

BUNDESREPUBLIK **DEUTSCHLAND**

10 Offenlegungsschrift

DEUTSCHES PATENTAMT

- ₁₀ DE 41 36 861 A 1
- (21) Aktenzeichen:

P 41 36 861.4

Anmeldetag:

11.11.91

- Offenlegungstag:
- 13. 5.93

(5) Int. Cl.5:

A 61 B 17/00

A 61 B 17/36 A 61 B 1/00 A 61 M 1/00 A 61 B 17/28 A 61 B 17/32 A 61 B 17/36 A 61 B 17/068

(7) Anmelder:

Kernforschungszentrum Karlsruhe GmbH, 7500 Karlsruhe, DE

2 Erfinder:

Melzer, Andreas, 6200 Wiesbaden, DE; Schnurr, Marc; Buess, Gerhard, Prof. Dr. med., 7400 Tübingen, DE; Dautzenberg, Peter, 7515 Linkenheim-Hochstetten, DE; Trapp, Rainer, 7523 Graben-Neudorf, DE

Prüfungsantrag gem. § 44 PatG ist gestellt

- (54) Steuerbares chirurgisches Instrument
- Ein steuerbares, minimalinvasives chirurgisches Instrument (SMI) wird vorgestellt. Mit diesem Instrument ist dem Chirurgen im Körper des Patienten während der Operation ein Höchstmaß an Beweglichkeit gegeben. Das ferne Ende kann jeweils verschiedene Effektoren aufnehmen. Damit entfällt die Extra-Durchführung durch einen gesonderten Arbeitskanal. Die hohe Beweglichkeit und jederzeit definierte Positionierung ermöglicht volle Konzentration auf den Operationsvorgang am Operationsort. Das Instrument ist einhändig bedienbar und ermöglicht taktiles Bedienen.

Beschreibung

Die Erfindung betrifft ein steuerbares Instrument für die minimal invasive Chirurgie (SMI). Das Instrument besteht aus einem Handhabungsteil und einem Einführungsteil an dessen fernem Ende sich ein biegbares Teil anschließt.

Zweck solcher Instrumente ist, die notwendigen Verletzungen beim chirurgischen Eingriff auf einen Minimum zu beschränken und gleichzeitig den vollen Handlungsspielraum des Chirurgen am Operationsort bzw. -gebiet aufrechtzuerhalten.

In der medizinischen Diagnostik sind Gastroskope mit beweglichem Einführungsteil bekannt. Die Druckschrift "DES-Gastroskop GIF-XQ2O" der Firma 15 OLYMPUS, 1189-3000 zeigt ein solches Instrument und das Zubehör zur Durchführung vielfältiger diagnostischer Aufgaben.

Die Firma Richard Wolf stellt in einem Auszugsblatt Dib vom IX-89 den Typ Cysto-Krethroskop 8650: Re- 20 tro-Steuerungs-Einsatz vor. Dieses Gerät hat einen starren Einführungsteil, an dessen fernen Ende sich ein beweglicher Teil, durch Seilzug schwenkbar, anschließt. Über eine fest installierte Optik am fernen Ende des starren Einführungsteils können Steuerungen beobach- 25 tet und kontrolliert werden. Die Bedienung des diagnostischen Einsatzes erfolgt beidhändig.

Der Erfindung liegt die Aufgabe zugrunde ein steuerbares chirurgisches Instrument bereitzustellen, das in der mininmal inrasiven Chirurgie einsetzbar ist, über 30 eine lange Zeit hinweg ein ermüdungsfreies Arbeiten des Chirurgen ermöglicht und den Operationsbereich im Körper des Patienten erweitert.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 ge- 35 löst. So erübrigt sich ein bisher stets notwendiger Arbeitskanal entsprechend o. e.

