1	The Transition to Grandparenthood and its Impact on the Big Five Personality
2	Traits and Life Satisfaction
3	Michael D. Krämer ^{1,2} , Manon A. van Scheppingen ³ , William J. Chopik ⁴ , and & David
4	$\mathrm{Richter}^{1,4}$
5	¹ German Institute for Economic Research
6	Germany
7	2 International Max Planck Research School on the Life Course (LIFE)
8	Germany
9	³ Tilburg University
10	Netherlands
1	⁴ Michigan State University
12	USA

 5 Freie Universität Berlin

Germany

13

14

15 Author Note

16

- Michael D. Krämer https://orcid.org/0000-0002-9883-5676, Socio-Economic
- Panel (SOEP), German Institute for Economic Research (DIW Berlin); International Max
- 19 Planck Research School on the Life Course (LIFE), Max Planck Institute for Human
- 20 Development
- Manon A. van Scheppingen, Department of Developmental Psychology, Tilburg
- ²² School of Social and Behavioral Sciences, Tilburg University
- William J. Chopik, Department of Psychology, Michigan State University
- David Richter, Socio-Economic Panel (SOEP), German Institute for Economic
- 25 Research (DIW Berlin); Survey Research Division, Department of Education and
- ²⁶ Psychology, Freie Universität Berlin
- The authors made the following contributions. Michael D. Krämer:
- ²⁸ Conceptualization, Data Curation, Formal Analysis, Methodology, Visualization, Writing -
- 29 Original Draft Preparation, Writing Review & Editing; Manon A. van Scheppingen:
- Methodology, Writing Review & Editing; William J. Chopik: Methodology, Writing -
- Review & Editing; David Richter: Supervision, Methodology, Writing Review & Editing.
- ³² Correspondence concerning this article should be addressed to Michael D. Krämer,
- German Institute for Economic Research, Mohrenstr. 58, 10117 Berlin, Germany. E-mail:
- 34 mkraemer@diw.de

35 Abstract

36 abc

Keywords: grandparenthood, Big Five, life satisfaction, development, propensity

38 score matching

Word count: abc

The Transition to Grandparenthood and its Impact on the Big Five Personality Traits and Life Satisfaction

Becoming a grandparent is a pivotal life event for many people in midlife or old age 42 (Infurna et al., 2020). At the same time, there is considerable heterogeneity in how 43 intensely grandparents are involved in their grandchildren's lives and care (Meyer & Kandic, 2017). In the context of an aging demographic, the time that grandparents are alive and in good health during grandparenthood is prolonged compared to previous generations (Leopold & Skopek, 2015; Margolis & Wright, 2017). In addition, an increased share of childcare functions are being fulfilled by grandparents (Hayslip et al., 2019; Pilkauskas et al., 2020). Thus, intergenerational relations have received heightened attention from psychological and sociological research in recent years (Bengtson, 2001; Coall & Hertwig, 2011). With regard to personality development, the transition to 51 grandparenthood has been posited as an important developmental task in old age (Hutteman et al., 2014). However, empirical research into the psychological consequences of becoming a grandparent is sparse. Testing hypotheses derived from neo-socioanalytic theory (Roberts & Wood, 2006) in a prospective matched control-group design (see Luhmann et al., 2014), we investigate whether the transition to grandparenthood affects the Big Five personality traits and life satisfaction using data from two nationally representative panel studies.

Personality Development in Middle Adulthood and Old Age

The life span perspective characterizes aging as a lifelong process of development and adaptation (Baltes et al., 2006). In accordance with this perspective, research has found personality traits to be subject to change throughout the entire life span (Costa et al., 2019; Graham et al., 2020; Specht, 2017; Specht et al., 2014; for recent reviews, see Bleidorn et al., 2021; Roberts & Yoon, 2021). Although a major portion of personality development takes place in adolescence and emerging adulthood (Bleidorn & Schwaba,

2017; Schwaba & Bleidorn, 2018), evidence has accumulated that personality traits also undergo changes in middle and old adulthood (e.g., Allemand et al., 2008; Damian et al., 67 2019; Kandler et al., 2015; Lucas & Donnellan, 2011; Mõttus et al., 2012; Mueller et al., 2016; Wagner et al., 2016; for a review, see Specht, 2017). 69 Here, we examine the Big Five personality traits—agreeableness, conscientiousness, 70 extraversion, neuroticism, and openness to experiences—which constitute a broad 71 categorization of universal patterns of thought, affect, and behavior (John et al., 2008). 72 While the policy relevance of the Big Five personality traits has recently been emphasized 73 (Bleidorn et al., 2019)—especially because of their predictive power regarding many 74 important life outcomes (Ozer & Benet-Martínez, 2005; Roberts et al., 2007; Soto, 2021, 2019), we acknowledge that there are other viable taxonomies of personality (Ashton & 76 Lee, 2007, 2020) and other levels of breadth and scope that could add valuable insights to personality development in middle adulthood and old age (Mõttus et al., 2017; Mõttus & Rozgonjuk, 2021). Changes over time in the Big Five occur both in mean trait levels (i.e., mean-level 80 change; Roberts et al., 2006) and in the relative ordering of people to each other on trait 81 dimensions (i.e., rank-order stability; Anusic & Schimmack, 2016; Roberts & DelVecchio, 2000). No observed changes in mean trait levels do not necessarily mean that individual trait levels are stable over time, and perfect rank-order stability does not preclude 84 mean-level changes. Mean-level changes in middle adulthood (ca. 30–60 years old; 85 Hutteman et al., 2014) are typically characterized in terms of greater maturity as evidenced by increased agreeableness and conscientiousness, and decreased neuroticism 87 (Damian et al., 2019; Roberts et al., 2006). In old age (ca. 60 years and older; Hutteman et al., 2014), research is generally more sparse but there is some evidence for a reversal of the maturity effect, especially following retirement (sometimes termed la dolce vita effect; Asselmann & Specht, 2021; Marsh et al., 2013; cf. Schwaba & Bleidorn, 2019) and at the 91 end of life in ill health (Wagner et al., 2016).

In terms of rank-order stability, some prior studies have shown support for an 93 inverted U-shape trajectory (Ardelt, 2000; Lucas & Donnellan, 2011; Specht et al., 2011; Wortman et al., 2012): Rank-order stability rises until reaching a plateau in midlife, and 95 decreases, again, in old age. However, evidence is mixed whether rank-order stability 96 actually decreases again in old age (see Costa et al., 2019). Nonetheless, the historical view 97 that personality is stable, or "set like plaster" (Specht, 2017, p. 64) after one reaches adulthood (or leaves emerging adulthood behind: Bleidorn & Schwaba, 2017) can largely be abandoned (Specht et al., 2014). 100 Theories explaining the mechanisms of personality development in middle 101 adulthood and old age emphasize both genetic influences and life experiences as 102 interdependent sources of stability and change (Specht et al., 2014; Wagner et al., 2020). In 103 a behavior-genetic twin study, Kandler et al. (2015) found that non-shared environmental 104 factors were the main source of personality plasticity in old age. Here, we conceptualize the 105 transition to grandparenthood as a life experience that offers the adoption of a new social 106 role according to the social investment principle of neo-socioanalytic theory (Lodi-Smith & 107 Roberts, 2007; Roberts & Wood, 2006). According to the social investment principle, 108 normative life events or transitions such as entering the work force or becoming a parent 109 lead to personality maturation through the adoption of new social roles (Roberts et al., 110 2005). These new roles encourage or compel people to act in a more agreeable, 111 conscientious, and emotionally stable (i.e., less neurotic) way, and the experiences in these 112 roles as well as societal expectations towards them are hypothesized to drive long-term 113 personality development (Lodi-Smith & Roberts, 2007; Wrzus & Roberts, 2017). 114 Conversely, consistent social roles foster personality stability. 115 The paradoxical theory of personality coherence (Caspi & Moffitt, 1993) offers 116 another explanation for personality development through role shifts stating that trait 117 change is more likely whenever people transition into unknown environments where 118

pre-existing behavioral responses are no longer appropriate and societal norms or social

119

expectations give clear indications how to behave instead. On the other hand, stability is 120 favored in environments where no clear guidance how to behave is available. Thus, the 121 finding that age-graded, normative life experiences, such as the transition to 122 grandparenthood, drive personality development would also be in line with the paradoxical 123 theory of personality coherence (see Specht et al., 2014). Compared to the transition to 124 parenthood, however, societal expectations on how grandparents should behave (e.g., 125 "Grandparents should help parents with childcare if needed") are less clearly defined and 126 strongly dependent on the degree of (possible) grandparental investment (Lodi-Smith & 127 Roberts, 2007). Thus, societal expectations and role demands might differ depending on 128 how close grandparents live to their children, the quality of the relationship with their 129 children, and other sociodemographic factors that exert conflicting role demands (Bordone 130 et al., 2017; Lumsdaine & Vermeer, 2015; Silverstein & Marenco, 2001; cf. Muller & Litwin, 2011). In the whole population of first-time grandparents this diversity of role investment might generate pronounced interindividual differences in intraindividual personality change. 133 Empirically, certain life events such as the first romantic relationship (Wagner et al., 134 2015) or the transition from high school to university or the first job (Asselmann & Specht, 135 2021; Lüdtke et al., 2011) have (partly) been found to be accompanied by mean-level 136 increases in line with the social investment principle (for a review, see Bleidorn et al., 137 2018). However, recent evidence regarding the transition to parenthood failed to 138 empirically support the social investment principle (Asselmann & Specht, 2020; van 139 Scheppingen et al., 2016). An analysis of monthly trajectories of the Big Five before and 140 after nine major life events only found limited support for the social investment principle: 141 small increases were found in emotional stability following the transition to employment 142 but not for the other traits or for the other life events theoretically linked to social 143 investment (Denissen et al., 2019). Recently, it has also been emphasized that effects of life 144 events on the Big Five personality trends generally tend to be small and need to be 145 properly analyzed using robust, prospective designs, and appropriate control groups 146

(Bleidorn et al., 2018; Luhmann et al., 2014).

Overall, much remains unknown regarding the environmental factors underlying 148 personality development in middle adulthood and old age. One indication that age-graded, 149 normative life experiences contribute to change following a period of relative stability in 150 midlife is offered by recent research on retirement (Bleidorn & Schwaba, 2018; Schwaba & 151 Bleidorn, 2019). These results were only partly in line with the social investment principle 152 in terms of mean-level changes and displayed substantial individual differences in change 153 trajectories. The authors discuss that as social role "divestment" (Schwaba & Bleidorn, 154 2019, p. 660) retirement functions differently compared to social investment in the classical 155 sense which adds a role. The transition to grandparenthood could represent such an 156 investment into a new role in middle adulthood and old age—given that grandparents have 157 regular contact with their grandchild and actively take part in childcare to some degree 158 (i.e., invest psychologically in the new grandparent role; Lodi-Smith & Roberts, 2007).

Grandparenthood

172

147

The transition to grandparenthood, that is, the birth of the first grandchild, can be 161 described as a time-discrete life event marking the beginning of one's status as a 162 grandparent (Luhmann et al., 2012). In terms of characteristics of major life events 163 (Luhmann et al., 2020), the transition to grandparenthood stands out in that it is 164 externally caused (by one's own children; see also Arpino, Gumà, et al., 2018; Margolis & 165 Verdery, 2019), while at the same time being predictable as soon as one's children reveal 166 their pregnancy or family planning. The transition to grandparenthood has been labeled a countertransition due to this lack of direct control over if and when someone has their first grandchild (Hagestad & Neugarten, 1985; as cited in Arpino, Gumà, et al., 2018). 169 Grandparenthood is also generally positive in valence and emotionally significant—given 170 one maintains a good relationship with their child. 171

Grandparenthood can also be characterized as a developmental task (Hutteman et

al., 2014) mostly associated with the period of (early) old age—although considerable 173 variation in the age at the transition to grandparenthood exists both within and between 174 cultures (Leopold & Skopek, 2015; Skopek & Leopold, 2017). Still, the period where 175 parents on average experience the birth of their first grandchild coincides with the end of 176 (relative) stability in terms of personality development in midlife (Specht, 2017), where 177 retirement, shifting social roles, and initial cognitive and health declines can be disruptive 178 to life circumstances putting personality development into motion (e.g., Mueller et al., 179 2016; Stephan et al., 2014). As a developmental task, grandparenthood is expected to be 180 part of a normative sequence of aging that is subject to societal expectations and values 181 differing across cultures and historical time (Baltes et al., 2006; Hutteman et al., 2014). 182 Mastering developmental tasks (i.e., fulfilling roles and expectations to a high 183 degree) is hypothesized to drive personality development towards maturation similarly to 184 propositions by the social investment principle, that is, leading to higher levels of 185 agreeableness and conscientiousness, and lower levels of neuroticism (Roberts et al., 2005; 186 Roberts & Wood, 2006). In comparison to the transition to parenthood which has been 187 found to be ambivalent in terms of both personality maturation and life satisfaction 188 (Aassve et al., 2021; Johnson & Rodgers, 2006; Krämer & Rodgers, 2020; van Scheppingen 189 et al., 2016), Hutteman et al. (2014) hypothesize that the transition to grandparenthood is 190 generally seen as positive because it (usually) does not impose the stressful demands of 191 daily childcare on grandparents. Grandparental investment in their grandchildren has been 192 discussed as beneficial in terms of the evolutionary, economic, and sociological advantages 193 it provides for the whole intergenerational family structure (Coall et al., 2018; Coall & 194 Hertwig, 2011). 195 While we could not find prior studies investigating development of the Big Five over 196 the transition to grandparenthood, there is some evidence on changes in life satisfaction 197 over the transition to grandparenthood. In cross-sectional studies, the preponderance of 198 evidence suggests that grandparents who provide grandchild care or have close

199

relationships with their older grandchildren have higher life satisfaction (e.g., Mahne & 200 Huxhold, 2014; Triadó et al., 2014). There are a few longitudinal studies, albeit they offer 201 conflicting conclusions: Data from the Survey of Health, Ageing and Retirement in Europe 202 (SHARE) showed that the birth of a grandchild was followed by improvements to quality 203 of life and life satisfaction, but only among women (Tanskanen et al., 2019) and only in 204 first-time grandmothers via their daughters (Di Gessa et al., 2019). Several studies 205 emphasized that grandparents actively involved in childcare experienced larger increases in 206 life satisfaction (Arpino, Bordone, et al., 2018; Danielsbacka et al., 2019; Danielsbacka & 207 Tanskanen, 2016). On the other hand, fixed effects regression models¹ using SHARE data 208 did not find any effects of first-time grandparenthood on life satisfaction regardless of 209 grandparental investment and only minor decreases of grandmothers' depressive symptoms 210 (Sheppard & Monden, 2019). 211

In a similar vein, some prospective studies reported beneficial effects of the
transition to grandparenthood and of grandparental childcare investment on various health
measures, especially in women (Chung & Park, 2018; Condon et al., 2018; Di Gessa et al.,
2016a, 2016b). Again, beneficial effects on self-rated health did not persevere in fixed
effects analyses as reported in Ates (2017) who used longitudinal data from the German
Aging Survey (DEAS).

We are not aware of any study investigating the rank-order stability of traits over
the transition to grandparenthood. The occurrence of other life events has been shown to
be associated with the rank-order stability of personality and well-being, although only for
certain events and traits (e.g., Denissen et al., 2019; Hentschel et al., 2017; Specht et al.,
2011).

¹ Fixed effects regression models exclusively rely on within-person variance (see Brüderl & Ludwig, 2015; McNeish & Kelley, 2019).

3 Current Study

231

232

233

234

In the current study, we revisit the development of life satisfaction across the
transition to grandparenthood. We extend this research to psychological development in a
more general sense by examining the development of Big Five personality traits. Three
research questions motivate the current study which is the first to analyze Big Five
personality development over the transition to grandparenthood:

- 1. What are the effects of the transition to grandparenthood on mean-level trajectories of the Big Five traits and life satisfaction?
 - 2. How large are interindividual differences in intraindividual change for the Big Five traits and life satisfaction over the transition to grandparenthood?
 - 3. How does the transition to grandparenthood affect rank-order stability of the Big Five traits and life satisfaction?

To address these questions, we compare development over the transition to 235 grandparenthood with that of matched participants who do not experience the transition 236 during the study period (Luhmann et al., 2014). This is necessary because pre-existing 237 differences between prospective grandparents and non-grandparents in variables related to 238 the development of the Big Five or life satisfaction introduce confounding bias when 239 estimating the effects of the transition to grandparenthood (VanderWeele et al., 2020). The 240 impact of adjusting (or not adjusting) for pre-existing differences, or background 241 characteristics, has recently been emphasized in the prediction of life outcomes from 242 personality in a mega-analytic framework of ten large panel studies (Beck & Jackson, 2021). Propensity score matching is one technique to account for confounding bias by equating the groups in their estimated propensity to experience the event in question (Thoemmes & Kim, 2011). This propensity is calculated from regressing the so-called treatment variable (i.e., the group variable indicating whether someone experienced the 247 event) on covariates related to the likelihood of experiencing the event and to the 248

outcomes. This approach addresses confounding bias by creating balance between the groups in the covariates used to calculate the propensity score (Stuart, 2010).

We adopt a prospective design that tests the effects of becoming first-time 251 grandparents separately against two propensity-score-matched control groups: first, a 252 matched control group of parents (but not grandparents) with at least one child in 253 reproductive age, and, second, a matched control group of nonparents. Adopting two 254 control groups allows us to disentangle potential effects attributable to becoming a 255 grandparent from effects attributable to being a parent already, thus addressing selection 256 effects into grandparenthood and confounding more comprehensively than previous 257 research. Thereby, we cover the first two of the three causal pathways to not experiencing 258 grandparenthood pointed out by demographic research (Margolis & Verdery, 2019): one's 259 own childlessness, childlessness of one's children, and not living long enough to become a grandparent. Our comparative design also controls for average age-related and historical trends in the Big Five traits and life satisfaction (Luhmann et al., 2014), and enables us to report effects of the transition to grandparenthood unconfounded by instrumentation 263 effects, which describe the tendency of reporting lower well-being scores with each repeated 264 measurement (Baird et al., 2010).² 265

We improve upon previous longitudinal studies utilizing matched control groups

(e.g., Anusic et al., 2014a, 2014b; Yap et al., 2012) in that we performed the matching at a

specific time point preceding the transition to grandparenthood (at least two years

beforehand) and not based on individual survey years. This design choice ensures that the

covariates involved in the matching procedure are not already influenced by the event or

anticipation of it (Greenland, 2003; Rosenbaum, 1984; VanderWeele, 2019; VanderWeele et

al., 2020), thereby reducing the risk of confounding through collider bias (Elwert &

Winship, 2014). Similar approaches in the study of life events have recently been adopted

² Instrumentation effects caused by repeated assessments have only been described for life satisfaction but we assume similar biases exist for certain Big Five items.

(Balbo & Arpino, 2016; Krämer & Rodgers, 2020; van Scheppingen & Leopold, 2020).

Informed by the social investment principle and previous research on personality development in middle adulthood and old age, we preregistered the following hypotheses (prior to data analysis; https://osf.io/a9zpc/):

- H1a: Following the birth of their first grandchild, grandparents increase in agreeableness and conscientiousness, and decrease in neuroticism compared to the matched control groups of parents (but not grandparents) and nonparents. We do not expect the groups to differ in their trajectories of extraversion and openness to experience.
- H1b: Grandparents' post-transition increases in agreeableness and conscientiousness, and decreases in neuroticism are more pronounced among those who provide substantial grandchild care.
- H1c: Grandmothers increase in life satisfaction following the transition to grandparenthood as compared to the matched control groups but grandfathers do not.
- H2: Individual differences in intraindividual change in the Big Five and life satisfaction are larger in the grandparent group than the control groups.
- H3: Compared to the matched control groups, grandparents' rank-order stability of the Big Five and life satisfaction over the transition to grandparenthood is smaller.

Exploratorily, we further probe the moderator performing paid work which could constitute a potential role conflict among grandparents.

294 Methods

295 Samples

278

279

280

281

282

283

284

285

286

287

288

289

290

291

To evaluate these hypotheses, we used data from two population-representative panel studies: the Longitudinal Internet Studies for the Social Sciences (LISS) panel from the Netherlands and the Health and Retirement Study (HRS) from the United States.

The LISS panel is a representative sample of the Dutch population initiated in 2008 299 with data collection still ongoing (Scherpenzeel, 2011; van der Laan, 2009). It is 300 administered by CentERdata (Tilburg University, The Netherlands). Included households 301 are a true probability sample of households drawn from the population register 302 (Scherpenzeel & Das, 2010). While originally roughly half of invited households consented 303 to participate, refreshment samples were drawn in order to oversample previously 304 underrepresented groups using information about response rates and their association with 305 demographic variables (household type, age, ethnicity; see 306 https://www.lissdata.nl/about-panel/sample-and-recruitment/). Data collection was 307 carried out online and participants lacking the necessary technical equipment were 308 outfitted with it. We included yearly assessments from 2008 to 2020 from several different 309 modules (see *Measures*) as well as data on basic demographics which was assessed on a 310 monthly rate. For later coding of covariates from these monthly demographic data we used 311 the first available assessment in each year. 312 The HRS is an ongoing longitudinal population-representative study of older adults 313 in the US (Sonnega et al., 2014) administered by the Survey Research Center (University 314 of Michigan, United States). Initiated in 1992 with a first cohort of individuals aged 51-61 315 and their spouses, the study has since been extended with additional cohorts in the 1990s 316 (see https://hrs.isr.umich.edu/documentation/survey-design/). In addition to the HRS 317 core interview every two years (in-person or as a telephone survey), the study has since 318 2006 included a leave-behind questionnaire covering a broad range of psychosocial topics 319 including the Big Five personality traits and life satisfaction. These topics, however, were 320 only administered every four years starting in 2006 for one half of the sample and in 2008 321 for the other half. We included personality data from 2006 to 2018, all available data for 322 the coding of the transition to grandparenthood from 1996 to 2018, as well as covariate 323 data from 2006 to 2018 including variables drawn from the Imputations File and the 324 Family Data (only available up to 2014).

325

These two panel studies provided the advantage that they contained several waves 326 of personality data as well as information on grandparent status and a broad range of 327 covariates at each wave. While the HRS provided a large sample with a wider age range, 328 the LISS panel was smaller and vounger³ but provided more frequent personality 329 assessments spaced every one to two years. Note that M. van Scheppingen has previously 330 used the LISS panel to analyze correlated changes between life satisfaction and Big Five 331 traits across the lifespan (https://osf.io/3cxuy/). W. Chopik and M. van Scheppingen have 332 previously used the HRS to analyze Big Five traits and relationship-related constructs (van 333 Scheppingen et al., 2019). W. Chopik has additionally used the HRS to analyze mean-level 334 and rank-order changes in Big Five traits in response to be reavement (Chopik, 2018) and 335 other relationship-related or non-Big Five-related constructs (e.g., optimism; Chopik et al., 336 2020). These publications do not overlap with the current study in the central focus of grandparenthood. The present study used de-identified archival data in the public 338 domain, and, thus, it was not necessary to obtain ethical approval from an IRB.

340 Measures

Personality

In the LISS panel, the Big Five personality traits were assessed using the 50-item
version of the IPIP Big-Five Inventory scales (Goldberg, 1992). For each Big Five trait, ten
5-point Likert-scale items were answered (1 = very inaccurate, 2 = moderately inaccurate, 3
= neither inaccurate nor accurate, 4 = moderately accurate, 5 = very accurate). Example
items included "Like order" (conscientiousness), "Sympathize with others' feelings"
(agreeableness), "Worry about things" (neuroticism), "Have a vivid imagination" (openness

³ The reason for the included grandparents from the LISS panel being younger was that grandparenthood questions were part of the *Work and Schooling* module and—for reasons unknown to us—filtered to participants performing paid work. Thus, older, retired first-time grandparents from the LISS panel could not be identified.

⁴ Publications using LISS panel data can be searched at https://www.dataarchive.lissdata.nl/publications/. Publications using HRS data can be searched at https://hrs.isr.umich.edu/publications/biblio/.

to experience), and "Start conversations" (extraversion). At each wave, we took a 348 participant's mean of each subscale as their trait score. Internal consistencies at the time of 349 matching, as indicated by McDonald's ω (McNeish, 2018), averaged $\omega = 0.83$ over all traits 350 ranging from $\omega = 0.77$ (conscientiousness in the parent control group) to $\omega = 0.90$ 351 (extraversion in the nonparent control group). Other studies have shown measurement 352 invariance for these scales across time and age groups, and convergent validity with the Big 353 Five inventory (BFI-2) (Denissen et al., 2020; Schwaba & Bleidorn, 2018). The Big Five 354 (and life satisfaction) were contained in the *Personality* module which was administered 355 yearly but with planned missingness in some years for certain cohorts (see Denissen et al., 356 2019). Thus, there are one to two years between included assessments, given no other 357 sources of missingness. 358 In the HRS, the Midlife Development Inventory (MIDI) scales were administered to measure the Big Five (Lachman & Weaver, 1997). This instrument was constructed for use in large-scale panel studies of adults and consisted of 26 adjectives (five each for 361 conscientiousness, agreeableness, and extraversion, four for neuroticism, and seven for 362 openness to experience). Participants were asked to rate on a 4-point scale how well each 363 item described them (1 = a lot, 2 = some, 3 = a little, 4 = not at all). Example adjectives 364 included "Organized" (conscientiousness), "Sympathetic" (agreeableness), "Worrying" 365 (neuroticism), "Imaginative" (openness to experience), and "Talkative" (extraversion). For 366 better comparability with the LISS panel, we reverse scored all items so that higher values 367 corresponded to higher trait levels and, at each wave, took the mean of each subscale as the 368 trait score. Big Five trait scores showed satisfactory internal consistencies at the time of 360

matching which averaged $\omega = 0.75$ over all traits ranging from $\omega = 0.68$ (conscientiousness

in the nonparent control group) to $\omega = 0.81$ (agreeableness in the nonparent control group).

370

$_{72}$ Life Satisfaction

In both samples, life satisfaction was assessed using the 5-item Satisfaction with Life 373 Scale (SWLS; Diener et al., 1985) which participants answered on a 7-point Likert scale (1 374 = strongly disagree, 2 = somewhat disagree, 3 = slightly disagree, 4 = neither agree or 375 disagree, 5 = slightly agree, 6 = somewhat agree, 7 = strongly agree)⁵. An example item 376 was "I am satisfied with my life". Internal consistency at the time of matching was $\omega =$ 377 0.90 in the LISS panel with the parent control sample ($\omega = 0.88$ with the nonparent 378 control sample), and $\omega = 0.91$ in the HRS with the parent control sample ($\omega = 0.91$ with 379 the nonparent control sample). 380

381 Transition to Grandparenthood

The procedure to obtain information on grandparents' transition to 382 grandparenthood generally followed the same steps in both samples. The items this coding 383 was based on, however, differed slightly: In the LISS panel, participants were asked "Do 384 you have children and/or grandchildren?" with "children", "grandchildren", and "no 385 children or grandchildren" as possible answer categories. This question was part of the Work and Schooling module and filtered to participants performing paid work. In the HRS, all participants were asked for the total number of grandchildren: "Altogether, how many 388 grandchildren do you (or your husband / wife / partner, or your late husband / wife / 389 partner) have? Include as grandchildren any children of your (or your [late] husband's / 390 wife's / partner's) biological, step- or adopted children".6 391 In both samples, we tracked grandparenthood status $(0 = no \ grandchildren, 1 = at)$ 392 least one grandchild) over time. Due to longitudinally inconsistent data in some cases, we 393 included in the grandparent group only participants with exactly one transition from 0 to 1 394 in this grandparenthood status variable, and no transitions backwards (see Fig. SX). We 395

⁵ In the LISS panel, the "somewhat" was omitted and instead of "or" "nor" was used.

⁶ The listing of biological, step-, or adopted children has been added since wave 2006.

marked participants who continually indicated that they had no grandchildren as potential members of the control groups.

Moderators

Based on insights from previous research, we tested three variables as potential 399 moderators of the mean-level trajectories of the Big Five and life satisfaction over the transition to grandparenthood: First, we analyzed whether gender acted as a moderator as 401 indicated by research on life satisfaction (see Tanskanen et al., 2019; Di Gessa et al., 2019). 402 We coded a dummy variable indicating female gender (0 = male, 1 = female). 403 Second, we tested whether performing paid work or not was associated with 404 divergent trajectories of the Big Five and life satisfaction (see Schwaba & Bleidorn, 2019). 405 Since the LISS subsample of grandparents we identified was based exclusively on 406 participants performing paid work, we performed these analyses only in the HRS 407 subsample. This served two purposes: to test how participants involved in the workforce 408 (even if officially retired) differed from those not working, which might shed light on role 409 conflict and have implications for the social investment mechanisms we described earlier. 410 As a robustness check, these moderation tests also allowed us to assess whether potential 411 differences in the main results between the LISS and HRS samples could be accounted for 412 by including performing paid work as a moderator in analyses of the HRS sample. In other 413 words, perhaps the results in the HRS participants performing paid work are similar to 414 those seen in the LISS sample, which had already been conditioned on this variable 415 through filtering in the questionnaire. Third, we examined how involvement in grandchild care moderated trajectories of 417 the Big Five and life satisfaction in grandparents after the transition to grandparenthood 418 (see Arpino, Bordone, et al., 2018; Danielsbacka et al., 2019; Danielsbacka & Tanskanen, 419 2016). We coded a dummy variable (0 = provided less than 100 hours of grandchild care, 1 420 = provided 100 or more hours of grandchild care) as a moderator based on the question 421

"Did you (or your [late] husband / wife / partner) spend 100 or more hours in total since
the last interview / in the last two years taking care of grand- or great grandchildren?".

This information was only available for grandparents in the HRS; in the LISS panel, too
few participants answered follow-up questions on intensity of care to be included in the
analyses (<50 in the final analysis sample).

Procedure Procedure

Drawing on all available data, three main restrictions defined the final analysis 428 samples of grandparents (see Fig. SX for participant flowcharts): First, we identified 429 participants who indicated having grandchildren for the first time during study 430 participation (see Measures; $N_{LISS} = 337$; $N_{HRS} = 3272$, including HRS waves 1996-2004 431 before personality assessments were introduced). Second, we restricted the sample to 432 participants with at least one valid personality assessment (valid in the sense that at least 433 one of the six outcomes was non-missing; $N_{LISS} = 335$; $N_{HRS} = 1702$). Third, we included 434 only participants with both a valid personality assessment before and one after the 435 transition to grandparenthood ($N_{LISS} = 253$; $N_{HRS} = 859$). Lastly, few participants were 436 excluded because of inconsistent or missing information regarding their children⁹ resulting 437 in the final analysis samples of first-time grandparents, $N_{LISS} = 250$ (53.60% female; age at 438 transition to grandparenthood M = 57.94, SD = 4.87) and $N_{HRS} = 846$ (54.85% female; age at transition to grandparenthood M = 61.80, SD = 6.88). To disentangle effects of the transition to grandparenthood from effects of being a

parent, we defined two pools of potential control subjects to be involved in the matching

⁷ Although dichotomization of a continuous construct (hours of care) is not ideal for moderation analysis (MacCallum et al., 2002), there were too many missing values in the variable assessing hours of care continuously (variables *E063).

⁸ For the HRS subsample, we also excluded N=30 grandparents in a previous step who reported unrealistically high numbers of grandchildren (> 10) in their first assessment following the transition to grandparenthood.

⁹ We opted not to use multiple imputation for these child-related variables such as number of children which defined the control groups and were also later used for computing the propensity scores.

procedure: The first pool of potential control subjects comprised parents who had at least 443 one child in reproductive age (defined as $15 \leq age_{firstborn} \leq 65$) but no grandchildren throughout the observation period ($N_{LISS} = 844$ with 3040 longitudinal observations; 445 $N_{HRS} = 1485$ with 2703 longitudinal observations). The second pool of potential matches 446 comprised participants who reported being childless throughout the observation period 447 $(N_{LISS} = 1077 \text{ with } 4337 \text{ longitudinal observations}; N_{HRS} = 1340 \text{ with } 2346 \text{ longitudinal})$ 448 observations). The two control groups were, thus, by definition mutually exclusive. 449 In order to match each grandparent with the control participant who was most 450 similar in terms of the included covariates we utilized propensity score matching. 451

$egin{array}{ccc} Covariates \end{array}$

For propensity score matching, we used a broad set of covariates (VanderWeele et 453 al., 2020) covering participants' demographics (e.g., education), economic situation (e.g., 454 income), and health (e.g., mobility difficulties). We also included the pre-transition 455 outcome variables as covariates—as recommended in the literature (Cook et al., 2020; 456 Hallberg et al., 2018; Steiner et al., 2010; VanderWeele et al., 2020), as well as the panel 457 wave participation count and assessment year in order to control for instrumentation effects 458 and historical trends (e.g., 2008/2009 financial crisis; Baird et al., 2010; Luhmann et al., 459 2014). For matching grandparents with the parent control group we additionally included 460 as covariates variables containing information on fertility and family history (e.g., number 461 of children, age of first three children) which were causally related to the timing of the 462 transition to grandparenthood (i.e., entry into treatment; Arpino, Gumà, et al., 2018; Margolis & Verdery, 2019). Covariate selection has seldom been explicitly discussed in previous longitudinal 465 studies estimating treatment effects of life events (e.g., in matching designs). We see two 466 (in part conflicting) traditions that address covariate selection: First, classical 467 recommendations from psychology argue to include all available variables that are 468

associated with both the treatment assignment process (i.e., selection into treatment) and
the outcome (e.g., Steiner et al., 2010; Stuart, 2010). Second, recommendations from a
structural causal modeling perspective (see Elwert & Winship, 2014; Rohrer, 2018) are
more cautious aiming to avoid pitfalls such as conditioning on a pre-treatment collider
(collider bias) or a mediator (overcontrol bias). Structural causal modeling, however,
requires advanced knowledge of the causal structures underlying all involved variables
(Pearl, 2009).

