Linguagens de Montagem

Revisão dos Sistemas de Numeração Aula 00

Edmar André Bellorini

Objetivos desta revisão

- Computadores e o mundo binário
- Dados são armazenado no formato binário
- Dados são interpretados em diversos formatos:
 - Binária
 - Decimal
 - Hexadecimal
 - Octal

Um bom domínio dos sistemas de numeração Binário e Hexadecimal leva a uma menor dificuldade na disciplina de Linguagens de Montagem.

Representação Binária

- Forma mais simples de representação dos números Naturais em máquinas digitais
- Inteiros Não-Sinalizados
- É dado por:

$$v = \sum_{n=1}^{0} 2^{i} * a_{i}$$

sendo:

i=0
ightarrow o bit menos significativo da string binária v
ightarrow o valor quantitativo do número Natural

Representação Binária - Exemplo 01 com 8 bits de largura

■ 0100 0110^{LSb}

considerando $v = \sum_{i=1}^{0} 2^{i} * a_{i}$, temos:

$$2^7*0 + 2^6*1 + 2^5*0 + 2^4*0 + 2^3*0 + 2^2*1 + 2^1*1 + 2^0*0$$

 $0 + 64 + 0 + 0 + 0 + 4 + 2 + 0 = 70$

Representação Binária - Exemplo 02 com 8 bits de largura

■ 1100 0110^{LSb}

considerando $\sum_{i=1}^{0} 2^{i} * a_{i}$, temos:

$$2^7 * 1 + 2^6 * 1 + 2^5 * 0 + 2^4 * 0 + 2^3 * 0 + 2^2 * 1 + 2^1 * 1 + 2^0 * 0$$

 $128 + 64 + 0 + 0 + 0 + 4 + 2 + 0 = 198$

Observações

- Em teoria, as strings Binárias podem ser consideradas virtualmente infinitas
- Porém, as máquinas se limitam em tamanhos 2ⁱ
 - com i = 2, 3, 4 e 5 em arquiteturas de 32 bits
 - \bullet com i = 2, 3, 4, 5 e 6 em arquiteturas de 64 bits
 - * existem palavras com tamanhos diferentes nas instruções vetoriais

Operação de Adição Binária

Dado por:

$$\begin{array}{c}
c_i \\
b_i \\
+ a_i \\
\hline
c_{i+1} s_i
\end{array}$$

- onde:
 - $lue{c_i}
 ightarrow ext{bit carry-in, isto \'e, carry-out da operação dos bits }_{i-1}$
 - b_i e $a_i \rightarrow$ bits das palavras a e b na posição i
 - lacksquare $s_i
 ightarrow$ bit solução para posição i
 - c_{i+1} → bit carry-out da posição i

Regras de Adição Binária

■ Dadas por:

Situação	bit <i>c_i</i>	bit b_i	bit <i>a_i</i>	bit <i>s_i</i>	bit c_{i+1}	
0	0	0	0	0	0	
1	0	0	1	1	0	
2	0	1	0	1	0	
3	0	1	1	0	1	
4	1	0	0	1	0	
5	1	0	1	0	1	
6	1	1	0	0	1	
7	1	1	1	1	1	

Adição Binária - Exemplo 01 (slide a)

$$\blacksquare 12_d + 28_d$$

Adição Binária - Exemplo 01 (slide b)

■ Conversão:

- $b = 12_d \rightarrow 0000 \ 1100_b$
- $a = 28_d \rightarrow 0001 \ 1100_b$

Adição:

$$2^7 * 0 + 2^6 * 0 + 2^5 * 1 + 2^4 * 0 + 2^3 * 1 + 2^2 * 0 + 2^1 * 0 + 2^0 * 0$$

0 + 0 + 32 + 0 + 8 + 0 + 0 + 0 = 40_d

Adição Binária - Exemplo 02 (slide a)

$$= 254_d + 3_d$$

Adição Binária - Exemplo 02 (slide b)

■ Conversão:

■
$$b = 254_d \rightarrow 1111 \ 1110_b$$

$$a = 3_d \rightarrow 0000 \ 0011_b$$

Adição:

$$2^7 * 0 + 2^6 * 0 + 2^5 * 0 + 2^4 * 0 + 2^3 * 0 + 2^2 * 0 + 2^1 * 0 + 2^0 * 1$$

0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = 1_d

Adição Binária - Exemplo 02 (slide c)

- $254_d + 3_d = 1_d$?
 - Quantidade de bits limitado
 - não é possível representar a solução correta $257_d = 1\ 0000\ 0001_b$
 - Falha na representação
 - Flag especial chamada **CF** (*CarryFlag*)
 - CF será usada durante as aulas com instruções aritméticas de inteiros

