A Bayesian Meta-analysis Method that Corrects for Publication Bias

Jonas Moss

University of Oslo

June 26, 2018 Nordstat 2018

This is What *p*-hacking Looks Like!

▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are *effect sizes*.

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - Most common is the standardized mean difference, $\frac{\mu_1 \mu_2}{\sigma}$.
 - Fixed effects: $\theta_i = \theta$ for all *i*.

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are effect sizes.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - ▶ Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- The effect sizes are usually closely related:

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - Most common is the standardized mean difference, $\frac{\mu_1 \mu_2}{\sigma}$.
 - Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- ► The effect sizes are usually closely related:
 - Effect of a class of anti-depressiva;

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- The effect sizes are usually closely related:
 - Effect of a class of anti-depressiva;
 - effect of some psychological intervention.

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are effect sizes.
 - Most common is the standardized mean difference, $\frac{\mu_1 \mu_2}{\sigma}$.
 - Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- ▶ The effect sizes are usually closely related:
 - ► Effect of a class of anti-depressiva;
 - effect of some psychological intervention.
 - but they don't have to be that closely related!

- ▶ Studies x_i are drawn according $x_i \sim N(\theta_i, se_i)$
 - \triangleright θ_i are normalized they are *effect sizes*.
 - ▶ Most common is the *standardized mean difference*, $\frac{\mu_1 \mu_2}{\sigma}$.
 - Fixed effects: $\theta_i = \theta$ for all *i*.
 - ▶ Random effects: $\theta_i \sim N(\theta_0, \sigma_0^2)$.
- ▶ The effect sizes are usually closely related:
 - ► Effect of a class of anti-depressiva:
 - effect of some psychological intervention.
 - but they don't have to be that closely related!
- Question: Is the classical model realistic in presence of p-hacking?

What the Previous Plot Should Have Looked Like!

What the previous plot should have looked like!

ightharpoonup Happens when only statistically significant results (p < 0.05) are published.

- ightharpoonup Happens when only statistically significant results (p < 0.05) are published.
 - ► In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- ▶ Happens when only statistically significant results (p < 0.05) are published.
 - ► In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

 $ightharpoonup \phi_{(a,b)}$ is a truncated normal.

- ▶ Happens when only statistically significant results (p < 0.05) are published.
 - ► In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $ightharpoonup \phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.

- ightharpoonup Happens when only statistically significant results (p < 0.05) are published.
 - ► In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $ightharpoonup \phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.
- How to account for selection for significance?

- ightharpoonup Happens when only statistically significant results (p < 0.05) are published.
 - ► In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $ightharpoonup \phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.
- How to account for selection for significance?
 - Use the random / fixed effects model with a truncated normal!

- ► Happens when only statistically significant results (p < 0.05) are published.
 - ► In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $ightharpoonup \phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.
- How to account for selection for significance?
 - Use the random / fixed effects model with a truncated normal!
 - ► Goes back to Hedges (1984); idea back to Lane & Dunlap (1978).

- ▶ Happens when only statistically significant results (p < 0.05) are published.
 - ► In this case

$$p(x_i \mid \theta_i, se_i) = \phi_{(1.96 \cdot se_i, \infty)}(\theta_i, se_i)$$

- $ightharpoonup \phi_{(a,b)}$ is a truncated normal.
- Can be caused by both p-hacking and publication bias.
- How to account for selection for significance?
 - Use the random / fixed effects model with a truncated normal!
 - ► Goes back to Hedges (1984); idea back to Lane & Dunlap (1978).
- ▶ **Problem**: The first plot also contains studies that weren't affected by selection for significance!

Revisiting the First Plot

► Key idea: Use partial selection for significance!

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

► The parameter *p* is the *propensity to p-hack*!

