Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765

Summer 2018

Instructor: Dr. Sateesh Mane

© Sateesh R. Mane 2018

Midterm 2

Wednesday July 18, 2018

- <u>NOTE</u>: It is the policy of the Computer Science Department to issue a failing grade to any student who either gives or receives help on any test.
- A student caught cheating on any question in an exam, project or quiz will fail the entire course.
- Any problem to which you give two or more (different) answers receives the grade of zero automatically.
- This is a take home exam. Answers should be typed in a file. See below for instructions.
- Please submit your solution via email, as a file attachment, to Sateesh.Mane@qc.cuny.edu.
- Please submit one zip archive with all your files in it.
 - 1. The zip archive should have either of the names (CS361 or CS761):

```
StudentId_first_last_CS365_midterm2_July2018.zip
StudentId_first_last_CS765_midterm2_July2018.zip
```

- 2. The archive should contain one "text file" named "Midterm2.[txt/docx/pdf]" and one cpp file per question named "Q1.cpp" and "Q2.cpp" etc.
- 3. Note that text answers may not be required for all questions.
- 4. Note that not all questions may require a cpp file.
- In all questions where you are asked to submit programming code, programs which display any of the following behaviors will receive an automatic F:
 - 1. Programs which do not compile successfully (non-fatal compiler warnings are excluded).
 - 2. Array out of bounds, reading of uninitialized variables (including null pointers).
 - 3. Operations which yield NAN or infinity, e.g. divide by zero, square root of negative number, etc. *Infinite loops*.
 - 4. Programs which do NOT implement the public interface stated in the question.
- In addition, note the following:
 - 1. All debugging statements (for your personal testing) should be commented out.
 - 2. Program performance will be graded solely on the public interface stated in the questions.

General information

- The statements below are for general information only.
- Ignore them if they are not relevant for the exam questions below.
- The questions in this exam do not involve problems of overflow or underflow.
- Solutions involving the writing of algorithms will not be judged if they work on a 64-bit instead of a 32-bit computer.
- Value of π to machine precision on any computer.
 - 1. Some compilers support the constant M_PI for π , in which case you can write const double pi = M_PI;
 - 2. If your compiler does not support M_PI, the value of π can be computed via const double pi = 4.0*atan2(1.0,1.0);

Material to be used in later questions

- Form a set of eight digits (d_1, \ldots, d_8) as follows.
- Take the 8 digits of your student id and define (d_1, \ldots, d_8) as follows:

 $\begin{aligned} d_1 &= \text{digit 1 of student id}\,, \\ d_2 &= \text{digit 2 of student id}\,, \\ d_3 &= \text{digit 3 of student id}\,, \\ d_4 &= \text{digit 4 of student id}\,, \\ d_5 &= \text{digit 5 of student id}\,, \\ d_6 &= \text{digit 6 of student id}\,, \\ d_7 &= \text{digit 7 of student id}\,, \\ d_8 &= \text{digit 8 of student id}\,. \end{aligned}$

• For example if your student id is 23054617, then

 $\begin{aligned} d_1 &= 2 \,, \\ d_2 &= 3 \,, \\ d_3 &= 0 \,, \\ d_4 &= 5 \,, \\ d_5 &= 4 \,, \\ d_6 &= 6 \,, \\ d_7 &= 1 \,, \\ d_8 &= 7 \,. \end{aligned}$

- For some student ids, it is possible that some of the digits may be zero. It is also possible that some of the digits may be equal. Do not worry.
- For the student id 111111111, all the digits are equal.
- For the student id 33330000, four digits are zero and the other four are all equal to 3.

1 Question 1

- The price of a stock is $S_0 = 100.0$ at time $t_0 = 0$.
- The stock pays no dividends.
- The interest rate is r = 5.0%.
- The expiration time of the forward contract is T = 1.0 years.
- Question: For each case below, formulate an arbitrage strategy to take advantage of the forward price.
 - 1. The forward price is F = 105.0.
 - 2. The forward price is F = 106.0.
- Question: For each case above, state how much profit your arbitrage strategy yields at the expiration time T.
- Show all the steps in your arbitrage strategies. Do not just state the final profit.

2 Question 2

- A stock trades today $(t_0 = 0)$ at a price of $S_0 = 100.0$.
- A futures contract on the stock trades today at a price $F_0 = 103.25$.
- The futures contract expiration date is 5 days from today.
- Every day for $t_i = i$, i = 1, 2, 3, 4, 5, the stock price is S_1, S_2, S_3, S_4, S_5 .
- The futures price every day is F_1, F_2, F_3, F_4, F_5 .
- On the expiration day, $F_5 = S_5$ (the futures price converges to the stock price).
- The stock pays a dividend of 0.1 on day 3.
- Here is a list of the stock and futures prices, for i = 1, 2, 3, 4, 5.

i	S_i	F_{i}	dividend
1	100.75	104.25	
2	S_2	F_2	
3	S_3	F_3	0.1
4	S_4	F_4	
5	S_5	F_5	

• The values of S_2, \ldots, S_5 are arbitrary, but satisfy the following inequalities:

$$100.75 > S_2 > S_3 > S_4 > S_5. (2.1)$$

• The values of F_2, \ldots, F_5 are arbitrary, but satisfy the following inequalities:

$$104.25 > F_2 > F_3 > F_4 > F_5 (= S_5). (2.2)$$

• See next page.

