

ALGÈBRE LINEAIRE Module 2 Structure Euclidienne PAD - Notes de cours

S. Rigal, D. Ruiz, et J. C. Satgé

December 5, 2008

Table des Matières

1	Esp	aces e	uclidiens – Orthogonalité				
	1-1	Espac	ces euclidiens				
		1-1.1	Espaces vectoriels normés – Généralités				
		1-1.2	Produit scalaire canonique dans \mathbb{R}^n – Norme euclidienne				
		1-1.3	Produit scalaire canonique dans \mathbb{C}^n				
		1 - 1.4	Produit scalaire sur un espace vectoriel – Espaces euclidiens				
		1 - 1.5	Exemples				
	1-2	Bases	orthonormées – Matrices orthogonales				
		1-2.1	Orthogonalité				
		1-2.2	Bases orthonormées				
		1-2.3	Matrices orthogonales dans $\mathcal{M}_n(\mathbb{R})$				
		1-2.4	Matrices unitaires dans $\mathcal{M}_n(\mathbb{C})$				
	1-3	Procéd	dé d'orthogonalisation de SCHMIDT				
		1-3.1	Introduction par un exemple				
		1 - 3.2	Généralisation				
	1-4	-4 Factorisation QR					
		1-4.1	Définition – Propriétés				
		1-4.2	Application				
2	For	Formes bilinéaires et quadratiques					
	2-1		bilinéaire – Matrice d'une forme bilinéaire				
		2-1.1	Formes bilinéaires				
		2-1.2	Représentation matricielle d'une forme bilinéaire				
		2-1.3	Exemple dans \mathbb{R}^3				
	2-2	Forme	s quadratiques				
		2-2.1	Propriétés				
	2-3	Forme	s quadratiques définies positives				
		2-3.1	Produit scalaire				
		2-3.2	Exemples				
	2-4	Réduc	tion en somme de carrés d'un polynôme homogène de degré 2				
		2-4.1	Exemple				
		2-4.2	Méthode générale				
	2-5	Diago	Méthode générale				
		2-5.1	T v T				

		2 - 5.2	Généralisation	30
	2-6	Diago	nalisation d'une forme quadratique	31
3 Pro		jection	ns et symétries – Premiers problèmes d'optimisation	33
	3-1	Projec	eteurs et symétries	35
			Exemples dans \mathbb{R}^3	35
		3-1.2	Définitions – Propriétés	37
			Projection orthogonale – Projection sur un convexe – Caractérisation	38
	3-2	Résolu	ation de systèmes linéaires surdéterminés	41
v			ximation d'une fonction au sens des moindres carrés	43
			Approximation en moyenne quadratique	43
		3-3.2	Approximation au sens des moindres carrés discrets	44
	3-4	Minim	isation de fonctionnelles quadratiques généralisées	47

Chapitre 2

Formes bilinéaires et quadratiques

Dans ce troisième chapitre vous découvrirez :

- L'étude des formes quadratiques et des formes bilinéaires (Il s'agit d'une extension des notions de produit scalaire)
- Vous étudierez une technique de calcul très utile : réduction des polynômes homogènes de degré 2.
- Une application des notions de diagonalisation aux matrices symètriques et aux endomorphismes symétriques.

2-1 Forme bilinéaire – Matrice d'une forme bilinéaire

2-1.1 Formes bilinéaires

Définition 2-1.1 Formes bilinéaires

Soit E un espace vectoriel réel de dimension finie. On appelle forme bilinéaire sur E, toute application f de $E \times E$ dans \mathbb{R} vérifiant les propriétés suivantes, pour tous vecteurs \mathbf{u} , $\widetilde{\mathbf{u}}$, \mathbf{v} , et $\widetilde{\mathbf{v}}$ de E et tout scalaire λ de \mathbb{R} :

$$f(\mathbf{u} + \widetilde{\mathbf{u}}, \mathbf{v}) = f(\mathbf{u}, \mathbf{v}) + f(\widetilde{\mathbf{u}}, \mathbf{v}) \qquad f(\lambda \mathbf{u}, \mathbf{v}) = \lambda f(\mathbf{u}, \mathbf{v})$$
$$f(\mathbf{u}, \mathbf{v} + \widetilde{\mathbf{v}}) = f(\mathbf{u}, \mathbf{v}) + f(\mathbf{u}, \widetilde{\mathbf{v}}) \qquad f(\mathbf{u}, \lambda \mathbf{v}) = \lambda f(\mathbf{u}, \mathbf{v})$$

f est en fait linéaire par rapport à chacune de ses deux variables.

