Vorlesung Analysis II im Sommersemester 2013 ${\rm Wilhelm\ Singhof}$

Teil I: Differenzialrechnung mehrerer Veränderlicher

1. Normierte und metrische Räume: Definitionen und Beispiele

Def. Sei V ein (reeller) Vektorraum. Eine Norm auf V ist eine Abbildung

$$\|\cdot\|: V \to \mathbb{R}, v \mapsto \|v\|,$$

die die folgenden Eigenschaften hat:

- (1) $||v|| \ge 0$ für alle $v \in V$.
- (2) $||v|| = 0 \iff v = 0.$
- (3) $\|\alpha v\| = |\alpha| \cdot \|v\|$ für $v \in V$ und $\alpha \in \mathbb{R}$.
- (4) $\|v+w\| \le \|v\| + \|w\|$ für alle $v, w \in V$ (Dreiecksungleichung).

Ein normierter Raum ist ein Paar $(V, \|.\|)$, wobei V ein Vektorraum und $\|.\|$ eine Norm auf V ist. Meist sagt man: "Sei V ein normierter Raum" statt "sei $(V, \|.\|)$ ein normierter Raum".

Beispiel: Auf $V = \mathbb{R}^n$ erhält man Normen $\| \cdot \|_1$, $\| \cdot \|_{\infty}$ und $\| \cdot \|_2$ folgendermaßen: Ist $v = (x_1, \dots, x_n) \in \mathbb{R}^n$, so sei

$$||v||_1 := |x_1| + \ldots + |x_n|,$$

 $||v||_{\infty} := \max\{|x_1|, \ldots, |x_n|\},$
 $||v||_2 := (x_1^2 + \ldots + x_n^2)^{1/2}.$

Um die Dreiecksungleichung für $\| \cdot \|_2$, die sog. *Euklidische Norm*, nachzuweisen, braucht man:

Satz 1. (Cauchy-Schwarzsche Ungleichung)

Sind $v = (x_1, \ldots, x_n), w = (y_1, \ldots, y_n) \in \mathbb{R}^n$, so ist

$$|x_1y_1 + \ldots + x_ny_n| \le ||v||_2 \cdot ||w||_2$$
.

Bem. Für $v \in \mathbb{R}^n$ ist $||v||_{\infty} \le ||v||_2 \le ||v||_1 \le n \cdot ||v||_{\infty}$.

Allgemeiner gilt: Zwei Normen $\| . \|$ und | . | auf einem endlich-dimensionalen reellen Vektorraum V sind äquivalent in dem Sinn, dass es positive reelle Zahlen a,A gibt mit

$$a \parallel v \parallel \leq \mid v \mid \leq A \parallel v \parallel \forall v \in V.$$

Def. Sei X eine Menge. Eine Metrik auf X ist eine Abbildung

$$d: X \times X \longrightarrow \mathbb{R}$$

mit den folgenden vier Eigenschaften:

- (I) $d(x,y) \ge 0$ für alle $x,y \in X$.
- (II) $d(x,y) = 0 \iff x = y$.
- (III) d(x,y) = d(y,x) für alle $x, y \in X$.

(IV) $d(x,z) \leq d(x,y) + d(y,z)$ für alle $x,y,z \in X$ (Dreiecksungleichung).

Ein $metrischer\ Raum$ ist ein Paar (X,d), wobei X eine Menge und d eine Metrik auf X ist. Man sagt oft "X ist metrischer Raum" statt "(X,d) ist metrischer Raum".

Beispiel: Sei V ein normierter Raum. Definiere $d: V \times V \to \mathbb{R}$ durch

$$d(x,y) := ||x - y||.$$

Dann ist V ein metrischer Raum

Beispiel: Ist (X, d) ein metrischer Raum und $Y \subseteq X$, so wird Y mit der Einschränkung von d auf $Y \times Y$ ein metrischer Raum.

