IV Partial differentiations

4.1 Partial derivative and geometrical interpretation

Partial derivative with respect to x

The partial derivative of z = f(x, y) with respect to x at the point (x_0, y_0) is

$$\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

provided the limit exists i.e. differentiate with respect to x keeping y constant.

Symbolically we may write it as $f_x(x_0, y_0)$.

Partial derivative with respect to y

The partial derivative of z = f(x, y) with respect to y at the point (x_0, y_0) is

$$\frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h},$$

provided the limit exists i.e. differentiate with respect to y keeping x constant.

Symbolically we may write it as $f_y(x_0, y_0)$.

For example, if f(x, y) = x + y + xy, then $\frac{\partial f}{\partial x} = 1 + y$ and $\frac{\partial f}{\partial y} = 1 + x$.

Partial derivatives of higher orders

Let z = f(x, y), then $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ being the functions of x and y can further be differentiated partially with respect to x and y.

Symbolically, we write

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial x^2} \text{ or } \frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) \text{ or } f_{xx}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial x} \right) = \frac{\partial^2 z}{\partial y \partial x} \text{ or } \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) \text{ or } f_{xy}$$

$$\frac{\partial}{\partial x} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial x \partial y} \text{ or } \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) \text{ or } f_{yx}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial z}{\partial y} \right) = \frac{\partial^2 z}{\partial y^2} \text{ or } \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) \text{ or } f_{yy}$$

Notations: We use the following notation

$$p = \frac{\partial z}{\partial x}, q = \frac{\partial z}{\partial y}, r = \frac{\partial^2 z}{\partial x^2}, s = \frac{\partial^2 z}{\partial x \partial y}, t = \frac{\partial^2 z}{\partial y^2}$$

For example, if $f(x, y) = x^2y + \sin(x + y)$, then $\frac{\partial f}{\partial x} = 2xy + \cos(x + y)$, $\frac{\partial f}{\partial y} = x^2 + \sin(x + y)$

$$\cos(x+y), \frac{\partial^2 f}{\partial x^2} = 2y - \sin(x+y), \frac{\partial^2 f}{\partial x \partial y} = 2x - \sin(x+y), \frac{\partial^2 f}{\partial y \partial x} = 2x - \sin(x+y)$$

and
$$\frac{\partial^2 f}{\partial y^2} = 2x - \sin(x + y)$$
.

Note: In general, $\frac{\partial^2 f}{\partial x \partial y}$ and $\frac{\partial^2 f}{\partial y \partial x}$ are not equal.

Tutorial:

Partial derivative and geometrical interpretation

1	Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $z = x^2y - x\sin(xy)$.
	Solution.
	Here $z = x^2y - x\sin(xy) (1)$
	Differentiating (1) partially w.r.t x' , we get
	$\frac{\partial z}{\partial x} = 2xy - \{x\cos(xy) \cdot y + \sin(xy)\} = 2xy - xy\cos(xy) - \sin(xy)$
	Differentiating (1) partially w.r.t y' , we get
	$\frac{\partial z}{\partial y} = x^2 - x\cos(xy) \cdot x = x^2 - x^2\cos(xy) = x^2(1 - \cos(xy)).$
2	Evaluate $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, if $z = \log(x^2 + y^2)$.
	Answer: $\frac{2x}{x^2+y^2}$, $\frac{2y}{x^2+y^2}$.
3	If $f(x, y) = x \cos y + ye^x$, then find all second order partial derivatives of f .
	Answer: $f_x = \cos y + y e^x$, $f_y = -x \sin y + e^x$, $f_{xx} = y e^x$,
	$f_{xy} = -\sin y + e^x, f_{yx} = -\sin y + e^x, f_{yy} = -x\cos y.$
4	Verify that $\frac{\partial^2 z}{\partial x \partial y} = \frac{\partial^2 z}{\partial y \partial x}$, for the function $z = \tan^{-1} \left(\frac{x}{y}\right)$.
5	If $z = e^x(x\cos y - y\sin y)$, then show that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.

4.2 Euler's theorem with corollaries and their applications

Homogeneous functions

A function of two variables, say f(x, y), is said to be homogeneous of degree n if for any nonzero constant k, $f(kx, ky) = k^n f(x, y)$.

