Hypothesis testing framework

Last time

We have the model

$$Y_i \sim Bernoulli(p_i)$$

$$\logigg(rac{p_i}{1-p_i}igg) = eta_0 + eta_1 Sex_i + eta_2 Age_i + eta_3 SecondClass_i + eta_4 ThirdClass_i$$

We want to test whether there is a difference in the chance of survival for second and third class passengers, holding age and sex fixed.

What hypotheses should we test?

Contrasts

Work on Part II from last class:

https://sta711-s23.github.io/class_activities/ca_lecture_18.html

```
a <- c(0, 0, 0, -1, 1)
test_stat <- (t(a) %*% coef(m1))/sqrt(t(a) %*% vcov(m1) %*% a)
test_stat

## [,1]
## [1,] -5.207289</pre>
```

```
a \leftarrow c(0, 0, 0, -1, 1)
test_stat <- (t(a) %*% coef(m1))/sqrt(t(a) %*% vcov(m1) %*% a)
test stat
## [,1]
## [1,] -5.207289
# rejection region for alpha = 0.05
qnorm(0.025, lower.tail=F)
## [1] 1.959964
# p-value
2*pnorm(abs(test_stat), lower.tail=F)
##
                [,1]
## [1,] 1.916191e-07
```

Summary of Wald tests

Let $\theta \in \mathbb{R}^p$ be some parameter of interest. We wish to test the hypotheses

$$H_0: C heta = \gamma_0 \hspace{0.5cm} H_A: C heta
eq \gamma_0$$

for some $C \in \mathbb{R}^{q imes p}$. Given an estimator $\hat{ heta}_n$ such that

$$V_n^{-rac{1}{2}}(\hat{ heta}_n- heta)\stackrel{d}{
ightarrow} N(0,I),$$

the Wald test rejects when

$$(C\hat{ heta}_n-\gamma_0)^TV_n^{-1}(C\hat{ heta}_n-\gamma_0)>\chi_{q,lpha}^2$$

General framework for hypothesis tests

Definition: Let $\theta \in \mathbb{R}^p$ be some parameter of interest. A **hypothesis** is a statement about θ . The goal of a hypothesis test is to compare two competing hypotheses:

$$H_0: \theta \in \Theta_0 \quad H_A: \theta \in \Theta_1$$

Outcomes

$$H_0: \theta \in \Theta_0 \quad H_A: \theta \in \Theta_1$$

The outcome of the test is a decision to either **reject** H_0 or **fail to** reject H_0 .

Constructing a test

$$H_0: heta \in \Theta_0 \hspace{0.5cm} H_A: heta \in \Theta_1$$

Power function

Suppose we reject H_0 when $(X_1,\ldots,X_n)\in R$. The **power** function eta(heta) is

$$\beta(\theta) = P_{\theta}((X_1, \dots, X_n) \in R)$$

Example

 X_1, \ldots, X_n iid from a population with mean μ and variance σ^2 .

$$H_0: \mu = \mu_0 \quad H_A: \mu > \mu_0$$

$$eta(\mu)pprox 1-\Phi\left(z_lpha-rac{(\mu-\mu_0)}{\sigma/\sqrt{n}}
ight)$$

- Suppose that $\mu_0=0, n=100$, and $\sigma=1$. Make a plot of $\beta(\mu)$ vs. μ for $\alpha=0.05$.

 Now consider testing $H_0: \mu \leq \mu_0$ vs. $H_A: \mu > \mu_0$. Will
 - this change our rejection region if we want a size α test?

Simulation verification

```
n <- 100
sigma <- 1
mu0 <- 0
nreps <- 5000
test_stats <- rep(0, nreps)
for(i in 1:nreps){
    x <- rnorm(n, mu0, sigma)
    test_stats[i] <- (mean(x) - mu0)/(sigma/sqrt(n))
}
mean(test_stats > qnorm(0.05, lower.tail=F))
```

```
## [1] 0.0548
```

Simulation verification

```
n <- 100
sigma <- 1
mu0 <- 0
nreps <- 5000
test_stats <- rep(0, nreps)
for(i in 1:nreps){
    x <- rnorm(n, 0.1, sigma)
    test_stats[i] <- (mean(x) - mu0)/(sigma/sqrt(n))
}
mean(test_stats > qnorm(0.05, lower.tail=F))
```

```
## [1] 0.2646
```