USULAN PENELITIAN

PENENTUAN RUTE TERPENDEK ANGKUTAN TERSIER DARI KANTOR POS CABANG MAGETAN 63300 MENUJU KANTOR POS KECAMATAN DI KABUPATEN MAGETAN MENGGUNAKAN METODE ANT COLONY OPTIMIZATION

Usulan Penelitian Diajukan Sebagai Salah Satu Syarat Untuk Menyusun Tugas Akhir S1 Program Studi Manajemen Transportasi

Oleh:

Dimas Rizaldi 13119009

PROGRAM STUDI MANAJEMEN TRANSPORTASI
FAKULTAS LOGISTIK TEKNOLOGI DAN BISNIS
UNIVESITAS LOGISTIK DAN BISNIS INTERNASIONAL
BANDUNG

2024

HALAMAN PERNYATAAN

Yang bertanda tangan di bawah ini:

Nama : Nama Lengkap Mahasiswa

Tempat, Tanggal Lahir : Tempat, 00 Bulan 0000

Alamat : Dsn. Xxxx Ds. Xxxxx RT 02 RW 02 Kec.

Xxxx Kab. Xxxxx

NIM : xxxxxxxxxxx

Program Studi / Angkatan : Informatika / 2022

Menyatakan dengan sesungguhnya bahwa:

- Skripsi yang berjudul "TEMPLATE SKRIPSI DENGAN
 "LIBREOFFICE" UNTUK MAHASISWA UNIVERSITAS
 MUHAMMADIYAH SIDOARJO" ini benar-benar hasil karya saya
 sendiri (tidak didasarkan dari data palsu / plagiasi / jiplakan)
- 2. Apabila kemudian hari terbukti bahwa pernyataan saya tidak benar, saya bersedia menanggung resiko sesuai aturan yang berlaku.

Demikian pernyataan ini saya buat dengan sebenar-benarnya.

Sidoarjo, 00 Bulan 0000 Yang Menyatakan

(+ materai 10.000) Nama Lengkap Mahasiswa

HALAMAN PENGESAHAN

TEMPLATE SKRIPSI DENGAN "LIBREOFFICE" UNTUK MAHASISWA UNIVERSITAS MUHAMMADIYAH SIDOARJO

Skripsi disusun untuk salah satu syarat memperoleh gelar Sarjana Komputer (S.Kom)

Di

Universitas Muhammadiyah Sidoarjo

Oleh:

Nama Lengkap Mahasiswa

NIM: xxxxxxxxxxx

Disetujui oleh:

1. xxx, MT

NIK: xxxxxx (Ketua Penguji)

2. xxx, MT

NIK: xxxxxx (Penguji I)

3. xxx, MT

NIK: xxxxxx (Penguji II)

Disahkan oleh:

Dekan Fakultas Sains dan Teknologi Universitas Muhammadiyah Sidoarjo

Hindarto, S.Kom., M.MT

NIK: 201562

HALAMAN PERSETUJUAN

TEMPLATE SKRIPSI DENGAN "LIBREOFFICE" UNTUK MAHASISWA UNIVERSITAS MUHAMMADIYAH SIDOARJO

Penelitian Untuk S-1
Prodi Informatika

Diajukan oleh:

Nama Lengkap Mahasiswa

xxxxxxxxxx

Disetujui Oleh:

(Nama Dosen Pembimbing)

NIK. xxxx

Mengetahui, Ketua Program Studi Informatika

(Nama Ketua, S.kom., M.Kom)
NIK. xxxx

KATA PENGANTAR

Puji dan syukur penulis panjatkan kehadirat Allah SWT karena atas berkat dan rahmat-Nya dapat menyelesaikan skripsi yang berjudul "TEMPLATE SKRIPSI DENGAN "LIBREOFFICE" UNTUK MAHASISWA UNIVERSITAS MUHAMMADIYAH SIDOARJO", sebagai persyaratan Akademis untuk menyelesaikan program Strata 1 pada Jurusan Informatika Universitas Muhammadiyah Sidoarjo.

Penyusunan skripsi ini merupakan salah satu persyaratan yang harus ditempuh mahasiswa jurusan Informatika Universitas Muhammadiyah Sidoarjo untuk memperoleh gelar Sarjana Teknik. Pada kesempatan ini tidak lupa pula penulis menyampaikan terima kasih kepada:

- Dr. Hidayatulloh, M.Si, Selaku Rektor Universitas Muhammadiyah Sidoarjo.
- II) Dr. Hindarto, S.Kom., M.T., selaku Dekan Fakultas Sains dan Teknologi Universitas Muhammadiyah Sidoarjo.
- III) Ade Eviyanti, S.Kom., M.Kom selaku Ketua Program Studi Informatika Universitas Muhammadiyah Sidoarjo.
- IV) Arif Senja Fitrani, S.Kom., M.Kom. Selaku Kepala Program Studi Informatika Universitas Muhammadiyah Sidoarjo.
- V) Mochamad Alfan Rosid, S.Kom., M.kom., selaku pembimbing proposal dan skripsi.
- VI) Bapak/Ibu dosen yang telah membimbing dan memberikan ilmu dan nasehat selama perkuliahan.
- VII) Teman-teman Program Studi Informatika Universitas Muhammadiyah Sidoarjo angkatan 2018 yang telah memberikan kesan selama perkuliahan.

VIII) Kedua orang tua penulis yang sudah mendukung dan memberikan semangat selama penyusunan skripsi ini, dan untuk semua keluarga yang telah mendoakan untuk kelancaran penyusunan skripsi ini.

Penulis juga menyadari bahwa skripsi ini masih belum sempurna, sehingga kritik dan saran sangat diharapkan untuk pengembangan selanjutnya bagi penulis ataupun pihak yang berkepentingan. Penulis berharap agar skripsi ini dapat berguna bagi pembaca pada umumnya dan penulis pada khususnya.

Sidoarjo, 00 Bulan 0000

Nama Lengkap Mahasiswa

MOTTO

"Sebelum terlambat"

Hari kemarin tak bisa terulang, hari ini manfaatkan dengan sebaiknya dan hari esok tak seorang pun tahu. Betapa berharganya waktu. Siapkanlah sebelum terlambat.

