Імовірнісні збіжності II.

1 Теоретичні відомості

Розглянемо послідовність функцій розподілу $\{F_n\}_{n\geq 1}$ та ще одну функцію розподілу F.

Послідовність функцій розподілу $\{F_n\}_{n\geq 1}$ збігається до F

- в основному $(F_n \to^O F)$, якщо $F_n(t) \to F(t)$ в кожній точці неперервності F,
- слабко $(F_n \to^W F)$, якщо для довільної $g \in C_b(\mathbb{R})$ (неперервної обмеженої g) має місце збіжність (функціоналів):

$$\int_{\mathbb{R}} g(t)F_n(dt) \to \int_{\mathbb{R}} g(t)F(dt), \ n \to \infty.$$
 (1)

Можна довести що наведені вище збіжності є рівносильними.

Зауважимо, що границі в основному для послідовності функцій розподілу може не існувати в класичному, 'скінченному', сенсі. Але може існувати збіжність до 'узагальненої' функції розподілу G(t):

$$G$$
 - неспадна, неперервна зліва, $G(t) \in [0,1]$.

Така функція G могла б відповідати функції розподілу невласної випадкової величини ξ (для якої необов'язково $P(\xi=+\infty)=1-G(+\infty)=1$ та $P(\xi=-\infty)=G(-\infty)=0$).

Будемо казати, що послідовність випадкових величин $\{\xi_n\}_{n\geq 1}$, з функціями розподілу відповідно $F_n(t) = P(\xi_n < t)$, збігається за розподілом до ξ з $F(t) = P(\xi < t)$, якщо $F_n \to^W F$. Позначимо цю збіжність через $\xi_n \to^D \xi$. Відповідно (1) можна перезаписати через математичні сподівання

$$E[g(\xi_n)] \to E[g(\xi)], \ n \to \infty.$$

Ця збіжність стосується не самих величин, а їхніх розподілів.

Переконайтеся в наступних властивостях:

- 1. Якщо $\xi_n \to^P \xi$, то $\xi_n \to^W \xi$,
- 2. Якщо $\xi_n \to^W c, c = const,$ то $\xi_n \to^P c,$
- 3. Якщо $\xi_n \to^P \xi$ та $g \in C(\mathbb{R})$, то $g(\xi_n) \to^W g(\xi)$.

Зауваження. Інколи збіжність за розподілом послідовністі випадкових величин називають слабкою збіжністю. І позначають схожим чином: $\xi_n \to^W \xi$. Також зауважте, що слабка границя послідовності випадкових величин не єдина.

Далі сформулюємо результат, за допомогою якого часто буває зручно досліджувати слабку збіжність розподілів. Позначимо $\varphi_n(t) = \int_{\mathbb{R}} e^{itx} F_n(dx)$ та $\varphi(t) = \int_{\mathbb{R}} e^{itx} F(dx)$.

Теорема (Леві про неперервність).

- 1. Послідовність функцій розподілу $\{F_n\}_{n\geq 1}$ слабко збігається до F тоді і тільки тоді, коли послідовність характеристичних функцій $\{\varphi_n\}_{n\geq 1}$ поточково збігається до φ .
- 2. Послідовність функцій розподілу $\{F_n\}_{n\geq 1}$ слабко збіжна тоді і тільки тоді, коли послідовність $\{\varphi_n\}_{n\geq 1}$ поточково збігається до неперервної в нулі функції $\psi(t)$. Тоді, зокрема, $\psi(t)$ є характеристичною функцією деякого імовірнісного розподілу.

Дамо декілька схожих тверджень для багатовимірних функцій розподілу $F_n(\vec{t}), F(\vec{t}), \vec{t} \in \mathbb{R}^d$ (аналогічно позначатимемо міри Лебега-Стілтьєса, породжені цими функціями). Будемо називати $B \in \mathcal{B}(\mathbb{R}^d)$ множиною неперервності F, якщо $F(\partial B) = 0$, де $\partial B = Cl(B) \setminus Int(B)$ – границя множини B.

