

Reviewing MDP terminology for a refresher

Caution: Unless otherwise specified, here on:

- π
 - is a policy (not steady state distribution like in Markov chain)
- Value function:
 - $v_{\pi}(s) = \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s\right]; \forall s \in S$

Objective of MDP: Find policy with maximum state-value function

- $v_*(s) = \max_{\pi} v_{\pi}(s)$, $\forall s \in S$
 - $v_{\pi}(s)$: value function of state s under policy π
 - It is the expected reward when starting in state s and following some policy π
 - $v_*(s)$: value function of state s under optimal policy π^*
- Later-on we will use other objective functions

Expand state-value function

$$v_{\pi}(s) = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} | S_{t} = s \right]$$

$$= \mathbb{E}_{\pi} [R_{t} + \gamma R_{t+1} + \gamma^{2} R_{t+2} + \cdots | S_{t} = s, \pi]$$

$$= \mathbb{E}_{\pi} [R_{t} + \gamma (R_{t+1} + \gamma R_{t+2} + \cdots | S_{t} = s, \pi]$$

$$= \mathbb{E}_{\pi} [R_{t} + \gamma (v_{\pi}(S_{t+1})) | S_{t} = s, \pi]$$

$$= \sum_{s'} p(s, \pi(s), s') [r(s, \pi(s), s') + \gamma v_{\pi}(s')]$$

Dynamic programming

(Chapter 4, Sutton and Barto)

DP Algorithms

- Policy iteration solved as system of equations
- Policy iteration (this is the one generally referred to)
- Value iteration

Bellman equation for a "fixed" (deterministic) policy π

$$V(s) = \sum_{s'} p(s, \pi(s), s')[r + \gamma V(s')]$$

- $r = r(s, \pi(s), s')$; r here is deterministic
- Note: if there is randomness in value of r we rewrite the value function as
 - $V(s) = \sum_{s',r} [p(s,\pi(s),s',r)[r+\gamma V(s')]]$

Bellman "optimality" equation

- Let v^* be the optimal value function for the MDP. The function v^* satisfies, for each $s \in S$. the following
 - $v^*(s) = \max_{a \in A} \sum_{s',r} [p(s',r \mid s,a) \cdot (r(s,a,s') + v^*(s'))]$
 - Or if there is no randomness in rewards,
 - $v^*(s) = \max_{a \in A} \sum_{s'} [p(s' \mid s, a) \cdot (r(s, a, s') + v^*(s'))]$
- Furthermore, it is the only function satisfying the property

Some basic theories

- Definition: A **stationary policy**, defined by the function π takes actions $\pi(i)$ at time n if $X_n = i$, independent of previous states, previous actions, and time n
- Property: if the state space *S* is finite, there exists a stationary policy that solves the problem
 - $v^*(s) = \max_{\pi} v_{\pi}(s)$, $\forall s \in S$
- Definition: A function is called invariant with respect to an operation, if the operation does not vary the function.
 - If the invariant function is unique, then it is called a 'fixed point' for the operation

Some basic theories

- Definition: A **stationary policy**, defined by the function π takes actions $\pi(i)$ at time n if $X_n = i$ independent of previous states, previous actions, and time n
- Property: if the state space *S* is finite, there exists a stationary policy that solves the problem
 - $v^*(s) = \max_{\pi} v_{\pi}(s)$, $\forall s \in S$
- Definition: A function is called invariant with respect to an operation, if the operation does not vary the function.
 - If the invariant function is unique, then it is called a 'fixed point' for the operation

Note: similarity in steady state/ stationary distribution (ρ) of a Markov process, $\rho P = \rho$ Multiplying by Pdoes not change the value of ρ , so ρ is the fixed point for the MC defined by P

Fixed point theorem to solve for Bellman operators

• Solving for Bellman equation for a "given" (deterministic) policy π

$$V(s) = \sum_{s'} p(s, \pi(s), s')[r + \gamma V(s')]$$

Equivaent to writing: $V_{\pi} = B_{\pi}V_{\pi}$

 B_{π} : Bellman operator for a policy π ;

Applying Banach fixed-point theorem, for a given policy π , we can solve for V_{π} by starting at some random value V

Solving for Bellman optimality equation

$$v^*(s) = \max_{a \in A} \sum_{s'} \left[p(s' \mid s, a) \cdot \left(r(s, a, s') + \gamma v^*(s') \right) \right]$$

