Matemática Superior

Trabajo Práctico 2

Segundo cuatrimestre 2021

Instrucciones:

- Fecha de presentación: 3 de Octubre de 2020.
- Los grupos se conforman de 4 o 5 personas.
- Utilice todas las herramientas informáticas, lenguajes o herramientas en línea que considere convenientes (Mathematica, Wolfram Alpha, Ques, Xeos, Sympy, Scilab, Octave, Scipy, Matplotlib, ImageJ, etc).
- Elabore un informe lo mas detallado posible, mencionando los problemas con los que se encontró intentando obtener las respuestas a las consignas.
- Subir al campus en un archivo comprimido único, el informe en formato pdf y cualquier otro archivo que considere útil, como códigos u otros.

Problema 1. Sistemas de ecuaciones no lineales.

Se quiere diseñar un método de aproximación a la solución de un sistema no lineal que llamaremos $Rebote_{MS}$. La idea de funcionamiento de este método es la siguiente:

Dado un sistema no lineal de la forma:

$$\begin{cases} f_1(x, y, z) = 0 \\ f_2(x, y, z) = 0 \\ f_3(x, y, z) = 0 \end{cases}$$

La idea del método Rebote_{MS} se basa en tener una aproximación anterior (P^n) y a partir de ella obtener la siguiente (P^{n+1}) en tres pasos:

- 1. Suponiendo que la aproximación anterior es $P^n = [x^n, y^n, z^n]$, reemplazamos a las funciones $f_1(x^n, y^n, z^n)$ y $f_2(x^n, y^n, z^n)$ por una recta $r_1(t)$ que sea "paralela" a las superficies de nivel de $f_1(x, y, z) = 0$ y $f_2(x, y, z) = 0$ y que pase por el punto P^n . Luego obtenemos Q_1 como la intersección de $r_1(t)$ con la superficie de nivel definida por $f_3(x^n, y^n, z^n) = 0$.
- 2. Hacer un procedimiento similar al del paso 1 pero utilizando la recta $r_2(t)$ a construir en función de $f_2(x^n, y^n, z^n)$ y $f_3(x^n, y^n, z^n)$ y que pase por Q_1 . Luego obtenemos Q_2 como la intersección de $r_2(t)$ con la superficie de nivel definida por $f_1(x^n, y^n, z^n) = 0$.
- 3. Hacer un procedimiento similar al de los pasos 1 y 2 pero utilizando la recta $r_3(t)$ a construir en función de $f_1(x^n, y^n, z^n)$ y $f_3(x^n, y^n, z^n)$ y que pase por Q_2 . Luego obtenemos P^{n+1} como la intersección de $r_3(t)$ con la superficie de nivel definida por $f_2(x^n, y^n, z^n)$. Finalmente obtenemos P^{n+1} que será nuestra nueva aproximación.

Se pide:

- 1. Utilice esta idea para implementar un método para aproximar a la solución a problemas de este tipo y desarrolle las expresiones en forma más simple que pueda para poder aplicarlo.
- 2. Compare para algunos ejemplos este método con el de N-R para sistemas.
- 3. Mencione casos particulares en donde sea beneficioso o perjudicial utilizar \mathtt{Rebote}_{MS} .
- 4. Desarrolle sus conclusiones y proponga (no las realice) mejoras para este método.