

Università degli Studi di Bergamo

SCUOLA DI INGEGNERIA

Corso di Laurea Triennale in Ingegneria Informatica Classe n. L-8 Ingegneria dell'Informazione (D.M. 270/04)

Introduzione al calcolo parallelo in MATLAB®

Candidato: Thomas Fabbris Matricola 1086063 Relatore:

Chiar.mo Prof. Fabio Previdi

Indice

In	trod	uzione		1
1	Cal	colo pa	arallelo: sfida o opportunitá?	3
	1.1	Introd	luzione al calcolo parallelo	3
	1.2	Le cau	use a supporto del parallelismo	5
		1.2.1	Alcune applicazioni del calcolo parallelo	6
		1.2.2	La barriera dell'energia	6
	1.3	Le sfic	de nella progettazione di software parallelo	8
		1.3.1	La legge di Amdahl	10
		1.3.2	Verso i problemi «massicciamente paralleli»	11
2	$\mathbf{U}\mathbf{n}$	lingua	ggio per il calcolo parallelo: MATLAB	15
	2.1	Gli in	gredienti per un MATLAB parallelo	15
		2.1.1	Una breve prospettiva storica	15
		2.1.2	Gli aspetti imprescindibili dell'implementazione	16
	2.2	Parall	el Computing Toolbox	17
		2.2.1	Il paradigma di programmazione parallela implicita	20
		2.2.2	Il paradigma di programmazione parallela esplicita	21
Bi	bliog	grafia		23

Introduzione

I primi progettisti di calcolatori, negli anni Cinquanta del Novecento, ebbero l'intuizione di interconnettere una moltitudine di calcolatori tradizionali, al fine di ottenere un sistema di elaborazione sempre più potente.

Quel sogno primordiale portò alla nascita dei *cluster* di elaboratori trent'anni dopo e allo sviluppo delle architetture di microprocessore *multicore* a partire dall'inizio del 2000.

Oggi la maggior parte delle applicazioni in ambito scientifico, tra cui quelle impiegate nella risoluzione di problemi di analisi numerica su larga scala, possono funzionare solo disponendo di sistemi di calcolo in grado di fornire una capacità di elaborazione molto elevata.

Nel capitolo 1, ci concentreremo sul concetto di calcolo parallelo e sulle principali sfide da affrontare durante la scrittura di software eseguito su più processori simultaneamente, tra cui spicca una crescita delle prestazioni non proporzionale al miglioramento apportato al sistema di elaborazione, un risultato espresso quantitativamente dalla legge di Ahmdal.

Nel corso del capitolo 2, analizzeremo i principali costrutti di programmazione parallela messi a disposizione dall'ambiente di calcolo numerico e programmazione MATLAB®, nonché le scelte di progettazione fondamentali che hanno influenzato le attuali caratteristiche del linguaggio dedicate alla scrittura di programmi a esecuzione parallela.

Nel capitolo 3, forniremo un'illustrazione formale del metodo di Jacobi, un metodo iterativo dell'analisi numerica per la risoluzione approssimata di sistemi di equazioni lineari, dopo aver introdotto alcune nozioni di algebra lineare la cui conoscenza è necessaria per un adeguato sviluppo dell'argomento.

Successivamente, proporremo un'implementazione parallela dell'algoritmo codificato dal metodo di Jacobi, sfruttando le potenzialità fornite dall'impiego dagli array

globali per aumentare il livello di astrazione del programma a elaborazione parallela. Infine, ci occuperemo dell'analisi dei risultati ottenuti dall'esecuzione dell'algoritmo su problemi di grandi dimensioni.

Capitolo 1

Calcolo parallelo: sfida o opportunitá?

L'obiettivo di questo capitolo è esibire una definizione puntuale di calcolo parallelo, un termine impiegato nel mondo dell'HPC (*High Performance Computing*) per riferirsi all'uso simultaneo di molteplici risorse di calcolo, consentendo la risoluzione di problemi a elevata intensitá computazionale in tempi ragionevolmente brevi.

In seguito, investigheremo le cause che portarono alla nascita del parallelismo e descriveremo le principali difficoltà incontrate dai programmatori di applicazioni durante l'implementazione di programmi a esecuzione parallela.

1.1 Introduzione al calcolo parallelo

L'idea alla base del calcolo parallelo è che gli utenti di un qualsiasi sistema di elaborazione possono avere a disposizione tanti processori quanti ne desiderano, per poi interconnetterli a formare un sistema multiprocessore, le cui prestazioni sono, con buona approssimazione, proporzionali al numero di processori impiegati.

La sostituzione di un singolo processore caratterizzato da un'elevata capacità di calcolo, tipicamente presente nelle architetture dei sistemi di calcolo mainframe, con un insieme di processori più efficienti dal punto di vista energetico permette di raggiungere migliori prestazioni per unità di energia, a condizione che i programmi eseguiti siano stati appositamente progettati per lavorare su hardware parallelo; approfondiremo questi aspetti nel paragrafo 1.2.

Una tendenza introdotta da IBM nel 2001 nell'ambito della progettazione di sistemi paralleli [10] è il raggruppamento di diverse unità di calcolo all'interno di una singola CPU (Central Processing Unit); per evitare ambiguità nei termini usati, i processori montati su un singolo chip di silicio vengono chiamati core.