DAFTAR ISI

HALAMAN PERNYATAAN	ii
HALAMAN PENGESAHAN	iii
HALAMAN PERSETUJUAN	iv
KATA PENGANTAR	V
MOTTO	vii
DAFTAR ISI	viii
DAFTAR GAMBAR	X
DAFTAR TABEL	xi
DAFTAR Lampiran	xii
BAB I PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Rumusan Masalah	4
1.3. Tujuan Penelitian	4
1.4. Batasan Masalah	5
1.5. Manfaat Penelitian	5
1.6. Sistematika Penulisan	5
BAB II TINJAUAN PUSTAKA	7
2.1. Manajemen Distribusi	7
2.2. Rute	8
2.3. Rute Optimal	8
2.4. Angkutan	9
2.4.1. Angkutan Darat	9
2.4.2. Angkutan Laut	10
2.4.3. Angkutan Kereta Api	10
2.5. Penentuan Rute Terpendek	11
2.6. Algoritma Rute Terpendek	11
2.7. Ant Colony Optimization (ACO)	12
2.7.1. Prinsip Dasar	13
2.7.2. Persyaratan	14

2.7.3. Langkah-Langkah Metode ACO	14
2.7.4. Penelitian Terdahulu	17
BAB III METODOLOGI PENELITIAN	28
3.1. Kerangka penelitian	28
3.2. Langkah-langkah penelitian	28
3.3. Studi lapangan	30
3.4. Studi pustaka	30
3.5. Identifikasi masalah	30
3.6. Pengumpulan data	31
3.6.1. Data primer	31
3.6.2. data sekunder	32
3.7. Pengolahan data	33
3.8. Analisis data	33
3.9. Kesimpulan	33
Daftar Pustaka	34

DAFTAR GAMBAR

Gambar 2.1: Contoh Gambar Satu	6
Gambar 3.1: Contoh Gambar Dua	8

DAFTAR TABEL

Tabel 3.1: Integer sodales tincidunt tristique	27

DAFTAR LAMPIRAN

Listing 4.1: Donec auctor molestie sem	ç
Listing 4.2: Fusce placerat mauris enim	10

BAB I

PENDAHULUAN

1.1. Latar Belakang

Transportasi merupakan bagian yang tidak terpisahkan dari semua sektor industri. Hal itu dikarenakan transportasi mendukung proses idstribusi dan logistik. Transportasi selalu memakan biaya, dan oleh karena itu mempengaruhi biaya produksi dan distribusi hingga 10-20% dari total biaya suatu produk. (Maryati & Wibowo, 2012) Transportasi dan distribusi merupakan dua komponen yang mempengaruhi keunggulan kompetitif suatu perusahaan karena penurunan biayatransportasi dapat meningkatkan keuntungan perusahaan secara tidak langsung. Salah satu cara untuk menurunkan biaya transportasi adalah dengan mengefisienkan sistem distribusi dan penggunaan jenis transportasi yang ada. (Noor Rahmah & Kusuma Ningrat, 2023)

Kegiatan transportasi dan logistik merupakan tulang punggung pertumbuhan perekonomian dan perkembangan teknologi di sebuah negara. Dengan adanya kegiatan perpindahan barang dari satu tempat ke tempat yang lain, akan memberikan keuntungan bagi pihak yang membutuhkan, mengantar dan menyediakan barang tersebut. Di berbagai negara, banyak perusahaan swasta maupun dikelola oleh pemerintah yang bergerak di bidang transportasi dan logistik dengan melayani permintaan pengiriman barang ke berbagai penjuru dunia menggunakan moda darat, laut dan udara. Kegiatan pengiriman barang ini sangat bergantung pada proses distribusi awal setelah konsumen melakukan permintaan pengiriman barang kepada perusahaan.

PT. Pos Indonesia (Persero) adalah salah satu perusahaan milik negara yang bergerak di bidang pengiriman barang. Saat ini, PT. Pos Indonesia (Persero) memiliki cakupan wilayah pengiriman barang maupun dokumen terluas di Indonesia sendiri. Untuk mendukung kegiatan pengiriman barang yang dilaksanakan PT. Pos Indonesia (Persero), dibuat SOP atau peraturan yang diterapkan di seluruh kantor pos cabang dan regional agar proses awal saat

pendistribusain barang konsumen tidak mengalami hambatan yang dapat timbul akibat pekerjaan yang dilakukan secara asal-asalan.

Salah satu perwakilan PT. Pos Indonesia (Persero) dalam mendukung kegiatan pengiriman barang adalah Kantor Pos Cabang Magetan 63300 Divisi Regional V Surabaya yang berada di Kabupaten Magetan, Jawa Timur. Kantor Pos Magetan 63300 membawahi 16 Kantor Pos Kecamatan.

Pada tahun 2023, Kantor Pos Magetan telah mengirim barang dan dokumen sejumlah 119.590 resi dengan total biaya Rp. 3.645.467.114 serta total berat 4.516.108 Kg. Sedangkan pada tahun 2024 sendiri (terhitung 1 Januari 2024 s/d 31 Mei 2024), Kantor Pos Magetan telah mengirim sebanyak 76.108 resi dengan total biaya sebanyak 2.061.338.820 dan total bobot mencapai 1.380.726 Kg. Salah satu proses yang mendukung pengiriman di Kantor Pos Magetan adalah penjemputan barang oleh 2 unit angkutan tersier di 13 Kantor Pos Kecamatan yang dalam prosesnya, dibagi menjadi 2 trayek, yaitu trayek utara dengan 8 Kantor Pos Kecamatan dan trayek selatan dengan 6 Kantor Pos Kecamatan.

Rute yang digunakan 2 unit angkutan tersier milik Kantor Pos Magetan sendiri sudah ditetapkan sejak tahun 2019 dan dinilai oleh perusahaan sudah optimal.

Angkutan tersier adalah angkutan yang diperuntukan untuk jaringan kantor pos dengan kantor cabang yang di bawahnya. (Purnomo, Wahyono, & Anggahandika, 2022) Namun, dalam penetapan rute penjemputan oleh angkutan tersier, Kantor Pos Magetan masih berdasarkan saran karyawan dan sopir dari angkutan tersier tersebut. Sehingga Kantor Pos Magetan, tidak mengetahui apakah rute yang disarankan karyawan tersebut sudah optimal atau belum.

Dalam pelaksanaan penjemputan barang oleh angkutan tersier di Kantor Pos Magetan, sering terjadi keterlambatan angkutan tersier yang membawa kembali barang dari Kantor Pos Kecamatan menuju Kantor Cabang sehingga mengakibatkan proses penyortiran serta pengiriman menuju Kantor Pos Cabang Utama Madiun 63100 terlambat. Kantor Pos Cabang Magetan sudah membuat

peraturan terkait batas durasi penjemputan adalah 2 jam dengan jam berangkat pada pukul 11:00 WIB.

Tabel I.1: Data keterlambatan angkutan tersier Kantor Pos Magetan

	TRAYEK UTARA						
No	Tanggal	Waktu berangkat	Waktu tiba	Terlambat			
1	3	12:00	14:15	1 jam 15 menit			
2 5 12:30 15:45		15:45	2 jam 45 menit				
3	6	13:00	16:00	3 jam			
4	18	12:00	15:00	2 jam			

Sumber: supervisor. Operasional KC Magetan 63300

Tabel I.2: Data keterlambatan angkutan tersier Kantor Pos Magetan

	TRAYEK SELATAN						
No	Tanggal	Waktu berangkat	Waktu tiba	Terlambat			
1	1	12:30	16:30	3 jam 30 menit			
2	6	16:00	3 jam				
3	3 10 11:30 13:45		45 menit				
4 12 12:15 15:20		2 jam 20 menit					
5 22 13:00 10		16:00	3 jam				
6 23 12:00		14:00	1 jam				
7	30	12:14	14:30	1 jam 30 menit			

Sumber: supervisor. Operasional KC Magetan 63300

Menindaklanjuti kejadian tersebut, Kantor Pos Cabang Utama Madiun pernah memberikan srat teguran sekali kepada bagian operasional Kantor Pos Cabang Magetan akibat keterlambatan yang terjadi berulang tersebut, karena pengiriman dari KCU Madiun 63100 menuju Kantor Pos Regional V Surabaya juga ikut terlambat.

