Redes neuronales y sus aplicaciones recientes

Alain Vega alainjosevz@gmail.com

Universidad Catolica "Nuestra señora de la Asuncion"

Facultad de ciencias y tecnologia

Departamento de electronica e informatica

https://www.universidadcatolica.edu.py/

Resumen Una de las tendencias ultimamente son las redes neuronales. En este documento se muestran conceptos claves sobre este modelo y una significativa variedad de ejemplos sobre aplicaciones recientes del mismo.

Keywords: Redes neuronales · Inteligencia artificial · Machine learning · Deep learning · AI · ML · NN · ANN · SNN · RNN · CNN · DL

1. Introduccion

Si hace unos años, nos hubieran dicho que una máquina sería capaz de aprender por sí sola y tomar decisiones basadas en esa experiencia, ¿te lo habrías creído? ¿Y si además te hubieran dicho que un conjunto de algoritmos serían capaces de hacer funciones consideradas "humanas" como crear arte o componer melodías únicas? [5]

Todo esto es ya una realidad, por ello ultimamente la Inteligencia artificial (AI) esta en boca de todos, pero es gracias a las **redes neuronales** (NN) que todo esto es posible.

Estas redes alcanzan metas bastante impresionantes y que cada vez se acercan más a esa idea original de reproducir el funcionamiento del cerebro humano en una computadora.

Ahora bien, ¿en qué consisten estos modelos? ¿Cómo puede imitar un computadora el proceso de aprendizaje y acabar desarrollando una "cosa" que funciona? [8]

2. ¿Que es una red neuronal?

Una red neuronal, tambien conocida como red neuronal artificial (ANN) o red neuronal simulada (SNN), es un modelo de *machine learning* (ML) el cual constituye el eje de los algoritmos de *deep learning* (DL)

Su nombre y estructura se inspiran en el cerebro humano, e imitan la forma en la que las neuronas biológicas se señalan entre sí.

Las redes neuronales artificiales (ANN) están formadas por capas de nodos, que contienen una capa de entrada, una o varias capas ocultas y una capa de salida. [6]

2 Alain Vega

Donde cada nodo se conoce como una neurona artificial, esta se conecta a otra neurona (nodo) la capa hace referencia a conjunto de nodos (neuronas).

Figura 1. Ejemplo de una red neuronal artificial (ANN) [5]

En la figura 1 se muestra un ejemplo, aqui la capa de la izquierda es la capa de entrada (la que esta conectada con el "mundo" exterior y se alimenta de el) las capas 2 y 3 son capas ocultas que ayudan al procesamiento de la tarea y por ultimo la capa 4 es la de salida, la cual envia sus resultados al "mundo" exterior

3. Estructura basica de una red neuronal

3.1. Analogia con el cerebro

La neurona es la unidad fundamental del sistema nervioso y en particular del cerebro. Cada neurona es una simple unidad procesadora que recibe y combina señales desde y hacia otras neuronas. Si la combinación de entradas es suficientemente fuerte la salida de la neurona se activa. [14]

El cerebro consiste en uno o varios billones de neuronas densamente interconectadas. Apoyandonos en la figura 2. El axón (salida) de la neurona se ramifica y está conectada a las dendritas (entradas) de otras neuronas a través de uniones llamadas sinapsis. La eficacia de la sinpasis es modificable durante el proceso de aprendizaje de la red. [14]

3.2. Redes neuronales artificiales (ANN)

En las Redes Neuronales Artificiales, ANN, la unidad análoga a la neurona biológica es el elemento procesador, PE (*Process Element*). Un elemento proce-

Figura 2. Componentes de una reurona real [19]

sador tiene varias entradas y las combina, normalmente con una suma básica. ¹. La suma de las entradas es modificada por una función de transferencia y el valor de la salida de esta función de transferencia se pasa directamente a la salida del elemento procesador. ²

La salida del PE se puede conectar a las entradas de otras neuronas artificiales (PE) mediante conexiones ponderadas correspondientes a la eficacia de la sinapsis de las conexiones neuronales. [14]

La Figura 3 muestra una neurona artificial con conceptos de una neurona real. La dendrita se representa como un enlace de entrada a la neurona.

