→ SHEAR FACTOR CALCULATIONS -

Section geometry	<u>Width</u>	Height
------------------	--------------	--------

Top subsection $b_1 := 60$ $h_1 := 39$ [mm]

Middle subsection $b_2 := 8$ $h_2 := 162$ [mm]

Bottom subsection $b_3 := 60$ $h_3 := 39$ [mm]

Total section height $h := h_1 + h_2 + h_3 = 240$

Material properties Elastic modulus Shear modulus (typical timber properties)

Top subsection $E_1 := 14500$ $G_1 := 600$ [N/mm²]

Middle subsection $E_2 := 5300$ $G_2 := 2100$ [N/mm²]

Bottom subsection $E_3 := 14500$ [N]

Shear stiffness $GA := G_1 \cdot h_1 \cdot b_1 + G_2 \cdot h_2 \cdot b_2 + G_3 \cdot h_3 \cdot b_3 = 5,5296 \cdot 10^{-6}$

Section view

±-

$$y_n := \frac{b_2 \cdot h_2 \cdot E_2 \cdot \left(h_1 + \frac{h_2}{2}\right) + b_1 \cdot h_1 \cdot E_1 \cdot \frac{h_1}{2} + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + h_2 + \frac{h_3}{2}\right)}{b_1 \cdot h_1 \cdot E_1 + b_2 \cdot h_2 \cdot E_2 + b_3 \cdot h_3 \cdot E_3}$$

Position of neutral axis from the top edge [mm] $y_n = 120$

$$EI := \frac{h_1^{-3} \cdot b_1 \cdot E_1}{12} + \frac{h_2^{-3} \cdot b_2 \cdot E_2}{12} + \frac{h_3^{-3} \cdot b_3 \cdot E_3}{12} + b_1 \cdot h_1 \cdot E_1 \cdot \left(y_n - \frac{h_1}{2}\right)^2 + b_2 \cdot h_2 \cdot E_2 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2} - y_n\right)^2 + b_3 \cdot h_3 \cdot E_3 \cdot \left(h_1 + \frac{h_2}{2$$

Bending stiffness [Nmm²] $EI = 7,0903 \cdot 10^{11}$

Position of neutral axis from center [mm] $y_c := y_n - \frac{h}{2} = 0$

General expressions

$$H(z) := \frac{1}{2} \cdot (1 + \operatorname{sign}(z))$$

Elastic modulus expression for the whole cross-section depending on the distance from the top edge

$$E\left(z\right) := E_{1} \cdot H\left(z + y_{c} + h\right) - \left(E_{1} - E_{2}\right) \cdot H\left(z + y_{c} + \frac{h}{2} - h_{1}\right) + \left(E_{3} - E_{2}\right) \cdot H\left(z + y_{c} + \frac{h}{2} - h_{1} - h_{2}\right)$$

Shear modulus expression for the whole cross-section depending on the distance from the top edge

$$G\left(z\right) := G_{1} \cdot H\left(z + y_{c} + h\right) - \left(G_{1} - G_{2}\right) \cdot H\left(z + y_{c} + \frac{h}{2} - h_{1}\right) + \left(G_{3} - G_{2}\right) \cdot H\left(z + y_{c} + \frac{h}{2} - h_{1} - h_{2}\right)$$

Cross sectional width depending on the distance from the top edge

$$b\left(z\right) := b_{1} \cdot H\left(z + y_{c} + h\right) - \left(b_{1} - b_{2}\right) \cdot H\left(z + y_{c} + \frac{h}{2} - h_{1}\right) + \left(b_{3} - b_{2}\right) \cdot H\left(z + y_{c} + \frac{h}{2} - h_{1} - h_{2}\right)$$

Balance of energy of the beam for linear elasticity

Properties for the simply supported beam (useful for the further calculations):

- Linear distributed load [kN/m] q := 1

- Span length [m] L := 1

Bending stiffness $EI := \operatorname{Int}\left(E\left(z\right) \cdot b\left(z\right) \cdot z^{2}; \ z; -\frac{h}{2} - y_{c}; \ \frac{h}{2} - y_{c}\right) = 7,0903 \cdot 10^{11}$

Shear flow expression $T(z) := (-q) \cdot \frac{L}{2 \cdot EI} \cdot \text{Int} \left(E(z) \cdot b(z) \cdot z; z; -\frac{h}{2} - y_c; z \right)$

Internal energy $[Nmm] \qquad U := \text{eval} \left[\frac{1}{2} \cdot \text{Int} \left[\frac{\left(T \left(z \right) \right)^2}{G \left(z \right) \cdot b \left(z \right)}; \ z; -\frac{h}{2} - y_c; \frac{h}{2} - y_c \right] \right] = 3,1719 \cdot 10^{-8}$

External energy $[Nmm] \qquad W\left(k_s\right) := \frac{1}{2} \cdot \frac{k_s}{GA} \cdot \left(\frac{q \cdot L}{2}\right)^2 = \frac{k_s}{44236800}$

Shear correction factor $k_s := solve(U - W(k_s); k_s) = 1,4032$

Bending stiffness [Nmm²] $EI = 7,0903 \cdot 10^{11}$

Shear correction factor [-] $k_s = 1,4032$

Corrected shear stiffness [N] $GAc := \frac{GA}{k_s} = 3,9408 \cdot 10^{-6}$