Deep learning for NLP Mid Term Project

1. Problem Definition

We have taken <u>Comparative Study of CNN and RNN for Natural Language Processing</u> as base paper which systematically evaluates CNNs, GRUs, and LSTMs on NLP tasks, including **SemEval-2010 Task 8: Relation Classification**. They got best result for this task was **68.56% F1-score** using a GRU model.

Problem Statement

The goal is to improve the F1-score on SemEval-2010 Task 8 beyond the base paper's 68.56%

1. Dataset - SemEval-2010 Task 8

This is a benchmark dataset for relation classification, which focusses on identifying semantic relationships between pairs of different nominals (nouns/noun phrases) which are present in sentences. Below is a detailed breakdown of the dataset we chose for this:

1. Dataset Overview

- Key Features:
 - o **Directionality**: Relations are directional (e.g., Cause-Effect(e1,e2) ≠ Cause-Effect(e2,e1)).
 - o **Fine-grained Labels**: The dataset includes relations like *Entity-Origin*, *Content-Container*, and *Instrument-Agency* which are nuanced.
 - o Adversarial Examples: Many sentences labeled as "Other" contain cooccurring entities without a valid relation.

2. Dataset Statistics

Split	Sentences	Relation Types
Training	8,000	19 (9 relations + inverses + "Other")
Test	2,717	Same as training

- Relation Types:
 - 1. Cause-Effect (e.g., "Smoking <e1>causes</e1> <e2>cancer</e2>")
 - 2. Instrument-Agency (e.g., "<e1>Knife</e1> cuts <e2>bread</e2>")
 - 3. **Product-Producer** (e.g., "<e1>Microsoft</e1> developed <e2>Windows</e2>")
 - 4. **Entity-Origin** (e.g., "<e1>Wine</e1> from <e2>France</e2>")
 - 5. **Entity-Destination** (e.g., "<e1>Passengers</e1> boarded the <e2>plane</e2>")
 - 6. Component-Whole (e.g., "<e1>Whee1<e1> of a <e2>car<e2>")
 - 7. **Member-Collection** (e.g., "<e1>Player</e1> on the <e2>team</e2>")

- 8. **Message-Topic** (e.g., "<e1>Article</e1> about <e2>climate</e2>")
- 9. Content-Container (e.g., "<e1>Water</e1> in the <e2>bottle</e2>")
- 10. "Other": No valid relation.

3. Data Preprocessing

• Text Cleaning:

We standardized the input by lowercasing and retaining only letters, numbers, and specific symbols.

• Tokenization & Padding:

We used Keras Tokenizer converts sentences into sequences of integers (with a defined maximum vocabulary size) and pads these sequences to a fixed maximum length.

• Label Encoding:

We encoded labels using scikit-learn's LabelEncoder and then transformed into one-hot encoding vectors.

4. Embedding Strategies

We have performed multiple experiments with different types of embedding:

• GloVe Embeddings:

Some experiments loads pre-trained GloVe embeddings from a file (e.g., glove.6B.100d.txt). An embedding matrix is built where each word in the vocabulary is mapped to its corresponding vector.

• Word2Vec & FastText:

We load Word2Vec (using gensim's KeyedVectors) and FastText embeddings for out-of-vocabulary (OOV) words we initializes random vectors.

• Random Embeddings:

Some experiments use embeddings that are randomly initialized and learned during training, without using any pre-trained weights.

3. Model Architectures

We implemented several architectures, each designed to compare different strategies. Below, we list all the models used in our experiments.

List of Models

1. CNN+Bi-GRU

o A hybrid model combining CNN (Convolutional Neural Network) and **Bidirectional GRU** (Gated Recurrent Unit).

