Geometry Unit 7: Congruence transformations Bronx Early College Academy

Christopher J. Huson PhD

17 January 2023 - 3 February 2023

Outline

7.1	Translation

7.2 Reflection

7.3 Rotation

7.4 Composition

7.5 Composition review

20 January

17 January

1 February

23 January

Learning Target: I can slide a figure

HSG.CO.A.5 Congruence transformations

Do Now

- 1. Review your Jumprope grades
- 2. Find the rise and run of the line segment \overline{AB} .

Lesson: Translation, classwork practice
Homework: Complete the classwork pra

Homework: Complete the classwork practice

7.1 Tuesday 17 January

Translation

Rise is plus 4, run is plus 3.

$$A(2,1) \rightarrow B(5,5)$$

Translate Move a figure horizontally and vertically (slide)

Vector A quantity with both magnitude and direction

$$\overrightarrow{AB} = (3,4)$$

Example: Translate point A up two units and right four units

Notation for translation:

$$\overrightarrow{AA'} = (+4, +2)$$
 $A(1,2) \rightarrow A'(1+4, 2+2)$
 $T_{+4,+2}$

Pre-image The original figure

Image The result of a transformation

 \rightarrow We say the A is mapped to A'.

Prime The prime symbol is used to denote the image (A')

Translate $\triangle ABC$ right one unit and up three units $T_{+1,+3}$

$$(x,y)
ightarrow (x+1,y+3)$$
 $A(1,1)
ightarrow$
 $B(1,2)
ightarrow$
 $C(4,1)
ightarrow$

Rigid motion Move without changing the shape or size (isometry)

Congruent Figures with the same size and shape Invariant Does not change (lengths, angles, area, perimeter)

Learning Target: I can reflect a figure

HSG.CO.A.5 Congruence transformations

7.2 Wednesday 18 January

Do Now: Find the lengths of the sides of $\triangle ABC$.

AC =

BC =

AB =

Lesson: Reflection, classwork practice Homework: Complete classwork, Deltamath assignment

Reflect or flip an object across the *y*-axis

Reflection is a rigid motion.

$$\triangle ABC \rightarrow \triangle A'B'C'$$

Reflection A transformation that flips an object across a line

Line of reflection The line across which the object is flipped

Correspond Parts that map to each other A corresponds to A'.

Learning Target: I can rotate a figure

HSG.CO.A.5 Congruence transformations

7.3 Friday 20 January

Do Now: Find the angle measures of right $\triangle ABC$.

$$m\angle A=30^{\circ}$$

 $m\angle B =$

 $m\angle C =$

Lesson: Rotation, classwork practice Homework: Complete classwork, Deltamath assignment

Learning Target: I can employ multiple rigid motions

HSG.CO.A.5 Congruence transformations

7.4 Monday 23 January

Do Now: Rotate $\triangle ABC$ counterclockwise 90° around the origin.

$$A(0,0) \rightarrow$$

$$B(4,3) \rightarrow$$

$$C(4,0) \rightarrow$$

Lesson: Composition of transformations, mixed practice

Homework: Complete classwork, Deltamath assignment

Solution: Rotate $\triangle ABC$ counterclockwise 90° around the origin.

$$A(0,0) \to A'(0,0)$$

$$B(4,3) \to B'(-3,4)$$

$$C(4,0) \to C'(0,4)$$

Check for understanding: What is the measure of angle $\angle CAC'$?

A composition is multiple transformations, one after the other

Example: Translate $\triangle ABC$ to the right 5 units then reflect it over the x-axis.

Translate $\triangle ABC$ to the right 5 units then reflect it over the x-axis.

$$T_{+5,0}$$
 reflect_{x-axis} $A(-1,2) o A'(4,2) o A''(4,-2)$ $B(-4,3) o B'(1,3) o B''(1,-3)$ $C(-4,2) o C'(1,2) o C''(1,-2)$

Learning Target: I can employ multiple rigid motions

HSG.CO.A.5 Congruence transformations

7.5 Wednesday 1 February

Do Now: Slide $\triangle ABC$ to the left three and up two.

$$B(1,3) \rightarrow$$

$$C(3,1) \rightarrow$$

Lesson: Composition of transformations, mixed practice

Homework: Complete classwork, Deltamath assignment

