Beta Model & Network Simulation

Econometric Methods for Social Spillovers and Networks, University of St. Gallen, October 1st to 9th, 2018

Bryan S. Graham

University of California - Berkeley

Introduction

- In practice methods of inference used in "network science" are decidedly heuristic/approximate.
- Widespread awareness among researchers of the lack of a coherent body of large network distribution theory.

Introduction (continued)

- Is the network in hand especially "transitive"?
 - Compare with Erdos-Renyi random graph; but are measured differences statistically significant? (how do we conceptualize "sampling error")
 - Compare with a large set of (empirical) reference graphs.
 Is the graph of interest unusual (cf., Milo et al., 2002)?
 - Combine an ad hoc and/or approximate variance estimate with a normal reference distribution (w/o limit theory it is difficult to evaluate this approach; but see later lectures)

Inference: Exact w/ Strong Null

- Blitzstein and Diaconis (2011) additional work in both machine learning and statistics.
- Look at a reference set of graphs (e.g., all graphs with degree sequences identical to the graph of interest)
 - Is transitivity (for example) in the graph in hand high relative to this reference group? (exact p-value approach);
 - Computational challenge: how to enumerate, or draw uniformly, from reference graph distribution.

Inference: Asymptotic

- <u>Later lecture</u>: Bickel, Chen & Levina and Bhattacharya and Bickel (2015):
 - Derive limit theory for network statistics (specifically normalized subgraph counts);
 - Challenge is also computational both statistics and their variance estimates are hard to construct.

Beta Model

- Models with network externalities are attractive because
 - they capture what is believed to be an a priori important feature of link formation;
 - they generate clustering, which we observe in real word networks.

- An alternative (ideally complementary) way to generate clustering is to introduce unobserved, agent-level, heterogeneity.
 - beta model: $D_{ij} = 1 (A_i + A_j U_{ij} \ge 0);$
 - A_i measures attractiveness, trustworthiness, productivity etc;
 - Distribution of ${\bf A}$ is unrestricted; components of ${\bf U}$ are i.i.d. (logistic).
- cf. 'state dependence vs. heterogeneity' in dynamic discrete choice analysis (Heckman, 1978; 1981a-c; Chamberlain, 1985).

ullet Assuming U_{ij} i.i.d. logistic yields a link probability of

$$\Pr\left(D_{ij} = 1 \middle| \mathbf{A}\right) = \frac{\exp\left(A_i + A_j\right)}{1 + \exp\left(A_i + A_j\right)} = \frac{\exp\left(W'_{ij}\mathbf{A}\right)}{1 + \exp\left(W'_{ij}\mathbf{A}\right)}$$

with W_{ij} the $N \times 1$ vector with a one for its i^{th} and j^{th} elements and zeros elsewhere.

• Choosing $A_i=-\frac{1}{2}\ln\left(\frac{p}{1-p}\right)$ for $i=1,\ldots,N$ yields the Erdos-Renyi random graph model.

The likelihood, $\Pr(\mathbf{D} = \mathbf{d} | \mathbf{A})$, includes $\binom{N}{2}$ conditional independent components:

$$\Pr\left(\mathbf{D} = \mathbf{d}|\mathbf{A}\right) = \prod_{i=1}^{N} \prod_{j < i} \left[\frac{\exp\left(W'_{ij}\mathbf{A}\right)}{1 + \exp\left(W'_{ij}\mathbf{A}\right)} \right]^{d_{ij}} \left[\frac{1}{1 + \exp\left(W'_{ij}\mathbf{A}\right)} \right]^{1 - d_{ij}}.$$

...but "only" N parameters.

Model is non-standard since the dimension of the parameter space grows with N.

Manipulating the likelihood gives the exponential family representation

$$Pr(D = d|A) = c(A) \exp(T(d)'A)$$
 (1)

where

$$T(\mathbf{d}) = (d_{1+} \cdots d_{N+})' = \mathbf{d}_{+}.$$

• The network's *degree sequence*, is a sufficient statistic for **A**.

- The beta model allows for networks with arbitrary degree distributions.
- Despite its simplicity it is reasonably flexible (N parameters) and provides a useful benchmark model for hypothesis testing purposes.

