PCI/EP 0 3 / 0 3 0 8 1

BUNDESREPUBLIK DEUTSCHLAND

REC'E 0 6 MAY 2003

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 26 214.4

Anmeldetag:

13. Juni 2002

Anmelder/Inhaber:

SMS Demag AG,

Düsseldorf/DE

Bezeichnung:

Stranggießkokille für flüssige Metalle,

insbesondere für flüssigen Stahl

IPC:

A 9161

B 22 D 11/04

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 03. April 2003

Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Faust

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED BUT NOT IN COMPLIANCE WITH RULE 17.1(a) OR (b)

BEST AVAILABLE COPY

:.

07.06.02 **38891**

SMS Demag Aktiengesellschaft, Eduard-Schloemann-Str. 4, 40237 Düsseldorf

Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl

Die Erfindung betrifft eine Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl, mit von Wasserkästen umgebenen, den Gießquerschnitt mit parallelem Verlauf bildenden, einander gegenüberliegenden Einsatzplatten aus Stahl, und an den Stahleinsatzplatten anliegenden kassettenartigen Kupferplatten, die den Gießhohlraum begrenzen, und ggfs. an den Stirnseiten des Gießhohlraums eingefügten Endplatten zur Festlegung der Gießstrangdicke und / oder der Gießstrangbreite, die den Gießhohlraum an den Stirnseiten abschließen und mit in den Kupferplatten an den Grenzflächen zu den Stahleinsatzplatten einen Einlass mit einem Auslass verbindende Kühlmittelkanäle.

Die bezeichnete Stranggießkokille ist aus der DE 195 81 604 T1 bekannt. Eine solche Stranggießkokille bildet eine sogenannte Kassettenkokille. Die Kassettenkokille besitzt die an den Stahleinsatzplatten anliegenden kassettenartigen Kupferplatten, die den Gießhohlraum begrenzen. An und für sich bestehen Vorteile der Art, dass weniger Wasserkästen benötigt werden, dass geringere Wechselzeiten für die kassettenartigen Kupferplatten notwendig sind, dass geringere Transportkosten wegen des geringeren Transportgewichts entstehen, dass die Kosten für die Beschichtung mit Nickel niedriger ausfallen und dass die Standzeiten solcher Kokillen höher sind.

Trotz dieser Vorteile haftet der Kassettenkokille der Nachteil einer hohen Heißseiten-Temperatur im Gießspiegelbereich an mit dem darunter liegenden steilen Temperaturabfall. Dadurch entsteht eine hohe Belastung der Strangschale am Gießstrang und damit die Gefahr von Oberflächenfehlern. Ferner tritt frühzeitig eine ungleichmäßige Schlackenfilmdicke infolge der deutlich unterschiedlichen Heißseiten-Temperatur im oberen Kokillenbereich auf.

Weiterhin muss von der Erfahrung ausgegangen werden, dass auch über die Gießbreite unterschiedliche Kokillentemperaturen vorliegen, die sich negativ auf die Kokillenstandzeit und die Oberflächenqualität des Gießstrangs auswirken können.

Der Erfindung liegt die Aufgabe zugrunde, bei einer solchen Kassettenkokille gegen die hohen Temperaturen im Gießspiegelbereich durch geeignete Ausbildung der Kupferplatten und / oder der Stahleinsatzplatten Maßnahmen vorzuschlagen.

Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Dicke der Kupferplatten jeweils zwischen dem Kühlmedium und der Kupferplatten-Heißseite über die Breite und / oder über die Höhe unterschiedlich ist. Dadurch kann die Heißseiten-Temperatur über die Kokillenbreite vergleichmäßigt werden und der deutliche Temperaturabfall kann über die Kokillenhöhe unterhalb des Gießspiegelbereichs reduziert werden.

