\sin(\pi/12)$.

6 Intégration par partie et changement de variable

Intégration par partie

u et v sont deux fonctions.

$$\int_{a}^{b} u'(x)v(x)dx = [u(x)v(x)]_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx$$
 (12)

Exercice 6.1

Calculer les primitives suivantes :

- 1) $\int x \cdot \ln x dx$
- $2) \int x^2 \cdot \ln x dx$
- 3) $\int \ln x dx$

7 Décomposition en éléments simples des fractions rationnelles ¹

Fraction rationnelles:

Une fraction rationnelle est une expression formelle de la forme $\frac{P}{Q}$, ou P et Q sont deux polynômes de \mathbb{R} , avec $Q \neq 0$ (Q n'est pas le polynôme nul).

On appelle forme irréductible d'une fraction rationnelle R toute écriture de la forme $\frac{P}{Q}$ où P et Q n'admettent aucun facteur commun dans leur décomposition en produit de facteurs irréductibles.

Si $F = \frac{P}{Q}$ est une fraction rationnelle, la quantité deg(P) - deg(Q) est appelée degré de F et notée deg(F).

Exemple : La fraction rationnelle $\frac{(x^2-2x+4)(x-2)}{x^3(x-2)^2}$ n'est pas irréductible. Elle est égale à la fraction rationnelle $\frac{x^2-2x+4}{x^3(x-2)}$ qui est sa forme irréductible. Son degré est 3-5=-2.

Définition : Soit $F = \frac{P}{Q}$ sous forme irréductible. Soit $\alpha \in \mathbb{R}$.

- On dit que α est un zéro ou une racine de F si α est une racine de P.
- On dit que α est un pôle de F si α est une racine de Q. On parle de l'ordre de multiplicité du pôle comme on parlait de l'ordre de multiplicité d'une racine. Un pôle d'ordre 1 est dit simple.

Exemple : Dans \mathbb{R} , la fraction rationnelle $\frac{(x^2+x+1)(x-1)^2x}{(x-2)(x^2+1)(x+1)^4}$ admet :

- Pour zéros : 1 et 0.
- Pour pôles : -1 (de multiplicité 4), et 2 (pôle simple).

Décomposition en éléments simples (DES) :

On peut décomposer toute fraction rationnelle en somme de fractions élémentaires plus simples, au sens où leurs dénominateurs ne feront apparaître qu'un seul polynôme irréductible chacun.

Partie entière :

Soit $F = \frac{P}{Q}$. Il existe un unique polynôme E et une unique fraction rationnelle G telle que : F = E + G et deg(G) < 0. Le polynôme E est appelé la partie entière de F. Elle est égale au quotient de la division euclidienne de P par Q.

Méthode : Pour déterminer la partie entière d'une fraction rationnelle $F = \frac{P}{Q}$:

- Si deg(F) < 0, alors la partie entière est le polynôme nul.
- Si $deg(F) \ge 0$, alors on effectue la division euclidienne de P par Q, et la partie entière est le quotient de la division. On obtient en effet P = QE + R, avec deg(R) < deg(Q), donc : $\frac{P}{Q} = \frac{QE + R}{Q} = \frac{QE}{Q} + \frac{R}{Q} = E + \frac{R}{Q}$, avec E est la partie entière, et $deg(\frac{R}{Q}) < 0$.

^{1.} Crédit : Gaëlle Chagnylmrs.univ-rouen.fr/Persopage/Chagny/FractionsRationnellesDES.pdf.

Exemple:

1) $F = \frac{x}{x^2-4}$ a pour partie entière 0.

2) $F = \frac{x^5+1}{x(x-1)^2}$ a pour partie entière $x^2 + 2x + 3$.

3) $F = \frac{1}{(x^2-1)(x^2+1)^2}$ a pour partie entière 0.

4) $F = \frac{4x^3}{(x^2-1)^2}$ a pour partie entière 0.

Division euclidienne des polynômes :

Voici un exemple de la division euclidienne $\frac{P}{Q} = \frac{x^5+1}{x(x-1)^2} = QE + R$.

Décomposition en éléments simples sur $\mathbb R$

Soit $F = \frac{P}{Q}$ une fraction rationnelle sous forme irréductible, de partie entière E. On considère la décomposition de Q en produit de polynômes irréductibles :

$$Q = \lambda \prod_{k=1}^{r} (x - \alpha_k)_k^m \prod_{l=1}^{s} (x^2 + \beta_l x + \gamma_l)_l^n.$$
 (13)

Alors, il existe des familles uniques de réels $(A_{k,i})$ $1 \le k \le r$, $(B_{l,j})$ $1 \le l \le s$, et $(C_{l,j})$ $1 \le l \le s$, telle que :

$$F = \underbrace{E}_{\text{Partie entière}} + \sum_{k=1}^{r} \underbrace{\sum_{i=1}^{m_k} \frac{A_{k,i}}{(x - \alpha_k)^i}}_{\text{Partie polaire associée au pôle } \alpha_k} + \sum_{l=1}^{s} \sum_{j=1}^{n_l} \frac{B_{l,j}x + C_{l,j}}{(x^2 + \beta_l x + \gamma_l)^j}.$$
(14)

On appelle cette écriture la décomposition en éléments simples (DES) de F sur \mathbb{R} . Elle est donc unique.

