WO 2004/056843 PCT/GB2003/005659

<u>Claims:</u>

30

- 1. 10-Substituted-10-desmethyl macrolides.
- 2. Macrolides as claimed in claim 1 wherein the 10substituent is carbon-attached to the 10-carbon of the macrolide macrocyclic ring.
- 3. Macrolides as claimed in either of claims 1 and 2
 wherein the 10-substituent is selected from methylene, substituted methyl, CHO and COOH and esters, amides and salts thereof.
- Macrolides as claimed in claim 3 wherein the 10 substituent comprises an aryl group.
 - 5. Macrolides as claimed in claim 1 substituted in the 2-position by methyl and hydrogen or fluorine; in the 3-position by oxo or optionally substituted hydroxy; in
- the 4-position by methyl; in the 5-position by an oxygen-attached desosamine; in the 6-position by methyl and an optionally substituted hydroxyl; in the 8-position by methyl and hydrogen or fluorine; in the 9-position by oxo; in the 10-position by methylene, CHO,
- substituted methyl, or carboxy or substituted carboxy; in the 11- and 12-positions by a group forming a fused ring at the 11, 12 and optionally 10-positions; at the 12-position additionally by a methyl group; and at the 13-position by an ethyl group.
 - 6. Macrolides as claimed in claim 1 of formula II, III, IV or $\mbox{\em V}$

$$R^{11} \stackrel{\text{NMe}_2}{\longrightarrow} R^{11} \stackrel{\text{NMe}_2}{\longrightarrow$$

- (1) methyl substituted with one or more substituents selected from the group consisting of
- (i) CN,

(ii)

5 F,

(iii) CO_2R^3 wherein R^3 is selected from hydrogen, C_1 - C_3 -alkyl or aryl substituted C_1 - C_3 -alkyl, or heteroaryl substituted C_1 - C_3 -alkyl,

(iv)

- OR⁴ wherein R⁴ is selected from hydrogen, C₁-C₄-alkyl or aryl substituted C₁-C₄-alkyl, or heteroaryl substituted C₁-C₄-alkyl, heterocycloalkyl and optionally substituted cycloalkyl, C₁-C₃-alkoxy-C₁-C₃-alkoxy, C₁-C₄-alkenyl or aryl substituted C₁-C₄-alkenyl, or heteroaryl substituted C₁-C₄-alkenyl, heterocycloalkyl and optionally substituted cycloalkyl, aryl or optionally substituted aryl, heteroaryl or optionally substituted heteroaryl,
- (v) $S(0)_nR^3$ wherein n =0, 1 or 2 and R^3 is as previously defined

(vi)

25

 $NR^4C(0)R^3$ wherein R^3 and R^4 are as previously defined $(vii)NR^4C(0)NR^5R^6$ wherein R^4 is defined as defined previously, and R^5 and R^6 are independently selected from hydrogen, C_1 - C_3 -alkyl, C_1 - C_3 alkyl substituted with aryl, substituted aryl, heteroaryl, substituted heteroaryl $(viii) NR^7R^8$ wherein R^7 and R^8 are independently selected from the group consisting of

- (a) hydrogen
- 30 (b) C_1-C_{12} -alkyl, and optionally substituted C_1-C_{12} -alkyl
 - (c) $C_2 C_{12}$ -alkenyl, and optionally substituted $C_2 C_{12}$ -alkenyl
- (d) C_2 - C_{12} -alkynyl, and optionally substituted C_2 - C_{12} -alkynyl
 - (e) aryl, and optionally substituted aryl

- (f) heteroaryl, and optionally substituted heteroaryl
- (g) heterocycloalkyl, and optionally substituted heterocycloalkyl
- (h) C_1-C_{12} alkyl substituted with aryl, and optionally substituted with substituted aryl
- (i) C_1 - C_{12} alkyl substituted with heteroaryl, and optionally substituted with substituted heteroaryl
- (j) C_1 - C_{12} alkyl substituted with heterocycloalkyl, and with optionally substituted heterocycloalkyl, and
- (k) R^7 and R^8 taken together with the atom to which they 10 are attached from a 3-10- membered heterocycloalkyl ring which may contain one or more additional heteroatoms and may be substituted with one or more substituents independently selected from the group consisting of
- 15 (aa) halogen, hydroxy, C_1 - C_3 -alkoxy, alkoxy- C_1 - C_3 alkoxy, oxo, C_1 - C_3 -alkyl, aryl and optionally substituted aryl, heteroaryl and optional substituted heteroaryl
- 20 (bb) CO_2R^3 wherein R^3 is as previously defined, and C(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined,
- 25 (ix)

aryl, and optionally substituted aryl, and

- (x) heteroaryl, and optionally substituted heteroaryl,
- (2) C_2-C_{10} -alkyl,
- (3) C_2 - C_{10} -alkyl substituted with one or more 30 substituents selected from the group consisting of
 - (i) halogen,
 - (ii)

