Probing Higgs Bundles for Local *G*₂-Manifolds

Max Hübner

Max.Hubner@maths.ox.ac.uk

Seminar Series on String Phenomenology

1 December 2020, arXiv:2009.07136

Overview

- Introduction and Motivation
- 2 Local G₂-Manifolds and 7d twisted SYM
- 3 Higgs Bundles and a Colored Supersymmetric QM
- 4 Abelian Higgs Backgrounds
- **5** Summary and Outlook

Introduction and Motivation

• M-theory on local (i.e. non-compact) G_2 -manifolds engineers minimally supersymmetric gauge theories in 4d.

```
[Acharya, 2000], [Witten, 2001], [Atiyah, Witten, 2003], [Pantev, Wijnholt, 2009],

[Braun, Cizel, H, Schafer-Nameki, 2018], [Barbosa, Cvetič, Heckman, Lawrie, Torres, Zoccarato, 2019],

[Cvetič, Heckman, Rochais, Torres, Zoccarato, 2020], [H, 2020], [Acharya, Kinsella, Svanes, 2020],

[Acharya, Najjar, Foscolo, Svanes, 2020]
```

 The 4d gauge theories describe the localized degrees of freedom in compact G₂-manifolds.

```
    [Acharya, 1998], [Halverson, Morrison, 2015], [Guio, Jockers, Klemm, Yeh, 2017],
    [Braun, Schafer-Nameki, 2017], [Braun, Del Zotto, 2017], [Braun, 2019], [Xu, 2020]
```

 F-theory methods relying on Higgs bundles and their spectral covers can be applied to study the physics of local G₂-manifolds. [Beasley, Heckman, Vafa, 2009], [Hayashi, Kawano, Tatar, Watari, 2009],

```
[Marsano, Saulina, Schafer-Nameki, 2009], [Marsano, Saulina, Schafer-Nameki, 2010], [Blumenhagen, Grimm, Jurke, Weigand, 2010], [Donagi, Wijnholt 2011], [Donagi, Wijnholt 2011], [Donagi, Wijnholt 2014]
```

 Supersymmetric sigma models probing the geometries give insight into non-perturbative effects and indices.

```
[Alvarez-Gaumé, Witten, 1981], [Witten, 1982], [Pantev, Wijnholt, 2009],[Braun, Cizel, H, Schafer-Nameki, 2018], [H, 2020]
```

Question: What determines the 4d physics engineered by local G_2 -manifolds in M-theory?

ALE Fibered, Local G_2 -Manifolds

Geometric data

Local
$$G_2$$
-Manifold : $\mathbb{C}^2/\Gamma_{\mathsf{ADE}} \hookrightarrow X_7 \to M_3$

Fibral 2-Spheres :
$$\sigma_I \in H_2(\mathbb{C}^2/\Gamma_{ADE}, \mathbb{R})$$

Hyperkähler Triplet :
$$(\omega_1, \omega_2, \omega_3) \in H^2(\widetilde{\mathbb{C}^2/\Gamma_{\mathsf{ADE}}}, \mathbb{R})$$

The Higgs field collects the Kähler periods

Higgs field :
$$\phi_I = \left(\int_{\sigma_I} \omega_i \right) dx^i \in \Omega^1(M_3)$$

where $I = 1, \ldots, \text{rank } \mathfrak{g}_{ADE}$.

Singularities and Supersymmetric 3-cycles

Singularity Enhancement at
$$x \in M_3$$
: $\phi_I(x) = 0$ (isolated)

The vanishing cycles trace out 3-spheres:

Questions

What is the global structure of the network of supersymmetric 3-spheres and the M2-brane instantons?

What do the M2-branes wrapped on the supersymmetric 3-spheres descend to in an effective 7d field theory description?

How can their contribution to the 4d superpotential be computed from the 7d field theory description?

Previous Work

Effective 7d Physics

M-theory on the local G_2 -manifold X_7 gives a

Partially twisted 7d SYM on $\mathbb{R}^{1,3} \times M_3$ with gauge group G_{ADE} .

