D. Zack Garza

Background Generating Functions

Zeta Functio

Example

The Weil Conjecture

Weil for Elliptic

Weil for Projective m-space

Grassmannian

Proof

### **CRAG**

The Weil Conjectures

D. Zack Garza

April 2020

#### CBAC

D. Zack Garza

Background Generating

Zeta

Example

The Weil

Weil for

Weil for Projective

Grassmannian

Proof

# Background: Generating Functions

### **Varieties**

CRAG

D. Zack Garza

Background Generating Functions

Zeta Functi

Example

The Weil

Weil for Elliptic Curves

Weil for Projecti m-space

Grassman

Proof

Fix q a prime and  $\mathbb{F} := \mathbb{F}_q$  the (unique) finite field with q elements, along with its (unique) degree n extensions

$$\mathbb{F}_{q^n} = \left\{ x \in \overline{\mathbb{F}}_q \mid x^{q^n} - x = 0 \right\} \quad \forall \ n \in \mathbb{Z}^{\geq 2}$$

### Definition (Projective Algebraic Varieties)

Let  $J=\langle f_1,\cdots,f_M\rangle \leq k[x_0,\cdots,x_n]$  be an ideal, then a *projective algebraic* variety  $X\subset \mathbb{P}^n_{\mathbb{F}}$  can be described as

$$X = V(J) = \left\{ \mathbf{x} \in \mathbb{P}^n_{\mathbb{F}} \mid f_1(\mathbf{x}) = \cdots = f_M(\mathbf{x}) = \mathbf{0} \right\}$$

where J is generated by homogeneous polynomials in n+1 variables, i.e. there is a fixed  $d=\deg f_i\in\mathbb{Z}^{\geq 1}$  such that

$$f(\mathbf{x}) = \sum_{\substack{\mathbf{i} = (i_1, \cdots, i_n) \\ \sum_i i_i = d}} \alpha_{\mathbf{i}} \cdot x_0^{i_1} \cdots x_n^{i_n} \quad \text{ and } \quad f(\lambda \cdot \mathbf{x}) = \lambda^d f(\mathbf{x}), \lambda \in \mathbb{F}^{\times}.$$

Proof

– For a fixed variety X, we can consider its  $\mathbb{F}$ -points  $X(\mathbb{F})$ .

- Note that  $\#X(\mathbb{F})<\infty$  is an integer
- For any  $L/\mathbb{F}$ , we can also consider X(L)
  - In particular, we can consider  $X(\mathbb{F}_{q^n})$  for any  $n \geq 2$ .
  - We again have  $\#X(\mathbb{F}_{q^n})<\infty$  and are integers for every such n.
- So we can consider the sequence

$$[N_1,N_2,\cdots,N_n,\cdots] := [\#X(\mathbb{F}),\ \#X(\mathbb{F}_{q^2}),\cdots,\ \#X(\mathbb{F}_{q^n}),\cdots].$$

 Idea: associate some generating function (a formal power series) encoding sequence, e.g.

$$F(z) = \sum_{n=1}^{\infty} N_n z^n = N_1 z + N_2 z^2 + \cdots$$

### Why Generating Functions?

CRAG

D. Zac Garza

Background Generating Functions

Zeta Function

The Weil

Conjectur

Weil for Elliptic Curves

Weil for Projection m-space

Grassmannia

Weil's Proof Note that for such an ordinary generating functions, the coefficients are related to the real-analytic properties of F: we can easily recover the coefficients in the following way:

$$[z^n] \cdot F(z) = [z^n] \cdot T_{F,z=0}(z) = \frac{1}{n!} \left(\frac{\partial}{\partial z}\right)^n F(z) \bigg|_{z=0} = N_n.$$

They are also related to the complex analytic properties: using the Residue theorem,

$$[z^n] \cdot F(z) := \frac{1}{2\pi i} \oint_{\mathbb{S}^1} \frac{F(z)}{z^{n+1}} dz = \frac{1}{2\pi i} \oint_{\mathbb{S}^1} \frac{N_n}{z} dz = N_n.$$

The latter form is very amenable to computer calculation.

### Why Generating Functions?

CRAG

D. Zack

Background Generating Functions

Zeta

Example

The Weil

Elliptic Curves

Weil for Projective m-space

Grassmannia

Weil's Proof An OGF is an infinite series, which we can interpret as an analytic function  $\mathbb{C} \longrightarrow \mathbb{C}$  – in nice situations, we can hope for a closed-form representation.