Il microprocessore *multicore* risultante appare al sistema operativo in esecuzione sull'elaboratore come l'insieme di P processori, ciascuno dotato di un set di registri e di una memoria *cache* dedicati; solitamente i microprocessori *multicore* sono impiegati in sistemi a memoria condivisa, in cui i *core* condividono lo stesso spazio di indirizzamento fisico.

Il funzionamento di questa categoria di sistemi multiprocessore si basa sul parallelismo a livello di attività (o a livello di processo): più processori sono impiegati per svolgere diverse attività simultaneamente e ciascuna attività corrisponde a un'applicazione a singolo thread.

In generale, ogni *thread* esegue un'operazione ben definita e *thread* differenti possono agire sugli stessi dati o su insiemi di dati diversi, garantendo un elevato *throughput* per attività tra loro indipendenti.

D'altro canto, tutte le applicazioni che richiedono un utilizzo intensivo di risorse di calcolo, diffuse non solamente in ambito scientifico, hanno bisogno di essere eseguite su *cluster* di elaboratori, una tipologia di sistemi multiprocessore che si differenzia dai microprocessori *multicore* per il fatto di essere costituita da un insieme di calcolatori completi, chiamati nodi, collegati tra loro per mezzo di una rete di telecomunicazione.

In ogni caso, il funzionamento di un sistema di elaborazione parallela si basa sull'uso congiunto di processori distinti.

Per sfruttare al meglio le potenzialità offerte dai *cluster* di elaboratori, i programmatori di applicazioni devono sviluppare programmi a esecuzione parallela efficienti e scalabili a seconda del numero di processori disponibili durante l'esecuzione; risulta necessario applicare un parallelismo a livello di dati, che prevede la distribuzione dell'insieme di dati da processare tra le unità di lavoro del *cluster*, per poi lanciare in esecuzione la medesima operazione, con sottoinsiemi distinti di dati in ingresso, su ogni processore.

Una tipica operazione parallelizzabile a livello di dati è la somma vettoriale perché le componenti del vettore risultante sono ottenute semplicemente sommando le componenti omologhe dei vettori di partenza.

Possiamo intuire fin da subito che una condizione necessaria per la parallelizzazio-

ne di un qualsiasi algoritmo è l'indipendenza tra le operazioni eseguite ad un certo passo dell'esecuzione.

Per esempio, supponiamo di dover sommare due vettori di numeri reali di dimensione N avvalendoci di un sistema dual-core, ossia di un sistema di elaborazione dotato di un microprocessore che contiene al suo interno due core.

Un approccio di risoluzione prevede l'avvio di un thread separato su ogni *core*, specializzato nella somma di due componenti corrispondenti dei vettori operandi; attraverso un'attenta distribuzione dei dati in input, il *thread* in esecuzione sul primo *core* sommerebbe le componenti da 1 a $\lceil \frac{N}{2} \rceil$ dei vettori di partenza e, contemporaneamente, il secondo *core* si occuperebbe della somma delle componenti da $\lceil \frac{N}{2} \rceil + 1$ a N.

A dire il vero, la rigida distinzione proposta tra parallelismo a livello di attività e parallelismo a livello di dati non trova un diretto riscontro nella realtà, in quanto sono comuni programmi applicativi che sfruttano entrambi gli approcci al fine di massimizzare le prestazioni.

Cogliamo l'occasione per precisare la terminologia, in parte già impiegata, per descrivere la componente hardware e la componente software di un calcolatore: l'hardware, riferendoci con questo termine esclusivamente al processore, può essere seriale, come nel caso di un processore single core, o parallelo, come nel caso di un processore multicore, mentre il software viene detto sequenziale o concorrente, a seconda della presenza di processi la cui esecuzione viene influenzata dagli altri processi presenti nel sistema.

Naturalmente, un programma concorrente può essere eseguito sia su hardware seriale che su hardware parallelo, con ovvie differenze in termini di prestazioni.

Infine, con il termine programma a esecuzione parallela, o semplicemente software parallelo, indichiamo un programma, sequenziale o concorrente, eseguito su hardware parallelo.

1.2 Le cause a supporto del parallelismo

L'attenzione riservata all'elaborazione parallela da parte della comunità scientifica risale al 1957, anno in cui la Compagnie des Machines Bull ¹ annunciò Gamma 60, un computer *mainframe* equipaggiato con la prima architettura della storia con supporto diretto al parallelismo, mentre l'anno successivo, i ricercatori di IBM John

¹l'odierna Bull SAS, con sede a Les-Clayes-sous-Bois in Francia.

Cocke e Daniel Slotnick aprirono per la prima volta alla possibilità di integrare il parallel computing nell'esecuzione di simulazioni numeriche [12].

1.2.1 Alcune applicazioni del calcolo parallelo

Oggi sopravvivono in ambito scientifico alcune applicazioni che possono essere eseguite solo su *cluster* di elaboratori oppure che richiedono lo sviluppo di speciali architetture parallele, raggruppate sotto l'acronimo DSA (*Domain Specific Architecture*), per via delle loro caratteristiche *compute-intensive*.

