Chapter 3

Vector Spaces

3.1 Definition and Examples Euclidean Vector Spaces

- The most elementary vector spaces are the Euclidean vector spaces \mathbb{R}^n , n = 1, 2, ...
- For example, R^2 , $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ denote the directed line segment from (0, 0) to (x_1, x_2)
- Two equal line segments will have the same <u>length</u> and direction

• x can be represented by any line segment from (a, b) to $(a + x_1, b + x_2)$

• For example, the vector $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ in \mathbb{R}^2 could just as well be represented by the directed line segment from (2, 2,) to (4, 3) or from (-1, -1) to (1, 0)

• The Euclidean length of the line segment from (0, 0) to (x_1, x_2) is $\sqrt{x_1^2 + x_2^2}$

• Given a scalar α , the product αx is given by

$$\alpha \mathbf{x} = \alpha \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \end{bmatrix}$$

• For example, if $\mathbf{x} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, then

$$-\mathbf{x} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}, \quad 3\mathbf{x} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}, \quad -2\mathbf{x} = \begin{bmatrix} -4 \\ -2 \end{bmatrix}$$

• The sum of two vectors $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$ is defined by

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix} \tag{u_1, u_2}$$

• In general, scalar multiplication and addition in \mathbb{R}^n are defined by

$$\alpha \mathbf{x} = \begin{bmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{bmatrix} \quad \text{and} \quad \mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}$$

for $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and any scalar α .

Vector Spaces Axioms Definition

Let *V* be a set on which the operations of <u>addition</u> and scalar multiplication are defined. By this we mean:

- (1) for each pair of elements \mathbf{x} and \mathbf{y} in V, one can associate a unique element $\mathbf{x}+\mathbf{y}$ that is also in V,
- (2) for each vector \mathbf{x} in V and a scalar α , one can associate a unique element $\alpha \mathbf{x}$ in V.

The <u>set V</u> together with the <u>operations</u> of addition and scalar multiplication is said to form a **vector space** if the following axioms are satisfied. (V, +, \times)

公設

- A1. $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$ for any \mathbf{x} and \mathbf{y} in V
- **A2**. (x + y) + z = x + (y + z) for any x, y, z in V
- A3. There exist an element 0 in V such that $\mathbf{x} + \mathbf{0} = \mathbf{x}$ for each $\mathbf{x} \in V$
- A4. For each $x \in V$, there exist an element -x in V such that x + (-x) = 0
- A5. $\alpha(x + y) = \alpha x + \alpha y$ for each scalar α and any x and y in V
- **A6.** $(\alpha + \beta)\mathbf{x} = \alpha\mathbf{x} + \beta\mathbf{x}$ for any scalars α and β and any $\mathbf{x} \in V$
- A7. $(\alpha\beta)\mathbf{x} = \alpha(\beta\mathbf{x})$ for any scalars α and β and any $\mathbf{x} \in V$
- **A8**. $1 \cdot \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$

• The <u>closure properties</u> of addition and scalar multiplication operations can be summarized as follows:

C1. If $x \in V$ and α is a scalar, then $\alpha x \in V$

C2. If $\mathbf{x}, \mathbf{y} \in V$, then $\mathbf{x} + \mathbf{y} \in V$

The Vector Spaces $\mathbb{R}^{m \times n}$

- The vector spaces R^n can be viewed as the set of all $n \times 1$ matrices with real entries.
- $R^{m \times n}$ can denote the set of all $m \times n$ matrices with real entries.
- If $A = (a_{ij})$ and $B = (b_{ij})$, the sum A+B is the $m \times n$ matrix $C = (c_{ij})$, where $c_{ij} = a_{ij} + b_{ij}$
- αA is the $m \times n$ matrix whose ij-th entry is αa_{ij}

- Let $W = \{(a, 1) \mid a \text{ real}\}\$
- By C1. $(a, 1) \in W$ $\alpha(a, 1) = (\alpha a, \alpha) \notin W$
- By C2. $(a, 1) \in W$ and $(b, 1) \in W$ $(a, 1) + (b, 1) = (a+b, 2) \notin W$
- ... W together with the operations of addition and scalar multiplication is **not** a vector space

Given a set V on which the operations of addition and scalar multiplication have been defined and satisfy properties C1 and C2, we can check the eight axioms are valid.

The Vector Space C[a, b]

- Let C[a, b] denote the set of all real-valued functions that are defined and continuous on the closed intervals [a, b]. In this case, our universal set is a set of functions. Thus, our vectors are the functions in C[a, b].
- If f and g are functions in C[a, b] and α is a real number: (f+g)(x) = f(x) + g(x)

$$(\alpha f)(x) = \alpha f(x)$$

for all x in [a, b].

• Clearly, αf is in C[a, b], since a constant times a continuous function is always continuous.

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x)$$

for every x in $[a,b]$

• Since the function

$$z(x) = 0$$
 for all x in $[a, b]$

acts as the zero vector; that is,

$$f + z = f$$
 for all f in $C[a, b]$

The Vector Spaces P_n

• Let P_n denote the set of all polynomials of degree less than n. Define p+q and αp by

$$(p+q)(x) = p(x) + q(x)$$

and

$$(\alpha p)(x) = \alpha p(x)$$

for all real numbers x.

• P_n is a vector space

Additional Properties of Vector Spaces

Theorem 3.1.1

If V is a vector space and \mathbf{x} is any element of V, then

- (i) 0x = 0
- (ii) $\mathbf{x}+\mathbf{y}=\mathbf{0}$ implies that $\mathbf{y}=-\mathbf{x}$ (i.e., the additive inverse of \mathbf{x} is unique)

$$(iii) (-1)x = -x$$

Theorem 3.1.1 proof

(i)
$$\mathbf{x} = 1\mathbf{x} = (1+0)\mathbf{x} = 1\mathbf{x} + 0\mathbf{x} = \mathbf{x} + 0\mathbf{x}$$

 $-\mathbf{x} + \mathbf{x} = -\mathbf{x} + (\mathbf{x} + 0\mathbf{x}) = (-\mathbf{x} + \mathbf{x}) + 0\mathbf{x}$ (A2)
 $\mathbf{0} = \mathbf{0} + 0\mathbf{x} = 0\mathbf{x}$ (A1, A3, and A4)

(ii) Suppose
$$\mathbf{x} + \mathbf{y} = \mathbf{0}$$
, then

$$-x = -x + 0 = -x + (x + y)$$
 (A1, A3, and A4)
 $-x = (-x + x) + y = 0 + y = y$

(iii)
$$0 = 0x = (1 + (-1))x = 1x + (-1)x$$
 (i and A6)
$$x + (-1)x = 0$$
 (A8)
$$(-1)x = -x$$

3.2 Subspaces Example 1

- Let $S = \left\{ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \middle| x_2 = 2x_1 \right\}$, then S is a subset of R^2
- If $\mathbf{x} = \begin{bmatrix} c \\ 2c \end{bmatrix}$ is any element of S and α is any scalar, then
- By C1:

$$\alpha \mathbf{x} = \alpha \begin{bmatrix} c \\ 2c \end{bmatrix} = \begin{bmatrix} \alpha c \\ 2\alpha c \end{bmatrix} \in S$$

• By C2: if
$$\begin{bmatrix} a \\ 2a \end{bmatrix} \in S$$
 and $\begin{bmatrix} b \\ 2b \end{bmatrix} \in S$, then

$$\begin{bmatrix} a \\ 2a \end{bmatrix} + \begin{bmatrix} b \\ 2b \end{bmatrix} = \begin{bmatrix} a+b \\ 2(a+b) \end{bmatrix} \in S$$

• \therefore S is a vector space

Definition

If *S* is a nonempty subset of a vector space *V*, and *S* satisfies the following conditions:

- (i) $\alpha \mathbf{x} \in S$ whenever $\mathbf{x} \in S$ for any scalar α (closed under scalar multiplication)
- (ii) $\mathbf{x} + \mathbf{y} \in S$ whenever $\mathbf{x} \in S$ and $\mathbf{y} \in S$ (closed under addition)

then S is said to be a **subspace** of V

- A subapace of *V* is a subset *S* that is <u>closed under the</u> operations of *V*.
- Every subspace of a vector space is a <u>vector space in</u> its own right.

Remark

- If V is a vector space, then {0} and V are subspaces of V. All other subspaces are referred to as proper subspaces, {0} is referred to as the zero subspace.
- To show that a subset S of a vector space forms a subspace, we must show that S is nonempty and that the closure properties (i) and (ii) in the definition are satisfied. Since every subspace must contain the zero vector, we can verify that S is nonempty by showing that S is nonempty by showing that S is nonempty by showing

lacktriangle

- Let $S = \{(x_1, x_2, x_3)^T \mid x_1 = x_2\}$, is S a subspace of R^3 ?
- Sol:
 - (i) If $\mathbf{x} = (a, a, b)^T \in S$ then $\alpha \mathbf{x} = (\alpha a, \alpha a, \alpha b)^T \in S$
 - (ii) If $\mathbf{x} = (a, a, b)^T \in S$ and $\mathbf{y} = (c, c, d)^T \in S$ then $\mathbf{x} + \mathbf{y} = (a+c, a+c, b+d)^T \in S$

Therefore, S is a subspace of R^3

- Let $S = \{ \begin{bmatrix} x \\ 1 \end{bmatrix} | x \text{ is a real number} \}$, is S a subspace of R^2 ?
- Sol:

By C1:
$$\alpha \begin{bmatrix} a \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha a \\ \alpha \end{bmatrix}$$
, if $\alpha \neq 1$, $\begin{bmatrix} \alpha a \\ \alpha \end{bmatrix} \notin S$

By C2:
$$\begin{bmatrix} a \\ 1 \end{bmatrix} + \begin{bmatrix} b \\ 1 \end{bmatrix} = \begin{bmatrix} a+b \\ 2 \end{bmatrix} \notin S$$

So, S is not a subspace of R^2 .

