Relatório de Atividade

Guilherme Meneghetti Einloft

1. Metodologia

O programa criado carrega uma imagem, converte o color space da imagem de RGB para YcbCr, aplica a DCT e uma matriz de quantização. Ele também faz o processo contrário, para mostrar os resultados na tela.

No programa há 8 sliders que regulam a matriz de quantização, que vão de 1 a 128. Considerando cada slider como sx, x sendo o número do slider, a matriz de quantização tem a seguinte forma:

cada sinder como sir, ir sendo o mamero do sinder, a madriz de qu					auticização term a seguinte roma.		
S_1	S_2	S_3	S ₄	S ₅	S ₆	S ₇	S ₈
S_2	S_2	S_3	S ₄	S ₅	S ₆	S ₇	S ₈
\mathbf{S}_3	S_3	\mathbf{S}_3	S ₄	S ₅	S ₆	S ₇	S ₈
S ₄	S ₄	S ₄	S ₄	S ₅	S ₆	S ₇	S ₈
S ₅	S ₅	S ₅	S ₅	S ₅	S ₆	S ₇	S ₈
S_6	S ₆	S ₇	S ₈				
S ₇	S ₇	S ₇	S ₇	S ₇	S ₇	S ₇	S ₈
S ₈	S ₈	S ₈	S ₈	S ₈	S ₈	S ₈	S ₈

2. Resultados

Para cada parâmetro, foram aplicados dois testes: um teste configurando somente o valor do parâmetro e um teste configurando todos os parâmetros posteriores ao parâmetro testado. OBS: Para testes, foi utilizada a imagem "jellybeans.bmp", presente na pasta images.

Controle:

Percebe-se que, ao eliminar frequências mais altas, a imagem processada não difere muito da original. Entretanto, ao eliminar as frequências mais baixas (<6), começam a surgir artefatos da compressão e, ao eliminar as frequências fundamentais (1, 2 e 3), a imagem perde muita qualidade e apresenta muita distorção.

3. Conclusão:

Como dito anteriormente, a remoção de frequências mais altas não afeta significativamente a qualidade da imagem. Portanto, para realizar uma boa compressão, deve-se descartar (ou atenuar) as frequências mais altas e buscar manter as frequências mais baixas, responsáveis pela maior parte da informação da imagem.

No formato JPEG, as seguintes tabelas de quantização são usadas:

	11	l .	•			Г1	C1
16	11	10	16	24	40	51	61
12	12	14	19	26	58	60	55
14	13	16	24	40	57	69	56
14	17	22	29	51	87	80	62
18	22	37	56	68	109	103	77
24	35	55	64	81	104	113	92

49	64	78	87	103	121	120	101
72	92	95	98	112	100	103	99

Tabela do canal Luma (Y);

17	18	24	47	99	99	99	99
18	21	26	66	99	99	99	99
24	26	56	99	99	99	99	99
47	66	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99
99	99	99	99	99	99	99	99

Tabela dos canais Chroma (Cb, Cr).

Nota-se que, nestas tabelas, as frequências mais altas são razoavelmente mais atenuadas do que as frequências baixas, tanto no canal luma quanto no canal chroma. Isso demonstra que a análise descrita neste relatório, mesmo que de uma maneira simples, é compatível com a análise feita na definição do padrão JPEG.