10 1. Define the *derivative* as the limit of a *Newton quotient*.

Solution: Let $F \in \mathbf{R} \to \mathbf{R}$. We say a function F is differentiable at a provided (i) $a \in \text{dom}(F)$, (ii) $a \in \text{LP}(\text{dom}(F))$, (iii) and $\lim_{x \to a} \frac{F(x) - F(a)}{x - a}$ is a real number.

2. Show that the function $x \in (-\infty, 0) \cup 5 \mapsto x$ is not differentiable at 5.

Solution: Since $5 \notin LP((-\infty,0) \cup 5)$, the given function isn't differentiable at 5.

3. Use the definition you gave in question 1 to find the derivative of $x \in \mathbf{R} \mapsto x^2 + x$ at 2.

Solution: We have

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 3)}{x - 2},$$

$$= \lim_{x \to 2} (x + 3),$$

$$= 5.$$

- 4. Use the definition you gave in question 1 to find the derivative of $x \in \mathbf{R} \mapsto x^2 + x$ at a, where a is any real number.
- 5. Use the definition you gave in question 1 to find the derivative of $x \in \mathbf{R} \mapsto \sqrt{x}$ at 3.
- 6. Use the QRS definition of uniformly continuity to show that that $x \in [-1, 1] \mapsto x^2$ is *uniformly continuous* on its domain.

Proof. Let ε be a positive number, and let $x, y \in [-1, 1]$. If $|x - y| < \varepsilon/2$, we have

$$|x^{2} - y^{2}| = |x - y||x + y|,$$

$$< \frac{\varepsilon}{2} (|x| + |y|),$$

$$= \frac{\varepsilon}{2} (1 + 1),$$

$$= \varepsilon.$$

7. Use the undefinition of uniformly continuity to show that the function $x \in \mathbb{R} \mapsto 8x^2$ is not uniformly continuous on its domain.

Solution:

Proof. For every positive number δ we'll find $x, y \in \mathbf{R}$ such that $|x - y| < \delta$ vet $|8x^2 - 8y^2| > 1/2$.

Choose $x = \frac{1}{8\delta} - \frac{\delta}{4}$ and $y = \frac{1}{8\delta} + \frac{\delta}{4}$. Then $|x - y| = \frac{\delta}{2} < \delta$. Further

$$|8x^{2} - 8y^{2}| = 8|x - y||x + y|,$$

$$< 8 \times \frac{\delta}{2} \times \frac{1}{4\delta},$$

$$= 1,$$

$$> \frac{1}{2}.$$

8. Show that the function $x \in \mathbf{R} \mapsto \begin{cases} x\cos(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is *continuous* at 0. You may use the fact that $|\cos(x)| \leq 1$ for all real x without proving it.

Proof. Let F be the given function, and let ε be a positive number. For $x \in \text{ball}'(0, \varepsilon)$ we have

$$|F(x) - F(0)| = |x \cos(1/x) - 0| = |x| |\cos(1/x)| \le |x| < \varepsilon.$$

Also, $|F(0) - F(0)| = 0 < \varepsilon$. So for all $x \in \text{ball}(0, \varepsilon)$ we have $|F(x) - F(0)| < \varepsilon$ ε .

9. Show that the function $x \in \mathbf{R} \mapsto \begin{cases} x^2 \cos(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is differentiable at 0. 10 Depending on your method, the result of the previous question might be

Solution:

useful.

Proof. Define functions F and G by $F(x) = \begin{cases} x^2 \cos(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ and $G(x) = \begin{cases} x \cos(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$. The function G is continuous at 0; further we

have F(x) = F(0) + (x-0)G(x). This shows that F is differentiable at 0. \square

- 10 10. Let $F: \mathbf{R} \to \mathbf{R}$ be continuous at a. If F(a) > 0, show that there is a positive number δ such that F(x) > 0 for all $x \in \text{ball}(a, \delta) \cap \text{dom}(F)$.
- 10 11. Show that the function $x \in \mathbb{R}_{>0} \mapsto \frac{1}{x}$ is not uniformly continuous on its domain.
- 10 12. Let $F: \mathbf{R} \to \mathbf{R}$ be differentiable at a and suppose F'(a) > 0. Is it true that F is increasing on a neighborhood of a? If so, prove it.
- 10 13. Give an example of a function $F: [-1,1] \to \mathbf{R}$ such that $\sup (\operatorname{range}(F)) \not\in \operatorname{range}(F)$.

Solution:
$$F = x \in [-1, 1] \mapsto \begin{cases} x & x \neq 1 \\ 0 & x = 1 \end{cases}$$

10 14. Give an example of a function $F: (-1,1) \to \mathbf{R}$ such that $\sup (\operatorname{range}(F)) \not\in \operatorname{range}(F)$ and F is continuous on (-1,1).