OR4 wherein R4 is as defined previously (iii) -CHO,

35 (iv)

oxo,

(v) NR^7R^8 wherein R^7 and R^8 are defined as previously (vi)

=N-O-R 4 is wherein R 3 is as previously defined (vii)-CN

5 $(viii)-S(O)_nR^3$ wherein n=0, 1 or 2 and R^3 is as previously defined

(ix)

aryl, and optionally substituted aryl

- (x) heteroaryl, and optionally substituted heteroaryl
- 10 (xi)

 $\text{C}_3\text{-C}_8\text{-cycl}'oalkyl,$ and optionally substituted $\text{C}_3\text{-C}_8\text{-cycloalkyl}$

(xii)heterocycloalkyl, and optionally substituted heterocycloalkyl

(xiii) $NR^4C(O)R^3$ where R^3 and R^4 are as previously defined (xiv) $NR^4C(O)NR^5R^6$ wherein R^4 , R^5 and R^6 are as previously defined

(xv)

- =N-NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined (xvi)=N-R⁴ wherein R⁴ is as previously defined (xvii)=N-NR⁴C(O)R³ wherein R³ and R⁴ are as previously defined, and (xviii)=N-NR⁴C(O)NR⁵R⁶ wherein R⁴, R⁵ and R⁶ are as
- 25 previously defined,
 - (4) C_2-C_{10} -alkenyl,
 - (5) C_2 - C_{10} -alkenyl substituted with one or more substituents selected from the group consisting of
 - (i) halogen,
- 30 (ii)

 OR^4 wherein R^4 is as previously defined (iii) $O-S(O)_nR^3$ where n and R^3 are as previously defined (iv)-CHO,

- (v) oxo,
- $(vi)-CO_2R^3$ where R^3 is as previously defined $(vii)-C(O)-R^4$ where R^4 is as previously defined

WO 2004/056843 PCT/GB2003/005659 110

(viii) -CN

(ix)

aryl, and optionally substituted aryl

- (x) heteroaryl, and optionally substituted heteroaryl
- 5 (xi) C_3 - C_7 -cycloalkyl
 - (xii) C_1 - C_{12} -alkyl substituted with heteroaryl (xiii) NR7R8 wherein R7 and R8 are as previously defined (xiv) $NR^4C(0)R^3$ where R^3 and R^4 are as previously defined
 - (xv) NR⁴C(O)NR⁵R⁶ where R⁴, R⁵ and R⁶ are as previously
- defined 10
 - (xvi) =N-O-R4 where R4 is as previously defined (xvii)= $N-NR^7R^8$ wherein R^7 and R^8 are as previously defined (xviii) =N-NR4 wherein R4 is as previously defined
- 15 $(xix) = N - NR^4C(0)R^3$ wherein R^3 and R^4 are as previously defined, and (xx)=N-NR⁴C(0)NR⁵R⁶ wherein R⁴, R⁵ and R⁶ are as previously defined,
- 20 (6) $C_2-C_{10}-alkynyl$
 - (7) C_2-C_{10} -alkynyl substituted with one or more substituents selected from the group consisting of
 - (i) trialkylsilyl
 - (ii)
- 25 halogen,
 - (iii) -CN
 - (iv)

OR4 where R4 is defined as previously

- (v) -CHO,
- 30 (vi)

oxo,

- (vii)-CO₂R³ where R³ is as previously defined (viii) -C(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined
- (ix) NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined 35 (x) $O-S(O)_nR^3$ where n and R^3 are as previously defined

- (xi) C₃-C₇-cycloalkyl
- (xii) C₁-C₁₂-alkyl substituted with heteroaryl
- (xiii) aryl, and optionally substituted aryl
- (xiv) heteroaryl, and optionally substituted heteroaryl
- 5 (xv) NR⁴C(O)R³ where R³ and R⁴ are as previously defined (xvi) NR⁴C(O)NR⁵R⁶ where R⁴, R⁵ and R⁶ are as previously defined
- - (8) cyclic substituents
 - (i) aryl, and optionally substituted aryl
 - (ii) heteroaryl, and optionally substituted heteroaryl
- 20 (iii) heterocycloalkyl, and optionally substituted heterocycloalkyl, and
 - (iv) C_3-C_7 -cycloalkyl, and optionally substituted C_3-C_7 -cycloalkyl, and
- (9) C₁ substituents with the exception of 10-methyl 25 derivatives which are part of the above definitions under (1)
 - (i) -CHO
 - (ii)

