Introduction to Mathematical Programming IE406

Lecture 2

Dr. Ted Ralphs

Reading for This Lecture

- Primary Reading
 - Bertsimas 1.1-1.2, 1.4-1.5
- Supplementary Reading
 - Bertsimas 1.3
 - Operations Research Methods and Models
 - Model Building in Mathematical Programming

Review from Last Time

- Recall that a mathematical model consists of:
 - Decision variables (with domains)
 - Constraints (functions of the variables with domains)
 - Objective Function (maximize or minimize)
 - Parameters and Data

The general form of a *mathematical programming model* is:

min or max
$$f(x_1, ..., x_n)$$

s.t. $g_i(x_1, ..., x_n) \begin{cases} \leq \\ = \\ \geq \end{cases} b_i$
 $(x_1, ..., x_n) \in X$

where X may be a discrete set.

Example of a Mathematical Program: The Diet Problem

- Goal: Choose the cheapest menu satisfying nutritional requirements.
- What is the input data?
- What is the formulation in words?

Critique of the Model

What are the possible problems with this model?

A Little History

- George Dantzig is considered to be the father of linear programming.
- The diet problem was one of the first applications of linear programming.
- It took *120 man-days* to solve a problem with 9 constraints and 77 variables by hand!
- Later, Dantzig tried to lose weight by designing his own diet.
 - The first solution he came up with contained several gallons of vinegar.
 - After deleting vinegar from the list of foods, the new solution contained approximately 200 bouillon cubes.
 - This illustrates one of the potential hazards of math modeling.

Representing Math Models: Vectors and Matrices

• An $m \times n$ matrix is an array of mn real numbers:

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- A is said to have n columns and m rows.
- An *n-dimensional column vector* is a matrix with one column.
- An n-dimensional row vector is a matrix with one row .
- By default, a vector will be considered a column vector.
- The set of all n-dimensional vectors will be denoted \mathbb{R}^n .
- The set of all $m \times n$ matrices will be denoted $\mathbb{R}^{m \times n}$.

Matrices

• The transpose of a matrix A is

$$A^{\top} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

- If $x, y \in \mathbb{R}^n$, then $x^\top y = \sum_{i=1}^n x_i y_i$.
- This is called the *inner product* of x and y.
- If $A \in \mathbb{R}^{m \times n}$, then A_j is the j^{th} column, and a_j^{\top} is the j^{th} row.
- If $A \in \mathbb{R}^{m \times k}, B \in \mathbb{R}^{k \times n}$, then $[AB]_{ij} = a_i^{\top} B_j$.

Linear Functions

ullet A linear function $f:\mathbb{R}^n \to \mathbb{R}$ is a weighted sum, written as

$$f(x_1, \dots, x_n) = \sum_{i=1}^n c_i x_i$$

for given coefficients c_1, \ldots, c_n .

• We can write x_1, \ldots, x_n and c_1, \ldots, c_n as vectors $x, c \in \mathbb{R}^n$ to obtain:

$$f(x) = c^{\top} x$$

- In this way, a linear function can be represented simply as a vector.
- We will consider only models defined by linear functions.

Back to the Diet Problem

- How do we write the diet problem mathematically?
- What are the decision variables?
- What is the objective function?
- What are the constraints?

Putting It All Together

• Using matrix notation, we can write our current formulation as

$$min c^{\top}x$$
$$s.t. l \le Ax \le u$$

• What are we missing?

Linear Programs

- What we have just seen is an example of a linear program.
- In general, we can write a linear program as

minimize
$$c^{\top}x$$

s.t. $a_i^{\top}x \ge b_i \ \forall i \in M_1$
 $a_i^{\top}x \le b_i \ \forall i \in M_2$
 $a_i^{\top}x = b_i \ \forall i \in M_3$
 $x_j \ge 0 \ \forall j \in N_1$
 $x_j \le 0 \ \forall j \in N_2$

This in turn can be written equivalently as

$$\begin{array}{ll}
\text{minimize} & c^{\top} x \\
\text{s.t.} & Ax \ge b
\end{array}$$

How do we do this?

Standard Form

• To solve a linear program, it is convenient to put it in the following standard form:

$$min c^{\top} x$$

$$s.t. \quad Ax = b$$

$$x \ge 0$$

• How do we do this?

Two Crude Petroleum Example

- Two Crude Petroleum distills crude from two sources:
 - Saudi Arabia
 - Venezuela
- They have three main products:
 - Gasoline
 - Jet fuel
 - Lubricants
- Yields

	Gasoline	Jet fuel	Lubricants
Saudi Arabia	0.3 barrels	0.4 barrels	0.2 barrels
Venezuela	0.4 barrels	0.2 barrels	0.3 barrels

Two Crude Petroleum Example (cont.)

Availability and cost

	Availability	Cost
Saudi Arabia	9000 barrels	\$20/barrel
Venezuela	6000 barrels	\$15/barrel

• Production Requirements (per day)

Gasoline	Jet fuel	Lubricants
2000 barrels	1500 barrels	500 barrels

• Objective: Minimize production cost.

Modeling the Two Crude Production Problem

- What are the decision variables?
- What is the objective function?
- What are the constraints?

Linear Programming Formulation of Two Crude Example

• This yields the following LP formulation:

min
$$20000x_1 + 15000x_2$$

s.t. $0.3x_1 + 0.4x_2 \ge 2.0$
 $0.4x_1 + 0.2x_2 \ge 1.5$
 $0.2x_1 + 0.3x_2 \ge 0.5$
 $0 \le x_1 \le 9$
 $0 \le x_2 \le 6$

- How can we solve this problem?
- What are the possible outcomes of solving such a problem?