In selecting covariates, we followed guidelines laid out by VanderWeele et al. (2019; 476 2020) which reconcile both views and offer practical guidance¹⁰ when complete knowledge 477 of the underlying causal structures is unknown: These authors propose a "modified 478 disjunctive cause criterion" (VanderWeele, 2019, p. 218) recommending to select all 479 available covariates which are assumed to be causes of the outcomes, treatment exposure (i.e., the transition to grandparenthood), or both, as well as any proxies for an unmeasured 481 common cause of the outcomes and treatment exposure. To be excluded from this selection are variables assumed to be instrumental variables (i.e., assumed causes of treatment 483 exposure that are unrelated to the outcomes except through the exposure) and collider 484 variables (Elwert & Winship, 2014). Because all covariates we used for matching were 485 measured at least two years before the birth of the grandchild, we judge the risk of 486 introducing collider bias or overcontrol bias by controlling for these covariates to be 487 relatively small. In addition, as mentioned in the *Introduction*, the event transition to 488 grandparenthood is not planned by or under direct control of grandparents which further 489 reduces the risk of bias introduced by controlling for pre-treatment colliders. 490

An overview of the variables we used to compute the propensity scores for matching can be found in the Supplemental Material (see also Tables S5 & S6). Critically, we also provide justification for each covariate on whether we assume it to be causally related to

¹⁰ Practical considerations of covariate selection when using large archival datasets (i.e., with no direct control over data collection) are discussed in VanderWeele et al. (2020).

treatment assignment, the outcomes, or both. We tried to find substantively equivalent covariates in both samples but had to compromise in a few cases (e.g., children's educational level only in HRS vs. children living at home only in LISS).

Estimating propensity scores requires complete covariate data. Therefore, before 497 computing propensity scores, we performed multiple imputations in order to account for 498 missingness in our covariates (Greenland & Finkle, 1995). Using five imputed data sets 499 computed by classification and regression trees (CART; Burgette & Reiter, 2010) in the 500 mice R package (van Buuren & Groothuis-Oudshoorn, 2011), we predicted treatment 501 assignment (i.e., the transition to grandparenthood) five times per observation in logistic 502 regressions with a logit link function. 11 We averaged these five scores per observation to 503 compute the final propensity score to be used for matching (Mitra & Reiter, 2016). We 504 used imputed data only for propensity score computation and not in later analyses because missing data in the outcome variables due to nonresponse was negligible.

$_{\scriptscriptstyle{07}}$ Propensity Score Matching

Propensity score matching was performed in a grandparent's survey year which 508 preceded the year when the transition was first reported by at least two years (aside from 509 that choosing the smallest available gap between matching and transition). This served the 510 purpose to ensure that the covariates used for matching were not affected by the event 511 itself or its anticipation (i.e., when one's child was already pregnant with their first child; 512 Greenland, 2003; Rosenbaum, 1984; VanderWeele et al., 2020). Propensity score matching 513 was performed using the MatchIt R package (Ho et al., 2011) with exact matching on 514 gender combined with Mahalanobis distance matching on the propensity score. In total, 515 four matchings were performed; two per sample (LISS; HRS) and two per control group 516 (parents but not grandparents; nonparents). We matched 1:4 with replacement because of 517

 $^{^{11}}$ In these logistic regressions we included all covariates listed above as predictors except for *female* which was later used for exact matching and health-related covariates in LISS-wave 2014 which were not assessed in that wave.

the relatively small pools of available non-grandparent controls. This meant that each
grandparent was matched with four control observations in each matching procedure, and
that control observations were allowed to be used multiple times for matching (i.e.,
duplicated in the analysis samples¹²). We did not specify a caliper because our goal was to
find matches for all grandparents, and because we achieved satisfactory covariate balance
this way.

We evaluated the matching procedure in terms of covariate balance and, graphically, in terms of overlap of the distributions of the propensity scores and (non-categorical) covariates (Stuart, 2010). Covariate balance as indicated by the standardized difference in means between the grandparent and the controls after matching was satisfactory (see Tables S5 & S6) lying below 0.25 as recommended in the literature (Stuart, 2010), and below 0.10 with few exceptions (Austin, 2011). Graphically, differences between the distributions of the propensity score and the covariates were also small and indicated no missing overlap (see Fig. SX).

After matching, each matched control observation received the same value as their 532 matched grandparent in the time variable describing the temporal relation to treatment, 533 and the control subject's other longitudinal observations were centered around this matched 534 observation. Thereby, we coded a counterfactual transition time frame for each control 535 subject. Due to left- and right-censored longitudinal data (i.e., panel entry or attrition), we 536 restricted the final analysis samples to six years before and six years after the transition as 537 shown in Table S2. We analyzed unbalanced panel data where not every participant 538 provided all person-year observations. The final LISS analysis samples, thus, contained 250 530

¹² In the LISS data, 250 grandparent observations were matched with 1000 control observations (matching with replacement); these control observations corresponded to 523 unique person-year observations stemming from 270 unique participants for the parent control group, and to 464 unique person-year observations stemming from 189 unique participants for the nonparent control group. In the HRS data, 846 grandparent observations were matched with 3384 control observations (matching with replacement); these control observations corresponded to 1393 unique person-year observations stemming from 982 unique participants for the parent control group, and to 1008 unique person-year observations stemming from 704 unique participants for the nonparent control group.

grandparents with 1368 longitudinal observations, matched with 1000 control subjects with
either 5167 (parent control group) or 5340 longitudinal observations (nonparent control
group). The final HRS analysis samples contained 846 grandparents with 2262 longitudinal
observations, matched with 3384 control subjects with either 8257 (parent control group)
or 8167 longitudinal observations (nonparent control group; see Table S2. In the HRS,
there were a few additional missing values in the outcomes ranging from 18 to 105
longitudinal observations which will be listwise deleted in the respective analyses.

Analytical Strategy

We used R (Version 4.0.4; R Core Team, 2021) and the R-packages lme4 (Version 548 1.1.26; Bates et al., 2015), and lmerTest (Version 3.1.3; Kuznetsova et al., 2017) for 549 multilevel modeling, as well as tidyverse (Wickham et al., 2019) for data wrangling, and 550 papaja (Aust & Barth, 2020) for reproducible manuscript production. Additional modeling 551 details and a list of all software we used is provided in the Supplemental Material. Scripts 552 for data wrangling, analyses, and to reproduce this manuscript can be found on the OSF 553 (https://osf.io/75a4r/?view only=ac929a2c41fb4afd9d1a64a3909848d0) and on GitHub 554 ([blinded for review]). In line with Benjamin et al. (2018), we set the α -level for all 555 confirmatory analyses to .005. 556

Our design can be referred to as an interrupted time-series with a "nonequivalent no-treatment control group" (Shadish et al., 2002, p. 182) where treatment, that is, the transition to grandparenthood, is not deliberately manipulated. First, to analyze mean-level changes, we used linear piecewise regression coefficients in multilevel regression models with person-year observations nested within participants and households (Hoffman, 2015). To model change over time in relation to the birth of the first grandchild, we coded three piecewise regression coefficients: a before-slope representing linear change in the years leading up to the transition to grandparenthood, an after-slope representing linear change in the years after the transition, and a shift coefficient shifting the intercept directly after

the transition was first reported, thus representing sudden changes that go beyond changes already modeled by the *after-slope* (see Table S2 for the coding scheme of these coefficients; Hoffman, 2015). Other studies of personality development have recently adopted similar piecewise growth-curve models (e.g., Bleidorn & Schwaba, 2018; Krämer & Rodgers, 2020; Schwaba & Bleidorn, 2019; van Scheppingen & Leopold, 2020).

All effects of the transition to grandparenthood on the Big Five and life satisfaction 571 were modeled as deviations from patterns in the matched control groups by interacting the 572 three piecewise coefficients with the binary treatment variable (0 = control, 1 =573 grandparent). In additional models, we interacted these coefficients with the binary 574 moderator variables resulting in two- or three-way interactions. To test differences in the 575 growth parameters between two groups in cases where these differences were represented by 576 multiple fixed-effects coefficients, we defined linear contrasts using the linear Hypothesis command from the car R package (Fox & Weisberg, 2019). All models of mean-level 578 changes were estimated using maximum likelihood and included random intercepts but no 579 random slopes of the piecewise regression coefficients. We included the propensity score as 580 a level-2 covariate for a double-robust approach (Austin, 2017). 581

Second, to assess interindividual differences in intraindividual change in the Big Five 582 and life satisfaction we added random slopes to the models assessing mean-level changes 583 (see Denissen et al., 2019 for a similar approach). In other words, we allowed for differences 584 between individuals in their trajectories of change to be modeled, that is, differences in the 585 before-slope, after-slope, and shift coefficients. Because multiple simultaneous random 586 slopes are often not computationally feasible, we added random slopes one at a time and 587 used likelihood ratio test to determine whether the addition of the respective random slope 588 led to a significant improvement in model fit. We plotted distributions of random slopes 580 (for a similar approach, see Denissen et al., 2019; Doré & Bolger, 2018). To statistically 590 test differences in the random slope variance between the grandparent group and each 591 control group, we respecified the multilevel models as heterogeneous variance models using 592

the *nlme* R package (Pinheiro et al., 2021), which allows for separate random slope
variances to be estimated in the grandparent group and the control group within the same
model. Model fit of these heterogeneous variance models was compared to the
corresponding models with a homogeneous (single) random slope variance via likelihood
ratio tests. This was also done separately for the parent and nonparent control groups.

Third, to examine rank-order stability in the Big Five and life satisfaction over the 598 transition to grandparenthood, we computed the test-retest correlation of measurements 590 prior to the transition to grandparenthood (at the time of matching) with the first 600 available measurement after the transition. To test the difference in test-retest stability 601 between grandparents and either of the control groups, we then entered the pre-treatment 602 measure as well as the treatment variable (0 = control, 1 = grandparent) and their 603 interaction into multiple regression models predicting the Big Five and life satisfaction. These interactions test for significant differences in the test-retest stability between those who experienced the transition to grandparenthood and those who did not (for a similar 606 approach, see Denissen et al., 2019; McCrae, 1993).

Results

Descriptive Results

Means and standard deviations of the Big Five and life satisfaction over the
analyzed time points are presented in Tables S3 and S4. In both the LISS and the HRS, all
six outcomes display marked stability over time. Standard deviations for life satisfaction
are considerably larger than those of the Big Five. Intra-class correlations (see Table S1)
show that for the Big Five large portions of the total variance could be explained by
nesting in participants (median = 0.75), while nesting in households only accounted for
minor portions (median = 0.03). For outcome—subsample combinations with an ICC_{hid} below .05 we omitted the household nesting factor from all models because this frequently
lead to computational errors—a small deviation from our preregistration. For life

satisfaction the nesting in households accounted for slightly larger portions of the total variance (median = 0.36) than nesting in participants (median = 0.32). For all outcomes, the proportion of variance due to within-person factors was relatively low (median = 0.22).

622 Mean-Level Changes

623 Agreeableness

In the basic models (see Tables S7 & S8 and Figure S1), grandparents in the LISS 624 increased slightly in agreeableness in the years after the transition to grandparenthood as 625 compared to the parent controls, $\hat{\gamma}_{21} = 0.02$, 95% CI [0.01, 0.03], p = .003. However, this 626 effect was quite small in magnitude and not significant when compared against the 627 nonparent controls, or against either control sample in the HRS sample (suggestive evidence 628 in the HRS nonparents: $\hat{\gamma}_{21} = 0.02$, 95% CI [0.01, 0.04], p = .006). The models including 629 the gender interaction (see Tables S9 & S10 and Figure S1) suggest that this difference was 630 due to grandfathers' post-transition increases in agreeableness as compared to parent 631 (LISS: $\hat{\gamma}_{21} = 0.03, 95\%$ CI [0.01, 0.05], p < .001; HRS: $\hat{\gamma}_{21} = 0.04, 95\%$ CI [0.01, 0.06], p = 0.04632 .003) and nonparent controls (HRS: $\hat{\gamma}_{21} = 0.03$, 95% CI [0.01, 0.05], p = .004). 633 There is only suggestive evidence for a moderation by paid work (see Tables S11 & 634 S12 and Figure S2): non-working grandparents increased more in agreeableness than 635 working grandparents in anticipation of the transition to grandparenthood (difference in 636 before parameter; parents: $[\hat{\gamma}_{12} + \hat{\gamma}_{13}] = -0.07, 95\%$ CI [-0.12, -0.01], p = .013; nonparents: 637 $[\hat{\gamma}_{12} + \hat{\gamma}_{13}] = -0.07, 95\%$ CI [-0.12, -0.02], p = .009). Grandparents providing substantial grandchild care increased in agreeableness after the transition to grandparenthood as compared to matched nonparent controls (difference in after parameter: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.04$, 95% CI [0.01, 0.06], p = .002; suggestive evidence in the parent sample: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.04$, 641 95% CI [0.01, 0.06], p = .006; see Tables S13 & S14 and Figure S3). Again, the effects are 642 very small and the differences between caring and non-caring grandparents are not 643 significant in either sample (see Table S14).

645 Conscientiousness

646

slight post-transition increase in the grandparents as compared to the controls in the HRS 647 (parents: $\hat{\gamma}_{21} = 0.02$, 95% CI [0.01, 0.04], p = .002; nonparents: $\hat{\gamma}_{21} = 0.02$, 95% CI 648 [0.01, 0.04], p = .003; suggestive evidence in the LISS parent sample: $\hat{\gamma}_{21} = 0.02$, 95% CI 649 [0.00, 0.03], p = .006). Grandparents' conscientiousness trajectories were not significantly 650 moderated by gender (see Tables S17 & S18 and Figure S4). 651 However, there were significant differences depending on grandparents' work status 652 (see Tables S19 & S20 and Figure S5): non-working grandparents saw more pronounced 653 increases in conscientiousness in the years before the transition to grandparenthood 654 compared to non-working parent, $\hat{\gamma}_{11} = 0.08$, 95% CI [0.04, 0.13], p < .001, and nonparent 655 controls, $\hat{\gamma}_{11} = 0.07$, 95% CI [0.03, 0.12], p = .002, and compared to working grandparents 656 (difference in *before* parameter; parents: $[\hat{\gamma}_{12} + \hat{\gamma}_{13}] = -0.08, 95\%$ CI [-0.13, -0.03], p = .002;657 nonparents: $[\hat{\gamma}_{12}$ + $\,\hat{\gamma}_{13}]$ = -0.08, 95% CI [-0.12, -0.03], p = .001). There is suggestive evidence that grandparents who provided substantial grandchild care increased more strongly in conscientiousness after the transition compared to grandparents who did not (difference in after parameter; parents: $[\hat{\gamma}_{12} + \hat{\gamma}_{13}] = 0.03, 95\%$ CI [0.00, 0.06], p = .034; 661 nonparents: $[\hat{\gamma}_{12} + \hat{\gamma}_{13}] = 0.03, 95\%$ CI [0.00, 0.06], p = .022; see Tables S21 & S22 and Figure S6). 663

For conscientiousness (see Tables S15 & S16 and Figure S4), there is evidence for a

$_{ t 64}$ Extraversion

The trajectories of grandparents' extraversion closely follow those of the matched controls. There are no significant effects indicating differences between grandparents and controls in the basic models (see Tables S23 & S24 and Figure S7), the models including the gender interaction (see Tables S25 & S26 and Figure S7), or the models of moderation by paid work (see Tables S27 & S28 and Figure S8). In the analysis of moderation by grandchild care (see Tables S29 & S30 and Figure S9) it can be seen that compared to

matched parent controls caring grandparents increased slightly more strongly in extraversion after the transition to grandparenthood (difference in *after* parameter: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.04$, 95% CI [0.02, 0.07], p = .001; suggestive evidence in the nonparent sample: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.04$, 95% CI [0.01, 0.06], p = .007).

Neuroticism

The basic models for neuroticism (see Tables S31 & S32 and Figure S10) only show 676 minor differences between grandparents and matched controls. Compared to the parent 677 controls, grandparents in the HRS shifted slightly downward in their neuroticism 678 immediately after the transition to grandparenthood (difference in shift parameter: $[\hat{\gamma}_{21} +$ 679 $\hat{\gamma}_{31}]=$ -0.08, 95% CI [-0.12, -0.03], p< .001). However, this was not the case in the three 680 other samples (HRS nonparents, LISS parents, and LISS nonparents). Further, in the HRS 681 there is suggestive evidence that grandparents increased in neuroticism before the 682 transition to grandparenthood compared to the nonparent controls, $\hat{\gamma}_{11} = 0.04, 95\%$ CI 683 [0.01, 0.07], p = .016. The models including the gender interaction (see Tables S33 & S34 684 and Figure S10) only show one significant effect in the comparison of grandparents and 685 controls: In the HRS, grandfathers, as compared to male parent controls, shifted 686 downwards in neuroticism in the year immediately after the transition to grandparenthood 687 (difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.16, 95\%$ CI [-0.22, -0.09], p < .001;688 suggestive evidence in the nonparent sample: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] =$ -0.07, 95% CI [-0.14, -0.01], p =.024). There is also suggestive evidence that grandfathers in the HRS increased more strongly in neuroticism before the transition than the male controls (parent controls: $\hat{\gamma}_{11}=0.06,\,95\%$ CI [0.01, 0.10], p=.024; nonparent controls: $\hat{\gamma}_{11}=0.06,\,95\%$ CI [0.02, 0.11], p = .007). Thus, effects present in the basic models seem to be mostly due to 693 differences in the grandfathers (vs. male controls). 694 Grandparents' trajectories of neuroticism as compared to the controls were 695 significantly moderated by paid work (see Tables S35 & S36 and Figure S11): Compared to 696

working nonparent controls, working grandparents increased more strongly in neuroticism 697 in the years before the transition to grandparenthood (difference in before parameter: $\hat{\gamma}_{11}$ 698 + $\hat{\gamma}_{13}$] = 0.06, 95% CI [0.03, 0.10], p < .001; suggestive evidence in the parent sample: $[\hat{\gamma}_{11}]$ 699 $+ \hat{\gamma}_{13}$] = 0.05, 95% CI [0.01, 0.08], p = .015). At the first post-transition assessment, 700 working grandparents shifted downward in neuroticism compared to working parent 701 controls (difference in shift parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33}] = -0.08, 95\%$ CI [-0.14,702 -0.03], p = .004; suggestive evidence in the nonparent sample: $[\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33}] =$ 703 -0.06, 95% CI [-0.11, 0.00], p = .034). There is suggestive evidence that grandparents 704 providing substantial grandchild care decreased more strongly in neuroticism after the 705 transition to grandparenthood than grandparents who did not (difference in after 706 parameter; parents: $[\hat{\gamma}_{12} + \hat{\gamma}_{13}] = -0.04$, 95% CI [-0.07, 0.00], p = .044; nonparents: $[\hat{\gamma}_{12} + \hat{\gamma}_{13}]$ 707 $\hat{\gamma}_{13}$] = -0.04, 95% CI [-0.07, 0.00], p = .048; see Tables S37 & S38 and Figure S12).

709 Openness

For openness, there is also a high degree of similarity between the grandparents and 710 the matched control subjects in their trajectories based on the basic models (see Tables S39 711 & S40 and Figure S13) and models including the gender interaction (see Tables S41 & S42 712 and Figure S13). Grandparents in the HRS shifted downwards in openness in the first 713 assessment after the transition to grandparenthood compared to the parent controls 714 (difference in shift parameter: $[\hat{\gamma}_{21}+\hat{\gamma}_{31}]=$ -0.05, 95% CI [-0.09, -0.02], p= .004; suggestive 715 evidence in the nonparent sample: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.04, 95\%$ CI [-0.07, 0.00], p = .039). This 716 effect is due to significant differences between grandfathers and male parent controls in the shift immediately after the transition (difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.11$, 718 95% CI [-0.17, -0.06], p < .001). There is suggestive evidence that grandmothers in the 719 LISS increased more strongly in openness before the transition to grandparenthood than 720 female controls (difference in before parameter; parents: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.02, 95\%$ CI [0.00, 721 0.03], p = .036; nonparents: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.02$, 95% CI [0.00, 0.04], p = .009).

Performing paid work moderated grandparents' trajectories in subtle ways (see 723 Tables S43 & S44 and Figure S14): Non-working grandparents increased more strongly in 724 openness post-transition than non-working controls (parents: $\hat{\gamma}_{21} = 0.05, 95\%$ CI 725 [0.02, 0.07], p < .001; nonparents: $\hat{\gamma}_{21} = 0.04, 95\%$ CI [0.02, 0.06], p < .001). Further, there 726 is suggestive evidence that openness of non-working grandparents shifted downwards 727 directly after the transition compared to non-working controls (difference in shift 728 parameter; parents: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = -0.09, 95\%$ CI [-0.15, -0.02], p = .007; nonparents: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}]$ 729 $\hat{\gamma}_{31}$] = -0.07, 95% CI [-0.13, -0.01], p = .014). However, compared to non-working 730 grandparents, working grandparents shifted upwards in openness directly after the 731 transition (difference in *shift* parameter; parents: $[\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}] = 0.08, 95\%$ CI 732 [0.00, 0.15], p = .038; nonparents: $[\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}] = 0.08, 95\%$ CI [0.01, 0.14], p = .038733 .023) and decreased afterwards (difference in after parameter; parents: $[\hat{\gamma}_{22} + \hat{\gamma}_{23}] = -0.04$, 734 95% CI [-0.07, -0.01], p=.016; nonparents: $[\hat{\gamma}_{22}+\hat{\gamma}_{23}]=-0.04,$ 95% CI [-0.07, -0.01], p=.016735 .007). The analysis of moderation by grandchild care (see Tables S45 & S46 and Figure 736 S15) reveals that grandparents providing substantial grandchild care increased more 737 strongly in openness after the transition to grandparenthood than the matched nonparent 738 controls (difference in *after* parameter: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.04, 95\%$ CI [0.01, 0.06], p = .002; 739 suggestive evidence in the parent sample: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.04, 95\%$ CI [0.01, 0.07], p = .005). 740 At the same time, a look at the plotted trajectories demonstrates that the described 741 moderation effects for openness were all quite small. 742

743 Life Satisfaction

The basic model for life satisfaction (see Tables S47 & S48 and Figure S16) provides suggestive evidence that grandparents in the HRS increased more strongly in their life satisfaction before the transition to grandparenthood than matched parent controls, $\hat{\gamma}_{11} = 0.12, 95\%$ CI [0.03, 0.21], p = .010. Grandparents in the LISS increased more strongly in life satisfaction directly after the transition compared to the nonparent controls

(difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31}] = 0.18, 95\%$ CI [0.06, 0.30], p = .004). There is 749 evidence in the models including the gender interaction (see Tables S49 & S50 and Figure 750 S16) that grandmothers in the LISS increased more strongly in life satisfaction directly 751 post-transition than female nonparent controls (difference in *shift* parameter: $[\hat{\gamma}_{21} + \hat{\gamma}_{31} +$ 752 $\hat{\gamma}_{23} + \hat{\gamma}_{33}$] = 0.24, 95% CI [0.08, 0.41], p = .004). Further, grandmothers in the HRS 753 increased in life satisfaction before the transition to grandparenthood compared to female 754 parent controls (difference in before parameter: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.21, 95\%$ CI [0.09, 0.33], p <755 .001). 756 The models of the moderation by paid work give suggestive evidence that working 757 grandparents increased in life satisfaction before the transition to grandparenthood 758 compared to working parent controls (difference in before parameter: $[\hat{\gamma}_{11} + \hat{\gamma}_{13}] = 0.11$, 759 95% CI [0.00, 0.21], p = .047; see Tables S51 & S52 and Figure S17). There is no evidence for a moderation by grandchild care (see Tables S53 & S54 and Figure S18).

⁷⁶² Interindividual Differences in Change

763

reported previously and models where a random slope variance was estimated, separately 764 for each change parameter. These comparisons showed a substantial amount of 765 interindividual differences in change for all random slopes in all models as indicated by 766 increases in model fit significant at p < .001. 767 Second, we estimated models with heterogeneous random slope variances between 768 the grandparents and each control group in order to test whether interindividual differences in change were significantly larger in the grandparents. Contrary to hypothesis H2, for agreeableness, conscientiousness, and extraversion, interindividual differences in 771 intraindividual change were greater in the control group for all tested effects (see Tables 772 S55, S56, & S57). In the two HRS samples, assuming group heterogeneity in the random 773 slope variances lead to significant improvements in model fit in all model comparisons. In 774

First, we conducted comparisons of model fit between the random-intercept models

the two LISS samples, this was the case for around half the tests.

Interindividual differences in changes in neuroticism before the transition to 776 grandparenthood were significantly greater in the HRS grandparents than the nonparent 777 controls (random slope variance of the before parameter), likelihood ratio = 73.45, p < .001. 778 However, this was not the case in the comparison of grandparents with parent controls in 779 the HRS or either control group in the LISS (see Table S58). The other parameters of 780 change in neuroticism did not differ significantly between groups in their random slope 781 variances or—in the HRS—displayed significantly larger random slope variances in the 782 respective control group. 783

For openness, interindividual differences in changes before the transition to grandparenthood were significantly greater in the LISS grandparents than the nonparent controls (random slope variance of the *before* parameter), *likelihood ratio* = 25.90, p < .001.

Again, this result could not be replicated in the other three samples, and the other parameters of change did either not differ between groups in their random slope variances or had significantly larger random slope variances in the respective control group (see Table S59).

We found partial evidence for larger interindividual differences in grandparents' 791 changes in life satisfaction (see Table S60): In the LISS, grandparents' changes before the 792 transition to grandparenthood varied to a larger extent interindividually compared to the 793 parent controls (random slope variance of the before parameter), likelihood ratio = 41.47, p 794 < .001, and in the HRS compared to the nonparent controls, likelihood ratio = 111.97, p < 795 .001. We found suggestive evidence for larger interindividual differences in grandparents' 796 linear post-transition changes compared to the parent controls (random slope variance of 797 the after parameter), likelihood ratio = 11.74, p = .008, and in sudden shifts directly after 798 the transition was first reported (random slope variance of the *shift* parameter), *likelihood* 790 ratio = 10.00, p = .019. Still, the majority of tests for heterogeneous random slope 800 variance in life satisfaction indicated either non-significant differences or significantly larger 801

802 random slope variances in the control sample.

803 Rank-Order Stability

We computed test-retest correlations for the Big Five and life satisfaction for the 804 matched sample, as well as separately for grandparents only and controls only (see Table 805 S61). In 17 out of 24 comparisons grandparents' test-retest correlation was larger than that 806 of the respective control group. There was only one significant difference between 807 grandparents and matched controls in their rank-order stability, namely the rank-order 808 stability of agreeableness in the LISS which was larger in the grandparents than the 800 matched nonparent controls, p = .005. Further, we found suggestive evidence that 810 rank-order stability in the HRS was larger in the grandparents for extraversion than in 811 either parent, p = .007, or nonparent controls, p = .029, and that for openness it was larger 812 in the grandparents than in the parent controls, p = .015. Overall, there was no evidence 813 in support of hypothesis H3. 814

Discussion

Based on

823

Further avenues / follow-ups (?)

- personality maturation cross-culturally: (Bleidorn et al., 2013; Chopik & Kitayama, 2018)
- other countries with different childcare systems: (Bordone et al., 2017); "in countries with scarce publicly funded daycare services and parental leave grandparental care is often provided on a daily basis"; (Hank & Buber, 2009)
 - facets / nuances (Mõttus & Rozgonjuk, 2021)
- related grandparenthood research
- arrival of grandchild associated with retirement decisions (Lumsdaine & Vermeer, 2015); pers X WB interaction over retirement (Henning et al., 2017);

- Does the Transition to Grandparenthood Deter Gray Divorce? A Test of the 827 Braking Hypothesis (Brown et al., 2021) 828 - prolonged period of grandparenthood? (Margolis & Wright, 2017) 829 - subjective experience of aging (Bordone & Arpino, 2015) 830 grandparent role / grandparental investment 831 - "refutes the central claim of role theory according to which salient roles are more 832 beneficial to the psychological well-being of the individual than are other roles, especially 833 in old age. It also questions the theoretical framework of grandparent role meaning that is 834 commonly cited in the literature" (Muller & Litwin, 2011) 835 -> see also (Condon et al., 2019): First-Time Grandparents' Role Satisfaction and 836 Its Determinants 837 - "Older grandparents tended to provide financial assistance and more strongly 838 identified with the role. When their grandchildren were younger, grandparents tended to 839 interact more with them, share more activities, provide baby-sitting, and receive more 840 symbolic rewards from the grandparent role." (Silverstein & Marenco, 2001) 841 - "maternal grandmothers tend to invest the most in their grandchildren, followed 842 by maternal grandfathers, then paternal grandmothers, with paternal grandfathers investing the least" -> also: call for causally informed designs! (Coall & Hertwig, 2011) -> discusses grandparental role investment from an evolutionary perspective -> see also (Danielsbacka et al., 2011) - factors determining grandparental investment: (Coall et al., 2014) 847 - relation to well-being: (Danielsbacka & Tanskanen, 2016) 848 demographic changes 849 - "Over the last two decades, the share of U.S. children under age 18 who live in a 850 multigenerational household (with a grandparent and parent) has increased dramatically" 851 (Pilkauskas et al., 2020) -> for Germany:"on the basis of the DEAS data, the share of 852

grandparents who take care of their grandchildren increased between 2008 and 2014"

853

```
854 (Mahne & Klaus, 2017)
```

- why is personality important?
- policy relevance of personality (Bleidorn et al., 2019), e.g., health outcomes

 (Turiano et al., 2012), but not really evidence for healthy neuroticism (Turiano et al., 2020)
- mortality & grandparenthood (Christiansen, 2014); moderated by race? (Choi, 2020); but see HRS -> "Grandparenthood overall was unassociated with mortality risk in both women and men" (Ellwardt et al., 2021)
- -> (Hilbrand et al., n.d.): "Survival analyses based on data from the Berlin Aging

 Study revealed that mortality hazards for grandparents who provided non-custodial

 childcare were 37% lower than for grandparents who did not provide childcare and for

 non-grandparents. These associations held after controlling for physical health, age,

 socioeconomic status and various characteristics of the children and grandchildren."

866 Limitations

Despite

• differences in Big Five assessment: HRS adjectives vs. LISS statements

869 Conclusions

870 Our

868

871 Acknowledgements

We thank X for valuable feedback.