Solution:
$$F = x \in (-1, 1) \mapsto x$$
.

- 15. Let $F: \mathbf{R} \to \mathbf{R}$ satisfy the inequality $|F(x) F(y)| \le |x y|$ for all $x, y \in \mathbf{R}$.
- (a) Show that *F* is *continuous at zero*.
- (b) Show that F is *uniformly continuous* on \mathbb{R} .
- 10 16. Show that $x \in \mathbf{R} \mapsto x^3$ is continuous at 10.

Solution:

Proof. Let ε be a positive number. Define $\delta = \min(1, \frac{\varepsilon}{331})$. For $x \in \text{ball}(10; \delta)$, we have $9 \le x \le 11$. Further, we have

$$|x^{3} - 10^{3}| = |x - 10||x^{2} + 10x + 100|,$$

$$< |x - 10|(|x|^{2} + 10|x| + 100),$$

$$\le |x - 10|(11^{2} + 110 + 100),$$

$$= 331|x - 10|,$$

$$\le \varepsilon.$$

17. Show that the function with signature $F : \mathbf{R} \to \mathbf{R}$ and formula $F(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ is not continuous at 0.

Proof. We'll show that for every positive number δ there is $x \in \text{ball}(0; \delta)$ such that $|F(x) - F(0)| > \frac{1}{2}$. Let δ be a positive real number. There is an integer n such that $0 < \frac{2}{(n+1)\pi} < \delta$. Further we have

$$\left| F\left(\frac{2}{(n+1)\pi}\right) - F(0) \right| = |1-0| > \frac{1}{2}.$$

10 18. Either prove or disprove: Let $F, G : \mathbf{R} \to \mathbf{R}$, and let $a \in \text{dom}(FG)$. If FG is continuous at a, then both F and G are continuous at a.

Solution: The statement is false. Let $F(x) = \begin{cases} \sin(\frac{1}{x}) & x \neq 0 \\ 0 & x = 0 \end{cases}$ and let G(x) = x. In question 1, we showed that FG is continuous at 0, but in question

17, we showed that F is *not* continuous at 0.

10 19. Let $F : \mathbf{R} \to \mathbf{R}$ be continuous at a. Show that |F| is continuous at a.

Solution:

Proof. Let ε be a positive number. Since F is continuous at a, there is a positive number δ such that for all $x \in \text{ball}(a, \delta) \cap \text{dom}(F)$, we have

$$|F(x) - F(a)| < \varepsilon$$
.

For all $x \in \text{ball}(a, \delta) \cap \text{dom}(F)$, we have

$$||F(x)| - |F(a)|| \le |F(x) - F(a)| < \varepsilon.$$

Therefore |F| is continuous at a.

10 20. Use the inequality $|\sqrt{a} - \sqrt{b}| \le \sqrt{|a - b|}$, for a, b > 0 to show that the square root function is uniformly continuous on $[0, \infty)$.

Proof. Let ε be a positive number. For $x, y \in [0, \infty)$ with $|x - y| < \varepsilon^2$, we have $\left| \sqrt{x} - \sqrt{y} \right| \le \sqrt{|x - y|} < \varepsilon$.

10 21. Show that the function $x \in \mathbf{R} \mapsto x^2$ is not uniformly continuous on \mathbf{R} .

Solution: Let δ be a positive number. Define $x = \frac{1}{\delta} + \frac{\delta}{4}$ and $y = \frac{1}{\delta} - \frac{\delta}{4}$. Then $|x - y| < \delta$; however,

$$|x^2 - y^2| = |x - y||x + y| = \frac{\delta}{2} \frac{2}{\delta} = 1.$$

The definition of uniform continuity: Let $F: E \to \mathbf{R}$. We say F is *uniformly* continuous on E provided

- (a) For *every* $\varepsilon > 0$
- (b) there is a $\delta > 0$
- (c) for all $x, y \in \text{dom}(F)$ such that $|x y| < \delta$
- (d) we have $|F(x) F(y)| < \varepsilon$.

And the "undefinition" of uniform continuity:

- (a) For some $\varepsilon > 0$
- (b) and every $\delta > 0$
- (c) there are $x, y \in \text{dom}(F)$ and $|x y| < \delta$
- (d) such that $|F(x) F(y)| > \varepsilon$.
- 22. Show that $x \in \mathbf{R} \mapsto x^2|x|$ is differentiable at 0. (The absolute value function isn't differentiable at 0, so the product rule *isn't* an option!)
- 23. Use the MVT to show that for all $x, y \in \mathbf{R}$, we have $|\cos(x) \cos(y)| \le |x y|$. You may use the facts (i) $\cos' = \sin$ and (ii) $|\sin(x)| \le 1$ for all real x.