3.2

Differentiation Rules

This section introduces a few rules that allow us to differentiate a great variety of functions. By proving these rules here, we can differentiate functions without having to apply the definition of the derivative each time.

Powers, Multiples, Sums, and Differences

The first rule of differentiation is that the derivative of every constant function is zero.

RULE 1 Derivative of a Constant Function

If f has the constant value f(x) = c, then

$$\frac{df}{dx} = \frac{d}{dx}(c) = 0.$$

EXAMPLE 1

If f has the constant value f(x) = 8, then

$$\frac{df}{dx} = \frac{d}{dx}(8) = 0.$$

Similarly,

$$\frac{d}{dx}\left(-\frac{\pi}{2}\right) = 0$$
 and $\frac{d}{dx}\left(\sqrt{3}\right) = 0$.

another way to say that the values of output constant functions never change and that

constant functions never change and the the slope of a horizontal line is zero at every point.

FIGURE 3.8 The rule (d/dx)(c) = 0 is

Proof of Rule 1 We apply the definition of derivative to f(x) = c, the function whose outputs have the constant value c (Figure 3.8). At every value of x, we find that

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{c - c}{h} = \lim_{h \to 0} 0 = 0.$$

The second rule tells how to differentiate x^n if n is a positive integer.

RULE 2 Power Rule for Positive Integers

If n is a positive integer, then

$$\frac{d}{dx}x^n = nx^{n-1}.$$

To apply the Power Rule, we subtract 1 from the original exponent (n) and multiply the result by n.

EXAMPLE 2 Interpreting Rule 2

f	х	x^2	x^3	x^4	
f'	1	2 <i>x</i>	$3x^2$	$4x^3$	

HISTORICAL BIOGRAPHY

Richard Courant (1888–1972)

First Proof of Rule 2 The formula

$$z^{n} - x^{n} = (z - x)(z^{n-1} + z^{n-2}x + \dots + zx^{n-2} + x^{n-1})$$

can be verified by multiplying out the right-hand side. Then from the alternative form for the definition of the derivative,

$$f'(x) = \lim_{z \to x} \frac{f(z) - f(x)}{z - x} = \lim_{z \to x} \frac{z^n - x^n}{z - x}$$
$$= \lim_{z \to x} (z^{n-1} + z^{n-2}x + \dots + zx^{n-2} + x^{n-1})$$
$$= nx^{n-1}$$

Second Proof of Rule 2 If $f(x) = x^n$, then $f(x + h) = (x + h)^n$. Since n is a positive integer, we can expand $(x + h)^n$ by the Binomial Theorem to get

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{\left[x^n + nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \dots + nxh^{n-1} + h^n \right] - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + \frac{n(n-1)}{2}x^{n-2}h^2 + \dots + nxh^{n-1} + h^n}{h}$$

$$= \lim_{h \to 0} \left[nx^{n-1} + \frac{n(n-1)}{2}x^{n-2}h + \dots + nxh^{n-2} + h^{n-1} \right]$$

$$= nx^{n-1}$$

The third rule says that when a differentiable function is multiplied by a constant, its derivative is multiplied by the same constant.

RULE 3 Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

$$\frac{d}{dx}(cu) = c\frac{du}{dx}.$$

In particular, if n is a positive integer, then

$$\frac{d}{dx}(cx^n) = cnx^{n-1}.$$

EXAMPLE 3

(a) The derivative formula

$$\frac{d}{dx}(3x^2) = 3 \cdot 2x = 6x$$

says that if we rescale the graph of $y = x^2$ by multiplying each y-coordinate by 3, then we multiply the slope at each point by 3 (Figure 3.9).

(b) A useful special case

The derivative of the negative of a differentiable function u is the negative of the function's derivative. Rule 3 with c = -1 gives

$$\frac{d}{dx}(-u) = \frac{d}{dx}(-1 \cdot u) = -1 \cdot \frac{d}{dx}(u) = -\frac{du}{dx}$$

FIGURE 3.9 The graphs of $y = x^2$ and $y = 3x^2$. Tripling the *y*-coordinates triples the slope (Example 3).

Proof of Rule 3

$$\frac{d}{dx}cu = \lim_{h \to 0} \frac{cu(x+h) - cu(x)}{h}$$
Derivative definition with $f(x) = cu(x)$

$$= c \lim_{h \to 0} \frac{u(x+h) - u(x)}{h}$$
Limit property
$$= c \frac{du}{dx}$$
 u is differentiable.