For example, $f(x,y) = x^2 + y^2$ is homogeneous function of degree 2.

Note: In general, a function of k variables, say $f(x_1, x_2, x_3, ..., x_k)$, is said to be homogeneous of degree n if for any nonzero constant k, $f(kx_1, kx_2, kx_3, ..., kx_k) = k^n f(x_1, x_2, x_3, ..., x_k)$.

Euler's theorem on homogeneous function

If z is a homogeneous function of x, y of order n, then

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = n z.$$

Note: In general, if u is a homogeneous function of $x_1, x_2, x_3, ..., x_k$ of degree n, then

$$x_1 \frac{\partial u}{\partial x_1} + x_2 \frac{\partial u}{\partial x_2} + x_3 \frac{\partial u}{\partial x_3} + \dots + x_k \frac{\partial u}{\partial x_k} = n u$$
.

Deduction from Euler's theorem

1. If z is a homogeneous function of x, y of order n, then

$$x^{2} \frac{\partial^{2} z}{\partial x^{2}} + 2xy \frac{\partial^{2} z}{\partial x \partial y} + y^{2} \frac{\partial^{2} z}{\partial y^{2}} = n (n - 1) z.$$

2. If z is a homogeneous function of x, y of order n and z = f(u), then

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = n\frac{f(u)}{f'(u)}.$$

3. If z is a homogeneous function of x, y of order n and z = f(u), then

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = g(u) [g'(u) - 1], \text{ where } g(u) = n \frac{f(u)}{f'(u)}$$

Tutorial:

Euler's theorem with corollaries and their applications

If
$$z = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log_e x - \log_e y}{x^2 + y^2}$$
, then prove that $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = -2z$.

Solution. Here $z(x, y) = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log_e x - \log_e y}{x^2 + y^2} = \frac{1}{x^2} + \frac{1}{xy} + \frac{\log_e \left(\frac{x}{y}\right)}{x^2 + y^2}$.

Replacing x by kx and y by ky ,

	$\left(\begin{array}{ccc} 1 & \log_{2}\left(\frac{x}{-1}\right)\right)$
	$= k^{-2} \left(\frac{1}{x^2} + \frac{1}{xy} + \frac{\log_e\left(\frac{x}{y}\right)}{x^2 + y^2} \right)$
	$= k^{-2} z(x, y).$
	Thus $z(x, y)$ is homogeneous function of degree -2 .
	By Euler's theorem $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = nz \Rightarrow x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y} = -2z$.
2	If $u = \frac{x}{y+z} + \frac{y}{z+x} + \frac{z}{x+y}$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$.
3	If $z = f\left(\frac{y}{x}\right) + \sqrt{x^2 + y^2}$, then find $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2}$.
	Answer: 0.
4	If $u = sec^{-1}\left(\frac{x^3 + y^3}{x + y}\right)$, then prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2\cot u$.
	Solution. Here $z(x, y) = f(u) = \sec u = \frac{x^3 + y^3}{x + y}$.
	Replacing x by kx and y by ky ,
	$z(kx, ky) = \frac{(kx)^3 + (ky)^3}{kx + ky}$
	$=k^2\left(\frac{x^3+y^3}{x+y}\right).$
	Thus $z(x, y) = f(u) = \sec u$ is homogeneous function of degree 2.
	By modified Euler's theorem $\frac{\partial u}{\partial u} = \frac{\partial u}{\partial u}$
	$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = n\frac{f(u)}{f'(u)} \Rightarrow x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2\frac{\sec u}{\sec u \tan u} = 2\cot u.$
5	If $u = \log_e\left(\frac{x^4 + y^4}{x + y}\right)$, then prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3$.
6	If $u = \tan^{-1}\left(\frac{y^2}{x}\right)$, then find (i) $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$, (ii) $x^2\frac{\partial^2 u}{\partial x^2} + 2xy\frac{\partial^2 u}{\partial x\partial y} + y^2\frac{\partial^2 u}{\partial y^2}$.
	Answer: $(i)\frac{1}{2} \sin 2u$, $(ii) - \sin^2 u \sin 2u$.