Representação em Complemento de Dois (C2)

- Forma de representação dos números Inteiros
- Sinalizados
- Dado por:

$$v = -2^{n-1} * a_{n-1} \sum_{n-2}^{0} 2^{i} * a_{i}$$

sendo:

i=0
ightarrow o bit menos significativo da string binária v
ightarrow o valor quantitativo do número Inteiro

Representação em C2 - Exemplo 01 com 8 bits de largura

■ 0100 0110^{LSb}

considerando
$$v = -2^{n-1} * a_{n-1} \sum_{i=2}^{n-1} 2^i * a_i$$
 , temos:

$$-2^7 * 0 + 2^6 * 1 + 2^5 * 0 + 2^4 * 0 + 2^3 * 0 + 2^2 * 1 + 2^1 * 1 + 2^0 * 0$$

 $-0 + 64 + 0 + 0 + 0 + 4 + 2 + 0 = 70$

Representação em C2 - Exemplo 02 com 8 bits de largura

■ 1100 0110^{LSb}

considerando
$$v = -2^{n-1} * a_{n-1} \sum_{i=0}^{n} 2^{i} * a_{i}$$
, temos:

$$-2^7 * 1 + 2^6 * 1 + 2^5 * 0 + 2^4 * 0 + 2^3 * 0 + 2^2 * 1 + 2^1 * 1 + 2^0 * 0$$

 $-128 + 64 + 0 + 0 + 0 + 4 + 2 + 0 = -58$

Operação de Adição em C2

- Segue todas as regras da Adição Binária
- Dado por:

$$\begin{array}{c} c_i \\ b_i \\ + a_i \\ \hline c_{i+1} & s_i \end{array}$$

onde:

- $c_i \rightarrow bit carry-in$, isto é, carry-out da operação dos bits i-1
- b_i e a_i \rightarrow bits das palavras a e b na posição i
- lacksquare $s_i
 ightarrow$ bit solução para posição i
- $lackbox{c}_{i+1}
 ightarrow ext{bit carry-out da posição} i$

Adição em C2 - Exemplo 01 (slide a)

$$\blacksquare 12_d + 28_d$$

Adição em C2 - Exemplo 01 (slide b)

Conversão:

■
$$b = 12_d \rightarrow 0000 \ 1100_b$$

$$a = 28_d \rightarrow 0001 \ 1100_b$$

■ Adição:

$$-2^7 * 0 + 2^6 * 0 + 2^5 * 1 + 2^4 * 0 + 2^3 * 1 + 2^2 * 0 + 2^1 * 0 + 2^0 * 0$$

 $-0 + 0 + 32 + 0 + 8 + 0 + 0 + 0 = 40_d$

Adição em C2 - Exemplo 02 (slide a)

$$-116_d + 2_d$$

Adição em C2 - Exemplo 02 (slide b)

Conversão:

$$b = -116_d \rightarrow 1000 \ 1100_b$$

$$a = 2_d \rightarrow 0000 \ 0010_b$$

Adição:

Resposta:

$$-2^7 * 1 + 2^6 * 0 + 2^5 * 0 + 2^4 * 0 + 2^3 * 1 + 2^2 * 1 + 2^1 * 1 + 2^0 * 0$$

 $-128 + 0 + 0 + 0 + 8 + 4 + 2 + 0 = -114_d$

Adição em C2 - Exemplo 03 (slide a)

$$-116_d + -2_d$$

Adição em C2 - Exemplo 03 (slide b)

Conversão:

$$b = -116_d \rightarrow 1000 \ 1100_b$$

$$a = -2_d \rightarrow 1111 \ 1110_b$$

Adição:

Resposta:

$$-2^7 * 1 + 2^6 * 0 + 2^5 * 0 + 2^4 * 0 + 2^3 * 1 + 2^2 * 0 + 2^1 * 1 + 2^0 * 0$$

 $-128 + 0 + 0 + 0 + 8 + 0 + 2 + 0 = -118d$

Adição em C2 - Exemplo 03 (slide c)

- $-116_d + -2_d = -118_d$
- \blacksquare e com CF = 1
 - CF é ignorada durante as operações sinalizadas
- Existe uma outra Flag que anuncia possíveis erros nas operações sinalizadas
 - Overflow Flag, carinhosamente chamada de OF
 - e neste exemplo, ela retornou 0 (zero)

Adição em C2 - Exemplo 04 (slide a)

$$-126_d + -4_d$$

Adição em C2 - Exemplo 04 (slide b)

■ Conversão:

$$b = -126_d \rightarrow 1000\ 0010_b$$

$$a = -4_d \rightarrow 1111 \ 1100_b$$

Adição:

$$-2^7 * 0 + 2^6 * 1 + 2^5 * 1 + 2^4 * 1 + 2^3 * 1 + 2^2 * 1 + 2^1 * 1 + 2^0 * 0$$

 $-0 + 64 + 32 + 16 + 8 + 4 + 2 + 0 = 126_d$ (???)