La sinapsis se representa como la union/fusion de un terminal del axon de una neurona con una dendrita de otra neurona.

En el cuerpo celular ocurren varias cosas, la primera es que gracias a sinapsis las entradas disponibles de cada una de las neuronas de la capa anterior llegan como el producto $x_i * w_i$, donde x_i es el resultado de una neurona "anterior" y w_i es el peso "conectarse" a la dendrita de nuestra neurona. La segunda es la sumatoria de cada entradas $x_i * w_i$ y sumarle b que representa el bias/sesgo/umbral (el cual nos permite mover la funcion de activacion de manera horizontal). Por ulitmo toda la sumatoria del paso dos, se pasa a la funcion de activacion f esta puede lineal o no lineal, existen una amplia variedad de funciones de activacion.

Finalmente transmite el resultado $y = f(\sum_{i=1}^{n} x_i * w_i + b)$ suponiendo n entradas

¹ Existen mas formas de combinar las entradas de la neurona que la sumatoria, como por ejemplo con un productorio: $\Pi_i w_i * x_i$ o aplicando la funcion maximo elemento: $\max_i w_i * x_i$ [10]

² En lugar de pasar el valor de la funcion de transferencia directamente a la salida (funcion de salida = funcion identidad), se puede pasar por otra funcion, **la funcion de salida** la cual pueder ser una funcion binaria [10]

B(x) = 1 si x >= umbral,

B(x) = 0 caso contario

4 Alain Vega

Figura 3. Diagrama de una neurona artificial con conceptos de una neurona real [7]

4. Funcion de activacion

La funcion de activacion se encarga de decidir cuando una neurona artificial debe activarse o no. Esto significa que dicha funcion decide cuando la entrada a la neurona artificial es importante o no para la red. [1]

Su rol es derivar la salida de la neurona artificial, dado un conjunto de valores de la entrada para alimentar a otras neuronas artificiales. [1]

Existen muchas funciones de activacion, se pueden clasificar en tres grupos.

4.1. Clases de funciones de activacion

Funciones de paso binario Necesita de un valor umbral ξ que decide cuando la neurona artificial debe activarse o no. [1]

$$B(x) = \begin{cases} 0, & \text{si } x < \xi \\ 1, & \text{si } x \ge \xi \end{cases}$$

Funciones de activacion lineales Tambien conocida como "sin activacion" donde la activacion es proporcional a la entrada. [12]

Se utilizan en la capa de salida para problemas de regresion lineal. [1]

$$f(x) = mx + b$$

Funciones de activacion no lineales Son las mas utilizadas ya que facilita que el modelo generice o se adapte con una variedad de datos y diferencie entre los resultados. [12]

Las principales son:

• Sigmoide o logistica: utlizada en la capa de salida para problemas de clasificacion binaria (clasificar en 2 grupos) y problemas de clasificacion multietiqueta o multi-objetivo (la salida puede estar en mas de un grupo). [1]

$$\sigma(x) = \frac{1}{1 - e^{-x}}$$

■ Tangente hiperbolico: utilizada en las capas ocultas de una red neuronal recurrent (RNN). [1]

$$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

■ **ReLU** (*Rectified Linear Unit*): utilizada en las capas ocultas de una red neuronal convolucional (CNN). [1]

$$ReLU(x) = max(0, x)$$

 Softmax: utilizada en la capa de salida para problemas de multi-clasificación (clasificar en mas de 2 grupos). [1]

$$s(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{n} e^{x_j}}$$

La funcion Softmax convierte el vector de K entradas a un vector de K salidas tal que la suma las salidas es igual a 1, entonces la salida se puede interpretar como una distribucion de probabilidades. [20]

- 4.2. Tipos de Redes neuronales
- 4.3. AI vs ML vs NN vs DL
- 5. Conocimiento
- 5.1. ¿Como aprenden estas redes?

