In [1]:

import pandas as pd

In [2]:

df = pd.read_csv('titanic_train.csv')

In [3]:

df.head()

Out[3]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500
4										•

In [4]:

```
df.tail()
```

Out[4]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	С
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	
888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	NaN	1	2	W./C. 6607	23.45	
889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.00	(
890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.75	
4											•

In [5]:

df.shape

Out[5]:

(891, 12)

In [6]:

df.columns

Out[6]:

In [7]:

```
df.duplicated().sum()
```

Out[7]:

0

In [8]:

```
df.isnull().sum()
```

Out[8]:

PassengerId 0 Survived 0 Pclass 0 0 Name Sex 0 Age 177 SibSp 0 Parch 0 Ticket 0 Fare 0 Cabin 687 **Embarked** 2 dtype: int64

In [9]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 891 entries, 0 to 890 Data columns (total 12 columns):

Column Non-Null Count Dtype ----------0 PassengerId 891 non-null int64 1 Survived 891 non-null int64 891 non-null 2 Pclass int64 3 Name 891 non-null object 4 Sex 891 non-null object 5 float64 Age 714 non-null 6 SibSp 891 non-null int64 7 Parch 891 non-null int64 8 Ticket 891 non-null object 9 float64 Fare 891 non-null 10 Cabin 204 non-null object 11 Embarked 889 non-null object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

In [10]:

```
df.describe()
```

Out[10]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200
4							•

In [11]:

```
df.nunique()
```

Out[11]:

PassengerId 891 Survived 2 Pclass 3 Name 891 Sex 2 Age 88 7 SibSp Parch 7 Ticket 681 Fare 248 Cabin 147 Embarked 3 dtype: int64

In [12]:

```
df['Age'].fillna(df['Age'].mean(), inplace=True)
```

In [13]:

```
df['Cabin'].fillna(df['Cabin'].mode()[0], inplace=True)
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
```

```
In [14]:
df.isnull().sum()
Out[14]:
PassengerId
               0
Survived
                0
Pclass
                0
                0
Name
Sex
               0
Age
                0
                0
SibSp
Parch
Ticket
                0
Fare
                0
Cabin
                0
Embarked
                0
dtype: int64
In [15]:
import matplotlib.pyplot as plt
import seaborn as sns
In [16]:
import warnings
warnings.filterwarnings('ignore')
In [17]:
df['Survived'].unique()
Out[17]:
array([0, 1], dtype=int64)
In [18]:
df['Survived'].value_counts()
Out[18]:
     549
1
     342
```

Name: Survived, dtype: int64

In [19]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['Survived'], data = df, palette = 'hls')
plt.show()
```


In [20]:

Survived


```
In [21]:
```

```
df['Pclass'].unique()
```

Out[21]:

array([3, 1, 2], dtype=int64)

In [22]:

```
df['Pclass'].value_counts()
```

Out[22]:

3 4911 2162 184

Name: Pclass, dtype: int64

In [23]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['Pclass'], data = df, palette = 'hls')
plt.show()
```


In [24]:

Passenger Class


```
In [25]:
```

```
df['Sex'].unique()
```

Out[25]:

array(['male', 'female'], dtype=object)

In [26]:

```
df['Sex'].value_counts()
```

Out[26]:

male 577 female 314

Name: Sex, dtype: int64

In [27]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['Sex'], data = df, palette = 'hls')
plt.show()
```


In [28]:

Sex

In [29]:

```
plt.figure(figsize=(15,6))
sns.histplot(df['Age'], kde = True, bins = 20, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [30]:

```
plt.figure(figsize=(15,6))
sns.distplot(df['Age'], kde = True, bins = 20)
plt.xticks(rotation = 90)
plt.show()
```


In [31]:

```
plt.figure(figsize=(15,6))
sns.violinplot(df['Age'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [32]:

```
plt.figure(figsize=(15,6))
sns.boxenplot(df['Age'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [33]:

```
plt.figure(figsize=(15,6))
sns.boxplot(df['Age'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [34]:

```
df['SibSp'].unique()
```

Out[34]:

array([1, 0, 3, 4, 2, 5, 8], dtype=int64)

In [35]:

```
df['SibSp'].value_counts()
```

Out[35]:

```
60
608
1
209
2
28
4
18
3
16
8
7
5
5
```

Name: SibSp, dtype: int64

In [36]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['SibSp'], data = df, palette = 'hls')
plt.show()
```


In [37]:

Siblings

In [38]:

```
df['Parch'].unique()
```

Out[38]:

array([0, 1, 2, 5, 3, 4, 6], dtype=int64)

In [39]:

```
df['Parch'].value_counts()
```

Out[39]:

```
678
118
80
5
5
4
4
6
1
```

Name: Parch, dtype: int64

In [40]:

```
plt.figure(figsize=(15,6))
sns.countplot(df['Parch'], data = df, palette = 'hls')
plt.show()
```


In [41]:

Parent Children

In [42]:

```
plt.figure(figsize=(15,6))
sns.histplot(df['Fare'], kde = True, bins = 20, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [43]:

```
plt.figure(figsize=(15,6))
sns.distplot(df['Fare'], kde = True, bins = 20)
plt.xticks(rotation = 90)
plt.show()
```


In [44]:

```
plt.figure(figsize=(15,6))
sns.violinplot(df['Fare'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [45]:

```
plt.figure(figsize=(15,6))
sns.boxenplot(df['Fare'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [46]:

```
plt.figure(figsize=(15,6))
sns.boxplot(df['Fare'], data = df, palette = 'hls')
plt.xticks(rotation = 90)
plt.show()
```


In [47]:

```
df['Cabin'].unique()
```

Out[47]:

```
array(['B96 B98', 'C85', 'C123', 'E46', 'G6', 'C103', 'D56', 'A6',
        'C23 C25 C27', 'B78', 'D33', 'B30', 'C52', 'B28', 'C83', 'F33',
        'F G73', 'E31', 'A5', 'D10 D12', 'D26', 'C110', 'B58 B60', 'E101', 'F E69', 'D47', 'B86', 'F2', 'C2', 'E33', 'B19', 'A7', 'C49', 'F4',
        'A32', 'B4', 'B80', 'A31', 'D36', 'D15', 'C93', 'C78', 'D35',
             , 'B77', 'E67', 'B94', 'C125', 'C99', 'C118', 'D7', 'A19',
        'B49', 'D', 'C22 C26', 'C106', 'C65', 'E36', 'C54'
        'B57 B59 B63 B66', 'C7', 'E34', 'C32', 'B18', 'C124', 'C91', 'E40',
        'T', 'C128', 'D37', 'B35', 'E50', 'C82', 'E10', 'E44', 'A34',
        'C104', 'C111', 'C92', 'E38', 'D21', 'E12', 'E63', 'A14', 'B37',
        'C30', 'D20', 'B79', 'E25', 'D46', 'B73', 'C95', 'B38', 'B39', 'B22', 'C86', 'C70', 'A16', 'C101', 'C68', 'A10', 'E68', 'B41',
        'A20', 'D19', 'D50', 'D9', 'A23', 'B50', 'A26', 'D48', 'E58',
        'C126', 'B71', 'B51 B53 B55', 'D49', 'B5', 'B20', 'F G63',
        'C62 C64', 'E24', 'C90', 'C45', 'E8', 'B101', 'D45', 'C46', 'D30',
        'E121', 'D11', 'E77', 'F38', 'B3', 'D6', 'B82 B84', 'D17', 'A36',
        'B102', 'B69', 'E49', 'C47', 'D28', 'E17', 'A24', 'C50', 'B42',
        'C148'], dtype=object)
```