References 873

- Aassve, A., Luppi, F., & Mencarini, L. (2021). A first glance into the black box of life 874 satisfaction surrounding childbearing. Journal of Population Research. 875
- https://doi.org/10.1007/s12546-021-09267-z 876
- Allemand, M., Zimprich, D., & Martin, M. (2008). Long-term correlated change in 877 personality traits in old age. Psychology and Aging, 23(3), 545–557. 878
- https://doi.org/10.1037/a0013239 870

- Anusic, I., & Schimmack, U. (2016). Stability and change of personality traits, self-esteem, 880 and well-being: Introducing the meta-analytic stability and change model of retest 881 correlations. Journal of Personality and Social Psychology, 110(5), 766–781. 882 https://doi.org/10.1037/pspp0000066
- Anusic, I., Yap, S., & Lucas, R. E. (2014a). Does personality moderate reaction and 884 adaptation to major life events? Analysis of life satisfaction and affect in an 885 Australian national sample. Journal of Research in Personality, 51, 69–77. 886
- https://doi.org/10.1016/j.jrp.2014.04.009 887
- Anusic, I., Yap, S., & Lucas, R. E. (2014b). Testing set-point theory in a Swiss national 888 sample: Reaction and adaptation to major life events. Social Indicators Research, 889 119(3), 1265–1288. https://doi.org/10.1007/s11205-013-0541-2 890
- Ardelt, M. (2000). Still stable after all these years? Personality stability theory revisited. 891 Social Psychology Quarterly, 63(4), 392-405. https://doi.org/10.2307/2695848 892
- Arpino, B., Bordone, V., & Balbo, N. (2018). Grandparenting, education and subjective 893 well-being of older Europeans. European Journal of Ageing, 15(3), 251–263. 894 https://doi.org/10.1007/s10433-018-0467-2 895
- Arpino, B., Gumà, J., & Julià, A. (2018). Family histories and the demography of 896 grandparenthood. Demographic Research, 39(42), 1105–1150. 897

```
https://doi.org/10.4054/DemRes.2018.39.42
898
   Ashton, M. C., & Lee, K. (2007). Empirical, Theoretical, and Practical Advantages of the
899
           HEXACO Model of Personality Structure. Personality and Social Psychology
900
           Review, 11(2), 150–166. https://doi.org/10.1177/1088868306294907
901
   Ashton, M. C., & Lee, K. (2020). Objections to the HEXACO Model of Personality
902
           Structure and why those Objections Fail. European Journal of Personality, 34(4),
903
           492–510. https://doi.org/10.1002/per.2242
904
   Asselmann, E., & Specht, J. (2021). Personality maturation and personality relaxation:
905
           Differences of the Big Five personality traits in the years around the beginning and
906
          ending of working life. Journal of Personality, n/a(n/a).
907
          https://doi.org/10.1111/jopy.12640
908
   Asselmann, E., & Specht, J. (2020). Testing the Social Investment Principle Around
900
           Childbirth: Little Evidence for Personality Maturation Before and After Becoming
910
          a Parent. European Journal of Personality, n/a(n/a).
911
          https://doi.org/10.1002/per.2269
912
   Ates, M. (2017). Does grandchild care influence grandparents' self-rated health? Evidence
913
          from a fixed effects approach. Social Science & Medicine, 190, 67–74.
914
          https://doi.org/10.1016/j.socscimed.2017.08.021
915
   Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles with R
916
           Markdown. https://github.com/crsh/papaja
   Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects
918
          of confounding in observational studies. Multivariate Behavioral Research, 46(3),
           399–424. https://doi.org/10.1080/00273171.2011.568786
```

Austin, P. C. (2017). Double propensity-score adjustment: A solution to design bias or bias
due to incomplete matching. Statistical Methods in Medical Research, 26(1),

```
923 201–222. https://doi.org/10.1177/0962280214543508
```

- Baird, B. M., Lucas, R. E., & Donnellan, M. B. (2010). Life satisfaction across the lifespan:
- Findings from two nationally representative panel studies. Social Indicators
- 926 Research, 99(2), 183–203. https://doi.org/10.1007/s11205-010-9584-9
- Balbo, N., & Arpino, B. (2016). The role of family orientations in shaping the effect of
- fertility on subjective well-being: A propensity score matching approach.
- 929 Demography, 53(4), 955–978. https://doi.org/10.1007/s13524-016-0480-z
- Baltes, P. B., Lindenberger, U., & Staudinger, U. M. (2006). Life Span Theory in
- Developmental Psychology. In R. M. Lerner & W. Damon (Eds.), Handbook of child
- psychology: Theoretical models of human development (pp. 569-664). John Wiley &
- Sons Inc.
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
- models using lme4. Journal of Statistical Software, 67(1), 1–48.
- 936 https://doi.org/10.18637/jss.v067.i01
- Beck, E. D., & Jackson, J. J. (2021). A Mega-Analysis of Personality Prediction:
- Robustness and Boundary Conditions. Journal of Personality and Social
- Psychology, In Press. https://doi.org/10.31234/osf.io/7pg9b
- 940 Bengtson, V. L. (2001). Beyond the Nuclear Family: The Increasing Importance of
- Multigenerational Bonds. Journal of Marriage and Family, 63(1), 1–16.
- 942 https://doi.org/10.1111/j.1741-3737.2001.00001.x
- Benjamin, D. J., Berger, J. O., Clyde, M., Wolpert, R. L., Johnson, V. E., Johannesson,
- M., Dreber, A., Nosek, B. A., Wagenmakers, E. J., Berk, R., & Brembs, B. (2018).
- Redefine statistical significance. Nature Human Behavior, 2, 6–10.
- 946 https://doi.org/10.1038/s41562-017-0189-z
- Bleidorn, W., Hill, P. L., Back, M. D., Denissen, J. J. A., Hennecke, M., Hopwood, C. J.,

```
Jokela, M., Kandler, C., Lucas, R. E., Luhmann, M., Orth, U., Wagner, J., Wrzus,
948
          C., Zimmermann, J., & Roberts, B. W. (2019). The policy relevance of personality
949
          traits. American Psychologist, 74(9), 1056–1067.
950
          https://doi.org/10.1037/amp0000503
951
   Bleidorn, W., Hopwood, C. J., Back, M. D., Denissen, J. J. A., Hennecke, M., Hill, P. L.,
952
          Jokela, M., Kandler, C., Lucas, R. E., Luhmann, M., Orth, U., Roberts, B. W.,
953
          Wagner, J., Wrzus, C., & Zimmermann, J. (2021). Personality Trait Stability and
954
          Change. Personality Science, 2(1), 1–20. https://doi.org/10.5964/ps.6009
955
   Bleidorn, W., Hopwood, C. J., & Lucas, R. E. (2018). Life events and personality trait
956
          change. Journal of Personality, 86(1), 83–96. https://doi.org/10.1111/jopy.12286
957
   Bleidorn, W., Klimstra, T. A., Denissen, J. J. A., Rentfrow, P. J., Potter, J., & Gosling, S.
958
          D. (2013). Personality Maturation Around the World: A Cross-Cultural
959
          Examination of Social-Investment Theory. Psychological Science, 24 (12),
960
          2530-2540. https://doi.org/10.1177/0956797613498396
961
   Bleidorn, W., & Schwaba, T. (2018). Retirement is associated with change in self-esteem.
962
          Psychology and Aging, 33(4), 586–594. https://doi.org/10.1037/pag0000253
   Bleidorn, W., & Schwaba, T. (2017). Personality development in emerging adulthood. In
          J. Specht (Ed.), Personality Development Across the Lifespan (pp. 39–51).
965
          Academic Press. https://doi.org/10.1016/B978-0-12-804674-6.00004-1
966
   Bordone, V., & Arpino, B. (2015). Do Grandchildren Influence How Old You Feel? Journal
          of Aging and Health, 28(6), 1055–1072. https://doi.org/10.1177/0898264315618920
968
   Bordone, V., Arpino, B., & Aassve, A. (2017). Patterns of grandparental child care across
          Europe: The role of the policy context and working mothers' need. Ageing and
970
          Society, 37(4), 845–873. https://doi.org/10.1017/S0144686X1600009X
```

Brown, S. L., Lin, I.-F., & Mellencamp, K. A. (2021). Does the Transition to

- Grandparenthood Deter Gray Divorce? A Test of the Braking Hypothesis. Social

 Forces, 99(3), 1209–1232. https://doi.org/10.1093/sf/soaa030
- Brüderl, J., & Ludwig, V. (2015). Fixed-Effects Panel Regression (H. Best & C. Wolf,
 Eds.). SAGE.
- Burgette, L. F., & Reiter, J. P. (2010). Multiple Imputation for Missing Data via
 Sequential Regression Trees. American Journal of Epidemiology, 172(9), 1070–1076.
 https://doi.org/10.1093/aje/kwq260
- Caspi, A., & Moffitt, T. E. (1993). When do individual differences matter? A paradoxical theory of personality coherence. *Psychological Inquiry*, 4(4), 247–271. https://doi.org/10.1207/s15327965pli0404 1
- Choi, S.-w. E. (2020). Grandparenting and Mortality: How Does Race-Ethnicity Matter?

 Journal of Health and Social Behavior, 61(1), 96–112.
- 985 https://doi.org/10.1177/0022146520903282
- Chopik, W. J. (2018). Does personality change following spousal bereavement? *Journal of Research in Personality*, 72, 10–21. https://doi.org/10.1016/j.jrp.2016.08.010
- Chopik, W. J., & Kitayama, S. (2018). Personality change across the life span: Insights
 from a cross-cultural, longitudinal study. *Journal of Personality*, 86(3), 508–521.
 https://doi.org/10.1111/jopy.12332
- Chopik, W. J., Oh, J., Kim, E. S., Schwaba, T., Krämer, M. D., Richter, D., & Smith, J. (2020). Changes in optimism and pessimism in response to life events: Evidence from three large panel studies. *Journal of Research in Personality*, 88, 103985. https://doi.org/10.1016/j.jrp.2020.103985
- Christiansen, S. G. (2014). The association between grandparenthood and mortality. *Social*Science & Medicine, 118, 89–96. https://doi.org/10.1016/j.socscimed.2014.07.061
- Chung, S., & Park, A. (2018). The longitudinal effects of grandchild care on depressive

```
symptoms and physical health of grandmothers in South Korea: A latent growth
998
           approach. Aging & Mental Health, 22(12), 1556-1563.
999
           https://doi.org/10.1080/13607863.2017.1376312
1000
    Coall, D. A., & Hertwig, R. (2011). Grandparental Investment: A Relic of the Past or a
1001
           Resource for the Future? Current Directions in Psychological Science, 20(2), 93–98.
1002
           https://doi.org/10.1177/0963721411403269
1003
    Coall, D. A., Hilbrand, S., & Hertwig, R. (2014). Predictors of Grandparental Investment
1004
           Decisions in Contemporary Europe: Biological Relatedness and Beyond. PLOS
1005
           ONE, 9(1), e84082. https://doi.org/10.1371/journal.pone.0084082
1006
    Coall, D. A., Hilbrand, S., Sear, R., & Hertwig, R. (2018). Interdisciplinary perspectives on
           grandparental investment: A journey towards causality. Contemporary Social
1008
           Science, 13(2), 159–174. https://doi.org/10.1080/21582041.2018.1433317
1009
    Condon, J., Luszcz, M., & McKee, I. (2019). First-Time Grandparents' Role Satisfaction
1010
           and Its Determinants. The International Journal of Aging and Human Development,
1011
           Advance Online Publication. https://doi.org/10.1177/0091415019882005
1012
    Condon, J., Luszcz, M., & McKee, I. (2018). The transition to grandparenthood: A
1013
           prospective study of mental health implications. Aging & Mental Health, 22(3),
1014
           336–343. https://doi.org/10.1080/13607863.2016.1248897
1015
    Cook, T. D., Zhu, N., Klein, A., Starkey, P., & Thomas, J. (2020). How much bias results
1016
           if a quasi-experimental design combines local comparison groups, a pretest outcome
1017
           measure and other covariates?: A within study comparison of preschool effects.
1018
           Psychological Methods, Advance Online Publication, 0.
1019
           https://doi.org/10.1037/met0000260
1020
    Costa, P. T., McCrae, R. R., & Löckenhoff, C. E. (2019). Personality Across the Life Span.
1021
           Annual Review of Psychology, 70(1), 423-448.
1022
```

https://doi.org/10.1146/annurev-psych-010418-103244

- Damian, R. I., Spengler, M., Sutu, A., & Roberts, B. W. (2019). Sixteen going on sixty-six:
- A longitudinal study of personality stability and change across 50 years. Journal of
- 1026 Personality and Social Psychology, 117(3), 674–695.
- https://doi.org/10.1037/pspp0000210
- Danielsbacka, M., & Tanskanen, A. O. (2016). The association between grandparental
- investment and grandparents' happiness in Finland. Personal Relationships, 23(4),
- 787–800. https://doi.org/10.1111/pere.12160
- Danielsbacka, M., Tanskanen, A. O., Coall, D. A., & Jokela, M. (2019). Grandparental
- childcare, health and well-being in Europe: A within-individual investigation of
- longitudinal data. Social Science & Medicine, 230, 194–203.
- https://doi.org/10.1016/j.socscimed.2019.03.031
- Danielsbacka, M., Tanskanen, A. O., Jokela, M., & Rotkirch, A. (2011). Grandparental
- 1036 Child Care in Europe: Evidence for Preferential Investment in More Certain Kin.
- Evolutionary Psychology, 9(1), 147470491100900102.
- https://doi.org/10.1177/147470491100900102
- Denissen, J. J. A., Geenen, R., Soto, C. J., John, O. P., & van Aken, M. A. G. (2020). The
- Big Five Inventory2: Replication of Psychometric Properties in a Dutch Adaptation
- and First Evidence for the Discriminant Predictive Validity of the Facet Scales.
- Journal of Personality Assessment, 102(3), 309–324.
- https://doi.org/10.1080/00223891.2018.1539004
- Denissen, J. J. A., Luhmann, M., Chung, J. M., & Bleidorn, W. (2019). Transactions
- between life events and personality traits across the adult lifespan. Journal of
- 1046 Personality and Social Psychology, 116(4), 612–633.
- https://doi.org/10.1037/pspp0000196
- Diener, E., Emmons, R. A., Larsen, R. J., & Griffin, S. (1985). The Satisfaction With Life
- Scale. Journal of Personality Assessment, 49(1), 71–75.

```
https://doi.org/10.1207/s15327752jpa4901 13
1050
    Di Gessa, G., Bordone, V., & Arpino, B. (2019). Becoming a Grandparent and Its Effect
1051
           on Well-Being: The Role of Order of Transitions, Time, and Gender. The Journals
1052
           of Gerontology, Series B: Psychological Sciences and Social Sciences, Advance
1053
           Online Publication. https://doi.org/10.1093/geronb/gbz135
1054
    Di Gessa, G., Glaser, K., & Tinker, A. (2016a). The Health Impact of Intensive and
1055
           Nonintensive Grandchild Care in Europe: New Evidence From SHARE. The
1056
           Journals of Gerontology, Series B: Psychological Sciences and Social Sciences,
1057
           71(5), 867–879. https://doi.org/10.1093/geronb/gbv055
1058
    Di Gessa, G., Glaser, K., & Tinker, A. (2016b). The impact of caring for grandchildren on
1059
           the health of grandparents in Europe: A lifecourse approach. Social Science &
1060
           Medicine, 152, 166–175. https://doi.org/10.1016/j.socscimed.2016.01.041
1061
    Doré, B., & Bolger, N. (2018). Population- and individual-level changes in life satisfaction
1062
           surrounding major life stressors. Social Psychological and Personality Science, 9(7),
1063
           875–884. https://doi.org/10.1177/1948550617727589
1064
    Ellwardt, L., Hank, K., & Mendes de Leon, C. F. (2021). Grandparenthood and risk of
1065
           mortality: Findings from the Health and Retirement Study. Social Science &
1066
           Medicine, 268, 113371. https://doi.org/10.1016/j.socscimed.2020.113371
1067
    Elwert, F., & Winship, C. (2014). Endogenous Selection Bias: The Problem of
1068
           Conditioning on a Collider Variable. Annual Review of Sociology, 40(1), 31–53.
1069
           https://doi.org/10.1146/annurev-soc-071913-043455
1070
    Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Sage.
1071
```

Goldberg, L. R. (1992). The development of markers for the Big-Five factor structure.

Psychological Assessment, 4(1), 26–42. https://doi.org/10.1037/1040-3590.4.1.26

Graham, E. K., Weston, S. J., Gerstorf, D., Yoneda, T. B., Booth, T., Beam, C. R.,

- Petkus, A. J., Drewelies, J., Hall, A. N., Bastarache, E. D., Estabrook, R., Katz, M.
- J., Turiano, N. A., Lindenberger, U., Smith, J., Wagner, G. G., Pedersen, N. L.,
- Allemand, M., Spiro Iii, A., ... Mroczek, D. K. (2020). Trajectories of Big Five
- Personality Traits: A Coordinated Analysis of 16 Longitudinal Samples. European
- Journal of Personality, n/a(n/a). https://doi.org/10.1002/per.2259
- Greenland, S. (2003). Quantifying biases in causal models: Classical confounding vs
- collider-stratification bias. *Epidemiology*, 14(3), 300–306.
- https://doi.org/10.1097/01.EDE.0000042804.12056.6C
- Greenland, S., & Finkle, W. D. (1995). A Critical Look at Methods for Handling Missing
- 1084 Covariates in Epidemiologic Regression Analyses. American Journal of
- 1085 Epidemiology, 142(12), 1255-1264.
- https://doi.org/10.1093/oxfordjournals.aje.a117592
- Hagestad, G. O., & Neugarten, B. L. (1985). Age and the life course. In E. Shanas & R.
- Binstock (Eds.), Handbook of aging and the social sciences. Van Nostrand and
- Reinhold.
- Hallberg, K., Cook, T. D., Steiner, P. M., & Clark, M. H. (2018). Pretest Measures of the
- Study Outcome and the Elimination of Selection Bias: Evidence from Three Within
- Study Comparisons. Prevention Science, 19(3), 274–283.
- https://doi.org/10.1007/s11121-016-0732-6
- Hank, K., & Buber, I. (2009). Grandparents Caring for their Grandchildren: Findings
- From the 2004 Survey of Health, Ageing, and Retirement in Europe. Journal of
- Family Issues, 30(1), 53–73. https://doi.org/10.1177/0192513X08322627
- Hayslip, B., Jr, Fruhauf, C. A., & Dolbin-MacNab, M. L. (2019). Grandparents Raising
- Grandchildren: What Have We Learned Over the Past Decade? The Gerontologist,
- 59(3), e152-e163. https://doi.org/10.1093/geront/gnx106
- Henning, G., Hansson, I., Berg, A. I., Lindwall, M., & Johansson, B. (2017). The role of

```
personality for subjective well-being in the retirement transition Comparing
1101
           variable- and person-oriented models. Personality and Individual Differences, 116,
1102
           385–392. https://doi.org/10.1016/j.paid.2017.05.017
1103
    Hentschel, S., Eid, M., & Kutscher, T. (2017). The Influence of Major Life Events and
1104
           Personality Traits on the Stability of Affective Well-Being. Journal of Happiness
1105
           Studies, 18(3), 719–741. https://doi.org/10.1007/s10902-016-9744-y
1106
    Hilbrand, S., Coall, D. A., Gerstorf, D., & Hertwig, R. (n.d.). Caregiving within and
1107
           beyond the family is associated with lower mortality for the caregiver: A
1108
           prospective study. Evolution and Human Behavior, 38(3), 397–403.
1109
           https://doi.org/10.1016/j.evolhumbehav.2016.11.010
1110
    Ho, D. E., Imai, K., King, G., & Stuart, E. A. (2011). MatchIt: Nonparametric
1111
           preprocessing for parametric causal inference. Journal of Statistical Software, 42(8),
1112
           1-28.
1113
    Hoffman, L. (2015). Longitudinal analysis: Modeling within-person fluctuation and change.
1114
           Routledge/Taylor & Francis Group.
1115
    Hutteman, R., Hennecke, M., Orth, U., Reitz, A. K., & Specht, J. (2014). Developmental
1116
           Tasks as a Framework to Study Personality Development in Adulthood and Old
1117
           Age. European Journal of Personality, 28(3), 267–278.
1118
           https://doi.org/10.1002/per.1959
1119
    Infurna, F. J., Gerstorf, D., & Lachman, M. E. (2020). Midlife in the 2020s: Opportunities
1120
           and challenges. American Psychologist, 75(4), 470–485.
1121
           https://doi.org/10.1037/amp0000591
1122
    John, O. P., Naumann, L. P., & Soto, C. J. (2008). Paradigm shift to the integrative Big
1123
           Five trait taxonomy: History, measurement, and conceptual issues. In O. P. John,
1124
           R. W. Robins, & L. A. Pervin (Eds.), Handbook of personality: Theory and research
1125
```

(pp. 114–158). The Guilford Press.

```
Johnson, A. B., & Rodgers, J. L. (2006). The impact of having children on the lives of
1127
           women: The Effects of Children Questionnaire. Journal of Applied Social
1128
           Psychology, 36(11), 2685–2714. https://doi.org/10.1111/j.0021-9029.2006.00123.x
1129
    Kandler, C., Kornadt, A. E., Hagemeyer, B., & Neyer, F. J. (2015). Patterns and sources
1130
           of personality development in old age. Journal of Personality and Social Psychology,
1131
           109(1), 175–191. https://doi.org/10.1037/pspp0000028
1132
    Krämer, M. D., & Rodgers, J. L. (2020). The impact of having children on domain-specific
1133
           life satisfaction: A quasi-experimental longitudinal investigation using the
1134
           Socio-Economic Panel (SOEP) data. Journal of Personality and Social Psychology,
1135
           119(6), 1497–1514. https://doi.org/10.1037/pspp0000279
1136
    Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests
1137
           in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26.
1138
           https://doi.org/10.18637/jss.v082.i13
1139
    Lachman, M. E., & Weaver, S. L. (1997). The Midlife Development Inventory (MIDI)
1140
           personality scales: Scale construction and scoring. Brandeis University.
1141
    Leopold, T., & Skopek, J. (2015). The Demography of Grandparenthood: An International
1142
           Profile. Social Forces, 94(2), 801–832. https://doi.org/10.1093/sf/sov066
1143
    Lodi-Smith, J., & Roberts, B. W. (2007). Social Investment and Personality: A
           Meta-Analysis of the Relationship of Personality Traits to Investment in Work,
1145
           Family, Religion, and Volunteerism. Personality and Social Psychology Review,
           11(1), 68–86. https://doi.org/10.1177/1088868306294590
1147
    Lucas, R. E., & Donnellan, M. B. (2011). Personality development across the life span:
           Longitudinal analyses with a national sample from Germany. Journal of Personality
1149
           and Social Psychology, 101(4), 847–861. https://doi.org/10.1037/a0024298
1150
```

Luhmann, M., Fassbender, I., Alcock, M., & Haehner, P. (2020). A dimensional taxonomy

```
of perceived characteristics of major life events. Journal of Personality and Social
1152
           Psychology, No Pagination Specified—No Pagination Specified.
1153
           https://doi.org/10.1037/pspp0000291
1154
    Luhmann, M., Hofmann, W., Eid, M., & Lucas, R. E. (2012). Subjective well-being and
1155
           adaptation to life events: A meta-analysis. Journal of Personality and Social
1156
           Psychology, 102(3), 592–615. https://doi.org/10.1037/a0025948
1157
    Luhmann, M., Orth, U., Specht, J., Kandler, C., & Lucas, R. E. (2014). Studying changes
1158
           in life circumstances and personality: It's about time. European Journal of
1159
           Personality, 28(3), 256–266. https://doi.org/10.1002/per.1951
1160
    Lumsdaine, R. L., & Vermeer, S. J. C. (2015). Retirement timing of women and the role of
1161
           care responsibilities for grandchildren. Demography, 52(2), 433–454.
1162
           https://doi.org/10.1007/s13524-015-0382-5
1163
    Lüdtke, O., Roberts, B. W., Trautwein, U., & Nagy, G. (2011). A random walk down
1164
           university avenue: Life paths, life events, and personality trait change at the
1165
           transition to university life. Journal of Personality and Social Psychology, 101(3),
1166
           620-637. https://doi.org/10.1037/a0023743
1167
    MacCallum, R. C., Zhang, S., Preacher, K. J., & Rucker, D. D. (2002). On the practice of
1168
           dichotomization of quantitative variables. Psychological Methods, 7(1), 19-40.
1169
           https://doi.org/10.1037/1082-989X.7.1.19
1170
    Mahne, K., & Huxhold, O. (2014). Grandparenthood and Subjective Well-Being:
1171
           Moderating Effects of Educational Level. The Journals of Gerontology: Series B,
1172
           70(5), 782–792. https://doi.org/10.1093/geronb/gbu147
1173
    Mahne, K., & Klaus, D. (2017). Zwischen Enkelglück und (Groß-)Elternpflicht die
1174
           Bedeutung und Ausgestaltung von Beziehungen zwischen Großeltern und
1175
           Enkelkindern. In K. Mahne, J. K. Wolff, J. Simonson, & C. Tesch-Römer (Eds.),
1176
           Altern im Wandel: Zwei Jahrzehnte Deutscher Alterssurvey (DEAS) (pp. 231–245).
1177
```

Springer Fachmedien Wiesbaden. https://doi.org/10.1007/978-3-658-12502-8 15 1178 Margolis, R., & Verdery, A. M. (2019). A Cohort Perspective on the Demography of 1179 Grandparenthood: Past, Present, and Future Changes in Race and Sex Disparities 1180 in the United States. Demography, 56(4), 1495–1518. 1181 https://doi.org/10.1007/s13524-019-00795-1 1182 Margolis, R., & Wright, L. (2017). Healthy Grandparenthood: How Long Is It, and How 1183 Has It Changed? *Demography*, 54(6), 2073–2099. 1184 https://doi.org/10.1007/s13524-017-0620-0 1185 Marsh, H. W., Nagengast, B., & Morin, A. J. S. (2013). Measurement invariance of big-five 1186 factors over the life span: ESEM tests of gender, age, plasticity, maturity, and la 1187 dolce vita effects. Developmental Psychology, 49(6), 1194–1218. 1188 https://doi.org/10.1037/a0026913 1189 McCrae, R. R. (1993). Moderated analyses of longitudinal personality stability. Journal of 1190 Personality and Social Psychology, 65(3), 577–585. 1191 https://doi.org/10.1037/0022-3514.65.3.577 1192 McNeish, D. (2018). Thanks coefficient alpha, we'll take it from here. Psychological 1193 Methods, 23(3), 412–433. https://doi.org/10.1037/met0000144 1194 McNeish, D., & Kelley, K. (2019). Fixed effects models versus mixed effects models for 1195 clustered data: Reviewing the approaches, disentangling the differences, and making 1196 recommendations. Psychological Methods, 24(1), 20–35. https://doi.org/10.1037/met0000182 1198 Meyer, M. H., & Kandic, A. (2017). Grandparenting in the United States. *Innovation in* 1199 Aging, 1(2), 1–10. https://doi.org/10.1093/geroni/igx023 1200 Mitra, R., & Reiter, J. P. (2016). A comparison of two methods of estimating propensity 1201

scores after multiple imputation. Statistical Methods in Medical Research, 25(1),

```
188–204. https://doi.org/10.1177/0962280212445945
1203
    Mõttus, R., Johnson, W., & Deary, I. J. (2012). Personality traits in old age: Measurement
1204
           and rank-order stability and some mean-level change. Psychology and Aging, 27(1),
1205
           243-249. https://doi.org/10.1037/a0023690
1206
    Mõttus, R., Kandler, C., Bleidorn, W., Riemann, R., & McCrae, R. R. (2017). Personality
1207
           traits below facets: The consensual validity, longitudinal stability, heritability, and
1208
           utility of personality nuances. Journal of Personality and Social Psychology, 112(3),
1209
           474–490. https://doi.org/10.1037/pspp0000100
1210
    Mõttus, R., & Rozgonjuk, D. (2021). Development is in the details: Age differences in the
1211
           Big Five domains, facets, and nuances. Journal of Personality and Social
1212
           Psychology, 120(4), 1035–1048. https://doi.org/10.1037/pspp0000276
1213
    Mueller, S., Wagner, J., Drewelies, J., Duezel, S., Eibich, P., Specht, J., Demuth, I.,
1214
           Steinhagen-Thiessen, E., Wagner, G. G., & Gerstorf, D. (2016). Personality
1215
           development in old age relates to physical health and cognitive performance:
1216
           Evidence from the Berlin Aging Study II. Journal of Research in Personality, 65,
1217
           94–108. https://doi.org/10.1016/j.jrp.2016.08.007
1218
    Muller, Z., & Litwin, H. (2011). Grandparenting and well-being: How important is
1219
           grandparent-role centrality? European Journal of Ageing, 8, 109–118.
1220
           https://doi.org/10.1007/s10433-011-0185-5
1221
    Ozer, D. J., & Benet-Martínez, V. (2005). Personality and the Prediction of Consequential
1222
           Outcomes. Annual Review of Psychology, 57(1), 401–421.
1223
           https://doi.org/10.1146/annurev.psych.57.102904.190127
1224
```

https://doi.org/10.1214/09-SS057

Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys, 3, 96–146.

