Úloha 1: Krystalizace

Zadané úlohy

- 1. Překrystalizujte vzorek acetanilidu z horké vody.
- 2. Překrystalizujte vzorek acetanilidu z horkého toluenu.
- 3. Překrystalizujte vzorek síranu měď natého srážením vodného roztoku ethanolem.

Teoretický úvod

Zahřívání

Metody, které lze využít k zahřívání reakčních směsí jsou kahany, topná hnízda, topné míchačky nebo lázně, které jsou zahřívané na topných plotýnkách a v některých případech i nad kahanem. K žíhání, neboli zahřívání vzorku, či reakční směsi na velmi vysokou teplotu, užíváme žíhacích pecí, ve kterých teplota vroste až nad $1000^{\circ}C$.

Při našich postupech je důležité předcházet nebezpečí utajeného varu, neboli překročení teploty varu rozpouštědla a následnému vykypění reakční směsi. Tomuto nežádoucímu jevu lze zabránit mícháním, ke které mu využíváme magnetových míchátek, nebo varných kamínků (nelze je použít opakovaně).

Krystalizace

Nejužívanější metodou pro čištění vzorků v chemické laboratoři je krystalizace. Vzorek, neboli znečištěnou pevnou látku rozpustíte v rozpouštědle a následně je snížena její rozpustnost, čehož docílíme ku příkladu změnou teploty a z roztoku se vyloučí látka s vyšší čistotou, než měla před provedením krystalizace. Krystalizaci lze rozlišit na tři druhy, při kterých je užíváno rozdílných postupů.

Krystalizace srážením

Krystalizace srážením, nebo také krystalizace změnou rozpouštědla, je dosažena přidáním k látce s rozpuštědlem druhého rozpouštědla, ve kterém látka není rozpustná, ale je mísitelné s původním rozpouštědlem.

Krystalizace odprařením rozpouštědla

Krystalizace odpařením rozpouštědla, neboli krystalizace zahuštěním pracuje na principu částečného odpaření rozpouštědla, což vede k zahuštění směsi. Nevýhodou této metody je, že čištěná látka je po celou dobu procesu ve styku s matečným roztokem, nebo může dojít k rozkladu produktu.

Krystalizace změnou teploty

Krystalizace změnou teploty je založená na tom, že rozpustnost látek v rozpuštědle se v závislosti na teplotě mění. Ve většině případech se stane to, že se z roztoku při snížení teploty vyloučí část látky, ale v některých situacích k tomuto jevu dojde při zvýšení teploty. Takovéto anomální chování vykazuje například hydroxid vápenatý, nebo chroman vápenatý.

Filtrace a odsávání

Metody filtrace a odsávání jsou využívány v chemické laboratoři k oddělení pevné fáze směsi od roztoku. V závislosti na velikosti zrn pevné fáze směsi zvolíme metodu. Velká zrna oddělujeme ku příkladu i pouze přes smotek vaty. Na druhé straně jemné sraženiny, či aktivní uhlí etc., je potřeba filtrovat přes filtrační papír.

Odsávání je prováděno za sníženého tlaku, a to buď přes filtrační papír na Büchnerově či Hirschově nálevce, nebo na fritě.

Postup

Rekrystalizace acetanilidu z horké vody

Surový acetanilid o hmotnosti $3.00\,g$ byl rozpuštěn v Erlenmeyeřově baňce o objemu $250\,ml$ v zhruba $80\,ml$ vody. Roztok byl postaven na topnou míchačku a bylo přidáno magnetické míchátko. Do hrdla baňky byla vložena nálevka, která předešla na nadměrnému odparu a zároveň sloužila jako vzdušný chladič. Za neustálého míchání byla směs přivedena k varu a cca 2 minuty byla povařena. Do připravené $100\,ml$ baňky s předehřátou nálevkou, do niž byl vložen skládaný filtrový papír, byla přefiltrována směs a baňka byla zazátkována, umyta pod proudem studené vody a vložena na cca 20 minut do ledničky. Poté byl produkt odsát na fritě. Produkt byl promyt střičkou pomocí malého množtví vody. Následně byl produkt prosáván zhruba 5 minut vzduchem. Produkt byl přenesen do odvážené $100\,ml$ kádinky za pomoci kopistky. Kádinka společně s produktem byla pak odvážená ($m_{acetanilid}=0,8772\,g$,) a byl vypočten výtěžek ($viz.\ Výpočty$).