Complex bosonic 1-form on M_3 : $\varphi = \phi + iA \in \Omega^1(M_3, \mathfrak{g}_{ADE})$

Supersymmetric vacua are solutions to the Hitchin system:

$$i(F_A)_{ij} + [\phi_i, \phi_i] = 0$$
, $(d_A \phi)_{ij} = 0$, $*d_A * \phi = 0$

Zero modes along M_3 are determined by

$$H=rac{1}{2}\left\{Q,Q^{\dagger}
ight\}\,,\qquad Q=d+\left[arphi,\cdot
ight]$$

and counted by the cohomologies

$$H_Q^*(M_3,\mathfrak{g}_{ADE})$$
.

Alternatively, consider perturbative zero modes

$$\chi_a \in \Omega^*(M_3, \mathfrak{g}_{ADE}) \longleftrightarrow Codimension 7 Singularity$$

The zero modes are recovered from

Mass Matrix :
$$M_{ab} = \int_{M_3} \langle \chi_b, Q \chi_a \rangle$$

Yukawa Couplings :
$$Y_{abc} = \int_{M_3} \langle \chi_c, [\chi_a, \chi_b] \rangle$$
 .

Max Hübner

Colored $\mathcal{N} = 2$ SUSY Quantum Mechanics

Bosonic Coordinates on M_3 : x^i , i = 1, 2, 3

Fermions in $x^*(TM_3)$: ψ^i , i = 1, 2, 3

Color fermions in $x^*(\operatorname{ad} G_{\mathsf{ADE}})$: λ^{α} , $\alpha = 1, \ldots, \dim \mathfrak{g}_{\mathsf{ADE}}$

Lagrangian :
$$\mathcal{L} = \frac{1}{2} \dot{x}^i \dot{x}_i - \frac{1}{2} \phi^i_{\lambda} \phi_{\lambda,i} + i \bar{\psi}^i \nabla_{\tau} \psi_i + i \bar{\lambda}^{\alpha} D_{\tau} \lambda_{\alpha} \\ - \left(D_{(i} \phi_{j)} \right)_{\lambda} \bar{\psi}^i \psi^j + i \left(F_{ij} \right)_{\lambda} \bar{\psi}^i \psi^j + \zeta \left(\bar{\lambda}^{\alpha} \lambda_{\alpha} - 1 \right)$$

Hilbertspace : $\mathcal{H}_{phys.} = \Lambda(M_3, \mathfrak{g}_{ADE})$

Supercharge : $Q = d + [\varphi, \cdot]$

Bosonic Coordinates on
$$M_3$$
: x^i , $i = 1, 2, 3$

Fermions in
$$x^*(TM_3)$$
 : ψ^i , $i=1,2,3$

Color fermions in $x^*(\operatorname{ad} G_{\mathsf{ADE}})$: λ^{α} , $\alpha = 1, \ldots, \dim \mathfrak{g}_{\mathsf{ADE}}$

Supercharge:
$$Q = \bar{\psi}_i \left(\dot{x}^i - \phi^i_{\lambda} \right)$$

Perturbative Groundstates: $(x,\lambda) \in M_3 \times \mathfrak{g}_{ADE}$ with $\phi_{\lambda}(x) = 0$

1/2-BPS instantons are piecewise solutions to the flow equations

Flow line instanton :
$$\dot{x}^i - \phi^i_{\lambda} = \dot{x}^i - ic^{\alpha}_{\beta\gamma}\phi^i_{\alpha}\bar{\lambda}^{\beta}\lambda^{\gamma} = D_{\tau}\lambda^{\alpha} = 0$$
.

Colored instantons \longleftrightarrow Euclidean M2-brane instantons

Abelian Higgs Backgrounds (split)

Abelian solutions to the BPS equations: $d_A = d$, $\phi = \phi_I H^I$.

The 1-form Cartan components ϕ_I are harmonic up to sources

$$d\phi_I = 0$$
, $*d*\phi_I = \rho_I$ \rightarrow $\phi_I = df_I$, $\Delta f_I = \rho_I$,

which are supported on codimension ≥ 2 subloci in M_3 .