Eine Ausgestaltung sieht vor, dass die Kühlmittelkanäle in der Kupferplatte und zumindest teilweise in der angrenzenden Stahleinsatzplatte verlaufen. Dadurch werden einesteils gleiche Strömungsgeschwindigkeiten in den Kühlkanälen gewährleistet und andernteils wird die Herstellung der Kühlmittelkanäle in der Kupferplatte und in der Stahleinsatzplatte erheblich vereinfacht.

Die verbesserte Wärmeabfuhr im Gießspiegelbereich kann noch dadurch gesteigert werden, dass im Gießspiegelbereich der Kühlmittel-Kanalquerschnitt kleiner ist als im übrigen Verlauf des Kühlmittelkanals.

Eine andere Maßnahme zur Reduzierung der Heißseiten-Temperatur im Gießspiegel-Bereich besteht darin, dass im Gießspiegel-Bereich die Dicke zwischen dem Kühlmittelkanal und der Heißseiten-Fläche der Kupferplatte geringer ist als oberhalb und unterhalb dieses Bereiches.

Der Temperatur-Ausgleich zwischen höheren und tieferen Bereichen innerhalb der Höhe der Stranggießkokille wird ferner dadurch unterstützt, dass die geringere Dicke zwischen dem Kühlmittelkanal und der Heißseiten-Fläche der Kupferplatte auf den Höhenabschnitt begrenzt ist und in tieferen Abschnitten kontinuierlich auf einen Abstand vergrößert ist.

Bei entsprechender Einarbeitung der Kühlmittelkanäle in die Stahleinsatzplatte ist vorgesehen, dass ein Abstand der Heißseiten-Fläche der Kupferplatte in gleichen Höhenabschnitten konstant ist.

Im allgemeinen richtet sich die Anordnung der Kühlmittelkanäle nach der Innenform des Gießhohlraums. Dazu wird vorgeschlagen, dass in dem Breitenabschnitt der Abstand zur Heißseitenfläche im mittleren Bereich geringer als im Randbereich ist. Dadurch kann die Temperatur der Heißseite vergleichmäßigt werden.

Hierzu wird ergänzend vorgeschlagen, dass mit dem Kühlmittelkanal in Verbindung stehende Nuten in der Kupferplatte mit ihren Nuttiefen größer 10 mm und kleiner 25 mm ausgeführt sind.

Für CSP-Anlagen werden spezielle Kokillen zum Dünnbrammen-Gießen angewendet. Vorteilhaft ist hierbei, dass eine Trichterkokille anwendbar ist und dass der Breitenabschnitt mit dem größten Abstand des Kühlmittelkanals von der Heißseiten-Fläche der Kupferplatte eine Länge von 50 bis 80 % des Breitenbereichs im Trichter beträgt.

Nach weiteren Merkmalen ist vorgesehen, dass ein außen liegender Breitenbereich des Trichter-Querschnitts zwischen 50 und 80 % der Breitseiten-Länge "L" minus der halben Trichterbreite beträgt.

In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt, die nachstehend näher erläutert werden.

Es zeigen:

- Fig. 1 einen senkrechten Mitten-Querschnitt durch die Stranggießkokille,
- Fig. 2 einen senkrechten Teil-Querschnitt durch die Kupferplatte mit der Stahleinsatzplatte,
- Fig. 3 denselben Querschnitt wie Fig. 2 für eine alternative Ausführungsform und
- Fig. 4 eine Draufsicht auf eine Kokillen-Breitseite als Trichterkokille.

In der Stranggießkokille werden flüssige Metalle, insbesondere flüssiger Stahl, zu Gießsträngen mit unterschiedlichen Formaten und Knüppel-, Vorblock-, Brammen – und Dünnstrang-Querschnitten vergossen. Innerhalb eines Wasserkastens 1 sind einander gegenüberliegende Einsatzplatten 2 aus Stahl und in den Stahleinsatzplatten 2 anliegende Kupferplatten 3 befestigt, z.B. mittels Schrauben 4 gegen die Stahl-

einsatzplatten 2 verspannt, die eine Kassette bilden. Die Kupferplatten 3 begrenzen den Gießhohlraum 5. Zwischen den Kupferplatten 3 sind Endplatten 7, sog. Schmalseitenplatten, angeordnet, deren Dicke 8 die Gießstrangdicke bildet oder die durch ihren gegenseitigen Abstand die Gießstrangbreite bestimmen.