Penelitian yang dilakukan oleh Puji Wianto (2023) membahas rute terpendek dalam penjemputan barang Kantor Pos Blitar menggunakan metode *Clark and Wright Saving* namun, penelitian mereka tidak membahas penghematan waktu setelah menggunakan metode *Clark and Wright Saving*.

Berdasarkan penelitian yang telah dilakukan sebelumnya, penulis akan membahas pemilihan rute terpendek menggunakan metode *Ant Colony Optimization* untuk memecahkan masalah keterlambatan penjemputan barang.

1.2. Rumusan Masalah

Berdasarkan latar belakang masalah yang telah diuraikan pada subbab sebelumnya, maka rumusan masalah penelitian ini adalah sebagai berikut :

- 1. Bagaimana cara menentukan rute terpendek yang dapat digunakan oleh angkutan tersier guna menghemat waktu?
- 2. Berapa penghematan waktu yang diperoleh setelah menggunakan metode *Ant Colony Optimization*.

1.3. Tujuan Penelitian

Berdasarkan rumusan masalah di atas maka, didapat tujuan penelitian sebagai berikut:

- 1. Untuk mencari rute terpendek agar bisa digunakan oleh angkutan tersier guna memangkas waktu tempuh dan menghemat biaya.
- 2. Untuk mengetahui penghematan waktu yang diperoleh setelah menerapkan metode *Ant Colony Optimization*.

1.4. Batasan Masalah

- 1. Data yang digunakan data keberangkatan dan kedatangan angkutan tersier, data jumlah kantong, dan data berat total saat penjemputan oleh angkutan tersier Kantor Pos Cabang Magetan 63300.
- 2. Data yang digunakan terbatas pada jangka waktu tahun 2023 dan 2024.

1.5. Manfaat Penelitian

1. Bagi Perusahaan

Penelitian ini diharapkan dapat memberi informasi dan masukan kepada perusahaan dalam penetapan rute kendaraan.

2. Bagi Pembaca

Para akademisi dapat menggunakan penelitian ini sebagai bahan rujuan maupun sekedar referensi untuk melakukan sebuah proyek atau penelitian selanjutnya.

3. Bagi Penulis

Penulis mendapat wawasan dan informasi baru berkat penelitian ini terkait pentingnya pemilihan rute agar dapat menghemat biaya operasional dan memangkas waktu tempuh kendaraan.

1.6. Sistematika Penulisan

1. BAB I PENDAHULUAN

Bab I menjelaskan tentang latar belakang penelitian, rumusan masalah, manfaat penelitian, batasan penelitian, dan sistematika penulisan penelitian.

2. BAB II LANDASAN TEORI

Bab II menguraikan studi literatur yang digunakan sebagai dalam memecahkan masalah yang diangkat di dalam penelitian.

3. BAB III METODE PENELITIAN

Pada bab ini, dijelaskan terkait langkah-langkah metode yang digunakan dalam penelitian untuk memecahkan masalah yang diangkat.

4. BAB IV PENGUMPULAN DAN PENGOLAHAN DATA

Universitas Logistik dan Bisnis Internasional

Bab ini menjelaskan tentang hasil pengumpulan data dan bagaimana data tersebut diolah dalam memecahkan masalah guna menjawab tujuan penelitian.

5. BAB V ANALISIS

Bab V ini menguraikan hasil analisa berdasarkan pengolahan data yang sudah dilakukan untuk menjawab rumusan masalah.

6. BAB VI PENUTUP

Bab VI ini menjelaskan kesimpulan dari hasil penelitian dalam menjawab tujuan serta berisi saran bagi penelitian berikutnya.

7. DAFTAR PUSTAKA

Bagian daftar pustaka berisikan semua referensi yang digunakan dalam menyusun penelitian ini.

8. LAMPIRAN

Bagian ini menyajikan informasi tambahan yang sekiranya berguna untuk menambah atau memperjelas informasi terkait masalah yang diangkat dalam penelitian ini.

BAB II

TINJAUAN PUSTAKA

2.1. Manajemen Distribusi

Menurut Deddy Supriadi (2013) dalam buku Logistik dan Distribusi: Prinsip, Praktik dan Teknologi menjelaskan bahwa manajemen distribusi adalah proses yang melibatkan perencanaan, implementasi, dan pengendalian efisien aliran dan penyimpanan barang, informasi terkait dari titik asal ke titik konsumsi untuk memenuhi kebutuhan pelanggan. Proses ini mencakup pengelolaan transportasi, pergudangan, dan inventori.

Dewi Nurdiyanti dalam buku Manajemen Rantai Pasok dan Logistik (2017) menerangkan manajemen distribusi adalah kegiatan yang mengintegrasikan semua fungsi logistik seperti transportasi, pergudangan, dan pengelolaan persediaan untuk memastikan bahwa produk sampai ke konsumen akhir dengan tepat waktu, dengan biaya rendah, dan dalam kondisi baik.

Menurut Christopher (1999) dalam buku *Logistic & Supply Chain Management*, menerangkan bahwa distribusi dalam konteks logistik adalah bagian dari rantai pasok yang berfokus pada pengelolaan arus barang dari pemasok ke pelanggan. Tujuan utama dari distribusi adalah memastikan bahwa produk tersedia di lokasi yang diinginkan oleh pelanggan dengan cara yang efisien dan efektif.

Menurut Subagyo, Nur, & Indra (2018) Distribusi merupakan pergerakan atau perpindahan barang atau jasa dari sumber sampai ke konsumen akhir, konsumen atau pengguna, melalui saluran distribusi (distribution channel), dan gerakan pembayaran dalam arah yang berlawanan, sampai ke produsen asli atau pemosok. Menurut Arif (2018) Distribusi dapat diartikan sebagai kegiatan pemasaran yang berusaha memperlancar dan mempermudah penyampaian barang dan jasa dari produsen kepada konsumen, sehingga penggunaanya sesuai dengan yang diperlukan.

2.2. **Rute**

Dalam bidang transportasi, rute merupakan lintasan yang digunakan oleh kendaraan atau moda transportasi untuk memindahkan barang atau penumpang dari titik asal menuju titik tujuan. Rute dapat mempengaruhi proses transportasi yang dijalankan seperti jarak tempuh, waktu tempuh, biaya yang dikeluarkan, keamanan, dan efisiensi operasional.

Bowersox, Closs, dan Cooper (2013) mendefinisikan rute dalam buku *Supply Chain Logistic Management* adalah jalan yang direncanakan dan diikuti oleh pengirim atau operator logistik untuk mengantarkan barang dengan tujuan meminimalkan waktu perjalanan dan biaya operasi. Untuk menekan biaya logistik dan meningkatkan pelayanan kepada pelanggan, mereka menekankan tentang pentingnya perencanaan rute yang efisien.

