《ERP 与供应链》课程作业

刘铭宸 软件工程 2003 班 U202010783 2023 年 3 月 31 日

目录

1	问题	_ _	2
	1.1	ER 模型	2
	1.2	提取数据的 sql 语句	6
2	问题		8
	2.1	数据分析	8
		2.1.1 拟合曲线	8
		2.1.2 概率分布	8
		2.1.3 统计规律	Ö
	2.2	聚类分析	G
		2.2.1 k-means	10
		2.2.2 DBSCAN	10
	2.3	库存管理的改进计划	11
3	致谢		12
4	参考	资料	12
5	附录		12
	5.1	k-means 聚类分析代码	12
	5.2	DBSCAN 聚类分析代码	1.3

1 问题一

以 FS 食品公司为应用背景, 开发一个库存管理系统, 管理 FS 公司的原材料库存和产成品库存。在如下功能设计(图 1)和 ER 图(图 2)设计的基础上,详细定义 ER 模型,并进一步从中提取能够支持库存量动态分析的数据,写出提取数据的 sql 语句。

图 1: 库存管理系统功能设计

图 2: 库存管理系统 ER 图

1.1 ER 模型

根据题目对库存管理系统的功能设计要求并参照 ERP 设计图表,对该库存管理系统的 ER 图进行了扩充,结果如图 3 所示。

1.1 ER 模型 Mingchen Liu

图 3: 详细 ER 图

对 ER 模型的详细定义如下列表所示。

物品库存表 (Inventory)							
Field	Length	Type	Description	PrimKey/ForeKey			
ItemID	10	VARCHAR	物品编号	PrimKey			
ItemName	50	VARCHAR	物品名称				
Category	20	VARCHAR	物品分类				
Quantity	10	INT	库存数量				
Unit	10	VARCHAR	单位				
LastUpdate -		DATETIME	最后更新时间				

1.1 ER 模型 Mingchen Liu

盘点表(InventoryCheck)							
Field	Length	Type	Description	PrimKey/ForeKey			
CheckID	10 VARCHAR		盘点编号	PrimKey			
ItemID	10	VARCHAR	物品编号	ForeKey			
CheckDate - Quantity 10		DATE	盘点日期				
		INT	盘点数量				
Operator	20	VARCHAR	操作员				

入库单(InboundOrder)							
Field Length Type Description PrimKey/Fore							
OrderID	10	VARCHAR	入库单编号	PrimKey			
ItemID	10	VARCHAR	物品编号	ForeKey			
InboundDate -		DATE	入库日期				
Quantity 10		INT	入库数量				
Operator 20		VARCHAR	操作员				

领料单(PickList)								
Field	Length	Type	Description	PrimKey/ForeKey				
PickID	PickID 10 VARCHAR ItemID 10 VARCHAR		领料单编号	PrimKey				
ItemID			物品编号	ForeKey				
PickDate	PickDate - DATE		领料日期					
Quantity 10 INT		领料数量						
Operator 20 VARCHAR		操作员						

出货单(OutboundOrder)							
Field	Length	Type	Description	PrimKey/ForeKey			
OrderID	10	VARCHAR	出货单编号	PrimKey			
ItemID	10	VARCHAR	物品编号	ForeKey			
OutboundDate	-	DATE	出货日期				
Quantity	10	INT	出货数量				
Operator	20	VARCHAR	操作员				

1.1 ER 模型 Mingchen Liu

提货单(PickUpOrder)						
Field	PrimKey/ForeKey					
PickUpID	tUpID 10 VARCHAR		提货单编号	PrimKey		
ItemID 10		VARCHAR	物品编号	ForeKey		
PickUpDate -		DATE	提货日期			
Quantity 10		INT	提货数量			
Customer 50		VARCHAR	客户名称			
Operator 20		VARCHAR	操作员			

生产工单表(ProductionOrder)							
Field	Field Length Type Description						
ProductionOrderID	10	VARCHAR	生产工单编号	PrimKey			
ItemID	10	VARCHAR	物品编号	ForeKey			
StartDate	-	DATE	开始生产日期				
EndDate	-	DATE	结束生产日期				
Quantity	10	INT	生产数量				
Status	20	VARCHAR	生产状态				
Operator	20	VARCHAR	操作员				

1.2 提取数据的 sql 语句

为了支持库存量的动态分析,我们可以提取各个表中与库存变动相关的数据。以下是提取数据的 SQL 语句:

查询当前库存总量:

```
SELECT ItemID, ItemName, Category, Quantity, Unit, LastUpdate
FROM Inventory;
```

