MIDTERM 3 - 18.01 - FALL 2017.

Name:	
Email:	

Please put a check by your recitation section.

Instructor	Time
Miles Couchman	MW 1
Kristin Kurianski	MW 1
Yu Pan	MW 10
Yu Pan	MW 11
Jiewon Park	MW 12
Jake Wellens	MW 12
Siddharth Venkatesh	MW 2

Problem #	Max points possible	Actual score
1	15	
2	15	
3	20	
4	15	
5	15	
6	20	
Total	100	

Directions:

- Write your answers directly on the exam.
- No books, notes, or electronic devices can be used on the exam.
- Partial credit can be given if you show your work.
- Don't forget to write your name and email and to indicate your recitation instructor above.

Good luck!

Problem 1. (10 + 5 points)

a) Find all solutions y = f(x) to the differential equation

$$y' = e^{x+y}$$

(where y' = (dy/dx)).

b) Find the particular solution with y(0) = 1.

Solution:

a) Note that $y' = e^x e^y$. Hence, we can separate variables:

$$\frac{dy}{e^y} = e^x dx.$$

We then integrate each side to deduce that there exists a constant C such that

$$e^{-y} = -e^x + C.$$

Solving for *y*, we find that

$$y = -\ln(C - e^x).$$

b) To find the particular solution with y(0)=1, we set x=0, y=1, and we solve for C:

$$1 = -\ln(C - 1),$$

 $C = 1 + e^{-1}.$

It follows that the solution of interest is

$$y = -\ln(1 + e^{-1} - e^x).$$

Problem 2. (15 points) Write down a definite integral representing the area of the region in the first quadrant of the (x,y) plane (that is, $x \ge 0$ and $y \ge 0$) that is trapped in between the graphs of $y = x^3$ and $x = y^3$. Show your work, including a picture, to receive credit.

Remark: You do not have to compute an integral; just write it down.

Solution: The curve $y=x^3$ intersects the curve $x=y^3$ when $x=x^9$, which is equivalent to $x(x-1)(x+1)(x^2+1)(x^4+1)=0$. The two roots of this polynomial with $x\geq 0$ are x=0 and x=1, which correspond to the intersection points (0,0) and (1,1). From the figure below, we see that the curve $y=x^{1/3}$ (i.e., $x=y^3$) lies above the curve $y=x^3$ in the region of interest. Hence, the area of the region of interest is given by the following expression:

$$\int_0^1 (x^{1/3} - x^3) \, dx.$$

FIGURE 1. The region of interest

Problem 3. (10 + 10 = 20 points) Let R be the finite region in the (x, y) plane that is trapped in between the curve $y = \cos x$, the curve $y = \sin x$, the y-axis, and the line $x = x_{int}$, where x_{int} is the smallest positive x value at which the curves $y = \cos x$ and $y = \sin x$ intersect.

Remark: In this problem, you do not have to compute any integrals; just write them down.

- a) Let S_1 be the solid that is obtained upon revolving R about the line x = -1. Write down a definite integral representing the volume of S_1 . Show your work, including a picture, to receive credit. Be sure to clearly indicate which volume method you are using.
- b) Let S_2 be the solid that is obtained upon revolving R about the line y=-1. Write down a definite integral representing the volume of S_2 . Show your work, including a picture, to receive credit. Be sure to clearly indicate which volume method you are using.

Solution:

The region R is as follows, where the top curve is $y = \cos x$ and the bottom curve is $y = \sin x$:

FIGURE 2. The region R

a) To find the volume V of S_1 , we will use the cylindrical shell method. We first note that $x_{int} = \pi/4$. Next, we note that the axes through the center of the shells are parallel to the y axis. Each shell has radius 1+x, height $\cos x - \sin x$, and thickness dx. The volume of each shell is therefore $dV = 2\pi \times \text{radius} \times \text{height} \times \text{thickness}$

 $=2\pi(1+x)(\cos x-\sin x)\,dx.$ Moreover, we note that x varies from 0 to $\pi/4$. Thus, the total volume is

$$V = \int dV = \int_0^{\pi/4} 2\pi (1+x)(\cos x - \sin x) \, dx.$$

b) To find the volume V of S_2 , we will use the disk/washer method. We first note that the axes of symmetry of the disks are parallel to the x axis. Each washer has an inner (i.e., smaller) radius equal to $\sin x$ and an outer (i.e., larger) radius equal to $\cos x$. The volume of a washer of thickness dx is therefore $dV = \pi\{(\text{outer radius})^2 - (\text{inner radius})^2\} \times \text{thickness} = \pi\left\{(\cos x + 1)^2 - (\sin x + 1)^2\right\} dx$. From the remarks we made in part a), we see that x varies from 0 to $\pi/4$. Thus, the total volume is

$$V = \int dV = \int_0^{\pi/4} \pi \left\{ (\cos x + 1)^2 - (\sin x + 1)^2 \right\} dx.$$

Problem 4. (15 points) Compute the following limit by interpreting it as the limit of Riemann sums for a function f(x) on an interval [a, b]:

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n\left(1 + \frac{i}{n}\right)}$$

Hint: n *is the number of (equal-length) sub-intervals of* [a,b] *in the Riemann sum.*

Solution: The function is $f(x)=\frac{1}{1+x}$ and the interval is [a,b]=[0,1]. Thus, as $n\to\infty$, the Riemann sums $\sum_{i=1}^n\frac{1}{n\left(1+\frac{i}{n}\right)}$ converge to the integral

$$\int_0^1 \frac{1}{1+x} \, dx = \ln(1+x) \, \big|_0^1 = \ln 2.$$

Problem 5. (15 points) Let ${\cal N}>0$ be a number. Compute the average value of the function

$$f(x) = \sqrt{x}$$

on the interval [0, N]. Your answer will depend on N.

Solution: The average value of f(x) is

$$\frac{1}{N} \int_0^N \sqrt{x} \, dx = \frac{1}{N} \frac{2}{3} x^{3/2} \, \Big|_0^N = \frac{2}{3} \sqrt{N}.$$

Problem 6. (20 points) Compute

$$\lim_{t \to 2} \frac{1}{t - 2} \int_2^t y^y \, dy$$

by recognizing the limit as the derivative of a function f(x) at some point x_0 .

Hint: You will not be able to evaluate the integral. Instead, find f(x) and the point x_0 and then use an important result that we discussed in class.

Solution: Let

$$f(x) = \int_2^x y^y \, dy.$$

Then since f(2)=0, we see, in view of the analytic definition of the derivative of a function, that the limit in question is equal to $\lim_{t\to 2}\frac{f(t)-f(2)}{t-2}=\lim_{h\to 0}\frac{f(2+h)-f(2)}{h}=f'(2)$. By FTC2,

$$f'(x) = x^x$$
.

Thus, $f'(2) = 2^2 = 4$.