Открытая студенческая олимпиада по математике Казахстанского филиала МГУ

10 декабря 2014

1. Ответ: $f(x) = x - \frac{3}{2}$. Рассмотрим функцию

$$g(x) = f(x) - \left(x - \frac{3}{2}\right).$$

Она непрерывна и удовлетворяет соотношению

$$g(2x+1) = \frac{1}{3}g(x),$$

для любого $x \in \mathbb{R}$. После замены t = 2x + 1:

$$g(t) = \frac{1}{3}g\left(\frac{t-1}{2}\right).$$

Отсюда g(-1)=0. Далее, для каждого $y\in\mathbb{R}$ рассмотрим последовательность, заданную рекуррентным способом:

$$\begin{cases} y_1 = y, \\ y_{n+1} = \frac{y_n - 1}{2}. \end{cases}$$

Тогда $\lim_{n\to\infty}y_n=-1$ и $g(y_n)=\frac{1}{3}g(y_{n+1})$ для всех $y\in\mathbb{R}$. Значит,

$$g(y) = \frac{1}{3^n}g(y_n).$$

В силу непрерывности имеем g(y) = 0.

2. Other: $-\frac{\pi^2}{18}$.

Во-первых:

$$\int_{0}^{1} \frac{\ln(1-u)}{u} du = \{u = v^{2}\} = 2 \int_{0}^{1} \frac{\ln(1-v^{2})}{v} dv =$$

$$= 2 \left(\int_{0}^{1} \frac{\ln(1-v)}{v} dv + \int_{0}^{1} \frac{\ln(1+v)}{v} dv \right),$$

$$\int_{0}^{1} \frac{\ln(1-u)}{u} du = -2 \int_{0}^{1} \frac{\ln(1+v)}{v} dv.$$

то есть

Во-вторых:

$$\int_{0}^{1} \frac{\ln(1-u)}{u} \, du = \{z = v^3\} = 3 \int_{0}^{1} \frac{\ln(1-z^3)}{z} \, dz$$

3. Ответ: нет. Для некоторого $N \in \mathbb{N}$:

$$\sum_{n=1}^{\infty} \frac{\varepsilon_n}{n!} = \sum_{n=1}^{N} \frac{\varepsilon_n}{n!} + \sum_{n=N+1}^{\infty} \frac{\varepsilon_n}{n!} = \frac{H}{N!} + r_N,$$

где $H \in \mathbb{Z}$ и

$$|r_N| \le \sum_{n=N+1}^{\infty} \frac{1}{n!} = \frac{1}{(N+1)!} \left(1 + \frac{1}{N+2} + \dots \right) <$$

$$< \frac{3}{2} \cdot \frac{1}{(N+1)!} < \frac{1}{N!}.$$

При этом $r_N \neq 0$, так как $r_N = \frac{1}{(N+1)!} \varepsilon_{N+1} + r_{N+1}$ и $|r_{N+1}| < \frac{1}{(N+1)!}$.

- 4. (Абдикалыков А.К.) Пусть $f(\lambda) = |B \lambda I|$ характеристический многочлен матрицы B. Заметим, что требуется доказать то, что $f(1) \neq 0$; другими словами, то, что число 1 не является собственным значением матрицы B. А поскольку из AB = A + 2014B следует (A 2014I)(B I) = 2014I, то матрица B I обязана быть невырожденной.
- 5. Ответ: при четном n выиграет начинающий, а при нечетном его соперник. Легко заметить, что если текущее число нечетное, то игрок изменит число на четное; а если четное, то игрок всегда может уменьшить число на 1.
- 6. Пусть x таково, что $x^3 x 1 = 0$. Но тогда

$$x^5 - x^4 - 1 = (x^2 - x + 1)(x^3 - x - 1) = 0.$$

7. Ответ: $\frac{\pi}{4}$. Из тождества

$$F_{n-1}F_{n+1} = F_n^2 + (-1)^n$$

можно получить соотношение

$$\operatorname{arcctg} F_{2n+1} = \operatorname{arcctg} F_{2n} - \operatorname{arcctg} F_{2n+2}.$$

Искомая сумма, таким образом, будет равна

$$\operatorname{arcctg} F_2 = \pi/4.$$

- 8. Все перестановки, обратные сами себе, можно представить в виде композиции непересекающихся циклов длины 2. Число перестановок α порядка n+1 таких, что $\alpha=\alpha^{-1}$ и $\alpha_{n+1}=n+1$, очевидно, равно a_n ; число же перестановок α порядка n+1 таких, что $\alpha=\alpha^{-1}$ и $\alpha_{n+1}=k\neq n+1$ для некоторого фиксированного k, равно a_{n-1} . Общее число инволюций порядка n+1 равно $a_{n+1}=a_n+na_{n-1}$.
- 9. (Баев А.Ж.) Ответ: 24. Пусть столбцов не меньше, чем строк. Если столбцов не менее 5, то строк менее 5. Доказательство от противного (в первой строке как минимум 3 клетки одного цвета, значит, в остальных строках обязательно найдется прямоугольник с клетками противоположного цвета). Если строк 3 или 4, то столбцов менее 7 (доказательство аналогично предыдущему).

Так как столбцов не более 6, строк не более 4, то ответ 24. Пример:

A	Α	A	В	В	В
A	В	В	В	A	Α
В	A	В	A	В	A
В	В	A	A	A	В

10. Обозначим: KLM — исходный треугольник, A, B, C — точки касания параболы и прямых MK, KL, LM. A_2 , B_2 , C_2 — проекции A, B, C на директрису. F — фокус параболы. A_1 , B_1 , C_1 — середины A_2F , B_2F , C_2F .

Свойство 1. Прямая, содержащая $A_1B_1C_1$, является касательной к параболе и параллельна директрисе. Данный факт легко получить из оптического свойства параболы и определения параболы (треугольник FAA_2 — равнобедренный).

Свойство 2. Треугольники FA_1K и FC_1L подобны. Данный факт получается из вписанных четырехугольников FKA_1B_1 и FB_1LC_1 .

Обозначим: L_1 — основание высоты из L на KM, K_1 — основание высоты из K на LM. P и Q — точки пересечения LL_1 и KK_1 с A_1C_1 .

Свойство 3. $A_1Q=PC_1$. По соответствующим теоремам синусов для треугольников PC_1L , KA_1Q и C_1FA_1 можно получить, что

$$\frac{PC_1}{A_1Q} = \frac{C_1L}{A_1K} \cdot \frac{\sin Q}{\sin P} = \frac{C_1L}{A_1K} \cdot \frac{\sin C_1}{\sin A_1} = \frac{C_1L}{A_1K} \cdot \frac{A_1F}{C_1F} = 1$$

Последнее верно из свойства 2.

Свойство 3. H лежит на директрисе. Для этого достаточно заметить, что треугольники PHQ и A_1FC_1 равны. Значит, расстояние от H и F до прямой A_1C_1 одинаково.