Universität Regensburg

F-Praktikum

Holographie

Korbinian Baumgartner und Jonas Schambeck

Inhaltsverzeichnis

1 Einleitung

2 Vorbereitung

2.1 Fourierreihen und -transformation

Die Fourier-Analysis findet gerade in der Optik häufig Anwendung. Im Kontext der Holografie stellen vor allem Fourierreihen und die Fouriertransformation nützliche Hilfsmittel dar, weshalb diese zur Vorbereitung näher betrachtet werden sollen.

Fourierreihenentwicklung

Die Fourierreihe bietet die Möglichkeit einen großen Teil der periodischen Funktionen durch eine Linearkombination von Sinus- und Kosinustermen verschiedener Frequenzen und Amplituden zu entwickeln.

$$f(t) = \sum_{k=0}^{\infty} a_k \cos(\omega_k t) + b_k \sin(\omega_k t) \quad \text{mit } \omega_k = \frac{2\pi k}{T}$$

T sei hierbei die Periodendauer der Funktion. Die Fourierkoeffizienten a_k und b_k werden hier beschrieben durch

$$a_0 = \frac{1}{T} \int_{-T/2}^{+T/2} f(t) dt \quad a_k = \frac{2}{T} \int_{-T/2}^{+T/2} f(t) \cos(\omega_k t) dt \quad (k \neq 0)$$
$$b_k = \frac{2}{T} \int_{-T/2}^{+T/2} f(t) \sin(\omega_k t) dt$$

Dies soll nun an zwei wichtigen Funktionen demonstriert werden.

Rechtecksfunktion

Die Rechtecksfunktion ist gegeben durch

$$f(t) = \begin{cases} -1 & \text{für } -1 < t < 0 \\ 1 & \text{für } 0 < t < 1 \end{cases}$$

mit periodischer Fortsetzung.

Um nun die Fourierreihendarstellung nutzen zu können, müssen zuerst die Koeffizienten errechnet werden. Für T=2 ergibt sich:

Abbildung 2.1: Rechtecksfunktion

 $\bullet\,$ für die b_k gilt

$$b_k = \frac{2}{2} \int_{-1}^{1} f(t) \sin(\pi kt) dt = \int_{-1}^{0} -\sin(\omega_k t) dt + \int_{0}^{1} \sin(\omega_k t) dt$$
$$= \frac{1}{\pi k} \left[\left(1 - \cos\left(-\frac{\pi k}{2}\right) \right) + \left(-\cos\left(\frac{\pi k}{2}\right) + 1 \right) \right] = \frac{2}{\pi k} \left(1 + \cos(\pi k) \right)$$

Somit erhalten wir für die Fourierreihenentwicklung der Rechtecksfunktion

$$f(t) = \sum_{k=0}^{\infty} \frac{2}{\pi k} (1 + \cos(\pi k)) \sin(\pi kt)$$

3 Versuchsdurchführung