Задание 1. Вычислить пределы:

$$\begin{array}{c} 1 & \lim_{x \to \infty} \frac{5x^3 - x^2 + 1}{-7x^3 + x}; & \lim_{x \to \infty} \frac{x^2 + x - 12}{-x^2 + 5x - 6}; & \lim_{x \to \infty} \frac{\sqrt[4]{1 + 2x + 1}}{\sqrt[4]{2 + x + x}}; & \lim_{x \to \infty} \frac{\arctan 2x}{x}; & \lim_{x \to \infty} (1 + tg.x)^{\text{elg.}x}. \\ 2 & \lim_{x \to \infty} \frac{5x^3 - 1}{2x^2 + 3x + 4}; & \lim_{x \to \infty} \frac{8x^3 - 1}{6x^2 - 5x + 1}; & \lim_{x \to \infty} \frac{2 - \sqrt{2x}}{2\sqrt{2x - x^2}}; & \lim_{x \to \infty} \frac{1 - \cos(2x)}{x \sin(x)}; & \lim_{x \to \infty} [x(\ln(x) - \ln(x + 2))]. \\ 3 & \lim_{x \to \infty} \frac{x^3 - x}{x^4 - 3x^2 + 1}; & \lim_{x \to \infty} \frac{3x^2 + 8x - 3}{x^2 + 3x}; & \lim_{x \to \infty} \frac{\sqrt{x + 1} - 2}{x - 5}; & \lim_{x \to \infty} \frac{1 - \cos(2x)}{x - 5}; & \lim_{x \to \infty} [x(\ln(x) - \ln(x + 2))]. \\ 4 & \lim_{x \to \infty} \frac{5x^3 + 7x}{x^4 - 3x^2 + 1}; & \lim_{x \to 3} \frac{3x^2 + 8x - 3}{x^2 + 2x - x}; & \lim_{x \to \infty} \frac{\sqrt{x + 1} - 1}{x - 2}; & \lim_{x \to \infty} \frac{1 - \cos(x)}{2x^2}; & \lim_{x \to \infty} ((2x + 1)(\ln(x + 3) - \ln(x))). \\ 5 & \lim_{x \to \infty} \frac{x^3 + x + 1}{(x - 1)^3}; & \lim_{x \to 3} \frac{5 + 14x - 3x^2}{x^2 - 2x - 15}; & \lim_{x \to \infty} (x - \sqrt{x^2} - x + 1); & \lim_{x \to 0} \frac{\sin^3(5x)}{(3x)}; & \lim_{x \to \infty} (3x + 4)^{3x + 2}. \\ 6 & \lim_{x \to \infty} \frac{5x^3 - 4x + 1}{3x^3 + x - 4}; & \lim_{x \to \infty} \frac{x^2 + x - 12}{4 - 3x - x^2}; & \lim_{x \to \infty} (\sqrt{x + a} - \sqrt{x}); & \lim_{x \to \infty} \frac{2\arcsin(x)}{3x}; & \lim_{x \to \infty} (1 + \frac{2}{x})^{x^2}. \\ 7 & \lim_{x \to \infty} \frac{5x^3 - 4x + 1}{x^2 + x^2 - 3}; & \lim_{x \to \infty} \frac{20 + x - x}{3x^2 - 11x - 20}; & \lim_{x \to \infty} \frac{\sqrt{x + a} - \sqrt{x}}{x^2 + x^2}; & \lim_{x \to \infty} (2x + x) - \ln(a + x)). \\ 8 & \lim_{x \to \infty} \frac{5x^2 + 3x - 1}{x^2 + x^2}; & \lim_{x \to \infty} \frac{3x^2 - x - 10}{6 - x - x^2}; & \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 1}}; & \lim_{x \to \infty} \frac{\sin(x)}{\sin(x)}; & \lim_{x \to \infty} \left(x + \frac{x^2 + 1}{x^2 - 1}\right)^{x^2}. \\ 9 & \lim_{x \to \infty} \frac{5x^2 - 3x - 1}{x^2 + x^2}; & \lim_{x \to \infty} \frac{3x^2 - 4x - 10}{6 - x - x^2}; & \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 1}}; & \lim_{x \to \infty} \frac{\sin(x)}{\sin(x)}; & \lim_{x \to \infty} \left(x + \frac{x^2 + 1}{x^2 - 1}\right)^{x^2}. \\ 9 & \lim_{x \to \infty} \frac{5x^2 - 3x - 1}{x^2 + x^2}; & \lim_{x \to \infty} \frac{3x^2 - x - 10}{(6 - x - x^2}; & \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - 1}{\sqrt{x^2 + 1}}; & \lim_{x \to \infty} \frac{\sin(x)}{\sin(x)}; & \lim_{x \to \infty} \left(x + \frac{x^2 + 1}{x^2 - 1}\right)^{x^2}. \\ 10 & \lim_{x \to \infty} \frac{5x^2 - 3x - 1}{3x^2 + 2x - x^2}; & \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} - 1}{1 - \cos(x)}; & \lim_{x \to \infty} \left(x + \frac$$