Propagacion hacia atras

- 5.2. Representa como aprendemos los humanos?
- 6. Aplicaciones
- 6.1. ChatGPT

Es una de las aplicaciones recientes mas reconocidas, ya casi no necesita presentacion. Su exito fue tan grande que empresas como Google o Microsoft apresuraron sus proyectos *Bard* y *Bing* respectivamente.

ChatGPT (Generative Pre-trained Transformer) es un procesador del lenguaje natural desarrollada por OpenAI, es un modelo hermano de InstructGPT, que esta capacitado para seguir una instruccion en un mensaje y proporcionar una respuesta detallada. [16]

¿Como funciona? Se entrena el modelo utilizando Reinforcement Learning from Human Feedback, (RLHF) es decir el aprendizaje por refuerzo a partir de la retroalimentacion humana, similar a su hermano InstructGPT pero con ligeras diferencias en la configuracion de recopilacion de datos. [16]

Se entrena un modelo inicial mediante ajustes supervisados: los entrenadores humanos de la AI proporcionan conversaciones en las que juegan de ambos lados: el usuario y un asistente de AI. Se les da a los capacitadores acceso a sugerencias escritas por modelos para ayudarlos a redactar sus respuestas. Se mezcla este nuevo conjunto de datos de diálogo con el conjunto de datos de InstructGPT, el cual transforman en un formato de diálogo. [16]

Para crear un modelo de recompensa para el aprendizaje por refuerzo, se necesita recopilar datos comparativos, que consisten en dos o más respuestas del modelo clasificadas por calidad. Para recopilar estos datos, se toman conversaciones que los entrenadores de IA tuvieron con el chatbot. Seleccionan al azar un mensaje escrito por un modelo, prueban varias alternativas de finalización y se pide a los entrenadores de IA que las clasifiquen. Usando estos modelos de recompensa, ajustan el modelo usando la Optimización de Política Proximal (la cual es una nueva clase de algoritmos de aprendizaje por refuerzo, que funcionan de manera comparable o mejor que los enfoques actuales y, al mismo tiempo, son mucho mas simples de implementar y ajustar [17])

Realizan varias iteraciones de este proceso. [16]

Figura 4. Diagrama del metodo de entrenamiento para ChatGPT [16]

Aqui van unos ejemplos de consultas a ChatGPT, el lector puede probarlo por el mismo en el siguiente enlace:

Figura 5. Ejemplo de consulta sobre corrector ortografico de español para LaTeX

 ${\bf Figura\,6.}$ Ejemplo de consulta donde se le pide que enseñe el lenguaje de programacion Go

6.2. DALL-E

De los mismos creadores de ChatGPT (OpenAI) DALL-E es otro caso de exito que muy probablemente el lector ya lo conozca. Se trata de una de las AI que comenzaron esta revolucion de generar imagenes, junto a otras como *Stable Diffusion* y *MidJourney*. [3]

DALL-E es un sistema de AI que tiene la capacidad de crear imagenes realistas y arte dada una descripcion en lenguaje natural. [15]

¿Como funciona? DALL-E fue creada al entrenar una red neuronal con imagenes y su descripcion en lenguaje natural, a traves del DL no solo comprende objetos individuales sino que tambien aprende de las relaciones entre objetos. [15]

DALL-E utiliza lo que se llama un modelo de difusión, que son esos sistemas de inteligencia artificial capaces de crear imágenes de la nada. En este proceso de creación, aprende de las estructuras latentes de los datos para entrenarse para eliminar el ruido gaussiano de imágenes borrosas, que son esas pequeñas distorsiones que pueden generarse en este tipo de AI. [3]

Su proceso de creación se puede resumir en tres pasos. Primero, codifica y entiende el texto que le has escrito en el prompt distingue los diferentes rasgos, características y estilos que has pedido que dibuje. Luego, DALL-E crea información de imagen a partir de esta petición, y finalmente utiliza un decodificador que pinta la imagen partiendo de ese texto. [3]

