Univerza *v Ljubljani* Fakulteta za *matematik*o *in fizik*o

Matematika - 2. stopnja

Domen Močnik

HAMILTONOV PRINCIP V MEHANIKI KONTINUUMA ZA MATERIALE S SINGULARNIMI PLOSKVAMI

Magistrsko delo

Mentor: prof. dr. Igor Dobovšek

Podpisani Domen Močnik izjavljam:					
- da sem magistrsko delo z naslovom Hamiltonov princip v mehaniki kontinuuma za materiale s singularnimi ploskvami izdelal samostojno pod mentorstvom prof. dr. Igorja Dobovška in					
- da Fakulteti za matematiko in fiziko Univerze v Ljubljani dovoljujem objavo elektronske oblike svojega dela na spletnih straneh.					
Ljubljana, XX.XX.2015	Podpis:				
	i				

Zahvala

zahvala goes here

Ljubljana, mesec 2015

Domen Močnik

Kazalo

1	Matematični opis materialnega telesa			
	1.1	Evklidski prostor	1	
	1.2	Tenzorska polja	2	
	1.3	Gibanje materialnega telesa	4	

Program dela

programdelag goes here

prof. dr. Igor Dobovšek

Hamiltonov princip v mehaniki kontinuuma za materiale s singularnimi ploskvami

Povzetek

. 1	. 1		1	
tekst	povzetka	V	sloven	scini

Hamilton's principle in continuum mechanics for materials with singular surfaces

Abstract

tekst povzetka v anglescini

Math. Subj. Class. (2010): 51M10

Ključne besede: mehanika kontinuuma, ...

Keywords: continuum mechanics

Poglavje 1

Matematični opis materialnega telesa

1.1 Evklidski prostor

V klasični mehaniki opisujemo dogodke v *Newtonovem prostor-času*, kar je produkt trirazsežnega Evklidskega prostora ter prostora realnih števil \mathbb{R} . Evklidski prostor nam služi za opis položaja in geometrije objektov, prostor \mathbb{R} pa predstavlja časovno os.

Definicija 1.1. Množica točk \mathcal{E} je *Evklidski točkovni prostor* in trirazsežni Evklidski vektorski prostor V je *translacijski prostor* za \mathcal{E} , če poljubnemu paru točk $p, q \in \mathcal{E}$ pripada vektor iz V, ki ga zapišemo kot q - p, tako da velja:

- 1. Za vsak $p \in \mathcal{E}$ je $p p = \mathbf{0}$, ničelni vektor.
- 2. Za vsak $p \in \mathcal{E}$ in vsak $\mathbf{v} \in V$ obstaja natanko ena točka $q \in \mathcal{E}$, da je $\mathbf{v} = q p$. Pišemo: $q = p + \mathbf{v}$.
- 3. Za vse $p, q, r \in \mathcal{E}$ velja (q p) + (r q) = (r p).

Razdalja med točkama $p, q \in \mathcal{E}$ je definirana kot d(p,q) = ||q - p||, kjer ||.|| označuje normo na vektorskem prostoru V, porojeno iz standardnega skalarnega produkta. (\mathcal{E}, d) je metrični prostor.

V prostoru \mathcal{E} si izberimo točko, jo označimo z o in jo imenujmo izhodišče. V skladu z aksiomi iz definicije pripada vsaki točki $p \in \mathcal{E}$ glede na izhodišče o krajevni vektor $\boldsymbol{r}(p) = p - o \in V$. Naj bo $\{\boldsymbol{e}_1, \boldsymbol{e}_2, \boldsymbol{e}_3\}$ neka ortonormirana baza prostora V, ki je desnosučna, tj. $\boldsymbol{e}_3 = (\boldsymbol{e}_1 \times \boldsymbol{e}_2)$. Krajevni vektor $\boldsymbol{r}(p)$ ima enoličen razvoj po bazi, $\boldsymbol{r}(p) = y_k \boldsymbol{e}_k$, koeficientom y_k tega razvoja pa

rečemo kartezijeve koordinate. Te so odvisne od izbire izhodišča in ortonormirane baze.

Včasih si želimo prostor \mathcal{E} opremiti s kakšnim drugim koordinatnim sistemom, ki ga podamo s koordinatno transformacijo kartezijevih koordinat

$$x^{j} = \hat{x}^{j}(y_{1}, y_{2}, y_{3}) \iff y_{k} = \hat{y}_{k}(x^{1}, x^{2}, x^{3}), \quad j, k = 1, 2, 3.$$
 (1.1)

Za koordinatno transformacijo zahtevamo, da je bijektivna in gladka preslikava iz $D^{\text{odp}} \subset \mathbb{R}^3$ v $U^{\text{odp}} \subset \mathbb{R}^3$ s prav tako gladkim inverzom.