16
$$\lim_{x \to \infty} \frac{10x^2 + x - 1}{x - 2}; \lim_{x \to 2} \frac{4x^2 + 7x - 2}{x^2 + 5x + 6}; \lim_{x \to 0} \frac{x - \sqrt{x}}{\sqrt{x}}; \lim_{x \to 0} \frac{\cos(x) - \cos^3(x)}{x^2}; \lim_{x \to 1} (7 - 6x)^{\frac{1}{y}(3x - 5)}.$$
17
$$\lim_{x \to \infty} \frac{5x^2 - 2x + 1}{x^3 - 4x}; \lim_{x \to 2} \frac{3x^2 + 7x + 2}{x^2 + 5x + 2}; \lim_{x \to 0} \frac{\sqrt{x - 4} - \sqrt{5}}{x^2 - 81}; \lim_{x \to 0} \frac{x^2 \cot(2x)}{\sin(3x)}; \lim_{x \to 2} (3x - 5)^{\frac{2}{y}/(x^2 - 4)}.$$
18
$$\lim_{x \to \infty} \frac{3 - x^2}{6 + x + 3x^2}; \lim_{x \to 2} \frac{7x^2 + 23x + 6}{x^2 + 8x + 15}; \lim_{x \to 2} \frac{\sqrt{5 - x} - 2}{\sqrt{2 - x} - 1}; \lim_{x \to 0} \frac{1 - \cos(6x)}{x^2}; \lim_{x \to 3} (3x - 8)^{\frac{2}{y}(x - 3)}.$$
19
$$\lim_{x \to 2} \frac{x + 5x^2 - x^3}{2x^3 - x^2 + 7x}; \lim_{x \to 2} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6}; \lim_{x \to 0} \frac{\sqrt{5 - x} - 2}{\sqrt{4 - x} - 1}; \lim_{x \to 0} \frac{1 - \cos(6x)}{x^2}; \lim_{x \to 1} (3x - 8)^{\frac{2}{y}(x - 3)}.$$
20
$$\lim_{x \to 2} \frac{8x^3 + x + 1}{x^2 - x^2 + 6}; \lim_{x \to 3} \frac{x^3 + 3x^2 + 2x}{x^2 - x - 6}; \lim_{x \to 0} \frac{\sqrt{x + 1} - 2}{x}; \lim_{x \to 0} \frac{1 - \cos(4x)}{2xy(2x)}; \lim_{x \to 0} (2x + 3)(\ln(x + 2) - \ln(x)).$$
21
$$\lim_{x \to 2} \frac{5x^2 + 4x + 7}{6x^2 + x - 4}; \lim_{x \to 3} \frac{x^2 - 9}{3x^2 - 8x - 3}; \lim_{x \to 0} \frac{\sqrt{x + 5} - \sqrt{5}}{x}; \lim_{x \to 0} 5xetg(3x); \lim_{x \to 2} (2x - 3)^{\frac{3x}{y}(x - 2)}.$$
22
$$\lim_{x \to 2} \frac{8x^4 - 2x + 4}{6x^2 + x - 4}; \lim_{x \to 3} \frac{x^2 - 9}{3x^2 - 8x - 3}; \lim_{x \to 0} \frac{\sqrt{x + 5} - \sqrt{5}}{x}; \lim_{x \to 0} \frac{1 - \cos(3x)}{x^2}; \lim_{x \to 1} (2x - 3)^{\frac{3x}{y}(x - 2)}.$$
23
$$\lim_{x \to 2} \frac{x^2 - 2x + 5}{x^2 + x^4 - 3x^2}; \lim_{x \to 3} \frac{x^2 - 3x + 2}{x^2 - 3x - 4}; \lim_{x \to 0} \frac{x^2 - 5 - \sqrt{3}}{x^2 - 4x - 5}; \lim_{x \to 0} \frac{1 - \cos(3x)}{x^2}; \lim_{x \to 0} (2x - 3)^{\frac{3x}{y}(x - 2)}.$$
24
$$\lim_{x \to \infty} \frac{x^5 - x}{x^4 + 5x^3 - x^2 + 1}; \lim_{x \to 3} \frac{x^2 - 14x - 5}{x^2 - 7x + 10}; \lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1} - x}; \lim_{x \to 0} \frac{1 - \cos(4x)}{x + 6}; \lim_{x \to 0} (3x - 1)(\ln(2x - 1) - \ln(2x + 1)).$$
25
$$\lim_{x \to \infty} \frac{2^4 - 4x + 3}{x^2 - 3}; \lim_{x \to 2} \frac{x^2 - 3x - 12}{2x^2 + 4x - 15}; \lim_{x \to 3} \frac{x^2 - 4x - 1}{x^2 - 2x}; \lim_{x \to 0} \frac{\cos(6x)}{1 - \cos(6x)}; \lim_{x \to 0} (3x - 1) - \ln(2x + 1)).$$
26
$$\lim_{x \to \infty} \frac{2^4 - 4x + 3}{(1 - 2x)^3}; \lim_{x \to \infty} \frac{x^2 - 2x - 8}{2x^2 + 2x - 12}; \lim_{x \to \infty} \frac{\sqrt{x - 4} - \sqrt{x}}{x^2 + 2x - 2}; \lim_{x \to 0}$$

Задание 2. Исследовать функцию на непрерывность. Сделать чертеж.