In den Kupferplatten 3 sind an der Grenze zu den Stahleinsatzplatten 2 Kühlmittelkanäle 9 eingearbeitet, die jeweils mit einem Einlass und einem Auslass versehen sind.

Im Gegensatz zu den bisherigen Kokillen-Kupferplatten 3 ist die Dicke 10 der Kupferplatten 3 jeweils zwischen dem Kühlmedium 11 und der Kupferplatten-Heißseite 3a über die Breite 2 x L und / oder über die Höhe 12 der Kokille unterschiedlich. Im Bereich des Gießspiegels 13 ist die Dicke 10 der Kupferplatte 3 kleiner gehalten als im tiefer befindlichen, größeren Bereich, so dass die Wärmeabfuhr im Gießspiegel - Bereich 13 erheblich höher ist als im tiefer befindlichen Bereich. Dadurch wird im Gießspiegel-Bereich 13 eine geringere Heißseiten-Temperatur eingestellt.

Die Kühlmittelkanäle 9 in der Kupferplatte 3 können auch zumindest teilweise in der angrenzenden Stahleinsatzplatte 2, wie in Fig. 1 durch die gestrichelte Linie angedeutet ist, verlaufen.

Im Bereich des Gießspiegels 13 (Fig. 2) ist die Kupferplatte 3 gleichmäßig dick gehalten und die Kühlmittelkanäle 9 sind auch gleichmäßig tief. Ein engerer Kühlmittelkanal 9 wird demnach durch eine im Gießspiegel 13 gegenüberliegende Stahleinsatzplatte 2 auf einer Höhe H1 normal und auf der sich nach unten anschließenden Höhe H2 enger ausgeführt, so dass sich zwischen der Kupferplatte 3 und der Stahleinsatzplatte 2 in der Höhe H2 die erwünscht höhere Strömungsgeschwindigkeit des

Kühlmediums 11 ergibt. Das Kühlmedium 11 kann alternativ von oben nach unten oder von unten nach oben geführt werden. Auf der Höhe H2 ergibt sich somit ein kleinerer Kühlmittel-Kanalquerschnitt 14. Bei einer praktischen Ausführungsform kann die Höhe H1 = 40 – 90 mm und die Höhe H2 = 80 – 150 mm betragen.

Der Kühlmittel-Kanalquerschnitt 14 (Fig. 3) ist in der Höhe H2 als Minimal-Dicke (A_{min}) ausgeführt und in den unteren Bereichen ist der Kühlmittel-Kanalquerschnitt 14 stets größer, wobei auch der untere Bereich der Dicke (A_u) der Kupferplatte 3 stets größer ausgeführt ist.

Weiterhin ist im Gießspiegelbereich 13 die Dicke 10 zwischen dem Kühlmittelkanal 9 und der Heißseiten-Fläche 3a der Kupferplatte 3 gemäß Fig. 2 jeweils oben und unten gleich, gemäß Fig. 3 ist diese Dicke 10 oben klein und unten größer.

Die geringere Dicke 10 zwischen dem Kühlmittelkanal 9 und der Heißseiten-Fläche 3a der Kupferplatte 3 ist auf den Höhenabschnitt H2 beschränkt. Diese geringere Dicke 10 zwischen dem Kühlmittelkanal 9 und der Heißseiten-Fläche 3a der Kupferplatte 3 ist, bezogen auf den Höhenabschnitt H2, in tieferen Abschnitten kontinuierich auf den Abstand Au vergrößert.