查询某个时间段内的人库数量:

```
SELECT ItemID, SUM(Quantity) AS InboundTotal
FROM InboundOrder
WHERE InboundDate BEIWEEN '开始日期' AND '结束日期'
GROUP BY ItemID;
```

查询某个时间段内的领料数量:

```
1 SELECT ItemID, SUM(Quantity) AS PickTotal
2 FROM PickList
3 WHERE PickDate BEIWEEN '开始日期' AND '结束日期'
4 GROUP BY ItemID;
```

查询某个时间段内的出货数量:

```
SELECT ItemID, SUM(Quantity) AS OutboundTotal
FROM OutboundOrder
WHERE OutboundDate BEIWEEN '开始日期' AND '结束日期'
GROUP BY ItemID;
```

查询某个时间段内库存变动情况(合并人库、领料、出货、提货数量):

```
WITH InboundTotal AS (
1
          SELECT ItemID, SUM(Quantity) AS InQty
          FROM InboundOrder
3
          WHERE InboundDate BEIWEEN '开始日期' AND '结束日期'
          GROUP BY ItemID
      ),
7
      PickTotal AS (
          SELECT ItemID, SUM(Quantity) AS PickQty
          FROM PickList
          WHERE PickDate BEIWEEN '开始日期' AND '结束日期'
10
          GROUP BY ItemID
11
```

15

17

18

20

21

23

24

26

27

28

29

30

31

33

34

```
12
       ) ,
       OutboundTotal AS (
13
           SELECT ItemID, SUM(Quantity) AS OutQty
14
          FROM OutboundOrder
          WHERE OutboundDate BEIWEEN '开始日期' AND '结束日期'
16
           GROUP BY ItemID
       ),
       PickUpTotal AS (
19
           SELECT ItemID, SUM(Quantity) AS PickUpQty
          FROM PickUpOrder
          WHERE PickUpDate BEIWEEN '开始日期' AND '结束日期'
22
           GROUP BY ItemID
       )
       SELECT i. ItemID, i. ItemName, i. Category, i. Unit,
25
           COALESCE (it . InQty, 0) AS InboundQty,
           COALESCE (pt. PickQty, 0) AS PickQty,
           COALESCE(ot.OutQty, 0) AS OutboundQty,
           COALESCE (pu. PickUpQty, 0) AS PickUpQty
      FROM Inventory i
      LEFT JOIN InboundTotal it ON i.ItemID = it.ItemID
      LEFT JOIN PickTotal pt ON i.ItemID = pt.ItemID
32
      LEFT JOIN OutboundTotal of ON i.ItemID = of.ItemID
      LEFT JOIN PickUpTotal pu ON i.ItemID = pu.ItemID;
```

2 问题二

以附件文件"库存数据.xlsx" excel 表格文档数据为 ABCDEF 共 6 种物品的每小时库存量值,进行统计分析和数据挖掘,分析这 6 种物品的库存量变化规律,结合库存管理的原理,提出对这 6 种物品进行库存管理的改进计划。

2.1 数据分析

2.1.1 拟合曲线

首先对六种物品的库存量随时间变化趋势进行了分析,如图 4 所示。

图 4: 六种物品的库存量随时间变化趋势

可以看出,物品 A、物品 B 和物品 F 在这 751 个小时的库存量变化较少,曲线较为平缓,其中物品 A 和 B 的库存量一直维持在较高水平,物品 F 的库存量一直较少;物品 D 和物品 E 的库存量存在较大的波动,随时间先增加后大量减少;物品 C 的库存量变化相对较小。

2.1.2 概率分布

六种物品的库存量的分布直方图与密度曲线如图 5 所示。

可以看到,物品 A 和物品 B 的库存量比较符合正态分布,说明其变化量相对均匀,起伏较小;而物品 C、D、E 的分布较为分散,说明在这一时间段中库存量的变化率相对较大。

2.2 聚类分析 Mingchen Liu

图 5: 六种物品的库存量的分布直方图与密度曲线

2.1.3 统计规律

六种物品的库存量的统计数据如表 2 所示。

	A	В	С	D	E	F
mean	623.66	452.20	524.86	357.83	476.76	40.37
std	27.25	24.78	89.25	260.20	191.03	13.68
min	554	401	401	9.5	11	19.5
max	717	541	722	710	788	65.3

表 1: 库存量统计表

上表列出了这六种物品库存量的平均值、标准差、最小值和最大值,从中可以更加直观地看出其库存量随时间的变化分布。物品 A、B 变化较小,物品 C、D、E 变化较大,物品 F 虽然变化很小,但其库存量一直维持在较低水平。

