MA211 **Lecture 16: Series Solutions. Integration**

Mon $3^{\rm rd}$ Nov 2008

Today...

- 1 Power Series
 - Initial Value problems
- 2 Integration
 - Preliminaries
- 3 Area Under a Curve
- 4 Definite Integrals
 - The Fundamental Theorem of Calculus
 - Examples
 - The Mathematical Tables

For more on *Series Solutions*, see Section 17.4 of Stewart *Calculus:* early transcendentals.

For further examples on *Integration*, have a look at Chapter 5, but especially Sections 5.5.

Power Series

Toward the end of last Wednesday's class, we started a section on **Series Solutions**.

This is a technique that allows use to write down approximate solutions to problems with *nonconstant coefficients*.

For example

$$y''-xy'+y=0.$$

Power Series

Power Series

The key idea is that we suppose that we can write y as

$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3 + \dots = \sum_{n=0}^{\infty} c_n x^n.$$

The general solution will always have arbitrary constants, so we let these be c_0 and c_1 .

Then we substitute the power series is into the differential equation, and get equations for c_2 , c_3 , c_4 , ...

The more terms we take, the more accurate the solution is.

Power Series

Example

Use a power series to solve the DE

$$y''-xy=0.$$

Power series methods are particularly useful for getting solutions to *initial value problems* where we are given, not only the differential equation, but also the value of y and y' at some initial point.

These allow us to solve for c_0 and c_1 .

Example

Use a power series to solve the initial value problem

$$y'' - xy = 0,$$
 $y(0) = 0, y'(0) = 1.$

Initial Value problems

Exercise (Q16.1)

For each of the following differential equations, find a recurrence relation for the coefficients of the power series solution, and write out the solution up to the x^5 term.

- 1 y'' + xy = 0.
- 2 $y'' + x^2y = 0$.
- 3 y'' 2xy' + y = 0.
- 4 y'' 2xy' + y = 0, y(0) = 1, y'(0) = -1
- 5 y'' xy' = 0, y(0) = 0, y'(0) = 2

Integration

We've now finished the section on solving 2nd order problem.

For the next few lectures we will study

Later we'll return to the topic of solving 1st order problems.

Integration

In this section of the course we return to the problem of:

Given a function F, find a function f such that

$$f'(x) = F(x)$$
.

We call f an anti-derivative if F. (See Lecture 6)

More often we write this as an *Integral* problem:

Given a function F, find

$$f(x) = \int F(x) dx.$$

Sigma Notation

We can write a sum $f_0, f_1, f_2, \ldots, f_n$ as $\sum_{k=0}^{n} f_k$.

Example

$$1+2+3+4+\cdots+10=\sum_{k=1}^{10} k.$$

$$1+3+5+7+\cdots+13=\sum_{k=1}^{r}(2k-1).$$

Area Under a Curve

One can approximate the area from *a* to *b* bounded above by a given function, below by the *x*-axis by the area of boxes under the curve:

Area Under a Curve

As we increase the number of boxes, the approximation improves...

Area Under a Curve

First we divide the interval [a, b]:

$$a = x_0 < x_1 < x_2 \cdots < x_n = b$$
 and $\delta x = x_i - x_{i-1} = \frac{b-a}{n}$.

Then the area of each box is:

$$A_k = f(x_k)\delta x.$$

Define the sums of the areas of n boxes as

$$S_n = A_1 + A_2 + \cdots + A_n,$$

And now:

Area =
$$\lim_{n\to\infty} S_n = \int_a^b f(x) dx$$
.

The integral of a function f from a to b

$$\int_{a}^{b} f(x) dx,$$

where

- is the integration symbol
- a and b are the lower and upper *limits of integration*
- \blacksquare dx means we are integrating with respect to x.

You should know the following properties:

Exercise (Q16.2)

Which of the following statements is true? Why?

$$\int_{a}^{b} |f(x)| dx \le \bigg| \int_{a}^{b} f(x) dx \bigg|,$$

or

$$\left| \int_{a}^{b} f(x) dx \right| \leq \int_{a}^{b} |f(x)| dx.$$

Definite Integrals The Fundamental Theorem of Calculus

Theorem (The Fundamental Theorem of Calculus)

Let F(x) be defined as

$$F(x) = \int_{a}^{x} f(x) dx.$$

Then F'(x) = f(x). That is

$$\frac{d}{dx}\int_{-\infty}^{x}f(x)dx=f(x).$$

Furthermore, let g(x) be any antiderivative of f. That is: G'(x) = f(x). Then

$$\int_{a}^{b} f(x) dx = G(b) - G(a) := G(x) \Big|_{a}^{b}.$$

To evaluate a definite integral of the form

$$\int_{a}^{b} f(x) dx,$$

find an anti-derivative G of f so that G'(x) = f(x). Then

$$\int_a^b f(x)dx = G(b) - G(a).$$

Example

Evaluate each of the following

(a)
$$\int_0^2 x^2 dx$$
; (b) $\int_1^2 \frac{(x+2)^2}{x} dx$; (c) $\int_0^{\pi} \sin(\frac{x}{3}) dx$.