Послідовність функцій розподілу $\{F_n\}_{n\geq 1}$ збігається до F

- в основному $(F_n \to^O F)$, якщо $F_n(B) \to F(B)$ при $n \to \infty$ в кожній множині неперервності F,
- слабко $(F_n \to^W F)$, якщо для довільної $g \in C_b(\mathbb{R}^d, \mathbb{R})$ (неперервної обмеженої g) має місце збіжність (функціоналів):

$$\int_{\mathbb{R}^d} g(\vec{t}) F_n(d\vec{t}) \to \int_{\mathbb{R}^d} g(\vec{t}) F(d\vec{t}), \ n \to \infty.$$
 (2)

Наведені вище збіжності є рівносильними.

Послідовінсть d-вимірних випадкових векторів $\{\vec{\xi}_n\}_{n\geq 1}$, з функціями розподілу відповідно $F_n(\vec{t}) = P(\vec{\xi}_n < \vec{t})$, збігається за розподілом до $\vec{\xi}$ з $F(\vec{t}) = P(\vec{\xi} < \vec{t})$, якщо $F_n \to^W F$. Позначимо цю збіжність також через $\xi_n \to^D \xi$.

Далі через $\varphi_n(\vec{t}) = \int_{\mathbb{R}} e^{i\langle \vec{t}, \vec{x} \rangle} F_n(d\vec{x})$ та $\varphi(t) = \int_{\mathbb{R}} e^{i\langle \vec{t}, \vec{x} \rangle} F(d\vec{x})$, де $\langle \vec{t}, \vec{x} \rangle = \sum_{k=1}^d t_k x_k$, введемо характеристичні функції розподілів.

Теорема (Леві про неперервність).

- 1. Послідовність функцій розподілу $\{F_n\}_{n\geq 1}$ слабко збігається до F тоді і тільки тоді, коли послідовність характеристичних функцій $\{\varphi_n\}_{n\geq 1}$ поточково збігається до φ .
- 2. Послідовність функцій розподілу $\{F_n\}_{n\geq 1}$ слабко збіжна тоді і тільки тоді, коли послідовність $\{\varphi_n\}_{n\geq 1}$ поточково збігається до неперервної в нулі функції $\psi(\vec{t})$. Тоді, зокрема, $\psi(\vec{t})$ є характеристичною функцією деякого імовірнісного розподілу.

Зокрема наслідком є наступний корисний результат на дослідження збіжностей багатовимірних розподілів:

Теорема (Крамера-Волда) Послідовність d-вимірних випадкових векторів $\{\vec{\xi_n}\}_{n\geq 1}$, з функціями розподілу відповідно $F_n(\vec{t}) = P(\vec{\xi_n} < \vec{t})$, збігається за розподілом до $\vec{\xi}$ з $F(\vec{t}) = P(\vec{\xi} < \vec{t})$ тоді і тільки тоді, коли слабко збігаються лінійні комбінації векторів: $\forall \vec{t} \in \mathbb{R}^d$

$$\langle \vec{\xi}_n, \vec{t} \rangle \to^W \langle \vec{\xi}, \vec{t} \rangle, \ n \to \infty$$

Переконайтеся в тому, що властивості слабкої збіжності 1-3 для випадкових величин можна узагальнити на випадкові вектори.

2 Задачі

2.1 Задача 1

Розглянемо випадкову послідовність $\{\xi_n\}_{n\geq 1}$. Кожен член послідовності має щільність розподілу

$$f_{\xi_n}(t) = 1_{(0,1)}(t) \cdot (1 + \cos(2\pi nt)), \ t \in \mathbb{R}.$$

Введемо $\xi \sim U[0,1]$. Показати, що $F_{\xi_n} \to^O F_{\xi}$ при $n \to \infty$.

Розв'язання.