- Let $S = \{A \in R^{2\times 2} \mid a_{12} = -a_{21}\}$, is S a subspace of $R^{2\times 2}$?
- Sol:
 - (i) By C1: If $A \in S$, $A = \begin{bmatrix} a & b \\ -b & c \end{bmatrix}$

$$\therefore \alpha A = \begin{bmatrix} \alpha a & \alpha b \\ -\alpha b & \alpha c \end{bmatrix} \in S$$

(ii) By C2:

If $A, B \in S$, that is

$$A = \begin{bmatrix} a & b \\ -b & c \end{bmatrix}, B = \begin{bmatrix} d & e \\ -e & f \end{bmatrix}$$

$$\therefore A + B = \begin{bmatrix} a+d & b+e \\ -(b+e) & c+f \end{bmatrix} \in S$$

So, S is a subspace of $R^{2\times 2}$

- Let S be the set of all polynomials of degree less than P(0) = 0. The set P(0) = 0 is nonempty since it contains the zero polynomial. We claim that P(0) = 0 is a subspace of P(0). This follows because
- (i) If $p(x) \in S$ and α is a scalar, then $\alpha p(0) = \alpha \cdot 0 = 0$ and hence $\alpha p \in S$.
- (ii) If p(x) and q(x) are elements of S, then (p+q)(0) = p(0) + q(0) = 0 + 0 = 0and hence $p+q \in S$.

• Let $C^n[a, b]$ be the set of all functions f that have a continuous nth derivative on [a, b], then $C^n[a, b]$ is a subspace of $C^n[a, b]$.

- The function f(x) = |x| is in C[-1, 1], but it is not differentiable at x = 0 and hence it is not in $C^1[-1, 1]$.
- The function g(x) = x|x| is in $C^1[-1, 1]$, since it is differentiable at every point in [-1, 1] and g'(x) = 2|x| is continuous on [-1, 1].
- However, $g \notin C^2[-1,1]$, since g''(x) is not defined when x = 0. Thus, the vector space $C^2[-1,1]$ is a proper subspace of both C[-1,1] and $C^1[-1,1]$.

• Let S be the set of all f in $C^2[a, b]$ such that

$$f''(x) + f(x) = 0$$

for all x in [a, b]. The set S is nonempty, since the zero function is in S. If $f \in S$ and a is any scalar, then, for any x in [a, b],

$$(\alpha f)''(x) + (\alpha f)(x) = \alpha f''(x) + \alpha f(x)$$
$$= \alpha (f''(x) + f(x)) = \alpha \cdot 0 = 0$$

Thus, $\alpha f \in S$.

Example 8 (con.)

• If f and g are both in S, then

$$(f+g)''(x) + (f+g)(x) = f''(x) + g''(x) + f(x) + g(x)$$
$$= [f''(x) + f(x)] + [g''(x) + g(x)]$$
$$= 0 + 0 = 0$$

• Hence, the set of all solutions on [a, b] of the differential equation y'' + y = 0 forms a subspaces of $C^2[a, b]$. Note that $f(x) = \sin x$ and $g(x) = \cos x$ are both in S. Since S is a subspace, it follows that any function of the form $c_1 \sin x + c_2 \cos x$ must also be in S.

The Null Space of a Matrix

• Let *A* be an $m \times n$ matrix. Let N(A) denote the set of all solutions to the homogeneous system $A\mathbf{x} = \mathbf{0}$. Thus

$$N(A) = \{ \mathbf{x} \in R^n \mid A\mathbf{x} = 0 \}$$

• N(A) is called the **nullspace** of A

• Is N(A) a subspace of R^n ?

- If $\mathbf{x} \in N(A)$ and α is a scalar, then

$$A(\alpha \mathbf{x}) = \alpha(A\mathbf{x}) = \alpha \mathbf{0} = \mathbf{0}$$

$$\therefore \alpha \mathbf{x} \in N(A)$$

- If $x \in N(A)$ and $y \in N(A)$, then

$$A(x + y) = Ax + Ay = 0 + 0 = 0$$

$$\therefore \mathbf{x} + \mathbf{y} \in N(A)$$

 $\therefore N(A)$ is a subspace of R^n

Example 9

- Determine N(A) if $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 2 & 1 & 0 & 1 \end{bmatrix}$
- Sol:

Using the Gauss-Jordan reduction to solve $A\mathbf{x} = \mathbf{0}$

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & -1 & -2 & 1 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 0 \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 0 & -1 & 1 & 0 \\ 0 & 1 & 2 & -1 & 0 \end{bmatrix}$$

Example 9 (con.)

lead variable: x_1, x_2 , and free variable: x_3, x_4

$$x_1 - x_3 + x_4 = 0 \Rightarrow x_1 = x_3 - x_4$$

 $x_2 + 2x_3 - x_4 = 0 \Rightarrow x_2 = -2x_3 + x_4$

set $x_3 = \alpha$, $x_4 = \beta$, then

$$\begin{bmatrix} \alpha - \beta \\ -2\alpha + \beta \\ \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \alpha \\ -2\alpha \\ \alpha \\ 0 \end{bmatrix} + \begin{bmatrix} -\beta \\ \beta \\ 0 \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

is a solution to Ax = 0 The vector space N(A) consists of all vectors

The Span of a Set of Vectors Definition

Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ be vectors in a vector space V. A sum of the form $\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n$, where α_1 , $\alpha_2, ..., \alpha_n$ are scalars, is called a **linear combination** of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$. The set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ is called the **span** of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, denoted by $\mathbf{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$.

• In example 9, the null space of A, N(A), was the span of the vectors

 $(1, -2, 1, 0)^T$ and $(-1, 1, 0, 1)^T$

Example 10

• In R^3 , the span of \mathbf{e}_1 and \mathbf{e}_2 is the set of all vectors of the form

$$\alpha \mathbf{e}_1 + \beta \mathbf{e}_2 = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ 0 \end{bmatrix}$$

Span(\mathbf{e}_1 , \mathbf{e}_2) is the set of all vectors in \mathbf{R}^3 that lie in the x_1x_2 -plane.

Example 10 (con.)

- Verify that Span(\mathbf{e}_1 , \mathbf{e}_2) is a subspace of \mathbb{R}^3 .
- The span of \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 is the set of all vectors of the form

$$\alpha \mathbf{e}_{1} + \beta \mathbf{e}_{2} + \gamma \mathbf{e}_{3} = \alpha \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix}$$

- Thus, Span(e_1, e_2, e_3) = R^3
- A vector in R^3 is in **Span**(\mathbf{e}_1 , \mathbf{e}_2) iff it lies in the x_1x_2 plane in 3-space.

• We can think of the x_1x_2 -plane as the geometrical representation of the subspace Span(\mathbf{e}_1 , \mathbf{e}_2).

Theorem 3.2.1

If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are elements of a vector space V, then $\mathrm{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ is a <u>subspace</u> of V.

- proof
- Let $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + ... + \alpha_n \mathbf{v}_n$ be an arbitrary element of Span $(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$
- By C1: $\beta \mathbf{v} = (\beta \alpha_1) \mathbf{v}_1 + (\beta \alpha_2) \mathbf{v}_2 + \dots + (\beta \alpha_n) \mathbf{v}_n$ = $\gamma_1 \mathbf{v}_1 + \gamma_2 \mathbf{v}_2 + \dots + \gamma_n \mathbf{v}_n$

Therefore $\beta \mathbf{v} \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$

• Let $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$ and

$$\mathbf{w} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$$

$$\mathbf{v} + \mathbf{w} = (\alpha_1 + \beta_1) \mathbf{v}_1 + (\alpha_2 + \beta_2) \mathbf{v}_2 + \dots + (\alpha_n + \beta_n) \mathbf{v}_n \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$$

$$\text{Span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$$

• Therefore, Span $(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ is a subspace of V.

- Two vectors \mathbf{x} and \mathbf{y} in R^3 , if (0, 0, 0), (x_1, x_2, x_3) and (y_1, y_2, y_3) are not <u>collinear</u>, these points determines a plane.
- If $\mathbf{z} = c_1 \mathbf{x} + c_2 \mathbf{y}$, then \mathbf{z} is a sum of vectors parallel to \mathbf{x} and \mathbf{y} and hence must lie on the plane determined by the two vectors.

• In general, if two vectors **x** and **y** can be used to determine a plane in 3-space R^3 , that plane is the geometrical representation of Span(**x**, **y**).

Spanning Set for a Vector Space

- Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ be vectors in a vector space V. Span($\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$) is referred to as the subspace spanned by $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$.
- If Span($\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$) = V, the vectors $\mathbf{v}_1, ..., \mathbf{v}_n$ is said to *span* V or that { $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ } is a *spanning set* for V.

Definition

The set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a **spanning set** for V iff every vector in V can be written as a linear combination of \mathbf{v}_1 ,

 ${\bf v}_2, \, ..., \, {\bf v}_n$

Terminal point of first vector (1, 0) Terminal point of second vector (0, 1) Target point (2, 3)

Example 11

- Which of the following are spanning sets for R^3 ?
- (a) $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, (1, 2, 3)^T\}$
- (b) $\{(1, 1, 1)^T, (1, 1, 0)^T, (1, 0, 0)^T\}$
- (c) $\{(1, 0, 1)^T, (0, 1, 0)^T\}$
- (d) $\{(1, 2, 4)^T, (2, 1, 3)^T, (4, -1, 1)^T\}$

Example 11(a) $\{e_1, e_2, e_3, (1, 2, 3)^T\}$

• let $(a, b, c)^T \in \mathbb{R}^3$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 0 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = a \mathbf{e}_1 + b \mathbf{e}_2 + c \mathbf{e}_3 + 0 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

 \therefore (a) is a spanning set for R^3 .