Pilkauskas, N. V., Amorim, M., & Dunifon, R. E. (2020). Historical Trends in Children

```
Living in Multigenerational Households in the United States: 18702018.
1228
           Demography, 57(6), 2269–2296. https://doi.org/10.1007/s13524-020-00920-5
1220
    Pinheiro, J., Bates, D., & R-core. (2021). Nlme: Linear and nonlinear mixed effects models
1230
           |Manual|.
1231
    R Core Team. (2021). R: A language and environment for statistical computing. R
1232
           Foundation for Statistical Computing. https://www.R-project.org/
1233
    Roberts, B. W., & DelVecchio, W. F. (2000). The rank-order consistency of personality
1234
           traits from childhood to old age: A quantitative review of longitudinal studies.
1235
           Psychological Bulletin, 126(1), 3-25. https://doi.org/10.1037/0033-2909.126.1.3
1236
    Roberts, B. W., Kuncel, N. R., Shiner, R., Caspi, A., & Goldberg, L. R. (2007). The Power
1237
           of Personality: The Comparative Validity of Personality Traits, Socioeconomic
1238
           Status, and Cognitive Ability for Predicting Important Life Outcomes. Perspectives
1239
           on Psychological Science, 2(4), 313–345.
1240
           https://doi.org/10.1111/j.1745-6916.2007.00047.x
1241
    Roberts, B. W., Walton, K. E., & Viechtbauer, W. (2006). Patterns of mean-level change
1242
           in personality traits across the life course: A meta-analysis of longitudinal studies.
1243
           Psychological Bulletin, 132, 1-25. https://doi.org/10.1037/0033-2909.132.1.1
    Roberts, B. W., & Wood, D. (2006). Personality Development in the Context of the
           Neo-Socioanalytic Model of Personality. In D. K. Mroczek & T. D. Little (Eds.),
1246
           Handbook of Personality Development. Routledge.
1247
    Roberts, B. W., Wood, D., & Smith, J. L. (2005). Evaluating Five Factor Theory and
           social investment perspectives on personality trait development. Journal of
1249
           Research in Personality, 39(1), 166–184. https://doi.org/10.1016/j.jrp.2004.08.002
1250
    Roberts, B. W., & Yoon, H. J. (2021). Personality Psychology. Annual Review of
1251
```

Psychology, in press. https://doi.org/10.1146/annurev-psych-020821-114927

```
Rohrer, J. M. (2018). Thinking Clearly About Correlations and Causation: Graphical
           Causal Models for Observational Data. Advances in Methods and Practices in
1254
           Psychological Science, 1(1), 27-42. https://doi.org/10.1177/2515245917745629
1255
    Rosenbaum, P. (1984). The consequences of adjustment for a concomitant variable that has
1256
           been affected by the treatment. Journal of the Royal Statistical Society. Series A
1257
           (General), 147(5), 656–666. https://doi.org/10.2307/2981697
1258
    Scherpenzeel, A. (2011). Data Collection in a Probability-Based Internet Panel: How the
1259
           LISS Panel Was Built and How It Can Be Used. Bulletin of Sociological
1260
           Methodology/Bulletin de Méthodologie Sociologique, 109(1), 56-61.
1261
           https://doi.org/10.1177/0759106310387713
1262
    Scherpenzeel, A. C., & Das, M. (2010). True longitudinal and probability-based internet
           panels: Evidence from the Netherlands. In M. Das, P. Ester, & L. Kaczmirek
1264
           (Eds.), Social and behavioral research and the internet: Advances in applied methods
1265
           and research strategies (pp. 77–104). Taylor & Francis.
1266
    Schwaba, T., & Bleidorn, W. (2019). Personality trait development across the transition to
1267
           retirement. Journal of Personality and Social Psychology, 116(4), 651–665.
1268
           https://doi.org/10.1037/pspp0000179
1269
    Schwaba, T., & Bleidorn, W. (2018). Individual differences in personality change across the
1270
           adult life span. Journal of Personality, 86(3), 450–464.
1271
           https://doi.org/10.1111/jopy.12327
1272
    Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and
1273
           quasi-experimental designs for generalized causal inference. Houghton, Mifflin and
1274
           Company.
1275
    Sheppard, P., & Monden, C. (2019). Becoming a First-Time Grandparent and Subjective
1276
           Well-Being: A Fixed Effects Approach. Journal of Marriage and Family, 81(4),
1277
```

1016–1026. https://doi.org/10.1111/jomf.12584

```
Silverstein, M., & Marenco, A. (2001). How Americans Enact the Grandparent Role Across
           the Family Life Course. Journal of Family Issues, 22(4), 493–522.
1280
           https://doi.org/10.1177/019251301022004006
1281
    Skopek, J., & Leopold, T. (2017). Who becomes a grandparent and when? Educational
1282
           differences in the chances and timing of grandparenthood. Demographic Research,
1283
           37(29), 917–928. https://doi.org/10.4054/DemRes.2017.37.29
1284
    Sonnega, A., Faul, J. D., Ofstedal, M. B., Langa, K. M., Phillips, J. W., & Weir, D. R.
1285
           (2014). Cohort Profile: The Health and Retirement Study (HRS). International
1286
           Journal of Epidemiology, 43(2), 576-585. https://doi.org/10.1093/ije/dyu067
1287
    Soto, C. J. (2021). Do Links Between Personality and Life Outcomes Generalize? Testing
           the Robustness of TraitOutcome Associations Across Gender, Age, Ethnicity, and
1289
           Analytic Approaches. Social Psychological and Personality Science, 12(1), 118–130.
1290
           https://doi.org/10.1177/1948550619900572
1291
    Soto, C. J. (2019). How Replicable Are Links Between Personality Traits and
1292
           Consequential Life Outcomes? The Life Outcomes of Personality Replication
1293
           Project. Psychological Science, 30(5), 711-727.
1294
           https://doi.org/10.1177/0956797619831612
1295
    Specht, J. (2017). Personality development in adulthood and old age. In J. Specht (Ed.),
1296
           Personality Development Across the Lifespan (pp. 53–67). Academic Press.
1297
           https://doi.org/10.1016/B978-0-12-804674-6.00005-3
1298
    Specht, J., Bleidorn, W., Denissen, J. J. A., Hennecke, M., Hutteman, R., Kandler, C.,
1299
           Luhmann, M., Orth, U., Reitz, A. K., & Zimmermann, J. (2014). What Drives
1300
           Adult Personality Development? A Comparison of Theoretical Perspectives and
1301
           Empirical Evidence. European Journal of Personality, 28(3), 216–230.
1302
           https://doi.org/10.1002/per.1966
```

Specht, J., Egloff, B., & Schmukle, S. C. (2011). Stability and change of personality across

```
the life course: The impact of age and major life events on mean-level and
1305
           rank-order stability of the Big Five. Journal of Personality and Social Psychology,
1306
           101(4), 862–882. https://doi.org/10.1037/a0024950
1307
    Steiner, P., Cook, T., Shadish, W., & Clark, M. (2010). The Importance of Covariate
1308
           Selection in Controlling for Selection Bias in Observational Studies. Psychological
1300
           Methods, 15, 250–267. https://doi.org/10.1037/a0018719
1310
    Stephan, Y., Sutin, A. R., & Terracciano, A. (2014). Physical activity and personality
1311
           development across adulthood and old age: Evidence from two longitudinal studies.
1312
           Journal of Research in Personality, 49, 1–7.
1313
           https://doi.org/10.1016/j.jrp.2013.12.003
1314
    Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward.
1315
           Statistical Science: A Review Journal of the Institute of Mathematical Statistics,
1316
           25(1), 1–21. https://doi.org/10.1214/09-STS313
1317
    Tanskanen, A. O., Danielsbacka, M., Coall, D. A., & Jokela, M. (2019). Transition to
1318
           Grandparenthood and Subjective Well-Being in Older Europeans: A Within-Person
1319
           Investigation Using Longitudinal Data. Evolutionary Psychology, 17(3),
1320
           1474704919875948. https://doi.org/10.1177/1474704919875948
1321
    Thoemmes, F. J., & Kim, E. S. (2011). A Systematic Review of Propensity Score Methods
1322
           in the Social Sciences. Multivariate Behavioral Research, 46(1), 90–118.
1323
           https://doi.org/10.1080/00273171.2011.540475
1324
    Triadó, C., Villar, F., Celdrán, M., & Solé, C. (2014). Grandparents Who Provide
1325
           Auxiliary Care for Their Grandchildren: Satisfaction, Difficulties, and Impact on
1326
           Their Health and Well-being. Journal of Intergenerational Relationships, 12(2),
1327
           113–127. https://doi.org/10.1080/15350770.2014.901102
1328
    Turiano, N. A., Graham, E. K., Weston, S. J., Booth, T., Harrison, F., James, B. D.,
1320
```

Lewis, N. A., Makkar, S. R., Mueller, S., Wisniewski, K. M., Zhaoyang, R., Spiro,

```
A., Willis, S., Schaie, K. W., Lipton, R. B., Katz, M., Sliwinski, M., Deary, I. J.,
1331
           Zelinski, E. M., ... Mroczek, D. K. (2020). Is Healthy Neuroticism Associated with
1332
           Longevity? A Coordinated Integrative Data Analysis. Collabra: Psychology, 6(33).
1333
           https://doi.org/10.1525/collabra.268
1334
    Turiano, N. A., Pitzer, L., Armour, C., Karlamangla, A., Ryff, C. D., & Mroczek, D. K.
1335
           (2012). Personality Trait Level and Change as Predictors of Health Outcomes:
1336
           Findings From a National Study of Americans (MIDUS). The Journals of
1337
           Gerontology: Series B, 67B(1), 4-12. https://doi.org/10.1093/geronb/gbr072
1338
    van Buuren, S., & Groothuis-Oudshoorn, K. (2011). mice: Multivariate imputation by
1339
           chained equations in r. Journal of Statistical Software, 45(3), 1–67.
1340
    van der Laan, J. (2009). Representativity of the LISS panel (Discussion Paper 09041).
1341
           Statistics Netherlands.
1342
    VanderWeele, T. J. (2019). Principles of confounder selection. European Journal of
1343
           Epidemiology, 34(3), 211–219. https://doi.org/10.1007/s10654-019-00494-6
1344
    VanderWeele, T. J., Mathur, M. B., & Chen, Y. (2020). Outcome-Wide Longitudinal
           Designs for Causal Inference: A New Template for Empirical Studies. Statistical
1346
           Science, 35(3), 437–466. https://doi.org/10.1214/19-STS728
1347
    van Scheppingen, M. A., Chopik, W. J., Bleidorn, W., & Denissen, J. J. A. (2019).
1348
           Longitudinal actor, partner, and similarity effects of personality on well-being.
1349
           Journal of Personality and Social Psychology, 117(4), e51–e70.
1350
           https://doi.org/10.1037/pspp0000211
1351
    van Scheppingen, M. A., Jackson, J. J., Specht, J., Hutteman, R., Denissen, J. J. A., &
1352
           Bleidorn, W. (2016). Personality Trait Development During the Transition to
1353
           Parenthood: A Test of Social Investment Theory. Social Psychological and
1354
```

Personality Science, 7(5), 452–462. https://doi.org/10.1177/1948550616630032

```
van Scheppingen, M. A., & Leopold, T. (2020). Trajectories of life satisfaction before, upon,
1356
           and after divorce: Evidence from a new matching approach. Journal of Personality
1357
           and Social Psychology, 119(6), 1444–1458. https://doi.org/10.1037/pspp0000270
1358
    Wagner, J., Becker, M., Lüdtke, O., & Trautwein, U. (2015). The First Partnership
1359
           Experience and Personality Development: A Propensity Score Matching Study in
1360
           Young Adulthood. Social Psychological and Personality Science, 6(4), 455-463.
           https://doi.org/10.1177/1948550614566092
1362
    Wagner, J., Orth, U., Bleidorn, W., Hopwood, C. J., & Kandler, C. (2020). Toward an
1363
           Integrative Model of Sources of Personality Stability and Change. Current
1364
           Directions in Psychological Science, 29(5), 438–444.
1365
           https://doi.org/10.1177/0963721420924751
1366
    Wagner, J., Ram, N., Smith, J., & Gerstorf, D. (2016). Personality trait development at
1367
           the end of life: Antecedents and correlates of mean-level trajectories. Journal of
1368
           Personality and Social Psychology, 111(3), 411–429.
1369
           https://doi.org/10.1037/pspp0000071
1370
    Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,
1371
           Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller,
1372
           E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ...
1373
           Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software,
1374
           4(43), 1686. https://doi.org/10.21105/joss.01686
1375
    Wortman, J., Lucas, R. E., & Donnellan, M. B. (2012). Stability and change in the Big
1376
           Five personality domains: Evidence from a longitudinal study of Australians.
1377
           Psychology and Aging, 27(4), 867–874. https://doi.org/10.1037/a0029322
1378
    Wrzus, C., & Roberts, B. W. (2017). Processes of personality development in adulthood:
1379
           The TESSERA framework. Personality and Social Psychology Review, 21(3),
1380
           253–277. https://doi.org/10.1177/1088868316652279
```

1385

Yap, S., Anusic, I., & Lucas, R. E. (2012). Does personality moderate reaction and 1382 adaptation to major life events? Evidence from the British Household Panel Survey. 1383 Journal of Research in Personality, 46(5), 477–488. 1384 https://doi.org/10.1016/j.jrp.2012.05.005

Supplemental Material

Supplemental Tables

Table S1

Intra-Class Correlations of Grandparents and Matched Controls in the Four Analysis Samples.

	A	С	Е	N	О	LS
LISS: Parent controls						
ICC_{pid}	0.74	0.77	0.81	0.71	0.78	0.35
ICC_{hid}	0.05	0.01	0.02	0.07	0.00	0.37
$ICC_{pid/hid}$	0.79	0.78	0.83	0.78	0.78	0.71
LISS: Nonparent controls						
ICC_{pid}	0.76	0.76	0.64	0.67	0.79	0.32
ICC_{hid}	0.00	0.00	0.22	0.10	0.02	0.36
$ICC_{pid/hid}$	0.76	0.77	0.85	0.77	0.81	0.67
HRS: Parent controls						
ICC_{pid}	0.76	0.69	0.79	0.73	0.57	0.31
ICC_{hid}	0.00	0.07	0.00	0.01	0.21	0.35
$ICC_{pid/hid}$	0.76	0.76	0.79	0.74	0.78	0.67
HRS: Nonparent controls						
ICC_{pid}	0.71	0.73	0.77	0.76	0.59	0.33
ICC_{hid}	0.07	0.06	0.04	0.00	0.23	0.38
$ICC_{pid/hid}$	0.78	0.79	0.80	0.76	0.82	0.71

Note. A = agreeableness, C = conscientiousness, E = extraversion, N = neuroticism, O = openness, LS = life satisfaction. Intra-class correlations are the proportion of total variation that is explained by the respective nesting factor. ICC_{pid} is the proportion of total variance explained by nesting in participants which corresponds to the correlation between two randomly selected observations from the same participant. ICC_{hid} is the proportion of total variance explained by nesting in households which corresponds to the correlation between two randomly selected observations from the same household. $ICC_{pid/hid}$ is the proportion of total variance explained by nesting in participants and in households which corresponds to the correlation between two randomly selected observations from the same participant and the same household.

Table S2

Longitudinal sample size in the analysis samples and coding scheme for the piecewise regression coefficients.

		Pr	Pre-transition years	tion yea	urs				Post-tr	Post-transition years	ı years		
	9-	5-	-4	<u>ئ</u>	-2		0		2	က	4	ಬ	9
LISS: Analysis samples													
Grandparents: obs.	92	105	108	121	156	116	133	138	108	108	69	62	52
Grandparents: % women	51.09	48.57	52.78	51.24	56.41	62.93	47.37	52.90	51.85	50.00	56.52	66.13	53.85
Parent controls: obs.	335	425	381	540	740	351	450	488	333	394	365	164	201
Parent controls: % women	57.61	51.06	55.12	51.48	55.00	56.13	53.11	54.10	56.76	51.27	56.99	59.76	48.76
Nonparent controls: obs.	331	399	407	554	739	354	473	516	367	477	375	146	202
Nonparent controls: % women	52.57	54.89	57.99	52.71	55.21	54.52	49.26	54.46	52.86	52.83	54.67	48.63	51.49
LISS: Coding scheme													
Before-slope	0	1	2	က	4	ಬ	ಬ	ಬ	ಬ	ಬ	ಬ	ಬ	ಬ
After-slope	0	0	0	0	0	0	П	2	က	4	ಬ	9	7
Shift	0	0	0	0	0	0	П	П	П	П	1	1	П
HRS: Analysis samples													
Grandparents: obs.	162		388		461		380		444		195		232
Grandparents: % women	57.41		54.12		55.53		53.95		55.41		56.41		53.45
Parent controls: obs.	619		1540		1844		1228		1504		829		864
Parent controls: % women	55.41		54.03		55.53		54.64		56.45		56.08		57.64
Nonparent controls: obs.	620		1541		1844		1205		1448		889		821
Nonparent controls: % women	56.45		54.06		55.53		56.10		58.91		57.56		60.54
HRS: Coding scheme													
Before-slope	0		П		2		2		2		2		2
After-slope	0		0		0		П		2		က		4
Shift	0		0		0		П		П		П		П

Note. obs. = observations. time = 0 marks the first year where the transition to grandparenthood has been reported. The number of grandparent participants is $N_{LISS}=250$ and $N_{HRS}=846$.

Means and Standard Deviations of the Big Five and Life Satisfaction over Time in the LISS Panel.

Table S3

		Ь	re-transi	re-transition years	r.S				Post-t1	Post-transition	ı years		
	9-	ಸ	-4	-3	-2		0	П	2	3	4	ಸು	9
Agreeableness													
Grandparents	3.85	3.87	3.93	3.87	3.90	3.93	3.87	3.92	3.91	3.91	3.89	4.01	3.98
	(0.52)	(0.50)	(0.46)	(0.49)	(0.54)	(0.47)	(0.49)	(0.52)	(0.52)	(0.51)	(0.52)	(0.49)	(0.37)
Parent controls	3.93	3.89	3.90	3.87	3.91	3.95	3.91	3.89	3.90	3.92	3.86	3.86	3.81
	(0.52)	(0.51)	(0.47)	(0.50)	(0.48)	(0.48)	(0.47)	(0.51)	(0.53)	(0.48)	(0.50)	(0.43)	(0.43)
Nonparent controls	3.95	3.94	3.98	3.98	3.94	3.91	3.94	3.95	3.94	3.94	3.92	3.92	3.88
	(0.47)	(0.50)	(0.45)	(0.50)	(0.49)	(0.47)	(0.44)	(0.45)	(0.46)	(0.47)	(0.41)	(0.44)	(0.42)
Conscientiousness													
Grandparents	3.76	3.84	3.74	3.75	3.77	3.79	3.77	3.78	3.75	3.79	3.84	3.74	3.76
	(0.50)	(0.45)	(0.49)	(0.46)	(0.53)	(0.48)	(0.49)	(0.51)	(0.49)	(0.51)	(0.44)	(0.48)	(0.43)
Parent controls	3.80	3.78	3.80	3.77	3.79	3.83	3.82	3.79	3.80	3.79	3.78	3.76	3.77
	(0.52)	(0.50)	(0.52)	(0.49)	(0.49)	(0.50)	(0.49)	(0.47)	(0.47)	(0.46)	(0.43)	(0.44)	(0.45)
Nonparent controls	3.77	3.79	3.76	3.80	3.74	3.75	3.77	3.72	3.82	3.81	3.78	3.84	3.80
	(0.53)	(0.50)	(0.51)	(0.50)	(0.51)	(0.53)	(0.50)	(0.50)	(0.50)	(0.51)	(0.48)	(0.46)	(0.50)
Extraversion													
Grandparents	3.23	3.20	3.31	3.32	3.28	3.30	3.19	3.24	3.22	3.19	3.33	3.34	3.19
	(0.66)	(0.74)	(0.54)	(0.58)	(0.64)	(0.57)	(0.61)	(0.69)	(0.65)	(09.0)	(09.0)	(0.58)	(0.55)
Parent controls	3.32	3.30	3.28	3.27	3.26	3.30	3.25	3.20	3.22	3.28	3.19	3.19	3.14
	(0.58)	(0.59)	(0.58)	(0.59)	(0.59)	(0.59)	(0.64)	(0.62)	(0.59)	(0.61)	(0.58)	(0.53)	(0.56)
Nonparent controls	3.31	3.27	3.21	3.32	3.32	3.28	3.30	3.27	3.31	3.31	3.28	3.13	3.26
	(0.74)	(0.70)	(0.79)	(0.75)	(0.69)	(0.70)	(0.72)	(0.73)	(0.77)	(0.78)	(0.73)	(0.75)	(0.74)
Neuroticism													
Grandparents	2.39	2.31	2.33	2.41	2.45	2.47	2.30	2.39	2.30	2.36	2.33	2.44	2.53
	(0.71)	(0.64)	(0.60)	(0.64)	(0.65)	(0.71)	(0.67)	(0.76)	(0.68)	(99.0)	(0.67)	(0.80)	(0.67)
Parent controls	2.43	2.42	2.42	2.38	2.40	2.37	2.35	2.35	2.30	2.28	2.35	2.31	2.33
	(0.59)	(0.63)	(0.56)	(0.58)	(0.58)	(09.0)	(0.63)	(0.65)	(0.56)	(0.56)	(09.0)	(0.55)	(0.56)
Nonparent controls	2.41	2.44	2.47	2.36	2.43	2.37	2.33	2.37	2.34	2.33	2.35	2.48	2.35
	(0.64)	(0.63)	(69.0)	(0.70)	(0.69)	(0.63)	(0.69)	(0.71)	(0.74)	(0.68)	(0.70)	(0.82)	(0.83)

Table S3 continued

		P	re-transi	tion years	8				Post-t ₁	Post-transition	ı years		
	9-	ည	-4	ငှ	-2		0		2	က	4	ಬ	9
Openness													
Grandparents	3.43	3.50	3.54	3.49	3.49	3.50	3.48	3.48	3.50	3.45	3.50	3.43	3.36
	(0.51)	(0.50)	(0.49)	(0.45)	(0.49)	(0.50)	(0.48)	(0.54)	(0.43)	(0.46)	(0.50)	(0.53)	(0.56)
Parent controls	3.53	3.46	3.43	3.48	3.48	3.48	3.50	3.49	3.44	3.51	3.42	3.37	3.42
	(0.52)	(0.52)	(0.50)	(0.53)	(0.51)	(0.51)	(0.52)	(0.50)	(0.48)	(0.48)	(0.49)	(0.48)	(0.42)
Nonparent controls	3.53	3.57	3.53	3.58	3.52	3.51	3.52	3.55	3.54	3.59	3.53	3.51	3.51
	(0.52)	(0.51)	(0.51)	(0.52)	(0.52)	(0.51)	(0.51)	(0.51)	(0.52)	(0.51)	(0.50)	(0.47)	(0.53)
Life satisfaction													
Grandparents	5.18	5.29	5.23	5.16	5.28	5.24	5.31	5.24	5.37	5.38	5.39	5.25	5.15
	(1.06)	(0.93)	(1.13)	(0.95)	(0.93)	(1.10)	(0.93)	(1.03)	(1.09)	(0.90)	(1.10)	(1.10)	(1.00)
Parent controls	5.21	5.30	5.26	5.23	5.28	5.29	5.36	5.25	5.26	5.45	5.33	5.40	5.41
	(1.11)	(1.03)	(1.01)	(0.97)	(1.01)	(1.07)	(0.99)	(1.03)	(1.04)	(0.93)	(1.04)	(1.05)	(1.05)
Nonparent controls	5.27	5.19	5.10	5.21	5.26	5.18	5.24	5.09	5.10	5.07	5.23	4.98	5.19
	(0.92)	(0.87)	(0.90)	(0.92)	(0.95)	(0.90)	(0.96)	(1.04)	(1.12)	(1.13)	(1.08)	(1.30)	(1.18)

Note. Standard deviations shown in brackets; time = 0 marks the first year where the transition to grandparenthood was reported.

Means and Standard Deviations of the Big Five and Life Satisfaction over Time in the HRS.

Table S4

		Pre-1	Pre-transition years	n yea	rs			P(st-trar	sitio	Post-transition years		
	9-	\vec{v}	-4	ကု	-2	-1	0	П	2	3	4	ಬ	9
Agreeableness													
Grandparents	3.46		3.51		3.51		3.52		3.52		3.50		3.56
	(0.47)		(0.48)		(0.49)		(0.49)	Ŭ	[0.48)		(0.53)		(0.44)
Parent controls	3.50		3.48		3.50		3.49		3.49		3.44		3.47
	(0.48)		(0.49)		(0.46)		(0.50)	Ŭ	[0.48)		(0.52)		(0.51)
Nonparent controls	3.50		3.50		3.50		3.52		3.52		3.44		3.48
	(0.50)		(0.50)		(0.51)		(0.50)	_	(0.50)		(0.53)		(0.53)
Conscientiousness													
Grandparents	3.47		3.46		3.47		3.46		3.45		3.44		3.49
	(0.46)		(0.45)		(0.44)		(0.45)	_	[0.44)		(0.43)		(0.44)
Parent controls	3.45		3.45		3.45		3.47		3.46		3.43		3.44
	(0.45)		(0.45)		(0.45)		(0.45)	_	(0.46)		(0.50)		(0.50)
Nonparent controls	3.50		3.48		3.49		3.50		3.48		3.46		3.49
	(0.44)		(0.44)		(0.44)		(0.42)	_	(0.45)		(0.45)		(0.43)
Extraversion													
Grandparents	3.15		3.22		3.20		3.21		3.19		3.22		3.22
	(0.56)		(0.56)		(0.54)		(0.56)	Ŭ	(0.58)		(0.59)		(0.58)
Parent controls	3.20		3.18		3.19		3.21		3.21		3.17		3.19
	(0.51)		(0.56)		(0.54)		(0.54)	_	(0.54)		(0.55)		(0.56)
Nonparent controls	3.19		3.20		3.20		3.23		3.22		3.23		3.24
	(0.55)		(0.54)		(0.56)		(0.54)	_	(0.54)		(0.56)		(0.57)
Neuroticism													
Grandparents	2.00		1.97		2.06		1.91		1.96		1.91		1.91
	(0.56)		(0.63)		(0.62)		(09.0)	_	(0.58)		(0.59)		(0.61)
Parent controls	2.01		2.05		2.01		2.03		2.00		2.01		1.95
	(0.59)		(0.60)		(0.59)		(0.61)	_	(0.61)		(0.61)		(09.0)
Nonparent controls	2.05		2.00		2.02		1.92		1.97		1.84		1.90
	(0.56)		(0.58)		(09.0)		(0.57)	_	(0.59)		(0.55)		(0.58)

Table S4 continued

		Pre-t	Pre-transition years	on yea	urs				Post-transition years	nsitic	n years		
	9-	ਨੂੰ	-4	6-	-2	 	0	-	2	က	4	ಬ	9
Openness													
Grandparents	3.00		3.02		3.04		3.01		3.00		2.96		3.04
	(0.51)		(0.53)		(0.51)		(0.52)		(0.52)		(0.59)		(0.51)
Parent controls	3.03		3.00		2.98		3.03		3.00		2.96		2.96
	(0.51)		(0.56)		(0.54)		(0.54)		(0.52)		(0.58)		(0.56)
Nonparent controls	3.06		3.05		3.05		3.07		3.06		3.02		3.04
	(0.54)		(0.53)		(0.55)		(0.54)		(0.55)		(0.57)		(0.57)
Life satisfaction													
Grandparents	5.14		5.08		5.15		5.17		5.16		5.29		5.28
	(1.44)		(1.45)		(1.46)		(1.40)		(1.44)		(1.38)		(1.50)
Parent controls	5.14		4.98		5.01		5.11		5.10		5.06		5.12
	(1.52)		(1.57)		(1.57)		(1.52)		(1.53)		(1.47)		(1.47)
Nonparent controls	5.10		5.14		5.09		5.26		5.21		5.40		5.40
	(1.49)		(1.50)		(1.52)		(1.44)		(1.51)		(1.30)		(1.36)

Note. Standard deviations shown in brackets; time = 0 marks the first year where the transition to grandparenthood was reported.

SS	
T_{2}	
in the LISS	
n	
ore ii	
score ir	
$y S_{\epsilon}$	
+	
ensi	
adc	
Pro	
tching and the Prope	
l ti	
ux	
g a	
hin	
Aatc	
Mat	
re	
Score	
5	
sit	
nea	
ro_{I}	
in Prop	
d in F	
õ	
$s U_s$	
tes	
ria	
va	
C_{0}	
or Covariates	
s	
an	
$M\epsilon$	
$\dot{i}n$	
ce	
erence	
fer	
Diff	
p_{i}	
dized Di	
~	
tanda	vel.
Sta	эar
- √	~

			Parent control group	trol group	Nonparent control group	ntrol group
Covariate	Description	Raw variable	Before PSM	After PSM	Before PSM	After PSM
pscore	Propensity score	/	1.14	0.02	1.34	0.04
female	Gender $(f=1, m=0)$	geslacht	0.05	0.00	0.05	0.00
age	Age	gebjaar	0.85	-0.10	4.05	-0.01
degreehighersec	Higher secondary/preparatory university education	oplmet	0.07	-0.06	-0.07	0.12
degreevocational	Intermediate vocational education	oplmet	-0.20	90.0-	-0.02	0.00
degreecollege	Higher vocational education	oplmet	0.00	0.05	0.02	-0.09
degreeuniversity	University degree	oplmet	-0.08	0.14	-0.15	-0.05
religion	Member of religion/church	cr^*012	0.10	0.08	0.33	0.07
speakdutch	Dutch spoken at home (primarily)	cr^*089	-0.02	90.0-	0.00	-0.02
divorced	Divorced (marital status)	burgstat	0.02	-0.03	0.29	-0.02
widowed	Widowed (marital status)	burgstat	0.00	-0.12	0.13	-0.07
livetogether	Live together with partner	$^{ m cf}$	-0.08	0.04	1.05	-0.02
rooms	Rooms in dwelling	cd*034	-0.03	0.05	0.63	-0.11
logincome	Personal net monthly income in Euros (logarithm)	nettoink	-0.01	0.04	0.59	-0.14
rental	Live for rent (vs. self-owned dwelling)	woning	-0.08	-0.09	-0.47	-0.03
financialsit	Financial situation of household (scale from 1-5)	ci*252	0.08	0.00	-0.03	0.00
jobhours	Average work hours per week	cw^*127	0.05	0.08	0.11	-0.04
mobility	Mobility problems (walking, staircase, shopping)	$ch^*023/027/041$	0.07	0.04	0.00	-0.02
deb	Depression items from Mental Health Inventory	$ch^*011 - ch^*015$	-0.01	0.08	-0.22	-0.08
betterhealth	Poor/moderate health status (ref.: good)	ch^*004	0.00	-0.01	-0.26	0.07
worsehealth	Very good/excellent health status (ref.: good)	ch^*004	0.04	-0.02	0.11	-0.04
totalchildren	Number living children	cf^*455 / cf^*036	0.25	0.02	NA	NA
totalresidentkids	Number of living-at-home children in household	aantalki	-0.71	0.05	NA	NA
secondkid	Has two or more children		0.20	0.04	NA	NA
thirdkid	Has three or more children	cf^*455 / cf^*036	0.26	0.01	NA	NA
kid1female	Gender of first child $(f=1, m=0)$	$^{ m cf}$	0.04	0.04	NA	NA
kid2female	Gender of second child $(f=1, m=0)$	$^{ m cl}$	0.01	90.0-	NA	NA
kid3female	Gender of third child $(f=1, m=0)$		0.17	0.03	NA	NA
kid1age	Age of first child	$cf^{*}456 / cf^{*}037$	1.70	-0.17	NA	NA
kid2age	Age of second child	_	0.87	-0.01	NA	NA

Table S5 continued

			Parent control group	trol group	Nonparent control group	ontrol group
Covariate	Description	Raw variable	Before PSM	After PSM	Before PSM	After PSM
kid3age	Age of third child	cf*458 / cf*039	0.40	0.01	NA	NA
kid1home	First child living at home	$^{ m cf}$	-1.56	0.05	NA	NA
kid2home	Second child living at home	cf^*084	-1.05	0.04	NA	NA
kid3home	Third child living at home	$^{ m cf}$	-0.05	0.00	NA	NA
swls	Satisfaction with Life Scale	$cp^*014 - cp^*018$	0.10	-0.03	0.25	-0.06
agree	Agreeableness	$cp^*021 - cp^*066$	0.02	-0.01	0.13	-0.13
con	Conscientiousness	$cp^*022 - cp^*067$	•	-0.05	0.16	0.00
extra	Extraversion	$cp^*020 - cp^*065$		0.02	0.02	-0.07
near	Neuroticism	$cp^*023 - cp^*068$	•	0.02	-0.26	0.03
open	Openness	$cp^*024 - cp^*069$	0.00	0.05	-0.16	-0.08
participation	Waves participated	_	-0.27	-0.09	0.00	-0.03
year	Year of assessment	wave	-0.23	-0.07	0.08	90.0-

was computed by $(\bar{x}_{gp} - \bar{x}_c)/(\hat{\sigma}_{gp})$. Rules of thumb say that this measure should ideally be below .25 (Stuart, 2010) or below Note. PSM = propensity score matching, ref. = reference category, f. = female, m. = male, NA = covariate not used in this sample. The standardized difference in means between the grandparent and the two control groups (parent and nonparent) .10 (Austin, 2011).

Standardized Difference in Means for Covariates Used in Propensity Score Matching and the Propensity Score in the HRS.

Table S6

			Parent control group	rol group	Nonparent control group	ontrol group
Covariate	Description	Raw variable	Before PSM	After PSM	Before PSM	After PSM
pscore	Propensity score	/	0.92	0.01	1.45	0.00
female	Gender $(f=1, m=0)$	RAGENDER	-0.07	0.00	0.01	0.00
age	Age	RABYEAR	-0.46	-0.01	-1.02	0.11
$_{ m schlyrs}$	Years of education	RAEDYRS	0.11	0.03	0.25	-0.04
religyear	Religious attendance: yearly	*B082	0.04	0.01	0.13	0.00
religmonth	Religious attendance: monthly	*B082	0.01	-0.02	0.10	0.05
religweek	Religious attendance: weekly	*B082	0.00	0.02	0.04	0.03
religmore	Religious attendance: more	*B082	0.00	-0.04	90.0	-0.01
notusaborn	Not born in the US	*Z230	-0.05	0.03	0.13	-0.02
black	Race: black/african american (ref.: white)	RARACEM	-0.13	-0.08	-0.22	0.01
raceother	Race: other (ref.: white)	RARACEM	-0.09	90.0-	0.01	-0.05
divorced	Divorced (marital status)	R^*MSTAT	-0.06	0.01	0.01	0.03
widowed	Widowed (marital status)	R^*MSTAT	-0.31	0.02	-0.41	0.04
livetogether	Live together with partner	$*A030 / *XF065_R$	0.25	-0.02	1.05	-0.04
${\rm roomsless three}$	Number of rooms (in housing unit)	*H147 / *066	-0.15	-0.05	-0.59	-0.01
roomsfourfive	Number of rooms (in housing unit)	*H147 / *066	0.00	-0.02	-0.25	-0.03
${ m roomsmoreeight}$	Number of rooms (in housing unit)	* H147 $/ *$ 066	0.07	-0.03	0.28	0.00
loghhincome	Household income (logarithm)	*IOTI	0.03	0.03	0.41	0.00
loghhwealth	Household wealth (logarithm)	*ATOTB	0.07	0.05	0.34	-0.02
renter	Live for rent (vs. self-owned dwelling)	*H004	-0.10	-0.08	-0.51	-0.02
jobhours	Hours worked/week main job	R*JHOURS	0.25	0.08	0.59	0.00
paidwork	Working for pay	*J020	0.28	0.07	0.62	-0.04
mobilitydiff	Difficulty in mobility rated from 0-5	$R^*MOBILA$	-0.16	-0.04	-0.52	0.00
cesd	CESD score (depression)	R^*CESD	-0.13	-0.04	-0.26	-0.04
conde	Sum of health conditions	R*CONDE	-0.22	-0.03	-0.51	0.04
healthexcellent	Self-report of health - excellent (ref: good)	R^*SHLT	0.05	0.02	0.15	-0.03
${ m healthverygood}$	Self-report of health - very good (ref: good)	$ m R^*SHLT$	0.23	0.02	0.31	-0.02
healthfair	Self-report of health - fair (ref: good)	$ m R^*SHLT$	-0.16	-0.02	-0.29	0.00
healthpoor	Self-report of health - poor (ref: good)	$ m R^*SHLT$	-0.07	-0.03	-0.24	0.02
totalnonresidentkids	Number of nonresident kids	*A100	99.0	-0.05	NA	NA
totalresidentkids	Number of resident children	*A099	-0.22	0.00	NA	NA
secondkid	Has two or more children	KIDID	0.52	-0.03	NA	NA

Table S6 continued

			Parent control group	trol group	Nonparent control group	ontrol group
Covariate	Description	Raw variable	Before PSM	After PSM	Before PSM	After PSM
thirdkid	Has three or more children	KIDID	0.38	-0.03	NA	NA
kid1female	Gender of first child (f.=1, m.=0)	KAGENDERBG	0.11	0.03	NA	NA
kid2female	Gender of second child (f.=1, m.=0)	KAGENDERBG	0.17	-0.01	NA	NA
kid3female	hild (f	KAGENDERBG	0.24	0.02	NA	NA
kid1age	Age of first child	KABYEARBG	-0.35	-0.02	NA	NA
kid2age	Age of second child	KABYEARBG	0.36	-0.03	NA	NA
kid3age	Age of third child	KABYEARBG	0.35	-0.01	NA	NA
kid1educ	Education of first child (years)	KAEDUC	0.30	0.02	NA	NA
kid2educ	Education of second child (years)	KAEDUC	0.57	0.00	NA	NA
kid3educ	Education of third child (years)	KAEDUC	0.40	-0.02	NA	NA
childrenclose	Children live within 10 miles	*E012	0.14	0.01	NA	NA
siblings	Number of living siblings	$\mathrm{R}^*\mathrm{LIVSIB}$	0.05	-0.04	0.21	0.03
swls	Satisfaction with Life Scale	$*\mathrm{LB003}*$	0.17	0.08	0.30	0.00
agree	Agreeableness	$^*\mathrm{LB033}^*$	0.00	0.04	0.11	0.02
con	Conscientiousness	$^*\mathrm{LB033}^*$	0.14	0.04	0.26	-0.04
extra	Extraversion	$^*\mathrm{LB033}^*$	0.04	0.04	0.18	0.01
near	Neuroticism	$^*\mathrm{LB033}^*$	-0.06	0.00	-0.04	0.01
open	Openness	$^*\mathrm{LB033}^*$	0.04	0.07	0.05	-0.04
participation	Waves participated (2006-2018)	_	-0.36	-0.01	-0.26	-0.04
interviewyear	Date of interview - year	*A501	-0.33	-0.05	-0.18	-0.05

was computed by $(\bar{x}_{gp} - \bar{x}_c)/(\hat{\sigma}_{gp})$. Rules of thumb say that this measure should ideally be below .25 (Stuart, 2010) or below Note. PSM = propensity score matching, ref. = reference category, f. = female, m. = male, NA = covariate not used in this sample. The standardized difference in means between the grandparent and the two control groups (parent and nonparent) .10 (Austin, 2011).