Adição em C2 - Exemplo 04 (slide c)

- $-126_d + -4_d = 126_d$
- Adicionar 2 números negativos resultou em um número positivo!
 - OF = 1
- Overflow Flag sempre é ligada em 1 quando, ao somar-se 2 números de mesmo sinal, o resultado é de sinal contrário.
 - OF = 1
- Overflow Flag nunca ocorre em adição de números com sinais diferentes.
 - OF = 0

Carry vs Overflow

		Representação		
Flags	Valor	Binária	C2	
CF	0	Ok	Desconsiderada	
CF	1	Falha	Desconsiderada	
OF	0	Desconsiderada	Ok	
OF	1	Desconsiderada	Falha	

Operação Complemento de 2

- Operação que altera o sinal de um número representado em Complemento de 2
- Dado por

$$\begin{array}{ccc}
& \overline{a_i} \\
+ & 1_b \\
& -a_i
\end{array}$$

- onde:
 - $\overline{a_i}$ → bits da palavra em representação C2, positivo ou negativo
 - $1_b \rightarrow \text{valor numérico 1 em representação em C2}$
 - $-a_i \rightarrow$ bits solução da inversão de sinal de $\overline{a_i}$ positivo passa a ser negativo negativo passa a ser positivo
 - * problema com menor valor negativo!

Operação Complemento de 2 - Exemplos

- Exemplo 1: Operação Complemento de 2 em 42_d
- Exemplo 2: Operação Complemento de 2 em −42_d
- Exemplo 3: Operação Complemento de 2 em 127_d
- Exemplo 4: Operação Complemento de 2 em -128_d

Operação Complemento de 2 - Exemplo 01

- Conversão:
 - $a = 42_d \rightarrow 0010 \ 1010_b$
 - lacktriangledown $\overline{0010}$ 1010 o 1101 0101
- Adição:

Resposta:

$$-2^{7} * 1 + 2^{6} * 1 + 2^{5} * 0 + 2^{4} * 1 + 2^{3} * 0 + 2^{2} * 1 + 2^{1} * 1 + 2^{0} * 0$$

 $-128 + 64 + 0 + 16 + 0 + 4 + 2 + 0 = -42_{d}$
(sinal alterado com sucesso)

Operação Complemento de 2 - Exemplo 02

- Conversão:
 - $a = -42_d \rightarrow 1101 \ 0110$
 - \blacksquare $\overline{1101\ 0110} \rightarrow 0010\ 1001_{h}$
- Adição:

$$-2^{7} * 0 + 2^{6} * 0 + 2^{5} * 1 + 2^{4} * 0 + 2^{3} * 1 + 2^{2} * 0 + 2^{1} * 1 + 2^{0} * 0$$

 $-0 + 0 + 32 + 0 + 8 + 0 + 2 + 0 = 42_{d}$
(sinal alterado com sucesso)

Operação Complemento de 2 - Exemplo 03

- Conversão:
 - $a = 127_d \rightarrow 0111 \ 1111_b$
 - $\overline{0111\ 1111} \rightarrow 1000\ 0000$
- Adição:

$$-2^{7} * 1 + 2^{6} * 0 + 2^{5} * 0 + 2^{4} * 0 + 2^{3} * 0 + 2^{2} * 0 + 2^{1} * 1 + 2^{0} * 0$$

 $-128 + 0 + 0 + 0 + 0 + 0 + 0 + 1 = -127_{d}$
(sinal alterado com sucesso)

Operação Complemento de 2 - Exemplo 04 - problema

- Conversão:
 - $b = -128_d \rightarrow 1000\ 0000$
 - \blacksquare $\overline{1000\ 0000} \rightarrow 0111\ 1111_{h}$
- Adição:

$$-2^{7} * 1 + 2^{6} * 0 + 2^{5} * 0 + 2^{4} * 0 + 2^{3} * 0 + 2^{2} * 0 + 2^{1} * 0 + 2^{0} * 0$$

 $-128 + 0 + 0 + 0 + 0 + 0 + 0 + 0 = -128_{d}$
(sinal não foi alterado com sucesso)

Representação em Hexadecimal (Hex)