Layer (Type)	Output Shape	Param #	Description
Input Layer (InputLayer)	(None, 100)	0	Accepts integer-encoded sequences of fixed length 100.
Embedding (Embedding)	(None, 100, 100)	2,762,000	Maps each word index to a 100-dimensional dense vector; vocabulary size inferred from the training data.
Spatial Dropout (Spatial Dropout 1D)	(None, 100, 100)	0	Drops entire 1D feature maps to reduce overfitting, operating on the embedding outputs.
Bidirectional GRU (Bidirectional(GRU))	(None, 100, 256)	176,640	Processes the sequence bidirectionally with 128 units per direction, outputting 256 features per time step.
Conv1D (Kernel Size 3)	(None, 98, 256)	77,056	Convolves over the embeddings with a kernel size of 3 and 256 filters; output length = 100 - 3 + 1 = 98.
Conv1D (Kernel Size 4)	(None, 97, 256)	102,656	Convolves over the embeddings with a kernel size of 4 and 256 filters; output length = 100 - $4 + 1 = 97$.
Conv1D (Kernel Size 5)	(None, 96, 256)	128,256	Convolves over the embeddings with a kernel size of 5 and 256 filters; output length = $100 - 5 + 1 = 96$.
Bidirectional GRU (Second GRU)	(None, 100, 256)	296,448	A second bidirectional GRU layer (128 units per direction) processing the output of the first GRU branch.
GlobalMaxPooling1D (on Conv1D, kernel size 3)	(None, 256)	0	Applies max pooling over time on the Conv1D (kernel 3) output.
GlobalMaxPooling1D (on Conv1D, kernel size 4)	(None, 256)	0	Applies max pooling over time on the Conv1D (kernel 4) output.
GlobalMaxPooling1D (on Conv1D, kernel size 5)	(None, 256)	0	Applies max pooling over time on the Conv1D (kernel 5) output.
GlobalMaxPooling1D (on 2nd Bidirectional GRU)	(None, 256)	0	Pools the output of the second bidirectional GRU layer across all time steps.
Attention Layer	(None, 256)	356	Computes a weighted sum over the GRU outputs using a trainable attention mechanism.
Concatenate (CNN branch)	(None, 768)	0	Concatenates the three global max pooled outputs from the three Conv1D layers (256×3 = 768 features).
Concatenate (GRU branch)	(None, 512)	0	Concatenates the pooled GRU output (256) with the attention output (256) to form a 512-dimensional feature vector.
Concatenate (Final)	(None, 1280)	0	Merges the CNN branch (768 features) and the GRU branch (512 features) to produce 1280 total features.
Batch Normalization	(None, 1280)	5,120	Normalizes the combined feature vector to stabilize training and speed up convergence.
Dense	(None, 128)	163,968	A fully connected layer that reduces the dimensionality from 1280 to 128 using ReLU activation.
Dropout	(None, 128)	0	Randomly drops 50% of the neurons in the dense layer to help prevent overfitting.
Output Dense (Softmax)	(None, 10)	1,290	Final classification layer that produces probability distributions over 10 classes using softmax activation.

2. Bidirectional GRU

o A standalone **Bidirectional GRU** model.

Layer (Type)	Output Shape	Param #	Description
input_39 (InputLayer)	(None, 100)	0	Input sequence of length 100.
embedding_38 (Embedding)	(None, 100, 100)	2,762,000	Maps indices to 100D vectors.
spatial_dropout1d_41 (SpatialDropout1D)	(None, 100, 100)	0	Applies dropout to entire embedding maps.
bidirectional_55 (Bidirectional GRU)	(None, 100, 256)	176,640	Processes sequences in both directions.
global_max_pooling1d_85 (GlobalMaxPooling1D)	(None, 256)	0	Pools maximum value over time steps.
dense_82 (Dense)	(None, 128)	32,896	Fully connected layer, reduces features to 128.
dropout_37 (Dropout)	(None, 128)	0	Regularizes by dropping units.
dense_83 (Dense)	(None, 10)	1,290	Output layer with 10 units (e.g., softmax classifier).

3. **CNN**

o A standalone Convolutional Neural Network model.

Layer (Type)	Output Shape	Param #	Connected To	Description
Input (InputLayer)	(None, 100)	0	-	Input sequences.
Embedding (Embedding)	(None, 100, 100)	2,762,000	Input	Maps indices to 100D vectors.
SpatialDropout (SpatialDropout1D)	(None, 100, 100)	0	Embedding	Drops entire feature maps.
Conv1D (kernel=3)	(None, 98, 256)	77,056	SpatialDropout	1D conv with kernel size 3.
Conv1D (kernel=4)	(None, 97, 256)	102,656	SpatialDropout	1D conv with kernel size 4.
Conv1D (kernel=5)	(None, 96, 256)	128,256	SpatialDropout	1D conv with kernel size 5.
GlobalMaxPool (from conv, k=3)	(None, 256)	0	Conv1D (kernel=3)	Max-pooling over time.
GlobalMaxPool (from conv, k=4)	(None, 256)	0	Conv1D (kernel=4)	Max-pooling over time.
GlobalMaxPool (from conv, k=5)	(None, 256)	0	Conv1D (kernel=5)	Max-pooling over time.
Concatenate	(None, 768)	0	All GlobalMaxPools	Merges three pooled outputs (256×3).
BatchNorm (BatchNormalization)	(None, 768)	3,072	Concatenate	Normalizes features.
Dense	(None, 128)	98,432	BatchNorm	Fully connected, reduces dim to 128.
Dropout	(None, 128)	0	Dense	Regularizes by dropping units.
Output Dense (Softmax)	(None, 10)	1,290	Dropout	Final classification layer (10 classes).