Aqui van unos ejemplos de lo que se puede hacer con DALL-E:

Figura 7. Ejemplo de generacion de imagen: un astronauta montando un caballo con estilo fotorealistico [15]

Figura 8. Ejemplo de Outpainting: agregar contexto a una imagen [15]

6.3. DeepFake

La tecnologia deepfake es una tecnica que manipula imagenes o videos por medio del deep learning. El resultado es una imagen o video muy realista de un evento que nunca ocurrio. [18]

Un deepfake es una imagen o un vídeo falsificado digitalmente de una persona que la hace parecer otra persona. Es el siguiente nivel de creación de contenido falso que aprovecha la inteligencia artificial. [18]

La gente empezó a tomar conciencia de la tecnología deepfake cuando un usuario de Reddit llamado "Deepfakes" publicó que había desarrollado un al-

 ${\bf Figura\,9.}$ Ejemplo de ${\it Inpainting}$ entrada: agrega un flamenco al lado de la piscina [15]

Figura 10. Ejemplo de Variaciones de una imagen [15]

goritmo de ML que podía transponer rostros de celebridades sin problemas a vídeos de contenido para adultos. [18]

¿Como funciona? Un vídeo deepfake explota dos modelos de machine learning. Un modelo crea falsificaciones a partir de un conjunto de datos de vídeos de muestra, mientras que el otro intenta detectar si el vídeo es realmente un fraude. Cuando el segundo modelo ya no puede decir si el vídeo es falso, el deepfake probablemente también sea lo suficientemente creíble para un espectador humano. Esta técnica se llama "red generativa adversarial" (GAN). [18]

Aqui van unos ejemplos:

Figura 11. Ejemplo de deepfake [2]

Figura 12. Ejemplo de deepfake [2]

Figura 13. Ejemplo de deepfake [11]

 ${\bf Figura\, 14.}$ Ejemplo de deepfake [4]

6.4. Nvidia DLSS

DLSS (*Deep Learning SuperSampling*) Es un tipo de técnica de renderizado de video que busca aumentar la velocidad de cuadros por segundo, renderizando cuadros a una resolución más baja que la mostrada.

El SuperSampling hace referencia a un metodo anti-aliasing que suaviza los bordes irregulares que aparecen en los gráficos renderizados. Sin embargo, a diferencia de otras formas de anti-aliasing, SSAA (supersampling anti-aliasing) funciona renderizando la imagen a una resolución mucho más alta y usando esos datos para llenar los espacios en la resolución nativa. [9]

DLSS es el resultado de un proceso exhaustivo de enseñanza del algoritmo de inteligencia artificial de Nvidia para generar juegos más atractivos. Después de renderizar el juego a una resolución más baja, DLSS infiere información de su base de conocimientos de entrenamiento de imágenes de superresolución para generar una imagen que todavía parece estar ejecutándose a una resolución más alta. La idea es hacer que los juegos renderizados a 1440p parezcan ejecutarse en 4K o que los juegos a 1080p parezcan 1440p. [9]

¿Como funciona? La NN recibe dos entradas:

- Imagenes aliased de baja resolucion generadas por el motor del juego
- En baja resolucion, vectores de movimiento de las mismas imagenes, tambien generados por el motor del juego.

En este enfoque, los vectores de movimiento sirven para indicar la dirección en la que los objetos de una escena se desplazan de un cuadro a otro. Estos vectores se aplican nuevamente a la salida de alta resolución del cuadro anterior para prever cómo se visualizará en el próximo cuadro. Este procedimiento se denomina Retroalimentación Temporal"porque utiliza la información pasada para anticipar eventos futuros. En el transcurso del aprendizaje, la imagen generada se compara con una imagen pre-renderizada de alta calidad con resolución de 16k. Las discrepancias entre estas dos imágenes se retroalimentan a la red neuronal para perfeccionar y optimizar sus resultados. [13]

Este ciclo se repite innumerables veces en una supercomputadora de Nvidia. Una vez que el modelo produce imágenes de calidad satisfactoria, se distribuye a los usuarios a través de actualizaciones de controladores para sus tarjetas gráficas. [13]

En pocas palabras podemos decir que es un proceso iterativo de entrenamiento, donde la historia de las imágenes y la retroalimentación constante impulsan la mejora continua del modelo, que luego se implementa en las tarjetas gráficas de los usuarios mediante actualizaciones de controladores.

