# 12 Sequence profiles

# 12.1 Sequence profiles and patterns

#### Protein secondary structures



Figure 12.1: Protein secondary structures (source: Shafee, Wikimedia Commons)

#### Functional regions found in MSA

- http://www.bioinformatics.org/strap/
- http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0070843

#### Applications of MSAs

- Position weight matrix
- Sequence profile
- HMM profile
- Motifs

# 12.2 Position weight matrix

A position weight matrix (PWM) is a two-dimensional array that contains position-specific scores. PWMs usually contain no gaps.

#### Creating a position probability matrix (PPM)

It requires an MSA without gaps.

#### Example of PPM

Make a PPM from the alignment below.

Seq1 AGT

Seq2 CAG

Seq3 AAT

Seq4 ATT

Position-specific frequencies

|   | 1 | 2 | 3 |
|---|---|---|---|
| A | 3 | 2 | 0 |
| G | 0 | 1 | 1 |
| С | 1 | 0 | 0 |
| Т | 0 | 1 | 3 |

PPM

|   | 1    | 2    | 3    |
|---|------|------|------|
| Α | 0.75 | 0.5  | 0    |
| G | 0    | 0.25 | 0.25 |
| С | 0.25 | 0    | 0    |
| Т | 0    | 0.25 | 0.75 |

#### From PPM to PWM

Similar to pair-wise scores, log-odds scores can be used for profiles.

$$PWM_{ar} = \log \frac{PPM_{ar}}{q_a}$$

 $q_a$ : Background probability of a

r: Position in MSA

# 12.3 Sequence profiles

A protein sequence profile is a two-dimensional array that contains position-specific scores.

#### Profile values

A profile is based on position-specific weights and a score matrix.

 $Prof_{ra}$ : Position-specific score of a at position r

 $R_{ab}$ : Pair-wise score of a and b

r: Position in MSA

a, b: Nucleotide/amino acid element

M: All nucleotides/amino acids

 $W_{rb}$ : Weight value of b at position r

# Profile with linear weights

$$\operatorname{Prof}_{ra} = \frac{1}{m_r} \sum_{b \in M} R_{ba} F_{rb}$$

$$W_{rb} = \frac{F_{rb}}{m_r}$$

 $F_{rb}$ : The number of occurrences of b at position r

 $m_r$ : The number of residues without gaps at position r

#### Example of profile with linear weights

Make a profile with linear weights.

Alignment

Seq1 AGC

Seq2 -AC

Seq3 AAT

Scoring matrix

|   | A  | G  | С  | Т  |
|---|----|----|----|----|
| A | 2  | 1  | -3 | -2 |
| G | 1  | 3  | -2 | -1 |
| С | -3 | -2 | 4  | 1  |
| Т | -2 | -1 | 1  | 2  |

Scores can be calculated as follows.

A1: 
$$1/2 \times (2 \times 2 + 1 \times 0 + (-3) \times 0 + (-2) \times 0) = 1/2 \times 4 = 2$$

G1: 
$$1/2 \times (1 \times 2 + 3 \times 0 + (-2) \times 0 + (-1) \times 0) = 1/2 \times 2 = 1$$

C1: 
$$1/2 \times ((-3) \times 2 + (-2) \times 0 + 4 \times 0 + 1 \times 0) = 1/2 \times (-6) = -3$$

T1: 
$$1/2 \times ((-2) \times 2 + (-1) \times 0 + 1 \times 0 + 2 \times 0) = 1/2 \times (-4) = -2$$

A2: 
$$1/3 \times (2 \times 2 + 1 \times 1 + (-3) \times 0 + (-2) \times 0) = 1/3 \times 5 = 1.67$$

G2: 
$$1/3 \times (1 \times 2 + 3 \times 1 + (-2) \times 0 + (-1) \times 0) = 1/3 \times 5 = 1.67$$

C2: 
$$1/3 \times ((-3) \times 2 + (-2) \times 1 + 4 \times 0 + 1 \times 0) = 1/3 \times (-8) = -2.67$$

T2: 
$$1/3 \times ((-2) \times 2 + (-1) \times 1 + 1 \times 0 + 2 \times 0) = 1/3 \times (-5) = -1.67$$

A3: 
$$1/3 \times (2 \times 0 + 1 \times 0 + (-3) \times 2 + (-2) \times 1) = 1/3 \times (-8) = -2.67$$

G3: 
$$1/3 \times (1 \times 0 + 3 \times 0 + (-2) \times 2 + (-1) \times 1) = 1/3 \times (-5) = -1.67$$

C3: 
$$1/3 \times ((-3) \times 0 + (-2) \times 0 + 4 \times 2 + 1 \times 1) = 1/3 \times (9) = 3$$

T3: 
$$1/3 \times ((-2) \times 0 + (-1) \times 0 + 1 \times 2 + 2 \times 1) = 1/3 \times (4) = 1.33$$

Calculated profile with linear weights.

|   |   | A     | G     | С     | Т     |
|---|---|-------|-------|-------|-------|
|   | 1 | 2     | 1     | -3    | -2    |
| ĺ | 2 | 1.67  | 1.67  | -2.67 | -1.67 |
| ĺ | 3 | -2.67 | -1.67 | 3     | 1.33  |

### Non-linear weights

Amino acids/nucleotides occurring many times are "favored".

$$W_{rb} = \frac{\ln((1 - F_b)/(1 + m_r))}{\ln(1/(1 + m_r))}$$

Amino acids/nucleotides occurring many times are "punished".

$$W_{rb} = \frac{1 + \ln(1 - F_b)}{1 + \ln m_r}$$



Figure 12.2: Two different weight functions)

#### Treating gaps

Position-specific gap penalties are usually added to profiles.