A useful example: by integrating a geometric series we can derive

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \qquad (= 1 + z + z^2 + \cdots)$$

$$\implies \int \frac{1}{1-z} = \int \sum_{n=0}^{\infty} z^n$$

$$= \sum_{n=0}^{\infty} \int z^n \quad for|z| < 1 \quad \text{by uniform convergence}$$

$$= \sum_{n=0}^{\infty} \frac{1}{n+1} z^{n+1}$$

$$\implies -\log(1-z) = \sum_{n=0}^{\infty} \frac{z^n}{n} \qquad \left(= z + \frac{z^2}{2} + \frac{z^3}{3} + \cdots\right).$$

For completeness, also recall that

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

#### CBAC

D. Zack Garza

Background: Generating Functions

Zeta Functio

Evample

The Weil Conjecture

Weil for

Curves
Weil for

Grassmanniar

Proof

### Zeta Functions

### Definition: Local Zeta Function

CRAG

D. Zack Garza

ackgroun enerating

Zeta Functions

Example

The Weil

Weil for Elliptic

Weil fo Project

Grassmannia

Weil's

Problem: count points of a (smooth?) projective variety  $X/\mathbb{F}$  in all (finite) degree n extensions of  $\mathbb{F}$ .

### Definition (Local Zeta Function)

The *local zeta function* of an algebraic variety X is the following formal power series:

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} N_n \frac{z^n}{n}\right) \in \mathbb{Q}[[z]] \text{ where } N_n := \#X(\mathbb{F}_n).$$

Note that

$$z\left(\frac{\partial}{\partial z}\right)\log Z_X(z) = z\frac{\partial}{\partial z}\left(N_1z + N_2\frac{z^2}{2} + N_3\frac{z^3}{3} + \cdots\right)$$

$$= z\left(N_1 + N_2z + N_3z^2 + \cdots\right) \qquad \text{(unif. conv.)}$$

$$= N_1z + N_2z^2 + \cdots = \sum_{n=1}^{\infty} N_nz^n,$$

which is an *ordinary* generating function for the sequence  $(N_n)$ .

#### CDAG

D. Zack Garza

Background: Generating Functions

Zeta Functions

### Examples

The Weil Conjecture

Weil for

Weil for Projective

Grassmanniar

Proof

## Examples

### Example: A Point

CRAG

D. Zack Garza

Backgroun Generating Functions

Zeta Functio

#### Examples

The Weil

Weil for

Weil for Projective

Grassmannia

Proof

Take 
$$X=\{\text{pt}\}=V(\{f(x)=0\})/\mathbb{F}$$
 a single point over  $\mathbb{F}$ , then 
$$\#X(\mathbb{F}_q):=N_1=1$$
 
$$\#X(\mathbb{F}_{q^2}):=N_2=1$$
 
$$\vdots$$
 
$$\#X(\mathbb{F}_{q^n}):=N_n=1$$

and so

$$Z_{\{pt\}}(z) = \exp\left(1 \cdot z + 1 \cdot \frac{z^2}{2} + 1 \cdot \frac{z^3}{3} + \cdots\right)$$
$$= \exp\left(\sum_{n=1}^{\infty} \frac{z^n}{n}\right)$$
$$= \exp\left(-\log\left(1 - z\right)\right)$$
$$= \frac{1}{1 - z}.$$

Notice: Z admits a closed form **and** is a rational function.

## Example: The Affine Line

CRAG

D. Zack Garza

Backgroun Generating

Zeta Functi

#### Examples

The Weil

Weil for Elliptic Curves

Weil for Projective

Grassmannia

Proof

Take  $X = \mathbb{A}^1/\mathbb{F}$  the affine line over  $\mathbb{F}$ , then We can write

$$\mathbb{A}^1(\mathbb{F}_{q^n}) = \left\{ \mathbf{x} = [x_1] \mid x_1 \in \mathbb{F}_{q^n} \right\}$$

as the set of one-component vectors with entries in  $\mathbb{F}_n$ , so

$$egin{aligned} X(\mathbb{F}_q) &= q \ X(\mathbb{F}_{q^2}) &= q^2 \ &dots \ X(\mathbb{F}_{q^n}) &= q^n. \end{aligned}$$

Then

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} q^n \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} \frac{(qz)^n}{n}\right)$$

$$= \exp(-\log(1 - qz))$$

$$= \frac{1}{1 - qz}.$$

# Example: Affine m-space

CRAG

D. Zack Garza

Backgroun Generating

Zeta

Examples

The Weil Conjecture

Weil for Elliptic

Weil for Projective

Grassmanni

Proof

Take  $X = \mathbb{A}^m/\mathbb{F}$  the affine line over  $\mathbb{F}$ , then We can write

$$\mathbb{A}^{m}(\mathbb{F}_{q^{n}}) = \left\{ \mathbf{x} = [x_{1}, \cdots, x_{m}] \mid x_{i} \in \mathbb{F}_{q^{n}} \right\}$$

as the set of one-component vectors with entries in  $\mathbb{F}_n$ , so

$$X(\mathbb{F}_q) = q^m$$

$$X(\mathbb{F}_{q^2}) = (q^2)^m$$

$$\vdots$$

$$X(\mathbb{F}_{q^n}) = q^{nm}.$$



Figure:  $\mathbb{A}^2/\mathbb{F}_3$  (q = 3, m = 2, n = 1)

Then

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} q^{nm} \frac{z^n}{n}\right) = \exp\left(\sum_{n=1}^{\infty} \frac{(q^m z)^n}{n}\right)$$
$$= \exp(-\log(1 - q^m z))$$
$$= \frac{1}{1 - q^m z}.$$