Chopra dan Meindl (2016) dalam buku *Supply Chain Management: Strategy, Planning, and Operations* edisi keenam, mendefinisikan rute sebagai serangkaian jalur yang diikuti oleh kendaraan atau moda transportasi untuk mengirimkan barang atau penumpang ke berbagai lokasi. Pemilihan rute yang efisien dapat mengurangi biaya dan waktu pengiriman serta meningkatkan keandalan layanan.

Sedangkan Ronald H. Ballou (2004) dalam buku *Bussiness Logistic/Supply Chain Management* menjelaskan, rute dalam konteks logistik adalah perjalanan yang direncanakan dan dijalankan oleh kendaraan untuk mengirimkan produk ke beberapa tujuan. Optimasi rute melibatkan pemilihan jalur yang meminimalkan jarak tempuh, waktu perjalanan, dan biaya operasional.

2.3. Rute Optimal

Menurut Toth dan Vigo dalam buku *Vehicle Routing: Problems, Methods, and Applications*, rute yang optimal merupakan rute yang memenuhi serangkaian

kendala operasional (seperti kapasitas kendaraan dan waktu pelayanan) sambil meminimalkan satu atau lebih tujuan (seperti biaya, jarak, atau waktu perjalanan). Mereka juga menyoroti pentingnya mempertimbangkan variabilitas permintaan dan kondisi lalu lintas dalam menentukan rute yang optimal.

Chopra dan Meindl (2007) dalam buku *Supply Chain Management: Strategy, Planning, and Operation*, mendefinisikan rute yang optimal sebagai rute yang meminimalkan total biaya logistik, yang meliputi biaya transportasi, biaya penyimpanan, dan biaya inventaris. Mereka menekankan bahwa rute yang optimal harus memperhitungkan tidak hanya jarak terpendek tetapi juga faktor-faktor seperti waktu pengiriman, kapasitas kendaraan, dan efisiensi bahan bakar.

2.4. Angkutan

Menurut Nasution (2004) dalam buku Manajemen Transportasi dan Logistik, angkutan adalah proses pemindahan barang dan orang dari tempat asal ke tempat tujuan dengan menggunakan sarana dan prasarana tertentu. Angkutan memainkan peran penting dalam mendukung aktivitas ekonomi, sosial, dan budaya.

Menurut Morlok (1978) dalam buku berjudul *Introduction to Transportation Engineering and Planning*, angkutan merupakan bagian integral dari sistem logistik yang mencakup kegiatan perencanaan, pelaksanaan, dan pengendalian pergerakan barang dan jasa dari titik asal hingga titik tujuan. Morlok menekankan pentingnya koordinasi dan pengelolaan yang baik dalam sistem angkutan untuk mencapai efisiensi dan efektivitas.

Dalam kegiatan pengiriman, angkutan dapat dibagi menjadi beberapa jenis berdasarkan moda atau cara pengiriman tersebut dilakukan.

2.4.1. Angkutan Darat

Menurut Nasution (2004) dalam buku Manajemen Transportasi dan Logistik, menjelaskan bahwa angkutan darat mencakup transportasi yang dilakukan di permukaan bumi menggunakan kendaraan bermotor atau nonmotor, seperti mobil, truk, bus, kereta api, sepeda motor, dan sepeda.

Angkutan darat memainkan peran penting dalam distribusi barang dan mobilitas orang dalam suatu wilayah geografis tertentu.

2.4.2. Angkutan Laut

Menurut Sukirman (1994) dalam buku berjudul Dasar-dasar Transportasi, menyatakan bahwa angkutan laut adalah jenis transportasi yang menggunakan kapal untuk memindahkan barang dan orang melalui jalur laut atau sungai. Angkutan laut sangat penting untuk perdagangan internasional karena mampu mengangkut barang dalam jumlah besar dengan biaya yang relatif lebih rendah dibandingkan moda transportasi lainnya.

2.4.3. Angkutan Kereta Api

Menurut Tamin (2000) dalam buku berjudul Perencanaan & Pemodelan Transportasi menguraikan bahwa angkutan kereta api adalah transportasi yang menggunakan kereta untuk mengangkut barang dan penumpang melalui jalur rel. Kereta api sangat efisien untuk pengangkutan dalam jumlah besar dan jarak jauh, terutama untuk barang berat seperti mineral dan bahan bakar.

Bowersox, Closs, & Cooper (2002) dalam buku berjudul *Supply Chain Logistics Management*, mendefinisikan angkutan multimoda sebagai penggunaan lebih dari satu jenis moda transportasi dalam satu rantai logistik. Misalnya, barang diangkut dari pabrik menggunakan truk, kemudian dipindahkan ke kereta api, dan akhirnya diangkut melalui kapal laut. Angkutan multimoda meningkatkan efisiensi dan fleksibilitas dalam pengiriman barang.

PT. Pos Indonesia Persero melakukan kegiatan transportasi antar kantor regional, kantor cabang, dan kantor kecamatan menggunakan sarana transportasi yang sudah dibedakan berdasarkan tingkat kantor yang dilayani. PT. Pos Indonesia memiliki tiga jenis kendaraan operasional yang sudah dibedakan antara lain, angkutan primer, angkutan sekunder, dan angkutan tersier.

Menurut Purnomo (2022), kendaraan tersier merupakan angkutan yang diperuntukan untuk jaringan kantor pos dengan kantor cabang yang berada

dibawahnya. Kendaraan sekunder merupakan kendaraan yang melewati jaringan antara Sentral Pengolahan Pos (SPP, dulu di kenal dengan nama Mail Processing Center/MPC) dengan kantor pos di setiap kabupaten dan kota. Sedangkan kendaraan primer merupakan kendaraan yang di gunakan hanya untuk melayani jaringan antar SPP seperti antara SPP Semarang dan Jakarta.

2.5. Penentuan Rute Terpendek

Menurut David Simchi-Levi, Philip Kaminsky, dan Edith Simchi-Levi (2008) dalam buku *Designing and Managing the Supply Chain*, penetuan rute adalah proses yang kompleks yang melibatkan pengambilan keputusan mengenai jalur mana yang harus diikuti untuk mencapai tujuan tertentu dengan mempertimbangkan berbagai kendala seperti kapasitas kendaraan, waktu pengiriman, dan batasan hukum.

Menurut Mutakhiroh (2012), secara umum, pencarian jalur terpendek dibagi menjadi dua metode, yaitu metode konvensional dan metode heuristik. Metode konvensional cenderung mudah dipahami dari pada metode heuristik. Tetapi bila dibandingkan, hasil yang diperoleh dari metode heuristik lebih variatif dan waktu yang diperlukan lebih singkat.

Menentukan rute terpendek untuk kegiatan transportasi merupakan proses yang sangat penting agar kegiatan transportasi yang dilakukan dapat menjadi efisien dan efektif. Penentuan rute terpendek telah dipelajari dalam bidang riset operasi dan ilmu komputer. Terdapat beberapa algoritma yang digunakan untuk menentukan rute terpendek.

