Математика для Data Science. Линейная алгебра. Решения задач

Содержание

омплексные числа	2
Задача 1	2
Задача 2	2
обственные векторы	3
Задача 1	3
Задача 2	
Задача 3	
Задача 4	
Задача 5 (дополнительная)	
изкоранговое приближение матрицы	4
Задача 3	4
Задача 4	
Задача 5	
ингулярное разложение – SVD	6
Задача 1	6
Задача 2	
Задача 3	
Запача 4	7

Замечание. Вот этим цветом отмечены ссылки на страницы внутри этого файла.

Комплексные числа

Задача 1

Неформально. Рассмотрим конкретное комплексное число z_1 . Мы смотрим на все комплексные числа как на векторы из \mathbb{R}^2 . Будем доказывать, что умножение на z_1 делает следующее:

- ullet растягивает все векторы в $|z_1|$ раз
- \bullet и поворачивает все векторы на угол $\arg(z)$ против часовой стрелки.

Ясно, что утверждение выше это то же самое, что теорема с предыдущего шага (только по-другому сформулированная).

А теперь формально.

- 1. Дано фиксированное комплексное число $z_1 = a + bi$. Мы рассматриваем отображение $m_{z_1}: \mathbb{C} \to \mathbb{C}$, которое отправляет каждое число z в произведение $z_1 \cdot z$. Вспомним, что \mathbb{C} можно воспринимать как \mathbb{R}^2 . Поэтому и наше отображение можно воспринимать как $m_{z_1}: \mathbb{R}^2 \to \mathbb{R}^2$. Вычислите, куда это отображение отправляет произвольное комплексное число $z = c + di = (c, d) \in \mathbb{R}^2$. Докажите, что отображение m_{z_1} из \mathbb{R}^2 в \mathbb{R}^2 является линейным и выпишите его матрицу в терминах a и b.
- 2. Выразите a и b через r:=|z| и $\alpha:=\arg(z)$. Выпишите матрицу отображения m_{z_1} в терминах r и α .
- 3. Докажите теорему с предыдущего шага.

Подсказка. Вам может пригодиться шаг из урока про ортогональные матрицы.

Решение.

1. Пусть $z_1 = a + ib$, z = c + di. Тогда под действием отображения m_{z_1} число z переходит в $z_1 \cdot z = (a + ib)(c + di) = (ac - bd) + i(bc + ad)$. Если воспринимать $\mathbb C$ как $\mathbb R^2$, то m(c,d) = (ac - bd, bc + ad). Итак, координаты отображения линейны по c и d, значит, само отображение тоже линейно.

Матрица отображения равна
$$M=\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$
. Действительно, $Mz=\begin{pmatrix} a & -b \\ b & a \end{pmatrix}\begin{pmatrix} c \\ d \end{pmatrix}=\begin{pmatrix} ac-bd \\ bc+ad \end{pmatrix}$

2. Согласно задаче прошлой недели $c = r \cos \alpha$ и $d = r \sin \alpha$.

Пусть
$$R := |z_1|, \ \beta := \arg(z_1), \ \text{то есть } \operatorname{Re}(z_1) = a = R\cos\beta, \ \operatorname{Im}(z_1) = b = R\sin\beta. \ \operatorname{Tогдa} \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \begin{pmatrix} c \\ d \end{pmatrix} = \begin{pmatrix} R\cos\beta & -R\sin\beta \\ R\sin\beta & R\cos\beta \end{pmatrix} \begin{pmatrix} r\cos\alpha \\ r\sin\alpha \end{pmatrix} = \begin{pmatrix} rR\cos\alpha\cos\beta - rR\cos\alpha\sin\beta \\ rR\sin\alpha\cos\beta \end{pmatrix} = \begin{pmatrix} rR\cos(\alpha+\beta) \\ rR\sin(\alpha+\beta) \end{pmatrix}$$

3. Действительно, в предыдущем пункте видно, что при умножении комплексных чисел их модули перемножаются, а аргументы складываются.

Задача 2

- 1. Найдите число z^k , зная модуль и аргумент z.
- 2. Найдите какое-нибудь число z, такое что $z^6 = -100$.
- 3. Докажите, что у любого ненулевого комплексного числа есть обратное. То есть для любого ненулевого $z \in \mathbb{C}$ найдётся число z^{-1} , такое что $z \cdot z^{-1} = 1$.