- Let $\mathbb{D}_{N,\mathbf{d_+}}$ denote the set of all networks with N agents and degree sequence $\mathbf{D_+} = \mathbf{d_+}$.
- ullet Let $\left|\mathbb{D}_{N,\mathbf{d_+}}\right|$ denote the cardinality of $\mathbb{D}_{N,\mathbf{d_+}}$.
 - $-\left|\mathbb{D}_{N,\mathbf{d_+}}\right|$ is generally *huge*, even for small N.
- Under the β -model the probability distribution of networks conditional on their degree sequence is uniform:

$$\Pr\left(\mathbf{D} = \mathbf{d} | \mathbf{d} \in \mathbb{D}_{N,\mathbf{d_+}}\right) = \frac{1}{\left|\mathbb{D}_{N,\mathbf{d_+}}\right|}.$$

Testing

- Let $S(\mathbf{D})$ be some statistic of the adjacency matrix
 - examples: transitivity index, diameter, number of K-length paths etc.
- Let $S(\mathbf{d})$ be the value of the statistic in the observed network.
- We seek to evaluate

$$\Pr\left(S\left(\mathbf{D}\right) \leq S\left(\mathbf{d}\right) \middle| \mathbf{D} \in \mathbb{D}_{\mathbf{N}, \mathbf{d}_{+}}\right) = \frac{\sum_{\mathbf{v} \in \mathbb{D}_{\mathbf{N}, \mathbf{d}_{+}}} \mathbf{1}\left(S\left(\mathbf{v}\right) \leq S\left(\mathbf{d}\right)\right)}{\left|\mathbb{D}_{N, \mathbf{d}_{+}}\right|}.$$
(2)

Testing: Intuition

If the probability that measured transitivity, in a network randomly drawn from the null distribution, lies above observed transitivity is very low...

...we take that as evidence against the β -model and "reject".

Testing

- This approach to testing is
 - very precise about its description of the null hypothesis;
 - exact.
- no alternative hypothesis is specified...
- ...however the choice of statistic should be guided by researcher intuitions about what departures from the null model are of particular concern.

Sampling from $\mathbb{D}_{N,\mathbf{d_+}}$

- Direct enumeration of all the elements of $\mathbb{D}_{N,\mathbf{d_+}}$ is generally not feasible.
- Need a method of sampling from $\mathbb{D}_{N,\mathbf{d_+}}$ <u>uniformly</u> and also estimating its size (implement an approximation of the ideal test).

Sampling from $\mathbb{D}_{N,\mathbf{d_+}}$ (continued)

- ullet Blitzstein and Diaconis (2010) develop a sequential importance sampling algorithm for uniformly sampling from $\mathbb{D}_{N,\mathbf{d}_+}$
- Two challenges:
 - how to generate a random draw from $\mathbb{D}_{N,\mathbf{d_+}}$;
 - how to do so uniformly (importance weights).

Graphical Integer Sequences

- To construct **D** we begin with a matrix of zeros and sequentially add links to it until its rows and columns sum to the target degree sequence.
- Problem is that unless links are added carefully it is easy to get "stuck" (cf., Snijders, 1991).
- The key is to check whether residual degree sequences are graphical as you add links (avoid dead ends).
- $D_+ = (2, 2, 1)$ is not graphic

Graphical Integer Sequences (continued)

ullet Erdos and Gallai (1961) showed ${\bf D}_+$ is graphical if and only if $\sum_{i=1}^N D_{i+}$ is even and

$$\sum_{i=1}^{k} D_{i+} \le k (k-1) + \sum_{i=k+1}^{N} \min (k, D_{i+}) \text{ for each } k \in \{1, \dots, N\}.$$

Graphical Integer Sequences (continued)

Necessity:

- even: if i is linked to j, then the link is counted in both D_{i+} and D_{j+} .
- For any set S of k agents, there can be at most $\binom{k}{2} = \frac{1}{2}k\left(k-1\right)$ links between them (first term).
- For the N-k agents $i \notin S$, then can be at most min (k, D_{i+}) links from i to agents in S.

Graphical Integer Sequences (continued)

Sufficiency of the condition is (evidently) much harder to show.

Erdos and Gallai Theorem provides a simple test for graphicality of a degree sequence.

The next theorem, due to Havel (1955) and Hakimi (1962), shows that this test may be applied recursively.

A Recursive Test

Theorem: (Havel-Hakimi) Let $D_{i+} > 0$, if \mathbf{D}_{+} does not have at least D_{i+} positive entries other than i it is not graphical. Assume this condition holds. Let $\tilde{\mathbf{D}}_{+}$ be a degree sequence of length N-1 obtained by

- [i] deleting the i^{th} entry of $\mathbf{D_+}$ and
- [ii] subtracting 1 from each of the D_{i+} highest elements in \mathbf{D}_{+} (aside from the i^{th} one).

 D_+ is graphical if and only if D_+ is graphical. If D_+ is graphical, then it has a realization where agent i is connected to any of the D_{i+} highest degree agents (other than i).

Blitzstein and Diaconis Procedure

- Start with lowest degree agent (with at least one link).
- (Randomly) Link this agent with high degree agents.
- A one is subtracted from the lowest degree agent's, as well as her chosen partners', degree counts.
- Continue until the **residual degree sequence** is zero.