4.3 Chain rule

Chain rule for function of two independent variables

If z = f(x, y) is differentiable and x = x(t), y = y(t) are differentiable functions of t, then z is a differentiable function of t and

$$\frac{df}{dt} or \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}.$$

Chain rule for function of three independent variables

If u = f(x, y, z) is differentiable and x = x(t), y = y(t), z = z(t) are differentiable functions of t, then u is a differentiable function of t and

$$\frac{df}{dt} \ or \frac{du}{dt} = \frac{\partial u}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial u}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial u}{\partial z} \cdot \frac{dz}{dt}.$$

Chain rule for function of two independent variables and one intermediate variable

If z = f(x) and x = g(r, s), then z has partial derivatives with respect to r and s, given by the formulas

$$\frac{\partial z}{\partial r} = \frac{dz}{dx} \cdot \frac{\partial x}{\partial r}$$
 and $\frac{\partial z}{\partial s} = \frac{dz}{dx} \cdot \frac{\partial x}{\partial s}$.

Chain rule for function of two independent variables and two intermediate variables

If z = f(x, y), x = g(r, s), and y = h(r, s), then z has partial derivatives with respect to r and s, given by the formulas

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial r} \text{ and } \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}.$$

Chain rule for function of two independent variables and three intermediate variables

Suppose that u = f(x, y, z), x = g(r, s), y = h(r, s), and z = k(r, s). If all four functions are differentiable, then u has partial derivatives with respect to r and s, given by the formulas

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial r} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial r} \text{ and } \frac{\partial u}{\partial s} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial s} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial s}.$$

Tutorial:

Chain rule

1	Given $z = \sin\left(\frac{x}{y}\right)$, $x = e^t$ and $y = t^2$. Find $\frac{dz}{dt}$ as a function of t .
	Solution. Here $z(x,y) = \sin\left(\frac{x}{y}\right)$, $x = e^t$, $y = t^2$. So
	$\frac{\partial z}{\partial x} = \frac{1}{y} \cos\left(\frac{x}{y}\right), \frac{\partial z}{\partial y} = -\frac{x}{y^2} \cos\left(\frac{x}{y}\right), \frac{dx}{dt} = e^t, \frac{dy}{dt} = 2t.$
	Now
	$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$
	$= \frac{1}{y} \cos\left(\frac{x}{y}\right) e^t - \frac{x}{y^2} \cos\left(\frac{x}{y}\right) 2t$
	Substituting x and y , we get
	$\frac{dz}{dt} = \frac{1}{t^2} \cos\left(\frac{e^t}{t^2}\right) e^t - \frac{e^t}{t^4} \cos\left(\frac{e^t}{t^2}\right) 2t$
	$= \frac{1}{t^2} e^t \cos\left(\frac{e^t}{t^2}\right) \left(1 - \frac{2}{t}\right).$
2	If $z = \tan^{-1}\left(\frac{y}{x}\right)$ where $x = e^t - e^{-t}$ and $y = e^t + e^{-t}$, then find $\frac{dz}{dt}$.

	Answer: $\frac{dz}{dt} = -\frac{2}{e^{2t} + e^{-2t}}.$
3	If $u = x^2 + y^2 + z^2$ where $x = e^t$, $y = e^t \sin t$, $z = e^t \cos t$, then find $\frac{du}{dt}$.
	Answer: $\frac{du}{dt} = 4e^{2t}$.
4	Express $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial s}$ in terms of r and s if
	$z = x^2 + y^2$, $x = r - s$, $y = r + s$.
	Solution. Here $z(x,y) = x^2 + y^2$, $x = r - s$, $y = r + s$. So $\frac{\partial z}{\partial x} = 2x$, $\frac{\partial z}{\partial y} = 2y$, $\frac{\partial x}{\partial r} = 1$, $\frac{\partial y}{\partial r} = 1$, $\frac{\partial x}{\partial s} = -1$, $\frac{\partial y}{\partial s} = 1$.
	Now
	$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial r}$
	=(2x)(1)+(2y)(1)
	=2(r-s)+2(r+s)
	=4r
	and
	$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s}$
	$\partial s \stackrel{-}{=} \partial x \partial s \stackrel{+}{=} \partial y \partial s$
	= (2x)(-1) + (2y)(1)
	= -2(r-s) + 2(r+s)
	=4s.
5	If $u = f(r, s)$, $r = x + at$, $s = y + bt$ and x, y, t are independent variables, then show
	that $\frac{\partial u}{\partial t} = a \frac{\partial u}{\partial x} + b \frac{\partial u}{\partial y}$.
	$\int_{0}^{\infty} dt = \int_{0}^{\infty} dx + \int_{0}^{\infty} dy$
6	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, then prove that $\frac{1}{2} \frac{\partial u}{\partial x} + \frac{1}{3} \frac{\partial u}{\partial y} + \frac{1}{4} \frac{\partial u}{\partial z} = 0$.