Equivalent to writing: $V_{\pi^*}^* = B_{\pi^*}^* V_{\pi^*}^*$ or $V^* = B^* V^*$

 B^* : Bellman optimality operator (corresponding to optimal policy π^* ;

Applying Banach fixed-point theorem we can solve for $v^*(s)$ by starting at some random value V

Policy iteration solved as system of equations

- 1. Initialize $\pi(s) \in \mathcal{A}(s)$; arbritrarily $\forall s \in \mathcal{S}$
- 2. Policy evaluation
- Solve for V(s), each $s \in S$, by solving following system of equations

$$-V(s) = \sum_{s',r} [p(s',r \mid s,\pi(s)) \cdot (r + \gamma \cdot V(s'))]; r = R(s,\pi(s),s')$$

- 3. Policy improvement
- For each $s \in S$:

$$- \pi'(s) = argmax_a \sum_{s',r} [p(s',r \mid s,a) \cdot (r + \gamma \cdot V(s'))]$$

• If $\pi'(s) = \pi(s)$, stop and return $v_* = V(s)$, $\pi_* = \pi$, else goto step 2

QX, Pt = is a MDP represented by a tuple (DP,R,A); SI= ξ1,2 ξ

Pa= [0.7 0.3] · P=[0.9 0.1]; R=[6-5]; R=[10.17]; Find optimal paties

Pa= [0.4 0.6] · 0.2 0.8]; Ra[7 12]; Raz[-14.13]; Find optimal paties () Let TI= [a, a]; initializing T; a l=discounting factor 2) Policy evaluation V(s) = \([P(s', r|s, \pi(s)) \cdot (r+x)V(s')]; r=R(s, \pi(s), s') $V(2) = [0.4 \ 0.6] [7+\lambda V(1)] = (0+[0.4V(1)+0.6V(2)] + (1.2+\lambda V(2)) = (0+[0.4V(1)+0.6V(2)] + (0$ Solve for V(1) and V(2) =) V(1) = 54 ; V(2) = 64 (3) Policy improvement $\Pi'(s) = \underset{\alpha}{\operatorname{argman}} \sum_{s',r} \left[P(s',r|s,\alpha) \cdot (r+t^{r}V(s')) \right]$ $\Pi'(i) = \underset{\alpha}{\operatorname{argman}} \left[6+\lambda 54 \right] \cdot \left[10.9 \text{ o.} \right] \left[10+\lambda 54 \right]$ $-5+\lambda 64$ = argman { 54 ; 60:2 = 0.2 $T'(2) = \underset{a}{\operatorname{argman}} \sqrt{64} \cdot 0.67 \left[\frac{7 + \lambda 54}{12 + \lambda 64} \right], \quad [0.2 \ 0.8] \left[\frac{-14 + \lambda 54}{13 + \lambda 64} \right]$ = argmax { 64; 63 , 63.4 TOO TI' = [a2, a] =) T = TI' =) Set TI=TI' goto step2

2) policy evaluation: $T = [a_2, a_1]$ $V(1) = [0.9 \text{ oil}] [10+\lambda V(1)] = 10.7 + \lambda [0.9 V(1) + 0.1 V(2)]$ $[17+\lambda V(2)]$ $V(2) = [0.4 \text{ o.6}] [7+\lambda \text{ V(1)}] = 10+\lambda [0.4 \text{ V(1)}] + 0.6 \text{ V(2)}]$ Two equations, two unknowns

Solve for V(1) and V(2); V(1) = 105.85; V(2) = 104.85(3) policy improvement

(5.7 0.3) [6++105.85] [0.9 0.7] [10++105.85]

(7++104.58) = argman 8 97.6 °, 105.85 $= Q_{2}$ $T'(2) = arg max \int [0.4 \text{ o.6}] [7+\lambda 105.85] [0.2 \text{ o.8}] [-14+\lambda 105.85]$ $12+\lambda 104.58$ = argman 104:58 0, 101.95 = a, $T = [a_2, a_1] \Rightarrow T = T \Rightarrow T = [a_2, a_1]$ is the optimal policy