## Example: Projective Line

CRAG

D. Zack Garza

Background Generating Functions

Zeta

Examples

The Weil

Weil for Elliptic

Weil for Projective

Grassmanni

Proof

Take  $X = \mathbb{P}^1/\mathbb{F}$ , we can still count by enumerating coordinates:

$$\mathbb{P}^{1}(\mathbb{F}_{q^{n}}) = \left\{ [x_{1} : x_{2}] \mid x_{1}, x_{2} \neq 0 \in \mathbb{F}_{q^{n}} \right\} / \sim = \left\{ [x_{1} : 1] \mid x_{1} \in \mathbb{F}_{q^{n}} \right\} \coprod \left\{ [1 : 0] \right\}.$$

Thus

$$X(\mathbb{F}_q) = q+1$$

$$X(\mathbb{F}_{q^2}) = q^2 + 1$$

$$\vdots$$

$$X(\mathbb{F}_{q^n}) = q^n + 1.$$



Figure:  $\mathbb{P}^1/\mathbb{F}_3$  (q=3, n=1)

Thus

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} (q^n + 1) \frac{z^n}{n}\right)$$
$$= \exp\left(\sum_{n=1}^{\infty} q^n \frac{z^n}{n} + \sum_{n=1}^{\infty} 1 \cdot \frac{z^n}{n}\right)$$
$$= \frac{1}{(1 - qz)(1 - z)}.$$

D. Zack Garza

Background: Generating Functions

Zeta Functions

Examples

#### The Weil Conjecture

Weil for Elliptic Curves

Weil for Projective m-space

Grassmannian

Proof

# The Weil Conjectures

(Weil 1949)

Let X be a smooth projective variety of dimension N over  $\mathbb{F}_q$  for q a prime, let  $Z_X(z)$  be its zeta function, and define  $\zeta_X(s) = Z_X(q^{-s})$ .

- (Rationality)
  - $Z_X(z)$  is a rational function:

$$Z_X(z) = \frac{p_1(z) \cdot p_3(z) \cdots p_{2N-1}(z)}{p_0(z) \cdot p_2(z) \cdots p_{2N}(z)} \in \mathbb{Q}(z), \quad \text{i.e.} \quad p_i(z) \in \mathbb{Z}[z]$$

$$P_0(z) = 1 - z$$

$$P_{2N}(z) = 1 - q^N z$$

$$P_j(z) = \prod_{i=1}^{\beta_j} (1 - a_{j,k}z)$$
 for some reciprocal roots  $a_{j,k} \in \mathbb{C}$ 

where we've factored each  $P_i$  using its reciprocal roots  $a_{ij}$ .

In particular, this implies the existence of a meromorphic continuation of the associated function  $\zeta_X(s)$ , which a priori only converges for  $\Re(s) \gg 0$ . This also implies that for n large enough,  $N_n$  satisfies a linear recurrence relation.

Grassmannia

Proof

**2** (Functional Equation and Poincare Duality) Let  $\chi(X)$  be the Euler characteristic of X, i.e. the self-intersection number of the diagonal embedding  $\Delta \hookrightarrow X \times X$ ; then  $Z_X(z)$  satisfies the following functional equation:

$$Z_X\left(\frac{1}{q^Nz}\right) = \pm \left(q^{\frac{N}{2}}z\right)^{\chi(X)} Z_\chi(z).$$

Equivalently,

$$\zeta_X(N-s) = \pm \left(q^{\frac{N}{2}-s}\right)^{\chi(X)} \zeta_X(s)$$

Note that when N=1, e.g. for a curve, this relates  $\zeta_X(s)$  to  $\zeta_X(1-s)$ .

Equivalently, there is an involutive map on the (reciprocal) roots

$$z \iff \frac{q^N}{z}$$

$$\alpha_{i,k} \iff \alpha_{2N-i,k}$$

which sends roots of  $p_i$  to roots of  $p_{2N-i}$ .

D. Zack Garza

Backgrou Generatin Functions

Zeta Functi

Example

The Weil Conjectures

Weil for Elliptic Curves

Weil fo Project m-spac

Grassmanni

Proof

**3** (Riemann Hypothesis)

The reciprocal roots  $a_{j,k}$  are algebraic integers (roots of some monic  $p \in \mathbb{Z}[x]$ ) which satisfy

$$|a_{j,k}|_{\mathbb{C}} = q^{\frac{j}{2}}, \qquad 1 \le j \le 2N - 1, \ \forall k.$$

4 (Betti Numbers)

If X is a "good reduction mod q" of a nonsingular projective variety  $\tilde{X}$  in characteristic zero, then the  $\beta_i = \deg p_i(z)$  are the Betti numbers of the topological space  $\tilde{X}(\mathbb{C})$ .

### Moral:

- The Diophantine properties of a variety's zeta function are governed by its (algebraic) topology.
- Conversely, the analytic properties of encode a lot of geometric/topological/algebraic information.
- Langland's: similarly asks for every L function arising from an automorphic representation to satisfy Weil 2 and 3.

