初等数论

吴伊涛

Now, we want to consider some congruence equations, e.f. $3X \equiv 5 \pmod{11}$, $X^2 \equiv -1 \pmod{121}$, \cdots etc.

Recall: When we consider an equation, there are 3 elementary problems:

Q1: Is the equation sujuable?

Q2: If it is solvable, how many solutions does it have?

Q3: If it is solvable, find all its solutions.

Also, note that, if $f(x) \in \mathbb{R}[X]$ is a polynomial with integral coefficients, $a \equiv b \pmod{m}$, then $f(a) \equiv f(b) \pmod{m}$ (pwb. Cor).

So, if X_0 is a solution of $f(X) \equiv 0 \pmod{m}$, then all integers Congruent to X_0 modulo M are also solutions of $f(X) \equiv O \pmod{M}$.

E.g. 9 is a sol. of $3X \equiv 5 \pmod{11}$, then we immediately know that 9+11k, kER are also sof of this equation.

These solutions, actually are same when modulo m, are called Equivalent solutions

The number of solutions of an algebraic congruence equation $f(x) \equiv 0 \pmod{m}$ is defined to be the number of inequivalent Solutions.

E.g. $3X = 3 \pmod{15}$.

It is easy to check: from 0 to 14, 1, 6, 11 are solutions of this equation. It is also a solution, but X=16 is equivalent to the solution X = 1.

Thus, the equation $3X \equiv 3 \pmod{15}$ has 3 solutions in total, and we write them as:

 $\chi \equiv 11 \pmod{15}$. $X \equiv \$1 \pmod{15}$, $X \equiv 6 \pmod{15}$,

It is helpful to see these from another point of view:

The congruence equation $f(x) \equiv 0 \pmod{m}$ actually corresponds to the equation f(x) = 0 in $\mathbb{R}/m\mathbb{R}$. The number of inequivalent Solutions of $f(x) \equiv 0 \pmod{m}$ is actually the number of solutions of f(x) = 0 in 2/m2.

 $\rightarrow 3\chi = 3$ in 2/152E.g. $3X \equiv 3 \pmod{15}$ <--> X=1, b, TI. X = | (mod | S), X = 6 (mod | S)X = 11 (mod 15)

We just consider equations of one varible in this section. But equations with mutti-varibles have the same problem: If $X_1 \equiv Y_1 \pmod{m}$, $X_2 \equiv Y_2 \pmod{m}$, \cdots $X_k \equiv Y_k \pmod{m}$, then $f(X_1, X_2, \dots, X_R) = f(\mathcal{Y}_1, \mathcal{Y}_2, \dots, \mathcal{Y}_R)$ (mod m). So we also have to consider inequivalent sylutions.

 $\alpha X \equiv C \pmod{m}$.

The simplest congruence equation is $\Delta X \equiv C \pmod{m}$, where $\Delta, C \in \mathbb{R}$, $E \not\equiv T$ m∈ Z⁺.
We consider Q1 first:

 $\alpha X \equiv C \pmod{m}$ has a Solution $X \equiv X_0 \pmod{m}$

 \Leftrightarrow $\alpha \cdot \chi_o \equiv C \pmod{m}$, $\exists \chi_o \in \mathbb{Z}$.

 \iff $\exists xy \in Z$, s.t. $ax_{o}-c=my_{o}$

(=> The Diophantine equation ax+my= C has a solution (xo,-yo).

⇒ g.c.d.(a, m) | C.

The solution of solutions of large of la

The above discussion actually also tells us how to solve the equation $ax = c \pmod{m}$: If you find all solutions of ax + my = c, Then you find all solutions of $ax \equiv C \pmod{m}$.

More explicitly, if $(\chi_0, -y_0)$ is a special solution of ax+my=C, then the general solutions of ax+my=C are:

 $\begin{cases} X = X_0 + \frac{m}{d} \cdot t \\ y = -y_0 - \frac{a}{d} \cdot t \end{cases}$ text, here d = gc.d.(a, m).

Thus Xo + m t (LER) are all integers satisfying the Congruence equation. But these solutions may have equivalent ones, for example, to and to+m are equivalent. So, how many inequivalent solutions in $X_0 + \frac{m}{a}t$ (LEZ)?

(6)

Claim: There are exactly d inequivalent solutions, and $X_0 + \frac{m}{d} \cdot k, \quad k=0,1,2,\cdots,d-1$ are pairwise inequivalent solutions of $ax \equiv C \pmod{m}$

Clearly, $X_0 + \frac{m}{d} \cdot k$ $(k = 0, 1, 2, \dots, k-1)$ are pairwise inequivalent solutions of $\Delta X \equiv C \pmod{m}$. (Since the difference between any two is a positive integer less than m).

Now, we have to show: $\forall t \in \mathbb{R}$, $X_0 + \frac{m}{d} \cdot t$ is equivalent to one of $X_0 + \frac{m}{d} \cdot k$ $(k = 0, 1, 2, \dots, k-1)$.

