Τεχνικές Μετάδοσης (Transfer Modes)

- ◆ Μεταγωγή κυκλωματος
- ◆ Μεταγωγή κυκλώματος πολλαπλού ρυθμού
- ◆ Γρήγορη μεταγωγή κυκλώματος
- ◆ Μεταγωγή πακέτων
- ◆ Γρήγορη μεταγωγή πακέτων Ασύγχρονος τρόπος μετάδοσης (ATM)

Το φάσμα της Τεχνολογίας Μεταγωγής

fast circuit fast packet **ATM** packet circuit switching switching switching switching multirate frame frame relaying switching circuit

switching

Μεταγωγή Κυκλώματος

Μεταγωγή Κυκλώματος Πολλαπλού Ρυθμού (MRCS)

Αρχιτεκτονική Διακόπτη για MRCS με Διαφορετικά Κανάλια Βασικού Ρυθμού

Λειτουργικές Διαφορές κατά την Αναδημιουργία των Πακέτων στη Μεταγωγή Πακέτων

Λειτουργικότητα	X.25	Μεταγωγή Πλαισίων	Frame Relaying
Αναγνώριση Περιοχής Πλαισίου (flags)	X	X	X
Διαφάνεια bit	X	Х	X
Έλεγχος/Δημιουργία CRC	X	X	X
Έλεγχος Σφαλμάτων (ARQ)	X	X	-
Έλεγχος Ροής	X	X	-
Πολύπλεξη Λογικών Καναλιών	X	-	-

Asynchronous Transfer Mode

Βασικοί ορισμοί

- Δεν παρέχει έλεγχος ροής και προστασία λαθών σε link-by-link βάση
- Βασίζεται στην τεχνική με σύνδεση (connection-oriented mode)
- Περιορίζεται ο ρόλος της επικεφαλίδας
- Το πεδίο πληροφόρησης έχει σχετικώς περιορισμένο μήκος

Πλεονεκτήματα

- Ευέλικτο
- Αποδοτικό στη χρήση των διαθέσιμων πόρων
- Οικονομικό

Αρχή της Μεταγωγής ΑΤΜ

Καθυστέρηση σε Δίκτυα ΑΤΜ

PD: Packetization Delay

TD: Transmission Delay QD: Queueing Delay

FD: Fixed Switching Delay DD: Depacketization Delay

Καθυστέρηση σε ένα αμιγές ΑΤΜ δίκτυο

$$D_1 = \sum_{i} TD_i + \sum_{j} FD_j + \max_{j} QD_j + PD$$

Καθυστέρηση σε Δίκτυα ΑΤΜ

PD: Packetization Delay TD: Transmission Delay

QD: Queueing Delay

FD: Fixed Switching Delay

DD: Depacketization Delay SD: Synchronous Network Delay

Καθυστέρηση σε ένα μεικτό δίκτυο ΑΤΜ / μη ΑΤΜ

$$D_2 = \sum_{i} TD_i + \sum_{j} FD_j + \sum_{k} maxq \int QD_j + k * PD + \sum_{l} SD_l$$

Παράγοντες που Συνεισφέρουν στην Ολική Καθυστέρηση του Δικτύου

- ♦ Καθυστέρηση Μετάδοσης (TD)
- ◆ Καθυστέρηση Πακεταρίσματος (PD)
- Καθυστέρηση Μεταγωγής
 - Σταθερή καθυστέρηση μεταγωγής (FD)
 - Καθυστέρηση ουρών (QD)
- ♦ Καθυστέρηση Ξε-πακεταρίσματος (DD)

Καθυστερήσεις (σε μsec) για Διαφορετικές Ταχύτητες και Μεγέθη Πακέτων σε 8 Διαδοχικά Κέντρα ΑΤΜ

Speed	150 Mhit/s		600 Mhit/s			
Packet Size (Bytes)	16	32	64	16	32	64
TD	4000	4000	4000	4000	4000	4000
FD	64	128	256	16	32	64
QD/DD	200	400	800	50	100	200
PD	2000	4000	8000	200	4000	8000
SD	900	900	900	900	900	900
D1	6264	8528	12256	6166	8132	12364
D2	9365	13828	21956	9016	13132	21364

Μέγεθος Ουρών σε Συνάρτηση του Φορτίου σε ένα Μοντέλο M/D/1

Σημασιολογική Διαφάνεια (Semantic Transparency)

- ◆ Σφάλματα Αναφερόμενα στη Μετάδοση
 - Bit Error Rate

$$BER = \frac{A\rho \iota \theta \mu \delta \varsigma \tau \omega \nu \lambda \alpha \nu \theta \alpha \sigma \mu \acute{\epsilon} \nu \omega \nu \text{ bits}}{\Sigma \nu \nu o \lambda \iota \kappa \delta \varsigma \alpha \rho \iota \theta \mu \delta \varsigma \tau \omega \nu \text{ bits } \pi o \nu \varepsilon \sigma \tau \acute{\alpha} \lambda \eta \sigma \alpha \nu}$$

Packet Error Rate

- ◆ Σφάλματα Αναφερόμενα στην Ακρίβεια
- ◆ Σφάλματα Αναφερόμενα στην Αξιοπιστία
- ◆ Απώλεια Πακέτων που Οφείλεται στα Λάθη της Επικεφαλίδας
- Απώλεια Πακέτων λόγω Υπερχείλισης των Αποθηκευτικών Πόρων (queue overflow)