Esempi di settori che hanno beneficiato dello sviluppo di architetture innovative per il calcolo parallelo sono la bioinformatica, l'elaborazione di immagini e video e il settore aerospaziale, che si è potuto affidare a simulazioni numeriche sempre più accurate.

La rivoluzione introdotta dal calcolo parallelo non si limita esclusivamente al campo scientifico: un dominio applicativo che, negli ultimi due decenni, sta registrando uno sviluppo senza precedenti è l'intelligenza artificiale (AI, Artificial Intelligence) e, in particolare, l'addestramento di modelli di AI mediante tecniche di machine learning. I successi ottenuti in questo settore, tangibili in contesti applicativi distanti tra loro come il riconoscimento di oggetti e l'industria della traduzione, non sarebbero stati fattibili se non supportati da sistemi di calcolo sufficientemente potenti in grado di eseguire le operazioni aritmetiche richieste dall'allenamento di modelli sempre più complessi.

Come ulteriori evidenze di questo processo, possiamo citare i calcolatori dei moderni centri di calcolo, i cosiddetti Warehouse Scale Computer (WSC), che costituiscono l'infrastruttura di erogazione di tutti i servizi Internet utilizzati ogni giorno da milioni di utenti, tra cui figurano i motori di ricerca, i social network e i servizi di commercio elettronico.

Inoltre, l'avvento del *cloud computing*, ovvero l'offerta via Internet di risorse di elaborazione «as a service», ha recentemente consentito l'accesso ai WSC a chiunque sia dotato di una carta di credito.

1.2.2 La barriera dell'energia

Il fattore fondamentale dietro all'adozione di massa delle architetture multiprocessore è la riduzione del consumo di energia elettrica offerta dai sistemi di calcolo paralleli; infatti, l'alimentazione e il raffreddamento delle centinaia di server presenti in un centro di calcolo moderno costituiscono una componente di costo non trascurabile, influenzata marginalmente della disponibilità di sistemi di raffreddamento dei microprocessori atti a dissipare una grande quantità di energia.

Il consumo di energia elettrica dei microprocessori viene misurato in Joule (J) ed è quasi interamente rappresentato dalla dissipazione di energia dinamica da parte dei transistori CMOS (Complementary Metal Oxide Semiconductor), essendo quest'ultima la tecnologia dominante nella realizzazione dei moderni circuiti integrati.

Un transistore assorbe prevalentemente energia elettrica durante la commutazione alto-basso-alto (o basso-alto-basso) del suo stato di uscita, secondo la formula

$$E = C_L \cdot V^{+2}$$

dove E rappresenta l'energia dissipata nelle due transizioni di stato, V^+ la tensione di alimentazione e C_L la capacità di carico del transistore.

La potenza dissipata P_D , assumendo che la frequenza di commutazione dello stato del transistore sia pari a f, è quindi data da

$$P_D = f \cdot E = f \cdot C_L \cdot V^{+2} \propto f_C$$

dove f_C é la frequenza di *clock* del circuito, esprimibile in funzione di f.

In passato, i progettisti di calcolatori hanno tentato di contenere l'assorbimento di energia dei microprocessori riducendo la tensione di alimentazione V^+ di circa il 15% ad ogni nuova generazione di CPU, fino al raggiungimento del limite inferiore di 1V.

Al contempo, la diminuzione della tensione di alimentazione ha favorito la crescita delle correnti di dispersione del transistore, tanto che nel 2008 circa il 40% della potenza assorbita era imputabile a queste correnti: ci eravamo imbattuti in una vera e propria «barriera dell'energia».

In figura 1.1 possiamo notare come fino alla prima metà degli anni Ottanta del secolo scorso la crescita annua delle prestazioni dei processori si attestava al 25%, per poi passare al 52% grazie al contributo apportato da rilevanti innovazioni nella progettazione e nell'organizzazione dei calcolatori; dal 2002 in avanti, si sta registrando una crescita delle prestazioni meno evidente, pari al 3,5% annuo, a causa del raggiungimento dei limiti relativi alla potenza assorbita.

La presenza di queste limitazioni tecnologiche ha certamente accelerato la ricerca di

nuove architetture per microprocessori, culminata con lo sviluppo del primo processore *multicore*, IBM Power4, nel 2001 e la successiva introduzione delle prime CPU di questo genere destinate al largo consumo da parte di Intel e AMD nel 2006.

Figura 1.1: Crescita nelle prestazioni dei processori dal 1978 al 2018; il grafico riporta le prestazioni dei processori, paragonandoli al VAX11/780, mediante l'esecuzione dei benchmark SPECint (Da J.L. Hennessy, D.A. Patterson, Computer Architecture: A quantitative Approach. Ed. 6. Waltham, MA:Elsevier, 2017)

In futuro, il miglioramento delle prestazioni dei microprocessori sarà verosimilmente determinato dall'aumento del numero di *core* montati su un singolo *chip* piuttosto che dalla crescita della frequenza di *clock* dei singoli processori.

1.3 Le sfide nella progettazione di software parallelo

Le motivazioni che rendono lo sviluppo di programmi a esecuzione parallela una vera e propria sfida per i programmatori di applicazioni sono molteplici e appartengono a diverse aree di intervento.

