Fuzzy Conventions

Marcin Pęski

University of Toronto

October 31, 2021

- Social interactions, positive externalities.
 - maintaining neat front yard,
 - engaging in criminal activity,
 - technology adoption.
- ▶ A typical result: emergence of a (homogeneous) convention.
- ▶ But, in reality, conventions are often fuzzy:
 - there are countries where multiple languages are used,
 - married couples that use both IPhone and Android.
- People care not only about their neighbors, but they differ wrt. tastes, preferences.

- Model: binary coordination games on networks with random utility.
- ► (Statistical) heterogeneous preferences: i.i.d payoff shocks
- We are interested in
 - ▶ average (i.e., aggregate) behavior $x \in [0, 1]$ in static (complete information) equilibria,
 - and each agent no. of connection grows.
- ▶ **Question**: What can we say about limit equilibria? How do they depend on the network?

- 4 theorems
- ► The largest set:
 - here exists a set X = [0,1] st. for each network, the equilbria belong to X,
 - there exists a network st. X is the equilibrium set,
 - partial identification theory.
- ▶ The smallest set
 - ▶ there exists $x^* \in X$ such that each network has an equilibrium in x^* .
 - ightharpoonup there exists a network st. x^* is its only equilibrium,
 - equilibrium selection theory.
- The largest and smallest sets are easy to determine from the distribution of payoff shocks.

Literature

- Emergence of conventions: evolutionary approach
 - ▶ risk-dominance [Harsanyi and Selten(1988)],
 - complete networks [Kandori et al.(1993)Kandori, Mailath and Rob], [Young(1993)],
 - ▶ line [Ellison(1993)] and some other networks [Ellison(2000)],
 - all networks: [Peski(2010)].
- Contagion [Morris(2000a)]:
 - some networks (lattices) admit contagion: a finite group of agents can spread risk-dominant behavior to the rest of the network,
 - contagion only works for risk-dominant actions.
- ► Here,
 - random utility instead of noise (or a perturbation),
 - static solution concept.

Game $G(g, u, \varepsilon)$

- - $ightharpoonup g_i = \sum_i g_{ij}$ "degree" of i.
- ▶ Agent *i*'s payoffs: $\sum_{j\neq i} g_{ij} u_i(a_i, a_j, \varepsilon_i)$,
 - ▶ binary actions $a_i \in \{0, 1\}$,
 - ▶ i.i.d. payoff shocks $\varepsilon_i \sim F$,
 - positive externalities (given each payoff shock),
- Average behavior:

$$Av(a) = \frac{1}{\sum_i g_i} \sum_i g_i a_i.$$

Equilibrium set:

$$\mathsf{Eq}\left(g,\varepsilon\right)=\left\{\mathsf{Av}\left(a\right): a \text{ is a Nash equilibrium in game } G\left(g,u,\varepsilon\right)\right\}$$

.

Average behavior

- ► Average behavior: Av $(a) = \frac{1}{\sum_{i} g_i} \sum_{i} g_i a_i$.
 - average action "per interaction",
 - ▶ alternative $Av_{alt}(a) = \frac{1}{N} \sum_{i} a_{i}$,
 - ightharpoonup if network is balanced ($g_i = g_j$, the two are the same),
 - results extend, with one exception (in which case, I don't know).

Asymptotics

- \blacktriangleright We are interested in asymptotics of Eq (g,.) as

 - ▶ $d\left(g\right) = \max_{i,j} \frac{g_{ij}}{g_i} \rightarrow 0$ large degree, ▶ $w\left(g\right) = \max_{i,j} \frac{g_{ij}}{g_i} < w_{\max} < \infty$ is bounded not too much inequality.

Almost inclusion and almost equality

- Say that $A \subseteq_{\eta} B$ if for each $a \in A$, there is $b \in B$ st. $|a b| \le \eta$.
- ▶ Say that $A =_{\eta} B$ if $A \subseteq_{\eta} B$ and $B \subseteq_{\eta} A$.