Root
$$\alpha \in \mathfrak{g}_{ADE}$$
 \leftrightarrow Witten SQM into M_3 with supercharge $Q^{(\alpha)} = d + \alpha^I df_I$

Yukawa Couplings

$$\begin{split} Y_{abc} &= \int_{M_3} \langle x_c^{(\gamma)}, [\chi_a^{(\alpha)}, \chi_b^{(\beta)}] \rangle \\ &= \int_{M_3} d^3 x_0 \int D x D \psi D \bar{\psi} \, \exp \left[i \left(S^{(\alpha)} [x_a, \psi_a, \bar{\psi}_a] + S^{(\beta)} [x_b, \psi_b, \bar{\psi}_b] + S^{(\gamma)} [x_c, \psi_c, \bar{\psi}_c] \right) \right] \\ &= \sum_{\Gamma_{abc}} (\pm)_{\Gamma_{abc}} \exp \left(- \int_{\Gamma_a} \alpha^I \phi_I - \int_{\Gamma_b} \beta^I \phi_I + \int_{\Gamma_c} \gamma^I \phi_I \right) \\ &= \sum_{\Gamma_{abc}} (\pm)_{\Gamma_{abc}} \exp \left[- \text{Vol} \left(S^3_{\Gamma_{abc}} \right) \right] \quad \rightarrow \quad \text{[Harvey, Moore, 1999]} \end{split}$$

$$\begin{split} \chi_r^{(\alpha)} &= \lim_{T \to -\infty (1+i\delta)} \frac{e^{-iHT} \Psi_r \, e^{iHT}}{e^{-iE_{0,r}T} \left\langle \chi_r | \Psi_r^{(\alpha)} \right\rangle} \equiv \Psi_r^{(\alpha)} \big|_{-\infty} \,, \qquad 0 < \delta \ll 1 \,, \\ D x D \psi D \bar{\psi} &= \prod_{\substack{-\infty < \tau < 0 \\ x_{a_1,-\infty} = x_{a} \\ x_{b_r,-\infty} = x_{b}}} d \left\{ x, \psi, \bar{\psi} \right\}_{a,\tau} \, d \left\{ x, \psi, \bar{\psi} \right\}_{b,\tau} \prod_{\substack{0 < \tau < \infty \\ x_{c},\infty = x_{c}}} d \left\{ x, \psi, \bar{\psi} \right\}_{c,\tau} \end{split}$$

Effective 4d Theory (split)

We find:

- Mathematics fixing effective 4d physics is Fukaya's Morse theory with multiple Morse functions, [Fukaya, 1997]
- Chiral and conjugate chiral multiplets in 4d counted by

$$H^{1}(M_{3}, \partial_{-}^{(\alpha)}M_{3}), H^{2}(M_{3}, \partial_{-}^{(\alpha)}M_{3})$$

respectively. [Pantev, Wijnholt, 2009],[Braun, Cizel, H, Schafer-Nameki, 2018]

③ Yukawa couplings given by a cup-product on $H^*(M_3, \partial_-^{(\alpha)}M_3)$

Abelian Higgs Backgrounds (non-split)

Abelian solutions to the BPS equations: $d_A = d$, $\phi = \text{diag}(\Lambda_K)$.

With eigenvalue 1-forms Λ harmonic up to source terms

$$d\Lambda_K = *j_K, \qquad *d * \Lambda_K = \rho_K,$$

which are supported on codimension ≥ 1 subloci in M_3 . (TCS)

Two classes of solutions distinguished by their spectral cover:

$$\mathcal{C} = \{(x, \Lambda_K(x)) \, | \, x \in M_3\} \subset T^*M_3 \ \rightarrow \ \begin{cases} \Lambda_K \text{ globally defined} \\ \Lambda_K \text{ connected by branch cuts} \end{cases}$$

Colored SQM for Non-split Spectral Covers

The eigenvalue 1-forms of the Higgs field are interchanged along paths linking the branch locus

