# Shared memory TT-calculation & The STREAM benchmark

# How this presentation is organized

Presenting shared memory  $\pi$ -calculation:

- Objective
- Requirements
- Code and scaling study
- Conclusion

#### STREAM benchmark:

- Flat vs Cache mode
- Quadrant vs SNC4

# Shared memory TT-calculation

# Objective

The value of  $\pi$  can be approximated, by means of integrating the function

$$\varphi(x) = \frac{1}{1+x^2}$$

over the interval [0, 1].

• The aim of this task was to develop a serial implementation of this integration, and to parallelize the application using OpenMP.

## Requirements

- Develop a serial implementation that integrates function φ
   (x) over [0, 1].
- Parallelize your application using OpenMP
  - critical directive.
  - reduction clause.
- Perform a scaling study of your algorithm.
  - OMP NUM THREADS
  - Weak scaling
  - Strong scaling

# Mathematical background

$$\varphi(x) = \frac{1}{1+x^2}$$

$$\int \varphi(x) \, dx = \arctan(x)$$

$$\int_0^1 \varphi(x) \, dx = \arctan(1) - \arctan(0) = \frac{\pi}{4}$$

=> If we multiply the result of integration by 4, we get the value of  $\pi$ .

# Graph:



arctan(x)



## Code

```
double h, y, sum;
//number of partitions
long n = 1000000000;
h = 1. / n;
sum = 0;
for (i = 0; i <= n; i++) {
   //calculate function value at current partition
   y = phi(i*h);
   //add current function value to sum
   sum += y;
sum *= 4. * h; //value of pi
```

## The critical directive

 Specifies a region of code that must be executed by only one thread at a time.

```
#pragma omp parallel for private(y), shared(sum)
    for (i = 0; i <= n; i++) {
        y = phi(i*h);

#pragma omp critical
        sum += y;
}</pre>
```

# Scaling study – Critical directive

#### Weak scaling:

• n = 25 000 000

| N/No. of threads   | n/16   | 2n/32  | 4n/64  | 8n/128  |
|--------------------|--------|--------|--------|---------|
| Execution time (s) | 17.931 | 36.884 | 76.407 | 149.951 |

### Strong scaling:

• n = 100 000 000.

| No. of threads     | 16     | 32     | 64     | 128    |
|--------------------|--------|--------|--------|--------|
| Execution time (s) | 73.772 | 73.902 | 77.451 | 78.451 |

## The reduction clause

Performs a reduction operation on the variables that appear in its list.

```
#pragma omp parallel for private(y), reduction(+: sum)
    for (i = 0; i <= n; i++) {
        y = phi(i*h);
        sum += y;
    }</pre>
```

# Scaling study – Reduction clause

#### Weak scaling:

• n = 250 000 000

| N/No. of threads   | n/16  | 2n/32 | 4n/64 | 8n/128 |
|--------------------|-------|-------|-------|--------|
| Execution time (s) | 0.176 | 0.181 | 0.202 | 0.302  |

### Strong scaling:

• n = 1 000 000 000.

| No. of threads     | 16    | 32    | 64    | 128   |
|--------------------|-------|-------|-------|-------|
| Execution time (s) | 0.610 | 0.325 | 0.196 | 0.188 |

## Conclusion

- Using the critical directive kills performance because threads have to access the critical section one after another.
- Parallelizing with the reduction clause leads to faster execution once more threads are introduced.

 Strong scaling shows that if the problem is big enough adding more threads to parallelize it works up to a certain point. It will have diminishing returns once the problem chunks are so small that the overhead of adding more threads doesn't help anymore.