The next rule says that the derivative of the sum of two differentiable functions is the sum of their derivatives.

Denoting Functions by u and v

The functions we are working with when we need a differentiation formula are likely to be denoted by letters like f and g. When we apply the formula, we do not want to find it using these same letters in some other way. To guard against this problem, we denote the functions in differentiation rules by letters like u and v that are not likely to be already in use.

RULE 4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are both differentiable. At such points,

$$\frac{d}{dx}(u+v) = \frac{du}{dx} + \frac{dv}{dx}.$$

EXAMPLE 4 Derivative of a Sum

$$y = x^4 + 12x$$

$$\frac{dy}{dx} = \frac{d}{dx}(x^4) + \frac{d}{dx}(12x)$$

$$= 4x^3 + 12$$

Proof of Rule 4 We apply the definition of derivative to f(x) = u(x) + v(x):

$$\frac{d}{dx}[u(x) + v(x)] = \lim_{h \to 0} \frac{[u(x+h) + v(x+h)] - [u(x) + v(x)]}{h}$$

$$= \lim_{h \to 0} \left[\frac{u(x+h) - u(x)}{h} + \frac{v(x+h) - v(x)}{h} \right]$$

$$= \lim_{h \to 0} \frac{u(x+h) - u(x)}{h} + \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} = \frac{du}{dx} + \frac{dv}{dx}.$$

Combining the Sum Rule with the Constant Multiple Rule gives the **Difference Rule**, which says that the derivative of a *difference* of differentiable functions is the difference of their derivatives.

$$\frac{d}{dx}(u-v) = \frac{d}{dx}[u+(-1)v] = \frac{du}{dx} + (-1)\frac{dv}{dx} = \frac{du}{dx} - \frac{dv}{dx}$$

The Sum Rule also extends to sums of more than two functions, as long as there are only finitely many functions in the sum. If u_1, u_2, \ldots, u_n are differentiable at x, then so is $u_1 + u_2 + \cdots + u_n$, and

$$\frac{d}{dx}(u_1 + u_2 + \cdots + u_n) = \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_n}{dx}$$

EXAMPLE 5 Derivative of a Polynomial

$$y = x^{3} + \frac{4}{3}x^{2} - 5x + 1$$

$$\frac{dy}{dx} = \frac{d}{dx}x^{3} + \frac{d}{dx}\left(\frac{4}{3}x^{2}\right) - \frac{d}{dx}(5x) + \frac{d}{dx}(1)$$

$$= 3x^{2} + \frac{4}{3} \cdot 2x - 5 + 0$$

$$= 3x^{2} + \frac{8}{3}x - 5$$

Notice that we can differentiate any polynomial term by term, the way we differentiated the polynomial in Example 5. All polynomials are differentiable everywhere.

Proof of the Sum Rule for Sums of More Than Two Functions We prove the statement

$$\frac{d}{dx}(u_1 + u_2 + \cdots + u_n) = \frac{du_1}{dx} + \frac{du_2}{dx} + \cdots + \frac{du_n}{dx}$$

by mathematical induction (see Appendix 1). The statement is true for n=2, as was just proved. This is Step 1 of the induction proof.

163

Step 2 is to show that if the statement is true for any positive integer n = k, where $k \ge n_0 = 2$, then it is also true for n = k + 1. So suppose that

$$\frac{d}{dx}(u_1 + u_2 + \dots + u_k) = \frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_k}{dx}.$$
 (1)

Then

$$\frac{d}{dx} \left(u_1 + u_2 + \dots + u_k + u_{k+1} \right)$$
Call the function Call this defined by this sum u . Call this function v .
$$= \frac{d}{dx} \left(u_1 + u_2 + \dots + u_k \right) + \frac{du_{k+1}}{dx} \qquad \text{Rule 4 for } \frac{d}{dx} (u + v)$$

$$= \frac{du_1}{dx} + \frac{du_2}{dx} + \dots + \frac{du_k}{dx} + \frac{du_{k+1}}{dx}. \qquad \text{Eq. (1)}$$

With these steps verified, the mathematical induction principle now guarantees the Sum Rule for every integer $n \ge 2$.