Définition 2-1.2 Forme bilinéaire symétrique

Soit E un espace vectoriel réel de dimension finie, et soit f une forme bilinéaire sur E. On dit que f est symétrique si, pour tous vecteurs \mathbf{x} et \mathbf{y} de E, on a:

$$f(\mathbf{x}, \mathbf{y}) = f(\mathbf{y}, \mathbf{x})$$
.

2-1.2 Représentation matricielle d'une forme bilinéaire

Soit $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ une base de E. Toute forme bilinéaire f est entièrement déterminée par la connaissance des réels $f(\mathbf{e}_i, \mathbf{e}_j)$, pour tout $1 \leq i, j \leq n$. En effet, soient $\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$ et $\mathbf{y} = \sum_{i=1}^{n} y_i \mathbf{e}_i$ deux vecteurs de E. Par linéarité à gauche, et à

droite, on peut écrire, après développement :

$$f(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j f(\mathbf{e}_i, \mathbf{e}_j).$$

Introduisons alors $\mathbf{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $\mathbf{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$, les vecteurs de \mathbb{R}^n formés des com-

posantes de \mathbf{x} et \mathbf{y} dans la basé \mathcal{B} , et \mathbf{A} la matrice des coefficients $f(\mathbf{e}_i, \mathbf{e}_j)$,

$$\mathbf{A} = \left(\begin{array}{ccc} f(\mathbf{e}_1, \mathbf{e}_1) & \dots & f(\mathbf{e}_1, \mathbf{e}_n) \\ \vdots & \ddots & \vdots \\ f(\mathbf{e}_n, \mathbf{e}_1) & \dots & f(\mathbf{e}_n, \mathbf{e}_n) \end{array} \right).$$

En utilisant ces notations, on peut alors écrire la valeur de $f(\mathbf{x}, \mathbf{y})$ en terme du produit matriciel suivant :

$$f(\mathbf{x}, \mathbf{y}) = \mathbf{X}^T \mathbf{A} \mathbf{Y} .$$

Propriété: Si f est une forme bilinéaire symétrique sur E, alors la matrice associée à f dans une base quelconque de E est symétrique.

2-1.3 Exemple dans \mathbb{R}^3

$$f(\mathbf{x}, \mathbf{y}) = x_1 y_1 + 2x_2 y_2 + 3x_3 y_3 + x_1 y_3 + x_3 y_1 + x_2 y_3$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 0 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

2-2 Formes quadratiques

Définition 2-2.1 Formes quadratiques

On appelle forme quadratique associée à la forme bilinéaire f, l'application q définie de E dans \mathbb{R} par :

$$\forall \mathbf{x} \in E, \ q(\mathbf{x}) = f(\mathbf{x}, \mathbf{x}).$$

Remarques:

 \bullet On a aussi, en utilisant la matrice **A** de f dans une base \mathcal{B} de E:

$$q(\mathbf{x}) = \mathbf{X}^T \mathbf{A} \mathbf{X} \,,$$

où X est le vecteur des coordonnées de x dans la base \mathcal{B} . Ainsi, A représente aussi la matrice de la forme quadratique q dans la base \mathcal{B} .

• Par contre, la représentation matricielle d'une forme quadratique n'est pas unique. En effet, pour une forme quadratique donnée, il existe plusieures formes bilinéaires qui peuvent lui être associées.

Exemple: Dans \mathbb{R}^3 :

$$f(\mathbf{x}, \mathbf{y}) = x_1 y_1 - 2x_2 y_2 + 3x_3 y_3 + x_1 y_3 + x_3 y_1 + 4x_2 y_3 + 4x_3 y_2$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 4 \\ 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}.$$

La forme quadratique associée est

$$q(\mathbf{x}) = x_1^2 - 2x_2^2 + 3x_3^2 + 2x_1x_3 + 8x_2x_3 \quad \text{soit} \quad q(\mathbf{x}) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 1 \\ 0 & -2 & 4 \\ 1 & 4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Mais on a aussi, du point de vue matriciel:

$$q(\mathbf{x}) = (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 2 \\ 0 & -2 & 8 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = (x_1, x_2, x_3) \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 2 & 8 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

Propriétés:

• Pour un vecteur $\mathbf{u} \in E$ donné, $q(\mathbf{u})$ est un polynôme homogène de degré 2. Ainsi, tout polynôme homogène de degré 2 par rapport aux coordonnées d'un vecteur \mathbf{u} de E peut correspondre à une forme quadratique q.