4. Bidirectional GRU

o A standalone **Gated Recurrent Unit** model. We added a batch normalization layer because it will normalize the gru output which will stabalize parameters in training and help us converge faster. We removed Global max pooling which reduces dimensionality by selecting dominant features.

Layer (Type)	Output Shape	Param #	Description
input_42 (InputLayer)	(None, 100)	0	Input sequence of length 100.
embedding_41 (Embedding)	(None, 100, 100)	2,762,000	Maps word indices to 100D vectors.
spatial_dropout1d_44 (SpatialDropout1D)	(None, 100, 100)	0	Drops entire embedding maps for regularization.
bidirectional_58 (Bidirectional GRU)	(None, 256)	176,640	Processes sequence bidirectionally; outputs 256 features.
batch_normalization_31 (BatchNorm)	(None, 256)	1,024	Normalizes the GRU output.
dense_88 (Dense)	(None, 128)	32,896	Fully connected layer reducing features to 128.
dropout_40 (Dropout)	(None, 128)	0	Applies dropout for regularization.
dense_89 (Dense)	(None, 10)	1,290	Output layer (10 classes, softmax activation).

5. LSTM

o A standalone Long Short-Term Memory model.

Layer (Type)	Output Shape	Param #	Description
input_43 (InputLayer)	(None, 100)	0	Input sequence of length 100.
embedding_42 (Embedding)	(None, 100, 100)	2,762,000	Maps indices to 100D embeddings.
spatial_dropout1d_45 (SpatialDropout1D)	(None, 100, 100)	0	Drops entire feature maps for regularization.
bidirectional_59 (Bidirectional GRU)	(None, 256)	234,496	Processes sequence bidirectionally; outputs 256 features.
batch_normalization_32 (BatchNorm)	(None, 256)	1,024	Normalizes GRU outputs.
dense_90 (Dense)	(None, 128)	32,896	Fully connected layer reducing features to 128.
dropout_41 (Dropout)	(None, 128)	0	Applies dropout for further regularization.
dense_91 (Dense)	(None, 10)	1,290	Output layer with 10 units (e.g., for classification).

3. Training and Optimization

Loss and Optimizer:

• Loss Function:

We used **categorical crossentropy** loss, which is well-suited for multi-class classification problems.

• Optimizer:

We used **Adam optimizer** for its adaptive learning rate and efficiency in training deep networks.

Training Hyperparameters:

• Hyperparameters:

o **MAX VOCAB:** 20,000

Limits the vocabulary size used in tokenization.

o MAX LENGTH: 100

Sets the fixed length for input sequences via padding/truncation.

o **EMBEDDING DIM:** 100

Defines the dimensionality of the GloVe word embeddings.

• Batch Size & Epochs:

The model is trained using a batch size of 32 over 20 epochs.

• Validation:

The dataset is split into training and validation sets (approximately 80/20) to monitor performance and tune hyperparameters during training.

Regularization and Callbacks:

• Early Stopping:

An early stopping callback monitors the validation loss and stops training if no improvement is observed for **3 consecutive epochs**, restoring the best model weights.

• Learning Rate Reduction:

A ReduceLROnPlateau callback reduces the learning rate by a factor of **0.5** if the validation loss plateaus for **2 epochs**, with a minimum learning rate set to **1e-6**.

• Class Weighting:

Class weights are computed using scikit-learn's compute_class_weight function to handle class imbalance, ensuring that the model does not bias toward majority classes.

4. Results

Highest Accuracy: The CNN + stacked Bidirectional GRU + Attention with GloVe embedding model achieved 75.30% test accuracy.

Models that used pre-trained embeddings consistently outperformed those that used random embeddings.

