Master in Control Engineering

Process Automation 2020-2021

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Master in Control Engineering

Process Automation

4. DYNAMIC PROCESS MODELS

Slides based on:

D.E. Seborg et al., Process Dynamics and Control (3rd ed.), 2009, Ch. 2

Outline

- Dynamic Process Models
 - Why use dynamic models?
 - Classification
 - Modelling principles
 - Conservation laws
 - Degrees of freedom
 - Examples of process control models
 - Blending process control
 - Stirred-tank heating process
 - Liquid storage system
 - Fed-batch (semi-continuous) bioreactor
 - Linearization of nonlinear models
 - · Blending process control
- Summary

Why use dynamic models?

- 1. Improve understanding of the process
 - Dynamic models and computer simulations allow transient process behavior to be investigated without operating the process
 - Computer simulations are used to acquire valuable information about dynamic and steady-state process behavior, even before the plant is constructed
- 2. Train plant operating personnel
 - Process simulators play a critical role in training plant operators to run complex units and to deal with emergency situations
 - A realistic training environment is created by interfacing a process simulator to standard process control equipment

Why use dynamic models?

- 3. Develop a control strategy for a new process
 - Alternative control strategies can be evaluated over a dynamic model of the process
 - Help to identify the process variables that should be controlled and those that should be manipulated
 - Allows model-based control strategies to be employed, in which the process model is part
 of the control law.
- 4. Optimize process operating conditions
 - A steady-state process model and economic information can be used to determine the most profitable operating conditions
 - It also allows recalculating the optimum operating conditions periodically in order to maximize profit

Classification

- Models can be classified based on how they are obtained
 - (a) Theoretical models
 - Developed using the principles of chemistry, physics, and biology
 - Advantages
 - Physical insight into process behavior
 - Applicable over wide ranges of conditions
 - Disadvantages
 - Expensive and/or time-consuming to develop
 - Theoretical models of complex processes typically include some model parameters that are not readily available
 - » reaction rate coefficients, physical properties, heat transfer coefficients

Classification

- Models can be classified based on how they are obtained
 - (b) Empirical models
 - Obtained by fitting experimental data
 - Advantage
 - Easier to develop than theoretical models
 - Disadvantage
 - Do not extrapolate well
 - » Empirical models should be used with caution for operating conditions that were not included in the experimental data used to fit the model
 - » The range of the data is typically quite small compared to the full range of process operating conditions.
 - (c) Semi-empirical models
 - Combination of the models in categories (a) and (b)
 - The numerical values of one or more of the parameters in a theoretical model are calculated from experimental data
 - May overcome the disadvantages of the other categories

Modelling Principles

- A process model is a mathematical abstraction of a real process
 - The model equations are at best an approximation to the real process
 - It cannot incorporate all of the features of the real process
 - Compromise between
 - » accuracy and complexity
 - » cost and effort required to develop the model and to verify it
 - The model should incorporate all of the important dynamic behavior while being no more complex than is necessary
 - Omission of less important phenomena to keep the number of model equations, variables, and parameters low
 - Dynamic models of chemical processes consist of ordinary differential equations
 (ODE) and/or partial differential equations (PDE), plus related algebraic equations
 - For process control problems, dynamic models are derived using unsteady-state conservation laws
 - System of Differential-Algebraic Equations (DAE)
 - Algebraic equations = constraints over state variables

Modelling principles

- Systematic approach for developing dynamic models
 - State the modeling objectives and determine the required levels of model detail and accuracy
 - 2. Draw a schematic diagram of the process and label all process variables
 - 3. List all of the assumptions involved in developing the model
 - 4. Determine whether spatial variations of process variables are important (which requires a partial differential equation model)
 - 5. Write conservation equations (mass, component, energy, ...)
 - 6. Introduce equilibrium relations and other algebraic equations (from thermodynamics, transport phenomena, chemical kinetics, ..)
 - Perform a degrees of freedom analysis to ensure that the model equations can be solved
 - 8. Simplify the model by rearranging the equations so that the output variables appear on the left side and the input variables appear on the right side
 - 9. Classify inputs as disturbance variables or as manipulated variables.