# STREAM benchmark

# Sub-benchmark types

- Copy applies c[i] = a[i] on the arrays
- Scale applies b[i] = scalar\*c[i]
- Add applies c[i] = a[i] + b[i]
- Triad applies a[i] = b[i] + scalar\*c[j]

## Flat vs Cache mode

- Cache mode
  - MCDRAM acts as L3 direct mapped cache
  - transparent to the user
  - suitable for legacy applications
  - spatial & temporal locality applications can achieve peak performance
- Flat mode
  - MCDRAM and DDR4 can be allocated selectively (using Memkind library)
  - gives user control over the data that goes into the high bandwidth memory
  - useful if application is limited by DDR4 bandwidth



Cache Mode



## Quadrant vs SNC4

#### Quadrant

- the chip is divided into 4 virtual quadrants
- tag directory and memory channel are in the same quadrant
- transparent to the user (the OS sees the system as one NUMA node)
- easier to use
- usually provides good performance (less mesh traffic)

#### SNC4

- each quadrant is exposed as a separate NUMA
- software must be optimized for NUMA architecture
- best performance



1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return



1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return

## Stream tests

- Array size = 80000000 (elements), Offset = 0 (elements)
- Memory per array = 610.4 MiB (= 0.6 GiB).
- Total memory required = 1831.1 MiB (= 1.8 GiB)
- OMP\_NUM\_THREADS=64

# Quadrant

| Function | Best Rate ME | 3/s Avg time | Min time | Max time |
|----------|--------------|--------------|----------|----------|
| Copy:    | 228009.4     | 0.005730     | 0.005614 | 0.005889 |
| Scale:   | 233666.0     | 0.005561     | 0.005478 | 0.005701 |
| Add:     | 146352.8     | 0.013542     | 0.013119 | 0.013960 |
| Triad:   | 266622.4     | 0.007758     | 0.007201 | 0.008317 |

#### Flat

| Function | Best Rate M | B/s Avg time | Min time | Max time |
|----------|-------------|--------------|----------|----------|
| Copy:    | 76583.2     | 0.017029     | 0.016714 | 0.022321 |
| Scale:   | 76600.6     | 0.017015     | 0.016710 | 0.021970 |
| Add:     | 82431.5     | 0.024193     | 0.023292 | 0.028823 |
| Triad:   | 82230.3     | 0.023611     | 0.023349 | 0.027358 |

# SNC4

| Ca | ch | e |
|----|----|---|
|    |    |   |

| Function | Best Rate ME | 3/s Avg time | Min time | Max time |
|----------|--------------|--------------|----------|----------|
| Copy:    | 218988.0     | 0.005921     | 0.005845 | 0.005991 |
| Scale:   | 217356.6     | 0.005956     | 0.005889 | 0.006097 |
| Add:     | 185631.5     | 0.011186     | 0.010343 | 0.011798 |
| Triad:   | 271760.0     | 0.007150     | 0.007065 | 0.007254 |

#### Flat

| Function | Best Rate M | B/s Avg time | Min time | Max time |
|----------|-------------|--------------|----------|----------|
| Copy:    | 12225.0     | 0.105086     | 0.104704 | 0.106260 |
| Scale:   | 12084.6     | 0.106379     | 0.105920 | 0.107742 |
| Add:     | 13078.7     | 0.147689     | 0.146804 | 0.152449 |
| Triad:   | 13013.2     | 0.148147     | 0.147543 | 0.148948 |

## numactl -m 1

0.004118

0.008641

0.005193

0.004266

0.009032

0.005274

|          | Hulliacti -III I |              |          |          |
|----------|------------------|--------------|----------|----------|
| Quad     |                  |              |          |          |
| Function | Best Rate ME     | 3/s Avg time | Min time | Max time |
| Copy:    | 221682.6         | 0.005875     | 0.005774 | 0.005953 |
| Scale:   | 307697.7         | 0.004223     | 0.004160 | 0.004293 |
| Add:     | 220740.7         | 0.008891     | 0.008698 | 0.009048 |
| Triad:   | 370306.9         | 0.005228     | 0.005185 | 0.005280 |
|          |                  |              |          |          |
| SNC4     |                  |              |          |          |
| Function | Best Rate ME     | 3/s Avg time | Min time | Max time |
| Copy:    | 223110.5         | 0.005863     | 0.005737 | 0.005953 |
|          |                  |              |          |          |

0.004213

0.008890

0.005229

Scale:

Add:

Triad:

310815.1

222196.4

369728.8

# Questions?