

Universidade Federal de Uberlândia

Faculdade de Engenharia Elétrica FEELT

VERIFICAÇÃO DA SEQUÊNCIA DE FASES DAS TENSÕES

Relatório da Disciplina de Experimental de Circuitos Elétricos II por

Lesly Viviane Montúfar Berrios 11811ETE001

Prof. Wellington Maycon Santos Bernardes Uberlândia, Dezembro / 2019

Sumário

1	Objetivos			2
2	Intr	Introdução teórica		
3	Preparação			3
			iais e ferramentas	3
	3.2	Montagem		
		3.2.1	Verificação da sequência de fases	3
		3.2.2	Verificação da sequência de fases - Fase A aberta	4
		3.2.3	Verificação da sequência de fases - Fase C aberta	4
4	Dados Experimentais			4
		4.0.1	Verificação da sequência de fases	5
		4.0.2	Verificação da sequência de fases - Fase A aberta	5
		4.0.3	Verificação da sequência de fases - Fase C aberta	5
5	5 Análise sobre segurança			5
6	Cálculos, análise dos resultados e questões			5
	6.1	Análise teórica do circuito		5
		6.1.1	Verificação da sequência de fases	5
		6.1.2	Verificação da sequência de fases - Fase A aberta	5
		6.1.3	Verificação da sequência de fases - Fase C aberta	5
	6.2 Reflexão		5	
		6.2.1	E na ausência de um voltímetro?	5
		6.2.2	Sobre a importância da sequência de fase em um circuito elétrico	5
7	Simulação computacional			6
		7.0.1	Verificação da sequência de fases	6
		7.0.2	Verificação da sequência de fases - Fase A aberta	7
		7.0.3	Verificação da sequência de fases - Fase C aberta	8
8	Conclusões		9	

1 Objetivos

Pretende-se verificar experimentalmente conceitos teóricos de como encontrar a correta sequência de fase diante da ausência de um sequencímetro (método do voltímetro).

2 Introdução teórica

O sequencímetro é um instrumento de medida elétrica analógica ou digital que tem por finalidade a verificação da sequência de fases de um motor trifásico (circuito alimentado por corrente alternada), ou seja, indica a fase aberta e o sentido de rotação do motor. Na Figura 1, é observado um fasímetro, que possui a mesma função, havendo poucas diferenças, entre elas, estão a tensão de entrada e a faixa de frequência. Sobre seu funcionamento diz-se que, a partir do momento em que o sequencímetro detecta a passagem por zero (pulso positivo de curta duração) de cada fase é aplicado em um circuito sequencial feito com flip-flop e indica a sequência da rede [3].

Na ausência desse tipo de equipamento, circuitos desequilibrados podem ser utilizados para a verificação de sequência de fases em certo sistema elétrico. Basendose na queda de tensão em cada fase, é possível provar matematicamente qual é a sequência de fases utilizada, conforme a Sessão 6.1.

Figura 1: Fasímetro com indicador led 690 volts - MFA-862 [4].

3 Preparação

3.1 Materiais e ferramentas

- 1 Fonte: Alimentará todo o circuito. Possui frequência de 60 Hz.
- 2 **Regulador de tensão (Varivolt):** Também chamado de autotransformador, permitirá obter o valor desejado de corrente a partir da regulagem correta da tensão fornecida pela fonte.
- 3 *Conectores:* Para as conexões no circuito foi utilizado majoritariamente cabos banana-banana.
- 4 **Medidor eletrônico KRON Mult K:** Possibilita encontrar a medição da potência real (P) vatímetro, reativa (Q) e aparente (S) do circuito. Ele também possui função de cofasímetro, instrumento elétrico que mede o fator de potência (fp, $cos\theta$) ou o ângulo da impedância θ do circuito, para um circuito com a impedância $Z = Z \angle \theta$.
- 5 Amperímetro analógico AC: Instrumento utilizado para acompanhar visualmente o aumento da corrente.
- 6 $Resistor\ de\ 50\Omega$: Carga resistiva para compor a carga do circuito trifásico.
- 7 **Capacitor de** 45, $9\mu F$: Sendo sua resistência quase nula, portanto desprezível nessa aplicação (Esquenta pouco, logo dissipa menos energia).

