Boolean Algebra

Boolean Algebra

- •Boolean algebra provides the operations and the rules for working with the set {0, 1}.
- •These are the rules that underlie **electronic circuits**, and the methods **VLSI design**.

Boolean Operations

- •The complement is denoted by a bar (on the slides, we will use a minus sign). It is defined by
- \bullet -0 = 1 and -1 = 0.
- •The Boolean sum, denoted by + or by OR, has the following values:
- $\bullet 1 + 1 = 1$, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0
- •The Boolean product, denoted by · or by AND, has the following values:
- $\bullet 1 \cdot 1 = 1$, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$

Boolean Functions and Expressions

•Example: Give a Boolean expression for the Boolean function F(x, y) as defined by the following table:

×	y	F (x, y)
0	0	0
0	1	1
1	0	0
1	1	0

Possible solution: $F(x, y) = (-x)\cdot y$

Example: Find the values of the Boolean function represented by F(x, y, z) = xy + z

• Sol:

TABLE						
x	у	z	хy	\overline{z}	$F(x, y, z) = xy + \overline{z}$	
1	1	1	1	0	1	
1	1	0	1	1	1	
1	0	1	0	0	0	
1	0	0	0	1	1	
0	1	1	0	0	0	
0	1	0	0	1	1	
0	0	1	0	0	0	
0	0	0	0	1	1	

Logic Gates

Basic Types of Gates:

Combinations of Gates

Constructed using a combination of inverters, OR gates, and AND gates.

Example: Construct circuits that produce the following outputs:

(a)
$$(x + y)\overline{x}$$
, (b) \overline{x} $\overline{(y + \overline{z})}$, and (c) $(x + y + z)(\overline{x} \overline{y} \overline{z})$.

(c)
$$(x + y + z)(\bar{x} \ \bar{y} \ \bar{z})$$

Sol:

BOOLEAN FUNCTION MINIMIZATION

Karnaugh map or K-map:

• For a boolean expression consisting of n-variables, number of cells required in K Map = 2^n cells

Two Variable K Map:

- The number of cells present in two variable K Map = 2^2 = 4 cells.
- So, for two variables, we draw a 2 x 2 K Map.
- Here, A and B are the two variables of the given boolean function.

Two Variable K Map

Three Variable K Map:

- The number of cells present in three variable K Map = 2^3 = 8 cells.
- So, for three variables, we draw a 2 x 4 K Map.
- Here, A, B and C are the three variables of the given boolean function.

Four Variable K Map:

- The number of cells present in four variable K Map = 2^4 = 16 cells.
- So, for four variables, we draw a 4 x 4 K Map.
- Here, A, B, C and D are the four variables of the given boolean function.

Karnaugh Map Simplification Rules:

- Draw a K Map and Fill k map with 0's and 1's according to its function.
- We can either group 0's with 0's or 1's with 1's but we can not group 0's and 1's together.
- Groups may overlap each other.
- Only create a group whose number of cells can be represented in the power of 2 that is 2ⁿ i.e. 1, 2, 4, 8, 16 and so on number of cells.

- Groups can be only either horizontal or vertical.
- We can not create groups of diagonal or any other shape.
- Each group should be as large as possible.

- Opposite grouping and corner grouping are allowed.
- There should be as few groups as possible.

Example: Minimize the following boolean function-

$$F(A, B, C, D) = \Sigma m(0, 1, 2, 5, 7, 8, 9, 10, 13, 15)$$

• Sol: Draw a 4 x 4 K Map. Fill the cells of K Map in accordance with the given boolean function and now form the groups as per rules:

• F(A, B, C, D) = (A'B + AB)(C'D + CD) + (A'B' + A'B + AB + AB')C'D + (A'B' + AB')(C'D' + CD')

• So minimized boolean expression is-

 $\bullet = BD + C'D + B'D$

Floyd Warshall Algorithm:

- It is used to solve All Pairs Shortest Path Problem.
- It computes the shortest path between every pair of vertices of the given graph.
- Floyd Warshall Algorithm is an example of dynamic programming approach.
- It is extremely simple and easy to implement.
- It is best suited for dense graphs because its complexity depends only on the number of vertices in the given graph.

Algorithm:

```
Create a |V| x |V| matrix
                                      // It represents the distance between every pair of vertices as given
    For each cell (i,j) in M do-
    if i = j
    M[i][j] = 0
                               // For all diagonal elements, value = 0
    if (i, j) is an edge in E
    M[i][j] = weight(i,j)
                               // If there exists a direct edge between the vertices, value = weight of edge
7.
    else
    M[ i ][ j ] = infinity
                             // If there is no direct edge between the vertices, value = \infty
    for k from 1 to |V|
10. for i from 1 to |V|
11. for j from 1 to |V|
12. if M[i][j] > M[i][k] + M[k][j]
13. M[i][j] = M[i][k] + M[k][j] // Equal to the shortest value
```

Q: Using Warshall Algorithm, find the shortest path distance between every pair of vertices.

Solution:

>Step 1:

- Remove all the self loops and parallel edges (keeping the lowest weight edge) from the graph.
- In the given graph, there are neither self edges nor parallel edges.

>Step 2:

- Write the initial distance matrix which represents the distance between every pair of vertices in the form of given weights.
- For diagonal elements (representing self-loops), distance value = 0.
- For vertices having a direct edge between them, distance value = weight of that edge.
- For vertices having no direct edge between them, distance value = ∞.

Initial distance matrix for the given graph is-

$$D_0 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 8 & \infty & 1 \\ \infty & 0 & 1 & \infty \\ 4 & \infty & 0 & \infty \\ 4 & \infty & 2 & 9 & 0 \end{bmatrix}$$

Step 3: Using Floyd Warshall Algorithm, write the following 4 matrices-

The last matrix D₄ represents the shortest path distance between every pair of vertices.

Remember:

In the question, there are 4 vertices in the given graph.

So, there will be total 4 matrices of order 4 x 4 in the solution excluding the initial distance matrix.

Diagonal elements of each matrix will always be 0.