2.6. Algoritma Rute Terpendek

Menurut Johnson, D. B. (1977) dalam jurnal *Efficient Algorithms for Shortest Paths in Sparse Networks*, Algoritma adalah serangkaian langkah atau instruksi yang terdefinisi dengan baik untuk menyelesaikan suatu masalah atau melakukan tugas tertentu. Dalam konteks ilmu komputer, algoritma biasanya

diekspresikan dalam bentuk pseudocode atau kode program, dan dirancang untuk diimplementasikan oleh komputer. Algoritma harus memiliki karakteristik berikut:

- **1. Finiteness** : Algoritma harus berakhir setelah sejumlah langkah tertentu.
- **2. Definiteness** : Setiap langkah dari algoritma harus didefinisikan dengan jelas dan tidak ambigu.
 - **3. Input** : Algoritma menerima nol atau lebih masukan (input).
 - **4. Output** : Algoritma menghasilkan setidaknya satu keluaran (output).
- **5. Efectiveness**: Setiap langkah dari algoritma harus sederhana sehingga bisa dijalankan dalam waktu yang masuk akal.

Edsger W. Djikstra (1959) dalam *A Note on Two Problems in Connexion with Graphs*, menerangkan bahwa Algoritma Dijkstra adalah algoritma yang digunakan untuk menemukan rute terpendek dari satu titik asal ke semua titik lain dalam graf yang tidak memiliki bobot negatif.

Sedangkan menurut Thomas H. Cormen (2009) dalam buku *Introduction* to *Algorithm*, menjelaskan bahwa algoritma Dijkstra adalah algoritma *greedy* yang pada setiap langkah memilih titik tidak terkunjungi dengan jarak terpendek dan memperbarui jarak ke tetangganya. Algoritma ini sangat efisien untuk graf tanpa bobot negatif dan memiliki kompleksitas waktu O(V^2) untuk implementasi sederhana, di mana V adalah jumlah titik dalam graf.

2.7. Ant Colony Optimization (ACO)

Ant Colony Optimization adalah algoritma optimasi yang dikembangkan oleh Marco Dorigo pada awal tahun 1990-an yang terinspirasi oleh koloni semut dalam mencari sumber makanan.

Menurut Socha & Dorigo (2008) dalam makalah mereka "*Ant colony optimization for continuous domains*" menyoroti bahwa meskipun ACO awalnya dirancang untuk masalah diskrit, prinsip-prinsip dasarnya telah berhasil diperluas ke domain kontinu. Mereka mencatat pentingnya adaptasi jejak feromon dan aturan probabilistik dalam memperluas aplikasi ACO.

Blum dan Roli (2003) dalam artikel mereka "*Metaheuristics in combinatorial optimization: Overview and conceptual comparison*" menyebutkan bahwa *Ant Colony Optimization* adalah salah satu dari sekian banyak metaheuristik yang berhasil memecahkan masalah optimasi kompleks dengan cara yang efisien. Mereka menggarisbawahi bahwa ACO menggunakan mekanisme pencarian berbasis populasi dan umpan balik positif untuk mengeksploitasi solusi terbaik yang ditemukan.

Dalam buku berjudul *Ant Colony Optimization* yang ditulis oleh Marco Dorigo dan Thomas Stutzle (2004), *Ant Colony Optimization* adalah sebuah algoritma optimasi metaheuristik yang terinspirasi oleh perilaku alami semut dalam mencari makanan. Algoritma ini menggunakan koloni semut buatan yang bekerja sama untuk menemukan solusi optimal atau mendekati optimal untuk berbagai masalah kombinatorial.

2.7.1. Prinsip Dasar

ACO didasarkan pada beberapa prinsip dasar yang diambil dari perilaku alami semut:

- 1. *Pheromone Trails*: Semut meninggalkan jejak feromon di jalur yang mereka tempuh. Konsentrasi feromon ini digunakan oleh semut lain untuk memutuskan jalur mana yang akan diambil.
- 2. *Stigmergy*: Semut berkomunikasi secara tidak langsung melalui perubahan lingkungan, yaitu melalui jejak feromon.
- 3. *Positive Feedback*: Jalur yang lebih pendek dan lebih efisien mendapatkan lebih banyak feromon karena lebih sering dilalui oleh semut, sehingga menjadi lebih menarik bagi semut-semut berikutnya.
- 4. *Probabilistic Decision-Making*: Semut memilih jalur berdasarkan probabilitas yang dipengaruhi oleh konsentrasi feromon dan faktor heuristik lain (misalnya, jarak atau biaya).

2.7.2. Persyaratan

Beberapa persyaratan penting untuk penerapan ACO adalah:

- 1. **Representasi Masalah :** Masalah harus dapat direpresentasikan dalam bentuk graf, di mana simpul-simpul mewakili elemen-elemen masalah dan tepi-tepinya mewakili hubungan atau jalur antar elemen.
- 2. **Pheromone Model:** Harus ada mekanisme untuk menyimpan dan memperbarui informasi feromon pada jalur-jalur graf.
- 3. **Heuristik Lokal :** Informasi heuristik yang membantu semut dalam membuat keputusan lokal yang baik.
- 4. **Algoritma Pembaruan Feromon :** Harus ada aturan untuk memperbarui feromon berdasarkan pengalaman semut dalam menjelajahi graf.

2.7.3. Langkah-Langkah Metode ACO

Berikut adalah langkah-langkah umum dalam algoritma ACO:

- 1. *Initialization*: Inisialisasi jumlah semut, parameter-parameter algoritma (seperti jumlah iterasi, laju evaporasi feromon), dan set awal jejak feromon pada semua tepi graf.
- 2. *Solution Construction*: Semut-semut membangun solusi secara iteratif dengan memilih langkah berikutnya berdasarkan probabilitas yang dihitung dari konsentrasi feromon dan informasi heuristik.
 - *Probabilistic Transition Rule*: Probabilitas Pij dari semut k untuk berpindah dari simpul i ke simpul j ditentukan oleh rumus:

$$\frac{P = \frac{k}{j} = [T_{ij}]^{\alpha} [\eta_{ij}]^{\beta}}{\sum_{l \in J_i^k} [T_{il}]^{\alpha} [\eta_{il}]^{\beta}}$$

• dimana:

τij adalah intensitas feromon pada tepi i–j.

hij adalah informasi heuristik (misalnya, jarak terbalik).

 α dan β adalah parameter yang mengontrol pengaruh feromon dan heuristik.

Jik adalah himpunan simpul yang bisa dikunjungi oleh semut k dari simpul i.

- 3. *Pheromone Update*: Setelah semua semut membangun solusi, jejak feromon diperbarui. Pembaruan ini melibatkan dua proses:
 - *Evaporation*: Pengurangan intensitas feromon untuk menghindari konsentrasi yang berlebihan dan memungkinkan eksplorasi solusi baru. Evaporasi dihitung dengan rumus:

$$T_{ij} = (1-\rho)T_{ij}$$

di mana ρ adalah laju evaporasi feromon.

• *Deposit*: Penambahan feromon pada jalur-jalur yang dilalui semut, terutama pada solusi terbaik. Penambahan ini dapat dilakukan secara proporsional dengan kualitas solusi yang ditemukan:

$$T_{ij} = T_{ij} + \sum_{k=1}^{m} \Delta T_{ij}^{k}$$

di mana $\Delta \tau ijk$ adalah jumlah feromon yang ditambahkan oleh semut k.

