Міністерство освіти і науки України Національний університет "Львівська політехніка"

Лабораторна робота №2-3 з дисципліни «Програмування частина 2»

Виконав:

Студент групи АП-11 Братейко Вадим

Прийняв:

Чайковський І.Б.

Лабораторна робота №2-3

«Логічні основи комп'ютерів. Логічні операції»

Мета роботи: Розглянути основні арифметико-логічні операції. Навчитися працювати з логічними даними та логічними формулами.

Теоретичні відомості

Окрім числових даних, в інформатиці існують інші типи даних – логічні. Логічні дані та дії над ними вивчаються методами алгебри логіки. Алгебра логіки це розділ математики, який вивчає вислови, що роглядаються зі сторони їх логічних значень (істинності і хибності) і логічних операцій над ними. Ця наука виникла в середині XIX століття у працях англійського математика Джорджа Буля, тому її ще називають булевою алгеброю. Математичний апарат алгебри логіки дуже зручний для опису того, як функціонують апаратні засоби комп'ютера. Основною системою числення в комп'ютері, як вже відомо, є двійкова, в якій використовується цифри 1 і 0, а значень логічних змінних також два: «1» і «0». Тому: 1. одні і ті ж пристрої комп'ютера можуть використовуватися для обробки і збереження як числової інформації, представленої в двійковій системі числення, так і логічних змінних; 2. на етапі конструювання апаратних засобів алгебра логіки дозволяє значно спростити логічні функції, які описують функціонування схем комп'ютера, і, як наслідок , зменшують елементарних логічних елементів, із десятків тисяч яких складаються основні вузли комп'ютера. Логічні змінні позначають латинськими літерами, наприклад. Х, У і т.д. Основні логічні операції, які застосовують до логічних змінних – це заперечення, логічне множення та логічне додавання. Введемо означення даних операцій та відповідні позначення, які використовується в мові програмування "С": НЕ - операція, яка виражається словом "не", називається запереченням і позначається знаком оклику ("!"); 2 І - операція, яка виражається "і", називається кон'юкцією (лат. conjunctio - сполучення) або логічним множенням і позначається двома знаками амперсант (" & & "). АБО - операція, яка виражається "або", називається диз'юнкцією (лат. disjunctio – розділенням) або логічним додаванням і позначається наступним знаком "||". Результати дії логічних операцій на логічні змінні записують у так званні таблиці істинності. Таблиця істинності – це табличне преставлення логічної операції, в якій перечислені всі можливі комбінації значень істинності вхідних операндів разом зі значеннями істинності результату операції для кожної з цих комбінацій.

1. Таблиця істинності для формули $X \& Y \& Z || \overline{X} \& W \& Z$

	1.1uesinipitetiiniteett giin pepinysii naar aaz naar aaz								
3	Змінні			чення проміжі	Кінцева формула				
X	Y	Z	\overline{X}	X &&Y	X&&Y	$X\&\&Y\&\&Z \overline{X}\&\&Y\&\&Z$			
0	0	0	1	0	0	0			
0	0	1	1	0	0	0			
0	1	0	1	1	0	0			
0	1	1	1	1	0	1			
1	0	0	0	0	0	0			
1	0	1	0	0	0	0			
1	1	0	0	0	1	0			
1	1	1	0	0	1	1			

2. Таблиця істинності для формули $X \& Y \& Z || X \& \overline{Y \& Z}|$

				11		
Змінні			Значення проміжних формул			Кінцева формула
X	Y	Z	Z X	$\overline{Y \& \& Z} = \overline{Y} \overline{Z}$	X&&Y	X&&Y&&Z X&& <u>Y&&Z</u>
0	0	0	0	1	0	0
0	0	1	1	1	0	0
0	1	0	0	1	0	0
0	1	1	1	0	0	0
1	0	0	1	1	0	1
1	0	1	1	1	0	1
1	1	0	1	1	1	1
1	1	1	1	0	1	1

3.Таблиця істинності для формули (X||Y||Z)&& $(X||\overline{Y}||Z)$

3	мінн	i	Зна	чення проміжі	них формул	Кінцева формула
X	Y	Z	\overline{Y}	$(X \overline{Y} Z)$	(X Y Z)	$(X Y Z)&&(X \overline{Y} Z)$
0	0	0	1	1	0	0
0	0	1	1	1	1	1
0	1	0	0	0	1	0
0	1	1	0	1	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	0	1	1	1
1	1	1	0	1	1	1

