5 锁存器与触发器

- 5.1、双稳态存储单元电路
- 5.2、锁存器
- 5.3、触发器

5.1 双稳态存储单元电路

双稳态存储单元电路

5.1 双稳态存储单元电路

定义:Q=0时电路为0状态,Q=1时电路为1状态。

电路具有存储或记忆1位二进制数据的功能。

工作原理

(1) R=0、S=0 状态不变

若初态 $Q^{n=1}$

若初态 $Q^{n=0}$

无论初态Q "为0或1, 触发器的次态为为1态。

若初态 $Q^{n=1}$

若初态 $Q^{n=0}$

$$(3)$$
 R=1、S=0 置0

无论初态Q "为0或1 , 触发器的次态为为0态。

若初态 $Q^{n=0}$

无论初态Q "为0或1 , 触发器的次态 Q " 、Q " 都为0 。

此时如果两个输入信号同时发生由 1到0的变化,会出现竞争现象。 由于两个或非门的延迟时间无法确 定,使得触发器最终稳定状态也不 能确定。

约束条件: SR = 0

逻辑符号

 Q^n :电路的初态 信号输入前的状态

 Q^{n+1} :电路的次态信号输入后的新态

逻辑功能表

S	R	Q^{n}	Q^{n+1}	
0	0	0 1	0 1	不变
0	1 1	0 1	0	置0
1 1	0	0 1	1 1	置1
1 1	1 1	0 1	非定义 非定义	非定义 状态

因此,称S为置1端,R为置0端,都是高电平有效

逻辑功能表

S	R	$Q^{\rm n}$	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	非定义
1	1	1	非定义

特性方程

$$Q^{n+1}=f(S R Q^n)$$

次态卡诺图

$$\begin{cases} Q^{n+1} = S + \overline{R} Q^n \\ SR = 0 & 约束条件 \end{cases}$$

逻辑功能表

S	R	$Q^{\rm n}$	Q^{n+1}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	非定义
1	1	1	非定义

工作波形

逻辑功能的四种描述方式:

功能表、特性方程、状态转换图、波形图。

用与非门构成的SR锁存器

a.电路图

b.功能表

\overline{R}	\overline{S}	Q	\overline{Q}
1	1	不变	不变
1	0	1	0
0	1	0	1
0	0	1	1

c.国标逻辑符号

约束条件:

$$S + R = 1$$

用与非门构成的SR锁存器的波形(假设初始状态Q=0)

5.2.1 锁存器——简单SR锁存器(应用)

5.2.1 锁存器——简单SR锁存器(应用)

开关接A时振动,Q=1

开关转接A, R = 1 S = 0 Q=1

S悬空时间 开关接 B振动

基本RS锁存器存在的问题:

- **存在约束条件**:当RS端从"11"变化到"00"时(或非门组成),触发器的下一个状态不能确定,在使用中要加以约束,给使用带来不便。由与非门组成的锁存器也有类似问题。
- 抗干扰能力差: 当输入信号存在毛刺干扰时, 错误会扩散。

5.2.2 锁存器——逻辑门控SR锁存器

电路结构

逻辑符号

电路结构:由简单SR锁存器和使能信号控制门电路组成。

5.2.2 锁存器——逻辑门控SR锁存器

E=1:
$$Q_3 = S$$
 $Q_4 = R$ 状态发生变化

$$S=0, R=0: Q^{n+1}=Q^n$$

$$S=1$$
 , $R=0$: $Q^{n+1}=1$

$$S=0, R=1: Q^{n+1}=0$$

S=1, R=1:
$$Q^{n+1} = \Phi$$

5.2.2 锁存器——逻辑门控SR锁存器

工作波形

同步RS触发器真值表

S	R	Q^{n+1}
0	0	Qn
0	1	0
1	0	1
1	1	Ф

在使能信号有效期间的干扰仍然无法消除。

逻辑电路图

逻辑符号

$$D=0$$

D=1

$$S=0$$
 $R=1$

$$S=1$$
 $R=0$

$$Q = 0$$

$$Q = 1$$

D锁存器的功能表

E	D	Q	$ar{Q}$	功能
0	×	不变	不变	保持
1	0	0	1	置0
1	1	1	0	置1

注意信号的观察角度!!!

- 1、控制与被控制
- 2、什么叫锁存?

D锁存器的动态特性——时序图:

表示电路动作过程中,对各输入信号的时序要求,以及输出对输入信号的响应时间。

典型集成电路(74HC373)

74HC/HCT373的功能表

工作模式	输入			内部锁存器	输出
工作模式	\overline{OE}	LE	D_n	状 态	Q_n
使能和	L	Н	L	L	L
读锁存器 (传送模式)	L	Н	Н	Н	Н
锁存和	L	L	L*	L	L
读锁存器	L	L	H*	Н	Н
锁存和禁止输	Н	×	×	×	高阻
出	Н	×	×	×	高阻

 $L*和H*表示门控电平LE由高变低之前瞬间<math>D_n$ 的逻辑电平。

5.2.3 锁存器——D锁存器的Verilog描述

```
always@ (E or D)
begin
if(E) Q = D;
end
```

always@ (E or D)
begin
if(E) Q = D;
else Q = Q;
end

$$Q^{n+1} = \overline{E} \cdot Q + E \cdot D$$