Note

• The "standard" spanning set for R^3 :

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Example 11(b) $\{(1, 1, 1)^T, (1, 1, 0)^T, (1, 0, 0)^T\}$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha_1 + \alpha_2 + \alpha_3 \\ \alpha_1 + \alpha_2 \\ \alpha_1 \end{bmatrix}$$

$$\Rightarrow \alpha_1 + \alpha_2 + \alpha_3 = a$$

$$\alpha_1 + \alpha_2 = b$$

$$\alpha_1 = c$$

$$\Rightarrow \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} c \\ b - c \\ a - b \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} a \\ b \\ c \end{bmatrix} = c \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + (b-c) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + (a-b) \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
$$= \begin{bmatrix} c \\ c \\ c \end{bmatrix} + \begin{bmatrix} b-c \\ b-c \\ 0 \end{bmatrix} + \begin{bmatrix} a-b \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$

 \therefore (b) is a spanning set for \mathbb{R}^3 .

Example 11(c) $\{(1, 0, 1)^T, (0, 1, 0)^T\}$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_1 \end{bmatrix}$$

if $a \neq c$, then $\notin \text{Span}\{(1, 0, 1)^T, (0, 1, 0)^T\}$

 \therefore (c) is **not** a spanning set for R^3

Example 11(d) $\{(1, 2, 4)^T, (2, 1, 3)^T, (4, -1, 1)^T\}$

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \alpha_1 \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix} + \alpha_2 \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} + \alpha_3 \begin{bmatrix} 4 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_1 + 2\alpha_2 + 4\alpha_3 \\ 2\alpha_1 + \alpha_2 - \alpha_3 \\ 4\alpha_1 + 3\alpha_2 + \alpha_3 \end{bmatrix}$$

$$\Rightarrow \alpha_1 + 2\alpha_2 + 4\alpha_3 = a$$

$$2\alpha_1 + \alpha_2 - \alpha_3 = b$$

$$4\alpha_1 + 3\alpha_2 + \alpha_3 = c$$

$$\begin{bmatrix} 1 & 2 & 4 & a \\ 2 & 1 & -1 & b \\ 4 & 3 & 1 & c \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 4 & a \\ 0 & -3 & -9 & -2a+b \\ 0 & -5 & -15 & -4a+c \end{bmatrix}$$
$$\Rightarrow \begin{bmatrix} 1 & 2 & 4 & a \\ 0 & 1 & 3 & (2a-b)/3 \\ 0 & 0 & 0 & -(2a-5b+3c)/3 \end{bmatrix}$$

if $2a - 3c + 5b \neq 0$, then the system is <u>inconsistent</u>

 \therefore (d) is **not** a spanning set for R^3

Example 12

- The vectors $1 x^2$, x + 2, and x^2 span P_3 ?
- *Sol*:

If
$$ax^2 + bx + c$$
 is any polynomial in P_3 .
 $ax^2 + bx + c = \alpha_1(1 - x^2) + \alpha_2(x + 2) + \alpha_3 x^2$
 $= (\alpha_3 - \alpha_1) x^2 + (\alpha_2) x + (\alpha_1 + 2\alpha_2)$

$$\vdots \qquad \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \alpha_3 - \alpha_1 \\ \alpha_2 \\ \alpha_1 + 2\alpha_2 \end{bmatrix} \Rightarrow \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} c - 2b \\ b \\ a + c - 2b \end{bmatrix}$$

 $\therefore 1 - x^2$, x + 2, and x^2 span P_3

• Theorem 3.2.2 If the linear system $A\mathbf{x} = \mathbf{b}$ is consistent and \mathbf{x}_0 is a particular solution, then a vector \mathbf{y} will also be a solution if and only if $\mathbf{y} = \mathbf{x}_0 + \mathbf{z}$ where $\mathbf{z} \in N(A)$.

Let S be the solution set to a consistent $m \times n$ linear system $A\mathbf{x} = \mathbf{b}$. In the case that $\mathbf{b} = \mathbf{0}$ we have that S = N(A) and consequently the solution set forms a subspace of \mathbb{R}^n . If $\mathbf{b} \neq \mathbf{0}$, then S does not form a subspace of \mathbb{R}^n ; however, if one can find a particular solution \mathbf{x}_0 , then it is possible to represent any solution vector in terms of \mathbf{x}_0 and a vector \mathbf{z} from the null space of A.

Let $A\mathbf{x} = \mathbf{b}$ be a consistent linear system and let \mathbf{x}_0 be a particular solution to the system. If there is another solution \mathbf{x}_1 to the system, then the difference vector $\mathbf{z} = \mathbf{x}_1 - \mathbf{x}_0$ must be in N(A) since

$$A\mathbf{z} = A\mathbf{x}_1 - A\mathbf{x}_0 = \mathbf{b} - \mathbf{b} = \mathbf{0}$$

Thus if there is a second solution, it must be of the form $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{z}$ where $\mathbf{z} \in N(A)$. In general, if \mathbf{x}_0 is a particular solution to $A\mathbf{x} = \mathbf{b}$ and \mathbf{z} is any vector in N(A), then setting $\mathbf{y} = \mathbf{x}_0 + \mathbf{z}$, we have

$$A\mathbf{y} = A\mathbf{x}_0 + A\mathbf{z} = \mathbf{b} + \mathbf{0} = \mathbf{b}$$

So $\mathbf{y} = \mathbf{x}_0 + \mathbf{z}$ must also be a solution to the system $A\mathbf{x} = \mathbf{b}$.

3.3 Linear Independence

- Each vector in the vector space can be built up from the elements in a generating set (spanning set) using only the operations of addition and scalar multiplication.
- In general, it is desirable to find a *minimum spanning* set.
- How the vectors in the generating set *depend* on each other.

Linear dependence/independence

• Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} -1 \\ 3 \\ 8 \end{bmatrix}$$

• Let S be the subspace of R^3 spanned by \mathbf{x}_1 , \mathbf{x}_2 , and \mathbf{x}_3 .

$$\Rightarrow 3\mathbf{x}_1 + 2\mathbf{x}_2 = \begin{bmatrix} 3 \\ -3 \\ 6 \end{bmatrix} + \begin{bmatrix} -4 \\ 6 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 8 \end{bmatrix} = \mathbf{x}_3$$

 \Rightarrow Any linear Combination of \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 can be reduced to a linear combination of \mathbf{x}_1 and \mathbf{x}_2 :

$$\alpha_{1}\mathbf{x}_{1} + \alpha_{2}\mathbf{x}_{2} + \alpha_{3}\mathbf{x}_{3}$$

$$= \alpha_{1}\mathbf{x}_{1} + \alpha_{2}\mathbf{x}_{2} + \alpha_{3}(3\mathbf{x}_{1} + 2\mathbf{x}_{2})$$

$$= (\alpha_{1} + 3\alpha_{3}) \mathbf{x}_{1} + (\alpha_{2} + 2\alpha_{3}) \mathbf{x}_{2}$$
Thus, Span(\mathbf{x}_{1} , \mathbf{x}_{2} , \mathbf{x}_{3}) = Span(\mathbf{x}_{1} , \mathbf{x}_{2})

• Eq. (1) can be rewritten as

$$3\mathbf{x}_1 + 2\mathbf{x}_2 - 1\mathbf{x}_3 = \mathbf{0}$$

$$\mathbf{x}_1 = -\frac{2}{3}\mathbf{x}_2 + \frac{1}{3}\mathbf{x}_3, \quad \mathbf{x}_2 = -\frac{3}{2}\mathbf{x}_1 + \frac{1}{2}\mathbf{x}_3, \quad \mathbf{x}_3 = 3\mathbf{x}_1 + 2\mathbf{x}_2$$

- Span($\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$) = Span($\mathbf{x}_1, \mathbf{x}_2$) = Span($\mathbf{x}_2, \mathbf{x}_3$) = Span($\mathbf{x}_1, \mathbf{x}_3$)
- Because of the dependency relation:

$$3\mathbf{x}_1 + 2\mathbf{x}_2 - \mathbf{x}_3 = \mathbf{0}$$

the subspace S can be represented as the span of \underline{any} two of the given vectors.

• Suppose there are scalars c_1 and c_2 , not both 0, such that:

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 = 0$$

then we could solve for one of the vectors in terms of the other:

$$\mathbf{x}_1 = -\frac{c_2}{c_1} \mathbf{x}_2 \quad (c_1 \neq 0), \quad \mathbf{x}_2 = -\frac{c_1}{c_2} \mathbf{x}_1 \quad (c_2 \neq 0)$$

- However, neither of the two vectors in question is a multiple of the others
- The only way that (3) can hold is if $c_1 = c_2 = 0$.

Summarization

- (I) If $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ span a vector space V and one of these vectors can be written as a linear combination of the other n-1 vectors, then these n-1 vectors span V.
- (II) Given n vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, it is possible to write one of the vectors as a linear combination of the other n-1 vectors iff there exist scalars $c_1, c_2, ..., c_n$ not all zero such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n = \mathbf{0}$$

Proof (I)

- Suppose \mathbf{v}_n can be written as a linear combination of the other n-1 vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{n-1}$: $\mathbf{v}_n = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + ... + \beta_{n-1} \mathbf{v}_{n-1}$
- Let **v** be any vectors in V, since $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ span V, we can write

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_{n-1} \mathbf{v}_{n-1} + \alpha_n \mathbf{v}_n$$

$$= \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_{n-1} \mathbf{v}_{n-1} + \alpha_n (\beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_{n-1} \mathbf{v}_{n-1})$$

$$= (\alpha_1 + \alpha_n \beta_1) \mathbf{v}_1 + (\alpha_2 + \alpha_n \beta_2) \mathbf{v}_2 + \dots + (\alpha_{n-1} + \alpha_n \beta_{n-1}) \mathbf{v}_{n-1}$$

• Thus, any vectors \mathbf{v} in V can be written as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_{n-1}$

Proof (II)

 (\Rightarrow)

Suppose \mathbf{v}_n can be written as a linear combination of

$$\mathbf{v}_1, \, \mathbf{v}_2, \, \dots, \, \mathbf{v}_{n-1}$$
:

$$\mathbf{v}_n = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_{n-1} \mathbf{v}_{n-1}$$

Subtracting \mathbf{v}_n from both sides of the equation, we get

$$\alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_{n-1} \mathbf{v}_{n-1} - \mathbf{v}_n = \mathbf{0}$$

If we set $c_i = \alpha_i$ for i = 1, 2, ..., n-1 and $c_n = -1$, then

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$$

(⇐) Conversely, if

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$$

and at least one of the c_i 's, say c_n , is nonzero, then

$$\mathbf{v}_n = \frac{-c_1}{c_n} \mathbf{v}_1 + \frac{-c_2}{c_n} \mathbf{v}_2 + \dots + \frac{-c_{n-1}}{c_n} \mathbf{v}_{n-1}$$

Definition

The vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ in a vector space V are said to be linearly independent if

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$$

implies that $c_1 = c_2 = ... = c_n = 0$

- If $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a minimum spanning set, then \mathbf{v}_1 , $\mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent
- Conversely, if $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent and span V, then $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a *minimum* spanning set for V.
- A minimum spanning set is called a basis.

