Practica Final AnMat2

<u>Integrales</u>
<u>Integrales Impropias</u>
Sucesiones
<u>Series</u>
Series de potencias
Valores de convergencia Taylor:
Orden n del polinomio de Taylor:
Estimar error Taylor:
<u>Dibujar imagen aproximada</u>
Dar ecuaciones y ver si un punto está en el plano
<u>Derivadas parciales</u>
Obtener ecuaciones
Encontrar puntos criticos
Regla de la cadena
Encontrar el volumen del solido
Integral doble
Encontrar vectores unitarios
Hallar direccion de maximo crecimiento

Integrales

1. Calcule las siguientes integrales e indique el método utilizado.

a)
$$\int \sin(3x) e^{\cos(3x)} dx$$

a)
$$\int \sin(3x) e^{\cos(3x)} dx$$
 b) $\int \frac{4x}{(x+2)(x^2-1)} dx$

1. Calcule las siguientes integrales e indique el método utilizado.

a)
$$\int \sqrt{x} \ln(x) dx$$

a)
$$\int \sqrt{x} \ln(x) dx$$
 b) $\int \frac{2x+3}{x^2+3x+5} dx$

2.

1.

(a) Calcule la siguiente integral indefinida $\int \frac{x-2}{x(x+1)^2} dx$.

3.

(a) Halle la función g que cumple $g'(x) = \frac{(x+2)}{x^2+2x+5}$, y g(-1) = 0.

4.

(a) Calcule el área de la región limitada por la parábola $y = x^2$, la recta tangente a ella en el punto (1,1) y el eje x. 5.

$$\int_{1}^{2} \frac{2x+5}{(x^2+5x)^2} dx$$

6.

7.

(a) Hallar la función h tal que $h'(x) = \frac{1}{x(x-1)^2}$ y h(1/2) = 2.

Integrales Impropias

2. Determine si la siguiente integral converge y en tal caso calcularla.

$$\int_{2}^{\infty} \frac{\ln 4x}{x^3} dx$$

1.

2. Determine si la siguiente integral converge y en tal caso calcularla.

$$\int_{3}^{\infty} \frac{\ln 2x}{x^5} dx$$

2.

(b) Determine si la siguiente integral impropia es convergente o divergente $\int_0^4 \frac{1}{|x-3|^{3/2}} dx$.

3.

(b) Determine si la siguiente integral impropia converge o diverge: $\int_0^{+\infty} \frac{xe^{-x}dx}{x^3+1}.$

4.

(a) Determine todos los valores de a para los cuales la integral impropia $\int_{-\infty}^{+\infty} e^{-a|x|} dx$ converge. Ayuda: analice por separado los casos a < 0, a = 0 y a > 0.

5.

$$\int_0^2 \frac{1}{(2-x)^{4/5}} \mathrm{dx}$$

6.

(b) Determinar si la siguiente integral impropia es convergente o divergente $\int_{1}^{\infty} \frac{1}{\sqrt{x+x^3}} dx$.

Sucesiones

3. Determine si la siguiente sucesión converge o no y calcule el límite si es posible.

$$a_n = \cos\left(\frac{2}{n}\right)$$

1.

3. Determine si la siguiente sucesión converge o no y calcule el límite si es posible.

$$a_n = e^{\frac{(-1)^n}{n}}$$

Series

(a) Determine si la siguiente serie es absolutamente convergente, condicionalmente convergente o divergente

$$\sum_{n=3}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n-2}}.$$

1.

(a) Determine si la siguiente serie es absolutamente convergente, condicionalmente convergente o divergente $\sum_{n=1}^{\infty}\frac{(-1)^nn}{3n^2-1}.$

2.

(a) Determine si la siguiente serie es absolutamente convergente, condicionalmente convergente o divergente $\sum_{n=3}^{\infty} \frac{(-1)^n}{\ln(n-2)}$.

3.

(a) Determinar si la siguiente serie converge absolutamente, converge condicionalmente o diverge

$$\sum_{n=1}^{\infty} \frac{1}{1+\sqrt{n}}.$$

Series de potencias

4. Determinar el radio de convergencia y el intervalo de convergencia de la siguiente serie de potencias

$$\sum_{n=0}^{\infty} \frac{n \left(x+2\right)^n}{3^{n+1}}.$$

1.