В целом, мы доказали, что $\mathbb C$ это *поле*. То есть, в $\mathbb C$ есть 0 и 1, а также в $\mathbb C$ можно складывать, вычитать, умножать и делить.

Подсказка. В этих задачах поможет выражать комплексные числа через их модуль и аргумент.

Решение.

- 1. Пусть $z = r \cos \alpha + ir \sin \alpha$. Тогда по теореме из предыдущей задачи $z^2 = z \cdot z = r^2 \cos(2\alpha) + ir^2 \sin(2\alpha)$ (модули перемножились, а аргументы сложились). Отсюда следует, что $z^3 = r^3 \cos(3\alpha) + i r^3 \sin(3\alpha)$. Продолжая так далее, получим $z^k = r^k \cos(k\alpha) + ir^k \sin(k\alpha)$. То есть $|z^k| = |z|^k$ и $\arg(z^k) = k \cdot \arg(z)$.
- 2. Ищем z в виде $z=r\cos\alpha+ir\sin\alpha$, тогда по предыдущей задаче $z^6=r^6(\cos(6\alpha)+i\sin(6\alpha))$. Запишем -100 как комплексное число с модулем 100 и аргументом $-\pi$: а именно, $-100 = 100(\cos \pi + i \sin \pi)$.

Итак, $r^6(\cos(6\alpha) + i\sin(6\alpha)) = 100(\cos \pi + i\sin \pi).$

Значит, $r^6 = 100$, то есть $r = \sqrt[6]{100} = \sqrt[3]{10}$.

Кроме того, $6\alpha = \pi + 2\pi k$, где $k \in \mathbb{Z}$. Рассмотрим, например, случай k = 1. Тогда $\alpha = \frac{\pi}{2}$.

Итак, мы получили $z = \sqrt[3]{10}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) = i\sqrt[3]{10}$.

Замечание. При рассмотрении других $k \in \mathbb{Z}$ получились бы $z = -i\sqrt[3]{10}$, $z = \sqrt[3]{10} \left(\pm \frac{\sqrt{3}}{2} \pm \frac{i}{2}\right)$.

3. Пусть $z=r\cos\alpha+ir\sin\alpha$, найдём число z^{-1} в виде $z^{-1}=R\cos\beta+iR\sin\beta$.

Тогда $z \cdot z^{-1} = rR(\cos(\alpha + \beta) + i\sin(\alpha + \beta)) = 1(\cos 0 + i\sin 0).$

Значит, rR = 1 и $\alpha + \beta = 0$. Другими словами, $R = r^{-1}$ и $\beta = -\alpha$. То есть $z^{-1} = r^{-1}(\cos(-\alpha) + \cos(-\alpha))$ $i\sin(-\alpha) = r^{-1}(\cos\alpha - i\sin\alpha)$

Собственные векторы

Задача 1

Докажите, что если \vec{v} это собственный вектор A, то и $c\vec{v}$ это собственный вектор A, где c – любое ненулевое число.

Решение. Если \vec{v} это собственный вектор A, то по определению $\exists \lambda: Av = \lambda v$. Тогда если c – любое ненулевое число, то $A(c\vec{v}) = cA\vec{v} = \vec{0}$, то есть $c\vec{v}$ — тоже собственный вектор.

Задача 2

Найдите собственные числа и собственные векторы матрицы $B = \begin{pmatrix} 2 & 8 \\ 3 & 4 \end{pmatrix}$.

Решение. Сначала найдём все собственные значения матрицы
$$B$$
. $0 = \det(B - \lambda E) = \det\begin{pmatrix} 2 & 8 \ 3 & 4 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \ 0 & \lambda \end{pmatrix} = \det\begin{pmatrix} 2 - \lambda & 8 \ 3 & 4 - \lambda \end{pmatrix} = (2 - \lambda)(4 - \lambda) - 24 = \lambda^2 - 6\lambda - 16.$

Найдём теперь собственный вектор, соответствующий собственному числу -2. Это такой вектор \vec{v} , что

$$(B+2E)=egin{pmatrix}2+2&8\\3&4+2\end{pmatrix}=egin{pmatrix}4&8\\3&6\end{pmatrix}$$
 . Собственный вектор равен $\begin{pmatrix}2\\-1\end{pmatrix}$.