Table S7

Fixed Effects of Agreeableness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«~	95% CI	t		\\ \times \	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.86		131.70	< .001	3.90		112.97	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.05		-0.56	.572	-0.01		-0.20	.838
	0.00		-0.25	.802	-0.01		-1.81	020.
After-slope, $\hat{\gamma}_{20}$	-0.05		-6.76	< .001	-0.01		-3.32	.001
Shift, $\hat{\gamma}_{30}$	0.04		3.12	.002	0.03		1.98	.048
Grandparent, $\hat{\gamma}_{01}$	90.0		1.33	.183	0.01		0.30	892.
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.01		-1.06	.289	0.00		-0.26	.791
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		2.99	.003	0.01		1.44	.149
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01	[-0.06, 0.04]	-0.37	.714	0.00	[-0.06, 0.06]	0.08	.937
HRS								
Intercept, $\hat{\gamma}_{00}$	3.46		196.32	< .001	3.48		166.19	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08		2.51	.012	0.05		1.51	.131
Before-slope, $\hat{\gamma}_{10}$	0.01		1.37	.169	-0.01		-1.33	.184
After-slope, $\hat{\gamma}_{20}$	-0.01		-2.87	.004	-0.02		-5.16	< .001
Shift, $\hat{\gamma}_{30}$	0.01	[-0.01, 0.03]	0.71	.476	0.04	[0.02, 0.06]	4.30	< .001
Grandparent, $\hat{\gamma}_{01}$	0.02		0.88	.378	0.01		0.44	.662
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.01		-0.87	.384	0.00		0.28	.781
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01		1.71	.088	0.02		2.78	900.
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01		-0.35	.729	-0.04	[-0.09, 0.00]	-1.97	.049

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S8

Linear Contrasts for Agreeableness.

	Pare	Parent controls	rols	Nonpa	Nonparent controls	ıtrols
Linear Contrast	$\hat{\gamma}_c$	$\hat{\gamma}_c \qquad \chi^2$	d	$\hat{\gamma}_c$	χ^2	d
LISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.02	4.00	.046	0.02	2.22	.136
Shift of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.03		.181	0.03	1.51	.219
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01		677.	0.01	0.18	899.
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	-0.01		.189	-0.01	1.45	.228
After-slope of the grandparents vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{21})$	0.00	0.01	.934	0.00	0.00	.958
IIIVS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.00	0.12	.725	0.03	10.76	.001
Shift of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.03	859	0.00	0.03	.862
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01	0.10	.751	-0.02	1.77	.183
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.00	0.09	.762	0.00	0.11	.743
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	0.00	0.23	.633	0.00	0.28	.596

the car R package (Fox & Weisberg, 2019) based on the models from Table S7. $\hat{\gamma}_c = \text{combined}$ Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from fixed-effects estimate.

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Gender.

Table S9

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>√</i> ≻	95% CI	t	. d	<i>∞</i>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.65	[3.58, 3.73]	93.02	< .001	3.66	[3.57, 3.75]	79.73	< .001
Propensity score, $\hat{\gamma}_{04}$	-0.01	[-0.08, 0.07]	-0.21	.833	0.02	[-0.05, 0.08]	0.45	.653
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	0.02	.984	0.00	[-0.01, 0.01]	-0.37	.712
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.02]	-6.37	< .001	-0.01	[-0.02, 0.00]	-2.49	.013
Shift, $\hat{\gamma}_{30}$	0.03	[-0.01, 0.07]	1.66	260.	0.07	[0.03, 0.11]	3.66	< .001
Grandparent, $\hat{\gamma}_{01}$	90.0	[-0.06, 0.17]	0.92	.356	0.04	[-0.09, 0.17]	09.0	.550
Female, $\hat{\gamma}_{02}$	0.38	[0.27, 0.48]	7.16	< .001	0.44	[0.32, 0.56]	7.11	< .001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.01	[-0.03, 0.01]	-0.73	.466	0.00	[-0.02, 0.01]	-0.50	.615
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[0.01, 0.05]	3.43	.001	0.01	[0.00, 0.03]	1.64	.101
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01	[-0.09, 0.07]	-0.33	.739	-0.05	[-0.14, 0.03]	-1.23	.217
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.01]	-0.26	.799	-0.01	[-0.02, 0.00]	-1.14	.254
After-slope * Female, $\hat{\gamma}_{22}$	0.01	[0.00, 0.02]	2.34	.019	0.00	[-0.01, 0.01]	0.28	.781
Shift * Female, $\hat{\gamma}_{32}$	0.02	[-0.03, 0.06]	09.0	.550	-0.08	[-0.14, -0.03]	-3.18	.001
Grandparent * Female, $\hat{\gamma}_{03}$	0.01	[-0.15, 0.17]	0.15	.883	-0.05	[-0.22, 0.12]	-0.57	.568
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.00	[-0.03, 0.02]	-0.05	959	0.00	[-0.02, 0.03]	0.35	.728
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.02	[-0.04, 0.00]	-1.92	050	-0.01	[-0.03, 0.01]	-0.93	.351
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.01	[-0.10, 0.12]	0.21	.836	0.11	[-0.01, 0.23]	1.87	.061
HRS								
Intercept, $\hat{\gamma}_{00}$	3.27	[3.23, 3.32]	132.82	< .001	3.38	[3.33, 3.43]	122.35	< .001
Propensity score, $\hat{\gamma}_{04}$	0.09	[0.03, 0.15]	2.91	.004	0.04	[-0.03, 0.10]	1.12	.261
Before-slope, $\hat{\gamma}_{10}$	0.02	[0.01, 0.04]	2.98	.003	-0.01	[-0.02, 0.01]	-1.12	.262
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-3.95	< .001	-0.02	[-0.03, -0.01]	-3.43	.001
Shift, $\hat{\gamma}_{30}$	0.04	[0.01, 0.07]	2.77	900.	0.03	[0.00, 0.06]	1.68	.093
Grandparent, $\hat{\gamma}_{01}$	0.08	[0.00, 0.16]	1.97	.048	-0.01	[-0.09, 0.08]	-0.16	877
Female, $\hat{\gamma}_{02}$	0.33	[0.27, 0.39]	10.55	< .001	0.20	[0.13, 0.26]	5.76	< .001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.04	[-0.08, 0.00]	-2.18	.030	-0.01	[-0.04, 0.03]	-0.47	.640
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.04	[0.01, 0.06]	3.00	.003	0.03	[0.01, 0.05]	2.85	.004
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05	[-0.12, 0.02]	-1.50	.133	-0.03	[-0.10, 0.03]	-1.04	298
Before-slope * Female, $\hat{\gamma}_{12}$	-0.03	[-0.05, -0.01]	-2.84	.004	0.00	[-0.02, 0.02]	0.38	.702
After-slope * Female, $\hat{\gamma}_{22}$	0.02	[0.01, 0.03]	2.74	900.	0.00	[-0.01, 0.01]	0.08	.937
Shift * Female, $\hat{\gamma}_{32}$	-0.06	[-0.11, -0.02]	-3.07	.002	0.03	[-0.01, 0.07]	1.50	.134

Table S9 continued

		Parent controls	trols			Nonparent controls	ontrols	
Parameter	-%	95% CI	t	d	<≻	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	-0.10	[-0.20, 0.01]	-1.77	220.	0.03	[-0.07, 0.14]	0.64	.521
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.06	[0.01, 0.11]	2.20	.028	0.02	[-0.03, 0.07]	0.86	.392
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.04	[-0.07, -0.01]	-2.48	.013	-0.02	[-0.05, 0.01]	-1.34	.180
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.08	[-0.01, 0.17]	1.73	.084	-0.01	[-0.10, 0.07]	-0.31	.758

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S10

Linear Contrasts for Agreeableness (Moderated by Gender).

	Pare	Parent controls	rols	Nong	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	. d	$\hat{\gamma}_c$	χ^2	d
TISS						
Shift of male controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.01	0.19	999.	0.06	13.04	< .001
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	0.03	5.25	.022	-0.02	1.90	.168
	0.02	0.47	.493	0.02	0.40	.525
Shift of grandmothers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$)	0.04	1.79	.181	0.04	1.56	.212
	0.01	0.17	829.	-0.04	1.05	305
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	-0.01	0.78	.376	0.00	0.00	.971
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.78	.377	0.00	0.15	695
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.00	0.02	988.	0.06	3.02	.082
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.03	1.51	.219	-0.08	12.80	< .001
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.03	.853	0.00	0.03	.857
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	0.92	.337	-0.01	0.82	366
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	0.15	695	0.02	0.14	.712
HRS						
Shift of male controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.02	3.34	290.	0.01	0.41	.520
Shift of female controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.02	4.49	.034	0.04	14.19	< .001
Shift of grandfathers vs. $0\left(\hat{\gamma}_{20}+\hat{\gamma}_{30}+\hat{\gamma}_{21}+\hat{\gamma}_{31}\right)$	0.01	0.05	.818	0.01	0.05	.815
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	0.00	0.01	.927	0.00	0.01	936
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02	0.39	.531	0.00	0.01	926
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.01	0.74	.390	0.01	0.58	.445
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.15	.701	0.01	1.32	.250
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	1.07	.301	-0.04	2.61	.106
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.04	7.70	900.	0.03	3.92	.048
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	1.17	.279	0.02	1.28	.258
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.02	1.94	.163	-0.02	2.13	.144
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.00	0.01	.912	0.00	0.01	.904

Note. The linear contrasts are based on the models from Table S9. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S11

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	«≻	95% CI	t	d	<i>⟨</i> ≻	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.50	[3.45, 3.54]	157.26	< .001	3.48	[3.43, 3.52]	138.40	< .001
Propensity score, $\hat{\gamma}_{04}$	0.09	[0.03, 0.15]	2.93	.003	0.04	[-0.03, 0.10]	1.14	.253
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.01, 0.03]	0.91	.363	0.00	[-0.02, 0.02]	-0.23	.819
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-4.07	< .001	-0.03	[-0.04, -0.02]	-5.38	< .001
Shift, $\hat{\gamma}_{30}$	-0.01	[-0.04, 0.02]	-0.53	.594	0.07	[0.03, 0.10]	3.93	< .001
Grandparent, $\hat{\gamma}_{01}$	-0.11	[-0.20, -0.02]	-2.33	.020	-0.07	[-0.16, 0.02]	-1.49	.137
Working, $\hat{\gamma}_{02}$	-0.06	[-0.10, -0.02]	-2.77	900.	0.01	[-0.03, 0.05]	0.61	.540
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.04	[-0.01, 0.09]	1.55	.121	0.05	[0.00, 0.10]	2.09	.037
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[0.00, 0.05]	1.96	050.	0.03	[0.01, 0.05]	2.68	200.
Shift * Grandparent, $\hat{\gamma}_{31}$	0.00	[-0.08, 0.07]	-0.07	.947	-0.08	[-0.15, -0.01]	-2.17	.030
Before-slope * Working, $\hat{\gamma}_{12}$	0.00	[-0.03, 0.02]	-0.30	292.	0.00	[-0.03, 0.02]	-0.37	.712
After-slope * Working, $\hat{\gamma}_{22}$	0.02	[0.01, 0.04]	2.87	.004	0.02	[0.01, 0.03]	2.83	.005
Shift * Working, $\hat{\gamma}_{32}$	0.02	[-0.03, 0.06]	0.77	.441	-0.04	[-0.08, 0.00]	-1.87	.061
Grandparent * Working, $\hat{\gamma}_{03}$	0.18	[0.08, 0.28]	3.68	< .001	0.11	[0.02, 0.20]	2.40	.017
Before-slope * Grandparent * Working, $\hat{\gamma}_{13}$	-0.06	[-0.12, -0.01]	-2.15	.032	-0.06	[-0.12, -0.01]	-2.22	.026
After-slope * Grandparent * Working, $\hat{\gamma}_{23}$	-0.02	[-0.05, 0.02]	-0.97	.333	-0.01	[-0.05, 0.02]	-0.94	.347
Shift * Grandparent * Working, $\hat{\gamma}_{33}$	-0.01	[-0.10, 0.09]	-0.11	.914	0.05	[-0.04, 0.14]	1.08	.282

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S12

Linear Contrasts for Agreeableness (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} \right)$	-0.03	5.08	.024	0.04	7.79	.005
Shift of working controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.01	0.52	.472	0.02	3.86	.049
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.01	0.14	.713	-0.01	0.15	669.
Shift of working grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.01	0.10	.755	0.01	0.09	892.
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.02	0.44	.505	-0.05	2.76	260.
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	-0.02	2.73	660.	-0.01	0.76	.383
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.36	.548	0.02	2.00	.157
Shift of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.00	0.00	996	-0.01	0.35	.553
Shift of not-working controls vs. working controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.04	4.89	.027	-0.02	1.43	.232
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.07	6.12	.013	-0.07	6.87	600.
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.01	0.12	.734	0.01	0.13	.714
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.03	0.22	.637	0.03	0.23	.633

Note. The linear contrasts are based on the models from Table S11. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S13

Fixed Effects of Agreeableness Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	⟨~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.47	[3.43, 3.52]	155.84	< .001	3.47	[3.42, 3.53]	130.92	< .001
Propensity score, $\hat{\gamma}_{04}$	0.16	[0.08, 0.24]	3.91	< .001	0.15	[0.07, 0.23]	3.67	< .001
After-slope, $\hat{\gamma}_{10}$	-0.02	[-0.03, -0.01]	-4.36	< .001	-0.02	[-0.03, -0.01]	-3.63	< .001
Grandparent, $\hat{\gamma}_{01}$	-0.04	[-0.11, 0.03]	-1.16	.246	-0.05	[-0.12, 0.02]	-1.49	.137
Caring, $\hat{\gamma}_{02}$	0.00	[-0.04, 0.03]	-0.27	.784	0.02	[-0.01, 0.05]	1.09	.276
After-slope * Grandparent, $\hat{\gamma}_{11}$	0.03	[0.00, 0.05]	2.36	.018	0.02	[0.00, 0.04]	2.02	.044
After-slope * Caring, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.02]	0.29	.773	0.00	[-0.02, 0.01]	-0.60	.550
Grandparent * Caring, $\hat{\gamma}_{03}$	0.02	[-0.07, 0.11]	0.46	.645	0.00	[-0.09, 0.08]	-0.09	.925
After-slope * Grandparent * Caring, $\hat{\gamma}_{13}$	0.01	[-0.02, 0.04]	0.57	.572	0.02	[-0.02, 0.05]	1.00	.319

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild care Note. Two models were computed (only HRS): grandparents matched with parent controls and with since the last assessment.

Table S14

Linear Contrasts for Agreeableness (Moderated by Grandchild Care; only HRS).

	Pare	arent controls	crols	Nonparen	arent cc	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.04	7.62	900.	.006 0.04	9.15	.002
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.01	0.6	31 .434 0	0.01	0.66	.415

Note. The linear contrasts are based on the models from Table S13. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S15

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i><</i> ≻	95% CI	t	<i>d</i>	⟨ ~	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.77		130.27	< .001	3.82		112.10	< .001
Propensity score, $\hat{\gamma}_{02}$	0.00		-0.02	786.	0.01		0.24	.813
	0.00		-0.84	.402	0.00		-0.26	962.
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.02, -0.01]	-6.17	< .001	0.01	[0.00, 0.01]	3.45	.001
Shift, $\hat{\gamma}_{30}$	0.04		3.14	.002	0.00		-0.15	.881
Grandparent, $\hat{\gamma}_{01}$	-0.01		-0.24	.813	-0.06		-1.22	.225
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00		0.77	.439	0.00		0.50	.617
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		2.73	900.	-0.01		-1.61	.107
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04		-1.49	.137	0.00		0.01	686.
Intercept, $\hat{\gamma}_{00}$	3.41		206.26	< .001	3.35	[3.31, 3.38]	172.70	< .001
Propensity score, $\hat{\gamma}_{02}$	0.08		2.86	.004	0.17	[0.11, 0.23]	5.74	< .001
Before-slope, $\hat{\gamma}_{10}$	0.00		0.31	.754	0.00	[-0.01, 0.01]	0.72	.473
After-slope, $\hat{\gamma}_{20}$	-0.01		-4.11	< .001	-0.01	[-0.02, -0.01]	-3.84	< .001
Shift, $\hat{\gamma}_{30}$	0.02	[0.00, 0.04]	1.93	.053	0.00	[-0.02, 0.02]	0.01	.991
Grandparent, $\hat{\gamma}_{01}$	0.02		0.60	.547	0.03	[-0.02, 0.08]	1.08	.280
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01		0.55	.580	0.00	[-0.02, 0.03]	0.43	.664
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		3.06	.002	0.02	[0.01, 0.04]	3.01	.003
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05		-2.36	.018	-0.03	[-0.07, 0.01]	-1.59	.111

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S16

Linear Contrasts for Conscientiousness.

	3	110 00110	2701	DATTON T	relit co	Parent controls Nonparent controls
Linear Contrast	$\hat{\gamma}_c$	$\hat{\gamma}_c \qquad \chi^2 \qquad p$	d	$\hat{\gamma}_c \qquad \chi^2$	χ^2	d
TISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0.	0.02	4.71	.030	0.01	0.40	.525
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$	0.00	0.01	.928	0.00		.932
$\hat{\gamma}_{31})$	-0.03		.286	-0.01		.718
	0.00		.655	0.00	0.18	299.
After-slope of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{21})$ 0. HRS	0.00		.942	0.00	0.01	.943
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0.	0.01		.491	-0.01	2.83	.092
	-0.02	2.49	.114	-0.02	2.82	.093
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ -0.	-0.03		.085	-0.01	0.54	.462
	0.01	0.59	.444	0.01	0.68	.409
After-slope of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{21})$ 0.	0.01	1.88	.170	0.01	2.13	.145

Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from ||the car R package (Fox & Weisberg, 2019) based on the models from Table S15. $\hat{\gamma}_c$ combined fixed-effects estimate.

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Gender.

Table S17

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	⟨>	95% CI	t	d
TISS								
Intercept, $\hat{\gamma}_{00}$	3.69	[3.60, 3.77]	87.30	< .001	3.70	[3.61, 3.80]	75.84	< .001
Propensity score, $\hat{\gamma}_{04}$	0.00	[-0.08, 0.07]	-0.03	926.	0.01	[-0.06, 0.08]	0.34	.732
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	0.64	.524	0.00	[-0.01, 0.01]	0.75	.455
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, -0.01]	-3.43	.001	0.00	[0.00, 0.01]	0.71	.477
Shift, $\hat{\gamma}_{30}$	0.04	[0.00, 0.08]	2.16	.031	0.00	[-0.03, 0.04]	0.14	892
Grandparent, $\hat{\gamma}_{01}$	0.03	[-0.09, 0.16]	0.48	.634	0.01	[-0.13, 0.14]	0.12	206.
Female, $\hat{\gamma}_{02}$	0.16	[0.05, 0.27]	2.88	.004	0.22	[0.09, 0.34]	3.26	.001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.02]	-0.01	.994	0.00	[-0.02, 0.02]	-0.06	.953
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[0.00, 0.04]	2.53	.011	0.01	[-0.01, 0.02]	0.65	.513
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04	[-0.13, 0.04]	-1.07	.286	-0.01	[-0.09, 0.08]	-0.14	988.
Before-slope * Female, $\hat{\gamma}_{12}$	-0.01	[-0.02, 0.00]	-1.61	.108	-0.01	[-0.02, 0.00]	-1.23	.218
After-slope * Female, $\hat{\gamma}_{22}$	-0.01	[-0.02, 0.00]	-1.11	.268	0.01	[0.00, 0.02]	2.38	.017
Shift * Female, $\hat{\gamma}_{32}$	0.00	[-0.05, 0.05]	-0.04	970	-0.01	[-0.06, 0.04]	-0.41	.683
Grandparent * Female, $\hat{\gamma}_{03}$	-0.07	[-0.24, 0.10]	-0.81	.418	-0.12	[-0.30, 0.06]	-1.30	.193
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.01	[-0.02, 0.03]	0.61	.542	0.01	[-0.02, 0.03]	0.44	.663
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.01	[-0.03, 0.01]	-0.84	.403	-0.03	[-0.05, 0.00]	-2.37	.018
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.01	[-0.11, 0.12]	0.11	.916	0.02	[-0.10, 0.13]	0.27	787.
HRS								
Intercept, $\hat{\gamma}_{00}$	3.35	[3.30, 3.39]	143.72	< .001	3.26	[3.21, 3.31]	124.79	< .001
Propensity score, $\hat{\gamma}_{04}$	0.09	[0.03, 0.14]	3.00	.003	0.17	[0.11, 0.23]	5.65	< .001
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.01, 0.02]	1.19	.234	0.01	[0.00, 0.03]	2.08	.037
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.00]	-2.42	.016	0.00	[-0.01, 0.01]	-0.10	.920
Shift, $\hat{\gamma}_{30}$	0.02	[-0.01, 0.05]	1.18	.237	-0.01	[-0.04, 0.02]	-0.74	.462
Grandparent, $\hat{\gamma}_{01}$	-0.03	[-0.10, 0.05]	-0.74	.461	0.01	[-0.07, 0.09]	0.28	.780
Female, $\hat{\gamma}_{02}$	0.11	[0.05, 0.17]	3.81	< .001	0.15	[0.09, 0.22]	4.67	< .001
	0.01	[-0.02, 0.05]	0.74	.460	0.01	[-0.03, 0.04]	0.45	.651
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[0.01, 0.05]	2.64	800.	0.02	[0.00, 0.04]	1.71	.088
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.08	[-0.15, -0.02]	-2.57	.010	-0.06	[-0.12, 0.00]	-1.85	.064
Before-slope * Female, $\hat{\gamma}_{12}$	-0.01	[-0.03, 0.01]	-1.34	.180	-0.02	[-0.04, 0.00]	-2.16	.031
After-slope * Female, $\hat{\gamma}_{22}$	0.00	[-0.02, 0.01]	-0.39	.695	-0.02	[-0.03, -0.01]	-3.05	.002
Shift * Female, $\hat{\gamma}_{32}$	0.00	[-0.04, 0.04]	0.13	.895	0.02	[-0.02, 0.05]	0.92	.356

Table S17 continued

		Parent controls	itrols			Nonparent controls	ontrols	
Parameter	<≻	95% CI	t		->>	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.08	[-0.02, 0.18]	1.64	.101	0.03	[-0.07, 0.13]	0.62	.538
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.01	[-0.06, 0.03]	-0.47	.637	0.00	[-0.05, 0.04]	-0.21	.836
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.01	[-0.04, 0.02]	-0.79	.428	0.00	[-0.02, 0.03]	0.29	.770
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	90.0	[-0.03, 0.14]	1.34	.181	0.05	[-0.04, 0.13]	1.11	.269

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S18

Linear Contrasts for Conscientiousness (Moderated by Gender).

	Pare:	Parent controls	rols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
LISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.03	2.83	.092	0.01	0.10	.750
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	0.02	1.93	.165	0.01	0.22	.640
Shift of grandfathers vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.02	.883	0.00	0.02	988.
7.0	-0.01	0.04	.849	-0.01	0.03	.857
	-0.02	0.40	.528	0.00	0.00	.991
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.01	0.81	.368	0.01	0.34	.560
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	2.25	.133	-0.02	7.67	900.
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.03	0.64	.422	-0.01	0.14	.709
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.01	0.09	.763	0.00	0.01	.930
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.02	.901	0.00	0.02	899
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.02	2.25	.134	-0.02	2.12	.146
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.01	90.0	.812	-0.01	0.05	.820
HRS						
Shift of male controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.01	0.21	.648	-0.01	1.00	.317
Shift of female controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.01	0.26	609.	-0.01	1.95	.163
Shift of grandfathers vs. $0\left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}\right)$	-0.05	4.94	.026	-0.05	5.72	.017
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	0.00	0.01	906.	0.00	0.01	.912
	-0.05	4.78	0.029	-0.04	2.75	260.
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.00	0.02	006.	0.00	0.04	.839
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.02	2.96	.085	0.02	5.42	.020
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.01	0.11	.737	0.01	0.27	009.
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.00	0.00	866.	0.00	0.02	877
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.02	1.36	.244	-0.03	1.58	.208
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	1.17	.279	-0.02	1.43	.232
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.05	2.47	.116	0.05	2.90	680.
- 1	0.05	2.47	011.	0.05	.i	g

Note. The linear contrasts are based on the models from Table S17. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S19

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	itrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	<i>⟨</i> ~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.41		165.13	< .001	3.37	[3.33, 3.42]	146.02	< .001
Propensity score, $\hat{\gamma}_{04}$	0.06		2.13	.033	0.14		4.83	< .001
Before-slope, $\hat{\gamma}_{10}$	-0.01		-1.55	.121	0.00		-0.28	.779
After-slope, $\hat{\gamma}_{20}$	-0.02		-3.55	< .001	-0.02		-4.10	< .001
Shift, $\hat{\gamma}_{30}$	0.02		1.49	.137	-0.02		-1.30	.193
Grandparent, $\hat{\gamma}_{01}$	-0.09		-2.19	0.029	-0.10		-2.30	.022
Working, $\hat{\gamma}_{02}$	0.01		0.45	029.	-0.03		-1.60	.109
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.08		3.54	< .001	0.07		3.16	.002
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03		2.66	800.	0.03		2.96	.003
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.09		-2.64	800.	-0.05		-1.46	.145
Before-slope * Working, $\hat{\gamma}_{12}$	0.02		2.21	0.027	0.01		0.91	.362
After-slope * Working, $\hat{\gamma}_{22}$	0.01		1.92	.055	0.02		2.96	.003
Shift * Working, $\hat{\gamma}_{32}$	-0.01		-0.45	.653	0.03		1.30	.194
Grandparent * Working, $\hat{\gamma}_{03}$	0.14		3.16	.002	0.17		4.05	< .001
Before-slope * Grandparent * Working, $\hat{\gamma}_{13}$	-0.10		-3.69	< .001	-0.09		-3.31	.001
After-slope * Grandparent * Working, $\hat{\gamma}_{23}$	-0.01		-0.76	.449	-0.02		-1.17	.240
Shift * Grandparent * Working, $\hat{\gamma}_{33}$	90.0	[-0.03, 0.15]	1.31	.191	0.02	[-0.06, 0.11]	0.56	.578

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S20

Linear Contrasts for Conscientiousness (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Nonpa	Nonparent controls	ıtrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.01	0.23	.635	-0.04	9.72	.002
Shift of working controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.01	1.06	.304	0.00	0.28	.598
Shift of not-working grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.06	5.20	.023	-0.06	5.93	.015
Shift of working grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.01	0.09	.768	-0.01	0.13	.717
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.06	5.09	.024	-0.02	0.46	.498
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	-0.02	1.75	.185	-0.02	1.50	.221
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.02	2.59	.107	0.01	1.83	.176
Shift of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.52	.469	-0.01	0.31	.578
Shift of not-working controls vs. working controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.00	0.06	808	0.04	8.10	.004
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.08	9.38	.002	-0.08	10.44	.001
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.01	.920	0.00	0.02	879
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.05	2.62	.106	0.05	2.89	.089

Note. The linear contrasts are based on the models from Table S19. $\hat{\gamma}_c = \text{combined fixed-effects estimate.}$

Table S21

Fixed Effects of Conscientiousness Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	,≿	95% CI	t	d	<i></i>	95% CI	t	\overline{b}
Intercept, $\hat{\gamma}_{00}$	3.44	[3.40, 3.48]	168.69	< .001	3.34	[3.30, 3.39]	138.33	< .001
Propensity score, $\hat{\gamma}_{04}$	0.08	[0.00, 0.15]	2.03	.042	0.29	[0.22, 0.37]	7.78	< .001
After-slope, $\hat{\gamma}_{10}$	-0.02	[-0.03, -0.01]	-3.80	< .001	-0.01	[-0.02, 0.00]	-2.74	900.
Grandparent, $\hat{\gamma}_{01}$	-0.02	[-0.08, 0.05]	-0.51	.610	-0.02	[-0.09, 0.04]	-0.74	.462
Caring, $\hat{\gamma}_{02}$	0.00	[-0.03, 0.03]	0.03	.972	0.02	[0.00, 0.05]	1.64	.102
After-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.01, 0.03]	1.37	.170	0.01	[-0.01, 0.02]	0.73	.468
After-slope * Caring, $\hat{\gamma}_{12}$	0.00	[-0.01, 0.01]	0.01	.993	-0.01	[-0.02, 0.00]	-1.72	.085
Grandparent * Caring, $\hat{\gamma}_{03}$	-0.04	[-0.12, 0.04]	-0.93	.355	-0.07	[-0.14, 0.01]	-1.74	.081
After-slope * Grandparent * Caring, $\hat{\gamma}_{13}$	0.03	[0.00, 0.06]	1.88	090.	0.04	[0.01, 0.07]	2.82	.005

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S22

Linear Contrasts for Conscientiousness (Moderated by Grandchild Care; only HRS).

	Paı	Parent control	trols	Non	onparent co	t controls
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$			< .001	0.05	19.49	< .001
Aiter-slope of not-caring grandparents vs. caring grandparents $(\gamma_{12} + \gamma_{13})$	0.03	4.48	.034	0.03	27.0	.022

Note. The linear contrasts are based on the models from Table S21. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S23

Fixed Effects of Extraversion Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	\\ \times_	95% CI	t	<i>d</i>	ψ,	95% CI	t	<i>d</i>
LISS								
Intercept, $\hat{\gamma}_{00}$	3.25		87.65	< .001	3.29	[3.20, 3.39]	67.72	< .001
Propensity score, $\hat{\gamma}_{02}$	-0.01		-0.26	.793	0.01	[-0.07, 0.08]	0.18	.860
Before-slope, $\hat{\gamma}_{10}$	-0.01		-1.77	720.	0.00	[0.00, 0.01]	0.65	.515
After-slope, $\hat{\gamma}_{20}$	0.00		-1.47	.141	-0.01	[-0.02, 0.00]	-3.62	< .001
Shift, $\hat{\gamma}_{30}$	-0.01	[-0.04, 0.01]	-0.97	.332	-0.01	[-0.03, 0.02]	-0.41	.683
Grandparent, $\hat{\gamma}_{01}$	90.0		1.03	306	0.01	[-0.12, 0.14]	0.19	.849
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00		-0.40	069.	-0.01	[-0.02, 0.00]	-1.44	.150
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00		0.57	.569	0.01	[0.00, 0.02]	1.45	.146
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.02	[-0.08, 0.05]	-0.51	209	-0.02	[-0.08, 0.04]	-0.73	.467
HRS								
Intercept, $\hat{\gamma}_{00}$	3.20		159.82	< .001	3.11	[3.07, 3.16]	133.29	< .001
Propensity score, $\hat{\gamma}_{02}$	0.02		0.56	.577	0.05	[-0.02, 0.12]	1.44	.150
Before-slope, $\hat{\gamma}_{10}$	0.00		-0.52	.604	0.01	[-0.01, 0.02]	0.99	.321
After-slope, $\hat{\gamma}_{20}$	0.00		-0.64	.520	0.00	[-0.01, 0.01]	-0.35	.729
$\mathrm{Shift},\hat{\gamma}_{30}$	0.02		1.68	.093	0.01	[-0.01, 0.03]	1.07	.285
Grandparent, $\hat{\gamma}_{01}$	0.00		0.05	.957	0.07	[0.01, 0.14]	2.20	.028
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00		0.31	.757	0.00	[-0.03, 0.02]	-0.35	.728
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01		1.46	.143	0.01	[0.00, 0.03]	1.38	.169
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04	[-0.09, 0.01]	-1.55	.121	-0.03	[-0.08, 0.02]	-1.30	.193

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched

with parent controls and with nonparent controls. CI = confidence interval.

