(Twice Amended) A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer, comprising:

positioning a substrate within a chemical vapor deposition reactor; and

simultaneously a) providing gaseous barium and strontium within the reactor by flowing at least one metal organic precursor to the reactor, b) providing gaseous titanium within the reactor, and c) flowing at least one gaseous oxidizer to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate, the oxidizer comprising H_2O .

- 2. The method of claim 1 comprising flowing another inorganic oxidizer to the reactor during the deposit.
- 3. The method of claim 1 wherein the conditions comprise receipt of the substrate by a susceptor the susceptor having a temperature of less than or equal to 550°C.
- 4. The method of claim 1 wherein the deposited layer is substantially homogeneous.
- 5. The method of claim 1 wherein the deposited layer is not substantially homogeneous.

S:\MI22\1724\M02.doc

2

6. A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer, comprising:

positioning a substrate within a chemical vapor deposition reactor; and simultaneously a) providing gaseous barium and strontium within the reactor by flowing at least one metal organic precursor to the reactor, b) providing gaseous titanium within the reactor, and c) flowing at least one gaseous oxidizer to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate, the oxidizer comprising H₂O₂.

- 7. The method of claim 6 comprising flowing another inorganic oxidizer to the reactor during the deposit.
- 8. The method of claim 6 wherein the conditions comprise receipt of the substrate by a susceptor, the susceptor having a temperature of less than or equal to 550°C.
- 9. The method of claim 6 wherein the deposited layer is substantially homogeneous.
- 10. The method of claim 6 wherein the deposited layer is not substantially homogeneous.

A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer, comprising:

positioning a substrate within a chemical vapor deposition reactor; and

simultaneously a) providing gaseous barium and strontium within the reactor by flowing at least one metal organic precursor to the reactor, b) providing gaseous titanium within the reactor, and c) flowing gaseous oxidizers to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate, the oxidizers comprising at least H_2O and at least another oxidizer selected from the group consisting of O_2 , O_3 , NO_x , N_2O , and H_2O_2 , where "x" is at least 1.

- 12. The method of claim 11 wherein the another oxidizer comprises O₂.
- 13. The method of claim 11 wherein the another oxidizer comprises O₃.
- 14. The method of claim 11 wherein the another oxidizer comprises NO_x, where 'x" is at least 1.
 - 15. The method of claim 11 wherein the another oxidizer comprises N_2O .
 - 16. The method of claim 11\wherein the another oxidizer comprises H₂O₂.
- 17. The method of claim 11 the oxidizers comprise at least two of the another oxidizers.

18. A chemical vapor deposition method of forming a barium strontium titanate comprising dielectric layer, comprising:

positioning a substrate within a chemical vapor deposition reactor; and simultaneously a) providing gaseous barium and strontium within the reactor by flowing at least one metal organic precursor to the reactor, b) providing gaseous titanium within the reactor, and c) flowing gaseous oxidizers to the reactor under conditions effective to deposit a barium strontium titanate comprising dielectric layer on the substrate, the oxidizers comprising at least H_2O_2 and at least another oxidizer selected from the group consisting of O_2 , O_3 , $N \tilde{O}_x$, and N_2O , where "x" is at least 1.

- 19. The method of claim 18 wherein the another oxidizer comprises O_2 .
- 20. The method of claim 18 wherein the another oxidizer comprises O₃.
- 21. The method of clai18 wherein the another oxidizer comprises NO_x, where "x" is at least 1.
 - 22. The method of claim 18 wherein the another oxidizer comprises N₂O.
 - 23. The method of claim 18 wherein the another oxidizer comprises H_2O_2 .

and di

24. The method of claim 18 the oxidizers comprise at least two of the another

oxidizers.

25. (New) The method of claim 1 wherein the at least one metal organic precursor comprises a member selected from the group consisting of Ba(thd)₂, Sr (thd)₂, Ba(methd)₂, Sr(methd)₂, Ba(dpm)₂, and Sr(dpm)₂.

- 26. (New) The method of claim 1 wherein the providing gaseous titanium within the reactor comprises flowing at least one member of the group consisting of Ti(dmae)₄, Ti(thd)₂ (O-i-Pr)₂, TiO(dpm)₂, Ti(t-BuO)₂(dpm)₂, and Ti(OCH₃)₂(dpm)₂.
- 27. (New) The method of claim 6 wherein the at least one metal organic precursor comprises a member selected from the group consisting of Ba(thd)₂, Sr (thd)₂, Ba(methd)₂, Sr(methd)₂, Ba(dpm)₂, and Sr(dpm)₂.
- 28. (New) The method of claim 6 wherein the providing gaseous titanium within the reactor comprises flowing at least one member of the group consisting of Ti(dmae)₄, Ti(thd)₂ (O-i-Pr)₂, TiO(dpm)₂, Ti(t-BuO)₂(dpm)₂, and Ti(OCH₃)₂(dpm)₂.
- 29. (New) The method of claim 11 wherein the at least one metal organic precursor comprises a member selected from the group consisting of Ba(thd)₂, Sr (thd)₂, Ba(methd)₂, Sr(methd)₂, Ba(dpm)₂, and Sr(dpm)₂.

- 30. (New) The method of claim 11 wherein the providing gaseous titanium within the reactor comprises flowing at least one member of the group consisting of Ti(dmae)₄, Ti(thd)₂ (O-i-Pr)₂, TiO(dpm)₂, Ti(t-BuO)₂(dpm)₂, and Ti(OCH₃)₂(dpm)₂.
- 31. (New) The method of claim 18 wherein the conditions comprise receipt of the substrate by a susceptor, the susceptor having a temperature from 440°C to 700°C.