Теперь найдём собственный вектор, соответствующий $\lambda = 8$. $(B - 8E) = \begin{pmatrix} 2 - 8 & 8 \\ 3 & 4 - 8 \end{pmatrix} = \begin{pmatrix} -6 & 8 \\ 3 & -4 \end{pmatrix}$.

Собственный вектор равен $\binom{4}{3}$.

Задача 3

- 1. Докажите, что у матрицы $\begin{pmatrix} 1 & -10 \\ 10 & 1 \end{pmatrix}$ нет собственных чисел и собственных векторов (над $\mathbb R$)
- 2. Докажите, что при $0<\alpha<\pi$ у матрицы $\begin{pmatrix}\cos(\alpha)&-\sin(\alpha)\\\sin(\alpha)&\cos(\alpha)\end{pmatrix}$ нет собственных чисел и собственных векторов (над \mathbb{R}). Что это значит геометрически?

Решение.

- 1. Найдём собственные числа так же, как ранее: $\det \left(\begin{pmatrix} 1-\lambda & -10 \\ 10 & 1-\lambda \end{pmatrix} \right) = (1-\lambda)^2 + 100 = \lambda^2 2\lambda + 101.$ Поскольку дискриминант отрицателен $(4-4\cdot 101<0)$, корней над $\mathbb R$ у уравнения нет.
- 2. $\det\left(\begin{pmatrix}\cos(\alpha)-\lambda & -\sin(\alpha)\\ \sin(\alpha) & \cos(\alpha)-\lambda\end{pmatrix}\right)=(\cos(\alpha)-\lambda)^2+\sin^2\alpha=\cos^2\alpha+\sin^2\alpha+\lambda^2-2\lambda\cos\alpha=\lambda^2-2\lambda\cos\alpha+1.$ Дискриминант равен $4(\cos^2\alpha-1)$. Если $0<\alpha<\pi$, то $\cos^2\alpha<1$ и дискриминант отрицателен, следовательно, собственных чисел и векторов не существует. Геометрически это означает, что при повороте на угол α нет неподвижных векторов.

Задача 4

Докажите, что каждому собственному числу соответствует хотя бы один собственный вектор. То есть если для числа λ выполнено $\det(A - \lambda E) = 0$, то найдётся \vec{v} , такой что $A\vec{v} = \lambda \vec{v}$

Решение. Пусть для числа λ выполнено $\det(A - \lambda E) = 0$. Тогда у матрицы $(A - \lambda E)$ неполный ранг. Значит, столбцы этой матрицы линейно зависимы и из коэффициентов этой линейной зависимости можно составить ненулевой вектор \vec{v} такой, что $(A - \lambda E)\vec{v} = \vec{0}$. Это равносильно $A\vec{v} - (\lambda E)\vec{v} = \vec{0} \Leftrightarrow A\vec{v} - \lambda \vec{v} = \vec{0} \Leftrightarrow A\vec{v} = \lambda \vec{v}$.

Задача 5 (дополнительная)

Пусть $\vec{v}_1, \dots, \vec{v}_k$ это собственные векторы с различными собственными числами $\lambda_1, \dots, \lambda_k$. Докажите, что $\vec{v}_1, \dots, \vec{v}_k$ линейно независимы.

Решение. Пусть $\vec{v}_1, \dots, \vec{v}_k$ это собственные векторы матрицы A с различными собственными числами $\lambda_1, \dots, \lambda_k$. Рассмотрим сначала один вектор \vec{v}_1 . Он не равен нулю, поэтому линейно независим.

Далее, допустим, что мы уже доказали, что векторы $\vec{v}_1, \dots, \vec{v}_{m-1}$ линейно независимы. Докажем от противного, что $\vec{v}_1, \dots, \vec{v}_m$ тоже линейно независимы. Действительно, пусть $\vec{v}_1, \dots, \vec{v}_m$ линейно зависимы. Тогда

$$\vec{v}_m = \alpha_1 \vec{v}_1 + \dots + \alpha_{m-1} \vec{v}_{m-1},$$

где хотя бы одно $\alpha_i \neq 0$.

