Package 'ukghg'

May 3, 2016				
Title Greenhouse Gas Fluxes from the UK				
Version 0.1				
Description Spatio-temporal predictions of UK GHG emissions.				
Depends R (>= 3.2.2), mgcv, raster, animation				
Suggests knitr				
License Contact the author.				
VignetteBuilder knitr				
LazyData true				
RoxygenNote 5.0.1				
R topics documented:				
calcAlpha calcFlux calcFlux_anthro calcFlux_bio combineFlux unit_conversion writeGIF writeNetCDF				
calcAlpha A calcAlpha Function				
Description This function calculates values of alpha, the coefficient. Usage				
<pre>calcAlpha(ghgName = c("ch4", "co2", "n2o"), datect, sectorList = 1:10)</pre>				

2 calcFlux

Arguments

ghgName Greenhouse gas: one of "ch4", "co2", or "n2o". Defaults to "ch4".

datect A vector of timestamps in POSIXct format.

sectorList A vector of sector numbers for which alpha values should be returned, e.g.

c(1,3,7). Defaults to all.

Examples

```
startDate <- as.POSIXct(strptime("01/06/2006", "%d/%m/%Y"), tz = "UTC")
endDate <- as.POSIXct(strptime("02/06/2006", "%d/%m/%Y"), tz = "UTC")
# create a sequence of dates
nTimes <- 2
datect <- seq(startDate, endDate, length = nTimes)
alpha_df <- calcAlpha("ch4", datect)</pre>
```

calcFlux

A calcFlux Function

Description

This function calculates greenhouse gas fluxes from the UK, based on a spatio-temporal model and the national GHG inventory data.

Usage

```
calcFlux(ghgName = c("ch4", "co2", "n2o"), datect = datect,
proj = c("OSGB", "LonLat"), unitType = c("mol", "g"),
unitSIprefix = c("kilo", "none", "milli", "micro", "nano", "pico"),
writeNetCDF = TRUE, writeGIF = FALSE, sectorList = 1:10)
```

Arguments

ghgName Greenhouse gas: one of "ch4", "co2", or "n2o". Defaults to "ch4".

datect A vector of timestamps in POSIXct format.

proj Geographic projection for the gridded data, either "OSGB" or "LonLat". De-

faults to OSGB, LonLat not implemented yet.

unitType Either molar ("mol") or mass-based ("g").

unitSIprefix Any standard SI prefix for the output units, from "kilo" to "pico".

writeNetCDF Write NetCDF output files. Defaults to TRUE.

writeGIF Produce an animated GIF output file. Requires ImageMagick to be installed.

Defaults to FALSE.

sectorList A vector of sector numbers for which alpha values should be returned, e.g.

c(1,3,7). Defaults to all.

Examples

```
startDate <- as.POSIXct(strptime("01/06/2006", "%d/%m/%Y"), tz = "UTC")
endDate <- as.POSIXct(strptime("02/06/2006", "%d/%m/%Y"), tz = "UTC")
# create a sequence of dates
nTimes <- 2
datect <- seq(startDate, endDate, length = nTimes)
myFlux <- calcFlux("ch4", datect, "OSGB", "mol", "nano")</pre>
```

calcFlux_anthro 3

|--|--|--|

Description

This function calculates anthropogenic greenhouse gas fluxes from the UK, based on a spatio-temporal model and the national GHG inventory data.

Usage

```
calcFlux_anthro(ghgName = c("ch4", "co2", "n2o"), datect = datect,
proj = c("OSGB", "LonLat"), unitType = c("mol", "g"),
unitSIprefix = c("kilo", "none", "milli", "micro", "nano", "pico"),
sectorList = 1:10)
```

Arguments

ghgName	Greenhouse gas: one of "ch4", "co2", or "n2o". Defaults to "ch4".
datect	A vector of timestamps in POSIXct format.
proj	Geographic projection for the gridded data, either "OSGB" or "LonLat". Defaults to OSGB, LonLat not implemented yet.
unitType	Either molar ("mol") or mass-based ("g").
unitSIprefix	Any standard SI prefix for the output units, from "kilo" to "pico".
sectorList	A vector of sector numbers for which alpha values should be returned, e.g. $c(1,3,7)$. Defaults to all.

Examples

```
startDate <- as.POSIXct(strptime("01/06/2006", "%d/%m/%Y"), tz = "UTC")
endDate <- as.POSIXct(strptime("02/06/2006", "%d/%m/%Y"), tz = "UTC")
# create a sequence of dates
nTimes <- 2
datect <- seq(startDate, endDate, length = nTimes)
myFlux <- calcFlux_anthro("ch4", datect, "OSGB", "mol", "nano")</pre>
```

```
calcFlux_bio A calcFlux_bio Function
```

Description

This function calculates biopogenic greenhouse gas fluxes from the UK, based on a spatio-temporal model and the national GHG inventory data.

Usage

```
calcFlux_bio(ghgName = c("ch4", "co2", "n2o"), datect = datect,
proj = c("OSGB", "LonLat"), unitType = c("mol", "g"),
unitSIprefix = c("kilo", "none", "milli", "micro", "nano", "pico"))
```

4 combineFlux

Arguments

ghgName Greenhouse gas: one of "ch4", "co2", or "n2o". Defaults to "ch4".

datect A vector of timestamps in POSIXct format.

proj Geographic projection for the gridded data, either "OSGB" or "LonLat". Defaults to OSGB, LonLat not implemented yet.

unitType Either molar ("mol") or mass-based ("g").

unitSIprefix Any standard SI prefix for the output units, from "kilo" to "pico".