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- ► The parameter *p* is the *propensity to p-hack*!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i} \mid \theta_{i}, se_{i}, p\right) = p\phi_{\left(1.96 \cdot se_{i}, \infty\right)}\left(\theta_{i}, se_{i}\right) + \left(1 - p\right)\phi\left(\theta_{i}, se_{i}\right)$$

- ► The parameter *p* is the *propensity to p-hack*!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i} \mid \theta_{i}, se_{i}, p\right) = p\phi_{\left(1.96 \cdot se_{i}, \infty\right)}\left(\theta_{i}, se_{i}\right) + \left(1 - p\right)\phi\left(\theta_{i}, se_{i}\right)$$

- ► The parameter *p* is the *propensity to p-hack*!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- ▶ Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- ► The parameter *p* is the *propensity to p-hack*!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \operatorname{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- ▶ Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$
 - Other models possible, for instance skew-normal.

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- ► The parameter *p* is the *propensity to p-hack*!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- ▶ Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$
 - Other models possible, for instance skew-normal.
 - Can also depend on covariates.

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- ► The parameter *p* is the *propensity to p-hack*!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- ▶ Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$
 - Other models possible, for instance skew-normal.
 - Can also depend on covariates.
- Computationally feasible due to STAN.

- Key idea: Use partial selection for significance!
- Prototypical likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

- The parameter p is the propensity to p-hack!
 - ▶ Beta is a reasonable prior for $p \mid p_0, \psi \sim \text{Beta}(p_0, \psi)$
 - But can and will depend on covariates!
- ▶ Model for θ_i could be normal: $\theta_i \mid \theta_0, \sigma_0 \sim N(\theta_0, \sigma_0^2)$
 - Other models possible, for instance skew-normal.
 - Can also depend on covariates.
- Computationally feasible due to STAN.
- On to examples!

Example I: Meta-analysis of a Field

The Effect Size Distribution in Psychology

▶ Data from (Motyl 2017); same as in the plots.

- ▶ Data from (Motyl 2017); same as in the plots.
- Likelihood:

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}^{f}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},se_{i}\right)$$

- ▶ Data from (Motyl 2017); same as in the plots.
- Likelihood:

$$p\left(\mathbf{x}_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot\boldsymbol{se}_{i},\infty\right)}^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)$$

▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.

- ▶ Data from (Motyl 2017); same as in the plots.
- Likelihood:

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot\boldsymbol{se}_{i},\infty\right)}^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.

- Data from (Motyl 2017); same as in the plots.
- Likelihood:

$$p\left(\mathbf{x}_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot\boldsymbol{se}_{i},\infty\right)}^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.

- Data from (Motyl 2017); same as in the plots.
- Likelihood:

$$p\left(\mathbf{x}_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot\boldsymbol{se}_{i},\infty\right)}^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- ▶ Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.
- ▶ Effect size distribution: $\theta_i \sim \text{Gumbel}(\mu, \sigma)$

- Data from (Motyl 2017); same as in the plots.
- Likelihood:

$$p\left(\mathbf{x}_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot\boldsymbol{se}_{i},\infty\right)}^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.
- ▶ Effect size distribution: $\theta_i \sim \text{Gumbel}(\mu, \sigma)$
 - Has positive skewness, which we probably want.

- ▶ Data from (Motyl 2017); same as in the plots.
- Likelihood:

$$p\left(\mathbf{x}_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot\boldsymbol{se}_{i},\infty\right)}^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},\boldsymbol{se}_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.
- ▶ Effect size distribution: $\theta_i \sim \text{Gumbel}(\mu, \sigma)$
 - Has positive skewness, which we probably want.
 - Has much better fit than the normal distribution.

- Data from (Motyl 2017); same as in the plots.
- Likelihood:

$$p\left(x_{i}\mid\theta_{i},p\right)=p\phi_{\left(1.96\cdot\mathsf{se}_{i},\infty\right)}^{f}\left(\theta_{i},\mathsf{se}_{i}\right)+\left(1-p\right)\phi^{f}\left(\theta_{i},\mathsf{se}_{i}\right)$$

- ▶ Here ϕ^f is the *folded normal*, distribution of |Z| where Z is normal.
- Used because the effect sizes have no inherent sign.
- Note: θ_i can still be negative.
- ▶ Effect size distribution: $\theta_i \sim \text{Gumbel}(\mu, \sigma)$
 - Has positive skewness, which we probably want.
 - ▶ Has much better fit than the normal distribution.
- ▶ **Priors:** $\theta_0 \sim N(0,1)$, $\sigma \sim \text{Exp}(1)$, $\rho \sim \text{Uniform}$

