

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

Институт информационных систем и технологий

Кафедра информационных систем

КУРСОВОЙ ПРОЕКТ

по дисциплине «Проектирование информационных систем» на тему: «Проектирование мобильного приложения для сбора, анализа статистической информации на основе метрик API Instagram»

Направление 09.03.02 Информационные системы и технологии

Руководитель , ст. преподаватель	Овчинников П.Е.
	«» 2018 г.
Студент, группа ИДБ–15-13	Коссов Г.О.
	«»2018 г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)	3
ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)	7
ГЛАВА 3. ДИАГРАММЫ КЛАССОВ	10
ЗАКЛЮЧЕНИЕ	13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	14

ВВЕДЕНИЕ

Для успешного развития собственного аккаунта в соцсетях, либо для анализа аккаунта другого человека (как правило, с целью покупки рекламы) неизбежно приходится пользоваться аналитическими сервисами, которые способны показывать статистику пользователя. Разрабатываемое мобильное приложение призвано решить эту проблему, упростив и ускорив процесс по сравнению с десктопными аналогами.

Приложение предназначено для:

- представления базовых метрик Instagram в наглядном виде;
- получения скрытых метрик с помощью АРІ;
- получения подсчитанных метрик (оригинальная разработка).

Объектом исследования является проектирование мобильного приложения для сбора, анализа статистической информации на основе метрик API Instagram.

Исследования выполняются путём построения следующих моделей:

- Функциональной (IDEF0).
- Потоков данных (DFD).
- Диаграмма классов (UML).

Моделирование представляет собой процесс визуализации всего процесса работы приложения в деталях. Данный процесс способен помочь понять устройство разработанного продукта.

Функциональная модель разрабатывается с точки зрения владельца продукта – правообладателя.

ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)

Функциональная модель — методология функционального моделирования и графическая нотация, предназначенная для формализации и описания бизнес-процессов [1]. Модель описывает процессы с требуемой точностью.

В IDEF0 все данные делятся на 4 типа:

- внешние входные информационные потоки;
- внешние выходные информационные потоки;
- внешние управляющие потоки;
- механизмы.

Внешним входным информационным потоком в процессе работы мобильного приложения для анализа статистики Instagram является:

имя профиля.

Выходным информационным потоком процесса является:

• просмотренные данные.

Основными механизмами процесса являются:

- пользователь;
- программа.

На рисунках 1-4 представлены диаграммы IDEF0, где 3 блока A1, A2, A3 декомпозируются.

Рис. 1. Блок «6 вопросов»

Рис. 2. Декомпозиция А0

Рис. 3. Декомпозиция А1

Рис. 4. Декомпозиция А2

ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)

Целью диаграммы DFD является демонстрация, как каждый процесс преобразует свои входные данные в выходные, а также позволяет выявить отношения между процессами [2].

Наименования объектов собственной базы данных информационной системы приводятся в формате «БД.Таблица».

В процессе декомпозиции функциональных блоков было выделено 4 диаграммы потоков данных (рис. 5 - 8).

Рис. 5. Декомпозиция А3

Рис. 6. Диаграмма потоков данных «Ввод имени профиля»

Рис. 7. Диаграмма потоков данных «Сбор данных профиля»

Рис. 8. Диаграмма потоков данных «Обработка метрик

Таблица 1.

Расчёт эффекта от проекта

- t(OЖ) Приложения = 10 мин; t(OЖ) ПК = 30 мин
- Маркетолог имеет 20 желаний/сутки
- В приложении: 20x10=200 мин/сут; 200x20 = 4000 мин = 66,6 ч (за рассм. период 20 дней)
- Для ПК: 20x30 = 600 мин/сут; 600x20 = 12000 мин = 200 ч
- Пусть в сутки пользуются 5 пользователей. Для прил.: 5x20x66,6 = 6660 ч/час; Для ПК: 5x20x20 000 ч/час
- 20 000 6660 = 13 340 ч/час/мес выгоды

ГЛАВА 3. ДИАГРАММЫ КЛАССОВ

Диаграмма классов (англ. Static Structure diagram) - структурная диагра мма языка моделирования UML, демонстрирующая общую структуру иерархии классов системы, их коопераций, атрибутов(полей), методов, интерфейсов и взаимосвязей между ними. Широко применяется не только для документирования и визуализации, но также для конструирования посредством прямого или обратного проектирования [3].

В курсовой работе были рассмотрены 3 диаграммы классов: для потоков (рис. 7), для модулей (рис. 8) и для ролей (рис. 9).

Рис. 7. Диаграмма классов для потоков

Рис. 8. Диаграмма классов для модулей

Рис. 9. Диаграмма классов для ролей

ЗАКЛЮЧЕНИЕ

В ходе выполнения курсового проекта были созданы модели, визуализирующие работы мобильного приложения для анализа статистики Instagram. Была составлена диаграмма IDEF0, которая имела 3 уровня декомпозиции, и 4 диаграммы потоков данных DFD.

Также в результате подсчетов было выяснено, что при условных 100 пользователях в месяц приложение обходит ПК-аналог по эффективности на 13 340 ч/час/мес.

Сформированные модели будут использованы в выпускной квалификационной работе «Разработка мобильного приложения для сбора, анализа статистической информации на основе метрик API Instagram».

СПИСОК ЛИТЕРАТУРЫ

- 1) IDEF0 [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki/IDEF0.
 - 2) DFD [Электронный ресурс]. URL: https://e-educ.ru/bd14.html.
- 3) UML [Электронный ресурс]. URL: https://ru.wikipedia.org/wiki Диаграмма_классов