

FIRST SEMESTER 2022-2023

Course Handout Part II

Date: 29-08-2022

In addition to part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : CE F431

Course Title : PRINCIPLES OF GEOGRAPHICAL INFORMATION

SYSTEMS

Instructor – in – Charge : RAJITHA K

Scope & Objective: The course introduces the fundamentals of Geographic Information Systems. The main objective of the course is to promote a good foundation in GIS and working knowledge of fields strongly related to GIS in the computing perspective. Different algorithms for spatial analysis are discussed in the course illustrated with case studies. The course will also guide the students through projects and to apply concepts and ideas in various application areas and to establish a motivation towards research in thrust areas related to GIS.

<u>Course Outcomes:</u> At the end of the course, student will be able to

- Develop framework for analyzing the spatial data obtained from satellite platform and UAV platform
- Generate spatial datasets utilizing the primary data obtained from GPS , satellite images and ancillary datasets
- Solve spatial related problems related to Civil Engineering discipline utilizing satellite images and GIS software

Student Learning Outcomes (SLOs) assessed in this course: (a), (b), (c), (d), (e), (h), (i), (j) and (k).

Text Book:

T1: Kang-tsung Chang; "Introduction to Geographic Information Systems", Tata McGraw-Hill, 9 th ed. 2020.

Reference Books:

R1: Thomas M Lillesand, and Ralph W Kiefer; "Remote sensing and Image Interpretation", John Wiley & Sons,7th ed. 2015

R2: Basudeb Bhatta, Remote sensing and GIS, Oxford University Press, Third edition, 2021.

R3: Michael F. Worboys, "GIS: A Computing Perspective", Taylor & Francis Ltd; 1995, second edition. 2016

Course Plan:

Lecture No.	Topics to be covered	Learning objectives	Chapter in the Text Book	SLO*
		S tudy the basic concepts of GIS,		
	Trades also adding to	L ist the advantages and scope of applications in different field of	T1 ,	
1 2	Introduction to		R1 ,Lectu	(-) (-)
1-2	GIS	Engineering and science	re notes	(a),(k)
	GIS Functionality:			(a), (b)
	Interface, Spatial data, Raster data	S tudy the different types of spatial datasets		
3-5	model and vector data model	A nalyze the spatial datasets to solve real life problems	T1, R1	
		D iscuss the different types of coordinate system		(a), (b)
	Co-ordinate	,	T1,	
	system and Geo-	E valuate the	R1,R2,	
	Referencing and	performances for	Lecture	
6-12	map Projection	various cases	notes	

	I	T		
		D iscuss the different		
13		types of spatial data	T1 D1	_
	Digitization,	generation techniques	T1, R1,	(a), (b)
15	Encoding, and		Lecture notes	
	Structuring of	A nalyze the spatial data	notes	
	data	for different applications		
		S tudy the basics of		(a), (j)
		remote sensing		
		techniques,		
		D iscuss the laws		
		governing remote		
		sensing process		
		E xamine the utility of	T1 , R1,	
	Remote sensing	data for solving real	Lecture	
14-18	Fundamentals	world problems	notes	
		S tudy the Global		(a),(j), (k)
		Navigation Satellite		
	Basics of Global	System		
	Navigation	D iscuss trilateration,		
	Satellite	errors and advances in	Lecture	
19-20	System (GNSS)	GNSS	notes	
		S tudy on advanced		(a),(j)
		remote sensing sensors		
	RADAR, TM and	Diagram the great life		
	Multispectral	D iscuss the real life		
	sensing Radar:	applications focusing GIS	T4 D2	
	basics and	utility	T1 ,R2,	
24 22			Lecture	
21-22	application	Ctudy the different	notes	(a) (b)
		Study the different		(a), (b)
		Spatial Interpolation		
	Datamas in lati	techniques		
	Deterministic	E xamine the	T1 D1	
	and Statistical		T1, R1,	
22.25	spatial	performances of	Lecture	
23-25	interpolation	different techniques	notes T1,	(a) (b)
26-28	Triangulation,	D iscuss the different	(a), (b)	

		computational		
		algorithms for		
		triangulation and spatial		
		analysis		
	DEM, TIN,			
	terrain mapping	A nalyze the performance	Lecture	
	and analysis	of triangulation methods	notes	
		D iscuss the		(a), (e)
	Network	computational		
	analysis,	algorithms for network		
	Geocoding,	analysis and location –		
	Path analysis	allocation problems	R1,	
	and network	S olve problems related	Lecture	
29-31	applications	to network analysis	notes	
		D iscuss the advances of		(a), (b), (e)
	Advances in Geo-	cloud and web based	Loctura	
	spatial	geospatial techniques	Lecture	
	technology,	D esign of Web based	notes	
32-34	WebGIS	a pplications		
		Di scuss various current		(h),(i),(j),
	Transportation,	applications of GIS		(k)
	Environment,	through case studies for	Lecture	
	water resources	multi-disciplinary	notes	
	and allied fields	engineering related		
35-40	applications	applications		

Details of lab classes:

- 1. Introduction to Geo-spatial related Open source software (QGIS/SNAP/Google Earth Engine)
- 2. Access to the open source dataset and understanding spatial datasets
- 3. Georeferencing of raster dataset
- 4. Spatial database creation and digitization of spatial datasets.
- 5. Attribute data integration to the vector data and Map composing
- 6. Spatial analysis tools, querying, joining data. Use of editing tools, buffer and overlay analysis and creation of thematic maps

- 7. Spatial data modelling using data obtained from UAV, DEM, TIN generation from point datasets and its applications
- 8. Watershed delineation and estimation of morphometric parameters
- 9. Network analysis and Location –allocation problems
- 10. Introduction to WebGIS related applications
- 11. Geo-spatial applications in the domain of transportation
- 12. Geo-spatial applications in the domain of Environmental Engineering

*Student Learning Outcomes (SLOs):

SLOs are outcomes (a) through (k) plus any additional outcomes that may be articulated by the program.

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- (d) an ability to function on multidisciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

Evaluation Scheme:

Component	Duration	Weig htag e (%)	Date & Time	Nature of Componen t
Midsemester test	90 min	25	05/11 3.30 - 5.00PM	СВ

Lab ¹	-	15	Continuous	ОВ
Project ²	-	15	Continuous	OB
Lab test	30 min	5		СВ
Comprehensive Exam.	180 min	40	31/12 FN	СВ

¹ All lab are evaluative and viva will be conducted for all evaluative labs

Chamber Consultation Hour: Saturday 2-3 PM

Notices: Notices will be displayed on Google classroom.

Make-up Policy:

Only genuine cases will be granted make up.

Special Instructions for Lab sessions:

- The lab sessions targets to provide soft skill in the domain of advances in geospatial data processing. Only open source software will be utilized for the lab
- The lab viva/lab quiz will be conducted at the end of each lab

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-In-Charge CE F431

² The project is mandatory for the completion of the course