Случайные процессы: домашние задания

2023

Домашнее задание на первую неделю

Задача 1 (Задача из канонического задания)

Пусть случайный процесс $X(\omega,t)=\omega t,\ t\in[0;1]$, определен на вероятностном пространстве $(\Omega,\mathcal{F},\mathbb{P})$, где $\Omega=\{1,2,3\},\ \mathcal{F}$ — множество всех подмножеств множества Ω , а мера \mathbb{P} такова, что $\mathbb{P}(\{1\})=\mathbb{P}(\{2\})=\mathbb{P}(\{3\})=1/3$. Построить вторичное (выборочное) вероятностное пространство процесса.

Задача 2

Случайный процесс X задан формулой $X_t = \eta \cdot \eta$, где $\eta \sim U_{(0;1)}$, $t \in (0;1)$. Найдите n-мерные функции распределения этого процесса.

Задача 3

Найдите математическое ожидание, дисперсию и корреляционную функцию процесса из предыдущей задачи.

Задача 4

Пусть дана случайная величина $\eta \sim \mathrm{U}_{[0;1]}$. Определим случайный процесс $X_t = \mathbb{I}_{(-\infty;\eta]}(t)$. Найдите вероятность, что скачок с единицы до нуля произойдёт на интервале $[t_0;t_0+\Delta t]$, если достоверно известно, что на $[0;t_0]$ скачка не было (параметр Δt задан и строго меньше $1-t_0$).

Задача 5

Пусть ξ и η — независимые случайные величины с функциями распределения $F_{\xi}(x)$ и $F_{\eta}(y)$. Пусть X — случайный процесс, определённый формулой $X_t = \xi \cdot t + \eta$. Найдите семейство конечномерных распределений процесса.

Задача 6

Пусть X_1 , X_2 — два независимых случайных процесса с корреляционными функциями $R_{X_1}(t,s)$ и $R_{X_2}(t,s)$ и функциями среднего $m_{X_1}(t)$ и $m_{X_2}(t)$. Найдите корреляционную функцию процесса $Y = X_1 \cdot X_2$.