Innanzitutto, una caratteristica contraddistintiva del software parallelo è la scalabilità, ovvero la capacità del sistema software di incrementare le proprie prestazioni in funzione della potenza di calcolo richiesta in un preciso istante e di adeguare di riflesso le risorse di calcolo impiegate [5].

Da un lato, la scalabilità, sfruttando la sinergia tra hardware e software di un sistema informatico, consente di ottenere sistemi multiprocessore tolleranti ai guasti e a elevata disponibilità, ma dall'altro richiede che il software venga progettato in maniera tale da sfruttare al meglio i diversi processori e che il codice sorgente sia riscritto a ogni incremento del numero di unità di elaborazione.

La profonda ristrutturazione richiesta durante il ciclo di vita di tutti i programmi a elaborazione parallela, radicata sia nella fase di design che durante la fase di manutenzione, è necessaria per il raggiungimento delle massime prestazioni, nonostante rallenti l'introduzione di nuove funzionalità.

A questo proposito, la programmazione parallela è per definizione ad alte prestazioni ed esige una velocità di esecuzione elevata; in caso contrario, sarebbe sufficiente disporre di programmi sequenziali eseguiti su sistemi monoprocessore, la cui programmazione è di gran lunga più agevole.

Come abbiamo accennato nel paragrafo 1.1, le attività, chiamate *task*, in cui è ripartito un *job* svolto da un programma a esecuzione parallela devono essere indipendenti le une dalle altre per poter essere eseguite su più processori simultaneamente.

Di conseguenza, è consigliato suddividere l'applicazione in maniera tale che ogni processore compi circa lo stesso carico di lavoro in intervalli di tempo di durata comparabile; se un processore impiegasse un tempo maggiore per terminare le task a esso assegnate rispetto agli altri, i benefici prestazionali portati dall'impiego di sistemi multiprocessore svanirebbero.

Oltre allo *scheduling* delle attività e al bilanciamento del carico di lavoro tra i processori, altri problemi derivano dalla presenza di *overhead* di comunicazione e di sincronizzazione tra le diverse unità di lavoro, qualora si rendesse necessaria la cooperazione tra le *task* per portare a termine il compito dato.

Una regola generale per gestire queste problematiche è evitare di sprecare la maggior parte del tempo di esecuzione di un software parallelo per la comunicazione e la sincronizzazione tra i processori, dedicando idealmente un lasso di tempo irrilevante a questi due aspetti.

Chiaramente, le difficoltá incontrate nella realizzazione di programmi a esecuzione parallela vanno di pari passo con il numero di processori presenti nel sistema.

Un'ulteriore sfida da affrontare durante la progettazione di programmi eseguiti su più processori simultaneamente è descritta dalla legge di Amdahl, che limita il miglioramento prestazionale complessivamente ottenuto dall'ottimizzazione di una singola parte di un sistema di elaborazione.

1.3.1 La legge di Amdahl

La legge di Amdahl, esposta per la prima volta dall'ingegnere statunitense Gene Myron Amdahl al AFIPS Spring Joint Computer Conference del 1967, è una legge empirica, reputata un'espressione quantitativa dalla legge dei rendimenti decrescenti dell'economista classico David Ricardo.

Amdahl utilizza il termine *enhancement* per indicare un qualsiasi miglioramento introdotto in un sistema di elaborazione.

Il beneficio, in termini di prestazioni, attribuibile a esso dipende da due fattori: la frazione del tempo di esecuzione iniziale, che diminuisce a seguito dell'enhancement, e l'entità del miglioramento.

In aggiunta, il concetto di incremento di velocità, o *speedup*, ricopre un ruolo centrale nell'intero impianto teorico.

Dato un generico programma e un calcolatore a cui viene apportato un *enhancement*, denominato calcolatore migliorato, lo *speedup* è definito come il fattore secondo il quale il calcolatore migliorato riesce ad eseguire più velocemente il programma rispetto al calcolatore originale.

Questa indicazione dell'incremento di prestazioni viene calcolata secondo la seguente formula

$$Speedup = \frac{Performance\ programma\ con\ miglioramento}{Performance\ programma\ senza\ miglioramento}$$

sotto l'ipotesi in cui le prestazioni del calcolatore migliorato siano effettivamente misurabili attraverso le metriche prestazionali scelte.

Il tempo di esecuzione per il calcolatore migliorato, denotato T_{dopo} , può essere espresso come somma del tempo di esecuzione modificato dal miglioramento, $T_{modificato}$, e di quello non interessato dal cambiamento, $T_{nonModificato}$.

$$T_{dopo} = \frac{T_{modificato}}{Entit\grave{a}\ miglioramento} + T_{nonModificato} \tag{1.1}$$

Possiamo riformulare la legge di Amdahl in termini di incremento di velocità rispetto al tempo di esecuzione iniziale.

$$Speedup = \frac{T_{dopo}}{T_{prima} - T_{dopo}} + \frac{T_{dopo}}{Entit\`{a}\ miglioramento}$$
 (1.2)

con T_{prima} tempo di esecuzione prima del miglioramento.