Imamo torej bijektivno korespondenco med naslednjimi objekti:

- točka $p \in \mathcal{E}$,
- krajevni vektor $\boldsymbol{r}(p) = y_k \boldsymbol{e}_k \in V$,
- koordinate $(x^1, x^2, x^3) \in \mathbb{R}^3$.

Zato bomo točke iz prostora \mathcal{E} v bodoče identificirali z njihovimi krajevnimi vektorji ali pa z njihovimi koordinatami.

Newtonov prostor čas $\mathcal{N} = \mathcal{E} \times \mathbb{R}$ lahko naredimo za vektorski prostor s skalarnim produktom

$$(\boldsymbol{x},t_1)\cdot(\boldsymbol{y},t_2)=\boldsymbol{x}\cdot\boldsymbol{y}+t_1t_2.$$

Iz skalarnega produkta dobimo tudi normo in metriko.

1.2 Tenzorska polja

V tem razdelku bomo navedli nekaj bistvenih pojmov in rezultatov iz tenzorske analize. Predpostavlja se, da bralec že pozna osnove tenzorske analize. Razdelek služi bolj predstavitvi oznak, ki jih bomo uporabljali v nadaljevanju.

Funkciji $f: \mathcal{D} \subseteq \mathcal{E} \to W$, kjer je W neki normirani vektorski prostor, rečemo tenzorsko polje. V posebnem primeru, ko je $W = \mathbb{R}$, rečemo funkciji f skalarno, v primeru W = V pa vektorsko polje. Tenzorskim poljem bomo včasih kot argument namesto točke raje podali njen krajevni vektor ali pa njene koordinate, ne da bi pri tem spremenili oznako za tenzorsko polje.

Definicija 1.2. Naj bo $f: \mathcal{D}^{\text{odp}} \subseteq \mathcal{E} \to W$ tenzorsko polje. Funkcija f je odvedljiva v točki $x \in \mathcal{D}$, če obstaja taka linearna preslikava $\nabla f(x): V \to W$, da za vsak $h \in V$ velja

$$f(x + \mathbf{h}) = f(x) + \nabla f(x)[\mathbf{h}] + o(\mathbf{h}),$$

kjer je $o(\mathbf{h}) \in W$ količina, za katero je

$$\lim_{\|h\| \to 0} \frac{\|o(h)\|}{\|h\|} = 0.$$

Če $\nabla f(x)$ obstaja, ji rečemo gradient ali pa krepki oz. Fréchetov odvod funkcije f v točki x.

Krepki odvod, če obstaja, je tudi tenzorsko polje, vrednosti pa zavzema v prostoru $\mathcal{L}(V, W)$. Drugi odvod oz. odvod odvoda, če obstaja, je tudi tenzorsko polje z vrednostmi v prostoru $\mathcal{L}(V, \mathcal{L}(V, W))$, in tako dalje.

Krepke odvode računamo s pomočjo $\check{sibkega}$ oz. $\check{smernega}$ (včasih tudi $G\hat{a}teauxovega$) odvoda:

$$\delta f(x)[\mathbf{h}] = \lim_{s \to 0} \frac{1}{s} \left(f(x + s\mathbf{h}) - f(x) \right) = \frac{d}{ds} f(x + s\mathbf{h}) \bigg|_{s=0}.$$

Znano je, da če obstaja krepki odvod, potem obstaja tudi šibki odvod in sta enaka: $Df(x)[\boldsymbol{h}] = \delta f(x)[\boldsymbol{h}]$ za vsak $\boldsymbol{h} \in V$. Za krepke in šibke odvode veljajo enaki izreki, kot veljajo za preslikave med normiranimi prostori, ki jih poznamo iz matematične analize: izrek o posrednem odvajanju, izrek o odvajanju produkta¹, izrek o totalnem odvodu itd.

Gradient skalarnega polja f zavzema vrednosti iz prostora $\mathcal{L}(V,\mathbb{R})$, kar so linearni funkcionali. S pojmom gradient in oznako ∇f se v tem primeru označuje polje vektorjev, ki pripadajo polju linearnih funkcionalov po Riezsovem izreku o reprezentaciji, tako da velja

$$\nabla f[\mathbf{h}] = \nabla f \cdot \mathbf{h} \quad \forall \, \mathbf{h} \in V.$$

Medtem ko gradient viša red tenzorskega polja, ga divergenca niža. $Divergenca\ vektorskega\ polja\ u$ je skalarno polje

$$\operatorname{div} \boldsymbol{u} = \operatorname{tr} (\nabla \boldsymbol{u})$$

Divergenca tenzorskega polja $S\colon \mathcal{D}\to \mathcal{L}(V)$, je vektorsko polje div S z lastnostjo, da za vsako konstantno vektorsko polje \boldsymbol{v} velja

$$\boldsymbol{v} \cdot \operatorname{div} S = \operatorname{div} (S^T \boldsymbol{v}).$$