In these examples we relied on knowing the anti-derivative of some elementary functions.

If you don't remember these, or others, look them up on pages 41 and 42 of the Mathematical Tables.

DIFREAIL (DIFFERENTIATION)

$$f(x) f'(x) \equiv \frac{d}{dx} [f(x)]$$

$$x^{n} nx^{n-1}$$

$$\ln x \frac{1}{x}$$

$$\cos x -\sin x$$

$$\sin x \cos x$$

$$\tan x \sec^{2} x$$

$$\sec x \sec x \cot x$$

$$-\csc x \cot x$$

$$-\csc x \cot x$$

$$e^{x} e^{x}$$

$$e^{x} e^{x}$$

$$a^{x} a^{x} \ln a$$

$$\cos^{-1} \frac{x}{a} -\frac{1}{\sqrt{a^{2}-x^{2}}}$$

$$\sin^{-1} \frac{x}{a} \frac{1}{\sqrt{a^{2}-x^{2}}}$$

SUIMEAIL (INTEGRATION)

Glactar a>0 agus fágtar tairisigh na suimeála ar lár.

We take a>0 and omit constants of integration.

$$f(x) \qquad \int f(x) dx$$

$$x^{n} (n \neq -1) \qquad \frac{x^{n+1}}{n+1}$$

$$\frac{1}{x} \qquad \ln |x|$$

$$\cos x \qquad \sin x$$

$$\sin x \qquad -\cos x$$

$$\tan x \qquad \ln |\sec x|$$

$$\ln |\sec x + \tan x|$$

$$\csc x \qquad \ln |\tan \frac{x}{2}|$$

$$\cot x \qquad \ln |\sin x|$$

The Mathematical Tables

$\tan^{-1}\frac{x}{a}$	$a^{\frac{a}{2}+x^2}$	eax	$\frac{1}{a}$ e ^{ax}
$\sec^{-1}\frac{x}{a}$	$\frac{a}{x\sqrt{x^2-a^2}}$	a*	$\frac{a^*}{\ln a}$
$\csc^{-1} \frac{x}{a}$	$-\frac{a}{x\sqrt{x^2-a^2}}$	$\frac{1}{\sqrt{a^2+x^2}}$	$\ln \frac{x + \sqrt{a^2 + x^2}}{a}$
$\cot^{-1} \frac{x}{a}$ $\sinh x$	$-\frac{a}{a^2+x^2}$ $\cosh x$	$\frac{1}{\sqrt{a^2-x^2}}$	$\sin^{-1}\frac{x}{a}$
cosh x tanh x coth x sech x cosech x	sinh x sech² x —cosech² x —sech x tanh x —cosech x coth x	$\frac{1}{x^2+a^2}$	$\frac{1}{a}\tan^{-1}\frac{x}{a}$
sinh x	$\frac{1}{\sqrt{x^2+1}}$	$\frac{1}{x\sqrt{x^2-a^2}}$	$\frac{1}{a} \sec^{-1} \frac{x}{a}$
cosh x	$\frac{1}{\sqrt{x^2-1}}$	$\frac{1}{\sqrt{x^2-a^2}}$	$\ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right $
tanh x	$\frac{1}{1-x^2}$	$\frac{1}{a^2-x^2}$	$\frac{1}{2a}\ln\left \frac{a+x}{a-x}\right $

The Mathematical Tables

$$coth^{-1} x - \frac{1}{x^2 - 1}$$

$$sech^{-1} x - \frac{1}{x\sqrt{1 - x^2}}$$

Torthai agus Lionta: Products and Quotients:

$$y = uv$$
; $\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$

$$y = \frac{u}{v}$$
; $\frac{\dot{dy}}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$

$$\sinh x$$
 $\cosh x$ $\sinh x$ $\tanh x$ $\ln \cosh x$ $\coth x$ $\ln |\sinh x|$ $\sinh x$

cosech
$$x$$
 In $\left| \tanh \frac{x}{2} \right|$

$$\begin{array}{ccc} \cos^2 x & \frac{1}{2}[x + \frac{1}{2}\sin 2x] \\ \sin^2 x & \frac{1}{2}[x - \frac{1}{2}\sin 2x] \\ \cosh^2 x & \frac{1}{2}[x + \frac{1}{2}\sinh 2x] \end{array}$$

$$\sinh^2 x \qquad \quad \frac{1}{2}[-x + \frac{1}{2}\sinh 2x]$$

$$\frac{1}{x\sqrt{a^2-x^2}} \qquad -\frac{1}{a}\operatorname{sech}^{-1}$$

$$\frac{1}{x\sqrt{x^2+a^2}} - \frac{1}{a}\operatorname{cosech}^{-1}$$