Gemäß Fig. 4 ist die Kupferwandstärke einer Trichterkokille 17 vor dem Kühlmedium und / oder die Kühlnutgeometrie (Tiefe, Breite, Durchmesser und Abstand) über die Kokillenbreite 2 x L unterschiedlich ausgeführt. Dadurch wird zusätzlich die Heißseiten-Temperatur über die Kokillenbreite 2 x L vergleichmäßigt und über die Kokillenhöhe 12 kann ebenfalls der deutliche Temperaturabfall unterhalb des Gießspiegel-Bereichs 13 reduziert werden.

Hierbei (Fig. 4) ist ein Abstand D1, D3 der Heißseiten-Fläche 3a der Kupferplatte 3 in gleichen Breitenabschnitten L1, L3 konstant gehalten. Ferner ist in gleichen Breitenabschnitten L1, L2, L3 ausgehend von den Breitenabschnitten L1, L3 mit den Abständen D1, D3 ein Abstand D2 im Breitenabschnitt L2 zum mittleren Bereich auf ein Maß D2 verringert. Mit dem Kühlkanal 9 in Verbindung stehende Nuten 15 sind in der Kupferplatte 3 mit ihren Nuttiefen größer 10 mm und kleiner 25 mm ausgeführt.

Bei Anwendung einer Trichterkokille 17 (für CSP-Anlagen) beträgt der Breitenabschnitt L3 mit dem größeren Abstand D3 des Kühlmittelkanals 9 von der Heißseiten-Fläche 3a der Kupferplatte 3 eine Länge von 50 – 80 % des Längenbereichs L im Trichter 17a.

Ein außen liegender Breitenbereich L1 der Kupferplatten 3 beträgt zwischen 50 – 80 % der halben Breitseiten-Länge L minus der halben Trichterbreite L3.

Die Nuten 15 liegen im Breitenabschnitt L1 mit den Abständen D_{Cu1} und der Nutentiefe D_{Pl1} gleich mit L2 und $D_{Cu2} + D_{Pl2}$ sowie gleich mit L3 und $D_{Cu3} + D_{Pl3}$. Die gesamte Nuttiefe ist kleiner 20 mm und größer 10 mm.

Die Breitenabschnitte L sind mit L1 = 0.5 - 0.8 (L - T_F / 2), L2 = L - (L1 + L3) und L3 = 0.5 - 0.8 T_F / 2 zu bemessen, wobei T_F /2 die halbe Trichterbreite bedeutet.

38891

Bezugszeichenliste 1 Wasserkasten 2 Stahleinsatzplatte 3 Kupferplatte За Heißseiten-Fläche 4 Schrauben Gießhohlraum Stimseite 7 Endplatten 8 Dicke der Endplatte 9 Kühlmittelkanal 10 Dicke der Kupferplatte 11 Kühlmedium 12 Höhe der Kokille 13 Gießspiegel (- Bereich) 14 Kühlmittel-Kanalquerschnitt 15 Nuten 16 Nuttiefe 17 Trichterkokille 17a Trichter 17b Trichter-Querschnitt L halbe Kokillenplatten-Breite L1, L2, L3 Breitenabschnitte

Dcu 1, Dcu 2, Dcu 3 Abstände im Kupfer

Nuten-Tiefe

Trichter-Querschnitt

D_{Pl} 1, D_{Pl} 2, D_{Pl} 3

 T_{F}

04.05.02 **38891**

SMS Demag Aktiengesellschaft Eduard-Schloemann-Str. 4, 40237 Düsseldorf

<u>Patentansprüche</u>

1. Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl, mit von Wasserkästen umgebenen, den Gießquerschnitt mit parallelem Verlauf bildenden, einander gegenüberliegenden Einsatzplatten aus Stahl, und an den Stahleinsatzplatten anliegenden kassettenartigen Kupferplatten, die den Gießhohlraum begrenzen, und ggfs. an den Stirnseiten des Gießhohlraums eingefügten Endplatten zur Festlegung der Gießstrangdicke, und / oder der Gießstrangbreite, die den Gießhohlraum an den Stirnseiten abschließen und mit in den Kupferplatten an den Grenzflächen zu den Stahleinsatzplatten einen Einlaß mit einem Auslaß verbindende Kühlmittelkanäle,

dadurch gekennzeichnet,

dass die Dicke (10) der Kupferplatten (3) jeweils zwischen dem Kühlmedium (11) und der Kupferplatten-Heißseite (3a) über die Breite (2 x L) und / oder über die Höhe (12) unterschiedlich ist.

