Introduction to Deep Learning Transformers

Shikhar Agnihotri

Liangze Li

11-785, Fall 2023

Transformers

Transformers

- Tokenizaton
- Input Embeddings
- Position Encodings
- Residuals
- Query
- Key
- Value
- Add & Norm
- Encoder
- Decoder

- Attention
- Self Attention
- Multi Head Attention
- Masked Attention
- Encoder Decoder Attention
- Output Probabilities / Logits
- Softmax
- Encoder-Decoder models
- Decoder only models

Output

Machine Translation

Targets

Ich have einen apfel gegessen

Inputs

I ate an apple

Output Probabilities

Inputs

Processing Inputs

Inputs

I ate an apple

Output

Inputs

Generate Input Emebeddings

Inputs

Generate Input Emebeddings

WHERE IS THE CONTEXT?

CONTEXTUALLY RICH EMBEDDINGS

$\alpha_{[ij]}$?

CONTEXTUALLY RICH EMBEDDINGS

$\alpha_{[ij]}$? $\Sigma \Pi$?

CONTEXTUALLY RICH EMBEDDINGS

$$\alpha_{[ij]}$$
?

From lecture 18:

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

$$\alpha_{[ij]}$$
?

From lecture 18:

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

- Query
- Key
- Value

Database

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
```

Database

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_1109": {"items": "j1", "delivery_date": "j2", ....}},
```

```
{Query: "Order details of order_104"}

OR

{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_110": {"items": "j1", "delivery_date": "j2", ....}},
```

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order 106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
```

```
{Query: "Order details of order_104"}

OR

{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
```

Done at the same time!!

{Query: "Order details of order_104"}

OR

{Query: "Order details of order_106"}

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
```

```
{Query: "Order details of order_104"}
OR
{Query: "Order details of order_106"}
```

```
{"order_100": {"items": "a1", "delivery_date": "a2", ....}},
{"order_101": {"items": "b1", "delivery_date": "b2", ....}},
{"order_102": {"items": "c1", "delivery_date": "c2", ....}},
{"order_103": {"items": "d1", "delivery_date": "d2", ....}},
{"order_104": {"items": "e1", "delivery_date": "e2", ....}},
{"order_105": {"items": "f1", "delivery_date": "f2", ....}},
{"order_106": {"items": "g1", "delivery_date": "g2", ....}},
{"order_107": {"items": "h1", "delivery_date": "h2", ....}},
{"order_108": {"items": "i1", "delivery_date": "i2", ....}},
{"order_109": {"items": "j1", "delivery_date": "j2", ....}},
{"order_100": {"items": "k1", "delivery_date": "j2", ....}},
```

Query

1. Search for info

Key

- 1. Interacts directly with Queries
- 2. Distinguishes one object from another
- 3. Identify which object is the most relevant and by how much

Value

- 1. Actual details of the object
- 2. More fine grained

Done at the same time!!

Key Value Store

Key

Value

Parallelizable!!!

Query

Q

Key Value Store

 QK^T

Key

Value

$$softmax(\frac{QK^T}{\sqrt{d}})$$

$$softmax(\frac{QK^T}{\sqrt{d}})V$$

Parallelizable!!!

Attention Filter

Query

Key Value Store

Key

Value

Q

 QK^T

 $softmax(\frac{QK^T}{\sqrt{d}})$

$$softmax(\frac{QK^T}{\sqrt{d}})V$$

I₅

<eos>

Dimensions across QKV have been dropped for brevity

Dimensions across QKV have been dropped for brevity

Dimensions across QKV have been dropped for brevity

Dimensions across QKV have been dropped for brevity **Attention** $\alpha_{1,3}$ $\alpha_{1,4} \rightarrow \otimes$ $\alpha_{1,2}$ $\alpha_{\text{1,5}}$ softmax e_{1,4} $e_{1,5}$ e_{1,1} e_{1,2} e_{1,3} K_3 K_5 Q_2 K_2 V_2 Q_3 K_4 Q_5 Q_1 K_1 Q_4 W_{Q} W_{K} W_V W_Q W_Q W_V W_{Q} W_{K} W_Q W_{K} W_{K} W_{K} W_V W_V W_V I_1 **I**₂ **I**₅ I_4 I_3 37 apple

an

ate

<eos>

Dimensions across QKV have been dropped for brevity

Attention

Poll 1 @1296

Which of the following are true about attention? (Select all that apply)

