Algorytmy Zaawansowane - POLE

Piotr Izert, Łukasz Dragan 12 marca 2016

Spis treści

1	Przedstawienie problemu	3
	1.1 Treść zadania	. 3
	1.2	. 3
2	Opis rozwiązania	3
	2.1 Pole wielokąta	. 3
	2.2 Zawieranie punktu w wielokącie	. 3
	2.3 Czy wielokąt jest prosty	
3	Analiza poprawności	3
	3.1 Pole wielokąta	. 3
4	Opis wejścia/wyjścia	4
	4.1 Wejście	. 4
	4.2 Wyjście	

1 Przedstawienie problemu

1.1 Treść zadania

Zaprojektować i zaimplementować algorytm, który w czasie liniowym względem n oblicza pole n-wierzchołkowego prostego wielokąta oraz sprawdza, czy podany punkt leży wewnątrz tego wielokąta. Program powinien zawierać procedurę sprawdzającą, czy dany wielokąt jest prosty.

1.2

2 Opis rozwiązania

2.1 Pole wielokata

W celu obliczenia pola powierzchni wielokąta prostego stosujemy algorytm wykorzystujący tzw. wzór trapezowy Gaussa $S=\frac{1}{2}\sum_{i=1}^n(x_i+x_{i+1})*(y_{i+1}-y_i)$, gdzie S to pole powierzchni wielokąta, x_i,y_i dla i=1...n to współrzędne kolejnych wierzchołków wielokąta, a n to liczba wierzchołków wielokąta. Zakładamy, że $x_{n+1}=x_1$ oraz $y_{n+1}=y_1$.

Algorytm

- 1. area = 0
- 2. j = n
- 3. dla i = 1 do n wykonaj:
- 4. $area = area + (x_i + x_i) * (y_i y_i)$
- 5. j = i
- 6. area = area/2
- 7. RETURN area

2.2 Zawieranie punktu w wielokącie

2.3 Czy wielokąt jest prosty

3 Analiza poprawności

3.1 Pole wielokąta

Poprawność

W pierwszej iteracji pętli z kroku 3. $area = (x_n + x_1) * (y_n - y_1) (= (x_n + x_{n+1}) * (y_n - y_{n+1}))$. W kolejnych iteracjach j jest zawsze o 1 mniejsze od i, stąd do

areadodawana jest wartość $(x_j+x_{j+1})*(y_j-y_{j+1})$ dla~j=1...n-1. Stąd ostatecznie $area=(x_n+x_{n+1})*(y_n-y_{n+1})+(x_1+x_2)*(y_1-y_2)+...+(x_{n-1}+x_n)*(y_{n-1}-y_n)=\sum\limits_{i=1}^n(x_i+x_{i+1})*(y_{i+1}-y_i).$ Po podzieleniu area przez 2 otrzymujemy wzór Gaussa na pole powierzchni wielokąta.

Złożoność czasowa

Algorytm działa w czasie O(n), gdyż główna pętla algorytmu wykonuje dokładnie n kroków.

4 Opis wejścia/wyjścia

4.1 Wejście

Program domyślnie jako wejście przyjmuje zawartość pliku "in.txt", który powinien zawierać w kolejnych liniach:

- 1. Dane postaci x_1 y_1 ... x_n y_n , gdzie $(x_i, y_i) \in \Re^2$ dla i = 1, 2, ..., n to współrzędne kolejnych punktów a n to liczba wierzchołków wielokąta.
- 2. Dane postaci x y, gdzie $(x,y) \in \Re^2$ będące współrzędnymi punktu, którego zawieranie w wielokącie na zostać sprawdzone.

Przykładowe wejście

344,8 91,2 68,8 121,6 352,8 218,4 448 114,4 288,8 136

4.2 Wyjście

Rezultat działania programu zapisywany jest w pliku "out.txt" w postaci S Ans gdzie S to pole powierzchni wielokąta a $Ans \in \{"TAK","NIE"\}$ to odpowiedź na pytanie, czy dany punkt jest zawarty w wielokącie. W przypadku, gdy dany wielokąt nie jest prosty rezultatem działania programu jest NOT SIMPLE. Jeżeli dane podane na wejściu są niepoprawne, program zapisze do pliku BAD INPUT.

Przykładowe wyjście

1243,33 TAK