Table S24

Linear Contrasts for Extraversion.

Linear Contrast $\hat{\gamma}_{c} \qquad \chi^{2} \qquad p \qquad \hat{\gamma}_{c} \qquad \chi^{2}$ LISS Shift of the controls vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} \right)$ Shift of the grandparents vs. $0 \left(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} \right)$ Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{01} + \hat{\gamma}_{31})$ Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{01} + \hat{\gamma}_{31})$ Could be shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{01} + \hat{\gamma}_{31})$	$\frac{\chi^2}{\chi^2}$ p 12 .145 58 208	$\hat{\gamma}_c$ -0.02	χ^2	a
-0.02 -0.03 -0.03				L
$^{-0.02}$				
$\hat{\gamma}_{21}$ -0.03			1.73	.188
$\hat{\gamma}_{91}$) -0.01			1.47	.225
1				.620
	77 .183	-0.01	1.65	.200
After-slope of the grandparents vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{21})$ 0.00 0.01 HRS				.852
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0.02 3.63	53 .057		1.51	.219
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$ -0.01	34 .561		0.36	.548
$\hat{\gamma}_{31}$) -0.03	90 .168	-0.02	1.19	.275
			0.01	.929
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$) 0.01 1.73	73 .189	0.01	1.86	.173

Note. The linear contrasts are needed in cases where estimates of interest are represented by multiple fixed-effects coefficients and are computed using the linearHypothesis function from ||the car R package (Fox & Weisberg, 2019) based on the models from Table S23. $\hat{\gamma}_c$ combined fixed-effects estimate.

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Gender.

Table S25

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	. d	«≻	95% CI	t	d
TISS								
Intercept, $\hat{\gamma}_{00}$	3.28	[3.18, 3.39]	60.26	< .001	3.22	[3.08, 3.35]	46.79	< .001
Propensity score, $\hat{\gamma}_{04}$	-0.01	[-0.09, 0.08]	-0.15	.881	0.01	[-0.06, 0.09]	0.30	.765
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.00]	-1.82	690.	0.02	[0.01, 0.03]	4.00	< .001
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.00]	-2.56	.011	0.00	[-0.01, 0.00]	-1.08	.280
Shift, $\hat{\gamma}_{30}$	-0.04	[-0.08, 0.01]	-1.68	.094	-0.05	[-0.09, -0.01]	-2.43	.015
Grandparent, $\hat{\gamma}_{01}$	0.01	[-0.15, 0.17]	0.00	.929	0.07	[-0.11, 0.26]	0.78	.435
Female, $\hat{\gamma}_{02}$	-0.06	[-0.20, 0.09]	-0.78	.436	0.13	[-0.05, 0.31]	1.45	.148
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.02]	0.14	.893	-0.03	[-0.05, -0.01]	-2.49	.013
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.01	[-0.01, 0.03]	1.19	.236	0.00	[-0.01, 0.02]	0.48	.628
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.01	[-0.10, 0.08]	-0.12	.903	0.01	[-0.08, 0.10]	0.22	.825
Before-slope * Female, $\hat{\gamma}_{12}$	0.01	[-0.01, 0.02]	0.87	.386	-0.03	[-0.04, -0.02]	-4.83	< .001
After-slope * Female, $\hat{\gamma}_{22}$	0.01	[0.00, 0.02]	2.10	.035	-0.01	[-0.02, 0.00]	-2.03	.043
Shift * Female, $\hat{\gamma}_{32}$	0.04	[-0.02, 0.09]	1.36	.174	0.08	[0.03, 0.14]	2.91	.004
Grandparent * Female, $\hat{\gamma}_{03}$	0.09	[-0.13, 0.31]	0.82	.411	-0.11	[-0.36, 0.13]	-0.90	369
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.01	[-0.04, 0.02]	-0.53	.593	0.03	[0.00, 0.06]	2.09	.037
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.01	[-0.04, 0.01]	-1.11	.266	0.01	[-0.02, 0.03]	0.71	.475
	-0.02	[-0.14, 0.10]	-0.29	.768	-0.06	[-0.18, 0.06]	-0.98	.328
HRS								
Intercept, $\hat{\gamma}_{00}$	3.15	[3.09, 3.21]	108.70	< .001	3.11	[3.04, 3.17]	96.32	< .001
Propensity score, $\hat{\gamma}_{04}$	0.02	[-0.04, 0.09]	0.64	.520	0.05	[-0.02, 0.12]	1.31	.191
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.01, 0.02]	0.70	.482	0.00	[-0.02, 0.01]	-0.37	.709
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.02]	2.05	.040	0.00	[-0.01, 0.01]	0.51	609.
Shift, $\hat{\gamma}_{30}$	-0.01	[-0.04, 0.02]	-0.52	.601	-0.01	[-0.04, 0.03]	-0.41	.685
Grandparent, $\hat{\gamma}_{01}$	-0.01	[-0.10, 0.08]	-0.28	.782	0.02	[-0.08, 0.11]	0.39	269.
Female, $\hat{\gamma}_{02}$	0.08	[0.01, 0.16]	2.24	.025	0.01	[-0.07, 0.09]	0.30	.767
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.02	[-0.06, 0.02]	-0.85	397	-0.01	[-0.05, 0.03]	-0.41	.684
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.03]	0.35	.730	0.01	[-0.01, 0.04]	1.09	.276
Shift * Grandparent, $\hat{\gamma}_{31}$	0.00	[-0.08, 0.07]	-0.12	.905	-0.01	[-0.08, 0.06]	-0.19	.853
Before-slope * Female, $\hat{\gamma}_{12}$	-0.02		-1.44	.150	0.02	[-0.01, 0.04]	1.40	.161
After-slope * Female, $\hat{\gamma}_{22}$	-0.03	[-0.04, -0.01]	-3.28	.001	-0.01	[-0.02, 0.01]	-0.98	.327
Shift * Female, $\hat{\gamma}_{32}$	0.02	[0.00, 0.09]	2.17	.030	0.03	[-0.01, 0.07]	1.45	.146

Table S25 continued

		Parent controls	itrols			Nonparent controls	ontrols	
Parameter	,≿	95% CI	t	d	<i>∞</i>	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.03		0.45	.649	0.10	[-0.03, 0.22]	1.51	.131
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.04	[-0.01, 0.09]	1.42	.155	0.01	[-0.05, 0.06]	0.23	.817
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.01	[-0.02, 0.05]	0.79	.431	0.00	[-0.04, 0.03]	-0.27	.790
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	90.0-	[-0.16, 0.04]	-1.19	.234	-0.04	[-0.14, 0.05]	-0.87	.383

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S26

Linear Contrasts for Extraversion (Moderated by Gender).

	Pare	Parent controls	rols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	, d	$\hat{\gamma}_c$	χ^2	d
SSIT						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.05	6.28	.012	-0.05	9.10	.003
Shift of female controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.01	0.09	.763	0.02	0.95	.330
Shift of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$)	-0.04	1.25	.264	-0.04	1.16	.281
Shift of grandmothers vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.45	.500	-0.02	0.41	.520
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01	0.02	.891	0.01	0.13	.716
\vdash	-0.01	0.42	.518	0.00	0.13	.720
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.13	.722	0.01	2.45	.117
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.03	0.54	.461	-0.04	1.03	.311
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.05	4.20	.040	0.07	8.22	.004
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.03	.871	0.00	0.01	.943
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.03	.857	0.00	0.04	.834
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	0.14	.709	0.02	0.13	.717
HRS						
Shift of male controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.00	0.06	.812	0.00	0.09	.765
Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	0.03	5.44	.020	0.02	3.52	.061
Shift of grandfathers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.01	.905	0.00	0.01	.903
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	-0.02	0.73	.393	-0.02	0.78	.377
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.00	666.	0.01	0.06	.805
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.02	1.42	.234	0.00	0.01	606.
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.02	2.40	.122	0.01	0.65	.419
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.05	3.28	020.	-0.04	2.65	.104
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.02	1.88	.171	0.02	2.10	.147
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	0.79	.373	0.02	0.85	.357
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	0.57	.452	-0.01	0.62	.431
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.44	.508	-0.02	0.47	.495

Note. The linear contrasts are based on the models from Table S25. $\hat{\gamma}_c = \text{combined fixed-effects estimate}$.

Table S27

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>√</i> ≻	95% CI	t	d	⟨≻	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.18	[3.13, 3.23]	129.04	< .001	3.12	[3.07, 3.17]	112.49	< .001
Propensity score, $\hat{\gamma}_{04}$	0.01		0.31	.757	0.03	[-0.04, 0.10]	0.77	.439
Before-slope, $\hat{\gamma}_{10}$	0.02		1.69	.091	0.00	[-0.02, 0.02]	0.00	.927
After-slope, $\hat{\gamma}_{20}$	0.00		0.12	.901	-0.01	[-0.02, 0.00]	-1.24	.213
Shift, $\hat{\gamma}_{30}$	-0.04		-2.48	.013	0.02	[-0.02, 0.05]	0.91	.364
Grandparent, $\hat{\gamma}_{01}$	-0.06		-1.23	.217	-0.01	[-0.11, 0.09]	-0.18	.853
Working, $\hat{\gamma}_{02}$	0.03		1.19	.232	0.00	[-0.05, 0.04]	-0.12	.902
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.02		0.74	.460	0.04	[-0.02, 0.09]	1.38	.169
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02		1.65	660.	0.03	[0.00, 0.05]	2.32	.021
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.02		-0.46	.643	-0.08	[-0.16, 0.00]	-2.02	.044
Before-slope * Working, $\hat{\gamma}_{12}$	-0.03		-2.38	.017	0.01	[-0.02, 0.03]	0.59	.556
After-slope * Working, $\hat{\gamma}_{22}$	0.00		-0.19	.848	0.01	[0.00, 0.03]	1.79	.074
Shift * Working, $\hat{\gamma}_{32}$	0.10		4.18	< .001	-0.01	[-0.06, 0.04]	-0.43	299.
Grandparent * Working, $\hat{\gamma}_{03}$	0.08		1.53	.126	0.11	[0.01, 0.21]	2.13	.034
Before-slope * Grandparent * Working, $\hat{\gamma}_{13}$	-0.01		-0.46	.646	-0.05	[-0.11, 0.01]	-1.69	.092
After-slope * Grandparent * Working, $\hat{\gamma}_{23}$	-0.01		-0.80	.425	-0.03	[-0.06, 0.00]	-1.69	060.
Shift * Grandparent * Working, $\hat{\gamma}_{33}$	-0.03	[-0.13, 0.08]	-0.49	.623	0.08	[-0.02, 0.18]	1.57	.115

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S28

Linear Contrasts for Extraversion (Moderated by Paid Work; only HRS).

	Рал	Parent controls	trols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.04	9.28	.002	0.01	0.42	.515
Shift of working controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.05	22.76	< .001	0.01	1.67	.196
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	2.05	.152	-0.04	2.20	.138
Shift of working grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.01	0.40	.526	0.01	0.42	.517
not-working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.00	0.00	.957	-0.05	2.60	.107
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.01	0.12	.729	-0.02	1.06	.303
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.28	.598	0.00	0.00	.948
Shift of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.04	2.46	.117	0.00	0.00	786.
Shift of not-working controls vs. working controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.10	27.75	< .001	0.00	0.04	.852
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.04	2.34	.126	-0.04	2.52	.113
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.02	0.97	.325	-0.02	1.01	.314
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	90.0	2.24	.135	90.0	2.38	.123

Note. The linear contrasts are based on the models from Table S27. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S29

Fixed Effects of Extraversion Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>√</i> ≻	95% CI	t		⟨~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.19	[3.14, 3.24]	128.26	< .001	3.12	[3.06, 3.18]	102.87	< .001
Propensity score, $\hat{\gamma}_{04}$	0.13	[0.04, 0.22]	2.98	.003	0.08	[-0.01, 0.17]	1.67	960.
After-slope, $\hat{\gamma}_{10}$	-0.01		-2.61	600.	0.00	[-0.01, 0.01]	-0.39	.694
Grandparent, $\hat{\gamma}_{01}$	-0.04		-1.05	.296	0.04	[-0.04, 0.12]	1.06	.288
Caring, $\hat{\gamma}_{02}$	0.00		0.23	.815	0.02	[-0.02, 0.05]	0.86	.391
After-slope * Grandparent, $\hat{\gamma}_{11}$	0.02		1.32	.186	0.00	[-0.02, 0.02]	0.30	292.
After-slope * Caring, $\hat{\gamma}_{12}$	0.00	[-0.02, 0.02]	-0.04	.965	0.00	[-0.02, 0.01]	-0.42	929.
	-0.04		-0.74	.461	-0.05	[-0.14, 0.04]	-1.04	.299
After-slope * Grandparent * Caring, $\hat{\gamma}_{13}$	0.03	[-0.01, 0.06]	1.56	.119	0.03	[0.00, 0.07]	1.83	290.

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S30

Linear Contrasts for Extraversion (Moderated by Grandchild Care; only HRS).

	Pare	Parent control	sols	Nonpa	arent cc	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$ After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	$0.04 \\ 0.03$	$10.45 \\ 2.98$.001	0.04	7.39	700.

Note. The linear contrasts are based on the models from Table S29. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S31

Fixed Effects of Neuroticism Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	⟨>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	2.48	[2.40, 2.56]	63.09	< .001	2.45	[2.35, 2.54]	51.88	< .001
Propensity score, $\hat{\gamma}_{02}$	0.01	[-0.09, 0.11]	0.19	.852	0.00	[-0.09, 0.09]	0.04	296.
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	-0.56	.575	-0.01	[-0.02, -0.01]	-3.66	< .001
After-slope, $\hat{\gamma}_{20}$	0.00	[0.00, 0.01]	0.94	.350	0.00	[0.00, 0.01]	1.31	.190
Shift, $\hat{\gamma}_{30}$	-0.05	[-0.08, -0.02]	-2.96	.003	-0.03	[-0.06, 0.01]	-1.58	.115
Grandparent, $\hat{\gamma}_{01}$	-0.08	[-0.20, 0.03]	-1.37	.170	-0.04	[-0.17, 0.08]	-0.67	.500
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.01, 0.02]	0.43	899.	0.02	[0.00, 0.03]	1.83	290.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.02, 0.01]	-0.33	.744	0.00	[-0.02, 0.01]	-0.48	.635
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.02	[-0.09, 0.06]	-0.41	.684	-0.04	[-0.12, 0.04]	-1.01	.312
HRS								
Intercept, $\hat{\gamma}_{00}$	2.07		94.42	< .001	2.07		79.36	< .001
Propensity score, $\hat{\gamma}_{02}$	0.00		0.12	.902	0.15		3.70	< .001
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.03, 0.00]	-1.90	.057	-0.03		-4.70	< .001
After-slope, $\hat{\gamma}_{20}$	-0.01		-1.20	.230	-0.01		-3.18	.001
Shift, $\hat{\gamma}_{30}$	0.01		0.42	.675	-0.03		-2.36	.018
Grandparent, $\hat{\gamma}_{01}$	-0.06		-1.64	.100	-0.12		-3.31	.001
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.02		1.28	.201	0.04		2.42	.016
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.02		-1.52	.127	-0.01		-0.80	.424
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.06	[-0.12, 0.00]	-2.12	.034	-0.03	[-0.08, 0.03]	-0.88	.381

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S32

Linear Contrasts for Neuroticism.

	Pa_1	Parent controls	trols	Nonp	Nonparent controls	ontrols
Linear Contrast	$\stackrel{\circ}{\gamma_c}$	χ^2	d	$\hat{\gamma}_c$ χ^2	χ^2	d
SSIT						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.05	10.12	.001	-0.02	2.26	.133
Shift of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.07	4.99	.025	-0.07	4.74	.029
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02		.587	-0.04	1.62	.203
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.00	0.04	.842	0.00	0.05	.830
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$) HRS	0.00	0.01	.914	0.00	0.03	.900
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.00	0.00	.993	-0.04	20.02	< .001
Shift of the grandparents vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.08	15.10	< .001	-0.08	15.78	< .001
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.08	12.06	.001	-0.03	2.29	.130
Before-slope of the grandparents vs. 0 $(\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.01	0.25	.618	0.01	0.19	999.
After-slope of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{21})$	-0.02	5.29	.021	-0.02	6.13	.013

R package (Fox & Weisberg, 2019) based on the models from Table S31. $\hat{\gamma}_c = \text{combined fixed-effects}$ multiple fixed-effects coefficients and are computed using the linearHypothesis function from the car Note. The linear contrasts are needed in cases where estimates of interest are represented by estimate.

Table S33

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Gender.

		Parent controls	ntrols			Nonparent controls	ontrols	
Parameter	<≻	95% CI	t	. d	<i>⇔</i>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	2.45	[2.34, 2.56]	43.45	< .001	2.32	[2.19, 2.45]	34.99	< .001
Propensity score, $\hat{\gamma}_{04}$	0.02		0.30	.767	0.02	[-0.08, 0.11]	0.33	.744
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.00]	-1.89	0.059	-0.01	[-0.02, 0.00]	-1.12	.263
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.02]	2.82	.005	0.01	[0.00, 0.02]	2.43	.015
Shift, $\hat{\gamma}_{30}$	-0.06	[-0.11, -0.01]	-2.24	.025	-0.05	[-0.10, 0.00]	-1.95	.052
Grandparent, $\hat{\gamma}_{01}$	-0.18	[-0.35, -0.01]	-2.11	0.035	-0.05	[-0.23, 0.13]	-0.56	.574
Female, $\hat{\gamma}_{02}$	0.05	[-0.09, 0.20]	0.72	.474	0.22	[0.05, 0.40]	2.52	.012
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.01, 0.04]	0.82	.413	0.01	[-0.02, 0.03]	0.46	.643
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.03	[-0.04, 0.01]	-1.36	.173	-0.01	[-0.04, 0.01]	-1.15	.250
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.03	[-0.14, 0.08]	-0.51	.612	-0.04	[-0.15, 0.08]	-0.63	.529
Before-slope * Female, $\hat{\gamma}_{12}$	0.02	[0.00, 0.03]	2.03	.043	-0.01	[-0.03, 0.00]	-1.83	290.
After-slope * Female, $\hat{\gamma}_{22}$	-0.02	[-0.03, -0.01]	-2.99	.003	-0.01	[-0.03, 0.00]	-2.10	036
Shift * Female, $\hat{\gamma}_{32}$	0.01	[-0.05, 0.08]	0.39	.700	0.04	[-0.03, 0.11]	1.19	.234
Grandparent * Female, $\hat{\gamma}_{03}$	0.18	[-0.05, 0.40]	1.54	.123	0.01	[-0.24, 0.25]	0.06	.951
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.01	[-0.05, 0.02]	-0.66	.508	0.02	[-0.02, 0.05]	1.08	.279
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.02	[-0.01, 0.05]	1.48	.138	0.02	[-0.01, 0.05]	1.08	.282
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.03	[-0.12, 0.18]	0.35	.730	0.00	[-0.16, 0.15]	-0.03	.975
HRS								
Intercept, $\hat{\gamma}_{00}$	1.98	[1.91, 2.04]	62.73	< .001	2.01	[1.94, 2.08]	56.33	< .001
Propensity score, $\hat{\gamma}_{04}$	0.01	[-0.07, 0.09]	0.26	.798	0.15	[0.07, 0.23]	3.58	< .001
$\text{Before-slope, } \hat{\gamma}_{10}$	-0.02	[-0.04, 0.00]	-2.11	.035	-0.03	[-0.05, -0.01]	-3.18	.001
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, 0.00]	-2.40	.017	-0.02	[-0.03, -0.01]	-2.92	.003
Shift, $\hat{\gamma}_{30}$	0.08	[0.04, 0.12]	4.02	< .001	0.00	[-0.03, 0.04]	0.21	.834
Grandparent, $\hat{\gamma}_{01}$	-0.06	[-0.16, 0.04]	-1.10	.272	-0.16	[-0.26, -0.05]	-2.89	.004
Female, $\hat{\gamma}_{02}$	0.17	[0.09, 0.25]	4.19	< .001	0.10	[0.01, 0.19]	2.23	026
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.06	[0.01, 0.10]	2.26	.024	0.00	[0.02, 0.11]	2.72	200.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.03, 0.03]	0.31	.755	0.01	[-0.02, 0.04]	0.48	.630
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.16	[-0.25, -0.07]	-3.60	< .001	-0.08	[-0.17, 0.00]	-1.89	050
Before-slope * Female, $\hat{\gamma}_{12}$	0.01	[-0.01, 0.04]	1.04	.300	0.00	[-0.03, 0.03]	0.09	.926
After-slope * Female, $\hat{\gamma}_{22}$	0.02		2.19	.029	0.01		1.15	.250
Shift * Female, $\hat{\gamma}_{32}$	-0.14	[-0.19, -0.08]	-5.02	< .001	-0.06	[-0.11, -0.01]	-2.33	.020

Table S33 continued

		Parent controls	ıtrols			Nonparent controls	ontrols	
Parameter	<i>√</i> ≻	95% CI	t	. d	<i>√</i> ≻	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	0.00	[-0.14, 0.13]	-0.01	.993	90.0	[-0.08, 0.20]	0.82	.410
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	-0.06	[-0.12, 0.00]	-1.85	065	-0.05	[-0.11, 0.01]	-1.49	.138
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.04	[-0.08, 0.00]	-1.80	.073	-0.03	[-0.07, 0.01]	-1.35	.176
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.17	[0.06, 0.29]	2.90	.004	0.10	[-0.01, 0.21]	1.71	280.

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S34

Linear Contrasts for Neuroticism (Moderated by Gender).

	Pa ₁	Parent controls	trols	Non	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
TISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.04	3.64	050	-0.04	2.76	960.
Shift of female controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.05	6.02	.014	-0.01	0.24	.621
Shift of grandfathers vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.09	3.89	.048	-0.09	3.67	.055
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.04	1.25	.263	-0.05	1.20	.273
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	0.80	.371	-0.05	0.97	.325
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.00	0.01	.935	0.03	4.48	.034
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.51	.476	0.00	0.12	.730
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.01	0.01	.904	-0.03	0.57	.451
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.01	0.06	.799	0.03	0.76	.382
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	0.08	.783	0.00	0.09	.765
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.00	0.02	.882	0.00	0.02	.875
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.04	0.50	.481	0.04	0.46	.498
HRS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	90.0	17.37	< .001	-0.02	1.08	.299
Shift of female controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.05	13.66	< .001	-0.07	25.37	< .001
Shift of grandfathers vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.09	9.12	.003	-0.09	9.50	.002
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	-0.07	6.49	.011	-0.07	6.77	600.
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.16	20.99	< .001	-0.07	5.10	.024
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.00	0.05	.821	0.02	0.73	.392
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	-0.03	5.41	.020	-0.02	2.20	.138
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.37	.541	0.00	0.01	.943
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.12	31.04	< .001	-0.05	6.32	.012
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.05	2.41	.120	-0.05	2.56	.109
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.02	0.84	360	-0.02	0.88	.349
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.02	0.30	.584	0.02	0.31	.577
Shift of grantiachers vs. grantinothers (722 + 732 + 723 + 733)	0.02	0.50	£00.	0.02	0.91	

Note. The linear contrasts are based on the models from Table S33. $\hat{\gamma}_c = \text{combined fixed-effects estimate.}$

Table S35

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	ontrols	
Parameter	<≻	95% CI	t	d	⟨~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	2.02	[1.96, 2.07]	72.21	< .001	2.02	[1.96, 2.08]	63.73	< .001
Propensity score, $\hat{\gamma}_{04}$	0.00	[-0.08, 0.08]	0.01	.993	0.15	[0.06, 0.23]	3.46	.001
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.02, 0.03]	0.18	.860	-0.01	[-0.04, 0.02]	-0.84	.400
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.02, 0.01]	-0.79	.429	-0.01	[-0.02, 0.00]	-1.41	.159
Shift, $\hat{\gamma}_{30}$	0.04	[0.00, 0.08]	1.91	050.	-0.03	[-0.07, 0.01]	-1.32	.188
Grandparent, $\hat{\gamma}_{01}$	0.13	[0.02, 0.25]	2.28	.022	0.07	[-0.04, 0.19]	1.27	.203
Working, $\hat{\gamma}_{02}$	0.08	[0.03, 0.13]	2.94	.003	0.07	[0.02, 0.12]	2.63	600.
Before-slope * Grandparent, $\hat{\gamma}_{11}$	-0.07	[-0.13, 0.00]	-2.04	.042	-0.06	[-0.12, 0.01]	-1.73	.084
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.02	[-0.05, 0.01]	-1.55	.122	-0.02	[-0.05, 0.01]	-1.37	.170
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.05	[-0.15, 0.05]	-1.03	.303	0.02	[-0.07, 0.11]	0.45	.655
Before-slope * Working, $\hat{\gamma}_{12}$	-0.02	[-0.05, 0.01]	-1.43	.153	-0.02	[-0.05, 0.01]	-1.54	.123
After-slope * Working, $\hat{\gamma}_{22}$	0.00	[-0.02, 0.02]	-0.23	.820	-0.01	[-0.02, 0.01]	-0.73	.463
Shift * Working, $\hat{\gamma}_{32}$	-0.05	[-0.11, 0.00]	-1.90	0.08	0.00	[-0.05, 0.06]	0.13	.893
Grandparent * Working, $\hat{\gamma}_{03}$	-0.25	[-0.38, -0.13]	-4.08	< .001	-0.25	[-0.37, -0.13]	-4.20	< .001
Before-slope * Grandparent * Working, $\hat{\gamma}_{13}$	0.11	[0.04, 0.19]	2.95	.003	0.12	[0.04, 0.19]	3.13	.002
After-slope * Grandparent * Working, $\hat{\gamma}_{23}$	0.01	[-0.03, 0.05]	0.51	.613	0.02	[-0.02, 0.06]	0.75	.451
Shift * Grandparent * Working, $\hat{\gamma}_{33}$	-0.02	[-0.15, 0.10]	-0.33	.740	-0.08	[-0.20, 0.04]	-1.23	.217
								l

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S36

Linear Contrasts for Neuroticism (Moderated by Paid Work; only HRS).

	Par	Parent controls	trols	Non	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.04	4.30	.038	-0.04	4.61	.032
Shift of working controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32}$)	-0.02	2.18	.140	-0.04	11.64	.001
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	1.12	.290	-0.04	1.24	.266
Shift of working grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$)	-0.10	15.38	< .001	-0.10	16.09	< .001
Shift of not-working controls vs. not-working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.07	3.47	.063	0.00	0.00	.974
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.05	5.89	.015	0.06	11.29	.001
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	-0.01	0.72	396	0.00	0.11	.743
Shift of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.08	8.11	.004	-0.06	4.48	.034
	-0.06	6.36	.012	0.00	0.02	.895
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.00	6.73	600.	0.09	7.45	900.
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.01	0.20	.651	0.01	0.23	.634
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.07	2.14	.143	-0.06	2.17	.141

Note. The linear contrasts are based on the models from Table S35. $\hat{\gamma}_c =$ combined fixed-effects estimate.

Table S37

Fixed Effects of Neuroticism Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	ontrols	
Parameter	.⊱	95% CI	t	d	.⊱	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	2.04		75.41	< .001	1.97	[1.91, 2.04]	59.05	< .001
Propensity score, $\hat{\gamma}_{04}$	-0.02		-0.45	.652	0.14	[0.03, 0.24]	2.59	.010
After-slope, $\hat{\gamma}_{10}$	0.00		-0.02	.982	-0.02	[-0.03, 0.00]	-2.67	800.
Grandparent, $\hat{\gamma}_{01}$	-0.10		-2.45	.014	-0.11	[-0.20, -0.02]	-2.43	.015
Caring, $\hat{\gamma}_{02}$	0.01	[-0.04, 0.05]	0.33	.740	0.00	[-0.04, 0.04]	-0.09	.930
After-slope * Grandparent, $\hat{\gamma}_{11}$	0.00		-0.17	865	0.01	[-0.01, 0.04]	1.06	.291
After-slope * Caring, $\hat{\gamma}_{12}$	-0.01		-1.01	.311	0.01	[-0.01, 0.03]	0.68	.494
Grandparent * Caring, $\hat{\gamma}_{03}$	0.09		1.57	.117	0.09	[-0.02, 0.21]	1.67	.095
After-slope * Grandparent * Caring, $\hat{\gamma}_{13}$	-0.03		-1.34	.182	-0.04	[-0.09, 0.00]	-2.07	.038

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S38

Linear Contrasts for Neuroticism (Moderated by Grandchild Care; only HRS).

	Pare	arent control	rols	Nonparen	rent co	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	-0.03	3.78	.052	-0.03	3.60	.058
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.04	4.06	.044	-0.04	3.90	.048

Note. The linear contrasts are based on the models from Table S37. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S39

Fixed Effects of Openness Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	⟨~	95% CI	t	d	⟨≻	95% CI	t	d
CISS								
Intercept, $\hat{\gamma}_{00}$	3.48	[3.42, 3.53]	118.77	< .001	3.52	[3.45, 3.59]	104.18	< .001
Propensity score, $\hat{\gamma}_{02}$	0.00	[-0.08, 0.07]	-0.07	.944	0.03	[-0.03, 0.09]	1.02	309
	0.00	[-0.01, 0.00]	-1.58	.114	0.00	[-0.01, 0.00]	-0.68	.494
After-slope, $\hat{\gamma}_{20}$	-0.01	[-0.01, 0.00]	-2.36	.018	0.00	[0.00, 0.01]	1.95	.051
Shift, $\hat{\gamma}_{30}$	0.02	[0.00, 0.05]	1.88	.061	0.00	[-0.02, 0.02]	0.00	866.
Grandparent, $\hat{\gamma}_{01}$	0.01	[-0.08, 0.09]	0.16	.872	-0.05	[-0.14, 0.04]	-1.06	.290
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[0.00, 0.02]	1.23	.220	0.01	[-0.01, 0.02]	0.87	.384
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.00	[-0.01, 0.01]	0.11	.910	-0.01	[-0.02, 0.00]	-1.92	055
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.03	[-0.08, 0.03]	-1.05	.296	-0.01	[-0.06, 0.04]	-0.21	.832
HRS								
$\text{Intercept, } \hat{\gamma}_{00}$	3.04		149.49	< .001	3.01		129.29	< .001
Propensity score, $\hat{\gamma}_{02}$	0.03		0.82	.411	0.00		0.13	895
Before-slope, $\hat{\gamma}_{10}$	-0.02		-3.29	.001	0.00		-0.68	.495
After-slope, $\hat{\gamma}_{20}$	-0.02	[-0.03, -0.01]	-5.28	< .001	-0.02		-4.83	< .001
Shift, $\hat{\gamma}_{30}$	0.06		4.92	< .001	0.03		3.26	.001
Grandparent, $\hat{\gamma}_{01}$	-0.02		-0.55	.582	0.02		0.75	.451
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.02		1.36	.172	0.00		0.19	.850
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.02	[0.00, 0.03]	2.01	.044	0.01	[0.00, 0.03]	1.74	.083
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.07	[-0.12, -0.02]	-2.86	.004	-0.05		-2.16	.031

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S40

Linear Contrasts for Openness.

	Pa	Parent controls	trols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c \chi^2$	χ^2	d
TISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.02	2.57	.109	0.00	0.21	.650
Shift of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.01	0.25	.618	-0.01	0.30	.585
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.03	1.38	.241	-0.02	0.48	.489
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.00	0.34	.561	0.00	0.40	.528
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	-0.01	1.15	.284	-0.01	1.36	.244
HKS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.03	16.48	< .001	0.02	4.36	.037
Shift of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.02		.253	-0.02	1.57	.210
Shift of the controls vs. shift of the grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.05	8.14	.004	-0.04	4.25	030
Before-slope of the grandparents vs. $0 (\hat{\gamma}_{10} + \hat{\gamma}_{11})$	0.00	0.00	.946	0.00	0.01	806.
After-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	0.00	0.14	.709	0.00	0.20	.658

multiple fixed-effects coefficients and are computed using the *linearHypothesis* function from the Note. The linear contrasts are needed in cases where estimates of interest are represented by car R package (Fox & Weisberg, 2019) based on the models from Table S39. $\hat{\gamma}_c = \text{combined}$ fixed-effects estimate.