Def. Sei Xein metrischer Raum, $a\in X$ und $r\in\mathbb{R}$ mit r>0. Dann heißt die Menge

$$B_r(a) := \{ x \in X \mid d(a, x) < r \}$$

die offene Kugel und

$$\overline{B}_r(a) := \{ x \in X \mid d(a, x) \le r \}$$

die abgeschlossene Kugel mit Mittelpunkt a und Radius r.

2. Einige grundlegende topologische Begriffe

Def. Sei X ein metrischer Raum und $A \subseteq X$. Dann heißt A offen in X, wenn gilt: Ist $x \in A$, so existiert ein r > 0 mit $B_r(x) \subseteq A$.

Satz 1. Eine offene Kugel in einem metrischen Raum X ist offen in X.

Satz 2. Sei X ein metrischer Raum. Dann gilt:

- a) X und \emptyset sind offen in X.
- b) Ist I irgendeine Menge und sind die A_i mit $i \in I$ offen in X, so ist auch $\bigcup_{i \in I} A_i$ offen in X.
- c) Ist $n \in \mathbb{N}$ und sind A_1, \ldots, A_n offen in X, so ist $A_1 \cap \ldots \cap A_n$ offen in X.

Beispiel: $]-\frac{1}{n},\frac{1}{n}[$ ist offen in \mathbb{R} . Aber $\bigcap_{n\in\mathbb{N}}]-\frac{1}{n},\frac{1}{n}[$ = $\{0\}$ ist nicht offen in \mathbb{R} .

Def. Sei X ein metrischer Raum, $x \in X$. Eine Teilmenge U von X heißt Umgebung von x in X, wenn es eine offene Teilmenge A von X gibt mit

$$x \in A \subseteq U$$
.

Eigenschaften von Umgebungen:

- (1) Sei $x \in X$ und $U \subseteq X$. Dann sind äquivalent:
 - (a) U ist Umgebung von x.
 - (b) Es gibt ein r > 0 mit $B_r(x) \subseteq U$.
- (2) Eine Menge ist genau dann offen, wenn sie Umgebung aller ihrer Punkte ist.
- (3) Ist U Umgebung von x und $V \supseteq U$, so ist V Umgebung von x.
- (4) Der Durchschnitt endlich vieler Umgebungen von x ist eine Umgebung von x.

Beispiel: Betrachte \mathbb{R}^n mit den Normen $\| \cdot \|_p$, $p=1,2,\infty$. Diese drei Normen besitzen dieselben offenen Mengen.

Def. Sei X ein metrischer Raum, $A \subseteq X$ und $x \in X$.

x heißt $H\ddot{a}ufungspunkt$ von A, falls in jeder Umgebung von x ein von x verschiedener Punkt von A liegt.

x heißt $Ber\ddot{u}hrungspunkt$ von A, falls in jeder Umgebung von x ein Punkt von A liegt.

Bem. x ist Berührungspunkt von $A \Longleftrightarrow x \in A$ oder x ist Häufungspunkt von A.

Satz 3. und Def. Sei X metrischer Raum, $A \subseteq X$. Dann sind äquivalent:

- (a) A enthält alle Häufungspunkte von A.
- (b) A enthält alle Berührungspunkte von A.
- (c) $X \setminus A$ ist offen in X.

Wenn A diese Eigenschaften hat, so heißt A abgeschlossen in X.

Satz 4. Sei X ein metrischer Raum. Dann gilt:

- 1) \emptyset und X sind abgeschlossen.
- Der Durchschnitt von beliebig vielen abgeschlossenen Mengen ist abgeschlossen.
- 3) Die Vereinigung von endlich vielen abgeschlossenen Mengen ist abgeschlossen.

Satz 5. Sei X ein metrischer Raum und A eine endliche Teilmenge von X. Dann ist A abgeschlossen in X.

