## **Préparation TP5**

### 1.1

| a you and, la favoir de hasfait d'un fille passa las der 2" andre at de la forme                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Hb= Kwn avec Kwn real as 447, red = nosidances                                                                                                                                                                                                             |
| Denomination complexe donc 45 complexe - 34g complexe >> condensation (cartz real)  cen = real car cen au nomination at real => 4344 real => 44 aussi real => residence                                                                                    |
| Chy = rad can cen au nominater at rad => 4344 real => 44 aws; rad => resistance                                                                                                                                                                            |
| 12 day ogateral eta enguena car of land in a la de la de y y y dy                                                                                                                                                                                          |
| Y= = danc on pose Y= = + Y2= 3 WC2 Y3= = 1 Y4= 1 V8 = 3 WC5                                                                                                                                                                                                |
| H(s) devicet alors (R1R3 C2C5) KWm = K= R1                                                                                                                                                                                                                 |
| (3w)2+8w(2 (R2+R3+R4)) R3R4(2°5) W2 3 W = 1                                                                                                                                                                                                                |
| 22win => Z = (R3R4+R1R4+R1R3) VES                                                                                                                                                                                                                          |
| Y= 1/2 donc on posse Y= 1/2=300C2 Y3= 1/2 Y4= 1/2 et Y5=300C5  H(s) deviat alors RiR3 C2C5 Kwm = K= Ru  (30)2+80(C2 (R2+R3+R1R4+R1R3) VES  2200 = 5 Z= (R3R4+R1R4+R1R3) VES  2R1 VR3R4C2  Cain continue 3 residences et conterviration affective many that |
| K=0dB=1 Wm=2008=58=1RHy=5 cm=20000 er Z= = 0,7<br>45 R1=Ry Omprend alors R1=R4=R3= 2,2 R2                                                                                                                                                                  |
| On estatez du blac on ave en vert d'on attet en raplagant par 2,2 h. 2 Re, Rz et Ru;                                                                                                                                                                       |
| C2 = 3,4.10-4 = 1,85.6-7 F = 150mF  De man para Go avec & bloc range => C5 = 3,37.10-8 F = 33mF                                                                                                                                                            |





1.3







# TP 5

#### 3 Passe-bas

Concernant la simulation, vous la trouverez au début du fichier dans la partie préparation.

On trouve bien une fréquence de coupure à 1kHz qu'on retrouve sur le diagramme obtenu.

Les éléments à disposition pour les ampli op étaient des TL084CN et non pas des LM741 ou LF356 comme indiqués sur le sujet de TP5.

Le montage a donc été réalisé avec un TL084CN.

On prend pour le passe-bas : R1 =  $50k\Omega$  C2=6.8nF R3= $50\Omega$  R4 =  $500k\Omega$  C5 =  $1.5\mu F$ 

| Freq en kHz | Ve en mV | Vs en mV | Gain | Gain en dB | log de freq |
|-------------|----------|----------|------|------------|-------------|
| 10          | 1        | 10       | 10   | 20         | 1           |
| 50          | 1        | 9,8      | 9,8  | 19,8245215 | 1,69897     |
| 100         | 1        | 10       | 10   | 20         | 2           |
| 500         | 1        | 10,2     | 10,2 | 20,1720034 | 2,69897     |
| 1000        | 1        | 10,3     | 10,3 | 20,2567445 | 3           |
| 5000        | 1        | 11,4     | 11,4 | 21,138097  | 3,69897     |
| 20000       | 1        | 10       | 10   | 20         | 4,30103     |
| 21000       | 1        | 8        | 8    | 18,0617997 | 4,32221929  |
| 22000       | 1        | 7        | 7    | 16,9019608 | 4,34242268  |
| 25000       | 1        | 5        | 5    | 13,9794001 | 4,39794001  |
| 30000       | 1        | 3        | 3    | 9,54242509 | 4,47712125  |
| 40000       | 1        | 3        | 3    | 9,54242509 | 4,60205999  |
| 50000       | 1        | 1        | 1    | 0          | 4,69897     |
| 70000       | 1        | 0,5      | 0,5  | -6,0205999 | 4,84509804  |
| 100000      | 1        | 0,3      | 0,3  | -10,457575 | 5           |
| 150000      | 1        | 0,1      | 0,1  | -20        | 5,17609126  |
| 200000      | 1        | 0,06     | 0,06 | -24,436975 | 5,30103     |
| 300000      | 1        | 0,04     | 0,04 | -27,9588   | 5,47712125  |
| 400000      | 1        | 0,03     | 0,03 | -30,457575 | 5,60205999  |
| 500000      | 1        | 0,01     | 0,01 | -40        | 5,69897     |



On obtient donc bien un passe-bas

On applique un signal carré fcoupure/10



#### 4 Passe-haut

La simulation se trouve également dans la partie préparation.

On prend les valeurs C1=400nF C3=100nF C4=22nF et R2=1,5k $\Omega$  R5=100k $\Omega$ .

Ce qui correspond à K=20dB comme demandé au début de la séance de TP par les professeurs.

On prend également Z=0,7 pour calculer ces valeurs.

| Freq en kHz | Ve en V | Vs en V | Gain  | Gain en dB | log de freq |
|-------------|---------|---------|-------|------------|-------------|
| 0,1         | 0,25    | 0,023   | 0,092 | -20,724243 | -1          |
| 0,8         | 0,25    | 0,025   | 0,1   | -20        | -0,09691    |
| 1           | 0,25    | 0,028   | 0,112 | -19,01564  | 0           |
| 5           | 0,25    | 0,1     | 0,4   | -7,9588002 | 0,69897     |
| 10          | 0,25    | 0,26    | 1,04  | 0,34066679 | 1           |
| 25          | 0,25    | 0,36    | 1,44  | 3,16724984 | 1,39794001  |
| 50          | 0,25    | 0,37    | 1,48  | 3,40523431 | 1,69897     |
| 100         | 0,25    | 0,37    | 1,48  | 3,40523431 | 2           |
| 250         | 0,25    | 0,37    | 1,48  | 3,40523431 | 2,39794001  |
| 500         | 0,25    | 0,4     | 1,6   | 4,08239965 | 2,69897     |
| 1000        | 0,25    | 0,34    | 1,36  | 2,67077817 | 3           |



On obtient bien un passe-haut

On applique un signal carré comme pour le passe-bas et on obtient :

#### 1kHz:



0,1kHz:

