

Midterm #2 Review Sections 09/010

TA: Greydon Gilmore Physiology 2130 Dec 16th, 2019

Today

- Chapter 4: Endocrinology
- Chapter 5: Autonomic Nervous System
- Chapter 6: Muscle Physiology
- Chapter 7: Cardiovascular

Midterm Information

- When: December 19th from 9am-10am
- What: 35 multiple choice
 - ➤ Endocrinology (Beye) 4 questions
 - ➤ Autonomic nervous system & Muscle (Stavraky) 9-11 Questions
 - ➤ Cardiovascular (Stavraky) 20-22 Questions

• Where:

- ABBA-GANE: Alumni Hall 15
- GHAB-POSA: Alumni Hall 201
- PRIM-WOOD: Alumni Hall Stage
- WU-ZIA: Somerville House 2316

Study Advice

- Get a portable white board
 - White Board: http://a.co/bNSNYLM
 - Markers: http://a.co/aJp9YND
- Write out flash cards
- Study in a group
- Make a short PowerPoint presentation and teach your friends/family

Questions from online dropbox/Emails

Can you explain respiratory pump (which area is high pressure, which area is low pressure)

- During inhalation you have higher pressure in abdomen and lower in thorax
 - Blood will move from abdomen to thorax
- During exhalation you have higher pressure in thorax and lower in abdomen
 - Blood will move from thorax to abdomen

Can you explain the process of the baroreceptor reflex (in the perspective of decreased blood pressure/MAP)

- In low pressure, baroreceptors reduce their firing
- This signals the CV center to shut off PNS and activate SNS

Why does the myosin head attach to the actin and not the myosin binding site? Is calcium released from the SR, or is it stored in the SR and released by the Lateral sac?

• The myosin binding site is part of the actin, they are the same structure

Calcium is stored and released by the

lateral sacs of the SR

Endocrinology 4 Questions on exam

Which of the following is an incorrect statement concerning the adrenal glands?

- a. an increase in ACTH release will result in increased mineralocorticoid production
- b. the adrenal medulla produces compounds classified as catecholamines
- c. production of cortisol is dependent on cholesterol as a precursor
- d. all the compounds produced by the adrenal cortex will eventually bind intracellular receptors

Which of the following is a correct statement concerning the pancreas?

- a. hyperglycemia causes the release of glucagon, which causes cells to take up glucose
- b. hypoglycemia causes the release of glucagon, which causes cells to release glucose
- c. hypoglycemia causes the release of insulin, which causes cells to take up glucose
- d. hyperglycemia causes the release of insulin, which causes cells to release glucose

Types of Hormones

- Hormone: A chemical signal secreted into the bloodstream to act on a distant tissue
- The target cells of the hormone need the receptor

			Amine	
Parameter	Peptide/Protein	Steroid	Hydrophilic	Hydrophobic
Examples	Hormones that end in "-in"	Hormones that end in "- ol" or "-one"	Epinephrine	Thyroid Hormones
Precursor	Amino acids	Cholesterol	Tyrosine	Tyrosine
Solubility	Hydrophilic	Lipophilic	Hydrophilic	Hydrophobic
Blood transport	Dissolves	Bound to protein	Dissolves	Carrier protein
Receptor location	Cell surface	Intracellular	Extracellular	Intracellular
Speed of action	Fast	Slow	Fast	Slow
Goal	Alter existing proteins	Produce new proteins	Alter proteins	Produce new proteins

Adrenal Gland: Layers

	Layers	Categories of Hormones	Example	Stimulus	Effect
Cortex	Zona glomerulosa	Mineralocorticoids	Aldosterone	RAAS pathway (@ low BP)	Increase Na ⁺ reabsoprtion
Cortex	Zona fasciculata	Glucocorticoids	Cortisol	ACTH	-
Cortex	Zona reticularis	Androgens	DHEA	-	-
Medulla	Medulla	Catecholamines	Epinephrine	Sympathetic Nervous System	SNS response