We tested four different embeddings. Three were pre-trained (GloVe, Word2Vec, FastText) and one was random. Different architectures were used, including CNN, RNN (GRU and LSTM), and a hybrid CNN+RNN model. All models were tested on the SemEval 2010 Task 8 dataset. The final results we observed are as follows:

1. CNN

GloVe: 74.05%Random: 69.89%

• Frozen pretrained GloVe: 73.02%

2. GRU

GloVe: 74.46%Random: 50.31%

3. LSTM

GloVe: 69.67%Random: 53.48%

4. Hybrid Model: CNN + BiGRU + Attention

• GloVe: 75.30% (highest single-run figure recorded)

Word2Ve: 70.78%FastText: 72.14%

5. Ensemble: CNN+LSTM+GRU

• 74%

Fine-Tuning vs. Freezing Embeddings

We also tested the effects of freezing vs. fine-tuning embeddings:

• Fine-tuned GloVe with CNN sometimes improved from 73.02% to 74.00% compared to freeing.

Trends in the Results

- Large Performance Gap Between Pre-trained and Random Embeddings: CNN and RNN models with random embeddings performed between 55-60%, while models with pre-trained embeddings scored between 70-75%. This 10-15% difference shows how much better pre-trained embeddings performed.
- GloVe Outperformed Other Pre-trained Embeddings: When comparing embeddings, GloVe was better by 1-2% over Word2Vec and FastText.
- Hybrid Model Achieved the Best Accuracy: The CNN + BiGRU + Attention approach consistently gave the highest accuracy (75.30% with GloVe).

Comparison with the Reference Paper

The reference paper found that no single architecture was definitively better. They all had its own merits and limitations:

- CNN performed well on short sentences since it captures local patterns efficiently.
- RNN models (GRU, LSTM) performed better on longer, more complex sentences because they capture context over a sequence.
- The variation between CNN vs. RNN depends heavily on sentence structure. This was observed in our results.

Model	Embedding	Accuracy
CNN	GloVe	74.05%
CNN	Random	69.89%
CNN	Frozen Pretrained GloVe	73.02%
GRU	GloVe	74.46%
GRU	Random	50.31%
LSTM	GloVe	69.67%
LSTM	Random	53.48%
Hybrid (CNN + BiGRU + Attn)	GloVe	75.30%
Hybrid (CNN + BiGRU + Attn)	Word2Vec	70.78%
Hybrid (CNN + BiGRU + Attn)	FastText	72.14%
Ensemble (CNN + LSTM + GRU)	Mixed	74.00%

5. Experiments

Experiment 1: Comparing Pre-trained vs. Random Embeddings

We ran our model using CNN, GRU, and LSTM architectures on the SemEval 2010 Task 8 dataset while using four different types of word embeddings:

- GloVe (a pre-trained embedding)
- Word2Vec (a pre-trained embedding)
- **FastText** (a pre-trained embedding)
- Random (embeddings initialized randomly, without pre-training)

The goal of the experiment is to understand if pretrained word embeddings are actually important and if they will outperform the random embedding and by how much. Pre-trained embeddings are built from large amounts of text and already capture language knowledge. Random embeddings learn this information from scratch from the data given. We wanted to see whether this prior knowledge makes a significant difference in model performance.

Results

Models which used pre-trained embeddings scored between 70% and 75% accuracy. Random embeddings scored 55-60% except for GloVe which performed a bit better. There is a difference of 10-15 percentage. This is because pre-trained embeddings already contain rich language knowledge. They have been trained on large data already and so they capture word meanings.

Random embeddings start with no information prior. The model has to learn the task and the word representations from scratch. It uses the limited data available in SemEval 2010. This makes it much harder for the model to achieve high accuracy.

Experiment 2: Evaluating Different Pre-trained Embeddings

We compared three types of pre-trained word embeddings -GloVe, Word2Vec, and FastText-using the same models (CNN, GRU, and LSTM) on the SemEval 2010 Task 8 dataset. The goal was to see which pre-trained embedding gives the best performance.

Pre-trained embeddings are already built with a lot of language knowledge. However, different embeddings are trained on different data and use different methods. We wanted to know if one embedding consistently performed better and by how much do they differ.

Results:

GloVe Outperformed the Others. Across all three models, GloVe achieved about 1-2 percentage higher than Word2Vec or FastText. This probably means that for this dataset and task GloVe captures word meanings and relationships in a better way.

