Transitive subgroups of primitive groups

Hongyi Huang

Finite Groups, Fusion Systems and Applications

Mathematisches Forschungsinstitut Oberwolfach

20 March 2025

Group factorisations

Let G be a finite group and $H, K \leq G$.

Facts.

• $G = HK \iff K$ is **transitive** on G/H.

Group factorisations

Let G be a finite group and $H, K \leq G$.

Facts.

- $G = HK \iff K$ is **transitive** on G/H.
- G = HK and $H \cap K = 1 \iff K$ is regular on G/H.

Group factorisations

Let G be a finite group and $H, K \leq G$.

Facts.

- $G = HK \iff K$ is **transitive** on G/H.
- G = HK and $H \cap K = 1 \iff K$ is regular on G/H.

The expression G = HK is called a **factorisation** of G.

Factorisations of almost simple groups (thanks Cheryl!)

Theorem. The factorisations of almost simple groups are classified.

Contributed earlier by Giudici, Liebeck, Praeger, Saxl...

Recent advances:

• *H* or *K* has at least two insoluble composition factors:

Li & Xia, 2019, JAIg

• Both *H* and *K* are insoluble (for classical groups):

Li, Wang & Xia, 2024, arXiv (102 pages)

• At least one of *H* and *K* is soluble:

Li & Xia, 2022, AMS Memoirs

Burness & Li, 2021, Adv

Feng, Li, Li, Wang, Xia & Zou, 2024, arXiv (final step)

A permutation group G is called **primitive** if G_{α} is a maximal subgroup.

Main theme. Classify the transitive subgroups of primitive groups.

A permutation group G is called **primitive** if G_{α} is a maximal subgroup.

Main theme. Classify the transitive subgroups of primitive groups.

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

- Affine (HA)
- Almost simple (AS) √
- Diagonal type (HS & SD)
- Product type (HC, CD & PA)
- Twisted wreath products (TW)

A permutation group G is called **primitive** if G_{α} is a maximal subgroup.

Main theme. Classify the transitive subgroups of primitive groups.

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

- Affine (HA)
- Almost simple (AS) √
- Diagonal type (HS & SD)
- Product type (HC, CD & PA) (ask Barbara, Cheryl and Michael)
- Twisted wreath products (TW)

A permutation group G is called **primitive** if G_{α} is a maximal subgroup.

Main theme. Classify the transitive subgroups of primitive groups.

The O'Nan-Scott theorem divides finite primitive groups into 5 types.

- Affine (HA)
- Almost simple (AS) √
- Diagonal type (HS & SD)
- Product type (HC, CD & PA) (ask Barbara, Cheryl and Michael)
- Twisted wreath products (TW)

Problem. Classify the **regular** subgroups and the **soluble** transitive subgroups of primitive groups of **diagonal type**, up to conjugacy.

Let T be a non-abelian finite simple group and let

$$G = Hol(T) = T: Aut(T) = T^2. Out(T)$$

be the **holomorph** of T. So $G \leq \text{Sym}(T)$ is primitive.

Let T be a non-abelian finite simple group and let

$$G = Hol(T) = T: Aut(T) = T^2. Out(T)$$

be the **holomorph** of T. So $G \leq \text{Sym}(T)$ is primitive.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \leqslant Aut(T)$$
.

Let T be a non-abelian finite simple group and let

$$G = Hol(T) = T: Aut(T) = T^2. Out(T)$$

be the **holomorph** of T. So $G \leq \text{Sym}(T)$ is primitive.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \leqslant Aut(T)$$
.

Example

 $T=A_{q+1}$, $B\cong (A_{q-2} imes \mathsf{PSL}_2(q)).2$ associated to $S_{q+1}=S_{q-2}\,\mathsf{PGL}_2(q).$

Let T be a non-abelian finite simple group and let

$$G = Hol(T) = T: Aut(T) = T^2. Out(T)$$

be the **holomorph** of T. So $G \leq Sym(T)$ is primitive.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \triangleleft HK = HT = KT \triangleleft Aut(T)$$
.

