

Licence 1^{ère} année, 2013-2014, MATHÉMATIQUES ET CALCUL 2 Fiche de TD n°4: Séries entières

Exercice 1.

Déterminer le rayon de convergence des séries entières suivantes :

1.
$$\sum_{n>0} \frac{n^2+1}{3^n} x^n$$
,

$$2. \sum_{n>1} (\ln(n))^n x^n,$$

3.
$$\sum_{n>1} \frac{\ln(n)}{n^2} x^{2n}$$

4.
$$\sum_{n>1}^{n \ge 0} \frac{n^n}{n!} x^{3n}$$
,

5.
$$\sum_{n \ge 0}^{\infty} (\sqrt[n+1]{n+1} - \sqrt[n]{n}) x^n$$

6.
$$\sum_{n\geq 0}^{\infty} \frac{(3n)!}{(n!)^3} x^n$$

$$7. \sum_{n>1} n^{n/2} x^n,$$

8.
$$\sum_{n>0} \frac{a^n}{1+b^n} x^n \quad (a, b > 0)$$

2.
$$\sum_{n\geq 1} (\ln(n))^n x^n,$$
3.
$$\sum_{n\geq 1} \frac{\ln(n)}{n^2} x^{2n},$$
5.
$$\sum_{n\geq 0} {n+\sqrt[n]{n+1} - \sqrt[n]{n}} x^n,$$
6.
$$\sum_{n\geq 0} \frac{(3n)!}{(n!)^3} x^n,$$
8.
$$\sum_{n\geq 0} \frac{a^n}{1+b^n} x^n \quad (a,b>0),$$
9.
$$\sum_{n\geq 1} \left(\frac{1}{2} \left(\operatorname{ch}\left(\frac{1}{n}\right) + \cos\left(\frac{1}{n}\right)\right)\right)^{n^4} x^n,$$

Exercice 2.

Soit $\alpha \in \mathbb{R}$. Déterminer le rayon de convergence de la série entière

$$\sum_{n\geq 1} \left(\cos\left(\frac{1}{n}\right)\right)^{n^{\alpha}} x^{n}.$$

Exercice 3.

Calculer le rayon de convergence et la somme des séries entières suivantes :

1.
$$\sum_{n\geq 2} \frac{1}{n(n-1)} x^n$$

$$2. \sum_{n > 0} \operatorname{ch}(n) x^n,$$

2.
$$\sum_{n\geq 0} \operatorname{ch}(n) x^n$$
, 3. $\sum_{n\geq 0} (-1)^{n+1} n x^{2n+1}$, 5. $\sum_{n\geq 1} (-1)^n \frac{x^{4n-1}}{4n}$, 6. $\sum_{n\geq 1} n^{(-1)^n} x^n$.

$$4. \sum_{n\geq 0}^{n\geq 2} \frac{n^3}{n!} x^n,$$

5.
$$\sum_{n>1}^{n} (-1)^n \frac{x^{4n-1}}{4n},$$

6.
$$\sum_{n>1} n^{(-1)^n} x^n$$
.

Exercice 4.

Développer en série entière les fonctions suivantes, en prenant soin de préciser le rayon de convergence : $x\mapsto \frac{1}{(x-1)(x-2)},$ $2. \ x\mapsto \frac{\mathrm{e}^x}{1-x},$ $4. \ x\mapsto (4+x^2)^{-3/2}.$

1.
$$x \mapsto \frac{1}{(x-1)(x-2)}$$
,
3. $x \mapsto \ln(1+x-2x^2)$

$$2. x \mapsto \frac{e^x}{1-x}$$

3.
$$x \mapsto \ln(1 + x - 2x^2)$$

4.
$$x \mapsto (4+x^2)^{-3/2}$$

Exercice 5.

- 1. Calcular $\sum_{n \ge 0} \frac{x^n}{4n^2 1}$ pour tout $x \in]-1,1[$.
- 2. En déduire les sommes $\sum_{n=0}^{\infty} \frac{1}{4n^2-1}$ et $\sum_{n=0}^{\infty} \frac{(-1)^n}{4n^2-1}$.

Exercice 6.

Montrer que les fonctions suivantes sont de classe \mathcal{C}^{∞} sur un ensemble que l'on précisera :

1.
$$x \mapsto f(x) = \frac{\sin(x)}{x}$$
 si $x \neq 0, f(0) = 1$.

2.
$$x \mapsto g(x) = \operatorname{ch}(\sqrt{x})$$
 si $x \ge 0$ et $g(x) = \cos(\sqrt{-x})$ si $x < 0$.

3.
$$x \mapsto h(x) = \frac{1}{\sin(x)} - \frac{1}{x} \text{ si } x \in]-\pi, 0[\cup]0, \pi[, h(0) = 0.$$

Exercice 7.

Prouver que, pour tout $x \in \mathbb{R}$, on a $\operatorname{ch}(x) \leq \operatorname{e}^{x^2/2}$ (on pourra comparer terme à terme les développements en séries entières des deux fonctions).

Exercice 8.

- 1. Donner le développement en série entière de la fonction arctan, en précisant son rayon de convergence.
- 2. En déduire la valeur de $\sum_{n\geq 0}\frac{(-1)^n}{3^n}\frac{1}{2n+1}.$
- 3. Calculer la primitive de la fonction arctan qui s'annule en 0 et donner son développement en série entière, en précisant son rayon de convergence.
- 4. En déduire la valeur de $\sum_{n\geq 0} \frac{(-1)^n}{(2n+1)(2n+2)}.$

Exercice 9.

Développer en série entière la fonction $x \mapsto \frac{1}{x} \sin\left(\frac{\arcsin(x)}{2}\right)$, en prenant soin de préciser le rayon de convergence.

Exercice 10.

Soit $\sum_{n\geq 0} a_n x^n$ et $\sum_{n\geq 0} b_n x^n$ deux séries entières dont les rayons de convergence sont notés R et R'. Montrer que si $|a_n| \leq |b_n|$ pour tout $n \geq 1$ alors $R \geq R'$.