Example 1

- Are the vectors $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ linearly independent or linearly dependent?
- *Sol*:

$$c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow c_1 + c_2 = 0$$

$$c_1 + 2c_2 = 0$$

$$\Rightarrow c_1 = c_2 = 0$$

: linearly independent

Definition

The vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ in a vector space V are said to be **linearly dependent** if there exist scalars $c_1, c_2, ..., c_n$ not all zero such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$$

Example 2

- Are the vectors $\mathbf{x} = (1, 2, 3)^T$, \mathbf{e}_1 , \mathbf{e}_2 , and \mathbf{e}_3 linearly independent or linearly dependent?
- *Sol*:

$$c_{1}\begin{bmatrix} 1\\2\\3 \end{bmatrix} + c_{2}\begin{bmatrix} 1\\0\\0 \end{bmatrix} + c_{3}\begin{bmatrix} 0\\1\\0 \end{bmatrix} + c_{4}\begin{bmatrix} 0\\0\\1 \end{bmatrix} = \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \Rightarrow \begin{bmatrix} c_{1} + c_{2}\\2c_{1} + c_{3}\\3c_{1} + c_{4} \end{bmatrix} = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

$$\Rightarrow c_{1} = 1, c_{2} = -1, c_{3} = -2, c_{4} = -3$$

: linearly dependent

Note

• Give a set of vectors $\{c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n\}$ in a vector space V, it is trivial to find scalars c_1, c_2, \ldots, c_n such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_n\mathbf{v}_n = \mathbf{0}$$

Just take

$$c_1 = c_2 = \dots = c_n = 0$$

If there are no trivial choices of scalars for which the linear combination $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n$ equals the zero vector, then $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n$ are linearly dependent. If the only way the linear combination $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \ldots + c_n\mathbf{v}_n$ can equal the zero vector is for all the scalars c_1, c_2, \ldots, c_n to be 0, then $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ are linearly independent.

Geometric Interpretation

(a) **x** and **y** linearly dependent

$$c_1 \mathbf{x} + c_2 \mathbf{y} = \mathbf{0}$$

 c_1 and c_2 are not both 0,
say $c_1 \neq 0$, then
 $\mathbf{x} = (-c_2/c_1)\mathbf{y} = k \mathbf{y}$

(b) \mathbf{x} and \mathbf{y} linearly independent $\mathbf{x} \neq k \mathbf{y}$

• If
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ y_2 \end{bmatrix}$

are linearly independent in R^3 , then the two points (x_1, x_2, x_3) and (y_1, y_2, y_3) will not lie on the same line through the origin in 3-space.

• Since (0, 0, 0), (x_1, x_2, x_3) , and (y_1, y_2, y_3) are not collinear, they determine a plane.

• If (z_1, z_2, z_3) lies on this plane, the vector $\mathbf{z} = (z_1, z_2, z_3)^T$ can be written as a linear combination of \mathbf{x} and \mathbf{y} , and hence \mathbf{x} , \mathbf{y} , and \mathbf{z} are linearly dependent.

• If (z_1, z_2, z_3) does not lie on the plane, the three vectors will be linearly independent.

Theorems and Examples Example 3

• Which of the following collections of vectors are linearly independent in \mathbb{R}^3 ?

(a)
$$(1, 1, 1)^T$$
, $(1, 1, 0)^T$, $(1, 0, 0)^T$

(b)
$$(1, 0, 1)^T$$
, $(0, 1, 0)^T$

(c)
$$(1, 2, 4)^T$$
, $(2, 1, 3)^T$, $(4, -1, 1)^T$

Example 3 (a)

We must show tjat the only way for

$$c_1(1, 1, 1)^T + c_2(1, 1, 0)^T + c_3(1, 0, 0)^T = (0, 0, 0)^T$$
 is if the scalars c_1, c_2, c_3 are all zero.

$$\Rightarrow c_1 + c_2 + c_3 = 0$$

$$c_1 + c_2 = 0$$

$$c_1 = 0$$

$$\Rightarrow c_1 = 0, c_2 = 0, c_3 = 0.$$

Example 3 (b)

• If

$$c_1 (1, 0, 1)^T + c_2 (0, 1, 0)^T = (0, 0, 0)^T$$

then

$$(c_1, c_2, c_1)^T = (0, 0, 0)^T$$

so
$$c_1 = c_2 = 0$$
.

• Therefore, the two vectors are linearly independent.

Example 3 (c)

• If $c_{1}(1, 2, 4)^{T} + c_{2}(2, 1, 3)^{T} + c_{3}(4, -1, 1)^{T} = (0, 0, 0)^{T}$ then $c_{1} + 2c_{2} + 4c_{3} = 0$ $2c_{1} + c_{2} - c_{3} = 0$ $4c_{1} + 3c_{2} + c_{3} = 0$

• The coefficient matrix of the system is singular and hence the system has nontrivial solution. Therefore, the vectors are linearly dependent.

Theorem 3.3.1

Let $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ be n vectors in R^n and let $X = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$ then the vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ will be <u>linearly</u> <u>dependent</u> iff X is singular (i.e., $\det(X) = 0$)

proof:
$$c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n = \mathbf{0}$$

$$c_1 \begin{bmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{bmatrix} + c_2 \begin{bmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{bmatrix} + \dots + c_n \begin{bmatrix} x_{1n} \\ x_{2n} \\ \vdots \\ x_{nn} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

$$\Rightarrow c_1 x_{11} + c_2 x_{12} + \dots + c_n x_{1n} = 0$$

$$c_1 x_{21} + c_2 x_{22} + \dots + c_n x_{2n} = 0$$

$$\vdots$$

$$c_1 x_{n1} + c_2 x_{n2} + \dots + c_n x_{nn} = 0$$

Let $\mathbf{c} = (c_1, c_2, ..., c_n)^T$, then the system can be written as $X\mathbf{c} = \mathbf{0}$

c has a nontrivial solution iff **X** is singular

 \Rightarrow $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n$ will be linearly dependent iff X is singular.

To test whether n vectors are linearly independent in \mathbb{R}^n :

- (1) Form a matrix *X* whose <u>columns</u> are the vectors being tested.
- (2) To determine whether *X* is singular, calculate the value of det(*X*).
 - (a) If det(X) = 0 (X is singular) \Rightarrow the vectors are linearly dependent
 - (b) If $det(X) \neq 0$ (X is nonsingular) \Rightarrow the vectors are linearly independent

Example 4

• The following vectors are pictured in Figure 3.3.3.

$$\mathbf{x}_1 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, \quad \mathbf{x}_2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{x}_3 = \begin{bmatrix} 5 \\ 5 \\ 2 \end{bmatrix}, \quad \mathbf{x}_4 = \begin{bmatrix} 2 \\ 2 \\ 4 \end{bmatrix}$$

Example 4 (con.)

• We can see a dependency relation among the first three of the vectors since

$$\mathbf{x}_3 = \mathbf{x}_1 + \mathbf{x}_2$$

• In this case, the vector \mathbf{x}_3 lies in the plane spanned by \mathbf{x}_1 and \mathbf{x}_2 . It follows then that

$$\mathbf{x}_1 + \mathbf{x}_2 - \mathbf{x}_3 + 0\mathbf{x}_4 = 0$$

• The collection of four vectors must be linearly dependent since the scalars $c_1 = 1$, $c_2 = 1$, $c_3 = -1$, $c_4 = 0$ are not all 0.

Example 5

- Are $(4, 2, 3)^T$, $(2, 3, 1)^T$, $(2, -5, 3)^T$ linearly independent or dependent?
- *Sol*:

$$\begin{vmatrix} 4 & 2 & 2 \\ 2 & 3 & -5 \\ 3 & 1 & 3 \end{vmatrix} = 0 \Rightarrow \text{linearly dependent!}$$

Note

• To test whether k vectors $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k$ are linearly independent in \mathbb{R}^n , we can rewrite the equation

$$c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_k \mathbf{x}_k = \mathbf{0}$$

as a linear system $X\mathbf{c} = \mathbf{0}$, where $X = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_k)$.

- If $k \neq n$, the matrix X is not square, det(X) = ?
- The system is <u>homonegeous</u>, so it has the <u>trivial</u> solution $\mathbf{c} = \mathbf{0}$.

