This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

- DBH Go6976 ...CPT Rad51 ATR p53 Fig. 2 Assays for the DNA damage response pathway <u>Б</u> Caffeine p53 p53/ p53 p53/ Chk1

Fig. 3(A) A Luminescent PCA (RLuc PCA) for high-throughput screening (HTS)

Fig. 3(B) Effect of camptothecin (CPT) treatment on p53/p53 (Renilla luciferase PCA)

Fig. 4 IFP PCA demonstrating effects of drugs on p53/p53 in the presence and absence of camptothecin (CPT)

Fig. 5(A) PI3K pathway and the involvement of a novel interaction identified by PCA (hFt1/PKB)

Fig. 5(B) Induction and inhibition of hFt1 complexes (GFP PCA)

Fig. 6 A rapamycin-dependent HTS assay based on YFP PCA

Fig. 7 Identifying interacting proteins with PCA: fluorescence spectrometry

Fig 7. Identifying interacting proteins with PCA: automated microscopy

NFkB Anti-apoptotic Genes Nucleus Fig. 8 TNF signaling pathway ALLN Epoxomicin Proteasome

Fig. 10 $\,$ TNF induction and ALLN inhibition of NF $_KB$ translocation in a transient YFP PCA

Fig. 11 Stable cell lines with PCA inside; and the absence of signal with individual gene constructs

Fig. 12 (A) TNF induction of NF κ B translocation in a stable cell line with PCA Inside

Fig. 12(B) Fluorescent high-content assay in a stable cell line

Fig. 12(C) High-content screening of a small-molecule library

Fig. 12 (D) Dose response curve for a novel 'hit' identified by library screening

Fig. 13 (A) TNF induction of NFκB translocation (DHFR PCA in transient assays)

Cytoplasm **Nucleus** - ALLN + ALLN Fig. 13 (B) ALLN inhibition of NF κ B translocation (DHFR PCA in transient assays) İ l Intensity 2 က 0 Mean Fluorescence Muclear: Cytoplasmic

Individual Cells

Fig. 14 Fluorescent high-throughput assay for p65/I $_{\rm K}$ B in a stable cell line (PCA Inside)

2

Fig. 15 Effects of TNF and ALLN on ubiquitin-protein complexes

Fig. 16 Vector construction and examples

- . Select each gene (or library) of interest;
- Select PCA fragment pair (F1, F2) suitable for the assay type;

7

- Select a constitutive or inducible promoter appropriate for the cell type; က
- Subclone each gene of interest (or gene library) into one or more fragment orientations (4 possible as shown below)
- Perform PCA with complementary (F1/ F2) pairs of constructs containing genes of interest 5

Fig. 17 Example of a Dual PCA

- Select a survival/selection PCA (e.g. GCN4-DHFR-F[1,2]/GCN4-DHFR-F[3])
- Select a PCA (F1, F2) suitable for HTS or HCS as described in the present invention

તં

- Select genes of interest (A,B) (or gene library(ies)) and subclone each gene into one or more fragments/orientations (2 possible orientations are shown below as A-F[1] and B-F[2]))
- DHFR selection with MTX). Cells that survive will also co-express the A-F[1] and B-F[2] fusion proteins. Apply selective pressure to cells, using growth conditions based on the survival/selection PCA (e.g.
- With the cells selected in step 4, perform a fluorescent or luminescent HTS or HCS, using the assay conditions that are specific for the PCA chosen in step 2. 'n