Отримаємо результат за означенням. Знайдемо $F_{\xi_n}(t) = P(\xi_n < t)$:

$$F_{\xi_n}(t) = \int_{-\infty}^t f_{\xi_n}(u) du = \begin{cases} 0, & t \le 0, \\ \int_0^t (1 + \cos(2\pi nu)) du = t + \frac{\sin(2\pi nt)}{2\pi n}, & t \in (0, 1], \\ 1, & 1 < t. \end{cases}$$

Функція розподілу ξ є неперервною на \mathbb{R} , тому потрібно показати збіжність $F_{\xi_n}(t) \to F_{\xi}(t)$ для всіх $t \in \mathbb{R}$. Очевидно, ця збіжність виконується при $t \leq 0$ та t > 1. Нехай тепер $t \in (0,1]$. Побачимо, що

$$0 \le \frac{|\sin(2\pi nt)|}{2\pi n} \le \frac{1}{2\pi n} \to 0, \ n \to +\infty,$$

отже

$$F_{\xi_n}(t) = t + \frac{\sin(2\pi nt)}{2\pi n} \to t = F_{\xi}(t), \ n \to +\infty.$$

Доведемо альтернативним чином, знайшовши характеристичну функцію $\varphi_n(t)=E[e^{it\xi_n}]$: при $t\neq \pm 2\pi n$ при всіх $n\geq 1$

$$\varphi_{n}(t) = \int_{0}^{1} e^{iut} (1 + \cos(2\pi nu)) du = \int_{0}^{1} e^{iut} \left(1 + \frac{1}{2} \left(e^{i2\pi u} + e^{-i2\pi u} \right) \right) du =$$

$$= \int_{0}^{1} \left(e^{iut} + \frac{1}{2} \left(e^{i(t+2\pi n)u} + e^{i(t-2\pi n)u} \right) \right) du =$$

$$= \frac{1}{it} e^{iut} \Big|_{0}^{1} + \frac{1}{2i(t+2\pi n)} e^{i(t+2\pi n)u} \Big|_{0}^{1} + \frac{1}{2i(t-2\pi n)} e^{i(t-2\pi n)u} \Big|_{0}^{1} \to \frac{1}{it} e^{iut} \Big|_{0}^{1} = \varphi_{\xi}(t), \ n \to +\infty,$$

$$0 \le \left| \frac{1}{2i(t\pm 2\pi n)} (e^{i(t\pm 2\pi n)} - 1) \right| \le \frac{1}{|t\pm 2\pi n|} \to 0, \ n \to +\infty$$

Навпаки, якщо наприклад $t=2\pi n_0$ для деякого $n_0\geq 1$:

$$\varphi_n(2\pi n_0) = \int_0^1 e^{i2\pi n_0 u} (1 + \cos(2\pi n u)) du = \begin{cases} \int_0^1 \left(e^{i2\pi n_0 u} + \frac{1}{2} \left(e^{i4\pi n_0 u} + 1 \right) \right) du = \frac{1}{2}, & n = n_0, \\ \varphi_{\xi}(t) + o(1), & n \to \infty, & n \neq n_0 \end{cases}$$

Аналогічно при $t = -2\pi n_0$ маємо $\varphi_n(t) \to \varphi_{\xi}(t)$. Отже $F_{\xi_n} \to^W F_{\xi}$, $n \to \infty$ за теоремою Леві про неперервність. А слабка збіжність розподілів рівносильна збіжності в основному.

2.2 Задача 2

Нехай $\{\xi_n\}_{n\geq 1}$ та $\{\eta_n\}_{n\geq 1}$ – незалежні випадкові послідовності, причому $\xi_n\to^W\xi$, $\eta_n\to^W\eta$ при $n\to\infty$, та ξ , η є незалежними. Довести, що $(\xi_n,\eta_n)\to^W(\xi,\eta)$.

Розв'язання.

Введемо через $F_n(x,y) = F_{\xi_n}(x)F_{\eta_n}(y)$ функцію розподілу випадкового вектора (ξ_n,η_n) та $F(x,y) := F_{\xi}(x)F_{\eta}(y)$ – сумісна функція розподілу (ξ,η) . Отже, потрібно показати що виконується теорема Леві про неперервність: для всіх $u,v \in \mathbb{R}$ при $n \to \infty$

$$\varphi_n(u,v) := E[e^{i(u\xi_n + v\eta_n)}] = \int_{\mathbb{R}^2} e^{i(ux + vy)} F_n(dxdy) \to \int_{\mathbb{R}^2} e^{i(ux + vy)} F(dxdy) = E[e^{i(u\xi + v\eta)}] =: \varphi(u,v)$$