Conservation of mass

$${rate \ of \ mass} \atop {accumulation} = {rate \ of} \atop {mass \ in} - {rate \ of} \atop {mass \ out}$$

Conservation of component

$${rate \ of \ component \ i \choose accumulation} = {rate \ of \choose comp. \ i \ in} - {rate \ of \choose comp. \ i \ out} + {rate \ of \choose comp. \ i \ produced}$$

- Rate of comp. *i* produced represents the rate of generation (or consumption) of component *i* as a result of chemical reactions
- Conservation equations are also written in terms of molar quantities, atomic species, and molecular species

- Conservation of energy
 - First law of thermodynamics

- The total energy of a thermodynamic system U_{tot} is the sum of its internal energy, kinetic energy, and potential energy

$$U_{tot} = U_{int} + U_{KE} + U_{PE}$$

- Conservation of energy
 - First law of thermodynamics

- The total energy of a thermodynamic system U_{tot} is the sum of its internal energy, kinetic energy, and potential energy

$$U_{tot} = U_{int} + U_{KE} + U_{PE}$$

- Assummptions
 - Changes in potential energy and kinetic energy are small in comparison with changes in internal energy and can be neglected
 - The net rate of work is small compared to the rates of heat transfer and convection and can be neglected

- Conservation of energy
 - First law of thermodynamics

 U_{int} : internal energy of the thermodynamic system

w: mass flow rate (0 for batch processes)

 \widehat{H} : enthalpy per unit mass

Q: rate of heat transfer to the system

• Expressions for U_{int} , \widehat{H} and Q are derived from thermodynamics

Degrees of freedom

- The model equations should constitute a solvable set of relations
 - The output variables can be solved in terms of the input variables
- In order for the model to have a unique solution, the number of unknown variables must equal the number of independent model equations
 - All of the available degrees of freedom must be utilized
- Number of degrees of freedom N_F

$$N_F = N_V - N_E$$

 N_V : total number of process variables

 N_E : number of independent equations

- 1. $N_F = 0$: the process model is exactly specified.
 - The set of equations has a solution (not necessarily unique for nonlinear equations)
- 2. $N_F > 0$: the process is underspecified
 - More process variables than equations (infinite number of solutions)
- 3. $N_F < 0$: The process model is overspecified
 - Fewer process variables than equations (no solution)

Degrees of Freedom

- Degrees of Freedom Analysis
 - 1. List all quantities in the model that are known constants (or parameters that can be specified) on the basis of equipment dimensions, known physical properties, ...
 - 2. Determine the number of equations N_E and the number of process variables N_V
 - 3. Calculate the number of degrees of freedom $N_F = N_V N_E$
 - 4. Identify the N_E output variables that will be obtained by solving the process model
 - 5. Identify the N_F input variables that must be specified as either disturbance variables or manipulated variables, in order to utilize the N_F degrees of freedom

- Control objective
 - Blend the two inlet streams to produce an outlet stream with desired composition
- Streams 1 and 2
 - A mixture of two chemical species, A and B, with total mass flow rates $w_1(t)$ and $w_2(t)$
 - Mass fractions of A $x_1(t)$ and $x_2(t)$ vary with time
- Volume of liquid in the tank V(t) varies with time

- Assumptions
 - Perfect mixing assumption
 - (i) there are no concentration gradients in the tank
 - (ii) the composition of the exit stream is equal to the tank composition
 - » Assumption valid for low-viscosity liquids that receive an adequate degree of agitation
 - The density of the liquid ρ is constant
- Compute the static and dynamic models

Unsteady mass balance

$${rate \ of \ accumulation } \\ of \ mass \ in \ the \ tank } = {rate \ of \\ mass \ in} - {rate \ of \\ mass \ out}$$

Rate of mass accumulation in the tank

$$\frac{d(V\rho)}{dt} = w_1 + w_2 - w \tag{1}$$

- Perfect mixing assumption
 - Rate of mass accumulation for component A is proportional to the total rate of accumulation

$$\frac{d(V\rho x)}{dt} = w_1 x_1 + w_2 x_2 - wx \tag{2}$$

• (1)-(2): unsteady-state model for the blending system

- Static model
 - The steady-state model is obtained by setting the accumulation terms to 0 (barred variables stands for the nominal value) in eq. (1) and (2):

$$\overline{w}_1 + \overline{w}_2 - \overline{w} = 0 \tag{1'}$$

$$\overline{w}_1 \overline{x}_1 + \overline{w}_2 \overline{x}_2 - \overline{w} \overline{x} = 0 \tag{2'}$$

- Dynamic model
 - Assumption: $\rho = constant$
 - From (1) and (2):

$$\rho \frac{dV}{dt} = w_1 + w_2 - w \tag{3}$$

$$\rho \frac{d(Vx)}{dt} = w_1 x_1 + w_2 x_2 - wx \tag{4}$$

- Dynamic model
 - Chain rule:

$$\frac{d(Vx)}{dt} = x\frac{dV}{dt} + V\frac{dx}{dt} \tag{5}$$

– From (4) and (5):

$$\rho \frac{d(Vx)}{dt} = \rho x \frac{dV}{dt} + \rho V \frac{dx}{dt} = w_1 x_1 + w_2 x_2 - wx \tag{6}$$

– From (3) and (6):

$$x(w_1 + w_2 - w) + \rho V \frac{dx}{dt} = w_1 x_1 + w_2 x_2 - wx \tag{7}$$

– Dividing (3) and (7) by ρ and ρV , respectively:

$$\begin{cases}
\dot{V} = \frac{1}{\rho} (w_1 + w_2 - w) \\
\dot{x} = \frac{w_1}{V\rho} (x_1 - x) + \frac{w_2}{V\rho} (x_2 - x)
\end{cases}$$
(8)

Example: liquid storage systems

Assumptions

- Perfect mixing assumption
- The density ρ of the liquid is constant
- The tank is cylindrical with area A
- The liquid level is h(t)
- The flow is related to the liquid level

$$h(t) = q(t)R_{v}$$

where R_{ν} is the resistance of an outlet valve

Example: liquid storage systems

Mass balance

$$\frac{d(\rho V)}{dt} = \rho q_i - \rho q \tag{1}$$

Volume balance

$$\begin{cases} V = Ah \\ \rho = constant \end{cases} \Rightarrow A \frac{dh}{dt} = q_i - q \tag{2}$$

Assumptions

$$h = qR_{v} \tag{3}$$

$$-$$
 (2) + (3)

$$\dot{h} = -\frac{1}{AR_{\nu}}h + \frac{1}{A}q_{i} \tag{5}$$

Example: stirred-tank heating process

Assumptions

- Perfect mixing assumption (also the outlet temperature is equal to the one in the tank T)
- Inlet and outlet flow rates are equal
 - $w_i = w$
 - *V* is constant
- The density ρ and the heat capacity C of the liquid are constant
 - Temperature dependence neglected
- Heat losses are negligible
- The internal energy is equal to the enthalpy $U_{int} = H$
- H depends only on temperature

Example: stirred-tank heating process

Energy balance

$$\frac{dU_{int}}{dt} = -\Delta(w\widehat{H}) + Q$$

where $\Delta(w\widehat{H})$ is the difference of enthalpy between the inlet and the outlet streams

- Hat stands for 'per unit mass'
- Enthalpy = measurement of energy in a thermodynamic system
- Assumptions: pure liquid, low pressure:
 - 1. U_{int} ≈ H
 - 2. H depends on the temperature only: $CdT = d\widehat{H}$

where

- » C is the pressure heat capacity (assumed constant)
- » dT is the change in temperature