- It will have <u>nontrivial solutions</u> iff *the row echelon form of X involve free variables*.
- If there are <u>nontrivial solutions</u>, then the vectors are <u>linearly dependent</u>.
- If there are <u>no free variables</u>, then $\mathbf{c} = \mathbf{0}$ is the only solution \Rightarrow linearly independent

Example 6

• Given
$$\mathbf{x}_1 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \ \mathbf{x}_2 = \begin{bmatrix} -2 \\ 3 \\ 1 \\ -2 \end{bmatrix}, \ \mathbf{x}_3 = \begin{bmatrix} 1 \\ 0 \\ 7 \\ 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ -1 & 3 & 0 & 0 \\ 2 & 1 & 7 & 0 \\ 3 & -2 & 7 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 5 & 5 & 0 \\ 0 & 4 & 4 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

There exist a free variable $c_3 \Rightarrow$ there are nontrivial solutions \Rightarrow linearly dependent.

Theorem 3.3.2

Let $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ be vectors in a vector space V. A vector $\mathbf{v} \in \operatorname{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$ can be written <u>uniquely</u> as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ iff $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are <u>linearly independent</u>.

• Linear combinations of linearly independent vectors are unique.

• If $\mathbf{v} \in \text{Span}(\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)$, then v can be written as a linear combination

$$\mathbf{v} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \dots + \alpha_n \mathbf{v}_n$$

• Suppose that v can also be expressed as a linear combination

$$\mathbf{v} = \beta_1 \mathbf{v}_1 + \beta_2 \mathbf{v}_2 + \dots + \beta_n \mathbf{v}_n$$

• We will show that , if $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent, that $\beta_i = \alpha_i$, i = 1, 2, ..., n and if \mathbf{v}_1 , $\mathbf{v}_2, ..., \mathbf{v}_n$ are linearly dependent, then it is possible to choose the β_i 's different from the α_i 's.

• If $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent, then subtracting (6) from (5) yield

$$0 = (\alpha_1 - \beta_1) \mathbf{v}_1 + (\alpha_2 - \beta_2) \mathbf{v}_2 + \dots + (\alpha_n - \beta_n) \mathbf{v}_n$$

By the linearly independent of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$, the coefficients of (7) must will be all 0. Hence,

$$\alpha_1 = \beta_1, \ \alpha_2 = \beta_2, \ \dots, \ \alpha_n = \beta_n$$

Thus, the representation (5) is unique then $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent.

• On the other hand, if $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly dependent, then there exist $c_1, c_2, ..., c_n$, not all 0, such that

$$\mathbf{0} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \ldots + c_n \mathbf{v}_n$$

• Now if we set

$$\beta_1 = \alpha_1 + c_1, \beta_2 = \alpha_2 + c_2, ..., \beta_n = \alpha_n + c_n$$

then, adding (5) and (8), we get

$$\mathbf{v} = (\alpha_1 + c_1)\mathbf{v}_1 + \dots + (\alpha_n + c_n)\mathbf{v}_n$$
$$= \beta_1\mathbf{v}_1 + \beta_2\mathbf{v}_2 + \dots + \beta_n\mathbf{v}_n$$

• Since the c_i 's are not all 0, $\beta_i \neq \alpha_i$ for at least one value of i. Thus, if $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly dependent, the representation of a vector as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ is not unique.

Vector Spaces of Functions – the Vector Space P_n

• To test whether the following polynomials $p_1, p_2, ..., p_k$ are linearly independent in P_n , we set

$$c_1p_1 + c_2p_2 + \dots + c_kp_k = z$$

where z represent the zero polynomial:

$$z(x) = 0x^{n-1} + 0x^{n-2} + \dots + 0x + 0$$

• Let $c_1 p_1 + c_2 p_2 + \dots + c_k p_k = a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$, then

$$a_i = 0, \ 1 \le i \le n$$

- Each of the a_i 's is a linear combination of the c_j 's
- A <u>homogeneous</u> linear system with unknowns c_1 , $c_2, ..., c_k$
- If the system has only the <u>trivial solution</u>, the polynomials are <u>linearly independent</u>; otherwise, they are linearly dependent.

Example 7

• Are the following polynomials linearly independent?

$$p_1(x) = x^2 - 2x + 3, p_2(x) = 2x^2 + x + 8,$$

 $p_3(x) = x^2 + 8x + 7$

• *Sol*:

$$c_1 p_1(x) + c_2 p_2(x) + c_3 p_3(x) = 0x^2 + 0x + 0$$

$$c_1 (x^2 - 2x + 3) + c_2(2x^2 + x + 8) + c_3(x^2 + 8x + 7)$$

$$= (c_1 + 2c_2 + c_3) x^2 + (-2c_1 + c_2 + 8c_3) x + (3c_1 + 8c_2 + 7c_3)$$

• =
$$0x^2 + 0x + 0$$

Example 7 (con.)

$$\Rightarrow c_1 + 2c_2 + c_3 = 0$$

$$-2c_1 + c_2 + 8c_3 = 0$$

$$3c_1 + 8c_2 + 7c_3 = 0$$

$$\Rightarrow \begin{bmatrix} 1 & 2 & 1 \\ -2 & 1 & 8 \\ 3 & 8 & 7 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
Since
$$\begin{vmatrix} 1 & 2 & 1 \\ -2 & 1 & 8 \\ -2 & 1 & 8 \\ 3 & 8 & 7 \end{vmatrix} = 0 \Rightarrow \text{linearly dependent.}$$

The Vector Space $C^{(n-1)}[a, b]$

• Let $f_1, f_2, ..., f_n$ be elements of $C^{(n-1)}[a, b]$, if these vectors are linearly dependent, then exist scalars c_1 , $c_2, ..., c_n$, not all zero, such that

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

for each x in [a, b]. Taking the derivatives with respect to x of both sides of (10) yields

$$c_1 f_1'(x) + c_2 f_2'(x) + \dots + c_n f_n'(x) = 0$$

• For each continue taking of both sides, we end up with the system

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

$$c_1 f_1'(x) + c_2 f_2'(x) + \dots + c_n f_n'(x) = 0$$

$$\vdots$$

$$c_1 f_1^{(n-1)}(x) + c_2 f_2^{(n-1)}(x) + \dots + c_n f_n^{(n-1)}(x) = 0$$

• For each fixed x in [a, b], the matrix equation

$$\begin{bmatrix} f_{1}(x) & f_{2}(x) & \cdots & f_{n}(x) \\ f'_{1}(x) & f'_{2}(x) & \cdots & f'_{n}(x) \\ \vdots & & & & \\ f_{1}^{(n-1)}(x) & f_{2}^{(n-1)}(x) & \cdots & f_{n}^{(n-1)}(x) \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{n} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

will have the same nontrivial solution $(c_1, c_2, ..., c_n)^T$. Thus, if $f_1, f_2, ..., f_n$ are linearly dependent in $C^{(n-1)}[a, b]$, then, for each fixed x in [a, b], the coefficient matrix of system (11) is singular. It the matrix is singular, its determinant is zero.

Definition

Let $f_1, f_2, ..., f_n$ be functions in $C^{(n-1)}[a, b]$, and define the function $W[f_1, f_2, ..., f_n](x)$ in [a, b] by

$$W[f_1, f_2, \dots, f_n](x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & & & & \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}$$

The function $W[f_1, f_2, ..., f_n](x)$ is called the **Wronskian** of $f_1, f_2, ..., f_n$.

Theorem 3.3.3

Let $f_1, f_2, ..., f_n$ be elements of $C^{(n-1)}[a, b]$. If there exists a points x_0 in [a, b] such that $W[f_1, f_2, ..., f_n](x_0) \neq 0$, then $f_1, f_2, ..., f_n$ are linearly independent.

Proof

If $f_1, f_2, ..., f_n$ were linearly dependent, then by the preceding discussion, the coefficient matrix in (11) would be singular for each x in [a, b] and hence $W[f_1, f_2, ..., f_n](x)$ would be identically zero on [a, b].

Example 8

- Show that e^x and e^{-x} are linearly independent in $C(-\infty, \infty)$.
- *Sol*:

$$W[e^{x}, e^{-x}] = \begin{vmatrix} e^{x} & e^{-x} \\ e^{x} & -e^{x} \end{vmatrix} = -2$$

Since W[e^x , e^{-x}] is not identically zero, e^x and e^{-x} are linearly independent.

Example 9

• Consider the function x^2 and x|x| in C[-1, 1]. Both functions are in the subspace $C^1[-1, 1]$, so we can compute the Wronskian

$$W[x^2, x|x|] = \begin{vmatrix} x^2 & x|x| \\ 2x & 2|x| \end{vmatrix} \equiv 0$$

• Since the Wronskian is identically zero, it gives no information as to whether the functions are linearly independent.

Example 9 (con.)

• To answer the question, suppose that

$$|c_1 x^2 + c_2 x |x| = 0$$

for all x in [-1, 1]. Then, in particular for x = 1 and x

$$=$$
 -1, we have

$$c_1 + c_2 = 0$$

$$c_1 - c_2 = 0$$

and the only solution of this system is $c_1 = c_2 = 0$.

Thus, the functions x^2 and x|x| are linearly

independent in C[-1, 1] even through $W[x^2, x|x|] \equiv 0$.

- Show that the vectors $1, x, x^2$, and x^3 are linearly independent in $C((-\infty, \infty))$.
- Sol:

$$W[1, x, x^{2}, x^{3}] = \begin{vmatrix} 1 & x & x^{2} & x^{3} \\ 0 & 1 & 2x & 3x^{2} \\ 0 & 0 & 2 & 6x \\ 0 & 0 & 0 & 6 \end{vmatrix} = 12$$

Since $W[1, x, x^2, x^3] \neq 0$, the vectors are linear independent.

3.4 Basis and Dimension Definition

The vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ form a **basis** for a vector space V if and only if

- (1) $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent (minimal spanning set)
- (2) $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ span V (spanning set)

• The *standard basis* for R^3 is $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$; however, there are many bases that we could choose for R^3 . For example,

$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\} \text{ and } \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$$

are both bases for R^3 . We will see shortly that any basis for R^3 must have exactly three elements.