- 4. *Daemon Actions (Optional)*: Langkah opsional ini mencakup tindakan-tindakan global seperti pencarian solusi terbaik atau perbaikan solusi melalui metode optimasi lain.
- 5. *Iteration*: Langkah-langkah dari konstruksi solusi hingga pembaruan feromon diulang selama sejumlah iterasi atau sampai kriteria penghentian terpenuhi.

Dengan mengikuti langkah-langkah ini, metode *Ant Colony Optimization* memanfaatkan interaksi sederhana antara semut-

semut individu untuk menemukan solusi optimal atau mendekati optimal untuk berbagai jenis masalah optimasi kombinatorial.

2.7.4. Penelitian Terdahulu

No	Nama Peneliti	Judul	Metode	Kesimpulan	Saran
1	Darfian	Penentuan rute	Ant Colony	Terdapat selisih jarak tempuh pada	
	Guslan, M.	angkutan tersier dari	Optimization	rute yang digunakan angkutan tersier	
	Haslan Al-	Kantor Pos Pemeriksa		penjemput sebesar 11,7 km sebelum	
	Anshary	ke Kantor Pos		dan sesudah menggunakan metode	
	2015	Cabang di wilayah		Ant Colony Optimization dan selisih	
		Banjarnegara dengan		biaya bahan bakar bulanan sebesar	
		menggunakan metode		Rp. 2.584.818. Jumlah armada	
		Ant Colony		angkutan tersier menjadi satu unit	
		Optimization (ACO)		setelah rute baru diterapkan dengan	
				metode Ant Colony Optimization	
				yang sebelumnya berjumlah 2 unit.	
2	Aldisen	Aplikasi penentuan	Best First	Hasil uji coba program yang telah	Perlunya peningkatan
	Juniansyah,	rute terpendek untuk	Search	dilakukan pada Perusahaan Roti	kemampuan
	Mesterjon	bagian pemasaran		Surya dalam penggunaan program	pengoperasian program,

2016	produk Roti Surya	aplikasi yang telah dibuat ini,	agar keberadaan program
	dengan metode B <i>est</i>	menunjukkan respon yang baik dari	sebagai pengganti cara
	First Search	pihak Manajemen Roti Surya. Hal itu	manual menjadi lebih
		terlihat dari beberapa pernyataan	berarti, Memerlukan
		yang telah disampaikan pada saat uji	beberapa perbaikan.
		coba program untuk mencari rute	
		terpendek. Selain itu kecepatan dan	
		ketepatan dalam melakukan proses	
		perhitungan jarak dan jangkauan	
		dapat memberikan kemudahan untuk	
		mendistribusikan produk, maka	
		program aplikasi ini layak untuk	
		dimanfaatkan oleh Pabrik Roti Surya	
		meskipun masih memerlukan	
		beberapa perbaikan. Karena sudah	
		sewajarnya perubahan yang terjadi	
		dari cara manual kemudian bergeser	
		ke arah pemanfaatan program	

				komputer.	
3	V. Y. I.	Perbandingan	Hill Climbing	Pemilihan rute optimum dengan	
	Ilwaru, T.	algoritma Hill	dan Ant	menggunakan algoritma Hill	
	Sumah, Y. A.	Climbing dan	Colony	Climbing menghasilkan jarak	
	Lenussa, Z.	algoritma Ant Colony	OPtimization	tempuh sejauh 197 km.	
	A. Leleury	dalam penentuan		Dengan menggunakan data yang	
	2017	Rute optimum (studi		sama, pencarian rute optimum	
		kasus: penentuan rute		menggunakan algoritma Hill	
		optimum jalur		Climbing terbukti lebih akurat	
		pelayaran ferry di		dibandingkan algoritma Ant Colony.	
		Pulau Ambon, Pulau		Algoritma Ant Colony menggunakan	
		Seram, dan Pulau-		fungsi heuristic untuk mendapatkan	
		Pulau Lease)		hasil yang optimal sehingga	
				kekurangan dari algoritma Ant	
				Colony ini adalah waktu proses	
				dalam mendapatkan hasil yang	
				paling optimal sangat tergantung dari	
				jumlah iterasi perhitungan yang	

				digunakan.	
4	Vera	Penerapan algoritma	Floyd-Warshall	Tampilan desain pada aplikasi sudah	Aplikasi ini membutuhkan
	Apriliani	Floyd Warshall dalam		sesuai dengan perancangan tampilan,	kualitas jaringan internet
	Nawagusti	aplikasi penentuan		baik pada tampilan menu input nama	telepon seluler yang baik
	2018	rute terpendek		BTS maupun pada menu Floyd	agar dapat mengakses rute
		mencari lokasi BTS		Warshall.	terpendek.
		(Base Tower Station)		Proses penentuan rute terpendek	Penggunaan aplikasi ini
		pada PT.GCI		pada aplikasi telah berhasil, karena	lebih optimal apabila
		Palembang		menghasilkan indikator yang sama	digunakan diluar gedung
				antara hasil penentuan rute terpendek	agar GPS lebih akurat
				yang dihasilkan aplikasi dengan hasil	dalam mendeteksi posisi
				perhitungan secara manual yang	saat ini.
				dihasilkan teori Floyd Warshall.	
				Dimana rute terpendek yang	
				dihasilkan algoritma Floyd Warshall	
				untuk menuju BTS 18, BTS 21 dan	
				BTS 46 adalah 14-3-2 yaitu sebesar	
				10,9 km.	

5	Syahbani	Implementasi	Bellman-Ford	Dari hasil penelitian yang telah	Penelitian ini terbatas
	Farhan, Septi	Bellman-Ford dan	dan Floyd-	dibahas sebelumnya dapat	pada penentuan total jarak
	Andryana,	Floyd-Warshall	Marshall	disimpulkan bahwa algoritma	terpendek yang diujikan,
	Nur Hayati	dalam menentukan		Bellman-Ford dan algoritma Floyd-	aplikasi yang dirancang
	2020	jalur terpendek		Warshall bisa digunakan sebagai	belum bekerja pada tipe
		menuju Universitas		acuan dalam pembuatan aplikasi	kendaraan yang
		Nasional berbasis		pencarian rute terpendek.	digunakan, kondisi jalan
		Android.		Dari hasil pengujian aplikasi dapat	saat macet maupun lampu
				dinyatakan bahwa, aplikasi ini dapat	merah.
				membantu masyarakat, mahasiswa	Rencana pengembangan
				dan peserta didik baru untuk mencari	penelitian dibuatkan
				jalur terdekat dari stasiun Pasar	aplikasi dengan
				Minggu dan halte Jatipadang menuju	mendeteksi jenis
				Universitas Nasional.	kendaraan maupun kondisi
				Total jarak yang dihasilkan dari	jalan agar aplikasi dapat
				kedua algoritma sama, namun	berjalan lebih maksimal.
				memiliki perbedaan pada waktu	

				pencarian rute. Algoritma Floyd-	
				Warshall lebih cepat memproses	
				pencarian rute dibandingkan	
				algoritma Bellman-Ford karena	
				proses perhitungannya secara parallel	
				(multiproses) sedangkan untuk	
				perhitungan algoritma BellmanFord	
				berdasarkan iterasi sebanyak node	
				-	
6	Aji Satriyo	Penerapan metode	Simple Hill	erhitungan menggunakan metode	
	2020	Simple Hill Climbing	Climbing	Simple Hill Climbing diperoleh	
		dalam menentukan		lintasan L1 – L3 – L2 – L4 – L5 – L6	
		rute terpendek pada		L1 dijumlahkan menjadi 45,9 Km.	
		pengiriman (studi		Dari kedua perhitungan jarak	
		kasus di supplier		tersebut terlihat adanya perbedaan,	
		hotel)		dimana selisih jaraknya yaitu 1,2	
				Km.	
				Sedangkan perhitungan koordinat	
				awal dengan lintasan	

