Day 10/11 Guided Notes

Name:	Kev	1	Date:

Day 10:

We will be able to compare and contrast equations that have <u>One</u> solution, <u>No</u> solutions, or <u>Infinitely</u> many solutions.

Equation with ONE Solution

- You can tell an equation has ONE solution if you solve it and get a
 Yariable equal to a number that makes the equation true.
- Ex: 6x 3 = 21 +3 + 3 6x = 24 $\div 6$ $\times = 4$

Equation with NO Solution

- There does not exist a $\frac{\text{Value}}{\text{or the }}$ for the $\frac{\text{Variable}}{\text{or the }}$ that makes the equation $\frac{\text{Value}}{\text{or the }}$.
- An equation does not have a solution if you substitute your

 <u>calculated</u> <u>value</u> and get a <u>false</u>

 statement

• Ex:
$$5x + 7 = 3x + 4 + 2x$$

$$5x + 7 = 5x + 4$$

$$-7 -7$$

$$5x = 5x - 3$$

$$-5x = -5x$$

$$0 \neq -3$$

Equation with INFINITE Solutions

- An equation has infinitely many solutions if for _______ value for the _______ value for the _______ true ______ true _____ true for the variable.
- Ex:4 + 5 + 7x = 2x + 5x + 9 4 + 7x = 7x + 9 -9 7x = 7x 7x = 7x 7x = 7x 7x = 7x

Exercise: Thinking About Solutions

Let's solve and sort the equations into whether they have <u>ONE</u> solution, <u>NO</u> solutions, or <u>Infinite</u> Solutions:

1. n = n	 □ Variable = Number? → One Solution □ Is the equation a false statement? → No Solution ☑ Is the variable/number equal to itself? → Infinite Solution
$2. \ 5 + 3x = -10 + 2x$	 Variable = Number? → One Solution Is the equation a false statement? → No Solution Is the variable/number equal to itself? → Infinite Solution
3. 2v + 2 = 2v - 2	 □ Variable = Number? → One Solution ls the equation a false statement? → No Solution □ Is the variable/number equal to itself? → Infinite Solution

PRACTICE PROBLEMS:

1. Consider the unfinished equation: 12(x-3) + 18 =_____. Match the following expressions with the number of solutions the equation would have with that expression on the right-hand side.

a.
$$6(2x-3)$$
b. $4(3x-3)$
c. $4(2x-3)$
l. one solution
2. no solution
3. Infinite solutions

HINT: Try solving each of the following expressions and substitute your solution into the original equation!

a)
$$12x-18=6(2x-3)$$

 $12x-18=12x-18$

c) $12x+8=4(2x-3)$
 $12x+8=8x-12$
 $12x=8x+6$

b) $12x-18=4(3x-3)$
 $12x-18=12x-12$
 $4x=6$
 $4x=6$
 $4x=6$

Day 11: Structures of Equations to Determine Solutions

Teacher Modeling:

Sample Card:

Determine whether the following equation has

- a. one solution if there exists one solution, solve for it
- b. no solution
- c. infinite solutions

$$4x - 1 + 2x = 4(2x - 1)$$

$$6x - 1 = 8x - 4$$

$$6x = 8x - 3$$

$$-2x = -3$$

Written Explanation:

Scratch Paper for Card Exercises:

Day 10/11 Guided Notes

For each set of equations, determine whether it has no solutions, exactly
one solution, or has infinitely many solutions + describe how and why
you determined it. If an equation has one solution, solve to find the
value of that makes the statement true:

a.
$$6x + 8 = 7x + 13$$

$$\chi = -5$$

$$ONE SOLUTION$$
c. $6x + 8 = 6x + 13$

$$\nearrow$$
No Solution

2.

b.
$$6x + 8 = 2(3x + 4)$$

Infinite solutions
 $6x + 8 = 6x + 8$

Lin was looking at the equation 2x-32+4(3x-2462)=14x. She said, "I can tell right away there are no solutions, because on the left side, you will have 2x+12x and a bunch of constants, but you have just 14x on the right side." Do you agree with Lin? Explain your reasoning.

yes because
$$2x - 32 + 4(3x - 2462) = 14x$$

 $2x - 32 + 12x - 9848 = 14x$
 $14x - 9880 = 14x$
 $-9880 \neq 0$