Rekrystalizace acetanilidu z horkého toulenu

Surový acetanilid o hmotnosti 1.00~g byl přenesen do 25~ml slzovité baňky. Baňka byla upevněna do klemy. Následně byla sestavena aparatura pro zahřívání pod zpětným chladičem. Skrze chladič bylo pomocí injekční stříkačky přidáno 10~g toulenu a směs byla zahřívána v olejové lázni k varu. Směs byla zahorka přefiltrována přes malý smotek vaty v plastové nálevce do Erlenmeyeřovy baňky o objemu 25~ml. Směs byla následně zavřena plastovou zátkou, zchlazena pod proudem studené vody a vložena na 15~minut do mrazáku. Poté byl produkt odsán na fritě a promyt 2~ml toulenu. Zbylý produkt byl vysušován zhruba po dobu 5~minut. Do předem zvážené 100~ml kádinky byl vyškrábán kopistkou produkt. V kádiňce byl následně produkt dalších 15~minut prosušován a následně odvážen a výtěžek vypočten ($m_{acetanilid} = 0.6275~g$, viz.~Výpočty).

Rekrystalizace síranu měď matého změnou rozpouštědla

Byly naváženy 3.00g surového pentahydrátu síranu měď natého, který byl následně rozetřen v třecí misce, aby jeho rozpouštění probíhalo lépe a předešlo se přidání přílišného množství rozpouštědla. Rozetřená modrá skalice byla přidána do 100ml kádinky a poté byla postupně přidávána voda za míchání dokud se roztok nestal nasyceným. Do roztoku byla přidána jedna kapka 10% kyseliny sírové a 1 lžička aktivního uhlí. Směs byla přefiltrována do 400ml kádinky přes složený filtrační papír. Z přefiltrované směsi byl vysrážen produkt postupným přidáváním ethanolu ze střičky. Ethanol přestal být přidáván, až se matečný louh stal zcela bezbarvým. Sraženina byla odsána na fritě a promyta ethanolem. Následně byla vysušena ethanolem. Produkt, který představovala sraženina, byl odvážen ($m_{CuSO_4}=2,7260~g$) a výtěžek vypočten ($viz.\ Výpočty$)

Výpočty

Rekrystalizace acetanilidu z horké vody

$$m_{produktu} = 0.8772 g$$

$$\alpha = \frac{m_{produktu}}{m_1}$$

$$m_1 = 3.00 g$$

$$\alpha = 29\%$$

Rekrystalizace acetanilidu z horkého toulenu

$$m_{produktu} = 0.6275 g$$

$$\alpha = \frac{m_{produktu}}{m_1}$$

$$m_1 = 1.00 g$$

$$\alpha = 63\%$$

Rekrystalizace síranu měď natého změnou rozpouštědla

$$m_{produktu} = 2.7260 g$$
 $\alpha = \frac{m_{produktu}}{m_1}$
 $m_1 = 3.00 g$ $\alpha = 90\%$

Závěr

Výtěžky nám, dle naměřených hodnot vyšly: 1. Rekrystalizace acetanilidu z horké vody $\rightarrow \alpha = 29\%$; 2. Rekrystalizace acetanilidu z horkého toluenu $\rightarrow \alpha = 63\%$; 3. Rekrystalizace síranu meď natého změnou rozpouštědla $\rightarrow \alpha = 90\%$. Výtěžek při rekrystalizaci acetnalidu z horkého toulenu je větší, než výtěžek při rekrystalizaci acetnalidu z horké vody, protože v toulenu je rozpustných více nečistot ze vzorku, než ve vodě. Rekrystalizace změnou rozpouštědla je nejvýnosnější, protože v získané směsi dochází k překročení součinu rozpustnosti rouzpouštěné látky a tak se pak začne vylučovat v krystalech. Konečné produkty krystalizace acetanilidu byly béžové krystaly získané z jeho roztoku ve vodě a jasně bílé získané z roztoku v toluenu. I tento fakt vypovídá o tom, že v v toluenu bylo rozpustných více nečistot. Výsledný produkt CuSO4, který jsme získali změnou rozpouštědla, měl světle modrou barvu.