Lecture 01: Definition of computer graphics Instructor: Mejbah Ahammad

Contents

Table of Contents			
1	Definition of Computer Graphics		1
	1.1	Formal Definitions	1
	1.2	Scope and Boundaries	2
	1.3	Core Objectives	2
	1.4	Terminology and Key Concepts	2
	1.5	Relationship to Visualization and Imaging	2
2	Historical Context		3
	2.1	Early Mechanical and Vector Displays	3
	2.2	Raster Revolution and Framebuffers	3
	2.3	GUI Era and Workstations	3
	2.4	Real-Time 3D and GPUs	4
	2 5	Modern Trands: Physically Rased & Neural Randering	/

Definition of Computer Graphics

1.1 Formal Definitions

Computer Graphics is the field that studies the mathematical, algorithmic, and systems principles for representing, manipulating, generating, and displaying visual content on digital devices. Formally, we model a scene

$$S = \{ G_i, \mathcal{M}_i, \mathcal{L}, \mathcal{C} \}$$

where G_i are geometric objects, \mathcal{M}_i material/appearance models, \mathcal{L} illumination, and \mathcal{C} camera/display model. A renderer R maps (\mathcal{S}, Θ) to pixels \mathbf{I} given algorithmic parameters Θ (e.g., rasterization vs. ray tracing):

$$\mathbf{I} = R(\mathcal{S}; \Theta).$$

Figure 1: Formal view: scene elements \rightarrow renderer $R \rightarrow$ image.

1.2 Scope and Boundaries

In scope: 3D/2D modeling, transformations, rendering (rasterization, ray/path tracing), shading, texturing, animation, image synthesis, GPU systems. Adjacent but distinct: Image processing/computer vision (analyze existing images), HCI/Visualization (interaction/insight). Boundaries often overlap via shared math and pipelines.

Figure 2: Scope and boundaries with adjacent fields and directional relationships.

1.3 Core Objectives

Key objectives: (1) Realism (physical accuracy, PBR), (2) Speed (real-time interactivity), (3) Control (artistic direction), (4) Efficiency (memory/compute), (5) Fidelity (perceptual quality).

Figure 3: Core objectives radiating from the central goal (directional emphasis).

1.4 Terminology and Key Concepts

Essential terms: Primitives (points/lines/triangles), Transformations (model—view—projection), Shading (Phong, microfacet/BRDF), Textures/UV, Sampling (Nyquist, anti-aliasing), Frame buffer, Z-buffer, Shader stages.

Figure 4: Left-to-right concept flow: primitives \rightarrow transforms \rightarrow shading \rightarrow buffers.

1.5 Relationship to Visualization and Imaging

Graphics produces images from models; **Visualization** aims to reveal structure/insight from data (often using graphics); **Imaging** and **Vision** capture/analyze real signals. Many pipelines are bi-directional (e.g., image-based lighting, neural rendering).

Figure 5: Directional relationships among modeling, graphics, imaging/vision, and visualization.

Historical Context

2.1 Early Mechanical and Vector Displays

Essence. Pre-raster graphics used analog/mechanical plotters, oscilloscopes, and early CRT vector displays. Images were drawn as *continuous strokes* (lines/curves) directed by deflection signals—excellent for crisp lines, limited for filled/tonal imagery.

Figure 6: Vector era: draw strokes directly; great lines, limited shading.

2.2 Raster Revolution and Framebuffers

Essence. The shift to *raster* sampled images into pixels with a *framebuffer*. Enabled filled polygons, textures, and scan conversion; performance tied to memory bandwidth and rasterization efficiency.

Figure 7: Raster pipeline: framebuffer \rightarrow rasterization \rightarrow depth & compositing.

2.3 GUI Era and Workstations

Essence. Bitmapped displays and windows/icons/menus/pointers (WIMP) redefined interaction. Dedicated workstations (graphics accelerators) standardized APIs and toolkits.

Figure 8: GUI era: bitmaps enable WIMP; APIs + workstations scale productivity.

2.4 Real-Time 3D and GPUs

Essence. Fixed-function pipelines evolved into programmable shaders; GPUs delivered massive parallelism for real-time 3D (games, simulators, CAD). The pipeline became configurable (vertex/fragment \rightarrow geometry/compute).

Figure 9: GPU evolution: fixed-function \rightarrow programmable shaders \rightarrow compute.

2.5 Modern Trends: Physically Based & Neural Rendering

Essence. Physically Based Rendering (PBR) targets energy-consistent light transport (microfacet BRDFs, importance sampling). Neural methods learn appearance, radiance fields, denoisers, and super-resolution; hybrid real-time ray/path tracing emerges.

Figure 10: Modern stack: PBR foundations + neural components \rightarrow hybrid renderers.