1	$y = \begin{cases} x^2 + 1, & x \le 1, \\ 2x, & 1 < x \le 3, \\ x + 2, & x > 3. \end{cases}$
2	$y = \begin{cases} x - 3, & x < 0, \\ x + 1, & 0 \le x \le 4, \\ 3 + \sqrt{x}, & x > 4. \end{cases}$
3	$y = \begin{cases} 2x^2, & x \le 0, \\ x, & 0 < x \le 1, \\ 2, & x > 1. \end{cases}$
4	$y = \begin{cases} x - 1, & x \le 0, \\ x^2, & 0 < x \le 2, \\ 2x, & x > 2. \end{cases}$
	$y = \begin{cases} \cos(x), & x \le 0, \\ 1 - x, & 0 < x \le 2, \\ x^2, & x > 2. \end{cases}$
6	$y = \begin{cases} x, & x \le 0, \\ \text{tg } (x), & 0 \le x \le \pi/4, \\ 2, & x > \pi/4. \end{cases}$
7	$y = \begin{cases} \sin(x), & x < 0, \\ x, & 0 \le x \le 2, \\ 0, & x > 2. \end{cases}$
8	$y = \begin{cases} 0, & x \le 0, \\ \operatorname{tg}(x), & 0 < x < \frac{\pi}{2}, \\ x, & x \ge \frac{\pi}{2}. \end{cases}$
9	$y = \begin{cases} \cos(x), & x \le \pi/2, \\ 0, & \pi/2 < x < \pi, \\ \pi/2, & x \ge \pi. \end{cases}$
10	$y = \begin{cases} x+2, & x \le -1, \\ x^2+1, & -1 < x < 1, \\ -x+3, & x \ge 1. \end{cases}$

11
$$y = \begin{cases} -x, & x \le 0, \\ -(x-1)^2, & 0 < x < 2, \\ x - 3, & x \ge 2. \end{cases}$$
12
$$y = \begin{cases} \cos(x), & x \le 0, \\ x^2 + 1, & 0 < x < 1, \\ x, & x \ge 1. \end{cases}$$
13
$$y = \begin{cases} -x, & x \le 0, \\ x^2, & 0 < x \le 2, \\ x + 1, & x > 2. \end{cases}$$
14
$$y = \begin{cases} -x, & x \le 0, \\ \sin(x), & 0 < x \le \pi, \\ x - 2, & x > \pi. \end{cases}$$
15
$$y = \begin{cases} -(x+1), & x \le -1, \\ (x+1)^2, & -1 < x \le 0, \\ x, & x > 0. \end{cases}$$
16
$$y = \begin{cases} -x^2, & x \le 0, \\ tg(x), & 0 < x \le \pi/4, \\ 2, & x > \pi/4. \end{cases}$$
17
$$y = \begin{cases} 2x, & x \le 0, \\ tg(x), & 0 < x \le 1, \\ 2, & x > 1. \end{cases}$$
18
$$y = \begin{cases} -2x, & x \le 0, \\ \sqrt{x}, & 0 < x < 4, \\ 1, & x \ge 4. \end{cases}$$
19
$$y = \begin{cases} 1, & x < 0, \\ -x+1, & 0 \le x \le 1, \\ 2x, & x > 1. \end{cases}$$
20
$$y = \begin{cases} 1, & x < -2, \\ \sqrt{5-x^2}, & -2 < x \le 0, \\ x > 0. \end{cases}$$

21	$y = \begin{cases} -2x, \\ 0, \\ 1, \end{cases}$	$x < 0,$ $0 < x < 1,$ $x \ge 1.$
22	$y = \begin{cases} x+1, \\ (x+1)^2, \\ -x+4, \end{cases}$	$x \le 0,$ $0 < x \le 2,$ $x > 2.$
23	$y = \begin{cases} -2x, \\ \sqrt{-4 - x^2}, \\ -2, \end{cases}$	$x < -2,$ $-2 \le x < 0,$ $x > 0.$
24	$y = \begin{cases} -1, \\ x^2, \\ x, \end{cases}$	$x < -1,$ $-1 \le x < 1,$ $x > 1.$
25	$y = \begin{cases} x+2, \\ x^2, \\ 2-x, \end{cases}$	$x \le -2,$ $-2 < x \le 2,$ $x > 2.$