Remarque : Dans le cas où la fraction $F = \frac{P}{Q}$ admet pour pôle d'ordre m un réel α (ce qui signifie $Q = (x - \alpha)^m Q_1$ avec Q_1 un polynôme de réels tel que $Q_1(\alpha) \neq 0$) on peut donc écrire F sous la forme :

$$F = \frac{A_1}{(x-\alpha)} + \frac{A_2}{(x-\alpha)^2} + \dots + \frac{A_m}{(x-\alpha)^m} + F_0 = \sum_{i=1}^m \frac{A_i}{(x-\alpha)^i} + F_0$$
partie polaire associée au pôle

Pour F_0 une certaine fraction rationnelle n'admet pas α pour pôle, et où les A_i sont des réels (i = 1, ..., m).

Exemples: A, B, C, D, \ldots désignent des réels.

1. $F = \frac{x}{x^2-4}$ a une DES de la forme

$$F = \underbrace{\frac{A}{x-2}}_{\text{Partie polaire associée au pôle 2}} + \underbrace{\frac{B}{x+2}}_{\text{Partie polaire associée au pôle -2}}$$

2. $F = \frac{x^5+1}{x(x-1)^2}$ a une DES de la forme

$$F = \underbrace{x^2 + 2x + 3}_{\text{Partie entière}} + \underbrace{\frac{A}{x}}_{\text{Partie polaire associée au pôle 0}} + \underbrace{\frac{B}{x-1} + \frac{C}{(x-1)^2}}_{\text{Partie associée au pôle -1}}$$

- 3. $F = \frac{1}{(x^2-1)(x^2+1)^2}$ a une DES de la forme $F = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{(x^2+1)^2}$
- 4. $F = \frac{4x^3}{(x^2-1)^2}$ a une DES de la forme $F = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1} + \frac{D}{(x+1)^2}$.

$M\'ethodes\ pratiques\ de\ la\ DES\ dans\ \mathbb{R}\ : calcul\ des\ coefficients$

1) Technique de base : multiplication/substitution : Soit α un pôle d'ordre m d'une fraction rationnelle F. Pour déterminer le coefficient de $\frac{1}{(x-\alpha)^m}$ dans la DES de F, on multiple F d'une part, et sa DES d'autre part, par $(x-\alpha)^m$ et on évalue l'égalité obtenue en remplaçant x par α . Remarque : Cette technique va permettre de déterminer entièrement la DES de fractions rationnelles n'admettant que des pôles simples. Pour les pôles multiples, d'autres techniques sont données ci-dessous, mais on peut également raisonner de proche en proche : en calculant $F - \frac{A}{(x-\alpha)^m}$ (où A est le coefficient déjà trouvé), on obtient une fraction dont α est pôle d'ordre m-1, et on peut recommencer.

Exemples:

(a) $F = \frac{x}{x^2-4}$ a une DES de la forme $F = \frac{A}{(x-2)} + \frac{B}{(x+2)}$ \rightarrow Calcule de A: Le pôle $\alpha = 2$ est simple (ordre m = 1). On multiple donc de part et d'autre de l'égalité ci-dessus par (x-2) et on évalue en 2 la nouvelle égalité :

$$\frac{x}{x^2 - 4} \times (x - 2)|_{x=2} = \left(\frac{A}{x - 2} \times (x - 2) + \frac{B}{x + 2} \times (x - 2)\right)_{x=2}$$

$$\iff \frac{x}{x + 2}|_{x=2} = \frac{1}{2} = A.$$

- \rightarrow Calcule de B : De même, on multiple par (x+2) et on évalue en
- -2. On trouve $B=\frac{1}{2}$. Ainsi la DES de F est $F=\frac{1}{2(x-2)}+\frac{1}{2(x-2)}$
- (b) $F = \frac{x^5 + 1}{x(x-1)^2}$ a une DES de la forme $F = x^2 + 2x + 3 + \frac{A}{x} + \frac{B}{x-1} + \frac{C}{(x-1)^2}$. \rightarrow Calcule de A et C:

- On multiple par x, et on évalue à 0. On trouve A=1.
- On multiple par $(x-1)^2$ et on évalue en 1. On trouve C=2.