Three classes of steroids: Mineralocorticoids, Glucocorticoids and Androgens

Cortisol

- Cortisol is catabolic: Break down larger molecules
- Cortisol levels peak early morning and decline throughout the day
- Cushing's disease (hypercortisolism): thinning skin, muscle wasting and weakness, stunted growth, increased infections, redistribution of fat tissue

Pancreas

	Glucagon	Insulin
Tissue	Islet of Langerhans	Islet of Langerhans
Made by	α- cells	β- cells
Stimulus	↓ Blood glucose Hypoglycemia	Blood glucose Hyperglycemia
Effect	Blood glucose (cells release glucose)	Blood glucose (cells take up glucose)
Class	Peptide	Peptide

Antagonistic Effect

Autonomic Nervous System & Muscle 9-11 Questions on exam

Which of the following physiological responses results from sympathetic action?

- a. increase in heart rate
- b. constriction of blood vessels
- c. stimulation of gluconeogenesis/glycogenolysis
- d. all the above

The two branches of the autonomic nervous system display which of the following properties?

- a. up-down regulation by tonic control
- b. antagonistic control
- c. preservation of homeostasis
- d. all of the above

Nervous System Divisions

Comparison of Autonomic and Somatic Motor Systems

Somatic

 Motor neuron releases Ach directly onto muscle cells/fibers → contraction

Parasympathetic

- Preganglionic long, postganglionic short
- Preganglionic release Ach
- Postganglionic release Ach

Sympathetic

- Preganglionic short, postganglionic long
- Preganglionic release Ach
- Postganglionic release NE
- Adrenal gland only has preganglionic,
 which releases Ach → epinephrine

Sympathetic vs. Parasympathetic

Responses are usually antagonistic

But there are exceptions:

- Complimentary effect: saliva production
 - PNS → stimulate water and enzymes
 - SNS → stimulate thick mucous
- Cooperative effect: sexual function
 - PNS → induces erection, engorgement and secretions
 - SNS → Induces ejaculation, stimulates contraction

Autonomic vs. Somatic Motor Systems

	Autonomic	Somatic	
Voluntary?	No	Yes	
Myelination	Preganglionic – Myelinated Postganglionic – Non-myelinated	Myelinated	
Number of neurons in path	Two	One	
Efferent Transmitter	Acetylcholine and Noradrenaline	Acetylcholine	
Target tissue	Smooth and cardiac muscle Adipose tissue, endocrine/exocrine glands		
Effect on target	Excitatory or inhibitory	Excitatory (Muscle contracts)	

Parasympathetic vs. Sympathetic

	Parasympathetic (PSNS)	Sympathetic (SNS)
Preganglionic Neurotransmitter	Acetylcholine	Acetylcholine
Postganglionic Neurotransmitter	Acetylcholine	Norepinephrine
Location of autonomic ganglion?	Close to organ	Close to spinal cord
Innervates adrenal medulla?	No	Yes
When would you observe more activation?	Rest & Digest	Fight & Flight
If activated, what is the effect on heart rate?	Slows heart rate	Increases heart rate
If activated, what is the effect on breathing?	Constricts airways	Relaxes airways
Give an example of an organ/function with antagonistic effect.	 Constricts pupils Increases digestion (ie. increases bile secretion, stomach motility increased Increases secretions from pancreas 	 Dilates pupils Decreases digestion (reduces bile secretions, decreases stomach motility) Decreases secretions from pancreas
Give an example of a cooperative effect.	GenitaliaM/induces erectionF/engorgement and secretions	GenitaliaM/induces ejaculationF/stimulates contractions

Which is the correct structural organization of skeletal muscle?

- a. whole muscle, muscle fiber, fascicle, myofibril, myofilaments
- b. whole muscle, muscle fiber, myofibril, Fascicle, myofilaments
- c. whole muscle, fascicle, muscle fiber, myofibril, myofilaments
- d. whole muscle, fascicle, myofibril, muscle fiber, myofilaments

In the cross-bridge formation cycle between actin and myosin, what is the result of ATP hydrolysis?