Применим A к обеим частям равенства и, пользуясь тем, что $A\vec{v}_i = \lambda_i v_i$, получим:

$$\lambda_m \vec{v}_m = \alpha_1 \lambda_1 \vec{v}_1 + \dots + \alpha_{m-1} \lambda_{m-1} \vec{v}_{m-1}$$

С другой стороны,

$$\lambda_m \vec{v}_m = \lambda_m (\alpha_1 \vec{v}_1 + \dots + \alpha_{m-1} \vec{v}_{m-1})$$

Вычитая предпоследнее равенство из последнего, получаем

$$\alpha_1(\lambda_m - \lambda_1)\vec{v}_1 + \dots + \alpha_m(\lambda_m - \lambda_{m-1})\vec{v}_{m-1} = \vec{0}$$

Но $\vec{v}_1,\ldots,\vec{v}_{m-1}$ линейно независимы, а значит все коэффициенты равны нулю: $\alpha_j(\lambda_m-\lambda_j)=0$, но так как хотя бы одно $\alpha_i\neq 0$, то $\lambda_m-\lambda_i=0$, что невозможно, так все все собственные числа по условию разные. Значит, наше предположение было неверно и $\vec{v}_1,\ldots,\vec{v}_m$ линейно независимы.

Проведя приведённое выше рассуждение последовательно для m=2, затем m=3 и так далее до m=k, мы докажем требуемое.

Низкоранговое приближение матрицы

Задача 3

Давайте поймём, как взаимодействует ранг и операция умножения матриц. Во всех задачах ниже размеры матриц считайте любыми (но такими, что умножение определено).

1. Докажите, что ранг произведения двух матриц меньше или равен ранга каждой из них: $\operatorname{rank}(AB) \leq \min(\operatorname{rank}(A), \operatorname{rank}(B))$.

- 2. Докажите, что ранг произведения любого числа матриц меньше или равен ранга каждой из них: $\operatorname{rank}(A_1 \cdot A_2 \cdot \cdots \cdot A_r) \leq \min(\operatorname{rank}(A_1), \operatorname{rank}(A_2), \ldots, \operatorname{rank}(A_r)).$
- 3. Приведите пример матриц A и B, для которых ранг произведения меньше ранга каждого из сомножителей: $\operatorname{rank}(AB) < \min(\operatorname{rank}(A), \operatorname{rank}(B))$.

Подсказка. Вам может помочь интерпретация ранга из задачи прошлых недель. Сколькими векторами порождён образ B? Сколькими векторами порождён образ A? Сколькими векторами порождён образ AB?

Решение.

- 1. Согласно задаче со второй недели, ранг матрицы A равен размерности образа A. То есть образ A порождён $\operatorname{rank}(A)$ векторами, а образ B порождён $\operatorname{rank}(B)$ векторами. Матрица AB соответствует композиции отображений A и B, поэтому образ AB не может быть порождён линейно независимыми векторами, которых больше, чем $\operatorname{rank}(A)$ или $\operatorname{rank}(B)$.
 - Немного другими словами то же самое можно объяснить тем, что подпространство, порожденное векторамистолбцами матрицы AB, содержится в подпространстве, порожденном векторами-столбцами матрицы A и то же самое верно для матрицы B.
- 2. По первому пункту этой задачи $\operatorname{rank}(A_1 \cdot A_2 \cdot \cdots \cdot A_r) \leq \min(\operatorname{rank}(A_1), \operatorname{rank}(A_2 \cdot \cdots \cdot A_r))$. Далее, опять же по первому пункту задачи $\operatorname{rank}(A_2 \cdot \cdots \cdot A_r) \leq \min(\operatorname{rank}(A_2), \operatorname{rank}(A_3 \cdot \cdots \cdot A_r))$. Аналогично применяя первый пункт задачи и дальше, получим требуемое неравенство $\operatorname{rank}(A_1 \cdot A_2 \cdot \cdots \cdot A_r) \leq \min(\operatorname{rank}(A_1), \operatorname{rank}(A_2), \dots, \operatorname{rank}(A_r))$.
- 3. Например, можно рассмотреть $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ и $B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$. Ясно, что $\mathrm{rank}(A) = \mathrm{rank}(B) = 1$. Но так как $AB = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, то $\mathrm{rank}(AB) = 0$.

Задача 4

Пусть дана матрица W размера n на m и ранга не больше 1. Тогда можно найти такие матрицы U и M, что $W=U^TM$. При этом U это матрица размера 1 на n, и M это матрица размера 1 на m. То есть U^T это столбец, а M это строка.