Model Definitions

▶ Define a profile of neighborhood fractions β^a : for each i

$$\beta_i^a = \frac{1}{g_i} \sum_{i \neq j} g_{ij} a_j.$$

▶ a is a Nash equilibrium given payoff shocks $\varepsilon = (\varepsilon_i)$ if for each i,

$$u_i(a_i, \beta_i^a, \varepsilon) \geq u_i(1 - a_i, \beta_i^a, \varepsilon).$$

- ▶ Let $P(x) = F\{\varepsilon : u(1, x, \varepsilon) \ge u(0, x, \varepsilon)\},\$
 - ▶ probability that 1 is a best response if *x* fraction of neighbors plays 1.
- ▶ P is increasing, $P(x) \in [0,1]$

- ▶ Let $P(x) = F\{\varepsilon : u(1, x, \varepsilon) \ge u(0, x, \varepsilon)\},\$
- ▶ P is increasing, $P(x) \in [0,1]$.

- ▶ Let $P(x) = F\{\varepsilon : u(1, x, \varepsilon) \ge u(0, x, \varepsilon)\}$,
- ▶ P is increasing, $P(x) \in [0,1]$.

- ▶ Let $P(x) = F\{\varepsilon : u(1, x, \varepsilon) \ge u(0, x, \varepsilon)\},\$
- ► Fixed points of *P* correspond to equilibria in the continuum model.

Complete graph

▶ Let g_{complete}^n be the complete graph with n nodes

Theorem

If x is a stable fixed point of P, then, for each $\eta > 0$,

$$\lim_{n\to\infty}\operatorname{Prob}\left(\{x\}\subseteq_{\eta}\operatorname{Eq}\left(\operatorname{g}^n_{\operatorname{complete}},\varepsilon\right)\right)\geq 1-\eta.$$

very simple proof.

Complete graph

▶ Generically, x_{min} and x_{max} - the smallest and the largest fixed points - are stable.

For large n, both x_{min} and x_{max} are close to some equilibrium behaviors.

Complete graph

Corollary

There exists a sequence of graphs g^n such that

$$\lim_{n\to\infty} Prob([x_{\min},x_{\max}]\subseteq_{\eta} Eq(g^n,\varepsilon))\geq 1-\eta.$$

- So far, we showed existence of networks g such that $[x_{\min}, x_{\max}] \subseteq_{\eta} \text{Eq}(g, \varepsilon)$ with a large probability.
- Next, we show that Eq $(g, \varepsilon) \subseteq_{\eta} [x_{\min}, x_{\max}]$ for any g st. $d(g) = \max_{i,j} \frac{g_{ij}}{g_i}$ is sufficiently small.

Theorem

For any $w_{\text{max}} < \infty$, any sequence of graphs g_n , if $d\left(g_n\right) \to 0$ and $w\left(g_n\right) \le w_{\text{max}}$, then

$$\lim_{n\to\infty} Prob\left(Eq\left(g^n,\varepsilon\right) \subseteq_{\eta} \left[x_{\min},x_{\max}\right] \right) = 1.$$

- Proof: surprisingly complicated.
- ▶ W.l.o.g., we want to show that, with a large probability, there is no profile a st Av $(a) > x_{max}$ and a is an equilibrium.

- Proof: surprisingly complicated.
- W.l.o.g., we want to show that, with a large probability, there is no profile a st Av $(a) > x_{max}$ and a is an equilibrium.
- Bound

Prob (there exists a st.Av $(a) \ge x$ and a is equilibrium) $\le \# \{a : Av(a) > x\} \cdot Prob(a \text{ is equilibrium}).$

- Proof: surprisingly complicated.
- ▶ W.l.o.g., we want to show that, with a large probability, there is no profile a st Av $(a) > x_{max}$ and a is an equilibrium.
- it is easy to show that a is unlikely to be an equilibrium: there exists $\delta > 0$ st. for each a,

Prob (a is equilibrium)
$$\leq \exp(-\delta N)$$
.