- a. power stroke
- b. increase myosin head affinity for actin
- c. cross bridge release (muscle relaxation)
- d. cross bridge formation

What is the difference between unfused and complete tetanus?

- a. recruitment of more motor units
- b. greater Ca²⁺ release from the SR
- c. increased motor neuron stimulation
- d. greater SNS stimulation

Muscle Structure

Muscle Structure

Thin Myofilament

- 1. G-actin: forms alpha-helical chain with other G-actins and contains a myosin binding site
- 2. Tropomyosin: in relaxed state, tropomyosin works to cover the myosin binding sites on g-actin
- Troponin: attached to tropomyosin and actin to hold tropomyosin over the myosin binding sites in relaxed state

Thick Myofilament

- Thick filament contains many myosin molecules
- Each head has a binding site for Actin and an ATPase
 - ➤ Breaks down ATP into ADP + P_i and releases energy for contraction

The Sarcomere

- 1. Z-line: where thin myofilaments are joined together
- 2. Sarcomere: area between the z-lines, which is smallest functional unit of muscle
- 3. Myosin head binds to G-actin on thin filament forming a cross-bridge. A Power Stroke is initiated an a muscle contraction will occur

The Sliding-Filament Theory

- 1. Ca²⁺ binds troponin, causes tropomyosin to roll off and expose myosin binding site
- 2. Myosin head binds actin binding site, cross-bridge formation
- 3. P_i released from myosin head causing power stroke (muscle contraction)
- 4. ADP released, myosin still bound to actin until new ATP attached, myosin head detaches (cross-bridge broken)
- 5. ATP hydrolyzed to ADP + P_i

Cross-bridge is the connection of myosin head to actin (once binding site is clear). Cross-bridge will allow power stroke to occur (muscle contraction)

The Neuromuscular Junction and Sarcomere

Muscle twitch

- Result of one AP from the motor neuron
- Difference in AP duration vs. twitch duration = allows summation

(a) Single Twitches: Muscle relaxes completely between stimuli (▲).

Grading of muscle contraction

1. Recruitment

- Recruiting additional motor units
- e.g. motor unit 1 innervates 6 fibers

2. Summation

Increase the twitch frequency in the same motor unit (summation)

Tetanus

- Unfused tetanic contraction (or unfused tetanus)
 - Medium to high frequency APs will cause twitches to summate
 - Still has time to relax before next twitch

- Complete tetanus
 - At very high frequencies there is no relaxation between twitches
 - Twitches will summate to form smooth, sustained contraction

Cardiovascular 20-22 Questions on exam

Which of the following pairings is NOT correct?

- a. primary artery of the systemic circulation \rightarrow aorta
- b. narrow end of the heart that points downward \rightarrow base
- c. valve between ventricle and a main artery \rightarrow semilunar
- d. tough membranous sac that encases the heart → pericardium
- e. all of the above are true.

The ____ supply blood to the heart muscle itself.

- a. coronary arteries
- b. coronary veins
- c. pulmonary arteries
- d. pulmonary veins

Blood volume distribution

- Total Blood Volume (TBV) = 5 liters
- Heart and Pulmonary circ. = 15%
- Systemic arteries/arterioles = 10%
 - distribution vessels
- Systemic capillaries = 5%
 - exchange vessels
- Systemic veins/venules= 70%
 - capacitance vessels
 - low pressure, require valves to stop backflow

Heart Flow

Which of the following is the correct sequence for the spread of cardiac action potentials?

