

Удивительная алгебра сравнения строк (часть 2)

А. В. Тискин

DPhil (Oxford), доцент МКН СПбГУ

Б. Золотов

аспирант МКН СПбГУ

Dodrans-local LCS

Задача: для пары строк a, b предподсчитать оракул, который сможет быстро отвечать на запросы вида LCS(a[$\mathbf{0}$: i_1], b[j_0 : j_1]).

Посчитаем все префиксные ⊡-произведения перестановок, будем хранить в структуре данных, отвечающей на *range queries*.

Локальная задача LCS

Задача: для пары строк a,b предподсчитать оракул, который сможет быстро отвечать на запросы вида LCS($a[i_0:i_1],b[j_0:j_1]$).

Запрос соответствует прямоугольнику на решётке, координаты вершин которого — i_0, i_1, j_0, j_1 .

Local LCS: оракул Sakai

Предподсчёт за $\tilde{O}\left(n^2\right)$, запрос за $\tilde{O}\left(\sqrt{\ell}\right)$. Sakai, 2022 Здесь ℓ — размер прямоугольника, соотв. запросу.

Для уровней, делящихся на $\frac{n}{2r}$, посчитаем перестановки между теми, разность которых не превосходит $\left(\frac{n}{2r}\right)^2$.

Запрос — \square -перемножение подперестановок и range queries.

Local LCS: оракул Ch+

Charalampopoulos, Gawrychowski, Mozes, Weimann, 2021.

Если хранить перестановки в дереве отрезков, то между противоположными вершинами прямоугольника будет $\log n$ шагов по перестановкам.

Трудность — выбор индекса, в который приходит очередной шаг.

Ch+ используют чёрный ящик MSSP, а мы знаем, как улучшить время работы, применив муравья.

Динамическое выравнивание

Задача: обновлять LCS при вставке/удалении символа произвольной из двух строк

Иерархия, в которой у каждого прямоугольника четыре потомка. Внутри каждого — посчитана перестановка.

Суммарный размер перестановок, изменённых при вставке/удалении символа, на каждом уровне иерархии, — O(n). Charalampopoulos, Kociumaka, Mozes, 2020

Аффинные перестановки

Научимся работать с перестановками в аффинном моноиде Гекке. Gaevoy, Tiskin, Zolotov, 2025

Аффинная перестановка раскладывается на произведение *перестановки конечного типа* и *грассмановой перестановки*.

Аффинное ⊡-умножение

Можно свести ⊡-умножение аффинных перестановок к обычному ⊡ их *трёх соседних периодов*.

Периодическая задача LCS

Задача: найти LCS (a^k, b^m) .

- Возвести перестановку в \square -степень k;
- \cdot посчитать, сколько копий каждой нити пересекает m периодов.

Время — $O(|a| \cdot |b| + |b| \cdot \log |b| \cdot \log k)$.

Charalampopoulos, Kociumaka, Wellnitz 2022

3адача: найти в тексте T подстроки, отличающиеся от шаблона P не более чем на редакционное расстояние k.

Ключевой шаг решения этой задачи — dynamic puzzle matching строк с малым редакционным расстоянием:

Дана эталонная строка U и семейство \mathcal{F} . Известно, что $\sum_{u \in \mathcal{F}} \delta(u, U) = O(k)$. Последовательность пар $(P_1, T_1) \dots (P_Z, T_Z); \ P_i, T_i \in \mathcal{F};$ пары могут в неё динамически вставляться и удаляться. Поддерживать вхождения $P_1 \dots P_Z$ в $T_1 \dots T_Z$ с не более чем k редакциями, быстро обновлять при вставке/удалении пары.

Dynamic puzzle maching

Не отходим более чем на k от главной диагонали — монжевы матрицы расстояний размером O(k).

Построение: малое суммарное δ — применим динамическое выравнивание, чтобы построить матрицы расстояний для всех возможных пар.

Спасибо за внимание!

- · **Dodrans-local LCS:** храним много перестановок, полученных муравьём
- Local LCS: дерево отрезков из перестановок с операцией ⊡
- **Dynamic LCS:** дерево отрезков из перестановок переменного размера
- Approximate pattern matching: применение динамического выравнивания при ограниченном редакционном расстоянии

https://t.me/boris_a_z