第六讲 相似之一线三等角 与三垂直

知识要点

一线三等角: 通常以等腰三角形 (等腰梯形) 为背景.

角:
$$\angle B = \angle ACD = \angle E$$
, $\angle A = \angle DCE$, $\angle D = \angle ACB$

边:
$$\frac{AB}{CE} = \frac{BC}{ED} = \frac{AC}{CD}$$

角:
$$\angle B = \angle ACD = \angle E$$
, $\angle BAC = \angle DCE$, $\angle CDE = \angle ACB$

边:
$$\frac{AB}{CE} = \frac{BC}{ED} = \frac{AC}{CD}$$

形:
$$\triangle ABC \hookrightarrow \triangle CED$$

*当
$$BC = CE$$
 时,有 $\triangle ABC \hookrightarrow \triangle CED \hookrightarrow \triangle ACD$.

一线三等角变形:

例题精讲

【例题1】

如图,在等边 $\triangle ABC$ 中,边长为6,D是BC上动点, $\angle EDF = 60^{\circ}$.

- (1) 求证: $\triangle BDE \hookrightarrow \triangle CFD$
- (2) 当 BD = 1, FC = 3 时, 求 BE 的长.

(1)
$$\angle CDE = \angle CDF + \angle EDF = \angle CDF + 60^{\circ}$$

$$\angle CDE = \angle BED + \angle B = \angle BED + 60^{\circ}$$

$$\therefore$$
 $\angle CDF = \angle BED$, $\cancel{X} : \angle B = \angle C = 60^{\circ}$, $\therefore \triangle BDE \hookrightarrow \triangle CFD$

(2)
$$\pm (1)$$
 $\pm (1)$ $\pm (1)$

【例题2】

如图,已知 \triangle ABC 与 \triangle BDE 都是等边三角形,点 D 在边 AC 上(不与 A 、 C 重合), DE 与 AB 相交于 点 F .

- (1) 求证: $\triangle BCD \hookrightarrow \triangle DAF$:
- (2) 若 BC = 1, 设 CD = x, AF = y;
- ① 求 y 关于 x 的函数解析式及定义域; ② 当 x 为何值时, $\frac{S_{\triangle BEF}}{S_{\triangle BCD}} = \frac{7}{9}$?

【分析】 (1)由一线三等角模型易得 $\triangle BCD \hookrightarrow \triangle DAF$;

(2)因为
$$\triangle BCD$$
 $\hookrightarrow \triangle DAF$,所以 $\frac{BC}{AD} = \frac{CD}{AF}$,代入线段得 $\frac{1}{1-x} = \frac{x}{y}$,解得 $y = x - x^2$

故函数关系式为
$$y=x-x^2$$
, 定义域为 $0 < x < 1$

【例题3】

如图,已知 $\triangle ABC$ 是等边三角形, AB=4 , D 是 AC 边上一动点(不与 A 、 C 点重合), EF 垂直平分 BD ,分别交 AB 、 BC 于点 E 、 F ,设 CD=x , AE=y .

- (1) 求证: $\triangle AED \hookrightarrow \triangle CDF$;
- (2) 求 y 关于 x 的函数解析式, 并写出定义域;
- (3) 过点 D 作 $DH \perp AB$, 垂足为点 H, 当 EH = 1 时, 求线段 CD 的长.

【分析】 (1)由中垂线可知, $\angle EDF = \angle ABC = 60^{\circ}$ 由一线三等角模型,易证 $\triangle AED \hookrightarrow \triangle CDF$

(2):
$$\triangle AED$$
 \hookrightarrow $\triangle CDF$,可得 $\frac{CD}{AE} = \frac{C_{\triangle CDF}}{C_{\triangle AED}} = \frac{CD + BC}{AD + AB}$

代入线段长度, 可得
$$\frac{x}{y} = \frac{x+4}{4+4-x}$$
, 解得 $y = \frac{-x^2+8x}{x+4}$

故函数关系式为
$$y = \frac{-x^2 + 8x}{4 + x} (0 < x < 4)$$

(3)①当H 在线段AE上时,此时AH = y-1,AD = 2y-2

又
$$2y-2+x=4$$
, 代入函数关系式 $\frac{-2x^2+16x}{4+x}-2+x=4$

化简得,
$$x^2 - 14x + 24 = 0$$
,解得 $x_1 = 2$, $x_2 = 12$ (舍)

②当H在线段AE的延长线上时,此时AH = y+1,AD = 2y+2

又
$$2y+2+x=4$$
, 代入函数关系式 $\frac{-2x^2+16x}{4+x}+2+x=4$

化简得,
$$x^2 - 18x + 8 = 0$$
,解得 $x_1 = 9 - \sqrt{73}$, $x_2 = 9 + \sqrt{73}$ (舍)

综上,
$$CD = 2$$
或 $CD = 9 - \sqrt{73}$.