- a. SA node → internodal pathways → AV node → AV bundle
 → bundle branches → Purkinje fibers
- b. SA node → AV node → internodal pathways → AV bundle
 → bundle branches → Purkinje fibers
- c. SA node → internodal pathways → AV node → bundle branches → AV bundle → Purkinje fibers
- d. SA node → internodal pathways → AV node → AV bundle
 → Purkinje fibers → bundle branches

Signal Flow

- SA Node: Pacemaker of the heart
 - How does it generate fast spontaneous APs?
 - ➤ greater permeability to Na⁺ and Ca²⁺
 - ➤ decreased permeability to K⁺
 - These properties naturally bring the cell to threshold

SA Node Action potential

- 1 Pacemaker potential This slow depolarization is due to both opening of Na⁺ channels and closing of K⁺ channels. Notice that the membrane potential is never a flat line.
- 2 Depolarization The action potential begins when the pacemaker potential reaches threshold. Depolarization is due to Ca²⁺ influx through Ca²⁺ channels.
- 3 Repolarization is due to Ca²⁺ channels inactivating and K+ channels opening. This allows K+ efflux, which brings the membrane potential back to its most negative voltage.

Compare/Contrast – Action Potentials

	Action Potential	Cardiac AP
RMP	RMP = -70 mV	RMP = ~-60 mV
Threshold	Threshold = -55 mV	Threshold = -40 mV
Stimulus	Graded Potential	Slow Leak (Na+/Ca ²⁺)
Depol. Channels	Depolarization = VG Na ⁺	Depolarization = VG Ca ²⁺
Repol. Channels	Repolarization = VG K ⁺	Repolarization = VG K ⁺
Hyperpol.	Hyperpolarization = Leak channels	N/A

Which of the following is INCORRECT regarding diastole (filling of the heart)?

- a. atrioventricular valves are open
- b. semilunar valves are closed
- c. blood is flowing from the atria into the ventricles
- d. pressure in the ventricles is greater than in the atria

Cardiac Cycle

Atrial Systole (Atrial Contraction)

- ECG: P-wave from atria contraction (depolarization)
- Pressure: atria > ventricles
- Valves: AV valve already open
- Volume: blood (30%) fills ventricles to EDV

Early Ventricular Systole (Isovol. Contraction)

- ECG: QRS wave from ventricle contraction (depolarization)
- Pressure: aorta > ventricles > atria
- Valves: AV valve close
- Volume: no change in volume

Ventricular Systole (Ventricular Ejection)

- ECG: T-wave from ventricles finishing contraction
- Pressure: ventricles > aorta
- Valves: aortic valve open
- Volume: blood leaves ventricles to ESV

Cardiac Cycle

Early Ventricular Diastole (Isovol. Relaxation)

- ECG: no wave but ventricles relaxing
- Pressure: aorta > ventricles > atria
- Valves: aortic valve close
- Volume: no change in volume

Late Ventricular Diastole (Ventricular Filling)

- ECG: no wave but ventricles finish relaxing
- Pressure: atria > ventricles
- Valves: AV valve open
- Volume: blood (70%) fills ventricles

Heart Rate (HR)

- Average: 70 bpm
- Lower HR = "healthier" (i.e. athletes: 45 bpm)
- Max HR = 220 age
- Controlled by autonomic nervous system
 - > PS-NS: decreases HR
 - > S-NS: increases HR

Stroke Volume = EDV - ESV

- End-Diastolic Volume (EDV): volume of blood in ventricles at end of ventricular diastole (just before they contract; end of Phase 1)
- End-Systolic Volume (ESV): volume of blood in ventricles at end of ventricular systole (just after contraction; end of Phase 3)
- Stroke volume = EDV ESV = 160 ml – 90 ml = 70 ml
- Altering either EDV or ESV will change stroke volume

Cardiac output can be determined by which of the following formulas?

- A. HR SV
- B. HR divided by SV
- C. HR + SV
- D. HR x SV

Cardiac Output (CO)

- Cardiac output: volume of blood pumped by each ventricle per minute
- CO = Heart Rate x Stroke Volume
 - Heart Rate = Beats per minute
 - Stroke Volume = Amount of blood pumped by each ventricle per beat
- At rest:
 - CO = 5 L/min
 - HR = 70 beat/min
 - SV = 70-80 mL/beat
 - CO = (70 beat/min)(0.07 L/beat) = 4.9 L/min
- During exercise:
 - CO can increase to 20-40 L/min
 - How? By changing HR and/or SV!

Overall Control of SV by ANS

- Stroke volume: the amount of blood pumped by each ventricle per beat
- Two factors that affect stroke volume:
 - > ANS
 - Preload (end diastolic volume)
- PS-NS decreases SV
 - ➤ Ca²⁺ flow into cardiac cells
- S-NS increases SV
 - ➤ Ca²⁺ flow into cardiac cells
 - force of contraction

Stroke Volume

- During exercise, the S-NS is activated:
 - Heart contracts more forcefully and ejects more blood
 - > Thus, ESV decreases
- Meanwhile, the heart is filling with more blood
 - Thus, EDV increases

Stroke Volume and Preload

- Preload: the "load" on the cardiac muscle before contraction
- This "load" comes from the blood in the ventricles that stretches the ventricular muscle
 - > Thus, higher EDV = greater preload

PNS Effect on HR

- PNS innervates SA and AV nodes through vagus nerve
 - PNS releases Ach, which binds to receptors on cells of SA and AV nodes
- ↑ K⁺ permeability (i.e. more exits cell) and ↓ Ca²⁺ permeability (i.e. less enters cell)
- Net effect:
 - K⁺ = HYPERPOLARIZATION
 - Ca²⁺ = Decreases slope of pacemaker potential

SNS Effect on HR

- SNS innervates SA, AV nodes and ventricular muscles
 - SNS releases NE, which binds to receptors on cells of nodes and muscle
- Na⁺ and Ca²⁺ permeability (i.e. more enters cell)
- Net effect: DEPOLARIZATION and increased slope of pacemaker potential

Which graph represents sympathetic influence on heart rate (in both cases the light grey line is under resting conditions)?

Which graph represents sympathetic influence on heart rate (in both cases the light grey line is under resting conditions)?

Summary of ANS Control of Heart Rate

PSNS

- Acetylcholine released onto SA/AV node
- Decreases heart rate and force of contraction
 - ➤ Increase K⁺, decrease Ca²⁺ permeabilities
 - Decreases slope of pacemaker potential

SNS

- Release norepinephrine onto SA/AV node
- Increases heart rate and force of contraction
 - ➤ Increase Na⁺ and Ca²⁺ permeability
 - Increase slope of pacemaker potential

Frank-Starling Law

Frank-Starling Law states that "an increase in EDV will increase stroke volume"

An increase in EDV = An increase in preload Increases the stretch of myocardial cells Increases the force of contraction of these cells when the heart contracts Increases the amount of blood ejected **Increases Stroke Volume (Increases Cardiac Output)**

Frank-Starling Law and Venous Return

- How to increase EDV? Increase venous return to the heart!
- During dynamic exercise:
 - 1. Muscle Pump: contracted skeletal muscle around veins pushes blood to heart
 - 2. Respiratory Pump: changes in pressure during breathing pushes blood towards the heart
 - 3. S-NS: constriction of veins squeezes blood to heart

Frank-Starling Law and Venous Return

The aortic semilunar valve prevents blood from returning to the ____.

- A. left ventricle
- B. aorta
- C. right ventricle
- D. left atrium

Blood Vessels

 Structural properties of vessels are what contribute to the blood pressure characteristics seen in circulation

Vessel Constriction and Blood Flow

As the radius decreases the pressure gradient increases.