Če je polje f časovno odvisno, tj. f je preslikava

$$f \colon \mathcal{D} \times I \to W$$

¹Izrek o odvajanju produkta velja za katerikoli produkt, ki je bilinearna preslikava. Med njimi so npr. skalarni in vektorski produkt vektorjev, produkt tenzorja s skalarjem, tenzorski produkt, delovanje tenzorja na vektorju itd.

kjer je $\mathcal{D} \subseteq \mathcal{E}$ odprta množica, $I = (t_1, t_2) \subseteq \mathbb{R}$ (časovni) interval, W pa neki normirani prostor, potem je definiran še *časovni odvod*

$$\frac{\partial}{\partial t}f(x,t) = \lim_{s \to 0} \frac{1}{s} \Big(f(x,t+s) - f(x,t) \Big),$$

kar je zopet časovno odvisno tenzorsko polje z vrednostmi iz prostora W. n-ti časovni odvod polja f označimo z $\partial^n f/\partial t^n$.

1.3 Gibanje materialnega telesa

Materialno telo je določeno z izbrano množico točk $\mathcal{B} \subseteq \mathcal{E}$. Tej določitvi rečemo referenčna konfiguracija materialnega telesa in služi zgolj označbi telesa; ni nujno, da se telo dejansko kadarkoli nahaja v tem položaju. Oznaka \mathcal{B} bo odslej vedno prestavljala referenčno konfiguracijo telesa.

Definicija 1.3. Gibanje materialnega telesa v časovnem intervalu $I = (t_0, t_1)$ je zvezno, časovno odvisno vektorsko polje

$$\chi \colon \mathcal{B} \times I \to \mathcal{E}, \qquad \chi \colon (\mathbf{X}, t) \mapsto \mathbf{x}, \tag{1.2}$$

za katerega je za vsak $t \in I$ preslikava

$$\chi_t \colon \mathcal{B} \to \mathcal{B}_t, \qquad \chi_t \colon \mathbf{X} \mapsto \chi(\mathbf{X}, t) = \mathbf{x}$$

bijektivna. Slika \mathcal{B}_t se imenuje trenutna konfiguracija materialnega telesa ob času t.

Gibanje (1.2) ni bijektivna preslikava, zato nima inverza. Kljub temu na smiselen način definiramo $inverzno\ gibanje$

$$\chi^{-1}(\boldsymbol{x},t) = \chi_t^{-1}(\boldsymbol{x}),$$

za katerega tudi zahtevamo, da je zvezno.

V predstavitvi gibanja (1.2) se krajevni vektor \boldsymbol{X} imenuje materialni vektor, točka X, ki jo \boldsymbol{X} predstavlja, se imenuje materialna točka in njene koordinate (X^1, X^2, X^3) se imenujejo materialne koordinate. Krajevni vektor \boldsymbol{x} se imenuje prostorski vektor, točka x, ki jo predstavlja, se imenuje prostorska točka, njene koordinate (x^1, x^2, x^3) pa se imenujejo prostorske koordinate.

 $Hitrost~\boldsymbol{v}$ in $pospešek~\boldsymbol{a}$ gibanja χ v časovnem intervalu Ista vektorski polji

$$\boldsymbol{v} \colon \mathcal{B} \times I \to V \qquad \boldsymbol{v} = \frac{\partial}{\partial t} \chi(\boldsymbol{X}, t),$$
 (1.3)

$$\boldsymbol{a} \colon \mathcal{B} \times I \to V \qquad \boldsymbol{a} = \frac{\partial^2}{\partial t^2} \chi(\boldsymbol{X}, t).$$
 (1.4)

Pri tem mora biti χ vsaj dvakrat odvedljivo po času. *Deformacijski gradient* gibanja χ je tenzorsko polje

$$F = \nabla \chi(\boldsymbol{X}, t).$$

Za determinanto $j = \det F$ se predpostavi, da je pozitivna.

Materialno telo spremljajo različne fizikalne lastnosti, katerih vrednosti predstavimo z elementi nekega normiranega prostora W. Vrednosti fizikalnih količin se med gibanjem v časovnem intervalu $I\subseteq\mathbb{R}$ spreminjajo, opišemo pa jih lahko na dva različna načina.