La formula precedente viene comunemente riscritta ponendo pari a 1 il tempo di esecuzione prima dell'enhancement ed esprimendo il tempo modificato dal miglioramento come frazione del tempo originario di esecuzione, ottenendo

$$Speedup = \frac{1}{1 - Frazione \ tempo \ modificato + \frac{Frazione \ tempo \ modificato}{Entità \ miglioramento}}$$

Come è intuibile, la legge di Amdahl può essere applicata alla stima quantitativa del miglioramento delle prestazioni solo se il tempo in cui viene sfruttata una certa funzione all'interno del sistema è noto, così come il suo potenziale speedup.

Un adattamento della legge di Amdahl al calcolo parallelo è il seguente:

«Anche le più piccole parti di un programma devono essere rese parallele se si vuole eseguire il programma in modo efficiente su un sistema multiprocessore».

1.3.2 Verso i problemi «massicciamente paralleli»

Nel contesto del calcolo parallelo, vengono usati termini specifici per contraddistinguere classi di problemi da risolvere.

A titolo di esempio, un problema «embarrassingly parallel» è un problema che richiede un minimo sforzo per essere suddiviso in un insieme di task indipendenti, a causa del loro debole accoppiamento [3], mentre il termine «massively parallel», in italiano «massicciamente parallelo», descrive i problemi di grandi dimensioni suddivisibili in un numero elevato di task eseguite simultaneamente su migliaia di processori.

Un problema «embarrassingly parallel», di particolare interesse per l'analisi numerica, è il calcolo approssimato di integrali definiti per funzioni di una o più variabili; diversamente, il processo di addestramento di modelli avanzati di machine learning, come le deep neural network, richiede l'esecuzione di migliaia di operazioni aritmetiche, inserendolo di diritto all'interno della classe dei problemi «massively parallel».

Di seguito, effettuiamo una semplice analisi prestazionale di un problema di grandi dimensioni per studiare da vicino le insidie che si nascondono nella distribuzione e nell'esecuzione di software parallelo su sistemi reali.

Esempio 1.1 (Analisi prestazionale di un problema di grandi dimensioni) Supponiamo di sommare trenta variabili scalari e due matrici quadrate di dimensione 3000×3000 servendoci dapprima di un tradizionale sistema monoprocessore e,

successivamente, di un sistema multiprocessore con 30 CPU che supporta la parallelizzazione della somma tra matrici.

Vogliamo analizzare la variazione delle prestazioni dei due sistemi quando:

- a) il numero di processori del sistema multiprocessore aumenta a 120;
- b) le matrici diventano di dimensione 6000×6000 .

La tabella 1.1 riporta la frazione dello *speedup* potenziale raggiunta nei quattro possibili scenari di esecuzione, calcolata applicando le formule 1.1 e 1.2.

Num. processori Dim. matrice	30	120
3000×3000	0,7770	0,4727
$6000 \ \mathbf{x} \ 6000$	$0,\!8739$	0,6375

Tabella 1.1: Frazione dello *speedup* potenziale nei casi proposti nell'esempio 1.1

L'esempio 1.1 evidenzia il problema fondamentale del calcolo parallelo: aumentare la velocità di esecuzione di un programma a esecuzione parallela su un sistema multiprocessore mantenendo fisse le dimensioni del problema è più difficile rispetto a migliorare le prestazioni incrementando le dimensioni del problema proporzionalmente al numero di unità di calcolo montate nel sistema.

Questo particolare comportamento porta alla definizione dei concetti di scalabilità forte e di scalabilità debole.

La prima si riferisce all'incremento della velocità di esecuzione che si ottiene in un sistema multiprocessore senza aumentare la dimensione del problema da risolvere, mentre la seconda descrive l'incremento di velocità ottenuto quando la dimensione del problema viene aumentata proporzionalmente al numero di processori.

Possiamo giustificare il comportamento descritto in precedenza prendendo come modelli un qualsiasi sistema multiprocessore e un programma a esecuzione parallela. Indichiamo con P > 1 il numero di processori presenti nel sistema e denotiamo con M la dimensione del problema risolto dal programma 2 .

Sotto queste ipotesi, ogni processore possiederà uno spazio di memoria dedicato pari a M nel caso della scalabilità debole e pari a $\frac{M}{P}$ nel caso della scalabilità forte.

Potremmo essere erroneamente indotti a pensare che la scalabilità debole sia più facilmente ottenibile rispetto alla scalabilità forte, data la maggiore quantità di me-

 $^{^2}$ Per semplicità possiamo pensare a M come la dimensione dello spazio da allocare in memoria centrale per la risoluzione del problema.

moria disponibile per ogni CPU, ma a seconda del contesto applicativo considerato possiamo individuare validi motivi a supporto di ciascuno dei due approcci. In linea di massima, problemi di grandi dimensioni richiedono moli di dati in input, rendendo la scalabilità debole più agevole da raggiungere.

Capitolo 2

Un linguaggio per il calcolo parallelo: MATLAB

L'accesso diffuso a sistemi di elaborazione multiprocessore ha aumentato la domanda di mercato per soluzioni software a supporto dello sviluppo di programmi a esecuzione parallela.