Monodromy Action : $\phi \rightarrow g\phi g^{-1}$

Color Mixing : $E^{\alpha} \rightarrow g E^{\alpha} g^{-1}$

Monodromy orbit $[\alpha]$ \leftrightarrow Witten SQM into \mathcal{C}_k with supercharge $Q^{([\alpha])} = d + \phi_{[\alpha]}$

Effective 4d Theory (non-split)

We find:

- **1** Gauge symmetry determined by stabilizer of ϕ
- Chiral and conjugate chiral multiplets in 4d counted by

$$H^1_{\mathsf{Nov.}}(\mathcal{C}_k,\phi_{[\alpha]})\,,\ H^2_{\mathsf{Nov.}}(\mathcal{C}_k,\phi_{[\alpha]})$$

§ Yukawa couplings given by a cup-product on $H^*_{\mathrm{Nov.}}(\mathcal{C}_k,\phi_{[lpha]})$

Summary

We introduced a colored SQM probing Higgs bundles of local G_2 -manifolds, and establish the correspondence

Euclidean M2 Instantons ↔ Instantons of Colored SQM

For abelian backgrounds we compute instanton effects giving the

Mass Matrix :
$$M_{ab} = \int_{M_3} \langle \chi_b, Q\chi_a \rangle$$

Yukawa Couplings :
$$Y_{abc} = \int_{M_3} \langle \chi_c, [\chi_a, \chi_b] \rangle$$
 .

and determine the effective 4d physics.

Outlook

- Extend on non-split Higgs fields and Novikov cohomologies
- Analyze fluxed T-brane solutions

```
[Barbosa, Cvetič, Heckman, Lawrie, Torres, Zoccarato, 2019]
```

• Understand the M-theory origin of the colored SQM

```
[Harvey, Moore, 1999]
```

Explore other Higgs bundle vacua

```
[Cvetič, Heckman, Rochais, Torres, Zoccarato, 2020]
```

The End

References

Joyce, Dominic D. (1996)

Compact Riemannian 7-manifolds with holonomy \textit{G}_2 . I

J. Differential Geom. 43(2), 291-328.

Kovalev, Alexei (2003)

Twisted connected sums and special Riemannian holonomy *Duke Math. J.* 565, 125–160.

Corti, Alessio and Haskins, Mark and Nordström, Johannes and Pacini, Tommaso (2015)

 G_2 -manifolds and associative submanifolds via semi-Fano 3-folds *Duke Math. J.* 164(10), 1971-2092.

Acharya, Bobby Samir (1998)

M theory, Joyce orbifolds and superYang-Mills *Adv. Theor. Math. Phys.* 3, 227–248.

Halverson, James and Morrison, David R. (2015)

On gauge enhancement and singular limits in G_2 compactifications of M-theory *JHEP* 4.

Guio, Thaisa C. da C. and Jockers, Hans and Klemm, Albrecht and Yeh, Hung-Yu (2017)

Effective action from M-theory on twisted connected sum G_2 -manifolds Commun. Math. Phys. 359(2), 535–601.

Braun, Andreas P. and Schafer-Nameki, Sakura (2017)

Compact, Singular G_2 -Holonomy Manifolds and M/Heterotic/F-Theory Duality JHEP 4.

Braun, Andreas P. and Del Zotto, Michele (2017) Mirror Symmetry for G_2 -Manifolds: Twisted Connected Sums and Dual Tops JHEP 5.

Braun, Andreas P. and Cizel, Sebastjan and Hübner, Max and Schäfer-Nameki, Sakura (2018)

Higgs Bundles for M-theory on G_2 -Manifolds *JHEP* 3.

Acharya, Bobby Samir (2000)
On Realizing N=1 superYang-Mills in M theory arXiv:hep-th/0011089

Acharya, Bobby Samir and Witten, Edward (2001) Chiral fermions from manifolds of G(2) holonomy arXiv:hep-th/0109152

Witten, Edward (2001) Anomaly cancellation on G(2) manifolds arXiv:hep-th/0108165

Atiyah, Michael and Witten, Edward (2003) M theory dynamics on a manifold of G(2) holonomy Adv. Theor. Math. Phys. 6, 1–106

Pantev, Tony and Wijnholt, Martijn (2009) Hitchin's Equations and M-Theory Phenomenology J. Geom. Phys. 61, 1223–1247

Barbosa, Rodrigo and Cvetič, Mirjam and Heckman, Jonathan J. and Lawrie, Craig and Torres, Ethan and Zoccarato, Gianluca (2019) T-Branes and G_2 -Backgrounds

Phys. Rev. D 101(2).

