ALGORITHMIQUE DISTRIBUÉE MIF12

ÉLECTION DE LEADER

Isabelle GUERIN LASSOUS

perso.ens-lyon.fr/isabelle.guerin-lassous/index-M1if12.htm

isabelle.guerin-lassous@univ-lyon1.fr

Introduction

- Dans le cours précédent
 - Certains nœuds pouvaient avoir un rôle particulier
 - Source
 - Racine
 - •
- Comment choisir ce ou ces nœuds spécifiques ?
 - Objectif de l'élection de leader
- L'élection de leader doit être
 - Sûre
 - Le leader doit être unique et un nœud a été élu
 - Rapide
 - Le choix doit se faire en un temps fini
- L'élection de leader permet de rompre la symétrie dans un système distribué
 - Symmetry breaking

Applications de l'élection de leader

- Orchestration dans un système distribué
 - Contrôle centralisé
 - Allocation de ressources en exclusion mutuelle
 - Consensus
 - Débloquer une situation de blocage
- Faire face à des défaillances
 - Restaurer un leader
 - Restaurer un jeton
- Récupérer de l'information sur le graphe
 - Détection de la terminaison d'un algorithme
 - Déterminer le nombre de nœuds dans le réseau

Résultat d'impossibilité

- Il n'existe pas d'algorithme déterministe d'élection de leader dans les systèmes distribués anonymes et uniformes
- Systèmes anonymes
 - Nœuds n'ont pas d'ID
 - Impossible de différencier les nœuds
 - Système est donc uniforme
 - Même degré, même code, même état initial
- Preuve sur un anneau

Preuve

Preuve

Contourner ce résultat d'impossibilité

- En utilisant des identifiants uniques sur les nœuds
 - Le système n'est plus anonyme et uniforme
- En utilisant des algorithmes probabilistes
 - Tirages aléatoires sur chaque nœud
 - Tomber indéfiniment sur des configurations symétriques est quasi impossible

Élection de leader dans un anneau unidirectionnel ou directionnel

Élection de leader dans un anneau unidirectionnel Algorithme de Chang-Roberts

Hypothèses

- Chaque nœud a un identifiant unique et sait que les identifiants sont uniques
- Chaque nœud connaît son voisin
- Le nombre de nœuds dans le système est inconnu de chaque nœud

Idées

- Au départ, chaque nœud est candidat à l'élection
 - Et donc propage sa candidature via son ID
- Un nœud qui reçoit un ID supérieur au sien ne sera pas élu
 - Et retransmet l'ID reçue à son voisin
- Le nœud, avec l'ID maximal, reçoit son propre ID et est élu

Variables locales

- Etat : non candidat / candidat / élu / perdu # initialisé à non candidat
- Leader : ID du leader ; initialisé à NULL
- Succ : successeur du nœud dans l'anneau

Élection de leader dans un anneau unidirectionnel Algorithme de Chang-Roberts

- 1. Nœud i se porte candidat
 - Etat := candidat
 - Leader := ID
 - Envoi du message Elec(Leader) à Succ
- 2. Si le nœud i reçoit le message *Elec(j)*
 - Si ID > j
 - Si Etat <> candidat, alors le nœud i se porte candidat
 - Sinon si ID < j
 - Etat := perdu
 - Leader := j
 - Envoi du message Elec(Leader) à Succ
 - Sinon si ID=j
 - Etat := élu
 - Envoi du message Lead(ID) à Succ
- Algorithme à compléter avec la diffusion du message Lead à tous les nœuds de l'anneau
 - Permet aux nœuds :
 - de connaître le leader
 - de savoir que l'algorithme est terminé

Algorithme de Chang-Roberts Exemple 1

Algorithme de Chang-Roberts Exemple 2

Élection de leader dans un anneau unidirectionnel Algorithme de Chang-Roberts

Complexité

- En nombre de messages
 - Au mieux 2n messages
 - Si le 1^{er} nœud à se déclarer candidat est le nœud de plus grand ID, on peut avoir seulement n messages *Elec* et n messages *Lead*
 - Dans le pire cas
 - 1+2+...+n messages Elec et n messages Lead
 - O(n²)

Élection de leader dans un anneau unidirectionnel anonyme Algorithme d'Itai-Rodeh

Hypothèses

- Nœuds n'ont plus un identifiant unique
- Nœuds connaissent le nombre total de nœuds n
- Chaque nœud connaît son voisin
- Communications FIFO
- Algorithme probabiliste

Variables locales

- Etat : actif / inactif
- Phase # fonctionnement de l'algorithme en phase
- Succ : successeur du nœud dans l'anneau

Élection de leader dans un anneau unidirectionnel anonyme Algorithme d'Itai-Rodeh

- Pour chaque nœud
 - 1. Etat := actif
 - 2. Phase := 1
 - 3. Tirer un identifiant id aléatoirement dans [1 ; k] (k > n)
 - 4. Envoyer (id, Phase, 1, vrai) à Succ # (ID, Num phase, Nb sauts traversés, Leader unique)
 - 5. Tant que pas de leader
 - À la réception de (#id,#phase,#saut,unique)
 - Si Etat = inactif # le nœud n'avait pas démarré l'algo, il ne se porte pas leader car un autre nœud l'a fait pour lui
 - Envoyer (#id,#phase,#saut+1,unique) à Succ
 - Sinon # le nœud est actif
 - Si #saut = n # nœud initiateur du message reçu
 - Si unique = vrai
 - Nœud élu
 - Informer les nœuds de l'anneau
 - Sinon
 - Phase := Phase + 1
 - Tirer un id aléatoirement dans [1 ; k] (k > n)
 - Envoyer (id,Phase,1,vrai) à Succ
 - Sinon # saut <> n
 - Si (id,Phase)=(#id,#phase) # un même identifiant a été trouvé lors de la même phase
 - Envoyer (id,phase,#saut+1,faux) à Succ
 - Si (#id,#phase) > (id,Phase) # un nœud a tiré un ID plus grand que moi
 - Envoyer (#id,#phase,#saut+1,unique) à Succ

Algorithme d'Itai-Rodeh Exemple 1

Algorithme d'Itai-Rodeh Exemple 2