Computationally Efficient Radial Basis Function

Ms. Adedamola Wuraola, Dr. Nitish Patel

December 2018

Introduction and Motivation

Introduction

RBF Networks
RBF Kernel
Mapping
Properties
Performance
Conclusions

- Hardware ANN
 - Training
 - **♦** Inference
- FPGA based, maybe ASIC based (neither Neuromorphic nor GPU/TPU styled)

ICONIP 2018 slide 2

RBF Networks

Introduction

RBF Networks

RBF Kernel

Mapping

Properties

Performance

Conclusions

ICONIP 2018 slide 3

RBF Kernels

Introduction RBF Networks

RBF Kernel

Mapping
Properties
Performance
Conclusions

RBF Kernel	Expression
Gaussian	$f(x) = \exp^{-(\beta x)^2}$
Multiquadric	$f(x) = \sqrt{1 + (\beta x)^2}$
Inverse Multiquadric	$f(x) = \frac{1}{\sqrt{1 + (\beta x)^2}}$
Thin-plate Spline	$f(x) = x^2 \log(\beta x^2)$
C ⁴ Matern	$f(x) = exp^{-\beta x} \cdot (3 + 3\beta x + \beta x)^2$
Approximate Gaussian	$f(x) = \frac{1}{1 + (\beta x)^2}$
Approximate Gaussian	$f(x) = \frac{1}{1 + (\beta x)^4}$

Disadvantages

- Computationally Expensive due to Exponent Term
- Computationally Expensive due to Square root

Mapping Function

Introduction RBF Networks RBF Kernel

Mapping

Properties
Performance
Conclusions

We define a new convex kernel that makes use of a square-law and eliminates the exponential term present in Gaussian expression. We referred to this expression as SQ-RBF.

$$f(x) = \begin{cases} 1 - \frac{x^2}{2} & : x \le 1.0\\ 2 - \frac{(2-x)^2}{2} & : 1.0 \le |x| < 2.0\\ 0 & : |x| \ge 2.0 \end{cases}$$

Mapping Function (cont)

ICONIP 2018 note 1 of slide 5

Properties of the SQ-RBF

Introduction RBF Networks RBF Kernel Mapping

Properties

Performance Conclusions The function has been named the Square-Radial Basis Function (SQ-RBF) function due to its inherent square operation.

Simple Non-Linearity The square law is, arguably, the simplist non-linearity

Symmetrical and Continuous

slide 6

Performance

Introduction
RBF Networks
RBF Kernel
Mapping
Properties

Performance

Conclusions

Is this mapping comparable to other similar mappings?

- 100 networks trained: 100 weight-sets stored and reused with every experiment
- Only mapping function changed
- Performance Accuracy Criteria:
 - Number of RBF Kernels (Neurons) require to get to a specified MSE
 - Generalizability independent of the number of RBF kernels

slide 7

Function Approximation Problems

SinE Function This is defined by

$$y = 0.8 \exp(-0.2x) \sin(10x) .$$

RBF	Training	Test	Number
Kernel	Time (seconds)	MSE	of Neurons
Gaussian	0.6189	0.0060	90
SQ-RBF	0.5555	0.0067	84

RBF	Training	Test
Kernel	Time (seconds)	MSE
Gaussian	5.3898	2.93x10e-19
SQ-RBF	5.1141	6.75×10e-15

ICONIP 2018 note 1 of slide 7

Function Approximation Problems (cont)

Inverse Cosine Function

RBF	Training	Test	Number
Kernel	Time (seconds)	MSE	of Neurons
Gaussian	0.1603	0.0213	3
SQ-RBF	0.1588	0.0189	3

RBF	Training	Test
Kernel	Time (seconds)	MSE
Gaussian	295.28	9.7208×-8
SQ-RBF	260.94	4.4768 x -9

ICONIP 2018 note 2 of slide 7

System Identification Problem

RBF	Training	Test	Number
Kernel	Time (seconds)	MSE	of Neurons
Gaussian	5.5499	0.0065	368
SQ-RBF	4.7737	0.0162	342

RBF	Training	Test
Kernel	Time (seconds)	MSE
Gaussian	11.0813	9.09×10e-4
SQ-RBF	10.82	7.49x10e-4

ICONIP 2018 note 3 of slide 7

Time Series Prediction

Mackey-Glass Time Series

RBF	Training	Test	Number
Kernel	Time (seconds)	MSE	of Neurons
Gaussian	20.2748	0.0140	450
SQ-RBF	18.6580	0.0173	431

RBF	Training	Test
Kernel	Time (seconds)	MSE
Gaussian	20.1224	0.0091
SQ-RBF	19.5357	0.0060

ICONIP 2018 note 4 of slide 7

Conclusions

Introduction
RBF Networks
RBF Kernel
Mapping
Properties
Performance

Conclusions

- The SQ-RBF is a simple non-linearity
- The execution time is reduced
- The SQ-RBF on an average performs better.
- The SQ-RBF results in smaller number of neurons without compromising the performance accuracy
- However, the variation in performance suggests a strong data set dependence
- Importantly, the SQ-RBF is not inferior to the well established Gaussian RBF.
- Digital circuit implementations are possible