Word2Vec and FastText also performed almost well but not as good as GloVe which was more by a small margin. This showed that the word embedding used matters.

Experiment 3: Comparing Architectures (CNN vs. RNN vs. Hybrid)

We tested three different types of model architectures on the same dataset (SemEval 2010 Task 8):

- A CNN model that focuses on extracting local patterns (like key phrases).
- An **RNN** model (using GRU or LSTM) that processes the sentence word by word to capture overall context.
- A **Hybrid model (CNN + BiGRU + Attention)** that combines the strengths of both CNN and RNN, and uses attention to focus on the most important parts of the sentence.

Results:

CNN: 72.60%GRU: 74.60%LSTM: 73.40%

• **Hybrid (CNN + BiGRU + Attention): 75.30%** (This was the highest).

We wanted to see which type of model architecture works best for our task. CNN is great for learning local clues and RNN is better at understanding the full sentence context. The hybrid model was tested to check if combining these strengths could improve performance even more.

The Hybrid model performed the best. it uses CNN to pick up key phrases and RNN with attention to focus on the most informative parts of longer sentences. This made it get the highest accuracy 75.30%.

Experiment 4: Freezing vs. Fine-Tuning Embeddings

We took the GloVe embeddings as it was the best embedding out of the three and ran experiments on the SemEval 2010 Task 8 dataset. We used 2 settings.

- Freezing the embeddings: The GloVe weights remained unchanged during training.
- **Fine-tuning the embeddings:** The GloVe weights were updated along with the rest of the model during training.

We conducted these tests on both the CNN models.

Results

For the CNN model:

Frozen GloVe: 73.02%Fine-tuned GloVe: 74.00%

For the CNN: Fine-tuning provided an improvement of about 1–2 percentage over freezing.

We wanted to see if allowing the pre-trained embeddings to adjust to fine-tuning could improve the model's performance compared to keeping them fixed (freezing).

Fine-tuning helps the word embeddings understand our specific task better. This means the words get a little more meaning based on our dataset. This makes the model perform slightly better. Because of this, the accuracy improved by about 1–2% when we fine-tuned the embeddings instead of keeping them fixed.

CNN + GRU with Attention) using GloVe word embeddings

Classification Repo	rt:			
	precision	recall	f1-score	support
Cause-Effect	0.88	0.87	0.88	328
Component-Whole	0.85	0.67	0.75	312
Content-Container	0.76	0.84	0.80	192
Entity-Destination	0.72	0.92	0.81	292
Entity-Origin	0.79	0.83	0.81	258
Instrument-Agency	0.70	0.58	0.63	156
Member-Collection	0.72	0.91	0.80	233
Message-Topic	0.75	0.85	0.80	261
Other	0.45	0.31	0.37	454
Product-Producer	0.67	0.73	0.70	231
accuracy			0.73	2717
macro avg	0.73	0.75	0.73	2717
weighted avg	0.72	0.73	0.71	2717
- 5.				

Bidirectional GRU-based RNN model with GloVe embeddings

Classification Report:						
	precision	recall	f1-score	support		
Cause-Effect	0.90	0.92	0.91	328		
Component-Whole	0.78	0.72	0.75	312		
Content-Container	0.81	0.85	0.83	192		
Entity-Destination	0.78	0.93	0.85	292		
Entity-Origin	0.79	0.88	0.83	258		
Instrument-Agency	0.65	0.53	0.58	156		
Member-Collection	0.77	0.87	0.82	233		
Message-Topic	0.82	0.74	0.78	261		
Other	0.48	0.41	0.44	454		
Product-Producer	0.69	0.74	0.71	231		
accuracy			0.74	2717		
macro avg	0.75	0.76	0.75	2717		
weighted avg	0.74	0.74	0.74	2717		

Hybrid CNN + BiGRU model with Attention using Word2Vec

Classification Report:						
	precision	recall	f1-score	support		
Cause-Effect	0.83	0.89	0.86	328		
Component-Whole	0.80	0.66	0.72	312		
Content-Container	0.92	0.68	0.78	192		
Entity-Destination	0.74	0.91	0.82	292		
Entity-Origin	0.74	0.86	0.79	258		
Instrument-Agency	0.46	0.83	0.59	156		
Member-Collection	0.69	0.85	0.76	233		
Message-Topic	0.78	0.79	0.78	261		
0ther	0.47	0.27	0.34	454		
Product-Producer	0.72	0.65	0.69	231		
				1000		
accuracy			0.71	2717		
macro avg	0.71	0.74	0.71	2717		
weighted avg	0.71	0.71	0.69	2717		
	<u> </u>			<u> </u>		