2.1 Investor A

- Investor A goes long one share of stock on day 0.
- Investor A sells the stock on day 5.
- Calculate (or state) the money paid/received by A every day, starting from day 0, until A's portfolio is closed out.
- Calculate the total profit/loss for A after selling the stock.

 Ignore interest rate compounding for any borrowed money, to answer this question.
- State on which day A makes that profit/loss.

2.2 Investor B

- Investor B goes long one futures contract on day 0.
- Investor B holds the futures contract to expiration.
- Calculate the money paid/received by B every day, starting from day 0, until B's portfolio is closed out.
- Calculate the total money paid by B after closing the futures contract.

 Assume that money in a mark to market account does not pay interest.
- State what B receives in exchange for closing the futures contract.

2.3 Investor C

- Investor C goes long one futures contract on day 0.
- Investor C sells the futures contract on day 1.
- Calculate the money paid/received by C every day, starting from day 0, until C's portfolio is closed out.
- Calculate the total profit/loss for C after selling the futures contract.

 Assume that money in a mark to market account does not pay interest.
- State on which day C makes that profit/loss.

2.4 Investor D

- Investor D goes long a forward contract on day 0.
- The forward price is $F_{\text{fwd}} = 103.25$ and the expiration time is 5 days.
- Explain what (if any) trades D can perform on day 1, to lock in a guaranteed profit.
- Calculate the money paid/received (if any) by D every day, starting from day 0, until D's portfolio is closed out.
- Calculate the total profit/loss for D (if any).

 Assume that money in a mark to market account does not pay interest.
- State on which day D makes that profit/loss (if any).

3 Question 3

- Ignore interest rate compounding for all profit/loss calculations in this question.
- A stock trades today $(t_0 = 0)$ at a price of $S_0 = 100.0$.
- A futures contract on the stock trades today at a price $F_0 = 103.25$.
- The futures contract expiration date is 5 days from today.
- Every day for $t_i = i$, i = 1, 2, 3, 4, 5, the stock price is S_1, S_2, S_3, S_4, S_5 .
- The corresponding futures price every day is F_1, F_2, F_3, F_4, F_5 .
- On the expiration day, $F_5 = S_5$ (the futures price converges to the stock price).
- The stock pays a dividend of 0.07 on day 3.
- Here is a list of the stock and futures prices, for i = 0, 1, 2, 3, 4, 5.

i	S_i	F_i	dividend
0	100.0	103.25	
1	98.75	101.55	
2	S_2	F_2	
3	S_3	F_3	0.07
4	S_4	F_4	
5	S_5	F_5	

• The values of S_2, \ldots, S_5 are arbitrary, but satisfy the following inequalities:

$$98.75 < S_2 < S_3 < S_4 < S_5. (3.1)$$

• The values of F_2, \ldots, F_5 are arbitrary, but satisfy the following inequalities:

$$101.55 < F_2 < F_3 < F_4 < F_5 (= S_5). (3.2)$$

See next page

3.1 Investor A

- Investor A goes long one share of stock on day 0.
- Investor A sells the stock on day 5.
- Calculate (or state) the money paid/received by A every day, starting from day 0, until A's portfolio is closed out.

(Note that in some cases your answer may be a formula not a dollar number.)

- Calculate the total profit/loss for A after selling the stock.
- State on which day A makes that profit/loss.

3.2 Investor B

- Investor B goes long one futures contract on day 1.
- Investor B holds the futures contract to expiration.
- Calculate the money paid/received every day in B's mark to market account, until B's portfolio is closed out.

(Note that in some cases your answer may be a formula not a dollar number.)

- Calculate the total money paid by B after closing the futures contract.
- State what B receives in exchange for closing the futures contract.

3.3 Investor C

- Investor C goes short a forward contract on day 0.
- The forward price is $F_{\text{fwd}} = 103.25$ and the expiration time is 5 days.
- From the data on day 1, it is possible for C to lock in a guaranteed profit?
 - 1. If yes, state the strategy to lock in a guaranteed profit.
 - 2. If no, explain why not.
- State all the trades performed on the day C's portfolio is closed out.
- Calculate the total profit/loss for C (if any).
- State on which day C makes that profit/loss (if any).

3.4 Investor D

- Investor D goes long one futures contract on day 1.
- Investor D sells the futures contract on day 3.
- Calculate the money paid/received every day in D's mark to market account, until D's portfolio is closed out.

(Note that in some cases your answer may be a formula not a dollar number.)

- Calculate the total profit/loss for D after selling the futures contract.
- State on which day D makes that profit/loss.
- State the trades (stock/cash/futures) which happen for D on day 5 (futures expiration).