Zusammenfassung

Mihir Mahajan

May 1, 2022

Contents

1	\mathbf{Disl}	krete V	<i>W</i> ahrscheinlichkeitsräume	1
	1.1	Grundlagen		
		1.1.1	Definition 1	1
		1.1.2	Lemma 8	2
		1.1.3	Satz 9 Siebformel	2
		1.1.4	Wahl der Wahrscheinlichkeiten	2
	1.2	Beding	gte Wahrscheinlichkeiten	3
		1.2.1	Definition 12	3

1 Diskrete Wahrscheinlichkeitsräume

1.1 Grundlagen

1.1.1 Definition 1

- Ein diskreter Wahrscheinlichkeitsraum ist durch eine **Ergebnismenge** $\Omega = \{\omega_1, ..., \omega_n\}$ von Elementarereignissen gegeben
- Jedem Ereignis ω_{i4} ist eine Wahrscheinlichkeit $0 \leq Pr[\omega_i] \leq 1$ zugeordnet

$$\sum_{\omega \in \Omega} \Pr[\omega] = 1$$

- $\bullet\,$ Die Menge $E\subseteq\Omega$ heißt Ereignis. $Pr[E]=\sum_{\omega\in E}Pr[\omega]$
- \bar{E} ist komplement zu E

Man kann standard Mengenoperationen auf Ereignisse machen, also bei Ereignissen A,Bdann auch $A\cup B,\,A\cap B$

1.1.2 Lemma 8

Für Ereignisse $A, B, A_1, A_2, ..., A_n$ gilt

- $Pr[\emptyset] = 0, Pr[\Omega] = 1$
- $0 \le Pr[A] \le 1$
- $Pr[\bar{A}] = 1 Pr[A]$
- Wenn $A \subseteq B$ so folgt $Pr[A] \leq Pr[B]$
- Additionssatz: Bei paarweise disjunkten Ereignissen gilt:

$$Pr[\bigcup_{i=1}^{n} A_i] = \sum_{i=1}^{n} Pr[A_i]$$

Insbesondere gilt also:

$$Pr[A \cup B] = Pr[A] + Pr[B]$$

Und für unendliche Menge von disjunkten Ereignissen:

$$Pr[\bigcup_{i=1}^{\infty} A_i] = \sum_{i=1}^{\infty} Pr[A_i]$$

1.1.3 Satz 9 Siebformel

Lemma 8, gilt nur für disjunkte Mengen. Das geht auch für nicht disjunkte!

- 1. Zwei Mengen $Pr[A \cup B] = Pr[A] + Pr[B] Pr[A \cap B]$
- 2. Drei Mengen $Pr[A_1 \cup A_2 \cup A_3] =$ Pr[A1] + Pr[A2] + Pr[A3]

$$-Pr[A1 \cap A2] - Pr[A1 \cap A3] - Pr[A_2 \cap A_3] + Pr[A_1 \cap A_2 \cap A_3]$$

- 3. n Mengen Veranschaulichen an Venn-Diagramm
 - (a) Alle aufaddieren
 - (b) Paarweise schnitte subtrahieren
 - (c) Dreifache schnitte dazuaddieren
 - (d) 4- fache schritte subtrahieren
 - (e) ...

1.1.4 Wahl der Wahrscheinlichkeiten

Prinzip von Laplace (Pierre Simon Laplace (1749–1827)): Wenn nichts dagegen spricht, gehen wir davon aus, dass alle Elementarereignisse gleich wahrscheinlich sind. $Pr[E] = \frac{|E|}{|\Omega|}$

Bedingte Wahrscheinlichkeiten

Definition 12 1.2.1

A und Bseien Ereignisse mit $\Pr[B]>0.$ Die bedingte Wahrscheinlichkeit Pr[A|B] von A gegeben B ist definiert als: $Pr[A|B] := \frac{Pr[A \cap B]}{Pr[B]}$ Umgangssprachlich: Pr[A|B] beschreibt die Wahrscheinlichkeit, dass A

eintritt wenn B eintritt.

Die bedingten Wahrscheinlichkeiten Pr[|B|] bilden für ein beliebiges Ereignis $B\subseteq \Omega$ mit Pr[B]>0einen neuen Wahrscheinlichkeitsraum über $\Omega.$