

Continuous Assessment Test 2 - March 2023

	Continuous Assessment Test 2 - March	2023		
	: B.Tech. (CSE) & B.Tech. CSE with Specialization)	Semester	: WS 2022-	
rogramme		Code	BECE204	
Course	Microprocessors and Microcontrollers	Class Nbr	: CH20222	3500148
14	: Dr. J. Florence Gnana Poovathy	Slot	F2 + TF2	
aculty	: 90 Minutes	Max. Marks	: 50	
ime	Answer ALL the questions			-
Q.No. Sub	Quartiens	50		Marks
л?	Examine the content of Program Status Word (PSW) register and illustrate the significance of each flag bit. 1 1 0 1 0 0	of 8051 as st	own below	5
J.	Analyze the following code and perform the following: (i) What will be the value stored at 50H after the execution (ii) Mention the values get stored in each register and in every locations 41H, 42H, 43H, 44H values 33H, 11H, 44H, 11H and 22H, respectively. MOV R0, #41H CLR C MOV R2, #05H MOV A, @R0 MOV B, A L2: INC R0 MOV A, @R0 CJNE A, B, L1 SJMP L3 JNC L3 MOV B, A L3: DJNZ R2, L2	4- 3		7 8
3.	MOV 50H, B END Consider an 8051 microcontroller system which takes num 26 from the user through the Port P2. The numeric val character "A", "2" is mapped to "B" and likewise "26" is received numeric input in such a way that you transfer the serial communication with a baud rate of 9600. Assume the 8051 microcontroller is 25.8048 MHz. Write an 8051 assessimplement the same. [Note: The ASCII code for A to Z states.]	napped to "Z" mapped chara ie crystal freq mbly language	. Process the ceter of it via uency of the e program to	
A.	(Z)] Assuming that XTAL = 33 MHz,			
	(a) Find the frequency of the square wave generated on	Port Pin P1.5	in the	
	(a) I ma mo angular			Page 1

following program.

2.5

10

(b) Modify the program to obtain the smallest frequency achievable, and the TH1 value to do that.

> MOV TMOD, #20H MOV THI,#0E5H

L2: SETB TR1

L1: JNB TF1, L1

CPL P1.5

CLR TF1

CLR TRI

SJMP L2

All VIT Chennai buses are equipped with standard GPS method to provide necessary information for the benefit of their users. The output of this GPS is interfaced with the 8051 microcontroller through Port P0. Write an 8051 assembly language program to display "GET DOWN" on the LCD, if the GPS coordinate is 0AH that is received by Port P0.

Hint: Use DPTR for accessing the characters to be displayed.

Reg. No.:

Name :

Continuous Assessment Test II - October 2023

	Tost I	I - October 2023	
	Continuous Assessment Test I	la star l	FS 2023-24
		Semester	BECE204L
Decomme	: B.Tech (BCE/BPS/BAI/BRS)	Code	BECEZO:
Programme	. D. Teen (Slot	E1+TE1
Course	: Microprocessors and Microcontrollers		CH2023240101166
		ClassNbr:	CH2023240101169
7	: REVATHI S,		C112023240101178
Faculty	SUBHASHINI N,		C112023240100041
	SUBHASHINIS		CH2023240100941
	MUTHULAKSHMI S,		CH2023240100943
	MANOJ KUMAR R,		CH2023240100947
	BALA MURUGAN M S,		CH2023240100951
	DALIA INCIANA		CH2023240100551
	SOURABH PAUL,		CH2023240100954
1	S SELVENDRAN,		CH2023240100959
	LA AZCHMI PRIVA.		CH2023240100963
	AUGUSTA SOPHY BEULET P,		CH2023240100900
	AUGUSTA SOLANIAN A	- Mosles	: 50
	SIVASUBRAMANIAN A	Max. Marks	. 100
	: 90 Minutes		
Time	[.] 70 Militar	4ions	

Answer ALL the questions

Note: All the programs should have the comments which describes the logic of the program

Note: All the programs should	d have the comme	Marks
T	Questions	
Q.No.	XX) in the given 8051 ASM program su	ich that it creates a