- En outre, à la question "existe-t-il une forme bilinéaire symétrique dont q soit la forme quadratique et si oui, est-elle unique ?", la réponse est "oui".
 - Voici comment procéder : il suffit pour cela d'écrire la matrice $\mathbf{A} = (a_{ij})$ associée à ce polynôme homogène de degré 2 en plaçant, sur la diagonale, les coefficients a_{ii} correspondant aux termes en x_i^2 , et sur les termes hors diagonaux a_{ij} et a_{ji} la moitié des coefficients des termes en $x_i x_j$.
- Enfin, si à une même forme quadratique q, on peut effectivement associer diverses formes bilinéaires f (de matrice associée \mathbf{A}_f dans une base \mathcal{B} fixée), ces formes bilinéaires ont toutes en commun la même partie symétrique :

$$s(\mathbf{u}, \mathbf{v}) = \frac{f(\mathbf{u}, \mathbf{v}) + f(\mathbf{v}, \mathbf{u})}{2}, \quad \text{de matrice associée} \quad \frac{\mathbf{A}_f + \mathbf{A}_f^T}{2} \quad \text{indépendante de } f.$$

Exemple: Dans \mathbb{R}^3 :

$$q(\mathbf{x}) = 5x_1^2 + 12x_2^2 - 6x_3^2 - 8x_2x_3 + 5x_3x_1 - x_2x_1,$$

la forme matricielle symétrique associée étant

$$q(\mathbf{x}) = (x_1, x_2, x_3) \begin{pmatrix} 5 & -1/2 & 5/2 \\ -1/2 & 12 & -4 \\ 5/2 & -4 & -6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

2-2.1 Propriétés

Soit f une forme bilinéaire symétrique sur E, et q la forme quadratique associée. Pour tous vecteurs \mathbf{u} et \mathbf{v} de E et tout scalaire λ , on a :

- $q(\lambda \mathbf{u}) = f(\lambda \mathbf{u}, \lambda \mathbf{u}) = \lambda^2 q(\mathbf{u})$: q n'est pas linéaire.
- $f(\mathbf{u}, \mathbf{v}) = \frac{1}{4} (q(\mathbf{u} + \mathbf{v}) q(\mathbf{u} \mathbf{v})).$
- $f(\mathbf{u}, \mathbf{v}) = \frac{1}{2} (q(\mathbf{u} + \mathbf{v}) q(\mathbf{u}) q(\mathbf{v})).$
- Pour une forme quadratique q donnée, la forme bilinéaire symétrique f qui lui est associée est aussi appelée forme polaire de q.
- On définit deux ensembles : Le noyau de $q:N(q)=\{\mathbf{y}\in E, \forall \mathbf{x}\in E, f(\mathbf{x},\mathbf{y})=0\}$ le cône isotrope : $I(q)=\{\mathbf{x}\in E,\ q(\mathbf{x})=0\}$. Sauf cas particulier, ce n'est pas un espace vectoriel, mais un cône, c'est à dire un sous ensemble de vecteurs C tel que si $x\in C$ alors pour tout scalaire $\lambda,\ \lambda x\in C$.

On a
$$N(q) \subset I(q)$$
.

- q est dite non dégénérée si $N(q) = \{0\}.$
- q est dite définie positive si $\forall \mathbf{x} \in E, q(\mathbf{x}) \geq 0$ et $q(\mathbf{x}) = 0 \Rightarrow \mathbf{x} = \mathbf{0}$.
- En dimension finie : $\dim E = \dim N(q) + rang(q)$ le rang de q est par définition le rang de la matrice de q.