▶ But, there are many profiles *a*:

$$\# \{a : Av(a) > x\} \sim exp((x \log x + (1-x) \log (1-x)) N).$$

- Proof: surprisingly complicated.
- ▶ W.l.o.g., we want to show that, with a large probability, there is no profile a st Av $(a) > x_{max}$ and a is an equilibrium.
- ▶ Problem: there are too many candidate profiles a. /pause
- ▶ Observation: the above proof treats events "a is equilibrium" for all as as disjoint, whereas they are often correlated. /pause
- ▶ Observation II: events "a is equilibrium" and "a' is equilibrium" are correlated more if β^a and $\beta^{a'}$ are similar. /pause
- ldea: divide all profiles a into "groups" with similar β^a .

▶ The correlation is stronger if $\beta^a \sim \beta^{a'}$, where β^a is a profile of "neighborhood fractions $\beta^a_i = \frac{1}{g_i} \sum_{j \neq i} g_{ij} a_j$), or

$$d\left(\beta_{i}^{a},\beta_{i}^{a'}\right) = \sqrt{\frac{1}{\sum g_{i}^{2}} \sum g_{i}^{2} \left(\beta_{i}^{a} - \beta_{i}^{a'}\right)^{2}} \text{ is small.}$$

▶ We show that for each a_0 st. Av $(a_0) > x$, if δ is sufficiently small and $d(g) \le \delta$, then

 $\mathsf{Prob}\left(\left\{a:d\left(\beta^{\mathsf{a}},\beta^{\mathsf{a_0}}\right)\leq\delta\right\} \ \mathsf{contains} \ \mathsf{an} \ \mathsf{equilibrium}\right)\leq \exp\left(-\delta N\right).$

► Set of "neighborhood fraction" profiles

$$\mathcal{B} = \{\beta^a : a \text{ is a profile}\}.$$

- Metric entropy: $\mathcal{N}(\mathcal{B}, \delta)$ is the smallest n such that there exists $b_1, ..., b_n \in \mathcal{B}$ st. \mathcal{B} can be covered with balls radius δ and centers at b_i .
- **b** Bound on metric entropy: for some constant c > 0,

$$\mathcal{N}\left(\mathcal{B},\delta
ight)\leq\exp\left(crac{1}{\delta^{2}}d\left(g
ight)N
ight).$$

$$\begin{split} &\operatorname{\mathsf{Prob}}\left(\left\{a:d\left(\beta^{a},\beta\right)\leq\delta\right\} \ \text{contains an equilibrium}\right) \\ &\leq & \mathcal{N}\left(\mathcal{B},\delta\right) \cdot \sup_{a_{0}:\operatorname{\mathsf{Av}}\left(a_{0}\right)>x} \operatorname{\mathsf{Prob}}\left(\left\{a:d\left(\beta^{a},\beta^{a_{0}}\right)\leq\delta\right\} \ \text{contains an equilibrium} \right. \\ &\leq & \exp\left(c\frac{1}{\delta^{2}}d\left(g\right)N-\delta N\right), \end{split}$$

which is small if d(g) is small enough.

Random utility dominant outcome

- ➤ So far, we characterized a tight upper bound on the equilibrium set.
- Next, we turn to a lower bound.

Random utility dominant outcome

▶ Define random utility (RU-) dominant outcome

$$x^* \in \arg\max_{x} \int_{0}^{x} \left(y - P^{-1}(y)\right) dy.$$

► RU-outcome is generically a strictly stable fixed point of P.

Random utility dominant outcome

▶ Define random utility (RU-) dominant outcome

$$x^* \in \arg\max_{x} \int\limits_{0}^{x} \left(y - P^{-1}(y)\right) dy.$$

▶ RU-outcome can be x_{min} or x_{max} .