Example

$$T=A_{q+1}$$
, $B\cong (A_{q-2} imes \mathsf{PSL}_2(q)).2$ associated to $S_{q+1}=S_{q-2}\,\mathsf{PGL}_2(q).$

Conversely, if T = HK, then there exists a transitive subgroup of G isomorphic to $H \times K$.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$
 (*)

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$
 (*)

If B is soluble, then both H and K are soluble, so (basically) $T = PSL_2(q)$.

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$
 (*)

If B is soluble, then both H and K are soluble, so (basically) $T = PSL_2(q)$.

If B is regular, then there exists $N \leq H$ and $M \leq K$ such that

$$H/N \cong K/M$$
 and $|H:N| = |HK:T||H \cap K|$. $(\star\star)$

Key observation (Liebeck, Praeger & Saxl, 2000).

If B is a transitive subgroup of G, then there exist $H, K \leq \operatorname{Aut}(T)$ isomorphic to some quotient groups of B such that

$$T \leqslant HK = HT = KT \leqslant Aut(T).$$
 (*)

If B is soluble, then both H and K are soluble, so (basically) $T = PSL_2(q)$.

If B is regular, then there exists $N \leqslant H$ and $M \leqslant K$ such that

$$H/N \cong K/M$$
 and $|H:N| = |HK:T||H \cap K|$. $(\star\star)$

It is NOT easy to determine the factorisations satisfying (\star) and $(\star\star)$.

Suppose $T=A_n$ and $L\in\{A_n,S_n\}$. If L=HK then H is transitive on m-subsets and $A_{n-m}\leqslant K\leqslant S_{n-m}\times S_m$, with $1\leqslant m\leqslant 5$.

Suppose $T = A_n$ and $L \in \{A_n, S_n\}$. If L = HK then H is transitive on m-subsets and $A_{n-m} \leq K \leq S_{n-m} \times S_m$, with $1 \leq m \leq 5$.

Example

Assume (\star) and $(\star\star)$, with m=1. Then H is regular on [n], and

- the Sylow 2-subgroups of H are not cyclic $\implies (L, K) = (A_n, A_{n-1})$.
- otherwise $(L, K) = (S_n, S_{n-1})$.

Suppose $T=A_n$ and $L\in\{A_n,S_n\}$. If L=HK then H is transitive on m-subsets and $A_{n-m}\leqslant K\leqslant S_{n-m}\times S_m$, with $1\leqslant m\leqslant 5$.

Example

Assume (\star) and $(\star\star)$, with m=1. Then H is regular on [n], and

- the Sylow 2-subgroups of H are not cyclic $\implies (L, K) = (A_n, A_{n-1})$.
- otherwise $(L, K) = (S_n, S_{n-1})$.

Example

Assume (\star) and $(\star\star)$, with m=3. Then (basically) n=q+1 and

- q even, $L = A_n$, $H = PSL_2(q)$, $K = A_{n-3}$.
- $q \equiv 3 \pmod{4}$, $L = A_n$, $H = PSL_2(q)$, $K = S_{n-3}$.
- $\sqrt{q} \equiv 3 \pmod{4}$, $L = A_n$, $H = PSL_2(q).2_3$, $K \in \{A_{n-3}, S_{n-3}\}$.
- $L = S_n$, $H = PGL_2(q)$, $K = S_{n-3}$.
- $q \equiv 1 \pmod{4}$, $L = S_n$, $H = PGL_2(q)$, $K = A_{n-3} \times S_2$.
- $\sqrt{q} \equiv 1 \pmod{4}$, $L = S_n$, $H = PSL_2(q).2_3$, $K \in \{S_{n-3}, A_{n-3} \times S_2\}$.

Main results on holomorph simple groups

Theorem (H & Wang, 2025+)

For every finite simple group T, the **soluble transitive** subgroups of Hol(T) are determined, up to conjugacy.