4. Таблиця істинності для формули $(\overline{X}||Y||Z)$ && $(X||\overline{Y}||Z)$

3	Вмінн	īi	3	начен	ня проміжни	Кінцева формула	
X	Y	Z	Y	\overline{X}	$(X \overline{Y} Z)$	$(\overline{X} Y Z)$	$(\overline{X} Y Z)&&(X \overline{Y} Z)$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	0	1	0	1	0
0	1	1	0	1	1	1	1
1	0	0	1	0	1	0	0
1	0	1	1	0	1	1	1
1	1	0	0	0	1	1	1
1	1	1	0	0	1	1	1

5. Таблиця істинності для формули $X\&\&Y\&\&Z||X\&\&Y\&\&\overline{Z}||\overline{W}|$

	5. Гаолиця істинності для формули ластасті іластасті ін								
	Зм:	інні			Значення	проміжних формул		Кінцева формула	
X	Y	Z	W	\overline{Z}	\overline{W}	$X\&\&Y\&\&\overline{Z}$	X&&Y&&Z	$X\&\&Y\&\&Z X\&\&Y\&\&\overline{Z} \overline{W}$	
0	0	0	0	1	1	0	0	1	
0	0	0	1	1	0	0	0	0	
0	0	1	0	0	1	0	0	1	
0	0	1	1	0	0	0	0	0	
0	1	0	0	1	1	0	0	1	
0	1	0	1	1	0	0	0	0	
0	1	1	0	0	1	0	0	1	
0	1	1	1	0	0	0	0	0	
1	0	0	0	1	1	0	0	1	
1	0	0	1	1	0	0	0	0	
1	0	1	0	0	1	0	0	1	
1	0	1	1	0	0	0	0	0	
1	1	0	0	1	1	1	0	1	
1	1	0	1	1	0	1	0	1	
1	1	1	0	0	1	0	1	1	
1	1	1	1	0	0	0	1	1	

Контрольні питання

1. Що таке алгебра логіки?

Алгебра логіки—це розділ математики, який вивчає вислови, що роглядаються зі сторони їх логічних значень (істинності і хибності) і логічних операцій над ними.

2. Що таке таблиця істинності?

Таблиця істинності — це табличне преставлення логічної операції, в якій перечислені всі можливі комбінації значень істинності вхідних операндів разом зі значеннями істинності результату операції для кожної з цих комбінацій.

3. Яка таблиця істинності логічного НЕ?

X	!X		
1	0		
0	1		

4. Яка таблиця істинності логічного І?

X	Y	X&&Y
0	0	0
0	1	0
1	0	0
1	1	1

5. Яка таблиця істинності логічного АБО?

X	Y	X Y
0	0	0

0	1	1
1	0	1
1	1	1

- 6. Сформулюйте правила де Моргана. $\overline{X}||\overline{Y} = \overline{X} \& \overline{Y}; \quad \overline{X} \& \overline{Y} = \overline{X}||\overline{Y}|$
- 7. Сформулюйте комутативний закон. X & Y = Y & X; X || Y = Y || X
- 8. Сформулюйте асоціативний закон.

$$X \& \& (Y \& \& Z) = (X \& \& Y) \& \& Z; \ X ||(Y||Z) = (X||Y)||Z$$

9. Сформулюйте дистрибутивний закон.

$$X \& \& (Y||Z) = X \& \& Y||X \& \& Z; X||(Y \& \& Z) = (X||Y) \& \& (X||Z)$$

- 10. Сформулюйте закон поглинання. $X||(X\&\&Y)=X;\;X\&\&(X||Y)=X$
- 11. Сформулюйте закон склеювання. $(\overline{X} \& Y) | (X \& Y) = Y; (\overline{X} | Y) \& (X | Y) = Y$
- 12. Сформулюйте закон ідемпотентності. X || X = X; X & X = X

Висновок: Я розглянув основні арифметико-логічні операції. Навчився працювати з логічними даними та логічними формулами.