Hybrid CNN + BiGRU model with Attention using FastText word embeddings

Classification Repo	rt:			
Sitting control and province to a september of the control of the	precision	recall	f1-score	support
Cause-Effect	0.88	0.89	0.88	328
Component-Whole	0.74	0.75	0.75	312
Content-Container	0.71	0.88	0.78	192
Entity-Destination	0.76	0.92	0.83	292
Entity-Origin	0.75	0.83	0.79	258
Instrument-Agency	0.70	0.59	0.64	156
Member-Collection	0.82	0.80	0.81	233
Message-Topic	0.73	0.85	0.79	261
Other	0.40	0.29	0.34	454
Product-Producer	0.76	0.65	0.70	231
accuracy			0.72	2717
macro avg	0.72	0.74	0.73	2717
weighted avg	0.71	0.72	0.71	2717
g				

Seperate using Glove for CNN LSTM and GRU

LSTM Classification	Report:	2000 W W	0.0000	
	precision	recall	f1-score	support
Cause-Effect	0.77	0.93	0.84	328
Component-Whole	0.74	0.66	0.70	312
Content-Container	0.81	0.79	0.80	192
Entity-Destination	0.81	0.82	0.82	292
Entity-Origin	0.81	0.79	0.80	258
Instrument-Agency	0.50	0.72	0.59	156
Member-Collection	0.68	0.90	0.77	233
Message-Topic	0.76	0.78	0.77	261
0ther	0.40	0.28	0.33	454
Product-Producer	0.73	0.56	0.64	231
				320-33-33-33
accuracy			0.70	2717
macro avg	0.70	0.72	0.71	2717
weighted avg	0.69	0.70	0.69	2717
		50 40	100 (000)	

Rndom embedding for all the 3

LSTM (Random Embeddings) Classi	fication	Report:	
pre	cision	recall	f1-score	support
34.57				1990/80
Cause-Effect	0.84	0.80	0.82	328
Component-Whole	0.85	0.18	0.30	312
Content-Container	0.67	0.77	0.72	192
Entity—Destination	0.66	0.86	0.74	292
Entity-Origin	0.42	0.84	0.57	258
Instrument-Agency	0.54	0.38	0.44	156
Member-Collection	0.49	0.64	0.56	233
Message-Topic	0.80	0.30	0.43	261
Other	0.24	0.28	0.26	454
Product-Producer	0.53	0.47	0.50	231
accuracy			0.53	2717
macro avg	0.60	0.55	0.53	2717
weighted avg	0.59	0.53	0.52	2717

GRU (Random Embeddings) Classifi	ication Re	port:	
	ecision	recall	f1-score	support
2000				
Cause-Effect	0.56	0.90	0.69	328
Component-Whole	0.33	0.79	0.46	312
Content-Container	0.85	0.65	0.74	192
Entity-Destination	0.77	0.74	0.75	292
Entity-Origin	0.94	0.12	0.21	258
Instrument-Agency	0.35	0.45	0.39	156
Member-Collection	0.42	0.64	0.51	233
Message-Topic	0.59	0.64	0.61	261
0ther	0.34	0.04	0.08	454
Product-Producer	0.62	0.21	0.31	231
accuracy			0.50	2717
macro avg	0.58	0.52	0.48	2717
weighted avg	0.56	0.50	0.45	2717

GPN /B 5 11:	٠. دع			
CNN (Random Embeddi	ngs) Classit	ication R		
	precision	recall	f1-score	support
				100 PA 1
Cause-Effect	0.91	0.87	0.89	328
Component-Whole	0.71	0.65	0.68	312
Content-Container	0.75	0.88	0.81	192
Entity-Destination	0.82	0.87	0.84	292
Entity-Origin	0.82	0.81	0.82	258
Instrument-Agency	0.44	0.69	0.54	156
Member-Collection	0.74	0.85	0.79	233
Message-Topic	0.64	0.84	0.72	261
0ther	0.44	0.23	0.30	454
Product-Producer	0.64	0.65	0.64	231
accuracy			0.70	2717
macro avg	0.69	0.73	0.70	2717
weighted avg	0.69	0.70	0.68	2717