Random utility dominant outcome

► When game is deterministic, RU-dominance is equivalent to Harsanyi-Selten risk-dominance

Random utility dominant selection

Theorem

Suppose that 0 < P(0) < P(1) < 1. There exists a sequence of networks g^n st. for each $\eta > 0$,

$$\lim_{n\to\infty} Prob(Eq(g^n,\varepsilon) =_{\eta} \{x^*\}) \ge 1 - \eta.$$

- ► For some networks, x* is the unique average equilibrium behavior.
- ► The assumption ensures that, for each action, there is a positive probability that the action is dominant.

Proof

- ▶ Network sequence: 2-dimensional lattices
 - ▶ not necessarily 1-dimensional lattice (line)
- Combination of ideas from
 - ► [Ellison(1993)] deterministic contagion wave on line, and
 - ► [Morris(2000b)] deterministic contagion on lattices, plus
 - new ideas (RU-dominance, random utility vs deterministic games, initial infectors vs obstacles).

- Start with deterministic case, but with small group of initial infectors.
- Assume 0 is risk-dominant.
- ▶ We want to show that 0 is the only equilibrium.
- -> contagion.

- ► [Ellison(1993)]: suppose that action 0 is risk-dominant,
- ▶ initial infectors $-1 \le i \le 0$ play 0; the rests play 1,

- ► [Ellison(1993)]: suppose that action 0 is risk-dominant,
- ▶ initial infectors $-1 \le i \le 0$ play 0; the rests play 1,
- best response dynamics

- ► [Ellison(1993)]: suppose that action 0 is risk-dominant,
- ▶ initial infectors $-1 \le i \le 0$ play 0; the rests play 1,
- best response dynamics -> contagion

- ► [Ellison(1993)]: suppose that action 0 is risk-dominant,
- ▶ initial infectors $-1 \le i \le 0$ play 0; the rests play 1,
- best response dynamics -> contagion

- ► [Morris(2000b)] "Contagion" shows that the same mechanics works on other networks, like 2 (or higher)-dimensional lattices.
- ► Key step: around 1/2 of neighbors of "threshold agents" are already infected.

- ► [Morris(2000b)] "Contagion" shows that the same mechanics works on other networks, like 2 (or higher)-dimensional lattices.
- ► Key step: around 1/2 of neighbors of "threshold agents" are already infected.

- ► [Morris(2000b)] "Contagion" shows that the same mechanics works on other networks, like 2 (or higher)-dimensional lattices.
- ► Key step: around 1/2 of neighbors of "threshold agents" are already infected.

- ► [Morris(2000b)] "Contagion" shows that the same mechanics works on other networks, like 2 (or higher)-dimensional lattices.
- ► Key step: around 1/2 of neighbors of "threshold agents" are already infected > initial infectors must be large enough relative to neighborhoods.

- ► [Morris(2000b)] "Contagion" shows that the same mechanics works on other networks, like 2 (or higher)-dimensional lattices.
- ► Key step: around 1/2 of neighbors of "threshold agents" are already infected > initial infectors must be large enough relative to neighborhoods.

- ► Intermediate step: Random utility, but with continuum of agents in each location.
 - except for initial infectors.

- "Real line" network: agent in location i is connected with agents in location j
- ightharpoonup connection density $g_{ij}=g_{ji}=g_{i+l,j+l}$ for any l,
 - $g_{ij} = 0 \text{ for } j > i + 1,$
 - $f(j-i) = \frac{1}{g_i} \int_{i-1}^j g_{il} dl.$

- ▶ "Real line" network: agent in location i is connected with agents in location j
- ▶ connection density $g_{ij} = g_{ji} = g_{i+l,j+l}$ for any l,
 - $g_{ij} = 0 \text{ for } j > i + 1,$
 - $f(j-i) = \frac{1}{g_i} \int_{i-1}^{j} g_{il} dl,$
- f(x) + f(-x) = 1.

Proof: Contagion wave on line, RU case

Assume that $x^* = 0$ is RU-dominant, i.e.

$$\int\limits_{0}^{x}\left(y-P^{-1}\left(y\right) \right) dy<0\,\text{for each}\,\,x>0.$$

- ▶ With a positive probability, there are "initial infectors" for whom 0 is dominant.
- ▶ Will contagion spread to the whole (or almost whole) network?
- ▶ If yes, then each equilibrium must have average behavior close to 0.