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Gender.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	<i>d</i>	⟨>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	3.47	[3.39, 3.55]	81.39	< .001	3.54	[3.45, 3.64]	73.02	< .001
Propensity score, $\hat{\gamma}_{04}$	0.00	[-0.08, 0.07]	-0.04	.970	0.03	[-0.03, 0.09]	0.94	.347
Before-slope, $\hat{\gamma}_{10}$	0.00	[-0.01, 0.01]	0.17	.864	0.01	[0.00, 0.02]	2.39	.017
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.01, 0.00]	-1.05	.292	0.01	[0.00, 0.01]	1.53	.126
Shift, $\hat{\gamma}_{30}$	-0.02	[-0.05, 0.02]	-0.93	.353	-0.01	[-0.04, 0.02]	-0.64	.523
Grandparent, $\hat{\gamma}_{01}$	0.11	[-0.01, 0.24]	1.78	920.	0.03	[-0.10, 0.16]	0.44	.661
Female, $\hat{\gamma}_{02}$	0.01	[-0.10, 0.12]	0.16	.871	-0.05	[-0.17, 0.08]	-0.69	.488
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.02, 0.01]	-0.39	.694	-0.01	[-0.03, 0.00]	-1.42	.156
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.01	[-0.02, 0.01]	-0.88	.380	-0.02	[-0.03, 0.00]	-2.16	.031
Shift * Grandparent, $\hat{\gamma}_{31}$	0.03	[-0.05, 0.12]	0.84	.400	0.03	[-0.05, 0.10]	0.75	.452
Before-slope * Female, $\hat{\gamma}_{12}$	-0.01	[-0.02, 0.00]	-1.64	.102	-0.02	[-0.03, -0.01]	-3.89	< .001
After-slope * Female, $\hat{\gamma}_{22}$	0.00	[-0.01, 0.01]	-0.79	.431	0.00	[-0.01, 0.01]	-0.24	.812
Shift * Female, $\hat{\gamma}_{32}$	0.08	[0.03, 0.13]	2.98	.003	0.02	[-0.03, 0.06]	0.84	.402
Grandparent * Female, $\hat{\gamma}_{03}$	-0.20	[-0.37, -0.03]	-2.31	.021	-0.15	[-0.33, 0.03]	-1.59	.113
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.02	[0.00, 0.05]	1.70	060.	0.03	[0.01, 0.06]	2.80	.005
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.01	[-0.01, 0.04]	1.29	.197	0.01	[-0.01, 0.03]	1.14	.255
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	-0.12	[-0.23, -0.01]	-2.11	.035	-0.06	[-0.16, 0.04]	-1.21	.225
HRS								
Intercept, $\hat{\gamma}_{00}$	3.06	[3.00, 3.12]	108.70	< .001	3.03	[2.97, 3.09]	97.90	< .001
Propensity score, $\hat{\gamma}_{04}$	0.03	[-0.04, 0.09]	0.86	.391	0.00	[-0.06, 0.07]	0.03	926.
Before-slope, $\hat{\gamma}_{10}$	-0.02	[-0.04, 0.00]	-2.44	.015	-0.01	[-0.03, 0.00]	-1.90	0.058
After-slope, $\hat{\gamma}_{20}$	-0.03	[-0.04, -0.02]	-5.75	< .001	-0.01	[-0.02, 0.00]	-2.04	.042
Shift, $\hat{\gamma}_{30}$	0.11	[0.07, 0.14]	6.34	< .001	0.00	[-0.03, 0.03]	-0.29	.772
Grandparent, $\hat{\gamma}_{01}$	-0.03	[-0.12, 0.06]	-0.62	.535	0.01	[-0.08, 0.10]	0.24	.813
Female, $\hat{\gamma}_{02}$	-0.03	[-0.09, 0.04]	-0.80	.423	-0.04	[-0.11, 0.04]	-0.98	.328
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.01	[-0.03, 0.05]	0.41	.685	0.00	[-0.03, 0.04]	0.05	096.
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[0.01, 0.06]	2.66	800.	0.01	[-0.01, 0.03]	0.94	.346
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.15	[-0.22, -0.07]	-3.93	< .001	-0.03	[-0.10, 0.03]	-1.00	.316
Before-slope * Female, $\hat{\gamma}_{12}$	0.00	[-0.02, 0.03]	0.28	.781	0.02	[0.00, 0.04]	1.97	.049
After-slope * Female, $\hat{\gamma}_{22}$	0.02	[0.01, 0.04]	3.05	.002	-0.01	[-0.02, 0.00]	-1.47	.141
Shift * Female, $\hat{\gamma}_{32}$	-0.09	[-0.14, -0.05]	-4.11	< .001	0.06	[0.03, 0.10]	3.21	.001

Table S41 continued

		Parent controls	ıtrols			Nonparent controls	ontrols	
Parameter		95% CI	t	d	Ŷ	95% CI	t	p
Grandparent * Female, $\hat{\gamma}_{03}$	0.03	[-0.10, 0.13]	0.30	.763	0.03		0.45	.652
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.02	[-0.04, 0.07]	0.67	.504	0.00		80.0	.939
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.03	[-0.06, 0.00]	-1.75	070	0.00		0.27	.790
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.14	[0.04, 0.23]	2.71	200.	-0.02	[-0.11, 0.06]	-0.52	.603

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S42

Linear Contrasts for Openness (Moderated by Gender).

	Pai	Parent controls	trols	Non	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
TISS						
Shift of male controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	-0.03	1.70	.192	-0.01	0.14	904.
Shift of female controls vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.05	11.29	.001	0.01	0.84	.359
Shift of grandfathers vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.01	0.03	.853	0.01	0.04	.833
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.03	0.78	.378	-0.03	0.93	.335
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.03	0.57	.450	0.01	0.13	.721
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.02	4.38	.036	0.02	6.74	600.
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.01	0.91	.341	0.00	0.42	.517
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.08	5.37	.020	-0.04	1.63	.202
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.07	10.45	.001	0.03	0.82	366
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.01	1.16	.282	0.01	1.41	.236
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.01	1.10	.294	0.01	1.33	.249
ift of grandfathers vs. grand:	-0.03	0.53	.466	-0.03	0.65	.421
HRS						
Shift of male controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.07	32.25	< .001	-0.02	1.67	.197
Shift of female controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.00	0.15	869.	0.04	15.02	< .001
Shift of grandfathers vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.04	2.39	.122	-0.04	2.82	.093
Shift of grandmothers vs. $0(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$	0.00	0.01	.919	0.00	0.02	836
Shift of male controls vs. grandfathers $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.11	15.71	< .001	-0.02	0.80	.372
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.03	2.17	.141	0.00	0.03	.863
After-slope of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	0.00	0.10	.747	0.01	2.08	.150
Shift of female controls vs. grandmothers $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.01	0.07	.791	-0.04	3.38	990.
Shift of male vs. female controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.07	15.92	< .001	0.05	12.31	< .001
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	0.76	.382	0.02	1.04	307
After-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.01	0.19	099	-0.01	0.19	.663
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.04	1.17	.280	0.04	1.35	.245

Note. The linear contrasts are based on the models from Table S41. $\hat{\gamma}_c = \text{combined fixed-effects estimate}$.

Table S43

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent of	controls	
Parameter	⟨~	95% CI	t	p	<≻	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.02	[2.97, 3.06]	121.17	> .001	3.03	[2.97, 3.08]	111.81	< .001
Properity score, $\hat{\gamma}_{04}$	0.01		0.25	800	-0.01	[-0.08, 0.05]	-0.39	.693
Before-slope, $\hat{\gamma}_{10}$	-0.01		-1.03	.303	-0.01	[-0.03, 0.01]	-0.96	.339
After-slope, $\hat{\gamma}_{20}$	-0.03		-5.25	< .001	-0.02	[-0.03, -0.01]	-4.51	< .001
Shift, $\hat{\gamma}_{30}$	90.0	_	3.20	.001	0.04	[0.00, 0.07]	2.21	.027
Grandparent, $\hat{\gamma}_{01}$	-0.05		-1.04	.299	-0.06	[-0.15, 0.04]	-1.17	.243
Working, $\hat{\gamma}_{02}$	0.05	_	2.26	.024	-0.02	[-0.06, 0.02]	-0.88	.378
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.04		1.30	.194	0.03	[-0.01, 0.08]	1.38	.167
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.05	_	3.86	< .001	0.04	[0.02, 0.06]	3.73	< .001
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.14		-3.37	.001	-0.12	[-0.19, -0.04]	-3.14	.002
Before-slope * Working, $\hat{\gamma}_{12}$	-0.01		-0.86	.389	0.01	[-0.01, 0.03]	0.82	.414
After-slope * Working, $\hat{\gamma}_{22}$	0.02	_	2.94	.003	0.02	[0.00, 0.03]	2.15	.031
Shift * Working, $\hat{\gamma}_{32}$	-0.01		-0.44	.661	-0.01	[-0.05, 0.03]	-0.52	909.
Grandparent * Working, $\hat{\gamma}_{03}$	0.04		0.79	.429	0.11	[0.02, 0.20]	2.33	020
Before-slope * Grandparent * Working, $\hat{\gamma}_{13}$	-0.02		-0.56	.578	-0.04	[-0.10, 0.02]	-1.34	.179
After-slope * Grandparent * Working, $\hat{\gamma}_{23}$	-0.06		-3.46	.001	-0.05	[-0.08, -0.02]	-3.35	.001
Shift * Grandparent * Working, $\hat{\gamma}_{33}$	0.13	[0.02, 0.23]	2.37	.018	0.12	[0.03, 0.22]	2.62	600.

Note. Two models were computed (only HRS): grandparents matched with parent controls and with

nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S44

Linear Contrasts for Openness (Moderated by Paid Work; only HRS).

	Par	Parent controls	trols	Nonpa	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.03	3.80	.051	0.01	1.06	.303
0	0.04	13.84	< .001	0.02	3.72	.054
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.06	4.22	.040	-0.06	5.04	.025
	0.02	0.61	.433	0.02	0.75	.385
not-working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	-0.09	7.30	200.	-0.07	6.07	.014
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.02	1.23	.267	0.00	0.10	.751
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	-0.01	1.08	.299	-0.01	1.00	.317
Shift of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.02	0.93	.336	0.00	0.00	.951
Shift of not-working controls vs. working controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.01	0.48	.487	0.00	0.05	.818
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.03	0.96	.327	-0.03	1.22	.270
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	-0.04	5.78	.016	-0.04	7.17	200.
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	0.08	4.30	.038	0.08	5.16	.023

Note. The linear contrasts are based on the models from Table S43. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S45

Fixed Effects of Openness Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	<i>∞</i>	95% CI	t	d	.⊱	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	3.06	[3.01, 3.10]	125.52	< .001	3.00	[2.95, 3.06]	103.68	< .001
Propensity score, $\hat{\gamma}_{04}$	0.08	[-0.01, 0.16]	1.81	020.	0.22	[0.13, 0.30]	5.00	< .001
After-slope, $\hat{\gamma}_{10}$	-0.04	[-0.05, -0.03]	-6.73	< .001	-0.02		-4.90	< .001
Grandparent, $\hat{\gamma}_{01}$	-0.06	[-0.14, 0.01]	-1.74	.082	-0.08	[-0.16, -0.01]	-2.21	.027
Caring, $\hat{\gamma}_{02}$	-0.02	[-0.06, 0.02]	-1.09	.275	0.01		0.67	.503
After-slope * Grandparent, $\hat{\gamma}_{11}$	0.02	[0.00, 0.05]	2.10	036	0.01		0.88	.377
After-slope * Caring, $\hat{\gamma}_{12}$	0.01	[0.00, 0.03]	1.52	.129	0.00		-0.24	807
Grandparent * Caring, $\hat{\gamma}_{03}$	0.00	[-0.10, 0.10]	0.02	.985	-0.04		-0.79	.432
After-slope * Grandparent * Caring, $\hat{\gamma}_{13}$	0.01	[-0.02, 0.05]	0.74	.457	0.03	[0.00, 0.06]	1.73	.084

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild care Note. Two models were computed (only HRS): grandparents matched with parent controls and with since the last assessment.

Table S46

Linear Contrasts for Openness (Moderated by Grandchild Care; only HRS).

	Pare	arent contro	rols	Nonpa	arent cc	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	p	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.04	7.78	.005	0.04	9.46	.002
After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.03	2.58	.108	0.03	3.26	.071

Note. The linear contrasts are based on the models from Table S45. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S47

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood.

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	⟨	95% CI	t	d	,≿	95% CI	t	d
LISS								
$\text{Intercept, } \hat{\gamma}_{00}$	5.11	[4.99, 5.23]	85.63	< .001	5.13	[4.99, 5.27]	72.47	< .001
Propensity score, $\hat{\gamma}_{02}$	0.07	[-0.10, 0.24]	0.78	.433	0.01	[-0.15, 0.17]	0.17	.863
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.02, 0.01]	-1.06	.288	0.02	[0.00, 0.03]	2.18	.029
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.02]	2.13	.033	-0.01	[-0.02, 0.01]	-0.93	.351
Shift, $\hat{\gamma}_{30}$	0.02	[-0.04, 0.08]	0.72	.470	-0.11	[-0.17, -0.05]	-3.42	.001
Grandparent, $\hat{\gamma}_{01}$	0.07	[-0.11, 0.25]	0.73	.464	0.07	[-0.13, 0.26]	0.66	.510
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.02	[-0.01, 0.04]	1.03	.301	-0.01	[-0.04, 0.02]	-0.47	.637
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.02	[-0.05, 0.00]	-1.78	.075	0.00	[-0.03, 0.02]	-0.33	.741
Shift * Grandparent, $\hat{\gamma}_{31}$	0.05	[-0.08, 0.18]	0.79	.428	0.18	[0.04, 0.32]	2.57	.010
HRS								
Intercept, $\hat{\gamma}_{00}$	4.81	[4.69, 4.92]	82.17	< .001	4.58	[4.45, 4.72]	68.99	< .001
Propensity score, $\hat{\gamma}_{02}$	0.40	[0.19, 0.61]	3.78	< .001	0.33	[0.11, 0.54]	3.01	.003
Before-slope, $\hat{\gamma}_{10}$	-0.03	[-0.07, 0.01]	-1.53	.125	0.05	[0.01, 0.08]	2.50	.013
After-slope, $\hat{\gamma}_{20}$	0.01	[-0.01, 0.04]	0.83	.405	0.04	[0.01, 0.06]	3.14	.002
Shift, $\hat{\gamma}_{30}$	0.02	[-0.05, 0.10]	0.58	.564	-0.05	[-0.12, 0.02]	-1.50	.135
Grandparent, $\hat{\gamma}_{01}$	-0.02	[-0.21, 0.16]	-0.24	.812	0.20	[0.00, 0.39]	1.98	.048
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.12	[0.03, 0.21]	2.58	.010	0.05	[-0.04, 0.13]	1.06	.290
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.03	[-0.02, 0.09]	1.17	.241	0.01	[-0.05, 0.06]	0.31	.753
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.08	[-0.24, 0.09]	-0.93	.351	-0.01	[-0.17, 0.15]	-0.13	897

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched

with parent controls and with nonparent controls. CI = confidence interval.

Table S48

Linear Contrasts for Life Satisfaction.

	Parei	Parent controls	rols	Nonp	Nonparent controls	ntrols
Linear Contrast	$\hat{\gamma}_c$	$\hat{\gamma}_c \chi^2$	d	$\hat{\gamma}_c$	χ^2	d
LISS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0.	0.03	1.76	.185	-0.12	17.14	< .001
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$	90.0	1.51	.219	0.06	1.29	.256
$\hat{\gamma}_{31})$	0.03	0.24	.622	0.18	8.25	.004
	0.01	0.39	.532	0.01	0.32	.574
er-slope of the grandparents vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{21}$)	-0.01	0.84	.358	-0.01	0.70	.403
HRS						
Shift of the controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$ 0.	0.03	1.26	.262	-0.02	0.30	.581
$\hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$	-0.01	0.04	.833	-0.02	0.10	.754
$\hat{\gamma}_{31}$)	-0.04	0.49	.485	0.00	0.00	876.
	0.09	4.51	.034	0.09	5.61	.018
After-slope of the grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{21})$ 0.	0.04	2.98	.084	0.02	3.67	.055

multiple fixed-effects coefficients and are computed using the *linearHypothesis* function from the Note. The linear contrasts are needed in cases where estimates of interest are represented by car R package (Fox & Weisberg, 2019) based on the models from Table S47. $\hat{\gamma}_c = \text{combined}$ fixed-effects estimate.

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Gender. Table S49

		Parent controls	ntrols			Nonparent controls	controls	
Parameter	⟨~	95% CI	t	<i>d</i>	<i>∞</i>	95% CI	t	d
LISS								
Intercept, $\hat{\gamma}_{00}$	5.05	[4.89, 5.21]	61.49	< .001	5.05		51.98	< .001
Propensity score, $\hat{\gamma}_{04}$	90.0	[-0.11, 0.23]	0.70	.485	0.01	[-0.15, 0.17]	0.17	998.
Before-slope, $\hat{\gamma}_{10}$	-0.01	[-0.03, 0.01]	-1.13	.258	0.02	[0.00, 0.05]	2.28	.023
After-slope, $\hat{\gamma}_{20}$	0.01	[0.00, 0.03]	1.55	.122	-0.03	[-0.04, -0.01]	-2.76	900.
Shift, $\hat{\gamma}_{30}$	0.10	[0.01, 0.18]	2.25	.025	0.00	[-0.09, 0.09]	-0.01	886.
Grandparent, $\hat{\gamma}_{01}$	0.21	[-0.04, 0.46]	1.67	960.	0.23	[-0.04, 0.50]	1.65	660.
Female, $\hat{\gamma}_{02}$	0.12	[-0.08, 0.32]	1.18	.239	0.16	[-0.08, 0.40]	1.28	.203
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.04, 0.04]	0.10	.922	-0.03	[-0.08, 0.01]	-1.38	.168
After-slope * Grandparent, $\hat{\gamma}_{21}$	-0.03	[-0.07, 0.01]	-1.62	.104	0.01	[-0.03, 0.05]	0.36	.718
Shift * Grandparent, $\hat{\gamma}_{31}$	0.01	[-0.18, 0.20]	0.10	.919	0.11	[-0.10, 0.31]	1.03	.303
Before-slope * Female, $\hat{\gamma}_{12}$	0.01	[-0.02, 0.03]	0.55	.581	-0.02	[-0.04, 0.01]	-1.10	.273
After-slope * Female, $\hat{\gamma}_{22}$	0.00	[-0.02, 0.02]	-0.11	.913	0.04	[0.01, 0.06]	2.95	.003
Shift * Female, $\hat{\gamma}_{32}$	-0.14	[-0.26, -0.02]	-2.37	.018	-0.21	[-0.33, -0.08]	-3.28	.001
Grandparent * Female, $\hat{\gamma}_{03}$	-0.27	[-0.59, 0.05]	-1.67	260.	-0.31	[-0.66, 0.05]	-1.71	880.
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.03	[-0.03, 0.08]	0.87	.385	0.05	[-0.02, 0.11]	1.48	.138
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	0.01	[-0.04, 0.07]	0.51	209.	-0.03	[-0.08, 0.03]	-0.90	369
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.08	[-0.17, 0.34]	0.63	.530	0.15	[-0.13, 0.43]	1.07	.283
HRS								
Intercept, $\hat{\gamma}_{00}$	4.67	[4.52, 4.82]	60.70	< .001	4.54	[4.37, 4.71]	52.50	< .001
Propensity score, $\hat{\gamma}_{04}$	0.41	[0.20, 0.62]	3.84		0.30	[0.08, 0.51]	2.71	200.
Before-slope, $\hat{\gamma}_{10}$	0.01	[-0.04, 0.07]	0.49	.625	0.05	[-0.01, 0.10]	1.61	.107
After-slope, $\hat{\gamma}_{20}$	0.00	[-0.04, 0.04]	0.09	.931	0.02	[-0.01, 0.06]	1.31	.190
Shift, $\hat{\gamma}_{30}$	0.07	[-0.04, 0.18]	1.23	.220	-0.16	[-0.27, -0.05]	-2.91	.004
Grandparent, $\hat{\gamma}_{01}$	0.11	[-0.15, 0.37]	0.81	.419	0.25	[-0.02, 0.51]	1.82	020.
Female, $\hat{\gamma}_{02}$	0.24	[0.07, 0.41]	2.75	900.	0.10	[-0.10, 0.29]	0.98	.329
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.00	[-0.13, 0.14]	0.03	.978	-0.02	[-0.15, 0.11]	-0.33	.745
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.04	[-0.04, 0.13]	1.05	.294	0.03	[-0.05, 0.10]	0.62	.536
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.08	[-0.33, 0.16]	-0.65	.514	0.14	[-0.10, 0.37]	1.16	.246
Before-slope * Female, $\hat{\gamma}_{12}$	-0.08	[-0.16, 0.00]	-2.08	.037	0.01	[-0.07, 0.08]	0.14	887
After-slope * Female, $\hat{\gamma}_{22}$	0.02	[-0.03, 0.07]	0.64	.525	0.02	[-0.03, 0.07]	0.84	.399
Shift * Female, $\hat{\gamma}_{32}$	-0.09	[-0.24, 0.06]	-1.14	.254	0.19	[0.05, 0.33]	2.59	.010

Table S49 continued

		Parent controls	itrols			Nonparent controls	ontrols	
Parameter	<i>∞</i>	95% CI	t	d	√≻	95% CI	t	d
Grandparent * Female, $\hat{\gamma}_{03}$	-0.23	[-0.55, 0.09]	-1.42	.156	-0.08	[-0.40, 0.25]	-0.47	.637
Before-slope * Grandparent * Female, $\hat{\gamma}_{13}$	0.21	[0.03, 0.39]	2.28	.023	0.11	[-0.05, 0.28]	1.34	.181
After-slope * Grandparent * Female, $\hat{\gamma}_{23}$	-0.02	[-0.13, 0.09]	-0.37	.714	-0.03	[-0.13, 0.08]	-0.50	.615
Shift * Grandparent * Female, $\hat{\gamma}_{33}$	0.01	[-0.32, 0.34]	90.0	.954	-0.26	[-0.57, 0.05]	-1.63	.103

Note. Two models were computed for each of the two samples (LISS, HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval.

Table S50

Linear Contrasts for Life Satisfaction (Moderated by Gender).

LISS LISS Shift of male controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30}$) Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30}$) Shift of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$) Shift of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$) Shift of male controls vs. grandfathers ($\hat{\gamma}_{21} + \hat{\gamma}_{31}$) Shift of male controls vs. grandfathers ($\hat{\gamma}_{21} + \hat{\gamma}_{31}$) Before-slope of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{31}$) After-slope of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$) Shift of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$) Shift of male vs. female controls ($\hat{\gamma}_{22} + \hat{\gamma}_{32}$) Shift of male vs. female controls ($\hat{\gamma}_{22} + \hat{\gamma}_{32}$)	8.55 .003 0.77 .379 0.77 .379 0.39 .531 0.07 .794 1.96 .161 0.99 .320 0.92 .338 7.55 .006	$\hat{\gamma}_c$ -0.03 -0.20 0.09 0.04 0.12 0.01 -0.02 0.24 -0.17	$\begin{array}{c} \chi^2 \\ 0.42 \\ 26.82 \\ 1.17 \\ 0.35 \\ 1.58 \\ 0.47 \\ 0.86 \\ 8.27 \\ 9.46 \\ \end{array}$	7 (2.15)
ft of male controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30}$) ft of emale controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30}$) ft of female controls vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$) ft of grandfathers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$) ft of grandmothers vs. 0 ($\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31}$) ft of male controls vs. grandfathers ($\hat{\gamma}_{21} + \hat{\gamma}_{31}$) core-slope of female controls vs. grandmothers ($\hat{\gamma}_{11} + \hat{\gamma}_{13}$) ft of female controls vs. grandmothers ($\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$) 6.0.7 ft of male vs. female controls ($\hat{\gamma}_{22} + \hat{\gamma}_{32}$)			0.42 26.82 1.17 0.35 1.58 0.47 0.86 8.27	.515 .279 .279 .552 .208 .493 .353 .004 .002
$0 + \hat{\gamma}_{22} + \hat{\gamma}_{32})$ $0 + \hat{\gamma}_{21} + \hat{\gamma}_{31})$ 0.09 $+ \hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$ 0.04 $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$ 0.03 Inducthers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$ 0.03 0.03 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07			0.42 26.82 1.17 0.35 1.58 0.47 0.86 8.27 9.46	 515 001 279 279 279 208 208 493 353 004 002 267
$\begin{array}{c} 0 + \hat{\gamma}_{22} + \hat{\gamma}_{32} \\ + \hat{\gamma}_{21} + \hat{\gamma}_{31} \\ (\hat{\gamma}_{21} + \hat{\gamma}_{31} \\ (\hat{\gamma}_{21} + \hat{\gamma}_{31} \\ (\hat{\gamma}_{11} + \hat{\gamma}_{13} \\ (\hat{\gamma}_{21} + \hat{\gamma}_{31} \\ (\hat{\gamma}_{21} + \hat{\gamma}_{31} \\ (\hat{\gamma}_{21} + \hat{\gamma}_{23} \\ (\hat{\gamma}_{21} + \hat{\gamma}_{31} \\ (\hat{\gamma}_{21} + \hat{\gamma}_{23} + \hat{\gamma}_{33} \\ (\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{32} + \hat{\gamma}_{33} \\ (\hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{32} + \hat{\gamma}_{33} \\ (\hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{32} + \hat{\gamma}_{33} \\ (\hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{32} + \hat{\gamma}_{33} + \hat{\gamma}_{33} \\ (\hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_{32} + \hat{\gamma}_{33} \\ (\hat{\gamma}_{31} + \hat{\gamma}_{31} + \hat{\gamma}_$			26.82 1.17 0.35 1.58 0.47 0.86 8.27 9.46	 < .001 .279 .552 .208 .493 .353 .004 .002 .267
$+ \hat{\gamma}_{23} + \hat{\gamma}_{33}) \qquad 0.09$ -0.02 0.03 -0.02 0.07 -0.14			1.17 0.35 1.58 0.47 0.86 8.27 9.46	.279 .552 .208 .493 .353 .004 .002
$+ \hat{\gamma}_{23} + \hat{\gamma}_{33}) \qquad 0.04$ -0.02 0.03 -0.02 0.07 -0.14			0.35 1.58 0.47 0.86 8.27 9.46	.552 .208 .493 .353 .004 .002
-0.02 0.03 -0.02 0.07			$ \begin{array}{c} 1.58 \\ 0.47 \\ 0.86 \\ 8.27 \\ 9.46 \end{array} $.208 .493 .353 .004 .002
0.03 -0.02 0.07 -0.14			0.47 0.86 8.27 9.46	.493 .353 .004 .002 .267
-0.02 0.07 -0.14			0.86 8.27 9.46	.353 .004 .002 .267
0.07		·	8.27 9.46	.004
-0.14	• •	-0.17 0.03	9.46	.002
	•	0.03		.267
			1.23	060
s. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$ 0.01	•	0.01	0.22	000.
$+\hat{\gamma}_{33}$) -0.05	0.21 .647	-0.04	0.16	069.
0.02	.68 .101	-0.14	10.20	.001
$0 + \hat{\gamma}_{22} + \hat{\gamma}_{32}$ 0.00	•	0.07	4.01	.045
0.04	0.17 $.680$	0.03	0.12	.732
$31 + \hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33}$ -0.05	•		0.48	.489
-0.04	•		3.22	.073
Before-slope of female controls vs. grandmothers $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$ 0.21 12.0	2.04 .001		2.72	660.
0.02	0.38 $.540$		0.00	.953
$+ \hat{\gamma}_{33}$) -0.05	0.31 $.575$		2.31	.129
-0.07	•	0.21	13.91	< .001
Before-slope of grandfathers vs. grandmothers $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$ 0.13 2.5	2.33 .127	0.12	2.41	.121
	0.01 .931	-0.01	0.02	.894
Shift of grandfathers vs. grandmothers $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$ -0.08 0.8	0.52 .471	-0.08	0.52	.470

Note. The linear contrasts are based on the models from Table S49. $\hat{\gamma}_c = \text{combined fixed-effects estimate}$.

Table S51

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Performing Paid Work.

		Parent controls	ntrols			Nonparent controls	ontrols	
Parameter	,≿	95% CI	t	d	<i></i>	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	4.78	[4.63, 4.93]	62.86	< .001	4.55	[4.38, 4.71]	53.96	< .001
Propensity score, $\hat{\gamma}_{04}$	0.36	[0.15, 0.57]	3.33	.001	0.28	[0.06, 0.50]	2.50	.012
Before-slope, $\hat{\gamma}_{10}$	-0.06	[-0.13, 0.01]	-1.77	220.	-0.02	[-0.09, 0.05]	-0.51	.613
After-slope, $\hat{\gamma}_{20}$	-0.03	[-0.07, 0.00]	-1.73	.083	0.08	[0.04, 0.12]	4.32	< .001
Shift, $\hat{\gamma}_{30}$	0.13	[0.01, 0.25]	2.11	.034	0.07	[-0.05, 0.19]	1.17	.243
Grandparent, $\hat{\gamma}_{01}$	-0.02	[-0.33, 0.30]	-0.09	.925	0.22	[-0.09, 0.53]	1.37	.169
Working, $\hat{\gamma}_{02}$	0.07	[-0.07, 0.22]	0.99	.324	0.12	[-0.02, 0.25]	1.64	.102
Before-slope * Grandparent, $\hat{\gamma}_{11}$	0.14	[-0.04, 0.32]	1.50	.134	0.10	[-0.07, 0.27]	1.12	.264
After-slope * Grandparent, $\hat{\gamma}_{21}$	0.07	[-0.02, 0.15]	1.57	.116	-0.05	[-0.12, 0.03]	-1.20	.231
Shift * Grandparent, $\hat{\gamma}_{31}$	-0.04	[-0.31, 0.22]	-0.31	.755	0.01	[-0.24, 0.27]	0.10	.917
Before-slope * Working, $\hat{\gamma}_{12}$	0.05	[-0.03, 0.14]	1.21	.225	0.09	[0.00, 0.17]	1.99	.047
After-slope * Working, $\hat{\gamma}_{22}$	0.10	[0.05, 0.15]	3.83	< .001	-0.08	[-0.13, -0.03]	-3.16	.002
Shift * Working, $\hat{\gamma}_{32}$	-0.20	[-0.35, -0.04]	-2.50	.012	-0.15	[-0.30, 0.00]	-1.94	.052
Grandparent * Working, $\hat{\gamma}_{03}$	-0.02	[-0.36, 0.32]	-0.11	.912	-0.07	[-0.39, 0.25]	-0.42	929.
Before-slope * Grandparent * Working, $\hat{\gamma}_{13}$	-0.03	[-0.24, 0.18]	-0.28	.777	-0.06	[-0.26, 0.13]	-0.63	.527
After-slope * Grandparent * Working, $\hat{\gamma}_{23}$	-0.08	[-0.20, 0.03]	-1.40	.161	0.10	[-0.01, 0.21]	1.79	.073
Shift * Grandparent * Working, $\hat{\gamma}_{33}$	-0.03	[-0.38, 0.32]	-0.18	828	-0.09	[-0.42, 0.24]	-0.54	.590

Note. Two models were computed (only HRS): grandparents matched with parent controls and with nonparent controls. CI = confidence interval. working = 1 indicates being employed in paid work.

Table S52

Linear Contrasts for Life Satisfaction (Moderated by Paid Work; only HRS).

	Pare	Parent controls	rols	Nonp	Nonparent controls	ontrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
Shift of not-working controls vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30})$	0.10	3.85	.050	0.15	9.24	.002
Shift of working controls vs. 0 $(\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{22} + \hat{\gamma}_{32})$	0.00	0.00	696.	-0.08	5.03	.025
Shift of not-working grandparents vs. $0 (\hat{\gamma}_{20} + \hat{\gamma}_{30} + \hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.12	1.47	.226	0.12	1.63	.201
	-0.09	1.57	.210	-0.10	2.13	.144
ot-working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31})$	0.02	0.04	.834	-0.03	0.10	.746
Before-slope of working controls vs. working grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$	0.11	3.95	.047	0.03	0.44	505
After-slope of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{23})$	-0.02	0.17	929.	0.05	1.82	.178
Shift of working controls vs. working grandparents $(\hat{\gamma}_{21} + \hat{\gamma}_{31} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.09	1.21	.270	-0.03	0.11	.746
Shift of not-working controls vs. working controls $(\hat{\gamma}_{22} + \hat{\gamma}_{32})$	-0.10	2.47	.116	-0.23	13.96	< .001
Before-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	0.02	0.05	.823	0.02	0.05	.818
After-slope of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{23})$	0.02	0.12	.727	0.02	0.17	829.
Shift of not-working grandparents vs. working grandparents $(\hat{\gamma}_{22} + \hat{\gamma}_{32} + \hat{\gamma}_{23} + \hat{\gamma}_{33})$	-0.21	2.87	060.	-0.22	3.48	.062

Note. The linear contrasts are based on the models from Table S51. $\hat{\gamma}_c = \text{combined fixed-effects}$ estimate.