CNN with Fine-Tuned Pre-trained (GloVe) Embeddings

	precision	recall	f1-score	support
Cause-Effect	0.80	0.94	0.86	328
Component-Whole	0.76	0.77	0.76	312
Content-Container	0.81	0.87	0.84	192
Entity-Destination	0.77	0.91	0.84	292
Entity-Origin	0.85	0.82	0.83	258
Instrument-Agency	0.63	0.69	0.66	156
Member-Collection	0.76	0.86	0.81	233
Message-Topic	0.77	0.84	0.80	261
0ther	0.48	0.30	0.37	454
Product-Producer	0.75	0.68	0.71	231
accuracy			0.74	2717
macro avg	0.74	0.77	0.75	2717
weighted avg	0.72	0.74	0.73	2717

Ensemble of Multiple Models (CNN, GRU, LSTM)

Ensemble Classification Report:					
	precision	recall	f1-score	support	
2000					
Cause–Effect	0.86	0.91	0.89	328	
Component-Whole	0.74	0.78	0.76	312	
Content-Container	0.76	0.88	0.81	192	
Entity-Destination	0.80	0.89	0.84	292	
Entity-Origin	0.80	0.87	0.83	258	
Instrument-Agency	0.60	0.73	0.66	156	
Member-Collection	0.73	0.91	0.81	233	
Message-Topic	0.76	0.89	0.82	261	
Other	0.53	0.24	0.33	454	
Product-Producer	0.73	0.69	0.71	231	
accuracy			0.74	2717	
macro avg	0.73	0.78	0.75	2717	
weighted avg	0.72	0.74	0.72	2717	

CNN with Frozen Pre-trained (GloVe) Embeddings

	precision	recall	f1-score	support
Cause-Effect	0.87	0.90	0.88	328
Component-Whole	0.78	0.72	0.75	312
Content-Container	0.75	0.86	0.80	192
Entity-Destination	0.79	0.88	0.83	292
Entity-Origin	0.77	0.82	0.80	258
Instrument-Agency	0.58	0.70	0.64	156
Member-Collection	0.75	0.89	0.81	233
Message-Topic	0.78	0.83	0.80	261
0ther	0.46	0.30	0.36	454
Product-Producer	0.69	0.69	0.69	231
accuracy			0.73	2717
macro avg	0.72	0.76	0.74	2717
weighted avg	0.71	0.73	0.72	2717

Final trying to improve

Classification Report:					
	precision	recall	f1-score	support	
				70.0000000	
Cause–Effect	0.90	0.92	0.91	328	
Component-Whole	0.75	0.77	0.76	312	
Content-Container	0.76	0.89	0.82	192	
Entity-Destination	0.82	0.89	0.85	292	
Entity-Origin	0.79	0.88	0.83	258	
Instrument-Agency	0.60	0.79	0.68	156	
Member-Collection	0.74	0.88	0.81	233	
Message-Topic	0.78	0.89	0.83	261	
Other	0.52	0.26	0.35	454	
Product-Producer	0.74	0.75	0.74	231	
THE CONTRACTOR OF THE CONTRACT				400-000-000-000-000-000-000-000-000-000	
accuracy			0.75	2717	
macro avg	0.74	0.79	0.76	2717	
weighted avg	0.73	0.75	0.73	2717	

6. Lessons & experience we learned

1. Embeddings is useful

- Pre-trained vs. Random: Pre-trained embeddings (GloVe/Word2Vec/FastText) outperformed randomly initialized ones.

2. Hybrid Architecture Work

- CNN + RNN work better than standalone networks.

3. Training & Optimization Practices

-Early Stopping: Saved training time and prevented overfitting (patience=3).

4. Debugging Experience

- Fix code error like errors in shape of attention like (None, 100, 256) vs. (None, 256))
- Reducing memory usage by lowering BATCH_SIZE and simplifying architectures when training on large embeddings (e.g., Word2Vec 300d).
- Hyperparameter tuning for overfitting. Added Earlystopping for that. We also added dropout layers.

5. Learned about Ensemble strategy

- We learned about soft voting ensemble.

6. Library dependencies experience

- In our studies, we also learned about the compatibility of library versions for TensorFlow, Keras, PyTorch, OpenCV, and scikit-learn.