Stranggießkokille nach Anspruch 1,

dadurch gekennzeichnet,

dass die Kühlmittelkanäle (9) in der Kupferplatte (3) und zumindest teilweise in der angrenzenden Stahleinsatzplatte (2) verlaufen.

- Stranggießkokille nach einem der Ansprüche 1 und 2
 dadurch gekennzeichnet,
 dass im Gießspiegelbereich (13) der Kühlmittel-Kanalquerschnitt (14) kleiner ist als im übrigen Verlauf des Kühlmittelkanals (9).
- 4. Stranggießkokille nach einem der Ansprüche 1 und 2,

 dadurch gekennzeichnet,

 dass im Gießspiegelbereich (13) die Dicke (10) zwischen dem Kühlmittelkanal

 (9) und der Heißseiten-Fläche (3a) der Kupferplatte (3) geringer ist als ober
 und unterhalb dieses Bereiches.
- 5. Stranggießkokille nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die geringere Dicke (10) zwischen dem Kühlmittelkanal (9) und der Heißseiten-Fläche (3a) der Kupferplatte (3) auf den Höhenabschnitt (H2) begrenzt ist und in tieferen Abschnitten kontinuierlich auf einen Abstand (Au) vergrößert ist.
- dadurch gekennzeichnet,
 dass ein Abstand (D1; D3) der Heißseiten-Fläche (3a) der Kupferplatte (3) in
 gleichen Höhenabschnitten (L1; L3) konstant ist.

Stranggießkokille nach einem der Ansprüche 1 bis 5,

6.

- 7. Stranggießkokille nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in dem Breitenabschnitt (L2) der Abstand zur Heißseitenfläche (3a) im mittleren Bereich geringer als im Randbereich ist.
- 8. Stranggießkokille nach einem der Ansprüche 1 bis 7,
 dadurch gekennzeichnet,
 dass mit dem Kühlmittelkanal (9) in Verbindung stehende Nuten (15) in der Kupferplatte (3) mit ihren Nuttiefen (16) größer 10 mm und kleiner 20 mm ausgeführt sind.
- 9. Stranggießkokille nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine Trichterkokille (17) anwendbar ist und dass der Breitenabschnitt (L3) mit dem größten Abstand (D3) des Kühlmittelkanals (9) von der Heißseiten-Fläche (3a) der Kupferplatte (3) eine Länge von 50 bis 80% des Breitenbereichs (L) im Trichter (17a) beträgt.
- dadurch gekennzeichnet,
 dass ein außen liegender Breitenbereich (L1) der Kupferplatten (3) zwischen
 50 und 80% der halben Breitseiten-Länge (L) minus der halben Trichterbreite
 (L3) beträgt.

Stranggießkokille nach Anspruch 9.

38891

Eine Stranggießkokille für flüssige Metalle, insbesondere für flüssigen Stahl, mit von Wasserkästen (1) umgebenen Stahleinsatzplatten (2) und an diesen anliegenden kassettenartigen Kupferplatten (3) und bei Bedarf vorgesehenen Endplatten (7) für die Gießstrangdicke und / oder die Gießstrangbreite und Kühlmittelkanälen (9) sieht gegen die hohen Temperaturen im Gießspiegelbereich (13) geeignete Ausbildungen der Kupferplatten (3) und / oder der Stahleinsatzplatten (2) durch solche Maßnahmen vor, dass die Dicke (10) der Kupferplatten (3) jeweils zwischen dem Kühlmedium (11) und der Kupferplatten-Heißseite (3a) über die Breite (2 x L) und / oder über die Höhe (12) unterschiedlich ist.

Hierzu: Fig. 1

FIG. 2

FIG. 3

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.