Posterior Predictive Distributions

A Simulation from the Posterior

Example II: Ordinary Meta-analysis

Bangert-Drowns, Hurley & Wilkinson (2004)

Likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

Likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

Effect size distribution:

$$\theta_i \sim N(\theta_0 + \theta_M \cdot \text{Meta?}, \sigma)$$

Likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

► Effect size distribution:

$$\theta_i \sim N(\theta_0 + \theta_M \cdot \text{Meta?}, \sigma)$$

▶ Priors: $\theta_0, \theta_M \sim N(0, 1), \sigma \sim \text{Exp}(1), \rho \sim \text{Uniform}$

Likelihood:

$$p\left(x_{i}\mid\theta_{i},se_{i},p\right)=p\phi_{\left(1.96\cdot se_{i},\infty\right)}\left(\theta_{i},se_{i}\right)+\left(1-p\right)\phi\left(\theta_{i},se_{i}\right)$$

► Effect size distribution:

$$\theta_i \sim N(\theta_0 + \theta_M \cdot \text{Meta?}, \sigma)$$

▶ Priors: θ_0 , θ_M ~ N (0,1), σ ~ Exp (1), ρ ~ Uniform

Model	θ_0	θ_{M}	σ	р
Corrected Not corrected	0.02(0.06) 0.14(0.05)	0.14(0.16)	0.1(0.1)	0.3(0.07) NA
Not corrected	0.14(0.05)	0.21(0.10)	0.2(0.05)	NA

► Logistic regression for the propensity to *p*-hack!

- ► Logistic regression for the propensity to *p*-hack!

- ▶ Logistic regression for the propensity to *p*-hack!
- $ightharpoonup p_0, p_1 \sim N(0,1)$

- Logistic regression for the propensity to p-hack!
- $ightharpoonup p_0, p_1 \sim N(0,1)$
- p-hacking becomes harder with increasing sample size.

- Logistic regression for the propensity to p-hack!
- $ightharpoonup p_0, p_1 \sim N(0,1)$
- ▶ p-hacking becomes harder with increasing sample size.
- ightharpoonup Publication is easier with larger n.

Visually Evidence for Logistic Regression on p

Results without Meta-cognition

Model	$ heta_0$	σ	p_0	p_1
Random effects	,	/	(,	(/
Fixed effects	0.04(0.07)	NA	-0.8(0.3)	-0.6(0.4)

The Shape of the *p*-hacking Propensity

Conclusion

▶ p-hacking is everywhere and must be accounted for!

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should
 - ► Care about selection for significance!

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should
 - Care about selection for significance!
 - Try out the mixture model to do the correction!

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should
 - Care about selection for significance!
 - ▶ Try out the mixture model to do the correction!
 - Stay Bayesian!

- p-hacking is everywhere and must be accounted for!
- When correcting for publication bias we should
 - Care about selection for significance!
 - ► Try out the mixture model to do the correction!
 - Stay Bayesian!
- An R-package at GitHub:

straussR

Statistical Reanalysis under Selection for Significance https://github.com/JonasMoss/straussR

References

Bangert-Drowns, Robert L, Marlene M Hurley, and Barbara Wilkinson. 2004. "The Effects of School-Based Writing-to-Learn Interventions on Academic Achievement: A Meta-Analysis." *Review of Educational Research*.

Hedges, Larry V. 1984. "Estimation of Effect Size Under Nonrandom Sampling: The Effects of Censoring Studies Yielding Statistically Insignificant Mean Differences." *Journal of Educational Statistics*.

Lane, David M, and William P Dunlap. 1978. "Estimating Effect Size: Bias Resulting from the Significance Criterion in Editorial Decisions." *British Journal of Mathematical and Statistical Psychology*.

Motyl, Matt et al. 2017. "The State of Social and Personality Science." *Journal of Personality and Social Psychology*.