Problem 25

Let $\mathcal S$ be a square of side length 1 . Two points are chosen independently at random on the sides of $\mathcal S$. The probability that the straight-line distance between the points is at least $\frac{1}{2}$ is $\frac{2-bc}{c}$, where $\mathbf a, \mathbf b$, and $\mathbf c$ are positive integers with $\gcd(a,b,c)=1$. What is $\mathbf a+\mathbf b+c^2$

- (A) 59
- (B) 60
- (C) 61
- (D) 62
- (E) 63

156

Problem 19

In $\triangle ABC$. $\angle C=90^\circ$ and AB=12. Squares ABXY and ACWZ are constructed outside of the triangle. The points X,Y,Z, and W lie on a circle. What is the perimeter of the triangle?

- (A) $12 + 9\sqrt{3}$
- (B) $18+6\sqrt{3}$
- (C) $12 + 12\sqrt{2}$
- (D) 30 (E) 32

Problem 22

In the figure shown below, ABCDE is a regular pentagon and AG=1. What is FG+JH+CD?

- (A) 3
- (B) $12 4\sqrt{5}$
- (C) $\frac{5+2\sqrt{5}}{3}$
- (D) $1 + \sqrt{5}$
- (E) $\frac{11+11\sqrt{5}}{10}$

16a

Problem 16

A triangle with vertices A(0,2)B(-3,2) and C(-3,0) is reflected about the \mathcal{X} -axis, then the image $\triangle A'B'C'$ is rotated counterclockwise about the origin by 90° to produce $\triangle A''B''C''$. Which of the following transformations will return $\triangle A''B''C''$ to $\triangle ABC'$?

- (A) counterclockwise rotation about the origin by $90^{\circ}.$
- (B) clockwise rotation about the origin by $90^{\circ}.$
- (C) reflection about the x-axis
- (D) reflection about the line y=x
- (E) reflection about the y-axis.