Лабораторная работа 4

Детерминированные циклические вычислительные процессы с управлением по аргументу. Численное интегрирование с использованием функции пользователя.

Цель: реализовать решение задач посредством детерминированных циклических процессов с управлением по аргументу и пользовательских функций.

Оборудование: ПК, PascalABC.NET, lucid.app

Задание 1

1. Реализовать вычисление определенного интеграла из индивидуального задания (взять интеграл из предыдущей лабораторной) методом парабол с использованием пользовательской функции.

2.

$$\int_{0.4}^{1.2} \frac{\cos(0.4x+0.6) dx}{0.8+\sin^2(x+0.5)}$$

3.

4.

Имя	Смысл	Тип
a	Левая граница	real
	интеграла	
b	Правая граница	real
	интеграла	
n	Количество разбиений	integer
h	Шаг	real
F	Промежуточная	real
	переменная	
i	Счетчик	real
S1	Промежуточная	real
	переменная	
S2	Промежуточная	real
	переменная	
S3	Промежуточная	real
	переменная	
S	Результат	real

Имя	Смысл	Тип
R(i)	Пользовательская	real
	функция	
i	Аргумент для функции	real

5.

```
var
n:integer;
S,S1,S2,S3,h,F,i,a,b:real;
function R(i:real):real;
begin
  R:= (\cos(0.4*i+0.6)/(0.8+\sin(i+0.5)*\sin(i+0.5)));
end;
begin
  a := 0.4;
  b:=1.2;
  Writeln('Введите количество разбиений');
  Readln(n);
  S1:=R(a)+R(b);
  h := (b-a)/n;
  s2:=0;
  i:=a+h;
while i \le (b-h) do
  begin
    F := R(i);
    S2:=S2+F;
    i:=i+2*h;
  end;
  s3:=0;
  i:=a+2*h;
while i \le (b-2*h) do
  begin
    F := R(i);
    S3:=S3+F;
    i:=i+2*h;
  end;
  S := (S1+4*S2+2*S3)*h/3;
```

Стецук Максим Николаевич 2гр. 1п.гр.

```
Writeln('Pesymetat=',S); end.
```

6.

```
Введите количество разбиений
10000
Результат=0.290403457132583
```

7.

Для нахождения данного интеграла я использовал метод парабол частей, который выполняется с помощью детерминированных циклических процессов и введения пользовательской функции. Программа выводит значение с точностью зависящей от количества разбиений(n).

Задание 2

1. Вычислить значение выражения.

2.

$$y = \frac{\sum_{i=1}^{n} \left(\frac{1}{(i+1)!} \cdot \frac{x^{2i+1}}{2i+1} \right)}{5.5 + x^{2} + (3n)!}$$

3.

4.

Имя	Смысл	Тип
х	Промежуточная	integer
	переменная	
i	Счетчик цикла	integer
n	Промежуточная	integer
	переменная	
S	Промежуточная	real
	переменная	
У	Результат	real

Имя	Смысл	Тип
F(n1)	Пользовательская	Int64
	функция	
i	Локальная	integer
	переменная(счётчик)	
n1	Аргумент функции F	integer

5.

7.

```
var
x,n,i:integer;
y,S:real;
function F(n1:integer):int64;
var
i:integer;
begin
 F:=1;
  for i:=1 to n1 do
   F*=i;
end;
begin
 x := 1;
 n := 5;
 S := 0;
  for i:=1 to n do
   S:=S+1/(F(i+1))/(2*i+1);
  y:=S/(5.5+x*x+F(3*n));
  Writeln('Результат=', y);
end.
6.
Результат=1.58299783622845E-13
```

Для нахождения значения данной функции я написал программу, которая выполняется с помощью детерминированных циклических процессов и введения пользовательской функции.

Вывод: Я научился реализовывать детерминированные циклические процессы с управлением по аргументу и пользовательские функции для решения задач, а именно вычисления определенного интеграла и значения заданной функции.