```
In [48]:
```

```
df['Cabin'].value_counts()
Out[48]:
B96 B98
                691
                  4
G6
                  4
C23 C25 C27
C22 C26
                  3
F33
                  3
E34
                  1
C7
                  1
C54
                  1
E36
                  1
C148
Name: Cabin, Length: 147, dtype: int64
In [49]:
df['Embarked'].unique()
Out[49]:
array(['S', 'C', 'Q'], dtype=object)
In [50]:
df['Embarked'].value_counts()
Out[50]:
S
     646
     168
C
      77
Q
Name: Embarked, dtype: int64
In [51]:
plt.figure(figsize=(15,6))
sns.countplot(df['Embarked'], data = df, palette = 'hls')
plt.show()
  600
  500
```


In [52]:

Embarked

In [53]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df['Pclass'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [54]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(x = df['Pclass'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [55]:

```
plt.figure(figsize=(15,6))
sns.boxplot(x = df['Pclass'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [56]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df['Sex'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [57]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(x = df['Sex'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [58]:

```
plt.figure(figsize=(15,6))
sns.boxplot(x = df['Sex'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [59]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df['SibSp'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [60]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(x = df['SibSp'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [61]:

```
plt.figure(figsize=(15,6))
sns.boxplot(x = df['SibSp'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [62]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df['Parch'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [63]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(x = df['Parch'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [64]:

```
plt.figure(figsize=(15,6))
sns.boxplot(x = df['Parch'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [65]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df['Embarked'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [66]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(x = df['Embarked'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [67]:

```
plt.figure(figsize=(15,6))
sns.boxplot(x = df['Embarked'], y = df['Age'] , data = df, palette = 'hls')
plt.show()
```


In [68]:

```
plt.figure(figsize=(15,6))
sns.barplot(y = df['Age'], x = df['Survived'] , data = df, palette = 'hls')
plt.show()
```


In [69]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(y = df['Age'], x = df['Survived'] , data = df, palette = 'hls')
plt.show()
```


In [70]:

```
plt.figure(figsize=(15,6))
sns.boxplot(y = df['Age'], x = df['Survived'] , data = df, palette = 'hls')
plt.show()
```


In [71]:

```
plt.figure(figsize=(15,6))
sns.barplot(y = df['Fare'], x = df['Survived'] , data = df, palette = 'hls')
plt.show()
```


In [72]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(y = df['Fare'], x = df['Survived'] , data = df, palette = 'hls')
plt.show()
```


In [73]:

```
plt.figure(figsize=(15,6))
sns.boxplot(y = df['Fare'], x = df['Survived'] , data = df, palette = 'hls')
plt.show()
```


In [74]:

```
plt.figure(figsize=(15,6))
sns.barplot(x = df['Sex'], y = df['Survived'] , data = df, ci = None, palette = 'hls')
plt.show()
```


In [75]:

```
plt.figure(figsize=(15,6))
sns.scatterplot(x = df['Age'], y = df['Fare'] , data = df, palette = 'hls')
plt.show()
```


In [76]:

In [77]:

```
plt.figure(figsize=(15,6))
sns.lineplot(x = df['Age'], y = df['Fare'] , data = df, palette = 'hls')
plt.show()
```


In [78]:

```
\label{eq:plt.figure} $$ plt.figure(figsize=(15,6)) $$ sns.lineplot(x = df['Age'], y = df['Fare'] , hue = df['Survived'], data = df, palette = plt.show() $$
```


In [79]:

```
pd.pivot_table(df, index = 'Survived', values = ['Age', 'SibSp', 'Parch', 'Fare'])
```

Out[79]:

	Age	Fare	Parch	SibSp
Survived				
0	30.415100	22.117887	0.329690	0.553734
1	28.549778	48.395408	0.464912	0.473684

In [80]:

```
import numpy as np
```

In [81]:

```
Pclass = df["Pclass"].value_counts(normalize=True)
Pclass = pd.DataFrame(Pclass)
Pclass = Pclass.reset_index()
Pclass = Pclass.rename(columns={"index":"Class", "Pclass":"% of passengers"})
Pclass = Pclass.sort_values(by='Class')
Pclass["% of passengers"]= Pclass["% of passengers"]*100
Pclass["% of passengers"]= np.round(Pclass["% of passengers"],2)
display(Pclass)
```

Class % of passengers 1 1 24.24 2 2 20.65 0 3 55.11

In [82]:

```
Ticket = df["Ticket"].value_counts(normalize=True)
Ticket = pd.DataFrame(Ticket)
Ticket = Ticket.reset_index()
Ticket = Ticket.rename(columns={"index":"Ticket", "Ticket":"% of passengers"})
Ticket["% of passengers"]= Ticket["% of passengers"]*100
Ticket["% of passengers"]= np.round(Ticket["% of passengers"],2)
display(Ticket)
```

	Ticket	% of passengers
0	347082	0.79
1	CA. 2343	0.79
2	1601	0.79
3	3101295	0.67
4	CA 2144	0.67
		•••
676	9234	0.11
677	19988	0.11
678	2693	0.11
679	PC 17612	0.11
680	370376	0.11

681 rows × 2 columns

In [83]:

```
Cabin = df["Cabin"].value_counts(normalize=True)
Cabin = pd.DataFrame(Cabin)
Cabin = Cabin.reset_index()
Cabin = Cabin.rename(columns={"index":"Cabin", "Cabin":"% of passengers"})
Cabin["% of passengers"]= Cabin["% of passengers"]*100
Cabin["% of passengers"]= np.round(Cabin["% of passengers"],2)
display(Cabin)
```

Cabin	%	of	passe	ngers
-------	---	----	-------	-------

0	B96 B98	77.55
1	G6	0.45
2	C23 C25 C27	0.45
3	C22 C26	0.34
4	F33	0.34
142	E34	0.11
143	C7	0.11
144	C54	0.11
145	E36	0.11
146	C148	0.11

147 rows × 2 columns

In [84]:

```
df_new = df.copy()
```

In [85]:

```
df_new.groupby('Sex')['Age'].mean()
```

Out[85]:

Sex

female 28.216730 male 30.505824

Name: Age, dtype: float64

In [86]:

```
df = df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis = 1)
```

In [87]:

```
df.head()
```

Out[87]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	male	22.0	1	0	7.2500	S
1	1	1	female	38.0	1	0	71.2833	С
2	1	3	female	26.0	0	0	7.9250	S
3	1	1	female	35.0	1	0	53.1000	S
4	0	3	male	35.0	0	0	8.0500	S

In [88]:

```
from sklearn.preprocessing import LabelEncoder
encoder = LabelEncoder()
df['Sex'] = encoder.fit_transform(df['Sex'])
df['Embarked'] = encoder.fit_transform(df['Embarked'])
```

In [89]:

```
df.head()
```

Out[89]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked
0	0	3	1	22.0	1	0	7.2500	2
1	1	1	0	38.0	1	0	71.2833	0
2	1	3	0	26.0	0	0	7.9250	2
3	1	1	0	35.0	1	0	53.1000	2
4	0	3	1	35.0	0	0	8.0500	2

In [90]:

```
df_corr = df.corr()
```

In [91]:

df_corr

Out[91]:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embar
Survived	1.000000	-0.338481	-0.543351	-0.069809	-0.035322	0.081629	0.257307	-0.167
Pclass	-0.338481	1.000000	0.131900	-0.331339	0.083081	0.018443	-0.549500	0.162
Sex	-0.543351	0.131900	1.000000	0.084153	-0.114631	-0.245489	-0.182333	0.108
Age	-0.069809	-0.331339	0.084153	1.000000	-0.232625	-0.179191	0.091566	-0.026
SibSp	-0.035322	0.083081	-0.114631	-0.232625	1.000000	0.414838	0.159651	0.068
Parch	0.081629	0.018443	-0.245489	-0.179191	0.414838	1.000000	0.216225	0.039
Fare	0.257307	-0.549500	-0.182333	0.091566	0.159651	0.216225	1.000000	-0.224
Embarked	-0.167675	0.162098	0.108262	-0.026749	0.068230	0.039798	-0.224719	1.000
4								•

In [92]:

```
plt.figure(figsize=(20, 17))
matrix = np.triu(df_corr)
sns.heatmap(df_corr, annot=True, linewidth=.8, mask=matrix, cmap="rocket");
plt.show()
```


In [93]:

```
plt.hist(df, bins=30)
```

```
Out[93]:
```

```
0.,
                          0.,
(array([[891.,
                   0.,
                                 0.,
                                        0.,
                                               0.,
                                                             0.,
                                                                    0.,
                                                                           0.,
                                                                                  0.,
            0.,
                   0.,
                          0.,
                                 0.,
                                        0.,
                                               0.,
                                                      0.,
                                                             0.,
                                                                    0.,
                                                                           0.,
                                                                                  0.,
                                               0.,
                                                      0.,
                                 0.,
            0.,
                   0.,
                          0.,
                                        0.,
                                                             0.],
         [891.,
                                 0.,
                                               0.,
                                                      0.,
                                                             0.,
                   0.,
                          0.,
                                        0.,
                                                                    0.,
                                                                           0.,
                                                                                  0.,
                                                      0.,
                                                                           0.,
                          0.,
                                 0.,
                                               0.,
                                                             0.,
            0.,
                   0.,
                                        0.,
                                                                    0.,
                                                                                  0.,
            0.,
                   0.,
                          0.,
                                 0.,
                                        0.,
                                               0.,
                                                      0.,
                                                             0.],
                          0.,
                                               0.,
         [891.,
                                 0.,
                                                      0.,
                                                             0.,
                                                                    0.,
                   0.,
                                        0.,
                                                                           0.,
                                                                                  0.,
                          0.,
                                               0.,
                                 0.,
                                                      0.,
            0.,
                   0.,
                                        0.,
                                                             0.,
                                                                    0.,
                                                                           0.,
                                                                                  0.,
                          0.,
                                                      0.,
                                                             0.1,
                   0.,
                                 0.,
                                        0.,
                                               0.,
            0.,
                       179.,
                                50.,
                                                      0.,
                                                                    0.,
         [113., 542.,
                                        7.,
                                               0.,
                                                             0.,
                                                                           0.,
                                                                                  0.,
                          0.,
                                               0.,
            0.,
                   0.,
                                 0.,
                                        0.,
                                                      0.,
                                                             0.,
                                                                    0.,
                                                                           0.,
                                                                                  0.,
                          0.,
                                                      0.,
            0.,
                   0.,
                                 0.,
                                        0.,
                                               0.,
                                                             0.],
                          0.,
                                                                           0.,
         [891.,
                   0.,
                                 0.,
                                        0.,
                                               0.,
                                                      0.,
                                                             0.,
                                                                    0.,
                                                                                  0.,
                                               0.,
                          0.,
                                 0.,
                                                             0.,
                                                                    0.,
                                                                           0.,
            0.,
                   0.,
                                        0.,
                                                      0.,
                                                                                  0.,
                          0.,
                                 0.,
            0.,
                   0.,
                                        0.,
                                               0.,
                                                      0.,
                                                             0.1,
                          0.,
                                                                    0.,
         [891.,
                   0.,
                                 0.,
                                        0.,
                                               0.,
                                                      0.,
                                                             0.,
                                                                           0.,
                                                                                  0.,
                                                                    0.,
                   0.,
                          0.,
                                                                           0.,
                                 0.,
                                        0.,
                                               0.,
                                                      0.,
                                                             0.,
            0.,
                                                                                  0.,
                          0.,
                                 0.,
                                        0.,
                                               0.,
                                                      0.,
                                                             0.],
            0.,
                   0.,
         [496., 191.,
                         45.,
                                45.,
                                       48.,
                                              13.,
                                                            11.,
                                                                    9.,
                                                                           2.,
                                                                                  0.,
                                                     11.,
                          4.,
                                                                                  0.,
            0.,
                   5.,
                                 2.,
                                        6.,
                                               0.,
                                                      0.,
                                                             0.,
                                                                    0.,
                                                                           0.,
                          0.,
                                               0.,
                                                      0.,
            0.,
                   0.,
                                 0.,
                                        0.,
                                                             3.],
         [891.,
                   0.,
                          0.,
                                 0.,
                                                      0.,
                                                             0.,
                                                                           0.,
                                        0.,
                                               0.,
                                                                    0.,
                                                                                  0.,
                          0.,
                                                                                  0.,
            0.,
                   0.,
                                 0.,
                                        0.,
                                               0.,
                                                      0.,
                                                             0.,
                                                                    0.,
                                                                           0.,
                          0.,
                                 0.,
                                               0.,
                                                      0.,
                                                             0.]]),
                                        0.,
                       17.07764, 34.15528,
                                               51.23292,
                                                            68.31056, 85.3882 ,
 array([ 0.
         102.46584, 119.54348, 136.62112, 153.69876, 170.7764, 187.85404,
         204.93168, 222.00932, 239.08696, 256.1646, 273.24224, 290.31988,
         307.39752, 324.47516, 341.5528, 358.63044, 375.70808, 392.78572,
         409.86336, 426.941 , 444.01864, 461.09628, 478.17392, 495.25156,
         512.3292 ]),
 <a list of 8 BarContainer objects>)
```

800 -600 -400 -

200

300

400

In [94]:

```
X = df.drop('Survived', axis=1)
y = df['Survived']
```

500

100

In [95]:

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X = scaler.fit_transform(X)
```

In [96]:

```
from sklearn.model_selection import train_test_split
```

In [97]:

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=4
```

In [98]:

```
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
logreg.fit(X_train, y_train)
```

Out[98]:

```
LogisticRegression
LogisticRegression()
```

In [99]:

```
y_pred = logreg.predict(X_test)
```

In [100]:

```
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, con
```

```
In [101]:
```

```
# calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(accuracy)
# calculate precision
precision = precision_score(y_test, y_pred)
print(precision)
# calculate recall
recall = recall_score(y_test, y_pred)
print(recall)
# calculate F1 score
f1 = f1_score(y_test, y_pred)
print(f1)
# calculate confusion matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
y_prob = logreg.predict_proba(X_test)
0.7892376681614349
0.7441860465116279
0.7191011235955056
0.7314285714285713
[[112 22]
```

In [102]:

[25 64]]

from scikitplot.metrics import plot_confusion_matrix, plot_roc

In [103]:

```
plot_confusion_matrix(y_test, y_pred, cmap= 'YlGnBu')
plt.show()
```


In [104]:

```
plot_roc(y_test, y_prob, plot_macro= False, plot_micro= False, cmap= 'summer')
plt.show()
```


In [105]:

```
from sklearn.tree import DecisionTreeClassifier
model = DecisionTreeClassifier()
model.fit(X_train,y_train)
```

Out[105]:

```
v DecisionTreeClassifier
DecisionTreeClassifier()
```

```
In [106]:
```

```
y_pred = model.predict(X_test)
```

In [107]:

```
# calculate accuracy
accuracy = accuracy_score(y_test, y_pred)
print(accuracy)
# calculate precision
precision = precision_score(y_test, y_pred)
print(precision)
# calculate recall
recall = recall_score(y_test, y_pred)
print(recall)
# calculate F1 score
f1 = f1_score(y_test, y_pred)
print(f1)
# calculate confusion matrix
cm = confusion_matrix(y_test, y_pred)
print(cm)
y_prob = model.predict_proba(X_test)
```

```
0.7174887892376681
```

- 0.64444444444445
- 0.651685393258427
- 0.6480446927374302

[[102 32]

[31 58]]

In [108]:

```
plot_confusion_matrix(y_test, y_pred, cmap= 'YlGnBu')
plt.show()
```


In [109]:

plot_roc(y_test, y_prob, plot_macro= False, plot_micro= False, cmap= 'summer')
plt.show()

