Universität Augsburg

Institut für Mathematik

Masterarbeit

Insert Title

von: Lukas Graf Betreut von: Prof. Dr. Tobias HARKS

Inhaltsverzeichnis

1	Mor	phismen von	Spiele	n															3
	1.1	Definitionen																	3
	1.2	Erste Sätze					•			 ٠		 •							4
Literatur											6								

1 Morphismen von Spielen

1.1 Definitionen

Definition 1.1. Ein *Spiel in strategischer Form* Γ ist gegeben durch ein Tupel $(I, X = \prod_{i \in I} X_i, (K_i)_{i \in I}, (u_i : X \to K_i)_{i \in I})$. Dabei ist:

- I die Menge der Spieler,
- X_i die Menge der (reinen) Strategien von Spieler i,
- K_i die

Übersetzung von Payoff-Raum evtl. angepasst für Kosten?

von Spieler i und

• u_i die Kostenfunktion von Spieler i

Definition 1.2. Zwei Spiele $\Gamma = (I, X, (K_i)_{i \in I}, (u_i)_{i \in I})$ und $\Gamma' = (I, X', (K_i)_{i \in I}, (u_i')_{i \in I})$ heißen äquivalent, wenn es für jeden Spieler i eine bijektive Abbildung $\phi_i : X_i \to X_i'$ gibt, sodass gilt:

$$\forall x \in X : u_i(x) = u'_i(\phi(x))$$

Bemerkung 1.3. Zwei Spiele sind also genau dann äquivalent, wenn sie sich ausschließlich durch Umbenennung der Strategien ineinander überführen lassen. In [MS96] (S. 133) wird dies als Isomorphie von Spielen bezeichnet.

Permutation von Spielern erlauben?

Definition 1.4. Zwei Spiele $\Gamma = (I, X, (K_i)_{i \in I}, (u_i)_{i \in I})$ und $\Gamma' = (I, X', (K'_i)_{i \in I}, (u'_i)_{i \in I})$ heißen *isomorph*, falls es bijektive Abbildungen $\phi_i : X_i \to X'_i$ sowie bijektive und monotone Abbildungen $\psi_i : K_i \to K'_i$ gibt, sodass alle Diagramme der folgenden Form kommutieren:

$$X \xrightarrow{\phi} X'$$

$$\downarrow u_i \qquad \downarrow u'_i$$

$$K_i \xrightarrow{\psi_i} K'_i$$

Bemerkung 1.5. Diese Definition ergibt sich aus der abstrakteren Definition für in [Lap99].

Definition 1.6. Zwei im Sinne von definition 1.4 isomorphe Spiele heißen sozial isomorph, wenn zusätzlich die Funktion

$$\sum \psi_i : \prod_{i \in I} K_i \to \prod_{i \in I} K_i'$$

monoton ist.

Das macht natürlich nur Sinn, wenn auf den beiden Produkträumen auch totale (?) Ordnungen existieren

Beispiel 1.7. lineare Funktionen

Definition 1.8. Ein Nash-Morphismus $\gamma: \Gamma \to \Gamma'$ zwischen zwei Spielen $\Gamma = (I, X, (K_i)_{i \in I}, (u_i)_{i \in I})$ und $\Gamma' = (I, X', (K'_i)_{i \in I}, (u'_i)_{i \in I})$ ist gegeben durch Abbildungen $\phi_i: X_i \to X'_i$ sodass gilt:

$$\forall x \in X, i \in I, \hat{x}_i \in X_i : u_i(\hat{x}_i, x_{-i}) > u_i(x) \Rightarrow u'_i(\phi(\hat{x}_i, x_{-i})) > u'_i(\phi(x))$$

Der Morphismus γ heißt Nash-Isomorphismus (und die beiden Spiele dann Nash-isomorph), wenn die ϕ_i bijektiv sind und gilt:

$$\forall x \in X, i \in I, \hat{x}_i \in X_i : u_i(\hat{x}_i, x_{-i}) > u_i(x) \iff u_i'(\phi(\hat{x}_i, x_{-i})) > u_i'(\phi(x))$$

Beobachtung 1.9. Es gilt:

äquivalent \Rightarrow sozial isomorph \Rightarrow isomorph \Rightarrow Nash-isomorph

1.2 Erste Sätze

Lemma 1.10. Seien Γ und Γ' zwei Nash-isomorphe Spiele. Dann ist $x \in X$ genau dann ein Nashgleichgewicht von Γ , wenn $\phi(x) \in X'$ ein Nashgleichgewicht von Γ' ist.

Beweis. .

folgt direkt mit Definitionen

Lemma 1.11. Seien Γ und Γ' zwei Nash-isomorphe Spiele. Dann hat Γ genau dann die FIP, wenn Γ' diese besitzt.

Beweis. .

Beweis über Verbesserungspfad im einen entspricht Verbesserungspfad im anderen. Evtl. direkt das als Lemma formulieren und dann die beiden vorherigen Lemmas als Korollare daraus?

Lemma 1.12. Sei $\gamma: \Gamma \to \Gamma'$ ein Nash-Morphismus und $x \in X$. Ist dann $\phi(x) \in X'$ ein Nashgleichgewicht von Γ' , so ist auch x selbst schon ein Nashgleichgewicht (von Γ).

Beweis. .

Nachrechnen - evtl. mit vorherigen Sätzen verbinden bzw. schon davor zeigen, damit diese ein Korollar werden?

П

Lemma 1.13. Seien Γ und Γ' zwei sozial isomorphe Spiele. Dann ist $x \in X$ genau dann ein soziales Optimum von Γ , wenn $\phi(x) \in X'$ ein soziales Optimum von Γ' ist.	
Beweis	
Folgt direkt mit Definitionen	
Satz 1.14. Besitzt ein Spiel Γ ein ordinales Potential, so ist es isomorph zu einem Auslastungsspiel.	
Beweis. Analog zum Beweis der Äquivalenz von Spielen mit exaktem Potential und Auslastungsspielen in [MS96], Beweis orientiert sich an [Mon]. \Box	
Beobachtung 1.15. Besitzt ein Spiel ein verallgemeinertes ordinales Potential, so gibt es einen Nash-Morphismus in/von ein Auslastungsspiel.	Was von beidem?
Beweis	beidein.
Proofmining in oberem Beweis	
$Beobachtung\ 1.16.$ Nach [MS96] Lemma 2.5 hat jedes Spiel mit FIP ein verallgemeinertes Potential, also	
in/von	

Literatur

- [Jim14] Alfi Jiménez. Game Theory from the Category Theory Point of View. 2014. URL: https://www.gtcenter.org/Archive/2014/Conf/Jimenez1880.pdf (besucht am 15.01.2017).
- [Lap99] Victor Lapitsky. "On some Categories of Games and Corresponding Equilibria". In: *International Game Theory Review* 1.2 (1999), S. 169–185.
- $[Mon] \qquad \hbox{Dov Monderer. } \textit{Multipotential Games}.$
- [MS96] Dov Monderer und Lloyd S. Shapley. "Potential Games". In: Games and Economic Behaviour (1996), S. 124–143.