

Escuela Rafael Díaz Serdán

Matemáticas 3

JC Melchor Pinto

Última revisión del documento: 7 de junio de 2023

3° de Secundaria

Unidad 3 2022-2023

Utiliza el teorema de Pitágoras para obtener los lados de un trángulo rectángulo

Nombre del alumno: _______Aprendizajes: ______

Formula, justifica y usa el teorema de Pitágoras.

Fec	ha:
-----	-----

	Puntuación:										
Pregunta	1	2	3	4	5	6	7	8	9	10	Total
Puntos	10	10	10	10	10	10	10	10	10	10	100
Obtenidos											

Teorema de Pitágoras

El **teorema de Pitágoras** es una relación en geometría euclidiana entre los tres lados de un triángulo rectángulo. Afirma que el área del cuadrado cuyo lado es la hipotenusa c (el lado opuesto al ángulo recto) es igual a la suma de las áreas de los cuadrados cuyos lados son los catetos a y b (los otros dos lados que no son la hipotenusa), como se muestra a continuación:

$$a^2 + b^2 = c^2$$

Vocabulario

 ${f Cateto}
ightarrow {f lado}$ que junto con otro forma el ángulo rect
o de un triángulo rectángulo.

Triángulo rectángulo \rightarrow triángulo que tiene un ángulo recto.

 $\mathbf{Hipotenusa} \to \mathbf{lado}$ opuesto al ángulo recto en un triángulo rectángulo.

La Hipotenusa

La **hipotenusa** es el lado más largo y está enfrente del ángulo recto (ver Figura 2). Los dos catetos son los lados más cortos que forman el ángulo recto:

Figura 2

Ejemplo 1

Encuentra el valor de x en el triángulo de la figura 29.

Figura 3

Solución:

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 4). Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $x^2 + 9^2 = 15^2$ Sustituye las longitudes

 $x^2 + 81 = 225$ Evalua los cuadrados conocidos

 $x^2 = 225 - 81$ Despejando x

 $x^2 = 144$ Restando

x=12 Calculando la raíz en ambos lados de la ecuación

Ejercicio 1 10 puntos

2 de 10

Encuentra el valor de x en el triángulo de la figura 5.

Figura 5

Ejercicio 2 10 puntos

Encuentra el valor de x en el triángulo de la figura 7.

Figura 7

Ejemplo 2

Encuentra el valor de x en el triángulo de la figura 9.

Figura 9

Solución:

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

= 8 donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 10). Observa que a y b pueden intercambiarse, pues son catetos.

Figura 10

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $6^2 + 8^2 = x^2$ Sustituye las longitudes

 $36 + 64 = x^2$ Evalua los cuadrados conocidos

 $100 = x^2$ Sumando

10=x Calculando la raíz en ambos lados de la ecuación

Ejercicio 4 10 puntos Encuentra el valor de x en el triángulo de la figura 13. 5 12Figura 13

Ejemplo 3

Encuentra el valor de x en el triángulo de la figura 15.

Figura 15

Solución:

Figura 16

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 16). Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $7^2 + 9^2 = x^2$ Sustituye las longitudes

 $49 + 81 = x^2$ Evalua los cuadrados conocidos

 $130 = x^2$ Sumando

 $\sqrt{130} = x$ Calculando la raíz en ambos lados de la ecuación

Ejercicio 5 10 puntos

Encuentra el valor de x en el triángulo de la figura 17.

Figura 17

Ejercicio 6 Encuentra el valor de x en el triángulo de la figura 19. 4 Figura 19

Ejemplo 4

Encuentra el valor de x en el triángulo de la figura 23.

Figura 23

Solución:

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 24). Observa que a y b pueden intercambiarse, pues son catetos.

Figura 24

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $4^2 + 1^2 = x^2$ Sustituye las longitudes

 $16 + 1 = x^2$ Evalua los cuadrados conocidos

 $17 = x^2$ Sumando

 $\sqrt{17} = x$ Calculando la raíz en ambos lados de la ecuación

Ejercicio 8 10 puntos

Encuentra el valor de x en el triángulo de la figura 25.

Figura 25

1 18414 2

Ejemplo 5

Encuentra el valor de x en el triángulo de la figura 27.

Figura 27

Solución:

Figura 28

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 28). Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $5^2 + x^2 = 6^2$ Sustituye las longitudes

 $25 + x^2 = 36$ Evalua los cuadrados conocidos

 $x^2 = 36 - 25$ Despejando x

 $x^2 = 11$ Restando

 $x = \sqrt{11}$ Calculando la raíz en ambos lados de la ecuación

Ejercicio 9 10 puntos

Encuentra el valor de x en el triángulo de la figura 29.

Figura 29

Ejemplo 6

Encuentra el valor de x en el triángulo de la figura 31.

Figura 31

Solución:

Figura 32

Tenemos un triángulo rectángulo, por lo que podemos usar el teorema de Pitágoras. La ecuación del teorema es:

$$c^2 = a^2 + b^2$$

donde a y b son las longitudes de los catetos, y c es la longitud de la hipotenusa. Etiquetemos la Figura del problema con a, b y c (ver Figura 32). Observa que a y b pueden intercambiarse, pues son catetos.

 $a^2 + b^2 = c^2$ El teorema de Pitágoras

 $7^2 + 4^2 = x^2$ Sustituye las longitudes

 $49 + 16 = x^2$ Evalua los cuadrados conocidos

 $65 = x^2$ Sumando

 $\sqrt{65} = x$ Calculando la raíz en ambos lados de la ecuación

Ejercicio 10 Encuentra el valor de x en el triángulo de la figura 33.