Def. Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge in einem metrischen Raum X. Ein Punkt $x_0 \in X$ heißt Grenzwert der Folge (x_n) , wenn eine der vier folgenden äquivalenten Bedingungen erfüllt ist:

- 1. Zu jedem $\varepsilon > 0$ existiert ein $N \in \mathbb{N}$ mit $d(x_n, x_0) < \varepsilon$ für $n \ge N$.
- 2. $\lim_{n \to \infty} d(x_n, x_0) = 0$ im Sinne von Analysis I.
- 3. Zu jedem $\varepsilon > 0$ existiert ein $N \in \mathbb{N}$ mit $x_n \in B_{\varepsilon}(x_0)$ für $n \geq N$.
- 4. Für jede Umgebung U von x_0 existiert ein $N \in \mathbb{N}$ mit $x_n \in U$ für $n \geq N$.

Eine Folge besitzt höchstens einen Grenzwert. Wenn (x_n) den Grenzwert x_0 besitzt, so sagt man, dass (x_n) gegen x_0 konvergiert und schreibt $\lim_{n\to\infty} x_n = x_0$ oder $x_n \to x_0$.

Beispiel: Sei $X = \mathbb{R}^n$ mit einer der Normen $\| \cdot \|_p$, $p = 1, 2, \infty$. Sei $(x^k)_{k \in \mathbb{N}}$ eine Folge in \mathbb{R}^n mit $x^k = (\xi_1^k, \dots, \xi_n^k)$ und sei $x^0 = (\xi_1^0, \dots, \xi_n^0) \in \mathbb{R}^n$.

Genau dann ist $\lim_{k\to\infty}x^k=x^0$, wenn für jedes ν mit $1\le\nu\le n$ gilt: $\lim_{k\to\infty}\xi^k_\nu=\xi^0_\nu$.

Bem. Sei X ein metrischer Raum, $A \subseteq X$ und $x \in X$.

- a) x ist Berührungspunkt von $A \iff$ es existiert eine Folge (x_n) in A mit $x_n \to x$.
- b) x ist Häufungspunkt von $A \iff$ es existiert eine Folge (x_n) in A mit $x_n \neq x$ für $n \in \mathbb{N}$ und $x_n \to x$.
- c) A ist abgeschlossen in $X \iff \text{ist } (x_n)$ eine Folge in A, so dass $x_0 = \lim x_n$ in X existiert, so ist $x_0 \in A$.

Def. Sei X ein metrischer Raum, $A \subseteq X$ und $x \in X$. Dann heißt x ein innerer Punkt von A, wenn A eine Umgebung von x ist. Sei \mathring{A} die Menge aller inneren Punkte von A; sie heißt das Innere von A.

Satz 6. Sei X ein metrischer Raum und $A \subseteq X$. Dann ist \mathring{A} die größte offene Teilmenge von X, die in A enthalten ist.

Satz 7. Ist V ein normierter Raum, $x \in V$, r > 0 und $A := \overline{B}_r(x)$, so ist $\mathring{A} = B_r(x)$.

Def. Sei X ein metrischer Raum, $A \subseteq X$. Sei \overline{A} die Menge aller Berührungspunkte von A in X. Sie heißt der Abschluss von A.

Satz 8. a) $X \setminus \overline{A} = (X \setminus A)^{\circ}$.

b) \overline{A} ist die kleinste abgeschlossene Teilmenge von X, die A umfasst.

Def. Sei X ein metrischer Raum, $A \subseteq X$, $x \in X$.

x heißt Randpunkt von A in X, wenn x Berührungspunkt von A und von $X \setminus A$ ist.

Sei ∂A die Menge der Randpunkte von A in X, also $\partial A = \overline{A} \cap \overline{X \setminus A}$. ∂A heißt der Rand von A in X.

Bem. ∂A ist abgeschlossen in X.

X ist die disjunkte Vereinigung von \mathring{A} , ∂A und $(X \setminus A)^{\circ}$.

