ARSITEKTUR SET INSTRUKSI

KARAKTERISTIK DAN FUNGSI SET INSTRUKSI

- Operasi dari CPU ditentukan oleh instruksi-instruksi yang dilaksanakan atau dijalankannya. Instruksi ini sering disebut sebagai instruksi mesin (mechine instructions) atau instruksi komputer (computer instructions).
- Kumpulan dari instruksi-instruksi yang berbeda yang dapat dijalankan oleh CPU disebut set Instruksi (Instruction Set).

ELEMEN-ELEMEN DARI INSTRUKSI MESIN (SET INSTRUKSI)

- Operation Code (opcode)
- Source Operand Reference
- Result Operand Reference
- Next Instruction Reference

Source dan result operands dapat berupa salah satu diantara tiga jenis berikut ini:

- Main or Virtual Memory
- CPU Register
- I/O Device

Desain set instruksi merupakan masalah yang sangat komplek yang melibatkan banyak aspek, diantaranya adalah:

- 1. Kelengkapan set instruksi
- 2. Ortogonalitas (sifat independensi instruksi)
- 3. Kompatibilitas

Selain ketiga aspek tersebut juga melibatkan hal-hal sebagai berikut:

- 1. Operation Repertoire
- 2. Data Types
- 3. Register
- 4. Addressing

FORMAT INSTRUKSI

Suatu instruksi terdiri dari beberapa field yang sesuai dengan elemen dalam instruksi tersebut. Layout dari suatu instruksi sering disebut sebagai Format Instruksi (Instruction Format).

OPCODE	OPERAND	OPERAND
	REFERENCE	REFERENCE

JENIS-JENIS OPERAND

- Addresses
- Numbers
- Characters
- Logical Data

JENIS INSTRUKSI

- 1. Data Processing
- 2. Data Storage
- 3. Data Movement
- 4. Control

TRANSFER DATA

- Menetapkan lokasi operand → sumber dan operand tujuan.
- Lokasi-lokasi tersebut dapat berupa memori, register atau bagian paling atas dari pada stack.
- Menetapkan panjang data yang dipindahkan.
- Menetapkan mode pengalamatan.
- TindakanCPU untuk melakukan transfer data adalah:
 - 1. Memindahkan data dari satu lokasi ke lokasi lain.
 - 2. Apabila memori dilibatkan:
 - Menetapkan alamat memori.
 - Menjalankan transformasi alamat memori virtual ke alamat memori aktual.
 - Mengawali pembacaan/penulisan memori

Operasi set instruksi untuk transfer data:

- MOVE
- STORE
- LOAD
- EXCHANGE
- CLEAR / RESET.
- SET PUSH
- POP

ARITHMETIC

Tindakan CPU untuk melakukan operasi arithmetic:

- Transfer data sebelum atau sesudah.
- 2. Melakukan fungsi dalam ALU.
- 3. Menset kode-kode kondisi dan flag.

perasiset instruksi untuk arithmetic :

1. ADD 5. ABSOLUTE

SUBTRACT
NEGATIVE

3. MULTIPLY 7. DECREMENT

4. DIVIDE 8. INCREMENT

Nomor 5 sampai 8 merupakan instruksi operand tunggal.

LOGICAL

Tindakan CPU sama dengan arithmetic

Operasi set instruksi untuk operasil ogical:

- 1. AND, OR, NOT, EXOR
- 2. COMPARE.
- 3. TEST
- 4. SHIFT
- 5. ROTATE

KONVERSI

Tindakan CPU sama dengan arithmetic dan logical.

Operasi set instruksi untuk konversi:

- 1. TRANSLATE
- 2. CONVERT

INPUT / OUPUT

Tindakan CPU untuk melakukan INPUT /OUTPUT:

- Apabila memory mapped I/O maka menentukan alamat memory mapped.
- 2. Mengawali perintah ke modul I/O

perasiset instruksiInput / Ouput:

- 1. INPUT
- 2. OUTPUT
- 3. START I/O
- 4. TEST I/O

TRANSFER CONTROL

Tindakan CPU untuk transfer control:

 Mengupdate program counter untuk subrutin, call/return.

perasi set instruksi untuk transfer control:

1. JUMP (cabang)

6. SKIP

2. JUMP BERSYARAT

7. SKIP BERSYARAT

3. JUMP SUBRUTIN

8. HALT

4. RETURN

9. WAIT (HOLD)

5. EXECUTE

10. NO OPERATION

CONTROL SYSTEM

- Hanya dapat dieksekusi ketika prosesor berada dalam keadaan khusus tertentu atau sedang mengeksekusi suatu program yang berada dalam area khusus, biasanya digunakan dalam sistem operasi.
- Contoh: membaca atau mengubah register kontrol.

JUMLAH ALAMAT (NUMBER OF ADDRESSES)

Salah satu cara tradisional untuk menggambarkan arsitektur prosessor adalah dengan melihat jumlah alamat yang terkandung dalam setiap instruksinya.

Jumlah alamat maksimum yang mungkin diperlukan dalam sebuah instruksi:

- Empat Alamat
- 2. Tiga Alamat
- 3. Dua Alamat
- 4. Satu Alamat

Macam-macam instruksi menurut sifat akses terhadap memori atau register

- 1. Memori To Register Instruction
- 2. Memori To Memori Instruction
- 3. Register To Register Instruction