Example: stirred-tank heating process

Heater

- Rate of internal energy accumulation
 - Assumptions: pure liquid, low pressure:
 - 1. $U_{int} \approx H$
 - 2. H depends on the temperature only

$$CdT = d\widehat{H} \tag{1}$$

- » C is the pressure heat capacity (assumed constant)
- » dT is the change in temperature
- Total energy in the tank

$$U_{int} = \rho V \widehat{U}_{int} \tag{2}$$

(1)+(2)

$$\rho VC \frac{dT}{dt} = \frac{d\widehat{U}_{int}}{dT}$$

- Bioreactions
 - Biological reactions that involve microorganisms and enzyme catalysts
 - Basis for production of pharmaceuticals, healthcare and food products
- Simplified law

$$\{feed\ material\} \xrightarrow{(inoculum)} \{cell\ mass\} + \{products\}$$

- Quantities
 - F: mass flow rate
 - S_f : substrate mass concentration, kept constant (fed-batch)
 - V: volume of the bioreactor content, which increases due to F

- Assumptions
 - Cells growth is exponential

$$r_g = \mu \cdot X$$

- r_g : rate of cell growth per unit volume
- X: cell mass
- μ : specific growth rate described by the Monod equation $[t^{-1}]$

$$\mu = \mu_{max} \frac{S}{K_S + S}$$

- K_S : Monod constant
- μ_{max} : maximum growth rate (when $S \gg K_S$)

Assumptions

Rate of product formation per unit volume

$$r_P = Y_{P/X} \cdot r_g$$

- r_g : rate of cell growth per unit volume
- $Y_{P/X}$: product yeld coefficient

$$Y_{P/X} = \frac{mass\ of\ product\ formed}{mass\ of\ new\ cells\ formed}$$

- Perfect mixing assumption
- Homogeneous liquid assumption
- Heat effect are negligible (isothermal reactor operation)
- The density of the liquid is constant

Balance for substrate, cell, mass, product

$${rate\ of \atop accumulation} = \{rate\ in\} + {rate\ of \atop formation}$$

$$\frac{d(XV)}{dt} = Vr_g$$

$$\frac{d(\rho V)}{dt} = V r_p$$

$$\frac{d(SV)}{dt} = FS_f - \frac{1}{\frac{Y_X}{S}}V_{r_g}$$

- Overall mass balance, with
$$\rho = const.$$
: $\frac{dV}{dt} = F$

- Dynamics is generally nonlinear in process models
 - e.g., reaction rate exponential with temperature, pH vs. flow rate of acid or base, ...
- Linearization procedure
 - Given a nonlinear model $\dot{y}(t) = f(y(t), w(t))$
 - Identify the operating conditions
 - The corresponding values of the variables are the *nominal* values, denoted with \bar{y} , \bar{w}
 - 2. Taylor series expansion at the op. conditions, truncated after the 1st order term

$$\dot{y}(t) = f(y(t), w(t)) \approx f(\bar{y}, \bar{w}) + \frac{\partial f(y, w)}{\partial y} \bigg|_{\bar{y}, \bar{w}} (y - \bar{y}) + \frac{\partial f(y, w)}{\partial w} \bigg|_{\bar{y}, \bar{w}} (w - \bar{w})$$

3. Write the equation in terms of the differences with steady-state conditions $f(\bar{y}, \bar{w}) = 0$

$$\begin{cases} x \coloneqq y - \bar{y} \\ u \coloneqq w - \bar{w} \end{cases}$$

$$\dot{x}(t) = \frac{\partial f(y,w)}{\partial y} \Big|_{\overline{y},\overline{w}} x(t) + \frac{\partial f(y,w)}{\partial w} \Big|_{\overline{y},\overline{w}} u(t)$$

- Blending process control: dynamic model
 - Assuming $x_2 = 1$, we obtained a nonlinear model in the state variables x, x_1, w_1, w_2 :

$$\frac{dx(t)}{dt} = \frac{w_1(t)}{V\rho} \left(x_1(t) - x(t) \right) + \frac{w_2(t)}{V\rho} \left(1 - x(t) \right) = f(x, x_1, w_1, w_2)$$