EXAMPLE 6 Finding Horizontal Tangents

Does the curve $y = x^4 - 2x^2 + 2$ have any horizontal tangents? If so, where?

Solution The horizontal tangents, if any, occur where the slope dy/dx is zero. We have,

$$\frac{dy}{dx} = \frac{d}{dx}(x^4 - 2x^2 + 2) = 4x^3 - 4x.$$

Now solve the equation $\frac{dy}{dx} = 0$ for x:

$$4x^{3} - 4x = 0$$

$$4x(x^{2} - 1) = 0$$

$$x = 0, 1, -1.$$

The curve $y = x^4 - 2x^2 + 2$ has horizontal tangents at x = 0, 1, and -1. The corresponding points on the curve are (0, 2), (1, 1) and (-1, 1). See Figure 3.10.

FIGURE 3.10 The curve $y = x^4 - 2x^2 + 2$ and its horizontal tangents (Example 6).

Products and Quotients

While the derivative of the sum of two functions is the sum of their derivatives, the derivative of the product of two functions is *not* the product of their derivatives. For instance,

$$\frac{d}{dx}(x \cdot x) = \frac{d}{dx}(x^2) = 2x$$
, while $\frac{d}{dx}(x) \cdot \frac{d}{dx}(x) = 1 \cdot 1 = 1$.

The derivative of a product of two functions is the sum of two products, as we now explain.

RULE 5 Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

Picturing the Product Rule

If u(x) and v(x) are positive and increase when x increases, and if h > 0,

then the total shaded area in the picture

$$u(x + h)v(x + h) - u(x)v(x)$$

= $u(x + h) \Delta v + v(x + h)$
 $\Delta u - \Delta u \Delta v$.

Dividing both sides of this equation by *h* gives

$$\begin{split} &\frac{u(x+h)v(x+h)-u(x)v(x)}{h}\\ &=u(x+h)\frac{\Delta v}{h}+v(x+h)\frac{\Delta u}{h}\\ &-\Delta u\frac{\Delta v}{h}. \end{split}$$

As $h \rightarrow 0^+$.

$$\Delta u \cdot \frac{\Delta v}{h} \to 0 \cdot \frac{dv}{dx} = 0$$
,

leaving

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

The derivative of the product uv is u times the derivative of v plus v times the derivative of u. In prime notation, (uv)' = uv' + vu'. In function notation,

$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x).$$

EXAMPLE 7 Using the Product Rule

Find the derivative of

$$y = \frac{1}{x} \left(x^2 + \frac{1}{x} \right).$$

Solution We apply the Product Rule with u = 1/x and $v = x^2 + (1/x)$:

$$\frac{d}{dx}\left[\frac{1}{x}\left(x^2 + \frac{1}{x}\right)\right] = \frac{1}{x}\left(2x - \frac{1}{x^2}\right) + \left(x^2 + \frac{1}{x}\right)\left(-\frac{1}{x^2}\right) \qquad \frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}, \text{ and}$$

$$= 2 - \frac{1}{x^3} - 1 - \frac{1}{x^3} \qquad \qquad \frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2} \text{ by}$$

$$= 1 - \frac{2}{x^3}.$$
Example 3, Section 2.7.

Proof of Rule 5

$$\frac{d}{dx}(uv) = \lim_{h \to 0} \frac{u(x+h)v(x+h) - u(x)v(x)}{h}$$

To change this fraction into an equivalent one that contains difference quotients for the derivatives of u and v, we subtract and add u(x + h)v(x) in the numerator:

$$\frac{d}{dx}(uv) = \lim_{h \to 0} \frac{u(x+h)v(x+h) - u(x+h)v(x) + u(x+h)v(x) - u(x)v(x)}{h}$$

$$= \lim_{h \to 0} \left[u(x+h) \frac{v(x+h) - v(x)}{h} + v(x) \frac{u(x+h) - u(x)}{h} \right]$$

$$= \lim_{h \to 0} u(x+h) \cdot \lim_{h \to 0} \frac{v(x+h) - v(x)}{h} + v(x) \cdot \lim_{h \to 0} \frac{u(x+h) - u(x)}{h}.$$

As h approaches zero, u(x + h) approaches u(x) because u, being differentiable at x, is continuous at x. The two fractions approach the values of dv/dx at x and du/dx at x. In short,

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

In the following example, we have only numerical values with which to work.

