Particle spectrograph

Wave operator and propagator

Source constraints		
SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0}^{#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\tau_{0}^{#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\sigma_{0+}^{\#1} == 0$	$\partial_{\beta}\sigma^{\alpha\beta}_{\alpha} == 0$	1
$t_1^{\#2\alpha} + 2ik \ \sigma_1^{\#1\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi}$ +	К
	$2 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi} \right) - \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial_{\beta} \sigma^{\alpha \beta \chi} +$	
	$\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\sigma^{\alpha\beta}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } = = \partial_{\chi}\partial^{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	e e
$\sigma_{1}^{\#1}{}^{\alpha} := \sigma_{1}^{\#2}{}^{\alpha}$	$\partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi}_{\beta} + \partial_{\chi} \partial^{\chi} \sigma^{\alpha \beta}_{\beta} == 0$	е
$\tau_1^{\#1}{}^{\alpha\beta} + ik \ \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	8
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2}^{\#1}\alpha\beta - 2ik \ \sigma_{2}^{\#1}\alpha\beta == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi}_{\chi} - \right.$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} + 3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon}$ -	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha}$ -	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} t_{\chi}^{\chi}$ -	
	$4 i \eta^{\alpha\beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta\epsilon}_{\delta}) == 0$	
Total constraints/gauge generators:	ge generators:	20

$ au_{1}^{\#2} lpha$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$	<u>t1</u>	$\frac{i k t_1}{\sqrt{2}}$	0	<u></u>				
$\tau_{1^{-}}^{\#1}\alpha$	0	0	0	0	0	0	0	$f_{1^-}^{\#2} \alpha$	0	0	0	<i>ikt</i> 1 3	$\sqrt{2} kt_1$	0	$\frac{2k^2t_1}{3}$
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$6\sqrt{2} (3+4k^2)^2 t_1$	$\frac{12}{(3+4k^2)^2t_1}$	0	$\frac{12 i \sqrt{2} k}{(3+4 k^2)^2 t_1}$	$f_{1^{-}\alpha}^{\#1}$ f	0	0	0	0	$0 \frac{1}{3} \vec{l} .$	0	0 2
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{6}{(3+4k^2)^2t_1} = \frac{6}{(3+6k^2)^2t_1}$	$\frac{6\sqrt{2}}{(3+4k^2)^2t_1} = \frac{6\sqrt{2}}{(-1)^2}$	0	$\frac{12ik}{(3+4k^2)^2t_1} = \frac{12ik}{(1+2)^2t_1}$	$\omega_{1^{ ext{-}}\alpha}^{\#2}$,	0	0	0	$\frac{t_1}{3\sqrt{2}}$	/ 1 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_1$
$ au_1^{\#_1}\!\!+\!lphaeta$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0	$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	9 <u>17</u>	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$
$\sigma_1^{\# 2} \alpha_{eta}$	$\frac{\sqrt{2}}{t_1 + k^2 t_1} = -\frac{\sqrt{2}}{t_1 + k^2 t_1}$		$\frac{ik}{(1+k^2)^2t_1} \left \frac{i}{t} \right $					$f_{1}^{\#1}{}_{\alphaeta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
	- 1+1+	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{i}{(1+k)}$	0	0	0	0	$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\sigma_{1}^{\#_{1}}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	$\omega_1^{\#1}{}_+^{lphaeta}$		$-\frac{t_1}{\sqrt{2}}$		0	0	0	0
•	$\sigma_1^{\#1} + \alpha^\beta$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#_1} +^{\alpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$		$\omega_1^{\#1} + \alpha^{eta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{lpha}$	$f_1^{\#2} + \alpha$

 $\sigma_{2^{-}\alpha\beta\chi}^{\#1}$

 $-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

 $\frac{1}{(1+2k^2)^2t_1}$

 $\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$

Massive and	massless	spectra

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$