3. Stetige Abbildungen

Def. Seien (X,d),(Y,d') metrische Räume, $f:X\to Y$ eine Abbildung, $x_0\in X$. Dann heißt f stetig im Punkt x_0 , wenn eine der folgenden 3 äquivalenten Bedingungen erfüllt ist:

- 1. Zu jedem $\varepsilon > 0$ existiert $\delta > 0$, so dass gilt: Ist $x \in X$ mit $d(x_0, x) < \delta$, so ist $d'(f(x_0), f(x)) < \varepsilon$.
- 2. Zu jedem $\varepsilon > 0$ existiert $\delta > 0$ mit $f(B_{\delta}(x_0)) \subseteq B_{\varepsilon}(f(x_0))$.
- 3. Zu jeder Umgebung V von $f(x_0)$ gibt es eine Umgebung U von x_0 mit $f(U) \subseteq V$.

Die Abbildung $f: X \to Y$ heißt stetig, wenn sie in jedem Punkt von X stetig ist.

Beispiele:1) Eine konstante Abbildung ist stetig.

- 2) Die identische Abbildung $id_X: X \to X$ ist stetig.
- 3) Seien X, Y, Z metrische Räume, $f: X \to Y$ und $g: Y \to Z$ Abbildungen, $x_0 \in X$. Wenn f in x_0 und g in $f(x_0)$ stetig ist, so ist $g \circ f: X \to Z$ in x_0 stetig.

Satz 1. Seien X, Y metrische Räume, $f: X \to Y$. Dann sind äquivalent:

- a) f ist stetig.
- b) Ist A offen in Y, so ist $f^{-1}(A)$ offen in X.
- c) Ist B abgeschlossen in Y, so ist $f^{-1}(B)$ abgeschlossen in X.
- d) Ist (x_n) eine konvergente Folge in X, so ist $(f(x_n))$ konvergente Folge in Y und $\lim_{n\to\infty} f(x_n) = f(\lim_{n\to\infty} x_n)$.

Satz 2. Seien X, Y metrische Räume, $f, g: X \to Y$ stetig. Dann ist $A := \{x \in X \mid f(x) = g(x)\}$ abgeschlossen in X.

Satz 3. Sei X ein metrischer Raum, $f, g: X \to \mathbb{R}$ stetig. Dann ist $A := \{x \in X \mid f(x) \le g(x)\}$ abgeschlossen in X.

Bem. Sei X ein metrischer Raum und $f:X\to\mathbb{R}^n$ eine Abbildung. Dann ist $f(x)=(f_1(x),\ldots,f_n(x))$ mit Abbildungen $f_k:X\to\mathbb{R}$. Wir versehen \mathbb{R}^n mit einer der Normen $\| . \|_{\infty} , \| . \|_{2} , \| . \|_{1}$.

Genau dann ist f stetig, wenn alle f_k stetig sind.

Def. Eine Teilmenge X eines normierten Raumes V heißt beschränkt, wenn es ein M > 0 gibt mit ||v|| < M für alle $v \in X$.

Satz 4. Sei X eine beschränkte, abgeschlossene Teilmenge von \mathbb{R}^n , und $f: X \to \mathbb{R}$ sei stetig. Dann ist f(X) eine beschränkte und abgeschlossene Teilmenge von \mathbb{R} . Insbesondere nimmt f auf X sein Maximum und sein Minimum an.

4. Partielle Ableitungen

Def. Sei U offen in \mathbb{R}^n , $f:U\to\mathbb{R}$ eine Abbildung, $x=(x_1,\ldots,x_n)\in U$. Für $i = 1, ..., n \text{ sei } U_i := \{t \in \mathbb{R} \mid (x_1, ..., x_{i-1}, t, x_{i+1}, ..., x_n) \in U\}.$

Dann ist U_i eine offene Umgebung von x_i in \mathbb{R} .

