S-SDL企业应用实践

关于漏洞、风险、成本

- 1. 为什么软件总会有漏洞?漏洞是怎么引入的?
- 业务需求引入
- 。产品设计引入
- 。 编码引入
- 2. 如何应对风险
- 缓解风险
- 转移风险
- 接受风险
- 3. 安全成本
- 对于企业来说,安全投入多少是合适的?

什么是S-SDL

不是一种安全技术,而是E2E的安全工程能力

也是一种Security Built In的解决方案

目标: 交付更安全的系统

S-SDL架构

安全是质量属性的一部分,将安全融入到质量管理是构建S-SDL的基本条件

软件安全研发流程设计

安全融入开发流程

发布及漏洞 安全开发 安全需求 安全设计 安全测试 管理 持续改进

建立安全需求

- 1. 分析业务需求对安全的影响
- 2.来自客户的显性安全需求
- 3.安全需求基线
- 3.合规、认证需求

安全设计—Security by Design

- 1.攻击面分析
 - 攻击面最小化
- 2. 威胁建模
- · STRIDE威胁建模
- 。攻击树威胁建模

安全规范

威胁库

方案库

安全设计原则	说明
开放设计	安全不依赖于设计的秘密
失败安全	基于允许的访问决策
权限分离	一种保护机制需要两把钥匙来解锁
最小授权	根据业务需求最授权
经济适用	越复杂的东西越容易出漏洞
最小公共化	尽量减多用户间公用的且被所有用户依赖的机制
完全仲裁	每一次访问都应该进行权限检查
心理可承受	安全机制的设计要易于使用
不轻信	默认不可信
保护薄弱环节	攻击往往在薄弱点发生
纵深防御	不依赖单一的安全机制

代码安全

- 1. 安全编码规范
- 2. 代码扫描及告警清理
- 3. 代码Review

安全函数库

扫描规划定制化

告警清理指导

代码 Review指导

安全测试

- 1.基于威胁建模的测试
- 2.Fuzzing
- 3.己知漏洞扫描
- 4. 测试问题跟踪

发布及漏洞管理

- 1. 安全生态建设-漏洞收集
- 2. 漏洞分析,排查,预警
- 3. 根因分析