2-3 Formes quadratiques définies positives

2-3.1 Produit scalaire

On rappelle que un **produit scalaire** sur un \mathbb{R} -espace vectoriel E est une forme **bilinéaire**, **symétrique**, **et définie positive**. La définie positivité d'une forme bilinéaire f sur E correspond en fait à la définie positivité de sa forme quadratique, à savoir :

$$\forall \mathbf{u} \in E, \ q(\mathbf{u}) = f(\mathbf{u}, \mathbf{u}) \ge 0 \quad \text{et} \quad q(\mathbf{u}) = f(\mathbf{u}, \mathbf{u}) = 0 \Leftrightarrow \mathbf{u} = \mathbf{0}.$$

Ainsi, sur un même espace vectoriel E, à toute forme quadratique q définie positive, on peut associer un produit scalaire sur E en considérant la forme bilinéaire symétrique f associée à q (la forme polaire de q). Pour un tel un produit scalaire f, $f(\mathbf{u}, \mathbf{v})$ pourra aussi aussi être noté $\langle \mathbf{u}, \mathbf{v} \rangle$.

Proposition 2-3.1 Soit E un \mathbb{R} -espace vectoriel de dimension finie, et soit q une forme quadratique definie positive sur E. Alors, la forme polaire de q, qui est une forme bilinéaire symétrique (ou à symétrie hermitienne si le corps de référence est \mathbb{C}) définie postive sur E, constitue un produit scalaire sur E, et pour la norme associée, E est un espace EUCLIDIEN.

Remarques:

- Une façon de vérifier la définie positivité d'une forme quadratique q donnée consiste à la décomposer en une somme de carrés de termes du premier degré.
- Une autre façon de vérifier la définie positivité d'une forme quadratique q consiste à rechercher les valeurs propres de la matrice symétrique représentant q et à vérifier qu'elles sont bien toutes positives strictement.

2-3.2 Exemples

1. Dans \mathbb{R}^3 , soit la forme quadratique q définie par

$$q(\mathbf{u}) = x^2 + 6xy + 4yz + 14y^2 + z^2,$$

avec $\mathbf{u}=\begin{pmatrix}x\\y\\z\end{pmatrix}$. Voyons si q est définie positive. Pour ce faire, décomposons q en somme de trois carrés dans $\mathbb R$:

$$\begin{split} q(\mathbf{u}) &= x^2 + 6xy + 4yz + 14y^2 + z^2 \\ &= (x+3y)^2 - 9y^2 + 4yz + 14y^2 + z^2 = (x+3y)^2 + 5y^2 + 4yz + z^2 \\ &= (x+3y)^2 + 5(y + \frac{2}{5}z)^2 - \frac{4}{5}z^2 + z^2 = (x+3y)^2 + 5(y + \frac{2}{5}z)^2 + \frac{1}{5}z^2 \,. \end{split}$$

Cette somme de carrés dans \mathbb{R} est positive, donc la forme quadratique q est semidéfinie positive ($\forall \mathbf{u} \in E, \ q(\mathbf{u}) \geq 0$). De plus :

$$q(\mathbf{u}) = (x+3y)^2 + 5(y+\frac{2}{5}z)^2 + \frac{1}{5}z^2 = 0 \iff \begin{cases} x+3y=0\\ y+\frac{2}{5}z=0\\ z=0 \end{cases}$$

$$\Leftrightarrow x=y=z=0$$

$$\Leftrightarrow \mathbf{u} = \mathbf{0}.$$

Bilan : cette forme quadratique est bien définie positive, et la forme bilinéaire symétrique associée

$$f(\mathbf{x}, \mathbf{y}) = x_1 y_1 + 3x_1 y_2 + 3x_2 y_1 + 2x_2 y_3 + 2x_3 y_2 + 14x_2 y_2 + x_3 y_3$$
$$= (x_1, x_2, x_3) \begin{pmatrix} 1 & 3 & 0 \\ 3 & 14 & 2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

définit bien un produit scalaire sur \mathbb{R}^3 .

2. Soit la forme quadratique $q(\mathbf{x}) = x_1^2 - 2x_2^2 + 2x_2x_1$, avec $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Voyons si

q est définie positive. Un rapide coup d'oeil nous permet de penser que le terme en $-2x_2^2$, terme en carré à coefficient négatif, risque de poser problème quant à la définie positivité, ne serait-ce que parce qu'on peut l'isoler (ou le sélectionner) en prenant $x_1 = 0$. En effet, il est facile de vérifier que q est même **indéfinie**, c'est à dire qu'il existe des vecteurs \mathbf{x} pour lesquels $q(\mathbf{x}) > 0$, et des vecteurs \mathbf{y} pour lesquels $q(\mathbf{y}) < 0$. Par exemple, $(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ étant la base canonique de E,

$$q(\mathbf{e}_1) = 1$$
, et $q(\mathbf{e}_2) = -2$.

