2. Convexity

Convex Functions, Convex Problems and Lagrangian Basics

Sun Woo Lim

January 20, 2021

1/10

Sun Woo Lim 2. Convexity January 20, 2021

Convex Set

Definition of a Convex Set

 $K \subseteq \mathbb{R}^n$ is a convex set if $\forall x_1, x_2 \in K$, $\forall \lambda \in [0,1]$, $\lambda x_1 + (1-\lambda)x_2 \in K$ "The Convex Combination also is in the set".

- ✓ Which of the following is / are convex?
 - **1 Empty Set** ϕ
 - **2** A set of single point $\{x_0\}$
 - § $\{z \in \mathbb{R}^n : ||z-z_0||_2 < \epsilon\}$ for some $\epsilon > 0$

Operations preserving Convexity of a set

Operations preserving Convexity of a set

- Intersection of convex sets
- **2** Hyperplane $\{x|a^Tx-b=0\}$ and Half Spaces $\{x|a^Tx-b<0\}$ and $\{x|a^Tx-b>0\}$
- Projection of a convex set onto a hyperplane

- "Convex Hull of A" $Co(A) := \{\sum_{i=1}^m \lambda_i x_i | x_i \in A, \lambda_i \geq 0, \forall i, \sum \lambda_i = 1\}$: Smallest convex set containing A

- Q) Why is a polyhedron convex?

Convex Functions

Convex / Concave Functions defined on the domain of a convex set

For $f: R^n \to R$ defined for $x \in dom(f)$ and assume f takes ∞ outside the domain. For f defined on convex domain, f is convex if $\lambda f(x_1) + (1-\lambda)f(x_2) \ge f(\lambda x_1 + (1-\lambda)x_2)$ and concave if $\lambda f(x_1) + (1-\lambda)f(x_2) \le f(\lambda x_1 + (1-\lambda)x_2)$

√ Properties of Convex Functions

- **1** Pointwise Supremum of convex sets is a convex function
- Nonnegative linear combination of Convex Functions is a convex function f g cux + 2f + g cux
- § $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function $\leftrightarrow epi(f)$ is a convex set: "Epigraph Characterization of a Convex Function" $epi(f) := \{(x,t) \in \mathbb{R}^n \times \mathbb{R} : x \in dom(f), t \in \mathbb{R}, f(x) \leq t\}$
- $\textbf{ 9} \ \, \text{Jensen's Inequality}: \text{For a convex function} \, \, f \, \, \text{and a random variable} \, \, X, \, E(f(X)) \geq f(E(X))$

epi(t)

√ Iff conditions for differentiable convex functions

For f which has an open domain and differentiable on dom(f),

- First order (gradient) condition for convexity $f \text{ convex} \leftrightarrow f(y) \geq f(x) + \nabla f(x)^T (y-x), \forall x,y \in dom(f).$
- **Second order (Hessian) condition for convexity** $f \text{ convex} \leftrightarrow \nabla^2 f(x) \succeq 0, \forall x \in dom(f).$ "Hessian is PSD". \smile

en ornernsusion cux financity

grad =0ez Solution艺术社

Hess 20=2 2m Saddie pt 4

local max 7 of you & Foot Hard was Ch

General Convex Optimization Problem

linear thi: Y= aTx
affine fth: Y= aTx+b

 $min_x f_0(x)$: Objective Function

subject to (s.t.) $f_i(x) \le 0, i = 1, 2, ...m$, : m inequality constraints

 $h_i(x) = 0, i = 1, 2, ..., p$: p equality constraints

 \rightarrow This is a Convex Optimization Problem if $f_0, f_1, ..., f_m$ are convex functions and $h_1, ..., h_p$ are affine functions.

Terminologies

 $\{x \in \{\cap_{i=0}^m dom(f_i) \cap \cap_{j=1}^p dom(h_i)\}|f_i(x) \leq 0, \forall i=1,2,...,m, h_j(x) = 0, \forall j=1,2,...,p\}$ is called a Feasible Set

The **infimum** of the objective function over the **feasible set** is called the **primal optimal value**, denoted as p*.

If \exists feasible x satisfying $f_0(x) = p*$, say x attains the optimum and x^* is called **primal optimal point**.

The set of feasible points at which the optimum is attained is called an **Optimal Set**

Constraints f_i or h_j is(are) active at feasible point x if $f_i(x) = 0$ or $h_j(x) = 0$ respectively. Else, they are inactive at x.

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a convex function with dom(f). For $\alpha \in \mathbb{R}$, $S_\alpha := \{x \in \mathbb{R}^n | f(x) \le \alpha\}$ is called a **Sublevel set** of f.

Sun Woo Lim

◆□▶◆圖▶◆圖▶◆圖▶ ■ 釣९♡

5/10

2. Convexity January 20, 2021

Dual Norm, Indicator Functions

Dual Norm of an arbitrary Norm $||x||*:= \sup_{\{z\in\mathbb{R}^n:||z||<1\}} z^T x$

- ✓ Note that a dual norm is a norm and every norm is a convex function.
- \checkmark For $p=1,2,3,...,\infty$, dual of l_p norm is l_q norm for p,q satisfying $\frac{1}{p}+\frac{1}{q}=1$: using Holder's Inequality.
 - ullet dual of l_1 norm is l_∞ norm and dual of l_∞ norm is l_1 norm
 - dual of l_2 norm is l_2 norm

Indicator Function

$$I_{S}(x) = \begin{cases} 0 & x \in S \\ \infty & x \notin S \end{cases} \qquad \begin{cases} \mathbb{R}_{+} : \{ r \mid r \geq 0 \} \\ \infty & x \neq 0 \end{cases}$$

$$I_{\mathbb{R}_{-}}(x) = \begin{cases} 0 & x \leq 0 \\ \infty & x > 0 \end{cases}$$

$$I_{\{0\}}(x) = \begin{cases} 0 & x = 0 \\ \infty & x \neq 0 \end{cases}$$

Totally different from the indicator function in probability theory (1 if in the set, 0 if not in the set).