# Why is (3) called the "Riemann Hypothesis"?

Recall the Riemann zeta function is given by

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}} \frac{1}{1 - p^{-s}}.$$

After modifying  $\zeta$  to make it symmetric about  $\Re(s) = \frac{1}{2}$  and eliminate the trivial zeros to obtain  $\widehat{\zeta}(s)$ , there are three relevant properties

- "Rationality":  $\widehat{\zeta}(s)$  has a meromorphic continuation to  $\mathbb{C}$  with simple poles at s = 0, 1.
- "Functional equation":  $\widehat{\zeta}(1-s) = \widehat{\zeta}(s)$
- "Riemann Hypothesis": The only zeros of  $\hat{\zeta}$  have  $\Re(s) = \frac{1}{2}$ .

The Weil Conjectures

# Why is (3) called the "Riemann Hypothesis"?

CRAG

D. Zack Garza

Generating Functions

Functio

The Weil

The Weil Conjectures

Weil for Elliptic

Weil for Projective m-space

Grassmannia

Proof

Suppose it holds. We can use the facts that

$$|\exp(z)| = \exp(\Re(z))$$
 and

$$b. a^z := \exp(z \operatorname{Log}(a)),$$

and to replace the polynomials  $P_i$  with

$$L_j(s) := P_j(q^{-s}) = \prod_{k=1}^{\beta_j} (1 - \alpha_{j,k} q^{-s}).$$

### Analogy to Riemann Hypothesis

CRAG

D. Zack Garza

Backgroun Generating

Function Zeta

Example

The Weil Conjectures

Weil for Elliptic Curves

Weil for Projective m-space

Grassmanniar

Proof

Now consider the roots of  $L_i(s)$ : we have

$$L_{j}(s_{0}) = 0$$

$$\iff q^{-s_{0}} = \frac{1}{\alpha_{j,k}} \text{ for some } k$$

$$\implies |q^{-s_{0}}| = \left|\frac{1}{\alpha_{j,k}}\right| \qquad \stackrel{\text{by assumption }}{=} q^{-\frac{j}{2}}$$

$$\implies q^{-\frac{j}{2}} \stackrel{\text{(a)}}{=} \exp\left(-\frac{j}{2} \cdot \operatorname{Log}(q)\right) = |\exp\left(-s_{0} \cdot \operatorname{Log}(q)\right)|$$

$$\stackrel{\text{(b)}}{=} |\exp\left(-(\Re(s_{0}) + i \cdot \Im(s_{0})) \cdot \operatorname{Log}(q)\right)|$$

$$\stackrel{\text{(a)}}{=} \exp\left(-(\Re(s_{0})) \cdot \operatorname{Log}(q)\right)$$

$$\implies -\frac{j}{2} \cdot \operatorname{Log}(q) = -\Re(s_{0}) \cdot \operatorname{Log}(q) \text{ by injectivity}$$

$$\implies \Re(s_{0}) = \frac{j}{2}.$$

### Analogy with Riemann Hypothesis

CBAC

D. Zack Garza

The Weil Conjectures

Roughly speaking, realizing that we would need to apply a logarithm (a conformal map) to send the  $\alpha_{j,k}$  to zeros of the  $L_j$ , this says that the zeros all must lie on the "critical lines"  $\frac{i}{2}$ .



In particular, the zeros of  $L_1$  have real part  $\frac{1}{2}$ , analogous to the classical Riemann hypothesis.

21

### Precise Relation

#### CRAG

- Garza
- Generating Functions
- F------
- The Weil
- Conjectures
- Weil for
- m-space
- Grassmannia
- Weil's

- Difficult to find in the literature! Idea: make a similar definition for schemes, then take  $X=\operatorname{Spec} \mathbb{Z}.$
- Define the "reductions mod q"  $X_q$  for closed points q.
- Define the *local* zeta functions  $\zeta_{X_p}(s) = Z_{X_p}(q^{-s})$ .
- (Potentially incorrect) Evaluate to find  $Z_{X_p}(z) = \frac{1}{1-z}$ .
- Take a product over all closed points to define

$$L_X(s) = \prod_{p \text{ prime}} \zeta_{X_p}(p^{-s})$$

$$= \prod_{p \text{ prime}} \left(\frac{1}{1 - p^{-s}}\right)$$

$$= \zeta(s),$$

which is the Euler product expansion of the classical Riemann Zeta function. *If anyone knows a reference for this, let me know!* 

D. Zack Garza

Background Generating Functions

Zeta Functions

Examples

The Weil Conjecture

Weil for Elliptic Curves

Weil for Projective m-space

Grassmannian

Proof

# Weil for Elliptic Curves

## Example: An Elliptic Curve

CRAG

- D. Zack Garza
- Generating Functions
- Function
- Example
- The Weil Conjecture

Weil for Elliptic Curves

Weil for Projective m-space

Grassmannia

Weil's Proof The Weyl conjectures take on a particularly nice form for curves. Let  $X/\mathbb{F}_q$  be a smooth projective curve of genus g, then

(Rationality)

$$Z_X(z) = \frac{p(z)}{(1-z)(1-qz)}$$

(Functional Equation)

$$Z_X\left(\frac{1}{qz}\right) = (z\sqrt{q})^{2-2g}Z_X(z)$$

(Riemann Hypothesis)

$$p(z) = \prod_{i=1}^{2g} (z - a_i) \quad \text{where} \quad |a_i| = \frac{1}{\sqrt{q}}$$

Take  $X = E/\mathbb{F}_q$ .