-CN

- 30 (iii) CO₂R³ wherein R³ is as previously defined
 (iv)
 - C(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined
 - (v) $C(S)NR^5R^6$ wherein R^5 and R^6 are as previously defined (vi)
- 35 C(NR⁴)NR⁵R⁶ wherein R⁴, N⁵ and R⁶ are as previously defined

- (vii) $CH=N-O-R^4$ wherein R^4 is as previously defined (viii) $CH=N-R^4$ is wherein R^4 is as previously defined (ix) $CH=N-NR^7R^8$ wherein R^7 and R^8 are as previously defined
- 5 (x)

CH=N-NR 4 C(O)R 3 wherein R 3 and R 4 are as previously defined, and

- (xi) CH=N-NR⁴C(O)NR⁵R⁶ wherein R⁴, R⁵ and R⁶ are as previously defined;
- 10 R1 is selected from the group consisting of
 - (1) H
 - (2) methyl
 - (3) methyl substituted with one or more substituents selected from the group consisting of
- 15 (i) F
 - (ii)

-CN

- (iii)- CO_2R^{11} where R^{11} is C_1-C_3 -alkyl or aryl substituted C_1-C_3 -alkyl, or heteroalkyl substituted C_1-C_3 -alkyl
- 20 (iv) -C(O)NR⁵R⁶ wherein R⁵ and R⁶ are defined as previously
 - (v) aryl, and optionally substituted aryl, and
 - (vi) heteroaryl, and optionally substituted heteroaryl
 - (4) $C_2-C_{10}-alkyl$
- 25 (5) substituted C_2 - C_{10} -alkyl with one or more substituents selected from the group consisting of
 - (i) halogen,
 - (ii)

OR4 where R4 is defined as previously

- 30 (iii) C_1-C_3 -alkoxy- C_1-C_3 -alkoxy
 - (iv)-CHO
 - oxo (v)
 - (vi) NR7R8 wherein R7 and R8 are as previously defined
 - (vii) $=N-O-R^4$ where R^4 is as previously defined
- 35 (viii) -CN
 - (ix) $-S(0)_nR^3$ where n = 0, 1, or 2 and R^3 is as

WO 2004/056843 PCT/GB2003/005659

previously defined

- (x) aryl, and optionally substituted aryl
- (xi) heteroaryl, and optionally substituted heteroaryl
- (xii) C_3 - C_8 -cycloalkyl, and optionally substituted C_3 - C_8 -
- 5 cycloalkyl
 - (xiii) C_1 - C_{12} -alkyl substituted with heteroaryl, and optionally substituted heteroaryl
 - (xiv) heterocycloalkyl
 - (xv) $NHC(O)R^3$ where R^3 is as previously defined
- 10 (xvi) NHC(O)NR⁵R⁶ where R⁵ and R⁶ are as previously defined .'
 - (xvii)= $N-NR^7R^8$ wherein R^7 and R^8 are as previously defined (xviii) = $N-R^4$ wherein R^4 as previously defined, and
- 15 $(xix)=N-NHC(0)R^3$ wherein R^3 is as previously defined,
 - (4) C_1 - C_{10} -alkenyl substituted with one or more substituents selected from the group consisting of
 - (i) halogen,
 - (ii)
- OR4 where R4 is as previously defined (iii)-CHO
 - (iv)

220

- $(v) -S(O)_nR^3$ where n and R^3 are as previously defined
- 25 (vi) -CN
 - (vii) $-CO_2R^3$ where R^3 is as previously defined (viii) NR^7R^8 wherein R^7 and R^8 are as previously defined
 - (ix) $=N-O-R^4$ where R^4 is as previously defined
 - (x) -C(O)-R⁴ where R⁴ is as previously defined
- 30 (xi)
 - $-C\left(O\right)NR^{5}R^{6}$ wherein R^{5} and R^{6} are as previously defined
 - (xii) aryl, and optionally substituted aryl
 - (xiii) heteroaryl, and optionally substituted heteroaryl
- 35 (xiv) C_3-C_7 -cycloalkyl
 - (xv) C₁-C₁₂-alkyl substituted with heteroaryl

(xvi) NHC(0) R^3 where R^3 is as previously defined (xvii) NHC(0) NR^5R^6 where R^5 and R^6 are as previously defined