Σφάλματα Επικεφαλίδας για Διαφορετικές Τεχνικές Προστασίας (Μ1: Καμία Προστασία, Μ2: Ανίχνευση Σφαλμάτων, Μ3: Διόρθωση Σφαλμάτων)

Προσαρμοζόμενος Αλγόριθμος Ανίχνευσης/Διόρθωσης Σφαλμάτων Επικεφαλίδας

Ιδιότητες Υπηρεσιών σε Ένα ΑΤΜ

Υπηρεσία	BER	PLR	PIR	Καθυστέρηση
Τηλεφωνία	10-7	10-3	10 ⁻³	25ms/500ms
Μετάδοση Δεδομένων	10-7	10-6	10-6	1000ms (50ms)
Broadcast video	10-6	10-8	10-8	1000ms
Ήχος <u>Ηί</u> Γί	10-5	10-7	10-7	1000ms
Απομακρυσμένος Έλεγχος Επεζεργασίας	10-5	10 ⁻³	10-3	1000ms

PIR =
$$\frac{A\rhoιθμός των πακέτων που εισαχθήκανε}{Συνολικός αριθμός των πακτων που εστάλησαν}$$

Υπηρεσίες και Απαιτήσεις

Εφαρμογές	Καθυστέρηση (ms)	Jitter (ms)
64 Kbps video-διάσκεψη	300	130
1.5 Mbps MPEG, NTSC	5	6.5
20 Mbps	0.8	1
160 Kbps	30	130
256 Kbps	7	9.1

Πακέτα Μεταβλητού Μήκους έναντι Σταθερού Μήκους

- Αποδοτικότητα του Εύρους Ζώνης Μετάδοσης
 - Πακέτα Σταθερού Μήκους

$$n_{\rm F} = \frac{X}{\left|\frac{X}{L}\right| (L + H)}$$

- n = Αριθμός bit πληροφορίας
 Αριθμός των bit πληροφορίας + Αριθμός των bit της Επιβάρυνσης
- L=Μέγεθος του πεδίου πληροφορίας του πακέτου σε bytes
- Η=Μέγεθος της επικεφαλίδας σε bytes
- X=Αριθμός των bytes της χρήσιμης πληροφορίας που θα μεταδοθεί
- Πακέτα Μεταβλητού Μήκους

$$n_{\rm v} = \frac{\rm X}{\rm X + H + h_{\rm v}}$$

- h_v = Επιβάρυνση της επικεφαλίδας ενός συγκεκριμένου πακέτου
- ◆Ταχύτητα Μεταγωγής και Πολυπλοκότητα
 - ◆ Ταχύτητα λειτουργίας
 - Απαιτήσεις στο μέγεθος των ουρών
- ◆Καθυστέρηση

Μέγεθος του ΑΤΜ Πακέτου

Απόδοση Μετάδοσης

$$n_{\rm H} = \frac{\rm L}{\rm L + H}$$

- Καθυστέρηση
 - Καθυστέρηση Πακεταρίσματος
 - Ολική Καθυστέρηση
 - Καθυστέρηση Ουρών και Ξεπακεταρίσματος
- Πολυπλοκότητα εγκατάστασης

Απόδοση Μετάδοσης και Καθυστέρηση Πακεταρίσματος σε Συνάρτηση του Μήκους του Πεδίου Πληροφορίας

Καθυστέρηση Ουρών σε Συνάρτηση του Λόγου L/Η για Διάφορες Τιμές Ωφέλιμου Φορτίου

Απαιτήσεις σε Μνήμη και Χρόνο Επεξεργασίας σε Συνάρτηση του Μήκους του Cell

Λειτουργικότητα της Επικεφαλίδας (Header Functionality)

- Νοητές Συνδέσεις (Virtual Connections)
- Nοητά Κανάλια (Virtual Channels)
- Nοητές Διαδρομές (Virtual Paths)
- Προτεραιότητες (Priorities)
 - Χρονική Προτεραιότητα
 - Σημασιολογική Προτεραιότητα
- Συντήρηση (Maintenance)
- Πολλαπλή Πρόσβαση (Multiple Access)
- Προστασία της Επικεφαλίδας από Σφάλματα (Header Error Protection)

Η χρήση του VPΙ σε ένα ΑΤΜ δίκτυο

Κώδικες ΒCΗ

n Συνολικός αριθμός bit	k Χρήσιμα bit	t Διορθώσιμα bit
31	26	1
	21	2
	16	3
63	57	1
	51	2
	45	3
127	120	1
	113	2
	106	3

Ικανότητα Ανίχνευσης Λαθών για Διόρθωση Ενός Μόνον bit

<u>Coding</u> bits Bits to protect	6	7	8
32	48 %	74 %	89 %
40	36 %	68 %	84 %
48	23 %	62 %	81 %

Λειτουργικότητα Επικεφαλίδας και Απαιτούμενο Μήκος

Λειτουργίες	Απαιτούμενα bits	ITU-T NNI/UNI
VCI	8-12	16
VPI	8-12	12/8
Priorities	0-4	1
Maintenance/Payload Type	0-2	2
Point-to-multipoint	0-8	0/4
Header Error Control (HEC)	0-8	8
Reserved	0-6	1
Total	16-56	40

Γενικό Διάγραμμα Καταστάσεως Διαχωρισμού ΑΤΜ Πακέτων