Da questo processo neanche MATLAB (abbreviazione di *Matrix Laboratory*), un ambiente di programmazione proprietario per il calcolo scientifico, ne è esente, creando tutte le condizioni necessarie per l'aggiunta di nuove funzionalità dedicate all'elaborazione parallela.

L'obiettivo di questo capitolo è fornire una panoramica delle funzionalità salienti di MATLAB per il calcolo parallelo, con un particolare focus sulle motivazioni e sulle scelte di design che hanno guidato l'implementazione di questa nuova parte del linguaggio.

2.1 Gli ingredienti per un MATLAB parallelo

2.1.1 Una breve prospettiva storica

L'approccio seguito dai progettisti di The MathWorks ¹ per introdurre in MATLAB le funzionalità a supporto del calcolo parallelo è stato quello di modificare le caratteristiche del linguaggio stesso, partendo dalla scrittura di *routine* specializzate nella

¹La software house americana, con sede in Massachusetts (Stati Uniti), che si occupa dello sviluppo di MATLAB e di altri prodotti per il calcolo scientifico.

risoluzione di problemi *embarrassingly parallel*, per i quali il principale ostacolo da considerare sappiamo essere la loro complessità computazionale intrinseca.

A partire dai primi passi compiuti in questa direzione negli anni Ottanta del secolo scorso da Cleve Moler, l'autore originale del linguaggio, ci si scontrò con il fatto che il modello di memoria globale tipico di MATLAB, secondo il quale le variabili definite dall'utente o importate dall'esterno vengono conservate in un'area di memoria allocata dalla sessione di MATLAB attiva, era in contrasto con il modello di memoria condivisa impiegato dalla maggioranza dei sistemi multiprocessore.

Questa difficoltà causò dei rallentamenti al progetto che mirava alla parallelizzazione di MATLAB, ma le pressioni esterne per il suo completamento erano troppo insistenti per essere ignorate.

La crescente disponibilità di sistemi multiprocessore aveva reso il calcolo parallelo un argomento presente sulla bocca di tutti gli specialisti del settore: l'apparizione delle prime architetture *multicore* e la costruzione di *cluster* Beowulf ² avevano permesso una notevole diffusione dei sistemi di calcolo ad alte prestazioni, anni prima della «democratizzazione» dei WSC portata dal *cloud computing*.

Inoltre, MATLAB era già un ambiente di calcolo scientifico affermato e quindi doveva fornire alla propria comunità di utenti un prodotto completo e funzionale in tutti gli scenari applicativi, inclusi i progetti a elevata intensità computazionale.

Ecco che nel novembre del 2004 vennero resi disponibili al pubblico i primi risultati di questo progetto, sotto le vesti di due pacchetti software addizionali (chiamati toolbox o add-on secondo la terminologia impiegata dal linguaggio): il Distributed Computing Toolbox[™] e il MATLAB Distributed Computing Engine^{™3}.

2.1.2 Gli aspetti imprescindibili dell'implementazione

L'espansione di MATLAB al calcolo parallelo non fu condotta in modo casuale, ma le aggiunte al linguaggio furono ponderate attentamente a partire dalle informazioni ricavate da sondaggi condotti durante la fase di raccolta dei requisiti.

Per questo motivo, il modello di programmazione parallela proposto da MATLAB è idoneo all'esecuzione di programmi paralleli su sistemi *multicore* e su *cluster* di elaboratori, trattandosi delle architetture di calcolo parallelo più comuni in ambito industriale.

²I cluster Beowulf sono cluster costituiti dall'interconessione di prodotti hardware commerciali, ad esempio PC giunti al termine della loro vita utile, mediante una tradizionale rete LAN.

 $^{^{3}}$ I due nomi commerciali sono i corrispettivi degli odierni Parallel Computing Toolbox[™] e MATLAB Parallel Server[™].

Di seguito elenchiamo, in ordine decrescente di importanza, gli obiettivi di design che hanno ispirato il processo di parallelizzazione di MATLAB:

- la programmabilità, cioé la capacità di creare programmi che soddisfano i requisiti degli utenti e che siano facili da mantenere per gli sviluppatori;
- l'esecuzione di codice arbitrario sui sistemi multiprocessore supportati;
- l'astrazione da dettagli irrilevanti durante l'implementazione di programmi a esecuzione parallela; di conseguenza, lo sviluppatore medio non deve più preoccuparsi di aspetti come lo *scheduling*, la sincronizzazione tra le *task* e la distribuzione dei dati in input alle unità di lavoro;
- l'indipendenza del programma dall'allocazione delle risorse computazionali: un software parallelo scritto in MATLAB deve funzionare correttamente sia quando viene eseguito su un sistema multiprocessore che su un sistema monoprocessore, adattandosi alle risorse di calcolo a disposizione durante l'esecuzione;
- l'accesso a costrutti di programmazione di prima classe ⁴.

Il percorso di trasformazione di MATLAB al fine di renderlo più appetibile al calcolo parallelo non è ancora giunto al termine.