4.4 Implicit functions

A formula for implicit differentiation

Suppose y = f(x) is defined implicitly by F(x, y) = 0. Then $\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} = 0$.

If
$$\frac{\partial F}{\partial y} \neq 0$$
, then $\frac{dy}{dx} = -\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial y}\right)} = -\frac{F_x}{F_y}$.

Suppose z = f(x, y) is defined implicitly by F(x, y, z) = 0. Then

$$\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial x} = 0, \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z} \cdot \frac{\partial z}{\partial y} = 0.$$

If
$$\frac{\partial F}{\partial z} \neq 0$$
, then $\frac{\partial z}{\partial x} = -\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial z}\right)} = -\frac{F_x}{F_z}$, $\frac{\partial z}{\partial y} = -\frac{\left(\frac{\partial F}{\partial y}\right)}{\left(\frac{\partial F}{\partial z}\right)} = -\frac{F_y}{F_z}$.

Tutorial:

Implicit functions

1	If $x^3 - 3axy + y^3 = 0$, then find $\frac{dy}{dx}$.
	Solution. Here $F(x, y) = x^3 - 3axy + y^3$. So
	$\frac{\partial F}{\partial x} = 3x^2 - 3ay, \qquad \frac{\partial F}{\partial y} = 3y^2 - 3ax$
	$\frac{dy}{dx} = -\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial y}\right)} = -\frac{3x^2 - 3ay}{3y^2 - 3ax} = \frac{ay - x^2}{y^2 - ax}.$
	$\frac{dx}{\left(\frac{\partial F}{\partial y}\right)} \qquad 3y^2 - 3ax y^2 - ax$
2	If $x^y = y^x$, then prove that $\frac{dy}{dx} = \frac{y(y - x \log y)}{x(x - y \log x)}$.
3	Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at $(1, \ln 2, \ln 3)$, if $xe^y + ye^z + 2\ln x - 2 - 3\ln 2 = 0$.
	Answer: $\frac{\partial z}{\partial x}\Big _{(1,\ln 2,\ln 3)} = -\frac{4}{3 \ln 2}, \frac{\partial z}{\partial y}\Big _{(1,\ln 2,\ln 3)} = -\frac{5}{3 \ln 2}.$

4.5 Total differentials

Total differentials

Suppose z = f(x, y) is a function of two variables x and y. The total differential is defined as

$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy.$$

Suppose u = f(x, y, z) is a function of three variables x, y, and z. The total differential is defined as

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy + \frac{\partial u}{\partial z} dz.$$

Tutorial:

Total differentials

Find the total derivative of the function $z = y \tan x^2 - 2xy$. **Solution.** Here $z = y \tan x^2 - 2xy$ then $\frac{\partial z}{\partial x} = 2xy \sec^2\{x^2\} - 2y, \frac{\partial z}{\partial y} = \tan x^2 - 2x.$

	The total derivative of a function z is
	$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$ = $(2xy \sec^2 \{x^2\} - 2y) dx + (\tan x^2 - 2x) dy$.
2	Find the total derivative of the function $z = xe^{2y} + e^{-y}$.
	Answer: $dz = (e^{2y}) dx + (2xe^{2y} - e^{-y}) dy$.
3	If $u = x \tan^{-1} z - \frac{y^2}{z}$, then obtain du .
	Answer: $du = (tan^{-1}z) dx - (\frac{2y}{z}) dy + (\frac{x}{1+z^2} + \frac{y^2}{z^2}) dz$.