3-regular (i.e., cubic graph)

Consider the example

$$(3,3,3,3,3,3)
ightarrow (2,2,3,3,3,3)
ightarrow (1,2,3,3,2,3)
ightarrow (0,2,2,3,2,3)
ightarrow (0,1,2,3,2,2)
ightarrow (0,0,2,2,2,2)
ightarrow (0,0,1,2,1,2)
ightarrow (0,0,0,2,1,1)
ightarrow (0,0,0,1,0,1)
ightarrow (0,0,0,0,0,0).$$

 Now imagine that in the 8th step instead of linking agent 3 with agent 4, agents 4 and 5 were linked.

• This would have resulted in a residual degree sequence of (0,0,0,2,0,0), which is not graphic.

Algorithm doesn't allow this to occur by checking for whether the residual degree sequence associated with a candidate link is graphical.

• Let $\left(\oplus_{i_1,\dots,i_k} \mathbf{D_+} \right)$ be the vector obtained by adding a one to the i_1,\dots,i_k elements of $\mathbf{D_+}$:

$$\left(\bigoplus_{i_1,\dots,i_k}\mathbf{D}_+\right)_j = \left\{\begin{array}{ll} D_{j+} + 1 & \text{for } j \in \{i_1,\dots,i_k\} \\ D_{j+} & \text{otherwise} \end{array}\right.$$

• Let $\left(\ominus_{i_1,\dots,i_k} \mathbf{D_+} \right)$ be the vector obtained by subtracting one from the i_1,\dots,i_k elements of $\mathbf{D_+}$:

$$\left(\bigoplus_{i_1,\dots,i_k} \mathbf{D}_+\right)_j = \begin{cases} D_{j+} - 1 & \text{for } j \in \{i_1,\dots,i_k\} \\ D_{j+} & \text{otherwise} \end{cases}$$

Algorithm: A sequential algorithm for constructing a random graph with degree sequence $\mathbf{D_+} = \left(D_{1+}, \dots, D_{N+}\right)'$ is

- 1. Let G be an empty adjacency matrix.
- 2. If $D_{+} = 0$ terminate with output G
- 3. Choose the agent i with minimal positive degree D_{i+} .
- 4. Construct a list of candidate partners

$$J = \{j \neq i : \mathbf{G}_{ij} = \mathbf{G}_{ji} = 0 \text{ and } \ominus_{i,j} \mathbf{D}_{+} \text{ graphical} \}.$$

5. Pick a partner $j \in J$ with probability proportional to its degree in \mathbf{D}_+ .

6. Set $G_{ij} = G_{ji} = 1$ and update D_+ to $\Theta_{i,j}D_+$.

7. Repeat steps 4 to 6 until the degree of agent i is zero.

8. Return to step 2.

The input for the algorithm is the target degree sequence \mathbf{D}_+ and the output is an undirected adjacency matrix \mathbf{G} with $\mathbf{G}'\iota = \mathbf{D}_+$.

Importance Weights

- ullet The Blitzstein and Diaconis (2010) procedure delivers a random draw from $\mathbb{D}_{N,\mathbf{d_+}}$, but not a *uniform* random draw.
- Construct importance weights in order to compute expectations using the correct reference distribution.
- Let $\mathbb{Y}_{N,\mathbf{d_+}}$ denote the set of all possible sequences of links generated by the algorithm given input $\mathbf{D_+} = \mathbf{d_+}$.

- Let $\mathcal{G}(Y)$ be the adjacency matrix induced by link sequence Y.
 - Let Y and Y' are equivalent if $\mathcal{G}(Y) = \mathcal{G}(Y')$.
- ullet We can partition $\mathbb{Y}_{N,\mathbf{d_+}}$ into a set of equivalence classes whose number coincides with the cardinality of $\mathbb{D}_{N,\mathbf{d_+}}$.

• Let c(Y) denote the number of possible link sequences produced by the algorithm that produce Y's end point adjacency matrix.

• Let i_1, i_2, \ldots, i_M be the sequence of agents chosen in step 3 of the algorithm in which Y is the output.

- Let a_1, \ldots, a_m be the degrees of i_1, \ldots, i_M at the time when each agent was *first* selected in step 3.
- Blitzstein and Diaconis show that:

$$c(Y) = \prod_{k=1}^{M} a_k!$$

Consider two equivalent link sequences Y and Y'.

Because links are added to vertices by minimal degree (see Step 3), the sequences i_1, i_2, \ldots, i_M coincide for Y and Y'.

