DUV-FW5

- Deep Ultraviolet Light Emission Source
- 265, 280, 310, 325, 340 nm
- TO5 metal can
- Flat SiO₂ window
- Beam angle 114 deg.

Description

DUV-FW5 is a series of **AlGaN** based single emitter DEEP-UV LEDs in a hermetically sealed TO5 package, utilizing a flat quartz glass window with a beam angle of 114 degree. **DUV-FW5** is available from 265 nm up to 340 nm peak wavelength with an optical output power of typically 0.8 mW.

Maximum Rating (T_{CASE} = 25°C)

Dovemeter	Cumbal	Va	Hoit	
Parameter	Symbol	Min.	Max.	Unit
Forward Current (T _A =25°C)	I _F		40	mA
Operating Temperature	T_{OPR}	- 20	+ 80	°C
Storage Temperature	T_{STG}	- 40	+ 100	°C
Soldering Temperature (max. 5s)	T_{SOL}		+ 300	°C

Electro-Optical Characteristics (T_{CASE} = 25°C, I_F = 20 mA)

Parameter	Symbol	DUV265 -FW5	DUV280 - FW5	DUV310 - FW5	DUV325 - FW5	DUV340 - FW5	Unit
Peak Wavelength	λ_{P}	265 ±5	280 ±5	310 ±5	325 ±5	340 ±5	nm
Radiated Power	Po	1.0	1.5	0.8	1.2	1.3	mW
Spectral Width (FWHM)	$\Delta \lambda$	13	12	15	11	9	nm
Forward Voltage	V_{F}	7.0	6.5	6.0	4.5	4.0	V
Reverse Voltage (I _R =10μA)	V_{R}	> 4	> 2	> 10	> 10	> 10	V
Reverse Current (V _R =5V)	I_{R}	< 50	< 1	< 1	< 1	< 1	μΑ
Viewing Angle	2 0 1/2			114			deg.
Thermal resistance	$R\Theta_{J\text{-REF}}$			~250			°C/W
Rise time*	t_R	/	/	16	20	12	ns
Fall time*	t _F	/	/	8	9	8	ns

^{*} frequency=100kHz, duty cycle=1%, I_{FP}=200mA

^{*1}based on calculations

Performance Characteristics

Forward Current vs. Forward Voltage

40 (Ta=25°C) (Feb. 30 265nm 280nm 310nm 325nm 340nm 10 0 1 2 3 4 5 6 7 8 9 10 11 Forward Voltage VF (V)

Spectrum

Forward Voltage vs. Ambient Temp.

Wavelength Shift vs. Ambient Temp.

Radiant Flux vs. Ambient Temp.

Forward Current vs. Relative Radiant Flux [%]

Performance Characteristics

Junction Temp. vs. Forward Current 50 45 340nm ZTj (°C) 40 35 Junction Temperature 30 25 20 15 10 5 0 0 10 20 40 Forward Current If (mA)

Radiation Pattern

Outline Dimensions

TO5

all dimensions in mm

Device Materials

Pin #	Material
Lens	SiO2
Сар	Fe-Ni alloy, Ni plating
Stem	SPCE, Au plating
Leads	Fe-Ni allov. Au plating

Precautions

Soldering:

- · Do avoid overheating of the LED
- Do avoid electrostatic discharge (ESD)
- Do avoid mechanical stress, shock, and vibration
- · Do only use non-corrosive flux.
- Do only solder the leads. Soldering of header or cap will damage the LED
- Do only cut the leads at room temperature with an ESD protected tool
- · Do not solder closer than 3 mm from base of the header
- · Do form leads prior to soldering
- Do not impose mechanical stress on the header when forming the leads
- . Do not apply current to the LED until it has cooled down to room temperature after soldering

Static Electricity:

LEDs are sensitive to electrostatic discharge (ESD). Precautions against ESD must be taken when handling or operating these LEDs. Surge voltage or electrostatic discharge can result in complete failure of the device.

UV-Radiation:

During operation these LEDs do emit **high intensity ultraviolet light**, which is hazardous to skin and eyes, and may cause cancer. Do avoid exposure to the emitted UV light. **Protective glasses are recommended**. It is further advised to attach a warning label on products/systems that do utilize UV-LEDs:

Class 1

MARNING

UV LEDs

High intensity ultraviolet light
Eye and skin hazard - avoid exposure to eyes/skin
Do not look directly at light - use eye protection
Use warning labels on systems containing UV LEDs

Operation:

Do only operate LEDs with a current source.

Current of a LED is an exponential function of the voltage across it. Usage of current regulated drive circuits is mandatory

The above specifications are for reference purpose only and subjected to change without prior notice

A