Для цього скористаємося тим, що ξ_n та η_n є незалежними:

$$\varphi_n(u,v) = E[e^{iu\xi_n}]E[e^{iv\eta_n}] = \varphi_{\xi_n}(u)\varphi_{\eta_n}(v)$$

Далі відомо, що $\xi_n \to^W \xi$ та $\eta_n \to^W \eta$, тобто має місце слабка збіжність функцій розподілу $F_{\xi_n} \to^W F_{\xi}$ та $F_{\eta_n} \to^W F_{\eta}$ і, відповідно, за теоремою Леві про неперервність, це рівносильно поточковій збіжності характеристичних функцій

$$\varphi_{\xi_n}(t) \to \varphi_{\xi}(t), \ \varphi_{\eta_n}(t) \to \varphi_{\eta}(t), \ n \to \infty.$$

Отже, для сумісної характеристичної функції маємо 'продовження бенкету':

$$\varphi_n(u,v) = \varphi_{\xi_n}(u)\varphi_{\eta_n}(v) \to \varphi_{\xi}(u)\varphi_{\eta}(v) = \varphi(u,v), \ n \to \infty,$$

де скористалися незалежністю граничних випадкових величин ξ та η . Отже теорема Леві про неперервність виконується для F_n та F, тобто $F_n \to^W F$, значить $(\xi_n, \eta_n) \to^W (\xi, \eta)$ при $n \to \infty$.

2.3 Задача 3

Нехай $\{\xi_n\}_{n\geq 1}$ — випадкова послідовність, ξ — випадкова величина, а $B\in\mathcal{B}(\mathbb{R})$ є борелевою підмножиною з \mathbb{R} . Через Cl(B) позначимо замикання множини $B,\ Int(B)$ — внутрішність B та $\partial B=Cl(B)\setminus Int(B)$.

Показати, що кожна з умов нижче є достатньою умовою збіжності в основнову функцій розподілу $F_n(t) = P(\xi_n < t)$ до $F(t) = P(\xi < t)$ при $n \to \infty$:

- 1. $\lambda_F(Int(B)) \leq \underline{\lim}_{n \to \infty} \lambda_{F_n}(B) \leq \overline{\lim}_{n \to \infty} \lambda_{F_n}(B) \leq \lambda_F(Cl(B)),$
- 2. Якщо $\lambda_F(\partial B)=0$, тоді $\lambda_{F_n}(B)\to \lambda_F(B),\, n\to\infty.$

Тут
$$\lambda_F(A) := P(\xi \in A), \ \lambda_{F_n}(A) := P(\xi_n \in A)$$
 для $A \in \mathcal{B}(\mathbb{R}).$

Розв'язання.

1. Беремо $B := (-\infty, t)$, де t – довільна точка неперервності F. Тоді, з одного боку,

$$F(t) = \lambda_F(B) = \lambda_F(Int(B)) \le \underline{\lim}_{n \to \infty} \lambda_{F_n}(B).$$

З іншого боку,

$$\overline{\lim}_{n\to\infty}\lambda_{F_n}(B) \le \lambda_F(Cl(B)) = \lambda_F((-\infty,t]) = F(t+) = |\text{неперервність ф.р. зліва}| = F(t).$$

Врахувавши те, що $\lambda_{F_n}(B) = F_n(t)$ маємо $F(t) \leq \underline{\lim}_{n \to \infty} F_n(t) \leq \overline{\lim}_{n \to \infty} F_n(t) \leq F(t)$, а звідси отримаємо існування $\lim_{n \to \infty} F_n(t) = F(t)$. З довільності t маємо збіжність в основному F_n до F.

2. Беремо B з попереднього пункту. Тоді $\partial B = \{t\}$, $\lambda_F(\partial B) = F(t+) - F(t) = F(t) - F(t) = 0$. Значить $F_n(t) = \lambda_{F_n}(B) \to \lambda_F(B) = F(t)$ при $n \to \infty$. А вибір точки неперервності t був довільним. Отже, знову показали збіжність в основному.

