Speedup Techniques for Hyperparameter Optimization BOHB

Bernd Bischl <u>Frank Hutter</u> Lars Kotthoff Marius Lindauer Joaquin Vanschoren

Robust and Efficient Hyperparameter Optimization at Scale

Desiderata for a practical solution to the hyperparamenter optimization problem:

- Strong Anytime Performance
- Strong Final Performance
- Scalability
- Robustness & Flexibility
- Computational Efficiency
- Effective Use of Parallel Resources
- Conceptual / Algorithmic Simplicity

Robust and Efficient Hyperparameter Optimization at Scale

Desiderata for a practical solution to the hyperparamenter optimization problem:

- Strong Anytime Performance
- Strong Final Performance
- Scalability
- Robustness & Flexibility
- Computational Efficiency
- Effective Use of Parallel Resources
- Conceptual / Algorithmic Simplicity

To fulfill all of these desiderata, BOHB [Falkner, Klein and Hutter, ICML 2018] combines Bayesian Optimization with Hyperband

BOHB

- BOHB combines the advantages of Bayesian Optimization and Hyperband
 - ▶ Bayesian Optimization for choosing configurations to achieve strong final performance
 - $\,\blacktriangleright\,$ Hyperband to choose the budgets for good anytime performance

BOHB

- BOHB combines the advantages of Bayesian Optimization and Hyperband
 - ▶ Bayesian Optimization for choosing configurations to achieve strong final performance
 - ▶ Hyperband to choose the budgets for good anytime performance
- BOHB replaces the random selection of configurations at the beginning of each HB iteration by a model-based search

BOHB

- BOHB combines the advantages of Bayesian Optimization and Hyperband
 - ▶ Bayesian Optimization for choosing configurations to achieve strong final performance
 - ▶ Hyperband to choose the budgets for good anytime performance
- BOHB replaces the random selection of configurations at the beginning of each HB iteration by a model-based search
- Details of the model
 - Variant of the Tree Parzen Estimator, with a product kernel
 - ▶ Models are fitted independently to the data for one budget at a time
 - ★ Specifically, always the highest budget that has enough data points

BOHB: Algorithm

Pseudocode for sampling in BOHB

Input: observations D, fraction of random runs ρ , percentile γ , number of samples N_s , minimum number of points N_{min} to build a model, and bandwidth factor b_w

Output: next configuration to evaluate

- 1 if $rand() < \rho$ then return random configuration
- 2 $b = \arg\max\{D_b : |D_b| \ge N_{min} + 2\}$
- 3 if $b = \emptyset$ then return random configuration
- 4 Fit KDEs according to Equation ??
- 5 Draw N_s samples according to $l'(\pmb{\lambda})$
- 6 return sample with highest ratio $l(\pmb{\lambda})/g(\pmb{\lambda})$

BOHB: Algorithm

Pseudocode for sampling in BOHB

Input: observations D, fraction of random runs ρ , percentile γ , number of samples N_s , minimum number of points N_{min} to build a model, and bandwidth factor b_w

Output: next configuration to evaluate

- 1 if $rand() < \rho$ then return random configuration
- 2 $b = \arg\max\{D_b : |D_b| \ge N_{min} + 2\}$
- 3 if $b=\varnothing$ then return random configuration
- 4 Fit KDEs according to Equation ??
- 5 Draw N_s samples according to $l'(\pmb{\lambda})$
- 6 return sample with highest ratio $l(\pmb{\lambda})/g(\pmb{\lambda})$

$$l(\lambda) = p(c(\lambda) \le \gamma | D_b) \qquad g(\lambda) = p(c(\lambda) > \gamma | D_b)$$
 (1)

BOHB: Algorithm

Pseudocode for sampling in BOHB

Input: observations D, fraction of random runs ρ , percentile γ , number of samples N_s , minimum number of points N_{min} to build a model, and bandwidth factor b_w

Output: next configuration to evaluate

- 1 if $rand() < \rho$ then return random configuration
- 2 $b = \arg\max\{D_b : |D_b| \ge N_{min} + 2\}$
- 3 if $b=\varnothing$ then return random configuration
- 4 Fit KDEs according to Equation ??
- 5 Draw N_s samples according to $l'(\pmb{\lambda})$
- 6 return sample with highest ratio $l(\pmb{\lambda})/g(\pmb{\lambda})$

$$l(\lambda) = p(c(\lambda) \le \gamma | D_b)$$
 $g(\lambda) = p(c(\lambda) > \gamma | D_b)$ (1)

• Note: $l'(\lambda)$ is similar to $l(\lambda,)$ but has larger bandwidths

Figure: Performance of RS and BOHB on Auto-Net on dataset Adult

Figure: Performance of RS and BOHB on Auto-Net on dataset Adult

Figure: Performance of RS and BOHB on Auto-Net on dataset Adult

Figure: Performance of RS, TPE, HB and BOHB on Auto-Net on dataset Adult

BOHB: Different number of parallel workers

Figure: Performance of BOHB with different number of parallel workers on the letter surrogate benchmark for 128 iterations

BOHB: Optimization of a Bayesian Neural Network

Figure: Optimization of 5 hyperparameters of a Bayesian neural network trained with SGHMC.

BOHB: Optimization of a Reinforcement Learning Agent

Figure: Hyperparameter optimization of 8 hyperparameters of PPO on the cartpole task.

BOHB: Optimization of an SVM

Figure: Comparison on the SVM on MNIST surrogate benchmark

BOHB: Counting Ones

Figure: Results for the counting ones problem in 16 dimensional space with 8 categorical and 8 continuous hyperparameters.

BOHB: Optimization of a Feedforward Network

Figure: Optimizing six hyperparameters of a feed-forward neural network on featurized datasets; results are based on surrogate benchmarks.

Questions to Answer for Yourself / Discuss with Friends

- Repetition. Why does BOHB interleave randomly sampled configurations in the optimization process?
- Discussion. What are the advantages of the Parzen estimator model over more advanced models such as random forests or Gaussian processes?