

Design and Development of a Modular Reconfigurable Aerial Vehicle

Grupo 6

107957 - Alexandre Silva

110180 – Magner Gusse

Milestone 3

Orientador:

Pedro Casau

Conteúdos

Contexto

01

04

Dificuldades e Aprendizagens

WBS e objetivos da Milestone

02

05

Revisão dos objetivos e WBS

Progressos e Riscos

03

06

Conclusão

MISSION STATEMENT E OBJETIVOS

Construção de veículos aéreos que funcionam de forma individual, capazes de se juntar em voo formando configurações diferentes e capazes de em conjunto realizar diversas tarefas.

Uso de rotores uni-axiais e com voo estável e controlado fazendo uso do sistema Swashplateless para alcançar os 6 graus de liberdade do veículo.

WBS Apresentada

ember	October	October			November			December Ja			Jar	January			Fe	February			M	March			Αŗ	April				May					
1 18 25	2 9	16 23	30	6	13	20 2	27	4	11	18	25	1	8	15	22	29	5	12	19	26	4	11	18	25	0	8	15	22	29	6	13	20	27
► State	-of-the-Art F	Review ar	nd Trade	off A	ınalys	is																											
			-	Modu	le De	sign																											
														► In	itial T	ests																	
																	►	Mod	lule D	evelo	omen	it											
																							▶ \	/alidat	ion a	nd Tes	sting						
	▶ D	ocument	ation																														

OBJECTIVOS PARA A MILESTONE

TESTES

Montagem da bancada de testes e iniciar os testes.

ELEMENTOS DE LIGAÇÃO

Impressão dos elementos de ligação e de swashplateless

Estruturas de ligação

Estruturas que permitirão a ligação entre módulos

Progresso

Modelos finalizados e prontos para fabrico

Obstáculos

- Medidas do mainframe do módulo;
- Escolha do material para a estrutura.

Swashplateless

Sistema de direcionamento do veículo.

Progresso

Modelo finalizado e preparado para impressão.

Obstáculos

- Incompatibilidade com o motor resolvida;
- Primeira impressão defeituosa.

Testes de propulsão

Com o objetivo de determinar o máximo de propulsão que podemos adquirir com os motores e determinar a massa da estrutura final.

Progresso

Fase final de preparação, com os componentes adquiridos e código funcional. Em fase de montagem da bancada.

Obstáculos

Tempo de chegada dos componentes Programação do microcontrolador

Testes de Swashplateless

Com o objetivo de testar o sistema de direção do veículo.

Progresso

Dependente dos progressos da montagem e dos testes de propulsão.

Obstáculos

- Necessidade de incorporar um sensor de orientação posicional;
- Programação do microcontrolador

INICIAL

NOVA

Propulsão-Load cell

Vantagens:

- 1. Apresenta um menor erro
- 2. Recolha de dados mais precisa e direta
- 3. Simples de montar

Desvantagens:

- 1. É necessário calibração
- 2. Utilizar software ArduinoIDE e entender o código

Propulsão-Load cell Progresso

```
calibracao.ino
    #include "HX711.h"
3 const int LOADCELL DOUT PIN = 19;
4 const int LOADCELL SCK PIN = 18;
5 const int Calibration Weight = 10;
    HX711 scale;
    void setup() {
     Serial.begin(57600);
     scale.begin(LOADCELL DOUT PIN, LOADCELL SCK PIN);
     scale.set scale();
     Serial.println("Calibration");
     Serial.println("Put a known weight on the scale");
     delay(5000);
     float x = scale.get units(10);
     x = x / Calibration Weight;
     scale.set scale(x);
     Serial.println("Calibration finished...");
    void loop() {
    if (scale.is ready()) {
    float reading = scale.get units(10);
     Serial.print("HX711 reading: ");
     Serial.println(reading);
     } else {
     Serial.println("HX711 not found.");
     delay(1000);
```


DIFICULDADES ENCONTRADAS

PROGRAMAÇÃO

Falta de familiarização com o Arduino IDE; Criação, percepção e interpretação de código para implementar nos testes.

CUMPRIMENTO DOS PRAZOS

A época de exames não foi tida em conta no planeamento de tarefas; Demora na chegada de alguns componentes.

FUNCIONAMENTO DO ESC E MOTOR

Falta de transmissor e recetor para colocar o ESC e o motor em funcionamento, o que implica que a implementação dos procedimentos deve recorrer a código.

APRENDIZAGENS

USO DE UM MICROCONTROLADOR

O funcionamento e a importância de usar um microcontrolador como o Teensy ou Arduino. Soldadura de componentes eletrónicos e do microcontrolador

CUMPRIMENTO DOS PRAZOS

Aspetos a considerar em relação às tarefas a realizar e analise do grau de dificulade das mesmas.

OBJECTIVOS PARA A MILESTONE-PROGRESSO

TESTES

Montar a bancada de testes e inicio dos mesmos

70%

ELEMENTOS DE LIGAÇÃO

Impressão dos ligamentos de ligação e de swashplateless

50%

OBJETIVO FINAL

Considerando as dificuldades e obstáculos enfrentados, os objetivos iniciais poderão não ser alcançados.

Criação de apenas um módulo independente com o Swashplateless funcional

https://www.youtube.com/watch?v=aEPf0QHVuMM&t=70s

NOVA WBS

CONCLUSÕES

Não foi possível atingir os objetivos que traçados para esta Milestone

Este projeto continua a suspreender pela dificuldade que apresenta a cada etapa que se passa

• • • • •

OBRIGADO