2-4 Réduction en somme de carrés d'un polynôme homogène de degré 2

2-4.1 Exemple

Soit l'expression, dans \mathbb{R}^3 , donnée par

$$P = x_1^2 + 2x_2^2 + 3x_3^2 + 2x_1x_3 + x_2x_3.$$

Cette expression est un polynôme ayant trois variable, (x_1, x_2, x_3) , et de degré 2 pour chacune des variables. En effet, Chaque terme (ou monôme) a un degré global égal à 2. On dit alors que le polynôme P est **homogène de degré 2**. Pour fixer les idées, x^3yz^2 , par exemple, est un monôme de degré global 6, et $x^3yz^2 + 3x^2y^2z^2 - xy^4z$ est un polynôme homogène de degré 6.

Mettons l'expression P sous la forme d'une somme de carrés. Pour cela, appliquons la méthode de GAUSS qui consiste à grouper, par exemple, tous les termes en x_1 et à les faire apparaître dans un carré. Ainsi, dans cet exemple, on obtiendrait :

1ère étape : On regroupe les termes en x_1 , $x_1^2 + 2x_1x_3 = (x_1 + x_3)^2 - x_3^2$, et, en remplaçant dans P, on obtient :

$$P = (x_1 + x_3)^2 - x_3^2 + 2x_2^2 + 3x_3^2 + x_2x_3 = (x_1 + x_3)^2 + 2x_2^2 + 2x_3^2 + x_2x_3.$$

2ème étape : On regroupe, cette fois, tous les termes en x_2 que l'on fait apparaître dans un carré : $2x_2^2 + x_2x_3 = 2\left(x_2 + \frac{1}{4}x_3\right)^2 - \frac{1}{8}x_3^2$. D'où

$$P = (x_1 + x_3)^2 + 2\left(x_2 + \frac{1}{4}x_3\right)^2 - \frac{1}{8}x_3^2 + 2x_3^2 = (x_1 + x_3)^2 + 2\left(x_2 + \frac{1}{4}x_3\right)^2 + \frac{15}{8}x_3^2.$$

Comme dans l'élimination de Gauss, il n'y a ici que deux étapes, car il n'y a que trois coordonnées.

Remarques:

• Remarquons que la réduction en somme algébrique de carrés n'est pas unique car, au lieu de partir de x_1 , nous aurions pu partir d'une autre variable. En partant de x_2 , par exemple, nous obtiendrions :

$$P = 2\left(x_2 + \frac{1}{4}x_3\right)^2 + \frac{23}{8}\left(x_3 + \frac{8}{23}x_1\right)^2 + \frac{15}{23}x_1^2.$$

• L'un des intérêts de la réduction en somme de carrés d'un polynôme homogène de degré 2 concerne, comme nous le verrons en exercice, la recherche d'extremums.

2-4.2 Méthode générale

Description

- Si le polynôme P homogène de degré 2 a n variables x_1, x_2, \ldots, x_n , on regroupe tous les termes en x_1 , et on obtient un terme de la forme : $\left(\sum_{i=1}^n a_i x_i\right)^2 + Q$ où Q est un polynôme homogène de degré 2 à n-1 variables x_2, \ldots, x_n .
- Dans le polynôme Q on regroupe alors tous les termes en x_2 , pour obtenir un nouveau terme de la forme : $\left(\sum_{i=2}^n b_i x_i\right)^2 + Q_1$ où Q_1 est un polynôme homogène de degré 2 à n-2 variables x_3, \ldots, x_n , et ainsi de suite ...
- Au final, on obtient une combinaison linéaire de carrés de formes linéaires indépendantes entre elles.