Relationship Between Pressure, Flow and Resistance (Page 232)

$$Resistance = \frac{L \eta}{r^4}$$

L = length of vessel

 η = viscosity of the fluid

r = radius of the vessel

$$Resistance = \frac{1}{r^4}$$

$$Blood\ Flow = rac{P_1 - P_2}{rac{1}{r^4}} = (P_1 - P_2) * r^4$$
 Just know this part of the equation

A small change in radius will have a LARGE effect on blood flow

Relationship Between Pressure, Flow and Resistance

$$Blood\ Flow = (P_1 - P_2) * r^4$$

 $Blood\ Flow = (4-2) * 1^4$
 $Blood\ Flow = 2\ L/min$

$$Blood\ Flow = (P_1 - P_2) * r^4$$

 $Blood\ Flow = (10 - 2) * 0.5^4$
 $Blood\ Flow = 0.5\ L/min$

A small change in radius will have a LARGE effect on blood flow

Defining terms

- Blood velocity (cm/sec): speed at which blood is moving through particular blood vessel
 - Fluid flows faster through a narrow tube than a larger tube
 - As cross sectional area increases mean velocity decreases
- Blood flow (L/min): volume of blood moving through set of vessels

Overall blood flow does not change

Blood flow can change due to constriction in vessel

Arteries and Veins

- Contain three layers:
 - Outer Layer Tunica externa
 - Fibrous connective tissue
 - Middle Layer Tunica media
 - Smooth muscle and elastic tissue
 - Inner Layer Tunica interna
 - Endothelial cells
- Veins contain valves
- Capillaries have single layer of endothelial cells

Aorta and Large Arteries

	Blood Characteristics	Structure	Purpose
Aorta/Large Arteries	High blood pressure80-120 mmHgHigh blood velocity	 Large diameter Elastic tissue Thin walls Easily distended Low resistance to blood flow Small drop in blood pressure 	 'Shock absorbers' Distribute the blood

Arterioles

	Blood Characteristics	Structure	Purpose
Arterioles	Large drop in blood pressureLower blood velocity	 Small diameter Very thick walls Smooth muscle of walls innervated by ANS Causes vasoconstriction/dilation Controls blood flow velocity 	Resistance vesselsControl blood flow velocity to organs

Capillaries

	Blood Characteristics	Structure	Purpose
Capillaries	 Low blood pressure Small drop in blood pressure Very low blood velocity (1- 2 cm/sec) 	 One endothelial cell thick Large cross sectional area Very large surface area Diffusion of gas, nutrients and waste 	- Exchange vessels

Veins

	Blood Characteristics	Structure	Purpose
Veins	 Low blood pressure Low to medium blood velocity (5-10 cm/sec) 	 Very thin walls with large diameter Contain valves Some elastic tissue Smoth of smooth muscle innervated by ANS Vasoconstriction/dilation 	- Capacitance vessels: 70% of TBV

At the arteriolar end of a capillary, ____ pushes fluid into the capillary:

- a. hydrostatic pressure in the interstitial fluid
- b. osmotic pressure in the interstitial fluid
- c. osmotic pressure in the capillary
- d. hydrostatic pressure in the capillary

Starling Forces

- Two hydrostatic pressures
 - Capillary hydrostatic pressure
 - Interstitial fluid hydrostatic pressure
- Two osmotic pressures
 - Plasma osmotic pressure
 - Interstitial osmotic pressure

Capillary Hydrostatic Pressure (P_c)

- Pressure exerted by fluid in the capillary
- Pressure drives fluid OUT of capillary and is generated by ventricular systole (Filtration)

Interstitial Fluid Hydrostatic Pressure (P_{IF})

- Pressure exerted by fluid in the interstitial space between cells in the tissue
- Movement depends on pressure in the tissue
 - Can be negative → Filtration into tissue
 - Can be positive → Reabsorption into capillary

Subcutaneous tissues: -6mmHg

Interstitial fluid: +6mmHg

Interstitial Osmotic Pressure (π_{IF})

- Pressure caused by osmosis due to few proteins in interstitial fluid (5mmHg)
- Pressure drives fluid OUT of capillary and into tissue (Filtration)

Plasma Osmotic Pressure (π_P)

- Pressure caused by osmosis due to proteins in plasma (28mmHg)
- Pressure drives fluid INTO capillary (Reabsorption)