# Elliptic Curves

CRAG

Garza

Generatin

Functio

The Mare:

The Weil Conjecture

Elliptic Curves Weil for Projective

Grassmannia

Proof

### Figure: Some Elliptic Curves



- The number of points is given by

$$N_n \coloneqq X(\mathbb{F}_{q^n}) = (q^n + 1) - (\alpha^n + \overline{\alpha}^n)$$
 where  $|\alpha| = |\overline{\alpha}| = \sqrt{q}$ 

- Proof: Unsure! Maybe someone can point me to a reference. Involves trace (or eigenvalues?) of Frobenius.
- The Poincare polynomial is given by  $P(x) = \sum \beta_i x^i = 1 + 2x + x^2$ .
- The dimension of X over  $\mathbb C$  is N=1 and its genus is g=1.

The WC say we should be able to write as

$$Z_E(z) = \frac{p_1(z)}{p_0(z)p_2(z)} = \frac{p_1(z)}{(1-z)(1-qz)} = \frac{(1-\alpha_{1,1}z)(1-\alpha_{1,2}z)}{(1-z)(1-qz)}.$$

### Elliptic Curves: Weil 1

CRAG

D. Zac Garza

Backgroun Generating Functions

Zeta Funct

Example

The Weil Conjecture

Weil for Elliptic Curves

Projective m-space

Grassmannia

Proof

Since we know the number of points, we can compute

$$\begin{split} Z_E(z) &= \exp \sum_{n=1}^{\infty} \#E(\mathbb{F}_{q^n}) \frac{z^n}{n} \\ &= \exp \sum_{n=1}^{\infty} (q^n + 1 - (\alpha^n + \overline{\alpha}^n)) \frac{z^n}{n} \\ &= \exp \left( \sum_{n=1}^{\infty} q^n \cdot \frac{z^n}{n} \right) \exp \left( \sum_{n=1}^{\infty} 1 \cdot \frac{z^n}{n} \right) \exp \left( \sum_{n=1}^{\infty} -\alpha^n \cdot \frac{z^n}{n} \right) \exp \left( \sum_{n=1}^{\infty} -\overline{\alpha}^n \cdot \frac{z^n}{n} \right) \\ &= \exp \left( -\log \left( 1 - qz \right) \right) \cdot \exp \left( -\log \left( 1 - z \right) \right) \cdot \exp \left( \log \left( 1 - \alpha z \right) \right) \cdot \exp \left( \log \left( 1 - \overline{\alpha}z \right) \right) \\ &= \frac{(1 - \alpha z)(1 - \overline{\alpha}z)}{(1 - z)(1 - \overline{\alpha}z)} \in \mathbb{Q}(z), \end{split}$$

which is indeed a rational function (Weil 1).

### Elliptic Curves: Weil 2 and 3

CRAG

Garza

Background Generating Functions

Function

The Weil

The Weil Conjectures

Weil for Elliptic Curves

Weil for Projectiv m-space

Grassmani

Proof

Noting that  $g=1, \chi(E)=0$ , the functional equation reads  $Z_E(z)=Z_E(\frac{1}{qz})$ .

Writing  $p(z) = (1 - \alpha z)(1 - \bar{\alpha}z)$ , note that  $p(z) = 0 \iff z = 1/\alpha, 1/\bar{\alpha}$ , so  $|z| = 1/|\alpha| = 1/\sqrt{q}$ , satisfying the RH (Weil 3).

Thus

$$\zeta_X(t) = \frac{(1 - aq^{-t})(1 - \bar{a}q^{-t})}{(1 - q^{-t})(1 - q^{1-s})}.$$

Originally conjectured for curves by Artin, proved for elliptic curves by Hasse in 1934. Proved for curves by Weil in 1949, proposed generalization to projective varieties Proof had work contributed by Dwork (rationality using p-adic analysis), Artin, Grothendieck (etale cohomology), with completion by Deligne in 1970s (RH)

D. Zack Garza

Background: Generating Functions

Zeta Functions

Examples

The Weil Conjecture

Weil for

Weil for Projective m-space

Grassmannian

Proof

# Weil for Projective m-space

### Setup

CRAG

D. Zack Garza

Generating Functions

Zeta Functio

Exampl

The Weil Conjectur

Weil for Elliptic

Weil for Projective m-space

Grassmannia

Proof

Take  $X = \mathbb{P}^m/\mathbb{F}$  We can write

$$\mathbb{P}^{m}(\mathbb{F}_{q^{n}}) = \mathbb{A}^{m+1}(\mathbb{F}_{q^{n}}) \setminus \left\{\mathbf{0}\right\} / \sim = \left\{\mathbf{x} = [x_{0}, \cdots, x_{m}] \mid x_{i} \in \mathbb{F}_{q^{n}}\right\} / \sim$$

But how many points are actually in this space?