Man definiert $F_i:U_i\to\mathbb{R}$ durch

$$F_i(t) := f(x_1, \dots, x_{i-1}, t, x_{i+1}, \dots, x_n).$$

f heißt im Punkt x partiell differenzierbar, wenn für $i=1,\ldots,n$ die Funktion F_i in x_i differenzierbar ist. Schreibe dann

$$D_i f(x) := \frac{\partial f}{\partial x_i}(x) := \frac{\partial f(x)}{\partial x_i} := \frac{\partial}{\partial x_i} f(x) := F_i'(x),$$

und nenne dies die i-te partielle Ableitung von f in x.

f heißt $partiell\ differenzierbar$, wenn es in jedem Punkt von U partiell differenzierbar

Bem. a) Man berechnet die i-te partielle Ableitung, indem man f als Funktion der

i-ten Variablen allein auffasst und die anderen Variablen konstant hält. b) Für n=2 schreibt man meist (x,y) statt (x_1,x_2) und $\frac{\partial f}{\partial x}$ statt $\frac{\partial f}{\partial x_1}$ und $\frac{\partial f}{\partial y}$ statt $\frac{\partial f}{\partial x_2}$. Für n=3 schreibt man oft (x,y,z) statt (x_1,x_2,x_3) .

Beispiel: $f(x,y) = e^{xy} \Longrightarrow \frac{\partial f}{\partial x}(x,y) = ye^{xy}$, $\frac{\partial f}{\partial y}(x,y) = xe^{xy}$.

Beispiel: Betrachte $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) := \begin{cases} \frac{xy}{x^2 + y^2} & \text{für } (x,y) \neq (0,0), \\ 0 & \text{für } (x,y) = (0,0). \end{cases}$$

In jedem Punkt $(x,y) \neq (0,0)$ ist f offensichtlich partiell differenzierbar. f ist aber auch in (0,0) partiell differenzierbar:

 $f_1(\xi) = f(\xi, 0) = 0 \text{ und } f_2(\xi) = f(0, \xi) = 0 \text{ für alle } \xi \in \mathbb{R} \Longrightarrow D_1 f(0, 0) = 0 \text{ und}$ $D_2 f(0,0) = 0.$

f ist also auf ganz \mathbb{R}^2 partiell differenzierbar.

Aber f ist in (0,0) nicht stetig: Denn für $x \in \mathbb{R}, x \neq 0$, ist $f(x,x) = \frac{x^2}{x^2 + x^2} = \frac{1}{2}$, während f(0,0) = 0.

Def. Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ partiell differenzierbar in U. Wenn alle partiellen Ableitungen $D_1f,\ldots,D_nf:U\to\mathbb{R}$ wieder partiell differenzierbar sind, so kann man $D_jD_if:=D_j(D_if)$ bilden und sagt, dass f zweimal partiell differenzierbar ist. Induktiv definiert man, was es für $k\in\mathbb{N}$ bedeutet, dass f k-mal partiell differenzierbar ist. Schreibe auch

$$\frac{\partial^2 f}{\partial x_i \partial x_i} := D_j D_i f$$
, $\frac{\partial^2 f}{\partial x_i^2} := D_i^2 f := D_i D_i f$ usw.

Wenn f k-mal partiell differenzierbar ist und wenn alle partiellen Ableitungen der Ordnung $\leq k$ stetig sind (dazu gehört insbesondere, dass f selbst als partielle Ableitung der Ordnung 0 stetig ist), so sagt man, f sei $von\ der\ Klasse\ C^k$. Wenn f stetige partielle Ableitungen von jeder Ordnung hat, so heißt f $von\ der\ Klasse\ C^\infty$ oder glatt. Schließlich heißt f $von\ der\ Klasse\ C^0$, wenn es stetig ist.

Satz 1. (Satz von H. A. Schwarz) Sei U offen in \mathbb{R}^n und $f:U\to\mathbb{R}$ von der Klasse C^2 . Sei $a\in U$ und $i,j\in\{1,\ldots,n\}$. Dann ist

$$D_j D_i f(a) = D_i D_j f(a).$$