26	$y = \begin{cases} x+1, \\ 1+x^2, \\ 2x = 3, \end{cases}$	$x < 0,$ $0 \le x \le 2,$ $x > 2.$
27	$y = \begin{cases} 2x - 1, \\ x^2 + 1, \\ 3 - x, \end{cases}$	$x < 0,$ $0 \le x \le 1,$ $x > 1.$
28	$y = \begin{cases} 3x + 4, \\ x^2, \\ 4, \end{cases}$	$x < 0,$ $0 \le x \le 2,$ $x > 2.$
29	$y = \begin{cases} x+1, \\ \sqrt{x+1}, \\ 1, \end{cases}$	$x < 0,$ $0 \le x \le 3,$ $x > 3.$
30	$y = \begin{cases} x^2, \\ 1 + \sqrt{x}, \\ 3x - 1, \end{cases}$	$x < 0,$ $0 \le x \le 1,$ $x > 3.$

Задание 3. Найти производные:

1.
$$y = \frac{1}{\sqrt{9x+4}} + \frac{12}{\sqrt[3]{x^3}}; \quad y = \sqrt[3]{\lg^2 3x}; \quad y = e^{\frac{x}{\sqrt{3}}} \arctan 2x}; \quad y = \sqrt{\frac{1+x}{1-x}} \left(\frac{1}{x^4} + 3x^2\right);$$

$$y = \arctan \left(x + \sqrt{1+x^2}\right) + 3^{\arcsin^2 x}; \quad y = \ln \left(\sqrt[3]{\frac{10}{e^{5x} - e^{-5x}}}\right); \qquad \left\{x = t - \arctan t; \\ y = \frac{t^3}{3} + t. \right\}$$

$$y = 5^{-1/\sin^2(x)}; \quad y = \frac{x}{\sqrt{4-x^2}}; \quad y = \ln \left(\lg^3\left(\frac{x}{6}\right)\right); \quad y = \ln \left(x^2 + \sqrt{x^4+1}\right);$$

$$2. \quad y = \arctan \left(\frac{\sqrt{x+1}}{3\sqrt{x}}\right) + 2^{\sin^2(x)}; \quad y = \ln \left(\frac{1}{x} + \ln \left(\frac{1}{x}\right)\right); \qquad \left\{x = \frac{t^3}{3} + \frac{t^2}{2} + t; \\ y = \frac{t^2}{2} + \frac{1}{t}. \right\}$$

$$3. \quad y = \arccos \left(\sqrt{\frac{1-x}{1+x}}\right) - e^{x^2 + 2}; \quad y = \arctan \left(\frac{x}{1+\sqrt{1-x^2}}\right); \quad \left\{x = t^2 - 2t; \\ y = t^2 + 2t. \right\}$$

$$4. \quad y = \frac{x-1}{x+1} \sqrt{x^2 - 6}; \quad y = \sqrt[3]{\lg \left(6x\right) + 1}; \quad y = \ln \left(\sqrt{1+e^{2x} + e^{4x}}\right); \quad y = \left(1 + \lg^2(3x)\right) e^{-x^2/2};$$

$$y = \ln \left(\arctan (4x)\right) + 2^{\arctan (8x)}; \quad y = \sin \left(e^{x^2 - 3x - 2}\right) + \sqrt{\frac{1-x^2}{1+x^2}}; \quad \left\{x = 2t - t^3; \\ y = t^2 - 3. \right\}$$

$$5. \quad y = \arctan \left(\frac{x+1}{x-1}\right); \quad y = \lg^3(6x) \left(e^{l/x} + 1\right); \quad y = \arcsin \left(\sin^2(x)\right) + \sqrt[3]{1-x}; \quad \left\{x = 2(t^3 + t); \\ y = e^{t^2} - 3 + t^2 - t^2 + t$$

8.
$$y = \ln\left(\frac{x^2 - 2}{\sqrt{(6 - 2x^2)^3}}\right); \ y = \sqrt{1 + \sin(4x)} - \sqrt{1 - \sin(4x)}; \ y = \ln\left(\sqrt{e^{2x}} + e^{-2x}\right);$$

$$y = \left(\frac{x}{3 - 4x}\right)^3; \ y = e^{2x^2} + \lg\left(\frac{x}{\sqrt{1 + x}}\right); \ y = \sqrt{x} \arctan\left(\sqrt{x} - \sqrt{x - a}\right); \ \begin{cases} x = 2t - \sin(2t); \\ y = \sin^3(t). \end{cases}$$

$$y = \left(\sqrt{x} + 1\right)\left(\frac{1}{\sqrt{x}} - 1\right); \ y = \frac{1}{10} \cdot \frac{1 + \lg(5x)}{1 + \lg(5x)}; \ y = e^{\left(1 + \ln^3(x)\right)} + \sqrt{\frac{1 - x^2}{1 + x^2}};$$

$$y = \ln\left(\sqrt{e^{2x} - 1}\right) \arctan\left(e^{2x}\right); \ y = \ln^3\left(1 + e^{x/3}\right); \ \begin{cases} x = at \cos(t); \\ y = at \sin(t). \ y = \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}}; \end{cases}$$

$$y = \frac{9}{\sqrt[9]{x^2 - 4x - 5}}; \ y = \frac{1}{\sin^2(10x)}; \ y = \ln\left(\cot\left(\frac{\pi}{4} - \frac{x}{2}\right)\right); \ y = \arctan\left(\frac{1 + x^2 - 1}{x}\right);$$

