Lycée Buffon TD 5
MPSI Année 2020-2021

Ensembles et applications

Exercice 1: Soit A, B et C trois ensembles. Prouver que

1.
$$A \subset B \Leftrightarrow A \cap B = A \Leftrightarrow A \cup B = B$$

- 2. $A = B \Leftrightarrow A \cap B = A \cup B$
- 3. $A \subset B \Leftrightarrow (A \cap C \subset B \cap C \text{ et } A \cup C \subset B \cup C)$
- 4. $A = B \Leftrightarrow (A \cup C = B \cup C \text{ et } A \cap C = B \cap C)$
- 5. $A \subset B \subset C \Leftrightarrow A \cup B = B \cap C$

Exercice 2:

Soit $(A_n)_{n\in\mathbb{N}}$ une suite de parties d'un même ensemble E. On définit

$$\limsup_{n \in \mathbb{N}} A_n = \bigcap_{n \in \mathbb{N}} \left(\bigcup_{k \ge n} A_k \right) \quad \text{et} \quad \liminf_{n \in \mathbb{N}} A_n = \bigcup_{n \in \mathbb{N}} \left(\bigcap_{k \ge n} A_k \right)$$

- 1. Montrer que $x \in \limsup_{n \in \mathbb{N}} A_n \Leftrightarrow \forall n \in \mathbb{N}, \exists k \geq n : x \in A_k$
- 2. Traduire de façon similaire l'appartenance à $\liminf_{n\in\mathbb{N}}A_n$. Trouver une relation entre $\limsup_{n\in\mathbb{N}}A_n$ et $\liminf_{n\in\mathbb{N}}A_n$.
- 3. Prouver que $\limsup_{n \in \mathbb{N}} \overline{A_n} = \overline{\liminf_{n \in \mathbb{N}} A_n}$ et que $\liminf_{n \in \mathbb{N}} \overline{A_n} = \overline{\limsup_{n \in \mathbb{N}} A_n}$

Exercice 3:

Soient A et B deux parties d'un ensemble E tels que $A \subset B$.

- 1. Montrer que $\{X \in \mathcal{P}(E) : B \cap X = A\} = \{A \cup Y, Y \in E \setminus B\}.$
- 2. Trouver une caractérisation similaire des partie X de E telles que $A \cup X = B$.

Exercice 4: Soient $f \in F^E$ et $g \in G^F$. Montrer que

- 1. si $g \circ f$ est injective alors f aussi.
- 2. si $g \circ f$ est surjective alors g aussi.
- 3. si $g \circ f$ est injective et si f est surjective alors g est injective
- 4. si $g \circ f$ est surjective et si g est injective alors f est surjective
- 5. On suppose que E=F=G, que $h\in E^E$ et que $h\circ g\circ f$ et $f\circ g\circ h$ sont bijectives.

Montrer que f, g et h sont bijectives.

Exercice 5: Soient E et F deux ensembles non vides et $f \in F^E$.

- 1. Prouver que si f est injective, alors $\forall (g,h) \in (E^F)^2$, $f \circ g = f \circ h \Rightarrow g = h$
- 2. Prouver que si f est surjective, alors $\forall (g,h) \in (E^F)^2$, $g \circ f = h \circ f \Rightarrow g = h$

Exercice 6: Soit $f \in F^E$.

Montrer que f est injective si et seulement si

$$\forall (A,B) \in \mathcal{P}(E)^2, f(A \cap B) = f(A) \cap f(B)$$

Exercice 7: Soit $f \in F^E$.

1

- 1. Soit $A \in \mathcal{P}(E)$. Montrer que $A \subset f^{-1}(f(A))$.
- 2. Montrer que f est injective si et seulement si

$$\forall A \in \mathcal{P}(E), \ f^{-1}(f(A)) = A$$

- 3. Soit $A \in \mathcal{P}(F)$. Montrer que $f(f^{-1}(A)) \subset A$.
- 4. Montrer que f est surjective si et seulement si

$$\forall A \in \mathcal{P}(F), \ f(f^{-1}(A)) = A$$

5. Soit $A \in \mathcal{P}(F)$. Prouver que $f(f^{-1}(A)) = f(E) \cap A$.

Exercice 8 : Soit A et B deux parties de E et

$$\Phi: \mathcal{P}(E) \longrightarrow \mathcal{P}(A) \times \mathcal{P}(B)$$
$$X \mapsto (A \cap X, B \cap X)$$

- 1. Trouver une condition nécessaire et suffisante sur A et B pour que Φ soit injective.
- 2. Trouver une condition nécessaire et suffisante sur A et B pour que Φ soit surjective.
- 3. Dans la cas où Φ est bijective, donner son inverse.