Examples

```
startDate <- as.POSIXct(strptime("01/06/2006", "%d/%m/%Y"), tz = "UTC")
endDate <- as.POSIXct(strptime("02/06/2006", "%d/%m/%Y"), tz = "UTC")
# create a sequence of dates
nTimes <- 2
datect <- seq(startDate, endDate, length = nTimes)
myFlux <- calcFlux_bio("ch4", datect, "OSGB", "mol", "nano")</pre>
```

combineFlux

A combineFlux Function

Description

This function combines biogenic and anthropogenic greenhouse gas fluxes from the UK, based on a spatio-temporal model and the national GHG inventory data.

Usage

```
combineFlux(flux_anthro, flux_bio)
```

Arguments

flux_anthro anthropogenic greenhouse gas fluxes flux_bio biogenic greenhouse gas fluxes

Examples

unit_conversion 5

unit_conversion	A unit conversion Function
4111 6_6011461 51011	11 tittle Conversion I titletton

Description

This function converts from Tg km-2 y-1 to a standard SI unit.

Usage

```
unit_conversion(ghgName = c("ch4", "co2", "n2o"), unitType = c("mol", "g"),
  unitSIprefix = c("kilo", "none", "milli", "micro", "nano", "pico"))
```

Arguments

```
ghgName Greenhouse gas: one of "ch4", "co2", or "n2o". Defaults to "ch4".

unitType Either molar ("mol") or mass-based ("g").

unitSIprefix Any standard SI prefix for the output units, from "kilo" to "pico".
```

Examples

```
unit_conversion("ch4", "mol", "nano")
unit_conversion("co2", "mol", "micro")
unit_conversion("n2o", "mol", "nano")
unit_conversion("ch4", "g", "nano")
```

writeGIF

A writeGIF Function

Description

This function writes an animated GIF output file

Usage

```
writeGIF(ghgName, datect, proj, flux, thresh = 20,
   IMconvertPath = "/Progra~1/ImageMagick-6.8.9-Q16/convert.exe")
```

Arguments

ghgName	Greenhouse gas: one of "ch4", "co2", or "n2o". Defaults to "ch4".
datect	A vector of timestamps in POSIXct format.
proj	Geographic projection for the gridded data, either "OSGB" or "LonLat". Defaults to OSGB, LonLat not implemented yet.
flux	a ukghg flux object
thresh	Maximum value for z value scale
IMconvertPath	Path to ImageMagick convert executable. Typically "/Progra~1/ImageMagick-

6.8.9-Q16/convert.exe" on Windows, depending on version number.

6 writeNetCDF

Examples

```
startDate <- as.POSIXct(strptime("01/06/2006", "%d/%m/%Y"), tz = "UTC")
endDate <- as.POSIXct(strptime("02/06/2006", "%d/%m/%Y"), tz = "UTC")
# create a sequence of dates
nTimes <- 2
datect <- seq(startDate, endDate, length = nTimes)
flux_anthro <- calcFlux_anthro("ch4", datect, "OSGB", "mol", "nano")
flux_bio <- calcFlux_bio("ch4", datect, "OSGB", "mol", "nano")
flux_all <- combineFlux(flux_anthro, flux_bio)
rf <- writeGIF("ch4", datect, "OSGB", flux_all, thresh=30)</pre>
```

writeNetCDF

A writeNetCDF Function

Description

This function writes netCDF output files

Usage

```
writeNetCDF(ghgName, datect, proj, flux)
```

Arguments

ghgName Greenhouse gas: one of "ch4", "co2", or "n2o". Defaults to "ch4".

datect A vector of timestamps in POSIXct format.

proj Geographic projection for the gridded data, either "OSGB" or "LonLat". De-

faults to OSGB, LonLat not implemented yet.

flux a ukghg flux object

Examples

```
startDate <- as.POSIXct(strptime("01/06/2006", "%d/%m/%Y"), tz = "UTC")
endDate <- as.POSIXct(strptime("02/06/2006", "%d/%m/%Y"), tz = "UTC")
# create a sequence of dates
nTimes <- 2
datect <- seq(startDate, endDate, length = nTimes)
flux_anthro <- calcFlux_anthro("ch4", datect, "OSGB", "mol", "nano")
flux_bio <- calcFlux_bio("ch4", datect, "OSGB", "mol", "nano")
flux_all <- combineFlux(flux_anthro, flux_bio)
rf <- writeNetCDF(flux_all)</pre>
```

Index

```
*Topic alpha
    calcAlpha, 1
*Topic flux
    calcFlux_anthro, 3
    calcFlux_bio, 3
    combineFlux, 4
    writeGIF, 5
    writeNetCDF, 6
*Topic units
    calcFlux, 2
    unit\_conversion, 5
{\tt calcAlpha}, 1
calcFlux, 2
calcFlux_anthro, 3
calcFlux_bio, 3
combineFlux, 4
unit\_conversion, 5
writeGIF, 5
writeNetCDF, 6
```