La destinazione finale fissata dagli addetti ai lavori è la realizzazione del modello di linguaggio ideato dal direttore tecnico di TheMathWorks Roy Lurie [4] secondo cui gli esperti di dominio inseriscono annotazioni minimali al codice sorgente per esprimere l'intenzione di eseguire il programma su più processori simultaneamente.

2.2 Parallel Computing Toolbox

Il Parallel Computing Toolbox, spesso abbreviato in PCT, permette di risolvere problemi data-intensive e compute-intesive sfruttando la potenza di calcolo offerta dai microprocessori multicore e dai moderni cluster di elaboratori.

Costrutti di programmazione di alto livello, come i vettori distribuiti, consentono di sviluppare applicazioni MATLAB scalabili senza ricorrere alla programmazione

⁴Secondo la classificazione proposta dall'informatico britannico Christopher Strachey [1], i costrutti di programmazione di prima classe possono essere manipolati liberamente nelle istruzioni del linguaggio; in pratica, devono poter essere passati come parametri attuali durante l'invocazione di una procedura, restituiti come valori di ritorno di una funzione e assegnati a variabili o a strutture dati.

MPI^{5} .

Inoltre, la stessa applicazione può essere eseguita su *cluster* o su server in *cloud* senza apportare alcuna modifica al codice grazie a MATLAB *Parallel Server*, così da concentrarsi esclusivamente sullo sviluppo del modello matematico migliore per il caso d'uso in questione.

Incominciamo il nostro studio del PCT riportando alcune definizioni di particolari aspetti del modello di programmazione di MATLAB considerate fondamentali per la prosecuzione della trattazione.

- Client: termine impiegato per identificare la sessione di MATLAB attiva con cui l'utente finale sta interagendo; tipicamente, corrisponde con il computer usato dallo sviluppatore durante la prototipazione e lo sviluppo in locale del programma.
 - Attraverso le funzionalità offerte dal PCT, un *client* può gestire la computazione da eseguire suddividendola in task più semplici e assegnando ciascuna task a un MATLAB worker.
- Worker: corrisponde a un'istanza di MATLAB, priva di interfaccia grafica, controllata da un *client* e in grado di fornire la potenza del motore di calcolo del linguaggio.
- Parallel Pool: spesso abbreviato in parpool, è un insieme di worker comunicanti che possono eseguire codice interattivamente.

Una prima distinzione da sottolineare è quella tra l'infrastruttura e i componenti del linguaggio esposti dagli strumenti di calcolo parallelo in MATLAB. Il linguaggio comprende costrutti di programmazione paralleli e funzioni con supporto automatico al parallelismo mentre l'infrastruttura riguarda i meccanismi a supporto del linguaggio, come il protocollo seguito per il trasferimento del codice e dei dati alle unità di lavoro del sistema.

Nelle prossime sezioni, esamineremo da vicino alcuni costrutti paralleli offerti da MATLAB, accennando solamente all'infrastruttura sottostante, nonostante entrambe le componenti siano imprescindibili all'interno del framework in questione.

L'architettura di riferimento fino alla fine del capitolo è schematizzata in figura 2.1. MATLAB *Parallel Server* comprende un insieme di *worker*, in esecuzione sui nodi

⁵La Message Passing Interface, o semplicemente MPI, rappresenta lo standard per il modello di comunicazione interprocesso, basato sullo scambio di messaggi, impiegato nelle elaborazioni parallele su sistemi distribuiti [6]

del *cluster*, che ricevono le *task* computazionali dal *client* attraverso specifiche funzioni del *Parallel Computing Toolbox*.

I worker prelevano il codice da eseguire e i dati su cui lavorare da una memoria di massa condivisa popolata dall'head node (non rappresentato in figura), un nodo speciale eletto all'interno del cluster che si occupa dell'assegnazione delle attività ai worker e dell'interfacciamento con il client.

Una volta terminata l'elaborazione, i risultati vengono raccolti dal nodo master e trasferiti all'interno dello spazio di lavoro del *client* mediante il canale di comunicazione instaurato tra il *client* e MATLAB *Parallel Server*.

Figura 2.1: Architettura di riferimento per gli strumenti di calcolo parallelo in MATLAB. (Da https://it.mathworks.com/products/matlab-parallel-server.html)

A questo punto, accenniamo alle modalità di esecuzione del software parallelo su un sistema multiprocessore supportate dall'ambiente MATLAB:

- parallelizzazione implicita: alcune funzioni, se richiamate nel codice sorgente del programma, sfruttano le librerie di *runtime* del linguaggio in modo da essere eseguite su *thread* distinti all'interno della stessa sessione, beneficiando di notevoli miglioramenti di *performance* su sistemi con un numero elevato di processori;
- parallelizzazione esplicita: il carico di lavoro del programma viene automaticamente suddiviso in *task* elementari, ciascuna delle quali viene poi assegnata a un *worker* per l'esecuzione.

2.2.1 Il paradigma di programmazione parallela implicita

I toolbox di MATLAB sono dotati di un crescente numero di funzioni con supporto automatico al parallelismo, al fine di beneficiare di tutti i vantaggi propri dall'e-laborazione parallela senza modificare i file di codice preesistenti, in accordo con i principi di design elencati nel paragrafo 2.1.

