TITLE: PROJECT 1

SUBJECT: ECE 763 (COMPUTER VISION)

NAME	KALYAN GHOSH
UNITY_ID	200201466 (kghosh)

STEP 1: DATA PREPROCESSING:

- 1. For the project, I used the UMD face dataset (Batch 3) available at the following <u>link</u>.
- 2. After downloading the dataset, the first code that I wrote was a Data Preprocessing and Input/output module code in Python.
- 3. The data preprocessing python code read the annotations form the annotation file and extracted the face from an image and for the background, I randomly cropped a portion of the background image. Note: I saved the image in dimensions of 60 X 60
- 4. After doing the data preprocessing, I divided the data into 4 folders.

 Train_FaceData, Train_NonFaceData, Test_FaceData & Test_NonFaceData.
- 5. The data preprocessing python code is attached in the zipped folder.

STEP 2: LEARNING A SINGLE GAUSSIAN MODEL:

- 1. In this model, I wrote a code to learn a single Gaussian model from the training data and performed the following tasks.
 - 1.1 Visualize estimated mean form face data:

1.2 Visualize estimated covariance form face data:

1.3 Visualize estimated mean form non face data:

1.4 Visualize estimated covariance form non face data:

1.5 Calculation of Performance Rates by setting threshold=0.5:

FALSE POSITIVE RATE	0.325
FALSE NEGATIVE RATE	0.167
MISCLASSIFICATION RATE	0.392

1.6 Plotting of the ROC:

Note: The Single Gaussian Python code is attached in the zipped folder.

STEP 2: LEARNING A MIXTURE OF GAUSSIAN MODEL:

- 2. In this model, I wrote a code to learn a single Mixture of Gaussian (K=3) model from the training data and performed the following tasks.
 - 2.1 Visualize estimated mean form face data:

2.2 Visualize estimated covariance form face data:

2.3 Visualize estimated mean form non face data:

2.4 Visualize estimated covariance form non face data:

2.5 Calculation of Performance Rates by setting threshold=0.5:

FALSE POSITIVE RATE	0.237
FALSE NEGATIVE RATE	0.132
MISCLASSIFICATION RATE	0.265

2.6 Plotting of the ROC:

Note: The Mixture of Gaussian Python code is attached in the zipped folder. We also see that the misclassification rates decreases when we model the data using Mixture of Gaussians.

STEP 3: LEARNING A T DISTRIBUTION MODEL:

- 3. In this model, I wrote a code to learn T distribution model from the training data and performed the following tasks.
 - 3.1 Visualize estimated mean form face data:

3.2 Visualize estimated covariance form face data:

3.3 Visualize estimated mean form non face data:

3.4 Visualize estimated covariance form non face data:

3.5 Calculation of Performance Rates by setting threshold=0.5:

FALSE POSITIVE RATE	0.318
FALSE NEGATIVE RATE	0.152
MISCLASSIFICATION RATE	0.336

3.6 Plotting of the ROC:

Note: The T Distribution Python code is attached in the zipped folder

STEP 4: LEARNING A MIXTURE OF T DISTRIBUTION MODEL:

4. In this model, I wrote a code to learn a mixture of T distribution model from the training data and performed the following tasks.

4.1 Visualize estimated mean form face data:

4.2 Visualize estimated covariance form face data:

4.3 Visualize estimated mean form non face data:

4.4 Visualize estimated mean form non face data:

4.5 Calculation of Performance Rates by setting threshold=0.5:

FALSE POSITIVE RATE	0.248
FALSE NEGATIVE RATE	0.112
MISCLASSIFICATION RATE	0.236

Note: The Mixture of T code is attached in the zipped folder. We also see that the misclassification rates decreases when we model the data using Mixture of T distribution.

STEP 5: LEARNING A FACTOR ANALYZER MODEL:

- 5. In this model, I wrote a code to learn a Factor Analyzer model from the training data and performed the following tasks.
 - 5.1 Visualize estimated mean form face data:

5.2 Visualize estimated covariance form face data:

5.3 Visualize estimated mean form non face data:

5.4 Visualize estimated mean form non face data:

5.5 Calculation of Performance Rates by setting threshold=0.5:

FALSE POSITIVE RATE	0.288
FALSE NEGATIVE RATE	0.142
MISCLASSIFICATION RATE	0.313

5.6 Plotting of the ROC:

Note: The Factor Analyzer python code is attached in the zipped folder.