- Start with a profile like in [Ellison(1993)] on line network.
- Apart from initial infectors (who all have 0 as dominant action), each other location has "continuum" of agents.

- ▶ If the contagion spreads to the whole line we are done.
- Suppose that it stops.

Proof: Contagion wave on line, RU case

▶ If the contagion stops, then at each location i > 0,

$$a_{i} \leq P\left(\int a_{i+k}df\left(k\right)\right).$$

► Taking inverse and integrating by parts

$$P^{-1}\left(a_{i}
ight)\leq\int a_{i+k}df\left(k
ight)=\int_{0}^{a_{\mathsf{max}}}f\left(i-j
ight)da_{j}.$$

$$\int_{0}^{a_{\max}} P^{-1}(a_i) da_i \leq \int_{0}^{a_{\max}} \int_{0}^{a_{\max}} f(i-j) da_j da_i.$$

Proof: Contagion wave on line, RU case

▶ If the contagion stops, then at each location i > 0,

$$a_i \leq P\left(\int a_{i+k}df\left(k\right)\right).$$

► Taking inverse and integrating by parts

$$P^{-1}\left(a_{i}\right) \leq \int a_{i+k} df\left(k\right) = \int_{0}^{a_{\max}} f\left(i-j\right) da_{j}.$$

$$\int_0^{a_{\max}} P^{-1}(a_i) da_i \leq \int_0^{a_{\max}} \int_0^{a_{\max}} f(i-j) da_j da_i.$$

Proof: Contagion wave on line, RU case

▶ If the contagion stops, then at each location i > 0,

$$a_i \leq P\left(\int a_{i+k}df\left(k\right)\right).$$

Taking inverse and integrating by parts

$$P^{-1}(a_i) \leq \int a_{i+k} df(k) = \int_0^{a_{\max}} f(i-j) da_j.$$

$$\int_{0}^{a_{\max}} P^{-1}\left(a_{i}\right) da_{i} \leq \int_{0}^{a_{\max}} \int_{0}^{a_{\max}} f\left(i-j\right) da_{j} da_{i}.$$

Proof: Contagion wave on line, RU case

$$\int_{0}^{a_{\max}} P^{-1}(a_{i}) da_{i}$$

$$\leq \int_{0}^{a_{\max}} \int_{0}^{a_{\max}} f(i-j) da_{j} da_{i}$$

Proof: Contagion wave on line, RU case

$$\int_{0}^{a_{\text{max}}} P^{-1}(a_{i}) da_{i}$$

$$\leq \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f(i-j) da_{j} da_{i}$$

$$= \frac{1}{2} \int_{0}^{a_{\text{max}}} f(i-j) da_{j} da_{i} + \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f(j-i) da_{j} da_{i}$$

Proof: Contagion wave on line, RU case

$$\begin{split} & \int_{0}^{a_{\text{max}}} P^{-1}\left(a_{i}\right) da_{i} \\ & \leq \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f\left(i-j\right) da_{j} da_{i} \\ & = \frac{1}{2} \int_{0}^{a_{\text{max}}} f\left(i-j\right) da_{j} da_{i} + \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f\left(j-i\right) da_{j} da_{i} \\ & = \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} \left[f\left(i-j\right) + f\left(j-i\right) \right] da_{j} da_{i} \end{split}$$

Proof: Contagion wave on line, RU case

▶ Integrate over $a_i \in [0, a_{max}]$,

$$\begin{split} & \int_{0}^{a_{\text{max}}} P^{-1}\left(a_{i}\right) da_{i} \\ \leq & \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f\left(i-j\right) da_{j} da_{i} \\ = & \frac{1}{2} \int_{0}^{a_{\text{max}}} f\left(i-j\right) da_{j} da_{i} + \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f\left(j-i\right) da_{j} da_{i} \\ = & \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} \left[f\left(i-j\right) + f\left(j-i\right) \right] da_{j} da_{i} \end{split}$$

Recall that f(i-j) + f(j-i) = 1.