• In $R^{2\times 2}$, consider the set $\{E_{11}, E_{12}, E_{21}, E_{22}\}$, where

$$E_{11} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad E_{12} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$E_{21} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \quad E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
If $c_1 E_{11} + c_2 E_{12} + c_3 E_{21} + c_4 E_{22} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$,
then
$$\begin{bmatrix} c_1 & c_2 \\ c_3 & c_4 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}. \quad \text{So, } E_{11}, E_{12}, E_{21}, E_{22} \text{ are linearly independent.}$$

• If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is in $R^{2\times 2}$, then

$$A = aE_{11} + bE_{12} + cE_{21} + dE_{22}$$

• Thus, E_{11} , E_{12} , E_{21} , E_{22} span $R^{2\times 2}$, and hence form a basis for $R^{2\times 2}$.

Theorem 3.4.1

If $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ is a spanning set for a vector space V, then any collection of m vectors in V, where m > n, is linearly dependent.

- Proof
- Let $u_1, u_2, ..., u_m$ be m vectors in V, when m > n. Then, since $v_1, v_2, ..., v_n$ span V, we have

$$\mathbf{u}_{i} = a_{i1}\mathbf{v}_{1} + a_{i2}\mathbf{v}_{2} + \cdots + a_{in}\mathbf{v}_{n}$$
 for $i = 1, 2, ..., m$

Theorem 3.4.1 proof (con.)

• A linearly combination $c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \cdots + c_m\mathbf{u}_m$ can be written in the form

$$c_1 \sum_{j=1}^n a_{1j} \mathbf{v}_j + c_2 \sum_{j=1}^n a_{2j} \mathbf{v}_j + \dots + c_m \sum_{j=1}^n a_{mj} \mathbf{v}_j$$

Rearranging the terms, we see that

$$c_1\mathbf{u}_1 + c_2\mathbf{u}_2 + \dots + c_m\mathbf{u}_m = \sum_{i=1}^m \left[c_i \left(\sum_{j=1}^n a_{ij} \mathbf{v}_j \right) \right] = \sum_{j=1}^n \left(\sum_{i=1}^m a_{ij} c_i \right) \mathbf{v}_j$$

Theorem 3.4.1 proof (con.)

• Now consider the system of equation

$$\sum_{i=1}^{m} a_{ij} c_i = 0 j = 1, 2, ..., n$$

- This is a homogeneous system with more unknowns than equations. Therefore, by Theorem 1.2.1, the system must have a nontrivial solution $(\hat{c}_1, \hat{c}_2, ..., \hat{c}_m)^T$
- But then

$$\hat{c}_1 \mathbf{u}_1 + \hat{c}_2 \mathbf{u}_2 + \dots + \hat{c}_m \mathbf{u}_m = \sum_{j=1}^n 0 \mathbf{v}_j = \mathbf{0}$$

Hence, \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_m are linearly decendent.

Corollary 3.4.2

If $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ and $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$ are both <u>bases</u> for a vector space V, then n = m.

- Proof
- Let both $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ and $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m\}$ be abses for V. Since $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ span V and $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m$ are linearly independent, it follows from Theorem 3.4.1 that $m \le n$. By same reasoning, $\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_m$ span V and $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ are linearly independent, so $n \le m$.

Definition

Let V be vector space. If V has a basis consisting of n vectors, we say that V has **dimension** n. The subspace $\{\mathbf{0}\}$ of V is said to have dimension 0. V is said to be **finite-dimensional** if there is a finite set of vectors that spans V; otherwise we say that V is **infinite-dimensional**.

- (a) Span(\mathbf{x}) = { $\alpha \mathbf{x} \mid \alpha$ is a scalar}: line
- (b) Span(\mathbf{x}, \mathbf{y}) = { $\alpha \mathbf{x} + \beta \mathbf{y} \mid \alpha, \beta \text{ are scalars}$ }: plane
- (c) Span(**x**, **y**, **z**) = R^3

- Let *P* be the vector space of all polynomial. We claim that *P* is infinite dimensional. If *P* were finite dimensional, say, if dimension *n*, any set of *n*+1 vectors would be linearly dependent.
- However, $1, x, x^2, ..., x^n$ are linearly independent, since $W[1, x, x^2, ..., x^n] > 0$. Therefore, P cannot be of dimension n. Since m was arbitrary, P must be infinite dimension. The same argument shows that C[a, b] is infinite dimensional.

Theorem 3.4.3

If V is a vector space of dimension n > 0

- (I) Any set of n linearly independent vectors spans V;
- (II) Any n vectors that span V are linearly independent.

• Show that $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} -2\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \right\}$ is a basis for \mathbb{R}^3

- *Sol*:
- Since dim $R^3 = 3$, we need only show that these vectors are linearly independent.

$$\begin{vmatrix} 1 & -2 & 1 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{vmatrix} = 2 \neq 0 \Rightarrow \text{linearly independent}$$

Theorem 3.4.4

If V is a vector space of dimension n > 0, then

- (I) No set of less then n vectors can span V
- (II) Any subset of less then n linearly independent vectors can be extended to form a basis for V
- (III) Any <u>spanning set</u> containing more than *n* vectors can be pared down to form a basis for *V*.

Standard Bases

- The standard basis for R^n is $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$
- The standard basis for $R^{2\times 2}$ is $\{E_{11}, E_{12}, E_{21}, E_{22}\}$
- The standard basis for P_n is $\{1, x, x^2, x^3, ..., x^{n-1}\}$

3.5 Change of Basis Changing Coordinates in \mathbb{R}^2

• The standard basis for R^2 is $\{\mathbf{e}_1, \mathbf{e}_2\}$, any vector $\mathbf{x} \in R^2$ can be expressed as a linear combination of \mathbf{e}_1 and \mathbf{e}_2 :

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

 \Rightarrow The scalars x_1, x_2 are **coordinates** of **x** with respect to the standard basis.

• For another basis $\{\mathbf{y}, \mathbf{z}\}$ for R^2 $\mathbf{x} = \alpha \mathbf{y} + \beta \mathbf{z}$

- \Rightarrow The scalars α , β are the coordinates of **x** with respect to the basis $\{y, z\}$
- The vector $(\alpha, \beta)^T$ is referred to as the **coordinate** vector of x with respect to the **ordered basis** [y, z]

- Let $\mathbf{y} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{z} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$
- Since $\begin{vmatrix} 2 & 1 \\ 1 & 4 \end{vmatrix} = 7 \neq 0$, the vector **y** and **z** are <u>linearly</u> independent and hence form a basis for R^2
- For example, $\mathbf{x} = \begin{bmatrix} 7 \\ 7 \end{bmatrix} = 3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 1 \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 3\mathbf{y} + \mathbf{z}$

 \Rightarrow The coordinate vector of **x** with respect to [**y**, **z**] is $(3, 1)^T$

Figure 3.5.1

Changing Coordinates Example

- Let $\mathbf{u}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ be the new basis
- Let us consider two problems:
- $\mathbf{I.} \ \ [\mathbf{e}_1, \, \mathbf{e}_2] \Rightarrow [\mathbf{u}_1, \, \mathbf{u}_2]$

Given a vector $\mathbf{x} = (x_1, x_2)^T$, find its coordinates with respect to \mathbf{u}_1 and \mathbf{u}_2

II. $[\mathbf{u}_1, \mathbf{u}_2] \Rightarrow [\mathbf{e}_1, \mathbf{e}_2]$

Given a vector $\mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2$, find its coordinates with respect to \mathbf{e}_1 and \mathbf{e}_2

• Since
$$\mathbf{u}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 3\mathbf{e}_1 + 2\mathbf{e}_2$$
 and $\mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \mathbf{e}_1 + \mathbf{e}_2$

$$\Rightarrow \mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 = c_1 (3\mathbf{e}_1 + 2\mathbf{e}_2) + c_2 (\mathbf{e}_1 + \mathbf{e}_2)$$

$$= (3c_1 + c_2)\mathbf{e}_1 + (2c_1 + c_2)\mathbf{e}_2$$

$$\Rightarrow x_1 = 3c_1 + c_2, x_2 = 2c_1 + c_2$$

Example (con.)

• Thus the coordinate vector of $c_1\mathbf{u}_1 + c_2\mathbf{u}_2$ with respect to $[\mathbf{e}_1, \mathbf{e}_2]$ is

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3c_1 + c_2 \\ 2c_1 + c_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$U = (\mathbf{u}_1, \mathbf{u}_2) = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

$$\Rightarrow$$
 x = U c

- U is called the **transition matrix** from the ordered basis $[\mathbf{u}_1, \mathbf{u}_2]$ to the standard basis $[\mathbf{e}_1, \mathbf{e}_2]$
- Since *U* is nonsingular (why?)

$$\Rightarrow$$
 c = U^{-1} x

• U^{-1} is the transition matrix from $[\mathbf{e}_1, \mathbf{e}_2]$ to $[\mathbf{u}_1, \mathbf{u}_2]$

$$[\mathbf{u}_{1}, \mathbf{u}_{2}] \longrightarrow [\mathbf{e}_{1}, \mathbf{e}_{2}]$$

$$\mathbf{c} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix} \qquad \mathbf{x} = U\mathbf{c} \ (\mathbf{c} = U^{-1}\mathbf{x})$$

$$\mathbf{c}_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} = x_{1}\mathbf{e}_{1} + x_{2}\mathbf{e}_{2} \qquad \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

- Let $\mathbf{u}_1 = (3, 2)^T$, $\mathbf{u}_2 = (1, 1)^T$, $\mathbf{x} = (7, 4)^T$, find the coordinates of \mathbf{x} with respect to \mathbf{u}_1 and \mathbf{u}_2
- *Sol*:
- The transition matrix from $[\mathbf{u}_1, \mathbf{u}_2]$ to $[\mathbf{e}_1, \mathbf{e}_2]$ is $U = (\mathbf{u}_1, \mathbf{u}_2) = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$
- Thus, the transition matrix from $[\mathbf{e}_1, \mathbf{e}_2]$ to $[\mathbf{u}_1, \mathbf{u}_2]$ is

$$U^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$$

Example 2 (con.)

