				-1-94					
20. 铁丝在氧气中燃烧实验是化学学习过程的一个重要实验。									
1 该反应的化学反应方程式为。									
2 在实验中,有部分同学未能观察到"火星四射"的现象,兴趣小组进行了分析猜想:									
【实验猜想】									
a: 没有把握好"火柴即将燃尽"伸入的时机,火柴已经熄灭或伸入过早消耗了大量氧气;									
b:									
根据以上猜想,提高实验成功率,化学兴趣小组进行了如下探究实验。									
【实验步骤】									
I.排水法收集 125mL 或 250mL 氧气;									
II. 先将细铁丝绕成螺旋状(一般用玻璃棒将细铁丝缠绕成螺旋状);									
III.火柴梗式燃烧: 在铁丝末端系火柴梗,另一端用坩埚钳夹持住铁丝,在酒精灯上引燃,待"火柴梗即将燃尽时",									
将铁丝由上而下缓慢伸入集满氧气的集气瓶中,观察现象。									
				卜烧杯中的无水酒精内。(浸没部分不宜超过螺旋状,避免					
因酒精燃烧消耗过多氧气。)将浸过酒精的细铁丝在酒精灯上直接引燃,立刻将铁丝由上而下慢慢伸入集满氧气的									
	五中,观察现象。								
【实验数据】:抽取某校初三学生共计 100 人进行分组验证性实验,观察到"火星四射"的现象的成功率如下表:									
序号	氧气体积	引燃的方式	燃烧的成功率						
①	125mL 氧气	火柴梗式	56 3%						
2	250mL 氧气	火柴梗式	76.6%						
3	125mL 氧气	无水酒精式	90.6%						
4	() mL 氧气	无水酒精式	93.8%						
上述对比实验中,实验④中氧气的体积应为ml。									
【实验结论】:									
(1) 在其他条件相同的情况下,铁丝在 250mL 的氧气比 125mL 的氧气燃烧成功率更高。									
(2)									
(3) 为提高铁丝燃烧的成功率,应选择ml 氧气和的引燃方式。									

- (5) "操作 2"中得到的滤液中含有的溶质是____。
- (6) 用电石渣【Ca(OH)2质量分数 92.5%】制备 1tCaCO3, 计算所需电石渣的质量。____
- 19. 某校学生实验后产生大量含 NaOH 的废水,须处理后才能排放。实验小组先将废水样品进行过滤,后取 80g 滤液于锥形瓶中,如图甲所示。为把滤液中的氢氧化钠除去,实验小组向锥形瓶中逐滴滴加溶质质量分数为 9.8% 的稀硫酸,利用温度传感器和 pH 传感器测得反应过程中相关量的变化情况如图乙所示。

(1) 从图乙数据可知,温度在_____区间(填序号)时,滤液中的 NaOH 已完全反应。

A. 14~16

B. 16~18

C. 18~20

D. 20~22

(2) 请写出除去滤液中氢氧化钠的化学方程式_

并在下图中补充反应后的微观粒子。

(3) 根据题意,结合图乙。计算 80g 废水滤液中 NaOH 的质量分数为____。(写出计算过程)

(4) 某同学另取 80g 上述废水滤液于锥形瓶中重复上述实验,向锥形瓶中滴加 9.8%的稀硫酸的过程中意外发现有气泡产生,则当溶液都呈中性时,最终消耗稀硫酸的质量与上述实验相比_____(填"偏大"、"偏小"或"不变")。

(2) 二氧化氮是一种棕红色的有毒气体,密度比空气大,可以和氢氧化钠溶液反应生成亚硝酸钠、硝酸钠和1/ 实验室用的少量二氧化氮可利用铜片和浓硝酸制取,化学方程式为:

 $Cu+4HNO_3(浓)=Cu(NO_3)_2+2H_2O+2NO_2$ 个。上面提供的装置最适合用于该实验的发生装置是_____(填字

- 母)。如果用如图装置收集二氧化氮,气体应从_____填("a"或"b")导管口进入。
- (3) 为防止二氧化氮污染空气,从另一端管口排出的气体需要通入_____溶液中。