$$y = \frac{3a^{\cot y^3(x)} + \ln^3(2x^2); \ y = \left(1 - \arccos(3x)\right)^2 - \ln\left(\sqrt{1 - e^x} + 1\right); \ \begin{cases} x = \frac{t + 1}{t}; \\ y = \frac{t - 1}{t}. \end{cases}$$

$$y = \sqrt[3]{x^4 + 5x} - \sqrt[4]{(5x - 1)^3}; \ y = \frac{1 + tg(x)}{1 - g(x)}; \ y = \arctan\left(\sqrt{x}\right) - \sqrt{x}; \ y = 5^x - \arcsin\left(\sqrt{x^2 - 1}\right);$$

$$y = \arctan\left(\frac{2x - 1}{2\sqrt{1 + x - x^2}}\right); \ y = \ln\left(\arcsin(x)\right) + \arctan\left(\sqrt{1 + e^{2x}}\right); \ \begin{cases} x = \cos(t); \\ y = t\sin(t). \end{cases}$$

$$y = \arctan\left(\frac{2x - 1}{2\sqrt{1 + x - x^2}}\right); \ y = \ln\left(\arcsin(x)\right) + \arctan\left(\sqrt{1 - x^2}; \ y = \frac{1 + \cos^3(x)}{t + \sin(3x)}; \right)$$

$$y = \frac{3x}{\sqrt[3]{2 + x}} - 6\sqrt[3]{2 + x}; \ y = \sin^3(2x); \ y = x \cdot \arcsin(x) + \sqrt{1 - x^2}; \ y = \frac{1 + \cos^3(x)}{1 + \sin(3x)}; \right)$$

$$y = \sqrt{\frac{1 + x^2}{1 - x^2}}; \ y = e^{\left(\frac{1 + \sin^2(x)}{2x}\right)}; \ y = \arctan\left(\frac{x}{x}\right); \ y = tg^3(x)\cos(3x); \right)$$

$$y = \sqrt{\frac{1 + x^2}{1 - x^2}}; \ y = e^{\left(\frac{1 + \sin^2(x)}{2x}\right)}; \ y = \arctan\left(\frac{x}{x}\right); \ y = tg^3(x)\cos(3x); \right)$$

$$y = \sqrt{\frac{1 + x^2}{1 - x}}; \ y = tg\left(\ln(\sqrt{x})\right); \ y = 3^{\sin^2(x)}; \ y = t \ln\left(\cos(t)\right); \ y = t - \ln(\sin(t)).$$

$$y = \sqrt{\frac{1 + x^2}{1 - x}}; \ y = tg\left(\ln(\sqrt{x})\right); \ y = 3^{\sin^2(x)}; \ y = \ln\left(\cot^3\left(\sqrt{x}\right)\right); \ y = \sqrt{\ln\left(\sin\left(\frac{x + 3}{4}\right)\right)};$$

$$y = x + \frac{1}{x + \sqrt{x^2 + 1}}; \ y = \sin\left(\sqrt{1 + x^2}\right); \ y = \ln\left(\cot^3\left(\sqrt{x}\right)\right); \ y = \sqrt{\ln\left(\sin\left(\frac{x + 3}{4}\right)\right)};$$

$$y = 3^{\cot^2(3x + 1)}; \ y = \arctan\left(\sqrt{1 + x^2}\right); \ y = \ln\left(\cot^3\left(\sqrt{x}\right)\right); \ y = \sqrt{\ln\left(\sin\left(\frac{x + 3}{4}\right)\right)};$$

$$y = 3^{\cot^2(3x + 1)}; \ y = \tan\left(\sqrt{1 + x^2}\right); \ y = \ln\left(\cot^3\left(\sqrt{x}\right)\right); \ y = \sqrt{\ln\left(\cos(x)\right)}; \ y = \sqrt{1 + \sin(x)}; \ y = \tan(x - 1)};$$

$$y = \frac{1}{x + \sqrt{x^2 + 1}}; \ y = \sin\left(\sqrt{1 + x^2}\right); \ y = \ln\left(\cot$$

$$16. \quad y = \frac{1}{\sqrt[3]{2x-1}} + \frac{5}{\sqrt[4]{(x^3+2)^3}}; \quad y = \cos\left(\ln^2(x)\right); \quad y = \left(e^{\sin(x)} - 1\right)^2; \quad y = \arcsin\left(\sqrt{\frac{1-x}{1+x}}\right);$$

$$y = e^{\left(1+\ln^3(x)\right)} + \sqrt{\frac{1-x^2}{1+x^2}}; \quad y = \arctan\left(\sqrt{x^2+1}\right) + \sqrt{1-x^2}; \quad \begin{cases} x = r^2 + t + 1; \\ y = r^3 + t. \end{cases}$$