Theorem (H & Wang, 2025+)

For every finite simple group T, the **regular** subgroups of Hol(T) are determined, up to conjugacy.

Application: Hopf-Galois structure and skew braces

For a finite group G, TFAE:

- B is isomorphic to a regular subgroup of Hol(G);
- There exists a **Hopf-Galois structure** of type *B* on any Galois *G*-extension.
- $G \cong (X, +)$ and $B \cong (X, \circ)$ for some skew brace $(X, +, \circ)$.

Application: Hopf-Galois structure and skew braces

For a finite group G, TFAE:

- B is isomorphic to a regular subgroup of Hol(G);
- There exists a **Hopf-Galois structure** of type *B* on any Galois *G*-extension.
- $G \cong (X, +)$ and $B \cong (X, \circ)$ for some skew brace $(X, +, \circ)$.

Theorem (H & Wang, 2025+)

The types of Hopf-Galois structures are determined on any Galois extension whose Galois group is finite simple.

Theorem (H & Wang, 2025+)

The skew braces with finite simple additive groups are classified.

Let $k \ge 2$, T be a non-abelian simple group, and let

$$X:=\{(t,\ldots,t):t\in T\}\leqslant T^k.$$

Then $T^k \leq \operatorname{Sym}(\Omega)$ with $\Omega = T^k/X$ of size $|T|^{k-1}$.

Let $k \ge 2$, T be a non-abelian simple group, and let

$$X:=\{(t,\ldots,t):t\in T\}\leqslant T^k.$$

Then $T^k \leq \operatorname{Sym}(\Omega)$ with $\Omega = T^k/X$ of size $|T|^{k-1}$.

A group $G \leq \operatorname{Sym}(\Omega)$ is of **diagonal type** if

$$T^k \triangleleft G \leqslant N_{\operatorname{Sym}(\Omega)}(T^k) \cong T^k.(\operatorname{Out}(T) \times S_k).$$

Let $k \ge 2$, T be a non-abelian simple group, and let

$$X:=\{(t,\ldots,t):t\in T\}\leqslant T^k.$$

Then $T^k \leq \operatorname{Sym}(\Omega)$ with $\Omega = T^k/X$ of size $|T|^{k-1}$.

A group $G \leq \operatorname{Sym}(\Omega)$ is of **diagonal type** if

$$T^k \triangleleft G \leqslant N_{\mathsf{Sym}(\Omega)}(T^k) \cong T^k.(\mathsf{Out}(T) \times S_k).$$

Note. G induces $P_G \leqslant S_k$. And G is **primitive** if and only if

$$P_G$$
 is primitive (SD), or $k = 2$ and $P_G = A_2 = 1$ (HS).

Let $k \ge 2$, T be a non-abelian simple group, and let

$$X := \{(t,\ldots,t) : t \in T\} \leqslant T^k.$$

Then $T^k \leq \operatorname{Sym}(\Omega)$ with $\Omega = T^k/X$ of size $|T|^{k-1}$.

A group $G \leq \operatorname{Sym}(\Omega)$ is of **diagonal type** if

$$T^k \triangleleft G \leqslant N_{\mathsf{Sym}(\Omega)}(T^k) \cong T^k.(\mathsf{Out}(T) \times S_k).$$

Note. G induces $P_G \leqslant S_k$. And G is **primitive** if and only if

$$P_G$$
 is primitive (SD), or $k=2$ and $P_G=A_2=1$ (HS).

Example. $Hol(T) = T^2. Out(T)$.

Suppose $B \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times S_k)$ is transitive.

① Assume B does not contain any simple direct factor of T^k .

Suppose $B \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times S_k)$ is transitive.

1 Assume B does not contain any simple direct factor of T^k .

Liebeck, Praeger & Saxl, 2000: $k \leq 3$ and $B \leq T^k$. Out(T).

Suppose $B \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times S_k)$ is transitive.

1 Assume B does not contain any simple direct factor of T^k .

Liebeck, Praeger & Saxl, 2000: $k \leq 3$ and $B \leq T^k$. Out(T).