Dans l'exemple précédent, où on avait aboutit à la décomposition en somme de carrés suivante :

$$P = 2\left(x_2 + \frac{1}{4}x_3\right)^2 + \frac{23}{8}\left(x_3 + \frac{8}{23}x_1\right)^2 + \frac{15}{23}x_1^2,$$

les formes linéaires en question sont :

$$(x_1, x_2, x_3) \to x_2 + \frac{1}{4}x_3$$

 $(x_1, x_2, x_3) \to x_3 + \frac{8}{23}x_1$
 $(x_1, x_2, x_3) \to x_1$.

Dans le cas où il n'y a pas de termes en carrés

Exemple: Soit $P = 2x_1x_3 + x_2x_3 + 3x_2x_1$. On utilise alors la relation:

$$xy = \frac{1}{4} \left\{ (x+y)^2 - (x-y)^2 \right\}$$

pour obtenir, par exemple:

$$P = x_3 (2x_1 + x_2) + 3x_2 x_1$$

= $\frac{1}{4} \{ (x_3 + 2x_1 + x_2)^2 - (x_3 - (2x_1 + x_2))^2 \} + \frac{3}{4} \{ (x_1 + x_2)^2 - (x_1 - x_2)^2 \}$.

2-5 Diagonalisation symétriques

des

endomorphismes

2-5.1 Introduction

E étant un espace vectoriel euclidien, le produit scalaire sur E sera noté $\langle \mathbf{u}, \mathbf{v} \rangle$. Soit g un endomorphisme de E dont la matrice est symétrique dans la base canonique de E, $\{\mathbf{e}_1, \ldots, \mathbf{e}_n\}$. Regardons si g est diagonalisable.

Prenons un exemple : Soit $E=\mathbb{R}^3$ muni du produit scalaire canonique, et g de matrice

$$\mathbf{A} = \left(\begin{array}{rrr} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{array} \right).$$

Les valeurs propres de g sont 1 et -2 de multiplicités respectives 1 et 2, les espaces propres associés étant :

$$V_1 = \textit{Vect}\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\} \qquad \text{et} \qquad V_{-2} = \textit{Vect}\left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0 \end{pmatrix} \right\}.$$

et g est donc diagonalisable.

On remarque que ces deux espaces V_1 et V_{-2} sont orthogonaux, c'est à dire tout vecteur de l'un est orthogonal à tout vecteur de l'autre. De plus, on peut choisir une base orthonormée pour écrire la matrice diagonale de g. Il suffit, dans un premier temps, d'orthogonaliser la base de V_{-2} , de dimension 2, en appliquant le procédé de SCHMIDT. On obtient :

$$V_{-2} = \textit{Vect} \left\{ \left(\begin{array}{c} 1\\0\\-1 \end{array} \right), \left(\begin{array}{c} 1/2\\-1\\1/2 \end{array} \right) \right\}.$$

Enfin, il ne reste plus qu'à normaliser les vecteurs $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1/2\\-1\\1/2 \end{pmatrix} \right\}$.

Bilan: Dans la base orthonormée

$$\left\{ \frac{1}{\sqrt{3}} \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \sqrt{\frac{2}{3}} \begin{pmatrix} 1/2\\-1\\1/2 \end{pmatrix} \right\},\,$$

la matrice de l'endomorphisme g s'écrit :

$$\mathbf{A} = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{array} \right).$$

2-5.2 Généralisation

Proposition 2-5.1 On démontre les résultats suivants :

- Tout endomorphisme symétrique d'un espace euclidien est diagonalisable.
- Ses valeurs propres sont réelles.
- Les espaces propres sont deux à deux orthogonaux.
- Il existe toujours une base orthonormée formée de vecteurs propres.

Remarques:

• Il est intéressant de diagonaliser dans une base orthonormée de vecteurs propres car alors, la matrice de passage U de la base canonique initiale à la nouvelle base orthonormée vérifie

$$\mathbf{U}^{-1} = \mathbf{U}^T.$$

• Le fait que, dans un espace euclidien, tout endomorphisme symétrique se diagonalise dans une base orthonormale de vecteurs propres s'écrit en termes d'algèbre linéaire sous la forme :

$$\mathbf{A} = \mathbf{U}^T \mathbf{\Lambda} \mathbf{U}$$
, avec $\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}$ et $\mathbf{\Lambda} = \operatorname{diag}(\lambda_i)_{1 \le i \le n}$.

C'est d'ailleurs l'un des principaux intérêts des notations matricielles, à savoir d'exprimer de manière très concise des propriétés ou des transformations.