$$17. \quad y = x\sqrt[3]{\frac{2}{1+x}}; \quad y = \frac{1+\sin(3x)}{1-\sin(3x)}; \quad y = 2^{\left(\frac{1-x}{1-x}\right)}; \quad y = \ln\left(\sqrt{\frac{x(1+x)^2}{x^3-1}}\right);$$

$$y = e^{\sqrt[3]{1+x}}; \quad y = \frac{1+\sin(3x)}{1-\sin(3x)}; \quad y = 2^{\left(\frac{1-x}{1-x}\right)}; \quad y = \ln\left(\sqrt{\frac{x(1+x)^2}{x^3-1}}\right);$$

$$y = e^{\sqrt[3]{1+x\sqrt{x+3}}}; \quad y = \sqrt{1+\ln^2(x)}; \quad y = e^{\sqrt[3]{x}}; \quad y = e^{\sqrt[3]{x}};$$

$$y = e^{\sqrt[3]{1+x\sqrt{x+3}}}; \quad y = \sqrt{1+\ln^2(x)}; \quad y = e^{\sqrt[3]{x}}; \quad y = e^{\sqrt[3]{x}};$$

$$y = e^{\sqrt[3]{1+x\sqrt{x+3}}}; \quad y = x\arcsin\left(\frac{2x+1}{3}\right); \quad y = e^{-\cos^4(5x)}; \quad y = \lg^3(6x) - e^{\frac{1/x}{x}};$$

$$y = \sqrt{\frac{1+x\sqrt{x}}{x-\sqrt{x}}}; \quad y = x\arcsin\left(\frac{2x+1}{3}\right); \quad y = e^{-\cos^4(5x)}; \quad y = \lg^3(6x) - e^{\frac{1/x}{x}};$$

$$y = \sqrt{\frac{1+3x^2}{x-4x^2}}; \quad y = e^{-x^2}\cos^3(2x+3); \quad y = \arctan(g^3(5x) + \ln(\lg(x)); \quad y = (1+e^{2x^2})\sin(4x^3);$$

$$y = e^{\sqrt[3]{1+x^2}}; \quad y = e^{-x^2}\cos^3(2x+3); \quad y = \arctan(g^3(5x) + \ln(\lg(x)); \quad y = (1+e^{2x^2})\sin(4x^3);$$

$$y = e^{\sqrt[3]{1+x^2}}; \quad y = e^{-x^2}\cos^3(2x+3); \quad y = \arctan(g^3(5x) + \ln(\lg(x)); \quad y = (1+e^{2x^2})\sin(4x^3);$$

$$y = e^{\sqrt[3]{1+x^2}}; \quad y = e^{-x^2}\cos^3(2x+3); \quad y = \arctan(g^3(5x) + \ln(\lg(x)); \quad y = (1+e^{2x^2})\sin(4x^3);$$

$$y = e^{\sqrt[3]{1+x^2}}; \quad y = e^{-x^2}\cos^3(2x+3); \quad y = \arctan(g^3(5x) + \ln(\lg(x)); \quad y = (1+e^{2x^2})\sin(4x^3);$$

$$y = e^{\sqrt[3]{1+x^2}}; \quad y = e^{-x^2}\cos^3(2x+3); \quad y = \arctan(g^3(5x) + \ln(\lg(x)); \quad y = \arctan(g^3(5x) + \ln($$

$$y = \frac{3+6x}{\sqrt{3-4+5x^2}}; \quad y = \sin(x) - x\cos(x); \quad y = x^m \ln(x); \quad y = x \arcsin^2(x) + \sqrt{1-x^2};$$

$$y = 2^{\arccos(2x)} \cot 2^2(\sqrt{x}); \quad y = e^{\sqrt{\ln(x^2-x)}} \left(\frac{1}{x} - x^2\right); \quad \begin{cases} x = \frac{2-t}{2+t^2}; \\ y = \frac{t^2}{2+t^2}. \end{cases}$$

$$y = \frac{x}{\sqrt{a^2 - x^2}}; \quad y = \frac{\sin^2(x)}{2+3\cos^2(x)}; \quad y = \frac{x \ln(x)}{x-1}; \quad y = \sqrt[3]{(1-x^2)^2} + \cos^4(x^2 + 3);$$

$$y = 5^{1/(x^2+1)} + \arcsin^2(3x+2); \quad y = \lg\left(\cot(x)\right) \tan^4(x); \quad \begin{cases} x = e^t \cos(t); \\ y = e^t \sin(t). \end{cases}$$

$$26. \quad y = (2x+1)\sqrt{\frac{5x+1}{2x^3+x}}; \quad y = e^{\sin(3x)} \tan(2x); \quad y = 5^{\ln(4x)} + \sqrt{4x+1}; \quad y = \arctan\left(\frac{\sqrt{x+1}}{x} + \frac{1}{x^2}\right);$$

$$y = \arccos\left(\frac{1+\cos^2(x)}{2x}\right); \quad y = \log_2\left(\frac{1+\sqrt{2x-1}}{x}\right); \quad \begin{cases} x = e^w; \\ y = 3t. \end{cases}$$