Table S53

Fixed Effects of Life Satisfaction Over the Transition to Grandparenthood Moderated by Grandchild Care.

		Parent controls	ntrols			Nonparent controls	ontrols	
Parameter	⋄	95% CI	t	d	~	95% CI	t	d
Intercept, $\hat{\gamma}_{00}$	4.86	[4.72, 5.00]	67.71	< .001	4.75	[4.58, 4.92]	55.25	< .001
Propensity score, $\hat{\gamma}_{04}$	0.27	[0.01, 0.53]	2.05	.040	0.05	[-0.21, 0.31]	0.35	.728
After-slope, $\hat{\gamma}_{10}$	0.00	[-0.04, 0.03]	-0.02	986.	0.03	[0.00, 0.06]	1.99	.047
Grandparent, $\hat{\gamma}_{01}$	0.00	[-0.22, 0.21]	-0.04	296.	0.17	[-0.06, 0.40]	1.45	.148
Caring, $\hat{\gamma}_{02}$	-0.10	[-0.22, 0.02]	-1.67	.094	0.02	[-0.09, 0.12]	0.34	.738
After-slope * Grandparent, $\hat{\gamma}_{11}$	0.07	[0.00, 0.14]	1.85	.065	0.04	[-0.02, 0.11]	1.24	.216
After-slope * Caring, $\hat{\gamma}_{12}$	0.04	[-0.01, 0.10]	1.70	088	-0.01	[-0.06, 0.03]	-0.59	.557
Grandparent * Caring, $\hat{\gamma}_{03}$	0.32	[0.02, 0.62]	2.08	.038	0.21	[-0.07, 0.48]	1.45	.147
After-slope * Grandparent * Caring, $\hat{\gamma}_{13}$	-0.08	[-0.19, 0.03]	-1.40	.162	-0.03	[-0.13, 0.08]	-0.51	.613

nonparent controls. CI = confidence interval. caring = 1 indicates more than 100 hours of grandchild Note. Two models were computed (only HRS): grandparents matched with parent controls and with care since the last assessment.

Table S54

Linear Contrasts for Life Satisfaction (Moderated by Grandchild Care; only HRS).

	Pare	Parent controls	rols	Nonparent of	rent co	ntrols
Linear Contrast	$\hat{\gamma}_c$	χ^2	d	$\hat{\gamma}_c$	χ^2	d
After-slope of caring controls vs. caring grandparents $(\hat{\gamma}_{11} + \hat{\gamma}_{13})$ After-slope of not-caring grandparents vs. caring grandparents $(\hat{\gamma}_{12} + \hat{\gamma}_{13})$	-0.01	0.10	.751 .486	.751 0.01 .486 -0.04	0.13	.392

Note. The linear contrasts are based on the models from Table S53. $\hat{\gamma}_c = \text{combined fixed-effects}$

estimate.

Table S55

Tests of Heterogeneous Random Slope Variance Models for Agreeableness Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	controls			4	lonparen	Nonparent controls	
	Var.	$^{\mathrm{SD}}$	LR	ď	GP greater	Var.	$^{\mathrm{SD}}$	LR	р	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.04			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.05			
Before-slope: heterogeneous (grandparents)	0.00	0.04	9.72	.021	ou	0.00	0.03	17.01	< .001	ou
After-slope: uniform	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (controls)	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (grandparents)	0.00	0.03	3.34	.343	ou	0.00	0.03	9.22	.026	ou
Shift: uniform	0.03	0.16				0.02	0.15			
Shift: heterogeneous (controls)	0.03	0.17				0.03	0.16			
Shift: heterogeneous (grandparents)	0.02	0.13	3.79	.285	ou	0.01	0.12	7.32	.062	ou
HRS										
Before-slope: uniform	0.01	0.12				0.01	0.12			
Before-slope: heterogeneous (controls)	0.02	0.15				0.02	0.15			
Before-slope: heterogeneous (grandparents)	0.01	0.12	75.87	< .001	ou	0.02	0.14	82.20	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.11			
After-slope: heterogeneous (controls)	0.01	0.11				0.02	0.13			
After-slope: heterogeneous (grandparents)	0.01	0.08	37.85	< .001	ou	0.01	0.09	90.69	< .001	ou
Shift: uniform	90.0	0.25				0.02	0.26			
Shift: heterogeneous (controls)	0.08	0.28				0.09	0.29			
Shift: heterogeneous (grandparents)	0.02	0.22	68.89	< .001	ou	90.0	0.24	91.90	< .001	ou

models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); $GP \ greater = \text{indicating if the }$ random slope variance of the grandparents is larger than that of either control group.

Table S56

Tests of Heterogeneous Random Slope Variance Models for Conscientiousness Against Comparison Models With a Uniform Random Slope Variance.

			Parent	Parent controls				Nonparent controls	controls	
	Var.	SD	LR	d	GP greater	Var.	$^{\mathrm{SD}}$	LR	Ф	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.04			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.05			
Before-slope: heterogeneous (grandparents)	0.00	0.02	45.09	< .001	ou	0.00	0.02	26.46	< .001	ou
After-slope: uniform	0.00	0.04				0.00	0.04			
After-slope: heterogeneous (controls)	0.00	0.05				0.00	0.04			
After-slope: heterogeneous (grandparents)	0.00	0.03	18.06	< .001	ou	0.00	0.03	8.69	.034	ou
Shift: uniform	0.03	0.16				0.02	0.14			
Shift: heterogeneous (controls)	0.04	0.19				0.02	0.16			
Shift: heterogeneous (grandparents)	0.02	0.12	21.47	< .001	no	0.01	0.11	8.86	.031	ou
HRS										
Before-slope: uniform	0.01	0.11				0.01	0.11			
Before-slope: heterogeneous (controls)	0.02	0.14				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.01	0.11	92.92	< .001	ou	0.02	0.13	103.88	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.10			
After-slope: heterogeneous (controls)	0.01	0.11				0.01	0.12			
After-slope: heterogeneous (grandparents)	0.01	0.09	61.33	< .001	ou	0.01	0.09	77.41	< .001	ou
Shift: uniform	0.06	0.24				0.06	0.25			
Shift: heterogeneous (controls)	0.07	0.27				0.08	0.28			
Shift: heterogeneous (grandparents)	90.0	0.23	83.05	< .001	ou	90.0	0.25	97.85	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); GP greater = indicating if therandom slope variance of the grandparents is larger than that of either control group.

Table S57

Tests of Heterogeneous Random Slope Variance Models for Extraversion Against Comparison Models With a Uniform Random Slope Variance.

			Parent o	Parent controls			I	Vonparer	Nonparent controls	
	Var.	$^{\mathrm{SD}}$	LR	ď	GP greater	Var.	SD	LR	d	GP greater
LISS										
Before-slope: uniform	0.00	0.02				0.00	0.05			
Before-slope: heterogeneous (controls)	0.00	90.0				0.00	90.0			
Before-slope: heterogeneous (grandparents)	0.00	0.04	14.67	.002	ou	0.00	0.04	25.96	< .001	ou
After-slope: uniform	0.00	0.04				0.00	0.05			
After-slope: heterogeneous (controls)	0.00	0.04				0.00	0.05			
After-slope: heterogeneous (grandparents)	0.00	0.03	7.37	.061	ou	0.00	0.03	13.50	.004	ou
Shift: uniform	0.03	0.17				0.03	0.18			
Shift: heterogeneous (controls)	0.04	0.19				0.04	0.21			
Shift: heterogeneous (grandparents)	0.01	0.12	11.13	.011	ou	0.02	0.13	13.00	.005	ou
HRS										
Before-slope: uniform	0.02	0.12				0.01	0.12			
Before-slope: heterogeneous (controls)	0.02	0.15				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.01	0.12	59.59	< .001	ou	0.02	0.13	61.85	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.12			
After-slope: heterogeneous (controls)	0.01	0.11				0.02	0.14			
After-slope: heterogeneous (grandparents)	0.01	0.09	27.05	< .001	ou	0.01	0.10	61.55	< .001	ou
Shift: uniform	0.02	0.26				0.08	0.29			
Shift: heterogeneous (controls)	0.08	0.29				0.10	0.32			
Shift: heterogeneous (grandparents)	0.00	0.25	44.54	< .001	ou	0.07	0.26	70.11	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); $GP \ greater = \text{indicating if the }$ random slope variance of the grandparents is larger than that of either control group.

Table S58

Tests of Heterogeneous Random Slope Variance Models for Neuroticism Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	ontrols				Nonparent controls	controls	
	Var.	$^{\mathrm{SD}}$	LR	ď	GP greater	Var.	SD	LR	ď	GP greater
LISS										
Before-slope: uniform	0.00	90.0				0.00	0.07			
Before-slope: heterogeneous (controls)	0.00	90.0				0.01	0.08			
Before-slope: heterogeneous (grandparents)	0.00	90.0	3.74	.291	yes	0.00	90.0	19.38	< .001	ou
After-slope: uniform	0.00	0.05				0.00	90.0			
After-slope: heterogeneous (controls)	0.00	0.05				0.00	0.07			
After-slope: heterogeneous (grandparents)	0.00	0.05	1.09	.781	ou	0.00	0.05	6.22	.101	ou
Shift: uniform	0.04	0.20				0.06	0.24			
Shift: heterogeneous (controls)	0.04	0.20				0.07	0.26			
Shift: heterogeneous (grandparents)	0.04	0.21	3.32	.344	yes	0.05	0.21	3.27	.352	ou
HRS										
Before-slope: uniform	0.02	0.15				0.02	0.15			
Before-slope: heterogeneous (controls)	0.03	0.19				0.03	0.18			
Before-slope: heterogeneous (grandparents)	0.03	0.17	95.90	< .001	ou	0.03	0.18	73.45	< .001	yes
After-slope: uniform	0.01	0.12				0.02	0.12			
After-slope: heterogeneous (controls)	0.02	0.13				0.02	0.15			
After-slope: heterogeneous (grandparents)	0.01	0.10	79.78	< .001	ou	0.01	0.11	101.07	< .001	ou
Shift: uniform	0.10	0.31				0.10	0.32			
Shift: heterogeneous (controls)	0.13	0.35				0.13	0.36			
Shift: heterogeneous (grandparents)	0.09	0.29	116.36	< .001	ou	0.09	0.30	116.43	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); $GP \ greater = \text{indicating if the }$ random slope variance of the grandparents is larger than that of either control group.

Table S59

Tests of Heterogeneous Random Slope Variance Models for Openness Against Comparison Models With a Uniform Random Slope Variance.

			Parent of	Parent controls				Vonparen	Nonparent controls	
	Var.	SD	LR	d	GP greater	Var.	SD	LR	ф	GP greater
LISS										
Before-slope: uniform	0.00	0.04				0.00	0.03			
Before-slope: heterogeneous (controls)	0.00	0.02				0.00	0.04			
Before-slope: heterogeneous (grandparents)	0.00	0.04	19.82	< .001	ou	0.00	0.04	25.90	< .001	yes
After-slope: uniform	0.00	0.04				0.00	0.03			
After-slope: heterogeneous (controls)	0.00	0.02				0.00	0.03			
After-slope: heterogeneous (grandparents)	0.00	0.02	26.80	< .001	ou	0.00	0.02	9.20	.027	ou
Shift: uniform	0.03	0.16				0.02	0.13			
Shift: heterogeneous (controls)	0.03	0.18				0.02	0.14			
Shift: heterogeneous (grandparents)	0.01	0.10	17.96	< .001	ou	0.02	0.12	10.36	.016	ou
HRS										
Before-slope: uniform	0.01	0.11				0.01	0.12			
Before-slope: heterogeneous (controls)	0.02	0.14				0.02	0.14			
Before-slope: heterogeneous (grandparents)	0.01	0.09	55.99	< .001	ou	0.02	0.14	50.54	< .001	ou
After-slope: uniform	0.01	0.10				0.01	0.11			
After-slope: heterogeneous (controls)	0.01	0.11				0.02	0.13			
After-slope: heterogeneous (grandparents)	0.01	0.00	37.59	< .001	ou	0.01	0.10	50.64	< .001	ou
Shift: uniform	0.07	0.26				0.07	0.27			
Shift: heterogeneous (controls)	0.08	0.28				0.09	0.30			
Shift: heterogeneous (grandparents)	90.0	0.24	58.39	< .001	ou	0.07	0.26	67.21	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =standard deviation; LR = likelihood ratio; p = p-value (of the LR test); $GP \ greater = \text{indicating if the }$ random slope variance of the grandparents is larger than that of either control group.

Table S60

Tests of Heterogeneous Random Slope Variance Models for Life Satisfaction Against Comparison Models With a Uniform Random Slope Variance.

			Parent controls	ontrols				Nonparen	Nonparent controls	
	Var.	$^{\mathrm{SD}}$	LR	ф	GP greater	Var.	SD	LR	Ъ	GP greater
LISS										
Before-slope: uniform	0.01	0.11				0.01	0.10			
Before-slope: heterogeneous (controls)	0.02	0.13				0.01	0.12			
Before-slope: heterogeneous (grandparents)	0.02	0.14	41.47	< .001	yes	0.01	0.12	21.10	< .001	ou
After-slope: uniform	0.01	0.11				0.01	0.12			
After-slope: heterogeneous (controls)	0.01	0.10				0.01	0.12			
After-slope: heterogeneous (grandparents)	0.03	0.13	11.74	800.	yes	0.02	0.12	5.26	.154	yes
Shift: uniform	0.20	0.45				0.18	0.42			
Shift: heterogeneous (controls)	0.19	0.44				0.17	0.41			
Shift: heterogeneous (grandparents)	0.25	0.50	10.00	.019	yes	0.21	0.46	4.50	.212	yes
HRS										
Before-slope: uniform	0.14	0.37				0.14	0.37			
Before-slope: heterogeneous (controls)	0.28	0.53				0.22	0.47			
Before-slope: heterogeneous (grandparents)	0.26	0.50	140.31	< .001	ou	0.34	0.58	111.97	< .001	yes
After-slope: uniform	0.10	0.32				0.14	0.37			
After-slope: heterogeneous (controls)	0.13	0.36				0.21	0.46			
After-slope: heterogeneous (grandparents)	0.08	0.28	93.14	< .001	ou	0.10	0.32	108.41	< .001	ou
Shift: uniform	0.83	0.91				0.93	0.96			
Shift: heterogeneous (controls)	1.07	1.04				1.24	1.11			
Shift: heterogeneous (grandparents)	0.80	0.89	172.53	< .001	ou	0.91	0.96	153.16	< .001	ou

Note. The heterogeneous variance models (df = 16) differ only in the random effects from the comparison models (df = 13). In addition to two random slope variances (instead of one), the heterogeneous variance random intercept variances for the grandparent and control groups. Var. = random slope variance; SD =models estimate two additional random intercept/slope covariances. Both models estimate heterogeneous standard deviation; LR = likelihood ratio; p = p-value (of the LR test); $GP \ greater = \text{indicating if the }$ random slope variance of the grandparents is larger than that of either control group.

Table S61
Rank-order stability.

		Parent controls	ontrols		Z	Nonparent controls	controls	
Outcome	Cor_{all}	$Cor_{GP} Cor_{con}$	Cor_{con}	d	Cor_{all}	Cor_{all} Cor_{GP}	Cor_{con}	d
SSIT								
Agreeableness	0.80	0.81	0.80	.983	0.75	0.81	0.74	.005
Conscientiousness	0.77	0.80	0.76	660.	0.79	0.80	0.79	.362
Extraversion	0.82	0.87	0.81	.959	0.87	0.87	0.87	.094
Neuroticism	0.71	0.76	0.69	.176	0.78	0.76	0.79	.531
Openness	0.75	0.78	0.74	.359	0.78	0.78	0.78	.893
Life Satisfaction	0.72	0.72	0.72	.965	0.70	0.72	0.69	.121
HRS								
Agreeableness	0.68	0.70	0.67	909.	0.73	0.70	0.74	.304
Conscientiousness	0.71	0.69	0.72	.201	0.70	0.69	0.70	.467
Extraversion	0.72	0.75	0.71	200.	0.74	0.75	0.74	020
Neuroticism	0.06	0.71	0.65	.654	0.68	0.71	0.67	.709
Openness	0.69	0.73	0.67	.015	0.76	0.73	0.76	.241
Life Satisfaction	0.51	0.55	0.50	060.	0.55	0.55	0.55	.439

grandparent variable in regression models predicting the first available post-transition sample, 4.15 (SD = 0.77) for the HRS parent sample, and 4.11 (SD = 0.67) for the HRS nonparent sample. Cor_{all} = rank-order stability; Cor_{GP} = rank-order stability (SD = 0.68) for the LISS parent sample, 2.37 (SD = 0.69) for the LISS nonparent assessment. The average time lags in years between these two assessments are 2.36 interactions between each outcome at the last pre-transition assessment and the Note. Correlations as indicators of rank-order stability and p-values of the (only grandparents); Cor_{con} = rank-order stability (only controls). 1447 Supplemental Figures

Figure S1

Change trajectories of agreeableness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S2

Change trajectories of agreeableness based on the models of moderation by paid work (see Table S11). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S1 (basic models) and added here for better comparability.

Figure S3

Change trajectories of agreeableness based on the models of moderation by grandchild care (see Table S13). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S1 (basic models) but restricted to the post-transition period for better comparability.

Figure S4

Change trajectories of conscientiousness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S5

Change trajectories of conscientiousness based on the models of moderation by paid work (see Table S19). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S4 (basic models) and added here for better comparability.

Figure S6

Change trajectories of conscientiousness based on the models of moderation by grandchild care (see Table S21). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S4 (basic models) but restricted to the post-transition period for better comparability.

Figure S7

Change trajectories of extraversion based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S8

Change trajectories of extraversion based on the models of moderation by paid work (see Table S27). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S7 (basic models) and added here for better comparability.

Figure S9

Change trajectories of extraversion based on the models of moderation by grandchild care (see Table S29). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S7 (basic models) but restricted to the post-transition period for better comparability.

Figure S10

Change trajectories of neuroticism based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S11

Change trajectories of neuroticism based on the models of moderation by paid work (see Table S35). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S10 (basic models) and added here for better comparability.

Figure S12

Change trajectories of neuroticism based on the models of moderation by grandchild care (see Table S37). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S10 (basic models) but restricted to the post-transition period for better comparability.

Figure S13

Change trajectories of openness based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S14

Change trajectories of openness based on the models of moderation by paid work (see Table S43). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S13 (basic models) and added here for better comparability.

Figure S15

Change trajectories of openness based on the models of moderation by grandchild care (see Table S45). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S13 (basic models) but restricted to the post-transition period for better comparability.

Figure S16

Change trajectories of life satisfaction based on the basic models (left column) and the models including the gender interaction (right column). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood.

Figure S17

Change trajectories of life satisfaction based on the models of moderation by paid work (see Table S51). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The vertical line indicates the approximate time of the transition to grandparenthood. The plots in the left column are the same as in Figure S16 (basic models) and added here for better comparability.

Figure S18

Change trajectories of life satisfaction based on the models of moderation by grandchild care (see Table S53). The error bars are 95% confidence intervals of the predicted values which only account for the fixed-effects portion of the model. The plots in the left column are the same as in Figure S16 (basic models) but restricted to the post-transition period for better comparability.

1448 Complete Software and Session Information

```
We used R (Version 4.0.4; R Core Team, 2021) and the R-packages car (Version
1449
    3.0.10; Fox et al., 2020a, 2020b; Yentes & Wilhelm, 2018), carData (Version 3.0.4; Fox et
1450
    al., 2020b), careless (Version 1.1.3; Yentes & Wilhelm, 2018), citr (Version 0.3.2; Aust,
1451
    2019), corrplot2017 (Wei & Simko, 2017), cowplot (Version 1.1.0; Wilke, 2020), dplyr
1452
    (Version 1.0.2; Wickham, François, et al., 2020), effects (Version 4.2.0; Fox & Weisberg,
1453
    2018; Fox, 2003; Fox & Hong, 2009), forcats (Version 0.5.0; Wickham, 2020a), foreign
1454
    (Version 0.8.81; R Core Team, 2020), ggplot2 (Version 3.3.4; Wickham, 2016), GPArotation
1455
    (Version 2014.11.1; Bernaards & I.Jennrich, 2005), interactions (Version 1.1.3; Long, 2019),
1456
    jtools (Version 2.1.1; Long, 2020), knitr (Version 1.30; Xie, 2015), lme4 (Version 1.1.26;
1457
    Bates et al., 2015), lmerTest (Version 3.1.3; Kuznetsova et al., 2017), magick (Version
1458
    2.6.0; Ooms, 2021), MASS (Version 7.3.53; Venables & Ripley, 2002), MatchIt (Version
1450
    4.1.0; Ho et al., 2020), Matrix (Version 1.3.2; Bates & Maechler, 2021), multcomp (Version
1460
    1.4.17; Hothorn et al., 2008), mvtnorm (Version 1.1.1; Genz & Bretz, 2009), papaja
1461
    (Version 0.1.0.9997; Aust & Barth, 2020), patchwork (Version 1.1.0.9000; Pedersen, 2020),
1462
    png (Version 0.1.7; Urbanek, 2013), psych (Version 2.0.9; Revelle, 2020), purr (Version
1463
    0.3.4; Henry & Wickham, 2020), readr (Version 1.4.0; Wickham & Hester, 2020),
    robustlmm (Version 2.3; Koller, 2016), scales (Version 1.1.1; Wickham & Seidel, 2020),
1465
    stringr (Version 1.4.0; Wickham, 2019), survival (Version 3.2.7; Terry M. Therneau &
    Patricia M. Grambsch, 2000), TH.data (Version 1.0.10; Hothorn, 2019), tibble (Version
1467
    3.1.2; Müller & Wickham, 2020), tidyr (Version 1.1.2; Wickham, 2020b), tidyverse (Version
1468
    1.3.0; Wickham, Averick, et al., 2019), and tinylabels (Version 0.1.0; Barth, 2020) for data
1469
    wrangling, analyses, and plots.
1470
           The following is the output of R's sessionInfo() command, which shows information
1471
    to aid analytic reproducibility of the analyses.
1472
           R version 4.0.4 (2021-02-15) Platform: x86 64-apple-darwin17.0 (64-bit) Running
1473
    under: macOS Big Sur 10.16
1474
```

```
Matrix products: default BLAS:
1475
    Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib LAPACK:
1476
    Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib/
1477
           locale: [1]
1478
    en US.UTF-8/en US.UTF-8/en US.UTF-8/C/en US.UTF-8/en US.UTF-8
1479
           attached base packages: [1] stats graphics grDevices utils datasets methods base
1480
           other attached packages: [1] car_3.0-10 carData_3.0-4 scales_1.1.1
1481
           [4] cowplot 1.1.0 lmerTest 3.1-3 lme4 1.1-26
1482
           [7] Matrix 1.3-2 GPArotation 2014.11-1 psych 2.0.9
1483
           [10] forcats 0.5.0 stringr 1.4.0 dplyr 1.0.2
1484
           [13] purrr_0.3.4 readr_1.4.0 tidyr_1.1.2
1485
           [16] tibble_3.1.2 ggplot2_3.3.4 tidyverse_1.3.0
1486
           [19] multcomp_1.4-17 TH.data_1.0-10 MASS_7.3-53
1487
           [22] survival_3.2-7 mvtnorm_1.1-1 citr_0.3.2
1488
           [25] papaja_0.1.0.9997 tinylabels_0.1.0
           loaded via a namespace (and not attached): [1] nlme 3.1-152 fs 1.5.0
1490
    lubridate_1.7.9.2
1491
           [4] httr_1.4.2 numDeriv_2016.8-1.1 tools_4.0.4
1492
           [7] backports_1.2.1 utf8_1.2.1 R6_2.5.0
1493
           [10] DBI_1.1.0 colorspace_2.0-1 withr_2.4.2
1494
           [13] tidyselect 1.1.0 mnormt 2.0.2 curl 4.3.1
1495
           [16] compiler 4.0.4 cli 2.5.0 rvest 0.3.6
1496
           [19] xml2_1.3.2 sandwich_3.0-0 bookdown_0.21
           [22] digest 0.6.27 foreign 0.8-81 minga 1.2.4
1498
           [25] rmarkdown 2.5 rio 0.5.16 base64enc 0.1-3
1499
           [28] pkgconfig_2.0.3 htmltools_0.5.0 dbplyr_1.4.4
1500
```

- 1501 [31] fastmap_1.0.1 rlang_0.4.11 readxl_1.3.1
- [34] rstudioapi_0.13 shiny_1.5.0 generics_0.1.0
- 1503 [37] zoo_1.8-8 jsonlite_1.7.2 zip_2.1.1
- 1504 [40] magrittr_2.0.1 Rcpp_1.0.6 munsell_0.5.0
- 1505 [43] fansi_0.5.0 abind_1.4-5 lifecycle_1.0.0
- 1506 [46] stringi_1.5.3 yaml_2.2.1 grid_4.0.4
- 1507 [49] blob_1.2.1 parallel_4.0.4 promises_1.1.1
- 1508 [52] crayon_1.4.1 miniUI_0.1.1.1 lattice_0.20-41
- 1509 [55] haven_2.3.1 splines_4.0.4 hms_0.5.3
- 1510 [58] tmvnsim_1.0-2 knitr_1.30 pillar_1.6.1
- [61] boot_1.3-26 codetools_0.2-18 reprex_0.3.0
- 1512 [64] glue_1.4.2 evaluate_0.14 data.table_1.13.2
- 1513 [67] modelr_0.1.8 nloptr_1.2.2.2 vctrs_0.3.8
- 1514 [70] httpuv_1.5.4 cellranger_1.1.0 gtable_0.3.0
- 1515 [73] assertthat 0.2.1 openxlsx 4.2.3 xfun 0.19
- 1516 [76] mime 0.9 xtable 1.8-4 broom 0.7.6
- [79] later_1.1.0.1 statmod_1.4.35 ellipsis_0.3.2

References

- Aust, F. (2019). Citr: 'RStudio' add-in to insert markdown citations.
- https://github.com/crsh/citr
- Aust, F., & Barth, M. (2020). papaja: Prepare reproducible APA journal articles with R
- 1522 Markdown. https://github.com/crsh/papaja
- Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects
- of confounding in observational studies. Multivariate Behavioral Research, 46(3),
- 399–424. https://doi.org/10.1080/00273171.2011.568786
- Barth, M. (2020). Tinylabels: Lightweight variable labels.
- https://CRAN.R-project.org/package=tinylabels
- Bates, D., & Maechler, M. (2021). Matrix: Sparse and dense matrix classes and methods.
- https://CRAN.R-project.org/package=Matrix
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects
- models using lme4. Journal of Statistical Software, 67(1), 1–48.
- https://doi.org/10.18637/jss.v067.i01
- Bernaards, C. A., & I.Jennrich, R. (2005). Gradient projection algorithms and software for
- arbitrary rotation criteria in factor analysis. Educational and Psychological
- 1535 Measurement, 65, 676–696.
- Fox, J. (2003). Effect displays in R for generalised linear models. Journal of Statistical
- Software, 8(15), 1–27. https://www.jstatsoft.org/article/view/v008i15
- Fox, J., & Hong, J. (2009). Effect displays in R for multinomial and proportional-odds
- logit models: Extensions to the effects package. Journal of Statistical Software,
- 32(1), 1–24. https://www.jstatsoft.org/article/view/v032i01
- Fox, J., & Weisberg, S. (2018). Visualizing fit and lack of fit in complex regression models
- with predictor effect plots and partial residuals. Journal of Statistical Software,

- 1543 87(9), 1–27. https://doi.org/10.18637/jss.v087.i09
- Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Sage.
- Fox, J., Weisberg, S., & Price, B. (2020a). Car: Companion to applied regression [Manual].
- Fox, J., Weisberg, S., & Price, B. (2020b). CarData: Companion to applied regression data sets. https://CRAN.R-project.org/package=carData
- Genz, A., & Bretz, F. (2009). Computation of multivariate normal and t probabilities.

 Springer-Verlag.
- Henry, L., & Wickham, H. (2020). Purrr: Functional programming tools.
- https://CRAN.R-project.org/package=purrr
- Ho, D., Imai, K., King, G., Stuart, E., & Greifer, N. (2020). *MatchIt: Nonparametric preprocessing for parametric causal inference* [Manual].
- Hothorn, T. (2019). TH.data: TH's data archive.
- https://CRAN.R-project.org/package=TH.data
- Hothorn, T., Bretz, F., & Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical Journal*, 50(3), 346–363.
- Koller, M. (2016). robustlmm: An R package for robust estimation of linear mixed-effects models. *Journal of Statistical Software*, 75(6), 1–24.
- https://doi.org/10.18637/jss.v075.i06
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. *Journal of Statistical Software*, 82(13), 1–26.
- https://doi.org/10.18637/jss.v082.i13
- Long, J. A. (2019). Interactions: Comprehensive, user-friendly toolkit for probing

 interactions. https://cran.r-project.org/package=interactions
- Long, J. A. (2020). *Itools: Analysis and presentation of social scientific data*.
- https://cran.r-project.org/package=jtools

```
Müller, K., & Wickham, H. (2020). Tibble: Simple data frames.
1568
           https://CRAN.R-project.org/package=tibble
1569
    Ooms, J. (2021). Magick: Advanced graphics and image-processing in r.
1570
           https://CRAN.R-project.org/package=magick
1571
    Pedersen, T. L. (2020). Patchwork: The composer of plots.
1572
    R Core Team. (2020). Foreign: Read data stored by 'minitab', 's', 'sas', 'spss', 'stata',
1573
            'systat', 'weka', 'dBase', ... https://CRAN.R-project.org/package=foreign
1574
    R Core Team. (2021). R: A language and environment for statistical computing. R
1575
           Foundation for Statistical Computing. https://www.R-project.org/
1576
    Revelle, W. (2020). Psych: Procedures for psychological, psychometric, and personality
1577
           research. Northwestern University. https://CRAN.R-project.org/package=psych
1578
    Stuart, E. A. (2010). Matching methods for causal inference: A review and a look forward.
1579
           Statistical Science: A Review Journal of the Institute of Mathematical Statistics,
1580
           25(1), 1–21. https://doi.org/10.1214/09-STS313
1581
    Terry M. Therneau, & Patricia M. Grambsch. (2000). Modeling survival data: Extending
1582
           the Cox model. Springer.
1583
    Urbanek, S. (2013). Png: Read and write png images.
1584
           https://CRAN.R-project.org/package=png
1585
    Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with s (Fourth).
1586
           Springer. http://www.stats.ox.ac.uk/pub/MASS4/
1587
```

- Wei, T., & Simko, V. (2017). R package "corrplot": Visualization of a correlation matrix.

 https://github.com/taiyun/corrplot
- Wickham, H. (2016). *Ggplot2: Elegant graphics for data analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org

```
Wickham, H. (2019). Stringr: Simple, consistent wrappers for common string operations.

https://CRAN.R-project.org/package=stringr

Wickham, H. (2020a). Forcats: Tools for working with categorical variables (factors).

https://CRAN.R-project.org/package=forcats
```

Wickham, H. (2020b). Tidyr: Tidy messy data.

1597

https://CRAN.R-project.org/package=tidyr

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R.,

Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller,

E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ...

Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software,

4(43), 1686. https://doi.org/10.21105/joss.01686

Wickham, H., François, R., Henry, L., & Müller, K. (2020). *Dplyr: A grammar of data*manipulation. https://CRAN.R-project.org/package=dplyr

Wickham, H., & Hester, J. (2020). Readr: Read rectangular text data.

https://CRAN.R-project.org/package=readr

Wickham, H., & Seidel, D. (2020). Scales: Scale functions for visualization.

https://CRAN.R-project.org/package=scales

Wilke, C. O. (2020). Cowplot: Streamlined plot theme and plot annotations for 'ggplot2'.

https://CRAN.R-project.org/package=cowplot

1611 Xie, Y. (2015). Dynamic documents with R and knitr (2nd ed.). Chapman; Hall/CRC.

https://yihui.org/knitr/

Yentes, R. D., & Wilhelm, F. (2018). Careless: Procedures for computing indices of careless responding.