模块二

三垂直模型

知识要点

三垂直模型:

角: $\angle A = \angle B = \angle DEC = 90^{\circ}$, $\angle ADE = \angle BEC$, $\angle AED = \angle BCE$

边:
$$\frac{AD}{BE} = \frac{AE}{BC} = \frac{DE}{EC}$$

形: $\triangle ADE \hookrightarrow \triangle BEC$

三垂直模型变形:

变形1: 若 $\angle DCE = \angle BCE$,则 $\triangle ADE \hookrightarrow \triangle BEC \hookrightarrow \triangle EDC$,同时有 AE = EB .

变形2: 若 $\angle D = \angle BEC = \angle ABC$,则 $\triangle ABD \hookrightarrow \triangle BCE$.

变形3: 若 $\angle B = \angle E = \angle AGF$,则 $\triangle ABC \hookrightarrow \triangle DEF$.

变形4: 若 $\angle B = \angle E = \angle AGE$,则 $\triangle ABC \hookrightarrow \triangle DEF$.

例题精讲

【例题4】

已知:如图,在梯形 ABCD 中,AD//BC , $AB \perp BC$,AD=3 ,BC=8 ,AB=10 ,在 AB 上取点 P ,使 ΔPAD 和 ΔPBC 相似,则 AP=______.

【分析】 设 AP = x

①当
$$\triangle$$
PMD \hookrightarrow PBC 时, $\frac{PA}{PB} = \frac{AD}{BC}$. 则 $\frac{x}{10-x} = \frac{3}{8}$,解得 $x = \frac{30}{11}$

②当
$$\triangle PAD \hookrightarrow CBP$$
 时, $\frac{PA}{CB} = \frac{AD}{BP}$,则 $\frac{x}{8} = \frac{3}{10-x}$,

化简得
$$x^2 - 10x + 24 = 0$$
,解得 $x = 4$ 或 $x = 6$.

综上,
$$AP$$
的长度为4或6或 $\frac{30}{11}$

【例题5】

如图,四边形 ABCD 是正方形, AB 边上有一点 E , BC 边上有一点 F ,且 EF=3 , FD=4 , DE=5 , 求正方形 ABCD 的面积.

【分析】 由三垂直相似,易知 $\triangle BEF \hookrightarrow \triangle CFD$

所以
$$\frac{BE}{CF} = \frac{BF}{CD} = \frac{3}{4}$$
, 读 $BF = 3x$, 则 $CD = 4x$, $CF = CD - BF = x$

在
$$Rt \triangle DCF$$
 中,由勾股定理, $x^2 + (4x)^2 = 4^2$,解得 $x^2 = \frac{16}{17}$

故
$$S_{ABCD} = 16x^2 = \frac{256}{17}$$

【例题6】

如图,在矩形 ABCD 中,点 P 是边 AD 上的动点,联结 BP ,线段 BP 的垂直平分线交边 BC 于点 Q ,垂足为点 M ,联结 QP . 已知 AD = 13 , AB = 5 ,设 AP = x , BQ = y . 求 y 关于 x 的函数解析式,并写出 x 的取值范围.

【分析】 易证
$$\triangle ABP \hookrightarrow \triangle MQB$$
 , $\therefore \frac{BP}{BQ} = \frac{AP}{BM} \Rightarrow \frac{BP}{y} = \frac{x}{\frac{1}{2}BP} \Rightarrow y = \frac{1}{2x}BP^2 = \frac{1}{2x}(x^2 + 25)$ 当点 Q 与点 C 重合时, $BQ = PQ = 13$ 在 $Rt \triangle PQD$ 中,由 勾股定理得: $13^2 = 5^2 + (13 - x)^2 \Rightarrow x = 1$

$$AP \leq AD = 13$$
, $\therefore x$ 的取值范围为: $1 \leq x \leq 13$.

【例题7】

如图,在梯形 ABCD 中, AD = BC = 10,且该梯形的高为8,E 是腰 AD 上一点,且 AE: ED = 1:3.当 $\triangle BCE$ 是直角三角形时,求边 AB 的长.