Use Division Agorithm, $t = q \cdot d + r$, $0 \le r \le d-1$.

Then $X_0 + \frac{m}{d} \cdot t = X_0 + \frac{m}{d} \cdot \Gamma \pmod{m}$. Thus the solution $X = X_0 + \frac{m}{d} \cdot t$ is equivalent to $X = X_0 + \frac{m}{d} \cdot \Gamma$.

Summarizing above, we have the following proposition:

Prop. Let $m \in \mathbb{R}^+$, $a, c \in \mathbb{R}$, $a \neq 0$, d = g.c.d.(a, m).

The congruence equation $\Delta X \equiv C \pmod{m}$ has solutions if and only if d|b.

If d/b, Then there are exactly d solutions.

If X_0 is a solution (which can be find via applying Extended Euclidean Algorithm on the Diophantine equation ax+my=c), Then all solutions of $ax \equiv c \pmod{m}$ are:

 $X \equiv X_o \pmod{m}$, $X \equiv X_o + \frac{m}{d} \pmod{m}$, \dots , $X \equiv X_o + \frac{m}{d} \cdot (d-1) \pmod{m}$

Cor. Let $m \in \mathbb{R}^+$, $\alpha \in \mathbb{R}$ and $g.c.d.(\alpha, m) = 1$. $C \in \mathbb{R}$.

Then $\Delta X \equiv C \pmod{m}$ has one and only one solution. In particular, $\alpha x \equiv 1 \pmod{m}$ has a unique solution, and we call this solution as a' (modulo m).

The above Corollary Shows that why we always consider the residue class coprime to m. If a is coprime to m, then we can multiply the equation $a.b \equiv ac \pmod{m}$ by a', we then get b≡C (mod m). We have "division" in case g.c.d.(a, m)=1!

E.g. Solve the congruence equation $6X \equiv 3 \pmod{15}.$

Sof. 1st, solve the equation 6x+15y=3. N-2 y=-1We find a special solution X=3, Y=-1.

2nd. Use the above prop.

So, all sol. of the congruence equation $6X \equiv 3 \pmod{t}$ are! Don't forget to Check your answer!) $X \equiv 3 \pmod{15}$, $X \equiv 8 \pmod{15}$, $X \equiv 13 \pmod{15}$.

Note: We always simplify our final solutions to the integers. (m born) (1-1 between 0 and m-1. (m born) + x = x (m born) x = x

$$A = 2022$$
 $b = 123$
 $b_1 = 16$
 $c_2 = 3$
 $c_3 = 3$
 $c_4 = 6$
 $c_5 = 3$
 $c_6 = 6$
 $c_$

Step 2: Use Extended Euclidean Algorithm to find a special solution of 123x + 2022y = 456.

			1	,		
k	0	1	2	3	4	. 5
8k		16	2	3	1	1
PR	1	16	33	115	148	263
\mathbb{Q}_k	0	1	2	7	9	16

$$Q_{k} \cdot Q - P_{k} \cdot b = (-1)^{k+1} \cdot \Gamma_{k}$$

$$X = -263 \times \frac{456}{3} = -39976$$

Thus
$$123 \times \equiv 456 \pmod{2022}$$
 has a special solution: $123 \times \equiv -39976 \equiv 464 \pmod{2022}$.

Step 3. Write out all solutions of 123 X = 456 (mod 2022).

$$X = 464 + \frac{2022}{3} = 1138 \pmod{2022}$$

$$X = 464 + 2 \times \frac{2022}{3} = 1812 \pmod{2022}$$

Step 4: Check your solutions!

Leave to you.

Remark

Sometimes, we can simplify the repeated squaring method via "finding the inverse".

Example Calculate Calculate $2023^{1000} (mod 2048)$.

Solution:

$$2048 = 2^{11}$$
, $\phi(2048) = 2^{11} - 2^{10} = 1024$. Since 2023 is coprime to 2048, by Euler's theorem,

$$2023^{1024} \equiv 1 (mod \ 2048)$$

So

$$2023^{1000} \equiv 2023^{-24} (mod \ 2048)$$

Now, use repeated squaring method(leave to you), we find

$$2023^{24} \equiv 1857 (mod\ 2048)$$

Then, use extended Euclidean Algorithm to solve congruence equation $1857x \equiv 1 \pmod{2048}$ (leave to you), we find $x \equiv 193 \pmod{2048}$. So $2023^{1000} \pmod{2048} = 193$.

Wilson's theorem

If p is a prime, then $(p-1)! \equiv -1 \pmod{p}$.

Example:

$$p = 7$$

$$6! \equiv 720 \equiv -1 (mod 7).$$

$$6! \equiv 1 \cdot (2 \cdot 4) \cdot (3 \cdot 5) \cdot 6 \equiv -1 \pmod{7}.$$

Proof of Wilson's theorem

If p = 2, then $(p - 1)! \equiv 1 \equiv -1 \pmod{2}$.

Now, we can assume $p \geq 3$.