#### 12.4 Profile search

A constructed profile can be used to find sequence patterns.

#### Profile score of a query sequence

The score of a query sequence can be calculated by adding all corresponding positionspecific scores.

# Example of profile score

Find the best score for q = AGCT.

Profile:

|   | Α  | G  | С  | Т  | Gap | Len |
|---|----|----|----|----|-----|-----|
| 1 | 5  | -5 | -2 | -1 | 10  | 10  |
| 2 | -2 | 3  | 4  | -7 | 10  | 10  |
| 3 | 1  | 2  | 1  | -1 | 5   | 7   |
| 4 | -3 | 3  | -2 | 7  | 10  | 10  |

Score: 5 + 3 + 1 + 7 = 16

#### Searching databases with a profile

A dynamic programming method can be used for a profile search.

$$H_{i,j} = \max \left\{ 0, \text{Prof}_{jd_i} + \max \left\{ \begin{array}{l} H_{i-1,j-1} \\ \max_{2 \ll k \ll j-1} H_{i-1,j-k} - g_k^d \\ \max_{2 \ll l \ll i-1} H_{i-l,j-1} - g_l^d \end{array} \right. \right. \right.$$

where  $g_k^d$  and  $g_l^P$  are database and profile gap penalties.

# Example of database search with profile

d1 = ACT

Gap penalty: 5 + 2(l-1)

Profile:

|   | Α  | G  | С  | Т  | Gap | Len |
|---|----|----|----|----|-----|-----|
| 1 | 5  | -5 | -2 | -1 | 10  | 10  |
| 2 | -2 | 3  | 4  | -7 | 10  | 10  |
| 3 | 1  | 2  | 1  | -1 | 5   | 7   |
| 4 | -3 | 3  | -2 | 7  | 10  | 10  |

DP table:

|   |   | 1 | 2 | 3 | 4  |
|---|---|---|---|---|----|
|   | 0 | 0 | 0 | 0 | 0  |
| Α | 0 | 5 | 0 | 1 | 0  |
| С | 0 | 0 | 9 | 5 | 0  |
| T | 0 | 0 | 0 | 8 | 12 |

| H <sub>1.1</sub> : 5       | H <sub>1.2</sub> : 0       | H <sub>1.3</sub> : 1       | $H_{1.4}$ : 0              |
|----------------------------|----------------------------|----------------------------|----------------------------|
| Prof <sub>1A</sub> : 5     | Prof <sub>2A</sub> : -2    | Prof <sub>3A</sub> : 1     | Prof <sub>4A</sub> : -3    |
| Diagonal: $5+0$            | Diagonal: $-2 + 0$         | Diagonal: $1+0$            | Diagonal: $-3 + 0$         |
| Vertical: $5 + (0 - 10)$   | Vertical: $-2 + (0 - 10)$  | Vertical: $1 + (0 - 10)$   | Vertical: $-3 + (0 - 10)$  |
| Horizontal: $5 + (0 - 5)$  | Horizontal: $-2 + (5 - 5)$ | Horizontal: $1 + (5 - 7)$  | Horizontal: $-3 + (1 - 5)$ |
| H <sub>2,1</sub> : 0       | H <sub>2,2</sub> : 9       | H <sub>2,3</sub> : 5       | $H_{2,4}: 0$               |
| Prof <sub>1C</sub> : -2    | Prof <sub>2C</sub> : 4     | Prof <sub>3C</sub> : 1     | $Prof_{4C}$ : -2           |
| Diagonal: $-2 + 0$         | Diagonal: $4+5$            | Diagonal: $1+0$            | Diagonal: $-2 + 1$         |
| Vertical: $-2 + (5 - 10)$  | Vertical: $4 + (0 - 10)$   | Vertical: $1 + (1 - 10)$   | Vertical: $-2 + (0 - 10)$  |
| Horizontal: $-2 + (0 - 5)$ | Horizontal: $4 + (0 - 5)$  | Horizontal: $1 + (9 - 5)$  | Horizontal: $-2 + (9 - 7)$ |
| H <sub>3,3</sub> : 0       | H <sub>3,2</sub> : 0       | H <sub>3,3</sub> : 8       | H <sub>3,4</sub> : 12      |
| $Prof_{1T}$ : -1           | $Prof_{2T}$ : -7           | $Prof_{3T}$ : -1           | $Prof_{4T}$ : 7            |
| Diagonal: $-1 + 0$         | Diagonal: $-7 + 0$         | Diagonal: $-1 + 9$         | Diagonal: $7+5$            |
| Vertical: $-1 + (0 - 10)$  | Vertical: $-7 + (9 - 10)$  | Vertical: $-1 + (5 - 10)$  | Vertical: $7 + (0 - 10)$   |
| Horizontal: $-1 + (0 - 5)$ | Horizontal: $-7 + (0 - 5)$ | Horizontal: $-1 + (0 - 5)$ | Horizontal: $7 + (8 - 5)$  |

#### Alignment:

profile: 1234 d1: AC-T

# 12.5 PSI-BLAST

Position-specific iterated BLAST (PSI-BLAST) is an extension of BLAST. It is much more sensitive than BLAST. It can be used to find distantly related proteins.

Pseudo-code of linear progressive alignment (general progressive alignment)

# Algorithm 12.1: Simplified procedure of PSI-BLAST