Example #1: Unsigned Multiplication

Show the steps for the multiplication of 10101001b and 00111011b (**unsigned**) using **Hardware Design 3** (http://www.cs.pitt.edu/~childers/CS0447/lectures/numbers3.pdf). Here 10101001b is the multiplicand and 00111011b is the multiplier.

REMEMBER: Do not ignore overflow. Push the overflow bit ('1') in during shift right.

10101001b = 16900111011b = 59

So the answer should be 169 * 59 = 9971

9971 = 0010 0110 1111 0011b <----- this is the result we expect from multiplication

Now,

 $M = 1010 \ 1001$

Iteration	Step	Product (16 bits)						
setup			0000	0000	0011	101 <mark>1</mark>		
1	M 1: P = P + M Shift Right		1010	1001 1001 0100				
2	M 1: P = P + M Shift Right		1010 1111 0111	1001 1101 1110	1001 1100	1101 111 <mark>0</mark>		
3	0: Shift Right		0011	1111	0110	011 <mark>1</mark>		
4	M 1: P = P + M Shift Right		1110	1001 1000 0100				
5	M 1: P = P + M Shift Right	1	0001	1001 1101 1110			(overflow) (ov included)	
6	M 1: P = P + M Shift Right	1	0011	1001 0111 1011			(overflow) (ov included)	
7	0: Shift Right		0100	1101	1110	011 <mark>0</mark>		
8	0: Shift Right		0010	0110	1111	0011		

The result is: 0010 0110 1111 0011

Example #2: Signed Multiplication

Show the steps for the multiplication of 10101001b and 00111011b (**signed**) using **Booth's algorithm** (http://www.cs.pitt.edu/~childers/CS0447/lectures/numbers3.pdf). Here 10101001b is the multiplicand and 00111011b is the multiplier.

REMEMBER: Ignore overflow, but extend the sign (If the sign is 0, then push 0 during shift right. If the sign is 1 then push 1 during shift right).

```
10101001b = -87
00111011b = 59
```

So the answer should be -87 * 59 = -5133

```
+5133 = 0001 0100 0000 1101b
```

-5133 = 1110 1011 1111 0011b <----- this is what we expect as a result from Booth's algorithm

Now,

 $M = 1010 \ 1001$

 $-M = 0101 \ 0111$

Iteration	Step	Product (17 bits)							
setup			0000	0000	0011	101 <mark>1</mark>	0		
1	- M 10: P = P – M Shift Right		0101 0101 0010	0111 0111 1011		1011 110 <mark>1</mark>		(sign 0 extend)	
2	11: Shift Right		0001	0101	1100	111 <mark>0</mark>	1	(sign 0 extend)	
3	M 01: P = P + M Shift Right		1010 1011 1101	1001 1110 1111		1110 011 <mark>1</mark>		(sign 1 extend)	
4	-M 10: P = P - M Shift Right	1	0101 0011 0001	-			_	(ignore ov) (sign 0 extend)	
5	11: Shift Right		0000	1101	1001	100 <mark>1</mark>	1	(sign 0 extend)	
6	11: Shift Right		0000	0110	1100	110 <mark>0</mark>	1	(sign 0 extend)	
7	M 01: P = P + M Shift Right		1010 1010 1101	1001 1111 0111		1100 011 <mark>0</mark>		(sign 1 extend)	
8	00: Shift Right		1110	1011	1111	0011	0	(sign 1 extend)	

The result is: 1110 1011 1111 0011