2-6 Diagonalisation d'une forme quadratique

On peut associer à toute forme quadratique q sur un \mathbb{R} -espace vectoriel euclidien E une forme bilinéaire symétrique f. De manière équivalente, cette forme bilinéaire symétrique peut être représentée sous forme matricielle par la matrice symétrique \mathbf{A} des coefficients $f(\mathbf{e}_i, \mathbf{e}_j)$, où les \mathbf{e}_k sont les vecteurs de la base canonique par exemple. De manière plus explicite, on a en effet :

$$\forall \mathbf{x}, \mathbf{y} \in E, \ f(\mathbf{x}, \mathbf{y}) = \mathbf{X}^T \mathbf{A} \mathbf{Y},$$

 \mathbf{X} et \mathbf{Y} étant les vecteurs des composantes de \mathbf{x} et \mathbf{y} dans la base $\mathcal{B} = (\mathbf{e}_k)_{1 \leq k \leq n}$.

La matrice \mathbf{A} étant symétrique, elle est diagonalisable dans une base orthonormée de vecteurs propres ($\mathbf{A} = \mathbf{U}^T \mathbf{\Lambda} \mathbf{U}$, avec $\mathbf{U}^T = \mathbf{U}^{-1}$), et dans cette base de vecteurs propres, la matrice \mathbf{A} devenant $\mathbf{\Lambda} = \operatorname{diag}(\lambda_i)_{1 \leq i \leq n}$, la forme quadratique q se transforme alors en somme élémentaire de carrés :

$$\forall \mathbf{x} \in E, \ q(\mathbf{x}) = \mathbf{Z}^T \mathbf{\Lambda} \mathbf{Z} = \sum_{i=1}^n \lambda_i z_i^2,$$

où les z_i , $i=1,\ldots,n$, sont les composantes de ${\bf x}$ dans la base des vecteurs propres :

$$\mathbf{x} = \sum_{i=1}^{n} z_i \mathbf{u}_i \,.$$

Cette dernière égalité peut aussi s'écrire matriciellement sous la forme :

$$\mathbf{X} = \mathbf{U}\mathbf{Z} = \mathbf{U}(\mathbf{U}^T\mathbf{X}),$$

avec $\mathbf{Z} = \mathbf{U}^T \mathbf{X}$ le vecteur des composantes z_i .

Remarques:

- Il est à noter que $z_i = \mathbf{u}_i^T \mathbf{X}$ n'est rien d'autre que le produit scalaire du $i^{\text{ème}}$ vecteur propre de \mathbf{A} (i.e. la $i^{\text{ème}}$ colonne de \mathbf{U}) avec le vecteur \mathbf{x} . Cela correspond au calcul des composantes d'un vecteur dans une base orthonormée donnée, que l'on obtient effectivement par produit scalaire avec les vecteurs de cette base.
- D'un point de vue géométrique, l'écriture de q sous la forme

$$\sum_{i=1}^{n} \lambda_i z_i^2$$

signifie simplement que la forme quadratique q se décompose en paraboles élémentaires, dirigées selon les axes des vecteurs propres \mathbf{u}_i , et de courbures respectives λ_i .

• De manière équivalente, on peut aussi dire que les iso-contours

$$q(\mathbf{x}) = C^{\text{ste}}$$

sont des coniques dans \mathbb{R}^n dont les axes principaux correspondent aux vecteurs propres de la matrice \mathbf{A} associée à la forme quadratique q.

• Cas particulier: si la forme quadratique q est définie positive, alors les valeurs propres λ_i ci-dessus sont nécessairement toutes strictement positives, et les isocontours $q(\mathbf{x}) = C^{\text{ste}}$ correspondent alors à des hyper-ellipsoïdes dans \mathbb{R}^n .

Par exemple, $\lambda_1 z_1^2 + \lambda_2 z_2^2 = C$, avec $\lambda_1 > 0$ et $\lambda_2 > 0$, est l'équation d'une ellipse dans \mathbb{R}^2 , et l'équation

$$\lambda_1 z_1^2 + \lambda_2 z_2^2 + \lambda_3 z_3^2 = C \,,$$

avec $\lambda_{1,2,3}$ strictement positifs, représenterait une surface dans \mathbb{R}^3 du type "ballon de rugby".