Claim 1: If a is an integer with 1 < a < p-1, then there exists a unique integer b, s.t. 1 < b < p-1, $b \neq a$, $ab \equiv 1 \pmod{p}$.

Since a coprime to b, the congruence equation $ax \equiv 1 \pmod{p}$ has a unique solution $x \equiv b \pmod{p}$ with $1 \leq b \leq p-1$.

If b = 1, then $a \equiv ab \equiv 1 \pmod{p}$, a = 1, a contradiction.

If b = p - 1, then $a \equiv ab \equiv -1 \pmod{p}$, a = p - 1, also a contradiction.

Therefore, we can group the integers from 2 to p-2 into $\frac{p-3}{2}$ pairs of

integers, such that the product of each pair congruent to 1 modulo p.

Thus

$$2 \cdot 3 \cdot \dots \cdot (p-3) \cdot (p-2) \equiv 1 \pmod{p}$$

Hence,

$$(p-1)! \equiv 1 \cdot (2 \cdot 3 \cdot \dots \cdot (p-3) \cdot (p-2)) \cdot (p-1) \equiv 1 \cdot 1 \cdot (-1) \equiv -1 \pmod{p}$$

The converse of of Wilson's theorem is also true:

Theorem

If n is an integer greater than 2, and $(n-1)! \equiv -1 \pmod{n}$, Then n is a prime.

Proof

Assume n is a composite and $(n-1)! \equiv -1 \pmod{n}$.

Since n is a composite, we have:

$$n = ab$$
, $2 \le a, b \le n - 1$

Thus a|(n-1)! since a is a factor of (n-1)!.

On the other hand, a|(n-1)! + 1 since n|(n-1)! + 1.

It follows that a|1, a contradiction.

Example:

$$n = 18 = 2 \times 9$$

$$17! \equiv 1 \cdot 2 \cdot \dots \cdot 9 \cdots 17 \equiv 0 \pmod{2 \times 9}.$$

In fact, if n is a composite greater than 5, then $(n-1)! \equiv 0 \pmod{n} (3! \equiv 2 \pmod{4})$.

Theorem

n is a composite greater than 5, then $(n-1)! \equiv 0 \pmod{n}$.

Proof

Since n is a composite, we have:

$$n = ab$$
, $2 \le a \le b \le n - 1$

If $a \neq b$, then $(n-1)! = 1 \cdot 2 \cdot \cdot \cdot a \cdot \cdot \cdot b \cdot \cdot \cdot (n-1)$, thus n = ab|(n-1)!.

If a = b, since n > 5, so a > 2, $2a < a^2 = n$, thus $2a \le n - 1$.

Hence $(n-1)! = 1 \cdot 2 \cdots a \cdots 2a \cdots (n-1)$, thus $(a \cdot 2a)|(n-1)!$. We

also have $n = a^2 | (n - 1)!$.

Remark

Wilson's theorem and its converse suggests us a primality Test:

Input: $n \gg 1$, n odd

Step 1: Calculate (n-1)!(modn);

If it equals to 0, then Output "n is a composite";

If it equals to n-1, then Output "n is a prime".

This is correct but inefficient since we don't have an efficient way to calculate (n-1)!(modn).

RSA cryptosystem

The most commonly used public key cryptosystem is the RSA cryptosystem (named after Ronald Rivest, Adi Shamir, and Leonard Adleman).

The following is the principle:

Assume n is the product of two large primes p, q, e is a positive integer coprime to $\phi(n)$. Alice first translate the letters of her message into their numerical equivalents (00= blank, 01="A",02="B",03="C"...,26="Z".) and then form a block P. She then calculate $P^e(modn)$ to get a ciphertext block C and sends C to Bob. Now Bob has to decrypt the ciphertext block C to the block P and then get Alice's original message.

Principle of RSA cryptosystem:

For simplicity, assume P is coprime to n.

By Euler's theorem, we have:

$$P^{\phi(n)} \equiv 1 (mod \ n)$$

Now, if we can find an integer d s.t. $ed \equiv 1 \pmod{\phi(n)}$, then

$$C^d \equiv P^{ed} \equiv P(mod \ n)$$

Example:

Let's try a naive example to illustrate how the RSA cryptosystem works:

Let $n=2759=31\times 89$ be the product of two primes, e=227, and

Bob receives the ciphertext block C = 1207. Please find Alice's original

message.

Solution:

Step 1. Calculate $\phi(n)$:

$$\phi(n) = 30 \times 88 = 2640.$$

Step 2. Find d, such that $ed \equiv 1 \pmod{\phi(n)}$:

Use Extended Euclidean Algorithm(leave to you), we find $d \equiv 1163 (mod 2640)$.

Step 3. Calculate $C^d(modn)$, the result is block P:

Use Repeated Squaring Method(leave to you), we get $1207^{1163} (mod 2759) = 1511$, so P = 1511.

Step 4. Translate P into original message:

15="O", 11="K" So Alice's original message is "OK".

Suggest Reading

• (英)西蒙•辛格著,刘燕芬译,《The Code Book(码书)》, 江西人民出版社,2018

