Software Requirements Specification (SRS)

Intelligent Cyber Threat Intelligence System

Group: Security Insights Version: 4.0

November 29, 2024

Contents

1	Intr	roduction	4			
	1.1	Purpose	4			
	1.2	Scope	4			
	1.3	Document Overview	4			
	1.4	Definitions, Acronyms, and Abbreviations	4			
	1.5	References	5			
2	Overall Description 5					
	2.1	Product Perspective	5			
	2.2	Product Features	5			
	2.3	Assumptions and Dependencies	5			
	2.4	Operating Environment	5			
3	Specific Requirements					
	3.1	Functional Requirements	6			
	3.2	Non-functional Requirements	6			
4	Sys	tem Architecture	6			
	4.1	Microservices Design	6			
	4.2	Azure Deployment Architecture	6			
5	Risl	k Assessment	6			
	5.1	Risk Table	6			
6	Tes	ting Traceability	7			
		Traceability Matrix	7			

Revision History

Version	Date	Author(s)	Description
1.0	2024-11-28	Security Insights	Initial draft. Monolithic de-
			sign.
2.0	2024-11-30	Security Insights	Microservices architec-
			ture and multi-database
			integration.
3.0	2024-12-01	Security Insights	Enhanced Azure de-
			ployment, CTI-specific
			pipelines, and dashboards.
3.1	2024-12-02	Security Insights	Improved RBAC, integra-
			tion with SIEM/SOAR,
			and compliance-focused
			revisions.
4.0	November 29,	Security Insights	Comprehensive improve-
	2024		ments, including risk analy-
			sis, testing traceability, and
			scalability enhancements.

1 Introduction

1.1 Purpose

This document specifies requirements for developing a robust Cyber Threat Intelligence (CTI) system for a Fortune 10 company. The system will:

- Integrate structured, unstructured, and relationship-based threat data across relational, document, and graph databases.
- Provide real-time threat ingestion, enrichment, and scoring pipelines.
- Enable scalability and resilience via microservices on Azure Kubernetes Service (AKS).
- Offer actionable insights to C-suite executives and SOC analysts via interactive dashboards.

1.2 Scope

The application addresses the needs of enterprise-level CTI by:

- Automating ingestion from threat feeds (OSINT, commercial, proprietary).
- Supporting real-time processing and enrichment pipelines.
- Aligning with frameworks such as MITRE ATTCK.
- Integrating with SIEM/SOAR platforms for actionable intelligence.
- Ensuring security compliance with GDPR and ISO 27001.

1.3 Document Overview

The SRS is structured into the following sections:

- 1. Introduction: Goals, scope, and definitions.
- 2. Overall Description: High-level product perspective and operating environment.
- 3. Specific Requirements: Detailed functional and non-functional requirements.
- 4. System Architecture: Design details for deployment and microservices.
- 5. Security: Authentication, authorization, and data protection measures.
- 6. Appendices: Supporting diagrams and documentation.

1.4 Definitions, Acronyms, and Abbreviations

- CTI: Cyber Threat Intelligence
- SIEM: Security Information and Event Management
- SOAR: Security Orchestration, Automation, and Response
- RBAC: Role-Based Access Control
- AKS: Azure Kubernetes Service

1.5 References

- 1. Spring Boot Documentation
- 2. Azure Services Documentation
- 3. MITRE ATTCK Framework
- 4. OWASP Security Standards

2 Overall Description

2.1 Product Perspective

This system integrates backend APIs and CTI pipelines into a scalable, modular architecture:

- **Databases**: MySQL for structured data, MongoDB for nested datasets, Neo4j for relationship traversal.
- **Deployment**: Hosted on Azure AKS with global redundancy.
- **Integration**: Real-time SIEM/SOAR integration for enriched threat data dissemination.

2.2 Product Features

- Ingests and enriches threat data from multiple sources.
- Supports multi-database CRUD operations via REST APIs.
- Provides role-based dashboards with KPIs and trend analysis.
- Ensures compliance with regulatory standards.

2.3 Assumptions and Dependencies

- Azure cloud services will remain operational and available globally.
- Threat feed providers will deliver data in agreed formats.
- End-users will have high-speed internet connections.

2.4 Operating Environment

- Backend: Java Spring Boot.
- Databases: MySQL, MongoDB, Neo4j.
- Deployment: Azure Kubernetes Service (AKS).
- Analytics: Azure Machine Learning and Power BI.

3 Specific Requirements

3.1 Functional Requirements

- FR-1: Provide REST APIs for CRUD operations on all databases.
- FR-2: Implement real-time ingestion pipelines via Azure Event Hubs.
- FR-3: Support role-based access for data retrieval and processing.
- FR-4: Enrich threats using MITRE ATTCK mapping.
- FR-5: Deliver data to SIEM/SOAR systems in enriched format.

3.2 Non-functional Requirements

- NFR-1: Ensure 99.99% uptime with automated failover.
- NFR-2: Handle 50k+ IOCs/day with scalable microservices.
- NFR-3: API response time must not exceed 200ms under load.
- NFR-4: Encrypt all sensitive data at rest and in transit.

4 System Architecture

4.1 Microservices Design

Each microservice is independent, focusing on a specific database or task:

- Relational DB Microservice: '/mysql/api/v1/...'
- Document DB Microservice: '/mongodb/api/v1/...'
- Graph DB Microservice: '/neo4j/api/v1/...'
- Enrichment Service: Integrates MITRE ATTCK and predictive analytics.

4.2 Azure Deployment Architecture

- AKS for containerized deployment.
- Azure SQL Database for relational storage.
- Azure Cosmos DB for document storage.
- Azure Monitor and Sentinel for observability.

5 Risk Assessment

5.1 Risk Table

Risk	Impact	Likelihood	¿Mitigation;
Service Outage	High	Moderate	Implement AKS re-
			dundancy and failover
			systems.
Data Breach	Critical	Low	Encrypt data and use
			Azure Key Vault.
API Rate Limits	Medium	High	Throttle API re-
			quests and implement
			caching.

6 Testing Traceability

6.1 Traceability Matrix

Requirement	Test Case ID	Testing Tool	
FR-1	TC-01	Postman API tests	
FR-2	TC-02	JMeter load test	