4. Determinar el radio de convergencia y el intervalo de convergencia de la siguiente serie de potencias

$$\sum_{n=0}^{\infty} \frac{n \left(x+1\right)^n}{2^{n+1}}.$$

2.

(b) Determine el intervalo de convergencia de la siguiente serie de potencias: $\sum_{n=1}^{\infty} \frac{5^n (2x-1)^n}{n^3}.$

3.

EJERCICIO 5) [2 puntos] Determine el radio e intervalo de convergencia de las siguiente serie de potencias:

$$\sum_{n=1}^{\infty} (-1)^n \frac{(x-2)^n}{3^n \ln(n)}$$

Valores de convergencia Taylor:

- 5. Encontrar la representación en serie de Taylor, centrada en a=0 de $f(x)=\cos(\pi x)$. ¿Para qué valores de x converge la serie?
- 5. Encontrar la representación en serie de Taylor, centrada en $a=\pi$ de $f(x)=\sin(x-\pi)$. ¿Para qué valores de x converge la serie?

Orden n del polinomio de Taylor:

- (a) Sea $f(t) = 3\sin(t)$. Determine el orden n del polinomio de Taylor de f, centrado en a = 0, que se necesita para aproximar $3\sin(0.1)$ con un error menor que 10^{-3} .
- (b) Sea $f(t)=2\cos(t)$. Determine el orden n del polinomio de Taylor de f, centrado en a=0, que se necesita para aproximar $2\cos(0.1)$ con un error menor que 10^{-3} .

Estimar error Taylor:

1.

(a) Considere la función f(x) = sen(x) y sea $T_{5,0}(x)$ su polinomio de Taylor de grado 5 y centrado en a=0. Estimar el error que se comete si se aproxima el número sen(1) por el valor de $T_{5,0}(x)$ en x=1.

Ejercicio 3 (20 pts.) Sea $h(x) = \sqrt{x}$.

- (a) Calcule el polinomio de Taylor de h de orden 3 y centrado en $a=4,\,T_{3,4}(x)$.
- (b) Estime el error cometido al aproximar h(x) por el valor $T_{3,4}(x)$, para $3 \le x \le 5$.

Dibujar imagen aproximada

1.

- (b) Considere la curva $\gamma(t)=(3\sin(t),t,3\cos(t))$. Dibuje aproximadamente la imagen de γ para $t\geq 0$ y calcule el vector tangente a la curva en $t_0=\pi/2$.
- (b) Considere la curva $\gamma(t) = (2\cos(t), \sin(t))$. Dibuje aproximadamente la imagen de γ para $t \geq 0$, calcule el vector tangente a la curva en $t_0 = \pi/4$ y obtenga la ecuación de la recta tangente a la imagen de γ en el punto $\gamma(t_0)$.

Dar ecuaciones y ver si un punto está en el plano

- 6. Dar la ecuación vectorial y la ecuación normal del plano que contiene a los puntos (1,2,3), (0,-1,1) y (1,-1,0). ¿Está el punto (0,0,0) en el plano anterior?
- 6. Dar la ecuación vectorial y la ecuación normal del plano que contiene a los puntos (3,2,1), (1,-1,-1) y (0,1,2). ¿Está el punto (0,0,0) en el plano anterior?

Derivadas parciales

7. Para la función

$$f\left(x,y,z\right) = \frac{xz^2}{y+z},$$

- 1. calcular todas las derivadas parciales de primer orden (o sea, f_x , f_y , f_z) y alguna derivada parcial de orden dos.
 - 7. Para la función

$$f(x,y,z) = \frac{x^2 z^3}{y-z},$$

- calcular todas las derivadas parciales de primer orden (o sea, f_x , f_y , f_z) y alguna derivada parcial de orden dos. 2.
 - a) Calcule las derivadas parciales primeras de f(x,y): $\frac{\partial f}{\partial x}$ y $\frac{\partial f}{\partial y}$.
- 3.

Obtener ecuaciones

1.

2.

4.

5.

8. Obtener las ecuaciones de la recta normal al plano tangente y del plano tangente al gráfico de la siguiente función en el punto dado:

$$f(x,y) = \sin\left(\frac{y}{x}\right),$$
 en $(3,\pi)$.

8. Obtener las ecuaciones de la recta normal al plano tangente y del plano tangente al gráfico de la siguiente función en el punto dado:

$$f(x,y) = \cos(xy),$$
 en $(\pi, 1/2)$.