Gastroskop dadurch, daß am fernen beweglichen Ende des steuerbaren chirurgischen Instrumentes Effektoren wie Scheren, Faßzangen, Koagulationszangen, Nähinstrumente. Klammerinstrumente oder Saug- und Spüleinrichtungen jeweils aufgesetzt, gesteuert und betätigt werden können. Dabei ist die große Beweglichkeit des beweglichen Endes mit aufgesetztem Effektor, nämlich von parallel zur Achse des Einführungsteil bis über 45 antiparallel hinaus in jede Richtung und gleichzeitig die Umdrehungsmöglichkeit des aufgesetzten Effektors um seine eigene Achse von hoher Bedeutung. Die Art und Weise des Effektorantriebs, sei er pneumatisch oder hy-Natur oder auf dem von Formgedächtnislegierungen beruhenden Effekt über Seilzüge oder sei er ein elektromotorischer Antrieb über Seilzüge oder schließlich ein auf Ultraschall-Wanderwellen-Basis beruhender Annieren und Betätigen des aufgesetzten Effektors über Taumelvielwegventile oder -. schalter oder eine andere einhändig bedienbare Stellmöglichkeit gegeben. Für die Rotation des aufgesetzten Effektor um seine Achse wird vorteilhaft ein torsionssteifes Drahtstück oder ein Rohr- 60 stück dienen, das einerseits Spülen aber auch definiertes Drehen des Effektors erlaubt.

Eine vorteilhafte zusätzliche Benutzungsmöglichkeit ist, daß anstelle eines Effektors durch den Handhabungs- und den beweglichen Teil eine Glasfaser zum 65 Lichtleiten oder zum Bildleiten durch das steuerbare MIC-Instrument durchführbar ist. Damit ist das Operationsgebiet ausleuchtbar, beobachtbar oder auch be-

strahlbar.

Eine weitere vorteilhafte Einsatzmöglichkeit für das steuerbare MIC-Instrument besteht darin, daß durch es hindurch eine Sensorik durchführbar ist, mit der Gewe-5 be am Operationsort ertastet oder diagnostisiert werden kann. Dies kann mit Hilfe von Ultraschall sein. Daneben kann die Sensorik taktil arbeiten. Spezielle Vorkehrungen für chemische Untersuchungen können ebenfalls getroffen werden.

Das bewegbare ferne Ende des Instrumtes sowie die Drehbarkeit des gerade aufgesetzten Effektors ermöglicht die Bewegung zu einem beliebigen sphärischen Punkt hin. Somit ist dem Chirurgen ein hohes Maß an Beweglichkeit im Operationsgebiet gegeben. Diese Beweglichkeit wird durch einen pneumatischen oder hydraulischen, durch einen elektromotorischen oder piezoelektrischen oder magnetostriktiven Antrieb unterstützt. Selbst der Einsatz von Formgedächtnislegierungen (SMA) unter Ausnützung des superelastischen Effekts bei Biegungen oder unter Ausnützung des thermischen Effekts für Auslehnung und Kontraktion als unterstützender Antrieb ist gegeben. Dabei kann immer eine proportionale Kraftverstärkung realisiert werden, die taktiles Operieren ermöglicht.

Die einhändig vollständige Bedienbarkeit des steuerbaren Instrumentes, sei es rein mechanisch über Stellräder und Stellhebel oder sei es über oben erwähnte Antriebshilfen, ermöglichen ein Bedienen bei dem Ermüdungen des Chirurgen durch das bequeme Instrumentbetätigen zeitlich weit hinausgeschoben wird.

Zwei Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt. Sie werden im folgenden beschrieben. Es zeigen

Fig. 1 mechanisch steuerbares Instrument (SMI), Fig. 2 steuerbares Instrument (SMI) mit Antriebshil-

