Богдан Уладзіслаў

ФПМІ, 3 курс, 3 група

ДЗ 2

Аптымізацыйная задача пра разбіццё параў

Маем аптымізацыйную задачу Π_{opt} (ва ўмовах задачы). Праз Π' абазначым адпаведную задачу распазнавання (фармулюецца аналігачна задачы аптымізацыі, умова мінімізацыі замяняецца ўмовай $F(E_1,E_2) < y$, для зададзенага y).

 ${
m NP}$ -паўната задачы Π' даказывалася на Кантрольнай рабоце па адпаведнай тэме, спашлемся на атрыманыя вынікі.

 Π а Тэарэме 3.4 з NP-паўнаты вынікае NP-складанасць задачы Π' (задача Π' - NP-складаная).

Мяркуем справядлівасць гіпотэзы пра несупадзенне класаў Р і NP.

Тады праз стандартную схему доказу NP-складанасці аптымізацыйнай задачы (апісанай у тэкстах лекцый) для доказу NP-складанасці задачы Π_{opt} застаецца паказаць палінаміальную вылічальнасць функцыі $F(I,x^*)$. Тут $I\in D_\Pi$ - прыклад задачы, $x^*\in X(I)$ - элемент з канечнага мноства дапускальных элементаў для прыклада I.

$$F(E_1, E_2) = \sum_{e_k \in E_1} e_k - \sum_{e_k \in E_2} e_k$$

Зразумела, што за палінаміальны час мы можам праверыць слушнасць сцверджання $F(I,x^*) < y$ пры наяўнасці I(апісвае задачу, то бок мноства элементаў e_k), x^* (які задае разбіццё паміж мноствамі E_1 і E_2) і y. Падлік дзвюх сумаў элементаў здзяйсняецца за лінейны адносна колькасці элементаў час, то бок за палінаміальны адносна памеру ўваходных дадзеных.

Такім чынам, мы паказалі NP-складанасць аптымізацыйнай задачы пра разбіццё параў.