(a) Encuentre la ecuación del plano tangente al gráfico de la función $f(x,y) = 2x^2 - xy + y^4 + 4$ 3. en el punto $p_0 = (1,0,6)$.

Sea
$$f(x,y) = (3x + 4x^3)(y^2 + 2y)$$
.

(b) Halle la ecuación del plano tangente al gráfico de f en el punto p = (-1, 0, 0), y encuentre la ecuación de la recta perpendicular al gráfico de f que pasa por p.

Ejercicio 4 (20 pts.) Sea
$$g(x, y) = 2x^2 - 3y^2$$
.

- (a) Halle la ecuación de la recta tangente a la curva de nivel de la función g en el punto (1,1).
- (b) Halle la ecuación de la recta perpendicular al gráfico de la función g en el punto (1, 1, -1).
- (a) Hallar la ecuación del plano tangente al gráfico de $z=\sin(xy)$ si $x=\pi/3,\ y=-1.$ 6. Además, dar el vector normal al plano hallado.

Encontrar puntos criticos

1.

4.

5.

Sea
$$f(x,y) = x^3 - 3x - y^2 + 4y$$
.

(a) Encuentre todos los puntos críticos de la función f y determine cuáles son máximos locales, mínimos locales o puntos de silla.

Sea
$$f(x,y) = (3x + 4x^3)(y^2 + 2y)$$
.

(a) Encuentre todos los puntos críticos de la función f y determine cuáles son máximos locales, mínimos locales o puntos de silla.

Sea
$$f(x,y) = 2x^4 + y^2 - x^2 - 2y$$
.

(a) Encuentre todos los puntos críticos de la función f y determine cuales son máximos locales, mínimos locales o puntos de silla.

Encuentre y clasifique los puntos críticos de la siguiente función:

$$f(x,y) = 2x^4 + y^2 - x^2 - 2y.$$

Ejercicio 3 (20 pts.)

(a) Sea $f(x,y) = x^3 + y^3 - 3xy$. Hallar y clasificar todos los puntos estacionarios de la función f.

Regla de la cadena

Sea
$$f(x, y) = x^3 - 3x - y^2 + 4y$$
.

- (b) Considere la función $g(t) = f(1 + t^2u_1, 1 + tu_2)$, donde $\mathbf{u} = (u_1, u_2)$ es un vector unitario. Use la regla de la cadena y encuentre la dirección \mathbf{u} para la cual la derivada g'(0) es máxima.
- (a) Sea h(x, y) una función cuyas derivadas parciales $h_x, h_y, h_{xx}, h_{xy} = h_{yx}, h_{yy}$ existen y son continuas en \mathbb{R}^2 . Sea $z(t) = h(t, e^t)$. Use la regla de la cadena para calcular z''(t).
- (b) Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función cuyas derivadas parciales de orden 1 y 2 existen y son continuas en todo \mathbb{R}^2 . Sea $z(t) = f(t, e^t)$. Use la Regla de la cadena para calcular z''(t).

Encontrar el volumen del solido

Ejercicio 5 (20 pts.)

1.

- (a) Encuentre la ecuación del plano tangente al gráfico de la función $f(x,y) = 2x^2 xy + y^4 + 4$ en el punto $p_0 = (1,0,6)$.
- (b) Encuentre el volumen del sólido que está debajo del plano hallado en el inciso (a) y arriba del rectángulo $R = \{(x,y) \mid 0 \le x \le 1, \quad 0 \le y \le 1\}.$
- (b) Encuentre el volumen del sólido que está debajo del gráfico de $f(x,y) = x^2 + y^2 + 2xy + 1$ y arriba del rectángulo $R = \{(x,y) \mid 0 \le x \le 1, \quad 0 \le y \le 1\}.$

Integral doble

1.

(b) Calcular la integral doble $\int \int_T xy\,dA$, donde T es el triángulo cuyos vértices son (0,0), (1,0) y (1,1).

Encontrar vectores unitarios

1.

(b) Encuentre el o los vectores unitarios ${\bf u}$ tales que la derivada direccional de f en el punto (0,2) en la dirección de ${\bf u}$ tiene el valor 1.

Hallar direccion de maximo crecimiento

EJERCICIO 2) [2 puntos] Sea $f(x,y) = \frac{x^2 - y^2}{x+y}$.

- 1.
- 2.