Das mechanisch steuerbare Instrument für die minimale inrasive Chirurgie stetzt sich zusammen aus dem Handhabungsteil 1 mit Bedienrädern, -knöpfen und -hebel der, falls nützlich, über einen 90°-Bogen 2 in den Einführungsteil 3 übergeht. Am fernen Ende des Einführungsteils 3 schließt sich das bewegliche Teil 4 an, mit dem die Schwenkungen von paralleler Ausrichtung zur Achse des Einführungsteils bis über die antiparallele Ausrichtung hinaus erreicht werden kann. Die Schwenkungen ist in jede beliebige Richtung möglich. Das ermöglicht ein innerer Aufbau des beweglichen Teiles 4, wie er aus der Robotertechnik bekannt ist (siehe z. B. EPA 00 17 016). Die Teile sind für den Einsatz an dem draulisch, sei er piezoelektrischer, magnetostriktiver 50 steuerbaren Instrument entsprechend dimensioniert. Durch den zentralen Bereich des beweglichen Teils gehen dann die weiteren Antriebselemente zum Betätigen der aufgesetzten Effektors. Für einen rein mechanischen Aufbau werden das Seilzüge und zumindest ein tortrieb, in jedem Fall wird ein leichtes Ausrichten, Positio- 55 sionssteifes Seil für die Drehung der aufgesetzten Effektor 6 eingesetzt.

> Das steuerbare Instrument wird insgesamt mit seinem Einführungsteil durch ein Trokar 7 hindurchgeführt und ist darin je nach Trokarweite begrenzt schwenkbar. Im Operationsgebiet besteht durch diesen Aufbau eine hohe Beweglichkeit. Durch die Drehbarkeit des aufgesetzten Effektors 6 ist es möglich z. B. einen Faden aufzuwickeln, wodurch eine Knotung unterstützt werden

> Aufgrund baulicher Vorgaben für den beweglichen Teil 4 kann ein Rohrstück einer Formgedächtnislegierung (SMA) nahegelegt sein. Unter Ausnützung des superelastischen Effekts ereicht man die mehr oder weni

3

ger starke Schwenkung dadurch, daß auf das ferne Ende des Einführungsteils 3 des Rohrstücks 4 aus solch einer Legierung aufgesetzt wird. Dieses Rohrstück hat in seinem kräftefreien Zustand die Form eines 180°-Bogens oder eines U's. Die Ausrichtung wird nun dadurch erreicht, daß über das Rohrstück 4 ein weiteres gerades Rohrstück 8 vom Einführungsteil 3 her soweit darübergeschoben und dann festgestellt wird, bis der aufgesetzte Effektor 6 die gewünschte Ausrichtung und Position eingenommen hat.

Der hervortretende Vorteil der einhändigen Bedienbarkeit des mechanisch aufgebauten steuerbaren Instruments wird verstärkt durch den Einsatz von o. e. Antrieben. Fig. 2 wird im folgenden anhand des elektromotorischen Antriebs näher beschrieben.

Das Handhabungsteil 1 besteht aus einem Griff 9 mit beweglichem Hebel 10. In einem auf dem Griff 9 aufgesetzten zylindrischen Teil 11, dessen Achse mit der Achse 5 des Einführungsteils 3 zusammenfällt, befinden sich um die Achse 5 angeordnet sieben elektromotorische 20 Mikroantriebe mit angebautem und entsprechend ausgelegtem Getriebe.

Zentral auf der Achse 5 des hinteren Endes des zylindrischen Teiles befindet sich ein Taumelschalter 13, mit dem die Positionierung des beweglichen Teils 4 über die 25 Elektroantriebe 12 vorgenommen wird. Die Schwenkung des beweglichen Teils 4 erfolgt über den Schwenkschalter 14, der in Nähe zum Griff 9 unterhalb des Taumelschalters 13 angebracht ist. Die Anordnung der beiden Schalter 13, 14 erlaubt die Bedienung alleine durch 30 den Daumen. Hierbei ist die Bedienbarkeit für ein Linkshänder oder Rechtshänder gleich.

Die Betätigung des aufgesetzten Effektors 6 erfolgt über den Greifer 10. Der Greifer känn festgestellt werden, geht sonst aber selbsttätig in seine Ausgangslage 35 zurück.

Die Antriebsübertragung erfolgt über Seilzüge, die im Einführ- 3 und beweglichen Teil 4 verlaufen. Es kann auch ein Rohrstück im Einführungsteil 3 mit angesetztem torsionssteifen Drahtstück für die Drehung des Effektors sein.