2.2 聚类分析

ABC 库存控制法是根据库存物品的价格来划分物品的重要程度,以分别采取不同的管理措施。但由于在库存数据中仅提供了六种库存物品的库存量随时间(小时)的变化情况,故采用聚类方法以751个小时对应的库存量的值为根据对这六种物品进行分类。

2.2 聚类分析 Mingchen Liu

2.2.1 k-means

首先对库存数据进行预处理,去除掉几个较为明显的脏数据,如删除表格中库存量属性不是数字的分量;将读入的表格数据进行转置,使每种物品的在751个小时中的库存量成为一个数据点(751维的向量)。接着人为选择聚类数量,在对原始数据进行初步分析后(见2.1),可以发现按照其库存量随时间分布曲线的相似度大致可以分为3类,故将聚类数量设为3。

之后使用 k-means 方法对这 6 个 751 维的向量进行聚类,选择 k-means++ 作为初始化中心点的方法,最大迭代次数设置为 300,并用生成的 k-means 模型对数据进行聚类。

最后,由于数据维数过高(751维),所以使用主成分分析(PCA)的方法对数据进行降维以便于可视化。PCA将数据降为两维,第一个主成分(即第一维)是数据中最大方差的方向,而第二个主成分(第二维)是与第一个主成分正交且具有次大方差的方向。这样,PCA可以保留原始数据中尽可能多的信息,同时减少数据的维度。聚类结果如图 6 所示。

图 6: k-means 聚类结果

如图所示, k-means 聚类方法将这六种物品分为了 3 类, 分别为 $\{A, B, C, E\}$ 、 $\{D\}$ 和 $\{F\}$ 。

2.2.2 DBSCAN

为了验证聚类方法对物品分类的可靠性, 我使用了 DBSCAN 聚类方法 (Density-Based Spatial Clustering of Applications with Noise) 来解决这一问题。与 k-means 不同, DBSCAN 是一种基于密度的聚

类算法,可以找到任意形状的聚类,并识别噪声数据点。DBSCAN 不需要预先设定聚类数量,但需要设置密度半径和最小数据点数作为参数。

计算过程与 k-means 类似,设定合适的密度半径使这六个物品被聚类为三类。结果如图 7 所示。

图 7: DBSCAN 聚类结果

如图所示, DBSCAN 聚类方法将这六种物品分为了与 k-means 方法同样的三类,证明聚类分析得到的结果可靠性较高。

2.3 库存管理的改进计划

在库存管理中,安全库存和储备库存是两个重要概念。安全库存是为了应对供应链不确定性而设置的额外库存,以防止缺货。储备库存是在预期需求高峰或供应链中断期间使用的额外库存。结合六种物品的库存统计数据的分析,我们可以提出以下针对各物品的库存管理改进计划:

物品 A: A 物品的库存波动相对较小。可以将安全库存设置为一个较小的值(例如,标准差的1倍)。 另外,可以适当减少最大库存量以降低库存成本。

物品 B: B 物品的库存波动也较小。与 A 物品类似,可以将安全库存设置为标准差的 1 倍,并适当调整最大库存量以降低库存成本。

物品 C: C 物品的库存波动较大。为防止缺货,建议将安全库存设置为标准差的 1.5 倍。同时,需要密切关注库存水平,以应对可能的需求波动。

物品 D: D 物品的库存波动非常大。为确保供应稳定,建议将安全库存设置为标准差的 2 倍。此外,需要加强对供应链的监控,以减少库存波动并确保及时供应。

物品 E: E 物品的库存波动同样很大。建议将安全库存设置为标准差的 2 倍,并密切关注库存水平。 另外,与供应商合作优化供应链管理以减少库存波动。

物品 F: F 物品的库存波动较小,但相对于其平均库存量,波动仍然显著。建议将安全库存设置为标准差的 1.5 倍。另外,考虑与供应商协商更频繁的供货安排,以减少库存波动并确保库存充足。

在库存管理中,根据物品的库存波动和供应链特点,我们可以调整安全库存和储备库存水平。对于波动较大的物品(如 C、D 和 E),需要增加安全库存以防止缺货。同时,密切关注库存水平,并与供应商合作优化供应链管理以减少库存波动。对于波动较小的物品(如 A、B 和 F),可以将安全库存设置为较低的水平,降低库存成本。另外,可以考虑与供应商协商更频繁的供货安排,以进一步减少库存波动。

3 致谢

感谢方少红老师的教学,希望方老师的课能越办越好!