This means that the exact same links, albeit perhaps in a different order, are added at each "stage" of the algorithm (i.e., when the algorithm iterates through steps 4 to 7 repeatedly for a given agent).

The number of different ways to add agent i_k 's links during such a "stage" is simply a_k ! and hence $c(Y) = \prod_{k=1}^M a_k$!

- Let $\sigma(Y)$ be the probability that the algorithm produces link sequence Y.
- $\sigma(Y)$ is easy to compute:
 - each time a link in step 5 is chosen we record the probability with which it was chosen.
 - this equals the residual degree of the chosen agent divided by the sum of the residual degrees of all agents in the choice set.
 - the product of all these probabilities equals $\sigma(Y)$.

Let $S(\mathbf{G})$ be some statistic the adjacency matrix and consider the expected value

$$\mathbb{E}\left[\frac{\pi\left(\mathcal{G}\left(Y\right)\right)}{c\left(Y\right)\sigma\left(Y\right)}S\left(\mathcal{G}\left(Y\right)\right)\right] = \sum_{y \in \mathbb{Y}_{N,\mathbf{d}}} \frac{\pi\left(\mathcal{G}\left(y\right)\right)}{c\left(y\right)\sigma\left(y\right)}S\left(\mathcal{G}\left(y\right)\right)\sigma\left(y\right)$$

$$= \sum_{y \in \mathbb{Y}_{N,\mathbf{d}}} \frac{\pi\left(\mathcal{G}\left(y\right)\right)}{c\left(y\right)}S\left(\mathcal{G}\left(y\right)\right)$$

$$= \sum_{g \in \mathbb{D}_{N,\mathbf{d}_{+}}} \sum_{\{y \in \mathcal{G}\left(y\right) = g\}} \frac{\pi\left(g\right)}{c\left(y\right)}S\left(g\right)$$

$$= \sum_{g \in \mathbb{D}_{N,\mathbf{d}_{+}}} \pi\left(g\right)S\left(g\right)$$

$$= \mathbb{E}_{\pi}\left[S\left(\mathbf{G}\right)\right].$$

Here $\pi(\mathbf{G})$ is the probability attached to the adjacency matrix $\mathbf{G} \in \mathbb{D}_{N,\mathbf{d_+}}$ in the target distribution over $\mathbb{D}_{N,\mathbf{d_+}}$.

The ratio $\pi(\mathcal{G}(Y))/c(Y)\sigma(Y)$ is called the likelihood ratio or the *importance weight*.

We would like $\pi\left(\mathbf{G}\right)=1/\left|\mathbb{D}_{N,\mathbf{d_+}}\right|$ for all $\mathbf{G}\in\mathbb{D}_{N,\mathbf{d_+}}$.

If we set $\pi(\mathbf{G}) = S(\mathbf{G}) = 1$ we see that $\mathbb{E}\left[\frac{1}{c(Y)\sigma(Y)}\right] = \left|\mathbb{D}_{N,\mathbf{d}_+}\right|$. This suggests the analog estimator for $\left|\mathbb{D}_{N,\mathbf{d}_+}\right|$ of

$$\left|\widehat{\mathbb{D}_{N,\mathbf{d}_{+}}}\right| = \left[\frac{1}{B} \sum_{b=1}^{B} \frac{1}{c(Y_{b}) \sigma(Y_{b})}\right]^{-1}$$
(3)

These results suggest we estimate the average of $S(\mathbf{G})$ with respect to uniform draws from $\mathbb{D}_{N,\mathbf{d}_+}$ by

$$\widehat{\mu}_{S(G)} = \left[\frac{1}{B} \sum_{b=1}^{B} \frac{1}{c(Y_b) \sigma(Y_b)} \right]^{-1} \times \left[\frac{1}{B} \sum_{b=1}^{B} \frac{1}{c(Y_b) \sigma(Y_b)} S(G_b) \right]$$
(4)

An attractive feature of (4) is that the importance weights need only be estimated up to a constant.

This feature is useful when dealing with numerical overflow issues that can arise when $\left|\mathbb{D}_{N,\mathbf{d_+}}\right|$ is too large to estimate.

- The ratio $\pi(G(Y))/c(Y)\sigma(Y)$ is called the likelihood ratio or the **importance weight**.
- Our random network draws are not uniform from the set of interest.
- The importance weights correct for the fact that we are sampling from the wrong distribution.

Nyakatoke Example

Nyakatoke Example (continued)

Blitzstein and Diaconis Wrap-Up

- ullet While using the eta-model as a reference model is restrictive it
 - is a natural starting point for hypothesis testing;
 - suggests that an investment in computation skills is likely to be valuable to anyone doing empirical work.
- It might be of interest to condition on additional features of the network in hand...