$$27. \quad y = \frac{2x}{\sqrt{4x^3-x}}; \quad y = \arcsin\left(\frac{\sqrt{5x+3}}{\sqrt{x^3+1}}\right); \quad y = \ln(x^3 + \sqrt{2x+3})e^{3x}; \quad y = 3^{\sin^3(x)} + \log_3(2+3x);$$

$$y = \arctan\left(\frac{\sqrt{2x+1}}{x-1}\right); \quad y = \ln\left(\frac{x+4}{\sqrt{x^3-2x}}\right) + \sqrt{\cos(x)}; \quad \begin{cases} x = 5x^3 + 2; \\ y = 3x + 1. \end{cases}$$

$$28. \quad y = \frac{3x+1}{\sqrt[3]{4x-x^3}}; \quad y = \arcsin\left(3 + \frac{1}{\sqrt{x}}\right); \quad y = \cot(4x)5^{\log(x)}; \quad y = \log_2\left(x + \frac{x}{\sqrt{x+1}}\right);$$

$$y = \tan\left(\frac{x+4}{\sqrt{x^3-2x}}\right) + \cos\left(\frac{x+4}{\sqrt{x^3+1}}\right); \quad y = \cot\left(\frac{\sqrt{2x-1}}{\sqrt{x^3+1}}\right) = \frac{x^3}{\sqrt{3}}; \quad y = \sin\left(\frac{x+4}{\sqrt{x^3+1}}\right);$$

$$y = \frac{x^2}{\sqrt{3}+2x^2}; \quad y = \ln\left(\arcsin^3(2x)\right); \quad y = \arctan\left(\frac{\sqrt{2x-1}}{\sqrt{x^3+1}}\right) = \frac{x^3}{\sqrt{x^3+1}}; \quad y = \sqrt{1+e^{5x}} \tan(3x); \quad y = \cos^2\left(x + \sqrt{x}\right); \quad \begin{cases} x = 6t^2 - 1; \\ y = 3t + 4. \end{cases}$$

$$y = x\sqrt{\frac{2x-3}{4x^2+x}}; \quad y = 5^{n^2(x)} \arcsin(4x); \quad y = \ln\left(x + \frac{1}{\sqrt{x^2-1}}\right); \quad y = \log_3\left(\frac{1}{x} + \sqrt{2x-1}\right);$$

$$y = \sqrt{2x+1}e^{\sin(3x)}; \quad y = \arctan(6x); \quad y = \ln\left(x + \frac{1}{\sqrt{x^2-1}}\right); \quad y = \log_3\left(\frac{1}{x} + \sqrt{2x-1}\right);$$

$$y = \sqrt{2x+1}e^{\sin(3x)}; \quad y = \arctan(6x); \quad y = \ln(3t); \quad y = \ln(3t);$$

$$y = \sqrt{2x+1}e^{\sin(3x)}; \quad y = \arctan(6x); \quad y = \ln(3t); \quad y = \ln(3t);$$

$$y = \sqrt{2x+1}e^{\sin(3x)}; \quad y = \arctan(6x); \quad y = \ln(3t);$$

$$y = \sqrt{2x+1}e^{\sin(3x)}; \quad y = \arctan(6x); \quad y = \ln(3t);$$

$$y = 1 + 3t.$$

Задание 4. Вычислить предел, используя правило Лопиталя:

1.	$\lim_{x \to \infty} \left[\frac{x}{\ln(1+x)} \right]$
2.	$\lim_{x\to\pi/2} \left(\cos(x)\operatorname{tg}(5x)\right)$
3.	$\lim_{x \to 0} x^{\arcsin x}$
4.	$\lim_{x \to 0} x^{\arctan(x)}$
5.	$\lim_{x \to 0} \frac{1 - \cos(ax)}{1 - \cos(bx)}$
6.	$\lim_{x\to 0} x^2 e^{1/x}$
7.	$\lim_{x \to 1/2} \left[\sin(2x - 1) \operatorname{tg}(\pi x) \right]$
8.	$\lim_{x \to 2} \frac{x^3 - 4x^2 + 4x}{x^3 - 10x + 12}$
9.	$\lim_{x\to\infty} \left(1+e^x\right)^{\frac{1}{x}}$
10.	$\lim_{x \to \pi/2} \left[tg(x) - \frac{1}{\cos(x)} \right]$
11.	$\lim_{x\to 0}\frac{x-\sin(x)}{x^3}$
12.	$\lim_{x \to \pi} (\pi - x) t g\left(\frac{x}{2}\right)$
13.	$\lim_{x\to\infty}\frac{e^x}{x^3}$
14.	$\lim_{x\to 0} \left(1-e^{2x}\right) \operatorname{ctg}(x)$
15.	$\lim_{x \to 0} \frac{e^{2x} - 1}{\ln(1 + 2x)}$

16.	$\lim_{x \to 0} \left[\frac{1}{x \sin(x)} - \frac{1}{x^2} \right]$
17.	$\lim_{x\to 0}\frac{a^x-b^x}{\operatorname{tg}(x)}$
18.	$\lim_{x \to 0} \left[\frac{e^{2x} - 2x - 1}{x^2} \right]$
19.	$\lim_{x \to \pi/6} \frac{1 - 2\sin(x)}{\cos(3x)}$
20.	
20.	$\lim_{x \to 0} \left(\sin(x) \right)^{\operatorname{tg}(x)}$
21.	$\lim_{x \to 0} \frac{\operatorname{tg}(x) - \sin(x)}{x - \sin(x)}$
22.	$\lim_{x \to 0} \left[\frac{1}{\sin(x)} - \frac{1}{x} \right]$
23.	$\lim_{x\to 0} \left(\operatorname{ctg}(2x)\right)^{1/\ln(x)}$
24.	$\lim_{x \to 1} \frac{x^3 - 2x^2 + 1}{x^3 - 4x^2 + 2x + 1}$
25.	$\lim_{x\to 0} \frac{e^x - 1}{\sin^2(2x)}$
26.	$\lim_{x \to 0} \frac{x + \sin(3x)}{\ln(1 + 2x)}$
27.	$\lim_{x \to 1} \frac{\ln(4x^2 + x - 4)}{\sin(\pi x)}$
28.	
20.	$\lim_{x\to\infty} x^{1/\sin(x)}$
29.	$\lim_{x \to 0} \frac{\arctan(x^2 + 2x^3)}{\sin(3x^2)}$
30.	$\lim_{x\to 0} \frac{1-e^{3x}}{\sin(2x)}$

Задание 5.Провести полное исследование функции и построить их графики:

1.	a) $y = \frac{3x^2}{x^3 + 1}$; b) $y = x - \ln(x + 1)$.
2.	$ay = \frac{4x^3}{x^3 - 1}$; $by = \ln(x^2 - 1)$.
3.	$a)y = \frac{x^3}{x-1}; b)y = xe^{2x-1}.$
4.	a) $y = \frac{x^2 + 1}{1 - x^2}$; b) $y = e^{1/(3 - x)}$.
5.	$ay = \frac{1}{x} + 4x^2; by = \ln(x^2 + 4).$
6.	$a)y = x + \frac{2x}{x^2 - 1}; \ b)y = e^{2x - x^2}.$
7.	$a)y = \frac{x^4}{x^3 - 1};$ $b)y = x - 2\operatorname{arctg}(x).$
8.	$a)y = \sqrt{\frac{x-1}{x+1}}; b)y = x\ln(x).$
9.	$ay = \frac{2x+1}{x^2}; by = (x-1)e^{3x+1}.$
10.	$ay = \frac{x-1}{x^2 + 3x - 4}$; $by = x - \ln(x)$.
11.	$ay = \frac{x^2}{2} + \frac{1}{x}; by = \ln\left(\frac{x+1}{x+2}\right).$
12.	a) $y = \frac{x-1}{x^2 - 2x}$; b) $y = e^{-1/x^2}$.
13.	$ay = \frac{1}{x^2} - \frac{1}{(x-1)^3}; by = xe^{-x^2}.$
14.	a) $y = \frac{(x-3)^2}{4(x-1)}$; b) $y = e^{1/(x+2)}$.
15.	$ay = \frac{2x-1}{(x-1)^2}; by = x - \arctan(x).$

16.
$$a)y = \frac{2-4x^2}{1-4x^2}$$
; $b)y = \ln\left(\frac{x-1}{x-2}\right)$.
17. $a)y = \frac{2x^2}{4x^2-1}$; $b)y = \frac{\ln(x)}{x}$.
18. $a)y = \frac{3x}{x^2+9}$; $b)y = \ln(x^2-4x+8)$.
19. $a)y = \frac{3x-2}{x^3}$; $b)y = \ln(x^2-4x+8)$.
20. $a)y = \frac{x^2+16}{4x}$; $b)y = (x+1)e^{-2x}$.
21. $a)y = 1 + \frac{4x+1}{x^2}$; $b)y = \frac{x}{\ln\sqrt{x}}$.
22. $a)y = \frac{x-1}{1+x^2}$; $b)y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.
23. $a)y = \frac{5x^2}{x^2-25}$; $b)y = \ln(9-x^2)$.
24. $a)y = \frac{3-x^2}{x+2}$; $b)y = \frac{1}{e^x-1}$.
25. $a)y = \frac{x^3-1}{4x^2}$; $b)y = x^2\ln(x)$.
26. $a)y = \frac{2x-1}{(x-2)^2}$; $b)y = \ln(4x^2-1)$.
27. $a)y = \frac{(x-1)^2}{x-2}$; $b)y = x - \arctan(2x)$.
28. $a)y = \frac{4x^3}{x^2-4}$; $b)y = \ln(x^2-2x+4)$.
29. $a)y = \frac{2x}{x^3-1}$; $b)y = x - \ln(x+2)$.
30. $a)y = \frac{3x+1}{x^2-1}$; $b)y = xe^{4x-2}$.