

UNIVERSIDADE FEDERAL DE OURO PRETO PRÓ-REITORIA DE GRADUAÇÃO PROGRAMA DE DISCIPLINA

Disciplina				Cód	igo
ELEMENTOS DE ROBÓTICA				CAT181	
Disciplina equivalente (nome e código):					
•			· · · · · · · · · · · · · · · · · ·		
Engenharia de Controle e Automação			Escola de Minas - EM		
Carga Horária Semanal	Teórica	Prática	Duração/Semana		Carga Horária Semestral
4	4	0	18		72 h/a

Ementa

Conceitos de robótica. Classificação dos robôs. Arquitetura genérica de robôs. Aplicabilidade de robôs em células de trabalho. Modelagem de robôs. Técnicas de controle de sensoriamento, posicionamento e movimentação de robôs. Técnicas de programação de robôs.

CONTEÚDO PROGRAMÁTICO

- 1. Introdução
 - a) Definições;
 - b) Classificação de robôs industriais;
 - c) Aplicações.
- 2. Descrições espaciais de um corpo rígido
 - a) Posição, orientação e sistema de referência;
 - b) Transformações Homogêneas.
- 3. Cinemática direta
- 4. Cinemática inversa
- 5. Cinemática diferencial
 - a) Velocidade linear e rotacional de corpos rígidos;
 - b) Velocidade e aceleração das juntas;
 - c) Jacobiano direto e inverso do manipulador;
 - d) Análise de singularidades;
 - e) Manipulabilidade.
- 6. Dinâmica de robôs manipuladores
- 7. Geração de trajetórias
- 8. Controle de robôs manipuladores
- 9. Aplicações com inteligência artificial

BIBLIOGRAFIA BÁSICA:

- [1] Siciliano, B., Sciavicco, L., Villani, L., Oriolo, G., Robotics: Modelling, Planning and Control. 1. ed. London: Springer, 2011.
- [2] Spong. M., W., Hutchinson, S., Vidyasagar, M., Robot Modeling and Control. 1st ed. New York, NY, US: Wiley, 2005.
- [3] Craig, J.J., Introdution to Robotics: Mechanics and Control. 3rd ed. New Jersey: Pearson, 1989.

BIBLIOGRAFIA COMPLEMENTAR

- [1] Corke, P., Robotics, Vision and Control: Fundamental Algorithms in MATLAB. Springer, 1st ed., 2011.
- [2] Richard M. Murray, S. Shankar Sastry, Zexiang Li, A Mathematical Introduction to Robotic Manipulation. 1st. ed. CRC Press, 1994.
- [3] SPONG, M. W.; VIDYASAGAR, M. Robot Dynamics and Control. 1st ed. New York, NY, US: John Wiley & Sons, Inc., 1989.
- [4] ROSÁRIO, J. M. Princípios de Mecatrônica. 1. ed. Pearson / Prentice Hall, 2005.
- [5] GROOVER, M. P. Automação Industrial e Sistemas de Manufatura. 3ª ed. Pearson Prentice Hall, São Paulo, 2011.