2.4 Задача 4

Розглянемо випадкові величини $\xi_n, \xi \in \mathbb{Z}$. Показати, що $\xi_n \to^W \xi$ тоді і тільки тоді, коли $P(\xi_n = k) \to P(\xi = k)$ при $n \to \infty$.

Розв'язання.

Припустимо, що $\xi_n \to^W \xi$. Тоді має місце збіжність функцій розподілу $F_n(t) \to F(t)$ у точках неперервності F. Точками розриву F є, власне, стрибки – там, де ξ набуває значень з додатною імовірністю. Якщо $k \notin \xi(\Omega)$, то k є точкою неперервності і

$$P(\xi_n = k) = F_n(k+) - F_n(k) \to F(k+) - F(k) = 0, \ n \to \infty.$$

Навпаки, тепер припустимо що $k \in \xi(\Omega)$. Неважко переконатися, що F можна є кусковосталою функцією вигляду

$$F(t) = \sum_{m \in \mathbb{Z}} P(\xi = m) \cdot \mathbf{1} \{ m < t \}$$

Оберемо $\varepsilon > 0$ так, щоб $F(k+\varepsilon) = F(t) + F(t) + F(t) + F(t)$ (це можна зробити, якщо взяти $\varepsilon \in (0, k_* - k), k_*$ – наступна після k_* точка розриву F). Точка $k + \varepsilon$ є точкою неперервності, а тому $F_n(k+\varepsilon) \to F(k+\varepsilon) = F(k+), n \to \infty$. Отже

$$P(\xi_n = k) = F_n(k + \varepsilon) - F_n(k) \to F(k + \varepsilon) - F(k) = F(k) = F(k) - F(k) = F(k) = F(k) - F(k) = F(k) -$$

Таким чином довели збіжність 'мас' дискретного розподілу.

Навпаки, тепер припустимо що має місце збіжність для всіх $k \in \mathbb{Z}$

$$p_n(k) := P(\xi_n = k) \to P(\xi = k) =: p(k), n \to \infty$$

Відомо, що $\sum_{k\in\mathbb{Z}}p(k)=\sum_{k\in\mathbb{Z}}p_n(k)=1$. Значить

$$\sum_{k \in \mathbb{Z}} (p(k) - p_n(k)) = 0 \Leftrightarrow \sum_{k: (p(k) - p_n(k)) > 0} (p(k) - p_n(k)) = \sum_{k: (p(k) - p_n(k)) \le 0} (p_n(k) - p(k))$$

Тепер доведемо слабку збіжність F_n до F. Візьмемо довільну неперервну обмежену $g \in C_b(\mathbb{R})$. Тоді існує таке A>0, що $|g(t)|\leq A$ для всіх $t\in\mathbb{R}$. Дослідимо збіжність математичних сподівань

$$|E[g(\xi_n)] - E[g(\xi)]| = \left| \sum_{k \in \mathbb{Z}} g(k) p_n(k) - \sum_{k \in \mathbb{Z}} g(k) p(k) \right| \le \sum_{k \in \mathbb{Z}} g(k) |p_n(k) - p(k)| \le A \sum_{k \in \mathbb{Z}} |p_n(k) - p(k)| = 2A \sum_{k \in \mathbb{Z}} (p(k) - p_n(k)) > 0$$

Далі побачимо, що для точкової міри $\lambda(A) = |A \cap \mathbb{Z}|$ остання сума є відповідно інтегралом Лебега функції $q_n(k) = (p(k) - p_n(k)) \mathbf{1}\{(p(k) - p_n(k)) \geq 0\}$:

$$\sum_{k:(p(k)-p_n(k))>0} (p(k)-p_n(k)) = \int_{\mathbb{Z}} q_n(h)\lambda(dh)$$

Видно, що $q_n(h) \to 0$ та мажорується p(k) для всіх $k \ge 1$, що інтегровна за λ . Отже, за теоремою Лебега про мажоровану збіжність отримаємо

$$\lim_{n \to +\infty} \int\limits_{\mathbb{Z}} q_n(h) \lambda(dh) = \int\limits_{\mathbb{Z}} \lim_{n \to +\infty} q_n(h) \lambda(dh) = 0.$$

Тобто верхня межа в оцінці для $|E[g(\xi_n)] - E[g(\xi)]|$ прямує до нуля при $n \to \infty$. Отже, з довільності вибору $g \in C_b(\mathbb{R})$ маємо слабку збіжність функцій розподілу F_n до F, що власне й треба було довести.