EXAMPLE 8 Derivative from Numerical Values

Let y = uv be the product of the functions u and v. Find y'(2) if

$$u(2) = 3$$
, $u'(2) = -4$, $v(2) = 1$, and $v'(2) = 2$.

Solution From the Product Rule, in the form

$$v' = (uv)' = uv' + vu',$$

165

we have

$$y'(2) = u(2)v'(2) + v(2)u'(2)$$

= (3)(2) + (1)(-4) = 6 - 4 = 2.

EXAMPLE 9 Differentiating a Product in Two Ways

Find the derivative of $y = (x^2 + 1)(x^3 + 3)$.

Solution

(a) From the Product Rule with $u = x^2 + 1$ and $v = x^3 + 3$, we find

$$\frac{d}{dx} [(x^2 + 1)(x^3 + 3)] = (x^2 + 1)(3x^2) + (x^3 + 3)(2x)$$

$$= 3x^4 + 3x^2 + 2x^4 + 6x$$

$$= 5x^4 + 3x^2 + 6x$$

(b) This particular product can be differentiated as well (perhaps better) by multiplying out the original expression for *y* and differentiating the resulting polynomial:

$$y = (x^2 + 1)(x^3 + 3) = x^5 + x^3 + 3x^2 + 3$$
$$\frac{dy}{dx} = 5x^4 + 3x^2 + 6x.$$

This is in agreement with our first calculation.

Just as the derivative of the product of two differentiable functions is not the product of their derivatives, the derivative of the quotient of two functions is not the quotient of their derivatives. What happens instead is the Quotient Rule.

RULE 6 Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u/v is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$

In function notation,

$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}.$$

EXAMPLE 10 Using the Quotient Rule

Find the derivative of

$$y = \frac{t^2 - 1}{t^2 + 1}.$$

Solution

We apply the Quotient Rule with $u = t^2 - 1$ and $v = t^2 + 1$:

$$\frac{dy}{dt} = \frac{(t^2 + 1) \cdot 2t - (t^2 - 1) \cdot 2t}{(t^2 + 1)^2} \qquad \frac{d}{dt} \left(\frac{u}{v}\right) = \frac{v(du/dt) - u(dv/dt)}{v^2}$$
$$= \frac{2t^3 + 2t - 2t^3 + 2t}{(t^2 + 1)^2}$$
$$= \frac{4t}{(t^2 + 1)^2}.$$

Proof of Rule 6

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \lim_{h \to 0} \frac{\frac{u(x+h)}{v(x+h)} - \frac{u(x)}{v(x)}}{h}$$
$$= \lim_{h \to 0} \frac{v(x)u(x+h) - u(x)v(x+h)}{hv(x+h)v(x)}$$

To change the last fraction into an equivalent one that contains the difference quotients for the derivatives of u and v, we subtract and add v(x)u(x) in the numerator. We then get

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \lim_{h \to 0} \frac{v(x)u(x+h) - v(x)u(x) + v(x)u(x) - u(x)v(x+h)}{hv(x+h)v(x)}$$
$$= \lim_{h \to 0} \frac{v(x)\frac{u(x+h) - u(x)}{h} - u(x)\frac{v(x+h) - v(x)}{h}}{v(x+h)v(x)}.$$

Taking the limit in the numerator and denominator now gives the Quotient Rule.

Negative Integer Powers of *x*

The Power Rule for negative integers is the same as the rule for positive integers.

RULE 7 Power Rule for Negative Integers

If n is a negative integer and $x \neq 0$, then

$$\frac{d}{dx}(x^n) = nx^{n-1}.$$

EXAMPLE 11

(a)
$$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{d}{dx}(x^{-1}) = (-1)x^{-2} = -\frac{1}{x^2}$$
 Agrees with Example 3, Section 2.7

(b)
$$\frac{d}{dx} \left(\frac{4}{x^3} \right) = 4 \frac{d}{dx} (x^{-3}) = 4(-3)x^{-4} = -\frac{12}{x^4}$$

