Introduction aux BDD Relationnelles et à SQL

W4D3

Objectifs de la matinée

- BDD Relationnelles / Diagramme Entités Relations
- SQL:
 - Différence entre SQL et d'autres langages de programmations
 - Utilisation de SQL avec des bases de données
 - Rôle en tant que Data Analyst versus d'autres rôles
 - Expliquer les relations entre données à l'intérieur d'une base de données
 - Utiliser SELECT

Base de données et Tables

• Base de données : un conteneur

• Table : une liste structurée de données

Colonnes et rangées

• Colonne: un seul champ

• Rangée : un enregistrement / échantillon

_	A	В	С	D	E	F	G	Н		J	K
1	sku	name	brand	Price	item_height	item_length	item_width	item_unit_o	item_weight	item_unit_d	f_weight
2	PFI-F0314BPY	Pfister F-031-4	Pfister	129.99	3.8	20.6	12.7	inches	6.5	pounds	
3	PFI-F042HAK0	Pfister Amher	Pfister	79.99	7.69	4.81	6.56	inches	3.42	pounds	
4	PFI-FWK13405	Pfister F-WK1	Pfister	119.99	2.5	18.5	10	inches	5.12	pounds	
5	PFI-GT343TCC	Pfister GT34-3	Pfister	149.99	2.5	18.5	10	inches	6.2	pounds	
6	PFI-MP8LNKK-	Pfister Langsto	Pfister	99.99	7.67	14.22	7.67	inches	3.2	pounds	
7	B00B4QEP0U	Pfister GT529-	Pfister	109.99	2.5	18.5	10	inches	3.17	pounds	
8	PFI-GT529DCC	Pfister GT529-	Pfister	179.99	2.5	24.5	10.5	inches	3.17	pounds	
9	PFI-GT529DSS	Pfister GT529-	Pfister	114.99	2.5	24.5	10.5	inches	3.17	pounds	
10	B007LEP02Q	Pfister F-031-4	Pfister	249.99	4.1	20.6	12.8	inches	6.5	pounds	
11	PFI-F0314BPS-	Pfister F-031-4	Pfister	144.99	4.1	20.6	12.8	inches	6.5	pounds	
12											

Data Modeling

- Organiser et structurer l'info en plusieurs tables reliées
- Peut représenter un process business ou des relations entre process business

Evolution des modèles de données

1960 1969	Hierarchical Network	Difficult to represent M:N relationships (hierarchical only) Structural level dependency No ad hoc queries (record-at-a-time access) Access path predefined (navigational access)				
1970	Relational	Conceptual simplicity (structural independence) Provides ad hoc queries (SQL) Set-oriented access				
1976	Entity Relationship	Easy to understand (more semantics) Limited to conceptual modeling (no implementation component)				
1978	Semantic	More semantics in data model Support for complex objects				
1985	Object-Oriented	Inheritance (class hierarchy) Behavior Unstructured data (XML)				
1990	Extended Relational (O/R DBMS)	XML data exchanges				
2009 Big Data	NoSql	Addresses Big Data problem Less semantics in data model Based on schema-less key-value data model Best suited for large sparse data stores				

Briques pour construire une BDD Relationnelle

- Entités: personnes, lieux, évènement. Distinguable, unique.
- Attributs : Une caractéristique de cette entité.
- Relations : Relation entre entités :
 - One to Many
 - Many to Many
 - One to One

Diagrammes ER

Représente une BDD Relationnelle

Clés primaires et clés étrangères

- Clé primaire : Une colonne dont les valeurs identifient de manière unique la rangée.
- Clé étrangère : Une ou plusieurs colonnes qui ensemble peuvent identifier une rangée dans une autre table.

Différences de notation

Comprendre la donnée avant de coder

- Process business
- Comment la donnée est organisée et se structure

Qu'est ce que SQL?

- Structured Query Language (SQL)
- Langage standard pour la communication avec et la gestion de BDD relationnelles.
- requête, insérer, mettre à jour, modifier
- Déclaratif
- Non procédural

Qui utilise SQL?

- Backend, QA, Data Architect, Data Administrator, Data Analyst, Data Scientist, etc.
- Le Data Administrator :
 - Gouverne la BDD
 - Gère les permissions utilisateurs
 - Gère et crée les tables
- Le Data Analyst :
 - End user de la BDD
 - Utilise des requêtes SQL pour lire la donnée

Data Base Management Systems

- Un seul SQL mais plusieurs DBMS:
 - MySQL
 - PostgreSQL
 - SQLite
 - Microsoft SQL Server
 - IBM DB2 Oracle
 - Etc.
- Plusieurs différences de syntaxe.

SQL et le Big Data

- NoSQL Not only SQL
- Rechercher l'info sans utiliser de BDD relationnelles

Syntaxe SELECT

- Commande basique: SELECT nom_du_champ FROM nom_du_tableau
- Plusieurs colonnes: SELECT prenom, nom FROM client
- Toutes les colonnes : SELECT * FROM client

Plus tard...

- Joindre un autre tableau aux résultats
- Filtrer pour ne sélectionner que quelques enregistrements
- Classer les résultats
- Grouper les résultats pour faire uniquement des statistiques (note moyenne, prix le plus élevé, etc.)

```
SELECT *
FROM table
WHERE condition
GROUP BY expression
HAVING condition
{ UNION | INTERSECT | EXCEPT }
ORDER BY expression
LIMIT count
OFFSET start
```