Self Decoupling Antenna

Group Member name:

Adarsh Manjunath Naik- 221010202 Arpit Kumar Sinha - 221010211 Dhyanendra Tripathi - 221010218

Supervisor name: Dr. Shrivishal Tripathi

Date: 19/11/2024

Dr. Shyama Prasad Mukherjee International Institute of Information Technology, Naya Raipur

CONTENT

- Introduction
- Literature Survey
- Proposed Structure
- Design Methodology
- Results
- Applications
- Challenges and Future Work
- References

INTRODUCTION

Background: Wireless communication technologies, particularly 5G, require compact, efficient, and highly isolated MIMO antennas for smartphones. Antennas must offer high performance in limited space while avoiding additional decoupling structures.

Objective: To design and implement a self-decoupling tri-port antenna system leveraging shared radiator principles and mode cancellation mechanisms.

LITERATURE SURVEY

Paper Reference: Bixia Yang, Yunxue Xu, Jiahao Tong, Yuhao Zhang, Yuwen Feng, and Yafei Hu, "Tri-Port Antenna With Shared Radiator and Self-Decoupling Characteristic for 5G Smartphone Application", 2022

Key Contributions:

- A novel self-decoupling tri-port antenna design based on shared radiators and mode cancellation.
- High isolation among ports (>11 dB) and low envelope correlation coefficients (ECCs < 0.14).
- Integration into a compact 12×12 MIMO system with superior channel capacity (~59 bps/Hz at 20 dB SNR).

PROPOSED STRUCTURE

Structure:

- Shared radiator etched on the smartphone frame's inner surface.
- Two U-shaped bent radiators with specific arm lengths, feeding ports symmetrically placed.
- Incorporation of π -type impedance matching networks for optimized performance.

Principles:

- Mode Cancellation: Leveraging differential (DM) and common modes (CM) for decoupling symmetrical ports.
- Active Reflection Coefficient Theory: Explains isolation between asymmetric ports using scattering matrix principles.

DESIGN METHODOLOGY

- Initial Design: Define radiator geometry on FR4 substrate for a single triport network.
- Matching Networks: Add π -type components for each port.
- Simulation: Analyze S-parameters and total efficiency using CST Microwave Studio.
- Designing 12x12 MIMO Design: Mirror the configuration along x- and y-axes to create a 12-port design.
- Final Simulation: Analyze S-parameters and total efficiency using CST Microwave Studio for the 12x12 radiator.

CST Schematic Design

Proposed Tri-port antenna

CST Schematic Design

Antenna patch with π -type components

S-Parameters

S-Parameters (Smith Chart)

Efficiency

Surface Current (Port 2 excited)

Surface Current (Port 3 excited)

CST Schematic Design

Proposed 12x12 MIMO antenna system

S-parameters of the proposed 12×12 MIMO antenna system.

S-parameters of the proposed 12×12 MIMO antenna system.

S-parameters of the proposed 12×12 MIMO antenna system.

Total efficiency of the proposed 12×12 MIMO antenna system.

2D/3D Results

E-field (at f=3.4 GHz)

2D/3D Results

H-field (at f=3.4 GHz)

2D/3D Results

Surface Currents (at f=3.4 GHz)

APPLICATIONS

• Use Cases:

- 5G Smartphones: Compact design compatible with narrow bezels and large screens.
- IoT Devices: Suitable for highly integrated communication modules.
- MIMO Systems: Improves spectral efficiency with minimal space requirements.

Advantages:

- Self-decoupling eliminates external decoupling structures.
- High channel capacity supports future wireless standards.

CHALLENGES AND FUTURE WORK

• Challenges:

- Aligning simulated and measured results.
- Managing fabrication inaccuracies (e.g., mismatched dimensions).
- Reducing lumped element and coaxial cable losses.

• Future Directions:

- Higher Integration: Expand to more ports for larger MIMO systems.
- Material Advancements: Explore flexible substrates and metamaterials.
- Broadband Design: Extend bandwidth for multi-band applications.

REFERENCES

Main Paper –

• Bixia Yang, Yunxue Xu, Jiahao Tong, Yuhao Zhang, Yuwen Feng, and Yafei Hu, "Tri-Port Antenna With Shared Radiator and Self-Decoupling Characteristic for 5G Smartphone Application", 2022 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION.

Other References -

- H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, "Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems," IEEE Trans. Commun., vol. 61, no. 4, pp. 1436-1449, Apr. 2013.
- X. Gao, O. Edfors, F. Rusek, and F. Tufvesson, "Massive MIMOPerformance Evaluation Based on Measured Propagation Data," IEEE Trans. Wireless Commun., vol. 14, no. 7, pp. 3899-3911, Jul. 2015.

Thank You

Dr. Shyama Prasad Mukherjee International Institute of Information Technology, Naya Raipur