Proof: Contagion wave on line, RU case

▶ Integrate over $a_i \in [0, a_{max}]$,

$$\begin{split} & \int_{0}^{a_{\text{max}}} P^{-1}\left(a_{i}\right) da_{i} \leq \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f\left(i-j\right) da_{j} da_{i} \\ = & \frac{1}{2} \int_{0}^{a_{\text{max}}} f\left(i-j\right) da_{j} da_{i} + \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f\left(j-i\right) da_{j} da_{i} \\ = & \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} \left[f\left(i-j\right) + f\left(j-i\right) \right] da_{j} da_{i} \\ = & \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} da_{j} da_{i} = \int_{0}^{a_{\text{max}}} a da. \end{split}$$

▶ We get contradiction with $\int_0^{a_{\text{max}}} (y - P^{-1}(y)) dy < 0$.

Proof: Contagion wave on line, RU case

▶ Integrate over $a_i \in [0, a_{max}]$,

$$\begin{split} & \int_{0}^{a_{\text{max}}} P^{-1}\left(a_{i}\right) da_{i} \leq \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f\left(i-j\right) da_{j} da_{i} \\ = & \frac{1}{2} \int_{0}^{a_{\text{max}}} f\left(i-j\right) da_{j} da_{i} + \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} f\left(j-i\right) da_{j} da_{i} \\ = & \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} \left[f\left(i-j\right) + f\left(j-i\right) \right] da_{j} da_{i} \\ = & \frac{1}{2} \int_{0}^{a_{\text{max}}} \int_{0}^{a_{\text{max}}} da_{j} da_{i} = \int_{0}^{a_{\text{max}}} a da. \end{split}$$

▶ We get contradiction with $\int_0^{a_{\text{max}}} (y - P^{-1}(y)) dy < 0$.

- ▶ Hence the contagion has to spread to the entire line.
- ▶ But! so far we assumed that locations contain continuum.
- Contagion can be also stopped by unusual payoff shocks, like those that make 1 dominant.

- Hence the contagion has to spread to the entire line.
- But! so far we assumed that locations contain continuum.
- Contagion can be also stopped by unusual payoff shocks, like those that make 1 dominant.

- ▶ We can compare the relative likelihood of infectors vs obstacles.
- On line, the latter can be more frequent.
- ▶ But not on 2-dimensional lattices.

- ➤ We can compare the relative likelihood of infectors vs obstacles.
- ▶ On line, the latter can be more frequent.
- But not on 2-dimensional lattices.

- We can compare the relative likelihood of infectors vs obstacles.
- On line, the latter can be more frequent.
- ▶ But not on 2-dimensional lattices.

- We can compare the relative likelihood of infectors vs obstacles.
- On line, the latter can be more frequent.
- ▶ But not on 2-dimensional lattices.

- So far, we showed that there are networks g such that Eq $(g, \varepsilon) \subseteq_{\eta} \{x^*\}$ with a large probability.
- Next, we show that if $d(g) = \max_{i,j} \frac{g_{ij}}{g_i}$ is sufficiently small, than $\{x^*\} \subseteq_n \text{Eq}(g,\varepsilon)$.

Theorem

For any sequence of graphs g_n , if $d(g_n) \to 0$, then

$$\lim_{n} Prob(\{x^*\} \subseteq_{\eta} Eq(g_n)) = 1.$$

- ▶ Hence $\{x^*\}$ is the smallest equilibrium set.
- ► Equilibrium selection theory: no matter what network, there is an equilibrium with aggregate behavior.

- ▶ The proof makes this idea more precise.
- Suppose that

$$a_i^0 \in \arg\max_a u_i(a, x^*, \varepsilon_i)$$

is pl. i's best response as if x^* of her neighbors play 1.

- ► The proof shows that the best response dynamics starting at a^0 ends (with a large prob.) in an equilibrium, in which very few agents switch their actions.
- ▶ Hence $a_i^0 \in \arg\max_a u_i(a, x^*, \varepsilon_i)$ is a pretty safe action to take, whatever is the true network.