Fixed point theorem to solve for Bellman operators

• Solving for Bellman equation for a "given" (deterministic) policy π

$$V(s) = \sum_{s'} p(s, \pi(s), s')[r + \gamma V(s')]$$

Equivaent to writing: $V_{\pi} = B_{\pi}V_{\pi}$

 B_{π} : Bellman operator for a policy π ;

Applying Banach fixed-point theorem, for a given policy π , we can solve for V_{π} by starting at some random value V

Policy iteration

- 1. Initialize $V(s) \in \mathbb{R}$, $\pi(s) \in \mathcal{A}(s)$; arbitrarily $\forall s \in \mathcal{S}$; set tolerance θ (=1e-6)
- 2. Policy evaluation
- Loop while $\Delta > \theta$:
 - $\Delta \leftarrow 0$
 - *–* Loop for each s ∈ S
 - $v \leftarrow V(s)$
 - $V(s) = \sum_{s',r} p(s',r \mid s,\pi(s))[r + \gamma V(s')]$
 - $\Delta \leftarrow \max(\Delta, |v V(s)|)$

Applies fixed-point theorem to solve Bellman equation for a *fixed* policy
Note: This can be applied to

any policy

- 3. Policy improvement
- For each $s \in S$:
 - $\pi'(s) = \operatorname{argmax}_{a} \sum_{s',r} p(s',r \mid s,a) [r + \gamma V(s')]$
- If $\pi'(s) = \pi(s)$, stop and return $v_* = V(s)$, $\pi_* = \pi$, else goto step 2

Finite horizon v infinite time horizon

• Infinite time horizon:

- e.g., What is optimal inventory ordering policy (DP assignment)
- Discounting bounds the value function; no changes needed in formulation
- What if discounting is not preferred? (discounting gives less value to future rewards)
 - $V(s) = \sum_{s',r} [p(s',r \mid s,\pi(s)) \cdot (R(s,\pi(s),s') + \gamma \cdot V(s'))] \bar{V}; \bar{V}$ =average reward associated with the policy under evaluation (unknown); 1 more unknown than number of equation \rightarrow set one of V(s) = 0 and solve for the other elements

• Finite time horizon:

- e.g., game (win, lose); health progression over a lifetime; robotic tasks
- Make the final state a terminal state ($Pr(terminal \ state, terminal \ state) = 1$)
- Make reward for $R(terminal\ state, a, terminal\ state) = 0$; you can give one time-reward for the transition, e.g., $R(:,a,win_{state}) = high\ reward$
- You may choose to make discounting factor = 1; as time is sufficiently small, it bounds the value function

Fixed-point theorem

- In **policy iteration** we first did policy evaluation
 - Based on Bellman's equation, for any policy π , there exist a fixed-point solution V
 - $-V(s) = \sum_{s',r} \left[p(s',r \mid s,\pi(s)) \cdot \left(R(s,\pi(s),s') + \gamma \cdot V(s') \right) \right]$
 - Therefore, for any π , we can solve for V(s), by starting with some arbitrary value and iterating through until we arrive at the fixed point (solution converges)
- Applying the fixed-point theorem, we also have
 - If v_* is the optimal value function for a given MDP, then it satisfies the following equation
 - $v_*(s) = \max_{a \in \mathcal{A}} \sum_{s',r} [p(s',r \mid s,a) \cdot (R(s,a,s') + \gamma \cdot v_*(s'))]$
 - Then why not directly aim for iteratively solving for v_* ? (\rightarrow value iteration)

Value iteration

- 1. Initialize $V(s) \in \mathbb{R}$ arbritrarily $\forall s \in S$ except set V(terminal) 0; set tolerance θ (=1e- θ); set Δ to positive value
- 2. Find optimal value function
- Loop while $\Delta > \theta$:
 - $\Delta \leftarrow 0$
 - *–* Loop for each s ∈ S
 - $v \leftarrow V(s)$
 - $V(s) = \max_{a \in \mathcal{A}} \sum_{s',r} [p(s',r \mid s,a) \cdot (R(s,a,s') + \gamma \cdot V(s'))]$
 - $\Delta \leftarrow \max(\Delta, |v V(s)|)$
- 3. Find corresponding optimal policy
 - $\pi(s) = argmax_a \sum_{s',r} [p(s',r \mid s,a) \cdot (R(s,a,s') + \gamma \cdot V(s'))]$

UMassAmherst The Commonwealth's Flagship Campus