Коментар. Можна довести більш загальний результат під назвою леми Шеффе:

Лема (Шеффе). Нехай $\{f_n\}_{n\geq 1}$ є послідовністю щільностей розподілу відносно міри λ на X, тобто $\int\limits_X f_n d\lambda = 1$. Припустимо, що для деякої щільності розподілу f відносно λ має місце збіжність

$$f_n \to f, n \to \infty$$
 m.c. λ

Тоді
$$\int\limits_X |f_n-f|d\lambda \to 0$$
 при $n \to +\infty.$

Власне в задачі вище, для дискретних випадкових величин ξ_n та ξ , щільностями відносно $\lambda(A) = |A \cap \mathbb{Z}|$ є відповідно $\{p_n(k)\}_{k \in \mathbb{Z}}$ та $\{p(k)\}_{k \in \mathbb{Z}}$ відповідно.

2.5 Задача 5

Навести контрприклади до наступних тверджень:

- 1. Якщо $\xi_n \to^W \xi$, $\eta_n \to^W \eta$, то $\xi_n + \eta_n \to^W \xi + \eta$,
- 2. Якщо $\xi_n \to^W \xi$, $\eta_n \to^W \eta$, то $\xi_n + \eta_n \to^W \xi \cdot \eta$,
- 3. Якщо $\xi_n \to^W \xi$, то $\xi_n \xi \to^W 0$.

Розв'язання.

Розглянемо ξ з дискретним розподілом $P(\xi = \pm 1) = \frac{1}{2}$, а також введемо η , незалежна ξ , з тим самим розподілом. Покладемо $\xi_n = \eta_n = \xi$. Неважко побачити, що $\xi_n \to^W \xi$, $\eta_n \to^W \xi$. А також $\eta_n \to^W \eta$. Тепер перевіримо, чи справді $\xi_n + \eta_n \to^W \xi + \eta$. Справа маємо

$$P(\xi + \eta = k) = \begin{cases} \frac{1}{4}, & k = \pm 2, \\ \frac{1}{2}, & k = 0 \\ 0, & \text{інакше} \end{cases}$$

Зліва маємо

$$P(\xi_n + \eta_n = k) = P(2\xi = k) = \begin{cases} \frac{1}{2}, & k = \pm 2, \\ 0, & \text{інакше} \end{cases}$$

Тобто $P(\xi_n + \eta_n = k) \to P(\xi + \xi = k) \neq P(\xi + \eta = k)$, отже слабкої збіжності для заданих розподілів не буде.

Так само покажемо, що $\xi_n \cdot \eta_n \not\to^W \xi \cdot \eta$. З одного боку,

$$P(\xi \cdot \eta = k) = \begin{cases} \frac{1}{2}, & k = \pm 1, \\ 0, & \text{інакше} \end{cases}$$

З іншого боку

$$P(\xi \cdot \xi = k) = P(\xi^2 = k) = \begin{cases} 1, & k = 1, \\ 0, & \text{inaxme} \end{cases}$$

Тобто $P(\xi_n \cdot \eta_n = k) \to P(\xi \cdot \xi = k) \neq P(\xi \cdot \eta = k)$, тому слабкої збіжності тут також не вийде.

Тепер залишається показати, що не завжди $\xi_n - \xi \to^W 0$ для $\xi_n \to^W \xi$. Беремо ξ_n та ξ з попереднього прикладу. Далі зауважимо, що $-\xi =^d \xi$, отже $\xi_n \to^W -\xi$. Тоді $\xi_n - (-\xi) = \xi_n + \xi = 2\xi \neq 0$. Тобто $\xi_n - (-\xi) = 2\xi \not\to^W 0$.

9