1.

(a) Description of Algorithm:

Derive the posterior density:  $h(\beta_1|Y,X)$ , with given  $\beta_0$ ,  $\sigma_i$ ,  $\lambda$ .

$$h(\beta_1|Y,X) = \prod_{i=1}^{m} f_{EMG}(\beta_0 + \beta_1 X_i; \mu, \sigma_i, \lambda) \times f_{Normal}(\beta_1, 0, 10)$$

Sample  $h(\beta_1|Y,X)$  with M-H algorithm:

Start from a random value A[1] that is in the  $\beta_1$  state space;

Generate y from proposal y=q(A[i]), e.g.  $q(A[i])^{\sim}N(A[i], 10)$ ;

Accept y with probability = 
$$\min(1, \frac{h(y|Y,X)}{h(A[i]|Y,X)} \cdot \frac{q(A[i])}{q(y)})$$
, .i.e A[i+1]=y;

(If q is "symmetric", e.g. q(A[i])~N(A[i], 10), the second term 
$$\frac{q(A[i]_i)}{q(y)} = 1$$
, which can be

dropped.)

Else reject y, i.e. A[i+1]= A[i].

Repeat until a satisfactory sample size is reached.

Choice of starting value: A[1] = 5 (I found this value after a few trials)

Proposal: q = rnorm(1,A[i-1],tau1), with tau1=1 (acceptance rate 0.3442344)

Sample size: n=10000

(b) point estimate of  $\beta_1$ : 7.334026, MCMCse: 0.007663469

(c) 95% credible interval: (6.676679, 7.937096)

(d) plot of density:



- (e) I examined:
  - (1) how the density plot changes when I increase n. n=1000 and n=10000 has similar shape,
  - (2) acf function plot: it drops quickly and become small.



(3) mean estimates w.r.t. sample size stabilize at the same level ( $\sim$ 7.34), when I start from different values (7 and 5, respectively):



(4) MCMCse estimates w.r.t. sample size: drops quickly without irregular behavior.



- 2. Note: the program I wrote is not good, and it may take ~10min to get the result of a 10000-sample-size run
- (a) Description of Algorithm:
  - (1) Derive the joint posterior density:  $h(\beta_1$  ,  $\beta_0, \lambda|Y,X),$  with given  $\sigma_i.$

$$h(\beta_1, \beta_0, \lambda|Y, X)$$

$$= \prod_{i=1}^{m} f_{EMG}(\beta_0 + \beta_1 X_i; \mu, \sigma_i, \lambda) \times f_{Normal}(\beta_1, 0, 10)$$

$$\times f_{Normal}(\beta_0, 0, 10) \times f_{Gamma}(\lambda, 0.01, 100)$$

Technically one should then derive full conditional densities, but we know full conditional densities are proportional to joint density, so a lazy way is to just plug in  $h(\beta_1,\beta_0,\lambda|Y,X)$ 

- (2) Start from a random vector (A[1],B[1],C[1])=( $\beta_1$ ,  $\beta_0$ ,  $\lambda$ ) that is in the state space; (2-1) Sample  $\beta_1 \sim h(\beta_1 | \beta_0, \lambda, Y, X)$  using M-H with the most up-to-date values:
  - i. Generate y from proposal y1=q(A[i]|B[[i],C[i]), e.g. q(A[i]|B[[i],C[i]) $^{\sim}$ N(A[i], 10);
  - ii. Accept y1 with probability =  $\min(1, \frac{h(y|Y, X)}{h(A[i]|Y, X)} \cdot \frac{q(A[i]|B[[i], C[i])}{q(y)})$ , i.e A[i+1]=y;
  - iii. Else reject y, i.e. A[i+1]= A[i].
  - (2-2) Sample  $\beta_0$  ~ $h(\beta_0 | \beta_1, \lambda, Y, X)$  using M-H algorithm with the most up-to-date values in a similar way to above; (note now A[i+1] is the most up-to date value for  $\beta_1$ ) (2-3) Sample  $\lambda$  ~ $h(\lambda | \beta_1, \beta_0, Y, X)$  using M-H algorithm with the most up-to-date values in a similar way to above; (note now A[i+1], B[i+1] are the most up-to date value for  $\beta_1$ ,  $\beta_2$ )
- (3) Now we get a new state (A[i+1],B[i+1],C[i+1]). Repeat until a satisfactory sample size is reached.

## (b) Result summary:

|        | Mean      | MCMCse      | 95% CI              |
|--------|-----------|-------------|---------------------|
| Beta1  | 3.459496  | 0.004523306 | 3.043983, 3.871376  |
| Beta0  | 2.348792  | 0.003337412 | 2.077541 2.604135   |
| lambda | 0.8050606 | 0.001046896 | 0.6967748 0.9280380 |

(c) Density of Beta1, Beta0:, lambda, respectively: (initial=(5,1,0.5))







- (d) Correlation between the data is -0.7996584.
- (e) mean estimate v.s. sample size: initial state=(5,1,0.5)



mean estimate v.s. sample size: initial=(4,2,0.7)



Starting from different initial state, the estimated mean converge at the same value.

MCMCse of Beta1, Beta0, lambda, respectively: drop quickly.



I have also examined the autocorrelations, they drop quickly to a low value, too. However due to limited space I will not present them here.

## 3. (a) Note: the program I wrote is not good, and it may take ~20min to get the result of a 10000-sample-size run

| 54p.6 5.26 . 4 |           |              |                      |  |
|----------------|-----------|--------------|----------------------|--|
|                | Mean      | MCMCse       | 95% CI               |  |
| Beta1          | 2.493601  | 0.01293823   | 1.962480, 2.994936   |  |
| Beta0          | 0.137315  | 0.008138765  | -0.1634433,0.4342377 |  |
| lambda         | 0.1617209 | 0.0001250916 | 0.1514621, 0.1726969 |  |

(b) The density plots:



(c) I have to change proposals q() for Lambda, and adjust parameters of the three V-MH to get reliable approximations.

## MCMCse:

