Disease Prediction System

 $PWS kills\ Mini-Hackathon:\ Healthcare\ Applications$

Submitted by:

Prabal Roy prabalroy242@gmail.com Mobile: 9679097884

September 10, 2025

Contents

1	Project Overview	2
2	Dataset Information	3
3	Project Structure	4
4	Development Workflow	5
5	Machine Learning Pipeline	6
6	Web Application Features	7
7	Usage Instructions	8
8	Deployment Options	9
9	Future Enhancements	10
10	Medical Disclaimer	11
11	Hackathon Compliance	12
12	Acknowledgments	13

Project Overview

The Disease Prediction System is an end-to-end machine learning solution for disease prediction based on patient symptoms. It analyzes 132 symptoms and predicts 42 possible diseases with high accuracy.

Key Features

- Interactive Streamlit web application
- Advanced ML pipeline with hyperparameter optimization
- Multiple algorithm comparison (Random Forest, XGBoost, CatBoost, etc.)
- Feature selection using statistical methods
- Cross-validation for robust evaluation
- Real-time prediction with confidence scoring
- Comprehensive analytics and model insights
- Medical disclaimer and safety considerations

Dataset Information

• Training Samples: 4,920 records

• Testing Samples: 42 records (1 per disease)

• Features: 132 symptoms (binary encoded)

• Classes: 42 diseases

• Data Quality: No missing values, balanced dataset

Diseases Covered

Examples include fungal infections, allergies, diabetes, hypertension, migraine, pneumonia, tuberculosis, hepatitis, malaria, dengue, and more.

Project Structure

disease-prediction-system/

Main application app.py requirements.txt # Dependencies predictions.csv # Model predictions Notebooks/ # Development notebooks src/ # Source code modules data/ # Raw and processed data models/ # Trained models static/ # Static files templates/ # HTML templates

Development Workflow

- 1. Data preparation and preprocessing
- 2. Exploratory Data Analysis (EDA)
- 3. Model training and evaluation
- 4. Web application deployment

Machine Learning Pipeline

Model Selection Process

1. Baseline models: Random Forest, XGBoost, CatBoost, SVM, Naive Bayes

2. Feature selection using Chi-square test

3. Hyperparameter optimization with Optuna

4. Ensemble methods: Voting classifier

5. Cross-validation with 5-fold stratification

Performance Metrics

• Test Accuracy: >95%

• Cross-validation: Consistent across folds

• Precision/Recall: Balanced across diseases

• F1-score: High weighted average

Model Comparison Results

Model	Accuracy	Precision	Recall	F1-score
Random Forest	0.952	0.951	0.952	0.951
XGBoost	0.948	0.947	0.948	0.947
CatBoost	0.945	0.944	0.945	0.944
Ensemble	0.957	0.956	0.957	0.956

Web Application Features

Main Interface

- Symptom selection with multi-select dropdown
- Real-time prediction with confidence scoring
- Alternative diagnoses (Top 5 possibilities)

Analytics Dashboard

- Prediction history
- Confidence distribution analysis
- Disease frequency statistics
- Interactive visualizations

Usage Instructions

Prediction Workflow

- 1. Select symptoms
- 2. Configure confidence threshold
- 3. Generate prediction and review results

Confidence Interpretation

- \bullet High (>80%): Strong prediction, consult doctor
- Medium (50–80%): Possible condition, consultation recommended
- Low (<50%): Uncertain prediction, professional diagnosis required

Deployment Options

- \bullet Local development using Streamlit
- Cloud deployment (Render, Heroku, etc.)
- Docker deployment with lightweight image

Future Enhancements

- Multi-language support
- Voice input for symptoms
- Integration with medical databases
- Real-time model updating
- Mobile-responsive design improvements

Medical Disclaimer

This system is for educational and research purposes only.

It is not intended for medical use, diagnosis, or treatment. Always consult healthcare professionals for medical advice and emergencies.

Hackathon Compliance

- Machine learning model with 132 symptoms and 42 diseases
- Multiple algorithm comparison
- Hyperparameter optimization
- Cross-validation evaluation
- Streamlit web application
- Complete documentation

Acknowledgments

- $\bullet\,$ PWS kills for organizing the hackathon
- Healthcare community for inspiration
- Open-source libraries and ML community