167

Proof of Rule 7 The proof uses the Quotient Rule. If n is a negative integer, then n = -m, where m is a positive integer. Hence, $x^n = x^{-m} = 1/x^m$, and

$$\frac{d}{dx}(x^n) = \frac{d}{dx}\left(\frac{1}{x^m}\right)$$

$$= \frac{x^m \cdot \frac{d}{dx}(1) - 1 \cdot \frac{d}{dx}(x^m)}{(x^m)^2}$$
Quotient Rule with $u = 1$ and $v = x^m$

$$= \frac{0 - mx^{m-1}}{x^{2m}}$$
Since $m > 0, \frac{d}{dx}(x^m) = mx^{m-1}$

$$= -mx^{-m-1}$$

$$= nx^{n-1}.$$
Since $-m = n$

FIGURE 3.11 The tangent to the curve y = x + (2/x) at (1, 3) in Example 12. The curve has a third-quadrant portion not shown here. We see how to graph functions like this one in Chapter 4.

EXAMPLE 12 Tangent to a Curve

Find an equation for the tangent to the curve

$$y = x + \frac{2}{x}$$

at the point (1, 3) (Figure 3.11).

Solution The slope of the curve is

$$\frac{dy}{dx} = \frac{d}{dx}(x) + 2\frac{d}{dx}\left(\frac{1}{x}\right) = 1 + 2\left(-\frac{1}{x^2}\right) = 1 - \frac{2}{x^2}.$$

The slope at x = 1 is

$$\frac{dy}{dx}\Big|_{x=1} = \left[1 - \frac{2}{x^2}\right]_{x=1} = 1 - 2 = -1.$$

The line through (1, 3) with slope m = -1 is

$$y-3=(-1)(x-1)$$
 Point-slope equation
 $y=-x+1+3$
 $y=-x+4$.

The choice of which rules to use in solving a differentiation problem can make a difference in how much work you have to do. Here is an example.

EXAMPLE 13 Choosing Which Rule to Use

Rather than using the Quotient Rule to find the derivative of

$$y = \frac{(x-1)(x^2-2x)}{x^4},$$

expand the numerator and divide by x^4 :

$$y = \frac{(x-1)(x^2-2x)}{x^4} = \frac{x^3-3x^2+2x}{x^4} = x^{-1}-3x^{-2}+2x^{-3}.$$

Then use the Sum and Power Rules:

$$\frac{dy}{dx} = -x^{-2} - 3(-2)x^{-3} + 2(-3)x^{-4}$$
$$= -\frac{1}{x^2} + \frac{6}{x^3} - \frac{6}{x^4}.$$

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f''. So f'' = (f')'. The function f'' is called the **second derivative** of f because it is the derivative of the first derivative. Notationally,

$$f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dy'}{dx} = y'' = D^2(f)(x) = D_x^2 f(x).$$

The symbol D^2 means the operation of differentiation is performed twice.

If $y = x^6$, then $y' = 6x^5$ and we have

$$y'' = \frac{dy'}{dx} = \frac{d}{dx} (6x^5) = 30x^4.$$

Thus $D^2(x^6) = 30x^4$.

If y'' is differentiable, its derivative, $y''' = dy''/dx = d^3y/dx^3$ is the **third derivative** of y with respect to x. The names continue as you imagine, with

$$y^{(n)} = \frac{d}{dx}y^{(n-1)} = \frac{d^ny}{dx^n} = D^ny$$

denoting the nth derivative of y with respect to x for any positive integer n.

We can interpret the second derivative as the rate of change of the slope of the tangent to the graph of y = f(x) at each point. You will see in the next chapter that the second derivative reveals whether the graph bends upward or downward from the tangent line as we move off the point of tangency. In the next section, we interpret both the second and third derivatives in terms of motion along a straight line.

How to Read the Symbols for Derivatives

y' "y prime" y" "y double prime"

 $\frac{d^2y}{dx^2}$ "d squared y dx squared"

y''' "y triple prime" $v^{(n)}$ "v super n"

 $\frac{d^n y}{dx^n}$ "d to the n of y by dx to the n"

 D^n "D to the n"

EXAMPLE 14 Finding Higher Derivatives

The first four derivatives of $y = x^3 - 3x^2 + 2$ are

First derivative: $y' = 3x^2 - 6x$

Second derivative: y'' = 6x - 6

Third derivative: y''' = 6Fourth derivative: $v^{(4)} = 0$.

The function has derivatives of all orders, the fifth and later derivatives all being zero.