Balance of Starling Forces

 Starling-Landis equation used to calculate net fluid movement (NFM) across capillary bed

$$NFM = K_f[(P_c - P_{IF}) - (\pi_P - \pi_{IF})]$$

• K_f is filtration coefficient, which represents permeability of capillary (assume 1)

$$NFM = 1[(25 - (-6)) - (28 - (+5))]$$

 $NFM = +8 \ mmHg$

 If positive filtration OUT of capillary, if negative reabsorption INTO capillary

$$P_C = 10$$
, $P_{IF} = 1$, $\pi_{IF} = 5$, $\pi_C = 28$

Local Intrinsic Mechanisms: Myogenic Theory

- Maintain blood flow when there is change in blood pressure
- Increase in blood pressure
 contraction of smooth muscles in arterioles (Vasoconstriction)
- Decrease in blood pressure
 relaxation of smooth muscles in arterioles (Vasodilation)

Local Intrinsic Mechanisms: Metabolic Theory

- Active tissue releases metabolic by-products called vasodilator metabolites (VDMs)
 - ➤ Increase in: CO², [H+], adenosine, temperature
 - Decrease in: O²
- Increase in VDMs → relaxation of smooth muscles in vessels (Vasodilation)
- Leads to increase in blood flow rate

Humoral Mechanisms

- Regulation by substances present in blood
- Vasoconstrictor agents
 - Epinephrine: attaches to alpha receptors in blood vessels
 - Weak vasoconstriction
 - Angiotensin II: production stimulated by drop in blood pressure and drop in sodium levels
 - Very potent vasoconstrictor
 - Vasopressin: formed in the hypothalamus, promotes reabsorption of water in kidneys
 - High amounts will produce vasoconstriction

Humoral Mechanisms

- Regulation by substances present in blood
- Vasodilator agents:
 - Epinephrine: attaches to beta receptors in blood vessels of skeletal/cardiac muscle and the liver
 - Causes vasodilation
 - Kinins: blood protein involved in inflammation, blood pressure and blood coagulation
 - Histamine: released by damaged cells, involved in inflammatory response
 - Atrial natriuretic factor: released by atrial muscle cells
 - Very powerful vasodilator

Neural Control Mechanisms

- ANS can rapidly induce changes in blood flow by vasodilation/constriction
- Sympathetic nervous system:
 - ➤ Norepinephrine released onto blood vessels → vasoconstriction
 - > Acetylcholine causes release of epinephrine from adrenal glands
 - Alpha receptors constrict
 - Beta receptors dilate
- Parasympathetic nervous system:
 - > Small indirect effect on blood vessels, causes weak vasodilation
 - Indirect because SNS is shut off

- Negative feedback system that maintains mean arterial pressure (MAP)
- Regulates cardiac output (CO) and total peripheral resistance (TPR)
 - > TPR is all resistance encountered by blood in entire systemic circulation
- MAP is average pressure throughout the entire cardiac cycle

$$MAP = CO * TPR$$

 $CO = HR * SV$

Located in walls of aortic arch and carotid sinuses

Stretch sensitive receptors that monitor blood pressure

Send APs back to cardiovascular center in the medulla of

Nerve to Brain

brainstem

Increase in blood pressure (MAP) **Stretches aorta/carotid sinuses Activates baroreceptors** APs sent to CV center in medulla CV center compares signals to set point **Shuts off SNS activates PNS** Decrease CO (♦HR and SV causes vasodilation (♦TPR)) **Decreases MAP**

Equations to know

- CO = HR x SV
- Max HR = 220 age
- Stroke volume = EDV –ESV
- $Blood\ Flow = (P_1 P_2) * r^4$
- $NFM = K_f[(P_c P_{IF}) (\pi_P \pi_{IF})]$
- MAP = CO * TPR

What Questions Do You Have?

You can ask in the **Owl forums** as well!

Also anonymously ask questions in the online dropbox!!