$$\Rightarrow \mathbf{c} = U^{-1}\mathbf{x} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 7 \\ 4 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$\Rightarrow \mathbf{x} = c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 = 3\mathbf{u}_1 - 2\mathbf{u}_2$$

Verification:
$$3\mathbf{u}_1 - 2\mathbf{u}_2 = 3\begin{bmatrix} 3 \\ 2 \end{bmatrix} - 2\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \end{bmatrix} = \mathbf{x}$$

- Let $\mathbf{b}_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{b}_2 = \begin{bmatrix} -2 \\ 3 \end{bmatrix}$, find the transition matrix from $[\mathbf{e}_1, \mathbf{e}_2]$ to $[\mathbf{b}_1, \mathbf{b}_2]$ and determine the coordinates of $\mathbf{x} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ with respect to $[\mathbf{b}_1, \mathbf{b}_2]$
- Sol:
- The transition matrix from $[\mathbf{b}_1, \mathbf{b}_2]$ to $[\mathbf{e}_1, \mathbf{e}_2]$ is $\mathbf{B} = [\mathbf{b}_1 \ \mathbf{b}_2] = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}$ Thus, the transition matrix from $[\mathbf{e}_1, \mathbf{e}_2]$ to $[\mathbf{b}_1, \mathbf{b}_2]$ is $\mathbf{B}^{-1} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}$

Example 3 (con.)

$$\Rightarrow \mathbf{c} = \mathbf{B}^{-1}\mathbf{x} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$$

$$\Rightarrow$$
 x = 7**b**₁ + 3**b**₂

$$[\mathbf{v}_{1}, \mathbf{v}_{2}] \longrightarrow [\mathbf{u}_{1}, \mathbf{u}_{2}]$$

$$\mathbf{d} = \begin{bmatrix} d_{1} \\ d_{2} \end{bmatrix} \qquad \mathbf{c} = \mathbf{S}\mathbf{d} \ (\mathbf{d} = \mathbf{S}^{-1}\mathbf{c})$$

$$\mathbf{d}_{1}\mathbf{v}_{1} + d_{2}\mathbf{v}_{2} = c_{1}\mathbf{u}_{1} + c_{2}\mathbf{u}_{2} \qquad \mathbf{c} = \begin{bmatrix} c_{1} \\ c_{2} \end{bmatrix}$$

- Let $S = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix}$ be the transition matrix from an ordered basis $[\mathbf{v}_1, \mathbf{v}_2]$ of R^2 to another ordered basis $[\mathbf{u}_1, \mathbf{u}_2]$, then since $\mathbf{v}_1 = 1$ $\mathbf{v}_1 + 0$ \mathbf{v}_2
- \Rightarrow The coordinate vector of \mathbf{v}_1 with respect to $[\mathbf{u}_1, \mathbf{u}_2]$ is

$$S_1 = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} s_{11} \\ s_{21} \end{bmatrix} \iff \mathbf{v}_1 = \mathbf{s}_{11} \mathbf{u}_1 + \mathbf{s}_{21} \mathbf{u}_2$$

Similarly,
$$\mathbf{v}_2 = \mathbf{0} \ \mathbf{v}_1 + \mathbf{1} \ \mathbf{v}_2$$

 \Rightarrow The coordinate vector of \mathbf{v}_2 with respect to $[\mathbf{u}_1, \mathbf{u}_2]$ is

$$s_2 = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} s_{12} \\ s_{22} \end{bmatrix} \iff \mathbf{v}_2 = s_{12} \mathbf{u}_1 + s_{22} \mathbf{u}_2$$
Thus, $\mathbf{v}_1 = s_{11} \mathbf{u}_1 + s_{21} \mathbf{u}_2$ and $\mathbf{v}_2 = s_{12} \mathbf{u}_1 + s_{22} \mathbf{u}_2$

• Assume a given vector \mathbf{x} , its coordinates with respect to $\{\mathbf{v}_1, \mathbf{v}_2\}$ are known:

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$

we must find scalars d_1 and d_2 so that

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = d_1 \mathbf{u}_1 + d_2 \mathbf{u}_2 \tag{3}$$

• If we set $V = (\mathbf{v}_1, \mathbf{v}_2)$ and $U = (\mathbf{u}_1, \mathbf{u}_2)$, then equation (3) can be written in matrix form

$$V\mathbf{c} = U\mathbf{d}$$

It follows that

$$\mathbf{d} = U^{-1}V\mathbf{c}$$

 \Rightarrow Thus, given a vector \mathbf{x} in R^2 and its coordinate vector \mathbf{c} with respect to the ordered basis $\{\mathbf{v}_1, \mathbf{v}_2\}$, to find the coordinate vector of \mathbf{x} with respect to the new basis $\{\mathbf{u}_1, \mathbf{u}_2\}$, we simply multiply \mathbf{c} by the transition matrix $S = U^{-1}V$.

• Represent \mathbf{v}_1 and \mathbf{v}_2 as the linear combination of \mathbf{u}_1 and \mathbf{u}_2 will get the transition matrix S from $[\mathbf{v}_1, \mathbf{v}_2]$ to $[\mathbf{u}_1, \mathbf{u}_2]$, where $\mathbf{v}_1 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 7 \\ 3 \end{bmatrix}, \mathbf{u}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

• *Sol*:

$$\mathbf{v}_{1} = s_{11} \ \mathbf{u}_{1} + s_{21} \ \mathbf{u}_{2} = s_{11} \begin{bmatrix} 3 \\ 2 \end{bmatrix} + s_{21} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3s_{11} + s_{21} \\ 2s_{11} + s_{21} \end{bmatrix}$$

$$\mathbf{v}_{2} = s_{12} \ \mathbf{u}_{1} + s_{22} \ \mathbf{u}_{2} = s_{12} \begin{bmatrix} 3 \\ 2 \end{bmatrix} + s_{22} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3s_{12} + s_{22} \\ 2s_{12} + s_{22} \end{bmatrix}$$

$$\Rightarrow \mathbf{v}_1 = \begin{bmatrix} 3s_{11} + s_{21} \\ 2s_{11} + s_{21} \end{bmatrix} = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \Rightarrow \begin{bmatrix} s_{11} \\ s_{21} \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

$$\mathbf{v}_2 = \begin{bmatrix} 3s_{12} + s_{22} \\ 2s_{12} + s_{22} \end{bmatrix} = \begin{bmatrix} 7 \\ 3 \end{bmatrix} \Rightarrow \begin{bmatrix} s_{12} \\ s_{22} \end{bmatrix} = \begin{bmatrix} 4 \\ -5 \end{bmatrix}$$

$$\Rightarrow S = \begin{bmatrix} s_{11} & s_{12} \\ s_{21} & s_{22} \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -4 & -5 \end{bmatrix}$$

is the transition matrix from $[\mathbf{v}_1, \mathbf{v}_2]$ to $[\mathbf{u}_1, \mathbf{u}_2]$

Figure 3.5.2

- Vd = x and $U^{-1}x = c \Rightarrow U^{-1}Vd = c$
- $U^{-1}V$ is the transition matrix from $[v_1, v_2]$ to $[u_1, u_2]$

• The transition matrix from $[\mathbf{v}_1, \mathbf{v}_2]$ to $[\mathbf{u}_1, \mathbf{u}_2]$ is given by

$$U^{-1}V = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ -4 & -5 \end{bmatrix} = S$$

$$\mathbf{v}_1 = \begin{bmatrix} 5 \\ 2 \end{bmatrix}, \ \mathbf{v}_2 = \begin{bmatrix} 7 \\ 3 \end{bmatrix}, \ \text{and} \ \mathbf{u}_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \ \mathbf{u}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Change of Basis for a General Vector Space Definition

Let V be a vector space and let $E = [\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n]$ be an ordered basis for V. If \mathbf{v} is any element of V, then \mathbf{v} can be written in the form

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_n \mathbf{v}_n$$

where $c_1, c_2, ..., c_n$ are scalars. Thus we can associate with each vector \mathbf{v} a unique vector $\mathbf{c} = (c_1, c_2, ..., c_n)^T$ in \mathbf{R}^n . The vector \mathbf{c} defined in this way is called the *coordinate vector* of \mathbf{v} with respect to the ordered basis E and is denoted $[\mathbf{v}]_E$. The c_i 's are called the *coordinates* of \mathbf{v} relative to E.

Let
$$E = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] = [(1, 1, 1)^T, (2, 3, 2)^T, (1, 5, 4)^T],$$

 $F = [\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3] = [(1, 1, 0)^T, (1, 2, 0)^T, (1, 2, 1)^T],$

- (1) Find the transition matrix from E to F.
- (2) If $\mathbf{x} = 3\mathbf{v}_1 + 2\mathbf{v}_2 \mathbf{v}_3$ and $\mathbf{y} = \mathbf{v}_1 3\mathbf{v}_2 + 2\mathbf{v}_3$ Find the coordinates of \mathbf{x} and \mathbf{y} with respect to the ordered basis F.

