

MPUP 5422 – Week 3 Environmental justice and politics

XU Yuan January 22, 2020

Outline

- Local NIMBY
- SO₂ mitigation in the United States
- Montreal Protocol vs. Kyoto Protocol
- Solar lobby in Japan

DISTRIBUTION OF COSTS/BENEFITS -- NOT IN MY BACKYARD

Any difference?

We need power plants and waste management facilities.

Hong Kong's municipal solid waste generation

Location of Closed Landfills in Hong Kong

Not In My BackYard (NIMBY)

Dioxin products and temperature

Not In My BackYard (NIMBY)

Panyu, Guangdong province

Hong Kong

Environmental impacts of wind turbines

http://www.controlaltenergy.com/Wind_Myths.htm

http://www.mlive.com/news/bay-city/index.ssf/2009/06/wind_turbines_create_bad_buzz.html

Shale gas wells in the United States -- In my backyard (IMBY)?

SO₂ MITIGATION IN THE UNITED STATES

A video clip

National Atmospheric Deposition Program/National Trends Network http://nadp.isws.illinois.edu

Electrification of coal consumption

Coal beds in the U.S.

Sulfur contents in the U.S.

Political spending by the U.S. coal industry

The Coal Shovel

The full tally is not in, but political spending by the coal industry this year is on track to exceed what was spent in the 2008 cycle.

Note: Contributions for '04 through '10 cycles do not include Levin fund contributions to state and local party committees.

Source: Center for Responsive Politics

U.S. House of Representatives in 2019

U.S. population and Senate

Clean Air Act Amendments of 1990

- The Clean Air Act Amendments of 1990 set a goal of reducing annual SO₂ emissions by 10 million tons below 1980 levels. To achieve these reductions, the law required a two-phase tightening of the restrictions placed on fossil fuel-fired power plants:
- Phase I (began in 1995) Affected 263 units at 110 mostly coal-burning electric utility plants located in 21 eastern and midwestern states. An additional 182 units joined Phase I of the program as substitution or compensating units, bringing the total of Phase I affected units to 445.
- Phase II (began in 2000) Tightened the annual emissions limits imposed on large, higher emitting plants and also set restrictions on smaller, cleaner plants fired by coal, oil, and gas, encompassing over 2,000 units in all. The program affects existing utility units serving generators with an output capacity of greater than 25 megawatts and all new utility units.

http://www.epa.gov/airmarkets/progsregs/arp/s02.html

Figure 4: Average Monthly SO₂ Allowance Price, August 1994 - May 2009

Source: CantorCO2e Market Price Index, 2009

Source: EPA, 2009

Coal mining in the U.S.

24

The deployment of SO₂ scrubbers

The stagnation of the U.S. coal power sector

MONTREAL PROTOCOL VS. KYOTO PROTOCOL

Antarctic Ozone Hole

Freon (CFCs)

Production of Ozone Depleting Substances

Skin cancer: UV protection vs. Vitamin D

Source: UNEP, 2007

The hockey stick graph

The point of debate

- Are we causing global warming?

Atmospheric CO₂ concentration at Mauna Loa

World's CO₂ emissions are mainly emitted by developed and rapidly developing countries

However, developing countries suffer the most from climate disasters

Mortality (per million people) attributable to climate change by the year 2000

Patz, J.A., et al., 2005. "Impact of regional climate change on human health." Nature 438(7066): 310-317.

SOLAR LOBBY IN JAPAN

Renewable energy development in Japan

Japan's market economy?

-- Economic optimization

Figure 2.1 Global levelised cost of electricity from utility-scale renewable power generation technologies, 2010-2017 Offshore **Biomass** Geothermal Hydro Solar Concentrating Onshore photovoltaic solar power wind wind 0.4 0.36 0.33 0.3 2016 USD/kWh 0.22 0.2 Fossil fuel cost range 0.1 0.10 2010 2017 2010 2010 2017 2017 2010 2017 2010 2017 2010 2017 2010 2017 Capacity (MW) 100 200 ≥ 1

Bureaucracy and the first energy transition

The solar industry in rising global competition

Independent power producers after Fukushima

Time constraints and energy crisis

E	Time needed from project	Time needed from FIT approval to the start of operation		
Energy Type	preparation to FIT approval			
Biomass (5,000 kW)	1 year	2~3 year		
Geothermal (30,000 kW)	3~4 year (environmental assessment)	3~4 year		
Median- or small-scale Hydropower (1000 kW)	3 year (local agreement)	~5 year		
Solar PV (10,000 kW)	1 year	1~1.5 year		
Wind (20,000 kW)	3~4 year (environmental assessment)	1~3 year		

Solar lobby and high feed-in-tariff

Feed-in Tariff

						_				
Energy type	2012	2013	2014	2015	2016		Initial capital	Capacity	Electricity	FIT level**
Solar PV (>10 kW)	40	36	32	29	24		cost* (\$/kW)	factor*	generation cost*	(¢/kWh)
Solar PV (<10 kW)	42	38	37	33	31				(\$/MWh)	
Onshore wind (> 20 kW)			22			Britain	1160	10%	130	16.5
Onshore wind (<20 kW)			55			China	1181	16%	102	14.3~15.8
Offshore wind	-	-	-	36	36	France	1050	14%	93	10.6 (biding price)
Geothermal (>15000 kW)	26					Germany	1000	11%	103	8.9 (biding price)
Geothermal (<15000 kW)	40					India	898	19%	90	7.7~9.2
Hydro(1000kW~30000kW)	24					Japan	2205	14%	192	22.5
Hydro (200kW~1000kW)	29					Turkey	1240	16%	122	13.3
Hydro (<200kW)	34						Source: METI, 2016			

Source: METI, 2017. Energy White Paper 2017. Tokyo, Japan