Definicija 1.4. *Materialni* ali *Lagrangejev opis* je predstavitev fizikalne količine, ki spremlja materialno telo med gibanjem χ , s tenzorskim poljem

$$f: \mathcal{B} \times I \to W, \qquad f: (\mathbf{X}, t) \mapsto w.$$

Prostorski ali Eulerjev opis je pri vsakem $t \in I$ predstavitev taiste fizikalne količine s tenzorskim poljem

$$\bar{f}(\cdot,t) \colon \mathcal{B}_t \to W, \qquad \bar{f} \colon (\boldsymbol{x},t) \mapsto w.$$

Med materialnim in prostorskim opisom veljata zvezi

$$f(\mathbf{X},t) = \bar{f}(\chi(\mathbf{X},t),t), \qquad \bar{f}(\mathbf{x},t) = f(\chi^{-1}(\mathbf{x},t),t).$$
 (1.5)

Kadar bomo uporabljali prostorski opis in bo to jasno iz konteksta, bomo črtico v oznaki za polje izpustili. Do dvomov lahko pride, kadar ne pišemo argumentov polja, še posebej, če so vključeni odvodi. Temu dvomu se izognemo tako, da uporabljamo različno notacijo za odvode. V materialnem opisu pišemo gradient in divergenco kot

$$\nabla_{\mathbf{X}} f = \nabla f(\mathbf{X}, t), \quad \text{Div } f = \text{div } f(\mathbf{X}, t),$$

v prostorskem opisu pa

$$\nabla_{\boldsymbol{x}} f = \nabla \bar{f}(\boldsymbol{x}, t), \quad \operatorname{div} f = \operatorname{div} \bar{f}(\boldsymbol{x}, t).$$

Če je ϕ skalarno, $m{u}$ pa vektorsko polje, potem je zveza med gradientoma

$$\nabla_{\mathbf{X}} \phi = F^T \nabla_{\mathbf{x}} \phi, \qquad \nabla_{\mathbf{X}} \mathbf{u} = \nabla_{\mathbf{x}} \mathbf{u} F.$$

Res, če je \boldsymbol{w} poljubno vektorsko polje, potem je

$$\nabla_{\boldsymbol{X}}\phi\cdot\boldsymbol{w} = \nabla_{\boldsymbol{x}}\phi\cdot\nabla_{\boldsymbol{X}}\chi\left[\boldsymbol{w}\right] = \nabla_{\boldsymbol{x}}\phi\cdot\boldsymbol{F}\boldsymbol{w} = \boldsymbol{F}^{T}\nabla_{\boldsymbol{x}}\phi\cdot\boldsymbol{w},$$
$$\nabla_{\boldsymbol{X}}\boldsymbol{u}\left[\boldsymbol{w}\right] = \nabla_{\boldsymbol{x}}\boldsymbol{u}\left[\nabla_{\boldsymbol{X}}\chi\left[\boldsymbol{w}\right]\right] = \nabla_{\boldsymbol{x}}\boldsymbol{u}\boldsymbol{F}\left[\boldsymbol{w}\right].$$

Definicija 1.5. Totalni odvod tenzorskega polja f po času

$$\dot{f} = \frac{d}{dt}f$$

imenujemo materialni odvod.

Poimenovanje naj nas ne zavede – gre za časovni odvod polja f, ko to sledi póti materialne točke. V materialnem opisu je

$$\dot{f} = \frac{d}{dt}f(\mathbf{X}, t) = \frac{\partial}{\partial t}f(\mathbf{X}, t).$$

V prostorskem opisu določena točka prostora ob vsakem času v splošnem predstavlja drugo materialno točko. Materialni odvod, ki je totalni odvod po času, je zato v prostorskem opisu

$$\dot{f} = rac{d}{dt}ar{f}(m{x},t) = rac{\partial}{\partial t}ar{f}(m{x},t) +
ablaar{f}(m{x},t)\left[ar{m{v}}(m{x},t)
ight].$$

Pri izpeljavi te enakosti se zaporedoma uporabi pravilo za totalni odvod, pravilo za posredno odvajanje, definicijo hitrosti (1.3) ter zvezo (1.5).

Primer 1.6. Pospešek je materialni odvod hitrosti. V prostorskem opisu je

$$\bar{\boldsymbol{a}} = \frac{\partial}{\partial t}\bar{\boldsymbol{v}} + L\bar{\boldsymbol{v}},$$

kjer je $L = \nabla_x v$ t. i. hitrostni gradient.

Literatura

- [1] A. Bedford, *Hamilton's principle in continuum mechanics*, Research notes in mathematics **139**, Pitman, Boston, London, Melbourne, 1985.
- [2] S. Dost in B. Tabarrok, Application of Hamilton's principle to large deformation and flow problems, J. appl. mech. 46 (1979), 285–289.
- [3] P. Haupt, Continuum mechanics and theory of materials, Advanced text in physics, Springer, Berlin, 2000.
- [4] I-Shih Liu, *Continuum mechanics*, Advanced text in physics, Springer, Berlin, 2002.
- [5] P. Chadwick, Continuum mechanics: Concise theory and problems, George Allen & Unwin, London, 1976.