Student Performance Analysis

Amandaliss Dropik

The Problem

- In general, there seems to be a division between male and female academic performance
- We want to figure out which sex performs best, and why
 - At a glance, there would seem to be many contributions to academic failure or success
- Eventually, we want to be able to predict grades based on these factors
- This information can be used by universities to makes positive changes

Background

- There have been many studies on the differences between males and females in academics
 - Many different conclusions as well
- After reading some papers, it is generally accepted that females tend to do better academically
 - This is reflected in graduation rates, drop out rates, workforce statistics and more
 - If we look at specifics, there are sectors (like the sciences) where men will have more success
- Main piece of literature referenced for this project was <u>Conscientiousness</u> <u>as a Predictor of the Gender Gap in Academic Achievement</u> by Verbree et al (2022)

Data Set

- Students Performance by Joakim Arvidsson
- Dataset of 145 students
- 33 features
 - o Consists of personal and academic information
- Chosen because of the wide range of information taken from students
- Output is grade for each student
- Dataset came preprocessed and clean
 - Minimal changes done like removing unnecessary columns

Questions To be Answered with Analysis

- 1. Which sex performs better in school?
- 2. Does having a commitment outside of school negatively impact your grade?
- 3. How impactful is cramming for exams on your grade?
- 4. Is it better to study more than 5 hours a week?
- 5. Does attending seminars/conferences related to your department impact your grade?
- 6. Is attending class necessary for a good grade
- 7. Does studying with classmates negatively or positively impact your grade?
- 8. How much does note-taking during class determine your success?
- 9. How much does listening during class determine your success?

Seminar Attendance

When Students Studied

Answers to earlier questions

- 1. This data set suggests males do better
- 2. There is only a slight impact if you are employed, and none with extracurriculars
- 3. Seems to have no significant impact on grade
- 4. Studying for longer than 5 hours appears to lower grade
- 5. Attending seminars does positively impact grade
- 6. This data set suggest there is no significance towards grade
- 7. Studying with others has a moderate significance
- 8. Seems to positively impact grade
- 9. Might slightly impact grade

Methodology

- Random Forest Regressor
 - RMSE of ~2.057
 - Pearson's Correlation
 - Sex: 0.3355 (moderate correlation)
 - Cumulative grade point average in the last semester: 0.3155 (moderate correlation)
 - Expected cumulative grade point average in the graduation: 0.2486 (weak correlation)
 - Feature Importance
 - Cumulative grade point average in the last semester: 0.1146
 - Father's education: 0.0683
 - Sex: 0.0657

Methodology

- Random Forest Classifier explanations
 - Accuracy: .2273
 - Feature Importance:
 - Sex: 0.0862
 - Cumulative grade point average in the last semester: 0.2642
 - Expected Cumulative grade point average in the graduation: 0.1933
 - Reading frequency: 0.1405
 - Attendance to classes: 0.0893
 - Weekly study hours: 0.2265

Classification	Report:			
precision		recall	f1-score	support
0	0.00	0.00	0.00	5
1	0.32	0.60	0.41	10
2	1.00	0.11	0.20	9
3	0.33	0.17	0.22	6
4	0.00	0.00	0.00	3
5	0.17	0.33	0.22	3
6	0.00	0.00	0.00	5
7	0.14	0.33	0.20	3
accuracy			0.23	44
macro avg	0.24	0.19	0.16	44
weighted avg	0.34	0.23	0.19	44

```
Confusion Matrix:
[[0 3 0 0 0 0 0 2 0]
[1 6 0 0 0 0 0 3]
[2 3 1 0 2 1 0 0]
[0 2 0 1 1 2 0 0]
[0 1 0 0 0 1 0 1]
[0 2 0 0 0 1 0 0]
[0 1 0 1 0 1 0 0 1]
[0 1 0 1 0 0 0 1]
```

Methodology

Linear Regression

o RMSE: ~2.927

o R-squared: -0.8801

	True Grades	Predicted Grades
69	5	0.795585
140	5	1.608887
27	1	0.399065
19	3	1.860659
42	1	3.636620
117	1	-0.216083
126	3	2.236299
108	6	0.939197

Results

- Some of the features I thought would impact the grades did not do so as much as I thought, or at all
- Random Forest Regressor was the best model for this data
 - With that said, still did not perform that well
- After finishing this project, I can conclude that the dataset is probably the issue here

Sources

Joakim Arvidsson. (2023). Students Performance (Version 2) [Datafile and code book]. Retrieved from https://www.kaggle.com/datasets/joebeachcapital/students-performance/data

Verbree, A. R., Hornstra, L., Maas, L., & Wijngaards-de Meij, L. (2023). Conscientiousness as a Predictor of the Gender Gap in Academic Achievement. *Research in higher education*, 64(3), 451–472. https://doi.org/10.1007/s11162-022-09716-5