- Start with deterministic case.
- ▶ Suppose that $x^* = 0$ is risk-dominant.
- Let a^0 be a profile such that almost all, except for initial infectors, play 0.
- Can a small group of infectors initiate contagion?

- No.
- Remarkably elegant argument from [Morris(2000a)].
- For each profile a, let

$$\mathcal{F}_{0}\left(a\right) = \sum_{i,j:a_{i}=1,a_{j}=0} g_{ij}$$

be the sum of links between infected and uninfected.

▶ Refer to $\mathcal{F}(a)$ as the capacity to infect.

► Whenever *i* changes action from 0 to 1 as a best response, the capacity increases by

$$\mathcal{F}_{0}\left(a^{\prime}\right)-\mathcal{F}_{0}\left(a\right)=\sum_{j:a_{j}=0}g_{ij}-\sum_{j:a_{j}=1}g_{ij}.$$

▶ But, if 1 is a best response and 0 is risk-dominant, then it's better be that

$$\sum_{j:a_j=0} g_{ij} < \frac{1}{2} < \sum_{j:a_j=1} g_{ij}.$$

- ► So, the capacity goes down every single infection!
- Because the capacity cannot be negative, contagion has to stop.
- If the initial profile was close to x^* , the capacity was small and the contagion will stop very soon, close to x^* .

► Whenever *i* changes action from 0 to 1 as a best response, the capacity increases by

$$\mathcal{F}_{0}\left(a^{\prime}\right)-\mathcal{F}_{0}\left(a\right)=\sum_{j:a_{j}=0}g_{ij}-\sum_{j:a_{j}=1}g_{ij}.$$

▶ But, if 1 is a best response and 0 is risk-dominant, then it's better be that

$$\sum_{j:a_j=0} g_{ij} < \frac{1}{2} < \sum_{j:a_j=1} g_{ij}.$$

- ► So, the capacity goes down every single infection!
- Because the capacity cannot be negative, contagion has to stop.
- If the initial profile was close to x^* , the capacity was small and the contagion will stop very soon, close to x^* .

► Whenever *i* changes action from 0 to 1 as a best response, the capacity increases by

$$\mathcal{F}_{0}\left(a^{\prime}\right)-\mathcal{F}_{0}\left(a\right)=\sum_{j:a_{j}=0}g_{ij}-\sum_{j:a_{j}=1}g_{ij}.$$

▶ But, if 1 is a best response and 0 is risk-dominant, then it's better be that

$$\sum_{j:a_j=0} g_{ij} < \frac{1}{2} < \sum_{j:a_j=1} g_{ij}.$$

- So, the capacity goes down every single infection!
- Because the capacity cannot be negative, contagion has to stop.
- ▶ If the initial profile was close to x^* , the capacity was small and the contagion will stop very soon, close to x^* .

► Whenever *i* changes action from 0 to 1 as a best response, the capacity increases by

$$\mathcal{F}_{0}\left(a^{\prime}\right)-\mathcal{F}_{0}\left(a\right)=\sum_{j:a_{j}=0}g_{ij}-\sum_{j:a_{j}=1}g_{ij}.$$

▶ But, if 1 is a best response and 0 is risk-dominant, then it's better be that

$$\sum_{j:a_j=0} g_{ij} < \frac{1}{2} < \sum_{j:a_j=1} g_{ij}.$$

- ▶ So, the capacity goes down every single infection!
- ▶ Because the capacity cannot be negative, contagion has to stop.
- If the initial profile was close to x^* , the capacity was small and the contagion will stop very soon, close to x^* .

