Assignment 1

CSCI 2897 - Calculating Biological Quantities - Larremore - Fall 2022

Notes: Remember to (1) familiarize yourself with the collaboration policies posted on the Syllabus, and (2) turn in your homework to Canvas as a **single PDF**. Hand-writing some or most of your solutions is fine, but be sure to scan and PDF everything into a single document. Unsure how? Ask on Slack!

Squats

Calculate these derivatives.

1.
$$\frac{d}{dx}x^3 = 3 \times 70$$

2. $\frac{d}{dx}x^{-3} = 3 \times 70$

3. $\frac{d}{dx}e^{\alpha x} = 6 \times 80$

4. $\frac{d}{dx}e^{\pi x^{-2}} = 6 \times 70$

5. $\frac{d}{dx}\ln 2x = \frac{1}{2x} \cdot 2 = \frac{1}{x} \cdot 80$

Situps

Find solutions to each of these differential equations. 1

6.
$$\frac{dy(t)}{dt} = 0$$

$$7. \frac{dy(t)}{dt} = t$$

$$8. \frac{dy(t)}{dt} = y(t)$$

$$y(t) = \frac{t^{2}}{2} + c$$

$$y(t) = \frac{t^{2}}{2} + c$$

¹Hint: ask yourself, "What function, if I were to take its derivative, would satisfy this equation?"

Modeling in the News

- 9. Find **two** stories in the recent news that spark your curiosity about modeling, one related to biology in some form, and another unrelated to biology. For each, please
 - Provide a link to the story, as well as the date and title of the story.
 - Write a paragraph describing as a narrative a dynamical process occurring in the story.
 - Pose a relevant question about that dynamical process or system.
 - Identify the important variables; and identify the important parameters.
 - Produce a flow diagram or a life cycle diagram of the dynamics using a graphics software² that would help you to translate the process or system from narrative steps (qualitative) into a quantitative model with variables and parameters included.

Answers will vary!

²Keynote or Powerpoint are good bets

Minors and Majors

10. Each year, the Computational Biology Minor has N new enrollees who start as freshmen. These freshmen are split with p% majoring in Computation (C) and 100(1-p)% majoring in Biology (B). At the end of freshman year, sophomore year, and junior year, a fraction $f_{C \to B}$ of Computation students change to Biology, while a fraction $F_{B \to C}$ Biology students change to Computation. Also at the end of each year, a fraction f_X of the students drop the CB Minor entirely. The remaining students keep their existing major and show up in the fall in the next grade; Seniors graduate and leave.

Draw a **flow diagram** that tracks the numbers of students in Computation across the four years (C_f, C_s, C_j, C_r) and the numbers of students in Biology across the four years (B_f, B_s, B_j, B_r) . Include parameters in your diagram. State any fundamental requirements on the parameters that you can think of.

Extra Credit

E.C. As noted in class, we can use Forward Euler to numerically solve the differential equation

$$\frac{dn(t)}{dt} = \sqrt{n(t)}, \quad n(0) = 1$$

by determining our current "slope", and then taking a small step (Δt) in that direction to update the value of n. In this way, we can step along the path of the solution, and solve a differential equation by transforming it into a recursion.

For this extra credit, write some code in Python and produce a single plot that shows three solutions: (a) $\Delta t = 2$, red, (b) $\Delta t = 1$, blue, and (c) $\Delta t = 0.01$, black. Your plot should have a horizontal axis from t = 0 to t = 10. Please also attach your source code along with your plot — a screenshot of your code is fine.

See github.