Written Exercises

In each of Exercises 1-4 begin by drawing \overline{AB} roughly 15 cm long.

- 1. Divide \overline{AB} into three congruent segments.
 - 2. a. Use Construction 12 to divide \overline{AB} into four congruent segments.
 - **b.** Use Construction 4 to divide \overline{AB} into four congruent segments.
 - 3. a. Use Construction 12 to divide AB into five congruent segments.
 - **b.** Can Construction 4 be used to divide \overline{AB} into five congruent segments?
 - c. Divide \overline{AB} into two segments that have the ratio 2:3.
 - 4. Divide AB into two segments that have the ratio 3:4.

On your paper draw four segments roughly as long as those shown below. Use your segments in Exercises 5-14. In each exercise construct a segment that has length x satisfying the given condition.

$$5. \frac{y}{w} = \frac{z}{x}$$

6.
$$\frac{w}{x} = \frac{x}{y}$$

7.
$$x = \sqrt{yp}$$

5.
$$\frac{y}{w} = \frac{z}{x}$$
 6. $\frac{w}{x} = \frac{x}{y}$ 7. $x = \sqrt{yp}$ 8. $3x = w + 2y$

9. zx = wy (Hint: First write a proportion that is equivalent to the given equation and has x as the last term.)

10.
$$x = \frac{yp}{z}$$

10.
$$x = \frac{yp}{z}$$
 11. $x = \frac{1}{3}\sqrt{yp}$ **12.** $x = \sqrt{3wz}$ **13.** $x = \sqrt{6yz}$

12.
$$x = \sqrt{3w^2}$$

13.
$$x = \sqrt{6yz}$$

- 14. Construct \overline{AB} , with AB = p. Divide AB into two parts that have the ratio w:y.
- 15. Draw a segment like the one shown and let its length be 1. Use the segment to construct a segment of length $\sqrt{15}$.

- **16.** a. If $x = a\sqrt{n}$, then x is the geometric mean between a and $\frac{?}{}$.
 - b. Draw a segment about 3 cm long. Call its length a. Use your results from part (a) to construct a segment of length $a\sqrt{n}$ for n=2,3, and 4.
- 17. Draw \overline{CD} about 20 cm long. Construct a triangle whose perimeter is equal to CD and whose sides are in the ratio 2:2:3.
 - ★ 18. To trisect a general angle G, a student tried this procedure:
 - 1. Mark off GA congruent to GB.
 - 2. Draw \overline{AB} .
 - 3. Divide \overline{AB} into three congruent parts using Construction 12.
 - 4. Draw \overline{GX} and \overline{GY} .

Show that the student did not trisect $\angle G$. (Hint: Show that GA > GY. Then use an indirect proof to show that $m \angle 2 \neq m \angle 1.$