【分析】 当 $\angle CBE = 90^{\circ}$ 时,作 $EM \perp AB$ 交BA 延长线于M ,交CD 于点F ,作 $CN \perp AB$ 交AB 延长线于点N , $\therefore CN = MF = 8$, $AE = \frac{5}{2}$, $ED = \frac{15}{2}$

$$\therefore AB//CD \quad \therefore \frac{ME}{EF} = \frac{AE}{ED} = \frac{1}{3}, \quad \text{Pr } ME = 2, \quad EF = 6, \quad \therefore AM = \frac{3}{2}$$

$$\therefore \triangle BME \hookrightarrow \triangle CNB \quad \therefore \frac{BM}{NC} = \frac{ME}{BN} , \quad \mathbb{F}^{p} \frac{AB + \frac{3}{2}}{8} = \frac{2}{6} , \quad \therefore AB = \frac{7}{6}$$

当 $\angle CEB = 90^{\circ}$ 时,作 $EP \perp AB$ 交BA 延长线于点P,交CD于点Q

同理可知,
$$AE = \frac{5}{2}$$
, $ED = \frac{15}{2}$, $PE = 2$, $EQ = 6$, $AP = \frac{3}{2}$, $DQ = \frac{9}{2}$

设
$$AB = x$$
 , 则 $CD = x + 12$, $\therefore \triangle BPE \hookrightarrow \triangle EQC$ $\therefore \frac{BP}{EQ} = \frac{PE}{CQ}$, 即 $\frac{AB + AP}{6} = \frac{2}{CD - DQ}$

得,
$$x^2 + 9x - \frac{3}{4} = 0$$
, 解得, $AB = x = \sqrt{21} - \frac{9}{2}$

本讲巩固

【巩固1】

如图,梯形 ABCD 中, AD//BC , AB = DC ,点 P 是 AD 边上一点,联结 PB 、 PC ,且 $AB^2 = AP \cdot PD$,则图中有_______对相似三角形.

【分析】 图中的三个三角形都相似. 故有3对

【巩固2】

如图,已知 $\triangle ABC$ 中, AB = AC = 6 , BC = 8 , 点 D 是 BC 边上的一个动点, 点 E 在 AC 边上, $\angle ADE = \angle B$. 设 BD 的长为 x , CE 的长为 y .

- (1) 当 D 为 BC 中点时, 求 CE 的长;
- (2) 求 y 关于 x 的函数关系式, 并写出 x 的取值范围.

【分析】 (1)此时 $AD \perp BC$, $DE \perp AC$, 由 $CD^2 = CE \cdot CA$, 求得 $CE = \frac{8}{3}$ (2)一线三等角,易得 $\triangle DCE \hookrightarrow \triangle ABD$, $\therefore \frac{CE}{BD} = \frac{DC}{AB}$, 即 $\frac{y}{x} = \frac{8-x}{6}$, 得 $y = -\frac{1}{6}x^2 + \frac{4}{3}x$. x 的 取值范围是 $0 \le x < 8$.

【巩固3】

已知矩形 ABCD 中,CD=2 ,AD=3 ,点 P 是 AD 上的一个动点,且和点 A 、D 不重合,过点 P 作 $PE \perp CP$ 交边 AB 于点 E ,设 PD=x , AE=y ,求 y 关于 x 的函数关系式,并写出 x 的取值范围.

【分析】 易证
$$\triangle APE \hookrightarrow \triangle DCP$$
, $\therefore \frac{CD}{AP} = \frac{DP}{AE}$, $\therefore \frac{2}{3-x} = \frac{x}{y}$,即 $y = \frac{-x^2 + 3x}{2}$ (0 < x < 3)

【巩固4】

如图,梯形 ABCD 中, AD//BC , $\angle ABC = 90^{\circ}$, AD = 9 , BC = 12 , AB = a . 在线段 BC 上任取一点 P , 联结 DP , 作射线 $PE \perp DP$, PE 与直线 AB 交于点 E .

- (1) 试确定CP = 3时,点E的位置.
- (2) 若设CP = x, BE = y, 试写出当x > 3时, y 关于自变量x 的函数关系式.

【分析】 (1)当 CP = 3 时, BP = 9 = AD, ∴ ADPB 为矩形

∴ $DP \perp BC$, 即 BC与 PE 重合, ∴此时 E 点与 B 点重合

$$\therefore \frac{BE}{HP} = \frac{BP}{DH}, \quad \mathbb{F}^p \frac{y}{x-3} = \frac{12-x}{a}$$

$$y = -\frac{x^2 - 15x + 36}{a}$$
 (3 < x < 12)