- É uma representação que compacta a visualização de uma string binária
- A string binária é dividida em nibbles
 - 1 nibble = 4 bits = 16 valores (0 até F)
- Transcrição de um valor nibble para um dígito hexadecimal

dec	nib	hex									
0	0000	0	4	0100	4	8	1000	8	12	1100	С
1	0001	1	5	0101	5	9	1001	9	13	1101	D
2	0010	2	6	0110	6	10	1010	Α	14	1110	E
3	0011	3	7	0111	7	11	1011	В	15	1111	F

Exemplo de Representação em Hexadecimal

- 0000 1100_b 0 C_h
- 0001 1100_b 1*C_b*
- 1000 1100_b 8C_b
- 0000 0001 1111 1101 1011 0110 1110 1010 1011 0101_b 01*FDB*6*EAB*5_h

Representação em Octal (Oct)

- É uma representação que compacta a visualização de uma string binária
- A string binária é dividida a cada 3 bits
- Assemelha-se à estrutura da Representação Hexadecimal
 - 3 bits = 8 valores (0 até 7)
- Transcrição de um valor de 3 bits para um dígito octal

dec	3b	oct	
0	000	0	
1	001	1	
2	010	2	
3	011	3	

dec	3b	oct	
4	100	4	
5	101	5	
6	110	6	
7	111	7	

Considerações Finais

- Como diferenciar um 1 binários de um 1 decimal ou 1 hexadecimal?
 - Binário: sufixo _b ou ₂
 0110 0110_b ou 0110 0110₂
 - Decimal: sufixo $_d$ ou $_{10}$ 77_d ou 77_{10}
 - Hexadecimal: sufixo _h ou ₁₆ ou prefixo 0x 01FDB6EAB5_h ou 01FDB6EAB5₁₆ ou 0x01FDB6EAB5
 - Octal: sufixo o ou 8 05347 ou 053478
- Operação de Negação é diferente da Operação de Complemento
 - Não confundir Representação em Complemento de 2 com Operação de Complemento de 2

Atividades para praticar (slide a)

Converta os valores em base decimal para base binária de 8 bits de palavra:

(respostas estão entre parênteses)

- 13_d (R: 0000 1101)
- **2** 43_d (R: 0010 1011)
- **3** 130_d (R: 1000 0010)
- Converta os valores binários abaixo para base decimal: (respostas estão entre parênteses)
 - 1 0001 1001_b (R: 25_b)
 - 2 0110 0000_b (R: 96_d)
 - **3** 1100 0010_b (R: 194_d)

Atividades para praticar (slide b)

- Adicione os seguintes valores em base binária de 8 bits de palavra: (respostas estão entre parênteses)
 - 1 $13_d + 43_d$ (R: 0000 1101 + 0010 1011 = 0011 1000)
 - $2 13_d + 181_d$ (R: 0000 1101 + 1011 0101 = 1100 0010)
 - 3 $127_d + 201_d$ (R: $0111\ 1111 + 1100\ 1001 = ????$) (não é possível representar o valor 328_d em binário com palavra de 8 bits)

Atividades para praticar (slide c)

 Converta os valores em base decimal para representação em Complemento de 2 de 8 bits de palavra: (respostas estão entre parênteses)

```
1 97_d (R: 0110\ 0001_{c2})
```

- 2 126_d (R: 0111 1110_{c2})
- **3** -95_d (R: $1010\ 0001_{c2}$)
- Converta os valores em representação em Complemento de 2 abaixo para base decimal:

(respostas estão entre parênteses)

- **1** 1101 1100 $_{c2}$ (R: -36_d)
- 2 0011 1100_{c2} (R: 60_d)
- 3 1000 0011_{c2} (R: -125_d)
- **4** 0110 0110 $_{c2}$ (R: 102 $_d$)

Atividades para praticar (slide d)

 Adicione os seguintes valores em representação em Complemento de 2 com palavras de 8bits: (respostas estão entre parênteses)

- 1 $13_d + 43_d$ (R: 0000 1101 + 0010 1011 = 0011 1000)
- $2 13_d + -43d$ (R: 1111 0011 + 1101 0101 = 1100 1000)
- 3 $126_d + -95d$ (R: 0111 1110 + 1010 0001 = 0001 1111)
- 4 126_d + 126d (R: 0111 1110 + 0111 1110 =????) (uhm, talvez algo como um overflow deve ter ocorrido!)

Fim do Documento

Dúvidas?

Próxima aula:

- Aula 01: Introdução à Linguagem de Máquina
 - Diferença entre linguagens (alto nível, baixo nível e de máquina)
 - Arquitetura de Von Neumann e Estrutura de memória
 - Introdução à unidade de processamento
 - Montador NASM e Sintaxes
 - "Hello World"