4 参考资料

- [1] 数据集: "库存数据.xlsx".
- [2] 罗鸿.ERP 原理·设计·实施(第五版)[M]. 北京: 电子工业出版社, 2020.

5 附录

5.1 k-means 聚类分析代码

```
import pandas as pd
1
      import matplotlib.pyplot as plt
2
3
      import numpy as np
      from sklearn.cluster import KMeans
      from sklearn.decomposition import PCA
      data = pd.read_excel('库存数据.xlsx')
      # 提取物品的库存量数据, 并转置, 使每种物品的库存量成为一个数据点
      items data = data.iloc[:, 1:].T
      # 选择聚类数量
10
      num clusters = 3
11
      #初始化 KMeans 模型
12
      kmeans = KMeans(n_clusters=num_clusters, random_state=0)
13
```

```
# 对数据进行聚类
14
       kmeans.fit(items_data)
15
      # 得到聚类结果
16
       labels = kmeans.labels_
17
      # 使用主成分分析 (PCA) 降维以便于可视化
18
       pca = PCA(n\_components=2)
19
       items data pca = pca.fit transform(items data)
20
      # 创建一个可视化图
21
       fig , ax = plt.subplots()
22
      # 为每个聚类绘制散点图
23
       for cluster id in range(num clusters):
24
           cluster_data = items_data_pca[labels == cluster_id]
25
           ax.scatter(cluster\_data[:, 0], cluster\_data[:, 1], label=f'Cluster_data[:, 1]
26
              \{cluster_id\}', s=120
      # 设置图例和轴标签
27
       ax.legend()
28
       ax.set_xlabel('PCA_Component_1')
29
       ax.set_ylabel('PCA_Component_2')
30
      # 为每个数据点添加物品标签
31
       item_labels = ['A', 'B', 'C', 'D', 'E', 'F']
32
       for i, item_label in enumerate(item_labels):
33
34
           ax.annotate(item_label, (items_data_pca[i, 0], items_data_pca[i,
              1]))
       plt. title ("Result \cup of \cupk-means", fontsize = 15)
35
       #显示图形
36
37
       plt.show()
```

5.2 DBSCAN 聚类分析代码

```
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.decomposition import PCA
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler

data = pd.read_excel('库存数据.xlsx')
```

```
9
      # 提取物品的库存量数据, 并转置, 使每种物品的库存量成为一个数据点
      items_data = data.iloc[:, 1:].T
10
      # 对数据进行标准化
11
      scaler = StandardScaler()
12
      scaled_data = scaler.fit_transform(items_data)
13
      #初始化 DBSCAN 模型
14
      # 调整 eps 和 min samples 参数以获得合适的聚类结果
15
      dbscan = DBSCAN(eps=25, min_samples=1)
16
      # 对数据进行聚类
17
      dbscan.fit(scaled data)
18
      # 得到聚类结果
19
      labels = dbscan.labels_
20
      #使用 PCA 将数据降至二维
21
      pca = PCA(n components=2)
22
      reduced_data = pca.fit_transform(scaled_data)
23
      # 创建一个可视化图
24
      fig, ax = plt.subplots()
25
      # 获取聚类数量(排除噪声点)
26
      num\_clusters = len(set(labels)) - (1 if -1 in labels else 0)
27
      # 为每个聚类绘制散点图并添加物品标签
28
      item_labels = ['A', 'B', 'C', 'D', 'E', 'F']
29
      for cluster_id in range(num_clusters):
30
          cluster_data = reduced_data[labels == cluster_id]
31
          ax.scatter(cluster_data[:, 0], cluster_data[:, 1], label=f'Cluster_
32
             \{cluster id\}', s=120)
          for point, label in zip(cluster_data, np.array(item_labels)[labels
33
             = cluster id]):
              ax.annotate(label, (point [0], point [1]), textcoords="offset [0]
34
                 points", xytext = (0, 5), ha = 'center'
      # 如果存在噪声点,将其绘制到图上并添加物品标签
35
      if -1 in labels:
36
          noise data = reduced data [labels = -1]
37
          ax.scatter(noise_data[:, 0], noise_data[:, 1], label='Noise')
38
          for point, label in zip(noise_data, np.array(item_labels)[labels ==
39
              -1]):
              ax.annotate(label, (point [0], point [1]), textcoords="offset [0]
40
                 points", xytext = (0, 5), ha = 'center')
```

```
# 设置图例和轴标签
ax.legend()
ax.set_xlabel('PCA_Component_1')
ax.set_ylabel('PCA_Component_2')
# 显示图形
plt.title("Result_of_DBSCAN", fontsize=15)
plt.show()
```