6.5. Ejemplo5

7. Conclusion

Figura 15. Arquitectura de Nvidia DLSS 2.0 [13]

Referencias

- [1] Pragati Baheti. Activation Functions in Neural Networks [12 Types & Use Cases]. https://www.v7labs.com/blog/neural-networks-activation-functions. 2021.
- [2] Dot CSV. ¡Están haciendo DEEPFAKES de Fallecidos! / ¿Qué es la Nigromancia Digital? https://www.youtube.com/watch?v=_I-Aa5eBeF4. 2021.
- [3] Yubal Fernandez. DALL-E: qué es, cómo funciona y cómo puedes utilizar esta inteligencia artificial para crear imágenes. https://www.xataka.com/basics/dall-e-que-como-funciona-como-puedes-utilizar-esta-inteligencia-artificial-para-crear-imagenes. 2023.
- [4] Brian T. Horowitz. AI and Machine Learning Exploit, Deepfakes, Now Harder to Detect. https://www.pcmag.com/news/ai-and-machine-learning-exploit-deepfakes-now-harder-to-detect. 2019.
- [5] Pablo Huet. Qué son las redes neuronales y sus aplicaciones. https://openwebinars.net/blog/que-son-las-redes-neuronales-y-sus-aplicaciones/. 2023.
- [6] IBM. ¿Qué son las redes neuronales? https://www.ibm.com/es-es/topics/neural-networks. 2021.
- [7] Jeremy Jordan. Neural networks: representation. https://www.jeremyjordan.me/intro-to-neural-networks/. 2017.
- [8] Guillermo Julian. Las redes neuronales: qué son y por qué están volviendo. https://www.xataka.com/robotica-e-ia/las-redes-neuronales-que-son-y-por-que-estan-volviendo. 2016.
- [9] Jon Martindale. Nvidia RTX DLSS: everything you need to know. https://www.digitaltrends.com/computing/everything-you-need-to-know-about-nvidias-rtx-dlss-technology/. 2023.
- [10] Damian Jorge Matich. Redes Neuronales: Conceptos Básicos y Aplicaciones. https://www.frro.utn.edu.ar/repositorio/catedras/quimica/5_anio/orientadora1/monograias/matich-redesneuronales.pdf. 2001.

- [11] Maverick. Video Personalization Using Deepfake Technology. https://www.trymaverick.com/blog-posts/are-deep-fakes-all-evil-when-can-they-be-used-for-good. 2023.
- [12] Prerna Nichani. Activation Functions in Neural Networks. https://medium.com/analytics-vidhya/activation-functions-in-neural-networks-811e782d37e8. 2020.
- [13] NVIDIA. NVIDIA DLSS 2.0: A Big Leap In AI Rendering. https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/. 2020.
- [14] Xabier Basogain Olabe. Redes neuronales artificiales y sus aplicaciones. 2009.
- [15] OpenAI. DALL·E 2. https://openai.com/dall-e-2. 2022.
- [16] OpenAI. Introducing ChatGPT. https://openai.com/blog/chatgpt. 2022.
- [17] OpenAI. Proximal Policy Optimization. https://openai.com/research/openai-baselines-ppo. 2017.
- [18] TECHSLANG. What is Deepfake Technology? https://www.techslang.com/what-is-deepfake-technology/. 2023.
- [19] wikipedia. Grafico de una neurona real. https://es.m.wikipedia.org/wiki/Archivo:Neurona.svg.
- [20] Thomas Wood. Softmax Function. https://deepai.org/machine-learning-glossary-and-terms/softmax-layer.