- a. To calculate attention weights for input I_2 , you would use key k_2 , and all queries
- b. To calculate attention weights for input I_2 , you would use query q_2 , and all keys
 - c. We scale the QK^T product to bring attention weights in the range of [0,1]
 - d. We scale the QK^T product to allow for numerical stability

Poll 1 @1296

Which of the following are true about attention? (Select all that apply)

- a. To calculate attention weights for input I_2 , you would use key k_2 , and all queries
- b. To calculate attention weights for input I_2 , you would use query q_2 , and all keys
 - c. We scale the QK^T product to bring attention weights in the range of [0,1]
 - d. We scale the QK^T product to allow for numerical stability

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic

Requirements for Positional Encodings

- Some representation of time ? (like **seq2seq** ?)
- Should be unique for each position not cyclic

Possible Candidates:

$$P_{t+1} = P_t + \Delta c$$

$$P_{t+1} = e^{P_{t_{\Delta}}C}$$

$$P_{t+1} = e^{P_{t_{\Delta}}c}$$

$$P_{t+1} = P_t^{t_{\Delta}c}$$

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq?)
- Should be unique for each position not cyclic

Possible Candidates:

$$P_{t+1} = P_t + \Delta c$$

$$P_{t+1} = e^{P_{t}} \Delta^{\alpha}$$

$$P_{t+1} = e^{P_{t_{\Delta}}c}$$

$$P_{t+1} = P_t^{:t_{\Delta}c}$$

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq?)
- Should be unique for each position not cyclic
- **Bounded**

Possible Candidates:

$$P_{t+1} - P_t + \Delta c$$

$$P_{t+1} = e^{P_{t}} \Delta^{C}$$

$$P_{t+1} = e^{P_{t_{\Delta}}c}$$

$$P_{t+1} = P_t^{\cdot t\Delta c}$$

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic
- Bounded

Possible Candidates:

$$P(t + t') = M^{t'} \times P(t)$$

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic
- Bounded

Possible Candidates:

$$P(t + t') = M^{t'} \times P(t)$$

M?

- 1. Should be a unitary matrix
- 2. Magnitudes of eigen value should be 1 -> norm preserving

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic
- Bounded

Possible Candidates:

$$P(t + t') = M^{t'} \times P(t)$$

M

- 1. The matrix can be learnt
- 2. Produces unique rotated embeddings each time

Rotary Positional Embedding

ROFORMER: ENHANCED TRANSFORMER WITH ROTARY Position Embedding

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} x_m^{(1)} \\ x_m^{(2)} \end{pmatrix}$$

MRPC SST-2 STS-B MNLI(m/mm) Model **QNLI** QQP BERTDevlin et al. [2019] 88.9 85.8 71.2 93.5 90.5 84.6/83.4 90.7 RoFormer 89.5 88.0 87.0 86.4 80.2/79.8

Table 2: Comparing RoFormer and BERT by fine tuning on downstream GLEU tasks.

Positional Encoding Input Embeddina Inputs

REF: Rotary Positional Embeddings

Requirements for Positional Encodings

- Some representation of time ? (like seq2seq ?)
- Should be unique for each position not cyclic
- Bounded

Actual Candidates:

sine(**g(t)**)

cosine(g(t))

Requirements for g(t)

- Must have same dimensions as input embeddings
- Must produce overall unique encodings

pos -> idx of the token in input sentence

-> ith dimension out of d

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}}) \ PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$

Requirements for g(t)

- Must have same dimensions as input embeddings
- Must produce overall unique encodings

pos -> idx of the token in input sentence

i -> ith dimension out of d

Positional Encoding:

Position

Encoder

 $\alpha_{[ij]}$

Σ

CONTEXTUALLY RICH EMBEDDINGS

From lecture 18:

Attention
$$(Q, K, V) = \text{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

The animal didn't cross the street because it was too wide

coreference resolution?

SELF

Query Inputs = Key Inputs = Value Inputs

Attention: Z

Self Attention

Sentence boundaries?

coreference resolution

Context?

Semantic relationships?

Part of Speech?

Comparisons?