Cvetic, Mirjam and Heckman, Jonathan J. and Rochais, Thomas B. and Torres, Ethan and Zoccarato, Gianluca (2020)

Geometric Unification of Higgs Bundle Vacua

Geometric Unification of Higgs Bundle Vacua arXiv:2003.13682.

Beasley, Chris and Heckman, Jonathan J. and Vafa, Cumrun (2020) GUTs and Exceptional Branes in F-theory - I JHEP 1.

Hayashi, Hirotaka and Kawano, Teruhiko and Tatar, Radu and Watari, Taizan (2009)

Compact F-theory GUTs with U(1) (PQ) *Nucl. Phys.* B823, 47–115.

Marsano, Joseph and Saulina, Natalia and Schafer-Nameki, Sakura (2009) Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs *JHEP* 8.

Marsano, Joseph and Saulina, Natalia and Schafer-Nameki, Sakura (2010) Compact F-theory GUTs with U(1) (PQ) JHEP 4.

Blumenhagen, Ralph and Grimm, Thomas W. and Jurke, Benjamin and Weigand, Timo (2009)

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs Nucl. Phys. B829, 325-369

Donagi, Ron and Wijnholt, Martijn (2011)

Model Building with F-Theory

Adv. Theor. Math. Phys. 15(5), 1237–1317.

Donagi, Ron and Wijnholt, Martijn (2014) Higgs Bundles and UV Completion in F-Theory

Commun. Math. Phys. 326, 287-327.

Witten, Edward (1982) Supersymmetry and Morse theory J. Diff. Geom. 17(4), 661-692.

Xie, Dan and Yonekura, Kazuya (2014) Generalized Hitchin system, Spectral curve and $\mathcal{N}=1$ dynamics JHEP 1.

Kenji Fukaya (1997) Morse Homotopy and its quantization Geometry and Topology.

Harvey, Jeffrey A. and Moore, Gregory W. (1999) Superpotentials and membrane instantons arXiv:9907026.

S. P. Novikov (1981)

Supersymmetry and Morse Theory

Dokl. Akad. Nauk SSSR 260(1), 31-35.

Luis Alvarez-Gaumé and Edward Witten (1981)

Gravitational anomalies

Nuclear Physics B 234(2), 269 - 330.

Xu, Fengjun (2020)

On TCS G₂ manifolds and 4D Emergent Strings

arXiv:2006.02350.

Max, Hubner (2020)

Local G₂-Manifolds, Higgs Bundles and a Colored Quantum Mechanics arXiv:2009.07136.

Braun, Andreas P. (2019) M-Theory and Orientifolds JHEP09(2020)065.

Acharya, Bobby Samir and Foscolo, Lorenzo and Najjar, Marwan and Svanes, Eirik Eik (2020)

T³-Invariant Heterotic Hull-Strominger Solutions arXiv:2010.07438

Acharya, Bobby Samir and Kinsella, Alex and Svanes, Eirik Eik (2020) New G_2 -conifolds in M-theory and their Field Theory Interpretation arXiv:2011.06998

Barbosa, Rodrigo and Cvetič, Mirjam and Heckman, Jonathan J. and Lawrie, Craig and Torres, Ethan and Zoccarato, Gianluca (2019)

T-Branes and G_2 -Backgrounds *Phys. Rev. D* 101(2).

Cvetic, Mirjam and Heckman, Jonathan J. and Rochais, Thomas B. and Torres, Ethan and Zoccarato, Gianluca (2020)
Geometric Unification of Higgs Bundle Vacua
arXiv:2003.13682.

Barbosa, Rodrigo (2019)

A Deformation Family for Closed G_2 -Structures on ADE Fibrations arXiv:1910.10742.