				L6,L1,L2,L3,L4,L5,L6 dengan jarak	
				44,5 km, dan kondisi koordinat	
				perbaikan dengan lintasan	
				L5,L1,L3,L2,L4,L6,L5 dengan jarak	
				44,3 km, sehingga selisih jarak 0,2	
				km.	
7	Aswandi,	Model penentuan rute	Multiple	Berdasarkan hasil pengujian yang	
	Sugiarto	terpendek	Traveling	dilakukan dapat disimpulkan bahwa	
	Cokrowibow	penjemputan sampah	Salesman	algoritma genetika dapat	
	o, Amita	menggunakan metode	Problem dan	menyelesaikan permasalahan	
	Irianti	MTSP dan algoritma	Genetika	Multiple Traveling Salesman	
	2021	Genetika		Problem hal ini dapat dilihat pada	
				sistem yang dapat membuat rute	
				yang optimal.	
				Dengan melakukan pengujian	
				terhadap pengubahan parameter yang	
				digunakan dapat dilihat bahwa	
				penambahan parameter generasi dan	

_						
					populasi membuat peluang untuk	
					mendapatkan individu nilai fitness	
					terbaik dapat didapatkan.	
					Untuk parameter yang paling optimal	
					yang dapat digunakan dalam	
					membuat penentuan rute untuk	
					burma14 dengan 14 titik	
					penjemputan yaitu jumlah generasi	
					sebanyak 40, jumlah populasi	
					sebanyak 30, jumlah individu	
					terseleksi sebanyak 10, dan jumlah	
					titik crossover sebanyak 2.	
-	8	Wildan	Penentuan rute	Clarke and	Jarak tempuh dari dua rute Kantor	
		Faried	terpendek di Kantor	Wright	Pos Pemeriksa Blitar menuju Kantor	
		Anshoriy,	Pos Kabupaten Blitar	Savings.	Pos Kecamatan yang berjumlah tujuh	
		Juhari, Ach.	dalam pendistribusian		belas kantor awalnya 189.7 km.	
		Nashichuddi	paket menggunakan		Setelah penentuan rute menggunakan	
		n	algoritma Clarke And		metode Clarke and Wright Savings,	
L						

	2023	Wright Savings		rute satu berjarak 116,7 km dan rute 2 berjarak 54,3 km dengan total jarak tempuh dari kedua rute sejauh 171 km. Dengan pengematan jarak tempuh sebesar 9,85%.	
9	Ahmad Tohari, Yuliani Puji Astuti 2023	Penerapan algoritma Genetika dalam menentukan rute terpendek PT. Pos Cabang Lamongan	Algoritma Genetika	Hasil penerapan Algoritma genetika pada rute pengiriman PT. Pos Cabang Lamongan dilakukan 2 siklus. Solusi rute terpendek pada 12 titik adalah A-L-K-J-I-H-G-F-E-DC-B-A dengan total jarak tempuh sebesar 158km. Perhitungan cost yang dilakukan setelah menemukan rute terpendek mendapatkan hasil Rp. 158.000 dalam 1 kali perjalanan.	Agar dapat mengembangkan metode Algoritma Genetika berbasis aplikasi python agar dapat digunakan pada platform dan dapat dikembangkan menggunakan jenis algoritma yang lainnya agar memperoleh hasil yang lebih optimal.
10	Muhammad Aqil Siraj	Optimasi jalur distribusi pada umkm	Saving Matrix dan Nearest	Rute distribusi, Pola distribusi pertama dari UMKM Mitra Telur	Biaya distribusi yang ditimbulkan pada baseline

2024	mitra telur dengan	Neighbour	memiliki empat jalur pengiriman	adalah biaya pekerjaan
	menggunakan metode		telur dengan menggunakan dua	dan penunjang kendaraan
	Saving Matrix dan		kendaraan operasional dengan total	sebesar Rp 1.550.000 dan
	Nearest Neighbor		jarak tempuh 114,9 kilometer. Pola	biaya bahan bakar sebesar
			distribusi akhir menggunakan	Rp 402.150, sehingga
			metode saving matriks dan metode	biaya pengangkutan
			nearest neighbour dengan membuat	lengkap sebesar Rp
			tiga rute pengiriman dengan	1.952.150. Sedangkan
			menggunakan dua kendaraan yang	biaya tenaga kerja dan
			menempuh total jarak 95,5 kilometer.	perawatan kendaraan
			sehingga didapatkan hasil dari	sebesar Rp1.550.000,00
			penghematan jarak tempuh sebesar	dan biaya bahan bakar
			16,9% dengan penurunan 19,4	sebesar Rp334.250, yang
			kilometer.	dihasilkan pada rute akhir
				dengan metode saving
				matriks dan nearest
				neighbour menghasilkan
				total biaya distribusi
				sebesar Rp1.884.250.

		Sehingga biaya produksi
		pada UMKM pembelian
		telur telah berkurang
		sebesar 3,5% setiap
		tahunnya.

BAB III METODOLOGI PENELITIAN

3.1. Kerangka penelitian

Kerangka penelitian membahas rencana penelitian pada maslah yang dibahas dengan cara observasi ke objek yang akan diteliti. Penelitian dilakukan untuk mengetahui pengaruh jarak rute terhadap waktu perjalanan yang ditempuh angkutan tersier Kantor Pos Magetan. Penelitian ini menggunakan pendekatan kuantitatif dengan perolehan data dari *supervisor* Operasional Kantor Pos Cabang Magetan 63300.

Diagram 3.1 : Kerangka pemikiran Sumber : Olahan data penulis

3.2. Langkah-langkah penelitian

Penelitian ini dilakukan dengan langkah-langkah sistematis dan terstruktur agar permasalahan yang sudah dirumuskan dapat dibahas sesuai tujuan penelitian. Secara garis besar langkah-langkah penelitian dilakukan secara terstruktur untuk menyelesaikan masalah digambarkan melalui *flowchart* berikut:

 ${\it Gambar~3.1: Flowchart~langkah-langkah~penelitian}$ ${\it Sumber:Olahan~data~penulis}$

3.3. Studi lapangan

Menurut Sugiyono (2013) studi lapangan merupakan metode pengumpulan data yang dilakukan melalui observasi langsung di lokasi penelitian untuk mendapatkan data yang relevan dan akurat mengenai fenomena yang diteliti. Dalam bukunya "Metode Penelitian Kuantitatif, Kualitatif, dan R&D," Sugiyono menjelaskan bahwa observasi lapangan memungkinkan peneliti untuk mengamati perilaku subjek secara langsung dalam konteks alamiah tanpa intervensi yang signifikan .

