elliptic curves in CSIDH

Isogenies & Pairings

supersingular elliptic curve

- has p + 1 points in $E(\mathbb{F}_p)$
- choose p so that $p+1=4\cdot\ell_1\cdot\ell_2\cdot\ldots\cdot\ell_n$
- this implies the rational points on *E* have orders that divide p + 1

$$E: y^2 = x^3 + Ax^2 + x, \quad A \in \mathbb{F}_p$$

the order of *P* is readable from the non-zero P_i 's

the torsion that *P* is *missing* are precisely the zero P_i 's

full-torsion points

we call a point $P \in E(\mathbb{F}_p)$ a **full-torsion point** if the order is p + 1, equivalently, all P_i are non-zero

torsion points and isogenies

- 1. Any* isogeny φ of degree N
 - given by kernel of size N
 - generated by point *P* of order *N*
- 2. Any* isogeny φ of degree $N = \prod \ell_i$
 - splits into sub-isogenies of degree ℓ_i
 - each generated by point P of order ℓ_i
- 3. Any* isogeny φ of degree $N=\prod \ell_i$
 - computed using one **full-torsion** *P*
 - per ℓ_i , compute $[\frac{p+1}{\ell_i}]P$ to get $\ker(\varphi_i)$ $\varphi_1(P) = \mathcal{O} + P_5' + P_7' \in E'(\mathbb{F}_p)$

$$\begin{array}{c}
\varphi \\
\hline
\text{deg } 3 \cdot 5 \cdot 7
\end{array}$$

$$\overrightarrow{Q} \xrightarrow{\text{deg 3}} \overrightarrow{\text{deg 5}} \xrightarrow{\text{deg 7}} \overrightarrow{Q}$$

$$P = P_3 + P_5 + P_7 \in E(\mathbb{F}_p)$$

$$[5 \cdot 7]P = P_3' + \mathcal{O} + \mathcal{O} \in E(\mathbb{F}_p)$$

$$\varphi_1(P) = \mathcal{O} + P_5' + P_7' \in E'(\mathbb{F}_p)$$

& Pairings

bilinear pairing from torsion groups to fields

- choose a degree *r*
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