▶ Whenever *i* changes action from 0 to 1 as a best response, the capacity increases by

$$\mathcal{F}_{0}\left(a^{\prime}\right)-\mathcal{F}_{0}\left(a\right)=\sum_{j:a_{j}=0}g_{ij}-\sum_{j:a_{j}=1}g_{ij}.$$

▶ But, if 1 is a best response and 0 is risk-dominant, then it's better be that

$$\sum_{j:a_j=0} g_{ij} < \frac{1}{2} < \sum_{j:a_j=1} g_{ij}.$$

- So, the capacity goes down every single infection!
- ▶ Because the capacity cannot be negative, contagion has to stop.
- ▶ If the initial profile was close to x^* , the capacity was small and the contagion will stop very soon, close to x^* .

- Key feature of a good definition of capacity
 - it goes down with best responses,
 - it is small,
 - cannot be negative.
- ► The number of stages until the dynamics stops is related to the initial capacity.

- ► RU case.
- Assume that *RU*-dominant outcome $x^* = P(x^*) = 0$.
- Let $a_i^0 = \arg\max u_i(a_i, x^*, \varepsilon_i)$ be the initial profile.
- Definition of capacity: Notice that

$$\sum_{i,j:a_i=1,a_j=0}g_{ij}$$

is not small (there are many players who play 1).

- ► RU case.
- Assume that *RU*-dominant outcome $x^* = P(x^*) = 0$.
- ▶ Definition of capacity: Notice also that

$$\sum_{i,j:a_i=1,a_j=0} g_{ij} = \frac{1}{2} \sum_{i,j} g_{ij} (a_i - a_j)^2.$$

- RU case.
- Assume that *RU*-dominant outcome $x^* = P(x^*) = 0$.
- ▶ Definition of capacity: Instead of

$$\frac{1}{2}\sum_{i,j}g_{ij}\left(a_i-a_j\right)^2,$$

we take

$$\mathcal{F}(a) = \frac{1}{2} \sum_{i,j} g_{ij} \left(P(\beta_i^a) - P(\beta_j^a) \right)^2.$$

- recall that β_i^a is the neighborhood fraction, and
- ▶ $P(\beta_i^a)$ is the "expected" best response of agent i.

- Turns out that this is a good definition
 - ightharpoonup capacity is small at a^0 as with a large probability $\beta_i^a \sim \beta_i^a$,
 - ▶ and it is a sum of a martingale and a decreasing process. Ignoring (probabilistically) small terms, we get, for each T

$$\mathcal{F}\left(P\left(\beta^{0}\right)\right) \geq 2\sum_{i}g_{i}\left[\int\limits_{x^{*}}^{P\left(\beta_{i}^{T}\right)}\left(P^{-1}\left(y\right)-y\right)dy\right].$$

Conclusion

- Heterogeneous payoffs in coordination games on network.
- We characterized the largest and the smallest possible set of equilibrium average behaviors across all networks.
- Results:
 - The largest set achieved on a collection of complete graphs,
 - partial identification theory,
 - The smallest set achieved on 2-dimensional (but not necessarily 1-dimensional) lattice,
 - equilibrium selection theory.
- Main assumptions:
 - independent payoff shocks,
 - large degree,
 - both assumptions are important.

- ELLISON, G. (1993). Learning, local interaction, and coordination. *Econometrica*, **61** (5), 1047.
- (2000). Basins of attraction, long-run stochastic stability, and the speed of step-by-step evolution. Review of Economic Studies, 67 (230), 17.
- HARSANYI, J. C. and SELTEN, R. (1988). A general theory of equilibrium selection in games. Cambridge, Mass. and London: MIT Press.
- KANDORI, M., MAILATH, G. J. and ROB, R. (1993). Learning, mutation, and long run equilibria in games. *Econometrica*, **61** (1), 29.
- MORRIS, S. (2000a). Contagion. Review of Economic Studies, **67** (1), 57–78.
- (2000b). Contagion. *Review of Economic Studies*, **67** (1), 57–78.

- PESKI, M. (2010). Generalized risk-dominance and asymmetric dynamics. *Journal of Economic Theory*, **145** (1), 216–248, publisher: Elsevier.
- YOUNG, H. P. (1993). The evolution of conventions. *Econometrica*, **61** (1), 57–84.