Entretien technique

Contexte : dépistage du cancer du poumon basé sur l'Intelligence Artificielle.

Lien vers le répertoire zip contenant les données et instructions : https://drive.google.com/file/d/1-15SgOqVt1eqwuxHeQRT0uySFOehe19D/view?usp=sharing

Début : lundi 24/01.

Temps de travail estimé: 8 - 10h.

Deadline d'envoi : le jeudi 27/01 à midi.

Présentation pour le vendredi 28/01 à 14h (heure française) :

- 4 slides minimum – 10 maximum (objectif, méthodes, résultats, pistes)

Conseil: n'hésitez pas à réutiliser vos connaissances acquises dans d'autres domaines pour enrichir les solutions proposées (statistiques, visualisation de données, clustering...)

Data

Les nodules pulmonaires sont extraits de scanners thoraciques de la base LIDC https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI.

Les scanners sont des volumes pseudo 3D dans la mesure où ils consistent en un empilement de coupes 2D. La figure ci-dessous illustre un volume de nodule extrait d'un scanner, avec 5 coupes. La coupe du milieu sera appelée coupe centrale.

Figure 1: volume extrait d'un scanner correspondant à un nodule sur 5 coupes (à gauche). La figure de droite illustre le concept de pseudo-3D.

Les volumes des nodules sont au format .npy et les annotations au format .csv.

Une visualisation des nodules est possible grâce aux échantillons dans le répertoire nodules_preview. Il y a des annotations concernant

- la malignité (*malignant*) pour l'exercice Data Scientist décrit ci-dessous
- la texture (*density*) et spiculation (*spiculated*) pour l'exercice Data Manager décrit cidessous.

Instructions:

Code à réaliser sur Google Colab

```
[ ] from google.colab import drive drive.mount('<a href="/>/content/gdrive">/content/gdrive</a>') # need authentication
```


!pip install tensorflow keras !pip install scikit-learn

Data Manager

Objectif: attribuer un score selon la grille LungRads. https://pubs.rsna.org/doi/pdf/10.1148/rg.2015150079

- Utiliser le code fourni pour entrainer l'algorithme à classer les nodules en fonction de leur texture (*density*).
- Segmenter la coupe centrale des volumes de nodules pour mesurer le diamètre et calculer une approximation du volume (rappel : $\frac{4}{3}\pi R^3$ où R est le rayon). Si possible, identifier le centre.
- Ecrire un algorithme permettant d'attribuer un score LungRads en fonction de la texture et du volume.
 - NB : on n'utilise pas les consignes liées à la croissance ou l'apparition d'un nouveau nodule (nous n'avons pas les données antérieures permettant d'évaluer la croissance d'un nodule)
- **Bonus** : dans cet exercice, vous aviez directement les volumes contenant des nodules. Pour détecter les nodules, il existe 2 approches :
 - soit identifier des boîtes autour de régions d'intérêt (supposées correspondre à des nodules),
 - soit segmenter l'ensemble du scan (0 : voxel ne contenant pas de nodule, 1 : voxel contenant un nodule) et utiliser un post-traitement pour prédire le centre des nodules à partir de la segmentation.

Pour la 2^e approche, indiquez quelle méthode statistique permettrait de prédire les centres des nodules. Vous pouvez vous inspirer d'articles état-de-l'art.