Convolutional Neural Networks Basics

Computer Vision Problems

- Image classification
- Object detection
- Neural STYLE Transfer (Repaint the content image to a style image)

Deep Learning on Large Images

- Challenges of computer vision problems: inputs can get really big
- Ex) worked on 64 x 64 x 3 images three color channels
- x has input features 12288 —> but this is a small image
- Ex) $1000 \times 1000 \times 3 = 3$ billion parameters
- Difficult to get enough data to prevent a neural network from overfitting

Edge Detection Example

- Convolution operation
- Early layers of neural network detect edges
- Later layers detect partial objects
- Even later layers complete objects
- 1. Detect vertical edges
- 2. Detect horizontal edges

Vertical Edge Detection

- 6 x 6 x 1 Gray scale image
- Construct 3 x 3 filter (kernel)
- Take 3 x 3 filter and paste it on top of the 3 x 3 region of original input image
- Take filter and shift it to the right

"convolution"

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

1	0	-1	
1	0	-1	=
1	0	-1	

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

3	O°	1	2	7	4
1	5°	8	9	3	1
2	7°	2 ⁻¹	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Add up the 9 numbers = -5

Vertical Edge Detection

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Vertical Edge Detection Example

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

1	0	-1
1	0	-1
1	0	-1

0	-30	-30	0
0	-30	-30	0
0	-30	-30	0
0	-30	-30	0

Vertical and Horizontal Edge Detection

1	0	-1
1	0	-1
1	0	-1

Vertical

1	1	1
0	0	0
-1	-1	-1

Horizontal

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
0	0	0	10	10	10
0	0	0	10	10	10
0	0	0	10	10	10

*

1	1	1	
0	0	0	
-1	-1	-1	

0	0	0	0
30	10	-10	-30
30	10	-10	-30
0	0	0	0

Different Kinds of Filters

1	0	-1
1	0	-1
1	0	-1

1	0	-1
2	0	2
1	0	-1

 3
 0
 -3

 10
 0
 -10

 3
 0
 -3

Sobel filter
Puts more weight to the central pixel
Makes it more robust

Schorr filter
For vertical edge detection
(flip 90 degrees for horizontal detection)

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

*

Don't need to pick, make it parameters Learn using back propagation Goal: learn 9 parameters

Take image, convolve with 3 x 3 filter

-> good edge detector

Underlying convolution operation

Padding

- Modification to the basic convolutional operation
- $n \times n \times f \times f = (n-f+1) \times (n-f+1)$
- Dimension of the output shrinks & counting less information from edges of the image (pixels in corners less in output)
- Solution: before applying convolutional operation, pad the image with an additional one border
- Ex) Pad with zeros, one pixel all around. P = padding = 1
- $(n + 2p f + 1) \times (n + 2p f + 1)$

Valid and Same Convolutions

- "Valid": no padding. $n \times n \times f \times f = (n-f+1) \times (n-f+1)$
- "same": pad so that output size is the same as the input size.
 - $(n+2p-f+1) \times (n+2p-f+1)$
 - P = (f-1)/2
 - F is usually odd: it has central pixel, symmetric padding

Strided Convolutions

2 3	3 4	7 4	4	6	2	9	2	3	7 3	4 4	6 4	2	9
6 ¹	6 º	9 ²	8	7	4	3	6	6	9 1	8 ⁰	7 ²	4	3
3 -1	4 ⁰	8 3	3	8	9	7	3	4	8 -1	3 ⁰	8 3	9	7
7	8	3	6	6	3	4	7	8	3	6	6	3	4
4	2	1	8	3	4	6	4	2	1	8	3	4	6
3	2	4	1	9	8	3	3	2	4	1	9	8	3
0	1	3	9	2	1	4	0	1	3	9	2	1	4

3	4	4		9
1	0	2	=	6
-1	0	3		4

Stride = 2

Output size

If (n + 2p - f)/s + 1 not an integer, round it down.

The filter must lie entirely within the image (+padding)

 $n \times n \times f \times f = (n + 2p - f)/s + 1 + (n + 2p - f)/s + 1$ Image Filter Padding Stride