Dalam penelitian ini, studi lapangan langsung dilakukan di Kantor Pos Cabang Magetan 63300 untuk mendapatkan sejumlah data dan informasi tentang jarak rute yang digunakan oleh kendaraan yang ditugaskan sebagai angkutan tersier, bobot rata-rata barang yang diangkut angkutan tersier, dan waktu tempuh sebagai dasar penelitian yang akan dilakukan.

3.4. Studi pustaka

Referensi yang digunakan dalam penelitian ini bersumber dari informasi langsung dari data operasional Kantor Pos Cabang Magetan 63300 yang didapat dari *supervisor* operasional, jurnal, dan buku yang berhubungan dengan topik dan permasalahan dari penelitian ini.

3.5. Identifikasi masalah

Identifikasi masalah dilakukan untuk menetapkan masalah yang akan dibahas dalam penelitian ini. Penulis menemukan keterlambatan waktu tiba dari angkutan tersier Kantor Pos Cabang Magetan pada saat pengambilan barang dari kantor pos kecamatan. Keterlambatan ini menyebabkan keterlambatan pengiriman barang dari Kantor Pos Cabang Magetan 63300 menuju ke Kantor Pos Cabang Utama Madiun 63100 dan Kantor Pos Regional V Surabaya. Menurut informasi dari *supervisor* operasional Kantor Pos Cabang Magetan, rute yang digunakan angkutan tersier ditetapkan sesuai saran dan intuisi dari sopir dan karyawan di

kantor pos tersebut, sehingga tidak dapat diketahui rute tersebut apakah sudah optimal atau belum

Maka dari itu, rumusan masalah yang didapat adalah bagaimana cara menentukan rute terpendek untuk angkutan tersier agar durasi kegiatan penjemputan barang di kantor pos kecamatan dapat dipangkas.

3.6. Pengumpulan data

Pengumpulan data dilakukan dengan cara observasi langsung di Kantor Pos Cabang Magetan 63300 dengan melakukan wawancara kepada *supervisor* operasional dan staf sumber daya manusia untuk mendapatkan data yang dibutuhkan. Pengamatan dilakukan pada jam operasional angkutan tersier untuk melihat ketepatan waktu angkutan tersier Kantor Pos Magetan. Pengamatan dilakukan dengan melihat waktu berangkat, durasi perjalanan, dan waktu tiba angkutan tersier.

3.6.1. Data Primer

Menurut Sugiyono (2013) data primer adalah data yang diperoleh langsung dari sumber pertama oleh peneliti melalui berbagai teknik pengumpulan data seperti wawancara, observasi, dan kuesioner. Sugiyono menekankan bahwa data primer sangat penting karena memberikan informasi yang spesifik dan relevan sesuai dengan kebutuhan penelitian

Sumber data primer yang digunakan dalam penelitian ini adalah wawancara langsung dengan *supervisor* operasional dan staf sumber daya manusia Kantor Pos Cabang Magetan 63300. Data yang dihimpun disajikan melalui tabel berikut :

Tabel 3.1: Data primer

No	Jenis Data	Sumber	Hasil
1	Jarak tempuh angkutan	Wawancara	Terpenuhi

	tersier		
2	Waktu tempuh angkutan tersier	Wawancara	Terpenuhi
3	Bobor barang yang diangkut angkutan tersier	Wawancara	Terpenuhi

Sumber: Data olahan penulis

3.6.2. Data Sekunder

Suharsimi (2010) mendefinisikan data sekunder sebagai data yang telah dikumpulkan oleh pihak lain dan biasanya sudah tersedia dalam bentuk publikasi. Menurutnya, data sekunder sangat berguna untuk memberikan konteks tambahan atau sebagai dasar pembanding terhadap data primer yang dikumpulkan oleh peneliti .

Pada penelitian ini, peneliti mendapatkan data sekunder yang berasar dari laman profil PT. Pos Indonesia, laman Wikipedia, dan data internal Kantor Pos Magetan.

Tabel 3.2 : Data Sekunder

No	Jenis Data	Sumber
1	Profil PT. Pos Indonesia	Laman Wikipedia
2	Visi dan Misi PT. Pos Indonesia	Laman profil PT. Pos Indonesia
3	Struktur perusahaan Kantor Pos Cabang Magetan 63300	Wawancara

Sumber: Data olahan penulis

3.7. Pengolahan data

Pengolahan data dilakukan setelah data yang dibutuhkan terkumpul dari kegiatan studi lapangan. Data disajikan dengan lebih sederhana agar mudah dipahami oleh peneliti dan pembaca. Data calon rute angkutan tersier akan diolah menggunakan metode *Ant Colony Optimization* (ACO) untuk menemukan rute terpendek berdasarkan parameter yang digunakan dalam perhitungan.

Perhitungan akan dilakukan dengan bantuan Microsoft Excel dalam bentuk perhitungan.

3.8. Analisis data

Analisis data dilakukan untuk mengetahui hasil dari penelitian ini sehinggan diperoleh kesimpulan. Analisis data menggunakan teknik kuantitatif yang menggunakan hasil perhitungan dari metode *Ant Colony Optimization* (ACO). Data hasil perhitungan tersebut akan dibandingkan dengan data yang saat ini digunakan oleh Kantor Pos Cabang Magetan dalam bentuk tabel agar diketahui bahwa masalah dapat diselesaikan dan mudah dipahami.

3.9. Kesimpulan

Penarikan kesimpulan dan pemberian saran merupakan tahap akhir dari permasalahan yang dibahas dalam penelitian ini. Penarikan kesimpulan akan menjawab permasalahan yang telah ditentukan dan saran diberikan kepada pihak Kantor Pos Cabang Magetan 63300 dan pada masyarakat umum.

Daftar Pustaka

- Christopher, M. (1999). Logistics and Supply Chain Management: Strategies for Reducing Cost and Improving Service (Second Edition): Financial Times:

 Pitman Publishing. London, 1998 ISBN 0 273 63049 0 (hardback) 294 + 1

 × pp. International Journal of Logistics Research and Applications, 2(1), 103–104. https://doi.org/10.1080/13675569908901575
- Maryati, I., & Wibowo, H. K. (2012). OPTIMASI PENENTUAN RUTE

 KENDARAAN PADA SISTEM DISTRIBUSI BARANG DENGAN ANT

 COLONY OPTIMIZATION.
- Noor Rahmah, A., & Kusuma Ningrat, N. (2023). PENENTUAN MODA

 TRANSPORTASI UNTUK EFISIENSI BIAYA KIRIM DENGAN

 METODE AHP PADA IKM KERUPUK IDAMAN CIAMIS. *Jurnal Industrial Galuh*, 2(2), 71–79. https://doi.org/10.25157/jig.v2i2.2969
- Socha, K., & Dorigo, M. (2008). Ant colony optimization for continuous domains. *European Journal of Operational Research*, 185(3), 1155–1173. https://doi.org/10.1016/j.ejor.2006.06.046