Alcune funzioni, come mldivide impiegata per la risoluzione di sistemi di equazioni lineari, vengono eseguite in parallelo di *default* se invocate dalla sessione principale di MATLAB.

Ragionando sulla nostra architettura di riferimento, il *multithreading* implicito viene attivato solo quando la funzione viene eseguita direttamente dal *client*, mentre viene evitato se l'esecuzione é a carico dei nodi del *cluster* per evitare un parallelismo «annidato», che degraderebbe le prestazioni dell'intero sistema.

In quest'ottica, possiamo notare come i progettisti del linguaggio abbiano pensato a un worker come un'unità di elaborazione a singolo thread.

Il *client*, quando incontra una funzione con supporto automatico al parallelismo nel codice sorgente del programma, avvia un *parpool* per la sua esecuzione in parallelo. Un apposito profilo di configurazione determina le caratteristiche dell'ambiente di elaborazione parallela e, in particolare, PCT permette di scegliere tra i seguenti profili preimpostati:

- *Processes*: i worker vengono attivati come processi indipendenti eseguiti dai core fisici del calcolatore su cui è attiva la sessione principale di MATLAB.
- Threads: i worker sono ospitati da thread e non più da processi veri e propri. I vantaggi portati da questo ambiente parallelo sono un minor uso di memoria, un basso costo di comunicazione tra i worker e uno scheduling delle attività particolarmente performante, a scapito della disponibilità di una ristretta gamma di funzioni con supporto al parallelismo su thread.

Per quanto riguarda la scelta del numero di worker per l'ambiente Processes, é consigliato riservare un motore di calcolo per ogni core fisico disponibile, ignorando la presenza di eventuali core virtuali; infatti, questi ultimi condividono alcune risorse di calcolo all'interno dello stesso processore, tra cui la Floating Point Unit (FPU), e poiché la maggior parte delle elaborazioni in MATLAB richiede l'esecuzione di operazioni aritmetiche in virgola mobile, limitare a uno il numero di worker per unità di esecuzione può aumentare la stabilità del sistema.

L'unica eccezione è rappresentata dalle applicazioni data-intensive, per le quali potrebbe essere conveniente portare il numero di worker per core fisico a due.

In ogni caso, il massimo numero di *worker* presenti in un singolo *parpool* a supporto della parallelizzazione implicita é pari a 512, a prescindere dalle specifiche del calcolatore utilizzato.

Figura 2.2: Rappresentazione del modello di parallelizzazione implicita di MATLAB su un sistema dual-core (Da https://it.mathworks.com/discovery/matlab-multicore.html)

Se una funzione non include il supporto automatico al parallelimo, possiamo trasferire l'esecuzione del programma a una workstation, in modo da beneficiare dello speedup offerto da un sistema con maggiore capacità di calcolo, oppure possiamo utilizzare il paradigma di programmazione parallela esplicita supportato dal Parallel Computing Toolbox.

2.2.2 Il paradigma di programmazione parallela esplicita

Il modello di programmazione parallela esplicita in MATLAB conta sulla presenza di costrutti di programmazione parallela a diversi livelli di astrazione.

Bibliografia

- [1] H. Abelson and G. J. S. with Julie Sussman, Structure and Interpretation of Computer Programs, 2nd ed. Cambridge, MA: The MIT Press, 1996.
- [2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, 6th ed. Waltham: Elsevier, 2019.
- [3] M. Herlihy and N. Shavit, *The Art of Multiprocessor Programming*, 1st ed. Elsevier, 2011.
- [4] R. Lurie, "Language design for an uncertain hardware future," *HPCwire*, September 2007.
- [5] M. Michael, J. E. Moreira, D. Shiloach, and R. W. Wisniewski, "Scale-up x Scale-out: A Case Study using Nutch/Lucene," in 2007 IEEE International Parallel and Distributed Processing Symposium. IEEE, 2007, pp. 1–8.
- [6] New Mexico State University High Performance Computing. (2023) Introduction to mpi. New Mexico State University. [Online]. Available: https://hpc.nmsu.edu/discovery/mpi/introduction/
- [7] D. A. Patterson and J. L. Hennessy, *Struttura e progetto dei calcolatori*, 5th ed. Bologna: Zanichelli, 2022, A cura di Alberto Borghese.
- [8] A. Silberschatz, P. B. Galvin, and G. Gagne, Sistemi operativi: Concetti ed esempi, 9th ed., R. Melen, Ed. Milano: Pearson, 2014.
- [9] P. Spirito, Elettronica Digitale, 3rd ed. McGraw-Hill Education, 2021.
- [10] J. M. Tendler, J. S. Dodson, J. S. Fields, Jr., H. Le, and B. Sinharoy, "POWER4 system microarchitecture," *IBM Journal of Research and Development*, vol. 46, no. 1, pp. 5–25, dec 2001.

- [11] The MathWorks, Inc. (2025) Getting started with parallel computing toolbox. MathWorks. [Online]. Available: https://it.mathworks.com/help/parallel-computing/getting-started-with-parallel-computing-toolbox.html
- [12] G. V. Wilson, "The History of the Development of Parallel Computing," Virginia Tech/Norfolk State University, Interactive Learning with a Digital Library in Computer Science, 1994.