Рассмотрим два случая:

- 1. $\mathrm{rank} W = 0.$ Тогда W это нулевая матрица и U^T это нулевой столбец высоты n и M это нулевая строка длины m.
- 2. $\operatorname{rank} W = 1$. Тогда стобцы матрицы W попарно линейно зависимы, а значит, матрица имеет вид $(\vec{u}, \lambda_2 \vec{u}_1, \dots, \lambda_n \vec{u}_1)$. То есть $W = \vec{u}_1(1, \lambda_2, \dots, \lambda_n)$ искомое представление в виде произведения столбца на строку.

Задача 5

Пусть дана матрица W размера n на m и ранга не больше k. Тогда можно найти такие матрицы U и M, что $W = U^T M$. При этом U это матрица размера k на n, и M это матрица размера k на m.

Подсказка. Примените метод Гаусса.

Решение. Пусть ранг матрицы W размера n на m меньше или равен k. Тогда после алгоритма Гаусса в матрице останется k или меньше ненулевых столбцов. Составим из этих столбцов матрицу. При этом столбцы изначальной матрицы выражаются через получившиеся после метода Гаусса столбцы, и из соответствующих коэффициентов остаётся составить вторую матрицу.

Сингулярное разложение – SVD

Задача 1

Пусть A_1 и A_2 – обратимые матрицы.

- 1. Докажите, что $\operatorname{rank}(A_1B) = \operatorname{rank}(B)$ для любой B, если произведение A_1B определено.
- 2. Докажите, что $\operatorname{rank}(BA_2) = \operatorname{rank}(B)$ для любой B, если произведение BA_2 определено.

Как мы знаем, все ортогональные матрицы обратимы. В SVD нас будет интересовать случай, когда A_1 и A_2 это ортогональные матрицы.

Подсказка. Ранее мы доказали, что $\operatorname{rank}(A_1B) \leq B$.

Решение.

1. Ранее мы доказали, что $\operatorname{rank}(A_1B) \leq \operatorname{rank}(B)$.

Верна следующая цепочка равенств: $B = EB = (A_1^{-1}A_1)B = A_1^{-1}(A_1B)$. Снова пользуясь неравенством для ранга произведения матриц, получаем, что $\operatorname{rank}(B) \leq \operatorname{rank}(A_1B)$.

Итак, $\operatorname{rank}(A_1B) \leq \operatorname{rank}(B)$ и $\operatorname{rank}(B) \leq \operatorname{rank}(A_1B)$, значит, $\operatorname{rank}(B) = \operatorname{rank}(A_1B)$.

2. Этот пункт доказывается аналогично первому:

$$rank(BA_2) \le rank(B)$$

С другой стороны, $B=BE=B(A_2A_2^{-1})=(BA_2)A_2^{-1}$, а значит $\mathrm{rank}(B)\leq \mathrm{rank}(BA_2)$. А тогда $\mathrm{rank}(BA_2)=\mathrm{rank}(B)$

Задача 2

Давайте докажем, что умножение матрицы на ортогональную матрицу не меняет её норму Фробениуса. Пусть X — произвольная матрица размера m на n. Пусть L и R — ортогональные матрицы размера m на m и n на n соответственно.

- 1. Докажите, что $||LX||_F^2 = ||X||_F^2$
- 2. Докажите, что $||XR||_F^2 = ||X||_F^2$

Эта задача позволит нам исключить из вычислений ортогональные матрицы U и V^T , сконцентрировавшись на понятной матрице Σ .

Подсказка. Ортогональное преобразование сохраняет длины.

Решение.

- 1. Пусть $\vec{x}_1, \dots, \vec{x}_n$ столбцы матрицы X. Тогда $||X||_F^2 = ||\vec{x}_1||^2 + \dots + ||\vec{x}_n||^2$. Кроме того, $||LX||_F^2 = ||L\vec{x}_1||^2 + \dots + ||L\vec{x}_n||^2$, и, продолжая цепочку равенств и пользуясь ортогональностью L, получаем $||LX||_F^2 = ||\vec{x}_1||^2 + \dots + ||\vec{x}_n||^2 = ||X||_F^2$
- 2. Для любой матрицы A верно $||A^T||_F^2 = ||A||_F^2$, ведь в определении нормы просто поменяется порядок суммирования.