Das Positionieren und Betätigen läßt sich taktil durchführen, wenn die elektromotorischen Antriebe mit den Schalter 13, 14 und dem Greifer 10 über eine leistungsdosierende Elektronik angesteuert werden. 45 Durch die damit vorhandene Kraftbegrenzung ist gleichzeitig ein Zerstörungsschutz eingebaut.

Die weiter oben aufgeführten Antriebsarten nutzen im Falle der Pneumatik und Hydraulik die Druckdosierung aus. Im Falle piezoelektrischer und magnetostriktiver Bauelemente werden Auslenkung und Kontraktion zum Antrieb verwendet. Schließlich eigenen sich auch Antriebsseile aus einer Formgedächtnislegierungen (SMA) dafür, wenn z. B. der thermische Effekt, hervorgerufen durch vorgegebenen Stromdurchfluß, ausgenützt wird.

Antriebe auf Ultraschall-Wanderwellen-Basis sind ebenfalls geeignet. Solche Antriebe sind aus der Photoindustrie zur Einstellung von Objektiven bekannt.

Bei all den unterstützenden Antriebsarten ist wesentlich daß sie kraftdosiert und kraftlimitiert einsetzbar sind. Einhändiges, taktiles Positionieren und Operieren ist dadurch für Chirurgen unter Beibehaltung großer Beweglichkeit möglich.

Bezugszeichenliste

1 Handhabungsteil

290°-Bogen

3 Einführungsteil

4 bewegliches Teil, Rohrstück

5 Achse

6 Effektor, Greifer, Schere, Zange, Koagulationszange

7 Trokar

8 gerades Rohrstück

9 Griff

10 Hebel, Greifer

11 zylindrischer Teil

12 Mikroantrieb, Elektroantrieb

13 Taumelschalter

14 Schwenkschalter

Patentansprüche

- 1. Steuerbares chirurgisches Instrument für die minimal invarsive Chirurgie (MIC), das über einen Trokar in ein Instrumentierkanal einführbar ist, bestehend aus:
 - a) einem Handhabungsteil,
 - b) einem Einführungsteil und einem sich daran am fernen Ende anschließenden, beweglichem und steuerbaren Teil,
 - c) der Bewegungsmöglichkeit des Trägersystems um die Achse des Einführungsteils und begrenzter Schwenkung des Einführungsteiles innerhalb des Trokars, dadurch gekennzeichnet, daß
 - d) ein Effektor (6) bestimmter Eigenschaft am fernen Ende des beweglichem und steuerbaren Teiles (4) aufsetzbar und abnehmbar ist und ein Effektor (6) bestimmter anderer Eigenschaft ebenfalls aufsetzbar und abnehmbar ist, wodurch eine Durchführung des gerade benötigten Effektors (6) samt Antriebseinrichtung entfällt.
 - e) der aufgesetzte Effektor (6) von parallel zur Achse (5) des Einführungsteils (3) bis über antiparallel dazu ausrichtbar ist,
 - f) der aufgesetzte Effektor (6) um einen beliebigen Winkel vorwärts oder rückwärts definiert drehbar ist.
 - g) der Antrieb für das biegbare Ende und/oder dem aufgesetzten Effektor (6) ein pneumatischer oder ein hydraulischer oder ein elektrischer oder ein auf Ultraschallwanderwellenbasis beruhender oder ein auf dem piezoelektrischen Effekt beruhender oder ein magnetosstriktiver oder ein den Effekt einer Formgedächtnislegierung (SMA) ausnützender Antrieh ist
 - h) die Positionierung und die Betätigung des Effektors einhändig erfolgt.
- Steuerbares chirurgisches Instrument nach Anspruch 1, dadurch gekennzeichnet, daß in dem Instrument ein Kanal besteht, durch den andere chirurgische Instrumente z. B. eine Glasfaser einführbar ist, über die ein Laserlicht für operative Zwecke geführt werden kann.
- 3. Steuerbares chirurgisches Instrument nach Anspruch 1, dadurch gekennzeichnet, daß in den Kanal eine Bildleitfaser mit einer an ihrem fernen Ende aufgesetzten optischen Einrichtung einführbariet
- 4. Steuerbares chirurgisches Instrument nach Anspruch 1, dadurch gekennzeichnet, daß der Kanal ein Absaug- oder Spülkanal ist.