3.2 Montagem

3.2.1 Verificação da sequência de fases

A montagem para o método do voltímetro pode ser realizado por meio de voltímetros analógicos, como mostra a Figura 2, ou mediante equipamento digital, como na Figura 3. Para este experimento utilizou o medidor digital Kron, com configuração TL=0000 (Trifásico Equilibrado ou Desequilibrado Estrela - 3F + N - 3 elementos 4 fios). Assim, no caso de equipamento digital, aplica-se uma tensão linha $V_L = 100V$ com o auxílio do Varivolt, em frequência de 60Hz, e parâmetros de carga: $R = 50\Omega$ e $C = 45,9\mu F$. Ademais, como procedimento de segurança, é verificado sempre se existe algum curto-circuito em alguma das fases em baixa tensão.

Figura 2: Método do voltímetro, utilizando-se voltímetros analógicos.

Figura 3: Método do voltímetro, utilizando-se equipamento digital.

- 3.2.2 Verificação da sequência de fases Fase A aberta
- 3.2.3 Verificação da sequência de fases Fase C aberta

4 Dados Experimentais

Embora, esta sessão seja reservada para os dados obtidos experimentalmente, também são comptemplados, nas tabelas que seguem, os resultados teóricos.

- 4.0.1 Verificação da sequência de fases
- 4.0.2 Verificação da sequência de fases Fase A aberta
- 4.0.3 Verificação da sequência de fases Fase C aberta

5 Análise sobre segurança

Os óculos de segurança são Equipamentos de Proteção Individual (EPIs) e são utilizados para a proteção da área ao redor dos olhos contra qualquer tipo de detrito estranho, que possa causar irritação ou ferimentos. Também protegem contra faíscas, respingos de produtos químicos, detritos, poeira, radiação e etc [2]. É importante a utilização desse equipamento durante os experimentos a fim de evitar qualquer dano, além de preparar o profissional para o manejo correto e seguro de qualquer equipamento. Além disso, foi de extrema importância a presença do professor ou técnico na verificação da montagem do circuito antes de energizá-lo. Assim, reduziuse riscos de curtos-circuitos ou sobrecarga na rede.

6 Cálculos, análise dos resultados e questões

- 6.1 Análise teórica do circuito
- 6.1.1 Verificação da sequência de fases
- 6.1.2 Verificação da sequência de fases Fase A aberta
- 6.1.3 Verificação da sequência de fases Fase C aberta
- 6.2 Reflexão

6.2.1 E na ausência de um voltímetro?

Na ausência de voltímetros, amperímetros ou sequencímetro, pode-se utilizar equipamentos permitam de forma visual ou sensitiva identificar a fase com maior e maior tensão, para assim prosseguir com a análise realizada neste experimento.

6.2.2 Sobre a importância da sequência de fase em um circuito elétrico

7 Simulação computacional

Para a simulação foi utilizada uma fonte CBA, por isso pode haver alguma estranheza no circuito por parte do leitor. No entanto, a análise é a mesma.

7.0.1 Verificação da sequência de fases

Figura 4: Método do voltímetro, utilizando-se equipamento digital.

Figura 5: Simulação para determinação de sequência de fase CBA.

7.0.2 Verificação da sequência de fases - Fase A aberta

Figura 6: Método do voltímetro, utilizando-se equipamento digital.

Figura 7: Simulação para determinação de sequência de fase CBA.

7.0.3 Verificação da sequência de fases - Fase C aberta

Figura 8: Método do voltímetro, utilizando-se equipamento digital.

Figura 9: Simulação para determinação de sequência de fase CBA.

8 Conclusões

Referências

- [1] P. H. O. Rezende, "Circuitos Polifásicos Desequilibrados", 2018.
- [2] SafetyTrabi, "Óculos de segurança: Saiba quando utilizar este EPI", SafetyTrab, 2019. Disponível em: https://www.safetytrab.com.br/blog/oculos-de-seguranca/. Acesso em: ago. 2019.
- [3] B. M. Nascimento, J. Carneiro, P. Viecilli, "Sequencímetro de Baixo Custo", Fundação Universidade Federal de Rondônia UNIR. Disponível em: https://brunomarquesunir.wixsite.com/sequencimetro. Acesso em: dez. 2019.
- [4] Dutra Máquinas. Disponível em: https://m.dutramaquinas.com.br/p/fasimetro-com-indicador-led-690-volts-mfa-862-mfa-862. Acesso em: dez. 2019.