18. 电石渣【主要成分为 Ca(OH)2, 还含有 MgO 等杂质】是一种工业废渣, 以它为原料可生产纳米碳酸钙。

- ② "浸取"时的主要反应为 Ca(OH)2+2NH4Cl=CaCl2+2NH3·H2O
- ③ "碳化"时的主要反应为 CaCl₂+2NH₃·H₂O+CO₂=CaCO₃ ↓ +2NH₄Cl+H₂O
- (1) 制备方案中"操作1"是____。
- (2) 在"浸取"步骤中,用不同质量分数的 NH4Cl 溶液浸取电石渣时,Ca 元素提取率和 Mg 元素去除率的数值如图所示, 你认为较适宜的 NH4Cl 质量分数是____。
- (3) 在"碳化"步骤中,为了增大溶液与二氧化碳的接触面积,需要在碳化塔(图)中进行喷雾碳化,为使碱化的溶液与二氧化碳充分反应,CO2应从碳化塔的_____处通入(填"A"或"B")。

		_{碳化塔} 测得不同温度下碳化反应所需时间	Ca 提取率、 ₁	00	
	温度	反应液浑浊所需时间(单位: 秒)	反应完全所需时间(单位:	紛钟》	- = -Ca 提取率 - Mg 去除率
	20℃	480	-180	40-	
	40℃	120	180	20 0 5	10 15 20 25 30
	60°C	1	50		NH4CI的质量分数/%
	80°C	1	68		

2023 年广东省广州市花都区九年级毕业班综合测试(一模)

学校 班	别	姓名	_ /-					
可能用到的相对原子质量: H-1 C	C-12 N-14 O-16	Ca-40 Na-23						
15. 近年来我国航天事业取得了令人瞩目	目的成就。		\(\bar{\gamma}\)					
(1) 嫦娥五号实现了月球表面采样返回	任务,带回的月壤中含	有丰富的氦-3,如	图为氦-3 的原子构成	 战示意图,则				
氦-3 的电子数为。								
(2) 月球土壤中含 MgSiO3、CaSiO3等	硅酸盐,这些硅酸盐中	阴离子的符号为	,其中硅元素	的化合价是				
•		- See See See See See See See See See Se						
(3) 我国科研团队研究发现月壤中含有	主富的钛(Ti)和铁。资料	4.显示,在常温下	. 钛片能够与 20%f	4盐酸反应生				
成紫色的 TiCl3 和氢气。请写出该反应的								
		186年到107火水有:	。(¬шм ты	+1)				
16. 溶液跟我们的生活密切相关,在生活		_						
(1) 下图是五水硫酸铜(CuSO4·5H ₂ O)阻			贝在不同温度下的溶	解度。				
①读五水硫酸铜溶解度曲线图获知,40°	Cpy,	20	$\overline{\Box}$					
五水硫酸铜的溶解度约是g。			温度№	氯化铜溶解度/g				
②60℃时,在 100g 水中加入 40g 的氯化	10.2002	70		31.2				
and and an		50	20	35.8 40.8				
形成的是(填"饱和"或"不饱和")	合放; 付上处待到	10	60	46.2				
的溶液蒸发 50g 水后恢复到 60℃,析出	氯化钡g。 :	20	80	52.5				
③请根据表格数据,在五水硫酸铜溶解		0 20 40 60	80 100	59.4				
的溶解度曲线。			温度∕℃					
④观察两物质的溶解度曲线,	解度受温度影响更大。							
(2) 硫酸铜溶液在生活中有重要用途,与石灰水混合可得到农业用杀菌剂—波尔多液。在配制波尔多液时需防								
止能够与硫酸铜发生复分解反应的物质混入。请你例举一个某物质与硫酸铜发生的复分解反应以说明防止该物质								
混入,方程式是			_•					
17. 以下是实验室常用于制取气体的仪器	器,回答下列问题。							
A B C (1) 为获取少量的二氧化碳气体,实验	D E 室常用利用大理石与稀	深 液 酸 F G 盐酸的反应制取,]] 澄清石 灰水 该反应的化学方程	式				
是			。为制	权和收集干燥				
的二氧化碳,请从上面提供的装置中选择	¥适合的装置并进行组 6	合,组合的顺序是	(填字母)。					