Theorem (H & Wang, 2025+)

If B is regular or soluble, then k = 2 and $B \leq Hol(T)$ is determined.

Suppose $B \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times S_k)$ is transitive.

1 Assume B does not contain any simple direct factor of T^k .

Liebeck, Praeger & Saxl, 2000: $k \leq 3$ and $B \leq T^k$. Out(T).

Theorem (H & Wang, 2025+)

If B is regular or soluble, then k = 2 and $B \leq Hol(T)$ is determined.

② Assume $B \leqslant G$ is regular and assume B contains exactly $\ell \geqslant 1$ simple direct factors of T^k .

Suppose $B \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times S_k)$ is transitive.

1 Assume B does not contain any simple direct factor of T^k .

Liebeck, Praeger & Saxl, 2000: $k \leq 3$ and $B \leq T^k$. Out(T).

Theorem (H & Wang, 2025+)

If B is regular or soluble, then k = 2 and $B \leq Hol(T)$ is determined.

② Assume $B \leqslant G$ is regular and assume B contains exactly $\ell \geqslant 1$ simple direct factors of T^k .

Note. If $\ell = k - 1$ then $B \cong T^{k-1}$. So we assume $\ell \leqslant k - 2$.

Suppose $B \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times S_k)$ is transitive.

1 Assume B does not contain any simple direct factor of T^k .

Liebeck, Praeger & Saxl, 2000: $k \leq 3$ and $B \leq T^k$. Out(T).

Theorem (H & Wang, 2025+)

If B is regular or soluble, then k = 2 and $B \leq Hol(T)$ is determined.

② Assume $B \leqslant G$ is regular and assume B contains exactly $\ell \geqslant 1$ simple direct factors of T^k .

Note. If $\ell = k - 1$ then $B \cong T^{k-1}$. So we assume $\ell \leqslant k - 2$.

Morris & Spiga, 2021: $\ell = k - 3$ or k - 2, and $B \leq T^k$. Out(T).

Suppose $B \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times S_k)$ is transitive.

1 Assume B does not contain any simple direct factor of T^k .

Liebeck, Praeger & Saxl, 2000: $k \leq 3$ and $B \leq T^k$. Out(T).

Theorem (H & Wang, 2025+)

If B is regular or soluble, then k = 2 and $B \leq Hol(T)$ is determined.

② Assume $B \leqslant G$ is **regular** and assume B **contains** exactly $\ell \geqslant 1$ simple direct factors of T^k .

Note. If $\ell = k - 1$ then $B \cong T^{k-1}$. So we assume $\ell \leqslant k - 2$.

Morris & Spiga, 2021: $\ell = k - 3$ or k - 2, and $B \leqslant T^k$. Out(T).

Theorem (H & Wang, 2025+)

 $\ell = k - 2$, and B is determined.

Suppose $B \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times S_k)$ is transitive.

1 Assume B does not contain any simple direct factor of T^k .

Liebeck, Praeger & Saxl, 2000: $k \leq 3$ and $B \leq T^k$. Out(T).

Theorem (H & Wang, 2025+)

If B is regular or soluble, then k = 2 and $B \leq Hol(T)$ is determined.

② Assume $B \le G$ is **regular** and assume B **contains** exactly $\ell \ge 1$ simple direct factors of T^k .

Note. If $\ell = k - 1$ then $B \cong T^{k-1}$. So we assume $\ell \leqslant k - 2$.

Morris & Spiga, 2021: $\ell = k - 3$ or k - 2, and $B ≤ T^k$. Out(T).

Theorem (H & Wang, 2025+)

 $\ell = k - 2$, and B is determined.

Example. $B = T^{k-2} \times H \times K$, with $H \times K$ a regular subgroup of Hol(T).

The main result

Theorem (H & Wang, 2025+). The regular and the soluble transitive subgroups of diagonal type groups are determined, up to conjugacy.

Danke schön!