RETAIL GAINT SALES FORECASTING

(Time Series Analysis)

Contents

- 1. Business Problem Statement
- 2. Data Understanding and Preparation
- 3. Forecasting Steps
- 4. Additive and Multiplicative Seasonal Decomposition
- 5. Flow Chart for choosing the Right Time Series Method
- 6. Simple Time Series Methods
- 7. Exponential smoothing methods
- 8. ACF and PACF
- 9. Auto Regression Methods
- 10. Conclusion

Business Problem Statement

Global Mart is an online supergiant store that has worldwide operations. This store takes orders and delivers across the globe and deals with all the major product categories — consumer, corporate and home office.

As a sales manager for this store, you have to forecast the sales of the products for the next 6 months, so that you have a proper estimate and can plan your inventory and business processes accordingly.

You want to **forecast the sales** for that **most consistently profitable market-segment only.** This way you know that the market region your company is investing in will be beneficial for the company as the forecasts will be reliable.

Overall, we want the **best forecasting method** in the **smoothing** technique **as well as** the **ARIMA** set of techniques.

Data Understanding and Preparation

Data Understanding

- 51290 transactions from 2011 2014.
- Focusing mainly on month and year wise aggregated values of Sales, Profit and Quantity.
- With 3 segments and in 7 market regions.

Data Preparation

- Prepared the aggregated data with 21 market-segments.
- Found the most profitable market segment by calculating Coefficient of Variation.

Forecasting Steps

CoV Value for market segments

- We can see that Lowest CoV is 0.52272
- We can infer that the corresponding Marget Segment is "APAC Consumer"

The most profitable Market Segment is APAC_Consumer

Additive and Multiplicative Seasonal Decomposition

Additive Seasonal Decomposition

Multiplicative Seasonal Decomposition

Flow Chart for choosing the Right Time Series Method

Choosing the Right Time Series Method

Simple Time Series Methods

Exponential smoothing methods

ACF and PACF

Autocorrelation function (ACF)

Partial Autocorrelation function (PACF)

Auto Regression Methods

Auto Regression Methods (Contd..)

ARIMA Method

Conclusion

Thus we can conclude that,

- Holt Winters additive method is the best forecasting method in the smoothing technique.
- SARIMA Seasonal Autoregressive Integrated moving average is the best method in ARIMA set of techniques.

Since our data had trend and seasonal component and it is well captured and forecasted by these two methods. Also these two methods gave us the **least RMSE** and **MAPE** values.

Method	RMSE	MAPE
Naive method	12355.97	17.47
Simple average method	24146.06	34.34
Simple moving average forecast	14756.73	15.82
Simple exponential smoothing forecast	14764.97	15.83
Holt's exponential smoothing method	18976.37	34.57
Holt Winters' additive method	9026.50	8.44
Holt Winters' multiplicative method	9976.49	10.12
Autoregressive (AR) method	10985.28	13.56
Moving Average (MA) method	23360.02	33.93
Autoregressive moving average (ARMA) method	22654.33	32.40
Autoregressive integrated moving average (ARIM	22654.33	32.40
(SARIMA) Seasonal autoregressive integrated mo	9616.86	12.88