• *Sol*:

$$U^{-1}V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 5 \\ 1 & 2 & 4 \end{bmatrix}$$
$$= \begin{bmatrix} 2 & -1 & 0 \\ -1 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 5 \\ 1 & 2 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$[\mathbf{x}]_{F} = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 8 \\ -5 \\ 3 \end{bmatrix}$$

$$[\mathbf{y}]_F = \begin{bmatrix} 1 & 1 & -3 \\ -1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} = \begin{bmatrix} -8 \\ 2 \\ 3 \end{bmatrix}$$

Verify:

$$8\mathbf{u}_1 - 5\mathbf{u}_2 + 3\mathbf{u}_3 = 3\mathbf{v}_1 + 2\mathbf{v}_2 - \mathbf{v}_3$$

 $-8\mathbf{u}_1 + 2\mathbf{u}_2 + 3\mathbf{u}_3 = \mathbf{v}_1 - 3\mathbf{v}_2 + 2\mathbf{v}_3$

- Find the transition matrix from $[1, 2x, 4x^2 2]$ to $[1, x, x^2]$ and the coordinates of $P(x) = a + bx + cx^2$ with respect to $[1, 2x, 4x^2 2]$.
- *Sol*:
- Since

$$1 = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2}$$

$$2x = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^{2}$$

$$4x^{2} - 2 = -2 \cdot 1 + 0 \cdot x + 4 \cdot x^{2}$$

 \Rightarrow The transition matrix from [1, 2x, 4x²-2] to [1, x, x²]

is
$$S = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

 \Rightarrow The transition matrix from [1, x, x^2] to [1, 2x, 4 x^2 -2]

is
$$S^{-1} = \begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix}$$

 \Rightarrow The coordinates of $P(x) = a + bx + cx^2$ with respect to [1, 2x, 4x²-2] is

$$\begin{bmatrix} 1 & 0 & \frac{1}{2} \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a + \frac{1}{2}c \\ \frac{1}{2}b \\ \frac{1}{4}c \end{bmatrix}$$

Verification:

$$(a + \frac{1}{2}c) \times 1 + (\frac{1}{2}b) \times (2x) + (\frac{1}{4}c) \times (4x^2 - 2)$$

= $a + bx + cx^2$

3.6 Row Space and Column Space

• If A is an $m \times n$ matrix, the m vectors in $R^{1 \times n}$ corresponding to the rows of A is referred to as the row vectors of A and the n vectors in R^m corresponding to the columns of A is referred to as the column vectors of A.

Definition

If A is an $m \times n$ matrix, the subspace of $R^{1 \times n}$ spanned by the row vectors of A is called the *row space of* A. The subspace of R^m spanned by the column vectors of A is called the *column space of* A.

• Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

• The row space of A:

$$\alpha[1, 0, 0] + \beta[0, 1, 0] = [\alpha, \beta, 0]$$
 $\Leftarrow 2\text{-d subspace of } R^{1 \times 3}$

The column space of A:

$$\alpha \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \gamma \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix} \iff \mathbf{R}^2$$

Theorem 3.6.1

Two row equivalent matrices have the same row space.

Proof.

If B is row equivalent to A, then B can be formed from A by a finite sequence of row operations. Thus, the row vectors of B must be linear combinations of the row vectors of A. Consequently, the row space of B must be a subspace of the row space of A. Since A is row equivalent to B, by the same reasoning, the row space of A is a subspace of the row space of B.

Definition

The rank of a matrix A is the dimension of the row space of A.

- In Example 1, rank(A) = 2
- To determine the rank of a matrix, we can reduce the matrix to row echelon form. The nonzero rows of the row echelon matrix will form a basis for the row space.

$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & -5 & 1 \\ 1 & -4 & -7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & -2 & 3 \\ 0 & 1 & 5 \\ 0 & 0 & 0 \end{bmatrix} = U$$

- \Rightarrow (1, -2, 3) and (0, 1, 5) will form a basis for the row space of U
- \Rightarrow rank(A) = rank(U) = 2

Linear Systems

• Consider the system $A\mathbf{x} = \mathbf{b}$:

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\Rightarrow x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{bmatrix} + \cdots + x_n \begin{bmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

 $\Rightarrow A\mathbf{x} = \mathbf{b}$ is consistent if and only if \mathbf{b} is in the column space of A

Theorem 3.6.2

(Consistency Theorem for Linear Systems)

A linear system $A\mathbf{x} = \mathbf{b}$ is <u>consistent</u> if and only if <u>b</u> is in the column space of A.

Note

• If $\mathbf{b} = \mathbf{0}$, the system $A\mathbf{x} = \mathbf{b}$ becomes

$$x_1\mathbf{a}_1 + x_2\mathbf{a}_2 + \ldots + x_n\mathbf{a}_n = \mathbf{0}$$

 $A\mathbf{x} = \mathbf{0}$ will have only the trivial solution $\mathbf{x} = \mathbf{0}$ iff the column vectors of A are linearly independent.

Theorem 3.6.3

Let A be an $m \times n$ matrix. The linear system $A\mathbf{x} = \mathbf{b}$ is consistent for every $\mathbf{b} \in R^m$ iff the column vectors of A span R^m . The system $A\mathbf{x} = \mathbf{b}$ has at most one solution for every $\mathbf{b} \in R^m$ iff the column vector of A are linearly independent.

Note

- Let A be an $m \times n$ matrix. If the n column vector of A span R^m , then $n \ge m$. If the n columns of A are linearly independent, then $n \le m$.
 - \Rightarrow If the column vectors of A form a <u>basis</u> for R^m , then n = m.

Corollary 3.6.4

An $n \times n$ matrix A is <u>nonsingular</u> if and only if the column vectors of A form a basis for R^n .

- Proof
- Since A is nonsingular (A is invertible) Thus, all column of A are linearly independent These n column vectors form a basis for \mathbb{R}^n .

Definition

The dimension of the nullspace of a matrix is called the nullity of the matrix (dim N(A))

Theorem 3.6.5

(The Rank-Nullity Theorem)

If A is an $m \times n$ matrix, then the rank of A plus the nullity of A equals n.

- Proof
- Let *U* be the row echelon form of *A* Rank(*A*) = *r* = the number of nonzero rows in *U* (*r* lead variables)

Nullity of A = the number of free variables = n - r

• Let
$$A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 0 \\ 1 & 2 & 1 & 5 \end{bmatrix}$$
,

find a basis for the row space of A and a basis for N(A). Verify that dim N(A) = n - r

- Sol:
- The reduced row echelon form of A is $U = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ Thus, $\{[1, 2, 0, 3], [0, 0, 1, 2]\}$ is a basis for the row
- space of A and rank(A) = 2

$$x_1 + 2x_2 + 3x_4 = 0$$

$$x_3 + 2x_4 = 0$$

lead variable: $x_1, x_3 \Rightarrow \text{rank} = 2$

free variable: $x_2, x_4 \Rightarrow \dim N(A) = 2$

• Let $x_2 = \alpha$, $x_4 = \beta$, then

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -2\alpha - 3\beta \\ \alpha \\ -2\beta \\ \beta \end{bmatrix} = \begin{bmatrix} -2\alpha \\ \alpha \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -3\beta \\ 0 \\ -2\beta \\ \beta \end{bmatrix} = \alpha \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -3 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$

 \Rightarrow (-2, 1, 0, 0)^T and (-3, 0, -2, 1)^T form a basis for N(A)

$$\Rightarrow$$
 dim $N(A) = 2 = n - r = 4 - 2$

The Column Space

• If *U* is the row echelon form of *A*, then *A* and *U* have the same row space (**Theorem 3.6.1**); But *A* and *U* have the different column space, since $A\mathbf{x} = \mathbf{0}$ if and only if $U\mathbf{x} = \mathbf{0}$, their column vectors satisfy the same dependency relations

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 4 & -3 & 0 \\ 1 & 2 & 1 & 5 \end{bmatrix} \quad \mathbf{U} = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Theorem 3.6.6

If A is an $m \times n$ matrix, the dimension of the row space of A equals the dimension of the column space of A.

• To find the column space of A, we can use the <u>row</u> echelon form U of A by determining the columns of U that corresponds to the lead 1's. These same columns of A will be linearly independent and form a basis for the column space of A.

• Let
$$A = \begin{bmatrix} 1 & -2 & 1 & 1 & 2 \\ -1 & 3 & 0 & 2 & -2 \\ 0 & 1 & 1 & 3 & 4 \\ 1 & 2 & 5 & 13 & 5 \end{bmatrix} = (\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3, \mathbf{a}_4, \mathbf{a}_5)$$

• The row echelon form of A is

$$U = \begin{bmatrix} 1 & -2 & 1 & 1 & 2 \\ 0 & 1 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The lead variables are x_1, x_2, x_5

$$\Rightarrow \mathbf{a}_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \mathbf{a}_2 = \begin{bmatrix} -2 \\ 3 \\ 1 \\ 2 \end{bmatrix}, \mathbf{a}_5 = \begin{bmatrix} 2 \\ -2 \\ 4 \\ 5 \end{bmatrix}$$

form a basis for the column space of A.

$$\Rightarrow$$
 rank(A) = 3

• The subspace Span(\mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4) is the same as the column space of the matrix:

$$\mathbf{x}_{1} = \begin{bmatrix} 1 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \ \mathbf{x}_{2} = \begin{bmatrix} 2 \\ 5 \\ -3 \\ 2 \end{bmatrix}, \ \mathbf{x}_{3} = \begin{bmatrix} 2 \\ 4 \\ -2 \\ 0 \end{bmatrix}, \ \mathbf{x}_{4} = \begin{bmatrix} 3 \\ 8 \\ -5 \\ 4 \end{bmatrix}$$

• *Sol*:

• The subspace Span(\mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , \mathbf{x}_4) is the same as the column space of the matrix:

$$X = \begin{bmatrix} 1 & 2 & 2 & 3 \\ 2 & 5 & 4 & 8 \\ -1 & -3 & -2 & -5 \\ 0 & 2 & 0 & 4 \end{bmatrix}$$

$$\mathbf{x}_1 \quad \mathbf{x}_2 \quad \mathbf{x}_3 \quad \mathbf{x}_4$$

• The row echelon form of X is

$$\begin{bmatrix} 1 & 2 & 2 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

The lead variables are $x_1, x_2 \Rightarrow \operatorname{rank}(X) = 2$

 \Rightarrow \mathbf{x}_1 and \mathbf{x}_2 form a basis of the column space of X.

$$\Rightarrow$$
 dim Span($\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4$) = 2