Find the value of register R1 (XX) in the given 8051 ASM program such that it creates a delay of 5 seconds. Assume that the crystal frequency is 33 MHz.

	delay of 5 seconds. Assume that the	No. of Machine Cycle
	Instruction	1
	MOV R1, #XX	1
	Loop3: MOV R2, #255	1
1.	Toon2: MOV R3, #250	2
	Loopl: DJNZ R3, Loopl	2
	DJNZ R2, Loop2	2
	DJNZ R1, Loop3	2
		051 using timers to generate the following
	and in 8	051 using timers to generate the following

Write an assembly language program in 8051 using timers to generate the following waveform as shown in Figure 1. Assume crystal frequency as 12 MHz

Figure 1: Timer Waveform

10

5

Write an 8051 ASM program to generate the waveform as shown in Figure 2 using DAC.

Figure 2: DAC Waveform

Assume that an array has 8 numbers stored starting from the location 40H as given below. A={50H,95H, 60H, 75H, F0H, 25H, 92H,98H}.

Write an 8051 assembly language program to find the sum of all the numbers which are greater than 80H and store the result in the memory location 50H and carry (if any) in 51H.

Design an 8051 microcontroller based system for VIT counselling hall. The system transmits the message 'WELCOME TO VIT' serially continuously with a baudrate of 9600 on a monitor. Assume the crystal frequency as 11.0592MHz. Also, the entry gate of the counselling hall is connected with one digital InfraRed (IR) sensor for monitoring the candidates entering the hall (connected to INTO pin of 8051). Whenever there is a candidate entering the counselling hall, IR sensor generates an interrupt signal to display the message "HAVE A GREAT DAY" on LCD which is interfaced with 8051.

Write an 8051 microcontroller assembly language program to configure the above system to perform serial transmission and the necessary LCD display.

10

15

Continuous Assessment Test II – October 2023

Programme	: B.Tech. (CSE) & B.Tech. CSE (AI &ML,CPS,AIR)	Semester	: FS 2023-24
Course		Code	BECE204L
	Microprocessors and Microcontrollers	Class Nbr	: C112023240100967 C112023240100969 C112023240100980 C112023240100980 C112023240100983 C112023240100987 C112023240101187 C112023240101190 C112023240101216 C112023240101236 C112023240101243
Faculty	Dr. R. MANOJ KUMAR Dr. SOURABH PAUL Dr. A. SASITHRADEVI Dr. S. SELVENDRAN Dr. E. MANIKANDAN Dr. R. BALAKRISHNAN Dr. G. GUGAPRIYA Dr. ABRAHAM SUDHARSON PONRAJ Dr. CHANTHINI BASKAR Dr. V. BERLIN HENCY Dr. I. HARIHARAN	Slot	: E2+TE2
Time	: 90 Minutes	Max. Marks	: 50

Answer ALL the questions

Q.No. Sub. Sec.

Questions

Marks

Write an 8051-Assembly Language Program to implement the provided logic circuit.

- In a classroom, a sensor triggers an 8051 microcontroller to count student entries using Mode 2 operation, with a 12MHz clock frequency. Write an Assembly Language Program (ALP) to implement this, taking into consideration a maximum class capacity of 60 students
- How to create a 0.25-second delay in an 8051-Assembly Language Program using only
 registers and machine cycles for implementing the delay (without a timer), while
 considering a clock frequency of 12 MHz. Also, write sample delay loop program.

5

- 4. Consider a scenario where an LED needs to be toggled every 25 microseconds to create the illusion of continuous illumination due to the precision of human eye perception. The goal frequency is LED toggling on port P1.2 of an 8051 microcontroller. The applied clock frequency is 12 MHz.
 - a) In the first implementation, the LED toggling is achieved by continuously monitoring specific conditions, particularly the interrupt register, while preferring Timer 0 in mode 1 operation.
 - b) In the second approach, an automated system with interrupts acting as triggers is created, with a preference for Timer 1 in mode 1. An interrupt service routine (ISR) is set up to effectively manage the LED toggling.

Write the assembly code for both implementations (2 different program) and explain the key steps involved in each approach.

 Write an Assembly Language Program to generate a periodic waveform as given below using DAC.

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

Course Faculty

7+8