Self Attention

$$d_h = \frac{d_{model}}{h}$$

for all $i \in [1, h]$

Multi Head Attention : Z

$$d_h = \frac{d_{model}}{h}$$

$$R^{T \times d_{model}}$$

Add & Norm

Normalization(Z)

- Mean 0, Std dev 1
- Stabilizes training
- Regularization effect

Add -> Residuals

- Avoid vanishing gradients
- Train deeper networks

Feed Forward

Feed Forward

- Non Linearity
- Complex Relationships
- Learn from each other

Input

Norm(Z)

Add & Norm

Add & Norm

Feed Forward

Input Norm(Z)

Encoders

Encoder

ENCODER

Encoders

Encoder

ENCODER

•

•

ENCODER

ENCODER

Input to Encoder_{i+1}

Output from Encoder_i

Transformers

- ✓ Tokenizaton
- ✓ Input Embeddings
- **✓ Position Encodings**
- ✓ Residuals
- ✓ Query
- ✓ Key
- ✓ Value
- ✓ Add & Norm
- ✓ Encoder
- Decoder

- ✓ Attention
- ✓ Self Attention
- ✓ Multi Head Attention
- Masked Attention
- Encoder Decoder Attention
- Output Probabilities / Logits
- Softmax
- Encoder-Decoder models
- Decoder only models

Machine Translation

Targets

Ich have einen apfel gegessen

Inputs

I ate an apple

Output

Targets

Targets

Ich have einen apfel gegessen

Targets

Mask the available attention values?

Encoder Decoder Attention ? Add & Norm

Encoder Decoder Attention?

Encoder Self Attention

- 1. Queries from Encoder Inputs
- 2. Keys from Encoder Inputs
- 3. Values from Encoder Inputs

Decoder Masked Self Attention

- 1. Queries from Decoder Inputs
- 2. Keys from Decoder Inputs
- 3. Values from Decoder Inputs

Attention

{Key, Value store}

```
{Query: "Order details of order_104"}
```

{Query: "Order details of order_106"}

```
{"order_100": {"items":"a1", "delivery_date":"a2", ...}},
{"order_101": {"items":"b1", "delivery_date":"b2", ...}},
{"order_102": {"items":"c1", "delivery_date":"c2", ...}},
{"order_103": {"items":"d1", "delivery_date":"d2", ...}},
{"order_104": {"items":"e1", "delivery_date":"e2", ...}},
{"order_105": {"items":"f1", "delivery_date":"f2", ...}},
{"order_106": {"items":"g1", "delivery_date":"g2", ...}},
{"order_107": {"items":"h1", "delivery_date":"h2", ...}},
{"order_108": {"items":"i1", "delivery_date":"i2", ...}},
{"order_109": {"items":"j1", "delivery_date":"j2", ...}},
{"order_110": {"items":"k1", "delivery_date":"k2", ...}}
```

Encoder

Decoder

Keys from **Encoder Outputs**Values from **Encoder Outputs**

Queries from **Decoder Inputs**

NOTE: Every decoder block receives the same FINAL encoder output

- Non Linearity
- Complex Relationships
- Learn from each other

Add n Norm Decoder Self Attn

Norm(Z'')

Decoder

DECODER

Decoder

DECODER

•

•

DECODER

DECODER

 $R^{T_d \times d_{model}}$

Decoder output

Linear

Softmax

Output Probabilities

Poll 2 (@1297)

Which of the following are true about transformers?

- a. Transformers can always be run in parallel
- b. Transformer decoders can only be parallelized during training
- c. Positional encodings help parallelize the transformer encoder
- d. Queries, keys, and values are obtained by splitting the input into 3 equal segments
- e. Multiheaded attention helps transformers find different kinds of relations between the tokens
- f. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Poll 2 (@1126)

Which of the following are true about transformers?

- a. Transformers can always be run in parallel
- b. Transformer decoders can only be parallelized during training
- c. Positional encodings help parallelize the transformer encoder
- d. Queries, keys, and values are obtained by splitting the input into 3 equal segments
- e. Multiheaded attention helps transformers find different kinds of relations between the tokens
- f. During decoding, decoder outputs function as queries and keys while the values come from the encoder

Transformers

Targets

Ich have einen apfel gegessen

Inputs

I ate an apple

Machine Translation

Output

Transformers

- ✓ Tokenizaton
- ✓ Input Embeddings
- **✓ Position Encodings**
- ✓ Residuals
- ✓ Query
- ✓ Key
- ✓ Value
- ✓ Add & Norm
- ✓ Encoder
- ✓ Decoder

- ✓ Attention
- ✓ Self Attention
- ✓ Multi Head Attention
- ✓ Masked Attention
- ✓ Encoder Decoder Attention
- ✓ Output Probabilities / Logits
- ✓ Softmax
- Encoder-Decoder models
- Decoder only models

