Assignment 5 Assignment 5

Controllo robusto e adattativo

Modello Simulink

Istruzioni per l'esecuzione

Definizione dei parametri di simulazione tramite script Matlab.

I parametri E_1 , E_2 , $freq_1$, $freq_2$ possono essere cambiati per variare il riferimento in ingresso r.

La matrice Γ può essere variata ma deve essere definita positiva.

```
Assignment5Mat.m ×
       % Definizione parametri assignment 5
       % Gianluca Coccia 0300085, Alessandro Lomazzo 0294640
       % 17/12/2020
       clearvars
       close all
       clc
        % Parametri r
10 -
       E1 = 2;
11 -
       E2 = 5;
       freql = 5;
13 -
       freq2 = 1;
14
15
        % Parametrizzazione
16 -
       lambda = 2; %poichè Lambda(s)=s+2
       gammaMat = [50 0 0 0
                    0 50 0 0
                    0 0 50 0
                    0 0 0 50];
```

Verifica di soddisfazione delle ipotesi

1 Plant assumptions

- Z(s) is a monic Hurwitz polynomial of degree m. Yes, $\forall b_0 > 0$.
- An upper bound N of the degree n of R(s) is known. Yes, 2.
- The relative degree of the system, that is rd = n m, is known. Yes, rd = 2 1 = 1.
- The sign of the high frequency gain k is known(assume it is positive). Yes, $\forall k > 0$.

2 Reference model assumptions

• $Z_m(s)$ and R(s) are monic Hurwitz polynomial of degree m_m and n_m , respectively and $n_m \le N$.

Yes, $m_m = 0$ and $n_m = 1$ also $n_m = 1 \le N = 2$.

• The relative degree of the model, that is $rd_m = n_m - m_m$, is such that $rd_m = rd$. Yes $rd_m = 1 = rd$.

Tutte le ipotesi sono soddisfatte

Modelli Teorici

ω 1	=	$F\omega_1$	+	gu
1		1		0

$$\dot{\omega}_2 = F\omega_2 + gy$$

Modelli Teorici

Output Equations, f(x,u):

Rebuild

Undo

Done

x(2) x(3)

Help

 $\boldsymbol{u} = \hat{\boldsymbol{\theta}}^{\mathsf{T}} \boldsymbol{\omega}$

 E_1 =1, E_2 =1, $freq_1$ =5, $freq_2$ =1, Γ = diag(10) E_1 =1, E_2 =1, $freq_1$ =5, $freq_2$ =1, Γ = diag(10)

 E_1 =1, E_2 = 1, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(50)

 E_1 =1, E_2 = 1, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(50)

 E_1 =1, E_2 = 1, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(90)

 $E_1=1, E_2=1, freq_1=5, freq_2=1, \Gamma=\mathrm{diag}(90)$

 E_1 =5, E_2 = 2, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(50)

 E_1 =5, E_2 = 2, $freq_1$ = 5, $freq_2$ = 1, Γ = diag(90)

Conclusioni

L'errore in ogni caso tende asintoticamente a 0, come ci aspettiamo dalla teoria dato che le ipotesi del MRAC sono soddisfatte, con questi ingressi in particolare ci mette molto tempo: circa 1000 secondi in media. Il risultato varia in base alle frequenze e ampiezze delle sinusoidi in ingresso e in base alla matrice Γ. Infatti a valori bassi della matrice I corrisponde un transitorio più regolare con tempi di risposta maggiori, con stime dei parametri lente, mentre a valori alti corrisponde un transitorio meno regolare con tempi di risposta minori, azioni di controllo più intense e stime dei parametri veloci.