- 5 (xviii)= $N-NR^7R^8$ wherein R^7 and R^8 are as previously defined
 - (xix) =N-R⁴ wherein R⁴ is as previously defined, (xx)=N-NHC(O)R³ wherein R³ is as previously defined, and (xxi) =N-NHC(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously
- 10 defined,
 - (5) C_2 - C_{10} -alkynyl, and
 - (6) C_2 - C_{10} -alkynyl substituted with one or more substituents selected from the group consisting of
 - (i) halogen,
- 15 (ii)

OR4 where R4 is defined as previously

(iii)-CHO

(iv)

oxo

20 (v) -CO₂R³ where R³ is as previously defined

(vi)

35

 $-\text{C}(\text{O})\,\text{NR}^5\text{R}^6$ wherein R^5 and R^6 are as previously defined

(vii) -CN

- 25 (viii) NR⁷R⁸ wherein R⁷ and R⁸ are as previously defined
 - (ix) $=N-O-R^4$ where R^4 is as previously defined
 - (x) $-S(0)_nR^3$ where n and R^3 are as previously defined
 - (xi)aryl, and optionally substituted aryl
 - (xii) heteroaryl, and optionally substituted heteroaryl
- 30 (xiii) C₃-C₇-cycloalkyl
 - (xiv) C_1-C_{12} -alkyl substituted with heteroaryl
 - (xv) NHC(O) R^3 where R^3 is as previously defined
 - (xvi) NHC(0)NR 5 R 6 where R 5 and R 6 are as previously defined

 $(xvii)=N-NR^7R^8$ wherein R^7 and R^8 are as previously defined

(xviii) =N-R⁴ wherein R⁴ is as previously defined (xix)=N-NHC(O)R³ wherein R³ is as previously defined, and (xx)=N-NHC(O)NR⁵R⁶ wherein R⁵ and R⁶ are as previously defined;

5 R^2 is selected from the group consisting of

- (1) hydrogen
- (2) OH
- (3) OR^3 where R^3 is as previously defined
- (4) $OC(0)R^3$ where R^3 is as previously defined, and
- 10 (5) O(CO)OR³ where R³ is as previously defined; and X and Y taken together are selected from the group consisting of
 - (1) 0

20

25

- (2) NOR4 wherein R4 is as defined previously
- 15 (3) N-O $C(R^9)$ (CR^{10})-O-R⁴ where R⁴ is as previously defined and
 - (i) R^9 and R^{10} are each independently defined as R^4 , or
 - (ii) R^9 and R^{10} are taken together with the atom to which they are attached form a C_3 - C_{12} cycloalkyl ring,
 - (4) NR4 wherein R4 is as previously defined, and
 - (5) $N-NR^7R^8$ wherein R^7 and R^8 are as previously defined, or one of X and Y is hydrogen and the other is selected from the group consisting of
 - (1) -OR4 wherein R4 is as previously defined, and
 - (2) $-NR^7R^8$ wherein R^7 and R^8 are as previously defined. R^P is selected from the group consisting of

(1)

30 hydrogen

(2)

R³ as previously defined

(3)

COR³ where R³ is as previously defined;

subject to the proviso that when the structure is IV, Z and M are part of a five- or six- membered ring, said

10

15

20

25

30

35

rings optionally being fully or partially unsaturated; for the six- membered ring, the bonding between Z and M is through a carbonyl group; for the five- membered ring, the bonding is directly between Z and M excluding CO; Z and M are independently selected from the group consisting of carbon, oxygen or N; and when M = N a second bridge may exist between this nitrogen and the oxygen of the 12-OH group whereby either an additional annulated oxazole or oxazine ring constitutes part of the molecule; and subject to the proviso that when the structure is $V^{'}$, Z and M are part of a five- or sixmembered ring, said rings optionally being fully saturated or fully or partially unsaturated; for the six-membered ring, the bonding between Z and M is through a carbonyl group; for the five-membered ring, the bonding is directly between Z and M excluding CO; Z and M are independently selected from the group consisting of carbon, oxygen or nitrogen; and when M = N a second bridge may exist between this nitrogen and the urethane nitrogen.

- 7. A pharmaceutical composition comprising an antibiotic 10-desmethyl macrolide as claimed in any one of claims 1 to 6 together with at least one pharmaceutical excipient.
- 8. The use of an antibiotic 10-desmethyl macrolide as claimed in any one of claims 1 to 6 for the manufacture of a medicament for use in the treatment or prevention of infection in animals.
- 9. A method of treatment of a human or animal subject to combat bacterial infection thereof, which method comprises adminsitering to said subject an antibiotic 10-desmethyl macrolide as claimed in any one of claims 1 to 6.

10. A 6-protected-hydroxy-10-acetyloxymethyl-10,11-unsaturated macrolide analog, for use as an intermediate.