HOMEWORK 5 – MATH 441 May 1, 2018

ALEX THIES athies@uoregon.edu

Assignment: 3.B - 6, 16, 21; 3.C - 4, 10, 14; 3.D - TBA; Section 3.B **Problem 6.** Prove that there does not exist a linear map $T: \mathbb{R}^5 \to \mathbb{R}^5$ such that range T = null T. Proof. **Problem 16.** Suppose there exists a linear map on V whose null space and range are both finite-dimensional. Prove that V is finite-dimensional. Proof. **Problem 21.** Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(V, W)$ such that TS is the identity map on W. Proof. Section 3.C **Problem 4.** Suppose v_1, \ldots, v_m is a basis of V and W is finite-dimensional. Suppose $T \in \mathcal{L}(V, W)$. Prove that there exists a basis w_1, \ldots, w_m of W such that all the entries in the first column of $\mathcal{M}(T)$ (with respect to the bases v_1, \ldots, v_m and w_1, \ldots, w_m) are 0 except for possibly a 1 in the first row, first column. Proof. **Problem 10.** Suppose A is an m-by-n matrix and C is an n-by-p matrix. Prove that $(AC)_{i}$. In other words, show that row j of AC equals (row j of A) times C. Proof. **Problem 14.** Prove that matrix multiplication is associative. In other words, suppose A, B, and C are matrices whose sizes are such that (AB)C makes sense. Prove that A(BC) makes sense and that (AB)C = A(BC).

Proof.

Section 3.D