ì

5. Steuerbares chirurgisches Instrument nach Anspruch 1, dadurch gekennzeichnet, daß durch den Kanal eine Sensorik führbar ist, mit der am Operationsort Gewebe ertastbar ist oder vor Ort diagnostisiert werden kann.

Steuerbares chirurgisches Instrument nach Anspruch 5, dadurch gekennzeichnet, daß die Sensorik diagnostisch mit Ultraschall oder taktil oder chemisch arbeitet.

7. Steuerbares chirurgisches Instrument nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß der aufgesetzte Effektor (6) eine Schere oder eine Faßzange oder eine Kogulationszange oder ein Nähinstrument oder ein Klammerinstrument oder eine Einrichtung zum Saugen oder Spülen oder ein 15 Kombinationsgerät ist.

8. Steuerbares chirurgisches Instrument nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß über ein pneumatisches Vielwegventil am Handhabungsteil und davon abführende Druckluftleitungen der Antrieb für den aufgesetzten Effektor und/oder für das Biegen des biegsamen Endes erfolgt.

9. Steuerbares chirurgisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß über ein hydraulisches Vielwegventil am Handhabungsteil und davon abgehenden hydraulischen Leitungen der Antrieb für den gerade aufgesetzten Effektor und/oder für das Biegen des biegsamen Endes erfolgt.

10. Steuerbares chirurgisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß über elektrische Kleinmotoren (12) am Handhabungsteil und davon angetriebene Zugseile der gerade aufgesetzte Effektor (6) bedient und/oder das biegsame Ende biegbar und/oder der Effektor über ein Rohr oder ein torsionssteifes Seil drehbar ist.

11. Steuerbares chirurgisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß der Antrieb ein auf Ultraschall-Wanderwellen-Basis beruhender ist.

12. Steuerbares chirurgisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß der Antrieb über piezoelektrische Kontraktion bzw. Expansion erfolgt.

13. Steuerbares chirurgisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß Antrieb 45 über den magnetostriktiven Effekt der Kontraktion bzw. Ausdehnung erfolgt.

14. Steuerbares chirurgisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß die biegsame Hülle des biegsamen Teiles aus einer Formgedächtnislegierung besteht, die in Ruhestellung eine U-förmige Krümmung einnimmt, und ein starres Rohrstück mit geringfügig größerem Innendurchmesser als der Außendurchmesser der biegsamen Hülle mehr oder weniger weit über diese schiebbar ist, so daß dadurch unter Ausnützung des superelastischen Effekts der Formgedächtnislegierung die Auslenkung des gerade aufgesetzten Effektors beliebig einstellbar ist.

15. Steuerbares chirurgisches Instrument nach Anspruch 7, dadurch gekennzeichnet, daß einstellbar stromdurchflossene Antriebsseile aus einer Formgedächtnislegierung (SMA) den gerade aufgesetzten Effektor und das biegsame Teil unter Ausnutzung des dadurch in den Antriebsseilen wirkenden 65 thermischen Effekts betreiben bzw. schwenken.

16. Steuerbares chirurgisches Instrument nach ei-

nem der Ansprüche 1 bis 15, dadurch gekennzeich-

net, daß das Einführungsteil am nahen Ende zwecks optimaler Bedienbarkeit des Handhabungsteiles individuell biegbar ist.

Hierzu 2 Seite(n) Zeichnungen

Nummer: Int. Cl.⁵:

DE 41 36 861 A1 A 61 B 17/00

Offenlegungstag:

13. Mai 1993

Nummer:

DE 41 36 861 A1 A 61 B 17/00 13. Mai 1993

Int. Cl.5: Offenlegungstag:

308 019/211