- 1. Steady state conditions $(\bar{x}_1, \bar{x}_2 = 1, \bar{w}_1, \bar{w}_2)$, with $f(\bar{x}, \bar{x}_1, \bar{w}_1, \bar{w}_2) = 0$ $\bar{x} = \frac{\bar{w}_1 \bar{x}_1 + \bar{w}_2}{\bar{w}_1 + \bar{w}_2}$
- 1. Taylor expansion of $\frac{dx(t)}{dt} = f(x, x_1, w_1, w_2)$ at the steady-state $s = (\bar{x}, \bar{x}_1, \bar{w}_1, \bar{w}_2)$ in terms of the differences $\begin{cases} x' = x \bar{x} \\ x_1' = x_1 \bar{x}_1 \\ w_1' = w_1 \bar{w}_1 \\ w_2' = w_2 \bar{w}_2 \end{cases}$

- Blending process control: dynamic model
 - 2. Taylor expansion of $\frac{dx(t)}{dt} = \frac{w_1(t)}{V\rho} \left(x_1(t) x(t) \right) + \frac{w_2(t)}{V\rho} \left(1 x(t) \right)$ (cont'd):

$$\frac{dx'(t)}{dt} = \frac{\partial f}{\partial x}\Big|_{S} x'(t) + \frac{\partial f}{\partial x_{1}}\Big|_{S} x'_{1}(t) + \frac{\partial f}{\partial w_{1}}\Big|_{S} w'_{1}(t) + \frac{\partial f}{\partial w_{2}}\Big|_{S} w'_{2}(t)$$

with

$$\frac{\partial f}{\partial x}\Big|_{S} = -\frac{1}{V\rho} \Big(w_{1}(t) + w_{2}(t) \Big) \Big|_{(\overline{w}_{1}, \overline{w}_{2})} = -\frac{1}{V\rho} (\overline{w}_{1} + \overline{w}_{2})$$

$$\frac{\partial f}{\partial x_{1}}\Big|_{S} = \frac{1}{V\rho} \overline{w}_{1}$$

$$\frac{\partial f}{\partial w_{1}}\Big|_{S} = \frac{1}{V\rho} (\overline{x}_{1} - \overline{x})$$

$$\frac{\partial f}{\partial w_{2}}\Big|_{S} = \frac{1}{V\rho} (1 - \overline{x})$$

- Blending process control: dynamic model
 - 3. Write the (linear) equation in terms of differences:

$$\frac{dx'(t)}{dt} = -\frac{1}{V\rho}(\bar{w}_1 + \bar{w}_2)x'(t) + \frac{1}{V\rho}\bar{w}_1x_1'(t) + \frac{1}{V\rho}(\bar{x}_1 - \bar{x})w_1'(t) + \frac{1}{V\rho}(1 - \bar{x})w_2'(t)$$

- Transfer functions
 - Laplace transform

$$(sV\rho + (\overline{w}_1 + \overline{w}_2))x'(s) = \overline{w}_1x'_1(s) + (\overline{x}_1 - \overline{x})w'_1(s) + (1 - \overline{x})w'_2(s)$$

- Blending process control: dynamic model
 - Transfer functions (cont'd)

$$\chi'(s) = \frac{K_1}{\tau s + 1} \chi_1'(s) + \frac{K_2}{\tau s + 1} w_1'(s) + \frac{K_3}{\tau s + 1} w_2'(s)$$

where

$$\begin{cases} \tau \coloneqq \frac{V\rho}{\overline{w}_1 + \overline{w}_2} \\ K_1 \coloneqq \frac{\overline{w}_1}{\overline{w}_1 + \overline{w}_2} \\ K_2 \coloneqq \frac{\overline{x}_1 - \overline{x}}{\overline{w}_1 + \overline{w}_2} \\ K_3 \coloneqq \frac{1 - \overline{x}}{\overline{w}_1 + \overline{w}_2} \end{cases}$$

• Note that the system is externally stable since $\tau \coloneqq \frac{V\rho}{\overline{w}_1 + \overline{w}_2} > 0$

Summary

- Derivation of dynamic models from first principles
- Systematic approach for developing dynamic models
- Examples of process control models referred to continuous processes and batch processes