Figure: Points and Lines in  $\mathbb{P}^2/\mathbb{F}_3$ 



A nontrivial combinatorial problem!

### q-Analogs and Grassmannians

CRAG

D. Zack Garza

Backgroun Generating

Functio

Examples

The Weil Conjectur

Elliptic Curves Weil for

Projective m-space

Grassma

vveil's Proof To illustrate, this can be done combinatorially: identify  $\mathbb{P}^m_{\mathbb{F}} = \operatorname{Gr}_{\mathbb{F}}(1, m+1)$  as the space of lines in  $\mathbb{A}^{m+1}_{\mathbb{F}}$ .

### Theorem

The number of k-dimensional subspaces of  $\mathbb{A}^N_{\mathbb{F}_q}$  is the q-analog of the binomial coefficient:

$$\begin{bmatrix} N \\ k \end{bmatrix}_q := \frac{(q^N - 1)(q^{N-1} - 1) \cdots (q^{N-(k-1)} - 1)}{(q^k - 1)(q^{k-1} - 1) \cdots (q - 1)}.$$

Remark: Note  $\lim_{q \to 1} {N \brack k}_q = {N \choose k}$ , the usual binomial coefficient.

**Proof:** To choose a *k*-dimensional subspace,

- Choose a nonzero vector  $\mathbf{v}_1 \in \mathbb{A}^n_{\mathbb{F}}$  in  $q^N 1$  ways.
  - $\text{ For next step, note that } \#\mathrm{span}\left\{\mathsf{v}_1\right\} = \#\left\{\lambda\mathsf{v}_1 \ \middle| \ \lambda \in \mathbb{F}_q\right\} = \#\mathbb{F}_q = q.$
- Choose a nonzero vector  $\mathbf{v}_2$  not in the span of  $\mathbf{v}_1$  in  $q^N-q$  ways.
  - Now note  $\#\mathrm{span}\left\{\mathsf{v}_1,\mathsf{v}_2\right\} = \#\left\{\lambda_1\mathsf{v}_1 + \lambda_2\mathsf{v}_2 \;\middle|\; \lambda_i \in \mathbb{F}\right\} = q \cdot q = q^2.$

### CBAG

D. Zack Garza

Backgrou Generatin Functions

Zeta Functio

Examples

The Weil Conjecture

Weil for

Weil for Projective m-space

Grassmanni

Proof

- Choose a nonzero vector  $\mathbf{v}_3$  not in the span of  $\mathbf{v}_1$ ,  $\mathbf{v}_2$  in  $q^N q^2$  ways.
- $-\cdots$  until  $\mathbf{v}_k$  is chosen in

$$(q^{N}-1)(q^{N}-q)\cdots(q^{N}-q^{k-1})$$
 ways

- This yields a k-tuple of linearly independent vectors spanning a k-dimensional subspace  $V_k$
- This overcounts because many linearly independent sets span  $V_k$ , we need to divide out by the number of ways to choose a basis inside of  $V_k$ .
- By the same argument, this is given by

$$(q^{k}-1)(q^{k}-q)\cdots(q^{k}-q^{k-1})$$

Thus

#subspaces = 
$$\frac{(q^N - 1)(q^N - q)(q^N - q^2) \cdots (q^N - q^{k-1})}{(q^k - 1)(q^k - q)(q^k - q^2) \cdots (q^k - q^{k-1})}$$

$$\begin{split} &=\frac{q^N-1}{q^k-1}\cdot\left(\frac{q}{q}\right)\frac{q^{N-1}-1}{q^{k-1}-1}\cdot\left(\frac{q^2}{q^2}\right)\frac{q^{N-2}-1}{q^{k-2}-1}\cdots\left(\frac{q^{k-1}}{q^{k-1}}\right)\frac{q^{N-(k-1)}-1}{q^{k-(k-1)-1}}\\ &=\frac{(q^N-1)(q^{N-1}-1)\cdots(q^{N-(k-1)}-1)}{(q^k-1)(q^{k-1}-1)\cdots(q-1)}. \end{split}$$

## Counting Points

CRAG

D. Zack Garza

Backgrour Generating

Functions Zeta

Example

The Weil Conjecture

Curves
Weil for

Projective m-space

Grassmanni

Proof

Note that we've actually computed the number of points in any Grassmannian.

Identify  $\mathbb{P}^m_{\mathbb{F}} = Gr_{\mathbb{F}}(1, m+1)$  as the space of lines in  $\mathbb{A}^{m+1}_{\mathbb{F}}$ .

