

Grundlagen des maschinellen Lernens

Tobias Lang Mathias Schickel Andreas Schilling Sommersemester 2016

Übungsblatt 7

Ausgabe: 23.06.2016; Abgabe: bis 07.07.2016, 23:59 Uhr

Aufgabe 1 (Hidden Markov Model)

(20 Punkte)

Gegeben sei das folgende Hidden Markov Model, bei dem aufgrund der besseren Übersicht exemplarisch nur die Übergänge für die sichtbaren Zustände für den verborgenen Zustand G_4 eingezeichnet sind. Man muss sich solche Übergänge für alle Zustände $G_1, ..., G_n$ denken.

Abbildung 1 Schematische Darstellung des gegebenen HMM

Die Übergangsmatrix $G=(g_{ij})$ für die verborgenen Zustände mit den Übergangswahrscheinlichkeiten g_{ij} für Zustand G_i zu G_j der verborgenen Zustände und die für die sichtbaren Zustände $V=(v_{ij})$ mit den Übergangswahrscheinlichkeiten v_{ij} des Übergangs von G_i zu V_j stehen auf der nachfolgenden Seite.

Es sind dann folgende Anweisungen auszuführen:

- a) Man erstelle in Matlab eine geeignete Repräsentation des Hidden Markov Models. (Siehe dazu auch die unten stehenden Hinweise.)
- b) Man implementiere eine Funktion forward (X, t, model), die zu einer gegebenen Sequenz $X = X_1, ..., X_n$ an der t-ten Stelle den Forward-Algorithmus auswertet. (Wenn das Modell aus mehreren Variablen besteht, verändert sich die Signatur der Funktion entsprechend.) (4 Punkte)
- c) Man implementiere eine Funktion backward (X, t, model), die zu einer gegebenen Sequenz $X = X_1, ..., X_n$ an der t-ten Stelle den Backward-Algorithmus auswertet. (Für Modelle aus mehreren Variablen gilt derselbe Hinweis wie in der letzten Teilaufgabe.) (4 Punkte)
- d) Man implementiere eine Funktion viterbi(X, model), die zu einer gegebenen Sequenz $X = X_1, ..., X_n$ den *Viterbi-Algorithmus* auswertet. (Die Ausgabe ist hier keine Zahl, sondern ein Pfad.) (8 Punkte)

- e) Man bestimme $\mathbb{P}(G = G_9 | X = V_1 V_3 V_6 V_7 V_9)$. (1 Punkt)
- f) Man berechne $\mathbb{P}(G = G_9 | X = V_2 V_3 V_5 V_7 V_{10})$. (1 Punkt)
- g) Man bestimme die wahrscheinlichste Sequenz $G_1, ..., G_n$, die die Sequenz $X = V_1 V_3 V_6 V_7 V_9$ hervorgerufen haben könnte. (2 Punkte)

Hinweise:

- Ist es für die Rekursion nötig, dann darf den Anfangs- und Endzuständen die Wahrscheinlichkeit 1 zuwiesen werden (wie in der Vorlesung erwähnt).
- Aufgabenteil d) ist nicht trivial, wenn Ihr nicht viel Erfahrung bei der Matlab-Programmierung habt. Überlegt Euch dazu, wie man sich während der Suche nach dem Maximum die Knoten merken kann.
- Um die Abtipparbeit der obigen Übergangswahrscheinlichkeiten zu reduzieren, wird das Matlab-Skript createHmm.m zur Verfügung gestellt.

Aufgabe 2 (Fragen zur Vorlesung)

(9 Punkte)

Man beantworte die folgenden Fragen:

a) Aus der Vorlesung ist bekannt, dass die Wahrscheinlichkeit eines Punktes x durch den Ausdruck

$$p(x) \approx \frac{k/n}{V}$$

angenähert werden kann. Warum gilt für $n\to\infty$ mit $k_n\to\infty$ und $V_n\to0$ für den Schätzer $p_n(x)$ die Identität

$$p_n(x) = \frac{k_n/n}{V_n} \to p(x)?$$

- b) Was ist die Strategie der Dichteschätzung bei dem *Parzenfenster-Verfahren* und bei dem *Nächster-Nachbar-Verfahren*?
- c) Inwiefern handelt es sich bei beiden in der letzten Aufgabenstellung genannten Verfahren um sogenannte *nicht-parametrische* Methoden? Sie werden gelegentlich auch *Prototypen-basierte Verfahren* genannt. Erkläre, weswegen dies sinnvoll ist.

Aufgabe 3 (Parzenfenster)

(10 Punkte)

Die Schätzung $p_n(x)$ einer Dichte für eine Normalverteilung bei einem Datensatz mit n Stichproben hat die Gestalt

$$p_n(x) = \frac{1}{n} \sum_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x_i - x)^2}{2\sigma^2}\right).$$

a) Plottet die Punkte aus $D = \{2, 4, 5, 8, 15\}$ und deren Beitrag zur Dichteschätzung. In dieselbe Grafik soll die über den Datensatz D geschätzte Dichtefunktion im Intervall (0, 20) geplottet werden. Für die Fensterfunktion soll dabei $\sigma = 1$ verwendet werden.

Abbildung 2 Dichteschätzung mit Parzenfenster und dem Beitrag der einzelnen Datenpunkte

- b) Man implementiere ein probabilistisches neuronales Netz (PNN) für die Datensätze D_1 und D_2 , die als .csv-Files vorliegen.
- c) Man klassifiziere die Punkte aus der Menge

$$M := \{(0,0), (7,7), (30,20), (14,40)\}$$

nach D_1 und D_2 .