Теортест-1 (Вариант 30)

Тема – определенный интеграл

Задача 1

Пусть $f \in R[a,b]$, $F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F не убывает на [a, b];
- 2. F имеет разрывы в точках разрыва функции f;
- 3. F ограничена на [a, b];
- 4. F первообразная для f на [a, b];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Пусть $f:[a,b]\to\mathbb{R};\ \sigma_{\tau}(\xi)$ — интегральная сумма для f, построенная по разбиению τ с оснащением $\xi;\ s_{\tau},\ S_{\tau}$ — нижняя и верхняя суммы Дарбу. Выберите все верные утверждения:

- 1. $\forall \tau \ \forall \varepsilon > 0 \ \exists \xi : \ \sigma_{\tau}(\xi) > S_{\tau} \varepsilon;$
- 2. $\forall \tau : s_{\tau} < S_{\tau};$
- 3. $\forall \tau, \xi : s_{\tau} < \sigma_{\tau}(\xi) < S_{\tau};$
- 4. $\forall \tau \; \exists \xi \colon s_{\tau} = \sigma_{\tau}(\xi)$:

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения:

- 1. Длина кривой зависит от параметризации;
- 2. Длина спрямляемой кривой конечна;
- 3. Длины противоположных путей равны;
- 4. Любая кривая имеет бесконечно много различных параметризаций;
- 5. Любая кривая имеет неотрицательную длину;

Задача 4

Пусть f(x) – дифференцируемая функция. Выберите все верные утверждения:

- 1. $\int \frac{f'(x)}{x} dx = \frac{f(x)}{x} + \int \frac{f(x)}{x^2} dx;$
- 2. $\int \frac{f'(x)}{x^2} dx = \frac{f(x)}{x^2} + \int \frac{f(x)}{x} dx;$
- 3. $\int f(x) \ln x dx = \ln x \cdot f'(x) \int \frac{f'(x)}{x} dx;$
- 4. $\int f(x) \sin x dx = \cos x \cdot f(x) \int f'(x) \cos x dx$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \ge 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f(a) > 0, f(b) > 0;
- 2. f непрерывна на [a,b] и f((a+b)/2)=1;
- 3. f возрастает (нестрого) на [a, b] и f(b) = 1;
- 4. f непрерывна на [a, b] и f(a + b) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Функция $f\in R[0,10]$ и $-1\leq f(x)\leq 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [0; 100];
- 2. [-3; 90];
- 3. [-2; 20];
- 4. [-9; 100];

Задача 7

Выберите все верные утверждения (тела А и В имеют объем):

- 1. любое множество имеет неотрицательный объем;
- 2. $V(A) = V(A \cap B) + V(A \setminus B)$;
- 3. объем любого сечения тела A равен нулю;
- 4. при движении объем не меняется;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть $f \in R[a,b], a < b$. Выберите все верные утверждения:

- 1. Если $\left| \int_a^b f(x) dx \right| = 0$, то $f(x) \equiv 0$ на [a,b];
- 2. Если f > 0 на [a, b], то $\int_a^b f(x) dx > 0$;
- 3. Если $f \ge 0$ на [a,b] и $\exists c \in [a,b]$: f(c) > 0, то $\int_a^b f(x) dx > 0$;
- 4. Если $\int_a^b |f(x)| dx < A$, то $\left| \int_a^b f(x) dx \right| < A$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения:

- 1. если все корни знаменателя дробно-рациональной функции кратные, то ее первообразная является дробно-рациональной функцией;
- 2. первообразная дробно-рациональной функции является дробно-рациональной функцией;
- 3. если первообразная дробно-рациональной функции f(x) выражается через логарифм, то знаменатель f(x) имеет только простые вещественные корни;
- 4. если первообразная дробно-рациональной функции f(x) является дробнорациональной, то все корни знаменателя f(x) кратные;

Задача 10

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. dv = udt + C;
- $2. \ u = dv;$
- $3. \ v = du + C;$
- $4. \ u = dv + C;$