We obtain a nice simplification for the number of lines corresponding to setting k=1:

$$\begin{bmatrix} m+1 \\ 1 \end{bmatrix}_q = \frac{q^{m+1}-1}{q-1} = q^m + q^{m-1} + \dots + q + 1 = \sum_{j=0}^m q^j.$$

Thus

$$X(\mathbb{F}_q) = \sum_{j=0}^{m} q^j$$

$$X(\mathbb{F}_{q^2}) = \sum_{j=0}^{m} (q^2)^j$$

$$\vdots$$

$$X(\mathbb{F}_{q^n}) = \sum_{i=0}^m (q^n)^j.$$

# Computing the Zeta Function

CRAG

D. Zack Garza

Backgrou Generatin Functions

Zeta Function

Exampl

The Weil Conjecture

Weil for Elliptic

Weil for Projective m-space

Grassmanniar

Weil's Proof So

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} \sum_{j=0}^{m} (q^n)^j \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} \sum_{j=0}^{m} \frac{(q^j z)^n}{n}\right)$$

$$= \exp\left(\sum_{j=0}^{m} \sum_{n=1}^{\infty} \frac{(q^j z)^n}{n}\right)$$

$$= \exp\left(\sum_{j=0}^{m-1} -\log(1 - q^j z)\right)$$

$$= \prod_{j=0}^{m} \left(1 - q^j z\right)^{-1}$$

$$= \left(\frac{1}{1-z}\right) \left(\frac{1}{1-qz}\right) \left(\frac{1}{1-q^2 z}\right) \cdots \left(\frac{1}{1-q^m z}\right),$$

Miraculously, still a rational function!

### An Easier Proof

CRAG

D. Zack Garza

Backgrour Generating Functions

Functions Zeta

Exampl

The Weil

Weil for Elliptic Curves

Weil for Projective m-space

Grassmannia

Quick recap:

$$Z_{\{pt\}} = \frac{1}{1-z}$$
  $Z_{\mathbb{P}^1}(z) = \frac{1}{1-qz}$   $Z_{\mathbb{A}^1}(z) = \frac{1}{(1-z)(1-qz)}$ .

Note that  $\mathbb{P}^1 = \mathbb{A}^1 \coprod \{\infty\}$  and correspondingly  $Z_{\mathbb{P}^1}(z) = Z_{\mathbb{A}^1}(z) \cdot Z_{\{\text{pt}\}}(z)$ . This works in general:

### Lemma (Excision)

If  $Y/\mathbb{F}_q \subset X/\mathbb{F}_q$  is a closed subvariety, for  $U = X \setminus Y$ ,  $Z_X(z) = Z_Y(z) \cdot Z_U(z)$ .

**Proof**: Let  $N_n = \#Y(\mathbb{F}_{q^n})$  and  $M_n = \#U(\mathbb{F}_{q^n})$ , then

$$\zeta_X(z) = \exp\left(\sum_{n=1}^{\infty} (N_n + M_n) \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} N_n \cdot \frac{z^n}{n} + \sum_{n=1}^{\infty} M_n \cdot \frac{z^n}{n}\right)$$

$$= \exp\left(\sum_{n=1}^{\infty} N_n \cdot \frac{z^n}{n}\right) \cdot \exp\left(\sum_{n=1}^{\infty} M_n \cdot \frac{z^n}{n}\right) = \zeta_Y(z) \cdot \zeta_U(z).$$

### A Easier Proof

CRAG

Garza

Generatin Functions

Function

The MAZE

The Weil Conjecture

Elliptic Curves Weil for

Projective m-space

Grassmannia

Proof

Note that geometry can help us here: we have a stratification  $\mathbb{P}^n=\mathbb{P}^{n-1}\coprod\mathbb{A}^n$ , and so inductively

$$\mathbb{P}^m = \coprod\nolimits_{j=0}^m \mathbb{A}^j = \mathbb{A}^0 \coprod \mathbb{A}^1 \coprod \cdots \coprod \mathbb{A}^m,$$

and recalling that

$$Z_{X\coprod Y}(z)=Z_X(z)\cdot Z_Y(z)$$

and  $Z_{\mathbb{A}^j}(z) = \frac{1}{1-q^j z}$  we have

$$Z_{\mathbb{P}^m}(z) = \prod_{j=0}^m Z_{\mathbb{A}^j}(z) = \prod_{j=0}^m \frac{1}{1 - q^j z}.$$

Notice that the highest degree is exactly m, and there is exactly one factor for each  $j \leq m$ . Note that  $PP^m/\mathbb{F}_q$  can be though of as a mod q reduction of  $\mathbb{RP}^m$  or  $\mathbb{CP}^m$ , and somehow Z "sees" its dimension.