Sun Woo Lim 2. Convexity January 20, 2021 6 / 10

Convex Conjugate of a Function

Let $f: \mathbb{R}^n \to \mathbb{R}$ (need not be cvx ftn) having a nonempty domain (need not be cvx set).

$$f^*(z) := sup_{x \in \mathbb{R}^n}(z^Tx - f(x))$$
 : Convex Conjugate (Fenchel Conjugate)

- \checkmark Property 1) f^* is always **convex ftn** and **lower semicontinuous** (epigraph is a closed set)
- \checkmark Property 2) If f is convex and lower semicontinuous them $f^{**} = f$

Examples

- $(x) = a^T x + b \rightarrow$

$$f^*(z) = \begin{cases} -b & z = a \\ \infty & z \neq a \end{cases}$$

§ $f(x) = ||x|| \rightarrow \text{conjugate of a norm is "the indicator function of unit dual norm ball"}$

$$f^*(z) = \begin{cases} 0 & ||z||_* \le 1\\ \infty & ||z||_* > 1 \end{cases}$$

- $I_{\mathbb{R}}^*$ $(z) = I_{\mathbb{R}_+}(z)$. Also, $I_{\mathbb{R}_-}(x) = \sup_{z>0} zx$: either by direct calculation or applying dual of dual

4 □ ト 4 □ ト 4 亘 ト ■ 9 0 0 0 0

7 / 10

Sun Woo Lim 2. Convexity January 20, 2021

The Lagrangian

- ✓ Find a **Convex optimization** primal problem to another **dual** problem, wanting that the **Dual** is easier to solve! Actually, can dualize non-convex problems to make a convex dual, but not dealt here.
- ✓ Formulate a function called **The Lagrangian** that integrates all the **constraints** into an **unconstrained problem**.

 $L: \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p$ having $dom(L) = D \times \mathbb{R}^m \times \mathbb{R}^p$, $L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_j h_j(x)$ is convex in x.

Key Idea behind the Lagrangian

$$p*=min_x[f_0(x)+\sum_{i=1}^mI_{\mathbb{R}_-}(f_i(x))+\sum_{i=1}^pI_{\{0\}}(h_j(x))]$$
: Pay infinite price for disobeying the constrints

Then, use indicator functions :
$$I_{\mathbb{R}_{-}}(f_i(x)) = \sup_{\lambda_i \geq 0} \{\lambda_i f_i(x)\}$$
 and $I_{\{0\}}(h_j(x)) = \sup_{\nu_j \in \mathbb{R}} \{\nu_j h_j(x)\}$

$$\rightarrow p* = min_x max_{\lambda > 0, \nu} L(x, \lambda, \nu)$$

Sun Woo Lim 2. Convexity January 20, 2021 8 / 10

Lagrangian Duality

$$p* = min_x max_{\lambda \ge 0, \nu} [f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p \nu_j h_j(x)]$$

The Lagrange Dual Function

$$g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}, g(\lambda, \nu) := inf_{x \in D}L(x, \lambda, \nu)$$

g is a Concave Extended Real valued Function possibly taking $-\infty$ as a function value or a function that is ∞ everywhere.

Dual Optimization Problem

If q is not an everywhere ∞ function, the **Dual Problem**

$$d^* := sup_{\lambda \succeq 0, \nu} g(\lambda, \nu) = max_{\lambda \succeq 0, \nu} min_x L(x, \lambda, \nu) = \max_{\lambda \succeq 0, \nu} \min_{\mathbf{X}} \left[f_{\bullet}(\mathbf{X}) + \sum_{i = 1}^{n} \lambda_i f_{i}(\mathbf{X}) + \sum_{i = 1}^{p} \lambda_i f_{i}(\mathbf{X}) \right]$$
A real convex problem is : $-d^* := inf_{\lambda \succeq 0, \nu} \{-g(\lambda, \nu)\}$ a.k.a $inf_{\lambda, \nu} \{-g(\lambda, \nu)\}$ s.t. $\lambda \succeq 0$

2. Convexity

 \checkmark Always, $d^* < p^*$: weak duality

 \checkmark Under "good" conditions, $d^* = p^*$: strong duality

If $d^* = p^*$: strong duality and let x^* be a primal optimal point and let (λ^*, ν^*) be a dual optimal point.

Then,
$$f_0(x^*) = g(\lambda^*, \nu^*) = inf_{x \in D} L(x, \lambda^*, \nu^*)$$

Sun Woo Lim

・ ロ → ← 団 → ← 基 → ← 基 → ・ 基 ・ 少 Q で

January 20, 2021

Example of Lagrangian, Lagrangian Dual, Duality

$$p^* = min_x[(x-1)^2 + 2] \text{ s.t. } x + 2 \le 0$$
Surely, $(x^*, p^*) = (-2, 11)$

 $\therefore (\lambda^*, d^*) = (6, 11)$. From Calculation, you know that Strong Duality Holds.

Next time:

- ✓ How to easily check if Strong Duality holds without calculation like this: Slater's Condition
- √ How to easily find the solution using the KKT conditions
- ✓ You'll see how useful **Convex Conjugate** are in deriving a dual.

◆□▶ ◆□▶ ◆ ■ ▶ ◆ ■ りへで

10 / 10

Sun Woo Lim 2. Convexity January 20, 2021