Итак, $||XR||_F^2 = ||(XR)^T||_F^2 = ||R^TX^T||_F^2$. Если R ортогонально, то и R^T тоже ортогонально, ведь $R^TR = E$. Значит, по первому пункту этой задачи $||R^TX^T||_F^2 = ||X^T||_F^2 = ||X||_F^2$. Итого, $||XR||_F^2 = ||X||_F^2$.

Задача 3

Дана диагональная матрица Σ с $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots \geq 0$

$$\Sigma = \begin{pmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \ddots & & \\ & & & \ddots & \end{pmatrix}$$

Мы ищем P такую что $||\Sigma - P||_F^2$ минимально, при ограничении $\operatorname{rank}(P) \leq k$. Докажите, что минимальное значение достигается при $P = \Sigma_k$ (матрицу Σ_k мы определили ранее на Степике).

значение достигается при $P = \Sigma_k$ (матрицу Σ_k мы определили ранее на Степике). Тем самым лучшее приближение матрицы $A = U\Sigma V^T$ это матрица $B = UPV^T = U\Sigma_k V^T =: A_k$. Это завершает доказательство теоремы.

Подсказка. Может ли P быть недиагональной матрицей? Что должно стоять у P на диагонали?

Решение. Чтобы запись была короче, введём обозначение для диагональных матриц: $\Sigma := \operatorname{diag}\{\sigma_1, \ldots, \sigma_l\}$. Поскольку в матрице Σ вне диагонали стоят нули, то и P мы будем искать тоже такого вида, ведь иначе к норме $||\Sigma - P||_F^2$ прибавятся слагаемые, соответствующие квадратам элементов вне диагонали. Итак, пусть $P = \operatorname{diag}\{p_1, \ldots, p_l\}$, при этом так как $\operatorname{rk}(P) \le k$, то ненулевых p_i не больше, чем k. Итак, мы хотим минимизировать $||\Sigma - P||_F^2 = \sum_{i=1}^l (\sigma_i - p_i)^2$. Поскольку есть хотя бы l - k нулевых p_i , то в этой сумме есть хотя бы l - k слагаемых вида σ_i^2 . Вспомним, что $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge \ldots \sigma_l \ge 0$. Тогда в $||\Sigma - P||_F^2$ мы хотим оставить слагаемые, соответствующие наименьшим σ_i , а остальные занулить. Значит, $P = \operatorname{diag}\{\sigma_1, \ldots, \sigma_k, 0 \ldots, 0\}$, а это и есть Σ_k .

Задача 4

Давайте подумаем, какую часть информации мы потеряли, заменив A на A_k . Наблюдения, которые понадобятся для решения этой задачи:

- $||A||_F^2 = ||U\Sigma V^T||_F^2 = ||\Sigma||_F^2$, так как умножение на ортогональные матрицы сохраняет норму (пятая устная задача).
- $||\Sigma||_F^2 = \sigma_1^2 + \sigma_2^2 + \dots$ Всего элементов на диагонали $\min(n,m)$, обозначим $l := \min(n,m)$. Тогда $||\Sigma||_F^2 = \sum_{i=1}^l \sigma_i^2$.
- Тем самым $||A||_F^2 = \sum_{i=1}^l \sigma_i^2$.
- 1) Докажите, что $||A_k||_F^2 = \sum_{i=1}^k \sigma_i^2$.
- 2) Докажите, что $||A-A_k||_F^2=\sum\limits_{i=k+1}^l\sigma_i^2.$ То есть $||A||_F^2=||A-A_k||_F^2+||A_k||_F^2.$

Решение.

1) Из определения матрицы A_k следует, что $||A_k||_F^2 = ||U\Sigma_k V^T||_F^2$. Согласно пятой устной задаче этого урока, умножение на ортогональные матрицы не меняет норму Фробениуса, следовательно, $||U\Sigma_k V^T||_F^2 = ||\Sigma_k||_F^2 = \sum_{i=1}^k \sigma_i^2$.

2) $||A - A_k||_F^2 = ||U\Sigma V^T - U\Sigma_k V^T||_F^2 = ||U(\Sigma - \Sigma_k)V^T||_F^2 = ||\Sigma - \Sigma_k||_F^2 = \sum_{i=k+1}^l \sigma_i^2$. Здесь мы снова воспользовались тем, что умножение на ортогональные матрицы не меняет норму Фробениуса.