D. Zack Garza

Background: Generating Functions

Zeta Function

Examples

The Weil Conjecture

Weil for Elliptic

Weil for Projective

#### Grassmanniar

Weil's Proof

## Grassmannian

D. Zacl Garza

Backgrour Generating

Zeta

Examples

The Weil Conjectur

Weil for

Weil for Projectiv

Grassmannia

Proof

Consider now  $X = Gr(k, m)/\mathbb{F}$  – by the previous computation, we know

$$X(\mathbb{F}_{q^n}) = \begin{bmatrix} m \\ k \end{bmatrix}_{q^n} \coloneqq \frac{(q^{nm}-1)(q^{nm-1}-1)\cdots(q^{nm-n(k-1)}-1)}{(q^{nk}-1)(q^{n(k-1)}-1)\cdots(q^n-1)}$$

but the corresponding Zeta function is much more complicated than the previous examples:

$$Z_X(z) = \exp\left(\sum_{n=1}^{\infty} {m \brack k}_{q^n} \frac{z^n}{n}\right) = \cdots?.$$

Note that  $\dim_{\mathbb{R}} \operatorname{Gr}_{\mathbb{R}}(k,m) = k(m-k)$  as a real manifold, so by Weil we should expect

$$Z_X(z) = \prod_{j=0}^{k(m-k)} \frac{p_{2(j+1)}(z)}{p_{2j}(z)}$$

with deg  $p_j = \beta_j$ .

D. Zaci Garza

The Poincare polynomial of the complex Grassmannian is given by

$$P(x) = \sum_{i=1}^{k(m-k)} \lambda_{m,k}(i) x^{i}$$

, i.e. the number of integer partitions of of [i] into at most m-k parts, each of size at most k.

It turns out that (proof omitted) one can show

$$\begin{bmatrix} m \\ k \end{bmatrix}_q = \sum_{j=0}^{k(m-k)} \lambda_{m,k}(j) q^j \implies Z_X(z) = \prod_{j=0}^{k(m-k)} \left(\frac{1}{1-q^j x}\right)^{\lambda_{m,k}(j)}.$$

Functior Zeta

Examples

Weil for Elliptic

Weil for Projective m-space

Grassmanniai

Proof

D. Zack Garza

Background: Generating Functions

Zeta Function

Examples

The Weil Conjecture

Weil for Elliptic Curves

Weil for Projective m-space

Grassmannian

Proof

# Weil's Proof

## Very Hard Example: A Diagonal Hypersurface

CRAG

D. Zack Garza

Generating Functions

Zeta Functions

Examples

The Weil

Weil for Elliptic Curves

> Weil for Projective m-space

Grassmannia

Weil's Proof Proof of rationality of  $Z_X(T)$  for X a diagonal hypersurface.

– Set q to be a prime power and consider  $X/\mathbb{F}_q$  defined by

$$X = V(a_0x_0^{n_0} + \cdots + a_rx_r^{n_r}) \subset \mathbb{F}_q^{r+1}.$$

- We want to compute N = #X.
- Set  $d_i = \gcd(n_i, q-1)$ .
- Define the character

$$\psi_q: \mathbb{F}_q \longrightarrow \mathbb{C}^{\times}$$

$$a \mapsto \exp\left(\frac{2\pi i \operatorname{Tr}_{\mathbb{F}_q/\mathbb{F}_p}(a)}{p}\right).$$

- By Artin's theorem for linear independence of characters,  $\psi_q \not\equiv 1$  and every additive character of  $\mathbb{F}_q$  is of the form  $a \mapsto \psi_q(ca)$  for some  $c \in \mathbb{F}_q$ .
- Fix an injective multiplicative map

$$\psi: \overline{\mathbb{F}}_q^{\times} \longrightarrow \mathbb{C}^{\times}.$$

Define

$$\chi_{\alpha,n}: \mathbb{F}_{q^n}^{\times} \longrightarrow \mathbb{C}^{\times}$$

$$x \mapsto \phi(x)^{\alpha(q^n-1)}$$

Weil's Proof

- Now restrict to  $n_0 = \cdots = n_r = n$  a constant, and we consider a point count

$$\overline{N}_{\nu} = \# \left\{ [x_0 : \cdots : x_r] \in \mathbb{P}^r_{\mathbb{F}^{\nu}_q} \mid \sum_{i=0}^r a_i x_i^n = 0 \right\}.$$

- We have a relation  $(q^{\nu}-1)\overline{N}_{\nu}=N_{\nu}$ .
- This lets us write

$$ar{N}_{
u} = \sum_{j=0}^{r-1} q^{j
u} + \sum_{\substack{\sum lpha_i \sim 0 \ \gcd(n, lpha^{
u}-1)lpha_i > 0 \ lpha_i \in (0,1)}} \prod_{j=0}^r ar{\chi}_{lpha_{j,
u}}(a_i) J_{
u}(lpha).$$

Set

$$\mu(lpha) = \min \left\{ \mu \ \left| \ (q^{\mu} - 1)lpha \sim 0 
ight\}$$
  $C(lpha) = (-1)^{r+1} \prod_{j=1}^{r} ar{\chi}_{lpha_0,\mu(lpha)}(a_j) \cdot J_{\mu(lpha)}(lpha).$ 

Plugging into the zeta function Z yields

$$\exp\left(\sum_{\nu=1}^{\infty} \overline{N}_{\nu} \frac{T^{\nu}}{\nu}\right) = \frac{1}{(1-T)(1-qT)\cdots(1-q^{r-1}T)} \prod_{\substack{\sum \alpha_{i} \sim 0 \\ 41}} \left(1-C(q^{r-1}T)\right)$$