Donc
$$F = x^2 + 2x + 3 + \frac{1}{x} + \frac{B}{x-1} + \frac{2}{(x-1)^2}$$
.

$$\rightarrow$$
 Calcule de B : On peut calculer

$$F - \frac{2}{(x-2)^2} = \frac{x^5 + 1}{x(x-1)^2} - \frac{2}{(x-1)^2} = \frac{x^5 - 2x + 1}{(x-1)^2 x}$$

From Figure 2. So Figure 1. For pear case
$$F - \frac{2}{(x-2)^2} = \frac{x^5 + 1}{x(x-1)^2} - \frac{2}{(x-1)^2} = \frac{x^5 - 2x + 1}{(x-1)^2 x}$$

En divisant $(x^2 - 2x + 1)$ par $(x - 1)$, on obtient $(x^5 - 2x + 1) = (x - 1)(x^4 + x^3 + x^2 + x - 1)$, et on a donc

$$F - \frac{2}{(x-1)^2} = \frac{x^4 + x^3 + x^2 + x - 1}{x(x-1)}.$$

 $F-\frac{2}{(x-1)^2}=\frac{x^4+x^3+x^2+x-1}{x(x-1)}.$ On ré-applique la méthode ci-dessus (sur la dernière fraction, 1 n'est plus un pôle double mais simple), et on obtient B=3, et donc la fin de la DES de $F = x^2 + 2x + 3 + \frac{1}{x} + \frac{3}{x-1} + \frac{2}{(x-1)^2}$.

2) Évaluation: Lorsqu'il ne reste plus que quelques coefficients (un ou deux, ...) à déterminer, ou si on chercher des relations entre les coefficients, on peut substituer à x des valeurs simples.

Exemple : Lorsqu'on obtient, pour $\frac{x^5+1}{x(x-1)^2}$, $F=x^2+2x+3+\frac{1}{x}+\frac{B}{x-1}+\frac{B}{x-1}$ $\frac{2}{(x-1)^2},$ ci-dessus, aux lieu de répéter la méthode multiplication/substitution

on peut substituer à x la valeur -1 : on obtient

on peut substituer à
$$x$$
 la valeur -1 : on obtient
$$F(-1) = \frac{(-1)^5 + 1}{(-1)(-1-1)^2} = (-1)^2 + 2(-1) + 3 + \frac{1}{-1} + \frac{B}{-1-1} + \frac{2}{(-1-1)^2} \iff 0 = \frac{-B}{2} + \frac{3}{2},$$

ce qui donne bien B=3.

3) Parité : Soit F est une fraction rationnelle paire ou impaire. Si α est un pôle d'ordre m de F, alors $-\alpha$ est un pôle d'ordre m de F. En comparant les DES de F(x) et $F(-x) = \pm F(x)$, et en utilisant leur unicité, on obtient des relations entre les coefficients de la DES de F.

Exemple:
$$F = \frac{1}{(x^2-1)(x^2+1)^2}$$
 est paire: $F(x) = F(-x)$. Donc $F(x) = \frac{1}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1} + \frac{Ex+F}{(x^2+1)^2} = \frac{-A}{x+1} + \frac{-B}{x-1} + \frac{-Cx+D}{x^2+1} + \frac{-Ex+F}{(x^2+1)^2} = F(-x)$

Par unicité de la DES, on en déduit A = -B et C = E = 0. On a donc plus que 3 coefficients à calculer au lieu de 6 :

$$F(x) = \frac{1}{x-1} - \frac{A}{x+1} + \frac{D}{x^2+1} + \frac{F}{(x^2+1)^2}.$$

- \rightarrow Calcule de A : On multiple par (x-1), et on évalue en x=1 : $A=\frac{1}{8}.$

- 4) Limite (technique asymptotique): Soit F est une fraction rationnelle de degré strictement négatif. Alors, la fraction $x \mapsto xF(x)$ a une limite finie en l'infini. On peut ainsi trouver des relations entre les coefficients de

Exemple: $F = \frac{4x^3}{(x^2-1)^2}$ a une DES de la forme $F = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1} + \frac{C}{x+1}$ $\frac{D}{(x+1)^2}$.

— Parité.
$$F$$
 est impaire, donc
$$-F(x) = \frac{-1}{x-1} + \frac{-B}{(x-1)^2} + \frac{-C}{x+1} + \frac{-D}{(x+1)^2} = \frac{-A}{x+1} + \frac{B}{(x+1)^2} + \frac{-C}{x-1} + \frac{D}{(x-1)^2} = F(-x).$$

D'où
$$A = C$$
 et $B = -D$. Ainsi, $F = \frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{A}{x+1} + \frac{B}{(x+1)^2}$.

- \rightarrow Calcule de B: On multiple par $(x-1)^2$ et on évalue en 1. on
- → Calcule de A: D'une part $\lim_{x\to\infty}xF(x)=\lim_{x\to\infty}\frac{4x^4}{(x^2-1)^2}=4$ et d'autre part

$$\lim_{x \to \infty} x F(x) = \lim_{x \to \infty} \frac{Ax}{x-1} + \frac{x}{(x-1)^2} + \frac{Ax}{x+1} + \frac{x}{(x+1)^2} = 2A.$$

Donc 2A = 4 puis A = 2.

Finalement,

$$F = \frac{2}{x-1} + \frac{1}{(x-1)^2} + \frac{2}{x+1} + \frac{1}{(x+1)^2}.$$